

Electronics Systems (938II)

Lecture 2.2

Building Blocks of Electronic Systems – Arithmetic operations

Combinational circuits for arithmetic operations

- Let's assume arithmetic operations on integers (with sign)
 - Addition
 - Subtraction
 - Multiplication
 - Division

• For this purpose, integers are represented using two's complement (C2)

- Assume N bits
 - Most significant bit (MSB), the leftmost one, is the sign bit

- Positive numbers
 - Natural binary representation
 - Sign bit = 0

• Example: $1 \rightarrow 000...01$

1 (decimal base)

- Negative numbers
 - 1. Get absolute binary representation (i.e. corresponding positive value)
 - 2. Invert (or complement) all bits
 - 3. Add 1 (ignoring overflow)

- Negative numbers
 - 1. Get absolute binary representation (i.e. corresponding positive value)
 - 2. Invert (or complement) all bits
 - 3. Add 1 (ignoring overflow)
 - Example: -1

- Negative numbers
 - 1. Get absolute binary representation (i.e. corresponding positive value)
 - 2. Invert (or complement) all bits
 - 3. Add 1 (ignoring overflow)
 - Example: -1

- Negative numbers
 - 1. Get absolute binary representation (i.e. corresponding positive value)
 - 2. Invert (or complement) all bits
 - 3. Add 1 (ignoring overflow)
 - Example: -1

- Negative numbers
 - Get absolute binary representation (i.e. corresponding positive value)
 - 2. Invert (or complement) all bits
 - 3. Add 1 (ignoring overflow)
 - Example: -1

- Negative numbers
 - 1. Get absolute binary representation (i.e. corresponding positive value)
 - 2. Invert (or complement) all bits
 - 3. Add 1 (ignoring overflow)
 - Example: –2

- Negative numbers
 - 1. Get absolute binary representation (i.e. corresponding positive value)
 - 2. Invert (or complement) all bits
 - 3. Add 1 (ignoring overflow)
 - Example: –2

2 (decimal base)

- Negative numbers
 - Get absolute binary representation (i.e. corresponding positive value)
 - 2. Invert (or complement) all bits
 - 3. Add 1 (ignoring overflow)
 - Example: -2

- Negative numbers
 - 1. Get absolute binary representation (i.e. corresponding positive value)
 - 2. Invert (or complement) all bits
 - 3. Add 1 (ignoring overflow)
 - Example: -2

• Range of signed integer numbers (in decimal base) = $[-2^{N-1} \div 2^{N-1} - 1]$

• Range of signed integer numbers (in decimal base) = $[-2^{N-1} \div 2^{N-1} - 1]$

C2 representation
01111
00001
00000
11111
11101
10000

- Range of signed integer numbers (in decimal base) = $[-2^{N-1} \div 2^{N-1} 1]$
 - Example: N = 3

$$2^{N-1} - 1 = 2^2 - 1 = 4 - 1 = 3$$

$$-2^{N-1} = -2^2 = -4$$

• Range of signed integer numbers (in decimal base) = $[-2^{N-1} \div 2^{N-1} - 1]$

• Example: N = 3

$$2^{N-1}-1=2^2-1=4-1=3$$

$$-2^{N-1} = -2^2 = -4$$

C2 representation	Decimal base
011	3
010	2
001	1
000	0
111	-1
110	-2
101	-3
100	-4

- Why this?
 - Because it allows to perform arithmetic operations without particular (or dedicated) resources to handle the sign
 - Lower costs
 - Lower delays
 - Subtraction can be implemented as the addition with the opposite number; for examples ...

```
- 10 - 18 = 10 + (-18)
- 12 - (-7) = 12 + 7
```

- Let's see some examples
 - Assuming N = 3 bits

$$-1 + (-1) \rightarrow -1 - 1$$

$$1+(-1) \rightarrow 1-1$$

1				ı
(1)	0	0	1	+

(-1)	1	1	1

$$1+(-2) \rightarrow 1-2$$

(1)	0	0	1	+
` '	•			•

(-2)	1	1	0
,			

(-1)	1	1	1
` '			

$$-2+3 \Rightarrow 3-2$$

Adder

- The sum of 2 N-bit numbers requires N+1 bits to be represented
 - $N = 1 \rightarrow 2$ bits to represent the sum

- The simplest adder is the Half Adder (HA)
 - Just the sum of the two 1-bit inputs (a, b)
 - Output must be 2-bit

Adder

- The sum of 2 N-bit numbers requires N+1 bits to be represented
 - $N = 1 \rightarrow 2$ bits to represent the sum

