

Programozási alapismeretek 12. előadás

- > Tapasztalatok a rendezésről
- > Keresés rendezett sorozatban
- > Rendezettek uniója
- > Rendezettek összefésülése
- Kiválogatás helyben
- > Szétválogatás helyben
- Hatékonyságvizsgálat táblázatkezelővel

Tapasztalatok a rendezésről

> A rendezési algoritmusok eredménye egy rendezett sorozat. Vajon lehet-e a korábban megismert feladatokat hatékonyabban megoldani, ha a bemenetük rendezett?

A rendezési algoritmusok többsége "helyben" rendez. Vannak-e más, "helyben" működő algoritmusok?

Idő-Rendezettek uniója hatékonyság Rendezettek összefésülése

Kiválogatás helyben Hely-Szétválogatás helyben hatékonyság

Keresés rendezett sorozatban

Feladat:

Egy Y értéket keresünk egy rendezett X sorozatban.

T-tulajdonság:

Specifikáció:

 \triangleright Bemenet: $N \in \mathbb{N}, X \in \mathbb{N}^{*}$

Y∈Ĥ

 \triangleright Kimenet: Van \in L, Ind \in N

Konkretizáljuk: legyen növekvő!

T(x) := (x = Y)

- Előfeltétel: RendezettE(X)
- > Utófeltétel:Van= $\exists i(1 \le i \le N): X_i = Y$ és Van→ $1 \le Ind \le N$ és $X_{Ind} = Y$
- > Definíció (emlékeztető):

RendezettE($X_{1..N}$):= $\forall i(1 \le i < N)$: $X_i \le X_{i+1}$

Specifikáció:

- > Bemenet: $N \in \mathbb{N}$, $X \in H^{\mathbb{N}}$
- ➤ Kimenet: Van∈L, Ind∈N
- > Előfeltétel: -
- > Utófeltétel: Van=∃i (1≤i≤N): T(X_i) és Van→1≤Ind≤N és T(X_{Ind})

Keresés rendezett sorozatban

Feladat:

Egy Y értéket keresünk egy rendezett X sorozatban.

T-tulajdonság:

Specifikáció:

 \triangleright Bemenet: $N \in \mathbb{N}, X \in \mathbb{N}^{\times}$

Y∈Ĥ

 \triangleright Kimenet: Van \in L, Ind \in N

Konkretizáljuk: legyen növekvő!

T(x) := (x = Y)

Előfeltétel: RendezettE(X)

> Utófeltétel: (Van,Ind) = Keres i

 $X_i = Y$

Definíció (emlékeztető):

RendezettE($X_{1..N}$):= $\forall i(1 \le i < N)$: $X_i \le X_{i+1}$

Specifikáció:

- > Bemenet: $N \in \mathbb{N}$, $X \in H^{\mathbb{N}}$
- ➤ Kimenet: Van ∈ L, Ind ∈ N
- > Előfeltétel: -
- > Utófeltétel: Van=∃i (1≤i≤N): T(X_i) és Van→1≤Ind≤N és T(X_{Ind})

- > Bemenet: N∈N, X∈H^N
- ➤ Kimenet: Van ∈ L, Ind ∈ N
- > Előfeltétel: -
- > Utófeltétel: Van=∃i (1≤i≤N): T(X_i) és Van→1≤Ind≤N és T(X_{Ind})

Specifikáció:

- > Bemenet: N∈N, Y∈H, X∈H^N
- > Kimenet: Van∈L, Ind∈N
- > Előfeltétel: RendezettE(X)
- > Utófeltétel:Van=∃i(1≤i≤N): X_i=Y és Van→1≤Ind≤N és X_{Ind}=Y

Keresés rendezett sorozatban

i:Egész

Otlet:

Ha már a keresett elem értékénél nagyobbnál tartunk, akkor biztos nem lesz a sorozatban, megállhatunk.

Észrevétel:

Van megoldás ↔ azért álltunk meg keresés közben, mert megtaláltuk a keresett értéket.

Keresés rendezett

sorozatban

Programparaméterek:

Konstans

MaxN:**Egész**(???)

