Deckblatt für die Abgabe der Übungsaufgaben IngMathC2

Name, Vorname:	Riegel, Laura
StudOn-Kennung:	iz09urik
Blatt-Nummer:	7
Übungsgruppen-Nr:	7
Die folgenden Aufgaben gebe ich zur Korrektur frei:	
A18 , A19 ,A20	

19.5/20*30=29

[A18] a)
$$f(x) = x^2 + x + \sqrt{x^2} + 1 + \frac{1}{\sqrt{x}} + \frac{1}{x} + \frac{1}{x^2}$$

 $f'(x) = 2x + 1 + \frac{1}{2\pi} - \frac{1}{2\pi^3} - \frac{1}{x^2} - \frac{22}{9x^3}$

b)
$$f(x) = (x^2 + \sqrt{2x^2})^4$$

 $f'(x) = 4(x^2 + \sqrt{2x^2}) \cdot (2x + \frac{1}{2\sqrt{2x^2}} \cdot 2) = 4(x^2 + \sqrt{2x^2})(2x + \frac{1}{\sqrt{2x^2}})$

c)
$$f(x) = xe^{x^2} \ln (2+3x) = x [(e^{(x^2)}) \cdot \ln (2+3x)]$$

 $f'(x) = e^{x^2} \cdot \ln (2+3x) + x \cdot [e^{x^2} \cdot \ln (2+3x)]' =$
 $= e^{x^2} \cdot \ln (2+3x) + x \cdot [(2xe^{x^2} \ln (2+3x) + (e^{x^2} \cdot \frac{1}{0+3x} \cdot 3)]$

d)
$$f(x) = 01(\cos (4x))$$

 $f'(x) = \frac{-1}{\sqrt{1-1x^2}} \cdot \frac{1}{24x} = \frac{-1}{2\sqrt{1-x^2}}$

e)
$$f(x) = \frac{\sin 2x}{\ln(x^2+1)}$$

 $f'(x) = \frac{\ln(x^2+1) \cdot \cos 2x \cdot 2 - \frac{1}{x^2+1} \cdot 2x \cdot \sin 2x}{\ln^2(x^2+1)}$

f)
$$f(x) = x^a = e^{a \ln x}$$

 $f'(x) = \frac{a}{x} e^{a \ln x} = \frac{a}{x} x^a$

g)
$$f(x) = x^{-x^2} = e^{-x^2 \ln x}$$

 $f'(x) = (-2x \ln x - x) x^{-x^2}$

h)
$$f(x) = \ln(x + \ln(2\ln x))$$

 $f'(x) = \frac{1}{x + \ln(2\ln x)} \cdot (1 + \frac{1}{2\ln x}) \cdot \frac{1}{x + \ln(2\ln x)} \cdot (1 + \frac{1}{x \ln x})$

a)
$$2.2 \frac{d}{dx} \cos x = -\sin x$$

$$\cos (x+h) - \cos(x) = \frac{\cos x + \cosh - \sin x \sinh - \cos x}{h}$$

$$= \cos x \cdot \frac{\cosh - 1}{h} - \sin(x) \frac{\sinh h}{h} \frac{h}{h} = -\sin x$$

b)
$$tanx = \frac{sinx}{cosx}$$
 $tan'x = ?$

$$tan^{1}x = \frac{\cos x \cdot \cos x - \sin x \cdot (-\sin x)}{\cos^{2}x} = 1 + \frac{\sin^{2}x}{\cos^{2}x} = 1 + \tan^{2}x$$

i) $tan^{1}x = \frac{\sin^{2}x}{\cos^{2}x} + 1 = \frac{1}{\cos^{2}x} + 1 = \frac{1}{\cos^{2}x}$

i)
$$\tan^{1} X = \frac{\sin^{2} x}{\cos^{2} x} + 1 = \frac{1 - \cos^{2} x}{\cos^{2} x} + 1 = \frac{1}{\cos^{2} x}$$

c) i)
$$aictan(x) = tan^{-1}(x)$$
 $(p')'(x) = \frac{1}{p'(x)}$
 $\Rightarrow aictan'(x) = \frac{1}{1 + tan^{2}(aidan(x))} = \frac{1}{1 + tan^{2}(aidan(x))}$

$$\tan^{11} x = \left[\tan x \left(1 + \tan^2 x \right) \right]' = \left(1 + \tan^2 x \right)^2 + \tan x \cdot \tan^{11} x$$

= $2 \left(1 + \tan^2 x \right)^2 + \tan x \cdot \left(2 \cdot \tan(x) \left(1 + \tan^2 x \right) \right)$

$$f(x) = \begin{cases} x^{2} & \sin \frac{1}{x^{2}}, & x > 0 \\ 0, & x = 0 \end{cases} \quad \text{full } x \in (0, \sigma^{2}) \end{cases}$$

$$o) \quad f'(x) = \begin{cases} x^{2} & \sin \frac{1}{x^{2}}, & x > 0 \\ 0, & x = 0 \end{cases} \quad \text{full } x \in (0, \sigma^{2}) \end{cases}$$

$$o) \quad f'(x) \quad \text{fix } x > 0 : \text{Produkting the minimal production of the standard of the stan$$

 $|(-2)q_n^{x-3}| \xrightarrow{n \to \infty} |(2) \cdot 0^{x-3}| = 0, \text{ for } x \in (3, \infty)$ = f'(0) $= f(0) \text{ for } x \in (3, \infty) \text{ ist } f'(0) \text{ steriog , old a constant sterior resonance general }$

d) $\int_{0}^{\pi}(x) dx < 0$: $\alpha \cdot (\alpha - 1) x^{\alpha - 2} \cdot \sin \frac{1}{x^{2}} + \alpha x^{\alpha - 4} \cdot \cos \frac{1}{x^{2}} \cdot \frac{(-2)}{x^{3}} + \alpha x^{\alpha - 4} \cdot \cos \frac{1}{x^{2}} \cdot \frac{(-2)}{x^{3}} + x^{\alpha} \cdot (-\sin \frac{1}{x^{2}}) \cdot \frac{(-2)}{x^{3}} + x^{\alpha} \cdot (-\cos \frac{1}{x^{2}}) \cdot \frac{(-2)}{x^{3}} + x^{\alpha} \cdot \frac{($

= Sin 1/2 (x(x1) xx-2 - 4xx-6) + (05 1/2 · xx-4 (-4x+6)