Image Processing INT3404 1/ INT3404E 21

Giảng viên: TS. Nguyễn Thị Ngọc Diệp Email: ngocdiep@vnu.edu.vn

1

Week 1

Course Introduction

3

Q1: What is Image Processing?

- Image Processing or Digital Image Processing (DIP) includes
 - acquiring (thu nhận)
 - presenting/displaying (biểu diễn)
 - storing (lưu trữ)
 - operating (thao tác)

techniques on images in order to achieve a goal.

4

Examples of DIP goals

- Capture a scene then remove unwanted figures.
- Crop a picture to fit a ratio
- Transmit images from an Andruino board to mobile (or in an IoT system)
- Display an image in a huge electronical board
- Display a set of images to create a 3D illusions
- Compress and index for search
- ...

5

5

Image acquisition?

• Only cameras?

6

Presentation & Display

- Monochromatic image
- Chromatic/Color image
- Videos (images with temporal information)
- Size
- Resolution

7

/

Storage

- Matrix
- File
- Storage methods
- Compression

8

Operation

- Edit (removal, addition, modification)
- Index
- Detection
- Transmit, compress, ...

9

9

Levels in DIP

- Three levels
 - Low level:
 - Input:: 2D image \rightarrow Output:: 2D image
 - Goal: Change the value of each data point (pixel) in the image
 - Middle level:
 - Input:: 2D image \rightarrow Output:: features, ROIs
 - Goal: Extract and Normalize information from image
 - High level:
 - Input:: 2D image → Output: knowledge in image
 - Goal: Recognize objects, characteristics, describe information from image

DIP != Computer Vision

- Xử lý ảnh (Image processing)
 - Nén ảnh (compression)
 - Giảm nhiễu (noise reduction)
 - Nâng cao tương phản (contrast enhancement)
 - Loc (filtering)
 - Biến đổi afin (affine transformation)
 - Khôi phục (restoration)

- Thị giác máy (Computer vision)
 - Theo vết (tracking)
 - · Phát hiện (detection)
 - Phân loại (classification)
 - Nhận dạng (recognition)
 - Phân vùng ngữ nghĩa (semantic segmentation)

11

11

Q2: History and Future – in Computer Science

- 1920: first application of DIP in news transmission
 - Transmit from London to New York
 - Encrypt the data to transmit via cable and decrypt at the other side (rebuild)

Early digital image

Image credit: Internet

1

History

- 1920s: Improve quality
 - Rebuilding techniques for transmitted images
 - Increase number of tones in images (5 → 15)

Improved digital image

Early 15 tone digital image

Image credit: Internet

13

13

History

- 1960s:
 - DIP explored due to improvements in computer technology and space race
 - 1964: Using computer to improve image quality of Moon captured by Ranger 7
- 1970s:
 - DIP for medical applications
 - 1979: Sir Godfrey N. Hounsfield & Prof. Allan M. Cormack received Nobel prize in Medicine for Tomography invention

A picture of the moon taken by the Ranger 7 probe minutes before landing

ypical head slice CAT

14

History

- 1980s nay: DIP in every fields
 - Image editing, restoration
 - Artistic effects
 - Medical
 - Industry
 - Legal
 - Human-machine interaction
 - ...

15

15

Future

- Many more applications of DIP
- Innovated by Deep Learning Techniques
- Thin boundary between DIP and Computer Vision

17

Q3: Why studying DIP?

- Image as one of the 3 biggest data types in Computer Science
 - Image
 - Text
 - Series
- Huge role in Computer Science
 - Emerging applications
- Adapt logic of DIP techniques to other fields

Q4: How to study DIP?

Learning attitude: Open mind + no-bias + fundamental ethics

Knowledge can be replaced

Knowledge can be limited by perspectives

Data: privacy, races, sensitivity, morality, ...

Ethical experiments

19

19

Goal in this class

- Enjoy an exciting field of Computer Science
- Understand the Data Structure and Algorithms
 - How an image is structured (2D image, 3D image, video)
 - What operations can be done on
- Be ready to analyze new problems & design solutions
 - · Ready to anything that comes in future :)

Method to Study Everything-Science

- Science = Observation + Experiment + Hypothesizing/Reasoning
 - By time: new tools to observe & experiment; a rich interdisciplinary knowledge body to build compatibly
- Computer Science = Data + Algorithm + Interpretation
 - By time: new computation power, new programming language & a rich crossfield knowledge & greater demand
 - Data: structuring data that are computer-friendly
 - · Algorithms: what we can do with the data
 - Interpretation: the meaning & applicability of algorithm

21

💢 Cài đặt môi trường

- Install annaconda
- Create new env using python 3
- Install opency
- Install jupyter notebook

Application Introduction

23

Image editing

27

27

Image transformation

Original photos

Elias Wang, Nicholas Tan, EE368, 2016/17

Style examples

28

ROI detection

Noise reduction

31

Contrast enhancement

Original Contrast

High Contrast

32

Image compression

JPEG Compression, 308KB (15%)

33

33

Segmentation

34

Image Restoration

Damaged Image

Restored Image

Credit: M. Bertalmio, G. Sapiro, V. Caselles, C. Ballester: Image Inpainting, SIGGRAPH 2000

