DM N°10 (pour le 19/02/2016)

Dans tout le problème, n désigne un entier naturel ≥ 2 .

On note $\mathbb{M}_n(\mathbb{R})$ (respectivement $\mathbb{M}_n(\mathbb{C})$) l'ensemble des matrices carrées d'ordre n à coefficients réels (respectivement complexes), I_n la matrice unité et O_n la matrice nulle de $\mathbb{M}_n(\mathbb{R})$ (respectivement de $\mathbb{M}_n(\mathbb{C})$).

Si $A = (a_{i,j})_{1 \le i,j \le n} \in \mathbb{M}_n(\mathbb{R})$ (ou $\mathbb{M}_n(\mathbb{C})$), on note $\det(A)$ le déterminant de A et $\operatorname{tr}(A)$ la trace de A,

égale à la somme de ses éléments diagonaux : $tr(A) = \sum_{i=1}^{n} a_{ii}$.

Si $A \in \mathbb{M}_n(\mathbb{R})$ (ou $\mathbb{M}_n(\mathbb{C})$), le polynôme caractéristique de A est $\chi_A(\lambda) = \det(\lambda . I_n - A)$.

I. Réduction des matrices réelles dordre 2

Soit A une matrice carrée réelle de taille 2 : $A \in \mathbb{M}_2(\mathbb{R})$.

I.A - Généralités

- **I.A.1**) Montrer que $\chi_A(\lambda) = \lambda^2 tr(A)\lambda + det(A)$.
- **I.A.2)** Montrer que A est diagonalisable dans $\mathbb{M}_2(\mathbb{C})$ si et seulement si

$$\operatorname{tr}(A)^2 - 4 \operatorname{det}(A) \neq 0$$
 ou $\exists \lambda_0 \in \mathbb{C} \text{ tel que } A = \lambda_0.I_2$

I.A.3) Montrer que A est diagonalisable dans $\mathbb{M}_2(\mathbb{R})$ si et seulement si

$$\operatorname{tr}(A)^2 - 4\operatorname{det}(A) > 0$$
 ou $\exists \lambda_0 \in \mathbb{R} \text{ tel que } A = \lambda_0.I_2$

I.B - Applications

Soit $(u_k)_{k\in\mathbb{N}}$ et $(v_k)_{k\in\mathbb{N}}$ deux suites à termes réels définies par

$$\left\{ \begin{array}{ll} u_0=1 \\ v_0=2 \end{array} \right. \quad \text{et} \qquad \forall k \in \mathbb{N}, \, \left\{ \begin{array}{ll} u_{k+1}=4u_k-2v_k \\ v_{k+1}=u_k+v_k \end{array} \right.$$

On pose, pour $k \in \mathbb{N}$, $X_k = \begin{pmatrix} u_k \\ v_n \end{pmatrix}$.

- **I.B.1)** Trouver une matrice A dans $\mathbb{M}_2(\mathbb{R})$ telle que, pour tout entier naturel $k: X_{k+1} = AX_k$.
- **I.B.2)** Soit k dans \mathbb{N} . Exprimer X_k en fonction de A, X_0 et k.
- **I.B.3)** Prouver que A est diagonalisable puis déterminer une matrice P de $\mathbb{M}_2(\mathbb{R})$, inversible telle que :

$$P^{-1}AP = \begin{pmatrix} 2 & 0 \\ 0 & 3 \end{pmatrix} = D$$

- **I.B.4**) Soit k dans \mathbb{N} . Exprimer les coefficients de A^k en fonction de k.
- **I.B.5)** En déduire l'expression de u_k et v_k en fonction de k.

II. Réduction de matrices dordre 3 ou 4

II.A - *Le cas* n = 3

On définit la matrice J par

$$J = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{pmatrix}$$

II.A.1) Calculer J² et J³.

Soit k dans \mathbb{N} . Préciser J^k en fonction de k.

II.A.2) On note j le nombre complexe égal à $e^{2i\pi/3}$.

Rappeler la valeur de $1+j+j^2$.

II.A.3) Déterminer le polynôme caractéristique de J ainsi que ses valeurs propres.

II.A.4) Déterminer une matrice inversible P de $M_3(\mathbb{C})$ telle que

$$J = P \begin{pmatrix} 1 & 0 & 0 \\ 0 & j & 0 \\ 0 & 0 & \overline{j} \end{pmatrix} P^{-1}$$

II.A.5) Soient trois nombres complexes a, b et c. On pose

$$A(a,b,c) = \begin{pmatrix} a & b & c \\ c & a & b \\ b & c & a \end{pmatrix}$$

a) Exprimer A(a,b,c) en fonction de a, b, c et des matrices I_3 , J et J^2 .

b) En déduire que A(a,b,c) est diagonalisable dans $\mathbb{M}_3(\mathbb{C})$ dans une base indépendante du choix des valeurs des complexes a, b et c.

c) Préciser les valeurs propres de la matrice A(a,b,c).

d) Exprimer le déterminant de A(a,b,c) en fonction de a, b, c et du nombre complexe j sous la forme d'un produit.

II.A.6) On pose $E = \{A(a, b, c); (a, b, c) \in \mathbb{C}^3\}.$

a) Montrer que E est un sous-espace vectoriel de $\mathbb{M}_3(\mathbb{C})$.

b) Donner la dimension de E en justifiant avec soin.

II.B - Le cas $n \ge 3$ quelconque

Dans cette question, n désigne un entier supérieur ou égal à $3: n \ge 3$.

On note $e = (e_1, ..., e_n)$ la base canonique de \mathbb{C}^n .

