Group Project Data Science and Machine Learning

Authors:

Jonas Brandenburg if20b243, Stephan Düx if20b245, Violeta Garcia Espin if20b091, Rawan Mousa if20b129

1. Data Acquisition

The **Behavioral Risk Factor Surveillance System** (BRFSS) is the nation's premier system of health-related telephone surveys that collect state data about U.S. residents regarding their health-related risk behaviors, chronic health conditions, and use of preventive services.

- 400,000 adult interviews each year
- Largest continuously conducted health survey in the world
- 336 columns
- ~600mb of data per year
- Datasets from 1986 2020 available

https://www.cdc.gov/brfss/annual_data/annual_data.htm

https://www.kaggle.com/datasets/cdc/behavioral-risk-factor-surveillance-system

2. Data Exploration

```
In 5 1 df_original.shape
Out 5 (441456, 330)
```

441.456 Samples 330 Features

2. Data Exploration: Feature Selection

2. Data Preprocessing: Feature Selection

https://www.cdc.gov/brfss/annual_data/2015/pdf/codebook15_llcp.pdf

3. Data Processing: Label Encoding

3. Data Preprocessing: Label Encoding

One Hot Encoding would have been indicated.

4. Data Preprocessing: Handling NaN Values

5. Data Preprocessing: Examination of individual features

6. Data Preprocessing: Balanced data

7. Model: KNN - Hyperparameter

7. Model: KNN

```
for i in range(100):
    X_train, X_test, y_train, y_test = train_test_split(X_resampled, y_resampled, test_size = 0.2)
    knn = KNeighborsClassifier(n_neighbors=best_k, metric = metric)
    knn.fit(X_train, y_train)
    prediction = knn.predict(X_test)

balanced_accuracy_score(y_test, prediction)
    accuracy_list.append(balanced_accuracy_score(y_test, prediction))
print("Balanced Accuracy Score is: ", np.mean(accuracy_list))
```

7. Model KNN - Performance

7. Model KNN - Performance (k vs. Accuracy)

8. Model: Decision Trees - Gini vs. Entropy

```
[151] gini scores = []
     entropy scores = []
     for i in range (0, 100):
       X train, X test, y train, y test = train test split(X resampled, y resampled, test size = 0.2)
       gini model = DecisionTreeClassifier(criterion='gini', random state=1)
       entropy_model = DecisionTreeClassifier(criterion='entropy', random_state=1)
       gini model.fit(X train, y train)
       entropy model.fit(X train, y train)
       gini predictions = gini model.predict(X test)
       entropy prediction = entropy model.predict(X test)
       gini scores.append(balanced accuracy score(y test, gini predictions))
       entropy scores.append(balanced accuracy score(y test, entropy prediction))
     avg scores gini = sum(gini scores) / len(gini scores)
     avg scores entropy = sum(entropy scores) / len(entropy scores)
     print(f"Average accuracy score for gini {avg scores gini}")
     print(f"Average accuracy score for entropy {avg scores entropy}")
```

Gini	Entropy	
0.642	0.647	Dropped NaN
0.673	0.674	Imputed NaN

Entropy might perform slightly better but computationally more demanding.

8. Model: Decision Trees

 $https://www.123rf.com/photo_138703028_vector-illustration-of-a-boy-pruning-bush-with-shears-isolated-on-white-background-cute-kid-doing-ga.html?vti=oenrrzu1j54jpx7ld5-1-6$

8. Model: Decision Trees - Pruning

Pre-Pruning:

GridSarchCV()

RandomizedSearchCV()

8. Model: Decision Trees - Pruning

Post-Pruning: ccp_alpha

8. Model: Decision Trees - Optimized Tree

8. Model: Decision Trees - Performance

Accuracy = 0.728 for dataset with imputed NaN values

9. Model: MLP - Overview

Hyper Parameters

Туре		Values		
KNN Imputation	NONE	KNN		
Activation function	sigmoid	relu		
ANN Arch: hidden layers	1	2	3	
ANN Arch: hidden layers nodes	10	20	50	
solver	adam	sgd		

 $2 \times 2 \times 3 \times 3 \times 2 = 72$ combinations

9. Model: MLP - Activation Function

Activation	on func	Results	
sigmoi 🔻	relu 🔻	Balanced acc	Clears result ga ▼
	х	0.752983544	TRUE
	х	0.752917655	TRUE
	х	0.752209507	TRUE
	x	0.752151507	TRUE
	X	0.751377622	TRUE
	x	0.751052197	TRUE
	х	0.751049684	TRUE
	X	0.751041243	TRUE
	X	0.750471004	TRUE
х		0.750403557	TRUE
X		0.750332744	TRUE
	х	0.750138846	TRUE
х		0.749946103	TRUE
X		0.749814174	TRUE
х		0.749810506	TRUE
х		0.749680387	TRUE
	X	0.749498346	TRUE
	х	0.749498246	TRUE
	х	0.749484076	TRUE
Х		0.749174228	TRUE
	X	0.749172419	TRUE
X		0.749171112	TRUE
	х	0.749039033	TRUE
	X	0.74885026	TRUE
Х		0.748849054	TRUE
X		0.748721999	TRUE
х		0.748271026	TRUE
Х		0.748267358	TRUE
х		0.747496789	TRUE
	X	0.747299926	TRUE
	х	0.746983345	TRUE
х		0.746207248	TRUE
x		0.74530661	TRUE
X		0.5	FALSE
х		0.5	FALSE
x		0.5	FALSE

9. Model: MLP - Architecture

How does that make sense ???

9. Model: MLP - Optimizers

Adaptive Moment Estimation vs
Stochastic Gradient Descent

Sol	ver		Results		
adam 🔻	sgd	*	Balanced acc	-1	Clears result ga ▼
X			0.7529835	44	TRUE
х			0.7529176	555	TRUE
	х		0.7522095	07	TRUE
Х			0.7521515	07	TRUE
Х			0.7513776	22	TRUE
Х			0.7510521	.97	TRUE
Х			0.7510496	84	TRUE
	х		0.7510412	43	TRUE
X			0.7504710	04	TRUE
Х			0.7504035	57	TRUE
Х			0.7503327	44	TRUE
	х		0.7501388	346	TRUE
	X		0.7499461	.03	TRUE
Х			0.7498141	.74	TRUE
Х			0.7498105	06	TRUE
X			0.7496803	87	TRUE
	X		0.7494983	46	TRUE
	X		0.7494982		TRUE
Х			0.7494840	76	TRUE
X			0.7491742	28	TRUE
	X		0.7491724	19	TRUE
	X		0.7491711	.12	TRUE
	х		0.7490390	33	TRUE
	х		0.748850		TRUE
	х		0.7488490	-	TRUE
	X		0.7487219		TRUE
х			0.7482710	26	TRUE
	х		0.7482673	58	TRUE
	Х		0.7474967		TRUE
	X		0.7472999		TRUE
Х			0.7469833		TRUE
х			0.7462072		TRUE
х			0.745306		TRUE
	×			0.5	FALSE
	x			0.5	FALSE
	х			0.5	FALSE

9. Model: MLP - Performance

Accuracy = 0.742 for dataset with dropped NaN values

Architecture: 20, 20, 20

Accuracy = 0.753 for dataset with imputed NaN values

Architecture: 10, 10

10. Algorithm performance comparison

Accuracy:

- Highest balanced accuracy of implemented algorithms: 0.753 MLP(imputed)
- Worst balanced accuracy of implemented algorithms: 0.708 Decision Tree(dropped)
- Undersampling the data lead to a moderate number of false negatives

Speed:

- The optimised decision tree is very fast with predictions once trained and optimized
- KNN has the disadvantage of a huge the dataset requiring intensive computational work but is still quite fast
- MLP is extremely dependent on the hyperparameter setup

Dropped NaN vs. Imputed NaN in best case:

- Imputed NaN values consistently improved accuracy over dropped Nan

Accuracy for KNN:
Dropped = 0.72
Imputed = 0.74
Difference = 0.010

Accuracy for Decision Tree:
Dropped = 0.708
Imputed = 0.728
Difference = 0.020

Accuracy for MLP: Dropped = 0.742 Imputed = 0.753 Difference = 0.011

11. Conclusions

- Real-world implications of data preprocessing: e.g. simplifying diabetes label could introduce hidden dangers when assessing heart disease risk
- Preprocessing of data has major influence on final result
- While using imputed values risk introducing bias, a big and representative dataset can mitigate them
- Great number of Hyperparameters can make it very hard to understand their interactions

