百校联盟 2020 届 TOP300 七月尖子生联考 理科数学

注意事项:

- 2. 答题前, 考生务必将自己的姓名、准考证号填写在本试卷相应的位置.
- 3. 全部答案写在答题卡上,写在本试卷上无效.
- 4. 本试卷满分 150 分,测试时间 120 分钟.
- 5. 考试范围: 必修 1, 选修 2-1 第 1 章, 选修 2-2 第 1 章.

第 | 卷

- 一、选择题:本大题共 12 小题,每小题 5 分,在每小题给出的四个选项中,只有一项是符合题目要求的.
- (1)已知集合 $A = \{1,2,4\}, B = \{x | \log_2(x+1) > 1\}, \emptyset A \cap B =$

 $(A)\{1,4\}$

(B) $\{2.4\}$

 $(C)\{1,2\}$

(D) $\{4\}$

(2)下列函数中,既是偶函数,又在(0,+∞)上单调递增的是

(B) $v = 1 - x^2$

(D) $y = \ln |x|$

(3)函数 $y = \frac{1}{\lg(x-2)} + \sqrt{16-x^2}$ 的定义域为

(B)(3.4]

(C)(2.4]

 $(D)(2,3) \cup (3,4]$

(4)已知命题 $p: \forall x > 0, e^x > x+1;$ 命题 $q: \exists x_0 \in (0, +\infty), \ln x_0 = x_0 - 1;$ 下列命题为真命题的是

(B) $p \land \neg q$

 $(C) \neg p \land q$

(D) $\neg p \land \neg q$

(5)已知集合 $A = \{x \mid x^2 + 2ax + 2a \leq 0\}$, 若 A 中只有一个元素,则实数 a 的值为

(B)0 或-2

(C)0 或 2

(D)2

(6)函数 $f(x) = (x^2 + 2x)e^{2x}$ 的图象大致是

(7)函数 $f(x) = \log_2(4^x + 1) - x$ 的最小值为

(A)3

(C)1

(D)0

(8)三个数 $a = \frac{2}{e^2}$, $b = \ln \sqrt{2}$, $c = \frac{\ln 3}{3}$ 的大小顺序为

(A)b < c < a

(B) $b \le a \le c$

(C)c < a < b

(D)a < b < c

(9)设命题 p:函数 $f(x) = -\frac{1}{2}x^2 + 2ax - \ln x$ 存在极值,q:函数 $g(x) = \log_a x (a > 0$,且 $a \neq 1$)在 $(0, +\infty)$ 上

是增函数,则p是q的

(A) 充要条件

(B) 充分而不必要条件

(C)必要而不充分条件

(D)既不充分也不必要条件

(10)已知函数 $f(x) = ax^2 + x - xe^x$, 当 $x \ge 0$ 时, 恒有 $f(x) \le 0$, 则实数 a 的取值范围为

 $(A)[1,+\infty)$ $(B)(-\infty,0]$

 $(C)(-\infty,1]$

 $(D) \lceil 0, +\infty \rangle$

(11)已知定义在 \mathbf{R} 上的函数 $f(x)$ 满足 $f(2+x)$ =	$f(2-x)$,且当 $x > 2$ 时, $x \cdot f'(x) + f(x) > 2f'(x)$,若
$f(1)=1$.则不等式 $f(x)<\frac{1}{ x-2 }$ 的解集是	

$$(A)(2,3)$$
 $(B)(-\infty,1)$

(C)(1,2)
$$\bigcup$$
 (2,3) (D)($-\infty$,1) \bigcup (3,+ ∞)

(12)已知函数 $f(x) = \frac{1 - e^{x+1}}{e^{x+1}} (x < 0)$ 与 $g(x) = e^x \ln(x+1) - ae^x$ 的图象上存在关于 y 轴对称的点,则实数 a的取值范围是

$$(A)(-\infty, 1 + \frac{1}{e}) \qquad (B)(-\frac{1}{e}, +\infty) \qquad (C)(-\infty, 1 - \frac{1}{e}) \qquad (D)(1 - \frac{1}{e}, +\infty)$$

$$(C)(-\infty,1-\frac{1}{e})$$

(D)
$$(1 - \frac{1}{e}, +\infty)$$

第Ⅱ券

二、填空题:本大题共4小题,每小题5分.

- (13)设集合 $A = \{1, a-2, a\}$,若 $3 \in A$,则实数 a =
- (14)已知命题 $p:\exists x_0 \in [-1,1], a^2 x_0^2 + ax_0 2 = 0$,若命题 p 为真命题,则实数 a 的取值范围为 .

