

高一新生入学分班考试 数 学 模 拟 试 题

总分: 150 分

时量: 120 分钟

第 | 卷

- 一. 选择题(本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有 一项是符合题目要求的。)
- 1. 下列运算正确的是()。

 $A_{5} a^{2} \cdot a^{3} = a^{6}$ $B_{5} a^{8} \div a^{4} = a^{2}$ $C_{5} a^{3} + a^{3} = 2a^{6}$ $D_{5} (a^{3})^{2} = a^{6}$

2. 一元二次方程 $2x^2-7x+k=0$ 的一个根是 $x_1=2$,则另一个根和 k 的值是

A. $x_2=1$, k=4 B. $x_2=-1$, k=-4 C. $x_2=\frac{3}{2}$, k=6 D. $x_2=-\frac{3}{2}$, k=-6

- 3. 如果关于 x 的一元二次方程 $x^2 kx + 2 = 0$ 中, k 是投掷骰子所得的数字(1, 2, 3, 4,
- 5, 6),则该二次方程有两个不等实数根的概率 P= (

B. $\frac{1}{2}$ C. $\frac{1}{3}$ D. $\frac{1}{6}$

4. 二次函数 $y=-x^2-4x+2$ 的顶点坐标、对称轴分别是()

A. (-2, 6), x=-2 B. (2, 6), x=2 C. (2, 6), x=-2 D. (-2, 6), x=2

- 5. 已知关于x的方程|5x-4|+a=0无解,|4x-3|+b=0有两个解,|3x-2|+c=0只有一个
- 解,则化简|a-c|+|c-b|-|a-b|的结果是

A, 2a

D, 0

6. 在物理实验课上, 小明用弹簧称将铁块 A 悬于盛有水的水槽中, 然后匀速向上提起, 直 至铁块完全露出水面一定高度,则下图能反映弹簧称的读数 y(单位 N)与铁块被提起 的高度 x (单位 cm) 之间的函数关系的大致图象是 (

7. 下列图中阴影部分的面积与算式 $\left|-\frac{3}{4}\right| + \left(\frac{1}{2}\right)^2 + 2^{-1}$ 的结果相同的是

8. 已知四边形 S_1 的两条对角线相等,但不垂直,顺次连结 S_1 各边中点得四边形 S_2 ,顺次

连结 S_2 各边中点得四边形 S_3 ,以此类推,则 S_{2006} 为(

A. 是矩形但不是菱形;

B. 是菱形但不是矩形;

C.既是菱形又是矩形;

D.既非矩形又非菱形.

- A. 40°
- 50° В.
- C. 60°
- D. 不能确定

10. 如图为由一些边长为 1cm 正方体堆积在桌面形成的立方体的三视图,则该 立方体露在外面部分的表面积是 cm²。

正视图

左视图

俯视图

- A. 11 B. 15 C. 18
- D. 22

第Ⅱ卷(答卷)

- 二. 填空题(本大题共5小题,每小题4分,共20分)
- 11. 函数 $y = \frac{\sqrt{x-1}}{x-2}$ 中,自变量 x 的取值范围是______.
- 12. 在 Rt△ABC 中, ∠ACB=90°, CD ⊥ AB于D, AC=10, CD=6, 则 sinB 的值为
- 13. 如图 ,在 \odot O 中, \angle ACB= \angle D= 60° ,OA=2,则 AC 的长为 。

- 14. 同室的 4 人各写一张贺年卡,先集中起来,然后每人从中拿一张别人送出的 贺年卡,则 4 张贺年卡不同的拿法有_____种。
- 15. 对于正数 x, 规定 $f(x) = \frac{x}{1+x}$, 例如 $f(3) = \frac{3}{1+3} = \frac{3}{4}$, $f(\frac{1}{3}) = \frac{\frac{1}{3}}{1+\frac{1}{3}} = \frac{1}{4}$,

