

FOCT ISO 9001-2011 (ISO 9001:2008) № POCC RU.ИФ47.K00053 от 28.08.2014г FOCT P ИСО 14001-2007 (ISO 14001:2004) № CЭМ.PTC.RU.02572.16 от 22.04.2016г. FOCT P 54934-2012 (OHSAS 18001:2007) № CMO.PTC.RU.02573.16 от 22.04.2016г.

КАТАЛОГ

СЛЕДУЕМ ПУТЕМ НОВЕЙШИХ ТЕХНОЛОГИЙ, ОПИРАЯСЬ НА ЛУЧШИЕ ИНЖЕНЕРНЫЕ ТРАДИЦИИ

КЛАПАНЫ РЕГУЛИРУЮЩИЕ, ЗАПОРНО-РЕГУЛИРУЮЩИЕ, ЗАПОРНЫЕ, ОТСЕЧНЫЕ

СОДЕРЖАНИЕ

О Компании	4
Введение	6
Химический состав, механические свойства и режимы термообработки основных марок сталей ТПА	8
Особенности конструкции седельных клапанов	10
Седельные клапаны	12
Технические характеристики	12
Номинальная условная пропускная способность клапанов	12
Структура условного обозначения	13
Основные детали седельного клапана	14
Материальное исполнение составных частей	15
Габаритные и присоединительные размеры клапанов	16
Особенности конструкций сегментных клапанов	20
Сегментные клапаны	22
Технические характеристики	22
Номинальная условная пропускная способность клапанов	22
Структура условного обозначения	23
Основные детали седельного клапана	24
Материальное исполнение составных частей	25
Габаритные и присоединительные размеры клапанов	26
Особенности конструкций клапанов «баттерфляй»	30
Клапаны «Баттерфляй»	32
Технические характеристики	32
Номинальная условная пропускная способность клапанов	33
Структура условного обозначения	33
Основные детали седельного клапана	34
Материальное исполнение составных частей	34
Габаритные и присоединительные размеры клапанов	36
Информация о коррозии материалов	40
Сертификаты соответствия	42
Опросный лист	43
Для заметок	45

ИНЖЕНЕРНЫЕ ТЕХНОЛОГИИ

ОКОМПАНИИ

На сегодняшний день основным направлением деятельности нашей компании является производство высокотехнологичной запорно-регулирующей арматуры, в частности шаровых кранов, шиберных и клиновых задвижек и регулирующих, запорно-регулирующих, запорных, отсечных клапанов для нужд газовой, нефтяной, химической и других отраслей промышленности.

Применительно к производству и реализации запорно-регулирующей арматуры на предприятии введены системы:

- менеджмента качества, соответствующая ГОСТ ISO 9001-2011 (ISO 9001:2008);
- экологического менеджмента, соответствующая ГОСТ Р ИСО 14001-2007 (ISO 14001:2004);
- менеджмента безопасности труда и охраны здоровья, соответствующая ГОСТ Р 54934-212 (OHSAS 180001:2007).

Территория предприятия составляет 22 370 м.кв. и обладает удобной железнодорожной и транспортной развязкой. Предприятие оборудовано большегрузными грузоподъемными механизмами и оснащено современным металлообрабатывающим, опрессовочным, дробеструйным и покрасочным оборудованием. Техническая оснащенность предприятия позволяет вести полный технологический цикл производства. Производственные мощности ООО «Инженерные Технологии» размещены на 7947 м.кв., и включают в себя: техническую и конструкторскую службу, испытательную лабораторию, службу технического контроля, заготовительный участок, формообразующий участок, участок механической обработки основных корпусных деталей, участок по изготовлению уплотнений, штоков, седел, колец, крепежа, шлифовальный участок, термический участок, гальванический участок, сварочный участок, сборочный участок, участок монтажа и настройки исполнительных механизмов (КИПиА), малярный участок, участок маркировки и упаковки готовой продукции и другие вспомогательные службы, и отделы предприятия.

Обладая практически полным циклом производства и имея четкую отлаженную работу всех производственных участков, мы не только профессионально занимаемся производством и ремонтом трубопроводной арматуры, но и изготовлением различного нефтегазового оборудования по техническим условиям Заказчика, по российским и зарубежным стандартам ГОСТ, ASME, ISO, DIN.

Наше предприятие, по особому требованию заказчика, имеет возможность изготавливать трубопроводную арматуру в специальном исполнении, с применением специальных материалов и конструкций для таких условий эксплуатации как:

- холодный климат;
- морской климат;
- агрессивные рабочие среды с повышенным содержанием H2S и CO2;
- взрывоопасные и токсичные среды;
- низко- и высокотемпературные среды (от -196°C до +800°C).

При этом применяются современные виды защитных и упрочняющих покрытий (полимерные, гальванические и др.), наплавок (стеллит, карбид хрома) корпусных деталей, рабочих деталей и узлов. Применяются специальные керамические и полимерные материалы, а так же специализированные нержавеющие стали такие как Duplex, Super duplex, Hastelloy, Inconel, и титан.

Для агрессивных и особоагрессивных рабочих сред, наша запорно-регулирующая арматура изготавливается с применением материалов, устойчивых к сульфидному сероводородному растрескиванию под напряжением (NACE MR 0175-97), при этом применяются только материалы, прошедшие успешные испытания в ООО «Газпром ВНИИГАЗ» на возможность их применения для изготовления корпусных деталей трубопроводной арматуры, предназначенной для эксплуатации в условиях месторождений природного газа, содержащего сероводород и диоксид углерода до 25% и более каждого.

При этом мы всегда учитываем особые требований Заказчика по материальному, климатическому, техническому исполнению арматуры. Всегда внимательно прорабатываются все технические вопросы, касательно эксплуатационных характеристик трубопроводной арматуры с учетом свойств рабочей среды, режимов работы, вешних воздействий и нагрузок.

Благодаря данной работе стало возможно производство и применение новых модификаций в конструкциях трубопроводной арматуры, обеспечивающих высокие показатели надежности при эксплуатации.

Наша продукция подвергается контролю качества на всех стадиях производства, каждое изделие подлежит приемо-сдаточным испытаниям, что позволяет добиться высоких показателей надежности, благодаря чему наша продукция имеет значительно больший средний ресурс и, как следствие, гарантийный срок эксплуатации, чем у аналогичной арматуры других производителей.

На предприятии функционирует собственная сервисная служба, которая обеспечивает гарантийное и постгарантийное обслуживание, как продукции собственного производства, так и продукции наших партнеров, а так же оказывает услуги по монтажу, настройке и наладке навесного оборудования с выездом технических специалистов сервисной службы непосредственно на производство Заказчика.

Для трубопроводов с высокими техническими требованиями к рабочей среде, времени закрытия трубопроводная арматура комплектуются импортными запорными узлами (шарами и седлами), изготовленными в Германии по современным технологиям таких заводов-изготовителей как OHL Gutermuth и Perrin GmbH.

Благодаря индивидуальной разработке присоединительных площадок под приводы как по импортным и отечественным стандартам, так и по чертежам заказчика, запорно-регулирующая арматура нашего производства может комплектоваться всеми типами пневматических, электрических, ручных приводов любых производителей. При этом мы в основном используем продукцию таких мировых лидеров, как Rotork, AUMA, Niwatec, что позволяет существенно расширить их диапазон применения, при времени открытия/закрытия арматуры: от 0,1 секунды.

ВВЕДЕНИЕ

Клапан - один из видов трубопроводной арматуры, предназначенной как для открытия, закрытия, отсечения, так и для непрерывного (аналогового) и дискретного регулирования потока среды при наступлении определенных условий.

В зависимости от назначения и условий эксплуатации применяются различные виды управления регулирующей арматурой, чаще всего используются специальные приводы и управление с помощью промышленных микроконтроллеров по команде от датчиков, фиксирующих параметры среды в трубопроводе. Используются электрические, пневматически, гидравлические и электромагнитные приводы. Так же ручное управление – основной способ управления в прошлом, редко встречающийся в современной промышленности.

Клапаны изготавливаются в соответствии с ТУ 3742-002-11912158-2015.

По принципу действия клапаны подразделяются на:

- регулирующие клапаны выполняют функцию регулирования расхода и давления. Осуществляют эту функцию за счет изменения расхода среды через свое проходное сечение.
- запорно-регулирующие клапаны осуществляют как функцию регулирования расхода и давления, так и уплотнение затвора по нормам герметичности для запорной арматуры. Это обеспечивается специальной контракцией запорного органа, имеющего уплотнительную поверхность для плотного контакта с седлом в положении «закрыто».
- запорные клапаны выполняют функцию полного перекрытия своего проходного сечения, а следовательно и потока рабочей среды. Запирающий элемент в процессе эксплуатации находиться чаще всего в крайних положениях «открыто» или «закрыто».
- **отсечные клапаны** выполняют функцию быстрого полного перекрытия своего проходного сечения, а следовательно и потока рабочей среды в случае аварийной ситуации или по технологическим требованиям.

По направлению потока рабочей среды делятся на:

- проходные служат для установки на прямых участках трубопровода;
- угловые меняют направление потока на 90°;
- трехходовые имеют три патрубка для присоединения к трубопроводу (два входных и один выходной) для смешивания двух потоков сред с различными параметрами в один.

По конструкции регулирующих органов клапаны подразделяются на:

- **седельные** бывают односедельные и двухседельные конструкции. В седельных клапанах подвижным элементом служит затвор в виде плунжер, который можем быть игольчатым, стержневым, параболическим или тарельчатым.
- **клеточные (поршневые)** затвор этого вида клапанов выполняется в виде полго цилиндра, который перемещается внутри клетки, являющейся направляющим устройством и, одновременно, седлом в корпусе.
- **сегментные** представляют собой четверть оборотные клапаны с затвором в виде шарового сегмента с V-образным вырезом.
- баттерфляй тип клапанов, где пропускная способность трубопровода обеспечивается с помощью поворота особой заслонки сделанной в форме диска.

Клапаны применяются для следующих рабочих сред:

- Газообразная углекислый газ, азот, воздух, аммиак, неагрессивный природный газ, газообразные нефтепродукты, газообразные углеводороды.
- Жидкая жидкие углеводороды, нефть и нефтепродукты, этиленгликоль, турбинные масла, метанол (СНЗОН), растворы хлоридов.

Механические примеси в следующих количествах:

- влага и конденсат до 1500мг/м3;
- механические примеси до 10мг/м3;
- размеры отдельных частиц в примеси до 1мм;
- натрий и калий (в сумме) не более 1мг/м3.

Клапаны могут изготавливаться в специальном исполнении для:

- **агрессивных рабочих сред** (с повышенным содержанием сероводорода (H2S) и углекислого газа (CO2) до 6% об.);
- особо агрессивных рабочих сред с повышенным содержанием сероводорода (H2S) и углекислого газа (CO2) до 25% об. и выше.

Для изготовления корпусов таких клапанов применяются марки стали соответствующие ГОСТ Р 53678-2009, ГОСТ Р 53679-2009, СТ ЦКБА 052-2008, NACE MR0175, NACE MR0103, а также прошедшие испытания на стойкость против сероводородного разрушения по методике стандарта NACE TM 0177.

Температурное исполнение клапанов может быть различным, в соответствии с ГОСТ 15150:

- Исполнение Т (-30°С...+60°С)
- Исполнение У(-45°С...+60°С)
- Исполнение УХЛ (-60°С...+60°С)

Присоединение к трубопроводу может быть различным: фланцевое, межфланцевое, под приварку, муфтовое, цапковое, штуцерное.

Фланцы могут быть плоские приварные, приварные встык (воротниковые), свободные на приварном кольце, резьбовые, с впадиной под сварку. Исполнение фланцев (в зависимости от требования Заказчика) может быть как и в соответствии с российскими стандартами ГОСТ 12815-80, ГОСТ 12820-80, ГОСТ 12821-80, ГОСТ 12822-80, ГОСТ Р 54432-2011, так и в соответствии с иностранными стандартами ASME B16.5, ASME B16.47, комплект стандартов DIN, ISO 7005-1:1992.

Арматура изготавливается с защитным атмосферостойким покрытием для категорий коррозионной активности атмосферы С1, С2, С3, С4, С5-I по ISO 12944-2:1988, а также в соответствии с утвержденными методиками Заказчика.

Управление запорным органом клапана может быть различным:

- ручное управление (с помощью редуктора);
- электрический привод;
- пневматический привод;
- пневмогидравлический привод

Материальное исполнение основных деталей клапанов в зависимости от температуры рабочей среды может быть следующее:

ХИМИЧЕСКИЙ СОСТАВ, МЕХАНИЧЕСКИЕ СВОЙСТВА И РЕЖИМЫ ТЕРМООБРАБОТКИ ОСНОВНЫХ МАРОК СТАЛЕЙ ТПА

Вид по-	Обоз	начение					Химичес	кий состав,	%	
лучения заготовки	ГОСТ	Марка мате- риала	С	Mn	Si	Cr	Мо	Ni	Cu	Р
	977-88	20Л	0,15-0,26	0,35-1,08	0,12-0,67	-	-		-	Не более 0,035
	21357-87	20ГЛ	0,15-0,27	1,00-1,50	0,12-0,67	Не более 0,40	-	Не более 0,40	-	Не более 0,020
Отливки	ASTM A352	LCB	Не более 0,30	Не более 1,00	Не более 0,60	Не более 0,50	Не более 0,20	Не более 0,50	Не более 0,30	Не более 0,040
	977-88	12Х18Н9ТЛ	Не более 0,13	0,88-2,20	0,12-0,67	16,5-20,5	-	7,5-11,5	-	Не более 0,035
	977-88	12X18H- 12M3TЛ	Не более 0,13	0,88-2,20	0,12-0,67	15,5-19,5	2,98-4,02	10,5-13,5	-	Не более 0,035
	1050-88	20	0,17-0,24	0,35-0,65	0,12-0,67	Не более 0,25	-			Не более 0,035
	19281-89	09Г2С	Не более 0,14	1,30-1,80	0,12-0,67	Не более 0,30	-	Не более 0,30	-	Не более 0,040
	ASTM A350	LF2	Не более 0,30	0,6-1,35	0,15-0,30	Не более 0,30	Не более 0,12	-	Не более 0,40	Не более 0,035
Прокат	5949-75	12X18H10T	Не более 0,13	Не более 2,05	0,12-0,67	16,8-19,2	-	8,85- 11,15	-	Не более 0,035
	5949-75	10X17H- 13M2T	Не более 0,11	Не более 2,05	0,12-0,67	15,8-19,2	1,9-3,1	11,85- 14,15	-	Не более 0,025
	5949-75	30X13	0,26-0,35	Не более 0,8	0,12-0,67	12,0-14,0	-	-	-	Не более 0,025
	4543-71	40X	0,35-0,45	0,48-0,82	0,12-0,67	0,78-1,15	-	-	-	Не более 0,035
	8479-70	20 гр. IV	0,17-0,24	0,35-0,65	0,12-0,67	Не более 0,25	-			Не более 0,02
	8479-70	09Г2С гр. IV	Не более 0,14	1,30-1,80	0,12-0,67	Не более 0,30	-	Не более 0,30	-	Не более 0,02
Поковки	ASTM A350	LF2	Не более 0,30	0,6-1,35	0,15-0,30	Не более 0,30	Не более 0,12	-	Не более 0,40	Не более 0,035
Пок	25054-84	12X18H10T	Не более 0,13	Не более 2,05	0,12-0,67	16,8-19,2	-	8,85- 11,15	-	Не более 0,035
	25054-84	10X17H- 13M2T	Не более 0,11	Не более 2,05	0,12-0,67	15,8-19,2	1,9-3,1	11,85- 14,15	-	Не более 0,025
	25054-84	30X13	0,26-0,35	Не более 0,8	0,12-0,67	12,0-14,0	-	-	-	Не более 0,025

			Mex	аническ	сие свої	і́ства, не	менее		Твер-		
S	Другие	σв, МПа	σт, МПа	δ, %	Ψ, %	KC +20°C	:U, Дж/см -45°C	₁2 -60°C	дость, НВ	Режимы термичес	кой обработки, °С
Не более 0,035	-	412	216	22	35	49	30	-	-	Нормализация 880-900	Отпуск 630-650
Не более 0,020	-	500	300	20	35	-	-	30	143-187	Нормализация 920-940	Охлаждение воздух
Не более 0,045	-	485- 655	275	22	-	-	60	-	-		аводом изготовите- ем
Не более 0,030	5*C≤T≤0,7	441	196	25	32	590	-	30	-	Закалка 1050-1100	Охлаждение в масле воде или на воздухе
Не более 0,030	5*C≤T≤0,6	441	216	25	30	590	-	30		Закалка 1050-1100	Охлаждение в воде
Не более 0,04	-	410	245	25	35	-	30	-	≤167	Нормализация 900-920	Охлаждение воздух
Не более 0,045	-	430	295	21	-	-	-	30	167-207	Закалка 930-940	Отпуск 630-640
Не более 0,040	-	485- 655	250	22	30	-	30	-	197		аводом изготовите- ем
Не более 0,045	5*C≤T≤0,8	510	196	40	55	-	-	30	-	Закалка 1020-1100	Охлаждение в масле воде или на воздухе
Не более 0,045	5*C≤T≤0,75	510	215	40	55	-	-	30		Закалка 1050-1100	Охлаждение в масле воде или на воздухе
Не более 0,045	-	650	440	16	55	78	-	30	131-217	Закалка 1000-1130	Отпуск 660-770
Не более 0,045	-	980	785	10	45	59	-	-	≤217	Нормализация 860	Отпуск 500
Не более 0,02	-	470	245	22	48	88	30	-	143-179		аводом изготовите- ем
Не более 0,02	-	530	275	20	40	-	-	30	156-197		аводом изготовите- ем
Не более 0,040	-	485- 655	250	22	30	-	30	-	197		аводом изготовите- ем
Не более 0,045	5*C≤T≤0,8	510	196	40	55	-	-	30	-	Закалка 1020-1100	Охлаждение в масле воде или на воздухе
Не более 0,045	5*C≤T≤0,75	510	215	40	55	-	-	30		Закалка 1050-1100	Охлаждение в масле воде или на воздухе
Не более 0,045	-	650	440	16	55	78	-	30	131-217	Закалка 1000-1130	Отпуск 660-770

ОСОБЕННОСТИ КОНСТРУКЦИЙ СЕДЕЛЬНЫХ КЛАПАНОВ

Седельные и клеточные клапаны являются одним из самых широко распространенных видов регулирующей арматуры. Конструкция клапана предусматривает минимальное количество подвижных узлов, что является определенным фактором в надежности и безотказности работы регулирующего узла.

ОСНОВНЫЕ ОСОБЕННОСТИ ДАННОЙ КОНСТРУКЦИИ ЭТО:

- быстрая смена и взаимозаменяемость внутренних узлов клапана для достижения требуемых параметров среды;
- возможность применение мембранных пневматических приводов;
- применение обвязки приборами КИП любых производителей, по требованию заказчика;
- высокая герметичность при уплотнении в затворе «металл-металл»;
- возможность применения уплотнений в затворе из эластомерных материалов;
- быстрая отсечка рабочей среды благодаря малому ходу штока;
- широкий температурный диапазон от -196°C до +425°C

ТИПЫ КОНТРУКЦИЙ ДРОССЕЛЬНЫХ УЗЛОВ

Микрорасходный дроссельный узел

Служит для большого перепада давления среды, имеет Kv 0,01÷2,5м3/ч

Конструкция имеет малое проходное отверстие в седле по сравнению с номинальным диаметром клапана и очень тонкий плунжер. Клетка обеспечивает надежную работу при большом перепаде давления, снижая кавитацию, шум и исключает возможность размытия стенок корпуса клапана.

Дроссельный узел с параболическим плунжером

Плунжер клапана выполняется с профилированным участком. Размер и форма плунжера зависят от пропускной характеристики клапана. Этим видом плунжера оснащаются клапаны в стандартной комплектации.

Антикавитационный дроссельный узел

Для устранения кавитации при эксплуатации клапанов на жидких средах, в дроссельных парах применяются плунжеры поршневого типа и перфорированные стаканы (клетки). Они предназначены для разбития потока на тонкие струйки в целях увеличения антикавитационных свойств клапана.

Антишумовой дроссельный узел

Для уменьшения уровня шума при эксплуатации клапанов на газообразных средах, в дроссельных парах, так же как и в антикавитационных узлах, применяются плунжеры поршневого типа и перфорированные стаканы. Они предназначены для разбития потока на тонкие струйки в целях увеличения антишумовых свойств клапана.

СЕДЕЛЬНЫЕ КЛАПАНЫ МОГУТ ИЗГОТАВЛИВАТЬСЯ В СПЕЦИАЛЬНОМ ИСПОЛНЕНИИ В ЗАВИСИМОСТИ ОТ ТРЕБОВАНИЙ ЗАКАЗЧИКА И ПАРАМЕТРОВ ЭКСПЛУАТАЦИИ:

- 1. Антикавитационное и антишумовое исполнение использование специальных дроссельных узлов для увеличения шума в газообразных средах и кавитации в жидких средах при высоких перепадах давления и скорости рабочей среды.
- **2. Микрорасходное исполнение** использование специальных дроссельных узлов с зауженным проходным отверстием в седле клапана. Предназначен для регулирования очень малых расходов среды.
- **3.** Сероводородостойкое исполнение применение материалов стойких к сероводородному сульфидному растрескиванию, для эксплуатации клапанов в агрессивных средах с повышенным содержанием H2S и CO2.
- **4.** Обогреваемые клапаны применение рубашки обогрева в целях подачи теплоносителя (пара) по поверхности корпуса с целью повышения температуры вязких и кристаллизирующихся рабочих сред.
- **5. Криогенное исполнение** конструкция с использованием удлиненной крышки и применением материалов работающих при температуре от минус 196°C.

СЕДЕЛЬНЫЕ КЛАПАНЫ

Клапаны регулирующие, запорно-регулирующие, запорные, отсечные седельного типа применяются для регулирования и отсечки потоков на магистральных и технологических трубопроводах общепромышленного назначения, а также на трубопроводах опасных производственных объектов топливно-энергетического комплекса.

Они относятся к устройствам, в которых проход перекрывается поступательным перемещением запорного органа в направлении, перпендикулярном движению потока транспортируемой среды. Клапаны применяются для регулирования и отсечки потоков газообразных или жидких сред в трубопроводах различных давлений и номинальных (условных) проходов.

Малое гидравлическое сопротивление клапанов (коэффициент сопротивления не более 0,5) делает их особенно ценными при применении на трубопроводах, через которые постоянно движется среда с большой скоростью

ТЕХНИЧЕСКИЕ ХАРАКТЕРИСТИКИ

Рабочая среда	Неагрессивные, агрессивные и особоагрессивные жидкие и газообразные среды, продукты не нефтяной и газовой промышленности.
Стандарт	ТУ 3741-002-11912158-2015
Климатическое исполнение по ГОСТ 15150-69	T(-30°С+60°С) У(-45°С+60°С) УХЛ (-60°С+60°С)
Температура рабочей среды	от -60°C до +225°C
Класс герметичности затвора по ГОСТ Р 54808-2011	Для регулирующих - III, IV, V, VI Для запорно-регулирующих, запорных и отсечных - A, B.
Присоединение к трубопроводу	Фланцевое; под приварку
Показатели надежности	Срок службы до списания - не менее 40 лет Ресурс до списания - не менее 240 000 часов Вероятность безотказной работы - не менее 0,95 за назначен- ный ресурс
Назначенные показатели	Назначенный срок службы - 30 лет Назначенный ресурс - 3000 циклов*

НОМИНАЛЬНАЯ УСЛОВНАЯ ПРОПУСКНАЯ СПОСОБНОСТЬ КЛАПАНОВ

	DN, мм	15	20	25	32	40	50	65	80
Диаметр проходного отвер- стия седла		15	20	25	32	40	50	65	80
Kvy	Линейная характери- стика	4	6,9	11	17,6	27,5	44	69	110
	Равнопроцентная характеристика	3,5	6,3	10	16	25	40	63	100

	DN, мм	100	125	150	200	250	300	350	400
Диаметр проходного отвер- стия седла		100	125	150	200	250	300	350	400
V	Линейная характери- стика	176	275	440	630	1000	1600	2156	2816
Kvy	Равнопроцентная характеристика	160	250	400	590	900	1440	1960	25600

Значение условной пропускной способности клапана может отличаться от номинальной по требованию заказчика и в заивисмости от технических параметров потока рабочей среды.

СТРУКТУРА УСЛОВНОГО ОБОЗНАЧЕНИЯ:

1 2 3 4 5	6 DN PN 7 8						
1 - код арматуры	CV – для регулирующего клапана GCV – для запорно-регулирующего клапана GLV – для запорного клапана SV – для отсечного клапана						
2 - тип корпуса	5 - прямопроходной 6 - угловой						
3 - способ присоединения к арматуре	1- фланцевое 2- под приварку 3- муфтовое						
4 - способ управления	4- ручной привод (штурвал)5- электропривод6- пневмопривод7- электромагнитный привод8- ручной привод ручка9- гидравлический привод						
5 - материал корпуса	1 - углеродистая сталь 2 - нержавеющая сталь						
6 - Конструкция	G- седельный S - сегментный B- тип Батерфляй						
7- климатическое исполнение	T(-30°С+60°С) У(-45°С+60°С) УХЛ (-60°С+60°С)						
8 - материал корпуса	Наименование стали из которой изготовлен корпус клапана						

Пример условного обозначения:

... Клапан отсечной SV5161G DN25 PN16 ст20Л У1 по ТУ 3742-002-11912158-2015

Клапан отсечной прямопроходной седельный с фланцевым присоединением, с пневматическим приводом, материал корпуса углеродистая сталь 20Л, DN25 PN16, климатическое исполнение У1.

ОСНОВНЫЕ ДЕТАЛИ СЕДЕЛЬНОГО КЛАПАНА

1. Корпус; 2. Крышка; 3. Седло; 4. Плунжер; 5. Стакан; 6. Шток; 7. Перфорированный стакан; 8. Прокладка; 9. Уплотнение штока; 10. Гайка корпуса; 11. Шпилька корпуса; 12. Фланец сальника; 13. Гайка; 14. Шпилька.

МАТЕРИАЛЬНОЕ ИСПОЛНЕНИЕ СОСТАВНЫХ ЧАСТЕЙ

Nº		зание		Наиг	менование исполн	Эния	
п/п		Наименование	Углеродистое -45°С+225°С	Сероводородо- стойкое -45°С+225°С	Хладостойкое -60°С+225°С	Нержавеющее -60°С+225°С	Криогенное -196°С+425°С
1a, 1b	Корпус	Литой	20Л	A352 LCB	20ГЛ	12Х18Н9ТЛ	12Х18Н12М3ТЛ
ID	Xo	Кованый	20	A350 LF2	09Г2С	12X18H10T	12X18H12M2T
3	Седло 12X18H10T + стеллит			12X18H12M2T + стеллит	12X18H107	Г + стеллит	12X18H12M2T + стеллит
4	Плунжер 12X18H10T + стеллит		12X18H12M2T + стеллит	12X18H107	Г + стеллит	12X18H10T + стеллит	
5	Стакан 12Х18Н10Т		12X18H12M2T	12X18	ВН10Т	12X18H12M2T	
6		Шток	12X18H10T	12X18H12M2T	12X18	12X18H12M2T	
7	Пе ван	рфориро- ный стакан	12X18H10T	12X18H12M2T	12X18H12M2T		
8		оокладка корпуса			ТРГ, СНП		
9	Уп	лотнение штока			ТРГ		
10	Гай	ка корпуса	20, 25	30XMA	14X17H2	12X18H10T	12X18H12M2T
11	Шп	илька кор- пуса	35, 35X, 40X	30XMA	14X17H2	12X18H10T	12X18H12M2T
12	Фл	анец саль- ника	12X18H10T	12X18H12M2T	12X18	BH10T	12X18H12M2T
13		Гайка	20, 25	30XMA	14X17H2	12X18H10T	12X18H12M2T
14	L	Цпилька	35, 35X, 40X	30XMA	14X17H2	12X18H10T	12X18H12M2T

ГАБАРИТНЫЕ И ПРИСОЕДИНИТЕЛЬНЫЕ РАЗМЕРЫ КЛАПАНОВ

PN, кгс/см2	DN, мм	L, мм	d, мм	D, мм	D1, мм	Н, мм	m, кг	Усилие на штоке, Н
	15	130	14	95	19	158	5,5	2000
	20	150	19	105	26	192	7,3	2000
	25	160	25	115	33	252	8	2000
	32	180	32	135	39	252	12	2000
	40	200	32	145	46	289	16	3000
	50	230	51	160	58	330	19	3000
	65	290	64	180	77	346	22	5500
16	80	310	76	195	90	378	31	5500
	100	350	102	215	110	405	45	5500
	125	400	127	245	135	434	83	7000
	150	480	152	280	161	478	97	7000
	200	600	203	335	222	596	169	8000
	250	730	254	405	278	725	440	10000
	300	850	303	460	330	775	690	12000
	400	1100	398	580	432	963	840	26000

