Unit 6: Noise and Symbol Demodulation

EL-GY 6013: DIGITAL COMMUNICATIONS

PROF. SUNDEEP RANGAN

Learning Objectives

- ☐ Mathematical describe AWGN noise
- □ Compute AWGN noise levels at passband, baseband and sample domain
- ☐ Write the ML detector given likelihoods, compute error probabilities
- □ Compute the ML detector for symbol detection
- ☐ Compute BER and SER probabilities

This Unit

Outline

Passband and baseband noise, signal to noise ratio

- ☐ Noise in the discrete symbols
- ■ML Detection
- □ Symbol detection
- ☐ Probability of error

What is Noise?

- □ Noise: Any unwanted component of the signal
- ☐ Key challenge in communication:
 - Estimate the transmitted signal in the presence of noise

Types of "Noise"

□Internal / thermal noise:

- From imperfections in the receiver
- Thermal noise: From random fluctuations of electrons
- Other imperfections: Phase noise, quantization, channel estimation errors

□ External Interference

- Signals from other sources
- In-band: Transmitters in the same frequency
 Ex: Multiple devices in a cellular band
- Out-of-band: From leakage out of carrier
- Some texts do not consider "interference" as noise

Statistical Models for Noise

- ☐ In communications, we model noise as a random process
 - Captures "uncertainty" in the value

- ☐ This lecture:
 - Describe mathematical models for noise
 - Describe effect of noise on

Additive Noise Model

AWGN $w_p(t)$

- ☐ We first look at modeling thermal noise
- ☐Thermal noise:
 - Due to random fluctuations of electrons in the receiver
 - Called "thermal" since the level of the fluctuations increases with temperature
- \Box Common Additive White Gaussian Noise (AWGN) model: $y_p(t) = r_p(t) + w_p(t)$
 - $w_p(t)$ is real Gaussian WSS noise with PSD $\frac{N_0}{2}$

Thermal Noise

- ☐ Thermal noise: Caused by random fluctuations of electrons
- \Box Fundamental limit determined by statistical physics: $N_0 = kT$
 - \circ k = Boltzman constant, T = temperature in Kelvin
 - $^{\circ}$ At room temperature (T=300 K), $10 \log_{10}(kT) = -174$ dBm/Hz
- ☐ Practical systems see higher noise power due to receiver imperfections

$$N_0 = 10 \log_{10}(kT) + NF \text{ (dBm/Hz)}$$

- \circ *NF* = Noise figure
- Typical values are 2 to 9 dB in most wireless systems
- ☐ More in a wireless class

Scaling Up- and Down-Conversion

- ☐ For noise modeling, it is convenient to use a different scaling convention
- ☐ Modified scaling will keep powers in passband and baseband equal
- □ Note: Proakis uses original scaling and has a factor of 2 in the conversion

	Earlier scaling	Current scaling
Upconversion	$u_p(t) = Real(u(t)e^{j\omega_c t})$	$u_p(t) = \sqrt{2}Real(u(t)e^{j\omega_c t})$
Downconversion	$v(t) = 2u(t)e^{-j\omega_c t}$ $u(t) = h_{LPF}(t) * v(t)$	$v(t) = \sqrt{2}u(t)e^{-j\omega_c t}$ $u(t) = h_{LPF}(t) * v(t)$

Downconverting Noise

- \square Suppose that $w_p(t)$ is real-valued WSS noise with PSD $\frac{N_0}{2}$
- □ Consider downconversion (with modified scaling factor):
 - $\circ v(t) = \sqrt{2}e^{-j\omega_c t}w_p(t)$
 - $\circ y(t) = h_{LPF}(t) * v(t)$
- Theorem: PSD of y(t) is $S_v(t) = N_0 |H_{LPF}(f)|^2$
- □Why?

