LINEARNA FUNKCIJA I NJEN GRAFIK

Neka su dati skupovi A i B. Ako svakom elemenatu $x \in A$ odgovara tačno jedan elemenat $y \in B$, kažemo da se skup A preslikava u skup B. Takvo preslikavanje nazivamo funkcijom. Zapisujemo:

$$f: A \to B$$
 ili $y = f(x)$

Najpoznatiji oblik linearne funkcije je: y = kx + n (eksplicitni) Grafik ove funkcije je prava.

K- je koeficijenat pravca, odnosno $k = tg\alpha$ gde je α - ugao koji prava gradi sa pozitivnim smerom x-ose, n - je odsečak na y-osi

Pošto je prava odredjena sa dve svoje tačke, grafik ucrtamo tako što u malu tablicu uzmemo 2 proizvoljne vrednosti za x, pa izračunamo y ili još bolje, x = 0 i y = 0, pa nadjemo nepoznate: y = 2x + 2 za y = 0

$$\underline{za \ x=0}$$

$$y = 2 \cdot 0 + 2 = 2$$

$$2x + 2 = 0$$

$$x = -1$$

Ubacimo ovo u malu tablicu: $\begin{array}{c|cccc} x & 0 & -1 \\ \hline y & 2 & 0 \\ \end{array}$

PAZI: Ako je funkcija samo y = kx (bez n) onda grafik prolazi kroz kordinatni početak i moramo uzimati dve različite vrednosti za x.

Primer:

$$y = -2x$$
 $x = 0$ pa je $y = 0$
 $x = 1$ pa je $y = -2$

Kako nacrtati grafike x = 2 ili y = -3? Važno je zapamtiti:

$$\rightarrow y = 0$$
 je x-osa

$$\rightarrow x = 0$$
 je y-osa

 $\rightarrow x = a$, grafik je paralelan sa y-osom i prolazi kroz a

 $\rightarrow y = b$, grafik je paralelan sa x-osom i prolazi kroz b

Na primer:

<u>Nula Funkcije</u>: je mesto gde grafik seče x-osu a dobija se kad stavimo y = 0 pa izračunamo koliko je x. $\left(x = -\frac{n}{k}\right)$ Funkcija može biti <u>rastuća</u> ili <u>opadajuća</u>. Ako je k>0 funkcija je <u>rastuća</u> i sa pozitivnim smerom x-ose gradi oštar ugao, a ako je k<0 funkcija je <u>opadajuća</u> i sa pozitivnim smerom x-ose gradi tup ugao.

Znak funkcije:

Funkcija je **pozitivna** za y > 0 tj. kx + n > 0 i grafik je iznad x-ose.

Funkcija je <u>negativna</u> za y < 0 tj. kx + n < 0 i grafik je ispod x-ose

Rastuća

$$y = 0$$
 za $x = -\frac{n}{k}$
 $y > 0$ za $x \in \left(-\frac{n}{k}, \infty\right)$
 $y < 0$ za $x \in \left(-\infty, -\frac{n}{k}\right)$

Opadajuća

$$y = 0$$
 za $x = -\frac{n}{k}$
 $y > 0$ za $x \in \left(-\infty, -\frac{n}{k}\right)$
 $y < 0$ za $x \in \left(-\frac{n}{k}, \infty\right)$

Ako se u zadatku kaže da grafik prolazi kroz neku tačku (x_0, y_0) onda koordinate te tačke smemo da zamenimo umesto x i y u datoj jednačini y = kx + n

Dakle: $y_0 = kx_0 + n$

Dva grafika $y = kx_1 + n_1$ i $y = kx_2 + n_2$ će biti <u>paralelna</u> ako je $k_1 = k_2$, a <u>normalna</u> ako je $k_1 \cdot k_2 = -1$.

Dakle:

- uslov paralelnosti je $k_1 = k_2$
- uslov normalnosti je $k_1 \cdot k_2 = -1$

Da nas ne zbuni: Prava može biti zadata i u drugim oblicima:

$$ax + by + c = 0$$
 ili $\frac{a}{x} + \frac{b}{y} = 1$

Mi ovde izrazimo y (ipsilon) i "pročitamo" k i n:

$$ax + by + c = 0$$

$$by = -ax - c$$

$$y = -\frac{a}{h}x - \frac{c}{h}$$

pa je:
$$k = -\frac{a}{b}$$
, $n = -\frac{c}{b}$

$$\frac{x}{a} + \frac{y}{b} = 1/ab$$

$$bx + ay = ab$$

$$ay = -bx + ab$$
 / : a

$$y = -\frac{b}{a}x + b$$

pa je:
$$k = -\frac{a}{b}$$
, $n = b$

PRIMERI

1) Proučiti promene i grafički prikaži funkcije:

a)
$$y = \frac{1}{2}x - 1$$

b)
$$y = -2x + 4$$

a)
$$y = \frac{1}{2}x - 1$$

$$za x = 0 \qquad \Rightarrow \qquad y = 0 - 1 = -1$$

za
$$y = 0$$
 \Rightarrow $\frac{1}{2}x - 1 = 0$ \Rightarrow $x = 2$

- 1. Oblast definisanosti: $x \in R$
- 2. Nula finkcija: x = 2
- 3. Znak: y > 0 za $x \in (2, \infty)$ y < 0 za $x \in (-\infty, 2)$
- 4. Monotonost: Funkcija je rastuća jer je $k = \frac{1}{2} > 0$

b)
$$y = -2x + 4$$

za
$$x = 0$$
 \Rightarrow $y = 0 + 4 = 4$
za $y = 0$ \Rightarrow $-2x + 4 = 0$ \Rightarrow $x = 2$

- 1. Oblast definisanosti: $x \in R$
- 2. Nula funkcije: x = 2
- 3. Znak: y > 0 za $x \in (-\infty,2)$ y < 0 za $x \in (2,\infty)$
- 4.Monotonost: funkcija je opadajuća jer k = -2 < 0
- **2)** U skupu funkcija y=(a-4)x-(3a-10). (a realan parametar), odrediti parametar a tako da tačka M(1,2) pripada grafiku funkcije. Za nadjenu vrednost parametra a ispitati funkciju i skicirati njen grafik.

$$y = (a-4)x - (3a-10)$$

$$2 = (a-4) \cdot 1 - (3a-10)$$

$$2 = a - 4 - 3a + 10$$

$$2 = -2a + 6$$

$$2a = 6 - 2$$

$$2a = 4$$

$$a = 2$$

$$y = (2-4)x - (3 \cdot 2 - 10)$$

$$y = -2x - (-4)$$

$$v = -2x + 4$$

M(1,2) tačka pripada grafiku pa njene koordinate stavljamo umesto x i y. x = 1 i y = 2

3) U skupu funkcija f(x) = (a-2)x - 2a + 3, odrediti parameter a tako da grafik funkcije odseca na y-osi odsečak dužine 5.

$$f(x) = (a-2)x-2a+3$$

Uporedimo datu funkciju sa $y = kx + n$

Pošto je n-odsečak na y-osi, a ovde je n = -2a + 3, to mora biti:

$$-2a+3=5$$

$$-2a=5-3$$

$$-2a=2$$

$$a=-1$$

4) Date su familije funkcija y = (2m-5)x+7 i y = (10-m)x-3 Za koje su vrednosti parametra m grafici ovih funkcija paralelni?

$$y = (2m-5)x+7$$
 \Rightarrow $k = 2m-5$
 $y = (10-m)x-3$ \Rightarrow $k = 10-m$

uslov paralelnosti je da imaju iste *k*-ove. Dakle:

$$2m-5=10-m$$

$$2m+m=10+5$$

$$3m=15$$

$$m=\frac{15}{3}$$

$$m=5$$

5) Nacrtati grafik funkcije

$$y = |x| - 1$$

Rešenje:

Najpre definišemo apsolutnu vrednost:

$$|x| = \begin{cases} x, x \ge 0 \\ -x, x < 0 \end{cases}$$

Dakle,treba nacrtati dva grafika

Kako grafik y = x - 1 važi samo za $x \ge 0$ njegov deo (isprekidano) za x < 0 nam ne treba.

Kako grafik y = -x - 1 važi za x < 0 i njegov isprekidani deo nam ne treba.

Konačan grafik ima oblik slova V.

- 6) Dat je skup funkcija y = (4m-6)x-(3m-2), (m realan broj)
 - a) Odrediti m tako da funkcija ima nulu za x=2
 - b) Za nadjenu vrednost m ispitati promene i konstruisati grafik funkcije.

$$y=(4m-6)x-(3m-2)$$

a)
$$x = 2$$
 za $y = 0$ \Rightarrow $(4m-6) \cdot 2 - (3m-2) = 0$
 $8m-12-3m+2 = 0$
 $5m-10 = 0$
 $m = 2$

Vratimo vrednost za m da dobijemo traženu funkciju:

$$y = (4 \cdot 2 - 6)x - (3 \cdot 2 - 2)$$
$$y = 2x - 4$$

7) Dat je skup funkcija y = (k-2)x - (k-1), gde je k realan parameter. Odrediti parametar k tako da njen grafik bude paralelan sa grafikom funkcije y = 2x - 6. Za dobijenu vrednost k, ispisati funkciju i konstruisati njen grafik.

Iskoristimo najpre uslov paralelnosti da nadjemo *k*:

$$y = (k-2)x - (k-1)$$

$$y = 2x - 6$$

$$k - 2 = 2$$

$$k = 4$$

Vratimo vrednost za k:

$$y = (4-2)x - (4-1)$$

$$y = 2x - 3$$

Dve proizvoljne tačke:

