

Organização de Computadores

Professor Álvaro Antônio Fonseca de Souza

Aula de hoje

Máquina de Alan Turing

Máquina de Turing

INSTITUTO FEDERAL Minas Gerais Campus

- A máquina de Turing é um modelo abstrato de um computador
- Contém os aspectos lógicos do funcionamento do computador.

Máquina de Turing

- Uma máquina de Turing (MT) pode ser vista como uma máquina que opera compus uma fita com leitura e escrita na fita
- O cabeçote de leitura pode movimentar-se para a direita e para a esquerda.
- A fita é dividida em células
- Cada célula comporta apenas um símbolo
- A fita é ilimitada à direita.

Máquina de Turing

Bambuí

- A máquina possui um registrador para conter o estado atual,
- um conjunto de instruções função de transição da máquina,
- uma unidade de controle

Aula de hoje

Arquitetura de Von neumann

Máquina de Von Neumann (1945)

Bambuí

Arquitetura de Von Neumann

- John von Neumann participou do projeto do ENIAC.
- Desenvolveu a máquina IAS no Institute of Advanced Studies de Princeton.
- Aplicação do conceito de programa armazenado na IAS.
- Alan Turing desenvolveu a ideia na mesma época.

IAS e John Von Neumann. Fonte: https://terminaldeinformacao.com/2012/10/19/a-evolucao-dos-sistemas-operacionais-parte-1/, Acessado em 22/11/2024

Arquitetura de Von Neumann

- Programar computadores era uma tarefa lenta.
- O programa na memória do computador, junto com os dados.
- A aritmética decimal substituída por aritmética binária.
- Usada no EDSAC (Electronic Delay Storage Automatic Calculator), o primeiro computador de programa armazenado.
- É a base de quase todos os computadores digitais modernos.

EDSAC I, Junho de 1948. Fonte: https://pt.wikipedia.org/wiki/Ficheiro:EDSAC_(19).jpg Acessado em 25/11/2024

Componentes da Arquitetura de Von Neumann

- Memória principal: armazena dados e instruções.
- Unidade lógica e aritmética (ALU): capaz de operar dados binários.
- Unidade de controle: interpreta instruções que estão na memória e faz com que sejam executadas.
- Equipamento de entrada/saída (E/S): controlado pela unidade de controle.

Esquema da máquina de Von Neumann Fonte: [2]

Abstração

INSTITUTO FEDERAL Minas Gerais

High-level language program (in C) swap(int v[], int k)
{int temp;
 temp = v[k];
 v[k] = v[k+1];
 v[k+1] = temp;
}

Assembly language program (for MIPS)

swap: muli \$2, \$5,4 add \$2, \$4,\$2 lw \$15, 0(\$2) lw \$16, 4(\$2) sw \$16, 0(\$2) sw \$15, 4(\$2) ir \$31

Binary machine language program (for MIPS)

- Maior aprofundamento revela mais informações.
- A abstração omite detalhes desnecessários.
- Lida com a complexidade.

Aula de hoje

Sistemas numéricos

Introdução

- No dia a dia, usamos um sistema baseado em 10 dígitos (0, 1, 2, 3, 4, 5, 6, 7, 8^{ampus}
 9) para a representação de números.
- Nos referimos a esse sistema como sistema decimal.
- o que o número 83 significa. Ele quer dizer oito dezenas mais três:

$$83 = (8 \times 10) + 3$$

 O número 4.728 significa quatro milhares, sete centenas, duas dezenas, mais oito:

$$4.728 = (4 \times 1.000) + (7 \times 100) + (2 \times 10) + 8$$

Bambuí

- o sistema decimal tem uma base, ou raiz, de 10.
- cada dígito no número é multiplicado por 10, elevado a uma potência que corresponde à posição do dígito:

$$83 = (8 \times 10^{1}) + (3 \times 10^{0})$$
$$4.728 = (4 \times 10^{3}) + (7 \times 10^{2}) + (2 \times 10^{1}) + (8 \times 10^{0})$$

