MOVIELENS CASE STUDY

DATA ANALYSIS AND PREDICTION MODEL

MODULES USED: NUMPY AND PANDAS

```
In [ ]:
# Movielens case study
In [3]:
import os
In [9]:
pwd
Out[9]:
'/home/labsuser/Desktop'
In [4]:
import pandas as pd
import numpy as np
In [3]:
# Analysing the data
# Task 1
# Importing the three Datasets
In [5]:
data movies=pd.read csv('movies.dat',sep='::',engine='python',names=['MovieID', 'Title',
'Genres'])
data users=pd.read csv('users.dat', sep='::', engine='python', names=['UserID', 'Gender', 'A
ge','Occupation','Zip-code'])
data ratings=pd.read csv('ratings.dat', sep='::', engine='python', names=['UserID', 'MovieID'
', 'Rating', 'Timestamp'])
In [6]:
data movies.info()
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 3883 entries, 0 to 3882
Data columns (total 3 columns):
 # Column Non-Null Count Dtype
    MovieID 3883 non-null
                             int64
    Title 3883 non-null object
 1
 2 Genres
dtypes: int64(1), object(2)
memory usage: 91.1+ KB
In [14]:
data ratings.info()
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 1000209 entries, 0 to 1000208
Data columns (total 4 columns):
              Non-Null Count
   Column
```

```
0 UserID 1000209 non-null int64
1 MovieID 1000209 non-null int64
2 Rating 1000209 non-null int64
3 Timestamp 1000209 non-null int64
dtypes: int64(4)
```

memory usage: 30.5 MB

In [5]:

```
data ratings['Timestamp']=pd.to datetime(data ratings["Timestamp"],unit='s')
data ratings.info()
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 1000209 entries, 0 to 1000208
Data columns (total 4 columns):
              Non-Null Count
 # Column
                                  Dtype
    UserID
                1000209 non-null int64
 0
   MovieID 1000209 non-null int64
Rating 1000209 non-null int64
 1
 3
   Timestamp 1000209 non-null datetime64[ns]
dtypes: datetime64[ns](1), int64(3)
memory usage: 30.5 MB
```

In [16]:

data movies

Out[16]:

MovieID		Title	Genres
0	1	Toy Story (1995)	Animation Children's Comedy
1	2	Jumanji (1995)	Adventure Children's Fantasy
2	3	Grumpier Old Men (1995)	Comedy Romance
3	4	Waiting to Exhale (1995)	Comedy Drama
4	5	Father of the Bride Part II (1995)	Comedy
		•••	
3878	3948	Meet the Parents (2000)	Comedy
3879	3949	Requiem for a Dream (2000)	Drama
3880	3950	Tigerland (2000)	Drama
3881	3951	Two Family House (2000)	Drama
3882	3952	Contender, The(2000)	Drama Thriller

3883 rows x 3 columns

In [17]:

Creating new dataset by merging

In [10]:

```
merge_movie_ratings = pd.merge(data_movies, data_ratings, on='MovieID')
merge_movie_ratings.info()

<class 'pandas.core.frame.DataFrame'>
Int64Index: 1000209 entries, 0 to 1000208
```

```
Data columns (total 6 columns):
 #
  Column Non-Null Count
                              Dtype
   -----
0 MovieID 1000209 non-null int64
            1000209 non-null object
1
  Title
             1000209 non-null object
  Genres
             1000209 non-null int64
3
   UserID
              1000209 non-null int64
    Rating
   Timestamp 1000209 non-null int64
5
```

dtypes: int64(4), object(2)
memory usage: 53.4+ MB

In [8]:

from datetime import datetime

```
import time
def convert(seconds):
    return time.strftime("%H:%M:%S", time.gmtime(n))
```

In [11]:

In [12]:

merge movie ratings.head()

Out[12]:

	MovielD	Title	Genres	UserID	Rating	Timestamp
0	1	Toy Story (1995)	Animation Children's Comedy	1	5	978824268
1	1	Toy Story (1995)	Animation Children's Comedy	6	4	978237008
2	1	Toy Story (1995)	Animation Children's Comedy	8	4	978233496
3	1	Toy Story (1995)	Animation Children's Comedy	9	5	978225952
4	1	Toy Story (1995)	Animation Children's Comedy	10	5	978226474

In [13]:

master_data=pd.merge(merge_movie_ratings,data_users, on='UserID')

In [14]:

```
master_data.info()
<class 'pandas.core.frame.DataFrame'>
Int64Index: 1000209 entries, 0 to 1000208
```