(15)已知函数
$$f(x) = \begin{cases} -e^{x-1} - 2x, x \ge 0 \\ -e^{-x-1} + 2x, x < 0 \end{cases}$$
,则满足不等式 $f(x) + 3 > 0$ 的实数 x 的取值范围为______.

(16)已知 a 为任意的实数,则函数 $y=(3\ln x-x^2-a)^2+x^2-2ax+a^2$ 的最小值为 .

三、解答题:解答应写出文字说明、证明过程或演算步骤.

(17)(本小题满分 10 分)

已知集合
$$A = \{x \mid x^2 - (m+2)x + (1-m)(2m+1) \le 0\}$$
. 集合 $B = \{x \mid y = \sqrt{(\frac{1}{9} - 3^x)(3^x - 81)}\}$.

- (I) 当 m=1 时,求 $A \cup B$:

(18)(本小题满分 12 分)

已知命题 p:函数 $f(x) = \log_{\frac{1}{2}}(\frac{a}{x}+1)$ 在[-2,-1]上单调递增;命题 q:函数 $g(x) = -\frac{1}{3}x^3+x^2+ax$ 在 $[3,+\infty)$ 上单调递减.

- (I)若 q 是真命题,求实数 a 的取值范围;
- (Ⅱ) 若 p 或 q 为真命题, p 且 q 为假命题, 求实数 a 的取值范围.

(19)(本小题满分 12 分)

已知函数 $f(x) = \log_{\frac{1}{4}}(2mx^2 - 3x + 8m)$.

- (I)当 m=1 时,求函数 f(x)在[$\frac{1}{2}$,2]上的值域;
- (Ⅱ)若函数 f(x)在(4,+∞)上单调递减,求实数 m 的取值范围.

(20)(本小题满分 12 分)

已知函数 $f(x) = ax^3 + (a+b)x^2 + 12bx(a>0)$ 为奇函数,且 f(x)的极小值为一16.

- (I)求 a 和 b 的值;
- (Ⅱ)若过点 M(1,m)可作三条不同的直线与曲线 y=f(x)相切,求实数 m 的取值范围.

(21)(本小题满分 12 分)

已知函数 $f(x) = \frac{1}{2}ax^2 - \frac{1}{2}ax + (1-x)e^x$.

- (I)若曲线 f(x)在点(0,f(0))处的切线方程为 y=x+1,求实数 a 的值;
- (Ⅱ)若函数 f(x)有 3 个零点,求实数 a 的取值范围.

(22)(本小题满分12分)

已知函数 $f(x) = x \ln x - \frac{k}{x} - x (k \in \mathbf{R})$,若函数 f(x)在 $(0, +\infty)$ 上存在两个极值点 x_1, x_2 .

(I)求实数 k 的取值范围;

(順)证明: $\frac{x_1+x_2}{2}$ > $\sqrt{2k}$.

百校联盟 2020 届 TOP300 七月尖子生联考

理科数学 参考答案

本试卷防伪处为:

图象上存在关于 y 轴对称的点 若函数 f(x)在 $(0,+\infty)$ 上存在两个极值点 x_0,x_0 .

- 1. B 【解析】 $B = \{x \mid \log_2(x+1) > 1\} = \{x \mid x > 1\}$,所以 $A \cap B = \{2,4\}$.
- 2. D【解析】选项 A 中函数是奇函数,选项 B 中函数 在(0,+∞)上单调递减,选项 C 中函数在(0,+∞)上单调递减,选项 D 中函数是偶函数且在(0,+∞)上单调递增.
- 3. D 【解析】由题意得 $\begin{cases} x-2>0 \\ \lg(x-2)\neq 0,$ 故所求函数的 $16-x^2\geqslant 0$

定义域为(2,3)以(3,4].

