Boolean Algebra.

Digital Circuits

- · 2 voitage levels note its aquanish!
- · Advantages over analog
 - More reliable Simpler (ircuits, less noise-prone
 - · Specified accuracy determinate.
 - · Abstraction using boolean Algebra.
 - · Ease design, analysis and simplification of figital circuit Digital Logic Design
- . 2 Types
 - · Combinational

- re:

 or output depude soldy on toputs

 or eg. brotes, Decoders, Multipliers, Adders, Multipliers
 - · Seguntial
 - · have memory
 - · contract depear on both input and current state -> State machine.
 - · ey. Counter, register, memois.

Boolean Algebia.

- · 1 = True
- · 0 = False.
- · Connectives

- · Truth Table
 - · Prove equations idulical columns.
- · Laws (1 is True, 0 is False)

Identity laws	
Identity laws	
A + 0 = 0 + A = A	$A \cdot 1 = 1 \cdot A = A$
Inverse/complement laws	
A + A' = A' + A = 1	$A \cdot A' = A' \cdot A = 0$
Commutative laws	
A + B = B + A	$A \cdot B = B \cdot A$
Associative laws *	ophionel
A + (B + C) = (A + B) + C	$A \cdot (B \cdot C) = (A \cdot B) \cdot C$
Distributive laws	Compulse
$A \cdot (B + C) = (A \cdot B) + (A \cdot C)$	$A + (B \cdot C) = (A + B) \cdot (A + C)$
Outlify If the AND/OR operators and identify element interchanged, it remains unlide	oments O/1 in a bodeen Equation
· i.e. If $\alpha + (b \cdot c) = (\alpha \cdot b) \cdot (\alpha \cdot c)$ thun $\alpha \cdot (b \cdot c) = (\alpha \cdot b) + (\alpha \cdot c)$	is true, 2 "Shortout"

· Theorem

Idempotency Value	ily
X + X = X	X · X = X
One element / Zero element	
X + 1 = 1 + X = 1	$X \cdot 0 = 0 \cdot X = 0$
Involution (Double regation law)	
(X')' = X	
Absorption 1	
$X + X \cdot Y = X$	$X \cdot (X + Y) = X$
Absorption 2	
$X + X' \cdot Y = X + Y$	$X \cdot (X' + Y) = X \cdot Y$
DeMorgans' (can be generalised to	more than 2 variables)
$(X + Y)' = X' \cdot Y'$	$(X \cdot Y)' = X' + Y'$
Consensus	
$X \cdot Y + X' \cdot Z + Y \cdot Z = X \cdot Y + X' \cdot Z$	$(X+Y)\cdot(X'+Z)\cdot(Y+Z) = (X+Y)\cdot(X'+Z)$
removed —	

· Standard Forms

- · Lituals
 - · A boolean variable on its own or in its complemented from
 - · eg. 💢 , x', y , y'
- · Product term
 - · A single literal or a logical product (AND) of several literals
 - · eg. x, x.y.z', A'.B, A.B, d.g'.v.w
- · Sun tum
 - · A single literal or a logical orm (OR) of several literals
 - · eg. xty+z', A'+B, AtB, C+d+h'+j
- Every booleon expression

 Can be expressed in 50P

 A product term or logical sum (OR) of several product terms

 eg. x, xfyz', x,y'+x'yz, A.B.+A'B',

 A+B'C+A-C'+C-D

 Product of sums (POS)
 - - · A sum term or logical product (AND) of several runs terms
 - · eg x, x (y+z), (x+y') (x'+y+z), (A+B) (A'+B'), (A+B+C).0'.(B'+D+E')

- Fach mintern is the content of its corresponding maxtem:

 i.e. m2' = m2.

 Nowtern

 Nowtern

 That contains n distrals from all the variables. $\Rightarrow 2^n$ minterns.

 Nowtern

 Sum term that contains n distrals from all the variables. $\Rightarrow 2^n$ minterns.

 Nowterns

 Now term that contains n distrals from all the variables. $\Rightarrow 2^n$ mixterns.

 Product term that contains n distrals from all the variables. $\Rightarrow 2^n$ mixterns.

 Now term n distrals from all the variables. $\Rightarrow 2^n$ mixterns.

 Now term n distrals from all the variables. $\Rightarrow 2^n$ mixterns.

 Now term n distrals from all the variables. $\Rightarrow 2^n$ mixterns.

· Cononiral Forms

- · A unique form of representation.
- · Sum of mintums = (ononical sum-of-products.

(impt - for logic circuits)

· Grather the minterms of the function (output=1)

Х	у	Z	F1	F2	F3
0	0	0	0	0	0
0	0	1	0	1	1
0	1	0	0	0	0
0	1	1	0	0	1
1	0	0	0	1	1
1	0	1	0	1	1
1	1	0	1	1	0
1	1	1	0	1	0

F2 =
$$x' \cdot y' \cdot z + x \cdot y' \cdot z' + x \cdot y' \cdot z + x \cdot y \cdot z' + x' \cdot y' \cdot z'$$

" m + m4 + m5 + m6 + m7

" \(\Sum (1, 4, 5, 6, 7) \)

$$F3 = x' \cdot y' \cdot z + x' \cdot y \cdot z + x \cdot y' \cdot z' + x \cdot y' \cdot z$$

= m1 + m3 + m4 + m5

= 2m(1,3,4,5)

· Product-of-maxtums = Consider product-of-sum.

· Gather the maxterns of the function (crupped = 0)

Х	У	Z	F1	F2	F3
0	0	0	0	0	0
0	0	1	0	1	1
0	1	0	0	0	0
0	1	1	0	0	1
1	0	0	0	1	1
1	0	1	0	1	1
1	1	0	1	1	0
1	1	1	0	1	0

· MM(0,2,6,7)

Conversion of standard forms

F2 · Σm(1,4,5,6,7) · πM(0,2,3)

Х	У	z	F2	F2'
0	0	0	0	1
0	0	1	1	0
0	1	0	0	1
0	1	1	0	1
1	0	0	1	0
1	0	1	1	0
1	1	0	1	0
1	1	1	1	0