(a) Solution:

1: P 2: A 3: C 4: B J, E(b) froof, $f = e^{jun}$ $h(v) = f(w) * J(v) = \sum_{n=1}^{\infty} e^{j(v-n)w} J(u) = e^{jvn} \sum_{n=1}^{\infty} e^{-jwn} J(n)$ $= e^{jvw} \sum_{n=1}^{\infty} e^{-jwn} J(n) = e^{jwv} (\sum_{n=1}^{\infty} cos(w_n) J(n) + J(n) J(n))$ $= f(v) \cdot (a+bj)$

RED.

(c) $f[u,v] = \sum_{n=-\infty}^{\infty} \int_{n=-\infty}^{\infty} f(m,n) \cdot e^{-j(mu+nv)}$ $= \sum_{n=-\infty}^{\infty} \sum_{n=-\infty}^{\infty} \int_{n=-\infty}^{\infty} \int_{n-\infty}^{\infty} f(m,n) \cdot e^{-j(mu+nv)}$ $= \sum_{n=-\infty}^{\infty} \sum_{n=-\infty}^{\infty} h(x,y) \left(\sum_{n=-\infty}^{\infty} \sum_{n=-\infty}^{\infty} \int_{n-\infty}^{\infty} (m-x, n-y) e^{-j(mu+nv)} \right)$

Let m=x=p n-y=q $\rightarrow m=x+p$, n=y+q $= \sum_{k=-\infty}^{\infty} \sum_{j=-\infty}^{\infty} \frac{1}{j} \left(\sum_{k=-\infty}^{\infty} \frac{1}{j} \left$

= H[n,v]. G[n,v]

(e) If Gaussian has legge variance 5, its forvier transform will have low variance and vice versa.

The	highes	level	of	pyramids	and	reconstruction	correspond	to	better	bleading
Yesn	lt.						, 			