09.03.2018, дискретная математика

Алгоритм Эдмондса—Карпа 1.0.1

Путь $(s=v_1,\ldots,v_{k+1}=t)$ в сети (V,E) называется **увеличивающим**, если $\forall i\in\{1,\ldots,k\}$ $\varepsilon(v_i,v_{i+1})>0$, где $\varepsilon(v_i,v_{i+1})=\begin{cases}q(v_i,v_{i+1})-p(v_i,v_{i+1}),\ (v_i,v_{i+1})\in E\\p(v_{i+1},v_i),\ (v_{i+1},v_i)\in E\end{cases}$. Введём $\delta=\min_{0\leqslant i\leqslant k}\varepsilon(v_i,v_{i+1}),$ тогда новое значение потока в сети равно $\begin{cases}p(v_i,v_{i+1})+\delta,\ (v_i,v_{i+1})\in E\\p(v_{i+1},v_i)-\delta,\ (v_{i+1},v_i)\in E\end{cases}$.

 \hat{P} ассмотрим случай, когда до t не существует увеличивающего пути. Пусть X — множество вершин, до которых существует увеличивающий путь, $u \in X$, $v \notin X$. Если $(u,v) \in E$, то q(u,v) = p(u,v), а если $(v,u) \in E$, то p(v,u) = 0, тогда

$$p(X,\overline{X}) = \sum_{u \in V, v \in \overline{X}} p(u,v) - \sum_{u \in V, v \in \overline{X}} p(v,u) = \sum_{u \in V, v \in \overline{X}} q(u,v)$$

Лемма 1.0.1. В ходе работы алгоритма Эдмондса—Карпа кратчайший (s,t)-путь не уменьшается.

Доказательство методом от противного. Рассмотрим самую близкую к s вершину v, для которой кратчайший путь (s,\ldots,u,v) уменьшается, тогда для вершины u кратчайший (s,u)-путь не уменьшается. Пусть d_u и d_v длины кратчайших (s, u)- и (s, v)-путей соответственно на предыдущем шаге, а d'_u и d'_v — на текущем.

$$d_v > d'_v = d'_u + 1 \ge d_u + 1 \Rightarrow d_v \ge d_u + 2$$

Значит, на предыдущем шаге не было дуги (u,v), тогда не было и кратчайшего (s,v)-пути. Противоречие. Назовём дугу (v_i, v_{i+1}) критической, если $e(v_i, v_{i+1}) = \delta$.

Лемма 1.0.2. Каждая дуга может быть критической на увеличивающем пути порядка $\frac{|V|}{2}$ раз.

Доказательство. Пусть дуга (u,v) критическая на шагах t_1 и t_2 . Если она была использована как прямая два раза, то между этими использованиями она должна была быть использована как обратная (на шаге t_3), тогда

$$d_v(t_2) = d_u(t_2) + 1 \ge d_u(t_3) + 1 = d_v(t_3) + 2 \ge d_v(t_1) + 2$$

1.1Конечные автоматы

Назовём алфавитом конечное непустое множество и обозначим через Х. Его элементы называются буквами. Конечная последовательность букв называется словом, а его длиной — количество букв в слове с учётом повторений.

Слово, не содержащее букв, называется **пустым** и обозначается λ .

Множество из всех слов алфавита X обозначается X^* .

Конкатенацией слов $\alpha=x_1x_2\dots x_n$ и $\beta=y_1y_2\dots y_m$ называется слово $\alpha\cdot\beta=x_1\dots x_ny_1\dots y_m.$ Степенью слова $\alpha=x_1\dots x_n$ называется слово $\alpha^n=\alpha\cdot\alpha\cdot\dots\cdot\alpha$, где $n\in\mathbb{N}.$ $\alpha^0=\lambda.$

Языком называется множество $L \subseteq X^*$.

Конечным автоматом называется набор (X, S, δ) , где X — алфавит, S — конечное множество **состояний**, $\delta \colon S \times X \to S$ — функция перехода.

Если задан орграф, в котором каждой дуге соответствует буква, то по нему можно построить конечный автомат.

14.03.2018, математический анализ

Теорема 2.0.1 (интегральный признак Коши). Пусть $\sum_{k=1}^{\infty} a_k$ — знакоположительный ряд. Если существует

монотонная функция $f(x) colon f(n) = a_n$ & $\lim_{x \to +\infty} f(x) = 0$, то $\sum_{k=1}^{\infty} a_k$ сходится $\Leftrightarrow \exists \int\limits_1^{+\infty} f(x) \, dx$. Доказательство. Площадь заштрихованной фигуры равна $1a_1 + 1a_2 + \ldots + 1a_n$, а криволинейной трапеции — $\int\limits_1^{n+1} f(x) \, dx$, тогда $S_n > \int\limits_1^{n+1} f(x) \, dx$, $S_{n+1} - a_1 < \int\limits_1^{n+1} f(x) \, dx$.

1.
$$\Leftarrow$$
. $\forall n \in \mathbb{N}$ $S_n < a_1 + \int\limits_1^{n+1} f(x) \, dx < a_1 + \int\limits_1^{+\infty} f(x) \, dx \Rightarrow \sum_{k=1}^{\infty} a_k$ сходится.

2.
$$\Rightarrow$$
. $\forall n \in \mathbb{N} \int_{1}^{n+1} f(x) dx < S_n < S \Rightarrow \exists \int_{1}^{+\infty} f(x) dx$.

2.0.1Знакопеременные ряды

Теорема 2.0.2. *Если* $\sum\limits_{k=1}^{\infty} |a_k|$ *сходится, то* $\sum\limits_{k=1}^{\infty} a_k$ тоже сходится.

Доказательство. Пусть (S_n) и (σ_n) — частичные суммы рядов $\sum\limits_{k=1}^{\infty} a_k$ и $\sum\limits_{k=1}^{\infty} |a_k|$ соответственно. По критерию Коши

$$\forall \varepsilon > 0 \ \exists N \in \mathbb{N} \colon \forall m > N \ \forall k \geqslant 1 \ |\sigma_{m+k} - \sigma_m| < \varepsilon$$

Тогда

$$|S_{m+k} - S_m| = |\sum_{i=1}^k a_{m+i}| \le \sum_{i=1}^k |a_{m+i}| = |\sigma_{m+k} - \sigma_m| < \varepsilon$$

Значит, $\sum_{k=0}^{\infty} a_k$ сходится. \blacksquare

Теорема 2.0.3 (признак Лейбница). Пусть $\sum_{k=1}^{\infty} (-1)^{k-1} a_k$ — знакочередующийся ряд. Если $\lim_{n\to\infty} a_n = 0$, причём (a_n) — монотонная последовательность, то ряд сходится.

