Optimization and Common Tricks

Jeremy Chow 16-2-2019

Motivation

- As problem size increase, the run time required may not increase linearly
- For example, the bubble sort algorithm requires O(N^2) comparisons

Motivation

- If you received TLE verdicts, optimizations may help you
- Every experienced competitive programmers should know
- Usually we don't care about constant optimizations
- Our goal is to reduce the time complexity
 - \triangleright e.g. from O(N²) to O(N lg N) or O(N)
 - \triangleright e.g. from O(QN) to O(Q lg N) or O(Q)

Optimization and Common Tricks

- Avoid linear scans
- Avoid repeated computation
- Use memory to exchange time
- Scale down the numbers

Agenda

- Parital sum / difference array
- Precomputation
- Sliding window (Two Pointers)
- Finding cycle
- discretization (1D / 2D)

1D Partial sum - Problem

Given an array of integers and Q queries, for each query, find out the sum of a contiguous section of the array

1	2	3	4	5	6	7	8
2	1	0	4	2	0	1	8

1D Partial sum - Problem

Given an array of integers and Q queries, for each query, find out the sum of a contiguous section of the array

1	2	3	4	5	6	7	8
2	1	0	4	2	0	1	8

- For each query
- loop over the required contiguous section of the array
- add up all numbers

❖ Good! But...

```
for (int i = 0; i < q; i++) {
    int l, r;
    scanf("%d%d", &l, &r);

    long long sum = 0;
    for (int j = l; j <= r; j++) sum += a[j];
    printf("%lld\n", sum);
}</pre>
```

What happen when the input is like this

- What happen when the input is like this
- For each query, you need to loop over the whole array
- Worse case time complexity: O(QN)

```
for (int i = 0; i < q; i++) {
    int l, r;
    scanf("%d%d", &l, &r);

    Loop N times per query
    long long sum = 0;

    for (int j = l; j <= r; j++) sum += a[j];

    printf("%lld\n", sum);
}</pre>
```

- ❖ SLOW!!!!
- ♦ When N and Q are large (~10^5), you can't solve it within a second
- Need optimization
 - Avoid linear scans, precompute

- We compute another array ps
 - Stands for Partial Sum
- The ith element = sum of the numbers in [1..i]

- Use this array to help us calculate the answer faster
- Avoid repeated computation over different queries

- How to compute it?
- \Rightarrow By definition ps[i] = sum(1, i) = a[1] + a[2] + a[3] + ... + a[i]
- for (int i = 1; i <= n; i++) {
 ps[i] = ps[i 1] + a[i];
 }</pre>

Be careful if you are using 0-based

- ❖ How to compute it?
- \Rightarrow By definition ps[i] = sum(1, i) = a[1] + a[2] + a[3] + ... + a[i]
- ps[i] = ps[i 1] + a[i]

idx	1	2	3	4	5	6	7	8
a[i]	2	1	0	4	2	0	1	8
ps[i]	2	3	3	7	9	9	10	18

$$ps[5] = ps[4] + a[4] = 7 + 2 = 9$$

- How to compute it?
- \Rightarrow By definition ps[i] = sum(1, i) = a[1] + a[2] + a[3] + ... + a[i]
- ps[i] = ps[i 1] + a[i]

idx	1	2	3	4	5	6	7	8
a[i]	2	1	0	4	2	0	1	8
ps[i]	2	3	3	7	9	9	10	18

$$ps[5] = 2 + 1 + 0 + 4 + 2 = 9$$

- How does this array help us?
- sum in [l..r] = sum in [1..r] sum in [1..l-1]!
- For example
 - \rightarrow sum in [2..5] = sum in [1..5] sum in [1..1]
 - \Rightarrow = (a[1] + a[2] + a[3] + a[4] + a[5]) (a[1])
 - \Rightarrow = a[2] + a[3] + a[4] + a[5]

- How does this array help us?
- sum in [l..r] = sum in [1..r] sum in [1..l-1]!
- We can compute sum in [l..r] by just visiting 2 entries of ps!

