Supervised Learning:

Pneumonia Image Classification

Dataset Distribution	
Hyperparameters	1
Model Performance Summary	
Accuracy and loss plots	
ROC plots	
Youden's J plots	
References	

Dataset Distribution

- Train Set (60%)
- Val Set (30%)
- Test Set (10%)

Hyperparameters

- Epoch 10
- Learning Rate 0.001
- Batch size 16
- Number of activation layers 3 (with SoftMax output layer)

Model Performance Summary

ResNet18 achieved the highest performance with a test loss of 0.2655 and an accuracy of 0.8942, outperforming both DenseNet121 (test loss 0.3537, accuracy 0.8718) and ViT_B_16 (test loss 0.6398, accuracy 0.8221). Overall, while all three models showed strong results on the chest X-ray dataset, ResNet18 exhibited the most favorable balance of low loss and high accuracy making it the model of choice for this dataset.

Accuracy and loss plots

ResNet18 - Test Loss: 0.2655, Test Accuracy: 0.8942

DenseNet121 - Test Loss: 0.3537, Test Accuracy: 0.8718

VIT_B_16 - Test Loss: 0.6398, Test Accuracy: 0.8221

ROC plots

Youden's J plots

References

- 1. Git repository:
 - https://github.com/akshat-git/PyTorch-for-Medical-Imaging
- 2. Dataset:

https://www.kaggle.com/datasets/paultimothymooney/chest-xray-pneumonia