Figure 1(A)

G <i>GATC</i> GTCTCAGGTCAG <u>CGGAGGGA</u>	25
SL33	
<u>GGAGACTTA</u> TAGACCTATCCAGTCT	50
TCAAGGTGCTCCAGAAAGCAGGAGT	75
TGAAGACCTGGGTGTGAGGGACACA	100
TACATCCTAAAAGCACCACAGCAGA	125
GGAGGCCCAGGCAGTGCCAGGAGTC	150
AAGGTTCCCAGAAGACAAACCCCCT	175
AGGAAGACAGGCGACCTGTGAGGCC	200
<u>CTAGAGCACCACCTTAA</u> GAGAAGAA	225
SL34	
GAGCTGTAAGCCGGCCTTTGTCAGA	250
GCCATC ATG GGGGACAAGGATATGC	275
CTACTGCTGGGATGCCGAGTCTTCT	300
CCAGAGTTCCTCTGAGAGTCCTCAG	325
AGTTGTCCTGAGGGGGAGGACTCCC	350
AGTCTCCTCCAGATTCCCCAGAG	375
TTCTCCTGAGAGCGACGACACCCTG	400
TATCCTCTCCAGAGTCCTCAGAGTC	425
GTTCTGAGGGGGGGGACTCCTCG GA	450
TCCTCTCCAGAGACCTCCTGAGGGG	475
AAGGACTCCCAGTCTCCTCTCCAGA	500
TTCCCCAGAGTTCTCCTGAGGGCGA	525
CGACACCCAGTCTCCTCTCCAGAAT	550
TCTCAGAGTTCTCCTGAGGGGAAGG	575
ACTCCCTGTCTCCTCTAGAGATTTC	600
TCAGAGCCCTCCTGAGGGTGAGGAT	625
GTCCAGTCTCCTCTGCAGAATCCTG	650
CGAGTTCCTTCTTCTCCTCTGCTTT	675
ATTGAGTATTTTCCAGAGTTCCCCT	700

Figure 1(B)

GAGAGAACTCAGAGTACTTTTGAGG	725
GTTTTCCCCAGTCTCCTCTCCAGAT	750
TCCTGTGAGCTCCTCCTCCTCC	775
ACTTTATTGAGTCTTTTCCAGAGTT	800
CCCCTGAGAGAACTCAGAGTACTTT	825
TGAGGGTTTTCCCCAGTCTCTTCTC	850
CAGATTCCTATGACCTCCTCCTTCT	875
CCTCTACTTTATTGAGTATTTTCCA	900
GAGTTCTCCTGAGAGTGCTCAAAGT	925
ACTTTTGAGGGTTTTCCCCAGTCTC	950
CTCTCCAGATTCCTGGGAGCCCCTC	975
CTTCTCCTCCACTTTACTGAGTCTT	1000
TTCCAGAGTTCCCCTGAGAGAACTC	1025
ACAGTACTTTTGAGGGTTTTCCCCA	1050
GTCTCCTCTCCAGATTCCTATGACC	1075
TCCTCCTTCTCCTCTACTTTATTGA	1100
GTATTTTCCAGAGTTCTCCTGAGAG	1125
TGCTCAAAGTACTTTTGAGGGTTTT	1150
CCCCAGTCTCCTCTCCAGATTCCTG	1175
GGAGCCCCTCCTTCTCCTCCACTTT	1200
ACTGAGTCTTTTCCAGAGTTCCCCT	1225
GAGAGAACTCACAGTACTTTTGAGG	1250
GTTTTCCCCAGTCTCCTCCAGAT	1275
TCCTATGACCTCCTCCTCTCTCTCTCT	1300
ACTTTATTGAGTATTTTACAGAGTT	1325
CTCCTGAGAGTGCTCAAAGTGCTTT	1350
TGAGGGTTTTCCCCAGTCTCCTCTC	1375
CAGATTCCTGTGAGCTCCTCTTTCT	1400

Figure 1(C)

