SJSU SAN JOSÉ STATE UNIVERSITY

Lesson 3 – Block Ciphers 1

Yan Chen CS166 Fall 2024

... Previously

Overview

Feistel Cipher

DES

AES

TEA

Next Lesson ...

- Stream ciphers uses the idea of "one-time pad"
 - "Stretch" a small key to a long keystream (any size)
 - > The keystream is used to encrypt/decrypt like a one-time pad
- Algorithm to generate keystream from the key is the "heart" of each stream cipher
 - Keystream is pseudo-random (not truly random) and may repeat (important to know the upper bound)
- Stream ciphers are efficient in hardware
 - So, it was the king of crypto...
 - > But not anymore since more things can be done in software

Lesson 3	Stream Cipher Overview		A5/1 vs. RC4
Block Ciphers 1		A5/1	RC4
	Туре	Symmetric key crypto – stream cipher	
Previously	Unit Of Operations	Bit	Byte (8 bits)
Overview Feistel Cipher	Implementation Type	Hardware	Software
DES AES	Input Key Length	64 bits	Vary from 1 to 255 bytes
TEA	Main Data Structure	3 LFSRs	Self-modifying lookup table
Next Lesson Appendix	Main Operation to Generate Keystream	Step each LFSR	Swap elements in lookup table
	Satisfied Kerckhoffs' Principle	Originally not	Yes?
	Status Of Lifecycle	Almost dead	Almost dead
	Applications	GSM	SSL, WEP, WPA
	SJSU CS 166: Information Security Fall 2024 3		

... Previously

Overview

Feistel Cipher

DES

AES

TEA

Next Lesson ...

- Recall: Block ciphers uses the idea of "codebook"
 - "Electronic" version of codebook
 - > Each block of plaintext has a corresponding block of ciphertext
- Solve the cons: use a "changeable" codebook instead of a "fixed" one –key is used to generate codebooks!
 - > vs. stream cipher uses key to generate one-time pads
- Change key = switch the codebook
 - ➤ If the key is k bits, then the block cipher can be viewed as 2^k different codebooks
 - So, can avoid classical codebook attack by changing the key

... Previously

Overview

Feistel Cipher

DES

AES

TEA

Next Lesson ...

- Taxonomy: Block ciphers are symmetric-key ciphers
 - Usually implemented in software
- Block ciphers use a round function F to encrypt the plaintext to ciphertext
 - F is iterated many "rounds"
 - For each round, input is key and output of previous round
- · Most of the block ciphers follows Feistel cipher principle
- Algorithms to be covered
 - ➤ (This lesson each block) DES, AES, TEA
 - (Next lesson multiple blocks) Block cipher modes

... Previously

Overview

Feistel Cipher

DES

AES

TEA

Next Lesson ...

Appendix

- Plaintext and ciphertext consist of fixed-sized blocks
- P = plaintext block, C = ciphertext block
- E(P, K): Encrypt P with key K to get C
 - \rightarrow That is, E(P, K) = C
- D(C, K): Decrypt C with key K to get P
 - \rightarrow That is, D(C, K) = P
- Note that P = D(E(P, K), K) and C = E(D(C, K), K)
 - Since block ciphers are symmetric key ciphers!
 - What if we used different keys?

That is, $P \stackrel{?}{=} D(E(P, K1), K2)$ or $C \stackrel{?}{=} E(D(C, K1), K2)$?

Block Ciphers 1

... Previously

Overview

Feistel Cipher

DES

AES

TEA

Next Lesson ...

Appendix

Overview Encrypt Decrypt

- Feistel cipher: general block cipher design principle
 - A type of block cipher, not a specific block cipher
 - Named after German-American cryptanalyst, Horst Feistel, who works in IBM led to designing DES cipher
- In Feistel's terminology, in each round, he suggested to use two operations ...
 - Substitution (mainly for confusion): each plaintext block is uniquely replaced by a ciphertext block
 - Permutation (mainly for diffusion): a sequence of block elements are replaced by a permutation of that sequence.

Parameters

... Previously

Overview

Feistel Cipher

DES

AES

TEA

Next Lesson ...

