## **50.005 Quiz OS 4**(15 mins) Student ID: Name: Note: This quiz is closed-book and closed-notes, except for one double-sided A4 cheat sheet allowed. You also can't go online or look at anything electronic, including your laptop, smartphone, etc. 1. [2m] The two basic kinds of process/thread synchronisation problems (e.g., found in the producer-consumer problem) are \_\_mutual exclusion\_\_\_\_ and \_\_\_\_condition synchronization\_\_\_\_\_. 2. [1m] In Java, a synchronized method of an object can successfully call another synchronized method of the same object although both synchronized methods are guarded by the same binary lock. True or false? **TRUE** 3. Consider a single producer, single consumer problem in Java. The producer and consumer threads share a buffer of 5 integers (all initialized to 0). They synchronize using a semaphore declared as: Semaphore num = new Semaphore(0); Consider the following producer code: // insert input integer i into next slot of buffer

```
// insert input integer i into next slot of buffer
public void insert(int i) {
    static int in = 0;

    buffer[in] = i;
    in = (in + 1) % 5;
    num.release();
}
```

and the following consumer code:

```
// print the next producer-inserted integer from the buffer
public void remove() {
    static int out = 0;
    int i;

    num.acquire();
    i = buffer[out];
    out = (out + 1) % 5;
    System.out.printf("%d ", i);
```

The producer thread calls the insert method 10 times with input parameter i equal to 1, 2, ..., 10 (in that order). **Concurrently**, the consumer thread runs to call the remove method repeatedly. Note that because there are only one producer and one consumer, we **do not need** to provide mutual exclusion explicitly in accessing the shared buffer.

(a) [2m] The consumer prints the values 6, 7, 8, 4, 5, 6, 7, 8, 9, 10. Explain how this can happen.

There's nothing stopping the producer from overwriting the buffer, i.e: write before consumer finished reading the new values. The current semaphore only prevents the consumer from reading before the producer produces letters.

## Full marks will be given for generic answer.

However the specific answer is: Producer calls insert(i) for i = 1, ..., 8. The "1 2 3" will be overwritten by "6 7 8", and num will be 8. Then, the consumer prints 8 times, "6 7 8 4 5 6 7 8", and num becomes 0. Then the producer calls insert for i = 9, 10 (num = 2). Then consumer prints 9, 10 (num = 0).

- (b) [1m] What instead should be the correct sequence of integers printed by the consumer? 1,2,3,4,....10.
- (c) [2m] Describe a fix to the insert and remove methods to ensure that the correct sequence in (b) will be printed.

Create another semaphore: space, initialize it to 5. Producer has to do space.acquire() before the first line of instruction in insert(). Consumer has to do space.release() just before quitting the function remove().

Date: 28/02/2019

4. Consider the resource allocation graph below:



- (a) [1m] Does the graph contain a cycle or not? Yes
- (b) [1m] Does deadlock exist in the graph? Yes
- (c) [1m] In general, a cycle in the graph is a sufficient condition for deadlock. **True or false?** FALSE

**Total marks: 11 marks**