CCTACACTTTATTGAGTCTTTTCCA	1425
GAGTTCCCCTGAGAGAACTCAGAGT	1450
ACTTTTGAGGGTTTTCCCCAGTCTC	1475
CTCTCCAGATTCCTGTGAGCTCCTC	1500
CTCCTCCTCCACTTTATTGAGT	1525
CTTTTCCAGAGTTCCCCTGAGTGTA	1550
CTCAAAGTACTTTTGAGGGTTTTCC	1575
CCAGTCTCCTCCAGATTCCTCAG	1600
AGTCCTCCTGAAGGGGAGAATACCC	1625
ATTCTCCTCTCCAGATTGTTCCAAG	1650
TCTTCCTGAGTGGGAGGACTCCCTG	1675
TCTCCTCACTACTTTCCTCAGAGCC	1700
CTCCTCAGGGGGAGGACTCCCTATC	1725
TCCTCACTACTTTCCTCAGAGCCCT	1750
CCTCAGGGGGAGGACTCCCTGTCTC	1775
CTCACTACTTTCCTCAGAGCCCTCA	1800
GGGGGAGGACTCCCTGTCTCCTCAC	1825
TACTTTCCTCAGAGCCCTCCTCAGG	1850
GGGAGGACTCCATGTCTCCTCTA	1875
CTTTCCTCAGAGTCCTCTTCAGGGG	1900
GAGGAATTCCAGTCTTCTCTCCAGA	1925
GCCCTGTGAGCATCTGCTCCTC	1950
CACTCCATCCAGTCTTCCCCAGAGT	1975
TTCCCTGAGAGTTCTCAGAGTCCTC	2000
CTGAGGGGCCTGTCCAGTCTCCTCT	2025
CCATAGTCCTCAGAGCCCTCCTGAG	2050
GGGATGCACTCCCAATCTCCTCTCC	2075
AGAGTCCTGAGAGTGCTCCTGAGGG	2100

;;

Figure 1(D)

GGAGGATTCCCTGTCTCCTCCAA	2125
ATTCCTCAGAGTCCTCTTGAGGGAG	2150
AGGACTCCCTGTCTTCTCTCCATTT	2175
TCCTCAGAGTCCTCCTGAGTGGGAG	2200
GACTCCCTCTCTCCTCCACTTTC	2225
CTCAGTTTCCTCCTCAGGGGGAGGA	2250
CTTCCAGTCTTCTCTCCAGAGTCCT	2275
GTGAGTATCTGCTCCTCCACTT	2300
CTTTGAGTCTTCCCCAGAGTTTCCC	2325
TGAGAGTCCTCAGAGTCCTCCTGAG	2350
GGGCCTGCTCAGTCTCCTCCAGA	2375
GACCTGTCAGCTCCTTCTTCTCCTA	2400
CACTTTAGCGAGTCTTCTCCAAAGT	2425
TCCCATGAGAGTCCTCAGAGTCCTC	2450
CTGAGGGCCTGCCCAGTCTCCTCT	2475
CCAGAGTCCTGTGAGCTCCTTCCCC	2500
TCCTCCACTTCATCGAGTCTTTCCC	2525
AGAGTTCTCCTGTGAGCTCCTTCCC	2550
CTCCTCCACTTCATCGAGTCTTTCC	2575
AAGAGTTCCCCTGAGAGTCCTCTCC	2600
AGAGTCCTGTGATCTCCTTCTCCTC	2625
CTCCACTTCATTGAGCCCATTCAGT	2650
GAAGAGTCCAGCAGC <u>CCAGTAGATG</u>	2675
SL26	
<u>AATATACAAGTT</u> CCTCAGACACCTT	2700
GCTAGAGAGTGATTCCTTGACAGAC	2725
AGCGAGTCCTTGATAGAGAGCGAGC	2750
CCTTGTTCACTTATACACTGGATGA	2775
AAAGGTGGACGAGTTGGCGCGGTTT	2800

;

;;

Figure 1(E)

CTTCTCCTCAAATATC <u>AAGTGAAGC</u>	2825
SL27	
<u>AGCCTATCA</u> CAAAGGCAGAGATGCT	2850
GACGAATGTCATCAGCAGGTACACG	2875
GGCTACTTTCCTGT <i>GATC</i> TTCAGGA	2900
AAGCCCGTGAGTTCATAGAGATACT	2925
TTTTGGCATTTCCCTGAGAGAAGTG	2950
GACCCTGATGACTCCTATGTCTTTG	2975
TAAACACATTAGACCTCACCTCTGA	3000
GGGGTGTCTGAGTGATGAGCAGGGC	3025
ATGTCCCAGAACCGCCTCCTGATTC	3050
TTATTCTGAGTATCATCTTCATAAA	3075
GGGCACCTATGCCTCTGAGGAGGTC	3100
ATCTGGGATGTGCTGAGTGGAATAG	3125
GGGTGCGTGCTGGGAGGAGCACTT	3150
TGCCTTTGGGGAGCCCAGGGAGCTC	3175
CTCACTAAAGTTTGGGTGCAGGAAC	3200
ATTACCTAGAGTACCGGGAGGTGCC	3225
CAACTCTTCTCCTCCTCGTTACGAA	3250
TTCCTGTGGGGTCCAAGAGCTCATT	3275
CAGAAGTCATTAAGAGGAAAGTAGT	3300
AGAGTTTTTGGCCATGCTAAAGAAT	3325
ACCGTCCCTATTACCTTTCCATCCT	3350
CTTACAAGGATGCTTTGAAAGATGT	3375
GGAAGAGAGCCCAGGCCATAATT	3400
GACACCACAGATGATTCGACTGCCA	3425
CAGAAAGTGCAAGCTCCAGTGTCAT	3450
GTCCCCAGCTTCTCTTC TGA GTGA	3475
AGTCTAGGGCAGATTCTTCCCTCTG	3500