Доказательство.

$$S_{2n} = (a_1 - a_2) + (a_3 - a_4) + \dots + (a_{2n-1} - a_{2n}) < S_{2n+2}$$

$$S_{2n} = a_1 - (a_2 - a_3) - (a_4 - a_5) - \dots - (a_{2n-2} - a_{2n-1}) - a_{2n} < a_1$$

Тогда по свойству ?? предела последовательности

$$\lim_{n \to \infty} S_{2n} = S \Rightarrow \lim_{n \to \infty} S_{2n+1} = \lim_{n \to \infty} S_{2n} + \lim_{n \to \infty} a_{2n+1} = S \Rightarrow \lim_{n \to \infty} S_n = S$$

Значит, ряд сходится. ■

2.1 Функциональные ряды

Теорема 2.1.1 (мажорантный признак сходимости). Если существует последовательность (a_n) : $\forall n \in \mathbb{N} |f_n(x)| \leq a_n$, то $\sum\limits_{k=1}^{\infty} a_k$ сходится $\Rightarrow \sum\limits_{k=1}^{\infty} f_k(x)$ сходится абсолютно.

2.1.1 Степенные ряды

Степенным называется ряд вида $\sum\limits_{k=0}^{\infty}c_k(x-x_0)^k.$

Теорема 2.1.2 (Абеля).

- Если ряд $\sum\limits_{k=0}^{\infty}c_kx^k$ сходится при $x=x_0,$ то $\forall x\colon |x|<|x_0|$ он сходится абсолютно.
- Если ряд $\sum_{k=0}^{\infty} c_k x^k$ расходится при $x=x_0$, то $\forall x\colon |x|>|x_0|$ он расходится.

Доказательство.

- $\lim_{n\to\infty} c_n x_0^n = 0 \Rightarrow \exists M > 0 \colon |c_n x_0^n| \leqslant M \Rightarrow |c_n x^n| \leqslant M \left| \frac{x}{x_0} \right|^n$.

 Тогда $\sum_{k=0}^{\infty} M \left| \frac{x}{x_0} \right|^k$ сходится $\Rightarrow \sum_{k=0}^{\infty} c_k x^k$ сходится абсолютно.
- Если бы $\exists x_1 \colon |x_1| > |x_0| \ \& \ \sum_{k=0}^\infty c_k x_1^k$ сходится, то $\sum_{k=0}^\infty c_k x_0^k$ сходился бы, что противоречит условию.
- Следствие 2.1.3. $\exists R>0$: при $|x|< R\sum\limits_{k=0}^{\infty}c_kx^k$ сходится, а при $|x|> R\sum\limits_{k=0}^{\infty}c_kx^k$ расходится. R называется радиусом сходимости степенного ряда.

Рассмотрим ряд $\sum\limits_{k=0}^{\infty}|c_kx^k|$. По признаку д'Аламбера $\lim\limits_{n\to\infty}=\lim\limits_{n\to\infty}\left|\frac{c_{n+1}}{c_n}\cdot|x|\right|\dots$

16.03.2018, дискретная математика

По индукции можно задать функцию перехода $\delta^* \colon S \times X^* \to S$:

- $\delta^*(s,x) = \delta(s,x)$;
- $\delta^*(s, \alpha x) = \delta(\delta^*(s, \alpha), x)$.

Такой функции перехода соответствует ориентированный путь в графе.

Запись $\delta^*(s,\alpha)$ несколько громоздка, поэтому вместо неё может использоваться запись $s\delta(\alpha)$.

Конечный автомат называется **настроенным**, если для него указаны начальное состояние s_1 и множество F допускающих состояний. Т. е. настроенный автомат задаётся набором (S, X, δ, s_1, F) .

Настроенный автомат A распознаёт язык L, если $\alpha \in L \Leftrightarrow s_1\delta(\alpha) \in F$.

Утверждение 3.0.1. Любой конечный язык распознаётся конечным автоматом.

Доказательство. Пусть L — конечный язык, множество S состояний состоит из префиксов слов L, а также

включает дополнительное состояние
$$s', \, \alpha \delta(x) = \begin{cases} \alpha x, \, \alpha x \in S \\ s', \, \alpha x \notin S \end{cases}$$

Рассмотрим автомат $(S, X, \delta, \lambda, L)$.

$$\lambda\delta(\alpha) = \begin{cases} \alpha, & \alpha \in S \setminus s' \\ s', & \alpha \notin S \setminus s' \end{cases} \Rightarrow (s_1\delta(\alpha) \in F \Leftrightarrow \alpha \in L)$$

Теорема 3.0.2. Язык $L = \{a^k b^k \mid k \geqslant 0\}$ не распознаётся конечным автоматом.

Доказательство методом от противного. Пусть L распознаётся конечным автоматом $A=(S,X,\delta,s_1,F)$ с n состояниями. Тогда какие-то из состояний $s_1,s_1\delta(a),s_1\delta(aa),\ldots,s_1\delta(a^{n-1}),s_1\delta(a^n)$ совпадают. Пусть $s_1\delta(a^i)=s_1\delta(a^j)$, тогда $s_1\delta(a^i)\delta(b^i)\in F\Rightarrow s_1\delta(a^j)\delta(b^i)\in F$. Значит, $a^jb^i\in L$. Противоречие.

Некоторое отношение \sim называется **отношением эквивалентности**, если оно удовлетворяет условиям:

- 1. Рефлексивность: $a \sim a$.
- 2. Симметричность: $a \sim b \Rightarrow b \sim a$.
- 3. Транзитивность: $a \sim b \& b \sim c \Rightarrow a \sim c$.

Классом эквивалентности, или фактор-классом, элемента x называется множество $[x] = \{y \mid y \sim x\}$. Фактор-множеством называется множество различных фактор-классов.

Слова α и β называются различимыми словом $\gamma \in X^*$ относительно языка L, если $\alpha \gamma \in L \& \beta \gamma \notin L \lor \alpha \gamma \notin L \& \beta \gamma \in L$. Различимость обозначается $\alpha \nsim_L \beta$.

Слова α и β называются **неразличимыми относительно языка** L, если $\forall \gamma \in X^*$ $\alpha \gamma \in L \Leftrightarrow \beta \gamma \in L$. Неразличимость обозначается $\alpha \sim_L \beta$.

