AMENDMENTS TO THE CLAIMS

1. (Currently amended) An RFID system comprising:

a plurality of RFID transponders configured to receive a signal and to generate a response

signal based thereon, said RFID transponders having a random number generator usable to

determine whether to respond to a received message addressed to said plurality of RFID

transponders, said RFID transponders being further configured to use said random number

generator to generate a unique identification code based only on a first random number generated

by said random number generator, each said unique identification code being associated with a

respective RFID transponder;

a host computer configured to generate a message for transmission to at least one of said

RFID transponders; and

at least one interrogator communicatively coupled to said host computer having an

interrogator transmitter and an interrogator receiver which operate in half-duplex mode, wherein

said interrogator transmitter is capable to transmit messages received from said host computer to

said plurality of RFID transponders during a first part of said half-duplex mode and provide an

illumination signal to said plurality of RFID transponders during a second part of said

half-duplex mode, and said interrogator receiver is capable to receive a signal generated by said

at least one of said RFID transponders and provide said received signal to said host computer;

wherein said host computer is configured to identify [[a]] the unique identification code

associated with each of said plurality of RFID transponders by iteratively transmitting a message

including a variable having a predetermined value to said RFID transponders, and only said

RFID transponders which generate a second random number greater than said variable respond

to said message by transmitting the identification codes associated with said respective RFID

transponders.

LAW OFFICES OF CHRISTENSEN O'CONNOR JOHNSON KINDNESSPLIC 1420 Fifth Avenue

Suite 2800

Seattle, Washington 98101 206.682.8100

2. (Previously presented) The RFID system of Claim 1, wherein said signals are

transmitted in spread spectrum format.

3. (Previously presented) The RFID system of Claim 1, wherein communications

between said at least one interrogator and said plurality of RFID transponders is in TDMA

format in which a number of time slots are available for transmission.

4. (Currently amended) The RFID system of Claim 3, wherein said RFID

transponders which generate a second random number greater than said variable are also

configured to use said generated random variable number to determine which time slot to use for

transmission of said response signal.

5. (Previously presented) The RFID system of Claim 1, wherein said host computer

is configured to intelligently adjust said variable after receipt of a response signal to ensure that

an adequate number of responses are received during a next iteration.

6-8. (Canceled)

9. (Currently amended) A method for generating identification codes for a plurality

of RFID transponders, comprising:

transmitting a re-select identification code command to a plurality of RFID transponders;

in response to receiving the re-select identification code command, generating, at said

plurality of RFID transponders, a first random number and calculating a new identification code

based only upon said first random number;

iteratively transmitting a read identification code command and a variable having a

predetermined value from a host to said plurality of RFID transponders;

LAW OFFICES OF CHRISTENSEN O'CONNOR JOHNSON KINDNESS^{PLLC} 1420 Fifth Avenue Suite 2800

Suite 2800 Seattle, Washington 98101 206.682.8100

-3-

receiving, at said plurality of RFID transponders, said read identification code command

and said variable;

generating, at said plurality of RFID transponders, a second random number;

comparing, at said plurality of RFID transponders, said variable with said generated

second random number;

transmitting, by said RFID transponders where said generated second random number is

greater than said variable, the new identification code associated with said RFID transponder and

then becoming inactive such that said RFID transponder does not respond to further read

identification code commands during a current read identification code process;

waiting, by said RFID transponders where said generated second random number is not

greater than said variable, for a next transmission of said read identification code command and

said variable;

intelligently adjusting, by said host, the value of said variable for the next transmission of

said read identification code command and said variable; and

examining said variable at said host and ceasing the iterative transmission of said read

identification code command when no RFID transponders respond by transmitting their new

identification code in response to a final value of said variable.

10. (Previously presented) The method of Claim 9, wherein said predetermined value

for said variable is set as a high value, said intelligently adjusting the value of said variable

reduces the value of said variable, and wherein said final value is zero.

