

TRABAJO FIN DE MÁSTER

MÁSTER EN CIENCIAS DE DATOS E INGENIERÍA DE COMPUTADORES

Algoritmos de Deep Learning para el tratamiento de series temporales de clasificación

Autor

Alberto Armijo Ruiz

Director

Salvador García López

ESCUELA TÉCNICA SUPERIOR DE INGENIERÍAS INFORMÁTICA Y DE TELECOMUNICACIÓN

10 de septiembre de 2019

Algoritmos de Deep Learning para el tratamiento de series temporales de clasificación

Alberto Armijo Ruiz

Palabras clave: LSTM, Deep Learning, Ciencia de Datos, Series Temporales, Clasificación, Desbalanceo de clases, Oversampling.

Resumen

Actualmente la Ciencia de Datos es una de las áreas de estudio que más repercusión está causando, dentro de esta, el Deep Learning es uno de los campos más famosos.

Hoy en día existen estudios específicos sobre Series Temporales de Clasificación, pero no existe ningún estudio sobre la aplicación generalista del Deep Learning a casos de estudio estándar de Series Temporales de Clasificación. Por ello el objetivo de este trabajo será estudiar la aplicación del Deep Learning a las Series Temporales de Clasificación con desbalanceo de clases.

Este estudio utilizará ocho conjuntos de datos sobre Series Temporales de Clasificación con diferentes grados de desbalanceo de clases. A estos se aplicarán SMOTE, ADASYN y MWMOTE para realizar oversampling, existen otras técnicas que se han estudiado como el undersampling o el peso de clases pero no se han utilizan dentro del estudio. También se utiliza el algoritmo Boruta como método de selección de características, existen otras características como selección de características con Chi-Cuadrado pero Boruta ofrece un buen rendimiento de forma general.

A parte de los métodos anteriores, se estudiará el uso de una ventana de diferentes tamaños para aprovechar la dependencia temporal con la que cuentan la series temporales intentando replicar el comportamiento de modelos de predicción de series temporales clásicos para mejorar los resultados iniciales.

Para la predicción se hará uso de las LSTM, uno de los tipos de red neuronal más utilizados en la actualidad; además de este, se utilizarán otros modelos que se encuentran en el estado del arte de la clasificación como son SVM, RandomForest y XGBoost y se compararán los resultados obtenidos.

Deep Learning algorithms for time series classification

Alberto Armijo Ruiz

Keywords: LSTM, Deep Learning, Data Science, Time Series, Classification, Class Imbalance, Oversampling.

Abstract

Currently Data Science is one of the areas of study that is causing more impact, within this, Deep Learning is one of the most famous fields.

Nowadays there are specific studies on Time Series Classification, but there is no study on the generalist application of Deep Learning to standard case studies of Time Series Classification. Therefore, the objective of this paper will be to study the application of Deep Learning to Classification Time Series with class imbalance.

This study will use eight datasets of Time Series Classification problems with different degrees of class imbalance. To these will be applied SMOTE, ADASYN and MWMOTE to perform oversampling, there are other techniques that have been studied as undersampling or class-weight but have not been used within the study. The Boruta algorithm is also used as a method of feature selection, there are other features such as feature selection with Chi-Square but Boruta offers good performance overall.

Apart from the previous methods, we will study the use of a window of different sizes to take advantage of the time dependency of the time series trying to replicate the behavior of classic time series models to improve the initial results.

For the prediction, use will be made of LSTM, one of the most commonly used neural network types at present; in addition to this, other state of the art models for classification will be used, such as SVM, RandomForest and XGBoost, and the results obtained will be compared.

D. Salvador García López, Profesor del Área de Soft Computing and Intelligent Information Systems del Departamento DECSAI de la Universidad de Granada.

Informan:

Que el presente trabajo, titulado Algoritmos de Deep Learning para el tratamiento de series temporales de clasificación, ha sido realizado bajo su supervisión por Alberto Armijo Ruiz, y autorizamos la defensa de dicho trabajo ante el tribunal que corresponda.

 ${\bf Y}$ para que conste, expiden y firman el presente informe en Granada a 9 de septiembre de 2019 .

Los directores:

Salvador García López

Índice general

1.	Intr	oducción	13
	1.1.	Marco Introductorio	13
	1.2.	Objetivos	15
	1.3.	Motivación	15
	1.4.	Organización de la memoria	16
2.	Ant	ecedentes	19
	2.1.	Clasificación de series temporales. Algoritmos Básicos	19
		2.1.1. Series temporales de regresión	19
		2.1.2. Series temporales de clasificación	22
	2.2.	LSTM	30
	2.3.	Clasificación con clases no balanceadas	34
		2.3.1. Técnicas basadas en modificación del algoritmo	35
		2.3.2. Técnicas basadas en la modificación del conjunto de	
		datos	36
		2.3.3. Otros enfoques	38
3.	LST	Ms para clasificación de series temporales	39
	3.1.	Descripción	39
	3.2.	Arquitectura	40
	3.3.	Justificación	41
4.	Ove	ersampling para clasificación de series temporales	43
	4.1.	SMOTE	43
	4.2.	MWMOTE	46
	4.3.	ADASYN	48
5.	Trat	tamiento de series temporales de clasificación multiva-	
	riad	as	5 1
	5.1.	Procesamiento normal	52
	5.2.	Método de la ventana	54

6.	Marco Experimental	57
	6.1. Datasets	57
	6.2. Medidas utilizadas	58
	6.3. Parámetros de la red	61
7.	Resultados y discusión	63
	7.1. Comparación resultados	64
8.	Conclusiones y trabajos futuros	71
	8.1. Conclusiones	71
	8.2. Trabajos Futuros	72
Bi	bliografía	72
Α.	. Tablas de resultados	77

Capítulo 1

Introducción

1.1. Marco Introductorio

En la actualidad se producen cada vez más datos, la Ciencia de Datos es la encargada de dar una aplicación útil a estos datos. La Ciencia de Datos es un campo encargado de extraer conocimiento de datos y utilizar este para obtener beneficios. La Ciencia de Datos se encuentra en muchos otros campos como por ejemplo la Medicina o la Industria.

Netflix y Spotify utilizan la Ciencias de Datos para estudiar las costumbres de sus clientes y así poder realizar recomendaciones personalizadas. Otro caso de uso de Ciencias de Datos es en los gobiernos, la cual se utiliza para llevar a cabo análisis que sirvan para desarrollar políticas.

Dentro de la Ciencia de Datos se hace uso tanto de la Estadística como de la Minería de Datos. La Minería de Datos es un campo que estudia grandes volúmenes de datos para intentar obtener patrones internos de estos, para ello, hace uso de técnicas de Machine Learning (Aprendizaje Automático en español). Algunos usos de la Minería de Datos son la detección de patrones en la compra, el estudio de grupos diferentes de clientes en un banco, predicción del tiempo o clasificación automática de datos.

El Machine Learning es un subcampo de la Inteligencia Artificial cuyo objetivo es crear algoritmos que permitan a un ordenador aprender. El resultado de esto algoritmos es la obtención de un modelo, que puede utilizarse para resolver una tarea sin que el ordenador tenga que volver a aprender. Existen diferentes tipos de modelos, como por ejemplo los árboles de decisión o modelos más complejos como las redes neuronales o combinaciones de modelos [2, 3, 7].

El desbalanceo de clases es un problema asociado a la clasificación y muy común en problemas de la vida real. La mayoría de los algoritmos clásicos suelen trabajar sobre la suposición de que el número de datos de cada clase están balanceados, por lo que el desbalanceo entre las diferentes clases hace que el rendimiento de estos algoritmos sea pobre. Esto hace que cuando la clase minoritaria es aquella que tiene más interés en clasificar, como por ejemplo detección de un terremoto; se necesite buscar una solución.

Existen diferentes soluciones para intentar abordar el problema de desbalanceo entre clases a diferentes niveles: a nivel de datos, a nivel del algoritmo o combinaciones de estas dos. Los métodos que abordan el problema a nivel de datos intentan restablecer el balance entre clases mediante el muestreo de datos, añadiendo datos de la clase minoritaria (oversampling) [6, 16, 1], eliminando datos de la clase mayoritaria (undersampling) o una combinación de ambos. Los métodos que abordan el problema a nivel del algoritmo enfatizan en la clase minoritaria manipulando e incorporando diferentes parámetros como el peso de cada clase.

En los últimos años, el Deep Learning se ha convertido en una de los campos del Machine Learning más famosos. El Deep Learning se trata de un conjunto de modelos basados en redes neuronales con un gran número de capas (a veces incluso miles). Algunas de las aplicaciones más comunes del Deep Learning en la vida real es la detección de caras o el procesamiento de textos, ya bien sea para traducirlo o para que un asistente virtual como Alexa pueda llevar a cabo una acción.

Las redes formadas por LSTM (Long Short Term Memory) [17] son un tipo de red que se utiliza en un gran número de problemas de gran complejidad como es la toma de decisiones en videojuegos, reconocimiento del habla o traducción de textos. Este tipo de redes son especialmente buenas en problemas donde hay que procesar secuencias de datos, como es el caso de las series temporales.

Las Series Temporales, son un tipo de problema en Ciencias de Datos bastante común por su gran cantidad de aplicaciones en el mundo real, algunos de estos son la predicción del tiempo o el valor de una empresa en la bolsa basandose en los datos anteriores.

Introducción 15

Las Series Temporales de Clasificación (TSC, Time Series Classification), son otro tipo de problema el cual el objetivo es predecir la clase de una serie temporal completa o predecir la clase en los momentos siguientes sobre los datos de un serie temporal. Este tipo de problema tiene una gran cantidad de aplicaciones [22, 4, 5, 12, 23, 28, 15, 26, 19] como por ejemplo detectar funcionamiento anormal de una máquina según los datos obtenidos por sensores.

1.2. Objetivos

Los objetivos propuesto para este Trabajo Fin de Máster son los siguientes:

- Estudio de algoritmos básicos para series temporales y clasificación, tratamiento de series temporales de clasificación.
- Estudio sobre problema de desbalanceo de clases, métodos para tratar con desbalanceo, centrándose en el estudio de técnicas de oversampling utilizadas actualmente, métricas utilizadas para este tipo de problema.
- Estudio sobre LSTM y aplicación de estas al problemas de clasificación.
- Realización de pruebas sobre un conjunto de datasets de series temporales de clasificación con desbalanceo de clases, comparación y análisis de los resultados obtenidos por los diferentes modelos.

1.3. Motivación

A día de hoy, la minería de datos en series temporales son un tipo de problema en auge. La Clasificación de Series Temporales (TSC, Time Series Classification en Inglés) es una de las áreas donde más investigación se está realizando en los últimos años debido a su gran número de aplicaciones en diferentes sectores como la industria, salud o transporte [4] [5] [15] [28] [23] [22] [12]. Obtener una buena precisión en este tipo de problema puede ofrecer grandes beneficios por lo que existe un gran interés en este área.

Por otro lado, las redes neuronales son unos de los modelos más famosos actualmente [9] [8] [19] [26] y se utilizan en un gran número diferentes de problemas obteniendo buenos resultados. Cuando se trata de procesar secuencias de datos, las redes formadas con LSTM (Long Short Term Memory) suelen ser las más utilizadas por su buen rendimiento. Además, la redes neuronales son capaces de trabajar con datos con alta dimensionalidad obteniendo buenos resultados a diferencia de otros métodos de minería de datos clásicos.

Muchos de los problemas de la vida real suelen tener problemas de desbalanceo de clases, para ello existen diferentes métodos para paliarlo como son SMOTE, ADASYN o MWMOTE [6, 16, 1].

En los artículos actuales sobre Clasificación de Series Temporales se muestran propuestas específicas, como por ejemplo nuevos métodos para realizar oversampling [22] u optimizar el coste asociado a cada clase [23] pero no existe ningún estudio que encargado de comprobar cual es el rendimiento de los algoritmos que utilizamos normalmente ni cuales son las ventajas de utilizar un red neuronal con este tipo de problemas a utilizar modelos de clasificación clásicos como son Boosting, RandomForest o SVM.

Además, no hay ningún estudio que compruebe el uso de técnicas de selección de características como puede ser Boruta y cómo afecta al rendimiento, mientras que en otros problemas de clasificación la reducción de la dimensionalidad suele ser siempre algo a tener en cuenta.

Por otro lado, tampoco existe ningún método que tenga en cuenta las características de las series temporales y se utilicen para mejorar el rendimiento, en este aspecto se propone utilizar un método basado en el uso de una ventana para tener en cuenta los valores pasados. El uso de una ventana ya ha sido utilizado en problemas similares como son los flujos de datos para detección de cambios de concepto [10] con buenos resultados y en algoritmos clásicos de predicción para series temporales como es ARIMA [18].

Por ello, en este trabajo se realizará un estudio generalista sobre la aplicación de redes LSTM a problemas de Clasificación de Series Temporales con desbalanceo, utilizando técnicas de oversampling, selección de características y del método de la ventana mencionado anteriormente.

1.4. Organización de la memoria

La memoria de este TFM se organizará en ocho capítulos. En el primer capítulo se mostrarán los objetivos de este trabajo y se describirá la motivación para su realización.

El segundo capítulo trata sobre antecedentes, métodos de clasificación clásicos y métodos de predicción de series temporales, teoría básica sobre funcionamiento de LSTMs y algunas aplicaciones, por último, teoría sobre el problema de desbalanceo de clases.

Introducción 17

El tercer, cuarto y quinto capítulo describen tanto métodos de preprocesamiento, funcionamiento de métodos de oversampling que se utilizarán en el estudio, características específicas al preprocesar series temporales de clasificación como implementación de una red de LSTMs para clasificación.

El sexto capítulo contiene la información sobre los datos que se utilizan en el estudio, la arquitectura de la red básica que se utilizará y medidas para evaluar el rendimiento de la red. El capítulo siete contiene los resultados de las pruebas realizadas y un análisis sobre estos. El capítulo ocho contiene las conclusiones obtenidas por el estudio.

Por último, el apéndice contiene las tablas de los experimentos realizados por cadas uno de los conjuntos de datos.

Capítulo 2

Antecedentes

En este capítulo se describirán los aspectos generales de los principales componentes del estudio. Primero se describirán diferentes algoritmos básicos usados para clasificación de series temporales. Tras esto se explicarán qué son las LSTM, su funcionamiento y estructura. Por último, se describirá el problema de desbalanceo de clases y diferentes enfoques para solucionarlo.

2.1. Clasificación de series temporales. Algoritmos Básicos

En esta sección se describirán algoritmos básicos para predicción de series temporales, así como algoritmos utilizados cuando se trabaja con series temporales de clasificación.

2.1.1. Series temporales de regresión.

Cuando tratamos con series temporales nos encontramos con un problema de regresión clásico; en principio, se puede intentar utilizar métodos clásicos de regresión, pero normalmente no suelen dar buenos resultados. Para este tipo de problemas, el modelo más utilizado es ARIMA.

ARIMA se trata de un modelo clásico para series temporales. Dicho modelo se trata de una combinación de otros modelos, modelos autorregresivos (AR, AutoRegressive) y modelos de medias móviles (MA, Moving Averages). Además de esto, incorporan la diferenciación de series temporales dentro del propio modelo.

En un modelo AR; a diferencia de un modelo de regresión normal, donde se utiliza una combinación lineal de características para predecir una variable; se utiliza una combinación lineal de los valores anteriores de dicha variable. Un modelo AR de orden p, al que nos referimos como AR(p) se define de la siguiente forma:

$$y_t = c + \phi_1 y_{t-1} + \phi_2 y_{t-2} + \dots + \phi_p y_{t-p} + \varepsilon_t$$

donde ε_t es ruido blanco, el ruido blanco es un tipo de serie temporal donde su varianza es siempre la misma y cada valor no tiene correlación con el resto de valores de la serie. Los valores $y_{t-1}, ..., y_{t-p}$ son los p valores anteriores en la serie que se utilizan para calcular el valor actual. Los valores $\phi_1, ..., \phi_p$ son parámetros que el modelo modifica para ajustarse a la serie; c es un término independiente. En la Figura 2.1 se muestran dos tipos de modelos AR.

Figura 2.1: Diferentes modelos AR.

Un modelo MA, a diferencia de un modelo AR utiliza los errores de predicciones anteriores para generar un modelo de regresión. Un modelo MA con grado q, al que llamaremos MA(q) se define de la siguiente manera:

$$y_t = c + \varepsilon_t + \theta_1 \varepsilon_{t-1} + \theta_2 \varepsilon_{t-2} + \dots + \theta_a \varepsilon_{t-a}$$

donde ε_t es ruido blanco. Al igual que en el modelo anterior, $\theta_1, ..., \theta_q$ son parámetros que el modelo entrena para ajustarse a una serie temporal. En la Figura 2.2 se muestran dos ejemplos de modelos MA.

Figura 2.2: Diferentes modelos MA.

El último concepto que añade ARIMA es la diferenciación. La diferenciación es un proceso que se aplica a series temporales que no son estacionarias. Una serie temporal estacionaria es aquella cuya media y varianza se mantienen constantes. La diferenciación se trata del calculo de la diferencia entre observaciones consecutivas de la serie; por ejemplo una diferenciación de grado 1 en una serie se puede definir como $y'_t = y_t - y_{t-1}$ y de grado 2 como $y''_t = y'_t - y'_{t-1} = y_t - 2y_{t-1} + y_{t-2}$.

Combinando la diferenciación junto con los modelos AR y MA en un único modelo, se obtiene un modelo ARIMA. Un modelo ARIMA puede expresarse de la siguiente manera.

$$y'_t = c + \phi_1 y'_{t-1} + \dots + \phi_p y'_{t-p} + \theta_1 \varepsilon_{t-1} + \dots + \theta_q \varepsilon_{t-q} + \varepsilon_t$$

donde y'_t es la serie diferenciada. De forma general, un modelo ARIMA se representa como ARIMA(p,d,q) donde p representa el grado del modelo AR, d representa el grado de la diferenciación a la serie y q representa el grado de del modelo MA. Si p o q son 0, entonces nos encontramos con un modelo MA o AR, dependiendo cual es 0. En la Figura 2.3 se muestra un ejemplo de la predicción obtenido con un modelo ARIMA.

Figura 2.3: Ejemplo predicción con modelo ARIMA.

2.1.2. Series temporales de clasificación

En el apartado anterior se ha descrito modelos utilizados cuando se estudian series temporales de regresión; en este apartado se verán diferentes modelos utilizados cuando se estudian series temporales de clasificación.

Las series temporales de clasificación tienen propiedades que hacen que ciertos aspectos del preprocesamiento haya que abarcarlos de forma diferente a diferencia de otro tipo de problemas; sin embargo, los métodos que se utilizan para su clasificación son los mismo que para cualquier otro tipo de problema de clasificación.

Podemos encontrarnos las series temporales de clasificación de dos formas. La primera forma son aquellas series en las que cada serie temporal completa tiene asociada una clase; este tipo de series puede definirse de la siguiente forma:

$$(S_1, S_2, ..., S_n) \rightarrow (Y_1, Y_2, ..., Y_n)$$

donde $(S_1, ..., S_n)$ corresponde con un conjunto de datos formados por n series temporales de la misma longitud y cada Y_x es la clase asociada a la serie temporal x.

Un ejemplo de este tipo de series temporales sería obtener series con los valores de un sensor cada cierto tiempo y detectar si el comportamiento es normal u anómalo. Otro ejemplo puede ser detectar la cara de una persona utilizando el contorno de esta como una señal, este ejemplo corresponde con el dataset *FaceAll* que se utilizará en este estudio. De este último la Figura 2.4 muestra un ejemplo de ello.

Figura 2.4: Ejemplo primer tipo de serie temporal de clasificación.

La segunda forma son aquellas donde solamente hay una serie temporal multivariada con m series, donde cada instante de dicha serie x tiene asociado una clase. Este tipo de series puede definirse como:

$$((S_{11}, S_{12}, ..., S_{1m}), ..., (S_{n1}, S_{n2}, ..., S_{nm})) \rightarrow (Y_1, Y_2, ..., Y_n)$$

donde $(S_{x1}, S_{x2}, ..., S_{xm})$ es un instante x de la serie e Y_x es la clase asociada a ese instante.

Un ejemplo de esto puede ser la detección de si un ojo está cerrado o abierto dependiendo de los valores de ondas cerebrales, este ejemplo corresponde con el dataset EGG_Eye que se utilizará en este estudio. La Figura muestra un ejemplo de este tipo de serie temporal.

Figura 2.5: Ejemplo segundo tipo de serie temporal de clasificación.

Los métodos más utilizados, a parte de las redes neuronales que no se discutirán en este apartado; son SVM, RandomForest y Boosting. A continuación, se describirá el funcionamiento de estos algoritmos.

SVM

El SVM (Support Vector Machine, Máquinas de Soporte Vectorial en español) [2] fue introducido en 1992. Las SVM son un caso particular de "Kernel Machines" (KM). Este tipo de algoritmos utilizan el producto escalar de los datos de entrada, de esta forma, el producto escalar se usa como una forma de establecer una similitud entre los elementos.

Con este producto escalar, se puede definir un hiperplano como < x, w > +b = 0; modificando el valor de w, se puede adaptar dicho hiperplano para separar mejor los datos, un ejemplo clásico de esto es el perceptron. La Figura 2.6 muestra un ejemplo de hiperplano.

Figura 2.6: Ejemplo de hiperplano.

Para obtener un buen valor de w, se puede utilizar una combinación lineal de los datos de entrada junto con un coeficiente que refleje su dificultad, $w = \sum \alpha_i y_i x_i$. De esta forma, se puede representar ese hiperplano como $\sum \alpha_i y_i < x_i, x > +b$; para entrenar y ajustar este hiperplano simplemente se necesita modificar α_i , si $f(x) = \sum \alpha_i y_i < x_i, x > +b <= 0$ entonces $\alpha_i = \alpha_i + \eta$. Gracias a esta nueva representación, la función de decisión (hiperplano) solo necesita los datos de entrada.

La representación dual es la primera características de los SVM. El problema es que hasta ahora se han utilizado una separación lineal de los datos y en muchos casos los datos no son linealmente separables o existe ruido. La solución que da SVM para este problema es trasladar los datos, que no son linealmente separables, a otro espacio donde sí lo sean; para ello utiliza los kernels.

Un kernel es una función que devuelve el valor del producto escalar entre los datos llevados a otro espacio. Se puede representar de la siguiente forma.

$$K(x_1, x_2) = \langle \phi(x_1), \phi(x_2) \rangle$$

donde x_1, x_2 son datos en el espacio original y ϕ representa la transformación para llevar un dato a otro espacio. Gracias a los kernels no es necesario saber la transformación ϕ , además, a partir de este momento en la función del hiperplano se puede sustituir el producto escalar por la función kernel.

Existen diferentes tipos de kernels, como por ejemplo el polinomial o el radial. A continuación se muestra un ejemplo de proyección en el espacio. En la Figura 2.7 se muestra un ejemplo de proyección a otro espacio mediante el uso de un kernel.

Figura 2.7: Ejemplo de proyección.

La última características de las SVM es que tiene la capacidad de maximizar el margen, es decir, de entre todos los hiperplanos que separan las dos clases, SVM se queda con aquel que maximiza la distancia a las dos clases, de esta forma se minimiza el riesgo de sobreaprendizaje.

Por último, para utilizar SVM con series temporales se pueden utilizar kernels específicos [25]; para el caso de las series temporales de clasificación se puede utilizar kernels más comunes como el lineal.

RandomForest

RandomForest [3] es uno de los métodos clásicos que forma parte del estado del arte para algoritmos de clasificación. RandomForest se trata de un multiclasificador, es decir, es un modelo formado por varios modelos más simples; en el caso de RandomForest se utilizan árboles de clasificación.

Los árboles de clasificación son un algoritmo clásico de clasificación. El proceso que realiza un árbol de clasificación es dividir el espacio del problema hasta que llega decisión. El proceso que sigue para generar el árbol es el siguiente.

Primero se busca el atributo que mejor separe las clases sobre el conjunto de datos entero (nodo raíz). Segundo, se divide el conjunto de datos según el atributo elegido y se elimina este. Este proceso se repite en cada nodo hasta que todos los elementos en ese elemento sea de la misma clase. El proceso se repite hasta que todas las ramas del árbol llegan a una solución.

Para decidir que atributos son los que mejor separan las clase existe diferentes medidas como por ejemplo el índice GINI, Entropía, Ganancia de información o el Ratio de Gananacia. Las medidas GINI y Entropía miden

interés en un atributo a partir de la frecuencia relativa entre clases para la partición de dicho atributo, la Ganancia mide la reducción en la Entropía al realizar una partición, el Ratio de Ganancia mide la Ganancia dividido entre el número de particiones que se realizan al particionar con ese atributo.

En la Figura 2.8 se muestra un ejemplo sencillo de árbol de clasificación.

Figura 2.8: Ejemplo de árbol de clasificación.

RandomForest crea un conjunto de árboles de clasificación para realizar su decisión; una vez creados los árboles, se decide la clase final mediante voto. Para generar los árboles se utiliza Bagging. Para cada uno de los árboles, se eligen m atributos y un subconjunto de instancias del conjunto de datos, de esta forma se obtiene modelos más simples que pueden aprender mejor ciertos atributos que si se creara un solo árbol de decisión.

Para el caso de las series temporales de clasificación, el proceso es el mismo; RandomForest crea un conjunto de modelos que tienen en cuenta un subconjunto de las series temporales y mediante votación se decide la clase de nuevas instancias.

Boosting

Boosting [24], al igual que RandomForest se trata de un multiclasificador, aunque su enfoque es diferente. Boosting puede utilizarse tanto con árboles de decisión como con otros algoritmos.

A diferencia de RandomForest, donde cada árbol que se genera es independiente, en Boosting cada árbol o clasificador que se genera utiliza información de los árboles que se han creado anteriormente.

El algoritmo más conocido de Boosting es AdaBoost. AdaBoost sigue el siguiente proceso para crear N clasificadores mostrado en el Algoritmo 1.

Algoritmo 1 AdaBoost(N,C)

Entrada: Conjunto de datos C, Número de clasificadores a entrenar N Salida: Clasificador entrenado.

Iniciar una distribución uniforme de pesos para todas las instancias de C. for $i \leftarrow 1, N$ do

Entrenar un clasificador débil h_i con un subconjunto de los datos.

Probar el clasificador débil h_i sobre C.

Asociar al clasificador un peso α_i basado en el error.

Modificar el peso de las instancias utilizadas basado en el error cometido.

end for

return $H_final = sign(\sum_{i=1}^{N} \alpha_i h_i)$

Una vez creados los N clasificadores, la clase final se decide mediante una combinación lineal de la salida de cada clasificador y su importancia. En la Figura 2.9 se muestra un ejemplo del funcionamiento de AdaBoost.

Figura 2.9: Ejemplo funcionamiento AdaBoost.

Para este estudio, el algoritmo que se utilizará es XGBoost [7]; este es un algoritmo de Boosting, específicamente Gradient Boosted Trees [11]. Este algoritmo utiliza el Boosting para generar nuevos árboles que puedan predecir la clase de los errores que han cometido árboles anteriores. Para minimizar la pérdida al añadir nuevos modelos se utiliza gradiente descendiente.

XGBoost añade también el concepto de regularización a los Gradient Boosted Trees. La regularización es un mecanismo para evitar el sobreaprendizaje, para conseguir esto se mide la complejidad del modelo, de forma que se premian modelos más sencillos. XGBoost, a parte de optimizar la pérdida para conseguir mejores modelos, optimiza la regularización para obtener modelos más sencillos. Esto hace que pueda producir mejores resultados mejores que los Gradient Boosted Trees, ya que modelos más sencillos suelen generalizar mejor y por lo tanto sufrir menos sobreaprendizaje y siendo más estables.

XGBoost no hace ningún tipo de tratamiento adicional a las series temporales de clasificación, aprende de los datos como con cualquier conjunto de datos de clasificación.

30 2.2. LSTM

2.2. LSTM

Las LSTM (Long Short-Term Memory) [17] son un tipo de red neuronal recurrente; este tipo de red es capaz de procesar de procesar secuencias de datos, como por ejemplo vídeos o frases. Este tipo de red neuronal se fueron creadas para ser usadas en problemas donde la información que se procesa es dependiente de información anteriormente procesada, y esta relación debe ser recordada hasta que deje de ser útil. Actualmente las redes con LSTM se utilizan en diversas tareas, como por ejemplo reconocimiento del habla, traducción, etc.

Una unidad de LSTM o una neurona de LSTM tiene la siguiente estructura:

- Puerta de entrada.
- Puerta de salida.
- Puerta de olvido.
- Célula.

La célula es la encargada de almacenar información; el valor de la célula depende de los valores de las puertas de entrada, salida y olvido. Además, los valores de dichas puertas van cambiando en cada instante de tiempo. En la Figura 2.10 se puede ver una representación de las estructura de una LSTM.

Figura 2.10: Estructura de una LSTM.

La puerta de olvido tiene como función olvidar información anterior dependiendo de la información actual, dicha función podría expresarse de la siguiente forma:

$$f^{(t)} = \sigma(W_f[h^{(t-1)}, x(t)] + b_f)$$

donde:

- $x^{(t)}$: entrada de la puerta en el momento t.
- ullet $h^{(t-1)}$: valor de la salida de la célula en el instante anterior.
- W_f : matriz de pesos de la puerta de olvido.
- b_f : sesgo de la puerta de olvido.
- \bullet σ : función de activación (valores entre 0 y 1) de la puerta de olvido.

La puerta de entrada tiene como función aprender los parámetros de entrada para su composición con el estado de la LSTM. Para ello se debe calcular el estado de la LSTM y seleccionar la información que se utilizará para actualizar el estado. Esto se puede expresar mediante las siguientes funciones:

$$i^{(t)} = \sigma(W_i[h^{(t-1)}, x^{(t)}] + b_i)$$

32 2.2. LSTM

$$s'^{(t)} = \tanh(W_s[h^{(t-1)}, x^{(t)}] + b_s)$$

donde:

• $s'^{(t)}$:estado local de la LSTM, sin tener en cuenta el estado anterior.

• W_i : matriz de pesos de la puerta de entrada.

• W_s : matriz de pesos del estado de la LSTM.

• b_i : sesgo de la puerta de entrada.

• b_s : sesgo del estado.

Tras esto, se calcula el nuevo estado de la LSTM de la siguiente forma:

$$s^{(t)} = f^{(t)}s^{(t-1)} + i^{(t)}s'^{(t)}$$

de esta forma, el estado se forma con una parte del estado anterior, la que no se olvida; y con la composición de la entrada con el estado local ($s'^{(t)}$).

La puerta de salida es la encargada de aprender los parámetros de salida, esto puede expresarse mediante la siguiente función:

$$o^{(t)} = \sigma(W_o[h^{(t-1)}, x^{(t)}] + b_o)$$

Por último, la salida se calcula como:

$$h^{(t)} = o^{(t)} \tanh(s^{(t)})$$

La función para calcular la salida puede ser otra, como ReLu; las funciones de activación de las puertas también pueden ser otras.

