Московский физико-технический институт (национальный исследовательский университет) Факультет общей и прикладной физики

Лабораторная работа №6.11.3 (Основы современной физики)

Измерение контактной разности потенциалов в полупроводниках

Работу выполнил: Дорогинин Демид, группа Б02-825

г. Долгопрудный 2021 год

Аннотация

В работе определяется контактная разность потенциалов (p-n)-перехода в полупроводниковом диоде по результатам измерений температурной зависимости его сопротивления.

Теория

Полупроводник, в который введены доноры — атомы элементов пятой группы, создающие дополнительные «локальные уровни» (Рис. 1а), называются проводниками n-типа. В них основными носителями заряда являются электроны. Если в полупроводник введены акцепторные примеси, то есть атомы третьей группы, которые создают вблизи верхнего края волентной зоны локальные уровни, оказывающиеся пустыми при низких температурах ((Рис. 1б), то они называются полупроводниками p-типа. В них основными носителями заряда являются дырки.

Рис. 1: Энергетическая схема полупроводника (а) n-типа; (б) p-типа; (в) (p-n)-типа.

Если привести полупроводники двух типов в соприкосновение, то произойдёт встречная диффузия основных носимтелей тока. В n-области вблизи перехода положительные ионы донорной примеси, заряд которых не компенсируется электронами, образуют положительных пространственный заряд. В p-области соответственно образуется отрицательный пространственный заряд. Таким образом, в области перехода образуется слой, обеднённый носителями тока, и сответственно возникается контактная разность потенциалов ΔV — потенциальный барьер, препятствующий дальнейшей диффузии основных носителей. Равновесие наступает при такой высоте потенциального барьера, что когда положения уровней Ферми в обеих областях совпадают (Рис. 1в).

Из-за наличия барера в условиях равновесия между концентрациями основных и неоснов-

ных носителей в *n*- и *p*- областях устанавлвается соотношение

$$\frac{n_n(n-\text{область})}{n_n(p-\text{область})} = \frac{n_p(p-\text{область})}{n_p(n-\text{область})} = \exp\left(\frac{e\Delta V}{k_{\rm B}T}\right).$$

Это отношение означает, что лишь небольшая доля $\exp(-e\Delta V/(k_{\rm B}T))$ электронов переходит из n-области в p-область и наоборот. Эти электроны образуют ток, проходящий через барьер слева и справа, в условиях равновесия эти токи равны. Пусть их величина I_0 , тогда:

$$I_0 \propto n_n(p - \text{область}) = n_n(n - \text{область}) \exp\left(-\frac{e\Delta V}{k_{\rm B}T}\right).$$
 (1)

Теперь приложим к переходу напряжение $V_{\text{ист}}$ таким образом, чтобы p-область заряжалась положительно относительно n-областию, что снижает потенциальную энергию электронов в p-области на величину $eV_{\text{ист}}$. Найдём величину тока через полупроводник при небольших напряжениях, когда потенциальный барьер уменьшается, но не исчезает. Ток, который идёт из n-области не меняется, а вот ток из p-области из-за снижения барьера он увеличиваеися, поэтому полный ток:

$$I(V_{\text{\tiny HCT}}) = I_0 \left[\exp\left(\frac{eV_{\text{\tiny HCT}}}{k_{\text{\tiny B}}T}\right) - 1 \right]. \tag{2}$$

Эта формула так же правильно описывает ток через переход. если понимать под I_0 суммарный ток, переносимый как электронами так и дырками, а также верна при обратном подключении напряжения. Подставим (1) в (2) и примем во внимание, что измеряемый на опыте ток равен суме тока электронов и тока дырок:

$$I(V_{\text{\tiny MCT}}) = (I_{0,n} + I_{0,p}) \left[\exp\left(\frac{eV_{\text{\tiny MCT}}}{k_{\text{\tiny B}}T}\right) - 1 \right] = A \exp\left(-\frac{e\Delta V}{k_{\text{\tiny B}}T}\right) \left[\exp\left(\frac{eV_{\text{\tiny MCT}}}{k_{\text{\tiny B}}T}\right) - 1 \right].$$

