

Bitcoin and Blockchain Technology Cryptography

ferdinando@ametrano.net 🙊

https://github.com/fametrano

https://twitter.com/Ferdinando1970

https://speakerdeck.com/nando1970

https://www.reddit.com/user/Nando1970/

https://it.linkedin.com/in/ferdinandoametrano

https://www.youtube.com/c/FerdinandoMAmetrano

Table of Contents

- 1. Hash Functions
- 2. Modular Arithmetic and Algebra of Sets
- 3. Elliptic Curves
- 4. Asymmetric Cryptography and Signature Algorithms
- 5. Elliptic Curve Signature Algorithms
- 6. Public/Private Keys and Bitcoin Address/WIF

Hash Functions

- A hash function is a map from the set of input data (of arbitrary length) to the output set of hash values (bit-string of fixed length)
- Small differences in the input data produce large differences in the result

Properties of Hash Functions

- 1. Arbitrary message size: h(x) can be applied to message x of any size
- 2. Fixed output lenghts: h(x) produces a hash value of fixed length (SHA256 uses 256 bits)
- 3. Efficiency: h(x) is relatively easy to compute

Merkle-Damgård hash construction

Hash function is based on a one-way *compression function*; it is as resistant to collisions as its compression function

Cryptographic Hash Functions

- 4. One-wayness (*preimage resistance*): Given h(x), it is computationally infeasible to find x.
- 5. Weak collision resistance (second pre-image resistance): Given x it is computationally infeasible to find y!=x such that h(y)=h(x)
- (Strong) Collision resistance: it is computationally infeasible to find (x, y!=x) such that h(y)=h(x)
- Collision resistance implies second preimage resistance
- Second preimage resistance implies preimage resistance Hierarchical properties: the converse is not true in general

Computationally Infeasible Collisions

- The size of the possible hash values is smaller than the size of possible input data. Therefore, many input data points will share a single hash value output: collisions do exist...
- Try 2^130 randomly chosen inputs: 99.8% chance that two of them will collide. This works, but it takes <u>too</u> long
- Is there a faster way to find collisions? For some hash functions, yes; for the "good" functions, we don't know of one.

Application: Hash as message digest

If we know h(x) = h(y), it is safe to assume that
 x = y

Useful because h(x) can be much smaller than
 x

Puzzle friendlyness

Given x and a target set Y, to find r from high min-entropy distribution such that

$$h(x|r) \in Y$$

there is no solving strategy better than trying random values of r

Min-entropy measures how likely you are to guess a value on your first try. If this probability is p, then the minentropy is defined as $-\log_2 p$. For example, for a fair coin toss, you'd have p = 0.5, giving a min entropy of 1 bit. A uniformly random 256-bit string would have $-\log_2 2^{256} = 256$ bits of min entropy

Partial Hash Inversion

• Find *nonce* so that h(x | *nonce*) is small, e.g. starts with zero

- The smaller the target space, the harder to find a solution
- For good hash functions, the problem can only be solved by brute force trials
- It is always trivial to verify the solution: it is just one hash function evaluation

Homework #1

- Find the nonce that appended to your name obtains a hash value starting with 7 zeros
- How many numbers in the range [0, N] result into hash values starting with zeros?
- Produce the histogram with the frequency of hash values starting with 1, 2, 3, 4, 5, 6, and 7 zeros in the [0, N] range

Table of Contents

- 1. Hash Functions
- 2. Modular Arithmetic and Algebra of Sets
- 3. Elliptic Curves
- 4. Asymmetric Cryptography and Signature Algorithms
- 5. Elliptic Curve Signature Algorithms
- 6. Public/Private Keys and Bitcoin Address/WIF