Como puede verse, las LSTM son capaces de guardar información relevante durante un largo periodo de tiempo y eliminar la información poco importante; por ello, son muy utilizadas en problemas con series temporales, ya que la información en un momento t es dependiente de la información que había en instantes anteriores y las LSTMs son capaces de detectar dicha dependencia y aprenderla.

Las LSTM son un tipo de red recurrente, por lo que se pueden construir arquitecturas basadas en una LSTM que procesa la secuencia de izquierda a derecha y otra de derecha a izquierda; a estas estructuras se les llama LSTM bidireccionales, la Figura 2.11 muestra un ejemplo de esta estructura.

Figura 2.11: Ejemplo de estructura de LSTM bidireccional.

Gracias a este tipo de estructuras pueden resolverse problemas donde la importancia/sentido de un dato no depende de datos anteriores sino por información posterior; por ejemplo, el significado de una palabra puede ser diferente dependiendo de las palabras siguientes que haya en una secuencia y no en las anteriores.

2.3. Clasificación con clases no balanceadas

El problema de desbalanceo de clases es un tipo de problema que aparece en problemas de clasificación. El desbalanceo de clases ocurre cuando el número de elementos de una clase es mucho mayor que el número de elementos de la otra clase; a esta clase se le llama clase minoritaria. La Figura 2.12 muestra un ejemplo en 2D de un problema de desbalanceo de clases.

Imbalanced Class Distribution

Figura 2.12: Desbalanceo de clases.

El principal problema que tiene el desbalanceo de clases es que afecta a la capacidad de aprendizaje de la mayoría de los modelos de minería de datos actuales, exceptuando algunos como los árboles de decisión, aunque también trabajan mejor si no hay desbalanceo. Además, si el desbalanceo es muy grande, es posible que los modelos no aprendan directamente la clase minoritaria.

Otro problema es que afecta a las medidas utilizadas normalmente en problemas de clasificación como es el Accuracy. Esta medida representa el número de elementos bien clasificados sobre el total de elementos; si por ejemplo la clase minoritaria representa el 0.1 % de los datos y un clasificador predijera todos los datos como elementos de la clase mayoritaria, su Accuracy sería del 99.9 %; por ello, se debe utilizar otras medidas. Las medidas usuales son Precision, Recall, AUC, G-Mean, F1-Score, etc; todas estas medidas tienen en cuenta la clase minoritaria de forma que si ocurre lo anterior su valor sea bajo.

Como solución al problema del desbalanceo existen dos propuestas: una basada en modificación de algoritmos y otra basada en modificación del conjunto de datos.

2.3.1. Técnicas basadas en modificación del algoritmo

Este enfoque se centra en modificar clasificadores ya existentes para aliviar el sesgo hacia la clase mayoritaria en vez de alterar el conjunto de datos. Esto requiere un buen conocimiento interno del modelo que se quiere modificar y saber las razones por las cuales falla al identificar la clase minoritaria.

Modificar un modelo reduce su flexibilidad y por lo tanto lo hace válido para un número menor de problemas, pero a cambio ofrece una mayor especialización para el tipo de problema que se modifica.

Algunos ejemplos de modelos modificados son árboles de decisión que utilizan la distancia de Hellinger para la separación de nodos, utilizar un método diferente de cálculo de pertenencia de clases para KNN, por ejemplo con pesos en vez de distancias, uso de kernels específicos con SVM, etc. La Figura 2.13 muestra el cambio en el comportamiento de un árbol de decisión utilizando diferentes métricas.

Figura 2.13: Ejemplo comportamiento algoritmo.

Otra posible solución es modificar el peso asociado a clasificar mal un elemento, dando un peso mayor a clasificar mal un elemento de la clase minoritaria que de la mayoritaria, de forma que cuando se entrena el modelo intenta minimizarse el coste. El peso asociado a cada fallo se almacena en la

matriz de costes. Dicha matriz puede ser calculada con diferentes heurísticas o aportada por un experto en el problema que se plantee. La Figura 2.14 se muestra un ejemplo del uso de la matriz de costes para un clasificador simple.

Figura 2.14: Ejemplo uso de matriz de pesos.

Existen dos formas de usar la matriz de costes, la primera es integrar el uso de la matriz dentro del algoritmo, lo que significa que hay modificarlo para que use dicha matriz; la segunda forma es preprocesando los datos de entrada asignándole un peso o asignando a cada elemento la clase que se cree que tendrá menor coste (para ello se hace uso del Teorema de Bayes).

2.3.2. Técnicas basadas en la modificación del conjunto de datos

La idea de este tipo de técnica es manipular la distribución de los datos con los que entrena el clasificador, para ello se añaden o suprimen elementos del conjunto de datos. Cuando se añaden elementos, se llama "oversampling" y cuando eliminan "undersampling"; dependiendo del problema se puede usar una de estas técnicas o ambas. La Figura 2.15 muestra un ejemplo sobre el funcionamiento de cada uno de estos métodos.

Antecedentes 37

Figura 2.15: Esquema funcionamiento técnicas de muestreo de datos.

Un ejemplo clásico de algoritmo de undersampling es Tomek Links [27]; este algoritmo elimina elementos de la clase mayoritaria que sean fronterizos con elementos de la clase minoritaria; para ello calcula las parejas de elementos de clases diferentes que estén a la distancia mínima entre ellos, es decir, que no haya ningún otro elemento dentro del conjunto de datos que su distancia hacia ese elemento sea menor; y elimina aquellos que sean de la clase mayoritaria. En la Figura 2.16 se muestra un ejemplo del uso de este algoritmo.

Figura 2.16: Ejemplo funcionamiento algoritmo Tomek-Links.

Otros métodos de undersampling son OSS [20], CNN [14] y combinaciones de ellos. El problema del undersampling es que al eliminar elementos de la clase mayoritaria hace que cierta información se pierda, y dicha información puede ser importante al evaluar.

Un algoritmo clásico de oversampling es SMOTE [6], este algoritmo crea nuevas instancias usando una combinación de K instancias de la clase minoritaria que sean vecinas. En la Figura 2.17 se muestra un ejemplo del funcionamiento del SMOTE.

Figura 2.17: Ejemplo funcionamiento algoritmo SMOTE.

Otros algoritmos de oversampling son modificaciones de SMOTE, como por ejemplo Borderline-SMOTE [13] (centrado en la generación de instancias en la frontera), ADASYN [16], etc.

El problema del oversampling es que pueden generalizar demasiado la clase minoritaria y provocar ruido en el conjunto de datos.

2.3.3. Otros enfoques

Una última opción para paliar el desbalanceo sin implicar modificaciones de los algoritmos o del subconjunto de datos, esta es el uso de modelos ensemble. Los modelos ensemble son aquellos que están formados por varios modelos más simples, para ello, los modelos simples se entrenan con un subconjunto de los datos, de forma que en esos subconjuntos el desbalanceo no tiene por qué ser tan grande. Para elegir una clase, los modelos ensemble pueden combinar los resultados de los modelos simples (para problemas de regresión) o mediante voto. Un ejemplo de modelo ensemble es RandomForest.

Capítulo 3

LSTMs para clasificación de series temporales

En este capítulo se describirán el uso de las LSTM para problemas de series temporales de clasificación, así como una pequeña descripción de las LSTM y las series temporales de clasificación.

3.1. Descripción

Las LSTM son un tipo de red recurrente, esto quiere decir que tiene la capacidad de utilizar como entrada información que ya ha sido procesada; en el caso de las LSTM, dicha información es de gran importancia ya que es utilizada para calcular la salida de la LSTM a parte de la nueva información que se haya obtenido. La Figura 3.1 muestra una representación de una neurona LSTM.

Figura 3.1: Ejemplo neurona LSTM.

Las series temporales de clasificación son un caso especial de serie temporal, ya que el objetivo tras estas series no es obtener una predicción sobre el comportamiento futuro de la serie sino predecir una clase. Sobre este tipo de series temporales se pueden distinguir dos tipos: aquellos donde la serie entera corresponde con una clase y otros donde cada instante de la serie corresponde con una clase. El primer caso se podría expresar de la siguiente forma $S \to Y$ donde S es una serie cualquiera e Y es la clase asociada a esta serie. El segundo caso se podría expresar de la siguiente forma $S = (S_0, S_1, ..., S_m) \to (Y_0, Y_1, ..., Y_n)$ donde S es una serie temporal de clasificación de longitud n, S_i representa la serie en un momento determinado e Y_i la clase asociada a dicho momento.

3.2. Arquitectura

Para procesar series temporales de clasificación con LSTM se debe utilizar una estructura como la siguiente; una primera capa formadas por LSTM y una segunda capa para la predicción de la clase, esta capa no tiene por qué ser LSTM.

La primera capa de esta red es la encargada de procesar la información, las LSTM procesan una serie temporal o un trozo de una serie, dependiendo del tipo de problema que se esté procesando, en cada momento; una vez procesada la información la salida de cada una de las LSTM se pasa a la segunda capa que es la encargada de predecir la clase correspondiente. Para el cálculo de la clase se utiliza una función de activación, para el caso de problemas de clasificación binaria se puede utilizar una función sigmoide, si se trata de un problema de clasificación múltiple se puede añadir tantas neuronas como clases diferentes hay o utilizar la función de activación softmax, que tiene un comportamiento muy parecido a la función sigmoide pero está adaptada a más de dos clases.

Una vez se ha calcula la clase, al igual que cualquier otra red neuronal, se comprueba si esta es correcta y se recalculan los pesos de las neuronas de la red para mejorar el rendimiento de esta; al tratarse de un problema de clasificación, las métricas de rendimiento deben ser las usuales para clasificación como por ejemplo Accuracy.

La red descrita arriba es un ejemplo de la arquitectura más simple necesaria para afrontar este tipo de problemas. A partir de esta red pueden crearse redes más complejas y que en problemas específicos pueden tener un mejor rendimiento, como por ejemplo añadiendo más capas intermedias o combinando esta red con una red convolucional.

Para este trabajo se utilizará la red básica descrita, ya que se utilizarán problemas diferentes para los cuales unas estructuras pueden ser más útiles que otras. La Figura 3.2 muestra un ejemplo básico de red LSTM para clasificación.

Figura 3.2: Estructura básica de una red de LSTM para clasificación

3.3. Justificación

Las series temporales son un tipo de dato que tiene dependencia temporal, es decir, el valor de una serie en un momento determinado está relacionado con el valor de la serie en momentos anteriores. Como se ha dicho al principio del capítulo, las LSTM son un tipo de red que utilizan la información anterior para procesar nueva información, por lo que lo hace adecuado para este tipo de problema.

Además, las redes LSTM actualmente son un tipo de red muy utilizada en problemas complejos como la detección del habla, traducción, reconocimiento de palabras escritas a mano o incluso son utilizadas para la creación de IA capaces de jugar a videojuegos mejor que una persona.

A parte de las LSTM, existen otro tipo de neuronas recurrentes como son el caso de las RNN; fueron la primera estructura recurrente para redes neuronales, tienen el inconveniente de no ser capaces de recordar información durante mucho tiempo; o las GRU, son también un tipo de neurona muy utilizada, más sencilla que las LSTM ya que tiene un número de puertas lógicas menor y más adecuada dependiendo del problema, sin embargo, al ser más sencilla no es tiene tanta potencia como las LSTM.

Por todo esto, las LSTM son una estructura válida para este trabajo y serán las que se utilicen para procesar los diferentes problemas de clasificación que se verán más adelante.

Capítulo 4

Oversampling para clasificación de series temporales

En este capítulo se describirán diferentes algoritmos de oversampling que se utilizarán más adelante en el estudio. Con dichos algoritmos de oversampling se busca mejorar el rendimiento de los modelos que se probarán en el estudio. Los algoritmos que a continuación se van a describir son SMOTE, MWMOTE y ADASYN.

4.1. **SMOTE**

SMOTE (Synthetic Minority Oversampling Technique) [6] es uno de los algoritmos de oversampling más utilizados a día de hoy. Este algoritmo fue creado en 2002 y actualmente se considera como uno de los algoritmos en el estado del arte del oversampling.

Para balancear los datos de las diferentes clases, SMOTE propone generar instancias de la clase minoritaria de forma sintética. Para ello, SMOTE utiliza las instancias de la clase minoritaria para generar nuevas instancias de dicha clase con características parecidas a las ya existentes.

Para conseguir dicho objetivo SMOTE sigue el siguiente proceso, elige una instancia de la clase minoritaria cualquiera, tras esto se buscan sus K vecinos más cercanos que sean también de la clase minoritaria; dicho parámetro K se puede cambiar y afecta a como son las instancias generadas sintéticamente; si por ejemplo su valor fuera K=1, las instancias se generan a partir de dos instancias de la clase minoritaria, esto hace que las características de dichas instancias nuevas sean muy parecidas a las de las instancias que se han utilizado; en cambio si K tiene un valor muy grande

4.1. SMOTE

entonces las instancias generadas tienen menos parecido a las instancias con las que se han generado.

Una vez se han obtenido el número de vecinos elegidos, la nueva instancia se genera como una combinación de las instancias que se utilizan, por ejemplo si K=1, la nueva instancia se generaría como la media de los valores de dichas instancias. El Algoritmo 2 muestra el pseudocódigo de este algoritmo.

Entrada: Número de elementos de la clase minoritaria T; Cantidad de

instancias creadas con SMOTE N%; Número de vecinos k

Algoritmo 2 SMOTE(T,N,k)

for $attr \leftarrow 1$, numattrs do

```
Salida: (N/100) * T instancias sintéticas de la clase minoritaria. N = N/100

numattrs = número de atributos

Muestra = vector de elementos de la clase minoritaria inicial.

instancias\_generadas = guarda el número de instancias generadas, inicialmente su valor es 0.

Sinteticas = vector de elementos para guardar instancias generadas.

k\_vecinos = vector para almacenar los k vecinos más cercanos.

for i \leftarrow 1, T do

Calcular los k vecinos más cercanos a i y guardar el resultado en k\_vecinos

while N \neq 0 do
```

```
dif = Muestra[nn][attr] - Muestra[i][attr] gap = \text{N\'umero aleatorio entre 0 y 1.} Sinteticas[instancias\_generadas][attr] = Muestra[i][attr] + gap * dif end \ \text{for} instancias\_generadas + + N = N - 1 end \ \text{while} end \ \text{for}
```

Elegir un elemento de k-vecinos de forma aleatoria y llamarlo nn.

La Figura 4.1 muestra un ejemplo de generación de instancias con SMO-TE.

Figura 4.1: Ejemplo de generación de instancias con SMOTE.

Uno de los principales problemas de SMOTE es que no es bueno utilizarlo cuando las clases del conjunto de datos están mezcladas, es decir, dentro
de los datos de la clase mayoritaria puede haber un pequeño conjunto de
la clase minoritaria (la cual podría considerarse ruido); si se utilizara SMOTE, el número de instancias de ese conjunto sería mayor y esto afectaría al
rendimiento de un modelo. Por ello, antes de utilizar este método es bueno
realizar otro tipo de preprocesamientos como limpieza de ruido, imputación
de valores perdidos, etc...

46 4.2. MWMOTE

4.2. MWMOTE

MWMOTE (Mayority Weighted Minority Oversampling Technique) [1] se trata de una modificación del algoritmo SMOTE para evitar de instancias ruidosas.

El objetivo de este algoritmo es mejorar la forma de seleccionar instancias y la forma de generar las instancias sintéticas. Para ello este algoritmo cuenta con tres fases.

En la primera fase se identifican los ejemplos de la clase minoritaria, a este conjunto lo podemos llamar S_{min} ; que son más difíciles de aprender, para ello se genera un conjunto con dichos ejemplos al que llamaremos S_{imin} . Para generar este conjunto el algoritmo elimina todas aquellas instancias de S_{min} que no tenga ninguna instancia de S_{min} en su vecindario; para calcular el vecindario se utiliza el mismo proceso que para SMOTE. Una vez eliminados, se calculan aquellas instancias que son fronterizas con un conjunto de datos de la clase mayoritaria, estas instancias son las que forman S_{imin} .

En la segunda fase, cada uno de los ejemplos de S_{imin} se le agrega un peso dependiendo de la importancia de dicho ejemplo dentro de el conjunto de datos de S_{min} . Para ello se calcula la cantidad de información que se obtiene de cada uno de los puntos, esta medida se calcula teniendo en cuenta como de cercano está cada instancia al conjunto de datos de la clase mayoritaria. Por último, una vez calculado el peso de cada instancia se le asocia una probabilidad a dicho peso.

En la tercera fase, el algoritmo genera instancias sintéticas a partir de S_{imin} usando dicho peso y los añade al conjunto de datos de la clase minoritaria. Para generar dichas instancias, se detectan diferentes clústers dentro de S_{min} y se por cada instancia que se genera se elige un elemento del conjunto S_{imin} x, se elige otra instancia y de S_{min} que se encuentre en el mismo clúster que x y se genera una nueva instancia de la siguiente forma: $s = x + \alpha \times (y - x)$. El pseudocódigo de este algoritmo se puede encontrar en el Algoritmo 3.

Algoritmo 3 MWMOTE (S_{maj}, S_{min}, N)

Entrada: Conjunto de datos de la clase mayoritaria S_{maj} ; Conjunto de datos de la clase minoritaria S_{min} ; Número de instancias a generar N Salida: Conjunto de datos de la clase minoritaria ampliado omin

for all $x_i \in S_{min}$ do

Calcular su conjunto de vecinos más cercano, $NN(x_i)$

end for

Calcular S_{minf} como el conjunto de ejemplos de la clase minoritaria que no tiene ningún vecino de la clase minoritaria en su conjunto de vecinos más cercanos. $S_{minf} = S_{min} - \{x_i \in S_{min} : NN(x_i) \text{ no contiene ninguna instancia de } S_{min}\}$

for all $x_i \in S_{minf}$ do

Calcular conjunto de elementos más cercanos de la clase mayoritaria, $N_{maj}(x_i)$

end for

Calcular el conjunto de la clase mayoritaria que forma frontera, $S_{bmaj} = \bigcup_{x_i \in S_{minf}} N_{maj}(x_i)$

for all $y_i \in S_{bmaj}$ do

Calcular el conjunto de elementos más cercanos de la clase minoritaria, $N_{min}(y_i)$

end for

Calcular el conjunto informativo minoritario, $S_{imin} = \bigcup_{y_i \in S_{bmaj}} N_{min}(y_i)$ for all $y_i \in S_{bmaj}$ do

Calcular la cantidad de información, $I_w(y_i, x_i)$

end for

for all $x_i \in S_{imin}$ do

Calcular peso de selección, $S_w(x_i) = \sum y_i \in S_{bmaj}I_w(y_i, x_i)$

end for

for all $x_i \in S_{imin}$ do

Convertir $S_w(x_i)$ en probabilidad, $S_p(x_i) = S_w(x_i) / \sum z_i \in S_{imin}$

end for

Calcular M clúster sobre $S_{min}, L_1, L_2, ..., L_M$

Inicializar $omin = S_{min}$

for $j \leftarrow 1, N$ do

Seleccionar aleatoriamente un elemento x de $S_i min$ con probabilidad $S_p(x)$; x es un elemento perteneciente a un clúster k de los calculados anteriormente.

Seleccionar otra instancia y aleatoriamente del clúster k.

Crear una nueva instancia sintética s como combinación lineal de las anteriores, $s = x + \alpha \times (y - x)$, donde α es un número aleatorio entre 0 y 1.

Añadir s a S_{omin}

end for

48 4.3. ADASYN

La Figura 4.2 muestra un ejemplo de generación de instancias con MW-MOTE.

Figura 4.2: Ejemplo de generación de instancias con MWMOTE.

4.3. ADASYN

ADASYN (Adaptive Synthetic Sampling) [16] se trata de un algoritmo motivado por SMOTE. Al igual que el algoritmo de la sección anterior, propone otra forma de generar instancias. El objetivo principal de este algoritmo es reducir el sesgo entre ambas clases mientras aprende de forma adaptada. el procedimiento que sigue este algoritmo es el siguiente.

Primero, calcula el ratio entre instancias de la clase minoritaria y mayoritaria; este ratio después se utiliza para calcular el número de instancias de la clase minoritaria a generar.

Tras esto, por cada instancia perteneciente a la clase minoritaria, se calcula su valor r_i , este valor indica la dominancia de ejemplos de la clase mayoritaria en el vecindario de esta instancia; a valores mayores de esta medida es más difícil aprender sobre dicha instancia. Una vez calculadas todas las medidas se normalizan.

Cuando todas las medidas r_i han sido calculadas, se calcula el número de instancias a generar en el vecindario de dicha instancia de la siguiente manera: $G_i = Gr_i$; donde G es el número de instancias a generar que se calculó al principio.

Por último, cada una de las instancias en un vecindario i se genera de la siguiente forma: se selecciona una instancia del vecindario, x_i ; después se selecciona de forma aleatoria otra instancia vecina a la instancia x_i , la llamaremos x_{zi} ; por último se calcula un número aleatorio entre 0 y 1 y se calcula la nueva instancia como la siguiente fórmula: $s_i = x_i + (x_{zi} - x_i)\lambda$. El Algoritmo 4 muestra el pseudocódigo del algoritmo ADASYN.

```
Algoritmo 4 ADASYN(D_{tr}, \beta, K)
  Entrada: Conjunto de datos de entrada D_{tr}; Parámetro para regular
  cantidad de ejemplos a crear \beta; Número de vecinos a tener en cuenta K.
  Salida: Conjunto de datos con oversampling de la clase minoritaria.
  m_s = Número de instancias de la clase minoritaria.
  m_i = Número de instancias de la clase mayoritaria.
  d_{th} = \text{Umbral máximo de desbalanceo}
  Calcular grado de desbalanceo de clases, d = m_s/m_i
  if d < d_{th} then
      Calcular número de instancias a generar G = (m_i - m_s) \times \beta
      for all x_i \in m_s do
         Calcular los K vecinos más cercanos de x_i
         Calcular la dominancia de la clase positiva de x_i, r_i = \Delta_i/K, donde
  \triangle_i es el número de vecinos de la clase positiva dentro de los K vecinos de
  x_i
      end for
      Normalizar todos los r_i entre [0,1], para ello dividir cada uno sobre
  \sum_{i=1}^{m_s} r_i
      Calcular el número de instancias a generar por cada instancia de la
  clase minoritaria, g_i = r_i \times G
      for all x_i \in m_s do
         for j \leftarrow 1, g_i do
             Elegir aleatoriamente un ejemplo de la clase minoritaria vecino
  de x_i, x_{zi}
             Generar una instancia sintética s_i = x_i + (x_i - x_{zi}) \times \lambda donde
  \lambda es un número aleatorio entre [0,1].
             Añadir s_i a conjunto de datos de entrenamiento D_{tr}
         end for
      end for
  end if
```

La Figura 4.3 muestra un ejemplo de generación de instancias con ADASYN.

50 4.3. ADASYN

Figura 4.3: Ejemplo de generación de instancias con ADASYN.

Uno de los problemas de ADASYN es que puede generar instancias en vecindarios donde el número de instancias de la clase minoritaria es muy reducida, produciendo ruido.

Capítulo 5

Tratamiento de series temporales de clasificación multivariadas

En este capítulo se describirán las características principales de las series temporales de clasificación multivariadas, así como diferentes métodos de preprocesamiento que se han utilizado durante el estudio para limpiar dichas series e intentar mejorar los resultados.

Las series temporales multivariadas de clasificación, al igual que cualquier otro conjunto de datos, deben ser preprocesadas para ofrecer un mejor rendimiento a la hora de predecir.

Podemos definir un conjunto de datos de serie temporal de clasificación de dos formas diferentes, como ya se vio en el segundo capítulo. Sobre las series temporales de clasificación puede haber dos tipos diferentes de conjuntos de datos.

El primer tipo se puede definir como un conjunto de series temporales completas, donde cada una de ellas tiene una clase asociada, es decir un conjunto de datos $C = \{(S_1, Y_1), (S_2, Y_2), ..., (S_n, Y_n)\}$ donde cada S_x es una serie temporal e Y_x es la clase asociada a esa serie. Un ejemplo de conjunto de datos con este tipo de series puede ser uno formado por las mediciones realizadas por una sensor durante un proceso y clasificar dichas mediciones como un proceso normal u anómalo.

El segundo tipo se puede definir como una sola serie multivariada formada por m series donde cada instante de dicha serie tiene una clase asociada, es decir un conjunto de datos $C = (S_{11}, S_{12}, ..., S_{1m}, Y_1), ..., (S_{n1}, S_{n2}, ..., S_{nm}, Y_n)$ donde $(S_{x1}, S_{x2}, ..., S_{xn})$ corresponde con un instante x de la serie y Y_x es la

clase asociada a ese instante. Un ejemplo de este tipo de conjunto de datos puede ser predecir si hay alto riesgo de lluvia o no dependiendo de los valores obtenidos por diferentes sensores.

A efectos prácticos, esto significa que dependiendo del tipo de conjunto de datos las series temporales se encuentran como filas (primer tipo) o como columnas (segundo tipo) y se debe tener en cuenta a la hora de realizar preprocesamiento.

5.1. Procesamiento normal

A diferencia del tratamiento normal que se le puede hacer a un conjunto de datos, aquí se tiene que tener en cuenta que las series temporales de clasificación son un conjunto de series temporales que juntas forman la representación de un problema y hacen que sea capaz de aprender una solución. Una sola serie temporal no es suficiente para poder aprender sobre el problema que se estudia pero sí puede tener características totalmente diferentes al resto de series temporales; por ello, el preprocesamiento se debe hacer de forma individual.

Un paso importante en el preprocesamiento si se están utilizando redes neuronales o cualquier otro modelo que se vea afectado por variaciones en la escala de diferentes características (o serie temporal en este caso) es la normalización de valores de las series.

Otro tipo de tratamiento necesario para series temporales es analizar valores perdidos en la serie. Si existen valores perdidos hay dos posibilidades; la primera es eliminar dichos valores perdidos, esta opción no es muy recomendable si la serie tiene muy pocos datos, la otra opción es imputar los valores perdidos. Para imputar dichos valores, se puede utilizar biblioteca específicas para series temporales o utilizar métodos clásicos de imputación, aunque estos no tienen por qué tener en cuenta las particularidades de las series temporales.

Un buen método para imputar datos puede ser realizar un media móvil. La idea es calcular la media de los x momentos anteriores y x momentos siguientes, de esta forma se puede imputar cada dato con un valor cercano al resto de valores. A parte de este método, se pueden utilizar métodos clásicos de predicción con series temporales como ARIMA, usando los datos anteriores al dato que se quiere imputar y realizar una predicción del valor de dicho dato con el modelo entrenado; sin embargo esto puede ser bastante costoso si hay bastantes datos perdidos ya que habría que generar un modelo

para cada uno de ellos. La Figura 5.1 muestra un ejemplo de serie procesada mediante medias móviles.

Figura 5.1: Ejemplo algoritmo medias móviles.

Además de esto, también se pueden analizar los outliers que existan en la serie; si los outliers que se encuentren no aportan ninguna información adicional es mejor modificar su valor. También se podrían eliminar pero esto podría provocar una pérdida de información importante, por ello es mejor no hacerlo.

Para la detección de outliers se puede utilizar cualquier método de detección de outliers univariable. Un método sencillo es el cálculo de outliers mediante IQR (InterQuartile Range, rango intercuartílico en español), para ello se calcula el IQR, el Q_3 y Q_1 el de los datos para los cuales se quieren detectar outliers; se consideran outliers aquellos datos que estén fuera del rango definido por [$Q_1 - f * IQR, Q_3 + f * IQR$], donde f es una constante.

Normalmente f suele tomar el valor 1.5 , pero para el caso de las series temporales este valor provoca que se detecten demasiados datos como outliers; por ello, en este estudio se ha utilizado f=3 para asegurarse de que los outliers detectados sean realmente anomalías en los datos de la serie y no una pequeña variación. Una vez detectados los outliers, se pueden utilizar diferentes métodos para modificar dichos outliers, por ejemplo el método

comentado anteriormente (medias móviles).

Por último, se puede aplicar una selección de características, o en este caso de series temporales; para ello se pueden utilizar algoritmos de selección de características como por ejemplo Boruta [21]. Este algoritmo selecciona características dependiendo de su importancia. El proceso que sigue este algoritmo para seleccionar características se muestra en Algoritmo 5.

```
Algoritmo 5 Boruta(C,N)
  Entrada: Conjunto de datos C, Número de iteraciones N.
  Salida: Conjunto de variables confirmadas Confirmadas.
  Confirmadas = vector de atributos confirmados.
  Tentativas = vector de atributos todavía sin confirmar ni rechazar.
  Rechazadas = vector de atributos rechazados.
  Sombras = vector para atributos duplicados.
  Tentativas = C.Atributos
  for i \leftarrow 1, N do
     Añadir a Sombras todos los atributos en Tentativas.
     Mezclar de forma aleatoria cada uno de los Atributos de Sombras.
     Crear C' = Tentativas \bigcup Sombras
     Entrenar un clasificador RandomForest con el conjunto C' y obtener
 la importancia de cada atributo.
     for all attr \in Tentativas, sombraenSombras do
        if importancia(attr) > importancia(sombra) then
            Confirmadas + = attr
        else
            Rechazadas + = attr
        end if
     end for
  end for
 return Confirmadas
```

5.2. Método de la ventana

Otro tipo de procesamiento que se propone es este trabajo es el uso de una ventana. El objetivo de utilizar este procesamiento es aprovechar la dependencia temporal que existe en las series temporales; es decir, los valores obtenidos en un instante (o para el caso de las series temporales de clasificación una clase) son dependientes de los n valores anteriores.

Tratamiento de series temporales de clasificación multivariadas55

Esta dependencia se utiliza en modelos clásicos de predicción de series temporales como es ARIMA. La Figura 5.2 muestra un ejemplo de predicción usando una ventana.

Figura 5.2: Ejemplo método de la ventana.

Para los algoritmos clásicos de clasificación, así como las redes neuronales que se utilizan en este trabajo, no hay forma de que el modelo detecte dicha dependencia o se le pueda indicar directamente. Por ello, el procesamiento que se propone es replicar los datos anteriores, añadiéndolos como columnas a cada instancia, para replicar la misma ventana que se podría usar en un problema clásico de series temporales. El Algoritmo 6 muestra el proceso para crear la ventana.

```
Algoritmo 6 Ventana(C,t)

Entrada: Conjunto de datos C, Tamaño de la ventana t.

Salida: Conjunto de datos C' con la ventana.

C' = conjunto de datos con la ventana creada.

for all attr \in C do

for i \leftarrow 0, t - 1 do

C' = C' \bigcup desplazado(attr, i) // La función desplazado mueve hacia delante i veces los datos de la columna attr.

end for
end for
return C'
```

Con este algoritmo se puede generar conjuntos de datos con una ventana añadida en cada columna, de forma que los algoritmos puedan hacer uso de la dependencia temporal. La Figura 5.3 muestra un ejemplo de dataset modificado por el algoritmo.