Figure 1(F)

AGTTTGAAGGGGGCAGTCGAGTTTC	3525
TACGTGGTGGAGGGCCTGGTTGAGG	3550
CTGGAGAGAACACAGTGCTATTTGC	3575
ATTTCTGTTCCATATGGGTAGTTAT	3600
GGGGTTTACCTGTTTTACTTTTGGG	3625
TATTTTCAAATGCTTTTCCTATTA	3650
ATAACAGGTTTAAATAGCTTCAGAA	3675
TCCTAGTTTATGCACATGAGTCGCA	3700
CATGTATTGCTGTTTTTCTGGTTTA	3725
AGAGTAACAGTTTGATATTTTGTAA	3750
AAACAAAAACACACCCAAACACACC	3775
ACATTGGGAAAACCTTCTGCCTCAT	3800
TTTGTGATGTGTCACAGGTTAATGT	3825
GGTGTTACTGTAGGAATTTTCTTGA	3850
AACTGTGAAGGAACTCTGCAGTTAA	3875
ATAGTGGAATAAAGTAAAGGATTGT	3900
TAATGTTTGCATTTCCTCAGGTCCT	3925
TTAGTCTGTTGTTCTTGAAAACTAA	3950
AGATACATACCTGGTTTGCTTGGCT	3975
TACGTAAGAAAGTAGAAGAAAGTAA	4000
ACTGTAATAAATAAAAAAAAAAAAA	4025
AAAAA	4031

::

and the property of the proper

FIG. 2(A)

	27	115		70 158	258	188	286	386	431
	CTCAGGTCAGCGGAGGGAGG	//ctg gagctccaggaaccaggcag tgaggccttggtc tgagacagtatcctcaggtc ////cag GTGCTCCAGAAAGCAGGAGT TGAAGACCTGGGTGTGAGGG ACACATACATCCTAAAAGCA intron 1	acaggacacataggactcca gaaacagtgtcagacctggc intron∏exon II		gcctttgttagagtctccaa GCCTTTGTCAGAGCCATCAT	intron IT exon III ctcc-cagGCCTGTGGGTC TTCATTG-CCCAGCTCCTGC CCACACTCCTGCCTGCTGCC ctccclcaglcclglgggat cccalcatacclattcglgt tcacacgtttacctgctgct	H C K P E E A L E A Q Q E A L G L V C V GCACTGCAAGCCTGAGGAAG CCCTTGAGGCCCAACAAGAG GCCCTGGGCCTGGTGTGT acgccccagcillgagcaag gcilccagaaggcaalitic alaciggagilgglagalgc	Q A A T S S S S P L V L G T L E E V P T A G S T D P P Q S P Q G A GCAGGCTGCCACCTCCTCCTCTGGTCTGGGGAGGCCAC TGCTGGGTCAACAGATCCTC CCCAGAGTCCTCAGGGAGCC agaggalcccca	1100101111000011111101
exon I intron I	G C A A Glg 1 g a g //	lgaggccllggl······c jgaAGACCTGGGTGTGAGGG	caccaagggccccacclgcc laccaagggccglacccca	lgtaccctga-gtaccctct tgtgccccgaggtgctttct exon IT intron II	AGGAGAAGATCTgtaagtag AGAAGAGGCTGTAAGCCG	TTCATTG-CCCAGCTCCTGC cccalcalacclattcglg1	L E A Q Q E CCCTTGAGGCCCAACAAGAG gcllccagaaggcaaliiic	A G S T D P P TGCTGGGTCAACAGATCCTC	gaagelleeleeallilele
	GACCCAGGCTCTGTGAGGAG	gagotocaggaaccaggoag IGTGCTCCAGAAAGCAGGAGT Lexon II	gigaaigi iigcccigaaigca GTCAAGgi gagigcacgaccigacigig exon III infron II	togac-clotgotggooggo toatggototgooggo	CCACAGAGGAGCACCA CCCTAGAGCACCACCTTAAG	intron II exon III ctcc-cagGCCTGTGGGTC ctccclcaglcclglgggat	H C K P E E A GCACTGCAAGCCTGAGGAAG acgcccagclllgagcaag	T L E E V P T ACCCTGGAGGAGGTGCCCAC	A R. Q P SAGAGGC AACCCgalgaggaagaggag gaagcl1cc1ccatl111ctc111ccacl1111ta
	CCATTCTGAGGGACGGCGTA GAGTTCGGCCGAAGGAACCT GACCCAGGCTCTGTGAGGAG	TCTTCAAGG1////cag exon 1	gglglgccagcaglgaalgl ttgccclgaalgca caccaagggcccacclgcc GCAGTGCCAGGAGTCAAGgl gaglgcacgacclgaclglg laccaagggccglacccca exon III infon II	cagagicigocotcacotoc etacigicagicotglagaa iogac-olotgotggooggo igiacoolga-giacoolot agcacoggocotglagocac coacigicalicotggigoc icatggolotgocigocago igigococogaggigotifiel expn IlTintron II	CAGGGGACAGGCCAACCCAG AGGACAGGATTCCCTGGAGG CAGAAGACAAACCCCCTAGG AAGACAGGCGACCTGTGAGG	gcctctcacacactccctct gccactggcactgtccctct	S L·E Q R S L TCTCTTGAGCAGAGGAGTCT cctcttttctaaaccttcc	S P L V L G CCTCTCCTCTGGGC	S A F P T T I N F T R Q R·Q P TCCGCCTTTCCCACTACCAT CAACTTCACTCGACAGAGGC AACCC
Lexon	CCATTCTGAGGGACGGCGTA	AGACTTATAGACCTATCCAG TCTTCAAGGI/	acagagcagaggalgcacag CCACAGCAGAGGAGGCCCAG	cagaglelggeeleacelee agcaceggeeelglageeae	CAGGGGACAGGCCAACCCAG CAGAAGACAAACCCCTAGG	l ggllcag-llclcagctgag I GGgtgagtllctcagctgag on III G_introp III	M S L·E Q R S L CTGACGAGAGTCATCATG TCTCTTGAGCAGAGGAGTCT cctgaacaatattcatcatg cctctctttctaaaccttcc	Q A A T S S S S P L GCAGGCTGCCACCTCCTCT CCTCTCCTC agaggatcccca	S A F P T T I TCCGCCTTTCCCACTACCAT
						0			77.77

