Tutorium Grundlagen: Algorithmen und Datenstrukturen

Übungsblatt Woche 2

Aufgabe 2.1 Induktion 2

Aufgabe 2.1 (a)

Beweisen Sie: $19|(5 \cdot 2^{3n+1} + 3^{3n+2})$ gilt für alle $n \in \mathbb{N} := \{1, 2, 3, 4, 5, ...\}$

(In Worten: 19 teilt $(5 \cdot 2^{3n+1} + 3^{3n+2})$ ganzzahlig)

Aufgabe 2.1 (b)

Beweisen Sie: $(\sum_{i=0}^n i)^2 = \sum_{i=0}^n i^3$ gilt für alle $n \in \mathbb{N} \coloneqq \{1, 2, 3, 4, 5, ...\}$

(Hinweis: $1+2+3+\cdots+n=\sum_{i=0}^n i=\frac{n(n+1)}{2}$ könnte nützlich sein)

Aufgabe 2.2 Laufzeit-Analyse

- (a) Erklären Sie in natürlicher Sprache, was die Funktionen jeweils berechnen.
- (b) Welche asymptotischen Laufzeiten haben die Algorithmen? Begründen Sie ihre Antwort.

Funktion 1

```
int f(int[] A, int[] B) {
  int result = 0;
  for (int a : A) {
    for (int b : B) {
      if (a == b) {
        result += a;
        break;
    }
    }
  }
  return result;
}
```

- (a) Erklären Sie in natürlicher Sprache, was die Funktionen jeweils berechnen.
- (b) Welche asymptotischen Laufzeiten haben die Algorithmen? Begründen Sie ihre Antwort.

Funktion 2

```
int f(int n) {
  if (n <= 0) return 0;
  if (n == 1) return 1;
  return f(n-1) + f(n-2);
}</pre>
```

- (a) Erklären Sie in natürlicher Sprache, was die Funktionen jeweils berechnen.
- (b) Welche asymptotischen Laufzeiten haben die Algorithmen? Begründen Sie ihre Antwort.

Funktion 3

```
int f(int n) {
  if (n < 0) return -1;
  if (n == 0) return 1;
  return n * f(n-1);
}</pre>
```

Aufgabe 2.3 *O*-Notation

Wiederholung: O-Notation

Mengen des asymptotischen Verhaltens einer Funktion $f: \mathbb{N} \to \mathbb{R}^+$:

- $O(f(n)) = \{g(n) \mid \exists c > 0 \ \exists n_0 > 0 \ \forall n \ge n_0 : \ g(n) \le c \cdot f(n)\}$ (Funktionen die asymptotisch nicht schneller als f wachsen)
- $\Omega(f(n)) = \{g(n) \mid \exists c > 0 \ \exists n_0 > 0 \ \forall n \ge n_0 : \ g(n) \ge c \cdot f(n)\}$ (Funktionen die asymptotisch nicht langsamer als f wachsen)
- **Ein** Faktor c reicht aus!!!

- $\Theta(f(n)) = O(f(n)) \cap \Omega(f(n))$ (Funktionen die asymptotisch gleiches Wachstum wie f haben)
- $o(f(n)) = \{g(n) \mid \forall C > 0 \exists n_0 > 0 \forall n \ge n_0 : g(n) \le C \cdot f(n)\}$ (Funktionen die asymptotisch langsamer als f wachsen)
- $\omega(f(n)) = \{g(n) \mid \forall C > 0 \exists n_0 > 0 \forall n \ge n_0 : g(n) \ge C \cdot f(n)\}$ (Funktionen die asymptotisch schneller als f wachsen)

Muss hier für **jedes** mögliche C gelten!!!

Beispiele: *O*-Notation

Funktion g (blau) wächst offensichtlich schneller

Beispiele: O-Notation

Funktionen:

$$f(x) = x$$
$$g(x) = 0.25x^2$$

Schnittpunkt:

$$x = 0.25x^2$$
$$1 = 0.25x$$
$$4 = x$$

Limes:

$$\lim_{x \to \infty} \left(\frac{f(x)}{g(x)} \right) = \lim_{x \to \infty} \left(\frac{x}{0.25x^2} \right) = \frac{1}{0.25} \lim_{x \to \infty} \left(\frac{x}{x^2} \right)$$
$$= 4 \lim_{x \to \infty} \left(\frac{1}{x} \right) = 4 \cdot 0 = 0 \Rightarrow f(x) \in \sigma(g(x))$$

