Existence of Normal Paths

by Sven Nilsen, 2019

In this paper I introduce a non-ambiguous notation for existence of normal paths.

Existence of a normal path^[1] is expressed in path semantics by putting `**∃**?` in front of a normal path:

$$\exists ?f[g_{i\rightarrow n}] : bool$$

It is equivalent to asking whether the path set^[2] is empty:

$$\exists ? f[g_{i \to n}]$$
 <=> $f[g_{i \to n}]$ => {}

It can also be expressed in first-order logic^[3]:

$$\exists ? f[g_{i \to n}] \iff \exists h \{ \forall x : \forall f \{ f(g_0(x_0), g_1(x_1), \dots, g_{n-1}(x_{n-1})) = g_n(h(x_0, x_1, \dots, x_{n-1})) \}$$

Here, $\forall f$ means the trivial path (domain) of $f^{[4]}$.

A common way to write is a function that can be substituted with another:

$$f[g_{i\rightarrow n}] \ll h$$

The substitution is valid if and only if the following equation has a solution `h`:

$$\forall x : \forall f \{ f(g_0(x_0), g_1(x_1), \dots, g_{n-1}(x_{n-1})) = g_n(h(x_0, x_1, \dots, x_{n-1})) \}$$

For multiple solutions, one can write:

$$f[g_{i\rightarrow n}] => h$$

Multiple solutions can also be expressed as the path set containing at least two functions:

$$f[g_{i\to n}] => \{h_0, h_1, ...\}$$

The notation `\(\frac{3}{2}\)` is used to not mix notation with the existential path:

- **∃**f Existential path (a function that tells what `f` returns, codomain)
- **∃**?f Existence of function (`true` if the function `f` exists, `false` otherwise)

It makes only sense to ask whether a function exists in a language that can talk about the function indirectly. The expression $f[g_{i\rightarrow n}]$ points to a function "out there" that predicts property g_n from properties g_i of f.

References:

[1] "Normal Paths" Sven Nilsen, 2019

 $\underline{https://github.com/advancedresearch/path_semantics/blob/master/papers-wip/normal-paths.pdf}$

[2] "Path Sets" Sven Nilsen, 2017

 $\underline{https://github.com/advancedresearch/path_semantics/blob/master/papers-wip/path-sets.pdf}$

[3] "First-order logic"
Wikipedia
https://en.wikipedia.org/wiki/First-order_logic

[4] "Constrained Functions" Sven Nilsen, 2017

 $\underline{https://github.com/advancedresearch/path_semantics/blob/master/papers-wip/constrained-functions.pdf}$