9.2.18

EE24BTECH11021 - Eshan Ray

Question:

Find the area of the region bounded by the curve $x^2 = y$ and the lines y = x + 2 and the x - axis.

Solution:

Variable	Description	value
V	Quadratic Form Matrix	$\begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$
и	Linear Coefficient Vector	$\begin{pmatrix} 0 \\ \frac{-1}{2} \end{pmatrix}$
f	Constant Term	0
h	Point on the line $x = 2y + 3$	$\begin{pmatrix} 0 \\ 2 \end{pmatrix}$
m	slope of the line $x = 2y + 3$	$\begin{pmatrix} 1 \\ 1 \end{pmatrix}$
k_i	constant for point of intersection of the curve and the line	

TABLE 0: Input parameters

The point of intersection of the line with the parabola is $x_i = h + k_i m$, where, k_i is calculated as follows:-

$$k_i = \frac{1}{m^\top V m} \left(-m^\top \left(V h + u \right) \pm \sqrt{\left[m^\top \left(V h + u \right) \right]^2 - g \left(h \right) \left(m^\top V m \right)} \right)$$

Substituting the input parameters in k_i ,

$$k_{i} = \frac{1}{\begin{pmatrix} 1 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} 1 \\ 1 \end{pmatrix}} \begin{pmatrix} -\begin{pmatrix} 1 & 1 \end{pmatrix} \begin{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} 0 \\ 2 \end{pmatrix} + \begin{pmatrix} 0 \\ -\frac{1}{2} \end{pmatrix} \end{pmatrix} \pm \sqrt{\left[\begin{pmatrix} 1 & 1 \end{pmatrix} \begin{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} 0 \\ 2 \end{pmatrix} + \begin{pmatrix} 0 \\ -\frac{1}{2} \end{pmatrix} \right]^{2} - g(h) \left(\begin{pmatrix} 1 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} 1 \\ 1 \end{pmatrix} \right)}$$
(1)

We get,

$$k_i = -1, 2$$

Substituting k_i in $x_i = h + k_i m$ we get,

$$x_1 = \begin{pmatrix} 0 \\ 2 \end{pmatrix} + (-1) \begin{pmatrix} 1 \\ 1 \end{pmatrix} \tag{2}$$

$$\implies x_1 = \begin{pmatrix} 0 \\ 2 \end{pmatrix} + \begin{pmatrix} -1 \\ -1 \end{pmatrix} \tag{3}$$

$$\implies x_1 = \begin{pmatrix} -1\\1 \end{pmatrix} \tag{4}$$

$$x_2 = \begin{pmatrix} 0 \\ 2 \end{pmatrix} + (2) \begin{pmatrix} 1 \\ 1 \end{pmatrix} \tag{5}$$

$$\implies x_2 = \begin{pmatrix} 0 \\ 2 \end{pmatrix} + \begin{pmatrix} 2 \\ 2 \end{pmatrix} \tag{6}$$

$$\implies x_2 = \begin{pmatrix} 2 \\ 4 \end{pmatrix} \tag{7}$$

The area bounded by the curve $y = x^2$ and line y = x + 2 is given by

$$\int_{-1}^{2} x + 2 - x^{2} dx = \left(\frac{x^{2}}{2} + 2x - \frac{x^{3}}{3}\right)_{-1}^{2}$$
 (8)

$$= \left(\frac{4}{2} + 4 - \frac{8}{3}\right) - \left(\frac{1}{2} - 2 + \frac{1}{3}\right) \tag{9}$$

$$= \left(\frac{10}{3}\right) - \left(\frac{-7}{6}\right) \tag{10}$$

$$=\frac{9}{2}\tag{11}$$

So, the required area is 4.50 units.

Fig. 0: Intersection of line and parabola