9-10 класс

Общая информация по задачам второго тура

Задача	Тип задачи	Ограничения
5. Максимизация выигрыша	стандартная	1 c, 512 MB
6. Экспедиция на Сириус	стандартная	2 c, 512 MB
7. Тяжелый груз	стандартная	2 c, 512 MB
8. Большие вызовы	стандартная	2 c, 512 MB

Необходимо считывать данные из стандартного потока ввода. Выходные данные необходимо выводить в стандартный поток вывода.

Баллы за подзадачу, если в условии не указано иное, начисляются только если все тесты этой подзадачи пройдены. Решение запускается на тестах для определенной подзадачи, если все тесты всех необходимых подзадач пройдены.

Для некоторых подзадач может также требоваться, чтобы были пройдены все тесты из условия. Для таких подзадач указана дополнительно буква У.

Задача 5. Максимизация выигрыша

Ограничение по времени: 1 секунда Ограничение по памяти: 512 мегабайт

Дано целое неотрицательное число x, состоящее из n десятичных цифр. В нём можно произвольное число раз поменять местами две соседние цифры. За каждый обмен начисляется штраф равный y. После выполнения обменов начисляется бонус, равный получившемуся из x числу x_{new} . Таким образом, если в результате k обменов получено число x_{new} , выигрыш равен $x_{new} - ky$.

Будем называть число x_{new} оптимальным, если его можно получить из x в результате обменов, добившись при этом максимального возможного выигрыша.

По заданным x и y определите наибольшее среди оптимальных чисел.

Формат входных данных

В первой строке дано одно целое число x, состоящее из n десятичных цифр ($1 \le n \le 100\,000$). Число x может иметь ведущие нули.

Во второй строке дано одно целое число y — штраф за один обмен цифр ($1 \le y \le 10^{16}$).

Формат выходных данных

Выведите единственное целое число x_{new} — наибольшее среди оптимальных чисел. Число x_{new} должно иметь длину n и может содержать ведущие нули.

Система оценки

Подрадания	Баллы		Ограничения			Информация о
Подзадача	Баллы	n	y	дополнительно	подзадачи	проверке
1	27	$n \leqslant 9$	$y \leqslant 10^8$		У	первая ошибка
2	13	$n \leqslant 20$	$y \leqslant 10^8$		У, 1	первая ошибка
3	19	$n \leqslant 10^5$	y = 1			первая ошибка
4	25	$n \leqslant 10^5$	$y \leqslant 10^8$	все цифры x равны 1 или 2		первая ошибка
5	8	$n \leqslant 10^5$	$y \leqslant 10^8$		У, 1–4	первая ошибка
6	8	$n \leqslant 10^5$	$y\leqslant 10^{16}$		У, 1–5	первая ошибка

Примеры

стандартный ввод	стандартный вывод		
170	710		
15			
170	170		
600			
314599	931459		
17713			
001	001		
1000			

Замечание

В первом примере после обмена цифр 1 и 7 получается число 710, выигрыш равен 710-15=695. Во втором примере менять цифры местами не выгодно, если оставить число как есть, выигрыш равен 170, а если поменять, то выигрыш будет равен 710-600=110<170.

Задача 6. Экспедиция на Сириус

Ограничение по времени: 2 секунды Ограничение по памяти: 512 мегабайт

В компьютерную игру «Экспедиция на Сириус» играют n игроков, пронумерованных от 1 до n. За предыдущие миссии у игрока номер i накоплено c_i единиц опыта. Будем говорить, что два игрока имеют одинаковый уровень, если у них одинаковое значение опыта. Игрок, который имеет больше опыта, имеет более высокий уровень.

Игра состоит из нескольких раундов. В конце каждого раунда каждому игроку добавляется опыт, равный количеству различных более высоких уровней у остальных игроков. Например, если значения опыта игроков [2,5,5,1,2,10], то опыт первого игрока увеличится на 2: существует два более высоких уровня—игроки с опытом 5 и игрок с опытом 10. Опыт последнего игрока в этом примере не увеличится. Опыт игроков изменяется одновременно. То есть в конце раунда в нашем примере опыт игроков станет равным [4,6,6,4,4,10].

Вам требуется ответить на несколько вопросов. Каждый вопрос может быть одного из трех типов:

- 1. Сколько различных уровней будет у игроков после k раундов игры?
- 2. Какое суммарное количество единиц опыта добавится всем игрокам за первые k раундов?
- 3. Сколько единиц опыта будет у игрока номер i после начисления опыта в конце k-го раунда?

