Ekstrema og monotoni

Ekstrema

Et *ekstremum* for en funktion er løst beskrevet det lokalt højeste eller laveste punkt på grafen for en funktion. Vi definerer to klasser af ekstrema mere præcist.

Definition 1.1 (Ekstremum). Lad $f: A \to \mathbb{R}$ være givet. Hvis der for et $x_0 \in A$ gælder, at der findes et interval $[x_0 - k, x_0 + k] \subseteq A$ så

$$f(x_0) \ge f(x)$$

for alle $x \in [x_0 - k, x_0 + k]$, så siges x_0 at være et lokalt maksimumssted for f. Punktet $(x_0, f(x_0))$ kaldes for et lokalt maksimum. Hvis det gælder, at

$$f(x_0) \ge f(x)$$

for alle $x \in A$, så siges x_0 at være et globalt maksimumssted for f. Punktet $(x_0, f(x_0))$ kaldes for et lokalt maksimum. Gælder det modsat for et $x_0 \in A$, at der findes et interval $[x_0 - k, x_0 + k]$ så

$$f(x_0) \le f(x)$$

for alle $x \in [x_0 - k, x_0 + k]$, så siges x_0 at være et lokalt minimumssted for f. Punktet $(x_0, f(x_0))$ kaldes for et lokalt minimum. Hvis det gælder, at

$$f(x_0) \le f(x)$$

for alle $x \in A$, så siges x_0 af være et globalt minimumssted. Punktet $(x_0, f(x_0))$ kaldes for et globalt minimum.

På Figur 1 kan vi se et interval omkring et lokalt maksimum og på Figur 2 kan vi se en række forskellige typer af ekstrema for en funktion.

Figur 1: Lokalt maksimum og interval Figur 2: Forskellige ekstrema for en omkring maksimum. funktion.

Monotoni

Det kan være meningsfuldt at beskrive funktioner på intervaller, hvor de enten kun vokser eller kun aftager fx. i forbindelse med inverse funktioner. Hvis en funktion kun er voksende eller aftagende på et interval, siges funktionen at være monoton på intervallet. Vi definerer det mere præcist.

Definition 2.1 (Monotoni). En funktion f siges at være voksende på et interval [a, b], hvis det for $x_1, x_2 \in [a, b]$, hvor $x_2 > x_1$, gælder, at

$$f(x_2) \ge f(x_1).$$

Hvis uligheden er skarp (>), siges funktionen at være strengt voksende. Modsat siges f at være aftagende på intervallet [a,b], hvis det for $x_1, x_2 \in [a,b]$, hvor $x_2 > x_1$, gælder, at

$$f(x_2) \le f(x_1).$$

Hvis uligheden er skarp (<), siges funktionen at være strengt aftagende.

Vi kan se grafen for en voksende funktion på Figur 3 og en aftagende funktion på Figur 4.

1.e

Figur 3: Graf for voksende funktion. Figur 4: Graf for aftagende funktion.

Vi kan for en funktion opskrive monotoniforholdene, der er de intervaller, hvor en funktion f er enten voksende eller aftagende. Vi betragter et eksempel.

Eksempel 2.2. Grafen for en funktion f kan ses på Figur 5.

Figur 5: Graf for f med monotone intervaller markeret.

Vi kan nu opskrive monotoniforholdene for funktionen f.

- · f er voksende for $x \in [-5.3, -4]$.
- · f er aftagende for $x \in [-4, -2]$.
- · f er voksende for $x \in [-2, 2]$.

- · f er aftagende for $x \in [2, 4]$.
- · f er voksende for $x \in [4, 5.3[$.

Vi kan også bruge foreningsmængden \cup til at opskrive monotoniforholdene lidt mere kompakt.

- · f er voksende for $x \in [-5.3, -4] \cup [-2, 2] \cup [4, 5.3[$.
- · f er aftagende for $x \in [-4, -2] \cup [2, 4]$.

I fald funktionen f ikke er afgrænset til et begrænset interval, så ville funktionen blive ved med at vokse. I så fald ville vi skrive f er voksende for $x \in [4, +\infty[$.

Opgave 1

Bestem ekstremumsstederne for følgende funktioner og afgør, om de er lokale eller globale minima.

Opgave 2

Tegn følgende funktioner i Maple og bestem deres ekstrema. Afgør desuden, om de er lokale eller globale ekstrema.

$$1) f(x) = x^2$$

2)
$$f(x) = x^3 + 7x^2 - 36$$

3)
$$f(x) = \sqrt{x^2 - 5x + 10}$$

1)
$$f(x) = x^2$$
 2) $f(x) = x^3 + 7x^2 - 36$
3) $f(x) = \sqrt{x^2 - 5x + 10}$ 4) $f(x) = x \cdot \cos(x), -10 \le x \le 10$

5)
$$f(x) = \sin(x), \ 0 < x < 20$$

5)
$$f(x) = \sin(x)$$
, $0 < x < 20$ 6) $f(x) = \begin{cases} x^2, & \text{hvis } x \ge 7, \\ -2x + 7, & \text{hvis } x < 7. \end{cases}$

Opgave 3

Bestem først ekstrema for følgende funktioner og opskriv derefter deres monotoniforhold.

Opgave 4

Tegn følgende funktioner i Maple og bestem monotoniforholdene for dem

1)
$$f(x) = -x^2 + 5x - 9$$

2)
$$f(x) = -x^4 + 7x^3 - 36x^2 + 14x - 10$$

3)
$$f(x) = \ln(x^5 - 9x^4)$$

4)
$$f(x) = -x \cdot \sin(x), -10 \le x \le 10$$

5)
$$f(x) = \sin(x), -10 < x < 4$$

1)
$$f(x) = -x^2 + 5x - 9$$
 2) $f(x) = -x^4 + 7x^3 - 36x^2 + 14x - 10$
3) $f(x) = \ln(x^5 - 9x^4)$ 4) $f(x) = -x \cdot \sin(x), -10 \le x \le 10$
5) $f(x) = \sin(x), -10 < x < 4$ 6) $f(x) = \begin{cases} \sqrt{-x}, & \text{hvis } x \le -5, \\ x^2, & \text{hvis } x > 5. \end{cases}$

Opgave 5

Hvis en funktion er strengt monoton på et interval, kan du så gennemskue, om funktionen er surjektiv, injektiv eller bijektiv?