Утверждение 3.0.3. Отношение неразличимости слов относительно языка является отношением эквивалентности.

Доказательство. Очевидно, что $\alpha \sim \alpha$ и $\alpha \sim \beta \Rightarrow \beta \sim \alpha$.

Пусть $\alpha \sim \beta \ \& \ \beta \sim \gamma$, тогда $\forall \Theta \in X^* \ \alpha \Theta \in L \Leftrightarrow \beta \Theta \in L \Leftrightarrow \gamma \Theta \in L \Rightarrow \alpha \sim \gamma$.

Утверждение 3.0.4. $\alpha \sim \beta \Rightarrow \forall \gamma \in X^* \ \alpha \gamma \sim \beta \gamma$.

Доказательство.

$$\forall \Theta \in X^* \ (\alpha \gamma) \Theta \in L \Leftrightarrow \alpha (\gamma \Theta) \in L \Leftrightarrow \beta (\gamma \Theta) \in L \Leftrightarrow (\beta \gamma) \Theta \in L \Rightarrow \alpha \gamma \sim \beta \gamma$$

Рангом языка L называется количество элементов в фактор-множестве относительно неразличимости слов относительно L и обозначается $\operatorname{rank} L$.

Утверждение 3.0.5. *Если* A — автомат c n состояниями, распознающий язык L, то $n \geqslant \operatorname{rank} L$.

21.03.2018, математический анализ

Найдём радиус сходимости ряда $\sum\limits_{k=0}^{\infty}\frac{x^k}{k^p} :$

$$R = \lim_{n \to \infty} \frac{\frac{1}{n^p}}{\frac{1}{(n+1)^p}} = \lim_{n \to \infty} \left(\frac{n+1}{n}\right)^p = \lim_{n \to \infty} \left(1 + \frac{1}{n}\right)^p = 1$$

Подставим x=1, тогда $\sum\limits_{k=0}^{\infty} \frac{1}{k^p}$ сходится при p>1 и расходится при $p\leqslant 1.$

Подставим x=-1, тогда $\sum\limits_{k=0}^{\infty} \frac{(-1)^k}{k^p}$ сходится абсолютно при p>1, сходится условно при $0< p\leqslant 1$ и расходится при $p\leqslant 0$.

Утверждение 4.0.1. Если $\sum_{k=0}^{\infty} c_k x^k = S(x)$ при |x| < R, то

$$1. \int\limits_{a}^{b} S(x) \, dx = \sum_{k=0}^{\infty} c_k \int\limits_{a}^{b} x^k \, dx$$
, где $|a|, |b| < R$

2.
$$(S(x))^{(n)} = \sum_{k=0}^{\infty} c_k(x^k)^{(m)}$$
, где $|x| < R$

Связь суммы ряда и его коэффициентов:

1.
$$c_0 = S(0)$$

2.
$$c_1 = S'(0)$$

3.
$$c_2 = \frac{S''(0)}{2}$$

4.
$$c_3 = \frac{S'''(0)}{3!}$$

5.
$$c_k = \frac{S^{(k)}(0)}{k!}$$

Т. о.,
$$S(x) = \sum_{k=0}^{\infty} \frac{S^{(k)}(0)}{k!} x^k$$
 при $|x| < R$.

Рассмотрим ряд $\sum_{k=0}^{\infty} \frac{f^{(k)}(0)}{k!} x^k$.

$$R = \lim_{n \to \infty} \frac{\left| \frac{f^{(n)}(0)}{n!} \right|}{\left| \frac{f^{(n+1)}(0)}{(n+1)!} \right|} = \lim_{n \to \infty} \frac{|f^{(n)}(0)|(n+1)}{|f^{(n+1)}(0)|}$$

$$f(x) = \sum_{k=0}^{n} \frac{f^{(k)}(0)}{k!} x^{k} + \frac{f^{(n+1)}(\Theta x)}{(n+1)!} x^{n+1}$$

Тогда $f(x)=\sum_{k=0}^\infty rac{f^{(k)}(0)}{k!}\,x^k$ при $\lim_{n o\infty}rac{f^{(n+1)}(\Theta x)}{(n+1)!}\,x^{n+1}=0.$

Разложение некоторых функций:

1.
$$f(x) = e^x$$
. Для $\sum_{k=0}^{\infty} \frac{x^k}{k!}$

$$R = \lim_{n \to \infty} (n+1) = \infty$$

$$r_n = \frac{e^{\Theta x}}{(n+1)!} x^{n+1} < \frac{e^{|x|}}{(n+1)!} |x|^{n+1} \& \lim_{n \to \infty} \frac{e^{|x|}}{(n+1)!} |x|^{n+1} = 0 \Rightarrow \lim_{n \to \infty} \frac{e^{\Theta x}}{(n+1)!} x^{n+1} = 0$$

Тогда при $x \in \mathbb{R}$

$$e^x = \sum_{k=0}^{\infty} \frac{x^k}{k!}$$

2.
$$f(x) = \sin x$$
. Для $\sum_{k=1}^{\infty} \frac{(-1)^{k-1}}{(2k-1)!} x^{2k-1}$

$$R = \lim_{n \to \infty} \frac{\frac{1}{(2n-1)!}}{\frac{1}{(2n+1)!}} = \lim_{n \to \infty} 2n(2n+1) = \infty$$

$$r_n = \frac{|x|^{2n+1}}{(2n+1)!} \left| \sin \left(\Theta x + \frac{\pi}{den} \right) < \frac{|x|^{2n+1}}{(2n+1)!} \; \& \; \lim_{n \to \infty} \frac{|x|^{2n+1}}{(2n+1)!} = 0 \Rightarrow \lim_{n \to \infty} \frac{|x|^{2n+1}}{(2n+1)!} \left| \sin \left(\Theta x + \frac{\pi}{den} \right) = 0 \right| = 0$$

