Введение

Здесь содержатся знания тахіт 4133 о математике. Принятые обозначения:

- \forall **квантор всеобщности**. Обозначение условия, которое верно для всех указанных элементов. Читается как «для всех», «для каждого», «для любого» или «все», «каждый», «любой».
- \exists **квантор существования**. Обозначение условия, которое верно хотя бы для одного из указанных элементов. Читается как «существует», «найдётся».
- \exists ! **квантор существования и единственности**. Обозначение условия, которое верно ровно для одного из указанных элементов. Читается как «существует единственный».
- : «что», «такой (такие)», «что», «так, что», «обладающий свойством».
- ullet \Rightarrow символ следствия. Читается как «если..., то...».
- ullet \Leftrightarrow символ эквивалентности (равносильности). Читается как «тогда и только тогда, когда», «ровно/в точности тогда, когда».
- \blacksquare Q.E.D. (лат. quod erat demonstrandum, рус. что и требовалось доказать). Обозначение конца доказательства.

Благодарности

borisgk98 за его отличные идеи по улучшению данного сборника

Оглавление

Ι	Школьный курс	5
1	Арифметика 1.1 Вещественные числа 1.1.1 Аксиоматика вещественных чисел 1.1.2 Существование иррациональных чисел 1.1.3 Геометрическое представление вещественных чисел	6 6 7 8
2	Комбинаторика	g
	2.1 Элементы комбинаторики	Ĉ
3	Математический анализ 3.1 Функции 3.1.1 Возрастающие и убывающие функции 3.1.2 Линейная функция	11 11 11 12
4	Теория множеств 4.1 Отношения между множествами	13 13 13 14
5	Элементарная алгебра 5.1 Алгебраические преобразования	15 15
Η	I Университетский курс	16
6	Арифметика 6.1 Комплексные числа 6.1.1 Геометрическое представление комплексного числа 6.1.2 Тригонометрическая форма комплексного числа	17 17 17 17
7	7.1 Линейные комбинации 7.2 Векторные пространства 7.2.1 Базис и размерность векторного пространства 7.3 Системы линейных алгебраических уравнений 7.3.1 Матричная форма системы линейных уравнений 7.3.2 Линейная независимость 7.3.3 Решение систем линейных уравнений 7.3.4 Фундаментальная система решений	19 19 20 20 21 21 22 24 25
	7.4 Квалратичные формы	Z:

8	Мат	тематический анализ
	8.1	Ограниченные подмножества множества \mathbb{R}
	8.2	Предел последовательности
		8.2.1 Элементарные свойства пределов
		8.2.2 Арифметические свойства пределов
		8.2.3 Основные свойства пределов последовательностей
		8.2.4 Число Эйлера
		8.2.5 Критерий Коши
	8.3	Предел функции
	0.0	8.3.1 Предел функции в точке
		8.3.2 Предел функции на бесконечности
		8.3.3 Замечательные пределы
	8.4	Бесконечно малые и бесконечно большие функции
		Непрерывность функции
	0.0	8.5.1 Свойства непрерывных функций
	8.6	Производная функции
	0.0	8.6.1 Геометрический смысл производной
		8.6.2 Физический смысл производной
		8.6.3 Дифференциал функции
		8.6.4 Правила дифференцирования
		8.6.5 Таблица производных
		8.6.7 Производные и дифференциалы высших порядков
	0.7	8.6.9 Правило Лопиталя
	8.7	Исследование функции
		8.7.1 Локальный экстремум функции
		8.7.2 Наименьшее и наибольшее значения функции
		8.7.3 Выпуклость функции
	0.0	8.7.4 Асимптоты
	8.8	Функции нескольких переменных
		8.8.1 Предел функции нескольких переменных
		8.8.2 Непрерывность функции нескольких переменных
		8.8.3 Дифференцируемость функции нескольких переменных
		8.8.4 Экстремумы функции нескольких переменных
	8.9	Функции двух и трёх переменных
		8.9.1 Геометрическая интерпретация частных производных функции двух переменных
		8.9.2 Уравнение касательной плоскости к поверхности
	8.10	Вектор-функции
		8.10.1 Дифференцируемость вектор-функции
		8.10.2 Суперпозиция вектор-функций
	8.11	Неопределённый интеграл
		8.11.1 Свойства неопределённого интеграла
		8.11.2 Таблица первообразных
		8.11.3 Интегрирование простейших дробей
		8.11.4 Интегрирование дробно-рациональных выражений
		8.11.5 Интегрирование тригонометрических выражений
		8.11.6 Интегрирование квадратичных иррациональностей
9	Teoı	рия булевых функций
	9.1	Логические операции
	9.2	Формулы
		Разложение булевых функций по переменным
	9.4	Дизъюнктивная нормальная форма

	9.8	Геометрическая интерпретация булевых функций	65
	9.9	Операции типа I и II	65
	9.10	Построение тупиковых ДНФ	66
	9.11	Полнота и замкнутость классов булевых функций	66
	9.12	Многочлен Жегалкина	69
		Замкнутые классы булевых функций	71
10	Teoj	рия графов	73
	10.1	Связность графов	74
	10.2	Эйлеровы графы	74
	10.3	Гамильтоновы графы	75
	10.4	Планарность графов	76
	10.5	Деревья	77
	10.6	Остовы	79
	10.7	Помеченные деревья	80
11	Teo	рия матриц	81
	11.1	Операции над матрицами	81
		Блочные матрицы	82
	11.3	Определитель матрицы	82
		Ранг матрицы	87
	11.5	Элементарные преобразования матриц	88
	11.6	Обратные матрицы	89
12	Teo	рия многочленов	91
	12.1	Многочлены от одной переменной	91
		12.1.1 Деление многочленов	91
		12.1.2 Корень многочлена	92
	12.2	Многочлены от нескольких переменных	94
		12.2.1 Симметрические многочлены	94
13	Teoı	рия множеств	95
		Мощность множеств	95
		13.1.1 Мощность числовых множеств	96

Часть I Школьный курс

Арифметика

1.1 Вещественные числа

Множество вещественных чисел обозначается \mathbb{R} .

1.1.1 Аксиоматика вещественных чисел

Аксиомы сложения:

1. Коммутативность сложения:

$$\forall a, b \in \mathbb{R} \ a + b = b + a$$

2. Ассоциативность сложения:

$$\forall a, b, c \in \mathbb{R} \ a + (b+c) = (a+b) + c$$

3. Существование нуля:

$$\exists 0 \in \mathbb{R} \colon \forall a \in \mathbb{R} \ a + 0 = a$$

4. Существование противоположного числа:

$$\forall a \in \mathbb{R} \ \exists (-a) \in \mathbb{R} : a + (-a) = 0$$

Аксиомы умножения:

1. Коммутативность умножения:

$$\forall a,b \in \mathbb{R} \ a \cdot b = b \cdot a$$

2. Ассоциативность умножения:

$$\forall a, b, c \in \mathbb{R} \ a \cdot (b \cdot c) = (a \cdot b) \cdot c$$

3. Дистрибутивность умножения относительно сложения:

$$\forall a, b, c \in \mathbb{R} \ a \cdot (b+c) = a \cdot b + a \cdot c$$

4. Существование единицы:

$$\exists 1 \in \mathbb{R} : \forall a \in \mathbb{R} \ a \cdot 1 = a$$

5. Существование обратного числа:

$$\forall a \in \mathbb{R} \setminus \{0\} \ \exists \frac{1}{a} = a^{-1} \in \mathbb{R} \colon a \cdot a^{-1} = 1$$

Аксиомы порядка:

1. Рефлексивность:

$$\forall a \in \mathbb{R} \ a \leqslant a$$

2. Антисимметричность:

$$\forall a, b \in \mathbb{R} \ a \leqslant b, \ b \leqslant a \Rightarrow a = b$$

3. Транзитивность:

$$\forall a, b, c \in \mathbb{R} \ a \leqslant b, \ b \leqslant c \Rightarrow a \leqslant c$$

4. Линейная упорядоченность:

$$\forall a, b \in \mathbb{R} \ a \leqslant b$$
 или $b \leqslant a$

5. Связь сложения и порядка:

$$\forall a, b, c \in \mathbb{R} \ a \leqslant b \Rightarrow a + c \leqslant b + c$$

6. Связь умножения и порядка:

$$\forall a, b \in \mathbb{R} \ 0 \leq a, \ 0 \leq b \Rightarrow 0 \leq a \cdot b$$

Аксиома нетривиальности:

$$0 \neq 1$$

Аксиома непрерывности:

$$\forall A, B \subset \mathbb{R} \colon (\forall a \in A, b \in B \ a \leqslant b) \ \exists x \in \mathbb{R} \colon a \leqslant x \leqslant b$$

1.1.2Существование иррациональных чисел

Иррациональным называется число, не являющееся рациональным. Множество иррациональных чисел обозначается I.

Утверждение 1.1.1. Существуют иррациональные числа.

Доказательство методом от противного. Пусть $\exists p \in \mathbb{Z}, \ q \in \mathbb{N} \colon \left(\frac{p}{a}\right)^2 = 2, \ \mathrm{HOД}(p,q) = 1.$ Тогда

$$p^2=2q^2\Rightarrow p^2\ \vdots\ 2\Leftrightarrow p\ \vdots\ 2\Leftrightarrow p=2l,\ l\in\mathbb{Z}\Rightarrow 2l^2=q^2$$

Аналогичными рассуждениями получим q : 2. p : 2, $q : 2 \Rightarrow HOД(p,q) \neq 1$. Противоречие. \blacksquare

Утверждение 1.1.2. Среди вещественных чисел есть иррациональные. Доказательство. Пусть $X = \{x \in \mathbb{R}^+ \mid x^2 < 2\}, Y = \{y \in \mathbb{R}^+ \mid y^2 > 2\}.$

$$\forall x \in X, \ y \in Y \ y^2 - x^2 = (y - x)(y + x) > 0 \Rightarrow y > x \Rightarrow \exists z \in \mathbb{R} : \forall x \in X, \ y \in Y \ x \leqslant z \leqslant y$$

1. Пусть $z^2 < 2$. $z \in X$, z > 1,1, тогда

$$0 < 2 - z^2 < 1 \Rightarrow \frac{2 - z^2}{5} < 1 \Rightarrow \left(\frac{2 - z^2}{5}\right)^2 < \frac{2 - z^2}{5}$$

$$\bullet \ z + \frac{2 - z^2}{5} > z \Rightarrow z + \frac{2 - z^2}{5} \notin X$$

$$\bullet \ \left(z + \frac{2 - z^2}{5}\right)^2 = z^2 + 2z \cdot \frac{2 - z^2}{5} + \left(\frac{2 - z^2}{5}\right)^2 < z^2 + \frac{4}{5}(2 - z^2) + \frac{2 - z^2}{5} = 2 \Rightarrow z + \frac{2 - z^2}{5} \in X$$

Противоречие, значит, $z^2 \geqslant 2$.

2. Пусть $z^2 > 2$. $z \in Y$, z < 1,9, тогда

$$0 < z^2 - 2 < 2 \Rightarrow \frac{z^2 - 2}{4} < 1 \Rightarrow \left(\frac{z^2 - 2}{4}\right)^2 < \frac{z^2 - 2}{4}$$

$$\bullet \ z - \frac{z^2 - 2}{4} < z \Rightarrow z + \frac{z^2 - 2}{4} \notin Y$$

$$\bullet \ \left(z - \frac{z^2 - 2}{4}\right)^2 = z^2 - z \cdot \frac{z^2 - 2}{2} + \left(\frac{2 - z^2}{4}\right)^2 > z^2 - (z^2 - 2) = 2 \Rightarrow z - \frac{z^2 - 2}{4} \in Y$$

Противоречие, значит, $z^2 \le 2$.

T. o.,
$$z^2 \leqslant 2$$
, $z^2 \geqslant 2 \Leftrightarrow z^2 = 2 \Rightarrow \exists z \in \mathbb{R} \colon z^2 = 2 \Rightarrow z \notin \mathbb{Q}$.

1.1.3 Геометрическое представление вещественных чисел

Самой распространённой интерпретацией множества $\mathbb R$ является бесконечная прямая.

$$-3-2-1 \ 0 \ 1 \ 2 \ 3$$

Рис. 1.1: Множество $\mathbb R$ в виде прямой

Множество \mathbb{R} также можно представить в виде окружности, одна точка которой соответствует нулю, а другая — бесконечности.

Рис. 1.2: Множество \mathbb{R} в виде окружности

Покажем, что эти интерпретации взаимозаменяемы. Изобразим их так, чтобы точка, соответствующая нулю на прямой a, совпадала с точкой, соответствующей нулю на окружности. Теперь из точки, соответствующей бесконечности на окружности, проведём все возможные прямые. Каждая из них пересекает одну точку на

прямой a и одну точку на окружности и таким образом устанавливает взаимно однозначное соответствие, при этом $-\infty$ и $+\infty$ означают движение к одной и той же точке на окружности, соответствующей бесконечности.

Комбинаторика

2.1 Элементы комбинаторики

Пусть элемент A можно выбрать m способами, а элемент B-n способами. Существуют основные правила комбинаторики:

- 1. **Правило суммы:** выбор либо A, либо B можно сделать m+n способами.
- 2. **Правило произведения:** выбор A и B можно сделать $m \cdot n$ способами.

Факториалом числа $n \in \mathbb{N}$ называется произведение $1 \cdot 2 \cdot \ldots \cdot n$ и обозначается n!. Также принято считать, что 0! = 1.

Двойным факториалом числа $n \in \mathbb{N}$ называется произведение всех натуральных чисел той же чётности, что и n, и обозначается n!!. Т.о., $(2k)!! = 2 \cdot 4 \cdot \ldots \cdot (2k)$, $(2k+1)!! = 1 \cdot 3 \cdot \ldots \cdot (2k+1)$, где $k \in \mathbb{N}$. Также принято считать, что 0!! = 1.

Перестановкой n-элементного **множества** A называется биекция $f \colon \{1,2,\ldots,n\} \to A$ и записывается в виде упорядоченного набора (a_1, a_2, \ldots, a_n) , где $a_i = f(i), i = 1, 2, \ldots, n$.

k-элементным размещением n-элементного множества A (размещением из n элементов **по** k) называется инъекция $f: \{1, 2, \dots, n\} \to A$. Количество k-элементных размещений n-элементного множества обозначается A_n^k .

Утверждение 2.1.1.
$$A_n^k = \frac{n!}{(n-k)!}$$

Доказательство методом математической индукции.

- База индукции. При k = 1 $A_n^1 = n = \frac{n!}{(n-1)!}$.
- Шаг индукции. Пусть теорема верна при k-1. Докажем её для k. Разобьём все k-элементные размещения п-элементного множества на группы так, чтобы во всех размещениях одной группы на первом месте стоял один и тот же элемент. Получим n групп. В каждом размещении на оставшихся k-1 местах могут стоять остальные n-1 элементов. Т. о., по предположению индукции в каждой группе A_{n-1}^{k-1} размещений. Тогда всего размещений $n \cdot A_{n-1}^{k-1} = \frac{n!}{(n-k)!} = A_n^k$.

Следствие 2.1.1. Количество перестановок n-элементного множества равно n!.

Доказательство. Заметим, что искомое количество равно $A_n^n = \frac{n!}{0!} = n!$. \blacksquare k-элементным сочетанием n-элементного множества A (сочетанием из n элементов по k) называется $X\subseteq A\colon |X|=k$. Количество k-элементных сочетаний n-элементного множества обозначается C_n^k , или $\binom{n}{k}$.

Утверждение 2.1.2.
$$C_n^k = \frac{n!}{k!(n-k)!}$$

Доказательство. Разобьём множество всех перестановок *п*-элементного множества на группы так, чтобы во всех перестановках одной группы на первых k местах находились одни и те же элементы (в том или ином порядке), тогда и на последних n-k местах будут находиться одни и те же элементы.

Получим C_n^k групп. В перестановках одной группы первые k элементов могут находиться в произвольном порядке, т. е. они могут быть расположены k! способами. Аналогично последние n-k элементов могут быть расположены (n-k)! способами. Тогда, учитывая правило произведения, получим $n! = C_n^k k! (n-k)! \Leftrightarrow C_n^k = \frac{n!}{k! (n-k)!}$.

Инверсией в перестановке π называется пара индексов $i, j : i < j, \ \pi(i) > \pi(j)$. Чётность перестановки определяется чётностью числа инверсией в ней.

Утверждение 2.1.3. Если в перестановке (a_1, a_2, \ldots, a_n) поменять местами два элемента, то её чётность изменится.

Доказательство.

- 1. Пусть переставлены соседние элементы. Если они образовывали инверсию, то после обмена местами не образуют, и наоборот. При этом наличие инверсий с остальными элементами остаётся неизменным. Значит, количество инверсий в перестановке изменилось на 1, т. е. чётность числа инверсий изменилась, тогда изменилась и чётность перестановки.
- 2. Поменяем местами элементы a_i и a_{i+d} , где d>0. Для этого последовательно поменяем местами элементы, имеющие индексы i+d и i+d-1, i+d-1 и i+d-2, ..., i+2 и i+1, i+1 и i, i+1 и i+2, i+2 и i+3, ..., i+d-2 и i+d-1, i+d-1 и i+d. Всего совершили 2d-1 обменов соседних элементов местами, тогда перестановка изменила чётность, т. к. 2d-1/2.

Математический анализ

3.1 Функции

Пусть A и B — множества. Функцией f называется правило, ставящее в соответствие каждому элементу $a \in A$ единственный элемент $f(a) \in B$. A называется областью определения функции f и обозначается D(f), B — областью значений функции f и обозначается E(f). a называется прообразом f(a), f(a) — образом a.

Последовательностью называется функция, заданная на множестве $X \subseteq \mathbb{N}$, и обозначается (x_n) . Подпоследовательностью последовательности (x_n) называется последовательность (x_{n_k}) , если $\forall k \in \mathbb{N} \ n_k < n_{k+1}$.

3.1.1 Возрастающие и убывающие функции

Функция f называется возрастающей, или монотонной, на множестве X, если $\forall x_1, x_2 \in X$ $x_1 < < x_2 \Rightarrow f(x_1) < f(x_2)$.

Функция f называется **убывающей**, или **монотонной**, **на множестве** X, если $\forall x_1, x_2 \in X$ $x_1 < < x_2 \Rightarrow f(x_1) > f(x_2)$.

Если функция возрастает (убывает) на всей области определения, то её называют **возрастающей** (убывающей), или монотонной.

Арифметические свойства монотонности функций:

1. Если f(x) и g(x) — возрастающие (убывающие) на множестве X функции, то h(x) = f(x) + g(x) — возрастающая (убывающая) на множестве X функция.

Доказательство. Пусть f(x) и g(x) возрастают на $X, x_1 < x_2 \in X$.

$$h(x_1) - h(x_2) = f(x_1) + g(x_1) - f(x_2) - g(x_2) = (f(x_1) - f(x_2)) + (g(x_1) - g(x_2)) < 0 \Rightarrow h(x_1) < h(x_2) = f(x_1) + g(x_1) - f(x_2) = f(x_1) + g(x_1) - g(x_2) = f(x_1) + g(x_2) + g(x_2) = f(x_2) + g(x_2) + g(x_2) = f(x_2) + g(x_2) + g(x_2) = f(x_2) + g(x_2) + g($$

Значит, h(x) возрастает на X.

Доказательство для случая убывания аналогично. ■

- 2. Если f(x) возрастающая (убывающая) на множестве X функция, то:
 - $\bullet\,$ при $C<0\ h(x)=Cf(x)$ убывающая (возрастающая) на множестве X функция;
 - \bullet при C>0 h(x)=Cf(x) возрастающая (убывающая) на множестве X функция.

Доказательство. Пусть f(x) возрастает на $X, C < 0, x_1 < x_2$.

$$h(x_1) - h(x_2) = C(f(x_1) - f(x_2)) > 0 \Rightarrow h(x_1) > h(x_2)$$

Значит, h(x) убывает на X.

Доказательства для остальных трёх случаев аналогичны.

3. Если f(x) — функция, возрастающая (убывающая) на множестве X и сохраняющая на нём знак, то $h(x) = \frac{1}{f(x)}$ — убывающая (возрастающая) на множестве X функция.

Доказательство. Пусть f(x) возрастает на $X, x_1 < x_2$.

$$h(x_1) - h(x_2) = \frac{1}{f(x_1)} - \frac{1}{f(x_2)} = \frac{f(x_2) - f(x_1)}{f(x_1)f(x_2)} > 0 \Rightarrow h(x_1) > h(x_2)$$

Значит, h(x) убывает на X.

Доказательство для случая убывания аналогично. ■

4. Если f(x) и g(x) — возрастающие (убывающие) на множестве X функции, то h(x) = g(f(x)) — возрастающая на множестве X функция.

Доказательство. Пусть f(x) и g(x) возрастают на $X, x_1 < x_2 \in X$.

$$h(x_1) - h(x_2) = g(f(x_1)) - g(f(x_2)) < 0 \Rightarrow h(x_1) < h(x_2)$$

Значит, h(x) возрастает на X.

Доказательство для случая убывания аналогично.

3.1.2 Линейная функция

Линейной называется функция вида y = kx + b, где $k \neq 0$.

Очевидно, что $D(y) = E(y) = \mathbb{R}$.

Докажем монотонность линейной функции.

1. Пусть $k < 0, x_1 < x_2$, тогда

$$f(x_1) - f(x_2) = kx_1 + b - kx_2 - b = k(x_1 - x_2) > 0 \Rightarrow f(x_1) > f(x_2)$$

Значит, функция убывает.

2. Аналогичным образом легко доказать, что при k>0 функция возрастает.

Теория множеств

Множество — аксиоматическое понятие, не имеющее определения. Его можно описать как совокупность различных элементов, рассматриваемую как единое целое.

4.1 Отношения между множествами

Пусть A, B — множества. Между ними определены следующие отношения:

• A включено в B (является **подмножеством** B):

$$A\subseteq B \Leftrightarrow \forall a\in A\ a\in B$$

Нередко вместо знака \subseteq пишется знак \subset .

• A равно B:

$$A = B \Leftrightarrow \forall a \ a \in A \Leftrightarrow a \in B$$

 \bullet *A* строго включено в *B*:

$$A \subset B \Leftrightarrow A \subseteq B, \ A = B$$

4.2 Операции над множествами

Пусть A, B — множества. Над ними определены следующие операции:

• Объединение:

$$A \cup B = \{x \mid x \in A$$
 или $x \in B\}$

• Пересечение:

$$A \cap B = \{x \mid x \in A, \ x \in B\}$$

• Разность:

$$A \setminus B = \{x \mid x \in A, \ x \notin B\}$$

• Симметрическая разность:

$$A \triangle B = \{x \mid x \in A, \ x \notin B \text{ или } x \notin A, \ x \in B\}$$

• Дополнение до U, где $A \subseteq U$:

$$\overline{A} = \{x \in U \mid x \notin A\}$$

• Декартово произведение:

$$A \times B = \{(x, y) \mid x \in A, \ y \in B\}$$

• Декартова степень:

$$A^n = \underbrace{A \times A \times \ldots \times A}_{n}$$

4.3 Подмножества множества \mathbb{R}

Промежутком называется множество вещественных чисел, которое вместе с любыми двумя числами содержит любое число между ними. Типы промежутков:

- $[a;b]=\{x\in\mathbb{R}\mid a\leqslant x\leqslant b\}$ отрезок
- $(a;b) = \{x \in \mathbb{R} \mid a < x < b\}$ интервал
- $[a;b) = \{x \in \mathbb{R} \mid a \leqslant x < b\}$ полуинтервал
- $(a;b] = \{x \in \mathbb{R} \mid a < x \leqslant b\}$ полуинтервал

Полагая $a=\pm\infty$ или $b=\pm\infty$, можно определить бесконечные промежутки. Например:

- $(-\infty; +\infty) = \mathbb{R}$
- $(0; +\infty) = \mathbb{R}^+$

Окрестностью точки $x \in \mathbb{R}$ называется интервал (a;b): $x \in (a;b)$. ε -окрестностью $U_{\varepsilon}(x)$ точки $x \in \mathbb{R}$ называется интервал $(x - \varepsilon; x + \varepsilon)$. Проколотой ε -окрестностью $\check{U}_{\varepsilon}(x)$ точки $x \in \mathbb{R}$ называется $U_{\varepsilon}(x) \setminus \{x\}$.

Элементарная алгебра

5.1 Алгебраические преобразования

Формулы сокращённого умножения:

1. Квадрат суммы:

$$(a \pm b)^2 = (a \pm b)(a \pm b) = a^2 \pm 2ab + b^2$$

2. Разность квадратов:

$$a^{2} - b^{2} = a^{2} - ab + (ab - b^{2}) = (a + b)(a - b)$$

3. Куб суммы:

$$(a \pm b)^3 = (a^2 \pm 2ab + b^2)(a \pm b) = a^3 \pm 3a^2b + 3ab^2 \pm b^3$$

4. Сумма кубов:

$$a^3 \pm b^3 = a^3 \mp a^2b + ab^2 \pm a^2b - ab^2 \pm b^3 = a(a^2 \mp ab + b^2) \pm b(a^2 \mp ab + b^2) = (a \pm b)(a^2 \mp ab + b^2)$$

Теорема 5.1.1 (формула бинома Ньютона).

$$\forall n \in \mathbb{N} \ (a+b)^n = \sum_{m=0}^n C_n^m a^{n-m} b^m$$

Доказательство методом математической индукции.

- База индукции. n = 1: $(a + b)^1 = a + b = C_1^0 a + C_1^1 b$
- *Шаг индукции*. Пусть формула верна для n. Докажем истинность для n+1.

$$(a+b)^{n+1} = (a+b) \sum_{m=0}^{n} C_n^m a^{n-m} b^m = \sum_{m=0}^{n} C_n^m a^{n-m+1} b^m + \sum_{m=0}^{n} C_n^m a^{n-m} b^{m+1} =$$

$$= a^{n+1} + \sum_{m=0}^{n-1} C_n^{m+1} a^{n-m} b^{m+1} + \sum_{m=0}^{n-1} C_n^m a^{n-m} b^{m+1} = a^{n+1} + \sum_{m=0}^{n-1} C_{n+1}^{m+1} a^{n-m} b^{m+1} + b^{n+1} =$$

$$= a^{n+1} + \sum_{m=1}^{n} C_{n+1}^m a^{n+1-m} b^m + b^{n+1} = \sum_{m=0}^{n+1} C_{n+1}^m a^{n+1-m} b^m$$

Часть II Университетский курс

Арифметика

6.1 Комплексные числа

Мнимой единицей называется число, квадрат которого равен -1, и обозначается i.

Комплексным называется число вида $a+bi, a,b \in \mathbb{R}$. Если a=0, то такое число называется мнимым, или чисто мнимым. Множество комплексных чисел обозначается \mathbb{C} .

Если z = a + bi, то $\overline{z} = a - bi$ называется сопряжённым к z.

Следующие операции над комплексными числами $z_1 = a_1 + b_1 i, z_2 = a_2 + b_2 i, a_1, b_1, a_2, b_2 \in \mathbb{R}$ осуществляются так же, как над вещественными, и обладают теми же свойствами:

• Сложение

$$z_1 + z_2 = (a_1 + b_1 i) + (a_2 + b_2 i) = (a_1 + a_2) + (b_1 + b_2)i$$

• Умножение

$$z_1 \cdot z_2 = (a_1 + b_1 i)(a_2 + b_2 i) = (a_1 a_2 - b_1 b_2) + (a_1 b_2 + a_2 b_1)i$$

• Деление

$$\frac{z_1}{z_2} = \frac{a_1 + b_1 i}{a_2 + b_2 i} = \frac{(a_1 + b_1 i)(a_2 - b_2 i)}{a_2^2 + b_2^2} = \frac{a_1 a_2 + b_1 b_2}{a_2^2 + b_2^2} + \frac{a_2 b_1 - a_1 b_2}{a_2^2 + b_2^2} i$$

6.1.1 Геометрическое представление комплексного числа

Комплексное число a+bi принято изображать на координатной плоскости точкой (a,b), а также радиус-вектором, соединяющим начало координат с этой точкой. Такая плоскость называется комплексной.

Модулем комплексного числа z=a+bi, или его **абсолютной величиной**, называется длина соответствующего радиус-вектора комплексной плоскости, равная

$$|z| = \sqrt{a^2 + b^2}$$

Аргументом комплексного числа z=a+bi называется угол соответствующего радиус-вектора на комплексной плоскости (с точностью до $2\pi k, k \in \mathbb{Z}$):

$$a = |z| \cos \operatorname{Arg} z, \ b = |z| \sin \operatorname{Arg} z$$

Главным аргументом называется значение $\operatorname{Arg} z \in (-\pi; \pi]$ и обозначается $\operatorname{arg} z$.

6.1.2 Тригонометрическая форма комплексного числа

Тригонометрической формой комплексного числа z называется его представление в виде

$$z = |z|(\cos \varphi + i \sin \varphi), \ \varphi = \operatorname{Arg} z$$

При использовании тригонометрических форм операции умножения и деления комплексных чисел $z_1 = |z_1|(\cos \alpha + i \sin \alpha), z_2 = |z_2|(\cos \beta + i \sin \beta)$ упрощаются:

$$z_1 z_2 = |z_1||z_2|(\cos\alpha\cos\beta - \sin\alpha\sin\beta + i(\sin\alpha\cos\beta + \cos\alpha\sin\beta)) = |z_1||z_2|(\cos(\alpha + \beta) + i\sin(\alpha + \beta))$$

$$\frac{z_1}{z_2} = \frac{|z_1|}{|z_2|} \cdot \frac{(\cos\alpha\cos\beta + \sin\alpha\sin\beta + i(\sin\alpha\cos\beta - \cos\alpha\sin\beta))}{\cos^2\beta + \sin^2\beta} = \frac{|z_1|}{|z_2|}(\cos(\alpha - \beta) + i\sin(\alpha - \beta))$$

Теорема 6.1.1 (формула Эйлера).

$$\cos x + i\sin x = e^{ix}$$

Доказательство. Воспользуемся разложением $\cos x$, $\sin x$ и e^{ix} в ряд Маклорена:

$$\cos x + i \sin x = 1 + \frac{ix}{1!} - \frac{x^2}{2!} - \frac{ix^3}{3!} + \frac{x^4}{4!} + \frac{ix^5}{5!} + \ldots = 1 + \frac{ix}{1!} + \frac{i^2x^2}{2!} + \frac{i^3x^3}{3!} + \frac{i^4x^4}{4!} + \frac{i^5x^5}{5!} + \ldots = e^{ix}$$

При подстановке $x=\pi$ в формулу Эйлера получим замечательное **тождество Эйлера**, связывающее пять фундаментальных математических констант:

$$e^{i\pi} + 1 = 0$$

Теорема 6.1.2 (формула Муавра). Если $z = |z|(\cos \varphi + i \sin \varphi), n \in \mathbb{R}$, то

$$z^n = |z|^n (\cos n\varphi + i\sin n\varphi)$$

Доказательство. Для $n \in \mathbb{N}$ формулу можно доказать методом математической индукции, тогда показать истинность формулы для $n \in \mathbb{Z}$ несложно. Мы же докажем формулу сразу для $n \in \mathbb{R}$, пользуясь формулой Эйлера:

$$z^{n} = |z|^{n} (\cos \varphi + i \sin \varphi)^{n} = |z|^{n} e^{i\varphi n} = |z|^{n} (\cos n\varphi + i \sin n\varphi)$$

Пользуясь формулой Муавра, можно извлекать корни из комплексного числа $z=|z|(\cos\varphi+i\sin\varphi)$:

$$\sqrt[n]{z} = \sqrt[n]{|z|} \left(\cos\frac{\varphi}{n} + i\sin\frac{\varphi}{n}\right)$$

Следует не забывать, что φ определено с точностью до $2\pi k, k \in \mathbb{Z}$, поэтому комплексный корень имеет не одно, а n значений (что можно показать, пользуясь следствием 12.1.2).

Линейная алгебра

7.1 Линейные комбинации

Выражение, построенное на множестве элементов путём сложения этих элементов, умноженных на некоторые коэффициенты, называется **линейной комбинацией**. Если все коэффициенты линейной комбинации равны нулю, то она называется **тривиальной**, иначе — **нетривиальной**.

7.2 Векторные пространства

n-мерным векторным пространством над полем вещественных чисел называется множество

$$V_n = \mathbb{R}^n = \{(x_1, \dots, x_n) \mid x_1, \dots, x_n \in \mathbb{R}\}\$$

элементы которого называются **векторами**. Над ними определены операции сложения и умножения на число, удовлетворяющие аксиомам:

1. Коммутативность сложения:

$$\forall \overline{a}, \overline{b} \in V_n \ \overline{a} + \overline{b} = \overline{b} + \overline{a}$$

2. Ассоциативность сложения:

$$\forall \overline{a}, \overline{b}, \overline{c} \in V_n \ \overline{a} + (\overline{b} + \overline{c}) = (\overline{a} + \overline{b}) + \overline{c}$$

3. Существование **нулевого** вектора, или **нуля**, обозначаемого $\overline{0}$:

$$\exists \overline{0} \in V_n : \forall \overline{a} \in V \ \overline{a} + \overline{0} = \overline{0} + \overline{a} = \overline{a}$$

4. Существование противоположного вектора:

$$\forall \overline{a} \in V_n \ \exists (-\overline{a}) \in V_n : \overline{a} + (-\overline{a}) = \overline{0}$$

5. Ассоциативность умножения на число:

$$\forall \alpha, \beta \in \mathbb{R}, \ \forall \overline{a} \in V_n \ \alpha(\beta \overline{a}) = (\alpha \beta) \overline{a}$$

6. Дистрибутивность умножения на число относительно сложения векторов:

$$\forall \alpha \in \mathbb{R}, \ \forall \overline{a}, \overline{b} \in V_n \ \alpha(\overline{a} + \overline{b}) = \alpha \overline{a} + \alpha \overline{b}$$

7. Дистрибутивность умножения на число относительно сложения чисел:

$$\forall \alpha, \beta \in \mathbb{R}, \ \forall \overline{a} \in V_n \ (\alpha + \beta)\overline{a} = \alpha \overline{a} + \beta \overline{a}$$

8. Существование единицы:

$$\forall \overline{a} \in V_n \ 1 \cdot \overline{a} = \overline{a}$$

7.2.1 Базис и размерность векторного пространства

Множество векторов $\overline{a}_1, \dots, \overline{a}_n$ называется **линейно зависимым**, если

$$\exists \alpha_1, \dots, \alpha_n \colon \sum_{i=1}^n \alpha_i \overline{a}_i = \overline{0}, \ \sum_{i=1}^n \alpha_i^2 \neq 0$$

иначе — линейно независимым.

Множество линейно независимых векторов $\overline{e}_1, \dots, \overline{e}_n$ векторного пространства V называется базисом этого пространства, если

$$\forall \overline{x} \in V \ \exists \alpha_1, \dots, \alpha_n \colon \overline{x} = \sum_{i=1}^n \alpha_i \overline{e}_i$$

Приведённое равенство называется разложением вектора \overline{x} по базису $\overline{e}_1,\ldots,\overline{e}_n$.

Теорема 7.2.1 (о базисе). Любой вектор \overline{x} может быть разложен по базису $\overline{e}_1, \dots, \overline{e}_n$ единственным образом.

Доказательство. Пусть

$$\overline{x} = a_1 \overline{e}_1 + \ldots + a_n \overline{e}_n$$

 $\overline{x} = b_1 \overline{e}_1 + \ldots + b_n \overline{e}_n$

Вычитанием одного равенства из другого получим:

$$(a_1 - b_1)\overline{e}_1 + \ldots + (a_n - b_n)\overline{e}_n = \overline{0}$$

В силу линейной независимости векторов $\overline{e}_1,\dots,\overline{e}_n$

$$\begin{cases} a_1 - b_1 = 0 \\ \dots \\ a_n - b_n = 0 \end{cases} \Leftrightarrow \begin{cases} a_1 = b_1 \\ \dots \\ a_n = b_n \end{cases}$$

Размерностью векторного пространства называется максимальное количество линейно независимых векторов.

Теорема 7.2.2. В векторном пространстве V размерности n любые n линейно независимых векторов образуют его базис.

Доказательство. Рассмотрим множество линейно независимых векторов $\overline{e}_1, \dots, \overline{e}_n \in V$. Для любого вектора $\overline{x} \in V$ множество векторов $\overline{e}_1, \dots, \overline{e}_n, \overline{x}$ линейно зависимо, т.к. размерность V равна n, тогда

$$\exists \alpha_1, \dots, \alpha_n, \alpha_{n+1} \colon \sum_{i=1}^n \alpha_i \overline{e}_i + \alpha_{n+1} \overline{x} = \overline{0}, \ \alpha_{n+1} \neq 0 \Rightarrow \overline{x} = \sum_{i=1}^n -\frac{\alpha_i}{\alpha_{n+1}} \overline{e}_i$$

Значит, векторы $\overline{e}_1,\dots,\overline{e}_n$ образуют базис пространства V. \blacksquare

Теорема 7.2.3. Если векторное пространство V имеет базис из n векторов, то его размерность равна n.

Доказательство. Рассмотрим базис, состоящий из векторов $\bar{e}_1,\ldots,\bar{e}_n\in V.$

$$\forall \overline{e}_{n+1} \in V \ \exists \alpha_1, \dots, \alpha_n : \overline{e}_{n+1} = \sum_{i=1}^n \alpha_i \overline{e}_i$$

Значит, базис из n+1 векторов не существует, тогда размерность пространства V равна n.

7.3 Системы линейных алгебраических уравнений

Система линейных алгебраических уравнений имеет вид

$$\begin{cases} a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n = b_1 \\ a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n = b_2 \\ \dots \\ a_{m1}x_1 + a_{m2}x_2 + \dots + a_{mn}x_n = b_m \end{cases}$$

где x_1, \ldots, x_n — переменные.

 $a_{11}, a_{12}, \dots, a_{mn}$ называются коэффициентами при переменных, b_1, b_2, \dots, b_m — свободными членами.

Система линейных уравнений называется **однородной**, если все её свободные члены равны 0, иначе — **неоднородной**.

Система линейных уравнений называется **совместной**, если она имеет хотя бы одно решение, иначе — **несовместной**.

Система линейных уравнений называется **определённой**, если она имеет единственное решение. Если система имеет более одного решения, то она называется **неопределённой**.

Две системы линейных уравнений называются **эквивалентными**, если их решения совпадают или обе не имеют решений.

Если применить к системе линейных уравнений одно из следующих преобразований, называемых элементарными, то получим систему, эквивалентную исходной, что элементарно проверяется подстановкой:

- 1. Перестановка двух уравнений.
- 2. Умножение одного из уравнений на ненулевое число.
- 3. Сложение одного уравнения с другим, умноженным на некоторое число.

7.3.1 Матричная форма системы линейных уравнений

Систему линейных уравнений можно представить в матричной форме:

$$\begin{vmatrix} a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n \\ a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n \\ \vdots \\ a_{m1}x_1 + a_{m2}x_2 + \dots + a_{mn}x_n \end{vmatrix} = \begin{vmatrix} b_1 \\ b_2 \\ \vdots \\ b_m \end{vmatrix} \Leftrightarrow$$

$$\Leftrightarrow \begin{vmatrix} \begin{vmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{vmatrix} \cdot \begin{vmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{vmatrix} = \begin{vmatrix} b_1 \\ b_2 \\ \vdots \\ b_m \end{vmatrix} \Leftrightarrow A \cdot X = B$$

A называется основной матрицей системы, X — столбцом переменных, B — столбцом свободных членов. Если к основной матрице справа приписать столбец свободных членов, то получится расширенная матрица системы:

$$\begin{vmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{vmatrix} \begin{vmatrix} b_1 \\ b_2 \\ \vdots \\ b_m \end{vmatrix}$$

7.3.2 Линейная независимость

Уравнение системы линейных уравнений называется **линейно зависимым**, если соответствующая ему строка расширенной матрицы является нетривиальной линейной комбинацией других строк, иначе — **линейно независимым**.

Система линейных уравнений называется **линейно зависимой**, если существует нетривиальная линейная комбинация строк расширенной матрицы, в результате которой получается нулевая строка, иначе — **линейно независимой**.

Утверждение 7.3.1. Система линейных уравнений линейно зависима ⇔ одно из её уравнений линейно зависимо.

Доказательство.

1. \Rightarrow . Пусть система строк A_1, \dots, A_n линейно зависима:

$$\sum_{i=1}^{n} \alpha_{i} A_{i} = O, \ \sum_{i=1}^{n} \alpha_{i}^{2} \neq 0$$

где O — нулевая строка. Без ограничения общности можно считать, что $\alpha_1 \neq 0$, тогда

$$A_1 = -\sum_{i=2}^n \frac{\alpha_i}{\alpha_1} A_i$$

Значит, A_1 — линейно зависимая строка.

