Problem Statement

A real estate agent want help to predict the house price for regions in USA.He gave us the dataset to work on to use linear regression model.Create a model that helps him to estimate of what the house would sell for

Import libraries

```
In [1]: import numpy as np
   import pandas as pd
   import matplotlib.pyplot as plt
   import seaborn as sns

In [2]: # To import dataset
   df=pd.read_csv('18 world csv')
   df
```

Out[2]:

	Country	Density\n(P/Km2)	Abbreviation	Agricultural Land(%)	Land Area(Km2)	Forces size	Birth Rate	Calling Code
0	Afghanistan	60	AF	58.10%	652,230	323,000	32.49	93.0
1	A l bania	105	AL	43.10%	28,748	9,000	11.78	355.0
2	Algeria	18	DZ	17.40%	2,381,741	317,000	24.28	213.0
3	Andorra	164	AD	40.00%	468	NaN	7.20	376.0
4	Angola	26	AO	47.50%	1,246,700	117,000	40.73	244.0
190	Venezuela	32	VE	24.50%	912,050	343,000	17.88	58.0
191	Vietnam	314	VN	39.30%	331,210	522,000	16.75	84.0
192	Yemen	56	YE	44.60%	527,968	40,000	30.45	967.0
193	Zambia	25	ZM	32.10%	752,618	16,000	36.19	260.0
194	Zimbabwe	38	ZW	41.90%	390,757	51,000	30.68	263.0

195 rows × 35 columns

In [3]: # To display top 10 rows
df.head(10)

Out[3]:

	Country	Density\n(P/Km2)	Abbreviation	Agricultural Land(%)	Land Area(Km2)	Armed Forces size	Birth Rate	Calling Code	(
0	Afghanistan	60	AF	58.10%	652,230	323,000	32.49	93.0	
1	A l bania	105	AL	43.10%	28,748	9,000	11.78	355.0	
2	Algeria	18	DZ	17.40%	2,381,741	317,000	24.28	213.0	
3	Andorra	164	AD	40.00%	468	NaN	7.20	376.0	
4	Angola	26	AO	47.50%	1,246,700	117,000	40.73	244.0	
5	Antigua and Barbuda	223	AG	20.50%	443	0	15.33	1.0	
6	Argentina	17	AR	54.30%	2,780,400	105,000	17.02	54.0	
7	Armenia	104	AM	58.90%	29,743	49,000	13.99	374.0	
8	Australia	3	AU	48.20%	7,741,220	58,000	12.60	61.0	
9	Austria	109	AT	32.40%	83,871	21,000	9.70	43.0	
10	10 rows × 35 columns								

Data Cleaning and Pre-Processing

```
In [4]: df.info()
```

<class 'pandas.core.frame.DataFrame'>

RangeIndex: 195 entries, 0 to 194 Data columns (total 35 columns): Column Non-Null Count Dtype ---0 Country object 195 non-null Density 1 (P/Km2)195 non-null object Abbreviation 188 non-null object 2 3 Agricultural Land(%) 188 non-null object 4 Land Area(Km2) 194 non-null object 5 Armed Forces size object 171 non-null 6 Birth Rate 189 non-null float64 7 Calling Code float64 194 non-null 8 Capital/Major City 192 non-null object 9 Co2-Emissions object 188 non-null 10 CPI 178 non-null object 11 CPI Change (%) 179 non-null object 12 Currency-Code object 180 non-null 13 Fertility Rate float64 188 non-null 14 Forested Area (%) 188 non-null object 15 Gasoline Price 175 non-null object 16 GDP 193 non-null object 17 Gross primary education enrollment (%) 188 non-null object 18 Gross tertiary education enrollment (%) 183 non-null object 19 Infant mortality float64 189 non-null 20 Largest city 189 non-null object 21 Life expectancy 187 non-null float64 22 Maternal mortality ratio 181 non-null float64 23 Minimum wage 150 non-null object 24 Official language 194 non-null object 25 Out of pocket health expenditure 188 non-null object 26 Physicians per thousand 188 non-null float64 27 Population 194 non-null object 28 Population: Labor force participation (%) 176 non-null object 29 Tax revenue (%) 169 non-null object 30 Total tax rate 183 non-null object 31 Unemployment rate 176 non-null object 32 Urban population 190 non-null object 33 Latitude 194 non-null float64 34 Longitude 194 non-null float64 dtypes: float64(9), object(26) memory usage: 53.4+ KB