11. (Previously presented) An interrogator for communicating with an RFID

transponder in an RFID system, comprising:

at least one antenna;

LAW OFFICES OF CHRISTENSEN O'CONNOR JOHNSON KINDNESS**LLC 1420 Fifth Avenue

1420 Fifth Avent Suite 2800

Seattle, Washington 98101 206.682.8100

-4-

a transmitter coupled to said at least one antenna and configured to transmit an FSK

modulated spread spectrum signal on said at least one antenna during a transmitting mode and a

BPSK modulated spread spectrum signal during a receiving mode;

a receiver coupled to said at least one antenna and configured to receive a spread

spectrum signal in PSK format; and

a controller coupled to said transmitter and said receiver and configured to control said

transmitter and said receiver.

12. (Previously presented) The interrogator of Claim 11, wherein said at least one

antenna comprises a first antenna having a first polarization and a second antenna having a

second polarization which is orthogonal to said first polarization, and further comprising an

antenna switch matrix configured to select one of said first antenna and second antenna for

coupling to said transmitter and a second of said first antenna and said second antenna for

coupling to said receiver.

13. (Previously presented) The interrogator of Claim 12, wherein said at least one

antenna further comprises a third antenna having a third polarization which is orthogonal to said

first polarization and to said second polarization, and said antenna switch is configured to select

one of said first antenna, second antenna and third antenna for coupling to said transmitter and a

second of said first antenna, second antenna and third antenna for coupling to said receiver.

14. (Previously presented) The interrogator of Claim 11, wherein said transmitter

comprises:

an FSK transmitter section configured to generate a message for transmission as a spread

-5-

spectrum output signal in FSK format;

LAW OFFICES OF CHRISTENSEN O'CONNOR JOHNSON KINDNESSPALE

1420 Fifth Avenue Suite 2800 Seattle, Washington 98101

a BPSK transmitter section configured to generate an illumination signal for transmission as a spread spectrum signal in BPSK format;

an output amplifier; and

a switch configured to selectively couple said FSK transmitter section or said BPSK transmitter section to said output amplifier.

15. (Previously presented) The interrogator of Claim 14, wherein said FSK transmitter section comprises:

a Manchester encoder coupled to said controller;

a PN generator coupled to said controller; and

an FSK modulation generator coupled to said Manchester encoder and said PN generator.

16. (Previously presented) The interrogator of Claim 14, wherein said BPSK transmitter section comprises:

a PN generator;

a low noise oscillator; and

a balanced modulator coupled to said PN generator and said low noise oscillator.

17. (Previously presented) The interrogator of Claim 11, wherein said receiver comprises:

a band pass filter having an input coupled to said at least one antenna for receiving a signal;

a first mixer and a second mixer each having a first input coupled in parallel to an output of said band pass filter and a second input coupled to a signal derived from a transmitted signal;

a first bandpass filter coupled to an output of said first mixer;

a first data and clock recovery circuit coupled to an output of said first bandpass filter for recovering an in-phase version of said received signal;

a second bandpass filter coupled to an output of said second mixer; and

a second data and clock recovery circuit connected to an output of said second bandpass filter for recovering a quadrature-phase version of said received signal.

18-19. (Canceled)

20. (Currently amended) A transponder for communicating with an interrogator in an RFID system, comprising:

a random number generator operable to generate a random number from which a unique ID for the transponder is generated;

a first antenna element having a first predetermined dimensional configuration;

a second antenna element having a second predetermined dimensional configuration;

an impedance modulator coupled between said first antenna element and said second antenna element which causes said first antenna element to be electrically coupled to said second antenna element in a first state and to be electrically isolated from said second antenna element in a second state;

a receiver configured to receive a message <u>using said unique ID</u> within an FSK modulated spread spectrum signal, said receiver being coupled to said first antenna element, said second antenna element and said impedance modulator; and

a controller coupled to said receiver, said controller being configured to receive said message and selectively respond to said message <u>using said unique ID</u> in PSK format by reflecting an illumination signal transmitted by said interrogator by selectively switching said impedance modulator between said first state and said second state.

