Interim report 2

Measles risk assessment, modelling and

benefit-cost analysis

David T S Hayman, Tim Carpenter,

Jonathan C Marshall, Mick Roberts, Nigel P French

mEpiLab and EpiCentre,
Infectious Diseases Research Centre,
Massey University,
Palmerston North 4442,
New Zealand
D.T.S.Hayman@massey.ac.nz

October 28, 2014

1 Introduction

The well-known equation for the final size of an epidemic in a homogeneously mixing susceptible population is [13]

$$\log\left(1-\mathcal{P}\right) + \mathcal{R}_0 \mathcal{P} = 0$$

where \mathcal{R}_0 is the basic reproduction number and \mathcal{P} is the proportion of the population infected over the course of the outbreak. If a proportion x_0 of the population is susceptible following vaccination, then the reproduction number under vaccination is $\mathcal{R}_V = x_0 \mathcal{R}_0$, and the final size equation becomes

$$\log\left(1 - \frac{\mathcal{P}}{x_0}\right) + \mathcal{R}_0 \mathcal{P} = 0$$

Hence the relationship between the proportion initially susceptible and the proportion infected in an epidemic is

$$x_0 = \frac{\mathcal{P}}{1 - e^{-\mathcal{R}_0 \mathcal{P}}}$$

In order to prevent future epidemics, it is necessary that $\mathcal{R}_V < 1$. Hence, the proportion of the population that must be vaccinated to prevent future outbreaks is $x_0 - 1/\mathcal{R}_0$.

These formulae were applied at a District Health Board (DHB) level, assuming no mixing between DHBs.

DHB	Size	Naïve	Attack	Vacc
Auckland	436350	52010	31159	17920
Bay of Plenty	206000	20679	8437	4585
Canterbury	482180	51357	24695	13687
Capital and Coast	283700	32625	18403	10461
Counties Manukau	469300	55544	32903	18880
Hawke's Bay	151700	15602	6846	3751
Hutt Valley	138380	15198	7836	4388
Lakes	98196	10558	5192	2886
MidCentral	162560	17328	8348	4628
Nelson Marlborough	137000	13059	4411	2356
Northland	151690	14921	5688	3071
South Canterbury	55620	5238	1678	893
Southern	297420	31607	15115	8371
Tairawhiti	43650	4769	2431	1359
Taranaki	109750	11473	5262	2899
Waikato	359310	39402	20248	11331
Wairarapa	41112	3932	1346	720
Waitemata	525550	58350	30774	17291
West Coast	32151	3197	1265	685
Whanganui	60120	6075	2530	1378
TOTAL	4241739	462924	234567	131539

Table 1: Size: DHB Population, Statistics NZ 2013; Naïve: DHB naïve population $(x_0 \times \text{Size})$; Attack: Number infected in DHB in an outbreak of measles (\mathcal{P}) ; Vacc: Number to be vaccinated in DHB to reduce \mathcal{R}_V below one $((x_0 - 1/\mathcal{R}_0) \times \text{Size})$.