In [5]: df.describe()

Out[5]:

	Birth Rate	Calling Code	Fertility Rate	Infant mortality	Life expectancy	Maternal mortality ratio	Physicians per thousand	
count	189.000000	194.000000	188.000000	189.000000	187.000000	181.000000	188.000000	19
mean	20.214974	360.546392	2.698138	21.332804	72.279679	160.392265	1.839840	
std	9.945774	323.236419	1.282267	19.548058	7.483661	233.502024	1.684261	2
min	5.900000	1.000000	0.980000	1.400000	52.800000	2.000000	0.010000	-2
25%	11.300000	82.500000	1.705000	6.000000	67.000000	13.000000	0.332500	
50%	17.950000	255.500000	2.245000	14.000000	73.200000	53.000000	1.460000	•
75%	28.750000	506.750000	3.597500	32.700000	77.500000	186.000000	2.935000	2
max	46.080000	1876.000000	6.910000	84.500000	85.400000	1150.000000	8.420000	(

```
In [6]: df.columns
```

```
In [9]: | a = df.dropna()
        a.columns
Out[9]: Index(['Country', 'Density\n(P/Km2)', 'Abbreviation', 'Agricultural Land(
        %)',
                'Land Area(Km2)', 'Armed Forces size', 'Birth Rate', 'Calling Code',
               'Capital/Major City', 'Co2-Emissions', 'CPI', 'CPI Change (%)',
               'Currency-Code', 'Fertility Rate', 'Forested Area (%)',
                'Gasoline Price', 'GDP', 'Gross primary education enrollment (%)',
                'Gross tertiary education enrollment (%)', 'Infant mortality',
                'Largest city', 'Life expectancy', 'Maternal mortality ratio',
                'Minimum wage', 'Official language', 'Out of pocket health expenditur
        e',
               'Physicians per thousand', 'Population',
               'Population: Labor force participation (%)', 'Tax revenue (%)',
               'Total tax rate', 'Unemployment rate', 'Urban_population', 'Latitude',
               'Longitude'],
              dtype='object')
```

EDA and Visualization

Out[10]: <seaborn.axisgrid.PairGrid at 0x18807174a30>

In [11]: sns.distplot(a['Calling Code'])

C:\ProgramData\Anaconda3\lib\site-packages\seaborn\distributions.py:2557: Fut ureWarning: `distplot` is a deprecated function and will be removed in a futu re version. Please adapt your code to use either `displot` (a figure-level function with similar flexibility) or `histplot` (an axes-level function for hi stograms).

warnings.warn(msg, FutureWarning)

Out[11]: <AxesSubplot:xlabel='Calling Code', ylabel='Density'>


```
In [13]: sns.heatmap(a1.corr())
```

Out[13]: <AxesSubplot:>

To Train the Model - Model Building

We are going to train Linear Regression model; We need to split out data into two variables x and y where x is independent variable (input) and y is dependent on x(output). We could ignore address column as it is not required for our model.

To split my dataset into training and test data

Out[18]:

	Co-efficient
Birth Rate	4.544961e - 14
Calling Code	1.000000e+00
Fertility Rate	-3.031892e-13
Infant mortality	-5.384855e-15
Life expectancy	1.378741e-16
Maternal mortality ratio	6.061242e-16
Physicians per thousand	8.679063e-15
Latitude	5.509456e-16
Longitude	3.513600e-17

```
In [19]: prediction=lr.predict(x_test)
plt.scatter(y_test,prediction)
```

Out[19]: <matplotlib.collections.PathCollection at 0x18809355490>


```
In [20]: print(lr.score(x_test,y_test))
```

1.0

ACCURACY

```
In [21]: from sklearn.linear_model import Ridge,Lasso
In [22]: rr=Ridge(alpha=10)
    rr.fit(x_train,y_train)
    rr.score(x_test,y_test)
    rr.score(x_train,y_train)
Out[22]: 0.999999999988388
In [23]: rr.score(x_test,y_test)
Out[23]: 0.999999999988685
In [24]: la=Lasso(alpha=10)
    la.fit(x_train,y_train)
Out[24]: Lasso(alpha=10)
In [25]: la.score(x_test,y_test)
Out[25]: 0.9999999938780108
In []:
```