Тогда при $x \in \mathbb{R}$

$$\sin x = \sum_{k=1}^{\infty} \frac{(-1)^{k-1}}{(2k-1)!} x^{2k-1}$$

3.
$$f(x) = \cos x$$
. Для $\sum_{k=0}^{\infty} \frac{(-1)^k}{(2k)!} x^{2k}$

$$R = \lim_{n \to \infty} \frac{\frac{1}{(2n)!}}{\frac{1}{(2n+2)!}} = \lim_{n \to \infty} (2n+1)(2n+2) = \infty$$

$$r_n = \frac{|x|^{2n+1}}{(2n+1)!} \left| \cos \left(\Theta x + \frac{\pi}{den} \right) < \frac{|x|^{2n+1}}{(2n+1)!} \, \& \lim_{n \to \infty} \frac{|x|^{2n+1}}{(2n+1)!} = 0 \Rightarrow \lim_{n \to \infty} \frac{|x|^{2n+1}}{(2n+1)!} \left| \cos \left(\Theta x + \frac{\pi}{den} \right) = 0 \right| = 0$$

Тогда при $x \in \mathbb{R}$

$$\cos x = \sum_{k=0}^{\infty} \frac{(-1)^k}{(2k)!} x^{2k}$$

4.
$$f(x)=(1+x)^{\alpha}$$
 при $\alpha\notin\mathbb{N}$. Для $\sum\limits_{k=1}^{\infty}\frac{\alpha(\alpha-1)\cdot\ldots\cdot(\alpha-k+1)}{k!}\,x^k$

$$R = \lim_{k \to \infty} \frac{|\alpha(\alpha - 1) \cdot \dots \cdot (\alpha - k + 1)|(k + 1)!}{k!|\alpha(\alpha - 1) \cdot \dots \cdot (\alpha - k)|} = \lim_{k \to \infty} \frac{k + 1}{|\alpha - k|} = 1$$

$$r_n = \frac{\alpha(\alpha - 1) \cdot \dots \cdot (\alpha - n)(1 + \Theta x)^{\alpha - n - 1}}{(n + 1)!} x^{n + 1} = \frac{\alpha(\alpha - 1) \cdot \dots \cdot (\alpha - n)}{(n + 1)!} \cdot \frac{x^{n + 1}}{(1 + \Theta x)^{n + 1 - \alpha}}$$

Если $x \in [0;1) |r_n(x)| \leq M \cdot \frac{x^{n+1}}{1} \Rightarrow \lim_{n \to \infty} r_n(x) = 0.$

Тогда при $x \in (-1;1)$

$$(1+x)^{\alpha} = \sum_{k=0}^{\infty} \frac{\alpha(\alpha-1)\cdot\ldots\cdot(\alpha-k+1)}{k!} x^k$$

4.0.1 Приложения разложений функций в ряд Маклорена

$$\frac{1}{1+x} = 1 - x + x^2 - x^3 + \dots + (-1)^n x^n + \dots, |x| < 1$$
$$\frac{1}{1-x} = 1 + x + x^2 + x^3 + \dots + x^n + \dots, |x| < 1$$

Тогда при |x| < 1

$$\ln(1+x) = \int_0^x \frac{dt}{1+t} = \int_0^x \sum_{k=0}^\infty (-1)^k t^k dt = \sum_{k=0}^\infty \frac{(-1)^k t^{k+1}}{k+1} = \sum_{k=1}^\infty \frac{(-1)^{k-1} x^k}{k}$$

$$\operatorname{arctg} x = \int_0^x \frac{dt}{1+t^2} = \int_0^x \sum_{k=0}^\infty (-1)^k t^{2k} dt = \sum_{k=0}^\infty (-1)^k \cdot \frac{x^{2k+1}}{2k+1}$$

23.03.2018, дискретная математика

Теорема 5.0.1.

- 1. Язык L распознаётся конечным автоматом c n состояниями \Leftrightarrow rank $L \leqslant n$.
- 2. Если $\operatorname{rank} L = n$, то существует конечный автомат с n состояниями, который распознаёт L, и никакой конечный автомат c меньшим числом состояний не распознаёт L.

Доказательство.

1. Язык L распознаётся конечным автоматом $A = (X, S, \delta, s_1, F)$ с n состояниями. Рассмотрим слова $\alpha_1, \ldots, \alpha_{n+1} \in X^*$. Хотя бы два из состояний $s_1\delta(\alpha_1), \ldots, s_1\delta(\alpha_{n+1})$ совпадают.

Пусть $s_1\delta(\alpha_i) = s_1\delta(\alpha_j)$, где $i \neq j$.

$$s_1\delta(\alpha_i\gamma) = s_1\delta(\alpha_i)\delta(\gamma) = s_1\delta(\alpha_i)\delta(\gamma) = s_1\delta(\alpha_i\gamma) \Rightarrow (\alpha_i\gamma \in L \Leftrightarrow \alpha_i\gamma \in L)$$

T. o., среди n+1 состояний всегда найдётся пара неразличимых, значит, $\operatorname{rank} L \leqslant n.$

2. Пусть $A=(X,S,\delta,s_1,F)$, где $S=\{[\alpha]\mid \alpha\in X^*\}$, $\delta\colon [\alpha]\delta(x)=[\alpha x]$, $s_1=[\lambda]$, $F=\{[\alpha]\mid \alpha\in L\}$, тогда $s_1\delta(\alpha)=[\alpha]\in F\Leftrightarrow \alpha\in L$.

Пусть существует конечный автомат с k состояниями, где k < n.

Базисом языка L называется множество $W \subseteq X^*$ такое, что:

- 1. Все слова из W попарно различимы.
- 2. Любое другое слово неотличимо от одного из слов множества W.

Теорема 5.0.2. Множество W- базис \Leftrightarrow

- 1. Все слова из W попарно различимы.
- $2, \lambda \in W$
- 3. $\forall \alpha \in W \ \forall x \in X \ \exists \beta \in W \colon \alpha x \sim \beta$

Доказательство. Докажем пункт 2 по индукции.

- База индукции. d
- Шаг индукции. Пусть доказано для $|\alpha| \leq k$. Рассмотрим $\beta \colon |\beta| = k \& \beta \sim \gamma \in W$. $\beta x \sim \gamma x \sim \delta \in W$.

Два состояния s и s' называются эквивалентными относительно автомата $A=(X,S,\delta,s_1,F),$ если $\forall \alpha \in X^*$ $s\delta(\alpha) \in F \Leftrightarrow s'\delta(\alpha) \in F.$

Автомат называется **связным**, если $\forall s \in S \exists \alpha \in X^* \ s_1 \delta(\alpha) = s$.

Автомат называется приведённым, если в нём нет эквивалентных состояний.

