Inside a layer: Units/Neurons

Notation 1

Layer l, for $1 \le l \le L$:

- ullet Produces output vector $\mathbf{y}_{(l)}$
- ullet $\mathbf{y}_{(l)}$ is a vector of $n_{(l)}$ synthetic features

$$n_{(l)} = ||\mathbf{y}_{(l)}||$$

ullet Takes as input $\mathbf{y}_{(l-1)}$, the output of the preceding layer

- ullet Layer L will typically implement Regression or Classification
- ullet The first (L-1) layers create synthetic features of increasing complexity
- ullet We will use layer (L+1) to compute a Loss

The input ${f x}$

- Is called "layer 0"
- $\mathbf{y}_{(0)} = \mathbf{x}$

The output $\mathbf{y}_{(L-1)}$ of the penultimate layer (L-1)

 $\bullet \;$ Becomes the input of a Classifier/Regression model at layer L

Layer

- ullet Input vector of $n_{(l-1)}$ features: $\mathbf{y}_{(l-1)}$
- ullet Produces output vector or $n_{(l)}$ features $\mathbf{y}_{(l)}$
- $\bullet \;\;$ Feature j defined by the function

$$\mathbf{y}_{(l),j} = \sigma(\mathbf{y}_{(l-1)} \cdot \mathbf{W}_{(l),j})$$

Each feature $\mathbf{y}_{(l),j}$ is produced by a unit (neuron)

- ullet There are $n_{(l)}$ units in layer l
- The units are homogenous
 - lacksquare same input $\mathbf{y}_{(l-1)}$ to every unit
 - same functional form for every unit
 - lacksquare units differ only in $\mathbf{W}_{(l),j}$

Units are also sometimes refered to as Hidden Units

- They are internal to a layer.
- From the standpoint of the Input/Output behavior of a layer, the units are "hidden"

The functional form

$$\mathbf{y}_{(l),j} = \sigma(\mathbf{y}_{(l-1)} \cdot \mathbf{W}_{(l),j})$$

is called a Dense or Fully Connected unit.

It is called Fully connected since

- each unit takes as input $\mathbf{y}_{(l-1)}$, all $n_{(l-1)}$ outputs of the preceding layer

The Fully Connected part can be better appreciated by looking at a diagram of the connectivity of a single unit producing a single feature.

A Fully Connected/Dense Layer producing a *single* feature at layer l computes

$$\mathbf{y}_{(l),1} = a_{(l)}(\mathbf{y}_{(l-1)} \cdot \mathbf{W}_{(l),1})$$

A function, $a_{(l)}$, is applied to the dot product

- It is called an activation function
- ullet A very common choice for activation function is the sigmoid σ

Fully connected unit, single feature

 $\mathbf{y}_{(l-1)}$ $\mathbf{y}_{(l)}$

The edges into the single unit of layer l correspond to $\mathbf{W}_{(l),1}.$

A Fully Connected/Dense Layer with multiple units producing $\it multiple$ feature at layer $\it l$ computes

$$\mathbf{y}_{(l),j} = a_{(l)}(\mathbf{y}_{(l-1)} \cdot \mathbf{W}_{(l),j})$$

Fully connected, two features

$$\mathbf{y}_{(l-1)}$$
 $\mathbf{y}_{(l)}$

The edges into each unit of layer l correspond to

- ullet $\mathbf{W}_{(l),1},\mathbf{W}_{(l),2}\dots$
- ullet Separate colors for each units/row of f W

Each unit $\mathbf{y}_{(l),j}$ in layer l creates a new feature using pattern $\mathbf{W}_{(l),j}$

The functional form is of

- ullet A dot product $\mathbf{y}_{(l-1)} \cdot \mathbf{W}_{(l),j}$
 - lacksquare Which can be thought of matching input $\mathbf{y}_{(l-1)}$ against pattern $\mathbf{W}_{(l),j}$
- ullet Fed into an activation function $a_{(l)}$
 - \blacksquare Here, $a_{(l)}=\sigma$, the $\emph{sigmoid}$ function we have previously encountered in Logistic Regression.

where

- ullet $\mathbf{y}_{(l)}$ is a vector of length $n_{(l)}$
- $\mathbf{W}_{(l)}$ is a matrix
 - $lacksquare n_{(l)}$ rows
 - $\mathbf{W}_{(l)}^{(j)} = \mathbf{W}_{(l),j}$

Written with the shorthand Dense (n_l)

We will introduce other types of layers.

- Most will be homogeneous
- Not all will be fully Connected
- The dot product will play a similar role

The sigmoid function σ may be the most significant part of the functional form

- The dot product is a *linear* operation
- The outputs of sigmoid are *non-linear* in its inputs

So the sigmoid induces a non-linear transformation of the features $\mathbf{y}_{(l-1)}$

The outer function $\boldsymbol{a}_{(l)}$ which applies a non-linear transformation to linear inputs • Is called an activation function • Sigmoid is one of several activation functions we will study

- The operation of a layer does not always need to be a dot production
- The activation function of a layer need not always be the sigmoid

More generically we write a layer as

Layers

$$\mathbf{y}_{(l)} = a_{(l)}\left(f_{(l)}(\mathbf{y}_{(l-1)}, \mathbf{W}_{(l)})\right)$$

where

- $f_{(l)}$ is a function of $\mathbf{y}_{(l)-1}$ and $\mathbf{W}_{(l)}$
- $a_{(l)}$ is an activation function

Layers

In slightly more mathematical terms: Layer $m{l}$ is computing a function $\mathbf{y}_{(l)} = m{F}_{(l)}$

$$F_{(l)}(\mathrm{y}_{(l-1)};\mathbf{W}_{(l)})=\mathrm{y}_{(l)}$$

$$F_{(l)}: \mathcal{R}^{||\mathbf{y}_{(l-1)}||} \mapsto \mathcal{R}^{||\mathbf{y}_{(l)}||}$$

If we expand $F_{(l)}$, we see that it is the l-fold composition of functions $F_{(1)}, \ldots, F_{(l)}$ $\mathbf{y}_{(l)} = F_{(l)}(\mathbf{y}_{(l-1)}; \mathbf{W}_{(l)})$ $= F_{(l)}(F_{(l-1)}(\mathbf{y}_{(l-2)}; \mathbf{W}_{(l-1)}); \mathbf{W}_{(l)})$ $= F_{(l)}(F_{(l-1)}(F_{(l-1)}(\mathbf{y}_{(l-2)}; \mathbf{W}_{(l-2)}; \mathbf{W}_{(l-1)}); \mathbf{W}_{(l)})$ $= \vdots$

So the layer (composed)	-wise architecture is function.	nothing more th	nan a way of comput	ing a nested

```
In [4]: print("Done")
```

Done