METODO VOLT AMPEROMETRICO CASO 1: Voltmetro a Valle P Quoudo Rv >> R Effetti di autoconsumo Gli strumenti non sono ideali, quindi abbiamo un assorbimento di Potenza da parte degli strumenti. Quando andiamo a misurare le grandezze di un circuito, gli strumenti influenzano il comportamento del circuito è quindi avremo una misura sbagliata.

$$R_{H} = \frac{V_{M}}{I_{m}} \quad con \quad I_{m} = \frac{V_{R}}{I_{v} + I_{R}} \quad V$$

$$1 \quad I_{v} = \frac{V_{m}}{R_{v}} \quad Res. \quad inT$$

$$Volt metro$$

Riusciamo ad eliminare il contributo della corrente in ingresso al voltmetro perché conosciamo la sua resistenza interna (ce la da il costruttore) e conosciamo Vm fornita dal voltmetro stesso; possiamo quindi calcolare la corrente che lo attraversa.

LKC:
$$T_{m} = I_{R} + I_{V}$$

$$= D \quad I_{R} = I_{m} - I_{V}$$
Eliminare questo

Come trorare la resisteuza reale?

Siccome
$$R_m = \frac{V_m}{I_m}$$
 mo $I_m = I_R + I_V = D$ $R_m = \frac{V_m}{I_R + I_V}$ mo $I_R = \frac{V_m}{R_V}$ $I_$

$$= 0 \quad Rm = \frac{V_m}{\frac{V_m}{R} + \frac{V_m}{RV}} = \frac{V_m}{\frac{V_m Rv + V_m R}{R Rv}} = \frac{RRv}{R + Rv} Rm$$

Isolo
$$R = D$$
 $R \cdot Rv = RRm + RmRv - D$ $R(Rv - Rm) = RmRv$

$$= D R = RmRv$$

$$Rv - D RmRv$$

$$Rv - RmRv$$

Questa soluzione si usa quando la resistenza che dobbiamo misurare è molto minore della resistenza del voltmetro.

Questa soluzione si usa quando la resistenza che dobbiamo misurare è molto maggiore rispetto a quella interna all'amperometro

$$= D R = \frac{V_m - V_A}{I_m}$$

ma
$$V_A = R_A \cdot I_m - D R = V_m - R_A \cdot I_m = \frac{V_m}{I_m} - R_A$$
 $I_m = R_m = D R = R_m - R_A$

Per $R_A << R_m - D R = R_m$

Quale inserzione usare?

Voltmetro a valle

• Si ha che:

$$R_m = \frac{RR_V}{R + R_V}$$

- In generale la resistenza interna del voltmetro è grande.
- Quindi, se R << RV, si ha che Rm ≅ R e quindi lerrore commesso è trascurabile.

Voltmetro a monte

· Si ha che:

$$Rm = R + RA$$

- In generale la resistenza interna dell'amperometro è piccola.
- Quindi, se R >> RA, si ha che Rm = R e quindi lerrore commesso è trascurabile.

Ovviamente dobbiamo avere un'idea della misura della resistenza (almeno l'ordine di grandezza).

Anche se non volessimo "trascurare" l'eventuale resistenza interna, possiamo compensare l'errore conoscendo la resistenza interna data dal costruttore.

INCERTEZZA COMPOSTA

CASO 1: Voltmetro a Valle

Incertezza Sulla Resistenza enterno obl Volemetro Sullo Teusique

$$cou Rm = \frac{V_m}{I_m} = 0$$

Abbieu vi sto che
$$R = \frac{Rv Rm}{Rv - Rm}$$
 cou $Rm = \frac{Vm}{Im} = 0$ $R = \frac{Rv Vm}{Im} = \frac{Rv Vm}{Rv - Vm}$

misurata

Formula dell'incertezza Composta

$$U_{R}^{2} = \left(\frac{\partial R}{\partial V_{m}}\right)^{2} \cdot U_{V_{m}}^{2} + \left(\frac{\partial R}{\partial I_{m}}\right)^{2} \cdot U_{I_{m}}^{2} + \left(\frac{\partial R}{\partial R_{v}}\right)^{2} \cdot U_{R_{v}}^{2}$$

Considero le misure come scorrelate (quindi statisticamente indipendenti) tra loro.

