SIMPLEX: REVISED SIMPLEX METHOD

Revised Simplex Method

Original LP

m decision variables m rows in A.

Standard Simplex Method

Complexity of Each Pivoting Operation

Choice of Entering Variable: O(n)
Choice of Leaving Variable: O(m)
Updating Dictionary: O(m * n)

Storage: O(m*n) floating point numbers

Problems with Standard Simplex Algorithm

Storage Cost is High.

Sparsity of Original Problem is Lost.

 Accumulation of Floating Point Errors over number of iterations.

Problem # 1 : Storage Cost

- Typical problem size.
 - m = 500 and n = 10000

- Cost of storing dictionary: 5x10⁶ floating point numbers.
 - Approx. 20 MB

Problem #2: Loss in Sparsity

- Most practical LP instances are sparse.
- Lots of variables in the problem.
- But each inequality involves few variables.

Fill In Problem:

Problem #3: Floating Point Error Accumulation

Revised Simplex Method

Basic Idea: Do not store the intermediate dictionary.

Store the set of basic and non-basic variables.

- At each step, reconstruct dictionary from data:
 - Original problem data: A,b,c
 - Set of basic (and non-basic) variables: B

Storage Cost:
Original problem data (sparse)
Basis set O(m + n)