

Trabajo Práctico #1

26 de Mayo de 2016 Inferencia Bayesiana

Integrante	LU	Correo electrónico
Pedro Rodriguez	197/12	pedro3110.jim@gmail.com
xxx	XXX	xxx

Facultad de Ciencias Exactas y Naturales

Universidad de Buenos Aires

Ciudad Universitaria - Pabellón I Intendente Güiraldes 2160 - C1428EGA Ciudad Autónoma de Buenos Aires - Argentina

 $\label{eq:TelFax: (54 11) 4576-3359} $$ $$ http://exactas.uba.ar$

Índice

1.	. Introducción	3
2.	. Modelos	3
	2.1. Modelo 1a	3
	2.2. Modelo 1b	3
	2.3. Modelo 2a	3

1. Introducción

En el presente Trabajo Práctico ...

2. Modelos

La idea de los modelos es que ...

Cada una de las variables representa ..

Utilizamos cada una de las distribuciones porque ...

2.1. Modelo 1a

Likelihood y priors:

- $m_i \sim Binomial(\theta_i, cantLanzamientos)$
- $C \sim Beta(k_1, k_1)$, con k_1 una constante grande (≥ 100)
- $NC \sim Beta(k_2, k_2)$, con k_2 una con constante entre 0 y 1
- \bullet $\alpha \sim Uniforme(0, cantMonedas)$
- $\theta_i = p_i * C + (1 p_i) * NC$
- $p_i = (\alpha < i \le \alpha + 1)$

2.2. Modelo 1b

Likelihood y priors:

- $m_i \sim Binomial(\theta_i, cantLanzamientos)$
- $C \sim Beta(k_1, k_1)$, con k_1 una constante grande (≥ 100)
- $\blacksquare \ NC \sim Beta(k_2,k_2),$ con k_2 una con constante entre 0 y 1
- $\qquad \quad \bullet \quad \alpha_1 \sim Categorica(\frac{1}{cantMonedas}, \dots, \frac{1}{cantMonedas})$
- $\bullet \theta_i = (i = \alpha_1)$

2.3. Modelo 2a

Likelihood y priors: en este caso, el likelihood y los priors son los mismos que en el modelo 1a, cambiando α_1 por α_2 :

• $\alpha_2 \sim Bernoulli(0,5)$