idx	1	2	3	4	5	6	7	8
a[i]	2	1	0	4	2	0	1	8
ps[i]	2	3	3	7	9	9	10	18

$$9-2=7=1+0+4+2$$

- Time complexity: O(Q+N)
- Much better than O(QN)
- Can pass even when N and Q is large
- Remainder
 - ➤ Use long long when the range of elements is large (e.g. ai <= 10^9)
 - ➤ Be careful if you use 0-based (I = 0)

```
for (int i = 0; i < q; i++) {
    int l, r;
    scanf("%d%d", l, &r);

    long long sum = ps[r] - ps[l - 1];
    printf("%lld\n", sum);
}</pre>
```

2D Partial sum - Problem

Given a 2D array of integers and Q queries, for each query, find out the sum of a

rectangular region

i\j	1	2	3	4	5
1	4	2	6	8	2
2	3	1	9	8	3
3	5	8	0	7	0
4	4	9	6	8	4
5	2	1	0	1	2

$$6+8+2+9+8+3+0+7+0=43$$

- For each query
- loop over the required rectgular region
- add up all nubmers

```
for (int i = 0; i < q; i++) {
    int x1, y1, x2, y2;
    scanf("%d%d%d%d", &x1, &y1, &x2, &y2);

    long long sum = 0;
    for (int j = x1; j <= x2; j++) {
        for (int k = y1; k <= y2; k++) sum += a[j][k];
    }

    printf("%lld\n", sum);
}</pre>
```

- Again, when all Q queries ask for the whole array's sum
- Worst case time complexity = O(QNM)
- TLE when Q, N and M = 1000
- Use idea of 1D partial sum to optimise it

- For each row, we apply 1D parital sum
- For each query, we loop over the required row
- add the required interval sum for each row

i∖j	1	2	3	4	5
1	4	2	6	8	2
2	3	1	9	8	3
3	5	8	0	7	0
4	4	9	6	8	4
5	2	1	0	1	2

i\j	1	2	3	4	5
1	4	6	12	20	22
2	3	4	13	21	24
3	5	13	13	20	20
4	4	13	19	27	31
5	2	3	3	4	6

$$sum[i][I..r] = ps[i][r] - ps[i][I - 1]$$

i∖j	1	2	3	4	5
1	4	2	6	8	2
2	3	1	9	8	3
3	5	8	0	7	0
4	4	9	6	8	4
5	2	1	0	1	2

i\j	1	2	3	4	5
1	4	6	12	20	22
2	3	4	13	21	24
3	5	13	13	20	20
4	4	13	19	27	31
5	2	3	3	4	6

Query
$$((1,3), (3,5)) = (22-6)+(24-4)+(20-13) = 43$$

- Time complexity: O(QN) or O(Q * min(N,M))
- Improved
- But not good enough

Can we do better?

- In 1D version, sum in [l..r] = sum in [1..r] sum in [1..l-1]
- Can we get some similar formula in 2D version?

- Magenta = Yellow Red Blue + Green
- sum((2,2), (3,3)) = sum((1,1), (3,3)) -
- * sum((1, 1), (3, 1)) sum((1, 1), (1,3)) +
- \star sum((1, 1), (1,1))

i∖j	1	2	3	4	5
1	4	6	12	20	22
2	3	4	13	21	24
3	5	13	13	20	20
4	4	13	19	27	31
5	2	3	3	4	6

- Compute another array ps
- ps[i][j] = sum in [1..i][1..j]
 - \Rightarrow = a[i][j] + ps[i 1][j] + ps[i][j 1] ps[i 1][j 1];

```
for (int i = 1; i <= n; i++) {
    for (int j = 1; j <= m; j++) {
        ps[i][j] = a[i][j] + ps[i - 1][j] + ps[i][j - 1] - ps[i - 1][j - 1];
    }
}</pre>
```

i\j	1	2	3
1	4	6	12
2	3	4	13
3	5	13	13
i\j	1	2	3
i\j 1	1	10	22

- \Rightarrow Ans = ps[x2][y2] ps[x2][y1-1] ps[x1-1][y2] + ps[x1-1][y1-1]
- Time complexity = O(Q+NM)
- Partial sum always appear in OI
- Should be able to code it

```
for (int i = 0; i < q; i++) {
    int x1, y1, x2, y2;
    scanf("%d%d%d%d", &x1, &y1, &x2, &y2);

    long long sum = ps[x2][y2] - ps[x2][y1 - 1] - ps[x1 - 1][y2] + ps[x1 - 1][y1 - 1];

    printf("%lld\n", sum);
}</pre>
```

