(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization

International Bureau

Application Number: 10/631,029 Filing Date: 07/29/2003

First Named Inventor: Rajinder Singh Attorney Docket Number: 064311-1602

Identifier: F14

(43) International Publication Date 24 February 2005 (24.02.2005)

PCT

(10) International Publication Number WO 2005/016893 A2

(51) International Patent Classification⁷: C07D 239/00

(21) International Application Number:

PCT/US2004/024716

(22) International Filing Date: 30 July 2004 (30.07.2004)

(25) Filing Language: English

(26) Publication Language: English

(30) Priority Data:

60/491,641 30 July 2003 (30.07.2003) US 60/531,598 19 December 2003 (19.12.2003) US 60/572,246 18 May 2004 (18.05.2004) US

(71) Applicant (for all designated States except US): RIGEL PHARMACEUTICALS, INC. [US/US]; 1180 Veterans Boulevard, South San Francisco, CA 94080 (US).

(72) Inventors; and

(75) Inventors/Applicants (for US only): RAJINDER, Singh [GB/US]; 832 Hillman Avenue, Belmont, CA 94002 (US). ANKUSH, Argade [IN/US]; 639-1 Catamaran Street, Foster City, CA 94404 (US). LI, Hui [CN/US]; 1550 Frontera Way, Apt. 117, Millbrae, CA 94030-2803 (US). BHAMIDIPATI, Somasekhar [IN/US]; 888 Foster City

Boulevard, #Q2, Foster City, CA 94404 (US). CAR-ROLL, David [US/US]; 87 Dolores Street, Apt. 105, San Francisco, CA 94103 (US). SYLVAIN, Catherine [FR/US]; 1425 Bellevue Avenue, #12, Burlingame, CA 94010 (US). CLOUGH, Jeffrey [US/US]; 3520 Bay Road, Redwood City, CA 94063 (US). KEIM, Holger [DE/US]; 25 Buckthorn Way, Menlo Park, CA 94025 (US).

- (74) Agents: ROTHENBERGER, Scott, D. et al.; Intellectual Property Department, Suite 1500, 50 South Sixth Street, Minneapolis, MN 55402-1498 (US).
- (81) Designated States (unless otherwise indicated, for every kind of national protection available): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BW, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NA, NI, NO, NZ, OM, PG, PH, PL, PT, RO, RU, SC, SD, SE, SG, SK, SL, SY, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, YU, ZA, ZM, ZW.
- (84) Designated States (unless otherwise indicated, for every kind of regional protection available): ARIPO (BW, GH,

[Continued on next page]

(54) Title: METHODS OF TREATING OR PREVENTING AUTOIMMUNE DISEASES WITH 2,4-PYRIMIDINEDIAMINE COMPOUNDS

(57) Abstract: The present invention provides methods of treating or preventing autoimmune diseases with 2,4-pyrimidinediamine compounds, as well as methods of treating, preventing or ameliorating symptoms associated with such diseases. Specific examples of autoimmune diseases that can be treated or prevented with the compounds include rheumatoid arthritis and/or its associated symptoms, systemic lups erythematosis and/or its associated symptoms and multiple sclerosis and/or its associated symptoms.

WO 2005/016893 A2

GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HU, IE, IT, LU, MC, NL, PL, PT, RO, SE, SI, SK, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

Published:

 without international search report and to be republished upon receipt of that report

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

METHODS OF TREATING OR PREVENTING AUTOIMMUNE DISEASES WITH 2,4-PYRIMIDINEDIAMINE COMPOUNDS

1. CROSS REFERENCE TO RELATED APPLICATION

This application claims benefit under 35 U.S.C. § 119(e) to application Serial No. 60/491,641, filed July 30, 2003 (attorney docket No. 28575/US/US/2), Serial No. 60/531,598, filed December 19, 2003 (attorney docket No. 28575/US/8) and Serial No. 60/572,246, filed May 18, 2004 (attorney docket No. 28575/US/9).

2. FIELD OF THE INVENTION

5

10

15

20

25

The present invention relates generally to 2,4-pyrimidinediamine compounds, pharmaceutical compositions comprising the compounds, intermediates and synthetic methods of making the compounds and methods of using the compounds and compositions in a variety of contexts, such as in the treatment or prevention of autoimmune diseases and/or the symptoms associated therewith.

3. BACKGROUND OF THE INVENTION

Crosslinking of Fc receptors, such as the high affinity receptor for IgE (Fc ϵ RI) and/or the high affinity receptor for IgG (Fc γ RI) activates a signaling cascade in mast, basophil and other immune cells that results in the release of chemical mediators responsible for numerous adverse events. For example, such crosslinking leads to the release of preformed mediators of Type I (immediate) anaphylactic hypersensitivity reactions, such as histamine, from storage sites in granules *via* degranulation. It also leads to the synthesis and release of other mediators, including leukotrienes, prostaglandins and platelet-activating factors (PAFs), that play important roles in inflammatory reactions. Additional mediators that are synthesized and released upon crosslinking Fc receptors include cytokines and nitric oxide.

The signaling cascade(s) activated by crosslinking Fc receptors such as Fc ϵ RI and/or Fc γ RI comprises an array of cellular proteins. Among the most important intracellular signal propagators are the tyrosine kinases. And, an important tyrosine kinase involved in the signal transduction pathways associated with crosslinking the Fc ϵ RI and/or Fc γ RI

receptors, as well as other signal transduction cascades, is Syk kinase (see Valent et al., 2002, Intl. J. Hematol. 75(4):257-362 for review).

As the mediators released as a result of $Fc \in RI$ and $Fc \gamma RI$ receptor cross-linking are responsible for, or play important roles in, the manifestation of numerous adverse events, the availability of compounds capable of inhibiting the signaling cascade(s) responsible for their release would be highly desireable. Moreover, owing to the critical role that Syk kinase plays these and other receptor signaling cascade(s), the availability of compounds capable of inhibiting Syk kinase would also be highly desirable.

4. SUMMARY OF THE INVENTION

5

10

15

20

25

In one aspect, the present invention provides novel 2,4-pyrimidinediamine compounds that, as will be discussed in more detail below, have myriad biological activities. The compounds generally comprise a 2,4-pyrimidinediamine "core" having the following structure and numbering convention:

$$H_2N$$
 $\begin{pmatrix} 6 \\ N \\ 1 \\ N \\ 3 \end{pmatrix}$
 NH_2

The compounds of the invention are substituted at the C2 nitrogen (N2) to form a secondary amine and are optionally further substituted at one or more of the following positions: the C4 nitrogen (N4), the C5 position and/or the C6 position. When substituted at N4, the substituent forms a secondary amine. The substituent at N2, as well as the optional substituents at the other positions, may range broadly in character and physicochemical properties. For example, the substituent(s) may be a branched, straight-chained or cyclic alkyl, a branched, straight-chained or cyclic heteroalkyl, a mono- or polycyclic aryl a mono- or polycyclic heteroaryl or combinations of these groups. These substituent groups may be further substituted, as will be described in more detail below.

The N2 and/or N4 substituents may be attached directly to their respective nitrogen atoms, or they may be spaced away from their respective nitrogen atoms *via* linkers, which may be the same or different. The nature of the linkers can vary widely, and can include virtually any combination of atoms or groups useful for spacing one molecular moiety from another. For example, the linker may be an acyclic hydrocarbon bridge (*e.g.*, a saturated or

unsaturated alkyleno such as methano, ethano, etheno, propano, prop[1]eno, butano, but[1]eno, but[2]eno, buta[1,3]dieno, and the like), a monocyclic or polycyclic hydrocarbon bridge (*e.g.*, [1,2]benzeno, [2,3]naphthaleno, and the like), a simple acyclic heteroatomic or heteroalkyldiyl bridge (*e.g.*, -O-, -S-, -S-O-, -NH-, -PH-, -C(O)-, -C(O)NH-, -S(O)-, -S(O)₂-, -S(O)NH-, -S(O)₂NH-, -O-CH₂-, -CH₂-O-CH₂-, -O-CH=CH-CH₂-, and the like), a monocyclic or polycyclic heteroaryl bridge (*e.g.*, [3,4]furano, pyridino, thiopheno, piperidino, piperazino, pyrazidino, pyrrolidino, and the like) or combinations of such bridges.

5

10

15

20

25

The substituents at the N2, N4, C5 and/or C6 positions, as well as the optional linkers, may be further substituted with one or more of the same or different substituent groups. The nature of these substituent groups may vary broadly. Non-limiting examples of suitable substituent groups include branched, straight—chain or cyclic alkyls, mono- or polycyclic aryls, branched, straight-chain or cyclic heteroalkyls, mono- or polycyclic heteroaryls, halos, branched, straight—chain or cyclic haloalkyls, hydroxyls, oxos, thioxos, branched, straight-chain or cyclic alkoxys, branched, straight-chain or cyclic haloalkoxys, trifluoromethoxys, mono- or polycyclic aryloxys, mono- or polycyclic heteroaryloxys, ethers, alcohols, sulfides, thioethers, sulfanyls (thiols), imines, azos, azides, amines (primary, secondary and tertiary), nitriles (any isomer), cyanates (any isomer), thiocyanates (any isomer), nitrosos, nitros, diazos, sulfoxides, sulfonyls, sulfonic acids, sulfamides, sulfonamides, sulfamic esters, aldehydes, ketones, carboxylic acids, esters, amides, amidines, formadines, amino acids, acetylenes, carbamates, lactones, lactams, glucosides, gluconurides, sulfones, ketals, acetals, thioketals, oximes, oxamic acids, oxamic esters, etc., and combinations of these groups. Substituent groups bearing reactive functionalities may be protected or unprotected, as is well-known in the art.

In one illustrative embodiment, the 2,4-pyrimidinediamine compounds of the invention are compounds according to structural formula (I):

$$R^{4}$$
 R^{4}
 R^{4}

3

including salts, hydrates, solvates and N-oxides thereof, wherein:

 L^1 and L^2 are each, independently of one another, selected from the group consisting of a direct bond and a linker;

R² and R⁴ are described infra;

5

R⁵ is selected from the group consisting of R⁶, (C1-C6) alkyl optionally substituted with one or more of the same or different R⁸ groups, (C1-C4) alkanyl optionally substituted with one or more of the same or different R⁸ groups, (C2-C4) alkenyl optionally substituted with one or more of the same or different R⁸ groups and (C2-C4) alkynyl optionally substituted with one or more of the same or different R⁸ groups;

10 each R⁶ is independently selected from the group consisting of hydrogen, an electronegative group, $-OR^d$, $-SR^d$, (C1-C3) haloalkyloxy, (C1-C3) perhaloalkyloxy, -NR°R°, halogen, (C1-C3) haloalkyl,(C1-C3) perhaloalkyl, -CF₃, -CH₂CF₃, -CF₂CF₃, -CN, -NC, -OCN, -SCN, -NO, -NO₂, -N₃, -S(O)R^d, -S(O)₂R^d, -S(O)₂OR^d, -S(O)NR^cR^c, $-S(O)_2NR^cR^c$, $-OS(O)R^d$, $-OS(O)_2R^d$, $-OS(O)_2OR^d$, $-OS(O)NR^cR^c$, $-OS(O)_2NR^cR^c$, $-C(O)R^d$, 15 $-C(O)OR^d$, $-C(O)NR^cR^c$, $-C(NH)NR^cR^c$, $-OC(O)R^d$, $-SC(O)R^d$, $-OC(O)OR^d$, $-SC(O)OR^d$. -OC(O)NR°R°, -SC(O)NR°R°, -OC(NH)NR°R°, -SC(NH)NR°R°, -[NHC(O)],Rd, -[NHC(O)] $_n$ OR d , -[NHC(O)] $_n$ NR c R c and -[NHC(NH)] $_n$ NR c R c , (C5-C10) aryl optionally substituted with one or more of the same or different R⁸ groups, phenyl optionally substituted with one or more of the same or different R⁸ groups, (C6-C16) arylalkyl optionally substituted with one or more of the same or different R⁸ groups, 5-10 membered 20 heteroaryl optionally substituted with one or more of the same or different R⁸ groups and 6-16 membered heteroarylalkyl optionally substituted with one or more of the same or different R⁸ groups;

R⁸ is selected from the group consisting of R^a, R^b, R^a substituted with one or more of the same or different R^a or R^b, -OR^a substituted with one or more of the same or different R^a or R^b, -B(OR^a)₂, -B(NR^cR^c)₂, -(CH₂)_m-R^b, -(CHR^a)_m-R^b, -O-(CH₂)_m-R^b, -S-(CH₂)_m-R^b, -O-CHR^aR^b, -O-CR^a(R^b)₂, -O-(CHR^a)_m-R^b, -O-(CH₂)_m-CH[(CH₂)_mR^b]R^b, -S-(CHR^a)_m-R^b, -C(O)NH-(CH₂)_m-R^b, -O-(CH₂)_m-C(O)NH-(CH₂)_m-R^b, -S-(CH₂)_m-R^b, -O-(CHR^a)_m-C(O)NH-(CH₂)_m-R^b, -NH-(CH₂)_m-R^b, -NH-(CH₂)_m-R^b, -NH-(CH₂)_m-R^b, -NH-(CH₂)_m-R^b, -NH-(CH₂)_m-R^b, and -NH-(CH₂)_m-C(O)-NH-(CH₂)_m-R^b;

each R^a is independently selected from the group consisting of hydrogen, (C1-C6) alkyl, (C3-C8) cycloalkyl, cyclohexyl, (C4-C11) cycloalkylalkyl, (C5-C10) aryl, phenyl, (C6-C16) arylalkyl, benzyl, 2-6 membered heteroalkyl, 3-8 membered cycloheteroalkyl, morpholinyl, piperazinyl, homopiperazinyl, piperidinyl, 4-11 membered cycloheteroalkylalkyl, 5-10 membered heteroaryl and 6-16 membered heteroarylalkyl; each R^b is a suitable group independently selected from the group consisting of =O, -OR^d, (C1-C3) haloalkyloxy, -OCF₃, =S, -SR^d, =NR^d, =NOR^d, -NR^cR^c, halogen, -CF₃, -CN, -NC, -OCN, -SCN, -NO, -NO₂, =N₂, -N₃, -S(O)R^d, -S(O)₂R^d, -S(O)₂OR^d, -S(O)NR^cR^c,

-S(O)₂NR°R°, -OS(O)_Rd, -OS(O)₂Rd, -OS(O)₂ORd, -OS(O)₂NR°R°, -C(O)Rd, -C(O)ORd, -C(O)NR°R°, -C(NH)NR°R°, -C(NR^a)NR°R°, -C(NOH)Ra, -C(NOH)NR°R°, -OC(O)Rd, -OC(O)ORd, -OC(O)NR°R°, -OC(NH)NR°R°, -OC(NRa)NR°R°, -[NHC(O)]_nRd, -[NRaC(O)]_nRd, -[NHC(O)]_nORd, -[NRaC(O)]_nORd, -[NHC(O)]_nNR°R°, -[NRaC(O)]_nNR°R°, -[NHC(NH)]_nNR°R° and -[NRaC(NRa)]_nNR°R°;

each R^c is independently a protecting group or R^a, or, alternatively, each R^c is taken together with the nitrogen atom to which it is bonded to form a 5 to 8-membered cycloheteroalkyl or heteroaryl which may optionally include one or more of the same or different additional heteroatoms and which may optionally be substituted with one or more of the same or different R^a or suitable R^b groups;

each R^d is independently a protecting group or R^a ; each m is independently an integer from 1 to 3; and each n is independently an integer from 0 to 3.

5

15

20

In one embodiment, R⁵ is F and R⁶ is hydrogen.

In another aspect, the present invention provides prodrugs of the 2,4pyrimidinediamine compounds. Such prodrugs may be active in their prodrug form, or may
be inactive until converted under physiological or other conditions of use to an active drug
form. In the prodrugs of the invention, one or more functional groups of the 2,4pyrimidinediamine compounds are included in promoieties that cleave from the molecule
under the conditions of use, typically by way of hydrolysis, enzymatic cleavage or some
other cleavage mechanism, to yield the functional groups. For example, primary or
secondary amino groups may be included in an amide promoiety that cleaves under
conditions of use to generate the primary or secondary amino group. Thus, the prodrugs of

5

10

15

20

25

the invention include special types of protecting groups, termed "progroups," masking one or more functional groups of the 2,4-pyrimidinediamine compounds that cleave under the conditions of use to yield an active 2,4-pyrimidine drug compound. Functional groups within the 2,4-pyrimidinediamine compounds that may be masked with progroups for inclusion in a promoiety include, but are not limited to, amines (primary and secondary), hydroxyls, sulfanyls (thiols), carboxyls, carbonyls, phenols, catechols, diols, alkynes, phosphates, etc. Myriad progroups suitable for masking such functional groups to yield promoieties that are cleavable under the desired conditions of use are known in the art. All of these progroups, alone or in combinations, may be included in the prodrugs of the invention. Specific examples of promoieties that yield primary or secondary amine groups that can be included in the prodrugs of the invention include, but are not limited to amides. carbamates, imines, ureas, phosphenyls, phosphoryls and sulfenyls. Specific examples of promoieties that yield sulfanyl groups that can be included in the prodrugs of the invention include, but are not limited to, thioethers, for example S-methyl derivatives (monothio, dithio, oxythio, aminothio acetals), silyl thioethers, thioesters, thiocarbonates, thiocarbamates, asymmetrical disulfides, etc. Specific examples of promoieties that cleave to yield hydroxyl groups that can be included in the prodrugs of the invention include, but are not limited to, sulfonates, esters and carbonates. Specific examples of promoieties that yield carboxyl groups that can be included in the prodrugs of the invention included, but are not limited to, esters (including silyl esters, oxamic acid esters and thioesters), amides and hydrazides.

In one illustrative embodiment, the prodrugs of the invention are compounds according to structural formula (I) in which the protecting group of R^c and R^d is a progroup.

In another illustrative embodiment, the prodrugs of the invention are compounds according to structural formula (II):

$$\begin{array}{c|c}
R^5 & R^6 \\
R^5 & N \\
N & N \\
R^4 & R^2
\end{array}$$

including salts, hydrates, solvates and N-oxides thereof, wherein: R², R⁴, R⁵, R⁶, L¹ and L² are as previously defined for structural formula (I);

R^{2b} is a progroup;

5

10

15

20

R^{4b} is progroup or an alkyl group, e.g., methyl, and as further defined by the examples.

In another aspect, the present invention provides compositions comprising one or more compounds and/or prodrugs of the invention and an appropriate carrier, excipient or diluent. The exact nature of the carrier, excipient or diluent will depend upon the desired use for the composition, and may range from being suitable or acceptable for veterinary uses to being suitable or acceptable for human use.

In still another aspect, the present invention provides intermediates useful for synthesizing the 2,4-pyrimidinediamine compounds and prodrugs of the invention. In one embodiment, the intermediates are 4-pyrimidineamines according to structural formula (III):

$$R^{4}$$
 L^{2}
 N
 N
 LG

including salts, hydrates, solvates and N-oxides thereof, wherein R^4 , R^5 , R^6 and L^2 are as previously defined for structural formula (I); LG is a leaving group such as, for example, $-S(O)_2Me$, -SMe or halo (e.g., F, Cl, Br, I); and R^{4c} is hydrogen, a progroup, an alkyl group or as described herein.

In another embodiment, the intermediates are 2-pyrimidineamines according to structural formula (IV):

$$\begin{array}{c|c}
R^{5} & \\
N & \\
LG & N \\
N & \\
N & \\
R^{2c}
\end{array}$$

including salts, hydrates, solvates and N-oxides thereof, wherein R², R⁵, R⁶ and L¹ are as previously defined for structural formula (I); LG is a leaving group, such as, for example, -S(O)₂Me, -SMe or halo (e.g., F, Cl, Br, I) and.

In yet another embodiment, the intermediates are 4-amino- or 4-hydroxy-2-pyrimidineamines according to structural formula (V):

including salts, hydrates, solvates and N-oxides thereof, wherein R^2 , R^5 , R^6 and L^1 are as previously defined for structural formula (I), R^7 is an amino or hydroxyl group and R^{2c} is hydrogen or a progroup.

In another embodiment, the intermediates are N4-substituted cytosines according to structural formula (VI):

$$R^{5}$$
 R^{5}
 NH
 R^{4}
 R^{4}
 R^{4}
 R^{4}

5

10

15

20

including salts, hydrates, solvates and N-oxides thereof, wherein R^4 , R^5 , R^6 and L^2 are as previously defined for structural formula (I) and R^{4c} is as previously defined in formula (III).

In yet another aspect, the present invention provides methods of synthesizing the 2,4-pyrimidinediamine compounds and prodrugs of the invention. In one embodiment, the method involves reacting a 4-pyrimidineamine according to structural formula (III) with an amine of the formula HR^{2c}N-L¹-R², where L¹, R² and R^{2c} are as previously defined for structural formula (IV) to yield a 2,4-pyrimidinediamine according to structural formula (I) or a prodrug according to structural formula (II).

In another embodiment, the method involves reacting a 2-pyrimidineamine according to structural formula (IV) with an amine of the formula R⁴-L²-NHR^{4c} where L⁴, R⁴ and R^{4c} are as previously defined for structural formula (III) to yield a 2,4-pyrimidinediamine according to structural formula (I) or a prodrug according to structural formula (II).

In yet another embodiment, the method involves reacting a 4-amino-2-pyrimidineamine according to structural formula (V) (in which R⁷ is an amino group) with

5

10

15

20

25

30

an amine of the formula R⁴-L²-NHR^{4c}, where L², R⁴ and R^{4c} are as defined for structural formula (III), to yield a 2,4-pyrimidinediamine according to structural formula (I) or a prodrug according to structural formula (II). Alternatively, the 4-amino-2-pyrimidineamine may be reacted with a compound of the formula R⁴-L²-LG, where R⁴ and L² are as previously defined for structural formula (I) and LG is a leaving group.

In still another embodiment, the method involves halogenating a 4-hydroxy-2-pyrimidineamine according to structural formula (V) (R⁷ is a hydroxyl group) to yield a 2-pyrimidineamine according to structural formula (IV) and reacting this pyrimidineamine with an appropriate amine, as described above.

In yet another embodiment, the method involves halogenating an N4-substituted cytosine according to structural formula (VI) to yield a 4-pyrimidineamine according to structural formula (III) and reacting this pyrimidineamine with an appropriate amine, as described above.

The 2,4-pyrimidinediamine compounds of the invention are potent inhibitors of degranulation of immune cells, such as mast, basophil, neutrophil and/or eosinophil cells. Thus, in still another aspect, the present invention provides methods of regulating, and in particular inhibiting, degranulation of such cells. The method generally involves contacting a cell that degranulates with an amount of a 2,4-pyrimidinediamine compound or prodrug of the invention, or an acceptable salt, hydrate, solvate, N-oxide and/or composition thereof, effective to regulate or inhibit degranulation of the cell. The method may be practiced in *in vitro* contexts or in *in vivo* contexts as a therapeutic approach towards the treatment or prevention of diseases characterized by, caused by or associated with cellular degranulation.

While not intending to be bound by any theory of operation, biochemical data confirm that the 2,4-pyrimidinediamine compounds exert their degranulation inhibitory effect, at least in part, by blocking or inhibiting the signal transduction cascade(s) initiated by crosslinking of the high affinity Fc receptors for IgE ("Fc ϵ RI") and/or IgG ("Fc γ RI"). Indeed, the 2,4-pyrimidinediamine compounds are potent inhibitors of both Fc ϵ RI-mediated and Fc γ RI-mediated degranulation. As a consequence, the 2,4-pyrimidine compounds may be used to inhibit these Fc receptor signalling cascades in any cell type expressing such Fc ϵ RI and/or Fc γ RI receptors including but not limited to macrophages, mast, basophil, neutrophil and/or eosinophil cells.

The methods also permit the regulation of, and in particular the inhibition of, downstream processes that result as a consequence of activating such Fc receptor signaling cascade(s). Such downstream processes include, but are not limited to, FcεRI-mediated and/or FcγRI-mediated degranulation, cytokine production and/or the production and/or release of lipid mediators such as leukotrienes and prostaglandins. The method generally involves contacting a cell expressing an Fc receptor, such as one of the cell types discussed above, with an amount of a 2,4-pyrimidinediamine compound or prodrug of the invention, or an acceptable salt, hydrate, solvent, N-oxide and/or composition thereof, effective to regulate or inhibit the Fc receptor signaling cascade and/or a downstream process effected by the activation of this signaling cascade. The method may be practiced in *in vitro* contexts or in *in vivo* contexts as a therapeutic approach towards the treatment or prevention of diseases characterized by, caused by or associated with the Fc receptor signaling cascade, such as diseases effected by the release of granule specific chemical mediators upon degranulation, the release and/or synthesis of cytokines and/or the release and/or synthesis of lipid mediators such as leukotrienes and prostaglandins.

In yet another aspect, the present invention provides methods of treating and/or preventing diseases characterized by, caused by or associated with the release of chemical mediators as a consequence of activating Fc receptor signaling cascades, such as $Fc \in RI$ and/or $Fc\gamma RI$ - signaling cascades. The methods may be practiced in animals in veterinary contexts or in humans. The methods generally involve administering to an animal subject or human an amount of a 2,4-pyrimidinediamine compound or prodrug of the invention, or an acceptable salt, hydrate, solvate, N-oxide and/or composition thereof, effective to treat or prevent the disease. As discussed previously, activation of the $Fc \in RI$ or $Fc\gamma RI$ receptor signaling cascade in certain immune cells leads to the release and/or synthesis of a variety of chemical substances that are pharmacological mediators of a wide variety of diseases. Any of these diseases may be treated or prevented according to the methods of the invention.

For example, in mast cells and basophil cells, activation of the Fc ϵ RI or Fc γ RI signaling cascade leads to the immediate (*i.e.*, within 1-3 min. of receptor activation) release of preformed mediators of atopic and/or Type I hypersensitivity reactions (*e.g.*, histamine, proteases such as tryptase, etc.) *via* the degranulation process. Such atopic or Type I hypersensitivity reactions include, but are not limited to, anaphylactic reactions to

5

10

15

20

25

30

environmental and other allergens (e.g., pollens, insect and/or animal venoms, foods, drugs, contrast dyes, etc.), anaphylactoid reactions, hay fever, allergic conjunctivitis, allergic rhinitis, allergic asthma, atopic dermatitis, eczema, urticaria, mucosal disorders, tissue disorders and certain gastrointestinal disorders.

The immediate release of the preformed mediators *via* degranulation is followed by the release and/or synthesis of a variety of other chemical mediators, including, among other things, platelet activating factor (PAF), prostaglandins and leukotrienes (e.g., LTC4) and the *de novo* synthesis and release of cytokines such as TNFα, IL-4, IL-5, IL-6, IL-13, etc. The first of these two processes occurs approximately 3-30 min. following receptor activation; the latter approximately 30 min. – 7 hrs. following receptor activation. These "late stage" mediators are thought to be in part responsible for the chronic symptoms of the above-listed atopic and Type I hypersensitivity reactions, and in addition are chemical mediators of inflammation and inflammatory diseases (e.g., osteoarthritis, inflammatory bowel disease, ulcerative colitis, Crohn's disease, idiopathic inflammatory bowel disease, irritable bowel syndrome, spastic colon, etc.), low grade scarring (e.g., scleroderma, increased fibrosis, keloids, post-surgical scars, pulmonary fibrosis, vascular spasms, migraine, reperfusion injury and post myocardial infarction), and sicca complex or syndrome. All of these diseases may be treated or prevented according to the methods of the invention.

Additional diseases which can be treated or prevented according to the methods of the invention include diseases associated with basophil cell and/or mast cell pathology. Examples of such diseases include, but are not limited to, diseases of the skin such as scleroderma, cardiac diseases such as post myocardial infarction, pulmonary diseases such as pulmonary muscle changes or remodeling and chronic obstructive pulmonary disease (COPD) and diseases of the gut such as inflammatory bowel syndrome (spastic colon).

The 2,4-pyrimidinediamine compounds of the invention are also potent inhibitors of the tyrosine kinase Syk kinase. Thus, in still another aspect, the present invention provides methods of regulating, and in particular inhibiting, Syk kinase activity. The method generally involves contacting a Syk kinase or a cell comprising a Syk kinase with an amount of a 2,4-pyrimidinediamine compound or prodrug of the invention, or an acceptable salt, hydrate, solvate, N-oxide and/or composition thereof, effective to regulate or inhibit Syk kinase activity. In one embodiment, the Syk kinase is an isolated or recombinant Syk kinase. In another embodiment, the Syk kinase is an endogenous or recombinant Syk

kinase expressed by a cell, for example a mast cell or a basophil cell. The method may be practiced in *in vitro* contexts or in *in vivo* contexts as a therapeutic approach towards the treatment or prevention of diseases characterized by, caused by or associated with Syk kinase activity.

While not intending to be bound by any particular theory of operation, it is believed that the 2,4-pyrimdinediamine compounds of the invention inhibit cellular degranulation and/or the release of other chemical mediators primarily by inhibiting Syk kinase that gets activated through the gamma chain homodimer of FceRI (see, e.g., FIG. 2). This gamma chain homodimer is shared by other Fc receptors, including Fc γ RI, Fc γ RIII and Fc α RI. For all of these receptors, intracellular signal transduction is mediated by the common gamma chain homodimer. Binding and aggregation of those receptors results in the recruitment and activation of tyrosine kinases such as Syk kinase. As a consequence of these common signaling activities, the 2,4-pyrimidinediamine compounds described herein may be used to regulate, and in particular inhibit, the signaling cascades of Fc receptors having this gamma chain homodimer, such as FceRI, Fc γ RII and Fc α RI, as well as the cellular responses elicited through these receptors.

Syk kinase is known to play a critical role in other signaling cascades. For example, Syk kinase is an effector of B-cell receptor (BCR) signaling (Turner *et al.*, 2000, Immunology Today 21:148-154) and is an essential component of integrin beta(1), beta(2) and beta(3) signaling in neutrophils (Mocsai *et al.*, 2002, Immunity 16:547-558). As the 2,4-pyrimidinediamine compounds described herein are potent inhibitors of Syk kinase, they can be used to regulate, and in particular inhibit, any signaling cascade where Syk plays a role, such as, fore example, the Fc receptor, BCR and integrin signaling cascades, as well as the cellular responses elicited through these signaling cascades. The particular cellular response regulated or inhibited will depend, in part, on the specific cell type and receptor signaling cascade, as is well known in the art. Non-limiting examples of cellular responses that may be regulated or inhibited with the 2,4-pyrimidinediamine compounds include a respiratory burst, cellular adhesion, cellular degranulation, cell spreading, cell migration, phagocytosis (*e.g.*, in macrophages), calcium ion flux (*e.g.*, in mast, basophil, neutrophil, eosinophil and B-cells), platelet aggregation, and cell maturation (*e.g.*, in B-cells).

5

10

15

20

25

30

Thus, in another aspect, the present invention provides methods of regulating, and in particular inhibiting, signal transduction cascades in which Syk plays a role. The method generally involves contacting a Syk-dependent receptor or a cell expressing a Syk-dependent receptor with an amount of a 2,4-pyrimidinediamine compound or prodrug of the invention, or an acceptable salt, hydrate, solvate, N-oxide and/or composition thereof, effective to regulate or inhibit the signal transduction cascade. The methods may also be used to regulate, and in particular inhibit, downstream processes or cellular responses elicited by activation of the particular Syk-dependent signal transduction cascade. The methods may be practiced to regulate any signal transduction cascade where Syk is not known or later discovered to play a role. The methods may be practiced in *in vitro* contexts or in *in vivo* contexts as a therapeutic approach towards the treatment or prevention of diseases characterized by, caused by or associated with activation of the Syk-dependent signal transduction cascade. Non-limited examples of such diseases include those previously discussed.

Cellular and animal data also confirm that the 2,4-pyrimidinediamine compounds of the invention may also be used to treat or prevent autoimmune diseases and/or symptoms of such diseases. The methods generally involve administering to a subject suffering from an autoimmune disease or at risk of developing an autoimmune disease an amount of a 2,4pyrimidinediamine method or prodrug of the invention, or an acceptable salt, N-oxide, hydrate, solvate or composition thereof, effective to treat or prevent the autoimmune disease and/or its associated symptoms. Autoimmune diseases that can be treated or prevented with the 2,4-pyrimidinediamine compounds include those diseases that are commonly associated with nonanaphylactic hypersensitivity reactions (Type II, Type III and/or Type IV hypersensitivity reactions) and/or those diseases that are mediated, at least in part, by activation of the $Fc\gamma R$ signaling cascade in monocyte cells. Such autoimmune disease include, but are not limited to, those autoimmune diseases that are frequently designated as single organ or single cell-type autoimmune disorders and those autoimmune disease that are frequently designated as involving systemic autoimmune disorder. Non-limiting examples of diseases frequently designated as single organ or single cell-type autoimmune disorders include: Hashimoto's thyroiditis, autoimmune hemolytic anemia, autoimmune atrophic gastritis of pernicious anemia, autoimmune encephalomyelitis, autoimmune orchitis, Goodpasture's disease, autoimmune thrombocytopenia, sympathetic ophthalmia,

myasthenia gravis, Graves' disease, primary biliary cirrhosis, chronic aggressive hepatitis, ulcerative colitis and membranous glomerulopathy. Non-limiting examples of diseases often designated as involving systemic autoimmune disorder include: systemic lupus erythematosis, rheumatoid arthritis, Sjogren's syndrome, Reiter's syndrome, polymyositis-dermatomyositis, systemic sclerosis, polyarteritis nodosa, multiple sclerosis and bullous pemphigoid.

5. BRIEF DESCRIPTION OF THE FIGURES

FIG. 1 provides a cartoon illustrating allergen-induced production of IgE and consequent release of preformed and other chemical mediators from mast cells:

FIG. 2 provides a cartoon illustrating the FceR1 signal transduction cascade leading to degranulation of mast and/or basophil cells; and

FIG. 3 provides a cartoon illustrating the putative points of action of compounds that selectively inhibit upstream $Fc \in RI$ -mediated degranulation and compounds that inhibit both $Fc \in RI$ -mediated and ionomycin-induced degranulation.

15

10

5

6. DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS

6.1 Definitions

As used herein, the following terms are intended to have the following meanings:

"Alkyl" by itself or as part of another substituent refers to a saturated or unsaturated branched, straight-chain or cyclic monovalent hydrocarbon radical having the stated number of carbon atoms (*i.e.*, C1-C6 means one to six carbon atoms) that is derived by the removal of one hydrogen atom from a single carbon atom of a parent alkane, alkene or alkyne.