Appendix

- To encrypt each plaintext block...
 - \triangleright Split the block into left and right halves: P = (L₀, R₀)
 - For each round i = 1, 2, ..., n, compute

$$L_i = R_{i-1}$$
 (new left = old right)

 $R_i = L_{i-1} \oplus F(R_{i-1}, K_i)$ (new right = old left \oplus round F result) where K_i is called "subkey"

- \triangleright After n rounds, ciphertext block C = (L_n, R_n)
- Permutation is the operation that produces L_i
 - Since a "swap" is involved
- Substitution is the operation that produces R_i

... Previously

Overview

Feistel Cipher

DES

AES

TEA

Next Lesson ...

Appendix

- To decrypt, just "inverse" the encryption
 - \triangleright Start with ciphertext block C = (L_n, R_n)
 - For each round i = n, n -1, ..., 1, compute

$$R_{i-1} = L_i$$

 $L_{i-1} = R_i \oplus F(R_{i-1}, K_i)$, where F is round function, K_i is subkey After n rounds, plaintext block $P = (L_0, R_0)$

- For Feistel ciphers, encrypt/decrypt is always invertible
 - > Even if the round function F is NOT invertible
 - Since the swap is invertible...
 - ➤ And XOR ⊕ is also invertible!

Block Ciphers 1

... Previously

Overview

Feistel Cipher

DES

AES

TEA

Next Lesson ...

Appendix

Overview Encrypt Decrypt Parameters

Feistel cipher principle involves several parameters

- Block size
 - ➤ Larger size → greater security but slower algorithm
 - Typical size is 128-bit
- Key length
 - ➤ longer length → greater security but slower algorithm
 - > Typical length is at least 128-bit
- Number of rounds: typical number is 16
- Round function F
 - The greater complexity, the greater the security

Block Ciphers 1

... Previously

Overview

Feistel Cipher

DES

AES

TEA

Next Lesson ...

Appendix

Overview

Round Functions

S-box

Security

- DES (Data Encryption Standard) is a Feistel cipher
 - > Developed in 1970's, based on IBM's Lucifer cipher
 - Was U.S. government standard
 - NSA (National Security Agency) was secretly involved to approve/modify it
- DES numerology
 - Block size: 64 bits
 - Key length: 56 bits (subkey length in each round = 48 bits)
 - > 16 rounds using a simple round function (for a block cipher)
 - > Round function uses 8 "S-boxes", each maps 6 bits to 4 bits

... Previously

Overview

Feistel Cipher

DES

AES

TEA

Next Lesson ...

Appendix

In each round...(taken from "textbook")

Before (i - 1)

After (i)

... Previously

Overview

Feistel Cipher

DES

AES

TEA

Next Lesson ...