计算
$$f\left(\frac{1}{2006}\right) + f\left(\frac{1}{2005}\right) + f\left(\frac{1}{2004}\right) + \cdots + f\left(\frac{1}{3}\right) + f\left(\frac{1}{2}\right) + f\left(1\right) + f\left(1\right) + f\left(1\right) + f\left(2\right) + f\left(3\right) + \cdots + f\left(2004\right) + f\left(2005\right) + f\left(2006\right) = _______.$$

- 三. 解答题(共6小题,共80分,解答应写出文字说明,证明过程或演算步骤)
- 16. (1) 解不等式组: $\begin{cases} \frac{2x-4}{3} > 1 \frac{5-x}{2} \\ 2(x+1) 6 \le x \end{cases}$, 并把解集在数轴上表示出来.
 - (2) 先化简,再求值: 已知 $x = \sqrt{2} + 1$,求 $\left(\frac{x+1}{x^2 x} \frac{x}{x^2 2x + 1}\right) \div \frac{1}{x}$ 的值.

17. (本小题满分 10 分)

如图,等腰三角形 ABC中,AB=AC,以 AC 为直径作圆,交 AB 于 D,交 BC 于 E,

- (1) 求证: EC=ED
- (2) 己知: AB=5, BC=6, 求 CD 长。

$$x^{2}$$
 - (2k+1) x+4 (k- $\frac{1}{2}$)=0.

- (1) 求证:无论 k 取何值,这个方程总有实数根;
- (2) 若等腰三角形 ABC 的一边长 a=4, 另两边的长 b、c 恰好是这个方程的两个根, 求三角形 ABC 的周长.

19. (本小题满分 14 分)

在芦淞服装批发市场,某种品牌的时装当季节将来临时,价格呈上升趋势,设这种时装开始时定价为 20 元/件(第1周价格),并且每周价格上涨,如图示,从第6周开始到第11周保持30元/件的价格平稳销售;从第12周开始,当季节即将过去时,每周下跌,直到第16周周末,该服装不再销售。

(1)求 销售价格 y (元/件) 与周次 x 之间的函数关系式;

(2)若这种时装每件进价 Z(元/件)与周次 x 次之间的关系为 $Z=-0.125(x-8)^2+12$ (1 $\leq x \leq 16$),且 x 为整数,试问该服装第几周出售时,每件销售利润最大?最大利润为多少?

20. (本小题满分14分)

已知抛物线 $y = \frac{1}{8}x^2 + 3mx + 18m^2 - m$ 与 x 轴交于 $A(x_1, 0)$, $B(x_2, 0)$ ($x_1 < x_2$) 两点,与 y 轴交于点 C (0, b), 0 为原点.

- (1) 求 m 的取值范围;
- (2) 若 $m > \frac{1}{18}$ 且 OA+OB=30C,求抛物线的解析式及 A、B、C 的坐标.
- (3) 在 (2) 的情形下,点 P、Q 分别从 A、0 两点同时出发以相同的速度沿 AB、0C 向 B、C 运动,联结 PQ 与 BC 交于 M,设 AP=k,问是否存在 k,使以 P、B、M 为顶点的三角形与 \triangle ABC 相似. 若存在,求所有的 k 值,若不存在说明理由.

- (2) 前 2006 个数的和是多少?前 2006 个数的平方和是多少?
- (3) 前 2006 个数两两乘积的和是多少?

参考答案

一. 选择题(每小题5分,共50分)

题次	1	2	3	4	5	6	7	8	9	10
答案	D	C	A	A	D	C	D	В	В	C

二. 填空题(本大题共5小题,每小题4分,共20分)

11. 函数
$$y = \frac{\sqrt{x-1}}{x-2}$$
 中,自变量 x 的取值范围是____x ≥ 1 且 $x \neq 2$ _____.