	AF3_1	F7_1	F3_1	FC5_1	T7_1	P7_1	01_1	02_1	P8_1	T8_1	 T7_3	P7_3	01_3	02_3	P8_3	T8_3	FC6_
3	4329.23	4009.23	4289.23	4148.21	4350.26	4586.15	4096.92	4641.03	4222.05	4238.46	 4336.92	4583.59	4096.92	4630.26	4207.69	4222.05	4206.6
4	4324.62	4004.62	4293.85	4148.72	4342.05	4586.67	4097.44	4638.97	4210.77	4226.67	 4343.59	4582.56	4097.44	4630.77	4217.44	4235.38	4210.7
5	4327.69	4006.67	4295.38	4156.41	4336.92	4583.59	4096.92	4630.26	4207.69	4222.05	 4347.69	4586.67	4095.90	4627.69	4210.77	4244.10	4212.8
6	4328.72	4011.79	4296.41	4155.90	4343.59	4582.56	4097.44	4630.77	4217.44	4235.38	 4345.64	4587.18	4093.33	4616.92	4202.56	4232.82	4209.7
7	4326.15	4011.79	4292.31	4151.28	4347.69	4586.67	4095.90	4627.69	4210.77	4244.10	 4343.59	4584.62	4089.74	4615.90	4212.31	4226.67	4201.0

Figura 5.3: Ejemplo de dataset modificado para tener una ventana de tamaño 3.

Para obtener una mejora en el rendimiento, se debe estudiar que tamaño de ventana utilizar y este es diferente para cada conjunto de datos, aunque esto no se cubre dentro de este trabajo. Un aspecto a tener en cuenta cuando se utiliza es este algoritmo también es la dimensionalidad del conjunto de datos, ya que cuanto mayor es la ventana seleccionada mayor es el tamaño final del conjunto de datos y más costoso puede ser para un modelo procesarlo; además, un tamaño demasiado grande puede provocar sobreajuste, incluso empeorar el rendimiento.

Capítulo 6

Marco Experimental

En este capítulo se describirán los dataset utilizados en el estudio, además de las medidas usadas para valorar los resultados y los parámetros de la red neuronal usadas para predicción.

6.1. Datasets

Los datasets utilizados para el desarrollo de este estudio son:

- Adiac. El dataset Adiac contiene los datos de un estudio sobre algas unicelulares basados en imágenes, para pasarla a series temporales se usó el contorno de cada una de las algas en las imágenes. El dataset contiene 390 instancias para entrenamiento y 391 instancias para test, cada uno de los datos cuenta con 176 características y hay 37 clases diferentes. El objetivo es aprender a diferenciar correctamente cada una de las algas.
- Swedish Leaf. El dataset Swedish Leaf se trata de un conjunto de datos que contiene el contorno de hojas de árboles suecos. Este conjunto de datos contiene 500 imágenes para entrenamiento, 625 para test, 128 características y 15 clases distintas. El objetivo es aprender a diferenciar cada una de las hojas según su silueta.
- EGG eye. La información en este dataset fue obtenida con una medición EGG (medición de actividad eléctrica en el cerebro durante un tiempo) mediante un sensor. El objetivo de este dataset es diferenciar entre un ojo cerrado y otro abierto. El dataset contiene 14980 instancias y 15 atributos.
- Face All. El dataset contiene el contorno de 14 personas diferentes; el conjunto de entrenamiento cuenta con 560 imágenes y el conjunto

de test con 1690. El objetivo es diferenciar la silueta de cada una de las personas.

- Ozone. Este dataset contiene 2536 instancias, cada una con de ellas con 73 atributos. El objetivo de este dataset es diferenciar entre un día normal y un día con niveles extraños de ozono, para ello se utilizan información de sensores sobre velocidad del viento, temperatura máxima, etc... Este conjunto de datos contiene un gran desbalanceo entre ambas clases.
- HAR. El dataset HAR contiene información sobre el movimiento de personas utilizando diferentes sensores en un móvil (giróscopo, acelerómetro, etc...). El objetivo de este dataset es diferenciar entre 6 actividades diferentes. Cada una de las instancias de este dataset contiene 561 características.
- Wafer. Este dataset contiene 2 clases, tiene 1000 datos para entrenamiento y 6164 para test; cada uno de los datos contiene 152 características. Los datos de este dataset contiene los valores de datos obtenidos por un sensor para un proceso de creación de planchas de semiconductores para procesadores. El objetivo es distinguir entre planchas defectuosas y no defectuosas. El conjunto de datos contiene un gran desbalanceo entre clases.
- Yoga. El dataset contiene 2 clases, tiene 300 datos para entrenamiento y 3000 para test; cada uno de los datos contiene 426 características. El objetivo en este dataset es diferenciar entre una mujer y hombre realizando yoga en imágenes. Los datos que contienen este dataset transformaciones de una imagen a una señal unidimensional, para ello tomaron el outline de cada imagen y se mide la distancia de cada punto con el centro.

Como se ha podido ver en la descripción, algunos de los conjuntos de datos son multiclase, por ello, dichos dataset se han transformado a problemas binarios escogiendo una clase, haciendo esa clase positiva y estableciendo el resto de clases como negativa; de esta forma también se crea desbalanceo entre clases.

6.2. Medidas utilizadas

En este apartado se describirán las medidas utilizadas en el estudio, así como las características de cada una de ellas.

Como ya se mencionó en el segundo capítulo, las medidas usuales no sirven para problemas con desbalanceo, por ello hay que utilizar diferentes medidas que sean útiles para este tipo de problemas.

Antes de describir las diferentes medidas que se van a utilizar, se van a describir algunos conceptos básicos sobre problemas de clasificación. Un modelo de clasificación o clasificador es una función que permite decidir qué elementos de un conjunto de datos pertenecen a una cierta clase; para realizar esta decisión, el clasificador puede utilizar un umbral sobre un valor real o directamente obtener un valor discreto.

Pongamos el caso de un problema de clasificación binario, en la que los datos se clasifican como positivos, lo representaremos con la letra p, o negativos, lo representaremos con la letra n. Una vez se ha entrenado un clasificador y se han obtenido los resultados, estos se pueden representar en una Matriz de confusión (para clasificación binaria es una matriz de 2x2) de la siguiente forma. La Figura 6.1 muestra una representación clásica de una Matriz de confusión.

		Predicción						
		Positivos	Negativos					
ación	Positivos	Verdaderos Positivos (VP)	Falsos Negativos (FN)					
Observ	Negativos	Falsos Positivos (FP)	Verdaderos Negativos (VN)					

Figura 6.1: Ejemplo matriz de confusión.

Los Verdaderos Positivos (VP) son aquellos datos que han sido clasificados como positivo y su clase real es positiva, los Verdaderos Negativos (VN) son aquellos datos que han sido clasificados como negativos y su clase real es negativa, los Falsos Negativos (FN) son aquellos datos que han sido clasificados como negativos y su clase real es positiva; por último, los Falsos Positivos (FP) son aquellos datos que han sido clasificados como positivos pero su clase real es negativa.

Sabiendo los valores de cada uno de estos datos, se pueden calcular medidas que contemplen un mal rendimiento por parte del clasificador al predecir alguna de las clases; esto es interesante para problemas con desbalanceo porque permite ver el rendimiento específico del clasificador para predecir

la clase minoritaria.

Las medidas que se utilizarán para el estudio son las siguientes: AUC, Precision, Recall, F1 Score y G-Mean.

La medida Precision representa el porcentaje de los datos clasificados como positivos que realmente son positivos, es decir, de todos los datos que el clasificador ha predicho como positivos, cuántos de ellos son realmente positivos. Esta medida toma valores entre 0 y 1, valores cercanos a 1 indican un buen rendimiento por el clasificador para reconocer datos de la clase positiva. Esta medida se representa como:

$$Precision = \frac{TP}{TP + FP}$$

La medida de Recall o también conocida como True Positive Rate (TPR) representa el número el porcentaje de datos de la clase positiva que han sido clasificados como positivos. Toma valores entre 0 y 1, valores cercanos a 1 indican un buen rendimiento para reconocer la clase positiva, si el clasificador no fuera capaz de reconocer la clase positiva el número de Falsos Negativos sería muy alto y su valor se acercaría a 0.Esta medida se puede expresar como:

$$Recall = \frac{TP}{TP + FN}$$

A su vez, existe la medida True Negative Rate (TNR), que representa el porcentaje de ejemplos negativos bien clasificados, se define con la siguiente expresión.

$$TNR = \frac{TN}{TN + FP}$$

La medida F1 Score tiene en cuenta las dos anteriores para ser calculada, puede expresarse como:

$$F_1Score = 2*\frac{Precision*Recall}{Precision+Recall}$$

Esta medida mide el equilibrio entre las medidas Precision y Recall, si alguna de las dos tiene un valor bajo, el valor de F1 Score baja, para que aumente, el valor de ambas medidas debe aumentar. Toma valores entre 0 y 1.

La medida G-Mean representa la media geométrica, sirve también para medir el equilibrio entre Precision y Recall. Se representa de la siguiente forma:

$$G - Mean = \sqrt{Precision * Recall}$$

Para esta medida, si cualquier de las medidas toma valores bajo su valor es 0.

La última medida es AUC (Area Under Curve), esta medida representa el área bajo la curva ROC. La curva ROC es una representación gráfica del rendimiento entre TPR y TNR; cuanto más alto sea el valor de ambas medidas, mayor será el valor de la medida AUC. La Figura 6.2 muestra un ejemplo de curva ROC.

Figura 6.2: Ejemplo curva ROC.

A partir de esta medida se puede medir el rendimiento de un clasificador, si el valor de AUC es 1, entonces el clasificador es perfecto. Si un clasificador hiciera las predicciones de forma aleatoria, su valor de AUC sería 0.5 y por lo tanto cualquier clasificador con valores cercanos o por debajo se considera que el clasificador es malo; para valores a partir de 0.7-0.75 se puede decir que el clasificador es aceptable.

6.3. Parámetros de la red

En este apartado se va a describir la estructura de la red utilizada en este estudio.

Como se comentó anteriormente, la red usada está formada por un conjunto de LSTMs para procesar la información de las series temporales.

La red básica utilizada está formada por dos capas; una capa formada por 32 LSTM y otra formada por una única neurona conectada a todas las LSTM usada para calcular la clase; para ello utiliza una función sigmoide

como salida de la neurona. La estructura de la red se muestra en la Figura 6.3.

Figura 6.3: Estructura red utilizada.

Cuando se define la capa de LSTM, se debe especificar el tamaño de la entrada que tendrá la LSTM; como en el caso de este estudio se utilizan diferentes tamaños de ventana, el tamaño de la entrada para la LSTM se especifica como (1, tamventana * nseries), de esta forma cada LSTM procesa una ventana de información en cada momento.

Por último, la red utiliza 50 épocas para entrenar y se procesan en cada momento lotes de instancias de tamaño 16.

Capítulo 7

Resultados y discusión

En este aparatado se describirán los resultados obtenidos por los modelos en cada uno de los conjuntos de datos y se discutirá el rendimiento de cada uno. Para ver las tablas de resultados de dichas pruebas se puede mirar el apéndice. Tras esto, se mostrarán tablas comparativas para analizar el rendimiento general de cada uno de los modelos.

En la Tabla 7.1 se muestran el tamaño de entrenamiento, tamaño de test y número de atributos de cada uno de los conjuntos de datos utilizados en el trabajo.

Nombre	Num Atributos	Train Size	Test Size
FaceAll	131	560	1690
EGG Eye	14	11984	2996
Adiac	176	390	391
Yoga	426	300	3000
HAR	560	5881	1471
Ozone	73	2028	508
Swedish Leaf	128	500	625
Wafer	152	1000	6164

Tabla 7.1: Resumen datos conjunto de datos.

7.1. Comparación resultados

En esta sección se mostrarán tablas comparativas de todos los conjuntos de datos junto con la métrica AUC de todos los modelos para cada uno de los preprocesamientos, de esta forma se podrá comparar el rendimiento base general de cada uno de los modelos y como afecta el preprocesamiento utilizado a cada uno de ellos.

En las tablas que se mostrarán se muestran en negrita el mejor resultado de cada modelo en cada conjunto de datos, el mejor resultado obtenido para ese conjunto de datos se muestra en negrita y cursiva.

Primero, se analizará los resultados obtenidos sin realizar ningún procesamiento a los datos.

Tam. Ventana		1	3	5	7	9	11	13	15	17	19	21
FaceAll	LSTM	0.9540	0.8926	0.8863	0.9315	0.9368	0.9477	0.9512	0.9432	0.9592	0.9417	0.9157
	SVM	0.9423	0.9044	0.8952	0.8933	0.9216	0.9265	0.9324	0.9387	0.9276	0.8969	0.9029
	RandomForest	0.8261	0.8143	0.8603	0.8182	0.8281	0.8226	0.8500	0.8276	0.8393	0.8241	0.8462
	XGBoost	0.8454	0.8559	0.8673	0.8633	0.8819	0.9023	0.9000	0.8879	0.8747	0.8704	0.8365
Adiac	LSTM	0.5000	0.5000	0.5000	0.5000	0.5000	0.5000	0.5000	0.5000	0.5000	0.5000	0.5000
	SVM	0.5000	0.5000	0.5000	0.5000	0.5000	0.5000	0.5000	0.5000	0.5000	0.5000	0.5000
	RandomForest	0.5714	0.5000	0.5000	0.5000	0.5000	0.5000	0.5000	0.5000	0.5000	0.5000	0.5000
	XGBoost	0.7143	0.7143	0.6415	0.6415	0.5714	0.5701	0.5701	0.5701	0.5000	0.5000	0.5000
EGG_Eye	LSTM	0.7666	0.8880	0.9164	0.9411	0.9485	0.9450	0.9679	0.9491	0.9693	0.9773	0.9815
	SVM	0.6201	0.6315	0.6343	0.6361	0.6413	0.6503	0.6472	0.6462	0.6489	0.6646	0.6619
	RandomForest	0.9282	0.9342	0.9405	0.9425	0.9496	0.9593	0.9583	0.9696	0.9658	0.9574	0.9696
	XGBoost	0.7967	0.8253	0.8141	0.8253	0.8394	0.8288	0.8268	0.8466	0.8269	0.8591	0.8426
HAR	LSTM	0.9566	0.9603	0.9262	0.9683	0.9513	0.9641	0.9382	0.9062	0.9459	0.9150	0.9622
	SVM	0.9136	0.8876	0.8740	0.8495	0.8090	0.8109	0.7941	0.7637	0.7288	0.7557	0.7849
	RandomForest	0.9512	0.9356	0.9494	0.9302	0.9262	0.9371	0.9341	0.9260	0.9545	0.9388	0.9333
	XGBoost	0.9668	0.9556	0.9417	0.9543	0.9318	0.9568	0.9549	0.9408	0.9629	0.9390	0.9594
Wafer	LSTM	0.9874	0.9700	0.9629	0.9547	0.9386	0.9254	0.9032	0.8315	0.8314	0.7105	0.7588
	SVM	0.9835	0.8322	0.7736	0.7082	0.6044	0.5286	0.5038	0.5000	0.5000	0.5000	0.5000
	RandomForest	0.9615	0.9080	0.8996	0.9063	0.9069	0.9131	0.8937	0.8871	0.8770	0.8841	0.8842
	XGBoost	0.9787	0.9788	0.9796	0.9766	0.9774	0.9778	0.9795	0.9787	0.9787	0.9794	0.9771
Yoga	LSTM	0.8192	0.5617	0.5244	0.5196	0.5066	0.5080	0.5121	0.5033	0.4983	0.4874	0.4949
	SVM	0.6633	0.5242	0.5114	0.5086	0.5043	0.4993	0.5019	0.4970	0.4973	0.4939	0.4913
	RandomForest	0.8151	0.7325	0.6451	0.6069	0.6038	0.5830	0.5740	0.5839	0.5642	0.5679	0.5715
	XGBoost	0.7721	0.7418	0.7104	0.6779	0.6797	0.6538	0.6479	0.6436	0.6261	0.6195	0.6235
Ozone	LSTM	0.5000	0.5000	0.5000	0.5000	0.5000	0.5000	0.5000	0.5000	0.5000	0.5000	0.5000
	SVM	0.5000	0.5000	0.5000	0.5000	0.5000	0.5000	0.5000	0.5000	0.5000	0.5000	0.5000
	RandomForest	0.5000	0.5000	0.5000	0.5000	0.5000	0.5000	0.5000	0.5000	0.5000	0.5000	0.5000
	XGBoost	0.4986	0.5000	0.5000	0.5000	0.5000	0.5000	0.5000	0.5000	0.5000	0.5000	0.5000
SLeaf	LSTM	0.7405	0.6009	0.5383	0.5656	0.5494	0.5339	0.5166	0.5000	0.5000	0.5000	0.5000
	SVM	0.5000	0.5000	0.5000	0.5000	0.5000	0.5000	0.5000	0.5000	0.5000	0.5000	0.5000
	RandomForest	0.6052	0.5000	0.5000	0.5000	0.5000	0.5000	0.5000	0.5000	0.5000	0.5000	0.5000
	XGBoost	0.6779	0.6370	0.5609	0.5392	0.5401	0.5494	0.5411	0.5410	0.5192	0.5410	0.5296

Tabla 7.2: Comparación métodos base.

En la Tabla 7.2 se muestran los resultados sin preprocesamiento. En ella, LSTM muestra ventaja con respecto al resto de modelos que se han utilizado ya que obtiene la mejor puntuación en la mayoría de los conjuntos de datos. Los modelos ensemble RandomForest y XGBoost también obtienen resultados competitivos, en muchos casos cercanos a los que obtiene LSTM. SVM consigue buenos resultados en alguno de los conjuntos de datos, aunque por lo general su rendimiento es inferior al resto de modelos. Para alguno de los conjuntos de datos, como por ejemplo EGG_eye , el método de la ventana consigue mejorar los resultados conforme se aumenta el tamaño de la ventana.

A continuación, se analizarán los resultados obtenidos utilizando SMOTE balancear los conjuntos de datos. Tras esta, se analizarán las tablas de resultados utilizando ADASYN y MWMOTE.

Tam. Ventana		1	3	5	7	9	11	13	15	17	19	21
FaceAll	LSTM	0.9555	0.9228	0.9132	0.9128	0.9314	0.9255	0.9342	0.9379	0.9314	0.9083	0.9065
	SVM	0.9603	0.9227	0.9087	0.9303	0.9447	0.9346	0.9491	0.9473	0.9455	0.9247	0.9125
	RandomForest	0.9196	0.8966	0.9173	0.8936	0.9059	0.9187	0.9410	0.9221	0.9098	0.8975	0.9032
	XGBoost	0.9034	0.9038	0.9092	0.9487	0.9654	0.9653	0.9812	0.9283	0.9141	0.8932	0.8635
Adiac	LSTM	0.6367	0.5000	0.5000	0.5000	0.5000	0.5000	0.5000	0.5000	0.5000	0.5000	0.5000
	SVM	0.7812	0.6171	0.5571	0.6389	0.5446	0.5831	0.4589	0.5075	0.4323	0.4379	0.5481
	RandomForest	0.7844	0.7805	0.7103	0.5701	0.5701	0.5714	0.5714	0.5000	0.5000	0.5000	0.5000
	XGBoost	0.8532	0.8545	0.7051	0.7050	0.7050	0.7777	0.7062	0.7075	0.7075	0.7789	0.7074
EGG_Eye	LSTM	0.5064	0.5433	0.5833	0.5954	0.5658	0.6151	0.5472	0.5835	0.5764	0.5581	0.5575
	SVM	0.6640	0.6815	0.7013	0.7108	0.7060	0.7101	0.7139	0.6974	0.7016	0.7179	0.7150
	RandomForest	0.9332	0.9389	0.9371	0.9480	0.9583	0.9538	0.9617	0.9660	0.9699	0.9710	0.9639
	XGBoost	0.8069	0.8168	0.8169	0.8347	0.8491	0.8368	0.8340	0.8466	0.8471	0.8525	0.8656
HAR	LSTM	0.8173	0.8315	0.8459	0.8169	0.8441	0.8359	0.5000	0.5000	0.5000	0.5000	0.5000
	SVM	0.9554	0.9415	0.9524	0.9429	0.9300	0.9336	0.9293	0.9208	0.9322	0.9347	0.9453
	RandomForest	0.9613	0.9531	0.9581	0.9702	0.9507	0.9745	0.9449	0.9423	0.9611	0.9645	0.9541
	XGBoost	0.9637	0.9576	0.9643	0.9654	0.9742	0.9591	0.9580	0.9565	0.9665	0.9663	0.9556
Wafer	LSTM	0.9890	0.9780	0.9774	0.9717	0.9546	0.9264	0.8911	0.8892	0.8149	0.8105	0.7138
	SVM	0.9911	0.9617	0.8691	0.7572	0.6887	0.6246	0.5933	0.5694	0.5511	0.5358	0.5284
	RandomForest	0.9841	0.9877	0.9902	0.9853	0.9875	0.9872	0.9874	0.9883	0.9839	0.9811	0.9853
	XGBoost	0.9891	0.9929	0.9860	0.9946	0.9879	0.9873	0.9863	0.9946	0.9852	0.9883	0.9937
Yoga	LSTM	0.8256	0.5619	0.5163	0.5067	0.5107	0.5096	0.5144	0.5018	0.5024	0.4979	0.4912
	SVM	0.6698	0.5253	0.5102	0.5087	0.5077	0.4937	0.5037	0.4941	0.4938	0.4941	0.5043
	RandomForest	0.8071	0.7307	0.6755	0.6148	0.5831	0.5746	0.5818	0.5877	0.5650	0.5382	0.5541
	XGBoost	0.7766	0.7423	0.7072	0.6670	0.6565	0.6451	0.6292	0.6368	0.6056	0.6124	0.6199
Ozone	LSTM	0.6944	0.7332	0.5000	0.5000	0.5000	0.5000	0.5000	0.5000	0.5000	0.5000	0.5000
	SVM	0.8032	0.8528	0.8343	0.6475	0.7764	0.5278	0.7522	0.7373	0.7088	0.6020	0.6362
	RandomForest	0.4916	0.4972	0.4986	0.4986	0.5000	0.5371	0.4986	0.4986	0.5000	0.5000	0.5000
	XGBoost	0.5776	0.5554	0.5472	0.4819	0.5399	0.4807	0.4902	0.4819	0.5402	0.4902	0.4916
SLeaf	LSTM	0.9044	0.8695	0.5078	0.5000	0.5000	0.5000	0.5000	0.5000	0.5000	0.5000	0.5000
	SVM	0.9095	0.8797	0.7487	0.6431	0.5629	0.5339	0.5699	0.5157	0.5052	0.5051	0.5165
	RandomForest	0.7988	0.7079	0.6083	0.6024	0.6322	0.6161	0.5821	0.5690	0.5611	0.5629	0.5847
	XGBoost	0.8523	0.7879	0.7735	0.6928	0.7047	0.7056	0.7018	0.6851	0.6572	0.7358	0.7043

Tabla 7.3: Comparación métodos con SMOTE.

La Tabla 7.3 muestra los resultados obtenidos utilizando SMOTE. Utilizando este método de oversampling se puede apreciar una mejora general en el rendimiento de todos los modelos menos LSTM, que solamente en algún caso aislado consigue mejorar sus resultados anteriores, como por ejemplo para el datasets Adiac; en el resto de casos la mejora es muy pequeña o incluso empeore como por ejemplo HAR o EGG_{-eye} .

Tam. Ventana		1	3	5	7	9	11	13	15	17	19	21
FaceAll	LSTM	0.9623	0.8861	0.9032	0.9155	0.9364	0.9140	0.9438	0.9459	0.9460	0.9157	0.9157
	SVM	0.9603	0.9227	0.9084	0.9230	0.9450	0.9346	0.9491	0.9387	0.9363	0.9062	0.9029
	RandomForest	0.8643	0.8339	0.8597	0.8712	0.8747	0.8626	0.8833	0.8017	0.8393	0.8519	0.8173
	XGBoost	0.9179	0.8653	0.8890	0.8884	0.9113	0.9401	0.9744	0.8966	0.9018	0.8889	0.8651
Adiac	LSTM	0.6185	0.5000	0.5000	0.5000	0.5000	0.5000	0.5000	0.5000	0.5000	0.5000	0.5000
	SVM	0.7461	0.6223	0.5664	0.6362	0.5606	0.5951	0.4441	0.5519	0.3956	0.4229	0.4148
	RandomForest	0.7831	0.7091	0.6415	0.6415	0.5701	0.5701	0.6429	0.5714	0.5000	0.4986	0.5000
	XGBoost	0.8558	0.8558	0.8479	0.7050	0.7050	0.7777	0.7076	0.7075	0.7075	0.7075	0.7074
EGG_Eye	LSTM	0.5047	0.5368	0.5393	0.5425	0.5511	0.5383	0.5237	0.5269	0.5411	0.5116	0.5383
	SVM	0.6496	0.6801	0.6853	0.6955	0.7028	0.7078	0.6995	0.6937	0.7115	0.7075	0.7112
	RandomForest	0.9299	0.9460	0.9526	0.9583	0.9660	0.9733	0.9745	0.9759	0.9694	0.9695	0.9740
	XGBoost	0.8065	0.8208	0.8201	0.8338	0.8486	0.8410	0.8507	0.8487	0.8464	0.8654	0.8479
HAR	LSTM	0.8174	0.8349	0.5000	0.5000	0.5000	0.8418	0.5000	0.8636	0.8623	0.5000	0.8882
	SVM	0.8652	0.8737	0.8931	0.8904	0.9058	0.9056	0.9126	0.8990	0.9118	0.9120	0.9170
	RandomForest	0.9576	0.9440	0.9520	0.9407	0.9491	0.9500	0.9590	0.9367	0.9553	0.9593	0.9658
	XGBoost	0.9582	0.9631	0.9655	0.9761	0.9405	0.9631	0.9403	0.9527	0.9590	0.9551	0.9631
Wafer	LSTM	0.9890	0.9750	0.9787	0.9765	0.9639	0.9297	0.9370	0.8800	0.8017	0.7922	0.7475
	SVM	0.9913	0.9640	0.8661	0.7568	0.6880	0.6297	0.5881	0.5666	0.5535	0.5350	0.5284
	RandomForest	0.9886	0.9870	0.9893	0.9861	0.9883	0.9858	0.9850	0.9825	0.9720	0.9798	0.9838
	XGBoost	0.9877	0.9919	0.9867	0.9945	0.9871	0.9873	0.9865	0.9859	0.9945	0.9910	0.9912
Yoga	LSTM	0.8192	0.5617	0.5244	0.5196	0.5066	0.5080	0.5121	0.5033	0.4983	0.4874	0.4949
	SVM	0.6633	0.5242	0.5114	0.5086	0.5043	0.4993	0.5019	0.4970	0.4973	0.4939	0.4913
	RandomForest	0.8151	0.7325	0.6451	0.6069	0.6038	0.5830	0.5740	0.5839	0.5642	0.5679	0.5715
	XGBoost	0.7721	0.7418	0.7104	0.6779	0.6797	0.6538	0.6479	0.6436	0.6261	0.6195	0.6235
Ozone	LSTM	0.6396	0.6826	0.5000	0.5000	0.5000	0.5000	0.5000	0.5000	0.5000	0.5000	0.5000
	SVM	0.7949	0.8333	0.7541	0.7238	0.6093	0.5792	0.6323	0.7745	0.6948	0.7431	0.6909
	RandomForest	0.4944	0.4986	0.4972	0.5000	0.5000	0.5000	0.5000	0.5000	0.5000	0.5000	0.5000
	XGBoost	0.5503	0.5361	0.4819	0.5473	0.5227	0.5360	0.4872	0.4889	0.6151	0.5684	0.5430
SLeaf	LSTM	0.9049	0.8660	0.8130	0.6885	0.5000	0.5000	0.5000	0.5000	0.5000	0.5000	0.5000
	SVM	0.9161	0.8871	0.7561	0.6294	0.5638	0.5339	0.5699	0.5166	0.5043	0.5051	0.5069
	RandomForest	0.7545	0.7170	0.6191	0.5904	0.6024	0.5921	0.6171	0.6162	0.5506	0.5515	0.6092
	XGBoost	0.8606	0.8262	0.7878	0.7373	0.7141	0.7158	0.7674	0.7219	0.6755	0.6886	0.7008

Tabla 7.4: Comparación métodos con ADASYN.