- DES includes 8 substitution boxes ("S-box")
 - Each S-box maps 6 bits to 4 bits
 - \rightarrow So, 8 * 6 = 48 bits (subkey) \rightarrow 8 * 4 = 32 bits (half block)
 - Row address: bits 0 and 5
 - Column address: bits 1 through 4
- Example: S-box number 1

```
| 0000 0001 0010 0011 0100 0111 0110 0111 1000 1001 1010 1011 1100 1101 1110 1111 | 00 | 1110 0100 1101 0001 0000 0111 | 1010 0100 1111 0100 0101 | 1010 0101 0101 0000 0111 | 0100 0001 1110 1000 | 1101 0001 0101 0101 0101 | 1000 0101 1100 | 1100 0100 0100 | 1100 0100 0100 | 1100 0100 0100 0100 | 1100 0100 0100 | 1100 0000 0110 | 1100 | 1100 0100 0100 0110 | 1100 | 1100 0100 0110 | 1100 0100 0110 | 1100 0110 0110 | 1100 0110 0110 | 1100 0110 0110 | 1100 0110 0110 | 1100 0110 0110 | 1100 0110 0110 | 1100 0110 0110 | 1100 0110 0110 | 1100 0110 0110 | 1100 0110 0110 0110 | 1100 0110 0110 | 1100 0110 0110 0110 | 1100 0110 0110 0110 | 1100 0110 0110 | 1100 0110 0110 0110 | 1100 0110 0110 0110 | 1100 0110 0110 0110 | 1100 0110 0110 0110 | 1100 0110 0110 0110 | 1100 0110 0110 0110 | 1100 0110 0110 0110 | 1100 0110 0110 | 1100 0110 0110 | 1100 0110 0110 | 1100 0110 0110 | 1100 0110 0110 | 1100 0110 0110 | 1100 0110 0110 | 1100 0110 0110 | 1100 0110 0110 | 1100 0110 0110 | 1100 0110 0110 | 1100 0110 0110 | 1100 0110 0110 | 1100 0110 0110 | 1100 0110 0110 | 1100 0110 0110 | 1100 0110 0110 | 1100 0110 0110 | 1100 0110 | 1100 0110 | 1100 0110 | 1100 0110 | 1100 0110 | 1100 0110 | 1100 0110 | 1100 0110 | 1100 0110 | 1100 0110 | 1100 0110 | 1100 0110 | 1100 0110 | 1100 0110 | 1100 0110 | 1100 0110 | 1100 0110 | 1100 0110 | 1100 0110 | 1100 0110 | 1100 0110 | 1100 0110 | 1100 0110 | 1100 0110 | 1100 0110 | 1100 0110 | 1100 0110 | 1100 0110 | 1100 0110 | 1100 0110 | 1100 0110 | 1100 0110 | 1100 0110 | 1100 0110 | 1100 0110 | 1100 0110 | 1100 0110 | 1100 0110 | 1100 0110 | 1100 0110 | 1100 0110 | 1100 0110 | 1100 0110 | 1100 0110 | 1100 0110 | 1100 0110 | 1100 0110 | 1100 0110 | 1100 0110 | 1100 0110 | 1100 0110 | 1100 0110 | 1100 0110 | 1100 0110 | 1100 0110 | 1100 0110 | 1100 0110 | 1100 0110 | 1100 0110 | 1100 0110 | 1100 0110 | 1100 0110 | 1100 0110 | 1100 0110 | 1100 0110 | 1100 0110 | 1100 0110 | 1100 0110 | 1100 0110 | 1100 0110 | 1100 0110 | 1100 0110 | 1100 0110 | 1100 0110 | 1100 0110 | 1100 0110 | 1100 0110 | 1100 011
```

- > Input: 101001
- Output: 0100

... Previously

Overview

Feistel Cipher

DES

AES

TEA

Next Lesson ...

Appendix

Security of DES

- Depends heavily on S-boxes
- Everything else in DES is linear
- > 35+ years of intense analysis has revealed no back door
- > All known attacks were essentially exhaustive key search
- But today, 56 bit DES key is too small
 - > Exhaustive key search is feasible
- So, Triple DES or 3DES (112 bit key)
 - $ightharpoonup C = E(D(E(P, K_1), K_2), K_1) = encrypt-decrypt-encrypt$
 - $ightharpoonup P = D(E(D(C, K_1), K_2), K_1) = decrypt-encrypt-decrypt$

... Previously

Overview

Feistel Cipher

DES

AES

TEA

Next Lesson ...

- Why not "doubled"?
 - \rightarrow Like C = E(E(P, K), K)
 - Still the same key = still 56 bits
- Why "tripled" with 2 keys?
 - For backward compatible: when $K_1 = K_2 = K$ same as regular DES: E(D(E(P, K), K), K) = E(P, K)
 - And 56 * 2 =112 bits key is large enough
- \heartsuit Why not doubled with 2 keys like C = E(E(P, K₁), K₂)

Block Ciphers 1

... Previously

Overview

Feistel Cipher

DES

AES

TEA

Next Lesson ...

Appendix

Overview

Nonlinear

Linear Mixing

Key Addition

- AES (Advanced Encryption Standard) background
 - NIST (National Institute of Standards and Technology) issued a call for proposals in 1990 to replace DES
 - NSA was openly involved
 - Based on "Rijndael" Algorithm
- AES is very important in cryptography
 - > An AES instruction set is integrated into many processors
 - > Some libraries for high level languages such as Java, etc.
 - Part of numerous open standards such as IPsec or TLS
 - Mandatory for US government applications

... Previously

Overview

Feistel Cipher

DES

AES

TEA

Next Lesson ...

- AES has a complex (highly mathematical) structure
 - Will only cover a high-level overview of the structure
- AES numerology
 - ➤ Block size: 128 bits (or 192 or 256 bits based on the type)
 - > Each block is treated as 4 x 4 bytematrix (4 * 4 * 8 = 128 bits)
 - Key length: 128, 192 or 256 bits (all for AES-128)
 - > 10 to 14 rounds (depends on key length)
 - ➤ Involved 3 layers: nonlinear, linear mixing & key addition
 - > 4 functions: ByteSub, ShiftRow, MixColumn, AddRoundKey
- ♦ Is AES a Feistel cipher?