Data	columns (tot	tal 10 co	olumns):	
#	Column	Non-Null	l Count	Dtype
0	MovieID	1000209	non-null	int64
1	Title	1000209	non-null	object
2	Genres	1000209	non-null	object
3	UserID	1000209	non-null	int64
4	Rating	1000209	non-null	int64
5	Timestamp	1000209	non-null	int64
6	Gender	1000209	non-null	object
7	Age	1000209	non-null	int64
8	Occupation	1000209	non-null	int64
9	Zip-code	1000209	non-null	object
dtype	es: int64(6),	, object	(4)	

In [15]:

```
master_data.head()
```

memory usage: 83.9+ MB

Out[15]:

ľ	MovieID	Title	Genres	UserID	Rating	Timestamp	Gender /	Age	Occupation	ZIP-
	MovieID	Title	Genres L	JserID R	ating Tir	nestamp Gen	der Age O	ccup	ation	code code
0	1	1 oy Story (1995)	Animation Children's Comedy	1	5	978824268	F	1	10	48067
1	48	Pocahontas (1995)A	nimation Children's Musical Romance	1	5	978824351	F	1	10	48067
2	150	Apollo 13	Drama	1	5	978301777	F	1	10	48067
3	260	Star Wars: Episode IV - A New Hope (1977)	Action Adventure Fantasy Sci-Fi	1	4	978300760	F	1	10	48067
4	527	Schindler's List (1993)	Drama War	1	5	978824195	F	1	10 4	48067

In [16]:

master data.describe()

Out[16]:

	MovielD	UserID	Rating	Timestamp	Age	Occupation
count	1.000209e+06	1.000209e+06	1.000209e+06	1.000209e+06	1.000209e+06	1.000209e+06
mean	1.865540e+03	3.024512e+03	3.581564e+00	9.722437e+08	2.973831e+01	8.036138e+00
std	1.096041e+03	1.728413e+03	1.117102e+00	1.215256e+07	1.175198e+01	6.531336e+00
min	1.000000e+00	1.000000e+00	1.000000e+00	9.567039e+08	1.000000e+00	0.000000e+00
25%	1.030000e+03	1.506000e+03	3.000000e+00	9.653026e+08	2.500000e+01	2.000000e+00
50%	1.835000e+03	3.070000e+03	4.000000e+00	9.730180e+08	2.500000e+01	7.000000e+00
75%	2.770000e+03	4.476000e+03	4.000000e+00	9.752209e+08	3.500000e+01	1.400000e+01
max	3.952000e+03	6.040000e+03	5.000000e+00	1.046455e+09	5.600000e+01	2.000000e+01

In [23]:

visual representation of User Age distribution

In [18]:

```
import matplotlib.pyplot as plt
import seaborn as sns
%matplotlib
```

Using matplotlib backend: Qt5Agg

In [25]:

```
# user age distribution
plt.figure(figsize=(10,8))
master_data['Age'].hist(bins=40)
plt.title("Age distribution of Users")
plt.xlabel("Age")
plt.ylabel("No. of Users")
plt.show()
```

In [26]:

#User rating of the movie "Toy Story"

In [26]:

```
Toy_story=master_data[master_data['MovieID']==1]
Toy_story.head()
```

Out[26]:

	MovielD	Title	Genres	UserID	Rating	Timestamp	Gender	Age	Occupation	Zip- code
0	1	Toy Story (1995)	Animation Children's Comedy	1	5	978824268	F	1	10	48067
53	1	Toy Story (1995)	Animation Children's Comedy	6	4	978237008	F	50	9	55117
124	1	Toy Story (1995)	Animation Children's Comedy	8	4	978233496	М	25	12	11413
263	1	Toy Story (1995)	Animation Children's Comedy	9	5	978225952	М	25	17	61614
369	1	Toy Story (1995)	Animation Children's Comedy	10	5	978226474	F	35	1	95370

In [30]:

```
plt.figure(figsize=(8,6))
Toy_story['Rating'].hist(bins=30)
plt.title("User_Rating for Toy Story")
plt.xlabel("Rating")
plt.ylabel("No of users")
```

Out[30]:

Text(0, 0.5, 'No of users')

In [31]:

```
master_data['Rating'][master_data['Title'] == "Toy Story (1995)"].value_counts()
```

Out[31]:

4 835

5 820

3 345

2 61

1 16

Name: Rating, dtype: int64

In [30]:

#Top 25 movies by viewership rating

In [33]:

```
rating_avg = merge_movie_ratings.groupby('Title')['Rating'].mean()
rating_avg.head()
```

