Conociendo propiedades de la Transformada de Fourier mediante la solución de ejercicios

Sofía Bustos Aponte^{*1} and Alfredo Uribe^{**2}

¹Instituto de Física, Universidad de Antioquia (UdeA) Calle 70 No. 52-21, Medellín, Colombia
 ²Departamento de Matemáticas, Universidad Autónoma Metropolitana, Av. San Rafael Atlixco 186,
 Col. Vicentina, Iztapalapa, C.P. 09340, México D.F., Mexico

8 de junio de 2024

1. Convolución

1.1. Una función simple.

Sea
$$f(x) = \begin{cases} 1, & \text{si } -1 < x < 1 \\ 0, & \text{en otro caso} \end{cases}$$

(a). Cálculo de la convolución de f consigo misma

Calculemos f * f. Por definición de convolución se tiene que

$$(f * f)(x) = \int_{-\infty}^{-1} f(x - y) f(y) \, dy + \int_{-1}^{1} f(x - y) f(y) \, dy + \int_{1}^{\infty} f(x - y) f(y) \, dy.$$

Teniendo en cuenta el enunciado f(y) = 0 para $|y| \ge 1$, podemos reescribir a (f * f)(x) y sustitur u = x - y para simplificar la integral y considerar posibles casos para x,

$$(f * f)(x) = \int_{-1}^{1} f(x - y) f(y) \, dy = \int_{x-1}^{x+1} f(u) \, du \, .$$

i) x = 0.

$$(f * f)(0) = \int_{-1}^{1} f(u) du = 2.$$

Si x = 0 entonces (x - 1, x + 1) = (-1, 1) pero si consideramos valores fuera de ese intervalo,

tales como $x=\frac{3}{2}$ y $x=\frac{-3}{2}$ vemos que obtenemos un valor dentro del intervalo (-1,1),

$$(f*f)\left(\frac{3}{2}\right) = \int_{1/2}^{5/2} f(u) \, du = \frac{1}{2} \,, \qquad (f*f)\left(-\frac{3}{2}\right) = \int_{-5/2}^{-1/2} f(u) \, du = \frac{1}{2} \,.$$

 $^{^* \}mbox{\@scite{1.5ex}\@sci$

^{**☑} alur@xanum.uam.mx

De manera más general, si consideramos valores fuera de (x-1,x+1) tales que x-1 < 1 y -1 < x+1 obtenemos el intervalo -2 < x < 2 del cual podemos relacionar x-1 y x+1 operando en ambos lados de la desigualdad y reescribir el intervalo como -3 < x-1 < 1 y -1 < x+1 < 3.

Por otro lado, podemos establecer una relación para los extremos del intervalo (-1,1) cuando x=0 y cuando (x-1,x+1) es decir: x+1-(-1)=x+2 y 1-(x-1)=2-x. Así, determinamos el calculo de f*f en función de los valores que puede tomar x,

$$(f * f)(x) = \begin{cases} 0, & \text{si } x \notin (-2, 2) \\ x + 2, & \text{si } x \in (-2, 0] \\ 2 - x, & \text{si } x \in (0, 2) \end{cases}$$

(b). Ejemplo de convolución y convergencia puntual

Sea $f_{\epsilon}(x) = \epsilon^{-1} f(\epsilon^{-1} x)$ y $g(x) = x^3 - x$. Calcule $f_{\epsilon} * g$ y verifique directamente que $f_{\epsilon} * g \to 2g$ cuando $\epsilon \to 0$.

Por definición, la convolución entre $f_{\epsilon} * g$ es

$$(f_{\epsilon} * g)(x) = \int_{-\infty}^{-\epsilon} f_{\epsilon}(y)g(x-y) \, dy + \int_{-\epsilon}^{+\epsilon} f_{\epsilon}(y)g(x-y) \, dy + \int_{+\epsilon}^{\infty} f_{\epsilon}(y)g(x-y) \, dy.$$

Similar al inciso (a), en la única integral no nula se cumple que $-\epsilon < y < \epsilon$. Entonces, $-1 < \frac{y}{\epsilon} < 1$ y así $f(\frac{y}{\epsilon}) = 1$.

