Chapter 1

WLM class

WLM is used to control a High Finesse WS6 or WS7 wavemeter. Only one WLM object can be instantiated. The company provides a C-library of functions to configure and control the wavemeter, hence the WLM object loads this library ('C:\Windows\System32\wlmData.dll') and the corresponding C-header ('wlmData.hml') in the contructor function. C-functions from the library are called within the matlab functions described below. A complete summary of the C functionality can be found in the wavemeter manual, provided by High Finesse.

MATLAB EXAMPLE

```
handle = \mathbf{WLM.getInstance}()
output = handle.[anyFunction];
```

Properties

- ullet WL Last measured wavelength in nanometers.
- freq Last measured frequency in THz.
- pool
 Handle to parallel worker pool object. Used for toggling the wavemeter

channel in parallel with other matlab scripts for simultaneous wavemeter locking of multiple lasers.

- toggling
 String that shows whether toggling of the wavemeter channels is 'on' or 'off'.
- parf
 Handle to parallel function, executed by the parallel worker pool pool.
- ar (private) Struct containing the argument name strings from WLM header.
- active_channel (private)
 Channel that is currently active.
- num_channels (private)
 Total number of switchbox channels.

Functions

$$handle = \mathbf{getInstance}()$$

Instantiates a WLM object and puts it under the name handle (or any other name that is put before the = sign).

$$obj = \mathbf{WLM}()$$
 (private)

Constructor that is called by getInstance(). Here, the C-header is called, its parameters are stored in private property ar. Also, the C-library with functions to communicate with the wavemeter is loaded. To enable parallel execution of functions, the library is also loaded into the workers in *pool*.

$$/WL$$
, $freq$ $/ = \mathbf{ReadWLM}(what, channel)$ (private)

Switches the wavemeter to switchbox *channel* and reads frequency and/or wavelength, depending on whether *what* is 'WLM', 'freq' or 'both' (capsensitive!). Called by GetWL(), GetFreq() and GetBoth().

```
pool = CreateParPool() (private)
```

Checks if there is a parallel worker pool available and stores it in output *pool*. If not available, it creates a new one. This might take a minute.

```
ParToggle( channels , time ) (private)
```

Starts an infinite loop that switches to the next channel in vector *channels* every *time* seconds. Called as a parallel function by ToggleChannels().

```
ToggleChannels( channels, time, onOffStr)
```

Is called by the user to start toggling between channels for simultaneous locking of multiple lasers. If string on OffStr is 'on', function ParToggle(channels , time) is started as a job in the parallel worker pool. A handle to this job is stored in property parf. If on OffStr is 'off', the job stored in parf is canceled and the toggling stops.

SwitchToChannel(channel)

Changes the active switchbox channel to *channel*, then waits for 0.5s.

```
freq = \mathbf{GetFreq}(channel)
```

Calls ReadWLM('freq', channel) to measure the frequency for channel.

```
WL = \mathbf{GetWL}(\ channel\ )
```

Calls ReadWLM('WLM', channel) to measure the wavelength for channel.

```
/ WL, freq / = GetBoth( channel )
```

Calls ReadWLM('both' , channel) to measure both frequency and wavelength for channel.

 $channel = \mathbf{GetChannel}()$

Returns the property $active_channel$.