Math 435 09/03/2025 Notes

September 3, 2025

Timothy Tarter
James Madison University
Department of Mathematics

Review

Definition 1. $\mathcal{U} = collection of open sets in a given metric space <math>(X, d)$.

Definition 2. An open ball $B(x_0; r)$ is open.

Definition 3. Every element of \mathcal{U} is a union of open balls.

Today

- 1. Continuity
- 2. Generalize topological spaces beyond metric spaces

Definition 4. A NBHD of a point $x_0 \in X$ is any open set containing x_0 .

Definition 5. $f:(X,d_x)\to (Y,d_y)$ is continuous at $x_0\in X$ if $\forall \epsilon>0$, $\exists \delta>0$ with $d_x(x_0,x)<\delta$ implies $d_y(f(x_0),f(x))<\epsilon$.

Theorem 1. $f: X \to Y$ is continuous iff for all $V \subset Y$, $f^{-1}(V) \subset X$. (Inverse images of open sets are open).

Proof (Direction 1): Let $V \stackrel{\circ}{\subset} Y$ be open in Y. We want to show that $f^{-1}(V) \stackrel{\circ}{\subset} X$. I.e.,

$$\forall x_0 \in f^{-1}(V), \exists r > 0 \text{ with } B(x_0; r) \subseteq f^{-1}(V)$$
 (1)

So, let

$$x_0 \in f^{-1}(V) \Rightarrow f(x_0) \in V. \tag{2}$$

By assumption, V is open, so $\exists \epsilon > 0$ with $B(f(x_0), \epsilon) \subseteq V$. We know f is continuous at x_0 , so for $\epsilon > 0$, there exists $\delta > 0$ st.

$$d_x(x_0, x) < \delta \Rightarrow d_y(f(x_0), f(x)) < \epsilon. \tag{3}$$

Hence, $x \in B(x_0; \delta)$ implies that $f(x) \in B(f(x_0), \epsilon) \subseteq V$. Then $f(B(x_0, \delta)) \subseteq V$, i.e.,

$$B(x_0, \delta) \subseteq f^{-1}(V). \tag{4}$$

Since $x_0 \in f^{-1}(V)$ is arbitrary, we can find such an open ball for all $x \in f^{-1}(V)$. So, $f^{-1}(V) \stackrel{\circ}{\subset} X$, as desired.

Figure 1: Topological Continuity Visualization (Dir 1)

(Direction 2): Fix $x_0 \in X$ and $\epsilon > 0$. Then

$$B(f(x_0);\epsilon) \stackrel{\circ}{\subset} Y$$
 (5)

so,

$$U = f^{-1}(B(f(x_0), \epsilon)) \tag{6}$$

is open. Then there exists $\delta > 0$ with $B(x_0; \delta) \subseteq U$. Thus,

$$x \in B(x_0; \delta) \Rightarrow f(x_0) \in B(f(x_0); \epsilon),$$
 (7)

which is exactly the epsilon-delta continuity criterion.

Definition 6. A topological space is a pair (X, \mathcal{U}) , (often (X, τ)), where X is a set, and \mathcal{U} is a collection of subsets of X such that

- 1. $\emptyset, X \in \mathscr{U}$
- 2. W is closed under arbitrary union
- 3. \mathcal{U} is closed under finite intersection.

The elements of $\mathcal U$ are called open sets. Note: 'open set' here really just means that a set belongs to $\mathcal U$.

Proposition 1. Metrics induce a topology.