Question Answering with Subgraph Embeddings

A. Bordes, S. Chopra, J. Weston (presented by Karel Ha)

facebook.

Open-domain question answering

Definition (Open QA)

the task to automatically answer questions asked in natural language on any topic or in any domain

Nowadays: lookup in large scale structured knowledge bases (KBs)

Open-domain question answering

Definition (Open QA)

the task to automatically answer questions asked in natural language on any topic or in any domain

Nowadays: lookup in large scale structured knowledge bases (KBs)

Two main approaches, based on:

Definition (Open QA)

the task to automatically answer questions asked in natural language on any topic or in any domain

Nowadays: lookup in large scale structured knowledge bases (KBs)

Two main approaches, based on:

- information retrieval (Yao and Van Durme, '14)
- semantic parsing (Berant et al., '13; Berant and Liang, '14)

Open-domain question answering

Definition (Open QA)

the task to automatically answer questions asked in natural language on any topic or in any domain

Nowadays: lookup in large scale structured knowledge bases (KBs)

Two main approaches, based on:

- information retrieval (Yao and Van Durme, '14)
- semantic parsing (Berant et al., '13; Berant and Liang, '14)

A lot of human supervision: lexicons, grammars, KB schema . . .

...learns representations as low-dimensional vectors of words and KBs elements

...learns representations as **low-dimensional vectors** of words and KBs elements

...learns representations as **low-dimensional vectors** of words and KBs elements

- richer representation of the answers (QA path, surrounding subgraph of the KB)
- less human supervision

Conclusion

Embedding model

...learns representations as **low-dimensional vectors** of words and KBs elements

- richer representation of the answers (QA path, surrounding subgraph of the KB)
- less human supervision
- ability to answer more complicated questions (indirect answers)

...learns representations as **low-dimensional vectors** of words and KBs elements

Embedding Questions and Answers

- richer representation of the answers (QA path, surrounding subgraph of the KB)
- less human supervision
- ability to answer more complicated questions (indirect answers)
- more sophisticated inferences

FREEBASE

the knowledge base of general facts

FREEBASE

the knowledge base of general facts

Database of 14 million triplets:

the knowledge base of general facts

Database of 14 million triplets:

- subject
- object
- connected by type1.type2.predicate

the knowledge base of general facts

Database of 14 million triplets:

- subject
- object
- connected by type1.type2.predicate

Turned automatically into questions-answer pairs for training: "What is the predicate of the type2 subject? (object)"

Embedding Questions and Answers

the knowledge base of general facts

Database of 14 million triplets:

- subject
- object
- connected by type1.type2.predicate

Turned automatically into questions-answer pairs for training: "What is the predicate of the type2 subject? (object)" "What is the nationality of the person barack_obama? (united_states)"

Embedding Questions and Answers

WebQuestions

the dataset of $5810~\mbox{QA}$ pairs built from $\mbox{\it Freebase}$

the dataset of 5810 QA pairs built from FREEBASE Questions from:

Google Suggest

Embedding Questions and Answers

Answers from:

WEBQUESTIONS

the dataset of 5810~QA pairs built from FREEBASE Questions from:

Answers from:

One FREEBASE entity identified in each (natural) question using string matching:

"What degrees did Barack Obama get? (bachelor_of_arts, juris_doctor)"

ClueWeb Extractions

- provided by (Lin et al. '12)
- 2 million extractions

CLUEWEB Extractions

- provided by (Lin et al. '12)
- 2 million extractions
- (subject, "text string", object)
- "Where barack_obama was allegedly bear in? (hawaii)"

Paraphrases

There are issues with automagically generated questions:

- semi-automatic wording
- rigid syntax
- often unnatural
- <u>...</u>

There are issues with automagically generated questions:

Embedding Questions and Answers

- semi-automatic wording
- rigid syntax
- often unnatural
- **...**
- ⇒ pairs of question paraphrases:
 - from WIKIANSWERS (users have option to tag rephrasings of questions)
 - 2 million distinct questions
 - 350,000 paraphrase clusters

Let us have a question q and a candidate answer a.

Goal: to learn the scoring function

$$S(q, a) = f(q)^{\top} g(a)$$

Embedding Questions and Answers

So that: high score if a is the correct answer; low score otherwise

Let us have a question q and a candidate answer a.

Goal: to learn the scoring function

$$S(q, a) = f(q)^{\top} g(a)$$

Embedding Questions and Answers

So that: high score if a is the correct answer; low score otherwise Where:

 $\stackrel{\bullet}{}$ k is the dimension of the embedding space

 $ightharpoonup^{\perp} N_W$ is the number of words, N_S the number of entities and relations, $N = N_W + N_S$

Scoring function

Let us have a question q and a candidate answer a.

