1 KOLINEARNOST

Ukvarjamo se s splošnim linearnim modelom s k napovednimi spremenljivkami na podatkih v n točkah

$$\mathbf{y} = \mathbf{X}\boldsymbol{\beta} + \boldsymbol{\varepsilon},\tag{1}$$

$$\mathbf{y} = \begin{pmatrix} y_1 \\ y_2 \\ \vdots \\ y_n \end{pmatrix}, \quad \mathbf{X} = \begin{pmatrix} 1 & x_{11} & \cdots & x_{1k} \\ 1 & x_{21} & \cdots & x_{2k} \\ \vdots & \ddots & \vdots & \\ 1 & x_{n1} & \cdots & x_{nk} \end{pmatrix}, \quad \boldsymbol{\beta} = \begin{pmatrix} \beta_0 \\ \beta_1 \\ \vdots \\ \beta_k \end{pmatrix}, \quad \boldsymbol{\varepsilon} = \begin{pmatrix} \varepsilon_1 \\ \varepsilon_2 \\ \vdots \\ \varepsilon_n \end{pmatrix},$$

V (1) je **y** vektor odzivne spremenljivke, **X** je modelska matrika reda $(n \times k + 1)$, $\boldsymbol{\beta}$ je vektor parametrov modela velikosti (k + 1) in $\boldsymbol{\varepsilon}$ je vektor napak velikosti (n), za katerega velja $E(\boldsymbol{\varepsilon}) = 0$ in $Var(\boldsymbol{\varepsilon}) = \sigma^2 \mathbf{I}$, **I** je enotska diagonalna matrika reda $n \times n$.

Za (1) smo po metodi najmanjših kvadratov dobili rešitev sistema k+1 enačb v obliki

$$\boldsymbol{b} = (\mathbf{X}^{\mathrm{T}}\mathbf{X})^{-1}\mathbf{X}^{\mathrm{T}}\mathbf{y}.\tag{2}$$

Napovedi modala so $\hat{y} = Xb$.

Matrika ($\mathbf{X}^{\mathrm{T}}\mathbf{X}$) v (2) mora biti obrnljiva oziroma nesingularna, da rešitev obstaja. Če je modelska matrika polnega ranga, $rang(\mathbf{X}) = k + 1$, to pomeni, da nobene napovedne spremenljivke ne moremo napisati kot linearne kombinacije ostalih napovednih spremenljivk. Potem lahko pokažemo, da je tudi $rang(\mathbf{X}^{\mathrm{T}}\mathbf{X}) = k + 1$ in matrika $\mathbf{X}^{\mathrm{T}}\mathbf{X}$ je nesingularna. V takem primeru pravimo, da gre za model s polnim rangom in ocene parametrov modela so enolično določene.

Če modelska matrika ni polnega ranga, pravimo, da gre v modelu za **popolno kolinearnost** regresorjev in enolična rešitev sistema enačb za \boldsymbol{b} ne obstaja. V takem primeru lahko dobimo iste napovedane vrednosti $\hat{\boldsymbol{y}}$ z različnimi koeficienti linearne kombinacije regresorjev.

Ce so nekateri regresorji tesno korelirani med seboj, pravimo, da gre za **kolinearnost** oziroma **multikolinearnost**. Korelirani regresorji v model prispevajo zelo podobno informacijo. V takem primeru ima matrika \mathbf{X} še vedno polni rang vendar so določeni regresorji skoraj linearna kombinacija ostalih regresorjev. V takem modelu majhne spremembe v podatkih povzročijo velike spremembe v ocenah parametrov, saj so te močno odvisne od drugih regresorjev v modelu.

V primeru kolinearnosti različne linearne kombinacije regresorjev dajo zelo podobne napovedane vrednosti. Drugače povedano, v prostoru parametrov je večje območje vrednosti za parametre, ki dajo zelo podobno modelsko napoved in zato je težko natančno oceniti parametre $\boldsymbol{\beta}$.