Típus

THk=**Tömb**[1..MaxN:TH]

Változó

N:**Egész**, X:THk

Y:TH

Van:**Logikai**, Ind:**Egész**

Specifikáció:

 \triangleright Bemenet: $N \in \mathbb{N}, X \in \mathbb{H}^{\mathbb{N}}$

 $Y \in H$

 \triangleright Kimenet: Van \in L, Ind \in N

➤ Előfeltétel: N>0 és RendezettE(X)

ightharpoonup Utófeltétel:Van= $\exists i(1 \le i \le N): X_i = Y$ és

 $Van \rightarrow 1 \leq Ind \leq N \text{ \'es } X_{Ind} = Y$

Ötlet és -tömb esetén- lehetőség:

Először a középső elemmel hasonlítsunk! Ha nem a keresett, akkor vagy előtte, vagy mögötte kell tovább keresni!

> Bemenet: N∈N, X∈H^N

Y∈H

➤ Kimenet: Van∈L, Ind∈N

> Előfeltétel: N>0 és RendezettE(X)

> Utófeltétel:Van=∃i(1≤i≤N): X;=Y és

Van→1≤Ind≤N és X_{Ind} =Y

Algoritmus:

e,k,u:**Egész**

e:=1		Változó e,k,u: E
u:=N		
k:=(e+u)	div 2	
X[k]>Y	\ X[k] <y< td=""><td> Itt ak</td></y<>	 Itt ak
u:=k_1	e:=k+1	mego
e≤u és	X[k]≠Y	megt
Van:=X[k]=Y	Y	keres
•••	Droguego práci elegiograpa tele 12, elős dá] valan

Itt akkor van megoldás, ha megtaláltuk a keresett érték valamelyikét.

Keresés rendezett sorozatban

További kérdések – tételvariánsok:

- ➤ Hány lépés alatt találjuk meg a keresett elemet? (→Logaritmikus v. bináris keresés.)
- > Ha több egyforma elem is van a sorozatban, akkor ez a módszer melyiket találja meg?
- > Hogyan lehetne az összes Y-értékű elemet megtalálni?

Összefuttatás.

Feladat:

Adott két rendezett halmaz, adjuk meg az uniójukat!

Specifikáció:

 \triangleright Bemenet: N,M \in N, X \in H^N, Y \in H^M \leq N+M

 \triangleright Kimenet: $Db \in \mathbb{N}, Z \in H^{Db}$

➤ Előfeltétel: HalmazE(X) és HalmazE(Y) és

RendezettE(X) és RendezettE(Y)

> Utófeltétel₁: Db = N +
$$\sum_{\substack{j=1\\Y_i \notin X}}^{M}$$
1 és

 $\forall i (1 \le i \le Db): Z_i \in X \text{ vagy } Z_i \in Y \text{ és}$ HalmazE(Z) és RendezettE(Z)

➤ Utófeltétel₁:
$$Db = N + \sum_{\substack{j=1 \ Y_i \notin X}}^{M} 1$$
 és

 $\forall i (1 \le i \le Db): Z_i \in X \text{ vagy } Z_i \in Y \text{ és}$ HalmazE(Z) és RendezettE(Z)

Definíció (emlékeztető):

 $HalmazE(X_{1..N}) = \forall i \neq j \in [1..N]: X_i \neq X_j$

➤ Utófeltétel₂: (Db,Z)=Unió(N,X,M,Y) és RendezettE(Z)

Definíció (emlékeztető):

 $HalmazE(X_{1..N}) := \forall i \neq j \in [1..N]: X_i \neq X_j$

➤ Utófeltétel₂: (Db,Z)=Unió(N,X,M,Y) és RendezettE(Z)

> Definíció (emlékeztető):

 $HalmazE(X_{1..N}) := \forall i \neq j \in [1..N]: X_i \neq X_j$

Ötlet:

Az eredmény első eleme vagy az X, vagy az Y első eleme lehet. A kettő közül a rendezett-ség szerintit tegyük az eredménybe, majd a maradékra ugyanezt az elvet alkalmazhatjuk.

Algoritmus elé:

Algoritmus elé:

> Ha már nincs mit hasonlítani:

- ► Bemenet: N,M∈N, X∈HN, Y∈HM
- \succ Kimenet: $Db \in N$, $Z \in H^{Db}$
- > Előfeltétel: HalmazE(X) és HalmazE(Y) és RendezettE(X) és RendezettE(Y)
- > Utófeltétel₁: $Db = N + \sum_{j=1}^{M} 1$ és

 $\forall i (1 \le i \le Db): Z_i \in X \text{ vagy } Z_i \in Y \text{ és}$ HalmazE(Z) és RendezettE(Z)

