Departamento de Química

Introdução à Química-Física

Aula teórico-prática nº5

Conceitos importantes:

- calcular a variação de entropia padrão de uma reação química;
- estimar a variação de entropia do exterior devido a teansferências de energia
- calcular a variação de energia de Gibbs padrão de uma reação química;
- prever a temperatura mínima à qual uma reação endotérmica ocorre espontaneamente.

2ª lei da Termodinâmica, cálculo de Δtotal Sº e Δr Gº

1. O carbono pode reduzir o óxido de ferro, Fe₂O₃, a ferro, Fe, libertando dióxido de carbono segundo a reação

$$2 \text{ Fe}_2\text{O}_3 (s) + 3 \text{ C}(s) \rightarrow 4 \text{ Fe } (s) + 3 \text{ CO}_2(g)$$

Responda às seguintes questões com base nos dados que lhe são fornecidos: $\Delta_f H^0$ (CO₂,g) = - 393,5 kJ mol⁻¹; $\Delta_f H^0$ (Fe₂O₃,s) = - 824,2 kJ mol⁻¹; S_m^0 (Fe,s) = 27,3 J K⁻¹mol⁻¹; S_m^0 (CO₂,g) = 213,7 J K⁻¹mol⁻¹; S_m^0 (Fe₂O₃,s) = 87,4 J K⁻¹mol⁻¹; S_m^0 (C,s) = 5,7 J K⁻¹mol⁻¹.

- a) Qual a variação de entropia total quando ocorre a reação a 298 K? (Δtotal S = -1,01 kJ K⁻¹ mol⁻¹)
- b) Qual a variação de energia de Gibbs da reação nas condições padrão? A 298 K a reacção é espontânea? Justifique. ($\Delta_r G^o = 301,4 \text{ kJ mol}^{-1}$)
- c) A que temperatura será possível produzir ferro através desta reação, nas condições padrão? (T > 838
 K)
- d) Determine a pressão de CO_2 no equilíbrio a 1000K e diga qual a quantidade mínima de carbono que terá de oxidar para atingir esse equilíbrio num volume de 5 dm³. ($p_{CO_2} = 37,6$ bar; $n_C = 2,27$ mol)
- 4. A pressão de equilíbrio do NH_3 na presença de $CaCl_2.NH_3$ é 12.8 Torr a 400 K. A entalpia padrão da reação abaixo é 78 kJ mol $^{-1}$, no intervalo de temperaturas de 350 K a 470 K.

$$CaCl_2.NH_3(s) \Leftrightarrow CaCl_2(s) + NH_3(g)$$

- a) Determine a constante de equilíbrio K_p a 400 K.
- b) Determine $\Delta_r G^0$ e $\Delta_r S^0$.
- c) Determine uma expressão para calcular K_p em função da temperatura (válida na gama de temperaturas definida).
- 6. Considere a reação $N_2O_4(g) \Leftrightarrow 2 NO_2(g)$.
- a) Com base nos dados, indicados na tabela, calcule o valor da constante de equilíbrio, K_p , a 25 o C. (p_{total} equilíbrio = (p_{NO2}) equilíbrio + (p_{N2O4}) equilíbrio)

p _{NO2} início/ bar	p _{N2O4} início/ bar	p _{total} equilíbrio∕ bar
0	0.154 0.333	0.212 0.425

b) Com base nos dados da tabela abaixo e da alínea anterior, calcule $\Delta_r \mathcal{H}^0$ e $\Delta_r \mathcal{S}^0$. O sinal da variação de entropia está de acordo com as suas expectativas, explique a sua conclusão.

	Δ _f H ⁰ / kJ mol ⁻¹
N ₂ O ₄ (g)	+9.16
NO_2 (g)	+33.18

Nota: Assuma que $\Delta_r H^0$ e $\Delta_r S^0$ da reação não variam com a temperatura.

10. Considere a reacção $PCl_3(g) + Cl_2(g) \Leftrightarrow PCl_5(g)$. Com base nos dados de entalpia padrão e energia de Gibbs padrão indicados, preveja a que temperatura a energia de Gibbs padrão da reação se anula.

	Δ_{f} $H^{\mathrm{o}}/\mathrm{kJ}$ mol ⁻¹	Δ_f G°/kJ mol ⁻¹
PCl₃ (g)	-287	-267.8
Cl ₂ (g)		0
PCl ₅ (g)	-374.9	-305.0