

5 - Mémoires

Systemes Numeriques & Processeurs Embarques

Julien DENOULET

julien.denoulet@sorbonne-universite.fr L3 EEA - LU3EE100

SU – LIP6 L3 EEA – LU3EE100

Previously on LU3EE100...

Plan

- Définitions Généralités Architecture
- Technologies mémoires RAM
 - SRAM
 - DRAM
- Technologies mémoires ROM
 - ROM
 - PROM
 - EPROM
- Technologies mémoires Flash
- Technologies mémoires MRAM

C5

- Historiquement, les mémoires étaient classées selon les termes
 - RAM (Random Access Memory)
 - Mémoire Vive (Volatile)
 - ROM (Read Only Memory)
 - Mémoire Morte (Non Volatile)
- Random access → Accès aléatoire
 - Accès libre à n'importe quelle case de la mémoire
 - Par opposition à accès séquentiel
 (Ex: Stockage sur une bande magnétique)

C5

- Historiquement, les mémoires étaient classées selon les termes
 - RAM (Random Access Memory)
 - Mémoire Vive (Volatile)
 - ROM (Read Only Memory)
 - Mémoire Morte (Non Volatile)
- Volatile/Non volatile
 - Volatile:
 La mémoire perd ses données si elle n'est pas alimentée
 - Non volatile:
 La mémoire garde ses données, même sans alimentation

C5

- Historiquement, les mémoires étaient classées selon les termes
 - RAM (Random Access Memory)
 - Mémoire Vive (Volatile)
 - ROM (Read Only Memory)
 - Mémoire Morte (Non Volatile)

- Oui, mais...
 - Les ROM sont aussi des mémoires à accès aléatoire
 - On peut écrire des données dans des ROM
 - Cas des mémoires Flash (clés USB)

C5

Abréviations

RAM: Random Access Memory

SRAM: Static RAM

DRAM: Dynamic RAM

NVRAM: Non Volatile RAM

MRAM: Magnetic RAM

Feram: Ferroelectric RAM

ROM: Read Only Memory

MROM: Mask ROM

PROM: Programmable ROM

EPROM: Erasable PROM

■ EEPROM: Electrically Erasable PROM

C5

- La mémoire est organisée en mots (word)
 - Selon le composant1 mot = 8, 16, 32, 64, (...) bits
 - Fixe la taille du bus de données du composant
- 1 mot est rangé dans une case de la mémoire
 - Chaque case mémoire est identifiable par son adresse

9

C5

plusieurs mots sur une même ligne

Organisation du Tableau Mémoire

> On peut très bien ranger plusieurs mors par ligne du tableau.

> La répartition des adresses permet d'identifier chaque sous-bloc d'une ligne

C5

Capacité

Exprimée en octets (Bytes, B) ou en bits (b)

Capacité	Valeur (en octets)	Valeur (en bits)
1 ko ^{kilo} (octets 2 ¹⁰ 1024	2 ¹³ (8 kbits)8192
64 ko	2 ¹⁶ 65536	2 ¹⁹ (512 kbits)
1 Mo	2 ²⁰	2 ²³ (8 Mbits)
1 Go	2 ³⁰	2 ³³ (8 Gbits)
4 Go	2 ³²	2 ³⁵ (32 Gbits)

C5

- Exemple: Mémoire de 64 Mégaoctets (Mo)
 - Si 1 mot = 32 bits (4 octets)
 - 16 Méga-mots (ou Méga-cases) dans la mémoire

Performance

Critères Fonctionnels

Capacité: Taille tableau mémoire, taille des mots...

Latence : Durée opération mémoire (lecture/écriture)

Débit : Nombre de bits transférables par seconde

Configurabilité: Réglage latence/débit

Critères Non-Fonctionnels

- Surface du circuit
 - Va dépendre de la technologie utilisée
- Consommation
 - Coût énergétique d'une opération mémoire
- Alimentation
 - Tension minimale d'alimentation
 - Possibilité d'effectuer du Dynamic Voltage Scaling

C5

- Accès (lecture/écriture)
 - Bus d'adresse → Choix de la case mémoire (décodage)
 - Bus de données → Pour envoyer ou récupérer la donnée
 - Bits de contrôle → Read/write, chip select...

C5

Mémoire processeur LC-3

MAR: Memory Address Register

MDR: Memory Data Register

AS: Address Strobe (Commande MAR)

■ LD: Load (Commande MDR)

A_BUS: Bus d'Adresses de la Mémoire

■ D_BUS: Bus de Données de la Mémoire

CS: Chip Select

■ RW: Read (0) / Write (1)

C5

C5

17

C5

■ 2 mémoires avec un bus d'adresses commun

Comment accéder à chaque mémoire individuellement?

