一、计算下列各小题: (每小题 6 分、共 48 分) 1. 己知x(t)波形如下图 1 所示,求其傅里叶变换的像函数。 答: x(t)=u(t+0.5)+u(t+0.25)-u(t-0.25)-u(t-0.5) $F[x(t)]=\frac{1}{3}sa(\frac{\sigma}{t})+sa(\frac{\sigma}{t})$ (6 分)

2. 已知_{对用}序列波形如图 2 所示, 从-1 点开始延续到无穷大的有规

答:
$$x[n] = \sum_{k=0}^{n} u[n+1-4k]$$
 (2分)
 $Z\{x[n]\} = \sum_{k=0}^{n} \frac{z^{k-k}}{1-z^{-k}} = \frac{z}{(1-z^{-k})(1-z^{-k})}$ (3分)

3. 因果连续时间信号x(t)的拉普拉斯变换的傻函数为 $X(s) = (2s-3)/(s^2+5s+6)$,试求信号x(t)的初值 $\lim_{t\to\infty} x(t)$ 和终值 $\lim_{t\to\infty} x(t)$

答: $\lim_{t\to 0^+} x(t) = \lim_{s\to \infty} sx(s) = \frac{s(2s-3)}{s^2+5s+6} = 2$ (3 分)

3 7.3 70
4.计算一个有限长时间序列 $x[n] = e^{i\frac{2\pi}{N}} + \sin(\frac{4\pi}{N}n)$, $0 \le n \le N-1$ 的 N 点 DFT
$\stackrel{\text{def}}{=} : x[n] = e^{i\frac{2\pi}{N}a} + \frac{j}{2}e^{-i\frac{4\pi}{N}a} - \frac{j}{2}e^{i\frac{4\pi}{N}a}$
$DFT\{x[n]\} = \sum_{k=0}^{N-1} x[n]e^{-j\frac{2k\pi}{N}\pi}$ (2 $\frac{c}{2}$)
根据等比数列性质,显然在 k=1 时,其值为 N,(1 分)
$k=2$ 时,其值为 $-\frac{j}{2} \times N = -\frac{N}{2} j$,(1分)
$k=N-2$ 时,其值为 $\frac{j}{2} \times N = \frac{N}{2} j$,(1 分)
其它所有 k 从 0N-1 上的值都是 0 (1 分)
 求 e'/(s(1+e^{-t})), Re(s)>0的拉普拉斯反变换。
$\stackrel{\text{NS}}{::} : \frac{e^{s}}{s(1+e^{-s})} = \frac{e^{s}}{s} \sum_{k=0}^{\infty} (-1)^{k}(e)^{-ks} = \frac{1}{s} \sum_{k=0}^{\infty} (-1)^{k}(e)^{(i-k)s} \qquad (2 \ \text{fit})$
$L^{-1}\{\frac{1}{s}\} = u(t)$ (2 $\frac{f}{s}$)
$L^{-1}\{X(s)\} = \sum_{k=0}^{\infty} (-1)^k u(t+1-k)$ (2 %)
6
6.己知 $x(t) = \begin{cases} 1/t, t \neq 0 \\ 0, t = 0 \end{cases}$, 求 $y(t) = x(t) * x(t)$, 其中*表示卷积运算。
答: $F\{x(t)\}=j\pi Sgn(\omega)$ (2分)

 $\lim_{t \to \infty} x(t) = \lim_{t \to \infty} sx(s) = \frac{s(2s-3)}{s^2 + 5s + 6} = 0$ (3 ½)

 $Y(\omega)=-\pi^2$ (2 分)

 $y(t)=-\pi^2\delta(t)$ (2分)

2/8

7 已知 $y[n] + \frac{1}{6}y[n-1] - \frac{1}{3}y[n-2] = x[n] - \frac{1}{2}x[n-1] - 3x[n-2 表示的因果 LTI$

