Unit 1: Quadratics

Subunit 1.1: Completing the square

7	0	oical	Question No:	1

1110	equation of a curve is $y = 2x^2 + kx + k - 1$, where k is a constant.							
(a)	Given that the line $y = 2x + 3$ is a tangent to the curve, find the value of k .	[3]						
It is	now given that $k = 2$.							
	now given that $k = 2$. Express the equation of the curve in the form $y = 2(x + a)^2 + b$, where a and b are chence state the coordinates of the vertex of the curve.	onstants, an						
	Express the equation of the curve in the form $y = 2(x + a)^2 + b$, where a and b are c	onstants, an						
	Express the equation of the curve in the form $y = 2(x + a)^2 + b$, where a and b are chence state the coordinates of the vertex of the curve.	onstants, an						
	Express the equation of the curve in the form $y = 2(x + a)^2 + b$, where a and b are chence state the coordinates of the vertex of the curve.	onstants, an						
	Express the equation of the curve in the form $y = 2(x + a)^2 + b$, where a and b are chence state the coordinates of the vertex of the curve.	onstants, an						
	Express the equation of the curve in the form $y = 2(x + a)^2 + b$, where a and b are chence state the coordinates of the vertex of the curve.	constants, an						
	Express the equation of the curve in the form $y = 2(x + a)^2 + b$, where a and b are chence state the coordinates of the vertex of the curve.	onstants, an						
	Express the equation of the curve in the form $y = 2(x + a)^2 + b$, where a and b are chence state the coordinates of the vertex of the curve.	onstants, and						
	Express the equation of the curve in the form $y = 2(x + a)^2 + b$, where a and b are chence state the coordinates of the vertex of the curve.	constants, and						

Express $16x^2$						
•••••	•••••	•••••	•••••	•••••	•••••	•••••
					•••••	
	t the equation			is a constant,		
	t the equation					
It is given that	t the equation		0 = k, where k		has exactly o	one roo
It is given that	t the equation		0 = k, where k	is a constant,	has exactly o	one roo
It is given that	t the equation		0 = k, where k	is a constant,	has exactly o	one roo
It is given that	t the equation	$16x^2 - 24x + 1$	0 = k, where k	is a constant,	has exactly o	one roo
It is given that	t the equation	$16x^2 - 24x + 1$	0 = k, where k	is a constant,	has exactly o	one roo
It is given that	t the equation	$16x^2 - 24x + 1$	0 = k, where k	is a constant,	has exactly o	one roo
It is given that	t the equation	$16x^2 - 24x + 1$	0 = k, where k	is a constant,	has exactly o	one roo
It is given that	t the equation	$16x^2 - 24x + 1$	0 = k, where k	is a constant,	has exactly o	one roo
It is given that	t the equation	$16x^2 - 24x + 1$	0 = k, where k	is a constant,	has exactly o	one roo
It is given that	t the equation	$16x^2 - 24x + 1$	0 = k, where k	is a constant,	has exactly o	one roo
It is given that	t the equation	$16x^2 - 24x + 1$	0 = k, where k	is a constant,	has exactly o	one roo
It is given that	t the equation	$16x^2 - 24x + 1$	0 = k, where k	is a constant,	has exactly o	one roo

								•••••	
••••••	•••••	•••••		•••••	•••••	•••••			
								•••••	
		inia ini	Set of ,		T P TOT		o equali		2 · P
			· • • • • • • • • • • • • • • • • • • •			· • • • • • • • • • • • • • • • • • • •			
		•••••			•••••			•••••	•••••
	ence or oth								ence or otherwise find the set of values of p for which the equation $4x^2 - 2x$ all roots.

(a)	Express $3y^2 - 12y - 15$ in the form $3(y+a)^2 + b$, where a and b are constants.	[2]
		•••••
		•••••
b)	Hence find the exact solutions of the equation $3x^4 - 12x^2 - 15 = 0$.	[3]
		•••••