

Advances in Data Science and Architecture

Machine learning with Energy systems

By Divya Priya Emmanuel

Gaurang Davda

Niranjhani Vasudevan

TABLE OF CONTENTS	PAGE NO.
Abstract	3
Introduction	3
Exploratory Data Analysis	3
Feature Engineering	13
Prediction Algorithms	17
Feature Selection	24
Model Validation and Selection	28
Final pipeline	36
Conclusion	39

Abstract

AdaptiveAlgo Systems Inc. works on solutions to build algorithms and platforms to address energy modeling challenges. And require a solution for energy modelling and is interested in understanding consumer energy usage. As data scientist we build various machine learning models that could contribute to understanding energy usage by appliances and the attributes that contribute to aggregate energy usage.

Introduction

Building energy use prediction plays an important role in building energy management and conservation as it can help us to evaluate building energy efficiency, conduct building commissioning, and detect and diagnose building system faults. In this context, a proper prediction of energy demand in housing sector is very important. We are building a model by analysing different prediction models, feature engineering, and model selection processes. This would in turn aid AdaptiveAlgo Systems Inc. to build algorithms and systems to understand consumer behavior to help them make better decisions. The case study will be conduct an indepth analysis to provide insights on feature engineering and machine learning with provided dataset.

Exploratory Data Analysis

The Dataset consists of 137 days of energy load on a single house from various source's such as house appliances, temperature and humidity values in different rooms and weather data from nearest airport weather station for every 10 min to capture quick change in the energy usage. On exploring the given dataset, lot of information was analyzed regarding the dependent and independent variables. The target variable in the dataset is 'Appliances'. Apart from target variable, the dataset contains 27 other variables which are considered as predictors before going further with any of the feature selection process. The index of the dataset is DateTime value data type. To understand the data pattern, three additional variables which are extracted from existing ones are added to the dataset. Those are 'Num sec midnight' that indicates number

of seconds from midnight which indirectly gives you time of each observation, 'Day_status' gives the day of each observation and 'week_status' states whether a observation is week end or week day.

Table illustrating Data variables in the given Dataset:

Data variables	Units	Number of features
Appliances energy consumption	Wh	1
Light energy consumption	Wh	2
T1, Temperature in kitchen area	°C	3
RH1, Humidity in kitchen area	%	4
T2, Temperature in living room area	°C	5
RH2, Humidity in living room area	%	6
T3, Temperature in laundry room area	°C	7
RH3, Humidity in laundry room area	%	8
T4, Temperature in office room	°C	9
RH4, Humidity in office room	%	10
T5, Temperature in bathroom	°C	11
RH5, Humidity in bathroom	%	12
T6, Temperature outside the building (north side)	°C	13
RH6, Humidity outside the building (north side)	%	14
T7, Temperature in ironing room	°C	15
RH7, Humidity in ironing room	%	16
T8, Temperature in teenager room 2	°C	17
RH8, Humidity in teenager room 2	%	18
T9, Temperature in parents room	°C	19
RH9, Humidity in parents room	%	20
To, Temperature outside (from Chièvres weather station)	°C	21
Pressure (from Chièvres weather station)	mm Hg	22
RHo, Humidity outside (from Chièvres weather station)	%	23
Windspeed (from Chièvres weather station)	m/s	24
Visibility (from Chièvres weather station)	km	25
Tdewpoint (from Chièvres weather station)	"C	26
Random Variable 1 (RV_1)	Non dimensional	27
Random Variable 2 (RV_2)	Non dimensional	28

Note: Random Variable 1 & Random Variable 2 are randomly added by default to test Boruta feature selection

The below plot describes the 'Appliances' variable for 137 days with mean values sampled monthly. The highest energy usage was on February – 2016 compared to other months. Further study is required to get more details.

Plot 1

Date	Mean values
2016-01-31	97.026010
2016-02-29	100.945881
2016-03-31	96.953405
2016-04-30	98.888889

Plot 3 sums up appliances value by weekly for all 5 months and from which we can infer that more of energy was consumed on Tuesday

Below *Plot 4* gives the energy usage for the 20 weeks on the given data by its mean value.

Plot 5 illustrates the data distribution in the target variable. Most of the energy values are between 10 to 180 watts. There are some extreme values in the plot which are few.

Plot 5 – Histogram of Appliance variable

Plot 6 gives boxplot for appliances that shows the extremes values recorded in the data set

Plot 6 – Boxplot for Appliances

Plot 7 shows the boxplot for Light variable. This clearly shows that 75% of the values are '0'

Plot 7 – Boxplot for Lights

Plot 8 gives the boxplot for all the temperature variable in the Dataset.

Plot 8 – Boxplot for all temperature variables

${\it Plot} \ 9$ gives the boxplot for all humidity variable in the Dataset

Plot 9- Boxplot for all Humidity variables

Plot 10- Boxplot for Windspeed

Inorder to find the correlation with each variable, pair plot and correlation matrix was plotted against all 31 variables (including newly added features).

Pair plot are plotted in such a way to discriminate weekday and week-end values. Since there will always be a difference in energy usage between a week-end and weekday.

Plot 11 – One of the pair plot with 8 variables

Inorder to understand the correlation between variables on values bases refer *Plot 12*. The below correlation matrix clearly illustrates that there is a high correlation between 'Num sec midnight' and 'Appliances' with a value of 0.22. The second largest correlation with 'Appliances' is 'Lights' with a value of 0.19. For the indoor temperatures, the correlations are high as expected, since the ventilation is driven by the HRV unit and minimizes air temperature differences between rooms. For example, a positive correlation is found with 'temp_kitchen' and 'temp_laundry'. And correlation of outdoor temperature with the appliances is 0.12. There is also a negative correlation between the appliances and outdoor humidity/RH6 (-.09. There is a positive correlations between the consumption of appliances and temp_ironing, temp_teenRoom and temp_parentRoom being 0.03, 0.05 and 0.02 respectively. A positive correlation of 0.10 is seen between appliances' consumption and outdoor temperature (Tout) that is, the higher temperatures, the higher the energy use by the appliances. Also there is a positive correlation with appliances' consumption and wind speed (0.09), higher wind speeds correlate with higher energy consumption by the appliances. A negative correlation of -0.15 was found with the 'hum_out', and of -0.03 with pressure. Another important and interesting correlation is between the pressure and the wind speed. This relationship is negative (-0.23)

Plot 13 – provides the value of all variables for given dates. It helps us compare values on three different dates.

Plot 13

Feature Engineering

In order move forward in our analysis, this section will help us perform feature engineering. Before we move ahead, all categorical column which was used in EDA section needs to be converted to numerical.

Plot 14- Categorical Columns

In	[162]: Dat	ta = pd.Dat ta	aFrame.fro	om_c	:sv("modif:	iedData.c	sv")						_	
ndry	hum_laundry	temp_office	hum_office		Pressure	hum_out	Windspeed	Visibility	Tdewpoint	rv1	rv2	Num_sec_midnight	Day_Status	week_status
0000	44.730000	19.000000	45.566667		733.500000	92.000000	7.000000	63.000000	5.300000	13.275433	13.275433	61200	Monday	weekday
0000	44.790000	19.000000	45.992500		733.600000	92.000000	6.666667	59.166667	5.200000	18.606195	18.606195	61800	Monday	weekday
0000	44.933333	18.926667	45.890000		733.700000	92.000000	6.333333	55.333333	5.100000	28.642668	28.642668	62400	Monday	weekday
0000	45.000000	18.890000	45.723333		733.800000	92.000000	6.000000	51.500000	5.000000	45.410389	45.410389	63000	Monday	weekday
0000	45.000000	18.890000	45.530000		733.900000	92.000000	5.666667	47.666667	4.900000	10.084097	10.084097	63600	Monday	weekday

Plot 15 – One hot encoded Numerical columns

In [163]:	int_encode onehot_enc int_encode int_encode int_encode newDay = o # new2 = L Data.drop(Data['Frid Data['Mond Data['Satu Data['Sund Data['Sund Data['Thur Data['Week Data['Week Data['Week	ed = label d_day = l coder = Or ed = int e ed_day = l i onehot_ero cabel_eroc (['week_si lay'] = polay'] = polay''] = polay'''] = polay'''] = polay''' = polay''' = polay''''' = polay'''' = polay''''''' = polay''''''''''''''''''''''''''''''''''''	l_encode label_en neHotEnce encoded. int_enco oncoder.fi coder.inv tatus', d.Series d.Series pd.Serie pd.Serie pd.Serie pd.Serie	r.fit_trar coder.fit_ oder(spars reshape(le ded_day.re it_transfor erse_trans 'Day_Statu (newDay[:, es(newDay[:, es(newDay[:, es(newDay[:, es(newDay[:, es(newDay[:, es(newDay[:, es(newDay[:, es(newDay[:, es(newDay[:,	m(int_encoded), shape(len(int_encoded) m(int_encoded) m(int_encoded_o form([argmax(ne.s'], axis=1, in 0], index=Data. 1], index=Data. 1], index=Data. 1, index=Data. 1, index=Data. 1, index=Dat, 5], index=Dat 1,5], index=Dat 1,6], index=Dat 1,6], index=Dat 1,6], index=Dat	1) ncoded_day) w[Len(net) lindex) a.index) index) a.index) ta.index) ta.index)	ny), 1) ny), 1) ny)-1, :])	1)						
	Data	tenu j = j	pa.serie	s(newweek[:,1], index=Dat	a.index)								
living temp_la	Data				:,1], index=Dat		Monday	Saturday	Sunday	Thursday	Tuesday	Wednesday	WeekDay	Weeken
	Data undry hum_la	aundry tem			Num_sec_midn			Saturday 0.0	Sunday 0.0	Thursday 0.0	Tuesday 0.0	Wednesday	WeekDay	Weeken 0.
90000 19.7	Data undry hum_la	730000 1	np_office	hum_office	Num_sec_midn	ght Friday	1.0							0
90000 19.7	Data undry hum_la 20000 44.7	730000 11	np_office 9.000000	hum_office 45.586887	Num_sec_midn	ght Friday	1.0	0.0	0.0	0.0	0.0	0.0	1.0	0
90000 19.7 22500 19.7 26867 19.7	Data undry hum_la 00000 44.7 00000 44.9	730000 11: 790000 1:	np_office 9.000000 9.000000	hum_office 45.586887 45.992500	Num_sec_midn 61 62	ght Friday 200 0.0	1.0	0.0	0.0	0.0	0.0	0.0	1.0	

The data was converted to numerical using One hot encoding. Now those columns can be analyzed for prediction models. In general, with machine learning, you ideally want your data normalized, which means all features are on a similar scale. *Plot 16* shows the normalized data so that all variables are on similar scale.

Plot 16 – Normalised Data

In [164]	for j i	<pre>centered_scaled_data = pd.DataFrame(data=Data) for j in range(1, len(Data.columns)-1,1): centered_scaled_data.iloc[:,[j]] = (Data.iloc[:,[j]] - Data.iloc[:,[j]].mean())/Data.iloc[:,[j]].std() centered_scaled_data</pre>													
date	Appliances	lights	temp_kitchen	hum_kitchen	temp_living	hum_living	temp_laundry	hum_laundry	temp_office	hum_office	1	Num_sec_midnight	Frie		
2016-01- 11 17:00:00	60	3.301180	-1.118616	1.843774	-0.520398	1.073656	-1.235032	1.686087	-0.908194	1.506399		-0.007118	-0.4104		
2016-01- 11 17:10:00	60	3.301180	-1.118616	1.818768	-0.520398	1.057071	-1.235032	1.704523	-0.908194	1.604488		140.474197	-0.410		
2016-01- 11 17:20:00	50	3.301180	-1.118616	1.517921	-0.520398	1.033523	-1.235032	1.748563	-0.944091	1.580878		-0.007118	-0.410		
2016-01- 11 17:30:00	50	4.561263	-1.118616	1.459284	-0.520398	1.024514	-1.235032	1.769047	-0.962039	1.542487		-0.007118	-0.410		
2016-01- 11 17:40:00	60	4.561263	-1.118616	1.526298	-0.520398	1.009771	-1.235032	1.769047	-0.962039	1.497953		-0.007118	-0.410		

We have performed feature analysis and importance with different algorithms to compare and contrast along with a summary plot of all three algorithms (*Plot 20*).

Plot 17 - Feature analysis and Importance using ExtraTreesRegresso

Plot 18 - Feature analysis and Importance using RandomForestRegressor

Plot 19-Feature analysis and Importance using GradientBoostingRegressor

Plot 20 – Feature Importance summary

Prediction algorithms

In this section we have considered, four different algorithms - Linear Regression, Random Forests, Neural Networks and Gradient Boosting Regression and compared its values for selecting better prediction model for our regression model. Before learning the data, we have split data into 75% of train and 25% of test sets.

The residual plot and the actual plot are as follows.

Linear Regression Plots

Predicted t

In [215]: plot_trend(pred,y_test,'Energy')

Random Forest plots

Neural Network plots

Gradient Boosting Regression plots

The summary metrics of each of these algorithms with the training sets on the left and the testing set on the right are as follows.

Plot 21- Summary of prediction models

	Linear	RandomForest	NeuralNetwork	GradientBoosting		Linear	RandomForest	NeuralNetwork	GradientBoosting
MAE	53.204941	12.646981	37.594546	10.386794	MAE	52.063485	32.304128	40.901195	34.103741
MAPE	61.377133	12.701410	39.962768	14.621911	MAPE	60.313166	32.829551	41.772017	36.279194
RMSE	94.338395	26.562544	72.393883	15.176064	RMSE	90.222844	67.163081	80.355282	66.313426
R2	0.170316	0.934223	0.511416	0.978529	R2	0.174676	0.542646	0.345333	0.554144

The above figure clearly states that only Random Forest and Gradient Boost are better compared to linear and neural network. So we have selected Random Forest as primary and Gradient Boost as secondary option and will finalize one of the 2 after cross validations and regularizations.

Feature Selection

Feature selection is a process where you automatically select those features in your data that contribute most to the prediction variable or output in which you are interested. We have considered different feature selection such as Sequential Forward Selection of feature in RandomForest, Sequential backward selection of feature in RandomForest, Feature Selection

using TPOT, RandomForest using TSFresh feature selection, RandomForest using Boruta feature selection, Boruta and RandomForest using Exhaustive Search.

Plot 22- Sequential Forward Selection

Plot 23- Sequential Backward Selection

Plot 24- Feature selection using TPOT

Plot 25- Feature selection using TSFRESH

RandomForest using TSFresh feature selection

Out[22]: True

```
In [8]: df_shift, y = make_forecasting_frame(Data["Appliances"], kind="Watts", max_timeshift=10, rolling_direction=1)
X = extract_features(df_shift, column_id="id", column_sort="time", column_value="value", show_warnings=False, impute_function=imput
X

'value_fft_coefficient_coeff_97_attr_"real"'
'value_fft_coefficient_coeff_98_attr_"real"'
'value_fft_coefficient_coeff_98_attr_"imag"'
'value_fft_coefficient_coeff_98_attr_"imag"'
'value_fft_coefficient_coeff_98_attr_"imag"'
'value_fft_coefficient_coeff_99_attr_"abs"'
'value_fft_coefficient_coeff_99_attr_"angle"'
'value_fft_coefficient_coeff_99_attr_"real"'
'value_fft_coefficient_coeff_99_attr_"real"'
'value_fft_coefficient_coeff_9_attr_"imag"'
'value_fft_coefficient_coeff_9_attr_"imag"'
'value_fft_coefficient_coeff_9_attr_"mag"'
'value_fft_coefficient_coeff_9_attr_"mag"'
'value_fft_coefficient_coeff_9_attr_"mag"'
'value_fft_coefficient_coeff_9_attr_"mag"'
'value_fft_coefficient_coeff_9_attr_"mag"'
'value_spkt_welch_density_coeff_8'] did not have any finite values. Filling with zeros.

Out[8]:

variable_value_abs_energy_value_absolute_sum_of_changes_value_agg_autocorrelation_f_agg_"mean"_value_agg_autocorrelation_f_agg_"median"_value__v
```


Plot 26- Feature selection using BORUTA

RandomForest using Boruta feature selection

```
In [6]: regressor = RandomForestRegressor(n_estimators=100, n_jobs=2)
                               feat_selector = BorutaPy(regressor, n_estimators='auto', verbose=2) feat_selector.fit(X_train.as_matrix(),y_train.as_matrix())
                               BorutaPv finished running.
                               Iteration:
                                                             100 / 100
                               Confirmed:
Tentative:
                                                             19
                               Rejected:
                                                             14
              random_state=<mtrand.RandomState object at 0x000001CEE1244480>,
verbose=0, warm_start=False),
max_iter=100, n_estimators='auto', perc=100,
random_state=<mtrand.RandomState object at 0x000001CEE1244480>,
                                        two_step=True, verbose=2)
In [11]:

def determineAnalysis(true, pred, regressor):
    mae = mean_absolute_error(true, pred)
    rmse = sqrt(mean_squared_error(true, pred))
    r2 = r2_score(true, pred)
    true, pred = np.array(true), np.array(pred)
    mape = np.mean(np.abs((true - pred) / true)) * 100
    n =len(X_train)
                         n =len(X_train)
r2_adj =1- (1-r2)*(n-1)/(n-(len(regressor.estimator_params)+1))
print('Mean absolute error is ',mae)
print('Mean absolute percentage error is ',mape)
print('Root mean squared error is ',rmse)
print('RSquare is ',r2)
print('RSquare adjusted ',r2_adj)
                   determineAnalysis(y_test, y_pred, regressor)
                   Mean absolute error is 34.6887572676
```

We have considered Boruta as our final selection as it provided us with RSquare better than any other selections.

Mean absolute percentage error is 32.7674653027 Root mean squared error is 75.59053177565613 RSquare is 0.492268404548

RSquare adjusted 0.491925110704

Model Validation and Selection

A better sense of a model's performance can be found using what's known as a *holdout set*: that is, we hold back some subset of the data from the training of the model, and then use this holdout set to check the model performance. This splitting can be done using the train_test_split utility in Scikit-Learn.

Plot 26 – Holdout sets

```
In [6]: X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.25)
```

One disadvantage of using a holdout set for model validation is that we have lost a portion of our data to the model training. In the above case, half the dataset does not contribute to the training of the model. This is not optimal, and can cause problems – especially if the initial set of training data is small. One way to address this is to use *cross-validation*; that is, to do a sequence of fits where each subset of the data is used both as a training set and as a validation set. In this section would have compared various algorithms with cross validation and performed grid_search for best model selection.

Plot 27 – K-fold cross validation

```
In [11]: #GB
               model = GradientBoostingRegressor(n_estimators=1500, learning_rate=0.1,max_depth=4, random_state=0, loss='ls').fit(X, y)
In [12]:
              k_fold = KFold(len(y), n_folds=10, shuffle=True, random_state=0)
print (cross_val_score(model, X, y, cv=k_fold, n_jobs=1))
               [ 0.51596998  0.52889133  0.52898749  0.53374406  0.52356115  0.5181723  0.54088485  0.52148472  0.58003088  0.55897463]
In [68]: #RandomForest
               RF= RandomForestRegressor(n_estimators=300,max_depth=4,)
               model2=RF.fit(X,y)
In [22]: k_fold = KFold(len(y), n_folds=10, shuffle=True, random_state=0)
print (cross_val_score(model2, X, y, cv=k_fold, n_jobs=1))
               [0.12739586 0.14106554 0.16019255 0.1566742 0.11456478 0.1316116
                 0.13834619 0.15287295 0.1728952 0.14669629]
In [71]: #Linear
              #LINEAR
k_fold = KFold(len(y), n_folds=10, shuffle=True, random_state=0)
lm = linear_model.tinearRegression()
model3 = lm.fit(X, y)
print (cross_val_score(model3, X, y, cv=k_fold, n_jobs=1))
 In [7]: #NeuralNetwork
              #Wednetwork
mlp = MLPRegressor(hidden_layer_sizes=(50,50,50,50,50),max_iter=500)
mlp.fit(X,y)
train_predict=mlp.predict(X)
print (cross_val_score(mlp, X, y, cv=k_fold, n_jobs=1))
               [0.36643616 0.36945491 0.36409526 0.35757147 0.3805682 0.3805224 0.40229774 0.41789279 0.40343481 0.34727024]
```

The dataset also run through Leave one out exhaustive cross validation but didn't complete its process.

Plot 28 – Leave one out cross validation

```
In [ ]: #GBM
                 scores = cross_val_score(model, X, y, cv=LeaveOneOut(len(X)), n_jobs=8, verbose=2)
                [Parallel(n_jobs=8)]: Done 25 tasks
[Parallel(n_jobs=8)]: Done 146 tasks
[Parallel(n_jobs=8)]: Done 349 tasks
                                                                                       | elapsed: 4.2min
                                                                                         elapsed: 21.0min
  In [ ]: #Neural Network
                scores = cross_val_score(mlp, X, y, cv=LeaveOneOut(len(X)), n_jobs=8, verbose=2)
                [Parallel(n_jobs=8)]: Done 25 tasks
[Parallel(n_jobs=8)]: Done 146 tasks
                                                                                       | elapsed: 4.3min
| elapsed: 388.9min
 In [ ]: #Random forest
scores_rf = cross_val_score(model2, X, y, cv=LeaveOneOut(len(X)))
In [25]: #LinearRegression
                 scores3 = cross_val_score(model3, X, y, cv=LeaveOneOut(len(X)), n_jobs=8, verbose=2)
                                                                                       | elapsed: 27.2s
| elapsed: 29.1s
| elapsed: 33.6s
| elapsed: 40.0s
| elapsed: 48.1s
                [Parallel(n_jobs=8)]: Done 25 tasks
[Parallel(n_jobs=8)]: Done 372 tasks
[Parallel(n_jobs=8)]: Done 1184 tasks
                                                                                                            33.6s
                 [Parallel(n_jobs=8)]: Done 2316 tasks
[Parallel(n_jobs=8)]: Done 3776 tasks
                [Parallel(n_jobs=8)]: Done 5556 tasks
[Parallel(n_jobs=8)]: Done 7664 tasks
[Parallel(n_jobs=8)]: Done 10092 tasks
                                                                                            elapsed:
elapsed:
                                                                                                              57.85
                                                                                           elapsed: 1.2min
| elapsed: 1.4min
                [Parallel(n_jobs=8)]: Done 12848 tasks
[Parallel(n_jobs=8)]: Done 15924 tasks
                                                                                            elapsed:
elapsed:
                                                                                                             1.6min
1.9min
                [Parallel(n_jobs=8)]: Done 19328 tasks | elapsed: 2.2min
[Parallel(n_jobs=8)]: Done 19720 out of 19735 | elapsed: 2.3min remaining:
[Parallel(n_jobs=8)]: Done 19735 out of 19735 | elapsed: 2.3min finished
Out[25]: array([0., 0., 0., ..., 0., 0., 0.])
```

From the below validation curve, we can read-off that the optimal trade-off between bias and variance is found for a third-order polynomial; we can compute and display this fit over the original data as follows:

Plot -29 - Validation curve with Random Forest

Plot -30 - Validation curve with Gradient Boost

Regularization methods like L1, L2 and Elastic net were also tried but their RSquare scores were very less. The following are the metrics and plots for Lasso Regression, Ridge experimented with different Alpha values and ElasticNet

Lasso Regression

```
In [23]: alphas = 10**np.linspace(10,-2,100)*0.5
lasso = Lasso(alpha= 0,max_iter = 10000, normalize = True)
coefs = []

for a in alphas:
    lasso.set_params(alpha=a)
    lasso.fit(scale(X_train), y_train)
    coefs.append(lasso.coef_)
pred = lasso.predict(X_test)
```

```
[n [39]: predictors = X_train.columns
    coefs = pd.Series(lasso.coef_,predictors).sort_values()
    coefs.plot(kind='bar', title='Modal Coefficients')
```

)ut[39]: <matplotlib.axes._subplots.AxesSubplot at 0x21e6ead8f98>

LassoCV

Ridge

Alpha Value=4

```
52]: ridge2 = Ridge(alpha = 4, normalize = True)
     ridge2.fit(X_train, y_train)  # Fit a ridge regression on the training data

pred2 = ridge2.predict(X test)  # Use this model to predict the test data
     pred2 = ridge2.predict(X test)
                                               # Use this model to predict the test data
     print(pd.Series(ridge2.coef , index = X train.columns)) # Print coefficients
                                                                 # Calculate the test MSE
     print("Mean_Square", mean_squared_error(y_test, pred2))
     lights
                           3.586090e+01
     hum kitchen
                          1.715271e+01
     hum living
                          -1.146545e+01
     temp_laundry
                         8.530177e+00
                        6.239689e+00
     hum_laundry
     temp_office
                         1.329891e+00
     hum office
                         1.640862e+00
     temp_bathroom -8.420544e-01
                         9.319668e-01
     hum bathroom
     temp_building_out 1.157327e+01
     hum_building_out
                          -4.257555e+00
     hum_ironing
temp_teenRoom
                         -7.858957e+00
                         2.388946e+00
     temp parentRoom
                         -1.804204e+00
     hum parentRoom
                         -7.324282e+00
     Pressure
                         -3.936877e+00
     Tdewpoint
                         -9.087726e-01
     Num_sec_midnight
                         -1.480205e-12
     dtype: float64
     Mean Square 10339.8893777
```

Alpha = 10**10

```
: ridge3 = Ridge(alpha = 10**10, normalize = True)
ridge3.fit(X_train, y_train)  # Fit a ridge regression on the training data
pred3 = ridge3.predict(X_test)  # Use this model to predict the test data
print(pd.Series(ridge3.coef_, index = X_train.columns)) # Print coefficients
print(mean_squared_error(y_test, pred3))  # Calculate the test MSE
```

lights 1.776388e-08 hum kitchen 7.739085e-09 hum living -5.363827e-09 temp laundry 5.406176e-09 hum laundry 2.307141e-09 2.498462e-09 temp_office 7.486585e-10 hum_office temp_bathroom hum_bathroom 1.354518e-09 3.868356e-10 temp_building_out 6.727257e-09 hum_building_out -2.796849e-09 hum ironing -3.360450e-09 temp teenRoom 2.658894e-09 temp_parentRoom 7.774290e-10 hum_parentRoom -3.455197e-09 Pressure -2.216885e-09 Tdewpoint 7.411781e-10 Num sec midnight -5.561036e-22 dtype: float64 10650.1790256

Alpha = 0

```
ridge2 = Ridge(alpha = 0, normalize = True)
ridge2.fit(X_train, y_train)  # Fit a ridge regression on the training data
pred = ridge2.predict(X_test)  # Use this model to predict the test data
print(pd.Series(ridge2.coef_, index = X_train.columns)) # Print coefficients
print(mean_squared_error(y_test, pred))  # Calculate the test MSE
```

lights 1.600402e+02 hum kitchen 4.234929e+02 hum living -1.757733e+02 temp laundry 2.563175e+02 hum laundry 5.397860e+01 temp office -1.146901e+02 hum_office -7.953566e+01 temp bathroom -4.764717e+01 hum bathroom 2.861358e+00 temp building out 1.166675e+02 hum building out 1.701818e+01 hum_ironing -9.863231e+01 temp_teenRoom 5.066898e+01 temp parentRoom -1.041847e+02 hum_parentRoom -6.367303e+01 Pressure 1.568353e+00 Tdewpoint -6.048874e+01 Num_sec_midnight -1.372573e-11

dtype: float64 9112.28211998

ridgecv.alpha_

t[55]: 0.005000000000000000001

```
[56]: ridge4 = Ridge(alpha = ridgecv.alpha_, normalize = True)
ridge4.fit(X_train, y_train)
mean_squared_error(y_test, ridge4.predict(X_test))
```

t[56]: 9115.837225415733

```
[57]: ridge4.fit(X_train, y_train)
pd.Series(ridge4.coef_, index = X_train.columns)
ridge4.score(X_test,y_test)
```

t[57]: 0.14399724271994974

```
[58]: predictors = X_train.columns
  coefs = pd.Series(ridge4.coef_,predictors).sort_values()
  coefs.plot(kind='bar', title='Modal Coefficients')
```

t[58]: <matplotlib.axes. subplots.AxesSubplot at 0x21e709a6550>

ElasticNet

```
59]: ENreg = ElasticNet(alpha=1, l1_ratio=0.5, normalize=False)
    ENreg.fit(X_train,y_train)
    pred_cv = ENreg.predict(X_test)
    #ENreg.score(X_test,y_test)
    r2_score(y_test,pred_cv)
```

59]: 0.0047839411134229515

```
predictors = X_train.columns
coefs = pd.Series(ENreg.coef_,predictors).sort_values()
coefs.plot(kind='bar', title='Modal Coefficients')
```

50]: <matplotlib.axes._subplots.AxesSubplot at 0x21e7098e860>

The parameters of the estimator used to apply these methods are optimized by cross-validated grid-search over a parameter grid.

Plot -31 – Grid Search for Random forest Regressor

And the Gradient Boosting Regressor also provide the same equivalent score.

Plot -32 -Grid Search for Gradient Boosting Regressor

Since the Random Forest and Gradient Boosting Regressor have similar outcomes, any one of them can be considered for our final pipeline. Hence we will proceed with Random Forest algorithm with Boruta feature selection.

Final pipeline

The final pipeline is implemented using sklearn pipeline. The following operations are piped together and automated- Data cleaning, Normalizing, Splitting the Data, Extracting features from Boruta using RandomForest estimator and then finally apply the transformed data to final estimator Random Forest Regressor.

```
In [4]: dataset = pd.DataFrame.from_csv("https://raw.githubusercontent.com/LuisM78/Appliances-energy-prediction-dat
        class Cleaner(BaseEstimator, TransformerMixin):
             """Takes in dataframe, performs cleaning if needed and returns cleaned dataframe"""
            def
                  init (self):
                 pass
            def seconds(self, x):
                 sec = x.hour*3600+x.minute*60+x.second
                 return sec
            def day_week(self, z):
                 a=[]
                 for y in z:
                     if y == 0:
                         a.append('Monday')
                     elif y == 1:
                         a.append('Tuesday')
                     elif y == 2:
                        a.append('Wednesday')
                     elif y == 3:
                         a.append('Thrusday')
                     elif y == 4:
                         a.append('Friday')
                     elif y == 5:
                         a.append('Saturday')
                     elif y == 6:
                        a.append('Sunday')
                 return a
            def week(self, x):
                 a=[]
                 for y in x:
                     if y == 'Saturday' or y == 'Sunday':
                        a.append('weekend')
                     else:
```

```
def one hot encode(self, Data):
      label_encoder = LabelEncoder()
int_encoded = label_encoder.fit_transform(Data['week_status'])
       int_encoded_day = label_encoder.fit_transform(Data['Day_Status'])
       onehot_encoder = OneHotEncoder(sparse=False)
       int_encoded = int_encoded.reshape(len(int_encoded), 1)
       int_encoded_day = int_encoded_day.reshape(len(int_encoded_day), 1)
       newWeek = onehot_encoder.fit_transform(int_encoded)
       newDay = onehot_encoder.fit_transform(int_encoded_day)
       # new2 = label_encoder.inverse_transform([argmax(new[len(new)-1, :])])
      Data.drop(['week_status', 'Day_Status'], axis=1, inplace=True)
Data['Friday'] = pd.Series(newDay[:,0], index=Data.index)
Data['Monday'] = pd.Series(newDay[:,1], index=Data.index)
      Data['Saturday'] = pd.Series(newDay[:,2], index=Data.index)
     Data['Saturday'] = pd.Series(newDay[:,2], Index=Data.index)
Data['Sunday'] = pd.Series(newDay[:,3], index=Data.index)
Data['Thursday'] = pd.Series(newDay[:,4], index=Data.index)
Data['Tuesday'] = pd.Series(newDay[:,5], index=Data.index)
Data['Wednesday'] = pd.Series(newDay[:,6], index=Data.index)
Data['WeekDay'] = pd.Series(newWeek[:,0], index=Data.index)
Data['Weekend'] = pd.Series(newWeek[:,1], index=Data.index)
      return Data
def transform(self, df, y=None):
    """Adding the columns Day_Status, week_status and Num_sec_midnight"""
      df['Num_sec_midnight']=self.seconds(df.index)
      z = df.index.dayofweek
      df['Day_Status'] = z
df['Day_Status'] = self.day_week(df.Day_Status)
df['week_status'] = self.week(df.Day_Status)
       """Performing one hot encoding on week_status and day_status columns"""
```

```
def fit(self, df, y=None):
        """Returns `self` unless something different happens in train and test"""
        return self
class Normalizer(BaseEstimator, TransformerMixin):
    def __init__(self):
        pass
    def transform(self, df, y=None):
        """Performs Normalization on all the columns except for Appliances"""
        for j in range(1, len(df.columns)-1,1):
            df.iloc[:,[j]] = (df.iloc[:,[j]] - df.iloc[:,[j]].mean())/df.iloc[:,[j]].std()
        df.to_csv("normalized.csv")
        return df
    def fit(self, df, y=None):
        """Returns `self` unless something different happens in train and test"""
        return self
class SplitData(BaseEstimator, TransformerMixin):
    def __init__(self):
        pass
    def transform(self, df, y=None):
       y = df['Appliances']
        df4 = df.iloc[:,1:]
        X_train, X_test, y_train, y_test = train_test_split(df4, y, test_size=0.25)
        train = X_train.join(y_train)
        test = X_test.join(y_test)
        train.to_csv("train.csv")
        test.to csv("test.csv")
        return X_train, X_test, y_train, y_test
    def fit(self, df, y=None):
```

```
In [5]: pipeline.steps
Out[5]: [('cleaner', Cleaner()),
          ('normalizer', Normalizer()),
          ('train_test_split', SplitData()),
('features', BorutaPy(alpha=0.05,
                estimator=RandomForestRegressor(bootstrap=True, criterion='mse', max_depth=None,
                       max_features='auto', max_leaf_nodes=None,
                       min impurity decrease=0.0, min impurity split=None,
                      min_samples_leaf=1, min_samples_split=2,
min_weight_fraction_leaf=0.0, n_estimators=10, n_jobs=1,
                       oob score=False, random state=None, verbose=0, warm start=False),
                max_iter=100, n_estimators=1000, perc=100, random_state=None,
                two_step=True, verbose=0)),
          ('transofrm_data', transformData()),
          ('estimator',
RandomForestRegressor(bootstrap=True, criterion='mse', max_depth=None,
                       max_features='auto', max_leaf_nodes=None,
                       min_impurity_decrease=0.0, min_impurity_split=None,
                       min_samples_leaf=1, min_samples_split=2,
                       min weight fraction leaf=0.0, n estimators=10, n jobs=1,
                      oob_score=False, random_state=None, verbose=0, warm_start=False))]
 In [ ]: param_grid = [{'Boruta_rf__n_estimators': [100,200,300]}]
           grid = GridSearchCV(pipeline, cv = 10, param grid=param grid, n jobs=2, verbose=2)
          grid.fit(X_train, y_train)
          pred = grid.predict(X test)
          Fitting 10 folds for each of 3 candidates, totalling 30 fits
```

Conclusion

The report concludes by choosing Random Forest algorithm for energy usage prediction. The pipelining was based on Random Forest with Boruta feature selection. RF would not be the only best algorithm for the energy dataset since Gradient Boost machines also provide equivalent scores. May be with larger dataset, the analysis might give accurate algorithm suitable for the data. Data should be of atleast all the months so that you can predict the outliers properly and provide proper prediction of Energy consumption.