C5

- Mémoire de 32 koctets
 - Organisée en 32kcases de 8 bits
 - 32kcases = 2^{15} cases \rightarrow 15 bits d'adresses
 - Adresses: de 0x0000 à 0x7FFF

0 -> 000 0000 0000 0000 0x0000 Max -> 111 1111 1111 0x7FFF

0x7FFF

0x0000

C5

C5

- Activation du Chip Select d'un bloc mémoire
- Décodage de l'adresse (A₁₅...A₀) désirée
 - Adresse $[0x0000;0x7FFF] \rightarrow A_{15}=0 \rightarrow Validation CS1$
 - Adresse [0x8000;0xFFFF] \rightarrow A₁₅=1 \rightarrow Validation CS2

Pour notre exemple...

■ $D1 = A_{15}$

■ $D2 = A_{15}$

C5

Organisation Interne Mémoire

C5

Organisation Interne Mémoire

C5

Organisation Interne Mémoire

C5

Organisation Externe Mémoire

Association de plusieurs blocs

Adr MEMOIRE Data

2^10 cases 10

R/W

ille des mots

C5

Augmenter la taille des mots

 Augmenter l'espace de stockage (le nombre de mots)

Organisation Externe Mémoire

- Augmentation de la taille des mots
 - Exemple: passage de mots de 4 à 16 bits

C5

Organisation Externe RAM

C5

Cycles de Fonctionnement

Cycle de lecture (exemple)

28

C5

Les timings à respecter sont fonction du composant

Cycles de Fonctionnement

Cycle d'écriture (exemple)

29

C5

Les timings à respecter sont fonction du composant

 Description d'un composant de 128 mots de 8 bits

C5

```
architecture comport of memoire is
type memory is array (0 to 127) of std logic vector (7 downto 0);
signal mem : memory; // signal de type memory
begin
                                            Déclaration d'un type
   process(cs,adresse,donnee,rw) is
                                          tableau de std_logic_vector
  begin
          if cs='0' then
             if rw='1' then read
                sortie <= mem(conv integer(adresse));
             elsif rw='0' then write
                mem(conv integer(adresse)) <= donnee;</pre>
             end if:
          else
             sortie<= "ZZZZZZZZ"; // état haute impédance
          end if:
   end process;
end comport;
```

C5

```
architecture comport of memoire is
type memory is array (0 to 127) of std logic vector (7 downto 0);
signal mem : memory;
begin
   process(cs, adresse, donnee, rw) is
  begin
          if cs='0' then
             if rw='1' then
                sortie <= mem(conv integer(adresse));</pre>
             elsif rw='0' then
                mem(conv integer(adresse)) <= donnee;</pre>
             end if;
          else
                                           Fonction de conversion
              sortie <= "ZZZZZZZZZ";
                                             std_logic → integer
          end if:
   end process;
end comport;
```

C5

```
architecture comport of memoire is
type memory is array (0 to 127) of std logic vector (7 downto 0);
signal mem : memory;
begin
   process(cs, adresse, donnee, rw) is
   begin
          if cs='0' then
             if rw='1' then
                sortie <= mem(conv integer(adresse));</pre>
             elsif rw='0' then
                mem(conv integer(adresse)) <= donnee;</pre>
             end if:
          else
              sortie <= "ZZZZZZZZZ";
          end if:
                                          Sortie en haute impédance
   end process;
                                            si boîtier désélectionné
end comport;
```

C5

Mémoires RAM SRAM, DRAM...

Mémoires RAM

- Mémoire volatile
- Il existe deux grandes familles de RAM
 - Mémoires RAM statiques (SRAM)
 - Technologie basée sur l'utilisation de portes logiques
 - Très rapides
 - Plus volumineuses et consommatrices d'énergie
 - Mémoires RAM dynamiques (DRAM)
 - Technologie basée sur l'utilisation de condensateurs
 - Plus compactes
 - Moins rapides et nécessitent un rafraîchissement de l'information

C5

Static RAM (SRAM)

- Mémoire volatile
- Cellule rapide
- Cellule volumineuse: (Nécessite 2 inverseurs)
- Information stockée sans besoin de rafraîchissement
 - > Tant que le circuit est alimenté
- Lecture non destructrice
- Coût important

