Environmental Instruments Canada Thoron Detection

Edward Timko¹ Stephen Styles² Liam Wrubleski³

¹Dept. of Mathematics University of Manitoba

²Dept. of Mathematics and Statistics University of Alberta

³Dept. of Electrical and Computer Engineering University of Calgary

August 21, 2020

Introduction

- Residential radon progeny exposure is the second leading cause of lung cancer, after smoking.
- Uranium and thorium in the soil decay into radon, which can then seep into basements and low-lying areas of the house.
- The main radon isotopes are Rn-222 and Rn-220, which is also called thoron.
- Thoron has been ignored in the past as it has a relatively short half life and usually decays before reaching a house, however its decay products can reach living areas.

- Environmental Instruments Canada (EIC) produces a Radon Sniffer which is used by radon mitigators and building scientists to find radon entry points.
- These sniffers currently assume all radon is Rn-222.
- The sniffer pumps in air through a filter, only passing in radon to the chamber.
- The sniffer only counts alpha particles, and cannot distinguish between decays of Rn-222, Rn-220, or their progeny.

Problem Statement

Find a sampling schedule and algorithm to determine the concentrations of Rn-222 and Rn-220 that minimizes the variance in the estimated values.

Decay Chains

We model the decay chain as an ordered sequence of nuclides. These nuclides decay either by emitting an alpha particle or a beta particle, with a half-life of $t_{1/2}$.

Generating Data

The decay times of an atom follow an exponential distribution with parameter $\lambda = \frac{\ln(2)}{t_{1/2}}$.

By sampling the decay time of the atoms of each nuclide from its distribution, and counting the total number of decays within a certain interval, we can generate simulated data.

Normalized Count Rates

Normalizing to the expected count in the first sample period, we can see the difference in behaviour of different mixtures of radon and thoron.

10 pCi/L

We can add a sample run of generated data onto the previous curves and compare the observed counts to the expected counts. nvironmenta Instruments Canada Inc.

100 pCi/L

Progress

Using the expected number of decays and the observed counts, we use a linear regression model to estimate our initial amount of each isotope. Thus we can fit the model:

$$y_t = N_{222}X_{t1} + N_{220}X_{t2} + \epsilon_t$$

We can simulate this model thousands of times with a given set of concentrations and calculate the mean and standard deviation of the estimated initial quantities.

At the moment we find that sampling for 5 minutes with 15s intervals is able to give us the best prediction, as evaluated by the variance in the estimated amounts.

Next Steps

- Thus far, we have assumed that there is no radon progeny at the beginning of the sampling period.
- We will have to update the model to incorporate the inclusion of the radon decaying while the air is pumped into the device.
- This will change the initial conditions of our differential equation and we will need to estimate more terms to be able to accurately predict the concentrations of each isotope.
- From here we can find a sampling scheme in the data that would minimize the variance in our estimated coefficients.

