Virtual large cardinal principles

Victoria Gitman

 $\label{localization} vgitman@nylogic.org\\ http://boolesrings.org/victoriagitman$

KGRC Logic Seminar April 12, 2018

Virtual properties

Suppose $\mathcal P$ is a set-theoretic property asserting the existence of elementary embeddings between some first-order structures. We will say that $\mathcal P$ holds virtually if embeddings for structures from V witnessing $\mathcal P$ exist in set-forcing extensions of V.

- virtual large cardinals
 - ▶ applied to (very) large cardinals: supercompact, extendible, rank-into-rank, etc.
 - form a hierarchy between ineffable cardinals and ω -Erdős cardinals
 - measure consistency strength of other virtual properties
 - measure consistency strength of assertions from other contexts
- virtual forcing axioms
 - weak versions of PFA, SCFA, resurrection axioms
- Generic Vopěnka's Principle
 - consistent with V = L
 - equiconsistent with virtual large cardinals

Absoluteness lemma for countable embeddings

Lemma: (Silver) Suppose M and N are first-order structures such that

- M is countable,
- there is an elementary embedding $j: M \to N$.

Suppose W is a transitive (set or class) model of ZFC^- such that

- \bullet $M, N \in W$,
- M is countable in W.

Then for any finite $\bar{a} \subseteq M$, W has an elementary $j^* : M \to N$ agreeing with j on \bar{a} , and (where applicable) $\operatorname{crit}(j) = \operatorname{crit}(j^*)$.

Proof:

- Enumerate $M = \{a_n \mid n < \omega\}$ in W. Let $M \upharpoonright n = \{a_i \mid i < n\}$.
- Let T be the tree of all partial finite isomorphisms

$$f: M \upharpoonright n \to N$$
,

satisfying the requirements, ordered by extension.

- *M* elementarily embeds into *N* if and only if *T* has a cofinal branch.
- T is ill-founded in V, and hence in W. \square

Examples of virtual embeddings

Proposition: There is a virtual isomorphism between $(\mathbb{R}, <)$ and $(\mathbb{Q}, <)$.

Proof: Go to the $Coll(\omega, \mathbb{R})$ -extension. \square

Call an embedding $j: V_{\alpha} \to V_{\alpha}$ Kunen if $\alpha \gg$ supremum of the critical sequence of j.

Proposition: Assuming $0^{\#}$, L has virtual Kunen embeddings.

Proof:

- Let $\{i_{\xi} \mid \xi \in ORD\}$ be the Silver indiscernibles.
- Let $j: L \to L$ be such that $j(i_n) = i_{n+1}$ for $n \in \omega$ and $j(i_{\xi}) = i_{\xi}$ for $\xi \ge \omega$.
- Let $i_{\gamma} = \alpha \gg i_{\omega}$ so that $j(\alpha) = \alpha$.
- The restriction $j: L_{\alpha} \to L_{\alpha}$ is elementary.
- $j: L_{\alpha} \to L_{\alpha}$ is in the forcing extension V[H] by $Coll(\omega, L_{\alpha})$.
- In L[H] there is $j^*: L_{\alpha} \to L_{\alpha}$ with $crit(j^*) \leq i_0$ and $j^*(i_{\omega}) = i_{\omega}$.
- The supremum of the critical sequence of j^* is at most i_{ω} . \square

Moral: Kunen's Inconsistency does not hold for virtual embeddings!

Virtual properties and collapse extensions

Lemma: Suppose M and N are first-order structures and some set-forcing extension has an elementary $j: M \to N$. Then for every finite $\bar{a} \subseteq M$, $V^{\operatorname{Coll}(\omega,M)}$ has an elementary $j^*: M \to N$ agreeing with j on \bar{a} and (where applicable) $\operatorname{crit}(j) = \operatorname{crit}(j^*)$.

Proof: Suppose a set-forcing extension V[G] has an elementary $j: M \to N$.

- Let $|M|^V = \delta$.
- Consider a further extension V[G][H] by $Coll(\omega, \delta)$.
- $j \in V[G][H]$ and M is countable in V[G][H].
- $V[H] \subseteq V[G][H]$ has the elementary $j^* : M \to N$ (by Absoluteness Lemma). \square

5 / 30

Virtual properties and determined games

Suppose M and N are first-order structures in a common language.

Let G(M, N) be an ω -length Ehrenfeucht-Fraïssé type game:

- Stage n: player I plays some $a_n \in M$ and player II plays some $b_n \in N$.
- Player II wins if for every $n \in \omega$ and formula $\varphi(x_0, \ldots, x_n)$,

$$M \models \varphi(a_0,\ldots,a_n) \leftrightarrow N \models \varphi(b_0,\ldots,b_n),$$

and otherwise player I wins.