- 4. A 【解析】令 $f(x) = e^x (x+1)$,则 $f'(x) = e^x 1$,当 x > 0 时, $f'(x) = e^x 1 > 0$,即 f(x) 单调递增,所以 x > 0 时,则 f(x) > f(0) = 0,即 $e^x > x + 1$,所以 p 为真命题;当 $x_0 = 1$ 时, $\ln x_0 = x_0 1$,故 q 为真命题。所以 $p \land q$ 为真命题.
- 5. C 【解析】若 A 中只有一个元素,则只有一个实数满足 $x^2 + 2ax + 2a \le 0$,即抛物线 $y = x^2 + 2ax + 2a$ 与 x 轴只有一个交点, $\therefore \Delta = 4a^2 8a = 0$. $\therefore a = 0$ 或 2.
- 6. A 【解析】由 f(x)的解析式知只有两个零点 x=-2 与 x=0,排除 B、D;又 $f'(x)=(2x^2+6x+2)e^{2x}$,由 f'(x)=0 根的情况知函数有两个极值点,排除 C.
- 7. C 【解析】 $f(x) = \log_2(4^x + 1) x = \log_2(4^x + 1) \log_2 2^x = \log_2 \frac{4^x + 1}{2^x}$,令 $t = \frac{4^x + 1}{2^x}$ 则 $t = 2^x + \frac{1}{2^x} \ge 2$, 所以 $\log_2 \frac{4^x + 1}{2^x} \ge \log_2 2 = 1$,即函数 f(x)的最小值为 1.
- 8. D 【解析】构造函数 $f(x) = \frac{\ln x}{x}$,则 $a = \frac{2}{e^2} = f(e^2)$, $b = \ln \sqrt{2} = \frac{\ln 4}{4} = f(4)$, $c = \frac{\ln 3}{3} = f(3)$,由 $f'(x) = \frac{1 \ln x}{x^2}$ 知 函数 f(x) 在 (0, e) 上单调递增,在

 $(e,+\infty)$ 上单调递减,又因为 $e < 3 < 4 < e^2$,所以a < b < c.

- 9. A 【解析】p:函数 $f(x) = -\frac{1}{2}x^2 + 2ax \ln x$ 存在极值,对函数 f(x)求导得 $f'(x) = -\frac{x^2 2ax + 1}{x}$.

 因为 f(x)存在极值,所以 $f'(x) = -\frac{x^2 2ax + 1}{x}$.

 在 $(0, +\infty)$ 上有解,即方程 $x^2 2ax + 1 = 0$ 在 $(0, +\infty)$ 上有解,即 $\Delta = 4a^2 4 \geqslant 0$,显然当 $\Delta = 0$ 时, f(x)无极值,不合题意,所以方程 $x^2 2ax + 1$ = 0 必有两个不等正根,所以 $\begin{cases} a > 0 \\ \Delta = 4a^2 4 > 0 \end{cases}$,解得 a > 1. 函数 $g(x) = \log_a x$ 在 $(0, +\infty)$ 上是增函数,则a > 1. 故 p是q 的充要条件.
- 10. C 【解析】 $f(x) = x(ax + 1 e^x)$. 令 $g(x) = ax e^x + 1$,则 $g'(x) = a e^x$. 若 $a \le 1$,则当 $x \in (0, +\infty)$ 时,g'(x) < 0,g(x)为 减函数,而 g(0) = 0,从而当 $x \ge 0$ 时, $g(x) \le 0$,即 $f(x) \le 0$,

若 a > 1,则当 $x \in (0, \ln a)$ 时,g'(x) > 0,

g(x)为增函数,而 g(0)=0,从而当 $x \in (0, \ln a)$ 时 g(x)>0,即 f(x)>0,不合题意.

综上可得,a 的取值范围为($-\infty$,1].

- 11. C 【解析】当 x > 2 时, $x \cdot f'(x) + f(x) > 2f'(x)$,...(x-2)f'(x)+f(x)>0,令 F(x) = |x-2|f(x),当 x > 2 时,则 F(x) = (x-2)f(x),F'(x) = (x-2)f'(x)+f(x)>0,即当 x > 2 时,F(x) 单调 递增. 函数 f(x) 满足 f(2+x)=f(2-x),所以 F(2+x)=F(2-x),即 F(x)的图象关于 x=2 对 称,不等式 $f(x) < \frac{1}{|x-2|}$ 等价于 $|x-2|f(x) < 1(x \neq 2)$,F(1) = |1-2|f(1) = f(1) = 1,即 F(x) < F(1),所以 |x-2| < |1-2|,解得 1 < x < 3 且
- 12. D 【解析】由 f(x)关于 y 轴对称的函数为 $h(x) = f(-x) = \frac{1 e^{-x+1}}{e^{-x+1}} = e^{x-1} 1(x > 0),$

 $x \neq 2$,解集为(1,2) \cup (2,3).