Typical alkyl groups include, but are not limited to, methyl; ethyls such as ethanyl, ethenyl, ethynyl; propyls such as propan-1-yl, propan-2-yl, cyclopropan-1-yl, prop-1-en-1-yl, prop-1-en-1-yl, prop-1-en-1-yl, prop-1-en-1-yl, prop-1-en-1-yl, prop-1-en-1-yl, prop-1-en-1-yl, prop-1-en-1-yl, prop-1-en-1-yl, butan-2-yl, 2-methyl-propan-1-yl, 2-methyl-propan-2-yl, cyclobutan-1-yl, but-1-en-1-yl, but-1-en-2-yl, buta-1,3-dien-1-yl, buta-1,3-dien-1-yl, buta-1,3-dien-1-yl, cyclobut-1-en-3-yl, cyclobuta-1,3-dien-1-yl,

but-1-yn-1-yl, but-1-yn-3-yl, but-3-yn-1-yl, etc.; and the like. Where specific levels of saturation are intended, the nomenclature "alkanyl," "alkenyl" and/or "alkynyl" is used, as defined below. In preferred embodiments, the alkyl groups are (C1-C6) alkyl.

"Alkanyl" by itself or as part of another substituent refers to a saturated branched, straight-chain or cyclic alkyl derived by the removal of one hydrogen atom from a single carbon atom of a parent alkane. Typical alkanyl groups include, but are not limited to, methanyl; ethanyl; propanyls such as propan-1-yl, propan-2-yl (isopropyl), cyclopropan-1-yl, etc.; butanyls such as butan-1-yl, butan-2-yl (sec-butyl), 2-methyl-propan-1-yl (isobutyl), 2-methyl-propan-2-yl (t-butyl), cyclobutan-1-yl, etc.; and the like. In preferred embodiments, the alkanyl groups are (C1-C6) alkanyl.

5

10

15

20

25

30

"Alkenyl" by itself or as part of another substituent refers to an unsaturated branched, straight-chain or cyclic alkyl having at least one carbon-carbon double bond derived by the removal of one hydrogen atom from a single carbon atom of a parent alkene. The group may be in either the *cis* or *trans* conformation about the double bond(s). Typical alkenyl groups include, but are not limited to, ethenyl; propenyls such as prop-1-en-1-yl, prop-1-en-2-yl, prop-2-en-1-yl, prop-2-en-2-yl, cycloprop-1-en-1-yl; cycloprop-2-en-1-yl; butenyls such as but-1-en-1-yl, but-1-en-2-yl, 2-methyl-prop-1-en-1-yl, but-2-en-1-yl, but-2-en-1-yl, but-1-en-2-yl, cyclobut-1-en-1-yl, cyclobut-1-en-1-y

"Alkynyl" by itself or as part of another substituent refers to an unsaturated branched, straight-chain or cyclic alkyl having at least one carbon-carbon triple bond derived by the removal of one hydrogen atom from a single carbon atom of a parent alkyne. Typical alkynyl groups include, but are not limited to, ethynyl; propynyls such as prop-1-yn-1-yl, prop-2-yn-1-yl, etc.; butynyls such as but-1-yn-1-yl, but-1-yn-3-yl, but-3-yn-1-yl, etc.; and the like. In preferred embodiments, the alkynyl group is (C2-C6) alkynyl.

"Alkyldiyl" by itself or as part of another substituent refers to a saturated or unsaturated, branched, straight-chain or cyclic divalent hydrocarbon group having the stated number of carbon atoms (i.e., C1-C6 means from one to six carbon atoms) derived by the removal of one hydrogen atom from each of two different carbon atoms of a parent alkane, alkene or alkyne, or by the removal of two hydrogen atoms from a single carbon atom of a

parent alkane, alkene or alkyne. The two monovalent radical centers or each valency of the divalent radical center can form bonds with the same or different atoms. Typical alkyldiyl groups include, but are not limited to, methandiyl; ethyldiyls such as ethan-1,1-diyl, ethan-1,2-diyl, ethen-1,1-diyl, ethen-1,2-diyl; propyldiyls such as propan-1,1-diyl, 5 propan-1,2-diyl, propan-2,2-diyl, propan-1,3-diyl, cyclopropan-1,1-diyl, cyclopropan-1,2-diyl, prop-1-en-1,1-diyl, prop-1-en-1,2-diyl, prop-2-en-1,2-diyl, prop-1-en-1,3-diyl, cycloprop-1-en-1,2-diyl, cycloprop-2-en-1,2-diyl, cycloprop-2-en-1,1-diyl, prop-1-yn-1,3-diyl, etc.; butyldiyls such as, butan-1,1-diyl, butan-1,2-diyl, butan-1,3-diyl, butan-1,4-diyl, butan-2,2-diyl, 2-methyl-propan-1,1-diyl, 10 2-methyl-propan-1,2-diyl, cyclobutan-1,1-diyl; cyclobutan-1,2-diyl, cyclobutan-1,3-diyl, but-1-en-1,1-diyl, but-1-en-1,2-diyl, but-1-en-1,3-diyl, but-1-en-1,4-diyl, 2-methyl-prop-1-en-1,1-diyl, 2-methanylidene-propan-1,1-diyl, buta-1,3-dien-1,1-diyl, buta-1,3-dien-1,2-diyl, buta-1,3-dien-1,3-diyl, buta-1,3-dien-1,4-diyl, cyclobut-1-en-1,2-diyl, cyclobut-1-en-1,3-diyl, cyclobut-2-en-1,2-diyl, 15 cyclobuta-1,3-dien-1,2-diyl, cyclobuta-1,3-dien-1,3-diyl, but-1-yn-1,3-diyl, but-1-yn-1,4-diyl, buta-1,3-diyn-1,4-diyl, etc.; and the like. Where specific levels of saturation are intended, the nomenclature alkanyldiyl, alkenyldiyl and/or alkynyldiyl is used. Where it is specifically intended that the two valencies are on the same carbon atom, the nomenclature "alkylidene" is used. In preferred embodiments, the alkyldiyl group is 20 (C1-C6) alkyldiyl. Also preferred are saturated acyclic alkanyldiyl groups in which the radical centers are at the terminal carbons, e.g., methandiyl (methano); ethan-1,2-diyl (ethano); propan-1,3-diyl (propano); butan-1,4-diyl (butano); and the like (also referred to as alkylenos, defined infra).

"Alkyleno" by itself or as part of another substituent refers to a straight-chain saturated or unsaturated alkyldiyl group having two terminal monovalent radical centers derived by the removal of one hydrogen atom from each of the two terminal carbon atoms of straight-chain parent alkane, alkene or alkyne. The locant of a double bond or triple bond, if present, in a particular alkyleno is indicated in square brackets. Typical alkyleno groups include, but are not limited to, methano; ethylenos such as ethano, etheno, ethyno; propylenos such as propano, prop[1]eno, propa[1,2]dieno, prop[1]yno, etc.; butylenos such as butano, but[1]eno, but[2]eno, buta[1,3]dieno, but[1]yno, but[2]yno, buta[1,3]diyno, etc.; and the like. Where specific levels of saturation are intended, the nomenclature alkano,

5

10

15

20

25

30

alkeno and/or alkyno is used. In preferred embodiments, the alkyleno group is (C1-C6) or (C1-C3) alkyleno. Also preferred are straight-chain saturated alkano groups, *e.g.*, methano, ethano, propano, butano, and the like.

"Heteroalkyl," Heteroalkanyl," Heteroalkenyl," Heteroalkynyl," Heteroalkyldiyl" and "Heteroalkyleno" by themselves or as part of another substituent refer to alkyl, alkanyl, alkenyl, alkynyl, alkyldiyl and alkyleno groups, respectively, in which one or more of the carbon atoms are each independently replaced with the same or different heteratoms or heteroatomic groups. Typical heteroatoms and/or heteroatomic groups which can replace the carbon atoms include, but are not limited to, -O-, -S-, -S-O-, -NR'-, -PH-, -S(O)-, -S(O)₂-, -S(O) NR'-, -S(O)₂NR'-, and the like, including combinations thereof, where each R' is independently hydrogen or (C1-C6) alkyl.

"Cycloalkyl" and "Heterocycloalkyl" by themselves or as part of another substituent refer to cyclic versions of "alkyl" and "heteroalkyl" groups, respectively. For heteroalkyl groups, a heteroatom can occupy the position that is attached to the remainder of the molecule. Typical cycloalkyl groups include, but are not limited to, cyclopropyl; cyclobutyls such as cyclobutanyl and cyclobutenyl; cyclopentyls such as cyclopentanyl and cyclopentenyl; cyclohexyls such as cyclohexanyl and cyclohexenyl; and the like. Typical heterocycloalkyl groups include, but are not limited to, tetrahydrofuranyl (e.g., tetrahydrofuran-2-yl, tetrahydrofuran-3-yl, etc.), piperidinyl (e.g., piperidin-1-yl, piperidin-2-yl, etc.), morpholinyl (e.g., morpholin-3-yl, morpholin-4-yl, etc.), piperazinyl (e.g., piperazin-1-yl, piperazin-2-yl, etc.), and the like.

"Acyclic Heteroatomic Bridge" refers to a divalent bridge in which the backbone atoms are exclusively heteroatoms and/or heteroatomic groups. Typical acyclic heteroatomic bridges include, but are not limited to, -O-, -S-, -S-O-, -NR'-, -PH-, -S(O)-, -S(O)₂-, -S(O) NR'-, -S(O)₂NR'-, and the like, including combinations thereof, where each R' is independently hydrogen or (C1-C6) alkyl.

"Parent Aromatic Ring System" refers to an unsaturated cyclic or polycyclic ring system having a conjugated π electron system. Specifically included within the definition of "parent aromatic ring system" are fused ring systems in which one or more of the rings are aromatic and one or more of the rings are saturated or unsaturated, such as, for example, fluorene, indane, indene, phenalene, tetrahydronaphthalene, etc. Typical parent aromatic ring systems include, but are not limited to, aceanthrylene, acenaphthylene,

acephenanthrylene, anthracene, azulene, benzene, chrysene, coronene, fluoranthene, fluorene, hexacene, hexaphene, hexalene, indacene, s-indacene, indane, indene, naphthalene, octacene, octaphene, octalene, ovalene, penta-2,4-diene, pentacene, pentalene, pentaphene, perylene, phenalene, phenanthrene, picene, pleiadene, pyrene, pyranthrene, rubicene, tetrahydronaphthalene, triphenylene, trinaphthalene, and the like, as well as the various hydro isomers thereof.

5

10

15

"Aryl" by itself or as part of another substituent refers to a monovalent aromatic hydrocarbon group having the stated number of carbon atoms (*i.e.*, C5-C15 means from 5 to 15 carbon atoms) derived by the removal of one hydrogen atom from a single carbon atom of a parent aromatic ring system. Typical aryl groups include, but are not limited to, groups derived from aceanthrylene, acenaphthylene, acephenanthrylene, anthracene, azulene, benzene, chrysene, coronene, fluoranthene, fluorene, hexacene, hexaphene, hexalene, as-indacene, s-indacene, indane, indene, naphthalene, octacene, octaphene, octalene, ovalene, penta-2,4-diene, pentacene, pentalene, pentaphene, perylene, phenalene, phenanthrene, picene, pleiadene, pyrene, pyranthrene, rubicene, triphenylene, trinaphthalene, and the like, as well as the various hydro isomers thereof. In preferred embodiments, the aryl group is (C5-C15) aryl, with (C5-C10) being even more preferred. Particularly preferred aryls are cyclopentadienyl, phenyl and naphthyl.

"Arylaryl" by itself or as part of another substituent refers to a monovalent 20 hydrocarbon group derived by the removal of one hydrogen atom from a single carbon atom of a ring system in which two or more identical or non-identical parent aromatic ring systems are joined directly together by a single bond, where the number of such direct ring junctions is one less than the number of parent aromatic ring systems involved. Typical arylaryl groups include, but are not limited to, biphenyl, triphenyl, phenyl-naphthyl, binaphthyl, biphenyl-naphthyl, and the like. Where the number of carbon atoms in an 25 arylaryl group are specified, the numbers refer to the carbon atoms comprising each parent aromatic ring. For example, (C5-C15) arylaryl is an arylaryl group in which each aromatic ring comprises from 5 to 15 carbons, e.g., biphenyl, triphenyl, binaphthyl, phenylnaphthyl, etc. Preferably, each parent aromatic ring system of an arylaryl group is independently a 30 (C5-C15) aromatic, more preferably a (C5-C10) aromatic. Also preferred are arylaryl groups in which all of the parent aromatic ring systems are identical, e.g., biphenyl, triphenyl, binaphthyl, trinaphthyl, etc.

5

10

15

į,

20

25

30

"Biaryl" by itself or as part of another substituent refers to an arylaryl group having two identical parent aromatic systems joined directly together by a single bond. Typical biaryl groups include, but are not limited to, biphenyl, binaphthyl, bianthracyl, and the like. Preferably, the aromatic ring systems are (C5-C15) aromatic rings, more preferably (C5-C10) aromatic rings. A particularly preferred biaryl group is biphenyl.

"Arylalkyl" by itself or as part of another substituent refers to an acyclic alkyl group in which one of the hydrogen atoms bonded to a carbon atom, typically a terminal or sp^3 carbon atom, is replaced with an aryl group. Typical arylalkyl groups include, but are not limited to, benzyl, 2-phenylethan-1-yl, 2-phenylethen-1-yl, naphthylmethyl, 2-naphthylethan-1-yl, 2-naphthylethen-1-yl, naphthobenzyl, 2-naphthophenylethan-1-yl and the like. Where specific alkyl moieties are intended, the nomenclature arylalkanyl, arylakenyl and/or arylalkynyl is used. In preferred embodiments, the arylalkyl group is (C6-C21) arylalkyl, e.g., the alkanyl, alkenyl or alkynyl moiety of the arylalkyl group is (C1-C6) and the aryl moiety is (C5-C15). In particularly preferred embodiments the arylalkyl group is (C6-C13), e.g., the alkanyl, alkenyl or alkynyl moiety of the arylalkyl group is (C1-C3) and the aryl moiety is (C5-C10).

"Parent Heteroaromatic Ring System" refers to a parent aromatic ring system in which one or more carbon atoms are each independently replaced with the same or different heteroatoms or heteroatomic groups. Typical heteroatoms or heteroatomic groups to replace the carbon atoms include, but are not limited to, N, NH, P, O, S, S(O), S(O), Si, etc. Specifically included within the definition of "parent heteroaromatic ring systems" are fused ring systems in which one or more of the rings are aromatic and one or more of the rings are saturated or unsaturated, such as, for example, benzodioxan, benzofuran, chromane, chromene, indole, indoline, xanthene, etc. Also included in the definition of "parent heteroaromatic ring system" are those recognized rings that include common substituents, such as, for example, benzopyrone and 1-methyl-1,2,3,4-tetrazole. Specifically excluded from the definition of "parent heteroaromatic ring system" are benzene rings fused to cyclic polyalkylene glycols such as cyclic polyethylene glycols. Typical parent heteroaromatic ring systems include, but are not limited to, acridine, benzimidazole, benzisoxazole, benzodioxan, benzodioxole, benzofuran, benzopyrone, benzothiadiazole, benzothiazole, benzotriazole, benzoxaxine, benzoxazole, benzoxazoline, carbazole, β-carboline, chromane. chromene, cinnoline, furan, imidazole, indazole, indole, indoline, indolizine, isobenzofuran,

isochromene, isoindole, isoindoline, isoquinoline, isothiazole, isoxazole, naphthyridine, oxadiazole, oxazole, perimidine, phenanthridine, phenanthroline, phenazine, phthalazine, pteridine, purine, pyran, pyrazine, pyrazole, pyridazine, pyridine, pyrimidine, pyrrole, pyrrolizine, quinazoline, quinoline, quinolizine, quinoxaline, tetrazole, thiadiazole, thiazole, thiophene, triazole, xanthene, and the like.

"Heteroaryl" by itself or as part of another substituent refers to a monovalent heteroaromatic group having the stated number of ring atoms (e.g., "5-14 membered" means from 5 to 14 ring atoms) derived by the removal of one hydrogen atom from a single atom of a parent heteroaromatic ring system. Typical heteroaryl groups include, but are not limited to, groups derived from acridine, benzimidazole, benzisoxazole, benzodioxan, benzodiaxole, benzofuran, benzopyrone, benzothiadiazole, benzothiazole, benzotriazole, benzoxazine, benzoxazole, benzoxazoline, carbazole, β-carboline, chromane, chromene, cinnoline, furan, imidazole, indazole, indole, indoline, indolizine, isobenzofuran, isochromene, isoindole, isoindoline, isoquinoline, isothiazole, isoxazole, naphthyridine, oxadiazole, oxazole, perimidine, phenanthridine, phenanthroline, phenazine, phthalazine, pteridine, purine, pyran, pyrazine, pyrazole, pyridazine, pyridine, pyrimidine, pyrrole, pyrrolizine, quinazoline, quinoline, quinolizine, quinoxaline, tetrazole, thiadiazole, thiazole, thiophene, triazole, xanthene, and the like, as well as the various hydro isomers thereof. In preferred embodiments, the heteroaryl group is a 5-14 membered heteroaryl, with 5-10 membered heteroaryl being particularly preferred.

"Heteroaryl-Heteroaryl" by itself or as part of another substituent refers to a monovalent heteroaromatic group derived by the removal of one hydrogen atom from a single atom of a ring system in which two or more identical or non-identical parent heteroaromatic ring systems are joined directly together by a single bond, where the number of such direct ring junctions is one less than the number of parent heteroaromatic ring systems involved. Typical heteroaryl-heteroaryl groups include, but are not limited to, bipyridyl, tripyridyl, pyridylpurinyl, bipurinyl, etc. Where the number of atoms are specified, the numbers refer to the number of atoms comprising each parent heteroaromatic ring systems. For example, 5-15 membered heteroaryl-heteroaryl is a heteroaryl-heteroaryl group in which each parent heteroaromatic ring system comprises from 5 to 15 atoms, e.g., bipyridyl, tripuridyl, etc. Preferably, each parent heteroaromatic ring system is independently a 5-15 membered heteroaromatic, more preferably a 5-10 membered

heteroaromatic. Also preferred are heteroaryl-heteroaryl groups in which all of the parent heteroaromatic ring systems are identical.

"Biheteroaryl" by itself or as part of another substituent refers to a heteroaryl-heteroaryl group having two identical parent heteroaromatic ring systems joined directly together by a single bond. Typical biheteroaryl groups include, but are not limited to, bipyridyl, bipurinyl, biquinolinyl, and the like. Preferably, the heteroaromatic ring systems are 5-15 membered heteroaromatic rings, more preferably 5-10 membered heteroaromatic rings.

5

10

15

20

25

30

"Heteroarylalkyl" by itself or as part of another substituent refers to an acyclic alkyl group in which one of the hydrogen atoms bonded to a carbon atom, typically a terminal or sp^3 carbon atom, is replaced with a heteroaryl group. Where specific alkyl moieties are intended, the nomenclature heteroarylalkanyl, heteroarylakenyl and/or heteroarylalkynyl is used. In preferred embodiments, the heteroarylalkyl group is a 6-21 membered heteroarylalkyl, *e.g.*, the alkanyl, alkenyl or alkynyl moiety of the heteroarylalkyl is (C1-C6) alkyl and the heteroarylalkyl is a 5-15-membered heteroaryl. In particularly preferred embodiments, the heteroarylalkyl is a 6-13 membered heteroarylalkyl, *e.g.*, the alkanyl, alkenyl or alkynyl moiety is (C1-C3) alkyl and the heteroaryl moiety is a 5-10 membered heteroaryl.

"<u>Halogen</u>" or "<u>Halo</u>" by themselves or as part of another substituent, unless otherwise stated, refer to fluoro, chloro, bromo and iodo.

"Haloalkyl" by itself or as part of another substituent refers to an alkyl group in which one or more of the hydrogen atoms is replaced with a halogen. Thus, the term "haloalkyl" is meant to include monohaloalkyls, dihaloalkyls, trihaloalkyls, etc. up to perhaloalkyls. For example, the expression "(C1-C2) haloalkyl" includes fluoromethyl, difluoromethyl, trifluoromethyl, 1-fluoroethyl, 1,1-difluoroethyl, 1,2-difluoroethyl, 1,1,1-trifluoroethyl, perfluoroethyl, etc.

The above-defined groups may include prefixes and/or suffixes that are commonly used in the art to create additional well-recognized substituent groups. As examples, "alkyloxy" or "alkoxy" refers to a group of the formula -OR", "alkylamine" refers to a group of the formula -NR"R", where each R" is independently an alkyl. As another example, "haloalkoxy" or "haloalkyloxy" refers to a group of the formula -OR"", where R" is a haloalkyl.

"Protecting group" refers to a group of atoms that, when attached to a reactive functional group in a molecule, mask, reduce or prevent the reactivity of the functional group. Typically, a protecting group may be selectively removed as desired during the course of a synthesis. Examples of protecting groups can be found in Greene and Wuts, *Protective Groups in Organic Chemistry*, 3rd Ed., 1999, John Wiley & Sons, NY and Harrison *et al.*, *Compendium of Synthetic Organic Methods*, Vols. 1-8, 1971-1996, John Wiley & Sons, NY. Representative amino protecting groups include, but are not limited to, formyl, acetyl, trifluoroacetyl, benzyl, benzyloxycarbonyl ("CBZ"), *tert*-butoxycarbonyl ("Boc"), trimethylsilyl ("TMS"), 2-trimethylsilyl-ethanesulfonyl ("TES"), trityl and substituted trityl groups, allyloxycarbonyl, 9-fluorenylmethyloxycarbonyl ("FMOC"), nitroveratryloxycarbonyl ("NVOC") and the like. Representative hydroxyl protecting groups include, but are not limited to, those where the hydroxyl group is either acylated or alkylated such as benzyl and trityl ethers, as well as alkyl ethers, tetrahydropyranyl ethers, trialkylsilyl ethers (*e.g.*, TMS or TIPPS groups) and allyl ethers.

"Prodrug" refers to a derivative of an active 2,4-pyrimidinediamine compound (drug) that requires a transformation under the conditions of use, such as within the body, to release the active 2,4-pyrimidinediamine drug. Prodrugs are frequently, but not necessarily, pharmacologically inactive until converted into the active drug. Prodrugs are typically obtained by masking a functional group in the 2,4-pyrimidinediamine drug believed to be in part required for activity with a progroup (defined below) to form a promoiety which undergoes a transformation, such as cleavage, under the specified conditions of use to release the functional group, and hence the active 2,4-pyrimidinediamine drug. The cleavage of the promoiety may proceed spontaneously, such as by way of a hydrolysis reaction, or it may be catalyzed or induced by another agent, such as by an enzyme, by light, by acid or base, or by a change of or exposure to a physical or environmental parameter, such as a change of temperature. The agent may be endogenous to the conditions of use, such as an enzyme present in the cells to which the prodrug is administered or the acidic conditions of the stomach, or it may be supplied exogenously.

A wide variety of progroups, as well as the resultant promoieties, suitable for masking functional groups in the active 2,4-pyrimidinediamines compounds to yield prodrugs are well-known in the art. For example, a hydroxyl functional group may be masked as a sulfonate, ester or carbonate promoiety, which may be hydrolyzed *in vivo* to

provide the hydroxyl group. An amino functional group may be masked as an amide, carbamate, imine, urea, phosphenyl, phosphoryl or sulfenyl promoiety, which may be hydrolyzed *in vivo* to provide the amino group. A carboxyl group may be masked as an ester (including silyl esters and thioesters), amide or hydrazide promoiety, which may be hydrolyzed *in vivo* to provide the carboxyl group. Nitrogen protecting groups and nitrogen pro-drugs of the invention may include lower alkyl groups as well as amides, carbamates, etc. Other specific examples of suitable progroups and their respective promoieties will be apparent to those of skill in the art.

5

10

15

20

25

30

"Progroup" refers to a type of protecting group that, when used to mask a functional group within an active 2,4-pyrimidinediamine drug to form a promoiety, converts the drug into a prodrug. Progroups are typically attached to the functional group of the drug *via* bonds that are cleavable under specified conditions of use. Thus, a progroup is that portion of a promoiety that cleaves to release the functional group under the specified conditions of use. As a specific example, an amide promoiety of the formula –NH-C(O)CH₃ comprises the progroup –C(O)CH₃.

"Fc Receptor" refers to a member of the family of cell surface molecules that binds the Fc portion (containing the specific constant region) of an immunoglobulin. Each Fc receptor binds immunoglobulins of a specific type. For example the Fc α receptor ("Fc α R") binds IgA, the Fc ϵ R binds IgE and the Fc γ R binds IgG.

The Fc α R family includes the polymeric Ig receptor involved in epithelial transport of IgA/IgM, the mycloid specific receptor Rc α RI (also called CD89), the Fc α / μ R and at least two alternative IgA receptors (for a recent review see Monteiro & van de Winkel, 2003, Annu. Rev. Immunol, advanced e-publication. The Fc α RI is expressed on neutrophils, eosinophils, moncytes/macrophages, dendritic cells and kupfer cells. The Fc α RI inclues one alpha chain and the FcR gamma homodimer that bears an activation motif (ITAM) in the cytoplasmic domain and phosphorylates Syk kinase.

The Fc ϵ R family includes two types, designated Fc ϵ RI and Fc ϵ RII (also known as CD23). Fc ϵ RI is a high affinity receptor (binds IgE with an affinity of about 10^{10}M^{-1}) found on mast, basophil and eosinophil cells that anchors monomeric IgE to the cell surface. The Fc ϵ RI possesses one alpha chain, one beta chain and the gamma chain homodimer discussed above. The Fc ϵ RII is a low affinity receptor expressed on mononuclear

phagocytes, B lymphocytes, eosinophils and platelets. The Fc∈RII comprises a single polypeptide chain and does not include the gamma chain homodimer.

5

10

15

20

25

30

The Fc γ R family includes three types, designated Fc γ RI (also known as CD64), Fc γ RII (also known as CD32) and Fc γ RIII (also known as CD16). Fc γ RI is a high affinity receptor (binds IgG1 with an affinity of $10^8 M^{-1}$) found on mast, basophil, mononuclear, neutrophil, eosinophil, deudritic and phagocyte cells that anchors nomomeric IgG to the cell surface. The Fc γ RI includes one alpha chain and the gamma chain dimer shared by Fc α RI and Fc ϵ RI.

The Fc γ RII is a low affinity receptor expressed on neutrophils, monocytes, eosinophils, platelets and B lymphocytes. The Fc γ RII includes one alpha chain, and does not include the gamma chain homodimer discussed above.

The Fc γ RIII is a low affinity (bindes IgG1 with an affinity of $5x10^5 M^{-1}$) expressed on NK, eosinophil, macrophage, neutrophil and mast cells. It comprises one alpha chain and the gamma homodimer shared by Fc α RI, Fc ϵ RI and Fc γ RI.

Skilled artisans will recognize that the subunit structure and binding properties of these various Fc receptors, cell types expressing them, are not completely characterized. The above discussion merely reflects the current state-of-the-art regarding these receptors (*see, e.g.*, Immunobiology: The Immune System in Health & Disease, 5th Edition, Janeway et al., Eds, 2001, ISBN 0-8153-3642-x, Figure 9.30 at pp. 371), and is not intended to be limiting with respect to the myriad receptor signaling cascades that can be regulated with the compounds described herein.

"Fc Receptor-Mediated Degranulation" or "Fc Receptor-Induced Degranulation" refers to degranulation that proceeds *via* an Fc receptor signal transduction cascade initiated by crosslinking of an Fc receptor.

"IgE-Induced Degranulation" or "FceRI-Mediated Degranulation" refers to degranulation that proceeds *via* the IgE receptor signal transduction cascade initiated by crosslinking of FceR1-bound IgE. The crosslinking may be induced by an IgE-specific allergen or other multivalent binding agent, such as an anti-IgE antibody. Referring to FIG. 2, in mast and/or basophil cells, the FceRI signaling cascade leading to degranulation may be broken into two stages: upstream and downstream. The upstream stage includes all of the processes that occur prior to calcium ion mobilization (illustrated as "Ca²⁺" in FIG. 2; see also FIG. 3). The downstream stage includes calcium ion mobilization and all processes

downstream thereof. Compounds that inhibit FceRI-mediated degranulation may act at any point along the FceRI-mediated signal transduction cascade. Compounds that selectively inhibit upstream FceRI-mediated degranulation act to inhibit that portion of the FceRI signaling cascade upstream of the point at which calcium ion mobilization is induced. In cell-based assays, compounds that selectively inhibit upstream FceRI-mediated degranulation inhibit degranulation of cells such as mast or basophil cells that are activated or stimulated with an IgE-specific allergen or binding agent (such as an anti-IgE antibody) but do not appreciably inhibit degranulation of cells that are activated or stimulated with degranulating agents that bypass the FceRI signaling pathway, such as, for example the calcium ionophores ionomycin and A23187.

5

10

15

20

25

30

"IgG-Induced Degranulation" or "Fc γ RI-Mediated Degranulation" refers to degranulation that proceeds via the Fc γ RI signal transduction cascade initiated by crosslinking of Fc γ RI-bound IgG. The crosslinking may be induced by an IgG-specific allergen or another multivalent binding agent, such as an anti-IgG or fragment antibody. Like the Fc ϵ RI signaling cascade, in mast and basophil cells the Fc γ RI signaling cascade also leads to degranulation which may be broken into the same two stages: upstream and downstream. Similar to Fc ϵ RI-mediated degranulation, compounds that selectively inhibit upstream Fc γ RI-mediated degranulation act upstream of the point at which calcium ion mobilization is induced. In cell-based assays, compounds that selectively inhibit upstream Fc γ RI-mediated degranulation inhibit degranulation of cells such as mast or basophil cells that are activated or stimulated with an IgG-specific allergen or binding agent (such as an anti-IgG antibody or fragment) but do not appreciably inhibit degranulation of cells that are activated or stimulated with degranulating agents that bypass the Fc γ RI signaling pathway, such as, for example the calcium ionophores ionomycin and A23187.

"Ionophore-Induced Degranulation" or "Ionophore-Mediated Degranulation" refers to degranulation of a cell, such as a mast or basophil cell, that occurs upon exposure to a calcium ionophore such as, for example, ionomycin or A23187.

"Syk Kinsase" refers to the well-known 72kDa non-receptor (cytoplasmic) spleen protein tyrosine kinase expressed in B-cells and other hematopoetic cells. Syk kinase includes two consensus Src-homology 2 (SH2) domains in tandem that bind to phosphorylated immunoreceptor tyrosine-based activation motifs ("ITAMs"), a "linker" domain and a catalytic domain (for a review of the structure and function of Syk kinase see

Sada et al., 2001, J. Biochem. (Tokyo) 130:177-186); see also Turner et al., 2000, Immunology Today 21:148-154). Syk kinase has been extensively studied as an effector of B-cell receptor (BCR) signaling (Turner et al., 2000, supra). Syk kinase is also critical for tyrosine phosphorylation of multiple proteins which regulate important pathways leading from immunoreceptors, such as Ca²⁺ mobilization and mitogen-activated protein kinase (MAPK) cascades (see, e.g., FIG. 2) and degranulation. Syk kinase also plays a critical role in integrin signaling in neutrophils (see, e.g., Mocsai et al. 2002, Immunity 16:547-558).

5

10

20

25

30

As used herein, Syk kinase includes kinases from any species of animal, including but not limited to, homosapiens, simian, bovine, porcine, rodent, etc., recognized as belonging to the Syk family. Specifically included are isoforms, splice variants, allelic variants, mutants, both naturally occuring and man-made. The amino acid sequences of such Syk kinases are well known and available from GENBANK. Specific examples of mRNAs encoding different isoforms of human Syk kinase can be found at GENBANK accession no. gi|21361552|ref|NM_03177.2|,

15 gi|496899|emb|Z29630.1|HSSYKPTK[496899] and gi|15030258|gb|BC011399.1|BC011399[15030258], which are incorporated herein by reference.

Skilled artisans will appreciate that tyrosine kinases belonging to other families may have active sites or binding pockets that are similar in three-dimensional structure to that of Syk. As a consequence of this structural similarity, such kinases, referred to herein as "Syk mimics," are expected to catalyze phosphorylation of substrates phosphorylated by Syk. Thus, it will be appreciated that such Syk mimics, signal transduction cascades in which such Syk mimics play a role and biological responses effected by such Syk mimics and Syk mimic-dependent signaling cascades may be regulated, and in particular inhibited, with the 2,4-pyrimidinediamine compounds described herein.

"Syk-Dependent Signaling Cascade" refers to a signal transduction cascade in which Syk kinase plays a role. Non-limiting examples of such Syk-dependent signaling cascades include the Fc α RI, Fc γ RI, Fc γ RII, BCR and integrin signaling cascades.

"Autoimmune Disease" refers to those diseases which are commonly associated with the nonanaphylactic hypersensitivity reactions (Type II, Type III and/or Type IV hypersensitivity reactions) that generally result as a consequence of the subject's own humoral and/or cell-mediated immune response to one or more immunogenic substances of

endogenous and/or exogenous origin. Such autoimmune diseases are distinguished from diseases associated with the anaphylactic (Type I or IgE-mediated) hypersensitivity reactions.