On note u l'endomorphisme de \mathbb{C}^n défini par : $u(e_2)=e_1$, $u(e_3)=e_2$,..., $u(e_n)=e_{n-1}$ et $u(e_1)=e_n$, c'est-à-dire :

$$\forall k \in \{2, ..., n\}$$
, on a $u(e_k) = e_{k-1}$ tandis que $u(e_1) = e_n$

II.B.1) On note U la matrice de u dans la base canonique e de \mathbb{C}^n . Expliciter la matrice U.

II.B.2) On note ω une racine n-ième de l'unité et $x_ω$ le vecteur de \mathbb{C}^n défini par :

$$x_{\omega} = \sum_{k=1}^{n} \omega^{k-1} e_k$$

Calculer $u(x_{\omega})$ en fonction de ω et de x_{ω} .

II.B.3) Montrer que u est diagonalisable. On précisera une base de vecteurs propres pour u.

II.B.4) Que peut-on dire de u^n ?

II.C - Le cas n = 4 quelconque

Dans toute cette partie, on choisit n = 4.

II.C.1) Expliciter U, U^2 , U^3 , U^4 où U est la matrice définie dans la question précédente.

II.C.2) On note (a, b, c, d) une famille de 4 complexes et

$$V = \begin{pmatrix} a & b & c & d \\ d & a & b & c \\ c & d & a & b \\ b & c & d & a \end{pmatrix}$$

Montrer que V est diagonalisable dans $\mathbb{M}_4(\mathbb{C})$.

Donner une base de vecteurs propres et préciser les valeurs propres de la matrice V en fonction des nombres complexes a, b, c, d et i.

III. Méthodes numériques de calcul du polynôme caractéristique et des valeurs propres dune matrice réelle

Soit A une matrice de $\mathbb{M}_n(\mathbb{R})$.

On note :
$$\chi_{A}(\lambda) = \lambda^{n} - a_{n-1}\lambda^{n-1} - a_{n-2}\lambda^{n-2} - \dots - a_{0}$$
.

III.A Le calcul du polynôme caractéristique

Soit $X_0 \in \mathbb{M}_{n,1}(\mathbb{R})$ une matrice colonne. On pose $X = \begin{pmatrix} a_0 \\ a_1 \\ \dots \\ a_{n-1} \end{pmatrix}$.

III.A.1) Montrer que $A^n X_0 = a_{n-1} A^{n-1} X_0 + a_{n-2} A^{n-2} X_0 + ... + a_0 X_0$.

III.A.2) En déduire que X est solution d'un système linéaire de la forme : $\widetilde{A}X = B$ où \widetilde{A} est une matrice de $\mathbb{M}_n(\mathbb{R})$ dont on donnera les colonnes et B est une matrice colonne que lon précisera.

III.A.3) Que peut-on dire de ce système linéaire si la famille $(A^{n-1}X_0, A^{n-2}X_0, ..., X_0)$ est libre?

III.B Le calcul approché des valeurs propres

Dans cette partie, on suppose que A admet n valeurs propres réelles distinctes telles que :

$$|\lambda_1| > |\lambda_2| > \cdots > |\lambda_n|$$

On considère l'ensemble $\mathcal F$ des suites réelles $(y_k)_{k\in\mathbb N}$ définies par :

$$\begin{cases} y_0, y_1, \dots, y_{n-1} & \text{arbitraires} \\ y_{k+n} = a_{n-1}y_{k+n-1} + a_{n-2}y_{k+n-2} + \dots + a_0y_k & \text{pour tout entier } k \ge 0 \end{cases}$$

III.B.1) Montrer que \mathcal{F} est un \mathbb{R} -espace vectoriel.

III.B.2) Montrer que, pour tout entier j compris entre 1 et n, la suite $(\lambda_i^k)_{k\in\mathbb{N}}$ appartient à \mathcal{F} .

Dans la suite, on admet que \mathcal{F} est de dimension finie avec $\dim(\mathcal{F}) = n$.

On admet aussi que la famille $((\lambda_1^k)_{k\in\mathbb{N}},...,(\lambda_n^k)_{k\in\mathbb{N}})$ est une famille libre de l'espace vectoriel des suites de réels.

Soit une suite $(y_k)_{k\in\mathbb{N}}$ de \mathcal{F} .

III.B.3) Justifier l'existence d'une famille de n réels $(\alpha_1, \dots, \alpha_n)$ telle que, pour tout entier k:

$$y_k = \sum_{j=1}^n \alpha_j \lambda_j^k$$

III.B.4) On choisit y_0 , y_1 , ..., y_{n-1} pour que α_1 soit non nul.

a) Donner un équivalent simple de la suite $(y_k)_{k\in\mathbb{N}}$ quand k tend vers $+\infty$.

b) En déduire que y_k est non nul à partir d'un certain rang.

c) Montrer que $\lim_{k\to+\infty} \frac{y_{k+1}}{y_k} = \lambda_1$.

III.B.₅) Une fois obtenue λ_1 , comment peut-on construire une suite qui converge vers λ_2 ? On ne demande pas de justification.

III.C - Illustration sur un exemple

Dans cette partie, on choisit:

$$A = \begin{pmatrix} -1 & 3 \\ -2 & 4 \end{pmatrix}$$

III.C.1) Calculer le polynôme caractéristique de A et déterminer les deux valeurs propres λ_1 , λ_2 avec $|\lambda_1| > |\lambda_2|$.

III.C.2) Préciser la relation de récurrence vérifiée par les suites de l'espace \mathcal{F} associé à la matrice A.

III.C.3) En prenant $y_0 = 0$, $y_1 = 1$, écrire des instructions en Python permettant de calculer les 10 premiers termes de la suite $(y_k)_{k \in \mathbb{N}}$.

III.C.4) Calculer ces 10 premiers termes et déterminer le plus petit entier naturel k tel que soit une $\frac{y_{k+1}}{v_k}$ valeur approchée de λ_1 à 10^{-1} près.