Machine Learning

Unsupervised Generative Adversarial Networks (GAN)

Instructor: Prof. Yi Fang yfang@nyu.edu

Python tutorial: http://learnpython.org/

TensorFlow tutorial: https://www.tensorflow.org/tutorials/

PyTorch tutorial: https://pytorch.org/tutorials/

Acknowledge: The slides are partially referred to the online materials by Taegyun Joen, https://www.slideshare.net/TaegyunJeon1/pr12-you-only-look-once-yolo-unified-realtime-object-detection and online YOLO paper and other materials (from ECS289g by Prof. Lee)

Unsupervised Conditional Generation

Transform an object from one domain to another without paired data (e.g. style transfer)

Unsupervised Conditional Generation

For texture or color change

Approach 2: Projection to Common Space

Larger change, only keep the semantics

Domain X

Input image belongs to domain Y or not

Domain Y

Domain X

Domain Y

scalar

Domain X

Become similar

Not what we want!

ignore input

Input image belongs to domain Y or not

Domain Y

Domain X

Domain Y

Domain X

Become similar to domain Y

Not what we want!

ignore input

The issue can be avoided by network design.

Simpler generator makes the input and output more closely related.

 D_Y scalar

Input image belongs to domain Y or not

[Tomer Galanti, et al. ICLR, 2018]

 D_Y scalar

Input image belongs to domain Y or not

Baseline of DTN [Yaniv Taigman, et al., ICLR, 2017]

as close as possible Cycle consistency $G_{X \to Y}$ $G_{Y \to X}$ Lack of information for reconstruction scalar D_{Y} Input image belongs to domain Y or not Domain Y

as close as possible

Cycle GAN – Silver Hair

 https://github.com/Aixile/c hainer-cyclegan

Cycle GAN – Silver Hair

 https://github.com/Aixile/c hainer-cyclegan

[Jun-Yan Zhu, et al., ICCV, 2017

For multiple domains, considering starGAN

[Yunjey Choi, arXiv, 2017]

Unsupervised Conditional Generation

Approach 1: Direct Transformation

For texture or color change

Larger change, only keep the semantics

<u>Target</u>

Training

Minimizing reconstruction error

Because we train two auto-encoders separately ...

The images with the same attribute may not project to the same position in the latent space.

Training

Sharing the parameters of encoders and decoders

Couple GAN[Ming-Yu Liu, et al., NIPS, 2016] UNIT[Ming-Yu Liu, et al., NIPS, 2017]

The domain discriminator forces the output of EN_X and EN_Y have the same distribution. [Guillaume Lample, et al., NIPS, 2017]

Cycle Consistency:

Used in ComboGAN [Asha Anoosheh, et al., arXiv, 017]

Semantic Consistency:

Used in DTN [Yaniv Taigman, et al., ICLR, 2017] and XGAN [Amélie Royer, et al., arXiv, 2017]

- Using the code:
 https://github.com/Hi-king/kawaii_creator
- It is not cycle GAN, Disco GAN

input

output domain

Voice Conversion

In the past

Speakers A and B are talking about completely different things.

Reference

- Jun-Yan Zhu, Taesung Park, Phillip Isola, Alexei A. Efros, Unpaired Image-to-Image Translation using Cycle-Consistent Adversarial Networks, ICCV, 2017
- Zili Yi, Hao Zhang, Ping Tan, Minglun Gong, DualGAN: Unsupervised Dual Learning for Image-to-Image Translation, ICCV, 2017
- Tomer Galanti, Lior Wolf, Sagie Benaim, The Role of Minimal Complexity Functions in Unsupervised Learning of Semantic Mappings, ICLR, 2018
- Yaniv Taigman, Adam Polyak, Lior Wolf, Unsupervised Cross-Domain Image Generation, ICLR, 2017
- Asha Anoosheh, Eirikur Agustsson, Radu Timofte, Luc Van Gool, ComboGAN: Unrestrained Scalability for Image Domain Translation, arXiv, 2017
- Amélie Royer, Konstantinos Bousmalis, Stephan Gouws, Fred Bertsch, Inbar Mosseri, Forrester Cole, Kevin Murphy, XGAN: Unsupervised Image-to-Image Translation for Many-to-Many Mappings, arXiv, 2017

Reference

- Guillaume Lample, Neil Zeghidour, Nicolas Usunier, Antoine Bordes, Ludovic Denoyer, Marc'Aurelio Ranzato, Fader Networks: Manipulating Images by Sliding Attributes, NIPS, 2017
- Taeksoo Kim, Moonsu Cha, Hyunsoo Kim, Jung Kwon Lee, Jiwon Kim, Learning to Discover Cross-Domain Relations with Generative Adversarial Networks, ICML, 2017
- Ming-Yu Liu, Oncel Tuzel, "Coupled Generative Adversarial Networks", NIPS, 2016
- Ming-Yu Liu, Thomas Breuel, Jan Kautz, Unsupervised Image-to-Image Translation Networks, NIPS, 2017
- Yunjey Choi, Minje Choi, Munyoung Kim, Jung-Woo Ha, Sunghun Kim, Jaegul Choo, StarGAN: Unified Generative Adversarial Networks for Multi-Domain Image-to-Image Translation, arXiv, 2017

References

- http://slazebni.cs.illinois.edu/spring17/
- https://cs.uwaterloo.ca/~mli/Deep-Learning-2017-Lecture7GAN.ppt