Algoritmi i strukture podataka

- predavanja -

11. Grafovi

Osnovni pojmovi I

- Graf G = (V, E)
 - objekt (struktura podataka) definiran na skupu točaka V (tzv. vrhovi; engl. vertex, pl. vertices) te spojnica E (tzv. bridovi; edges) među vrhovima

- skup vrhova V = { A, B, C, D, E, F, G, H }
 - skup bridova E = { (A, E), (A, C), (C, B), (B, H), (D, G), (E, G), (G, H), (H, F) }
- konačan graf: skupovi V i E su konačni
- moguće E = Ø, tj. graf ne mora sadržavati bridove (prazan graf)
- graf mora sadržavati najmanje jedan vrh
 - trivijalan graf: graf s jednim vrhom

Osnovni pojmovi II

- |V| red grafa: broj vrhova grafa
- |E| veličina grafa: broj bridova grafa
- d_G(v) stupanj vrha grafa (valencija grafa)
 - o broj bridova povezanih s vrhom, tj. broj sjecišta male kružnice oko vrha s bridovima dotičnog vrha → petlja se broji dva puta
- vrh v je *izoliran* ako je $d_G(v) = 0$, a *list* ako je $d_G(v) = 1$
- pravi brid (karika)
 - brid koji spaja različite vrhove
- petlja
 - brid spaja vrh s samim sobom
- višestruki bridovi
 - dva ili više bridova spojena s istim parom vrhova

Vrste grafova I

- neusmjereni graf
 - o bridovi nemaju orijentaciju: brid (A, B) je identičan bridu (B, A)
- usmjereni graf (directed graph, DIGRAF)
 - bridovima se pridružuje smjer (lukovi)
 - \circ (A, B) \neq (B, A)
- orijentirani graf (oriented graph)

- usmjereni graf gdje između dva vrha postoji samo jedan usmjereni brid
- oprez: orijentirani i usmjereni graf se vrlo često koriste kao sinonimi
- miješani graf (mixed graph)
 - graf koji se sastoji od usmjerenih i neusmjerenih bridova

Vrste grafova II

- jednostavan graf
 - o neusmjeren graf, u literaturi najčešće podrazumijevan graf
 - o ne sadrži niti petlje niti višestruke bridove
- potpun graf
 - o jednostavan graf gdje je svaki par vrhova spojen bridom

Vrste grafova III

- multigraf
 - o neusmjeren graf, dozvoljava višestruke bridove, ali ne i petlje
- pseudograf (multigraf sinonim?)
 - multigraf koji dozvoljava i petlje
 - o oprez: vrlo česti sinonim za multigraf
- težinski graf
 - svakom bridu je pridijeljen je broj/težina koja predstavlja cijenu, udaljenost, kapacitet

Šetnje, putovi, povezanost I

- šetnja (walk) je niz $W=v_0$, e_1 , v_1 , e_2 ..., v_k gdje su v_i vrhovi, a e_i bridovi grafa takvi da za $1 \le i \le k$, brid e_i povezuje vrhove v_{i-1} i v_i ; k dužina šetnje
 - šetnja može proizvoljni broj puta proći nekim vrhom, tj. bridom
- put (path) šetnja koja ne uključuje niti jedan vrh dva puta
 - o eventualno prvi, tj. zadnji vrh mogu biti isti
 - elementarni (jednostavan) put vs. put (sinonimi)

Šetnje, putovi, povezanost II

- staza (trail) šetnja koja ne prolazi dva puta istim bridom
 - može uključivati isti vrh dva puta ukoliko se dolazni i odlazni brid razlikuju

 ciklus (cycle) - put koji počinje i završava u istom vrhu

 krug (circuit) – staza koja počinje i završava u istom vrhu

Šetnje, putovi, povezanost III

- Hamiltonov put put kroz sve vrhove grafa, svaki vrh obilazi se točno jednom
 - o nije nužno proći kroz sve bridove
- Hamiltonov krug/ciklus poseban slučaj H. puta gdje su prvi i zadnji vrh jednaki
- Eulerova staza (put) staza (put) kroz sve bridove grafa
 - o može proći isti vrh više puta
- Eulerov krug/ciklus poseban slučaj E. staze gdje su prvi i zadnji vrh jednaki