PN, кгс/см2	DN, мм	L, мм	d, мм	D, мм	D1, мм	Н, мм	т, кг	Усилие на штоке, Н
	15	130	14	95	19	158	5,5	2000
	20	150	19	105	26	192	7,3	2000
	25	160	25	115	33	252	8	2000
	32	180	32	135	39	252	12	2000
	40	200	32	145	46	289	16	3000
	50	230	51	160	58	330	20	3000
	65	290	64	180	77	346	24	5500
25	80	310	76	195	90	378	32	5500
	100	350	102	230	110	405	48	5500
	125	400	127	270	135	434	89	7000
	150	480	152	300	161	478	98	7000
	200	600	203	360	222	596	171	8000
	250	730	254	425	278	725	440	10000
	300	850	303	485	330	775	690	12000
	400	1150	398	610	432	963	840	26000

PN, кгс/см2	DN, мм	L, мм	d, мм	D, мм	D1, мм	Н, мм	m, кг	Усилие на штоке, Н
	15	130	14	95	19	158	5,5	2000
	20	150	19	105	26	192	7,5	2000
	25	160	25	115	33	252	8,3	2000
	32	180	32	135	39	252	13	2000
	40	200	32	145	46	289	17	3000
	50	230	51	160	58	330	24	3000
	65	290	64	180	77	346	33	5500
40	80	310	76	195	90	378	42	5500
	100	350	102	230	110	405	60	5500
	125	400	127	270	135	434	106	7000
	150	480	152	300	161	478	130	7000
	200	600	203	375	222	596	232	8000
	250	730	252	445	278	725	530	10000
	300	980	301	510	330	790	790	12000
	400	1210	398	655	432	963	890	26000

PN, кгс/см2	DN, мм	L, мм	d, мм	D, мм	D1, мм	Н, мм	т, кг	Усилие на штоке, Н
	15	170	12	105	19	158	5	3000
	20	190	18	125	26	192	6	3000
	25	210	25	135	33	252	8	3000
	32	230	31	150	39	252	11	3000
	40	260	37	165	46	289	14	4500
	50	300	47	175	58	330	18	4500
63	65	340	64	200	77	352	48	6500
63	80	380	77	210	90	385	56	6500
	100	430	94	250	110	414	75	6500
	125	500	118	295	135	732	149	9000
	150	550	142	340	135	646	157	9000
	200	650	198	405	161	813	288	10000
	250	780	246	470	222	730	590	13000
	300	1040	294	530	278	790	930	16000

PN, кгс/см2	DN, мм	L, мм	d, мм	D, мм	D1, мм	Н, мм	т, кг	Усилие на штоке, Н
	15	170	12	105	19	158	5,5	*
	20	190	18	125	26	192	6,6	*
	25	210	25	135	33	252	9,8	*
	32	230	31	150	39	252	10,5	*
	40	260	37	165	46	289	18,6	*
100	50	300	47	195	58	414	49	*
100	65	340	62	220	77	434	65	*
	80	380	75	230	90	547	95	*
	100	430	92	265	110	621	115	*
	125	500	112	310	135	732	149	*
	150	550	136	350	161	840	310	*
	200	650	190	430	222	925	590	*

PN, кгс/ см2	DN, мм	L, мм	d, мм	D, мм	D1, мм	Н, мм	т, кг	Усилие на штоке, Н
	15	170	12	105	19	192	6,2	*
	20	190	18	125	26	252	10,5	*
	25	210	25	135	33	252	14	*
	32	230	31	150	39	289	15	*
	40	260	37	165	46	330	18	*
1/0	50	300	45	195	58	262	52	*
160	65	340	62	220	77	303	69	*
	80	380	75	230	90	341	98	*
	100	430	92	265	110	485	119	*
	125	500	112	310	135	780	260	*
	150	550	136	350	161	1 041	410	*
	200	650	190	430	222	1 333	790	*

PN, кгс/см2	DN, мм	L, мм	d, мм	D, мм	D1, мм	Н, мм	т, кг	Усилие на штоке, Н
	15	216	12	120	19	310	7,4	*
	20	229	18	130	26	310	12,5	*
	25	254	25	150	33	310	16	*
	32	279	31	160	39	279	17	*
	40	305	37	170	46	305	23	*
250	50	368	45	216	58	430	60	*
250	65	419	62	244	77	461	65	*
	80	470	75	267	90	635	122	*
	100	546	92	311	110	736	172	*
	125	473	112	375	135	780	240	*
	150	705	136	398	161	1 092	510	*
	200	832	190	483	222	1 140	875	*

ОСОБЕННОСТИ КОНСТРУКЦИЙ СЕГМЕНТНЫХ КЛАПАНОВ

Сегментные клапаны нашли широкое применение в газо- и нефтепроводах, в системах тепло-водоснабжения, в химических промышленности, на трубопроводах ГЭС, АЭС, ТЭС и т.д. Конструкция клапана представляет собой четверть оборотный, поворотный клапан с шаровым сегментом. Являются прекрасной альтернативой седельным клапанам, которые не во всех случаях могут быть эффективно использованы.

ОСНОВНЫЕ ОСОБЕННОСТИ ДАННОЙ КОНСТРУКЦИИ ЭТО:

- максимально точная регулировка потока рабочей среды на всем диапазоне пропускной способности клапана;
- высокий уровень герметичности в затворе;
- работа в условиях высоких перепадов давлений и температур;
- работа в абразивных и в агрессивных средах, а так же в условиях кавитации;
- высокая герметичность при уплотнении в затворе «металл-металл»;
- возможность применения уплотнений в затворе из эластомерных материалов;
- широкий температурный диапазон от -196°C до +425°C
- малый вес и габаритные размеры

ОСОБЕННОСТИ КОНСТРУКЦИИ СЕДЛА:

Уплотнение металл-полимер

Уплотнение металл-полимер - обеспечивает высокий уровень герметичности. Данный вид уплотнений просто в эксплуатации, ремонте и техническом обслуживании. Применяется в основном для запорных клапанов.

1.	Тарелка клапана;	2.	Пружина;
3.	Уплотнение;	4.	Корпус;
5.	Седло;	6.	Уплотнение сдела;
7.	Сегмент.		

Уплотнение металл-металл

Уплотнение металл-металл - стандартное уплотнение. Имеет высокий срок службы и уровень износостойкости. В отличии от клапанов мягким уплотнением применяется на загрязненных средах с содержанием механических примесей.

1.	Тарелка клапана;	2.	Пружина;
3.	Уплотнение;	4.	Корпус;
5.	Седло;	6.	Сегмент.

Уплотнение для высоких температур

Уплотнение для высоких температур - уплотнение клапана металл по металлу применяемое в условиях высоких температур благодаря специальной системе уплотнений.

1.	Тарелка клапана;	2. Тарельчатая пружина;	
3.	Прижимное кольцо;	4. Уплотнение;	
5.	Седло;	6. Корпус;	
7.	Сегмент.		

ДОПОЛНИТЕЛЬНЫЕ УСТРОЙСТВА

Для выравнивания потока жидких или газообразных сред перед клапаном в трубопроводах с большим перепадом давления применяется устройство подготовки потока.

Представляет собой диск с отверстиями, расположенными по симметричной круговой схеме. Его применение оказывает обратное фильтрационное давление на регулирующий клапан, снижая тем самым, турбулентность и величину падения давления в клапане, которые являются основными причинами возникновения шумов и вибрации.

УСТРОЙСТВА ПОДГОТОВКИ ПОТОКА ПОДРАЗДЕЛЯЮТСЯ НА СЛЕДУЮЩИЕ ТИПЫ:

Тип «Zanker»

Тип «Shprenkle»

СЕГМЕНТНЫЕ КЛАПАНЫ

Клапаны регулирующие, запорно-регулирующие, запорные, отсечные сегментного типа применяются для регулирования и отсечки потоков на магистральных и технологических трубопроводах общепромышленного назначения, а также на трубопроводах опасных производственных объектов топливно-энергетического комплекса.

Они относятся к устройствам, в которых проход перекрывается вращательным движением запорного органа. Клапаны применяются для регулирования и отсечки потоков газообразных или жидких сред в трубопроводах различных давлений и номинальных (условных) проходов.

Почти полное отсутствие гидравлического сопротивления клапанов, позволяет сократить потери энергии, и получить увеличенный коэффициент пропускной способности по сравнению с седельными клапанами, и клапанами типа «Батерфляй».

