AMENDMENTS TO THE CLAIMS

The following listing of claims will replace all prior versions and listings of claims in the application.

LISTING OF CLAIMS

- 1. (Cancelled)
- 2. (Currently Amended) The <u>method</u> [droplet ejection apparatus] as claimed in claim 36, wherein the droplet ejection apparatus sequentially carries out the detection of the ejection failure of the droplets for the plurality of droplet ejection heads one by one.
 - 3. (Cancelled)
- 4. (Currently Amended) The <u>method</u> [droplet ejection apparatus] as claimed in claim 36, wherein the droplet ejection apparatus carries out the detection of the ejection failure of the droplets for each of the plurality of droplet ejection heads substantially simultaneously.
 - 5. 7. (Cancelled)

8. (Previously Presented) A droplet ejection apparatus comprising:

a plurality of droplet ejection heads, each of the droplet ejection heads including:

a diaphragm;

an actuator which displaces the diaphragm;

a cavity filled with a liquid, an internal pressure of the cavity being increased and decreased in response to displacement of the diaphragm; and

a nozzle communicated with the cavity, through which the liquid in the cavity is ejected in the form of droplets in response to the increase and decrease of the internal pressure of the cavity;

a driving circuit which drives the actuator of each droplet ejection head;
ejection selecting means for selecting the nozzle of the droplet ejection head in
the plurality of droplet ejection heads from which a droplet is to be ejected;

detection determining means that determines for which nozzle of the droplet ejection head an ejection failure of the droplets is to be detected;

ejection failure detecting means for detecting a residual vibration of the diaphragm in the droplet ejection head determined by the detection determining means and detecting the ejection failure of the droplets on the basis of a vibration pattern of the detected residual vibration of the diaphragm; and

a plurality of switching means respectively corresponding to the plurality of droplet ejection heads, wherein, after carrying out a droplet ejection operation by driving the actuator corresponding to the nozzle of the droplet ejection head determined by the detection determining means, the switching means corresponding to the determined

droplet ejection head switches a connection of the driven actuator in the determined droplet ejection head from the driving circuit to the ejection failure detecting means,

wherein the detection determining means repeatedly carries out a scanning operation in which any one of the plurality of switching means is sequentially scanned in a predetermined order, and determines the droplet ejection head when the timing of the droplet ejection operation of the droplet ejection head coincides with the timing of the scanning of the switching means corresponding to the droplet ejection head as a droplet ejection head for which the detection of the ejection failure of the droplets is to be carried out.

9. – 26. (Cancelled)

27. (Original) A droplet ejection apparatus comprising:

a plurality of droplet ejection heads, each of the droplet ejection heads including an actuator, a diaphragm displaced by the actuator, a cavity filled with a liquid, and a nozzle communicated with the cavity, through which the liquid within the cavity is ejected in the form of droplets by driving the actuator, the plurality of droplet ejection heads being divided to m blocks (here, "m" is a natural number), and one of the m blocks including n droplet ejection heads (here, "n" is a natural number);

a driving circuit which drives the actuator of each of the droplet ejection heads; a plurality of ejection failure detecting means for detecting a residual vibration of the diaphragm and detecting an ejection failure of the droplets on the basis of a vibration pattern of the detected residual vibration of the diaphragm, the number of

ejection failure detecting means being the same as the number of blocks, and the plurality of ejection failure detecting means being respectively assigned to the blocks; and

recovery means for carrying out recovery processing for the droplet ejection heads to eliminate a cause of the ejection failure of the droplets, the recovery means comprising at least flushing means for carrying out a flushing process by which the droplets are preliminarily ejected through the nozzles of the droplet ejection heads by driving the actuators corresponding to the droplet ejection heads;

wherein the droplet ejection apparatus is adapted to control the flushing means to carry out the flushing processes in which a droplet is in turn ejected through the nozzle of each of the droplet ejection heads in each of the blocks n'th times to a predetermined region on which the droplets are allowed to land in order to keep up a nozzle state of each of the droplet ejection heads, and at this time each of the plurality of ejection failure detecting means sequentially carries out the detection of the ejection failure for each of the n droplet ejection heads in the block.

