MULTIPLE CORRECT (OBJECTIVE QUESTIONS) EXERCISE - II

- **1.** If $|z_1 + z_2|^2 = |z_1|^2 + |z_2|^2$ then
- (A) $\frac{z_1}{z_2}$ is purely real (B) $\frac{z_1}{z_2}$ is purely imaginary
- (C) $z_1 \overline{z}_2 + z_2 \overline{z}_1 = 0$ (D) amp $\frac{z_1}{z_2}$ may be equal to $\frac{\pi}{2}$
- **2.** The equation |z i| + |z + i| = k, k > 0, can represent
- (A) an ellipse if k > 2
- (B) line segment if k = 2
- (C) an ellipse if k = 5
 - (D) line segment if k = 1
- **3.** The equation ||z + i| |z i|| = k represents
- (A) a hyperbola if 0 < k < 2 (B) a pair of ray if k > 2
- (C) a straight line if k = 0
 - (D) a pair of ray if k = 2
- 4. POQ is a straight line through the origin O, P and Q represent the complex number a + i b and c + i d respectively and OP = OQ. Then
- (A) |a + ib| = |c + id|
- (B) a + c = b + d
- (C) arg(a + ib) = arg(c + id) (D) None of these
- **5.** If z satisfies the inequality $|z 1 2i| \le 1$, then
- (A) min (arg (z)) = $\tan^{-1} \left(\frac{3}{4} \right)$ (B) max (arg(z)) = $\frac{\pi}{2}$
- (C) min (|z|) = $\sqrt{5}$ 1 (D) max (|z|) = $\sqrt{5}$ +1
- **6.** If z is a complex number then the equation
- $z^2 + z |z| + |z^2| = 0$ is satisfied by
- (ω and ω^2 are imaginary cube roots of unity)
- (A) $z = k\omega$ where $k \in R$
- (B) $z = k\omega^2$ where k is non negative real
- (C) $z = k\omega$ where k is positive real
- (D) $z = k \omega^2$ where $k \in R$
- **7.** If $2 \cos \theta = x + \frac{1}{x}$ and $2 \cos \varphi = y + \frac{1}{y}$, then
- (A) $x^{n} + \frac{1}{y^{n}} = 2 \cos(n\theta)$ (B) $\frac{x}{y} + \frac{y}{x} = 2 \cos(\theta \phi)$
- (C) $xy + \frac{1}{xy} = 2 \cos(\theta + \phi)$ (D) None of these
- **8.** The value of $i^n + i^{-n}$, for $i = \sqrt{-1}$ and $n \in I$ is
- (A) $\frac{2^n}{(1-i)^{2n}} + \frac{(1+i)^{2n}}{2^n}$ (B) $\frac{(1+i)^{2n}}{2^n} + \frac{(1-i)^{2n}}{2^n}$
- (C) $\frac{(1+i)^{2n}}{2^n} + \frac{2^n}{(1-i)^{2n}}$ (D) $\frac{2^n}{(1+i)^{2n}} + \frac{2^n}{(1-i)^{2n}}$

- 9. ABCD is a square, vertices being taken in the anticlockwise sense. If A represents the complex number z and the intersection of the diagonals is the origin then
- (A) B represents the complex number iz
- (B) D represents the complex number i \bar{z}
- (C) B represents the complex number $i\bar{z}$
- (D) D represents the complex number iz
- **10.** If g(x) and h(x) are two real polynomials such that the polynomial $g(x^3) + xh(x^3)$ is divisible by $x^{2} + x + 1$, then (C) g(1) = -h(1) (B) $g(1) = h(1) \neq 0$ (D) g(1)

- (D) g(1) + h(1) = 0