ТЕХНИЧЕСКИЕ ХАРАКТЕРИСТИКИ

Рабочая среда	Неагрессивные, агрессивные и особоагрессивные жидкие и газообразные среды, продукты не нефтяной и газовой промышленности.
Стандарт	ТУ 3741-002-11912158-2015
Климатическое исполнение по ГОСТ 15150-69	T(-30°C+60°C) У(-45°C+60°C) УХЛ (-60°C+60°C)
Температура рабочей среды	от -60°C до +225°C
Класс герметичности затвора по ГОСТ Р 54808-2011	Для регулирующих - III, IV, V, VI Для запорно-регулирующих, запорных и отсечных - A, B.
Присоединение к трубопроводу	Фланцевое; под приварку
Показатели надежности	Срок службы до списания - не менее 40 лет Ресурс до списания - не менее 240 000 часов Вероятность безотказной работы - не менее 0,95 за назначен- ный ресурс
Назначенные показатели	Назначенный срок службы - 30 лет Назначенный ресурс - 3000 циклов*

НОМИНАЛЬНАЯ УСЛОВНАЯ ПРОПУСКНАЯ СПОСОБНОСТЬ КЛАПАНОВ

DN		Угол открытия сегмента										
DIN	10°	20°	30°	40°	50°	60°	70°	80°	90°			
25	0.01	0.5	1.6	3.4	5.8	9.1	13.3	18.83	27			
32	0.08	0.8	2.2	4.6	7.9	12.3	18.0	25.5	47			
40	0.1	1.0	3.3	6.9	11.8	18.3	26.9	38.0	70			
50	0.5	1.6	5.3	11.0	18.7	29.1	42.6	60.1	110			
65	1.2	2.7	8.8	10.2	31.0	40.2	70.7	99.7	170			
80	4.5	14.3	29.5	50.5	78.5	115.0	162.0	237.4	280			
100	6.5	20.7	43.0	73.3	113.5	166.5	235.0	343.7	410			
125	10.0	32.0	66.5	113.5	176.0	258.5	360.5	533.0	750			

DN				Угол о ⁻	ткрытия се	гмента			
DN	10°	20°	30°	40°	50°	60°	70°	80°	90°
150	16.5	52.5	109.0	186.5	289.5	424.5	598.0	574.5	980
200	21.5	69.0	143.0	244.0	378.5	555.5	783.0	1445.0	1720
250	39.5	124.5	258.5	441.5	685.0	1004.5	1416.0	2040.0	2900
300	55.5	176.5	366.0	624.0	968.5	1420.5	2001.5	2927.0	3800
350	75.0	237.0	492.0	839.0	1300.0	1910.0	2663.0	3937.0	7000
400	98.0	310.0	640.0	1097.0	1700.0	2497.0	3480.0	5145.0	9800
500	160.5	474.0	979.0	1679.0	2600.0	3822.0	5326.0	7875.0	15000
600	246.5	727.0	1502.0	2574.0	3990.0	5860.0	8167.0	14075.0	23000

Значение условной пропускной способности клапана может отличаться от номинальной по требованию заказчика и в заивисмости от технических параметров потока рабочей среды.

СТРУКТУРА УСЛОВНОГО ОБОЗНАЧЕНИЯ:

1 2 3 4 5	S DN PN 6 7
1 - код арматуры	CV - для регулирующего клапана GCV - для запорно-регулирующего клапана GLV - для запорного клапана SV - для отсечного клапана
2 - тип корпуса	5 - прямопроходной 6 - угловой
3 - способ присоединения к арматуре	1- фланцевое 2- под приварку 3- муфтовое
4 - способ управления	4- ручной привод (штурвал) 5- электропривод 6- пневмопривод 7- электромагнитный привод 8- ручной привод ручка 9- гидравлический привод
5 - материал корпуса	1 - углеродистая сталь 2 - нержавеющая сталь
6- климатическое исполнение	T(-30°С+60°С) У(-45°С+60°С) УХЛ (-60°С+60°С)
7 - материал корпуса	Наименование стали из которой изготовлен корпус клапана

Пример условного обозначения:

Клапан отсечной SV5161S DN25 PN16 ст20Л У1 по ТУ 3742-002-11912158-2015 Клапан отсечной сегментный с фланцевым присоединением, с пневматическим приводом, материал корпуса углеродистая сталь 20Л, DN25 PN16, климатическое исполнение У1.

ОСНОВНЫЕ ДЕТАЛИ СЕГМЕНТНЫХ КЛАПАНОВ

МАТЕРИАЛЬНОЕ ИСПОЛНЕНИЕ СОСТАВНЫХ ЧАСТЕЙ

Nº	вание		Наиг	менование исполн	ения	
п/п	Наименование	Углеродистое -45°С+225°С	Сероводородо- стойкое -45°С+225°С	Хладостойкое -60°С+225°С	Нержавеющее -60°С+225°С	Криогенное -196°С+425°С
1	Корпус	20Л	A352 LCB	20ГЛ	12Х18Н9ТЛ	12Х18Н12М3ТЛ
2	Седло	12X18H10T + стеллит	12X18H12M2T + стеллит	12X18H10T + стеллит	12X18H10T + стеллит	12X18H12M2T + стеллит
3, 3A	Пружина седла	12X18H10T	Inconel	12X18H10T	12X18H10T	12X18H12M2T
4, 4A, 4B	Уплотнитель- ное кольцо		HN	IBR		Графит
5	Сегмент	12Х18Н9ТЛ + покрытие ни- кель+хром	12X18H12M3TЛ + Стеллит	12Х18Н9ТЛ + покрытие ни- кель+хром	12Х18Н9ТЛ + покрытие ни- кель+хром	12X18H12M3TЛ + покрытие никель+хром
6, 7	Подшипник скольжения	ЛС59-1	Стеллит	ЛС59-1	ЛС59-1	ЛС59-1
8	Шток	20X13	12X18H10T	20X13	12X18H10T	12X18H12M2T
9	Нижняя ось	20X13	12X18H10T	20X13	12X18H10T	12X18H12M2T
10, 11	Штифт	40X	12X18H10T	20X13	12X18H10T	12X18H12M2T
12	Упорное кольцо			Фторопласт Ф-4		
13	Сальниковое уплотнение			ТРГ		
13A	Втулка	20X13	12X18H10T	20X13	12X18H10T	12X18H12M2T
14	Кольцо саль- ника		TI	РГ + Фторопласт Ф	-4	
15	Фланец саль- ника	20Л	A352 LCB	20ГЛ	12Х18Н9ТЛ	12Х18Н12М3ТЛ
16	Шпилька	35, 35X, 40X	30XMA	14X17H2	12X18H10T	12X18H12M2T
17	Шайба	20, 25	30XMA	14X17H2	12X18H10T	12X18H12M2T
18	Гайка	20, 25	30XMA	14X17H2	12X18H10T	12X18H12M2T
19	Прокладка			СНП		
20	Нижняя крыш- ка	20Л	A352 LCB	20ГЛ	12Х18Н9ТЛ	12Х18Н12М3ТЛ
21	Шпилька	35, 35X, 40X	30XMA	14X17H2	12X18H10T	12X18H12M2T
22	Шайба	20, 25	30XMA	14X17H2	12X18H10T	12X18H12M2T
23	Гайка	20, 25	30XMA	14X17H2	12X18H10T	12X18H12M2T
24	Фланец при- вода	20, 25	A350 LF2	09Г2С	12X18H10T	12X18H12M2T

ГАБАРИТНЫЕ И ПРИСОЕДИНИТЕЛЬНЫЕ РАЗМЕРЫ КЛАПАНОВ

PN, кгс/ см2	DN, мм	L, мм	d, мм	D, мм	Н, мм	Н1, мм	Ѕ, мм	Т, мм	Q	т, кг	Кр. м, Нм
	25	102	25	115	87	190	80	-	M10	4	18
	32	108	32	135	87	197	80	-	M10	5,5	20
	40	114	32	145	87	200	80	-	M10	6	20
	50	124	51	160	97	200	80	-	M10	7,5	25
	65	140	64	180	112	220	80	-	M10	9,5	50
	80	165	76	195	112	230	90	-	M12	14	65
16	100	194	102	215	122	252	90	-	M12	21,5	125
	125	254	127	245	142	262	100	-	M12	23	250
	150	229	152	280	165	307	110	40	M12	37	340
	200	243	203	335	95	330	110	40	M12	56	485
	250	250	254	405	237	380	110	45	M12	85	810
	300	338	303	460	281	432	130	45	M16	131	1310
	400	400	398	580	373	505	175	175	M20	345	2860

PN, кгс/ см2	DN, мм	L, мм	d, мм	D, мм	Н, мм	Н1, мм	Ѕ, мм	Т, мм	Q	т, кг	Кр. м, Нм
	25	102	25	115	87	190	80	-	M10	4	22
	32	108	32	135	87	197	80	-	M10	5,5	25
	40	114	32	145	87	200	80	-	M10	6	25
	50	124	51	160	97	200	80	-	M10	7,5	30
	65	140	64	180	112	220	80	-	M10	9,5	60
	80	165	76	195	112	230	90	-	M12	14	80
25	100	194	102	230	122	252	90	-	M12	23	140
	125	254	127	270	142	262	100	-	M12	25,5	300
	150	229	152	300	165	307	110	40	M12	39,5	400
	200	243	203	360	95	330	110	40	M12	60	680
	250	250	254	425	237	380	110	45	M12	89	1140
	300	338	303	485	281	432	130	45	M16	138	1870
	400	400	398	610	373	505	175	175	M20	363	4150

PN, кгс/ см2	DN, мм	L, мм	d, мм	D, мм	Н, мм	Н1, мм	Ѕ, мм	Т, мм	Q	т, кг	Кр. м, Нм
	25	102	25	115	87	190	80	-	M10	4	27
	32	108	32	135	87	197	80	-	M10	5,5	30
	40	114	32	145	87	200	80	-	M10	6	30
	50	124	51	160	97	200	80	-	M10	7,5	50
	65	140	64	180	112	220	80	-	M10	9,5	100
	80	165	76	195	112	230	90	-	M12	14	150
40	100	194	102	230	122	252	90	-	M12	23	250
	125	254	127	270	142	262	100	-	M12	25,5	450
	150	229	152	300	165	307	110	40	M12	39,5	585
	200	243	203	375	95	330	110	40	M12	62,5	996
	250	250	254	445	237	380	110	45	M12	93,5	1690
	300	338	303	510	281	432	130	45	M16	145	2800
	400	400	398	655	373	505	175	175	M20	390	6300

PN, кгс/ см2	DN, мм	L, мм	d, мм	D, мм	Н, мм	Н1, мм	Ѕ, мм	Т, мм	Q	m, кг	Кр. м, Нм
	25	102	25	135	87	190	80	-	M10	5	60
	32	108	32	150	87	197	80	-	M10	6	70
	40	114	32	165	87	200	80	-	M10	7	80
	50	124	51	175	97	200	80	-	M10	8,5	100
	65	140	64	200	112	220	80	-	M10	10,5	200
	80	165	76	210	112	230	90	-	M12	14	300
63	100	194	102	250	122	252	90	-	M12	25	400
	125	254	127	295	142	262	100	-	M12	28	650
	150	229	152	340	165	307	110	40	M12	45	890
	200	243	203	405	95	330	110	40	M12	67,5	1500
	250	250	254	470	237	380	110	45	M12	120	2560
	300	338	303	530	281	432	130	45	M16	150,5	4290
	400	400	398	670	373	505	175	175	M20	399	9750

ОСОБЕННОСТИ КОНСТРУКЦИЙ КЛАПАНОВ «БАТТЕРФЛЯЙ»

Клапаны «баттерфляй» представляют собой надежный и экономичный тип запорно-регулирующей арматуры. Конструкция представляет собой четверть оборотный, поворотный клапан с дисковым затвором. Данная конструкция применима для различных условий, она превосходит традиционные решения запорно-регулирующей арматуры в плане надежности и экономичности во всех областях применения: на энергетических станциях, в бумажной и химической промышленности, нефтехимической и газовой индустрии, в системах водоснабжения и сточных вод, а системах масла и на нефтезаводах, на системах центрального отопления и т.д. Сравнение эксплуатационных характеристик различных конструкций доказало превосходство затвора с тройным эксцентриком во всех областях применения с экстремальными условиями эксплуатации, при которых требуется высокая надежность и полная герметичность.