 - \circ So v(t) is complex white WSS with PSD N_0 . $S_v(f) = N_0$
 - $S_{\nu}(f) = |H_{LPF}(f)|^2 S_{\nu}(f) = |H_{LPF}(f)|^2 N_0$

Equivalent Channel with Noise

- ☐ Passband model:
 - $\circ y_p(t) = h_p(t) * u_p(t) + w_p(t)$
 - $w_p(t)$: additive noise in passband
 - ∘ Noise PSD = $\frac{N_0}{2}$

- □Complex baseband equivalent model:
 - $\circ y(t) = h(t) * u(t) + w(t)$
 - PSD of effective baseband noise:

$$S_w(t) = N_0 |H_{LPF}(f)|^2$$

Effective Baseband Noise ≈ White

☐ Prev. slide: PSD of effective baseband noise is:

$$S_w(f) = N_0 |H_{LPF}(f)|^2$$

- □ Suppose that $|H_{LPF}(f)| \approx 1$ for $|f| \leq \frac{W}{2}$
 - Approximately constant in band of interest
- □ Hence: $S_w(f) \approx N_0$
- ☐ Effective baseband PSD is approximately flat
- ☐ Can be well modeled as additive white noise

Thermal Noise and Bandwidth

- \square Let w(t) be the down-converted, filtered noise
- $\square PSD S_w(f) = |H_{LPF}(f)|^2 N_0$
- \square If $|H_{LPF}(f)|^2$ is an ideal LPF with bandwidth W, total noise power is:

$$P_{W} = \int_{-\infty}^{\infty} |H_{LPF}(f)|^{2} N_{0} df = \int_{-W/2}^{W/2} N_{0} df = N_{0}W = kTW(NF)$$

Power = Noise PSD x Bandwidth

□Example:

- \circ Suppose W=20 MHz, Noise figure = 2 dB
- \circ In dB: $P_{w} = N_{0} + 10 \log_{10} W = 10 \log_{10} (kT) + NF + 10 \log_{10} W = -174 + 2 + 73 = -99 \text{ dBm}$
- $_{\circ}\,$ This is a very small number! Thermal noise is = $10^{-9.9}$ mW \approx 1 pW

Signal To Noise Ratio

- \square Complex baseband signal is $y(t) = y_0(t) + w(t)$
- ☐ Signal to Noise Ratio: Key ratio in communications:
 - In linear scale

$$SNR = \frac{\text{Signal Power}}{\text{Noise power}} = \frac{P_0}{P_w}$$

Often in dB:

$$SNR[dB] = P_0[dBm] - P_w[dBm]$$

- Note the units
- ☐ Describes relative strength of signal to noise

Example: SNR of a Wireless Signal

☐ Freespace path loss from Friis' Law

- \circ P_r , P_t : Transmit and receive power
- \circ G_r , G_t : Antenna gains due to directivity
- f_c : Carrier frequency, c: speed of light
- ∘ *d*: TX-RX separation

☐In dB:

$$SNR [dB] = P_t + G_t + G_r - kT - NF - 10 \log_{10}(W) + 20 \log_{10}\left(\frac{c}{4\pi df_c}\right)$$

Free-Space SNR Visualized

☐Parameters:

- $f_c = 28 \, \mathrm{GHz}$
- NF = 6 dB
- $\circ~G_t=21~\mathrm{dBi}$, $G_r=12~\mathrm{dBi}$
- $P_t = 30 \text{ dBm}$
- \circ W = 1 GHz
- \square SNR = 0 dB as far away as 10 km!

Outline

- ☐ Passband and baseband noise, signal to noise ratio
- Noise in the discrete symbols
 - ■ML Detection
 - □ Symbol detection
 - ☐ Probability of error

End-to-End System So Far

- \square Assume that noise n(t) is complex AWGN
- ☐ What is the effect of noise on the received symbols?

Signal and Noise Components

- \square Received baseband signal: r(t) = s(t) + n(t)
 - \circ r(t), s(t): RX and TX complex baseband signals
 - n(t) complex WGN noise with PSD N_0
- ☐ Receiver performs two steps:
 - Filtering: $v(t) = p_{rx}(t) * r(t)$
 - Sampling: r[n] = v(nT)
- \square Using linearity, spilt r[n] into two components: $r[n] = r_0[n] + w[n]$
 - $r_0[n] = \text{component due to signal } s(t)$
 - w[n] = component due to noise
- \square From previous lecture, $r_0[n] = h[n] * s[n]$, h[n] = effective discrete-time channel
- \square What is w[n]?

