Wykład VIII. Przestrzenie liniowe. Przypomnienie

Definicja przestreni liniowej

Niepusty zbiór V nazywamy rzeczywistą (zespoloną) przestrzenią liniową jeżeli:

- dla dowolnych elementów $f, g \in V$ jest oikreślona ich suma $f + g \in V$;
- f + g = g + f przemienność dodawania;
- (f+g)+z=f+(g+z) lączność dodawania;
- istnieje element neutralny $0 \in V$ taki że f + 0 = f, $\forall f \in V$;
- $\forall \alpha \in \mathbb{R} \ (\alpha \in \mathbb{C})$, $\forall f \in V$ określony jest iloczyn $\alpha \cdot f \in V$;
- dla każdego $f \in V$, \exists element przeciwny $-f \in V$ taki że f + (-f) = 0;
- $1 \cdot f = f$, $\alpha(\beta \cdot f) = (\alpha\beta) \cdot f$;
- $(\alpha + \beta) \cdot f = \alpha \cdot f + \beta \cdot f$, $\alpha \cdot (f + g) = \alpha \cdot f + \alpha \cdot g$.

Przekształcenia liniowe 30.11.2020 2

Wykład VIIi. Przestrzenie liniowe. Przypomnienie

Przykłady

- $W_n[x]$ zbiór wszystkich wielomianów stopnia $\leqslant n$;
- W[a, b] zbiór wszystkich wielomianów na [a, b];
- $W_n[a,b]$ zbiór wszystkich wielomianów stopnia (a,b];
- C[a, b]- zbiór wszystkich funkcji ciągłych na [a, b];
- $M_{n \times m}$ zbiór macierzy wymiaru $n \times m$;
- $\mathbb{R}^n = \{ f = (x_1, x_2, \dots, x_n) : x_i \in \mathbb{R} \};$
- $\bullet \ \mathbb{C}^n = \{ f = (z_1, z_2, \dots, z_n) : z_i \in \mathbb{C} \}.$

Wykład VIII. Przekształcenia liniowe.

Definicja przekształcenia liniowego.

Niech U, V są przestrzeni liniowe. Mówimy że przekształcenie $L: U \to V$ jest liniowe, jeśli spełnia warunki

- L(f+g) = L(f) + L(g), dla dowolnych $f, g \in U$;
- $L(\alpha f) = \alpha L(f)$ dla dowolnych $f \in U$, $\alpha \in \mathbb{R}$ $(\alpha \in \mathbb{C})$.

Uwaga

Przekształcenie liniowe

operator liniowy.

Wykład VIII. Przekształcenia liniowe. Przykłady.

Pierwsza pochodna, $L = \frac{d}{dx}$.

sensowny wybór U, tzn. $U=W_n[x]$ lub U=W[a,b] lub $U=W_n[a,b]$ ale czy może być U=C[a,b]?

Wykład VIII. Całka, $L(f) = \int_a^b f(x) dx$.

Wybór *U* i *V*?

$$U = CIa,63$$
, $V = \mathbb{R}$

Wykład VIII. Całka, $L(f) = \int_a^x f(s)ds$, $x \in [a, b]$.

Wybór *U* i *V*?

Wykład VIII. Przykład.

$$U = M_{n \times n}$$
,

$$L(A) = \det A$$
 dla $A = M_{n \times n}$.

$$L_{1}(JA) = \det JA = J^{n} \det A = J^{n} L_{1}(A)$$

Wykład VIII. Przykład.

$$L(x_1, x_2, x_3) = L(x, y, z) = (x + z, y + z)$$

Wykład VIII. Przykład.

$$L(x,y,z)=(|x|,y)$$

Wykład VIII. Jądro i obraz przekształcenia liniowego L.

Jadro.

Niech U, V są przestrzeni liniowe oraz niech $L:U\to V$ - przekształcenie liniowe. Jądro przekształcenia liniowego:

$$\ker L = \{ f \in U : L(f) = 0 \}.$$

Obraz.

Niech U, V są przestrzeni liniowe oraz niech $L:U\to V$ - przekształcenie liniowe. Obraz przekształcenia liniowego:

Im
$$L = \{g \in V : \exists f \in U, g = L(f)\} = \{g = L(f) : \forall f \in U\}.$$

Przekształcenia liniowe 30.11.2020

Wykład VIII. Jądro i obraz. Własności.

Jądro operatora liniowego ker L jest podprzestrzenią liniowa przestrzeni U.

Obraz operatora liniowego Im L jest podprzestrzenią liniowa przestrzeni V .

Wykład VIII. Jądro i obraz. Własności.