Modular Arithmetic

arithmetic for integers: numbers "wrap around" upon reaching the *modulus* value

$$9+4 = 1 \mod 12$$

Source: https://commons.wikimedia.org/wiki/File:Clock group.svg

Congruence and Remainders

If $a_1 \equiv b_1 \pmod{n}$ and $a_2 \equiv b_2 \pmod{n}$ then

- $a_1 + a_2 \equiv b_1 + b_2 \pmod{n}$
- $a_1 a_2 \equiv b_1 b_2 \pmod{n}$
- $a_1 a_2 \equiv b_1 b_2 \pmod{n}$

- $(a \bmod n)(b \bmod n) \equiv ab \pmod n$
- $((a \bmod n)(b \bmod n)) \bmod n = (ab) \bmod n$

Group (G, +)

A set G together with an operation + that combines any two elements a and b to form another element a+b is a group if:

- Closure: for all a and b in G, a+b is also in G
- Associativity: for all a, b and c in G, (a+b)+c=a+(b+c)
- Identity: there exists an (unique) element θ in G, such that for every element α in G, the equation θ + θ = θ + θ = θ
- Invertibility: for each a in G, there exists an element b in G, commonly denoted -a, such that a+b=b+a=0

A group is commutative if for all a and b in G, a+b=b+a

e.g. integers under addition (Z, +) are a commutative group, integers under multiplication (Z, \bullet) are not a group (the multiplicative inverse of 2 is not an integer)

Ring and Field $(G, +, \bullet)$

- A ring is a group with a second operation that is associative and the distributive properties make the two operations "compatible"
- A field is a ring such that the second operation satisfies all the group properties, after throwing out the identity element of the first operation

Modular Addition and Multiplication

For any modulus p, ([0, p-1], +) is a commutative group

- 0 is the identity element
- The inverse of any element a is p-a

For any **prime number** p, ([1, p-1], \bullet) is a commutative group

- 1 is the identity element
- For any element *a* there exist its inverse *ab=1* (*mod p*). It is crucial here that *p* is prime

The Finite Field F_p

e.g. F_7

- ({0, 1, 2, 3, 4, 5, 6}, +) is a commutative group
- 4+3 %7 = 0 --> 3 is the additive opposite of 4
- ({1, 2, 3, 4, 5, 6}, •) is a commutative group
- 4*2 %7 = 1 --> 2 is the multiplicative inverse of 4

Division must be interpreted as multiplication by the inverse

- 4 = 2*2 %7 --> 2 is a (even) square root of 4
- 4 = 5*5 %7 --> 5 is a (odd) square root of 4

-2 %7 = 5

odd root + even root = 7

The Finite Field F_7

	opposite	inverse	odd sqrt	even sqrt
0	0	#N/A	0	0
1	6	1	1	6
2	5	4	3	4
3	4	5	#N/A	#N/A
4	3	2	5	2
5	2	3	#N/A	#N/A
6	1	6	#N/A	#N/A

(c) Ferdinando Ametrano 2017

Homework #2

• Calculate for F_{19} and F_{23} the table of opposites, inverses, and square roots

Check scripts/FiniteFields.py at https://github.com/fametrano/BitcoinBlockchainTechnology

Table of Contents

- 1. Hash Functions
- 2. Modular Arithmetic and Algebra of Sets
- 3. Elliptic Curves
- 4. Asymmetric Cryptography and Signature Algorithms
- 5. Elliptic Curve Signature Algorithms
- 6. Public/Private Keys and Bitcoin Address/WIF

Elliptic Curves $y^2 = x^3 + ax + b$

e.g.
$$y^2 = x^3 + 2x + 3$$

(c) Ferdinando Ametrano 2017

Point Addition $P_1 + P_2 = P_3$

Source: Pedro Franco, "Understanding Bitcoin", Wiley

Point Addition $P_1 + P_2 = P_3$

$$P_i = (x_i, y_i)$$

$$x_3 = \left(\frac{y_2 - y_1}{x_2 - x_1}\right)^2 - x_2 - x_1$$

$$y_3 = \frac{y_2 - y_1}{x_2 - x_1} (x_1 - x_3) - y_1$$

Point Doubling

Source: Pedro Franco, "Understanding Bitcoin", Wiley

Point Doubling $P_1 + P_1 = P_3$

$$P_i = (x_i, y_i)$$

$$x_3 = \left(\frac{3x_1^2 + a}{2y_1}\right)^2 - 2x_1$$

$$y_3 = \frac{3x_1^2 + a}{2y_1}(x_1 - x_3) - y_1$$

Infinity Point (Group Identity, Neutral Element)

