Labs
Machine Learning Course
Fall 2022

EPFL

School of Computer and Communication Sciences

Nicolas Flammarion & Martin Jaggi

www.epfl.ch/labs/mlo/machine-learning-cs-433

Problem Set 6, Oct 27, 2022 (Theory Questions)

1 Convexity

Recall that we say that a function f is convex if the domain of f is a convex set and

$$f(\theta x + (1 - \theta)y) \le \theta f(x) + (1 - \theta)f(y)$$
, for all x, y in the domain of $f, 0 \le \theta \le 1$.

And strictly convex if

$$f(\theta x + (1 - \theta)y) < \theta f(x) + (1 - \theta)f(y)$$
, for all $x \neq y$ in the domain of $f, 0 < \theta < 1$.

Prove the following assertions.

- 1. The affine function f(x) = ax + b is convex, where a, b and x are scalars.
- 2. If multiple functions $f_n(x)$ are convex over a fixed domain, then their sum $g(x) = \sum_n f_n(x)$ is convex over the same domain.
- 3. Take $f,g:\mathbb{R}\to\mathbb{R}$ to be convex functions and g to be increasing. Then the function $g\circ f$ defined as $(g\circ f)(x)=g(f(x))$ is also convex.

Note: A function g is increasing if $a \ge b \Leftrightarrow g(a) \ge g(b)$. An example of a convex and increasing function is $\exp(x), x \in \mathbb{R}$.

- 4. If $f: \mathbb{R} \to \mathbb{R}$ is convex, then $g: \mathbb{R}^D \to \mathbb{R}$, where $g(\boldsymbol{x}) := f(\boldsymbol{w}^\top \boldsymbol{x} + b)$, is also convex. Here, \boldsymbol{w} is a constant vector in \mathbb{R}^D , b is a constant in \mathbb{R} and $\boldsymbol{x} \in \mathbb{R}^D$.
- 5. Let $f: \mathbb{R}^D \to \mathbb{R}$ be strictly convex. Let $x^* \in \mathbb{R}^D$ be a global minimizer of f. Show that this global minimizer is unique. Hint: Do a proof by contradiction.

2 Extension of Logistic Regression to Multi-Class Classification

Suppose we have a classification dataset with N data example pairs $\{x_n, y_n\}$, $n \in [1, N]$, and y_n is a categorical variable over K categories, $y_n \in \{1, 2, ..., K\}$. We wish to fit a linear model in a similar spirit to logistic regression, and we will use the softmax function to link the linear inputs to the categorical output, instead of the logistic function

We will have K sets of parameters w_k , and define $\eta_{nk} = w_k^{\top} x_n$ and compute the probability distribution of the output as follows,

$$\mathbb{P}[y_n = k \mid \boldsymbol{x}_n, \boldsymbol{w}_1, ..., \boldsymbol{w}_K] = \frac{\exp(\eta_{nk})}{\sum_{j=1}^K \exp(\eta_{nj})}.$$

Note that we indeed have a probability distribution, as $\sum_{k=1}^K \mathbb{P}[y_n = k \,|\, \boldsymbol{x}_n, \boldsymbol{w}_1, ..., \boldsymbol{w}_K] = 1$. To make the model identifiable, we will fix \boldsymbol{w}_K to 0, which means we have K-1 sets of parameters to learn. As in logistic regression, we will assume that each y_n is i.i.d., i.e.,

$$\mathbb{P}[\boldsymbol{y} \,|\, \mathbf{X}, \boldsymbol{w}_1, ..., \boldsymbol{w}_K] = \prod_{n=1}^N \mathbb{P}[y_n \,|\, \boldsymbol{x}_n, \boldsymbol{w}_1, ..., \boldsymbol{w}_K].$$

1. Derive the log-likelihood for this model. Hint: It might be helpful to use the indicator function $1_{y_n=k}$, that is equal to one if $y_n=k$ and 0 otherwise

- 2. Derive the gradient with respect to each w_k .
- 3. Show that the negative of the log-likelihood is convex with respect to w_k . *Hint:* you can use Hölder's inequality:

$$\sum_{k} |x_k y_k| \le \left(\sum_{k} |x_k|^p\right)^{\frac{1}{p}} \left(\sum_{k} |y_k|^q\right)^{\frac{1}{q}},$$

where $\frac{1}{p} + \frac{1}{q} = 1$.

3 Mixture of Linear Regression

If you have a regression dataset with two or more distinct clusters, a mixture of linear regression models is preferred over just one linear regression model.

Consider a regression dataset with N pairs $\{y_n, x_n\}$. Similar to Gaussian mixture model (GMM), let $r_n \in \{1, 2, ..., K\}$ index the mixture component. The distribution of the output y_n under the k^{th} linear model is defined as follows:

$$p(y_n|\boldsymbol{x}_n, r_n = k, \boldsymbol{w}) := \mathcal{N}(y_n|\boldsymbol{w}_k^{\top} \tilde{\boldsymbol{x}}_n, \sigma^2)$$

Here, w_k is the regression parameter vector for the k^{th} model with w being a vector containing all w_k . Also, $\tilde{x}_n = [1, x_n^{\top}]^{\top}$.

- 1. Define r_n to be a binary vector of length K such that all the entries are 0 except the k^{th} entry, i.e., $r_{nk}=1$, implying that x_n is assigned to the k^{th} mixture. Rewrite the likelihood $p(y_n|x_n, w, r_n)$ in terms of r_{nk} .
- 2. Write the expression for the joint distribution p(y|X, w, r) where r is the set of all r_1, r_2, \ldots, r_N .
- 3. Assume that r_n follows a multinomial distribution $p(r_n = k | \pi) = \pi_k$, with $\pi = [\pi_1, \pi_2, \dots, \pi_K]$. Derive the marginal distribution $p(y_n | x_n, w, \pi)$ obtained after marginalizing r_n out.
- 4. Write the expression for the maximum likelihood estimator $\mathcal{L}(w, \pi) := -\log p(y|X, w, \pi)$ in terms of data y and X, and parameters w and π .
- 5. (a) Is \mathcal{L} jointly convex with respect to w and π ?
 - (b) Is the model identifiable? That is, does the MLE estimator always give the true parameters w and π asymptotically when the number of samples N goes to infinity. Prove your answers.