- If player II loses, she must do so in finitely many steps.
- \bullet G(M, N) is closed, and hence determined by the Gale-Stewart Theorem.

Lemma: (Schindler) The following are equivalent.

- (1) Player II has a winning strategy in G(M, N).
- (2) M elementarily embeds into N in $V^{\text{Coll}(\omega,M)}$.

Proof:

- (1) \Rightarrow (2): A winning strategy for player II, remains winning in $V^{\text{Coll}(\omega,M)}$ because no new finite sequences are added.
- (2) \Rightarrow (1): Fix $p \Vdash "\tau : \check{M} \to \check{N}$ is an elementary embedding".
 - To every finite \bar{a} from M, associate $p_{\bar{a}} \Vdash \tau(\bar{a}) = \bar{b}$ below p so that: if \bar{a}' extends \bar{a} , then $p_{\bar{a}'} \leq p_{\bar{a}}$.
 - A winning strategy for player II: play \bar{b} in response to \bar{a} .

Virtual large cardinals

Suppose \mathcal{P} is a (very) large cardinal property

- supercompact
- $C^{(n)}$ -extendible
- rank-into-rank

asserting the existence of elementary embeddings $j:V_{\alpha}\to V_{\beta}$ satisfying a list of properties.

A cardinal is virtually \mathcal{P} if the embeddings characterizing \mathcal{P} exist in set-forcing extensions of V.

Virtual large cardinals are mini versions of their actual counterparts.

- Silver indiscernibles are virtual large cardinals.
- ullet Virtual large cardinals lie between ineffable and $\omega ext{-Erd}$ cardinals.
- Virtual large cardinals are downward absolute to L.
- Relationships between virtual large cardinals mirror their actual counterparts.

4 0 > 4 7 > 4 7 > 4

Magidor's characterization of supercompact cardinals

Theorem: (Magidor) A cardinal κ is supercompact iff for every $\lambda > \kappa$, there is $\bar{\lambda} < \kappa$ such that there is an elementary $j: V_{\bar{\lambda}} \to V_{\lambda}$ with $j(\text{crit}(j)) = \kappa$.

Remarkable cardinals

Definition: (Schindler) A cardinal κ is remarkable if for every $\lambda > \kappa$, there is $\bar{\lambda} < \kappa$ such that in a set-forcing extension there is an elementary $j:V_{\bar{\lambda}}\to V_{\lambda}$ with $j(\mathrm{crit}(j))=\kappa$.

Remarkable cardinals are virtually supercompact by Magidor's characterization!

Lemma: The following are equivalent for a cardinal κ .

- \bullet κ is remarkable.
- For every $\lambda > \kappa$, there is $\alpha > \lambda$ and a transitive M with $M^{\lambda} \subseteq M$ such that in a set-forcing extension there is an elementary $j: V_{\alpha} \to M$ with $\operatorname{crit}(j) = \kappa$ and $j(\kappa) > \lambda$.
- For every $\lambda > \kappa$, there is $\alpha > \lambda$ and a transitive M with $V_{\lambda} \subseteq M$ such that in a set-forcing extension there is an elementary $j: V_{\Omega} \to M$ with $crit(j) = \kappa$ and $j(\kappa) > \lambda$.

Moral:

- Closure requirements do not increase strength of virtual large cardinals.
- Robust virtual large cardinals are characterized by $j: V_{\alpha} \to V_{\beta}$.

Theorem: (Schindler) The assertion that the theory of $L(\mathbb{R})$ cannot be changed by proper forcing is equiconsistent with a remarkable cardinal.

9 / 30

$C^{(n)}$ -extendible cardinals

Let $C^{(n)}$ be the class of all Σ_n -correct δ such that $V_\delta \prec_{\Sigma_n} V$.

Definition:

- A cardinal κ is extendible if for every $\alpha > \kappa$, there is an elementary $j: V_{\alpha} \to V_{\beta}$ with $\mathrm{crit}(j) = \kappa$ and $j(\kappa) > \alpha$.
- (Bagaria) A cardinal κ is $C^{(n)}$ -extendible if for every $\alpha > \kappa$, there is an elementary $j: V_{\alpha} \to V_{\beta}$ with $\mathrm{crit}(j) = \kappa, j(\kappa) > \alpha$ and $j(\kappa) \in C^{(n)}$.

