Wstępna wycena projektu

Cel Dokumentu

Celem niniejszego dokumentu jest oszacowanie rozmiaru systemu informatycznego z wykorzystaniem metody punktów przypadków użycia (Use Case Points – UCP). Metoda ta bazuje na analizie przypadków użycia oraz aktorów systemu i dodatkowo uwzględnia czynniki techniczne i środowiskowe, które mają wpływ na złożoność projektu.

Sposób obliczania

Sposób obliczania punktów przypadków użycia (UCP) jest procesem, który ma na celu oszacowanie rozmiaru systemu informatycznego poprzez analizę jego kluczowych elementów i czynników wpływających na jego złożoność. Składa się on z następujących kroków:

- 1. **Obliczenie nieskorygowanych punktów przypadków użycia (UUCW)** ten krok polega na sklasyfikowaniu przypadków użycia jako prostych, średnich lub złożonych w zależności od liczby scenariuszy i przypisaniu im odpowiednich wag punktowych. Analiza przypadków użycia jest kluczowa, ponieważ reprezentują one funkcjonalność systemu z perspektywy użytkownika.
- 2. **Obliczenie nieskorygowanych punktów aktorów (UAW)** w tym kroku dokonuje się klasyfikacji aktorów (użytkowników lub systemów zewnętrznych) według poziomu złożoności ich interakcji z systemem oraz przypisuje się im odpowiednie wagi punktowe. Aktorzy definiują granicę systemu i jego otoczenie, a ich interakcje są opisane w przypadkach użycia.
- 3. **Obliczenie współczynnika złożoności technicznej (TCF)** ten współczynnik uwzględnia czynniki techniczne, które mogą wpłynąć na złożoność projektu. Czynniki te mogą obejmować aspekty takie jak wymagana niezawodność, poziom wydajności czy możliwość ponownego użycia komponentów. Każdy z tych czynników jest oceniany w skali od 0 do 5, co pozwala na ilościowe uwzględnienie ich wpływu na rozmiar systemu.
- 4. **Obliczenie współczynnika złożoności środowiskowej (ECF)** ten współczynnik uwzględnia czynniki środowiskowe, które również mają wpływ na złożoność projektu. Mogą to być między innymi doświadczenie zespołu, znajomość narzędzi czy stabilność wymagań. Podobnie jak w przypadku czynników technicznych, każdy z nich jest oceniany w skali od 0 do 5. Stabilność wymagań jest szczególnie istotna, ponieważ częste zmiany mogą znacząco zwiększyć złożoność i rozmiar projektu.
- 5. Obliczenie końcowej liczby punktów przypadków użycia (UCP) końcowy oszacowany rozmiar systemu wyrażony w punktach UCP oblicza się na podstawie wzoru:

UCP = (UUCW + UAW) × TCF × ECF

Unadjusted Use Case Weight (UUCW)

Unadjusted Use Case Weight (UUCW) służy do określenia funkcjonalnej złożoności systemu na podstawie liczby i trudności przypadków użycia.

Klasyfikacja przypadków użycia

Trudność	Liczba transakcji	Waga
Niska	1–3 transakcje	5
Średnia	4 – 7 transakcji	10
Wysoka	8 lub więcej transakcji	15

UUCW = (Liczba przypadków o niskiej trudności × 5) + (Liczba przypadków o średniej trudności × 10) + (Liczba przypadków o wysokiej trudności × 15)

W naszym projekcie:

Przypadki użycia zostały sklasyfikowane według poziomu trudności. Liczba przypadków w każdej kategorii wyniosła odpowiednio: 21 (niska), 23 (średnia) oraz 3 (wysoka).

Trudność	llość przypadków użycia	Waga	Ilość x Waga
Niska	21	5	105
Średnia	23	10	230
Wysoka	3	15	45

UUCW = 105 + 230 +45 = 380

Unadjusted Actor Weight (UAW)

UAW określa złożoność systemu na podstawie liczby i rodzaju aktorów, którzy wchodzą w interakcję z systemem.

Każdego aktora klasyfikuje się jako prostego, średniego lub złożonego – w zależności od sposobu interakcji z systemem – i przypisuje mu się odpowiednią wagę.

Klasyfikacja aktorów

Klasyfikacja	Typ aktora	Waga
Prosty	Zewnętrzny system komunikujący się z systemem przez dobrze zdefiniowane API	1
Średni	Zewnętrzny system używający standardowych protokołów (np. TCP/IP, FTP, HTTP, baza danych)	2
Złożony	Użytkownik ludzki korzystający z interfejsu graficznego (GUI)	3

 $UAW = (Liczba\ prostych\ aktorów \times 1) + (Liczba\ średnich\ aktorów \times 2) + (Liczba\ złożonych\ aktorów \times 3)$

W naszym projekcie:

W projekcie uwzględniono siedmiu aktorów. Każdy z nich został oceniony pod kątem złożoności interakcji z systemem, co pozwoliło przypisać im odpowiednią wagę zgodnie z klasyfikacją UAW.