Tam. Ventana		1	3	5	7	9	11	13	15	17	19	21
FaceAll	LSTM	0.9626	0.9240	0.9200	0.9121	0.9268	0.9292	0.9379	0.9326	0.9428	0.9101	0.9114
	SVM	0.9591	0.9227	0.9087	0.9306	0.9444	0.9346	0.9491	0.9470	0.9455	0.9247	0.9125
	RandomForest	0.9187	0.8960	0.8964	0.8785	0.9138	0.8871	0.9083	0.9135	0.9190	0.8787	0.8939
	XGBoost	0.9179	0.9109	0.9249	0.9423	0.9582	0.9656	0.9633	0.9270	0.9055	0.9117	0.8638
Adiac	LSTM	0.5807	0.5000	0.5000	0.5000	0.5000	0.5000	0.5000	0.5000	0.5000	0.5000	0.5000
	SVM	0.7773	0.6445	0.5966	0.6323	0.6058	0.6245	0.5125	0.5104	0.5382	0.4871	0.5728
	RandomForest	0.7130	0.7130	0.5714	0.7143	0.5714	0.5000	0.5000	0.5714	0.5000	0.5000	0.5000
	XGBoost	0.7857	0.7844	0.7844	0.7844	0.7804	0.7089	0.7790	0.7062	0.7075	0.7061	0.7074
EGG_eye	LSTM	0.5055	0.5411	0.5418	0.5724	0.5825	0.5565	0.5469	0.5439	0.5570	0.5506	0.5667
	SVM	0.6911	0.7035	0.6937	0.6975	0.7044	0.7064	0.7006	0.7124	0.7046	0.7119	0.7142
	RandomForest	0.9320	0.9304	0.9548	0.9546	0.9606	0.9674	0.9620	0.9648	0.9797	0.9784	0.9770
	XGBoost	0.8079	0.8237	0.8284	0.8324	0.8334	0.8522	0.8398	0.8473	0.8521	0.8494	0.8739
HAR	LSTM	0.8216	0.8187	0.8252	0.5000	0.8431	0.5000	0.8591	0.5000	0.8857	0.5000	0.5000
	SVM	0.8652	0.8737	0.8931	0.8904	0.9058	0.9056	0.9126	0.8990	0.9118	0.9120	0.9170
	RandomForest	0.9740	0.9506	0.9454	0.9667	0.9536	0.9557	0.9529	0.9570	0.9524	0.9406	0.9403
	XGBoost	0.9500	0.9562	0.9559	0.9538	0.9555	0.9521	0.9314	0.9462	0.9514	0.9692	0.9613
Wafer	LSTM	0.9846	0.9777	0.9805	0.9758	0.9574	0.9217	0.8880	0.8652	0.8028	0.7423	0.7254
	SVM	0.9932	0.9664	0.8826	0.7651	0.6841	0.6096	0.5786	0.5619	0.5520	0.5366	0.5336
	RandomForest	0.9723	0.9854	0.9894	0.9871	0.9881	0.9871	0.9815	0.9820	0.9812	0.9871	0.9818
	XGBoost	0.9865	0.9907	0.9934	0.9863	0.9864	0.9868	0.9858	0.9866	0.9873	0.9864	0.9870
Yoga	LSTM	0.8192	0.5617	0.5244	0.5196	0.5066	0.5080	0.5121	0.5033	0.4983	0.4874	0.4949
	SVM	0.6633	0.5242	0.5114	0.5086	0.5043	0.4993	0.5019	0.4970	0.4973	0.4939	0.4913
	RandomForest	0.8151	0.7325	0.6451	0.6069	0.6038	0.5830	0.5740	0.5839	0.5642	0.5679	0.5715
	XGBoost	0.7721	0.7418	0.7104	0.6779	0.6797	0.6538	0.6479	0.6436	0.6261	0.6195	0.6235
Ozone	LSTM	0.7331	0.5892	0.5000	0.5000	0.5000	0.5000	0.5000	0.5000	0.5000	0.5000	0.5000
	SVM	0.6644	0.7773	0.7357	0.7468	0.6698	0.6919	0.5643	0.6763	0.7363	0.6407	0.6134
	RandomForest	0.5343	0.5357	0.6364	0.5305	0.4986	0.5000	0.5000	0.5000	0.4986	0.5000	0.5000
	XGBoost	0.4998	0.5305	0.5986	0.5629	0.5755	0.5764	0.5721	0.5778	0.4916	0.5220	0.4888
SLeaf	LSTM	0.9083	0.8681	0.7717	0.5000	0.5000	0.5000	0.5000	0.5000	0.5000	0.5000	0.5000
	SVM	0.9178	0.8640	0.7130	0.6262	0.5562	0.5322	0.5603	0.5270	0.5061	0.4956	0.4973
	RandomForest	0.7923	0.7079	0.7170	0.6024	0.6015	0.6152	0.6084	0.5979	0.5506	0.5323	0.5419
	XGBoost	0.8071	0.8262	0.7826	0.7475	0.6945	0.7047	0.7246	0.6983	0.6790	0.6440	0.6344

Tabla 7.5: Comparación métodos con MWMOTE.

La Tabla 7.4 muestra resultados los resultados obtenidos al aplicar ADASYN a los conjuntos de datos. Esta tabla muestra una caída en el rendimiento de LSTM conforme a los resultados iniciales, el resto de modelos sí experimentan una mejora en el rendimiento. Los resultados obtenidos son muy similares a los obtenidos utilizando SMOTE.

La Tabla 7.5 muestra los resultados utilizando *MWMOTE* como método de oversampling. Al igual que con los otros dos métodos de oversampling, el rendimiento de los modelos *LSTM* se reduce conforme a los resultados base y el resto de los modelos consiguen mejorar. El rendimiento general mostrado en esta tabla también es muy similar a los obtenidos por los otros dos métodos de oversampling, por lo que ninguno parece tener ningún tipo de ventaja a la hora de procesar series temporales.

A continuación, se comentarán los resultados obtenidos por los modelos utilizando oversampling y selección de características.

La Tabla 7.6 muestra los resultados obtenidos utilizando selección de características con *Boruta* y oversampling con *SMOTE*. A diferencia de para los resultados obtenidos utilizando solamente *SMOTE*, aquí *LSTM* consigue mejorar su rendimiento en casi todos los conjuntos de datos menos en aquellos para los que en ningún caso consigue mejorar como es el caso de *Adiac*. También se puede ver una mejora para el resto de modelos en la mayoría de los conjuntos de datos. Además, los modelos donde se utiliza el método de la ventana obtienen mejores resultados que aquellos que no lo utilizan en conjuntos de datos que inicialmente empeoraban, como por ejemplo el dataset *Yoga*.

La Tabla 7.7 muestra los resultados obtenidos utilizando *Boruta* y *ADASYN*. En esta tabla se pueden ver resultados muy parecidos a los obtenidos mediante el uso de *Boruta* y *SMOTE*, todos los modelos consigue una mejora con respecto a utilizar solamente oversampling. Al igual que para el caso anterior, en algunos datasets los modelos que utilizan el método de la ventana obtienen mejores resultados que aquellos que no lo utilizan.

La Tabla 7.8 muestra los resultados al combinar los algoritmos *Boru*ta y *MWMOTE*; al igual que en los resultados obtenidos para el resto de pruebas que han utilizado selección de características, los resultados mejoran conforme a cuando solamente se utiliza oversampling y el uso de una ventana comienza a ser útil para los casos en los que no lo era.

Tam. Ventana		1	3	5	7	9	11	13	15	17	19	21
FaceAll	LSTM	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
	SVM	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
	RandomForest	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
	XGBoost	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
Adiac	LSTM	0.5026	0.5196	0.5000	0.5000	0.5000	0.4794	0.5000	0.5000	0.5000	0.5055	0.5000
	SVM	0.8242	0.7749	0.7645	0.6944	0.6772	0.7334	0.7243	0.7205	0.6683	0.7151	0.5701
	RandomForest	0.9169	0.9194	0.7791	0.8545	0.7103	0.6402	0.6375	0.5701	0.5000	0.5701	0.5000
	XGBoost	0.9169	0.9168	0.8479	0.9167	0.9179	0.9152	0.9192	0.9151	0.9204	0.9217	0.9217
EGG_eye	LSTM	0.5064	0.5433	0.5833	0.5954	0.5658	0.6151	0.5472	0.5835	0.5764	0.5581	0.5575
	SVM	0.6640	0.6815	0.7013	0.7108	0.7060	0.7101	0.7139	0.6974	0.7016	0.7179	0.7150
	RandomForest	0.9332	0.9389	0.9371	0.9480	0.9583	0.9538	0.9617	0.9660	0.9699	0.9710	0.9639
	XGBoost	0.8069	0.8168	0.8169	0.8347	0.8491	0.8368	0.8340	0.8466	0.8471	0.8525	0.8656
HAR	LSTM	0.8237	0.8395	0.8209	0.5000	0.8427	0.5000	0.8341	0.8596	0.5000	0.5000	0.8894
	SVM	0.9515	0.9440	0.9491	0.9451	0.9515	0.9395	0.9435	0.9235	0.9365	0.9481	0.9404
	RandomForest	0.9596	0.9684	0.9598	0.9508	0.9520	0.9580	0.9672	0.9713	0.9704	0.9575	0.9777
	XGBoost	0.9659	0.9587	0.9588	0.9551	0.9533	0.9636	0.9745	0.9698	0.9568	0.9626	0.9800
Wafer	LSTM	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
	SVM	0.9983	0.9989	1.0000	1.0000	0.9948	1.0000	1.0000	0.9948	0.9842	1.0000	1.0000
	RandomForest	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
	XGBoost	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
Yoga	LSTM	0.6197	0.7470	0.9263	0.9962	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
	SVM	0.6906	0.6867	0.7450	0.7628	0.8009	0.7833	0.8388	0.8378	0.8605	0.8559	0.8611
	RandomForest	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
	XGBoost	0.9543	0.9716	0.9963	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
Ozone	LSTM	0.6500	0.6300	0.6256	0.6253	0.6176	0.6062	0.6385	0.6039	0.6389	0.6391	0.6092
	SVM	0.7048	0.7621	0.6880	0.6338	0.7764	0.6411	0.7102	0.6551	0.3995	0.5213	0.7276
	RandomForest	0.5696	0.4818	0.4861	0.4873	0.4986	0.4901	0.4944	0.4959	0.4986	0.4958	0.4986
	XGBoost	0.6577	0.5245	0.6064	0.5008	0.4526	0.5333	0.5092	0.4568	0.5131	0.5275	0.5845
SLeaf	LSTM	0.8795	0.9060	0.9422	0.9656	0.9849	0.9946	0.9956	0.9989	1.0000	0.9989	1.0000
	SVM	0.8910	0.9079	0.9324	0.9344	0.9471	0.9653	0.9728	0.9726	0.9402	0.9790	0.9834
	RandomForest	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
	XGBoost	0.9968	0.9989	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000

Tabla 7.6: Comparación métodos con SMOTE+BORUTA.

Tam. Ventana		1	3	5	7	9	11	13	15	17	19	21
FaceAll	LSTM	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
	SVM	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
	RandomForest	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
	XGBoost	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
Adiac	LSTM	0.5117	0.5000	0.5039	0.5053	0.5000	0.5053	0.5255	0.5000	0.5000	0.5000	0.5000
	SVM	0.8164	0.7736	0.7009	0.6984	0.6178	0.7320	0.7162	0.7083	0.6588	0.6563	0.5783
	RandomForest	0.9142	0.8467	0.7791	0.7103	0.7103	0.5688	0.4973	0.5687	0.5000	0.5714	0.5714
	XGBoost	0.9156	0.9168	0.8466	0.9180	0.9166	0.9152	0.9165	0.9205	0.9177	0.8503	0.9203
EGG_eye	LSTM	0.5047	0.5368	0.5393	0.5425	0.5511	0.5383	0.5237	0.5269	0.5411	0.5116	0.5383
	SVM	0.6496	0.6801	0.6853	0.6955	0.7028	0.7078	0.6995	0.6937	0.7115	0.7075	0.7112
	RandomForest	0.9299	0.9460	0.9526	0.9583	0.9660	0.9733	0.9745	0.9759	0.9694	0.9695	0.9740
	XGBoost	0.8065	0.8208	0.8201	0.8338	0.8486	0.8410	0.8507	0.8487	0.8464	0.8654	0.8479
HAR	LSTM	0.8185	0.8274	0.8214	0.8379	0.8479	0.8349	0.8414	0.8230	0.8807	0.5000	0.8502
	SVM	0.8579	0.8771	0.8871	0.8882	0.8995	0.8969	0.9102	0.9207	0.9157	0.9356	0.9364
	RandomForest	0.9473	0.9601	0.9571	0.9417	0.9417	0.9537	0.9566	0.9578	0.9724	0.9642	0.9629
	XGBoost	0.9624	0.9588	0.9567	0.9383	0.9515	0.9494	0.9614	0.9563	0.9648	0.9600	0.9590
Wafer	LSTM	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
	SVM	0.9983	0.9989	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
	RandomForest	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
	XGBoost	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
Yoga	LSTM	0.6596	0.7511	0.9239	0.9925	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
	SVM	0.7066	0.6913	0.7181	0.7185	0.7611	0.7988	0.7731	0.8122	0.8205	0.8472	0.8479
	RandomForest	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
	XGBoost	0.9537	0.9778	0.9963	1.0000	0.9962	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
Ozone	LSTM	0.6688	0.6754	0.6905	0.6676	0.6783	0.6838	0.5683	0.6046	0.6768	0.5632	0.5817
	SVM	0.7805	0.7548	0.8259	0.6296	0.6882	0.6159	0.6189	0.5890	0.6707	0.6633	0.6567
	RandomForest	0.5161	0.5258	0.4915	0.4930	0.4957	0.5328	0.4972	0.4986	0.4972	0.4986	0.4986
	XGBoost	0.6176	0.7922	0.5399	0.5469	0.6061	0.5066	0.4649	0.5131	0.5423	0.5135	0.4787
SLeaf	LSTM	0.8785	0.9211	0.9465	0.9559	0.9741	0.9848	0.9902	0.9978	1.0000	0.9989	1.0000
	SVM	0.9384	0.9241	0.9346	0.9387	0.9644	0.9588	0.9728	0.9716	0.9714	0.9629	0.9650
	RandomForest	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
	XGBoost	0.9958	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000

Tabla 7.7: Comparación métodos con ADASYN+BORUTA.

Tam. Ventana		1	3	5	7	9	11	13	15	17	19	21
FaceAll	LSTM	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
	SVM	0.9990	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
	RandomForest	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
	XGBoost	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
Adiac	LSTM	0.5143	0.5275	0.5066	0.5000	0.5027	0.5147	0.5013	0.5000	0.5000	0.5000	0.5000
	SVM	0.8216	0.7906	0.7592	0.7063	0.6497	0.6553	0.7283	0.6761	0.5969	0.6550	0.5920
	RandomForest	0.7779	0.8506	0.7778	0.6415	0.7130	0.7116	0.5687	0.5000	0.5000	0.5000	0.5000
	XGBoost	0.7792	0.8493	0.8479	0.8492	0.8492	0.9152	0.8477	0.8477	0.8490	0.7789	0.7102
EGG_eye	LSTM	0.5055	0.5411	0.5418	0.5724	0.5825	0.5565	0.5469	0.5439	0.5570	0.5506	0.5667
	SVM	0.6911	0.7035	0.6937	0.6975	0.7044	0.7064	0.7006	0.7124	0.7046	0.7119	0.7142
	RandomForest	0.9320	0.9304	0.9548	0.9546	0.9606	0.9674	0.9620	0.9648	0.9797	0.9784	0.9770
	XGBoost	0.8079	0.8237	0.8284	0.8324	0.8334	0.8522	0.8398	0.8473	0.8521	0.8494	0.8739
HAR	LSTM	0.8317	0.8319	0.8376	0.5000	0.8513	0.8579	0.8702	0.8663	0.5000	0.5000	0.5000
	SVM	0.9590	0.9496	0.9524	0.9413	0.9433	0.9385	0.9408	0.9248	0.9296	0.9415	0.9474
	RandomForest	0.9704	0.9614	0.9605	0.9730	0.9518	0.9631	0.9584	0.9646	0.9629	0.9553	0.9713
	XGBoost	0.9411	0.9435	0.9675	0.9622	0.9762	0.9613	0.9537	0.9555	0.9526	0.9669	0.9550
Wafer	LSTM	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
	SVM	0.9989	0.9989	1.0000	0.9948	1.0000	0.9948	0.9948	1.0000	1.0000	0.9895	0.9947
	RandomForest	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
	XGBoost	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
Yoga	LSTM	0.6381	0.7630	0.9232	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
	SVM	0.6665	0.6738	0.7146	0.7409	0.7924	0.8096	0.8485	0.8244	0.8560	0.8714	0.8794
	RandomForest	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
	XGBoost	0.9482	0.9852	0.9963	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
Ozone	LSTM	0.6271	0.5208	0.5779	0.6059	0.6527	0.6831	0.5639	0.6163	0.6574	0.6250	0.5609
	SVM	0.7123	0.6720	0.6282	0.7263	0.7811	0.6882	0.7161	0.6297	0.6787	0.7064	0.6829
	RandomForest	0.5134	0.6012	0.5202	0.4888	0.4916	0.5645	0.4972	0.4972	0.4972	0.4986	0.4986
	XGBoost	0.4823	0.5676	0.6112	0.5690	0.4964	0.5179	0.4678	0.5381	0.5244	0.5968	0.5290
SLeaf	LSTM	0.8817	0.9286	0.9454	0.9667	0.9903	0.9957	0.9956	0.9978	0.9989	0.9989	1.0000
	SVM	0.9222	0.9305	0.9346	0.9354	0.9622	0.9566	0.9339	0.9587	0.9091	0.9629	0.9467
	RandomForest	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
	XGBoost	0.9947	0.9989	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000

Tabla 7.8: Comparación métodos con MWMOTE+BORUTA.

Capítulo 8

Conclusiones y trabajos futuros

En este capítulo se comentarán las conclusiones alcanzas después de realizar las pruebas y el análisis visto en el capítulo anterior. Tras esto, se propondrán algunas líneas de trabajo que podrían salir de este trabajo.

8.1. Conclusiones

Según los resultados mostrados en el capítulo anterior, se puede afirmar que las LSTM son un buen modelo para predicción con series temporales de clasificación, incluso si tienen desbalanceo, y competitivo con el resto de modelos de clasificación clásica.

De entre los métodos de preprocesamiento utilizados, las técnicas de oversampling no han resultados ser demasiado útiles, posiblemente esto sea por el hecho de ser algoritmos generales que no están centrados en las características de las series temporales. Para el caso de los modelos de *LSTM* suele haber sobreajuste hacia la clase positiva, probablemente provocado por la forma de entrenar de este tipo de modelo y la creación de instancias de los métodos de oversampling. Las *LSTM* entrenan con una serie de ejemplos en cada época y reajusta sus parámetros según el error que ha producido, los ejemplos creados con los métodos de oversampling están al final del conjunto de datos, por lo que en las últimas épocas los modelos solamente entrenan con ejemplos sintéticos de la clase positiva y se pierde la información aprendida de los ejemplos de la clase negativa.

El método de la ventana ha dado buenos resultados en la gran mayoría de casos donde el conjunto de datos era una serie temporal multivariada de clasificación con desbalanceo, o cuando la extracción de características era

la adecuada cuando se trataba de clasificación de series temporales; por lo tanto, este tipo de procesamiento es interesante utilizarlo cuando se obtienen buenos resultados de la extracción de características y cuando se trabaja con el primer tipo de serie temporal comentado.

Por último, la selección de características en la mayoría de los casos ha sido la causa de obtención de modelos que clasifiquen de forma perfecta el conjunto de datos durante las pruebas, por lo que se puede concluir que la extracción de características debe ser un preprocesamiento a probar siempre y a estudiar con más profundidad para este tipo de problemas.

8.2. Trabajos Futuros

Como trabajos futuros pueden realizarse las siguientes propuestas:

- Desarrollo de un método de oversampling específico para series temporales que tenga en cuenta las características específicas de esta.
- Estudio de otras formas de combatir el desbalanceo e implementación de un optimizador de matriz de pesos con LSTMs.
- Estudio del uso de la ventana en más profundidad, estudio de medidas de las redes que indiquen un cierto tamaño específico por ejemplo, algoritmo para seleccionar una ventana adecuada.
- Estudio de más métodos de selección de características aplicados a las series temporales de clasificación.

Bibliografía

- [1] S. Barua, M. M. Islam, X. Yao y K. Murase. «MWMOTE-majority weighted minority oversampling technique for imbalanced data set learning». En: *IEEE Transactions on Knowledge and Data Enginee-ring* 26.2 (2012), págs. 405-425.
- [2] B. E. Boser, I. M. Guyon y V. N. Vapnik. «A training algorithm for optimal margin classifiers». En: *Proceedings of the fifth annual workshop on Computational learning theory*. ACM. 1992, págs. 144-152.
- [3] L. Breiman. «Random forests». En: Machine learning 45.1 (2001), págs. 5-32.
- [4] H. Cao, X.-L. Li, D. Y.-K. Woon y S.-K. Ng. «Integrated oversampling for imbalanced time series classification». En: *IEEE Transactions on Knowledge and Data Engineering* 25.12 (2013), págs. 2809-2822.
- [5] H. Cao, V. Y. Tan y J. Z. Pang. «A parsimonious mixture of Gaussian trees model for oversampling in imbalanced and multimodal timeseries classification». En: *IEEE transactions on neural networks and learning systems* 25.12 (2014), págs. 2226-2239.
- [6] N. V. Chawla, K. W. Bowyer, L. O. Hall y W. P. Kegelmeyer. «SMO-TE: synthetic minority over-sampling technique». En: *Journal of ar*tificial intelligence research 16 (2002), págs. 321-357.
- [7] T. Chen y C. Guestrin. «Xgboost: A scalable tree boosting system». En: Proceedings of the 22nd acm sigkdd international conference on knowledge discovery and data mining. ACM. 2016, págs. 785-794.
- [8] K. Cho, B. Van Merriënboer, D. Bahdanau e Y. Bengio. «On the properties of neural machine translation: Encoder-decoder approaches». En: arXiv preprint arXiv:1409.1259 (2014).
- [9] J. Chung, C. Gulcehre, K. Cho e Y. Bengio. «Gated feedback recurrent neural networks». En: *International Conference on Machine Learning*. 2015, págs. 2067-2075.
- [10] L. Du, Q. Song y X. Jia. «Detecting concept drift: an information entropy based method using an adaptive sliding window». En: *Intelligent Data Analysis* 18.3 (2014), págs. 337-364.

74 BIBLIOGRAFÍA

[11] J. H. Friedman. «Stochastic gradient boosting». En: Computational statistics & data analysis 38.4 (2002), págs. 367-378.

- [12] Y. Geng y X. Luo. «Cost-sensitive convolution based neural networks for imbalanced time-series classification». En: arXiv preprint arXiv:1801.04396 (2018).
- [13] H. Han, W.-Y. Wang y B.-H. Mao. «Borderline-SMOTE: a new over-sampling method in imbalanced data sets learning». En: *International conference on intelligent computing*. Springer. 2005, págs. 878-887.
- [14] P. Hart. «The condensed nearest neighbor rule (Corresp.)» En: *IEEE transactions on information theory* 14.3 (1968), págs. 515-516.
- [15] G. He, Y. Li y W. Zhao. «An uncertainty and density based active semi-supervised learning scheme for positive unlabeled multivariate time series classification». En: *Knowledge-Based Systems* 124 (2017), págs. 80-92.
- [16] H. He, Y. Bai, E. A. Garcia y S. Li. «ADASYN: Adaptive synthetic sampling approach for imbalanced learning». En: 2008 IEEE International Joint Conference on Neural Networks (IEEE World Congress on Computational Intelligence). IEEE. 2008, págs. 1322-1328.
- [17] S. Hochreiter y J. Schmidhuber. «Long short-term memory». En: Neural computation 9.8 (1997), págs. 1735-1780.
- [18] R. J. Hyndman y G. Athanasopoulos. Forecasting: principles and practice. OTexts, 2018.
- [19] F. Karim, S. Majumdar, H. Darabi y S. Chen. «LSTM fully convolutional networks for time series classification». En: *IEEE Access* 6 (2017), págs. 1662-1669.
- [20] M. Kubat, S. Matwin y col. «Addressing the curse of imbalanced training sets: one-sided selection». En: *Icml.* Vol. 97. Nashville, USA. 1997, págs. 179-186.
- [21] M. B. Kursa, A. Jankowski y W. R. Rudnicki. «Boruta—a system for feature selection». En: Fundamenta Informaticae 101.4 (2010), págs. 271-285.
- [22] G. Liang. «An effective method for imbalanced time series classification: hybrid sampling». En: Australasian Joint Conference on Artificial Intelligence. Springer. 2013, págs. 374-385.
- [23] S. Roychoudhury, M. Ghalwash y Z. Obradovic. «Cost sensitive timeseries classification». En: *Joint European Conference on Machine Lear*ning and Knowledge Discovery in Databases. Springer. 2017, págs. 495-511.
- [24] R. E. Schapire. «A brief introduction to boosting». En: *Ijcai*. Vol. 99. 1999, págs. 1401-1406.

BIBLIOGRAFÍA 75

[25] H. Shimodaira, K.-i. Noma, M. Nakai y S. Sagayama. «Dynamic time-alignment kernel in support vector machine». En: *Advances in neural information processing systems*. 2002, págs. 921-928.

- [26] G Swapna, S. Kp y R Vinayakumar. «Automated detection of diabetes using CNN and CNN-LSTM network and heart rate signals». En: *Procedia computer science* 132 (2018), págs. 1253-1262.
- [27] I. Tomek. «Two modifications of CNN». En: *IEEE Trans. Systems, Man and Cybernetics* 6 (1976), págs. 769-772.
- [28] M. Xu, Y. Yang, M. Han, T. Qiu y H. Lin. «Spatio-Temporal Interpolated Echo State Network for Meteorological Series Prediction». En: *IEEE transactions on neural networks and learning systems* 30.6 (2018), págs. 1621-1634.

Apéndice A

Tablas de resultados

En este capítulo se muestran los resultados obtenidos durante el trabajo. Las tablas que se muestran contienen los resultados obtenidos por cada uno de los experimentos por cada conjunto de datos, así como todas las métricas que se comentaron en el sexto capítulo.

AUC	LSTM	0.9540	0.8926	0.8863	0.9315	0.9368	0.9477	0.9512	0.9432	0.9592	0.9417	0.9157
	SVM	0.9423	0.9044	0.8952	0.8933	0.9216	0.9265	0.9324	0.9387	0.9276	0.8969	0.9029
	RandomForest	0.8261	0.8143	0.8603	0.8182	0.8281	0.8226	0.8500	0.8276	0.8393	0.8241	0.8462
	XGBoost	0.8454	0.8559	0.8673	0.8633	0.8819	0.9023	0.9000	0.8879	0.8747	0.8704	0.8365
F-Score	LSTM	0.8684	0.6552	0.4531	0.4549	0.4429	0.5021	0.4317	0.4628	0.5140	0.6901	0.5921
	SVM	0.8951	0.8382	0.8438	0.8667	0.9076	0.8983	0.9043	0.9107	0.8972	0.8515	0.8660
	RandomForest	0.7833	0.7719	0.8376	0.7778	0.7925	0.7843	0.8235	0.7917	0.8085	0.7865	0.8182
	XGBoost	0.7812	0.8065	0.8403	0.8348	0.8448	0.8696	0.8889	0.8738	0.8485	0.8511	0.8046
G-Mean	LSTM	0.9533	0.8892	0.8857	0.9313	0.9362	0.9475	0.9499	0.9429	0.9590	0.9410	0.9143
	SVM	0.9408	0.8999	0.8895	0.8871	0.9183	0.9237	0.9301	0.9368	0.9250	0.8913	0.8979
	RandomForest	0.8077	0.7928	0.8489	0.7977	0.8101	0.8032	0.8367	0.8094	0.8238	0.8051	0.8321
	XGBoost	0.8318	0.8441	0.8572	0.8525	0.8742	0.8972	0.8944	0.8808	0.8658	0.8607	0.8204
Precision	LSTM	0.8250	0.5481	0.3085	0.2986	0.2870	0.3390	0.2752	0.3043	0.3481	0.5568	0.4500
	SVM	0.9014	0.8636	0.9000	0.9630	0.9818	0.9464	0.9455	0.9444	0.9412	0.9149	0.9333
	RandomForest	0.9792	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
	XGBoost	0.8929	0.9259	0.9804	0.9796	0.9423	0.9434	1.0000	1.0000	0.9767	1.0000	1.0000
Recall	LSTM	0.9167	0.8143	0.8529	0.9545	0.9688	0.9677	1.0000	0.9655	0.9821	0.9074	0.8654
	SVM	0.8889	0.8143	0.7941	0.7879	0.8438	0.8548	0.8667	0.8793	0.8571	0.7963	0.8077
	RandomForest	0.6528	0.6286	0.7206	0.6364	0.6562	0.6452	0.7000	0.6552	0.6786	0.6481	0.6923
	XGBoost	0.6944	0.7143	0.7353	0.7273	0.7656	0.8065	0.8000	0.7759	0.7500	0.7407	0.6731
				•					•			

Tabla A.1: Resultados Base FaceAll.

Tam. Ventana		1	3	5	7	9	11	13	15	17	19	21
AUC	LSTM	0.9555	0.9228	0.9132	0.9128	0.9314	0.9255	0.9342	0.9379	0.9314	0.9083	0.9065
	SVM	0.9603	0.9227	0.9087	0.9303	0.9447	0.9346	0.9491	0.9473	0.9455	0.9247	0.9125
	RandomForest	0.9196	0.8966	0.9173	0.8936	0.9059	0.9187	0.9410	0.9221	0.9098	0.8975	0.9032
	XGBoost	0.9034	0.9038	0.9092	0.9487	0.9654	0.9653	0.9812	0.9283	0.9141	0.8932	0.8635
F-Score	LSTM	0.7010	0.6294	0.4300	0.3526	0.3657	0.3397	0.3604	0.3659	0.3618	0.3559	0.4299
	SVM	0.8645	0.8054	0.8358	0.8906	0.9268	0.9076	0.9231	0.9204	0.9174	0.8846	0.8776
	RandomForest	0.8356	0.8175	0.8702	0.8739	0.8889	0.8966	0.9217	0.9074	0.8762	0.8687	0.8750
	XGBoost	0.6857	0.7160	0.7261	0.8276	0.8889	0.9062	0.9280	0.8547	0.7769	0.7611	0.7917
G-Mean	LSTM	0.9555	0.9220	0.9131	0.9111	0.9289	0.9225	0.9319	0.9358	0.9300	0.9081	0.9062
	SVM	0.9599	0.9204	0.9047	0.9279	0.9431	0.9324	0.9478	0.9460	0.9440	0.9218	0.9085
	RandomForest	0.9167	0.8914	0.9139	0.8874	0.9011	0.9152	0.9393	0.9189	0.9055	0.8918	0.8982
	XGBoost	0.9007	0.9006	0.9065	0.9478	0.9649	0.9648	0.9811	0.9259	0.9110	0.8879	0.8533
Precision	LSTM	0.5574	0.4882	0.2800	0.2155	0.2238	0.2046	0.2198	0.2239	0.2218	0.2203	0.2840
	SVM	0.8072	0.7595	0.8485	0.9194	0.9661	0.9474	0.9474	0.9455	0.9434	0.9200	0.9348
	RandomForest	0.8243	0.8358	0.9048	0.9811	0.9811	0.9630	0.9636	0.9800	0.9388	0.9556	0.9545
	XGBoost	0.5825	0.6304	0.6404	0.7595	0.8451	0.8788	0.8923	0.8475	0.7231	0.7288	0.8636
Recall	LSTM	0.9444	0.8857	0.9265	0.9697	1.0000	1.0000	1.0000	1.0000	0.9821	0.9259	0.8846
	SVM	0.9306	0.8571	0.8235	0.8636	0.8906	0.8710	0.9000	0.8966	0.8929	0.8519	0.8269
	RandomForest	0.8472	0.8000	0.8382	0.7879	0.8125	0.8387	0.8833	0.8448	0.8214	0.7963	0.8077
	XGBoost	0.8333	0.8286	0.8382	0.9091	0.9375	0.9355	0.9667	0.8621	0.8393	0.7963	0.7308

Tabla A.2: Resultados FaceAll con SMOTE.