Theorem:

- Extendible cardinals are $C^{(1)}$ -extendible.
- (Bagaria, G., Schindler) The $C^{(n)}$ -extendible cardinals form a hierarchy: a $C^{(n+1)}$ -extendible cardinal is a limit of $C^{(n)}$ -extendible cardinals.
- (Bagaria, G., Schindler) A cardinal κ is $C^{(n)}$ -extendible if and only if for every $\kappa < \lambda \in C^{(n+1)}$, there is $\bar{\lambda} < \kappa$ also in $C^{(n+1)}$ such that there is an elementary $j: V_{\bar{\lambda}} \to V_{\lambda}$ with $j(\text{crit}(j)) = \kappa$.

Theorem: (G., Hamkins, Tsaprounis) A cardinal κ is $C^{(n)}$ -extendible if and only if for every $\kappa < \alpha \in C^{(n)}$, there is $j: V_{\alpha} \to V_{\beta}$ with $\mathrm{crit}(j) = \kappa$, $j(\kappa) > \alpha$ and $\beta \in C^{(n)}$.

Weakly $C^{(n)}$ -extendible cardinals

Call a cardinal κ weakly $C^{(n)}$ -extendible if for every $\kappa < \alpha \in C^{(n)}$, there is an elementary $j: V_{\alpha} \to V_{\beta}$ with $\mathrm{crit}(j) = \kappa$ and $\beta \in C^{(n)}$.

Theorem: Weakly $C^{(n)}$ -extendible cardinals are $C^{(n)}$ -extendible.

Proof: Suppose κ is weakly extendible. Fix $\alpha > \kappa$. Suppose for every $\xi < \eta$, there is $j : V_{\alpha} \to V_{\beta}$ with $\mathrm{crit}(j) = \kappa$ and $j(\kappa) > \xi$. But there is no embedding j with $j(\kappa) > \eta$.

- Let $\bar{\alpha}$ be large enough so $V_{\bar{\alpha}}$ sees that η is least counterexample for κ and α .
- Let $j: V_{\bar{\alpha}} \to V_{\bar{\beta}}$ with crit $(j) = \kappa$.
- By elementarity, $V_{\bar{\beta}}$ satisfies that $j(\eta)$ is least counterexample for $j(\kappa)$ and $j(\alpha)$.
- Suppose $j(\eta) > \eta$.
 - ▶ There is $h: V_{j(\alpha)} \to V_{\delta}$ with $\operatorname{crit}(h) = j(\kappa)$ and $h(j(\kappa)) > \eta$.
- So $j(\eta) = \eta$.
- Restrict $j: V_{\eta+2} \to V_{\eta+2}$ violating Kunen's Inconsistency. \square

Virtually $C^{(n)}$ -extendible cardinals

Definition: (Bagaria, G., Schindler)

- A cardinal κ is virtually extendible if for every $\alpha > \kappa$, in a set-forcing extension there is an elementary $j: V_{\alpha} \to V_{\beta}$ with $\mathrm{crit}(j) = \kappa$ and $j(\kappa) > \alpha$.
- A cardinal κ is virtually $C^{(n)}$ -extendible if for every $\alpha > \kappa$, in a set-forcing extension there is an elementary $j: V_{\alpha} \to V_{\beta}$ with $\mathrm{crit}(j) = \kappa$, $j(\kappa) > \alpha$ and $j(\kappa) \in C^{(n)}$.

Theorem:

- ullet Virtually extendible cardinals are virtually $C^{(1)}$ -extendible.
- The virtually $C^{(n)}$ -extendible cardinals form a hierarchy: a virtually $C^{(n+1)}$ -extendible cardinal is a limit of virtually $C^{(n)}$ -extendible cardinals.
- A cardinal κ is virtually $C^{(n)}$ -extendible if and only if for every $\kappa < \lambda \in C^{(n+1)}$, there is $\bar{\lambda} < \kappa$ also in $C^{(n+1)}$ such that in a set-forcing extension there is an elementary $j: V_{\bar{\lambda}} \to V_{\lambda}$ with $j(\text{crit}(j)) = \kappa$.
- A cardinal κ is virtually $C^{(n)}$ -extendible if for every $\kappa < \alpha \in C^{(n)}$, in a set-forcing extension there is $j: V_{\alpha} \to V_{\beta}$ with $\operatorname{crit}(j) = \kappa, j(\kappa) > \alpha$ and $\beta \in C^{(n)}$.