Do kolinearnosti v modelu lahko pride tudi v situaciji, ko korelacijski koeficienti med pari regresorjev niso veliki, se pa pokaže, da obstaja tesna povezanost dveh regresorjev ob prisotnosti tretjega regresorja v modelu. v takem primeru govorimo o t. i. multipli povezanosti v kateri je ena spremenljivka korelirana z drugo samo ob prisotnosti tretje. Od tu izhaja tudi izraz multikolinearnost.

Prisotnost kolinearnosti v modelu se lahko kaže na različne načine:

- v matriki korelacijskih koeficientov številskih napovednih spremenljivk so nekatere vrednosti blizu 1 ali -1;
- vse napovedne spremenljivke so neznačilne, hkrati je vrednost koeficienta determinacije velika;
- na diagonali matrike $(\mathbf{X}^{\mathrm{T}}\mathbf{X})^{-1}$ so velike vrednosti, kar se lahko odraža v velikih standardnih napakah in širokih intervalih zaupanja za nekatere parametre;
- zaloga vrednosti ostankov na vodoravnih oseh grafov dodane spremenljivke (avPlots)
 je manjša pri napovednih spremenljivkah, ki so korelirane z drugimi napovednimi spremenljivkami;
- velike vrednosti statistike VIF (variance inflation factor) oziroma GVIF (generalized variance inflation factor).

Statistika VIF_j služi za ugotavljanje prisotnosti kolinearnosti za posamezno številsko napovedno spremenljivko $x_j,\ j=1,...,k.$ Spomnimo se, kako je definirana varianca ocen parametrov:

$$Var(\mathbf{b}) = \sigma^2(\mathbf{X}^{\mathrm{T}}\mathbf{X})^{-1}.$$
 (3)

 VIF_j temelji na oceni variance za b_j :

$$\widehat{Var}(b_j) = \frac{\widehat{\sigma}^2}{\sum_{i=1}^n (x_{ij} - \overline{x}_j)^2} \cdot \frac{1}{1 - R_j^2} = \frac{\widehat{\sigma}^2}{SS_{x_j}} \cdot VIF_j.$$
(4)

V (4) je $\widehat{\sigma}^2$ z modelom ocenjena varianca napak $(SS_{residuals}/n-k-1)$, $SS_{x_j} = \sum_{i=1}^n (x_{ij}-\overline{x}_j)^2$ je vsota kvadratov odklonov od povprečja za x_j , R_j je koeficient multiple korelacije, ki ga dobimo z regresijo x_j na vse ostale x_i , $i \neq j$. Člen $1/(1-R_j^2)$ se imenuje VIF_j (variance inflation factor) in je mera nadlog, ki jih povzroči kolinearnost pri spremenljivki x_j . Če je koreliranost regresorja x_j z ostalimi regresorji velika, je multipli koeficient korelacije R_j velik in posledično je velika tudi vrednost VIF_j .

V kontekstu standardne napake ocene parametra modela gledamo $\sqrt{VIF_j}$. Ta vrednost pove, kolikokrat je interval zaupanja za β_j povečan relativno na situacijo, kjer kolinearnosti

med x_j in ostalimi regresorji v modelu ne bi bilo. Na Sliki 1 je prikazana odvisnost $\sqrt{VIF_j}$ od koeficienta multiple korelacije R_j . Za dvakrat povečan interval zaupanja za β_j mora imeti VIF vrednost $VIF_j=4$, ta vrednost ustreza vrednosti koeficienta multiple korelacije $\sqrt{1-1/4}=0.87$. Če je $VIF_j=9$, kar pomeni trikratno povečanje intervala zaupanja, ima koeficient multiple korelacije vrednost $\sqrt{1-1/9}=0.89$.

Slika 1: $\sqrt{VIF_j}$ v odvisnosti od koeficienta multiple korelacije R_j

V literaturi obstoja več kriterijev za vrednost VIF, pri kateri se lahko pojavijo problemi zaradi kolinearnosti. Največkrat je kot opozorilna vrednost za VIF omenjena vrednost 4 ali 5, kolinearnost pa lahko zahteva poseg v model pri vrednostih nad 10.

