

ĐỂ CƯƠNG GIỮA HỌC KỲ II

NĂM HQC 2020 - 2021

MÔN: TOÁN - KHÓI: 10

I. KIẾN THỨC ÔN TẬP

1. ĐẠI SỐ: TÙ ĐẠI CƯƠNG BẤT PHƯƠNG TRÌNH ĐẾN HẾT BẤT PHƯƠNG TRÌNH BẬC HAI

2. HÌNH HỌC: TÙ HỆ THÚC LƯỢNG TRONG TAM GIÁC ĐẾN HẾT PHƯƠNG TRÌNH TỔNG QUÁT CỦA ĐƯỜNG THẮNG

II. <u>CÂU HỎI TRẮC NGHIỆM</u>

A. <u>ĐẠI SỐ</u>:

Câu 1. Bất phương trình $2x + \frac{3}{2x+4} < 3 + \frac{3}{2x+4}$ tương đương với bất phương trình nào sau đây

A.
$$2x < 3$$
.

B.
$$x < \frac{3}{2}$$
 và $x \neq -2$.

$$C.x < \frac{3}{2}$$
.

D.
$$2x(2x-4)+3<3(2x-4)+3$$
.

Câu 2. Bất phương trình $\sqrt{x^2+1} + \frac{3}{x-2} < 3 + \frac{3}{x-2}$ tương đương với bất phương trình

$$A. x^2 < 8.$$

B.
$$\sqrt{x^2 + 1} < 3$$
 và $x \ne 2$. **C.** $\sqrt{x^2 + 1} < 3$. **D.** $x^2 + 1 < 9$.

$$C.\sqrt{x^2+1} < 3$$
.

D.
$$x^2 + 1 < 9$$
.

Câu 3. Tập xác định của bất phương trình $(x^2 + x - 2)\sqrt{\frac{4 + x^2}{|x|^2}} \ge 0$ là

A.
$$D = (-3; +\infty) \setminus (-2; 1)$$
.

B.
$$D = (-3; +\infty)$$
.

C.
$$D = (-3; 2) \cup (1; +\infty)$$
.

D.
$$D = [-3, 2]$$
.

Câu 4. Giá trị của m để bất phương trình $(m^2 - 9)x + 3m - 2 < 0$ vô nghiệm là

$$A.m = 3$$
.

B.
$$m = \pm 3$$
.

$$\mathbf{C} \cdot m = -3$$
.

D.
$$m < \frac{2}{3} \text{ và } m \neq \pm 3.$$

Câu 5. Giá trị của m để bất phương trình $(m^2 - 1)x + 3m - 2 < 0$ nghiệm đúng $\forall x \in R$ là

A.
$$m = 1$$
.

B.
$$m = \pm 1$$
.

$$\mathbf{C.}\,m=-1\,.$$

D.
$$m < \frac{2}{3} \text{ và } m \neq \pm 1.$$

Câu 6. Hệ bất phương trình sau
$$\begin{cases} 2x - m < x - 1 \\ \frac{x - 1}{2} + 1 \ge -2 \end{cases}$$
 có nghiệm khi

$$\mathbf{A} \cdot \mathbf{m} \leq -4$$
.

B.
$$m < 4$$
.

$$\mathbf{C} \cdot m \ge -4$$

D.
$$m > -4$$
.

Câu 7. Hệ bất phương trình sau
$$\begin{cases} 2x - m < x - 1 \\ 3x^2 + x - 2 \le 0 \end{cases}$$
 vô nghiệm khi

$$\mathbf{A} \cdot \mathbf{m} > 0$$
.

$$\mathbf{B.}m \leq 0$$
.

$$\mathbf{C} \cdot m \ge 0$$
.

D.
$$m < 0$$
.

Câu 8. Kết luận nào sau đây là sai?

