DexNotePro: Senior Secondary Mathematics (Grades 11–12)

Welcome to Advanced Mathematics

Welcome to **DexNotePro's Senior Secondary Mathematics**, where logic meets abstraction, and formulas shape modern computing, engineering, and AI.

You're about to master the building blocks of calculus, vectors, and probability — the tools behind physics, economics, and even machine learning.

1. Sets, Relations & Functions

Sets form the language of modern math.

A **set** is a collection of well-defined elements.

Examples:

- $A = \{2, 4, 6, 8\}$
- $B = \{x \mid x < 10, x \in N\}$

Relations & Functions:

A **relation** shows connection between two sets.

A **function** is a special relation where every input has exactly one output.

Try This:

If
$$f(x) = 2x + 3$$
, find $f(2)$, $f(5)$.

2. Trigonometric Functions

Now we extend trigonometry to all angles and real numbers.

Concepts:

- General Solutions
- Graphs of trigonometric functions
- Trigonometric equations

Key Identity:

$$\sin[f_0]2\theta + \cos[f_0]2\theta = 1 \sin^2\theta + \cos^2\theta = 1\sin^2\theta + \cos^2\theta = 1$$

Try This:

Solve for θ : $2\sin[\theta]2\theta=12\sin^2\theta=12\sin^2\theta=1$

3. Principle of Mathematical Induction

This principle is the logic of infinite truths — proving statements for all natural numbers.

Steps:

- 1. Verify for n = 1
- 2. Assume true for n = k
- 3. Prove for n = k + 1

Try This:

Prove by induction: $1+3+5+...+(2n-1)=n21+3+5+...+(2n-1)=n^21+3+5+...+(2n-1)=n^2$

4. Complex Numbers & Quadratic Equations

To handle roots of negative numbers, we extend real numbers to **complex numbers**.

Concepts:

- $i^2 = -1$
- z = a + ib

• Conjugate and modulus

Try This:

Find modulus and argument of z = 3 + 4i.

5. Linear Inequalities

Used in optimization and economics to model constraints.

Example:

 $x + y \le 5$, $x \ge 0$, $y \ge 0$ forms a feasible region.

Try This:

Graph $x + 2y \le 8$ and $x \ge 2$.

6. Permutations & Combinations

Counting arrangements and selections forms the base of probability and data science.

Formulas:

- nPr = n! / (n-r)!
- nCr = n! / [r!(n-r)!]

Try This:

How many ways can 5 students sit in 3 chairs?

7. Binomial Theorem

Used in algebraic expansions and probability.

$$(a+b)n = \sum k=0 \\ n(nk)an-kbk(a+b)^n = \sum k=0 \\ k=0 \\ kn)an-kbk$$
 \dot binom{n}{k} a^{n-k} b^k(a+b)n = \sum_{k=0}^{k=0} \\ n(kn)an-kbk

Try This:

Find the middle term in the expansion of $(x+1)6(x+1)^6(x+1)6$

8. Sequences and Series

Mathematical patterns that appear everywhere — from finance to code optimization.

Concepts:

- Arithmetic Progression (AP)
- Geometric Progression (GP)
- Sum of n terms

Try This:

If a = 3, r = 2, find the sum of first 5 terms of GP.

9. Straight Lines & Conic Sections

Coordinate geometry extends to curves — circles, ellipses, and hyperbolas.

Equations:

- Line: y = mx + c
- Circle: $x2+y2=r2x^2+y^2=r^2x^2+y^2=r^2$
- Parabola: $y2=4axy^2=4axy^2=4ax$

Try This:

Find the equation of the line passing through (2,3) with slope 4.

10. Limits & Continuity

The foundation of calculus — studying how functions behave near points.

Key Idea:

 $\lim_{x\to a} f(x) \lim_{x\to a} f(x) \lim_{x\to a} f(x)$ represents the value approached by f(x) as x gets close to a.

Try This:

Find
$$\lim_{\longrightarrow} \frac{1}{2} \times 2x^2 - 4x - 2 \lim_{\longrightarrow} x - 2x^2 - 4$$
 \frac{x^2 - 4}{x - 2}\lim_{x \in 2x^2 - 4}

11. Differentiation

Differentiation tells us how fast things change — used in motion, economics, and AI training.

Rules:

- ddx(xn)=nxn-1 $frac\{d\}\{dx\}(x^n)=nx^{n-1}\}dxd(xn)=nxn-1$
- Chain rule, Product rule, Quotient rule

Try This:

Differentiate:
$$y=x3+2x2+5x+7y = x^3 + 2x^2 + 5x + 7y=x^3+2x^2+5x+7$$

12. Applications of Derivatives

Derivatives help in finding maxima, minima, and rate of change.

Example:

Find the slope of tangent to $y = x^2$ at x = 3. Solution: $dy/dx = 2x \rightarrow slope = 6$.

Try This:

Find maximum or minimum of $y = x^2 - 4x + 5$.

13. Integrals

Integration is the reverse of differentiation — it measures accumulation.

Formulas:

- $\int x n dx = xn+1n+1+C \setminus x^n dx = \int x^{n+1} \{n+1\} + C \int x n dx = n+1xn+1+C$
- $\int exdx=ex+C int e^x dx = e^x+C \int exdx=ex+C$

Try This:

Evaluate $\int (3x^2+4x)dx \int (3x^2+4x)dx$

14. Differential Equations

These link functions and their derivatives — used in physics, population growth, and AI models.

Example:

$$dydx=ky\frac\{dy\}\{dx\}=kydxdy=ky \Rightarrow y=Ce^{kx}$$

Try This:

Solve $dydx=3y\frac\{dy\}\{dx\}=3ydxdy=3y$

15. Vectors

Vectors describe quantities with both magnitude and direction — crucial for graphics and physics.

Concepts:

- Vector addition
- Scalar product (dot)

• Vector product (cross)

Try This:

Find the angle between a = (3,4) and b = (4,3).

16. Three-Dimensional Geometry

Understanding points, lines, and planes in 3D.

Equations:

- Line: $r=a+\lambda br=a+\lambda br=a+\lambda b$
- Plane: ax + by + cz + d = 0

Try This:

Find the distance from (1,2,3) to plane 2x + y + z = 5.

17. Probability & Statistics

You now use math to predict the unpredictable.

Concepts:

- Conditional probability
- Bayes' theorem
- Variance and standard deviation

Try This:

A bag has 5 red and 3 blue balls. Find P(getting 2 red balls when 2 are drawn).

18. Linear Programming

Used to optimize production, costs, or profits.

Steps:

- 1. Form inequalities
- 2. Graph feasible region
- 3. Optimize Z = ax + by

Try This:

Maximize Z = 3x + 4y subject to $x + y \le 10, x \ge 0, y \ge 0$

19. Matrices & Determinants

The algebra of arrays — key for coding, graphics, and machine learning.

Formulas:

- Addition: A + B
- Multiplication: AB
- Determinant of 2×2: |a b|

$$|c d| = ad - bc$$

Try This:

Find the inverse of

[2111]\begin{bmatrix} 2 & 1 \\ 1 & 1 \end{bmatrix} [2111]

20. Mathematical Modeling

The heart of applied math — turning real-world problems into equations.

Example:

Modeling population growth:

$$P(t) = P_0 e^{\wedge} \{kt\}$$

Try This:

If population doubles in 5 years, find k.

Congratulations!

You've completed **DexNotePro: Senior Secondary Mathematics** (Grades 11–12)

You now have command over the most powerful tools in modern mathematics — from algebra to calculus and beyond.

Go to <u>ishaan7india.github.io/DexNotePro</u> and mark this course as complete!