Computer Communication Networks

Internet Protocol

The Internet Protocol

- Service provided by link layer
 - frame delivery
 - point-to-point link
 - shared medium
- Service provided to transport layer
 - packet delivery
 - addressing and routing
 - best effort
 - lost, duplicated, reordered, corrupted

IP header

• IPv4

IP address

Address classes

IP address: more

- Problem with "address classes"
 - too big a Class A network
 - too (many) small Class C networks
- Classless address
 - CIDR: classless inter-domain routing

UVic's IP space

- UVicNet
 - Class B: 142.104.0.0/16
- UVic EngNet
 - network address: 142.104.96.0
 - network mask: 255.255.224.0
 - 142.104.96.0/19
 - subnet test
 - net_add & net_mask ?= host_add & net_mask
 - host_A_add & net_mask ?= host_B_add & net_mask

Obtain an IP address

- Static configuration
 - e.g., on UVic campus
 - e.g., /etc/sysconfig/network-scripts/ifcfg-eth0
- Allocated by service provider
 - e.g., at home
 - DHCP: dynamic host configuration protocol
 - obtain IP add, net mask, default gateway, DNS, etc
 - authentication often needed

Make linux box act as router

- 1) **A/B/C**: sysctl -w net.ipv4.ip-forward=1
- 2) **A/B/C**: ifconfig eth1 *.*.* netmask 255.255.255.0 broadcast *.*.*.255
- 3) at **A**: route add default gw 192.168.8.254 dev eth1 route add -net 10.0.1.0/24 gw 192.168.8.4 dev eth1 at **C**: route add -net 10.0.0.0/24 gw 192.168.8.18 route add -net 10.0.1.0/24 gw 192.168.8.4

Network address translation

"Not enough IP addresses!"

- not efficiently allocated, more connected devices, etc

Header fields

- IP header checksum (16-bit)
 - TCP/IP-style checksum
 - cover IP header (and option) only
- Protocol ID (8-bit)
 - TCP(6), UDP(17); /etc/protocols
- TTL: time-to-live (8-bit)
 - decrement by each router
 - drop if TTL=0

Header field: more

- Total length (16-bit)
 - byte counter
- IHL: IP header length (4-bit)
 - 4-byte counter
- Identification (16-bit)
- Fragment offset (13-bit)
 - 8-byte offset
 - DF: don't fragment; MF: more fragment(s)

Fragment and reassemble

- IP packet length
 - -2^{16} -1 bytes
- MTU: maximum transmission unit
 - Ethernet: 1500 bytes
- Fragment
 - when total length > MTU
- Reassemble
 - only at destination
- PMTU discovery

One large datagram becomes several smaller datagrams

length	ID	fragflag	offset	
=1500	=x	=1	=0	

length	ID	fragflag	offset	
=1500	=x	=1	=185	

length	ID	fragflag	offset	
=1040			=370	

Type of service

- ToS: type of service
 - precedence (bit 7-5)
 - 0: normal traffic
 - 7: network control traffic
 - Flags (bit 2-4): Delay, Throughput, Reliability
- New definition: DiffServ Code Point
 - per-hop behavior (bit 7-2)
- The other two bits

Summary

- IP
 - IP addressing
 - address class, classless, NAT
 - fragmentation and reassembly
 - MTU, "total length", offset
- Explore further
 - /sbin/ifconfig

Next

• Routing algorithm