LAW OFFICES OF CHRISTENSEN O'CONNOR JOHNSON KINDNESS^{PLLC} 1420 Fifth Avenue Suite 2800 Seattle, Washington 98101 206.682.8100 21. (Previously presented) The transponder of Claim 20, wherein said receiver

comprises:

a frequency discriminator having an input coupled to said first and second antenna

elements;

a bandpass quantizer having an input connected to an output of said frequency

discriminator; and

a low pass filter connected to an output of said bandpass quantizer.

22. (Original) The transponder of Claim 20, wherein said first predetermined

dimensional configuration is a length of one-quarter wavelength and said second predetermined

dimensional configuration is a length of three-quarter wavelength.

23. (Previously presented) The transponder of Claim 22, wherein said first antenna

element is comprised of two first sub-elements coupled at a ninety degree angle.

24. (Previously presented) The transponder of Claim 23, wherein said first

sub-elements have a predetermined length relationship to each other.

25. (Previously presented) The transponder of Claim 22, wherein said second

antenna element is comprised of a plurality of second sub-elements coupled at ninety degree

angles in a geometrically folding configuration.

26. (Previously presented) The transponder of Claim 25, wherein said second

sub-elements have a predetermined length relationship to each other.

27. (Original) The transponder of Claim 20, wherein said first antenna element and

said second antenna element together form a dipole configuration.

LAW OFFICES OF CHRISTENSEN O'CONNOR JOHNSON KINDNESSPLLC

1420 Fifth Avenue Suite 2800

Seattle, Washington 98101 206.682.8100

28-32. (Canceled)

33. (Currently amended) A method for a host having a plurality of transmitting

antennas to read an identification code from a plurality of RFID transponders, each of said RFID

transponders having a unique identification [[codes]] code that is generated based only on a first

random number generated by a respective RFID transponder, said method comprising:

iteratively transmitting a read identification code command and a variable having a

predetermined value from said host to said plurality of RFID transponders on each of said

plurality of transmitting antennas;

receiving, at said plurality of RFID transponders, said read identification code command

and said variable;

generating, at said plurality of RFID transponders, a second random number;

comparing, at said plurality of RFID transponders, said variable with said generated

second random number;

transmitting, by said RFID transponders where said generated second random number is

greater than said variable, an identification code associated with said RFID transponder and then

becoming inactive such that said RFID transponder does not respond to further read

identification code commands during a current read identification code process;

waiting, by said RFID transponders where said generated second random number is not

greater than said variable, for a next transmission of said read identification code command and

said variable;

receiving at said host said transmitted identification codes associated with particular

RFID transponders and storing said identification codes and associated antenna information in

memory so that further communication with a particular one of said plurality of transponders is

performed by using said identification code and said antenna information;

LAW OFFICES OF CHRISTENSEN O'CONNOR JOHNSON KINDNESSPLLC 1420 Fifth Avenue Suite 2800

Suite 2800 Seattle, Washington 98101 206.682.8100 intelligently adjusting, by said host, the value of said variable for the next transmission of

said read identification code command and said variable; and

examining said variable at said host and ceasing the iterative transmission of said read

identification code command when no RFID transponders respond by transmitting their

identification code in response to a final value of said variable.

