Demonstration: Equitable and Non-equitable Distribution among Categories

Youssoupha Gaye $^{1[0009-0003-6101-9995]}$, Maissa Mbaye $^{1[0000-0002-5748-446X]}$, Dame Diongue $^{1[0000-0002-3452-4174]}$, Ousmane Dieng $^{2[0000-0003-3320-7887]}$, Emmanuel Adetiba 3,4 , and Joke A. Badejo $^{3[0000-0002-5646-7385]}$

¹ Laboratoire d'Analyse Numerique et Informatique/LANI, CEA-MITIC, Gaston Berger University, Saint-Louis PB 234, Senegal

{gaye.youssoupha,maissa.mbaye,dame.diongue}@ugb.edu.sn

Power-management and Real-Time Systems Lab, University of Pittsburgh, Pittsburgh, PA 15260, USA

oud5@pitt.edu

Ovenant Applied Informatics and Communication African Center of Excellence, Covenant University, Ota, Ogun State, Nigeria.

{emmanuel.adetiba, joke.badejo}@covenantuniversity.edu.ng

⁴ HRA, Institute for Systems Science, Durban University of Technology, Durban 1334, South Africa

1 The stabilizer factor

The stabilized factor adjusts the value of H in order to distinguish identifier and evenly distributed categories for a given attribute.

Definition 1. Let p be the relative frequency that represents the probability that a value is in category C(i). The stabilizer factor P is defined as follows:

$$P = \prod_{i=1}^{s} p(x = C(i)), \text{ where } p(x = C(i)) = \frac{n_i}{N} \text{ and } \sum_{n=1}^{S} n_i = N.$$
 (1)

1.1 Case 1: Equitable distribution among categories

- if
$$S = N$$
 then $n_1 = n_2 = n_3 = ... = n_S = 1$

$$P = \frac{n_1}{N} \times \frac{n_2}{N} \times \frac{n_3}{N} \times \dots \times \frac{n_S}{N} = \frac{1}{N^N}$$

- if
$$S \in]1, N[$$
 then $n_1 = n_2 = n_3 = \dots = n_S = a > 1$

$$P = \frac{n_1}{N} \times \frac{n_2}{N} \times \frac{n_3}{N} \times \dots \times \frac{n_S}{N} = (\frac{a}{N})^S$$

Lemma 1. Let D_1 and D_2 be two equitable distributions of the same attribute C(i) with, respectively, S_1 and S_2 as a number of categories so that $S_1 < S_2$. $S_1, S_2, N \in \mathbb{N}^*$. $n_1 = n_2 = ... = n_{S_1} = a_1$; $m_1 = m_2 = ... = m_{S_2} = a_2$

$$\sum_{n=1}^{S_1} n_i = \sum_{m=1}^{S_2} m_i = N \; ; \; P_1 = \prod_{i=1}^{S_1} \frac{n_i}{N} = (\frac{a_1}{N})^{S_1} \; ; \; P_2 = \prod_{i=1}^{S_2} \frac{m_i}{N} = (\frac{a_2}{N})^{S_2}$$

$$S_1 < S_2 \Rightarrow P_1 > P_2 \tag{2}$$

Proof. Let $S_1, S_2, N \in \mathbb{N}^*$; $S_1 < S_2$

$$\frac{P_1}{P_2} = \frac{\left(\frac{a_1}{N}\right)^{S_1}}{\left(\frac{a_2}{N}\right)^{S_2}} \text{ however } N = a_1 S_1 = a_2 S_2, \text{ then}$$

$$= \frac{\left(\frac{a_1}{a_1 S_1}\right)^{S_1}}{\left(\frac{a_2}{a_2 S_2}\right)^{S_2}} = \frac{\left(\frac{1}{S_1}\right)^{S_1}}{\left(\frac{1}{S_2}\right)^{S_2}} = \frac{S_2^{S_2}}{S_1^{S_1}} > 1$$

$$\frac{P_1}{P_2} > 1, \text{ then } P_1 > P_2$$

Conclusion: This mathematical proof demonstrates that when it comes to equitable distribution, the more categories there are, the lower the stabilizing factor's value becomes.

1.2 Case 2: Non-equitable distribution among categories

This is the case when there are at least two categories that do not have the same frequency.