... Previously

Overview

Feistel Cipher

DES

AES

TEA

Next Lesson ...

Appendix

ByteSub: substitute each byte of the 4 * 4 matrix

$$\rightarrow$$
 b_{ij} = ByteSub(a_{ij})

$$\begin{bmatrix} a_{00} & a_{01} & a_{02} & a_{03} \\ a_{10} & a_{11} & a_{12} & a_{13} \\ a_{20} & a_{21} & a_{22} & a_{23} \\ a_{30} & a_{31} & a_{32} & a_{33} \end{bmatrix} \longrightarrow \texttt{ByteSub} \longrightarrow \begin{bmatrix} b_{00} & b_{01} & b_{02} & b_{03} \\ b_{10} & b_{11} & b_{12} & b_{13} \\ b_{20} & b_{21} & b_{22} & b_{23} \\ b_{30} & b_{31} & b_{32} & b_{33} \end{bmatrix}$$

- Nonlinear but invertible composition of two math operations
- Or just view it as a lookup table
- ByteSub is AES's "S-box" (only 1 though)
- Primarily confusion or diffusion?

... Previously

Overview

Feistel Cipher

DES

AES

TEA

Next Lesson ...

- Linear mixing layer includes 2 functions
 - MixColumn and ShiftRow
- MixColumn: multiply a constant 4 * 4 matrix
 - That is, operation on each column

$$\begin{bmatrix} a_{0i} \\ a_{1i} \\ a_{2i} \\ a_{3i} \end{bmatrix} \longrightarrow \texttt{MixColumn} \longrightarrow \begin{bmatrix} b_{0i} \\ b_{1i} \\ b_{2i} \\ b_{3i} \end{bmatrix} \quad \text{for } i = 0, 1, 2, 3.$$

- ➤ Linear and invertible (result multiply another 4 * 4 matrix)
- Implemented as a (big) lookup table
- Primarily confusion or diffusion?

Overview

Block Ciphers 1

... Previously

Overview

Feistel Cipher

DES

AES

TEA

Next Lesson ...

Appendix

ShiftRow: cyclic shift (left rotation) in each row

$$\begin{bmatrix} a_{00} & a_{01} & a_{02} & a_{03} \\ a_{10} & a_{11} & a_{12} & a_{13} \\ a_{20} & a_{21} & a_{22} & a_{23} \\ a_{30} & a_{31} & a_{32} & a_{33} \end{bmatrix} \longrightarrow \text{ShiftRow} \longrightarrow \begin{bmatrix} a_{00} & a_{01} & a_{02} & a_{03} \\ a_{11} & a_{12} & a_{13} & a_{10} \\ a_{22} & a_{23} & a_{20} & a_{21} \\ a_{33} & a_{30} & a_{31} & a_{32} \end{bmatrix} \text{ no change shift by 1 shift by 2 shift by 3}$$

- The rotation is at byte level
- Linear and invertible
- To inverse, simply rotate same numbers to the right
- Primarily confusion or diffusion?

... Previously

Overview

Feistel Cipher

DES

AES

TEA

Next Lesson ...

- Key addition layer includes 1 function
- AddRoundKey: XOR subkey with the block

$$\begin{bmatrix} a_{00} & a_{01} & a_{02} & a_{03} \\ a_{10} & a_{11} & a_{12} & a_{13} \\ a_{20} & a_{21} & a_{22} & a_{23} \\ a_{30} & a_{31} & a_{32} & a_{33} \end{bmatrix} \oplus \begin{bmatrix} k_{00} & k_{01} & k_{02} & k_{03} \\ k_{10} & k_{11} & k_{12} & k_{13} \\ k_{20} & k_{21} & k_{22} & k_{23} \\ k_{30} & k_{31} & k_{32} & k_{33} \end{bmatrix} = \begin{bmatrix} b_{00} & b_{01} & b_{02} & b_{03} \\ b_{10} & b_{11} & b_{12} & b_{13} \\ b_{20} & b_{21} & b_{22} & b_{23} \\ b_{30} & b_{31} & b_{32} & b_{33} \end{bmatrix}$$

$$block$$
subkey

- \triangleright $b_{ij} = a_{ij} \oplus k_{ij}$
- Is it invertible? How?
- Primarily confusion or diffusion?

