L1S2 - Analyse 2

TD3

Exercice 1. Déterminer la nature et la limite éventuelle des suites de termes généraux :

1)
$$u_n = \frac{n!}{n^n}$$
;

2)
$$u_n = 2 + \cos\left(\frac{(-1)^n}{n}\right) + \frac{1}{n^2}\tan\left(\sin(n^2 - n + 1)\right).$$

Exercice 2. Déterminer la nature et la limite éventuelle des suites de termes généraux :

1)
$$u_n = -2n^2 + n^2 \cos(3n)$$
;

2)
$$u_n = \sum_{k=1}^n \frac{n}{n^2 + k}$$
.

Exercice 3. Soit la suite de premier terme u_0 définie par la relation de récurrence $u_{n+1} = u_n - u_n^2$. Montrer qu'elle est décroissante. Tracer la courbe représentative de la fonction $f: x \mapsto x - x^2$. En déduire la nature (convergence ou divergence) de cette suite selon le choix du premier terme. Quelles sont les limites possibles?

Exercice 4. Etudier la suite définie par $u_0 \in \mathbb{R}^+$ et pour tout $n \in \mathbb{N}$, $u_{n+1} = u_n^2 + \frac{2}{3}u_n$.

Exercice 5. Soit la suite définie par $u_0 = 0$ et pour tout $n \in \mathbb{N}$ $u_{n+1} = \sqrt{6 - u_n}$.

- 1) Montrer par récurrence que, pour tout $n \in \mathbb{N}$, (u_n) est bien définie.
- 2) La suite (u_n) est-elle monotone?
- 3) Montrer que si (u_n) converge, alors sa limite est égale à 2.
- 4) Montrer que $\forall n \in \mathbb{N}, |u_{n+1} 2| \leq \frac{1}{2}|u_n 2|$. Conclusion?

Exercice 6. Soit la suite définie par $u_0 \in [0,2]$ et pour tout $n \in \mathbb{N}$ $u_{n+1} = \sqrt{2-u_n}$.

- 1) Montrer par récurrence que, pour tout $n \in \mathbb{N}$, u_n est bien défini et $u_n \in [0,2]$.
- 2) Représenter graphiquement les 1iers termes de (u_n) . Que pouvez-vous dire quant au sens de variation de la suite (u_n) ?

3) Montrer que
$$\forall n \in \mathbb{N}^*, |u_n - 1| \le a^{n-1}|u_1 - 1|$$
 où $a = \frac{1}{\sqrt{2 - \sqrt{2} + 1}}$. Conclusion?

Exercice 7.

Etudier la suite définie par $u_0 = 4$ et $u_{n+1} = \frac{4u_n + 5}{u_n + 3}$.

Exercice 8.

Etudier la suite définie par $u_0 = -1$ et $u_{n+1} = \frac{3 + 2u_n}{2 + u_n}$.

Exercice 9. Montrer que les suites de termes $u_n = \sum_{k=1}^n \frac{1}{k^2}$ et $v_n = u_n + \frac{2}{n+1}$, sont adjacentes.

Exercice 10. On considère les deux suites définies par, $n \in \mathbb{N}$, $u_n = 1 + \frac{1}{1!} + \frac{1}{2!} + ... + \frac{1}{n!}$ et $v_n = u_n + \frac{1}{n!}$. Montrer que les suites (u_n) et (v_n) convergent vers la même limite. Montrer que cette limite est un élément de $\mathbb{R} \setminus \mathbb{Q}$.

Exercice 11. Soient a et b deux réels positifs tels que $a \le b$. Soient (a_n) et (b_n) les suites définies par : $a_0 = a$, $b_0 = b$ et $\forall n \in \mathbb{N}$

$$\begin{cases} a_{n+1} = \sqrt{a_n b_n} \\ b_{n+1} = \frac{1}{2} (a_n + b_n) \end{cases}$$

- 1) Montrer que, pour tout $n \in \mathbb{N}$, les réels a_n et b_n sont bien définis et vérifient $0 \le a_n \le b_n$.
- 2) En déduire que (a_n) et (b_n) sont adjacentes (leur limite commune est appelée moyenne arithmético-géométrique de a et b).

1

Exercice 12. Soient (u_n) et (v_n) les suites définies par $u_0 = 6$, $v_0 = 3$ et $\forall n \in \mathbb{N}$

$$\begin{cases} u_{n+1} &= \frac{1}{3}(2u_n + v_n) \\ v_{n+1} &= \frac{1}{6}(u_n + 5v_n) \end{cases}$$

- 1) On pose : $\forall n, a_n = \frac{1}{3}(u_n v_n)$. Montrer que (a_n) est une suite géométrique. Calculer a_n en fonction de n pour tout $n \in \mathbb{N}$ et donner la limite de (a_n) .
- 2) Démontrer que (u_n) est décroissante et (v_n) croissante; Que peut-on en déduire à l'aide de la question précédente?
- 3) On pose : $\forall n \in \mathbb{N}, b_n = \frac{1}{3}(u_n + 2v_n)$. Montrer que (b_n) est constante. En déduire la limite de (u_n) et (v_n) .

Exercice 13. Soit (u_n) une suite décroissante de réels positifs convergeant vers 0. On lui associe la suite (v_n) définie par $v_n = u_0 - u_1 + u_2 + ... + (-1)^n u_n$.

- 1) Montrer que les suites (v_{2n}) n et (v_{2n+1}) ont une limite commune l.
- 2) Que peut on en déduire pour la suite (v_n) ?
- 3) Application : démontrer que la suite (v_n) définie par : $v_n = 1 \frac{1}{2} + \frac{1}{3} \dots + \frac{(-1)^{n-1}}{n}$ est convergente.

Exercice 14. Soit la suite (u_n) définie par $u_0 = 1$ et $u_{n+1} = \frac{1}{1 + 2u_n}$ pour $n \in \mathbb{N}$.

- 1) Montrer que les suites extraites de rang pair et impair convergent.
- 2) Montrer que (u_n) converge et déterminer sa limite.