Simple Multi-environment data analysis

1

Contents

Install and load packages

Data Preparation	1
Data Overview	2
Dataset Structure	2
Missing Values	3
Statistical Analysis	3
Perform ANOVA for each environment (RCBD Design)	3
Joint ANOVA for Multi-Environment Trial (RCBD Design)	8
LSD (Least Significant Difference) Test	9
Variance Components and Genetic Parameters from Multi-Environment Trial	11
Correlations between ENVIRONMENTS	13
Phenotypic (Based on observed averages)	13
Genetic (Based on adjusted genotypic effects)	14
Environmental (Based on non-genetic effects)	15
Environmental effects for each location	16
Install and load packages	
suppressMessages({ if (!require("readxl")) install.packages("readxl") if (!require("tidyverse")) install.packages("tidyverse") if (!require("ggpubr")) install.packages("ggpubr") if (!require("knitr")) install.packages("knitr") if (!require("kableExtra")) install.packages("kableExtra") if (!require("agricolae")) install.packages("agricolae") if (!require("broom")) install.packages("broom") if (!require("ggplot2")) install.packages("ggplot2") if (!require("metan")) install.packages("metan")	

```
if (!require("ggcorrplot")) install.packages("ggcorrplot")
 if (!require("corrplot")) install.packages("corrplot")
 if (!require("reshape2")) install.packages("reshape2")
 library(dplyr)
 library(readxl)
 library(tidyverse)
 library(ggpubr)
 library(knitr)
 library(kableExtra)
 library(tidyverse)
 library(agricolae)
 library(broom)
 library(ggplot2)
 library(metan)
 library(ggcorrplot)
 library(corrplot)
 library(reshape2)
})
```

Data Preparation

```
field_data <- read_excel("field_data.xlsx") %>%
mutate(
   Genotype = as.factor(Genotype),
   Environment = as.factor(Environment),
   Rep = as.factor(Rep)
)
```

Data Overview

Dataset Structure

```
visualize_data <- function(data) {
    # Start formatted output
    cat("\\begin{shaded}\n")
    cat("\\footnotesize\n")

# Dataset dimensions
cat("\\textbf{Dataset Dimensions:} ",
    nrow(data), " observations $\\times$ ", ncol(data), " variables\n\n")

# Data structure overview
cat("\\textbf{Data Structure:}\n")
cat("\\begin{verbatim}\n")
glimpse_out <- capture.output(dplyr::glimpse(data))
cat(paste(glimpse_out, collapse = "\n"))</pre>
```

```
cat("\\end{verbatim}\n")

# Variable types summary
cat("\n\\textbf{Variable Types:}\n")
cat("\\begin{verbatim}\n")
var_types <- tibble::tibble(
   Variable = names(data),
   Type = sapply(data, class),
   `Unique Values` = sapply(data, function(x) length(unique(x))),
   `Missing Values` = sapply(data, function(x) sum(is.na(x)))
)
print(var_types)
cat("\\end{verbatim}\n")

# End formatted output
cat("\\end{shaded}\n")
}

# Usage:
visualize_data(field_data)</pre>
```

```
Dataset Dimensions: 900 observations \times 4 variables
Data Structure:
Rows: 900
Columns: 4
$ Environment <fct> E1, E1, E1, E2, E2, E2, E3, E3, E3, E4, E4, E4, E5, E5, E5~
$ Rep
          <fct> 1, 2, 3, 1, 2, 3, 1, 2, 3, 1, 2, 3, 1, 2, 3, 1, 2, 3, 1, 2~
$ Yield
          <dbl> 7.721363, 8.098298, 8.735440, 10.665111, 10.135101, 10.532 \sim
Variable Types:
\# A tibble: 4 x 4
 Variable Type `Unique Values` `Missing Values`
 <chr>
           <chr>
                        <int>
                                     <int>
1 Genotype factor
                         20
                                     0
2 Environment factor
                         15
                                      0
                         3
                                    0
3 Rep
          factor
                        900
                                     0
4 Yield
          numeric
```

