РГПУ им. А.И. Герцена

К работе допущены	
Работа выполнена	
Отчёт сдан	
Отчет по лабораторной работе.	№ 4
«Дифракционная решетка»	
удифракционная решетка»	
	Работу выполнил <u>:</u>
<u>Войтенк</u>	о Игорь Александрович
Факу	льтет <u>ИВТ</u>
Груг	ma <u>2ИВТ(1)/1</u>

Санкт-Петербург

1. Цель работы: Ознакомиться с процессом сложения когерентных электромагнитных вол и его моделированием. Экспериментально исследовать закономерности взаимодействия световых волн с периодической структурой (дифракционной решеткой).

2. Основные результаты:

Бригада №4

$$\chi_1 = 430$$
, HM

d, MKM	10	13	16	18	20	23	26	28	30
1/d, 10 ⁵ m ⁻¹	0,100	0,077	0,062	0,056	0,050	0,043	0,038	0,036	0,033
ym1, MM	22	17	14	12	11	10	9	8	8
ym2, MM	43	34	27	24	22	19	17	16	15
ym3, MM	65	50	41	36	33	29	25	24	22

Экспериментальная зависимость положения трех первых главных максимумов от

$$\begin{split} F_1 &= \frac{\Delta ym}{m*\lambda*\Delta\frac{1}{d}} = \frac{14}{1*430*0,067} = 0,4859 \text{ M} \\ F_2 &= \frac{\Delta ym}{m*\lambda*\Delta\frac{1}{d}} = \frac{28}{2*430*0,067} = 0,4859 \text{ M} \\ F_3 &= \frac{\Delta ym}{m*\lambda*\Delta\frac{1}{d}} = \frac{43}{3*430*0,067} = 0,4975 \text{ M} \\ F_{cp} &= \frac{F1+F2+F3}{3} = 0,4898 \text{ M} \\ \Delta F_1 &= |F_1 - F_{cp}| = 0,0039 \text{ M} \\ \Delta F_2 &= |F_2 - F_{cp}| = 0,0039 \text{ M} \\ \Delta F_3 &= |F_3 - F_{cp}| = 0,0077 \text{ M} \end{split}$$

$$\Delta F_{cp} = \frac{\Delta F 1 + \Delta F 2 + \Delta F 3}{3} = 0,005 \text{ M}$$
 $E_F = \frac{\Delta F cp}{F cp} * 100\% = 1,1\%$
 $F = 0,4898 \pm 0,0052 \text{ M}$

$$\lambda_2 = 530$$
, HM

d, мкм	10	13	16	18	20	23	26	28	30
1/d, 10 ⁵ м ⁻¹	0,100	0,077	0,062	0,056	0,050	0,043	0,038	0,036	0,033
ym1, MM	27	21	17	15	14	12	11	10	9
y _{m2} , MM	54	41	34	30	27	24	21	19	18
ym3, MM	80	62	50	45	40	35	31	29	27

Экспериментальная зависимость положения трех первых главных максимумов от

$$\begin{split} F_1 &= \frac{\Delta ym}{m* \mathring{\lambda}* \Delta \frac{1}{d}} = \frac{18}{1*530*0,067} = 0,5069 \text{ M} \\ F_2 &= \frac{\Delta ym}{m* \mathring{\lambda}* \Delta \frac{1}{d}} = \frac{36}{2*530*0,067} = 0,5069 \text{ M} \\ F_3 &= \frac{\Delta ym}{m* \mathring{\lambda}* \Delta \frac{1}{d}} = \frac{53}{3*530*0,067} = 0,4975 \text{ M} \\ F_{cp} &= \frac{F1+F2+F3}{3} = 0,49 \text{ M} \\ \Delta F_1 &= |F_1 - F_{cp}| = 0,0131 \text{ M} \\ \Delta F_2 &= |F_2 - F_{cp}| = 0,0131 \text{ M} \\ \Delta F_3 &= |F_3 - F_{cp}| = 0,0037 \text{ M} \\ \Delta F_{cp} &= \frac{\Delta F1 + \Delta F2 + \Delta F3}{3} = 0,01 \text{ M} \end{split}$$

$$E_F = \frac{\Delta F cp}{F cp} * 100\% = 2,02\%$$

 $F = 0,4938 \pm 0,0100 \text{ m}$

$$\lambda_3 = 630$$
, HM

d, мкм	10	13	16	18	20	23	26	28	30
1/d, 10 ⁵ м ⁻¹	0,100	0,077	0,062	0,056	0,050	0,043	0,038	0,036	0,033
ym1, MM	32	25	20	18	16	14	13	12	11
ym2, MM	63	49	40	36	32	28	25	23	21
ym3, MM	95	73	60	53	48	42	37	34	32

Экспериментальная зависимость положения трех первых главных максимумов от

$$\begin{split} F_1 &= \frac{\Delta ym}{m* \lambda* \Delta \frac{1}{d}} = \frac{21}{1*630*0,067} = 0,4975 \text{ M} \\ F_2 &= \frac{\Delta ym}{m* \lambda* \Delta \frac{1}{d}} = \frac{42}{2*630*0,067} = 0,4975 \text{ M} \\ F_3 &= \frac{\Delta ym}{m* \lambda* \Delta \frac{1}{d}} = \frac{63}{3*630*0,067} = 0,4975 \text{ M} \\ F_{cp} &= \frac{F1 + F2 + F3}{3} = 0,4975 \text{ M} \\ \Delta F_1 &= |F_1 - F_{cp}| = 0 \text{ M} \\ \Delta F_2 &= |F_2 - F_{cp}| = 0 \text{ M} \\ \Delta F_3 &= |F_3 - F_{cp}| = 0 \text{ M} \end{split}$$

В качестве погрешности возьмем цену деления прибора:

$$C = 0.025$$

$$\Delta F_{cp} = \frac{\varDelta F1 + \varDelta F2 + \varDelta F3}{3} \; = 0 \; \text{m}$$

$$E_F = \frac{C}{F_{Cp}} * 100\% = 5,02\%$$

 $F = 0,4898 \pm 0,025 \text{ M}$

3. Вывод: В результате лабораторной работы было проведено экспериментальное исследование закономерностей взаимодействия световых волн с периодической структурой (дифракционной решеткой). На основе модели опыта были построены таблица со значениями, а также графики зависимости трех первых главных максимумов от обратного периода решетки. На графики были добавлены линии тренда, а также коэффициенты достоверности. Экспериментальное вычисление ширины щели, по заданной формуле, показало, что погрешность присутствует, но она не значительна.

```
Для \lambda=430 нм => F=0.4898\pm0.005 м ; E_F=1.1\% Для \lambda=530 нм => F=0.49\pm0.01 м ; E_F=2.02\% Для \lambda=630 нм => F=0.4898\pm0.025 м ; E_F=5.02\%
```