Változ

i,j:Eg

Algoritmus₁:

ingoriumus₁

i:=1

j = 1

Db:=0

j=1..M

i≤N és X[i]≠Y[j]

i>N

Db := Db + 1

X[i] < Y[j]	$\setminus X[i]=Y[j]$	$\setminus X[i]>Y[j]$
Z[Db]:=X[i]	Z[Db]:=X[i]	Z[Db]:=Y[j]
i:=i+1	i:=i+1	j:=j+1
	j:=j+1	

• • •

i:=i+1

Db:=Db+1 Z[Db]:=Y[j]

Db:=N

i:=1

- \gt Bemenet: N,M \in N, X \in H N , Y \in H M
- \succ Kimenet: $Db \in N$, $Z \in H^{Db}$
- Előfeltétel: HalmazE(X) és HalmazE(Y) és RendezettE(X) és RendezettE(Y)
- > Utófeltétel₁: Db = N + $\sum_{j=1}^{M} 1$ és

 $\forall i (1 \le i \le Db)$: $Z_i \in X$ vagy $Z_i \in Y$ és HalmazE(Z) és RendezettE(Z)

Változ

i,j**:**E**g**

Algoritmus₁:

i:=1

<u>i⋅=1</u>

Db:=0

Z:=X	
Db:=N	
j=1M	
i:=1	
i≤N és X[i]≠Y[j]	1
i:=i+1	
i>N /	1/2
Db:=Db+1	
Z[Db]:=Y[j]	

2014.12.01. 7:10

i≤N és j≤M

$$Db:=Db+1$$

VEI/VEI

Λ [I] \sim I [J]	Λ [I] - I [J]	
Z[Db]:=X[i]	Z[Db]:=X[i]	ZDt

$$i:=i+1$$
 $i:=i+1$ $j:=j+1$

j:=j+1

• • •

VII-VII

- ► Bemenet: N,M∈N, X∈HN, Y∈HM
- \succ Kimenet: $Db \in N$, $Z \in H^{Db}$
- > Előfeltétel: HalmazE(X) és HalmazE(Y) és RendezettE(X) és RendezettE(Y)
- > Utófeltétel₁: $Db = N + \sum_{j=1}^{M} 1$ és

 $\forall i (1 \le i \le Db): Z_i \in X \text{ vagy } Z_i \in Y \text{ és}$ HalmazE(Z) és RendezettE(Z)

Rendezettek uniója

i≤N

151

Db = Db + 1

Z[Db]:=X[i]

i:=i+1

j≤M

Db = Db + 1

Z[Db]:=Y[j]

j:=j+1

- \gt Bemenet: N,M \in N, X \in H N , Y \in H M
- \succ Kimenet: $Db \in \mathbb{N}$, $Z \in H^{Db}$
- Előfeltétel: HalmazE(X) és HalmazE(Y) és RendezettE(X) és RendezettE(Y)
- > Utófeltétel₁: $Db = N + \sum_{j=1}^{M} 1$ és

 $\forall i (1 \le i \le Db): Z_i \in X \text{ vagy } Z_i \in Y \text{ és}$ HalmazE(Z) és RendezettE(Z)

Rendezettek uniója

	• • •
	i≤N
Db:=Db+1	
Z[Db]:=X[i]	
i:=i+1	
	j≤M
Db:=Db+1	
Z[Db]:=Y[j]	
j:=j+1	

Vegyük észre: ha az X és Y utolsó elemei egyenlők, akkor ez a két ciklus nem kellene!

- \triangleright Bemenet: N,M \in N, X \in H^N, Y \in H^M
- \succ Kimenet: $Db \in \mathbb{N}$, $Z \in H^{Db}$
- > Előfeltétel: HalmazE(X) és HalmazE(Y) és RendezettE(X) és RendezettE(Y)
- > Utófeltétel₁: Db = N + $\sum_{i=1}^{n} 1$ és

 $\forall i(1 \le i \le Db): Z_i \in X \text{ vagy } Z_i \in Y \text{ és}$ HalmazE(Z) és RendezettE(Z)

Rendezettek uniója

Változ

i,j:**E**

Algoritmus₂:

i:=1

j:=1

Db = 0

 $X[N+1] := +\infty$

 $Y[M+1]:=+\infty$

i<u>≤N+1</u> és j≤M+1

 $\overline{\text{Db}}:=\overline{\text{Db}}+1$

X[i] <y[j]< th=""><th>X[i]=Y[j]</th><th>$\setminus X[i]>Y[j]$</th></y[j]<>	X[i]=Y[j]	$\setminus X[i]>Y[j]$
Z[Db]:=X[i]	Z[Db]:=X[i]	Z[Db]:=Y[j]
i:=i+1	i:=i+1	j:=j+1
	j:=j+1	