28. (Original) The droplet ejection apparatus as claimed in claim 27, further comprising:

a plurality of switching means, each of the plurality of switching means switching connections of the actuators in each of the blocks from the driving circuit to the corresponding ejection failure detecting means after carrying out the droplet ejection operation by driving the actuators.

Serial No. 10/807,921 Page 5 of 10

- 29. (Original) The droplet ejection apparatus as claimed in claim 27, further comprising judging means for judging presence or absence of the ejection failure of the droplets in the droplet ejection heads on the basis of the vibration pattern of the residual vibration of the diaphragm.
- 30. (Original) The droplet ejection apparatus as claimed in claim 29, wherein the judging means judges a cause of the ejection failure in the case where the judging means judges that the ejection failure of the droplets is present in the droplet ejection heads.
- 31. (Original) The droplet ejection apparatus as claimed in claim 30, wherein the judging means judges that: an air bubble has intruded into the cavity in the case where the cycle of the residual vibration of the diaphragm is shorter than a predetermined range of cycle; the liquid in the vicinity of the nozzle has thickened due to drying in the case where the cycle of the residual vibration of the diaphragm is longer than a predetermined threshold; and paper dust is adhering in the vicinity of the outlet of the nozzle in the case where the cycle of the residual vibration of the diaphragm is longer than the predetermined range of cycle and shorter than the predetermined threshold.
- 32. (Original) The droplet ejection apparatus as claimed in claim 27, wherein the droplet ejection apparatus is adapted to periodically carry out the detection of the ejection failure by ejecting the droplets n'th times.

- 33. (Original) The droplet ejection apparatus as claimed in claim 27, wherein the droplet ejection apparatus is adapted to periodically carry out the detection of the ejection failure by ejecting the droplets n'th times every reciprocation of the droplet ejection heads.
- 34. (Original) The droplet ejection apparatus as claimed in claim 27, wherein the droplet ejection apparatus is adapted to carry out the detection of the ejection failure by ejecting the droplets n'th times immediately after the droplet ejection apparatus has been powered on.
- 35. (Original) The droplet ejection apparatus as claimed in claim 27, wherein the droplet ejection apparatus is adapted to periodically carry out the detection of the ejection failure by ejecting the droplets n'th times immediately after the recovery means has carried out the recovery processing.
- 36. (Previously Presented) A method of detecting and judging an ejection failure in droplet ejection heads of a droplet ejection apparatus, the droplet ejection apparatus including a driving circuit, a detecting circuit and a plurality of droplet ejection heads, each of the plurality of droplet ejection heads including a diaphragm, an actuator, a cavity and a nozzle, the method comprising the steps of:

selecting the nozzle of the droplet ejection head in the plurality of droplet ejection heads through which a droplet is to be ejected;

driving the actuator of the selected droplet ejection head with the driving circuit to displace the diaphragm;

carrying out a droplet ejecting operation through the nozzle;

switching a connection of the actuator from the driving circuit to the detecting circuit after carrying out the droplet ejection operation;

detecting a residual vibration of the diaphragm with the detecting circuit;

detecting an ejection failure of the droplets on the basis of a vibration pattern of the detected residual vibration of the diaphragm;

judging presence or absence of the ejection failure of the droplets in the droplet ejection heads on the basis of the vibration pattern of the residual vibration of the diaphragm; and

judging a cause of the ejection failure in the case where it is judged that the ejection failure of the droplets is present in the droplet ejection heads,

wherein the vibration pattern of the residual vibration of the diaphragm includes a cycle of the residual vibration; and

wherein the cause judging step includes judging that:

an air bubble has intruded into the cavity in the case where the cycle of the residual vibration of the diaphragm is shorter than a predetermined range of cycle;

the liquid in the vicinity of the nozzle has thickened due to drying in the case where the cycle of the residual vibration of the diaphragm is longer than a predetermined threshold; and

paper dust is adhering in the vicinity of the outlet of the nozzle in the case where the cycle of the residual vibration of the diaphragm is longer than the predetermined range of cycle and shorter than the predetermined threshold.

37. – 43. (Cancelled)

Serial No. 10/807,921