Пусть задан автомат $A = (X, S, \delta, s_1, F)$. Рассмотрим автомат $A_m = (X, S_m, \delta_m, s_m, F_m)$, где $S_m = S/\sim = \{[s] \mid s \in S\}$, $\delta_m \colon [s]\delta(x) = [s\delta(x)]$, $s_m = [s_1]$, $F_m = \{[s] \mid s \in F\}$, тогда $[s_1]\delta(\alpha) = [s_1\delta(\alpha)] \in F_m$, т. к. $s_1\delta(\alpha) \in F$. $s \sim_{k+1} s' \Leftrightarrow s \sim_k s' \& \forall x \in X \ s\delta(x) \sim_k s'\delta(x)$

28.03.2018, математический анализ

6.0.1 Тригонометрические ряды Фурье

Представим функцию f(x) на отрезке $\left[-\frac{T}{2}; \frac{T}{2}\right]$ в виде

$$f(x) = \frac{a_0}{2} + \sum_{k=1}^{\infty} a_n \cos \frac{2\pi n}{T} x + \sum_{k=1}^{\infty} b_n \sin \frac{2\pi n}{T} x$$

Скалярным произведением функций f(x) и g(x) называется $\langle f(x),g(x)\rangle = \int\limits_{-\frac{T}{2}}^{\frac{T}{2}} f(x)g(x)\,dx.$

Проверим, что функции 1, $\cos \frac{2\pi n}{T} x$ и $\sin \frac{2\pi n}{T} x$ попарно ортогональны:

$$\bullet \int_{-\frac{T}{2}}^{\frac{T}{2}} \cos \frac{2\pi n}{T} x \, dx = \frac{T}{2\pi n} \sin \frac{2\pi n}{T} x \Big|_{-\frac{T}{2}}^{\frac{T}{2}} = 0$$

$$\oint_{-\frac{T}{2}}^{\frac{T}{2}} \sin \frac{2\pi n}{T} x \, dx = -\frac{T}{2\pi n} \cos \frac{2\pi n}{T} x \Big|_{-\frac{T}{2}}^{\frac{T}{2}} = 0$$

$$\bullet \int_{-\frac{T}{2}}^{\frac{T}{2}} \cos \frac{2\pi m}{T} x \cos \frac{2\pi n}{T} x dx = \frac{1}{2} \int_{-\frac{T}{2}}^{\frac{T}{2}} \cos \frac{2\pi (m-n)}{T} x + \frac{1}{2} \int_{-\frac{T}{2}}^{\frac{T}{2}} \cos \frac{2\pi (m+n)}{T} x = 0, \ m \neq n$$

$$\bullet \int_{-\frac{T}{2}}^{\frac{T}{2}} \sin \frac{2\pi m}{T} x \sin \frac{2\pi n}{T} x dx = \frac{1}{2} \int_{-\frac{T}{2}}^{\frac{T}{2}} \cos \frac{2\pi (m-n)}{T} x - \frac{1}{2} \int_{-\frac{T}{2}}^{\frac{T}{2}} \cos \frac{2\pi (m+n)}{T} x = 0, m \neq n$$

$$\bullet \int_{-\frac{T}{2}}^{\frac{T}{2}} \cos \frac{2\pi m}{T} x \sin \frac{2\pi n}{T} x dx = \frac{1}{2} \int_{-\frac{T}{2}}^{\frac{T}{2}} \sin \frac{2\pi (m+n)}{T} x + \frac{1}{2} \int_{-\frac{T}{2}}^{\frac{T}{2}} \sin \frac{2\pi (m-n)}{T} x = 0$$

Найдём квадраты этих функций:

$$\bullet \int_{-\frac{T}{2}}^{\frac{T}{2}} 1^2 \, dx = T$$

$$\bullet \int_{-\frac{T}{2}}^{\frac{T}{2}} \cos^2 \frac{2\pi n}{T} x \, dx = \frac{T}{2}$$

$$\bullet \int_{-\frac{T}{2}}^{\frac{T}{2}} \sin^2 \frac{2\pi n}{T} x \, dx = \frac{T}{2}$$

Тогда можно найти коэффициенты:

•
$$a_k = \frac{2}{T} \int_{-\frac{T}{2}}^{\frac{T}{2}} f(x) \cos \frac{2\pi k}{T} x \, dx$$

$$\bullet \ b_k = \frac{2}{T} \int_{-\frac{T}{2}}^{\frac{T}{2}} f(x) \sin \frac{2\pi k}{T} x \, dx$$

Причём если f(x) чётна, то $b_k=0$. Если же f(x) нечётна, то $a_k=0$.

30.03.2018, дискретная математика

Два автомата (S, X, δ, s_1, F) и $(S', X, \delta', s_2, F')$ называются **изоморфными**, если существует биекция $\varphi \colon S \to S'$ такая, что:

- 1. $s\delta(x) = t \Leftrightarrow \varphi(s)\delta'(x) = \varphi(t);$
- 2. $\varphi(s_1) = s_2;$
- 3. $t \in F \Leftrightarrow \varphi(t) \in F'$.

Утверждение 7.0.1. Если два минимальных автомата распознают один и тот же язык, то они изоморфны. Доказательство. Пусть $\alpha \in \{\alpha_1, \dots, \alpha_n\}$, причём $S = \{s_1\delta(\alpha)\}$ & $S' = \{s_2\delta'(\alpha)\}$. В каждом из автоматов нет эквивалентных состояний, поэтому можно построить биекцию $\varphi(s_1\delta(\alpha)) = s_2\delta'(\alpha)$. Тогда $s_1\delta(\alpha) \in F \Leftrightarrow \alpha \in L \Leftrightarrow s_1'\delta'(\alpha) \in F$.

Пусть L_1, L_2 — языки, распознаваемые некоторыми конечными автоматами, тогда $\operatorname{rank} L_1 = m \ \& \operatorname{rank} L_2 = n.$

1. Докажем, что $\operatorname{rank} L_1 = \operatorname{rank} \overline{L}_1$.

Доказательство.

$$\alpha \not\sim_{L_1} \beta \Leftrightarrow \exists \gamma \colon \alpha \gamma \in L_1 \& \beta \gamma \notin L_1 \Leftrightarrow \alpha \gamma \notin \overline{L}_1 \& \beta \gamma \in \overline{L}_1 \Leftrightarrow \alpha \not\sim_{\overline{L}_1} \beta$$
$$\alpha \not\sim_{L_1} \beta \Leftrightarrow \exists \gamma \colon \alpha \gamma \in L_1 \& \beta \gamma \notin L_1 \Leftrightarrow \alpha \gamma \notin \overline{L}_1 \& \beta \gamma \in \overline{L}_1 \Leftrightarrow \alpha \not\sim_{\overline{L}_1} \beta$$

2. Докажем, что rank $L_1 \cap L_2 \leqslant mn$.

