Основные вопросы

1. Уравнение с разделяющимися переменными: общее решение, общая схема исследования.

Уравнение с разделенными переменными имеет вид:

$$X(x)dx + Y(y)dy = 0$$

У него решение имеет вид:

$$\int X(x)dx + \int Y(y)dy = C$$

Доказательство.

$$\int X(x)dx + \int Y(y)dy = \int X(x)dx + \int Y(y)y'dx = \int (X(x) + Y(y)y')dx = \int 0dx = C$$

При этом мы получаем общее решение, когда находим такие C, что ответ $\in C^1$.

Уравнение с разделяющимися переменными имеет вид:

$$p_1(x)q_1(y)dx + p_2(x)q_2(y)dy = 0$$

Если поделить на $p_2(x)q_1(y)$, то получим уравнение с разделенными переменными. При этом необходимо убедиться, что мы не делим на ноль.

Если $\exists y_0: q_1(y_0)=0$, то $y\equiv y_0$ — решение исходного уравнения. Исключив y_0 , мы разбиваем область возможных решений на две подобласти.

Аналогично для x.

После разбиения нужно на каждой области найти решение.

2. Линейное уравнение 1-го порядка: общее решение ЛОУ, общее решение ЛНУ. Метод Лагранжа и метод интегрирующего множителя.

Линейное уравнение первого порядка это

$$y' = p(x)y + q(x)$$

Если $q \equiv 0$, то это уравнение **однородно**, иначе **неоднородно**.

Общее решение ЛОУ это $y = Ce^{\int p}, C \in \mathbb{R}$

M3137y2019

Конспект к экзамену

Доказательство. Заметим, что $y \equiv 0$ — решение. По теореме о единственности оно не является особым. т.к. мы рассматриваем $p \in C(a,b)$.

 $\triangleleft y > 0$.

$$\frac{dy}{y} = p(x)dx$$

$$\ln y = \int p(x)dx + C$$

$$y = e^{C} e^{\int p(x)dx}$$

По теореме об общем решении уравнения с разделенными переменными это семейство всех решений исходного уравнения при y>0.

Аналогично при y < 0

Общее решение ЛНУ это

$$y = \left(C + \int qe^{-\int p}\right)e^{\int p}$$

Доказательство. Подстановкой легко показать, что это решение. Покажем, что нет других решений.

Пусть есть решение φ на (α, β) , не подходящее под искомую формулу.

Пусть $x_0 \in (\alpha, \beta)$ и $\varphi(x_0) = y_0$.

Функция

$$C = \left(y_0 e^{-\int p} - \int q e^{-\int p} dx \right) \bigg|_{x=x_0}$$

подходит под искомую формулу, но при этом является решением задачи Коши $y(x_0)=y_0$, поэтому $y\equiv \varphi$ — противоречие.

Метод Лагранжа (вариации произвольной постоянной) — постоянную C считают функцией от x и получают дифур относительно C.

3. Равностепенно непрерывные функции. Лемма Арцела-Асколи.

Множество функций F, определенных на D, равностепенно непрерывно, если:

$$\forall \varepsilon > 0 \ \exists \delta > 0 \ \forall f \in F \ \forall x_1, x_2 \in D \ |x_2 - x_1| < \delta \Rightarrow |f(x_2) - f(x_1)| < \varepsilon$$

Пемма 1. Пусть функции последовательности $\{f_n\}_{n=1}^{\infty}$ равномерно ограничены ($\exists C: \forall n, x | f_n(x) | < C$) и равностепенно непрерывны на [a,b]. Тогда из нее можно выделить подпоследовательность, равномерно сходящуюся на [a,b].

Доказательство. Пусть M ограничивает (равномерно) f_n :

$$M:=\sup_{n,x}|f_n(x)|$$

$$\lessdot \varepsilon_k=\frac{M}{2^{k+1}}$$

$$\forall \varepsilon_k>0 \ \exists \delta_k>0 \ \forall f\in F \ \forall x_1,x_2\in D \ |x_2-x_1|<\delta_k\Rightarrow |f(x_2)-f(x_1)|<\varepsilon_k$$

Поделим всю область $[a,b] \times (-M,M)$ на прямоугольники со стороной ε_1 и δ_1 .

- 4. ЗК для нормальной системы. Лемма о равносильном интегральном уравнении. Лемма: свойства ломаной Эйлера, определённой на отрезке Пеано.
- 5. Теорема Пеано о существовании решения ЗК.
- 6. Достаточное условие того, что функция удовлетворяет локальному условию Липшица по заданной переменной.
- 7. Достаточное условие того, что функция удовлетворяет глобальному условию Липшица по заданной переменной.