Noise Component

- \square Noise: n(t) is complex WGN, PSD= N_0
- ☐ Analyze noise through the two receiver stages:
 - Filtering: $v_{noise}(t) = p_{rx}(t) * n(t)$
 - Sampling: $w[n] = v_{noise}(nT)$
- ☐ Each noise sample is given by convolution:

$$w[n] = \int n(t)p_{rx}(nT-t)dt = \int n(t)\phi_n^*(t)dt, \qquad \phi_n(t) \coloneqq p_{rx}^*(nT-t)$$

- □ Theorem: Each sample w[n] is complex Gaussian with $w[n] \sim CN(0, \sigma^2)$
 - Noise variance $\sigma^2 = \|p_{rx}\|^2 N_0$
 - Proof on board

Symbol Noise with Orthonormal RX Filtering

- \square Suppose that $\phi_n(t) \coloneqq p_{rx}^*(nT-t)$ is an orthonormal basis
- □ Theorem: Then $w[n] \sim CN(0, N_0)$ and the noise samples are independent
- ☐ Proof on board

Single Path Channel Model

- ☐Simple model
 - Orthonormal modulation: $\phi_n(t) = p_{tx}(t nT)$ is an orthonormal basis
 - Single path channel: $s(t) = hu(t \tau)$
 - Matched filter receiver: $p_{rx}(t) = p_{tx}^*(-t)$
 - AWGN noise: n(t) has PSD N_0
- ☐ Equivalent discrete-time model:

$$r[n] = hs[n] + w[n]$$

Power and Energy

- □ Equivalent discrete-time model: $r[n] = hs[n] + w[n], w[n] \sim CN(0, N_0)$
- □ Transmitted energy per symbol: $E_{tx} = E|s[n]|^2$
- \square Transmitted power: $P_{tx} = E_{tx}/T$
- \square Received energy per symbol: $E_{rx} = |h|^2 E_{tx}$
- \square Noise energy per symbol: N_0
- □ Path loss (in dB) = $-10 \log_{10} |h|^2 = 10 \log_{10} \frac{E_{tx}}{E_{rx}}$
 - Note the negative sign

Units

- $\Box E_{tx}$, E_{rx} = Energy. Units are Joules in linear scale
 - Or dBJ / dBmJ in log scale
- $\square P_{tx}$, P_{rx} = Power. Units are Watts = Joules / sec.
 - Or dBm / dBW in log scale
- \square Noise energy N_0 has two equivalent units:
 - \circ N_0 is in Joules: Represents noise energy per orthogonal sample
 - \circ N_0 is in Watts / Hz: Represents noise power spectral density

Sample Question

- □ A transmitter sends symbols at a rate of 20 Msym/s and TX power of 23 dBm.
- ☐ What is the TX energy per symbol?
- □ Suppose that the path loss is 80 dB, what is the received symbol energy?
- Solution on board

Sample Question Con't

- □ A transmitter sends symbols at a rate of 20 Msym/s and TX power of 23 dBm.
- ☐ What is the TX energy per symbol?
- □ Suppose that the path loss is 100 dB, what is the received symbol energy?
 - Note this is a very small amount of energy!
- \square Suppose that the receiver has a noise figure of 4 dB. What is the noise, N_0
- \square What is the signal-to-noise ratio E_{rx}/N_0 ?
- □ Solution on board

General Demodulation

- □ Gaussian vector: Consider vector of noise samples: $\mathbf{w} = [w[0], ..., w[N-1]]^T \in \mathbb{C}^N$
- ☐ Under orthornomal RX filtering, covariance matrix

Outline

- ☐ Passband and baseband noise, signal to noise ratio
- Noise in the discrete symbols
- ML Detection
- □ Symbol detection
- ☐ Probability of error

Detection Theory

- \square Problem: Estimate some variable x from measurement y
- ☐ Basic problem in communications:
 - Detect a transmitted bit from a received symbol
 - Detect if a transmission occurred
 - Estimate a channel parameter
 - 0
- ☐ And in many other fields:
 - Pattern recognition, image recognition, speech recognition
 - Machine learning: Estimate parameters in a model
 - 0

