# JPMC Quant Challenge'22

# **Derivative Modelling**

Vignesh Kumar S

B.Tech in Chemical Engineering, M.Tech in Data Science (Dual Degree)

**IIT Madras** 

- 1. OLS Estimates
  - a. Fuler Discretization
  - b. Parameter Estimation
  - c. Error normality test
- 2. ML Estimates
  - a. Likelihood function
  - b. Optimization

1. Discretization

- a. Euler
- b. Milstein
- c. Predictor Corrector
- 2. Option Pricing using Monte Carlo Simulation
  - a. Up and out put option

Calibrating Data

#### **Problem Statement:**

#### **Up and Out Put Barrier Option:**





#### CIR Model:

- $dX_t = a(b-X_t) + \sigma(\sqrt{X_t})dW_t$ 
  - o First term: Drift
  - o b is long run eq. Value
  - o a is strength of reversion
  - Second term: Diffusion
  - Sqrt prevents X from becoming negative (2ab>sig2)
  - $\circ$  dW<sub>t</sub> ~ N(0,dt)
- Use this to calculate expected payoff discounted back to present value to price option

- 1. Ordinary Least Squares Estimates
  - a. Euler Discretization
  - b. Parameter Estimation
  - c. Error normality test
- 2. MI Estimates
  - a. Likelihood function
  - b. Optimization
- 1. Discretization
  - a. Euler
  - b. Milstein
  - c. Predictor Corrector
- 2. Option Pricing using Monte Carlo Simulation
  - a. Up and out put option

Calibrating Data

# Calibrating Data: (Discretization and OLS)

- Continuous:  $dX_t = a(b-X_t) + \sigma(\sqrt{X_t})dW_t$
- Discrete (Euler):  $X_{t_{i+1}}-X_{t_i}=a(b-X_{t_i})+\sigma\sqrt{|X_{t_i}|\Delta T}\ arepsilon$  [Errors are **Heteroskedastic**]

$$\bullet \quad \frac{X_{t_{i+1}} - X_{t_i}}{\sqrt{X_{t_i}}} = \frac{ab\Delta t}{\sqrt{X_{t_i}}} - a\sqrt{X_{t_i}}\Delta t + \sigma\sqrt{\Delta T}\varepsilon \quad \text{[Errors are Homoskedastic]}$$

•  $Y = Z\beta + \epsilon$ , where

$$\bullet \quad Y = \begin{bmatrix} \frac{X_{t_2} - X_{t_1}}{\sqrt{X_{t_1}}} \\ \frac{X_{t_3} - X_{t_2}}{\sqrt{X_{t_2}}} \\ \vdots \end{bmatrix}; Z = \begin{bmatrix} \frac{\Delta T}{\sqrt{X_1}} & -\sqrt{X_1} \Delta T \\ \frac{\Delta T}{\sqrt{X_2}} & -\sqrt{X_2} \Delta T \\ \vdots & \ddots & \end{bmatrix}; \beta = \begin{bmatrix} ab \\ a \end{bmatrix}$$

$$\hat{eta} = rg \min \left| \left| Y - Z eta 
ight|^2 \ \hat{eta} = \left( Z^T Z 
ight)^{-1} Z^T Y$$

$$ullet \hat{\sigma^2} = rac{1}{\Delta T(N-2)} \left| \left| Y - \hat{Y} 
ight| 
ight|^2$$

#### **Results from OLS:**

| Params | LS estimates |
|--------|--------------|
| а      | 0.909846889  |
| b      | 135.0939703  |
| sigma  | 0.399912442  |

Parameter estimates obtained by averaging across all runs through OLS

- Most of the runs pass AD test or Shapiro test for normality on error terms
- Mean of errors is on order of le-6 indicating strongly that the error term population mean is likely to be zero
- P value indicating that the model coefficients are statistically significant
- 95 percent confidence interval for b (for each run) has a width of around 20,and a width of 0.25 for a
- Covariance for parameters (in each run) is also obtained  $\hat{\sigma}^2(X^TX)^{-1}$

- OLS Estimates
  - a. Fuler Discretization
  - b. Parameter Estimation
  - c. Error normality test
- 2. ML Estimates
  - a. Likelihood function
  - b. Optimization
- 1. Discretization
  - a. Euler
  - b. Milstein
  - c. Predictor Corrector
- 2. Option Pricing using Monte Carlo Simulation
  - a. Up and out put option

Calibrating Data

## Calibrating Data: ML estimates

$$egin{aligned} L( heta \,|\, y) &= f(\,y_1,y_2,\ldots,y_N \,|\, heta\,) \ &= p(x_{t_1}) \,\Pi\, p(\,x_{t_{i+1}} \,|\, x_{t_i}, heta) \end{aligned} \ \ln L( heta \,|\, y) &= \ln p(x_{t_1}) \,+\, \Sigma\, \ln p(x_{t_{i+1}} \,|\, x_{t_i}\,,\, heta) \ p(x_t \,|\, x_s) &= c\, \exp{(-(u+v))} \Big(rac{v}{u}\Big)^{rac{q}{2}} I_qig(2\sqrt{uv}ig) \ where \ c &= rac{2a}{\sigma^2(1-\exp{(-a\Delta t)})}; \ u &= c\, x_s\, \exp{(-a\Delta t)}; \ v &= c\, x_t; \ q &= rac{2ab}{\sigma^2} - 1; \end{aligned}$$