При малых $V_{\text{ист}}$ при комнатных температурах показатель второй экспоненты много меньше 1, поэтому

$$I = A \exp\left(-\frac{e\Delta V}{k_{\rm B}T}\right) \frac{eV_{\rm \tiny HCT}}{k_{\rm B}T}. \label{eq:energy}$$

Вводя сопротивление $R = V_{\text{ист}}/I$ получим после логарифмирования

$$\Delta V = \frac{k_{\rm B}}{e} \frac{d(\ln R)}{d(1/T)} \tag{3}$$

Установка

На Рис. 2 представлена схема установки для измерения температурной зависимости контактной разности потенциалов. Установка состоит из мостиковой схемы и термостата. Источником питания мостиковой схемы служит генератор прямоугольных импульсов Г5-63. В качестве нулевого индикатора используется осциллограф С1-83. В плечи моста включены сопротивления $R_1=910~{\rm Om}$ и $R_2=9100~{\rm Om}$, магазин сопротивлений $R_{\rm M}$ и полупроводниковый диод, сопротивление R_g которого измеряется. Сигнал с диагонали балансируемого моста подаётся на независимые усилители осциллографа, на экране видна их разность. Осциллограф, генератор и одна из точек противоположной диагонали моста

имеют общую «Землю». При балансировке моста сигнал на экране изображается в виде прямой линии, сопротивление диода находится по формуле

$$R_g = \frac{R_2}{R_1} R_{\scriptscriptstyle \mathrm{M}} = 10 R_{\scriptscriptstyle \mathrm{M}}.$$

Исследуемый образец помещается в массивный латунный цилиндр. Для нагревания образца используется электронагреватель. Температура измеряется медно-константановой термопарой, один из спаев которой находится в тепловом контакте с диодом, а другой – в сосуде Дюара с водой.

Рис. 2: Схема экспериментальной установки.

Выполнение и обработка данных

Включив электронагреватель термостата, исследуем температурную зависимость (p-n)-перехода. Результаты измерений представлены в Таблице 1. Погрешность измерения сопротивления магазина взята $\sigma_{R_{\rm m}}=1$ Ом, напряжения на термопаре $\sigma_{V_{\rm терм}}=10$ мкВ. Темперутра считалась как

$$T = \frac{V_{\text{терм}}[\text{MKB}]}{41} + 25, \ [^{\circ}\text{C}],$$

здесь $25~^{\circ}\mathrm{C}$ – температура сосуда Дюара, в которого помещён второй контакт термопары.

$R_{\scriptscriptstyle \mathrm{M}}, \mathrm{Om}$	230	131	101	70	52	41	30	25	19	15	12	9
$V_{\text{терм}}$, мкВ	0	210	400	600	800	1000	1200	1400	1600	1800	2000	2200
T,°C	25.0	30.1	34.8	39.6	44.5	49.4	54.3	59.1	64.0	68.9	73.8	78.7
R_g , Om	2300	1310	1010	700	520	410	300	250	190	150	120	90

Таблица 1: Результаты измерений.

Рис. 3: Зависимость $\ln R_g$ от 1/T.

На основании этих данных построим график зависимости $\ln R_g$ от 1/T, он представлен на Рис. 3 Аппроксимируя зависимость прямой, получим

$$\frac{d(\ln R)}{d(1/T)} = 6050 \pm 130 \text{ K}^{-1}.$$

Тогда с учётом формулы (3) разность потенциалов на переходе равна

$$\Delta V = 0.52 \pm 0.11 \text{ B}.$$

Обсуждение

В ходе работы было исследована температурная зависимость дифференциального сопротивления полупроводника, была определена контактная разность потенциалов (p-n)-перехода $\Delta V = 0.52 \pm 0.11$ В. В пособии [1] оценочно подсчитано значение $\Delta V = 0.35$ В, по порядку совподающие с полученным, но лежащее за пределами одного стандартного отклонения. Причиной может служить неточность определения уравновешенности моста по картине на экране осциллографа.

Список литературы

[1] Игошин Ф.Ф., Самарский Ю.А., Ципенюк Ю.М. Лабораторный практикум по общей физики: Учеб. пособие для вузов. Т3. Квантовая физика.. М.: Физматкнига - 2005.