Introduction to Quantum Computing Workshop

Join!

People Interested in Quantum Universal Education Discord: https://discord.gg/NDm9e9W

Alberto

BS Computing. Studying the MS's in computer science

Lia

CS PhD student at University of Oxford. Qiskit Advocate

Sans

BS Computer Engineering at Clemson University

We're developing community-driven, open-source, accessible quantum education materials: Anyone can contribute and get a free t-shirt!

fullstackquantumcomputation.tech/contributing

what is quantum computing?

Quantum computers make direct use of quantum-mechanical phenomena, such as superposition and entanglement, to perform operations on data.

What does the field look like today?

And what might it look like in the coming years?

Maslov, Dmitri & Nam, Yunseong & Kim, Jungsang. (2019). An Outlook for Quantum Computing. Proceedings of the IEEE. 107. 5-10. 10.1109/JPROC.2018.2884353.

~1950's Classical Computing

Algorithms

Assembly Language

Vacuum Tubes, Relay Circuits

Today's Classical Computing

Algorithms

High-Level Languages

Compiler

OS

Architecture

Modular hardware blocks:
Gates, registers

VLSI Circuits

Semiconductor transistors

Quantum Toolflows

Algorithms

High-level QC Languages.
Compilers.
Optimization.
Error Correcting Codes
Orchestrate classical gate
control,
Orchestrate qubit motion
and manipulation.

Qubit implementations

QUANTUM INFORMATION

what is a qubit?

$$|\Psi\rangle = \alpha |0\rangle + \beta |1\rangle$$

Multiple qubits

If
$$|\Psi\rangle_{12} = \frac{1}{\sqrt{2}} |00\rangle + \frac{1}{\sqrt{2}} |11\rangle$$
 then it is

$$|\alpha|^2 + |\beta|^2 = 1$$

$$\alpha, \beta \in \mathbb{G}^2$$

$$|0> = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$$
 $|0> - |1> = \frac{|0> - |1>}{\sqrt{2}}$

|1>

qubit vs bit

N qubits = 2^N bits

 $U^{\dagger}U = I$

The probability to obtain a state is equal to

 $|\alpha|^2$

α, ©²

Measurement "collapse"

|outcome><outcome|Ψ>

Hadamard gate

probability is amplitude squared

When observed there is a:

$$\frac{1}{3} \quad \text{probability of} \quad \left| \begin{array}{c} 1 \\ 1 \\ 2 \\ 3 \end{array} \right| \quad \text{probability of} \quad \left| \begin{array}{c} 1 \\ 1 \\ 1 \\ 1 \\ 1 \end{array} \right|$$

Quantum entanglement

$$\left| \begin{array}{c} -1 \\ \hline \end{array} \right| = \sqrt{\frac{1}{2}} \left| \begin{array}{c} 1 \\ \hline \end{array} \right| \left| \begin{array}{c} 1 \\ \hline \end{array}$$

 $\times m$

and

Qiskit

 $\times (p-m)$

Success

\f

Balanced

× <u>p</u>

and

p 2

 $\times m$ and

 $\times (p-m)$

Failure

Constant

p

or

Classical

Test f some number of times exponential in n.

Quantum

Test U_f once.

Deutsch-Jozsa algorithm

Failure: measure all zero's

Success: measure anything else

(Constant) (Balanced)

IBM Quantum Experience

Easiest way to use a quantum computer: drag & drop in-browser!

At https://quantum-computing.ibm.com/ you can make circuits to run on several types of quantum computers around the world!

Graphic mode

Code mode

IBM Quantum Experience

Easiest way to use a quantum computer: drag & drop in-browser!

At https://quantum-computing.ibm.com/ you can make circuits to run on several types of quantum computers around the world!

What does U_f look like in the balanced case?

What does the Deutsch-Jozsa algorithm look like for *n*=2?

Installation of Qiskit

Qiskit is tested and supported on the following 64-bit systems:

- Ubuntu 16.04 or later
- MacOS 10.12.6 or later
- Windows 7 or later

The recommendation by the official site, indicate to use a Conda environment (possible in Windows and Linux) that allows to specify a specific version of Python and a set of libraries.

Command line:

conda create -n name_of_my_env python=3
conda activate name_of_my_env

The following command installs the packages: Terra, Aer, Ignis, and Aqua.

pip install qiskit

To use visualization functionality or Jupyter notebooks

pip install qiskit[visualization]

Validate the installation using in a python file the command

import qiskit