34. (Currently amended) An RFID system for tracking election ballots comprising:

a plurality of RFID transponders connected to separate ballots, and configured to receive

a signal and to generate a response signal based thereon, said RFID transponders having a

memory configured to store election data and a random number generator usable to determine

whether to respond to a received message addressed to said plurality of RFID transponders, said

RFID transponders being further configured to use said random number generator to generate a

unique identification code based only on a first random number generated by said random

number generator, each said unique identification code being associated with a respective RFID

transponder;

a host computer configured to generate a message for transmission to at least one of said

RFID transponders and control the storage of election data within the memory of said RFID

transponders connected to said ballots; and

at least one interrogator communicatively coupled to said host computer having an

interrogator transmitter and an interrogator receiver which operate in half-duplex mode, wherein

said interrogator transmitter is capable to transmit messages received from said host computer to

said plurality of RFID transponders during a first part of said half-duplex mode and provide an

illumination signal to said plurality of RFID transponders during a second part of said

half-duplex mode and said interrogator receiver is capable to receive a signal generated by said

at least one of said RFID transponders and provide said received signal to said host computer;

-10-

LAW OFFICES OF CHRISTENSEN O'CONNOR JOHNSON KINDNESS^{PLLC} 1420 Fifth Accepted

Suite 2800 Seattle, Washington 98101

wherein said host computer is configured to identify [[a]] the unique identification code

associated with each of said plurality of RFID transponders by iteratively transmitting a message

including a variable having a predetermined value to said RFID transponders, and only said

RFID transponders which generate a second random number greater than said variable respond

to said message by transmitting the identification codes associated with said respective RFID

transponders.

35. (Previously presented) The RFID system of Claim 34, wherein said host

computer selectively transmits a predetermined message which causes each RFID transponder

receiving said predetermined message to transmit its identification code to said host computer.

36. (Previously presented) The RFID system of Claim 35, wherein said host

computer is configured to continuously transmit said predetermined message and receipt of said

identification code by said host signals an alarm event.

37. (Previously presented) In a communications system having a first device having a

transmitter and a receiver and a plurality of second devices having a transmitter and a receiver,

where communications between said first device and said plurality of second devices is in

TDMA format having a plurality of time slots for transmission, a method for determining if more

than one second device has transmitted a signal to said first device at the same time during a

current TDMA communications period, comprising:

sampling the relative power in an analog baseband channel of said receiver in said first

-11-

device during each of said time slots;

sampling the relative power in an analog baseband channel of said receiver in said first

device during a period of no communications;

LAW OFFICES OF CHRISTENSEN O'CONNOR JOHNSON KINDNESSPLLC 1420 Fifth Avenue

Suite 2800 Seattle, Washington 98101

comparing said sampled relative power in each of said time slots to said sampled relative

power in said period of no communications;

setting, if said comparison for a particular one of said time slots produces a value of

greater than unity by a predetermined amount, said particular time slot to be occupied;

determining which of said time slots did not have an accepted message;

comparing said time slots which did not have an accepted message to said occupied time

slots; and

determining that each of said time slots which did not have an accepted message and

which is occupied represents a time slot in which more than one second device transmitted a

message at the same time.

38. (Previously presented) The interrogator of Claim 17, wherein said first data and

clock recovery circuit comprises a first digital discrete phase lock loop circuit configured to

synchronize to first signals input to said first data and clock recovery circuit, said second data

and clock recovery circuit comprises a second digital discrete phase lock loop circuit configured

to synchronize to second signals input to said second data and clock recovery circuit, and said

controller is configured to choose between said in-phase version of said received signal and said

quadrature-phase version of said received signal based upon which of said first and second

digital discrete phase lock loop circuit first synchronizes to said first and second input signals,

respectively.

39-49. (Canceled)

50. (New) A method for an RFID transponder to identify itself in a plurality of RFID

-12-

transponders, comprising:

LAW OFFICES OF CHRISTENSEN O'CONNOR JOHNSON KINDNESS**LLC 1420 Fifth Avenue

Suite 2800 Seattle, Washington 98101

in response to receiving a re-select identification code command, generating a first

random number and calculating an identification code for said RFID transponder based only

upon said first random number;

receiving an initial read identification code command and a variable having an initial

value;

generating a second random number and comparing the value of said variable with said

second random number;

based on a comparison of the value of said variable with said second random number,

transmitting said identification code of said RFID transponder and then becoming inactive such

that said RFID transponder does not respond to further read identification code commands

during a current read identification code process, otherwise waiting for a next transmission of

said read identification code command and said variable;

iteratively receiving another read identification code command and said variable having

another value that has been adjusted from a previous value; and

based on a comparison of the adjusted value of said variable with said second random

number, transmitting said identification code of said RFID transponder and then becoming

inactive such that said RFID transponder does not respond to further read identification code

commands during the current read identification code process,

until no other RFID transponders respond to said read identification code commands by

transmitting their identification code in response to receiving said variable having a final value.

