The Container Security in Healthcare Data Exchange System

Bachelor's degree graduation project

Chih-Hsuan Yang

National Sun Yat-sen University

March 26, 2021 v1.0

Outline

- Outcome
- Related works
- 3 Current progress
- 4 Reference

Outcome

Outcome

No outcome.

Related works

Two papers

- A Measurement Study on Linux Container Security: Attacks and Countermeasures[1]
- Container-Based Cloud Platform for Mobile Computation Offloading[2]

Some Golang/Rust

- **1** The next generation of C/C++
- 4 High Concurrency, Memory Safe, Traits

Why?

High performance and secure server.

The docker-engine is written by Golang.

ASLR/KASLR/Finer-grained KASLR


```
Run /init.sh as init process
  with arguments:
    /init.sh
  with environment:
   HOME=/
    TERM=linux
    hostfs=./rootfs
   mem=64M
kaslr: loading out-of-tree module taints kernel.
1694699525
random: fast init done
random: crng init done
→ 0326 git:(main) X less /proc/$$/maps
Python 3.8.5 (default, Jan 27 2021, 15:41:15)
[GCC 9.3.0] on linux
Type "help", "copyright", "credits" or "license" for more information.
>>> import math
>>> math.log(1694699525, 2)
30.658382356126655
>>> exit()
```

Finer-grained KASLR

Finer-grained kernel address-space layout randomization[3]

Not merged on mainline yet.

New idea

Run container in UML? https://github.com/weber-software/diuid

User-mode∠ Linux

Capabilities

Table 3: Function of Security Mechanisms in Preventing Privilege Escalation Attacks

EDB-ID	CVE-ID	Security Mechanisms				
		Namespace	Cgroup	Capability	Secomp	MAG
Web App	Layer	,				
43002	CVE-2017-15276			•		
40921	CVE-2016-9566			•		
42305	CVE-2017-6970			•		
40938	CVE-2014-6271			•		
Server La	yer					
40768	CVE-2016-1247			•		
40678	CVE-2016-6663			•		
40450	CVE-2016-1240			•		
Kernel L	ayer					
41994	CVE-2017-7308					
43127	CVE-2007-5123					
43029						
40871	CVE-2016-8655					
40489						
40435	CVE-2016-4997					
44300				NET_ADMIN ¹		
40049						
41458	CVE-2007-6074			 NET_ADMIN¹ 		
43418	CVE-2007-1000112			 NET_ADMIN¹ 		
41995	CVE-2016-9793			 NET_ADMIN¹ 		
42887	CVE-2017-10000253			•		
42274	CVE-2017-1000366					
42275	CVE-2017-1000371					
42276	CVE-2017-1000379					
	CVE-2007-1000370					
40003	CVE-2816-0728					
39277					-	
39992	CVE-2016-1583			•	•	•
41762	CVE-2017-1575			•	•	•
41763	CVE-2007-1576			•	•	•
39166	CVE-2015-8660					
39230						Ľ
40847						
40616	CVE-2016-5195	•		· •		
40611						_
		•			•	
40838						_
40759 39772	CVE-2816-4557	•		•	•	
41999	CVE-2816-2384			_		-
41999	CVE-2016-2384	, -				

[•] Security mechanism blocks the exploit.

Exploit bypasses all 5 security mechanisms.

Exploit can achieve privilege escalation when the 'NET_ADMIN' capability is included in the cop_ber of the caller process. Other exploits marked '* in 'Capability' column can only be successful when all 38 capabilities are included in the cap_ber. The 'cap_ber' defines the highest privilege a process could reach.

Tim Hsu

- 「你研究了 capabilities 了嗎?」
 - 有試過,不能算研究。
- ② 「如果有 kernel exploit 能打穿 container 那你有那些 anti-exploit 的方式?」
 - Not to kernel: KASLR, SECCOMP, capabilities
 - Landed kernel: Encrypt container database, alert
 - UML? Hypervisor.

Tim Hsu

- 「先從只用現有機制 user land 的方式再往 kernel land 的方向」
- ② 「擋掉 kernel exploit 『可以從無法執行』或『可執行但不會成功』 或『可執行但會被限制』等想法」
 - Capabilities, SECCOMP, AppArmor(Docker only)
 - No idea
 - Network Configuration, LSM

Interact with FHIR in docker

```
→ ~ curl -k -i -u 'fhiruser:change-password' 'https://localhost:9443/fhir-server/api/v4/$healt
hcheck'
HTTP/2 200
content-type: application/fhir+json
date: Thu, 25 Mar 2021 11:22:18 GMT
content-language: en-US
content-length: 123

{"resourceType":"OperationOutcome", "issue":[{"severity":"information", "code":"informational", "d
etails":{"text":"All OK"}}]}

→ ~ ■
```

Current progress

Map-reduce

Map-reduce

Reference

References I

- [1] Xin Lin et al. "A Measurement Study on Linux Container Security: Attacks and Countermeasures". In: ACSAC '18. San Juan, PR, USA: Association for Computing Machinery, 2018, 418–429. ISBN: 9781450365697. DOI: 10.1145/3274694.3274720. URL: https://doi.org/10.1145/3274694.3274720.
- [2] S. Wu et al. "Container-Based Cloud Platform for Mobile Computation Offloading". In: 2017 IEEE International Parallel and Distributed Processing Symposium (IPDPS). 2017, pp. 123–132. DOI: 10.1109/IPDPS.2017.47.
- [3] Jake Edge. 2020. URL: https://lwn.net/Articles/812438/.