系统,请写出系统函数,概画出该系统的幅频响应。

答:
$$H(z) = \frac{1-\frac{1}{2}z^{-1}-3z^{-2}}{1+\frac{1}{6}z^{-1}-\frac{1}{3}z^{-2}} = \frac{(1-2z^{-1})(1+\frac{3}{2}z^{-1})}{(1-\frac{1}{2}z^{-1})(1+\frac{2}{3}z^{-1})}$$
 (2 分)

$$H(z) = \frac{(1-2z^n)(1+\frac{3}{2}z^n)}{(1-\frac{1}{2}z^n)(1+\frac{3}{2}z^n)}$$

第一項是一个全通系统,具体用 $z=1$,也就是 $\Omega=0$ 时带入,可得幅频

响应为2 (1分) 第二项是一个高通系统,在 $\Omega=0$,可得幅频响应为5.在 $\Omega=\pi$.可得 幅频响应为 1/5 (1 分):

画图(1分),该题直接画出类似的图形都对,注意两个关键点, Q=0

8. 加里*表示券积, @表示相关, 对于任意的满足模可积的两个函数 x(t), v(t), 证明

[x(t)*y(t)]@[x(t)*y(t)] 与 [x(t)@x(t)]*[y(t)@y(t)] 相等对左边求傅里叶变换,得:

 $F\{[x(t)*y(t)]@[x(t)*y(t)]\} = F\{[x(t)*y(t)]\} *F\{[x(t)*y(t)]\}^*$ $= X(\omega)Y(\omega)X^{*}(\omega)Y^{*}(\omega)$

$$= |X(\omega)|^2 |Y(\omega)|^2$$

由于傅里叶变化的——对应的特性, 显然左边=右边 本题直接在时域做出来也可以。

(3分)

二、由差分方程 $_{3}$ fa $_{1}$ l+0.75 $_{3}$ fa $_{1}$ l+0.125 $_{3}$ fa $_{2}$ 2l= $_{4}$ n+3 $_{4}$ n-1表示的因果系 统 (共 14 分) (1) 求系统函数 $_{4}$ fc $_{2}$ n 画出 $_{4}$ fc $_{2}$ r 平面上字极点分布和收敛域。(5 分) (2) 已知其附加条件为 $_{3}$ f0 $_{1}$ l= $_{4}$ fc $_{1}$ l= $_{4}$ 6. 当输入 $_{4}$ n= $_{4}$ 6.5° $_{4}$ nl $_{1}$ Hr. 来系

統的零状态响应 $y_u[n]$ 和零輸入响应 $y_u[n]$ 。 (10 分) 答: (1) $H(z) = \frac{1 + 3z^{-1}}{1 + 0.75z^{-1} + 0.125z^{-2}} = \frac{1 + 3z^{-1}}{(1 + 0.5z^{-1})(1 + 0.25z^{-1})}$ (2 分)

 $F\{[x(t)@x(t)]^*[y(t)@y(t)]\} = |X(\omega)|^2 |Y(\omega)|^2$

(2) 对方程的两边分别取单边 Z 变换,并用单边 Z 变换的时移性质(见(7.2.27)和(7.2.28)式),则有

 $(\mathcal{R}(f, \lambda, \lambda, z))^{n_1(f, \lambda, \lambda, z)}$,则有 $Y_s(z) + \frac{3}{4}(f_s(z)z^{-1} + y(-1)) + \frac{1}{8}(f_s(z)z^{-2} + y(-1)z^{-1} + y(-2)) - X_s(z) + 3X_s(z)z^{-1}$ (2分)整理后得到

 $y_s(z) = \frac{1+3x^{-1}}{1+\frac{3}{4}z^{-1}+\frac{1}{8}z^{-2}} x_s(z) - \frac{\frac{3}{4}J(-1) + \frac{1}{8}J(-2) + \frac{1}{8}J(-1)z^{-1}}{1+\frac{3}{4}z^{-1} + \frac{1}{8}z^{-2}}$ (2 分) 上式的第二項需知道 J(-1)和 J(-2),而本题已知的是 J(0)和 J(-1),为求符