- \gt Bemenet: N,M \in N, X \in H N , Y \in H M
- \succ Kimenet: $Db \in N$, $Z \in H^{Db}$
- > Előfeltétel: HalmazE(X) és HalmazE(Y) és RendezettE(X) és RendezettE(Y)
- $ightharpoonup Utófeltétel_1$: $Db = N + \sum_{j=1}^{M} 1$ és

 $\forall i (1 \le i \le Db): Z_i \in X \text{ vagy } Z_i \in Y \text{ és}$ HalmazE(Z) és RendezettE(Z)

Rendezettek uniója

Változ

i,j:**E**

Algoritmus₂:

i:=1

j:=1

Db = 0

 $X[N+1] := +\infty$

 $Y[M+1]:=+\infty$

<u>i≤N+1</u> és j≤M+1

 $\overline{\text{Db}}:=\overline{\text{Db}}+1$

$\setminus X[i] < Y[j]$	$\setminus X[i]=Y[j]$	
Z[Db]:=X[i]	Z[Db]:=X[i]	Z[Db]:=Y[j]
i:=i+1	i:=i+1	j:=j+1
	j:=j+1	

- \gt Bemenet: N,M \in N, X \in H^N, Y \in H^M
- \gt Kimenet: $Db \in \mathbb{N}$, $Z \in H^{Db}$
- Előfeltétel: HalmazE(X) és HalmazE(Y) és RendezettE(X) és RendezettE(Y)
- > Utófeltétel₁: Db = N + $\sum_{j=1}^{M} 1$ és

 $\forall i (1 \le i \le Db): Z_i \in X \text{ vagy } Z_i \in Y \text{ és}$ HalmazE(Z) és RendezettE(Z)

Rendezettek uniója

Változ

i,j:**E**

Algoritmus₂ javítása:

· 4

i:=1

j = 1

Db:=0

 $X[N+1] := +\infty$

 $Y[M+1] := +\infty$

i<N+1 vagy j<M+1

Db = Db + 1

	X[i] < Y[j]	$\setminus X[i]=Y[j]$	
	Z[Db]:=X[i]	Z[Db]:=X[i]	Z[Db]:=Y[j]
	i:=i+1	i:=i+1	j:=j+1
ſ		i·=i+1	

- > Bemenet: N,M∈N, X∈HN, Y∈HM
- \gt Kimenet: $Db \in \mathbb{N}$, $Z \in H^{Db}$
- Előfeltétel: HalmazE(X) és HalmazE(Y) és RendezettE(X) és RendezettE(Y)
- > Utófeltétel₁: Db = N + $\sum_{j=1}^{M} 1$ és

 $\forall i (1 \le i \le Db): Z_i \in X \text{ vagy } Z_i \in Y \text{ és}$ HalmazE(Z) és RendezettE(Z)

Rendezettek uniója

Változ

i,j:**E**

Algoritmus₂ javítása:

..—1

i:=1

j = 1

Db:=0

 $X[N+1] := +\infty$

 $Y[M+1]:=+\infty$

i≤N vagy j≤M

Db = Db + 1

X[i] < Y[j]	$\setminus X[i]=Y[j]$	
Z[Db]:=X[i]	Z[Db]:=X[i]	Z[Db]:=Y[j]
i:=i+1	i:=i+1	j:=j+1
	i·=i+1	

Kérdések:

- Jobb lett ez a módszer az előzőnél az idő szempontból?
 - ← Hány lépés alatt kapjuk meg a megoldást?
- > Meg lehetne ugyanezt tenni a metszettel is?

Kérdések:

- Jobb lett ez a módszer az előzőnél az idő szempontból?
 - ← Hány lépés alatt kapjuk meg a megoldást?
- > Meg lehetne ugyanezt tenni a metszettel is?

Tapasztalat:

- ▶ Jobb lett ez a módszer bonyolultság szempontjából. (⇐ Ciklus-/elágazás-szám.)
- Ez a módszer a kimenet szerint halad egyesével és nem a bemenet szerint (mint a korábbiak).

Rendezettek összefésülése

Feladat:

Adott két rendezett sorozat, adjuk meg az összefésülésüket!