51. (New) The method of Claim 50, wherein the initial value for said variable is set

as a high value, said the value of said variable is adjusted to reduce the value of said variable,

-13-

and wherein said final value is zero.

LAW OFFICES OF CHRISTENSEN O'CONNOR JOHNSON KINDNESSPLIC 1420 Fifth Avenue

Suite 2800

Seattle, Washington 98101

52. (New) An RFID transponder, comprising:

a receiver configured to receive a wireless transmission of a command;

a random number generator configured to generate a first random number in response to

receiving a re-select identification code command at said receiver;

a controller configured to generate an identification code for said RFID transponder

based only upon said first random number; and

a transmitter configured to transmit the identification code of said RFID transponder,

wherein said random number generator is further configured to generate a second random

number in response to said receiver receiving a read identification code command and a variable

having an initial value; and

wherein said controller is further configured to compare the value of said variable with

said second random number and, based on the comparison, to cause the transmitter to transmit

said identification code of said RFID transponder, after which the controller is configured to

become inactive such that said RFID transponder does not respond to further read identification

code commands received by said receiver during a current read identification code process.

53. (New) The RFID transponder of Claim 52,

wherein, based on the comparison of said second random number with the value of said

variable, the controller is further configured to wait for a next transmission of said read

identification code command and said variable,

wherein said receiver is configured to receive another read identification code command

and said variable having another value that has been adjusted from a previous value, and,

wherein said controller is configured to cause said transmitter to transmit said

identification code of said RFID transponder based on a comparison of the adjusted value of said

variable with said second random number, after which said controller is configured to become

-14-

LAW OFFICES OF CHRISTENSEN O'CONNOR JOHNSON KINDNESSPILE 1420 Fifth Avenue

Suite 2800 Seattle, Washington 98101

inactive such that said RFID transponder does not respond to further read identification code commands during the current read identification code process, until no other RFID transponders respond to said read identification code commands by transmitting their identification code in response to receiving said variable having a final value.

54. (New) The RFID transponder of Claim 53, wherein the initial value for said variable is set as a high value, said the value of said variable is adjusted to reduce the value of said variable, and wherein said final value is zero.

55. (New) An RFID system comprising:

a plurality of RFID transponders configured to receive a signal and to generate a response signal based thereon, each said RFID transponder having a random number generator operable to generate a first random number when said RFID transponder receives a re-select identification code command, wherein each said RFID transponder further includes a controller configured to generate a unique identification code for said RFID transponder based on said first random number, and wherein said unique identification code is associated with said RFID transponder without depending on a predetermined identifier of the respective RFID transponder, and

wherein said random number generator is further configured to generate a second random number when said respective RFID transponder receives both a read identification code command and a variable having a value, said controller being further configured to compare the value of said variable with said second random number and, based on the comparison, cause a transmitter to transmit said unique identification code of said RFID transponder, after which said controller is configured to become inactive such that said RFID transponder does not respond to further read identification code commands received by said receiver during a current read identification code process.

LAW OFFICES OF CHRISTENSEN O'CONNOR JOHNSON KINDNESS**LLC 1420 Fifth Avenue Suite 2800 Seattle, Washington 98101 206.682.8100 56. (New) The RFID system of Claim 55, wherein said RFID transponders that generate a second random number greater than the value of said variable are also configured to use said second random number to determine a time slot to use for transmission of said unique identification code.