Summary of Formalization

Eric Paul

Introduction

There are three main theorems formalized. They are the following:

Theorem 1 (Lindenbaum). If X and Y are linear orders such that X embeds in an initial segment of Y and Y embeds in a final segment of X, then $X \cong Y$.

Theorem 2 (Sum Refinement). Let X, Y, A, and B be linear orders such that $X + Y \cong A + B$. Then there exists a linear E such that at least one of the following holds:

- $A + E \cong X$ and $E + Y \cong B$ or
- $X + E \cong A$ and $E + B \cong Y$

Theorem 3 (Finite Left Cancellation). *If* X *and* Y *are linear orders,* $0 \neq n \in \mathbb{N}$, and $nX \cong nY$, then $X \cong Y$.

We shall explain how they are formalized at a high level that parallels the structure of the code.

Lindenbaum

This proof follows the proof of CSB in the Mathematics in Lean book.

Let α and β be linear orders. Let $f: \alpha \to \beta$ such that $f[\alpha]$ is an initial segment of β . Let $g: \beta \to \alpha$ such that $g[\beta]$ is a final segment of α . We now want to show that $\alpha \cong \beta$.

First, we check if β is empty. If β is empty, then since we have a map $f: \alpha \to \beta$, we must also have that α is empty. Therefore, we trivially have that $\alpha \cong \beta$.

Otherwise, β is nonempty. Our goal is now to define a function $h\colon \alpha\to\beta$ that will be an isomorphism.

We begin by defining a function sbAux: $\mathbb{N} \to \mathcal{P}(\alpha)$

$$\operatorname{sbAux}(n) = \begin{cases} \alpha \setminus g[\beta] & \text{if } n = 0\\ (g \circ f)[\operatorname{sbAux}(n-1)] \cup \operatorname{sbAux}(n-1) & \text{otherwise} \end{cases}$$

We now define $sbSet = \bigcup_{n \in \mathbb{N}} sbAux(n)$.

We now can define $h: \alpha \to \beta$.

$$h(x) = \begin{cases} f(x) & \text{if } x \in \text{sbSet} \\ g^{-1}(x) & \text{otherwise} \end{cases}$$

(Note that this is where we use the assumption that β is nonempty as the precise formulation of g^{-1} here requires it.)

We must now show that h is an isomorphism. The explanation for why h is a bijection is the same as for CSB. We now just need to show that h is order preserving.

We begin by showing that sbSet is an initial segment. To this end, we shall first show that each sbAux(n) is an initial segment.

Notice that since $g[\beta]$ is a final segment of α , $\alpha \setminus g[\beta]$ is an initial segment of α . Thus, $\mathrm{sbAux}(0)$ is an initial segment of α .

Assume that for n we have that $\operatorname{sbAux}(n)$ is an initial segment of α . Then $\operatorname{sbAux}(n+1) = (g \circ f)[\operatorname{sbAux}(n)] \cup \operatorname{sbAux}(n)$. Now let $y \in \alpha$ such that y < x for some $x \in \operatorname{sbAux}(n+1)$. Our goal is to show that $y \in \operatorname{sbAux}(n+1)$. Since $x \in \operatorname{sbAux}(n+1)$ we have two cases.

The first is that $x \in \mathrm{sbAux}(n)$. Then since $\mathrm{sbAux}(n)$ is an initial segment, we have that y must be in $\mathrm{sbAux}(n)$ and so $y \in \mathrm{sbAux}(n+1)$ and we are done.

Otherwise, we have that $x \in (g \circ f)[\operatorname{sbAux}(n)]$. We now split into two cases. The first case is that $y \in g[\beta]$. Then since $f[\alpha]$ is an initial segment of β , $f[\operatorname{sbAux}(n)]$ is an initial segment of β . Therefore, $(g \circ f)[\operatorname{sbAux}(n)]$ is an initial segment of $g[\beta]$ and $g \in g[\beta]$, we have that $g \in (g \circ f)[\operatorname{sbAux}(n)]$ and so we are done. Otherwise, we have that $g \notin g[\beta]$. Thus, we have that $g \in \operatorname{sbAux}(0)$. Since $\operatorname{sbAux}(0) \subseteq \operatorname{sbAux}(n+1)$, $g \in \operatorname{sbAux}(n+1)$ and so we are done.

So we have shown that $\operatorname{sbAux}(n)$ is an initial segment for all n. Now since the union of initial segments is an initial segment, we have that sbSet is an initial segment of α .

To check that h is order preserving the only interesting case is when we have $x \in \mathrm{sbSet}$ and $y \notin \mathrm{sbSet}$. Since sbSet is an initial segment, we have that x < y. And so our goal is to show that h(x) < h(y). We have that sbSet is an initial segment and by the definition of h, $h[\mathrm{sbSet}]$ is an initial segment. Therefore, since h is a bijection, h(y) must be greater than every element of $h[\mathrm{sbSet}]$. Thus, h(x) < h(y).

And so we have shown that h is an isomorphism and have that $\alpha \cong \beta$.

Sum Refinement

Let α , β , γ , and δ be linear orders. Let $f: \alpha + \beta \to \gamma + \delta$ be an isomorphism. We begin by comparing $f[\alpha]$ to γ . Both of them are initial segment of $\gamma + \delta$. Therefore, either γ is an initial segment of $f[\alpha]$ or $f[\alpha]$ is an initial segment of γ .