6.2 The 2,4-Pyrimidinediamine Compounds

5

15

20

25

The compounds of the invention are generally 2,4-pyrimidinediamine compounds according to structural formula (I):

including salts, hydrates, solvates and N-oxides thereof, wherein:

 L^1 and L^2 are each, independently of one another, selected from the group consisting of a direct bond and a linker;

R² and R⁴ are as described in the following embodiments and examples;

R⁵ is selected from the group consisting of R⁶, (C1-C6) alkyl optionally substituted with one or more of the same or different R⁸ groups, (C1-C4) alkanyl optionally substituted with one or more of the same or different R⁸ groups, (C2-C4) alkenyl optionally substituted with one or more of the same or different R⁸ groups and (C2-C4) alkynyl optionally substituted with one or more of the same or different R⁸ groups;

each R⁶ independently is selected from the group consisting of hydrogen, an electronegative group, $-OR^d$, $-SR^d$, (C1-C3) haloalkyloxy, (C1-C3) perhaloalkyloxy, $-NR^cR^c$, halogen, (C1-C3) haloalkyl, $-CF_3$, $-CH_2CF_3$, $-CF_2CF_3$, -CN, -NC, -OCN, -SCN, -NO, $-NO_2$, $-N_3$, $-S(O)R^d$, $-S(O)_2R^d$, $-S(O)_2OR^d$, $-S(O)NR^cR^c$, $-S(O)_2NR^cR^c$, $-OS(O)_2R^d$, $-OS(O)_2R^d$, $-OS(O)_2NR^cR^c$, $-OS(O)_2NR^cR^c$, $-C(O)R^d$, $-C(O)OR^d$, $-C(O)NR^cR^c$, $-C(NH)NR^cR^c$, $-OC(O)R^d$, $-SC(O)OR^d$, $-OC(O)OR^d$, $-SC(O)OR^d$, $-OC(O)NR^cR^c$, $-SC(O)NR^cR^c$, $-OC(NH)NR^cR^c$, $-SC(NH)NR^cR^c$, $-[NHC(O)]_nR^d$, $-[NHC(O)]_nNR^cR^c$ and $-[NHC(NH)]_nNR^cR^c$, (C5-C10) aryl optionally substituted with one or more of the same or different R⁸ groups, phenyl optionally optionally substituted with one or more of the same or different R⁸ groups, 5-10 membered heteroaryl optionally substituted with one or more of the same or different R⁸ groups, 5-10 membered

16 membered heteroarylalkyl optionally substituted with one or more of the same or different R⁸ groups;

R⁸ is selected from the group consisting of R^a, R^b, R^a substituted with one or more of the same or different R^a or R^b, -OR^a substituted with one or more of the same or different R^a or R^b, -B(OR^a)₂, -B(NR^cR^c)₂, -(CH₂)_m-R^b, -(CHR^a)_m-R^b, -O-(CH₂)_m-R^b, -S-(CH₂)_m-R^b, -O-CHR^aR^b, -O-CR^a(R^b)₂, -O-(CHR^a)_m-R^b, -O-(CH₂)_m-CH[(CH₂)_mR^b]R^b, -S-(CHR^a)_m-R^b, -C(O)NH-(CH₂)_m-R^b, -O-(CH₂)_m-C(O)NH-(CH₂)_m-R^b, -S-(CH₂)_m-C(O)NH-(CH₂)_m-R^b, -O-(CHR^a)_m-C(O)NH-(CHR^a)_m-R^b, -NH-(CH₂)_m-R^b, -NH-(CH₂)_m-R^b, -NH-(CH₂)_m-R^b, -NH-(CH₂)_m-R^b, and -NH-(CH₂)_m-C(O)-NH-(CH₂)_m-R^b;

each R^a is independently selected from the group consisting of hydrogen, (C1-C6) alkyl, (C3-C8) cycloalkyl, cyclohexyl, (C4-C11) cycloalkylalkyl, (C5-C10) aryl, phenyl, (C6-C16) arylalkyl, benzyl, 2-6 membered heteroalkyl, 3-8 membered cycloheteroalkyl, morpholinyl, piperazinyl, homopiperazinyl, piperidinyl, 4-11 membered cycloheteroalkylalkyl, 5-10 membered heteroaryl and 6-16 membered heteroarylalkyl;

each R^b is a suitable group independently selected from the group consisting of =O, $-OR^d$, (C1-C3) haloalkyloxy, $-OCF_3$, =S, $-SR^d$, $=NR^d$, $=NOR^d$, $-NR^cR^c$, halogen, $-CF_3$, -CN, -NC, -OCN, -SCN, -NO, $-NO_2$, $=N_2$, $-N_3$, $-S(O)R^d$, $-S(O)_2R^d$, $-S(O)_2OR^d$, $-S(O)NR^cR^c$, $-S(O)_2NR^cR^c$, $-OS(O)R^d$, $-OS(O)_2R^d$, $-OS(O)_2OR^d$, $-OS(O)_2NR^cR^c$, $-C(O)R^d$, $-C(O)NR^cR^c$, $-C(NH)NR^cR^c$, $-C(NR^a)NR^cR^c$, $-C(NOH)R^a$, $-C(NOH)NR^cR^c$, $-OC(O)R^d$, $-OC(O)OR^d$, $-OC(O)NR^cR^c$, $-OC(NH)NR^cR^c$, $-OC(NR^a)NR^cR^c$, $-[NHC(O)]_nR^d$, $-[NR^aC(O)]_nOR^d$, $-[NR^aC(O)]_nOR^d$, $-[NHC(O)]_nNR^cR^c$, $-[NR^aC(O)]_nNR^cR^c$, $-[NR^aC(O)]_nNR^c$

each R^c is independently R^a , or, alternatively, each R^c is taken together with the nitrogen atom to which it is bonded to form a 5 to 8-membered cycloheteroalkyl or heteroaryl which may optionally include one or more of the same or different additional heteroatoms and which is optionally substituted with one or more of the same or different R^a or suitable R^b groups;

each R^d is independently R^a ; each m is independently an integer from 1 to 3; and each n is independently an integer from 0 to 3.

-[NHC(NH)]_nNR^cR^c and -[NR^aC(NR^a)]_nNR^cR^c;

15

20

25

30

5

10

15

20

25

In the compounds of structural formula (I), L¹ and L² represent, independently of one another, a direct bond or a linker. Thus, as will be appreciated by skilled artisans, the substituents R² and/or R⁴ may be bonded either directly to their respective nitrogen atoms or, alternatively, spaced away from their respective nitrogen atoms by way of a linker. The identity of the linker is not critical and typical suitable linkers include, but are not limited to, (C1-C6) alkyldiyls, (C1-C6) alkanos and (C1-C6) heteroalkyldiyls, each of which may be optionally substituted with one or more of the same or different R⁸ groups, where R⁸ is as previously defined for structural formula (I). In a specific embodiment, L¹ and L² are each, independently of one another, selected from the group consisting of a direct bond, (C1-C3) alkyldiyl optionally substituted with one or more of the same or different Ra, suitable Rb or R⁹ groups and 1-3 membered heteroalkyldiyl optionally substituted with one or more of the same or different R^a, suitable R^b or R⁹ groups, wherein R⁹ is selected from the group consisting of (C1-C3) alkyl, -ORa, -C(O)ORa, (C5-C10) aryl optionally substituted with one or more of the same or different halogens, phenyl optionally substituted with one or more of the same or different halogens, 5-10 membered heteroaryl optionally substituted with one or more of the same or different halogens and 6 membered heteroaryl optionally substituted with one or more of the same or different halogens; and R^b are as previously defined for structural formula (I). Specific R⁹ groups that may be used to substitute L¹ and L² include -OR^a, -C(O)OR^a, phenyl, halophenyl and 4-halophenyl, wherein R^a is as previously defined for structural formula (I).

In another specific embodiment, L^1 and L^2 are each, independently of one another, selected from the group consisting of methano, ethano and propano, each of which may be optionally monosubstituted with an R^9 group, where R^9 is as previously defined above.

In all of the above embodiments, specific R^a groups that may be included in R⁹ groups are selected from the group consisting of hydrogen, (C1-C6) alkyl, phenyl and benzyl.

In still another specific embodiment, L^1 and L^2 are each a direct bond such that the 2,4-pyrimidine diamine compounds of the invention are compounds according to structural formula (Ia):

5

10

15

20

including salts, hydrates, solvates and N-oxides thereof, wherein R², R⁴, R⁵ and R⁶ are as previously defined for structural formula (I). Additional specific embodiments of the 2,4-pyrimidinediamine compounds of the invention are described below.

In a first embodiment of the compounds of structural formula (I) and (Ia), L¹, L², R⁵,

 R^6 , R^8 , R^a , R^b , R^c , R^d , m and n are as previously defined, R^2 is

 R^{31} , independently of the others, is methyl or (C1-C6) alkyl and R^4 is

X is selected from the group consisting of N and CH, Y is selected from the group consisting of O, S, SO, SO₂, SONR³⁶, NH, NR³⁵ and NR³⁷, Z is selected from the group consisting of O, S, SO, SO₂, SONR³⁶, NH, NR³⁵ and NR³⁷. Each R³⁵ is, independently of the others, selected from the group consisting of hydrogen and R⁸, or, alternatively, two R³⁵ bonded to the same carbon atom are taken together to form an oxo (=O), NH or NR³⁸ group and the other two R³⁵ are each, independently of one another, selected from the group consisting of hydrogen and R⁸. Each R³⁶ is independently selected from the group consisting of hydrogen and (C1-C6) alkyl. Each R³⁷ is independently selected from the group consisting of hydrogen and a progroup. R³⁸ is selected from the group consisting of hydrogen and a progroup. R³⁸ is selected from the group consisting of

In particular, Y is O, Z is NH and X is N. R⁵ can be halogen and R⁶ is a hydrogen.

In a second embodiment of the compounds of structural formula (I) and (Ia), L¹, L², R⁵, R⁶, R⁸, R^a, R^b, R^c, R^d, m, n, R³⁵, R³⁶, R³⁷, R³⁸, X, Y and Z are as previously defined, R²

is
31
, wherein each R^{31} , independently of the others, is methyl or (C1-C6) alkyl

and
$$R^4$$
 is O Z X S . In particular, Y is O, Z is NH and X is N. R^5 can be halogen and R^6 is a hydrogen. In one particular aspect, Y is O, Z is NH, X is N and each R^{31} is methyl.

In a third embodiment of the compounds of structural formula (I) and (Ia), L¹, L², R⁵, R⁶, R⁸, R^a, R^b, R^c, R^d, m, n, R³¹, R³⁵, R³⁶, R³⁷, R³⁸, X, Y and Z are as previously defined,

5

10

15

$$R^2$$
 is R^{36} , R^{35} , and R^4 is R^{35} , R^{35} , and R^{4} is R^{5} can be halogen and R^{6} is a hydrogen.

In a fourth embodiment of the compounds of structural formula (I) and (Ia), L^1 , L^2 ,

In a fourth embodiment of the compounds of structural formula (I) and (Ia), L¹, L², R⁵, R⁶, R⁸, R^a, R^b, R^c, R^d, m, n, R³⁵, R³⁶, R³⁷, R³⁸, X, Y and Z are as previously defined, R²

is
$$\mathbb{R}^{35}$$
 and \mathbb{R}^4 is \mathbb{R}^{35} \mathbb{R}^{35} or

OZXX Substitution about the R² phenyl ring can be at the 2, 3, 4, 5 or 6 positions. In particular, Y is O, Z is NH and X is N. R⁵ can be halogen and R⁶ is a hydrogen.

In a fifth embodiment of the compounds of structural formula (I) and (Ia), L^1 , L^2 , R^5 , R^6 , R^8 , R^a , R^b , R^c , R^d , m, n, R^{35} , R^{36} , R^{37} , R^{38} , X, Y and Z are as previously defined, R^2 is a

phenyl group disubstituted with two
$$R^b$$
 groups and R^4 is O^{\bullet} Z X Substitution

about the R² phenyl ring can be at the 2,3, 2,4, 2, 5, 2,6, 3,4, 3,5, 3,6, 4,5, 4,6 or 5,6 positions, with the proviso that the following compounds are not included:

N4-(2,2-Dimethyl-3-oxo-4H-5-pyrid[1,4]oxazin-6-yl)-N2-(3-chloro-4-methoxyphenyl)-5-fluoro-2,4-pyrimidinediamine;

5

15

20

25

N4-(2,2-Dimethyl-3-oxo-4H-5-pyrid[1,4]oxazin-6-yl)-N2-(3,5-dimethoxyphenyl)-5-fluoro-2,4-pyrimidinediamine;

N2-(3,4-Dichlorophenyl)-N4-(2,2-dimethyl-3-oxo-4H-5-pyrid[1,4]oxazin-6-yl)-5-fluoro-2,4-pyrimidinediamine;

10 N4-(2,2-dimethyl-3-oxo-4H-5-pyrid[1,4]oxazin-6-yl)-N2-(3-fluoro-4-methoxyphenyl)-5-fluoro-2,4-pyrimidinediamine;

N2-(3,5-Dichlorophenyl)-N4-(2,2-dimethyl-3-oxo-4H-5-pyrid[1,4]oxazin-6-yl)-5-fluoro-2,4-pyrimidinediamine; and

N2-(3-Chloro-4-trifluoromethoxyphenyl)-N4-(2,2-dimethyl-3-oxo-4H-5-pyrid[1,4]oxazin-6-yl)-5-fluoro-2,4-pyrimidinediamine.

In particular, Y is O, Z is NH and X is N. R⁵ can be halogen and R⁶ is a hydrogen. In certain aspects, each R^b independently is selected from (C1-C6) alkoxy, (C1-16) alkyl, (C1-C6) perhaloalkyls, halogens, carboxylic acid, carboxylic ester, carboxamides, sulfonamides and imidazoles.

In a sixth embodiment of the compounds of structural formula (I) and (Ia), L^1 , L^2 , R^5 , R^6 , R^8 , R^a , R^b , R^c , R^d , m, n, R^{35} , R^{36} , R^{37} , R^{38} , X, Y and Z are as previously defined, R^2

is a phenyl group trisubstituted with three R^b groups and R⁴ is OZXXSS.

Substitution about the R² phenyl ring can be at the 2,3,4, 2,3,5, 2,3,6, 2,4,5, 2,4,6, 2,5,6, 3,4,5, 3,4,6, 3,5,6, or 4,5,6 positions, with the proviso that the following compounds are not included:

N2-(3-Chloro-4-methoxy-5-methylphenyl)-N4-(2,2-dimethyl-3-oxo-4H-5-pyrid[1,4]oxazin-6-yl)-5-fluoro-2,4-pyrimidinediamine;

N2-(3-Chloro-4-hydroxy-5-methylphenyl)-N4-(2,2-dimethyl-3-oxo-4H-5-pyrid[1,4]oxazin-6-yl)-5-fluoro-2,4-pyrimidinediamine; and

N2-(3,5-Dimethyl-4-methoxyphenyl)-N4-(2,2-dimethyl-3-oxo-4H-5-pyrid[1,4]oxazin-6-yl)-5-fluoro-2,4-pyrimidinediamine.

5

10

15

20

25

In particular, Y is O, Z is NH and X is N. R⁵ can be halogen and R⁶ is a hydrogen. In certain aspects, each R^b independently is selected from (C1-C6) alkoxy, (C1-16) alkyl, (C1-C6) perhaloalkyls, halogens, carboxylic acid, carboxylic esters, carboxamides, sulfonamides

In certain embodiments, the compounds disclosed in U.S. Patent Application Serial Nos. 10/631,029, filed on July 29, 2003 and 10/355,543, filed January 31, 2003, respectively, are not included within the scope of the present application.

In a seventh embodiment of the compounds of structural formula (I) and (Ia), R⁵, R⁶, L¹ and L² are as previously defined, R² is selected from the group consisting of (C1-C6) alkyl optionally substituted with one or more of the same or different R⁸ groups, (C3-C8) cycloalkyl optionally substituted with one or more of the same or different R⁸ groups, cyclohexyl optionally substituted with one or more of the same or different R⁸ groups, 3-8 membered cycloheteroalkyl optionally substituted with one or more of the same or different R⁸ groups, (C5-C15) aryl optionally substituted with one or more of the same or different R⁸ groups, phenyl optionally substituted with one or more of the same or different R⁸ groups and 5-15 membered heteroaryl optionally substituted with one or more of the same or

different R⁸ groups, R⁴ is , R^{6a} is (C5-C10) aryl optionally substituted with one or more of the same or different R⁸ groups or phenyl optionally substituted with one or more of the same or different R⁸ groups and R⁸ is as previously defined.

In an eigth embodiment of the compounds of structural formulae (I) and (Ia), R⁵, R⁶, R⁸, L¹ and L² are as previously defined, R² is selected from the group consisting of

$$-\xi = \begin{cases} R^{21} & \xi \\ R^{21} & \xi \end{cases}$$
or
$$R^{22}, \text{ and } R^{21}, \text{ wherein each } R^{21} \text{ is independently a}$$

halogen atom or an alkyl optionally substituted with one or more of the same or different halo groups, R^{22} and R^{23} are each, independently of one another, a hydrogen atom, methyl or ethyl group optionally substituted with one or more of the same or different halo groups and R^4 is a (C3-C8) cycloalkyl optionally substituted with one or more of the same or different R^8 groups.

In a nineth embodiment of the compounds of structural formulae (I) and (Ia), R⁵, R⁶, R⁸, L¹ and L² are as previously defined, R² is selected from the group consisting of (C1-C6) alkyl optionally substituted with one or more of the same or different R⁸ groups, (C3-C8) cycloalkyl optionally substituted with one or more of the same or different R⁸ groups, cyclohexyl optionally substituted with one or more of the same or different R⁸ groups, 3-8 membered cycloheteroalkyl optionally substituted with one or more of the same or different R⁸ groups, (C5-C15) aryl optionally substituted with one or more of the same or different R⁸ groups, phenyl optionally substituted with one or more of the same or different R⁸ groups and 5-15 membered heteroaryl optionally substituted with one or more of the same or

different
$$R^8$$
 groups, R^4 is R^{35} , R^{35} , or R^{35}

R³⁵ is a hydrogen or R⁸; and

5

10

15

20

 R^{45} is a (C3-C8) cycloalkyl optionally substituted with one or more of the same or different R^8 groups..

In a tenth embodiment compounds of structural formulae

5

10

15

20

25

30

R² selected from the group consisting of (C1-C6) alkyl optionally substituted with one or more of the same or different R⁸ groups, (C3-C8) cycloalkyl optionally substituted with one or more of the same or different R⁸ groups, cyclohexyl optionally substituted with one or more of the same or different R⁸ groups, 3-8 membered cycloheteroalkyl optionally substituted with one or more of the same or different R⁸ groups, (C5-C15) aryl optionally substituted with one or more of the same or different R⁸ groups, phenyl optionally substituted with one or more of the same or different R⁸ groups and 5-15 membered heteroaryl optionally substituted with one or more of the same or different R⁸ groups. R⁴ is selected from the group consisting of hydrogen, (C1-C6) alkyl optionally substituted with one or more of the same or different R⁸ groups, (C3-C8) cycloalkyl optionally substituted with one or more of the same or different R⁸ groups, cyclohexyl optionally substituted with one or more of the same or different R⁸ groups, 3-8 membered cycloheteroalkyl optionally substituted with one or more of the same or different R⁸ groups, (C5-C15) aryl optionally substituted with one or more of the same or different R⁸ groups, phenyl optionally substituted with one or more of the same or different R⁸ groups and 5-15 membered heteroaryl optionally substituted with one or more of the same or different R⁸ groups, and R⁵⁵ is selected from the group consisting of (C1-C6) alkyl optionally substituted with one or more of the same or different R⁸ groups, (C3-C8) cycloalkyl optionally substituted with one or more of the same or different R⁸ groups, cyclohexyl optionally substituted with one or more of the same or different R⁸ groups, 3-8 membered cycloheteroalkyl optionally substituted with one or more of the same or different R⁸ groups, (C5-C15) aryl optionally substituted with one or more of the same or different R⁸ groups, phenyl optionally substituted with one or more of the same or different R⁸ groups and 5-15 membered heteroaryl optionally substituted with one or more of the same or different R⁸ groups.

In an eleveth embodiment of the compounds of structural formulae (I) and (Ia), R⁵,

 R^6 , R^8 , L^1 and L^2 are as previously defined, R^2 is

R⁶, R⁸, L¹ and L² are as previously defined, R² is and R⁴ is selected from the group consisting of hydrogen, (C1-C6) alkyl optionally substituted with one or more of the same or different R⁸ groups, (C3-C8) cycloalkyl optionally substituted with one or more of the same or different R⁸ groups, cyclohexyl optionally substituted with one or more of the same or different R⁸ groups, 3-8 membered cycloheteroalkyl optionally

substituted with one or more of the same or different R⁸ groups, (C5-C15) aryl optionally substituted with one or more of the same or different R⁸ groups, phenyl optionally substituted with one or more of the same or different R⁸ groups and 5-15 membered heteroaryl optionally substituted with one or more of the same or different R⁸ groups.

In a twelfth embodiment of the compounds of structural formulae (I) and (Ia), R⁵,

or

R⁶, R⁸, L¹ and L² are as previously defined, R² is

5

10

15

20

alkyl optionally substituted with one or more of the same or different R⁸ groups, (C3-C8) cycloalkyl optionally substituted with one or more of the same or different R⁸ groups, cyclohexyl optionally substituted with one or more of the same or different R⁸ groups, 3-8 membered cycloheteroalkyl optionally substituted with one or more of the same or different R⁸ groups, (C5-C15) aryl optionally substituted with one or more of the same or different R⁸ groups, phenyl optionally substituted with one or more of the same or different R⁸ groups and 5-15 membered heteroaryl optionally substituted with one or more of the same or different R⁸ groups and each R³⁵ individually is a hydrogen or a suitable R⁸.

In a thirteenth embodiment of the compounds of structural formulae (I) and (Ia), R⁵, R⁶, R⁸, L¹ and L² are as previously defined, R² is selected from the group consisting of (C1-C6) alkyl optionally substituted with one or more of the same or different R⁸ groups, (C3-C8) cycloalkyl optionally substituted with one or more of the same or different R⁸ groups, cyclohexyl optionally substituted with one or more of the same or different R⁸ groups, 3-8 membered cycloheteroalkyl optionally substituted with one or more of the same or different R⁸ groups, (C5-C15) aryl optionally substituted with one or more of the same or different R⁸ groups, phenyl optionally substituted with one or more of the same or different

R⁸ groups and 5-15 membered heteroaryl optionally substituted with one or more of the

same or different R⁸ groups, R⁴ is

and R^{35} is a hydrogen or a suitable R^8 .

In a fourteenth embodiment, the compounds of structural formulae (I) and (Ia), R^5 , R^6 , R^8 , L^1 and L^2 are as previously defined, R^4 is a substituted phenyl group, substituted

$$\frac{1}{2} \int_{\mathbb{C}^{H_2}} \mathbb{I}_{\mathbb{C}^{H_2}} \mathbb{I}_{\mathbb{C}^{H_2}} \mathbb{I}_{\mathbb{C}^{H_2}}$$
 wherein "yy" = 1

5 with the same or different R⁸ groups and R² is

10

15

6. In one aspect, the R⁴ phenyl group is di or tri substituted with the same or different R⁸ groups, and in particular, halogen atoms. In particular, R⁴ can be substituted at the 3 and 4 positions relative to attachment to the N4 amine, particularly with halogen atoms and/or alkoxy groups.

In a fifteenth embodiment, the compounds of structural formulae (I) and (Ia), R^5 , R^6 , R^8 , L^1 and L^2 are as previously defined, R^4 is a substituted phenyl group, substituted with

the same or different R^8 groups and R^2 is $\$. In one aspect, the R^4 phenyl group is di or tri substituted with the same or different R^8 groups, and in particular, halogen atoms. In particular, R^4 can be substituted at the 3 and 4 positions relative to attachment to the N4 amine, particularly with halogen atoms and/or alkoxy groups.

In a sixteenth embodiment, the compounds of structural formulae (I) and (Ia), R^5 , R^6 , R^8 , L^1 and L^2 are as previously defined, R^4 is a substituted phenyl group, substituted

with the same or different R⁸ groups and R² is \quad \text{. In one aspect, the R⁴ phenyl group is di or tri substituted with the same or different R⁸ groups, and in particular,

halogen atoms. In particular, R⁴ can be substituted at the 3 and 4 positions relative to attachment to the N4 amine, particularly with halogen atoms and/or alkoxy groups.

In a seventeenth embodiment, the compounds of structural formulae (I) and (Ia), R^5 , R^6 , R^8 , L^1 and L^2 are as previously defined, R^4 is a substituted phenyl group, substituted

with the same or different R⁸ groups and R² is

5

10

15

⁵, wherein R³⁵ is an

alkylalkoxy group, and in particular is

In one aspect, the R⁴ phenyl group is di or tri substituted with the same or different R⁸ groups, and in particular, halogen atoms. In particular, R⁴ can be substituted at the 3 and 4 positions relative to attachment to the N4 amine, particularly with halogen atoms and/or alkoxy groups.

In a eighteenth embodiment, the compounds of structural formulae (I) and (Ia), R⁵, R⁶, R⁸, L¹ and L² are as previously defined, R⁴ is a substituted phenyl group, substituted

with the same or different R⁸ groups and R² is

is R³⁵, wherein R³⁵ is an alkyl

group, and in particular is / . In one aspect, the R⁴ phenyl group is di or tri substituted with the same or different R⁸ groups, and in particular, halogen atoms. In particular, R⁴ can be substituted at the 3 and 4 positions relative to attachment to the N4 amine, particularly with halogen atoms and/or alkoxy groups.

In a ninteenth embodiment, the compounds of structural formulae (I) and (Ia), R⁵,

$$Z$$
 R^{35}
 R^{35}
 R^{35}
 R^{35}
 R^{35}
 R^{35}
 R^{35}

 R^6 , R^8 , L^1 and L^2 are as previously defined R^4 is

September 1

and in particular, is substituted at the 3 or 4 position with the

isoxazole. Y is selected from the group consisting of O, S, SO, SO₂, SONR³⁶, NH and NR³⁷. Z is selected from the group consisting of O, S, SO, SO₂, SONR³⁶, NH and NR³⁷. Each R³⁵ is, independently of the others, selected from the group consisting of hydrogen and R⁸, or, alternatively, two R³⁵ bonded to the same carbon atom are taken together to form an oxo (=O), NH or NR³⁸ group and the other two R³⁵ each, if present, independently of one another, are selected from the group consisting of hydrogen and R⁸. Each R³⁶ is independently selected from the group consisting of hydrogen and (C1-C6) alkyl. Each R³⁷ is independently selected from the group consisting of hydrogen and a progroup.. R³⁸ is selected from the group consisting of (C1-C6) alkyl and (C5-C14) aryl..

5

10

15

20

In certain aspects, R³⁷ is selected from the group consisting of aryl, arylalkyl, heteroaryl, R^a, R^b-CR^aR^b-O-C(O)R⁸, -CR^aR^b-O-PO(OR⁸)₂, -CH₂-O-PO(OR⁸)₂, -C(O)-CR^aR^b-N(CH₃)₂, -CR^aR^b-O-C(O)-CR^aR^b-N(CH₃)₂, -C(O)R⁸, -C(O)CF₃ and -C(O)-NR⁸-C(O)R⁸

In one aspect, Y is oxygen, Z is NH and one or more of R³⁵ is an alkyl group, and in particular, a methyl group. In certain, two R³⁵'s form a gem dialkyl moiety, in particular, a

gem dimethyl moiety adjacent to the NH depicted as

In a twentieth embodiment, the compounds of structural formulae (I) and (Ia), R⁵,

 R^6 , R^8 , L^1 and L^2 are as previously defined, R^4 is R^{35} are as defined above, and in particular are both halogen atoms, e.g., fluorine, and R^2 is a substituted phenyl group, substituted with the same or different R^8 groups. In one aspect, the R^2 phenyl group is di or tri substituted with the same or different R^8 groups, and in particular, halogen atoms. In particular, R^2 can be substituted at the 3 and 5 positions relative to attachment to the N2 amine, particularly with halogen atoms and/or alkoxy groups.

In a twenty first embodiment, the compounds of structural formulae (I) and (Ia), R⁵,

 R^6 , R^8 , L^1 and L^2 are as previously defined, R^4 is , wherein Y and Z are

defined as above and R2 is and in particular is substituted at the 3 or 4 position with the isoxazole. In one aspect of the thirty ninth embodiment with regard to R⁴,

In a twenty second embodiment the compounds of structural formulae (I) and (Ia),

R⁵, R⁶, R⁸, L¹ and L² are as previously defined, R⁴ is 5

wherein R⁸ and R^c are as defined above and R² is a phenyl

. In one aspect –OR⁸, R⁸ is a group substituted at the 3 or 4 position with hydrogen atom.

In a twenty third embodiment, the compounds of structural formulae (I) and (Ia), R⁵,

 R^6 , R^8 , L^1 and L^2 are as previously defined, R^4 is and R² is a substituted 10 phenyl group, substituted with at least two of the same or different R⁸ groups as defined above. Suitable examples include compounds 340, 343, 349, 350 and 351.

In a twenty fourth embodiment, the compounds of structural formulae (I) and (Ia),

$$R^5$$
, R^6 , R^8 , L^1 and L^2 are as previously defined, R^4 is R^5 and R^2 is

15

40

In a twenty fifth embodiment, the compounds of structural formulae (I) and (Ia), R⁵,

$$R^6$$
, R^8 , L^1 and L^2 are as previously defined, R^4 is

, wherein Y and
$$R^{35}$$
 are as defined above. Suitable examples include compounds 368, 381, 382, 383 and 384.

In a twenty sixth embodiment, the compounds of structural formulae (I) and (Ia), R⁵, R⁶, R⁸, L¹ and L² are as previously defined, R⁴ is selected from the group consisting of (C1-C6) alkyl optionally substituted with one or more of the same or different R⁸ groups, (C3-C8) cycloalkyl optionally substituted with one or more of the same or different R⁸ groups, cyclohexyl optionally substituted with one or more of the same or different R⁸ groups, 3-8 membered cycloheteroalkyl optionally substituted with one or more of the same or different R⁸ groups, (C5-C15) aryl optionally substituted with one or more of the same or different R⁸ groups, phenyl optionally substituted with one or more of the same or different R⁸ groups and 5-15 membered heteroaryl optionally substituted with one or more of the

same or different R⁸ groups and R² is

5

10

15

20

wherein R³⁵ is as defined above.

Suitable examples include compounds 205 and 206.

In a twenty seventh embodiment the compounds of structural formulae (I) and (Ia),

R⁵, R⁶, R⁸, L¹ and L² are as previously defined, R⁴ is and R² is a phenyl group substituted with one or more of the same R⁸ groups. Suitable examples include compounds 328, 329, 330, 341, 553, 554, 555, 556, 559 and 560.

In a twenty eighth embodiment, the compounds of structural formulae (I) and (Ia), R^5 , R^6 , R^8 , L^1 and L^2 are as previously defined, R^4 is selected from the group consisting of (C1-C6) alkyl optionally substituted with one or more of the same or different R^8 groups,

(C3-C8) cycloalkyl optionally substituted with one or more of the same or different R⁸ groups, cyclohexyl optionally substituted with one or more of the same or different R⁸ groups, 3-8 membered cycloheteroalkyl optionally substituted with one or more of the same or different R⁸ groups, (C5-C15) aryl optionally substituted with one or more of the same or different R⁸ groups, phenyl optionally substituted with one or more of the same or different R⁸ groups and 5-15 membered heteroaryl optionally substituted with one or more of the

same or different R⁸ groups and R² is , wherein Y is as defined above or is NR³⁵ and R³⁵ is as defined above. Suitable examples include compounds 1070, 1071, 1073, 1074, 1075, 1076, 1078, 1080, 1085, 1091 and 1092.

In a twenty nineth embodiment, the compounds of structural formulae (I) and (Ia),

 R^5 , R^6 , R^8 , L^1 and L^2 are as previously defined, R^4 is $\frac{1}{100}$, wherein R^2 is a substituted phenyl group or an indazole, substituted with one or more of the same or different R^8 groups as defined above. Suitable examples include compounds 1251, 1252, 1253, 1254 and 1255.

In a thirtieth embodiment, the compounds of structural formulae (I) and (Ia), R⁵, R⁶,

R⁸, L¹ and L² are as previously defined, R⁴ is

5

10

15

20

, wherein each R³⁵

independently is as described above and R^2 is . Suitable examples include compounds 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 1281, 1283, 1283, 1284, 1285, 1287, 1288, 1289, 1290 and 1291.

In a thirty first embodiment, the compounds of structural formulae (I) and (Ia), R⁵,

$$R^2O$$
 R^y
 R^z
 ξ

 $R^6,\,R^8,\,L^1$ and L^2 are as previously defined, R^4 is

, wherein Rz is

a hydrogen or lower alkyl group, R^x and R^y are each independently lower alkyl groups, or taken together form a cycloalkyl and R^p is a halogen atom or a lower alkyl group and R² is as defined above. Suitable examples include compounds 402, 403, 407, 408, 409 and 410.

In a thirty second embodiment, the compounds of structural formulae (I) and (Ia),

 R^5 , R^6 , R^8 , L^1 and L^2 are as previously defined, R^2 is and R^4 is

5

10

15

R¹¹ and R¹² are each, independently of one another, selected from the group consisting of alkyl, alkoxy, halogen, haloalkoxy, aminoalkyl and hydroxyalkyl;

In a thirty third embodiment, the compounds of structural formulae (I) and (Ia), R⁵, R⁶, R⁸, L¹ and L² are as previously defined, R² is selected from (C1-C6) alkyl optionally substituted with one or more of the same or different R⁸ groups, (C3-C8) cycloalkyl optionally substituted with one or more of the same or different R⁸ groups, cyclohexyl optionally substituted with one or more of the same or different R⁸ groups, 3-8 membered cycloheteroalkyl optionally substituted with one or more of the same or different R⁸ groups, (C5-C15) aryl optionally substituted with one or more of the same or different R⁸ groups and 5-15 membered heteroaryl optionally substituted with one or more of the same or different R⁸

groups, R^{46} , R^{27} , R^{28} , R^{22} , R^{22} , R^{23}

20

 R^5 , R^6 , R^8 , R^a , R^b , R^c , R^d , m and n are as described above;

each R^{21} , R^{22} and R^{23} are each, independently of one another, as described above and in particular, an alkyl group;

each R²⁸ individually is a halogen or alkoxy;

5

R²⁹ is a (C1-C6) alkyl or (C3-C9) cycloalkyl;

R³⁰ is an alkyl group or a halogen;

X is selected from the group consisting of N and CH;

 $Y, Z, R^{35}, R^{36}, R^{37}$ and R^{38} are as described above;

each R^{46} , R^{47} and R^{48} independently is selected from the group consisting of a hydrogen, alkyl, alkoxy, hydroxyl, halogen, isoxazole, piperazino, N-alkyl piperazine, morpholino and $CH_3NHC(O)CH_2O$ -, with the proviso that R^{46} , R^{47} and R^{48} are all not hydrogen and when one of R^{46} , R^{47} or R^{48} is isoxazole, piperazino, N-alkyl piperazine, morpholino or $CH_3NHC(O)CH_2O$ -, then the remaining R^{46} , R^{47} or R^{48} are hydrogen;

 R^{50} is an alkyl group or $-(CH_2)_qOH$; q is an integer from 1 to 6; R^{52} is an alkyl group or a substituted alkyl group

p is 1, 2 or 3; and

10 x = 1-8.