Če imamo v model, kjer ocenjujemo k+1 parametrov, vključeno opisno napovedno spremenljivko z l vrednostmi, analiza kolinearnosti temelji na povezanosti pripadajočih l-1 regresorjev s skupino preostalih regresorjev. V takem primeru linearni model v matrični obliki zapišemo v treh delih:

$$\mathbf{y} = \beta_0 \mathbf{1} + \mathbf{X}_1 \boldsymbol{\beta}_1 + \mathbf{X}_2 \boldsymbol{\beta}_2 + \boldsymbol{\varepsilon}. \tag{5}$$

y je vektor odzivne spremenljivke, $\mathbf{1}$ je enotski vektor reda $n \times 1$, $\mathbf{X_1}$ je modelska matrika opisne napovedne spremenljivke reda $n \times (l-1)$, $\boldsymbol{\beta_1}$ je vektor parametrov vezanih na opisno napovedno spremenljivko reda $(l-1) \times 1$; $\mathbf{X_2}$ je modelska matrika ostalih regresorjev reda $n \times (k-l+1)$, $\boldsymbol{\beta_2}$ je vektor parametrov vezanih na ostale regresorje reda $(k-l+1) \times 1$ in $\boldsymbol{\varepsilon}$ je vektor napak, za katerega velja $E(\boldsymbol{\varepsilon}) = 0$ in $Var(\boldsymbol{\varepsilon}) = \sigma^2 \mathbf{I}$, \mathbf{I} je enotska diagonalna matrika reda $n \times n$. Fox in Monette (1992) sta pokazala, da se VIF skupine regresorjev v

 $\mathbf{X_1}$ v takem primeru izrazi kot $GVIF_1$:

$$GVIF_1 = \frac{det \mathbf{R}_{11} det \mathbf{R}_{22}}{det \mathbf{R}},\tag{6}$$

kjer je \mathbf{R}_{11} korelacijska matrika za $\mathbf{X_1}$, \mathbf{R}_{22} korelacijska matrika za $\mathbf{X_2}$ in \mathbf{R} korelacijska matrika za vse regresorje hkrati. Fox in Monette sta pokazala, da je vrednost $GVIF^{1/(2SP)}$ analogna vrednosti \sqrt{VIF} , pri čemer je SP=l-1 število stopinj prostosti opisne napovedne spremenljivke. V primeru, da ima napovedna spremenljivka samo eno stopinjo prostosti, je VIF=GVIF. Opozorilne vrednosti za prisotnost kolinearnosti so za **kvadrirano vrednost** $GVIF^{1/(2SP)}$ enake kot pri VIF.

Način izračunavanja smo pokazali za primer opisne napovedne spremenljivke z l vrednostmi, postopek je enak v primeru polinomske regresije reda l ali v primeru uporabe regresijskih zlepkov z l+1 vozlišči.

Kako odpravimo kolinearnost:

- na podlagi matrike korelacijskih koeficientov in vsebinske presoje izločimo določene napovedne spremenljivke;
- iz več koreliranih napovednih spremenljivk naredimo nove med seboj neodvisne spremenljivke z uporabo metode glavnih komponent (PCA) na napovednih spremenljivkah;
- iz več koreliranih spremenljivk naredimo eno novo spremenljivko (npr. telesna masa in telesna višina sta ponavadi korelirani, izračunamo indeks telesne mase $ITM = masa/visina^2$, masa v kg in višina v m)
- uporaba Ridge regresije.

