周报 (2023.2.27) 姓名: 孙瑞阳 (请假)

科研详情

文献阅读

文献 1

题目: Crowdsourced geospatial data is reshaping urban sciences

作者: Xiao Huang, Siqin Wang, Tianjun Lu, Yisi Liu, Leticia Serrano-Estrada

出处: International Journal of Applied Earth Observation and Geoinformation 2024

方法:

Fig. 1. A summary of advantages of crowdsourced geospatial data and their applications in numerous urban science domains.

众源数据包括但不限于社交媒体平台、街景图像、手机 GPS 信号、智能手机应用程序、交易记录、在线地图服务以及公众众包的传感器数据。这种创新的众源数据收集方法在全球个人贡献的推动下,为访问原本尚未开发的数据提供了可能性。

这篇综述关注于众源地理空间数据如何改变城市科学领域。将研究分为五个主要领域: 1) 旅游业, 2) 城市视觉和感知, 3) 城市基础设施和功能, 4)流动性和交通, 以及 5) 其他,并进一步讨论该领域未来研究面临的挑战和机遇。

opportunities:

- 1. 与传统的数据收集方法相比,众包数据具有实时性的优势
- 2. 众源数据的多功能性。可以对城市的理解:从环境条件和交通模式到公众情绪和社会动态。
- 3. 众源数据的数据的质量和可靠性是需要解决的挑战性
- 4. 众源数据会带来复杂的隐私和道德问题

5.

展望:

- 1. 先进分析工具和算法的开发,特别是利用机器学习和人工智能,对生成庞大且多 样化的数据集至关重要。
- 2. 加强公众对数据收集、分析的参与。从而产生更有意义和影响力的研究成果。
- 3. 城市科学跨学科合作依然也是重要的发展方向。融合地理学、计算机科学、社会学、环境科学和其他相关学科的专业知识。

启发:

- 1. 综述里的一些工作在详细看
- 2. 这篇综述对现有公开众源数据源和代码也没有进行梳理展示

文献2

题目: Spatiotemporal Fusion Transformer for large-scale traffic forecasting

作者: Zhenghong Wang, Yi Wang, Furong Jia, Fan Zhang, Nikita Klimenko, Leye Wang, Zhengbing He, Zhou Huang, Yu Liu

出处: Information Fusion 2024

方法:

针对覆盖更大地理区域和更长时间跨度的交通流预测。提出了Spatiotemporal Fusion Transformer for large-scale traffic forecasting (STFT)。

在 Transformer 架构之上提出了三个模块,以解决大规模交通系统的固有模型效率、长期季节性和数据异常问题: Tublet Embedding、Seasonality Encoding 和 Token Permutator。

- (i) 季节性编码,基于流量固有的多周期性,以便于从复杂模式中提取更可预测的时变组件。
- (ii) Tubelet Embedding,将输入划分为 Tubelet,作为 Transformer 的输入标记。 Tubelet 设计不仅实现了计算和内存使用量的二次减少,而且还增强了时空局部性特征建模。
- (iii) token排列器,利用扩散图将时空动态建模为令牌排列过程。然后由提出的 Hadamard Mapper 投影图表示,以规避图神经网络在大规模计算中的异常敏感性。五

Fig. 1. Overall framework of STFT for collaborative forecasting of large-scale traffic flow. Left: the bottom-up layout of feature construction and interaction in STFT. Center: the overall architecture. Left: the detailed process of Seasonality Encoding.

实验在五个不同尺度的真实世界数据集上进行了实验,其中包括一个地级市级数据集、一个县级数据集、一个市级数据集和两个国家级数据集。

Table 3

Forecasting performance at each dataset scale level. The rest of the baseline performance results are cited from prior works [8,12]. The best results are bolded in red, the second-best are in purple, and the third are in blue.

Scale level	Subdivision						County			Municipal			State					
Dataset	PeMS03 (358)			PeMS07 (883)			SD (786)			LA (3834)			CA-19 (8600)			CA-18 (11,160) ^a		
Metric	MAE	RMSE	MAPE	MAE	RMSE	MAPE	MAE	RMSE	MAPE	MAE	RMSE	MAPE	MAE	RMSE	MAPE	MAE	RMSE	MAPE
LSTM	21.33	35.11	23.33%	29.98	45.94	13.20%	26.44	41.73	17.20%	28.05	44.38	17.23%	26.89	43.11	20.16%	19.67	33.12	17.54%
STGCN (18')	17.52	30.23	17.08%	24.58	37.51	10.65%	19.67	34.14	13.86%	22.64	38.81	14.17%	21.33	36.39	16.53%	20.45	33.36	20.90%
DCRNN (18')	17.86	29.74	18.30%	23.87	37.27	10.50%	21.03	33.37	14.13%	23.17	36.19	14.40%	21.87	34.41	17.06%	19.64	32.38	18.29%
GWNET (19')	19.12	32.77	18.89%	26.39	41.50	11.97%	17.74	29.62	11.88%	21.20	33.58	13.18%	21.72	34.20	17.40%	18.44	30.72	16.71%
ASTGCN (20')	18.05	30.13	17.02%	25.22	38.83	11.41%	23.70	37.63	15.65%	28.99	44.33	19.62%	\	\	\	\	\	\
AGCRN (20')	15.98	28.25	15.23%	22.37	36.55	9.12%	18.09	32.01	13.28%	20.25	34.84	12.87%	\	\	\	\	\	\
STTN (21')	16.11	27.87	16.19%	21.34	34.59	9.93%	18.69	31.11	12.82%	\	\	\	\	\	\	\	\	\
STGODE (21')	16.50	27.84	16.69%	22.98	36.19	10.14%	19.55	33.57	13.22%	21.49	36.14	13.72%	20.77	36.60	16.80%	18.21	29.92	17.51%
DSTAGNN (22')	15.57	27.21	16.68%	21.42	34.51	9.01%	21.82	34.68	14.40%	24.13	38.15	15.07%	\	\	\	\	\	\
D2STGNN (22')	14.63	26.31	15.32%	19.49	32.59	8.09%	17.85	29.51	11.54%	22.35	35.11	14.37%	\	\	\	\	\	\
DGCRN (23')	14.60	26.20	14.87%	20.04	32.86	8.63%	17.65	29.70	11.89%	21.02	33.66	13.23%	\	\	\	\	\	\
PDFormer ^a (23')	14.79	25.40	15.34%	19.83	32.87	8.53%	19.97	33.51	13.97%	\	\	\	\	\	\	\	\	\
STFT-S	14.38	24.36	14.28%	19.53	33.58	8.19%	18.20	28.60	11.72%	19.85	31.86	11.36%	18.94	31.31	13.36%	17.02	28.49	15.64%
STFT-L	14.32	23.71	14.37%	19.45	32.43	8.07%	17.64	28.05	11.53%	18.98	31.06	10.89%	16.47	27.71	11.90%	16.75	28.42	15.82%

^a Denotes results executed by us.

启发:

- 1. 时序的思路可以借鉴,把傅立叶融入模型,效果肯定会有提升
- 2. 现在考虑直接在之前自己的Confromer加GNN,应该也可以做(类似于这个工作)

本周工作

1: 阅读文献;

2:代码跑通: Graph Transformer (GraphTrans)代码跑完还没收敛,觉得是原本的这个代码有点问题,主要自己也是第一次跑 graph 的算法,现在换了一个 github 上的代码在跑

下周计划

- Graph 的工作跑出来一个初步结果
- 阅读论文