Missing Values

```
cat("Missing values:")
```

Missing values:

```
colSums(is.na(field_data))
```

Genotype Environment Rep Yield 0 $0\ 0\ 0$

Statistical Analysis

Perform ANOVA for each environment (RCBD Design)

```
anova rcbd pro <- function(data) {
 environments <- unique(data$Environment)
 # Create a list to store all ANOVA results
 anova results <- list()
 for(env in environments) {
   # Filter data for current environment
   env_data <- data %>% filter(Environment == env)
   # Fit ANOVA model
   model <- aov(Yield ~ Genotype + Rep, data = env data)
   # Extract and format results
   anova_table <- broom::tidy(model) %>%
    filter(term != "Residuals") %>%
    transmute(
      Source = case\_when(
       term == "Genotype" ~ "Genotype",
       term == "Rep" \sim "Block",
       \overline{\text{TRUE}} \sim \text{term}
      ),
      DF = df
      \operatorname{Sum} \operatorname{Sq} = \operatorname{round}(\operatorname{sumsq}, 2),
      Mean Sq = round(meansq, 2),
      F = round(statistic, 2),
      \Pr(>F) = \text{ifelse}(p.\text{value} < 0.001, "<0.001", round(p.\text{value}, 3))
   # Store results
   anova results[[env]] <- anova table
   # Print formatted table
   cat("\n\\subsection*{Environment: ", env, "}\n")
   print(
    knitr::kable(
      anova table,
      caption = paste("ANOVA Table for", env, "(RCBD Design)"),
      digits = c(0, 0, 2, 2, 2, 3),
      align = c("l", "r", "r", "r", "r", "r"),
      booktabs = TRUE
    ) %>%
      kableExtra::kable_styling(
       latex_options = c("striped", "hold_position"),
       full\_width = FALSE,
       font size = 10
      ) %>%
      kableExtra::footnote(
```

Table 1: ANOVA Table for E1 (RCBD Design)

Source	DF	Sum Sq	Mean Sq	F value	Pr(>F)
Genotype	19	111.94	5.89	14.05	< 0.001
Block	2	0.23	0.12	0.28	0.758

Note: RCBD: Randomized Complete Block Design

Environment: E2

Table 2: ANOVA Table for E2 (RCBD Design)

Source	DF	Sum Sq	Mean Sq	F value	Pr(>F)
Genotype	19	114.95	6.05	25.63	< 0.001
Block	2	0.59	0.30	1.25	0.298

Note: RCBD: Randomized Complete Block Design

Environment: E3

Table 3: ANOVA Table for E3 (RCBD Design)

Source	DF	Sum Sq	Mean Sq	F value	Pr(>F)
Genotype	19	87.81	4.62	16.22	< 0.001
Block	2	0.51	0.26	0.90	0.414

Table 4: ANOVA Table for E4 (RCBD Design)

Source	DF	Sum Sq	Mean Sq	F value	Pr(>F)
Genotype	19	115.59	6.08	20.17	< 0.001
Block	2	0.90	0.45	1.49	0.239

Note: RCBD: Randomized Complete Block Design

Environment: E5

Table 5: ANOVA Table for E5 (RCBD Design)

Source	DF	Sum Sq	Mean Sq	F value	Pr(>F)
Genotype	19	106.97	5.63	18.34	< 0.001
Block	2	1.55	0.78	2.53	0.093

Note: RCBD: Randomized Complete Block Design

Environment: E6

Table 6: ANOVA Table for E6 (RCBD Design)

Source	DF	Sum Sq	Mean Sq	F value	Pr(>F)
Genotype	19	164.69	8.67	33.32	< 0.001
Block	2	0.87	0.44	1.67	0.201

Note: RCBD: Randomized Complete Block Design

Environment: E7

Table 7: ANOVA Table for E7 (RCBD Design)

Source	DF	Sum Sq	Mean Sq	F value	Pr(>F)
Genotype	19	121.92	6.42	22.75	< 0.001
Block	2	0.15	0.07	0.26	0.77

Table 8: ANOVA Table for E8 (RCBD Design)

Source	DF	Sum Sq	Mean Sq	F value	Pr(>F)
Genotype	19	108.82	5.73	24.20	< 0.001
Block	2	3.10	1.55	6.56	0.004