2.

— Пусть одна из строк линейно зависима:

$$A_1 = \sum_{i=2}^{n} \alpha_i A_i \Leftrightarrow 1 \cdot A_1 - \alpha_2 A_2 - \dots - \alpha_n A_n = O$$

Значит, система линейно зависима.

7.3.3 Решение систем линейных уравнений

Лемма 7.3.1. Пусть система строк A_1, \ldots, A_n линейно независима и A_{n+1} не является линейной комбинацией A_1, \ldots, A_n . Тогда система строк $A_1, \ldots, A_n, A_{n+1}$ линейно независима.

Доказательство методом от противного. Пусть система строк $A_1, \ldots, A_n, A_{n+1}$ линейно зависима:

$$\sum_{i=1}^{n+1} \alpha_i A_i = O, \ \sum_{i=1}^{n+1} \alpha_i^2 \neq 0$$

где O — нулевая строка. Система строк A_1, \ldots, A_n линейно независима по условию, тогда

$$\alpha_{n+1} \neq 0 \Rightarrow A_{n+1} = -\sum_{i=1}^{n} \frac{\alpha_i}{\alpha_{n+1}} A_i$$

Значит, A_{n+1} — линейная комбинация A_1, \ldots, A_n . Противоречие с условием.

Теорема 7.3.1 (Кронекера — **Капелли).** Система линейных уравнений совместна \Leftrightarrow ранг основной матрицы A совпадает c рангом расширенной матрицы.

Доказательство.

- $1. \Rightarrow .$ Пусть (a_1, \ldots, a_n) решение системы, B столбец свободных членов системы. Тогда $\sum_{i=1}^n a_i A^i = B$, значит, B линейная комбинация столбцов A^1, \ldots, A^n , поэтому ранг расширенной матрицы совпадает с рангом основной.
- 2. \Leftarrow . Пусть ранг основной матрицы равен рангу расширенной. Предположим, что система несовместна, тогда B не является линейной комбинацией столбцов A^1, \ldots, A^n , значит, по лемме 7.3.1 система строк A^1, \ldots, A^n, B линейно независима. Получили, что ранг расширенной матрицы больше ранга основной. Противоречие.

Метод Гаусса

Пусть дана система линейных уравнений

$$\begin{cases}
a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n = b_1 \\
a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n = b_2 \\
\dots \\
a_{m1}x_1 + a_{m2}x_2 + \dots + a_{mn}x_n = b_m
\end{cases}$$
(7.1)

Её расширенную матрицу можно привести к ступенчатому виду, т.е. (7.1) эквивалентна

$$\begin{cases}
a_{1 j_1} x_{j_1} + \dots + a_{1 j_n} x_{j_n} = b_1 \\
a_{2 j_2} x_{j_2} + \dots + a_{2 j_n} x_{j_n} = b_2 \\
\dots \\
a_{r j_r} x_{j_r} + \dots + a_{r j_n} x_{j_n} = b_r \\
0 = b_{r+1} \\
\dots \\
0 = b_m
\end{cases}$$
(7.2)

где $a_{1\,j_1},\ldots,a_{r\,j_r}\neq 0$. Без ограничения общности можно считать, что в базисный минор основной матрицы системы (7.2) входят только коэффициенты при переменных x_{j_1},\ldots,x_{j_r} , называемых **главными** (зависимыми). Остальные переменные называются свободными (независимыми).

Если $\exists i>r\colon b_i\neq 0$, то система несовместна. Пусть $\forall i>r\ b_i=0$. Тогда получим систему

$$\begin{cases} x_{j_1} = \frac{b_1}{a_1 j_1} - \frac{a_1 j_2}{a_1 j_1} x_{j_2} - \dots - \frac{a_1 j_n}{a_1 j_1} x_{j_n} \\ x_{j_2} = \frac{b_2}{a_2 j_2} - \frac{a_2 j_3}{a_2 j_2} x_{j_3} - \dots - \frac{a_2 j_n}{a_2 j_2} x_{j_n} \\ \dots \\ x_{j_r} = \frac{b_r}{a_r j_r} - \frac{a_r j_{r+1}}{a_r j_r} x_{j_{r+1}} - \dots - \frac{a_r j_n}{a_r j_r} x_{j_n} \end{cases}$$

Если свободным переменным полученной системы придавать все возможные значения и решать новую систему относительно главных неизвестных от нижнего уравнения к верхнему, то получим все решения данной системы.

Метод Крамера

Теорема 7.3.2 (Крамера). Пусть дана система линейно независимых уравнений

$$\begin{cases} a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n = b_1 \\ a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n = b_2 \\ \dots \\ a_{n1}x_1 + a_{n2}x_2 + \dots + a_{nn}x_n = b_n \end{cases}$$

Если определитель её основной матрицы не равен 0, то система имеет единственное решение. Доказательство. Запишем систему в матричной форме:

$$AX = B \Leftrightarrow A^{-1}AX = A^{-1}B \Leftrightarrow X = A^{-1}B \Leftrightarrow$$

$$\begin{vmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{vmatrix} = \begin{vmatrix} \frac{A_{11}}{|A|} & \frac{A_{21}}{|A|} & \cdots & \frac{A_{n1}}{|A|} \\ \frac{A_{12}}{|A|} & \frac{A_{22}}{|A|} & \cdots & \frac{A_{n2}}{|A|} \\ \vdots & \vdots & \ddots & \vdots \\ \frac{A_{1n}}{|A|} & \frac{A_{2n}}{|A|} & \cdots & \frac{A_{nn}}{|A|} \end{vmatrix} \cdot \begin{vmatrix} b_1 \\ b_2 \\ \vdots \\ b_n \end{vmatrix}$$

где A_{ij} — алгебраическое дополнение a_{ij} .

Т. о., получим решение системы:

$$x_{i} = \frac{\sum_{j=1}^{n} A_{ji} b_{j}}{|A|} = \frac{1}{|A|} \cdot \begin{vmatrix} a_{11} & \cdots & a_{1\,i-1} & b_{1} & a_{1\,i+1} & \cdots & a_{1\,n} \\ a_{21} & \cdots & a_{2\,i-1} & b_{2} & a_{2\,i+1} & \cdots & a_{2\,n} \\ \vdots & \ddots & \vdots & \vdots & \vdots & \ddots & \vdots \\ a_{n1} & \cdots & a_{n\,i-1} & b_{n} & a_{n\,i+1} & \cdots & a_{nn} \end{vmatrix}, \ i = 1, 2, \dots, n$$
 (7.3)

Полученные формулы (7.3) называется формулами Крамера.

7.3.4Фундаментальная система решений

Утверждение 7.3.2. Однородная линейно независимая система уравнений

$$\begin{cases} \sum_{i=1}^{n} a_{1i}x_{i} = 0\\ \sum_{i=1}^{n} a_{2i}x_{i} = 0\\ \dots\\ \sum_{i=1}^{n} a_{mi}x_{i} = 0 \end{cases}$$

задаёт векторное пространство.

Доказательство. Пусть $(\alpha_1, \ldots, \alpha_n), (\beta_1, \ldots, \beta_n)$ — решения данной системы, $\lambda \neq 0$.

 $\begin{cases} \sum_{i=1}^{n} a_{1i}(\alpha_{i} + \beta_{i}) = 0 \\ \sum_{i=1}^{n} a_{2i}(\alpha_{i} + \beta_{i}) = 0 \\ \dots \\ \sum_{i=1}^{n} a_{mi}(\alpha_{i} + \beta_{i}) = 0 \end{cases} \Leftrightarrow \begin{cases} \sum_{i=1}^{n} a_{1i}\alpha_{i} + \sum_{i=1}^{n} a_{1i}\beta_{i} = 0 \\ \sum_{i=1}^{n} a_{2i}\alpha_{i} + \sum_{i=1}^{n} a_{2i}\beta_{i} = 0 \\ \dots \\ \sum_{i=1}^{n} a_{mi}\alpha_{i} + \sum_{i=1}^{n} a_{mi}\beta_{i} = 0 \end{cases} \Leftrightarrow \begin{cases} 0 = 0 \\ 0 = 0 \\ \dots \\ 0 = 0 \end{cases}$

Значит, $(\alpha_1 + \beta_1, \dots, \alpha_n + \beta_n)$ тоже является решением системы.

 $\begin{cases} \sum_{i=1}^{n} a_{1i} \lambda \alpha_{i} = 0 \\ \sum_{i=1}^{n} a_{2i} \lambda \alpha_{i} = 0 \\ \dots \\ \sum_{i=1}^{n} a_{mi} \lambda \alpha_{i} = 0 \end{cases} \Leftrightarrow \begin{cases} \lambda \sum_{i=1}^{n} a_{1i} \alpha_{i} = 0 \\ \lambda \sum_{i=1}^{n} a_{2i} \alpha_{i} = 0 \\ \dots \\ \lambda \sum_{i=1}^{n} a_{mi} \alpha_{i} = 0 \end{cases} \Leftrightarrow \begin{cases} 0 = 0 \\ 0 = 0 \\ \dots \\ 0 = 0 \end{cases}$

Значит, $(\lambda \alpha_1, \dots, \lambda \alpha_n)$ тоже является решением системы.

Тогда множество решений данной системы — векторное пространство. ■

Фундаментальной системой решений однородной системы линейных уравнений называется базис множества всех её решений.

Пусть дана однородная линейно независимая система уравнений:

$$\begin{cases}
\sum_{i=1}^{n} a_{1i}x_{i} = 0 \\
\sum_{i=1}^{n} a_{2i}x_{i} = 0 \\
\vdots \\
\sum_{i=1}^{m} a_{2i}x_{i} = 0
\end{cases}
\Leftrightarrow
\begin{cases}
\sum_{i=1}^{m} a_{1i}x_{i} = -\sum_{i=m+1}^{n} a_{1i}x_{i} \\
\sum_{i=1}^{m} a_{2i}x_{i} = -\sum_{i=m+1}^{n} a_{2i}x_{i} \\
\vdots \\
\sum_{i=1}^{m} a_{mi}x_{i} = -\sum_{i=m+1}^{n} a_{mi}x_{i}
\end{cases}$$
(7.4)

Присваивая переменным x_{m+1}, \ldots, x_n произвольные значения, получаем систему уравнений, которая по теореме Крамера имеет единственное решение. Тогда решения системы (7.4)

$$\overline{e}_1 = (x_{11}, x_{21}, \dots, x_{m1}, 1, 0, \dots, 0), \ \overline{e}_2 = (x_{12}, x_{22}, \dots, x_{m2}, 0, 1, \dots, 0), \ \dots$$

$$\overline{e}_{n-m} = (x_{1\,n-m}, x_{2\,n-m}, \dots, x_{m\,n-m}, 0, 0, \dots, 1)$$

образуют фундаментальную систему решений.

Доказательство. Пусть $\overline{r}=(r_1,\ldots,r_n)$ — решение системы $(7.4),\ \overline{p}=(p_1,\ldots,p_n)=r_{m+1}\overline{e}_1+r_{m+2}\overline{e}_2+\ldots+r_n\overline{e}_{n-m}-\overline{r}$. По утверждению $7.3.2\ \overline{p}$ — решение системы (7.4). Легко проверить, что $p_{m+1}=\ldots=p_n=0$. Подставим эти значения в систему (7.4), тогда по теореме Крамера она имеет единственное решение — нулевое. Значит, $\overline{r}=r_{m+1}\overline{e}_1+r_{m+2}\overline{e}_2+\ldots+r_n\overline{e}_{n-m}$, т. е. $\overline{e}_1,\ldots,\overline{e}_{n-m}$ — фундаментальная система решений. \blacksquare

Теорема 7.3.3. Пусть дана линейно независимая система уравнений:

$$\begin{cases}
\sum_{i=1}^{n} a_{1i}x_{i} = b_{1} \\
\sum_{i=1}^{n} a_{2i}x_{i} = b_{2} \\
\dots \\
\sum_{i=1}^{n} a_{mi}x_{i} = b_{m}
\end{cases}$$
(7.5)

Eсли \overline{e}_0 — её решение, а векторы $\overline{e}_1,\dots,\overline{e}_{n-m}$ — фундаментальная система решений системы уравнений

$$\begin{cases} \sum_{i=1}^{n} a_{1i}x_{i} = 0\\ \sum_{i=1}^{n} a_{2i}x_{i} = 0\\ \dots\\ \sum_{i=1}^{n} a_{mi}x_{i} = 0 \end{cases}$$
(7.6)

то любое решение системы (7.5) можно найти по формуле

$$\lambda_1 \overline{e}_1 + \ldots + \lambda_{n-m} \overline{e}_{n-m} + \overline{e}_0$$

где $\lambda_1,\dots,\lambda_{n-m}$ — произвольные числа.

Доказательство. Пусть \overline{v} — решение системы (7.5). Убедимся подстановкой, что \overline{v} — \overline{u}_0 — решение системы (7.6). Тогда

$$\overline{v} - \overline{u}_0 = \sum_{i=1}^{n-m} \lambda_i \overline{u}_i \Leftrightarrow \overline{v} = \sum_{i=1}^{n-m} \lambda_i \overline{u}_i + \overline{u}_0$$

7.4 Квадратичные формы

Квадратичной формой называется многочлен, все одночлены в котором второй степени:

$$f(x_1, \dots, x_n) = \sum_{i=1}^{n} \sum_{j=1}^{n} a_{ij} x_i x_j$$

Для определённости полагают $a_{ij} = a_{ji}$.

Квадратичной форме можно сопоставить **матрицу квадратичной формы**, составленную из коэффициентов:

$$\begin{vmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{vmatrix} = \begin{vmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{12} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{1n} & a_{2n} & \cdots & a_{nn} \end{vmatrix}$$

Каноническим видом квадратичной формы называется её представление в виде суммы квадратов с некоторыми коэффициентами.

Теорема 7.4.1 (метод Лагранжа). Любая квадратичная форма может быть приведена к каноническому виду.

Доказательство. Пусть дана квадратичная форма $f(x_1, \ldots, x_n) = \sum_{i=1}^n \sum_{j=1}^n a_{ij} x_i x_j$. Возможны два случая:

1. $\exists i : a_{ii} \neq 0$. Без ограничения общности будем считать, что $a_{11} \neq 0$, тогда

$$f(x_1, \dots, x_n) = a_{11} \left(x_1^2 + \frac{2x_1}{a_{11}} \sum_{i=2}^n a_{1i} x_i + \frac{1}{a_{11}^2} \left(\sum_{i=2}^n a_{1i} x_i \right)^2 \right) + \sum_{i=2}^n \sum_{j=2}^n a_{ij} x_i x_j - \frac{1}{a_{11}} \left(\sum_{i=2}^n a_{1i} x_i \right)^2 =$$

$$= a_{11} \left(x_1 + \frac{1}{a_{11}} \sum_{i=2}^n a_{1i} x_i \right)^2 + f_1(x_2, \dots, x_n)$$

2. $\forall i \ a_{ii} = 0$. Тогда $\exists i, j \colon a_{ij} \neq 0$. Без ограничения общности будем считать, что $a_{12} \neq 0$, тогда заменой переменных $x_1 = y_1 + y_2$, $x_2 = y_1 - y_2$, $x_i = y_i$, $i = 3, 4, \ldots, n$ этот случай сводится к первому.

 $f_1(x_2,\ldots,x_n)$ — квадратичная форма от n-1 переменных. Применяя к ней описанные действия, получим квадратичную форму от n-2 переменных. Продолжая таким образом, получим канонический вид $f(x_1,\ldots,x_n)$.

Нормальным видом квадратичной формы называется её канонический вид, коэффициенты в котором равны -1 или 1.

Рангом квадратичной формы называется количество переменных в её каноническом виде. Количество положительных коэффициентов в каноническом виде квадратичной формы называется её положительным индексом, а отрицательных — отрицательным индексом. Сигнатурой квадратичной формы называется модуль разности положительного и отрицательного индексов.

Ранг, положительный и отрицательный индексы и сигнатура одинаковы для всех канонических видов квадратичной формы.

Математический анализ

8.1 Ограниченные подмножества множества \mathbb{R}

Множество $X \subset \mathbb{R}$ называется **ограниченным сверху**, если $\exists a \in \mathbb{R} \colon \forall x \in X \ x \leqslant a$. Число a называется **мажорантой множества** X.

Множество $X \subset \mathbb{R}$ называется **ограниченным снизу**, если $\exists a \in \mathbb{R} \colon \forall x \in X \ a \leqslant x$. Число a называется **минорантой множества** X.

Множество, ограниченное и сверху, и снизу, называется ограниченным.

Мажоранта ограниченного сверху множества A, принадлежащая ему, называется **его максимальным элементом** и обозначается $\max A$. Миноранта ограниченного снизу множества A, принадлежащая ему, называется **его минимальным элементом** и обозначается $\min A$.

Очевидно, что во множестве может быть не более одного минимального элемента и не более одного максимального элемента.

Минимальный элемент множества мажорант ограниченного сверху множества A называется **супремумом** и обозначается $\sup A$.

Утверждение 8.1.1. Если множество A ограничено сверху, то $\exists! \sup A$.

Доказательство. Пусть B — множество всех мажорант множества A, тогда $\forall a \in A, \ b \in B \ a \leqslant b$. По аксиоме непрерывности $\exists c \in \mathbb{R} \colon \forall a \in A, \ b \in B \ a \leqslant c \leqslant b$, тогда c — минимальная мажоранта множества A.

Единственность следует из единственности минимального элемента.

Утверждение 8.1.2. Если $a = \sup A$, то $\forall \varepsilon > 0 \ \exists x \in A \colon a - \varepsilon < x \leqslant a$.

Доказательство методом от противного. Пусть $\exists \varepsilon_0 \colon \forall x \in A \ x \leqslant a - \varepsilon_0$. Тогда $a - \varepsilon_0$ — мажоранта множества A, значит, $a \neq \sup A$. Противоречие.

Максимальный элемент множества минорант ограниченного снизу множества A называется **инфимумом** и обозначается inf A.

Утверждение 8.1.3. *Если множество А ограничено снизу, то* \exists ! inf *A.* Доказательство аналогично доказательству утверждения 8.1.1.

Утверждение 8.1.4. *Если* $a = \inf A$, то $\forall \varepsilon > 0 \ \exists x \in A : a \leqslant x < a + \varepsilon$. Доказательство аналогично доказательству утверждения 8.1.2.

Теорема 8.1.1 (принцип Архимеда). Если h > 0, то $\forall x \in \mathbb{R} \ \exists k \in \mathbb{Z} \colon (k-1)h \leqslant x < kh$.

Доказательство. Рассмотрим множество $A = \left\{z \in \mathbb{Z} \mid z > \frac{x}{h}\right\}$, тогда $\exists a = \inf A$. По утверждению $8.1.4 \ \forall \varepsilon \in (0;1] \ \exists z_0 \colon a \leqslant z_0 < a + \varepsilon$. Т. к. в промежутке [a;a+1) лежит только одно целое число, то $a = z_0$, тогда $a-1 \leqslant \frac{x}{h} < a$. Т. о., a- искомое значение k.

Из принципа Архимеда следует, что не существует бесконечно больших чисел.

Следствие 8.1.1.

$$\forall \varepsilon > 0 \ \exists n \in \mathbb{N} \colon \frac{1}{n} < \varepsilon$$

Доказательство. По принципу Архимеда для $h = \varepsilon$, x = 1 получим:

$$\forall \varepsilon > 0 \ \exists n \in \mathbb{N} \colon (n-1)\varepsilon \leqslant 1 < n\varepsilon \Leftrightarrow (1-\frac{1}{n})\varepsilon \leqslant \frac{1}{n} < \varepsilon \Rightarrow \frac{1}{n} < \varepsilon$$

Отсюда следует, что не существует бесконечно малых чисел.

Следствие 8.1.2.

$$\forall a, b \in \mathbb{R} \ \exists c \in \mathbb{Q} \colon a < c < b$$

Доказательство. Из следствия 8.1.1 для $\varepsilon = b - a$ получим $\exists n \in \mathbb{N} \colon \frac{1}{n} < b - a$. По принципу Архимеда для $h = \frac{1}{n}$, x = a получим:

$$\exists k \in \mathbb{Z} \colon \frac{k-1}{n} \leqslant a < \frac{k}{n} \Rightarrow a < \frac{k}{n} = \frac{k-1}{n} + \frac{1}{n} < a + (b-a) = b$$

T. o., $\frac{k}{n}$ — искомое значение c.

Точка $a \in \mathbb{R}$ называется предельной точкой множества $A \subset \mathbb{R}$, если $\forall \varepsilon > 0 \ \check{U}_{\varepsilon}(a) \cap A \neq \varnothing$.

Точка $a \in A$ называется дискретной точкой множества $A \subset \mathbb{R}$, если $\exists \varepsilon > 0$: $\check{U}_{\varepsilon}(a) \cap A = \varnothing$.

Точка $a \in A$ называется внутренней точкой множества $A \subset \mathbb{R}$, если $\exists \varepsilon > 0 \colon U_{\varepsilon}(a) \subset A$.

Множество называется открытым, если состоит только из внутренних точек.

Множество называется замкнутым, если его дополнение \overline{A} до $\mathbb R$ является открытым.

Утверждение 8.1.5. *Множество А* замкнуто \Leftrightarrow оно содержит все свои предельные точки. Доказательство.

1. ⇒. Докажем методом от противного, что A содержит все свои предельные точки. Пусть $∃a_0 \notin A$ — предельная точка A, тогда

$$a_0 \in \overline{A} \Rightarrow \exists \varepsilon > 0 \colon U_{\varepsilon}(a_0) \subset \overline{A} \Rightarrow U_{\varepsilon}(a_0) \cap A = \emptyset$$

Значит, a_0 не является предельной точкой A. Противоречие.

- 2. \Leftarrow . Докажем методом от противного, что \overline{A} открыто. Пусть $\exists a \in \overline{A} \colon \forall \varepsilon > 0 \ U_{\varepsilon}(a) \cap A \neq \emptyset$, тогда $a \notin A$ предельная точка A. Противоречие.
- **Теорема 8.1.2 (Вейерштрасса).** Если A бесконечное ограниченное множество, то $\exists a \in \mathbb{R}$ предельная точка A.

Доказательство. $A\subseteq [a;b]$, где $a=\inf A,\ b=\sup A$. Пусть a не является предельной точкой A, т. е. $\exists \varepsilon_0>0$: $\check{U}_{\varepsilon_0}(a)\cap A=\varnothing$, тогда $a\in A$, значит, a — дискретная точка A.

Рассмотрим множество B точек y таких, что интервал $(-\infty; y)$ содержит конечное число точек A. Интервал $(-\infty; a + \varepsilon_0)$ содержит только одну точку множества A - a, значит, $\forall k \in (0; 1]$ $a + k\varepsilon_0 \in B$.

 $A \subset (-\infty; b]$, тогда b — мажоранта B, значит, $\exists c = \sup B$.

- 1. $\forall \varepsilon > 0 \ (-\infty; c \varepsilon)$ содержит конечное число точек множества A.
- 2. $\forall \varepsilon > 0 \ (-\infty; c+\varepsilon)$ содержит бесконечное число точек множества A, т. к. $c+\varepsilon \notin B$.

Тогда $\forall \varepsilon > 0 \ \check{U}_{\varepsilon}(c)$ содержит бесконечное число точек множества A, значит, c — предельная точка множества A.

8.2 Предел последовательности

Число a называется **пределом последовательности** (x_n) , если

$$\forall \varepsilon > 0 \ \exists n_0 \in \mathbb{N} \colon \forall n > n_0 \ |x_n - a| < \varepsilon$$

и обозначается $\lim_{n\to\infty} x_n$. Говорят, что последовательность (x_n) **сходится**, если $\exists \lim_{n\to\infty} x_n$, иначе говорят, что (x_n) **расходится**.

Последовательность (x_n) называется **ограниченной**, или **ограниченной величиной**, если $\exists a > 0 \colon \forall n \in \mathbb{N} \ |x_n| < a$.

Бесконечно малой величиной называется последовательность (x_n) , если

$$\forall \varepsilon > 0 \ \exists n_0 \in \mathbb{N} \colon \forall n > n_0 \ |x_n| < \varepsilon$$

Можно определить предел последовательности, используя понятие бесконечно малой величины.

Число a называется **пределом последовательности** (x_n) , если $x_n = a + \alpha_n$, где α_n — бесконечно малая величина.

Докажем эквивалентность этих определений.

Доказательство.

1. Пусть дана последовательность (x_n) такая, что

$$\forall \varepsilon > 0 \ \exists n_0 \in \mathbb{N} \colon \forall n > n_0 \ |x_n - a| < \varepsilon$$

Докажем, что $x_n = a + \alpha_n$. В самом деле, $\alpha_n = x_n - a$ — бесконечно малая величина. Т. о., $x_n = a + \alpha_n$.

2. Проведя те же самые рассуждения в обратную сторону, докажем обратное утверждение.

Также определяется бесконечный предел:

- $\lim_{n \to \infty} x_n = \infty \Leftrightarrow \forall M > 0 \; \exists n_0 \in \mathbb{N} \colon \forall n > n_0 \; |x_n| > M$
- $\lim_{n \to \infty} x_n = +\infty \Leftrightarrow \forall M > 0 \; \exists n_0 \in \mathbb{N} \colon \forall n > n_0 \; x_n > M$
- $\lim_{n \to \infty} x_n = -\infty \Leftrightarrow \forall M > 0 \ \exists n_0 \in \mathbb{N} \colon \forall n > n_0 \ x_n < -M$

8.2.1 Элементарные свойства пределов

1. Последовательность может иметь не более одного предела.

Доказательство. Пусть $a = \lim_{n \to \infty} x_n, b = \lim_{n \to \infty} x_n$. Тогда

$$\forall \varepsilon > 0 \ \exists n_1 \in \mathbb{N} \colon \forall n > n_1 \ |x_n - a| < \frac{\varepsilon}{2}, \ \exists n_2 \in \mathbb{N} \colon \forall n > n_2 \ |x_n - b| < \frac{\varepsilon}{2} \Rightarrow$$
$$\Rightarrow \forall n > \max\{n_1, n_2\} \ |a - b| = |a - x_n + x_n - b| \leqslant |a - x_n| + |x_n - b| < \varepsilon$$

Значит, a = b.

2. Теорема 8.2.1 (о двух милиционерах). Пусть $\forall n \in \mathbb{N} \ x_n \leqslant y_n \leqslant z_n$. Если $\lim_{n \to \infty} x_n = \lim_{n \to \infty} z_n = a$, то $\lim_{n \to \infty} y_n = a$.

Доказательство.

$$\forall \varepsilon > 0 \ \exists n_1 \in \mathbb{N} \colon \forall n > n_1 \ |x_n - a| < \varepsilon, \ \exists n_2 \in \mathbb{N} \colon \forall n > n_2 \ |z_n - a| < \varepsilon \Rightarrow$$
$$\Rightarrow \forall n > \max\{n_1, n_2\} \ a - \varepsilon < x_n \leqslant y_n \leqslant z_n < a + \varepsilon \Rightarrow |y_n - a| < \varepsilon$$

3. Если $\forall n \in \mathbb{N} \ x_n \geqslant 0, \ \lim_{n \to \infty} x_n = a, \text{ то } a \geqslant 0.$

Доказательство методом от противного. Пусть a < 0.

$$\exists n_0 \in \mathbb{N} : \forall n > n_0 \ |x_n - a| < -\frac{a}{2} \Rightarrow \frac{a}{2} < x_n - a < -\frac{a}{2} \Rightarrow x_n < \frac{a}{2} < 0$$

Противоречие. ■

4. Если $\lim_{n\to\infty} x_n = a$, то $\lim_{n\to\infty} |x_n| = |a|$.

Доказательство.

$$\begin{cases} |a| - |x_n| \leqslant |a - x_n| \\ |x_n| - |a| \leqslant |x_n - a| \end{cases} \Rightarrow ||x_n| - |a|| \leqslant |x_n - a|$$

Тогда

$$\lim_{n\to\infty} x_n = a \Rightarrow \forall \varepsilon > 0 \ \exists n_0 \in \mathbb{N} \colon \forall n > n_0 \ ||x_n| - |a|| \leqslant |x_n - a| < \varepsilon \Rightarrow \lim_{n\to\infty} |x_n| = |a|$$

5. Если последовательность (x_n) сходится, то она ограничена.

Доказательство. Пусть $\lim_{n\to\infty} x_n = a \Rightarrow \lim_{n\to\infty} |x_n| = |a|$. Получим:

$$\exists n_0 \in \mathbb{N} : \forall n > n_0 \ ||x_n| - |a|| < 1 \Rightarrow |x_n| < |a| + 1$$

Тогда $\forall n \in \mathbb{N} |x_n| < \max\{|x_1|+1, |x_2|+1, \dots, |x_{n_0}|+1, |a|+1\}$.

6. Если последовательности (x_n) и (y_n) — ограниченная и бесконечно малая величины соответственно, то $z_n = x_n y_n$ — бесконечно малая величина.

Доказательство. Пусть a>0: $\forall n\in\mathbb{N}\ |x_n|< a,$ тогда

$$\forall \varepsilon > 0 \ \exists n_0 \in \mathbb{N} \colon \forall n > n_0 \ |y_n| < \frac{\varepsilon}{a} \Rightarrow |x_n y_n| < \varepsilon \Rightarrow \lim_{n \to \infty} z_n = 0$$

7. Если последовательности (x_n) и (y_n) — бесконечно малые величины, то $z_n = x_n + y_n$ — тоже бесконечно малая величина.

Доказательство.

$$\forall \varepsilon > 0 \ \exists n_1 \in \mathbb{N} \colon \forall n > n_1 \ |x_n| < \frac{\varepsilon}{2}, \ \exists n_2 \in \mathbb{N} \colon \forall n > n_2 \ |y_n| < \frac{\varepsilon}{2} \Rightarrow$$
$$\Rightarrow \forall n > \max\{n_1, n_2\} \ |x_n + y_n| \leqslant |x_n| + |y_n| < \varepsilon \Rightarrow \lim_{n \to \infty} z_n = 0$$

8.2.2 Арифметические свойства пределов

Пусть даны сходящиеся последовательности $x_n = a + \alpha_n$ и $y_n = b + \beta_n$, где $(\alpha_n), (\beta_n)$ — бесконечно малые величины.

 $1. \lim_{n \to \infty} (x_n + y_n) = a + b$

Доказательство.

$$\lim_{n \to \infty} (x_n + y_n) = \lim_{n \to \infty} (a + b + \alpha_n + \beta_n) = a + b$$

 $2. \lim_{n \to \infty} x_n y_n = ab$

Доказательство.

$$\lim_{n \to \infty} x_n y_n = \lim_{n \to \infty} (ab + a\beta_n + b\alpha_n + \alpha_n \beta_n) = ab$$

3. Если $a \neq 0$, то $\lim_{n \to \infty} \frac{1}{x_n} = \frac{1}{a}$

Доказательство. Покажем, что $\left| \frac{1}{x_n} - \frac{1}{a} \right| = \frac{|\alpha_n|}{|a||\alpha_n + a|}$ — бесконечно малая величина.

$$\exists n_0 \in \mathbb{N} \colon \forall n > n_0 \ |x_n - a| < \frac{|a|}{2} \Rightarrow$$

$$\Rightarrow \forall n > n_0 \ |a| = |a - x_n + x_n| \leqslant |a - x_n| + |x_n| < \frac{|a|}{2} + |x_n| \Rightarrow |x_n| > \frac{|a|}{2} \Rightarrow \frac{1}{|x_n|} < \frac{2}{|a|}$$

Тогда $\frac{1}{|x_n|}=\frac{1}{|\alpha_n+a|}$ — ограниченная величина, значит, $\frac{|\alpha_n|}{|a||\alpha_n+a|}=\left|\frac{1}{x_n}-\frac{1}{a}\right|$ — бесконечно малая величина. Отсюда $\lim_{n\to\infty}\left(\frac{1}{x_n}-\frac{1}{a}\right)=0\Leftrightarrow\lim_{n\to\infty}\frac{1}{x_n}=\frac{1}{a}$.

4. Если $b \neq 0$, то $\lim_{n \to \infty} \frac{x_n}{y_n} = \frac{a}{b}$.

Доказательство.

$$\lim_{n \to \infty} \frac{x_n}{y_n} = \lim_{n \to \infty} \left(x_n \cdot \frac{1}{y_n} \right) = a \cdot \frac{1}{b} = \frac{a}{b}$$

8.2.3 Основные свойства пределов последовательностей

1. Из ограниченной последовательности можно выбрать сходящуюся подпоследовательность.

Доказательство. Пусть A — множество значений, принимаемых членами ограниченной последовательности (x_n) .

- (a) Пусть A конечно. Тогда бесконечное множество членов последовательности (x_n) принимает хотя бы одно значение из A, значит, подпоследовательность, состоящая из них, сходится к этому значению.
- (b) Пусть A бесконечно, тогда оно ограничено, значит, по теореме Вейерштрасса оно имеет предельную точку a. В окрестности $\check{U}_1(a)$ содержится хотя бы одна точка из множества A, а соответствующее значение принимает член x_{n_1} .

Рассмотрим множество A_1 , полученное из A удалением значений, принимаемых членами $x_1, x_2, \ldots, x_{n_1}$. A_1 бесконечно и имеет предельную точку a, поэтому в окрестности $\check{U}_{\frac{1}{2}}(a)$ найдётся значение, принимаемое членом x_{n_2} , причём $n_1 < n_2$.

Рассмотрим множество A_2 , полученное из A_1 удалением значений, принимаемых членами $x_{n_1+1}, x_{n_1+2}, \ldots, x_{n_2}$. A_2 бесконечно и имеет предельную точку a, поэтому в окрестности $\check{U}_{\frac{1}{a}}(a)$ найдётся значение, принимаемое членом x_{n_3} , причём $n_2 < n_3$.

Продолжая, получим последовательность (x_{n_k}) : $|x_{n_k} - a| < \frac{1}{k}$. По следствию 8.1.1 $\lim_{k \to \infty} x_{n_k} = a$.

2. Монотонная ограниченная последовательность (x_n) сходится.

Доказательство. Для опредёленности предположим, что $\forall n \in \mathbb{N} \ x_n \leqslant x_{n+1}$. Последовательность ограничена, поэтому множество A её значений имеет супремум $a = \sup A$. По утверждению 8.1.2

$$\forall \varepsilon > 0 \ \exists k \in \mathbb{N} \colon a - \varepsilon < x_k \leqslant a \Rightarrow \forall n > k \ a - \varepsilon < x_k \leqslant x_n \leqslant a \Rightarrow |x_n - a| < \varepsilon \Rightarrow \lim_{n \to \infty} x_n = a$$

3. Лемма 8.2.1 (о вложенных отрезках). Пусть $(a_n), (b_n)$ — последовательности концов последовательно вложенных друг в друга отрезков $(\tau.e.\ [a_n;b_n]\subset [a_{n-1};b_{n-1}]),$ причём $\lim_{n\to\infty}(b_n-a_n)=0.$

Тогда
$$\bigcap_{k=1}^{\infty} [a_k; b_k] = \{a\}.$$

Доказательство. Очевидно, что (a_n) монотонна и ограничена сверху, (b_n) монотонна и ограничена снизу, тогда $\lim_{n\to\infty} a_n = a$, $\lim_{n\to\infty} b_n = b$. Имеем:

$$b = \lim_{n \to \infty} b_n = \lim_{n \to \infty} (b_n - a_n + a_n) = \lim_{n \to \infty} (b_n - a_n) + \lim_{n \to \infty} a_n = a$$

Отрезки последовательно вложены друг в друга, поэтому $\bigcap_{k=1}^{n} [a_k; b_k] = [a_n; b_n].$

$$\bigcap_{k=1}^{\infty} [a_k; b_k] = \lim_{n \to \infty} \bigcap_{k=1}^{n} [a_k; b_k] = \lim_{n \to \infty} [a_n; b_n] = \{a\}$$

8.2.4 Число Эйлера

Утверждение 8.2.1.

$$\exists \lim_{n \to \infty} \left(1 + \frac{1}{n} \right)^n$$

Доказательство. Рассмотрим последовательность (x_n) :

$$x_n = \left(1 + \frac{1}{n}\right)^n = 1 + \frac{n}{n} + \frac{n(n-1)}{2n^2} + \frac{n(n-1)(n-2)}{2 \cdot 3n^3} + \dots + \frac{n!}{n!n^n} = \frac{n!}{n!n^n}$$

$$=2+\frac{1}{2!}\left(1-\frac{1}{n}\right)+\frac{1}{3!}\left(1-\frac{1}{n}\right)\left(1-\frac{2}{n}\right)+\ldots+\frac{1}{n!}\left(1-\frac{1}{n}\right)\left(1-\frac{2}{n}\right)\cdot\ldots\cdot\left(1-\frac{n-1}{n}\right)< (8.1)$$

$$<2+\frac{1}{2!}+\frac{1}{3!}+\ldots+\frac{1}{n!}<2+\frac{1}{2^1}+\frac{1}{2^2}+\ldots+\frac{1}{2^{n-1}}=2+1-\frac{1}{2^{n-1}}<3$$

Значит, (x_n) ограничена. Кроме того, из выражения (8.1) ясно, что (x_n) монотонна. Тогда (x_n) сходится.

Число $e=\lim_{n\to\infty}\left(1+\frac{1}{n}\right)^n=2{,}718281828\dots$ называется **числом Эйлера** (иногда **числом Непера**, или **неперовым числом**).

8.2.5 Критерий Коши

Последовательность (x_n) называется фундаментальной, если

$$\forall \varepsilon > 0 \ \exists n_0 \in \mathbb{N} \colon \forall m, n > n_0 \ |x_n - x_m| < \varepsilon$$

Теорема 8.2.2 (критерий Коши). Последовательность сходится \Leftrightarrow она фундаментальна. Доказательство.

1. \Rightarrow . Пусть $\lim_{n\to\infty}x_n=a$, тогда

$$\forall \varepsilon > 0 \ \exists n_0 \in \mathbb{N} \colon \forall n > n_0 \ |x_n - a| < \frac{\varepsilon}{2}$$

Пусть $m, n > n_0$.

$$|x_n - x_m| = |x_n - a + a - x_m| \le |x_n - a| + |a - x_m| < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon$$

 $2. \Leftarrow.$

$$\exists n_0 \in \mathbb{N} \colon \forall m, n > n_0 \ |x_n - x_m| < 1 \Rightarrow$$
$$\Rightarrow (|x_n - x_{n_0+1}| < 1 \Rightarrow ||x_n| - |x_{n_0+1}|| < 1 \Rightarrow |x_n| < |x_{n_0+1}| + 1)$$

Значит, $\forall x \in \mathbb{N} \ |x_n| < \max\{|x_1|+1,|x_2|+1,\dots,|x_{n_0}|+1\}$, т. е. (x_n) ограничена.

Выберем из неё сходящуюся подпоследовательность (x_{n_k}) : $\lim_{k\to\infty} x_{n_k} = a$.

$$\forall \varepsilon > 0 \; \exists k_0, n_1 \in \mathbb{N} \colon \forall k > k_0, n > n_1 \; |x_n - x_{n_k}| < \varepsilon \Rightarrow$$

$$\mid \text{При } k \to \infty \text{ получим } \mid$$

$$\Rightarrow |x_n - a| < \varepsilon \Rightarrow \lim_{n \to \infty} x_n = a$$

8.3 Предел функции

8.3.1 Предел функции в точке

Пусть a — предельная точка области определения функции f(x). Следующие определения эквивалентны:

1. Определение по Гейне

Число b называется **пределом функции** f(x) в точке a, если $\lim_{n\to\infty} f(x_n) = b$ для любой последовательности (x_n) : $\lim_{n\to\infty} x_n = a$.

2. Определение по Коши

Число b называется **пределом функции** f(x) в точке a, если

$$\forall \varepsilon > 0 \ \exists \delta > 0 \colon \forall x \ |x - a| < \delta \Rightarrow |f(x) - b| < \varepsilon$$

Предел функции f(x) в точке a обозначается $\lim_{x \to a} f(x)$.

Доказательство эквивалентности.