We look first at the case where γ is an initial segment of $f[\alpha]$. We let $e = f[\alpha] \setminus \gamma$.

Our first goal is to show that $\gamma + e \cong \alpha$. We will use the following lemma (which hides much of the work): if a is a linear order and b is an initial segment of a, then $b + (a \setminus b) \cong a$. This lemma gives us that $\gamma + (f[\alpha] \setminus \gamma) \cong f[\alpha]$. Since $f[\alpha] \setminus \gamma = e$ and $f[\alpha] \cong \alpha$, we have that $\gamma + e \cong \alpha$.

Now our goal is to show that $e+\beta\cong\delta$. We will again use a lemma to do the heavy lifting: if a is an initial segment of a linear order and $b\subseteq a$, then $(a\setminus b)+a^c\cong b^c$. This lemma gives us that $(f[\alpha]\setminus\gamma)+f[\alpha]^c\cong\gamma^c$. Notice that $\gamma^c=\delta$ and $f[\alpha]\setminus\gamma=e$. Furthermore, since f is an isomorphism, $f[\alpha]^c\cong\alpha^c\cong\beta$. Thus, we have that $e+\beta\cong\delta$ and so we are done.

The other case is that $f[\alpha]$ is an initial segment of γ . Here we let $e = \gamma \setminus f[\alpha]$. Our first goal is to show that $\alpha + e \cong \gamma$. By the lemma used in the first goal of the previous case, we have that $f[\alpha] + (\gamma \setminus f[\alpha]) \cong \gamma$. Since $f[\alpha] \cong \alpha$ and $e = \gamma \setminus f[\alpha]$, we have that $\alpha + e \cong \gamma$.

Our next goal is to show that $e + \delta \cong \beta$. By the lemma used in the second goal of the previous case, we have that $(\gamma \setminus f[\alpha]) + \gamma^c \cong f[\alpha]^c$. We have that $e = \gamma \setminus f[\alpha], \gamma^c = \delta$, and since f is an isomorphism, $f[\alpha]^c = \beta$. So we have that $e + \delta \cong \beta$ and so we are done.

Finite Left Cancellation

This proof follows the proof Tarski has in the book Ordinal Algebras.

Let α and β be linear orders and let $n \in \mathbb{N}$. Our goal is to show that $n\alpha \cong n\beta$ implies that $\alpha \cong \beta$. We do this by first showing if $n\alpha$ is initial in $n\beta$ then α is initial in β and dually that if $n\alpha$ is final in $n\beta$ then α is final in β . If we assume we have shown these two facts, then we complete the proof as follows. Since $n\alpha \cong n\beta$, we have that $n\alpha$ is initial in $n\beta$ and so α is initial in β . Also, since $n\alpha \cong n\beta$, we have that $n\beta$ is final in $n\alpha$ and so $n\alpha$ is initial in $n\alpha$. Since $n\alpha$ is initial in $n\alpha$ and $n\alpha$ is final in $n\alpha$. Since $n\alpha$ is initial in $n\alpha$ and $n\alpha$ is final in $n\alpha$. Since $n\alpha$ is initial in $n\alpha$ and $n\alpha$ is final in $n\alpha$.

So it just remains for us to show those facts. Our goal is to show that if $n\alpha$ is initial in $n\beta$, then α is initial in β . We prove this by induction.

Our base case is that n = 1. Since $1\alpha \cong \alpha$ and $1\beta \cong \beta$, we are done.

Assume we have shown that for $n \in \mathbb{N}$ and for all linear orders α and β , if $n\alpha$ is initial in $n\beta$ then α is initial in β . We now want to show that if $(n+1)\alpha$ is initial in $(n+1)\beta$, then α is initial in β . Since multiplication on the right distributes, we have that $n\alpha + \alpha$ is initial in $n\beta + \beta$. Furthermore, since $n\alpha + \alpha$ is initial in $n\beta + \beta$, there exists a linear order e such that $(n\alpha + \alpha) + e \cong n\beta + \beta$. By associativity, we have that $n\alpha + (\alpha + e) \cong n\beta + \beta$.

By Sum Refinement, there exists a linear order e' such that we are in one of the following cases.

The first case is that $n\alpha + e' \cong n\beta$ and $e' + b \cong (\alpha + e)$. Since $n\alpha + e' \cong n\beta$, we have that $n\alpha$ is initial in $n\beta$. Then by our induction hypothesis, we have that α is initial in β and we are done.

The second case is that $n\beta + e' \cong n\alpha$ and $e' + (\alpha + e) \cong \beta$. Since $n\beta + e' \cong n\alpha$, we have that $n\beta$ is initial in $n\alpha$. Then by our induction hypothesis, we have that β is initial in α . Therefore, β is initial in $\alpha + e$. We also have that $e' + (\alpha + e) \cong \beta$ and so $(\alpha + e)$ is final in β . Since β is initial in $\alpha + e$ and $\alpha + e$ is final in β , we have by Lindenbaum that $\beta \cong \alpha + e$. Therefore, α is initial in β and we are done.

The proof that if $n\beta$ is final in $n\alpha$ then β is final in α is dual to the proof we just gave. So, as explained at the beginning, these two proofs imply that we have shown that if $n\alpha \cong n\beta$, then $\alpha \cong \beta$.