Доказательство. Пусть $\alpha_1, \ldots, \alpha_m$ и β_1, \ldots, β_n — базисы L_1 и L_2 соответственно. Тогда

$$\forall \gamma \in X^* \ \exists \alpha_i, \beta_j \colon \alpha_i \sim_{L_1} \gamma \& \beta_j \sim_{L_2} \gamma$$

Пусть γ_{ij}

- $\gamma\Theta \in L_1 \Leftrightarrow \alpha_i\Theta \in L_1 \Leftrightarrow \gamma_{ij}\Theta \in L_1$;
- $\gamma \Theta \in L_2 \Leftrightarrow \beta_i \Theta \in L_2 \Leftrightarrow \gamma_{ij} \Theta \in L_2$;
- $\gamma\Theta \in L_1 \cap L_2 \Leftrightarrow \alpha_i\Theta \in L_1 \& \beta_j \in L_2 \Leftrightarrow \gamma_{ij}\Theta \in L_1 \cap L_2$.

Пусть автомат $A = (S \times S', X, \delta'', s_0, F'')$.

Лемма 7.0.2 (о накачке). Если L распознаётся конечным автоматом, то $\exists n \in \mathbb{N} : (\forall \alpha \in X^* : |\alpha| > n) \exists \alpha_1, \alpha_2, \alpha_3 : \alpha = \alpha_1 \alpha_2 \alpha_3$, причём

- 1. $\alpha_2 \neq \lambda$;
- 2. $\alpha \in L \Rightarrow \forall i \ \alpha_1 \alpha_2^i \alpha_3 \in L;$
- 3. $\alpha_1 \alpha_2 | \leq n$.

Доказательство. Пусть в конечном автомате n состояний, $|\alpha| = k \geqslant n \& \alpha = x_1 \dots x_k$. Среди состояний $s_1\delta(\lambda), s_1\delta(x_1), s_1\delta(x_1x_2), \dots, s_1\delta(x_1\dots x_n)$ найдутся два совпадающих, т.е. $\exists l, m \colon 0 \leqslant l < m \leqslant n \& s_1\delta(x_1\dots x_l) = s_1\delta(x_1\dots x_m) = s'$. Пусть $\alpha_1 = x_1\dots x_l, \ \alpha_2 = x_{l+1}\dots x_m, \ \alpha_3 = x_{m+1}\dots x_k, \ \text{тогда} \ s_1\delta(\alpha_1) = s', s_1\delta(\alpha_1\alpha_2) = s', \delta(\alpha_1, \alpha_2^i = s', s_1\delta(\alpha_1\alpha_2^i\alpha_3) = s'\delta(\alpha_3) = s''$.

Следствие 7.0.3. *Если* $\forall n \in \mathbb{N} \ \exists \alpha \colon |\alpha| \in n$, причём для любых слов $\alpha_1, \alpha_2, \alpha_3$:

- 1. $\alpha_2 \neq \lambda$;
- 2. $\alpha \in L \& \exists i \ \alpha_1 \alpha_2^i \alpha_3 \notin L;$
- 3. $\alpha_1 \alpha_2 | \leqslant n$.

то L не распознаётся конечным автоматом.

04.04.2018, математический анализ

8.1 Дифференциальные уравнения

Дифференциальным уравнением называется уравнение вида $F(x,y(x),y'(x),y''(x),\dots,y^{(n)}(x))$. n называется его порядком.

8.1.1 Дифференциальные уравнения с разделяющимися переменными

$$y' = f(x) \cdot g(y)$$

$$y' = f(x) \cdot g(y) \Leftrightarrow \frac{dy}{dx} = f(x)g(y) \Leftrightarrow \frac{dy}{g(y)} = f(x) dx \Leftrightarrow \int \frac{dy}{g(y)} = \int f(x) dx + C$$

8.1.2 Однородное дифференциальное уравнение первого порядка

 $y' = F\left(\frac{y}{x}\right)$ Пусть $p(x) = \frac{y}{x}$, тогда $y = x \cdot p(x) \Rightarrow y' = p(x) + x \cdot p'(x)$. Получим уравнение с разделяющимися переменными:

$$y' = F\left(\frac{y}{x}\right) \Leftrightarrow xp'(x) = F(p(x)) - p \Leftrightarrow p' = \frac{F(p(x)) - p}{x}$$

Решив его, найдём p(x) и y.

06.04.2018, дискретная математика

Утверждение 9.0.1. Если непустой язык распознаётся автоматом с n состояниями, то он содержит слово длины не больше n.

Доказательство. Если автомат распознаёт слово, то в соответствующем графе есть путь из начального состояния в допускающее, а значит, есть и простой путь. В графе n вершин, тогда длина простого пути не больше n, а ему соответствует слово длины не больше n.

Утверждение 9.0.2. Пусть L_1 и L_2 — языки, распознаваемые автоматами с n_1 и n_2 состояниями соответственно. $L_1 = L_2 \Leftrightarrow$ все слова длин, не больших $n_1 n_2$,

Конкатенацией языков L_1 и L_2 называется язык $\{\alpha\beta | \alpha \in L_1 \& \beta \in L_2\}$.

Недетерминированным конечным автоматом называется набор (S,X,δ,s_1,F) , где S — конечное множество состояний; X — конечный алфавит; $\delta\colon S\times (X\cup\{\lambda\})\to Y$ — функция перехода, где $Y\subseteq 2^S$; $s_1\in S$ — начальное состояние; $F\subseteq S$ — множество допускающих состояний.

Недетерминированный автомат распознаёт язык L, если при чтении слова из языка L хотя бы один из получившихся путей приводит в допускающее состояние.