1D Difference array - Problem

- There are Q queries, each query add value vi to the contiguous section of the array, find the final value of the array
- ❖ ADD 3 to [2..5]

idx	1	2	3	4	5
a_i	0	3	3	3	3

♦ ADD 4 to [1..3]

idx	1	2	3	4	5
a_i	4	7	7	3	3

1D Difference array - Naïve solution

- For each query, loop that contiguous section
- add vi to them
- Time complexity O(QN)
- Can we do better?

```
for (int i = 0; i < q; i++) {
    int l, r, v;
    scanf("%d%d%d", &l, &r, &v);

    for (int j = l; j <= r; j++) a[j] += v;
}</pre>
```

1D Difference array - Solution

- ❖ Define a new array *d*
- ❖ d[i] = a[i] a[i 1]
- If we can find array d, we can get array a easily by a[i] = d[i] + a[i 1]

idx	1	2	3	4	5
a_i	4	7	7	3	3
idx	1	2	3	4	5
d_i	4	3	0	-4	0

1D Difference array - Solution

- Imagine what happen when we add vi on the contiguous section [l..r]
- The difference between a[l] and a[l 1] will + vi
- The difference between a[r+1] and a[r] will vi
- We only need to update 2 values (d[l] and d[r+1]) instead of (l-r+1) values

1D Difference array - Solution

- Time complexity = O(N + Q)
- Way better than O(NQ)
- Frequently used technique

```
for (int i = 0; i < q; i++) {
    int l, r, v;
    scanf("%d%d%d", &l, &r, &v);
    d[l] += v;
    d[r + 1] -= v;
}

for (int i = 1; i <= n; i++) a[i] = a[i - 1] + d[i];</pre>
```

1D Difference array - Variation

- Instead of just adding a constant
- We can actually add an arithmetic sequence to the subarray
- \bullet E.g. add an arithmetic sequence to a[2..5], where initial value = 4, difference = 5

idx	1	2	3	4	5
a_i	0	4	9	14	19

1D Difference array - Variation

- Let the initial value be A, difference be D
- ❖ an arithmetic sequence = a constant (A D) + (D, 2D, 3D)
- **E.g.** (4, 9, 14, 19), A = 4, D = 5
- \bullet = [-1, -1, -1, -1,] + [5, 10, 15, 20,]

idx	1	2	3	4	5
a_i	0	4	9	14	19

- **E.g.** (4, 9, 14, 19), A = 4, D = 5
- \bullet = [-1, -1, -1, -1, ...] + [5, 10, 15, 20,]
- The first part is just our original 1D difference array problem
- But how to do the second part?

idx	1	2	3	4	5
a_i	0	4	9	14	19

- We can still apply the difference array technique
- a[i] = a[i 1] + D
- Can be easily done by for loop
- However, there are multiple query, and the query does not always start from 1 and end in N

- If i is involved in more than 1 arthmetic squence
- a[i] = a[i 1] + sum[i], where sum[i] = sum of D which i is involved
- **E.g** add (3, 6, 9, ...) to a[1..4] and add (4, 8, 12, ...) to B[2..5]
- sum[3] = 3 + 4 = 7, a[3] = a[2] + sum[2] = 10 + 7 = 17

idx	1	2	3	4	5
a[i]	3	10	17	24	16

- sum[i] can also be calculate by difference array
- So we can solve the problem now:)
- Remember to cancel the effect of query on (l..r) after r
- sum[r + 1] -= (r l + 1) * D
- sum[r+2] += (r-l+1) * D

- \clubsuit E.g. add $\{2, 5, 8, 11\}$ (A = 2, D = 3) to B[1..4] -> C[1] += -1, C[5] -= -1
- 4 add $\{2, 6, 10, 14\}$ (A = 2, D = 4) to B[2..5] -> C[2] += -2, C[6] -= -2

idx	1	2	3	4	5
C[i]	-1	-2	0	0	1
idx	1	2	3	4	5
C[i]	-1	-3	-3	-3	-2

- \clubsuit E.g. add $\{2, 5, 8, 11\}$ (A = 2, D = 3) to B[1..4]
 - > SUM[1] += 3, SUM[5] -= 3 + 12, SUM[6] += 12
- \Rightarrow add $\{2, 6, 10, 14\}$ (A = 2, D = 4) to B[2..5]
 - > SUM[2] += 4, SUM[6] -= 4 + 16, SUM[7] += 16

idx	1	2	3	4	5
SUM[i]	3	4	0	0	-15

idx	1	2	3	4	5
SUM[i]	3	4	0	0	-15
idx	1	2	3	4	5
SUM[i]	3	7	7	7	-8
idx	1	2	3	4	5
SUM[i]	3	10	17	24	16