- Zero in additive notation
- Identity in multiplicative notation
- Sometime also indicated as ∞

•
$$P+Q=0 \rightarrow Q=-P$$

Source:

https://en.wikipedia.org/wiki/Elliptic curve#/media/File:ECClines.svg

EC Commutative Group

- Points on an elliptic curve with the addition operation form a commutative group
- The point at infinity is the neutral element

- Arbitrarily named addition: it is the group operation and could have been called multiplication instead
- In multiplicative notation doubling would have been called squaring

Multiplication P = nGDouble and Add Algorithm

e.g.
$$947 = 2^0 + 2^1 + 2^4 + 2^5 + 2^7 + 2^8 + 2^9$$

 $947G = G + 2G + 16G + 32G + 128G + 256G + 512G$

9 doublings and 6 additions: polynomial in the number of bits representing n. Much better than 946 additions!

```
def pointMultiply(n, G):
   if n==1:
      return G
   elif n%2==1: # addition when n is odd
      return pointAdd(G, pointMultiply(n-1, G))
   else: # doubling when n is even
      return pointMultiply(n/2, pointDouble(G))
```

https://en.wikipedia.org/wiki/Elliptic curve point multiplication

Discrete Logarithm One Way Function

• With a known n it is easy and fast to compute

$$P = nG$$

- For $n \in [1, N-1]$, to infer n from (P, G) is exponential in the number of bits representing N
- This inverse problem is known as discrete logarithm, computationally unfeasible for large N
- Multiplicative notation would have been $P = G^n$, leading to usual logarithm definition: $n = \log_G P$

Elliptic Curves Over a Finite Field F_n $y^2 = x^3 + ax + b \bmod p$

e.g. $y^2 = x^3 + 6x + 9 \mod 263$ 300 250 200

Finite Cyclic Group

- An elliptic curve defined over a finite field ${\it F}_p$ is also a finite cyclic group
- Starting with an initial generator point *G* in the curve and adding this point successively, all the *N* points in the group are recovered. *N* is the group order
- Any point can be reached quickly from a predecessor if the number of steps is known
- $y^2 = x^3 + 9x + 9$ over F_{263} has 269 points: 268 affine points the point at infinity

$y^2 = x^3 + 6x + 9$ over F_{263} First 14 points starting with (0, 3)

Primality of the Field Order

The primality of the field order is crucial for:

- the modular inverse to exists
- the cyclic field not to have subgroups, e.g.

$$y^2 = x^3 + 2x + 3$$
 over F_{263}

- with G=(200, 39) has order 270
- with G=(72, 120) has order 90

Is the order is even, it does exist a point P=(x,0) with 2P=0, e.g. for $y^2 = x^3 + 2x + 3$ over F_{263} with G=(200, 39), P=(262,0)

Elliptic Koblitz Curve secp256k1 Domain Parameters

- The elliptic curve defined over F_p is $y^2 = x^3 + 7$
- The generation point *G* = (79BE667E F9DCBBAC 55A06295 CE870B07 029BFCDB 2DCE28D9 59F2815B 16F81798, 483ADA77 26A3C465 5DA4FBFC 0E1108A8 FD17B448 A6855419 9C47D08F FB10D4B8)

SECG, SEC 2: Recommended Elliptic Curve Domain Parameters, http://www.secg.org/sec2-v2.pdf
https://en.bitcoin.it/wiki/Secp256k1

Elliptic Curve Private/Public Key

- A public key is one point *P* on the elliptic curve
- A private key is the number p of additive steps from the generator point G to arrive at point P

$$P = p G$$

• In multiplicative notation p is called secret exponent

$$P = G^p$$

https://en.wikipedia.org/wiki/Elliptic curve cryptography

Homework #3

Create a spreadsheet for

$$y^2 = x^3 + 2x + 2 \mod 17$$

- List all its points
- It does not have subgroups, why?
- Create a spreadsheet for

$$y^2 = x^3 + 4x + 20 \mod 29$$

- List all its points
- What is the order of the group with generator (8,10)?

