V. R. Ol'shevskii UDC 517.3

- 1. In [1-3] one has obtained a description of the possible domain of variation of the lengths of the Jordan chains of linear operators and holomorphic operator-functions under small perturbations. In this note similar problems are extended to the classes of G-self-adjoint operators and self-adjoint operator functions. We elucidate the role played by the so-called sign characteristic [4-6].
- 2. Let $\mathfrak H$ be a Hilbert space and let $L(\mathfrak H)$ be the set of all linear bounded operators in $\mathfrak H$. If λ_0 is an isolated Fredholm eigenvalue of the operator $A = L(\mathfrak H)$, then by $m_1(A, \lambda_0)$ (i = 1,..., $r = \dim \operatorname{Ker}(A \lambda_0 I)$) we denote the lengths of the corresponding Jordan chains, numbered in nonincreasing order. For the sake of convenience we set $m_1(A, \lambda_0) = 0$ for i > r. A bounded domain Ω ($\mathbb C$) is said to be normal for the operator $A \in L(\mathfrak H)$, if on its boundary there are no points of spectrum of A, while the whole spectrum of A in Ω consists of a finite number of Fredholm eigenvalues $\{\lambda_i\}_1^n$. We set $m_i(A, \Omega) = m_i(A, \lambda_1) + \ldots + m_i(A, \lambda_n)$.

If $\alpha = \{\alpha_i\}_1^\infty$, $\beta = \{\beta_i\}_1^\infty$ are two nonincreasing finite sequences of nonnegative integers and the relations $\sum_{i=1}^k \alpha_i \leqslant \sum_{i=1}^k \beta_i \ (k=1,\ 2,\ \ldots), \quad \sum_{i=1}^\infty \alpha_i = \sum_{i=1}^\infty \beta_i \quad \text{hold, then we shall write } \alpha < \beta.$

In [1-3] it has been proved that $\{m_i\ (A,\,\Omega)\}\ < \{m_i\ (A',\,\Omega)\}$ for any operator $A'\in L\ (\mathfrak{H})$, sufficiently close to A. The converse theorem has been also proved: if the operator A has in Ω a unique eigenvalue λ_0 (the general case reduces easily to this) and if there are given a natural number p and a nonincreasing sequence $\{m_{ij}\}_{i=1}^{\infty}\ (j=1,\ldots,p)$ such that $\{m_i\ (A,\,\lambda_0)\}\ < \{m'_i\}$, where $m'_i=m_{i,1}+\ldots+m_{i,p}$, then in any neighborhood of the operator A there exists an operator A' which has in Ω exactly p eigenvalues $\{\lambda_i\}_1^p$ and, moreover, $m_i(A',\,\lambda_j)=m_{i,j}$.

Assume that in $\mathfrak H$ there is defined also an indefinite inner product [f,g]=(Gf,g) $(f,g\in \mathfrak H)$, where $G\in L(\mathfrak H)$ is an invertible self-adjoint operator. An operator A is said to be G-self-adjoint if [Af,g]=[f,Ag] $(f,g\in \mathfrak H)$. It is easy to show that the above formulated inverse theorem from [1-3] for $\lambda_0\notin R$ remains valid for the case when the initial operator A and its perturbation A' are G-self-adjoint. The following theorem shows that in this case also for $\lambda_0\in R$ for the numbers $\mathfrak m_1(A',\Omega)$ additional restrictions do not arise [in Sec. 3 we show that such restrictions occur for the numbers $\mathfrak m_1(A',\lambda_1)$].

THEOREM 1: Suppose that Ω is a normal domain for a G-self-adjoint operator $A \subseteq L(\mathfrak{H})$, containing only one of its eigenvalues $\lambda_0 \in \mathbb{R}$, and assume that condition $\{m_i\ (A,\lambda_0)\} < \{m_i'\}$ is satisfied. Then in each neighborhood of the operator A there exists a G-self-adjoint operator A' $\subseteq L(\mathfrak{H})$ such that $\sigma(A') \cap \Omega \subset \mathbb{R}$ and $m_i\ (A',\Omega) = m_i'$.

3. Let $\lambda_0 \in \mathbb{R}$ be an isolated Fredholm eigenvalue of a G-self-adjoint operator $A \in L(\mathfrak{H})$. In the corresponding root subspace one can select a Jordan basis φ_{ij} $(j=1,\ldots,m_i$ $(A,\lambda_0);\ i=1,\ldots,r=1$ dim $\ker(A-\lambda_0I)$ of the operator A such that for some $\varepsilon_1(A,\lambda_0)=\pm 1$ $(i=1,\ldots,r)$ we should have $[\varphi_{ij},\varphi_{kl}]=\varepsilon_i$ (A,λ_0) . if k=1 and k=10 in the remaining cases. The numbers $\varepsilon_1(A,\lambda_0)$ are called the sign characteristics of the corresponding chains [numbers $w_1(A,\lambda_0)$] (for more details see [A,A]). We denote by $w_k(A,\lambda_0)$ (A,λ_0) the sum of the numbers $w_1(A,\lambda_0)$, corresponding to an odd (even) number among $w_1(A,\lambda_0)$ $(i=1,\ldots,k)$. If among the eigenvalues of the operator $w_1(A,\lambda_0)$ one has n real eigenvalues $w_1(A,\lambda_0)$ then we set $w_1(A,\lambda_0)=w_1(A,\lambda_0)+\ldots+w_n(A,\lambda_n)$.