Lemma 2. Let D_1 and D_2 be two non-equitable distributions of the same attribute C(i) with, respectively, S_1 and S_2 as the number of categories so that $S_1 < S_2$.

$$S_1, S_2, N \in \mathbb{N}^*$$
. $(n_{1,i})_{i=1}^{S_1}$ and $(n_{2,i})_{i=1}^{S_2}$ with $\begin{cases} n_{j,i} \in N^*; \ j \in \{1,2\}; \ i \in [1,S_j] \\ \sum_{i=1}^{S_j} n_{j,i} = N \end{cases}$

$$P_{1} = \prod_{i=1}^{S_{1}} \frac{n_{1,i}}{N} ; P_{2} = \prod_{i=1}^{S_{2}} \frac{n_{2,i}}{N}$$

$$S_{1} < S_{2} \Rightarrow P_{1} > P_{2}$$
(3)

Proof. It is established by the recurrence

- **Assumption:** $S_1 < S_2 \Rightarrow P_1 > P_2$ To prove this, we use the following lemma:
- Lemma (To be proved): Let $N \in \mathbb{N}^*$ and $k < N \in \mathbb{N}^*$.

$$If (n_{k,i})_{i=1}^{k} \text{ and } (n_{k+1,i})_{i=1}^{k+1} : \begin{cases} n_{k,i}, \ n_{k+1,i} \in N^* \\ \sum_{i=1}^{k} n_{k,i} = \sum_{i=1}^{k+1} n_{k+1,i} = N \end{cases}$$

then $P_k > P_{k+1}$ with $P_k = \prod_{i=1}^{k} \frac{n_{k,i}}{N}$; $P_{k+1} = \prod_{i=1}^{k+1} \frac{n_{k+1,i}}{N}$

- Proof of the lemma (By recurrence on k) Initialization: k = 1

$$k=1 \; ; \; n_{1,1}=N \Rightarrow P_1=\frac{n_{1,1}}{N}=\frac{N}{N}=1$$
 and $k+1=2 \; ; \; n_{2,1}+n_{2,2}=N \Rightarrow P_2=\frac{n_{2,1}}{N}\times\frac{n_{2,2}}{N}<1$
$$\Rightarrow P_1>P_2$$

Heredity: k < N

It is assumed that for all sequences:

$$(n'_{k,i})_{i=1}^k$$
 and $(n'_{k+1,i})_{i=1}^{k+1}$: $\sum_{i=1}^k n'_{k,i} = \sum_{i=1}^{k+1} n'_{k+1,i} = N$
 $\Rightarrow P'_k > P'_{k+1}$

Let us show that for

$$(n_{k+1,i})_{i=1}^{k+1} \text{ and } (n_{k+2,i})_{i=1}^{k+2} : \sum_{i=1}^{k+1} n_{k+1,i} = \sum_{i=1}^{k+2} n_{k+2,i} = N$$

$$\Rightarrow P_{k+1} > P_{k+2} \text{ (for } k < N-1)$$
Let $(n_{k+1,i})_{i=1}^{k+1}$ and $(n_{k+2,i})_{i=1}^{k+2} : \sum_{i=1}^{k+1} n_{k+1,i} = \sum_{i=1}^{k+2} n_{k+2,i} = N$

Since we are comparing the product of all the terms in the two sequences, we can arbitrarily assume that $(n_{k+1,i})_{i=1}^{k+1}$ is increasing and $(n_{k+2,i})_{i=1}^{k+2}$ is decreasing. (Because the product of integers is commutative)

(i) Let's show that:

$$\exists (l,p) \in [1,k+1] \times [1,k+1] : n_{k+1,l} > n_{k+2,p}$$

By absurdity, we assume that:

$$\forall (l, p) \in [1, k+1] \times [1, k+1], \ n_{k+1, l} < n_{k+2, p}$$

4 Y. Gaye et al.

then for
$$l = p = i \in [1, k+1], \ n_{k+1,i} \le n_{k+2,i}$$

$$\Rightarrow \sum_{i=1}^{k+1} n_{k+1,i} \le \sum_{i=1}^{k+1} n_{k+2,i}$$

however
$$\sum_{i=1}^{k+1} n_{k+1,i} = N$$
 and $\sum_{i=1}^{k+1} n_{k+2,i} = \sum_{i=1}^{k+2} n_{k+2,i} - n_{k+2,k+2}$
= $N - n_{k+2,k+2}$

then $N \leq N - n_{k+2,k+2}$ (Absurd because $n_{k+2,k+2} \in \mathbb{N}^*$)

