Trigonometrie

Hesure d'angle

multiplie l'équation par 40°

40° en rad;

multiplie l'equation par

z rad en degres;

$$\frac{\pi}{2} \cdot 1$$
 [rad] = $\frac{\pi}{2} \cdot \frac{180}{\pi}$ [deg]

pour passer de radian aux degrés, remplacer not pour n. 180 et inversement pour passer de degrées en radians

rodians

la mesure en radian est un rapport

le radian n'est pas une unite mais bien un rapport (x [rad] precise juste que un travai(en radians)

Thales

Si les triangles sont homothétique l'on a des rapports de longueurs partout (1)

$$\lambda = \frac{CA}{CA!} = \frac{CB}{CB!} = \frac{AB}{AB!}$$

les angles sont les mêmes

Pythagore

dans un triangle rectargle:

Cercle trigonometrique

Position intersection de d et du cercle C

droite de la tangeante

Position intersection de d et du

Position intersection de d et de

$$x = col\theta$$

rapports trigonometriques

$$cos^2\theta + sin^2\theta = 1$$

Par Pythagore

Par Pythagore et thales car c'est \ le triangle de la demonstration au-dessus

$$(1-\lambda)^2 = \tan^2\theta + 1^2 = \lambda^2 = \tan^2\theta + 1$$

thates sur l'axe x:

$$\lambda = \frac{1}{\cos \theta}$$

$$1 + \cot^2 \theta = \frac{1}{\sin^2 \theta}$$

même logique qu'au dessus

Par Thalès

$$\frac{\tan \theta}{1} = \frac{\sin \theta}{\cos \theta}$$

$$\tan \theta = \frac{\sin \theta}{\cos \theta}$$

Rapports trigonometriques sur triangle rectangle

tan
$$\theta = a$$

$$cos\theta = \frac{a}{b}$$

$$sin\theta = \frac{b}{b}$$

$$sin\theta = \frac{\Box}{b}$$

angles porticuliers

ils donnent des valeurs exactes pour les fonctions trigonométriques (sin, cos, ton)

Technique de la main

$$tan \theta = \frac{sin \theta}{cos \theta}$$

1 malin si nécessaire par exemple si on a: 1 1 1 1 2 12

égalités des fonctions trigonométriques

Pour s'aider il est pratique d'utiliser le cercle trigonome trique (dessine)

Sin(a) = Sin(TT-a) Sin(a) = Sin(-a)

tan 8

tan(-a)=-tan(a) impaire

periode: T

tan 0 = 0

réciproque: $\theta = atan(x) + \pi k$, $k \in \mathbb{Z}$

Sino

periode: 277

reciproque:

$$\begin{cases}
\Theta = \sin x + 2\pi k \\
o u
\end{cases}$$

$$\begin{cases}
\Phi = \pi - \sin x + 2\pi k
\end{cases}$$

 $Sin(-\theta) = -sin\theta$ impaire $Sin(\theta + \pi) = -sin\theta$ $Sin(\theta - \pi) = -sin\theta$ $Sin\alpha = cos(\frac{\pi}{2} - \alpha)$ $-sin\alpha = cos(\frac{\pi}{2} + \alpha)$

Cost

$$cos0 = 1$$

periode: 277

reciproque:

$$\begin{cases} \Theta = \cos x + 2\pi k \\ 0 & \text{if } k \in \mathbb{Z} \end{cases}$$

$$\begin{cases} \Theta = -\cos x + 2\pi k \\ 0 & \text{if } k \end{cases}$$

$$\cos(\alpha) = \cos(-\alpha)$$

$$\cos(\alpha + \pi) = -\cos(\alpha)$$

$$\cos(\alpha - \pi) = -\cos(\alpha)$$

$$\cos\theta = \sin(\frac{\pi}{2} - \theta)$$

$$\cos\theta = \sin(\frac{\pi}{2} + \theta)$$

forme généralisée

où fn E { sin, tan, cos}

$$x = A \cdot fn(B \omega - C) + D$$

$$X = A \cdot fn[B(a-c)] + D$$
 plus simple

plus simple pour le déplocement sur Ox

Oir

t est l'amplifude

2.fn(x)

D est le déplacement vertical

fn (x) -1

B va modifier la periode, c'est la vitesse angulaire

fn (2x)

ceci divise la periode en 2.