Šetnje, putovi, povezanost IV

- neusmjereni graf je povezani (connected) graf ako za svaki par vrhova postoji put između vrhova
- usmjereni graf je strogo povezani (strongly connected) graf ako za svaki par vrhova postoji (usmjereni) put između vrhova
 - ako uz zamjenu usmjerenih bridova s neusmjerenima se dobije (neusmjereni) povezani graf tada ga nazivamo slabo povezanim (weakly connected) grafom

Reprezentacija grafova I: Lista susjedstva (adjacency list)

- za neki G = (V, E) lista susjedstva je skup nesortiranih lista gdje svaka pojedina lista u skupu opisuje za neki vrh s kojim je sve vrhovima i/ili bridovima grafa povezan dotičan vrh
- različite implementacije strukture podataka za zapis liste susjedstva
- polje pokazivača A[|V|] gdje svaki element polja predstavlja jedan
 vrh i pokazuje na listu susjednih vrhova
- memorijski efikasan način zapisa o grafu [©]
- dohvat nekog elementa slijedni prolaz kroz listu 🕾
- moguće zapisati i informacije o bridovima

Reprezentacija grafova I: Lista susjedstva (adjacency list)

Lista susjedstva					
A[V] Pojedinačne liste					
V ₁	\rightarrow V_2				
V_2	\rightarrow $V_1 \rightarrow V_3 \rightarrow V_4$				
V_3	$\rightarrow V_2 \rightarrow V_4$				
V_4	$\rightarrow V_2 \rightarrow V_3 \rightarrow V_4$				

Reprezentacija grafova II: Matrica susjedstva (Adjacency matrix)

- matrica susjedstva vrhova grafa
- za neki G = (V, E) te n = |V| matrica susjedstva je kvadratna matrica M_{nxn}
- svakom se vrhu pridružuje red i i stupac j u matrici;
- m_{ii} broj bridova koji spajaju vrhove i i j

M	v ₁	V_2	V_3	V_4
V ₁	0	1	0	0
V ₂	1	0	2	1
V ₃	0	2	0	1
V_4	0	1	1	1

Reprezentacija grafova II: Matrica susjedstva (Adjacency matrix)

- bez petlji → dijagonalni elementi iznose nula
- neusmjereni graf simetrična matrica M_{nxn}
 - o dovoljno je zapisati samo jednu polovicu matrice
- kompaktan memorijski zapis
- daje odmah odgovor postoji li brid između bilo koja dva vrha
- suma retka (stupca) iznosi broj bridova incidentnih s dotičnim vrhom
 - o matrica susjedstva samo broji bridove, ali ih ne razlikuje

Reprezentacija grafova III: Matrica incidencije (Incidence matrix)

- vrh je incidentan nekom bridu ako je povezan s dotičnim bridom
- svakom vrhu pridružuje red i, svakom bridu pridružuje se stupac j u matrici
- za G = (V, E) te n = |V| i m = |E|, matrica incidencije grafa je dimenzije M_{nxm}

Reprezentacija grafova III: Matrica incidencije (Incidence matrix)

- za neusmjereni graf
 - o ako je vrh v_i incidentan rubu e_i, M_{ii} = 1
 - o ako je vrh v_i nije incidentan rubu e_i , $M_{ii} = 0$

M	e ₁	e_2	e_3	e_4	e ₅	e ₆
v ₁	1	1	0	0	0	0
V ₂	1	0	1	0	1	0
V_3	0	0	1	1	0	0
V ₄	0	1	0	1	1	2
						Petlja

- suma po retcima odgovora stupnju (valenciji) vrha
- suma po stupcima iznosi 2 ← svaki brid ulazi/izlazi u/iz jednog vrha

Reprezentacija grafova III: Matrica incidencije (Incidence matrix)