FIG. 2(B)

294 t leccetegicetecteledgi illiciticleatecteate electeteigeticigegii elecag<mark>i</mark>sisande Kr D M P T A G M P S intron III D K D M exon IV

394 46

494 ACCCTGTATCCTCTCCAGAG TCCTCAGAGTCGTTCTGAGG GGGAGGACTCCTCGGATCCT CTCCAGAGACCTCCTGAGGG GAAGGACTCCCAGTCTCCTC

594 TCCAGATTCCCCAGAGTTCT CCTGAGGGCGACGCCCA GTCTCCTCCAGAATTCTC AGAGTTCTCCTGAGGGGAAG GACTCCCTGTCTCCTCAGA

Q | P | Q S S P E G D D T Q S P L Q N S O S S P E G K D S L E E

694 GATTICICAGAGCCCTCCTG AGGGTGAGGATGTCCAGTCT CCTCTGCAGAATCCTGCGAG TTCCTTCTTCTCCTCTGCTT TATTGAGTATTTTCCAGAGT

794 8 TCCCTGAGAGTATTCAAAG TCCTTTTGAGGGTTTTCCCC AGTCTGTTCTCCAGATTCCT GTGAGCGCCGCCTCCTCCTC CACTTTAGTGAGTATTTTCC

S S T L L S 1, 213 AGAGTICCCCTGAGAGTACT CAAAGTCCTTTTGAGGGTTT TCCCCAGTCTCCAGA TTCCTGTGAGCGCTCCTTC TCCTCCACTTTATTGAGTAT P V S R S F

TITCCAGAGITCCCCTGAGA GAAGTCAGAGAACTTCTGAG GGTTTTGCACAGTCTCCTCT CCAGATTCCTGTGAGCTCCT CCTCGTCCTCCACTTTACTG

•		•
	CI AGTCTTTCCAGAGTTCCCC TGAGAGAACTCAGAGTACTT TTGAGGGTTTTCCCCAGTCT CCACTCCAGATTCCTGTGAG CCGCTCCTTCTCCTCCCACTT 1094	3 2
∢ O	C1 TATTGAGTATTTTCCAGAGT TCCCCTGAGAGACTCAGAG TACTTTTGAGGTTTTGCCC AGTCTCCTCCTCCAGATTCCT GTGAGCTCCTCCTCCTCCTCT 1194	46
5 2	•	
C A	,	
2.2	•	
CI CI	•	
52		
2 2		

÷

1G. 2(

C1 IGTGAGCTCCTTCCCCTCCT CCACTTCATCGAGTCTTTCC CAGAGTTCTCCTGTGAGCTC CTTCCCCTCCTCCACTTCAT CGAGTCTTTCCAAGAGTTCC 2794 S လ FPSSTSSISL S - Q S S P | V S S <u>__</u>| 1 S S S S SFPS