1. (2) \Rightarrow (1). Пусть $\lim_{n\to\infty}x_n=a$, тогда

$$\forall \delta > 0 \ \exists n_0 \in \mathbb{N} \colon \forall n > n_0 \ |x_n - a| < \delta \Rightarrow \forall \varepsilon > 0 \ |f(x_n) - b| < \varepsilon \Rightarrow \lim_{n \to \infty} f(x_n) = b$$

2. $(1) \Rightarrow (2)$. Докажем методом от противного, что условия определения (2) выполняются. Пусть

$$\exists \varepsilon_0 > 0 \colon \forall \delta > 0 \ \exists x_0 \colon |x_0 - a| < \delta, \ |f(x_0) - b| \geqslant \varepsilon_0$$

Тогда

$$\forall n \in \mathbb{N} \ \exists x_n \colon |x_n - a| < \frac{1}{n}, \ |f(x_n) - b| \geqslant \varepsilon_0$$

Получили последовательность (x_n) : $\lim_{n\to\infty} x_n = a$, $\lim_{n\to\infty} f(x_n) \neq b$. Противоречие.

Также можно определить односторонние пределы.

Число b называется **левым пределом**, или **пределом слева**, функции f(x) в точке a, если

$$\forall \varepsilon > 0 \; \exists \delta > 0 \colon \forall x \; 0 < a - x < \delta \Rightarrow |f(x) - b| < \varepsilon$$

и обозначается $\lim_{x\to a-0} f(x)$.

Число b называется правым пределом, или пределом справа, функции f(x) в точке a, если

$$\forall \varepsilon > 0 \ \exists \delta > 0 \colon \forall x \ 0 < x - a < \delta \Rightarrow |f(x) - b| < \varepsilon$$

и обозначается
$$\lim_{x\to a+0} f(x)$$
.
 T. o., $\lim_{x\to a} f(x) = b \Leftrightarrow \lim_{x\to a-0} f(x) = \lim_{x\to a+0} f(x) = b$.

С помощью определения по Гейне и свойств предела последовательности доказываются свойства предела функции в точке.

Элементарные свойства:

- 1. Функция может иметь не более одного предела в одной точке.
- 2. **Теорема 8.3.1 (о двух милиционерах).** Если в окрестности точки $a\ f(x)\leqslant g(x)\leqslant h(x),$ $\lim_{x \to a} f(x) = \lim_{x \to a} h(x) = b, \text{ To } \lim_{x \to a} g(x) = b.$
- 3. Если в окрестности точки $a f(x) \ge 0$, $\lim_{x \to a} f(x) = b$, то $b \ge 0$.
- 4. $\lim_{x \to a} f(x) = b \Rightarrow \lim_{x \to a} |f(x)| = |b|$.

Арифметические свойства. Пусть $\lim_{x \to x_0} f(x) = a$, $\lim_{x \to x_0} g(x) = b$.

- 1. $\lim_{x \to x_0} (f(x) + g(x)) = a + b$
- $2. \lim_{x \to x_0} f(x)g(x) = ab$
- 3. Если $a \neq 0$, то $\lim_{x \to x_0} \frac{1}{f(x)} = \frac{1}{a}$
- 4. Если $b \neq 0$, то $\lim_{x \to x_0} \frac{f(x)}{g(x)} = \frac{a}{b}$

Предел функции на бесконечности 8.3.2

Пусть f(x) — функция. Следующие определения эквивалентны:

1. Определение по Гейне

Число a называется **пределом функции** f(x) **на бесконечности**, если $\lim_{n \to \infty} f(x_n) = a$ для любой последовательности (x_n) : $\lim_{n\to\infty} x_n = \infty$.

2. Определение по Коши

Число a называется пределом функции f(x) на бесконечности, если

$$\forall \varepsilon > 0 \ \exists M > 0 \colon \forall x \ |x| > M \Rightarrow |f(x) - b| < \varepsilon$$

Предел функции f(x) на бесконечности обозначается $\lim_{x\to\infty} f(x)$.

Доказательство эквивалентности.

1. (2)
$$\Rightarrow$$
 (1). Пусть $\lim_{n\to\infty}x_n=\infty$, тогда

$$\forall M > 0 \; \exists n_0 \in \mathbb{N} \colon \forall n > n_0 \; |x_n| > M \Rightarrow$$

$$\Rightarrow \forall \varepsilon > 0 |f(x_n) - a| < \varepsilon \Rightarrow \lim_{n \to \infty} f(x_n) = a$$

2. $(1) \Rightarrow (2)$. Докажем методом от противного, что условия определения (2) выполняются. Пусть

$$\exists \varepsilon_0 > 0 \colon \forall M > 0 \ \exists x_0 \colon |x_0| > M, \ |f(x_0) - a| \geqslant \varepsilon_0$$

Тогда

$$\forall n \in \mathbb{N} \ \exists x_n \colon |x_n| > n, \ |f(x_n) - a| \geqslant \varepsilon_0$$

Получили последовательность (x_n) : $\lim_{n\to\infty} x_n = \infty$, $\lim_{n\to\infty} f(x_n) \neq a$. Противоречие.

Аналогично доказывается эквивалентность следующих определений:

1. Определение по Гейне

Число a называется **пределом функции** f(x) **на плюс (минус) бесконечности**, если $\lim_{n\to\infty} f(x_n) = a$ для любой последовательности $(x_n): \lim_{n\to\infty} x_n = +\infty$ ($\lim_{n\to\infty} x_n = -\infty$).

2. Определение по Коши

Число a называется пределом функции f(x) на плюс (минус) бесконечности, если

$$\forall \varepsilon > 0 \ \exists M > 0 \colon \forall x \ x > M \ (x < -M) \Rightarrow |f(x) - b| < \varepsilon$$

Предел функции на бесконечности обладает теми же свойствами, что и предел функции в точке.

8.3.3 Замечательные пределы

Замечательными пределами называют два тождества, часто используемых при нахождении других пределов.

Первый замечательный предел

Утверждение 8.3.1.

$$\lim_{x \to 0} \frac{\sin x}{x} = 1$$

Доказательство. Пусть x>0. Рассмотрим сектор AOB единичного круга (OA=OB=1) с углом x и касательную BC к нему.

$$S_{AOB} < S_{\text{cert}} < S_{BOC} \Leftrightarrow \sin x < x < \operatorname{tg} x \Leftrightarrow 1 < \frac{x}{\sin x} < \frac{1}{\cos x}$$

Применяя теорему о двух милиционерах, получим:

$$\lim_{x \to 0} 1 = \lim_{x \to 0} \frac{1}{\cos x} = 1 \Rightarrow \lim_{x \to 0} \frac{\sin x}{x} = \lim_{x \to 0} \frac{x}{\sin x} = 1$$

Для
$$x<0$$
 $\lim_{x\to 0}\frac{\sin x}{x}=\lim_{x\to 0}\frac{\sin(-x)}{-x}=1.$ \blacksquare Следствия:

$$\lim_{x \to 0} \frac{\sin ax}{x} = a \lim_{x \to 0} \frac{\sin ax}{ax} = a, \ a \neq 0$$

$$\lim_{x \to 0} \frac{\operatorname{tg} ax}{x} = a \lim_{x \to 0} \frac{\sin ax}{ax \cos ax} = a, \ a \neq 0$$

$$\lim_{x \to 0} \frac{1 - \cos ax}{x^2} = \lim_{x \to 0} \frac{2\sin^2 \frac{ax}{2}}{x^2} = \frac{a^2}{2} \lim_{x \to 0} \frac{\sin^2 \frac{ax}{2}}{\left(\frac{ax}{2}\right)^2} = \frac{a^2}{2}, \ a \neq 0$$

$$\lim_{x \to 0} \frac{\arcsin ax}{x} |\Pi \text{усть } ax = \sin y| = a \lim_{y \to 0} \frac{y}{\sin y} = a, \ a \neq 0$$

$$\lim_{x \to 0} \frac{\arctan ax}{x} |\Pi y \operatorname{cth} x = \operatorname{tg} y| = a \lim_{y \to 0} \frac{y}{\operatorname{tg} y} = a, \ a \neq 0$$

Второй замечательный предел

Утверждение 8.3.2.

$$\lim_{x \to \infty} \left(1 + \frac{1}{x} \right)^x = e$$

Доказательство.

1. Пусть x > 0. По определению числа Эйлера $\lim_{x \to +\infty} \left(1 + \frac{1}{[x]}\right)^{[x]} = \lim_{x \to +\infty} \left(1 + \frac{1}{[x]+1}\right)^{[x]+1} = e$. $\left(1 + \frac{1}{[x]+1}\right)^{[x]+1} \left(1 + \frac{1}{[x]+1}\right)^{-1} = \left(1 + \frac{1}{[x]+1}\right)^{[x]} < \left(1 + \frac{1}{x}\right)^x < \left(1 + \frac{1}{[x]}\right)^{[x]+1} = \left(1 + \frac{1}{[x]}\right)^{[x]} \left(1 + \frac{1}{[x]}\right)$

Применяя теорему о двух милиционерах, получим

$$\begin{split} \lim_{x \to +\infty} \left(1 + \frac{1}{[x]+1}\right)^{[x]} &= \lim_{x \to +\infty} \left(1 + \frac{1}{[x]+1}\right)^{[x]+1} \left(1 + \frac{1}{[x]+1}\right)^{-1} = e, \\ \lim_{x \to +\infty} \left(1 + \frac{1}{[x]}\right)^{[x]+1} &= \lim_{x \to +\infty} \left(1 + \frac{1}{[x]}\right)^{[x]} \left(1 + \frac{1}{[x]}\right) = e \Rightarrow \\ &\Rightarrow \lim_{x \to +\infty} \left(1 + \frac{1}{x}\right)^x = e \end{split}$$

2. Пусть x < 0, y = -x, тогда

$$\lim_{x \to -\infty} \left(1 + \frac{1}{x} \right)^x = \lim_{y \to +\infty} \left(1 - \frac{1}{y} \right)^{-y} = \lim_{y \to +\infty} \left(\frac{y}{y - 1} \right)^y = \lim_{y \to +\infty} \left(1 + \frac{1}{y - 1} \right)^y = \lim_{y \to +\infty} \left(1 +$$

Следствия:

 $\lim_{x \to 0} (1 + ax)^{\frac{1}{x}} \left| \Pi \text{усть } y = \frac{1}{ax} \right| = \lim_{y \to \infty} \left(\left(1 + \frac{1}{y} \right)^y \right)^a = e^a, \ a \neq 0$

 $\lim_{x \to \infty} \left(1 + \frac{a}{x} \right)^x = \lim_{x \to \infty} \left(\left(1 + \frac{a}{x} \right)^{\frac{x}{a}} \right)^a = e^a, \ a \neq 0$

 $\lim_{x \to 0} \frac{\ln(1+ax)}{bx} = \lim_{x \to 0} \ln(1+ax)^{\frac{1}{bx}} = \ln\lim_{x \to 0} \left((1+ax)^{\frac{1}{ax}} \right)^{\frac{a}{b}} = \ln e^{\frac{a}{b}} = \frac{a}{b}, \ a, b \neq 0$

 $\lim_{x\to 0}\frac{c^{ax}-1}{bx}=$ $\left|\Pi\text{усть }c^{ax}-1=y\Leftrightarrow ax\ln c=\ln(y+1)\Leftrightarrow x=\frac{\ln(y+1)}{a\ln c}\right|$ $=\frac{a\ln c}{b}\lim_{y\to 0}\frac{y}{\ln(y+1)}=\frac{a}{b}\ln c,\ a,b\neq 0,\ c>0$

 $\lim_{x \to 0} \frac{(1+ax)^n - 1}{bx} |\Pi \text{усть } 1 + ax = e^y| = \frac{a}{b} \lim_{y \to 0} \frac{e^{ny} - 1}{e^y - 1} = \frac{an}{b} \lim_{y \to 0} \frac{e^{ny} - 1}{ny} \cdot \frac{y}{e^y - 1} = \frac{an}{b}, \ a, b, n \neq 0$

8.4 Бесконечно малые и бесконечно большие функции

Функция $\alpha(x)$ называется **бесконечно малой** при $x \to x_0,$ если $\lim_{x \to x_0} \alpha(x) = 0.$

Функция A(x) называется бесконечно большой при $x \to x_0$, если $\lim_{x \to x_0} A(x) = \infty$.

Очевидны следующие утверждения.

Утверждение 8.4.1. Если $\alpha(x)$ — бесконечно малая функция, то $\frac{1}{\alpha(x)}$ — бесконечно большая функция.

Утверждение 8.4.2. Если A(x) — бесконечно большая функция, то $\frac{1}{A(x)}$ — бесконечно малая функция.

Функции $\alpha(x)$ и $\beta(x)$ называются бесконечно малыми одного порядка малости при $x \to x_0$, если $0 < \left| \lim_{x \to x_0} \frac{\alpha(x)}{\beta(x)} \right| < \infty$. Функции $\alpha(x)$ и $\beta(x)$ называются эквивалетнтными бесконечно малыми при $x \to x_0$, если

Функции $\alpha(x)$ и $\beta(x)$ называются эквивалетнтными бесконечно малыми при $x \to x_0$, если $\lim_{x \to x_0} \frac{\alpha(x)}{\beta(x)} = 1$. При этом пишут $f(x) \sim g(x)$.

Функция $\alpha(x)$ называется **бесконечно малой более высокого порядка малости**, чем $\beta(x)$, при $x \to x_0$, если $\lim_{x \to x_0} \frac{\alpha(x)}{\beta(x)} = 0$, и обозначается $\alpha(x) = o(\beta(x))$. Следует помнить, что это не равенство в обычном смысле, т. е. запись $o(\beta(x)) = \alpha(x)$ бессмысленна.

8.5 Непрерывность функции

Пусть функция f задана на множестве $D\subseteq\mathbb{R}$ и $a\in D$. f называется **непрерывной в точке** a, если $\lim_{x\to a}f(x)=f(\lim_{x\to a}x)$, что эквивалентно $\lim_{x\to a}f(x)=f(a)$.

Точкой разрыва первого рода функции f(x) называется точка a, в которой и левый, и правый пределы функции f(x) конечны, причём f(x) не является непрерывной в точке a.

Точкой разрыва второго рода функции f(x) называется предельная точка a множества D(f), в которой левый или правый предел функции f(x) не существует или бесконечен.

Функция называется **непрерывной на** некотором **множестве**, если она непрерывна в каждой точке этого множества.

8.5.1 Свойства непрерывных функций

Пусть f(x) и g(x) — функции, непрерывные в точке a. Для них справедливы следующие арифметические свойства:

1. h(x) = f(x) + g(x) непрерывна в точке a.

Доказательство.

$$\lim_{x \to a} h(x) = \lim_{x \to a} f(x) + \lim_{x \to a} g(x) = f(a) + g(a) = h(a)$$

2. h(x) = f(x)g(x) непрерывна в точке a.

Доказательство.

$$\lim_{x\to a} h(x) = \lim_{x\to a} f(x) \cdot \lim_{x\to a} g(x) = f(a) \cdot g(a) = h(a)$$

3. Если $g(x) \neq 0$, то $h(x) = \frac{f(x)}{g(x)}$ непрерывна в точке a.

Доказательство.

$$\lim_{x \to a} h(x) = \frac{\lim_{x \to a} f(x)}{\lim_{x \to a} g(x)} = \frac{f(a)}{g(a)} = h(a)$$

Утверждение 8.5.1. Если функция f(x) непрерывна в точке a, g(x) — в точке f(a), то h(x) = g(f(x)) непрерывна в точке a.

Доказательство.

$$\lim_{x \to a} h(x) = \lim_{x \to a} g(f(x)) = g(\lim_{x \to a} f(x)) = g(f(a))$$

Пусть функция f(x) непрерывна на отрезке [a;b].

- 1. f(x) ограничена на [a; b].
 - Доказательство методом от противного. Пусть $\forall n \in \mathbb{N} \ \exists x_n \in [a;b] \colon |f(x_n)| > n$. Получили ограниченную последовательность (x_n) . Выберем из неё сходящуюся подпоследовательность $(x_{n_k}) \colon \lim_{k \to \infty} x_{n_k} = x_0$. Точка x_0 предельная для [a;b], значит, $x_0 \in [a;b]$, т. к. [a;b] замкнутое множество. Тогда в силу непрерывности $f(x) \lim_{k \to \infty} f(x_{n_k}) = f(x_0)$. Это противоречит тому, что $|f(x_{n_k})| > n_k$.
- 2. Если $m = \inf_{x \in [a;b]} f(x), \ M = \sup_{x \in [a;b]} f(x),$ то $\exists x_m, x_M \in [a;b] \colon f(x_m) = m, \ f(x_M) = M.$

Доказательство. По утверждению 8.1.4 $\forall n \in \mathbb{N} \ \exists x_n \in [a;b] \colon m \leqslant x_n < m + \frac{1}{n}$. Получили ограниченную последовательность (x_n) . Выберем из неё сходящуюся подпоследовательность $(x_{n_k}) \colon \lim_{k \to \infty} x_{n_k} = x_m$. Точка x_m предельная для [a;b], значит, $x_m \in [a;b]$, т. к. [a;b] — замкнутое множество. Тогда в силу непрерывности $f(x) \lim_{k \to \infty} f(x_{n_k}) = f(x_m)$, $m \leqslant x_{n_k} < m + \frac{1}{n_k} \Rightarrow f(x_m) = m$.

 $f(x_M) = M$ доказывается аналогично.

- 3. Теорема 8.5.1 (о нуле непрерывной функции). $Ecлu\ f(a) \cdot f(b) < 0$, $to\ \exists x_0 \in [a;b] \colon f(x_0) = 0$. Доказательство. Разделим отрезок [a;b] пополам. $Ecлu\ f\left(\frac{a+b}{2}\right) = 0$, $to\ x_0 = \frac{a+b}{2}$. Иначе выберём ту половину отрезка [a;b], на границах которой функция принимает разные знаки. Разделим её пополам и проверим значение в середине. Продолжая таким образом, получим либо 0 в одной из середин полученных отрезков, либо последовательность вложенных отрезков $[a_n;b_n]\colon \lim_{n\to\infty}(b_n-a_n)=0,\ f(a_n)\cdot f(b_n)<0$. По лемме о вложенных отрезках $\lim_{n\to\infty}a_n=\lim_{n\to\infty}b_n=c\in[a;b]$. В силу непрерывности $f(x)\lim_{n\to\infty}f(a_n)=\lim_{n\to\infty}f(b_n)=f(c)=0$, т. к. $f(a_n)$ и $f(b_n)$ имеют разные знаки. \blacksquare
- 4. **Теорема 8.5.2 (о промежуточном значении).** Если $f(a) \neq f(b)$, то, без ограничения общности полагая f(a) < f(b), $[f(a); f(b)] \subseteq E(f)$.

Доказательство. Пусть $C \in (f(a); f(b)), g(x) = f(x) - C.$ g(a) = f(a) - C < 0, g(b) = f(b) - C > 0, тогда по теореме о нуле непрерывной функции $\exists c \in [a;b] \colon (g(c) = 0 \Leftrightarrow f(c) = C).$

5. Если $m=\inf_{x\in[a;b]}f(x),\,M=\sup_{x\in[a;b]}f(x),$ то $[m;M]\subseteq E(f).$

8.6 Производная функции

Условие непрерывности функции f(x) в точке a можно сформулировать так:

$$\lim_{\Delta x \to 0} \Delta f = \lim_{\Delta x \to 0} (f(a + \Delta x) - f(a)) = 0$$

где $\Delta x = x - a$ называется приращением аргумента, $\Delta f = f(x) - f(a)$ — приращением функции. Функция f(x) называется дифференцируемой в точке a, если $\Delta f = k\Delta x + o(\Delta x)$ при $\Delta x \to 0$, где $\Delta f = f(x) - f(a)$, $\Delta x = x - a$, k — константа, называемая производной функции f(x) в точке a и обозначаемая f'(a).

Из определения следует, что функция, дифференцируемая в точке a, непрерывна в ней.

Функция называется **дифференцируемой на** некотором **множестве**, если она дифференцируема в каждой точке этого множества.

Точки, в которых функция дифференцируема, называются точками гладкости. Функция называется гладкой, если она дифференцируема на всей области определения.

Найдём производную функции f(x) в точке a.

$$f'(a) = \lim_{\Delta x \to 0} \frac{\Delta f}{\Delta x} = \lim_{x \to a} \frac{f(x) - f(a)}{x - a}$$

Т. о., производная функции f(x) является функцией f'(x).

Также можно определить односторонние производные путём рассмотрения соответствующих односторонних пределов.

Левой производной функции f(x) в точке a называется предел $\lim_{x\to a-0} \frac{f(x)-f(a)}{x-a}$ и обозначается $f'_-(a)$.

Правой производной функции f(x) в точке a называется предел $\lim_{x\to a+0} \frac{f(x)-f(a)}{x-a}$ и обозначается $f'_+(a)$.

8.6.1 Геометрический смысл производной

Пусть дана кривая, заданная уравнением y=f(x), f(x) непрерывна на [a;b]. Проведём касательную к этой кривой в точке $c\in(a;b)$. Заметим, что касательная — это прямая, получающаяся в пределе из хорд, проходящих через точки (c,f(c)) и $(c+\Delta x,f(c+\Delta x))$. Уравнение такой хорды имеет вид

$$\frac{x-c}{(c+\Delta x)-c} = \frac{y-f(c)}{f(c+\Delta x)-f(c)} \Leftrightarrow y = f(c) + \frac{f(c+\Delta x)-f(c)}{\Delta x}(x-c)$$

Переходя к пределу при $\Delta x \to 0$, получим значение углового коэффициента k касательной:

$$k = \lim_{\Delta x \to 0} \frac{f(c + \Delta x) - f(c)}{\Delta x} = f'(c)$$

Т. о., y = f(c) + f'(c)(x - c) — уравнение касательной в точке c.

Существование касательной означает, что

$$\exists \lim_{\Delta x \to 0} \frac{f(c + \Delta x) - f(c)}{\Delta x} = f'(c) \Rightarrow f(c + \Delta x) - f(c) = f'(c)\Delta x + a\Delta x$$

где $\lim_{\Delta x \to 0} a = 0 \Rightarrow a\Delta x = o(\Delta x)$. Т. о., существование касательной к графику функции f(x) в точке c равносильно дифференцируемости функции f(x) в точке c.

8.6.2 Физический смысл производной

Пусть зависимость пути, пройденного некоторой точкой, от времени выражается функцией S(t). Чтобы найти среднюю скорость движения в промежутке времени $[t_0;t_0+\Delta t]$, достаточно вычислить $\frac{S(t_0+\Delta t)-S(t_0)}{\Delta t}$. Перейдём к пределу при $\Delta t\to 0$, тогда $[t_0;t_0+\Delta t]$ выродится в точку, а средняя скорость движения превратится в мгновенную скорость в точке t_0 . Т. о., производная функции S(t) представляет зависимость мгновенной скорости от времени.

8.6.3 Дифференциал функции

Пусть f(x) — функция, дифференцируемая в точке x_0 , тогда по определению

$$f(x) - f(x_0) = f'(x_0)(x - x_0) + \alpha$$

где $\alpha = o(x-x_0)$ при $x \to x_0$. Слагаемое $f'(x_0)(x-x_0)$ представляет линейную часть приращения функции. Его называют дифференциалом функции f(x) в точке x_0 и обозначают $df(x_0) = f'(x_0)dx$, где $dx = \Delta x$ — приращение аргумента.

Можно записать производную, используя дифференциал: $f'(x) = \frac{df}{dx}$.

8.6.4 Правила дифференцирования

Пусть f(x), g(x) — функции, дифференцируемые в точке a, C — константа.

1. h(x) = f(x) + g(x) дифференцируема в точке a, причём h'(x) = f'(x) + g'(x). Доказательство.

$$h'(a) = \lim_{x \to a} \frac{(f(x) + g(x)) - (f(a) + g(a))}{x - a} = \lim_{x \to a} \frac{f(x) - f(a)}{x - a} + \lim_{x \to a} \frac{g(x) - g(a)}{x - a} = f'(a) + g'(a)$$

2. h(x) = Cf(x) дифференцируема в точке a, причём h'(x) = Cf'(x).

Доказательство.

$$h'(a) = \lim_{x \to a} \frac{Cf(x) - Cf(a)}{x - a} = Cf'(x)$$

3. h(x) = f(x)g(x) дифференцируема в точке a, причём h'(x) = f'(x)g(x) + f(x)g'(x). Доказательство.

$$h'(a) = \lim_{x \to a} \frac{f(x)g(x) - f(a)g(a)}{x - a} = \lim_{x \to a} \frac{f(x)g(x) - f(a)g(x) + f(a)g(x) - f(a)g(a)}{x - a} = \lim_{x \to a} \frac{f(x) - f(a)}{x - a}g(x) + \lim_{x \to a} f(a)\frac{g(x) - g(a)}{x - a} = f'(a)g(a) + f(a)g'(a)$$

4. Если $f(a) \neq 0$, то $h(x) = \frac{C}{f(x)}$ дифференцируема в точке a, причём $h'(x) = -\frac{Cf'(x)}{f^2(x)}$. Доказательство.

$$h'(a) = \lim_{x \to a} \frac{\frac{C}{f(x)} - \frac{C}{f(a)}}{x - a} = -C \lim_{x \to a} \frac{f(x) - f(a)}{f(x)f(a)(x - a)} = -\frac{Cf'(a)}{f^2(a)}$$

5. Если $g(a) \neq 0$, то $h(x) = \frac{f(x)}{g(x)}$ дифференцируема в точке a, причём $h'(x) = \frac{f'(x)g(x) - f(x)g'(x)}{g^2(x)}$. Доказательство.

$$h'(x) = \left(f(x) \cdot \frac{1}{g(x)}\right)' = \frac{f'(x)}{g(x)} - \frac{f(x)g'(x)}{g^2(x)} = \frac{f'(x)g(x) - f(x)g'(x)}{g^2(x)}$$

Сложная функция

Если h(x) = g(f(x)), то $h'(x) = g'(f(x)) \cdot f'(x)$. Доказательство.

$$h'(a) = \lim_{x \to a} \frac{g(f(x)) - g(f(a))}{x - a} = \lim_{x \to a} \frac{g(f(x)) - g(f(a))}{f(x) - f(a)} \cdot \lim_{x \to a} \frac{f(x) - f(a)}{x - a} = g'(f(a)) \cdot f'(a)$$

Обратная функция

Если $f'(x) \neq 0$, g(f(x)) = x, то $g'(x) = \frac{1}{f'(g(x))}$.

Доказательство.

$$g'(f(a)) = \lim_{f(x) \to f(a)} \frac{g(f(x)) - g(f(a))}{f(x) - f(a)} = \lim_{x \to a} \frac{x - a}{f(x) - f(a)} = \frac{1}{f'(a)} = \frac{1}{f'(g(f(a)))} \Rightarrow g'(x) = \frac{1}{f'(g(x))}$$

Метод логарифмического дифференцирования

Если f(x) > 0, то $(\ln f(x))' = \frac{f'(x)}{f(x)} \Leftrightarrow f'(x) = f(x) \cdot (\ln f(x))'$.

$$(g(x)^{h(x)})' = g(x)^{h(x)} \cdot (h(x) \ln g(x))' = g(x)^{h(x)} \cdot \left(h'(x) \ln g(x) + h(x) \frac{g'(x)}{g(x)}\right)$$

Параметрически заданная функция

Если $x = \varphi(t), y = \psi(t), \varphi'(t) \neq 0$, то $y'(x) = \frac{y'(t)}{x'(t)}$

Доказательство.

$$y'(x) = \frac{dy}{dx} = \frac{\frac{dy}{dt}}{\frac{dx}{dt}} = \frac{y'(t)}{x'(t)}$$

8.6.5 Таблица производных

Здесь производная берётся по переменной x.

- (C)' = 0
- $(x^n)' = nx^{n-1}, n \neq 0$

Доказательство. Пусть h = x - a. Пользуясь формулой бинома Ньютона, получим

$$(a^n)' = \lim_{h \to 0} \frac{(a+h)^n - a^n}{h} = \lim_{h \to 0} \frac{a^n - a^n + na^{n-1}h + \frac{1}{2}n(n-1)a^{n-2}h^2 + \dots}{h} =$$
$$= na^{n-1} + \lim_{h \to 0} \left(\frac{1}{2}n(n-1)a^{n-2}h + \dots\right) = na^{n-1}$$

- $(f^n(x))' = nf'(x)f^{n-1}(x), n \neq 0$
- $(|x|)' = \operatorname{sgn} x$
- $\bullet \ (\ln x)' = \frac{1}{x}$
- $\bullet \ (a^x)' = a^x \cdot \ln a, \ a > 0$

- $(a^{f(x)})' = a^x \cdot \ln a \cdot f'(x), \ a > 0$
- $(\sin x)' = \cos x$

Доказательство.

 $\sin a = \lim_{x \to a} \frac{\sin x - \sin a}{x - a} = \lim_{x \to a} \frac{2\cos\frac{x + a}{2}\sin\frac{x - a}{2}}{x - a} = \lim_{x \to a} \frac{2\sin\frac{x - a}{2}}{x - a} \cdot \lim_{x \to a} \cos\frac{x + a}{2} = \cos a$

 $\bullet \ (\cos x)' = -\sin x$

Доказательство.

$$(\cos x)' = (\sin\left(\frac{\pi}{2} - x\right))' = -\cos\left(\frac{\pi}{2} - x\right) = -\sin x$$

• $(\operatorname{tg} x)' = \frac{1}{\cos^2 x}$

Доказательство.

$$(\operatorname{tg} x)' = \left(\frac{\sin x}{\cos x}\right)' = \frac{\cos^2 x + \sin^2 x}{\cos^2 x} = \frac{1}{\cos^2 x}$$

 $\bullet \ (\operatorname{ctg} x)' = -\frac{1}{\sin^2 x}$

Доказательство.

$$(\operatorname{ctg} x)' = \left(\frac{\cos x}{\sin x}\right)' = \frac{-\sin^2 x - \cos^2 x}{\sin^2 x} = -\frac{1}{\sin^2 x}$$

• $(\arcsin x)' = \frac{1}{\sqrt{1-x^2}}$

Доказательство.

$$(\arcsin x)' = \frac{1}{\cos \arcsin x} = \frac{1}{\sqrt{1 - \sin^2 \arcsin x}} = \frac{1}{\sqrt{1 - x^2}}$$

• $(\arccos x)' = -\frac{1}{\sqrt{1-x^2}}$

Доказательство.

$$(\arccos x)' = \left(\frac{\pi}{2} - \arcsin x\right)' = -\frac{1}{\sqrt{1-x^2}}$$

• $(\operatorname{arctg} x)' = \frac{1}{1+x^2}$

Доказательство.

$$(\arctan x)' = \cos^2 \arctan x = \frac{1}{1 + \tan^2 \arctan x} = \frac{1}{1 + x^2}$$

• $(\operatorname{arcctg} x)' = -\frac{1}{1+x^2}$

Доказательство.

$$(\operatorname{arcctg} x)' = \left(\frac{\pi}{2} - \operatorname{arctg} x\right)' = -\frac{1}{1+x^2}$$

8.6.6 Теоремы о дифференцируемых функциях

Теорема 8.6.1 (Ролля). Если функция f(x) непрерывна на [a;b], дифференцируема на (a;b), причём f(a) = f(b), то $\exists c \in (a;b) \colon f'(c) = 0$.

$$f(a) = f(b) - \begin{array}{c|c} & & & \\ \hline & & & \\ \hline & a & c & b \end{array}$$

Доказательство. Если f(x) = f(a), то в качестве точки c можно взять любую точку из (a;b). Пусть f(x) не является константой на [a;b], тогда по свойству $\frac{2}{2}$ непрерывной функции $\exists c \in (a;b)$: $f(c) = \inf_{x \in [a;b]} f(x)$ или $f(c) = \sup_{x \in [a;b]} f(x)$. Для определённости предположим, что

$$f(c) = \inf_{x \in [a;b]} f(x) \Leftrightarrow \forall x \in [a;b] \ f(x) - f(c) > 0 \Rightarrow \begin{cases} \frac{f(x) - f(c)}{x - c} < 0, \ x < c \\ \frac{f(x) - f(c)}{x - c} > 0, \ x > c \end{cases}$$

f(x) дифференцируема в точке c, тогда $\exists f'(c) = \lim_{x \to c} \frac{f(x) - f(c)}{x - c}$.

$$\lim_{x \to c-0} \frac{f(x) - f(c)}{x - c} < 0, \ \lim_{x \to c+0} \frac{f(x) - f(c)}{x - c} > 0 \Rightarrow f'(c) = 0$$

Доказательство в случае $f(c) = \sup_{x \in [a;b]} f(x)$ аналогично. \blacksquare

Теорема 8.6.2 (Коши о среднем значении). Если функции f(x) и g(x) непрерывны на [a;b], дифференцируемы на (a;b), $g(a) \neq g(b)$, то

$$\exists c \in (a;b) : \frac{f(b) - f(a)}{g(b) - g(a)} = \frac{f'(c)}{g'(c)}$$

Доказательство. Пусть

$$F(x) = f(x) - \frac{f(b) - f(a)}{g(b) - g(a)}(g(x) - g(a))$$

F(x) дифференцируема на (a;b), F(a) = F(b) = f(a), тогда по теореме Ролля

$$\exists c \in (a;b) \colon 0 = F'(c) = f'(c) - \frac{f(b) - f(a)}{g(b) - g(a)}g'(c) \Rightarrow \frac{f(b) - f(a)}{g(b) - g(a)} = \frac{f'(c)}{g'(c)}$$

Полагая g(x) = x, получим формулу конечных приращений:

Теорема 8.6.3 (Лагранжа о среднем значении). Если функция f(x) непрерывна на [a;b], дифференцируема на (a;b), то

$$\exists c \in (a;b): f(b) - f(a) = f'(c)(b-a)$$

8.6.7 Производные и дифференциалы высших порядков

Производная произвольного порядка определяется рекуррентно:

$$f^{(0)}(x) = f(x), \ f^{(1)}(x) = f'(x), f^{(2)}(x) = f''(x) \ f^{(n+1)}(x) = (f^{(n)}(x))' \ \forall n \in \mathbb{N}$$

Также определяется дифференциал произвольного порядка:

$$d^{0}f(x) = f(x), df(x) = f'(x)dx, d^{2}f(x) = f''(x)dx^{2}, d^{n}f(x) = f^{(n)}(x)dx^{n} \ \forall n \in \mathbb{N}$$

8.6.8 Формула Тейлора

Теорема 8.6.4 (формула Тейлора). Если функция f(x) в некоторой окрестности U(a) имеет все производные до n+1-го порядка включительно, то

$$\forall x \in U(a) \ f(x) = \sum_{k=0}^{n} \frac{f^{(k)}(x-a)^k}{k!} + R(x), \ R(x) = \frac{f^{(n+1)}(a + \Theta(x-a))}{(n+1)!} (x-a)^{n+1}, \ \Theta \in (0;1)$$

R(x) называется **остаточным членом** в форме Лагранжа и используется для оценки ошибки. Также его можно представить в форме Пеано — $R(x) = o((x-a)^n)$ — которая используется при вычислении пределов.

Подставив a=0 в формулу Тейлора, получим формулу Маклорена:

$$f(x) = \sum_{k=0}^{n} \frac{f^{(k)}x^k}{k!} + R(x), \ R(x) = \frac{f^{(n+1)}(\Theta x)}{(n+1)!}x^{n+1}, \ \Theta \in (0;1)$$
(8.2)

Разложения некоторых функций в ряд Маклорена

•
$$f(x) = e^x$$
, $f^{(n)}(x) = e^x$, $f^{(n)}(0) = 1$

$$\forall n \in \mathbb{N} \ f(x) = 1 + x + \frac{x^2}{2!} + \ldots + \frac{x^n}{n!} + R(x), \ R(x) = \frac{e^{\Theta x}}{(n+1)!} x^{n+1}$$

$$|R(x)| \leqslant e^{\max\{0,x\}} \cdot \frac{|x|^{n+1}}{(n+1)!} \Rightarrow \begin{cases} |R(x)| \leqslant \frac{|x|^{n+1}}{(n+1)!}, x < 0\\ |R(x)| \leqslant 3^x \cdot \frac{|x|^{n+1}}{(n+1)!}, x > 0 \end{cases}$$

•
$$f(x) = \sin x$$
, $f^{(n)}(x) = \sin\left(x + \frac{\pi}{2}n\right)$, $f^{(n)}(0) = \sin\frac{\pi}{2}n = \begin{cases} 0, & n \\ 1, & \exists k \in \mathbb{Z} : n = 4k + 1 \\ -1, & \exists k \in \mathbb{Z} : n = 4k + 3 \end{cases}$

$$\forall n \in \mathbb{N} \ f(x) = x - \frac{x^3}{3!} + \frac{x^5}{5!} - \ldots + \frac{(-1)^{n-1} \cdot x^{2n-1}}{(2n-1)!} + R(x), \ R(x) = \frac{\sin\left(\Theta x + \frac{\pi}{2}(2n+1)\right)}{(2n+1)!} x^{2n+1}$$

$$|R(x)| \le \frac{|x|^{2n+1}}{(2n+1)!}$$

•
$$f(x) = \cos x, f^{(n)}(x) = \cos \left(x + \frac{\pi}{2}n\right), \ f^{(n)}(0) = \cos \frac{\pi}{2}n = \begin{cases} 0, & n \not = 2 \\ 1, & \exists k \in \mathbb{Z} : n = 4k \\ -1, & \exists k \in \mathbb{Z} : n = 4k + 2 \end{cases}$$

$$\forall n \in \mathbb{N} \ f(x) = 1 - \frac{x^2}{2!} + \frac{x^4}{4!} - \ldots + \frac{(-1)^{n-1}x^{2n-2}}{(2n-2)!} + R(x), \ R(x) = \frac{\cos(\Theta x + \pi n)}{(2n)!}x^{2n}$$

$$|R(x)| \leqslant \frac{x^{2n}}{(2n)!}$$

•
$$f(x) = \ln(1+x)$$
, $f^{(n)}(x) = \frac{(-1)^{n-1}(n-1)!}{(1+x)^n}$, $f^{(n)}(0) = (-1)^{n-1}(n-1)!$

$$\forall n \in \mathbb{N} \ f(x) = x - \frac{x^2}{2} + \frac{x^3}{3} - \dots + \frac{(-1)^{n-1}x^n}{n} + R(x), x \in (-1; 1], \ R(x) = \frac{(-1)^n x^{n+1}}{(n+1)(1+\Theta x)^{n+1}}$$

Для вычисления $\ln a, a \neq -1$, можно воспользоваться формулой

$$\forall n \in \mathbb{N} \ln \frac{1+x_0}{1-x_0} = \ln(1+x_0) - \ln(1-x_0) = 2\left(x_0 + \frac{x_0^3}{3} + \frac{x_0^5}{5} + \dots\right)$$
$$a = \frac{1+x_0}{1-x_0} \Leftrightarrow a - ax_0 = 1 + x_0 \Leftrightarrow x_0 = \frac{a-1}{a+1}$$

•
$$f(x) = (1+x)^{\alpha}$$
, $f^{(n)}(x) = \alpha(\alpha-1)(\alpha-2) \cdot \dots \cdot (\alpha-n+1)(1+x)^{\alpha-n}$, $f^{(n)}(0) = \alpha(\alpha-1)(\alpha-2) \cdot \dots \cdot (\alpha-n+1)$

$$\forall n \in \mathbb{N} \ f(x) = 1 + \alpha x + \frac{\alpha(\alpha-1)x^2}{2!} + \dots + \frac{\alpha(\alpha-1) \cdot \dots \cdot (\alpha-n+1)x^n}{n!} + R(x), |x| < 1,$$

$$R(x) = \frac{\alpha(\alpha-1) \cdot \dots \cdot (\alpha-n)(1+\Theta x)^{\alpha-n-1}}{(n+1)!} x^{n+1}$$

8.6.9 Правило Лопиталя

Теорема 8.6.5 (правило Лопиталя). Если

1.
$$\lim_{x\to a}f(x)=\lim_{x\to a}g(x)=0$$
 или $\lim_{x\to a}f(x)=\lim_{x\to a}g(x)=\infty$

2.
$$g'(x) \neq 0$$

3.
$$\exists \lim_{x \to a} \frac{f'(x)}{g'(x)}$$

$$To \lim_{x \to a} \frac{f(x)}{g(x)} = \lim_{x \to a} \frac{f'(x)}{g'(x)}.$$

Если f(x) и g(x) непрерывны в окрестности точки a, то для случая $\lim_{x\to a} f(x) = \lim_{x\to a} g(x) = 0$ можно провести следующее доказательство:

$$\lim_{x\to a}\frac{f(x)}{g(x)}=\lim_{x\to a}\frac{f(x)-0}{g(x)-0}=\lim_{x\to a}\frac{f(x)-f(a)}{g(x)-g(a)}\ |\text{ Πo Teopeme Kohiu}|=\lim_{x\to a}\frac{f'(c)}{g'(c)}=\lim_{x\to a}\frac{f(x)-1}{g'(c)}$$

$$|c \in (x;a)$$
 или $c \in (a;x)| = \lim_{x \to a} \frac{f'(x)}{g'(x)}$

Полное доказательство правила Лопиталя слишком сложно, поэтому здесь не приводится.

