AO Enclosure Crane Conceptual Review

What will be covered?

- Requirements
- Stack Up
- Instrument Locations and Max Load
- Detailed Reviews of 3 Design Concepts
 - Bridge Crane
 - Free Standing Articulating Jib Crane
 - o Ceiling Mounted Articulating Jib Crane
- My Ranking (and why)
- Next Steps
- Feedback

Requirements Overview

Notes:

 Red indicates conflict between requirements

A	А	В	С	D	E
1	Stakeholder	Requirement Type	Sub-Requirements	Importance (1-5)	Conflict (Row)
2		Capability			
3	Deno (SCALES)		780 lb Min Working Load Limit (5000 lb target)	5	9
4	Deno (SCALES)		Must be able to lift an object a min 5" (maximize, target 31")	5	13
5	Eduardo		Create a mount or resting space for SCALES lid (NO SUSPENDED LOAD)	3	3
6	Caltech (FEI)		Create a mount or resting space for FEI cryostat (NO SUSPENDED LOAD)	3	3
7	Marc		Maximize Coverage of Crane Reach	2	2 11
8	Eduardo		To be used in K1 and K2 AO Enclosures	2	2
9	Scott (PyWFS)		Make crane easy to move/take down and store (maximize AO space)	2	3, 24
10		Spatial Constraints			
11	Consensus		Must mount to structural steel of AO Platform	5	7
12	Consensus		Distance from hook to the floor (vertical) must be at least 100"	5	13
13	Consensus		Must be no taller than the AO enclosure ceiling (137")	5	12
14	Jacques		Must not block access to elevated ring (full access to AO bench)	4	1
15	Eduardo		Any exterior legs/posts must not block access to AO roof ladder	1	L
16	Truman		Must not occlude wall instrument/panel access	1	L
17	Truman		Must not obstruct double doors/instrument cart rails	1	L
18		Power			
19	Consensus		All electric elements limited to 110V AC	3	3
20		Future-Proofing			
21	Consensus		Compatible Hook Functionality (Swivel vs Fixed, size, etc.)	3	3
22	Consensus		COTS parts as possible (ie. Kundel)	2	2
23	Erin P., Max Davis	Human and Instrument Safety			
24	Consensus		Safety Factor (3 yield, 5 ult)	5	9
25	Consensus		Cannot Overload AO Platform (consider both crane and load)	5	5
26	Marc		Design in a way to avoid crashing load or crane elements into instruments	5	5
27	Eduardo		Integrate a hard stopping mechanism/capacity (load break) (limit drift)	4	1
28	Marc		Clean Operation (no leaking fluids) (drip pan?)	3	3
29		Budget			
30	Consensus		Budget unspecified (Target <\$20k)	1	L
31		Material			
32	Marc		No component should give off too much heat (<50W)	1	i.
33		OSHA			
34	OSHA		Access for annual maintenance/inspection	5	5

Key Requirements

4	Α	В	C	D	E
1	Stakeholder	Requirement Type	Sub-Requirements	Importance (1-5)	Conflict (Row)
3	Deno (SCALES)	3 Deno (SCALES)	780 lb Min Working Load Limit (5000 lb target)	5	9
4	Deno (SCALES)	4 Deno (SCALES)	Must be able to lift an object a min 5" (maximize, target 31")	tirget 31") 5	13
11	Consensus	5 Eduardo	Must mount to structural steel of AO Platform	O SUSPENDED LOAD) 5	7
12	Consensus	6 Caltech (FEI)	Distance from hook to the floor (vertical) must be at least 100"	ND SUSPENDED LOAD) 5	13
13	Consensus	/ Marc	Must be no taller than the AO enclosure ceiling (137")	5	12
24	Consensus	8 [Eduardo	Safety Factor (3 yield, 5 ult)	5	9
25	Consensus	9 [Scott (PyWFS)	Cannot Overload AO Platform (consider both crane and load)	5 Simize AO space)	2
26	Marc	11 C	Design in a way to avoid crashing load or crane elements into instruments	5	
34	OSHA	11 Conscissus	Access for annual maintenance/inspection	5	

These are the absolute "must have" requirements for the design

Stack Up

Rough Estimate:

- All figures subject to change
- SCALES lift fixture
 being designed
 currently by UC Davis
 instrument team

AO Floor to 137" Ceiling

Instrument Locations and Max Load

Note:

Liger and HISPEC omitted for clarity/positions undefined

For each concept, I will discuss...

- Concept Overview and General Specs
- Optimal Mounting Locations
- Estimated Coverage
- Installation
- Additional Considerations

Concept #1 Bridge Crane

Possible Vendors: Kundel, CM (Unified)

Load Capacity = 1 ton

Standard Coverage (Kundel) = 12'X12'

Fully customizable coverage

Optimal Mounting Locations

Gowning Area Barrier

Mounting Considerations:

- Posts MUST be mounted to structural steel (or supported by steel through mounting)
- Interior posts require alteration of AO floor
- Exterior posts require alteration of AO walls

Estimated Coverage

Orientation #2

Installation

Post Installation:

- 4 through bolts per post
 - Mounted to I beams (preferably thinner vertical beams)
 - Structural beams are welded together to form I beam profile
 - Will require further analysis (Jason)
 - No alteration to crane required for mounting

Crane Assembly:

- Must be assembled on site (on summit in AO)
- Estimated installation time = ~6 hours for 2 technicians
 - Not including platform/AO wall alteration

