CLASSIFICATION

```
In [1]:
```

```
import numpy as np
import pandas as pd
import seaborn as sb
import matplotlib.pyplot as plt
import sklearn

from pandas import Series, DataFrame
from pylab import rcParams
from sklearn import preprocessing
from sklearn.tree import DecisionTreeClassifier # Import Decision Tree Classifier
from sklearn.model_selection import train_test_split
from sklearn import metrics
from sklearn import classification_report
from sklearn.metrics import classification_report
from sklearn.metrics import mean_squared_error
from sklearn.metrics import explained_variance_score
```

PERFORMING DECISION TREE CLASSIFIER ON CONGRESS-TERMS DATA SET

```
In [2]:
```

```
data1=pd.read_csv('congress-terms.csv')
data1.head()
```

Out[2]:

	congress	chamber	bioguide	firstname	middlename	lastname	suffix	birthday	state	party	incumbent	termstart	age
0	80	house	M000112	Joseph	Jefferson	Mansfield	NaN	1861-02-09	TX	D	Yes	1947-01-03	85.9
1	80	house	D000448	Robert	Lee	Doughton	NaN	1863-11-07	NC	D	Yes	1947-01-03	83.2
2	80	house	S000001	Adolph	Joachim	Sabath	NaN	1866-04-04	IL	D	Yes	1947-01-03	80.7
3	80	house	E000023	Charles	Aubrey	Eaton	NaN	1868-03-29	NJ	R	Yes	1947-01-03	78.8
4	80	house	L000296	William	NaN	Lewis	NaN	1868-09-22	KY	R	No	1947-01-03	78.3

EXPLORING THE DATA SET

```
In [3]:
```

```
datal.describe()
```

Out[3]:

	congress	age
count	18635.000000	18635.000000
mean	96.445989	53.313732
std	9.823429	10.678469
min	80.000000	25.000000
25%	88.000000	45.400000
50%	96.000000	53.000000
75%	105.000000	60.550000
max	113.000000	98.100000

In [4]:

```
sb.countplot(x='incumbent',data=data1, palette='hls')
```

Out[4]:

<matplotlib.axes._subplots.AxesSubplot at 0x1a181f9450>

In [5]:

```
data1.isnull().sum()
```

Out[5]:

congress	0
chamber	0
bioguide	0
firstname	0
middlename	3536
lastname	0
suffix	16937
birthday	0
state	0
party	0
incumbent	0
termstart	0
age	0
dtype: int64	

In [6]:

data1.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 18635 entries, 0 to 18634
Data columns (total 13 columns):

	(, .				
#	Column	Non-Null Count	Dtype			
0	congress	18635 non-null	int64			
1	chamber	18635 non-null	object			
2	bioguide	18635 non-null	object			
3	firstname	18635 non-null	object			
4	middlename	15099 non-null	object			
5	lastname	18635 non-null	object			
6	suffix	1698 non-null	object			
7	birthday	18635 non-null	object			
8	state	18635 non-null	object			
9	party	18635 non-null	object			
10	incumbent	18635 non-null	object			
11	termstart	18635 non-null	object			
12	age	18635 non-null	float64			
dtypes: float64(1), int64(1), object(11)						
memory usage: 1.8+ MB						

In [7]

```
datal = datal.drop(['congress','bioguide','firstname','middlename','lastname','suffix','birthday',
'state','party','termstart'], 1)
data1.head()
Out[7]:
   chamber incumbent age
0
     house
                Yes 85.9
     house
                Yes 83.2
1
    house
                Yes 80.7
3
    house
                Yes 78.8
     house
                 No 78.3
In [8]:
data1 = data1.fillna(method='ffill')
In [9]:
data1.isnull().sum()
Out[9]:
             0
chamber
incumbent
dtype: int64
In [10]:
data1.info()
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 18635 entries, 0 to 18634
Data columns (total 3 columns):
 # Column
             Non-Null Count Dtype
--- ----
                -----
0 chamber 18635 non-null object
1 incumbent 18635 non-null object
2 age 18635 non-null float64
dtypes: float64(1), object(2)
memory usage: 436.9+ KB
In [11]:
incumbent b = pd.get dummies(datal['incumbent'], drop first=True)
incumbent_b.head()
Out[11]:
   Yes
   1
    1
2
   1
    0
In [12]:
chamber_b=pd.get_dummies(data1['chamber'])
chamber b.head()
```

Out [121:

Juditej.

	house	senate
0	1	0
1	1	0
2	1	0
3	1	0
4	1	0

In [13]:

```
data1 = data1.drop(['chamber', 'incumbent'],1)
data1.head()
```

Out[13]:

age

- **0** 85.9
- **1** 83.2
- **2** 80.7
- **3** 78.8
- **4** 78.3

In [14]:

```
data2 = pd.concat([data1,chamber_b,incumbent_b],axis=1)
data2.head()
```

Out[14]:

	age	house	senate	Yes
0	85.9	1	0	1
1	83.2	1	0	1
2	80.7	1	0	1
3	78.8	1	0	1
4	78.3	1	0	0

In [15]:

```
data_f = data2.rename(columns={'Yes': 'incumbent_n'}, index={'ONE': 'one'})
data_f.head()
```

Out[15]:

	age	house	senate	incumbent_n
0	85.9	1	0	1
1	83.2	1	0	1
2	80.7	1	0	1
3	78.8	1	0	1
4	78.3	1	0	0

In [16]:

```
sb.heatmap(data_f.corr())
```

Out[16]:

<matplotlib.axes. subplots.AxesSubplot at 0x1a18a26710>

splitting of data

In [25]:

```
M_train = data_f[['age','house','senate']].values
N_train = data_f['incumbent_n'].values
```

In [26]:

```
M_train, M_test, N_train, N_test = train_test_split(M_train, N_train, test_size = .3, random_state=
25)
MR_train, MR_test, NR_train, NR_test = train_test_split(M_train, N_train, test_size = .3, random_st
ate=25)
```

In [27]:

```
# Create Decision Tree classifier object
clf = DecisionTreeClassifier()
clf2 = DecisionTreeClassifier()
# Train Decision Tree Classifer
clf = clf.fit(M_train,N_train)
clf2 = clf.fit(MR_train,NR_train)
```

In [28]:

```
#Predict the response for test dataset
N_pred = clf.predict(M_test)
```

In [20]:

```
print("Accuracy:",metrics.accuracy_score(N_test, N_pred))
```

Accuracy: 0.8399213020926489

In [31]:

```
from sklearn.metrics import confusion_matrix
confusion_matrix = confusion_matrix(N_test, N_pred)
confusion_matrix
```

Out[31]:

```
array([[ 83, 784], [ 125, 4599]])
```

THE CONFUSION MATRIX TELLS THAT 83 AND 4599 ARE CORRECTLY PREDICTED, 125 AND 784 are wrongly predicted

```
import os
os.system('jupyter nbconvert --to html CLASSIFICATION.ipynb')
Out[34]:
0
In []:
```