Power Budget

	Component	Min (mA)	Nom (mA)	Max (mA)	
	Loads	_	_	_	
	+5V power good LED (debug)	2	2	3	
	Teensy 4.1 consumption	100	100	100	
+5V					
Ŧ	Derived Voltage Rails				
	+/- 15V boost quiescent current	216.15	216.75	332.5125	
	+3V3 (LDO on Teensy)	2.85286	9.022	11.067	
	Totals	321.0029	327.772	446.5795	Mu
	Loads				
	MCP33151-10 ADC x 3 (DVio)	0.00036	1.2	1.5	
	MCP23008 IO Expansion x 3	0.006	3	3	
	Relay driver HIGH pull-down in driver	0.792	0.792	0.792	
	+3V3 power good LED (debug)	2	2	3	
	+1V8_A LDO quiescent draw	0.05	0.05	0.075	
+3V3					
÷					
	Derived Voltage Rails				
	+1V8_A (LDO from +3V3)	0.0045	1.98	2.7	
	Totals	2.85286	9.022	11.067	
	Loads				
	INA821 In-amp	0.6	0.6	0.87	
	RC4580 Op-amp x 7	42	42	63	
	DG408 8:1 mux x 4	0.04	0.2	0.3	
	DG409 dual 4:1 mux x 5	5	5	10	
+12V	+12V power good LED (debug)	2	2	3	
+1	+12V LDO quiescent draw	2	2	5	
	Derived Voltage Rails				
	+5V_A (precision shunt reference)				
	Totals	51.64	51.8	82.17	
	Loads				
	DG408 8:1 mux x 4	0.004	0.3	0.3	
	DG409 dual 4:1 mux x 5	2.5	2.5	2.5	
	-12V power good LED (debug)	2	2	3	
.12V					
Y	Other				
	Other	6	6	6.5	
	-12V inverting converter quiescent draw	0	О	0.5	
	Totals	10.504	10.8	12.3	
		10.504	10.0	12.3	
	Loads				
	MCP33151-10 ADC x 3 (VREF)	0.00012	0.66	0.87	
⋖.		1.10	1.20		
کِّ	+5V_A power good LED (debug)	1.10	1.20	1.50	
¥					
	Totals	1.10012	1.86	2.37	
		2.10012	1.00	2.37	
	Loads				
٩_	MCP33151-10 ADC x 3 (AVDD)	0.0045	1.98	2.7	
+108		0.0043	1.30	٤٠٠/	
Ŧ	Totals	0.0045	1.98	2.7	
		2.00.13			

Summary			
Rail	Min (mA)	Nom (mA)	Max (mA)
+5V	321.003	327.772	446.580
+3V3	2.853	9.022	11.067
+12V	51.640	51.800	82.170
-12V	10.504	10.800	12.300
+5V_A	1.100	1.860	2.370
+1V8_A	0.005	1.980	2.700

Must stay below 500mA to respect USB 2.0 spec!

Digital Input Protection

Parameter	Value Units	Comments
Maximum design input voltage	27 V	
Minimum design input voltage	-27 V	
Maximum design microcontroller pin source current	15 mA	
Maximum design microcontroller pin sink current	15 mA	
Microcontroller pin source/sink max current	25 mA	
Microcontroller pin max voltage	4 V	FT pins can take up to 3.3+4 = 7.4
Microcontroller pin min voltage	-0.3 V	All pins
External protection diode max current	125 mA	BAT54S rated for 200mA abs max
External protection diode forward voltage	0.25 V	
Nominal rated input/output voltage high	3.3 V	
Nominal rated input/output voltage low	0 V	
Source: required R1 + R2	220 Ohm	Assuming pin outputs 3.3V, short to GND
Sink: required R1 + R2	220 Ohm	

Chosen R1	470 Ohm
Chosen R2	10 Ohm
Resultant max input voltage	62.3 V
Resultant min input voltage	-59 V
Resultant max source/sink current	6.875 mA
R1 max power dissipation	7.34375 W
Current at which Pdiss of R1 is 0.5W	32.616 mA
Input voltage at which Pdiss of R1 is 0.5W	18.880 V
Input voltage at which Pdiss of R1 is 0.5W	-15.5797 V

Note: not accounting for variation of diode forward voltage as function of diode current

According to AN4899 from STMicro, cannot rely on internal protection diodes which may/may not exist.