References

- Agur, Z., L. Cojocaru, G. Mazor, R. M. Anderson and Y. L. Danon (1993).
 Pulse mass measles vaccination across age cohorts. *Proceedings of the National Academy of Sciences USA*, 90, 11698–11702.
- [2] Anderson, R. M. and R. M. May (1991). *Infectious diseases of humans:* dynamics and control. Oxford: Oxford University Press.
- [3] Anon. (2002a). *Immunisation handbook* Wellington: Ministry of Health. pp. 131–146.
- [4] Anon. (2002b). Infectious diseases in livestock The Royal Society. pp. 68.
- [5] Babad, H. R., D. J. Nokes, N. J. Gay, E. Miller, P. Morgan-Capner, and R. M. Anderson (1995). Predicting the impact of measles vaccination in England and Wales: model validation and analysis of policy options. *Epidemiology* and Infection, 114, 319–344.
- [6] Bae, G. R, Y. J. Choe, U. Y. Go, Y. I. Kim, and J. K. Lee (2013). Economic analysis of measles elimination program in the Republic of Korea, 2001: A cost benefit analysis study. *Vaccine*, 31, 2661–2666.
- [7] Carabin, H., W. J. Edmunds, U. Kou, S. van den Hof, and V. H. Nguyen (2002). Measles in industrialized countries: a review of the average costs of adverse events and measles cases. *BMC Public Health*, 2, 22.
- [8] Carabin, H., W. J. Edmunds, M. Gyldmark, P. Beutels, D. Levy-Bruhl, H. Salo, U. K. and Griffiths (2003) The cost of measles in industrialised countries. Vaccine, 21,4167–4177.
- [9] Clements, C. J. and G. D. Hussey (2004). Chapter 4: Measles. In *The Global Epidemiology of Infectious Diseases*, Murray, C., A. D. Lopez, and C. D. Mathers, (eds.), Geneva. World Health Organization, pp. 391.
- [10] Coleman, M. S., L. Garbat-Welch, H. Burke, M. Weinberg, K. Humbaugh, A. Tindall, and J. Cambron (2012). Direct costs of a single case of refugeeimported measles in Kentucky. *Vaccine*, 30,317–321.
- [11] G. H. Dayan, I. R. Ortega-Sanchez, C. W. LeBaron, M. P. Quinlisk, and the Iowa Measles Response Team (2005). The cost of containing one case of measles: the economic impact on the public health infrastructure - Iowa, 2004. *Pediatrics*, 116:e1; DOI:10/1542/peds.2004-2512.
- [12] Diekmann, O. and J. A. P. Heesterbeek (2000). Mathematical epidemiology of infectious diseases: model building, analysis and interpretation. Chichester: Wiley.
- [13] Diekmann, O., J. A. P. Heesterbeek, and T. Britton (2013). *Mathematical tools for understanding infectious disease dynamics*. Princeton: Princeton University Press.

- [14] Edmunds, W. J., N. J. Gay, M. Kretzschmar, R. G. Pebody and H. Wachman (2000). The pre-vaccination epidemiology of measles, mumps and rubella in Europe: implications for modelling studies. *Epidemiology and Infection*, 125, 635–650.
- [15] Filia, A., A. Brenna, A. Pana, G. M. Cavallaro, M. Massari and M. L.C. degli Atti (2007). Health burden and economic impact of measles-related hospitalization in Italy, 2002-2003. BMC Public Health, 7,169
- [16] Flego, K. L., D. A. Belshaw, V. Sheppeard, and K. M. Weston (2013). Impacts of a measles outbreak in western Sydney on public health resources. Communicable Diseases Intelligence Quarterly Report, 37, E240–245.
- [17] Gay, N. J., L. Pelletier, and P. Duclos (1998). Modelling the incidence of measles in Canada: an assessment of the options for vaccination policy. *Vaccine*, 16, 794–801.
- [18] Glass, K., J. Kappey, and B. T. Grenfell (2004). The effect of heterogeneity in measles vaccination population immunity. *Epidemiology and Infection*, 132, 675–683.
- [19] Honeycutt, A. A., L. Clayton, O. Khavjou, E. A. Finkelstein, M. Prabhu, J. L. Blitstein, W. Dougles Evans, and J. M. Renaud (2006). Guide to Analyzing the Cost-Effectiveness of Community Public Health Prevention Approaches. http://aspe.hhs.gov/health/reports/06/cphpa/report.pdf
- [20] Klinkenberg, D. and H. Nishiuraa (2011). The correlation between infectivity and incubation period of measles, estimated from households with two cases. *Journal of Theoretical Biology*, 284, 52–60
- [21] Koopmanschap, M. A. (1998). Cost-of-illness studies: useful for health policy? *Pharmacoeonomics*, 14, 143–148.
- [22] Larg, A. and J. R. Moss (2011). Cost-of-illness studies: a guide to critical evaluation. *Pharmacoeconomics*, 29,653–671.
- [23] Mansoor, O., A. Blakely, M. Baker, M. Tobias, and A. Bloomfield (1998). A measles epidemic controlled by immunisation. New Zealand Medical Journal, 111, 467–471.
- [24] Ortega-Sanchez, I. R., M. Vijayaraghavan, A. E. Barskey, and G. S. Wallace (2014). The economic burden of sixteen measles outbreaks on United States public health departments in 2011. *Vaccine*, 32,1311–1317.
- [25] Obadia, T., R. Haneef and P-Y. Boelle The R0 package: a toolbox to estimate reproduction numbers for epidemic outbreaks. BMC Medical Informatics and Decision Making, 2012, 12–147.