- O mesmo princípio é mantido para frações decimais,
- potências negativas de 10 são usadas.
- A fração decimal 0,256 corresponde a 2 décimos mais 5 centésimos mais 6 milésimos:

$$0,256 = (2 \times 10^{-1}) + (5 \times 10^{-2}) + (6 \times 10^{-3})$$

Bambuí

- Um número com uma parte inteira e fracionária
- tem dígitos elevados à potência positiva e à negativa de 10.

$$442,256 = (4 \times 10^{2}) + (4 + 10^{1}) + (2 \times 10^{0}) + (2 \times 10^{-1}) + (5 \times 10^{-2}) + (6 \times 10^{-3})$$

Bambuí

- o dígito mais à esquerda é conhecido como dígito mais significativo
 - o contém o valor mais alto.
- O dígito mais à direita é chamado de dígito menos significativo.
 - contém o valor mais baixo
- No número decimal 442,256,
 - o 4 à esquerda é o dígito mais significativo
 - o 6 à direita é o dígito menos significativo.

A representação decimal de $X = \{... d_2 d_1 d_{0}, d_{-1} d_{-2} d_{-3} ... \}$, o valor de X é

$$X = \sum_{i} (d_i \times 10^i)$$

Sistema numérico posicional

sistema numérico posicional

- cada número é representado por uma cadeia de dígitos
- cada posição i do dígito tem um peso associado rⁱ
- r é a raiz, ou base, do sistema numérico.
- A forma geral de um número nesse sistema com raiz r é

$$(\dots a_3 a_2 a_1 a_0, a_{-1} a_{-2} a_{-3} \dots)_r$$

- onde o valor de qualquer dígito a_i é um inteiro no intervalo 0 ≤ a_i < r.
- A vírgula entre a₀ e a₋₁ é chamada de vírgula de raiz.

Sistema numérico posicional

O número é definido para ter o valor

...+
$$a_3 r^3 + a_2 r^2 + a_1 r^1 + a_0 r^0 + a_{-1} r^{-1} + a_{-2} r^{-2} + a_{-3} r^{-3} + ... = \sum_i (a_i \times b^i)$$

- O sistema decimal é um caso especial de um sistema numérico posicional
 - com raiz 10 e com dígitos no intervalo 0 a 9.

Sistema numérico posicional

- Um exemplo de sistema posicional, considere o sistema camputado com base 7.
- A tabela mostra o valor do peso para as posições -1 a 4.
- O valor de dígito varia de 0 a 6

Posição	4	3	2	1	0	-1
Valor na forma exponencial	7 ⁴	7 ³	7 ²	7 ¹	70	7 ⁻¹
Valor decimal	2.401	343	49	7	1	1/7

Sistema binário

Bambuí

- O sistema decimal usa 10 dígitos para representar números em base de 10.
- O sistema binário usa dois dígitos, 1 e 0.
- Os números no sistema binário são representados na base 2.
- Geralmente, utiliza-se um subscrito com um número para indicar a base do número para evitar confusão.

$$\theta_2 = \theta_{10}$$
 $\theta_2 = \theta_{10}$

Sistema binário

- INSTITUTO FEDERAL Minas Gerais
- Para representar números maiores, como a notação decimal,
- Cada dígito em número binário tem um valor que depende de sua posição:

$$10_{2} = (1 \times 2^{1}) + (0 \times 2^{0}) = 2_{10}$$

$$11_{2} = (1 \times 2^{1}) + (1 \times 2^{0}) = 3_{10}$$

$$100_{2} = (1 \times 2^{2}) + (0 \times 2^{1}) + (0 \times 2^{0}) = 4_{10}$$

Sistema binário

Bambuí

 os valores fracionários são representados com as potências negativas da raiz:

$$1001,101 = 2^3 + 2^0 + 2^{-1} + 2^{-3} = 9,625_{10}$$

A representação binária do valor de Y = {... b₂b₁b₀,b₁b₂b₃ ...
 }, valor de Y é

$$Y = \sum_{i} (b_{i} \times 2^{i})$$

- Para converter um número de uma notação binária em la munica de la manufación de la manufación
- Multiplica cada dígito binário pela potência de 2 e adiciona os resultados.
- Para converter de decimal para binário, as partes inteiras e fracionárias são consideradas em separado.