- za usmjereni graf
 - o ako brid e_i izlazi iz vrha v_i, M_{ii} = 1
 - o ako vrh v_i i rub e_i nisu incidentni, M_{ii} = 0
 - \circ ako brid e_i ulazi u vrh v_i , $M_{ij} = -1$

M	e ₁	e_2	e_3	e_4	e ₅	e_6
V ₁	-1	-1	0	0	0	0
V ₂	1	0	1	0	-1	0
V ₃	0	0	-1	1	0	0
V_4	0	1	0	-1	1	0
						Petlja

suma po stupcima = 0 (brid izlazi iz jednog vrha i ulazi u jedan vrh)

Obilazak grafa u dubinu (depth first search, DFS)

Rekurzivni algoritam za DFS grafa G krenuvši od vrha v:

```
procedura DFSR (G, v)

označi v kao obiđen

ispiši v

za sve neobiđene vrhove w susjedne vrhu v

DFSR (G, w)
```

Složenost Θ(|E|+|V|)

DFSR.cpp

Obilazak grafa u dubinu (depth first search, DFS)

 Nerekurzivni algoritam zahtijeva vlastitu implementaciju stoga (koji je rekurzijom implicitno ostvaren)

```
procedura DFS (G, v)

stavi v na stog S

dok ima elemenata na stogu S

skini v sa stoga

ako v nije obiđen

označi v kao obiđen

ispiši v

za sve neobiđene vrhove w susjedne vrhu v

stavi w na stog S
```

■ Složenost Θ(|E|+|V|)

Obilazak grafa u širinu (breadth first search, BFS)

Nerekurzivni algoritam za BFS grafa G krenuvši od vrha v:

```
procedura BFS (G, v)
   označi v kao obiđen
   ispiši v
   stavi v u red Q
   dok ima elemenata u redu Q
          uzmi v iz reda Q
          za sve neobiđene vrhove w susjedne vrhu v
                 ako w nije obiđen
                        označi w kao obiđen
                        ispiši w
                        stavi w u red Q
```

Složenost Θ(|E|+|V|)

Dijkstrin algoritam

- Dijkstrin algoritam ili Dijkstrin algoritam najkraćeg puta (engl. Dijkstra's Shortest Path First algorithm, SPF algorithm)
 (E. W. Dijkstra, 1956.)
- zadan je težinski usmjeren graf G = (V, E) i početni vrh v_0
- Cilj:
 - \circ iz početnog vrha v_0 pronaći najkraći put do svih ostalih čvorova iz V, ili
 - \circ iz početnog vrha v_0 pronaći najkraći put do odredišnog vrha $v_{odredište}$

Dijkstrin algoritam – primjer (1)


```
// Q: minheap;
// na početku prazan

za svaki v iz V
   udaljenost[v] = ∞
   preth[v] = nedef. // -

stvori minheap Q s udaljen. za
sve v

// A je početni vrh
udaljenost[A] = 0
```

	A	В	С	D	Е
udaljenost	0	∞	8	8	8
preth	-	-	-	-	-

$$Q = \{0, \infty, \infty, \infty, \infty\}$$

Zapravo se pamti (A, 0), a ne 0 (isto i za ostale)!

Dijkstrin algoritam – primjer (2)

stvori minheap *Q* s novim udaljen. za sve neobiđene vrhove

	Α	В	С	D	Е
udaljenost	0	2.3	∞	3.4	8
preth	-	Α	-	Α	-

$$Q = \{2.3, \infty, 3.4, \infty\}$$

Dijkstrin algoritam – primjer (3)

stvori minheap Q s novim udaljen.
za sve neobiđene vrhove

	Α	В	С	D	Е
udaljenost	0	2.3	∞	3.4	2.3 + 6.1
preth	-	Α	-	Α	В

$$Q = \{3.4, \infty, 8.4\}$$

Dijkstrin algoritam – primjer (4)

Ε

Ε

3

3

Dijkstrin algoritam – primjer (5)

Ε

3