Min and Arg Min

- \square Given a function g(x)
- $\lim_{x} g(x) = \text{minimum value of function}$
- \square arg $\min_{x} g(x)$ = value of x that achieves the minimum
- □ Example: $g(x) = 3 + (x 2)^2$
 - Function achieves min g(x) = 3 at x = 2
 - $\circ \min_{x} g(x) = 3, \arg\min_{x} g(x) = 2$
- ☐ May also restrict to a domain
 - $\arg \max_{x \in A} g(x) = \max \text{ input restricted to a set } A$

Maximum Likelihood Estimation

- \square Statistical view: Model observation y as a random function of unknown x
 - *x* may be random or deterministic
- \square Describe by likelihood function p(y|x)
 - Conditional probability of y given measurements x
- ☐ Maximum likelihood principle:
 - Select variable *x* that is most likely

$$\hat{x} = \arg\max_{x} p(y|x)$$

Likelihood Ratio

- □Consider binary detection case: $x \in \{0,1\}$
 - Two possible choices for unknown
- We have two likelihoods: p(y|x=0) and p(y|x=1)
- ☐ Log likelihood ratio:

$$L(y) \coloneqq \ln \frac{p(y|x=1)}{p(y|x=0)}$$

■ML estimation selects:

$$\hat{x} = \begin{cases} 1 & \text{if } L(x) \ge 0 \\ 0 & \text{if } L(x) \le 0 \end{cases}$$

Example: Two Gaussians, Different Means

\square Consider binary classification: x = 0,1

•
$$p(y|x = j) = N(y|\mu_j, \sigma^2), \mu_1 > \mu_0$$

Two Gaussians with same variance

Likelihood:

$$p(y|x=j) = \frac{1}{\sqrt{2\pi}\sigma} \exp(-\frac{1}{2\sigma^2}(y-\mu_i)^2)$$

$$L(y) := \ln \frac{p(y|1)}{p(y|0)} = -\frac{1}{2\sigma^2} [(y - \mu_1)^2 - (y - \mu_0)^2]$$

 \circ With some algebra: $L(y)=\frac{(\mu_1-\mu_0)}{\sigma^2}[y-\bar{\mu}]$, $\bar{\mu}=\frac{\mu_0+\mu_1}{2}$

■ML estimate:

$$\circ \ \hat{y} = 1 \Leftrightarrow L(y) \ge 0 \Leftrightarrow y \ge \bar{\mu}$$

• With some algebra we get:
$$\hat{x} = \begin{cases} 1 & \text{if } y > \bar{\mu} \\ 0 & \text{if } y \leq \bar{\mu} \end{cases}$$

Example: Two Gaussians, Different Variances

- \square Consider binary classification: x = 0.1
 - $p(y|x=j) = N(y|0,\sigma_i^2), \sigma_1 > \sigma_0$
 - Two Gaussians with different variances
- ☐ Likelihood:

$$p(y|x=j) = \frac{1}{\sqrt{2\pi}\sigma_j} \exp(-\frac{y^2}{2\sigma_j^2})$$

$$L(y) := \ln \frac{p(y|1)}{p(y|0)} = \frac{y^2}{2} \left[\frac{1}{\sigma_0^2} - \frac{1}{\sigma_1^2} \right] - \frac{1}{2} \ln \left(\frac{\sigma_1^2}{\sigma_0^2} \right)$$

■ML estimate:

$$\circ \hat{y} = 1 \Leftrightarrow L(y) \ge 0 \Leftrightarrow |y| \ge t$$

Outline

- ☐ Passband and baseband noise, signal to noise ratio
- Noise in the discrete symbols
- ■ML Detection
- Symbol detection
 - ☐ Probability of error

Demodulation

- □ Discrete-time model: r[n] = hs[n] + w[n], $w[n] = CN(0, N_0)$
- Suppose receiver knows:
 - \circ r[n] = received symbol
 - \circ h = channel gain (it learns this through channel estimation from other symbols. Not covered here)
 - ∘ $s[n] \in \{s_1, ..., s_M\}$ constellation set.
- □ Demodulation problem: Estimate which symbol $s[n] \in \{s_1, ..., s_M\}$ was transmitted.