Out[33]:

Title \$1,000,000 Duck (1971) 3.027027 'Night Mother (1986) 3.371429 'Til There Was You (1997) 2.692308 'burbs, The (1989) 2.910891 ...And Justice for All (1979) 3.713568

Name: Rating, dtype: float64

In [34]:

```
rating_avg = rating_avg.sort_values(ascending=False)
rating_avg.head()
```

Out[34]:

Title

Gate of Heavenly Peace, The (1995) 5.0 Lured (1947) 5.0

Smashing Time (1967) 5.0
Follow the Bitch (1998) 5.0
Name: Rating, dtype: float64

In [36]:

```
rating_count = master_data.groupby('Title')['Rating']
rating_count = rating_count.count().sort_values(ascending=False)
rating_count[:25]
```

Out[36]:

Title	
American Beauty (1999)	3428
Star Wars: Episode IV - A New Hope (1977)	2991
Star Wars: Episode V - The Empire Strikes B	Back (1980) 2990
Star Wars: Episode VI - Return of the Jedi	(1983) 2883
Jurassic Park (1993)	2672
Saving Private Ryan (1998)	2653
Terminator 2: Judgment Day (1991)	2649
Matrix, The (1999)	2590
Back to the Future (1985)	2583
Silence of the Lambs, The (1991)	2578
Men in Black (1997)	2538
Raiders of the Lost Ark (1981)	2514
Fargo (1996)	2513
Sixth Sense, The (1999)	2459
Braveheart (1995)	2443
Shakespeare in Love (1998)	2369
Princess Bride, The (1987)	2318
Schindler's List (1993)	2304
	0000

Star Wars: Episode I - The Phantom Menace (1999) Being John Malkovich (1999) Shawshank Redemption, The (1994)

Godfather, The (1972) Name: Rating, dtype: int64

E.T. the Extra-Terrestrial (1982)

L.A. Confidential (1997)

Groundhog Day (1993)

In [37]:

```
rating_avg_count = pd.DataFrame(data=rating_avg)
rating_avg_count['number_of_ratings'] = pd.DataFrame(rating_count)
rating_avg_count.head()
```

2288

2278

2269

2250

2241

2227

2223

Out[37]:

Rating number_of_ratings

Title

Gate of Heavenly Peace, The (1995)	5.0	3
Lured (1947)	5.0	1
Ulysses (Ulisse) (1954)	5.0	1
Smashing Time (1967)	5.0	2
Follow the Bitch (1998)	5.0	1

In [38]:

rating avg count.describe()

Out[38]:

Rating number_of_ratings

count	3706.000000	3706.000000
mean	3.238892	269.889099

```
0.672925
                           384.047838
 std
           Rating number_of_ratings
                             1.000000
min
          1.00000<del>0</del>
         2.822705
                            33.000000
25%
50%
         3.331546
                           123.500000
         3.740741
                           350.000000
75%
         5.000000
                          3428.000000
max
```

In [39]:

Top 25 movies by viewership rating excluding movies with less than 10 ratings
filter_data = rating_avg_count[rating_avg_count['number_of_ratings'] > 10]
filter_data[:25]

Out[39]:

Rating number_of_ratings

Title

		Title
69	4.608696	Sanjuro (1962)
628	4.560510	Seven Samurai (The Magnificent Seven) (Shichinin no samurai) (1954)
2227	4.554558	Shawshank Redemption, The (1994)
2223	4.524966	Godfather, The (1972)
657	4.520548	Close Shave, A (1995)
1783	4.517106	Usual Suspects, The (1995)
2304	4.510417	Schindler's List (1993)
882	4.507937	Wrong Trousers, The (1993)
470	4.491489	Sunset Blvd. (a.k.a. Sunset Boulevard) (1950)
2514	4.477725	Raiders of the Lost Ark (1981)
1050	4.476190	Rear Window (1954)
230	4.473913	Paths of Glory (1957)
2991	4.453694	Star Wars: Episode IV - A New Hope (1977)
480	4.452083	Third Man, The (1949)
1367	4.449890	Dr. Strangelove or: How I Learned to Stop Worrying and Love the Bomb (1963)
27	4.44444	For All Mankind (1989)
438	4.426941	Wallace & Gromit: The Best of Aardman Animation (1996)
928	4.425647	To Kill a Mockingbird (1962)
551	4.415608	Double Indemnity (1944)
1669	4.412822	Casablanca (1942)
56	4.410714	World of Apu, The (Apur Sansar) (1959)
2459	4.406263	Sixth Sense, The (1999)
215	4.404651	Yojimbo (1961)
47	4.404255	Pather Panchali (1955)
831	4.401925	Lawrence of Arabia (1962)