5

15

20

25

In a thirty fourth embodiment of the compounds of structural formulae (I) and (Ia), R^2 , R^4 , R^5 , L^1 and L^2 are as previously described for their respective structures (I) and (Ia),, with the proviso that R^2 is not 3,4,5-trimethoxyphenyl, 3,4,5-tri (C1-C6) alkoxyphenyl or

$$-\frac{1}{2}$$
 R^{21} OR^{22}

where R²¹, R²² and R²³ are as defined for R¹, R² and R³, respectively of U.S. Patent No. 6,235,746, the disclosure of which is incorporated by reference. In a specific embodiment of this first embodiment, R²¹ is hydrogen, halo, straight-chain or branched (C1-C6) alkyl optionally substituted with one or more of the same or different R²⁵ groups, hydroxyl, (C1-C6) alkoxy optionally substituted with one or more of the same or different phenyl or R²⁵ groups, thiol (-SH), (C1-C6) alkylthio optionally substituted with one or more of the same or different phenyl or R²⁵ groups, amino (-NH₂), -NHR²⁶ or -NR²⁶R²⁶; R²² and R²³ are each, independently of one another, a (C1-C6) straight-chain or branched alkyl optionally substituted with one or more of the same or different R²⁵ groups; R²⁵ is selected from the group consisting of halo, hydroxyl, (C1-C6) alkoxy, thiol, (C1-C6) alkylthio, (C1-C6) alkylamino and (C1-C6) dialkylamino; and each R²⁶ is independently a (C1-C6) alkyl

7

5

10

15

20

25

optionally substituted with one or more of the same or different phenyl or R^{25} groups or a $-C(O)R^{27}$, where R^{27} is a (C1-C6) alkyl optionally substituted with one or more of the same or different phenyl or R^{25} groups.

In another specific embodiment, R^{21} is methoxy optionally substituted with one or more of the same or different halo groups and/or R^{22} and R^{23} are each, independently of one another, a methyl or ethyl optionally substituted with one or more of the same or different halo groups.

In a thirty fifth embodiment, the compounds of structural formulae (I) and (Ia), R^5 , R^6 , R^8 , L^1 and L^2 are as previously defined,:

$$R^2$$
 is 32 , R^4 is $^{-\frac{5}{2}}$, R^5 , R^6 , R^{30} , R^{35} and x are as defined

above. In certain embodiments, x is 2 through 4. In other embodiments, R^{35} is a methyl group. In still additional embodiments, R^{30} is chlorine, methyl or trifluoromethyl. In still other embodiments, R^{5} is fluorine and R^{6} is hydrogen.

In a thirty sixth embodiment the 2, 4-pyrimidinediamine includes those compounds according to structures I and I(a) wherein R² is selected from the group consisting of (C1-C6) alkyl optionally substituted with one or more of the same or different R⁸ groups, (C3-C8) cycloalkyl optionally substituted with one or more of the same or different R⁸ groups, cyclohexyl optionally substituted with one or more of the same or different R⁸ groups, 3-8 membered cycloheteroalkyl optionally substituted with one or more of the same or different R⁸ groups, (C5-C15) aryl optionally substituted with one or more of the same or different R⁸ groups, phenyl optionally substituted with one or more of the same or different R⁸ groups and 5-15 membered heteroaryl optionally substituted with one or more of the

same or different R⁸ groups. R⁴ is only R⁵, R⁵, R⁶ and R⁸ are described as above. In certain embodiments, R⁵ is a fluorine atom and R⁶ is a hydrogen atom.. In certain embodiments, R² is a di or tri-substituted phenyl group.

In a thirty seventh embodiment, the invention pertains to 2, 4-pyrimidinediamine

compounds according to structures I and I(a) wherein R² is

5

10

15

and R^{48} are as defined above, each R^{21} , independently of one another, is an alkyl group.. In certain embodiments, R^5 is a fluorine atom and R^6 is a hydrogen atom..

In a thirty eighth embodiment, the present invention relates to 2, 4-pyrimidinediamine compounds according to structures I and I(a) wherein R² is

$$R^{4} \text{ is, } R^{28} \longrightarrow S^{2}, R^{28} \longrightarrow S^{2}, R^{35} \longrightarrow R^{35} \longrightarrow$$

 R^5 , R^6 , R^8 , R^{21} , R^{23} , R^{28} , R^{35} , R^{36} , R^{37} , R^{38} , Y, Z, R^a , R^b , R^c , R^d , m and n are as described above, and X is selected from the group consisting of N and CH. In a particular embodiment, R^{28} is a methoxy. In another embodiment, R^{23} is methyl. In particular embodiments, R^{21} is a methyl group. In other embodiments, each R^{28} is chlorine. In still additional embodiments, R^{21} is a methyl group and at least one R^{28} is a chlorine. In another embodiment, R^{28} is a methoxy.

In a thirty nineth embodiment, the present invention provides pyrimidinediamine compounds according to structures I and I(a) wherein R² is

$$R^{2^{1}}O$$
 $R^{2^{1}}O$
 $R^{$

described above.

5

10

15

In certain embodiments, R^{29} is a t-butyl group. In other embodiments, R^{21} is a methyl group. In certain embodiments, each R²⁸ is a chlorine. In still another embodiment, R²¹ is a methyl group and at least one of R²⁸ is a chlorine.

In a fortieth embodiment, the invention pertains to 2, 4-pyrimidinediamine compounds according to structures I and I(a) wherein R² is

$$R^{4} \text{ is } \mathbb{R}^{28}$$

$$R^{5}, R^{6}, R^{8}, R^{21}, \text{ each}$$

R²⁸, R^a, R^b, R^c. R^d, m, n, p, X, Y, Z, each R³⁵, each R³⁶, each R³⁷ and R³⁸ are as described above. In particular embodiments, R²¹ is a methyl group. In other embodiments, each R²⁸ is a chlorine. In still other embodiments, R²¹ is a methyl group and at least one of R²⁸ is a chlorine. In still another aspect, p is 1 or 2.

In a forty first embodiment, the invention relates to 2, 4-pyrimidinediamine

compounds according to structures I and I(a) wherein
$$R^2$$
 is R^{50} , R^4 is

$$R^{210}$$
 R^{28}
 R^{28}
 R^{28}
 R^{25}
 R^{35}
 R^{35}

 R^b , R^c . R^d , m, n, q, X, Y, Z, R^{35} , R^{36} , R^{37} , R^{38} , R^{50} , and R^{52} are as described above.

5

10

15

20

25

In certain aspects, R^{50} is $-CH_2CH_2$ -OH or methyl. In another aspect, R^{52} is trifluoromethyl. In still another aspect, at least one R^{28} is a chlorine. In yet another aspect, R^{50} is a methyl and at least one R^{28} is a chlorine.

In a forty second embodiment, applicable to the first through forty first embodiments, R⁵ of the pyrimidine ring is a halogen atom, such as fluorine, and R⁶ of the pyrimidine ring is a hydrogen atom.

In a forty third embodiment, L^1 and L^2 are covalent bonds for the above-identified embodiments.

Also specifically described are combinations of the above first through forty third embodiments.

Those of skill in the art will appreciate that the 2,4-pyrimidinediamine compounds described herein may include functional groups that can be masked with progroups to create prodrugs. Such prodrugs are usually, but need not be, pharmacologically inactive until converted into their active drug form. Indeed, many of the active 2,4-pyrimidinediamine compounds described in TABLE 1, include promoieties that are hydrolyzable or otherwise cleavable under conditions of use. For example, ester groups commonly undergo acid-catalyzed hydrolysis to yield the parent carboxylic acid when exposed to the acidic conditions of the stomach, or base-catalyzed hydrolysis when exposed to the basic conditions of the intestine or blood. Thus, when administered to a subject orally, 2,4-pyrimidinediamines that include ester moieties may be considered prodrugs of their corresponding carboxylic acid, regardless of whether the ester form is pharmacologically active. Referring to TABLE 1, numerous ester-containing 2,4-pyrimidinediamines of the invention are active in their ester, "prodrug" form.

In the prodrugs of the invention, any available functional moiety may be masked with a progroup to yield a prodrug. Functional groups within the 2,4-pyrimidinediamine compounds that may be masked with progroups for inclusion in a promoiety include, but are not limited to, amines (primary and secondary), hydroxyls, sulfanyls (thiols), carboxyls, etc. Myriad progroups suitable for masking such functional groups to yield promoieties that are cleavable under the desired conditions of use are known in the art. All of these progroups, alone or in combinations, may be included in the prodrugs of the invention.

In one illustrative embodiment, the prodrugs of the invention are compounds according to structural formula (I) in which R^c and R^d may be, in addition to their previously-defined alternatives, a progroup.

5

10

15

20

25

30

Those of skill in the art will appreciate that many of the compounds and prodrugs of the invention, as well as the various compound species specifically described and/or illustrated herein, may exhibit the phenomena of tautomerism, conformational isomerism, geometric isomerism and/or optical isomerism. For example, the compounds and prodrugs of the invention may include one or more chiral centers and/or double bonds and as a consequence may exist as stereoisomers, such as double-bond isomers (i.e., geometric isomers), enantiomers and diasteromers and mixtures thereof, such as racemic mixtures. As another example, the compounds and prodrugs of the invention may exist in several tautomeric forms, including the enol form, the keto form and mixtures thereof. As the various compound names, formulae and compound drawings within the specification and claims can represent only one of the possible tautomeric, conformational isomeric, optical isomeric or geometric isomeric forms, it should be understood that the invention encompasses any tautomeric, conformational isomeric, optical isomeric and/or geometric isomeric forms of the compounds or prodrugs having one or more of the utilities described herein, as well as mixtures of these various different isomeric forms. In cases of limited rotation around the 2,4-pyrimidinediamine core structure, atropisomers are also possible and are also specifically included in the compounds of the invention.

Moreover, skilled artisans will appreciate that when lists of alternative substituents include members which, owing to valency requirements or other reasons, cannot be used to substitute a particular group, the list is intended to be read in context to include those members of the list that are suitable for substituting the particular group. For example, skilled artisans will appreciate that while all of the listed alternatives for R^b can be used to

substitute an alkyl group, certain of the alternatives, such as =O, cannot be used to substitute a phenyl group. It is to be understood that only possible combinations of substituent-group pairs are intended.

The compounds and/or prodrugs of the invention may be identified by either their chemical structure or their chemical name. When the chemical structure and the chemical name conflict, the chemical structure is determinative of the identity of the specific compound.

5

10

15

20

25

30

Depending upon the nature of the various substituents, the 2,4-pyrimidinediamine compounds and prodrugs of the invention may be in the form of salts. Such salts include salts suitable for pharmaceutical uses ("pharmaceutically-acceptable salts"), salts suitable for veterinary uses, etc. Such salts may be derived from acids or bases, as is well-known in the art.

In one embodiment, the salt is a pharmaceutically acceptable salt. Generally, pharmaceutically acceptable salts are those salts that retain substantially one or more of the desired pharmacological activities of the parent compound and which are suitable for administration to humans. Pharmaceutically acceptable salts include acid addition salts formed with inorganic acids or organic acids. Inorganic acids suitable for forming pharmaceutically acceptable acid addition salts include, by way of example and not limitation, hydrohalide acids (e.g., hydrochloric acid, hydrobromic acid, hydriodic, etc.), sulfuric acid, nitric acid, phosphoric acid, and the like. Organic acids suitable for forming pharmaceutically acceptable acid addition salts include, by way of example and not limitation, acetic acid, trifluoroacetic acid, propionic acid, hexanoic acid, cyclopentanepropionic acid, glycolic acid, oxalic acid, pyruvic acid, lactic acid, malonic acid, succinic acid, malic acid, maleic acid, fumaric acid, tartaric acid, citric acid, palmitic acid, benzoic acid, 3-(4-hydroxybenzoyl) benzoic acid, cinnamic acid, mandelic acid, alkylsulfonic acids (e.g., methanesulfonic acid, ethanesulfonic acid, 1,2-ethane-disulfonic acid, 2-hydroxyethanesulfonic acid, etc.), arylsulfonic acids (e.g., benzenesulfonic acid, 4-chlorobenzenesulfonic acid, 2-naphthalenesulfonic acid, 4-toluenesulfonic acid, cycloalkylsulfonic acids (e.g., camphorsulfonic acid), 4-methylbicyclo[2.2.2]-oct-2-ene-1carboxylic acid, glucoheptonic acid, 3-phenylpropionic acid, trimethylacetic acid, tertiary butylacetic acid, lauryl sulfuric acid, gluconic acid, glutamic acid, hydroxynaphthoic acid, salicylic acid, stearic acid, muconic acid, and the like.

Pharmaceutically acceptable salts also include salts formed when an acidic proton present in the parent compound is either replaced by a metal ion (e.g., an alkali metal ion, an alkaline earth metal ion or an aluminum ion), an ammonium ion or coordinates with an organic base (e.g., ethanolamine, diethanolamine, triethanolamine, N-methylglucamine, morpholine, piperidine, dimethylamine, diethylamine, etc.).

The 2,4-pyrimidinediamine compounds and of the invention, as well as the salts thereof, may also be in the form of hydrates, solvates and N-oxides, as are well-known in the art.

6.3 Methods of Synthesis

5

20

25

The compounds and prodrugs of the invention may be synthesized *via* a variety of different synthetic routes using commercially available starting materials and/or starting materials prepared by conventional synthetic methods. Suitable exemplary methods that may be routinely adapted to synthesize the 2,4-pyrimidinediamine compounds and prodrugs of the invention are found in U.S. Patent No. 5,958,935, U.S. Patent Application 10/355,543, filed January 31, 2003 (US Publication US20040029902-A1), WO 03/063794, published August 1, 2003, U.S. Patent Application 10/631,029, filed July 29, 2003 and WO 2004/014382, published February 19, 2004, the disclosures of which are incorporated herein by reference. All of the compounds of structural formulae (I), (Ia) and (II) may be prepared by routine adaptation of these methods.

A variety of exemplary synthetic routes that can be used to synthesize the 2,4-pyrimidinediamine compounds of the invention are described in Schemes (I)-(XI), below. In Schemes (I)-(XI), like-numbered compounds have similar structures. These methods may be routinely adapted to synthesize the prodrugs according to structural formula (II).

In one exemplary embodiment, the compounds can be synthesized from substituted or unsubstituted uracils or thiouracils as illustrated in Scheme (I), below:

Scheme (I)

In Scheme (I), R², R⁴, R⁵, R⁶, L¹ and L² are as previously defined for structural formula (I), X is a halogen (e.g., F, Cl, Br or I) and Y and Y' are each, independently of one another, selected from the group consisting of O and S. Referring to Scheme (I), uracil or thiouracil 2 is dihalogenated at the 2- and 4-positions using standard halogenating agent POX₃ (or other standard halogenating agent) under standard conditions to yield 2,4-bishalo pyrimidine 4. Depending upon the R⁵ substituent, in pyrimidine 4, the halide at the C4 position is more reactive towards nucleophiles than the halide at the C2 position. This differential reactivity can be exploited to synthesize 2,4-pyrimidinediamines according structural formula (I) by first reacting 2,4-bishalopyrimidine 4 with one equivalent of amine 10, yielding 4N-substituted-2-halo-4-pyrimidineamine 8, followed by amine 6 to yield a 2,4-pyrimidinediamine according structural formula (I). 2N,4N-bis(substituted)-2,4-

5

10

5

10

pyrimidinediamines 12 and 14 can be obtained by reacting 2,4-bishalopyrimidine 4 with excess 6 or 10, respectively.

In most situations, the C4 halide is more reactive towards nucleophiles, as illustrated in the Scheme. However, as will be recognized by skilled artisans, the identity of the R⁵ substituent may alter this reactivity. For example, when R⁵ is trifluoromethyl, a 50:50 mixture of 4N-substituted-4-pyrimidineamine 8 and the corresponding 2N-substituted-2-pyrimidineamine is obtained. Regardless of the identity of the R⁵ substituent, the regioselectivity of the reaction can be controlled by adjusting the solvent and other synthetic conditions (such as temperature), as is well-known in the art.

The reactions depicted in Scheme (I) may proceed more quickly when the reaction mixtures are heated *via* microwave. When heating in this fashion, the following conditions may be used: heat to 175°C in ethanol for 5-20 min. in a Smith Reactor (Personal Chemistry) in a sealed tube (at 20 bar pressure).

The uracil or thiouracil 2 starting materials may be purchased from commercial 15 sources or prepared using standard techniques of organic chemistry. Commercially available uracils and thiouracils that can be used as starting materials in Scheme (I) include, by way of example and not limitation, uracil (Aldrich #13,078-8; CAS Registry 66-22-8); 2thio-uracil (Aldrich #11,558-4; CAS Registry 141-90-2); 2,4-dithiouracil (Aldrich #15,846-1; CAS Registry 2001-93-6); 5-acetouracil (Chem. Sources Int'l 2000; CAS Registry 6214-20 65-9); 5-azidouracil; 5-aminouracil (Aldrich #85,528-6; CAS Registry 932-52-5); 5-bromouracil (Aldrich #85,247-3; CAS Registry 51-20-7); 5-(trans-2-bromovinyl)-uracil (Aldrich #45,744-2; CAS Registry 69304-49-0); 5-(trans-2-chlorovinyl)-uracil (CAS Registry 81751-48-2); 5-(trans-2-carboxyvinyl)-uracil; uracil-5-carboxylic acid (2,4-dihydroxypyrimidine-5-carboxylic acid hydrate; Aldrich #27,770-3; CAS Registry 25 23945-44-0); 5-chlorouracil (Aldrich #22,458-8; CAS Registry 1820-81-1); 5-cyanouracil (Chem. Sources Int'l 2000; CAS Registry 4425-56-3); 5-ethyluracil (Aldrich #23,044-8; CAS Registry 4212-49-1); 5-ethenyluracil (CAS Registry 37107-81-6); 5-fluorouracil (Aldrich #85,847-1; CAS Registry 51-21-8); 5-iodouracil (Aldrich #85,785-8; CAS Registry 696-07-1); 5-methyluracil (thymine; Aldrich #13,199-7; CAS Registry 65-71-4); 30 5-nitrouracil (Aldrich #85,276-7; CAS Registry 611-08-5); uracil-5-sulfamic acid (Chem. Sources Int'l 2000; CAS Registry 5435-16-5); 5-(trifluoromethyl)-uracil (Aldrich #22,327-1; CAS Registry 54-20-6); 5-(2,2,2-trifluoroethyl)-uracil (CAS Registry 155143-31-6);

5-(pentafluoroethyl)-uracil (CAS Registry 60007-38-3); 6-aminouracil (Aldrich #A5060-6; CAS Registry 873-83-6) uracil-6-carboxylic acid (orotic acid; Aldrich #0-840-2; CAS Registry 50887-69-9); 6-methyluracil (Aldrich #D11,520-7; CAS Registry 626-48-2); uracil-5-amino-6-carboxylic acid (5-aminoorotic acid; Aldrich #19,121-3; CAS Registry #7164-43-4); 6-amino-5-nitrosouracil (6-amino-2,4-dihydroxy-5-nitrosopyrimidine; Aldrich #27,689-8; CAS Registry 5442-24-0); uracil-5-fluoro-6-carboxylic acid (5-fluoroorotic acid; Aldrich #42,513-3; CAS Registry 00000-00-0); and uracil-5-nitro-6-carboxylic acid (5-nitroorotic acid; Aldrich #18,528-0; CAS Registry 600779-49-9). Additional 5-, 6- and 5,6-substituted uracils and/or thiouracils are available from General Intermediates of Canada, Inc., Edmonton, Alberta, CA (www.generalintermediates.com) and/or Interchim, France (www.interchim.com), or may be prepared using standard techniques. Myriad textbook references teaching suitable synthetic methods are provided *infra*.

Amines 6 and 10 may be purchased from commercial sources or, alternatively, may be synthesized utilizing standard techniques. For example, suitable amines may be synthesized from nitro precursors using standard chemistry. Specific exemplary reactions are provided in the Examples section. See also Vogel, 1989, *Practical Organic Chemistry*, Addison Wesley Longman, Ltd. and John Wiley & Sons, Inc.

15

20

25

Skilled artisans will recognize that in some instances, amines 6 and 10 and/or substituents R⁵ and/or R⁶ on uracil or thiouracil 2 may include functional groups that require protection during synthesis. The exact identity of any protecting group(s) used will depend upon the identity of the functional group being protected, and will be apparent to these of skill in the art. Guidance for selecting appropriate protecting groups, as well as synthetic strategies for their attachment and removal, may be found, for example, in Greene & Wuts, *Protective Groups in Organic Synthesis*, 3d Edition, John Wiley & Sons, Inc., New York (1999) and the references cited therein (hereinafter "Greene & Wuts").

A specific embodiment of Scheme (I) utilizing 5-fluorouracil (Aldrich #32,937-1) as a starting material is illustrated in Scheme (Ia), below:

In Scheme (Ia), R², R⁴, L¹ and L² are as previously defined for Scheme (I).

According to Scheme (Ia), 5-fluorouracil 3 is halogenated with POCl₃ to yield 2,4-dichloro-5-fluoropyrimidine 5, which is then reacted with excess amine 6 or 10 to yield N2,N4-bis substituted 5-fluoro-2,4-pyrimidinediamine 11 or 13, respectively. Alternatively, non-bis 2N,4N-disubstituted-5-fluoro-2,4-pyrimidinediamine 9 may be obtained by reacting 2,4-dichloro-5-fluoropyrimidine 5 with one equivalent of amine 10 (to yield 2-chloro-N4-substituted-5-fluoro-4-pyrimidineamine 7) followed by one or more equivalents of amine 6.

In another exemplary embodiment, the 2,4-pyrimidinediamine compounds of the invention may be synthesized from substituted or unsubstituted cytosines as illustrated in Scheines (IIa) and (IIb), below:

5

Scheme (IIa)

R5 R6 NH silytation, etc.
$$R5$$
 NH POX_3 POX_3 POX_4 PO

Scheme (IIb)

In Schemes (IIa) and (IIb), R², R⁴, R⁵, R⁶, L¹, L² and X are as previously defined for Scheme (I) and PG represents a protecting group. Referring to Scheme (IIa), the C4 exocyclic amine of cytosine 20 is first protected with a suitable protecting group PG to yield N4-protected cytosine 22. For specific guidance regarding protecting groups useful in this context, see Vorbrüggen and Ruh-Pohlenz, 2001, Handbook of Nucleoside Synthesis, John Wiley & Sons, NY, pp. 1-631 ("Vorbrüggen"). Protected cytosine 22 is halogenated at the C2 position using a standard halogenation reagent under standard conditions to yield 2-chloro-4N-protected-4-pyrimidineamine 24. Reaction with amine 6 followed by deprotection of the C4 exocyclic amine and reaction with amine 10 yields a 2,4-pyrimidinediamine according to structural formula (I).

5

10

15

Alternatively, referring to Scheme (IIb), cytosine 20 may be reacted with amine 10 or protected amine 21 to yield N4-substituted cytosine 23 or 27, respectively. These substituted cytosines may then be halogenated as previously described, deprotected (in the case of N4-substituted cytosine 27) and reacted with amine 6 to yield a 2,4-pyrimidinediamine according to structural formula (I).

Commercially-available cytosines that may be used as starting materials in Schemes (IIa) and (IIb) include, but are not limited to, cytosine (Aldrich #14,201-8; CAS Registry 71-30-7); N⁴-acetylcytosine (Aldrich #37,791-0; CAS Registry 14631-20-0);

5-fluorocytosine (Aldrich #27,159-4; CAS Registry 2022-85-7); and 5-(trifluoromethyl)-cytosine. Other suitable cytosines useful as starting materials in Schemes (IIa) are available from General Intermediates of Canada, Inc., Edmonton, Alberta, CA (www.generalintermediates.com) and/or Interchim, France (www.interchim.com), or may be prepared using standard techniques. Myriad textbook references teaching suitable synthetic methods are provided *infra*.

In still another exemplary embodiment, the 2,4-pyrimidinediamine compounds of the invention may be synthesized from substituted or unsubstituted 2-amino-4-pyrimidinols as illustrated in Scheme (III), below:

Scheme (III)

In Scheme (III), R², R⁴, R⁵, R⁶, L¹, L² and X are as previously defined for Scheme (I) and Z is a leaving group as discussed in more detail in connection with Scheme IV, *infra*. Referring to Scheme (III), 2-amino-4-pyrimidinol 30 is reacted with amine 6 (or optionally protected amine 21) to yield N2-substituted-4-pyrimidinol 32, which is then halogenated as previously described to yield N2-substituted-4-halo-2-pyrimidineamine 34. Optional deprotection (for example if protected amine 21 was used in the first step) followed by reaction with amine 10 affords a 2,4-pyrimidinediamine according to structural formula (I). Alternatively, pyrimidinol 30 can be reacted with acylating agent 31.

5

10

15

Suitable commercially-available 2-amino-4-pyrimidinols 30 that can be used as starting materials in Scheme (III) include, but are not limited to,
2-amino-6-chloro-4-pyrimidinol hydrate (Aldrich #A4702-8; CAS Registry 00000-00-0) and 2-amino-6-hydroxy-4-pyrimidinol (Aldrich #A5040-1; CAS Registry 56-09-7). Other 2-amino-4-pyrimidinols 30 useful as starting materials in Scheme (III) are available from General Intermediates of Canada, Inc., Edmonton, Alberta, CA (www.generalintermediates.com) and/or Interchim, France (www.interchim.com), or may

be prepared using standard techniques. Myriad textbook references teaching suitable synthetic methods are provided *infra*.

5

25

Alternatively, the 2,4-pyrimidinediamine compounds of the invention may be prepared from substituted or unsubstituted 4-amino-2-pyrimidinols as illustrated in Scheme (IV), below:

Scheme (IV)

In Scheme (IV), R², R⁴, R⁵, R⁶, L¹ and L² are as previously defined for Scheme (I) and Z represents a leaving group. Referring to Scheme (IV), the C2-hydroxyl of 4-amino-2-pyrimidinol 40 is more reactive towards nucleophiles than the C4-amino such that reaction with amine 6 yields N2-substituted-2,4-pyrimidinediamine 42. Subsequent reaction with compound 44, which includes a good leaving group Z, or amine 10 yields a 2,4-pyrimidinediamine according to structural formula (I). Compound 44 may include virtually any leaving group that can be displaced by the C4-amino of N2-substituted-2,4-pyrimidinediamine 42. Suitable leaving groups Z include, but are not limited to, halogens, methanesulfonyloxy (mesyloxy; "OMs"), trifluoromethanesulfonyloxy ("OTf") and p-toluenesulfonyloxy (tosyloxy; "OTs"), benzene sulfonyloxy ("besylate") and metanitro benzene sulfonyloxy ("nosylate"). Other suitable leaving groups will be apparent to those of skill in the art.

Substituted 4-amino-2-pyrimidinol starting materials may be obtained commercially or synthesized using standard techniques. Myriad textbook references teaching suitable synthetic methods are provided *infra*.

In still another exemplary embodiment, the 2,4-pyrimidinediamine compounds of the invention can be prepared from 2-chloro-4-aminopyrimidines or 2-amino-4-chloropyrimidines as illustrated in Scheme (V), below:

Scheme (V)

In Scheme (V), R², R⁴, R⁵, R⁶, L¹, L² and X are as defined for Scheme (I) and Z is as defined for Scheme (IV). Referring to Scheme (V), 2-amino-4-chloropyrimidine 50 is reacted with amino 10 to yield 4N-substituted-2-pyrimidineamine 52 which, following reaction with compound 31 or amine 6, yields a 2,4-pyrimidinediamine according to structural formula (I). Alternatively, 2-chloro-4-amino-pyrimidine 54 may be reacted with compound 44 followed by amine 6 to yield a compound according to structural formula (I).

5

A variety of pyrimidines **50** and **54** suitable for use as starting materials in Scheme

(V) are commercially available, including by way of example and not limitation,

2-amino-4,6-dichloropyrimidine (Aldrich #A4860-1; CAS Registry 56-05-3);

2-amino-4-chloro-6-methoxy-pyrimidine (Aldrich #51,864-6; CAS Registry 5734-64-5);

2-amino-4-chloro-6-methylpyrimidine (Aldrich #12,288-2; CAS Registry 5600-21-5); and

2-amino-4-chloro-6-methylthiopyrimidine (Aldrich #A4600-5; CAS Registry 1005-38-5).

Additional pyrimidine starting materials are available from General Intermediates of

Canada, Inc., Edmonton, Alberta, CA (www.generalintermediates.com) and/or Interchim,

France (www.interchim.com), or may be prepared using standard techniques. Myriad textbook references teaching suitable synthetic methods are provided *infra*.

Alternatively, 4-chloro-2-pyrimidineamines **50** may be prepared as illustrated in 20 Scheme (Va):

$$R^{5}$$
 H
 NH_{2}
 NH_{2}

In Scheme (Va), R⁵ and R⁶ are as previously defined for structural formula (I). In Scheme (Va), dicarbonyl **53** is reacted with guanidine to yield 2-pyrimidineamine **51**.

Reaction with peracids like m-chloroperbenzoic acid, trifluoroperacetic acid or urea hydrogen peroxide complex yields N-oxide **55**, which is then halogenated to give 4-chloro-2-pyrimidineamine **50**. The corresponding 4-halo-2-pyrimidineamines may be obtained by using suitable halogenation reagents.

In yet another exemplary embodiment, the 2,4-pyrimidinediamine compounds of the invention can be prepared from substituted or unsubstituted uridines as illustrated in Scheme (VI), below:

Scheme (VI)

Scheme (VI)

Scheme (VI)

$$R^{5}$$
 R^{6}
 R^{6}

In Scheme (VI), R², R⁴, R⁵, R⁶, L¹, L² and X are as previously defined for Scheme (I) and the superscript PG represents a protecting group, as discussed in connection with Scheme (IIb). According to Scheme (VI), uridine 60 has a C4 reactive center such that reaction with amine 10 or protected amine 21 yields N4-substituted cytidine 62 or 64, respectively. Acid-catalyzed deprotection of N4-substituted 62 or 64 (when "PG" represents an acid-labile protecting group) yields N4-substituted cytosine 28, which may be subsequently halogenated at the C2-position and reacted with amine 6 to yield a 2,4-pyrimidinediamine according to structural formula (I).

. Cytidines may also be used as starting materials in an analogous manner, as illustrated in Scheme (VII), below:

In Scheme (VII), R², R⁴, R⁵, R⁶, L¹, L² and X are as previously defined in Scheme (I) and the superscript PG represents a protecting group as discussed above. Referring to Scheme (VII), like uridine 60, cytidine 70 has a C4 reactive center such that reaction with amine 10 or protected amine 21 yields N4-substituted cytidine 62 or 64, respectively. These cytidines 62 and 64 are then treated as previously described for Scheme (VI) to yield a 2,4-pyrimidinediamine according to structural formula (I).

5

10

15

Although Schemes (VI) and (VII) are exemplified with ribosylnucleosides, skilled artisans will appreciate that the corresponding 2'-deoxyribo and 2',3'-dideoxyribo nucleosides, as well as nucleosides including sugars or sugar analogs other than ribose, would also work.

Numerous uridines and cytidines useful as starting materials in Schemes (VI) and (VII) are known in the art, and include, by way of example and not limitation, 5-trifluoromethyl-2'-deoxycytidine (Chem. Sources #ABCR F07669; CAS Registry 66,384-66-5); 5-bromouridine (Chem. Sources Int'l 2000; CAS Registry 957-75-5);

5-iodo-2'-deoxyuridine (Aldrich #1-775-6; CAS Registry 54-42-2); 5-fluorouridine (Aldrich #32,937-1; CAS Registry 316-46-1); 5-iodouridine (Aldrich #85,259-7; CAS Registry 1024-99-3); 5-(trifluoromethyl)uridine (Chem. Sources Int'l 2000; CAS Registry 70-00-8); 5-trifluoromethyl-2'-deoxyuridine (Chem. Sources Int'l 2000; CAS Registry 70-00-8). Additional uridines and cytidines that can be used as starting materials in Schemes (VI) and (VII) are available from General Intermediates of Canada, Inc., Edmonton, Alberta, CA (www.generalintermediates.com) and/or Interchim, France (www.interchim.com), or may be prepared using standard techniques. Myriad textbook references teaching suitable synthetic methods are provided *infra*.

The 2,4-pyrimidinediamine compounds of the invention can also be synthesized from substituted pyrimidines, such as chloro-substituted pyrimidines, as illustrated in Schemes (VIII) and (IX), below:

Scheme (VIII)

5

10

In Schemes (VIII) and (IX), R², R⁴, L¹, L² and R^a are as previously defined for structural formula (I) and "Ar" represents an aryl group. Referring to Scheme (VIII), reaction of 2,4,6-trichloropyrimidine 80 (Aldrich #T5,620-0; CAS#3764-01-0) with amine 6 yields a mixture of three compounds: substituted pyrimidine mono-, di- and triamines 81, 82 and 83, which can be separated and isolated using HPLC or other conventional techniques. Mono- and diamines 81 and 82 may be further reacted with amines 6 and/or 10 to yield N2,N4,N6-trisubstituted-2,4,6-pyrimidinetriamines 84 and 85, respectively.

5

10

15

N2,N4-bis-substituted-2,4-pyrimidinediamines can be prepared in a manner analogous to Scheme (VIII) by employing 2,4-dichloro-5-methylpyrimidine or 2,4-dichloro-pyrimidine as starting materials. In this instance, the mono-substituted pyrimidineamine corresponding to compound **81** is not obtained. Instead, the reaction proceeds to yield the N2,N4-bis-substituted-2,4-pyrimidinediamine directly.

Referring to Scheme (IX), 2,4,5,6-tetrachloropyrimidine 90 (Aldrich #24,671-9; CAS#1780-40-1) is reacted with excess amine 6 to yield a mixture of three compounds: 91, 92, and 93, which can be separated and isolated using HPLC or other conventional techniques. As illustrated, N2,N4-bis-substituted-5,6,-dichloro-2,4-pyrimidinediamine 92 may be further reacted at the C6 halide with, for example a nucleophilic agent 94 to yield

compound 95. Alternatively, compound 92 can be converted into N2,N4-bis-substituted-5-chloro-6-aryl-2,4-pyrimidinediamine 97 *via* a Suzuki reaction. 2,4-Pyrimidinediamine 95 may be converted to 2,4-pyrimidinediamine 99 by reaction with Bn₃SnH.

As will be recognized by skilled artisans, 2,4-pyrimidinediamines according to the invention, synthesized *via* the exemplary methods described above or by other well-known means, may also be utilized as starting materials and/or intermediates to synthesize additional 2,4-pyrimidinediamine compounds of the invention. A specific example is illustrated in Scheme (X), below:

5

10

15

In Scheme (X), R⁴, R⁵, R⁶, L² and R^a are as previously defined for structural formula (I). Each R^{a'} is independently an R^a, and may be the same or different from the illustrated R^a. Referring to Scheme (X), carboxylic acid or ester 100 may be converted to amide 104 by reaction with amine 102. In amine 102, R^{a'} may be the same or different than R^a of acid or ester 100. Similarly, carbonate ester 106 may be converted to carbamate 108.