Check scripts/F11_EC1_6_G5_9_N13.py, scripts/F263_EC6_9_G0_3_N269.py, and scripts/secp256k1.py at https://github.com/fametrano/BitcoinBlockchainTechnology

Table of Contents

- 1. Hash Functions
- 2. Modular Arithmetic and Algebra of Sets
- 3. Elliptic Curves
- 4. Asymmetric Cryptography and Signature Algorithms
- 5. Elliptic Curve Signature Algorithms
- 6. Public/Private Keys and Bitcoin Address/WIF

Asymmetric Cryptography Families Key Generation Algorithms

- Integer factorization (1977), based on the difficulty of factoring large integers (e.g. RSA)
- Discrete Logarithm (1976), based on the intractability of the discrete logarithm problem on finite cyclic groups (e.g. Diffie and Hellman)
- Elliptic Curve (1985), based on the difficulty of computing the generalized logarithm problem on an elliptic curve (e.g. Bitcoin)

Break Elliptic Curve Cryptography

- The best known algorithms to break the EC discrete logarithm problem take steps proportional to $\sqrt{2^m}$ where m is the number of bits of the key
- secp256k1 uses 256bit keys: 2¹²⁸ steps are needed to break it
- An EC computation takes 1 million CPU cycles. A 3GHz CPU is able to process $2^{11.55}$ EC computations per second
- A CPU can break the EC in $2^{116.45}$ seconds, or about $2^{91.54}$ years, i.e. about 3599861590422752583114293248 years
- Throwing a million CPUs at the problem would reduce the time by a million, leaving it at 3599861590422752583114 years, roughly 260,859,535,537 times the age of the universe

Key Size At Comparable Security Levels

Source: Pedro Franco, "Understanding Bitcoin", Wiley

(c) Ferdinando Ametrano 2017

Digital Signature Protocol

- Public-key algorithm + digital signature scheme
- Message is only authenticated, not encrypted

Signing The Message Digest

- Problem: signature generation/verification is quite slow: message length can be a problem
- Solution: sign the hash value of the message h(msg), whose length is independent from the message's size
- This is also useful if, for some reason, the msg is to be revealed only after signature verification
 - If the msg can take only few values (e.g. $\{tail, head\}$), it can be concealed using an ephemeral number k: sign and reveal h(msg|k)

Digital Signature Process

 Signature Verification Signature Generation Message Message **Hash Function Hash Function** Message Digest Message Digest **Public Key** Valid/Invalid Private Key Signature Generation Signature Verification Signature

(c) Ferdinando Ametrano 2017

Digital Signature Algorithms

- RSA, the most widely used
- **Elgamal** signature. It has little use being computationally intensive and having large signature
- Digital Signature Algorithm (DSA), quicker and smaller than RSA: widely used
- Schnorr signature, the simplest scheme. Signing and verification are computationally efficient, signature is small. Not used so far because of patents

Table of Contents

- 1. Hash Functions
- 2. Modular Arithmetic and Algebra of Sets
- 3. Elliptic Curves
- 4. Asymmetric Cryptography and Signature Algorithms
- 5. Elliptic Curve Signature Algorithms
- 6. Public/Private Keys and Bitcoin Address/WIF

EC DSA: Generation

- 1. Choose a nonce as secret ephemeral key 0 < k < order
- 2. Compute $K = (x_K, y_K) = kG$
- 3. $s = (h + x_K p)k^{-1} \mod order$ If $x_K = 0$ or s = 0 (extremely unlikely) then restart with another k

