John D. Kanu

4112 Brendan Iribe Center 8125 Paint Branch Dr College Park, MD 20740 ↑ +1 (240) 444 2919 □ jdkanu@cs.umd.edu

Research Interests

Artificial intelligence, robotics, machine learning, robotic learning, planning

Education

2018-Present PhD in Computer Science, University of Maryland, College Park.

Advisor: William C. Regli, Co-advisor: Yiannis Aloimonos

2014–2018 **BS in Computer Science**, *University of Maryland*, College Park.

2014–2018 **BS in Mathematics**, *University of Maryland*, College Park.

Conference Publications

2019 Regression and Classification for Direction-of-Arrival Estimation with Convolutional Recurrent Neural Networks

Zhenyu Tang, John Kanu, Kevin Hogan, Dinesh Manocha. Interspeech 2019.

Papers in Preparation

2020 Following Instructions by Imagining and Reaching Visual Goals

John Kanu, Eadom Dessalene, Xiaomin Lin, John Aloimonos. IJCAI 2020.

2020 Robot-Agnostic Action Representations John Kanu, Jacob Bunker, William Regli. IROS 2020.

Presentations

2019 Regression and Classification for Direction-of-Arrival Estimation with Convolutional Recurrent Neural Networks

Zhenyu Tang, John Kanu, Kevin Hogan, Dinesh Manocha. Interspeech 2019.

Research Experience

May **Graduate Research Assistant**, Institute for Systems Research (UMD).

2019—present Developing physics-based, robot-agnostic action representations for generating executable code from high-level robot actions, integrated within a functional interoperable compiler.

Apr PhD Student Researcher, Perception and Robotics Group (UMD).

2019—present Developed a novel architecture for training agents to follow instructions by imagining and reaching visual goals. Running experiments on a real-world Sawyer robot.

Oct 2018— **PhD Student Researcher**, Geometric Algorithms for Modeling, Motion, and Ani-Mar 2019 mation (UMD).

Developed a novel learning-based approach to estimate the direction of arrival (DOA) of sound sources using convolutional recurrent neural networks

- New formulations yielded an improvement in accuracy over two other models on the LOCATA and SOFA benchmarks
- Developed a method to generate synthetic data to train deep neural networks using state-of-the-art sound propagation algorithms
- Aug 2017 Undergraduate Research Assistant, University of Maryland.
- Dec 2017 Implemented handwriting recognition and arm control capabilities for the Baxter robot within the ROS framework
- Jun 2014- Student Volunteer, US Naval Research Laboratory (NRL), Washington, DC.
- Aug 2014 Analyzed unmanned aerial vehicle (UAV) flight data to optimize flight control systems.
 - Worked with a team of US NRL researchers and developed a data analysis pipeline employing statistical and machine learning methods

Computer Skills

Programming Python, C++, C, Matlab, Prolog, OCaml, Ruby, Java Languages

Al and ML TensorFlow, PyTorch, Keras, Scikit-learn, OpenCV, Robot Operating System (ROS), MuJoCo

OS Linux, Ubuntu, Windows

Writing LATEX

Teaching

- Spring 2019 Introduction to Machine Learning (CMSC 422), University of Maryland. Instructor: Professor James Reggia
 - Fall 2018 Introduction to Machine Learning (CMSC 422), University of Maryland. Instructor: Professor William Regli
- Spring 2018 Introduction to Artificial Intelligence (CMSC 421), University of Maryland. Instructor: Professor James Reggia
 - Fall 2017 Introduction to Machine Learning (CMSC 422), University of Maryland. Instructor: Professor James Reggia
- Spring 2017 Introduction to Artificial Intelligence (CMSC 421), University of Maryland. Instructor: Professor Don Perlis
 - Fall 2016 Introduction to Machine Learning (CMSC 422), University of Maryland. Instructor: Professor VS Subrahmanian

Honors and Awards

2016-Present Upsilon Pi Epsilon International Honor Society.

2017–2018 David E. Eisner Scholarship.

2016–2017 John D. Gannon Scholarship.

2015–2018 Computer Science Departmental Honors.