A. Tam thức $f(x) = x^2 - 2x + 5$ luôn dương với mọi $x \in \mathbb{R}$.

B. Tam thức $f(x) = -3x^2 + 2x - 7$ luôn âm với mọi $x \in \mathbb{R}$.

C. Tam thức $f(x) = x^2 - 6x + 9$ luôn dương $\forall x \neq 3$.

D. Tam thức $f(x) = -5x^2 - 4x + 1$ luôn âm $\forall x \in \left(-1, \frac{1}{5}\right)$.

Câu 9. Tam thức $f(x) = x^2 - 2x - 3$ luôn dương khi và chỉ khi

A. x < 3 hoặc x > -1. **B**. x < -1 hoặc x > 3.

C. x < -2 hoặc x > 6. **D**. -1 < x < 3.

Câu 10. Tam thức nào sau đây nhận giá trị âm với mọi x < 2?

A.
$$f(x) = x^2 - 5x + 6$$
.

B.
$$f(x) = 16 - x^2$$
.

C.
$$f(x) = x^2 - 2x + 3$$
.

D.
$$f(x) = -x^2 + 5x - 6$$
.

Câu 11. Cho tam thức $f(x) = x^2 - 2(2m-3)x + 9$. Khẳng định nào sau đây là **đúng**?

A.
$$f(x) > 0, \forall x \in \mathbb{R} \Leftrightarrow 0 < m < 3$$
.

B.
$$f(x) > 0, \forall x \in \mathbb{R} \Leftrightarrow 0 \le m \le 3$$
.

$$\mathbf{C.} f(x) < 0, \forall x \in \mathbb{R} \Leftrightarrow 0 < m < 3.$$

D.
$$f(x) \ge 0, \forall x \in \mathbb{R} \iff m \in (-\infty, 0] \cup [3, +\infty)$$
.

Câu 12. Tập nghiệm của bất phương trình $x^2 - 4\sqrt{2}x + 8 < 0$ là

$$\mathbf{A}. S = \left(-\infty; 2\sqrt{2}\right)$$

$$\mathbf{A}. S = \left(-\infty; 2\sqrt{2}\right).$$
 $\mathbf{B}. S = \mathbb{R} \setminus \left\{-2\sqrt{2}\right\}.$

$$\mathbf{C}.S = \emptyset$$
.

$$\mathbf{D}. S = \mathbb{R}.$$

Câu 13. Tập nghiệm của bất phương trình $-x^2 + 3x + 4 \ge 0$ là

A. [-1; 4].

B.
$$(-\infty; -1] \cup [4; +\infty)$$
. **C.** $(-\infty; -1] \cup (4; +\infty)$.

C.
$$(-\infty;-1]\cup(4;+\infty)$$

Câu 14. Tập nghiệm của hệ bất phương trình $\begin{cases} x^2 - x - 12 < 0 \\ 2x - 1 > 0 \end{cases}$ là

$$\mathbf{A} \cdot \left(\frac{1}{2}; 4\right)$$
.

$$\mathbf{B}.(4;+\infty).$$

$$C.\left(\frac{1}{2};3\right).$$

$$\mathbf{D}.\left(\frac{1}{2};+\infty\right).$$

Câu 15. Tập nghiệm của hệ bất phương trình $\begin{cases} 3x^2 - 10x + 3 > 0 \\ x^2 - 6x - 16 < 0 \end{cases}$ là

A.
$$S = (-\infty; -2) \cup (8; +\infty)$$
. **B.** $S = \left(-2; \frac{1}{3}\right) \cup (3; 8)$. **C**. $S = \left(\frac{1}{3}; 3\right)$. **D**. $S = \emptyset$.

B. HÌNH HỌC

Câu 16. Trong các khẳng định sau, khẳng định nào sai?

$$\mathbf{A.}\,S = \frac{1}{2}\,ah_a = \frac{1}{2}\,bh_b = \frac{1}{2}\,ch_c \;.$$

B.
$$S = \frac{1}{2}ab\sin C = \frac{1}{2}bc\sin A = \frac{1}{2}ac\sin B$$
.

$$\mathbf{C.}S = \frac{abc}{R}; \ S = pr.$$

D.
$$S = \sqrt{p(p-a)(p-b)(p-c)}$$
.

Câu 17. Nếu tam giác ABC có $a^2 < b^2 + c^2$ thì

- A. Góc A tù.
- B. Góc A vuông.
- C. Góc A nhọn.
- **D.** Góc A nhỏ nhất.

Câu 18. Trong tam giác ABC, khẳng định nào sau đâyđúng?