ML Estimation for Symbol Demodulation

- □ Demodulation problem: r = hs + w, $w \sim CN(0, N_0)$, $s \in \{s_1, ..., s_M\}$
 - \circ Drop the sample index n
- Maximum likelihood estimation:

$$\hat{s} = \arg \max_{s = s_1, \dots s_M} p(r|s = s_m)$$

- **□**Given *s* and *h*: $r \sim CN(hs, N_0)$
- ☐ Hence,

$$p(r|s) = \frac{1}{\pi N_0} \exp\left(-\frac{|r - hs|^2}{N_0}\right)$$

Nearest Symbol Detection

- Likelihood: $p(r|s) = \frac{1}{\pi N_0} \exp\left(-\frac{|r-hs|^2}{N_0}\right)$
- $\square MLE is: \hat{s} = \arg \max_{s} p(r|s) = \arg \min_{s} |r hs|^2 = \arg \min_{s} |z s|^2$
- \square Here, $z = \frac{r}{h}$ = equalized symbol.

□ Procedure:

- Step 1: Equalize the symbol: $z = \frac{r}{h}$
- Step 2: Find $s = s_1, ..., s_M$ closest to z in complex plane

Decision Regions

Decision region for s₁

Example: Decision region in QPSK

- \square ML estimate is closest point in constellation to z: $\hat{s} = \arg\min_{i} ||z s_{i}||$
- \square Decision region for a point s_m :
 - set of points r where s_m is the closest point: $D_m = \{r | \hat{s} = s_m\}$

Sample Problems

- ☐ Draw decision regions for:
 - QPSK
 - 16-QAM
 - 8-PSK
 - General constellations

Detection in a General Signal Space

- ☐ Signal space view
 - Input is a message m = 1, ..., M
 - Each output has a coordinate vector $s_1, ..., s_M \in \mathbb{F}^N$
- $\square \text{Suppose receive } \boldsymbol{r} = \boldsymbol{s}_m + \boldsymbol{w}, \quad \boldsymbol{w} \sim CN(\boldsymbol{0}, \sigma^2 \boldsymbol{I})$
 - Noise is independent and Gaussian in each symbol
- Theorem: The ML detector for the general signal space is: $\hat{s} = \arg\min_{s} ||r s||^2$
 - Proof on next slide
- \square Consequence: Finds the closest vector in the N-dimensional space

Detection in a General Signal Space

☐ Proof of Theorem:

- Given s, each component r_n is independent with $r_n = s_n + w_n$
- Therefore, $r_n \sim CN(s_n, N_0)$
- Therefore, $p(r_n|s_n) = \frac{1}{\pi N_0} \exp\left(-\frac{1}{N_0}|r_n s_n|^2\right)$
- Since the components are independent:

$$p(\mathbf{r}|\mathbf{s}) = \prod_{n} p(r_n|s_n) = \frac{1}{(\pi N_0)^N} \prod_{n} \exp\left(-\frac{1}{N_0} |r_n - s_n|^2\right)$$
$$= \frac{1}{(\pi N_0)^N} \exp\left(-\frac{1}{N_0} \sum_{n} |r_n - s_n|^2\right) = \frac{1}{(\pi N_0)^N} \exp\left(-\frac{1}{N_0} ||\mathbf{r} - \mathbf{s}||^2\right)$$

Hence, ML detector is:

$$\hat{s} = \arg \max_{s} p(r|s) = \arg \min_{s} ||r - s||^2$$

Example: Multiple Measurements

- □ Transmit a single symbol: $x \in \{x_1, ..., x_M\} \in \mathbb{C}$
- ☐ Receive multiple measurements:

$$r[n] = h[n]x + w[n],$$
 $n = 0, ..., N - 1$

- \square Same symbol x is transmitted over multiple samples
- ☐ Multiple samples can arise in many scenarios:
 - Different time samples
 - Samples from different antennas

