Bayesian Data Analysis

Prof. Pradeep Ravikumar pradeepr@cs.cmu.edu

Recall: Frequentist Data Analysis

• Frequentist/Classical Data Analysis $\theta \longrightarrow p_X(x;\theta) \longrightarrow X$ Estimator θ : unknown parameter (not a r.v.) \circ E.g., θ = mass of electron

Example: we observe 10 coin flips from a biased coin, what is the bias of the coin θ ?

Types of Data Analysis

• Frequentist/Classical Data Analysis

- θ : unknown parameter (not a r.v.)
 - \circ E.g., θ = mass of electron

Parameter itself is random!

Bayesian vs Classical

- Classical: Say we have a model with mass of electron as parameter. We might not know the value, but it is nonetheless a constant.
- Bayesian: If we do not know its value completely, use a prior distribution reflecting what we do know.
- Classical: Prior Distribution seems arbitrary.
- Bayesian: Every statistical method makes some choice*; might as well use a prior to codify these choices.
- Classical: Bayesian methods too difficult to compute (practical considerations)

Bayesian Inference

- We start with a prior distribution p_{Θ} or f_{Θ} for the unknown random variable Θ .
- We have a model $p_{X|\Theta}$ or $f_{X|\Theta}$ of the observation vector X.
- After observing the value x of X, we form the posterior distribution of Θ , using the appropriate version of Bayes' rule.

Recall: Your first consulting job

- A billionaire from the suburbs of Seattle asks you a question:
 - He says: I have a coin, if I flip it, what's the probability it will fall with the head up?
 - You say: Please flip it a few times:

- You say: The probability is: 3/5 because... frequency of heads in all flips
- He says: But can I put money on this estimate?
- You say: ummm.... Maybe not.
 - Not enough flips (less than sample complexity)

What about prior knowledge?

- Billionaire says: Wait, I know that the coin is "close" to 50-50.
 What can you do for me now?
 - You say: I can learn it the Bayesian way...

• Rather than estimating a single θ , we obtain a distribution over possible values of θ

Bayesian Learning

Bayes, Thomas (1763) An essay towards solving a problem in the doctrine of chances. *Philosophical Transactions of the Royal Society of London*, **53:370-418**

Bayesian Learning

• Use Bayes rule:

$$P(\theta \mid \mathcal{D}) = \frac{P(\mathcal{D} \mid \theta)P(\theta)}{P(\mathcal{D})}$$

• Or equivalently:

$$P(\theta \mid \mathcal{D}) \propto P(\mathcal{D} \mid \theta)P(\theta)$$
 posterior likelihood prior

Bayes, Thomas (1763) An essay towards solving a problem in the doctrine of chances. *Philosophical Transactions of the Royal Society of London*, 53:370-418

- Partition of sample space into A₁, A₂, A₃ :: "Prior Beliefs" P(A₁), P(A₂), P(A₃)
- We know $P(B \mid A_i)$ for each i (for some event B)
- Wish to compute $P(A_i \mid B)$
- revise "beliefs", given that B occurred

$$\frac{\mathbf{P}(A_i \mid B)}{\mathbf{P}(B)} = \frac{\mathbf{P}(A_i \cap B)}{\mathbf{P}(B)}$$

- Partition of sample space into A₁, A₂, A₃ :: "Prior Beliefs" P(A₁), P(A₂), P(A₃)
- We know $P(B \mid A_i)$ for each i (for some event B)
- Wish to compute $P(A_i \mid B)$
- revise "beliefs", given that B occurred

$$\mathbf{P}(A_i \mid B) = \frac{\mathbf{P}(A_i \cap B)}{\mathbf{P}(B)}$$
$$= \frac{\mathbf{P}(A_i)\mathbf{P}(B \mid A_i)}{\mathbf{P}(B)}$$

- Partition of sample space into A₁, A₂, A₃ :: "Prior Beliefs" P(A₁), P(A₂), P(A₃)
- We know $P(B \mid A_i)$ for each i (for some event B)
- Wish to compute $\mathbf{P}(A_i \mid B)$
- revise "beliefs", given that B occurred

$$P(A_i | B) = \frac{P(A_i \cap B)}{P(B)}$$

$$= \frac{P(A_i)P(B | A_i)}{P(B)}$$

$$= \frac{P(A_i)P(B | A_i)}{\sum_j P(A_j)P(B | A_j)}$$

$$P(A_i | B) = \frac{P(A_i \cap B)}{P(B)}$$

$$= \frac{P(A_i)P(B | A_i)}{P(B)}$$

$$= \frac{P(A_i)P(B | A_i)}{P(B)}$$

$$= \frac{P(A_i)P(B | A_i)}{\sum_j P(A_j)P(B | A_j)}$$

Given: (a) prior probabilities of causes,

(b) probability of effect given any of the causes

Obtain: probability of any of the causes given effect.