Дополнительные вопросы

Уравнение 1-го порядка и его решение.

Это уравнение вида F(x,y,y')=0. Функция φ — решение такого дифференциального уравнения, если:

1.
$$\varphi \in C^1(a,b)$$

2.
$$F(x, \varphi(x), \varphi'(x)) \equiv 0$$
 на (a, b)

Пример. y' - x = 0, решение $y = \frac{x^2}{2} + C$.

Методов решения много, все относятся к частным случаям.

Интегральная кривая уравнения.

Это график решения уравнения.

Общее решение уравнения.

Это множество всех его решений.

M3137y2019

Конспект к экзамену

Уравнение 1-го порядка, разрешённое относительно производной. Геометрический смысл.

Это уравнение вида y' = f(x, y).

Пусть φ решение этого уравнения. Тогда $\varphi'(x)=f(x,\varphi(x))$, то есть тангенс угла наклона касательной к интегральной кривой в точке (x_0,y_0) это $f(x_0,y_0)$

Ломаная Эйлера.

Уравнение в дифференциалах, его решение и параметрическое решение.

Уравнение в дифференциалах получается, если в уравнении, разрешенном относительно производной, записать $y' = \frac{dy}{dx}$:

$$P(x,y)dx + Q(x,y)dy = 0$$

Функция φ — решение такого дифференциального уравнения, если:

- 1. $\varphi \in C^1(a,b)$
- 2. $P(x,\varphi(x)) + Q(x,\varphi(x))\varphi'(x) \equiv 0$ на (a,b)

Аналогично можно определить решение вида $x = \psi(y)$.

Функция $r = (\varphi(t), \psi(t))$ — параметрическое решение такого уравнения на α, β , если:

- 1. $\varphi,\psi\in C^1(\alpha,\beta)$ и $r'(t)\neq 0$ на $t\in (\alpha,\beta)$
- 2. $P(\varphi(t),\psi(t)) + Q(\varphi(t),\psi(t))\psi'(t) \equiv 0$ на $t \in (\alpha,\beta)$

Пример.

$$xdx + ydy = 0$$

Подстановкой тривиально можно убедиться, что $y = \sqrt{C^2 - x^2}$ — решение этого уравнения.

Параметрическое решение $(C\cos t, C\sin t)$

Особые точки уравнения в дифференциалах.

$$(x_0,y_0)$$
 — особая, если $P(x_0,y_0)+Q(x_0,y_0)=0$

Пример.

$$xdx + ydy = 0$$

Особая точка (0,0), через нее ничто не проходит.

Геометрический смысл уравнения в дифференциалах и его решения.

Пусть r=(x(t),y(t)) есть параметрическое решение уравнения на (α,β) . Тогда при $t\in(\alpha,\beta)$:

$$P(x(t), y(t))x'(t) + Q(x(t), y(t))y'(t) = 0$$

 $F(r(t))r'(t) = 0$

Таким образом, любая интегральная кривая в каждой своей точке перпендикулярная вектору F(x,y)

Задача Коши (ЗК) для уравнения 1-го порядка, разрешённого относительно производной.

Задача Коши — задача поиска решения уравнения, удовлетворяющему $y(x_0) = y_0$.

Теорема 1. $G \subset \mathbb{R}^2$ — область, $f \in C(G), (x_0, y_0) \in G$. Тогда в некоторой окрестности x_0 существует решение задачи Коши.

Теорема 2. Как в предыдущей теореме, но $f_y' \in C(G)$. Тогда решение задачи Коши единственно.

Таким образом, может быть такое, что в некоторых (*или всех*) точках решение не единственно.

Особое решение уравнения.

Это решение уравнения, в каждой точке которого нарушается локальная единственность решения задачи Коши.

Пример.

$$y' = \sqrt[3]{y^2}$$

Тогда особое решение $y'\equiv 0$, его в любой точке $(x_0,0)$ пересекает решение вида $y=(x-x_0)^3/3$

Однородное уравнение.

Функция однородна степени α , если $\forall t,x,y \;\; F(tx,ty) = t^{\alpha}F(x,y)$

Однородное уравнение — уравнение вида

$$P(x,y)dx + Q(x,y)dy = 0$$

, где P и Q однородные функции одной степени.

Замена $z=\frac{y}{x}$ сводит это уравнение к уравнению с разделяющимися переменными.

Геометрическое свойство решений однородного уравнения.

