Haz los ejercicios impares.

10.3 Ejercicios

- **1-2** Grafique los puntos cuyas coordenadas polares están dadas. Después encuentre otros dos pares de coordenadas polares de este punto, uno con r > 0 y uno con r < 0.
- **1**. a) $(2, \pi/3)$
- b) $(1, -3\pi/4)$
- c) $(-1, \pi/2)$

- **2.** a) $(1, 7\pi/4)$
- b) $(-3, \pi/6)$
- c) (1, -1)
- **3-4** Grafique el punto cuyas coordenadas polares están dadas. Luego, determine las coordenadas cartesianas del punto.
- **3.** a) $(1, \pi)$
- b) $(2, -2\pi/3)$
- c) $(-2, 3\pi/4)$
- 7-12 Bosqueje la región en el plano que consiste de todos los puntos cuyas coordenadas polares satisfacen las condiciones dadas
- 7. $r \ge 1$
- **8.** $0 \le r < 2$, $\pi \le \theta \le 3\pi/2$
- **9.** $r \ge 0$, $\pi/4 \le \theta \le 3\pi/4$
- **10.** $1 \le r \le 3$, $\pi/6 < \theta < 5\pi/6$
- **11.** 2 < r < 3, $5\pi/3 \le \theta \le 7\pi/3$
- **12.** $r \ge 1$, $\pi \le \theta \le 2\pi$
- 13. Encuentre la distancia entre los puntos con coordenadas polares $(2, \pi/3)$ y $(4, 2\pi/3)$.
- **14.** Encuentre una fórmula para la distancia entre los puntos con coordenadas polares (r_1, θ_1) y (r_2, θ_2) .
- 15-20 Identifique la curva encontrando una ecuación cartesiana para la curva.
- 15. $r^2 = 5$
- 16. $r = 4 \sec \theta$
- 17. $r = 2\cos\theta$
- **18**. $\theta = \pi/3$
- 19. $r^2 \cos 2\theta = 1$
- **20.** $r = \tan \theta \sec \theta$
- 21-26 Encuentre una ecuación polar para la curva representada por las ecuaciones cartesianas dadas.
- **21.** y = 2
- **22.** y = x
- **23.** y = 1 + 3x
- **24.** $4y^2 = x$
- **25.** $x^2 + y^2 = 2cx$
- **26.** xy = 4
- **29-46** Bosqueje la curva con la ecuación polar dada, graficando primero r como una función de θ en coordenadas cartesianas.
- **29**. $r = -2 \sin \theta$
- **30.** $r = 1 \cos \theta$
- **31.** $r = 2(1 + \cos \theta)$
- **32.** $r = 1 + 2\cos\theta$
- 33. $r = \theta$, $\theta \ge 0$
- **34.** $r = \ln \theta$, $\theta \ge 1$
- **35.** $r = 4 \sin 3\theta$
- 36. $r = \cos 5\theta$
- **37.** $r = 2 \cos 4 \theta$
- **38.** $r = 3 \cos 6\theta$
- **39.** $r = 1 2 \sin \theta$
- **40.** $r = 2 + \sin \theta$

- **4.** a) $(-\sqrt{2}, 5\pi/4)$
- b) $(1, 5\pi/2)$
- c) $(2, -7\pi/6)$
- 5-6 Se dan las coordenadas cartesianas de un punto.
- i) Encuentre las coordenadas polares (r,θ) del punto, donde r>0 y $0\leqslant \theta<2\pi$.
- ii) Determine las coordenadas polares (r, θ) del punto, donde r < 0 y $0 \le \theta < 2\pi$.
- **5**. a) (2, −2)
- b) $(-1, \sqrt{3})$
- **6.** a) $(3\sqrt{3}, 3)$
- b) (1, -2)
- **41.** $r^2 = 9 \sin 2\theta$
- **42**. $r^2 = \cos 4\theta$
- **43.** $r = 2 + \sin 3\theta$
- **44.** $r^2\theta = 1$
- **45.** $r = 1 + 2 \cos 2\theta$
- **46.** $r = 3 + 4\cos\theta$
- 47-48 La figura muestra una gráfica de r como una función de θ en coordenadas cartesianas. Utilícela para bosquejar la correspondiente curva polar.
- 47.

EJERCICIOS 10.3 - PÁGINA 662

1. a)

 $(1, 3\pi/2), (-1, 5\pi/2)$

3. a)

(-1, 0)

b)

c)

41.

43.

45.

47.

5. a) i) $(2\sqrt{2}, 7\pi/4)$ ii) $(-2\sqrt{2}, 3\pi/4)$ b) i) $(2, 2\pi/3)$ ii) $(-2, 5\pi/3)$

11.

13. $2\sqrt{3}$ 15. Circunferencia, centro O, radio $\sqrt{5}$

17. Circunferencia, centro (1, 0), radio 1

17. Creamicating centre (7, 9), ration (1, 9), hipérbola, centre O, focos sobre el eje x21. $r = 2 \cos \theta$ 23. $r = 1/(\sin \theta - 3 \cos \theta)$ 25. $r = 2c \cos \theta$ 27. a) $\theta = \pi/6$ b) x = 3

33.

29.

35.

37.

