Euler's Method and its Applications Numerical Methods for Dynamical Systems

Ratthaprom PROMKAM, Dr. rer. nat.

Department of Mathematics and Computer Science, RMUTT

Taylor Series

Definition

The Taylor series of a real-value function f(x), that is infinitely differentiable at x=a, is a power series

$$f(a) + f'(a)(x-a) + \frac{f''(a)}{2!}(x-a)^2 + \frac{f'''(a)}{3!}(x-a)^3 + \cdots$$

or in summation form,

$$\sum_{n=0}^{\infty} \frac{f^{(n)}(a)}{n!} (x-a)^n.$$

Theorem (Taylor Series Convergence Theorem)

Let f(x) be an infinitely differentiable function on an open interval I containing a. The Taylor series of f(x) centered at a, converges to f(x) for all x in I if and only if the remainder term

$$R_n(x) = \frac{f^{(n+1)}(\xi)}{(n+1)!} (x-a)^{n+1}, \text{ for some } \xi \in (a,x),$$

satisfies

$$\lim_{n\to\infty} R_n(x) = 0.$$

- $\$ If $R_n(x) \to 0$, the Taylor series converges to f(x).
- \blacksquare If $R_n(x)$ does not vanish, the Taylor series may diverge or approximate another function.

Example (Exponential Function)

Find the Taylor series of $f(x) = e^x$ around x = 0.

Solution: The Taylor series is given by

$$f(x) = \sum_{n=0}^{\infty} \frac{f^{(n)}(0)}{n!} x^n.$$

Compute derivatives:

$$f(x) = e^x$$
, $f'(x) = e^x$, $f''(x) = e^x$, $f'''(x) = e^x$,...

Since $f^{(n)}(0) = e^0 = 1$, we substitute:

$$e^x = \sum_{n=0}^{\infty} \frac{x^n}{n!} = 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \frac{x^4}{4!} + \cdots$$

Department of Mathematics and Computer 4 / 15

Example (Sine Function)

Find the Taylor series of $f(x) = \sin x$ around x = 0.

Solution: The Taylor series is given by

$$f(x) = \sum_{n=0}^{\infty} \frac{f^{(n)}(0)}{n!} x^n.$$

Compute derivatives:

$$f(x) = \sin x$$
, $f'(x) = \cos x$, $f''(x) = -\sin x$, $f'''(x) = -\cos x$.

Evaluating at x = 0:

$$f(0) = 0$$
, $f'(0) = 1$, $f''(0) = 0$, $f'''(0) = -1$, $f''''(0) = 0$,...

Only odd powers of x remain, leading to:

$$\sin x = x - \frac{x^3}{3!} + \frac{x^5}{5!} - \frac{x^7}{7!} + \cdots$$

Department of Mathematics and Computer 5 / 15

Example (Cosine Function)

Find the Taylor series of $f(x) = \cos x$ around x = 0.

Solution: The Taylor series is given by

$$f(x) = \sum_{n=0}^{\infty} \frac{f^{(n)}(0)}{n!} x^n.$$

Compute derivatives:

$$f(x) = \cos x$$
, $f'(x) = -\sin x$, $f''(x) = -\cos x$, $f'''(x) = \sin x$.

Evaluating at x = 0:

$$f(0) = 1$$
, $f'(0) = 0$, $f''(0) = -1$, $f'''(0) = 0$, $f''''(0) = 1$,...

Only even powers of x remain, leading to:

$$\cos x = 1 - \frac{x^2}{2!} + \frac{x^4}{4!} - \frac{x^6}{6!} + \cdots$$

Department of Mathematics and Computer 6 / 15

Example (Natural Logarithm Function)

Find the Taylor series of $f(x) = \ln(1+x)$ around x = 0.

Solution: The Taylor series is given by

$$f(x) = \sum_{n=0}^{\infty} \frac{f^{(n)}(0)}{n!} x^n.$$

Compute derivatives:

$$f(x) = \ln(1+x), \quad f'(x) = \frac{1}{1+x}, \quad f''(x) = -\frac{1}{(1+x)^2}, \quad f'''(x) = \frac{2}{(1+x)^3}.$$

Evaluating at x = 0:

$$f(0) = 0$$
, $f'(0) = 1$, $f''(0) = -1$, $f'''(0) = 2$, $f''''(0) = -6$,...