Se però teniamo conto di tutti i fattori, queste misure in realtà sono correlate tra loro.

$$R = \frac{R V \frac{Vm}{Im}}{Rv - \frac{Vm}{Im}} = \frac{R Vm}{Im} \cdot \frac{Im}{ImRv - Vm} = \frac{R Vm}{Im} \cdot \left(\frac{ImRv - Vm}{Im}\right)^{-1}$$

15. Metodo Volt Amp.

FINISCI DIMOSTRAZIONE

#ToDo

38:00

~ o Passage; ~ o

$$\mathcal{U}_{R}^{2} = \left(\frac{1}{R_{V}-R_{m}}\right)^{2} \left[\left(\mathcal{U}_{V_{m}} + \mathcal{U}_{I_{m}}\right)R_{V}^{2} + R_{m}^{2}\mathcal{U}_{R_{V}}\right]$$

Incertezz relativa $u_R^2 = \frac{U_R^2}{Q^2}$

possiono troscurare onche l'incertezza del voltmetro! Se Rv>>Rm oltre che il suo assorbimento di Corrente

Infatti: $\mathcal{U}_{R}^{2} = \left(\frac{1}{R_{V}-R_{m}}\right)^{2} \left[\left(\mathcal{U}_{V_{m}}^{2} + \mathcal{U}_{I_{m}}^{2}\right)R_{V}^{2} + R_{m}^{2}\mathcal{U}_{R_{V}}^{2}\right]$ $= \frac{1}{R_{V}^{2}}\left(\mathcal{U}_{V_{m}}^{2} + \mathcal{U}_{I_{m}}^{2}\right)R_{V}^{2}$

Se la resistenza interna del voltmetro è molto maggiore rispetto a quella da misurare, l'incertezza relativa totale può essere ridotta alla somma delle incertezze delle misure di corrente e tensione!

$$R = \frac{R_{\nu}R_{m}}{R_{\nu} - R_{m}} = \frac{R_{\nu}\frac{V_{m}}{I_{m}}}{R_{\nu} - \frac{V_{m}}{I}} = \frac{R_{\nu}V_{m}}{I_{m}R_{\nu} - V_{m}}$$

 V_m è la tensione misurata dal voltmetro e I_m la corrente misurata dall'amperomentro

$$\begin{split} U_R^2 &= \left(\frac{\partial R}{\partial V_m}\right)^2 U_{Vm}^2 + \left(\frac{\partial R}{\partial I_m}\right)^2 U_{Im}^2 + \left(\frac{\partial R}{\partial R_V}\right)^2 U_{RV}^2 \\ U_R^2 &= \left(\frac{R_V (I_m R_V - V_m) + R_V V_m}{(I_m R_V - V_m)^2}\right)^2 U_{Vm}^2 + \left(\frac{-R_V^2 V_m}{(I_m R_V - V_m)^2}\right)^2 U_{Im}^2 + \\ & \left(\frac{V_m (I_m R_V - V_m) + R_V V_m I_m}{(I_m R_V - V_m)^2}\right)^2 U_{RV}^2 \\ U_R^2 &= \left(\frac{R_V^2 I_m}{(I_m R_V - V_m)^2}\right)^2 U_{Vm}^2 + \left(\frac{-R_V^2 V_m}{(I_m R_V - V_m)^2}\right)^2 U_{Im}^2 + \left(\frac{-V_m^2}{(I_m R_V - V_m)^2}\right)^2 U_{RV}^2 \end{split}$$