VOSA: A short introduction. SEDs in the Virtual Observatory Enrique Solano, Carlos Rodrigo

Why SEDs (Spectral Energy Distributions)?

Why SEDs (Spectral Energy Distributions)?

Why SEDs (Spectral Energy Distributions)?

Building SEDs

How to build a Spectral Energy Distribution?

Ingredients

 Multiwavelength photometry (observational and theoretical)

Building SEDs: Difficulties

Data Manipulation: From magnitudes to fluxes

<u>I/33</u>	<mark>7/gaia</mark> Gai	a DR1 (Gaia Coll	aboration
<u>Pc</u>	ost annotation Gai	aSource data (Do	wnload C
1	etant Aladin Tita		
	start AladinLite		
<u>Full</u>	RA_ICRS	<u>DE_ICRS</u>	<gmag></gmag>
	<u>deg</u>	<u>deg</u>	mag
△▼	ΔΨ	Δ▼	ΔΨ
<u>1</u>	063.4107528711	-89.9888879972	17.965
<u>2</u>	037.5117084305	-89.9858176527	16.664
<u>3</u>	084.7593492719	-89.9781776713	18.553
4	081.5942616579	-89.9832765720	20.472
<u>5</u>	070.9024070024	-89.9715663343	19.829
<u>6</u>	060.8702751299	-89.9781334323	19.492
<u>7</u>	073.1733654732	-89.9817426647	20.019
<u>8</u>	027.3236159503	-89.9767950251	17.006
9	029.9573489468	-89.9759664621	18.649

10 020.0044580076 -89.9836077196

Building SEDs: Difficulties

Data Manipulation: From theoretical spectra to synthetic photometry

VOSA to the rescue

http://svo2.cab.inta-csic.es/theory/vosa/

- Available since 2008.
- More than 1000 users.
- More than 1.600.000 objects.
- 84 refereed papers.

Science case

THE ASTRONOMICAL JOURNAL

Accurate Empirical Radii and Masses of Planets and Their Host Stars with *Gaia* Parallaxes

Keivan G. Stassun^{1,2} (D), Karen A. Collins^{1,2} (D), and B. Scott Gaudi^{3,4}

Published 2017 March 2 • © 2017. The American Astronomical Society. All rights reserved.

The Astronomical Journal, Volume 153, Number 3

Science case

Masses and radii of planets are necessary to:

- Shed light on inflated hot-Jupiters.
 - 0.2-2.1MJup. Radii larger than predicted by models.
 - Internal heating.
 - → Planet radius as a function of irradiation, age, magnetic fields, winds,...

$$\Delta \mathbf{F} = \left(\frac{R_{planet}}{R_{star}}\right)^2$$

$$\left(rac{R_{planet}}{R_{star}}
ight)^2 \qquad M_p = rac{K_{
m RV}\sqrt{1-e^2}}{\sin\,i} \left(rac{P}{2\pi G}
ight)^{1/3} M_{\star}^{2/3}$$

Science case

- Empirical determination (model independent) of the radii and masses of stars hosting planets.
- Fbol → empirical
- Lbol=4πD²Fbol (D from TGAS parallaxes)
- R=sqrt(Lbol/ $(4\pi\sigma Teff^4)$)
- $g = G M / R^2$