

PATENT ABSTRACTS OF JAPAN

(11) Publication number: 07114015 A

(43) Date of publication of application: 02.05.95

(45) Date 4: F :::	
(71) Applicant: (72) Inventor:	OLYMPUS OPTICAL CO LTD TABATA SEIICHIRO IBA YOICHI
	(71) Applicant:

(54) LIQUID CRYSTAL DISPLAY DEVICE

(57) Abstract:

PURPOSE: To provide the liquid crystal display device constituted to realize a good contrast and good image quality by providing the exit side of a liquid crystal display element with a diffraction grating in place of a light diffusing member.

CONSTITUTION: The luminous fluxes emitted from a spot light source 1 are made into parallel beams by a collimator lens 2. These parallel beams are made incident on a liquid crystal panel 3 so as to be perpendicular to a display layer and to display videos. The luminous fluxes past the liquid crystal panel 3 are made incident on the diffraction grating 4 which is disposed near the liquid crystal panel 3 (exit side) on an optical path for displaying the videos of the liquid crystal panel 3 and has a diffraction angle of 310°. The liquid crystal layer 3a of the liquid crystal panel 3 and the diffraction surface 4a of the diffraction grating 4 are parted by a distance L. The incident luminous fluxes on the diffraction grating 4 are branched and emitted in plural directions and the images having the good contrast when viewed from the arbitrary direction of the exit direction are obtd.

COPYRIGHT: (C)1995,JPO

(19)日本国特許庁 (JP)

(12) 公開特許公報(A)

(11)特許出願公開番号

特開平7-114015

(43)公開日 平成7年(1995)5月2日

(51) Int.Cl.6

庁内整理番号 識別記号

FΙ

技術表示箇所

G 0 2 F 1/1335 G02B 5/18

9018-2K

(21)出願番号

特顯平5-260989

(22)出願日

平成5年(1993)10月19日

(71)出願人 000000376

オリンパス光学工業株式会社

審査請求 未請求 請求項の数2 OL (全 5 頁)

東京都渋谷区幡ヶ谷2丁目43番2号

(72)発明者 田端 誠一郎

東京都渋谷区幡ヶ谷2丁目43番2号 オリ

ンパス光学工業株式会社内

(72)発明者 井場 陽一

東京都渋谷区幡ヶ谷2丁目43番2号 オリ ンパス光学工業株式会社内

(74)代理人 弁理士 杉村 暁秀 (外5名)

(54) 【発明の名称】 液晶表示装置

(57)【要約】

【目的】 液晶表示素子の出射側に光拡散部材の代わり に回折格子を設けることにより、良好なコントラストお よび良好な画質を実現し得るようにした液晶表示装置を 提供する。

【構成】 点光源1から出射した光東をコリメータレン ズ2で平行光にしてから液晶パネル3に表示層と垂直を なすように入射して映像を表示する。液晶パネル3を通 過した光東を、液晶パネル3の映像を表示する光路上 の、液晶パネル3の近傍(出射側)に設けた、10°以 上の回折角を有する回折格子4に入射し、液晶パネル3 の液晶層3 a と回折格子4の回折面4 a とを距離Lだけ 離間させる。。回折格子4に入射した光束は複数の方向 に分岐して出射し、出射方向の任意の方向から見たとき にコントラストが良好な像が得られる。

【特許請求の範囲】

【請求項1】 ほぼ平行な光束を発生する照明手段と、 該照明手段から光束を入射され映像を表示する液晶表示 泰子と、

該液晶表示素子の映像を表示する光路上で前記液晶表示 素子の近傍に配置され、10°以上の回折角を有する回 * $0 \le L \le P / t a n | \theta |$

(ただし、P;液晶表示素子の画素ピッチ、 | θ | ; 回 折角) を満足するように構成したことを特徴とする、請 求項1記載の液晶表示装置。

【発明の詳細な説明】

[0001]

【産業上の利用分野】本発明は、画質を劣化させずに視 野角の向上を実現するようにした液晶表示装置に関する ものである。

[0002]

【従来の技術】従来、映像表示素子として液晶パネル (LCDパネル) を用いるとともに面光源のバックライ トを設けて構成した液晶表示装置においては、液晶分子 の配向角に対する光束の入射角によって液晶パネルの透 過率が変化するため、視野角が狭くなる不具合が生じ る。この不具合により、液晶パネルを斜め方向から見た ときにコントラストが劣化したり、大画面液晶パネルに おいては上下左右の周辺部のコントラストが劣化したり する。また、通常の液晶パネルでは、視野角は±10° 程度である。

【0003】上記不具合を解消するため、特開平4-6332 2 号公報の液晶表示装置には、図9 (a), (b) に示 すように、図示しない光源からの光束を平行光にしてか 5透過性の液晶パネル51の入射側に液晶層と垂直をな すように照射し、液晶パネルの出射側に設けた拡散板等 の光拡散部材52の拡散面52aで入射光(透過光)を 散乱させて観察者の眼球53に導く技術が開示されてい る。この従来例によれば、液晶パネル51にはほぼ垂直 方向に光東が入射するので、像のコントラストが良好に なり、また、光散乱部材により像の開口数NAが増大す るので視野角が向上する。