Za ilustracijo poglejmo primer popolne kolinearnosti.

```
> set.seed(777)
> x1 <- runif(100, min = 0, max = 10)
> x2 < -(-x1)
> x3 < -x1 + rnorm(100, mean = 0, sd = 0.5)
> x4 < -runif(100, min = 0, max = 10)
> y < -x1 + x2 + x3 + x4 + rnorm(100, mean = 0, sd = 1)
> # korelacijska matrika napovednih spremenljivk
> round(cor(cbind(x1, x2, x3, x4)), 4)
                x2
        x1
                        xЗ
                                x4
x1 1.0000 -1.0000 0.9880 -0.1101
x2 -1.0000 1.0000 -0.9880 0.1101
x3 0.9880 -0.9880 1.0000 -0.1007
x4 -0.1101 0.1101 -0.1007 1.0000
> mod.0 < -lm(y^x1+x2+x3+x4)
> summary(mod.0)$coef
               Estimate Std. Error
                                                   Pr(>|t|)
                                       t value
(Intercept) -0.01598637 0.30486686 -0.05243721 9.582893e-01
x1
             0.23349303 0.24857891 0.93931148 3.499282e-01
xЗ
             0.84802112 0.24412830 3.47366993 7.718631e-04
x4
             0.94425226 0.04055012 23.28605078 2.844917e-41
> summary(mod.0)$r.squared
[1] 0.9273738
> X.0<-model.matrix(mod.0)</pre>
> det(t(X.0)%*%X.0)
[1] 0
> library(car)
> # vif(mod.0) se ne izračuna
```

```
Ilustracija multikolinearnosti:
```

```
> mod.1 < -lm(y^x1 + x3 + x4)
> vif(mod.1)
       x1
                 хЗ
                            x4
41.989777 41.905678
                     1.015077
> coef(summary(mod.1))
               Estimate Std. Error
                                                     Pr(>|t|)
                                        t value
(Intercept) -0.01598637 0.30486686 -0.05243721 9.582893e-01
x1
             0.23349303 0.24857891
                                     0.93931148 3.499282e-01
             0.84802112 0.24412830
x3
                                     3.47366993 7.718631e-04
             0.94425226 0.04055012 23.28605078 2.844917e-41
x4
> confint(mod.1)
                 2.5 %
                           97.5 %
(Intercept) -0.6211423 0.5891696
            -0.2599322 0.7269183
x1
             0.3634303 1.3326120
хЗ
x4
             0.8637609 1.0247436
```

> avPlots(mod.1, ylim=c(-7,7), xlim=c(-5, 5))

Slika 2: Grafi dodane spremenljivke za mod.1, interval vrednosti ostankov na osi x je pri spremenljivkah z visoko vrednostjo VIF (x1 in x3) veliko ožji kot pri x4

- > library(effects)
- > plot(predictorEffects(mod.1, ~.), rows=1, cols=3, main="", ylim=c(0,16))

Slika 3: Napovedane vrednosti za y s 95 % intervali zaupanja za povprečno napoved za mod.1, pri (x1 in x3) se intervali zaupanja hitro širijo z oddaljenostjo od povprečne vrednosti

Zaradi kolinearnosti izločimo spremenljivko x3 iz modela (isto bi lahko naredili z x1):

```
> mod.1a < -lm(y^x1+x4)
```

> vif(mod.1a)

x1 x4 1.012276 1.012276

> summary(mod.1a)

Call:

lm(formula = y ~ x1 + x4)

Residuals:

Min 1Q Median 3Q Max -4.0818 -0.6179 0.0512 0.6511 2.9623

Coefficients:

Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' ' 1

Residual standard error: 1.202 on 97 degrees of freedom

Multiple R-squared: 0.9182, Adjusted R-squared: 0.9166

F-statistic: 544.7 on 2 and 97 DF, p-value: < 2.2e-16

> confint(mod.1a)

2.5 % 97.5 % (Intercept) -0.6939884 0.5824292 x1 1.0056484 1.1673563 x4 0.8668220 1.0364828

> avPlots(mod.1a, ylim=c(-7,7))

Slika 4: Grafi dodane spremenljivke za mod.1a

> plot(predictorEffects(mod.1a, ~.), rows=1, cols=2, main="", ylim=c(0,16))