$$(f_{\epsilon} * g)(x) = \frac{1}{\epsilon} \int_{-\epsilon}^{+\epsilon} g(x - y) \, dy$$

$$= \frac{1}{\epsilon} \int_{x - \epsilon}^{x + \epsilon} g(u) \, du \qquad \text{(cambio de variable)}$$

$$= \frac{1}{\epsilon} \left(\frac{u^4}{4} - \frac{u^2}{2} \right) \Big|_{x - \epsilon}^{x + \epsilon} \qquad \text{(resolvemos la integral)}$$

$$= \frac{1}{\epsilon} \left[\frac{(x + \epsilon)^4}{4} - \frac{(x + \epsilon)^2}{2} - \frac{(x - \epsilon)^4}{4} + \frac{(x - \epsilon)^2}{2} \right] \qquad \text{(binomio de Newton)}$$

$$= 2x^3 + 2x\epsilon^2 - 2x \qquad \qquad (\epsilon \text{ tiende a cero})$$

$$\to 2(x^3 - x) = 2q(x)$$

2. Transformada de Fourier

2.1. Propiedad de la Transformada de Fourier

Sea f del ejercicio 1.1. Calcule \hat{f} y $(\hat{f} * \hat{f})$. Usando propiedades de la transformada de Fourier verifique que $(\hat{f} * \hat{f}) = (\hat{f})^2$

Utilizando la definición de transformada de Fourier y siguiendo un procedimiento similar al desarrollado en 3.(a), podemos deducir una expresión para \hat{f} calculando la integral y relacionando el resultado con la función trigonométrica del seno complejo.

$$\hat{f}(\xi) = \int_{-\infty}^{-1} e^{-i\xi x} f(x) \, dx + \int_{-1}^{1} e^{-i\xi x} f(x) \, dx + \int_{1}^{\infty} e^{-i\xi x} f(x) \, dx$$

$$= \int_{-1}^{1} e^{-i\xi x} \, dx = -\frac{1}{i\xi} e^{-i\xi x} \Big|_{x=-1}^{x=1}$$

$$= \frac{2}{\xi} \left(\frac{e^{i\xi} - e^{-i\xi}}{2i} \right) = \frac{2}{\xi} \sin(\xi) \, .$$

Recordando como se obtuvo (f * f)(x) en 1.1 analizando cada intervalo, f * f es distinta de cero cuando |x| < 2. De esta forma, podemos reescribir la integral como la suma de tres integrales. Note que las dos últimas integrales se resuelven mediante integración por partes.

$$\begin{split} (f*f)\hat{} &= \int_{-2}^{0} e^{-i\xi x} (x+2) \, dx + \int_{0}^{2} e^{-i\xi x} (2-x) \, dx \\ &= \int_{-2}^{0} e^{-i\xi x} x \, dx + \int_{-2}^{0} 2e^{-i\xi x} \, dx + \int_{0}^{2} 2e^{-i\xi x} \, dx - \int_{0}^{2} e^{-i\xi x} x \, dx \\ &= \int_{-2}^{2} 2e^{-i\xi x} \, dx - \int_{0}^{2} e^{-i\xi x} x \, dx + \int_{-2}^{0} e^{-i\xi x} x \, dx \end{split}$$

Simplificando la expresión anterior, obtenemos:

$$(f * f)(\xi) = \frac{2}{\xi^2} (1 - \cos(2\xi)) = \frac{4}{\xi^2} \sin^2(\xi) = (\hat{f})^2(\xi).$$

2.2. Versión modificada del Teorema de Inversión de Fourier

Suponga que $g \in L^1$, $\int_{-\infty}^{\infty} g(x) dx = 1$ y $\hat{g} \in L^1$.

(a). Ejemplo de convergencia puntual

Muestre que $\hat{g}(\delta \xi) \to 1$ cuando $\delta \to 0$ para todo $\xi \in \mathbb{R}$.

Sea $h_n(x) := e^{-\frac{1}{n}i\xi x}g(x)$. Observe que $|h_n(x)| = |g(x)|$. De esta forma, $\int_{-\infty}^{\infty} |h_n(x)| = \int_{-\infty}^{\infty} |g(x)| dx < \infty$.

