Università degli Studi di Salerno. Corso di Laurea in Informatica. Corso di Ricerca Operativa A.A. 2009-2010 Esame del 08/07/2010

Nome	Cognome
Matricola/	-

1. Si consideri il seguente problema di programmazione lineare:

max
$$z = x_1 + 6x_2 + 5x_3$$

 $x_1 + x_2 + 2x_3 - x_4 = 6$
 $x_3 + 4x_4 \le 5$
 $x_1 >= 0$, $x_2 >= 0$, x_3 non vincolata, $x_4 >= 0$

- a. (3 punti) Scrivere il modello duale associato
- b. (3 punti) Determinare una coppia di soluzioni primale-duale ammissibile e verificare la validità del teorema debole della dualità.
- 2. Dato il seguente problema di programmazione lineare :

min
$$35x_1+hx_2+4x_3$$

 $-7x_1 + 8x_2 + 8x_3 >= 1$
 $5x_1 + 6x_2 - 2x_3 >= k$
 $x_1 >= 0, x_2 >= 0, x_3 <= 0$

- a) (2 punti) Determinare il range di valori di k per cui possa esistere almeno una base ammissibile che contenga la variabile x_1 .
- b) (2 punti) Determinare il range di valori di h per cui la base B={2,4} rispetti le condizioni di ottimalità.
- c) (3 punti) Si fissi il valore di k=1 ed il valore di h=48. Risolvere graficamente il problema duale del problema risultante dato.
- d) (4 punti) Determinare la soluzione ottima del duale ottenuto al punto c) applicando il teorema della rappresentazione. Discutere la relazione tra la soluzione trovata attraverso il teorema della rappresentazione e quella determinata al punto precedente.
- 3. (2 punti) Dare la definizione di lineare indipendenza e lineare dipendenza tra vettori in \mathbb{R}^n . Fornire un esempio di vettori in \mathbb{R}^3 linearmente indipendenti e vettori in \mathbb{R}^3 linearmente dipendenti.
- **4.** (2 punti) Descrivere la differenza, da un punto di vista algebrico, tra soluzione basica ammissibile e soluzione ammissibile di un problema di programmazione lineare.
- **5.** (2 punti) Dare la definizione formale di direzione di un poliedro e fornirne un esempio.
- **6.** Dato il grafo in figura, assegnare ad ogni nodo i del grafo un valore b_i che ne definisca il livello di domanda o di offerta.
 - a. (4 punti) Scrivere la formulazione del problema del flusso a costo minimo applicata al grafo di esempio.
 - b. (3 punti) Determinare un assegnamento di variabili che definisca una soluzione ammissibile del problema.