Example I

A test for a certain rare disease is assumed to be correct 95% of the time: if a
person has the disease, the test results are positive with probability 0.95, and
if the person does not have the disease, the test results are negative with
probability 0.95.

A random person drawn from a certain population has probability 0.001 of having the disease. Given that the person just tested positive, what is the probability of having the disease?

- A is the "cause" event that the person has the disease, B is the "effect" event that the test results are positive
- ▶ Given :: P(A), P(A^c), and P(B|A), P(B|A^c)
 Desired probability :: P(A | B), "probability of cause given effect"

Example I

• A test for a certain rare disease is assumed to be correct 95% of the time: if a person has the disease, the test results are positive with probability 0.95, and if the person does not have the disease, the test results are negative with probability 0.95.

A random person drawn from a certain population has probability 0.001 of having the disease. Given that the person just tested positive, what is the probability of having the disease?

A is the "cause" event that the person has the disease, B is the "effect" event that the test results are positive

$$\mathbf{P}(A \mid B) = \frac{\mathbf{P}(A)\mathbf{P}(B \mid A)}{\mathbf{P}(A)\mathbf{P}(B \mid A) + \mathbf{P}(A^c)\mathbf{P}(B \mid A^c)}$$
$$= \frac{0.001 \cdot 0.95}{0.001 \cdot 0.95 + 0.999 \cdot 0.05}$$
$$= 0.0187.$$

- Posterior distribution:
- pmf $p_{\Theta|X}(\cdot \mid x)$ or pdf $f_{\Theta|X}(\cdot \mid x)$

Example la

Romeo and Juliet start dating, but Juliet will be late on any date by a random amount X, uniformly distributed over the interval $[0, \theta]$. The parameter θ is unknown and is modeled as the value of a random variable Θ , uniformly distributed between zero and one hour. Assuming that Juliet was late by an amount x on their first date, how should Romeo use this information to update the distribution of Θ ?

Example la

Romeo and Juliet start dating, but Juliet will be late on any date by a random amount X, uniformly distributed over the interval $[0, \theta]$. The parameter θ is unknown and is modeled as the value of a random variable Θ , uniformly distributed between zero and one hour. Assuming that Juliet was late by an amount x on their first date, how should Romeo use this information to update the distribution of Θ ?

Prior PDF
$$f_{\Theta}(\theta) = \begin{cases} 1, & \text{if } 0 \leq \theta \leq 1, \\ 0, & \text{otherwise,} \end{cases}$$

Conditional PDF
$$f_{X|\Theta}(x|\theta) = \begin{cases} 1/\theta, & \text{if } 0 \le x \le \theta, \\ 0, & \text{otherwise.} \end{cases}$$

Example la

Romeo and Juliet start dating, but Juliet will be late on any date by a random amount X, uniformly distributed over the interval $[0, \theta]$. The parameter θ is unknown and is modeled as the value of a random variable Θ , uniformly distributed between zero and one hour. Assuming that Juliet was late by an amount x on their first date, how should Romeo use this information to update the distribution of Θ ?

$$f_{\Theta}(\theta) = \begin{cases} 1, & \text{if } 0 \leq \theta \leq 1, \\ 0, & \text{otherwise,} \end{cases}$$

$$f_{X|\Theta}(x|\theta) = \begin{cases} 1/\theta, & \text{if } 0 \le x \le \theta, \\ 0, & \text{otherwise.} \end{cases}$$

Bayes' Rule
$$f_{\Theta|X}(\theta \mid x) = \frac{f_{\Theta}(\theta) f_{X|\Theta}(x \mid \theta)}{\int_{0}^{1} f_{\Theta}(\theta') f_{X|\Theta}(x \mid \theta') d\theta'} = \frac{1/\theta}{\int_{x}^{1} \frac{1}{\theta'} d\theta'} = \frac{1}{\theta \cdot |\log x|}, \quad \text{if } x \leq \theta \leq 1,$$

Example Ib

Consider now a variation involving the first n dates. Assume that Juliet is late by random amounts X_1, \ldots, X_n , which given $\Theta = \theta$, are uniformly distributed in the interval $[0, \theta]$, and conditionally independent.