 $\Delta t = t - s$ 

**Objective:**  $\arg \max \ln L(\theta)$ 

$$\ln L = (N-1) \ln c + \sum_{i=1}^{N-1} \left\{ -u_{t_i} - v_{t_{i+1}} + 0.5q \ln \left( \frac{v_{t_{i+1}}}{u_{t_i}} \right) + \ln \{ I_q^1(2\sqrt{u_{t_i}v_{t_{i+1}}}) \} + 2\sqrt{u_{t_i}v_{t_{i+1}}} \right\}.$$

#### Implementation:

- Solved by minimising negative loglikelihood using scipy optimise minimisation algorithm Nelder-Mead
- Used OLS estimates on discretized version as initial starting points
- Modified Bessel function of first kind, I<sub>q</sub> tends quickly to infinity leading to numerical instability. Instead exponentially scaled bessel function, I<sub>q</sub><sup>1</sup>, is used to solve this problem. The objective function is adjusted accordingly.

#### **Results from ML estimates**

| Params | LS estimates | ML estimates |
|--------|--------------|--------------|
| а      | 0.9098468    | 0.91001019   |
| b      | 135.093970   | 135.09418157 |
| sigma  | 0.39991244   | 0.399907344  |

- Estimates are obtained with Nelder
   Mead method
- By fixing one/two parameters, and varying the rest, objective function seems concave near our search region







- 1. OLS Estimates
  - a. Euler Discretization
  - b. Parameter Estimation
  - c. Error normality test
- 2. ML Estimates
  - a. Likelihood function
  - b. Optimization

1. Discretization

- a. Fuler
- b. Milstein
- c. Predictor Corrector
- 2. Option Pricing using Monte Carlo Simulation
  - a. Up and out put option

Calibrating Data

## **Option Pricing**

- From calibration:
   a, b, sigma = 0.91001, 135.09418, 0.39990
- From question/data:  $S_0$ , tau, r = 20, 4, 0.1
- Monitoring frequency = 1/12
- Discretization Method: Predictor-Corrector Method

$$egin{aligned} S_{t+1}^* &= S_t \, + \, a(b-S_t) \Delta t \, + \, \sigma \sqrt{S_t \Delta t} \, arepsilon \ S_{t+1} &= S_{t+1}^* \, + \, rac{1}{2} ig( aig( b - S_{t+1}^* ig) \, - \, a(b-S_t) ig) \Delta t \end{aligned}$$

Realizations = 100,000

| Sb  | K   | UO Put    | UI Put   | Put       |
|-----|-----|-----------|----------|-----------|
| 140 | 145 | 8.606491  | 0.064784 | 8.671275  |
| 140 | 150 | 11.892999 | 0.129109 | 12.022108 |
| 137 | 137 | 3.325484  | 0.065847 | 3.391331  |
| 139 | 139 | 4.654781  | 0.022847 | 4.677628  |
| 150 | 200 | 45.547866 | 0.0      | 45.547866 |
| 145 | 145 | 8.673678  | 0.000178 | 8.673855  |
| 132 | 132 | 0.699778  | 0.172378 | 0.872155  |

# **Option Pricing**

- From calibration:
   a, b, sigma = 0.91001, 135.09418, 0.39990
- From question/data:  $S_0$ , tau, r = 20, 4, 0.1
- Monitoring frequency = 1/12
- Discretization Method: Predictor-Corrector Method

$$egin{aligned} S_{t+1}^* &= S_t \, + \, a(b-S_t) \Delta t \, + \, \sigma \sqrt{S_t \Delta t} \, arepsilon \ S_{t+1} &= S_{t+1}^* \, + \, rac{1}{2} ig( aig( b - S_{t+1}^* ig) \, - \, a(b-S_t) ig) \Delta t \end{aligned}$$

• Realizations = 100,000

| Sb  | K   | UO Put    | UI Put   | Put       |
|-----|-----|-----------|----------|-----------|
| 140 | 145 | 8.606491  | 0.064784 | 8.671275  |
| 140 | 150 | 11.892999 | 0.129109 | 12.022108 |
| 137 | 137 | 3.325484  | 0.065847 | 3.391331  |
| 139 | 139 | 4.654781  | 0.022847 | 4.677628  |
| 150 | 200 | 45.547866 | 0.0      | 45.547866 |
| 145 | 145 | 8.673678  | 0.000178 | 8.673855  |
| 132 | 132 | 0.699778  | 0.172378 | 0.872155  |

# **Option Pricing**

- From calibration:
   a, b, sigma = 0.91001, 135.09418, 0.39990
- From question/data:  $S_0$ , tau, r = 20, 4, 0.1
- Monitoring frequency = 1/12
- Discretization Method: Predictor-Corrector Method

$$S_{t+1}^* = S_t + a(b - S_t)\Delta t + \sigma \sqrt{S_t \Delta t} \, \varepsilon \ S_{t+1} = S_{t+1}^* + rac{1}{2} ig( a ig( b - S_{t+1}^* ig) - a (b - S_t) ig) \Delta t$$