Формат входных данных

В первой строке даны два целых числа n и q $(1 \leqslant n, q \leqslant 300\,000)$ — количество игроков и количество вопросов, на которые вам нужно ответить.

Во второй строке даны n целых чисел c_i ($0 \le c_i \le 10^{12}$) — количество единиц опыта у каждого из игроков в начале текущей игры.

В следующих q строках даны описания вопросов. Каждая строка начинается с целого числа t $(t \in \{1,2,3\})$, которое обозначает тип вопроса.

- Если t=1, далее дано целое число k ($0 \le k \le 10^{12}$) количество раундов.
- Если t=2, далее дано целое число k ($0 \le k \le 10^{12}$) количество раундов.
- Если t=3, далее даны два целых числа k и i ($0 \le k \le 10^{12}$, $1 \le i \le n$) количество раундов и номер игрока, опыт которого нас интересует.

Во всех вопросах k=0 означает момент начала игры до проведения первого раунда.

Формат выходных данных

Для каждого вопроса выведите ответ на него в новой строке.

Система оценки

Пусть для всех тестов в подзадаче выполнено $n \leq N_{max}$, $q \leq Q_{max}$, $c_i \leq C_{max}$, $k \leq K_{max}$.

Пожовжения	Болиг	Ограничения				Необх.	Информация о	
Подзадача	Баллы	N_{max}	Q_{max}	C_{max}, K_{max}	max, K_{max} t		проверке	
1	18	5000	5000	10 000		У	первая ошибка	
2	16	5000	5000	10^{7}		У, 1	первая ошибка	
3	14	5000	5000	10^{12}		У, 1, 2	первая ошибка	
4	7	$3 \cdot 10^5$	$3 \cdot 10^5$	10^{7}		У, 1, 2	первая ошибка	
5	12	5000	$3 \cdot 10^5$	10^{12}		У, 1–3	первая ошибка	
6	14	$3 \cdot 10^5$	$3 \cdot 10^5$	10^{12}	t = 1		первая ошибка	
7	10	$3 \cdot 10^5$	$3 \cdot 10^5$	10^{12}	$t \in \{1, 2\}$	6	первая ошибка	
8	9	$3 \cdot 10^5$	$3 \cdot 10^5$	10^{12}		У, 1–7	первая ошибка	

Примеры

стандартный ввод	стандартный вывод
6 6	3
5 4 4 2 2 2	2
1 0	1
1 1	8
1 2	11
2 1	4
2 2	
3 1 5	
5 4	5
0 3 5 4 2	2
1 0	10
1 1	4
2 1	
3 1 1	

Замечание

В первом тесте опыт игроков изменяется следующим образом:

Раунд	c_1	c_2	c_3	c_4	c_5	c_6
начало игры	5	4	4	2	2	2
1	5	5	5	4	4	4
2	5	5	5	5	5	5

Во втором тесте опыт игроков изменяется следующим образом:

Раунд	c_1	c_2	c_3	c_4	c_5
начало игры	0	3	5	4	2
1	4	5	5	5	5

Задача 7. Тяжелый груз

Ограничение по времени: 2 секунды Ограничение по памяти: 512 мегабайт

Операторам склада необходимо переместить тяжелую коробку с использованием специального погрузчика. Склад можно схематически представить как n комнат, соединенных m коридорами. От любой комнаты можно добраться до любой другой, перемещаясь по коридорам. Комнаты пронумерованы от 1 до n. Коридор номер i непосредственно соединяет комнаты с номерами u_i и v_i , по коридору можно перемещаться в обоих направлениях.

Погрузчик может поднимать и опускать коробку, а также, если он не держит коробку, перемещаться по свободным комнатам и коридорам. Изначально погрузчик находится в комнате номер 1, и держит поднятую коробку. Погрузчику доступны следующие действия:

- 1. Если погрузчик находится в комнате a и держит поднятую коробку, он может, не сдвигаясь с места, поставить коробку в комнату b, если комнаты a и b непосредственно соединены коридором. После этого действия погрузчик не держит коробку и может перемещаться.
- 2. Если погрузчик находится в комнате a, а коробка стоит в комнате b, и комнаты a и b непосредственно соединены коридором, погрузчик может, не перемещаясь, поднять коробку. После этого действия погрузчик остается в комнате a и держит поднятую коробку, он не может перемещаться, пока не поставит коробку.
- 3. Если погрузчик не держит коробку, он может перемещаться по коридорам и комнатам, однако он не может проходить через комнату, где лежит коробка.