8.7 Исследование функции

8.7.1 Локальный экстремум функции

Теорема 8.7.1. Если функция f(x) дифференцируема на (a;b), то она не убывает (не возрастает) на $(a;b) \Leftrightarrow \forall x \in (a;b) \ f'(x) \geqslant 0 \ (f'(x) \leqslant 0)$.

Доказательство.

1. ⇒. Пусть f(x) не убывает на $(a; b), x_1, x_2 \in (a; b)$.

$$\frac{f(x_2) - f(x_1)}{x_2 - x_1} \geqslant 0 \Rightarrow \lim_{x_2 \to x_1} \frac{f(x_2) - f(x_1)}{x_2 - x_1} \geqslant 0 \Leftrightarrow f'(x_1) \geqslant 0$$

Доказательство в случае невозрастания f(x) аналогично.

2. \Leftarrow . Пусть $\forall x \in (a; b) \ f'(x) \ge 0, \ a < x_1 < x_2 < b$. По теореме Лагранжа

$$\exists x_3 \in (x_1; x_2) \colon f(x_2) - f(x_1) = f'(x_3)(x_2 - x_1)$$

 $f'(x_3)(x_2-x_1)\geqslant 0 \Leftrightarrow f(x_2)-f(x_1)\geqslant 0 \Leftrightarrow f(x)$ не убывает на (a;b).

Доказательство в случае $f'(x) \leq 0$ аналогично.

Точка x_0 называется **точкой локального минимума функции** f(x), если существует проколотая окрестность $\check{U}(x_0)$: $\forall x \in \check{U}(x_0)$ $f(x) > f(x_0)$.

Точка x_0 называется **точкой локального максимума функции** f(x), если существует проколотая окрестность $\check{U}(x_0)$: $\forall x \in \check{U}(x_0)$ $f(x) < f(x_0)$.

Точки локального минимума и максимума называются точками локального экстремума.

Теорема 8.7.2. Если x_0 — точка локального экстремума функции f(x), то $\not\exists f'(x_0)$ или $f'(x_0) = 0$. Доказательство. Пусть x_0 — точка локального минимума, $\exists f'(x_0)$, тогда

$$\begin{cases} \frac{f(x) - f(x_0)}{x - x_0} < 0, \ x < x_0 \\ \frac{f(x) - f(x_0)}{x - x_0} > 0, \ x > x_0 \end{cases} \Rightarrow \begin{cases} \lim_{x \to x_0 - 0} \frac{f(x) - f(x_0)}{x - x_0} \leqslant 0 \\ \lim_{x \to x_0 + 0} \frac{f(x) - f(x_0)}{x - x_0} \geqslant 0 \end{cases} \Rightarrow \lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0} = 0 \Leftrightarrow f'(x_0) = 0$$

Доказательство для локального максимума аналогично. ■

Точка, в которой производная функции не существует или равна нулю, называется **критической**. Существуют следующие признаки локального экстремума:

1. Если $f'_{-}(x_0) \leqslant 0 \ (\geqslant 0), \ f'_{+}(x_0) \geqslant 0 \ (\leqslant 0),$ то x_0 — точка локального минимума (максимума). Доказательство. Пусть

$$f'_{-}(x_0) \leqslant 0, \ f'_{+}(x_0) \geqslant 0 \Leftrightarrow \lim_{x \to x_0 - 0} \frac{f(x) - f(x_0)}{x - x_0} \leqslant 0, \ \lim_{x \to x_0 + 0} \frac{f(x) - f(x_0)}{x - x_0} \geqslant 0$$

Значит, в некоторой окрестности точки x_0 $f(x) \geqslant f(x_0)$, тогда x_0 — точка локального минимума. Аналогичное доказательство для максимума.

- 2. Если $f'(x_0) = f''(x_0) = \ldots = f^{(2n-1)}(x_0) = 0$, то
 - x_0 точка локального максимума при $f^{(2n)}(x_0) < 0$
 - x_0 точка локального минимума при $f^{(2n)}(x_0) > 0$;
 - x_0 не является точкой локального экстремума при $f^{(2n)}(x_0)=0,\, f^{(2n+1)}(x_0) \neq 0.$

Доказательство.

ullet Пусть $f^{(2n)}(x_0) < 0$. По формуле Тейлора

$$f(x) = f(x_0) + f'(x_0)(x - x_0) + \frac{f''(x_0)}{2!}(x - x_0)^2 + \dots + \frac{f^{(2n)}(x_0)}{(2n)!}(x - x_0)^{2n} + o((x - x_0)^{2n}) \Leftrightarrow$$

$$\Leftrightarrow f(x) - f(x_0) = \frac{f^{(2n)}(x_0)}{(2n)!}(x - x_0)^{2n} + o((x - x_0)^{2n}) < 0$$

Тогда x_0 — точка локального максимума.

- Случай при $f^{(2n)}(x_0) > 0$ доказывается аналогично.
- \bullet Пусть $f^{(2n)}(x_0)=0,\,f^{(2n+1)}(x_0)\neq 0.$ По формуле Тейлора

$$f(x) = f(x_0) + f'(x_0)(x - x_0) + \frac{f''(x_0)}{2!}(x - x_0)^2 + \dots +$$

$$+ \frac{f^{(2n)}(x_0)}{(2n)!}(x - x_0)^{2n} + \frac{f^{(2n+1)}(x_0)}{(2n+1)!}(x - x_0)^{2n+1} + o((x - x_0)^{2n+1}) \Leftrightarrow$$

$$\Leftrightarrow f(x) - f(x_0) = \frac{f^{(2n+1)}(x_0)}{(2n+1)!} (x - x_0)^{2n+1} + o((x - x_0)^{2n+1})$$

Знак $f(x) - f(x_0)$ зависит от знака $x - x_0$, поэтому в точке x_0 не может быть локального экстремума.

8.7.2Наименьшее и наибольшее значения функции

Минимальное и максимальное значения функции на некотором отрезке не всегда находятся в точках экстремума. Для того, чтобы найти эти значения, необходимо вычислить значения функции в критических и граничных точках и выбрать среди них наименьшее и наибольшее.

8.7.3 Выпуклость функции

Кривая называется выпуклой, или выпуклой вверх, в точке, если в некоторой окрестности данной точки касательная к кривой в этой точке находится выше этой кривой.

Кривая называется вогнутой, или выпуклой вниз, в точке, если в некоторой окрестности данной точки касательная к кривой в этой точке находится ниже этой кривой.

Теорема 8.7.3. Пусть дана функция f(x). Если $f''(x_0) < 0$, то кривая, задаваемая уравнением y == f(x), выпукла в точке x_0 . Если же $f''(x_0) > 0$, то эта кривая вогнута в точке x_0 .

Доказательство. Касательная к кривой в точке $(x_0, f(x_0))$ задаётся уравнением y = g(x), где

$$g(x) = f(x_0) + f'(x_0)(x - x_0)$$

По формуле Тейлора

$$f(x) = f(x_0) + f'(x_0)(x - x_0) + \frac{1}{2}f''(x_0)(x - x_0)^2 + o((x - x_0)^2)$$

Тогла

$$f(x) - g(x) = \frac{1}{2}f''(x_0)(x - x_0)^2 + o((x - x_0)^2)$$

Т. о., знак разности f(x) - g(x) совпадает со знаком $f''(x_0)$.

- При $f''(x_0) < 0$ получим f(x) < g(x) в некоторой окрестности точки x_0 , значит, кривая выпукла.
- При $f''(x_0) > 0$ получим f(x) > g(x) в некоторой окрестности точки x_0 , значит, кривая вогнута.

Пусть f(x) — функция. Если $f''_-(x_0) \cdot f''_+(x_0) \leqslant 0$, то точка x_0 называется **точкой перегиба**.

8.7.4 Асимптоты

Прямая называется асимптотой кривой, если расстояние от переменной точки кривой до данной прямой при удалении этой точки в бесконечность стремится к нулю. Если указанное расстояние стремится к нулю при $x \to \infty$, то такая асимптота называется **наклонной**, а если при $y \to \infty$, то **вертикальной**. Если наклонная асимптота задаётся уравнением y = b, то она называется **горизон**тальной.

Теорема 8.7.4. Кривая, задаваемая уравнением y = f(x), имеет наклонную асимптоту, задаваемую уравнением y=kx+b, если $\lim_{x\to\infty}\frac{f(x)}{x}=k$ и $\lim_{x\to\infty}(f(x)-kx)=b.$ Доказательство. Из определения наклонной асимптоты $f(x)-(kx+b)=\alpha(x),$ где $\alpha(x)$ — беско-

нечно малая при $x \to \infty$. Тогда

$$\lim_{x \to \infty} \frac{f(x)}{x} = \lim_{x \to \infty} \left(k + \frac{b}{x} + \frac{\alpha(x)}{x} \right) = k, \ \lim_{x \to \infty} (f(x) - kx) = \lim_{x \to \infty} (b + \alpha(x)) = b$$

8.8 Функции нескольких переменных

Функцией от n **переменных** называется функция $f: D \to E$, где $D \subseteq \mathbb{R}^n$, $E \subseteq \mathbb{R}$, и обозначается $f(\overline{x})$, или $f(x_1, x_2, \dots, x_n)$.

Расстоянием между точками $\overline{a}=(a_1,\ldots,a_n)$ и $\overline{b}=(b_1,\ldots,b_n)$ называется величина

$$\rho(\overline{a}, \overline{b}) = \sqrt{\sum_{i=0}^{n} (a_i - b_i)^2}$$

8.8.1 Предел функции нескольких переменных

Число a называется пределом функции $f(\overline{x})$ в точке \overline{x}_0 , если

$$\forall \varepsilon > 0 \ \exists \delta > 0 \colon (\forall \overline{x} \colon \rho(\overline{x}, \overline{x}_0) < \delta) \ |f(\overline{x}) - a| < \varepsilon$$

Для вычисления предела функции двух переменных удобно перейти в полярные координаты, трёх переменных — в сферические.

8.8.2 Непрерывность функции нескольких переменных

Функция $f(\overline{x})$ называется **непрерывной в точке** \overline{x}_0 , если $\lim_{
ho(\overline{x},\overline{x}_0)\to 0} f(\overline{x}) = f(\overline{x}_0)$.

Функция $f(\overline{x})$ называется **непрерывной на множестве**, если она непрерывна в каждой точке этого множества.

8.8.3 Дифференцируемость функции нескольких переменных

Функция $f(x_1, \dots, x_n)$ называется дифференцируемой в точке $\overline{x}_0 = (x_{10}, \dots, x_{n0})$, если

$$\exists (a_1, \dots, a_n) \colon \forall \Delta \overline{x} = (\Delta x_1, \dots, \Delta x_n) \ f(\overline{x}_0 + \Delta \overline{x}) - f(\overline{x}_0) = a_1 \Delta x_1 + \dots + a_n \Delta x_n + o(\rho(\overline{x}_0 + \Delta \overline{x}, \overline{x}_0))$$

Матрица $||a_1 \ a_2 \ \dots \ a_n||$, состоящая из одной строки, называется **производной матрицей**. Пусть функция $f(x_1, \dots, x_n)$ дифференцируема в точке $\overline{x}_0 = (x_{10}, \dots, x_{n0})$, $\Delta \overline{x} = (0, \dots, 0, \Delta x_k, 0, \dots, 0)$, тогда

$$\rho(\overline{x}_0 + \Delta \overline{x}, \overline{x}_0) = |\Delta x_k|, \ f(\overline{x}_0 + \Delta \overline{x}) - f(\overline{x}_0) = a_k \Delta x_k + o(|\Delta x_k|)$$

Это означает, что функция $g(x)=f(x_{10},\ldots,x_{k-1\,0},x_k,x_{k+1\,0},\ldots,x_{n0})$ дифференцируема в точке x_{k0} и $a_k=g'(x_{k0}).$ g(x) называется **частной производной функции** $f(\overline{x})$ и обозначается $\frac{\partial f}{\partial x_k}$, или $f'_{x_k}(\overline{x})$. Т. о., производная матрица функции $f(\overline{x})$ имеет вид $(f'_{x_1},f'_{x_2},\ldots,f'_{x_n})$.

Следует обратить внимание, что обозначение $\frac{\partial f}{\partial x_k}$ следует понимать как цельный символ, а не как отношение некоторых величин. Например, $\frac{\partial f}{\partial x} \cdot \frac{\partial x}{\partial t} \neq \frac{\partial f}{\partial t}$. Существование частных производных функции в некоторой точке не является достаточным усло-

Существование частных производных функции в некоторой точке не является достаточным условием дифференцируемости этой функции в данной точке. Например, функция $f(x,y) = \begin{cases} 0, & xy = 0 \\ 1, & xy \neq 0 \end{cases}$ имеет частные производные в точке (0,0): $f_x'(0,0) = f_y'(0,0) = 0$, — однако не является дифференцируемой в этой точке, т. к., очевидно, терпит в ней разрыв.

Частная производная $f_1(x_1,\ldots,x_n)=f'_{x_k}$ функции $f(x_1,\ldots,x_n)$ также является функцией. Частная производная f'_{1x_l} называется **частной производной функции** $f(\overline{x})$ **второго порядка** и обозначается $f''_{x_kx_l}=\frac{\partial^2 f}{\partial x_k\partial x_l}$. При этом, если $k\neq l$, то такая производная называется **смешанной**. Частные производные большего порядка определяются по индукции.

Теорема 8.8.1 (Шварца). Пусть дана функция $f(x_1, \ldots, x_n)$. Если $f''_{x_i x_j}$ и $f''_{x_j x_i}$ непрерывны, то $f''_{x_i x_j} = f''_{x_j x_i}$.

Дифференциалом функции $f(\overline{x})$ в точке \overline{x}_0 называется величина $\sum_{k=1}^n f'_{x_k}(\overline{x}_0) dx_k$, являющаяся

линейной частью приращения функции и обозначаемая $df(\overline{x}_0)$. По аналогии с частными производными произвольного порядка вводятся дифференциалы произвольного порядка.

Формулу Тейлора можно обобщить на случай нескольких переменных:

$$f(\overline{x}) - f(\overline{x}_0) = df(\overline{x}_0) + \frac{d^2 f(\overline{x}_0)}{2!} + \frac{d^3 f(\overline{x}_0)}{3!} + \dots + \frac{d^n f(\overline{x}_0)}{n!} + o(\rho(\overline{x}, \overline{x}_0))$$

$$(8.3)$$

Пусть функция $f(x_1,\ldots,x_n)$ дифференцируема в точке $\overline{x}_0, \ \overline{e}=(e_1,\ldots,e_n)$ — единичный вектор. Производной функции $f(\overline{x})$ по направлению \overline{e} называется величина

$$\frac{\partial f}{\partial \overline{e}} = \sum_{i=1}^{n} \frac{\partial f}{\partial x_i} \cdot e_i$$

Градиентом функции $f(x_1,\ldots,x_n)$, дифференцируемой в точке \overline{x}_0 , называется вектор grad $f=(f'_{x_1}(\overline{x}_0),\ldots,f'_{x_n}(\overline{x}_0))$.

8.8.4 Экстремумы функции нескольких переменных

Точка $\overline{x}_0 = (x_{10}, \dots, x_{n0})$ называется **точкой локального минимума функции** $f(\overline{x}) = f(x_1, \dots, x_n)$, если существует проколотая окрестность $\check{U}(\overline{x}_0)$: $\forall \overline{x} \in \check{U}(\overline{x}_0)$ $f(\overline{x}) > f(\overline{x}_0)$.

Точка $\overline{x}_0 = (x_{10}, \dots, x_{n0})$ называется **точкой локального максимума функции** $f(\overline{x}) = f(x_1, \dots, x_n)$, если существует проколотая окрестность $\check{U}(\overline{x}_0)$: $\forall \overline{x} \in \check{U}(\overline{x}_0)$ $f(\overline{x}) < f(\overline{x}_0)$.

Точки локального минимума и максимума называются точками локального экстремума.

Теорема 8.8.2. В точке локального экстремума частные производные функции равны нулю или не существуют.

Доказательство. Пусть $\overline{x}_0 = (x_{10}, \dots, x_{n0})$ — точка локального экстремума функции $f(\overline{x})$, дифференцируемой в точке \overline{x}_0 . Рассмотрим $g(x) = f(x_{10}, \dots, x_{k-10}, x, x_{k+10}, \dots, x_{n0})$. \overline{x}_0 — точка экстремума $f(\overline{x})$, тогда x_{k0} — точка экстремума g(x), значит, $g'(x_{k0}) = 0$ или не существует. Тогда $f'_{x_k}(\overline{x}_0) = 0$ или не существует.

Теорема 8.8.3. Пусть дана функция f(x,y). Если

- $f'_x(x_0, y_0) = f'_y(x_0, y_0) = 0$
- $(f_{xy}''(x_0, y_0))^2 f_{xx}''(x_0, y_0)f_{yy}''(x_0, y_0) < 0$

то (x_0, y_0) — точка локального экстремума f(x, y).

- 1. (x_0, y_0) точка локального минимума, если $f''_{xx}(x_0, y_0) > 0$ или $f''_{yy}(x_0, y_0) > 0$.
- 2. (x_0,y_0) точка локального максимума, если $f''_{xx}(x_0,y_0)<0$ или $f''_{yy}(x_0,y_0)<0$.

Доказательство. По формуле Тейлора

$$f(x,y) - f(x_0, y_0) = f(x_0, y_0) + df(x_0, y_0) + \frac{1}{2}d^2f(x_0, y_0) + o(\rho^2((x, y), (x_0, y_0))) - f(x_0, y_0) =$$

$$= \frac{1}{2}d^2f(x_0, y_0) + o(\rho^2((x, y), (x_0, y_0)))$$

значит, $f(x,y) - f(x_0,y_0)$ сохраняет знак, если $d^2 f(x_0,y_0)$ сохраняет знак.

$$d^{2}f(x_{0}, y_{0}) = f''_{xx}(x_{0}, y_{0})dx^{2} + 2f''_{xy}(x_{0}, y_{0})dxdy + f''_{yy}(x_{0}, y_{0})dy^{2} =$$

$$= \left(f''_{xx}(x_{0}, y_{0}) + 2f''_{xy}(x_{0}, y_{0})\frac{dy}{dx} + f''_{yy}(x_{0}, y_{0})\left(\frac{dy}{dx}\right)^{2}\right)dx^{2}$$

Т. о., (x_0, y_0) — точка локального экстремума f(x, y), если $d^2 f(x_0, y_0)$ сохраняет знак, т. е. при

$$(f_{xy}''(x_0, y_0))^2 - f_{xx}''(x_0, y_0)f_{yy}''(x_0, y_0) < 0$$

$$(f_{xy}''(x_0, y_0))^2 - f_{xx}''(x_0, y_0) f_{yy}''(x_0, y_0) < 0 \Leftrightarrow$$

$$\Leftrightarrow f_{xx}''(x_0, y_0) f_{yy}''(x_0, y_0) > (f_{xy}''(x_0, y_0))^2 \Rightarrow f_{xx}''(x_0, y_0) f_{yy}''(x_0, y_0) > 0$$

значит, $f''_{xx}(x_0,y_0)$ и $f''_{yy}(x_0,y_0)$ одного знака.

- 1. Если $f_{xx}''(x_0,y_0)>0$ или $f_{yy}''(x_0,y_0)>0\Rightarrow d^2f(x_0,y_0)>0$, тогда (x_0,y_0) точка локального минимума.
- 2. Если $f_{xx}''(x_0,y_0)<0$ или $f_{yy}''(x_0,y_0)<0\Rightarrow d^2f(x_0,y_0)<0$, тогда (x_0,y_0) точка локального максимума.

Теорема 8.8.4. Пусть дана функция $f(\overline{x}) = f(x_1, \dots, x_n)$. Точка $\overline{x}_0 = (x_{10}, \dots, x_{n0})$ — точка локального экстремума $f(\overline{x})$, если

1.
$$f'_{x_1}(\overline{x}_0) = \ldots = f'_{x_n}(\overline{x}_0) = 0$$

- 2. $\sum_{\substack{i=\overline{1,n}\\j=\overline{1,n}}}f_{x_ix_j}''(\overline{x}_0)dx_idx_j$ сохраняет знак.
- 1. \overline{x}_0 точка локального минимума, если $\sum_{\substack{i=\overline{1,n}\\j=\overline{1,n}}}f''_{x_ix_j}(\overline{x}_0)dx_idx_j>0.$
- 2. $\overline{x_0}$ точка локального максимума, если $\sum_{\substack{i=\overline{1,n}\\j=\overline{1,n}}}f''_{x_ix_j}(\overline{x}_0)dx_idx_j<0.$

Доказательство. По формуле Тейлора

$$f(\overline{x}) - f(\overline{x}_0) = f(\overline{x}_0) + df(\overline{x}_0) + \frac{d^2 f(\overline{x}_0)}{2!} + o(\rho^2(\overline{x}, \overline{x}_0)) - f(\overline{x}_0) = \frac{d^2 f(\overline{x}_0)}{2!} + o(\rho^2(\overline{x}, \overline{x}_0))$$

значит, $f(\overline{x}) - f(\overline{x}_0)$ сохраняет знак, если $d^2 f(\overline{x}_0)$ сохраняет знак.

$$d^{2}f(\overline{x}_{0}) = \sum_{\substack{i=\overline{1,n}\\j=\overline{1,n}}} f''_{x_{i}x_{j}}(\overline{x}_{0})dx_{i}dx_{j}$$

- 1. Если $\sum_{\substack{i=\overline{1},\overline{n}\\j=\overline{1},\overline{n}}}f_{x_ix_j}''(\overline{x}_0)dx_idx_j>0 \Leftrightarrow d^2f(\overline{x}_0)>0,$ то \overline{x}_0 точка локального минимума.
- 2. Если $\sum_{\substack{i=\overline{1},n\\j=\overline{1},n}}f_{x_ix_j}''(\overline{x}_0)dx_idx_j<0 \Leftrightarrow d^2f(\overline{x}_0)<0$, то \overline{x}_0 точка локального максимума.

При практическом применении теоремы 8.8.4 полезен критерий Сильвестра.

Метод наименьших квадратов

Пусть даны точки x_1, \ldots, x_n и требуется найти аппроксимирующую прямую для значений некоторой функции f(x) в этих точках. Уравнение прямой — y = Ax + B. Найдём точку, в которой сумма

$$S(A,B) = \sum_{i=1}^{n} (Ax_i + B - f(x_i))^2$$

принимает наименьшее значение.

$$S'_{A} = \sum 2x_{i}(Ax_{i} + B - f(x_{i}))$$

$$S'_{B} = \sum 2(Ax_{i} + B - f(x_{i}))$$

$$\begin{cases} S'_{A} = 0 \\ S'_{B} = 0 \end{cases} \Leftrightarrow \begin{cases} A \sum_{i} x_{i}^{2} + B \sum_{i} x_{i} = \sum_{i} x_{i} f(x_{i}) \\ A \sum_{i} x_{i} + Bn = \sum_{i} f(x_{i}) \end{cases} \Leftrightarrow$$

$$\Leftrightarrow \begin{cases} \left(n \sum_{i} x_{i}^{2} - \left(\sum_{i} x_{i}\right)^{2}\right) A = n \sum_{i} x_{i} f(x_{i}) - \sum_{i} x_{i} \sum_{i} f(x_{i}) \\ Bn = \sum_{i} f(x_{i}) - A \sum_{i} x_{i} \end{cases}$$

$$\Leftrightarrow \begin{cases} A = \frac{n \sum_{i} x_{i} f(x_{i}) - \sum_{i} x_{i} \sum_{i} f(x_{i})}{n \sum_{i} x_{i}^{2} - \left(\sum_{i} x_{i}\right)^{2}} \\ B = \frac{\sum_{i} x_{i}^{2} \sum_{i} f(x_{i}) - \sum_{i} x_{i} \sum_{i} x_{i} f(x_{i})}{n \sum_{i} x_{i}^{2} - \left(\sum_{i} x_{i}\right)^{2}} \end{cases}$$

Найденные значения A и B — искомые коэффициенты в уравнении аппроксимирующей прямой. Для оценки точности аппроксимации можно найти коэффициент корреляции по формуле

$$r = \sqrt{\frac{\sum (f(x_i) - \tilde{y})^2 - \sum (f(x_i) - \tilde{y_i})^2}{\sum (f(x_i) - \tilde{y})^2}} = \sqrt{1 - \frac{\sum (f(x_i) - \tilde{y_i})^2}{\sum (f(x_i) - \tilde{y})^2}}$$

где $\tilde{y} = \frac{1}{n} \sum f(x_i)$, $\tilde{y_i} = Ax_i + B$, а значение коэффициента r тем ближе к единице, чем точнее аппроксимация.

Метод множителей Лагранжа

Пусть дана функция $f(x_1,...,x_n)$, переменные которой удовлетворяют условиям

$$\begin{cases} g_1(x_1, \dots, x_n) = 0 \\ \vdots \\ g_m(x_1, \dots, x_n) = 0 \end{cases}$$

Для нахождения её экстремумов (называемых условными) введём функцию Лагранжа

$$L(x_1,\ldots,x_n,\lambda_1,\ldots,\lambda_m)=f(x_1,\ldots,x_n)+\lambda_1g_1(x_1,\ldots,x_n)+\ldots+\lambda_mg_m(x_1,\ldots,x_n)$$

и исследуем её. Её экстремумы являются условными экстремумами функции f.

8.9 Функции двух и трёх переменных

8.9.1 Геометрическая интерпретация частных производных функции двух переменных

Пусть функция f(x,y) имеет частные производные в точке (x_0,y_0) . Пересечением плоскости $x=x_0$ с поверхностью z=f(x,y) является кривая $z=f(x_0,y)$. Т. о., значение $f_y'(x_0,y_0)$ равно тангенсу угла между касательной к кривой $z=f(x_0,y)$ в точке (x_0,y_0) и положительным направлением оси Oy, а направляющий вектор этой касательной имеет координаты $(0,1,f_y'(x_0,y_0))$.

Аналогичный геометрический смысл имеет частная производная f'_x .

8.9.2 Уравнение касательной плоскости к поверхности

Поверхность, заданная явно

Пусть поверхность задана уравнением z = f(x,y). Проведём через точку $(x_0,y_0,f(x_0,y_0))$ такую плоскость, что векторы $(0,1,f_y'(x_0,y_0))$ и $(1,0,f_x'(x_0,y_0))$ лежат в ней. Эта плоскость называется касательной. Найдём вектор (A,B,C), перпендикулярный этим векторам, а значит, и проведённой плоскости:

$$\begin{cases} B + Cf'_y(x_0, y_0) = 0 \\ A + Cf'_x(x_0, y_0) = 0 \end{cases} \Leftrightarrow \begin{cases} A = -Cf'_x(x_0, y_0) \\ B = -Cf'_y(x_0, y_0) \end{cases}$$

Вектор $(f'_x(x_0, y_0), f'_y(x_0, y_0), -1)$ перпендикулярен проведённой плоскости, тогда её уравнение

$$f'_x(x_0, y_0)(x - x_0) + f'_y(x_0, y_0)(y - y_0) - (z - f(x_0, y_0)) = 0 \Leftrightarrow z = f(x_0, y_0) + f'_x(x_0, y_0)(x - x_0) + f'_y(x_0, y_0)(y - y_0)$$

$$(8.4)$$

Поверхность, заданная параметрически

Пусть поверхность задана функцией f(u,v)=(x(u,v),y(u,v),z(u,v)), а в точке (x_0,y_0,z_0) к ней проведена касательная плоскость, причём $\frac{\partial(x,y)}{\partial(u,v)}\neq 0$. Тогда $\exists u_0,v_0\colon x(u_0,v_0)=x_0,y(u_0,v_0)=y_0$.

Имеем явное и параметрическое задание одной и той же поверхности: z(u,v)=z(x(u,v),y(u,v)). Рассматривая производные матрицы этих функций, получим:

$$||z'_{u} \quad z'_{v}|| = ||z'_{x} \quad z'_{y}|| \cdot ||x'_{u} \quad x'_{v}|| \Rightarrow \begin{cases} z'_{u} = z'_{x}x'_{u} + z'_{y}y'_{u} \\ z'_{v} = z'_{x}x'_{v} + z'_{y}y'_{v} \end{cases}$$

Решая систему относительно z_x' и z_y' , получим

$$z_{x}'(x_{0}, y_{0}) = \frac{\frac{\partial(z, y)}{\partial(u, v)}\Big|_{(u_{0}, v_{0})}}{\frac{\partial(z, y)}{\partial(u, v)}\Big|_{(u_{0}, v_{0})}} = -\frac{\frac{\partial(y, z)}{\partial(u, v)}\Big|_{(u_{0}, v_{0})}}{\frac{\partial(z, y)}{\partial(u, v)}\Big|_{(u_{0}, v_{0})}}, \ z_{y}'(x_{0}, y_{0}) = \frac{\frac{\partial(z, z)}{\partial(u, v)}\Big|_{(u_{0}, v_{0})}}{\frac{\partial(z, y)}{\partial(u, v)}\Big|_{(u_{0}, v_{0})}} = -\frac{\frac{\partial(z, z)}{\partial(u, v)}\Big|_{(u_{0}, v_{0})}}{\frac{\partial(z, y)}{\partial(u, v)}\Big|_{(u_{0}, v_{0})}}$$

Подставим полученные значения в уравнение (8.4) и получим уравнение касательной плоскости:

$$z = z_0 - \frac{\frac{\partial(y,z)}{\partial(u,v)}\Big|_{(u_0,v_0)}}{\frac{\partial(x,y)}{\partial(u,v)}\Big|_{(u_0,v_0)}} (x - x_0) - \frac{\frac{\partial(z,x)}{\partial(u,v)}\Big|_{(u_0,v_0)}}{\frac{\partial(x,y)}{\partial(u,v)}\Big|_{(u_0,v_0)}} (y - y_0) \Leftrightarrow$$

$$\Leftrightarrow \frac{\partial(y,z)}{\partial(u,v)}\Big|_{(u_0,v_0)} (x - x_0) + \frac{\partial(z,x)}{\partial(u,v)}\Big|_{(u_0,v_0)} (y - y_0) + \frac{\partial(x,y)}{\partial(u,v)}\Big|_{(u_0,v_0)} (z - z_0)$$

8.10 Вектор-функции

Вектор-функцией размерности m называется функция $f\colon D\to E$, где $D\subseteq \mathbb{R}^n, \ E\subseteq \mathbb{R}^m,$ и обозначается $f(\overline{x})=(f_1(\overline{x}),f_2(\overline{x}),\ldots,f_m(\overline{x})).$ f_1,\ldots,f_m называются координатными функциями.

8.10.1 Дифференцируемость вектор-функции

Вектор-функция $f(x_1,\ldots,x_n)=(f_1(\overline{x}),f_2(\overline{x}),\ldots,f_m(\overline{x}))$ называется дифференцируемой в точке $\overline{x}_0=(x_{10},\ldots,x_{n0}),$ если

$$\exists A = \begin{vmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{vmatrix} : \forall \Delta \overline{x} = (\Delta x_1, \dots, \Delta x_n) \begin{vmatrix} f_1(\overline{x}_0 + \Delta \overline{x}) - f_1(\overline{x}_0) \\ f_2(\overline{x}_0 + \Delta \overline{x}) - f_2(\overline{x}_0) \\ \vdots \\ f_m(\overline{x}_0 + \Delta \overline{x}) - f_m(\overline{x}_0) \end{vmatrix} = A \cdot \begin{vmatrix} \Delta x_1 \\ \Delta x_2 \\ \vdots \\ \Delta x_n \end{vmatrix} + \begin{vmatrix} \alpha_1 \\ \alpha_2 \\ \vdots \\ \alpha_m \end{vmatrix},$$

$$\lim_{\rho(\overline{x}_0 + \Delta \overline{x}, \overline{x}_0) \to 0} \frac{\sqrt{\alpha_1^2 + \alpha_2^2 + \ldots + \alpha_m^2}}{\rho(\overline{x}_0 + \Delta \overline{x}, \overline{x}_0)} = 0$$

Матрица A называется **производной матрицей**, или **матрицей Яко́би**, и состоит из значений всех частных производных всех координатных функций в данной точке:

$$A = \begin{pmatrix} f'_{1\,x_{1}}(\overline{x}_{0}) & f'_{1\,x_{2}}(\overline{x}_{0}) & \cdots & f'_{1\,x_{n}}(\overline{x}_{0}) \\ f'_{2\,x_{1}}(\overline{x}_{0}) & f'_{2\,x_{2}}(\overline{x}_{0}) & \cdots & f'_{2\,x_{n}}(\overline{x}_{0}) \\ \vdots & \vdots & \ddots & \vdots \\ f'_{m\,x_{1}}(\overline{x}_{0}) & f'_{m\,x_{2}}(\overline{x}_{0}) & \cdots & f'_{m\,x_{n}}(\overline{x}_{0}) \end{pmatrix}$$

Если $f(x_1,\ldots,x_n)$ — вектор-функция размерности n, дифференцируемая в точке \overline{x}_0 , то **якобианом** называется определитель её производной матрицы и обозначается $\left.\frac{\partial f}{\partial \overline{x}}\right|_{\overline{x}_0}$.

8.10.2 Суперпозиция вектор-функций

Пусть $f(x_1,...,x_n)$ и $g(x_1,...,x_k)-m$ -мерная и n-мерная вектор-функции соответственно, тогда их суперпозицией называется вектор-функция $h(x_1,...,x_k)=f(g_1(\overline{x}),...,g_n(\overline{x}))$.

Теорема 8.10.1. Если $f(\overline{x})$ и $g(\overline{x})$ дифференцируемы в точках $g(\overline{x}_0)$ и \overline{x}_0 соответственно и имеют в этих точках производные матрицы A и B соответственно, то $h(\overline{x})$ дифференцируема в точке \overline{x}_0 и имеет в ней производную матрицу AB.

8.11 Неопределённый интеграл

Первообразной функции f(x) называется функция $F(x)\colon F'(x)=f(x).$

Теорема 8.11.1. Если F'(x) = G'(x) = f(x), то F(x) - G(x) = C, где C — некоторая константа.

Доказательство. Пусть H(x) = F(x) - G(x), тогда по теореме Лагранжа

$$H(b) - H(a) = H'(c)(b - a) = 0 \Rightarrow H(b) - H(a) = (F'(c) - G'(c))(b - a) = 0 \Rightarrow H(x) = C$$

Множество всех первообразных функции f(x) называется **неопределённым интегралом** и обозначается $\int f(x) \, dx = F(x) + C$, где F(x) — первообразная f(x), C — произвольная константа. f(x) называется подынтегральной функцией, а $f(x) \, dx$ — подынтегральным выражением.

8.11.1 Свойства неопределённого интеграла

Пусть C — произвольная константа.

- 1. Пусть F(x) первообразная функции f(x), тогда $d\left(\int f(x)\,dx\right) = f(x)\,dx$.
- 2. $\int dF(x) = F(x) + C$.
- 3. $\int (f(x) + g(x)) dx = \int f(x) dx + \int g(x) dx$.

Доказательство. Пусть F'(x) = f(x), G'(x) = g(x), тогда (F(x) + G(x))' = f(x) + g(x). Получим:

$$\int f(x) dx + \int g(x) dx = F(x) + C_1 + G(x) + C_2 = (F(x) + G(x)) + C = \int (f(x) + g(x)) dx$$

4. $\int af(x) dx = a \int f(x) dx$.

Доказательство. Пусть F'(x) = f(x), тогда (aF(x))' = af(x). Получим:

$$a \int f(x) dx = a(F(x) + C_1) = aF(x) + C = \int af(x) dx$$

5. Если $\int f(x) dx = F(x) + C$, u(x) — дифференцируемая функция, то $\int f(u) du = F(u) + C$.

Пусть u(x) и v(x) — дифференцируемые функции. Существует **метод интегрирования по частям**, использующий следующее свойство: $\int uv' \, dx = uv - \int u'v \, dx$.

Доказательство.

$$d(uv) = du\,v + u\,dv \Rightarrow \int d(uv) = \int du\,v + u\,dv \Rightarrow uv + C = \int du\,v + \int u\,dv \Rightarrow \int uv'\,dx = u\,v - \int u'v\,dx$$

8.11.2 Таблица первообразных

•
$$\int x^n dx = \frac{x^{n+1}}{n+1} + C, \ n \neq -1$$

$$\bullet \int \frac{dx}{x+a} = \ln|x+a| + C$$

Доказательство.

$$(\ln|x+a|+C)' = (\ln\sqrt{(x+a)^2})' = \frac{1}{|x+a|} \cdot \frac{1}{2\sqrt{(x+a)^2}} \cdot 2(x+a) = \frac{1}{x+a}$$

$$\bullet \int \frac{dx}{x^2 + a^2} = \frac{1}{a} \arctan \frac{x}{a} + C, \ a > 0$$

Доказательство.

$$\int \frac{dx}{x^2 + a^2} = \frac{1}{a^2} \int \frac{dx}{1 + \left(\frac{x}{a}\right)^2} = \frac{1}{a} \int \frac{d\left(\frac{x}{a}\right)}{1 + \left(\frac{x}{a}\right)^2} = \frac{1}{a} \arctan \frac{x}{a} + C$$

• Т. н. «высокий логарифм»:
$$\int \frac{dx}{x^2-a^2} = \frac{1}{2a} \ln \left| \frac{x-a}{x+a} \right| + C, \ a>0$$

Доказательство

$$\int \frac{dx}{x^2 - a^2} = \int \frac{dx}{2a(x - a)} - \int \frac{dx}{2a(x + a)} = \frac{1}{2a} ((\ln|x - a| + C_1) - (\ln|x + a| + C_2)) = \frac{1}{2a} \ln\left|\frac{x - a}{x + a}\right| + C_2$$

•
$$\int \frac{x}{x^2 + a} dx = \frac{1}{2} \ln|x^2 + a| + C, \ a \neq 0$$

Доказательство.

$$\int \frac{x}{x^2 + a} dx = \frac{1}{2} \int \frac{d(x^2 + a)}{x^2 + a} = \frac{1}{2} \ln|x^2 + a| + C$$

• Т. н. «длинный логарифм»:
$$\int \frac{dx}{\sqrt{x^2+a}} = \ln \left| x + \sqrt{x^2+a} \right| + C, \ a \neq 0$$

Доказательство. Пусть $k = \sqrt{|a|}$.

