Δυναμικός Προγραμματισμός

Επιμέλεια διαφανειών: Δ. Φωτάκης

Τροποποιήσεις /προσθήκες: Α. Παγουρτζής

Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών

Εθνικό Μετσόβιο Πολυτεχνείο

Διωνυμικοί Συντελεστές

Διωνυμικοί συντελεστές $C(n,k) = \binom{n}{k} = \frac{n!}{k!(n-k)!}$

$$C(n,k) = \begin{cases} C(n-1,k-1) + C(n-1,k) & \text{ an } 0 < k < n \\ 1 & \text{διαφοφετιμά} \end{cases}$$

```
long Binom(int n, int k) {
  if ((k == 0) || (k == n)) return(1);
  return (Binom (n - 1, k - 1) + Binom (n - 1, k));}
```

- Χρόνος εκτέλεσης δίνεται από την ίδια αναδρομή! $T(n,k) = \Theta(C(n,k)) = \Omega((n/e)^k), C(30,15) = 155117520$
- Πρόβλημα οι επαναλαμβανόμενοι υπολογισμοί.
- Όταν έχω επικαλυπτόμενα στιγμιότυπα, χρησιμοποιώ δυναμικό προγραμματισμό.

Τρίγωνο του Pascal

$$C(n,k) = \begin{cases} C(n-1,k-1) + C(n-1,k) & \text{ an } 0 < k < n \\ 1 & \text{διαφορετιμά} \end{cases}$$

- Όταν έχω επαναλαμβανόμενα στιγμιότυπα, αποθηκεύω τιμές σε πίνακα και τις χρησιμοποιώ χωρίς να τις υπολογίζω πάλι.
 - Θεαματική βελτίωση χρόνου εκτέλεσης!
 - Σημαντικές απαιτήσεις σε μνήμη.

Τρίγωνο του Pascal

```
C(n,k) = \begin{cases} C(n-1,k-1) + C(n-1,k) & \text{an } 0 < k < n \\ 1 & \text{diagodetica} \end{cases} Binomial(n,k) C[0,0] = C[1,0] = C[1,1] = 1; for i \leftarrow 2 to n do C[i,0] \leftarrow 1; for j \leftarrow 1 to \min\{i-1,k\} do C[i,j] \leftarrow C[i-1,j-1] + C[i-1,j]; if i-1 < k then C[i,i] = 1; return(C[n,k]);
```

- Σρόνος εκτέλεσης $\Theta(nk)$ αντί για $\Omega((n/e)^k)$.
 - \blacksquare Μνήμη $\Theta(nk)$. Μπορεί να μειωθεί σε $\Theta(k)$.

Δυναμικός Προγραμματισμός

- Εφαρμόζουμε δυναμικό προγραμματισμό για προβλήματα συνδυαστικής βελτιστοποίησης όπου ισχύει:
 - Αρχή βελτιστότητας (βέλτιστες επιμέρους λύσεις).
 - Κάθε τμήμα βέλτιστης λύσης αποτελεί βέλτιστη λύση για αντίστοιχο υποπρόβλημα.
 - π.χ. κάθε τμήμα μιας συντομότερης διαδρομής είναι
 συντομότερη διαδρομή μεταξύ των άκρων του.
- Έστω βέλτιστες λύσεις για «μικρότερα» προβλήματα.Πως συνδυάζονται για βέλτιστη λύση σε «μεγαλύτερα»;
 - Αναδρομική εξίσωση που περιγράφει τιμή βέλτιστης λύσης.
 - Υπολογίζουμε λύση από μικρότερα σε μεγαλύτερα (bottom-up).

Διακριτό Πρόβλημα Σακιδίου

(0-1 KNAPSACK)

- \square Δίνονται n αντικείμενα και **σακίδιο** μεγέθους B. Αντικείμενο i έχει **μέγεθος** και **αξία**: (s_i, p_i)
- Ζητείται συλλογή μέγιστης αξίας που χωράει στο σακίδιο.

υπό περιορισμούς
$$\sum_{i=1}^n f_i p_i$$
 $f_i = \begin{cases} 1 & i \text{ εντός} \\ 0 & i \text{ εντός} \end{cases}$ $f_i = \begin{cases} 1 & i \text{ εντός} \\ 0 & i \text{ εντός} \end{cases}$

- Αντικείμενα: { (1, 0.5), (2, 5), (2, 5), (3, 9), (4, 8) }
 Μέγεθος σακιδίου: 4.
- Βέλτιστη λύση = { (2, 5), (2, 5) }
- Αντικείμενα: { (3, 5), (2, 7), (4, 4), (6, 8), (5, 4) }
 Μέγεθος σακιδίου: 10.
- Βέλτιστη λύση = { (3, 5), (2, 7), (4, 4) }

Διακριτό Πρόβλημα Σακιδίου

(0-1 KNAPSACK)

- \square Δίνονται n αντικείμενα και **σακίδιο** μεγέθους B. Αντικείμενο i έχει **μέγεθος** και **αξία**: (s_i, p_i)
- Ζητείται συλλογή μέγιστης αξίας που χωράει στο σακίδιο.