Will proceed with design as if they do not exist.

Teensy 4.0/4.1 pins are all 3.3v only without overvoltage protection.

Note: The parasitic diode in the analog domain is connected to V_{DDA} and cannot be used as a protection diode.

The voltage level called V_{DD_FT} in some datasheets and reference manuals is inside the ESD protection block.

When the analog option is selected (by enabling analog peripheral on the given pin), the FT I/O is not five-volt tolerant anymore since the pin is supplied with $V_{\rm DDA}$.

ADC Resolution

Parameter	Value	Units	Comments
Minimum sensor output voltage	0	mV	Differential output
Maximum sensor output voltage	100	mV	Differential output
Sensor resolution	0.05	mV/PSI	Voltage-output pressure transducer is 0.05mV/PSI
Signal conditioning gain	50	V/V	max gain to keep output voltage within ADC Vref
Minimum ADC sampling voltage	0	mV	
Maximum ADC sampling voltage	5000	mV	
ADC resolution required	2.5	mV/LSB	to resolve single PSI
ADC reference voltage	5	V	
ADC effective number of bits	12.8		
ADC resolution		mV/LSB	
PSIs resolvable	0.2804	•	
N resolvable	2.6966		
TV TCSOTVUSTC	2.0300		
Calculate ENOB			
ADC reference voltage	5	V	
ADC SINAD	80.4	dB	MCP33151 14-bit
ADC effective number of bits (ENOB)	13.063	bits	
ADC resolution	0.5842	mV/LSB	
Calculate ENOB			
ADC reference voltage	_	V	
ADC SINAD	86.9		MCP33131 16-bit
ADC effective number of bits (ENOB)	14.143		
ADC resolution	0.2764	mV/LSB	

Options

- MCP33151-10-E/MS 14-bit SAR 1Msps SPI single-ended - MCP33131-10-E/MS 16-bit SRAR 1Msps SPI single-ended

Thrust Load Cell Requirements		
Minimum sensor output voltage	0 mV	Differential output
Maximum sensor output voltage	23.1308 mV	Differential output
Sensor resolution	0.0026 mV/N	
Sensor resolution	0.0255 mV/kgf	kilogram-force
Signal conditioning gain	100 V/V	
Minimum ADC sampling voltage	0 mV	
Maximum ADC sampling voltage	2313.075 mV	
ADC resolution required	0.26 mV/LSB	to resolve single N
ADC resolution required	2.550 mV/LSB	to resolve single kg
Max gain to work with 5V ADC	216.16 V/V	

ADC Tolerance Calculations

 Resolution
 VREF / 2^ENOB

 Vref
 5

 ENOB
 12

 V/LSB
 0.001220703 V/LSB

		Tolerance	Min	Nom	Max	Units	Compensation Resistor
	Non-inverting amplifier Rf	0.10%	0	0	0	Ohm	000.000E+0 Oh
G = 1 V/V	Non-inverting amplifier Rg	0.10%	4.985E+3	4.990E+3	4.995E+3	Ohm	
G = 1 V/V	Analog mux on-state resistance	-	40	100	125	Ohm	
	Gain = 1 + Rf/Rg	-	1.008	1.020	1.025	V/V	
	Non-inverting amplifier Rf	0.10%	45.255E+3	45.300E+3	45.345E+3	Ohm	4.495E+3 Oh
G = 10 V/V	Non-inverting amplifier Rg	0.10%	4.985E+3	4.990E+3	4.995E+3	Ohm	
G = 10 V/V	Analog mux on-state resistance	-	40	100	125	Ohm	
	Gain = 1 + Rf/Rg	-	10.068	10.098	10.121	V/V	
	Non-inverting amplifier Rf	0.10%	242.757E+3	243.000E+3	243.243E+3	Ohm	4.890E+3 Oh
G = 50 V/V	Non-inverting amplifier Rg	0.10%	4.985E+3	4.990E+3	4.995E+3	Ohm	
G = 30 V/V	Analog mux on-state resistance	-	40	100	125	Ohm	
	Gain = 1 + Rf/Rg	-	49.705	49.717	49.820	V/V	<u> </u>
	Non-inverting amplifier Rf	0.10%	498.501E+3	499.000E+3	499.499E+3	Ohm	4.941E+3 Oh
G = 100 V/V	Non-inverting amplifier Rg	0.10%	4.985E+3	4.990E+3	4.995E+3	Ohm	
G = 100 V/V	Analog mux on-state resistance	-	40	100	125	Ohm	
	Gain = 1 + Rf/Rg	-	100.808	101.020	101.225	V/V	