1. Пусть $a < 0, x = \frac{k}{\sin t}$.

$$\int \frac{dx}{\sqrt{x^2 - k^2}} = -\int \frac{\cos t}{\sin^2 t \cdot \sqrt{\frac{1}{\sin^2 t} - 1}} dt = -\int \frac{dt}{\sin t} = \int \frac{d(\cos t)}{1 - \cos^2 t} = -\frac{1}{2} \ln \left| \frac{\cos t - 1}{\cos t + 1} \right| + C_1 =$$

$$= -\frac{1}{2} \ln \left| \frac{\cos^2 t - 1}{\cos^2 t + 1 + 2\cos t} \right| + C_1 = \left| x = \frac{k}{\sin t} \Rightarrow \sqrt{1 - \cos^2 t} = \frac{k}{x} \Rightarrow \cos^2 t = 1 - \frac{k^2}{x^2} \right|$$

$$= -\frac{1}{2} \ln \left| \frac{-\frac{k^2}{x^2}}{-\frac{k^2}{x^2} + 2 + 2\sqrt{1 - \frac{k^2}{x^2}}} \right| + C_1 = \frac{1}{2} \ln \left| 1 - \frac{2x^2}{k^2} - \frac{2x}{k^2} \sqrt{x^2 - k^2} \right| + C_1 =$$

$$= \frac{1}{2} \ln \frac{1}{k^2} \left| 2x^2 + 2x\sqrt{x^2 + a} + a \right| + C_1 = \frac{1}{2} \ln \left| x^2 + 2x\sqrt{x^2 + a} + (x^2 + a) \right| + C =$$

$$= \ln \left| x + \sqrt{x^2 + a} \right| + C$$

2. Пусть a > 0, $x = k \operatorname{tg} t$

$$\int \frac{dx}{\sqrt{x^2 + k^2}} = \int \frac{dt}{\cos^2 t \cdot \sqrt{tg^2 t + 1}} = \int \frac{dt}{\cos t} = \int \frac{d(\sin t)}{1 - \sin^2 t} = -\frac{1}{2} \ln \left| \frac{\sin t - 1}{\sin t + 1} \right| + C_1 =$$

$$= -\frac{1}{2} \ln \left| \frac{\sin^2 t - 1}{\sin^2 t + 1 + 2 \sin t} \right| + C_1 =$$

$$\left| x = k \operatorname{tg} t \Rightarrow \sqrt{\frac{1}{\cos^2 t} - 1} = \frac{x}{k} \Rightarrow \cos^2 t = \frac{k^2}{x^2 + k^2} \Leftrightarrow \sin^2 t = \frac{x^2}{x^2 + k^2} \right|$$

$$= -\frac{1}{2} \ln \left| \frac{-\frac{k^2}{x^2 + k^2}}{\frac{2x^2 + k^2}{x^2 + k^2}} + 2\sqrt{\frac{x^2}{x^2 + k^2}} \right| + C_1 = \frac{1}{2} \ln \frac{1}{k^2} \left| 2x^2 + k^2 + 2x\sqrt{x^2 + k^2} \right| + C_1 =$$

$$= \frac{1}{2} \ln \left| x^2 + 2x\sqrt{x^2 + a} + (x^2 + a) \right| + C = \ln \left| x + \sqrt{x^2 + a} \right| + C$$

• $\int \frac{dx}{\sqrt{a^2 - x^2}} = \arcsin \frac{x}{a} + C, \ a > 0$

Доказательство. Пусть $x = a \sin t$, тогда

$$\int \frac{dx}{\sqrt{a^2 - x^2}} = a \int \frac{\cos t}{a\sqrt{1 - \sin^2 t}} dt = \int dt = t + C = \arcsin \frac{x}{a} + C$$

• $\int \frac{x}{\sqrt{a^2 + x^2}} dx = \pm \sqrt{a^2 \pm x^2} + C, \ a \neq 0$

Доказательство.

$$\int \frac{x}{\sqrt{a^2 \pm x^2}} dx = \pm \frac{1}{2} \int (a^2 \pm x^2)^{-\frac{1}{2}} d(a^2 \pm x^2) = \pm \sqrt{a^2 \pm x^2} + C$$

 $\bullet \int \ln x \, dx = x \ln x - x + C$

Доказательство

$$\int \ln x \, dx = \int \ln x \cdot 1 \cdot dx = x \ln x - \int \frac{x}{x} dx = x \ln x - x + C$$

 $\int \sin x \, dx = -\cos x + C$

 $\bullet \int \cos x \, dx = \sin x + C$

$$\bullet \int \frac{dx}{\cos^2 x} = \operatorname{tg} x + C$$

$$\bullet \int \frac{dx}{\sin^2 x} = -\operatorname{ctg} x + C$$

Доказательство.

$$\int \operatorname{tg} x \, dx = \int \frac{\sin x}{\cos x} dx = -\int \frac{d(\cos x)}{\cos x} = -\ln|\cos x| + C$$

Доказательство.

$$\int \operatorname{ctg} x \, dx = \int \frac{\cos x}{\sin x} dx = \int \frac{d(\sin x)}{\sin x} = \ln|\sin x| + C$$

•
$$\int \arcsin x \, dx = x \arcsin x + \sqrt{1 - x^2} + C$$

Доказательство.

$$\int \arcsin x = \int \arcsin x \cdot 1 \cdot dx = x \arcsin x - \int \frac{x}{\sqrt{1 - x^2}} dx =$$

$$= x \arcsin x + \frac{1}{2} \int (1 - x^2)^{-\frac{1}{2}} d(1 - x^2) = x \arcsin x + \sqrt{1 - x^2} + C$$

•
$$\int \arccos x \, dx = x \arccos x - \sqrt{1 - x^2} + C$$

Доказательство.

$$\int \arccos x = \int \arccos x \cdot 1 \cdot dx = x \arccos x + \int \frac{x}{\sqrt{1 - x^2}} dx =$$

$$= x \arccos x - \frac{1}{2} \int (1 - x^2)^{-\frac{1}{2}} d(1 - x^2) = x \arccos x - \sqrt{1 - x^2} + C$$

•
$$\int \arctan x \, dx = x \arctan x - \frac{1}{2} \ln|1 + x^2| + C$$

Доказательство.

$$\int \arctan x = \int \arctan x \cdot 1 \cdot dx = x \arctan x - \int \frac{x}{1+x^2} dx =$$

$$= x \arctan x - \frac{1}{2} \int \frac{d(1+x^2)}{1+x^2} = x \arctan x - \frac{1}{2} \ln|1+x^2| + C$$

•
$$\int \operatorname{arcctg} x \, dx = x \operatorname{arcctg} x + \frac{1}{2} \ln|1 + x^2| + C$$

Доказательство.

$$\int \operatorname{arcctg} x = \int \operatorname{arcctg} x \cdot 1 \cdot dx = x \operatorname{arcctg} x + \int \frac{x}{1+x^2} dx =$$

$$= x \operatorname{arcctg} x + \frac{1}{2} \int \frac{d(1+x^2)}{1+x^2} = x \operatorname{arcctg} x + \frac{1}{2} \ln|1+x^2| + C$$

8.11.3 Интегрирование простейших дробей

•
$$\int \frac{dx}{(x-a)^n} = \begin{cases} \frac{(x-a)^{1-n}}{1-n} + C, & n \neq 1\\ \ln|x-a| + C, & n = 1 \end{cases}$$

Доказательство

$$\int \frac{dx}{(x-a)^n} = \int (x-a)^{-n} d(x-a) = \frac{(x-a)^{1-n}}{1-n} + C, \ n \neq 1$$

• $\int \frac{x+a}{(x-b)^2+c^2} dx = \frac{1}{2} \ln((x-b)^2+c^2) + \frac{a+b}{c} \arctan \frac{x-b}{c} + C$

Доказательство.

$$\int \frac{x+a}{(x-b)^2 + c^2} dx \ |\Pi \text{усть } t = x-b \Rightarrow dt = dx| = \int \frac{t+b+a}{t^2 + c^2} dt =$$

$$= \int \frac{t}{t^2 + c^2} dt + (a+b) \int \frac{dt}{t^2 + c^2} = \frac{1}{2} \ln((x-b)^2 + c^2) + \frac{a+b}{c} \arctan \frac{x-b}{c} + C$$

Пусть
$$I_n = \int \frac{dx}{((x-b)^2 + c^2)^n}$$
, тогда

$$\int \frac{x+a}{((x-b)^2+c^2)^n} dx = (a+b)I_n - \frac{1}{2(n-1)((x-b)^2+c^2)^{n-1}}$$
$$I_n = \left(1 + \frac{1}{2(n-1)}\right) \frac{I_{n-1}}{c^2} + \frac{x-b}{2(n-1)c^2((x-b)^2+c^2)^{n-1}}$$

Доказательство.

$$\int \frac{x+a}{((x-b)^2+c^2)^n} dx \ |\Pi \text{усть } t = x-b \Rightarrow dt = dx| = \int \frac{t+b+a}{(t^2+c^2)^n} dt =$$

$$\int \frac{t}{(t^2+c^2)^n} dt + (a+b) \int \frac{dt}{(t^2+c^2)^n} = \frac{1}{2} \int (t^2+c^2)^{-n} d(t^2+c^2) + (a+b) \int \frac{dt}{(t^2+c^2)^n} = (8.5)$$

$$\left| \Pi \text{усть } I_n = \int \frac{dt}{(t^2+c^2)^n} \right| = \frac{(t^2+c^2)^{1-n}}{2(1-n)} + (a+b)I_n$$

Найдём I_n :

$$I_n = \frac{1}{c^2} \int \frac{(t^2 + c^2) - t^2}{(t^2 + c^2)^n} dt = \frac{I_{n-1}}{c^2} - \frac{1}{c^2} \int \frac{t^2}{(t^2 + c^2)^n} dt$$

Найдём $\int \frac{t^2}{(t^2+c^2)^n} dt$:

$$\int \frac{t^2}{(t^2+c^2)^n} dt = \left| \Pi \text{усть } u = t, v' = \frac{t}{(t^2+c^2)^n} \right|$$
$$= \frac{t(t^2+c^2)^{1-n}}{2(1-n)} - \int \frac{(t^2+c^2)^{1-n}}{2(1-n)} dt = \frac{t}{2(1-n)(t^2+c^2)^{n-1}} - \frac{I_{n-1}}{2(1-n)}$$

Тогда

$$I_n = \frac{I_{n-1}}{c^2} + \frac{1}{2(n-1)c^2} \left(\frac{t}{(t^2+c^2)^{n-1}} - I_{n-1} \right) = \left(1 + \frac{1}{2(n-1)} \right) \frac{I_{n-1}}{c^2} + \frac{t}{2(n-1)c^2(t^2+c^2)^{n-1}}$$

Получим рекуррентную формулу:

$$I_n = \left(1 + \frac{1}{2(n-1)}\right) \frac{I_{n-1}}{c^2} + \frac{x-b}{2(n-1)c^2((x-b)^2 + c^2)^{n-1}}$$

Используя (8.5), получим конечную формулу:

$$\int \frac{x+a}{((x-b)^2+c^2)^n} dx = \frac{(t^2+c^2)^{1-n}}{2(1-n)} + (a+b)I_n = (a+b)I_n - \frac{1}{2(n-1)((x-b)^2+c^2)^{n-1}}$$

8.11.4 Интегрирование дробно-рациональных выражений

Пусть $P_n(x)$ и $Q_m(x)$ — многочлены n-й и m-й степеней соответственно, n < m. По теореме 12.1.5 $Q_m(x)$ можно разложить на множители

$$Q_m(x) = \prod_{i=1}^{p} (x - a_i)^{\alpha_i} \cdot \prod_{i=1}^{q} ((x - b_i)^2 + c_i^2)^{\beta_i}$$

Тогда дробь $\frac{P_n(x)}{Q_m(x)}$ может быть представлена в виде суммы простейших дробей

$$\frac{P_n(x)}{Q_m(x)} = \sum_{i=1}^p \sum_{j=1}^{\alpha_i} \frac{A_{ij}}{(x-a_i)^j} + \sum_{i=1}^q \sum_{j=1}^{\beta_q} \frac{B_{ij}x + C_{ij}}{((x-b_i)^2 + c_i^2)^j}$$

Т.о., интегрирование дробно-рациональных выражений сводится к интегрированию простейших дробей и, в случае $n \ge m$, многочленов от переменной x.

8.11.5 Интегрирование тригонометрических выражений

Пусть $R(x_1,\ldots,x_n)=rac{P(x_1,\ldots,x_n)}{Q(x_1,\ldots,x_n)},$ где $P(\overline{x})$ и $Q(\overline{x})$ — многочлены.

- $\int R(\sin x) \cos^{2k+1} x \, dx = \int R(\sin x) (1 \sin^2 x)^k \, d(\sin x), \ k \in \mathbb{Z}$
- $\int R(\cos x) \sin^{2k+1} x \, dx = -\int R(\cos x) (1 \cos^2 x)^k \, d(\cos x), \ k \in \mathbb{Z}$

•
$$\int R(\sin^2 x, \cos^2 x) dx = \int \frac{R\left(\frac{\operatorname{tg}^2 x}{1 + \operatorname{tg}^2 x}, \frac{1}{1 + \operatorname{tg}^2 x}\right)}{1 + \operatorname{tg}^2 x} d(\operatorname{tg} x)$$

•
$$\int R(\operatorname{tg} x) dx = \int \frac{R(\operatorname{tg} x)}{1 + \operatorname{tg}^2 x} d(\operatorname{tg} x)$$

•
$$\int R(\sin x, \cos x) dx = \int \frac{2R\left(\frac{2 \operatorname{tg} \frac{x}{2}}{1 + \operatorname{tg}^2 \frac{x}{2}}, \frac{1 - \operatorname{tg}^2 \frac{x}{2}}{1 + \operatorname{tg}^2 \frac{x}{2}}\right)}{1 + \operatorname{tg}^2 \frac{x}{2}} d(\operatorname{tg} \frac{x}{2})$$

Т. о., интегрирование тригонометрических выражений сводится к интегрированию рациональных дробей.

8.11.6 Интегрирование квадратичных иррациональностей

Пусть
$$R(x_1,\ldots,x_n)=rac{P(x_1,\ldots,x_n)}{Q(x_1,\ldots,x_n)},$$
 где $P(\overline{x})$ и $Q(\overline{x})$ — многочлены.

$$\int R(x, \sqrt{ax^2 + bx + c}) dx = \int R\left(x, \sqrt{a(x + \frac{b}{2a})^2 + c - \frac{b^2}{4a}}\right) dx =$$

Пусть
$$y = x + \frac{b}{2a}$$
, $z = c - \frac{b^2}{4a} = \int R\left(y - \frac{b}{2a}, \sqrt{ay^2 + z}\right) dy$

Пусть $\alpha = \sqrt{|a|}, \, \beta = \sqrt{|z|}.$ Возможны три случая:

• Если
$$a>0,\,z>0$$

$$\int R\left(y-\frac{b}{2a},\sqrt{\alpha^2y^2+\beta^2}\right)\,dy = \left|\Pi \text{усть }y=\frac{\beta}{\alpha}\operatorname{tg}t\right|$$

$$=\frac{\beta}{\alpha}\int \frac{R\left(\frac{\beta}{\alpha}\operatorname{tg}t-\frac{b}{2a},\beta\sqrt{\operatorname{tg}^2t+1}\right)}{\cos^2t}dt = \frac{\beta}{\alpha}\int \frac{R\left(\frac{\beta\sin t}{\alpha\cos t}-\frac{b}{2a},\frac{\beta}{\cos t}\right)}{\cos^2t}dt$$

• Если
$$a>0,\,z<0$$

$$\int R\left(y-\frac{b}{2a},\sqrt{\alpha^2y^2-\beta^2}\right)\,dy = \left|\Pi\text{усть }y=\frac{\beta}{\alpha\sin t}\right|$$

$$=-\frac{\beta}{\alpha}\int \frac{R\left(\frac{\beta}{\alpha\sin t}-\frac{b}{2a},\beta\sqrt{\frac{1}{\sin^2 t}-1}\right)\cos t}{\sin^2 t}dt = -\frac{\beta}{\alpha}\int \frac{R\left(\frac{\beta}{\alpha\sin t}-\frac{b}{2a},\frac{\beta\cos t}{\sin t}\right)\cos t}{\sin^2 t}dt$$

• Если
$$a<0,\,z>0$$

$$\int R\left(y-\frac{b}{2a},\sqrt{-\alpha^2y^2+\beta^2}\right)\,dy = \left|\Pi\text{усть }y=\frac{\beta}{\alpha}\sin t\right|$$

$$=\frac{\beta}{\alpha}\int R\left(\frac{\beta}{\alpha}\sin t-\frac{b}{2a},\beta\sqrt{1-\sin^2 t}\right)\cos t\,dt = \frac{\beta}{\alpha}\int R\left(\frac{\beta}{\alpha}\sin t-\frac{b}{2a},\beta\cos t\right)\cos t\,dt$$

Т. о., интегрирование квадратичных иррациональностей сводится к интегрированию тригонометрических выражений.

Глава 9

Теория булевых функций

Булевым называется множество $B = \{0, 1\}$.

Булевой называется функция $f \colon B^n \to B$. Булеву функцию можно задать таблицей, называемой **таблицей истинности**.

Утверждение 9.0.1. Количество булевых функций от n переменных равно 2^{2^n} .

Доказательство. Число всех возможных наборов аргументов булевой функции от n переменных равно 2^n , тогда число всех возможных таких функций равно 2^{2^n} .

Пусть $f(x_1,...,x_n)$ — булева функция. Переменная x_i называется **существенной**, если

$$\exists a_1, \dots, a_{i-1}, a_{i+1}, \dots, a_n : f(a_1, \dots, a_{i-1}, 0, a_{i+1}, \dots, a_n) \neq f(a_1, \dots, a_{i-1}, 1, a_{i+1}, \dots, a_n)$$

иначе — несущественной, или фиктивной.

Две булевы функции называются равными, если одну из них можно получить из другой последовательным удалением или введением несущественных переменных.

9.1 Логические операции

Пусть $x, y \in B$. Основные логические операции (в порядке убывания приоритета выполнения):

- 1. Отрицание, или инверсия: $\neg x$, \overline{x} .
- 2. Конъюнкция, или логическое И: $x \wedge y$, x & y, $x \cdot y$, xy.
- 3. Дизъюнкция, или логическое ИЛИ: $x \lor y$

Следующие операции не имеют общепринятого приоритета выполнения, но обычно выполняются после вышеуказанных.

- 1. Импликация: $x \to y$.
- 2. Эквиваленция: $x \leftrightarrow y$, $x \sim y$, $x \equiv y$.
- 3. Сложение по модулю 2, или исключающее ИЛИ: $x \oplus y, x + y$.
- 4. Штрих Шеффера: $x \mid y$.
- 5. Стрелка Пирса: $x \downarrow y$.

Приведём таблицу истинности рассмотренных логических операций:

	\boldsymbol{x}	\overline{x}	y	x & y	$x \lor y$	$x \to y$	$x \sim y$	x + y	$x \mid y$	$x \downarrow y$
	0	1	0	0	0	1	1	0	1	1
	0	1	1	0	1	1	0	1	1	0
	1	0	0	0	1	0	0	1	1	0
Ī	1	0	1	1	1	1	1	0	0	0

Также определяется булева степень:

$$x^{\sigma} = \begin{cases} \overline{x}, & \sigma = 0 \\ x, & \sigma = 1 \end{cases}$$

где $\sigma \in B$ — параметр.

9.2 Формулы

Формулой над множеством F булевых функций называется $f(x_1, \ldots, x_n) \in F$ или $\Phi(A_1, \ldots, A_n)$, где $\Phi(x_1, \ldots, x_n)$ — формула, A_1, \ldots, A_n — переменные или функции из F, называемые подформулами.

Утверждение 9.2.1. Каждой формуле Φ над множеством F булевых функций соответствует булева функция.

Доказательство. Возможны два случая:

- 1. Если $\Phi = f(x_1, ..., x_n) \in F$, то $\Phi \to f(x_1, ..., x_n)$.
- 2. Если $\Phi = f(A_1, ..., A_n)$, где $A_1 \to f_1, A_2 \to f_2, ..., A_n \to f_n, f_1, ..., f_n \in F$, то $\Phi \to f(f_1, ..., f_n)$.

Две формулы называются эквивалентными, если им соответствуют равные функции.

Утверждение 9.2.2. Если формула Φ' получается из формулы Φ заменой подформулы A на эквивалентную ей A', то Φ' эквивалентна Φ .

9.3 Разложение булевых функций по переменным

Теорема 9.3.1. Булева функция $f(x_1, ..., x_n)$ может быть записана в виде

$$f(x_1,\ldots,x_n) = \bigvee_{(\sigma_1,\ldots,\sigma_m)} x_1^{\sigma_1} \& \ldots \& x_m^{\sigma_m} \& f(\sigma_1,\ldots,\sigma_m,x_{m+1},\ldots,x_n)$$

Доказательство. Рассмотрим произвольный набор $(\alpha_1, \ldots, \alpha_n)$ и покажем, что левая и правая части данного соотношения принимают на нём одно и то же значение:

- 1. Для левой части получим $f(\alpha_1, \ldots, \alpha_n)$.
- 2. Для правой части получим

$$\bigvee_{(\sigma_1, \dots, \sigma_m)} \alpha_1^{\sigma_1} \& \dots \& \alpha_m^{\sigma_m} \& f(\sigma_1, \dots, \sigma_m, \alpha_{m+1}, \dots, \alpha_n) =$$

$$|\alpha_1^{\sigma_1} \& \dots \& \alpha_m^{\sigma_m} = 1 \Leftrightarrow \sigma_1 = \alpha_1, \dots, \sigma_m = \alpha_m|$$

$$= \alpha_1^{\alpha_1} \& \dots \& \alpha_m^{\alpha_m} \& f(\alpha_1, \dots, \alpha_m, \alpha_{m+1}, \dots, \alpha_n) = f(\alpha_1, \dots, \alpha_n)$$

Следствие 9.3.1. Любая булева функция может быть реализована формулой над $\{\neg, \&, \lor\}$.

9.4 Дизъюнктивная нормальная форма

Литералом называется переменная или её отрицание.

Элементарным конъюнктом называется конъюнкция литералов, в которую каждая переменная входит не более одного раза. Элементарный конъюнкт называется **полным**, если он содержит все рассматриваемые переменные.

Элементарный конъюнкт K называется **импликантом** булевой функции f, если $K \lor f = f$. Импликант называется **простым**, если вычёркиванием литералов из него нельзя получить импликант f.

Утверждение 9.4.1. Элементарный конъюнкт K — импликант булевой функции $f \Leftrightarrow K \to f = 1$.

Доказательство. $K \vee f = f \Leftrightarrow \overline{K} \vee K \vee f = f \vee \overline{K} \Leftrightarrow 1 = K \to f$.

Дизъюнктивной нормальной формой, или **ДНФ**, называется дизъюнкция элементарных конъюнктов.

Совершенной дизъюнктивной нормальной формой, или СДН Φ , называется дизъюнкция полных элементарных конъюнктов.

Утверждение 9.4.2. Булева функция f от n переменных, не равная тождественно 0, представима в виде $CДН\Phi$. Для доказательства достаточно разложить её по всем переменным.

ДНФ булевой функции f называется **сокращённой**, если все её конъюнкты — простые импликанты f.

Утверждение 9.4.3. Булева функция представима в виде сокращённой ДНФ, причём единственным образом.

Доказательство. Пусть $f(x_1, \ldots, x_n)$ — булева функция, $D = K_1 \vee K_2 \vee \ldots \vee K_m$ — дизъюнкция всех простых импликантов f. Возможны два случая:

- 1. Пусть $f = 0 \Leftrightarrow \forall 1 \leqslant i \leqslant m \ K_i = 0 \Leftrightarrow D = 0 \Rightarrow D = f$.
- 2. Пусть f = 1. Запишем f в виде СДН Φ :

$$1 = f = \bigvee_{\substack{(\sigma_1, \dots, \sigma_n) \\ f(\sigma_1, \dots, \sigma_n) = 1}} x_1^{\sigma_1} \& x_2^{\sigma_2} \& \dots \& x_n^{\sigma_n} \Rightarrow \exists \alpha_1, \dots, \alpha_n \colon x_1^{\alpha_1} \& x_2^{\alpha_2} \& \dots \& x_n^{\alpha_n} = 1$$

Получили импликант. Из него можно получить простой импликант K вычёркиванием литералов, причём K=1. K входит в D, тогда D=1=f.

9.5 Принцип двойственности

Если $f(x_1, \dots, x_n)$ — булева функция, то **двойственной к** f **функцией** называется функция $\overline{f}(\overline{x_1}, \overline{x_2}, \dots, \overline{x_n})$, обозначаемая $f^*(x_1, x_2, \dots, x_n)$.

Утверждение 9.5.1. $(f^*)^* = f$.

Доказательство. $(f^*(x_1, x_2, \dots, x_n))^* = (\overline{f}(\overline{x_1}, \overline{x_2}, \dots, \overline{x_n}))^* = f(x_1, x_2, \dots, x_n)$.

Теорема 9.5.1 (принцип двойственности). Если формула $\Phi_1 = f_0(f_1, f_2, \dots, f_n)$ задаёт некоторую функцию f, то формула $\Phi_2 = f_0^*(f_1^*, f_2^*, \dots, f_n^*)$ задаёт f^* .

Доказательство. Без ограничения общности можно считать, что f_1, \ldots, f_n — функции от m переменных, т. к. можно добавить несущественные переменные.

$$f^*(x_1, \dots, x_m) = \overline{f}(\overline{x_1}, \dots, \overline{x_m}) = \overline{f}_0(\overline{\overline{f_1}}(\overline{x_1}, \dots, \overline{x_m}), \dots, \overline{\overline{f_n}}(\overline{x_1}, \dots, \overline{x_m})) =$$

$$= \overline{f}_0(\overline{f_1^*}(x_1, \dots, x_m), \dots, \overline{f_n^*}(x_1, \dots, x_m)) = f_0^*(f_1^*(x_1, \dots, x_m), \dots, f_n^*(x_1, \dots, x_m)) = \Phi_2$$

9.6 Конъюнктивная нормальная форма

Элементарным дизъюнктом называется дизъюнкция литералов, в которую каждая переменная входит не более одного раза. Элементарный дизъюнкт называется **полным**, если он содержит все рассматриваемые переменные.

Конъюнктивной нормальной формой, или $\mathbf{KH\Phi}$, называется конъюнкция элементарных дизъюнктов.

Совершенной конъюнктивной нормальной формой, или ${\bf CKH\Phi}$, называется конъюнкция полных элементарных дизъюнктов.

Утверждение 9.6.1. Булева функция $f(x_1, ..., x_n)$, не равная тождественно 1, представима в виде $CKH\Phi$.

Доказательство.

$$f^*(x_1,\ldots,x_n) = \bigvee_{\substack{(\sigma_1,\ldots,\sigma_n)\\f^*(\sigma_1,\ldots,\sigma_n)=1}} x_1^{\sigma_1} \& \ldots \& x_n^{\sigma_n} \Leftrightarrow$$

$$\Leftrightarrow f^{**}(x_1, \dots, x_n) = \bigwedge_{\substack{(\sigma_1, \dots, \sigma_n) \\ f^*(\sigma_1, \dots, \sigma_n) = 1}} x_1^{\sigma_1} \vee \dots \vee x_n^{\sigma_n} =$$

$$= \bigwedge_{\substack{(\sigma_1, \dots, \sigma_n) \\ f(\overline{\sigma_1}, \dots, \overline{\sigma_n}) = 0}} x_1^{\sigma_1} \vee \dots \vee x_n^{\sigma_n} = \bigwedge_{\substack{(\sigma_1, \dots, \sigma_n) \\ f(\sigma_1, \dots, \sigma_n) = 0}} x_1^{\overline{\sigma_1}} \vee \dots \vee x_n^{\overline{\sigma_n}} \Leftrightarrow$$

$$\Leftrightarrow f(x_1, \dots, x_n) = \bigwedge_{\substack{(\sigma_1, \dots, \sigma_n) \\ f(\sigma_1, \dots, \sigma_n) = 0}} x_1^{\overline{\sigma_1}} \vee \dots \vee x_n^{\overline{\sigma_n}}$$

9.7 Методы нахождения сокращённой ДНФ

Утверждение 9.7.1. Пусть булева функция $f = D(K_1, \ldots, K_m) = K_1 \vee K_2 \vee \ldots \vee K_m$, где K_1, \ldots, K_m — элементарные конъюнкты и K — простой импликант f. Тогда

- K содержит только переменные, входящие в D;
- $\exists i, K' : K_i = K \vee K'$.

Доказательство.

$$K \rightarrow f = 1 \Rightarrow (K = 1 \Rightarrow f = 1)$$

• Докажем методом от противного, что K содержит только переменные, входящие в D. Пусть K содержит переменную y, не входящую в D, тогда

$$K = x_1^{\sigma_1} \cdot \ldots \cdot x_n^{\sigma_n} y^{\sigma} \Rightarrow K(\sigma_1, \ldots, \sigma_n, \sigma) = 1 \Rightarrow f(\sigma_1, \ldots, \sigma_n, \sigma) = 1$$

y не входит в $D\Rightarrow f(\sigma_1,\ldots,\sigma_n,\overline{\sigma})=1\Rightarrow x_1^{\sigma_1}\cdot\ldots\cdot x_n^{\sigma_n}$ — импликант $\Rightarrow K$ не является простым импликантом. Противоречие.

• Пусть

$$K = x_1^{\sigma_1} \cdot \ldots \cdot x_n^{\sigma_n} \Rightarrow K(\sigma_1, \ldots, \sigma_n) = 1 \Rightarrow f(\sigma_1, \ldots, \sigma_n) = 1 \Rightarrow \exists i \colon K_i(\sigma_1, \ldots, \sigma_n) = 1$$

Покажем, что все литералы, содержащиеся в K, содержатся и в K_i .

- Пусть x_j входит в K, тогда $K(\sigma_1, \ldots, \sigma_{j-1}, 1, \sigma_{j+1}, \ldots, \sigma_n) = 1$. Если $\overline{x_j}$ входит в K_i , то $K_i(\sigma_1, \ldots, \sigma_{j-1}, 1, \sigma_{j+1}, \ldots, \sigma_n) = 0$. Противоречие, значит, $\overline{x_j}$ не входит в K_i .
- Пусть $\overline{x_j}$ входит в K. Аналогично доказывается, что x_j не входит в K_i .
- Пусть $x_j^{\sigma_j}$ входит в K. Если ни x_j , ни $\overline{x_j}$ не входят в K_i , то $K_i(\sigma_1,\ldots,\sigma_j,\ldots,\sigma_n)=K_i(\sigma_1,\ldots,\overline{\sigma_j},\ldots,\sigma_n)=1\Rightarrow x_1^{\sigma_1}\cdot\ldots\cdot x_{i-1}^{\sigma_{i-1}}x_{i+1}^{\sigma_{i+1}}\cdot\ldots\cdot x_n^{\sigma_n}$ импликант $\Rightarrow K$ не является простым импликантом. Противоречие, значит, x_j или $\overline{x_j}$ входит в K_i .

Остаётся единственный возможный случай: если $x_j^{\sigma_j}$ входит в K, то $x_j^{\sigma_j}$ входит и в K_i . Тогда $\exists K'\colon K_i=K\ \&\ K'.$

Утверждение 9.7.2. Если K_1, \ldots, K_m и M_1, \ldots, M_r — простые импликанты булевых функций f и g соответственно, то любой простой импликант функции f & g равен $K_i M_j$ для некоторых i, j.

Доказательство. Пусть K — простой импликант f & g. По утверждению 9.7.1 $\exists i, j, K' \colon K_i M_j = KK'$.

1. Докажем методом от противного, что $K_iM_j=K$. Пусть $K'\neq 1,\ y$ — переменная, входящая в K', тогда y входит в K_i или в M_j . Без ограничения общности можно считать, что y входит в K_i . Рассмотрим элементарный конъюнкт $\widetilde{K_i}$, полученный из K_i удалением y. Тогда $\widetilde{K_i}$ — импликант f, т. к. если изменить значение y, то значение $\widetilde{K_i}$ и K не изменятся. Если $K_i=1$, то можно подобрать такой набор значений переменных, что $K_i=1\Rightarrow f\ \&\ g=1\Rightarrow f=1$, тогда K_i не является простым импликантом. Противоречие, значит, $K_iM_j=K$.

2. Докажем методом от противного, что K_iM_j — простой импликант. Пусть найдётся переменная g такая, что её удаление из K_iM_j даёт импликант $\widetilde{K_iM_j}$. $\widetilde{K_iM_j}=1\Rightarrow f\ \&\ g=1\Rightarrow f=1,\ g=1,$ тогда K_i или M_j не является простым импликантом. Противоречие, значит, K_iM_j — простой импликант

Метод Блейка

Применяется к произвольной ДНФ.

- 1. Применяем формулу обобщённого склеивания, пока возможно: $xK_1 \vee \overline{x}K_2 = xK_1 \vee \overline{x}K_2 \vee K_1K_2$.
- 2. Применяем формулу поглощения: $K \vee KK_1 = K$.

Доказательство корректности. Пусть после первого этапа метода Блейка получена ДНФ D' булевой функции f.

- 1. Докажем методом математической индукции, что для любого импликанта K функции f найдётся такой конъюнкт K' в D', что K импликант K'.
 - База индукции. Пусть K содержит все переменные f. K импликант f, значит, K входит в D'.
 - Шаг индукции. Пусть для любого импликанта K функции f, содержащего более n переменных, найдётся такой конъюнкт K' в D', что K импликант K'. Докажем то же для импликанта K, содержащего n переменных. Пусть y переменная, не входящая в K, тогда $K_1 = y \& K$, $K_2 = \overline{y} \& K$ импликанты f. По предположению индукции для них найдутся конъюнкты K'_1, K'_2 в D' такие, что K_1, K_2 импликанты K'_1, K'_2 соответственно. Возможны два случая:
 - (a) Пусть K_1' или K_2' не содержит y, тогда K его импликант.
 - (b) Пусть и K_1' , и K_2' содержат y, тогда $K_1'=y\\& K_1'',\ K_2'=\overline{y}\\& K_2''.\ D'$ содержит K_1' и K_2' , значит, D' содержит $K_1''\\& K_2''.\ K$ импликант $K_1''\\& K_2''.$

Если K — простой импликант f, то существует такой конъюнкт K' в D', что K — импликант K'. Легко показать методом от противного, что K = K', значит, в D' входят все простые импликанты.

2. Пусть K — не простой импликант f, содержащийся в D', тогда из него вычёркиванием литералов можно получить простой импликант K'. D' содержит K', тогда на втором этапе метода Блейка имеем $K \vee K' = K'$. Т. о., после второго этапа метода Блейка получим ДНФ, содержащую только простые импликанты.

_

Метод Квайна

Применяется к СДНФ. Пусть дана булева функция от n переменных. Начинаем с k=n.

- 1. Применяем формулу $xK \vee \overline{x}K = xK \vee \overline{x}K \vee K$ ко всем конъюнктам, содержащим k литералов.
- 2. Применяем формулу поглощения: $K \vee KK_1 = K$.
- 3. Уменьшаем значение k на 1 и повторяем с начала.

Доказательство корректности. Пусть в сокращённой ДНФ K — элементарный конъюнкт, не содержащий переменной y, тогда $K = yK \vee \overline{y}K$. Добавляя таким образом переменные, получим СДНФ. Тогда, если проделаем обратные операции (что и является методом Квайна), получим сокращённую ДНФ. \blacksquare

Метод Нельсона

Применяется к произвольной КНФ.

- 1. Раскрываем скобки: $(a \lor c)(b \lor c) = ab \lor c$.
- 2. Упрощаем, используя формулы xxK = xK, $x\overline{x}K = 0$, $K \vee KK_1 = K$.

Доказательство корректности. КНФ — конъюнкция сокращённых ДНФ, поэтому раскрытием скобок и упрощением по утверждению 9.7.2 получим сокращённую ДНФ. ■

9.8 Геометрическая интерпретация булевых функций

Пусть дана булева функция $f \colon B^n \to B$. B^n можно отождествить с вершинами единичного куба в \mathbb{R}^n .

С каждой булевой функцией f можно связать множество N_f , состоящее из вершин, в которых f=1. Пусть дан n-мерный куб. Множество его вершин, для которых значения x_{i_1}, \ldots, x_{i_k} совпадают, называется **гранью ранга** n-k. Очевидно, что каждая грань однозначно соответствует некоторому элементарному конъюнкту, который принимает значение 1 в точности на вершинах грани.

Грань N_K называется максимальной относительно булевой функции f, если $N_K\subseteq N_f$, $\forall N_{K'}\ N_K\subseteq N_{K'}\subseteq N_f\Rightarrow N_K=N_K'$.

Утверждение 9.8.1. Каждой максимальной относительно булевой функции f грани соответствует простой импликант f.

Доказательство. Пусть N_K — максимальная грань.

- 1. $K(\alpha_1,\ldots,\alpha_n)=1\Rightarrow (\alpha_1,\ldots,\alpha_n)\in N_K\subseteq N_f\Rightarrow f(\alpha_1,\ldots,\alpha_n)=1\Rightarrow K$ импликант f.
- 2. Докажем методом от противного простоту K. Пусть K не простой, тогда можно получить простой импликант K' из K вычёркиванием переменных, поэтому $N_K \subset N_{K'} \subseteq N_f$, значит, N_K не является максимальной гранью. Противоречие.

Утверждение 9.8.2. Если K — простой импликант, то N_K — максимальная грань.

Доказательство методом от противного. Пусть N_K не является максимальной гранью, тогда $N_K \subset N_K'$, где N_K' — максимальная грань, значит, можно получить простой импликант K' из K вычёркиванием переменных, поэтому K не является простым импликантом. Противоречие.

Набор граней N_{K_1},\dots,N_{K_m} называется покрытием булевой функции f, если $N_f=N_{K_1}\cup\dots\cup N_{K_m}.$

Утверждение 9.8.3. Каждое покрытие булевой функции f однозначно соответствует ДНФ для f. Доказательство. Каждому конъюнкту в ДНФ однозначно соответствует некоторая грань в покрытии, тогда покрытие из этих граней однозначно соответствует данной ДНФ. ■

Следствие 9.8.1. Сокращённой ДНФ соответствует покрытие из всех максимальных граней.

ДНФ булевой функции f, содержащая наименьшее число литералов, называется **минимальной**.

ДНФ булевой функции f, содержащая наименьшее число элементарных конъюнктов, называется кратчайшей.

Покрытие булевой функции f называется **неприводимым**, если оно состоит только из максимальных граней и при удалении любой грани из него оно перестаёт быть покрытием, а ДН Φ , соответствующая ему, называется **тупиковой**.

Утверждение 9.8.4. Кратчайшая или минимальная ДНФ является тупиковой.

Доказательство методом от противного. Пусть кратчайшая/минимальная ДНФ не является тупиковой, тогда из соответствующего ей покрытия можно удалить грань. Но в таком случае исходная ДНФ не является кратчайшей/минимальной. Противоречие. ■

9.9 Операции типа I и II

Пусть даны ДНФ D и эквивалентная ей D'. Говорят, что:

• ДНФ D' получается из D операцией типа I, если D' получена из D вычёркиванием элементарного конъюнкта;

• ДНФ D' получается из D операцией типа II, если D' получена из D вычёркиванием одного или нескольких литералов в каком-либо элементарном конъюнкте.

ДНФ D называется **тупиковой относительно операций типа I и II**, если они к ней неприменимы.

Утверждение 9.9.1. ДНФ D тупиковая относительно операций типа I и $II \Leftrightarrow D$ тупиковая в геометрическом смысле.

Доказательство.

- $1. \Rightarrow$. Если к D неприменимы операции типа I и II, то ей соответствует неприводимое покрытие, поэтому D тупиковая в геометрическом смысле.
- $2. \Leftarrow.$
 - (a) Операции типа I соответствует удаление грани из покрытия, соответствующего D. Удалить грань нельзя, значит, операция типа I неприменима к D.
 - (b) Пусть $D = K_1 \vee \ldots \vee K_m$, $K_i = x_j^{\sigma_j} K_i'$, тогда $N_{K_i'} \subset N_{K_i}$. Если $N_f = N_{K_1} \cup \ldots \cup N_{K_i'} \cup \ldots \cup N_{K_m}$, то N_{K_i} не является максимальной гранью, что неверно, значит, операция типа II неприменима к D.

Тогда D тупиковая относительно операций типа I и II.

9.10 Построение тупиковых ДНФ

Пусть дана булева функция f.

- 1. Находим сокращённую ДНФ $D = K_1 \lor \ldots \lor K_m$ для f.
- 2. Пусть $N_f = \{P_1, \dots, P_r\}$. Составляем следующую таблицу, называемую **таблицей Квайна**:

	P_1	P_2		P_r	
K_1	σ_{11}	σ_{12}		σ_{1r}	(o p / v
K_2	σ_{21}	σ_{22}		σ_{2r}	$, \ \sigma_{ij} = \begin{cases} 0, \ P_j \notin N_{K_i} \\ 1, \ P_j \in N_{K_i} \end{cases}$
:	:	:	·	:	$ (1, P_j \in N_{K_i}) $
•		•		•	
K_m	σ_{m1}	σ_{m2}	• • •	σ_{mr}	

3. Составляем выражение $\bigotimes_{j=1}^r (\sigma_{1j}K_1 \vee \sigma_{2j}K_2 \vee \ldots \vee \sigma_{mj}K_m)$ и раскрываем в нём скобки по формулам $(A \vee B)C = AC \vee BC, \ A \vee BA = A.$ В полученной ДНФ относительно переменных K_1, \ldots, K_m каждому конъюнкту однозначно соответствует тупиковая ДНФ для $f \colon K_{i_1} \& \ldots \& K_{i_p} \to K_{i_1} \vee \ldots \vee K_{i_p}$.

Доказательство.
$$\sigma_{1j}K_1\vee\ldots\vee\sigma_{mj}K_m=1\Rightarrow P_j\in N_{\sigma_{1j}K_1}\cup\ldots\cup N_{\sigma_{mj}K_m},$$
 тогда если $\bigotimes_{j=1}^r(\sigma_{1j}K_1\vee\ldots\vee\sigma_{mj}K_m)=1,$ то набор полученных граней покрывает все вершины из N_f .

9.11 Полнота и замкнутость классов булевых функций

Множество F булевых функций (также называемое **классом**) называется **полным**, если любая булева функция реализуется формулой над F.

Множество, состоящее из всех булевых функций, обозначается P_2 .

Теорема 9.11.1. Если $F = \{f_1, f_2, \ldots\}$ — полный набор булевых функций, $G = \{g_1, g_2, \ldots\}$ — набор булевых функций, причём каждая функция из F реализуется формулой над G, то G — полный набор. Доказательство.

$$f_1 = \Phi_1(g_1, g_2, \ldots), f_2 = \Phi_2(g_1, g_2, \ldots), \ldots \Rightarrow$$

$$\Rightarrow \forall f = \Phi(f_1, f_2, \dots) = \Phi(\Phi_1(g_1, g_2, \dots), \Phi_2(g_1, g_2, \dots), \dots) = \Phi(g_1, g_2, \dots)$$

Значит, G — полный набор.

