Task 1

Task 1: Build a logistic model to classify the images into malignant/benign, and write down your likelihood function, its gradient and Hessian matrix.

The variable "Diagnosis" is a binary response variable indicating if the image is coming from cancer tissue or benign cases (M = malignant, B = benign). In the following logistic regression model, the "Diagnosis" variable will be coded as 1 for malignant cases and 0 for benign cases.

Given n i.i.d. observations with p predictors, we consider a logistic regression model

$$P(Y_i = 1 \mid \mathbf{x}_i) = \frac{e^{\mathbf{x}_i^{\mathsf{T}}\boldsymbol{\beta}}}{1 + e^{\mathbf{x}_i^{\mathsf{T}}\boldsymbol{\beta}}}, \ i = 1, \dots, n$$
(1)

where $\boldsymbol{\beta} = (\beta_0, \beta_1, \dots, \beta_p)^{\top} \in \mathbb{R}^{p+1}$ is the parameter vector, $\mathbf{x}_i = (1, X_{i1}, \dots, X_{ip})^{\top}$ is the vector of predictors in the *i*-th observation, and $Y_i \in \{0,1\}$ is the binary response in the *i*-th observation. Let $\mathbf{y} = (Y_1, Y_2, \dots, Y_n)^{\top}$ denote the response vector, $\mathbf{X} = (\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_n)^{\top} \in \mathbb{R}^{n \times (p+1)}$ denote the design matrix. The observed likelihood of $\{(Y_1, \mathbf{x}_1), (Y_2, \mathbf{x}_2), \dots, (Y_n, \mathbf{x}_n)\}$ is

$$L(\boldsymbol{\beta}; \mathbf{y}, \mathbf{X}) = \prod_{i=1}^{n} \left[\left(\frac{e^{\mathbf{x}_i^{\top} \boldsymbol{\beta}}}{1 + e^{\mathbf{x}_i^{\top} \boldsymbol{\beta}}} \right)^{Y_i} \left(\frac{1}{1 + e^{\mathbf{x}_i^{\top} \boldsymbol{\beta}}} \right)^{1 - Y_i} \right].$$

Maximizing the likelihood is equivalent to maximizing the log-likelihood function:

$$f(\beta; \mathbf{y}, \mathbf{X}) = \sum_{i=1}^{n} \left[Y_i \mathbf{x}_i^{\mathsf{T}} \beta - \log \left(1 + e^{\mathbf{x}_i^{\mathsf{T}} \beta} \right) \right].$$
 (2)

The estimates of model parameters are

$$\widehat{\boldsymbol{\beta}} = \arg \max_{\boldsymbol{\beta}} \ f(\boldsymbol{\beta}; \mathbf{y}, \mathbf{X}),$$

and the optimization problem is

$$\max_{\beta} f(\beta; \mathbf{y}, \mathbf{X}). \tag{3}$$

Denote $p_i = P(Y_i = 1 \mid \mathbf{x}_i)$ as given in (1) and $\mathbf{p} = (p_1, p_2, \dots, p_n)^{\top}$. The gradient of f is

$$\nabla f(\boldsymbol{\beta}; \mathbf{y}, \mathbf{X}) = \mathbf{X}^{\top} (\mathbf{y} - \mathbf{p})$$

$$= \sum_{i=1}^{n} (Y_i - p_i) \mathbf{x}_i$$

$$= \begin{pmatrix} \sum_{i=1}^{n} (Y_i - p_i) \\ \sum_{i=1}^{n} (Y_i - p_i) X_{i1} \\ \vdots \\ \sum_{i=1}^{n} (Y_i - p_i) X_{ip} \end{pmatrix}.$$

Denote $w_i = p_i(1 - p_i) \in (0, 1)$ and $\mathbf{W} = \operatorname{diag}(w_1, \dots, w_n)$. The Hessian matrix of f is given by

$$\begin{split} \nabla^2 f(\boldsymbol{\beta}; \mathbf{y}, \mathbf{X}) &= -\mathbf{X}^{\top} \mathbf{W} \mathbf{X} \\ &= -\sum_{i=1}^n w_i \mathbf{x}_i \mathbf{x}_i^{\top} \\ &= - \begin{pmatrix} \sum_{i=1}^n w_i & \sum_{i=1}^n w_i X_{i1} & \cdots & \sum_{i=1}^n w_i X_{i1} \\ \sum_{i=1}^n w_i X_{i1} & \sum_{i=1}^n w_i X_{i1}^2 & \cdots & \sum_{i=1}^n w_i X_{i1} X_{ip} \\ &\vdots & \vdots & \ddots & \vdots \\ \sum_{i=1}^n w_i X_{ip} & \sum_{i=1}^n w_i X_{in} X_{i1} & \cdots & \sum_{i=1}^n w_i X_{ip}^2 \end{pmatrix}. \end{split}$$

Next, we show that the Hessian matrix $\nabla^2 f(\boldsymbol{\beta}; \mathbf{y}, \mathbf{X})$ is a negative-definite matrix if \mathbf{X} has full rank.

Proof. For any (p+1)-dimensional nonzero vector $\boldsymbol{\alpha}$, given that \mathbf{X} has full rank, $\mathbf{X}\boldsymbol{\alpha}$ is also a nonzero vector. Since \mathbf{W} is positive-definite, we have

$$\begin{split} \boldsymbol{\alpha}^{\top} \nabla^2 f(\boldsymbol{\beta}; \mathbf{y}, \mathbf{X}) \boldsymbol{\alpha} &= \boldsymbol{\alpha}^{\top} (-\mathbf{X}^{\top} \mathbf{W} \mathbf{X}) \boldsymbol{\alpha} \\ &= - (\mathbf{X} \boldsymbol{\alpha})^{\top} \mathbf{W} (\mathbf{X} \boldsymbol{\alpha}) \\ &< 0. \end{split}$$

Thus, $\nabla^2 f(\boldsymbol{\beta}; \mathbf{y}, \mathbf{X})$ is negative-definite.

Hence, the optimization problem (3) is a well-defined problem.