υπό περιορισμούς
$$\sum_{i=1}^n f_i p_i$$
 f_i $f_$

- Λύνεται με την άπληστη στρατηγική;
 - Αντικείμενα: { (10, 100), (10, 100), (11, 111) }
 Μέγεθος σακιδίου: 20.
 - Λύση απέχει πολύ από βέλτιστη.
- Μἡπως με divide-and-conquer;

Διακριτό Πρόβλημα Σακιδίου

(0-1 KNAPSACK)

- Πρόβλημα συνδυαστικής βελτιστοποίησης:
 - Εφικτή λύση: συλλογή που χωράει στο σακίδιο.
 - Αξία λύσης: άθροισμα αξιών στοιχείων συλλογής.
 - Ζητούμενο: (βέλτιστη) συλλογή που χωράει με μέγιστη αξία.
- Εξαντλητική αναζήτηση:
 - \blacksquare #συλλογών = 2^n . Χρόνος $\Omega(n2^n)$
- Πρόβλημα Σακιδίου είναι NP-δύσκολο και δεν υπάρχει «γρήγορος» (πολυωνυμικός) αλγόριθμος.
 - Εφαρμογή δυναμικού προγραμματισμού.
 - Χρόνος Θ(n B). Δεν είναι πολυωνυμικός(;)!

Αρχή Βελτιστότητας

- \square Αγνοούμε αντικείμενο n:
 - \blacksquare A* \ {n} βέλτιστη λύση για N \ {n} με σακίδιο B (f_n s_n).
- \square Αγνοούμε αντικείμενα $\{n, n-1\}$:
 - $A^* \setminus \{n, n-1\}$ βέλτιστη λύση για $N \setminus \{n, n-1\}$ με σακίδιο $B (f_n s_n + f_{n-1} s_{n-1})$.
- 2 περιπτώσεις: αντικ. η εντός ή εκτός βέλτιστης λύσης.
- Αν γνωρίζουμε βέλτιστες λύσεις για αντικείμενα N \ {n}
 και σακίδια μεγέθους B s_n και B
 - ... αποφασίζουμε αν αντικείμενο n στη βέλτιστη λύση για N

Αναδρομική Εξίσωση

P(n-1, B) βέλτιστη αξία για $N \setminus \{n\}$ σε σακίδιο B $P(n-1, B - s_n)$ βέλτιστη αξία για $N \setminus \{n\}$ σε σακίδιο $B - s_n$ $P(n,B) = \max\{P(n-1,B), P(n-1,B-s_n) + p_n\}$

Προσέγγιση "Bottom-up": ορίζουμε P(i,b) : βέλτιστη αξία με αντικείμενα {1, ..., i} και σακίδιο μεγέθους b

$$P(i,b) = \begin{cases} 0 & \text{an } b \leq 0 \\ 0 & \text{an } i = 0 \\ \max\{P(i-1,b), P(i-1,b-s_i) + p_i\} & \text{yia } i = 1, \dots, n \\ P(i-1,b) & \text{if } b < s_i & \text{xai } b = 1, \dots, B \end{cases}$$

Παράδειγμα

$$P(i,b) = \begin{cases} 0 & \text{an } b \leq 0 \\ 0 & \text{an } i = 0 \end{cases}$$

$$\max\{P(i-1,b), P(i-1,b-s_i) + p_i\} & \text{fin } i = 1, \dots, n \\ P(i-1,b) & \text{if } b < s_i & \text{fin } b = 1, \dots, B \end{cases}$$

$$\square \quad \text{Antikeimena: } \{ \text{ (3, 5), (2, 7), (4, 4), (6, 8), (5, 4) } \}$$

Μέγεθος σακιδίου: 10.

i b	0	1	2	3	4	5	6	7	8	9	10
0	0	0	0	0	0	0	0	0	0	0	0
1	0	0	0	5	5	5	5	5	5	5	5
2	0	0	7	7	7	12	12	12	12	12	12
3	0	0	7	7	7	12	12	12	12	16	16
4	0	0	7	7	7	12	12	12	15	16	16
5	0	0	7	7	7	12	12	12	15	16	16