Additional Considerations

Wall Mounted Devices:

- Possibility for relocation of one or more support instruments mounted on enclosure walls
 - Air filters will be easier to move
 - Cable trays/waterfall are much more difficult if not impossible to relocate
 - All will add time for technicians at summit (>2 hours)
 - Railways have a reported displacement due to deformation of 3" to the left and right of the beam itself
 - "Boot" seal may be required for flexibility in wall penetration

Floor Alterations:

- Interior posts will require cutting through floor inside AO
 - Chip/debris concerns for clean room

Stackup:

- Standard model takes up 24" of vertical space above hoist
- Customization can reduce crane body stack up to 13.5"
 - "Same Plane Bridge" (pictured to the right)
 - CM (Unified) version

Concept #2 Free Standing Articulating Jib Crane

Possible Vendors: Columbus McKinnon (Unified)

Max Load Capacity = 1000 lbs

Max Extended Boom Span = 14'

Possible Mounting Locations

Gowning Area Barrier

Mounting Considerations:

- Post MUST be mounted to structural steel or share a mounting fixture
- Worst Case, Better
 Case, Best Case for
 space saving

Estimated Coverage

- Worst case coverage shown
 - Other positions offer
 complete coverage of main
 AO enclosure area
- Pivot points will include hard stops and rotary locks
- Trolley available for exterior beam
 - 3 DOF
 - Optimal Load Path

Installation

Post Installation:

- 4+ through bolts depending on FEA and most efficient load path
- Preferably supported by a wider I beam
 - Present load sharing must be analyzed
- AO floor AND platform grate must be cut to access I beams
 - Chip/debris inside AO during operation
- Gowning area wall/plastic curtain may to be altered
 - Only if certain mounting location(s) are used
 - Removable panel (shown top right)

Mounting Fixture:

- Will be designed and analyzed by yours truly (primarily)
 - Takes design time away from actual crane
- Creates more load for I beams.
 - Rough concept models have max weight of ~500 lbs
- Must be load rated (cantilever moment)
 - ASME/OSHA guidelines will apply
 - May require outside expertise (civil/structural)

Additional Considerations

Weight of Parts:

- Shipped as several large parts
 - Some assembly on site (>1 hour)
 - Parts may be heavy enough to require dome crane
 - Can be lowered onto instrument cart and wheeled in (~2 hours)

Wall Mounted Devices:

- Possibility for relocation of one or more support instruments mounted on enclosure walls
 - Air filters will be easier to move
 - Cable trays/waterfall are much more difficult if not impossible to relocate
 - All will add time for technicians at summit

Stackup:

- Possible to have exterior arm above interior arm to maximize headroom
 - exterior arm stackup = 13"
- Addition of trolley adds to stackup (~3")

Cantilever Load:

- Non-optimal load path
- Load capacity vs. coverage trade-off

Concept #3 Ceiling Mounted Articulating Jib Crane

Possible Vendors: Spanco

Max Load Capacity = 2000 lbs

Max Extended Boom Span = 16'

Possible Mounting Locations (K2)

Profile of current steel supports

Estimated Coverage

- Hoist fixed to end of exterior arm (2 DOF)
 - Attempting to contact
 Spanco for customization
- Hard stops will prevent crashing into walls
- Hoist compatibility currently unkown

Installation

K2:

- Structural steel already exists for NIRC 2 "cover lifting device"
 - >6 through bolts
 - Mounted into hollow steel beams
- Shipped as several large parts
 - Some assembly on site (~1 hour)
 - Parts may be heavy enough to require dome crane
 - Can be lowered onto instrument cart and wheeled in (~2 hours)
 - Avoids need for removal of AO enclosure.

K1:

- Structural steel frame from K2 will need to be replicated
 - Will add significant design time just for structure
 - Will also require comprehensive onsite measurement and FEA to validate load capacity
 - Must follow ASME/OSHA guidelines (load test?)
 - Structure installation may take a whole day (~6 hours) and at least 2 technicians (likely more)
- Alterations to AO Enclosure
 - Hole in K1 AO roof for mounting

Additional Considerations

Mounting Fixture:

- Will be designed and analyzed by yours truly (primarily)
 - Takes design time away from actual crane
- Creates more load for I beams
 - Rough concept models have max weight of ~500 lbs
- Must be load rated (cantilever moment)
 - ASME/OSHA guidelines will apply
 - May require outside expertise (civil)

Stack up:

- Exterior arm cannot be mounted on top of interior
 - Guaranteed 24" minimum stack up (before hoist)

This design may prevent removal of AO Enclosure for dome crane access

My Ranking

- 1. Bridge Crane
- 2. Free Standing Articulating Jib Crane
- 3. Ceiling Mounted Articulating Jib Crane

Next Steps...

- EC?
- CAD Design (dependent on concept chosen)
- Working with Jason on AO platform FEA
 - Investigate structural stability of "welded I-beams"
- Communication with vendors on best practices
 - Load testing/rating
- FEA (backed up by MathCAD)
- Reviewing ASME/OSHA guidelines
- Load testing and FEA for any mounting fixture
- FMEA
 - Mounting fixture
 - Seismic event analysis

Feedback:

What do you think about the proposed concepts?

What concepts/factors have I failed to consider?

Any and All feedback is greatly appreciated...

Thank you for your time!