Virtually rank-into-rank cardinals

Definition: (G., Schindler) A cardinal κ is virtually rank-into-rank if in a set-forcing extension there is an elementary $j: V_{\lambda} \to V_{\lambda}$ with $\operatorname{crit}(j) = \kappa$.

Recall that we can have $\lambda \gg$ supremum of the critical sequence of j.

Theorem: If κ is (virtually) rank-into-rank, then V_{κ} is a model of proper class many (virtually) $C^{(n)}$ -extendible cardinals for every $n \in \omega$.

Virtually weakly $C^{(n)}$ -extendible cardinals

Definition: A cardinal κ virtually weakly $C^{(n)}$ -extendible if for every $\kappa < \alpha \in C^{(n)}$, in a set-forcing extension there is an elementary $j: V_{\alpha} \to V_{\beta}$ with $\mathrm{crit}(j) = \kappa$ and $\beta \in C^{(n)}$.

Theorem: If κ is virtually weakly $C^{(n)}$ -extendible, but not virtually $C^{(n)}$ -extendible, then κ is virtually rank-into-rank.

Corollary: Virtually weakly $C^{(n)}$ -extendible cardinals are equiconsistent with virtually $C^{(n)}$ -extendible cardinals

Other virtual large cardinals

Definition: (Schindler, Wilson) A cardinal κ is virtually Shelah for supercompactness if for every function $f: \kappa \to \kappa$, there is $\bar{\lambda} < \kappa$ and $\lambda > \kappa$ such that in a set-forcing extension there is an elementary $j: V_{\bar{\lambda}} \to V_{\lambda}$ with $j(\operatorname{crit}(j)) = \kappa$, $f(\operatorname{crit}(j)) \leq \bar{\lambda}$, and $f \in \operatorname{ran}(j)$.

Theorem: (Schindler, Wilson) The assertion that every universally Baire set of reals has the perfect set property is equiconsistent with a virtually Shelah for supercompactness cardinal.

Definition: (G., Schindler) A cardinal κ is virtually *n*-huge* if there is $\alpha > \kappa$ such that in a set-forcing extension there is an elementary $j: V_{\alpha} \to V_{\beta}$ with $\mathrm{crit}(j) = \kappa$ and $j^n(\kappa) < \alpha$.

- *n*-huge cardinals do not have a robust definition for virtualization.
- *n*-huge* cardinals hierarchy is intertwined with the *n*-huge cardinals hierarchy.
- If κ is virtually rank-into-rank, then V_{κ} is a model of a proper class of virtually n-huge* cardinals for every $n \in \omega$.
- If κ is virtually huge*, then V_{κ} is a model of a proper class of virtually $C^{(n)}$ -extendible cardinals for every $n \in \omega$.

Vopěnka's Principle

Vopěnka's Principle: Every proper class of first-order structures in a fixed language has two structures which elementarily embed.

- second-order assertion formalizable in Gödel-Bernays set theory, GBC.
- $VP(\Sigma_n)$: Vopěnka's Principle for Σ_n -definable (with parameters) classes.

Vopěnka's Scheme: Scheme asserting $VP(\Sigma_n)$ for every $n \in \omega$.

Theorem: (Hamkins)

- There are models of GBC in which Vopěnka's Scheme holds, but Vopěnka's Principle fails.
- Over GBC, Vopěnka's Principle and Vopěnka's Scheme are equiconsistent and have the same first-order consequences.

Theorem: (Bagaria) The following are equivalent.

- Vopěnka's Scheme holds.
- For every $n \in \omega$, there is a proper class of $C^{(n)}$ -extendible cardinals.

Generic Vopěnka's Principle

Generic Vopěnka's Principle: Every proper class of first-order structures in a fixed language has two structures which elementarily embed in some set-forcing extension.

 $gVP(\Sigma_n)$: Generic Vopěnka's Principle for Σ_n -definable (with parameters) classes.

Generic Vopěnka's Scheme: Scheme asserting $gVP(\Sigma_n)$ for every $n \in \omega$.

Theorem: (G., Hamkins) The following are equivalent.

- Generic Vopěnka's Scheme holds.
- For every $n \in \omega$, there is a proper class of virtually weakly $C^{(n)}$ -extendible cardinals.

Generic Vopěnka's Scheme from virtual large cardinals

Theorem: (G., Hamkins) If for every $n \in \omega$, there is a proper class of virtually weakly $C^{(n)}$ -extendible cardinals, then Generic Vopěnka's Scheme holds.