Analog mux: Vishay DG409

TPS65131 Dual-Rail Boost Calculations

Parameter	Value	Units	Comments
Positive Boost Converter			
R2 max value	200	kOhm	
Vpos	15	5 V	Positive boost output voltage value
Vref	1.213	3 V	Positive boost output reference voltage
R2 chosen value	47.5	kOhm	
Ideal R1	539.886645	kOhm	_
Chosen R1	536	kOhm	٦
Actual Vpos	14.9007474	l V	-

Inductor Selection (Vpos)		
Vin	5 V	
Vpos rail current requirement	0.08 A	power budget shows 70mA, I added safety margin
Peak inductor current I_L-P	0.375 A	
Inductor current ripple	0.075 A	
Converter switching frequency	1.25 MHz	
L1 value	35.5555556 uH	datasheet recommends between 3.3uH to 6.8uH
		Go with 4.7uH for now, check performance once
		sample is received. May tune inductor value
Output Capacitors		after receiving the boards.
Max allowed ripple (Delta Vpos)	0.005 V	after receiving the boards.
Minimum output capacitance (C4)	8.5333 uF	
ESR of C4	0.01 Ohm	_
Ripple due to ESR	0.0008 V	

Inductor Selection (Vpos)		
Vin	5 V	
Vpos rail current requirement	0.08 A	power budget shows 70mA, I added safety margin
Peak inductor current I_L-P	0.375 A	process and a state of the stat
Inductor current ripple	0.075 A	
Converter switching frequency	1.25 MHz	
L1 value	35.5555556 uH	datasheet recommends between 3.3uH to 6.8uH
		Consider A Zerla for a service basely a seferance and
		Go with 4.7uH for now, check performance once sample is received. May tune inductor value
Output Capacitors		after receiving the boards.
Max allowed ripple (Delta Vpos)	0.005 V	
Minimum output capacitance (C4)	8.5333 uF	
ESR of C4	0.01 Ohm	
Ripple due to ESR	0.0008 V	
Feedforward Capacitor		
C9 value	12.69F-12 F	
Chosen C9 value	12.09E-12 F	
Chosen C3 value	13 pr	

Inductor Selection (Vneg)		
Vin	5 V	
Vneg rail current requirement	0.01 A	power budget shows 5mA, I added safety margin
Peak inductor current I_L-P	0.0625 A	
Inductor current ripple	0.0125 A	
Converter switching frequency	1.25 MHz	
L2 value	240 uH	datasheet recommends between 3.3uH to 6.8uH

Output Capacitors	
Max allowed ripple (Delta Vneg)	0.005 V
Minimum output capacitance (C5)	1.2 uF
ESR of C5	0.01 Ohm
Ripple due to ESR	0.0001 V

Feedforward Capacitor		
C10 value	13.02E-12	F
Chosen C10 value	13	pF

Power Rail Tolerance Calculations

Parameter	Tolerance (%)	Min	Nom	Max	Units	Comments
+15V boost						
R1	1%	530.64	536	541.36	kOhm	
R2	1%	47.025	47.5	47.975	kOhm	
Vref	-	1.2	1.213	1.225	V	_
Output voltage	-	14.47291	14.90075	15.32741	V	
-15V inverting boost						
R3	1%	570.24	576	581.76	kOhm	
R4	1%	47.025	47.5	47.975	kOhm	
Vref	-	1.2	1.213	1.225	V	_
Output voltage	-	-15.1548	-14.7092	-14.2634	V	
+12V LDO						
Dropout	-	0.7	1	1.2	V	
Minimum input voltage required		12.7	13	13.2	V	satisfied
Output voltage accuracy		-5%	0%	5%		
Output voltage		11.4	12	12.6	V]
-12V LDO						
Dropout	-	1.7	1.7	1.7	V	
Minimum input voltage required		-13.7	-13.7	-13.7	V	satisfied
Output voltage		-11.4	-12	-12.6	V	provided in datasheet
+1V8_A LDO						
Dropout		0.35	0.35	0.695	V	
Minimum input voltage required		2.15	2.15	2.495	V	satisfied
Output voltage accuracy	-	-1.50%	0%	1.50%		_
Output voltage		1.773	1.8	1.827	V]