12. 在 Rt△ABC 中, ∠ACB=90°, CD ⊥ AB于D, AC=10, CD=6, 则 sinB 的值为

$$-\frac{4}{5}$$
—°

13. 如图 ,在 \odot O 中, \angle ACB= \angle D= 60° ,OA=2,则 AC 的长为 $2\sqrt{3}$ 。

图 4

15. 对于正数 x, 规定
$$f(x) = \frac{x}{1+x}$$
, 例如 $f(3) = \frac{3}{1+3} = \frac{3}{4}$, $f(\frac{1}{3}) = \frac{\frac{1}{3}}{1+\frac{1}{3}} = \frac{1}{4}$,

计算
$$f(\frac{1}{2006}) + f(\frac{1}{2005}) + f(\frac{1}{2004}) + \cdots + f(\frac{1}{3}) + f(\frac{1}{2}) + f(1) + f(1) + f(2) + f(3) + \cdots + f(2004) + f(2005) + f(2006) = 2006$$
.

三. 解答题 (共 6 小题, 共 80 分, 解答应写出文字说明, 证明过程或演算步骤)

16. (本题满分 16 分) (1) 解不等式组:
$$\begin{cases} \frac{2x-4}{3} > 1 - \frac{5-x}{2} \\ 2(x+1) - 6 \le x \end{cases}$$
, 并把解集在数轴上表示出来.

解:
$$\begin{cases} \frac{2x-4}{3} > 1 - \frac{5-x}{2} \\ 2(x+1) - 6 \le x \end{cases}$$
 (1)

由(1)得: x>-1

由(2)得: $x \le 4$ 所以原不等式组的解集为: $-1 < x \le 4$

(2) 先化简,再求值: 已知
$$x = \sqrt{2} + 1$$
,求 $\left(\frac{x+1}{x^2 - x} - \frac{x}{x^2 - 2x + 1}\right) \div \frac{1}{x}$ 的值.

解: 当
$$x = \sqrt{2} + 1$$
 时,

$$\left(\frac{x+1}{x^2 - x} - \frac{x}{x^2 - 2x + 1}\right) \div \frac{1}{x}$$

$$= \left(\frac{x+1}{x(x-1)} - \frac{x}{(x-1)^2}\right) \bullet x$$

$$= \frac{x^2 - 1 - x^2}{x(x-1)^2} \bullet x$$

$$= \frac{-1}{(x-1)^2}$$

$$= -\frac{1}{2}$$

17. (本小题满分 10 分)

如图,等腰三角形 ABC中, AB=AC,以 AC 为直径作圆,交 AB于 D,交 BC于 E,

- (3) 求证: EC=ED
- (4) 己知: AB=5, BC=6, 求 CD 长。

(1) 证明:

- :: AC为直径, :. *AE* ⊥ *BC*,
- ∴ AB=AC, ∴ ∠BAE=∠CAE
- ∴ EC=ED
- (2)解:由AB=5,BC=6 得:BE=3,AE=4

:: AC为直径, $:: \angle CDA = \angle AEB = 90^{\circ}, \angle B = \angle B$

$$\therefore \Delta BDC \sim \Delta BEA \qquad \therefore \frac{BC}{AB} = \frac{CD}{AE}$$

$$\mathbb{P}: \frac{6}{5} = \frac{CD}{4} \quad \therefore CD = \frac{24}{5}$$

18. (本小题满分 12 分) 已知关于 x 的方程 x^2 -(2k+1) x+4(k- $\frac{1}{2}$)=0.

(1) 求证:无论 k 取何值,这个方程总有实数根;

(2) 若等腰三角形 ABC 的一边长 a=4,另两边的长 b、c 恰好是这个方程的两个根,求三角形 ABC 的周长. 解: (1)

$$\Delta = (2k+1)^2 - 16(k-\frac{1}{2})$$
$$= 4k^2 - 12k + 9$$

 $=(2k-3)^2$

恒大于等于0

所以:无论 k 取何值,这个方程总有实数根。-----5分

(2) 三角形 ABC 为等腰三角形,可能有两种情况:

1) b 或 c 中至少有一个等于 a= 4,即: 方程
$$x^2$$
-(2k+1) x+4(k- $\frac{1}{2}$)=0 有一根为 4,

可得 $k=\frac{5}{2}$,方程为 $x^2-6x+8=0$. 另一根为 2,此时三角形 ABC 周长为 10; -----9 分

2) b=c bf,
$$\Delta = (2k+1)^2 - 16(k-\frac{1}{2}) = 0$$

得 $k=\frac{3}{2}$,方程为 $x^2-4x+4=0$. 得 b=c=2,此时 ABC 不能构成三角形;

综上, 三角形 ABC 周长为 10。

-----12 分

19. (本小题满分 14 分)

在芦淞服装批发市场,某种品牌的时装当季节将来临时,价格呈上升趋势,设这种时装开始时定价为 20 元/件(第1周价格),并且每周价格上涨,如图示,从第6周开始到第11周保持30元/件的价格平稳销售;从第12周开始,当季节即将过去时,每周下跌,直到第16周周末,该服装不再销售。

(1)求 销售价格 y (元/件) 与周次 x 之间的函数关系式;

(2)若这种时装每件进价 Z(元/件)与周次 x 次之间的关系为 $Z=-0.125(x-8)^2+12$ (1 $\leq x \leq 16$),且 x 为整数,试问该服装第几周出售时,每件销售利润最大?最大利润为多少?

解: (1)依题意,可建立的函数关系式为:

$$y = \begin{cases} 2x + 18 & (1 \le x \le 6) \\ 30 & (6 \le x \le 11) \\ -2x + 52 & (12 \le x \le 16) \end{cases}$$

价

$$\text{th W} = \begin{cases} 20 + 2x + \frac{1}{8}(x - 8)^2 - 14 & (1 \le x \le 6) \\ 30 + \frac{1}{8}(x - 8)^2 - 12 & (6 \le x \le 11) \\ \frac{1}{8}(x - 8)^2 - 2x + 40 & (12 \le x \le 16) \end{cases}$$

化简得 W=
$$\begin{cases} \frac{1}{8}x^2 + 14 & (1 \le x \le 6) \\ \frac{1}{8}x^2 - 2x + 26 & (6 \le x \le 11) \dots 10 \\ \frac{1}{8}x^2 - 4x + 48 & (12 \le x \le 16) \end{cases}$$

①当 W= $\frac{1}{8}x^2+14$ 时, $\because x \ge 0$,函数 y 随着 x 增大而增大, $\because 1 \le x \le 6$

∴当x=6时,W有最大值,最大值=18.5

②当 W=
$$\frac{1}{8}x^2-2x+26$$
 时, :W= $\frac{1}{8}(x-8)^2+18$, 当 $x \ge 8$ 时,函数 y 随 x 增大而增大

 \therefore 在x=11时,函数有最大值为 $19\frac{1}{8}$

③当 W= $\frac{1}{8}x^2-4x+48$ 时, \because W= $\frac{1}{8}(x-16)^2+16$, \because 12 \leqslant x \leqslant 16 时,函数 y 随 x 增大而减小,

∴在x=12时,函数有最大值为 18

20. (本小题满分 14 分)

已知抛物线 $y = \frac{1}{8}x^2 + 3mx + 18m^2 - m$ 与 x 轴交于 $A(x_1, 0)$, $B(x_2, 0)$ $(x_1 < x_2)$ 两点,与 y 轴交于点 C (0, b), 0 为原点.

- (1) 求 m 的取值范围;
- (2) 若 $m > \frac{1}{18}$ 且 OA+OB=30C,求抛物线的解析式及 A、B、C 的坐标.
- (3) 在 (2) 的情形下,点 P、Q 分别从 A、0 两点同时出发以相同的速度沿 AB、0C 向 B、C 运动,联结 PQ 与 BC 交于 M,设 AP=k,问是否存在 k,使以 P、B、M 为顶点的三角形与 \triangle ABC 相似. 若存在,求所有的 k 值,若不存在说明理由.