Ex: 5.6GHz Massive MIMO array The received signal is a vector

- r[n]= signal to antenna element n
- h[n]=channel from TX to the element

Example: Multiple Measurements

- □ Receive multiple measurements: r[n] = h[n]x + w[n], n = 0, ..., N-1
- \square In vector form: r = hx + w
- □ Each transmitted signal is received as s = hx. ML detector: $\hat{x} = \arg\min_{s} ||r hx||^2$
- □But, $||r hx||^2 = ||r||^2 2Re(r^*hx) + |x|^2 ||h||^2$
- Let $z = \frac{r^*h}{\|h\|^2}$. This is called the equalized symbol.
- Then: $\| \boldsymbol{r} \boldsymbol{h} \boldsymbol{x} \|^2 = \| \boldsymbol{h} \|^2 |z \boldsymbol{x}|^2 + \| \boldsymbol{r} \|^2 \frac{|r^* \boldsymbol{h}|^2}{\| \boldsymbol{h} \|^2}$
- $\Box \text{Hence: } \hat{x} = \arg\min_{\mathbf{s}} ||\mathbf{r} \mathbf{h}\mathbf{x}||^2 = \arg\min_{\mathbf{x}} |z \mathbf{x}|^2$
- □ Conclusion: Given multiple measurements:
 - Compute equalized symbol $z = \frac{r^*h}{\|h\|^2}$
 - Demodulate from the received scalar symbol: $\hat{x} = \arg\min_{\mathbf{x}} |z x|^2$

Outline

- ☐ Passband and baseband noise, signal to noise ratio
- Noise in the discrete symbols
- ■ML Detection
- □ Symbol detection
- Probability of error

Symbol Error Probability

☐ Want to compute symbol error rate

$$SER = P(m \neq \widehat{m})$$

- ☐ Assume all constellation points equally likely
- ☐ Average SER:

$$SER = \frac{1}{M} \sum_{m=1}^{M} P(\hat{s} \neq s_m | s = s_m)$$

$$= \frac{1}{M} \sum_{m=1}^{M} P(z \notin D_m | s = s_m)$$

No error z in correct decision region

Errorz not incorrect decision region

Signal to Noise Ratio

□ Discrete-symbol model (no channel gain):

$$r = s + w,$$
 $w \sim CN(0, N_0),$ $s = s_1, ..., s_M$

- Received symbol energy: $E_S = \frac{1}{M} \sum_{m=1}^{M} |s_m|^2$
- ☐ Signal to noise ratio:

$$\gamma_{S} = \frac{E_{S}}{N_{0}}$$

- Sometimes called SNR per symbol
- \square When there is a channel gain, r = hs + w. Replace E_s with $|h|^2 E_s$

SER for BPSK

- □BPSK constellation: $s = \pm \sqrt{E_s}$
- ■AWGN channel:

$$r = s_i + n,$$

$$r = s_i + n, \qquad n \sim CN(0, N_0)$$

$$SER = P(\widehat{m} = 2 | m = 1)$$

■Will show on board:

$$SER = Q(\sqrt{2\gamma_s})$$

$$\circ \gamma_S = E_S/N_0$$
 symbol SNR

□Also, for BPSK:

$$\gamma_b = E_b/N_0 = \gamma_s$$

SER for QPSK

□SER for QPSK (will show on board)

$$SER = 1 - (1 - Q(\sqrt{\gamma_s}))^2 = 2Q(\sqrt{\gamma_s}) - Q^2(\sqrt{\gamma_s})$$

- ☐ Look at SNR per bit
- ☐ High SNR asymptotic
- ☐ Compare to BPSK

QPSK or 4-QAM 2 bits / symbol Smaller dmin

More Calculations

- ☐ If you are interested, Proakis "Digital Communications" derives error rates for many constellation types:
 - M-PSK, M-QAM, DQPSK, ...
 - Provides exact formulae and various bounds

SER for Various Modulation Schemes

■Some observations:

- QPSK has roughly same BER as BPSK for same Eb/N0
 - Note that SNR is shown in figure asEs/N0 not Eb/N0
- M= QAM requires roughly 6 dB per bit above M=4
- M-PSK is significantly less efficient that M-QAM