5V_A Precision Reference Biasing

Parameter	Tolerance	Min	Nom	Max	Units	Comments
ADC VREF current (load)	-	0.00012	0.66	0.87	mA	
Shunt reference bias current	-	1	1	1	mA	Min. 60uA. Cannot exceed 15mA.
Total current through Rbias	-	1.00012	1.66	1.87	mA	
Supply voltage (input to shunt)	-	11.9	12	12.1	V	100mV of ripple is a lot
Shunt reference output voltage	-	4.995	5	5.005	V	
Vin - Vshunt_out		6.895	7	7.105	V	
Rbias		3.69	4.22	7.10	kOhm	
Rbias calculated from Eqn 3	-		4.22		kOhm	verifies my nominal calculation above
Chosen resistor value	19	4.18	4.22	4.26	kOhm	_
Resultant bias current		0.748	0.999	1.701	mA	Meets requirements!

APPLICATIONS INFORMATION

The ADR5040/ADR5041/ADR5043/ADR5044/ADR5045 are a series of precision shunt voltage references. They are designed to operate without an external capacitor between the positive and negative terminals. If a bypass capacitor is used to filter the supply, the references remain stable.

For a stable voltage, all shunt voltage references require an external bias resistor ($R_{\rm BLAS}$) between the supply voltage and the reference (see Figure 19). The $R_{\rm BLAS}$ sets the current that flows through the load ($I_{\rm L}$) and the reference ($I_{\rm IN}$). Because the load and the supply voltage can vary, the $R_{\rm BLAS}$ needs to be chosen based on the following considerations:

- R_{BIAS} must be small enough to supply the minimum I_{IN} current to the ADR5040/ADR5041/ADR5043/ADR5044/ADR5045, even when the supply voltage is at its minimum value and the load current is at its maximum value.
- RBIAS must be large enough so that I_{IN} does not exceed 15 mA
 when the supply voltage is at its maximum value and the
 load current is at its minimum value.

Given these conditions, $R_{\rm BIAS}$ is determined by the supply voltage (Vs), the ADR5040/ADR5041/ADR5043/ADR5044/ADR5045 load and operating current (I $_{\rm L}$ and I $_{\rm IN}$), and the ADR5040/ADR5041/ADR5043/ADR5044/ADR5045 output voltage (Vout).

$$R_{BIAS} = \frac{V_S - V_{OUT}}{I_L + I_{IN}} \tag{3}$$

ADC SPI Bandwidth

Parameter	Value Units	Comments	Calculations are estimation for the MCP33151-10
ADC data bits	16 bits	Sent in groups of 8 bits	
Dead time between 8-bit bursts	5 bits	number of equivalent clock cycles	
Dead time from CS low to start	5 bits		
Dead time from end to CS high	5 bits		
SPI clock frequency	100 MHz		
SPI clock period	10.0E-9 s		
Si i ciock period	10.02 3 3		
Time needed to read one sample	310.0E-9 s		
Max samples read per second	3.2E+6	So theoretically we can hit 1Msps if Teensy is fast enough	
Data throughput			
High-speed sample rate	56000 sps		
Number of high-speed channels	10 -		
Low-speed sample rate	100 sps		
Number of low-speed channels	20 -		
data bits per sample	16 bits		
overhead per sample	0 bits		
overnead per sample	O DIES		
data throughput	8.992 Mbit/s		
LabJack data throughput (max)			
Data bits per sample	24 bits		
overhead per sample	0 bits		
samples per second	100000 sps		
•	•		
data throughput	2.4 Mbit/s		

Mid-Project Report Progress

Section	Done?	Comments
Abstract	Yes	
List of Abbreviations	Yes	
Introduction	In Progress	
Background	No	
Requirements	Yes	
Design	Yes	
Results	Yes	
Plan for next semseter	Yes	
Impact on Society and Environment	No	
Conclusion	Yes	
A1-Perfboard	Yes	removed :)
A2-Eval board	In Progress	
A3-Design calculations	No	
References	In Progress	

High-Speed Analog Input Filtering

dB	V	
	0	1.000
	-3	0.708
	-6	0.501
	-10	0.316
	-20	0.100
	-30	0.032
	-40	0.010
	-50	0.003
	-60	0.001