Contenido de la Unidad

- CONCEPTOS BÁSICOS
- ARQUITECTURA FUNCIONAL DE UNA COMPUTADORA
- SET DE INSTRUCCIONES
- NIVELES DE SOFTWARE
- CLASIFICACION DE COMPUTADORAS
- UNIDAD MINIMA DE INFORMACIÓN, EL BIT
- ANALÓGICO Y DIGITAL
- DATOS VS INFORMACIÓN
- CODIFICACIÓN Y DECODIFICACIÓN
- VELOCIDAD DE EJECUCIÓN, RELOJ
- GENERACIONES DE COMPUTADORAS
- LÓGICA DIGITAL Y COMPONENTES ELECTRÓNICOS
- PERIFÉRICOS

COMPUTADORA

Dispositivo electrónico que:

- ► Acepta datos de Entrada.
- ► Realiza operaciones (datos de entrada).
- ► Elabora Resultados.

ALGORITMO

- Es una secuencia de operaciones finitas, para resolver un problema.
- El conjunto de instrucciones que representa un algoritmo se lo denomina programa. Es la representación de un algoritmo en un lenguaje de programación específico.

PSEUDOCÓDIGO

Organización de la Computadora

Memoria RAM

Almacena datos de entrada, todas las instrucciones del programa y los resultados.

- ✓ Mayor Velocidad.
- ✓ Menor Capacidad.
- ✓ Todo lo que la computadora ejecuta y procesa, lo hace desde aquí.
- ✓ Limitada.
- ✓ Volátil.

UNIDAD CENTRAL DE PROCESAMIENTO

Registros

Almacenan el contexto de la instrucción que se está ejecutando: tanto la instrucción en ejecución como los datos con los que va a operar.

Unidad de Control

Interpreta y ejecuta instrucciones y genera las señales de control para habilitar las operaciones.

Unidad de Procesamiento (ALU)

Realiza operaciones aritméticas y lógicas sobre los datos.

Buses de Interconexión

Datos

Instrucciones y Resultados

Dispositivos de **Entrada**

Permiten el ingreso de los programas a memoria principal y de los datos de entrada.

Dispositivos de **E/S**

Disco que permite el almacenamiento de datos, instrucciones y resultados con la computadora aún apagada.

Dispositivos de **Salida**

Permiten el egreso de los resultados desde la memoria principal.

Arquitectura del

Determina el formato de la inclueción se la composição de la comp

✓ Distintas formas de obtener datos de memoria (modo de direccionamiento) y la forma.

en que se atienden eventos externos.

determina la forma en que se ejecuta la instrucción.

sumar, restar, multiplicar, dividir

SET DE INSTRUCCIONES

Es parte de la arquitectura de la computadora

Define qué instrucciones puede ejecutar el CPU (sumar, restar, multiplicar, dividir, desplazar, mover, saltar).

Tipos

- CISC (Complex Instruction Set Computer): Procesadores Intel y AMD
 - Posee una mayor cantidad de instrucciones
 - Mayor complejidad para el CPU, menor complejidad al programador
 - Diseño costoso
 - Difícil de establecer cuántos ciclos de CPU ocupará.
- RISC (Reduced Instruction Set Computer) Procesadores ARM Qualcomm Apple
 - No se usan en computadoras, sí en usos específicos.
 - Diseño más económico.
 - ▶ Menor complejidad para el CPU ,mayor complejidad al programador.
 - ▶ Cada ejecución es un ciclo de CPU, se pueden estimar los ciclos.
- EPIC (Explicit Paralell Instruccion Computer) ejecuta instrucciones en paralelo (itanium).

Estratificación del Software

Aplicaciones: reproductor de video, navegador de Internet, procesador de texto Software para producir aplicaciones: editores, compiladores Software de gestión de recursos: sistema operativo Arquitectura del set de Instrucciones Lenguaje de señales que permiten la ejecución de las instrucciones Hardware

Clases de CompUtadoras

USO ESPECÍFICO

Raspberry pi

GENERAL

Bit, Nibble, Byte, Palabra

- Unidad mínima de información:
 - 0 / 1, ON / OFF, Si / No, Abierto / Cerrado
- Byte (combinación de 8 bits)
- ▶ Nibble (4 bits) medio byte

- Palabra (16)
- DWORD (32) QWORD (64) DQWORD (128)
- Palabra de Procesador: cantidad de información que puede procesar un CPU en un paso.

ANALÓGICO Y DIGITAL

EJEMPLO PRÁCTICO

Equivalencias		
Decimal	Binario	
0	000	
1	001	
2	010	
3	011	
4	100	
5	101	
6	110	
7	111	

ASCII (72)

7 2 (0111) (0010) 01110010

Polinomio de transformación

Binario Base = 2 Digitos (0 a b-1) $N = d_n x b^n + d_{n-1} x b^{n-1} + \dots + d_1 x b^1 + d_0 x b^0$ (0 1 1 1)₂

$$\begin{array}{cccc}
 & 1 \times 2^{0} = 1 \\
 & 1 \times 2^{1} = 2 \\
 & 1 \times 2^{2} = 4 \\
 & 0 \times 2^{3} = 0
 \end{array}$$

 $(7)_{10}$

Equivalencia entre sistemas de Numeracion		
Decimal	Binario	Hexadecimal
0	0000	0
1	0001	1
2	0010	2
3	0011	3
4	0100	4
5	0101	5
6	0110	6
7	0111	7
8	1000	8
9	1001	9
10	1010	Α
11	1011	В
12	1100	С
13	1101	D
14	1110	Е
15	1111	F

Procesamiento de Datos VS Sistema de Información

- Datos: conjunto de símbolos que representan un objeto en concreto o abstracto.
- Información: consecuencia de procesar datos para que tengan un significado.
- Los datos que procesa una computadora, no tienen sentido para ella.
- Sistema de información: conjunto coordinado de elementos, datos y procesos cuya interacción permite la obtención de información.

Codificación y Decodificación

Qué codificar: texto, números o fotos.

Velocidad de EjecuciÓn

11 12 1 10 2 9 3 8 4 7 6 5

- Depende de la velocidad del reloj.
- Esa velocidad se da por el tiempo en que se hace un ciclo completo

HILOS (LÓGICOS)

Generaciones de Computadoras

1954 - 1959 Primera Generación

1959 - 1964

eneración 1971 - 1987

LSI (Large Scale Integrated)

Actualidad Cuarta Generaciór

VLSI

.....

Tarjeta perforada

ARQUITECTURA DE VON NEWMAN

- Propósito General
- Digital Binario.
- Programa almacenado en memoria (antes eran circuitos de propósito específico).
- Ruptura de Secuencia.

LÓgica digital y componentes electronicos

Compuertas, hechas con transistores (pnp, npn)

PERIFÉRICOS