Example Ib

Consider now a variation involving the first n dates. Assume that Juliet is late by random amounts X_1, \ldots, X_n , which given $\Theta = \theta$, are uniformly distributed in the interval $[0, \theta]$, and conditionally independent.

Let
$$X = (X_1, ..., X_n)$$
 and $x = (x_1, ..., x_n)$.

$$f_{X|\Theta}(x|\theta) = \begin{cases} 1/\theta^n, & \text{if } \overline{x} \leq \theta \leq 1, \\ 0, & \text{otherwise,} \end{cases}$$

Conditional PDF

$$\overline{x}=\max\{x_1,\ldots,x_n\}.$$

$$f_{\Theta|X}(\theta \mid x) = \begin{cases} \frac{c(\overline{x})}{\theta^n}, & \text{if } \overline{x} \leq \theta \leq 1, \\ 0, & \text{otherwise,} \end{cases}$$
 $c(\overline{x}) = \frac{1}{\int_{\overline{x}}^1 \frac{1}{(\theta')^n} d\theta'}.$

$$c(\overline{x}) = \frac{1}{\int_{\overline{x}}^{1} \frac{1}{(\theta')^{n}} d\theta'}$$

Example II

Example: Spam Filtering. An email message may be "spam" or "legitimate." We introduce a parameter Θ , taking values 1 and 2, corresponding to spam and legitimate, respectively, with given probabilities $p_{\Theta}(1)$ and $p_{\Theta}(2)$. Let $\{w_1, \ldots, w_n\}$ be a collection of special words (or combinations of words) whose appearance suggests a spam message. For each i, let X_i be the Bernoulli random variable that models the appearance of w_i in the message $(X_i = 1 \text{ if } w_i \text{ appears and } X_i = 0 \text{ if it does not})$. We assume that the conditional probabilities $p_{X_i|\Theta}(x_i|1)$ and $p_{X_i|\Theta}(x_i|2)$, $x_i = 0, 1$, are known. For simplicity we also assume that conditioned on Θ , the random variables X_1, \ldots, X_n are independent.

Example II

Example: Spam Filtering. An email message may be "spam" or "legitimate." We introduce a parameter Θ , taking values 1 and 2, corresponding to spam and legitimate, respectively, with given probabilities $p_{\Theta}(1)$ and $p_{\Theta}(2)$. Let $\{w_1, \ldots, w_n\}$ be a collection of special words (or combinations of words) whose appearance suggests a spam message. For each i, let X_i be the Bernoulli random variable that models the appearance of w_i in the message $(X_i = 1 \text{ if } w_i \text{ appears and } X_i = 0 \text{ if it does not})$. We assume that the conditional probabilities $p_{X_i|\Theta}(x_i|1)$ and $p_{X_i|\Theta}(x_i|2)$, $x_i = 0, 1$, are known. For simplicity we also assume that conditioned on Θ , the random variables X_1, \ldots, X_n are independent.

Bayes' Rule
$$\mathbf{P}(\Theta=m\,|\,X_1=x_1,\ldots,X_n=x_n) = \frac{p_{\Theta}(m)\prod_{i=1}^n p_{X_i\mid\Theta}(x_i\,|\,m)}{\sum_{j=1}^2 p_{\Theta}(j)\prod_{i=1}^n p_{X_i\mid\Theta}(x_i\,|\,j)}, \qquad m=1,2.$$

Recall: Bayesian Inference

- We start with a prior distribution p_{Θ} or f_{Θ} for the unknown random variable Θ .
- We have a model $p_{X|\Theta}$ or $f_{X|\Theta}$ of the observation vector X.
- After observing the value x of X, we form the posterior distribution of Θ , using the appropriate version of Bayes' rule.
 - Posterior distribution:
 - pmf $p_{\Theta|X}(\cdot \mid x)$ or pdf $f_{\Theta|X}(\cdot \mid x)$

- Posterior distribution:
- pmf $p_{\Theta|X}(\cdot \mid x)$ or pdf $f_{\Theta|X}(\cdot \mid x)$

• If interested in a single answer?