A second specific example is illustrated in Scheme (XI), below:

Scheme (XI)

In Scheme (XI), R⁴, R⁵, R⁶, L² and R^c are as previously defined for structural formula (I). Referring to Scheme (XI), amide **110** or **116** may be converted to amine **114** or **118**, respectively, by borane reduction with borane methylsulfide complex **112**. Other suitable reactions for synthesizing 2,4-pyrimidinediamine compounds from 2,4-pyrimidinediamine starting materials will be apparent to those of skill in the art.

5

10

15

20

Although many of the synthetic schemes discussed above do not illustrate the use of protecting groups, skilled artisans will recognize that in some instances substituents R², R⁴, R⁵, R⁶, L¹ and/or L² may include functional groups requiring protection. The exact identity of the protecting group used will depend upon, among other things, the identity of the functional group being protected and the reaction conditions used in the particular synthetic scheme, and will be apparent to those of skill in the art. Guidance for selecting protecting groups and chemistries for their attachment and removal suitable for a particular application can be found, for example, in Greene & Wuts, *supra*.

Prodrugs according to structural formula (II) may be prepared by routine modification of the above-described methods. Alternatively, such prodrugs may be prepared by reacting a suitably protected 2,4-pyrimidinediamine of structural formula (I) with a suitable progroup. Conditions for carrying out such reactions and for deprotecting the product to yield a prodrug of formula (II) are well-known.

Myriad references teaching methods useful for synthesizing pyrimidines generally, as well as starting materials described in Schemes (I)-(IX), are known in the art. For specific guidance, the reader is referred to Brown, D. J., "The Pyrimidines", in The Chemistry of Heterocyclic Compounds, Volume 16 (Weissberger, A., Ed.), 1962, Interscience Publishers, (A Division of John Wiley & Sons), New York ("Brown I"); 5 Brown, D. J., "The Pyrimidines", in The Chemistry of Heterocyclic Compounds, Volume 16. Supplement I (Weissberger, A. and Taylor, E. C., Ed.), 1970, Wiley-Interscience, (A. Division of John Wiley & Sons), New York (Brown II"); Brown, D. J., "The Pyrimidines", in The Chemistry of Heterocyclic Compounds, Volume 16, Supplement II (Weissberger, A. 10 and Taylor, E. C., Ed.), 1985, An Interscience Publication (John Wiley & Sons), New York ("Brown III"); Brown, D. J., "The Pyrimidines" in The Chemistry of Heterocyclic Compounds, Volume 52 (Weissberger, A. and Taylor, E. C., Ed.), 1994, John Wiley & Sons, Inc., New York, pp. 1-1509 (Brown IV"); Kenner, G. W. and Todd, A., in Heterocyclic Compounds, Volume 6, (Elderfield, R. C., Ed.), 1957, John Wiley, New York, Chapter 7 (pyrimidines); Paquette, L. A., Principles of Modern Heterocyclic Chemistry, 15 1968, W. A. Benjamin, Inc., New York, pp. 1-401 (uracil synthesis pp. 313, 315; pyrimidine synthesis pp. 313-316; amino pyrimidine synthesis pp. 315); Joule, J. A., Mills, K. and Smith, G. F., Heterocyclic Chemistry, 3rd Edition, 1995, Chapman and Hall, London, UK, pp. 1 – 516; Vorbrüggen, H. and Ruh-Pohlenz, C., Handbook of Nucleoside Synthesis, 20 John Wiley & Sons, New York, 2001, pp. 1-631 (protection of pyrimidines by acylation pp. 90-91; silylation of pyrimidines pp. 91-93); Joule, J. A., Mills, K. and Smith, G. F., Heterocyclic Chemistry, 4th Edition, 2000, Blackwell Science, Ltd, Oxford, UK, pp. 1 – 589; and Comprehensive Organic Synthesis, Volumes 1-9 (Trost, B. M. and Fleming, I., Ed.), 1991, Pergamon Press, Oxford, UK.

It should be understood by the skilled artisan that in Schemes I through XI, the N4 nitrogen can be substituted by R^{4c} as described throughout the specification and in the examples provided herein.

6.4 Inhibition of Fc Receptor Signal Cascades

25

30

Active 2,4-pyrimidinediamine compounds of the invention inhibit Fc receptor signalling cascades that lead to, among other things, degranulation of cells. As a specific example, the compounds inhibit the Fc ϵ RI and/or Fc γ RI signal cascades that lead to

5

10

15

20

25

30

degranulation of immune cells such as neutrophil, eosinophil, mast and/or basophil cells. Both mast and basophil cells play a central role in allergen-induced disorders, including, for example, allergic rhinitis and asthma. Referring to FIG. 1, upon exposure allergens, which may be, among other things, pollen or parasites, allergen-specific IgE antibodies are synthesized by B-cells activated by IL-4 (or IL-13) and other messengers to switch to IgE class specific antibody synthesis. These allergen-specific IgEs bind to the high affinity FceRI. Upon binding of antigen, the FceR1-bound IgEs are cross-linked and the IgE receptor signal transduction pathway is activated, which leads to degranulation of the cells and consequent release and/or synthesis of a host of chemical mediators, including histamine, proteases (e.g., tryptase and chymase), lipid mediators such as leukotrienes (e.g., LTC4), platelet-activating factor (PAF) and prostaglandins (e.g., PGD2) and a series of cytokines, including $TNF-\alpha$, TL-4, TL-13, TL-5, TL-6, TL-8, TL-8, TL-8, TL-9. The release and/or synthesis of these mediators from mast and/or basophil cells accounts for the early and late stage responses induced by allergens, and is directly linked to downstream events that lead to a sustained inflammatory state.

The molecular events in the FceRI signal transduction pathway that lead to release of preformed mediators via degranulation and release and/or synthesis of other chemical mediators are well-known and are illustrated in FIG. 2. Referring to FIG. 2, the FcERI is a heterotetrameric receptor composed of an IgE-binding alpha-subunit, a beta subunit, and two gamma subunits (gamma homodimer). Cross-linking of Fc∈RI-bound IgE by multivalent binding agents (including, for example IgE-specific allergens or anti-IgE antibodies or fragments) induces the rapid association and activation of the Src-related kinase Lyn. Lyn phosphorylates immunoreceptor tyrosine-based activation motifs (ITAMS) on the intracellular beta and gamma subunits, which leads to the recruitment of additional Lyn to the beta subunit and Syk kinase to the gamma homodimer. These receptor-associated kinases, which are activated by intra- and intermolecular phosphorylation, phosphorylate other components of the pathway, such as the Btk kinase, LAT, and phospholipase C-gamma PLC-gamma). Activated PLC-gamma initiates pathways that lead to protein kinase C activation and Ca2+ mobilization, both of which are required for degranulation. FceR1 cross-linking also activates the three major classes of mitogen activated protein (MAP) kinases, i.e. ERK1/2, JNK1/2, and p38. Activation of

these pathways is important in the transcriptional regulation of proinflammatory mediators, such as TNF- α and IL-6, as well as the lipid mediator leukotriene CA (LTC4).

Although not illustrated, the Fc γ RI signaling cascade is believed to share some common elements with the FceRI signaling cascade. Importantly, like Fc ϵ RI, the Fc γ RI includes a gamma homodimer that is phosphorylated and recruits Syk, and like Fc ϵ RI, activation of the Fc γ RI signaling cascade leads to, among other things, degranulation. Other Fc receptors that share the gamma homodimer, and which can be regulated by the active 2,4-pyrimidinediamine compounds include, but are not limited to, Fc α RI and Fc γ RIII.

5

10

15

20

25

30

The ability of the 2,4-pyrimidinediamine compounds of the invention to inhibit Fc receptor signaling cascades may be simply determined or confirmed in in vitro assays. Suitable assays for confirming inhition of FceRI-mediated degranulation are provided in the Examples section. In one typical assay, cells capable of undergoing FceRI-mediated degranulation, such as mast or basophil cells, are first grown in the presence of IL-4, Stem Cell Factor (SCF), IL-6 and IgE to increase expression of the FceRI, exposed to a 2.4pyrimidinediamine test compound of the invention and stimulated with anti-IgE antibodies (or, alternatively, an IgE-specific allergen). Following incubation, the amount of a chemical mediator or other chemical agent released and/or synthesized as a consequence of activating the FceRI signaling cascade may be quantified using standard techniques and compared to the amount of the mediator or agent released from control cells (i.e., cells that are stimulated but that are not exposed to test compound). The concentration of test compound that yields a 50% reduction in the quantity of the mediator or agent measured as compared to control cells is the IC₅₀ of the test compound. The origin of the mast or basophil cells used in the assay will depend, in part, on the desired use for the compounds and will be apparent to those of skill in the art. For example, if the compounds will be used to treat or prevent a particular disease in humans, a convenient source of mast or basophil cells is a human or other animal which constitutes an accepted or known clinical model for the particular disease. Thus, depending upon the particular application, the mast or basophil cells may be derived from a wide variety of animal sources, ranging from, for example, lower mammals such as mice and rats, to dogs, sheep and other mammals commonly employed in clinical testing, to higher mammals such as monkeys, chimpanzees and apes, to humans. Specific examples of cells suitable for carrying out the in vitro assays include, but are not limited to,

rodent or human basophil cells, rat basophil leukemia cell lines, primary mouse mast cells (such as bone marrow-derived mouse mast cells "BMMC") and primary human mast cells isolated from cord blood ("CHMC") or other tissues such as lung. Methods for isolating and culturing these cell types are well-known or are provided in the Examples section (see, e.g., Demo et al., 1999, Cytometry 36(4):340-348 and copending application Serial No. 10/053,355, filed November 8, 2001, the disclosures of which are incorporated herein by reference). Of course, other types of immune cells that degranulate upon activation of the FceRI signaling cascade may also be used, including, for example, eosinophils.

5

10

15

20

25

30

As will be recognized by skilled artisans, the mediator or agent quantified is not critical. The only requirement is that it be a mediator or agent released and/or synthesized as a consequence of initiating or activating the Fc receptor signaling cascade. For example, referring to FIG. 1, activation of the FceRI signaling cascade in mast and/or basophil cells leads to numerous downstream events. For example, activation of the FceRI signal cascade leads to the immediate release (i.e., within 1-3 min. following receptor activation) of a variety of preformed chemical mediators and agents via degranulation. Thus, in one embodiment, the mediator or agent quantified may be specific to granules (i.e., present in granules but not in the cell cytoplasm generally). Examples of granule-specific mediators or agents that can be quantified to determine and/or confirm the activity of a 2.4pyrimidinediamine compound of the invention include, but are not limited to, granulespecific enzymes such as hexosaminidase and tryptase and granule-specific components such as histamine and serotonin. Assays for quantifying such factors are well-known, and in many instances are commercially available. For example, tryptase and/or hexosaminidase release may be quantified by incubating the cells with cleavable substrates that fluoresce upon cleavage and quantifying the amount of fluorescence produced using conventional techniques. Such cleavable fluorogenic substrates are commercially available. For example, the fluorogenic substrates Z-Gly-Pro-Arg-AMC (Z=benzyloxycarbonyl; AMC=7-amino-4-methylcoumarin; BIOMOL Research Laboratories, Inc., Plymouth Meeting, PA 19462, Catalog No. P-142) and Z-Ala-Lys-Arg-AMC (Enzyme Systems Products, a division of ICN Biomedicals, Inc., Livermore, CA 94550, Catalog No. AMC-246) can be used to quantify the amount of tryptase released. The fluorogenic substrate 4methylumbelliferyl-N-acetyl-β-D-glucosaminide (Sigma, St. Louis, MO, Catalog #69585) can be used to quantify the amount of hexosaminidase released. Histamine release may be

5

10

15

20

25

30

quantified using a commercially available enzyme-linked immunosorbent assay (ELISA) such as Immunotech histamine ELISA assay #IM2015 (Beckman-Coulter, Inc.). Specific methods of quantifying the release of tryptase, hexosaminidase and histamine are provided in the Examples section. Any of these assays may be used to determine or confirm the activity of the 2,4-pyrimidinediamine compounds of the invention.

Referring again to FIG. 1, degranulation is only one of several responses initiated by the FcεRI signaling cascade. In addition, activation of this signaling pathway leads to the *de novo* synthesis and release of cytokines and chemokines such as IL-4, IL-5, IL-6, TNF-α, IL-13 and MIP1-α), and release of lipid mediators such as leukotrienes (e.g., LTC4), platelet activating factor (PAF) and prostaglandins. Accordingly, the 2,4-pyrimidinediamine compounds of the invention may also be assessed for activity by quantifying the amount of one or more of these mediators released and/or synthesized by activated cells.

Unlike the granule-specific components discussed above, these "late stage" mediators are not released immediately following activation of the Fc ϵ RI signaling cascade. Accordingly, when quantifying these late stage mediators, care should be taken to insure that the activated cell culture is incubated for a time sufficient to result in the synthesis (if necessary) and release of the mediator being quantified. Generally, PAF and lipid mediators such as leukotriene C4 are released 3-30 min. following Fc ϵ RI activation. The cytokines and other late stage mediators are released approx. 4-8 hrs. following Fc ϵ RI activation. Incubation times suitable for a specific mediator will be apparent to those of skill in the art. Specific guidance and assays are provided in the Examples section.

The amount of a particular late stage mediator released may be quantified using any standard technique. In one embodiment, the amount(s) may be quantified using ELISA assays. ELISA assay kits suitable for quantifying the amount of TNFα, IL-4, IL-5, IL-6 and/or IL-13 released are available from, for example, Biosource International, Inc., Camarillo, CA 93012 (see, e.g., Catalog Nos. KHC3011, KHC0042, KHC0052, KHC0061 and KHC0132). ELISA assay kits suitable for quantifying the amount of leukotriene C4 (LTC4) released from cells are available from Cayman Chemical Co., Ann Arbor, MI 48108 (see, e.g., Catalog No. 520211).

Typically, active 2,4-pyrimidinediamine compounds of the invention will exhibit IC₅₀s with respect to FceRI-mediated degranulation and/or mediator release or synthesis of

about 20 μ M or lower, as measured in an *in vitro* assay, such as one of the *in vitro* assays described above or in the Example's section. Of course, skilled artisans will appreciate that compounds which exhibit lower IC₅₀s, for example on the order of 10 μ M, 1 μ M, 100 nM, 1 nM, or even lower, are particularly useful.

Skilled artisans will also appreciate that the various mediators discussed above may induce different adverse effects or exhibit different potencies with respect to the same adverse effect. For example, the lipid mediator LTC4 is a potent vasoconstrictor – it is approximately 1000-fold more potent at inducing vasoconstriction than histamine. As another example, in addition to mediating atopic or Type I hypersensitivity reactions, cytokines can also cause tissue remodeling and cell proliferation. Thus, although compounds that inhibit release and/or synthesis of any one of the previously discussed chemical mediators are useful, skilled artisans will appreciate that compounds which inhibit the release and/or synthesis of a plurality, or even all, of the previously described mediators find particular use, as such compounds are useful for ameliorating or avoiding altogether a plurality, or even all, of the adverse effects induced by the particular mediators. For example, compounds which inhibit the release of all three types of mediators—granule-specific, lipid and cytokine—are useful for treating or preventing immediate Type I hypersensitivity reactions as well as the chronic symptoms associated therewith.

Compounds of the invention capable of inhibiting the release of more than one type of mediator (*e.g.*, granule-specific or late stage) may be identified by determining the IC₅₀ with respect to a mediator representative of each class using the various *in vitro* assays described above (or other equivalent *in vitro* assays). Compounds of the invention which are capable of inhibiting the release of more than one mediator type will typically exhibit an IC₅₀ for each mediator type tested of less than about 20 μM. For example, a compound which exhibits an IC₅₀ of 1 μM with respect to histamine release (IC₅₀ histamine) and an IC₅₀ of 1 nM with respect to leukotriene LTC4 synthesis and/or release (IC₅₀ LTC4) inhibits both immediate (granule-specific) and late stage mediator release. As another specific example, a compound that exhibits an IC₅₀ tryptase of 10 μM, an IC₅₀ LTC4 of 1 μM and an IC₅₀ LTC4 of 1 μM inhibits immediate (granule-specific), lipid and cytokine mediator release. Although the above specific examples utilize the IC₅₀s of one representative mediator of each class, skilled artisans will appreciate that the IC₅₀s of a plurality, or even all, mediators comprising one or more of the classes may be obtained. The quantity(ies) and identity(ies) of mediators

5

10

15

20

25

30

for which IC₅₀ data should be ascertained for a particular compound and application will be apparent to those of skill in the art.

Similar assays may be utilized to confirm inhibition of signal transduction cascades initiated by other Fc receptors, such as Fc α RI, Fc γ RI and/or Fc γ RIII signaling, with routine modification. For example, the ability of the compounds to inhibit Fc γ RI signal transduction may be confirmed in assays similar to those described above, with the exception that the Fc γ RI signaling cascade is activated, for example by incubating the cells with IgG and an IgG-specific allergen or antibody, instead of IgE and an IgE-specific allergen or antibody. Suitable cell types, activating agents and agents to quantify to confirm inhibition of other Fc receptors, such as Fc receptors that comprise a gamma homodimer, will be apparent to those of skill in the art.

One particularly useful class of compounds includes those 2,4-pyrimidinediamine compounds that inhibit the release of immediate granule-specific mediators and late stage mediators with approximately equivalent IC₅₀s. By approximately equivalent is meant that the IC₅₀s for each mediator type are within about a 10-fold range of one another. Another particularly useful class of compounds includes those 2,4-pyrimidinediamine compounds that inhibit the release of immediate granule-specific mediators, lipid mediators and cytokine mediators with approximately equivalent IC₅₀s. In a specific embodiment, such compounds inhibit the release of the following mediators with approximately equivalent IC₅₀s: histamine, tryptase, hexosaminidase, IL-4, IL-5, IL-6, IL-13, TNF α and LTC4. Such compounds are particularly useful for, among other things, ameliorating or avoiding altogether both the early and late stage responses associated with atopic or immediate Type I hypersensitivity reactions.

Ideally, the ability to inhibit the release of all desired types of mediators will reside in a single compound. However, mixtures of compounds can also be identified that achieve the same result. For example, a first compound which inhibits the release of granule specific mediators may be used in combination with a second compound which inhibits the release and/or synthesis of cytokine mediators.

In addition to the Fc ϵ RI or Fc γ RI degranulation pathways discussed above, degranulation of mast and/or basophil cells can be induced by other agents. For example, ionomycin, a calcium ionophore that bypasses the early Fc ϵ RI or Fc γ RI signal transduction machinery of the cell, directly induces a calcium flux that triggers degranulation. Referring

. ,

5

10

15

20

25

30

again to FIG. 2, activated PLCy initiates pathways that lead to, among other things, calcium ion mobilization and subsequent degranulation. As illustrated, this Ca²⁺ mobilization is triggered late in the FceRI signal transduction pathway. As mentioned above, and as illustrated in FIG. 3, ionomycin directly induces Ca²⁺ mobilization and a Ca²⁺ flux that leads to degranulation. Other ionophores that induce degranulation in this manner include A23187. The ability of granulation-inducing ionophores such as ionomycin to bypass the early stages of the FcεRI and/or FcγRI signaling cascades may be used as a counter screen to identify active compounds of the invention that specifically exert their degranulationinhibitory activity by blocking or inhibiting the early FcεRI or FcγRI signaling cascades, as discussed above. Compounds which specifically inhibit such early FcεRI or FcγRImediated degranulation inhibit not only degranulation and subsequent rapid release of histamine, tryptase and other granule contents, but also inhibit the pro-inflammatory activation pathways causing the release of TNFα, IL-4, IL-13 and the lipid mediators such as LTC4. Thus, compounds which specifically inhibit such early FceRI and/or FcvRImediated degranulation block or inhibit not only acute atopic or Type I hypersensitivity reactions, but also late responses involving multiple inflammatory mediators.

Compounds of the invention that specifically inhibit early FceRI and/or FcvRImediated degranulation are those compounds that inhibit FcεRI and/or FcγRI-mediated degranulation (for example, have an IC₅₀ of less than about 20 µM with respect to the release of a granule-specific mediator or component as measured in an in vitro assay with cells stimulated with an IgE or IgG binding agent) but that do not appreciably inhibit ionophore-induced degranulation. In one embodiment, compounds are considered to not appreciably inhibit ionophore-induced degranulation if they exhibit an IC₅₀ of ionophoreinduced degranulation of greater than about 20 µM, as measured in an in vitro assay. Of course, active compounds that exhibit even higher IC₅₀s of ionophore-induced degranulation, or that do not inhibit ionophore-induced degranulation at all, are particularly useful. In another embodiment, compounds are considered to not appreciably inhibit ionophore-induced degranulation if they exhibit a greater than 10-fold difference in their IC₅₀s of FcεRI and/or FcγRI-mediated degranulation and ionophore-induced degranulation, as measured in an in vitro assay. Assays suitable for determining the IC₅₀ of ionophoreinduced degranulation include any of the previously-described degranulation assays, with the modification that the cells are stimulated or activated with a degranulation-inducing

5

10

15

20

25

30

calcium ionophore such as ionomycin or A23187 (A.G. Scientific, San Diego, CA) instead of anti-IgE antibodies or an IgE-specific allergen. Specific assays for assessing the ability of a particular 2,4-pyrimidinediamine compound of the invention to inhibit ionophore-induced degranulation are provided in the Examples section.

As will be recognized by skilled artisans, compounds which exhibit a high degree of selectivity of Fc ϵ RI-mediated degranulation find particular use, as such compounds selectively target the Fc ϵ RI cascade and do not interfere with other degranulation mechanisms. Similarly, compounds which exhibit a high degree of selectivity of Fc γ RI-mediated degranulation find particular use, as such compounds selectively target the Fc γ RI cascade and do not interfere with other degranulation mechanisms. Compounds which exhibit a high degree of selectivity are generally 10-fold or more selective for Fc ϵ RI- or Fc γ RI-mediated degranulation over ionophore-induced degranulation, such as ionomycininduced degranulation.

Accordingly, the activity of the 2,4-pyrimidinediamine compounds of the invention may also be confirmed in biochemical or cellular assays of Syk kinase activity. Referring again to FIG. 2, in the FceRI signaling cascade in mast and/or basophil cells, Syk kinase phosphorylates LAT and PLC-gamma1, which leads to, among other things, degranulation. Any of these activities may be used to confirm the activity of the 2,4-pyrimidinediamine compounds of the invention. In one embodiment, the activity is confirmed by contacting an isolated Syk kinase, or an active fragment thereof with a 2,4-pyrimidinediamine compound in the presence of a Syk kinase substrate (e.g., a synthetic peptide or a protein that is known to be phophorylated by Syk in a signaling cascade) and assessing whether the Syk kinase phosphorylated the substrate. Alternatively, the assay may be carried out with cells that express a Syk kinase. The cells may express the Syk kinase endogenously or they may be engineered to express a recombinant Syk kinase. The cells may optionally also express the Syk kinase substrate. Cells suitable for performing such confirmation assays, as well as methods of engineering suitable cells will be apparent to those of skill in the art. Specific examples of biochemical and cellular assays suitable for confirming the activity of the 2,4pyrimidinediamine compounds are provided in the Examples section.

Generally, compounds that are Syk kinase inhibitors will exhibit an IC₅₀ with respect to a Syk kinase activity, such as the ability of Syk kinase to phosphorylate a synthetic or endogenous substrate, in an *in vitro* or cellular assay in the range of about 20 μ M or less.

Skilled artisans will appreciate that compounds that exhibit lower IC50s, such as in the range of 10 μ M, 1 μ M, 100 nM, 10 nM, 1 nM, or even lower, are particularly useful.

6.5 Uses and Compositions

5

10

15

20

25

30

As previously discussed, the active compounds of the invention inhibit Fc receptor signaling cascades, especially those Fc receptors including a gamma homodimer, such as the FceRI and/or FcγRI signaling cascades, that lead to, among other things, the release and/or synthesis of chemical mediators from cells, either via degranulation or other processes. As also discussed, the active compounds are also potent inhibitors of Syk kinase. As a consequence of these activities, the active compounds of the invention may be used in a variety of in vitro, in vivo and ex vivo contexts to regulate or inhibit Syk kinase, signaling cascades in which Syk kinase plays a role, Fc receptor signaling cascades, and the biological responses effected by such signaling cascades. For example, in one embodiment, the compounds may be used to inhibit Syk kinase, either in vitro or in vivo, in virtually any cell type expressing Syk kinase. They may also be used to regulate signal transduction cascades in which Syk kinase plays a role. Such Syk-dependent signal transduction cascades include, but are not limited to, the FcεRI, FcγRI, FcγRIII, BCR and integrin signal transduction cascades. The compounds may also be used in vitro or in vivo to regulate, and in particular inhibit, cellular or biological responses effected by such Syk-dependent signal transduction cascades. Such cellular or biological responses include, but are not limited to, respiratory burst, cellular adhesion, cellular degranulation, cell spreading, cell migration, cell aggregation, phagcytosis, cytokine synthesis and release, cell maturation and Ca²⁺ flux. Importantly, the compounds may be used to inhibit Syk kinase in vivo as a therapeutic approach towards the treatment or prevention of diseases mediated, either wholly or in part, by a Syk kinase activity. Non-limiting examples of Syk kinase mediated diseases that may be treated or prevented with the compounds are those discussed in more detail, below.

In another embodiment, the active compounds may be used to regulate or inhibit the Fc receptor signaling cascades and/or Fc ϵ RI- and/or Fc ϵ RI-mediated degranulation as a therapeutic approach towards the treatment or prevention of diseases characterized by, caused by and/or associated with the release or synthesis of chemical mediators of such Fc receptor signaling cascades or degranulation. Such treatments may be administered to animals in veterinary contexts or to humans. Diseases that are characterized by, caused by

or associated with such mediator release, synthesis or degranulation, and that can therefore be treated or prevented with the active compounds include, by way of example and not limitation, atopy or anaphylactic hypersensitivity or allergic reactions, allergies (e.g., allergic conjunctivitis, allergic rhinitis, atopic asthma, atopic dermatitis and food allergies), low grade scarring (e.g., of scleroderma, increased fibrosis, keloids, post-surgical scars, pulmonary fibrosis, vascular spasms, migraine, reperfusion injury and post myocardial infarction), diseases associated with tissue destruction (e.g., of COPD, cardiobronchitis and post myocardial infarction), diseases associated with tissue inflammation (e.g., irritable bowel syndrome, spastic colon and inflammatory bowel disease), inflammation and scarring.

5

10

15

20

25

30

In addition to the myriad diseases discussed above, cellular and animal empirical data confirm that the 2,4-pyrimidinediamine compounds described herein are also useful for the treatment or prevention of autoimmune diseases, as well as the various symptoms associated with such diseases. The types of autoimmune diseases that may be treated or prevented with the 2,4-pyrimidinediamine compounds generally include those disorders involving tissue injury that occurs as a result of a humoral and/or cell-mediated response to immunogens or antigens of endogenous and/or exogenous origin. Such diseases are frequently referred to as diseases involving the nonanaphylactic (*i.e.*, Type II, Type III and/or Type IV) hypersensitivity reactions.

As discussed previously, Type I hypersensitivity reactions generally result from the release of pharmacologically active substances, such as histamine, from mast and/or basophil cells following contact with a specific exogenous antigen. As mentioned above, such Type I reactions play a role in numerous diseases, including allergic asthma, allergic rhinitis, etc.

Type II hypersensitivity reactions (also referred to as cytotoxic, cytolytic complement-dependent or cell-stimulating hypersensitivity reactions) result when immunoglobulins react with antigenic components of cells or tissue, or with an antigen or hapten that has become intimately coupled to cells or tissue. Diseases that are commonly associated with Type II hypersensitivity reactions include, but are not limited, to autoimmune hemolytic anemia, erythroblastosis fetalis and Goodpasture's disease.

Type III hypersensitivity reactions, (also referred to as toxic complex, soluble complex, or immune complex hypersensitivity reactions) result from the deposition of

soluble circulating antigen-immunoglobulin complexes in vessels or in tissues, with accompanying acute inflammatory reactions at the site of immune complex deposition. Non-limiting examples of prototypical Type III reaction diseases include the Arthus reaction, rheumatoid arthritis, serum sickness, systemic lupus erythematosis, certain types of glomerulonephritis, multiple sclerosis and bullous pemphingoid.

5

10

15

20

25

30

Type IV hypersensitivity reactions (frequently called cellular, cell-mediated, delayed, or tuberculin-type hypersensitivity reactions) are caused by sensitized T-lymphocytes which result from contact with a specific antigen. Non-limiting examples of diseases cited as involving Type IV reactions are contact dermatitis and allograft rejection including, but not limited to, heart transplant.

Autoimmune diseases associated with any of the above nonanaphylactic hypersensitivity reactions may be treated or prevented with the 2,4-pyrimidinediamine compounds of the invention. In particular, the methods may be used to treat or prevent those autoimmune diseases frequently characterized as single organ or single cell-type autoimmune disorders including, but not limited to: Hashimoto's thyroiditis, autoimmune hemolytic anemia, autoimmune atrophic gastritis of pernicious anemia, autoimmune encephalomyelitis, autoimmune orchitis, Goodpasture's disease, autoimmune thrombocytopenia, sympathetic ophthalmia, myasthenia gravis, Graves' disease, primary biliary cirrhosis, chronic aggressive hepatitis, ulcerative colitis and membranous glomerulopathy, as well as those autoimmune diseases frequently characterized as involving systemic autoimmune disorder, which include but are not limited to: systemic lupus erythematosis, rheumatoid arthritis, Sjogren's syndrome, Reiter's syndrome, polymyositis-dermatomyositis, systemic sclerosis, polyarteritis nodosa, multiple sclerosis and bullous pemphigoid.

It will be appreciated by skilled artisans that many of the above-listed autoimmune diseases are associated with severe symptoms, the amelioration of which provides significant therapeutic benefit even in instances where the underlying autoimmune disease may not be ameliorated. Many of these symptoms, as well as their underlying disease states, result as a consequence of activating the $Fc\gamma R$ signaling cascade in monocyte cells. As the 2,4-pyrimidinediamine compounds described herein are potent inhibitors of such $Fc\gamma R$ signaling in monocytes and other cells, the methods find use in the treatment and/or

prevention of myriad adverse symptoms associated with the above-listed autoimmune diseases.

5

10

15

20

25

30

As a specific example, rheumatoid arthritis (RA) typically results in swelling, pain, loss of motion and tenderness of target joints throughout the body. RA is characterized by chronically inflamed synovium that is densely crowded with lymphocytes. The synovial membrane, which is typically one cell layer thick, becomes intensely cellular and assumes a form similar to lymphoid tissue, including dentritic cells, T-, B- and NK cells, macrophages and clusters of plasma cells. This process, as well as a plethora of immunopathological mechanisms including the formation of antigen-immunoglobulin complexes, eventually result in destruction of the integrity of the joint, resulting in deformity, permanent loss of function and/or bone erosion at or near the joint. The methods may be used to treat or ameliorate any one, several or all of these symptoms of RA. Thus, in the context of RA, the methods are considered to provide therapeutic benefit (discussed more generally, *infra*) when a reduction or amelioration of any of the symptoms commonly associated with RA is achieved, regardless of whether the treatment results in a concomitant treatment of the underlying RA and/or a reduction in the amount of circulating rheumatoid factor ("RF").

As another specific example, systemic lupus erythematosis ("SLE") is typically associated with symptoms such as fever, joint pain (arthralgias), arthritis, and serositis (pleurisy or pericarditis). In the context of SLE, the methods are considered to provide therapeutic benefit when a reduction or amelioration of any of the symptoms commonly associated with SLE are achieved, regardless of whether the treatment results in a concomitant treatment of the underlying SLE.

As another specific example, multiple sclerosis ("MS") cripples the patient by disturbing visual acuity; stimulating double vision; disturbing motor functions affecting walking and use of the hands; producing bowel and bladder incontinence; spasticity; and sensory deficits (touch, pain and temperature sensitivity). In the context of MS, the methods are considered to provide therapeutic benefit when an improvement or a reduction in the progression of any one or more of the crippling effects commonly associated with MS is achieved, regardless of whether the treatment results in a concomitant treatment of the underlying MS.

When used to treat or prevent such diseases, the active compounds may be administered singly, as mixtures of one or more active compounds or in mixture or

combination with other agents useful for treating such diseases and/or the symptoms associated with such diseases. The active compounds may also be administered in mixture or in combination with agents useful to treat other disorders or maladies, such as steroids, membrane stablizers, 5LO inhibitors, leukotriene synthesis and receptor inhibitors, inhibitors of IgE isotype switching or IgE synthesis, IgG isotype switching or IgG synthesis, β-agonists, tryptase inhibitors, aspirin, COX inhibitors, methotrexate, anti-TNF drugs, retuxin, PD4 inhibitors, p38 inhibitors, PDE4 inhibitors, and antihistamines, to name a few. The active compounds may be administered *per se* in the form of prodrugs or as pharmaceutical compositions, comprising an active compound or prodrug.

5

10

15

20

25

30

Pharmaceutical compositions comprising the active compounds of the invention (or prodrugs thereof) may be manufactured by means of conventional mixing, dissolving, granulating, dragee-making levigating, emulsifying, encapsulating, entrapping or lyophilization processes. The compositions may be formulated in conventional manner using one or more physiologically acceptable carriers, diluents, excipients or auxiliaries which facilitate processing of the active compounds into preparations which can be used pharmaceutically.

The active compound or prodrug may be formulated in the pharmaceutical compositions *per se*, or in the form of a hydrate, solvate, N-oxide or pharmaceutically acceptable salt, as previously described. Typically, such salts are more soluble in aqueous solutions than the corresponding free acids and bases, but salts having lower solubility than the corresponding free acids and bases may also be formed.

Pharmaceutical compositions of the invention may take a form suitable for virtually any mode of administration, including, for example, topical, ocular, oral, buccal, systemic, nasal, injection, transdermal, rectal, vaginal, etc., or a form suitable for administration by inhalation or insufflation.

For topical administration, the active compound(s) or prodrug(s) may be formulated as solutions, gels, ointments, creams, suspensions, etc. as are well-known in the art.

Systemic formulations include those designed for administration by injection, e.g., subcutaneous, intravenous, intramuscular, intrathecal or intraperitoneal injection, as well as those designed for transdermal, transmucosal oral or pulmonary administration.

Useful injectable preparations include sterile suspensions, solutions or emulsions of the active compound(s) in aqueous or oily vehicles. The compositions may also contain

formulating agents, such as suspending, stabilizing and/or dispersing agent. The formulations for injection may be presented in unit dosage form, *e.g.*, in ampules or in multidose containers, and may contain added preservatives.

Alternatively, the injectable formulation may be provided in powder form for reconstitution with a suitable vehicle, including but not limited to sterile pyrogen free water, buffer, dextrose solution, etc., before use. To this end, the active compound(s) may be dried by any art-known technique, such as lyophilization, and reconstituted prior to use.