So
$$\exists (l,p) \in [1,k+1] \times [1,k+1] : n_{k+1,l} > n_{k+2,p}$$

(ii) Let's show that

$$n_{k+1,k} > n_{k+2,k+1}$$

Since it
$$\exists (l, p) \in [1, k+1]^2 : n_{k+1, l} > n_{k+2, p}$$

however $n_{k+1,k} \ge n_{k+1,l}$ because $(n_{k+1,i})_{i=1}^{k+1}$ is increasing

$$n_{k+2,k} \leq n_{k+2,p}$$
 because $(n_{k+2,i})_{i=1}^{k+2}$ is decreasing

$$\Rightarrow n_{k+1,k} \ge n_{k+1,l} > n_{k+2,p} \ge n_{k+2,k+1}$$

$$\Rightarrow n_{k+1,k} > n_{k+2,k+1}$$

(iii) Let's build

$$(n'_{k,i})_{i=1}^k$$
 and $(n'_{k+1,i})_{i=1}^{k+1} : \sum_{i=1}^k n'_{k,i} = \sum_{i=1}^{k+1} n'_{k+1,i} = N$

Let's set
$$n'_{k,i}$$
:
$$\begin{cases} n'_{k,i} = n_{k+1,i} \text{ for } i \in [1, k-1] \\ n'_{k,k} = n_{k+1,k} + n_{k+1,k+1} \end{cases}$$

then
$$\sum_{i=1}^k n'_{k,i} = \sum_{i=1}^{k-1} n'_{k,i} + n'_{k,k}$$
$$= \sum_{i=1}^{k-1} n_{k+1,i} + (n_{k+1,k} + n_{k+1,k+1})$$
$$= \sum_{i=1}^{k+1} n_{k+1,i}$$
$$= N$$

and
$$n'_{k+1,i}$$
:
$$\begin{cases} n'_{k+1,i} = n_{k+2,i} \text{ for } i \in [1,k] \\ n'_{k+1,k+1} = n_{k+2,k+1} + n_{k+2,k+2} \end{cases}$$

then
$$\sum_{i=1}^{k+1} n'_{k+1,i} = \sum_{i=1}^{k+2} n_{k+2,i} = N$$

$$(n'_{k,i})_{i=1}^k \text{ and } (n'_{k+1,i})_{i=1}^{k+1} : \sum_{i=1}^k n'_{k,i} = \sum_{i=1}^{k+1} n'_{k+1,i} = N$$

then $P'_k > P'_{k+1}$ (by heredity hypothesis)

however
$$P'_k = \prod_{i=1}^k \frac{n'_{k,i}}{N} = \underbrace{\prod_{i=1}^{k-1} \frac{n'_{k,i}}{N}}_{A} \times \underbrace{n'_{k,k}}_{N}$$

moreover
$$A = \prod_{i=1}^{k-1} \frac{n'_{k,i}}{N} = \prod_{i=1}^{k-1} \frac{n_{k+1,i}}{N}$$

$$= \prod_{i=1}^{k-1} \frac{n_{k+1,i}}{N} \times \frac{\frac{n_{k+1,k}}{N} \times \frac{n_{k+1,k+1}}{N}}{\frac{n_{k+1,k}}{N} \times \frac{n_{k+1,k+1}}{N}}$$

$$= \prod_{i=1}^{k+1} \frac{n_{k+1,i}}{N} \times \frac{1}{\frac{n_{k+1,k} \times n_{k+1,k+1}}{N^2}} \text{ however } P_{k+1} = \prod_{i=1}^{k+1} \frac{n_{k+1,i}}{N}$$

$$A = P_{k+1} \times \frac{N^2}{n_{k+1,k} \times n_{k+1,k+1}}$$

$$B = \frac{n'_{k,k}}{N} = \frac{n_{k+1,k} + n_{k+1,k+1}}{N}$$

then
$$P_k' = A \times B$$

$$= P_{k+1} \times \frac{N^2}{n_{k+1,k} \times n_{k+1,k+1}} \times \frac{n_{k+1,k} + n_{k+1,k+1}}{N}$$

$$= P_{k+1} \times N \times \frac{n_{k+1,k} + n_{k+1,k+1}}{n_{k+1,k} \times n_{k+1,k+1}}$$

$$P'_{k+1} = \prod_{i=1}^{k+1} \frac{n'_{k+1,i}}{N} = \underbrace{\prod_{i=1}^{k} \frac{n'_{k+1,i}}{N}}_{A'} \times \underbrace{\frac{n'_{k+1,k+1}}{N}}_{B'}$$

$$A' = \prod_{i=1}^{k} \frac{n'_{k+1,i}}{N} = P_{k+2} \times \frac{N^2}{n_{k+2,k+1} \times n_{k+2,k+2}}$$

$$B' = \frac{n'_{k+1,k+1}}{N} = \frac{n_{k+2,k+1} + n_{k+2,k+2}}{N}$$

$$P'_{k+1} = A' \times B'$$

$$= P_{k+2} \times N \times \frac{n_{k+2,k+1} + n_{k+2,k+2}}{n_{k+2,k+1} \times n_{k+2,k+2}}$$

