Analzízis Alkalmazásai. Programtervező informatikus A. szakirány

RöpZh Tételek 2023-2024. tanév 2. félév

Petrányi Bálint

2024. február 18.

Tartalomjegyzék

1.	1. week		2
	1.1.	Mikor mondjuk, hogy a φ függvény az $f(x,y)=0$ egyenletnek	
		egy implicit megoldása?	2
	1.2.	Hogyan szól az egyváltozós implicitfüggvény-tétel?	2
	1.3.	Igaz-e a következő állítás? "Az implicitfüggvény-tétel egy expli-	
		cit előállítást ad az $f(x,y) = 0$ egyenlet implicit megoldására."	
		A válaszát indokolja meg!	2
	1.4.	A deriválási szabályok alapján hogyan vezethető le az $f(x,\varphi(x))=$	
		$0 \ (x \in U)$ egyenlőségből az implicit megoldás deriváltjára vo-	
		natkozó összefüggést az U környezetben?	3
	1.5.	Mit jelent az, hogy egy $\mathbb{R}^n \to \mathbb{R}^n$ típusú függvény lokálisan	
		invertálható?	3
	1.6.	Igaz-e, hogy minden $\mathbb{R}^2 \to \mathbb{R}^2$ típusú, folytonos és lokálisan	
		invertálható függvény globálisan is invertálható? A válaszát	
		indokolja meg!	3
	1.7.	Hogyan szól az inverzfüggvény-tétel?	4
	1.8.	Igaz-e a következő állítás? "Az inverzfüggvény-tétel egy exp-	
		licit előállítást ad bizonyos feltételeket teljesítő függvények in-	
		verzére." A válaszát indokolja meg!	4
		• 0	

1. 1. week

- 1.1. Mikor mondjuk, hogy a φ függvény az f(x,y) = 0 egyenletnek egy implicit megoldása?
- **1.1. Definíció.** Legyen $f \in \mathbb{R}^2 \to \mathbb{R}$ egy adott függvény. Ha létezik olyan $I \subset \mathbb{R}$ nyílt intervallum és $\varphi : I \to \mathbb{R}$ függvény, hogy

$$f(x, \varphi(x)) = 0 \quad (\forall x \in I)$$

akkor azt mondjuk, hogy a φ függvény az f(x,y)=0 implicit alakban van megadva

- 1.2. Hogyan szól az egyváltozós implicitfüggvény-tétel?
- 1.1. Tétel (Egyváltozós implicitfüggvény-tétel.). Legyen $\Omega \in \mathbb{R}^2$ nyílt halmaz és $f: \Omega \to \mathbb{R}$. Tegyük fel, hogy
 - (a) f folytonosan deriválható Ω -n
 - (b) $az(a,b) \in \Omega$ pointban f(a,b) = 0 és $\partial_2 f(a,b) \neq 0$

Ekkor:

- 1. Van olyan K(a) =: U és K(b) =: V környezet \mathbb{R} -ben, hogy minden $x \in U$ ponthoz létezik egyetlen $\varphi(x) \in V$, amelyre $f(x, \varphi(x)) = 0$
- 2. Az így definiált $\varphi: U \to V$ függvény folytonosan deriválható U-n, továbbá $\forall x \in U$ -ra $\partial_2 f(x, \varphi(x)) \neq 0$ és

$$\varphi'(x) = -\frac{\partial_1 f(x, \varphi(x))}{\partial_2 f(x, \varphi(x))}$$

1.3. Igaz-e a következő állítás? "Az implicitfüggvénytétel egy explicit előállítást ad az f(x,y) = 0 egyenlet implicit megoldására." A válaszát indokolja meg!

Nem igaz

Világos, hogy $\varphi(a) = b$. A φ függvényt az $f(x, \varphi(x)) = 0 \quad (x \in U)$ egyenlőség "implicit" módon definiálja. Innen származik a tétel neve. A tétel csak a φ implicit függvény létezéséről szól, ezt a függvényt általában nem tudjuk explicit képlettel előállítani. Ennek ellenére a $\varphi'(x)$ deriváltat ki tudjuk számítani, ha ismerjük a $\varphi(x)$ függvényértéket.

