COMP S264F Discrete Mathematics Tutorial 6: Functions (1)

Question 1. Consider the following arrow diagram for the functions f and g.

- (a) Write the domains, codomains and ranges of f, g and $f \circ g$.
- (b) Find f(2).
- (c) Find $(f \circ g)(s)$.
- (d) Assume $(f \circ g)(x) = \beta$. List the possible value(s) of x.

Question 2. Assume f is a bijective function and its domain is the set of non-zero real numbers. Its codomain is the range of f. Find the *inverse* of the followings.

- (a) f(x) = 4x + 2
- (b) $f(x) = 3 + \frac{1}{x}$

Question 3. Consider the following functions with both domain and codomain $= \mathbb{R}$.

- f(x) = 3x + 1
- $g(x) = \frac{x}{2}$

Find the followings.

- (a) $(f \circ g)(x)$
- (b) $(g \circ f)(x)$

Question 4. Determine whether each of the following functions is *injective*, *surjective* and *bijective* with proof.

- (a) $f: \mathbb{Z} \to \mathbb{Z}$ such that f(x) = -x
- (b) $f: \mathbb{R} \to \mathbb{R}$ such that f(x) = |x|
- (c) $f: \mathbb{Z} \to \mathbb{Z}$ such that f(x) = 6x 9
- (d) $f: \mathbb{R} \to \mathbb{R}$ such that $f(x) = 2x^3 4$

Question 5. Consider the functions $g: A \to B$ and $f: B \to C$. Prove or disprove the following statements.

- (a) If g is injective, then $f \circ g$ is injective.
- (b) If $f \circ g$ is injective, then g is injective.
- (c) If f and g is surjective, then $f \circ g$ is surjective.