ESC201T : Introduction to Electronics

Lecture 36: Combination circuit-3

B. Mazhari Dept. of EE, IIT Kanpur

Comparator

$A_3A_2A_1A_0$	$B_3B_2B_1B_0$	A <b< th=""><th>A>B</th><th>A=B</th></b<>	A>B	A=B
0000	0000	0	0	1
0000	0001	1	0	0
0001	0000	0	1	0

Adder/Subtractor

<u>a</u>	b	s	С
0	0	0	0
0	1	1	0
1	0	1	0
1	1	0	1

$$S = \overline{a}.b + a.\overline{b}; C = a.b$$

<u>a</u>	b	C_{in}	S	C _{out}
0	0	0	0	0
0	0	1	1	0
0	1	0	1	0
0	1	1	0	1
1	0	0	1	0
1	0	1	0	1
1	1	0	0	1
1	1	1	1	1

$$S = \overline{a}.\overline{b}.c_{in} + \overline{a}.b.\overline{c_{in}} + a.\overline{b}.\overline{c_{in}} + a.b.c_{in}; C_{out} = a.b + a.c_{in} + b.c_{in}$$

$$S = \overline{a.b.c_{in}} + \overline{a.b.c_{in}} + a.\overline{b.c_{in}} + a.\overline{b.c_{in}} + a.b.c_{in}$$

$$S = C_{in} \oplus (a \oplus b)$$

$$C_{out} = a.b + a.C_{in} + b.C_{in}$$

$$C_{out} = C_{in}(a.\overline{b} + \overline{a.b}) + a.b = C_{in}.(a \oplus b) + a.b$$

4-bit Adder

$A_3A_2A_1A_0$	$B_3B_2B_1B_0$	$S_3S_2S_1S_0$	C _{out}
0000	0000	0000	1
0000	0001	0001	0
0001	0000	0001	0

Ripple Carry Adder (20 gate circuit)

Subtraction

A - B = A + 2's complement of B

A - B = A + 1's complement of B+1

$$A - B = A + \overline{B} + 1$$

One needs add a circuit for predicting errors resulting from overflow

Adder/Subtractor

Multiplier