- Posterior distribution:
 - pmf $p_{\Theta|X}(\cdot \mid x)$ or pdf $f_{\Theta|X}(\cdot \mid x)$

- If interested in a single answer:
 - Maximum a posteriori probability (MAP):
 - o $p_{\Theta|X}(\theta^* \mid x) = \max_{\theta} p_{\Theta|X}(\theta \mid x)$ minimizes probability of error; often used in hypothesis testing
 - $\circ f_{\Theta|X}(\theta^* \mid x) = \max_{\theta} f_{\Theta|X}(\theta \mid x)$
 - Conditional expectation:

$$\mathbf{E}[\Theta \mid X = y] = \int \theta f_{\Theta \mid X}(\theta \mid x) \, d\theta$$

- Posterior distribution:
 - pmf $p_{\Theta|X}(\cdot \mid x)$ or pdf $f_{\Theta|X}(\cdot \mid x)$

- If interested in a single answer:
 - Maximum a posteriori probability (MAP):
 - o $p_{\Theta|X}(\theta^* \mid x) = \max_{\theta} p_{\Theta|X}(\theta \mid x)$ minimizes probability of error; often used in hypothesis testing
 - $\circ f_{\Theta|X}(\theta^* \mid x) = \max_{\theta} f_{\Theta|X}(\theta \mid x)$
 - Conditional expectation:

$$\mathbf{E}[\Theta \mid X = y] = \int \theta f_{\Theta \mid X}(\theta \mid x) \, d\theta$$

Single answers can be misleading!

Point Estimation

Parameter: Θ

Observation: X

Given observed value x of X, we want a single numerical value that represents our best guess of Θ

This single numerical value $\widehat{\Theta}$ is called a **point estimate.**

Point Estimation

Parameter: Θ

Observation: X

Given observed value x of X, we want a single numerical value that represents our best guess of Θ

This single numerical value $\widehat{\Theta}$ is called a **point estimate.**

We get it by applying some function g to the observation x, $\widehat{\Theta}=g(x)$

Point Estimation

Parameter: Θ

Observation: X

Given observed value x of X, we want a single numerical value that represents our best guess of Θ

This single numerical value $\widehat{\Theta}$ is called a **point estimate.**

We get it by applying some function g to the observation x, $\widehat{\Theta} = g(x)$

Point Estimator: $\widehat{\Theta}(X) = g(X)$

Note: a random variable

Point Estimators

- Note that $\widehat{\Theta}(X) = 1$ is an estimator as well!
 - ▶ Though not a particularly good one.
- In today's class:

MAP Estimator :
$$\widehat{\Theta}(X) = \arg \max_{\Theta} p_{\Theta}(\Theta|X)$$

Conditional Expectation : $\widehat{\Theta}(X) = \mathbb{E}(\Theta|X)$

MAP Estimator

$$\hat{\theta} = \arg \max_{\theta} p_{\Theta|X}(\theta \mid x),$$

$$\hat{\theta} = \arg \max_{\theta} f_{\Theta|X}(\theta \mid x),$$
 (\Theta continuous).

Optimality Properties

• Theorem: When Θ is discrete, the MAP estimator maximizes the probability of correct decision, given the observation x.

$$\mathbb{P}(\Theta = g(X)|X) \le \mathbb{P}(\Theta = g_{\text{map}}(X)|X)$$

Optimality Properties

• Theorem: When Θ is discrete, the MAP estimator maximizes the probability of correct decision, given the observation x.

$$\mathbb{P}(\Theta = g(X)|X) \le \mathbb{P}(\Theta = g_{\text{map}}(X)|X)$$

MAP Rule

- Given the observation value x, the MAP rule selects a value $\hat{\theta}$ that maximizes over θ the posterior distribution $p_{\Theta|X}(\theta \mid x)$ (if Θ is discrete) or $f_{\Theta|X}(\theta \mid x)$ (if Θ is continuous).
- Equivalently, it selects $\hat{\theta}$ that maximizes over θ :

```
p_{\Theta}(\theta)p_{X|\Theta}(x|\theta) (if \Theta and X are discrete),

p_{\Theta}(\theta)f_{X|\Theta}(x|\theta) (if \Theta is discrete and X is continuous),

f_{\Theta}(\theta)p_{X|\Theta}(x|\theta) (if \Theta is continuous and X is discrete),

f_{\Theta}(\theta)f_{X|\Theta}(x|\theta) (if \Theta and X are continuous).
```