Slika 5: Napovedane vrednosti za y za mod.1a

Primer: seatpos

V paketu faraway so v podatkovnem okviru seatpos naslednji podatki: oddaljenost sredine med kolkoma voznika od fiksne točke v avtu (hipcenter v mm), starost voznika (Age v letih), telesna masa (Weight v funtih), telesna višina voznika z obutimi čevlji (HtShoes v cm), telesna višina z bosimi nogami (Ht v cm), razdalja od stola do vrha glave šoferja (Seated v cm), dolžina roke od komolca navzdol (Arm v cm), dolžina stegna (Thigh, v cm), dolžina noge od kolena navzdol (Leg v cm). Podatke za 38 voznikov so zbrali v HuMoSim laboratoriju na University of Michigan.

Raziskovalce je zanimala odvisnost hipcenter od ostalih spremenljivk. Naredite ustrezni statistični model, izvedite diagnostiko izbranega modela in ga obrazložite.

- > library(faraway)
- > data(seatpos)
- > summary(seatpos)

Age	Weight	HtShoes	Ht
Min. :19.00	Min. :100.0	Min. :152.8	Min. :150.2
1st Qu.:22.25	1st Qu.:131.8	1st Qu.:165.7	1st Qu.:163.6
Median:30.00	Median :153.5	Median :171.9	Median :169.5
Mean :35.26	Mean :155.6	Mean :171.4	Mean :169.1
3rd Qu.:46.75	3rd Qu.:174.0	3rd Qu.:177.6	3rd Qu.:175.7
Max. :72.00	Max. :293.0	Max. :201.2	Max. :198.4
Seated	Arm	Thigh	Leg
Min. : 79.40	Min. :26.00	Min. :31.00	Min. :30.20
1st Qu.: 85.20	1st Qu.:29.50	1st Qu.:35.73	1st Qu.:33.80
Median : 89.40	Median :32.00	Median :38.55	Median :36.30
Mean : 88.95	Mean :32.22	Mean :38.66	Mean :36.26
3rd Qu.: 91.62	3rd Qu.:34.48	3rd Qu.:41.30	3rd Qu.:38.33
Max. :101.60	Max. :39.60	Max. :45.50	Max. :43.10
hipcenter			
Min. :-279.15			
1st Qu.:-203.09			
Median :-174.84			
Mean :-164.88			
3rd Qu.:-119.92			
Max. : -30.95			

- > # vrednosti za hipcenter v podatkovnem okviru setpos so negativne
- > # interpretacija je lažja, če so pozitivne
- > seatpos\$hipcenter<-(-1)*seatpos\$hipcenter

- > # scatterplotMatrix(seatpos, regLine=FALSE,
- > # diagonal=FALSE, smooth=FALSE, data=seatpos)
- > pairs(seatpos)

Slika 6: Matrika razsevnih grafikonov za vse številske spremenljivke podatkovnega okvira seatpos

> round(cor(seatpos, method="spearman"),2)

	Age	Weight	${\tt HtShoes}$	Ht	${\tt Seated}$	${\tt Arm}$	Thigh	Leg	hipcenter
Age	1.00	0.07	-0.09	-0.09	-0.21	0.27	0.06	-0.10	-0.19
Weight	0.07	1.00	0.85	0.86	0.76	0.72	0.65	0.79	0.66
HtShoes	-0.09	0.85	1.00	0.99	0.90	0.74	0.77	0.89	0.80
Ht	-0.09	0.86	0.99	1.00	0.90	0.76	0.78	0.90	0.82
Seated	-0.21	0.76	0.90	0.90	1.00	0.56	0.63	0.75	0.68
Arm	0.27	0.72	0.74	0.76	0.56	1.00	0.67	0.74	0.60
Thigh	0.06	0.65	0.77	0.78	0.63	0.67	1.00	0.67	0.66
Leg	-0.10	0.79	0.89	0.90	0.75	0.74	0.67	1.00	0.80
hipcenter	-0.19	0.66	0.80	0.82	0.68	0.60	0.66	0.80	1.00

