Machine Learning PROJECT POWER SYSTEM FAULT DETECTION AND CLASSIFICATION

Presented By:

1. Zoya Riyan Hussain-Presidency University-Computer Science and Engineering zoyariyanhussain0@gmail.com

OUTLINE

- Problem Statement
- Proposed System/Solution
- System Development Approach
- Algorithm & Deployment
- Result (Output Image)
- Conclusion
- Future Scope
- References

PROBLEM STATEMENT

Design a machine learning model to detect and classify different types of faults in a power distribution system. Using electrical measurement data (e.g., voltage and current phasors), the model should be able to distinguish between normal operating conditions and various fault conditions (such as line-to-ground, line-to-line, or three-phase faults). The objective is to enable rapid and accurate fault identification, which is crucial for maintaining power grid stability and reliability.

PROPOSED SOLUTION

- Develop a sophisticated machine learning model to classify diverse power system faults with high precision and speed.
- This model will meticulously analyze electrical measurements to rapidly identify fault types, significantly automating detection and enabling swift recovery.
- Data Acquisition: Kaggle Dataset for Power System Fault Detection and Classification is used.
- Data Preprocessing:Implement rigorous data cleaning to handle missing values, outliers, and inconsistencies, ensuring data quality.
 Perform strategic feature engineering, including the derivation of symmetrical components, phase angle differences, and time-domain features (e.g., rate of change) to enhance fault discriminability.
- Model Training:Train a robust multi-class classification model capable of distinguishing between normal operation and various fault conditions
- Model Evaluation & Validation:
 - Overall Accuracy: For a general understanding of correct predictions.
 - Precision, Recall, and F1-score: Crucial for assessing performance on each specific fault class, especially minority classes, indicating the model's ability to minimize false positives and false negatives.

SYSTEM APPROACH

The "System Approach" section outlines the overall strategy and methodology for developing and implementing the rental bike prediction system. Here's a suggested structure for this section:

- IBM Cloud
- Watsonx.ai Studio
- IBM Cloud Storage for handling the dataset

ALGORITHM & DEPLOYMENT

Algorithm Selection:

- Random Forest Classifier.
- Data Input:
 - Fault ID, Fault Location (Latitude, Longitude), Voltage (V), Current (A), Power Load (MW), Temperature (°C), Wind Speed (km/h), Weather Condition, Maintenance Status, Component Health, Duration of Fault (hrs), Down time (hrs).
 - Training Process:
 - Supervised Machine Learning model is used to train the labelled dataset to detect the fault type.
- Prediction Process:
 - Real-time Model Deployment: The trained fault detection model will be hosted on a robust cloud platform (e.g., IBM Watson Studio) with a secure and scalable API endpoint, allowing for low-latency, real-time predictions.

RESULT

RESULT

RESULT

CONCLUSION

The IBM Watson Studio environment successfully demonstrates the full lifecycle of a power system fault classification model, from automated pipeline generation and training (primarily using Random Forest) to its deployment for real-time predictions. While currently identifying "Overheating" and "Line Breakage" faults, further refinement could enhance prediction confidence for more robust fault management.

FUTURE SCOPE

The future scope involves enhancing model accuracy and confidence through advanced deep learning and continuous data integration, alongside exploring real-time fault localization capabilities. Furthermore, the system can evolve to predict potential faults proactively, leveraging predictive maintenance for increased grid resilience.

REFERENCES

- Used Kaggle for Power System Faults Dataset
- Includes fault types, environmental conditions, and system performance data
- Implemented this dataset on IBM Cloud to detect the fault type.

IBM CERTIFICATIONS

In recognition of the commitment to achieve professional excellence

Zoya Riyan Hussain

Has successfully satisfied the requirements for:

Getting Started with Artificial Intelligence

Issued on: Jul 19, 2025 Issued by: IBM SkillsBuild

Verify: https://www.credly.com/badges/1def1c6a-afa3-4ca2-b1d7-8b01a5cfd600

IBM CERTIFICATIONS

In recognition of the commitment to achieve professional excellence

Zoya Riyan Hussain

Has successfully satisfied the requirements for:

Journey to Cloud: Envisioning Your Solution

Issued on: Jul 20, 2025 Issued by: IBM SkillsBuild

IBM CERTIFICATIONS

IBM SkillsBuild

Completion Certificate

This certificate is presented to

Zoya Riyan Hussain

for the completion of

Lab: Retrieval Augmented Generation with LangChain

(ALM-COURSE_3824998)

According to the Adobe Learning Manager system of record

Completion date: 24 Jul 2025 (GMT)

Learning hours: 20 mins

THANK YOU