Beispiele: *O*-Notation

Funktion g (blau) wächst offensichtlich langsamer

Beispiele: \mathcal{O} -Notation

Funktionen:

$$f(x) = 0.25x^2$$
$$g(x) = 0.0005e^x$$

Schnittpunkt und Ableitung: Eher aufwändig

Grenzwert:

$$\lim_{x \to \infty} \left(\frac{f(x)}{g(x)} \right) = \lim_{x \to \infty} \left(\frac{0.25x^2}{0.0005e^x} \right)$$

$$= \frac{0.25}{0.0005} \lim_{x \to \infty} \left(\frac{x^2}{e^x} \right) = 500 \lim_{x \to \infty} \left(\frac{x^2}{e^x} \right)$$

$$= 500 \lim_{x \to \infty} \left(\frac{2x}{e^x} \right) = 500 \lim_{x \to \infty} \left(\frac{2}{e^x} \right) = 500 \cdot 0 = 0$$

$$\Rightarrow f(x) \in \sigma(g(x))$$

https://de.wikipedia.org/wiki/Landau-Symbole#Definition

Kreuzen Sie das am besten passende und stärkste Symbol an welches an Stelle von Δ eingesetzt werden soll. (Sind mehrere möglich nur das stärkere, z.B. bei σ und θ nur θ ; bei θ , Ω und θ nur θ) Begründen Sie ihre Antwort mit einem kurzen Beweis.

 \square u.

Bsp.: $n \in \Delta(n^2)$ $\boxtimes o \square \mathcal{O} \square \omega \square \Omega$

(a) $7n^3 \in \Delta(3n^7)$ $\square o \square \mathcal{O} \square \omega \square \Omega \square \Theta \square u$.

(b) $\sqrt[3]{\sqrt{3n}} \in \Delta\left(\sqrt[3]{2n}\right)$ $\square o \square \mathcal{O} \square \omega \square \Omega \square \Theta \square u.$

(c) $n! \in \Delta(4^n)$ $\square o \square \mathcal{O} \square \omega \square \Omega \square \Theta \square u.$

(d) $n \in \Delta((2+(-1)^n)n)$ $\square o \square \mathcal{O} \square \omega \square \Omega \square \Theta \square u$.

(e) $n \in \Delta(1+(1+(-1)^n)n) \square o \square \mathcal{O} \square \omega \square \Omega \square \Theta \square u$.

(f) $\sqrt{n} \in \Delta(\ln n)$ $\square o \square \mathcal{O} \square \omega \square \Omega \square \Theta \square u$.

(g) $n^2 \in \Delta(1 + |tan(n)|)$ $\square o \square \mathcal{O} \square \omega \square \Omega \square \Theta \square u$.

(a)
$$7n^3 \in \Delta(3n^7)$$

$$\square \ o \quad \square \ \mathcal{O} \quad \square \ \omega \quad \square \ \Omega \quad \square \ \Theta \quad \square \ u.$$

(b)
$$\sqrt[3]{\sqrt{3n}} \in \Delta\left(\sqrt[3]{2n}\right)$$

$$\square \ o \quad \square \ \mathcal{O} \quad \square \ \omega \quad \square \ \Omega \quad \square \ \Theta \quad \square \ u.$$

 $\in \Delta(4^n)$ (c) n!

 $\square \omega \square \Omega \square \Theta \square u.$

(d)

 $n \in \Delta((2+(-1)^n)n) \quad \Box \quad o \quad \Box \quad \mathcal{O} \quad \Box \quad \Omega \quad \Box \quad \Theta \quad \Box \quad \mathbf{u}.$

(e)
$$n \in \Delta(1+(1+(-1)^n)n) \square o \square \omega \square \omega \square \Omega \square \Theta \square u.$$

(f)
$$\sqrt{n} \in \Delta(\ln n)$$
 $\square o \square \mathcal{O} \square \omega \square \Omega \square \Theta \square u$.

(g)
$$n^2 \in \Delta(1 + |tan(n)|)$$

 $\square \ o \quad \square \ \mathcal{O} \quad \square \ \omega \quad \square \ \Omega \quad \square \ \Theta \quad \square \ u.$

Aufgabe 2.4 Oh ja, noch mehr Wachstum

Seien $f,g,h:\mathbb{N}_0\to\mathbb{R}$ Funktionen mit $\exists n_0: \forall n>n_0: f(n),g(n),h(n)>0$. Zeigen Sie die folgenden "Transitivitätsregeln".

(a)
$$f(n) \in o(g(n))$$
 $\Rightarrow f(n) \in \mathcal{O}(g(n))$

(b)
$$f(n) \in \mathcal{O}(g(n))$$
 und $g(n) \in \mathcal{O}(h(n)) \Rightarrow f(n) \in \mathcal{O}(h(n))$

(c)
$$f(n) \in o(g(n))$$
 und $g(n) \in \mathcal{O}(h(n)) \Rightarrow f(n) \in o(h(n))$

Hinweis: Solche Regeln sind nützlich wenn man Beweise für komplexe Funktionen durchführen muss, welche in einfachere aufgeteilt werden können.

(a)
$$f(n) \in o(g(n))$$

$$\Rightarrow f(n) \in \mathcal{O}(g(n))$$

(b)
$$f(n) \in \mathcal{O}(g(n))$$
 und $g(n) \in \mathcal{O}(h(n)) \Rightarrow f(n) \in \mathcal{O}(h(n))$

(c)
$$f(n) \in o(g(n))$$
 und $g(n) \in \mathcal{O}(h(n)) \Rightarrow f(n) \in o(h(n))$