- The simplest adder is the Half Adder (HA)
 - Just the sum of the two 1-bit inputs (a, b)
 - Output must be 2-bit
 - S
 - cout = carry (output)

a	b	S	c _{out}
0	0	0	0
0	1	1	0
1	0	1	0
1	1	0	1

HA truth table

b	S	c _{out}
0	0	0
1	1	0
0	1	0
1	0	1
	0 1 0	0 0 1 1 0 1

s = 1, when $a \neq b$

Does this remind you a logic operator we have seen before?

a	b	S	c _{out}	
0	0	0	0	
0	1	1	0	
1	0	1	0	
1	1	0	1	

HA truth table

1
$(s = 1, when a \neq b)$

 \Rightarrow s = 1, when a \neq b

 $s = a \oplus b$

 $s = a \oplus b$

Half Adder (HA)

HA truth table

 $s = a \oplus b$

Half Adder (HA)

HA truth table

Adder

- But, as we saw earlier, when summing two multi-bit vectors, it may happen that the carry is generated by the sum of the previous bits
 - To fully support the addition, also a carry input must be considered
 - c_{in} = carry (input)
 - The corresponding (1-bit) adder is called Full Adder (FA)

Full Adder (FA)

c_{in}	a	b	S	c _{out}
0	0	0	0	0
0	0	1	1	0
0	1	0	1	0
0	1	1	0	1
1	0	0	1	0
1	0	1	0	1
1	1	0	0	1
1	1	1	1	1
	0 0 0 1 1	0 0 0 0 0 1 0 1 0 1 1 1	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 1 1 0 1 0 1 0 1 1 0 1 0 1 0 1 0 1 0 1 1 0 0

$$s = a \oplus b \oplus c_{in}$$

Full Adder (FA)

c_{in}	a	b	s	c _{out}
0	0	0	0	0
0	0	1	1	0
0	1	0	1	0
0	1	1	0	1
1	0	0	1	0
1	0	1	0	1
1	1	0	0	1
1	1	1	1	1

$$c_{\text{out}} = (a \cdot b) + (a \cdot c_{\text{in}}) + (b \cdot c_{\text{in}})$$

Full Adder (FA)

Adder (for multi-bit operands)

- A generic adder (for N-bit operands) can be built by cascading N FAs
 - Example: 4-bit adders
 - Inputs

$$- a = \{a_3 a_2 a_1 a_0\}$$

$$- b = \{b_3 b_2 b_1 b_0\}$$

- $-c_{in}$
- Outputs

$$- s = \{s_3 s_2 s_1 s_0\}$$

- c_{out}

Adder (for multi-bit operands)

- The one saw before is called also Ripple Carry Adder (RCA)
 - The carry path propagate from the input to the output
 - Path is proportional to the bit width of the input operands
 - The delay path may be very high
 - Other solutions (and architectures/circuits) for adders exist to solve this problem
 - Carry Save Adder (CSA)
 - Carry Bypass Adder (CBA), or Carry Skip Adder
 - Carry Lookahead Adder (CLA)

Adder (for multi-bit operands)

- CSA, CBA, CLA, ...: just for the sake of completeness
 - We are not going to analyze them
 - However, remember that each solution is a trade-off
 - They can be advantageous in terms of delay with respect to the RCA
 - But they can also present costs in other terms (e.g., resources)

Subtractor (for multi-bit operands)

- If you remember the properties of two's complement representation...
 - A B = A + (-B)

Adder/Subtractor (for multi-bit operands)

- For a full-case solution, i.e. adder/subtractor
 - Inputs : A, B
 - Control: sub
 - If sub = $0 \rightarrow A + B$
 - If sub = $1 \to A B = A + (-B)$

Adder/Subtractor (for multi-bit operands)

- For a full-case solution, i.e. adder/subtractor
 - If you remember, to get -B from B:
 - Complement all bits of B
 - Add 1
 - This can be done by exploiting the c_{in} input of RCA

Adder/Subtractor (for multi-bit operands)

- For a full-case solution, i.e. adder/subtractor
 - If you remember, to get -B from B:
 - Complement all bits of B
 - Add 1
 - This can be done by exploiting the $c_{\rm in}$ input of RCA

- The multiplication of a N-bit number by an M-bit number requires N+M bits to be represented
 - Typically, $N = M \rightarrow 2N$ bits to represent the product
- The simplest way: shift-and-add algorithm
 - Similar to the paper-and-pencil method for decimal multiplication