A.
$$m_a = \sqrt{\frac{b^2 + c^2}{2}}$$
. **B.** $m_a = \frac{b + c}{\sqrt{2}}$

$$\mathbf{B.} \, m_a = \frac{b+c}{\sqrt{2}}$$

$$\mathbf{C.}\,m_a > \sqrt{\frac{b^2 + c^2}{2}}$$

D.
$$m_a < \sqrt{\frac{b^2 + c^2}{2}}$$

Câu 19. Tam giác ABC có AB = 3, AC = 4 và tan $A = 2\sqrt{2}$. Độ dài cạnh BC bằng

A.
$$\sqrt{33}$$
 .

B.
$$\sqrt{17}$$
 .

C.
$$3\sqrt{2}$$

D.
$$4\sqrt{2}$$

Câu 20. Tam giác ABC có $\hat{A} = 105^{\circ}$ và $\hat{B} = 45^{\circ}$. Tỉ số $\frac{AB}{AC}$ bằng

$$\mathbf{A.}\frac{\sqrt{2}}{2}$$
.

B.
$$\sqrt{2}$$
 .

$$\mathbf{C} \cdot \frac{\sqrt{6}}{2}$$
.

D.
$$\frac{\sqrt{6}}{3}$$
 .

Câu 21. Cho hình vuông ABCD có độ dài cạnh bằng a. Gọi E là trung điểm của cạnh BC, F là trung điểm của đoạn AE. Độ dài đoạn DF bằng

A.
$$\frac{a\sqrt{13}}{4}$$
. **B.** $\frac{a\sqrt{15}}{4}$. **C.** $\frac{a\sqrt{3}}{2}$.

B.
$$\frac{a\sqrt{15}}{4}$$

C.
$$\frac{a\sqrt{3}}{2}$$

D.
$$\frac{3a}{4}$$
.

Câu 22. Cho tam giác ABC có AB=10, $\tan(A+B) = \frac{1}{3}$. Bán kính đường tròn ngoại tiếp \triangle ABC là

$$A.\frac{5\sqrt{10}}{9}$$
.

B.
$$5\sqrt{10}$$
 .

$$\mathbf{C} \cdot \frac{\sqrt{10}}{5}$$
.

D.
$$10\sqrt{10}$$

Câu 23. Hình bình hành ABCD có hai cạnh bằng 5 và 9, một đường chéo bằng 11. Độ dài đường chéo còn lai là

B.
$$4\sqrt{6}$$
 .

$$C.\sqrt{91}$$
.

D.
$$3\sqrt{10}$$
.

Câu 24. Tam giác ABC thỏa mãn hệ thức b + c = 2a. Khẳng định nào sau đây **đúng?**

A.
$$\cos B + \cos C = 2\cos A$$
.

$$\mathbf{B.}\sin B + \sin C = 2\sin A.$$

$$\mathbf{C.} \sin B + \sin C = \frac{1}{2} \sin A.$$

$$\mathbf{D.}\sin B + \cos C = 2\sin A.$$

Câu 25. Cho tam giác ABC có AB = 1, AC = 3, $\hat{A} = 60^{\circ}$. Bán kính đường tròn nội tiếp \triangle ABC là

A.
$$r = \frac{3\sqrt{3}}{8 + 2\sqrt{7}}$$
. **B.** $r = \frac{3\sqrt{3}}{4 + \sqrt{7}}$. **C.** $r = \frac{3}{4 + \sqrt{7}}$. **D.** $r = \frac{3}{8 + 2\sqrt{7}}$.

$$\mathbf{B} \cdot r = \frac{3\sqrt{3}}{4 + \sqrt{7}}$$

$$\mathbf{C.} r = \frac{3}{4 + \sqrt{7}}$$

$$\mathbf{D} \cdot r = \frac{3}{8 + 2\sqrt{7}}$$

Câu 26. Cho tam giác ABC với A(1; 1), B(0; -2), C(4, 2). Phươg trình tổng quát của đường trung tuyến đi qua B của tam giác là

