Ensuring Successful Retirement

Group 2

Our Main Question

Hana W.

How do different circumstances affect the success of Americans' retirements?

How would we measure a retirement's success?

Earlier Age of Retirement?

No, lacking financial security.

FIRE versus
 Barista-FIRE

Benefits from Social Security

No, lacking financial security.

Benefits =\= Pre-Retirement Income

Income and Spending?

Yes, measuring financial security.

Strategy and Metrics for Our Source

"success of. . .retirement"

"differents circumstances"

"Americans"

One variable at least...

...should show income and spending.

Variables...

...should be plentiful and distinct from one another.

Set's sample...

...should be large.

Limitations

Hana

- Our source's demographics may not be representative of the United States' demographics.
- Pandemic & 2020's Recession
- Case IDs

Cleaning the Data

Amanda D.

- Interpreting source
- Manipulating columns
- Any steps worth mentioning

Source Data: <u>www.federalreserve.gov</u>

Original Dataset

	YY1	Y1	WGT	HHSEX	AGE	AGECL	EDUC	EDCL	MARRIED	KIDS	•••	NWCAT	INCCAT	A
0	1	11	3027.956120	2	70	5	9	3	2	2		4	2	
1	1	12	3054.900065	2	70	5	9	3	2	2		4	2	
2	1	13	3163.637766	2	70	5	9	3	2	2		4	2	
3	1	14	3166.228463	2	70	5	9	3	2	2		3	2	

Consolidated Dataframe

Jupyter Notebook

.rename () method

mapping dictionary and .replace () method

mapping dictionary and .replace () method within a for loop

Find_reasons function and .apply () method to consolidate multiple columns into a new column

Original Dataset

	YY1	Y1	WGT	HHSEX	AGE	AGECL	EDUC	EDCL	MARRIED	KIDS	•••	NWCAT	INCCAT	A
0	1	11	3027.956120	2	70	5	9	3	2	2		4	2	
1	1	12	3054.900065	2	70	5	9	3	2	2		4	2	
2	1	13	3163.637766	2	70	5	9	3	2	2		4	2	
3	1	14	3166.228463	2	70	5	9	3	2	2		3	2	

Final Dataset

	Age	Age Group	Education	Family Structure	Kids	Marital Status	Occupation Category	Occupation Class	Race/Ethnicity	Life Cycle
0	70	65-74	some college or Assoc. degree	not married/LWP + children	2	neither married nor living with partner	retired/disabled + (student/homemaker/misc. no	not working	white non- Hispanic	55 or older and not working
1	70	65-74	some college or Assoc. degree	not married/LWP + children	2	neither married nor living with partner	retired/disabled + (student/homemaker/misc. no	not working	white non- Hispanic	55 or older and not working
2	70	65-74	some college or Assoc. degree	not married/LWP + children	2	neither married nor living with partner	retired/disabled + (student/homemaker/misc. no	not working	white non- Hispanic	55 or older and not working

Our Graphs, Part #1

Jessica V.

Retrieving the Data:

 The first three slides primarily describe aspects related to retirement savings behaviors and their correlation with different demographics

1st Graph:

Which age group saves the most for retirement?

The code for Graph #1

```
#Reasons for savings for retirement by age group
age reason counts = data df.groupby(['Age Group', 'Reason for Saving']).size().unstack().fillna(0)
plt.figure(figsize=(12, 7))
age reason counts.plot(kind='bar', stacked=True)
plt.title('Reasons for Saving for Retirement by Age Group')
plt.xlabel('Age Group')
plt.ylabel('Number of Individuals')
plt.xticks(rotation=45)
plt.grid(axis='y', linestyle='--', alpha=0.7)
plt.legend(title='Reason for Saving')
plt.show()
```

Jupyter Notebook

2nd Graph:

How does total income vary by reason for saving and spending patterns?