Goal: to learn the scoring function

$$S(q, a) = f(q)^{\top} g(a)$$

So that: high score if a is the correct answer; low score otherwise Where:

- $\stackrel{\bullet}{}$ k is the dimension of the embedding space
- $ightharpoonup^{-1}N_W$ is the number of words, N_S the number of entities and relations, $N = N_W + N_S$
- $\mathbf{W} \in \mathbb{R}^{k \times N}$, where the column $\mathbf{W}_{*,i}$ is the embedding of the i-th word, entity or relation

Let us have a question q and a candidate answer a.

Goal: to learn the scoring function

$$S(q, a) = f(q)^{\top} g(a)$$

Embedding Questions and Answers

So that: high score if a is the correct answer; low score otherwise Where:

- $\stackrel{\bullet}{l}$ k is the dimension of the embedding space
- $ightharpoonup N_W$ is the number of words, N_S the number of entities and relations, $N = N_W + N_S$
- $\mathbf{W} \in \mathbb{R}^{k \times N}$, where the column $\mathbf{W}_{*,i}$ is the embedding of the i-th word, entity or relation
- $ightharpoonup^{N}$ vectors $\varphi(q) \in \mathbb{N}_{0}^{N}$ indicates how many times each word occurs in the question
- $\psi(a) \in \mathbb{N}_0^N$ is the vector representation of the answer (next slide)

Let us have a question q and a candidate answer a.

Goal: to learn the scoring function

$$S(q, a) = f(q)^{\top} g(a)$$

Embedding Questions and Answers

So that: high score if a is the correct answer; low score otherwise Where:

- $\stackrel{\bullet}{l}$ k is the dimension of the embedding space
- $ightharpoonup N_W$ is the number of words, N_S the number of entities and relations. $N = N_W + N_S$
- $\mathbf{W} \in \mathbb{R}^{k \times N}$, where the column $\mathbf{W}_{*,i}$ is the embedding of the i-th word, entity or relation
- $ightharpoonup^{N}$ vectors $\varphi(q) \in \mathbb{N}_{0}^{N}$ indicates how many times each word occurs in the question
- $\psi(a) \in \mathbb{N}_0^N$ is the vector representation of the answer (next slide)
- $f(q) = \mathbf{W}\varphi(q)$ and $g(a) = \mathbf{W}\psi(a)$ are embeddings into \mathbb{R}^k

Single Entity

 \blacksquare 1-of- N_S coded vector with 1 corresponding to the entity of the answer, and 0 elsewhere

 \blacksquare 1-of- N_S coded vector with 1 corresponding to the entity of the answer, and 0 elsewhere

Path Representation

3-of- N_S or 4-of- N_S coded vector: 1-hop or 2-hop path from the question entity to the answer entity using the relation types (but not entities) in-between

Single Entity

 \blacksquare 1-of- N_S coded vector with 1 corresponding to the entity of the answer, and 0 elsewhere

Path Representation

- \blacksquare 3-of- N_S or 4-of- N_S coded vector: 1-hop or 2-hop path from the question entity to the answer entity using the relation types (but not entities) in-between
- (barack_obama, people.person.place_of_birth, honolulu)

Single Entity

 \blacksquare 1-of- N_S coded vector with 1 corresponding to the entity of the answer, and 0 elsewhere

Path Representation

- \blacksquare 3-of- N_S or 4-of- N_S coded vector: 1-hop or 2-hop path from the question entity to the answer entity using the relation types (but not entities) in-between
- (barack_obama, people.person.place_of_birth, honolulu)
- [5] (barack_obama, people.person.place_of_birth, location.location.containedby, hawaii)

Introduction

Single Entity

 \blacksquare 1-of- N_S coded vector with 1 corresponding to the entity of the answer, and 0 elsewhere

Embedding Questions and Answers

Path Representation

- \blacksquare 3-of- N_S or 4-of- N_S coded vector: 1-hop or 2-hop path from the question entity to the answer entity using the relation types (but not entities) in-between
- (barack_obama, people.person.place_of_birth, honolulu)
- [5] (barack_obama, people.person.place_of_birth, location.location.containedby, hawaii)

Subgraph Representation

path representation + the entire subgraph of entities connected to the candidate answer entity

Single Entity

 \blacksquare 1-of- N_S coded vector with 1 corresponding to the entity of the answer, and 0 elsewhere

Path Representation

- \blacksquare 3-of- N_S or 4-of- N_S coded vector: 1-hop or 2-hop path from the question entity to the answer entity using the relation types (but not entities) in-between
- (barack_obama, people.person.place_of_birth, honolulu)
- [5] (barack_obama, people.person.place_of_birth, location.location.containedby, hawaii)

Subgraph Representation

- path representation + the entire subgraph of entities connected to the candidate answer entity
- double the size for entities and relations: $N = N_W + 2N_S$