Tam. Ventana		1	3	5	7	9	11	13	15	17	19	21
AUC	LSTM	0.9623	0.8861	0.9032	0.9155	0.9364	0.9140	0.9438	0.9459	0.9460	0.9157	0.9157
	SVM	0.9603	0.9227	0.9084	0.9230	0.9450	0.9346	0.9491	0.9387	0.9363	0.9062	0.9029
	RandomForest	0.8643	0.8339	0.8597	0.8712	0.8747	0.8626	0.8833	0.8017	0.8393	0.8519	0.8173
	XGBoost	0.9179	0.8653	0.8890	0.8884	0.9113	0.9401	0.9744	0.8966	0.9018	0.8889	0.8651
F-Score	LSTM	0.7907	0.5846	0.5221	0.3830	0.4784	0.3676	0.3974	0.3986	0.4280	0.4923	0.5000
	SVM	0.8645	0.8054	0.8296	0.8889	0.9344	0.9076	0.9231	0.9107	0.8991	0.8627	0.8660
	RandomForest	0.7737	0.7642	0.8235	0.8522	0.8496	0.8333	0.8679	0.7527	0.8085	0.8261	0.7765
	XGBoost	0.7086	0.6386	0.7297	0.7647	0.8413	0.8594	0.9580	0.8846	0.8911	0.8750	0.8352
G-Mean	LSTM	0.9622	0.8832	0.9025	0.9146	0.9362	0.9132	0.9421	0.9444	0.9453	0.9153	0.9152
	SVM	0.9599	0.9204	0.9044	0.9200	0.9434	0.9324	0.9478	0.9368	0.9343	0.9016	0.8979
	RandomForest	0.8548	0.8179	0.8483	0.8616	0.8658	0.8517	0.8756	0.7768	0.8238	0.8389	0.7966
	XGBoost	0.9161	0.8585	0.8839	0.8827	0.9075	0.9387	0.9741	0.8906	0.8964	0.8819	0.8546
Precision	LSTM	0.6800	0.4560	0.3734	0.2395	0.3194	0.2278	0.2479	0.2489	0.2736	0.3404	0.3485
	SVM	0.8072	0.7595	0.8358	0.9333	0.9828	0.9474	0.9474	0.9444	0.9245	0.9167	0.9333
	RandomForest	0.8154	0.8868	0.9608	1.0000	0.9796	0.9783	1.0000	1.0000	1.0000	1.0000	1.0000
	XGBoost	0.6019	0.5521	0.6750	0.7429	0.8548	0.8333	0.9661	1.0000	1.0000	1.0000	0.9744
Recall	LSTM	0.9444	0.8143	0.8676	0.9545	0.9531	0.9516	1.0000	1.0000	0.9821	0.8889	0.8846
	SVM	0.9306	0.8571	0.8235	0.8485	0.8906	0.8710	0.9000	0.8793	0.8750	0.8148	0.8077
	RandomForest	0.7361	0.6714	0.7206	0.7424	0.7500	0.7258	0.7667	0.6034	0.6786	0.7037	0.6346
	XGBoost	0.8611	0.7571	0.7941	0.7879	0.8281	0.8871	0.9500	0.7931	0.8036	0.7778	0.7308

Tabla A.3: Resultados FaceAll con ADASYN.

Tam. Ventana		1	3	5	7	9	11	13	15	17	19	21
AUC	LSTM	0.9626	0.9240	0.9200	0.9121	0.9268	0.9292	0.9379	0.9326	0.9428	0.9101	0.9114
	SVM	0.9591	0.9227	0.9087	0.9306	0.9444	0.9346	0.9491	0.9470	0.9455	0.9247	0.9125
	RandomForest	0.9187	0.8960	0.8964	0.8785	0.9138	0.8871	0.9083	0.9135	0.9190	0.8787	0.8939
	XGBoost	0.9179	0.9109	0.9249	0.9423	0.9582	0.9656	0.9633	0.9270	0.9055	0.9117	0.8638
F-Score	LSTM	0.7953	0.5806	0.4649	0.3706	0.3507	0.3513	0.3738	0.3473	0.3771	0.3333	0.4646
	SVM	0.8428	0.8054	0.8358	0.8976	0.9194	0.9076	0.9231	0.9123	0.9174	0.8846	0.8776
	RandomForest	0.8188	0.8058	0.8710	0.8547	0.8983	0.8727	0.8991	0.8972	0.8952	0.8367	0.8723
	XGBoost	0.7086	0.7239	0.7564	0.8429	0.8939	0.9134	0.8819	0.8264	0.7731	0.7826	0.8000
G-Mean	LSTM	0.9625	0.9237	0.9199	0.9111	0.9239	0.9265	0.9358	0.9302	0.9411	0.9095	0.9110
	SVM	0.9587	0.9204	0.9047	0.9282	0.9429	0.9324	0.9478	0.9457	0.9440	0.9218	0.9085
	RandomForest	0.9159	0.8908	0.8906	0.8701	0.9097	0.8799	0.9037	0.9094	0.9156	0.8705	0.8877
	XGBoost	0.9161	0.9084	0.9231	0.9411	0.9575	0.9651	0.9628	0.9247	0.9016	0.9083	0.8535
Precision	LSTM	0.6869	0.4286	0.3103	0.2299	0.2126	0.2131	0.2299	0.2101	0.2324	0.2024	0.3151
	SVM	0.7701	0.7595	0.8485	0.9344	0.9500	0.9474	0.9474	0.9286	0.9434	0.9200	0.9348
	RandomForest	0.7922	0.8116	0.9643	0.9804	0.9815	1.0000	1.0000	0.9796	0.9592	0.9318	0.9762
	XGBoost	0.6019	0.6344	0.6705	0.7973	0.8676	0.8923	0.8358	0.7937	0.7302	0.7377	0.8837
Recall	LSTM	0.9444	0.9000	0.9265	0.9545	1.0000	1.0000	1.0000	1.0000	1.0000	0.9444	0.8846
	SVM	0.9306	0.8571	0.8235	0.8636	0.8906	0.8710	0.9000	0.8966	0.8929	0.8519	0.8269
	RandomForest	0.8472	0.8000	0.7941	0.7576	0.8281	0.7742	0.8167	0.8276	0.8393	0.7593	0.7885
	XGBoost	0.8611	0.8429	0.8676	0.8939	0.9219	0.9355	0.9333	0.8621	0.8214	0.8333	0.7308

Tabla A.4: Resultados FaceAll con MWMOTE.

Tam. Ventana		1	3	5	7	9	11	13	15	17	19	21
AUC	LSTM	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
	SVM	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
	RandomForest	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
	XGBoost	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
F-Score	LSTM	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
	SVM	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
	RandomForest	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
	XGBoost	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
G-Mean	LSTM	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
	SVM	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
	RandomForest	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
	XGBoost	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
Precision	LSTM	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
	SVM	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
	RandomForest	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
	XGBoost	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
Recall	LSTM	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
	SVM	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
	RandomForest	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
	XGBoost	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000

Tabla A.5: Resultados Face All con SMOTE + BORUTA.

Tam. Ventana		1	3	5	7	9	11	13	15	17	19	21
AUC	LSTM	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
	SVM	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
	RandomForest	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
	XGBoost	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
F-Score	LSTM	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
	SVM	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
	RandomForest	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
	XGBoost	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
G-Mean	LSTM	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
	SVM	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
	RandomForest	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
	XGBoost	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
Precision	LSTM	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
	SVM	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
	RandomForest	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
	XGBoost	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
Recall	LSTM	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
	SVM	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
	RandomForest	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
	XGBoost	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000

Tabla A.6: Resultados Face All con ADASYN + BORUTA.

Tam. Ventana		1	3	5	7	9	11	13	15	17	19	21
AUC	LSTM	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
	SVM	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
	RandomForest	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
	XGBoost	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
F-Score	LSTM	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
	SVM	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
	RandomForest	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
	XGBoost	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
G-Mean	LSTM	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
	SVM	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
	RandomForest	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
	XGBoost	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
Precision	LSTM	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
	SVM	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
	RandomForest	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
	XGBoost	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
Recall	LSTM	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
	SVM	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
	RandomForest	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
	XGBoost	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000

Tabla A.7: Resultados Face All con MWMOTE + BORUTA.

Tam. Ventana		1	3	5	7	9	11	13	15	17	19	21
AUC	LSTM	0.7666	0.8880	0.9164	0.9411	0.9485	0.9450	0.9679	0.9491	0.9693	0.9773	0.9815
	SVM	0.6201	0.6315	0.6343	0.6361	0.6413	0.6503	0.6472	0.6462	0.6489	0.6646	0.6619
	RandomForest	0.9282	0.9342	0.9405	0.9425	0.9496	0.9593	0.9583	0.9696	0.9658	0.9574	0.9696
	XGBoost	0.7967	0.8253	0.8141	0.8253	0.8394	0.8288	0.8268	0.8466	0.8269	0.8591	0.8426
F-Score	LSTM	0.7275	0.8777	0.9060	0.9318	0.9447	0.9409	0.9648	0.9433	0.9637	0.9744	0.9805
	SVM	0.4917	0.5100	0.5144	0.5155	0.5288	0.5483	0.5488	0.5382	0.5449	0.5774	0.5713
	RandomForest	0.9196	0.9277	0.9352	0.9383	0.9457	0.9560	0.9548	0.9669	0.9635	0.9539	0.9677
	XGBoost	0.7678	0.7998	0.7881	0.8014	0.8170	0.8041	0.8051	0.8272	0.8045	0.8404	0.8253
G-Mean	LSTM	0.7612	0.8878	0.9160	0.9411	0.9480	0.9439	0.9678	0.9480	0.9691	0.9773	0.9814
	SVM	0.5720	0.5878	0.5903	0.5903	0.6022	0.6171	0.6164	0.6093	0.6132	0.6399	0.6341
	RandomForest	0.9276	0.9339	0.9400	0.9420	0.9491	0.9591	0.9581	0.9695	0.9657	0.9573	0.9694
	XGBoost	0.7934	0.8222	0.8112	0.8232	0.8376	0.8269	0.8246	0.8452	0.8251	0.8575	0.8413
Precision	LSTM	0.7881	0.8506	0.9226	0.9215	0.9720	0.9858	0.9692	0.8962	0.9386	0.9740	0.9888
	SVM	0.6943	0.7016	0.7134	0.7272	0.7112	0.7138	0.7034	0.7162	0.7247	0.7135	0.7239
	RandomForest	0.9436	0.9462	0.9627	0.9682	0.9746	0.9722	0.9707	0.9743	0.9773	0.9685	0.9867
	XGBoost	0.8170	0.8519	0.8366	0.8388	0.8537	0.8379	0.8477	0.8576	0.8400	0.8761	0.8574
Recall	LSTM	0.7881	0.8506	0.9226	0.9215	0.9720	0.9858	0.9692	0.8962	0.9386	0.9740	0.9888
	SVM	0.6943	0.7016	0.7134	0.7272	0.7112	0.7138	0.7034	0.7162	0.7247	0.7135	0.7239
	RandomForest	0.9436	0.9462	0.9627	0.9682	0.9746	0.9722	0.9707	0.9743	0.9773	0.9685	0.9867
	XGBoost	0.8170	0.8519	0.8366	0.8388	0.8537	0.8379	0.8477	0.8576	0.8400	0.8761	0.8574

Tabla A.8: Resultados base EGG_Eye.

Tam.Ventana		1	3	5	7	9	11	13	15	17	19	21
AUC	LSTM	0.5064	0.5433	0.5833	0.5954	0.5658	0.6151	0.5472	0.5835	0.5764	0.5581	0.5575
	SVM	0.6640	0.6815	0.7013	0.7108	0.7060	0.7101	0.7139	0.6974	0.7016	0.7179	0.7150
	RandomForest	0.9332	0.9389	0.9371	0.9480	0.9583	0.9538	0.9617	0.9660	0.9699	0.9710	0.9639
	XGBoost	0.8069	0.8168	0.8169	0.8347	0.8491	0.8368	0.8340	0.8466	0.8471	0.8525	0.8656
F-Score	LSTM	0.6243	0.6367	0.6598	0.6695	0.6463	0.6805	0.6553	0.6591	0.6662	0.6415	0.6414
	SVM	0.6259	0.6511	0.6697	0.6843	0.6748	0.6782	0.6853	0.6715	0.6716	0.6912	0.6844
	RandomForest	0.9272	0.9345	0.9319	0.9436	0.9543	0.9499	0.9584	0.9633	0.9680	0.9691	0.9610
	XGBoost	0.7866	0.7987	0.7976	0.8189	0.8316	0.8210	0.8196	0.8308	0.8354	0.8451	0.8554
G-Mean	LSTM	0.1130	0.2942	0.4088	0.4368	0.3644	0.4804	0.3074	0.4087	0.3910	0.3487	0.3391
	SVM	0.6619	0.6803	0.7006	0.7100	0.7058	0.7089	0.7126	0.6972	0.7014	0.7178	0.7137
	RandomForest	0.9330	0.9388	0.9364	0.9479	0.9582	0.9537	0.9617	0.9659	0.9698	0.9709	0.9638
	XGBoost	0.8067	0.8166	0.8165	0.8346	0.8491	0.8363	0.8339	0.8463	0.8470	0.8525	0.8656
Precision	LSTM	0.4538	0.4670	0.4925	0.5032	0.4778	0.5159	0.4873	0.4915	0.4995	0.4736	0.4721
	SVM	0.6409	0.6629	0.6684	0.6904	0.6599	0.6865	0.6998	0.6657	0.6601	0.6782	0.6962
	RandomForest	0.9394	0.9434	0.9636	0.9535	0.9646	0.9633	0.9609	0.9709	0.9792	0.9811	0.9759
	XGBoost	0.7834	0.7969	0.8061	0.8135	0.8248	0.8350	0.8166	0.8355	0.8351	0.8469	0.8457
Recall	LSTM	1.0000	1.0000	0.9993	1.0000	0.9985	0.9993	1.0000	1.0000	1.0000	0.9940	1.0000
	SVM	0.6116	0.6398	0.6709	0.6783	0.6905	0.6701	0.6713	0.6775	0.6835	0.7046	0.6731
	RandomForest	0.9152	0.9257	0.9021	0.9339	0.9443	0.9368	0.9560	0.9559	0.9571	0.9573	0.9465
	XGBoost	0.7898	0.8004	0.7893	0.8243	0.8385	0.8075	0.8226	0.8262	0.8357	0.8433	0.8654

Tabla A.9: Resultados base EGG_Eye con SMOTE.

Tam. Ventana		1	3	5	7	9	11	13	15	17	19	21
AUC	LSTM	0.5047	0.5368	0.5393	0.5425	0.5511	0.5383	0.5237	0.5269	0.5411	0.5116	0.5383
	SVM	0.6496	0.6801	0.6853	0.6955	0.7028	0.7078	0.6995	0.6937	0.7115	0.7075	0.7112
	RandomForest	0.9299	0.9460	0.9526	0.9583	0.9660	0.9733	0.9745	0.9759	0.9694	0.9695	0.9740
	XGBoost	0.8065	0.8208	0.8201	0.8338	0.8486	0.8410	0.8507	0.8487	0.8464	0.8654	0.8479
F-Score	LSTM	0.6094	0.6400	0.6454	0.6445	0.6433	0.6441	0.6313	0.6147	0.6453	0.6434	0.6432
	SVM	0.6409	0.6556	0.6597	0.6649	0.6707	0.6700	0.6657	0.6500	0.6844	0.6790	0.6783
	RandomForest	0.9217	0.9407	0.9489	0.9543	0.9623	0.9705	0.9713	0.9734	0.9667	0.9670	0.9724
	XGBoost	0.7861	0.8088	0.8063	0.8203	0.8334	0.8244	0.8373	0.8328	0.8279	0.8502	0.8331
G-Mean	LSTM	0.0973	0.2714	0.2803	0.2914	0.3196	0.2768	0.2175	0.2382	0.2866	0.1525	0.2767
	SVM	0.6471	0.6800	0.6853	0.6951	0.7022	0.7058	0.6987	0.6907	0.7103	0.7060	0.7080
	RandomForest	0.9299	0.9460	0.9526	0.9583	0.9660	0.9733	0.9745	0.9759	0.9693	0.9695	0.9739
	XGBoost	0.8061	0.8206	0.8201	0.8338	0.8486	0.8410	0.8507	0.8486	0.8464	0.8653	0.8479
Precision	LSTM	0.4383	0.4706	0.4765	0.4755	0.4742	0.4751	0.4612	0.4443	0.4764	0.4743	0.4740
	SVM	0.5862	0.6404	0.6300	0.6560	0.6659	0.6856	0.6634	0.6715	0.6999	0.6979	0.7162
	RandomForest	0.9220	0.9346	0.9492	0.9568	0.9663	0.9709	0.9691	0.9772	0.9729	0.9751	0.9829
	XGBoost	0.7908	0.7796	0.7888	0.8138	0.8258	0.8109	0.8149	0.8148	0.8193	0.8439	0.8249
Recall	LSTM	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	0.9969	1.0000	1.0000	1.0000
	SVM	0.7068	0.6716	0.6924	0.6742	0.6755	0.6551	0.6679	0.6297	0.6696	0.6611	0.6441
	RandomForest	0.9213	0.9470	0.9485	0.9518	0.9582	0.9702	0.9735	0.9698	0.9606	0.9591	0.9621
	XGBoost	0.7814	0.8402	0.8247	0.8269	0.8412	0.8383	0.8610	0.8517	0.8368	0.8566	0.8415

Tabla A.10: Resultados EGG_Eye con ADASYN.

		1	3	5	7	9	11	13	15	17	19	21
AUC	LSTM	0.5055	0.5411	0.5418	0.5724	0.5825	0.5565	0.5469	0.5439	0.5570	0.5506	0.5667
	SVM	0.6911	0.7035	0.6937	0.6975	0.7044	0.7064	0.7006	0.7124	0.7046	0.7119	0.7142
	RandomForest	0.9320	0.9304	0.9548	0.9546	0.9606	0.9674	0.9620	0.9648	0.9797	0.9784	0.9770
	XGBoost	0.8079	0.8237	0.8284	0.8324	0.8334	0.8522	0.8398	0.8473	0.8521	0.8494	0.8739
F-Score	LSTM	0.6235	0.6347	0.6439	0.6558	0.6413	0.6403	0.6388	0.6550	0.6475	0.6447	0.6403
	SVM	0.6726	0.6842	0.6707	0.6783	0.6811	0.6791	0.6775	0.6924	0.6758	0.6864	0.6824
	RandomForest	0.9242	0.9238	0.9513	0.9499	0.9564	0.9641	0.9578	0.9618	0.9775	0.9761	0.9749
	XGBoost	0.7847	0.8035	0.8128	0.8180	0.8175	0.8374	0.8211	0.8347	0.8324	0.8330	0.8665
G-Mean	LSTM	0.1045	0.2867	0.2892	0.3812	0.4062	0.3361	0.3064	0.2985	0.3375	0.3244	0.3679
	SVM	0.6911	0.7034	0.6937	0.6975	0.7043	0.7064	0.7006	0.7124	0.7040	0.7118	0.7137
	RandomForest	0.9320	0.9304	0.9548	0.9544	0.9605	0.9674	0.9619	0.9648	0.9797	0.9784	0.9770
	XGBoost	0.8079	0.8235	0.8284	0.8324	0.8332	0.8522	0.8398	0.8473	0.8520	0.8494	0.8739
Precision	LSTM	0.4530	0.4648	0.4748	0.4880	0.4720	0.4709	0.4693	0.4874	0.4788	0.4767	0.4714
	SVM	0.6609	0.6578	0.6475	0.6604	0.6705	0.6617	0.6571	0.6800	0.6753	0.6755	0.6773
	RandomForest	0.9238	0.9191	0.9541	0.9598	0.9611	0.9630	0.9592	0.9664	0.9775	0.9684	0.9724
	XGBoost	0.7663	0.7984	0.7971	0.8003	0.7890	0.8215	0.8000	0.8231	0.8200	0.8170	0.8601
Recall	LSTM	1.0000	1.0000	1.0000	0.9993	1.0000	1.0000	1.0000	0.9986	1.0000	0.9955	0.9977
	SVM	0.6847	0.7127	0.6957	0.6971	0.6921	0.6975	0.6991	0.7053	0.6763	0.6976	0.6876
	RandomForest	0.9245	0.9286	0.9486	0.9402	0.9517	0.9651	0.9564	0.9571	0.9775	0.9840	0.9774
	XGBoost	0.8040	0.8086	0.8291	0.8364	0.8482	0.8540	0.8434	0.8467	0.8453	0.8497	0.8729

Tabla A.11: Resultados base EGG_Eye con MWMOTE.

Tam. Ventana		1	3	5	7	9	11	13	15	17	19	21
AUC	LSTM	0.9566	0.9603	0.9262	0.9683	0.9513	0.9641	0.9382	0.9062	0.9459	0.9150	0.9622
	SVM	0.9136	0.8876	0.8740	0.8495	0.8090	0.8109	0.7941	0.7637	0.7288	0.7557	0.7849
	RandomForest	0.9512	0.9356	0.9494	0.9302	0.9262	0.9371	0.9341	0.9260	0.9545	0.9388	0.9333
	XGBoost	0.9668	0.9556	0.9417	0.9543	0.9318	0.9568	0.9549	0.9408	0.9629	0.9390	0.9594
F-Score	LSTM	0.8814	0.9347	0.9024	0.9206	0.9239	0.8987	0.8635	0.8779	0.9223	0.8928	0.9317
	SVM	0.8835	0.8394	0.8338	0.7785	0.7442	0.7420	0.7164	0.6859	0.6225	0.6645	0.7043
	RandomForest	0.9238	0.9048	0.9223	0.9003	0.8939	0.9125	0.8955	0.8987	0.9216	0.9155	0.9064
	XGBoost	0.9431	0.9280	0.9239	0.9242	0.9016	0.9355	0.9302	0.9010	0.9370	0.9091	0.9421
G-Mean	LSTM	0.9565	0.9598	0.9239	0.9682	0.9504	0.9641	0.9375	0.9022	0.9448	0.9117	0.9618
	SVM	0.9103	0.8823	0.8662	0.8388	0.7884	0.7913	0.7700	0.7269	0.6777	0.7173	0.7575
	RandomForest	0.9504	0.9341	0.9485	0.9282	0.9240	0.9355	0.9326	0.9237	0.9539	0.9373	0.9316
	XGBoost	0.9665	0.9550	0.9402	0.9537	0.9300	0.9561	0.9542	0.9397	0.9625	0.9377	0.9588
Precision	LSTM	0.8273	0.9394	0.9487	0.8874	0.9362	0.8465	0.8289	0.9441	0.9453	0.9572	0.9272
	SVM	0.9368	0.8950	0.9273	0.8542	0.9143	0.8951	0.8889	0.9727	0.9592	0.9273	0.8983
	RandomForest	0.9353	0.9293	0.9368	0.9330	0.9267	0.9451	0.9091	0.9402	0.9216	0.9466	0.9388
	XGBoost	0.9431	0.9355	0.9617	0.9289	0.9322	0.9508	0.9424	0.9055	0.9396	0.9309	0.9607
Recall	LSTM	0.9430	0.9300	0.8605	0.9563	0.9119	0.9577	0.9012	0.8204	0.9005	0.8364	0.9363
	SVM	0.8359	0.7902	0.7574	0.7151	0.6275	0.6337	0.6000	0.5297	0.4608	0.5178	0.5792
	RandomForest	0.9126	0.8814	0.9082	0.8698	0.8634	0.8821	0.8824	0.8607	0.9216	0.8864	0.8762
	XGBoost	0.9431	0.9206	0.8889	0.9196	0.8730	0.9206	0.9184	0.8966	0.9344	0.8883	0.9243

Tabla A.12: Resultados HAR base.

Tam. Ventana		1	3	5	7	9	11	13	15	17	19	21
AUC	LSTM	0.8173	0.8315	0.8459	0.8169	0.8441	0.8359	0.5000	0.5000	0.5000	0.5000	0.5000
	SVM	0.9554	0.9415	0.9524	0.9429	0.9300	0.9336	0.9293	0.9208	0.9322	0.9347	0.9453
	RandomForest	0.9613	0.9531	0.9581	0.9702	0.9507	0.9745	0.9449	0.9423	0.9611	0.9645	0.9541
	XGBoost	0.9637	0.9576	0.9643	0.9654	0.9742	0.9591	0.9580	0.9565	0.9665	0.9663	0.9556
F-Score	LSTM	0.4377	0.4561	0.4855	0.4538	0.4865	0.4550	0.2313	0.2163	0.2272	0.2121	0.2261
	SVM	0.8753	0.8558	0.8596	0.8414	0.7537	0.7351	0.7063	0.6904	0.6932	0.7014	0.7382
	RandomForest	0.9235	0.9253	0.9227	0.9264	0.9091	0.9357	0.9110	0.9018	0.9217	0.9205	0.9152
	XGBoost	0.9183	0.9066	0.9296	0.9231	0.9347	0.9096	0.9279	0.9220	0.9275	0.9364	0.9231
G-Mean	LSTM	0.7978	0.8143	0.8328	0.7961	0.8296	0.8197	0.0000	0.0000	0.0000	0.0000	0.0000
	SVM	0.9553	0.9412	0.9524	0.9428	0.9300	0.9326	0.9279	0.9193	0.9304	0.9325	0.9437
	RandomForest	0.9610	0.9524	0.9577	0.9701	0.9501	0.9744	0.9439	0.9413	0.9609	0.9643	0.9535
	XGBoost	0.9635	0.9573	0.9640	0.9652	0.9741	0.9588	0.9575	0.9560	0.9663	0.9660	0.9551
Precision	LSTM	0.2806	0.2955	0.3211	0.2935	0.3214	0.2945	0.1308	0.1213	0.1282	0.1186	0.1275
	SVM	0.8174	0.8018	0.7871	0.7671	0.6286	0.5898	0.5523	0.5344	0.5335	0.5402	0.5851
	RandomForest	0.9115	0.9360	0.9158	0.8995	0.9021	0.9100	0.9206	0.9040	0.9050	0.8984	0.9082
	XGBoost	0.8925	0.8824	0.9167	0.9016	0.9086	0.8844	0.9279	0.9175	0.9086	0.9293	0.9231
Recall	LSTM	0.9945	1.0000	0.9946	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
	SVM	0.9421	0.9175	0.9469	0.9317	0.9412	0.9752	0.9794	0.9749	0.9892	1.0000	1.0000
	RandomForest	0.9358	0.9148	0.9296	0.9551	0.9162	0.9630	0.9016	0.8995	0.9390	0.9438	0.9223
	XGBoost	0.9455	0.9322	0.9429	0.9457	0.9624	0.9362	0.9279	0.9265	0.9471	0.9436	0.9231

Tabla A.13: Resultados HAR con SMOTE.

Tam. Ventana		1	3	5	7	9	11	13	15	17	19	21
AUC	LSTM	0.8174	0.8349	0.5000	0.5000	0.5000	0.8418	0.5000	0.8636	0.8623	0.5000	0.8882
	SVM	0.8652	0.8737	0.8931	0.8904	0.9058	0.9056	0.9126	0.8990	0.9118	0.9120	0.9170
	RandomForest	0.9576	0.9440	0.9520	0.9407	0.9491	0.9500	0.9590	0.9367	0.9553	0.9593	0.9658
	XGBoost	0.9582	0.9631	0.9655	0.9761	0.9405	0.9631	0.9403	0.9527	0.9590	0.9551	0.9631
F-Score	LSTM	0.4755	0.4809	0.2246	0.2354	0.2226	0.5019	0.2313	0.5516	0.5440	0.2272	0.6088
	SVM	0.5427	0.5234	0.5924	0.5912	0.6516	0.6617	0.6475	0.6226	0.6603	0.6487	0.6688
	RandomForest	0.9306	0.9038	0.9255	0.9086	0.9100	0.9091	0.9264	0.8796	0.9139	0.9077	0.9135
	XGBoost	0.8790	0.8945	0.9291	0.9317	0.8951	0.9253	0.8905	0.9037	0.9023	0.9019	0.9040
G-Mean	LSTM	0.7967	0.8184	0.0000	0.0000	0.0000	0.8267	0.0000	0.8527	0.8512	0.0000	0.8818
	SVM	0.8554	0.8646	0.8873	0.8836	0.9014	0.9016	0.9085	0.8949	0.9084	0.9078	0.9137
	RandomForest	0.9570	0.9431	0.9513	0.9394	0.9484	0.9493	0.9586	0.9357	0.9549	0.9590	0.9657
	XGBoost	0.9581	0.9630	0.9653	0.9761	0.9395	0.9628	0.9394	0.9522	0.9588	0.9548	0.9630
Precision	LSTM	0.3119	0.3166	0.1265	0.1334	0.1253	0.3350	0.1308	0.3809	0.3736	0.1282	0.4385
	SVM	0.3731	0.3545	0.4217	0.4196	0.4843	0.4966	0.4788	0.4552	0.4952	0.4801	0.5037
	RandomForest	0.9349	0.9038	0.9361	0.9255	0.9077	0.9043	0.9239	0.8660	0.9009	0.8792	0.8802
	XGBoost	0.8203	0.8436	0.9135	0.8967	0.8929	0.9100	0.8818	0.8841	0.8661	0.8733	0.8616
Recall	LSTM	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	0.9953
	SVM	0.9950	1.0000	0.9949	1.0000	0.9954	0.9910	1.0000	0.9851	0.9904	1.0000	0.9952
	RandomForest	0.9263	0.9038	0.9152	0.8923	0.9124	0.9140	0.9290	0.8936	0.9272	0.9381	0.9494
	XGBoost	0.9468	0.9519	0.9453	0.9695	0.8974	0.9412	0.8995	0.9242	0.9417	0.9324	0.9507

Tabla A.14: Resultados HAR con ADASYN.

Tam. Ventana		1	3	5	7	9	11	13	15	17	19	21
AUC	LSTM	0.8216	0.8187	0.8252	0.5000	0.8431	0.5000	0.8591	0.5000	0.8857	0.5000	0.5000
	SVM	0.8652	0.8737	0.8931	0.8904	0.9058	0.9056	0.9126	0.8990	0.9118	0.9120	0.9170
	RandomForest	0.9740	0.9506	0.9454	0.9667	0.9536	0.9557	0.9529	0.9570	0.9524	0.9406	0.9403
	XGBoost	0.9500	0.9562	0.9559	0.9538	0.9555	0.9521	0.9314	0.9462	0.9514	0.9692	0.9613
F-Score	LSTM	0.4977	0.4426	0.4824	0.2118	0.4833	0.2344	0.5352	0.2366	0.5706	0.2175	0.2197
	SVM	0.5427	0.5234	0.5924	0.5912	0.6516	0.6617	0.6475	0.6226	0.6603	0.6487	0.6688
	RandomForest	0.9457	0.9291	0.8937	0.9234	0.9263	0.9242	0.9199	0.9273	0.8976	0.8915	0.8877
	XGBoost	0.9104	0.9212	0.9320	0.9039	0.9029	0.9167	0.8987	0.9081	0.9222	0.9344	0.9284
G-Mean	LSTM	0.8020	0.7983	0.8064	0.0000	0.8284	0.0000	0.8474	0.0000	0.8790	0.0000	0.0000
	SVM	0.8554	0.8646	0.8873	0.8836	0.9014	0.9016	0.9085	0.8949	0.9084	0.9078	0.9137
	RandomForest	0.9739	0.9497	0.9448	0.9665	0.9529	0.9552	0.9522	0.9564	0.9520	0.9398	0.9395
	XGBoost	0.9494	0.9557	0.9552	0.9534	0.9552	0.9514	0.9296	0.9454	0.9506	0.9690	0.9610
Precision	LSTM	0.3313	0.2842	0.3179	0.1184	0.3186	0.1327	0.3654	0.1342	0.4000	0.1220	0.1234
	SVM	0.3731	0.3545	0.4217	0.4196	0.4843	0.4966	0.4788	0.4552	0.4952	0.4801	0.5037
	RandomForest	0.9337	0.9500	0.8768	0.8977	0.9362	0.9242	0.9223	0.9296	0.8724	0.8813	0.8763
	XGBoost	0.9059	0.9167	0.9439	0.8832	0.8776	0.9167	0.9251	0.9105	0.9326	0.9194	0.9216
Recall	LSTM	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	0.9948	1.0000	1.0000
	SVM	0.9950	1.0000	0.9949	1.0000	0.9954	0.9910	1.0000	0.9851	0.9904	1.0000	0.9952
	RandomForest	0.9581	0.9091	0.9113	0.9507	0.9167	0.9242	0.9175	0.9250	0.9243	0.9019	0.8995
	XGBoost	0.9150	0.9257	0.9204	0.9255	0.9297	0.9167	0.8737	0.9058	0.9121	0.9500	0.9353

Tabla A.15: Resultados HAR con MWMOTE.