Complex hyperparameters example

m	putation	Activat	ion func	Hi	dden Layers	s	Nodes	per Hidde	n Layer	Solv	er	Max Itera	tions Resi	ults		13	×		×			· v					v		200	×	0.733691902 0.733691902
	- KNN	.T sigmoid -	relu 🗸	1 -	2 -	3 -	10 -	20 -	50 -	adam 👻	sgd 🔻	100 -	400 - Balar	nced acc 🗔	Clears result ga -	60			_^				×	Û			Û		x		0.733605799
			×			×			×		×	×	(0.737549596	TRUE	61								^					^	×	0.733605799
			×			x			×		×		х (0.737549596	TRUE		×			×	-		х	Х			х	_		×	
			×	х				×		×		×	0	0.737174437	TRUE	64	X			×			х		×		х		Х	4	0.733540882
			×	x				×		×				0.737174437		65	х			X			X		×		х			×	0.733540882
			×		×				×		x	×		0.736393079		52	х			X		X			×		х		Х		0.73343619
			×		×				x		x			0.736393079		53	x			x		X			×		х			×	0.73343619
			×		×		х			X		×		0.735981566		23	×		x			×				х		×		×	0.733304171
			×		×		x			х				0.735981566		68	×			×			×			×	x		x		0.733153686
		-	×		×		×				×	×		0.735159899		3	V		x		×			x				×	100	×	0.733071417
			х	x	×		x	×			×	×		0.735159899 0.735151696		57	Û		^	×		×		^		x	x	_		×	0.732865454
			X X	×				×			×	×		0.735151696 0.735151696		69					-					×		_			0.732791387
			×	^	×			0			×	×		0.735131090			×			×			X				Х			×	
			x		0			÷			Ŷ			0.735144319		46	х			×	X					х		×	х	4	0.732610979
		×	-	×	_		×	-		×		×		0.73508377		47	X			X	Х					X		X		×	0.732610979
		×		x			X			×				0.73508377		36	X			X	х			X			х		Х		0.732208202
		×			×			×		×		×		0.735081173	TRUE	37	×			×	x			X			X			×	0.732208202
		×			×			×		x			х (0.735081173	TRUE	20	×		x			×				x	x		x		0.731264201
		×				×			×	x		×		0.734785686		21	×		x			×				x	x			×	0.731264201
		×				x			×	x				0.734785686		28	×		×				×		×		x		х		0.730995093
			×		×				×	×		×		0.734718997		29	×						×		×		×			×	0.730995093
		×		x					×	x		×		0.734654492			×				v		^		×		^	×	×		0.730220456
		×		X					x	x				0.734654492					^	_	^	_						^	^		0.729251725
			×			x	×				×	×		0.734624692		2	х		х	_	X	_		Х				×	×		
			х			х	×				×			0.734624692 0.734620736		10	×		Х		Х					х		×	Х		0.728945729
			x x	X			×				×	×		0.734620736 0.734620736		22	×		х			×				х		×	х		0.721196048
			×	×					×	×	^	×		0.734360365		18	х		X			X			×			X	х		0.715375215
			x	x					Ŷ	x		_		0.734360365		14	×		х			x		X				×	x		0.577537818
			×			x		×			×	×		0.734060921		15	X		х			х		х				X		×	0.577537818
			x			×		×			×			0.734060921		26	x		х				×	x				x	х		0.5
		×		×				×			×		x 0	0.733906892	TRUE	27	×		x				×	x				×		×	0.5
		×				x	x			×		×	(0.733825982	TRUE	30			v				×		×			×	х		0.5
		×				x	x			x				0.733825982		31			Ŷ				x		×			x	^	×	0.5
		×		x					×		×			0.733798244		34			^	_											0.5
		×		x				×		×		×		0.733796182					X				×			х		×	х		
		×		х				×		x				0.733796182		35	x		х				×			x		×		×	0.5
		×			×			×			×			0.733745073		98		X	х				X	X				×	х		0.5
		×			×		х			x		×		0.733691902		99		x	х				x	х				x		×	0.5
		×			×		×			×				0.733691902		102		x	х				x		x			×	х		0.5
			×			×	×			×		×		0.733605799		103		x	х				x		x			×		×	0.5
			×			x x	×	×		×		100		0.733605799 0.733540882		106		×	×				×			X		×	X		0.5
			× ×			× ×		,		×		×		0.733540882 0.733540882		107		x	×				×			x		Y Y	- "	×	0.5
		1	×		×					^				0.73343619		107			^												0.3

Questions Feedback