Single Entity

Introduction

 $^{\text{\tiny LS}}$ 1-of- N_S coded vector with 1 corresponding to the entity of the answer, and 0 elsewhere

Path Representation

- $^{\text{\tiny LS}}$ 3-of- N_S or 4-of- N_S coded vector: 1-hop or 2-hop path from the question entity to the answer entity using the relation types (but not entities) in-between
- (barack_obama, people.person.place_of_birth, honolulu)
- [standard content of the conten

△ Subgraph Representation

- path representation + the entire subgraph of entities connected to the candidate answer entity
- \blacksquare double the size for entities and relations: $N=N_W+2N_S$
- $^{\square}$ $^{\square}$ $^{\square}$ $^{\square}$ $^{\square}$ $^{\square}$ $^{\square}$ $^{\square}$ $^{\square}$ relations: either (3+C+D)-of- N_S or (4+C+D)-of- N_S coded vector

Overview

Training and Ranking Loss Function

Let $\mathcal{D} = \{(q_i, a_i) : i = 1, \dots, |\mathcal{D}|\}$ be the training set of QA pairs.

Let $\mathcal{D} = \{(q_i, a_i) : i = 1, \dots, |\mathcal{D}|\}$ be the training set of QA pairs. Goal: to minimize

Embedding Questions and Answers

$$\sum_{i=1}^{|\mathcal{D}|} \sum_{\overline{a} \in \overline{\mathcal{A}}(a_i)} \max\{0, (S(q_i, \overline{a}) + m) - S(q_i, a_i)\}$$

So that: the score of a question paired with a correct answer is greater than with any incorrect answer \overline{a} by at least m.

Training and Ranking Loss Function

Let $\mathcal{D} = \{(q_i, a_i) : i = 1, \dots, |\mathcal{D}|\}$ be the training set of QA pairs. Goal: to minimize

Embedding Questions and Answers

$$\sum_{i=1}^{|\mathcal{D}|} \sum_{\overline{a} \in \overline{\mathcal{A}}(a_i)} \max\{0, (S(q_i, \overline{a}) + m) - S(q_i, a_i)\}$$

So that: the score of a question paired with a correct answer is greater than with any incorrect answer \overline{a} by at least m. Where:

 \blacksquare margin parameter m, the set of incorrect candidates $\overline{\mathcal{A}}$ \overline{a} sampled from \overline{A}

Training and Ranking Loss Function

Let $\mathcal{D} = \{(q_i, a_i) : i = 1, \dots, |\mathcal{D}|\}$ be the training set of QA pairs. Goal: to minimize

Embedding Questions and Answers

$$\sum_{i=1}^{|\mathcal{D}|} \sum_{\overline{a} \in \overline{\mathcal{A}}(a_i)} \max\{0, (S(q_i, \overline{a}) + m) - S(q_i, a_i)\}$$

So that: the score of a question paired with a correct answer is greater than with any incorrect answer \overline{a} by at least m. Where:

 $\stackrel{\leftarrow}{\square}$ margin parameter m, the set of incorrect candidates $\overline{\mathcal{A}}$

 \overline{a} sampled from \overline{A}

- 50% of time: another entity connected to the question entity (i.e., through other candidate paths)
- 50% of time: random answer entity

Let $\mathcal{D} = \{(q_i, a_i) : i = 1, \dots, |\mathcal{D}|\}$ be the training set of QA pairs. Goal: to minimize

Embedding Questions and Answers

$$\sum_{i=1}^{|\mathcal{D}|} \sum_{\overline{a} \in \overline{\mathcal{A}}(a_i)} \max\{0, (S(q_i, \overline{a}) + m) - S(q_i, a_i)\}$$

So that: the score of a question paired with a correct answer is greater than with any incorrect answer \overline{a} by at least m.

Where:

Introduction

50% of time: another entity connected to the question entity

(i.e., through other candidate paths)

50% of time: random answer entity

- optimization:
 - stochastic gradient descent
 - multi-threaded
 - lacktriangledown columns of $oldsymbol{W}$ are inside the unit ball: $orall i: ||oldsymbol{W}_{*,i}|| \leq 1$

Multitask Training of Embeddings

Synthethic questions inadequately cover the syntax of natural language!

Multitask Training of Embeddings

Synthethic questions inadequately cover the syntax of natural language!

⇒ Multi-task the training with the task of **paraphrase prediction**!

Multitask Training of Embeddings

Synthethic questions inadequately cover the syntax of natural language!

⇒ Multi-task the training with the task of paraphrase prediction!

Multitask Training of Embeddings

Synthethic questions inadequately cover the syntax of natural language!

⇒ Multi-task the training with the task of paraphrase prediction!

- ightharpoonup scoring function $S_{prp}(q_1,q_2) = f(q_1)^{\top} f(q_2)$
- same embedding matrix W

Synthethic questions inadequately cover the syntax of natural language!

