Simulation Numérique : Taxis

Vincent

October 4, 2013

Reflexion Classes + Variables

Ville: Rayon R

Centrale Taxis: N Taxis

Centre de la ville ?

Taxis: 2 Usagers

Vitesse, Position

Usagers: Position Initiale

Destination

Temps d'attente

Variables Aléatoires (de base):

 $X_1: \Delta T$ Apparition entre d'un nouveau clients

 $X_2: \Delta T$ Disparition Client \Leftrightarrow Temps d'Insatisfaction

 X_3 : Position Initiale Client X_4 : Destination du Client

Cycle Jour/nuit : induit deux gaussiennes de probabilités pour l'apparition des clients (heures de pointes)

Ville divisée en quartier? (Habitations, Commerces/Amusements, Travail/Bureau)

Taille de la ville (R)? Vitesse des taxis (vt)?

R en kilometre, vt en km.h⁻¹

R environ 5km, vt environ 50km.h⁻¹, 1 seconde dans la réalité environ 5 minutes (12s/h)

Client choisit destination:

Destination coordonnées polaires : θ loi uniforme et r loi normale

Destination en fonction de l'heure ⇒ après l'heure de pointe du soir, plus grande

probabilité d'aller "s'amuser"

Taxis ralentissent en prenant des usagers ?

Ajout Carburant/Station Essence

Pour 1 client, 1 seul taxis bouge

Pages suivantes :

Design Appli

Fonctionnement Appli

Fonctionnement "Prise en charge d'un client par un Taxis"

Client

-Point m_Destination { get; }
-TimeSpan m_LifeTime { get; }

-Client m_Client1 { get; set; }
-Client m_Client2 { get; set; }
-Point m_Destination { get; }
-Point m_Position f get; }
-double m_Speed { get; }