

<u>26a</u>	<u>27b</u>	<u>27b</u>	<u>27b</u>	<u>26c</u>
<u>27a</u>	<u>28</u>	<u>28</u>	<u>28</u>	<u>27c</u>
<u>27a</u>	<u>28</u>	<u>28</u>	<u>28</u>	<u>27c</u>
<u>26b</u>	<u>27d</u>	<u>27d</u>	<u>27d</u>	<u>26d</u>
na an anthro anthropic antificant	andie and Campanas organism as the condition and the	29		

FIG. 4

FIG. 7

FIG. 8

Growth of amorphous or polycrystalline sensor material

FORM A VERY LARGE AREA INTEGRATED CIRCUIT HAVING AT LEAST ONE ARRAY OF ELECTRONIC PROCESSING CIRCUITS EACH HAVING A RESPECTIVE SENSOR INPUT THAT IS ACCESSIBLE FROM A FIRST SURFACE OF THE INTEGRATED CIRCUIT

DEPOSIT AMORPHOUS OR POLYCRYSTALLINE
SENSOR MATERIAL ON THE FIRST SURFACE
OF THE WAFER SO AS TO FORM AN ARRAY OF
DIODES, EACH HAVING A FIRST ELECTRODE
WHICH IS IN OHMIC CONTACT WITH A
RESPECTIVE ONE OF THE SENSOR INPUTS
AND SUCH THAT THE EXPOSED SURFACE OF
THE SENSOR MATERIAL FORMS A COMMON
SECOND ELECTRODE OF OPPOSITE POLARITY
TO THE FIRST ELECTRODE TOWARDS WHICH
INCIDENT PHOTONS ARE DIRECTED

FIG. 12