ОСНОВНЫЕ ОСОБЕННОСТИ ДАННОЙ КОНСТРУКЦИИ ЭТО:

- высокое значение пропускной способности;
- самоцентрирующий трехэсцентриковый затвор;
- конструкция, не требующая техобслуживания;
- отсутствие трения в присоединительных поверхностях запорных органов, а значит высокая износостойкость;
- низкие крутящие моменты;
- высокий диапазон температур от -196°C до +850°C

ОСОБЕННОСТИ ТРЕХЭКСЦЕНТРИКОВОЙ КОНСТРУКЦИИ:

- Центральная ось смещена от центральной оси затвора и трубы;
- Шток смещается за торец диска;
- Смещение на поверхности уплотнения. Уплотнительная поверхность на диске представляет собой конусообразный срез. Эта конусообразная форма смещается от центральной оси трубопровода. Такая конструкция снижает трение и крутящий момент, а так же достижениию равномерного уплотнения по всей поверхности седла.

ТИПЫ УПЛОТНЕНИЙ В ЗАТВОРЕ

Метало-графитовое уплотнение

Преимущества:

- Низкий крутящий момент, простота в эксплуатации и техобслуживании;
- Герметичное закрытие;
- Надежное уплотнение даже при низком перепаде давления;
- Высокая коррозионная и абразивная стойкость;
- Длительный срок службы.

Уплотнение метал по металлу

Преимущества:

- Низкий крутящий момент;
- Металлическое седло с твердосплавным покрытием, обеспечивающее очень высокую износостойкость:
- Высокая коррозионная и абразивная стойкость, возможность применения в средах с высоким кол-вом абразивных частиц;
- Длительный срок службы.

Мягкое уплотнение

Преимущества:

- Высокая герметичность;
- Низкий крутящий момент, простота в эксплуатации и техобслуживании;

КЛАПАНЫ «БАТТЕРФЛЯЙ»

Клапаны регулирующие, запорно-регулирующие, запорные, отсечные сегментного типа «Баттерфляй» применяются для регулирования и отсечки потоков на магистральных и технологических трубопроводах общепромышленного назначения, а также на трубопроводах опасных производственных объектов топливно-энергетического комплекса.

Они относятся к устройствам, в которых проход перекрывается вращательным движением запорного органа. Клапаны применяются для регулирования и отсечки потоков газообразных или жидких сред в трубопроводах различных давлений и номинальных (условных) проходов.

Небольшое гидравлического сопротивления клапанов, позволяет сократить потери энергии, и получить увеличенный коэффициент пропускной способности по сравнению с седельными клапанами. Этот тип клапанов демонстрирует высочайшую работоспособность и низкую стоимость по сравнению с другими видами клапанов.

ТЕХНИЧЕСКИЕ ХАРАКТЕРИСТИКИ

Рабочая среда	Неагрессивные, агрессивные и особоагрессивные жидкие и газообразные среды, продукты не нефтяной и газовой промышленности.
Стандарт	ТУ 3741-002-11912158-2015
Климатическое исполнение по ГОСТ 15150-69	T(-30°С+60°С) У(-45°С+60°С) УХЛ (-60°С+60°С)
Температура рабочей среды	от -60°C до +225°C
Класс герметичности затвора по ГОСТ Р 54808-2011	Для регулирующих - III, IV, V, VI Для запорно-регулирующих, запорных и отсечных - A, B.
Присоединение к трубопроводу	Фланцевое; под приварку
Показатели надежности	Срок службы до списания - не менее 40 лет Ресурс до списания - не менее 240 000 часов Вероятность безотказной работы - не менее 0,95 за назначен- ный ресурс
Назначенные показатели	Назначенный срок службы - 30 лет Назначенный ресурс - 3000 циклов*

НОМИНАЛЬНАЯ УСЛОВНАЯ ПРОПУСКНАЯ СПОСОБНОСТЬ КЛАПАНОВ «БАТЕРФЛЯЙ»

DN				Угол пово	орота затво	рра, град.			
DN	10	20	30	40	50	60	70	80	90
40	0,87	3,42	7,71	13,7	22, 3	35,1	56,6	76,3	105
50	1,71	4,28	11,1	22,3	42,1	60,8	98,5	141	195
65	3,42	6,85	18,9	31,7	56,6	92,5	165	226	312
80	4,28	11,1	25,7	49,7	92,5	139	234	315	435
100	7,71	18,1	44, 6	79,1	139	240	396	547	754
125	12,9	24,9	69,4	133	234	407	666	917	1260
150	18,9	40,3	98,1	196	345	601	1060	1350	1870
200	30,9	77,1	171	347	577	1010	1580	2270	3130
250	48,8	110	316	503	904	1580	2320	3420	4890
300	70,3	171	342	698	1250	2230	3260	4920	7030
350	90,1	214	437	846	1600	2610	4090	6300	9000
400	116	280	564	1180	1980	3320	5260	8100	11600
500	184	462	898	1880	3030	5310	8350	13000	18400

СТРУКТУРА УСЛОВНОГО ОБОЗНАЧЕНИЯ:

1 2 3 4	5	В	DN	PN	6	7				
1 - код арматуры		CV - для регулирующего клапана GCV - для запорно-регулирующего клапана GLV - для запорного клапана SV - для отсечного клапана								
2 - тип корпуса		5 - прямопро 6 - угловой	ходной							
3 - способ присоединения к арматуре		1- фланцевое 2- под прива 3- муфтовое								
4 - способ управления		4- ручной привод (штурвал) 5- электропривод 6- пневмопривод 7- электромагнитный привод 8- ручной привод ручка 9- гидравлический привод								
5 - материал корпуса		1 - углеродистая сталь 2 - нержавеющая сталь								
6- климатическое исполнение		T(-30°C+60°C) У(-45°C+60°C) УХЛ (-60°C+60°C)								
7 - материал корпуса		Наименовани клапана	1е стали из	которой и	зготовлен	корпус				

Пример условного обозначения:

Клапан отсечной CV5271B DN100 PN16 ст20Л У1 по ТУ 3742-002-11912158-2015

Клапан регулирующий «баттерфляй» с присоединением под приварку, с электрическим приводом, материал корпуса углеродистая сталь 20Л, DN100 PN16, климатическое исполнение У1.

ОСНОВНЫЕ ДЕТАЛИ КЛАПАНА «БАТТЕРФЛЯЙ»

1 - корпус; 2 - диск; 3 - шток; 4 - Седло, 5 - стопорное кольцо корпуса; 6 - стопорное кольцо диска; 7 - прокладка; 8 - уплотнение седла; 9 - прокладка корпуса; 10- фланец сальника; 11 - подшипник; 12 - втулка; 13 - уплотнение; 14 - подшипник скольжения; 15 - упорная шайба; 16 - уплотнение сальника; 17 - нижняя крышка; 18 - прокладка; 19 - штифт; 20 - шпонка; 21 - кольцо; 22 - фланец привода; 23 - болт; 24 - гайка; 25 - винт корпуса; 26 - винт крепления уплотнения; 27 - болт; 28 - болт

МАТЕРИАЛЬНОЕ ИСПОЛНЕНИЕ СОСТАВНЫХ ЧАСТЕЙ

Nº		зание		Наименование исполнения									
n/n	Таименование		Углеродистое -45°С+225°С	Сероводородо- стойкое -45°С+225°С	Хладостойкое -60°С+225°С	Нержавеющее -60°С+225°С	Криогенное -196°С+425°С						
1	Корпус	Литой	20Л	A352 LCB	20ГЛ	12Х18Н9ТЛ	12Х18Н12М3ТЛ						
	У Ков	Кованый	20	A350 LF2	09Г2С	12X18H10T	12X18H12M2T						
2	Диск	Литой	20Л	A352 LCB	20ГЛ	12Х18Н9ТЛ	12Х18Н12М3ТЛ						
		Кованый	20	A350 LF2	09Г2С	12X18H10T	12X18H12M2T						
3		Шток	20X13	12X18H10T	20X13	12X18H10T	12X18H12M2T						
4		Седло	12Х18Н9ТЛ + покрытие ни- кель+хром	12X18H12M3TЛ + Стеллит	12Х18Н9ТЛ + покрытие ни- кель+хром	12Х18Н9ТЛ + покрытие ни- кель+хром	12X18H12M3TЛ + покрытие никель+хром						