Specifikáció:

 \triangleright Bemenet: N,M \in N, X \in H^N, Y \in H^M

 \triangleright Kimenet: $Z \in H^{N+M}$

➤ Előfeltétel: HalmazE(X) és HalmazE(Y) és

RendezettE(X) és RendezettE(Y)

Rendezettek összefésülése

➤ Utófeltétel: Z∈Permutáció(X⊕Y) és RendezettE(Z)

Ötlet:

A megoldás olyan, mint az összefuttatás, csak az egyforma elemeket is berakjuk az eredménybe, tehát egy-egy érték multiplicitása lehet 1-nél nagyobb is (már kezdetben is!).

Rendezettek összefésülése

Algoritmus:

Változó i,j:Egész

Specifikáció:

- > Bemenet: N,M \in N, X \in H^N, Y \in H^M
- > Kimenet: Z∈H^{N+M}
- > Előfeltétel: RendezettE(X) és RendezettE(Y)
- > Utófeltétel: Z∈Permutáció(X⊕Y) és RendezettE(Z)

i:=1			
j:=1			
Db:= 0			
X[N+1]:=	$X[N+1]:=+\infty$		
Y[M+1]:	$Y[M+1]:=+\infty$		
	i≤N vagy j≤M		
Db:=	Db+1		
I	X[i] ≤	$\leq Y[j]$ /N	
Z[Db]]:=X[i]	Z[Db]:=Y[j]	
i:=i+1		j:=j+1	

Kiválogatás helyben

Specifikáció:

 \gt Bemenet: $N \in \mathbb{N}, X \in \mathbb{H}^{\mathbb{N}}$

 \triangleright Kimenet: $Db \in \mathbb{N}, X' \in \mathbb{H}^{\mathbb{N}}$

➤ Előfeltétel: –

> Utófeltétel: $Db = \sum_{i=1}^{1} 1$ és $T(X_i)$

X'_{1...Db}⊆X és

 $\forall i (1 \le i \le Db): T(X_i)$

Ötlet:

Itt olyan helyre tesszük a kiválogatott elemet, amelyre már nincs szükségünk.

Algoritmus:

Specifikáció:

- \triangleright Bemenet: $N \in \mathbb{N}$, $X \in H^{\mathbb{N}}$
- \gt Kimenet: $Db \in \mathbb{N}$, $X' \in H^{\mathbb{N}}$
- Előfeltétel: –
- > Utófeltétel: $Db = \sum_{i=1}^{N} 1$ és $X'_{1..Db} \subseteq X$ és $\forall i (1 \le i \le Db)$: $T(X'_i)$

Specifikáció:

 \triangleright Bemenet: $N \in \mathbb{N}, X \in \mathbb{H}^{\mathbb{N}}$

 \triangleright Kimenet: $Db \in \mathbb{N}, X' \in \mathbb{H}^{\mathbb{N}}$

Előfeltétel: –

> Utófeltétel: Db = $\sum_{\substack{i=1\\T(X_i)}} 1$ és X'∈Permutáció(X)

és $\forall i (1 \le i \le Db)$: $T(X_i)$

és $\forall i(Db+1 \le i \le N)$: nem $T(X'_i)$

Definíció (emlékeztető):

Permutáció(Z):= Z elemeinek összes permutációjának halmaza

Algoritmikus ötlet:

1. Vegyük ki (másoljuk le) a sorozat első elemét:

2. Keresünk hátulról egy elemet, aminek elől a helye (mert T tulajdonságú, nem odavaló):

3. A megtalált elemet tegyük az előbb keletkezett lyukba:

$$\otimes$$
 x x x x x x X O x x x x x

A lyuk mögött és az 1. elemmel már rendben vagyunk.

4. Most keletkezett egy lyuk hátul. Az előbb betöltött lyuktól indulva elölről keressünk hátra teendő (nem odavaló: nem T-tulajdonságú) elemet:

5. A megtalált elemet tegyük a hátul levő lyukba, majd újra hátulról kereshetünk!

$$\otimes$$
 x x O x x \otimes x x x x x

Az elől keletkezett lyuk előttiek és a hátrébb mozgatott elemmel kezdve rendben vagyunk.

6. ... és így tovább ...

Befejezzük a keresést, ha valahonnan elértük a lyukat. Erre a helyre a kivettet visszatesszük.