Proof:

- Let \mathcal{M} be a proper class of structures in language \mathcal{L} defined by a Σ_n -formula $\varphi(x,a)$.
- Let $\kappa > \text{rk}(a), \text{rk}(\mathcal{L})$ be virtually weakly $C^{(n)}$ -extendible.
- Choose $\kappa < \alpha \in C^{(m)}$ for some $m \gg n$.
- In $V^{\operatorname{Coll}(\omega,V_{\alpha})}$ there is

$$j: V_{\alpha} \rightarrow V_{\beta}$$

with $\operatorname{crit}(j) = \kappa$ and $\beta \in C^{(n)}$.

- Let $M \in \mathcal{M}$ be any structure of the κ -th rank in \mathcal{M} .
- V_{α} agrees that M has κ -th rank in \mathcal{M} .
- By elementarity, $V_{\beta} \models "j(M)$ has $j(\kappa)$ -th rank in \mathcal{M} ".
 - ▶ $j(M) \in \mathcal{M}$
 - $M \neq i(M)$
 - ▶ The restriction $j: M \to j(M)$ is elementary. \square

Virtual large cardinals from Generic Vopěnka's Scheme

Theorem: (G., Hamkins) If Generic Vopěnka's Scheme holds, then for every $n \in \omega$, there is a proper class of virtually weakly $C^{(n)}$ -extendible cardinals.

Proof: Fix an ordinal γ .

- There is α_0 such that for all $\alpha_0 < \alpha \in C^{(n)}$, in $V^{\text{Coll}(\omega,V_{\alpha})}$ there is an elementary $j:V_{\alpha} \to V_{\beta}$ with $\alpha < \beta \in C^{(n)}$:
 - ▶ j is an inclusion map or
 - ightharpoonup crit $(j) > \gamma$.
- Suppose not. Then there are unboundedly many counterexamples.
- Let \mathcal{M} be the class of structures $\langle V_{\alpha}, \in, \xi \rangle_{\xi < \gamma}$ such that:
 - $ightharpoonup \alpha \in C^{(n)}$.
 - in $V^{\operatorname{Coll}(\omega,V_{\alpha})}$ there is no $j:\langle V_{\alpha},\in,\xi\rangle_{\xi\leq\gamma}\to\langle V_{\beta},\in,\xi\rangle_{\xi\leq\gamma}$ with $\alpha<\beta\in C^{(n)}$.
- ullet By assumption, ${\cal M}$ is a proper class.
- In $V^{\operatorname{Coll}(\omega,V_{\alpha})}$ there is

$$j: \langle V_{\alpha}, \in, \xi \rangle_{\xi \leq \gamma} \to \langle V_{\beta}, \in, \xi \rangle_{\xi \leq \gamma}.$$

Contradiction!

Virtual large cardinals from Generic Vopěnka's Scheme

- $S = \{ \alpha \in C^{(n)} \mid \alpha > \alpha_0 \text{ and } cof(\alpha) = \omega \}$ is a stationary class.
- Given $\alpha \in S$, let $\bar{\alpha}$ be least in $C^{(n)}$ above α .
- In $V^{\text{Coll}(\omega,V_{\bar{\alpha}})}$ there is $j:V_{\bar{\alpha}}\to V_{\bar{\beta}}$ with $\bar{\alpha}<\bar{\beta}\in C^{(n)}$ such that:
 - $\qquad \qquad \alpha < j(\alpha),$
 - $\gamma < \operatorname{crit}(j) < \alpha \ (\operatorname{crit}(j) \ \text{is inaccessible}).$
- Define $F: S \to ORD$ by $F(\alpha)$ is least critical point of some such j.
 - F is regressive.
 - $F(\alpha) = \kappa$ unboundedly often.
- For every $\kappa < \alpha \in C^{(n)}$, in $V^{\text{Coll}(\omega,V_{\alpha})}$ there is $j:V_{\alpha} \to V_{\beta}$ such that:
 - $\operatorname{crit}(j) = \kappa$,
 - $\beta \in C^{(n)}$. \square

Generic Vopěnka's Principle and ORD is Mahlo

Definition:

- ORD is Mahlo if every class club has a regular cardinal.
- ORD is definably Mahlo if every definable class club has a regular cardinal.

Lemma: If Vopěnka's Principle holds, then ORD is Mahlo.

Lemma: If for every $n \in \omega$, there is a proper class of virtually $C^{(n)}$ -extendible cardinals, then ORD is definably Mahlo.

Proof: Suppose C is a class club defined by a Σ_n -formula $\varphi(x, a)$.

- Let $\kappa > \text{rk}(a)$ be virtually $C^{(n)}$ -extendible.
- Since $\kappa \in C^{(n)}$ (indeed $\kappa \in C^{(n+2)}$), C is unbounded in κ .
- κ ∈ C.

