

Outline

- Capacitors and inductors
- Natural response of RC/RL circuits
- Step response of RC/RL circuits
- Others

RC and RL Circuits

 A circuit that contains only source(s), resistor(s) and <u>a</u> <u>capacitor</u> is called an *RC* circuit.

 A circuit that contains only source(s), resistor(s) and <u>an</u> <u>inductor</u> is called an *RL* circuit.

Natural Response

Behavior (*i.e.*, current and voltage) when stored energy in the inductor or capacitor is released to the resistive part of the network (containing <u>no independent sources</u>).

Natural Response of a Charged Capacitor

(a) $t = 0^-$ is the instant just before the switch is moved from terminal 1 to terminal 2;

(b) t = 0 is the instant just after it was moved, t = 0 is synonymous with $t = 0^+$.

Natural Response of a Charged Capacitor

Natural Response of RC Circuit

Time Constant τ (= RC)

 A circuit with a small time constant has a fast response and vice versa.

Natural Response of the RL Circuit

Natural Response of the RL Circuit

Natural Response of the RL Circuit

Natural Response Summary

Capacitor voltage cannot change instantaneously

$$v(0^-) = v(0^+)$$

$$v(t) = v(0)e^{-t/\tau}$$

• time constant $\tau = RC$

Inductor current cannot change instantaneously

$$i(0^-) = i(0^+)$$

$$i(t) = i(0)e^{-t/\tau}$$

• time constant
$$\tau = \frac{L}{R}$$

[Source: Berkeley]

Example

• In the circuit below, let $v_C(t=0)=15$ V. Find v_C , v_χ , and i_χ for t>0.

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display

Example

• The switch in the circuit below has been closed for a long time. At t=0, the switch is opened. Calculate i(t) for t>0.

Outline

- Capacitors and inductors
- Natural response of RC/RL circuits
- Step response of RC/RL circuits
- Others

Step Response of RC Circuit

 When a DC source is suddenly applied to a RC circuit, the circuit response is known as the step response.

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display

The unit step function u(t)

 A step function is one that maintains a constant value before a certain time and then changes to another constant afterwards.

switching time may be shifted to $t = t_0$ by

right © The McGraw-Hill Companies, Inc. Permission required for reproduction or display
$$u(t) = \begin{cases} 0, & t < 0 \\ 1, & t > 0 \end{cases}$$

$$u\left(t - t_0\right) = \begin{cases} 0, & t < t_0 \\ 1, & t > t_0 \end{cases}$$

Equivalent Circuit of Unit Step

 The unit step function has an equivalent circuit to represent when it is used to switch on a source.

Step Response of the RC Circuit

Step Response of the RC Circuit

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display

$$v(t) = \begin{cases} V_0, & t < 0 \\ V_s + (V_0 - V_s)e^{-t/\tau} & t > 0 \end{cases}$$

• This is known as the complete response, or total response.

Lecture 5

44

Complete response

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display

The complete response

$$v(t) = \begin{cases} V_0, & t < 0 \\ V_s + (V_0 - V_s)e^{-t/\tau} & t > 0 \end{cases}$$

can be written as:

$$v = v_n + v_f$$

 V_s V_s V_0 t

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display

Complete response = natural response + forced response independent source

or

$$v = v_n + v_f$$

where

$$v_n = V_o e^{-t/\tau}$$

and

$$v_f = V_s(1 - e^{-t/\tau})$$

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or disp

Another Perspective

 Another way to look at the response is to break it up into the <u>transient response</u> and the <u>steady state response</u>:

$$v(t) = \underbrace{v(\infty)}_{\text{steady } v_{ss}} + \underbrace{[v(0) - v(\infty)]e^{-t/\tau}}_{\text{transient } v_t}$$

Step Response of the RL Circuit

Copyright @ The McGraw-Hill Companies, Inc. Permission required for reproduction or display

$$i(t) = \frac{V_s}{R} + \left(I_0 - \frac{V_s}{R}\right)e^{-t/\tau}$$

 Again one may break the response up into the <u>transient</u> response and the <u>steady state response</u>:

$$i(t) = \underbrace{i(\infty)}_{\text{steady } i_{SS}} + \underbrace{[i(0) - i(\infty)]e^{-t/\tau}}_{\text{transient } i_t}$$

General Procedure of Finding RC/RL Response with D.C. sources

1. Identify the variable of interest

- For RL circuits, it is usually the inductor current $i_L(t)$.
- For RC circuits, it is usually the capacitor voltage $v_c(t)$.

2. Determine the initial value of the variable at T_o

• Recall that $i_L(t)$ and $v_c(t)$ are continuous variables:

$$i_L(T_{\theta^+}) = i_L(T_{\theta^-})$$
 and $v_c(T_{\theta^+}) = v_c(T_{\theta^-})$

3. Determine the final value of the variable (as $t \rightarrow \infty$)

If needed, recall that an inductor behaves like a short circuit & that a capacitor behaves like an open circuit in steady state (e.g., $t \rightarrow \infty$).

4. Calculate the time constant for the circuit

- $\tau = CR$ for an RC circuit where R is the Thévenin equivalent resistance "seen" by the capacitor.
- $\tau = L/R$ for an RL circuit, where R is the Thévenin equivalent resistance "seen" by the inductor.

[Source: Berkeley] Lecture 5

Example

• The switch has been in position A for a long time. At t=0, the switch moves to B. Find v(t).

Example

• Find i(t) in the circuit for t > 0. Assume that the switch has been closed for a long time.

Sequential switch

At t = 0, switch 1 in Fig. 7.53 is closed, and switch 2 is closed 4 s later. Find i(t) for t > 0. Calculate i for t = 2 s and t = 5 s.

We need to consider the three time intervals $t \le 0$, $0 \le t \le 4$, and $t \ge 4$ separately. For t < 0, switches S_1 and S_2 are open so that i = 0. Since the inductor current cannot change instantly,

$$i(0^{-}) = i(0) = i(0^{+}) = 0$$
Lecture 5

