MODALITATEA DE DESFĂȘURARE A TESTULUI DE LABORATOR LA DISCIPLINA "PROGRAMAREA ALGORITMILOR"

- Testul de laborator la disciplina "Programarea algoritmilor" se va desfășura în ziua de **08.01.2022**, între orele 9³⁰ și 12⁰⁰, astfel:
 - **09**³⁰ **10**⁰⁰: efectuarea prezenței studenților
 - **10**⁰⁰ **11**³⁰: desfășurarea testului
 - 11³⁰ 12⁰⁰: verificarea faptului că sursele trimise de către studenți au fost salvate pe platformă
- Testul se va desfășura pe platforma MS Teams, iar pe tot parcursul desfășurării lui studenții trebuie să fie conectați pe canalul dedicat cursului de "Programarea algoritmilor" corespunzător seriei lor.
- În momentul efectuării prezenței, fiecare student trebuie să aibă pornită camera video în MS Teams și să prezinte buletinul sau cartea de identitate. Dacă dorește să-și protejeze datele personale, studentul poate să acopere codul numeric personal și/sau adresa!
- În timpul desfășurării testului studenții pot să închidă camera video, dar trebuie să o deschidă dacă li se solicită acest lucru de către un cadru didactic!
- Testul va conține **3 subiecte**, iar un subiect poate să aibă mai multe cerințe.
- Rezolvarea unui subiect se va realiza într-un singur fișier sursă Python (.py), indiferent de numărul de cerințe, care va fi încărcat/atașat ca răspuns pentru subiectul respectiv.
- Numele fișierului sursă Python trebuie să respecte următorul șablon: grupa_nume_prenume_subiect.py. De exemplu, un student cu numele Popescu Ion Mihai din grupa 131 trebuie să denumească fișierul care conține rezolvarea primului subiect astfel: 131_Popescu_Ion_Mihai_1.py.
- La începutul fiecărui fișier sursă Python se vor scrie, sub forma unor comentarii, următoarele informații: numele și prenumele studentului, grupa sa și enunțul subiectului rezolvat în fișierul sursă respectiv. Dacă un student nu reușește să rezolve deloc un anumit subiect, totuși va trebui să încarce/atașeze un fișier sursă Python cu informațiile menționate anterior!
- Toate rezolvările (fișierele sursă Python) trimise de către studenți vor fi verificate din punct de vedere al similarității folosind un software specializat, iar eventualele fraude vor fi sancționate conform Regulamentului de etică și profesionalism al FMI (http://old.fmi.unibuc.ro/ro/pdf/2015/consiliu/Regulament etica FMI.pdf).

Subject 1

[4 p.] Fișierul text *text.in* conține pe prima linie un cuvânt w nevid format din litere mici ale alfabetului englez, iar pe următoarele linii un text în care cuvintele sunt despărțite prin spații și semnele de punctuație uzuale. Să se scrie în fișierul text *text. out* toate cuvintele din fișierul *text. in* care au un prefix comun nevid cu w sau mesajul "*Imposibil*" dacă în fișierul de intrare nu există nici un cuvânt cu proprietatea cerută. Cuvintele vor fi scrise în ordinea descrescătoare a lungimilor prefixelor maximale pe care le au cu cuvântul w, iar în cazul unor lungimi egale vor fi ordonate alfabetic. Fiecare cuvânt va fi scris o singură dată și nu se va face distincție între litere mici și litere mari.

Exemplu:

text.in	text.out
masa Mama s-a gandit sa puna pe masa mai multe feluri de mancare,	masa masinii mai
dar zgomotul masinii de spalat a vecinilor a deranjat-o pe mama.	<u>ma</u> ma <u>ma</u> ncare <u>m</u> ulte

În exemplul dat, am subliniat prefixele maximale comune pe care cuvintele din fișierul text.out le au cu cuvântul "masa".

Subjectul 2

- a) [0,5p] Fişierul "date.in" conține n>1 linii cu următoarea structură: pe linia i se găsesc n numere naturale nenule separate prin câte un spațiu. Să se scrie o funcție **citire** care să citească datele din fișier și să returneze matricea de dimensiuni $n \times n$ care conține numerele în ordinea din fișier.
- **b)** [1,5p] Să se scrie o funcție **modifica_matr** care primește ca parametri o matrice pătratică $n \times n$ și un număr variabil de parametri $x_1, x_2, \dots x_k$ cu valori cuprinse între 0 și n-1, reprezentând indicii unor linii/coloane. Funcția va modifica matricea primită ca parametru astfel:
 - adaugă o linie nouă la finalul matricei (după ultima linie existentă), în care fiecare element de pe coloana j va fi egal cu:
 - \triangleright -1, dacă indicele j nu se află printre parametrii $x_1, x_2, \dots x_k$ primiți de funcție sau
 - > suma elementelor de pe coloana j aflate strict deasupra diagonalei principale, dacă indicele j se află printre parametrii $x_1, x_2, \dots x_k$ primiți de funcție.
 - apoi adaugă (la matricea obținută după adăugarea liniei) o coloană nouă la începutul matricei (înainte de prima coloană existentă), în care fiecare element de pe linia i va fi egal cu:
 - \triangleright -1, dacă indicele i nu se află printre parametrii $x_1, x_2, \dots x_k$ primiți de funcție sau
 - **maximul** dintre elementele de pe linia i aflate pe diagonala secundară sau sub ea, dacă indicele i se află printre parametrii $x_1, x_2, \dots x_k$ primiți de funcție.
- c) [1p] Să se apeleze funcția de la b) pentru matricea obținută la a) și indicii corespunzători următoarelor linii/coloane: prima, a doua, ultima, una respectiv două din mijlocul matricei (în funcție dacă n este impar respectiv par). Matricea obținută să se afișeze pe ecran, fără paranteze și virgule, iar elementele de pe fiecare coloană să fie aliniate la dreapta ținând cont că numerele pot avea maxim 4 caractere (inclusiv semnul '-').

