Министерство образования и науки Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования «Российский экономический университет им. Г.В. Плеханова»

ЛАБОРАТОРНАЯ РАБОТА

«RAID»

УП.02.02 «Организация администрирования операционных систем Linux»

Выполнил

Карпов А. В.

ФГБОУ ВПО "РЭУ им. Г.В. Плеханова"

На 1 рисунке создаем 4 виртуальных диска на сервере

Рис. 1

На 2 рисунке смотрим подключенные диски

```
Disk /dev/sda: 20 GiB, 21474836480 bytes, 41943040 sectors
Disk model: VMware Virtual S
Units: sectors of 1 * 512 = 512 bytes
Sector size (logical/physical): 512 bytes / 512 bytes
I/O size (minimum/optimal): 512 bytes / 512 bytes
Disklabel type: gpt
Disk identifier: 27303D3C-1C52-4A51-A9EC-4AEA8948FB62
Device
                        End Sectors Size Type
            Start
            2048
                        4095
/dev/sda1
                                 2048
                                         1M BIOS boot
/dev/sda2 4096 3719167 3715072 1,8G Linux filesystem
/dev/sda3 3719168 41940991 38221824 18,2G Linux filesystem
Disk /dev/sdb: 3 GiB, 3221225472 bytes, 6291456 sectors
Disk model: VMware Virtual S
Units: sectors of 1 * 512 = 512 bytes
Sector size (logical/physical): 512 bytes / 512 bytes
I/O size (minimum/optimal): 512 bytes / 512 bytes
Disk /dev/sdc: 3 GiB, 3221225472 bytes, 6291456 sectors
Disk model: VMware Virtual S
Units: sectors of 1 * 512 = 512 bytes
Sector size (logical/physical): 512 bytes / 512 bytes
I/O size (minimum/optimal): 512 bytes / 512 bytes
Disk /dev/sde: 3 GiB, 3221225472 bytes, 6291456 sectors
Disk model: VMware Virtual S
Units: sectors of 1 * 512 = 512 bytes
Sector size (logical/physical): 512 bytes / 512 bytes
I/O size (minimum/optimal): 512 bytes / 512 bytes
Disk /dev/sdd: 3 GiB, 3221225472 bytes, 6291456 sectors
Disk model: VMware Virtual S
Units: sectors of 1 * 512 = 512 bytes
Sector size (logical/physical): 512 bytes / 512 bytes
I/O size (minimum/optimal): 512 bytes / 512 bytes
```

Рис. 2

Ha 3 рисунке создаем RAID 0 mdadm --create -v /dev/md0 --level=0 --raid-devices=4 \ > /dev/sdb /dev/sdc /dev/sdd

```
root@SRV2:~# mdadm --create -v /dev/md0 --level=0 --raid-devices=4 /dev/sdb /dev/sdc /dev/sdd /dev/sde
mdadm: chunk size defaults to 512K
mdadm: Defaulting to version 1.2 metadata
mdadm: array /dev/md0 started.
root@SRV2:~# []
```

Рис. 3

На 4 рисунке смотрим информацию о созданном массиве

Рис. 4

На 5 рисунке создаем файловую систему

Рис. 5

На 6 рисунке монтируем массив в систему

```
root@SRV2:~# mount /dev/md0 /mnt/
root@SRV2:~# ■
```

Рис. 6

На 7 рисунке проверка того, что получилось

```
root@SRV2:~# df -h
                                Size Used Avail Use% Mounted on
Filesystem
tmpfs
                                193M 1,4M 192M 1% /run
/dev/mapper/ubuntu--vg-ubuntu--lv 9,8G 5,1G 4,2G 55%/
tmpfs
                                964M
                                      28K 964M 1% /dev/shm
tmpfs
                                       0 5,0M 0% /run/lock
                                5.0M
/dev/sda2
                                1,8G 126M 1,5G 8% /boot
                                193M 4,0K 193M 1% /run/user/1000
tmpfs
/dev/md0
                                      24K 12G
                                                  1% /mnt
                                 12G
root@SRV2:~#
```

Рис. 7

На 8 рисунке настраиваем автоматическую сборку

```
root@SRV2:~# sudo mdadm --detail --scan >> /etc/mdadm/mdadm.conf
root@SRV2:~# ■
```

Рис. 8

На 9 рисунке обновляем initRAM

```
root@SRV2:~# update-initramfs -u
update-initramfs: Generating /boot/initrd.img-5.15.0-135-generic
root@SRV2:~#
```

Рис. 9

На 10 рисунке настройка авто монтирования при перезагрузке системы.

```
/dev/md0 /mnt ext4 defaults 0 0
```

На 11 рисунке перезагружаем систему и проверяем работу

```
Disk /dev/md0: 11,99 GiB, 12872318976 bytes, 25141248 sectors
Units: sectors of 1 * 512 = 512 bytes
Sector size (logical/physical): 512 bytes / 512 bytes
I/O size (minimum/optimal): 524288 bytes / 2097152 bytes
```

Рис. 11

На 12 рисунке удаляем массив и все данные о нем из системы

```
root@SRV2:~# umount /dev/md0
root@SRV2:~# ■
```

Рис. 12

На 13 рисунке останавливаем работу массива

```
root@SRV2:~# sudo mdadm --stop --force /dev/md0
Puc. 13
```

На 14 рисунке удаляем данные о массиве

```
root@SRV2:~# mdadm --remove /dev/md0
root@SRV2:~#
```

Рис. 14

На 15 рисунке обновляем initRAM. Дальше необходимо заполнить диски нулями, чтобы стереть на них информацию о прошлом массиве

Рис. 15

Вывод

В лабораторной работе мы научились создавать, настраивать и управлять RAID-массивами в среде Linux с использованием утилиты mdadm. Данная работа позволила закрепить знания по управлению дисковыми массивами, что является важной частью администрирования Linux-систем.