令 h(x) = g(x), 得 $e^{x-1} - 1 = e^x \ln(x+1) - ae^x$, (x>0),

则方程 $e^{x-1}-1=e^x \ln(x+1)-ae^x$ 在(0,+ ∞)上有解,

即方程 $\frac{1}{e^x}$ + $\ln(x+1)$ - $\frac{1}{e}$ =a在(0,+ ∞)上有解

设
$$\varphi(x) = \frac{1}{e^x} + \ln(x+1) - \frac{1}{e}$$
,

条件转化为 $y=\varphi(x)$ 与 y=a 的图象在 $(0,+\infty)$ 上有交点,

$$\varphi'(x) = -\frac{1}{e^x} + \frac{1}{x+1} = \frac{e^x - x - 1}{e^x (x+1)} > 0,$$

得 $\varphi(x)$ 在(0,+ ∞)上为增函数,

当 x > 0 时,则 $\varphi(x) > \varphi(0) = 1 - \frac{1}{e}$

所以 $a>1-\frac{1}{e}$.

- 13.5 【解析】a-2=3,解得 a=5;当 a=3 时,a-2=1,不满足互异性,舍去.
- 14. $(-\infty, -1] \cup [1, +\infty)$ 【解析】当命题 p 为真命题,即方程 $a^2x^2 + ax 2 = 0$ 在[-1, 1]上有解,由 $a^2x^2 + ax 2 = 0$,得(ax + 2)(ax 1) = 0,显然 $a \neq 0$ ∴ $x = -\frac{2}{a}$ 或 $x = \frac{1}{a}$, ∴ $x \in [-1, 1]$, 故 $|\frac{2}{a}|$ ≤ 1 或 $|\frac{1}{a}| \leq 1$, ∴ $|a| \geq 1$, 即实数 a 的取值范围为 $(-\infty, -1] \cup [1, +\infty)$.
- 15. (-1,1) 【解析】函数 f(x) 的定义域关于原点对称,:x>0 时,-x<0, $f(-x)=-e^{x^{-1}}-2x=f(x)$,x<0 同理:f(-x)=f(x),:f(x) 为偶函数. 易知 f(x)在 $(0,+\infty)$ 上为减函数,且 $f(1)=-e^0-2=-3$,f(x)+3>0 即 f(x)>-3,即f(x)>f(1),根据偶函数的性质知当 |x|<1 时,得-1<x<1.
- 16. 2 【解析】($3\ln x x^2 a$) $^2 + (x a)^2$ 就是曲线 $y = 3\ln x x^2$ (x > 0)上点 $A(x, 3\ln x x^2)$ 与直线 y = x 上点 B(a, a) 之间的距离 |AB| 的平方,对曲线 $y = 3\ln x x^2$ 求导: $y' = \frac{3}{x} 2x$,与直线 y = x 平行的切线斜率 $k = 1 = \frac{3}{x} 2x$,解得 x = 1 或 $x = -\frac{3}{2}$ (舍去),把 x = 1 代入 $y = 3\ln x x^2$,解得 y = -1,即切点(1,-1),则切点(1,-1)到直线 y = x 的距离为 $d = \frac{|1+1|}{\sqrt{2}} = \sqrt{2}$,所以 $d^2 = 2$,即|AB|的

平方最小值为 2. 即 $(3\ln x - x^2 - a)^2 + (x - a)^2$ 的最小值为 2.

- 18.【解析】(I)当命题 q为真命题时,

函数 $g(x) = -\frac{1}{3}x^3 + x^2 + ax$ 在[3,+∞)上单调 递减,

([[)命题 p 为真命题时,函数 $y = \log_{\frac{1}{2}}(\frac{a}{x} + 1)$ 在

[-2,-1]上单调递增,: 0 < a < 1. …… 6分因为 p 或 q 为真命题,p 且 q 为假命题,所以 p 与 q 的真值相反. …… 7分

(i)当p真且q假时,有 $\begin{cases} 0 < a < 1 \\ a > 3 \end{cases}$,

此不等式无解. 9分

(ii)当 p 假且 q 真时,有 $\begin{cases} a \leqslant 0 \text{ 或 } a \geqslant 1 \\ a \leqslant 3 \end{cases}$

解得 $a \le 0$ 或 $1 \le a \le 3$, …… 11 分 综上可得,实数 a 的取值范围为 $(-\infty,0] \cup [1,3]$.