In [32]:

the ratings for all the movies reviewed by for a particular user of user id = 2696

In [45]:

```
user_2696 = master_data[master_data['UserID'] == 2696]
user_2696
```

	MovielD	Title	Genres	UserID	Rating	Timestamp	Gender	Age	Occupation Zip-
991035	350	Client, The (1994)	Drama Mystery Thriller	2696	3	973308886	M	25	7 24210
991036	800	Lone Star (1996)	Drama Mystery	2696	5	973308842	М	25	7 24210
991037	1092	Basic Instinct (1992)	Mystery Thriller	2696	4	973308886	М	25	7 24210
991038	1097	E.T. the Extra- Terrestrial (1982)	Children's Drama Fantasy Sci- Fi	2696	3	973308690	М	25	7 24210
991039	1258	Shining, The	Horror	2696	4	973308710	М	25	7 24210
991040	1270	Back to the Future (1985)	Comedy Sci-Fi	2696	2	973308676	М	25	7 24210
991041	1589	d 7)		2696	3	973308865	M	25	7 24210
991042	1617	L.A.	Crime Film- Noir Mystery Thriller	2696	4	973308842	М	25	7 24210
991043	1625	Game, T ne (1997)	Mystery Thriller	2696	4	973308842	М	25	7 24210
991044	1644	I Know Wh at You Did La st Summer (1997)	Horror Mystery Thriller	2696	2	973308920	М	25	7 24210
991045	1645	Devil's Advocate, The (1997)	Crime Horror Mystery Thriller	2696	4	973308904	М	25	7 24210
991046	1711	Midnight in the Garden of Goodand Evil (1997)	Comedy Crime Drama Mystery	2696	4	973308904	M	25	7 24210
991047	1783	Palmetto	Film-Noir Mystery Thriller	2696	4	973308865	M	25	7 24210
991048	1805	Wild Things (ชยชา)	Crime Drama Mystery Thriller	2696	4	973308886	М	25	7 24210
991049	1892	Murder, A (1998)	Mystery Thriller	2696	4	973308904	М	25	7 24210
991050	2338	I Still Know What You Did Last Summer (1998)	Horror Mystery Thriller	2696	2	973308920	М	25	7 24210
991051	2389	Psycho (1998)	Crime Horror Thriller	2696	4	973308710	M	25	7 24210
991052	2713	Lake Placid (1999)	Horror Thriller	2696	1	973308710	М	25	7 24210
991053	3176	Talented Mr. Ripley, The (1999)	Drama Mystery Thriller	2696	4	973308865	М	25	7 24210
991054	3386	JFK (1991)	Drama Mystery	2696	1	973308842	М	25	7 24210

In [38]:

Unique Genres

```
In [48]:
merge movie ratings['Genres'].value counts().head()
Out[48]:
Comedy
                   116883
Drama
                   111423
Comedy|Romance
                    42712
Comedy|Drama
                    42245
Drama|Romance
                   29170
Name: Genres, dtype: int64
In [49]:
master data['Genres'].unique().tolist()
Out[49]:
["Animation|Children's|Comedy",
 "Animation|Children's|Musical|Romance",
 'Drama',
 'Action | Adventure | Fantasy | Sci-Fi',
 'Drama|War',
 "Children's | Drama",
 "Animation | Children's | Comedy | Musical",
 "Animation | Children's | Musical",
 'Crime|Drama|Thriller',
 'Animation',
 'Animation|Comedy|Thriller',
 'Musical|Romance',
 "Adventure | Children's | Drama | Musical",
 'Musical',
 "Children's | Comedy | Musical",
 "Children's | Drama | Fantasy | Sci-Fi",
 'Action|Adventure|Comedy|Romance',
 'Comedy|Sci-Fi',
 'Action | Adventure | Drama',
 "Adventure | Animation | Children's | Comedy | Musical",
 'Drama|Romance',
 "Animation | Children's",
 'Action|Drama|War',
 'Comedy',
 'Romance',
 'Action|Crime|Romance',
 'Thriller',
 'Comedy|Fantasy',
 'Comedy|Drama',
 "Children's|Comedy|Drama",
 'Drama|Musical',
 'Drama|Romance|War|Western',
 'Crime|Drama',
 'Action|Comedy|Western',
 'Action|Romance|Thriller',
 'Western',
 "Children's | Comedy",
 'Adventure | Drama | Western',
 'Comedy|Romance',
 'Comedy|Drama|Romance',
 'Drama|Romance|War',
 "Children's | Comedy | Western",
 "Adventure | Animation | Children's | Musical",
 'Action|Romance',
 'Action|Adventure|Romance|Sci-Fi|War',
 'Comedy | Musical | Romance',
 'Drama|Romance|Thriller',
 "Adventure | Children's | Comedy",
 'Action|Adventure|Romance',
 "Children's|Fantasy|Musical",
 "Animation|Children's|Comedy|Musical|Romance",
 'Comedy|Fantasy|Romance',
```

```
'Action|Drama',
'Comedy|Musical',
'Action',
'Adventure | Drama | Romance | Sci-Fi',
'Action|Crime',
'Drama|Thriller',
'Drama|Sci-Fi',
'Action|Crime|Drama',
'Drama|Thriller|War',
'Drama|Horror',
'Action|Thriller',
'Action|Adventure|Thriller',
'Action|Adventure|Sci-Fi',
'Action|Sci-Fi|Thriller',
'Animation|Sci-Fi',
'Adventure|Animation|Sci-Fi|Thriller',
'Action|Drama|Romance',
'Action|Drama|Thriller|War',
'Action|Adventure|Comedy|Sci-Fi',
'Crime | Drama | Mystery',
'Drama|Sci-Fi|Thriller',
'Comedy | Crime | Drama | Mystery',
'Action|Comedy|Drama',
'Action|Crime|Thriller',
"Adventure | Children's | Drama",
'Drama|Mystery',
'Action|Comedy|Sci-Fi|Thriller',
'Action|Adventure|Sci-Fi|Thriller',
'Action|Drama|Romance|Thriller',
'Crime|Thriller',
'Documentary',
'Comedy | Crime | Fantasy',
'Animation|Comedy',
'Comedy|Crime',
'Crime|Film-Noir|Mystery|Thriller',
'Sci-Fi|Thriller',
'Action|Sci-Fi',
'Horror|Sci-Fi|Thriller',
"Adventure | Children's | Fantasy",
'Action | Adventure | Comedy | Crime',
'Action|Adventure',
'Action|Drama|Thriller',
"Children's | Comedy | Fantasy",
'Comedy|Romance|War',
'Film-Noir|Sci-Fi',
'Comedy|Romance|Thriller',
'Action|Adventure|Crime|Drama',
'Action|Adventure|Mystery',
'Action|Adventure|Fantasy',
'Sci-Fi|War',
'Action|Sci-Fi|War',
'Mystery|Thriller',
'Film-Noir|Mystery',
'Drama|Mystery|Sci-Fi|Thriller',
'Action | Adventure | Romance | War',
"Adventure | Children's",
"Adventure | Children's | Fantasy | Sci-Fi",
"Adventure | Children's | Musical",
"Adventure | Children's | Comedy | Fantasy",
'Action | Adventure | Drama | Sci-Fi | War',
'Action|Sci-Fi|Thriller|War',
'Action|Western',
'Adventure|War',
'Action|Horror|Sci-Fi|Thriller',
'Action|Adventure|Comedy|Horror|Sci-Fi',
'Action|Comedy|Musical',
'Film-Noir|Mystery|Thriller',
'Adventure',
'Comedy|War',
'Adventure | Comedy | Drama',
'Comedy|Mystery|Thriller',
'Comedy|Horror',
```

```
'Horror|Romance',
'Horror',
'Action|Horror',
'Action|Romance|War',
"Children's|Fantasy",
"Children's|Drama|Fantasy",
'Action|Adventure|Sci-Fi|War',
'Action|Horror|Sci-Fi',
'Action|Comedy|Crime|Drama',
'War',
'Comedy|Sci-Fi|Western',
'Fantasy|Sci-Fi',
"Action | Adventure | Children's | Comedy",
"Adventure | Children's | Drama | Romance",
"Adventure|Children's|Sci-Fi",
"Children's",
"Adventure | Children's | Comedy | Fantasy | Sci-Fi",
"Animation | Children's | Fantasy | Musical",
"Children's|Sci-Fi",
'Adventure | Comedy',
'Adventure | Musical',
"Animation | Children's | Drama | Fantasy",
"Children's|Fantasy|Sci-Fi",
'Drama|Fantasy',
'Action|Adventure|Horror|Thriller',
'Comedy|Horror|Musical|Sci-Fi',
'Comedy|Horror|Musical',
'Action|Horror|Thriller'
'Action|Drama|Fantasy|Romance',
'Adventure|Fantasy|Sci-Fi',
'Comedy|Drama|War',
'Comedy|Drama|Western',
'Adventure | Comedy | Sci-Fi',