2894 880 CCCAGTAGATGAATATACAA S E G S S R E E E G P S ... AGTGAGGGGTTCCAGCAG CCGTGAAGAGGAGGGGCCAA P V D CI CCTGAGAGICCTCTCCAGAG TCCTGTGATCTCCTTCTCCT CCTCCACTTCATTGAGCCCCA TTCAGTGAAGAGICCAGCAG S т S S S E S. P | V | S F S S S T S L S P O A1

2994 108 523 ACACTGGATGAAAAGGTGGA T L D E K V D GTAATCACTAAGAAGGTGGC GTTCCTCAGACACCTTGCTA GAGAGTGATTCCTTGACAGA CAGCGAGTCCTTGATAGAGA GCGAGCCCTTGTTCACTTAT ВА E S L F SLTD E S D GCACCTCTTGTATCCTG---<u>ب</u> – A1

913

FTY

ш

S

S L E

ш

တ

140 623 3094 946 AATGCTGGAGAGTGTCATCA AAAATTACAAGCACTGTTTT GATGCTGACGAATGTCATCA GCAGGTACACGGGCTACTTT >-N V I S ш M L T _ ≥ CAGCCTATCACAAAGGCAGA Q P I T K A E E P V T K A E GAGCCAGTCACAAAGGCAGA E P V T K A IGATITGGTTGGTTTTCTGC TCCTCAAATATCGAGCCAGG CGAGTTGGCGCGGTTTCTTC TCCTCAAATATCAAGTGAAG Œ LKYRA DIVGFLL A 2

723 174 979 CTCCTATGTCTTTGTAAACA 3191 CTCCTATGTCCTTGTCACCT 7 V L V T C S Y V F V N T S CCGTGAGTTCATAGAGATAC TTTTTGGCATTCCCTGAGA GAAGTGGACCCT...GATGA GAAGCAGCCCACCGGCCA エ တ **—** с. 0 E A F G I D V K
ICTITGGCATTGACGTGAAG CTCTGAGTCCTTGCAGCTGG SESLOLV CCTGAGATCTTCGGCAAAGC CCTGTGATCTTCAGGAAAGC PEIFGKA œ Z 5

1012 3291 **ATGATTGCAATGGAGGGCGG ATCATCTTCATAAAGGGCAC** - F - X M I A M GGGCATGTCCCAGAACCGCC ICCTGATTCTTATTCTGAGT GATCATGCCCAAGACAGGCT ICCTGATAATTGTCCTGGTC S] |] |] G ONRL - M P X T S W S GGCCTGCTGGGTGATAATCA GGGTGTCTGAGTGAGCA G C L S D E O G L L G D N Q GCCTAGGTCTCTCCTATGAT CATTAGACCTCACCTCTGAG 0 k S 1 9 1 ₹ 5

3391 GGAGCACAGIGCCTAIGGGG AGCCCAGGAAGCIGCICACC GGAGCACTITGCCTTTGGGG AGCCCAGGGAGCTCCTCACT P K L u E H S A Y G ICTGGGAGGAGCTGAGTGTG ATGGAGGTGTATGATGGGAG TCTGGGATGTGCTGAGTGGA 41AGGGGTGCGTGCGGAG ≃ છ .:l . . 7 A 0 ш ₹ CTATGCCTCTGAGGAGGTCA CCATGCTCCTGAGGAGGAAA ш ت ۲

1023 3491 1079 TCCAAGGGCCCTCGCTGAAA TCCAAGAGCTCATTCAGAAG Œ CGCTATGAGTTCCTGTGGGG CGTTACGAATTCCTGTGGGG ග ≥ FLW <u>~</u> >-GTACCTGGAGTACCGGCAGG TGCCGGACAGTGATCCCGCA TTACCTAGAGTACCGGGAGG TGCCCAACTCTTCTCCTCCT ۵. ۵. S ഗ z a. , Տ > 0 E Y B YLEYR CAAGATTTGGTGCAGGAAAA AAAGTTTGGGTGCAGGAACA ш ш ш O

307 1123 3591 1112 A L R E E E E E GCTTTGAGAGGAGGAAGA GCTTTGAAAGATGTGGAAGA ш Œ TGCAAGAGTTCGCTTTTTCT TCCCATCCCTGCGTGAAGCA GAATACCGTCCCTATTACCT TTCCATCCTCTTACAAGGAT ш P S S Y K P S L R ARVRFFF NTVPITF GAGTATGTGATCAAGGTCAG GAGTTTTGGCCATGCTAAA E Y V I K V S E F L A M L K CCAGCTATGTGAAAGTCCTT **TCATTAAGAGGAAAGTAGTA**

