概率论 (1) section 2 Homework assignment 4

Due: 周二下午, 4/26

注意:请使用钢笔、圆珠笔、签字笔而非铅笔,用中文作答。建议用 A4 纸写作业,提交时如果有多页请装订。做作业前请认真阅读讲义,复习所学知识。

注意: 讲义中的定理和结论可以直接应用(除非题目本身是为了补充这些证明的细节)。入无特别说明,随机变量都在 \mathbb{R} 中取值。

A. 知识点拾零和证明题

- (A1) 判断下列命题的正误,正确的**简要**证明之,错误的试举反例。
 - (i) 如果 $\mu \in SPM$, $F(x) = \mu(-\infty, x]$ 是它的次概率分布函数, 则 $a, b \in \mathcal{C}_{\mu} = \mathcal{C}_{F}$ (假设 a < b) 当 且仅当 $\mu(a, b] = \mu(a, b) = \mu[a, b]$.
- 改为: a是\mu的不连续点 (ii) 如果 $\mu \in SPM$, 则 $\alpha \in \mathcal{C}_{\mu}$ 当且仅当 $\mu\{a\} > 0$.
 - (iii) $X_n \stackrel{d}{\Longrightarrow} X$, 当且仅当它们的概率分布函数 F_n , F 满足: 对任意的 $x \in \mathcal{C}_F$, 都有 $F_n(x) \to F(x)$.
 - (iv) $X_n \stackrel{\mathrm{d}}{\Longrightarrow} X$, 当且仅当对任意的 $f \in C_c^{\infty}(\mathbb{R})$ (即在 \mathbb{R} 上光滑且有紧支集的 f) 都有 $\mathbb{E}[f(X_n)] \to \mathbb{E}[f(X)]$.
 - (v) 如果 $\{X_n\}_{n\in\mathbb{N}}$ 都是绝对连续型随机变量,并且 $X_n \stackrel{\mathrm{d}}{\Longrightarrow} X$,则 X 也是绝对连续型的。
 - (vi) 如果 $X_n \stackrel{d}{\Longrightarrow} X$, $G \subset \mathbb{R}$ 为闭集, $\mathbb{P}\{X_n \in G\} = 1$, 则 $\mathbb{P}\{X \in G\} = 1$.
 - (vii) 如果 $X_n \stackrel{\mathrm{d}}{\Longrightarrow} X$, $Y_n \stackrel{\mathrm{d}}{\Longrightarrow} Y$, 则 $X_n + Y_n \stackrel{\mathrm{d}}{\Longrightarrow} X + Y$.
 - (viii) 如果 $X_n \stackrel{\mathrm{d}}{\Longrightarrow} X$, $Y_n \stackrel{\mathrm{a.s.}}{\longrightarrow} Y$, 则 $X_n + Y_n \stackrel{\mathrm{d}}{\Longrightarrow} X + Y$.
 - (ix) 如果 $X_n \stackrel{d}{\Longrightarrow} X$, $Y_n \stackrel{d}{\Longrightarrow} Y$, $\{X_n\}_{n \in \mathbb{N}}$ 和 $\{Y_n\}_{n \in \mathbb{N}}$ 独立,则 X, Y 也独立。
 - (x) 如果 $X_n \stackrel{\mathrm{d}}{\Longrightarrow} X$, $Y_n \stackrel{\mathrm{d}}{\Longrightarrow} Y$, $\{X_n\}_{n \in \mathbb{N}}$ 和 $\{Y_n\}_{n \in \mathbb{N}}$ 独立,并且假设这些随机变量的概率密度函数都在 $C_0(\mathbb{R})$ 中,且 $p_{X_n} \to p_X$, $p_{Y_n} \to p_Y$ 在 \mathbb{R} 上一致收敛,则 $X_n + Y_n \stackrel{\mathrm{d}}{\Longrightarrow} X + Y$.
 - (xi) 设 $\{X_n\}_{n\in\mathbb{N}}$ 是一族随机变量序列,如果对任意的 $\varepsilon>0$ 都有 $\sum_{n\in\mathbb{N}}\mathbb{P}\{|X_n|\geq\varepsilon\}<\infty$,则 $X_n\xrightarrow{\text{a.s.}}0$.
 - (xii) 如果随机变量序列 $\{X_n\}_{n\in\mathbb{N}}$ 和 $\{Y_n\}_{n\in\mathbb{N}}$ 满足 $\mathbb{P}\{X_n\neq Y_n, \text{ i.o.}\}=0$,则 $\sum_{n\in\mathbb{N}}X_n$ 几乎处处收敛。
 - (xiii) (Wu Ex.2.6.13, 丘赛 2016) 如果随机变量族 $\{X_n\}_{n\in\mathbb{N}}$ 独立,且 $\mathbb{P}\{\limsup_{n\to\infty}\frac{|X_n|}{n}\leq 1\}=1$,则 $\sum_{n\in\mathbb{N}}\mathbb{P}\{|X_n|\geq n\}$ 收敛。
 - (A2) 试简要证明下面的结论。
 - (i) 对于 $\mu \in PM$, 我们称 $x \in \mathbb{R}$ 是 μ 的一个原子 (item), 如果 $\mu\{x\} > 0$. 则,对任意的 $\mu \in PM$, μ 至多有可数多个原子。
- 加上"并且D没有聚点"这个条件(ii) <u>设 $D \subset \mathbb{R}$ 是一个可数集</u>,如果 $X, \{X_n\}_{n \in \mathbb{N}}$ 是一族在 D 中取值的随机变量,则 $X_n \stackrel{\mathrm{d}}{\Longrightarrow} X$ 当且仅当,对每个 $p \in D$, $\lim_{n \to \infty} \mathbb{P}\{X_n = p\} = \mathbb{P}\{X = p\}$.
 - (iii) 设 $\{X_n\}_{n\in\mathbb{N}}$ 是一族独立的随机变量,并且 $\mathbb{E}[X_n]=0$ 和 $\mathrm{var}[X_n]=1$ 对所有 n 成立。则,如果 $Y\in L^\infty$,总有 $\mathbb{E}[X_nY]\to 0$.