C5

Inverseur CMOS

37

C5

Inverseur CMOS

C5

Inverseur CMOS

C5

Point mémoire

WL: Word Line

BL: Bit Line

40

C5

■ T1 et T2 contrôlent l'accès au point mémoire

Lecture

C5

- Précharge de BL et /BL à une tension entre 0 et V_{CC}
- Mise à 1 de WL → T1 et T2 passants
 - \rightarrow Si Bit = 0 \rightarrow V_{BL} \searrow et V_{/BL} \nearrow
 - > Si Bit = 1 → V_{BL} et $V_{/BL}$ \>

41

Donnée en sortie est fixée selon la différence entre V_{BL} et V_{/BL}

Ecriture

C5

- La donnée à écrire est positionnée sur BL (son inverse sur /BL)
- Mise à 1 de WL → Enregistrement de la donnée
 - Possible car T1,T2 >> T3,T4,T5,T6

- Autres types de cellule
 - Cellule Biport
 - Permet d'accéder deux fois simultanément à un point mémoire (en lecture ou en écriture)

C5

- Mémoire volatile
- Cellule moins rapide
- Cellule compacte (1 capacité)
- Nécessité de rafraîchir les informations stockées (décharge du condensateur)
- Lecture destructrice
- Bon marché

C5

Point Mémoire

C5

Lecture

- **C5**
- Niveau logique contenu dans C transféré dans BL

Mise à 1 de WL \rightarrow T1 passant

Ecriture

- **C5**
- - 47

- Positionnement de la valeur à écrire sur BL
- Mise à 1 de WL → T1 passant
 - > Enregistrement de la donnée dans C

Technologie SDRAM

- Jusqu'au milieu des années 90: RAM asynchrone
- Synchronisation difficile avec des cartes mère d'ordinateurs

C5

- Technologie Synchronous DRAM (SDRAM)
 - Réduction des cycles de latence et d'accès mémoire
 - Pipelinage d'instructions
 - Introduction du mode rafale (Burst)

Exemple: SDRAM Samsung

- 4 Mb 2 bancs mémoire
- Multiplexage des adresses (ligne/colonne)

C5

Exemple: SDRAM Samsung

Signaux de contrôle

DIN CHINCTION DESCRIPTION

PIN FUNCTION DESCRIPTION Source: Samsu		
Pin	Name	Input Function
CLK	System Clock	Active on the positive going edge to sample all inputs.
cs	Chip Select	Disables or enables device operation by masking or enabling all inputs except CLK, CKE and L(U)DQM
CKE	Clock Enable	Masks system clock to freeze operation from the next clock cycle. CKE should be enabled at least one cycle prior to new command. Disable input buffers for power down in standby.
Adresses	Address	Row / column addresses are multiplexed on the same pins. Row address : RAo ~ RAs, column address : CAo ~ CA7
ВА	Bank Select Address	Selects bank to be activated during row address latch time. Selects bank for read/write during column address latch time.
RAS	Row Address Strobe	Latches row addresses on the positive going edge of the CLK with RAS low. Enables row access & precharge.
CAS	Column Address Strobe	Latches column addresses on the positive going edge of the CLK with $\overline{\text{CAS}}$ low. Enables column access.
WE	Write Enable	Enables write operation and row precharge. Latches data in starting from CAS, WE active.
Data	Data Input/Output Mask	Makes data output Hi-Z, tsHz after the clock and masks the output. Blocks data input when L(U)DQM active.

C5

Exemple: SDRAM Samsung

Technologie DDR-SDRAM

Double Data Rate SDRAM

 Concept: Réduire l'écart entre les fréquences des processeurs (~GHz) et celles des bus mémoires (~100 MHz)

 Solution: Lecture et écriture sur les deux fronts d'horloge

C5

Exemple: Samsung

C5

53

L3 EEA – LU3EE100

Exemple: DDR-SDRAM

Chronogramme de fonctionnement

C5

Technologie DDR-SDRAM

Générations

■ 1993: SDRAM

2000: DDR-SDRAM

2003: DDR2-SDRAM

2007: DDR3-SDRAM

2014: DDR4-SDRAM

2021: DDR5-SDRAM

A chaque nouvelle génération

- Doublement des débits
- Abaissement des tensions d'alimentation

C5

Bilan DDR-SDRAM

C5

Bilan DDR-SDRAM

Mémoires ROM MROM, PROM, EPROM, EEPROM...