Υλοποίηση

Αναδρομική υλοποίηση;

```
Knapsack(B, (s_1, p_1), \ldots, (s_n, p_n))
     for i \leftarrow 0 to n do P[i, 0] \leftarrow 0;
     for b \leftarrow 1 to B do P[0, b] \leftarrow 0;
     for i \leftarrow 1 to n do
           for b \leftarrow 1 to B do
                 if b-s_i > 0 then
                       t \leftarrow P[i-1,b-s_i] + p_i;
                  else t \leftarrow 0:
                 if P[i-1,b] \geq t then
                       P[i,b] \leftarrow P[i-1,b];
                  else P[i,b] \leftarrow t;
      return(P[n,B]);
```

Χρόνος **Ο**(*nB*) Μνἡμη Ο(*nB*)

Ψευδοπολυωνυμικοί Αλγόριθμοι

- Το πρόβλημα του σακιδίου είναι ΝΡ-δύσκολο.
- Αλγόριθμος Ο(η Β) δεν είναι πολυωνυμικού χρόνου(;)
 - Για να είναι, πρέπει πολυώνυμο του μεγέθους εισόδου!
 - Μέγεθος εισόδου: $O(n(\log_2 B + \log_2 P_{\max}))$
 - Χρόνος πολυωνυμικός στο *n* αλλά εκθετικός στο $\log_2 B$
- Αριθμητικά προβλήματα:
 - Μέγεθος αριθμών πολύ μεγαλύτερο (π.χ. εκθετικό) από πλήθος «βασικών συνιστωσών» (ό,τι συμβολίζουμε με n).
- Αλγόριθμος πολυωνυμικού χρόνου:

 $O((n \log \max_n num)^k)$, σταθερά $k \geq 1$

Αλγόριθμος ψευδο-πολυωνυμικού χρόνου:

 $O((n \max_{k} num)^k)$, σταθερά $k \geq 1$

Βελτιώσεις ΔΠ για 0-1 ΚΝΑΡSACK (Ι)

- Ζητούμενο: μείωση #υπολογιζόμενων θέσεων
- Αναδρομή: δεν χρειάζεται όλον τον πίνακα!

	i b	0	1	2	3	4	5	6	7	8	9	10
$s_i p_i$	0	0	0	0	0	0	0	0	0	0	0	0
3, 5	1	0	0	0	5	5	5	5	5	5	5	5
2, 7	2	0	0	7	7	7	12	12	12	12	12	12
4, 4	3	0	0	7	7	7	12	12	12	12	16	16
6, 8	4	0	0	7	7	7	13	12	12	15	16	16
5, 4	5	0	0	7	7	7	12	12	12	15	16	16

B = 10

Βελτιώσεις ΔΠ για 0-1 ΚΝΑΡSACK (I)

- Ζητούμενο: μείωση #υπολογιζόμενων θέσεων
- Αναδρομή: δεν χρειάζεται όλον τον πίνακα!
- Χρήση αναδρομής με απομνημόνευση (memoization)

	i b	0	1	2	3	4	5	6	7	8	9	10	B = 10
$s_i p_i$	0	0	0	0	0	0	0	0	0	0	0	0	
3, 5	1	0	0	0	5	5	5	5	5	5	5	5	
2, 7	2	0	0	7	7	7	12	12	12	12	12	12	
4, 4	- 3	0	0	7	7	7	12	12	12	12	16	4	
6, 8	4	0	0	7	7	7	13	12	12	15	16	10	
5, 4	5	0	0	7	7	7	12	12	12	15	16	16	

Βελτιώσεις ΔΠ για 0-1 ΚΝΑΡSACK (Ι)

- Ζητούμενο: μείωση #υπολογιζόμενων θέσεων
- Αναδρομή: δεν χρειάζεται όλον τον πίνακα!
- Χρήση αναδρομής με απομνημόνευση (memoization)
 - θέσεις πίνακα υπολογίζονται μία φορά μόνο
- πολυπλ/τα: $O(\min(nB, 2^n))$, πρακτικά καλύτερος για n << B

B = 10

Παράδειγμα ΔΠ-memoized

Δυναμικός Προγραμματισμός

```
0:
15 25
        1:
                                                                    25
   24
14
        2:
                                              0
                                                           24
                                                                 25
                                                                    25
                                                                        25
                                                                                               25
   70
        3:
             0
                0
                       0
                                              0
                                                 0
                                                           24
                                                              25
                                                                 70
                                                                        70
                                                                                               70
   28
                0
                   0
                       0
                          0
        4:
             0
   75
        5:
   31
                0
                   0
        6:
                       0
                                                                106 106 106 106 106 106
   11
        7:
             0
                0
                   0
                       0
                                                         106 106 106 106 106 106 106 106 145 145
   85
        8:
                                            41
        9:
                                         10:
                                85 158 160 160 160 160 160 233 233 233 233 233 264 264 264 264 264 264 264 264
      Max Profit: 264
        0:
15 25
                             0
        1:
                       0
                                                                    25
                                                                        25
   24
        2:
                0
                       0
                             0
   70
        3:
   28
        4:
                0
                       0
   75
        5:
                0
                       0
   31
        6:
                                                                           -1 106
                                                                       106
   11
        7:
                                                                    -1 106
                                                                           -1 106
   85
        8:
   41
        9:
      #clocks elapsed iterative: 6.000000
      #clocks elapsed recursive: 2,000000
```