For transmucosal administration, penetrants appropriate to the barrier to be permeated are used in the formulation. Such penetrants are known in the art.

5

10

15

20

25

30

For oral administration, the pharmaceutical compositions may take the form of, for example, lozenges, tablets or capsules prepared by conventional means with pharmaceutically acceptable excipients such as binding agents (e.g., pregelatinised maize starch, polyvinylpyrrolidone or hydroxypropyl methylcellulose); fillers (e.g., lactose, microcrystalline cellulose or calcium hydrogen phosphate); lubricants (e.g., magnesium stearate, talc or silica); disintegrants (e.g., potato starch or sodium starch glycolate); or wetting agents (e.g., sodium lauryl sulfate). The tablets may be coated by methods well known in the art with, for example, sugars, films or enteric coatings.

Liquid preparations for oral administration may take the form of, for example, elixirs, solutions, syrups or suspensions, or they may be presented as a dry product for constitution with water or other suitable vehicle before use. Such liquid preparations may be prepared by conventional means with pharmaceutically acceptable additives such as suspending agents (e.g., sorbitol syrup, cellulose derivatives or hydrogenated edible fats); emulsifying agents (e.g., lecithin or acacia); non-aqueous vehicles (e.g., almond oil, oily esters, ethyl alcohol, cremophoreTM or fractionated vegetable oils); and preservatives (e.g., methyl or propyl-p-hydroxybenzoates or sorbic acid). The preparations may also contain buffer salts, preservatives, flavoring, coloring and sweetening agents as appropriate.

Preparations for oral administration may be suitably formulated to give controlled release of the active compound or prodrug, as is well known.

For buccal administration, the compositions may take the form of tablets or lozenges formulated in conventional manner.

For rectal and vaginal routes of administration, the active compound(s) may be formulated as solutions (for retention enemas) suppositories or ointments containing conventional suppository bases such as cocoa butter or other glycerides.

5

10

15

20

25

30

For nasal administration or administration by inhalation or insufflation, the active compound(s) or prodrug(s) can be conveniently delivered in the form of an aerosol spray from pressurized packs or a nebulizer with the use of a suitable propellant, e.g., dichlorodifluoromethane, trichlorofluoromethane, dichlorotetrafluoroethane, fluorocarbons, carbon dioxide or other suitable gas. In the case of a pressurized aerosol, the dosage unit may be determined by providing a valve to deliver a metered amount. Capsules and cartridges for use in an inhaler or insufflator (for example capsules and cartridges comprised of gelatin) may be formulated containing a powder mix of the compound and a suitable powder base such as lactose or starch.

A specific example of an aqueous suspension formulation suitable for nasal administration using commercially-available nasal spray devices includes the following ingredients: active compound or prodrug (0.5-20 mg/ml); benzalkonium chloride (0.1-0.2 mg/mL); polysorbate 80 (TWEEN® 80; 0.5-5 mg/ml); carboxymethylcellulose sodium or microcrystalline cellulose (1-15 mg/ml); phenylethanol (1-4 mg/ml); and dextrose (20-50 mg/ml). The pH of the final suspension can be adjusted to range from about pH5 to pH7, with a pH of about pH 5.5 being typical.

Another specific example of an aqueous suspension suitable for administration of the compounds *via* inhalation, and in particular for such administration of a compound of the invention, contains 1-20 mg/mL of the compound or prodrug, 0.1-1% (v/v) Polysorbate 80 (TWEEN®80), 50 mM citrate and/or 0.9% sodium chloride.

For ocular administration, the active compound(s) or prodrug(s) may be formulated as a solution, emulsion, suspension, etc. suitable for administration to the eye. A variety of vehicles suitable for administering compounds to the eye are known in the art. Specific non-limiting examples are described in U.S. Patent No. 6,261,547; U.S. Patent No. 6,197,934; U.S. Patent No. 6,056,950; U.S. Patent No. 5,800,807; U.S. Patent No. 5,776,445; U.S. Patent No. 5,698,219; U.S. Patent No. 5,521,222; U.S. Patent No. 5,403,841; U.S. Patent No. 5,077,033; U.S. Patent No. 4,882,150; and U.S. Patent No. 4,738,851.

For prolonged delivery, the active compound(s) or prodrug(s) can be formulated as a depot preparation for administration by implantation or intramuscular injection. The active ingredient may be formulated with suitable polymeric or hydrophobic materials (e.g., as an emulsion in an acceptable oil) or ion exchange resins, or as sparingly soluble derivatives, e.g., as a sparingly soluble salt. Alternatively, transdermal delivery systems manufactured as an adhesive disc or patch which slowly releases the active compound(s) for percutaneous absorption may be used. To this end, permeation enhancers may be used to facilitate transdermal penetration of the active compound(s). Suitable transdermal patches are described in for example, U.S. Patent No. 5,407,713.; U.S. Patent No. 5,352,456; U.S. Patent No. 5,332,213; U.S. Patent No. 5,336,168; U.S. Patent No. 5,290,561; U.S. Patent No. 5,254,346; U.S. Patent No. 5,164,189; U.S. Patent No. 5,163,899; U.S. Patent No. 5,088,977; U.S. Patent No. 5,087,240; U.S. Patent No. 5,008,110; and U.S. Patent No. 4,921,475.

Alternatively, other pharmaceutical delivery systems may be employed. Liposomes and emulsions are well-known examples of delivery vehicles that may be used to deliver active compound(s) or prodrug(s). Certain organic solvents such as dimethylsulfoxide (DMSO) may also be employed, although usually at the cost of greater toxicity.

The pharmaceutical compositions may, if desired, be presented in a pack or dispenser device which may contain one or more unit dosage forms containing the active compound(s). The pack may, for example, comprise metal or plastic foil, such as a blister pack. The pack or dispenser device may be accompanied by instructions for administration.

6.6 Effective Dosages

5

10

15

20

25

30

The active compound(s) or prodrug(s) of the invention, or compositions thereof, will generally be used in an amount effective to achieve the intended result, for example in an amount effective to treat or prevent the particular disease being treated. The compound(s) may be administered therapeutically to achieve therapeutic benefit or prophylactically to achieve prophylactic benefit. By therapeutic benefit is meant eradication or amelioration of the underlying disorder being treated and/or eradication or amelioration of one or more of the symptoms associated with the underlying disorder such that the patient reports an improvement in feeling or condition, notwithstanding that the patient may still be afflicted with the underlying disorder. For example, administration of a compound to a patient

suffering from an allergy provides therapeutic benefit not only when the underlying allergic response is eradicated or ameliorated, but also when the patient reports a decrease in the severity or duration of the symptoms associated with the allergy following exposure to the allergen. As another example, therapeutic benefit in the context of asthma includes an improvement in respiration following the onset of an asthmatic attack, or a reduction in the frequency or severity of asthmatic episodes. Therapeutic benefit also includes halting or slowing the progression of the disease, regardless of whether improvement is realized.

5

10

15

20

25

30

For prophylactic administration, the compound may be administered to a patient at risk of developing one of the previously described diseases. For example, if it is unknown whether a patient is allergic to a particular drug, the compound may be administered prior to administration of the drug to avoid or ameliorate an allergic response to the drug.

Alternatively, prophylactic administration may be applied to avoid the onset of symptoms in a patient diagnosed with the underlying disorder. For example, a compound may be administered to an allergy sufferer prior to expected exposure to the allergen. Compounds may also be administered prophylactically to healthy individuals who are repeatedly exposed to agents known to one of the above-described maladies to prevent the onset of the disorder. For example, a compound may be administered to a healthy individual who is repeatedly exposed to an allergen known to induce allergies, such as latex, in an effort to prevent the individual from developing an allergy. Alternatively, a compound may be administered to a patient suffering from asthma prior to partaking in activities which trigger asthma attacks to lessen the severity of, or avoid altogether, an asthmatic episode.

The amount of compound administered will depend upon a variety of factors, including, for example, the particular indication being treated, the mode of administration, whether the desired benefit is prophylactic or therapeutic, the severity of the indication being treated and the age and weight of the patient, the bioavailability of the particular active compound, etc. Determination of an effective dosage is well within the capabilities of those skilled in the art.

Effective dosages may be estimated initially from *in vitro* assays. For example, an initial dosage for use in animals may be formulated to achieve a circulating blood or serum concentration of active compound that is at or above an IC₅₀ of the particular compound as measured in as *in vitro* assay, such as the *in vitro* CHMC or BMMC and other *in vitro* assays described in the Examples section. Calculating dosages to achieve such circulating

blood or serum concentrations taking into account the bioavailability of the particular compound is well within the capabilities of skilled artisans. For guidance, the reader is referred to Fingl & Woodbury, "General Principles," *In: Goodman and Gilman's The Pharmaceutical Basis of Therapeutics*, Chapter 1, pp. 1-46, latest edition, Pagamonon Press, and the references cited therein.

5

30

Initial dosages can also be estimated from *in vivo* data, such as animal models. Animal models useful for testing the efficacy of compounds to treat or prevent the various diseases described above are well-known in the art. Suitable animal models of hypersensitivity or allergic reactions are described in Foster, 1995, Allergy 50(21Suppl):6-9, discussion 34-38 and Tumas et al., 2001, J. Allergy Clin. Immunol. 107(6):1025-1033. 10 Suitable animal models of allergic rhinitis are described in Szelenyi et al., 2000, Arzneimittelforschung 50(11):1037-42; Kawaguchi et al., 1994, Clin. Exp. Allergy 24(3):238-244 and Sugimoto et al., 2000, Immunopharmacology 48(1):1-7. Suitable animal models of allergic conjunctivitis are described in Carreras et al., 1993, Br. J. Ophthalmol. 15 77(8):509-514; Saiga et al., 1992, Ophthalmic Res. 24(1):45-50; and Kunert et al., 2001, Invest. Ophthalmol. Vis. Sci. 42(11):2483-2489. Suitable animal models of systemic mastocytosis are described in O'Keefe et al., 1987, J. Vet. Intern. Med. 1(2):75-80 and Bean-Knudsen et al., 1989, Vet. Pathol. 26(1):90-92. Suitable animal models of hyper IgE syndrome are described in Claman et al., 1990, Clin. Immunol. Immunopathol. 56(1):46-53. 20 Suitable animal models of B-cell lymphoma are described in Hough et al., 1998, Proc. Natl. Acad. Sci. USA 95:13853-13858 and Hakim et al., 1996, J. Immunol. 157(12):5503-5511. Suitable animal models of atopic disorders such as atopic dermatitis, atopic eczema and atopic asthma are described in Chan et al., 2001, J. Invest. Dermatol. 117(4):977-983 and Suto et al., 1999, Int. Arch. Allergy Immunol. 120(Suppl 1):70-75. Ordinarily skilled artisans can routinely adapt such information to determine dosages suitable for human 25 administration. Additional suitable animal models are described in the Examples section.

Dosage amounts will typically be in the range of from about 0.0001 or 0.001 or 0.01 mg/kg/day to about 100 mg/kg/day, but may be higher or lower, depending upon, among other factors, the activity of the compound, its bioavailability, the mode of administration and various factors discussed above. Dosage amount and interval may be adjusted individually to provide plasma levels of the compound(s) which are sufficient to maintain therapeutic or prophylactic effect. For example, the compounds may be administered once

per week, several times per week (e.g., every other day), once per day or multiple times per day, depending upon, among other things, the mode of administration, the specific indication being treated and the judgment of the prescribing physician. In cases of local administration or selective uptake, such as local topical administration, the effective local concentration of active compound(s) may not be related to plasma concentration. Skilled artisans will be able to optimize effective local dosages without undue experimentation.

Preferably, the compound(s) will provide therapeutic or prophylactic benefit without causing substantial toxicity. Toxicity of the compound(s) may be determined using standard pharmaceutical procedures. The dose ratio between toxic and therapeutic (or prophylactic) effect is the therapeutic index. Compounds(s) that exhibit high therapeutic indices are preferred.

The invention having been described, the following examples are offered by way of illustration and not limitation.

7. EXAMPLES

5

10

15

20

25

30

7.1 2,4-Pyrimidinediamine Compounds

A variety of N4-substituted-N2-monosubstituted-4-pyrimidinediamines were prepared based on procedures described herein. Such compounds are depicted in Table 1.

7.2 The 2,4-Pyrimidinediamine Compounds of the Invention Inhibit Fc∈RI Receptor-Mediated Degranulation

The ability of the 2,4-pyrimidinediamine compounds of the invention to inhibit IgE-induced degranulation was demonstrated in a variety of cellular assays with cultured human mast cells (CHMC) and/or mouse bone marrow derived cells (BMMC). Inhibition of degranulation was measured at both low and high cell density by quantifying the release of the granule specific factors tryptase, histamine and hexosaminidase. Inhibition of release and/or synthesis of lipid mediators was assessed by measuring the release of leukotriene LTC4 and inhibition of release and/or synthesis of cytokines was monitored by quantifying TNF-α, IL-6 and IL-13. Tryptase and hexosaminidase were quantified using fluorogenic substrates as described in their respective examples. Histamine, TNFα, IL-6, IL-13 and LTC4 were quantified using the following commercial ELISA kits: histamine (Immunotech #2015, Beckman Coulter), TNFα (Biosource #KHC3011), IL-6 (Biosource #KMC0061),

IL-13 (Biosource #KHC0132) and LTC4 (Cayman Chemical #520211). The protocols of the various assays are provided below.

7.2.1 Culturing of Human Mast and Basophil Cells

Human mast and basophil cells were cultured from CD34-negative progenitor cells as described below (see also the methods described in copending U.S. application Serial No. 10/053,355, filed November 8, 2001, the disclosure of which is incorporated herein by reference).

5

10

15

20

25

7.2.1.1 Preparation of STEMPRO-34 Complete Medium

To prepare STEMPRO-34 complete medium ("CM"), 250 mL STEMPRO-34TM serum free medium ("SFM"; GibcoBRL, Catalog No. 10640) was added to a filter flask. To this was added 13 mL STEMPRO-34 Nutrient Supplement ("NS"; GibcoBRL, Catalog No. 10641) (prepared as described in more detail, below). The NS container was rinsed with approximately 10 mL SFM and the rinse added to the filter flask. Following addition of 5 mL L-glutamine (200 mM; Mediatech, Catalog No. MT 25-005-CI and 5 mL 100X penicillin/streptomycin ("pen-strep"; HyClone, Catalog No. SV30010), the volume was brought to 500 mL with SFM and the solution was filtered.

The most variable aspect of preparing the CM is the method by which the NS is thawed and mixed prior to addition to the SFM. The NS should be thawed in a 37° C water bath and swirled, not vortexed or shaken, until it is completely in solution. While swirling, take note whether there are any lipids that are not yet in solution. If lipids are present and the NS is not uniform in appearance, return it to the water bath and repeat the swirling process until it is uniform in appearance. Sometimes this component goes into solution immediately, sometimes after a couple of swirling cycles, and sometimes not at all. If, after a couple of hours, the NS is still not in solution, discard it and thaw a fresh unit. NS that appears non-uniform after thaw should not be used.

7.2.1.2 Expansion of CD34+ Cells

A starting population of CD34-positive (CD34+) cells of relatively small number (1-5 x 10^6 cells) was expanded to a relatively large number of CD34-negative progenitor cells (about 2-4 x 10^9 cells) using the culture media and methods described

5

10

15

20

25

30

below. The CD34+ cells (from a single donor) were obtained from Allcells (Berkeley, CA). Because there is a degree of variation in the quality and number of CD34+ cells that Allcells typically provides, the newly delivered cells were transferred to a 15 mL conical tube and brought up to 10 mL in CM prior to use.

On day 0, a cell count was performed on the viable (phase-bright) cells and the cells were spun at 1200 rpm to pellet. The cells were resuspended to a density of 275,000 cells/mL with CM containing 200 ng/mL recombinant human Stem Cell Factor ("SCF"; Peprotech, Catalog No. 300-07) and 20 ng/mL human flt-3 ligand (Peprotech, Catalog No. 300-19) ("CM/SCF/flt-3 medium"). On about day 4 or 5, the density of the culture was checked by performing a cell count and the culture was diluted to a density of 275,000 cells/mL with fresh CM/SCF/flt-3 medium. On about day 7, the culture was transferred to a sterile tube and a cell count was performed. The cells were spun at 1200 rpm and resuspended to a density of 275,000 cells/mL with fresh CM/SCF/flt-3 medium.

This cycle was repeated, starting from day 0, a total of 3-5 times over the expansion period.

When the culture is large and being maintained in multiple flasks and is to be resuspended, the contents of all of the flasks are combined into a single container prior to performing a cell count. This ensures that an accurate cell count is achieved and provides for a degree of uniformity of treatment for the entire population. Each flask is checked separately for contamination under the microscope prior to combining to prevent contamination of the entire population.

Between days 17-24, the culture can begin to go into decline (*i.e.*, approximately 5-10% of the total number of cells die) and fail to expand as rapidly as before. The cells are then monitored on a daily basis during this time, as complete failure of the culture can take place in as little as 24 hours. Once the decline has begun, the cells are counted, spun down at 850 rpm for 15 minutes, and resuspended at a density of 350,000 cells/mL in CM/SCF/flt-3 medium to induce one or two more divisions out of the culture. The cells are monitored daily to avoid failure of the culture.

When greater than 15% cell death is evident in the progenitor cell culture and some debris is present in the culture, the CD34-negative progenitor cells are ready to be differentiated.

7.2.1.3 Differentiation of CD34-Negative Progenitor Cells into

Mucosal Mast Cells

5

10

15

20

25

30

A second phase is performed to convert the expanded CD34-negative progenitor cells into differentiated mucosal mast cells. These mucosal cultured human mast cells ("CHMC") are derived from CD34+ cells isolated from umbilical cord blood and treated to form a proliferated population of CD34-negative progenitor cells, as described above. To produce the CD43-negative progenitor cells, the resuspension cycle for the culture was the same as that described above, except that the culture was seeded at a density of 425,000 cells/mL and 15% additional media was added on about day four or five without performing a cell count. Also, the cytokine composition of the medium was modified such that it contained SCF (200 ng/mL) and recombinant human IL-6 (200 ng/mL; Peprotech, Catalog No. 200-06 reconstituted to 100 ug/mL in sterile 10 mM acetic acid) ("CM/SCF/IL-6 medium").

Phases I and II together span approximately 5 weeks. Some death and debris in the culture is evident during weeks 1-3 and there is a period during weeks 2-5 during which a small percentage of the culture is no longer in suspension, but is instead attached to the surface of the culture vessel.

As during Phase I, when the culture is to be resuspended on day seven of each cycle, the contents of all flasks are combined into a single container prior to performing a cell count to ensure uniformity of the entire population. Each flask is checked separately for contamination under the microscope prior to combining to prevent contamination of the entire population.

When the flasks are combined, approximately 75% of the volume is transferred to the communal container, leaving behind about 10 mL or so in the flask. The flask containing the remaining volume was rapped sharply and laterally to dislodge the attached cells. The rapping was repeated at a right angle to the first rap to completely dislodge the cells.

The flask was leaned at a 45 degree angle for a couple of minutes before the remaining volume was transferred to the counting vessel. The cells were spun at 950 rpm for 15 min prior to seeding at 35-50 mL per flask (at a density of 425,000 cells/mL).

7.2.1.4 Differentiation of CD34-Negative Progenitor Cells into Connective Tissue-Type Mast Cells

A proliferated population of CD34-negative progenitor cells is prepared as above and treated to form a tryptase/chymase positive (connective tissue) phenotype. The methods are performed as described above for mucosal mast cells, but with the substitution of IL-4 for IL-6 in the culture medium. The cells obtained are typical of connective tissue mast cells.

5

10

15

20

25

30

7.2.1.5 Differentiation of CD34-Negative Progenitor Cells into Basophil Cells

A proliferated population of CD34-negative progenitor cells is prepared as described in Section 7.2.1.3, above, and used to form a proliferated population of basophil cells. The CD34-negative cells are treated as described for mucosal mast cells, but with the substitution of IL-3 (at 20-50 ng/mL) for IL-6 in the culture medium.

7.2.2 CHMC Low Cell Density IgE Activation: Tryptase and LTC4 Assays

To duplicate 96-well U-bottom plates (Costar 3799) add 65 ul of compound dilutions or control samples that have been prepared in MT [137 mM NaCl, 2.7 mM KCl, 1.8 mM CaCl₂, 1.0 mM MgCl₂, 5.6 mM Glucose, 20 mM Hepes (pH 7.4), 0.1% Bovine Serum Albumin, (Sigma A4503)] containing 2% MeOH and 1% DMSO. Pellet CHMC cells (980 rpm, 10 min) and resuspend in pre-warmed MT. Add 65 ul of cells to each 96well plate. Depending on the degranulation activity for each particular CHMC donor, load 1000-1500 cells/well. Mix four times followed by a 1 hr incubation at 37°C. During the 1 hr incubation, prepare 6X anti-IgE solution [rabbit anti-human IgE (1 mg/ml, Bethyl Laboratories A80-109A) diluted 1:167 in MT buffer]. Stimulate cells by adding 25 ul of 6X anti-IgE solution to the appropriate plates. Add 25 ul MT to un-stimulated control wells. Mix twice following addition of the anti-IgE. Incubate at 37°C for 30 minutes. During the 30 minute incubation, dilute the 20 mM tryptase substrate stock solution [(Z-Ala-Lys-Arg-AMC 2TFA; Enzyme Systems Products, #AMC-246)] 1:2000 in tryptase assay buffer [0.1 M Hepes (pH 7.5), 10 % w/v Glycerol, 10 uM Heparin (Sigma H-4898) 0.01% NaN₃]. Spin plates at 1000 rpm for 10 min to pellet cells. Transfer 25 ul of supernatant to a 96-well black bottom plate and add 100 ul of freshly diluted tryptase substrate solution to each well.

Incubate plates at room temperature for 30 min. Read the optical density of the plates at 355nm/460nm on a spectrophotometric plate reader.

Leukotriene C4 (LTC4) is also quantified using an ELISA kit on appropriately diluted supernatant samples (determined empirically for each donor cell population so that the sample measurement falls within the standard curve) following the supplier's instructions.

7.2.3 CHMC High Cell Density IgE Activation: Degranulation (Tryptase, Histamine), Leukotriene (LTC4), and Cytokine (TNFalpha, IL-13) Assays

Cultured human mast cells (CHMC) are sensitized for 5 days with IL-4 (20 ng/ml), SCF (200 ng/ml), IL-6 (200 ng/ml), and Human IgE (CP 1035K from Cortx Biochem, 100-500ng/ml depending on generation) in CM medium. After sensitizing, cells are counted, pelleted (1000 rpm, 5-10 minutes), and resuspended at 1-2 x10⁶ cells/ml in MT buffer. Add 100 ul of cell suspension to each well and 100 ul of compound dilutions. The final vehicle concentration is 0.5% DMSO. Incubate at 37°C (5% CO₂) for 1 hour. After 1hour of compound treatment, stimulate cells with 6X anti-IgE. Mix wells with the cells and allow plates to incubate at 37°C (5% CO₂) for one hour. After 1 hour incubation, pellet cells (10 minutes, 1000 RPM) and collect 200 ul per well of the supernatant, being careful not to disturb pellet. Place the supernatant plate on ice. During the 7-hour step (see next) perform tryptase assay on supernatant that had been diluted 1:500. Resuspend cell pellet in 240 ul of CM media containing 0.5% DMSO and corresponding concentration of compound. Incubate CHMC cells for 7 hours at 37°C (5% CO₂). After incubation, pellet cells (1000 RPM, 10 minutes) and collect 225 ul per well and place in -80°C until ready to perform ELISAS. ELISAS are performed on appropriately diluted samples (determined empirically for each donor cell population so that the sample measurement falls within the standard curve) following the supplier's instructions.

7.2.4 Results

5

10

15

20

25

30

The results of low density CHMC assays are provided in Table 1. In Table 1, all reported values are IC₅₀s (in μ M). Most compounds tested had IC₅₀s of less than 10 μ M, with many exhibiting IC₅₀s in the sub-micromolar range. In Table 1, all reported values are IC₅₀s (in μ M). A value of "-" indicates an IC₅₀> 10 μ M, with no measurable

activity at a $10\mu\text{M}$ concentration. Most compounds tested had IC₅₀s of less than $10\mu\text{M}$, with many exhibiting IC₅₀s in the sub-micromolar range. A value of "+" indicates an IC₅₀< $10\mu\text{M}$. Of the compounds tested, BMMC values are comparable to those noted for the CHMC results.

7.3 The 2,4-Pyrimidinediamine Compounds of the Invention Selectively Inhibit the Upstream IgE Receptor Cascade

To confirm that many of the 2,4-pyrimidinediamine compounds of the invention exert their inhibitory activity by blocking or inhibiting the early IgE receptor signal transduction cascade, several of the compounds were tested in cellular assays for ionomycin-induced degranulation, as described below.

7.3.1 CHMC Low Cell Density Ionomycin Activation: Tryptase Assay

Assays for ionomycin-induced mast cell degranulation were carried out as described for the CHMC Low Density IgE Activation assays (Section 7.2.2, supra), with the exception that during the 1 hour incubation, 6X ionomycin solution [5mM ionomycin (Sigma I-0634) in MeOH (stock) diluted 1:416.7 in MT buffer (2 μ M final)] was prepared and cells were stimulated by adding 25 μ l of the 6X ionomycin solution to the appropriate plates.

7.3.2 Results

5

10

15

The results of the ionomycin-induced degranulation assays, reported as IC₅₀ values (in μM) are provided in Table 1. Of the active compounds tested (*i.e.*, those that inhibit IgE-induced degranulation), the vast majority do not inhibit ionomycin-induced degranulation, confirming that these active compounds selectively inhibit the early (or upstream) IgE receptor signal transduction cascade. In Table 1, all reported values are IC₅₀s (in μM). A value of "-" indicates an IC₅₀> 10μM, with no measurable activity at a 10μM concentration. A value of "+" indicates an IC₅₀< 10μM.

7.4 2,4-Pyrimidinediamine Compounds Inhibit Syk Kinase in Biochemical Assays

Many of the 2,4-pyrimidinediamine compounds were tested for the ability to inhibit Syk kinase catalyzed phosphorylation of a peptide substrate in a biochemical

fluorescenced polarization assay with isolated Syk kinase. In this experiment, Compounds were diluted to 1% DMSO in kinase buffer (20 mM HEPES, pH 7.4, 5 mM MgCl₂, 2 mM MnCl₂, 1 mM DTT, 0.1 mg/mL acetylated Bovine Gamma Globulin). Compound in 1% DMSO (0.2% DMSO final) was mixed with ATP/substrate solution at room temperature. 5 Syk kinase (Upstate, Lake Placid NY) was added to a final reaction volume of 20 uL, and the reaction was incubated for 30 minutes at room temperature. Final enzyme reaction conditions were 20 mM HEPES, pH 7.4, 5 mM MgCl₂, 2 mM MnCl₂, 1 mM DTT, 0.1 mg/mL acetylated Bovine Gamma Globulin, 0.125 ng Syk, 4 uM ATP, 2.5 uM peptide substrate (biotin-EQEDEPEGDYEEVLE-CONH2, SynPep Corporation). EDTA (10 mM 10 final)/anti-phosphotyrosine antibody (1X final)/fluorescent phosphopeptide tracer (0.5X final) was added in FP Dilution Buffer to stop the reaction for a total volume of 40 uL according to manufacturer's instructions (PanVera Corporation) The plate was incubated for 30 minutes in the dark at room temperature. Plates were read on a Polarion fluorescence polarization plate reader (Tecan). Data were converted to amount of phosphopeptide present using a calibration curve generated by competition with the phosphopeptide 15

These data, shown in Table 1, demonstrate that most all of the compounds tested, inhibit Syk kinase phosphorylation with IC₅₀s in the submicromolar range. A vast majority of the compounds tested inhibit Syk kinase phosphorylation with IC₅₀s in the micromolar range. In Tabe 1, all reported values are IC₅₀s (in μ M). A value of "-" indicates an IC₅₀> 10μ M, with no measurable activity at a 10μ M concentration. A value of "+" indicates an IC₅₀< 10μ M.

20

competitor provided in the Tyrosine Kinase Assay Kit, Green (PanVera Corporation).

Tryptase, Tryptase, Tryptase, fp_syk, CHMC, CHMC, 11pt IgE, 3pt IgE, 3pt Iono, 3pt	+	+	+	+	+	+	+	+	+
Physical Data	¹ H NMR (DMSO-d6): d 8.08 (d, 1H), 7.95(s, 1H), 7.58 (d, 1H), 7.40 (m, 1H), 7.25 (m, 3H), 6.94 (m, 1H), 4.80 (m, 1H), 1.40 (s, 3H); LCMS: purity: 96%; MS (m/e): 406 (MH+).	¹ H NMR (DMSO-d6): d 8.17 (d, 1H), 8.08 (s, 1H), 7.80 (s, 1H), 7.52 (m, 1H), 7.32 (m, 1H), 7.17 (m, 2H), 6.94 (m, 1H), 4.60 (m, 1H), 3.77 (s, 3H), 1.45 (s, 3H); LCMS: purity: 94%; MS (m/e): 420 (MH+).	¹ H NMR (DMSO-d6): d 8.01 (d, 1H), 7.28 (m, 2H), 7.20 (s, 2H), 6.95 (m, 1H), 6.58 (s, 1H), 4.63 (m, 1H), 3.77 (s, 3H), 2.07 (s, 6H), 1.42 (d, 3H); LCMS: purity: 92%; MS (m/e): 393 (MH+).	¹ H NMR (DMSO-d6): d 8.02 (d, 1H), 6.98 (m, 2H), 6.90 (m, 2H), 6.80 (m, 1H), 6.03 (s, 1H), 3.72 (s, 2H), 3.60 (s, 6H), 1.05 (s, 6H); LCMS: purity: 96%; MS (m/e): 425 (MH+).	¹ H NMR (DMSO-d6): d 8.01 (d, 1H), 7.28 (m, 2H), 7.20 (s, 2H), 6.95 (m, 1H), 6.58 (s, 1H), 4.63 (m, 1H), 3.77 (s, 3H), 2.07 (s, 6H), 1.42 (d, 3H); LCMS: purity: 92%; MS (m/e): 393 (MH+).	¹ H NIMR (MeOD-d4): d 7.75 (d, 1H), 7.38 (m, 1H), 7.02 (m, 3H), 6.78 (m, 2H), 4.54 (m, 1H), 4.4 (m, 2H), 4.14 (m, 2H), 3.62 (m, 2H), 3.62 (m, 2H), 2.80 (m, 2H), 1.41 (d, 3H); LCMS: purity: 93%; MS (m/e): 491 (MH+).	¹ H NMR (MeOD-d4): d 7.62 (d, 1H), 7.04 (s, 1H), 6.98 (m, 2H), 6.75 (m, 1H), 6.59 (m, 2H), 4.47 (m, 1H), 4.4 (m, 2H), 4.14 (m, 2H), 3.62 (m, 4H), 2.80 (m, 2H), 1.07 (s, 6H); LCMS: purity: 98%; MS (m/e): 491 (MH+).	¹ H NMR (MeOD-d4): d 7.98 (d, 1H), 7.82 (m, 2H), 7.48 (s, 1H), 7.41 (m, 3H), 7.25 (dd, 1H), 7.15 (m, 3H), 6.94 (d, 1H), 4.62 (q, 1H), 3.82 (s, 3H), 1.50 (d, 3H); LCMS: purity: 97%; MS (m/e): 430 (MH+).	¹ H NMR (MeOD-d4): d 7.98 (d, 1H), 7.48 (s, 1H), 7.25 (dd, 1H), 7.15 (m, 3H), 6.94 (d, 1H), 4.62 (g, 1H), 3.82 (s, 3H), 2.68 (s, 3H), 1.50 (d, 2H): LCMS: See 1.05 (d, 2H), 1.50 (d, 2H): LCMS: See 2.05 (d, 2H), 1.50 (d, 2H): LCMS: See 3.05 (d, 2H); 1.50 (d, 2H): LCMS: See 3.05 (d, 2H); 1.50 (d,
Compound Name	200 benz[1,4]oxazin-6-yl)-2,4-pyrimidinediamine	(S)-5-Fluoro-N2-(1-methylindazol-6-yl)-N4-(2-methyl-3-oxo- 2H,4H-benz[1,4]oxazin-6-yl)-2,4-pyrimidinediamine	(S)-N2-(3,5-Dimethylphenyl)-5-fluoro-N4-(2-methyl-3-oxo- 2H,4H-benz[1,4]oxazin-6-yl)-2,4-pyrimidinediamine	N4-(3,4-Dinydro-3,3-dimethyl-2H,4H-benz[1,4]oxazin-6-yl)-N2-(3,5-dimethoxyphenyl)-5-fluoro-2,4-pyrimidinediamine	(R)-N2-(3,5-Dimethylphenyl)-5-fluoro-N4-(2-methyl-3-oxo- 2H,4H-benz[1,4]oxazin-6-yl)-2,4-pyrimidinediamine	(R)-5-Fluoro-N2-[6-(2-hydroxyethyl)-2,3-dihydropyrrolo[1,2,3-205d,e]benzoxazin-8-yl]-N4-(2-methyl-3-oxo-2H,4H-benz[1,4]oxazin-6-yl)-2,4-pyrimidinediamine	N4-(3,4-Dihydro-3,3-dimethyl-2H,4H-benz[1,4]oxazin-6-yl)-5- 206filuoro-N2-[6-(2-hydroxyethyl)-2,3-dihydropyrrolo[1,2,3- d,e]benzoxazin-8-yl]-2,4-pyrimidinediamine	(R)-N2-(3-Chloro-4-methoxyphenyl)-5-fluoro-N4-(2-methyl-3-207 oxo-2H,4H-benz[1,4]oxazin-6-yl)-2,4-pyrlmidinediamine Benzene Sulfonic Acid Salt	(R)-N2-(3-Chloro-4-methoxyphenyl)-5-fluoro-N4-(2-methyl-3-1080xo-2H,4H-benz[1,4]oxazin-6-yl)-2,4-pyrlmidinediamine (Mathanesulfonic Arid Salt

