Introduction to Simulink

Mughees Asif

MSc. Artificial Intelligence MathWorks Campus Ambassador

Outline

What is Simulink?

Working with Simulink

How Simulink works

Decoupling models

Simulink

Simulink is a software package for modeling, simulating, and analyzing dynamic systems:

- Block diagram editing
- Non-linear simulation
- Hybrid (continuous and discrete) models
- Asynchronous (non-uniform sampling) simulation
- Fully integrated with MATLAB →
 MATLAB toolboxes and block sets

Simulink

- Accurately design, implement, and test:
 - Control systems
 - Signal Processing systems
 - Communications systems
 - Embedded systems
 - Physical systems
 - other Dynamical systems

Model Based Design with Simulink

Definition:

 A model is defined as a representation of a system for the purpose of studying the system.

Types:

- Static vs. dynamic
- Deterministic vs. stochastic
- Discrete vs. continuous

Implementation:

- Automatic code generation
- Rapid prototyping for HIL, SIL
- Verification and validation

Simulink Applications

Bell Helicopter Develops the First Civilian Tiltrotor, Using Model-Based Design

Challenge

To design and build the BA609, the first and fastest commercially available tiltrotor aircraft in the world

Solution

Use Model-Based Design with MATLAB, Simulink, and Real-Time Workshop software to model, simulate, test, and verify designs

Results

- Full collaboration with suppliers via Simulink models
- Flight control system code generated automatically from models
- 40% improvement in design and development time
- Flawless first flight, which went exactly like the simulation

The BA609, flying in airplane mode.

"Simulations and a rapid, iterative approach enabled us to minimize the unknowns and ensure that we had established enough margin that when weran into a surprise we could continue to have a safe flight test program—and run it with unprecedented efficiency."

David King Bell Helicopter

PRECEYES Accelerates Development of World's First Eye-Surgery Robot Using Model-Based Design

Challenge

Develop a real-time control system for robot-assisted surgical procedures performed within the human eye

Solution

Use Model-Based Design with MATLAB and Simulink to model and simulate the control system and use Simulink Coder and Simulink Real-Time to deploy it to a real-time target

Results

- Core controller developed by one engineer
- Patient safety assured
- Road map to industrialization set

The PRECEYES Surgical System

"MATLAB and Simulink provided a single platform that supported our complete workflow and all the components and protocols we needed for our robotic system. That enabled us to quickly develop a safe, real-time device, ready for clinical investigation."

Maarten Beelen, PRECEYES

Outline

Why Simulink?

Working with Simulink

How Simulink works

Decoupling models

Simulink Toolbar

Overview of the library

Library Name	Examples		
Sources	Constant, Sine Wave, Steps		
Sinks	Scope, XY Graphs		
Math operations	Add, divide, absolute		
Ports & subsystems	Subsystem, Enable port, Inputs and Outputs: In1 and Out1		
User defined functions	Fcn, MATLAB Fcn		
Lookup tables	1D Lookup table		
Signal Routing	Mux, BusCreator, Goto, Switch		
Continuous	Integrator, Derivative		
Discrete	Unit delay, Discrete Derivative		
Logical and Bit operations	Compare to Zero, Logical operators		

Finding Blocks

Getting Help

Outline

Why Simulink?

Working with Simulink

How Simulink works

Decoupling models

How Simulink Works

- Engine provides variable-step and fixed-step ODE solvers
- Block diagram representation of dynamic systems
- Blocks define governing equations
- Signals are propagated between blocks over time

Simulink Solvers

Solver:

- Determines solution at current time step
- Determines the next simulation time step
- MATLAB naming convention: ode

Selection Criteria:

- System dynamics
- Solution stability
- Computation speed
- Solver robustness

Outline

Why Simulink?

Working with Simulink

How Simulink works

Decoupling models

Subsystems

- Group blocks into functional subsystems, create model hierarchy.
- As a model increases in size and complexity, you can simplify it by grouping blocks into subsystems. A subsystem is a set of blocks that you group into an overall single block.

Using subsystems:

- Establishes a hierarchical block diagram, where a Subsystem block is on one layer and the blocks that make up the subsystem are on another.
- Keeps functionally related blocks together.
- Helps reduce the number of blocks displayed in your model window.
- Establishes an interface with inputs and outputs.

Creating Subsystems

To create a subsystem, you can:

- In the Simulink Editor, double-click and start typing the subsystem type, then select the corresponding block from the menu.
- In the Simulink Editor, drag a selection box to outline the subsystem that you want to create, then select the subsystem type.
- Drag a Subsystem block from the Library Browser.
- Copy and paste a Subsystem block from a model.

Model Referencing

- One model in another parent and referenced model
- Advantages:
 - Modular development
 - Model protection
 - Inclusion by reference
 - Incremental loading
 - Accelerated simulation
 - Incremental code generation
 - Independent configuration sets

Outline

Why Simulink?

Working with Simulink

How Simulink works

Decoupling models

'Continuous' Library

- Use blocks from the Continuous library to model differential equations.
 - Time derivative of a signal.
 - Integrate or delay a signal.
 - Model PID controllers and linear systems using transfer function or state-space representations.

'Discrete' Library

- Use blocks from the Discrete library to model recurrence equations.
- Discrete time function blocks such as Unit Delay.

Summary

Why Simulink?

Working with Simulink

How Simulink works

Componentizing models

https://matlabacademy.mathworks.com/#getting-started

Thank you!

MATLAB® SIMULINK®

Join the FB group to stay up to date with future events:

https://www.facebook.com/groups/196042678284982

The code and presentation can be downloaded from:

https://github.com/mughees-asif/matlab-qmul

MATLAB Workshops for QMUL

Contents I

Help 🔤

- · Onramps: self-paced tutorials
- Getting Started with MATLAB
- Naming Conventions

Access the code

- Clone the repository to your local machine: git clone https://github.com/mughees-asif/matlab-qmul.git
- After accessing the sessions folders:
 - o use the PDF versions for learning
 - o use the MATLAB versions to change input parameters and work with example code

Sessions 🚍

Session #	Topics covered	Presentation	Code	Cheatsheet
1	MATLAB Introduction	Link	MATLAB PDF	Link
2	Simulink Introduction	Link	Bouncing ball example	Link