Heat Treatment Effects on Precipitation in Irradiated HT9 Steel

T.M. Kelsy Green¹, Li He², Todd Allen¹

¹University of Michigan-Ann Arbor ²University of Wisconsin-Madison

Materials in Nuclear Energy Systems
October 7, 2019
Baltimore, Maryland

HT9 Properties and Performance for Advanced Reactors

- 12Cr-1Mo ferritic/martensitic (F/M) steel with minor solute additions
- Pros: high-dose resistance to void swelling, high thermal conductivity, high strength up to ~500°C
- Cons: prone to radiation-induced embrittlement from the secondary phase α'

Figure 1. Microstructure of normalized and tempered HT9, taken from [2].

^[2] B.H. Sencer et al. / Journal of Nuclear Materials 393 (2009) 235–241

^[3] L. Tan et al./ Journal of Nuclear Materials 493 (2017) 12-20

Heat-to-Heat Variability of HT9

 12Cr-1MoVW steel samples with two different heat treatments were irradiated in EBRI-II

HT1	1038°C / 0.08hr / AC + 760 °C / 0.5hr / AC
HT2	1038°C / 0.5hr / AC + 760 °C / 2.5hr / AC

 Mechanical properties of HT9 change rapidly as a function of temperature between 400-450°C with properties varying as a function of processing conditions

Susceptible to fracture from increased DBTT

Figure 2. Comparison of the yield stress behavior of 12Cr-1MoVW steel given two different heat treatments [1]. Temperature of tensile tests were conducted at T_{irradation}.

To better understand the heat-to-heat variability of HT9's radiation response in the low dose regime from 400-450°C

Three variables: composition, normalization, and tempering

HT9-EBRII			
Cr	11.92		
Мо	1.01		
W	1.04		
Ni	0.92		
Mn	0.76		
Si	0.39		
V	0.22		
С	0.22		
N	?		
Cu	-		
Other	-		

HT9-ORNL			
Cr	11.63		
Мо	1		
W	0.52		
Ni	0.5		

Cr	11.63
Мо	1
W	0.52
Ni	0.5
Mn	0.52
Si	0.22
V	0.3
С	0.2
Ν	0.047
Cu	0.04
Other	AI,P,S,Ti,Co

Cr	12.1
Мо	0.97
W	0.58
Ni	0.59
Mn	0.61
Si	0.41
V	0.34
С	0.171
N	0.031
Cu	0.025
Other	O,AI,P,S,Ti,Co

HT9-LANL

Normalization	Tempering
1040°C	740°C
1 hour	0.75 hour

Tempering	
760°C 1 hour	

Normalization	Tempering
1060°C	730°C
1 hour	2 hour

Heat-Treated Microstructure

All samples received the same irradiation history

Heat-Treated Microstructure

1040°C/0.5 hr + 760°C/1 hr

- M₂₃C₆ carbides distributed on grain boundaries
- MX nitrides distributed on and within grain boundaries
- Inhomogeneous distribution of precipitates in the microstructure

Figure 2. STEM BF micrograph and corresponding EDS map showing the qualitatively typical lath and dislocation network present in all samples.

Heat-Treated M₂₃C₆ Size Distributions

Control HT9-EBRII

1040°C/1 hr + 740°C/0.75 hr

Control HT9-ORNL

1040°C/0.5 hr + 760°C/1 hr

Mean =
$$70\pm33$$
 nm
N = 541

Control HT9-LANL

1060°C/1 hr + 730°C/2 hr

Mean = 81±32 nm N = 494

Increasing Tempering Time & Increasing Mean Size

Heat-Treated VN Size Distributions

Control HT9-EBRII

1040°C/1 hr + 740°C/0.75 hr

0.22wt% V

? wt% N

0.22wt% C

Control HT9-ORNL

1040°C/0.5 hr + 760°C/1 hr

Mean = 34 ± 16 nm N = 323

> 0.30wt% V 0.047wt% N 0.20wt% C

Control HT9-LANL

1060°C/1 hr + 730°C/2 hr

Mean = $40\pm15 \text{ nm}$ N = 134

0.34wt% V

0.031wt% N

0.171wt% C

M₂₃C₆ Phase Fraction Diagrams

Carbides fully dissolved during normalization in all samples

VN Phase Fraction Diagrams

ThermoCalc

N was key for increasing VN phase fraction

Heat-Treated Microstructure Summary

Irradiated Microstructure

- Irradiation did not alter tempered martensitic microstructure
- Caused formation of dislocation loops and black spot defects

<111>

<100>

structure induced from irradiation in all samples.

Irradiated Microstructure

 V is found enriched at dislocations in HT9-LANL and HT9-ORNL after irradiation

Figure 3. Overlap of STEM BF images and EDS maps in irradiated HT9-ORNL and HT9-LANL showing V-enriched dislocation loops. Image plane is {110}.

Radiation Induced Segregation

Radiation induced segregation of Ni at grain boundaries in all irradiated conditions

Cr depleted at grain boundaries in irradiated HT9-EBRII as well

Irradiation had an insignificant affect on $M_{23}C_6$ precipitation size distribution \rightarrow *Minor Solute Stabilization*

Control HT9-EBRII

Mean = 58 ± 23 nm N = 606

Mean = $64\pm28 \text{ nm}$ N = 552

 Δ Mean = 6 nm

Control HT9-ORNL

Mean = 70 ± 33 nm N = 541

Mean = 72 ± 34 nm N = 781

 Δ Mean = 2 nm

Control HT9-LANL

Mean = $81\pm 32 \text{ nm}$ N = 494

Mean = $75 \pm 28 \text{ nm}$ N = 639

 Δ Mean = 6 nm

Irradiation caused growth of MX precipitates in HT9-LANL and HT-9 ORNL → Radiation Enhanced

Diffusivity

Control HT9-EBRII

Control HT9-ORNL

Control HT9-LANL

L. Tan/Journal of Nuclear Materials 493 (2017) 12-20

Radiation Response of the Heat-Treated Microstructure

Acknowledgements

- Nuclear Science User Facilities Rapid Turnaround Experiment, NSF Project 17-1047
- Thank you to INL staff for help preparing samples and performing electron microscopy
 - Dr. Brandon Miller
 - Dr. Lingfeng HE
 - Dr. Xiang Liu