... since the denominator depends only on x, and is the same for all \theta

Example I

Example : Consider example prev. where Juliet is late on the first date by a random amount X. The distribution of X is uniform over the interval $[0, \Theta]$, and Θ is an unknown random variable with a uniform prior PDF f_{Θ} over the interval [0, 1]. In that example, we saw that for $x \in [0, 1]$, the posterior PDF is

$$f_{\Theta|X}(\theta \mid x) = \begin{cases} \frac{1}{\theta \cdot |\log x|}, & \text{if } x \leq \theta \leq 1, \\ 0, & \text{otherwise.} \end{cases}$$

Example : Consider example prev. where Juliet is late on the first date by a random amount X. The distribution of X is uniform over the interval $[0, \Theta]$, and Θ is an unknown random variable with a uniform prior PDF f_{Θ} over the interval [0, 1]. In that example, we saw that for $x \in [0, 1]$, the posterior PDF is

$$f_{\Theta|X}(\theta \mid x) = \begin{cases} \frac{1}{\theta \cdot |\log x|}, & \text{if } x \leq \theta \leq 1, \\ 0, & \text{otherwise.} \end{cases}$$

For a given x, $f_{\Theta|X}(\theta|x)$ is decreasing in θ , over the range [x,1] of possible values of Θ . Thus, the MAP estimate is equal to x. Note that this is an "optimistic" estimate. If Juliet is late by a small amount on the first date $(x \approx 0)$, the estimate of future lateness is also small.

Example: Here the parameter Θ takes values 1 and 2, corresponding to spam and legitimate messages, respectively, with given probabilities $p_{\Theta}(1)$ and $p_{\Theta}(2)$, and X_i is the Bernoulli random variable that models the appearance of w_i in the message $(X_i = 1 \text{ if } w_i \text{ appears and } X_i = 0 \text{ if it does not})$. We have calculated the posterior probabilities of spam and legitimate messages as

$$\mathbf{P}(\Theta = m \mid X_1 = x_1, \dots, X_n = x_n) = \frac{p_{\Theta}(m) \prod_{i=1}^n p_{X_i \mid \Theta}(x_i \mid m)}{\sum_{j=1}^2 p_{\Theta}(j) \prod_{i=1}^n p_{X_i \mid \Theta}(x_i \mid j)}, \qquad m = 1, 2.$$

Example: Here the parameter Θ takes values 1 and 2, corresponding to spam and legitimate messages, respectively, with given probabilities $p_{\Theta}(1)$ and $p_{\Theta}(2)$, and X_i is the Bernoulli random variable that models the appearance of w_i in the message $(X_i = 1 \text{ if } w_i \text{ appears and } X_i = 0 \text{ if it does not})$. We have calculated the posterior probabilities of spam and legitimate messages as

$$\mathbf{P}(\Theta = m \mid X_1 = x_1, \dots, X_n = x_n) = \frac{p_{\Theta}(m) \prod_{i=1}^n p_{X_i \mid \Theta}(x_i \mid m)}{\sum_{j=1}^2 p_{\Theta}(j) \prod_{i=1}^n p_{X_i \mid \Theta}(x_i \mid j)}, \qquad m = 1, 2.$$

Suppose we want to classify a message as spam or legitimate based on the corresponding vector (x_1, \ldots, x_n) . Then, the MAP rule decides that the message is spam if

Example: Here the parameter Θ takes values 1 and 2, corresponding to spam and legitimate messages, respectively, with given probabilities $p_{\Theta}(1)$ and $p_{\Theta}(2)$, and X_i is the Bernoulli random variable that models the appearance of w_i in the message $(X_i = 1 \text{ if } w_i \text{ appears and } X_i = 0 \text{ if it does not})$. We have calculated the posterior probabilities of spam and legitimate messages as

$$\mathbf{P}(\Theta = m \mid X_1 = x_1, \dots, X_n = x_n) = \frac{p_{\Theta}(m) \prod_{i=1}^n p_{X_i \mid \Theta}(x_i \mid m)}{\sum_{j=1}^n p_{\Theta}(j) \prod_{i=1}^n p_{X_i \mid \Theta}(x_i \mid j)}, \qquad m = 1, 2.$$

