CS231n Project Design

Manasi Sharma

- 1. Project expectations
 - a. Does my project meet expectations?
 - b. FAQs
- 2. Picking a project idea
 - a. Sources of inspiration
 - b. Reading papers efficiently
- 3. Proposal, milestone, and final report
 - a. Due dates, expectations, logistics
 - b. Support

- 1. Project expectations
 - a. Does my project meet expectations?
 - b. FAQs
- 2. Picking a project idea
 - a. Sources of inspiration
 - b. Reading papers efficiently
- 3. Proposal, milestone, and final report
 - a. Due dates, expectations, logistics
 - b. Support

Project expectations

The course project is a (fun) way to explore concepts taught in the course on a topic of your choice!

- Fairly open-ended, anything related to vision (link to project page)

Completed in groups of 1, 2, or 3 people

- Project expectations are higher for groups with more people

Generally, two tracks of work:

- **Applications:** If you have a specific background or interest (e.g. biology, engineering, physics), we'd love to see you apply ConvNets to problems related to your particular domain of interest.
- **Models:** You can build a new model (algorithm) and apply it to tackle vision tasks. This track might be more challenging, and may later lead to a piece of publishable work.

Project expectations

The final report has the following structure:

- Title, Author(s)
- Abstract
- Related Work
- Data Description
- Methods
- Experiments
- Conclusion
- Supplementary Material (optional)

For more on each of these, please also refer to the "final report" part of the **project page**

(http://cs231n.stanford.edu/project.html#report)

FAQ: Does my project meet expectations?

Rule of thumb:

- How much effort are you putting into your project?

Strong projects might...

- Propose a novel variant of a technique (which takes a lot of effort)
- Adapt an existing technique to a totally new problem (which takes a lot of effort)

Weaker projects might...

- Spend several weeks collecting/cleaning data rather than testing hypotheses
- Clone an existing repo and do minimal stitching to make it work for a Kaggle competition

FAQ: Does my project meet expectations?

So, this **doesn't** mean:

- Your project has to be strictly novel to get a good grade (although, we encourage this!)
- You have to beat the state-of-the-art performance to get a good grade (you don't have to come up with the next best object detector to test an interesting hypothesis)

This **does** mean:

- You need to put a significant effort into your investigation, and you may have to try many different approaches

In your **analysis**, ask yourself:

- Are you interpreting and understanding your results, or merely stating them?
- Are you just plotting a loss curve, or are you evaluating the results of your approach from many different angles?

Project FAQs

Q: Can I apply convolutional networks to a purely NLP / audio / stock price problem?

- A: This is a computer vision course, so you must incorporate visual data in some form.

Q: Can I change my project after the proposal, before the milestone?

- **A:** Yes - the proposal is to make sure you have a plausible project direction. If you need to change project directions, we understand.

Q: Can I change my project *after* the milestone?

- **A:** In general, we do not encourage this. At this point in the course, there will be little time to put together a sufficient project.

- 1. Project expectations
 - a. Does my project meet the course expectations? b.

FAQs

- 2. Picking a project idea
 - a. Sources of inspiration
 - b. Reading papers efficiently
- 3. Proposal, milestone, and final report
 - a. Due dates, expectations, logistics
 - b. CA Support

Picking a project idea

First and foremost:

Do what is important or interesting to you, not what seems easiest.

- You will be far more motivated if you're invested in what you're doing
- What do you *really* care about? Healthcare? Self-driving cars? Surveillance? Sports? Ethics? You can probably find its intersection with computer vision

Practical considerations:

- 1. **Data:** Is there existing data for this problem? Will I need to spend weeks collecting it myself?
- 2. **Code & framework:** Will I have to implement this myself, or is there an existing implementation?

Picking a project idea

Conferences:

CVPR: IEEE Conference on Computer Vision and Pattern Recognition

ICCV: International Conference on Computer Vision

ECCV: European Conference on Computer Vision

NeurIPS: Neural Information Processing Systems

ICLR: International Conference on Learning Representations

ICML: International Conference on Machine Learning

Note: Do **not** even begin to try to read through all of these papers, or even their titles. There are far too many.