INSTITUTO FEDERAL Minas Gerais Campus Bambuí

Inteiro

Na notação binária um inteiro representado por

$$b_{m-1}b_{m-2}...b_2b_1b_0$$
 $b_i = 0$ ou 1

tem o valor decimal

$$(b_{m-1} \times 2^{m-1}) + (b_{m-2} \times 2^{m-2}) + \dots + (b_1 \times 2^1) + b_0$$

- Para converter um inteiro decimal N para a forma binária.
- Se dividirmos N por 2, no sistema decimal, e obtivermos um quociente N₁ e um resto R₀, poderemos escrever

$$N = 2 \times N_1 + R_0 R_0 = 0 \text{ ou } 1$$

 Em seguida, dividimos o quociente N₁ por 2. Suponha que um novo quociente seja N₂ e o novo resto R₁.

INSTITUTO FEDERAL Minas Gerais Campus

Bambuí

Então

$$N_1 = 2 \times N_2 + R_1 R_1 = 0 \text{ ou } 1$$

de modo que

$$N = 2(2N_2 + R_1) + R_0 = (N_2 \times 2^2) + (R_1 \times 2^1) + R_0$$

em seguida,

$$N_2 = 2N_3 + R_2$$

temos

$$N = (N_3 \times 2^3) + (R_2 \times 2^2) + (R_1 \times 2^1) + R_0$$

Forma geral do número decimal

Número =
$$\sum_{i=-k}^{11} d_i \times 10^i$$

Exercício Conversão entre binário e decimal

Bambuí

- 1. Converta **21**₁₀ para binário usando as divisões sucessivas
- 2. Converta 11₁₀ para binário usando as divisões sucessivas

Bambuí

Faça a conversão de 1.492₁₀ para binário utilizando divisões sucessivas.

Faça a conversão de 1.492₁₀ para binário utilizando divisões sucessivas.

Bambuí

Bambuí

Faça a conversão binária

do número

101110110111₂ para

decimal utilizando

multiplicações sucessivas.

Faça a conversão binária do número 1011101101111₂ para decimal utilizando multiplicações sucessivas.

Você consegue pensar em uma forma mais prática de realizar essa conversão?

Conversão entre binário e decimal - Frações

INSTITUTO FEDERAL Minas Gerais Campus Bambuí

Frações

 na notação binária um número com um valor entre 0 e 1 é representado por

$$0,b_{-1}b_{-2}b_{-3}...$$
 $b_i = 0 \text{ ou } 1$

e tem o valor

$$(b_{-1} \times 2^{-1}) + (b_{-2} \times 2^{-2}) + (b_{-3} \times 2^{-3}) \dots$$

pode ser reescrito como

$$2^{-1} \times (b_{-1} + 2^{-1} \times (b_{-2} + 2^{-1} \times (b_{-3} + ...) ...))$$

- Essa expressão sugere uma técnica para conversão.
- Suponha que se queira converter um número F(0 < F < 1) da notação decimal para a binária.
- Sabemos que F₁₀ pode ser expresso na forma

$$F = 2^{-1} \times (b_{-1} + 2^{-1} \times (b_{-2} + 2^{-1} \times (b_{-3} + ...) ...))$$

• Se multiplicarmos F por 2, obteremos,

$$2 \times F = b_{-1} + 2^{-1} \times (b_{-2} + 2^{-1} \times (b_{-3} + ...) ...)$$

- A partir dessa equação, vimos que a parte inteira de (2 × F), que deve ser 0 ou 1 porque 0 < F < 1, é simplesmente b₋₁.
- Então, pode-se dizer $(2 \times F) = b_{-1} + F_1$, em que $0 < F_1 < 1$ e onde

$$F_1 = 2^{-1} \times (b_{-2} + 2^{-1} \times (b_{-3} + 2^{-1} \times (b_{-4} + ...) ...))$$

Para encontrar b_{-2} , repetimos o processo.