- A[i] = SUM[i] + C[i]
- Arr Time Complexity = O(Q + N)
- Cool

```
for (int i = 0; i < q; i++) {
     int 1, r, a, d;
      scanf("%d%d%d%d", &1, &r, &a, &d);
     c[1] += a - d;
     c[r + 1] -= a - d;
     sum[1] += d;
     sum[r+1] -= d + (r-1+1) * d;
     sum[r + 2] += (r - 1 + 1) * d;
for (int i = 1; i \le n; i++) sum[i] += sum[i - 1];
for (int i = 1; i <= n; i++) {
     sum[i] += sum[i - 1];
     c[i] += c[i - 1];
     a[i] = sum[i] + c[i];
for (int i = 1; i <= n; i++) printf("%d\n", a[i]);
```

2D Difference array - Problem

- There are Q queries, each query add vi to the rectangular region of the matrix, find the final value of the matrix
- Same as partial sum, difference array can be applied to 2D too
- Naïve solution works in O(QNM)
- ♦ ADD 5 to [1..3, 1..3]

0	0	0	0	0
0	5	5	5	0
0	5	5	5	0
0	5	5	5	0
0	0	0	0	0

- Define a new array d
- d[i][j] = a[i][j] a[i][j 1] a[i 1][j] + a[i 1][j 1]
- Imagine what happen when we add vi on the rectangular region [x1..x2, y1..y2]
- d[x1][y1] += v, d[x1][y2 + 1] -= v, d[x2 + 1][y1] -= v, d[x2 + 1][y2 + 1] += v;
- We only need to update 4 value per query

- d[x1][y1] += v, d[x1][y2 + 1] -= v, d[x2 + 1][y1] -= v, d[x2 + 1][y2 + 1] += v;
- We only need to update 4 value per query

```
for (int i = 0; i < q; i++) {
    int x1, y1, x2, y2, v;
    scanf("%d%d%d%d", &x1, &y1, &x2, &y2, &v);

    d[x1][y1] += v;
    d[x1][y2 + 1] -= v;
    d[x2 + 1][y1] -= v;
    d[x2 + 1, y2 + 1] += v;
}</pre>
```

❖ After getting array d, we can get array a easily by

$$\Rightarrow$$
 a[i][j] = a[i - 1][j] + a[i][j - 1] - a[i - 1][j - 1] + d[i][j]

0	0	0	0	0
0	5	0	0	-5
0	0	0	0	0
0	0	0	0	0
0	-5	0	0	5

0	0	0	0	0
0	5	5	5	0
0	5	5	5	0
0	5	5	5	0
0	0	0	0	0

Time complexity = O(NM + Q)

```
for (int i = 1; i <= n; i++) {
    for (int j = 1; j <= m; j++) {
        a[i][j] = a[i - 1][j] + a[i][j - 1] - a[i - 1][j - 1] + d[i][j];
    }
}</pre>
```

Precomputation - Problem

- ❖ Given a string consists of 'A' and 'B' and Q queries, for each query qi, you need to find the closest "B" which index is <= qi
- AABAAABBA
- **♦** Q3->3
- ♦ Q9->8

Precomputation - Naïve solution

- For each query, loop over all the index <= qi</p>
- Time complexity = O(QN)
- With the help of precomputation, we can improve it!