de façon générale:
$$T = \frac{T_{base}}{B}$$
, $T_{base} = 2\pi$ pour sin 1 cos = π

reduit cor:
$$\sin(1) = \sin(2 \cdot \frac{1}{2})$$

C est le décaloge horizontal

altention car la forme

ne donne par directement C, il faut mettre B en evidence.

$$x = A \cdot f_{n} \left[B \left(\omega - \frac{E}{B} \right) \right] + D$$

ducoup le décalage est:

équations trigonometriques

il y'a plusieurs outils qui permettent de resoudre des equations trigonometriques

- · Cercle trigonometrique
- · Representation graphique
- · Proprietes de la fonction trigonometrique
- · Fonction reciproque de la fonction trigonometraux

Cercle trigonometrique

(05X; = a

a est fixe et on cherche les angles qui satisfont l'egalite

résolution graphique

il suffit de dessiner le graphe des deux fonctions et trouver les intersections.

ils y a dans la pluport des cos une infinité de solutions si on ne limite pas l'interval.

Les equations où n'apparait qu'une fonction trigonometrique

les équations particulières sont du type:

- F (sinx) = 0
- F (cosx) = 0
- F (tanx) = 0

où F est une fonction quelconque eigale à 0 Par exemple F(x)= 1+3x=0 => f(sinx)=1+3sinx=0

- On pose alors t=sint, t=cost ou t=tant
 suivant le cos
- (2) l'equation devient alors:
 F(t)=0
- 9) Pour chaque solution 1; on pose (suivant le cas) $\sin \theta = 1; \qquad \cos \theta = 1; \qquad \text{ton} \theta = 1;$

Equations trigonometriques doubles

equation de la forme:

- sin(f(x)) = sin(g(x))
- · cos (f(x)) = cos (g(x))
- tan (f(x)) = tan (f(x))

Par exemple avec sin:

$$f(x) = asin(sin(g(x))) + 2\pi k , k \in \mathbb{Z}$$

$$= g(x) + 2\pi k$$

$$\int f(x) = \pi - asin(sin(g(x))) + 2\pi k$$
$$= \pi - g(x) + 2\pi k$$

Si hècessaire on utilisera les transformations sin <> cos

par exemple $\sinh = \cosh \theta$ $\cosh \theta = \sinh \left(\frac{\pi}{2} + \theta \right)$ $\sinh = \sinh \left(\frac{\pi}{2} + \theta \right)$

$$\begin{cases}
\theta = asin(sin(\frac{\pi}{2}+\theta)) + 2\pi k \\
\theta = \frac{\pi}{2} + \theta + 2\pi k
\end{cases}$$

$$\begin{cases}
\theta = \frac{\pi}{2} + \theta + 2\pi k \\
\theta = \pi - \frac{\pi}{2} + \theta + 2\pi k
\end{cases}$$

Période, phase et vitesse angulaire

Théorème 1 Aire d'un triangle quelconque

$$A = \frac{1}{2} \cdot \alpha \cdot h_{\alpha} \quad \text{avec} \quad \sin(r) = \frac{h_{\alpha}}{5} = 3 \quad h_{\alpha} = b \cdot \sin r$$

$$= \frac{1}{2} \cdot \alpha \cdot b \sin r$$

en listant les hauteurs

gonc

$$A = \frac{1}{2} \alpha \cdot b \cdot \sin \gamma$$

$$A = \frac{1}{2} \cdot (-\alpha \cdot \sin \beta)$$

Théorème 2 Théorème de l'angle inscrit

Theorème 3 Théorème du sinus

on a sin $S = \frac{a/2}{R} = 3$ $2R = \frac{a}{\sin x}$ mais par le théorème de l'angle inscrit on a 28 = 22 => 5 = 2 donc

$$2R = \frac{\alpha}{\sin \alpha}$$

On l'utilise si

- 1) On connait 2 angles et 1 côte
- On connait 1 angle et 2 côte mais si langle connu est celui forme par les 2 côtes, le théorème nous permet pas d'obtenir

directément le côte opposé c

est alors utile d'utiliser le théorème du cosinus:

Théorème 4 Théorème du cosinus

$$c_{3} = \alpha_{5} + P_{5} - 5\alpha p \cdot \cos(b)$$
 $p_{5} = \alpha_{5} + c_{5} - 5\alpha c \cdot \cos(a)$
 $\alpha_{5} = p_{5} + c_{5} - 5 \cdot bc \cdot \cos(a)$

On l'utilise quand on connaît 3 côtés, cela permet de démarrer la résolution complète du triangle

A sovoir

Possage 2 par 0 de formes par 0

Formules de base

Formules simples

Somme et différence de 2 angles

les angles doubles

les demi-angles

les transformations produit -> somme

les transformations somme -> produit

Formules de base

$$Sin(-\alpha) = -Sin(\alpha)$$
 $Cos(-\alpha) = Cos(\alpha)$
 $Sin(T+\alpha) = -Sin(\alpha)$ $Cos(T+\alpha) = -Cos(\alpha)$
 $Sin(T-\alpha) = Sin(\alpha)$ $Cos(T-\alpha) = -Cos(\alpha)$
 $Sin(\frac{T}{2}+\alpha) = Cos(\alpha)$ $Cos(\frac{T}{2}+\alpha) = -Sin(\alpha)$
 $Sin(\frac{T}{2}-\alpha) = Cos(\alpha)$ $Cos(\frac{T}{2}-\alpha) = Sin(\alpha)$

$$tan(-x) = -tan(x)$$

$$tan(\pi - x) = tan(-x) = -ton(a)$$

$$tan(\pi + x) = tan(a)$$

$$tan(\frac{\pi}{2} - x) = cot(a)$$

$$tan(\frac{\pi}{2} + x) = -cot(a) = cot(-a)$$

Formules simples

elles decoulent des définitions + théorèmes de bases (thalès, pythagore)

CO25 or 4 2!	n2 d = 1 Pythagone
tana = sina cosa	$\cot \alpha = \frac{\cos \alpha}{\sin \alpha}$
1+ tanza = Cosea	1+cot201= 1 sin201

hales

Sommes et différence de 2 angles

$$Sin(\alpha + B) = Sin(\alpha) \cdot cos(B) + cos(\alpha) \cdot Sin(B)$$

$$cos(\alpha + B) = cos(\alpha) \cdot cos(B) - sin(\alpha) \cdot Sin(B)$$
inverse

$$Sin(x-B) = Sin(x) \cdot cos(B) - cos(x) \cdot Sin(B)$$

$$cos(x-B) = cos(x) \cdot cos(B) + sin(x) \cdot Sin(B)$$

Formules des angles doubles

utilisez sommes et differences: Za = a +a

$$tan2\alpha = \frac{2tan\alpha}{1-tan^2} \propto$$

Formules des demis-angles

On substitu & par 🕏 dans les formule du dessus

$$\sin^2\frac{\alpha}{z} = \frac{1-\cos\alpha}{z}$$

$$\tan^2 \frac{\omega}{z} = \frac{1 - \cos \alpha}{1 + \cos \alpha}$$

$$\tan \frac{\alpha}{2} = \frac{1-\cos \alpha}{\sin \alpha}$$

$$Sin\alpha \cdot Sin B = \frac{1}{2} \left[\cos(\alpha - B) - \cos(\alpha + B) \right]$$

$$Sin\alpha \cdot cos B = \frac{1}{2} \left[sin(\alpha + \beta) + cos(\alpha - \beta) \right]$$

$$(OS \times \cdot COS B = \frac{1}{2} \left[(OS(X+B) + (OS(X-B)) \right]$$

$$Sin(\alpha) + sin(B) = 2 sin(\frac{\alpha+B}{2}) \cdot cos(\frac{\alpha-B}{2})$$

$$Sin(\alpha)-sin(\beta) = 2sin(\frac{\alpha-\beta}{2}) \cdot cos(\frac{\alpha+\beta}{2})$$

$$(OS(\alpha) + COS(B) = 2COS(\frac{\alpha+B}{z}) \cdot COS(\frac{\alpha-B}{z})$$

$$COS(x)-COS(B) = Z sin(B-x) \cdot sin(x+B)$$

$$tan(a) + tan(B) = \frac{sin(a+B)}{cos(a) \cdot cos(B)}$$

$$tan(\omega) - tan(B) = \frac{sin(\omega - B)}{cos(\omega) cos B}$$