1.4. A deriválási szabályok alapján hogyan vezethető le az $f(x,\varphi(x))=0$ $(x\in U)$ egyenlőségből az implicit megoldás deriváltjára vonatkozó összefüggést az U környezetben?

$$F(x) := f(x, \varphi(x)) \quad (x \in U)$$

Mivel $\forall x \in U$ esetén F(x) = 0, ezért F'(x) = 0. Az összetett függvény deriválási szabálya szerint

$$0 = F'(x) = \partial_1 f(x, \varphi(x)) \cdot 1 + \partial_2 f(x, \varphi(x)) \cdot \varphi'(x) \quad (x \in U)$$
ezért $\forall x \in U$ pontban:

$$\varphi'(x) = -\frac{\partial_1 f(x, \varphi(x))}{\partial_2 f(x, \varphi(x))}$$

- 1.5. Mit jelent az, hogy egy $\mathbb{R}^n \to \mathbb{R}^n$ típusú függvény lokálisan invertálható?
- **1.2. Tétel (Lokális invertálhatóság.).** Legyen $I \subset \mathbb{R}$ nyílt intervallum és $f: I \to \mathbb{R}$.

T.f.h. $f \in C^1(I)$ és egy $a \in I$ pontban $f'(a) \neq 0$ Ekkor f az a-ban lokálisan invertálható, azaz $\exists U := K(a)$ és V := f[U] nyílt halmaz, hogy az $f_{|U}: U \to V$ függvény bijekció, ezért invertálható. Az $f_{|U}^{-1}$

lokális inverz folytonosan deriválható V-n, és

$$(f^{-1})'(y) = \frac{1}{f'(f^{-1}(y))} \quad (y \in V)$$

1.6. Igaz-e, hogy minden $\mathbb{R}^2 \to \mathbb{R}^2$ típusú, folytonos és lokálisan invertálható függvény globálisan is invertálható? A válaszát indokolja meg!

Nem igaz Például az

$$f(x,y) := (e^x \cos y, e^x \sin y) \quad ((x,y) \in \mathbb{R}^2)$$

folytonos függvény a sík minden π -nél kisebb sugarú körlapján injektív, de globálisan nem injektív, hiszen

$$f(x, y + 2\pi) = f(x, y) \quad (\forall (x, y) \in \mathbb{R}^2)$$

1.7. Hogyan szól az inverzfüggvény-tétel?

- 1.3. Tétel (Inverzfüggvény-tétel.). Legyen $\Omega \subset \mathbb{R}^n$ $(x \in \mathbb{N})$ nyílt halmaz és $f: \Omega \to \mathbb{R}^n$. T.f.h
 - (a) f folytonosan deriválható Ω -n
 - (b) egy $a \in \Omega$ pontban det $f'(a) \neq 0$

Ekkor

- 1. f lokálisan invertálható, azaz van olyan, az $a \in \Omega$ pontot tartalmazó U nyílt halmaz, hogy ha V := f[U], akkor az $f_{|U}: U \to V$ függvény bijekció (következésképpen invertálható).
- 2. $Az\left(f_{|_{U}}\right)^{-1}$ lokális inverz folytonosan deriválható V-n és

$$(f^{-1})'(y) = [f'(f^{-1}(y))]^{-1} \quad (y \in V)$$

1.8. Igaz-e a következő állítás? "Az inverzfüggvény-tétel egy explicit előállítást ad bizonyos feltételeket teljesítő függvények inverzére." A válaszát indokolja meg!

Nem igaz

Az f függvény explicit alakjának az ismeretében f^{-1} helyettesítési értékeire általában nincs explicit képlet, viszont

$$(f^{-1})'(y) = [f'(f^{-1}(y))]^{-1} \quad (y \in V)$$

alapján a derivált helyettesítési értékei az f' helyettesítési értékeinek felhasználásával már kiszámíthatók, ha ismerjük az inverz függvény értékét a megfelelő pontban