Specifikáció:

- Bemenet: $N \in \mathbb{N}$, $X \in H^{\mathbb{N}}$
- \triangleright Kimenet: $Db \in \mathbb{N}$, $X' \in \mathbb{H}^{\mathbb{N}}$
- > Előfeltétel: -
- ➤ Utófeltétel: Db = $\sum_{i=1}^{N} 1$ és X'∈Permutáció(X)

és $\forall i (1 \le i \le Db)$: $T(X'_i)$ és $\forall i (Db+1 \le i \le N)$: nem $T(X'_i)$

A	<u>lg</u>	O	rit	n	nus	•
		1		г	,	

Változó e,u**:Egész** y**:**TH Van**:Logikai**

Specifikáció:

- \succ Bemenet: $N \in \mathbb{N}$, $X \in H^{\mathbb{N}}$
- \gt Kimenet: $Db \in \mathbb{N}$, $X' \in H^{\mathbb{N}}$
- > Előfeltétel: -
- ightarrow Utófeltétel: Db = $\sum_{i=1}^{\infty} 1$ és X' \in Permutáció(X)

és ∀i(1≤i≤Db): T(X'_i)

és $\forall i(Db+1 \le i \le N)$: nem $T(X_i)$

	•••
X[e]:=y	
Ī	$\Gamma(y)$ N
Db:=e	Db:=e-1

ElölrőlKeres(e,u:**Egész, Van:Logikai**)

e = e + 1

Van:=e<u

HátulrólKeres(e,**u:Egész, Van:Logikai**)

e<u és nem T(X[u])

u := u - 1

Van:=e<u

Ötlet:

- 1. A táblázatkezelők importálnak sokféle formátumú fájlt, pl. CSV-formátumút.
- 2. A Comma Separated Value (CSV) = egy ,,mezei" text fájl, amelyben minden önálló (cellában tárolt/tárolandó) adatot (pontos)vessző követ.
- 3. Egyszerű olyan C++ programot írni, amely a táblázatolandó adatokat "CSV-esítve" ír text fájlba.

Példafeladat:

Az unió és az összefuttatás tételek hatékonyságának összevetése.

Hatékonysági "dimenzió": tömbbeli elemek összehasonlítás-száma esetleg futási ideje (mint a futási jellemzője)

Összefüggést keresünk a bemeneti sorozathossz és hasonlítás-szám között: (N,M)→hDb_{unió}, (N,M)→hDb_{összefuttatás}

. .

Megoldásvázlat:

- 1. Mindkét algoritmusban számoljuk a tömbelem-összehasonlításokat (mérjük az időt).
- 2. Néhány (jól kiválasztott) N,M-elemű sorozatra lefuttatjuk és közben számlálunk (mérünk).
- 3. Majd CSV-fájlba írjuk a hatékonysági eredményeinket.

Megjegyzés: az időmérés feltétele, hogy pontosan tudjuk mérni. (Windows-ban aggályos, Unix/Linuxban OK.)

Egy lehetséges eredmény a táblázatkezelőbe importálás után – **unió**: Numerikusan

	\ <mark>"</mark>		1	2	3	•	5	6	7	8	9	10	11	12	13	14	15	16	17	15	19	
0		0																				
1		0	1	2																		
2		0	2	3	5	7																
3		0	2	4	7	10	13	16														
4		0	3	5	9	12	16	19	23	27												
5		0	3	G	10	14	18	23	28	32	37	42										
6		0	4	7	12	16	21	26	31	37	43	48	54	60								
7		0	4	8	13	18	23	29	35	41	48	54	61	67	74	81						
8		0	5	9	15	20	26	32	39	45	52	60	67	74	82	90	97	105				
9		0	5	10	16	22	28	35	42	49	57	65	73	81	90	98	107	115	124	132		
10		0	6	11	18	24	31	38	46	53	62	70	79	88	97	106	115	125	134	144	153	

Egy lehetséges eredmény a táblázatkezelőbe importálás után – **unió**: Grafikusan

A program outputjának ábrázolása összetett felület-diagramokkal.

A program outputja és abból (rögzített Nhez tartozó) soronként képzett átlagok diagramja.

Egy lehetséges eredmény a táblázatkezelőbe importálás után – összefuttatás:

Numerikusan

A program outputja táblázatkezelőbe importálás és némi szépítés után.

Egy lehetséges eredmény a táblázat-kezelőbe importálás után – összefuttatás:

Grafikusan

A program outputjának ábrázolása összetett felület-diagramokkal.

A program outputja és abból (rögzített Nhez tartozó) soronként képzett átlagolok diagramja. Az N növekedést mutató ábrán a legjobban ráilleszthető lineáris

Programozási alapismeretek 12. előadás vége