Mémoires ROM

- Mémoire non volatile
 - Données conservées même sans alimentation

- Applications
 - BIOS ordinateurs
 - Reconfiguration de FPGA
 - Stockage de programmes dans un système embarqué

C5

Technologies Mémoires ROM

- Mask ROM
 - Réalisé lors de la fabrication du circuit
- PROM
 - Fusible
 - Programmable une fois
- (E)EPROM
 - Transistors à Grille Flottante
 - Reprogrammable

C5

Mask - ROM

Aucune souplesse

^{C5} ■ Faible coût

Programmable ROM

Composant programmable une fois

L'état de chaque bit est verrouillé par un fusible ou

un antifusible

Programmation en appliquant

de fortes tensions pour claquer les fusibles

C5

Faible utilisation

Cellules ROM

C5

Tableau Mémoire NOR ROM

64

C5

Mise à 1 du WL de la cellule à lire

Tableau Mémoire NAND ROM

C5

65

Mise à 1 de tous les WL sauf celui de la ligne à lire

Reprogrammabilité: Technologies EPROM

- Cellule mémoire
- Transistor à Grille Flottante (GF)

- **C5**
- 66

- Des électrons peuvent être piégés dans la GF
 - GF sans électrons: Tension de seuil = V_{T1}
 - GF avec électrons: Tension de seuil = $V_{T2} > V_{T1}$

Transistor Grille Flottante

Programmation

- C5
- Application d'une "forte" tension V_{PP}
 - Transistor passant → Courant entre la source et le drain
 - Des électrons passent dans la grille flottante

Transistor Grille Flottante

Lecture

- C5
- 68

- La grille est mise à une tension V_G ($V_{T1} < V_G < V_{T2}$)
- Selon la tension de seuil programmée, le transistor est passant ou bloqué

Transistor Grille Flottante

Effacement

C5

69

 Les électrons de la GF partent dans le substrat du transistor

Technologies EPROM

- UV-EPROM:
 - Effacement complet par ultra-violets

C5

- EEPROM:
 - Effacement électrique par mot mémoire

UV-EPROM

 Programmation et effacement hors système à l'aide d'un appareil spécifique

C5

71

 Les temps de programmation/effacement sont importants (plusieurs minutes) et concernent l'intégralité du tableau mémoire

EEPROM

- Programmation et effacement in situ
- Programmation/Effacement par mot
 - Logique de contrôle pour chaque mot pour gérer lecture, écriture, effacement

Temps d'effacement rapide

- Coût plus élevé
 - Comparé aux mémoires Flash

C5

Mémoires Flash

Mémoires Flash

- Programmation et effacement in situ
- Programmation/Effacement par bloc
 - Logique de contrôle commune à un bloc
- Temps d'effacement très rapide
- Coût limité
 - Comparé aux mémoires EEPROM

Deux grandes familles

Source: eetimes.com

C5

- Possibilté de stocker plusieurs charges par cellule
 - SLC: Single Level Cell
 MLC: Multi Level Cell

C5

77

Table 1. NAND SLC vs. NOR Typical Characteristics

Characteristic	NOR	SLC NAND
Density	1Mb -2Gb	512Mb - 8Gb
Random Read Latency	0.1us ^{Note 1}	25us ^{Note 2}
Sustained Read Speed (x8 I/O)	30MB/s	30MB/s
Read Page buffer	16B ^{Note 1}	2048B ^{Note 2}
Random Write speed	11us ^{Note 1}	250us ^{Note 2}
Write page	64B ^{Note 1}	2048B ^{Note 2}
Sustained Write Throughput	0.5MB/s	8MB/s
Erase speed	0.6s ^{Note 1}	2ms ^{Note 2}
Unit Cell area	10F ²	4F ²

Note 1: MX29GL512F Note 2: MX30LF1G08AA

Table 3. SLC vs. MLC NAND

	SLC	MLC
Density	512Mb - 8Gb	8Gb-64Gb
Tprog (Page Program Time)	250us	900us
Tread (1st Byte Read Latency)	25us	50us
NOP (No Partial Prgm in Pg)	4	1
Endurance (W/E cycles)	100K	5K
ECC bits	1 - 8+	4 - 20+

Source: Macronix 2014

NOR

- Lecture aléatoire
- Stockage code (OS)

NAND

- Lecture séquentielle
- Stockage données

78

Architecture

79

- Multiplexage bus adresses/données/commandes
- Bus I/O sur 8 ou 16 bits

■ Tableau mémoire

C5

81

C5

C5

Mémoires MRAM

Technologies MRAM

Concept initié dans les années 1990

Objectif: allier les avantages des

SRAM: rapidité

■ DRAM: densité

■ Flash: non volatilité

Principe

- Cellule mémoire → 2 Couches ferromagnétiques
 - Polarisation fixe pour l'une (Word Line)
 - Polarisation variable pour l'autre (Bit Line)

C5

Principe

- La polarisation fait varier la résistivité de la cellule
 - Le calcul de la résistance (ou du courant qui va traverser le point mémoire) indique son état logique

C5

Lecture MRAM

88

Ecriture MRAM

C5