Por lo que si tomamos $h_n(x) := e^{-\frac{1}{n}i\xi x}g(x)$ con un $x \in \mathbb{R}$ fijo y vemos que pasa cuando $n \to \infty$ tenemos

$$\lim_{n \to \infty} h_n(x) = \lim_{n \to \infty} e^{-\frac{1}{n}i\xi x} g(x) = g(x).$$

Si integramos en ambos lados de la igualdad y tenemos en cuenta las hipótesis del ejercicio, podemos usar el Teorema de la Convergencia Dominada e intercambiar el límite con la integral. Dándonos cuenta de que la integral descrita no es más que la definición de transformada de Fourier con $\delta = \frac{1}{n}$,

$$\int_{-\infty}^{\infty} g(x) \, dx = \lim_{n \to \infty} \int_{-\infty}^{\infty} e^{-\frac{1}{n}i\xi x} g(x) \, dx = \lim_{n \to \infty} \hat{g}(\delta \xi) = 1$$

Así podemos concluir que $\hat{g}(\delta \xi) \to 1$ cuando $\delta \to 0$.

Otra forma de expresar el Teorema de Inversión de Fourier

Muestre que para cualquier función continua $f \in L^1$

$$\lim_{\delta \to 0} \frac{1}{2\pi} \int_{-\infty}^{\infty} e^{i\xi x} \hat{g}(\delta \xi) \hat{f}(\xi) d\xi = f(x), \qquad x \in \mathbb{R}.$$

Usando la definición de Transformada de Fourier para $\hat{f}(\xi)$,

$$\frac{1}{2\pi} \int_{-\infty}^{\infty} e^{i\xi x} \hat{g}(\delta \xi) \hat{f}(\xi) d\xi = \frac{1}{2\pi} \int_{-\infty}^{\infty} e^{i\xi x} \hat{g}(\delta \xi) \left[\int_{-\infty}^{\infty} e^{-i\xi y} f(y) dy \right] d\xi. \tag{1}$$

Si verificamos que ambas integrales son absolutamente convergentes, podremos intercambiar el orden de integración. Como $f \in L^1$, entonces $\int_{-\infty}^{\infty} |f(y)| \, dy < \infty$. Por otra parte, realizando la sustitución $u = \delta \xi$ concluímos que $\int_{-\infty}^{\infty} |\hat{g}(u)| du < \infty$. En efecto,

$$\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} |e^{i\xi x} \hat{g}(\delta \xi) e^{-i\xi y} f(y)| \, dy \, d\xi = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} |\hat{g}(\delta \xi) f(y)| \, dy \, d\xi$$
$$= \left[\int_{-\infty}^{\infty} |\hat{g}(\delta \xi)| \, d\xi \right] \left[\int_{-\infty}^{\infty} |f(y)| \, dy \right] < \infty.$$

Usando (1),

$$\frac{1}{2\pi} \int_{-\infty}^{\infty} e^{i\xi x} \hat{g}(\delta \xi) \hat{f}(\xi) d\xi = \frac{1}{2\pi} \int_{-\infty}^{\infty} f(y) \int_{-\infty}^{\infty} e^{i\xi(x-y)} \hat{g}(\delta \xi) d\xi dy = \frac{1}{\delta} \int_{-\infty}^{\infty} e^{i\frac{\eta}{\delta}(x-y)} \hat{g}(\eta) d\eta,$$

donde $\eta = \delta \xi$ en el lado derecho de la igualdad anterior.

De acuerdo con el Teorema de Inversión de Fourier [1, Sección 7.2], si $\hat{f} \in L^1$, entonces fes continua y además $f(x) = \frac{1}{2\pi} \int_{-\infty}^{\infty} e^{i\xi x} \hat{f}(\xi) d\xi$ para $x \in \mathbb{R}$. Al usar apropiadamente la definición de f(x) para g, definimos g_{δ} , (ver inciso (b) de la

subsección 1.1) y simplificamos la expresion (1),

$$\frac{1}{\delta} \int_{-\infty}^{\infty} e^{i\frac{\eta}{\delta}(x-y)} \hat{g}(\eta) d\eta = \frac{2\pi}{\delta} g\left(\frac{x-y}{\delta}\right) = 2\pi g_{\delta}(x-y).$$

De esta forma,

$$\int_{-\infty}^{\infty} f(y)g_{\delta}(x-y) dy = (f * g_{\delta})(x).$$

Finalmente,

$$\lim_{\delta \to 0} (f * g_{\delta})(x) = f(x)$$

Aplicación del Teorema del Residuo 2.3.