- Para encontrar b₋₂, repetimos o processo.
- O algoritmo de conversão envolve multiplicação por 2.
- Em cada etapa, a parte fracionária do número a partir da etapa anterior é multiplicada por 2.
- O dígito à esquerda da vírgula decimal no produto será 0 ou 1.
- A parte fracionária do produto é usada como o multiplicando na etapa seguinte.
- Exemplo: $0.3_{10} \approx 0.010011..._2$

Exemplo

Bambuí

$$0.3_{10} \approx 0.010011..._{2}$$

$$2xF = 0 + F1 = 0,10011$$

$$2xF1 = 1 + F2 = 0,0011$$

$$2xF2 = 0 + F3 = 0,011$$

$$2xF3 = 0 + F4 = 0,11$$

$$2xF4 = 1 + F5 = 0,1$$

$$2xF5 = 1 + 0$$

Exemplo

Bambuí

$$0.3_{10} \simeq 0.010011..._{2}$$

$$0,3_{10} \approx 0,010011..._{2}$$

$$2xF = 0 + F1 = 0,10011$$

$$2x0,3 = 0,6$$

$$2xF1 = 1 + F2 = 0.0011$$

$$2x0,6 = 1,2$$

$$2xF2 = 0 + F3 = 0,011$$

$$2x0,2 = 0,4$$

$$2xF3 = 0 + F4 = 0,11$$

$$2x0,4 = 0,8$$

$$2xF4 = 1 + F5 = 0,1$$

$$2x0,8 = 1,6$$

$$2xF5 = 1 + 0$$

$$2x0,6 = 1,2$$

- No sistema decimal, temos dígitos de 0 a 9, e
- cada posição após a vírgula representa potências de 10 negativas que representam os valores
- (1/10, 1/100, 1/1000, etc.).
- No sistema binário, só existem dois dígitos: 0 e 1.
- Cada posição após a vírgula representa as potências de 2 negativas que representam os valores
- (1/2, 1/4, 1/8, 1/16, etc.).

- O número decimal 0,1 não tem uma representação finita em binário de campus Bambuí
- Sua conversão em binário resulta em uma sequência infinita:

0,00011001100110011...

- o (a parte "0011" se repete infinitamente).
- O número 0,5 é facilmente representado em binário como

0,1,

pois 1/2 é uma potência de 2.

- A representação binária de uma fração decimal só é exata se o denomina de la fração irredutível for uma potência de 2.
- Caso contrário, será uma dízima periódica em binário,
- levando a aproximações quando armazenada em computadores.

0.1 + 0.2 == 0.3 # Retorna False em muitas linguagens!

 O resultado é False porque 0.1 e 0.2 têm representações binárias aproximadas, e a soma acumula um erro pequeno.

Faça a conversão de 0,81 Campus para a forma binária

0,81 × 2 =	Produto	Parte inteira	0,1100112
0,62 × 2 =	1,24	1 ——	—
0,24 × 2 =	0,48	0 ——	——
0,48 × 2 =	0,96	0 ——	
0,96 × 2 =	1,92	1 ——	
0,92 ×2 =	1,84	1 ——	

Faça a conversão de 0,81 Campus 10 Bambuí para a forma binária

(a)
$$0,81_{10} = 0,110011_2$$
 (aproximadamente)

Faça a conversão de 0,25₁₀ para binário

INSTITUTO FEDERAL Minas Gerais Campus Bambuí

Faça a conversão de 0,25₁₀ para binário

(b)
$$0,25_{10} = 0,01_2$$
 (exatamente)

Converta o número 0,01001101₂ para decimal.