Пусть $x=\varphi(t),y=\psi(t)$ — параметрическое решение однородного дифура. Растянем пространство в λ раз, получим $x=\lambda\varphi(t),y=\lambda\psi(t)$. При подстановке получим:

$$P(\lambda \varphi, \lambda \psi) \lambda \varphi' + Q(\lambda \varphi, \lambda \psi) \lambda \psi' = 0$$

По однородности:

$$P(\varphi, psi)\varphi' + Q(\varphi, \psi)\psi' = 0$$

Таким образом, любое растяжение (или сжатие) решения однородного уравнения приводит к другому решению однородного уравнения.

Уравнение Бернулли.

Это уравнение вида

$$y' = p(x)y + q(x)y^{\alpha}, \alpha \in \mathbb{R} \setminus \{0, 1\}$$

Поделив на y^{α} и заменив $z=y^{1-\alpha}$, получаем линейное.

Уравнение Риккати.

$$y' = p(x)y^2 + q(x)y + r(x)$$

Оно решается только в особых случаях (например, $\alpha=2$), но если нашел какое-то решение φ , то замена $y=z+\varphi$ сводит к Бернулли.

Уравнение в полных дифференциалах.

Это уравнение вида

$$P(x,y)dx + Q(x,y)dy = 0$$

, при этом

$$\exists u : du = P(x, y)dx + Q(x, y)dy$$

Решение имеет вид u(x,y) = C

Обязательное условие на существование u это $P_y' = Q_x'$. Если при этом $P,Q \in C^1(G)$ и G односвязна, то это условие еще и достаточно.

Если область прямоугольная, то можно решить систему $\begin{cases} u'_x = P \\ u'_y = Q \end{cases}$ следующим обра-

зом: Решаем первое уравнение при фиксированном y, после чего заменяем C=C(y) и находим C как функцию.

В таком случае u есть потенциал векторного поля (P,Q).

Интегрирующий множитель.

Это то, на что мы домножаем уравнение, чтобы получить уравнение в полных дифференциалах.

Если μ — инт. множитель, то

$$(\mu P)'_y = (\mu Q)'_x$$

, то есть

$$\mu'_{y}P - \mu'_{x}Q = (Q'_{x} - P'_{y})\mu$$

Это сложно реш
ить, но иногда решается при $\mu_x'\equiv 0$ или $\mu_y'\equiv 0.$

Уравнение п-го порядка и его решение.

Это уравнение вида:

$$F(x, y, y', \dots, y^{(n)}) = 0$$

Его решение на a,b-arphi, такое что:

- 1. $\varphi \in C^n(a,b)$
- 2. $F(x, \varphi(x), \varphi'(x), \dots, \varphi^{(n)}(x)) \equiv 0$ на (a, b)

ЗК для уравнения, разрешённого относительно старшей производной.

Это уравнение вида $y^{(n)} = f(x, y, y', \dots, y^{(n-1)}).$

Задача Коши для него имеет вид $y(x_0)=y_0, y'(x_0)=y_1,\dots,y^{(n-1)}(x_0)=y_{n-1}$

Методы понижения порядка уравнения.

- $y^{(n)} = f(x) \implies y^{(n-1)} = \int f(x)dx$
- $F(x, y^{(k)}, y^{(k+1)}, \dots, y^{(n)}) \xrightarrow{z=y^{(k)}} F(x, z, \dots, z^{(n-k)}) = 0$
- $F(y,y',\dots,y^{(n)})=0$. Тогда пусть $z=y',\,y''_{xx}=z'_yz,y'''_{xxx}=z''_{yy}z^2+z'^{\,2}_yz$ и т.д.
- Пусть F линейна по y. Тога можно заменить $z=y^{\prime}/y$
- $F(x, y, y', \dots, y^{(n)}) = \frac{d}{dx} \Phi(x, y, y', \dots, y^{(n-1)}) \Rightarrow \Phi(x, y, y', \dots, y^{(n-1)}) = C$

Нормальная система уравнений, её решение.

Нормальная система порядка n это система вида:

$$\begin{cases} \dot{x}_1 = f_1(t, x_1, \dots x_n) \\ \vdots \\ \dot{x}_n = f_n(t, x_1, \dots x_n) \end{cases}$$

Можно ввести пару обозначений для краткости:

$$r = \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix} \quad f(t,r) = \begin{pmatrix} f_1(t,r) \\ \vdots \\ f_n(t,r) \end{pmatrix} \quad \dot{r} = f(t,r)$$

arphi — решение такой системы, если:

- 1. $\varphi \in C^1((a,b) \to \mathbb{R}^n)$
- 2. $\dot{\varphi}(t) \equiv f(t, \varphi(t))$ на (a, b)

Интегральная кривая нормальной системы.

Это график решения, но теперь он в (n+1)-мерном пространстве.