"Action|Children's|Fantasy",
'Adventure|Fantasy',
'Comedy|Western',
'Crime|Drama|Sci-Fi',
'Adventure|Sci-Fi',
'Adventure | Drama',
'Action|Adventure|Drama|Romance',
'Action | Comedy | Musical | Sci-Fi',
'Action | Adventure | Crime',
'Action|Comedy|War',
'Action|Comedy',
'Comedy|Crime|Horror',
"Action|Adventure|Children's|Sci-Fi",
'Action|Adventure|Comedy',
'Action|Adventure|Romance|Thriller',
'Film-Noir|Thriller',
'Action|Comedy|Sci-Fi|War',
'Comedy|Crime|Mystery|Thriller',
"Action|Children's",
'Crime | Drama | Mystery | Thriller',
'Action|Drama|Sci-Fi|Thriller',
"Children's | Musical",
"Adventure | Animation | Children's | Sci-Fi",
'Adventure | Fantasy | Romance',
'Action | Adventure | Horror',
'Action|Comedy|Fantasy',
'Animation|Musical',
'Action|War',
'Comedy|Crime|Thriller',
'Action|Sci-Fi|Western',
'Adventure | Animation | Film-Noir',
'Adventure|Romance|Sci-Fi',
'Adventure|Drama|Thriller',
'Adventure|Western',
'Action|Crime|Sci-Fi',
'Sci-Fi',
'Horror|Thriller',
'Action|Adventure|Comedy|Horror',
'Horror|Sci-Fi',
```

```
'Action | Mystery | Romance | Thriller',
'Horror|Mystery|Thriller',
'Crime | Horror | Mystery | Thriller',
'Mystery|Sci-Fi|Thriller',
'Comedy | Documentary',
'Action|Sci-Fi|Thriller|Western',
'Drama|Mystery|Thriller',
'Action|Romance|Sci-Fi',
'Action|Adventure|Animation',
'Adventure|Animation|Sci-Fi',
'Action|Comedy|Crime|Horror|Thriller',
'Crime | Drama | Romance | Thriller',
'Action | Adventure | Animation | Horror | Sci-Fi',
'Comedy|Fantasy|Romance|Sci-Fi',
'Comedy|Mystery|Romance|Thriller',
'Crime | Drama | Film-Noir',
'Crime|Film-Noir|Thriller',
'Crime',
'Film-Noir|Sci-Fi|Thriller',
'Comedy|Thriller',
'Action|Crime|Drama|Thriller',
'Mystery|Sci-Fi',
'Action|Adventure|Sci-Fi|Thriller|War',
'Crime|Film-Noir',
'Adventure|Thriller',
'Mystery|Romance|Thriller',
'Comedy|Crime|Drama',
'Adventure|Crime|Sci-Fi|Thriller',
'Action|Adventure|Mystery|Sci-Fi',
'Action|Adventure|Western',
'Action|Drama|Mystery',
"Adventure | Animation | Children's | Comedy | Fantasy",
'Drama|Musical|War',
'Comedy|Mystery',
'Adventure|Sci-Fi|Thriller',
"Children's|Comedy|Sci-Fi",
'Adventure | Romance',
'Drama | Mystery | Romance',
'Adventure | Drama | Romance',
'Comedy|Drama|Sci-Fi',
'Romance|Thriller',
'Film-Noir|Romance|Thriller',
'Crime | Drama | Film-Noir | Thriller',
'Drama|Fantasy|Romance|Thriller',
'Action|Drama|Mystery|Romance|Thriller',
'Action|Thriller|War',
"Animation|Children's|Fantasy|War",
'Documentary|Musical',
'Adventure | Comedy | Romance',
"Adventure | Children's | Comedy | Musical",
'Action|Mystery|Thriller',
"Children's|Horror",
'Adventure | Musical | Romance',
"Children's|Comedy|Mystery",
'Romance|War',
'Action|Comedy|Romance|Thriller',
'Musical|Romance|War',
"Animation | Children's | Comedy | Romance",
'Comedy|Mystery|Romance',
'Action|Drama|Western',
"Action | Animation | Children's | Sci-Fi | Thriller | War",
'Comedy|Drama|Musical',
'Adventure | Comedy | Musical',
'Action|Crime|Mystery|Thriller',
'Action|Adventure|Drama|Thriller',
'Action|Adventure|Comedy|War',
'Mystery',
'Drama|Western',
'Action | Adventure | Crime | Thriller',
'Action|Mystery|Sci-Fi|Thriller',
"Adventure | Children's | Comedy | Fantasy | Romance",
"Adventure | Children's | Romance",
```

```
"Action | Adventure | Animation | Children's | Fantasy",
 "Action|Adventure|Children's",
 "Adventure | Animation | Children's",
 'Musical|War',
 'Action|Crime|Mystery',
 "Adventure | Animation | Children's | Fantasy",
 'Comedy|Horror|Thriller',
 'Film-Noir',
 'Crime|Film-Noir|Mystery',
 'Drama|Film-Noir|Thriller',
 'Drama|Film-Noir',
 'Action|Adventure|War',
 'Crime | Drama | Romance',
 'Documentary|War',
 'Sci-Fi|Thriller|War',
 'Action|Comedy|Crime',
 'Crime|Horror',
 'Drama|Romance|Sci-Fi',
 'Crime|Mystery',
 'Comedy|Drama|Thriller',
 'Crime|Horror|Thriller',
 'Horror|Mystery',
 'Documentary | Drama',
 'Drama | Horror | Thriller',
 'Comedy|Horror|Sci-Fi',
 "Action|Adventure|Children's|Fantasy",
 'Animation|Mystery',
 'Comedy|Romance|Sci-Fi',
 'Romance|Western',
 'Drama|Romance|Western',
 'Comedy|Film-Noir|Thriller',
 'Film-Noir|Horror',
 'Fantasy']
In [51]:
# Splitting of genres into different columns
In [ ]:
# Genre category with a one-hot encoding ( 1 and 0)
In [52]:
split data = master data[[
    'Gender',
    'Age',
    'Occupation',
    'Rating',
    'Genres'
]]
In [59]:
Genre = master data['Genres']
Genre = Genre.str.get dummies().add prefix('Genres')
genres df = pd.concat(
       [split_data.drop(
        ['Genres'],
        axis=1
    ),
     Genre],
    axis=1,
genres_df.head()
Out [59]:
```

