CLAIM AMENDMENTS

1. (Currently Amended) A compound of the formula:

$$R^4$$
 $O-Q$
 R^3
 R^4
 $O-Q$
 OR^6
 R^2
 R^2
 R^2
 R^1
 R^1
 R^1
 $O-Q$
 OR^6
 $O-Q$
 OR

wherein:

 R^1 is an alkyl, an alkenyl, an alkynyl, a cycloalkyl, an aryl, or an aralkyl, wherein R^1 is unsubstituted or substituted with one or more substituents, which are the same or different, selected from the group consisting of R^7 , OR^7 , SR^7 , NR^8COR^7 , NR^8CSR^7 , $NR^8CO_2R^7$, $NR^8CO_2R^7$, $NR^8CS_2R^7$, O_2CR^7 , S_2CR^7 , $SCOR^7$, $OCSR^7$, SO_2R^7 , OSO_2R^7 , $NR^8SO_2R^7$, CN, NO_2 , N_3 , and a halogen, wherein R^7 is an alkyl, an aryl or an aralkyl, wherein R^7 is unsubstituted or substituted with one or more halogen atoms, which are the same or different, and R^8 is H or an alkyl;

 R^2 and $R^{2'}$ are the same or different and each is H, an alkyl, an alkenyl, an alkynyl, a cycloalkyl, an aryl, or an aralkyl, wherein R^2 is unsubstituted or substituted with one or more substituents, which are the same or different, selected from the group consisting of OR^7 , CN, NO_2 , N_3 , and a halogen;

R³ and R³ are the same or different and each is H, an alkyl, an alkenyl, an alkynyl, a cycloalkyl, an aryl, or an aralkyl, wherein R³ is unsubstituted or substituted with one or more substituents, which are the same or different, selected from the group consisting of a trialkylsilyl, an aryldialkylsilyl, an alkyldiarylsilyl, CN, NO₂, N₃, halogens, OR⁷, P(O)(OR⁷)(OR⁸), COR⁹, CSR⁹, CO₂R⁹, COSR⁹, CSOR⁹, CONR⁸R⁹, CSNR⁸R⁹, SO₂R⁹, and SO₂NR⁸R⁹, wherein R⁹ is H, an alkyl, an alkenyl, an alkynyl, a cycloalkyl, an aralkyl, or an aryl, wherein R⁹ is unsubstituted or substituted with one or more substituents, which are the same or different, selected from the group consisting of CN, NO₂, N₃, and a halogen; or

R² and R³, R² and R³, R² and R³, or R² and R³, together with the carbon atoms to which they are bonded, eomprise form a cyclic substituent of the formula:

$$\begin{array}{c|c} a & & \\ \hline \\ c & & \\ \end{array}$$

wherein p is an integer from 0-6 and a-d are the same or different and each is selected from the group consisting of H, an alkyl, a nitro, an amino, a hydroxy, a thio, a cyano and a halogen;

R⁴ is a protecting group or a solid support;

R⁵ is H or an alkyl, which is unsubstituted or substituted with one or more substituents, which are the same or different, selected from the group consisting of OR², CN, NO₂, N₃, and a halogen;

R⁶ is a protecting group, an amidoalkyl in which the nitrogen atom is 2, 4, or 5 carbon atoms removed from the oxygen of OR⁶, an alkyl, an alkyl ketone, an alkenyl, an alkynyl, a cycloalkyl, an aryl, or an aralkyl, wherein R⁶ is unsubstituted or substituted with one or more substituents, which are the same or different, selected from the group consisting of CN, NO₂, N₃, and a halogen;

Q is a nucleoside, an oligonucleotide comprising <u>having</u> a nucleoside, or an oligomer comprising <u>having</u> a nucleoside, wherein said <u>the</u> nucleoside is of the formula:

wherein:

B is a labeling group, an alkyl, an alkenyl, an alkynyl, a cycloalkyl, an aryl, a heteroaryl, a heterocycloalkyl, an aralkyl, an amino, an alkylamino, a dialkylamino, a purine, a pyrimidine, adenine, guanine, cytosine, uracil, or thymine, wherein B is unsubstituted or substituted with one or more substituents, which are the same or different, selected from the group consisting of a protecting group, R¹¹, OR¹¹, NHR¹¹, NR¹¹R¹², CN, NO₂, N₃, and a halogen, wherein R¹¹ and R¹² are the same or different and each is H, a protecting group, or an alkyl; and,

E is H, a halogen, OR¹³, NHR¹³, or NR¹³R¹⁴, wherein R¹³ and R¹⁴ are the same or different and each is H, a protecting group, an alkyl, or an acyl; and

X is O, S, or Se,

wherein the labeling group is a carboxyl to which is appended, via an amide linker, biotin, cholesterol, fluorenylmethoxycarbonyl (Fmoc), or trifluoroacetyl.

2. (Canceled)

3. (Currently Amended) The compound of claim 1, wherein Q is a nucleoside of the formula:

wherein B and E are as defined in claim 1:

B is a labeling group, an alkyl, an alkenyl, an alkynyl, a cycloalkyl, an aryl, a heteroaryl, a heterocycloalkyl, an aralkyl, an amino, an alkylamino, a dialkylamino, a purine, a pyrimidine, adenine, guanine, cytosine, uracil, or thymine, wherein B is unsubstituted or substituted with one or more substituents, which are the same or different, selected from the group consisting of a protecting group, R¹¹, OR¹¹, NHR¹¹, NR¹¹R¹², CN, NO₂, N₃, and a halogen, wherein R¹¹ and R¹² are the same or different and each is H, a protecting group, or an alkyl; and

E is H, a halogen, OR¹³, NHR¹³, or NR¹³R¹⁴, wherein R¹³ and R¹⁴ are the same or different and each is H, a protecting group, an alkyl, or an acyl.

4. (Currently Amended) The compound of claim 1, wherein said the compound is of the formula:

4

$$R^1$$
 R^2
 R^3
 R^4
 R^4

wherein R¹-R⁴, B, and E are as defined in claim 1.

5. (Currently Amended) The compound of claim 1, wherein Q is an oligonucleotide comprising having a nucleoside, a nucleoside, or an oligomer comprising having a nucleoside, wherein said the nucleoside is of the formula:

wherein B and E are as defined in claim 1:

B is a labeling group, an alkyl, an alkenyl, an alkynyl, a cycloalkyl, an aryl, a heteroaryl, a heterocycloalkyl, an aralkyl, an amino, an alkylamino, a dialkylamino, a purine, a pyrimidine, adenine, guanine, cytosine, uracil, or thymine, wherein B is unsubstituted or substituted with one or more substituents, which are the same or different, selected from the group consisting of a protecting group, R^{11} , OR^{11} , NHR^{11} , $NR^{11}R^{12}$, CN, NO_2 , N_3 , and a halogen, wherein R^{11} and R^{12} are the same or different and each is H, a protecting group, or a C_1 - C_6 alkyl; and

E is H, a halogen, OR¹³, NHR¹³, or NR¹³R¹⁴, wherein R¹³ and R¹⁴ are the same or different and each is H, a protecting group, an alkyl, or an acyl.

- 6. (Original) The compound of claim 5, wherein B is a purine, a pyrimidine, adenine, guanine, cytosine, uracil, or thymine, wherein B is unsubstituted or substituted with one or more substituents, which are the same or different, selected from the group consisting of a protecting group, R¹¹, OR¹¹, NHR¹¹, NR¹¹R¹², CN, NO₂, N₃, and a halogen, wherein R¹¹ and R¹² are the same or different and each is H, a protecting group, or an alkyl.
- 7. (Previously Presented) The compound of claim 1, wherein R¹ is an alkyl, which is unsubstituted or substituted with one or more substituents, which are the same or

different, selected from the group consisting of fluorine, OR^7 , and SR^7 , wherein R^7 is an alkyl or an aryl.