Tam. Ventana		1	3	5	7	9	11	13	15	17	19	21
AUC	LSTM	0.8237	0.8395	0.8209	0.5000	0.8427	0.5000	0.8341	0.8596	0.5000	0.5000	0.8894
	SVM	0.9515	0.9440	0.9491	0.9451	0.9515	0.9395	0.9435	0.9235	0.9365	0.9481	0.9404
	RandomForest	0.9596	0.9684	0.9598	0.9508	0.9520	0.9580	0.9672	0.9713	0.9704	0.9575	0.9777
	XGBoost	0.9659	0.9587	0.9588	0.9551	0.9533	0.9636	0.9745	0.9698	0.9568	0.9626	0.9800
F-Score	LSTM	0.4860	0.4804	0.4751	0.2226	0.4733	0.2291	0.4988	0.5358	0.2452	0.2357	0.5489
	SVM	0.8852	0.8657	0.8556	0.8515	0.8402	0.7638	0.7083	0.7154	0.7191	0.7614	0.7251
	RandomForest	0.9287	0.9293	0.9389	0.9150	0.9310	0.9254	0.9306	0.9400	0.9455	0.9197	0.9403
	XGBoost	0.9208	0.9254	0.9064	0.8992	0.9105	0.9169	0.9437	0.9200	0.9188	0.9282	0.9528
G-Mean	LSTM	0.8056	0.8240	0.8012	0.0000	0.8278	0.0000	0.8175	0.8488	0.0000	0.0000	0.8825
	SVM	0.9512	0.9437	0.9489	0.9450	0.9515	0.9393	0.9421	0.9230	0.9359	0.9470	0.9394
	RandomForest	0.9592	0.9682	0.9593	0.9501	0.9510	0.9576	0.9670	0.9711	0.9702	0.9570	0.9777
	XGBoost	0.9657	0.9583	0.9585	0.9548	0.9528	0.9634	0.9744	0.9697	0.9564	0.9623	0.9800
Precision	LSTM	0.3215	0.3161	0.3116	0.1253	0.3101	0.1293	0.3323	0.3666	0.1397	0.1336	0.3783
	SVM	0.8447	0.8166	0.7913	0.7831	0.7482	0.6360	0.5502	0.5728	0.5709	0.6166	0.5742
	RandomForest	0.9265	0.9096	0.9505	0.9150	0.9529	0.9231	0.9141	0.9261	0.9409	0.9121	0.9120
	XGBoost	0.8942	0.9208	0.8807	0.8700	0.8990	0.8894	0.9263	0.8846	0.9083	0.9188	0.9352
Recall	LSTM	0.9952	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	0.9951	1.0000	1.0000	1.0000
	SVM	0.9296	0.9212	0.9314	0.9330	0.9579	0.9558	0.9942	0.9526	0.9713	0.9950	0.9834
	RandomForest	0.9310	0.9500	0.9275	0.9150	0.9101	0.9278	0.9476	0.9543	0.9502	0.9274	0.9704
	XGBoost	0.9490	0.9300	0.9337	0.9305	0.9223	0.9461	0.9617	0.9583	0.9296	0.9378	0.9712

Tabla A.16: Resultados HAR con SMOTE + BORUTA.

		1	3	5	7	9	11	13	15	17	19	21
AUC	LSTM	0.8185	0.8274	0.8214	0.8379	0.8479	0.8349	0.8414	0.8230	0.8807	0.5000	0.8502
	SVM	0.8579	0.8771	0.8871	0.8882	0.8995	0.8969	0.9102	0.9207	0.9157	0.9356	0.9364
	RandomForest	0.9473	0.9601	0.9571	0.9417	0.9417	0.9537	0.9566	0.9578	0.9724	0.9642	0.9629
	XGBoost	0.9624	0.9588	0.9567	0.9383	0.9515	0.9494	0.9614	0.9563	0.9648	0.9600	0.9590
F-Score	LSTM	0.4329	0.4828	0.4909	0.4945	0.5188	0.5054	0.4762	0.4580	0.5723	0.2421	0.5116
	SVM	0.4839	0.5626	0.5680	0.5684	0.6130	0.6224	0.6624	0.6805	0.6392	0.6916	0.7044
	RandomForest	0.9145	0.9271	0.9311	0.8978	0.9029	0.9227	0.9282	0.9219	0.9223	0.9037	0.9319
	XGBoost	0.8688	0.8998	0.8995	0.8724	0.8768	0.8954	0.9272	0.8922	0.9346	0.9187	0.9282
G-Mean	LSTM	0.7981	0.8092	0.8017	0.8221	0.8341	0.8184	0.8263	0.8038	0.8745	0.0000	0.8368
	SVM	0.8460	0.8705	0.8799	0.8818	0.8944	0.8920	0.9070	0.9185	0.9123	0.9334	0.9343
	RandomForest	0.9465	0.9597	0.9565	0.9408	0.9408	0.9531	0.9560	0.9573	0.9724	0.9641	0.9626
	XGBoost	0.9624	0.9587	0.9566	0.9379	0.9513	0.9489	0.9611	0.9561	0.9645	0.9597	0.9585
Precision	LSTM	0.2762	0.3183	0.3253	0.3284	0.3503	0.3381	0.3125	0.2970	0.4034	0.1377	0.3437
	SVM	0.3192	0.3938	0.3967	0.3978	0.4430	0.4537	0.4988	0.5198	0.4709	0.5286	0.5437
	RandomForest	0.9209	0.9223	0.9378	0.8955	0.9073	0.9278	0.9330	0.9150	0.8837	0.8622	0.9271
	XGBoost	0.7901	0.8596	0.8640	0.8379	0.8279	0.8720	0.9183	0.8517	0.9279	0.9014	0.9282
Recall	LSTM	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	0.9846	1.0000	1.0000
	SVM	1.0000	0.9845	1.0000	0.9946	0.9950	0.9904	0.9857	0.9850	0.9947	1.0000	1.0000
	RandomForest	0.9083	0.9319	0.9245	0.9000	0.8986	0.9176	0.9235	0.9289	0.9645	0.9494	0.9368
	XGBoost	0.9648	0.9439	0.9381	0.9099	0.9319	0.9200	0.9363	0.9368	0.9415	0.9366	0.9282

Tabla A.17: Resultados HAR con ADASYN + BORUTA.

Tam. Ventana		1	3	5	7	9	11	13	15	17	19	21
AUC	LSTM	0.8185	0.8274	0.8214	0.8379	0.8479	0.8349	0.8414	0.8230	0.8807	0.5000	0.8502
	SVM	0.8579	0.8771	0.8871	0.8882	0.8995	0.8969	0.9102	0.9207	0.9157	0.9356	0.9364
	RandomForest	0.9473	0.9601	0.9571	0.9417	0.9417	0.9537	0.9566	0.9578	0.9724	0.9642	0.9629
	XGBoost	0.9624	0.9588	0.9567	0.9383	0.9515	0.9494	0.9614	0.9563	0.9648	0.9600	0.9590
F-Score	LSTM	0.4329	0.4828	0.4909	0.4945	0.5188	0.5054	0.4762	0.4580	0.5723	0.2421	0.5116
	SVM	0.4839	0.5626	0.5680	0.5684	0.6130	0.6224	0.6624	0.6805	0.6392	0.6916	0.7044
	RandomForest	0.9145	0.9271	0.9311	0.8978	0.9029	0.9227	0.9282	0.9219	0.9223	0.9037	0.9319
	XGBoost	0.8688	0.8998	0.8995	0.8724	0.8768	0.8954	0.9272	0.8922	0.9346	0.9187	0.9282
G-Mean	LSTM	0.7981	0.8092	0.8017	0.8221	0.8341	0.8184	0.8263	0.8038	0.8745	0.0000	0.8368
	SVM	0.8460	0.8705	0.8799	0.8818	0.8944	0.8920	0.9070	0.9185	0.9123	0.9334	0.9343
	RandomForest	0.9465	0.9597	0.9565	0.9408	0.9408	0.9531	0.9560	0.9573	0.9724	0.9641	0.9626
	XGBoost	0.9624	0.9587	0.9566	0.9379	0.9513	0.9489	0.9611	0.9561	0.9645	0.9597	0.9585
Precision	LSTM	0.2762	0.3183	0.3253	0.3284	0.3503	0.3381	0.3125	0.2970	0.4034	0.1377	0.3437
	SVM	0.3192	0.3938	0.3967	0.3978	0.4430	0.4537	0.4988	0.5198	0.4709	0.5286	0.5437
	RandomForest	0.9209	0.9223	0.9378	0.8955	0.9073	0.9278	0.9330	0.9150	0.8837	0.8622	0.9271
	XGBoost	0.7901	0.8596	0.8640	0.8379	0.8279	0.8720	0.9183	0.8517	0.9279	0.9014	0.9282
Recall	LSTM	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	0.9846	1.0000	1.0000
	SVM	1.0000	0.9845	1.0000	0.9946	0.9950	0.9904	0.9857	0.9850	0.9947	1.0000	1.0000
	RandomForest	0.9083	0.9319	0.9245	0.9000	0.8986	0.9176	0.9235	0.9289	0.9645	0.9494	0.9368
	XGBoost	0.9648	0.9439	0.9381	0.9099	0.9319	0.9200	0.9363	0.9368	0.9415	0.9366	0.9282

Tabla A.18: Resultados HAR con MWMOTE + BORUTA.

Tam. Ventana		1	3	5	7	9	11	13	15	17	19	21
AUC	LSTM	0.5000	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5
	SVM	0.5000	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5
	RandomForest	0.5000	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5
	XGBoost	0.4986	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5
F-Score	LSTM	0.0000	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	SVM	0.0000	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	RandomForest	0.0000	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	XGBoost	0.0000	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
G-Mean	LSTM	0.0000	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	SVM	0.0000	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	RandomForest	0.0000	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	XGBoost	0.0000	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Precision	LSTM	0.0000	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	SVM	0.0000	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	RandomForest	0.0000	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	XGBoost	0.0000	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Recall	LSTM	0.0000	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	SVM	0.0000	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	RandomForest	0.0000	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	XGBoost	0.0000	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0

Tabla A.19: Resultados Ozone base.

Tam. Ventana		1	3	5	7	9	11	13	15	17	19	21
AUC	LSTM	0.6944	0.7332	0.5000	0.5000	0.5000	0.5000	0.5000	0.5000	0.5000	0.5000	0.5000
	SVM	0.8032	0.8528	0.8343	0.6475	0.7764	0.5278	0.7522	0.7373	0.7088	0.6020	0.6362
	RandomForest	0.4916	0.4972	0.4986	0.4986	0.5000	0.5371	0.4986	0.4986	0.5000	0.5000	0.5000
	XGBoost	0.5776	0.5554	0.5472	0.4819	0.5399	0.4807	0.4902	0.4819	0.5402	0.4902	0.4916
F-Score	LSTM	0.0733	0.1033	0.0476	0.0579	0.0632	0.0477	0.0633	0.0582	0.0479	0.0584	0.0584
	SVM	0.1345	0.1452	0.1806	0.1364	0.1069	0.0476	0.0690	0.1566	0.1295	0.0678	0.1295
	RandomForest	0.0000	0.0000	0.0000	0.0000	0.0000	0.1333	0.0000	0.0000	0.0000	0.0000	0.0000
	XGBoost	0.1395	0.1600	0.1250	0.0000	0.1250	0.0000	0.0000	0.0000	0.0952	0.0000	0.0000
G-Mean	LSTM	0.6705	0.6830	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
	SVM	0.7986	0.8400	0.8176	0.6457	0.7701	0.5052	0.7507	0.7259	0.7076	0.5933	0.6352
	RandomForest	0.0000	0.0000	0.0000	0.0000	0.0000	0.2770	0.0000	0.0000	0.0000	0.0000	0.0000
	XGBoost	0.4619	0.3610	0.3305	0.0000	0.2998	0.0000	0.0000	0.0000	0.3282	0.0000	0.0000
Precision	LSTM	0.0383	0.0545	0.0244	0.0298	0.0326	0.0245	0.0327	0.0300	0.0245	0.0301	0.0301
	SVM	0.0727	0.0783	0.0992	0.0769	0.0569	0.0254	0.0360	0.0861	0.0709	0.0364	0.0726
	RandomForest	0.0000	0.0000	0.0000	0.0000	0.0000	0.5000	0.0000	0.0000	0.0000	0.0000	0.0000
	XGBoost	0.1000	0.2000	0.1429	0.0000	0.2000	0.0000	0.0000	0.0000	0.0833	0.0000	0.0000
Recall	LSTM	0.8750	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
	SVM	0.8889	1.0000	1.0000	0.6000	0.8750	0.3750	0.8000	0.8667	0.7500	0.5000	0.6000
	RandomForest	0.0000	0.0000	0.0000	0.0000	0.0000	0.0769	0.0000	0.0000	0.0000	0.0000	0.0000
	XGBoost	0.2308	0.1333	0.1111	0.0000	0.0909	0.0000	0.0000	0.0000	0.1111	0.0000	0.0000

Tabla A.20: Resultados Ozone con SMOTE.

Tam. Ventana		1	3	5	7	9	11	13	15	17	19	21
AUC	LSTM	0.6396	0.6826	0.5000	0.5000	0.5000	0.5000	0.5000	0.5000	0.5000	0.5000	0.5000
	SVM	0.7949	0.8333	0.7541	0.7238	0.6093	0.5792	0.6323	0.7745	0.6948	0.7431	0.6909
	RandomForest	0.4944	0.4986	0.4972	0.5000	0.5000	0.5000	0.5000	0.5000	0.5000	0.5000	0.5000
	XGBoost	0.5503	0.5361	0.4819	0.5473	0.5227	0.5360	0.4872	0.4889	0.6151	0.5684	0.5430
F-Score	LSTM	0.0714	0.0853	0.0630	0.0630	0.0426	0.0580	0.0322	0.0735	0.1034	0.0737	0.0428
	SVM	0.1571	0.1678	0.1374	0.1517	0.0741	0.0593	0.1026	0.1615	0.1497	0.0735	0.1418
	RandomForest	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
	XGBoost	0.1176	0.0833	0.0000	0.1000	0.0870	0.0952	0.0000	0.0000	0.2727	0.1905	0.1250
G-Mean	LSTM	0.6245	0.6470	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
	SVM	0.7855	0.8165	0.7513	0.7212	0.6069	0.5737	0.6263	0.7590	0.6937	0.7376	0.6906
	RandomForest	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
	XGBoost	0.3817	0.3268	0.0000	0.3481	0.2479	0.3118	0.0000	0.0000	0.4950	0.3889	0.3140
Precision	LSTM	0.0374	0.0448	0.0325	0.0325	0.0217	0.0299	0.0163	0.0381	0.0545	0.0383	0.0219
	SVM	0.0859	0.0916	0.0750	0.0840	0.0397	0.0315	0.0566	0.0884	0.0833	0.0385	0.0787
	RandomForest	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
	XGBoost	0.0952	0.0667	0.0000	0.0833	0.1429	0.0909	0.0000	0.0000	0.3000	0.2500	0.1667
Recall	LSTM	0.7778	0.9000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
	SVM	0.9167	1.0000	0.8182	0.7857	0.5556	0.5000	0.5455	0.9286	0.7333	0.8333	0.7143
	RandomForest	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
	XGBoost	0.1538	0.1111	0.0000	0.1250	0.0625	0.1000	0.0000	0.0000	0.2500	0.1538	0.1000

Tabla A.21: Resultados Ozone con ADASYN.

Tam. Ventana		1	3	5	7	9	11	13	15	17	19	21
AUC	LSTM	0.7331	0.5892	0.5000	0.5000	0.5000	0.5000	0.5000	0.5000	0.5000	0.5000	0.5000
	SVM	0.6644	0.7773	0.7357	0.7468	0.6698	0.6919	0.5643	0.6763	0.7363	0.6407	0.6134
	RandomForest	0.5343	0.5357	0.6364	0.5305	0.4986	0.5000	0.5000	0.5000	0.4986	0.5000	0.5000
	XGBoost	0.4998	0.5305	0.5986	0.5629	0.5755	0.5764	0.5721	0.5778	0.4916	0.5220	0.4888
F-Score	LSTM	0.1448	0.0485	0.0731	0.0579	0.0373	0.0268	0.0684	0.0785	0.0374	0.0428	0.0737
	SVM	0.0876	0.1259	0.1176	0.1250	0.0959	0.1418	0.0508	0.1176	0.1259	0.0972	0.1077
	RandomForest	0.1000	0.1250	0.4286	0.1111	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
	XGBoost	0.0465	0.0800	0.2000	0.1600	0.2500	0.1667	0.1818	0.1818	0.0000	0.0870	0.0000
G-Mean	LSTM	0.6827	0.5758	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
	SVM	0.6644	0.7676	0.7328	0.7449	0.6692	0.6915	0.5477	0.6751	0.7318	0.6407	0.6088
	RandomForest	0.2981	0.2766	0.5222	0.2575	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
	XGBoost	0.2763	0.3100	0.4655	0.3867	0.3917	0.4054	0.4036	0.4060	0.0000	0.2343	0.0000
Precision	LSTM	0.0780	0.0251	0.0379	0.0298	0.0190	0.0136	0.0354	0.0409	0.0191	0.0219	0.0383
	SVM	0.0469	0.0677	0.0635	0.0678	0.0515	0.0787	0.0270	0.0648	0.0682	0.0526	0.0598
	RandomForest	0.1111	0.3333	1.0000	0.3333	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
	XGBoost	0.0323	0.0667	0.1818	0.1667	0.6667	0.1667	0.2000	0.2000	0.0000	0.2000	0.0000
Recall	LSTM	1.0000	0.7143	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
	SVM	0.6667	0.9000	0.8000	0.8000	0.7000	0.7143	0.4286	0.6364	0.8182	0.6364	0.5385
	RandomForest	0.0909	0.0769	0.2727	0.0667	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
	XGBoost	0.0833	0.1000	0.2222	0.1538	0.1538	0.1667	0.1667	0.1667	0.0000	0.0556	0.0000

Tabla A.22: Resultados Ozone con MWMOTE.

Tam. Ventana		1	3	5	7	9	11	13	15	17	19	21
AUC	LSTM	0.6500	0.6300	0.6256	0.6253	0.6176	0.6062	0.6385	0.6039	0.6389	0.6391	0.6092
	SVM	0.7048	0.7621	0.6880	0.6338	0.7764	0.6411	0.7102	0.6551	0.3995	0.5213	0.7276
	RandomForest	0.5696	0.4818	0.4861	0.4873	0.4986	0.4901	0.4944	0.4959	0.4986	0.4958	0.4986
	XGBoost	0.6577	0.5245	0.6064	0.5008	0.4526	0.5333	0.5092	0.4568	0.5131	0.5275	0.5845
F-Score	LSTM	0.0766	0.1008	0.0807	0.0932	0.0700	0.0884	0.0813	0.0880	0.0511	0.0816	0.0939
	SVM	0.0842	0.1437	0.1227	0.0704	0.1625	0.1081	0.1304	0.1429	0.0159	0.0620	0.1884
	RandomForest	0.0976	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
	XGBoost	0.1942	0.0328	0.1356	0.0455	0.0000	0.0769	0.0606	0.0000	0.0645	0.0667	0.1333
G-Mean	LSTM	0.6000	0.5876	0.5952	0.5850	0.5493	0.5566	0.5784	0.5531	0.5270	0.5792	0.5187
	SVM	0.6804	0.7449	0.6832	0.6338	0.7614	0.6339	0.7091	0.6528	0.2903	0.4969	0.7267
	RandomForest	0.4514	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
	XGBoost	0.6445	0.4120	0.5415	0.2877	0.0000	0.3258	0.2519	0.0000	0.2611	0.3239	0.4587
Precision	LSTM	0.0400	0.0536	0.0425	0.0493	0.0364	0.0466	0.0426	0.0464	0.0262	0.0427	0.0494
	SVM	0.0442	0.0779	0.0667	0.0373	0.0890	0.0600	0.0714	0.0811	0.0085	0.0339	0.1074
	RandomForest	0.0625	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
	XGBoost	0.1190	0.0179	0.0851	0.0303	0.0000	0.0588	0.0556	0.0000	0.0588	0.0476	0.0952
Recall	LSTM	0.9000	0.8571	0.8182	0.8462	0.9000	0.8462	0.9091	0.8462	1.0000	0.9091	0.9286
	SVM	0.8889	0.9231	0.7692	0.6250	0.9286	0.5455	0.7500	0.6000	0.1250	0.3636	0.7647
	RandomForest	0.2222	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
	XGBoost	0.5263	0.2000	0.3333	0.0909	0.0000	0.1111	0.0667	0.0000	0.0714	0.1111	0.2222

Tabla A.23: Resultados Ozone con SMOTE + BORUTA.

Tam. Ventana		1	3	5	7	9	11	13	15	17	19	21
AUC	LSTM	0.6688	0.6754	0.6905	0.6676	0.6783	0.6838	0.5683	0.6046	0.6768	0.5632	0.5817
	SVM	0.7805	0.7548	0.8259	0.6296	0.6882	0.6159	0.6189	0.5890	0.6707	0.6633	0.6567
	RandomForest	0.5161	0.5258	0.4915	0.4930	0.4957	0.5328	0.4972	0.4986	0.4972	0.4986	0.4986
	XGBoost	0.6176	0.7922	0.5399	0.5469	0.6061	0.5066	0.4649	0.5131	0.5423	0.5135	0.4787
F-Score	LSTM	0.0741	0.0978	0.0980	0.0846	0.0723	0.0735	0.0676	0.0551	0.0410	0.1173	0.0580
	SVM	0.1370	0.1564	0.1379	0.0915	0.1169	0.0930	0.1295	0.1168	0.1356	0.1094	0.1017
	RandomForest	0.0667	0.0870	0.0000	0.0000	0.0000	0.1111	0.0000	0.0000	0.0000	0.0000	0.0000
	XGBoost	0.1220	0.1695	0.0889	0.1000	0.1818	0.0526	0.0000	0.0645	0.0690	0.0541	0.0000
G-Mean	LSTM	0.6316	0.6309	0.6172	0.5790	0.5971	0.6064	0.4548	0.5408	0.5946	0.4092	0.4940
	SVM	0.7698	0.7334	0.8073	0.6296	0.6854	0.6118	0.6163	0.5823	0.6684	0.6627	0.6543
	RandomForest	0.2711	0.2738	0.0000	0.0000	0.0000	0.2758	0.0000	0.0000	0.0000	0.0000	0.0000
	XGBoost	0.5840	0.7884	0.3901	0.3931	0.5145	0.2784	0.0000	0.2611	0.3668	0.3045	0.0000
Precision	LSTM	0.0386	0.0516	0.0515	0.0442	0.0375	0.0381	0.0351	0.0285	0.0209	0.0625	0.0300
	SVM	0.0741	0.0854	0.0741	0.0493	0.0634	0.0508	0.0732	0.0661	0.0762	0.0598	0.0556
	RandomForest	0.0588	0.1000	0.0000	0.0000	0.0000	0.2000	0.0000	0.0000	0.0000	0.0000	0.0000
	XGBoost	0.0714	0.0962	0.0606	0.0714	0.1333	0.0385	0.0000	0.0588	0.0455	0.0370	0.0000
Recall	LSTM	0.8889	0.9167	1.0000	1.0000	1.0000	1.0000	0.9091	0.8750	1.0000	0.9500	0.8889
	SVM	0.9091	0.9333	1.0000	0.6364	0.7500	0.5455	0.5625	0.5000	0.6154	0.6364	0.6000
	RandomForest	0.0769	0.0769	0.0000	0.0000	0.0000	0.0769	0.0000	0.0000	0.0000	0.0000	0.0000
	XGBoost	0.4167	0.7143	0.1667	0.1667	0.2857	0.0833	0.0000	0.0714	0.1429	0.1000	0.0000

Tabla A.24: Resultados Ozone con ADASYN + BORUTA.

Tam. Ventana		1	3	9	7	9	11	13	15	17	19	21
AUC	LSTM	0.6688	0.6754	0.6905	0.6676	0.6783	0.6838	0.5683	0.6046	0.6768	0.5632	0.5817
	SVM	0.7805	0.7548	0.8259	0.6296	0.6882	0.6159	0.6189	0.5890	0.6707	0.6633	0.6567
	RandomForest	0.5161	0.5258	0.4915	0.4930	0.4957	0.5328	0.4972	0.4986	0.4972	0.4986	0.4986
	XGBoost	0.6176	0.7922	0.5399	0.5469	0.6061	0.5066	0.4649	0.5131	0.5423	0.5135	0.4787
F-Score	LSTM	0.0741	0.0978	0.0980	0.0846	0.0723	0.0735	0.0676	0.0551	0.0410	0.1173	0.0580
	SVM	0.1370	0.1564	0.1379	0.0915	0.1169	0.0930	0.1295	0.1168	0.1356	0.1094	0.1017
	RandomForest	0.0667	0.0870	0.0000	0.0000	0.0000	0.1111	0.0000	0.0000	0.0000	0.0000	0.0000
	XGBoost	0.1220	0.1695	0.0889	0.1000	0.1818	0.0526	0.0000	0.0645	0.0690	0.0541	0.0000
G-Mean	LSTM	0.6316	0.6309	0.6172	0.5790	0.5971	0.6064	0.4548	0.5408	0.5946	0.4092	0.4940
	SVM	0.7698	0.7334	0.8073	0.6296	0.6854	0.6118	0.6163	0.5823	0.6684	0.6627	0.6543
	RandomForest	0.2711	0.2738	0.0000	0.0000	0.0000	0.2758	0.0000	0.0000	0.0000	0.0000	0.0000
	XGBoost	0.5840	0.7884	0.3901	0.3931	0.5145	0.2784	0.0000	0.2611	0.3668	0.3045	0.0000
Precision	LSTM	0.0386	0.0516	0.0515	0.0442	0.0375	0.0381	0.0351	0.0285	0.0209	0.0625	0.0300
	SVM	0.0741	0.0854	0.0741	0.0493	0.0634	0.0508	0.0732	0.0661	0.0762	0.0598	0.0556
	RandomForest	0.0588	0.1000	0.0000	0.0000	0.0000	0.2000	0.0000	0.0000	0.0000	0.0000	0.0000
	XGBoost	0.0714	0.0962	0.0606	0.0714	0.1333	0.0385	0.0000	0.0588	0.0455	0.0370	0.0000
Recall	LSTM	0.8889	0.9167	1.0000	1.0000	1.0000	1.0000	0.9091	0.8750	1.0000	0.9500	0.8889
	SVM	0.9091	0.9333	1.0000	0.6364	0.7500	0.5455	0.5625	0.5000	0.6154	0.6364	0.6000
	RandomForest	0.0769	0.0769	0.0000	0.0000	0.0000	0.0769	0.0000	0.0000	0.0000	0.0000	0.0000
	XGBoost	0.4167	0.7143	0.1667	0.1667	0.2857	0.0833	0.0000	0.0714	0.1429	0.1000	0.0000

Tabla A.25: Resultados Ozone con MWMOTE + BORUTA.

Tam. Ventana		1	3	5	7	9	11	13	15	17	19	21
AUC	LSTM	0.7405	0.6009	0.5383	0.5656	0.5494	0.5339	0.5166	0.5000	0.5000	0.5000	0.5000
	SVM	0.5000	0.5000	0.5000	0.5000	0.5000	0.5000	0.5000	0.5000	0.5000	0.5000	0.5000
	RandomForest	0.6052	0.5000	0.5000	0.5000	0.5000	0.5000	0.5000	0.5000	0.5000	0.5000	0.5000
	XGBoost	0.6779	0.6370	0.5609	0.5392	0.5401	0.5494	0.5411	0.5410	0.5192	0.5410	0.5296
F-Score	LSTM	0.5750	0.3077	0.1429	0.2121	0.1754	0.1311	0.0755	0.0000	0.0000	0.0000	0.0000
	SVM	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
	RandomForest	0.3333	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
	XGBoost	0.4789	0.4062	0.2105	0.1455	0.1481	0.1754	0.1509	0.1509	0.0800	0.1509	0.1154
G-Mean	LSTM	0.7004	0.4626	0.2933	0.3896	0.3313	0.2950	0.2119	0.0000	0.0000	0.0000	0.0000
	SVM	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
	RandomForest	0.4646	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
	XGBoost	0.6037	0.5293	0.3596	0.2966	0.2968	0.3313	0.3002	0.3002	0.2124	0.3002	0.2600
Precision	LSTM	0.6765	0.5263	0.4000	0.3333	0.4167	0.2500	0.2222	0.0000	0.0000	0.0000	0.0000
	SVM	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
	RandomForest	0.7143	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
	XGBoost	0.6800	0.7222	0.5455	0.4000	0.4444	0.4167	0.4444	0.4444	0.3333	0.4444	0.3750
Recall	LSTM	0.5000	0.2174	0.0870	0.1556	0.1111	0.0889	0.0455	0.0000	0.0000	0.0000	0.0000
	SVM	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
	RandomForest	0.2174	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
	XGBoost	0.3696	0.2826	0.1304	0.0889	0.0889	0.1111	0.0909	0.0909	0.0455	0.0909	0.0682

Tabla A.26: Resultados Swedish Leaf base.