Suppose we want to classify a message as spam or legitimate based on the corresponding vector (x_1, \ldots, x_n) . Then, the MAP rule decides that the message is spam if

$$P(\Theta = 1 | X_1 = x_1, ..., X_n = x_n) > P(\Theta = 2 | X_1 = x_1, ..., X_n = x_n),$$

or equivalently, if

$$p_{\Theta}(1) \prod_{i=1}^{n} p_{X_{i}|\Theta}(x_{i} \mid 1) > p_{\Theta}(2) \prod_{i=1}^{n} p_{X_{i}|\Theta}(x_{i} \mid 2).$$

MAP Estimate with Uniform priors

- Suppose we are doing Bayesian inference, and want to compute the MAP estimate.
- Suppose the prior is $p_{\Theta}(\theta)$, and the conditional PMF of data, $p_{X|\Theta}(x|\theta)$.
- Then the MAP Estimate:

$$\hat{\theta}_{\text{map}} = \arg \max_{\theta} \{ p_{\Theta}(\theta) \, p_{X|\Theta}(x|\theta) \}$$

MAP Estimate with Uniform priors

- Suppose we are doing Bayesian inference, and want to compute the MAP estimate.
- Suppose the prior is $p_{\Theta}(\theta)$, and the conditional PMF of data, $p_{X|\Theta}(x|\theta)$.
- Then the MAP Estimate:

$$\hat{\theta}_{\text{map}} = \arg \max_{\theta} \left\{ p_{\Theta}(\theta) \, p_{X|\Theta}(x|\theta) \right\}$$

• Suppose the prior $p_{\Theta}(\theta)$ is uniform. Then the MAP Estimate:

$$\hat{\theta}_{\text{map}} = \arg \max_{\theta} \{ p_{X|\Theta}(x|\theta) \}$$

MAP Estimate with Uniform priors

- Suppose we are doing Bayesian inference, and want to compute the MAP estimate.
- Suppose the prior is $p_{\Theta}(\theta)$, and the conditional PMF of data, $p_{X|\Theta}(x|\theta)$.
- Then the MAP Estimate:

$$\hat{\theta}_{\text{map}} = \arg \max_{\theta} \left\{ p_{\Theta}(\theta) \, p_{X|\Theta}(x|\theta) \right\}$$

• Suppose the prior $p_{\Theta}(\theta)$ is uniform. Then the MAP Estimate:

$$\hat{\theta}_{\text{map}} = \arg \max_{\theta} \left\{ p_{X|\Theta}(x|\theta) \right\}$$

• This is exactly the ML estimate, if we were doing classical statistics,

$$\hat{ heta}_{\mathrm{ML}} = rg \max_{ heta} \left\{ p_X(x; heta)
ight\}$$

Compare: MLE and MAP

- Model, with unknown parameter(s): $X \sim p_X(x; \theta)$
- \bullet Pick θ that "makes data most likely"

$$\widehat{\theta}_{\mathsf{ML}} = \arg\max_{\theta} p_X(x;\theta)$$

• Compare to Bayesian MAP estimation:

$$\widehat{\theta}_{\mathsf{MAP}} = \max_{\theta} \frac{p_{X|\Theta}(x|\theta)p_{\Theta}(\theta)}{p_{X}(x)}$$

MLE vs MAP

You are no good when sample is small

You give a different answer for different priors

Least Mean Squares Estimation

• Estimation in the absence of information

Least Mean Squares Estimation

• Estimation in the absence of information

• find estimate c, to:

minimize
$$\mathbf{E}\left[(\Theta-c)^2\right]$$

Least Mean Squares Estimation

• Estimation in the absence of information

• find estimate c, to:

minimize
$$\mathbf{E}\left[(\Theta-c)^2\right]$$

- Optimal estimate: $c = E[\Theta]$
- Optimal mean squared error:

$$\mathbf{E}\left[(\Theta - \mathbf{E}[\Theta])^2\right] = \mathsf{Var}(\Theta)$$

- Two r.v.'s Θ , X
- we observe that X = x
- new universe: condition on X=x
- $\mathbf{E}\left[(\Theta-c)^2\mid X=x\right]$ is minimized by c=