...... 12 分

19.【解析】(I)当 m=1 时, $f(x) = \log_{\frac{1}{4}}(2x^2 - 3x + 8)$,

此时函数 f(x)的定义域为 \mathbf{R} ;

因为函数 $y = 2x^2 - 3x + 8$ 的最小值为 $\frac{4 \times 2 \times 8 - 3^2}{8} = \frac{55}{8}$,

最大值为 $2 \times 2^2 - 3 \times 2 + 8 = 10$,故函数 f(x) 在 $\left[\frac{1}{2}, 2\right]$ 上的值域为 $\left[\log_{\frac{1}{4}} 10, \log_{\frac{1}{4}} \frac{55}{8}\right]$; …… 6 分 ($\left[\right]$) 因为函数 $y = \log_{\frac{1}{4}} x$ 在 $(0, +\infty)$ 上单调递减,

故
$$g(x) = 2mx^2 - 3x + 8m$$
 在 $(4, +\infty)$ 上单调递 $(m > 0,$

20.【解析】(1)因为 f(x)是奇函数,所以 f(x)+f(-x)=0 恒成立,则 $2(a+b)x^2=0$.

所以 b=-a,所以 $f(x)=ax^3-12ax$, …… 1 分 则 $f'(x)=3ax^2-12a=3a(x+2)(x-2)$

令 f'(x)=0,解得 x=-2 或 x=2.

当 $x \in (-2,2)$ 时, f'(x) < 0, 当 $x \in (2,+\infty)$ 时, f'(x) > 0.

f(x)在(-2,2)单调递减,在 $(2,+\infty)$ 单调递增, 所以 f(x)的极小值为 f(2), …… 3 分

由 f(2) = 8a - 24a = -16a = -16,解得 a = 1.

所以 a=1,b=-1. 5 分

($\|$)由($\|$)可知 $f(x) = x^3 - 12x$,

g(x)的极值点,

设点 $P(x_0, f(x_0))$ 是曲线 $f(x) = x^3 - 12x$ 的切点,则在 P 点处的切线的方程为 $y - f(x_0) = f'(x_0)(x - x_0)$ 即 $y = 3(x_0^2 - 4)x - 2x_0^3$

因为其过点 M(1,m),所以, $m=3(x_0^2-4)-2x_0^3=$ $-2x_0^3+3x_0^2-12$, …… 7 分由于有三条切线,所以方程应有 3 个实根,

当 $x \in (-\infty, 0)$ 和 $(1, +\infty)$ 时 g'(x) > 0, g(x)在 $(-\infty, 0)$ 和 $(1, +\infty)$ 上单调递增,

当 $x \in (0,1)$ 时 g'(x) < 0, g(x)在 (0,1)上单调递减,所以,x=0 为极大值点,x=1 为极小值点.

......9分

即实数m的取值范围为(-12,-11). … 12分

21.【解析】(I)因为
$$f(x) = \frac{1}{2}ax^2 - \frac{1}{2}ax + (1-x)e^x$$
,

得
$$f'(x) = ax - \frac{1}{2}a - e^x + (1-x)e^x = ax - \frac{1}{2}a - e^x$$
, 2 分 所以 $f'(0) = -\frac{1}{2}a$.

因为曲线在点(0, f(0))处的切线方程为 y=x+1,

所以
$$f'(0) = -\frac{1}{2}a = 1$$
,即 $a = -2$ 5分

1) +
$$(1-x)e^x = (x-1)(\frac{1}{2}ax - e^x)$$
,

所以 f(x)有一个零点 x=1. 6 分

要使得 f(x)有 3 个零点,即方程 $\frac{1}{2}ax - e^x = 0$ 有 2 个不为 1 的不等实数根,

又方程
$$\frac{1}{2}ax - e^x = 0 \Leftrightarrow a = \frac{2e^x}{x}(x \neq 0), \Leftrightarrow h(x) = 0$$

$$\frac{2e^x}{x}(x\neq 0), \quad \dots \qquad 7 \,$$

即函数 y=a 与 y=h(x)图象有两个交点,

$$h'(x) = \frac{2xe^x - 2e^x}{x^2} = \frac{2e^x(x-1)}{x^2} = 0$$
 , 得 $x = 1$.