- (iv) 对任何的随机变量序列 X_n , 存在数列 $\{a_n\}_n \subset (0,\infty)$ 和数列 $\{b_n\}_n \subset \mathbb{R}$, 使得 $\frac{1}{a_n}(X_n b_n) \xrightarrow{\text{a.s.}} 0$.
- (v) 对于 $1 \leq p < \infty$, 我们称 X_n 在 L^p 中弱收敛到 X, 记为 $X_n \xrightarrow{L^p} X$, 如果 $X_n, X \in L^p$, $(n \in \mathbb{N})$, 并且对任意的 $Y \in L^q($ 其中 $\frac{1}{p} + \frac{1}{q} = 1)$, 都有 $\mathbb{E}[X_n Y] \to \mathbb{E}[XY]$. 设 $X_n \xrightarrow{L^p} X$, 则 $\mathbb{E}[|X|] \leq \liminf_{n \to \infty} \mathbb{E}[|X_n|]$.
- (vi) 设随机变量族 $\{X_n\}_{n\in\mathbb{N}}$ 满足 $\sum_{n\in\mathbb{N}}\mathbb{E}[|X_n|]<\infty$, 则 $\sum_{n\in\mathbb{N}}X_n$ 几处处处收敛。
- (A3) (Renewal theory(更新理论),Wu Example 3.3.5) 设 $\{X_n\}_{n\in\mathbb{N}}\subset L^1(\Omega)$ 是一族独立同分布的随机变量,满足 $\mathbb{P}\{X_1>0\}=1,\ m:=\mathbb{E}[X_1]>0.$ 定义 $S_0=0,\ S_n=\sum_{j=1}^n X_j, (n\geq 1).$ 对于每个 $t\in[0,\infty)$,我们定义随机变量(t 只是一个参数):

$$N_t := \max\{n \in \mathbb{N} \cup \{0\} : S_n \le t\} = \sum_{n=1}^{\infty} \mathbf{1}_{S_n \le t}(\omega).$$

说明:我们实际上定义了一个以 t 为时间变量的**随机过程**,称为 Renewal process. 上面的模型的一个实例是:考虑光顾一个商场的顾客流(仅记录顾客进入商场的时间), $\{X_n\}_n$ 中的每个 X_n 表示第 n 个顾客进入商场距离前一个顾客进入商场的时间 (inter-arrival times).则 S_n 表示第 n 个顾客光临的时间, N_t 是在 t 时刻已经光临商场的总顾客数。参见 W_t Example 3.3.5 所举的其他实例。

(i) 试简要说明

$$\{N_t = n\} = \{S_n \le t < S_{n+1}\}, \quad \{N_t < n\} = \{S_n > t\}, \quad \forall n \in \mathbb{N} \cup \{0\}, \ t \in [0, \infty).$$

- (ii) 证明: $\lim_{t\to\infty} N_t = \infty$, \mathbb{P} -a.s.
- (iii) 证明: $\lim_{t\to\infty}(N_t/t)=1/m$, P-a.s.
- (iv) 证明: $\lim_{t\to\infty}(\mathbb{E}[N_t]/t)=1/m$.
- (A4) (Kolmogorov-Feller 引理) 设 $\{X_n\}_{n\in\mathbb{N}}$ 是一族独立随机变量, $\{b_n\}_{n\in\mathbb{N}}\subset(0,\infty)$ 满足 $b_n\to\infty$,以及

$$\lim_{n \to \infty} \left(\sum_{j=1}^{n} \mathbb{P}\{|X_{j}| > b_{n}\} \right) = 0, \qquad \lim_{n \to \infty} \left(\frac{1}{b_{n}^{2}} \sum_{j=1}^{n} \mathbb{E}[X_{j}^{2} \mathbf{1}_{|X_{j}| \le b_{n}}] \right) = 0.$$