The resulting series is:

$$\ln(1+x) = x - \frac{x^2}{2} + \frac{x^3}{2} - \frac{x^4}{4} + \cdots, \quad |x| < 1.$$

Department of Mathematics and Computer 7 / 15

Derive the Taylor series expansion of a real-valued, infinitely differentiable function f around x for a small increment h>0.

Derive the Taylor series expansion of a real-valued, infinitely differentiable function f around x for a small increment h>0.

Firstly, suppose that f is infinitely differentiable at a. Consider its Taylor series expansion:

$$f(x) = f(a) + f'(a)(x - a) + \frac{f''(a)}{2!}(x - a)^2 + \frac{f'''(a)}{3!}(x - a)^3 + \cdots$$

Derive the Taylor series expansion of a real-valued, infinitely differentiable function f around x for a small increment h>0.

Firstly, suppose that f is infinitely differentiable at a. Consider its Taylor series expansion:

$$f(x) = f(a) + f'(a)(x - a) + \frac{f''(a)}{2!}(x - a)^2 + \frac{f'''(a)}{3!}(x - a)^3 + \cdots$$

Next, substitute x - a = h (or x = a + h) into the above equation to get:

$$f(a+h) = f(a) + f'(a) \cdot h + \frac{f''(a)}{2!} \cdot h^2 + \frac{f'''(a)}{3!} \cdot h^3 + \cdots$$

Derive the Taylor series expansion of a real-valued, infinitely differentiable function f around x for a small increment h>0.

Firstly, suppose that f is infinitely differentiable at a. Consider its Taylor series expansion:

$$f(x) = f(a) + f'(a)(x - a) + \frac{f''(a)}{2!}(x - a)^2 + \frac{f'''(a)}{3!}(x - a)^3 + \cdots$$

Next, substitute x - a = h (or x = a + h) into the above equation to get:

$$f(a+h) = f(a) + f'(a) \cdot h + \frac{f''(a)}{2!} \cdot h^2 + \frac{f'''(a)}{3!} \cdot h^3 + \cdots$$

Since \boldsymbol{a} is an arbitrary, substitute it with \boldsymbol{x} into the above equation to get:

$$f(x+h) = f(x) + hf'(x) + h^2 \frac{f''(x)}{2!} + h^3 \frac{f'''(a)}{3!} + \cdots$$

Department of Mathematics and Computer 8 / 15

Initial Value Problem (IVP)

$$\dot{x}(t) = f(t, x(t)), \quad x(t_0) = x_0.$$

Goal: Construct a discrete approximation $\{x_n\}$ to x(t) at times $t_n = t_0 + nh$.

Time	t_0	$t_0 + h$	$t_0 + 2h$	 $t_0 + nh$
Solution	$x(t_0)$	$x(t_0+h)$	$x(t_0+2h)$	 $x(t_0 + nh)$
Approximation	x_0	x_1	x_2	 x_n

Key Idea: Use a *first-order Taylor expansion* to approximate x(t+h) in terms of x(t).

Step 1: Taylor Expansion Around t

$$x(t+h) = x(t) + h x'(t) + \frac{h^2}{2!} x''(\xi), \text{ for some } \xi \in (t, t+h).$$

Since x'(t) = f(t, x(t)), we truncate after the first derivative term:

$$x(t+h) \approx x(t) + h f(t, x(t)).$$

Remark:

- Higher-order terms are grouped into $\mathcal{O}(h^2)$.
- This yields a *local* truncation error of order h^2 .

Step 2: Discretize the Time Domain

- \bigcirc Define $t_n = t_0 + nh$, where h is the step size.
- \triangle Let $x_n \approx x(t_n)$.

Step 3: Derive the Update Formula

Applying the approximation:

$$x_{n+1} = x_n + h f(t_n, x_n).$$

Euler Algorithmic Implementation

- 1. Initialize: x_0, t_0, h .
- 2. **Loop:** $x_{n+1} = x_n + h f(t_n, x_n), \quad t_{n+1} = t_n + h.$
- 3. **Stop:** when t_n reaches (or exceeds) final time T.

Local Truncation Error (LTE):

$$x(t+h) - (x(t) + h f(t, x(t))) = \mathcal{O}(h^2).$$

Global Error:

- \bigcirc Over n steps, the total (global) error is $\mathcal{O}(h)$.
- This is why Euler's method is called a first-order method.