- Assume N = 4 and calculate p = a * b
 - $a = \{a_3 a_2 a_1 a_0\}$

Assume N = 4 and calculate p = a * b

							<u>. </u>
p_7	p_6	p_5	p_4	p_3	p_2	p_1	

Slide 42

Assume N = 4 and calculate p = a * b

•
$$a = \{a_3 \ a_2 \ a_1 \ a_0\}$$

•
$$b = \{b_3 b_2 b_1 b_0\}$$

= a * b		We can see AND each now as a 7 but vector.					addition
[0	0	0	$b_0 \cdot a_3$	$b_0 \cdot a_2$	$b_0 \cdot a_1$	$b_0 \cdot a_0$	+
0	0	$b_1 \cdot a_3$	$b_1 \cdot a_2$	$b_1 \cdot a_1$	$b_1 \cdot a_0$	0	+
0	$b_2 \cdot a_3$	$b_2 \cdot a_2$	$b_2 \cdot a_1$	$b_2 \cdot a_0$	0	 	+
$b_3 \cdot a_3$	$b_3 \cdot a_2$	$b_3 \cdot a_1$	$b_3 \cdot a_0$	0	0	 0	: -
I		! !	- I	- I	<u> </u>	<u> </u>	<u> </u>

 p_3

 p_2

N - 1 additions of numbers with a bit width o	of 2N – 1
---	-----------

 p_7

 p_6

Sequential multiplier

 p_0

 p_1

 p_4

 p_5

Sequential multiplier

- Logic for calculation of AND products
- One adder
 - The RCA we saw before
- A register to store partial products
- Requiring N 1 steps/cycles to perform the multiplication

Combinational multiplier

• Example: N = 4

The whole multiplication can be done in Just 1 cycle

- Example: N = 4
 - 3x 4-bit RCAs
- In general
 - N − 1x RCAs
 - Each of N bits
- Plus logic for AND!!!

The the number of whomby on the number of buts. A

Combinational multiplier

Divisor

- Similarly to multiplier, the divisor can be implemented exploiting again an adder (RCA) supporting two's complement addition SEQUENTIAL NETWORK
 - Division can be split in a sequence of subtractions and comparison
 - Example: 63 / 12
 - Quotient = 0
 - \bullet 63 12 = 51 \rightarrow Quotient += 1 (1), 51 > 12 ? Yes
 - 51 12 = 39 \rightarrow Quotient += 1 (2), 39 > 12? Yes
 - 39 12 = 27 \rightarrow Quotient += 1 (3), 13 > 12 ? Yes
 - 27 − 12 = 15 \rightarrow Quotient += 1 (4), 15 > 12 ? Yes
 - 15 12 = 3 \rightarrow Quotient += 1 (5), 3 > 12 ? No
- \rightarrow Reminder = 3
- Or other combinational circuits can be implemented

Multiplicator/Divisor

- We are not going to see the circuit of a combinational divisor, however ...
- ... remember that multipliers and divisors are expansive
 - Resources and/or time (steps/cycles)

Combinational logic in modern processors

• If you remember the overall outline of a modern processor

Combinational logic in modern processors

- The main component of the Combinational logic block is called ALU
 - . ALU = Arithmetic Logic Unit All has comb. block

Main operations (but not all) supported by an ALU

OPCODE	(select)	Meaning		
ADD	00001	A + B		
SUB	00010	A – B		
MULT	01000	A * B		
NOT	10000	Complement A		
AND	10001	Bit-wise AND		
OR	10010	Bit-wise OR		
XOR	10011	Bit-wise XOR		
EQL	01011	Check A == B		
	•••			

• Therefore, a possible architecture for an ALU can be the following one

- Therefore, a possible architecture for an ALU can be the following one
 - Basic logic gates

- Therefore, a possible architecture for an ALU can be the following one
 - Basic logic gates
 - Multiplexers

- Therefore, a possible architecture for an ALU can be the following one
 - Basic logic gates
 - Multiplexers

XOR/Comparator

Comporator can be implemented cascading XOR gates

- Therefore, a possible architecture for an ALU can be the following one
 - Basic logic gates
 - Multiplexers
 - XOR/Comparator
 - Adder/Subtractor

Implementation of a 4-bit Adder and simulation with Modelsim

Implementation of a 4-bit Adder and simulation with Modelsim

```
module adder 4 bit (     4-bit Signals
   input [3:0] a
   ,input [3:0] b
   ,output [3:0] c
);
```

endmodule

Implementation of a 4-bit Adder and simulation with Modelsim

```
module adder_4_bit (
    input [3:0] a
    ,input [3:0] b
    ,output [3:0] c
);
endmodule
```


Implementation of a 4-bit Adder and simulation with Modelsim

```
module adder_4_bit (
   input [3:0] a
   ,input [3:0] b
   ,output [3:0] c
);

assign c = a + b;
endmodule
```

- Continuous assignment (again)
 - assign <signal> = <expression>;
 - But using arithmetic operator (+) in <expression>

Implementation of a 4-bit Adder and simulation with Modelsim

```
module adder_4_bit (
   input [3:0] a
   ,input [3:0] b
   ,output [3:0] c
);

assign c = a + b;
endmodule
```

- Arithmetic
 - They can be use in any expression/assignment (also blocking or non-blocking)

```
Addition +
Subtraction -
Multiplication *
Division /
Power ** (e.g., a**b = a<sup>b</sup>)
Mod % (e.g., a % b = a mod b)
```