Theorem: (G., Hamkins) The following are consistent.

- Generic Vopěnka's Principle holds, but ORD is not Mahlo.
- ullet Generic Vopěnka's Scheme holds, but there is a Σ_2 -definable (w/o parameters) class club avoiding regular cardinals.

Corollary: It is consistent that Generic Vopěnka's Scheme holds, but there are no remarkable cardinals.

Proof: Remarkable cardinals are in $C^{(2)}$. \square

A model of Generic Vopenka's Principle where ORD is not Mahlo

Proof: Assume 0[#] exists.

- L together with its definable classes is a model of GBC.
- Generic Vopěnka's Principle holds in L.
 - ▶ Silver indiscernibles are virtually $C^{(n)}$ -extendible for every $n \in \omega$.
- In L, let \mathbb{P} be the class forcing to add a class club avoiding regular cardinals.
 - ► Conditions: closed bounded sets of ordinals avoiding regular cardinals.
 - Order: end-extension.
 - ▶ \mathbb{P} is $< \alpha$ -distributive for every cardinal α .
 - ▶ P does not add sets

Let $C \subseteq ORD$ be L-generic for \mathbb{P} .

- The first-order part of L[C] is L.
- The classes of L[C] are definable from C over L.
- ORD is not Mahlo in L[C].
- We show that Generic Vopěnka's Principle holds in L[C].

A model of Generic Vopenka's Principle where ORD is not Mahlo

Key Lemma: Given an ordinal δ and $n \in \omega$, there is an ordinal θ such that:

- $L_{\theta} \prec_{\Sigma_n} L$
- $C \cap \theta$ is L_{θ} -generic for $\mathbb{P}^{L_{\theta}}$
- in $L^{\operatorname{Coll}(\omega,L_{\theta})}$ there is

$$j: (L_{\theta}, \in, C \cap \theta) \rightarrow (L_{\theta}, \in C \cap \theta)$$

with $\operatorname{crit}(j) > \delta$.

Let \mathcal{M} be a proper class of structures in language \mathcal{L} defined by a Σ_m -formula $\varphi(x, a, C)$ in L[C].

Fix $\delta > \operatorname{rk}(a)$, $\operatorname{rk}(\mathcal{L})$ and $n \gg m$.

By Key Lemma, there is an ordinal θ :

- $(L_{\theta}, \in C \cap \theta) \prec_{\Sigma_n} (L, \in, C)$.
- In $L^{\operatorname{Coll}(\omega, L_{\theta})}$ there is $j: (L_{\theta}, \in, C \cap \theta) \to (L_{\theta}, \in C \cap \theta)$ with $\operatorname{crit}(j) = \kappa > \delta$.
- Let $M \in \mathcal{M}$ be a structure of the κ -th rank in \mathcal{M} .
- $(L_{\theta}, \in, C \cap \theta)$ agrees that M has κ -th rank in \mathcal{M} .
- By elementarity, $(L_{\theta}, \in, C \cap \theta) \models j(M)$ has $j(\kappa)$ -th rank in \mathcal{M} .
 - ▶ $j(M) \in \mathcal{M}$
 - $\stackrel{\bullet}{\blacktriangleright} M \neq i(M)$
 - ▶ The restriction $j: M \to j(M)$ is elementary. \square

Proof of Key Lemma

Fix $\delta \in \text{ORD}$ and $n \in \omega$.

Let $D_{\delta,n}$ be the class of conditions $\bar{c} \in \mathbb{P}$ for which there is an ordinal θ such that:

- $L_{\theta} \prec_{\Sigma_n} L$,
- $\bar{c} \cap \theta$ is L_{θ} -generic for $\mathbb{P}^{L_{\theta}}$,
- in $L^{\operatorname{Coll}(\omega, L_{\theta})}$ there is an elementary $j: (L_{\theta}, \in, \overline{c} \cap \theta) \to (L_{\theta}, \in, \overline{c} \cap \theta)$ with $\operatorname{crit}(j) > \delta$.

We show that $D_{\delta,n}$ is dense in \mathbb{P} . Fix $d \in \mathbb{P}$.