Βελτιώσεις ΔΠ για 0-1 ΚΝΑΡSACK (ΙΙ)

- 2ος τρόπος: αλγόριθμος Nemhauser-Ullmann
- \square Pareto-optimal θέσεις: (0,0), (1,3), (2,2), (2,5), (3,9), (4,8)
 - αντ/χούν σε «χρήσιμους» συνδ/σμούς αντικ/νων από [1.. i]
 - ... που δεν «κυριαρχούνται» από άλλους από αντικ/να [1.. i]
- \square #Ρ.ο.θ. σε γραμμή $i \leq \Sigma$ #Ρ.ο.θ. σε γραμμές [0.. i-1]

	i b	0	1	2	3	4	5	6	7	8	9	10
$s_i p_i$	0	0	0	0	0	0	0	0	0	0	0	0
3, 5	1	0	0	0	5	5	5	5	5	5	5	5
2, 7							$\overline{}$			12		
4, 4	3	0	0	7	7	7	12	12	12	12	16	16
6, 8	4	0	0	7	7	7	12	12	12	15	16	16
5, 4	5	0	0	7	7	7	12	12	12	15	16	16

B = 10

Βελτιώσεις ΔΠ για 0-1 ΚΝΑΡSACK (ΙΙ)

- Ρ.ο.θ. αντιστοιχούν σε αθροίσματα υποσυνόλων
- P.o.θ. γραμμής i: «άθροιση» αντ. i σε P.o.θ. προηγ. γραμμής
- απόρριψη θέσεων με ≤ αξία, ≥ μέγεθος από άλλες
- πολυπλ/τα: $O(\min(nB, 2^n))$, πολυων/κός αναμεν. χρόνος!
- υλοποίηση με λίστες ζευγών (s_i, p_i) για κάθε γραμμή i

	i b	0	1	2	3	4	5	6	7	8	9	10
$s_i p_i$	0	0	0	0	0	0	0	0	0	0	0	0
3, 5	1	0	0	0	5	5	5	5	5	5	5	5
2, 7	2	0	0	7	7	7	12	12	12	12	12	12
4, 4	3	0	0	7	7	7	12	12	12	12	16	16
6, 8	4	0	0	7	7	7	12			15	16	16
5, 4	5	0	0	7	7	7	12	12	12	15	16	16

B = 10

Απληστία vs Δυναμικός Προγρ.

- Διακριτό Πρόβλ. Σακιδίου: όχι ιδιότητα άπληστης επιλογής.
 - Π.χ. Αντικείμενα: {(1, 1+ε), (Β, Β)}. Σακίδιο μεγέθους Β.
- Απληστία και Δυναμικός Προγραμματισμός:
 - Αρχή βελτιστότητας υπο-λύσεων κοινό χαρακτηριστικό.
- Δυναμικός Προγραμματισμός: αναδρομή
 - Χρειάζεται βέλτιστη λύση σε **πολλά** υπο-προβλήματα που εμπλέκονται στην αναδρομή.
 - Διακριτό Σακίδιο: υπολ/σμός βέλτιστης λύσης για πρώτα ί αντικείμενα για κάθε i και **όλα** τα δυνατά μεγέθη σακιδίου!
 - Συνδυάζει «κατάλληλα» επιμέρους λύσεις για βέλτιστη. Προσέγγιση "bottom-up" (συνήθως).
 - Λύση πολλών υπο-προβλημάτων εγγυάται βέλτιστη λύση αλλά κοστίζει σημαντικά σε υπολογιστικό χρόνο.

Απληστία vs Δυναμικός Προγρ.

- Απληστία: επανάληψη
 - Ταξινόμηση ως προς κάποιο (εύλογο) κριτήριο.
 - Σε κάθε βήμα αμετάκλητη άπληστη επιλογή.
 - Άπληστη επιλογή: η καλύτερη με βάση τρέχουσα κατάσταση και κάποιο (απλό) κριτήριο.
 - Λύση **λίγων** (συχνά **ενός**) «αναγκαίων» υπο-προβλημάτων: αποδοτικό υπολογιστικά αλλά δεν δίνει πάντα βέλτιστη λύση.
 - Γρήγοροι, απλοί και «φυσιολογικοί» αλγόριθμοι!
 - (Καλές) προσεγγιστικές λύσεις σε πολλά προβλήματα.
 - Βέλτιστη λύση μόνο όταν ισχύει ιδιότητα άπληστης επιλογής (ως προς συγκεκριμένο κριτήριο επιλογής).