Bardzo ważna równość

Niech U, V są przestrzeni liniowe oraz niech $L: U \to V$ - przekształcenie liniowe. Wówczas zachodzi wzór

 $\dim U = \dim \ker L + \dim \operatorname{Im} L.$

Wyznaczyć wymiar jądra i obrazu przekształcenia liniowego, $L: \mathbb{R}^3 \to \mathbb{R}^2$.

$$L(x, y, z) = (x - 3y + 2z, -2x + 6y - 4z)$$

 $3 = \dim \ker L + \dim \operatorname{Im} L. \Longrightarrow \operatorname{szukamy} \dim \ker L$

$$L(x, y, z) = 0 \Longrightarrow (x - 3y + 2z, -2x + 6y - 4z) = (0, 0)$$

Przekształcenia liniowe 30.11.2020

Wyznaczyć wymiar jądra i obrazu przekształcenia liniowego, $L:\mathbb{R}^3 o\mathbb{R}^2$

Układ równań liniowych

$$\begin{cases} x - 3y + 2z = 0 \\ -2x + 6y - 4z = 0 \end{cases} \implies \begin{cases} x - 3y + 2z = 0 \\ -2x + 6y - 4z = 0 \end{cases} \implies \begin{cases} x - 3y + 2z = 0 \\ 0 = 0 \end{cases}$$

 $\ker L = \{f = (3y - 2z, y, z) : \forall y, z \in \mathbb{R}\} - \text{podprzestrze\'n liniowa} \mathbb{R}^3.$

Wektory bazowe:

$$f_1=(3,1,0)$$
 (dla $y=1$ $z=0$); $f_2=(-2,0,1)$ (dla $y=0,$ $z=1$).

 f_1, f_2 baza dla ker L bo dla każdego $f \in \ker L$:

$$f = yf_1 + zf_2$$
, \Longrightarrow dim ker $L = 2$, \Longrightarrow dim Im $L = 1$.

Przekształcenia liniowe

30.11.2020 14 / 1

Wykład VIII. Przekształcenie różnowartościowe.

Przekształcenie różnowartościowe.

Przekształcenie liniowe $L:U\to V$ nazywamy różnowartościowym jeżeli z tego że $f\neq g\in U$ wynika $L(f)\neq L(g)$

Twierdzenie.

Przekształcenie liniowe $L: U \to V$ jest różnowartościowym \iff ker $L = \{0\}$.

nie... =>
$$\exists f \neq g$$
, że $L(f) = L(g) \Rightarrow v = f - g \neq 0$
 $L(u) = L(f) - L(g) = 0 \Rightarrow v \in Ker L$.

$$U \in KurLi, u \neq 0, f = u, g = 2u, f \neq g$$
 Ale $L(f) = L(u) = 0$
 $= \int L(f) = L(g) = \int Vie...$

Wykład VIII. Izomorfizm.

Przekształcenie I różnowartościowe.

Przekształcenie liniowe $L:U\to V$ nazywamy izomorfizmem jeżeli L jest różnowartościowym oraz Im L=V.

Innymi słowy:

Przekształcenie liniowe $L: U \to V$ jest izomorfizmem \iff $\begin{cases} \ker L = \{0\} \\ \operatorname{Im} L = V \end{cases}.$

Twierdzenie

Izomorfizm między U i V istnieje \iff dim $U = \dim V$.

Wykład VIII. Izomorfizm

Wniosek I.

Każda przestrzenia liniowa U wymiaru dim U = n jest izomorficzna do przestrzeni \mathbb{R}^n (lub \mathbb{C}^n).

Wniosek II.

Mamy: przekształcenie liniowe $L:U\to V$, gdzie dim U=n, dim V=m. Istnieje izomorfizm $T_n:U\to\mathbb{R}^n$. Podobnie, istnieje izomorfizm $T_m:V\to\mathbb{R}^m$ Odwzorowanie $\hat{L}=R_mLR_n^{-1}$ będzie przekształceniem liniowym z \mathbb{R}^n do \mathbb{R}^m

Ważny Wniosek.

Badanie przekształcenia liniowego $L:U\to V$ jest równoważne do badania przekształcenia liniowego $\hat{L}:\mathbb{R}^n\to\mathbb{R}^m$.

Wykład VIII. Określenie izomorfizmu $T_n: U \to \mathbb{R}^n$.

Niech wekrory $f_1, f_2, \ldots f_n$ jest bazą przestrzeni liniowej U. Wówczas, dla każdego $f \in U$ istnieją jednoznacznie określone liczby c_1, c_2, \ldots, c_n takie że

$$f = c_1 f_1 + c_2 f_2 + \ldots + c_n f_n$$

Uwaga

Liczby $c_1, c_2, \dots c_n$ nazywamy współrzędnymi wektora f w bazie f_1, f_2, \dots, f_n .

Izomorfizm T_n

$$T_n f = (c_1, c_2, \ldots, c_n).$$

Przekształcenia liniowe 30.11.2020 18

Wykład VIII. Izomorfizm $T_n: U \to \mathbb{R}^n$.

Izomorfizm T_n

$$T_n f = (c_1, c_2, \ldots, c_n).$$

Wykład VIII.

20 / 1

Wykład VIII.

Wykład VIII.

Dziękuję za Uwagę!