MATH 257: Homework #5

Jesse Farmer

03 November 2004

1. Let A be an abelian group and let $B \leq A$. Prove that A/B is abelian. Give an example of a non-abelian group containing a proper normal subgroup N such that G/N is abelian.

Since A is abelian B is also abelian and therefore normal in A, so the group operation on A/B is well-defined. Let $a_1, a_2 \in A$ be arbitrary, then

$$a_1Ba_2B = a_1a_2B = a_2a_1B = a_2Ba_1B$$

so A/B is abelian. The converse is not true. Take $D_6 = \{1, r, r^2, f, fr, fr^2\}$ where r and f represent rotations and "flips" of the corresonding polygon respectively. Define $R = \{1, r, r^2\}$. Every element of D_6 can be written as $f^j r^k$ for some $j, k \in \mathbb{N}$, so $f^j r^k R r^{-k} f^{-j} = \{1, r^{-1}, r^{-2}\}$, but $r^{-1} = r^2$ and $r^{-2} = r$, so $R \leq D_6$ and D_6/R is well-defined. However, |R| = 3, so $|D_6 : R| = 2$ and therefore G/R must be abelian.

2. Let G be a group and $N \subseteq G$. Denote $\overline{G} = G/N$. Prove that \overline{x} and \overline{y} commute in \overline{G} if and only if $x^{-1}y^{-1}xy \in N$.

In general if $H \leq G$ then aH = bH if and only if $b^{-1}a \in H$ by Proposition 3.4. Therefore

$$\overline{xy} = \overline{yx} \Leftrightarrow xNyN = yNxN$$

$$\Leftrightarrow xyN = yxN$$

$$\Leftrightarrow (yx)^{-1}xy \in N$$

$$\Leftrightarrow x^{-1}y^{-1}xy \in N$$

- 3. Let G be a group and let $N = \langle x^{-1}y^{-1}xy \mid x, y \in G \rangle$. Show that $N \leq G$ and G/N is abelian. $N \leq G$ by construction. Since N is normal and $x^{-1}y^{-1}xy \in N$ for all $x, y \in G$ it follows from the previous problem that G/N is abelian.
- 4. Prove that if $N \subseteq G$ where $|G| < \infty$ and (|N|, [G:N])) = 1 then N is the unique subgroup of G of order |N|

From the previous homework we know that if $H \leq G$ and (|H|, [G:N]) = 1 then $H \leq N$. Assume $M \leq G$ and |M| = |N|. Then (|M|, [G:N]) = 1, so $M \leq N$. However,

$$[G:M] = \frac{|G|}{|M|} = \frac{|G|}{|N|} = [G:N]$$

so (|N|, [G:M]) = 1 and $N \leq M$. Therefore M = N, i.e., N is unique.

5. Prove that if $H \subseteq G$ with prime index p then for all $K \subseteq G$ either $K \subseteq H$ or G = HK and $[K : K \cap H] = p$.

Either $K \leq H$ or not, so assume not. If G = HK then by the second isomorphism theorem

$$p = \left| \frac{G}{H} \right| = \left| \frac{HK}{H} \right| = \left| \frac{K}{K \cap H} \right| = [K : K \cap H]$$

So it is sufficient to show that G = HK.

Since $H \subseteq G$, $(Hg)^n = Hg^n$. In particular this means for any $g \in G \setminus H$, $H = (Hg)^p = Hg^p$. That is, $g^p \in H$ for any $g \in G \setminus H$. p must be the smallest integer such that this is true since otherwise we could pick a $g \in G \setminus H$ and $k \neq 1$ such that $(gH)^k = H$ where $k \mid p$, a contradiction. Hence each of $1, g, g^2, \ldots, g^{p-1}$ are distinct coset representatives. By hypothesis there are p such representatives and therefore every coset representative can be repesented as g^j for $0 \leq j \leq p-1$ if $g \in G \setminus H$. Assuming K is not a subgroup of H, then there exists a $k \in K \setminus H \subseteq G \setminus H$ and $\{1, k, k^2, \ldots, k^{p-1}\}$ is a complete set of coset representatives.

Let $g \in G$ be arbitrary. Then there exists $x \in G$ such that $g \in Hx$. However, from above, $x = k^j$ for the appropriate j, and hence $g \in Hk^j \subseteq HK$, i.e., $G \subseteq HK$. That $HK \subseteq G$ is obvious, so G = HK.

6. Let $C \subseteq A$ and $D \subseteq B$. Prove that $C \times D \subseteq A \times B$ and $(A \times B)/(C \times D) \cong (A/C) \times (B/D)$. Let $(c,d) \in C \times D$ and $(a,b) \in A \times B$, then for some $c' \in C$ and $d' \in D$

$$(a,b)(c,d)(a,b)^{-1} = (a,b)(c,d)(a^{-1},b^{-1}) = (aca^{-1},bdb^{-1}) = (c',d') \in C \times D$$

Therefore $C \times D \subseteq A \times B$. Define the map $\varphi : A \times B \to (A/C) \times (B/D)$ by $\varphi(a,b) = (aC,bD)$. This map is obviously surjective and

$$\ker \varphi = \{(a,b) \mid \varphi(a,b) = 1\}$$

$$= \{(a,b) \mid (aC,bD) = 1\}$$

$$= \{(a,b) \mid aC = C, bD = D\}$$

$$= \{(a,b) \mid a \in C, b \in D\}$$

$$= C \times D$$

By the first isomorphism theorem

$$(A \times B)/(C \times D) = (A \times D)/\ker \varphi \cong \varphi(A \times B) = (A/C) \times (B/D)$$

7. Let p be a prime and let G be a group of order $p^a m$ where $p \nmid m$. Assume $P \leq G$ with $|P| = p^b$ and $N \leq G$ with $|N| = p^a n$, where $p \nmid n$. Prove that $|P \cap N| = p^b$ and $|PN/N| = p^{a-b}$.

From the previous homework we know $P \cap N \subseteq P$ and therefore $P/(P \cap N)$ is a group. By Lagrange's theorem $|P \cap N| \mid |P|$, but $|P| = p^b$, so there exists some $k \leq b$ such that $|P \cap N| = p^k$. From the second isomorphism theorem (in the book, or the fourth in class)

$$PN/N \cong P/(P \cap N) \Rightarrow |PN/N| = \frac{|P|}{|P \cap N|} = \frac{p^a}{p^k} = p^{a-k}$$

Hence it is sufficient to show that $k \geq b$ so that k = b. Because $PN \leq G$ the largest power of p in |PN| is p^a . From the second isomorphism theorem we know

$$|PN| \cdot |P \cap N| = |P| \cdot |N| = p^{a+b}n$$

Hence the power of p in $|P \cap N|$ must be at least p^b , i.e., $k \geq b$, and hence k = b.