Замыканием множества F булевых функций называется множество всех булевых функций, реализуемых формулами над F, и обозначается [F]. Свойства замыкания:

- 1. $F \subseteq [F]$;
- 2. [[F]] = [F], т. к. [[F]] множество функций, реализуемых формулами над [F], которые реализуются формулами над F:
- 3. $F \subseteq K \Rightarrow [F] \subseteq [K]$, т. к. формула над F является формулой над K.

Утверждение 9.11.1. Множество F булевых функций полно \Leftrightarrow $[F] = P_2$.

Класс T_0 функций, сохраняющих константу 0

$$T_0 = \{ f(x_1, \dots, x_n) \mid f(0, \dots, 0) = 0 \}$$

Доказательство замкнутости. Пусть $f, f_1, \ldots, f_n \in T_0$, тогда

$$\Phi = f(f_1(0,\ldots,0),\ldots,f_n(0,\ldots,0)) = f(0,\ldots,0) = 0$$

Значит, Φ реализует функцию из T_0 . \blacksquare T_0 содержит $\frac{2^{2^n}}{2}=2^{2^n-1}$ функций от n переменных.

Класс T_1 функций, сохраняющих константу 1

$$T_1 = \{ f(x_1, \dots, x_n) \mid f(1, \dots, 1) = 1 \}$$

Доказательство замкнутости. Пусть $f, f_1, \ldots, f_n \in T_1$, тогда

$$\Phi = f(f_1(1, \dots, 1), \dots, f_n(1, \dots, 1)) = f(1, \dots, 1) = 1$$

Значит, Φ реализует функцию из T_1 .

 T_1 содержит $\frac{2^{2^n}}{2} = 2^{2^n-1}$ функций от n переменных.

Класс S самодвойственных функций

Булева функция f называется **самодвойственной**, если $f^* = f$.

$$S = \{ f(x_1, \dots, x_n) \mid f(x_1, \dots, x_n) = f^*(x_1, \dots, x_n) \} \Leftrightarrow$$

$$\Leftrightarrow S = \{ f(x_1, \dots, x_n) \mid f(x_1, \dots, x_n) = \overline{f}(\overline{x_1}, \dots, \overline{x_n}) \}$$

Доказательство замкнутости. Пусть $f, f_1, \ldots, f_n \in S$, тогда $\Phi = f(f_1, \ldots, f_n) = f^*(f_1^*, \ldots, f_n^*) = f^*(f_1^*, \ldots, f_n^*)$ = Φ^* , значит, Φ реализует функцию из S. \blacksquare S содержит $2^{2^{n-1}} = \sqrt{2^{2^n}}$ функций от n переменных.

Лемма 9.11.1 (о несамодвойственной функции). Если булева функция $f \notin S$, то подстановкой x, \overline{x} вместо переменных можно получить константу.

Доказательство.

$$f(x_1,\ldots,x_n) \notin S \Leftrightarrow \exists \alpha_1,\ldots,\alpha_n \colon f(\alpha_1,\ldots,\alpha_n) \neq \overline{f}(\overline{\alpha_1},\ldots,\overline{\alpha_n})$$

Подставим в $f x^{\alpha_i}$ вместо x_i .

- 1. При x=0 получим $f(0^{\alpha_1},\ldots,0^{\alpha_n})=f(\overline{\alpha_1},\ldots,\overline{\alpha_n})=f(\alpha_1,\ldots,\alpha_n).$
- 2. При x = 1 получим $f(1^{\alpha_1}, \dots, 1^{\alpha_n}) = f(\alpha_1, \dots, \alpha_n)$.

$$f(0^{\alpha_1},\ldots,0^{\alpha_n})=f(1^{\alpha_1},\ldots,1^{\alpha_n}),$$
 значит, $f(x^{\alpha_1},\ldots,x^{\alpha_n})$ — константа.

\mathbf{K} ласс M монотонных функций

Введём отношение \preccurlyeq : $\overline{\alpha} = (\alpha_1, \dots, \alpha_n) \preccurlyeq \overline{\beta} = (\beta_1, \dots, \beta_n) \Leftrightarrow \alpha_1 \leqslant \beta_1, \dots, \alpha_n \leqslant \beta_n$. Булева функция f называется **монотонной**, если $\forall \overline{\alpha}, \overline{\beta} \ \overline{\alpha} \preccurlyeq \overline{\beta} \Rightarrow f(\overline{\alpha}) \leqslant f(\overline{\beta})$.

$$M = \{ f(x_1, \dots, x_n) \mid \forall \overline{\alpha}, \overline{\beta} \ \overline{\alpha} \preccurlyeq \overline{\beta} \Rightarrow f(\overline{\alpha}) \leqslant f(\overline{\beta}) \} \Leftrightarrow$$

$$\Leftrightarrow M = \{ f(x_1, \dots, x_n) \mid (\forall i \ \alpha_i \leqslant \beta_i) \Rightarrow f(\alpha_1, \dots, \alpha_n) \leqslant f(\beta_1, \dots, \beta_n) \}$$

Доказательство замкнутости. Пусть $f, f_1, \ldots, f_n \in S, \Phi = f(f_1, \ldots, f_n)$.

$$\overline{\alpha} \preccurlyeq \overline{\beta} \Rightarrow f(\overline{\alpha}) \leqslant f(\overline{\beta}), \ f_1(\overline{\alpha}) \leqslant f_1(\overline{\beta}), \ \dots, \ f_n(\overline{\alpha}) \leqslant f_n(\overline{\beta}) \Rightarrow$$
$$\Rightarrow (f_1(\overline{\alpha}), \dots, f_n(\overline{\alpha})) \preccurlyeq (f_1(\overline{\beta}), \dots, f_n(\overline{\beta})) \Rightarrow f(f_1(\overline{\alpha}), \dots, f_n(\overline{\alpha})) \leqslant f(f_1(\overline{\beta}), \dots, f_n(\overline{\beta}))$$

Значит, Φ реализует функцию из M.

Следствие 9.11.1. Если некоторая ДН Φ для булевой функции f не содержит отрицаний, то f монотонна.

Доказательство. ДНФ без отрицаний — это формула над $\{\&,\lor\}$. $\&,\lor$ — монотонные функции, значит, ДНФ без отрицаний тоже монотонна, тогда и f монотонна.

Лемма 9.11.2 (о немонотонной функции). Если булева функция $f \notin M$, то подстановкой 0, 1, x вместо переменных можно получить \overline{x} .

Доказательство.

$$f(x_1, \dots, x_n) \notin M \Leftrightarrow \exists \overline{\alpha}, \overline{\beta} : \overline{\alpha} \preceq \overline{\beta}, \ f(\overline{\alpha}) \not \leqslant f(\overline{\beta}) \Leftrightarrow f(\overline{\alpha}) = 1, \ f(\overline{\beta}) = 0$$

1. Пусть $\overline{\alpha}$ и $\overline{\beta}$ отличаются в нескольких позициях: $\overline{\alpha}=(\ldots,\gamma_1,\ldots,\gamma_2,\ldots,\gamma_k,\ldots)$, где γ_1,\ldots,γ_k — позиции, в которых $\overline{\alpha}$ и $\overline{\beta}$ отличаются, тогда $\gamma_1=\gamma_2=\ldots=\gamma_k=0$.

Рассматривая эти позиции, введём наборы значений

$$\overline{\alpha}_0 = \overline{\alpha} = (\dots, 0, \dots, 0, \dots), \ \overline{\alpha}_1 = (\dots, 1, \dots, 0, \dots),$$
$$\overline{\alpha}_2 = (\dots, 1, \dots, 1, \dots, 0, \dots), \dots, \ \overline{\alpha}_k = (\dots, 1, \dots, 1, \dots, 1, \dots)$$

Легко показать методом от противного, что $f(\overline{\alpha}) > f(\overline{\beta}) \Rightarrow \exists 0 \leqslant i < k \colon f(\overline{\alpha}_i) > f(\overline{\alpha}_{i+1})$. Т. о., этот случай сведён к следующему случаю.

2. Пусть $\overline{\alpha}$ и $\overline{\beta}$ отличаются только в одной позиции.

$$f(\alpha_1, \dots, \alpha_{i-1}, 0, \alpha_{i+1}, \dots, \alpha_n) = 1, \ f(\alpha_1, \dots, \alpha_{i-1}, 1, \alpha_{i+1}, \dots, \alpha_n) = 0 \Rightarrow$$
$$\Rightarrow f(\alpha_1, \dots, \alpha_{i-1}, x, \alpha_{i+1}, \dots, \alpha_n) = \overline{x}$$

Теорема 9.11.2. Если булева функция $f \in M$ и K — простой импликант f, то K не содержит отрицаний.

Доказательство методом от противного. Пусть дана $f(x_1, \ldots, x_n, y), K = x_1^{\sigma_1} \cdot \ldots \cdot x_k^{\sigma_k} \overline{y}$

$$K(\sigma_1,\ldots,\sigma_k,0)=1\Rightarrow f(\sigma_1,\ldots,\sigma_k,x_{k+1},\ldots,x_n,0)=1\Rightarrow f(\sigma_1,\ldots,\sigma_k,x_{k+1},\ldots,x_n,1)=1$$

Пусть $K' = x_1^{\sigma_1} \cdot \ldots \cdot x_k^{\sigma_k} \Rightarrow K(\sigma_1, \ldots, \sigma_k) = 1, f(\sigma_1, \ldots, \sigma_k, x_{k+1}, \ldots, x_n, y) = 1 \Rightarrow K'$ — импликант $f \Rightarrow K$ не является простым импликантом f. Противоречие.

Теорема 9.11.3. Булева функция $f \in M \Leftrightarrow$ сокращённая ДНФ для неё не содержит отрицаний. Доказательство.

- $1. \Rightarrow$. Простые импликанты f не содержат отрицаний. Сокращённая ДНФ дизъюнкция простых импликантов, значит, она не содержит отрицаний.
- $2. \Leftarrow f \in M$ как функция, реализуемая формулой над монотонными функциями.

Теорема 9.11.4. Сокращённая ДНФ для монотонной булевой функции является тупиковой.

Доказательство. Пусть $K=x_1 \& \dots \& x_k$ — простой импликант монотонной булевой функции $f(x_1,\dots,x_n), f=K \lor f'$. Каждый импликант f' должен содержать один из литералов x_{k+1},\dots,x_n , т. к. K — простой импликант. Тогда при $x_1=\dots=x_k=1, x_{k+1}=\dots=x_n=0$ имеем $f(x_1,\dots,x_n)=1, f'(x_1,\dots,x_n)=0 \Rightarrow f\neq f'$ \Rightarrow из сокращённой ДНФ нельзя вычеркнуть ни один из конъюнктов, поэтому она тупиковая. \blacksquare

Класс L линейных функций

Булева функция f называется **линейной**, если она реализуется формулой над $\{+,1\}$.

$$L = \{ f(x_1, \dots, x_n) \mid f(x_1, \dots, x_n) = a_0 + a_1 x_1 + \dots + a_n x_n, \ a_i \in B \}$$

Доказательство замкнутости. Пусть

$$f(x_1,\ldots,x_n) = c_0 + c_1x_1 + \ldots + c_nx_n,$$

$$f_1(x_1, \dots, x_n) = c_{10} + c_{11}x_1 + \dots + c_{1n}x_n, \dots, f_n(x_1, \dots, x_n) = c_{n0} + c_{n1}x_1 + \dots + c_{nn}x_n$$

$$\Phi = f(f_1, \dots, f_n) = c_0 + c_1(c_{10} + c_{11}x_1 + \dots + c_{1n}x_n) + \dots + c_n(c_{n0} + c_{n1}x_1 + \dots + c_{nn}x_n) =$$

$$= c_0 + c_1c_{10} + \dots + c_nc_{n0} + (c_1c_{11} + \dots + c_nc_{n1})x_1 + \dots + (c_1c_{1n} + \dots + c_nc_{nn})x_n$$

Значит, Φ реализует функцию из L.

L содержит 2^{n+1} функций от n переменных.

Лемма 9.11.3 (о нелинейной функции). Если булева функция $f \notin L$, то подстановкой $0, 1, x, y, \overline{x}, \overline{y}$ вместо переменных и, возможно, инверсией значения f можно получить x & y.

Доказательство. $f \notin L$, тогда без ограничения общности можно считать, что f содержит x_1x_2 . Пусть

$$f(x_1, \dots, x_n) = x_1 x_2 f_1(x_3, \dots, x_n) + x_1 f_2(x_2, x_3, \dots, x_n) + x_2 f_3(x_1, x_3, \dots, x_n) + f_4(x_3, \dots, x_n) \Rightarrow$$

$$\Rightarrow \exists \alpha_3, \dots, \alpha_n \colon f_1(\alpha_3, \dots, \alpha_n) = 1$$

Рассмотрим

$$\varphi(x_1, x_2) = f(x_1, x_2, \alpha_3, \dots, \alpha_n) = x_1 x_2 + \alpha x_1 + \beta x_2 + \gamma,$$

$$\psi(x_1, x_2) = \varphi(x_1 + \beta, x_2 + \alpha) + \alpha \beta + \gamma =$$

$$= x_1 x_2 + \alpha x_1 + \beta x_2 + \alpha \beta + \alpha x_1 + \alpha \beta + \beta x_2 + \alpha \beta + \gamma + \alpha \beta + \gamma = x_1 x_2$$

 ψ получена из φ подстановкой $x,y,\overline{x},\overline{y}$ и, возможно, инверсией значения φ , которая, в свою очередь, получена из f подстановкой 0,1.

9.12 Многочлен Жегалкина

Многочленом Жегалкина называется многочлен вида $\bigoplus_{(i_1,...,i_k)} a_{i_1,...,i_k} x_{i_1} \cdot ... \cdot x_{i_k}$, где $a_{i_1,...,i_k} \in B$.

Теорема 9.12.1 (Жегалкина). Каждая булева функция единственным образом представима в виде многочлена Жегалкина.

Доказательство.

- 1. Докажем представимость. Любую булеву функцию можно реализовать формулой над $\{\neg, \&, \lor\}$. Тогда
 - (a) Заменим $\bar{x} = x + 1$, x & y = xy, $x \lor y = xy + x + y$.
 - (b) Раскроем скобки по дистрибутивности: x(y+z) = xy + xz.
 - (c) Упростим по формулам x + x = 0, $x + \overline{x} = 1$, x + 0 = x, $x \cdot 0 = 0$, xx = x.

Получим многочлен Жегалкина.

2. Докажем единственность. Многочлен Жегалкина для булевой функции от n переменных можно представить в виде $\bigoplus_{i=0}^{2^n-1} c_i K_i$, где c_i — некоторые коэффициенты, K_i — элементарные конъюнкты.

Тогда всего различных многочленов 2^{2^n} , т.е. столько же, сколько и булевых функций. Каждая булева функция представима хотя бы одним многочленом, значит, каждой функции однозначно соответствует многочлен Жегалкина.

Методы построения многочленов Жегалкина по заданной функции:

1. Эквивалентные преобразования

Описаны в доказательстве теоремы Жегалкина.

2. Эквивалентные преобразования СДНФ

Заменим в СДНФ $K_1 \vee K_2 = K_1 + K_2$, $\overline{x} = x + 1$ и упростим.

Доказательство корректности. Пусть K_1 и K_2 — элементарные конъюнкты СДНФ. Тогда

$$\exists x \colon K_1 = xK_1', \ K_2 = \overline{x}K_2' \Rightarrow K_1 \lor K_2 = x\overline{x}K_1'K_2' + xK_1' + \overline{x}K_2' = xK_1' + \overline{x}K_2' = K_1 + K_2$$

3. Метод неопределённых коэффициентов

Пусть $f(x_1,...,x_n) = \bigoplus_{i=0}^{2^n-1} c_i K_i$. Составим систему уравнений:

$$\begin{cases}
f(0, \dots, 0, 0) = c_0 \\
f(0, \dots, 0, 1) = c_0 + c_{2^n - 1} \\
\dots \\
f(1, \dots, 1, 1) = c_0 + \dots + c_{2^n - 1}
\end{cases}$$

Решив её, найдём коэффициенты многочлена Жегалкина

4. Метод Паскаля

Введём по индукции операцию T над векторами размерности 2^n :

- База индукции. n=1. Пусть $\overline{\alpha}=(\alpha_0,\alpha_1)$, тогда $T(\overline{\alpha})=(\alpha_0,\alpha_0+\alpha_1)$.
- Шаг индукции. n > 1. Пусть $\overline{\alpha} = (\overline{\alpha}_0, \overline{\alpha}_1)$, где $\overline{\alpha}_0, \overline{\alpha}_1$ векторы размерности 2^{n-1} , тогда $T(\overline{\alpha}) = (T(\overline{\alpha}_0), T(\overline{\alpha}_0) + T(\overline{\alpha}_1))$.

Исследуем свойства операции T:

(a) $T(\overline{\alpha} + \overline{\beta}) = T(\overline{\alpha}) + T(\overline{\beta})$

Доказательство методом математической индукции.

• База индукции. n=1. Пусть $\overline{\alpha}=(\alpha_0,\alpha_1), \overline{\beta}=(\beta_0,\beta_1),$ тогда

$$T(\overline{\alpha} + \overline{\beta}) = T((\alpha_0, \alpha_1) + (\beta_0, \beta_1)) = T((\alpha_0 + \beta_0, \alpha_1 + \beta_1)) = (\alpha_0 + \beta_0, \alpha_0 + \beta_0 + \alpha_1 + \beta_1) =$$

$$= (\alpha_0 + \beta_0, \alpha_0 + \alpha_1 + \beta_0 + \beta_1) = T(\alpha_0, \alpha_1) + T(\beta_0, \beta_1) = T(\overline{\alpha}) + T(\overline{\beta})$$

• Шаг индукции. Предположим, что утверждение верно для векторов размерности 2^n . Докажем его для $\overline{\alpha} = (\overline{\alpha}_0, \overline{\alpha}_1), \overline{\beta} = (\overline{\beta}_0, \overline{\beta}_1)$, где $\overline{\alpha}_0, \overline{\alpha}_1, \overline{\beta}_0, \overline{\beta}_1$ — векторы размерности 2^n , тогда

$$T(\overline{\alpha} + \overline{\beta}) = T((\overline{\alpha}_0, \overline{\alpha}_1) + (\overline{\beta}_0, \overline{\beta}_1)) = T((\overline{\alpha}_0 + \overline{\beta}_0, \overline{\alpha}_1 + \overline{\beta}_1)) =$$

$$= (T(\overline{\alpha}_0 + \overline{\beta}_0), T(\overline{\alpha}_0 + \overline{\beta}_0) + T(\overline{\alpha}_1 + \overline{\beta}_1)) =$$

$$= (T(\overline{\alpha}_0) + T(\overline{\beta}_0), T(\overline{\alpha}_0) + T(\overline{\beta}_0) + T(\overline{\alpha}_1) + T(\overline{\beta}_1)) =$$

$$= (T(\overline{\alpha}_0), T(\overline{\alpha}_0) + T(\overline{\alpha}_1)) + (T(\overline{\beta}_0), T(\overline{\beta}_0) + T(\overline{\beta}_1)) =$$

$$= T(\overline{\alpha}_0, \overline{\alpha}_1) + T(\overline{\beta}_0, \overline{\beta}_1) = T(\overline{\alpha}) + T(\overline{\beta})$$

(b) $T(T(\overline{\alpha})) = \overline{\alpha}$

Доказательство методом математической индукции.

• База индукции. n=1. Пусть $\overline{\alpha}=(\alpha_0,\alpha_1)$, тогда

$$T(T(\overline{\alpha})) = T(T((\alpha_0, \alpha_1))) = T((\alpha_0, \alpha_0 + \alpha_1)) = (\alpha_0, \alpha_0 + \alpha_0 + \alpha_1) = (\alpha_0, \alpha_1) = \overline{\alpha}$$

• *Шаг индукции*. Предположим, что утверждение верно для векторов размерности 2^n . Докажем его для $\overline{\alpha} = (\overline{\alpha}_0, \overline{\alpha}_1)$, где $\overline{\alpha}_0, \overline{\alpha}_1$ — векторы размерности 2^n , тогда

$$T(T(\overline{\alpha})) = T(T((\overline{\alpha}_0, \overline{\alpha}_1))) = T((T(\overline{\alpha}_0), T(\overline{\alpha}_0) + T(\overline{\alpha}_1))) =$$

$$= (T(T(\overline{\alpha}_0)), T(T(\overline{\alpha}_0)) + T(T(\overline{\alpha}_0) + T(\overline{\alpha}_1))) =$$

$$= (T(T(\overline{\alpha}_0)), T(T(\overline{\alpha}_0)) + T(T(\overline{\alpha}_0)) + T(T(\overline{\alpha}_1))) =$$

$$= (T(T(\overline{\alpha}_0)), T(T(\overline{\alpha}_1))) = (\overline{\alpha}_0, \overline{\alpha}_1) = \overline{\alpha}$$

Если \overline{c}_f — вектор коэффициентов многочлена Жегалкина, соответствующего булевой функции f, $\overline{\alpha}_f$ — вектор значений f, то $T(\overline{\alpha}_f) = \overline{c}_f$, $T(\overline{c}_f) = \overline{\alpha}_f$.

Доказательство. Докажем методом математической индукции, что $T(\overline{\alpha}_f) = \overline{c}_f$.

• База индукции. n=1. Пусть $\overline{\alpha}_f=(a,b)$. Найдём \overline{c}_f методом неопределённых коэффициентов:

$$\begin{cases} f(0) = c_0 \\ f(1) = c_0 + c_1 \end{cases} \Leftrightarrow \begin{cases} c_0 = a \\ c_0 + c_1 = b \end{cases} \Leftrightarrow \begin{cases} c_0 = a \\ c_1 = a + b \end{cases} \Rightarrow \overline{c}_f = (a, a + b) = T(\overline{\alpha}_f)$$

• *Шаг индукции*. Предположим, что утверждение верно для вектора значений размерности 2^n . Докажем его для размерности 2^{n+1} .

$$f(x_1, \dots, x_{n+1}) = \sum_{i=0}^{2^{n+1}-1} c_i K_i = \sum_{i=0}^{2^n-1} c_i K_i + \sum_{i=2^n}^{2^{n+1}-1} c_i K_i$$

 x_1 не входит ни в один из конъюнктов K_0,K_1,\dots,K_{2^n-1} и входит в каждый из $K_{2^n},K_{2^n+1},\dots,K_{2^{n+1}-1}$.

(a) Пусть $x_1 = 0$.

$$f_0(x_2,\ldots,x_{n+1}) = \sum_{i=0}^{2^n-1} c_i K_i \Rightarrow T(\overline{\alpha}_{f_0}) = \overline{c}_{f_0} = (c_0,c_1,\ldots,c_{2^n-1})$$

(b) Пусть $x_1 = 1$.

$$f_1(x_2, \dots, x_{n+1}) = f(1, x_2, \dots, x_{n+1}) = \sum_{i=0}^{2^n - 1} c_i K_i + x_1 \sum_{i=2^n}^{2^{n+1} - 1} c_i K_i' = \sum_{i=0}^{2^n - 1} (c_i + c_{2^n + i}) K_i$$

т. к.
$$K_0=1$$
 и $K_{2^n}=x_1,\,K_1=x_n$ и $K_{2^n+1}=x_1x_n,\,\ldots,\,$ т. е. $K'_{2^n+i}=K_i,\,$ тогда $T(\overline{\alpha}_{f_1})=\overline{c}_{f_1}=(c_0+c_{2^n},c_1+c_{2^n+1},\ldots,c_{2^n-1}+c_{2^{n+1}-1}).$

Т. о., получим

$$T(\overline{\alpha}_f) = T((\overline{\alpha}_{f_0}, \overline{\alpha}_{f_1})) = (T(\overline{\alpha}_{f_0}), T(\overline{\alpha}_{f_0}) + T(\overline{\alpha}_{f_1})) =$$

$$= ((c_0, \dots, c_{2^n - 1}), (c_0 + c_0 + c_{2^n}, c_1 + c_1 + c_{2^n + 1}, \dots, c_{2^n - 1} + c_{2^n - 1} + c_{2^{n + 1} - 1})) =$$

$$= ((c_0, \dots, c_{2^n - 1}), (c_{2^n}, \dots, c_{2^{n + 1} - 1})) = \overline{c}_f$$

Тогда $T(\overline{c}_f) = T(T(\overline{\alpha}_f)) = \overline{\alpha}_f$.

9.13 Замкнутые классы булевых функций

Теорема 9.13.1 (Поста о функциональной полноте). Класс F булевых функций полон \Leftrightarrow он не лежит целиком ни в одном из классов T_0, T_1, S, M, L .

Доказательство.

1. \Rightarrow . Докажем методом от противного. Пусть среди классов T_0, T_1, S, M, L найдётся класс $K \colon F \subseteq K,$ тогда $[F] \subseteq [K] = K \neq P_2$, значит, F не является полным. Противоречие.

 $2. \Leftarrow.$

$$\exists f_0, f_1, f_S, f_M, f_L \in F : f_0 \notin T_0, f_1 \notin T_1, f_S \notin S, f_M \notin M, f_L \notin L$$

- (а) Покажем, что 0 и 1 реализуются формулой над $\{f_0,f_1,f_S\}$. Пусть $\varphi(x)=f_0(x,\dots,x)\Rightarrow \varphi(0)=1.$
 - і. Пусть $\varphi(1) = 0 \Rightarrow \varphi(x) = \overline{x}$. Подставляя x, \overline{x} в f_S , получим одну из констант. Другую константу можно выразить через полученную константу и \overline{x} .
 - іі. Пусть $\varphi(1) = 1 \Rightarrow \varphi(x) = 1 \Rightarrow f_1(\varphi(x), \dots, \varphi(x)) = f(1, \dots, 1) = 0.$
- (b) Подставляя 0, 1, x в f_M , получим \overline{x} .
- (c) Подставляя $0, 1, x, \overline{x}, y, \overline{y}$ в f_L и, возможно, изменяя её значение на противоположное, получим x & y.

Т.о., функции из полного набора $\{\neg, \&\}$ реализуются формулами над $\{f_0, f_1, f_S, f_M, f_L\} \subseteq F$, значит, F — полный набор.

Утверждение 9.13.1. T_0, T_1, S, M, L попарно различны.

Доказательство. Составим таблицу, в которой + означает принадлежность функции классу, а - означает её отсутствие в классе.

	T_0	T_1	S	M	L
0	+	_	_	+	+
1	_	+	_	+	+
\overline{x}	_	_	+	_	+

Класс F булевых функций называется **предполным**, если $[F] \neq P_2$ и $\forall f \notin F \colon [F \cup \{f\}] = P_2$. **Утверждение 9.13.2.** Существует ровно 5 предполных классов булевых функций: T_0, T_1, S, M, L . **Доказательство.**

- 1. \Rightarrow . Пусть $K \in \{T_0, T_1, S, M, L\}$, $f \notin K$. $K \cup \{f\}$ не лежит целиком ни в одном из классов T_0, T_1, S, M, L , значит, $[K \cup \{f\}] = P_2$, т. е. K предполный класс.
- 2. \Leftarrow . Пусть K предполный класс \Rightarrow K не является полным \Rightarrow K лежит в одном из классов T_0, T_1, S, M, L .

Докажем методом от противного, что K равен одному из них. Пусть $K_1 \in \{T_0, T_1, S, M, L\}$, $K \subset K_1$. $f \notin K$, $f \in K_1 \Rightarrow K \cup \{f\} \subseteq K_1 \neq P_2$, значит, K не является предполным классом. Противоречие.

Следствие 9.13.1. Любой замкнутый класс булевых функций $F \neq P_2$ целиком лежит в одном из классов T_0, T_1, S, M, L .

Доказательство методом от противного. Пусть F не лежит ни в одном из классов T_0, T_1, S, M, L , тогда $F = [F] = P_2$. Противоречие. \blacksquare

Пусть F — замкнутый набор булевых функций. Набор $M\subseteq F$ называется **полным в** F, если [M]=F.

Набор K булевых функций называется **базисом замкнутого класса** F **булевых функций**, если K полон в F и при удалении из него любой булевой функции он перестаёт быть полным.

Глава 10

Теория графов

Неориентированным графом называется пара множеств G = (V, E), где V — множество вершин графа, $E = \{\{u, v\} \mid u, v \in V\}$ — множество рёбер графа.

Если $e = \{u, v\} \in E$, то говорят, что:

- \bullet ребро e соединяет вершины u и v;
- u и v концы ребра e;
- ребро e инцидентно вершинам u и v;
- \bullet вершины u и v инцидентны ребру e.

В дальнейшем будем рассматривать только конечные графы.

На рисунках вершины графа изображают точками, а рёбра $e = \{u, v\}$ — кривыми, соединяющими точки, которые изображают вершины u и v.

Вершины называются **соседними**, или **смежными**, если их соединяет ребро, иначе — **несоседними**, или **несмежными**.

Число рёбер в графе G, инцидентных вершине u, называется **степенью вершины** и обозначается $\deg_G u$.

Если степень вершины равна 0, то она называется **изолированной**, а если 1 — то **висячей**.

Ребро вида $e = \{u, u\}$ называется **петлёй**.

Рёбра, инцидентные одним и тем же вершинам, называются кратными.

Граф называется простым, если он не содержит петель и кратных рёбер.

Граф, в котором любые две вершины соединены ребром, называется **полным** и обозначается K_n , где n — число вершин в нём.

Графы $G_1=(V_1,E_1)$ и $G_2=(V_2,E_2)$ называются изоморфными, если существует биекция $\varphi\colon V_1\to V_2$ такая, что $\forall u,v\in V_1\ \{u,v\}\in E_1\Leftrightarrow \{\varphi(u),\varphi(v)\}\in E_2,$ иначе — неизоморфными. φ называется изоморфизмом.

Лемма 10.0.1 (о рукопожатиях).

$$\sum_{u \in V} \deg_G u = 2|E|$$

где $G = (V, E) - \operatorname{гра} \phi$.

Доказательство методом математической индукции.

- База индукции. |E|=0: в таком графе $\displaystyle\sum_{u\in V}\deg u=0.$
- Шаг индукции. Пусть лемма верна для |E| = n. Докажем её для |E| = n+1. Для этого достаточно заметить, что каждое новое ребро увеличивает степени двух вершин на 1.

Маршрутом в графе G = (V, E) называется последовательность вершин и рёбер вида $(v_1, e_1, v_2, \ldots, e_k, v_{k+1})$, где $e_i = \{v_i, v_{i+1}\}$.

Маршрут, в котором все рёбра различны, называется цепью.

Цепь, в которой все вершины, за исключением, может быть, первой и последней, различны, называется **простой**.

Маршрут, в котором первая и последняя вершины совпадают, называется замкнутым.

Замкнутая цепь называется циклом.

Маршрут, соединяющий вершины u и v, называется (u, v)-маршрутом.

Лемма 10.0.2. (u, v)-маршрут содержит (u, v)-простую цепь.

Доказательство. Пусть $(u = v_1, e_1, v_2, \dots, e_k, v_{k+1} = v)$ — не простая цепь, тогда $\exists i < j : v_i = v_j$. Уберём из маршрута подпоследовательность $(e_i, v_{i+1}, \dots, e_{j-1}, v_j)$, получим маршрут, в котором совпадающих вершин на одну меньше. Повторяя, получим простую цепь, являющуюся частью данного маршрута.

Следствие 10.0.1. Любой цикл содержит простой цикл.

Лемма 10.0.3. Если в графе есть две различные простые цепи, соединяющие одни и те же вершины, то в этом графе есть простой цикл.

Доказательство. Пусть $(u=v_1,e_1,v_2,\ldots,e_n,v_{n+1}=v), (u=v_1',e_1',v_2',\ldots,e_m',v_{m+1}'=v)$ — простые цепи. Найдём наименьшее $i\colon e_i\neq e_i'$, тогда $(v_i,e_i,v_{i+1},\ldots,e_n,v_{n+1}=v_{m+1}',e_m',\ldots,e_i',v_i'=v_i)$ — цикл, значит, можно получить простой цикл. \blacksquare

10.1 Связность графов

Вершины u и v называются **связанными**, если существует (u,v)-маршрут, иначе — **несвязанными**.

Граф называется связным, если в нём любые две вершины связаны, иначе — несвязным.

Граф G' = (V', E') называется подграфом графа G = (V, E), если $V' \subseteq V$ и $E' \subseteq E$.

Компонентой связности графа называется его максимальный (относительно включения) связный подграф.

10.2 Эйлеровы графы

Цикл, содержащий все рёбра графа, называется эйлеровым.

Граф, содержащий эйлеров цикл, называется эйлеровым.

Теорема 10.2.1. Связный граф эйлеров ⇔ степени всех вершин чётны.

Доказательство.

1. \Rightarrow . Пусть в графе есть эйлеров цикл. Выберем вершину v_0 в этом цикле и начнём обходить его. При каждом посещении вершины $v \neq v_0$ её степень увеличивается на 2. Т. о., если посетить её k раз, то $\deg v = 2k \ \vdots \ 2$.

Для v_0 степень увеличивается на 1 в начале обхода, на 1 в конце обхода и на 2 при промежуточных посещениях. Т. о., её степень чётна.

2. \Leftarrow . Пусть степени всех вершин чётны. Выберём цепь $C = (v_0, e_0, v_1, e_1, \dots, e_{k-1}, v_k)$ наибольшей длины. Все рёбра, инцидентные v_k , присутствуют в этой цепи, иначе её можно было бы удлинить.

Докажем методом от противного, что $v_0 = v_k$. Пусть $v_0 \neq v_k$. При прохождении вершины $v_i = v_k$, $i = 1, 2, \ldots, k-1$, степень v_k увеличивается на 2. Также проходим по ребру e_{k-1} , тогда степень v_k нечётна. Противоречие.

Докажем методом от противного, что C содержит все рёбра. Пусть найдётся ребро $e=\{u,v\}$, не входящее в C. Возьмём первое ребро $e'=\{v_i,v'\}$ из (v_0,u) -маршрута, не входящее в C. Тогда цепь $(v',e',v_i,e_i,\ldots,e_{k-1},v_k=v_0,e_0,v_1,e_1,\ldots,v_{i-1})$ длиннее, чем C. Противоречие.

Алгоритмы нахождения эйлерова цикла

1. Алгоритм Флёри.

В качестве текущей вершины выберем произвольную.

- (а) Выбираем ребро, инцидентное текущей вершине. Оно не должно быть мостом, если есть другие рёбра, не являющиеся мостами.
- (b) Проходим по выбранному ребру и вычёркиваем его. Вершина, в которой теперь находимся, текущая.
- (с) Повторяем с шага (а), пока есть рёбра.

2. Алгоритм объединения циклов.

- (а) Выбираем произвольную вершину.
- (b) Выбираем любое непосещённое ребро и идём по нему.
- (c) Повторяем шаг (b), пока не вернёмся в начальную вершину.
- (d) Получили цикл C. Если он не эйлеров, то $\exists u \in C, \ e = \{u, u'\} : u' \notin C$. Повторяем шаги (b)–(c), начиная с вершины u. Получили цикл C', рёбра которого не совпадают с рёбрами C. Объединим эти циклы и получим новый. Повторяем шаг (d).

Цепь называется **эйлеровым путём**, если она не является циклом и содержит все рёбра графа. Граф называется **полуэйлеровым**, если в нём есть эйлеров путь.

Теорема 10.2.2. Связный граф полуэйлеров \Leftrightarrow степени двух вершин нечётны, а остальных — чётны.

Доказательство.

- $1. \Rightarrow$. Пусть в графе есть эйлеров путь. Соединив его концы ребром, получим эйлеров цикл. Степени соединённых вершин увеличились каждая на 1, значит, они были нечётными, а степени остальных вершин чётными.
- ⇐. Пусть степени двух вершин нечётны, а остальных чётны. Соединим нечётные вершины ребром, тогда можно получить эйлеров цикл. Убрав из него добавленное ребро, получим эйлеров путь.

10.3 Гамильтоновы графы

Простой цикл, содержащий все вершины графа, называется гамильтоновым.

Граф называется гамильтоновым, если в нём есть гамильтонов цикл.

Теорема 10.3.1 (Оре). Если в графе $c \ n \geqslant 3$ вершинами для любых двух несмежных вершин $u \ u$ $v \deg u + \deg v \geqslant n$, то граф гамильтонов.

Доказательство.

1. Докажем методом от противного, что граф связный. Пусть он несвязный, тогда в нём найдутся хотя бы две компоненты связности $G_1(V_1, E_1)$ и $G_2(V_2, E_2)$. Пусть $u \in V_1, v \in V_2$. u и v несмежные, тогда

$$\deg u \leq |V_1| - 1, \ \deg v \leq |V_2| - 1 \Rightarrow \deg u + \deg v \leq |V_1| + |V_2| - 2 \leq n - 2$$

Противоречие с условием.

2. Докажем, что граф гамильтонов. Выберем цепь $W = (v_0, e_0, v_1, \dots, e_{k-1}, v_k)$ наибольшей длины. В ней содержатся все вершины, соседние с v_0 или с v_k . Т. о., среди вершин $v_1, \dots, v_k \deg v_0$ соседних с v_0 . Аналогично для v_k .

 $\deg v_0 + \deg v_k \geqslant n$, тогда найдутся v_i и v_{i+1} такие, что v_i соседняя с v_k , а v_{i+1} — с v_0 .

Докажем, что $(v_{i+1}, e_{i+1}, \dots, v_k, e, v_i, e_{i-1}, v_{i-1}, \dots, e_0, v_0, e', v_{i+1})$ — гамильтонов цикл, методом от противного. Предположим обратное, тогда есть вершина u, не входящая в цикл, и существует (v_0, u) -маршрут. Значит, существует ребро, инцидентное одной из вершин цикла, но не входящее в него, и можно получить более длинную цепь. Противоречие, значит, G — гамильтонов граф.

Теорема 10.3.2 (Дирака). *Если в графе* G = (V, E) c $n \geqslant 3$ вершинами $\forall u \in V \deg u \geqslant \frac{n}{2}$, то граф гамильтонов.

Доказательство. Пусть u, v — несвязные вершины в G, тогда $\deg u \geqslant \frac{n}{2}, \ \deg v \geqslant \frac{n}{2} \Rightarrow \deg u + \deg v \geqslant n \Rightarrow$ по теореме Оре G гамильтонов. \blacksquare

Цепь называется **гамильтоновым путём**, если она не является циклом и содержит все вершины графа.

Граф называется полугамильтоновым, если в нём есть гамильтонов путь.

10.4 Планарность графов

Плоским называется граф G = (V, E) такой, что:

- $V \subset \mathbb{R}^2$;
- рёбра кривые, концами которых являются вершины;
- различные рёбра не имеют общих точек, за исключением концов.

Планарным называется граф, изоморфный плоскому.

Если G — граф и G' — плоский граф, изоморфный G, то G' называется **укладкой** G в \mathbb{R}^2 .

Аналогично можно определить плоский граф в \mathbb{R}^3 , на сфере и т. д.

Теорема 10.4.1. Любой граф можно уложить в \mathbb{R}^3 .

Доказательство. Пусть G = (V, E) — граф, $V = \{(1, 0, 0), (2, 0, 0), \dots, (n, 0, 0)\}$. Рассмотрим плоскости, проходящие через Ox и образующие с плоскостью Oxy углы $\frac{\pi}{2}, \frac{\pi}{2 \cdot 2}, \dots, \frac{\pi}{2m}$, где m = |E|. Получим плоский граф, т. к. плоскости пересекаются только по прямой Ox.

Теорема 10.4.2. Граф укладывается на плоскость ⇔ он укладывается на сферу.

Доказательство. Пусть плоскость z=0 касается сферы в точке $O(0,0,0),\ N$ — точка на сфере, диаметрально противоположная точке O. Для каждой точки сферы, не совпадающей с N, проведём прямую через неё и точку N, которая пересечёт сферу и плоскость, причём любые две из таких прямых имеют единственную общую точку N. Получим биекцию между точками сферы и точками плоскости, тогда можно построить биекцию между укладками на сфере и укладками на плоскости.

Множество на плоскости называется **линейно связным**, если любые две точки этого множества можно соединить кривой, целиком лежащей в этом множестве.

Гранью плоского графа G = (V, E) называется часть множества $\mathbb{R}^2 \setminus G$, которая линейно связна и не является подмножеством другого линейно связного множества.