【0004】また、特開平5-72525 公報の液晶表示装置 には、発明の詳細な説明中に、光散乱素子として回折格 子を用いてもよい旨の記載がなされている。しかし、上 記公報には光散乱素子として回折格子を用いた場合の具 体的な構成については一切開示されていない。

[0005]

【発明が解決しようとする課題】上記特開平4-63322 号 公報の液晶表示装置においては、光拡散部材52の拡散 面52aにおける光の散乱を利用しているため、開口数 NAの高い光束を入射した場合は上記効果が得られる が、開口数NAの低い光束を入射した場合には図9

になり、画質が劣化してしまう。このようにざらついて ※50 に示すように、多数の画素 3 dが画素 ビッチ P で不透明 (a) に示すように拡散板表面がざらついて見えること

* 折格子とを具えて成ることを特徴とする、液晶表示装

【請求項2】 前記液晶表示素子および前記回折格子間 の距離しが次式

【数1】

-(1)

※見えるのは、同図 (b) に矢印で示すように、光拡散部 材52の拡散面52aで拡散された光束の中には眼球5 3の方向に進まない光束が生じるため、その光束に相当

する拡散面上の点が黒く見えることになるからである。 【0006】本発明は、光拡散部材の代わりに回折格子 を用いることにより、良好なコントラストおよび良好な 画質を実現し得るようにした液晶表示装置を提供するこ レを目的とする。

[0007] 【課題を解決するための手段】この目的のため、本発明 は、ほぼ平行な光束を発生する照明手段と、該照明手段 から光束を入射され映像を表示する液晶表示素子と、該 液晶表示素子の映像を表示する光路上で前配液晶表示素 子の近傍に配置され、10°以上の回折角を有する回折 格子とを具えて成ることを特徴とするものである。

[8000]

【作用】本発明によれば、液晶表示素子の映像を表示す る光路上には、10°以上の回折角を有する回折格子が 液晶表示素子の近傍に配置され、この回折格子は、ラン ダムな凹凸を有する光散乱部材には無い機能である光の 出射角を制御する機能を有しているので、液晶表示素子 から入射した光束を漏れなく観察者の眼球に導くことが できる。したがって、一部の光束が眼球に到達しないこ とに起因して表示面がざらつく不具合は生じず、画質を 劣化させずに視野角を向上させることができる。

[00009]

【実施例】以下、本発明の実施例を図面に基づき詳細に 説明する。図1は本発明の液晶表示装置の第1実施例の 構成を示す図である。この第1実施例は、豆電球等の点 光源1と、点光源1から出射した光東を平行光にしてか ち液晶パネル(液晶表示素子) 3 に表示層 3 a と垂直を なすように入射するコリメータレンズ2と、液晶パネル 3の映像を表示する光路上の液晶パネル3の近傍(本実 施例では出射側) に密着させて設けた回折格子4とを具

ナて成る。 【0010】液晶パネル3は、中央部に液晶層3aを電 極3bで両側から挟んで設け、電極3bの外側に偏光板 3 cを夫々設けて積層構造に構成したものであり、液晶 パネル3の偏光板3cと回折格子4を密着させたとき液 晶層3 a と回折格子4の回折面4 a との間が距離しだけ 離間するように配置されている。

【0011】上記液晶パネル3には、図2の部分拡大図

部分3 e を介して形成されている。この不透明部分3 e には上記電極やリード線等が介装されるとともに、隣接 する各画素に影響が及ばないような絶縁間隔が保たれる ように形成されている。また、この液晶パネルには、図 3 (a) または (b) に示すように、液晶パネル3の観 察者側(もしくは光源側)にカラーフィルタ5を設けて カラー画像を表示し得るようにすることができる。その 場合、図示のように3原色R, G, Bが規則的に現れる パターンで配置するとよい。

【0012】本実施例では、上記回折格子4として、図 4 の斜視図に示すように多数の格子が回折ピッチP』で 規則的に形成されているものを用いている。ここで、回 折ピッチP;は、使用する回折次数に応じて決定され、 通常の液晶パネルの視野角がほぼ±10° であることか ら、回折角 $\mid \theta \mid$ が \mid 0°以上になる回折光が出射する ように回折格子4を構成する条件は以下のようになる。 すなわち、図4のように2次回折光までの回折パターン を得るためには、1次回折光の回折角を5°にすればよ く、その場合には回折ピッチ P_1 を例えば $5.7\mu m$ に すればよい。また、5次回折光までを利用する回折パタ ーンを得るためには、回折ピッチP; を例えば14μm にすればよい。なお、回折格子4として、図5に示すよ うなハニカム状に凹部および凸部が規則的に配置された ものを用いてもよく、その場合の方が光束を均等に分散 させるためには有利である。また、回折格子に形成する 凹凸の形状としては、図6 (a) のように正弦波状にし ても、同図(b)のように台形状にしてもよい。