However, we have

$$\begin{split} P_k' > P_{k+1}' &\Rightarrow \frac{P_k'}{P_{k+1}'} > 1 \\ &\Rightarrow \frac{P_{k+1} \times N \times \frac{n_{k+1,k} + n_{k+1,k+1}}{n_{k+1,k} \times n_{k+1,k+1}}}{P_{k+2} \times N \times \frac{n_{k+2,k+1} + n_{k+2,k+2}}{n_{k+2,k+1} \times n_{k+2,k+2}}} > 1 \\ &\Rightarrow \frac{P_{k+1}}{P_{k+2}} > \frac{\frac{n_{k+2,k+1} + n_{k+2,k+2}}{n_{k+2,k+1} \times n_{k+2,k+2}}}{\frac{n_{k+2,k+1} \times n_{k+2,k+2}}{n_{k+1,k} \times n_{k+1,k+1}}} \\ &\Rightarrow \frac{P_{k+1}}{P_{k+2}} > \frac{n_{k+2,k+1} + n_{k+2,k+2}}{n_{k+2,k+1} \times n_{k+2,k+2}} \times \frac{n_{k+1,k} \times n_{k+1,k+1}}{n_{k+1,k} \times n_{k+1,k+1}} \end{split}$$

• $n_{k+2,k+1} + n_{k+2,k+2} \ge 2n_{k+2,k+2}$ because $(n_{k+2,i})_{i=1}^{k+2}$ is decreasing

$$\Rightarrow \frac{n_{k+2,k+1} + n_{k+2,k+2}}{n_{k+2,k+1} \times n_{k+2,k+2}} \ge \frac{2n_{k+2,k+2}}{n_{k+2,k+1} \times n_{k+2,k+2}}$$
$$\ge \frac{2}{n_{k+2,k+1}} \tag{1}$$

• $n_{k+1,k} + n_{k+1,k+1} \le 2n_{k+1,k+1}$ because $(n_{k+1,i})_{i=1}^{k+1}$ is increasing

$$\Rightarrow \frac{n_{k+1,k} + n_{k+1,k+1}}{n_{k+1,k} \times n_{k+1,k+1}} \ge \frac{2n_{k+1,k+1}}{n_{k+1,k} \times n_{k+1,k+1}} = \frac{2}{n_{k+1,k}}$$
$$\Rightarrow \frac{n_{k+1,k} \times n_{k+1,k+1}}{n_{k+1,k} + n_{k+1,k+1}} \le \frac{n_{k+1,k}}{2} \tag{2}$$

(1) and (2)
$$\Rightarrow \frac{P_{k+1}}{P_{k+2}} > \frac{2}{n_{k+2,k+1}} \times \frac{n_{k+1,k}}{2}$$

 $> \frac{n_{k+1,k}}{n_{k+2,k+1}}$ however $n_{k+1,k} \ge n_{k+2,k+1}$
 $\Rightarrow \frac{P_{k+1}}{P_{k+2}} > 1$
 $\Rightarrow P_{k+1} > P_{k+2}$

Conclusion: $N \in \mathbb{N}^*$ and $k < N \in \mathbb{N}^*$

$$(n_{k,i})_{i=1}^k$$
 and $(n_{k+1,i})_{i=1}^{k+1}$:
$$\begin{cases} n_{k,i}, & n_{k+1,i} \in N^* \\ \sum_{i=1}^k n_{k,i} = \sum_{i=1}^{k+1} n_{k+1,i} = N \end{cases}$$
then $P_k > P_{k+1}$ with $P_k = \prod_{i=1}^k \frac{n_{k,i}}{N}$ and $P_{k+1} = \prod_{i=1}^{k+1} \frac{n_{k+1,i}}{N}$

We have thus proved the lemma.

- Proof (Assumption)

$$S_1 < S_2 \Rightarrow S_2 = S_1 + m \text{ (with } m = S_2 - S_1)$$

From the lemma

$$P_{S_1} > P_{S_1+1} > P_{S_1+2} > \dots > P_{S_1+m}$$

however $P_{S_1} = P_1$ and $P_{S_1+m} = P_{S_2} = P_2$
then $P_1 > P_2$