Теорема 10.4.3 (формула Эйлера). В плоском связном графе n-m+f=2, где n,m,f- число вершин, рёбер и граней соответственно.

Доказательство. Рассмотрим остов данного графа. В нём n вершин, n-1 рёбер и 1 грань. Формула Эйлера верна для него: n-(n-1)+1=2.

Добавим 1 ребро данного графа, тогда оно разобьёт одну грань на две, т. е. число граней увеличится на 1. Формула Эйлера верна для полученного графа. Повторяя m-(n-1) раз, получим исходный граф, для которого формула Эйлера верна.

Теорема 10.4.4. Пусть G — планарный граф c $n \geqslant 3$ вершинами и m рёбрами. Тогда $m \leqslant 3n-6$. Доказательство. При m=2 неравенство выполняется.

Пусть в графе f граней, m_i — число рёбер в границе i-й грани. Тогда $m_i\geqslant 3,$ $\sum_{i=1}^f m_i\geqslant 3f.$ С другой

стороны, $\sum_{i=1}^f m_i \leqslant 2m$, т. к. каждое ребро является границей для не более чем 2 граней. По формуле

Эйлера $n-m+f=2 \Leftrightarrow f=m+2-n$. Получим:

$$2m \geqslant 3f \Leftrightarrow 2m \geqslant 3m + 6 - 3n \Leftrightarrow m \leqslant 3n - 6$$

Следствие 10.4.1. Планарный граф G = (V, E) содержит хотя бы одну вершину со степенью, не большей 5.

Доказательство методом от противного. Пусть $\forall v \in V \deg v \geqslant 6, \ |V| = n, \ |E| = m,$ тогда $m = \frac{1}{2} \sum_{v \in V} \deg v \geqslant 3n.$ Имеем:

$$3n \leqslant m \leqslant 3n - 6 \Rightarrow 0 \leqslant -6$$

Противоречие. ■

Теорема 10.4.5. Графы K_5 и $K_{3,3}$ не планарные.

Доказательство.

- Рассмотрим K_5 : n=5, m=10. Тогда $m\leqslant 3n-6 \Leftrightarrow 10\leqslant 9$. Неверно, значит, K_5 не планарен.
- Рассмотрим $K_{3,3}$. Пусть он планарный. В нём самый короткий цикл имеет длину 4. Тогда рассуждениями, аналогичными рассуждениям при доказательстве теоремы 10.4.4, получим

$$2m \geqslant 4f \Leftrightarrow 2m \geqslant 4m + 8 - 4n \Leftrightarrow m \leqslant 2n - 4$$

n=6, m=9, тогда $9 \le 8.$ Неверно, значит, $K_{3,3}$ не планарен.

- Граф G' = (V', E') получается **подразбиением ребра** $e = \{u, v\}$ графа G = (V, E), если:
 - $V' = V \cup \{u'\};$
 - $E' = (E \setminus \{e\}) \cup \{\{u, u'\}, \{v, u'\}\}.$

Графы G и G' **гомеоморфны**, если они изоморфны графам, получающимся подразбиениями рёбер одного и того же графа.

Теорема 10.4.6 (Понтрягина—Куратовского). Граф G планарен \Leftrightarrow он не содержит подграфов, гомеоморфных K_5 или $K_{3,3}$.

Доказательство.

- 1. ⇒. Очевидно, что подграф планарного графа планарен. Если G планарный граф, содержащий подграф G', гомеоморфный K_5 или $K_{3,3}$, то G' тоже планарный, значит, K_5 или $K_{3,3}$ планарен, т. к. подразбиение ребёр не влияет на планарность. Противоречие, значит, G не планарен.
- 2. \Leftarrow . Доказательство слишком сложно, поэтому здесь не приводится.

10.5 Деревья

Граф без циклов называется лесом.

Связный лес называется деревом.

Ребро называется мостом, если при его удалении увеличивается число компонент связности.

Утверждение 10.5.1. *Ребро* - *мост* \Leftrightarrow *оно не содержится в цикле.*

Доказательство.

- 1. \Leftarrow . Пусть ребро *e* содержится в цикле $W = (v_0, e_0, \dots, u, e, v, \dots, v_k)$, u' и v' связные вершины.
 - (a) Если в (u', v')-маршруте нет ребра e, то при его удалении из графа u' и v' останутся связными.
 - (b) Пусть $(u' = v'_0, e'_0, \dots, u, e, v, \dots, e'_m, v'_m = v')$ маршрут, соединяющий u' и v', тогда при удалении e из графа u' и v' соединяет маршрут $(u' = v'_0, e'_0, \dots, u, \dots, e_0, v_0 = v_k, e_{k-1}, \dots, v, \dots, e'_m, v'_m = v')$.

- 2. \Rightarrow . Пусть $e = \{u, v\}$ не является мостом, тогда u, v лежат в одной компоненте связности. Удалим e из графа. Число компонент связности не изменится, значит, u и v также лежат в одной компоненте связности, т. е. существует цепь, соединяющая u и v: $(u = v_0; e_0; \dots; e_{k-1}; v_k = v)$. Тогда в исходном графе существует цикл $(u = v_0, e_0, \dots, e_{k-1}, v_k = v, e, u)$.
- **Теорема 10.5.1.** Следующие утверждения о графе $G = (V, E) \ c \ n$ вершинами эквивалентны:
- (1) G дерево.
- (2) G связный и каждое его ребро мост.
- (3) G связный и имеет n-1 ребро.
- (4) G не содержит циклов и имеет n-1 ребро.
- (5) Любые две вершины графа G соединены ровно одной простой цепью.
- (6) G не содержит циклов и добавление ребра приводит к появлению ровно одного цикла.

Доказательство.

- (1) \Rightarrow (2). Связность следует из определения дерева. В силу утверждения 10.5.1 каждое ребро мост.
- $(2) \Rightarrow (3)$. Связность следует из предположения. Докажем методом математической индукции, что в графе n-1 ребро.
 - *База индукции*. Для n = 1, 2 очевидно.
 - Шаг индукции. Пусть утверждение верно для чисел, меньших n. Возьмём мост e и удалим его. Получим две компоненты связности $G_1=(V_1,E_1),\ G_2=(V_2,E_2).$ По предположению индукции $|E_1|=|V_1|-1,\ |E_2|=|V_2|-1.$ Тогда в исходном графе рёбер $|E_1|+|E_2|+1=|V_1|+|V_2|-1=n-1.$
- $(3) \Rightarrow (4)$. G имеет n-1 ребро по предположению.

Докажем методом математической индукции, что G не содержит циклов.

- *База индукции*. Для n = 1, 2 очевидно.
- *Шаг индукции*. Пусть утверждение верно для чисел, меньших n. Докажем методом от противного, что в графе есть вершина степени 1. Пусть

$$\forall u \in V \ \deg u \geqslant 2 \Rightarrow 2|E| = \sum_{u \in V} \deg u \geqslant 2n \Rightarrow n-1 = |E| \geqslant n \Rightarrow -1 \geqslant 0$$

Противоречие, значит, в графе найдётся вершина степени 1.

Удалим её и инцидентное ей ребро. Полученный граф содержит n-1 вершину и удовлетворяет утверждению (3). По предположению индукции он не содержит циклов, тогда и исходный граф не содержит циклов.

• $(4) \Rightarrow (5)$.

Пусть в графе k компонент связности: $G_1 = (V_1, E_1), G_2 = (V_2, E_2), \ldots, G_k = (V_k, E_k)$. Они не содержат циклов по предположению, тогда они являются деревьями.

$$|E_1| = |V_1| - 1, |E_2| = |V_2| - 1, \dots, |E_k| = |V_k| - 1, n - 1 = |E_1| + \dots + |E_k| = n - k \Rightarrow k = 1$$

Значит, граф связный.

Пусть существуют вершины u и v такие, что их соединяют две простые цепи, тогда по лемме 10.0.3 в графе есть цикл, что противоречит предположению. Значит, эти вершины соединены ровно одной простой цепью.

• $(5) \Rightarrow (6)$.

Докажем методом от противного, что в графе нет циклов. Предположим, что есть цикл $(v_0, e_0, v_1, \ldots, v_k = v_0)$, тогда есть две простые цепи $(v_0, e_0, \ldots, v_{k-1})$ и $(v_{k-1}, e_k, v_k = v_0)$, соединяющие v_0 и v_{k-1} , что противоречит предположению.

Докажем, что добавление ребра приводит к появлению ровно одного цикла. Рассмотрим несоседние вершины u и v. По предположению есть цепь $(u=v_0,e_0,\ldots,v_k=v)$, соединяющая их. Тогда, добавив $e=\{u,v\}$, получим цикл $(u=v_0,e_0,\ldots,v_k=v,e,u)$.

Пусть есть 2 цикла, соединяющих u и v. Удалим e, тогда один цикл останется. Получим исходный граф, в котором не должно быть циклов. Противоречие.

• $(6) \Rightarrow (1)$.

Докажем связность методом от противного. Рассмотрим несвязные вершины u и v. Соединим их и по предположению получим цикл $(v_0,e_0,\ldots,u,e,v,\ldots,e_{k-1},v_k=v_0)$. Тогда в исходном графе $(u,\ldots,e_0,v_0=v_k,e_{k-1},\ldots,v)-(u,v)$ -маршрут. Противоречие.

В ходе доказательства было получено, что в связном графе с n вершинами и n-1 рёбрами существует висячая вершина. Т. к. доказано, что такой граф является деревом, то верно следующее утверждение.

Утверждение 10.5.2. В дереве существует висячая вершина.

Утверждение 10.5.3. *Если в лесу п вершин, т рёбер и к компонент связности, то m=n-k. Доказательство.* Пусть n_1, \ldots, n_k — число вершин в каждой компоненте связности, тогда

$$m = (n_1 - 1) + (n_2 - 1) + \ldots + (n_k - 1) = n - k$$

10.6 Остовы

Остовом графа G = (V, E) называется его подграф G' = (V', E') такой, что V = V' и G' — дерево. **Утверждение 10.6.1.** Любой связный граф содержит остов.

Утверждение 10.6.2. Если граф не является деревом, то в нём несколько остовов.

Пусть G=(V,E) — граф. Весом называется функция $\alpha\colon E\to\mathbb{R}^+$. Весом ребра $e\in E$ называется $\alpha(e)$. Весом графа называется $\sum_{e\in E}\alpha(e)$.

Алгоритмы нахождения остова минимального веса

Пусть дан граф $G=(V,E),\, n=|V|$ и весовая функция $\alpha\colon E\to R^+.$ Строим остов наименьшего веса T=(V,P).

1. Алгоритм Краскала

- (a) Выбираем ребро $e \in E$ с наименьшим весом: $P_1 = \{e\}, T_1 = (V, P_1).$
- (b) Выбираем ребро $e \in E$ с наименьшим весом такое, что $e \notin P_i$ и добавление этого ребра не приводит к образованию цикла в $T: T_{i+1} = (V, P_i \cup \{e\})$.
- (c) Повторяем шаг (b) n-2 раз. T_n искомый остов.

Доказательство корректности. Пусть T=(V,P) — построенный остов, где $P=\{e_1,e_2,\ldots,e_{n-1}\},\ e_1,e_2,\ldots,e_{n-1}$ — рёбра в порядке их добавления в остов, а также D=(V,M) — другой остов, где $M=\{e'_1,e'_2,\ldots,e'_{n-1}\},\ e'_1,e'_2,\ldots,e'_{n-1}$ — рёбра в порядке неубывания их весов.

Если $T \neq D$, то пусть i — наименьшее число такое, что $e_i \neq e_i'$. e_i' не входит в T, значит, оно образует цикл с рёбрами в T, выбранными ранее, тогда вес этих рёбер не больше $\alpha(e_i')$. Выберем из них ребро e такое, что при добавлении его в D образуется цикл. Пусть $D_1 = (V, M \cup \{e\} \setminus \{e_i'\})$. Этот граф — остов, причём $\alpha(D_1) \leqslant \alpha(D)$ и у T и D_1 на 1 общее ребро больше, чем у T и D. Повторяя, получим $D_k = T$. Значит, вес построенного остова не превосходит веса любого другого остова. \blacksquare

2. Алгоритм Прима

Строится последовательность деревьев $S_1 \subset S_2 \subset \ldots \subset S_n = T$.

- (a) Выбираем произвольную вершину $v. S_1 = (\{v\}, \varnothing).$
- (b) Пусть построено $S_i = (V_i, E_i)$. Находим ребро $e = \{u, v_i\} \in E$, где $u \in V_i, v_i \notin V_i$, наименьшего веса, добавление которого не приводит к образованию цикла: $S_{i+1} = (V_i \cup \{v_i\}, E_i \cup \{e\})$.
- (c) Повторяем шаг (b) n-1 раз. S_n искомый остов.

10.7 Помеченные деревья

Дерево с n вершинами, которым сопоставлены числа $1, \ldots, n$, называется **помеченным**.

Каждому помеченному дереву можно взаимнооднозначно сопоставить последовательность из n-2 чисел от 1 до n, называемую **кодом Прюфера**. Алгоритм построения кода Прюфера для помеченного дерева G=(V,E):

- 1. Выбираем висячую вершину v с наименьшим номером.
- 2. Добавляем номер вершины, смежной с v, в код.
- 3. Удаляем v и ребро, инцидентное v, из дерева.
- 4. Повторить, начиная с шага 1, n-2 раза.

Утверждение 10.7.1. Различным помеченным деревьям соответствуют различные коды Прюфера.

Доказательство методом математической индукции.

- *База индукции*. При n=3 легко проверить.
- Шаг индукции. Пусть утверждение верно при n, G = (V, E) и G' = (V', E') различные помеченные деревья с n+1 вершинами в каждом. Если в G и G' вершины с наименьшим номером смежны с вершинами с одинаковыми номерами, то выполняем шаг построения кода, тогда оставшиеся деревья различны, значит, по предположению индукции у них различные коды.
- Алгоритм построения дерева по коду $A_0 = (a_0, \dots, a_{n-3})$. Пусть $B_0 = \{1, \dots, n\}$.
 - 1. Находим наименьшее $b \in B_i$: $b \notin A_i$. Тогда в дереве есть ребро $\{b, a_i\}$: $A_{i+1} = A_i \setminus \{a_i\}$, $B_{i+1} = B_i \setminus \{b\}$.
 - 2. Повторяем шаг 1 n-2 раз. Получим $B_{n-2} = \{b', b''\}$, значит, в дереве есть ребро $\{b', b''\}$.

Докажем, что указанный алгоритм по коду из n чисел строит дерево.

Доказательство методом математической индукции.

- *База индукции*. При n = 1 легко проверить.
- Шаг индукции. Рассмотрим графы T_1, \ldots, T_{n-1} , полученные в процессе построения дерева. T_1 не содержит циклов. T_2 получается из T_1 либо добавлением новой вершины, либо добавлением моста, что не приводит к появлению цикла. Т.о., T_{n-1} не содержит циклов и содержит n вершин и n-1 ребёр, значит, T_{n-1} дерево.
- **Теорема 10.7.1 (Кэли).** Количество неизоморфных помеченных деревьев c n вершинами равно n^{n-2} .

Глава 11

Теория матриц

Матрицей называется прямоугольная таблица из чисел, содержащая m строк и n столбцов, и обозначается

$$A = (a_{ij})_{\substack{i = \overline{1,m} \\ j = \overline{1,n}}} = \begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{pmatrix} = \begin{vmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{vmatrix} = ||a_{ij}||_{\substack{i = \overline{1,m} \\ j = \overline{1,n}}}$$

Числа m и n называются **порядками** матрицы.

Если m=n, то матрица называется **квадратной**, а число m=n — её **порядком**. **Главной** называется диагональ квадратной матрицы, состоящая из элементов $a_{11}, a_{22}, \ldots, a_{nn}$, а **побочной** — состоящая из элементов $a_{n1}, a_{n-12}, \ldots, a_{1n}$.

i-я строка матрицы обозначается $A_i,\,j$ -й столбец — $A^j.$

Две матрицы называются **равными**, если их порядки и соответствующие элементы совпадают, иначе — **неравными**.

11.1 Операции над матрицами

Матрица, все элементы которой равны 0, называется **нулевой** и обозначается O.

Квадратная матрица, в которой элементы главной диагонали равны 1, а остальные -0, называется единичной и обозначается E.

Над матрицами определены следующие операции:

• Сложение. Определено только над матрицами одинакового размера.

$$\begin{vmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{vmatrix} + \begin{vmatrix} b_{11} & b_{12} & \cdots & b_{1n} \\ b_{21} & b_{22} & \cdots & b_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ b_{m1} & b_{m2} & \cdots & b_{mn} \end{vmatrix} = \begin{vmatrix} a_{11} + b_{11} & a_{12} + b_{12} & \cdots & a_{1n} + b_{1n} \\ a_{21} + b_{21} & a_{22} + b_{22} & \cdots & a_{2n} + b_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} + b_{m1} & a_{m2} + b_{m2} & \cdots & a_{mn} + b_{mn} \end{vmatrix}$$

Пусть A, B, C — матрицы. Свойства сложения:

- коммутативность: A + B = B + A
- ассоциативность: (A + B) + C = A + (B + C)
- Умножение на число.

$$\lambda \cdot \begin{vmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{vmatrix} = \begin{vmatrix} \lambda a_{11} & \lambda a_{12} & \cdots & \lambda a_{1n} \\ \lambda a_{21} & \lambda a_{22} & \cdots & \lambda a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ \lambda a_{m1} & \lambda a_{m2} & \cdots & \lambda a_{mn} \end{vmatrix}$$

Пусть α, β — числа, A, B — матрицы. Свойства умножения на число:

- ассоциативность: $(\alpha \cdot \beta) \cdot A = \alpha \cdot (\beta \cdot A)$
- дистрибутивность относительно сложения чисел: $(\alpha + \beta) \cdot A = \alpha \cdot A + \beta \cdot A$
- дистрибутивность относительно сложения матриц: $\alpha \cdot (A+B) = \alpha \cdot A + \alpha \cdot B$
- Умножение. $A \cdot B$ определено, только если количество столбцов в матрице A совпадает с количеством строк в матрице B.

$$\begin{vmatrix} a_{11} & a_{12} & \cdots & a_{1k} \\ a_{21} & a_{22} & \cdots & a_{2k} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mk} \end{vmatrix} \cdot \begin{vmatrix} b_{11} & b_{12} & \cdots & b_{1n} \\ b_{21} & b_{22} & \cdots & b_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ b_{k1} & b_{k2} & \cdots & b_{kn} \end{vmatrix} = \begin{vmatrix} \sum a_{1i}b_{i1} & \sum a_{1i}b_{i2} & \cdots & \sum a_{1i}b_{in} \\ \sum a_{2i}b_{i1} & \sum a_{2i}b_{i2} & \cdots & \sum a_{2i}b_{in} \\ \vdots & \vdots & \ddots & \vdots \\ \sum a_{mi}b_{i1} & \sum a_{mi}b_{i2} & \cdots & \sum a_{mi}b_{in} \end{vmatrix}$$

где суммирование производится по i от 1 до k.

Пусть λ — число, A,B,C — матрицы. Свойства умножения:

- ассоциативность: $(A \cdot B) \cdot C = A \cdot (B \cdot C)$
- дистрибутивность: $(A+B)\cdot C=A\cdot C+B\cdot C,\,A\cdot (B+C)=A\cdot B+A\cdot C$
- ассоциативность и коммутативность относительно умножения на число: $(\lambda \cdot A) \cdot B = \lambda \cdot (A \cdot B) = A \cdot (\lambda \cdot B)$
- Транспонирование.

$$\begin{vmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{vmatrix}^{T} = \begin{vmatrix} a_{11} & a_{21} & \cdots & a_{n1} \\ a_{12} & a_{22} & \cdots & a_{n2} \\ \vdots & \vdots & \ddots & \vdots \\ a_{1n} & a_{2n} & \cdots & a_{nn} \end{vmatrix}$$

11.2 Блочные матрицы

Если матрицу при помощи горизонтальных и вертикальных прямых разделить на прямоугольные клетки, называемые **блоками**, то получится **блочная матрица**, состоящая из блоков, которые, в свою очередь, также являются матрицами. Легко проверить непосредственно, что операции над блочными матрицами осуществляются так же, как и над обычными.

11.3 Определитель матрицы

Определителем порядка n квадратной матрицы A порядка n, называется число, равное

$$\Delta = \det A = |A| = \begin{vmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{vmatrix} = \sum_{\sigma = (i_1, \dots, i_n) \in S_n} (-1)^{|\sigma|} a_{1 \, i_1} a_{2 \, i_2} \cdot \dots \cdot a_{n \, i_n}, \ |\sigma| = \begin{cases} 0, \sigma \text{ чётная} \\ 1, \sigma \text{ нечётная} \end{cases}$$

$$(11.1)$$

где S_n — множество всех перестановок n-элементного множества.

Матрица называется **вырожденной**, если её определитель равен 0, иначе — **невырожденной**. Свойства определителя:

• Если элементы какой-либо строки или столбца определителя имеют общий множитель λ , то его можно вынести за знак определителя.

Доказательство.

$$\Delta = \sum (-1)^{|\sigma|} a_{1 \, i_1} a_{2 \, i_2} \cdot \ldots \cdot a_{n \, i_n}$$

Каждое слагаемое имеет множитель из каждой строки, а также из каждого столбца, т. к. σ является перестановкой и содержит все номера столбцов от 1 до n включительно. Тогда все слагаемые имеют общий множитель λ , поэтому его можно вынести за скобки.

• Если какая-либо строка или столбец определителя состоит из нулей, то он равен 0.

$$\begin{vmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{i1} + b_{i1} & a_{i2} + b_{i2} & \cdots & a_{in} + b_{in} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{vmatrix} = \begin{vmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{i1} & a_{i2} & \cdots & a_{in} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{vmatrix} + \begin{vmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ \vdots & \vdots & \ddots & \vdots \\ b_{i1} & b_{i2} & \cdots & b_{in} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{vmatrix}$$

Свойство для столбцов аналогично.

Доказательство.

$$\Delta = \begin{vmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{i1} + b_{i1} & a_{i2} + b_{i2} & \cdots & a_{in} + b_{in} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{vmatrix} = \sum (-1)^{|\sigma|} a_{1\,i_{1}} \cdot \dots \cdot a_{n\,i_{n}} =$$

| Каждое слагаемое содержит ровно 1 элемент из i-й строки и поэтому имеет вид |

$$= \sum (-1)^{|\sigma|} a_{1 \, i_{1}} \cdot \ldots \cdot a_{k-1 \, i_{k-1}} (a_{k \, i_{k}} + b_{k \, i_{k}}) a_{k+1 \, i_{k+1}} \cdot \ldots \cdot a_{n \, i_{n}} =$$

$$= \sum (-1)^{|\sigma|} a_{1 \, i_{1}} \cdot \ldots \cdot a_{k \, i_{k}} \cdot \ldots \cdot a_{n \, i_{n}} + \sum (-1)^{|\sigma|} a_{1 \, i_{1}} \cdot \ldots \cdot b_{k \, i_{k}} \cdot \ldots \cdot a_{n \, i_{n}} =$$

$$= \begin{vmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{i1} & a_{i2} & \cdots & a_{in} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{vmatrix} + \begin{vmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ \vdots & \vdots & \ddots & \vdots \\ b_{i1} & b_{i2} & \cdots & b_{in} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{vmatrix}$$

Свойство для столбцов доказывается аналогично.

- Если в определителе поменять две строки или два столбца местами, то он изменит знак.
 Доказательство. При перестановке строк или столбцов местами по утверждению 2.1.3 все перестановки в формуле (11.1) меняют чётность, значит, каждое слагаемое меняет знак, тогда и определитель меняет знак.
- Если в определителе две строки или два столбца совпадают, то он равен 0. Доказательство. Если поменять местами совпадающие строки или столбцы, то он, с одной стороны, не изменится, а с другой, поменяет знак. Значит, определитель равен 0. ■

$$\begin{vmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{i1} & a_{i2} & \cdots & a_{in} \\ \vdots & \vdots & \ddots & \vdots \\ a_{j1} & a_{j2} & \cdots & a_{jn} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{vmatrix} = \begin{vmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{i1} & a_{i2} & \cdots & a_{in} \\ \vdots & \vdots & \ddots & \vdots \\ \lambda a_{i1} + a_{j1} & \lambda a_{i2} + a_{j2} & \cdots & \lambda a_{in} + a_{jn} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{vmatrix}$$

Свойство для столбцов аналогично.

Доказательство.

$$\begin{vmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{i1} & a_{i2} & \cdots & a_{in} \\ \vdots & \vdots & \ddots & \vdots \\ a_{j1} & a_{j2} & \cdots & a_{jn} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{vmatrix} = \begin{vmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{i1} & a_{i2} & \cdots & a_{in} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{vmatrix} + \begin{vmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{j1} & a_{j2} & \cdots & a_{jn} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{vmatrix} + \begin{vmatrix} a_{11} & a_{12} & \cdots & a_{in} \\ \vdots & \vdots & \ddots & \vdots \\ a_{j1} & a_{j2} & \cdots & a_{jn} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{vmatrix} = \begin{vmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{i1} & a_{i2} & \cdots & a_{in} \\ \vdots & \vdots & \ddots & \vdots \\ a_{i1} & a_{i2} & \cdots & a_{in} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{vmatrix} = \begin{vmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{i1} & a_{i2} & \cdots & a_{in} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{vmatrix}$$

Свойство для столбцов доказывается аналогично.

Рассмотрим квадратную матрицу A n-го порядка. Пусть $1\leqslant i_1< i_2<\ldots< i_k\leqslant n,\ 1\leqslant j_1<< j_2<\ldots< j_k\leqslant n.$ Минором k-го порядка матрицы A называется определитель, образованный элементами матрицы, стоящими на пересечении строк с номерами i_1,i_2,\ldots,i_k и столбцов с номерами j_1,j_2,\ldots,j_k , и обозначается $M^{i_1i_2\ldots i_k}_{j_1j_2\ldots j_k}$. Дополнительным минором n-k-го порядка к минору $M^{i_1i_2\ldots i_k}_{j_1j_2\ldots j_k}$ называется определитель, полученный вычеркиванием строк с номерами i_1,i_2,\ldots,i_k и столбцов с номерами j_1,j_2,\ldots,j_k из определителя матрицы A, и обозначается $\overline{M}^{i_1i_2\ldots i_k}_{j_1j_2\ldots j_k}$. Алгебраическим дополнением элемента a_{ij} матрицы A называется величина, равная $(-1)^{i+j}\overline{M}^i_j$, и обозначается A_{ij} . Теорема 11.3.1. Любой определитель можно разложить по элементам произвольной строки или столбца:

$$\begin{vmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{vmatrix} = \sum_{j=1}^{n} a_{ij} A_{ij} = \sum_{i=1}^{n} a_{ij} A_{ij}$$

Доказательство.

$$\begin{vmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{i1} & a_{i2} & \cdots & a_{in} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{vmatrix} = (-1)^{i-1} \cdot \begin{vmatrix} a_{i1} & a_{i2} & \cdots & a_{in} \\ a_{11} & a_{12} & \cdots & a_{1n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{i-11} & a_{i-12} & \cdots & a_{i-1n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{vmatrix} = (-1)^{i+1}$$

$$\cdot \left(\begin{vmatrix} a_{i1} & 0 & \cdots & 0 \\ a_{11} & a_{12} & \cdots & a_{1n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{i-11} & a_{i-12} & \cdots & a_{i-1n} \\ a_{i+11} & a_{i+12} & \cdots & a_{i+1n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{vmatrix} + \begin{vmatrix} 0 & a_{i2} & \cdots & 0 \\ a_{11} & a_{12} & \cdots & a_{1n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{i-11} & a_{i-12} & \cdots & a_{i-1n} \\ a_{i+11} & a_{i+12} & \cdots & a_{i+1n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{vmatrix} + \begin{vmatrix} 0 & 0 & \cdots & a_{in} \\ a_{11} & a_{12} & \cdots & a_{1n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{i-11} & a_{i-12} & \cdots & a_{i-1n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{vmatrix} \right) =$$

$$= (-1)^{i+1} \cdot \begin{pmatrix} \begin{vmatrix} a_{i1} & 0 & \cdots & 0 \\ a_{11} & a_{12} & \cdots & a_{1n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{i-11} & a_{i-12} & \cdots & a_{i-1n} \\ a_{i+11} & a_{i+12} & \cdots & a_{i+1n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{vmatrix} - \begin{vmatrix} a_{i2} & 0 & 0 & \cdots & 0 \\ a_{12} & a_{11} & a_{13} & \cdots & a_{1n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{vmatrix} - \begin{vmatrix} a_{i1} & 0 & \cdots & 0 \\ a_{1n} & a_{i+11} & a_{i+13} & \cdots & a_{i+1n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n2} & a_{n1} & a_{n3} & \cdots & a_{nn} \end{vmatrix} + \dots + \\ + (-1)^{n-1} \cdot \begin{vmatrix} a_{in} & 0 & \cdots & 0 \\ a_{1n} & a_{11} & \cdots & a_{1n-1} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{11} & \cdots & a_{i+1n-1} \\ \vdots & \vdots & \ddots & \vdots \\ a_{nn} & a_{n1} & \cdots & a_{nn-1} \end{vmatrix} = \\ + (-1)^{n-1} \cdot \begin{vmatrix} a_{i1} & 0 & \cdots & 0 \\ a_{1n} & a_{11} & \cdots & a_{i-1n-1} \\ \vdots & \vdots & \ddots & \vdots \\ a_{nn} & a_{n1} & \cdots & a_{nn-1} \end{vmatrix} = \\ + (-1)^{n-1} \cdot \begin{vmatrix} a_{i1} & a_{i+11} & a_{i+11} & \cdots & a_{i+1n-1} \\ \vdots & \vdots & \ddots & \vdots \\ a_{nn} & a_{n1} & \cdots & a_{nn-1} \end{vmatrix} = \\ + (-1)^{n-1} \cdot \begin{vmatrix} a_{i1} & a_{i2} & \cdots & a_{nn} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{vmatrix} = \\ = \sum a \cdot a_{2i_2} \cdot \dots \cdot a_{ni_n} + \sum 0 \cdot a_{2i_2} \cdot \dots \cdot a_{ni_n} + \dots + \sum 0 \cdot a_{2i_2} \cdot \dots \cdot a_{ni_n} = \\ = \sum a \cdot a_{2i_2} \cdot \dots \cdot a_{ni_n} + \sum 0 \cdot a_{2i_2} \cdot \dots \cdot a_{ni_n} + \dots + \sum 0 \cdot a_{2i_2} \cdot \dots \cdot a_{ni_n} = \\ = a \sum a_{2i_2} \cdot \dots \cdot a_{ni_n} + \sum 0 \cdot a_{2i_2} \cdot \dots \cdot a_{ni_n} + \dots + \sum 0 \cdot a_{2i_2} \cdot \dots \cdot a_{ni_n} = \\ = (-1)^{i+1} a_{i1} \cdot \begin{vmatrix} a_{12} & \cdots & a_{i-1} \\ a_{i+12} & \cdots & a_{i+1n} \\ a_{i+12} & \cdots & a_{i+1n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n2} & \cdots & a_{nn} \end{vmatrix} + (-1)^{i+2} a_{i2} \cdot \begin{vmatrix} a_{11} & a_{13} & \cdots & a_{i-1n} \\ a_{i+11} & a_{i+13} & \cdots & a_{i+1n} \\ \vdots & \vdots & \ddots & \vdots \\ \vdots & \vdots & \ddots & \vdots$$

$$+ (-1)^{i+n} a_{in} \cdot \begin{vmatrix} a_{11} & \cdots & a_{1 \, n-1} \\ \vdots & \ddots & \vdots \\ a_{i-1 \, 1} & \cdots & a_{i-1 \, n-1} \\ a_{i+1 \, 1} & \cdots & a_{i+1 \, n-1} \\ \vdots & \ddots & \vdots \\ a_{n1} & \cdots & a_{n \, n-1} \end{vmatrix} = \sum_{j=1}^{n} a_{ij} A_{ij}$$

Аналогично доказывается

$$\begin{vmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{vmatrix} = \sum_{i=1}^{n} a_{ij} A_{ij}$$

Следствие 11.3.1 (фальшивое разложение определителя). Пусть дана квадратная матрица $A = ||a_{ij}||$ n-го порядка, тогда

$$\sum_{k=1}^{n} a_{ik} A_{jk} = \sum_{k=1}^{n} a_{ki} A_{kj} = 0, \ i \neq j$$

Доказательство.

$$\sum_{k=1}^{n} a_{ik} A_{jk} = \begin{vmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{i1} & a_{i2} & \cdots & a_{in} \\ \vdots & \vdots & \ddots & \vdots \\ a_{i1} & a_{i2} & \cdots & a_{in} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{vmatrix} = 0 = \begin{vmatrix} a_{11} & \cdots & a_{1i} & \cdots & a_{1i} & \cdots & a_{1n} \\ a_{21} & \cdots & a_{2i} & \cdots & a_{2i} & \cdots & a_{2n} \\ \vdots & \ddots & \vdots & \ddots & \vdots & \ddots & \vdots \\ a_{n1} & \cdots & a_{ni} & \cdots & a_{ni} & \cdots & a_{nn} \end{vmatrix} = \sum_{k=1}^{n} a_{ki} A_{kj}$$

Утверждение 11.3.1. *Определитель транспонированной матрицы равен определителю исходной.* Доказательство.

$$\begin{vmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{vmatrix}^{T} = \begin{vmatrix} a_{11} & a_{21} & \cdots & a_{n1} \\ a_{12} & a_{22} & \cdots & a_{n2} \\ \vdots & \vdots & \ddots & \vdots \\ a_{1n} & a_{2n} & \cdots & a_{nn} \end{vmatrix} = \sum_{j=1}^{n} a_{1j} A_{1j} = \begin{vmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{vmatrix}$$

Теорема 11.3.2 (**Лапла́са**). Пусть дана квадратная матрица *А n-го* порядка.

$$\forall 0 < k < n, \ 1 \leqslant i_1 < i_2 < \ldots < i_k \leqslant n \ \det A = \sum_{1 \leqslant j_1 < \ldots < j_k \leqslant n} (-1)^{i_1 + \ldots + i_k + j_1 + \ldots + j_k} M_{j_1 \ldots j_k}^{i_1 \ldots i_k} \overline{M}_{j_1 \ldots j_k}^{i_1 \ldots i_k}$$

Доказательство методом математической индукции.

- База индукции. При k=1 данная теорема эквивалентна теореме 11.3.1.
- Шаг индукции. Пусть теорема верна при k-1. Докажем её для k

$$\det A = \sum_{1 \leqslant j_1 < \ldots < j_{k-1} \leqslant n} (-1)^{i_1 + \ldots + i_{k-1} + j_1 + \ldots + j_{k-1}} M_{j_1 \ldots j_{k-1}}^{i_1 \ldots i_{k-1}} \overline{M}_{j_1 \ldots j_{k-1}}^{i_1 \ldots i_{k-1}} =$$

 $\left|$ Разложим каждый минор $\overline{M}_{j_1...j_{k-1}}^{i_1...i_{k-1}}$ по строке A_{i_k} , полагая, что $\Theta_{j_1...j_k}$ — некоторое число

$$= \sum_{1 \leq i_1 \leq \dots \leq i_k \leq n} \Theta_{j_1 \dots j_k} \overline{M}_{j_1 \dots j_k}^{i_1 \dots i_k}$$

Найдём значение $\Theta_{j_1...j_k}$. Заметим, что минор $\overline{M}_{j_1...j_k}^{i_1...i_k}$ получается при разложении только миноров

$$\overline{M}_{j_1...j_{s-1}j_{s+1}...j_k}^{i_1...i_{k-1}}, \ s=1,2,\ldots,k$$

причём

$$\overline{M}_{j_1\dots j_{s-1}j_{s+1}\dots j_k}^{i_1\dots i_{k-1}} = (-1)^{i_k-(k-1)+j_s-(s-1)} a_{i_kj_s} \overline{M}_{j_1\dots j_k}^{i_1\dots i_k} + \dots$$

где многоточием обозначены остальные слагаемые.

Тогда

$$\Theta_{j_1...j_k} = (-1)^{i_1 + ... + i_k + j_1 + ... + j_k} \sum_{s=1}^k (-1)^{k+s} M_{j_1...j_{s-1}j_{s+1}...j_k}^{i_1...i_{k-1}} = (-1)^{i_1 + ... + i_k + j_1 + ... + j_k} M_{j_1...j_k}^{i_1...i_k}$$

Теорема 11.3.3. Если $A = ||a_{ij}||, B = ||b_{ij}|| -$ квадратные матрицы n-го порядка, то $\det AB = \det A \cdot \det B$.

Доказательство. Пусть O, E — нулевая и единичная соответственно квадратные матрицы n-го порядка, C = AB. Рассмотрим блочные матрицы

$$\begin{vmatrix} A & O \\ -E & B \end{vmatrix}, \begin{vmatrix} A & C \\ -E & O \end{vmatrix}$$

Раскладывая первую матрицу по первым n строкам, а вторую — по последним n строкам, получим

$$\begin{vmatrix} A & O \\ -E & B \end{vmatrix} = |A||B|, \begin{vmatrix} A & C \\ -E & O \end{vmatrix} = (-1)^{1+\dots+2n}|-E||C| = |C|$$

Тогда

$$\det A \cdot \det B = \begin{vmatrix} A & O \\ -E & B \end{vmatrix} = \begin{vmatrix} a_{11} & \cdots & a_{1n} & 0 & \cdots & 0 \\ \vdots & \ddots & \vdots & \vdots & \ddots & \vdots \\ a_{n1} & \cdots & a_{nn} & 0 & \cdots & 0 \\ -1 & \cdots & 0 & b_{11} & \cdots & b_{1n} \\ \vdots & \ddots & \vdots & \vdots & \ddots & \vdots \\ 0 & \cdots & -1 & b_{n1} & \cdots & b_{nn} \end{vmatrix} =$$

$$= \begin{vmatrix} a_{11} & \cdots & a_{1n} & \sum_{i=1}^{n} a_{1i}b_{i1} & \cdots & \sum_{i=1}^{n} a_{1i}b_{in} \\ \vdots & \ddots & \vdots & \vdots & \ddots & \vdots \\ a_{n1} & \cdots & a_{nn} & \sum_{i=1}^{n} a_{ni}b_{i1} & \cdots & \sum_{i=1}^{n} a_{ni}b_{in} \\ -1 & \cdots & 0 & 0 & \cdots & 0 \\ \vdots & \ddots & \vdots & \vdots & \ddots & \vdots \\ 0 & \cdots & -1 & 0 & \cdots & 0 \end{vmatrix} = \begin{vmatrix} A & C \\ -E & O \end{vmatrix} = \det C$$

11.4 Ранг матрицы

Строка (столбец) матрицы называется **линейно зависимой**, если она является линейной комбинацией остальных строк (столбцов), иначе — **линейно независимой**.

Рангом матрицы называется максимальное количество её линейно независимых строк.

Минор наибольшего порядка, отличный от нуля, называется базисным.

Теорема 11.4.1. Ранг матрицы равен порядку базисного минора.

Доказательство. Пусть $A = \|a_{ij}\|$ — квадратная матрица n-го порядка, M_k — базисный минор k-го порядка. При перестановке строк и столбцов минора равенство с нулём сохраняется, значит, без ограничения общности можно считать, что

$$M_k = \begin{vmatrix} a_{11} & a_{12} & \cdots & a_{1k} \\ a_{21} & a_{22} & \cdots & a_{2k} \\ \vdots & \vdots & \ddots & \vdots \\ a_{k1} & a_{k2} & \cdots & a_{kk} \end{vmatrix}$$

 $M_k \neq 0$, значит, строки A_1, \dots, A_k линейно независимы. Пусть M_{k+1} — минор k+1-го порядка:

$$M_{k+1} = \begin{vmatrix} a_{11} & a_{12} & \cdots & a_{1k} & a_{1j} \\ a_{21} & a_{22} & \cdots & a_{2k} & a_{2j} \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ a_{k1} & a_{k2} & \cdots & a_{kk} & a_{kj} \\ a_{i1} & a_{i2} & \cdots & a_{ik} & a_{ij} \end{vmatrix} = 0$$

т. к. M_k — базисный минор. Тогда

$$\forall j \ a_{1j}A_{1j} + a_{2j}A_{2j} + \ldots + a_{kj}A_{kj} + a_{ij}A_{ij} = 0, \ A_{ij} = M_k \neq 0 \Rightarrow$$

$$\Rightarrow a_{ij} = -\frac{A_{1j}}{A_{ij}}a_{1j} - \frac{A_{2j}}{A_{ij}}a_{2j} - \dots - \frac{A_{kj}}{A_{ij}}a_{kj}$$

где $A_{1j},\ldots,A_{kj},A_{ij}$ — алгебраические дополнения $a_{1j},\ldots,a_{kj},a_{ij}$ в миноре $M_{k+1}.$ $A_{1j},\ldots,A_{kj},A_{ij}$ не зависят от j, тогда A_i — линейная комбинация A_1,\ldots,A_k , значит, k — ранг матрицы A.

