[Total No. of Printed Pages—3

Seat	
No.	

[5057]-248

S.E. (E&TC) (II Sem.) EXAMINATION, 2016

ANALOG COMMUNICATION

(2012 **PATTERN**)

Time: Two Hours

Maximum Marks: 50

- N.B. :— (i) Attempt Q. No. 1 or Q. No. 2, Q. No. 3 or Q. No. 4, Q. No. 5 or Q. No. 6, Q. No. 7 or Q. No. 8.
 - (ii) Neat diagrams must be drawn wherever necessary.
 - (iii) Figures to the right indicate full marks.
 - (*iv*) Use of logarithmic tables, slide rule, Mollier charts, electronic pocket calculator and steam tables is allowed.
 - (v) Assume suitable data, if necessary.
- 1. (a) State and compare different SSB generation methods. [6]
 - (b) An angle modulated signal is described by the equation : $\psi_{\rm EM}(t) \ = \ 10\cos{(2\pi f_c t \ + \ 4\sin{2\pi f_m t})}$

where f_c = 10 MHz and f_m = 1000 Hz.

- (i) Determine the Modulation Index. Estimate the transmitted signal bandwidth.
- (ii) Repeat (i) f_m is doubled. [6]

		Or
2.	(a)	With the help of spectrum and block diagram explain VSB
		modulation. What is its application? [6]
	(<i>b</i>)	Derive an expression for frequency and phase modulated wave.
		Sketch their waveforms for a sinusoidal input. [6]
3.	(a)	Explain distortions present in simple diode detector. [6]
	(<i>b</i>)	State various sources of noise with examples. Explain the
		following types of noise in detail (any two): [6]
		(i) Thermal noise
		(ii) Low frequency noise
		(iii) Shot noise.

Or

- **4.** (a) Explain performance characteristics of radio receiver with suitable graphs. [6]
 - (b) Consider a receiving system consisting of an RF amplifier with a noise figure of F1 = 2 dB and a gain of 9 dB followed by a mixer with a noise figure of F2 = 9 dB and a conversion gain of 15 dB. Calculate overall noise figure and noise temperature. [6]
- **5.** (a) Describe threshold in angle modulation. [7]
- (b) Explain the performance of DSBSC in presence of noise. [6] [5057]-248

6.	(a)	Explain the performance of AM in presence of noise.	[7]
	(<i>b</i>)	Explain pre-emphasis and de-emphasis in FM.	[6]
7.	(a)	Explain aliasing and different ways to avoid aliasing.	[7]
	(<i>b</i>)	With the help of block diagram explain transmitter and rece	eiver
		for Pulse code modulation.	[6]
		Or	
8.	(<i>a</i>)	Explain types of sampling with waveform. Which type is	used
		for practical application ?	[7]
	(<i>b</i>)	With the help of neat diagram explain PWM.	[6]