- Two r.v.'s Θ , X
- we observe that X = x
- new universe: condition on X = x
- $\mathbf{E}\left[(\Theta-c)^2\mid X=x\right]$ is minimized by c=
- $\mathbf{E}\left[(\Theta \mathbf{E}[\Theta \mid X = x])^2 \mid X = x\right]$ $\leq \mathbf{E}[(\Theta - g(x))^2 \mid X = x]$

- Two r.v.'s Θ , X
- we observe that X = x
- new universe: condition on X = x
- $\mathbf{E}\left[(\Theta-c)^2\mid X=x\right]$ is minimized by c=
- $\mathbf{E}\left[(\Theta \mathbf{E}[\Theta \mid X = x])^2 \mid X = x\right]$ $\leq \mathbf{E}[(\Theta - g(x))^2 \mid X = x]$
- $\circ \mathbf{E}\left[(\Theta \mathbf{E}[\Theta \mid X])^2 \mid X\right] \le \mathbf{E}\left[(\Theta g(X))^2 \mid X\right]$

- Two r.v.'s Θ , X
- we observe that X = x
- new universe: condition on X = x
- $\mathbf{E}\left[(\Theta-c)^2\mid X=x\right]$ is minimized by c=
- $\mathbf{E}\left[(\Theta \mathbf{E}[\Theta \mid X = x])^2 \mid X = x\right]$ $\leq \mathbf{E}[(\Theta - g(x))^2 \mid X = x]$

$$\circ \mathbf{E}\left[(\Theta - \mathbf{E}[\Theta \mid X])^2 \mid X\right] \le \mathbf{E}\left[(\Theta - g(X))^2 \mid X\right]$$

$$\circ \mathbf{E}\left[(\Theta - \mathbf{E}[\Theta \mid X])^2\right] \le \mathbf{E}\left[(\Theta - g(X))^2\right]$$
 ... Law of iterated expectations

 $\mathbf{E}[\Theta \mid X]$ minimizes $\mathbf{E}\left[(\Theta - g(X))^2\right]$ over all estimators $g(\cdot)$

Example : Consider example prev. where Juliet is late on the first date by a random amount X. The distribution of X is uniform over the interval $[0, \Theta]$, and Θ is an unknown random variable with a uniform prior PDF f_{Θ} over the interval [0, 1]. In that example, we saw that for $x \in [0, 1]$, the posterior PDF is

$$f_{\Theta|X}(\theta \mid x) = \begin{cases} \frac{1}{\theta \cdot |\log x|}, & \text{if } x \leq \theta \leq 1, \\ 0, & \text{otherwise.} \end{cases}$$

Example : Consider example prev. where Juliet is late on the first date by a random amount X. The distribution of X is uniform over the interval $[0, \Theta]$, and Θ is an unknown random variable with a uniform prior PDF f_{Θ} over the interval [0, 1]. In that example, we saw that for $x \in [0, 1]$, the posterior PDF is

$$f_{\Theta|X}(\theta \mid x) = \begin{cases} \frac{1}{\theta \cdot |\log x|}, & \text{if } x \leq \theta \leq 1, \\ 0, & \text{otherwise.} \end{cases}$$

$$\mathbf{E}[\Theta \mid X = x] = \int_{x}^{1} \theta \, \frac{1}{\theta \cdot |\log x|} \, d\theta = \frac{1 - x}{|\log x|}.$$

Consider example prev. where Juliet is late on the first date by a Example: random amount X. The distribution of X is uniform over the interval $[0,\Theta]$, and Θ is an unknown random variable with a uniform prior PDF f_{Θ} over the interval [0, 1]. In that example, we saw that for $x \in [0, 1]$, the posterior PDF is

$$f_{\Theta|X}(\theta \mid x) = \begin{cases} \frac{1}{\theta \cdot |\log x|}, & \text{if } x \leq \theta \leq 1, \\ 0, & \text{otherwise.} \end{cases}$$

if
$$x \leq \theta \leq 1$$
,

$$\widehat{\Theta}_{\mathrm{MAP}}(x) = x$$

$$\mathbf{E}[\Theta \,|\, X=x] = \int_x^1 \theta \, \frac{1}{\theta \cdot |\log x|} \, d\theta = \frac{1-x}{|\log x|}.$$