Note: RCBD: Randomized Complete Block Design

Environment: E9

Table 9: ANOVA Table for E9 (RCBD Design)

Source	DF	Sum Sq	Mean Sq	F value	Pr(>F)
Genotype	19	108.69	5.72	12.73	< 0.001
Block	2	1.74	0.87	1.94	0.158

Note: RCBD: Randomized Complete Block Design

Environment: E10

Table 10: ANOVA Table for E10 (RCBD Design)

Source	DF	Sum Sq	Mean Sq	F value	Pr(>F)
Genotype	19	122.73	6.46	28.84	< 0.001
Block	2	0.20	0.10	0.46	0.638

Note: RCBD: Randomized Complete Block Design

Environment: E11

Table 11: ANOVA Table for E11 (RCBD Design)

Source	DF	Sum Sq	Mean Sq	F value	Pr(>F)
Genotype	19	98.32	5.17	14.74	< 0.001
Block	2	0.58	0.29	0.83	0.446

Table 12: ANOVA Table for E12 (RCBD Design)

Source	DF	Sum Sq	Mean Sq	F value	Pr(>F)
Genotype	19	99.40	5.23	14.09	< 0.001
Block	2	1.27	0.64	1.72	0.193

Note: RCBD: Randomized Complete Block Design

Environment: E13

Table 13: ANOVA Table for E13 (RCBD Design)

Source	DF	Sum Sq	Mean Sq	F value	Pr(>F)
Genotype	19	79.23	4.17	13.57	< 0.001
Block	2	2.62	1.31	4.26	0.021

Note: RCBD: Randomized Complete Block Design

Environment: E14

Table 14: ANOVA Table for E14 (RCBD Design)

Source	DF	Sum Sq	Mean Sq	F value	Pr(>F)
Genotype	19	150.27	7.91	24.82	< 0.001
Block	2	0.40	0.20	0.63	0.536

Note: RCBD: Randomized Complete Block Design

Environment: E15

Table 15: ANOVA Table for E15 (RCBD Design)

Source	DF	Sum Sq	Mean Sq	F value	Pr(>F)
Genotype	19	130.96	6.89	20.75	< 0.001
Block	2	0.16	0.08	0.24	0.785

Joint ANOVA for Multi-Environment Trial (RCBD Design)

```
# Simple Joint ANOVA Analysis
model <- aov(Yield ~ Environment + Genotype + Environment:Rep + Environment:Genotype,
         data = field data
# Get ANOVA table
anova_table <- broom::tidy(model) %>%
 filter(term != "Residuals") %>%
 transmute(
  Source = case when(
    term == "Environment" ~ "Environment",
    term == "Genotype" \sim "Genotype",
    term == "Environment:Genotype" ~ "GxE Interaction",
    \mathbf{term} == \text{"Environment:Rep"} \sim \text{"Block}(\text{Environment}) \text{"},
    \overline{\text{TRUE}} \sim \text{term}
   ),
  DF = df
  SS = round(sumsq, 2),
  MS = round(meansq, 2),
  F = round(statistic, 2),
  p.value = ifelse(p.value < 0.001, "<0.001", round(p.value, 3))
# Print formatted table
knitr::kable(
 anova table,
 caption = "Joint ANOVA Results (RCBD Design)",
 digits = c(0, 0, 2, 2, 2, 3),
 align = c("l", "r", "r", "r", "r", "r")
```

Table 16: Joint ANOVA Results (RCBD Design)

DF	SS	MS	F	p.value
14	617.98	44.14	141.43	< 0.001
19	1302.50	68.55	219.64	< 0.001
30	14.89	0.50	1.59	0.025
266	419.81	1.58	5.06	< 0.001
	14 19 30	14 617.98 19 1302.50 30 14.89	14 617.98 44.14 19 1302.50 68.55 30 14.89 0.50	14 617.98 44.14 141.43 19 1302.50 68.55 219.64 30 14.89 0.50 1.59