【0013】次に、この第1実施例の作用について説明 する。点光源1から出射した光束はコリメータレンズ2 で平行光にされてから液晶パネル3に表示層と垂直をな すように入射して映像を表示する。液晶パネル3を通過 * $0 \le L \le P / t a n | \theta |$

(ただし、P;液晶パネルの画素ピッチ、 | θ | ;回折 角)その理由は、距離しが上記条件式の上限値を越える と、ぼけ量が大きくなり過ぎて画質の劣化を招き、逆に 下限値を下回ると液晶パネル3および回折格子4が互い に重なり合うことになって物理的に配置できなくなるか らである。

【0017】なお、本実施例の液晶表示装置は、図7 (a)、(b)に示す顕都(顔面)装着型映像表示装置 に適用したり、図8 (a)、(b) に示すテレビジョン 画面やワードプロセッサ画面の表示装置に適用すること ができる。

【0018】本発明は上述した実施例のみに限定される ものではなく、種々の変形または変更を加え得ることが できる。例えば、上記実施例では点光源 1 およびコリメ ータレンズ 2 により平行光照明を行うようにしている が、代わりに面光源およびルーバー光学素子やファイバ ープレートを組み合わせたものを用いてもよい。また、 上記実施例では回折格子4を液晶パネル3の出射側に密 ※50

* した光東は、液晶パネル3の映像を表示する光路上の、 液晶パネル3の近傍に設けた回折格子4に入射する。回 折格子4に入射した光束は、図1に示すように複数の方 向に分岐して出射し、出射方向の任意の方向から見たと きにコントラストが良好な像が得られる。

【0 0 1 4】その際、10°以上の回折角 | θ | を有す る回折格子4を用いているので、図9の従来例のような ランダムな凹凸を有する光散乱部材では実現できない光 の出射角を制御する機能を用いることができ、図4に示 す回折ピッチP:を適宜設定することにより回折面4a 上の全ての点における出射角を同一にして、例えば0次 光、+1次光および-1次光を取り出すようにして、液 晶パネル3から入射した光束を漏れなく観察者の眼球に 導くことができる。よって、上記従来例のように一部の 光束が眼球に到達しないことに起因して拡散板表面がが ざらつく不具合は生じない。また、回折格子4により像 の開口数NAが増大するので視野角が向上する他、拡散 板を用いていないので不所望な散乱光がなく光拡散板を 用いる場合よりも像が明るくなる効果が得られる。

【0015】また、10°以上の回折角 | θ | を有する 回折格子4を配置する際には、回折格子4をできるだけ 液晶層3aに接近させた方が像がぼけないようにする上 で好ましい。いま、図2に示す面素3dおよび不透明部 分3 e を 1 セットとし、各画素間の画素ピッチをPとし たとき、許容し得る画素のぼかし量はPであるので、こ のぼかし量を越えないように管理することがぼけによる 画質劣化を防止する上で望ましい。

【0016】さらに、液晶表示パネル3および回折格子 の回折面 4 a 間の距離しが前述した(1)式の条件を満 足するように両者を配設することが望ましい。

【数2】 - (1)

※着させて設けているが、液晶パネル3の観察者側端面に 図3(a)、(b)のカラーフィルタ5を設けて構成し た場合、回折格子 4 を液晶層 3 a およびカラーフィルタ 5の間や、カラーフィルタ 5 および偏光板 3 c (観察者 側) の間に設けてもよい。

[0019]

【発明の効果】以上説明したように本発明によれば、液 晶表示素子の映像を表示する光路上には、10°以上の 回折角を有する回折格子が液晶表示素子の近傍に配置さ れ、この回折格子は、ランダムな凹凸を有する光散乱部 材には無い機能である光の出射角を制御する機能を有し、 ているので、液晶表示素子から入射した光束を漏れなく 観察者の眼球に導くことができる。 したがって、一部の 光束が眼球に到達しないことに起因して表示面がざらつ く不具合は生じず、画質を劣化させずに視野角を向上さ せることができる。

【図面の簡単な説明】

【図1】本発明の液晶表示装置の第1実施例の構成を示

す図である。 【図2】同例の液晶表示素子の部分拡大図である。

【図3】 (a)、(b) は同例に組み合わせるカラーフ ィルタの3原色R、G、Bの配置パターンを例示する図

【図4】同例の回折格子の構成を例示する斜視図であ である。

【図5】同例の回折格子の形状を例示する図である。 る。

【図6】 (a)、(b) は同例の回折格子の形状を例示 する断面図である。

【図7】 (a) 、 (b) は第1実施例の液晶表示装置を 額面装着型映像表示素子に適用した場合を例示する図で *

*ある。

6 【図8】 (a) 、 (b) は第1実施例の液晶表示装置を テレビジョン画面やワードプロセッサ画面の表示装置に

適用した場合を例示する図である。 【図9】 (a)、(b) は従来技術を説明するための図

である。

【符号の説明】

- 1 点光源 (豆電球)
- 2 コリメータレンズ
- 10 3 液晶パネル (液晶表示素子)
 - 4 回折格子