Если языки L_1 и L_2 распознаются автоматами $(S_1, X, \delta_1, s_1, F_1)$ и $(S_2, X, \delta_2, s_2, F_2)$ соответственно, тогда авто-

мат
$$(S_1 \cup S_2, X, \delta, s_1, F_2)$$
 распознаёт язык L_1L_2 , где $s\delta(x) = \begin{cases} s\delta_1(x), \ s \in S_1 \\ s\delta_2(x), \ s \in S_2 \\ s_2, \ s \in F_1 \ \& \ x = \lambda \end{cases}$, т. к.

$$s_1\delta(\alpha\beta) = (s_1\delta(\alpha))\delta(\beta) = s_1\delta(\alpha)\delta(\lambda)\delta(\beta) = s_2\delta(\beta)$$

$$L^n = \underbrace{LL \dots L}_n$$
, причём $L^0 = \{\lambda\}$ $L^* = \bigcup_{n=0}^\infty L^n,$ $X^* = \bigcup_{n=0}^\infty X^n -$ звёздочка Клини. Пусть L распознаётся автоматом (S, X, δ, s_1, F) , тогда $(S \cup \{s_0\}, X, \delta_1, s_0, F \cup \{s_0\})$ распознаёт L^* , где $\delta_1 =$

Пусть L распознаётся автоматом (S,X,δ,s_1,F) , тогда $(S\cup\{s_0\},X,\delta_1,s_0,F\cup\{s_0\})$ распознаёт L^* , где $\delta_1=\begin{cases}s\delta(x),\ s\in S\\s_1,\ s\in S\ \&\ x=\lambda\end{cases}$

11.04.2018, математический анализ

10.0.1 Уравнение в полных дифференциалах

Уравнением в полных дифференциалах называется уравнение вида $y' = -\frac{M(x,y)}{N(x,y)}$. Если $M_y' = N_x'$, то $M(x,y) = F_x' \ \& \ N(x,y) = F_y'$, тогда

$$y' = -\frac{M(x,y)}{N(x,y)} \Leftrightarrow M(x,y) dx + N(x,y) dy = 0 \Leftrightarrow dF(x,y) = 0 \Leftrightarrow F(x,y) = C$$

Пусть $M_y' \neq N_x'$, но $\exists \mu(x,y) \colon (\mu \cdot M)_y' = (\mu \cdot N)_x'$, тогда

$$M(x,y)\,dx + N(x,y)\,dy = 0 \Leftrightarrow \mu(x,y)M(x,y)\,dx + \mu(x,y)N(x,y)\,dy = 0 \Leftrightarrow dF(x,y) = 0 \Leftrightarrow F(x,y) = C(x,y) = 0$$

 $\mu(x,y)$ называется **интегрирующим множителем**.

10.1 Линейное уравнение первого порядка

Линейным дифференциальным уравнением первого порядка называется уравнение вида y' = a(x)y + b(x).

Рассмотрим метод вариации произвольной постоянной.

1. Решим уравнение

$$y_0' = a(x)y_0 \Leftrightarrow \frac{dy_0}{y_0} = a(x) dx \Rightarrow \ln y_0 = \varphi(x) + \ln C \Rightarrow y_0 = Ce^{\varphi(x)}$$

2. Подставим $y = C(x)e^{\varphi(x)}$ в исходное уравнение:

$$C'(x)e^{\varphi(x)} + C(x)e^{\varphi(x)}\varphi'(x) = a(x)C(x)e^{\varphi(x)} + b(x)$$

 $y_0=Ce^{arphi(x)}\Rightarrow Ce^{arphi(x)}arphi'(x)=a(x)Ce^{arphi(x)},$ тогда получим

$$C'(x)e^{\varphi(x)} = b(x) \Leftrightarrow C'(x) = b(x)e^{-\varphi(x)} \Leftrightarrow C(x) = \int b(x)e^{-\varphi(x)}$$

Тогда $y = C(x)e^{\varphi(x)}$.

13.04.2018, дискретная математика

Построим ДКА по НКА (S, X, δ_N, s_1, F) , не содержащему пустых переходов, где $\delta_N \colon S \times X \to 2^S \colon (2^S, X, \delta_D, s_1, F')$, где $F' = \{M \mid M \subseteq S \& M \cap F \neq \varnothing\}$, $M\delta_D(x) = \bigcup_{i=1}^k \delta_N(m_i, x)$, $M = \{m_1, \dots, m_k\}$. Докажем, что $\delta_D(s_1, \alpha) = \delta_N(s_1, \alpha)$, методом математической индукции:

- База индукции. $\delta_D(s_1, \lambda) = s_1, \, \delta_N(s_1, \lambda) = \{s_1\}.$
- Шаг индукции. Пусть доказано для слов $\beta \colon |\beta| = n$. Рассмотрим $\alpha \colon |\alpha| = n + 1$. Предположим, что $\delta_N(s_1, \beta) = \{m_1, \dots, m_k\}$, тогда $\delta_D(s_1, \beta x) = \bigcup_{i=1}^k \delta_D(m_i, x) \& \delta_N(s_1, \beta x) = \bigcup_{i=1}^k \delta_N(m_i, x) \Rightarrow \delta_D(s_1, \alpha) = \delta_N(s_1, \alpha)$.

Построим НКА без пустых переходов по НКА (S, X, δ, s_1, F) , содержащему пустые переходы, где $\delta \colon S \times (X \cup \{\lambda\}) \to 2^S \colon (S, X, \delta', s_1, F')$, где $F' = \{s \mid \delta(s, \lambda^k) = s' \& s' \in F\}$, $\delta'(s, a) = s'$ при $\delta(s, \lambda^k a) = s'$. Замыканием состояния s НКА называется множество $\{s' \mid \delta(s, \lambda^k) = s'\}$ и обозначается [s]. Построим ДКА по НКА, содержащему пустые переходы, где $\delta \colon S \times (X \cup \{\lambda\}) \to 2^S \colon (T, X, \delta', [s_1], F')$, где $T = \{M \mid M \subseteq 2^S \& [M] = M\}$, $F = \{M \mid M \in T \& M \cap F \neq \emptyset\}$, $\delta'(\{m_1, \ldots, m_k\}, x) = \bigcup_{i=1}^k [\delta(m_i, x)]$. Докажем, что $\delta(s_1, w) = \delta'([s_1], w)$, методом математической индукции:

- База индукции. $\delta(s_1,\lambda)=[s_1]$ & $\delta'([s_1],\lambda)=[s_1]\Rightarrow\delta(s_1,\lambda)=\delta'([s_1],\lambda)$
- Шаг индукции. Пусть доказано для слов $\beta \colon |\beta| = n$. Рассмотрим $\alpha \colon |\alpha| = n + 1$. $\delta(s_1, \beta x) = \bigcup_{i=1}^k [\delta(m_i, x)] \& \delta'([s_1], \beta x) = \bigcup_{i=1}^k [\delta(m_i, x)] \Rightarrow \delta(s_1, \beta x) = \delta'([s_1], \beta x)$

18.04.2018, математический анализ

12.0.1 Уравнение Бернулли

Уравнением Бернулли называется уравнение вида $y'=a(x)y+b(x)y^n$, где $n\neq 1$. Пусть $\frac{1}{u^{n-1}}=z$, тогда

$$y' = a(x)y + b(x)y^n \Leftrightarrow \frac{y'}{y^n} = a(x)y^{1-n} + b(x) \Leftrightarrow \frac{z'}{1-n} = a(x)z + b(x)$$

Т. о., решение уравнения Бернулли сводится к решению линейного уравнения.

