

BITNG LAB UPDATE

Carl Demolder
Date 8/05/2021

Progress from last week

- Shriner's Project:
 - Strain sensor
 - Different substrates and encapsulations
- Shinjae Firmware:
 - ADS1299
 - ADS1292

SHRINER'S PROJECT

Screen printing: Strain Sensors

- Carbon Black
 - $\Delta R/R \% = 2.72 \%$
- Graphene
 - $\Delta R/R \% = 4.4 \%$
- Hybrid mixture: CB w/ AgNP
 - $\Delta R/R \% = 4.62 \%$
- Goal:
 - Increase ΛR/R %

Carbon Black

Graphene

- Next Steps:
 - Going to research different inks that have a larger resistance change due to bending

Reference: "Highly sensitive screen printed strain sensors on flexible substrates via ink composition optimization" 2019

Strain Sensor: Multi-Layer Ink

- Possible solutions:
 - Multiple layers of ink deposition
 - Top layer = AgNP (low resistance)
 - Bottom layer = CB or Graphene (high resistance)
- Micro cracks are produced in the AgNP layer
 - Micro cracks create disconnections in AgNP
 - Current flows through high resistivity layer
 - Produces a higher $\Delta R/R$

Reference: "Printability of the Screen-Printed Strain Sensor with Carbon Black/Silver Paste for Sensitive Wearable Electronics" 2020

AgNP on top

CB & Graphene on bottom

Strain Sensor: Substrate

- Problem:
 - Substrate controls the amount of permitted strain
 - PET = Micro-strain only
 - Small ∆R/R
 - TPU = Excessive strain on ink
 - Occasional loss of connection
 - Massive ∆R/R

Change substrate and encapsulation method

PDMS

LDPE

Strain Sensor Comparison

Manufacturing	Ink	ΔR/R	Substrate	Encapsulation
Commercial	Proprietary	89%	Proprietary	
Drop Casting	AgNW	< 1%		
Screen Printing	AgNP	3.16%	PET	EcoFlex
	Graphene	4.4%		
	СВ	2.73%		
	CB + AgNP Mixture	4.62%		
	T-AgNP & B-Graphene	8.89%		
	T-AgNP & B-CB	10.74%		
	T-AgNP & B-CB	*52,214%	TPU	
		*151,063%		
	AgNP	**234%	LDPE TPU	PDMS (4:1)
		*224%		

Strain Sensor: Next Steps

- Screen printing
 - Substrate: stiffer (Too much strain with TPU)
 - Encapsulate in PDMS
 - PEN
 - Stiffer TPU material
- Goal:
 - Micro-strain + Strain

Firmware Development

- ADS1292
 - Initial firmware driver finished
 - Debugging firmware finished
 - Bluetooth Communication Protocol Documentation [WIP]
- ADS1299
 - Initial firmware driver finished
 - Debugging firmware [TO DO]

PATH FORWARD

Path forward (8/02/21 - 8/09/21)

- Shriner's Project:
 - Strain sensor
 - Explore stiffer substrates
- Shinjae Firmware:
 - ADS1299
 - Debug firmware
 - ADS1292
 - Debug firmware

APPENDIX