- Let $\kappa_0 > \sup(d), \delta$ be an uncountable cardinal of V.
- Let $\kappa_0 < \kappa_1 < \dots < \kappa_n < \dots < \kappa_\omega < \kappa_{\omega+1}$ be successive Silver indiscernibles.
- Let θ be least above κ_{ω} such that $L_{\theta} \prec L_{\kappa_{\omega+1}} (\prec L)$.
- Fix $\theta_0 < \theta_1 < \cdots < \theta_n < \cdots$ cofinal in θ .
- The intersection D_n of all Σ_n -definable with parameters from L_{θ_n} dense open sets of $\mathbb{P}^{L_{\theta}}$ is dense open.
- Let c be the L-least set of ordinals L_{θ} -generic for $\mathbb{P}^{L_{\theta}}$.
- Let $h: L \to L$ be such that $h(\kappa_n) = \kappa_{n+1}$ and all other indiscernibles are fixed.
- $\operatorname{crit}(h) = \kappa_0$ (indiscernibles below κ_0 generate L_{κ_0}).
- $h(\theta) = \theta$ and h(c) = c (since h(d) = d, $h(\kappa_{\omega}) = \kappa_{\omega}$, $h(\kappa_{\omega+1}) = \kappa_{\omega+1}$).
- $h: (L_{\theta}, \in, c) \to (L_{\theta}, \in, c)$ with $crit(h) = \kappa_0 > \delta$.
- In $L^{\text{Coll}(\omega,L_{\theta})}$ there is $j:(L_{\theta},\in,c)\to(L_{\theta},\in,c)$ with $\text{crit}(j)=\kappa_0>\delta$.
- Let $\bar{c} = c \cup \{\theta\}$ (θ is singular). \square

A model of Generic Vopěnka's Scheme with a bad Σ_2 -definable class club

Proof: Assume 0[#] exists.

- Let L[C] be a forcing extension by \mathbb{P} .
- Force to code *C* into the continuum pattern.

Let $\mathbb Q$ be the Easton-support class product forcing the failure of GCH at $\aleph_{\alpha+1}$ iff $\alpha\in\mathcal C$.

- Let $G \subseteq \mathbb{Q}$ be L[C]-generic.
- Let $L[G] = \{ \tau_G \mid \tau \text{ is a } \mathbb{Q}\text{-name} \}$ (first-order part of the forcing extension by \mathbb{Q}).
- C is Σ_2 -definable (w/o parameters) in L[G].
- Generic Vopěnka's Scheme holds in L[G].

A model of Generic Vopěnka's Scheme with a bad Σ_2 -definable class club

Iteration $\mathbb{P} * \dot{\mathbb{Q}}$:

Conditions: pairs (c, q)

- $c \in \mathbb{P}$
- q is a condition in corresponding Easton-support product coding c.

Let \mathbb{Q}_{θ} consist of conditions in \mathbb{Q} with support contained in θ .

- $\mathbb{Q}_{\theta} \in L$.
- Let G_{θ} be the restriction of G to \mathbb{Q}_{θ} .
- Let $G_{\theta}^* = L_{\theta} \cap G_{\theta}$.

Key Lemma: Given an ordinal $\delta \in ORD$ and $n \in \omega$, there is an ordinal θ such that:

- $L_{\theta} \prec_{\Sigma_n} L$.
- $C \cap \theta$ is L_{θ} -generic for dense subsets of $\mathbb{P}^{L_{\theta}} \Sigma_n$ -definable in L_{θ} .
- G_{θ}^* is $\mathbb{Q}^{L_{\theta}[C \cap \theta]}$ -generic for dense subsets of $\mathbb{Q}^{L_{\theta}[C \cap \theta]}$ Σ_n -definable in $L_{\theta}[C \cap \theta]$.
- In $L[G]^{Coll(\omega,L_{\theta})}$ there is an elementary $j: L_{\theta}[G_{\theta}^*] \to L_{\theta}[G_{\theta}^*]$ with $crit(j) > \delta$.

Observe that $L_{\theta}[G_{\theta}^*] \prec_{\Sigma_m} L[G]$ for $m \ll n$ and repeat argument. \square

26 / 30

Virtual Kunen embeddings in cardinal preserving extensions

Question: Is it consistent to have virtual Kunen embeddings in forcing extensions preserving ω_1 , or all cardinals $\leq \omega_n$, or all cardinals below the least inaccessible cardinal, etc?

Theorem: (Woodin) Suppose δ is a Woodin cardinal. Let $\theta < \kappa < \lambda < \delta$ be such that κ is measurable and λ is inaccessible. Then there is a forcing extension V[G] with $V_{\theta}^{V[G]} = V_{\theta}$ in which there is a virtual Kunen embedding $j: V_{\lambda} \to V_{\lambda}$.

