

Fachrichtung Mathematik • Institut für Algebra • Prof. Baumann, Dr. Noack

Mathematische Methoden für Informatiker INF-120-2 Wintersemester 2019/20

14. Übungsblatt für die Woche 14.10. - 20.10.2019

Wiederholung: Beweistechniken, Äquivalenzrelationen

Hinweis: Hausaufgaben, die zur Abgabe bestimmt sind, sind durch A gekennzeichnet. Weitere Hausaufgaben dienen Ihnen zum selbstständigen Nacharbeiten des Stoffes.

- Ü79 (a) Beweisen Sie, dass für alle positiven reellen Zahlen a, b gilt: $a^2 < b^2 \Rightarrow a < b$. Finden Sie sowohl einen direkten als auch einen indirekten Beweis (bzw. Widerspruchsbeweis).
 - (b) Beweisen Sie, dass für alle $n \in \mathbb{N}$ gilt: $\sum_{k=0}^{n} {n \choose k} = 2^n$.
 - (c) Beweisen Sie folgende Aussage mit und ohne vollständige Induktion: Für alle $n\in\mathbb{N}$ ist n^5-n durch 5 teilbar.
- Ü80 (a) Zeigen Sie mit vollständiger Induktion, dass sich für jedes $n \in \mathbb{N}$ ein $2^n \times 2^n$ -Schachbrett so durch L-Stücke, die so groß sind wie drei Felder des Schachbretts, lückenlos und überlappungsfrei überdecken läßt, dass genau ein Feld des Schachbretts frei bleibt.
 - (b) Zeigen Sie mit vollständiger Induktion: Für alle $n \in \mathbb{N}, n \geq 2$ gibt es eine Primzahl, die n teilt.
- Ü81 (a) Beweisen Sie, dass die Relation $R = \{(a,b) \in \mathbb{Z} \times \mathbb{Z} \mid a \equiv b \pmod{5}\}$ eine Äquivalenzrelation auf \mathbb{Z} ist. Geben Sie die Äquivalenzklassen von R an.
 - (b) Auf der Menge $A = \{1, 2, 3, 4, 5, 6, 7, 8, 9\}$ ist folgende Relation gegeben:

$$R = \Delta_A \cup \{(1,9), (2,4), (2,5), (2,7), (3,6), (4,2), (4,5), (4,7), (5,2), (5,4), (5,7), (6,3), (7,2), (7,4), (7,5), (9,1)\}.$$

- (1) Zeichnen Sie den der Relation zugeordneten gerichteten Graphen G = (A, R).
- (2) Zeigen Sie, dass R eine Äquivalenzrelation ist. Geben Sie die Äquivalenzklassen an.

H82 **A**

Zeigen Sie, dass für jedes $n \in \mathbb{N}$ ein gleichseitiges Dreieck mit Seitenlänge 2^n derart durch trapezförmige Stücke, die so groß sind wie drei gleichseitige Dreiecke mit Seitenlänge 1 (siehe unten), lückenlos und überlappungsfrei überdecken läßt, dass einzig und allein ein Dreieck mit Seitenlänge 1 in einer Ecke frei bleibt.

Beispiel: Eine mögliche Überdeckung des Dreiecks mit Seitenlänge 4. Die untere rechte Ecke bleibt frei.

- H83 (a) Beweisen Sie die folgende Aussage durch einen indirekten Beweis: Für alle $a,b\in\mathbb{N},b\neq0$ gilt: Wenn $\frac{a-b}{a+b}$ ein unkürzbarer Bruch ist, dann ist auch $\frac{a}{b}$ unkürzbar.
 - (b) Es sei (G, \circ) eine Gruppe mit neutralem Element e. Zeigen Sie durch einen indirekten Beweis, dass für jedes Element $a \in G$ genau ein $b \in G$ existiert mit $a \circ b = b \circ a = e$.
 - (c) Beweisen Sie folgende Aussage mit und ohne vollständige Induktion: Für alle $n\in\mathbb{N}$ ist n^3+5n durch 6 teilbar.

H84 Zeigen Sie, dass auf der Menge aller Paare natürlicher Zahlen $A=\mathbb{N}^2$ durch

$$R = \{ ((a, b), (c, d)) \in \mathbb{N}^2 \times \mathbb{N}^2 \mid a + d = c + b \}$$

eine Äquivalenzrelation definiert ist. Durch die Äquivalenzklassen lassen sich die ganzen Zahlen definieren. Geben Sie die Äquivalenzklasse (0,1)/R konkret an. Welche Eigenschaft haben alle Paare $(a,b) \in \mathbb{N}^2$ gemeinsam, die in ein und derselben Äquivalenzklasse liegen?