SUBSET SUM Kai PARTITION

- Πρόβλημα Subset Sum (Άθροισμα Υποσυνόλου):
 - Σύνολο φυσικών $A = \{s_1, ..., s_n\}$ και B, 0 < B < s(A).
 - Υπάρχει $X \subseteq A$ με $s(X) = \sum_{i \in X} s_i = B$;
 - γενίκευση Subset Sum.
 - Πρόβλημα PARTITION (Διαμέριση): όταν B = s(A) / 2
- S(i, b) είναι TRUE ανν υπάρχει $X \subseteq \{1, ..., i\}$ με s(X) = b.

$$S(i,b) = \begin{cases} 1 & \text{an } b = 0 \\ 0 & \text{an } b < 0 \\ 0 & \text{an } i = 0 \text{ nat } b > 0 \\ S(i-1,b) \vee S(i-1,b-s_i) & \text{gia } i = 1,\dots,n \\ \text{nat } b = 1,\dots,B \end{cases}$$
 H tilph tou $S(n,B)$ diverthy analythan. Anodotikothyta;

Το Πρόβλημα του Περιπτερά

- Κέρματα αξίας 1, 12, και 20 λεπτών.
- Ρέστα ποσό *x* με **ελάχιστο** #κερμάτων.
 - Δυναμικός προγραμματισμός.
 - Πώς; Βρείτε την αναδρομή!
 - Πώς μπορεί να φτιαχτεί ο Πίνακας ΔΠ;

Αλυσιδωτός Πολ/μός Πινάκων

- Γινόμενο πινάκων Α $(p \times q)$ επί Β $(q \times r)$ σε χρόνο $\Theta(pqr)$ (p q r = πλήθος πολλαπλ/σμών)
- Ποιος ο συντομότερος τρόπος υπολογισμού γινομένου:

$$A_1$$
 A_2 A_3 ... A_{n-1} A_n
 $(d_0 \times d_1) (d_1 \times d_2) (d_2 \times d_3) \dots (d_{n-2} \times d_{n-1}) (d_{n-1} \times d_n)$

- Ο πολλαπλασιασμός πινάκων είναι πράξη προσεταιριστική (αποτέλεσμα ανεξάρτητο από υπολ/μό επιμέρους γινομένων)
- Ο χρόνος υπολογισμού εξαρτάται από τη σειρά!

$$A_1$$
 A_2 A_3 $(1 \times 100) (100 \times 3) (3 \times 1)$

$$(A_1 A_2) A_3 (1 \times 100 \times 3) + (1 \times 3 \times 1) = 303 A_1 (A_2 A_3) (1 \times 100 \times 1) + (100 \times 3 \times 1) = 400$$

Πολλαπλασιασμός Πινάκων

$$A_1$$
 A_2 A_3 A_4 $(13 \times 5) (5 \times 89) (89 \times 3) (3 \times 34)$

Σειρά Υπολογισμού	Αφιθμός Πολλαπλασιασμών
$(((A_1A_2)A_3)A_4)$	$13 \times 5 \times 89 + 13 \times 89 \times 3 + 13 \times 3 \times 34 = 10582$
$((A_1A_2)(A_3A_4))$	54201
$((A_1(A_2A_3))A_4)$	2856
$(A_1((A_2A_3)A_4))$	4055
$(A_1(A_2(A_3A_4)))$	26418

Πολλαπλασιασμός Πινάκων

Δίνονται *η* πίνακες:

$$A_1$$
 A_2 A_3 ... A_{n-1} A_n
 $(d_0 \times d_1) (d_1 \times d_2) (d_2 \times d_3) \dots (d_{n-2} \times d_{n-1}) (d_{n-1} \times d_n)$

Με ποια σειρά θα υπολογιστεί το γινόμενο $A_1 A_2 ... A_n$ ώστε να ελαχιστοποιηθεί #πολ/σμών;

- Πρόβλημα συνδυαστικής βελτιστοποίησης:
 - Κάθε σειρά υπολογισμού υπολογίζει γινόμενο πινάκων εκτελώντας διαφορετικό #πολ/σμών.
 - Ζητείται η σειρά με ελάχιστο #πολ/σμών.
- Υπάρχει αποδοτικός αλγόριθμος για υπολογισμό καλύτερης σειράς;

Εξαντλητική Αναζήτηση

- ... δοκιμάζει όλες τις σειρές υπολογισμού και βρίσκει καλύτερη.
 - Κάθε σειρά αντιστοιχεί σε δυαδικό δέντρο με η φύλλα.
 - Χρόνος ανάλογος #δυαδικών δέντρων με η φύλλα:

$$P(n) = \sum_{k=1}^{n-1} P(k)P(n-k), \ P(1) = 1$$

Λύση (n-1)-οστός αριθμός Catalan:

$$P(n) = \frac{1}{n} {2(n-1) \choose n-1} = \Omega(\frac{4^n}{n^{3/2}})$$

Θα εφαρμόσουμε δυναμικό προγραμματισμό.