1223 1142 3691 TCTCTTCTGAGTGAAGTCTA TCCAGGGCCGCGTCCAGCAG CTTCCCCTGCCTCGTGTGAC တ CAGTGTCATGTCCCCCAGCT တ ۵. တ Σ > တ GCCACAGAAAGTGCAAGCTC A T E S A S S GGGACTGGGCCAGTGCACCT 36GAGTCTGAGCATGAGTTG CAGCCAAGGCCAGTGGGAGG GAGAGCCCAGGCCATAATTG ACACCACAGATGATTCGACT ഗ 0 0 **⊢** V OPA

GGGCAGATICTICCCICIGA GITIGAAGGGGGCAGICGAG IIICTACGIGGIGGAGGGCC IGGIIGAGGCIGGAGAGAAC ACAGIGCIAITIGCAITICI GTTCTCAGTAGTAG-...ATGAGGCCCATTCTTCA CTCTGAAGAGGGGGTCAGT

AATGAACTTCAGCATCCAAG **AAATAGCTTCAGAATCCTAG** TT--TTTTAAGGGATGGTTG GGGTTTACCTGTTTTACTTT TGGGTATTTTCAAATGCTT TTCCTATTAATAACAGGTTT AGATTTATCTTTGTTCTCTT TTGGAATTGTTCAAATGTTT rettctattgggtgacttgg GTTCCATATGGGTAGTTATG

1476 3991 TCCATTCTATTTGTGAATT CACCCAAACACACCACATTG GTTTTATTCAGATTGGGAAA ATTTTGTAAAAACAAAAACA ITTATGAATGACAGCAGT-C ACACAGTTCTGTGTATATAG TITAAGGGTAAGAGTCTTGT TITATGCACATGAGTAACAGTTTGAT

ATTAAGAGATAGTCAATTCT TIGTGATGTGTCACAGGTTA ATGTGGTGTTACTGTAGGAA TTTTCTTGAAACTGTGAAGG AACTCTGCAGTTAAATAGTG GGGATAATAACAGCAGTGGA ATAAGTACTTAGAATGTGA AAAATGAGCAGTAAAATAGA TGAGATAAAGAACTAAAGAA **GGAAAACCTTCTGCCTCATT**

AGAGAATTAAATCTGAATA 1676 AATGITIGCATITCCICAGG ICCITIAGICIGIIGIICII GAAAACIAAAGAIACAIACC IGGITIGCIIGGCIIACGIA 4191 IGCCTTATACCTCAGICTAT ICIGIAAAATITITAAAGAT ATAIGCATACCIGGAITICC TIGGCTICITIGAGAAIGTA GAATAAAGTAAAGGATTGTT

FIG. (3)

FIG. 4

::

25

Figure 5 Nucleotide sequence of gene MAGE-C3 (SEQ ID NO: 21)

The sequence corresponds to nucleotides 3761 to 4801 of PAC clone 232G24 (GenBank accession number AL022152). It has been renumbered in this figure, taking as nucleotide number 1 the first nucleotide of the start codon.

Primers SL164 and SL165 that were used in the RT-PCR assay are indicated.

ATGCCTCTCTTTCCAAACCTTCCACGCCTCAGCTTTGAGGAAGACTTCCA	50
Gaacccgagtgtgacagaggacttggtagatgcacaggattccatagatg	100
Aggaggaggatgcctcctccacttcctcttctcttttcacttttta	150
TTCCCCTCCTCCTTCCTTGTCC <u>TCATCCTCACCCTTGTCCTCA</u> CCCTT SL164	200
ACCCTCTACTCTCATTCTGGGTGTTCCAGAAGATGAGGATATGCCTGCTG	250
CTGGGATGCCACCTCTTCCCCAGAGTCCTCCTGAGATTCCTCCCCAGGGT	300
CCTCCCAAGATCTCTCCCCAGGGTCCTCCGCAGAGTCCTCCCCAGAGTCC	350
TCTAGACTCCTGCTCATCCCCTCTTTTGTGGACCCGATTGGATGAGGAGT	400
CCAGCAGTGAAGAGGAGGATACAGCTACTTGGCATGCCTTGCCAGAAAGT	450
GAATCCTTGCCCAGGTATGCCCTGGATGAAAAGGTGGCTGAGTTGGTGCA	500
GTTTCTTCTCCTCAAATATCAAACAAAAGAGCCTGTCACAAAGGCAGAGA	550
TGCTGACGACTGTCATCAAGAAGTATAAGGACTATTTTCCCATGATCTTC	600
GGGAAAGCCCATGAGTTCATAGAGCTAATTTTTGGCATTGCCCTGACTGA	650
TATGGACCCCGACAACCACTCCTATTTCTTTGAAGACACATTAGACCTCA	700
CCTATGAGGG <u>AAGCCTGATTGATGACCAGGG</u> CATGCCCAAGAACTGTCTC 8L165	750
CTGATTCTTATTCTCAGTATGATCTTCATAAAGGGCAGCTGTGTCCCCGA	800
GGAGGTCATCTGGGAAGTGTTGAGTGCAATAGGGGTGTGTGCTGGGAGGG	850
AGCACTTTATATATGGGGATCCCAGAAAGCTGCTCACTATACATTGGGTG	900
CAGAGAAAGTACCTGGAGTACCGGGAGGTGCCCAACAGTGCTCCTCCACG	950
TTATGAATTTTTGTGGGGTCCAAGAGCCCATTCAGAGGCCAGCAAGAGAA	1000
GTCTTAGAGTTTTTATCCAAGCTATCCAGTATCATCCCTAG	1041