- 8. (Original) The compound of claim 7, wherein R³ is a vinyl group or a phenyl group.
- 9. (Previously Presented) The compound of claim 1, wherein R⁴ is a 4,4'-dimethoxytrityl group.
 - 10. (Canceled)
 - 11. (Canceled)
- 12. (Currently Amended) A method of preparing a polymer, said the method comprising the steps of:
- (a) reacting a nucleophile that can displace the N-acyl group of an N-acylphosphoramidite of the formula R⁴—O—Q—OH with the N-acylphosphoramidite of claim 1, wherein R⁴ is a protecting group and Q are as defined in claim 1, to produce an adduct of said the N-acylphosphoramidite and said the nucleophile, said the adduct comprising a tricoordinated phosphorus atom;
- (b) reacting said the adduct with a reagent selected from the group consisting of oxidizing agents, sulfurizing agents, and selenizing agents, to produce a product, wherein said the tricoordinated phosphorus atom is converted into a phosphorus atom with a valence of greater than three;
 - (c) removing the protecting group R⁴ from the product; and
- (d) optionally repeating steps (a) through (c) one or more times until a polymer of specified length is obtained.
- 13. (Original) The method of claim 12, further comprising the step of cleaving the bond linking the organic moiety to the non-bridging phosphate, phosphorothioate or phosphoroselenoate oxygen atom in the product obtained in step (c) or (d).
- 14. (Original) The method of claim 13, wherein the bond linking the organic moiety to the non-bridging phosphate, phosphorothioate or phosphoroselenoate oxygen atom is cleaved chemically.

- 15. (Original) The method of claim 13, wherein the bond linking the organic moiety to the non-bridging phosphate, phosphorothioate or phosphoroselenoate oxygen atom is cleaved thermally.
- 16. (Currently Amended) The method of claim 12, wherein said the nucleophile is attached to a solid support.
- 17. (Currently Amended) The method of claim 12, wherein said the nucleophile is of the formula:

wherein:

Q is a nucleoside, oligonucleotide eomprising <u>having</u> a nucleoside, or an oligomer eomprising <u>having</u> a nucleoside, wherein <u>said</u> <u>the</u> nucleoside is of the formula:

wherein:

B is a labeling group, an alkyl, an alkenyl, an alkynyl, a cycloalkyl, an aryl, a heteroaryl, a heterocycloalkyl, an aralkyl, an amino, an alkylamino, a dialkylamino, a purine, a pyrimidine, adenine, guanine, cytosine, uracil, or thymine, wherein B is unsubstituted or substituted with one or more substituents, which are the same or different, selected from the group consisting of a protecting group, R¹¹, OR¹¹, NHR¹¹, NR¹¹R¹², CN, NO₂, N₃, and a halogen, wherein R¹¹ and R¹² are the same or different and each is H, a protecting group, or an alkyl; and

E is H, a halogen, OR¹³, NHR¹³, or NR¹³R¹⁴, wherein R¹³ and R¹⁴ are the same or different and each is H, a protecting group, an alkyl, or an acyl; and

R⁴ is a solid support.

18. (Canceled)

7

19. (Currently Amended) The method of claim 17, wherein Q is a nucleoside, an oligonucleotide emprising having a nucleoside, or an oligomer emprising having a nucleoside, wherein said the nucleoside is of the formula:

wherein B and E are as defined in claim 17.