Theorem: (Woodin) Suppose δ is a Woodin cardinal. Let $\theta < \kappa < \lambda < \delta$ be such that κ is measurable and λ is inaccessible. Let W = V[G] be a forcing extension by Prikry forcing on κ . Then W has a forcing extension W[H] with $W_{\lambda}^{\theta} \subseteq W_{\lambda}$ in W[H] in which there is a virtual Kunen embedding $j: W_{\lambda} \to W_{\lambda}$.

Question: Is it consistent to have a virtual Kunen embedding $j: V_{\lambda} \to V_{\lambda}$ in a forcing extension not adding ω -sequences?

Stationary tower forcing

Definition: Suppose X is a nonempty set.

- A set $C \subseteq P(X)$ is a club in P(X) if there exists a function $F : [X]^{<\omega} \to X$ such that $C = \{x \mid F[[x]^{<\omega}] \subseteq x\}$.
- A set $S \subseteq P(X)$ is stationary in P(X) if for every function $F : [X]^{<\omega} \to X$ there exists a $x \in S$ such that $F[[x]^{<\omega}] \subseteq x$.

Observations: Suppose X is a nonempty set.

- A set $S \subseteq P(X)$ is stationary in P(X) if and only if every structure M = (X, ...) in a countable language has an elementary substructure in S.
- If S is stationary in P(X), then $\bigcup S = X$.

Definition: Suppose $\bigcup S \neq \emptyset$. We say that *S* is stationary if *S* is stationary in $\bigcup S$.

Stationary tower forcing $\mathbb{P}_{<\delta}$: Suppose δ is inaccessible.

- Conditions: stationary $S \in V_{\delta}$
- Order: $S \leq T$ whenever $\bigcup T \subseteq \bigcup S$ and for each $x \in S$, $x \cap (\bigcup T) \in T$.

Theorem: (Woodin) Suppose δ is a Woodin cardinal and $G \subseteq \mathbb{P}_{<\delta}$ is V-generic. Then in V[G], there is an elementary $j: V \to M$ with $M^{<\delta} \subseteq M$ such that for $S \in G$, j " $(\bigcup S) \in j(S)$.

Proof of Woodin's Theorem

Theorem: (Woodin) Suppose δ is a Woodin cardinal. Let $\theta < \kappa < \lambda < \delta$ be such that κ is measurable and λ is inaccessible. Then there is a forcing extension V[G] with $V_{\theta}^{V[G]} = V_{\theta}$ in which there is a virtual Kunen embedding $j: V_{\lambda} \to V_{\lambda}$.

Proof:

- Assume $|V_{\theta}| = \theta$.
- Let $S \subseteq P(V_{\lambda})$ consist of $X \prec V_{\lambda}$ satisfying the following properties:
 - $ightharpoonup \theta \subseteq X$
 - $|X| = \lambda$
 - ▶ Let $M_X \cong X$ be the collapse. There is $A \subseteq \theta$ such that M_X is definable in L[A].
- S is stationary in $P(V_{\lambda})$.

 $\text{Fix } F : [[V_{\lambda}]^{\leq \omega}] \to V_{\lambda}. \text{ Let } \kappa, F \in Z_0 \prec V_{\lambda}* \text{ with } |Z_0| = \theta. \text{ Let } \pi : M_{Z_0} \cong Z_0 \text{ be the collapse with } \pi(\bar{\kappa}) = \kappa.$ Let $A \subseteq \theta$ code M_{Z_0} . In L[A], iterate M_{Z_0} by a measure on $\bar{\kappa}$ λ -many times. Each iterate $M_{Z_{\Omega}} \cong Z_{\Omega} \prec V_{\lambda}*$.

- Let $S \in G \subseteq \mathbb{P}_{<\delta}$ be V-generic. So that $i " V_{\lambda} \in i(S)$.
 - ▶ $j(\theta) \subseteq j$ " V_{λ} . So crit $(j) > \theta$.
 - $|j| |V_{\lambda}| = j(\lambda) = \lambda$. So λ remains inaccessible in V[G].
 - ▶ There is $A \subseteq j(\theta) = \theta$ such that V_{λ} is definable in L[A].
- $V_{\theta}^{V[G]} = V_{\theta}^{M} = V_{\theta}$ since V_{θ} is coded by a subset of θ .
- $A^{\#} \in M$ by elementarity.
- There is an elementary $h: L[A] \to L[A]$ with $crit(h) < \lambda$ and $h(V_{\lambda}) = V_{\lambda}$.
- $h: V_{\lambda} \to V_{\lambda}$. \square

KGRC Logic Seminar

Thank you!