The signature of h is (x_K, s)

k must be secret: if revealed, $p = (sk - h)x_K^{-1} \mod order$

EC DSA: Verification

Steps for the (x_K, s) verification of h

- 1. $u = h s^{-1} \mod order$
- 2. $v = x_K s^{-1} \mod order$
- 3. (x,y) = uG + vP
- 4. The signature is valid if $x = x_K \mod order$

Malleability: if (x_K, s) is a valid signature of h, then also $(x_K, order - s)$ is a valid signature Note that assuming a valid signature, $P = ((x_K, y_{odd\ or\ even}) - uG)/v$

EC DSA: Correctness Proof

$$x = x_K \mod order$$
 if $uG + vP = kG$

- 1. (u + v p)G = kGfrom public key definition
- 2. $(h s^{-1} + x_K s^{-1} p)G = kG$ from signature verification [2] and [3]
- 3. $(h + x_K p) s^{-1} G = kG$
- 4. $(h + x_K p)(h + x_K p)^{-1} kG = kG$ from signature generation [5]
- 5. kG = kG

Ephemeral Key Used for Signing

The ephemeral key k must remain secret: therefore, it is **to be used only once** per p. Reusing the nonce k would reveal it:

$$s_1 = (h_1 + x_K p) k^{-1} \mod order$$

 $s_2 = (h_2 + x_K p) k^{-1} \mod order$
 $k = (h_1 - h_2)/(s_1 - s_2) \mod order$

Ask Sony PS3 developers and bitcoin owners using Android Wallet in 2013...

http://www.bbc.com/news/technology-12116051 https://bitcoin.org/en/alert/2013-08-11-android

Solution: use a deterministically different k for each msg, with k remaining secret because of p salting (RFC6979):

$$k = h(msg|p)$$

(c) Ferdinando Ametrano 2017

EC Schnorr SA: Generation

- 1. Choose a nonce as secret ephemeral key 0 < k < order
- 2. Compute K = kG
- 3. $s = k h p \mod order$

If s = 0 (extremely unlikely) then restart with another k

The signature of h is (K, s)

k must be secret: if revealed, $p = (k - s)h^{-1} \mod order$

EC SSA: Verification

Steps for the (K, s) verification of h

1.
$$V = K - h P$$

2. The signature is valid if sG = V

Schnorr signature is **not** malleable Note that assuming a valid signature, P = (K - sG)/h

EC SSS: Correctness Proof

$$sG = V$$

$$(k - h p)G = K - h P$$

$$(k - h p)G = kG - h pG$$

$$(k - h p)G = (k - h p)G$$

Ephemeral Key Used for Signing

For Schnorr too, the ephemeral key k must remain secret: therefore, it is **to be used only once** per p. Reusing the nonce k would reveal it:

$$s_1 = k - h_1 p \mod order$$

$$s_2 = k - h_2 p \mod order$$

$$p = (s_1 - s_2)(h_2 - h_1)^{-1} \mod order$$

Again: for each msg use a deterministically different k that remains secret because of p salting (RFC6979):

$$k = h(msg|p)$$

Homework #4

Calculate the public key(s) from this valid signature:

```
*** message hash and its signature
h: 9788fd27b3aafd1bd1591a1158ce2d8bdc37ab4040dddb64e64d17616e69ce2b
x: 2ab2a733eae4e67e06611aba01345b85cdd4f5ad44f72e369ef0dd640424dbfa
```

s: 27598b74fc77ee8aaa6f56d3f976949ac2c2f5849c98412d10ce02c170262be8

A second signature is computed in error using the same ephemeral key. Calculate the private key:

```
*** another message hash and its signature
```

h2: 7adb91982ec03ef87efcae7f0199aefa231d8855e0bd03319460e58c0bd18049

x: 2ab2a733eae4e67e06611aba01345b85cdd4f5ad44f72e369ef0dd640424dbfa

s2: 691d6fb6b4b90a8358a3b1c241bbc53b5be5bf52196561dbe5270ba1f54815a2

Check scripts/secp256k1 DSA.py and scripts/secp256k1 SchnorrSA.py (also F29_EC4_20_G8_10_N37 DSA.py and F29 EC4 20 G8 10 N37 SchnorrSA.py) at https://github.com/fametrano/BitcoinBlockchainTechnology