* A	Figure 6 Amino-acid sequence of the putative MAGE-C3 protein (SEQ ID NO: 22)	7
	MPLFPNLPRLSFEEDFQNPSVTEDLVDAQDSIDEEEEDASSTSSSSFHFL	50
5	FPSSSSLSSSSPLSSPLPSTLILGVPEDEDMPAAGMPPLPQSPPEIPPQG	100
	PPKISPQGPPQSPPQSPLDSCSSPLLWTRLDEESSSEEEDTATWHALPES	150
	ESLPRYALDEKVAELVQFLLLKYQTKEPVTKAEMLTTVIKKYKDYFPMIF	200
	${\tt GKAHEFIELIFGIALTDMDPDNHSYFFEDTLDLTYEGSLIDDQGMPKNCL}$	250
	LILILSMIFIKGSCVPEEVIWEVLSAIGVCAGREHFIYGDPRKLLTIHWV	300
10	QRKYLEYREVPNSAPPRYEFLWGPRAHSEASKRSLRVFIQAIQYHP	346

Figure 7 Nucleotide sequence of gene MAGE-B5 (SEQ ID NO: 23)

This sequence is the antiparallel sequence corresponding to nucleotides 123358 to 124185 of BAC clone 466O4 (GenBank accession number AC005297). The sequence has been renumbered in this figure, taking the first nucleotide of the start codon as nucleotide number 1.

Primers SL189 and SL190 that were used in the RT-PCR assay are indicated.

ATGACTTCTGCAGGTGTTTTTAATGCAGGATCTGACGAAAGGGCTAACAG	50
TAGAGATGAGGAGTACCCATGTTCCTCAGAGGTCTCACCCTCCACTGAGA	100
GTTCATGCAGCAATTTCATAAATATTAAGGTGGGTTTGTTGGAGCAGTTC	150
CTGCTCTACAAGTTCAAAATGAAACAGCGTATTTTGAAGGAAG	200
GAAGATTGTCAACCCAAGATACCAAAACCAGTTTGCTGAGATTCACAGAA	250
GAGCTTCTGAGCACATTGAGGTTGTCTTTGCAGTTGACTTGAAGGAAG	300
AACCCAACTTGTCACTTATATGACCTTGTCAGCAAGCTGAAACTCCCCAA	350
CAATGGGAGGATTCATGTT <u>GGCAAAGTGTTACCCAAGACTGGTC</u> TCCTCA SL189	400
TGACTTTCCTGGTTGTGATCTTCCTGAAAGGCAACTGTGCCAACAAGGAA	450
GATACCTGGAAATTTCTGGATATGATGCAAATATATGATGGGAAGAAGTA	500
CTACATCTATGGAGAGCCCAGGAAGCTCATCACTCAGGATTTCGTGAGGC	550
TAACGTACCTGGAGTACCACCAGGTGCCCTGCAGTTATCCTGCACACTAT	600
CAATTCCTTTGGGGTCCAAGAGCCTATACTGAAACCAGCAAGATGAAAGT	650
CCTGGAATATTTGGCCAAGGTCAATGATATT <u>GCTCCAGGTGCCTTCTCAT</u> SL190	700
<u>CACAA</u> TATGAAGAGGCTTTGCAAGATGAGGAAGAGAGCCCAAGCCAGAGA	750
TGCAGCCGAAACTGGCACTACTGCAGTGGCCAAGACTGTCTCAGGGCGAA	800
GTTCAGCAGCTTCTCTCAACCCTATTGA	828

•	Figure 8 Amino-acid sequence of the putative MAGE-B5 protein (SEQ ID NO: 24)	:
	MTSAGVFNAGSDERANSRDEEYPCSSEVSPSTESSCSNFINIKVGLLEQF	50
5	LLYKFKMKQRILKEDMLKIVNPRYQNQFAEIHRRASEHIEVVFAVDLKEV	100
	NPTCHLYDLVSKLKLPNNGR IHVGKVLPKTGLLMTFLVV I FLKGNCANKE	150
	DTWKFLDMMQIYDGKKYYIYGEPRKLITQDFVRLTYLEYHQVPCSYPAHY	200
	QFLWGPRAYTETSKMKVLEYLAKVNDIAPGAFSSQYEEALQDEEESPSQR	250
	CSRNWHYCSGQDCLRAKFSSFSQPY	275
10		

10

of the first first from the first first first forth many the first first the first f

25

30

35

This sequence is the antiparallel sequence corresponding to nucleotides 146417 to 147640 of BAC clone 46604 (GenBank accession number AC005297). The sequence has been renumbered in this figure, taking the first nucleotide of the start codon as nucleotide number 1.