Use el Teorema del Residuo para mostrar que

$$\mathcal{F}\left[\frac{1}{x^4+1}\right](\xi) = \frac{\pi}{\sqrt{2}} e^{|\xi|/\sqrt{2}} \left(\cos\left(\frac{\xi}{\sqrt{2}}\right) + \sin\left(\frac{|\xi|}{\sqrt{2}}\right)\right).$$

Por definición de transformada de Fourier,

$$\mathcal{F}\left[\frac{1}{x^4+1}\right](\xi) = \int_{-\infty}^{\infty} \frac{e^{-i\xi x}}{x^4+1} dx.$$

Utilizar algún método común de integración parece ser una tarea complicada pero posible si analizamos el integrando mediante variable compleja. Es fácil ver que $g(x) = \frac{e^{-i\xi x}}{x^4+1}$ tiene cuatro polos simples. Al tomar el contorno de integración en el semiplano superior, son de interés los dos polos que se encuentran allí.

$$\int_{-\infty}^{\infty} \frac{e^{-i\xi x}}{x^4 + 1} dx = 2\pi i \left[Res(g, z_1) + Res(g, z_2) \right]$$

Como $z_1 = e^{\frac{\pi}{4}i}$ y $z_2 = e^{\frac{3\pi}{4}i}$ son simples, una forma fácil de calcular los residuos es mediante límites.

$$Res(g, z_1) = \lim_{z \to z_1} (z - z_1) \frac{e^{-i\xi z}}{z^4 + 1} = \frac{\cos(\frac{\xi}{\sqrt{2}} + i\frac{\xi}{\sqrt{2}}) - i\sin(\frac{\xi}{\sqrt{2}} + i\frac{\xi}{\sqrt{2}})}{-2\sqrt{2} + i2\sqrt{2}}$$

$$Res(g, z_2) = \lim_{z \to z_2} (z - z_2) \frac{e^{-i\xi z}}{z^4 + 1} = \frac{\cos(-\frac{\xi}{\sqrt{2}} + i\frac{\xi}{\sqrt{2}}) - i\sin(-\frac{\xi}{\sqrt{2}} + i\frac{\xi}{\sqrt{2}})}{2\sqrt{2} + i2\sqrt{2}}$$

Tomando $u = \frac{\xi}{\sqrt{2}}$ y $v = \frac{\xi}{\sqrt{2}}i$ para simplificar la suma de los residuos obtenemos,

$$\int_{-\infty}^{\infty} \frac{e^{-i\xi x}}{x^4 + 1} dx = \frac{\pi}{\sqrt{2}} e^{iv} (\cos(u) - \sin(u)) = \frac{\pi}{\sqrt{2}} e^{\frac{\xi}{\sqrt{2}}} \left(\cos\left(\frac{\xi}{\sqrt{2}}\right) - \sin\left(\frac{\xi}{\sqrt{2}}\right) \right)$$

3. Aplicaciones

3.1. Caso general para la demostración de la desigualdad de Heisenberg

Sea f una función el $L^2(\mathbb{R})$ y sea $F(x) = e^{-i\alpha x} f(x+a)$

(a). Dispersión de f en el punto a

Muestre que $\Delta_a f = \Delta_0 F$

Por definición
$$\Delta_a f := \frac{\int_{-\infty}^{\infty} (x-a)^2 |f(x)|^2 dx}{\int_{-\infty}^{\infty} |f(x)|^2 dx}$$

$$\Delta_0 F = \frac{\int_{-\infty}^{\infty} x^2 |F(x)|^2 dx}{\int_{-\infty}^{\infty} |F(x)|^2 dx}$$
 (definición de dispersión aplicada a F)
$$= \frac{\int_{-\infty}^{\infty} x^2 |f(x+a)|^2 dx}{\int_{-\infty}^{\infty} |f(x+a)|^2 dx}$$
 (norma de la definición de F)
$$= \frac{\int_{-\infty}^{\infty} (u-a)^2 |f(u)|^2 du}{\int_{-\infty}^{\infty} |f(u)|^2 du}$$
 (sustitución $u = x + a, du = dx$)
$$= \Delta_a f$$

Referencias

- [1] Folland, Gerald B, Fourier analysis and its applications, American Mathematical Soc. 4 (2009).
- [2] Folland, Gerald B, Real analysis: modern techniques and their applications, John Wiley & Sons 40 (1999).