Precomputation - Solution

- Build a array It, which It[i] means the last "B" which index <= i</p>
- AABAAABBA

idx	1	2	3	4	5	6	7	8	9
lt_i	-1	-1	3	3	3	3	7	8	8

Precomputation - Solution

- You can build that array easily in O(N)
- For each query, you just need to print the precomputed lt[qi]
- Time complexity = O(Q+N)

```
for (int i = 0; i < n; i++) {
    if (s[i] == 'B') lt[i] = i;
    else if (i > 0) lt[i] = lt[i - 1];
    else lt[i] = -1;
}

for (int i = 0; i < q; i++) {
    int x;
    scanf("%d", &x);

    if (lt[x] == -1) printf("no B before x\n");
        else printf("%d\n", lt[x]);
}</pre>
```

Precomputation - Solution

- useful array to be precomputed
 - Prefix / suffix sum (partial sum)
 - Prefix / suffix max / min
 - Prefix / suffix xor sum
 - Prefix / suffix count
 - number of odd numbers
 - number of "*"
 - index of last special element

Two pointers - Problem

Given two sorted array of integers a and b, find the number of pair (i, j) such that

$$ai + bj = C$$

*	when $C = 20$	3	6	

		•			. •	•-	•				
*	when C = 20	3	6	6	7	13	14	15	18	19	

$$ANS = 3\{(1, 9), (2, 7), (6, 3)\}$$

Two pointers - Naïve solution

- For each element in a, loop over array b
- count how many ai + bj = C
- Arr Time complexity = O(N^2)
- Hint: Sorted array

Two pointers - Binary search solution

For each element in a, binary search the count of numbers

such that bj = C - ai

- Need two binary search if the numbers are not distinct
- However, we can improve it more

Two pointers - Solution

- Just like binary search, two pointers can improve the algorithm by avoiding impossible case
- Also, it avoid repeated checking.

Two pointers - Solution

- Notice array a and b is sorted, let's assume we are loop the array a
- ❖ For each ai, our target is the elements in b equal to C ai
- ❖ When i grow, ai is increasing, so our target C ai is decreasing
- For the number larger than C ai, we don't need to consider it in i + 1, i + 2, ..., n
- Avoid impossible case

Two pointers - Solution TARGET = 20

1	5	8	10	12	14	14	18	25
3	5	6	7	13	14	15	18	19
1	5	8	10	12	14	14	18	25
3	5	6	7	13	14	15	18	19
3	J	U		13	17	13	10	15
1	5	8	10	12	14	14	18	25
3	6	6	7	13	14	15	18	19
1	5	8	10	12	14	14	18	25
3	6	6	7	13	14	15	18	19
100					20 (20)			202
1	5	8	10	12	14	14	18	25
3	6	6	7	13	14	15	18	19

Two pointers - Solution

- As both pointers traverse the array once
- Time complexity = O(N)
- We usually use while loop to implement
- Easy to code

Assist pointer

```
int j = n - 1;
int res = 0;

Main pointer

for(int i = 0; i < n; i++) {
    while(j >= 0 && b[j] > c - a[i])
    j--;

if(j >= 0 && a[i] + b[j] == c)
    res++;
}
```

Two pointers - When to use

- On sorted array
- Things we want to find have monotonicity
- e.g. sum, count of sth etc.

Other techniques - finding cycles

- ❖ In some simulation problems, we may need to simulate N steps
- However, N is really large (e.g. ~10^18)
- ❖ TLE if you do O(N) simulate

Other techniques - finding cycles

- Usually in this type of problems, some state will form a cycle
- ❖ You need to find out the cycle and the branch to quickly simulate it.
- \Rightarrow branch = 2, cycle = 4
- E.g. walk 98 steps from 1
- $ANS = ((98 2) \% 4) + 3^{th}$ state in the cycle = state 3
- Time complexity = O(no. of state)

- ◆ Discretization (離散法) is a technique that converts values (not necessarily integers) into integers, while maintaining their relative order
- Example: 7654321, 123456, 934602, 123456789
 -> 3, 1, 2, 4 (or 2, 0, 1, 3)
- Put the values into an array, sort the array
 - > 123456, 934602, 7654321, 123456789
- For each value in the original array, find its rank using binary search

- Discretize large numbers into smaller numbers
- Handle data easily
- E.g count the number of occurrence of some numbers in array a
- Counting with array after discretization

```
vector <int> v;
for (int i = 0; i < n; i++) v.push_back(a[i]);
sort(v.begin(), v.end());
v.resize(unique(v.begin(), v.end()) - v.begin());
for (int i = 0; i < n; i++) a[i] = lower_bound(v.begin(), v.end(), a[i]) - v.begin();</pre>
```

- ◆ 座標壓縮
- useful when the coordinates are large
- can perform dfs / bfs on the compressed grid
 - > e.g. find the number of connected component