...... 8分

h(x)的单调性如表:

\boldsymbol{x}	$(-\infty, 0)$	(0,1)	1	$(1,+\infty)$
h'(x)	_	_	0	+
h(x)	¥	7	极小值	7

则实数 a 的取值范围为 $(2e,+\infty)$. …… 12 分

22.【解析】(I)函数 f(x)的定义域为($0,+\infty$),

因为
$$f(x) = x \ln x - \frac{k}{x} - x$$
,

$$f'(x) = \ln x + 1 + \frac{k}{x^2} - 1 = \ln x + \frac{k}{x^2}$$

$$\Leftrightarrow g(x) = \ln x + \frac{k}{x^2}$$

所以
$$g'(x) = \frac{1}{x} - \frac{2k}{x^3} = \frac{x^2 - 2k}{x^3}, x > 0.$$
 …… 1分

当 $k \le 0$ 时,g'(x) > 0,

所以函数 g(x)在 $(0,+\infty)$ 上单调递增. … 2分

即
$$f'(x) = \ln x + \frac{k}{x^2} \mathbf{E}(0, +\infty)$$
上单调递增,

f'(x)在 $(0,+\infty)$ 上至多一个零点,所以 f(x)在 $(0,+\infty)$ 上至多一个极值点,不满足条件.

当 k > 0 时,由 g'(x) = 0,得 $x = \sqrt{2k}$ (负根舍去),

当 $x \in (\sqrt{2k}, +\infty)$ 时, g'(x) > 0,

所以函数 g(x)在 $(0,\sqrt{2k})$ 上单调递减;

所以
$$g(x)_{\min} = g(\sqrt{2k}) = \ln \sqrt{2k} + \frac{1}{2}$$
,

要使函数 f(x)在 $(0,+\infty)$ 上存在两个极值点则函数 f'(x)有两个零点,即 g(x)有两个零点

首先
$$g(x)_{min} = \ln \sqrt{2k} + \frac{1}{2} < 0$$
,解得 $0 < k < \frac{1}{2e}$.

...... 5 分

因为 $2k < \sqrt{2k} < 1$,且 g(1) = k > 0,

下面证明: $g(2k) = \ln(2k) + \frac{1}{4k} > 0$.

设
$$h(k) = \ln(2k) + \frac{1}{4k}$$
,

则
$$h'(k) = \frac{1}{k} - \frac{1}{4k^2} = \frac{4k-1}{4k^2}$$
.

因为
$$k < \frac{1}{2e}$$
,所以 $h'(k) = \frac{4k-1}{4k^2} < \frac{\frac{2}{e}-1}{4k^2} < 0$.

所以 h(k)在 $(0,\frac{1}{2e})$ 上单调递减,

所以
$$g(2k)=h(k)>h(\frac{1}{2e})=\ln\frac{1}{e}+\frac{e}{2}>0$$
.

所以实数 k 的取值范围为 $(0,\frac{1}{2a})$ 6 分

(\mathbb{I})因为 x_1, x_2 是函数 f(x)的两个极值点,

所以 x_1, x_2 是函数 f'(x)的两个零点

即 x_1, x_2 是函数 g(x)的两个零点,

不妨设 $x_1 < x_2$, 令 $x_2 = tx_1$,则 t > 1.

所以
$$\begin{cases} \ln x_1 + \frac{k}{x_1^2} = 0, \\ \ln x_2 + \frac{k}{x_2^2} = 0, \end{cases}$$
 即 $\ln x_2 - \ln x_1 = \frac{k}{x_1^2} - \frac{k}{x_2^2}. \dots$

...... 8分

所以
$$\ln t = \frac{k}{x_1^2} - \frac{k}{t^2 x_1^2}$$
,即 $x_1^2 = \frac{k}{\ln t} (1 - \frac{1}{t^2})$, $0 < k < \frac{1}{t^2}$

$$\frac{1}{2e}$$
, $t > 1$.

要证
$$\frac{x_1+x_2}{2} > \sqrt{2k}$$
,需证 $\sqrt{x_1x_2} > \sqrt{2k}$. … 9分

即证
$$tx_1^2 > 2k$$
,即证 $t \times \frac{k}{\ln t} (1 - \frac{1}{t^2}) > 2k$.

因为
$$0 < k < \frac{1}{2e}$$
,所以即证 $t - \frac{1}{t} > 2 \ln t(t > 1)$. …

设
$$H(t) = 2\ln t - t + \frac{1}{t}$$
,

则
$$H'(t) = \frac{2}{t} - 1 - \frac{1}{t^2} = -\frac{(t-1)^2}{t^2} < 0, t > 1.$$

所以 H(t)在 $(1,+\infty)$ 上单调递减,…… 11 分

所以
$$H(t) = 2\ln t - t + \frac{1}{t} < H(1) = 0$$
.

所以
$$\frac{x_1+x_2}{2}$$
> $\sqrt{2k}$ 12 分