Tam. Ventana		1	3	5	7	9	11	13	15	17	19	21
AUC	LSTM	0.9044	0.8695	0.5078	0.5000	0.5000	0.5000	0.5000	0.5000	0.5000	0.5000	0.5000
	SVM	0.9095	0.8797	0.7487	0.6431	0.5629	0.5339	0.5699	0.5157	0.5052	0.5051	0.5165
	RandomForest	0.7988	0.7079	0.6083	0.6024	0.6322	0.6161	0.5821	0.5690	0.5611	0.5629	0.5847
	XGBoost	0.8523	0.7879	0.7735	0.6928	0.7047	0.7056	0.7018	0.6851	0.6572	0.7358	0.7043
F-Score	LSTM	0.5309	0.4257	0.1398	0.1355	0.1360	0.1364	0.1339	0.1344	0.1348	0.1352	0.1356
	SVM	0.5513	0.5735	0.4685	0.3448	0.2029	0.1311	0.2258	0.0741	0.0385	0.0385	0.0755
	RandomForest	0.6170	0.5195	0.3143	0.3077	0.3611	0.3492	0.2581	0.2222	0.2069	0.2143	0.2712
	XGBoost	0.6800	0.6022	0.5625	0.4471	0.4706	0.4762	0.4810	0.4286	0.4054	0.5366	0.5000
G-Mean	LSTM	0.9038	0.8670	0.1251	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
	SVM	0.9092	0.8791	0.7259	0.5636	0.3885	0.2950	0.3950	0.2117	0.1498	0.1498	0.2119
	RandomForest	0.7809	0.6531	0.4835	0.4673	0.5309	0.4914	0.4226	0.3946	0.3667	0.3673	0.4237
	XGBoost	0.8447	0.7672	0.7507	0.6378	0.6549	0.6555	0.6478	0.6271	0.5761	0.6970	0.6495
Precision	LSTM	0.3707	0.2756	0.0752	0.0727	0.0729	0.0732	0.0718	0.0720	0.0722	0.0725	0.0727
	SVM	0.3909	0.4333	0.4000	0.3571	0.2917	0.2500	0.3889	0.2000	0.1250	0.1250	0.2222
	RandomForest	0.6042	0.6452	0.4583	0.5000	0.4815	0.6111	0.4444	0.3684	0.4286	0.5000	0.5333
	XGBoost	0.6296	0.5957	0.5400	0.4750	0.5000	0.5128	0.5429	0.4500	0.5000	0.5789	0.5938
Recall	LSTM	0.9348	0.9348	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
	SVM	0.9348	0.8478	0.5652	0.3333	0.1556	0.0889	0.1591	0.0455	0.0227	0.0227	0.0455
	RandomForest	0.6304	0.4348	0.2391	0.2222	0.2889	0.2444	0.1818	0.1591	0.1364	0.1364	0.1818
	XGBoost	0.7391	0.6087	0.5870	0.4222	0.4444	0.4444	0.4318	0.4091	0.3409	0.5000	0.4318

Tabla A.27: Resultados Swedish Leaf con SMOTE.

Tam. Ventana		1	3	5	7	9	11	13	15	17	19	21
AUC	LSTM	0.9049	0.8660	0.8130	0.6885	0.5000	0.5000	0.5000	0.5000	0.5000	0.5000	0.5000
	SVM	0.9161	0.8871	0.7561	0.6294	0.5638	0.5339	0.5699	0.5166	0.5043	0.5051	0.5069
	RandomForest	0.7545	0.7170	0.6191	0.5904	0.6024	0.5921	0.6171	0.6162	0.5506	0.5515	0.6092
	XGBoost	0.8606	0.8262	0.7878	0.7373	0.7141	0.7158	0.7674	0.7219	0.6755	0.6886	0.7008
F-Score	LSTM	0.5029	0.4175	0.3320	0.3172	0.1360	0.1364	0.1339	0.1344	0.1348	0.1352	0.1356
	SVM	0.5432	0.5674	0.4655	0.3146	0.2059	0.1311	0.2258	0.0755	0.0377	0.0385	0.0400
	RandomForest	0.5495	0.5250	0.3380	0.2769	0.3077	0.2857	0.3438	0.3385	0.1786	0.1818	0.3390
	XGBoost	0.6731	0.6214	0.6022	0.5169	0.4773	0.4884	0.5682	0.5000	0.4198	0.4500	0.4750
G-Mean	LSTM	0.9034	0.8633	0.8069	0.6652	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
	SVM	0.9152	0.8869	0.7369	0.5430	0.3889	0.2950	0.3950	0.2119	0.1497	0.1498	0.1501
	RandomForest	0.7244	0.6680	0.5049	0.4429	0.4673	0.4437	0.4960	0.4956	0.3350	0.3353	0.4746
	XGBoost	0.8548	0.8158	0.7672	0.7017	0.6699	0.6710	0.7411	0.6792	0.6105	0.6293	0.6471
Precision	LSTM	0.3411	0.2688	0.2029	0.2300	0.0729	0.0732	0.0718	0.0720	0.0722	0.0725	0.0727
	SVM	0.3793	0.4211	0.3857	0.3182	0.3043	0.2500	0.3889	0.2222	0.1111	0.1250	0.1667
	RandomForest	0.5556	0.6176	0.4800	0.4500	0.5000	0.5000	0.5500	0.5238	0.4167	0.4545	0.6667
	XGBoost	0.6034	0.5614	0.5957	0.5227	0.4884	0.5122	0.5682	0.5250	0.4595	0.5000	0.5278
Recall	LSTM	0.9565	0.9348	0.9130	0.5111	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
	SVM	0.9565	0.8696	0.5870	0.3111	0.1556	0.0889	0.1591	0.0455	0.0227	0.0227	0.0227
	RandomForest	0.5435	0.4565	0.2609	0.2000	0.2222	0.2000	0.2500	0.2500	0.1136	0.1136	0.2273
	XGBoost	0.7609	0.6957	0.6087	0.5111	0.4667	0.4667	0.5682	0.4773	0.3864	0.4091	0.4318

Tabla A.28: Resultados Swedish Leaf con ADASYN.

Tam. Ventana		1	3	5	7	9	11	13	15	17	19	21
AUC	LSTM	0.9083	0.8681	0.7717	0.5000	0.5000	0.5000	0.5000	0.5000	0.5000	0.5000	0.5000
	SVM	0.9178	0.8640	0.7130	0.6262	0.5562	0.5322	0.5603	0.5270	0.5061	0.4956	0.4973
	RandomForest	0.7923	0.7079	0.7170	0.6024	0.6015	0.6152	0.6084	0.5979	0.5506	0.5323	0.5419
	XGBoost	0.8071	0.8262	0.7826	0.7475	0.6945	0.7047	0.7246	0.6983	0.6790	0.6440	0.6344
F-Score	LSTM	0.5146	0.4908	0.4079	0.1355	0.1360	0.1364	0.1339	0.1344	0.1348	0.1352	0.1356
	SVM	0.5500	0.5827	0.4490	0.3291	0.1905	0.1270	0.2034	0.1091	0.0392	0.0000	0.0000
	RandomForest	0.6364	0.5195	0.5250	0.3077	0.3030	0.3438	0.3333	0.3103	0.1786	0.1224	0.1538
	XGBoost	0.6122	0.6214	0.5657	0.5275	0.4578	0.4706	0.5185	0.4578	0.4416	0.3733	0.3611
G-Mean	LSTM	0.9070	0.8681	0.7655	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
	SVM	0.9170	0.8620	0.6733	0.5276	0.3613	0.2945	0.3663	0.2593	0.1500	0.0000	0.0000
	RandomForest	0.7707	0.6531	0.6680	0.4673	0.4668	0.4909	0.4742	0.4503	0.3350	0.2607	0.3004
	XGBoost	0.7921	0.8158	0.7630	0.7162	0.6389	0.6549	0.6811	0.6454	0.6127	0.5555	0.5362
Precision	LSTM	0.3520	0.3419	0.2925	0.0727	0.0729	0.0732	0.0718	0.0720	0.0722	0.0725	0.0727
	SVM	0.3860	0.4568	0.4231	0.3824	0.3333	0.2222	0.4000	0.2727	0.1429	0.0000	0.0000
	RandomForest	0.6667	0.6452	0.6176	0.5000	0.4762	0.5789	0.6250	0.6429	0.4167	0.6000	0.5000
	XGBoost	0.5769	0.5614	0.5283	0.5217	0.5000	0.5000	0.5676	0.4872	0.5152	0.4516	0.4643
Recall	LSTM	0.9565	0.8696	0.6739	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
	SVM	0.9565	0.8043	0.4783	0.2889	0.1333	0.0889	0.1364	0.0682	0.0227	0.0000	0.0000
	RandomForest	0.6087	0.4348	0.4565	0.2222	0.2222	0.2444	0.2273	0.2045	0.1136	0.0682	0.0909
	XGBoost	0.6522	0.6957	0.6087	0.5333	0.4222	0.4444	0.4773	0.4318	0.3864	0.3182	0.2955

Tabla A.29: Resultados Swedish Leaf con MWMOTE.

Tam. Ventana		1	3	5	7	9	11	13	15	17	19	21
AUC	LSTM	0.8795	0.9060	0.9422	0.9656	0.9849	0.9946	0.9956	0.9989	1.0000	0.9989	1.0000
	SVM	0.8910	0.9079	0.9324	0.9344	0.9471	0.9653	0.9728	0.9726	0.9402	0.9790	0.9834
	RandomForest	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
	XGBoost	0.9968	0.9989	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
F-Score	LSTM	0.3942	0.4341	0.5179	0.6444	0.8056	0.9206	0.9355	0.9831	1.0000	0.9831	1.0000
	SVM	0.4771	0.4909	0.5385	0.5490	0.6222	0.6444	0.6988	0.6988	0.6835	0.7532	0.7945
	RandomForest	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
	XGBoost	0.9508	0.9831	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
G-Mean	LSTM	0.8780	0.9040	0.9404	0.9650	0.9848	0.9946	0.9956	0.9989	1.0000	0.9989	1.0000
	SVM	0.8909	0.9077	0.9319	0.9339	0.9469	0.9647	0.9724	0.9723	0.9402	0.9788	0.9832
	RandomForest	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
	XGBoost	0.9968	0.9989	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
Precision	LSTM	0.2500	0.2800	0.3494	0.4754	0.6744	0.8529	0.8788	0.9667	1.0000	0.9667	1.0000
	SVM	0.3250	0.3333	0.3733	0.3836	0.4590	0.4754	0.5370	0.5370	0.5400	0.6042	0.6591
	RandomForest	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
	XGBoost	0.9062	0.9667	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
Recall	LSTM	0.9310	0.9655	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
	SVM	0.8966	0.9310	0.9655	0.9655	0.9655	1.0000	1.0000	1.0000	0.9310	1.0000	1.0000
	RandomForest	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
	XGBoost	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000

Tabla A.30: Resultados Swedish Leaf con SMOTE + BORUTA.

Tam. Ventana		1	3	5	7	9	11	13	15	17	19	21
AUC	LSTM	0.8785	0.9211	0.9465	0.9559	0.9741	0.9848	0.9902	0.9978	1.0000	0.9989	1.0000
	SVM	0.9384	0.9241	0.9346	0.9387	0.9644	0.9588	0.9728	0.9716	0.9714	0.9629	0.9650
	RandomForest	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
	XGBoost	0.9958	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
F-Score	LSTM	0.3913	0.4394	0.5370	0.5859	0.7073	0.8056	0.8657	0.9667	1.0000	0.9831	1.0000
	SVM	0.5000	0.5000	0.5490	0.5714	0.6374	0.6042	0.6988	0.6905	0.6905	0.7467	0.7671
	RandomForest	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
	XGBoost	0.9355	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
G-Mean	LSTM	0.8769	0.9177	0.9450	0.9549	0.9737	0.9847	0.9901	0.9978	1.0000	0.9989	1.0000
	SVM	0.9364	0.9232	0.9341	0.9383	0.9637	0.9579	0.9724	0.9711	0.9710	0.9629	0.9650
	RandomForest	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
	XGBoost	0.9957	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
Precision	LSTM	0.2477	0.2816	0.3671	0.4143	0.5472	0.6744	0.7632	0.9355	1.0000	0.9667	1.0000
	SVM	0.3333	0.3373	0.3836	0.4058	0.4677	0.4328	0.5370	0.5273	0.5273	0.6087	0.6364
	RandomForest	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
	XGBoost	0.8788	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
Recall	LSTM	0.9310	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
	SVM	1.0000	0.9655	0.9655	0.9655	1.0000	1.0000	1.0000	1.0000	1.0000	0.9655	0.9655
	RandomForest	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
	XGBoost	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000

Tabla A.31: Resultados Swedish Leaf ADASYN + BORUTA.

Tam. Ventana		1	3	5	7	9	11	13	15	17	19	21
AUC	LSTM	0.8817	0.9286	0.9454	0.9667	0.9903	0.9957	0.9956	0.9978	0.9989	0.9989	1.0000
	SVM	0.9222	0.9305	0.9346	0.9354	0.9622	0.9566	0.9339	0.9587	0.9091	0.9629	0.9467
	RandomForest	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
	XGBoost	0.9947	0.9989	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
F-Score	LSTM	0.4000	0.4640	0.5321	0.6517	0.8657	0.9355	0.9355	0.9667	0.9831	0.9831	1.0000
	SVM	0.4912	0.5283	0.5490	0.5545	0.6237	0.5918	0.6353	0.7089	0.6757	0.7467	0.7397
	RandomForest	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
	XGBoost	0.9206	0.9831	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
G-Mean	LSTM	0.8803	0.9258	0.9438	0.9661	0.9902	0.9957	0.9956	0.9978	0.9989	0.9989	1.0000
	SVM	0.9212	0.9299	0.9341	0.9350	0.9615	0.9556	0.9339	0.9587	0.9078	0.9629	0.9465
	RandomForest	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
	XGBoost	0.9947	0.9989	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
Precision	LSTM	0.2547	0.3021	0.3625	0.4833	0.7632	0.8788	0.8788	0.9355	0.9667	0.9667	1.0000
	SVM	0.3294	0.3636	0.3836	0.3889	0.4531	0.4203	0.4821	0.5600	0.5556	0.6087	0.6136
	RandomForest	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
	XGBoost	0.8529	0.9667	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
Recall	LSTM	0.9310	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
	SVM	0.9655	0.9655	0.9655	0.9655	1.0000	1.0000	0.9310	0.9655	0.8621	0.9655	0.9310
	RandomForest	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
	XGBoost	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000

Tabla A.32: Resultados Swedish Leaf MWMOTE + BORUTA.

Tam. Ventana		1	3	5	7	9	11	13	15	17	19	21
AUC	LSTM	0.8192	0.5617	0.5244	0.5196	0.5066	0.5080	0.5121	0.5033	0.4983	0.4874	0.4949
	SVM	0.6633	0.5242	0.5114	0.5086	0.5043	0.4993	0.5019	0.4970	0.4973	0.4939	0.4913
	RandomForest	0.8151	0.7325	0.6451	0.6069	0.6038	0.5830	0.5740	0.5839	0.5642	0.5679	0.5715
	XGBoost	0.7721	0.7418	0.7104	0.6779	0.6797	0.6538	0.6479	0.6436	0.6261	0.6195	0.6235
F-Score	LSTM	0.8446	0.6118	0.5849	0.5931	0.5714	0.5644	0.5634	0.5471	0.5819	0.5613	0.5547
	SVM	0.7165	0.6332	0.6298	0.6311	0.6239	0.6201	0.6176	0.6169	0.6116	0.6123	0.6231
	RandomForest	0.8324	0.7711	0.6994	0.6667	0.6773	0.6599	0.6555	0.6588	0.6483	0.6450	0.6535
	XGBoost	0.7981	0.7721	0.7415	0.7271	0.7214	0.7082	0.6924	0.6902	0.6769	0.6675	0.6797
G-Mean	LSTM	0.8160	0.5566	0.5162	0.5052	0.4970	0.5017	0.5074	0.5006	0.4782	0.4738	0.4876
	SVM	0.6538	0.4770	0.4529	0.4444	0.4455	0.4395	0.4491	0.4386	0.4471	0.4386	0.4148
	RandomForest	0.8144	0.7271	0.6359	0.5965	0.5847	0.5629	0.5509	0.5652	0.5396	0.5487	0.5483
	XGBoost	0.7702	0.7393	0.7083	0.6698	0.6751	0.6442	0.6430	0.6381	0.6194	0.6141	0.6144
Precision	LSTM	0.8027	0.5886	0.5562	0.5517	0.5416	0.5429	0.5467	0.5388	0.5348	0.5260	0.5319
	SVM	0.6660	0.5524	0.5434	0.5418	0.5390	0.5356	0.5374	0.5338	0.5343	0.5321	0.5306
	RandomForest	0.8184	0.7267	0.6523	0.6219	0.6145	0.5989	0.5914	0.5998	0.5839	0.5881	0.5896
	XGBoost	0.7716	0.7438	0.7194	0.6795	0.6870	0.6590	0.6608	0.6560	0.6406	0.6369	0.6361
Recall	LSTM	0.8911	0.6370	0.6168	0.6411	0.6047	0.5876	0.5811	0.5556	0.6381	0.6016	0.5795
	SVM	0.7754	0.7416	0.7489	0.7558	0.7406	0.7361	0.7260	0.7306	0.7150	0.7211	0.7547
	RandomForest	0.8469	0.8213	0.7539	0.7184	0.7544	0.7349	0.7353	0.7306	0.7288	0.7142	0.7328
	XGBoost	0.8264	0.8026	0.7651	0.7819	0.7594	0.7654	0.7272	0.7281	0.7175	0.7011	0.7297

Tabla A.33: Resultados Yoga base.

Tam. Ventana		1	3	5	7	9	11	13	15	17	19	21
AUC	LSTM	0.8256	0.5619	0.5163	0.5067	0.5107	0.5096	0.5144	0.5018	0.5024	0.4979	0.4912
	SVM	0.6698	0.5253	0.5102	0.5087	0.5077	0.4937	0.5037	0.4941	0.4938	0.4941	0.5043
	RandomForest	0.8071	0.7307	0.6755	0.6148	0.5831	0.5746	0.5818	0.5877	0.5650	0.5382	0.5541
	XGBoost	0.7766	0.7423	0.7072	0.6670	0.6565	0.6451	0.6292	0.6368	0.6056	0.6124	0.6199
F-Score	LSTM	0.8529	0.6068	0.5638	0.5626	0.5666	0.5620	0.5676	0.5446	0.5691	0.5160	0.5378
	SVM	0.6959	0.5568	0.5586	0.5787	0.5800	0.5653	0.5643	0.5612	0.5626	0.5846	0.6019
	RandomForest	0.8259	0.7572	0.7087	0.6520	0.6303	0.6290	0.6434	0.6342	0.6223	0.5998	0.5964
	XGBoost	0.7959	0.7631	0.7337	0.6958	0.6933	0.6785	0.6617	0.6716	0.6335	0.6457	0.6628
G-Mean	LSTM	0.8211	0.5584	0.5125	0.5006	0.5045	0.5046	0.5091	0.4993	0.4920	0.4979	0.4880
	SVM	0.6691	0.5245	0.5063	0.4966	0.4943	0.4811	0.4959	0.4837	0.4826	0.4692	0.4724
	RandomForest	0.8064	0.7294	0.6734	0.6126	0.5787	0.5678	0.5716	0.5834	0.5572	0.5294	0.5514
	XGBoost	0.7760	0.7418	0.7061	0.6659	0.6539	0.6434	0.6278	0.6349	0.6050	0.6110	0.6162
Precision	LSTM	0.8018	0.5900	0.5501	0.5418	0.5452	0.5444	0.5486	0.5374	0.5382	0.5341	0.5284
	SVM	0.6912	0.5594	0.5447	0.5432	0.5423	0.5310	0.5392	0.5310	0.5311	0.5318	0.5394
	RandomForest	0.8098	0.7405	0.6901	0.6380	0.6076	0.5986	0.6024	0.6114	0.5902	0.5679	0.5844
	XGBoost	0.7863	0.7572	0.7220	0.6871	0.6727	0.6657	0.6527	0.6575	0.6345	0.6380	0.6397
Recall	LSTM	0.9110	0.6245	0.5782	0.5850	0.5898	0.5808	0.5880	0.5519	0.6038	0.4991	0.5476
	SVM	0.7007	0.5542	0.5732	0.6193	0.6234	0.6045	0.5918	0.5950	0.5981	0.6492	0.6809
	RandomForest	0.8426	0.7746	0.7283	0.6667	0.6546	0.6625	0.6904	0.6587	0.6581	0.6354	0.6089
	XGBoost	0.8058	0.7690	0.7458	0.7047	0.7151	0.6918	0.6710	0.6862	0.6325	0.6535	0.6877

Tabla A.34: Resultados Yoga con SMOTE.

Tam. Ventana		1	3	5	7	9	11	13	15	17	19	21
AUC	LSTM	0.8386	0.5795	0.5277	0.5139	0.5167	0.5121	0.5079	0.5124	0.4810	0.4894	0.4832
	SVM	0.6773	0.5390	0.5172	0.5131	0.5069	0.5018	0.5003	0.4974	0.4932	0.4944	0.4920
	RandomForest	0.8062	0.7110	0.6626	0.6114	0.6048	0.5722	0.5872	0.5827	0.5892	0.5683	0.5604
	XGBoost	0.7916	0.7472	0.7156	0.6783	0.6620	0.6601	0.6329	0.6627	0.6145	0.5983	0.5988
F-Score	LSTM	0.8574	0.6161	0.5676	0.5462	0.5461	0.5478	0.5361	0.5594	0.5128	0.5437	0.5369
	SVM	0.7055	0.5632	0.5899	0.5923	0.5971	0.5761	0.5675	0.5824	0.5593	0.5816	0.5660
	RandomForest	0.8216	0.7301	0.6913	0.6546	0.6357	0.6215	0.6227	0.6347	0.6383	0.6144	0.6028
	XGBoost	0.8088	0.7640	0.7386	0.7081	0.6880	0.6879	0.6596	0.6920	0.6464	0.6304	0.6394
G-Mean	LSTM	0.8372	0.5777	0.5256	0.5131	0.5161	0.5108	0.5074	0.5089	0.4803	0.4841	0.4781
	SVM	0.6762	0.5388	0.5031	0.4954	0.4814	0.4875	0.4898	0.4764	0.4834	0.4719	0.4782
	RandomForest	0.8059	0.7109	0.6615	0.6077	0.6038	0.5673	0.5856	0.5766	0.5841	0.5645	0.5576
	XGBoost	0.7912	0.7471	0.7150	0.6770	0.6614	0.6593	0.6324	0.6616	0.6134	0.5972	0.5961
Precision	LSTM	0.8299	0.6074	0.5608	0.5491	0.5519	0.5473	0.5436	0.5469	0.5182	0.5270	0.5215
	SVM	0.6957	0.5732	0.5495	0.5463	0.5413	0.5375	0.5364	0.5339	0.5306	0.5319	0.5297
	RandomForest	0.8163	0.7335	0.6831	0.6324	0.6323	0.5980	0.6151	0.6056	0.6122	0.5958	0.5898
	XGBoost	0.8018	0.7671	0.7327	0.6957	0.6852	0.6822	0.6594	0.6829	0.6405	0.6262	0.6233
Recall	LSTM	0.8867	0.6252	0.5745	0.5433	0.5405	0.5483	0.5287	0.5725	0.5075	0.5616	0.5532
	SVM	0.7156	0.5535	0.6368	0.6467	0.6658	0.6207	0.6024	0.6406	0.5913	0.6417	0.6076
	RandomForest	0.8270	0.7267	0.6997	0.6785	0.6390	0.6469	0.6305	0.6669	0.6669	0.6341	0.6164
	XGBoost	0.8158	0.7609	0.7445	0.7209	0.6908	0.6937	0.6598	0.7012	0.6525	0.6348	0.6564

Tabla A.35: Resultados Yoga con MWMOTE.

Tam. Ventana		1	3	5	7	9	11	13	15	17	19	21
AUC	LSTM	0.6197	0.7470	0.9263	0.9962	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
	SVM	0.6906	0.6867	0.7450	0.7628	0.8009	0.7833	0.8388	0.8378	0.8605	0.8559	0.8611
	RandomForest	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
	XGBoost	0.9543	0.9716	0.9963	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
F-Score	LSTM	0.6054	0.7678	0.9308	0.9969	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
	SVM	0.7316	0.7103	0.7664	0.7864	0.8165	0.8157	0.8544	0.8607	0.8754	0.8710	0.8782
	RandomForest	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
	XGBoost	0.9610	0.9758	0.9969	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
G-Mean	LSTM	0.6153	0.7469	0.9263	0.9962	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
	SVM	0.6870	0.6866	0.7447	0.7624	0.8008	0.7805	0.8386	0.8361	0.8602	0.8555	0.8604
	RandomForest	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
	XGBoost	0.9539	0.9715	0.9963	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
Precision	LSTM	0.6794	0.7750	0.9427	0.9938	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
	SVM	0.7045	0.7215	0.7688	0.7840	0.8269	0.7849	0.8544	0.8323	0.8671	0.8599	0.8616
	RandomForest	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
	XGBoost	0.9412	0.9641	0.9938	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
Recall	LSTM	0.5460	0.7607	0.9193	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
	SVM	0.7607	0.6994	0.7640	0.7888	0.8062	0.8491	0.8544	0.8910	0.8839	0.8824	0.8954
	RandomForest	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
	XGBoost	0.9816	0.9877	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000

Tabla A.36: Resultados Yoga con SMOTE+BORUTA.

Tam. Ventana		1	3	5	7	9	11	13	15	17	19	21
AUC	LSTM	0.6381	0.7630	0.9232	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
	SVM	0.6665	0.6738	0.7146	0.7409	0.7924	0.8096	0.8485	0.8244	0.8560	0.8714	0.8794
	RandomForest	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
	XGBoost	0.9482	0.9852	0.9963	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
F-Score	LSTM	0.6333	0.7853	0.9274	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
	SVM	0.6855	0.6959	0.7375	0.7706	0.8218	0.8254	0.8571	0.8474	0.8734	0.8824	0.8939
	RandomForest	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
	XGBoost	0.9547	0.9879	0.9969	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
G-Mean	LSTM	0.6357	0.7627	0.9231	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
	SVM	0.6665	0.6738	0.7144	0.7398	0.7903	0.8095	0.8484	0.8230	0.8553	0.8713	0.8790
	RandomForest	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
	XGBoost	0.9479	0.9851	0.9963	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
Precision	LSTM	0.6934	0.7853	0.9423	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
	SVM	0.7032	0.7115	0.7421	0.7590	0.7953	0.8333	0.8800	0.8242	0.8571	0.8824	0.8797
	RandomForest	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
	XGBoost	0.9405	0.9760	0.9938	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
Recall	LSTM	0.5828	0.7853	0.9130	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
	SVM	0.6687	0.6810	0.7329	0.7826	0.8500	0.8176	0.8354	0.8718	0.8903	0.8824	0.9085
	RandomForest	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
	XGBoost	0.9693	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000

Tabla A.37: Resultados Yoga con MWMOTE + BORUTA.

Tam. Ventana		1	3	5	7	9	11	13	15	17	19	21
AUC	LSTM	0.5000	0.5000	0.5000	0.5000	0.5000	0.5000	0.5000	0.5000	0.5	0.5	0.5
1100	SVM	0.5000	0.5000	0.5000	0.5000	0.5000	0.5000	0.5000	0.5000	0.5	0.5	0.5
	RandomForest	0.5714	0.5000	0.5000	0.5000	0.5000	0.5000	0.5000	0.5000	0.5	0.5	0.5
								1				
	XGBoost	0.7143	0.7143	0.6415	0.6415	0.5714	0.5701	0.5701	0.5701	0.5	0.5	0.5
F-Score	LSTM	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0	0.0	0.0
	SVM	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0	0.0	0.0
	RandomForest	0.2500	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0	0.0	0.0
	XGBoost	0.6000	0.6000	0.4000	0.4000	0.2500	0.2222	0.2222	0.2222	0.0	0.0	0.0
G-Mean	LSTM	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0	0.0	0.0
	SVM	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0	0.0	0.0
	RandomForest	0.3780	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0	0.0	0.0
	XGBoost	0.6547	0.6547	0.5338	0.5338	0.3780	0.3775	0.3775	0.3775	0.0	0.0	0.0
Precision	LSTM	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0	0.0	0.0
	SVM	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0	0.0	0.0
	RandomForest	1.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0	0.0	0.0
	XGBoost	1.0000	1.0000	0.6667	0.6667	1.0000	0.5000	0.5000	0.5000	0.0	0.0	0.0
Recall	LSTM	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0	0.0	0.0
	SVM	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0	0.0	0.0
	RandomForest	0.1429	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0	0.0	0.0
	XGBoost	0.4286	0.4286	0.2857	0.2857	0.1429	0.1429	0.1429	0.1429	0.0	0.0	0.0

Tabla A.38: Resultados Adiac base.

Tam. Ventana		1	3	5	7	9	11	13	15	17	19	21
AUC	LSTM	0.6367	0.5000	0.5000	0.5000	0.5000	0.5000	0.5000	0.5000	0.5000	0.5000	0.5000
	SVM	0.7812	0.6171	0.5571	0.6389	0.5446	0.5831	0.4589	0.5075	0.4323	0.4379	0.5481
	RandomForest	0.7844	0.7805	0.7103	0.5701	0.5701	0.5714	0.5714	0.5000	0.5000	0.5000	0.5000
	XGBoost	0.8532	0.8545	0.7051	0.7050	0.7050	0.7777	0.7062	0.7075	0.7075	0.7789	0.7074
F-Score	LSTM	0.0478	0.0354	0.0355	0.0357	0.0359	0.0361	0.0363	0.0365	0.0366	0.0368	0.0370
	SVM	0.0769	0.0478	0.0417	0.0517	0.0405	0.0461	0.0300	0.0368	0.0244	0.0252	0.0435
	RandomForest	0.6667	0.5333	0.4615	0.2222	0.2222	0.2500	0.2500	0.0000	0.0000	0.0000	0.0000
	XGBoost	0.6667	0.7143	0.3529	0.3529	0.3529	0.4706	0.3750	0.4000	0.4000	0.5000	0.4000
G-Mean	LSTM	0.5229	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
	SVM	0.7500	0.5684	0.5345	0.6005	0.5175	0.5681	0.4579	0.5013	0.4067	0.4106	0.5476
	RandomForest	0.7549	0.7520	0.6521	0.3775	0.3775	0.3780	0.3780	0.0000	0.0000	0.0000	0.0000
	XGBoost	0.8418	0.8429	0.6486	0.6486	0.6485	0.7498	0.6494	0.6502	0.6502	0.7507	0.6501
Precision	LSTM	0.0245	0.0180	0.0181	0.0182	0.0183	0.0184	0.0185	0.0186	0.0187	0.0188	0.0189
	SVM	0.0400	0.0246	0.0215	0.0267	0.0208	0.0238	0.0155	0.0192	0.0127	0.0132	0.0226
	RandomForest	0.8000	0.5000	0.5000	0.5000	0.5000	1.0000	1.0000	0.0000	0.0000	0.0000	0.0000
	XGBoost	0.6250	0.7143	0.3000	0.3000	0.3000	0.4000	0.3333	0.3750	0.3750	0.4444	0.3750
Recall	LSTM	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
	SVM	1.0000	0.8571	0.7143	0.8571	0.7143	0.7143	0.4286	0.4286	0.2857	0.2857	0.5714
	RandomForest	0.5714	0.5714	0.4286	0.1429	0.1429	0.1429	0.1429	0.0000	0.0000	0.0000	0.0000
	XGBoost	0.7143	0.7143	0.4286	0.4286	0.4286	0.5714	0.4286	0.4286	0.4286	0.5714	0.4286

Tabla A.39: Resultados Adiac con SMOTE.