Nazwa aktora	Klasyfikacja	
Użytkownik	Złożony	
Zarządca danych	Złożony	
Subskrybent	Złożony	
Dostawca danych	Średni	
Czas	Prosty	
Weryfikator	Złożony	
Administrator	Złożony	

Klasyfikacja	Ilość aktorów	Waga	Ilość x Waga
Prosty	1	1	1
Średni	1	2	2
Złożony	5	3	15

UAW = 1+2 +15 = 18

Technical Complexity Factor (TCF)

Współczynnik TCF uwzględnia złożoność techniczną systemu i koryguje oszacowaną wielkość projektu w zależności od technicznych wymagań oraz ograniczeń.

W celu jego obliczenia analizuje się 13 czynników technicznych, z których każdy oceniany jest w skali od 0 (czynnik nieistotny) do 5 (czynnik kluczowy). Ocena ta mnożona jest przez ustaloną wagę danego czynnika. Suma wszystkich wyników daje wartość TF (Technical Factor), która następnie podstawiana jest do wzoru:

$$TCF = 0.6 + (TF / 100)$$

W naszym projekcie:

Kod	Czynnik	Waga	Ocena (0–5)	Wartość
T1	System rozproszony	2	3	4
T2	Czas reakcji / wydajność	1	5	1
T3	Wydajność z punktu widzenia użytkownika	1	5	1
T4	Złożoność przetwarzania wewnętrznego	1	3	1
T5	Możliwość ponownego użycia kodu	1	3	1
T6	Łatwość instalacji	0,5	0	0,25
T7	Łatwość użytkowania	0,5	5	0,25
T8	Przenośność na inne platformy	2	3	4
T9	Łatwość utrzymania systemu	1	4	1
T10	Przetwarzanie współbieżne / równoległe	1	2	1
T11	Wymagania bezpieczeństwa	1	4	1
T12	Dostęp zewnętrzny / API	1	4	1
T13	Szkolenie użytkowników końcowych	1	2	1

TCF = 0.6 + (46.5 / 100) = 1.065

Environmental Complexity Factor (ECF)

ECF to współczynnik środowiskowy, który koryguje oszacowaną wielkość systemu, uwzględniając warunki zespołu projektowego oraz otoczenie, w jakim powstaje oprogramowanie.

Do jego wyznaczenia analizuje się 8 czynników środowiskowych. Każdy czynnik otrzymuje ocenę od 0 (brak doświadczenia / bardzo niski poziom) do 5 (ekspert / pełna zgodność), która następnie jest mnożona przez przypisaną wagę. Suma tych wartości tworzy EF (Environment Factor), na podstawie którego oblicza się ostateczny wskaźnik ECF.

$$ECF = 1.4 + (-0.03 \times EF)$$

W naszym projekcie:

Kod	Czynnik	Waga	Ocena (0–5)	Wartość
E1	Znajomość stosowanego procesu tworzenia systemu	1,50	1	1,5
E2	Doświadczenie w pracy nad podobnymi aplikacjami	0,50	2	1
E3	Doświadczenie zespołu w programowaniu obiektowym	1,00	3	3
E4	Kompetencje głównego analityka	0,50	2	1
E5	Motywacja zespołu	1,00	4	4
E6	Stabilność wymagań	2,00	2	4
E7	Udział pracowników w niepełnym wymiarze godzin	-1,00	4	-4
E8	Trudność języka programowania	-1,00	2	-2

$$ECF = 1.4 + (-0.03 * 8,5) = 1,145$$

Use Case Points (UCP)

Po obliczeniu wszystkich składowych możliwe było wyznaczenie końcowej wartości UCP, która odzwierciedla szacunkowy rozmiar systemu, uwzględniający zarówno złożoność funkcjonalną, jak i czynniki techniczne oraz środowiskowe.

Do obliczeń przyjęto następujące wartości:

- UUCW = 380
- UAW = 18
- TCF = 1.065
- ECF = 1.145

Wzór na UCP:

UCP = $(UUCW + UAW) \times TCF \times ECF = (380 + 18) \times 1.065 \times 1.145 = 485,3312$

Estimated Effort

Ponieważ znana jest już oszacowana wielkość systemu wyrażona w punktach przypadków użycia (UCP), możliwe jest obliczenie całkowitego nakładu pracy potrzebnego do realizacji projektu.

Przyjmujemy, że wykonanie jednego punktu UCP wymaga średnio 28 roboczogodzin, co jest typową wartością stosowaną w podobnych projektach informatycznych. Na tej podstawie możliwe jest oszacowanie całkowitego nakładu pracy dla naszego systemu.

Estimated Effort = 485.3312 × 28 = 13489 godzin