Отчёт №6

Виктория Вяльцева

Март 2023

Постановка задачи

Рассматриваем трёхслойную пластина. Толщина верхних слоёв h_1 и h_2 . Поверхность верхнего слоя имеет форму синусоиды с амплитудой Amp=0.05 мм. Все материалы, из которых изготовлена пластина, линейно-упругие и изотропные. Необходимо проанализировать максимальное значение σ_{xx} в условиях плоско-деформированного состояния.

Рис. 1: Вид пластины

Решение задачи и конечно-элементная модель

Тип элемента plane182. Жесткости слоёв: $E_1/E_2=r_1,\,E_2/E_3=r_2,\,E_1=210\cdot 10^9$ Па. К правой стороне пластины прилежены услия $T_1/T_2=r_1,\,T_2/T_3=r_2,\,T_1=1$ Па. Для проверки внутренней сходимости рассмотрим случай $r_1=r_2=10,\,h_1=h_2=0.06$ мм, решим задачу на двух сетках: с длинами элементов $l_1=0.003$ мм и $l_2=0.006$ мм.

$$\left(1 - \frac{\sigma_{xx}^2}{\sigma_{xx}^1}\right) \cdot 100\% = \left(1 - \frac{1.72258}{1.73721}\right) \cdot 100\% \approx 0.8\% < 1\% \tag{1}$$

Для остальных рассмотренных случаев отклонение решений на разных сетках так же не превышает 1%, что позволяет сделать вывод о внутренней сходимости всех решений. Далее будут рассматриваться решения с l=0.006 мм. Полученные результаты (Па):

r_1		10	10	1	1	1/10	1/10
r_2		10	1/10	10	1/10	10	1/10
h_1	h_2						
$0.06~\mathrm{mm}$	$0.06~\mathrm{mm}$	1.7226	1.6638	1.6275	1.4618	1.4392	1.3438
$0.06 \mathrm{mm}$	0.12 mm	1.6384	1.7042	1.6028	1.4940	1.4244	1.3505
0.12 MM	0.06 mm	1.6973	1.6141	1.5996	1.4922	1.5209	1.4467

Разница первого приближения аналитического решения и найденных численных решений:

r_1		10	10	1
r_2		10	1/10	10
h_1	h_2			
$0.06~\mathrm{mm}$	$0.06 \mathrm{mm}$	1.924	0.426	0.496
$0.06~\mathrm{mm}$	0.12 mm	1.531	0.465	0.400
0.12 mm	$0.06~\mathrm{mm}$	1.193	0.386	0.729
m.		1	1/10	1/10
r_1		_	,	,
r_2	1	1/10	10	1/10
h_1	h_2			
$0.06~\mathrm{mm}$	0.06 mm	0.027	-0.078	-0.128
$0.06~\mathrm{mm}$	$0.12~\mathrm{mm}$	0.032	-0.090	0.128
0.12 mm	0.06 mm	0.036	0.015	-0.057

Рис. 2: σ_{xx} при $r_1=10,\,r_2=10,\,h_1=0.06$ мм, $h_2=0.06$ мм

Вывод

Таким образом, видно, что изменение толщины слоёв не сильно влияет на результат (максимальное разница между значениями одного столбца таблицы результатов $\approx 8\%$). Чем верхние слои жестче относительно нижних, тем, в большинстве случаев, значение максимального напряжения по оси Ox больше.

Листинг

```
finish
/clear
/prep7
pi=4*atan(1)
e=0.05
a=1
amp=e*a
h01=0.06
h02=0.06
h1=h01*a
h2=h02*a
inf=30*amp
r1=1/10
r2=1/10
s=0.001
1=0.006*a
E1=210e9
nu1=0.3
nu2=nu1
nu3=nu1
E2=E1/r1
E3=E2/r2
T1=1
T2=T1/r1
T3=T2/r2
j=0
*do,i,0,4*a,0.1*a
j=j+1
k,j,i,-Amp*cos(2*Pi*i/a)
*enddo
spline, all
lcomb,all
```

```
k,j+1,i,-amp-h1
```

k,j+2,i,-amp-h1-h2

k,j+3,i,-inf

k,j+4,,-inf

k,j+5,,-amp-h1-h2

k,j+6,,-amp-h1

1,j,j+1

1,j+1,j+2

1,j+2,j+3

1,j+3,j+4

1,j+4,j+5

1,j+5,j+6

1,j+6,1

1,j+1,j+6

1,j+2,j+5

al,1,2,9,8

al,7,9,3,10

al,6,10,4,5

et,1,plane182,,,2,

mp,ex,1,E1

mp,prxy,1,nu1

mp,ex,2,E2

mp,prxy,2,nu2

mp,ex,3,E3

mp,prxy,3,nu3

esize,l

type,1

mat,1

amesh,1

type,1

mat,2

amesh,2

type,1

mat,3

amesh,3

dl,8,,ux,

```
dl,7,,ux,
d1,6,,ux,
d1,5,,uy,
sfl,2,pres,-T1
sfl,3,pres,-T2
sfl,4,pres,-T3
/solu
solve
/post1
set,last
asel,s,area,,1,
nsla,s,
nsel,r,loc,y,-2*Amp,2*Amp,
nsel,r,loc,y,H-2*Amp,H+Amp,
nsel,r,loc,x,a+a/2,3*a-a/2
esln,s,,all
plnsol,s,x
```