Beweistechniken
· Vollst Induktion.
o direkter Beneisen
» Widerspruchsboweis
79)
a) Beh. $\forall a, b \in \mathbb{R}$, $a, b > 0$ $a^2 < b^{\dagger} \Rightarrow 0 < b$
1 direkter Berneis
Seion a, b CR, a, b>0 beliebig mit a2 c b
$\Rightarrow a \leq b \Rightarrow a \leq b$
2 Widerspruchsbeweis:
Angensmmen : es existient a, b ER, a, b, o mel
a ² Z B ² mit a 2 b Annahme: A 1 - 7B wahr
Beneis wie oben und am Inde 2 zu azb
3 oder Reneis der Kontraposition. Jabel, a. 670.
$\begin{array}{cccccccccccccccccccccccccccccccccccc$
Seien a. 6 ?0 mit a > 5 shw a > 6² > 6².
b) Reh: Unen: \(\frac{\lambda}{\k} \) = 2^
IA: $n=1$ $\sum_{k=0}^{n} \binom{n}{k} = \binom{1}{0} + \binom{1}{1} = 1 + 1 = 2 = 2^{1}$
$\frac{1}{1}$

IV: Is gette (k) =2" für nen
$\overline{LS}: \sum_{k=0}^{n+1} \binom{n+1}{k} = \sum_{k=0}^{n+1} \binom{n+1}{k} + \sum_{k=0}^{n+1} \binom{n+1}{k+1} + \binom{n+1}{n+1}$
$=1+\sum_{k=0}^{n-1}\binom{n}{k}+\sum_{k=0}^{n-1}\binom{n}{k-1}+1$
$=\sum_{k=0}^{n}\binom{n}{k}+\sum_{k=0}^{n}\binom{n}{k}=2\cdot 2^{n}=2^{n+1}$
oder direkter Beneis.
$\binom{n}{k} = \frac{n!}{k! (n-k)!}$
Anzahl aller K-elementigen Teilmengen einer n-elementigen Wenge.
n-elementigen Wenge.
Sei M Menge. IMI=n
$\frac{\sum_{k=0}^{n} \binom{n}{k} = P(M) }{=2^{n}}$
C) Boh. $\forall n \in \mathbb{N} : \leq n^2 - n = n (n^2 + 1)(n^2 - 1)$
$\frac{TA}{IS} = 0 \implies 510 = 0$ $\frac{TS}{IS} = \frac{1}{(n+1)^5} - \frac{1}{(n+1)} = \frac{1}{n^5} + \frac{1}{5} + \frac{1}{10} + \frac{1}{10$
-n-1
$= n^{5} - n + 5n^{4} + 10n^{3} + 10n^{3} + 5n$

	$= n^{3}-n+t($	$n^{4} + 2n^{3} + 2n^{4} + n$
+	351 =	
direkter Beners		
5/n5-n <	$=> n^{\varsigma} - n \equiv 0 \pmod{m}$	d 5)
$n \mid n^{5} - n$		
0 0		
1 13-1= 2 25-1= 3 35-1=	_0	
3 3 ⁵ -1=	= 0	
(4=1		
	/	
oder Kleiner	formel:	
$ \eta^{P} \equiv \eta $	(mod P)	
hier:	$J \equiv N \pmod{5}$	
80) Beh. YneN	. Jedes 2 x 2 n	Schachbrett lesst ein Feld auslegen
sich mit Bi-S	stricken bis auf	ein Feld auslegen
IA n=0 2°	x 2° Schachbrett	ע ע
IS Reh. Unen	Wenn das 2"x	.2" - Schachbrett

diese	Eigenschaft	t hat	_	/	7	
dam	Eigenschaft anch d	as 2^{h+1}	x2,4+1-9	Schachl	rett	
2 ⁿ⁺	1 x2 h+1 - 2	$\sum_{J} \times \sum_{V} =$				
	n o	(n	10			
	2 - 2 . 4		, i			
=	3 (27.3	27) · 3				
	- 3 2 n	h IV	1			
	5 2		\ ,			
	1		. > 11	_ 1		
b) Yhen IA: n=), N>,2	7 P P	inzehl	: P1	<u> </u>	
IA: N=	2 1/=1	- 1 1	N			
T./ \ /	/ A . >					
	EN. n22	21 :				
<u> </u>						
25.						
À qui valonzre	(ation					
81)				_		
a) R=	{ (a,b) \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	1/×2/ a:	b (mod	5) }		
, R;	st reflexiv	2 J A	ez a =	a (mo	d 5)	
					$(s) \Rightarrow b = a \pmod{n}$	lξ
o Ri	st transitis	∀ a.b, c	EZ: QE	s (mod)	s) und	

		,								
(2) 0	PV	eflexi	v, o den v: a	lenn		Ź	> Д			
٥	R 9	Symm	. den	^ Q	Rb	$\Rightarrow b$	Ra			
0	12 t	transitir	s: a	RL, 2	RC	=)	aja	2		