Bambuí

Converta o número 0,01001101₂ para decimal.

$$0x2^{-1}+1x2^{-2}+0x2^{-3}+0x2^{-4}+1x2^{-5}+1x2^{-6}+0x2^{-7}+1x2^{-8}$$

$$=0x0,5 +1x0,25 + 0x0,125 + 0x0,0625 + 1x0,03125 + 1x0,015625 +0x0,0078125 +1x0,00390625 = 0,30078125_{10}$$

INSTITUTO FEDERAL Minas Gerais Campus

- Notação Hexadecimal
- natureza binária inerente dos componentes de computador digital
- dados dentro dos computadores s\(\tilde{a}\)o representadas por diversos c\(\tilde{d}\)igos bin\(\tilde{a}\)rios
- Necessidade de uma notação mais compacta
- Notação decimal é inadequada devido a dificuldade de conversão entre as bases 2 e 10.
- A notação hexadecimal é adotada por ser mais adequada e compacta.

As razões para o uso de notação hexadecimal são as seguintes:

- 1. É mais compacta que uma notação binária.
- Na maioria dos computadores, os dados binários ocupam alguns múltiplos de 4 bits
 - a. consequentemente, alguns múltiplos de um único dígito hexadecimal.
- 3. É bem fácil converter entre a notação binária e a hexadecimal.

Aplicação da base

hexadecimal no sistema

de cores

INSTITUTO FEDERAL Minas Gerais Campus

Aplicação da base

hexadecimal em

redes de

computadores.

An IPv6 address

(in hexadecimal)

2001:0DB8:AC10:FE01:0000:0000:0000:0000

↑ ♦ ♦ L Zeroes can be omitted

- Os dígitos binários são agrupados em conjuntos de quatro bits, chamados de Minas Gerais nibble.
- Cada combinação possível de dígitos binários é dada por um símbolo, do seguinte modo:

0000 = 0	0100 = 4	1000 = 8	1100 = C
0001 = 1	0101 = 5	1001 = 9	1101 = D
0010 = 2	0110 = 6	1010 = A	1110 = E
0011 = 3	0111 = 7	1011 = B	1111 = F

A notação é chamada de **hexadecimal** por utilizar 16 símbolos para representação.

Campus Bambuí

Uma sequência de dígitos hexadecimais pode se musica pensada como uma representação de um inteiro na base 16. Assim,

$$2C_{16} = (2_{16} \times 16^{1}) + (C_{16} \times 16^{0}) =$$

$$(2_{10} \times 16^{1}) + (12_{10} \times 16^{0}) = 44$$

 Uma sequência de dígitos hexadecimais pode ser pensada como uma representação de um inteiro na base 16. Assim,

$$2C_{16} = (2_{16} \times 16^{1}) + (C_{16} \times 16^{0}) =$$

$$(2_{10} \times 16^{1}) + (12_{10} \times 16^{0}) = 44$$

os números hexadecimais em sistema numérico posicional com base 16, são

$$Z = \sum_{i} (h_i \times 16^i)$$

- 16 é a base, o dígito hexadecimal h_i está em um intervalo decimal de 0 ≤ h_i ≤ 15.
- equivalente ao intervalo hexadecimal de 0 ≤ h,≤ F.

INSTITUTO FEDERAL Minas Gerais Campus Bambuí

Passo a passo:

- 1. Divida o número decimal por 16.
- 2. Anote o resto (que será um dígito hexadecimal).
- 3. Repita o processo com o quociente até que ele seja 0.
- 4. O número hexadecimal é a sequência dos restos em ordem inversa.

1. Exemplo: Converter 255 para hexadecimal

Divisão	Quociente	Resto	Dígito Hex
255 ÷ 16	15	15	F
15 ÷ 16	0	15	F

2. Resultado: FF (lê-se de baixo para cima).

Considere a cadeia binária

110111100001.