LSD (Least Significant Difference) Test

```
console = FALSE)
# Prepare clean results
lsd results <- data.frame(
 Genotype = rownames(lsd\_test\$groups),
 Mean = lsd\_test\$groups[,1],
 Group = lsd\_test\$groups[,2]
) %>%
 arrange(desc(Mean))
# Professional table output
lsd_results \%>\%
 kable(
  caption = "Genotype Mean Comparison by LSD Test (=0.05)",
  col.names = c("Genotype", "Mean Yield", "Significance Group"),
  align = c("l", "r", "c"),
  digits = 2,
  booktabs = TRUE
 ) %>%
 kable_styling(
  latex_options = c("striped", "hold_position"),
  full\_width = FALSE,
  font\_size = 12
 ) %>%
 column\_spec(2, bold = TRUE) \%>\%
 footnote(
  general = "Means followed by the same letter are not significantly different (p > 0.05)",
  general_title = "Note:",
  footnote\_as\_chunk = TRUE
```

Table 17: Genotype Mean Comparison by LSD Test (= 0.05)

Genotype	Mean Yield	Significance Group
G16	12.62	a
G6	11.85	b
G3	11.76	b
G11	11.44	C
G17	10.60	d
G19	10.59	d
G7	10.42	de
G14	10.41	de
G13	10.38	def
G12	10.33	ef
G4	10.16	f
G5	$\boldsymbol{9.79}$	g
G2	$\boldsymbol{9.72}$	g

G10	9.44	h
G1	9.43	h
G15	9.32	h
G20	9.26	h
G9	9.25	h
G8	8.01	i
G18	7.52	j

Note: Means followed by the same letter are not significantly different (p > 0.05)

```
# Prepare data for plotting
plot_data <- lsd_results %>%
 mutate(Genotype = factor(Genotype, levels = Genotype[order(Mean)])) %>%
 arrange(Mean)
# Create the plot
ggplot(plot_data, aes(x = Genotype, y = Mean, fill = Group)) +
 geom_bar(stat = "identity", width = 0.7, color = "black") +
 geom text(aes(label = Group),
        position = position stack(vjust = 0.5),
        size = 3, color = "black") +
 scale_fill_viridis_d(option = "D", begin = 0.3, end = 0.9) +
 labs(title = "Genotype Yield Comparison (LSD Test)",
     subtitle = "Bars with the same letter are not significantly different (=0.05)",
     y = "Mean Yield",
     x = "Genotype",
     fill = "Significance \setminus nGroup") +
 theme_{\min}
 theme(
  axis.text.x = element\_text(angle = 45, hjust = 1, size = 10),
  axis.text.y = element\_text(size = 10),
  axis.title = element text(size = 12, face = "bold"),
  plot.title = element_text(size = 14, face = "bold", hjust = 0.5),
  plot.subtitle = element\_text(size = 10, hjust = 0.5),
  legend.position = "right",
  panel.grid.major.x = element blank()
 coord flip() # Horizontal bars for better readability
```

Genotype Yield Comparison (LSD Test)

Variance Components and Genetic Parameters from Multi-Environment Trial

```
# Calculate components
ms gen <- summary(model)[[1]]["Genotype", "Mean Sq"]
ms_gxe <- summary(model)[[1]]["Environment:Genotype", "Mean Sq"]
ms_res <- summary(model)[[1]]["Residuals", "Mean Sq"
n rep <- length(unique(field data$Rep))
n env <- length(unique(field data$Environment))
grand mean <- mean(field data$Yield)
var_g < -(ms_gen - ms_gxe)/(n_rep*n_env)
var_gxe \leftarrow (ms_gxe - ms_res)/n_rep
var_e < -ms_res/n_rep
var_p \leftarrow var_g + var_gxe/n_env + var_e/(n_rep*n_env)
h2 < - (var_g/var_p)*100
cv < - (sqrt(var_p)/grand_mean)*100
# Create table with ASCII characters only
results <- data.frame(
 Parameter = c("Genotypic variance (s2g)",
           "GxE interaction variance (s2gxe)",
           "Environmental variance (s2e)",
           "Phenotypic variance (s2p)",
```

Table 18: Genetic Variance Components

Variance Component	Estimate
Genotypic variance (s2g)	1.4883
GxE interaction variance (s2gxe)	0.4220
Environmental variance (s2e)	0.1040
Phenotypic variance (s2p)	1.5188
Broad-sense heritability (H2%)	97.9952
Phenotypic CV (%)	12.1849