Пустой погрузчик перемещается между комнатами очень быстро, гораздо быстрее, чем он поднимает или опускает коробку. Поэтому будем считать, что на выполнение первого или второго действия погрузчик тратит одну единицу времени, а третье действие выполняется мгновенно. Ваша задача — для каждой комнаты p ($2 \le p \le n$) определить, за какое минимальное время погрузчик может из изначального положения — в первой комнате с поднятой коробкой, оказаться в комнате p с поднятой коробкой. Либо определить, что это сделать невозможно.

Формат входных данных

Каждый тест состоит из нескольких наборов входных данных. В первой строке дано одно целое число t ($1 \le t \le 100\,000$) — количество наборов входных данных. Далее следуют описания наборов входных данных.

В первой строке каждого набора входных данных даны два целых числа n и m ($2 \le n \le 500\,000$, $1 \le m \le 500\,000$) — количество комнат и коридоров на складе.

В следующих m строках даны по два целых числа u_i и v_i ($1 \le u_i, v_i \le n, u_i \ne v_i$) — номера комнат, соединенных i-м коридором. Гарантируется, что каждая пара комнат, соединенных коридором, упомянута ровно один раз. Гарантируется, что если все комнаты свободны, от любой комнаты можно добраться до любой другой, перемещаясь по коридорам.

Обозначим за $\sum n$ сумму n, а за $\sum m$ сумму m по всем наборам входных данных в одном тесте. Гарантируется, что $\sum n \leqslant 500\,000$, $\sum m \leqslant 500\,000$.

Формат выходных данных

Для каждого набора входных данных выведите n-1 чисел: i-е из них должно быть равно минимальному количеству подъемов и опусканий коробки, которые нужно сделать погрузчику, чтобы оказаться в комнате i+1 с поднятой коробкой. Если это сделать невозможно, то i-е число должно быть равно -1.

Система оценки

Потр	Болиг		Ограничения	Необх.	Информация	
Подз.	Баллы	$\sum n$	$\sum m$	дополнительно	подзадачи	о проверке
1	16	$\sum n \leqslant 1000$	$\sum m \leqslant 2000$		У	первая ошибка
2	18	$\sum n \leqslant 1000$	$\sum m \leqslant 100000$		У, 1	первая ошибка
3	14	$\sum n \leqslant 5000$	$\sum m \leqslant 500000$		У, 1–2	первая ошибка
4	17	$\sum n \leqslant 500000$	$\sum m \leqslant 500000$	помимо других коридоров, есть коридоры, соединяющие комнаты i и $i+1$ $(1 \le i \le n-1)$, и комнаты n и 1		первая ошибка
5	12	$\sum n \leqslant 500000$	$\sum m \leqslant 500000$	из каждой комнаты выходит не более 3 коридоров		первая ошибка
6	23	$\sum n \leqslant 500000$	$\sum m \leqslant 500000$		У, 1–5	первая ошибка

Пример

стандартный ввод	стандартный вывод
4	-1 2 -1
4 4	4 2 2 4
1 2	2 2 4 4
2 3	2 2 6 6 4 6 6 4
3 4	
4 1	
5 5	
1 2	
2 3	
3 4	
4 5	
5 1	
5 6	
1 2	
3 2	
1 3	
3 5	
5 4	
3 4	
9 12	
1 2	
2 3	
3 1	
4 5	
5 6	
6 4	
7 8	
8 9	
9 7	
3 6	
6 9	
9 3	

Замечание

В четвертом наборе входных данных погрузчик может выполнить следующие действия, чтобы из комнаты 1 с поднятой коробкой быстрее всего оказаться в комнате 4 с поднятой коробкой:

- Поставить коробку в комнату 2. Тратится одна единица времени.
- Переместиться в комнату 3. Время не тратится.
- Поднять коробку из комнаты 2. Тратится одна единица времени.
- Поставить коробку в комнату 9. Тратится одна единица времени.
- Переместиться в комнату 6. Время не тратится.
- Поднять коробку из комнаты 9. Тратится одна единица времени.
- Поставить коробку в комнату 5. Тратится одна единица времени.
- Переместиться в комнату 4. Время не тратится.
- Поднять коробку из комнаты 5. Тратится одна единица времени.

Всего будет потрачено 6 единиц времени.

Задача 8. Большие вызовы

Ограничение по времени: 2 секунды Ограничение по памяти: 512 мегабайт

На проектной смене в образовательном центре «Сириус» участники одной из команд проектируют промышленных роботов.