⇒ Multi-task the training with the task of paraphrase prediction!

- ightharpoonup scoring function $S_{prp}(q_1,q_2) = f(q_1)^{\top} f(q_2)$
- same embedding matrix W
- negative samples taken from different paraphrase clusters

The trained model predicts the answer by

$$\widehat{a} = \underset{a' \in \mathcal{A}(q)}{\operatorname{arg max}} S(q, a')$$

Embedding Questions and Answers

The trained model predicts the answer by

$$\widehat{a} = \underset{a' \in \mathcal{A}(q)}{\operatorname{arg max}} S(q, a')$$

Embedding Questions and Answers

The trained model predicts the answer by

$$\widehat{a} = \underset{a' \in \mathcal{A}(q)}{\operatorname{arg max}} S(q, a')$$

Embedding Questions and Answers

- the whole KB (slow and imprecise!)
- $\stackrel{\leftarrow}{L}$ C₁: only Freebase triplets involving the question entity (simple factual questions, 1-hop paths)

The trained model predicts the answer by

$$\widehat{a} = \underset{a' \in \mathcal{A}(q)}{\operatorname{arg max}} S(q, a')$$

Embedding Questions and Answers

- the whole KB (slow and imprecise!)
- C_1 : only Freebase triplets involving the question entity (simple factual questions, 1-hop paths)
- C_2 : additional triplets at 2-hop distance from the question entity (i.e., neighbors of neighbors)

Inference

Introduction

The trained model predicts the answer by

$$\widehat{a} = \underset{a' \in \mathcal{A}(q)}{\operatorname{arg\,max}} S(q, a')$$

Embedding Questions and Answers

- the whole KB (slow and imprecise!)
- C_1 : only Freebase triplets involving the question entity (simple factual questions, 1-hop paths)
- C_2 : additional triplets at 2-hop distance from the question entity (i.e., neighbors of neighbors)
 - not all the quadruplets (too large set), but predictions made in turns, using best-first search heuristics
 - rank KB's relations using S(q, a)

Inference

Introduction

The trained model predicts the answer by

$$\widehat{a} = \underset{a' \in \mathcal{A}(q)}{\operatorname{arg\,max}} S(q, a')$$

Embedding Questions and Answers

- the whole KB (slow and imprecise!)
- C_1 : only Freebase triplets involving the question entity (simple factual questions, 1-hop paths)
- C_2 : additional triplets at 2-hop distance from the question entity (i.e., neighbors of neighbors)
 - not all the quadruplets (too large set), but predictions made in turns, using best-first search heuristics
 - rank KB's relations using S(q, a)
 - \blacksquare top 10 relations \Rightarrow only 2-hop paths containing them
 - □ 1-hop triplets weighted by value 1.5

Multiple answers

"Who are David Beckham's children?" \Rightarrow a whole <u>set</u> of answers, all on the path:

```
(david_beckham, people.person.children, *)
```

"Who are David Beckham's children?" \Rightarrow a whole set of answers. all on the path:

Embedding Questions and Answers

(david_beckham, people.person.children, *)

Vector representing multiple answers is the average of sub-answers:

$$\psi_{all}(a') = \frac{1}{|a'|} \sum_{a'_i \in a'} \psi(a'_j)$$

Results on the $\operatorname{WebQuestions}$ test set

Method	P@1	F1	F1
	(%)	(Berant)	(Yao)
Baselines			
(Berant et al., 2013)	_	31.4	_
(Bordes et al., 2014b)	31.3	29.7	31.8
(Yao and Van Durme, 2014)	_	33.0	42.0
(Berant and Liang, 2014)	_	39.9	43.0
Our approach			
Subgraph & $\mathcal{A}(q) = C_2$	40.4	39.2	43.2
Ensemble with (Berant & Liang, 14)	_	41.8	45.7
Variants			
Without multiple predictions	40.4	31.3	34.2
Subgraph & $A(q) = All 2$ -hops	38.0	37.1	41.4
Subgraph & $\mathcal{A}(q) = C_1$	34.0	32.6	35.1
Path & $\mathcal{A}(q) = C_2$	36.2	35.3	38.5
Single Entity & $\mathcal{A}(q) = C_1$	25.8	16.0	17.8

Pros of subgraph embeddings:

training uses only QA pairs and the knowledge base

Pros of subgraph embeddings:

- training uses only QA pairs and the knowledge base
- low-dimension embeddings
- exploiting richer structure of the answers, which is provided by their local neighborhood in the KB graph

Pros of subgraph embeddings:

- training uses only QA pairs and the knowledge base
- low-dimension embeddings
- exploiting richer structure of the answers, which is provided by their local neighborhood in the KB graph

- training for question paraphrasing task at the same time
- promising performance on the WEBQUESTIONS benchmark

Thank you!