35

35

Theater effect

36

Thông tin về môn học

37

Thông tin chung về môn học

- Số tín chỉ: 3
- Giờ tín chỉ (LT/ThH/TH): 45/0/0
- Môn học tiên quyết: INT2203 Cấu trúc dữ liệu và giải thuật
- Các yêu cầu đối với môn học (nếu có): Xử lý tín hiệu số
- Môn học liên quan:
 - Thị giác máy (INT3412);
 - Các chuyên đề KHMT (INT3121 20 GV: NTNDiệp)
 - Chuyên đề công nghệ (INT3414 22 GV: NTNDiệp)

Lịch trình

Tuần Nội dung	Yêu cầu đối với sinh viên (ngoài việc đọc tài liệu tham khảo)
1 Giới thiệu môn học	Cài đặt môi trường: Python 3, OpenCV 3, Numpy, Jupyter Notebook
 Ånh số (Digital image) – Phép toán điểm (Point operations) Làm quen với OpenCV + Python 	
Điều chỉnh độ tương phản (Contrast adjust)– Ghép ảnh (Combining images)	Làm bài tập 1: điều chỉnh gamma tìm contrast hợp lý
4 Histogram - Histogram equalization	Thực hành ở nhà
5 Phép lọc trong không gian điểm ảnh (linear processing filtering)	Thực hành ở nhà
6 Phép lọc trong không gian điểm ảnh cont. (linear processing filtering) Thực hành: Ứng dụng của histogram; Tìm ảnh mẫu (Template matching)	Bài tập mid-term
7 Trích rút đặc trưng của ảnh Cạnh (Edge) và đường (Line) và texture	Thực hành ở nhà
8 Các phép biến đổi hình thái (Morphological operations)	Làm bài tập 2: tìm barcode
9 Chuyển đổi không gian – Miền tần số – Phép lọc trên miền tần số Thông báo liên quan đồ án môn học	Đăng ký thực hiện đồ án môn học
10 Xử lý ảnh màu (Color digital image)	Làm bài tập 3: Chuyển đổi mô hình màu và thực hiện phân vùng
21 Các phép biến đổi hình học (Geometric transformations)	Thực hành ở nhà
12 Nhiễu – Mô hình nhiễu – Khôi phục ảnh (Noise and restoration)	Thực hành ở nhà
13 Nén ảnh (Compression)	Thực hành ở nhà
14 Hướng dẫn thực hiện đồ án môn học	Trình bày đồ án môn học
15 Hướng dẫn thực hiện đồ án môn học Tổng kết cuối kỳ	Trình bày đồ án môn học

39

Chính sách đối với môn học

- Sinh viên nghỉ quá 20% số buổi học lý thuyết (3 buổi học) sẽ không được thi cuối kỳ
 - Mỗi buổi học sẽ có điểm danh
- Sinh viên tích cực làm bài tập, tham gia thảo luận, trả lời câu hỏi sẽ được xem xét cộng điểm
- Với các nội dung liên quan tới bài tập giữa kì, đồ án môn học và thi viết nếu sinh viên gian lận thì sẽ bị điểm môn học là 0

40

Trọng số điểm

Hình thức	Phương pháp	Mục đích	Trọng số
Đồ án môn học	Dự án nhỏ làm việc theo nhóm	Đánh giá kỹ năng lập trình, xây dựng hệ thống dịch vận dụng kiến thức đã học	20%
Chuyên cần	Điểm danh	Đánh giá tính chuyên cần của sinh viên	+
Bài tập giữa kỳ	Chấm điểm bài tập về nhà	Kiểm tra khả năng tự học của sinh viên	20%
Thi kết thúc môn học	Thi viết	Đánh giá kiến thức, kỹ năng sinh viên đạt được khi kết thúc môn học	60%
	Tổng		100%

Lịch thị và kiểm tra

Hình thức thi và kiểm tra	Thời gian
Chuyên cần	Tất cả các tuần
Bài tập giữa kì	Tuần 7
Báo cáo đồ án môn học	Tuần 14, 15
Thi cuối kỳ	Theo lịch của Trường

Tài liệu tham khảo

- · Textbook & Lectures:
 - R. C. Gonzalez, R. E. Woods, "Digital Image Processing," 4th edition, Pearson, 2018.
 - https://web.stanford.edu/class/ee368/index.html
 - Lê Thanh Hà, "Giáo trình xử lý ảnh," nhà xuất bản ĐHQGHN, 2016.

(https://repository.vnu.edu.vn/handle/VNU_123/58180)

- Software-centric books
 - I R. C. Gonzalez, R. E. Woods, S. L. Eddins, "Digital Image Processing using Matlab," 2nd edition, Gatesmark Publishing, 2009. → Matlab
 - I A. Kaehler, G. Bradski, "Learning OpenCV 3," O'Reilly Media, 2017. → C++
- Blog:
 - https://www.pyimagesearch.com/
- Journals/Conference proceedings

 - IEEE Transactions on Image Processing
 IEEE International Conference on Image Processing (ICIP)
 IEEE Computer Vision and Pattern Recognition (CVPR)
 IEEE International Conference on Computer Vision

43