Unsupervised learning- you do not know the number of clusters or cluster membership

DBscan a density based algorithm, clusters are chosen by density

Parameters of Interest:

<u>eps (radius)</u> - The maximum distance between two samples for one to be considered in the neighborhood of the other. This is not a maximum bound on the distances of points within a cluster. This is the most important DBSCAN parameter to choose appropriately since it determines density (ie smaller eps means core points must have surrounding points closer in order to be a core point)

<u>min samples</u> - The minimum number of samples <u>within eps</u> of a point for that point to be considered a core point. This includes the point itself.

Time complexity

O(nlogn)

Problems

Vulnerable to overlapping clusters

Have to pick eps and min_samples

Is not guaranteed to produce the same result every run (it depends on which cluster the algorithm starts with)

choosing min_samples and eps sets a minimum density of points (this many points within a radius of eps). Other, less dense, clusters are missed.

Algorithm (first choose eps, min samples)

while (new points)

pick a new point

If there are at least min samples within eps distance of new point, it is a core point

Now all core points are classified

- 1. Randomly pick a non clustered core point (CPn)
- 2. Assign to a cluster
- 3. for every non assigned core point within eps of CPn
- 4. assign this core point to that Cpn's cluster
- 5. Add any non-core point within eps of any core point in the cluster, to the cluster
- 6. If any leftover, unassigned core points, go to step 1

Any remaining points are called outliers

HDBscan similar to DBscan with the addition of handling varying density clusters

Parameters of Interest:

<u>min</u> <u>cluster</u> <u>size:</u> minimum number of points needed to be considered a cluster <u>min</u> <u>samples:</u> same as DBscan, minimum number of neighbors to a core point. Make this high, then clusters are dense and more points in non-dense space are marked as outliers.

(note that eps is gone, which makes sense since different cluster densities will have varying eps. And if eps varies, we dont fix it as a hyperparameter)

Time complexity

O(nlogn)

Problems:

Not part of scikit-learn but performs like scikit learn estimators. min_samples parameter is somewhat unintuitive

Algorithm

Not applicable for this course