Nº	зание		Наи	менование исполн	ения	
п/п	Наименование	Углеродистое -45°С+225°С	Сероводородо- стойкое -45°С+225°С	Хладостойкое -60°С+225°С	Нержавеющее -60°С+225°С	Криогенное -196°С+425°С
5	Стопорное кольцо кор- пуса	20X13	12X18H10T	20X13	12X18H10T	12X18H12M2T
6	Стопорное кольцо диска	20X13	12X18H10T	20X13	12X18H10T	12X18H12M2T
7	Прокладка			СНП		
8	Уплотнение седла	12X18H10T + Граффит	12X18H10T + Граффит	12X18H10T + Граффит	12X18H10T + Граффит	12X18H12M2T + Граффит
9	Прокладка корпуса			ТРГ		
10	Фланец саль- ника	20	A350 LF2	09Г2С	12X18H10T	12X18H12M2T
11	Подшипник	ЛС59-1	Стеллит	ЛС59-1	ЛС59-1	ЛС59-1
12	Втулка	20X13	12X18H10T	20X13	12X18H10T	12X18H12M2T
13	Уплотнение	HNBR	Графит	HNBR	Графит	Графит
14	Подшипник скольжения	ЛС59-1	Стеллит	ЛС59-1	ЛС59-1	ЛС59-1
15	Упорная шайба	35, 35X, 40X	30XMA	14X17H2	12X18H10T	12X18H12M2T
16	Уплотнение сальника		TI	РГ + Фторопласт Ф	-4	
17	Нижняя крыш- ка	20	A350 LF2	09Г2С	12X18H10T	12X18H12M2T
18	Прокладка			СНП		
19	Штифт	40X	12X18H10T	20X13	12X18H10T	12X18H12M2T
20	Шпонка	40X	12X18H10T	20X13	12X18H10T	12X18H12M2T
21	Кольцо	20X13	12X18H10T	20X13	12X18H10T	12X18H12M2T
22	Фланец при- вода	20, 25	A350 LF2	09Г2С	12X18H10T	12X18H12M2T
23	Болт	35, 35X, 40X	30XMA	14X17H2	12X18H10T	12X18H12M2T
24	Гайка	20, 25	30XMA	14X17H2	12X18H10T	12X18H12M2T
25	Винт корпуса	35, 35X, 40X	30XMA	14X17H2	12X18H10T	12X18H12M2T
26	Винт крепле- ния уплотне- ния	20X13	12X18H10T	20X13	12X18H10T	12X18H12M2T
27	Болт	35, 35X, 40X	30XMA	14X17H2	12X18H10T	12X18H12M2T
28	Болт	35, 35X, 40X	30XMA	14X17H2	12X18H10T	12X18H12M2T

ГАБАРИТНЫЕ И ПРИСОЕДИНИТЕЛЬНЫЕ РАЗМЕРЫ КЛАПАНОВ

PN, кгс/ см2	DN, мм	L, мм	L1, мм	d, мм	D, мм	Н, мм	Н1, мм	т, кг	Крутящий момент на штоке, Нм	ISO 5211
	50	108	47	51	160	330	215	19	37	F07
	65	112	50	64	180	350	230	22	57	F07
	80	114	50	76	195	345	235	32	86	F10
	100	127	56	102	215	390	250	36	130	F10
	125	140	60	127	245	435	275	39	246	F10
16	150	140	60	152	280	465	290	43	362	F10
	200	152	64	203	335	530	320	57	650	F10
	250	165	72	254	405	615	365	88	1040	F14
	300	178	82	303	460	740	450	109	1535	F16
	400	216	90	398	580	875	525	200	2833	F16
	500	229	135	487	710	985	575	326	5160	F16

PN, кгс/ см2	DN, мм	L, мм	L1, мм	d, мм	D, мм	Н, мм	Н1, мм	т, кг	Крутящий момент на штоке, Нм	ISO 5211
	50	108	47	51	160	330	215	19	43	F07
	65	112	50	64	180	350	230	22	72	F07
	80	114	50	76	195	360	235	32	108	F10
	100	127	56	102	230	405	255	36	200	F10
	125	140	60	127	270	440	275	39	311	F10
25	150	140	60	152	300	475	290	42	455	F10
	200	152	64	203	360	550	330	67	827	F10
	250	165	72	254	425	630	365	98	1626	F14
	300	178	82	303	485	755	455	116	1970	F16
	400	216	90	398	610	915	535	228	2833	F16
	500	229	135	487	730	1035	595	354	6825	F16

PN, кгс/ см2	DN, мм	L, мм	L1, мм	d, мм	D, мм	Н, мм	Н1, мм	m, кг	Крутящий момент на штоке, Нм	ISO 5211
	50	150	-	51	160	330	215	23	62	F07
	65	170	-	64	180	350	230	26	100	F07
	80	180	-	76	195	365	235	29	150	F10
	100	190	-	102	230	405	255	39	266	F10
	125	200	-	127	270	460	285	46	432	F10
40	150	210	-	152	300	490	300	54	629	F10
	200	230	-	203	375	590	350	84	1156	F14
	250	250	-	252	445	670	400	109	2878	F16
	300	270	-	301	510	785	465	157	3136	F16
	400	310	-	398	655	950	555	276	5987	F25
	500	350	-	487	755	1100	635	511	9862	F30

PN, кгс/ см2	DN, мм	L, мм	L1, мм	d, мм	D, мм	Н, мм	Н1, мм	т, кг	Крутящий момент на штоке, Нм	ISO 5211
	50	150	-	47	175	330	215	23	103	F10
	65	170	-	64	200	350	230	26	150	F10
	80	180	-	77	210	370	235	29	221	F10
	100	190	-	94	250	410	255	39	402	F14
	125	200	-	118	295	475	290	46	637	F16
63	150	210	-	142	340	520	315	54	938	F16
	200	230	-	198	405	675	405	84	1760	F16
	250	250	-	246	470	695	420	109	2878	F25
	300	270	-	294	530	810	475	157	4346	F30
	400	310	-	385	670	995	575	276	8340	F30
	500	350	-	387	800	1150	675	460	16338	F40

PN, кгс/ см2	DN, мм	L, мм	L1, мм	d, мм	D, мм	Н, мм	Н1, мм	т, кг	Крутящий момент на штоке, Нм	ISO 5211
	80	180	-	75	230	425	275	32	358	F10
	100	190	-	92	265	478	300	43	630	F14
	125	200	-	112	310	545	335	51	1003	F16
	150	210	-	136	350	580	355	59	1488	F16
100	200	230	-	190	430	695	410	82	2755	F16
	250	250	-	252	500	790	470	120	4969	F25
	300	270	-	303	585	925	550	172	7434	F30
	400	310	-	285	715	1121	655	302	14646	F30
	500	330	-	589	815	1230	750	506	24860	F40

ИНФОРМАЦИЯ ПО КОРРОЗИИ МАТЕРИАЛОВ

Коррозионная среда	Углеродистая сталь	Нержавеющая сталь	Пружинная сталь	Коррозионная среда	Углеродистая сталь	Нержавеющая сталь	Пружинная сталь
Ацетатные растворители	D	А	А	Сернистый углерод	В	А	А
Уксусная кислота	С	Α	Α	Хлорированная вода	D	С	С
Ацетон	В	А	А	Лимонная кислота	С	А	А
Спирты	В	Α	Α	Этиленгликоль	Α	Α	Α
Амины	В	Α	А	Азотная кислота	С	В	В
Безводный аммиак	В	Α	Α	Нитробензол	D	А	В
Трихлорид сурьмы	D	С	В	Нефтепродукты	В	А	В
Битум	В	Α	Α	Щавелевая кислота	С	В	В
Хлорид бария	С	А	А	Кислород	А	А	А
Гидроксид бария	С	Α	А	Цианид калия	В	В	В
Бензол	В	А	А	Пропан	В	А	А
Бром, сухой газ	D	С	С	Смола	D	А	А
Пахта	С	А	А	Нитрат серебра	D	А	В
Гидроокись кальция	С	А	А	Гидросульфат натрия	С	В	В
Карболовая кислота	В	А	А	Гидроксид магния	В	А	А
Двуокись углерода	В	А	А	Ртуть	В	Α	Α
Фтор, газ	С	С	В	Цианистая ртуть	D	В	В
Фреон, сырой	С	В	В	Хлорид никеля	D	В	В
Нефть	А	А	А	Пероксид натрия	С	А	А
Фурфурол	В	В	В	Пар, 400 оС	Α	Α	А
Очищенный газолин	А	А	В	Хлорид серы	С	С	В
Глюкоза	В	Α	Α	Диоксид серы	D	В	С
Глицерин	В	А	А	Сернистая кислота	D	В	С
Хлорид водорода	С	С	В	Толуол	Α	Α	Α
Сероводород, сухой	В	А	А	Скипидар	В	А	А
Сероводород, сырой	В	А	А	Гидроокись натрия	В	А	А
Йод	D	В	А	Нитрат натрия	В	А	А
Керосин	А	А	А	Диметилбензол	С	А	А
Оксипропионовая кислота	D	В	А	Хлорид цинка	D	В	В

А - Хорошая устойчивость - Наилучший материал для использования

В - Средняя устойчивость - Подходит для использования в большинстве случаев

С - Сомнительная устойчивость - Использовать осторожно

D - Недостаточная устойчивость.

^{*}Данные получены теоретическим путем. Наилучшие варианты использования выбирает конечный пользователь.