Correlations between ENVIRONMENTS

Phenotypic (Based on observed averages)

```
# Phenotypic means matrix
pheno_matrix <- field_data %>%
    group_by(Genotype, Environment) %>%
    summarise(Yield_Mean = mean(Yield, na.rm = TRUE), .groups = 'drop') %>%
    pivot_wider(names_from = Environment, values_from = Yield_Mean) %>%
    column_to_rownames("Genotype")

# Correlation matrix with improved visualization
cor_pheno <- cor(pheno_matrix, use = "complete.obs")

ggcorrplot(cor_pheno,
    hc.order = TRUE,
    type = "lower",</pre>
```

```
lab_size = 4,
digits = 2,
tl.cex = 10,
colors = c("#6D9EC1", "white", "#E46726"),
outline.color = "gray",
ggtheme = theme_minimal()) +
theme(axis.text.x = element_text(angle = 45, hjust = 1, size = 10),
axis.text.y = element_text(size = 10),
legend.position = "right") +
labs(title = "Phenotypic Correlation Between Environments",
subtitle = "Pearson correlation coefficients of genotype means")
```


Genetic (Based on adjusted genotypic effects)

```
# Calculate genotype means per environment
env_means <- field_data %>%
    group_by(Genotype, Environment) %>%
    summarise(Mean_Yield = mean(Yield, na.rm = TRUE), .groups = 'drop')
# Convert to wide format
env_matrix <- env_means %>%
```

```
pivot wider(names from = Environment, values from = Mean Yield) %>%
 as.data.frame()
# Set genotypes as row names
rownames(env_matrix) <- env_matrix$Genotype
env_matrix <- env_matrix[-1] # Remove Genotype column
# Calculate correlation matrix
env cor matrix <- cor(env matrix, use = "complete.obs")
# Visualize correlations with identical formatting
corrplot(env_cor_matrix,
      method = "number", # Show correlation coefficients as numbers
                         \# Display only upper triangle
      type = "upper",
      tl.col = "black",
                       # Black text for environment names
      tl.cex = 0.8,
                      # Text label size
      number.cex = 0.7, # Correlation number size
      mar = c(0, 0, 0, 0), \# Margins (bottom, left, top, right)
                          # Hide diagonal (1's)
      diag = FALSE
```


Environmental (Based on non-genetic effects)

```
# Calculate genotype means per environment env_means <- field_data %>%
```

```
group by (Genotype, Environment) %>%
 summarise(Mean_Yield = mean(Yield, na.rm = TRUE), .groups = 'drop')
# Convert to wide format (genotypes as rows, environments as columns)
env_matrix <- env_means %>%
 pivot_wider(names_from = Environment, values_from = Mean_Yield) %>%
 as.data.frame()
# Set genotypes as row names and remove the column
rownames(env_matrix) <- env_matrix$Genotype
env_matrix <- env_matrix[-1] # Remove Genotype column
# Calculate correlation matrix
env_cor_matrix <- cor(env_matrix, use = "complete.obs")
# Visualize correlations
corrplot(env_cor_matrix,
      method = "number",
      type = "upper",
      tl.col = "black",
      tl.cex = 0.8,
      number.cex = 0.7)
```


Environmental effects for each location

```
# 1. Calculate environmental effects for each location
env_effects <- field_data %>%
group_by(Environment) %>%
summarise(Env_Effect = mean(Yield, na.rm = TRUE) - mean(field_data$Yield, na.rm = TRUE))

# 2. Create a bar plot instead of correlation plot (more appropriate for this data)
ggplot(env_effects, aes(x = reorder(Environment, Env_Effect), y = Env_Effect)) +
geom_bar(stat = "identity", fill = "steelblue") +
labs(title = "Environmental Effects by Location",
x = "Environment",
y = "Effect (Deviation from Grand Mean)") +
theme_minimal() +
theme(axis.text.x = element_text(angle = 45, hjust = 1)) +
geom_hline(yintercept = 0, linetype = "dashed", color = "red")
```