Gender Age Occupation Rating Genres_Action Genres_Adventure Genres_Animation Genres_Children's Genres_Comed

```
OG ende Rating Genres_Action Genres_Adventure Genres_Animation Genres_Children's Genres_Comed
      F
                     10
                            5
                                        0
                                                        0
                                                                                       0
3
      F
           1
                     10
                            4
                                        1
                                                        1
                                                                       0
                                                                                       0
                     10
                            5
```

5 rows x 22 columns

```
In [60]:
genres_df = pd.get_dummies(
    genres df,
```

In [61]:

genres df.head()

columns=['Gender']

Out[61]:

	Age	Occupation	Rating	Genres_Action	Genres_Adventure	Genres_Animation	Genres_Children's	Genres_Comedy Genr
0	1	10	5	0	0	1	1	1
1	1	10	5	0	0	1	1	0
2	1	10	5	0	0	0	0	0
3	1	10	4	1	1	0	0	0
4	1	10	5	0	0	0	0	0

5 rows x 23 columns

In [62]:

genres df.columns

Out[62]:

In [63]:

genres df.describe()

Out[63]:

	Age	Occupation	Rating	Genres_Action	Genres_Adventure	Genres_Animation	Genres_Children's G
count	1.000209e+06	1.000209e+06	1.000209e+06	1.000209e+06	1.000209e+06	1.000209e+06	1.000209e+06
mean	2.973831e+01	8.036138e+00	3.581564e+00	2.574032e-01	1.339250e-01	4.328395e-02	7.217092e-02
std	1.175198e+01	6.531336e+00	1.117102e+00	4.372036e-01	3.405719e-01	2.034957e-01	2.587708e-01
min	1.000000e+00	0.000000e+00	1.000000e+00	0.000000e+00	0.000000e+00	0.000000e+00	0.000000e+00
25%	2.500000e+01	2.000000e+00	3.000000e+00	0.000000e+00	0.000000e+00	0.000000e+00	0.000000e+00
50%	2.500000e+01	7.000000e+00	4.000000e+00	0.000000e+00	0.000000e+00	0.000000e+00	0.000000e+00

8 rows x 23 columns

In []:

Features affecting the ratings of any particular movie

```
In [65]:
```

```
genres_df.dtypes
```

```
Out[65]:
```

```
int64
Age
                  int64
Occupation
Rating
                  int64
Genres_Action
                 int64
Genres Adventure
                 int64
Genres_Animation
                 int64
Genres Children's
                  int64
Genres Comedy
                 int64
Genres Crime
                  int64
Genres_Documentary int64
Genres_Drama
                 int64
Genres Fantasy
                  int64
Genres Film-Noir
                  int64
                  int64
Genres Horror
Genres Musical
                  int64
Genres_Mystery
                  int64
Genres_Romance
                  int64
Genres Sci-Fi
                  int64
Genres Thriller
                  int64
Genres_War
                  int64
Genres_Western
                  int64
                 uint8
Gender_F
```

uint8

In [71]:

Gender_M
dtype: object

```
# Linear Regression
# Model for prediction
from sklearn.linear_model import LinearRegression
from sklearn.model_selection import train_test_split

from sklearn import metrics

lineReg = LinearRegression(
    copy_X=True,
    fit_intercept=True,
    n_jobs=1,
    normalize=False
)
```

In [72]:

```
sample_df = genres_df.sample(
    n=50000,
    random_state=0
)
sample_df.head()
```

Out[72]:

```
818637
                                 0
                                                           0
                                                                                    0
148677
       18
                14
                                              0
                                                                        0
                      5
778790
                7
                      4
                                              0
                                                           0
                                                                                    1
525489
       25
                                              0
                                                           0
                                                                        0
                                                                                    0
5 rows x 23 columns
In [73]:
X = sample_df.drop('Rating', axis=1)
y = sample_df['Rating']
In [74]:
X_train, X_test, y_train, y_test = train_test_split(
   y,
   test_size=0.20,
   random state=0
In [77]:
X.shape, y.shape
Out[77]:
((50000, 22), (50000,))
In [78]:
lin reg = LinearRegression()
In [80]:
lin reg.fit(X train, y train)
Out[80]:
LinearRegression(copy_X=True, fit_intercept=True, n_jobs=None, normalize=False)
In [83]:
y pred = lin reg.predict(X test)
y_pred
Out[83]:
array([4.3223625 , 3.43954818, 3.40859324, ..., 3.78446548, 3.45475971,
      3.52162023])
In [84]:
print(
    'y-intercept: ',
   lin reg.intercept
    'Beta coefficients: ',
    lin_reg.coef_
    'Mean Abs Error MAE: ',
   metrics.mean_absolute_error(y_test, y_pred)
print(
   'Mean Sq Error MSE: ',
```

324271

18

4

4

0

0

0

0

1

```
)
print(
   'Root Mean Sq Error RMSE:',
   np.sqrt(metrics.mean_squared_error(y_test, y_pred))
print(
   'r2 value: ',
   metrics.r2 score(y test, y pred)
y-intercept: 3.3714137555159627
Beta coefficients: [ 0.00406322  0.00098825 -0.0933231  0.00822898  0.41190314 -0.32536
-0.00937548 0.07845926 0.43311855 0.22781148 0.07368389 0.3951835
 -0.29085584 0.12523149 0.02288591 0.00234758 -0.01347635 0.06128953
 0.30880281 0.14777492 0.01440465 -0.01440465]
Mean Abs ErrorMAE: 0.8978299534841195
Mean Sg Error MSE: 1.1977731707567232
Root Mean Sq Error RMSE: 1.0944282391992282
r2 value: 0.03795269985311833
In [ ]:
Main features affecting the ratings for the movies- 1.Age and 2.Occupation
In [85]:
# Prediction of movie ratings
X train.dtypes
Out[85]:
Age
                     int64
Occupation
                     int.64
Genres_Action
                    int64
Genres_Adventure
                    int64
Genres_Animation
                    int64
                    int64
Genres Children's
Genres_Comedy
                    int64
                     int64
Genres Documentary int64
Genres Drama
                     int64
Genres_Fantasy
                   int64
Genres_Film-Noir
                   int64
                    int64
Genres Horror
                    int64
Genres Musical
Genres_Mystery
                    int64
Genres Romance
                    int64
Genres Sci-Fi
                    int64
Genres Thriller
                   int64
Genres War
                    int64
Genres Western
                    int64
Gender F
                    uint8
{\tt Gender\_M}
                    uint8
dtype: object
In [87]:
prediction df = pd.DataFrame({'Test': y test, 'Prediction': y pred})
prediction df.head()
Out[87]:
      Test Prediction
187446
        4 4.322363
```

metrics.mean_squared_error(y_test, y_pred)

69421

941725

841836

4 3.439548

3

3.408593

3.652663

In []:		

869012 Tes4 Predication