Теорема 12.0.1. Пусть y'(x) = f(x, y(x)) & $y(x_0) = y_0$, причём в некоторой окрестности $\exists M > 0 \colon |f(x, y_1) - f(x, y_2)| \leqslant M|y_1 - y_2|$, тогда уравнение имеет единственное решение в окрестности $(x_0 - d; x_0 + d) \colon y(x) = \int_{x_0}^x f(x, y(x)) dx + y_0.$

Это уравнение можно решить методом итераций:

$$y_1(x) = \int_{x_0}^x f(x, y_0) dx + y_0$$
$$y_n(x) = \int_{x_0}^x f(x, y_{n-1}(x)) dx + y_0$$

Доказательство.

$$y_n(x) - y_{n-1}(x) = \int_{x_0}^x (f(x, y_{n-1}(x)) - f(x, y_{n-2}(x))) dx$$

 $|\int\limits_{a}^{b}g(x)\,dx|\leqslant |b-a|\max_{x\in[a;b]}|g(x)|$, тогда

$$\max_{|x-x_0| < d} |y_n(x) - y_{n-1}(x)| \leqslant d \max_{|x-x_0| < d} |f(x, y_{n-1}(x)) - f(x, y_{n-2}(x))| \leqslant dM \max_{|x-x_0| < d} |y_{n-1}(x) - y_{n-2}(x)|$$

Пусть q = dM < 1, тогда

$$\max_{|x-x_0| < d} |y_n(x) - y_{n-1}(x)| \leqslant q \max_{|x-x_0| < d} |y_{n-1}(x) - y_{n-2}(x)| \leqslant q^{n-1} \max_{|x-x_0| < d} |y_1(x) - y_0|$$

Тогда

$$\forall k \geqslant 1 \max_{x \in [a;b]} |y_{n+k}(x) - y_n(x)| = \max_{|x - x_0| < d} |(y_{n+k}(x) - y_{n+k-1}(x)) + (y_{n+k-1}(x) + y_{n+k-2}(x)) + \ldots + (y_{n+1}(x) - y_n(x))| \leqslant \max_{|x - x_0| < d} |y_{n+k}(x) - y_n(x)|$$

По признаку Коши получим

$$\forall \varepsilon > 0 \ \exists N \in \mathbb{N} \colon \forall n > N \ \forall k \geqslant 1 \ \max_{x \in [a;b]} |y_{n+k}(x) - y_n(x)| < \varepsilon \Rightarrow \exists \lim_{n \to \infty} y_n(x) = \tilde{y}(x)$$

Докажем единственность:

$$|y(x) - \tilde{y}(x)| = |\int_{x_0}^x (f(x, y(x)) - f(x, \tilde{y}(x))) \, dx| \Rightarrow \max_{|x - x_0| < d} |y(x) - \tilde{y}(x)| \leqslant |x - x_0| \cdot \max_{|x - x_0| < d} |f(x, y(x)) - f(x, \tilde{y}(x))| < dM \max_{|x - x_0| < d} |y(x) - \tilde{y}(x)|$$

Противоречие, значит, решение единственно. ■

20.04.2018, дискретная математика

13.0.1 Алгоритм Бржозовского

Назовём язык, распознаваемый автоматом $(S, X, \delta, s_1, \{s'\})$, **левым языком** $L_l(s')$, а язык, распознаваемый автоматом (S, X, δ, s', F) — **правым языком** $L_r(s')$.

$$L = \bigcup_{s' \in S} L_l(s')$$

Пусть $A = (S, X, \delta, s_1, F)$. Рассмотрим произвольное состояние s'.

1. Автомат детерминирован ⇔ все его левые языки не пересекаются.

Доказательство методом от противного. Пусть $\alpha \in L_l(s') \cap L_l(s'')$, тогда по α можно прийти и в s', и в $s'' \Leftrightarrow$ автомат недетерминирован.

- 2. Если $L_l(s')$ левый язык автомата A, то $r(L_l(s'))$ правый язык r(A).
- 3. Автомат минимальный ⇔ все его правые языки различны и все вершины достижимы.

Теорема 13.0.1. Автомат drdr(A) минимален, где A — автомат.

Доказательство. Т. к. обращений было два, то автомат распознаёт тот же язык. Кроме того, он детерминированный.

Левые языки автомата dr(A) не пересекаются \Rightarrow правые языки rdr(A) не пересекаются \Rightarrow правые языки drdr(A) различны $\Rightarrow drdr(A)$ минимален. \blacksquare

- 1. \varnothing , λ , x называются **регулярными выражениями**. Они определяют языки \varnothing , $\{\lambda\}$, $\{x\}$.
- 2. $L \cup M, LM, L^*$ называются **регулярными выражениями**, где L, M регулярные выражения.

Приоритет операций в порядке убывания: $*, \cdot, \cup$. При записи регулярных выражений объединение может обозначаться знаком +.

Теорема 13.0.2 (Клини). Язык над алфавитом X распознаётся конечным автоматом \Leftrightarrow он может быть выражен через языки \emptyset , $\{\lambda\}$, $\{x\}$, где $x \in X$, и операции \cup , \cdot , *.

Доказательство.

- 1. ←. Очевидно.
- 2. \Rightarrow . Пусть вершины пронумерованы от 1 до n. Обозначим $L_{ij}^{(k)} = \{ \alpha \mid i\delta(\alpha) = j \ \&$ промежуточные состояния имеют номер
 - Ваза индукции. $L_{ij}^{(0)} = \begin{cases} x_1 + x_2 + \ldots + x_k, & i \neq j \\ x_1 + x_2 + \ldots + x_k + \lambda, & i = j \end{cases}$
 - ullet Шаг индукции. $L_{ij}^{(k+1)} = L_{ij}^{(k)} + L_{i\,k+1}^{(k)} (L_{k+1\,k+1}^{(k)})^* L_{k+1\,j}^{(k)}$