... Previously

Overview

Feistel Cipher

DES

AES

TEA

Next Lesson ...

Appendix

TEA Overview

Encryption

Decryption

- TEA (Tiny Encryption Algorithm)
 - ➤ Invented in 1994, public domain now
 - Designed to replace DES
 - > A lightweight and simple algorithm (simpler round function)
 - > So, performance is impressive (fast, low memory requirement)
- TEA numerology
 - Block size: 64 bits
 - Key length: 128 bits
 - Number of rounds varies and 32 is considered secure
 - Why need more rounds than DES?

... Previously

Overview

Feistel Cipher

DES

AES

TEA

Next Lesson ...

Appendix

Assuming 32 rounds:

```
(K[0], K[1], K[2], K[3]) = 128 \text{ bit key}
(L, R) = \text{plaintext } (64\text{-bit block})
\text{delta} = 0x9e3779b9
\text{sum} = 0
\text{for } i = 1 \text{ to } 32
\text{sum} += \text{delta}
\text{L} += ((R \leftrightarrow 4) + K[0]) \oplus (R + \text{sum}) \oplus ((R \leftrightarrow 5) + K[1])
\text{R} += ((L \leftrightarrow 4) + K[2]) \oplus (L + \text{sum}) \oplus ((L \leftrightarrow 5) + K[3])
\text{next } i
\text{ciphertext} = (L, R)
```

- « means left (non-cyclic) shift, » means right (non-cyclic) shift
- Based on the algorithm, is TEA a Feistel cipher?

... Previously

Overview

Feistel Cipher

DES

AES

TEA

Next Lesson ...

- To decrypt, "inverse" the encryption
- Assuming 32 rounds:

```
(K[0], K[1], K[2], K[3]) = 128 \text{ bit key}
(L, R) = ciphertext (64-bit block)
delta = 0x9e3779b9
sum << 5
for i = 1 \text{ to } 32
    R = ((L \leftrightarrow 4) + K[2]) \oplus (L + sum) \oplus ((L \rightarrow 5) + K[3])
    L -= ((R (4) + K[0]) \oplus (R + sum) \oplus ((R >> 5) + K[1])
    sum -= delta
next i
ciphertext = (L, R)
```

Block Ciphers 1

... Previously

Overview

Feistel Cipher

DES

AES

TEA

Next Lesson ...

- Block cipher modes
 - > ECB, CBC, CTR
- Uses for symmetric crypto
 - Confidentiality
 - > MAC

Overview

Feistel Cipher

DES

AES

TEA

Next Lesson ...

Appendix

Concepts

Exercises

- Block cipher
- Feistel cipher
 - Substitution vs. permutation
 - > Parameters: block size, key length, number of rounds, round function
- DES
 - ➢ S-box
 - > 3DES
- AES
 - 3 layers: nonlinear, linear mixing & key addition
- 4 functions: ByteSub, ShiftRow, MixColumn, AddRoundKey
- TEA

Concepts

... Previously

Overview

Feistel Cipher

DES

AES

TEA

Next Lesson ...

Appendix

 Consider a Feistel cipher with 3 rounds. For each of the following round function, represent C in terms of L₀, R₀, and subkeys K_i for i from 1 to 8

- $F(R_{i-1}, K_i) = 0$
- $F(R_{i-1}, K_i) = R_{i-1}$
- \succ $F(R_{i-1}, K_i) = K_i$
- Within a single round, DES employs both confusion and diffusion. Given one source of each.
- Which layer(s) in AES are primarily for confusion?
- Draw a diagram to illustrate the round function of TEA (you can use the one for DES on page 12 as a "template")

Block Ciphers 1

... Previously

Overview

Feistel Cipher

DES

AES

TEA

Next Lesson ...

Appendix

References

- Stamp, Mark and Low, Richard M., "Applied Cryptanalysis: breaking ciphers in the real world," John Wiley & Sons, Inc., New Jersey, USA, 2007
- Stallings, William, "Cryptography and Network Security, Principles and Practice, 6th ed.," Pearson, USA, 2014
- Paar, Christof, "Understanding Cryptography," Faller, Berlin, Germany, 2010
- Stamp, Mark, "Information Security, Principles and Practice, 2nd ed.," Wiley,
 New Jersey, USA, 2011