Implementation of a 4-bit Adder and simulation with Modelsim

```
module adder_4_bit (
   input [3:0] a
   ,input [3:0] b
   ,output [3:0] c
);

assign c = a + b;
endmodule
```

- <u>Bit-wise</u>
 - They can be use in any expression/assignment (also blocking or non-blocking)

```
    AND
    OR
    NOT
```


Implementation of a 4-bit Adder and simulation with Modelsim

```
module adder_4_bit (
   input [3:0] a
   ,input [3:0] b
   ,output [3:0] c
);

assign c = a + b;
endmodule
```

- Logical
 - They can be used in any control condition (if–else, ternary operator)

```
    AND &&
    OR ||
    NOT !
```


Implementation of a 4-bit Adder and simulation with Modelsim

```
module adder_4_bit (
   input [3:0] a
   ,input [3:0] b
   ,output [3:0] c
);

assign c = a + b;
endmodule
```

- Relational
 - They can be used in any control condition (if–else, ternary operator)

```
Equality ==
Inequality !=
Greater than >=
Greater than or equal >=
Lower than 
Lower than or equal <=</li>
```


Implementation of a 4-bit Adder and simulation with Modelsim

```
module adder_4_bit (
   input [3:0] a
   ,input [3:0] b
   ,output [3:0] c
);

assign c = a + b;
endmodule
```

- Try to simulate it on Modelsim with the force and run command
 - To assign a multi-bit value with the force command use the syntax for constants in SV
 - force a 4'd0
 - force b 4'd3
 - •

Implementation of a 4-bit Adder and simulation with Modelsim

- Try to simulate it on Modelsim with the force and run command
 - A suggestion: to plot the waveform, use the <u>Unsigned</u> radix (for a, b, and c)

- Implementation of a 4-bit Adder and simulation with Modelsim
 - Signed version: supporting two's complement operands

```
module adder c2 4 bit (
   input signed [3:0] a
   ,input signed [3:0] b
   ,output signed [3:0] c
);

assign c = a + b;
endmodule
```

- Signals must be declared as signed
 - By default, all signals are unsigned

- Implementation of a 4-bit Adder and simulation with Modelsim
 - Signed version: supporting two's complement operands

```
module adder_c2_4_bit (
    input signed [3:0] a
    ,input signed [3:0] b
    ,output signed [3:0] c
);

assign c = a + b;
endmodule
```

- Signals must be declared as **signed**
 - By default, all signals are unsigned
 - It applies to both ports and internal signals

```
// ...
wire signed [3:0] d;
reg signed [7:0] e;
// ...
```


- Implementation of a 4-bit Adder and simulation with Modelsim
 - Signed version: supporting two's complement operands

```
module adder_c2_4_bit (
    input signed [3:0] a
    ,input signed [3:0] b
    ,output signed [3:0] c
);

assign c = a + b;
endmodule
```

- Signals must be declared as **signed**
 - By default, all signals are unsigned
 - It applies to both ports and internal signals

```
wire signed [3:0] d; Signed is declared reg signed [7:0] e;
// ...

AFTER the type.
```

It must be specified after the type

- Implementation of a 4-bit Adder and simulation with Modelsim
 - Signed version: supporting two's complement operands

```
module adder_c2_4_bit (
    input signed [3:0] a
    ,input signed [3:0] b
    ,output signed [3:0] c
);

assign c = a + b;
endmodule
```

- Try to simulate it on Modelsim with the force and run command
 - To assign negative value with the force command use ...
 - force a -4'd1
 - force b -4'd3
 - ...
 - Remember of representable range!!!

- Implementation of a 4-bit Adder and simulation with Modelsim
 - Signed version: supporting two's complement operands

- Try to simulate it on Modelsim with the **force** and **run** command
 - A suggestion: to plot the waveform, use the <u>Decimal</u> radix (for a, b, and c)

- Implementation of a 4-bit Adder and simulation with Modelsim
 - You can find all the files about this exercise in the dedicated folder on the Team of the course
 - File > Electronics Systems module > Crocetti > Exercises > 2.2
 - Try to simulate on your own both unsigned and signed version of the 4-bit adder
 - Unsigned version → 'adder_4_bit'
 - Signed version → 'adder_c2_4_bit'

- Implementation of a 4-bit Adder and simulation with Modelsim
 - For the signed version, you can find 'adder_c2_4_bit' two auxiliary .do files
 - 'wave_adder_c2.do'
 - 'sim_adder_c2.do'
 - Refer to README.txt file
 - However, you can run them using again the Transcript Tab and the do command
 - After having launched the simulation

```
VSIM 24> do wave_adder_c2.do
VSIM 25> do sim adder c2.do
```


Thank you for your attention

Luca Crocetti (luca.crocetti@unipi.it)