Table of Contents

- 1. Hash Functions
- 2. Modular Arithmetic and Algebra of Sets
- 3. Elliptic Curves
- 4. Asymmetric Cryptography and Signature Algorithms
- 5. Elliptic Curve Signature Algorithms
- 6. Public/Private Keys and Bitcoin Address/WIF

Public Key Compression

$$pG = P = (x, y)$$

• **Un**compressed P representation is $04 \times y$

For every x, two y roots are possible: $y^2 = x^3 + 7$

- Even y root, compressed P representation is 02 x
- Odd y root, compressed P representation is 03 x

Bitcoin Uses Base58 Digits

- Binary digits: 01
- Decimal digits: 0123456789
- Hexadecimal digits: 0123456789ABCDEF
- Base58 digits: all alphanumeric characters (numbers, uppercase, and lowercase) omitting 0 (zero), 0 (capital o), I (capital i) and I (lower case L)
 123456789ABCDEFGHJKLMNPQRSTUVWXYZabcdefghijkmnopqrstuvwxy

Fewer digits to represent large numbers

Base58Check Encoding

includes a checksum algorithm, that helps detecting errors

Base58 encoding can be decoded

Base 58 Representation of Public/Private Keys

Base58 is used for compact representation of Bitcoin Public/Private Keys:

- Address: P in Base58 representation
- Wallet Import Format: p in Base58 representation

From Uncompressed Public Key to Bitcoin Address (1/4)

Having a private EC key

18E14A7B6A307F426A94F8114701E7C8E774E7F9A47E2C2035DB29A206321725

 Start from the associated public key in uncompressed representation (65 bytes: 1 byte x04 prefix, 32 bytes corresponding to X coordinate, 32 bytes corresponding to Y coordinate)

04

50863AD64A87AE8A2FE83C1AF1A8403CB53F53E486D8511DAD8A04887E5B2352 2CD470243453A299FA9E77237716103ABC11A1DF38855ED6F2EE187E9C582BA6

From Uncompressed Public Key to Bitcoin Address (2/4)

- 2. Perform SHA-256 hashing on the public key 600FFE422B4E00731A59557A5CCA46CC183944191006324A447BDB2D98D4B408
- 3. Perform RIPEMD-160 hashing on the result of SHA-256 010966776006953D5567439E5E39F86A0D273BEE
- Add version byte in front of RIPEMD-160 hash (x00 for Main Network) to obtain the extended RIPEMD-160

00010966776006953D5567439E5E39F86A0D273BEE

Note: step 2-3 make the PubKey->Address derivation not invertible

From Uncompressed Public Key to Bitcoin Address (3/4)

Base58**Check** encoding steps:

- 5. Perform SHA-256 hash on the extended RIPEMD-160 445C7A8007A93D8733188288BB320A8FE2DEBD2AE1B47F0F50BC10BAE845C094
- 6. Perform SHA-256 hash on the result of the previous step **D61967F6**3C7DD183914A4AE452C9F6AD5D462CE3D277798075B107615C1A8A30
- Take the first 4 bytes of the second SHA-256 hash. This is the address checksum

D61967F6

From Uncompressed Public Key to Bitcoin Address (4/4)