Коррозионная среда	A352 LCB (20ГМЛ)	A182 F304 (08X18H10T)	A182 F316 (08X17H- 13M2T)	4130 (30XMA)	Коррозионная среда	A352 LCB (20ГМЛ)	A182 F304 (08X18H10T)	A182 F316 (08X17H- 13M2T)	4130 (30XMA)
Ацетатные растворители	С	А	А	С	Сернистый углерод	С	А	А	В
Уксусная кислота	С	В	А	С	Хлорированная вода	D	D	С	D
Ацетон	В	Α	А	В	Лимонная кислота	С	В	В	В
Спирты	С	Α	А	Α	Этиленгликоль	В	Α	Α	Α
Амины	В	Α	А	В	Азотная кислота	D	С	В	С
Безводный аммиак	В	Α	А	В	Нитробензол	D	В	А	С
Трихлорид сурьмы	D	D	С	D	Нефтепродукты	В	Α	А	В
Битум	С	Α	А	В	Щавелевая кислота	В	В	А	В
Хлорид бария	С	Α	А	В	Кислород	Α	Α	А	Α
Гидроксид бария	С	Α	А	В	Цианид калия	С	В	В	В
Бензол	В	Α	А	Α	Пропан	В	Α	А	В
Бром, сухой газ	D	С	С	D	Смола	С	Α	А	С
Пахта	С	Α	А	В	Нитрат серебра	D	Α	А	С
Гидроокись кальция	С	Α	А	В	Гидросульфат натрия	С	В	В	С
Карболовая кислота	В	Α	А	Α	Гидроксид магния	В	Α	А	В
Двуокись углерода	В	В	А	В	Ртуть	С	Α	А	В
Фтор, газ	С	С	В	С	Цианистая ртуть	D	В	В	С
Фреон, сырой	С	С	В	С	Хлорид никеля	D	С	В	С
Нефть	Α	Α	А	Α	Пероксид натрия	С	Α	А	С
Фурфурол	В	В	В	В	Пар, 400 С	Α	Α	Α	Α
Очищенный газолин	Α	Α	А	Α	Хлорид серы	D	С	С	С
Глюкоза	В	Α	А	В	Диоксид серы	D	В	А	D
Глицерин	В	Α	А	В	Сернистая кислота	D	В	В	С
Хлорид водорода	С	D	С	С	Толуол	В	Α	А	Α
Сероводород, сухой	В	А	А	В	Скипидар	Α	Α	А	В
Сероводород, сырой	В	В	А	В	Гидроокись натрия	В	А	А	В
Йод	D	С	В	С	Нитрат натрия	В	В	А	В
Керосин	Α	Α	А	Α	Диметилбензол	С	Α	А	С
Оксипропионовая кислота	D	В	А	С	Хлорид цинка	D	С	В	С

- А Хорошая устойчивость Наилучший материал для использования
- В Средняя устойчивость Подходит для использования в большинстве случаев
- С Сомнительная устойчивость Использовать осторожно
- D Недостаточная устойчивость.

^{*}Данные получены теоретическим путем. Наилучшие варианты использования выбирает конечный пользователь.

СЕРТИФИКАТЫ СООТВЕТСТВИЯ

ОПРОСНЫЙ ЛИСТ НА КЛАПАНА

Орга	низация:								
Адре	c:								
ФИО	Контактного лиц	ıa:							
Долж	ность:								
Телес	фон/факс/ e-mail:								
	кт реконструкци								
	уемое количеств								
	зное обозначени								
70101	эное ооозначени	<u> </u>			4ŭ = 22E0DU	0 000/0/0			
1	Power pagarter	THE EDOVOES		⊔ регулирующи		о-регулир сечной	ующий □ запорный		
'	1 Режим работы и тип прохода			прамопрохо		Сечной	□ угловой		
2	Тип конструкции			□ седельный					
		новленной арматурь	si.	В содольный		***************************************	Вигорфии		
3	(замена)								
4	Условный диамет	р DN, мм		Условное давление	РΝ, ΜПа				
5		Рабочая среда		Жидкость		Газ	п Пар		
6		Название рабочей	среды /		•				
0		состав							
7		Наличие в среде Н		□ Нет		⊐ Да	до%		
8		Максимальное раб	бочее						
		давление, МПа							
9		Температура		max			min		
		рабочей среды, °С							
10 11		Расход м³/час		макс.	НО	рм.	мин.		
- 11	Pa6	Входное давление	D1		_				
12	Рабочая среда	кгс/см2	, P I						
		Выходное давлени	D P2						
13		кгс/см2	IC, I Z						
14		Температура на вх	оде. Т1						
15		Плотность на входе							
16		Кинематическая вя		сСт					
17		Динамическая вязі		сПз					
4.0		Давление насыщен							
18		паров, Ру							
19		Критическое давле	ение, МПа						
20		Условная пропуски	ная						
20		способность Куу, м	³ /ч						
21	Расчёты	Пропускная		🗆 линейная		праві	нопроцентная		
		характеристика					родоннал		
22		Уровень звукового	•						
		давления							
23		Сейсмостойкое исполнение		До	баллов по	шкале М	SK-64		
		исполнение		углеродистая стал	16	_ Δ350 II	F2 (кованый корпус)		
				В углеродистая стал			СВ (литой корпус)		
							304 (кованый корпус)		
24		Материал корпуса					316 (кованый корпус)		
				🗆 нержавеющая стал	ль	□ A351 C	F8 (литой корпус)		
						□ A351 C	F8M (литой корпус)		
25				🛘 по выбору произв	одителя	□ другой			
						Наплавка	<u>a:</u>		
2,		Материал запорно	го	🛮 🗆 углеродистая стал	IЬ	□ 13Cr			
26		органа		🗆 нержавеющая ста.		□ ENP □ Stellite			
	T			,			ору производителя		
27	Технические	Класс герметичнос	ти		CoboEo		по ГОСТ Р 54808-2011		
	параметры	Особые требовани			OCT P 53678		ĮКБА 052		
28		материалам		□ KCU ≥	□ Класс про		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		
20		•		Металл по	Мета				
29		Уплотнение в затво	phe	□ металлу	Поли	мер	🗆 Другое		
				Фланце			Приварное		
30		Присоединение к		□ ΓOCT □ ASME			· · · · .		
		трубопроводу		□ DIN □ ISO 70	005-1		ΓOCT □ ASME B16.25		
				🗆 Другое					
31		Рубашка обогрева		□ да		□ нет			
32		Цвет корпуса		Цвет		Код RA			
33		Строительная длин		По ГОСТ		Другое			
34 35		Направление подач	чи среды	□ односторонн	нее	- B con	любое		
აა		Кол-во пусков		□ В сутки		□В год_			

36		Ручной	🗆 ручка / шт	урвал		редуктор	
37		Электрический		eatork 🗆 Rotork	□ Berr	nard □Друго	й
38		Напряжение питания (переменный ток)	□ ~380 B	□ ~220 E		□ = 2	4 B
39		Управление приводом	Дискретный сигн 24V DC/DA 110V DC/DA 220V DC/DA Другой	С сигнал □ 420мл □ HART	4	Интерфейс по шины Modbus Fieldbus Profibus Другой	левой
40	Тип и параметры привода	Обратная связь (датчик положения)	Дискретный сигн 24V DC/ AC 110V DC/ AC 220V DC/ AC Другой	С сигнал С □ 420мл □ HART □Другой_	A	Интерфейс по шины	
41		Пневматический	□ односторо		□ Cam	2-х сторонниі	
42	1	Давление воздуха, МПа	2 0 0 0 10 27 11 10	rique Eripinaton		.о другог	
43		При отсутствии давления	п открыт	п закрыт		текущее пол	ожение
44		воздуха Степень взрывозащиты оборудования	□ Exi	□ Exd		□ нет	
45		Степень пылевлагозащиты оборудования IP	□ IP 65	□ IP 67		□ IP 68	
46		Время открытия/закрытия	🛮 По выбору пост	авщика 🗆	Не боле	e c	
47		Ручной дублер	□ Да Диаме				□ Нет
48		Механический указатель положения	□ Да		,		п Нет
49		Электромагнитный клапан для пневмопривода	□ Да □ НПП Авто □ По выбору пота			MC □ ASCO	п Нет
50		Позиционер (для	□ Да □ Siemens	□ Samson □ SM	С□НПП	Автоматика	□ Нет
51		пневмопривода) Фильтр-регулятор (для пневмопривода)	□ По выбору пота □ Да □ Сатоzzi □ По выбору пота	□ Samson □ SM	С 🗆 НПІ	П Автоматика	п Нет
52		Ресивер (для	□ Да		другой_		□ Нет
53		пневмопривода) Концевые выключатели	□Да □ Honeywe	II □ Samson	□ НПП А	втоматика	□ Нет
54	Принадлежност и	Кабельные вводы	□ По выбору потавщика □ Другой □ Да □ Невзрывозащищенный □ Взрывозащищенный. Взрывозащита □ Под бронированный кабель □ Под небронированный кабель				□ Нет
55		Ответные фланцы				□ Ст. 13ХФА	
56		Переходы	□ нет	□ да	□ 09Г2С	□ Ст. 13ХФА	
57		Обтюратор (заглушка)	□ нет	□ да		□ Ст. 13ХФА	
58		Аттенюатор (устройство подготовки потока)	□ нет	□ да	□ 09Г2C	□ Ст. 13ХФА	
59		Материал крепёжных деталей	□30ХМА	□ 14X17H2		угой	
60		Особые требования к материалам	 □ NACE MR □ KCU ≥ □ Класс прочност 	□ ГОСТ Р 53678 - и	□ Ст L	ЦКБА 052	
61		Место установки	п Помещени	ие 🗆 Откр. і	тлощ.	🗆 Подзем	іная
62	Установка	Длина штока для подземной установки, мм					
63		Трубопровод	материал		разме	ep	
64		Температура окружающей среды	min	·	max		
65	Дополнительная в	информация:					
65	10.00						
Подп лист ₋	ись лица, заполниві	шего опросный ()			
Подп	ись ответственного	лица	()	
	Дата заполнения	"" 201г.					

ДЛЯ ЗАМЕТОК

ДЛЯ ЗАМЕТОК

_
_
 _
_
_
_
_
_
—
_
_
—
_
_
_
_
_
_
_
_
_
_
—

НАШИ ПАРТНЕРЫ

ИНЖЕНЕРНЫЕ ТЕХНОЛОГИИ

460034, РОССИЯ, Г. ОРЕНБУРГ УЛ. ИЛЕКСКАЯ, Д. 1

+7(3532)666-777 +7(3532)661-990

WWW.E-T-A.ORG INFO@E-T-A.ORG