A.
$$5x - 3y + 1 = 0$$
.

$$\mathbf{B.-}7\mathbf{x} + 5\mathbf{v} + 10 = \mathbf{0.}$$

C.
$$7x + 7y + 14 = 0$$
.

D.
$$3x + y - 2 = 0$$
.

Câu 27. Vị trí tương đối của hai đường thẳng có phương trình $(d_1):11x-12y+1=0$ và $(d_2):12x-11y+9=0$ là

A. Song song với nhau.

B. Trùng nhau.

C. Vuông góc với nhau.

D. Cắt nhau nhưng không vuông góc với nhau.

Câu 28. Phương trình tổng quát của đường thẳng đi qua hai điểm A(-2;4), B(1;0) là

A.
$$4x + 3y + 4 = 0$$

B.
$$4x + 3y - 4 = 0$$

C.
$$4x - 3y + 4 = 0$$
 D. $4x - 3y - 4 = 0$

D.
$$4x - 3y - 4 = 0$$

Câu 29. Phương trình đường trung trực của đoạn AB với A(1,5), B(-3,2) là

A.
$$6x + 8y + 13 = 0$$
.

B.
$$8x + 6y + 13 = 0$$
.

C.
$$8x + 6y - 13 = 0$$
.

D.
$$-8x + 6y - 13 = 0$$
.

Câu 30. Phương trình đường thẳng đi qua N(1;2) và song song với đường thẳng 2x + 3y - 12 = 0 là

A.
$$2x + 3y - 8 = 0$$
.

A.
$$2x + 3y - 8 = 0$$
. **B.** $2x + 3y + 8 = 0$.

C.
$$4x + 6y + 1 = 0$$
.

D.
$$2x-3y-8=0$$
.

Câu 31. Cho tam giác ABC có A(2;0), B(0;3), C(-3;1). Đường thẳng qua B và song song với AC có phương trình là

A.
$$5x - y + 3 = 0$$
.

B.
$$5x + y - 3 = 0$$
.

A.
$$5x - y + 3 = 0$$
. **B.** $5x + y - 3 = 0$. **C.** $x + 5y - 15 = 0$. **D.** $x - 5y + 15 = 0$.

D.
$$x - 5y + 15 = 0$$
.

Câu 32. tam giác ABC có A(2;6), B(0;3), C(4;0). Phương trình đường cao AH của $\triangle ABC$ là

A.
$$4x - 3y + 10 = 0$$

B.
$$3x + 4y - 30 = 0$$

A.
$$4x-3y+10=0$$
 B. $3x+4y-30=0$ **C.** $4x-3y-10=0$ **D.** $3x-4y+18=0$

D.
$$3x - 4y + 18 = 0$$

III. BÀI TẬP TỰ LUẬN

A. ĐẠI SỐ

Bài 1. Giải các bất phương trình sau

a.
$$(2x-8)(x^2-4x+3) > 0$$
.

d.
$$\frac{5x^2-7x-3}{3x^2-2x-5} \ge 1$$
.

b.
$$(3x-1)^2 - 16 \le 0$$
.

e.
$$(x+1)^2 + x^2 \le \frac{15}{x^2 + x + 1}$$

$$c. \quad \frac{3}{1-x} \ge \frac{2}{2x+1}$$

a.
$$y = \sqrt{(3x-1)(5-4x)}$$

b.
$$y = \sqrt{\frac{3}{3x^2 + x - 4} - \frac{1}{x^2 - 4}}$$

Bài 3. Giải các phương trình và bất phương trình sau

a.
$$x^2 - 5|x - 1| - 1 = 0$$

f.
$$\left| \frac{2-3x}{x+1} \right| \ge 2$$

b.
$$|3x^2 - 2| = |6 - x^2|$$

g.
$$|x^2 - 2x| < x^2 - 4$$

c.
$$|2x^2 - x + 1| = 6x - 2$$

h.
$$|x^2 - 5x + 9| > x - 6$$

d.
$$|x+1|+|x-1|=4$$

e.
$$|x^2 - 10x + 9| < |9 - x^2|$$

i.
$$\frac{|2x-1|}{x^2-3x-4} < \frac{1}{2}$$

Bài 4. Giải các hệ bất phương trình

a.
$$\begin{cases} -4x^2 + 12x - 5 < 0 \\ 4x^2 - 5x - 6 \le 0 \end{cases}$$

b.
$$\begin{cases} x^2 - 4 \\ (x - 1)(3x^2 + 7x + 4) \ge 0 \end{cases}$$

c.
$$\begin{cases} 2(x-1)-4(x-4) < x+5 \\ \frac{4-3x}{x^2+4x+4} \ge 0 \end{cases}$$