Napovedne spremenljivke z izjemo $\tt Age$ so medsebojno močno korelirane. Pričakujemo težave zaradi kolinearnosti.

```
> mod.0<-lm(hipcenter~., data=seatpos)</pre>
```

Age Weight HtShoes Ht Seated Arm Thigh 1.997931 3.647030 307.429378 333.137832 8.951054 4.496368 2.762886 Leg 6.694291

> vif(mod.0)

Slika 7: Grafi dodane spremenljivke za mod.0, interval vrednosti ostankov na osi x je pri spremenljivkah z visoko vrednostjo VIF (x1 in x3) veliko ožji kot pri x4

> summary(mod.0)\$coef

	Estimate	Std. Error	t value	Pr(> t)
(Intercept)	-436.43212823	166.5716187	-2.62008697	0.01384361
Age	-0.77571620	0.5703288	-1.36012113	0.18427175
Weight	-0.02631308	0.3309704	-0.07950283	0.93717877
HtShoes	2.69240774	9.7530351	0.27605845	0.78446097
Ht	-0.60134458	10.1298739	-0.05936348	0.95306980
Seated	-0.53375170	3.7618942	-0.14188376	0.88815293
Arm	1.32806864	3.9001969	0.34051323	0.73592450
Thigh	1.14311888	2.6600237	0.42974011	0.67056106
Leg	6.43904627	4.7138601	1.36598163	0.18244531

> summary(mod.0)\$r.squared

[1] 0.6865535

Z mod.0 je pojasnjene 68.66 % variabilnosti odzivne spremenljivke, vendar ni statistično značilna nobena napovedna spremenljivka. Standardni napaki pri $\mathtt{HtShoes}$ in \mathtt{Ht} sta zelo veliki. VIF spremenljivk $\mathtt{HtShoes}$ in \mathtt{Ht} je ogromen. Tudi njun Spearmanov koeficient

korelacije je zelo velik (0.991). Poglejmo, kako se spremenijo VIF vrednosti, če iz modela izločimo $\mathtt{HtShoes}$:

```
> mod.1<-update(mod.0, .~. -HtShoes, data=seatpos)
> vif(mod.1)
```

```
Age Weight Ht Seated Arm Thigh Leg 1.875729 3.628705 23.352154 8.808440 4.482567 2.626556 6.690858
```

> summary(mod.1)\$coef

```
Estimate Std. Error
                                        t value Pr(>|t|)
(Intercept) -435.80896663 163.9718818 -2.6578274 0.0124859
             -0.73677805
                           0.5440369 -1.3542796 0.1857608
Age
Weight
             -0.03278959
                           0.3250151 -0.1008863 0.9203119
              2.09530039
                           2.6403640 0.7935650 0.4336809
Ηt
Seated
             -0.40266740
                           3.6738994 -0.1096022 0.9134548
Arm
              1.26841777
                           3.8337805 0.3308530 0.7430553
Thigh
              0.98000131
                           2.5533222 0.3838142 0.7038230
Leg
              6.46851759
                           4.6395252 1.3942197 0.1734922
```

> summary(mod.1)\$r.squared

[1] 0.6857298

Še vedno so prisotne težave s kolinearnostjo. Ker je Ht lažje dostopna spremenljivka, v naslednjem koraku izločimo Seated in Leg.

```
> mod.2<-update(mod.1, .~. -Seated -Leg, data=seatpos)
> vif(mod.2)
```

```
Age Weight Ht Arm Thigh 1.847327 3.574090 7.260856 4.105119 2.432315
```

> summary(mod.2)

Call:

```
lm(formula = hipcenter ~ Age + Weight + Ht + Arm + Thigh, data = seatpos)
```