¥									
fp_sy 11pt		- 		100					
Tryptase, Tryptase, Tryptase, fp_syk, CHMC, CHMC, CHMC, 11pt 1gE, 3pt lgE, 8pt lono, 3pt						ı	ì	ı	-
Tryptase CHMC, IgE, 8pt	+	+	+	+	+	+	+	+	+
Tryptase, CHMC, IgE, 3pt	:		+	+	+	+	+	+	+
Physical Data H NMR (DMSO-d6): d 8.19 (d, 1H), 7.62 (m, 1H), 7.38 (m, 1H), 7.21	(m, 1H), 7.12 (m, 2H), 6.91 (d, 1H), 4.62 (q, 1H), 3.82 (s, 3H), 3.40 (q, 1H), 2.91 (m, 1H), 2.61 (m, 1H), 2.38 (m, 1H), 2.22 (m, 1H), 1.85 (m, 2H), 1.40 (d, 3H), 1.31 (m, 2H), 1.03 (s,	'H NMR (DMSO-d6): d 8.16 (d, 1H), 8.08 (s, 1H), 7.80 (s, 1H), 7.52 (m, 1H), 7.32 (m, 1H), 7.17 (m, 2H), 6.94 (m, 1H), 4.60 (m, 1H), 3.77 (s, 3H), 1.45 (s, 3H); LCMS: purity: 97%; MS (m/e): 420 (MH+).	¹ H NMR (DMSO-d6): d 8.12 (d, 1H), 7.41 (dd, 1H), 7.22 (m, 3H), 6.97 (m, 1H), 4.61 (q, 1H), 3.78 (s, 3H), 1.40 (d, 3H); LCMS: purity: 97%; MS (m/e): 430 (MH+).		"H NMR (DMSO-d6): d 8.17 (s, 1H), 7.98 (d, 1H), 7.43 (m, 1H), 7.32 (m, 1H), 7.15 (s, 1H), 6.95 (s, 1H), 6.72 (d, 1H), 4.58 (m, 1H), 3.90 (s, 3H), 2.17 (s, 3H), 1.38 (d, 3H); LCMS: purity: 97%; MS (m/e): 444 (MH+).	¹ H NMR (DMSO-d6): d 8.17 (s, 1H), 7.98 (d, 1H), 7.43 (m, 1H), 7.32 (m, 1H), 7.15 (s, 1H), 6.95 (s, 1H), 6.72 (d, 1H), 4.58 (m, 1H), 3.90 (s, 3H), 2.17 (s, 3H), 1.38 (d, 3H); LCMS: purity: 99%; MS (m/e): 444 (MH+).	11 NMR (DMSO-d6): d 1.38 (d, 3H), 3.82 (s, 3H), 3.90 (s, 3H), 4.58 (d, 1H), 6.85 (m, 2H), 7.19 (m, 1H), 7.37 (m, 1H), 7.43 (m, 1H), 7.59 (s, 1H), 8.17 (m, 2H) purity: 99 %; MS (m/e): 460 (MH+).	N2-(3-Chloro-4-methoxy-6-methylphenyl)-N4-(3,4-dihydro-3,3- 14 NMR (DMSO-46): d 1.38 (s, 6H), 2.17 (s, 3H), 3.64 (s, 3H), 3.81 dimethyl-2H,4H-benz[1,4]oxazin-6-yl)-5-fluoro-2,4- (s, 3H), 6.48 (m, 1H), 6.77 (m, 1H), 6.93 (m, 1H), 6.99 (m, 1H), pyrimidinediamine 7.41 (s, 1H), 7.82 (d, 1H) purity: 99 %; MS (m/e): 444 (MH+).	¹ H NMR (DMSO-d6): d 8.19 (m, 1H), 8.15 (d, 1H), 7.78 (m, 1H), 7.39 (m, 2H), 6.90 (m, 1H), 6.47 (m, 1H), 4.07 (m, 2H), 3.22 (m, 2H); LCMS: purity: 97%; MS (m/e): 405 (MH+).
Compound Name (Compound Name (R)-N2-(3-Chloro-4-methoxyphenyl)-5-fluoro-N4-(2-methyl-3-	209 oxo-2H,4H-benz[1,4]oxazin-6-yl)-2,4-pyrimidinediamine (1S)- (+)-Camphorsulfonic Acid Salt		(R)-N2-(3-Chloro-4-methoxyphenyl)-5-fluoro-N4-(2-methyl-3-211 oxo-2H,4H-benz[1,4]oxazin-6-yl)-2,4-pyrimidinediamine Hydrogen Chloride Salt	(R)-N2-(3-Chloro-4-methoxyphenyl)-5-fluoro-N4-(2-methyl-3-212 oxo-2H,4H-benz[1,4]oxazin-6-yl)-2,4-pyrimidinediamine (1R)-(-)-Camphorsulfonic Acid Salt	(R)-N2-(3-Chloro-4-methoxy-6-methylphenyl)-5-fluoro-N4-(2-213 methyl-3-oxo-2H,4H-benz[1,4]oxazin-6-yl)-2,4-pyrimidinediamine	(S)-N2-(3-Chloro-4-methoxy-6-methylphenyl)-5-fluoro-N4-(2-214 methyl-3-oxo-2H,4H-benz[1,4]oxazin-6-yl)-2,4-pyrimidinediamine	(S)-(3-Chloro-4,6-dimethoxyphenyl)-5-fluoro-N4-(2-methyl-3-oxo-2H,4H-benz[1,4]oxazin-6-yl)-2,4-pyrimidinediamine	N2-(3-Chloro-4-methoxy-6-methylphenyl)-N4-(3,4-dihydro-3,3-216 dimethyl-2H,4H-benz[1,4]oxazin-6-yl)-5-fluoro-2,4-pyrimidinediamine	N4-(3,4-Dlhydro-2H,4H-benz[1,4]oxazin-6-yl)-5-fluoro-N2-[3- (oxazol-2-yl)phenyl]-2,4-pyrimidinediamine
Compound	20,	210	24,	212	21(214	215	216	217

WO 2005/016893		PCT/US2004/024716
Hum allen " on forth some forth profe " on Home well " to more some		+
		, ,
नी '	+ + +	+ +
1	+ + +	+ +
1de + + + +	+	1.42 (1H), (1H), (6 (m, 3 (MH+).
	(2,1), 3.2, (2,1), 3.2, (2,1), 3.2, (2,1), 3.2, (3,1), (4,	2 (q, 1H), 2.22 (m), 7.22 (m), 4.62 (n), 7.77 (m), 2.14), 7.77 (m)e); 46
(m, 1H), 17.71 (m, 11H), 18.22 (m, 17.18 (m, 1	(m, 1H), 7.79 (m, 1H), 0.22 (m, 1H), 7.51 (m, 1H), 7.51 (m, 1H), 7.75 (m, 1H), 7.76 (m, 1H), 6.62 (m, 1H), 4.07 (m, 2H), 3.27 (m/e); 406; (MH+). (m/e); 408 (m, 2H), 6.71 (m, 2H), 6.93 (m, 2H), 7.22 (m, 1H), 6.98 (m, 2H), 7.22 (m, 1H), 8.38 (s, 2H), 6.98 (m, 2H), 8.28 (d, 1H), 8.38 (m, 2H), 7.22 (m, 1H), 7.21 (m, 1H), 7.22 (m, 1H), 7.22 (m, 1H), 7.22 (m, 1H), 7.22 (m, 1H), 7.23 (m, 2H), 6.98	1H), 7.07 (1H), 4.66 (
is (m, 1H), 77 (m, 1H), 77 (m, 1H), 77 (m, 1H), 7.78 (m, 2H)	H, 7.79 (1) (1) (1) (1) (1) (1) (1) (1) (1) (1)	(a, 28) (d, 6,98 (m, 6,98 (m, 2H), 6,98 (m), 7,2H), 6,98 (m), 7,2H), 6,98 (m), 7,2H), 3,5 (d, 1H), 3,5 (d, 1H
3.81 (s, 2 1, 2H), 7.6 1, 2H), 7.6 1, 6.78 (n, 1H), 7.7 1, 6.78 (m, 1H), 7.7 1, 6.78 (m, 1H), 7.7 1, 6.78 (m, 1H), 7.3 1, 6.78 (m, 1H), 7.3	57 (m, 1), (MH+). (MH+)	28 (s, 1H) 28 (s, 1H) 36 (m, 2H) 36; MS (m 36; MS (m 4.96 (s, 7.76 11.93 (m 1.93 (m 1.93 (s, 1H 2.96) 1.183 (s, 1H 3.18 (s, 1H
3 (s, 6H), 3, 7.38 (m, 1, 2H) pur 50 (s, 2H 4.50 (s, 4 2H), 7.59 (m), 7.59 (m), 7.59	11.36 (III) 11.36 (IIII) 17.3 (IIIII) 18.57 (IIII) 19.58 (IIII) 19.58 (IIII) 19.59 (IIII)	(me); 48, 114), 7.22; (m, 5, 7.22; (m, 6); 7.22; (m, 6); 7.22; (m, 7,
Firstical Data H. NIMR (DMSO-d6): d 1.18 (s, 6H), 3.81 (s, 2H), 6.77 (m, 1H), 7.71 (m, 1H), 6.93 (m, 1H), 7.38 (m, 2H), 7.63 (m, 1H), 7.71 (m, 1H), 8.12 (m, 1H), 8.22 (m, 2H), burty: 99 %; MS (m/e): 433 (MH+), 1H), MSCO-d6): d 4.50 (s, 2H), 6.78 (m, 1H), 7.18 (m, 1H), 7.38 (m, 2H), 7.59 (m, 1H), 7.77 (m, 1H), 8.22 (m, 1H), 7.23 (m, 1H), 7.38 (m/e): 419 (MH+). 7.23 (m, 1H), 7.41 (m, 2H), 7.59 (m, 1H), 7.78 (m, 1H), 8.22 (m, 1H), 7.43 (m, 1H), 7.41 (m, 2H), 7.59 (m, 1H), 7.78 (m, 1H), 8.22 (m, 1H), 7.41 (m, 2H), 7.59 (m, 1H), 7.78 (m, 1H), 7.78 (m, 1H), 7.78 (m, 1H), 7.80 (m, 1H), 7.80 (m, 1H), 7.80 (m, 1H), 7.80 (m, 1H), 8.22 (m, 1H), 8.	1.18 (m, 1H), 7.38 (m, 3H), 7.57 (m, 1H), 7.79 (m, 1H), 0.2.7.18 (m, 1H), 7.59 (m, 1H), 7.59 (m, 1H), 7.59 (m, 1H), 7.59 (m, 1H), 8.17 (d, 1H), 7.76 (m, 1H), 7.59 (m, 1H), 8.17 (d, 1H), 7.76 (m, 1H), 3.22 (m, 3H), 6.90 (m, 1H), 6.77 (m, 1H), 6.62 (m, 1H), 4.07 (m, 2H), 3.22 (m, 2H), 6.90%; MS (m/e): 405 (MH+). (m, 2H); LCMS: purity: 90%; MS (m/e): 405 (MH+). (m, 2H); 7.51 (s, 1H), 7.69 (m, 2H), 7.69 (m, 2H), 7.69 (m, 2H), 7.89 (m, 2H), 8.38 (s, 1H) purity: 95%; MS (m/e): 433 (MH+). (6.95 (m, 1H), 7.51 (s, 1H), 7.69 (m, 2H), 7.80 (m, 2H), 7.22 (m, 1H), 8.38 (s, 1H) purity: 95%; MS (m/e): 438 (m, 2H), 8.28 (d, 1H), 8.38 (s, 1H) (m, 2H), 7.57 (m, 2H), 7.78 (m, 2H), 8.28 (d, 1H), 7.57 (m, 2H), 7.78 (m, 2H), 8.28 (d, 1H), 7.57 (m, 2H), 7.5	purity: 98 %; MS (m/e): 7.25 (m, 1H), 8.22 (d, 1H), 7.02 (m, 1H), 1.42 H NMR (DMSO-46): d 8.28 (s, 1H), 6.98 (m, 1H), 4.62 (q, 1H), 1.42 (m, 2H), 7.49 (s, 1H), 7.25 (m, 2H), 6.98 (m, 2H), 7.22 (m, 1H), (d, 3H); LCMS: purity: 88%; MS (m/e): 4.66 (s, 2H), 6.98 (m, 2H), 7.22 (m, 1H), 7.51 (s, 1H), 7.57 (m, 2H), 7.76 (m, 2H), 8.28 (d, 1H), 8.38 (s, 1H), purity: 92 %; MS (m/e): 419 (MH+). T.51 (s, 1H), 7.52 (m, 2H), 7.51 (s, 1H), 7.57 (m, 2H), 7.76 (m, 1H) NMR (DMSO-46): d 1.93 (m, 2H), 7.51 (s, 1H), 7.57 (m, 2H), 7.52 (m, 2H), 7.51 (s, 1H), 7.57 (m, 2H), 7.88 (d, 1H), 8.38 (s, 1H) purity: 95 %; MS (m/e): 463 (MH+).
2ata (DMSO- 1, 1H), 6.9 12 (s, 1H R (DMSC R (DMSC R (DMSC (m, 1H), 7 (m, 1H), 7	NMAR (DIV 8 (m, 14 1) purity: 9 1, 34), 6; 11, 34), 6; 14, NMR (14, NMR) 16.95 (m, 16, 16, 16) 16.95 (m, 17, 17, 18, 17, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18	MN-11-17.57 (m, 2P-17-17-17-17-17-17-17-17-17-17-17-17-17-
Prysical Data 1H NMR (DM 6.93 (m, 1H) 1H), 8.12 (9 1H), 8.12 (14 1H) NMR (DI 3H) purity: 3H) purity (17.23 (m, 1 7.23 (m, 1)	I I DE STEEL	ne benz[1,4]oxazin-6-yl)-benz[1,4]oxazin-6-yl)-(3-oxo-2H,4H-amine yytimidinediamine
n-6-yl)-5- nine 4H- H,4H-	benz[1,4]oxazin-17-7-7-7-7-7-7-7-7-7-7-7-7-7-7-7-7-7-7	ine I-benz[1,4]oxazin I-denz[1,4]oxazin I-(3-oxo-2H,4H- amine o-2H,4H-benz[1, o-2H,4H-benz[1,
1,4]oxazlı idinedian -oxo-2H,4 ine i3-oxo-2F	mine 2H,4H-bi 2H,4H-bi azin-6-yi) lamine H-benz[1,4,4-byrimite 4-byrimite	MJ-N4-107 inediamir o-2H,4H-1 ienylj-N4 ienylj-N4 inylj-2,4-p' iylj-2,4-p'
y-2H, 4H-benz[1,4]oxazir henyi]-2,4-pyrlmidinediam henyi]-1-4-pyrlmidinediam yi)phenyi]-N4-(3-oxo-2H,4 yi)phenyi]-N4-(3-oxo-2H,4	nidinediar yl)-3-0xo yl]-2,4-p) nz[1,4]0xi nrimidined rimidined trimidined	5-yl)phem 4-pyrimid 4-pyrimid 2-x-4-pyri 3-2,4-pyri ydroxyett 1-5-yl)phel
methyl-2H, yl)phenyll- ol-2-yl)phe)-2,4-pyrli ydroxyett ydroxyett yyl-2,4-py yyl-2,4-py (azol-5-yl)	ioro-N2-[4-(oxazol-5-yl)phenyl]-N4-1-0-0-0-0-0-1-0-1-0-1-0-0-0-1-0-0-1-0-0-1-0-0-0-1-0-0-0-1-0
ro-3,3-dim co-3,3-dim co-3,3-dim co-3,3-dim co-3,9-dim co-3,9-dim co-3,9-dim co-3,9-dim co-3,9-dim co-3,9-dim	Fluoro-N2-13-(oxazor-7-yl)-2,4-pyrlmidinediamine enz[1,4]oxazin-7-yl)-2,4-pyrlmidinediamine 5-Fluoro-N4-[2-(2-hydroxyethyl)-3-oxo-2H,4H-benz[1,4]oxazin-6-yl)-5-fluoro-N2-[6-yl]-N2-[3-(oxazol-2-yl)phenyl]-2,4-pyrimidinediamine [0xazol-5-yl)phenyl]-2,4-pyrimidinediamine [0xazol-5-yl)phenyl]-2,4-pyrimidinediamine [0xazol-5-yl)phenyl]-2,4-pyrimidinediamine [0xazol-5-yl)phenyl]-2,4-pyrimidinediamine	5-Fluoro-N2-[4-(oxazol-5-yl)phenyl]-N4-1-0-0-0-0-0-0-1-1-0-0-0-0-0-0-0-0-0-0-
Compound Name Compound Name Compound Name N4-(3,4-Dihydro-3,3-dimethyl-2H,4H-benz[1,4]oxazin-6-yl)-5- N4-(3,4-Dihydro-3,3-dimethyl-2H,4H-benz[1,4]oxazin-6-yl)-6- Shuoro-N2-[3-(oxazol-2-yl)phenyl]-N4-(3-oxo-2H,4H-5-Fluoro-N2-[3-(oxazol-2-yl)phenyl]-N4-(3-oxo-2H,4H-6-1) benz[1,4]oxazin-6-yl)-2,4-pyrimidinediamine	5-Fluoro-N2-[3-(0xazzin-7-yl)-2,4-pyrimidinediamine 221 6-yII-N2-[3-(0xazzin-7-yl)-2,4-pyrimidinediamine 221 6-yII-N2-[3-(0xazzi-2-yl)phenyl]-2,4-pyrimidinediamine 222 (0xazzi-5-yl)phenyl]-2,4-pyrimidinediamine 222 (0xazzi-5-yl)phenyl]-2,4-pyrimidinediamine N4-(3,4-Dihydro-3,3-dimethyl-2H,4H-benz[1,4]oxazin-6-yl)-5 Ruoro-N2-[4-(0xazzi-5-yl)phenyl]-2,4-pyrimidinediamine	224 5-Flu 225 (S) 225 N2 226 5- 227 227
9 7 9	220 5.2	
pound aber		

		1	T -	1	1		1	T	T	1
fp_syk, 11pt			·				(0			
Tryptase, CHMC, Iono, 3pt	1	1	ı	,	ı	1	1	ı	ı	i.
LU Tryptase, Tryptase, fp_syk, CHMC, CHMC, CHMC, 11pt IgE, 8pt lono, 3pt	+	+	ı	ı	+	+	+	+		
Tryptase, CHMC, IgE, 3pt	+			,	+	+	+	+	+	+
Princial Data	¹ H NMR (DMSO-d6): d 8.29 (s, 1H), 8.15 (d, 1H), 7.76 (m, 1H), 7.57 (m, 3H), 6.88 (m, 1H), 6.77 (m, 1H), 6.62 (m, 1H), 4.10 (m, 2H), 3.20 (m, 2H), 2.80 (s, 3H); LCMS: purity: 94%; MS (m/e): 419 (MH+).	¹ H NMR (DMSO-d6): d 8.37 (s, 1H), 8.19 (d, 1H), 7.61 (m, 5H), 7.07 (m, 2H), 6.68 (m, 1H), 4.22 (m, 2H), 3.22 (m, 2H), 2.81 (s, 3H); LCMS: purity: 94%; MS (m/e): 419 (MH+).	¹ H NMR (DMSO-d6): d 8.36 (s, 1H), 8.20(m, 1H), 8.19 (d, 1H), 7.77 (m, 2H), 7.54 (m, 2H), 7.37 (s, 1H), 7.25 (m, 1H), 6.97 (m, 1H), 4.58 (s, 2H), 2.97 (s, 3H); LCMS: purity: 98%; MS (m/e): 433 (MH+).	¹ H NMR (DMSO-d6): d 8.34 (s, 1H), 8.20(m, 1H), 8.17 (d, 1H), 7.71 (m, 2H), 7.54 (m, 2H), 7.33 (s, 1H), 7.25 (m, 1H), 6.92 (m, 1H), 4.60 (s, 2H), 2.90 (s, 3H); LCMS: purity: 95%; MS (m/e): 433 (MH+).	¹ H NMR (DMSO-d6): d 8.39 (m, 1H), 8.22 (d, 1H), 7.86 (m, 1H), 7.59 (m, 4H), 6.87 (m, 2H), 6.52 (m, 1H), 4.09 (m, 2H), 3.23 (m, 2H); LCMS: purity: 90%; MS (m/e); 405 (MH+).	¹ H NMR (DMSO-d6): d 8.37 (s, 1H), 8.19 (d, 1H), 7.82 (m, 1H), 7.63 (m, 2H), 7.50 (s, 1H), 7.38 (m, 1H), 6.87 (m, 1H), 6.65 (m, 2H), 3.82 (s, 2H), 1.19 (s, 6H); LCMS: purity: 95%; MS (m/e): 433 (MH+).	1H NMR (DMSO-d6): d 4.42 (s, 2H), 6.61 (m, 2H), 6.95 (m, 1H), 7.51 (s, 1H), 7.49 (m, 2H), 7.59 (m, 2H), 8.20 (d, 1H), 8.38 (s, 1H) purity: 90 %; MS (m/e): 419 (MH+).		1H NMR (DMSO-d6): d 1.93 (m, 2H), 3.58 (m, 2H), 4.62 (m, 1H), 6.61 (m, 2H), 6.95 (m, 1H), 7.51 (s, 1H), 7.49 (m, 2H), 7.59 (m, 2H), 8.20 (d, 1H), 8.38 (s, 1H) purity: 95 %; MS (m/e): 419 (MH+).	1H NMR (DMSO-d6): d 1.93 (m, 2H), 2.82 (s, 3H), 3.58 (m, 2H), 4.62 (m, 1H), 6.91 (m, 2H), 6.95 (m, 1H), 7.51 (s, 1H), 7.49 (m, 2H), 7.59 (m, 2H), 8.20 (d, 1H), 8.38 (s, 1H) purity: 95 %; MS (m/e): 419 (MH+).
28 E		N4-(3,4-Dihydro-4-methyl-2H-benz[1,4]oxazin-7-yl)-5-fluoro- N2-[4-(oxazol-5-yl)phenyl]-2,4-pyrimidinediamine	230 (oxazol-5-yl)phenyl]-2,4-pyrimidinediamine	231 (oxazol-5-yl)phenyl]-2,4-pyrimidinediamine	N4-(3,4-Dihydro-2H,4H-benz[1,4]oxazin-6-yl)-5-fluoro-N2-[3- (oxazol-5-yl)phenyl]-2,4-pyrimidinediamine	N4-(3,4-Dihydro-3,3-dimethyl-2H,4H-benz[1,4]oxazin-6-yl)-5- fluoro-N2-[3-(oxazol-5-yl)phenyl]-2,4-pyrimidinediamine	234 benz[1,4]oxazin-7-yl)-2,4-pyrimidinediamine	235 6-yl]-N2-[3-(oxazol-5-yl)phenyl]-2,4-pyrimidinediamine	N4-(3,4-Dihydro-4-methyl-2H-benz[1,4]oxazin-6-yl)-5-fluoro- N2-[3-(oxazol-5-yl)phenyl]-2,4-pyrimidinediamine	N4-(3,4-Dihydro-4-methyl-2H-benz[1,4]oxazin-7-yl)-5-fluoro- N2-[3-(oxazol-5-yl)phenyl]-2,4-pyrimidinediamine
Compound										

Ć

	t yk,				•					
Physical Data 14 NMR (DMSO-d6); d 1.93 (m, 2H), 3.58 (m, 2H), 4.62 (m, 1H), 6.88 (m, 2H), 7.22 (m, 3H), 7.57 (m, 2H), 7.79 (m, 2H), 8.22 (m, 2H) purity: 99 %: MS (m/e): 463 (MH+). 14 NMR (DMSO-d6): d 1.93 (m, 2H), 3.58 (m, 2H), 4.62 (m, 1H), 6.71 (m, 2H), 6.95 (m, 1H), 7.51 (s, 1H), 7.69 (m, 2H), 7.69 (m, 2H), 7.69 (m, 2H), 8.20 (d, 1H), 8.38 (s, 1H) purity: 99 %: MS (m/e): 463 (MH+). 14 NMR (DMSO-d6): d d 1.38 (d, 3H), 4.58 (q, 1H), 6.88 (m, 1H), 7.22 (m, 4H), 7.57 (m, 1H), 7.99 (m, 2H), 8.12 (m, 2H) purity: 99 %: MS (m/e): 433 (MH+). 14 NMR (DMSO-d6): d d 1.38 (d, 3H), 4.58 (q, 1H), 6.88 (m, 1H), 7.22 (m, 4H), 7.57 (m, 1H), 7.29 (m, 2H), 8.12 (m, 2H) purity: 99 %: MS (m/e): 433 (MH+). 14 NMR (DMSO-d6): d 1.88 (m, 2H), 2.25 (m, 2H), 3.75 (t, 2H), 4.58 (d, 1H), 6.52 (d, 1H), 6.92 (dd, 2H), 7.37 (m, 3H), 8.12 (d, 1H) purity: 90 %: MS (m/e): 442 (MH+). 15 As (s, 6H), 4.08 (q, 1H), 6.02 (m, 1H), 6.58 (m, 2H), 3.55 (m, 2H), 8.02 (d, 1H) purity: 96 %: MS (m/e): 442 (MH+). 16 An NMR (DMSO-d6): d 1.88 (m, 2H), 2.37 (m, 2H), 8.02 (m, 1H), 8.02 (m, 1H), 6.50 (m, 1H), 7.22 (m, 3H), 7.37 (m, 1H), 7.43 (m, 1H), 8.02 (m, 1H), 6.50 (m, 1H), 7.22 (m, 3H), 7.37 (m, 1H), 6.50 (m, 1H), 6.50 (m, 1H), 6.19 (m, 1H), 7.22 (m, 2H), 7.43 (m, 1H), 8.22 (d, 1H) purity: 99 %: MS (m/e): 428 (MH+). 14 NMR (DMSO-d6): d 3.37 (s, 2H), 3.58 (s, 3H), 7.08 (m, 1H), 6.75 (m, 2H), 7.42 (m, 1H), 8.22 (d, 1H) purity: 99 %: MS (m/e): 428 (MH+). 15 As (m/e): 428 (MH+). 16 As (m, 2H), 7.42 (m, 2H), 7.43 (m, 1H), 8.22 (d, 1H) purity: 99 %: MS (m/e): 428 (MH+).	ee, fp_s		0							
Physical Data 1H NMR (DMSO-d6); d 1.93 (m, 2H), 3.58 (m, 2H), 4.62 (m, 1H), 6.88 (m, 2H), 7.22 (m, 3H), 7.57 (m, 2H), 7.79 (m, 2H), 8.22 (m, 2H) purity; 99 %; MS (m/e): 463 (MH+). 1H NMR (DMSO-d6); d 1.93 (m, 2H), 3.58 (m, 2H), 4.62 (m, 1H), 6.71 (m, 2H), 6.95 (m, 1H), 7.51 (s, 1H), 7.69 (m, 2H), 7.69 (m, 2H), 7.69 (m, 2H), 8.20 (d, 1H), 8.38 (s, 1H) purity; 99 %; MS (m/e): 463 (MH+). 1H NMR (DMSO-d6); d d 1.38 (d, 3H), 4.58 (q, 1H), 6.88 (m, 1H), 7.22 (m, 4H), 7.57 (m, 1H), 7.99 (m, 2H), 8.12 (m, 2H) purity; 99 %; MS (m/e): 433 (MH+). 1H NMR (DMSO-d6); d d 1.38 (d, 3H), 4.58 (q, 1H), 6.88 (m, 1H), 7.22 (m, 4H), 7.57 (m, 1H), 7.99 (m, 2H), 8.12 (m, 2H) purity; 90 %; MS (m/e): 433 (MH+). 1H NMR (DMSO-d6); d 1.88 (m, 2H), 2.25 (m, 2H), 3.75 (t, 2H), 6.52 (d, 1H), 6.92 (dd, 2H), 7.37 (m, 3H), 8.12 (d, 1H), 6.96 (m, 2H), 6.52 (d, 1H), 6.92 (dd, 2H), 7.37 (m, 3H), 8.12 (d, 1H), 6.96 (m, 1H), 6.92 (dd, 2H), 7.37 (m, 1H), 6.96 (m, 2H), 8.02 (d, 1H), 6.92 (d, 3H), 2.97 (m, 2H), 3.55 (m, 2H), 3.56 (m, 2H), 6.60 (m, 1H), 7.22 (m, 3H), 7.37 (m, 1H), 7.43 (m, 1H), 8.02 (m, 1H), 8.02 (d, 1H), 6.19 (m, 1H), 7.22 (m, 3H), 7.37 (m, 1H), 7.43 (m, 1H), 6.58 (m, 1H), 6.60 (m, 1H), 7.22 (m, 3H), 7.37 (m, 1H), 6.40 (m, 1H), 6.50 (m, 1H), 6.19 (m, 1H), 6.75 (m, 2H), 7.22 (m, 2H), 7.43 (m, 1H), 8.22 (d, 1H) purity; 99 %; MS (m/e): 428 (MH+). 1H NMR (DMSO-d6): d 3.37 (s, 2H), 3.58 (s, 3H), 7.08 (m, 1H), 6.75 (m, 2H), 7.42 (m, 1H), 8.22 (d, 1H) purity; 99 %; MS (m/e): 428 (MH+). 1H NMR (DMSO-d6): d 3.47 (s, 2H), 3.88 (s, 3H), 7.08 (m, 1H), 6.75 (m, 2H), 7.22 (m, 2H), 7.78 (m, 1H), 8.22 (d, 1H) purity; 99 %; MS (m/e): 428 (MH+).	Tryptas CHMC, Iono, 3	1	+	r		1	'	1	t .	ĭ
Physical Data 1H NMR (DMSO-d6); d 1.93 (m, 2H), 3.58 (m, 2H), 4.62 (m, 1H), 6.88 (m, 2H), 7.22 (m, 3H), 7.57 (m, 2H), 7.79 (m, 2H), 8.22 (m, 2H) purity; 99 %; MS (m/e): 463 (MH+). 1H NMR (DMSO-d6); d 1.93 (m, 2H), 3.58 (m, 2H), 4.62 (m, 1H), 6.71 (m, 2H), 6.95 (m, 1H), 7.51 (s, 1H), 7.69 (m, 2H), 7.69 (m, 2H), 7.69 (m, 2H), 8.20 (d, 1H), 8.38 (s, 1H) purity; 99 %; MS (m/e): 463 (MH+). 1H NMR (DMSO-d6); d d 1.38 (d, 3H), 4.58 (q, 1H), 6.88 (m, 1H), 7.22 (m, 4H), 7.57 (m, 1H), 7.99 (m, 2H), 8.12 (m, 2H) purity; 99 %; MS (m/e): 433 (MH+). 1H NMR (DMSO-d6); d d 1.38 (d, 3H), 4.58 (q, 1H), 6.88 (m, 1H), 7.22 (m, 4H), 7.57 (m, 1H), 7.99 (m, 2H), 8.12 (m, 2H) purity; 90 %; MS (m/e): 433 (MH+). 1H NMR (DMSO-d6); d 1.88 (m, 2H), 2.25 (m, 2H), 3.75 (t, 2H), 6.52 (d, 1H), 6.92 (dd, 2H), 7.37 (m, 3H), 8.12 (d, 1H), 6.96 (m, 2H), 6.52 (d, 1H), 6.92 (dd, 2H), 7.37 (m, 3H), 8.12 (d, 1H), 6.96 (m, 1H), 6.92 (dd, 2H), 7.37 (m, 1H), 6.96 (m, 2H), 8.02 (d, 1H), 6.92 (d, 3H), 2.97 (m, 2H), 3.55 (m, 2H), 3.56 (m, 2H), 6.60 (m, 1H), 7.22 (m, 3H), 7.37 (m, 1H), 7.43 (m, 1H), 8.02 (m, 1H), 8.02 (d, 1H), 6.19 (m, 1H), 7.22 (m, 3H), 7.37 (m, 1H), 7.43 (m, 1H), 6.58 (m, 1H), 6.60 (m, 1H), 7.22 (m, 3H), 7.37 (m, 1H), 6.40 (m, 1H), 6.50 (m, 1H), 6.19 (m, 1H), 6.75 (m, 2H), 7.22 (m, 2H), 7.43 (m, 1H), 8.22 (d, 1H) purity; 99 %; MS (m/e): 428 (MH+). 1H NMR (DMSO-d6): d 3.37 (s, 2H), 3.58 (s, 3H), 7.08 (m, 1H), 6.75 (m, 2H), 7.42 (m, 1H), 8.22 (d, 1H) purity; 99 %; MS (m/e): 428 (MH+). 1H NMR (DMSO-d6): d 3.47 (s, 2H), 3.88 (s, 3H), 7.08 (m, 1H), 6.75 (m, 2H), 7.22 (m, 2H), 7.78 (m, 1H), 8.22 (d, 1H) purity; 99 %; MS (m/e): 428 (MH+).	Tryptase, CHMC, IgE, 8pt	ı	+	+	+	+	+	+	+	+
Physical Data 1H NMR (DMSO-d6); d 1.93 (m, 2H), 3.58 (m, 2H), 4.62 (m, 1H), 6.88 (m, 2H), 7.22 (m, 3H), 7.57 (m, 2H), 7.79 (m, 2H), 8.22 (m, 2H) purity; 99 %; MS (m/e): 463 (MH+). 1H NMR (DMSO-d6); d 1.93 (m, 2H), 3.58 (m, 2H), 4.62 (m, 1H), 6.71 (m, 2H), 6.95 (m, 1H), 7.51 (s, 1H), 7.69 (m, 2H), 7.69 (m, 2H), 7.69 (m, 2H), 8.20 (d, 1H), 8.38 (s, 1H) purity; 99 %; MS (m/e): 463 (MH+). 1H NMR (DMSO-d6); d d 1.38 (d, 3H), 4.58 (q, 1H), 6.88 (m, 1H), 7.22 (m, 4H), 7.57 (m, 1H), 7.99 (m, 2H), 8.12 (m, 2H) purity; 99 %; MS (m/e): 433 (MH+). 1H NMR (DMSO-d6); d d 1.38 (d, 3H), 4.58 (q, 1H), 6.88 (m, 1H), 7.22 (m, 4H), 7.57 (m, 1H), 7.99 (m, 2H), 8.12 (m, 2H) purity; 90 %; MS (m/e): 433 (MH+). 1H NMR (DMSO-d6); d 1.88 (m, 2H), 2.25 (m, 2H), 3.75 (t, 2H), 6.52 (d, 1H), 6.92 (dd, 2H), 7.37 (m, 3H), 8.12 (d, 1H), 6.96 (m, 2H), 6.52 (d, 1H), 6.92 (dd, 2H), 7.37 (m, 3H), 8.12 (d, 1H), 6.96 (m, 1H), 6.92 (dd, 2H), 7.37 (m, 1H), 6.96 (m, 2H), 8.02 (d, 1H), 6.92 (d, 3H), 2.97 (m, 2H), 3.55 (m, 2H), 3.56 (m, 2H), 6.60 (m, 1H), 7.22 (m, 3H), 7.37 (m, 1H), 7.43 (m, 1H), 8.02 (m, 1H), 8.02 (d, 1H), 6.19 (m, 1H), 7.22 (m, 3H), 7.37 (m, 1H), 7.43 (m, 1H), 6.58 (m, 1H), 6.60 (m, 1H), 7.22 (m, 3H), 7.37 (m, 1H), 6.40 (m, 1H), 6.50 (m, 1H), 6.19 (m, 1H), 6.75 (m, 2H), 7.22 (m, 2H), 7.43 (m, 1H), 8.22 (d, 1H) purity; 99 %; MS (m/e): 428 (MH+). 1H NMR (DMSO-d6): d 3.37 (s, 2H), 3.58 (s, 3H), 7.08 (m, 1H), 6.75 (m, 2H), 7.42 (m, 1H), 8.22 (d, 1H) purity; 99 %; MS (m/e): 428 (MH+). 1H NMR (DMSO-d6): d 3.47 (s, 2H), 3.88 (s, 3H), 7.08 (m, 1H), 6.75 (m, 2H), 7.22 (m, 2H), 7.78 (m, 1H), 8.22 (d, 1H) purity; 99 %; MS (m/e): 428 (MH+).	CHMC, gE, 3pt	+	+	+		+	+	+	+	+
Intro-N4-[2-(2-hydroxyethyl)-3-oxo-2H,4H-benz[1,4]oxazin-Il-1-N2-[3-(oxazol-2-yl)phenyl]-2,4-pyrlmidinediamine Il-N2-[3-(oxazol-5-yl)phenyl]-2,4-pyrlmidinediamine Il-N2-[4-(oxazol-5-yl)phenyl]-2,4-pyrlmidinediamine Il-N2-[4-(oxazol-4-yl)phenyl]-2,4-pyrlmidinediamine Il-N2-[4-(oxazol-4-yl)phenyl]-2,4-pyrlmidinediamine Il-S-Fluoro-N4-(2-methyl-3-oxo-2H,4H-benz[1,4]oxazin-6-yl)-13-(oxazol-4-yl)phenyl]-2,4-pyrlmidinediamine Il-S-N2-(3,5-Dimethylphenyl]-2,4-pyrlmidinediamine Il-N2-(3,5-Dimethylphenyl)-5-fluoro-N4-Il-H-benz[1,4]oxazin-6-yl)-13-(3,5-dimethoxyphenyl)-5-fluoro-2,4-pyrlmidinediamine Il-S-N2-(3-byrdroxyethyl)-5-fluoro-N4-(3-oxo-2H,4H-benz[1,4]thiazin-6-yl)-2,4-pyrlmidinediamine Il-S-Dihydro-2-(2-hydroxyethyl)-2H,4H-benz[1,4]bxazin-6-yl)-2,4-pyrlmidinediamine Il-S-Dihydro-2-(2-hydroxyethyl)-5-fluoro-N4-(3-oxo-2H,4H-benz[1,4]thiazin-6-yl)-2,4-pyrlmidinediamine Il-S-Dihydro-2-(2-hydroxyethyl)-5-fluoro-N4-(3-oxo-2H,4H-benz[1,4]thiazin-6-yl)-2,4-pyrlmidinediamine Il-S-Dihydro-2-(2-hydroxyphenyl)-5-fluoro-N4-(3-oxo-2H,4H-benz[1,4]thiazin-6-yl)-2,4-pyrlmidinediamine Il-S-Dihydro-3-(3-5-Dihydro-2-(2-hydroxyphenyl)-5-fluoro-N4-(3-oxo-2H,4H-benz[1,4]thiazin-6-yl)-2,4-pyrlmidinediamine Il-S-Dihydro-4-methoxyphenyl)-5-fluoro-N4-(3-oxo-2H,4H-benz[1,4]thiazin-6-yl)-2,4-pyrlmidinediamine	Physical Data H NMR (DMSO-d6): d 1.93 (m, 2H), 3.58 (m, 2H), 4.62 (m, 1H), 6.88 (m, 2H), 7.22 (m, 3H), 7.57 (m, 2H), 7.79 (m, 2H), 8.22 (m, 2H), 3.54 (m, 2H), 7.57 (m, 2H), 7.79 (m, 2H), 8.22 (m, 2H), 7.57 (m, 2H), 7.79 (m, 2H), 8.22 (m, 2H), 7.57 (m, 2H), 8.22 (m, 2H), 7.57 (m, 2H), 7.79 (m, 2H), 8.22 (m, 2H), 7.57 (m, 2H), 7.79 (m, 2H), 8.22 (m, 2H), 7.57 (m, 2H), 7.79 (m, 2H), 8.22 (m, 2H), 7.57 (m, 2H), 7.79 (m, 2				1H NMR (DMSO-d6): d 2.18 (s, 6H), 2.25 (m, 2H) 3.75 (t, 2H) 4.58 (q, 1H), 6.52 (d, 1H), 6.92 (dd, 2H), 7.37 (m, 3H), 8.12 (d, 1H) purity: 90 %; MS (m/e): 406 (MH+).	1H NMR (DMSO-d6): d 1.88 (m, 2H), 2.97 (m, 2H), 3.55 (m, 2H), 3.61 (s, 6H), 4.08 (q, 1H), 6.02 (m, 1H), 6.58 (d, 1H), 6.96 (m, 5H), 8.02 (d, 1H) purity: 96 %; MS (m/e): 442 (MH+).	-1H NMR (DMSO-d6): d 2.62 (d, 3H), 3.32 (s, 2H), 4.37 (s, 2H), 6.60 (m, 1H), 7.22 (m, 3H), 7.37 (m, 1H), 7.43 (m, 1H), 8.02 (m, 1H), 8.22 (d, 1H) purity: 94 %; MS (m/e): 455 (MH+).		1H NMR (DMSO-d6): d 3.37 (s, 2H), 3.61 (s, 6H), 6.18 (m, 1H), 6.75 (m, 2H), 7.22 (m, 2H), 7.43 (m, 1H), 8.22 (d, 1H) purity: 98 %; MS (m/e): 428 (MH+).	1H NMR (DMSO-d6): d 3.47 (s, 2H), 3.88 (s, 3H), 7.08 (m, 1H), 7.25 (s, 2H), 7.42 (m, 2H), 7.78 (m, 1H), 8.22 (d, 1H) purity: 99 %; MS (m/e): 432 (MH+).
255 NA Pyrriber 255 NA Pyrribe	nd Compound Name Compound Name Fluoro-N4-[2-(2-hydroxyethyl)-3-oxo-2 - 7-yl]-N2-[3-(oxazol-2-yl)phenyl]-2,4-pyrim	5-Fluoro-N4-[2-(2-hydroxyethyl)-3-oxo-2F 7-yl]-N2-[4-(oxazol-5-yl)phenyl]-2,4-pyrim	(R)-5-Fluoro-N4-(2-methyl-3-oxo-2H,4H-benz[1,4]oxazin-6-yl)- N2-[3-(oxazol-4-yl)phenyl]-2,4-pyrimidinediamine	(S)-5-Fluoro-N4-(2-methyl-3-oxo-2H,4H-benz[1,4]oxazin-6-yl)- N2-[3-(oxazol-4-yl)phenyl]-2,4-pyrimidinediamine	(R,S)-N2-(3,5-Dimethylphenyl)-5-fluoro-N4- 252(tetrahydrofurano[2,3]-2H-benz[1,4]oxazin-6-yl)-2,4- pyrimidinediamine	253 yll-N2-(3,5-dimethoxyphenyl)-5-fluoro-2,4-pyrimidinediamine	5-Fluoro-N2-{3-(N-methylamino)carbonylmethyleneoxyphenyl. 254 N4-(3-oxo-2H,4H-benzo[1,4]thiazin-6-yl)-2,4-pyrimidinediamine	N4-[2,3-Dihydro-2-(2-hydroxyethyl)-2H,4H-benz[1,4]oxazin-6-yl]-N2-(3,5-dimethylphenyl)-5-fluoro-2,4-pyrimidinediamine	N2-(3,5-Dimethoxyphenyl)-5-fluoro-N4-(3 benzo[1,4]thiazin-6-yl)-2,4-pyrimidinediar	N2-(3-Chloro-4-methoxyphenyl)-5-fluoro benzo[1,4]thiazin-6-yl)-2,4-pyrimidinedia