THEOREM 2. Let Ω be a normal domain for a G-self-adjoint operator $A \in L(\mathfrak{H})$. There exists $\delta > 0$ such that for any self-adjoint operator G' and any G'-self-adjoint operator A' satisfying the condition $\|A' - A\| + \|G' - G\| < \delta$ we have the inequalities

Institute of Mathematics, Computational Center, Academy of Sciences of the Moldavian SSR. Translated from Funktsionalnyi Analiz i Ego Prilozheniya, Vol. 22, No. 3, pp. 79-80, July-September, 1988. Original article submitted June 3, 1987.

$$|\alpha_{k}(A',\Omega)-\alpha_{k}(A,\Omega)|\leqslant \sum_{k=1}^{k}(m_{k}(A',\Omega)-m_{k}(A,\Omega))\quad (k=1,2,\ldots).$$

We mention that the question of the possible values of the multiplicaties of the eigenvalues, leaving the real axis in the case of perturbations, has been considered in [5, Subsec. III.1.1].

COROLLARY 1. If under the assumptions of Theorem 2 the operator A (resp., A') has in Ω a unique eigenvalue $\lambda_0 \in R$ (resp., $\lambda_1 \in R$), then for $k = 1, \ldots, \dim \operatorname{Ker}(A - \lambda_0 I)$ we have

$$\mid \beta_k \left(A', \lambda_1 \right) - \beta_k \left(A, \lambda_0 \right) \mid \leqslant \sum_{i=1}^k \left(m_i \left(A', \lambda_1 \right) - m_i \left(A, \lambda_0 \right) \right) + \max \left(0, k - \dim \operatorname{Ker} \left(A' - \lambda_1 I \right) \right).$$

In the simplest case $m_i(A', \lambda_1) = m_i(A, \lambda_0)$ (i = 1, 2, ...). from Theorem 2 and Corollary 1 there follows that $\varepsilon_i(A', \lambda_1) = \varepsilon_i(A, \lambda_0)$ $(i = 1, ..., \dim \operatorname{Ker}(A - \lambda_0 I))$. This result is known [5, p. 283].

4. In the case when both the initial and the perturbed operators have in Ω only one eigenvalue, then one can indicate the following sufficient condition for the existence of a perturbed operator A' with prescribed numbers $m_i(A', \lambda_0)$:

THEOREM 3. Suppose that the conditions of Theorem 1 hold. We denote by γ_k (resp., γ_k') the number of odd numbers among $m_i(A, \lambda_0)$ (resp., m_i') (i = 1, 2,...). If

$$|\gamma'_k - \gamma_k| \leqslant \sum_{i=1}^k (m'_i - m_i(.1, \lambda_0)) \qquad (k = 1, 2, ...),$$
 (1)

then in any neighborhood of the operator A there exists a G-self-adjoint operator A' $\in L(\mathfrak{H})$, having in Ω a unique eigenvalue λ_0 and, moreover, $m_i(A', \lambda_0) = m_i'$ ($i = 1, 2, \ldots$).

In certain cases, Theorems 2 and 3 allow us to obtain a complete description of the possible domain of variation of the lengths of the Jordan chains of a perturbed G-self-adjoint operator.

THEOREM 4. Let Ω be a normal domain for a G-self-adjoint operator $A \in L(\mathfrak{H})$, containing only one of its eigenvalues $\lambda_0 \in \mathbb{R}$. We also assume that the sign characteristics $\varepsilon_{\mathbf{i}}(A, \lambda_0)$ depend only on the parity of the numbers $m_{\mathbf{i}}(A, \lambda_0)$. The following statements are equivalent: a) in any neighborhood of the operator A there exists a G-self-adjoint operator $A' \in L(\mathfrak{H})$, which has in Ω a unique eigenvalue λ_0 and, moreover, $m_{\mathbf{i}}(A', \lambda_0) = m_{\mathbf{i}}'$ (i = 1, 2;...); b) $\{m_i(A, \lambda_0)\} < \{m_i'\}$ and the inequalities (1) are satisfied.

5. All the results of Secs. 2-4 can be carried over to holomorphic self-adjoint perturbations of holomorphic self-adjoint operator functions (compare with [2, 3], where one has obtained similar generalizations but without the assumptions on self-adjointness). Moreover, instead of the lengths of the Jordan chains one considers the partial multiplicities in the sense of Keldysh [7], while the sign characteristics are understood in the sense of Kostyuchenko and Shkalikov [6].

The author is glad to seize this opportunity to express his gratitude to A. S. Markus for the formulation of the problem and for useful discussions.

LITERATURE CITED

- I. Gohberg and M. A. Kaashoek, "Unsolved problems in matrix and operator theory. I.
 Partial multiplicities and additive perturbations," Integral Equations Operator Theory,
 1, No. 2, 278-283 (1978).
- 2. A. S. Markus and E. E. Parilis, "Change of the Jordan structure of a matrix under small perturbations," Mat. Issled., No. 43, 98-109 (1980).
- 3. H. den Boer and G. Ph. A. Thijsse, "Semistability of sums of partial multiplicities under additive perturbation," Integral Equations Operator Theory, 3, No. 1, 23-42 (1980).
- 4. A. I. Mal'tsev, Foundations of Linear Algebra [in Russian], Nauka, Moscow (1975).
- 5. I. Gohberg, P. Lancaster, and L. Rodman, Matrices and Indefinite Scalar Products, Birkhäuser, Basel (1983).
- A. G. Kostyuchenko and A. A. Shkalikov, "Self-adjoint quadratic operator pencils and elliptic problems," Funkts. Anal. Prilozhen., <u>17</u>, No. 2, 38-61 (1983).
- 7. M. V. Keldysh, "On the completeness of the eigenfunctions of certain classes of nonself-adjoint linear operators," Usp. Mat. Nauk, 26, No. 4, 15-41 (1971).