8. Add the 4 checksum bytes from stage 7 at the end of extended RIPEMD-160

00010966776006953D5567439E5E39F86A0D273BEE**D61967F6**

9. Convert into a base58 string using Base58 encoding 16Uwll9Risc3QfPqBUvKofHmBQ7wMtjvM

https://en.bitcoin.it/wiki/Technical background of version 1 Bitcoin addresses

From Compressed Public Key to Bitcoin Address

Using the same private EC key as in the previous slide

18E14A7B6A307F426A94F8114701E7C8E774E7F9A47E2C2035DB29A206321725

 Start from the associated public key in compressed representation (33 bytes: 1 byte x02 or x03, 32 bytes corresponding to X coordinate)

02

50863AD64A87AE8A2FE83C1AF1A8403CB53F53E486D8511DAD8A04887E5B2352

Arrive to a Base58 encoded bitcoin address

1PMycacnJaSqwwJqjawXBErnLsZ7RkXUAs

Private Key (Uncompressed) WIF

Having a private EC key

0C28FCA386C7A227600B2FE50B7CAE11EC86D3BF1FBE471BE89827E19D72AA1D

- Uncompressed Extended Key (x80 prefix, no suffix)
 - **80**0C28FCA386C7A227600B2FE50B7CAE11EC86D3BF1FBE471BE89827E19D72AA1D
- Base58 encode
 5HueCGU8rMjxEXxiPuD5BDku4MkFqeZyd4dZ1jvhTVqvbTLvyTJ
- When an address will be derived, it will be uncompressed

Note: the process is invertible

Private Key (Compressed) WIF

Using the same private EC key as in the previous slide

- Compressed Extended Key (x80 prefix, x01 suffix)
 800c28fca386c7a227600b2fe50b7cae11ec86d3bf1fbe471be89827e19d72aa1d01
- Base58 encode

 KwdMAjGmerYanjeui5SHS7JkmpZvVipYvB2LJGU1ZxJwYvP98617
- When an address will be derived, it will be compressed

Bitcoin Address Version (main net)

version	usage	leading symbol(s)
00	muhhan hash (DODEH address)	1
x 00	pubkey hash (P2PKH address)	±
x 05	script hash (P2SH address)	3
x 80	prvkey (WIF, uncompressed pubkey)	5
x 80	prvkey (WIF, compressed pubkey)	K or L
x0488B21E	BIP32 pubkey	хриb
x0488ADE4	BIP32 private key	xprv

Bitcoin Address Version (test net)

version	usage	leading symbol(s)
6 F	pubkey hash	m or n
C4	script hash	2
EF	prvkey (WIF, uncompressed pubkey)	9
EF		
	prvkey (WIF, compressed pubkey)	C
x043587CF	BIP32 pubkey	tpub
x04358394	BIP32 private key	tprv

Homework #5

With the private key obtained with the previous homework:

- Calculate the <u>uncompressed</u> WIF
- 2. Calculate the compressed WIF
- 3. Calculate the bitcoin address from <u>uncompressed</u> public key
- 4. Calculate the bitcoin address from compressed public key

Check PrivKeyToWIFCompressed.py, PrivKeyToWIFUncompressed.py, and PubKeyToBitcoinAddress.py in the scripts folder at https://github.com/fametrano/BitcoinBlockchainTechnology

Verify the results at www.bitaddress.org (Wallet Details)

Bibliography

- Christof Paar and Jan Pelzl, "Understanding Cryptography", Springer, chapter 8, 9, 10, 11
- Pedro Franco, "Understanding Bitcoin", Wiley, chapter 5, 7 "Public Key Cryptography"
- Andreas Antonopoulos, "Mastering Bitcoin", O'Reilly, chapter 4
 "Keys, Addresses, Wallets"
 https://goo.gl/tNBu5w
- A. Narayanan et al., "Bitcoin and Cryptocurrencies Technologies", Princeton, chapter 1
- NIST, Digital Signature Standard, http://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.186-4.pdf

Homework #6

Please provide few paragraphs of feedback on this lesson: its strongest and weakest points, if and where it would need improvements, what had you struggling the most, what got you most excited, etc.