Primers SL191 and SL192 that were used in the RT-PCR assay are indicated.

ATGCCTCGGGGTCACAAGAGTAAGCTCCGTACCTGTGAGAAACGCCAAGA		50
GACCAATGGTCAGCCACAGGGTCTCACGGGTCCCCAGGCCACTGCAGAGA		100
AGCAGGAAGAGTCCCACTCTTCCTCATCCTCTTCTCGCGCTTGTCTGGGT SL191		150
GATTGTCGTAGGTCTTCTGATGCCTCCATTCCTCAGGAGTCTCAGGGAGT		200
GTCACCCACTGGGTCTCCTGATGCAGTTGTTTCATATTCAAAATCCGATG		250
TGGCTGCCAACGGCCAAGATGAGAAAAGTCCAAGCACCTCCCGTGATGCC		300
TCCGTTCCTCAGGAGTCTCAGGGAGCTTCACCCACTGGCTCTCCTGATGC		350
AGGTGTTTCAGGCTCAAAATATGATGTGGCTGCCAACGGCCAAGATGAGA		400
AAAGTCCAAGCACTTCCCATGATGTCTCCGTTCCTCAGGAGTCTCAGGGA		450
GCTTCACCCACTGGCTCGCCTGATGCAGGTGTTTCAGGCTCAAAATATGA		500
TGTGGCTGC <u>CGAGGGTGAAGATGAGGAAAGTG</u> TAAGCGCCTCACAGAAAG sl192		550
CCATCATTTTTAAGCGCTTAAGCAAAGATGCTGTAAAGAAGAAGGCGTGC		600
ACGTTGGCGCAATTCCTGCAGAAGAAGTTTGAGAAGAAGAAGAGTCCATTTT		650
GAAGGCAGACATGCTGAAGTGTGTCCGCAGAGAGTACAAGCCCTACTTCC		700
CTCAGATCCTCAACAGAACCTCCCAACATTTGGTGGTGGCCTTTGGCGTT		750
GAATTGAAAGAAATGGATTCCAGCGGCGAGTCCTACACCCTTGTCAGCAA		800
GCTAGGCCTCCCCAGTGAAGGAATTCTGAGTGGTGATAATGCGCTGCCGA		850
AGTCGGGTCTCCTGATGTCGCTCCTGGTTGTGATCTTCATGAACGGCAAC		900
TGTGCCACTGAAGAGGAGGTCTGGGAGTTCCTGGGTCTGTTGGGGATATA		950
TGATGGGATCCTGCATTCAATCTATGGGGATGCTCGGAAGATCATTACTG		1000
AAGATTTGGTGCAAGATAAGTACGTGGTTTACCGGCAGGTGTGCAACAGT		1050
GATCCTCCATGCTATGAGTTCCTGTGGGGTCCACGAGCCTATGCTGAAAC		1100
CACCAAGATGAGAGTCCTGCGTGTTTTGGCCGACAGCAGTAACACCAGTC		1150
CCGGTTTATACCCACATCTGTATGAAGACGCTTTGATAGATGAGGTAGAG		1200
AGAGCATTGAGAGCTTAA	1224	

,	Figure 10 Amino-acid sequence of the putative MAGE-B6 protein (SEQ ID NO: 26)	•
	MPRGHKSKLRTCEKRQETNGQPQGLTGPQATAEKQEESHSSSSSSRACLG	50
5	DCRRSSDASIPQESQGVSPTGSPDAVVSYSKSDVAANGQDEKSPSTSRDA	100
	SVPQESQGASPTGSPDAGVSGSKYDVAANGQDEKSPSTSHDVSVPQESQG	150
	ASPTGSPDAGVSGSKYDVAAEGEDEESVSASQKAIIFKRLSKDAVKKKAC	200
	TLAQFLQKKFEKKESILKADMLKCVRREYKPYFPQILNRTSQHLVVAFGV	250
	ELKEMDSSGESYTLVSKLGLPSEGILSGDNALPKSGLLMSLLVVIFMNGN	300
10	CATEEEVWEFLGLLGIYDGILHSIYGDARKIITEDLVQDKYVVYRQVCNS	350
	DPPCYEFLWGPRAYAETTKMRVLRVLADSSNTSPGLYPHLYEDALIDEVE	400
	RALRLRA	407