- [26] Parker, A. A., W. Staggs, G. H. Dayan, I. R. Ortega-Sanchez, P. A. Rota, L. Lowe, P. Boardman, R. Teclaw, C. Graves, and C. W. LeBaron (2006). Implications of a 2005 measles outbreak in Indiana for sustained elimination of measles in the United States. *The New England Journal of Medicine*, 355, 447–455.
- [27] Prouty, R.W., G. Smith and K. C. Lakin (2001). Residential services for persons with developmental disabilities: status and trends through 2000. *Minneapolis: Institute on Community Integration*, University of Minnesota, pp. 179, rtc.umn.edu/risp00.
- [28] Roberts, M. (2004). A mathematical model for measles vaccination. Wellington: Ministry of Health.
- [29] Roberts, M. G. and M. I. Tobias (2000). Predicting and preventing measles epidemics in New Zealand: Application of a mathematical model. *Epidemi*ology and Infection, 124, 279–287.
- [30] Saha, S. and U. G. Gerdtham (2013). Cost of illness studies on reproductive, maternal, newborn, and child health: a systematic literature review. *Health Economics Review*, doi:10.1186/2191-1991-3-24.
- [31] Siedler, A., A. Tischer, A. Mankertz, and S. Santibanez (2006). Two outbreaks of measles in Germany 2005. *Eurosurveillance* 2006:11(4) article 5, www.eurosurveillance.org, accessed 14 June 2014.
- [32] Stack, M. L., S. Ozawa, D. M. Bishai, A. Mirelman, Y. Tam, L. Niessen, D. G. Walker, and O.S. Levine (2011). Estimated economic benefits during the 'decade of vaccine' include treatment savings, gains in labor productivity. *Health Affairs*, 30,1021–1028.
- [33] Statistics New Zealand (2014). http://nzdotstat.stats.govt.nz/, accessed 17 June 2014.
- [34] Tobias, M. I. and M. G. Roberts (1998). Predicting and preventing measles epidemics in New Zealand: Application of a mathematical model. Wellington: Ministry of Health.
- [35] Wallinga, J., D. Levy-Bruhl, N. J. Gay, and C. H. Wachman (2001). Estimation of measles reproduction ratios and prospects for elimination of measles by vaccination in some Western European countries. *Epidemiology and Infection*, 127, 281–295.
- [36] Wallinga, J., and P. Teunis (2004). Different Epidemic Curves for Severe Acute Respiratory Syndrome Reveal Similar Impacts of Control Measures. American Journal of Epidemiology, 160, 509.
- [37] Wichmann, O., A. Siedler, D. Sagebiel, W. Hellenbrand, S. Santibanez, A. Mankertz, G. Vogt, U. van Treeck, and G. Krause (2009). Further efforts needed to achieve measles elimination in Germany: results of an outbreak investigation. Bulletin of the World Health Organization, 87, 108–115.

- [38] Wolfson, L. J., P. M. Strebel, M. Gacic-Dobo, E. J. Hoekstra, J. W. Mc-Farland, and B. S. Hersh (2007). Has the 2005 measles mortality reduction goal been achieved? A natural history modelling study. *Lancet*, 369, 191–200.
- [39] World Health Organisation measles media centre, January (2013) Geneva: World Health Organization. www.who.int, accessed July 1, 2014.
- [40] Zhou, F, S. Reef, M. Massoudi, M. J. Papania, H. R. Yusuf, B. Bardenheier, L. Zimmerman, and M. M. McCauley (2004). An economic analysis of the current universal 2-dose measles-mumps-rubella vaccination program in the United States. *Journal of Infectious Diseases*, 189, S131–45.