Tam. Ventana		1	3	5	7	9	11	13	15	17	19	21
AUC	LSTM	0.6185	0.5000	0.5000	0.5000	0.5000	0.5000	0.5000	0.5000	0.5000	0.5000	0.5000
	SVM	0.7461	0.6223	0.5664	0.6362	0.5606	0.5951	0.4441	0.5519	0.3956	0.4229	0.4148
	RandomForest	0.7831	0.7091	0.6415	0.6415	0.5701	0.5701	0.6429	0.5714	0.5000	0.4986	0.5000
	XGBoost	0.8558	0.8558	0.8479	0.7050	0.7050	0.7777	0.7076	0.7075	0.7075	0.7075	0.7074
F-Score	LSTM	0.0456	0.0354	0.0355	0.0357	0.0359	0.0361	0.0363	0.0365	0.0366	0.0368	0.0370
	SVM	0.0670	0.0486	0.0429	0.0513	0.0426	0.0481	0.0284	0.0435	0.0209	0.0235	0.0229
	RandomForest	0.6154	0.4286	0.4000	0.4000	0.2222	0.2222	0.4444	0.2500	0.0000	0.0000	0.0000
	XGBoost	0.7692	0.7692	0.5263	0.3529	0.3529	0.4706	0.4000	0.4000	0.4000	0.4000	0.4000
G-Mean	LSTM	0.4868	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
	SVM	0.7016	0.5763	0.5467	0.5967	0.5391	0.5831	0.4439	0.5516	0.3800	0.4000	0.3942
	RandomForest	0.7540	0.6512	0.5338	0.5338	0.3775	0.3775	0.5345	0.3780	0.0000	0.0000	0.0000
	XGBoost	0.8441	0.8440	0.8373	0.6486	0.6485	0.7498	0.6502	0.6502	0.6502	0.6502	0.6501
Precision	LSTM	0.0233	0.0180	0.0181	0.0182	0.0183	0.0184	0.0185	0.0186	0.0187	0.0188	0.0189
	SVM	0.0347	0.0250	0.0221	0.0264	0.0219	0.0249	0.0147	0.0226	0.0109	0.0123	0.0119
	RandomForest	0.6667	0.4286	0.6667	0.6667	0.5000	0.5000	1.0000	1.0000	0.0000	0.0000	0.0000
	XGBoost	0.8333	0.8333	0.4167	0.3000	0.3000	0.4000	0.3750	0.3750	0.3750	0.3750	0.3750
Recall	LSTM	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
	SVM	1.0000	0.8571	0.7143	0.8571	0.7143	0.7143	0.4286	0.5714	0.2857	0.2857	0.2857
	RandomForest	0.5714	0.4286	0.2857	0.2857	0.1429	0.1429	0.2857	0.1429	0.0000	0.0000	0.0000
	XGBoost	0.7143	0.7143	0.7143	0.4286	0.4286	0.5714	0.4286	0.4286	0.4286	0.4286	0.4286

Tabla A.40: Resultados Adiac con ADASYN.

		1	3	5	7	9	11	13	15	17	19	21
AUC	LSTM	0.6185	0.5000	0.5000	0.5000	0.5000	0.5000	0.5000	0.5000	0.5000	0.5000	0.5000
	SVM	0.7461	0.6223	0.5664	0.6362	0.5606	0.5951	0.4441	0.5519	0.3956	0.4229	0.4148
	RandomForest	0.7831	0.7091	0.6415	0.6415	0.5701	0.5701	0.6429	0.5714	0.5000	0.4986	0.5000
	XGBoost	0.8558	0.8558	0.8479	0.7050	0.7050	0.7777	0.7076	0.7075	0.7075	0.7075	0.7074
F-Score	LSTM	0.0456	0.0354	0.0355	0.0357	0.0359	0.0361	0.0363	0.0365	0.0366	0.0368	0.0370
	SVM	0.0670	0.0486	0.0429	0.0513	0.0426	0.0481	0.0284	0.0435	0.0209	0.0235	0.0229
	RandomForest	0.6154	0.4286	0.4000	0.4000	0.2222	0.2222	0.4444	0.2500	0.0000	0.0000	0.0000
	XGBoost	0.7692	0.7692	0.5263	0.3529	0.3529	0.4706	0.4000	0.4000	0.4000	0.4000	0.4000
G-Mean	LSTM	0.4868	0.0000	0.0000	0.0000	0.0000	0.4000	0.4000	0.4000	0.4000	0.4000	0.0000
	SVM	0.7016	0.5763	0.5467	0.5967	0.5391	0.5831	0.4439	0.5516	0.3800	0.4000	0.3942
	RandomForest	0.7540	0.6512	0.5338	0.5338	0.3775	0.3775	0.5345	0.3780	0.0000	0.0000	0.0000
	XGBoost	0.8441	0.8440	0.8373	0.6486	0.6485	0.7498	0.6502	0.6502	0.6502	0.6502	0.6501
Precision	LSTM	0.0233	0.0180	0.0181	0.0182	0.0183	0.0184	0.0185	0.0186	0.0187	0.0188	0.0189
	SVM	0.0347	0.0250	0.0221	0.0264	0.0219	0.0249	0.0147	0.0226	0.0109	0.0123	0.0119
	RandomForest	0.6667	0.4286	0.6667	0.6667	0.5000	0.5000	1.0000	1.0000	0.0000	0.0000	0.0000
	XGBoost	0.8333	0.8333	0.4167	0.3000	0.3000	0.4000	0.3750	0.3750	0.3750	0.3750	0.3750
Recall	LSTM	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
	SVM	1.0000	0.8571	0.7143	0.8571	0.7143	0.7143	0.4286	0.5714	0.2857	0.2857	0.2857
	RandomForest	0.5714	0.4286	0.2857	0.2857	0.1429	0.1429	0.2857	0.1429	0.0000	0.0000	0.0000
	XGBoost	0.7143	0.7143	0.7143	0.4286	0.4286	0.5714	0.4286	0.4286	0.4286	0.4286	0.4286

Tabla A.41: Resultados Adiac con MWMOTE.

Tam. Ventana		1	3	5	7	9	11	13	15	17	19	21
AUC	LSTM	0.5026	0.5196	0.5000	0.5000	0.5000	0.4794	0.5000	0.5000	0.5000	0.5055	0.5000
	SVM	0.8242	0.7749	0.7645	0.6944	0.6772	0.7334	0.7243	0.7205	0.6683	0.7151	0.5701
	RandomForest	0.9169	0.9194	0.7791	0.8545	0.7103	0.6402	0.6375	0.5701	0.5000	0.5701	0.5000
	XGBoost	0.9169	0.9168	0.8479	0.9167	0.9179	0.9152	0.9192	0.9151	0.9204	0.9217	0.9217
F-Score	LSTM	0.0354	0.0367	0.0355	0.0357	0.0359	0.0344	0.0363	0.0365	0.0366	0.0372	0.0370
	SVM	0.0940	0.0753	0.0725	0.0632	0.0594	0.0755	0.0727	0.0719	0.0662	0.0862	0.0476
	RandomForest	0.5455	0.6000	0.5000	0.7143	0.4615	0.3636	0.3077	0.2222	0.0000	0.2222	0.0000
	XGBoost	0.5455	0.5455	0.5263	0.5455	0.5714	0.5217	0.6000	0.5217	0.6316	0.6667	0.6667
G-Mean	LSTM	0.0722	0.1982	0.0000	0.0000	0.0000	0.2951	0.0000	0.0000	0.0000	0.1045	0.0000
	SVM	0.8053	0.7414	0.7273	0.6751	0.6529	0.7229	0.7120	0.7074	0.6667	0.7151	0.5701
	RandomForest	0.9149	0.9173	0.7509	0.8429	0.6520	0.5331	0.5316	0.3775	0.0000	0.3774	0.0000
	XGBoost	0.9149	0.9148	0.8373	0.9147	0.9159	0.9134	0.9171	0.9132	0.9182	0.9195	0.9194
Precision	LSTM	0.0180	0.0187	0.0181	0.0182	0.0183	0.0175	0.0185	0.0186	0.0187	0.0190	0.0189
	SVM	0.0493	0.0391	0.0376	0.0328	0.0308	0.0395	0.0380	0.0375	0.0347	0.0459	0.0248
	RandomForest	0.4000	0.4615	0.4444	0.7143	0.5000	0.5000	0.3333	0.5000	0.0000	0.5000	0.0000
	XGBoost	0.4000	0.4000	0.4167	0.4000	0.4286	0.3750	0.4615	0.3750	0.5000	0.5455	0.5455
Recall	LSTM	1.0000	1.0000	1.0000	1.0000	1.0000	0.8571	1.0000	1.0000	1.0000	1.0000	1.0000
	SVM	1.0000	1.0000	1.0000	0.8571	0.8571	0.8571	0.8571	0.8571	0.7143	0.7143	0.5714
	RandomForest	0.8571	0.8571	0.5714	0.7143	0.4286	0.2857	0.2857	0.1429	0.0000	0.1429	0.0000
	XGBoost	0.8571	0.8571	0.7143	0.8571	0.8571	0.8571	0.8571	0.8571	0.8571	0.8571	0.8571

Tabla A.42: Resultados Adiac con SMOTE+BORUTA.

Tam. Ventana		1	3	5	7	9	11	13	15	17	19	21
AUC	LSTM	0.5117	0.5000	0.5039	0.5053	0.5000	0.5053	0.5255	0.5000	0.5000	0.5000	0.5000
	SVM	0.8164	0.7736	0.7009	0.6984	0.6178	0.7320	0.7162	0.7083	0.6588	0.6563	0.5783
	RandomForest	0.9142	0.8467	0.7791	0.7103	0.7103	0.5688	0.4973	0.5687	0.5000	0.5714	0.5714
	XGBoost	0.9156	0.9168	0.8466	0.9180	0.9166	0.9152	0.9165	0.9205	0.9177	0.8503	0.9203
F-Score	LSTM	0.5117	0.5000	0.5039	0.5053	0.5000	0.5053	0.5255	0.5000	0.5000	0.5000	0.5000
	SVM	0.8164	0.7736	0.7009	0.6984	0.6178	0.7320	0.7162	0.7083	0.6588	0.6563	0.5783
	RandomForest	0.9142	0.8467	0.7791	0.7103	0.7103	0.5688	0.4973	0.5687	0.5000	0.5714	0.5714
	XGBoost	0.9156	0.9168	0.8466	0.9180	0.9166	0.9152	0.9165	0.9205	0.9177	0.8503	0.9203
G-Mean	LSTM	0.1531	0.0000	0.0889	0.1029	0.0000	0.1034	0.2260	0.0000	0.0000	0.0000	0.0000
	SVM	0.7955	0.7397	0.6833	0.6801	0.6102	0.7213	0.7022	0.6925	0.6564	0.6538	0.5783
	RandomForest	0.9125	0.8363	0.7509	0.6521	0.6520	0.3770	0.0000	0.3769	0.0000	0.3780	0.3780
	XGBoost	0.9137	0.9148	0.8362	0.9160	0.9147	0.9134	0.9146	0.9183	0.9157	0.8394	0.9182
Precision	LSTM	0.0183	0.0180	0.0182	0.0184	0.0183	0.0186	0.0194	0.0186	0.0187	0.0188	0.0189
	SVM	0.0473	0.0389	0.0335	0.0333	0.0270	0.0392	0.0366	0.0355	0.0331	0.0329	0.0258
	RandomForest	0.3529	0.3846	0.4444	0.5000	0.5000	0.3333	0.0000	0.3333	0.0000	1.0000	1.0000
	XGBoost	0.3750	0.4000	0.3846	0.4286	0.4000	0.3750	0.4000	0.5000	0.4286	0.5000	0.5000
Recall	LSTM	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
	SVM	1.0000	1.0000	0.8571	0.8571	0.7143	0.8571	0.8571	0.8571	0.7143	0.7143	0.5714
	RandomForest	0.8571	0.7143	0.5714	0.4286	0.4286	0.1429	0.0000	0.1429	0.0000	0.1429	0.1429
	XGBoost	0.8571	0.8571	0.7143	0.8571	0.8571	0.8571	0.8571	0.8571	0.8571	0.7143	0.8571

Tabla A.43: Resultados Adiac con ADASYN + BORUTA.

Tam. Ventana		1	3	5	7	9	11	13	15	17	19	21
AUC	LSTM	0.5143	0.5275	0.5066	0.5000	0.5027	0.5147	0.5013	0.5000	0.5000	0.5000	0.5000
	SVM	0.8216	0.7906	0.7592	0.7063	0.6497	0.6553	0.7283	0.6761	0.5969	0.6550	0.5920
	RandomForest	0.7779	0.8506	0.7778	0.6415	0.7130	0.7116	0.5687	0.5000	0.5000	0.5000	0.5000
	XGBoost	0.7792	0.8493	0.8479	0.8492	0.8492	0.9152	0.8477	0.8477	0.8490	0.7789	0.7102
F-Score	LSTM	0.0362	0.0373	0.0360	0.0357	0.0361	0.0371	0.0364	0.0365	0.0366	0.0000	0.0000
	SVM	0.0927	0.0805	0.0711	0.0663	0.0595	0.0613	0.0741	0.0685	0.0533	0.0625	0.0526
	RandomForest	0.4706	0.5882	0.4706	0.4000	0.5455	0.5000	0.2000	0.0000	0.0000	0.0000	0.0000
	XGBoost	0.5000	0.5556	0.5263	0.5556	0.5556	0.5217	0.5263	0.5263	0.5556	0.5000	0.4615
G-Mean	LSTM	0.1693	0.2345	0.1147	0.0000	0.0729	0.1715	0.0518	0.0000	0.0000	0.0000	0.0000
	SVM	0.8020	0.7623	0.7200	0.6901	0.6465	0.6526	0.7168	0.6750	0.5963	0.6523	0.5917
	RandomForest	0.7500	0.8396	0.7499	0.5338	0.6538	0.6529	0.3769	0.0000	0.0000	0.0000	0.0000
	XGBoost	0.7510	0.8385	0.8373	0.8384	0.8384	0.9134	0.8372	0.8371	0.8382	0.7507	0.6520
Precision	LSTM	0.0184	0.0190	0.0183	0.0182	0.0184	0.0189	0.0185	0.0186	0.0187	0.0000	0.0000
	SVM	0.0486	0.0419	0.0368	0.0345	0.0311	0.0321	0.0387	0.0360	0.0280	0.0327	0.0276
	RandomForest	0.4000	0.5000	0.4000	0.6667	0.7500	0.6000	0.3333	0.0000	0.0000	0.0000	0.0000
	XGBoost	0.4444	0.4545	0.4167	0.4545	0.4545	0.3750	0.4167	0.4167	0.4545	0.4444	0.5000
Recall	LSTM	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	0.0000	0.0000
	SVM	1.0000	1.0000	1.0000	0.8571	0.7143	0.7143	0.8571	0.7143	0.5714	0.7143	0.5714
	RandomForest	0.5714	0.7143	0.5714	0.2857	0.4286	0.4286	0.1429	0.0000	0.0000	0.0000	0.0000
	XGBoost	0.5714	0.7143	0.7143	0.7143	0.7143	0.8571	0.7143	0.7143	0.7143	0.5714	0.4286

Tabla A.44: Resultados Adiac con MWMOTE + BORUTA.

Tam. Ventana		1	3	5	7	9	11	13	15	17	19	21
AUC	LSTM	0.9874	0.9700	0.9629	0.9547	0.9386	0.9254	0.9032	0.8315	0.8314	0.7105	0.7588
	SVM	0.9835	0.8322	0.7736	0.7082	0.6044	0.5286	0.5038	0.5000	0.5000	0.5000	0.5000
	RandomForest	0.9615	0.9080	0.8996	0.9063	0.9069	0.9131	0.8937	0.8871	0.8770	0.8841	0.8842
	XGBoost	0.9787	0.9788	0.9796	0.9766	0.9774	0.9778	0.9795	0.9787	0.9787	0.9794	0.9771
F-Score	LSTM	0.9974	0.9945	0.9926	0.9917	0.9889	0.9877	0.9854	0.9769	0.9760	0.9638	0.9674
	SVM	0.9961	0.9780	0.9720	0.9652	0.9541	0.9461	0.9434	0.9429	0.9429	0.9429	0.9429
	RandomForest	0.9946	0.9881	0.9869	0.9877	0.9878	0.9886	0.9865	0.9852	0.9838	0.9849	0.9850
	XGBoost	0.9959	0.9960	0.9961	0.9958	0.9959	0.9956	0.9961	0.9959	0.9959	0.9960	0.9956
G-Mean	LSTM	0.9874	0.9697	0.9624	0.9539	0.9371	0.9230	0.8987	0.8157	0.8159	0.6511	0.7226
	SVM	0.9835	0.8161	0.7407	0.6460	0.4574	0.2392	0.0868	0.0000	0.0000	0.0000	0.0000
	RandomForest	0.9608	0.9036	0.8942	0.9017	0.9024	0.9091	0.8875	0.8803	0.8689	0.8768	0.8769
	XGBoost	0.9786	0.9786	0.9794	0.9764	0.9772	0.9776	0.9794	0.9785	0.9785	0.9793	0.9769
Precision	LSTM	0.9973	0.9933	0.9918	0.9898	0.9862	0.9830	0.9778	0.9613	0.9614	0.9347	0.9453
	SVM	0.9965	0.9613	0.9482	0.9341	0.9127	0.8976	0.8928	0.8920	0.8920	0.8920	0.8919
	RandomForest	0.9910	0.9784	0.9765	0.9780	0.9782	0.9796	0.9751	0.9737	0.9714	0.9729	0.9729
	XGBoost	0.9953	0.9953	0.9955	0.9947	0.9949	0.9951	0.9955	0.9953	0.9953	0.9954	0.9949
Recall	LSTM	0.9975	0.9956	0.9934	0.9936	0.9916	0.9923	0.9931	0.9929	0.9911	0.9947	0.9905
	SVM	0.9956	0.9953	0.9969	0.9984	0.9995	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
	RandomForest	0.9982	0.9980	0.9976	0.9976	0.9976	0.9978	0.9982	0.9971	0.9965	0.9971	0.9973
	XGBoost	0.9965	0.9967	0.9967	0.9969	0.9969	0.9962	0.9967	0.9965	0.9965	0.9965	0.9964

Tabla A.45: Resultados Wafer base.

Tam. Ventana		1	3	5	7	9	11	13	15	17	19	21
AUC	LSTM	0.9890	0.9780	0.9774	0.9717	0.9546	0.9264	0.8911	0.8892	0.8149	0.8105	0.7138
	SVM	0.9911	0.9617	0.8691	0.7572	0.6887	0.6246	0.5933	0.5694	0.5511	0.5358	0.5284
	RandomForest	0.9841	0.9877	0.9902	0.9853	0.9875	0.9872	0.9874	0.9883	0.9839	0.9811	0.9853
	XGBoost	0.9891	0.9929	0.9860	0.9946	0.9879	0.9873	0.9863	0.9946	0.9852	0.9883	0.9937
F-Score	LSTM	0.9975	0.9945	0.9933	0.9922	0.9897	0.9854	0.9813	0.9813	0.9722	0.9690	0.9570
	SVM	0.9964	0.9914	0.9810	0.9689	0.9621	0.9555	0.9524	0.9499	0.9477	0.9464	0.9458
	RandomForest	0.9966	0.9963	0.9962	0.9952	0.9954	0.9952	0.9953	0.9955	0.9952	0.9950	0.9952
	XGBoost	0.9957	0.9962	0.9953	0.9965	0.9965	0.9959	0.9955	0.9965	0.9952	0.9955	0.9963
G-Mean	LSTM	0.9889	0.9779	0.9773	0.9715	0.9540	0.9244	0.8859	0.8837	0.7966	0.7923	0.6628
	SVM	0.9911	0.9613	0.8603	0.7192	0.6161	0.5009	0.4335	0.3740	0.3221	0.2688	0.2392
	RandomForest	0.9840	0.9877	0.9902	0.9852	0.9875	0.9872	0.9874	0.9882	0.9839	0.9810	0.9853
	XGBoost	0.9891	0.9929	0.9860	0.9946	0.9879	0.9873	0.9862	0.9946	0.9852	0.9882	0.9937
Precision	LSTM	0.9976	0.9954	0.9956	0.9943	0.9903	0.9838	0.9755	0.9750	0.9580	0.9574	0.9361
	SVM	0.9985	0.9918	0.9699	0.9448	0.9301	0.9168	0.9104	0.9056	0.9020	0.8989	0.8974
	RandomForest	0.9965	0.9976	0.9984	0.9973	0.9978	0.9978	0.9978	0.9980	0.9969	0.9962	0.9973
	XGBoost	0.9982	0.9991	0.9974	0.9995	0.9976	0.9976	0.9974	0.9994	0.9973	0.9980	0.9993
Recall	LSTM	0.9975	0.9936	0.9909	0.9900	0.9891	0.9869	0.9871	0.9878	0.9867	0.9808	0.9788
	SVM	0.9942	0.9911	0.9924	0.9942	0.9964	0.9976	0.9984	0.9987	0.9984	0.9993	0.9996
	RandomForest	0.9967	0.9949	0.9940	0.9931	0.9931	0.9925	0.9929	0.9931	0.9934	0.9938	0.9932
	XGBoost	0.9933	0.9933	0.9931	0.9936	0.9954	0.9942	0.9936	0.9936	0.9931	0.9931	0.9934

Tabla A.46: Resultados Wafer con SMOTE.

Tam. Ventana		1	3	5	7	9	11	13	15	17	19	21
AUC	LSTM	0.9890	0.9750	0.9787	0.9765	0.9639	0.9297	0.9370	0.8800	0.8017	0.7922	0.7475
	SVM	0.9913	0.9640	0.8661	0.7568	0.6880	0.6297	0.5881	0.5666	0.5535	0.5350	0.5284
	RandomForest	0.9886	0.9870	0.9893	0.9861	0.9883	0.9858	0.9850	0.9825	0.9720	0.9798	0.9838
	XGBoost	0.9877	0.9919	0.9867	0.9945	0.9871	0.9873	0.9865	0.9859	0.9945	0.9910	0.9912
F-Score	LSTM	0.9975	0.9942	0.9932	0.9923	0.9903	0.9860	0.9866	0.9794	0.9703	0.9680	0.9593
	SVM	0.9966	0.9917	0.9807	0.9691	0.9621	0.9560	0.9519	0.9497	0.9481	0.9464	0.9458
	RandomForest	0.9965	0.9963	0.9959	0.9953	0.9955	0.9951	0.9949	0.9951	0.9938	0.9937	0.9944
	XGBoost	0.9963	0.9959	0.9959	0.9964	0.9957	0.9959	0.9957	0.9952	0.9965	0.9956	0.9958
G-Mean	LSTM	0.9889	0.9748	0.9787	0.9764	0.9636	0.9279	0.9356	0.8736	0.7803	0.7687	0.7119
	SVM	0.9913	0.9636	0.8569	0.7184	0.6150	0.5113	0.4213	0.3659	0.3291	0.2660	0.2392
	RandomForest	0.9886	0.9870	0.9893	0.9861	0.9882	0.9858	0.9849	0.9824	0.9717	0.9797	0.9838
	XGBoost	0.9877	0.9919	0.9866	0.9945	0.9871	0.9873	0.9864	0.9859	0.9945	0.9910	0.9912
Precision	LSTM	0.9976	0.9947	0.9960	0.9956	0.9927	0.9846	0.9863	0.9730	0.9551	0.9531	0.9437
	SVM	0.9985	0.9923	0.9692	0.9447	0.9300	0.9179	0.9094	0.9051	0.9024	0.8988	0.8974
	RandomForest	0.9978	0.9974	0.9982	0.9974	0.9980	0.9974	0.9973	0.9965	0.9940	0.9962	0.9971
	XGBoost	0.9976	0.9989	0.9974	0.9995	0.9976	0.9976	0.9974	0.9974	0.9994	0.9987	0.9987
Recall	LSTM	0.9975	0.9936	0.9905	0.9891	0.9880	0.9874	0.9869	0.9860	0.9860	0.9834	0.9754
	SVM	0.9947	0.9911	0.9924	0.9947	0.9965	0.9974	0.9985	0.9991	0.9985	0.9993	0.9996
	RandomForest	0.9953	0.9951	0.9936	0.9933	0.9931	0.9927	0.9925	0.9936	0.9936	0.9912	0.9918
	XGBoost	0.9949	0.9929	0.9944	0.9934	0.9938	0.9942	0.9940	0.9929	0.9936	0.9925	0.9929

Tabla A.47: Resultados Wafer con ADASYN.

Tam. Ventana		1	3	5	7	9	11	13	15	17	19	21
AUC	LSTM	0.9846	0.9777	0.9805	0.9758	0.9574	0.9217	0.8880	0.8652	0.8028	0.7423	0.7254
	SVM	0.9932	0.9664	0.8826	0.7651	0.6841	0.6096	0.5786	0.5619	0.5520	0.5366	0.5336
	RandomForest	0.9723	0.9854	0.9894	0.9871	0.9881	0.9871	0.9815	0.9820	0.9812	0.9871	0.9818
	XGBoost	0.9865	0.9907	0.9934	0.9863	0.9864	0.9868	0.9858	0.9866	0.9873	0.9864	0.9870
F-Score	LSTM	0.9958	0.9942	0.9937	0.9923	0.9891	0.9840	0.9788	0.9766	0.9708	0.9608	0.9600
	SVM	0.9965	0.9922	0.9826	0.9694	0.9615	0.9539	0.9511	0.9491	0.9479	0.9466	0.9463
	RandomForest	0.9941	0.9954	0.9960	0.9957	0.9953	0.9951	0.9941	0.9945	0.9938	0.9951	0.9943
	XGBoost	0.9957	0.9960	0.9960	0.9955	0.9956	0.9954	0.9951	0.9959	0.9959	0.9956	0.9956
G-Mean	LSTM	0.9845	0.9775	0.9804	0.9757	0.9569	0.9196	0.8830	0.8571	0.7815	0.7032	0.6784
	SVM	0.9932	0.9661	0.8758	0.7302	0.6087	0.4700	0.3975	0.3533	0.3245	0.2716	0.2603
	RandomForest	0.9720	0.9854	0.9894	0.9871	0.9881	0.9871	0.9814	0.9819	0.9812	0.9871	0.9817
	XGBoost	0.9864	0.9907	0.9934	0.9863	0.9863	0.9868	0.9858	0.9866	0.9873	0.9863	0.9870
Precision	LSTM	0.9969	0.9954	0.9963	0.9954	0.9912	0.9829	0.9752	0.9698	0.9553	0.9423	0.9385
	SVM	0.9991	0.9929	0.9731	0.9466	0.9292	0.9138	0.9075	0.9041	0.9021	0.8991	0.8985
	RandomForest	0.9940	0.9973	0.9982	0.9976	0.9980	0.9978	0.9965	0.9965	0.9965	0.9978	0.9965
	XGBoost	0.9974	0.9985	0.9993	0.9974	0.9974	0.9976	0.9974	0.9974	0.9976	0.9974	0.9976
Recall	LSTM	0.9947	0.9929	0.9911	0.9893	0.9871	0.9851	0.9823	0.9834	0.9867	0.9801	0.9825
	SVM	0.9940	0.9914	0.9924	0.9933	0.9962	0.9978	0.9991	0.9987	0.9985	0.9995	0.9995
	RandomForest	0.9942	0.9935	0.9938	0.9938	0.9927	0.9923	0.9916	0.9925	0.9911	0.9923	0.9922
	XGBoost	0.9940	0.9935	0.9927	0.9936	0.9938	0.9933	0.9927	0.9943	0.9942	0.9938	0.9936

Tabla A.48: Resultados Wafer con MWMOTE.

Tam. Ventana		1	3	5	7	9	11	13	15	17	19	21
AUC	LSTM	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
	SVM	0.9983	0.9989	1.0000	1.0000	0.9948	1.0000	1.0000	0.9948	0.9842	1.0000	1.0000
	RandomForest	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
	XGBoost	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
F-Score	LSTM	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
	SVM	0.9983	0.9989	1.0000	1.0000	0.9994	1.0000	1.0000	0.9994	0.9983	1.0000	1.0000
	RandomForest	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
	XGBoost	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
G-Mean	LSTM	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
	SVM	0.9983	0.9989	1.0000	1.0000	0.9994	1.0000	1.0000	0.9994	0.9983	1.0000	1.0000
	RandomForest	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
	XGBoost	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
Precision	LSTM	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
	SVM	1.0000	1.0000	1.0000	1.0000	0.9989	1.0000	1.0000	0.9989	0.9966	1.0000	1.0000
	RandomForest	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
	XGBoost	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
Recall	LSTM	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
	SVM	0.9967	0.9978	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
	RandomForest	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
	XGBoost	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000

Tabla A.49: Resultados Wafer con SMOTE+BORUTA.

Tam. Ventana		1	3	5	7	9	11	13	15	17	19	21
AUC	LSTM	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
	SVM	0.9983	0.9989	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
	RandomForest	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
	XGBoost	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
F-Score	LSTM	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
	SVM	0.9983	0.9989	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
	RandomForest	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
	XGBoost	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
G-Mean	LSTM	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
	SVM	0.9983	0.9989	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
	RandomForest	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
	XGBoost	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
Precision	LSTM	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
	SVM	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
	RandomForest	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
	XGBoost	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
Recall	LSTM	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
	SVM	0.9967	0.9978	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
	RandomForest	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
	XGBoost	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000

Tabla A.50: Resultados Wafer con ADASYN + BORUTA.

Tam. Ventana		1	3	5	7	9	11	13	15	17	19	21
AUC	LSTM	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
	SVM	0.9989	0.9989	1.0000	0.9948	1.0000	0.9948	0.9948	1.0000	1.0000	0.9895	0.9947
	RandomForest	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
	XGBoost	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
F-Score	LSTM	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
	SVM	0.9989	0.9989	1.0000	0.9994	1.0000	0.9994	0.9994	1.0000	1.0000	0.9989	0.9994
	RandomForest	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
	XGBoost	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
G-Mean	LSTM	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
	SVM	0.9989	0.9989	1.0000	0.9948	1.0000	0.9948	0.9948	1.0000	1.0000	0.9894	0.9947
	RandomForest	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
	XGBoost	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
Precision	LSTM	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
	SVM	1.0000	1.0000	1.0	0.9989	1.0000	0.9989	0.9989	1.0000	1.0000	0.9978	0.9989
	RandomForest	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
	XGBoost	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
Recall	LSTM	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
	SVM	0.9978	0.9978	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
	RandomForest	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
	XGBoost	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000

Tabla A.51: Resultados Wafer con MWMOTE + BORUTA.