Роботы будут наполнять деталями n контейнеров, которые стоят в ряд и пронумерованы от 1 до n. В i-й контейнер можно суммарно поместить не больше a_i деталей. Участники собрали m роботов. Изначально у j-го робота имеется c_j деталей, часть из которых он положит в контейнеры. Также, у j-го робота есть диапазон действия, задающийся двумя числами $l_j \leqslant r_j$, означающий, что робот может класть детали только в контейнеры с номерами от l_j до r_j включительно. Роботы пытаются суммарно положить в контейнеры как можно больше деталей.

Созданные роботы бывают двух типов. Если тип робота $t_j = 0$, то его диапазон действия всегда остается неизменным. А роботов типа $t_j = 1$ можно перепрограммировать. Если контейнер с номером x выделить как наиболее важный, диапазон действия каждого робота типа 1 расширяется минимальным образом, чтобы он стал содержать контейнер x. Более формально, диапазон действия робота номер j, имеющего тип 1, изменяется на $[\min(l_j, x), \max(r_j, x)]$.

Для каждого x от 1 до n вычислите, какое максимальное количество деталей роботы смогут суммарно поместить в контейнеры, если важным будет контейнер с номером x, а роботы будут действовать оптимальным образом.

Формат входных данных

Каждый тест состоит из нескольких наборов входных данных. В первой строке дано одно целое число t ($1 \le t \le 200\,000$) — количество наборов входных данных. Далее следуют описания наборов входных данных.

В первой строке каждого набора входных данных даны два целых числа n и m $(1 \le n, m \le 200\,000)$ — количество контейнеров и роботов соответственно.

В следующей строке даны n целых чисел $a_i \ (0 \leqslant a_i \leqslant 10^9)$ — вместимости контейнеров.

В каждой из следующих m строк даны по четыре целых числа l_j, r_j, c_j, t_j ($1 \le l_j \le r_j \le n$, $0 \le c_j \le 10^9, t_j \in \{0,1\}$) — диапазон действия, изначальное количество деталей и тип робота соответственно.

Обозначим за $\sum n$ сумму n, а за $\sum m$ сумму m по всем наборам входных данных в одном тесте. Гарантируется, что $\sum n \leqslant 200\,000, \sum m \leqslant 200\,000$.

Формат выходных данных

Для каждого набора входных данных выведите n целых чисел — ответ на задачу для всех x от 1 до n.

Система оценки

Пото	Болиг		Ограничения			Информация
Подз.	Баллы	$\sum n$	$\sum m$	дополнительно	подзадачи	о проверке
1	10	$\sum n \leqslant 100$	$\sum m \leqslant 100$	m = 1		первая ошибка
2	7	$\sum n \leqslant 100$	$\sum m \leqslant 100$		У, 1	первая ошибка
3	6	$\sum n \leqslant 2000$	$\sum m \leqslant 2000$		У, 1–2	первая ошибка
4	6	$\sum n \leqslant 20000$	$\sum m \leqslant 200$		У, 1–2	первая ошибка
5	12	$\sum n \leqslant 10^5$	$\sum m \leqslant 2000$		У, 1–4	первая ошибка
6	17	$\sum n \leqslant 20000$	$\sum m \leqslant 20000$	$t_i = 1$		первая ошибка
7	8	$\sum n \leqslant 10^5$	$\sum m \leqslant 10^5$	$\begin{vmatrix} l_i \leqslant l_{i+1}, \\ r_i \leqslant r_{i+1}, t_i = 1 \end{vmatrix}$		первая ошибка
8	8	$\sum n \leqslant 10^5$	$\sum m \leqslant 10^5$	$t_i = 1$	6, 7	первая ошибка
9	13	$\sum n \leqslant 10^5$	$\sum m \leqslant 10^5$	для всех роботов с $t_i = 0, r_i \leqslant 50$ или $l_i > n - 50$	6–8	первая ошибка
10	4	$\sum n \leqslant 10^5$	$\sum m \leqslant 10^5$	$a_i = 1$		первая ошибка
11	6	$\sum n \leqslant 10^5$	$\sum m \leqslant 10^5$		У, 1–10	первая ошибка
12	3	$\sum n \leqslant 2 \cdot 10^5$	$\sum m \leqslant 2 \cdot 10^5$		У, 1–11	первая ошибка

Пример

стандартный ввод	стандартный вывод
1	8 7 7 8
4 3	
3 3 2 2	
1 2 2 0	
3 3 3 0	
2 2 4 1	