• Ela é equivalente a

1101 1110 0001 = DE1₁₆

D E 1

Decimal (base 10)	Binário (base 2)	Hexadecimal (base 16)
0	0000	0
1	0001	1
2	0010	2
3	0011	3
4	0100	4
5	0101	5
6	0110	6
7	0111	7
8	1000	8
9	1001	9
10	1010	A
11	1011	В
12	1100	C
13	1101	D
14	1110	E
15	1111	F
16	0001 0000	10
<u>1</u> 7	0001 0001	11
18	0001 0010	12
31	0001 1111	1F
100	0110 0100	64

1. Faça a conversão do número 0001 0000 0000₂ para a motação hexadecimal.

Faça a conversão do número 0001 0000 0000₂ para de notação hexadecimal.

```
0001 = 1
0000 = 0
0000 = 0
= 100
```


2. Faça a conversão do número 256₁₀ para a notação hexadecimant.

2. Faça a conversão do número 256₁₀ para a notação hexadecimant.

Divisão	Quociente	Resto	Dígito Hex
256 ÷ 16	16	0	0
16 ÷ 16	1	0	0
1 ÷ 16	0	1	1

Números negativos

4 formas básicas de
representar número binário
negativo.

- 1. Sinal magnitude
- 2. Complemento de 1
- 3. Complemento de 2
- 4. excesso 128

					FEDERAI
N decimal	N binaria	–N magnitude com sinal	-N complemento de 1	-N complemento de 2	-N excesso 128
1	00000001	10000001	11111110	11111111	01111111
2	00000010	10000010	11111101	11111110	01111110
3	00000011	10000011	11111100	11111101	01111101
4	00000100	10000100	11111011	11111100	01111100
5	00000101	10000101	11111010	11111011	01111011
6	00000110	10000110	11111001	11111010	01111010
7	00000111	10000111	11111000	11111001	01111001
8	00001000	10001000	11110111	11111000	01111000
9	00001001	10001001	11110110	11110111	01110111
10	00001010	10001010	11110101	11110110	01110110
20	00010100	10010100	11101011	11101100	01101100
30	00011110	10011110	11100001	11100010	01100010
40	00101000	10101000	11010111	11011000	01011000
50	00110010	10110010	11001101	11001110	01001110
60	00111100	10111100	11000011	11000100	01000100
70	01000110	11000110	10111001	10111010	00111010
80	01010000	11010000	10101111	10110000	00110000
90	01011010	11011010	10100101	10100110	00100110
100	01100100	11100100	10011011	10011100	00011100
127	01111111	11111111	10000000	10000001	00000001
128	Não existe	Não existe	Não existe	10000000	00000000

Sinal magnitude

- o bit da extrema esquerda é o
 bit de sinal (0 é + e 1 é -)
- os restantes contêm a magnitude absoluta do número

- \bullet 00000110 = (+6)
- 10000110 = (-6)

		EEDED
N decimal	N binaria	–N magnitude com sinal
1	00000001	10000001
2	00000010	10000010
3	00000011	10000011
4	00000100	10000100
5	00000101	10000101
6	00000110	10000110
7	00000111	10000111
8	00001000	10001000
9	00001001	10001001
10	00001010	10001010
20	00010100	10010100
30	00011110	10011110
40	00101000	10101000
50	00110010	10110010
60	00111100	10111100
70	01000110	11000110
80	01010000	11010000
90	01011010	11011010
100	01100100	11100100
127	01111111	11111111
128	Não existe	Não existe

Complemento de 1

- também tem um bit de sinal, que é 0 para mais e 1 para menos.
- Para tornar um número negativo, substitua cada 1 por 0 e cada 0 por 1.
- Isso vale também para o bit de sinal.
- O complemento de 1 é obsoleto.
- 1. 00000110 = (+6)
- inverte os 1s e os 0s
- 2. 11111001 = (-6 em complemento de um)

		EENEB
N decimal	N binaria	-N complemento de 1
1	00000001	11111110
2	00000010	11111101
3	00000011	11111100
4	00000100	11111011
5	00000101	11111010
6	00000110	11111001
7	00000111	11111000
8	00001000	11110111
9	00001001	11110110
10	00001010	11110101
20	00010100	11101011
30	00011110	11100001
40	00101000	11010111
50	00110010	11001101
60	00111100	11000011
70	01000110	10111001
80	01010000	10101111
90	01011010	10100101
100	01100100	10011011
127	01111111	10000000
128	Não existe	Não existe