Αρχή Βελτιστότητας

- Συμβολίζουμε $A_{i..i} = A_i \times \cdots \times A_i$
- Βέλτιστη λύση υπολογίζει $A_{1..i}$, $(d_0 \times d_i)$, και $A_{i+1..n}$, $(d_i \times d_n)$, για κάποιο i, 1 < i < n, και τελειώνει με $A_{1..i} \times A_{i+1..n}$.
 - #πολ/μών = $d_0 \times d_i \times d_n + \#πολ/μών(A_{1..i}) + \#πολ/μων(A_{i+1..n})$
 - Επιμέρους γινόμενα A_{1...} και A_{i+1...} υπολογίζονται **βέλτιστα**.
- Συμβολίζουμε $m[i,j] = \beta έλτιστος #πολ/μών(A_{i...i})$
- Έστω για κάθε $i, 1 \le i < n$, γνωρίζουμε m[1, i] και m[i + 1, n]
- Τότε $m[1,n] = \min_{1 \le i \le n} \{m[1,i] + m[i+1,n] + d_0 d_i d_n\}$
- Γενική **αναδρομική σχέση**:

$$m[i,j] = \begin{cases} \min_{i \leq k < j} \{m[i,k] + m[k+1,j] + d_{i-1} \, d_k \, d_j\} \text{ an } i < j \\ 0 & \text{an } i = j \end{cases}$$

Δυναμικός Προγραμματισμός

Bottom-up υπολογισμός m[1, n] από αναδρομική σχέση:

$$m[i,j] = \begin{cases} \min_{i \leq k < j} \{m[i,k] + m[k+1,j] + d_{i-1} \, d_k \, d_j\} \text{ an } i < j \\ 0 & \text{an } i = j \end{cases}$$

- Υπολογίζω *n*(*n* 1) / 2 τιμές *m*[*i*, *j*].
 - Κάθε m[i, j] υπολογίζεται σε χρόνο O(n) από τιμές γινομένων μικρότερου εύρους.
 - Τιμές m[i, j] αποθηκεύονται σε πίνακα.

$$m[i,j] = \begin{cases} \min_{i \leq k < j} \{m[i,k] + m[k+1,j] + d_{i-1} d_k d_j\} \text{ av } i < j \\ 0 \text{ av } i = j \end{cases}$$

Παράδειγμα

$$m[i,j] = \begin{cases} \min_{i \leq k < j} \{m[i,k] + m[k+1,j] + d_{i-1} \, d_k \, d_j\} \text{ an } i < j \\ 0 & \text{an } i = j \end{cases}$$

Υλοποίηση με επανάληψη (bottom-up)

```
MatrixChainMultiplication(d[0,1,\ldots,n]) /* A_i διάστασης d[i-1] \times d[i] */
     for i \leftarrow 1 to n do
           m[i,i] \leftarrow 0;
     for p \leftarrow 2 to n do
           for i \leftarrow 1 to n - p + 1 do
                 j \leftarrow i + p - 1; m[i, j] \leftarrow \infty;
                 for k \leftarrow i to j-1 do
                       q \leftarrow m[i, k] + m[k + 1, j] + d[i - 1]d[k]d[j];
                       if q < m[i, j] then m[i, j] \leftarrow q;
     return(m[1,n]);
```

Χρόνος $O(n^3)$ και μνήμη $O(n^2)$, μειώνεται σε O(n).

```
m[i,j] = \begin{cases} \min_{i \le k < j} \{m[i,k] + m[k+1,j] + d_{i-1} d_k d_j\} \text{ av } i < j \\ 0 \text{ av } i = j \end{cases}
```

Υλοποίηση με αναδρομή (top-down)

```
RecMatrixChain(d[i-1,\ldots,j])
                                                              Χρόνος \Omega(2^n)!
    if i = j then return(0);
    m \leftarrow \infty; /* Το m θα πάρει την τιμή m[i,j] */
    for k \leftarrow i to j-1 do
          q \leftarrow \text{RecMatrixChain}(d[i-1,\ldots,k]) +
               RecMatrixChain(d[k, ..., j]) + d[i-1]d[k]d[j];
          if q < m then m \leftarrow q;
    return(m);
```