上式的第二项需知道 \jmath_{l-1} 和 \jmath_{l-2} ,而本题已知的是 \jmath_{l0} 和 \jmath_{l-1} ,为求得 \jmath_{l-2} ,可以用 4.3.3 节介绍的前推方程求得,它为 \jmath_{l-2}]= $8x_10$]+ $3x_1-1$] $-\jmath_{l0}$ -(3/4) \jmath_{l-1}]=36

| (-2|, 可以用 4.3.3 P7F3H的用推力程本符, と月 | (-2| = 84(0|+34-1|-3(0|-(3/4)),(-1)|=36 | 現在用 | (-1|=-6, -|<-2|=-86, 以及 太(z)= Z | (4|6)|=-1/(1-(1/2)-1) 代入 (7.2.61)式, 得到零状态响应和零输入响应的单边 Z 変換为

(1分)

三、某 LTI 系统的系统结构如图 3 所示, 其中 $H_2(s) = \frac{k}{s}$, 子系统 $H_1(s)$

满足条件. 当子系统 $H_{r}(s)$ 的输入是 $x_{r}(t)=2e^{-t}u(t)$ 时,对应 $H_{r}(s)$ 的子系统输出为

 $y_i(t)$; 而在输入为 $x_2(t) = \frac{dx_i(t)}{t}$ 时,对应 $H_i(s)$ 的子系统输出为

-3v, (r + ぎ u(; 求; (共12分) (1)子系统 H_c(s)和对应的单位冲激响应函数 km (5 分) (2) 整个系统的 H(e) (5 分)

(3)若要使系统H(s)稳定,k的取值范围(2分) x(t) + $H_i(s)$ $H_i(s)$ Y(t)

图 3.系统框图

 $\frac{dx}{dt}$: (1) $H_1(s) = \frac{2}{s+2} = Y_1(s)$

$H_1(s) \frac{2s}{s+3} = -3Y_1(s) + \frac{1}{s+2}$ (2)
$H_1(s) = \frac{1/3}{s+2}$ (3) (3 $\frac{4}{3}$?
$h_i(t) = \frac{1}{3}e^{-2t}u(t)$ (2 $\frac{t}{2}$)
(2)
$\tilde{H}(s) = H_1(s)H_2(s) = \frac{k/3}{(s+2)(s-1)}$
$[X(s) - Y(s)] \frac{k/3}{(s+2)(s-1)} = Y(s)$ (3 $\frac{4}{27}$)
$H(s) = \frac{Y(s)}{X(s)} = \frac{k/3}{s^2 + s - 2 + k/3}$ (2 ½)
(3)要求所有极点都位于左半平面
-2+k/3>0
k>6 (2分)
四、已知实的离散时间因果 LTI 系统的零、极点如图 5 所示,且它在输入为4e1=ootme)的输出为4e1=(-1)*,提示;在有限 2 平面上没有零点; 共15分) (1) 写出它的系统函数 mo.和收敛域。(6) 2 平編
答: (1) $H(z) = H_0 \frac{z^{-2}}{(1+0.5z^{-1})(1+0.5z^{-1})} $ (2 分)
z>0.5 (1分)

(1) 画出 f(t) 的时域波形和频谱图。(5 分)(2) 如果希望从 y(t) 中无失真的恢复出 x(t), @u 必须满足何种条件。(2 分)

分)
(3) 在 ω_u 满足无失真恢复的条件下,请画出由 y(t) 恢复出 x(t) 的示意图。
(3 分)

(1分)

答: (1) $F(\delta(t+k\pi)) = e^{ik\pi t}$ $f(t) = \sum_{i}^{\infty} \delta(t-k\pi)$ (2 分)

f(t)就是 $T_s = \pi$ 的冲激串,也就是 $\omega_s = 2$

$$F(\omega) = \omega_i \sum_{t=-\infty}^{\infty} \delta(\omega - k\omega_i)$$
 (1 ½)
... $F(\omega) = \omega_i \sum_{t=-\infty}^{\infty} \delta(\omega - k\omega_i)$...

元, Ø (1 分)
 注: 只要全部画图正确也給分,但是要标记出T_s = x , ω_t = 2
 (2)
 ω_t ≤1, 只写小于也对 (2 分)