解: (1) 利用判别式 $\Delta > 0$ 解得 m > 0 (4分)

(2)注意条件
$$m. > \frac{1}{18}$$
 可得 $18m-1>0$,从而

$$18m^2 - m > 0,$$

所有
$$x_1 x_2 = \frac{18m^2 - m}{\frac{1}{8}} = 8(18m^2 - m) > 0$$
,

$$x_1 + x_2 = -\frac{3m}{\frac{1}{8}} = -24m < 0 : x_1 < x_2 < 0$$

所以 满足条件的抛物线图象如图所示

依题意:
$$-(x_1 + x_2) = 3b$$
 $24m = 3b$, 而 $18m^2 - m = b$,

所以有
$$18m^2 - m = 8m$$
,解得 $m = 0$ (舍去) $m = \frac{1}{2}$

从而
$$y = \frac{1}{18}x^2 + \frac{3}{2}x + 4$$
 为所求的抛物线解析式

令
$$\frac{1}{18}x^2 + \frac{3}{2}x + 4 = 0$$
得 A (-8, 0)、B (-4, 0)、C (0, 4) (8分)

(3) △PBM 与△ABC 相似有两种情况:

1)
$$\stackrel{\text{deg}}{=}$$
 PQ//AC, AP=OQ=k, $\stackrel{\text{deg}}{=}$ $\frac{AO}{PO} = \frac{CO}{QO}$,

得
$$\frac{8}{8-k} = \frac{4}{k}$$
,解得 $k = \frac{8}{3}$ (10分)

2)当 PQ 与 AC 不平行,设有∠ACB=∠MPB, 过 B 作 AC 的垂线,垂足为 D,

利用
$$\sin A = \frac{BD}{AB} = \frac{CO}{AC}$$
, 求得 $BD = \frac{4\sqrt{5}}{5}$

由 Rt
$$\triangle$$
 CDB \hookrightarrow Rt \triangle POQ ,则有 $\frac{BD}{OQ} = \frac{BC}{PQ}$,即 $\frac{4\sqrt{5}}{5} = \frac{4\sqrt{2}}{\sqrt{k^2 + (8-k)^2}}$, 化 简 得

 $k^2+2k-8=0$, 解得 k=-4 或 k=2 ,但由 CQ=4-k,知 0<k<4,所以只有 k=2 ,综上

1) 2) 所求的 k 值是
$$k = \frac{8}{3}$$
 或 k=2. 14 分

21. (本小题满分 14 分)若干个 1 与 2 排成一行:

- (2) 前 2006 个数的和是多少?前 2006 个数的平方和是多少?
- (3) 前 2006 个数两两乘积的和是多少?

解:

(1) 把该列数如下分组:

2 2 2 2 2 1 第n组 (有n-1个2)

易得,第 2006 个数为第 63 组,第 53 个数,为 2; ------4 分

(2) 前 2006 个数的和为 62+1944×2=3950,

前 2006 个数的平方和是:
$$62 \times 1^2 + 1950 \times 2^2 = 7862$$
 ------10 分

(3) 记这 2006 个数为

-----14 分

$$a_{1}, a_{2}, \dots, a_{2006}$$

$$\exists \exists R = a_{1} + a_{2} + \dots + a_{2006} = 3950$$

$$T = a_{1}^{2} + a_{2}^{2} + \dots + a_{2006}^{2} = 62 \times 1^{2} + 1950 \times 2^{2} = 7862$$

$$S = a_{1}a_{2} + a_{1}a_{3} + \dots + a_{1}a_{2006} + a_{2}a_{3} + a_{2}a_{4} + \dots + a_{2}a_{2006} + \dots + a_{2005}a_{2006}$$

$$\therefore 2S = (a_{1} + a_{2} + \dots + a_{2006})^{2} - (a_{1}^{2} + a_{2}^{2} + \dots + a_{2006}^{2})$$

$$= R^{2} - T$$

$$= 3950^{2} - 7862$$

$$S = \frac{1}{2}(3950^{2} - 7862) = 7797319$$