Use CMD+F to find papers with relevant keywords.

Picking a project idea

Additional resources:

- <u>Stanford Vision Lab Publications</u>
- Awesome Deep Vision
- Papers With Code
- Kaggle
- Previous CS229 Projects

Reading papers

Do **not** read a paper linearly on your first pass

- First, read the abstract (word for word) as well as the figures & captions
- Does the paper still seem relevant? If so, read the methods as well as the results
- Finally, read the entire paper linearly (if the additional detail seems useful)

Papers are not always the most efficient way to digest an idea. Also try looking around for:

- Talks, videos, or blog posts on the topics
 - Github repos, containing actual code for the idea

Reading papers

Example:

You Only Look Once: Unified, Real-Time Object Detection

Joseph Redmon*, Santosh Divvala*†, Ross Girshick*, Ali Farhadi*†

University of Washington*, Allen Institute for AI†, Facebook AI Research*

http://pjreddie.com/yolo/

- 1. Project expectations
 - a. Does my project meet the course expectations? b.

FAQs

- 2. Picking a project idea
 - a. Sources of inspiration
 - b. Reading papers efficiently
- 3. Proposal, milestone, and final report
 - a. Due dates, expectations, logistics
 - b. CA Support

Deliverables

Due dates:

- Proposal (4/18) Monday!
- Milestone (5/7)
- Final report (6/2)
- Poster session (6/4)

Project Proposal (Due 4/18)

The proposal is a 200-400 word paragraph answering the following questions:

- **Problem**: What is the problem that you will be investigating? Why is it interesting?
- **Background**: What reading will you examine to provide context/background?
- **Data**: What data will you use?
 - o If you are collecting new data, how will you do it?
- Method: What method or algorithm are you proposing?
 - If there are existing implementations, will you use them and how?
 - How do you plan to improve or modify such implementations?
- **Results**: How will you evaluate your results?
 - Qualitatively, what kind of results do you expect (e.g. plots or figures)?
 - Quantitatively, what kind of metrics will you use to evaluate/compare your results?

Milestone (Due 5/7)

At most 3-page progress report, more or less containing:

- 1. Literature review (3+ sources)
- 2. Indication that code is up and running
- 3. Data source explained correctly
- 4. What Github repo or other code you're basing your work off of

5. Ran baseline model have results

- a. Yes, points are taken off for no model running & no preliminary results
- 6. Data pipeline should be in place
- 7. Brief discussion of your preliminary results

Support: CA areas of specialty

Day	Staff			
Mon	Drew <i>GANs, NLP</i>	Yinan GANs, 3D vision, inverse graphics	Zhuoyi Object detection, scene graph generation, activity parsing; health care	
Tue	Mihir Autonomy, multi-object tracking, 3D vision, robotics (social navigation)	Manasi Image classification, image augmentation, 3D vision; astrophysics	Stephen Video understanding, action recognition, medical imaging, multi-task learning; healthcare	Dhruva <i>CV, RL, NLP</i>
Wed	Agrim RL, videos, detection; robotics, autonomous vehicles	Manasi Image classification, image augmentation, 3D vision; astrophysics	William 3D vision, robot learning	Gokul RL, robot learning, simulation; robotics, autonomous vehicles
Thu	Shyamal Videos, vision+language	Bohan Robot learning; robotics	Dhruva <i>CV, RL, NLP</i>	Yinan GANs, 3D vision, inverse graphics
Fri	Agrim RL, videos, detection; robotics, autonomous vehicles	Moo Jin Robot learning, RL; robotics	Stephen Video understanding, action recognition, medical imaging, multi-task learning; healthcare	Sumith Video ML, human motion (sports/exercises)
Sat	Hongyu Graph neural networks	Bohan Robot learning; robotics		
Sun	Haochen Robot learning; robotics	Bohan Robot learning; robotics		

Questions?