Αναδρομή με Απομνημόνευση

- Memoization: ο αναδρομικός αλγόριθμος αποθηκεύει τιμές σε πίνακα. Κάθε τιμή υπολογίζεται μία φορά μόνο.
 - Συνδυάζει απλότητα top-down προσέγγισης με ταχύτητα bottom-up.

```
RecMemMatrixChain(d[0, ..., n])
     for i \leftarrow 1 to n do
           for j \leftarrow 1 to n do
                m[i,j] \leftarrow \infty;
     return(RecCM(d[0, \ldots, n]));
```

```
RecCM(d[i-1,\ldots,j]);
     if m[i, j] < \infty then return(m[i, j]);
     if i = j then m[i, j] = 0;
     else
          for k \leftarrow i to j-1 do
               q \leftarrow \text{RecCM}(d[i-1,\ldots,k]) +
                    RecCM(d[k,...,j]) +
                    d[i-1]d[k]d[j];
               if q < m[i, j] then m[i, j] \leftarrow q;
     return(m[i, j]);
```

ΔΠ vs ΔκΒ

- Δυναμικός Προγραμματισμός και Διαίρει-και-Βασίλευε επιλύουν προβλήματα συνδυάζοντας λύσεις κατάλληλα επιλεγμένων υπο-προβλημάτων.
- ΔκΒ είναι φύσει αναδρομική μέθοδος (top-down). Υλοποίηση με επανάληψη: σπάνια (μπορεί και πιο αργή).
- ΔκΒ επιλύει ανεξάρτητα υπο-προβλήματα.
 - Εφαρμόζεται όταν το πρόβλημα αναλύεται σε ανεξάρτητα υποπροβλήματα.
 - Ανεξάρτητα υποπροβλήματα: συνήθως σημαντικά μικρότερου μεγέθους.
 - **Απότομη** μείωση μεγέθους ⇒ δέντρο αναδρομής λογαριθμικού ύψους

ΔΠ vs ΔκΒ

- ΔΠ «κτίζει» βέλτιστη λύση προβλήματος από βέλτιστες λύσεις υπο-προβλημάτων (bottom-up).
 - ΔΠ ξεκινά με στοιχειώδη στιγμιότυπα.
 - Συνδυάζει λύσεις για να βρει λύσεις σε μεγαλύτερα.
- ΔΠ εφαρμόζεται όταν υπο-προβλήματα επικαλύπτονται. Αποθηκεύει επιμέρους λύσεις για να μην υπολογίζει πάλι.
 - «Προγραμματισμός»: διαδικασία συμπλήρωσης πίνακα με ενδιάμεσα αποτελέσματα (Bellman, ~1950).
- ΔΠ εφαρμόζεται όταν ισχύει αρχή βελτιστότητας.
 - Διατύπωση αναδρομικής εξίσωσης για βέλτιστη λύση.
 - Βέλτιστη λύση υπολογίζεται bottom-up για αποδοτικότητα.
 - Βέλτιστος συνδυασμός υπο-λύσεων προσδιορίζει βέλτιστη λύση.
 - Top-down επίλυση: memoization.

Πρόβλημα Πλανόδιου Πωλητή (TSP)

- Δίνονται n σημεία $N = \{1, 2, \ldots, n\}$ και αποστάσεις τους $d: N imes N \mapsto {
 m I\!R}_+$
 - Απόσταση $i \rightarrow j = d_{ij}$, απόσταση $j \rightarrow i = d_{ji}$
 - Γενική περίπτωση: όχι συμμετρικές αποστάσεις, όχι τριγωνική ανισότητα.
- Ζητείται μια περιοδεία ελάχιστου συνολικού μήκους.
 - Περιοδεία: κύκλος που διέρχεται από κάθε σημείο μία φορά.
 - Περιοδεία: μετάθεση σημείων $\pi: N \mapsto N$, $\pi(1) = 1$ Μετάθεση (permutation): 1-1 και επί αντιστοιχία Ν με Ν.
 - $\Pi.\chi.$ 12345678

$$lacksquare$$
 Μήκος περιοδείας π : $L(\pi) = d_{\pi(n)1} + \sum_{i=1} d_{\pi(i)\pi(i+1)}$

Πρόβλημα Πλανόδιου Πωλητή

- Πρόβλημα συνδυαστικής βελτιστοποίησης:
 - Κάθε περιοδεία εφικτή λύση με αντικειμ. τιμή μήκος.
 - Ζητούμενο: περιοδεία ελάχιστου μήκους (βέλτιστη).
- Εξαντλητική αναζήτηση:
 - #περιοδειών = (n − 1)!
 - Χρόνος Ω(n!)
- TSP είναι NP-δύσκολο και δεν υπάρχει «γρήγορος» (πολυωνυμικός) αλγόριθμος.
 - Δυναμικός προγραμματισμός λύνει γενική περίπτωση σε χρόνο Θ(n² 2ⁿ).