Рангом матрицы по строкам (столбцам) называется максимальное количество её линейно независимых строк (столбцов).

Следствие 11.4.1. *Ранг матрицы по строкам равен рангу матрицы по столбцам.* Для доказательства достаточно заметить, что определитель транспонированной матрицы равен определителю исходной.

11.5 Элементарные преобразования матриц

Элементарными преобразованиями называются следующие операции над матрицей:

- Перестановка строк матрицы преобразование I типа
- Умножение строки на $\lambda \neq 0$ преобразование II типа
- Прибавление к строке матрицы другой строки, умноженной на λ .

Аналогично определяются элементарные преобразования над столбцами.

Теорема 11.5.1. Элементарные преобразования матрицы не изменяют её ранг.

Доказательство. Для доказательства достаточно показать, что в результате элементарных преобразований равенство определителя с нулём сохраняется.

- Перестановка строк матрицы изменяет только знак определителя.
- Умножение строки матрицы на ненулевое число приводит к умножению определителя на это же число.
- Прибавление к строке матрицы другой строки, умноженной на некоторое число, не изменяет определитель.

Матрица *A* имеет **ступенчатый вид**, если:

- все нулевые строки стоят последними;
- для любой ненулевой строки A_p верно, что $\forall i>p,\ j\leqslant q\ a_{ij}=0$, где a_{pq} первый ненулевой элемент строки A_p .

Teopema 11.5.2. Любую матрицу путём элементарных преобразований только над строками можно привести к ступенчатому виду.

Доказательство. Приведём алгоритм, преобразующий любую матрицу $\|a_{ij}\|_{i=\overline{1,m}}$ к ступенчатому $\frac{1}{j=\overline{1,n}}$ виду путём элементарных преобразований только над строками. В качестве текущего элемента возьмём a_{11} .

- 1. Если текущий элемент $a_{ij}=0$, то переходим к шагу 2, иначе к каждой строке A_k , где $k=i+1,i+2,\ldots,n$, добавляем строку $-\frac{a_{kj}}{a_{ij}}A_i$. Если i=m или j=n, то матрица приведена к ступенчатому виду, иначе выбираем новый текущий элемент $a_{i+1\,j+1}$ и повторяем шаг 1.
- 2. Просматриваем элементы матрицы, расположенные под текущим элементом a_{ij} . Если $a_{kj} \neq 0$, то меняем местами строки A_i и A_k и переходим к шагу 1, иначе переходим к шагу 3.
- 3. Пусть a_{ij} текущий элемент. Если j=n, то матрица приведена к ступенчатому виду, иначе выбираем новый текущий элемент a_{ij+1} и переходим к шагу 1.

Матрица имеет конечные размеры, а положение текущего элемента смещается как минимум на 1 столбец вправо за не более, чем 3 шага, поэтому алгоритм закончит работу за не более, чем 3n шагов.

11.6 Обратные матрицы

Матрица B называется **левой обратной** к квадратной матрице A, если BA = E.

Матрица C называется **правой обратной** к квадратной матрице A, если AC = E.

Заметим, что обе матрицы B и C — квадратные того же порядка, что и A.

Утверждение 11.6.1. Если существуют левая и правая обратные к A матрицы B и C, то они совпадают.

Доказательство. B = BE = BAC = EC = C.

Т. о., матрица A^{-1} называется **обратной** к матрице A, если $A^{-1}A = AA^{-1} = E$.

Теорема 11.6.1. Пусть даны матрицы $A = \|a_{ij}\|_{\substack{i=\overline{1,n}\\j=\overline{1,n}}}$, $\hat{A} = \|A_{ij}\|_{\substack{i=\overline{1,n}\\j=\overline{1,n}}}$, где A_{ij} — алгебраическое дополнение a_{ij} .

 $Если |A| \neq 0$, то

$$A^{-1} = \frac{1}{|A|} \cdot \hat{A}^T$$

Доказательство.

$$A \cdot \left(\frac{1}{|A|} \cdot \hat{A}^{T}\right) = \frac{1}{|A|} \cdot A \cdot \hat{A}^{T} = \frac{1}{|A|} \cdot \begin{vmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{vmatrix} \cdot \begin{vmatrix} A_{11} & A_{21} & \cdots & A_{n1} \\ A_{12} & A_{22} & \cdots & A_{n2} \\ \vdots & \vdots & \ddots & \vdots \\ A_{1n} & A_{2n} & \cdots & A_{nn} \end{vmatrix} =$$

$$= \frac{1}{|A|} \cdot \begin{vmatrix} \sum_{k=1}^{n} a_{1k} A_{1k} & \sum_{k=1}^{n} a_{1k} A_{2k} & \cdots & \sum_{k=1}^{n} a_{1k} A_{nk} \\ \sum_{k=1}^{n} a_{2k} A_{1k} & \sum_{k=1}^{n} a_{2k} A_{2k} & \cdots & \sum_{k=1}^{n} a_{2k} A_{nk} \\ \vdots & \vdots & \ddots & \vdots \\ \sum_{k=1}^{n} a_{nk} A_{1k} & \sum_{k=1}^{n} a_{nk} A_{2k} & \cdots & \sum_{k=1}^{n} a_{nk} A_{nk} \end{vmatrix} = \frac{1}{|A|} \cdot \begin{vmatrix} |A| & 0 & \cdots & 0 \\ 0 & |A| & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & |A| \end{vmatrix} = E \Rightarrow$$

 $\Rightarrow \frac{1}{|A|} \cdot \hat{A}^T = A^{-1}$

Теорема 11.6.2 (метод Гаусса—Жордана). Пусть дана невырожденная матрица $A=\|a_{ij}\|_{\substack{i=\overline{1,n}\\j=\overline{1,n}}}$

Присоединим к ней единичную матрицу:

$$B = \begin{vmatrix} a_{11} & a_{12} & \cdots & a_{1n} & 1 & 0 & \cdots & 0 \\ a_{21} & a_{22} & \cdots & a_{2n} & 0 & 1 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots & \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} & 0 & 0 & \cdots & 1 \end{vmatrix}$$

и с помощью элементарных преобразований только над строками полученной матрицы (или только над столбцами) приведём её левую часть к единичной матрице. Тогда правая часть будет обратной к A матрицей.

Доказательство. Каждое элементарное преобразование квадратной матрицы A эквивалентно её умножению на некоторую матрицу T того же порядка:

$$= \begin{vmatrix} a_{11} & a_{12} & \dots & a_{1i} & \dots & a_{1j} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2i} & \dots & a_{2j} & \dots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots & \ddots & \vdots & \ddots & \vdots \\ a_{j1} & a_{j2} & \dots & a_{ji} & \dots & a_{jj} & \dots & a_{jn} \\ \vdots & \vdots & \ddots & \vdots & \ddots & \vdots & \ddots & \vdots \\ a_{i1} & a_{i2} & \dots & a_{ii} & \dots & a_{ij} & \dots & a_{in} \\ \vdots & \vdots & \ddots & \vdots & \ddots & \vdots & \ddots & \vdots \\ a_{1n} & a_{2n} & \dots & a_{in} & \dots & a_{in} & \dots & a_{nn} \end{vmatrix}$$

•

$$\begin{vmatrix} 1 & 0 & \dots & 0 & \dots & 0 \\ 0 & 1 & \dots & 0 & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots & \ddots & \dots \\ 0 & 0 & \dots & \lambda & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots & \ddots & \dots \\ 0 & 0 & \dots & 0 & \dots & 1 \end{vmatrix} \cdot \begin{vmatrix} a_{11} & a_{12} & \dots & a_{1i} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2i} & \dots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots & \ddots & \dots \\ a_{i1} & a_{i2} & \dots & a_{ii} & \dots & a_{in} \\ \vdots & \vdots & \ddots & \vdots & \ddots & \dots \\ a_{1n} & a_{2n} & \dots & a_{in} & \dots & a_{nn} \end{vmatrix} = \begin{vmatrix} a_{11} & a_{12} & \dots & a_{1i} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2i} & \dots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots & \ddots & \dots \\ \lambda a_{i1} & \lambda a_{i2} & \dots & \lambda a_{ii} & \dots & \lambda a_{in} \\ \vdots & \vdots & \ddots & \vdots & \ddots & \dots \\ a_{1n} & a_{2n} & \dots & a_{nn} \end{vmatrix}$$

•

$$\begin{vmatrix} 1 & 0 & \dots & 0 & \dots & 0 & \dots & 0 \\ 0 & 1 & \dots & 0 & \dots & 0 & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots & \ddots & \vdots & \ddots & \dots \\ 0 & 0 & \dots & 1 & \dots & 0 & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots & \ddots & \vdots & \ddots & \dots \\ 0 & 0 & \dots & \lambda & \dots & 1 & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots & \ddots & \vdots & \ddots & \dots \\ 0 & 0 & \dots & \lambda & \dots & 1 & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots & \ddots & \vdots & \ddots & \dots \\ 0 & 0 & \dots & 0 & \dots & 0 & \dots & 1 \end{vmatrix} \cdot \begin{vmatrix} a_{11} & a_{12} & \dots & a_{1i} & \dots & a_{1j} & \dots & a_{1n} \\ \vdots & \vdots & \ddots & \vdots & \ddots & \vdots & \ddots & \dots \\ a_{j1} & a_{j2} & \dots & a_{ji} & \dots & a_{jn} & \dots & a_{jn} \\ \vdots & \vdots & \ddots & \vdots & \ddots & \vdots & \ddots & \dots \\ a_{1n} & a_{2n} & \dots & a_{1i} & \dots & a_{1j} & \dots & a_{nn} \end{vmatrix} =$$

$$= \begin{vmatrix} a_{11} & a_{12} & \dots & a_{1i} & \dots & a_{1j} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2i} & \dots & a_{2j} & \dots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots & \ddots & \vdots & \ddots & \dots \\ a_{i1} & a_{i2} & \dots & a_{ii} & \dots & a_{ij} & \dots & a_{in} \\ \vdots & \vdots & \ddots & \vdots & \ddots & \vdots & \ddots & \dots \\ a_{i1} & a_{i2} & \dots & a_{ii} & \dots & a_{ij} & \dots & a_{in} \\ \vdots & \vdots & \ddots & \vdots & \ddots & \vdots & \ddots & \dots \\ \lambda a_{i1} + a_{j1} & \lambda a_{i2} + a_{j2} & \dots & \lambda a_{ii} + a_{ji} & \dots & \lambda a_{ij} + a_{jj} & \dots & \lambda a_{in} + a_{jn} \\ \vdots & \vdots & \ddots & \vdots & \ddots & \vdots & \ddots & \dots \\ \vdots & \vdots & \ddots & \vdots & \ddots & \vdots & \ddots & \dots \\ \lambda a_{i1} + a_{j1} & \lambda a_{i2} + a_{j2} & \dots & \lambda a_{ii} + a_{ji} & \dots & \lambda a_{ij} + a_{jj} & \dots & \lambda a_{in} + a_{jn} \\ \vdots & \vdots & \ddots & \vdots & \ddots & \vdots & \ddots & \dots \\ \vdots & \vdots & \ddots & \vdots & \ddots & \vdots & \ddots & \dots \\ \lambda a_{i1} + a_{j1} & \lambda a_{i2} + a_{j2} & \dots & \lambda a_{ii} + a_{ji} & \dots & \lambda a_{ij} + a_{jj} & \dots & \lambda a_{in} + a_{jn} \\ \vdots & \vdots & \ddots & \vdots & \ddots & \vdots & \ddots & \dots \\ \lambda a_{i1} + a_{i2} & \dots & \lambda a_{ii} + a_{ji} & \dots & \lambda a_{ij} + a_{ij} & \dots & \lambda a_{in} + a_{jn} \\ \vdots & \vdots & \ddots & \vdots & \ddots & \vdots & \ddots & \dots \\ \lambda a_{i1} + a_{i2} & \dots & \lambda a_{ii} + a_{ji} & \dots & \lambda a_{ij} + a_{jj} & \dots & \lambda a_{in} + a_{jn} \\ \vdots & \vdots & \ddots & \vdots & \ddots & \vdots & \ddots & \dots \\ \lambda a_{i1} + a_{i2} & \dots & \lambda a_{ii} + a_{ji} & \dots & \lambda a_{ij} + a_{jj} & \dots & \lambda a_{in} + a_{jn} \\ \vdots & \vdots & \ddots & \vdots & \ddots & \vdots & \ddots & \dots \\ \lambda a_{i1} + a_{i2} & \dots & \lambda a_{ii} + a_{ij} & \dots & \lambda a_{ij} + a_{ij} & \dots & \lambda a_{in} \\ \vdots & \vdots & \ddots & \vdots & \ddots & \dots \\ \lambda a_{i1} + a_{i2} & \dots & \lambda a_{ii} + a_{ij} & \dots & \lambda a_{ii} & \dots & \lambda a_{in} \\ \vdots & \vdots & \ddots & \vdots & \ddots & \vdots & \ddots & \dots \\ \lambda a_{i1} + a_{i2} & \dots & \lambda a_{ii} & \dots & \lambda a_{ii} & \dots & \lambda a_{in} \\ \vdots$$

Т. о., результат последовательных элементарных преобразований матрицы B можно представить в виде $T_k \cdot \ldots \cdot T_1 \cdot B$. Рассматривая отдельно левую и правую части матрицы B, получим:

$$\begin{cases} T_k \cdot \ldots \cdot T_1 \cdot A = E \\ T_k \cdot \ldots \cdot T_1 \cdot E = A_1 \end{cases} \Rightarrow A_1 \cdot A = E \Rightarrow A_1 = A^{-1}$$

Теорема 11.6.3. *Если* A- *квадратная матрица, то* $\exists A^{-1} \Leftrightarrow \det A \neq 0$. Доказательство.

1.
$$\Rightarrow$$
. $A \cdot A^{-1} = E \Rightarrow \det A \cdot \det A^{-1} = 1 \Rightarrow \det A \neq 0$

2. \Leftarrow . $\exists A^{-1}$ по теореме 11.6.1.

_

Глава 12

Теория многочленов

12.1 Многочлены от одной переменной

Одночленом, или **мономом**, называется произведение числового множителя и нуля и более переменных, взятых каждая в неотрицательной степени.

Степенью одночлена называется сумма степеней входящих в него переменных. Степень тождественного нуля равна $-\infty$.

Многочленом, или полиномом, от одной переменной называется сумма вида

$$a_0 + a_1 x + a_2 x^2 + \ldots + a_n x^n$$

где x_1, \ldots, x_n — переменные.

Степенью многочлена f называется максимальная из степеней его одночленов и обозначается $\deg f$. Многочлен 1-й степени называется линейным, 2-й степени — квадратным.

Утверждение 12.1.1. Пусть f и g — многочлены, тогда $\deg(f+g) \leq \max\{\deg f, \deg g\}$.

Утверждение 12.1.2. Пусть f и g — многочлены, тогда $\deg fg = \deg f + \deg g$.

12.1.1 Деление многочленов

Теорема 12.1.1. Пусть f(x) и $g(x) \neq 0$ — многочлены, тогда существуют единственные многочлены q(x) и r(x) такие, что f = qg + r, причём $\deg r < \deg g$.

Доказательство. Пусть $\deg f = n$, $\deg g = m$.

- 1. Докажем существование. Если m=0, то $q=\frac{f}{g},\,r=0$. Пусть m>0. Если n< m, то $q=0,\,r=f$. Пусть $n\geqslant m$. В таком случае докажем существование q и r методом математической индукции.
 - Ваза индукции. n = m. Пусть $f = ax^n + f_1$, $g = bx^n + g_1$, тогда $\deg f_1$, $\deg g_1 < n$. $\deg(f_1 \frac{a}{b}g_1) \le \max\{\deg f_1, \deg g_1\} < \deg g$, тогда $q = \frac{a}{b}$, $r = f_1 \frac{a}{b}g_1$.
 - Шаг индукции. Пусть n>m, теорема верна для k< n и $f=ax^n+f_1,\ g=bx^m+g_1.$ Рассмотрим

$$h_1(x) = \frac{a}{b}x^{n-m} \Rightarrow h_1g = ax^n + h_1g_1 \Rightarrow f - h_1g = ax^n + f_1 - ax^n - h_1g_1 = f_1 - h_1g_1$$

$$\deg h_1g_1 = \deg h_1 + \deg g_1 < (n-m) + m = n \Rightarrow$$

$$\Rightarrow \deg(f - h_1g) = \deg(f_1 - h_1g_1) \leqslant \max\{\deg f_1, \deg h_1g_1\} < n$$

По предположению индукции

$$f - h_1 g = q_1 g + r \Rightarrow f = (h_1 + q_1)g + r, \deg r < \deg g$$

2. Докажем единственность. Пусть

$$f = q_1 g + r_1 = q_2 g + r_2 \Rightarrow (q_1 - q_2)g = r_2 - r_1, \deg r_1, \deg r_2 < \deg g$$

Возможны два случая:

- (a) $q_1 \neq q_2 \Rightarrow \deg(r_1 r_2) \leqslant \max\{\deg r_1, \deg r_2\} < \deg g \leqslant \deg(q_1 q_2)g$ Противоречие.
- (b) $q_1 = q_2 \Rightarrow r_1 = r_2$

Многочлен q называется **частным**, а r — **остатком от деления** $\frac{f}{g}$. Если r = 0, то говорят, что fделится на g без остатка, и пишут f : g.

Общим делителем многочленов f(x) и g(x) называется многочлен h(x), на который и f, и gделятся без остатка: f = ph, g = qh.

Наибольшим называется общий делитель наибольшей степени и обозначается НОД.

Теорема 12.1.2 (алгоритм Евклида). Любые два многочлена имеют единственный НОД.

Доказательство. Будем делить многочлены следующим образом:

$$f = q_1 g + r_1, \ g = q_2 r_1 + r_2, \ r_1 = q_3 r_2 + r_3, \dots,$$

$$r_{n-1} = q_{n+1} r_n + r_{n+1}, \ r_n = q_{n+2} r_{n+1} + r_{n+2} = q_{n+2} r_{n+1},$$

$$\deg g > \deg r_1 > \deg r_2 > \dots > \deg r_{n+1} > \deg r_{n+2} = -\infty$$

Докажем, что r_{n+1} — общий делитель f и g.

$$r_n : r_{n+1} \Rightarrow r_{n-1} : r_{n+1} \Rightarrow \ldots \Rightarrow r_1 : r_{n+1} \Rightarrow g : r_{n+1} \Rightarrow f : r_{n+1}$$

Докажем, что $\forall h \ f \ h, \ g \ h \Rightarrow r_{n+1} \ h.$

$$f : h, g : h \Rightarrow r_1 : h; g : h, r_1 : h \Rightarrow r_2 : h; r_1 : h, r_2 : h \Rightarrow r_3 : h; \dots; r_{n-1} : h, r_n : h \Rightarrow r_{n+1} : h$$
 Значит, $r_{n+1} = \text{HOД}(f,g)$.

12.1.2Корень многочлена

Корнем многочлена f(x) называется такое число a, что f(a) = 0. **Теорема 12.1.3 (Безу).** Остаток от деления многочлена f(x) на двучлен x-a равен f(a). Доказательство.

$$f(x) = q(x)(x-a) + r \Rightarrow f(a) = q(a)(a-a) + r \Leftrightarrow r = f(a)$$

Следствие 12.1.1. Если a — корень f(x), то f(x) делится на x — a без остатка.

Кратностью корня а многочлена f(x) называется число $m: f(x): (x-a)^m, f(x)/(x-a)^{m+1}$.

Теорема 12.1.4 (основная теорема алгебры). Если f(x) — многочлен, отличный от константы, то он имеет хотя бы один комплексный корень. Доказательство теоремы слишком сложно, поэтому здесь не приводится.

Следствие 12.1.2. Многочлен n-й степени имеет ровно n комплексных корней с учётом их кратности.

Доказательство. Пусть f(x) — многочлен n-й степени. По основной теореме алгебры он имеет корень a, тогда по следствию 12.1.1 f(x) = q(x)(x-a), где q(x) — многочлен n-1-й степени, который также имеет корень. Будем повторять деление до тех пор, пока не получим константу. Т. о., получим n корней. \blacksquare

Следствие 12.1.3. Любой многочлен f(x) n-й степени представим в виде

$$f(x) = a(x - x_0)(x - x_1) \cdot \dots \cdot (x - x_{n-1})$$

где a — число, x_0, \ldots, x_{n-1} — корни f(x).

Лемма 12.1.1. Если f(x) — многочлен c действительными коэффициентами, $z \in \mathbb{C}$, то $\overline{f(z)} = f(\overline{z})$.

Доказательство. Пусть $z_1=a_1+b_1i, z_2=a_2+b_2i, \ a_1,b_1,a_2,b_2\in\mathbb{R}.$ Многочлен строится при помощи операций сложения и умножения, поэтому достаточно доказать следующее:

1.
$$\overline{z_1 + z_2} = \overline{z_1} + \overline{z_2}$$

$$\overline{z_1 + z_2} = \overline{(a_1 + a_2) + (b_1 + b_2)i} = (a_1 + a_2) - (b_1 + b_2)i = (a_1 - b_1i) + (a_2 - b_2i) = \overline{z_1} + \overline{z_2}$$

2. $\overline{z_1 z_2} = \overline{z_1} \cdot \overline{z_2}$

$$\overline{z_1 z_2} = \overline{(a_1 a_2 - b_1 b_2) + (a_1 b_2 + a_2 b_1)i} = (a_1 a_2 - b_1 b_2) - (a_1 b_2 + a_2 b_1)i = (a_1 - b_1 i)(a_2 - b_2 i) = \overline{z_1} \cdot \overline{z_2}$$

Тогда $\overline{a_nz^n+\ldots+a_1z+a_0}=a_n\overline{z}^n+\ldots+a_1\overline{z}+a_0$ при $a_0,a_1,\ldots,a_n\in\mathbb{R}$.

Теорема 12.1.5. Любой многочлен с действительными коэффициентами можно разложить на линейные и квадратные множители с действительными коэффициентами.

Доказательство. Пусть f(x) — многочлен с действительными коэффициентами, тогда если f(z) = 0, то $f(\overline{z}) = \overline{f(z)} = \overline{0} = 0$. Значит, если a + bi — корень f(x), то a - bi — тоже корень f(x). Имеем:

$$f(x) = a \prod_{j=1}^{m} (x - x_j) \cdot \prod_{j=1}^{n} (x - (a_j + b_j i))(x - (a_j - b_j i)) = a \prod_{j=1}^{m} (x - x_j) \cdot \prod_{j=1}^{n} (x^2 - 2a_j x + a_j^2 + b_j^2)$$

где $a, x_1, \dots, x_m, a_1, \dots, a_n, b_1, \dots, b_n \in \mathbb{R}, \ x_1, \dots, x_m, a_1 + b_1 i, \dots, a_n + b_n i$ — корни f(x).

Теорема 12.1.6 (формулы Виета). Пусть

$$f(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x + a_0 = a_n (x - x_0)(x - x_1) \cdot \dots \cdot (x - x_{n-1})$$
(12.1)

тогда

$$a_{n-1} = -a_n \sum_{i=0}^{n-1} x_i$$

$$a_{n-2} = a_n \sum_{i=0}^{n-1} \sum_{j=i+1}^{n-1} x_i x_j$$

$$a_{n-3} = -a_n \sum_{i=0}^{n-1} \sum_{j=i+1}^{n-1} \sum_{k=j+1}^{n-1} x_i x_j x_k$$

$$\dots$$

$$a_2 = (-1)^{n-1} \cdot a_n \sum_{i=0}^{n-1} x_0 x_1 \cdot \dots \cdot x_{i-1} x_{i+1} \cdot \dots \cdot x_{n-1}$$

$$a_1 = (-1)^n \cdot a_n x_0 x_1 \cdot \dots \cdot x_{n-1}$$

Для доказательства достаточно раскрыть скобки в правой части равенства (12.1).

Теорема 12.1.7. Пусть на плоскости даны n+1 точек, никакие две из которых не лежат на прямой, паралелльной оси ординат, тогда через них проходит единственная кривая n-го порядка.

Доказательство. Пусть данные точки заданы координатами $(a_0, b_0), (a_1, b_1), \dots, (a_n, b_n).$

1. Докажем существование. Рассмотрим многочлен f(x), называемый **интерполяционным многочленом Лагранжа**:

$$f(x) = \sum_{i=0}^{n} b_i \frac{(x-a_0) \cdot \dots \cdot (x-a_{i-1})(x-a_{i+1}) \cdot \dots \cdot (x-a_n)}{(a_i-a_0) \cdot \dots \cdot (a_i-a_{i-1})(a_i-a_{i+1}) \cdot \dots \cdot (a_i-a_n)}$$

Докажем, что кривая, задаваемая функцией f, проходит через все данные точки. Рассмотрим точку $(a_k; b_k)$. Подставим $x = a_k$, тогда k-е (считая с нуля) слагаемое равно b_k , а остальные — 0.

2. Докажем единственность. Предположим, что существуют многочлены f(x) и g(x) n-й степени такие, что $f(a_i) = g(a_i) = b_i$, где $i = 0, 1, \ldots, n$. Рассмотрим $h(x) = f(x) - g(x) \Rightarrow \deg h \leqslant n \Rightarrow h(x)$ имеет не более n корней. При этом h(x) = 0 в n + 1 точках $\Rightarrow h(x)$ тождественно равен нулю $\Rightarrow f(x) = g(x)$.

12.2 Многочлены от нескольких переменных

- 1. В многочлене $a_n x^n + a_{n-1} x^{n-1} + \ldots + a_0$ подставим $a_i = P_i(y), i = 0, 1, \ldots, n$ многочлен от y. Получим многочлен от x и y.
- 2. Пусть имеем многочлен от n переменных. Подставим вместо его коэффициентов многочлен от одной переменной, получим многочлен от n+1 переменных.

Одночлены многочлена будем записывать в лексикографическом порядке степеней переменных (члены с бо́льшими степенями идут раньше).

Утверждение 12.2.1. Старший член произведения многочленов равен произведению старших членов множителей.

Доказательство. Перемножая члены с наибольшими показателями старшей переменной, получим член с наибольшим показателем при этой переменной. Проведя аналогичные рассуждения для остальных переменных, придём к выводу, что полученный член является старшим. ■

Аналогично доказывается следующее утверждение.

Утверждение 12.2.2. Младший член произведения многочленов равен произведению младших членов множителей.

12.2.1 Симметрические многочлены

Многочлен называется **симметрическим**, если при перестановке переменных он не изменяется. **Утверждение 12.2.3.** *Если* $f(x_1, ..., x_n) = ax_1^{i_1}x_2^{i_2} \cdot ... \cdot x_n^{i_n} + ... - симметрический многочлен, то$

Утверждение 12.2.3. Если $f(x_1, \ldots, x_n) = ax_1^{i_1}x_2^{i_2} \cdot \ldots \cdot x_n^{i_n} + \ldots - c$ имметрический многочлен, то $i_1 \geqslant i_2 \geqslant \ldots \geqslant i_n$.

Доказательство методом от противного. Пусть $\exists r < q \colon i_r < i_q$, тогда f содержит $bx_1^{i_1} \cdot x_2^{i_2} \cdot \ldots \cdot x_r^{i_q} \cdot \ldots \cdot x_n^{i_r} \cdot \ldots \cdot x_n^{i_n}$, который старше, чем $ax_1^{i_1} \cdot x_2^{i_2} \cdot \ldots \cdot x_n^{i_n}$. Противоречие. \blacksquare

Элементарными симметрическими многочленами от *п* переменных называются многочлены

$$\sigma_1(x_1, \dots, x_n) = \sum_{i=1}^n x_i$$

$$\sigma_2(x_1, \dots, x_n) = \sum_{i=1}^n \sum_{j=i+1}^n x_i x_j$$

$$\dots$$

$$\sigma_n(x_1, \dots, x_n) = x_1 x_2 \cdot \dots \cdot x_n$$

Теорема 12.2.1 (основная теорема о симметрических многочленах). Любой симметрический многочлен может быть представлен в виде многочлена от элементарных симметрических многочленов. Доказательство. Пусть $f(x_1, \ldots, x_n) = ax_1^{k_1} \cdot \ldots \cdot x_n^{k_n} + \ldots$ — симметрический многочлен. Введём

$$g_1(\sigma_1, \dots, \sigma_n) = a\sigma_1^{k_1 - k_2} \sigma_2^{k_2 - k_3} \cdot \dots \cdot \sigma_{n-1}^{k_{n-1} - k_n} \sigma_n^{k_n} =$$

$$= a(x_1 + \dots)^{k_1 - k_2} (x_1 x_2 + \dots)^{k_2 - k_3} \cdot \dots \cdot (x_1 x_2 \cdot \dots \cdot x_{n-1} + \dots)^{k_{n-1} - k_n} (x_1 x_2 \cdot \dots \cdot x_n)^{k_n} =$$

$$= ax_1^{k_1} \cdot \dots \cdot x_n^{k_n} + \dots$$

Тогда старший член многочлена $f_1=f-g_1$ младше старшего члена многочлена f. Повторим те же действия с многочленом f_1 . Вудем продолжать таким образом, пока не получим ноль. В итоге получим $f=g_1+g_2+\ldots+g_m$, где g_1,g_2,\ldots,g_m — многочлены от элементарных симметрических многочленов.

Глава 13

Теория множеств

Функция $f: A \to B$ называется **инъективной (инъекцией)**, если $\forall x, y \in A \ (x \neq y \Rightarrow f(x) \neq f(y))$.

Функция $f: A \to B$ называется **сюръективной (сюръекцией)**, если $\forall b \in B \ \exists a \in A \colon f(a) = b$.

Функция $f: A \to B$ называется биективной (биекцией), если она инъективная и сюръективная.

13.1 Мощность множеств

Множества A и B называются равномощными (имеют одинаковую мощность), если существует биекция $f \colon A \to B$, иначе — неравномощными.

Для конечных множеств это означает, что у них одинаковое количество элементов.

Мощностью конечного множества A называется количество его элементов и обозначается |A|. Множество всех подмножеств множества A обозначается

$$\mathcal{P}(A) = \{ x \mid x \subseteq A \}$$

Множество всех подмножеств множества A мощности k обозначается

$$\mathcal{P}_k(A) = \{ x \subseteq A \mid |x| = k \}$$

Теорема 13.1.1 (Кантора). Множества A и $\mathcal{P}(A)$ не равномощны.

Доказательство методом от противного. Пусть $f \colon A \to \mathcal{P}(A)$ — биекция. Рассмотрим множество

$$X = \{a \in A \mid a \notin f(a)\} \Rightarrow X \subset A \Rightarrow X \in \mathcal{P}(A)$$

f — биекция, тогда $\exists b \in A \colon f(b) = X$. Возможны два случая:

- 1. Пусть $b \in X \Rightarrow b \in f(b) \Rightarrow b \notin X$. Противоречие.
- 2. Пусть $b \notin X \Rightarrow b \in f(b) \Rightarrow b \in X$. Противоречие.

В обоих случаях получили противоречие.

Теорема 13.1.2. Пусть дано множество A: |A| = n, тогда $|\mathcal{P}_k(A)| = C_n^k$.

Доказательство методом математической индукции.

• *База индукции.* n = 0:

$$|A| = 0 \Rightarrow A = \varnothing \Rightarrow \mathcal{P}(A) = \{\varnothing\} \Rightarrow |\mathcal{P}_0(A)| = 1 = C_0^0$$

- Шаг индукции. Пусть теорема верна для n. Докажем её для n+1. Пусть $X \subset A$, |X|=k, $a \in A$. Подсчитаем количество таких X. Возможны два случая:
 - 1. Пусть $a \notin X \Rightarrow X \subset A \setminus \{a\}$, тогда таких $X C_n^k$.
 - 2. Пусть $a \in X$, тогда таких X столько же, сколько множеств $X \setminus \{a\} \subset A \setminus \{a\}$, т. е. C_n^{k-1} .

Тогда
$$|\mathcal{P}(A)| = C_n^{k-1} + C_n^k = C_{n+1}^k$$
.

13.1.1 Мощность числовых множеств

Множество называется **счётным**, если оно равномощно множеству натуральных чисел. Бесконечное множество, не являющееся счётным, называется **несчётным**.

Утверждение 13.1.1. \mathbb{Z} счётно.

Доказательство. Построим биекцию $f: \mathbb{Z} \to \mathbb{N}$:

$$f(n) = \begin{cases} -2n - 1, & n < 0 \\ 2n, & n \geqslant 0 \end{cases}$$

Тогда $|\mathbb{Z}| = |\mathbb{N}|$. ■

0

Утверждение 13.1.2. \mathbb{Q} *счётно*.

-1

Доказательство. Составим таблицу, в верхней строке которой стоят $p_i \in \mathbb{Z}$, в левом столбце — $q_i \in \mathbb{N}$, а на пересечении столбца и строки — $\frac{p_i}{q_i}$. Обходя таблицу в указанном порядке, будем нумеровать очередной элемент, только если он не встречался ранее:

-2

1

-2

Ясно, что таким образом можно пронумеровать все элементы ℚ, причём ни один из них не будет пронумерован дважды, значит, ℚ счётно. ■

Утверждение 13.1.3. (0;1) несчётно.

Доказательство методом от противного. Пусть все числа из интервала (0;1) можно пронумеровать. Тогда представим каждое число в виде десятичной дроби и расположим эти дроби в соответствии с нумерацией:

- 1. $0,a_{11}a_{12}...$
- $2. \ 0, a_{21}a_{22}\dots$

. . .

где $a_{11}, a_{12}, \ldots, a_{21}, a_{22}, \ldots$ — цифры. Рассмотрим дробь $0, b_1 b_2 \ldots$, где b_1, b_2, \ldots — цифры такие, что $b_1 \neq a_{11}, b_2 \neq a_{22}, \ldots$ Такая дробь отличается от каждой из пронумерованных хотя бы в одной позиции, значит, она не пронумерована. Противоречие. \blacksquare

Утверждение 13.1.4. |[a;b]| = |[c;d]|

Доказательство. Рассмотрим функцию

$$f(x) = \frac{c-d}{a-b}(x-a) + c, \ x \in [a;b]$$

f переводит $[a;b] \to [c;d]$ и является биекцией, значит, любые два отрезка равномощны друг другу.

Утверждение 13.1.5. $|\mathbb{R}| = |(0;1)|$.

Доказательство. Рассмотрим функцию

$$f(x) = \begin{cases} \frac{1}{x} - 2, & 0 < x \le \frac{1}{2} \\ \frac{1}{x - 1} + 2, & \frac{1}{2} < x < 1 \end{cases}$$

f переводит $(0;1)\to \mathbb{R}$ и является биекцией, значит, интервал (0;1) равномощен $\mathbb{R}.$ \blacksquare $|\mathbb{R}|$ называется континуумом.

Предметный указатель

Arg, 16	планарные, 75
arg, 16	плоские, 75
3 3	полугамильтоновы, 75
$\mathbb{C}, \frac{16}{}$	полуэйлеровы, 74
	связные, <mark>73</mark>
d, 38	эйлеровы, <mark>73</mark>
$\deg, 72, 90$	Дерево, <mark>76</mark>
det, 81	помеченное, 79
	Дизъюнкт, <mark>61</mark>
e, 31	Дизъюнкция, <mark>59</mark>
1 40	Дифференциал, 38
grad, 48	Замыкание, <mark>66</mark>
I, 7	Импликант, 60
•	Инверсия, 10, 59
i, 16	Интеграл
inf, 26	неопределённый, <mark>52</mark>
lim, 27, 32	Интервал, <u>13</u>
1111, 21, 62	Инфимум, <mark>26</mark>
$\max, \frac{26}{}$	Инъекция, 94
min, 26	Квадратичная форма, <mark>24</mark>
,	Код Прюфера, 79
$\mathbb{R}, \frac{6}{}$	Компонента связности, 73
	Конъюнкт, 60
\sup , $\frac{26}{}$	Конъюнкция, 59
	Корень, 91
Алгебраическое дополнение, 83	Лемма
Алгоритм	
Евклида, <mark>91</mark>	о вложенных отрезках, 31
Краскала, <mark>78</mark>	о рукопожатиях, <mark>72</mark>
Прима, 79	Лес, 76
Φ лёри, 73	Линейная комбинация, 18
объединения циклов, 7 4	Литерал, 60 Маукораута 26
Асимптота, <mark>46</mark>	Мажоранта, <mark>26</mark>
Базис	Максимум
векторного пространства, 19	множества, 26
класса булевых функций, <mark>71</mark>	функции, 44, 48 Маруулуг 72
Бесконечно малая величина, 27	Маршрут, 72
Биекция, <mark>94</mark>	Матрица, <mark>80</mark>
Вектор-функция, 51	Якоби, 51
дифференцируемая, 51	блочная, <mark>81</mark>
Векторное пространство, 18	обратная, 88
Bec, 78	производная, 47, 51
Градиент, 48	Метод
Грань, 64, 75	Блейка, <mark>63</mark>
Графы, <mark>72</mark>	Гаусса—Жордана, 88
ramuльтоновы, 74	Квайна, <mark>63</mark>
гомеоморфные, 76	Нельсона, <mark>64</mark>

Паскаля, <mark>69</mark>	Вейерштрасса, <mark>27</mark>
наименьших квадратов, 4 9	Дирака, <mark>75</mark>
неопределённых коэффициентов, 69	Жегалкина, <mark>68</mark>
Минимум	Кантора, <mark>94</mark>
множества, <mark>26</mark>	Коши о среднем значении, 42
функции, <mark>44</mark> , <u>48</u>	Кронекера — Капелли, <mark>21</mark>
Минор, 83	Кэли, <mark>79</mark>
базисный, <mark>86</mark>	Лагранжа о среднем значении, <mark>42</mark>
Миноранта, 26	Лапласа, <mark>85</mark>
Мнимая единица, 16	Ope, 74
Многочлен, 90	Понтрягина—Куратовского, 76
Жегалкина, <mark>68</mark>	Π оста, 70
от нескольких переменных, <mark>93</mark>	Ролля, <u>42</u>
симметрический, <mark>93</mark>	Шварца, <u>47</u>
Множество, 12	о двух милиционерах, <mark>28, 33</mark>
булево, <mark>59</mark>	основная т. алгебры, <mark>91</mark>
ограниченное, 26	основная т. о симметрических многочленах,
Моном, 90	93
Мост, <mark>76</mark>	Точка
Мощность, 94	внутренняя, <mark>27</mark>
Одночлен, 90	дискретная, <mark>27</mark>
Окрестность, 13	критическая, 45
Операции	перегиба, <mark>46</mark>
логические, 59	предельная, 27
Определитель, 81	разрыва, 36
Остов, 78	Факториал, 9
Отрезок, 13	Формула, <mark>60</mark>
Отрицание, 59	Виета, <mark>92</mark>
Первообразная, 52	Крамера, 22
Переменная	Маклорена, <mark>43</mark>
существенная, 59	Муавра, 17
фиктивная, 59	Тейлора, <mark>43</mark>
Перестановка, 9	Эйлера
Петля, 72	в математическом анализе, 17
Покрытие, 64	в теории графов, 75
Полином, <mark>90</mark>	бинома Ньютона, 14
Последовательность, 11	конечных приращений, 42
фундаментальная, <mark>31</mark>	Функция, <mark>11</mark>
Предел	бесконечно большая, 36
последовательности, 27	бесконечно малая, 36
функции, <mark>32</mark>	булева, <mark>59</mark>
Производная, 37	двойственная, <mark>61</mark>
по направлению, 47	линейная, 68
частная, 47	монотонная, 67
Промежуток, 13	самодвойственная, 66
Размещение, 9	возрастающая, 11
Ранг, 86	гладкая, 37
Расстояние между точками, 46	линейная, <mark>11</mark>
Сочетание, 9	нескольких переменных, 46
Степень	дифференцируемая, 47
булева, <mark>5</mark> 9	непрерывная, 47
Супремум, 26	одной переменной
Сходимость, 27	дифференцируемая, <mark>37</mark>
Сюръекция, 94	дифференцируемая, 37 непрерывная, <mark>36</mark>
Теорема	убывающая, 11
Безу, <mark>91</mark>	уоывающая, 11 Цепь, <mark>72</mark>
— ~~,,, ~ ^	

```
Цикл, 73
Число
Эйлера, 31
вещественное, 6
иррациональное, 7
комплексное, 16
мнимое, 16
Экстремум, 44, 48
Якобиан, 51
```