20. (Currently Amended) The method of claim 12, wherein said the N-acylphosphoramidite is of the formula:

$$R^4$$
 R^4
 R^4

wherein:

R¹ is an alkyl, an alkenyl, an alkynyl, a cycloalkyl, an aryl, or an aralkyl, wherein R¹ is unsubstituted or substituted with one or more substituents, which are the same or different, selected from the group consisting of R⁷, OR⁷, SR⁷, NR⁸COR⁷, NR⁸CSR⁷, NR⁸CO₂R⁷, NR⁸CO₂R⁷, NR⁸CO₂R⁷, O₂CR⁷, S₂CR⁷, SCOR⁷, OCSR⁷, SO₂R⁷, OSO₂R⁷, NR⁸SO₂R⁷, CN, NO₂, N₃, and a halogen, wherein R⁷ is an alkyl, an aryl or an aralkyl, wherein R⁷ is unsubstituted or substituted with one or more halogen atoms, which are the same or different, and R⁸ is H or an alkyl;

R² is H, an alkyl, an alkenyl, an alkynyl, a cycloalkyl, an aryl, or an aralkyl, wherein R² is unsubstituted or substituted with one or more substituents, which are the same or different, selected from the group consisting of OR⁷, CN, NO₂, N₃, and a halogen;

R³ is H, an alkyl, an alkenyl, an alkynyl, a cycloalkyl, an aryl, or an aralkyl, wherein R³ is unsubstituted or substituted with one or more substituents, which are the same or different, selected from the group consisting of a trialkylsilyl, an aryldialkylsilyl, an alkyldiarylsilyl, CN, NO₂, N₃, a halogen, OR⁷, P(O)(OR⁷)(OR⁸), COR⁹, CSR⁹, CO₂R⁹, COSR⁹, CSOR⁹, CONR⁸R⁹, CSNR⁸R⁹, SO₂R⁹, and SO₂NR⁸R⁹, wherein R⁹ is H, an alkyl, an alkenyl, an alkynyl, a cycloalkyl, an aralkyl, or an aryl, wherein R⁹ is unsubstituted or substituted with one or more substituents, which are the same or different, selected from the group consisting of CN, NO₂, N₃, and a halogen; or

R² and R³, together with the carbon atoms to which they are bonded, comprise form a cyclic substituent of the formula:

wherein p is an integer from 0-6 and a-d are the same or different and each is selected from the group consisting of H, an alkyl, a nitro, an amino, a hydroxy, a thio, a cyano and a halogen;

R⁴ is a protecting group or a solid support;

B is a labeling group, an alkyl, an alkenyl, an alkynyl, a cycloalkyl, an aryl, a heteroaryl, a heterocycloalkyl, an aralkyl, an amino, an alkylamino, a dialkylamino, a purine, a pyrimidine, adenine, guanine, cytosine, uracil, or thymine, wherein B is unsubstituted or substituted with one or more substituents, which are the same or different, selected from the group consisting of a protecting group, R¹¹, OR¹¹, NHR¹¹, NR¹¹R¹², CN, NO₂, N₃, and a halogen, wherein R¹¹ and R¹² are the same or different and each is H, a protecting group, or an alkyl; and,

E is H, a halogen, OR¹³, NHR¹³, or NR¹³R¹⁴, wherein R¹³ and R¹⁴ are the same or different and each is H, a protecting group, an alkyl, or an acyl.

21. (Original) The method of claim 20, wherein B is a purine, a pyrimidine, adenine, guanine, cytosine, uracil, or thymine, wherein B is unsubstituted or substituted with one or more substituents, which are the same or different, selected from the group consisting

of a protecting group, R^{11} , OR^{11} , NHR^{11} , $NR^{11}R^{12}$, CN, NO_2 , N_3 , and a halogen, wherein R^{11} and R^{12} are the same or different and each is H, a protecting group, or an alkyl.

- 22. (Previously Presented) The method of claim 20, wherein R¹ is an alkyl, which is unsubstituted or substituted with one or more substituents, which are the same or different, selected from the group consisting of fluorine, OR⁷, and SR⁷, wherein R⁷ is an alkyl, an aryl, or an aralkyl.
- 23. (Previously Presented) The method of claim 20, wherein R³ is a vinyl group, a phenyl, or a benzyl.
- 24. (Previously Presented) The method of claim 20, wherein R⁴ is a 4,4'-dimethoxytrityl group.

25-28. (Canceled)