The code for Graph #2

```
# Total income versus reason for saving and spending pattern
plot df = data df.groupby(['Reason for Saving', 'Spending vs Income, last 12 mo'])['Total Income 2019'].mean().reset index()
plt.figure(figsize=(10, 5))
sns.barplot(data=plot df, x='Reason for Saving', y='Total Income 2019', hue='Spending vs Income, last 12 mo', palette='viridis')
plt.title('Total Income vs Reason for Saving and Spending Pattern')
plt.xlabel('Reason for Saving')
plt.ylabel('Average Income')
plt.xticks(rotation=45, ha='right')
ax = plt.gca() # Get current axis
ax.get yaxis().set major formatter(mtick.FuncFormatter(lambda x, p: format(int(x), ',')))
plt.legend(title='Spending vs Income')
plt.tight layout()
plt.show()
```

Jupyter Notebook

3rd Graph:

How do reasons for saving vary across different education levels?

The code for Graph #3

```
#Education versus reason for savings
education saving df = data df.groupby(['Education', 'Reason for Saving']).size().reset index(name='Count')
plt.figure(figsize=(12, 6))
sns.barplot(data=education_saving_df, x='Education', y='Count', hue='Reason for Saving', palette='Set2')
plt.title('Reason for Savings by Education Level')
plt.xlabel('Education Level')
plt.ylabel('Count')
plt.xticks(rotation=45, ha='right')
plt.legend(title='Reason for Saving')
plt.tight layout()
plt.show()
```

Jupyter Notebook

Our Graphs, Part #2

Rebekah R.

Retrieving the Data:

 All retirement figures represent quasi-liquid retirement assets only: No physical assets or checking/saving accounts are included in "retirement" figures.

The Outliers

```
max ret = max(data df['Total Equity: Quasi-Liquid Retirement Assets 2019'])
min_ret = min(data_df['Total Equity: Quasi-Liquid Retirement Assets 2019'])
# Finding the Quartiles & IQR
quartiles = data df['Total Equity: Quasi-Liquid Retirement Assets 2019'].quantile([.25, .5, .75])
lowerg = quartiles[0.25]
upperq = quartiles[0.75]
iqr = upperq - lowerq
# Finding the Bounds
lower_bound = lowerq - (1.5 * iqr)
upper bound = upperq + (1.5 * iqr)
# Finding the outliers
outliers = data_df[(data_df['Total Equity: Quasi-Liquid Retirement Assets 2019'] < lower bound) | \
    (data df['Total Equity: Quasi-Liquid Retirement Assets 2019'] > upper bound)]
# Defining a new dataframe without the outliers
final_data_df = data_df[~data_df['Total Equity: Quasi-Liquid Retirement Assets 2019']\
    .isin(outliers['Total Equity: Quasi-Liquid Retirement Assets 2019'])]
# Display the original min/max as compared to the new bounds
print(f"Original Min Retirement: ${min ret:,.2f}; Original Max Retirement: ${max ret:,.2f}")
print(f"Lower Bound: ${lower bound:,.2f}; Upper Bound: ${upper bound:,.2f}")
Original Min Retirement: $0.00; Original Max Retirement: $130,122,000.00
```

Data Wrangling: Find and remove outliers

Lower Bound: \$-225,000.00; Upper Bound: \$375,000.00

Original Dataset max/min:

4th Graph: How do student loan payments affect retirement savings?

How does occupation type affect retirement savings?

not working
 managerial/professional
 technical/sales/services
 other (incl. production/craft/repair workers, operators, laborers, farmers, foresters, fishers)

6th Graph:

How does home ownership affect total retirement savings?

Total Retirement Assets with Home Equity: \$643,608,989.34 Total Retirement Assets without Home Equity: \$68,808,116.50

Agustín R.'s Analysis, Part #1

not working

managerial/professional

technical/sales/services

other (incl. production/craft/repair workers, operators, laborers, farmers, foresters, fishers)

Our Conclusions

Hana W.

- Numerical Summary
- Findings' Implications

Thanks for listening to our presentation!