证明:

$$\frac{1}{b_n} \sum_{j=1}^n \left(X_j - \mathbb{E}[X_j \mathbf{1}_{|X_j| \le b_n}] \right) \xrightarrow{\mathbb{P}} 0.$$

B. 应用和计算题

- (B1) 对每个 $n \in \mathbb{N}$, X_n 的分布满足 $\mathbb{P}\{X_n = \frac{j}{2^n}\} = \frac{1}{2^n}, \forall 1 \leq j \leq 2^n$. 试求 X 使得 $X_n \stackrel{\mathrm{d}}{\Longrightarrow} X$.
- (B2) 设 $\sigma_n > 0$, $(\forall n \in \mathbb{N})$, 并且 $\lim_{n \to \infty} \sigma_n = 0$. 设 $X_n \sim \mathbb{N}(0, \sigma_n^2)$ (即服从 Gauss 分布),求 X_n 依分 布收敛的极限。
- (B3) (Wu Ex.2.6.9, 丘赛 2015) 设 $\{X_n\}_{n\in\mathbb{N}}$ 是一族独立随机变量, 每个 X_n 服从 Bernoulli 分布 $\mathbb{P}\{X_n=1\}=p_n=1-\mathbb{P}\{X_n=0\}$. 假设 $\sum_{n=1}^{\infty}p_np_{n+1}<\infty$, 证明: $\sum_{n=1}^{\infty}X_nX_{n+1}$ 几乎处处收敛。
- (B4) (Wu Ex.2.6.11, 丘赛 2015) 设 $\{X_n\}_{n\in\mathbb{N}}$ 是一族独立随机变量,每个 X_n 服从 Gauss 分布 $\mathcal{N}(\mu_n, \sigma_n^2)$.
 - (i) 证明,如果 $\sum_{n\in\mathbb{N}}X_n^2$ 在 L^1 中收敛,那么 $\forall p\in[1,\infty)$,该级数也在 L^p 中收敛。

- (ii) 设 $\mu_n=0, (\forall n)$, 证明: 如果 $\sum_{n=1}^\infty \sigma_n^2=\infty$, 则 $\mathbb{P}\{\sum_{n\in\mathbb{N}} X_n^2=\infty\}=1$.
- (B5) (Wu Ex.3.4.3) 设 $\{X_n\}_{n\in\mathbb{N}}$ 是一族独立随机变量,每个 X_n 服从 Poisson 分布并且 $\mathbb{E}[X_n]=\lambda_n$. 改成X_j 定义 $S_n=\sum_{j=1}^n \frac{X+j}{X+j}$ 证明:如果 $\sum_{n\in\mathbb{N}}\lambda_n=\infty$,则 $S_n/\mathbb{E}[S_n]\xrightarrow{\mathrm{a.s.}}1$.
 - (B6) 设 $\{X_n\}_{n\in\mathbb{N}}$ 是一族 i.i.d. 随机变量,并且 $\mathbb{P}\{X_1>x\}=rac{e}{x\log x}, (\forall x\geq e).$
 - (i) 验证: $X_1 \notin L^1$.
 - (ii) 试构造 μ_n , 使得 $S_n/n \mu_n \xrightarrow{\mathbb{P}} 0$.
 - (B7) 设 $\{X_n\}_{n\in\mathbb{N}}$ 是一族 i.i.d. 随机变量, $X_1\sim \mathbb{N}(0,1)$. 证明: 对所有的 $t\in\mathbb{R}$,

$$\sum_{n=1}^{\infty} X_n \cdot \frac{\sin(n\pi t)}{n}$$
 几乎处处收敛.

加上"并且它们独立"这个条件

- (B8) $\mathcal{L}_{\{X_n\}_{n\in\mathbb{N}}}$ 是一族非负随机变量,证明:以下命题等价。
 - (i) $\sum_{n\in\mathbb{N}} X_n$ 几乎处处收敛;
 - (ii) $\sum_{n\in\mathbb{N}}(\mathbb{P}\{X_n>1\}+\mathbb{E}[X_n\mathbf{1}_{X_n\leq 1}])$ 收敛;
 - (iii) $\sum_{n\in\mathbb{N}}\mathbb{E}[X_n/(1+X_n)]$ 收敛。