Αρχή Βελτιστότητας

- Βέλτιστη περιοδεία ξεκινάει $1 \rightarrow i$ και συνεχίζει ...
 - ... από $i \rightarrow$ όλα τα σημεία $N \setminus \{1, i\} \rightarrow 1$.
 - Αυτό το τμήμα βέλτιστο με αυτή την ιδιότητα.
 - Διαφορετικά, βελτιώνω τμήμα και περιοδεία συνολικά!
- □ Έστω *L(i, S)* ελάχιστο μήκος διαδρομής

i → ὁλο το S → 1 (i,1 \notin S)

- $\Gamma |S| = 0$: $L(i,\emptyset) = d_{i1}$, $\forall i \neq 1$
- \blacksquare $\Gamma |S| = 1$: $L(i, \{j\}) = d_{ij} + d_{j1}$

Αρχή Βελτιστότητας

- Έστω *L(i, S*) ελάχιστο μήκος διαδρομής $i \rightarrow \dot{o}$ λο το $S \rightarrow 1$, $(i,1 \notin S)$.
 - Για $S \subset \mathbb{N} \setminus \{1\}$ θεωρούμε $i \neq 1$ (το 1 τελικό σημείο εκκίν.).
 - $\Gamma |a|S| = 2$:

$$L(i, \{j, \ell\}) = \min\{d_{ij} + d_{j\ell} + d_{\ell 1}, d_{i\ell} + d_{\ell j} + d_{j1}\}$$

$$L(i, \{j, \ell\}) = \min\{d_{ij} + L(j, \{\ell\}), d_{i\ell} + L(\ell, \{j\})\}$$

Υπολογίζω L(i, S), |S| = k, αν γνωρίζω όλα τα $L(j, S \setminus \{j\})$:

$$L(i,S) = \min_{j \in S} \{d_{ij} + L(j,S \setminus \{j\})\}\$$

Υπολογίζω όλες τις βέλτιστες «υπο-περιοδείες» που τελειώνουν στο 1 και έχουν μήκος 1, 2, 3, 4, ..., εξετάζοντας όλα τα υποσύνολα κατάλληλου μεγέθους.

Παράδειγμα

$$L(i,S) = \min_{j \in S} \{d_{ij} + L(j,S \setminus \{j\})\}\$$

i S	Ø	{2}	{3}	{4}	{3,4}	$\{2,4\}$	$\{2, 3\}$	$\{2, 3, 4\}$
1								35 (2)
2	5		15 (3)	18 (4)	25 (4)			
3	6	18 (2)		20 (4)		25 (4)		
4	8	13 (2)	15 (3)				23(2)	

Βέλτιστη περιοδεία 1, 2, 4, 3 μήκους 35.

Υλοποίηση

$$L(i,S) = \min_{j \in S} \{d_{ij} + L(j,S \setminus \{j\})\}$$

```
TSP(d[1 \dots n][1 \dots n])
      for i \leftarrow 2 to n do L(i, \emptyset) \leftarrow d[i, 1];
                                                                                          Mv\dot{\eta}\mu\eta\Theta(n2^n)
      for k \leftarrow 1 to n-2 do
                                                                                         Χρόνος \Theta(n^2 2^n)
             for all S \subset N \setminus \{1\}, |S| = k do
                    for all i \in (N \setminus \{1\}) \setminus S do
                          q \leftarrow \infty;
                           for all j \in S do
                                 if d[i,j] + L(j,S \setminus \{j\}) < q then
                                        q \leftarrow d[i,j] + L(j,S \setminus \{j\}); \quad t \leftarrow j;
                                 L(i,S) \leftarrow q; \quad J(i,S) \leftarrow t;
      q \leftarrow \infty;
                                                                                       20 σημεία:
      for j \leftarrow 2 to n do
             if d[1, j] + L(j, N \setminus \{1, j\}) < q then
                                                                                               20! = 2.4 \times 10^{18}
                    q \leftarrow d[1,j] + L(j,N \setminus \{1,j\}); \quad t \leftarrow j;
      L(1, N \setminus \{1\}) \leftarrow q; \quad J(1, N \setminus \{1\}) \leftarrow t;
                                                                                       20^2 \ 2^{20} = 4.2 \times 10^8
      return(L(1, N \setminus \{1\}), J);
```