date.in	Afisare pe ecran							
1 2 3 4 5 6 7	7	1	2	3	4	5	6	7
2 8 2 3 1 5 4	5	2	8	2	3	1	5	4
3 1 4 2 6 3 3	-1	3	1	4	2	6	3	3
4715836	8	4	7	1	5	8	3	6
5 3 7 8 2 9 2	-1	5	3	7	8	2	9	2
6 9 1 7 4 2 8	-1	6	9	1	7	4	2	8
7.5.2.6.0.4.1	8	7	5	2	6	8	4	1
7 5 2 6 8 4 1	-1	0	2	-1	9	-1	-1	30

Explicații: După modificări, se va obține matricea:

7	1	2	3	4	5	6	7
5	2	8	2	3	1	5	4
-1	3	1	4	2	6	3	3
8	4	7	1	5	8	3	6
-1	5	3	7	8	2	9	2
-1	6	9	1	7	4	2	8
8	7	5	2	6	8	4	1
-1	0	2	-1	9	-1	-1	30

Subject 3

Se consideră o rețea în plan formată din puncte unite prin arce. Fiecare punct are coordonatele întregi, iar un arc are asociată o grosime (număr natural) și o culoare (un șir de caractere fără spații reprezentând numele culorii, de exemplu: roșu, verde, albastru). Un punct cu coordonatele x și y va fi notat (x,y). Se consideră fișierul text *arce.in* care conține informații despre o astfel de rețea, fiecare linie conținând informații despre un arc sub forma:

(x1,y1)-(x2,y2) grosime culoare

unde (x1,y1) este punctul din care începe arcul, (x2,y2) este punctul în care se termină arcul, **grosime** reprezintă grosimea arcului, iar **culoare** colorarea sa. Acest arc se va numi arc între punctele (x1,y1) și (x2,y2), vom numi (x1,y1) capătul inițial al arcului și (x2,y2) capătul final al arcului. Un exemplu de fișier de acest tip este următorul:

arce.in					
(1,2)-(1,3)					
(1,4)-(1,2)	5 albastru				
(1,3)-(2,6)	5 rosu				
(2,6)-(2,7)	10 albastru				
(2,7)-(3,8)					
(2,1)-(3,8)					
(3,8)-(1,2)	11 rosu				

- a) [2 p.] Să se memoreze datele din fișier într-o singură structură astfel încât să se răspundă eficient la cerințele de la punctele următoare.
- **b)** [1 p.] Scrieți o funcție modifica_arc care primește 5 parametri:
 - în primul parametru se transmite structura în care s-au memorat datele la cerința a)
 - următorii 2 parametri p1 și p2 sunt două tupluri cu două elemente reprezentând capătul inițial și final al unui arc
 - ultimii 2 parametri sunt un număr natural reprezentând grosimea arcului și un șir de caractere reprezentând culoarea arcului.

Dacă arcul există deja în rețea funcția va modifica informațiile asociate arcului (grosimea și culoarea), altfel funcția va adăuga acest arc la rețea (modificând structura trimisă ca parametru). Funcția va returna **numărul de arce care au capătul inițial în p1**. Să se apeleze funcția pentru a adăuga la rețea arcul de la (5,6) la (7,8) de grosime 5 si culoare verde.

c) [1 p.] Scrieţi o funcţie sterge_punct care primeşte 2 parametri: în primul parametru se transmite structura în care s-au memorat datele la cerinţa a), iar al doilea parametru este un tuplu cu 2 elemente reprezentând un punct din reţea. Funcţia va şterge din reţea punctul primit ca parametru (se vor şterge toate arcele care au acel punct ca şi capăt iniţial sau capăt final) şi va returna mulţimea arcelor din reţea. Să se apeleze funcţia pentru a şterge punctul (1,2) şi să se afişeze rezultatul returnat. După ştergere se vor afişa datele memorate în structură în acelaşi format în care s-au dat şi datele în fişier (nu contează ordinea în care se vor afişa arcele).

	ieșire					
Arce	ele rama	ase	dupa stergere:			
(1,	3)-(2,	6)	5 rosu			
(2,	6)-(2,	7)	10 albastru			
	7)-(3,					
			4 verde			
(5,	6)-(7,	8)	5 verde			