Residuals:

```
Min 1Q Median 3Q Max -57.945 -25.935 0.301 24.368 81.891
```

Coefficients:

```
Estimate Std. Error t value Pr(>|t|)
(Intercept) -4.899e+02 1.460e+02 -3.356 0.00205 **
Age -8.109e-01 5.407e-01 -1.500 0.14354
```

```
Weight
            2.932e-03 3.231e-01
                                  0.009 0.99281
Ηt
            3.366e+00 1.475e+00
                                  2.283 0.02924 *
Arm
            2.796e+00 3.675e+00
                                  0.761 0.45235
            6.127e-01 2.461e+00
                                  0.249 0.80498
Thigh
---
               0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Signif. codes:
Residual standard error: 37.19 on 32 degrees of freedom
Multiple R-squared: 0.6637,
                                  Adjusted R-squared: 0.6112
F-statistic: 12.63 on 5 and 32 DF, p-value: 8.141e-07
```

Poglejmo še model, v katerem imamo vključene samo napovedne spremenljivke, katerih vrednosti po navadi poznamo brez dodatnih meritev, to so Age, Weight in Ht.

```
> mod.3<-update(mod.2, .~. -Arm - Thigh, data=seatpos)</pre>
> vif(mod.3)
     Age
           Weight
                        Ηt
1.093018 3.457681 3.463303
> anova(mod.3, mod.2)
Analysis of Variance Table
Model 1: hipcenter ~ Age + Weight + Ht
Model 2: hipcenter ~ Age + Weight + Ht + Arm + Thigh
  Res.Df
           RSS Df Sum of Sq
                               F Pr(>F)
1
      34 45262
2
      32 44266 2
                     995.88 0.36 0.7005
```

Modela mod.2 in mod.3 sta ekvivalentna, zato nadaljujemo z mod.3.

Slika 8: Ostanki za mod.3

Slika 9: Grafi dodane spremenljivke za mod.3

Slika 10: Grafi parcialnih ostankov za mod.3

```
> library(multcomp)
```

> confint(izpis)\$confint

```
Estimate
                                     lwr
                                                  upr
(Intercept) -5.282977e+02 -861.2375559 -195.3579020
                             -1.5234899
                                            0.4844817
Age
            -5.195041e-01
Weight
            -4.270689e-03
                             -0.7712627
                                            0.7627214
             4.211905e+00
                              1.7537100
                                            6.6700997
attr(,"conf.level")
[1] 0.95
attr(,"calpha")
[1] 2.460517
```

V mod. 3 je samo Ht močno statistično značilna napovedna spremenljivka.

Ob upoštevanju starosti in mase voznika je položaj voznikovega sedeža v avtu (hipcenter) statistično značilno odvisen samo od telesne višine voznika. Če se Ht poveča za 1 cm, se povprečna razdalja med kolki in fiksno točko v avtu (hipcenter) poveča za 4.2 mm, 95 % IZ je (1.8 mm, 6.7 mm).

> izpis<-glht(mod.3)</pre>

Koliko parametrov je lahko največ v modelu?

Če je v modelu preveč parametrov, pride do t. i. preprileganja (overfitting). To pomeni, da napovedne spremeljivke pojasnijo tudi t. i. slučajno napako, ne samo odvisnost y od napovednih spremenljivk. Pri takem modelu se del slučajne variabilnosti odzivne spremenljivke pripiše napovednim spremenljivkam, posledično je napovedna moč modela slaba. Največje dopustno število parametrov v modelu je vezano na število enot v podatkih.

Ali lahko iz modela izločimo regresor x_1 , če je v modelu prisotna interakcija $x_1:x_2$?

Če je v modelu interakcija $x_1 : x_2$ značilna, morata ostati v modelu tudi člena x_1 in x_2 ne glede na njuno značilnost; če je v modelu interakcija $x_1 : x_2 : x_3$ značilna, morajo v modelu ostati x_1, x_2 in x_3 in vse njihove dvojne interakcije.

Prav tako velja za člene višjega reda pri polinomski regresiji. Če je značilen kvadratni člen, mora linearni člen ostati v modelu ne glede na njegovo značilnost.