

FIG. 1A

BEST AVAILABLE COPY

FIG. 1B

FIG. 1C

FIG. 2

FIG. 3

FIG. 4

FIG. 5

FIG. 6

FIG. 7

FIG. 8

FIG. 9

FIG. 10

FIG. 11

FIG. 12

FIG. 13

% Assume input image is $0 < (R,G,B) < 1$

% Constants

MIN = 0 (typically 0 or 16/255)
 MAX = 1 (typically 1 or 235/255)

IMAXFAC = g(A1,A2) (reduce overall brightness, depends on input gamut and display gamut, e.g. 0.85)

% Effect size (larger with larger values of R,G,B)

ALPHA = f(R,G,B) (e.g. max(R,G,B) or $\sqrt{R^2+G^2+B^2}$, or $c_1R+c_2G+c_3B$)

% Reduce overall brightness

$(R,G,B) = (R,G,B) * IMAXFAC$

% Gamma correction (go to linear color domain, this

% can be omitted for simplification, to reduce the

% number of operations, but the color transformations

% are no longer very accurate)

$(R,G,B) = (R,G,B)^GAMMA$

% Gamut correction (expansion)

$(R,G,B) = inv(A2) * A1 * (R,G,B)$

% Clipping values < MIN if any((R,G,B)<MIN), Subtract

% minimum multiplied with certain factor depending on

% intensity

$(R,G,B) = (R,G,B) + ALPHA * (MIN - min(R,G,B;MIN))$

end

% Clipping values > MAX if any((R,G,B)>MAX),

% Scale RGB vector within maximum

$(R,G,B) = (R,G,B) * (MAX/max(R,G,B;MAX))$

end

% Inverse gamma correction, if needed

$(R,G,B) = (R,G,B)^{(1/GAMMA)}$

FIG. 14

% Assume input image is $0 < (R, G, B) < 1$

% Constants

$\text{MIN} = 0$ (typically 0 or 16/255)

$\text{MAX} = 1$ (typically 1 or 235/255)

$\text{IMAXFAC} = g(A1, A2)$ (reduce overall brightness, depends on input gamut and display gamut, e.g. 0.85)

% Effect size (larger with larger values of R, G, B)

$\text{ALPHA} = f(R, G, B)$ (e.g. $\max(R, G, B)$ or $\sqrt{R^2 + G^2 + B^2}$, or $c1R + c2G + c3B$)

% Reduce overall brightness

~~$(R, G, B) = (R, G, B) * IMAXFAC$~~

$(R, G, B) = (R, G, B) * F(S);$

% Where S is the saturation, that can be calculated from R, G, B

% and F(S) is a function of S that is equal to MAX for S=0 and

% equal to IMAXFAC for S = some (constant) value between 0 and

% the maximum saturation of the primary colors. The function F

% can be any continuously decreasing function, e.g. linear or

% \cos^2 . For the example below S=0.75 is the cut-off

% saturation for which F(S) is IMAXFAC.

% Gamma correction (go to linear color domain, this can be

% omitted for simplification, to reduce the number of

% operations, but the color transformations are no longer very

% accurate)

$(R, G, B) = (R, G, B)^{\text{GAMMA}}$

% Gamut correction (expansion)

$(R, G, B) = \text{inv}(A2) * A1 * (R, G, B)$

% Clipping values < MIN if any((R, G, B) < MIN),

% Subtract minimum multiplied with certain factor depending on

% intensity

$(R, G, B) = 13R, G, B + ALPHA * (\text{MIN} - \min(R, G, B, \text{MIN}))$

end

% Clipping values > MAX if any((R, G, B) > MAX),

% Scale RGB vector within maximum

$(R, G, B) = (R, G, B) * (\text{MAX} / \max(R, G, B, \text{MAX}))$

end

% Inverse gamma correction if needed

$(R, G, B) = (R, G, B)^{(1/\text{GAMMA})}$

% Output image is between: $\text{MIN} < (R, G, B) < \text{MAX}$

FIG. 15

FIG. 16A

FIG. 16B

FIG. 16C

FIG. 16D

```

% Assume input image is 0<(R,G,B)<1
% Constants
MIN = 0          (typically 0 or 16/255)
MAX = 1          (typically 1 or 235/255)
IMAXFAC = g(A1,A2) (reduce overall brightness, depends on input gamut and display gamut, e.g. 0.85)

% Effect size (larger with larger values of R,G,B)
ALPHA = f(R,G,B) (e.g. max(R,G,B) or  $\sqrt{R^2+G^2+B^2}$ , or c1R+c2G+c3B)

% Reduce overall brightness
(X) [0.4306 0.3415 0.1784] (R)
(Y) = [0.2220 0.7067 0.0713] * (G)
(Z) [0.0202 0.1296 0.9393] (B)

u' = 4*X/(X + 15*Y + 3*Z)
v' = 9*Y/(X + 15*Y + 3*Z)

S = 13*sqrt((u'-0.1978).^2+(v'-0.4683).^2);
SCUT = 0.75;
if S>SCUT,
    F = IMAXFAC;
else
    F = (((1+cos(S/SCUT*pi))/2).^2)*(1-IMAXFAC) + IMAXFAC;
end
(R,G,B) = (R,G,B)*F;

% Where S is the saturation, that can be calculated from R,G,B
% and F(S) is a function of S that is equal to MAX for S=0 and
% equal to IMAXFAC for S = some (constant) value between 0 and
% the maximum saturation of the primary colors. The function F
% can be any continuously decreasing function, e.g. linear or
%  $\cos^2$ . For the example below S=0.75 is the cut-off
% saturation for which F(S) is IMAXFAC.

% Gamma correction (go to linear color domain, this can be
% omitted for simplification, to reduce the number of
% operations, but the color transformations are no longer very
% accurate)
(R,G,B) = (R,G,B)^GAMMA
% Gamut correction (expansion)
(R,G,B) = inv(A2) * A1 * (R,G,B)
% Clipping values < MIN if any((R,G,B)<MIN),
% Subtract minimum multiplied with certain factor depending on
% intensity
(R,G,B) = (R,G,B) + ALPHA*(MIN - min(R,G,B,MIN))
end
% Clipping values > MAX if any((R,G,B)>MAX),
% Scale RGB vector within maximum
(R,G,B) = (R,G,B) * (MAX/max(R,G,B,MAX))
end
% Inverse gamma correction if needed
(R,G,B) = (R,G,B)^(1/GAMMA)
% Output image is between: MIN<(R,G,B)<MAX

```

FIG. 17

**This Page is Inserted by IFW Indexing and Scanning
Operations and is not part of the Official Record.**

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

- BLACK BORDERS**
- IMAGE CUT OFF AT TOP, BOTTOM OR SIDES**
- FADED TEXT OR DRAWING**
- BLURRED OR ILLEGIBLE TEXT OR DRAWING**
- SKEWED/SLANTED IMAGES**
- COLOR OR BLACK AND WHITE PHOTOGRAPHS**
- GRAY SCALE DOCUMENTS**
- LINES OR MARKS ON ORIGINAL DOCUMENT**
- REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY**
- OTHER:** _____

IMAGES ARE BEST AVAILABLE COPY.

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.