$$d. \begin{cases} |x-2| \ge 1 \\ \frac{2}{2x-1} \le \frac{1}{3-x} \end{cases}$$

Bài 5. a. Tìm nghiệm nguyên của hệ bất phương trình $\begin{cases} \frac{8x+3}{2} < 2x+25 \\ 6x+\frac{5}{7} > 4x+7 \end{cases}$

b. Tìm nghiệm nguyên nhỏ nhất của hệ bất phương trình $\begin{cases} 2(x-4) < \frac{3x-14}{2} \\ 15x+2 > 2x - \frac{1}{3} \end{cases}$

Bài 6. Tìm m để phương trình

a.
$$2x^2 - (m^2 - m + 1)x + 2m^2 - 3m - 5 = 0$$
 có hai nghiệm trái dấu

b.
$$(m-2)x^2 + 2(2m-3)x + 5m - 6 = 0$$
 vô nghiệm

Bài 7. Xác định m để mỗi hệ sau có nghiệm? vô nghiệm?

a.
$$\begin{cases} x^2 - 3x + 2 \le 0 \\ x - m > 1 \end{cases}$$

b.
$$\begin{cases} x^2 + 2x - 15 < 0 \\ (m+1)x \ge 3 \end{cases}$$

Bài 8. a. Tìm m để mỗi bất phương trình sau nghiệm đúng với mọi $x \in R$

$$a_1$$
) $(m+1)x^2 - 2(m-1)x + 3m + 6 \ge 0$

$$a_2$$
)1 $\leq \frac{2x^2 + (m+1)x + 5}{x^2 - 2x + 3} < 4$

b. Tìm m để mỗi bất phương trình sau vô nghiệm

$$b_1) \ (m-2) x^2 + 6(m-2) x - 2m + 1 \le 0. \\ b_2) \ \frac{x^2 - 2mx + 4m - 2}{x^2 - x + 1} > 2$$

Bài 9. Tuỳ theo giá trị của m, hãy biện luận số nghiệm của pt: $mx^4 - 2(m-3)x^2 + m - 4 = 0$.

B. <u>HÌNH HỌC</u>

- **Bài 10**. Cho tam giác ABC có b = 6, c = 8, $A = 60^{\circ}$.
 - a. Giải tam giác ABC.
 - b. Tính chiều cao h_a, độ dài đường trung tuyến BM và diện tích tam giác.
 - c. Tính bán kính đường tròn nội tiếp và ngoại tiếp tam giác.
- **Bài 11**. Cho hai điểm M(1;3), N(3;-5) và đường thẳng d có phương trình (d): 3x + y + 4 = 0
 - a. Tìm toạ độ điểm M' đối xứng với điểm M qua đường thẳng d.
 - b. Viết phương trình đường thẳng qua N và song song với d.
 - c. Viết phương trình đường thẳng đi qua O và cách đều 2 điểm M; N.
 - d. Giả sử E; F là hình chiếu của N trên các trục tọa độ. Viết PT đường thẳng EF.
 - e. Viết phương trình đường thẳng Δ đi qua M và Δ cắt tia Ox; Oy tại I;J sao cho diện tích tam giác MIJ nhỏ nhất.
- **Bài 12**. Viết phương trình các đường cao và các đường trung trực của tam giác ABC biết A(1;4), B(-3;2), C(5;-4).
- **Bài 13.** Cho đường thẳng (d_m) : mx + (3 m)y + 3 2m = 0 (m là tham số)
 - a. Tìm m để d_m vuông góc với đường thẳng d có phương trình x+2y=0.
 - b. Tìm điểm cố định mà đường thẳng d_{m} luôn đi qua.
 - c. Tìm m để khoảng cách từ gốc toạ độ O đến d_m đạt giá trị lớn nhất.