Realizations = 100,000

| Sb  | K   | UO Put    | UI Put   | Put       |
|-----|-----|-----------|----------|-----------|
| 140 | 145 | 8.606491  | 0.064784 | 8.671275  |
| 140 | 150 | 11.892999 | 0.129109 | 12.022108 |
| 137 | 137 | 3.325484  | 0.065847 | 3.391331  |
| 139 | 139 | 4.654781  | 0.022847 | 4.677628  |
| 150 | 200 | 45.547866 | 0.0      | 45.547866 |
| 145 | 145 | 8.673678  | 0.000178 | 8.673855  |
| 132 | 132 | 0.699778  | 0.172378 | 0.872155  |

- 1. OLS Estimates
  - a. Fuler Discretization
  - b. Parameter Estimation
  - c. Error normality test
- 2. ML Estimates
  - a. Likelihood function
  - b. Optimization

#### 1. Discretization

- a. Euler
- b. Milstein
- c. Predictor Corrector
- 2. Option Pricing using Monte Carlo Simulation
  - a. Up and out put option

Calibrating Data

## **Discretization Methods**

SDE: 
$$dX_t = a(X,t)dt + b(X,t)dW_t$$

- ullet Euler:  $X_{i+1} \,=\, X_i \,+\, a(X_i,t) \Delta t \,+\, b(X_i,t_i) \Delta w_i$
- ullet Milstein:  $X_{i+1}=X_i+a(X_i,t)\Delta t+b(X_i,t_i)\Delta w_i+rac{1}{2}b(X_i,t_i)rac{\partial b(X_i,t_i)}{\partial x}ig(\Delta w_i^2-\Delta t_iig)$
- ullet Predictor Corrector:  $X^*_{t_{i+1}} = X_{t_i} + a(t_i, X_{t_i}) \Delta t + b(t_i, X_{t_i}) \Delta w_{t_i}$

$$X_{t_{i+1}} \, = \, X_{t_i} \, + \, rac{1}{2} ig( a(t_i, X_{t_i}) \, + aig( t_{i+1}, X_{t_{i+1}}^* ig) ig) \Delta t + \, b(t_i, X_{t_i}) \Delta w_{t_i}$$

## **Discretization Methods**

SDE: 
$$dS_t = a(b-S_t) + \sigma(\sqrt{S_t})dW_t$$

- Euler:  $S_{t+1} = S_t + a(b-S_t)\Delta t + \sigma\sqrt{S_t\Delta t}\, arepsilon$
- ullet Milstein:  $S_{t+1}=S_t+a(b-S_t)\Delta t+\sigma\sqrt{S_t\Delta t}\,arepsilon+rac{1}{4}\sigma^2\Delta tig(arepsilon^2-1ig)$
- Predictor Corrector:  $S_{t+1}^* = S_t + a(b-S_t)\Delta t + \sigma\sqrt{S_t\Delta t}\,arepsilon \ S_{t+1} = S_{t+1}^* + rac{1}{2}ig(a(b-S_{t+1}^*) a(b-S_t)ig)\Delta t$

### **Discretization Methods**

SDE: 
$$dX_t = a(b-X_t) + \sigma(\sqrt{X_t})dW_t$$

- Euler:  $S_{t+1} = S_t + a(b-S_t)\Delta t + \sigma\sqrt{S_t\Delta t}\, arepsilon$
- ullet Milstein:  $S_{t+1}=S_t+a(b-S_t)\Delta t+\sigma\sqrt{S_t\Delta t}\,arepsilon+rac{1}{4}\sigma^2\Delta tig(arepsilon^2-1ig)$
- Predictor Corrector:  $S_{t+1}^* = S_t + a(b-S_t)\Delta t + \sigma\sqrt{S_t\Delta t}\, \varepsilon$   $S_{t+1} = S_{t+1}^* + \frac{1}{2} \big(a\big(b-S_{t+1}^*\big) a(b-S_t)\big)\Delta t$

$$E[x_t | x_0] = x_0 \exp(-at) + b(1 - \exp(-at))$$

| Euler      | Milstein   | Predictor<br>Corrector | Theoretical |
|------------|------------|------------------------|-------------|
| 133.192083 | 133.154320 | 132.805721             | 132.86035   |

# Thank you

## **Comparison between different solvers**

| Optimization<br>Methods | а        | b          | С        | Mean<br>loglikelihood |
|-------------------------|----------|------------|----------|-----------------------|
| Nelder Mead             | 0.910010 | 135.094181 | 0.399907 | 12080.1074            |
| BFGS                    | 0.909854 | 135.093968 | 0.399909 | 12080.2126            |
| L-BFGS-B                | 0.906971 | 135.069208 | 0.342597 | 13096.1080            |

L-BFGS-B was the fastest, followed by Nelder Mean and BFGS