Summary:

- Euler's method is simple and easy to implement.
- Accuracy can be improved by decreasing h, but too small h increases computational cost.
- More advanced methods (e.g., Modified Euler, Runge–Kutta) use higher-order terms of the Taylor expansion for better accuracy.

Example (Exponential Growth)

Solve numerically using Euler's method:

$$\dot{x} = x$$
, $x(0) = 1$, $h = 0.1$.

Solution: Using Euler's method:

$$x_{n+1} = x_n + hx_n.$$

Starting at $x_0 = 1$:

$$x_1 = 1 + 0.1(1) = 1.1.$$

 $x_2 = 1.1 + 0.1(1.1) = 1.21.$
 $x_3 = 1.21 + 0.1(1.21) = 1.331.$

Compare with exact solution: $x(t) = e^t$.

Observation: Euler's method slightly underestimates the true solution.

Example (Logistic Growth)

Solve numerically using Euler's method:

$$\dot{x} = 2x(1-x), \quad x(0) = 0.1, \quad h = 0.1.$$

Solution: Using Euler's method:

$$x_{n+1} = x_n + h \cdot 2x_n(1 - x_n).$$

Starting at $x_0 = 0.1$:

$$x_1 = 0.1 + 0.1 \cdot 2(0.1)(1 - 0.1) = 0.118.$$

 $x_2 = 0.118 + 0.1 \cdot 2(0.118)(1 - 0.118) = 0.138.$

Compare with exact solution: $x(t) = (1 + 9e^{-2t})^{-1}$. Observation: Euler's method provides reasonable accuracy for small t but deviates for larger t.

Consider the second-order ODE:

$$\ddot{x} + x = 0$$
, $x(0) = 1$, $\dot{x}(0) = 0$.

Step 1: Convert to a First-Order System in Vector Form Let

$$\mathbf{s} = \begin{bmatrix} x \\ y \end{bmatrix} \quad \text{where } y = \dot{x}.$$

Then,

$$\dot{\mathbf{s}}(t) = \begin{bmatrix} \dot{x}(t) \\ \dot{y}(t) \end{bmatrix} = \begin{bmatrix} y(t) \\ -x(t) \end{bmatrix} =: \mathbf{f}(\mathbf{y}(t)).$$

Consider the second-order ODE:

$$\ddot{x} + x = 0$$
, $x(0) = 1$, $\dot{x}(0) = 0$.

Step 2: Apply Euler's Method

$$\mathbf{s}_{n+1} = \mathbf{s}_n + h\,\mathbf{f}(\mathbf{s}_n).$$

In coordinates, this becomes:

$$\begin{bmatrix} x_{n+1} \\ y_{n+1} \end{bmatrix} = \begin{bmatrix} x_n \\ y_n \end{bmatrix} + h \begin{bmatrix} y_n \\ -x_n \end{bmatrix} = \begin{bmatrix} x_n + h y_n \\ y_n - h x_n \end{bmatrix}.$$

Consider the second-order ODE:

$$\ddot{x} + x = 0$$
, $x(0) = 1$, $\dot{x}(0) = 0$.

Step 3: Implementation Example

Initial conditions:
$$\mathbf{s}_0 = \mathbf{s}(0) = \begin{bmatrix} x(0) \\ y(0) \end{bmatrix} = \begin{bmatrix} 1 \\ 0 \end{bmatrix}, \quad h = 0.1.$$

$$\mathbf{s}_1 = \begin{bmatrix} 1 \\ 0 \end{bmatrix} + 0.1 \begin{bmatrix} 0 \\ -1 \end{bmatrix} = \begin{bmatrix} 1 \\ -0.1 \end{bmatrix}.$$

$$\mathbf{s}_2 = \begin{bmatrix} 1 \\ -0.1 \end{bmatrix} + 0.1 \begin{bmatrix} -0.1 \\ -1 \end{bmatrix} = \begin{bmatrix} 1 - 0.01 \\ -0.1 - 0.1 \end{bmatrix} = \begin{bmatrix} 0.99 \\ -0.2 \end{bmatrix}.$$

Department of Mathematics and Computer 15 / 15

Consider the second-order ODE:

$$\ddot{x} + x = 0$$
, $x(0) = 1$, $\dot{x}(0) = 0$.

Compare with exact solution: $x(t) = \cos(t)$.

Observation: Euler's method introduces numerical damping or growth (energy drift) for oscillatory systems. Over many steps, this leads to inaccurate long-term behavior.