Complemento de 1

- Também tem um bit de sinal que é 0 para mais e 1 para menos.
- Negar um número é um processo em duas etapas.
- Na primeira, cada 1 é substituído por um 0 e cada 0 por um 1, assim como no complemento de um.
- Na segunda, 1 é somado ao resultado.
- 00000110 = (+6)
- inverte os 0s = 1s = 11111001 (-6 = 6 complemento de um)
- adiciona 1 ao valor invertido = 11111010 (-6 em complemento de dois)

		INSTIT	UT RAI
N decimal	N binaria	–N complemento de 2	erai ius ouí
1	00000001	11111111	
2	00000010	11111110	
3	00000011	11111101	
4	00000100	11111100	
5	00000101	11111011	
6	00000110	11111010	
7	00000111	11111001	
8	00001000	11111000	
9	00001001	11110111	
10	00001010	11110110	
20	00010100	11101100	
30	00011110	11100010	
40	00101000	11011000	
50	00110010	11001110	
60	00111100	11000100	
70	01000110	10111010	
80	01010000	10110000	
90	01011010	10100110	
100	01100100	10011100	
127	01111111	10000001	
128	Não existe	10000000	68

Excesso 128

- O quarto sistema é chamado excesso
 2^{m-1} para números de m bits.
- representa um número armazenando-o como a soma dele mesmo com 2^{m-1}.
- Para números de 8 bits, m = 8, o
 sistema é denominado excesso 128.
- Um número é armazenado como seu verdadeiro valor mais 128.

		EEDE	RA
N decimal	N binaria	-N complemento de 2	era ius ouí
1	00000001	11111111	
2	00000010	11111110	
3	00000011	11111101	
4	00000100	11111100	
5	00000101	11111011	
6	00000110	11111010	
7	00000111	11111001	
8	00001000	11111000	
9	00001001	11110111	
10	00001010	11110110	
20	00010100	11101100	
30	00011110	11100010	
40	00101000	11011000	
50	00110010	11001110	
60	00111100	11000100	
70	01000110	10111010	
80	01010000	10110000	
90	01011010	10100110	
100	01100100	10011100	
127	01111111	10000001	
128	Não existe	10000000	6

Excesso 128

INISTITII

-3 se torna $-3 + 128 = 12$

-3 é representado pelo número binário de 8 bits para 125 (01111101).

Os números de –128 a +127 mapeiam para 0 a 255.

Os quais podem ser expressos como um inteiro positivo de 8 bits.

Esse sistema é idêntico ao complemento de dois com o bit de sinal invertido.

-NN -Ncomplemento decimal binaria excesso 128 de 2

7 00000111 8 00001000 9 00001001 10 00001010 20 00010100

Não existe

Observações

- Magnitude com sinal e complemento de um, têm duas representações para zero: mais zero e menos zero.
 - Essa situação é indesejável.
- 2. Em complemento de dois, o padrão de bit que consiste em 1 seguido por 0s é seu próprio complemento.
- 3. As faixas de números positivos e negativos ficam não simétricas;
- Há um número negativo sem nenhuma contraparte positiva. 71

Observações

Queremos um sistema de codificação com duas propriedades:

- 1. Somente uma representação para zero.
- 2. Exatamente a mesma quantidade de números positivos e negativos.
- Qualquer conjunto de números com a mesma quantidade de números positivos e números negativos e só um zero tem um número ímpar de membros
- m bits permite um número par de padrões de bits.
- Sempre haverá um padrão de bits a mais ou um padrão de bits a menos,
- Não importando qual representação seja escolhida.

Bibliografia

- MONTEIRO, M. A. Introdução à Organização de Computadores. 5ª Edição. Rio de Janeiro: LTC Editora, 2007.
- STALLINGS, W. Arquitetura e Organização de Computadores. 5ª. Edição. São Paulo: Prentice Hall, 2002.
- TANENBAUM, A. Organização estruturada de computadores. 5ª Edição. São Paulo: Pearson Prentice Hall, 2011.