EP4179 — Microeconometría

Luis Chávez Universidad Nacional Agraria La Molina 2024-II Pset2: ML

A. Herramientas básicas

Problema 1. Explique la relación entre el método ML y el máximo global de una función.

Problema 2. Si un experimento consiste de n ensayos Bernoulli con probabilidad de éxito p (parámetro relevante), plantear la función de verosimilitud y obtener el estimador clave. Asuma la función de probabilidad:

$$p(x) = P(X = x) = p^{x}(1 - p)^{1-x}$$

Problema 3. Una variable aleatoria discreta tiene la siguiente función de probabilidad:

X	0	1	2	3
p(x)	3a-2	\overline{a}	2(3-a)	1-2a
p(x)	5	$\frac{-}{5}$		

El parámetro a está acotado entre 0 y 1. Si se registraron 8 observaciones de la distribución: 3, 0, 2, 1, 2, 0, 1, 3. Hallar el estimador ML \hat{a} .

Problema 4. Sea la distribución Chav's de una variable aleatoria x con función masa $p(x) = 1/\theta$, tal que $0 \ge x \ge \theta$. Para un muestreo aleatorio, demuestre que el mázimo muestral es el estimador consistente de θ (adaptado de Greene).

Problema 5. Explique el algoritmo del test de Wald en el constexto de ML

B. Herramientas intermedias

Problema 6. Sea el modelo básico de regresión:

$$y_i = \gamma_0 + \gamma_1 x_i + \epsilon_i$$

donde los errores iid siguen una normal con media 0 y la varianza σ^2 es desconocida. Establecer la función de verosimilitud y hallar los estimadores de ML.

Problema 7. Pruebe la consistencia del estimador ML.

Problema 8. Pruebe la normalidad asintótica del estimador ML.

Problema 9. Sea una muestra aleatoria $X_1, ..., X_n$ iid e una distribucón exponencial con función de densidad:

$$f(x) = \frac{1}{\alpha} e^{\frac{-x}{\alpha}}, \quad x \ge 0$$

Hallar el MLE de α .

C. Herramientas avanzadas

Problema 10. Obtener los estimadores clave de ML para una distribución hipergeométrica con función de probabilidad:

$$p(x) = P(X = x) = \frac{\binom{m}{x} \binom{N-m}{n-x}}{\binom{N}{n}}$$

donde N es el tamaño de la población, n es el número de ensayos aleatorios y m el número de éxitos.