Compound Number	Compound Name	Physical Data	Tryptase, CHMC, IgE, 3pt	Tryptase, CHMC, IgE, 8pt	Tryptase, Tryptase, Tryptase, fp_syk, CHMC, CHMC, CHMC, 11pt IgE, 3pt Iono, 3pt	fp_syk, 11pt
258	N4-(3,4-Dihydro-2H,4H-benzo[1,4]thiazin-6-yl)-5-fluoro-N2-[3-258 (N-methylamino)carbonylmethyleneoxyphenyl]-2,4-pyrimidinediamine	N4-(3,4-Dihydro-2H,4H-benzo[1,4]thiazin-6-yl)-5-fluoro-N2-[3-	+	+	1	
259	5-Fluoro-N2-[3-(N-methylamino)carbonylmethyleneoxyphenyll-259 N4-(4-methyl-3-oxo-2H-benzo[1,4]thiazin-6-yl)-2,4-pyrimidinediamine	nethyleneoxyphenyll-1H NMR (DMSO-d6): d 2.62 (d, 3H), 3.11 (s, 3H), 3.32 (s, 2H), 4.37 (e, 2H), 6.60 (m, 1H), 7.22 (m, 3H), 7.37 (m, 1H), 7.43 (m, 1H), 8.02 (m, 1H) purity: 95 %; MS (m/e): 469 (MH+).	+	+	ı	
260	N2-(3,5-Dimethoxyphenyl)-5-fluoro-N4-(4-methyl-3-oxo-2H-benzo[1,4]thiazin-6-yl)-2,4-pyrimidinediamine	1H NMR (DMSO-d6): d 3.11 (s, 3H), 3.32 (s, 2H), 3.58 (s, 6H), 6.18 (m, 1H), 6.75 (m, 2H), 7.32 (m, 3H), 7.63 (m, 2H), 8.22 (d, 1H) purity: 98 %; MS (m/e): 442 (MH+).	+	+	1	
261	N2-(3-Benzothioamide)-5-fluoro-N4-(3-oxo-2H,4H-benz[1,4]oxazin-6-yl)-2,4-pyrimidinediamine	1H NMR (DMSO-d6): d 4.58 (s, 2H), 6.98 (m, 1H), 7.19 (m, 2H), 7.39 (m, 3H), 7.93 (m, 1H), 8.19 (d, 1H) purity: 90 %; MS (m/e): 411 (MH+).	+		ı	
262	N2-(3-Benzothioamide)-5-fluoro-N4-[2-(2-hydroxyethyl)-3-oxo- 2H,4H-benz[1,4]oxazin-6-yl]-2,4-pyrimidinediamine	1H NMR (DMSO-d6): 1.91 (m, 2H), 3.54 (m, 2H), 4.63 (m, 1H), 6.98 (m, 1H), 7.19 (m, 2H), 7.39 (m, 3H), 7.93 (m, 1H), 8.19 (d, 1H) purity: 93 %; MS (m/e): 455 (MH+).	+		1	
263	N2-(3,5-Dimethoxyphenyl)-N4-(dioxide-2-methyl-1,1,3-trioxo- 4H-benzo[1,4]thiazin-6-yl)-5-fluoro-2,4-pyrimidinediamine	1H NMR (DMSO-d6): d 1.42 (d, 3H), 3.63 (s, 6H), 4.69 (q, 1H), 6.14 (s, 1H), 6.92 (m, 2H), 7.72 (s, 2H), 7.92 (m, 2H), 8.27 (d, 1H) purity: 99 %; MS (m/e): 474 (MH+).	+	+		+
264	N2-(3,5-Dimethylphenyl)-5-fluoro-N4-(2-methyl-1,1,3-trioxo- 2H,4H-benzo[1,4]thiazin-6-yl)-2,4-pyrimidinediamine	1H NMR (DMSO-d6): d 1.42 (d, 3H), 2.18 (s, 6H), 4.72 (q, 1H), 6.64 (m, 1H), 7.21 (m, 2H), 7.72 (s, 2H), 7.68 (m, 2H), 8.27 (d, 1H) purity: 99 %; MS (m/e): 442 (MH+).	+	+	~	+
265	5-Fluoro-N2-(indazol-6-yl)-N4-(2-methyl-1,1,3-trloxo-2H,4H- benzo[1,4]thiazin-6-yl)-2,4-pyrimidinediamine	1H NMR (DMSO-d6): d 1.42 (d, 3H), 4.79 (q, 1H), 7.23 (m, 1H), 7.60 (m, 1H), 7.77 (m, 1H), 7.82 (m, 3H), 8.16 (m, 1H), 8.27 (d, 1H) purity: 94 %; MS (m/e): 454(MH+).	+	+		+
266	5-Fluoro-N4-(2-methyl-1,1,3-trioxo-2H,4H-benzo[1,4]thiazin-6-3) yl)-N2-(3,4,5-trimethoxyphenyl)-2,4-pyrimidinediamine	1H NMR (DMSO-d6): d 1.42 (d, 3H), 3.66 (s, 9H), 4.70 (q, 1H), 7.04 (m, 2H), 7.72 (s, 2H), 7.72 (m, 3H), 8.22 (d, 1H) purity: 96 %; MS (m/e): 504 (MH+).	+	+		+
267	N2-(3,5-Dimethoxyphenyl)-N4-(2,2-dimethyl-1,1,3-trioxo-4H-benzo[1,4]thiazin-6-yl)-5-fluoro-2,4-pyrimidinediamine	LCMS: ret time 12.32 min purity: 100 %; MS (π/e): 488 (MH*)		+		+

		1				Ī	T	<u> </u>			
fp_syk,	+ +										
Tryptase, Tryptase, fp_syk, CHMC, CHMC, CHMC, 11pt IgE, 8pt Iono, 3pt											
Tryptase, CHMC, IgE, 8pt	+ +	+	+	+	+	+	+	+	+	+	+
Tryptase, CHMC, IgE, 3pt											
	LCMS: 1et time 13.33 frill purity: 99 %; MS (m/e): 430 (MH+)	LCMS: ret time 11.69 min purity: 95 %; MS (m/e): 442 (MH+)	LCMS: ret time 12.12 min purity: 98 %; MS (m/e): 410 (MH+)	LCMS: ret time 10.44 min purity: 99 %; MS (m/e): 472 (MH+)	LCMS: ret time 10.49 min purity: 95 %; MS (m/e): 468 (MH+)	LCMS: ret time 8.66 min purity: 96 %; MS (m/e): 468 (MH+)	LCMS: ret time 10.16 min purity: 93 %; MS (m/e): 515 (MH+)	LCMS: ret time 12.66 min purity: 99 %; MS (m/e): 492 (MH+)	LCMS: ret time 9.40 min purity; 95 %; MS (m/e): 422 (MH+)	LCMS: ret time 8.23 min purity: 98 %; MS (m/e): 422 (MH+)	LCMS: ret time 9.51 min purity: 96 %; MS (m/e): 469 (MH+)
Compound Name Number Number No(3,5-Dimethylphenyl)-N4-(2,2-dimethyl-1,1,3-trioxo-4H-	benzo[1,4]thiazin-6-yl)-5-fluoro-2,4-pyrimidinediamine N4-(2,2-Dimethyl-1,1,3-trioxo-4H-benzo[thiazin-6-yl)-5-fluoro-2,3,4,5-trimethoxyphenyl)-2,4-pyrimidinediamine	N2-(3,5-Dimethoxyphenyl)-5-fluoro-N4-(2-methyl-3-oxo- 2H,4H-benzo[1,4]thiazin-6-yl)-2,4-pyrimidinediamine	N2-(3,5-Dimethylphenyl)-5-fluoro-N4-(2-methyl-3-oxo-2H,4H-benzo[1,4]thiazin-6-yl)-2,4-pyrimidinediamine	5-Fluoro-N4-(2-methyl-3-oxo-2H,4H-benzo[1,4]thlazin-6-yl)- N2-(3,4,5-trimethoxyphenyl)-2,4-pyrimidinediamine	N4-(2,2-Dimethyl-1,1,3-trioxo-4H-benzo[1,4]thiazin-6-yl)-5- fluoro-N2-(Indazol-6-yl)-2,4-pyrimidinediamine	N4-(2,2-Dimethyl-1,1,3-trioxo-4H-benzo[1,4]thiazin-6-yl)-5- fluoro-N2-(indazol-5-yl)-2,4-pyrimidinediamine	N4-(2,2-Dimethyl-1,1,3-trioxo-4H-benzo[1,4]thiazin-6-yl)-5-275fluoro-N2-[3-(N-methylamino)carbonylmethyleneoxyphenyl]-2,4-pyrimidinediamine	N2-(3-Chloro-4-methoxyphenyl)-N4-(2,2-dimethyl-1,1,3-trioxo-4H-benzo[thiazin-6-yl)-5-fluoro-2,4-pyrimidinediamine	5-Fluoro-N2-(indazol-6-yl)-N4-(2-methyl-3-oxo-2H,4H-benzo[1,4]thiazin-6-yl)-2,4-pyrimidinediamine	5-Fluoro-N2-(indazol-5-yl)-N4-(2-methyl-3-oxo-2H,4H- 278 benzo[1,4]thiazin-6-yl)-2,4-pyrimidinediamine	5-Fluoro-N2-[3-(N-methylamino)carbonylmethyleneoxyphenyl]-279\N4-(2-methyl-3-oxo-2H,4H-benzo[1,4]thiazin-6-yl)-2,4-pyrimidinediamine

Typtase, fp_syk, CHMC, 11pt Iono, 3pt												
Tryptase, Tryptase, fp_syk, CHMC, CHMC, CHMC, CHMC, 11pt 1gE, 3pt Iono, 3pt	+	+	+	+	+,	+	+	+	+	+	+	+
Tryptase, CHMC, IgE, 3pt		+										
Physical Data CHI	LCMS: ret time 11.77 min purity: 97 %; MS (m/e): 446 (MH+)	LCMS: ret time 8.18 min purity: 99 %; MS (m/e): 384 (MH+)	LCMS: ret time 9.11 min purity: 99 %; MS (m/e): 398 (MH+)	LCMS: ret time 9.89 min purity: 99 %; MS (m/e): 444 (MH+)	LCMS: ret time 9.33 min purity: 97 %; MS (m/e): 430 (MH+)	LCMS: ret time 9.44 min purity: 93 %; MS (m/e): 501 (MH+)	LCMS: ret time 11,68 min purity: 95 %; MS (m/e): 478 (MH+)	LCMS: ret time 9.49 min purity: 99 %; MS (m/e): 458 (MH+)	LCMS: ret time 7.28 min purity: 98 %; MS (m/e): 408 (MH+)	LCMS: ret time 12.45 min purity: 97 %; MS (m/e): 460 (MH+)	LCMS: ret time 12.81 min purity: 99 %; MS (m/e): 456 (MH+)	LCMS: ret time 13.44 min purity: 99 %; MS (m/e): 424 (MH+)
Compound Name	N2-(3-Chloro-4-methoxyphenyl)-5-fluoro-N4-(2-methyl-3-oxo- 280 2H,4H-benzo[1,4]thiazin-6-yl)-2,4-pyrimidinediamine	5-Fluoro-N2-(3-hydroxyphenyl)-N4-(3-oxo-2H,4H-benzo[1,4]thiazin-6-yl)-2,4-pyrimidinediamine	racemic-5-Fluoro-N2-(3-hydroxyphenyl)-N4-(2-methyl-3-oxo- 282 2H,4H-benzo[1,4]thiazin-6-yl)-2,4-pyrimidinediamine	racemic-N4-(2,2-Dimethyl-1,1,3-trioxo-4H-benzo[1,4]thiazin-6-yl)-5-fluoro-N2-[3-hydoxyphenyl]-2,4-pyrimidinediamine	racemic-5-Fluoro-N2-[3-hydoxyphenyl]-N4-(2-methyl-1,1,3-trioxo-2H,4H-benzo[1,4]thiazin-6-yl)-2,4-pyrimidinediamine	racemic-5-Fluoro-N2-[3-(N-methylamino)carbonylmethyleneoxyphenyl]-N4-(2-methyl-1,1,3-trioxo-2H,4H-benzo[1,4]thiazin-6-yl)-2,4-pyrimidinediamine	racemic-N2-(3-Chloro-4-methoxyphenyl)-5-fluoro-N4-(2-286 methyl-1,1,3-trioxo-2H,4H-benzo[1,4]thiazin-6-yl)-2,4-pyrimidinediamine	5-Fluoro-N4-(3-oxo-2H,4H-benzo[1,4]thiazin-6-yl)-N2-(3,4,5-trimethoxyphenyl)-2,4-pyrimidinediamine	5-Fluoro-N2-(indazol-5-yl)-N4-(3-oxo-2H,4H-benzo[1,4]thiazin- 288 6-yl)-2,4-pyrimidinediamine	N2-(3-Chloro-4-methoxyphenyl)-N4-(2,2-dimethyl-3-oxo-4H-benzo[thiazin-6-yl)-5-fluoro-2,4-pyrimidinediamine	N2-(3,5-Dimethoxyphenyl)-N4-(2,2-dimethyl-3-oxo-4H- 290 benzo[1,4]thiazin-6-yl)-5-fluoro-2,4-pyrimidinediamine	N4-(2,2-Dimethyl-3-oxo-4H-benzo[1,4]thiazin-6-yl)-N2-(3,5-dimethylphenyl)-5-fluoro-2,4-pyrimidinediamine
Compound Number	21	77	73	73	73	73	73	73	28	78	×	×

syk,				+								
Tryptase, Tryptase, Tryptase, fp_syk, CHMC, CHMC, CHMC, 11pt		<u> </u>										
Se, Tryk												<u> </u>
LU, Tryptase, CHMC, IgE, 8pt	+	+	+	+	+	+	+	+	+	+	+	+
Tryptase, CHMC, IgE, 3pt			+	+	+	+	+	+	+	+		
Physical Data CHI	LCMS: ret time 11.86 min purity: 99 %; MS (m/e): 486 (MH+)	LCMS: ret time 10.39 min purity: 99 %; MS (m/e): 412 (MH+)	LCMS: ret time 10.04 min purity: 97 %; MS (m/e): 483 (MH+)	LCMS: ret time 10.54 min purity: 96 %; MS (m/e); 436 (MH+)	LCMS: ret time 11.91 min purity: 96 %; MS (m/e): 462 (MH+)	LCMS: ret time 12.11 min purity: 96 %; MS (m/e): 476 (MH+)	-CMS: ret time 11.29 min purity: 98 %; MS (m/e): 430 (MH+)	LCMS: ret time 12.14 min purity: 99 %; MS (m/e): 444 (MH+)	LCMS: ret time 10.56 min purity: 97 %; MS (m/e): 415 (MH+)	LCMS: ret time 11.76 min purity: 98 %; MS (m/e): 396 (MH+)	LCMS: ret time 10.72 min purity: 96 %; MS (m/e): 428 (MH+)	LCMS: ret time 10.06 min purity: 95 %; MS (m/e): 460 (MH+)
Compound Name	N4-(2,2-dimethyl-3-oxo-4H-benzo[1,4]thiazin-6-yl)-5-fluoro-N2- (3,4,5-trimethoxyphenyl)-2,4-pyrimidinediamine	N4-(2,2-Dimethyl-3-oxo-4H-benzo[1,4]thlazin-6-yl)-5-fluoro- N2-(3-hydroxyphenyl)-2,4-pyrimidinediamine		N4-(2,2-Dimethyl-3-oxo-4H-benzo[1,4]thiazin-6-yl)-5-fluoro- N2-(indazol-6-yl)-2,4-pyrimidinediamine	racemic-5-Fluoro-N2-(3-fluoro-4-methoxyphenyl)-N4-(2-296 methyl-1,1,3-trioxo-2H,4H-benzo[1,4]thiazin-6-yl)-2,4-pyrlmidinediamine	N4-(2,2-Dimethyl-1,1,3-trioxo-4H-benzo[1,4]thiazin-6-yl)-5- fluoro-N2-(3-fluoro-4-methoxyphenyl)-2,4-pyrimidinediamine		(c)	5-Fluoro-N2-(3-fluoro-4-methoxyphenyl)-N4-(3-oxo-2H,4H-l)benzo[1,4]thiazin-6-yl)-2,4-pyrimidinediamine		N2-(3,5-Dimethylphenyl)-5-fluoro-N4-(1,1,3-trioxo-2H,4H-benzo[1,4]thiazin-6-yl)-2,4-pyrimidinediamine	N2-(3,5-Dimethoxylphenyl)-5-fluoro-N4-(1,1,3-trioxo-2H,4H- 303 benzo[1,4]thiazin-6-yl)-2,4-pyrimidinediamine
Compound Number	2	5	8	Ž	Ñ	Ñ	73	73	3(3(3(30

fp_syk, 11pt												
Tryptase, fp_sy CHMC, 11pt lono, 3pt												
Tryptase, Tryptase, Tryptase, fp_syk, CHMC, CHMC, CHMC, 11pt IgE, 8pt Iono, 3pt	+	+	+	+	+	+	+	+				
Tryptase, CHMC,								+		+	+	1
Physical Data	LCMS: ret time 10.13 min purity: 97 %; MS (m/e): 464 (MH+)	- LCMS: ret time 8.40 min purity: 97 %; MS (m/e); 487 (MH+)	LCMS: ret time 9.19 min purity: 95 %; MS (m/e): 490 (MH+)	LCMS: ret time 8.33 min purity: 91 %; MS (m/e): 440 (MH+)	LCMS: ret time 8.07 min purity: 96 %; MS (m/e): 416 (MH+)	LCMS: ret time 9.74 min purity: 95 %; MS (m/e): 448 (MH+)	LCMS: ret time 7.40 min purity: 94 %; MS (m/e): 440 (MH+)	LCMS: ret time 10.15 min purity: 99 %; MS (m/e): 450 (MH+)	LCMS: ret time 10.54 min purity: 100 %; MS (m/e): 436 (MH+)	LCMS: ret time 5.58 min purity: 95 %; MS (m/e): 311 (MH+)	LCMS: ret time 11.18 min purity: 95 %; MS (m/e): 325 (MH+)	LCMS: ret time 10.03 min purity: 95 %; MS (m/e): 343 (MH+)
Compound Name Vumber	N2-(3-Chloro-4-methoxyphenyl)-5-fluoro-N4-(1,1,3-trioxo-304 2H,4H-benzo[1,4]thiazin-6-yl)-2,4-pyrimidinediamine	5-Fluoro-N2-[3-(N-methylamino)carbonylmethyleneoxyphenyl]. 305N4-(1,1,3-trioxo-2H,4H-benzo[1,4]thiazin-6-yl)-2,4-pyrimidinediamine	5-Fluoro-N2-(3,4,5-triimethoxylphenyl)-N4-(1,1,3-trioxo-2H,4H-benzo[1,4]thiazin-6-yl)-2,4-pyrimidinediamine	5-Fluoro-N2-(indazol-6-yl)-N4-(1,1,3-trioxo-2H,4H- 307 benzo[1,4]thiazin-6-yl)-2,4-pyrimidinediamine	5-Fluoro-N2-(3-hydroxyphenyl)-N4-(1,1,3-trioxo-2H,4H- 308 benzo[1,4]thiazin-6-yl)-2,4-pyrimidinediamine	5-Fluoro-N2-(3-fluoro-4-methoxyphenyl)-N4-(1,1,3-trioxo- 309 2H,4H-benzo[1,4]thiazin-6-yl)-2,4-pyrimidinediamine	5-Fluoro-N2-(indazol-5-yl)-N4-(1,1,3-trioxo-2H,4H-310) benzo[1,4]thiazin-6-yl)-2,4-pyrimidinediamine	N4-(2,2-Dimethyl-3-oxo-4H-benzo[1,4]thiazin-6-yl)-5-fluoro- 311 N2-(1-methylindazol-6-yl)-2,4-pyrimidinediamine	N4-(2,2-Dimethyl-3-oxo-4H-benzo[1,4]thiazin-6-yl)-5-fluoro- 312 N2-(indazol-6-yl)-2,4-pyrimidinediamine Trifuoro Acetate Salt	N2-Chloro-5-fluoro-N4-(3-oxo-2H,4H-benzo[1,4]thiazin-6-yl)-4-pyrimidineamine	racemic-N2-Chloro-5-fluoro-N4-(2-methyl-3-oxo-2H,4H-benzo[1,4]thiazin-6-yl)-4-pyrimidineamine	N2-Chloro-5-fluoro-N4-(1,1,3-trioxo-2H,4H-benzo[1,4]thiazin-315 6-yl)-4-pyrimidineamine

Compound	Compound Name	Physical Data CH IgE	ptase, MC,	Tryptase, CHMC, IgE, 8pt	Tryptase, fi CHMC, 1 Iono, 3pt	fp_syk, 11pt
316 N2	N2-Chloro-N4-(2,2,-dimethyl-3-oxo-4H-benzo[1,4]thiazin-6-yl)- 5-fluoro-4-pyrimidineamine	LCMS: ret time 12.29 min purity: 95 %; MS (m/e): 339 (MH+)	+			
317 ra	racemic-N2-Chloro-5-fluoro-N4-(2-methyl-1,1,3-trioxo-2H,4H-benzo[1,4]thiazin-6-yl)-4-pyrimidineamine	LCMS: ret time 10.16 min purity: 96 %; MS (m/e): 357 (MH+)				
Zģ	N2-Chloro-N4-(2,2-dimethyl-1,1,3-trioxo-4H-benzo[1,4]thiazin-8-yl)-5-fluoro-4-pyrimidineamine	LCMS: ret time 10.50 min purity: 96 %; MS (m/e); 371 (MH+)	+			
319 N	N4-[benzoxathiazin-3(4H)-one-6-yl]2-chloro-5-fluoro-4- pyrimidineamine	LCMS: ret time 6.40 min purity: 99 %; MS (m/e); 296 (MH+)	+			
320 N	N2-Chloro-N4-(3,3-dimethyl-1,4-benzoxazin-6-yl)-5-fluoro- pyrimidineamine	LCMS: ret time 12.20 min purity 99 % MS (m/e): 309 (MH*)	+			
324 N	N2-(3,5-Dimethoxyphenyl)-5-fluoro-N4-(3- trifluoromethoxyphenyl)-2,4-pyrimidinediamine	14 NMR (DMSO-d6): d 9.57 (bs, 1H), 9.21 (bs, 1H), 8.16 (d, J= 3.6 Hz, 1H), 8.01 (d, J= 8.1 Hz, 1H), 7.75 (s, 1H), 7.40 (t, J= 8.1 Hz, 1H), 7.01 (d, J= 8.4 Hz, 1H), 6.91 (d, J= 2.1 Hz, 2H), 6.09-6.06 (m, 1H), 3.65 (s, 6H); 19F NMR (282 MHz, DMSO-d6): -57.17, -163.27; LCMS: purity: 99%; MS (m/e): 425 (MH+)	+			
325 N.	N2-(3,5-Dimethylphenyl)-5-fluoro-N4-(3- trifluoromethoxyphenyl)-2,4-pyrimidinediamine	"H NMR (DMSO-d6); d 9.54 (bs, 1H), 9.12 (bs, 1H), 8.15 (dd, J=1.8 and 3.6 Hz, 1H), 7.96 (d, J=8.1 Hz, 1H), 7.75 (s, 1H), 7.41 (t, J=8.1 Hz, 1H), 7.01 (d, J=8.1 Hz, 1H), 6.55 (s, 1H), 2.18 (s, 6H); 19F NMR (282 MHz, DMSO-d6); -57.01, -163.96; LCMS; pu	+			
326 5. P)	5-Fluoro-N2-(indol-6-yl)-N4-(3-trifluoromethoxyphenyl)-2,4- pyrimidinediamine	¹ H NMR (DMSO-d6): d 10.83 (bs, 1H), 9.49 (s, 1H), 9.11 (s, 1H), 8.13 (dd, J= 1.2 and 3.3 Hz, 1H), 8.05 (d, J= 8.1 Hz, 1H), 7.80 (d, J= 13.2 Hz, 2H), 7.40-7.32 (m, 2H), 7.21-7.16 (m, 2H), 6.99-6.95 (m, 1H), 6.34-6.28 (m, 1H); 19F NMR (282 MHz, DMSO-d6): -	+	+		
7. E G	5-Fluoro-N4-[1-(N-methylamino)carbonylindol-6-yl]-N2-[3-(N-327 methylamino)carbonylmethyleneoxyphenyl]-2,4-pyrimidinediamine	H NMR (DMSO-d6): d 10.87 (bs, 1H), 9.61 (s, 1H), 9.46-9.43 (m, 1H), 8.08 (d, J= 3.6 Hz, 1H), 8.04-7.98 (m, 1H), 7.40-7.25 (m, 4H), 7.02 (dd, J= 1.8 and 8.4 Hz, 1H), 6.95-6.90 (m, 1H), 6.77-6.70 (m, 2H), 6.38-6.35 (m, 1H), 4.39 (s, 2H), 2.62 (d, J= 4.8 Hz	+			

Compound	Compound Name	Physical Data Tryptase, Tryptase, fp_syk, CHMC, CHMC, CHMC, CHMC, 11pt 19E, 3pt 19E, 8pt 10no, 3pt	LU Tryptase, Try CHMC, CH IgE, 8pt Ion	Tryptase, fp. CHMC, 11	fp_syk, 11pt
328	N2-(3,5-Dimethoxyphenyl)-N4-(3,5-dimethylphenyl)-5-fluoro- 2,4-pyrimidinediamine	¹ H NMR (DMSO-d6): d 9.15 (bs, 1H), 9.11 (s, 1H), 8.07 (d, J= 3.9 Hz, 1H), 7.37 (s, 2H), 6.89 (d, J= 1.81 Hz, 2H), 6.68 (s, 1H), 6.05 (t, J= 2.1 Hz, 1H), 3.61 (s, 6H), 2.23 (s, 6H); 19F NMR (282 MHz, DMSO-d6): -163.60; LCMS: purity: 99%; MS (m/e): 369 (MH	+		
329	N4-(3,5-Dimethylphenyl)-5-fluoro-N2-(3-methoxy-5- trifluoromethylphenyl)-2,4-pyrimidinediamine	¹ H NMR (DMSO-d6): d 9.45 (s, 1H), 9.22 (s, 1H), 8.12 (d, J= 3.9 Hz, 1H), 7.68-7.54 (m, 1H), 7.33 (s, 2H), 6.71 (s, 2H), 3.69 (s, 3H), 2.23 (s, 6H); LCMS: purity: 99%; MS (m/e): 407 (MH+).			
330	N4-(3,5-Dimethylphenyl)-5-fluoro-N4-(3-methyl-5- trifluoromethylphenyl)-2,4-pyrimidinediamine	¹ H NMR (DMSO-d6): d 10.11 (bs, 1H), 9.94 (bs, 1H), 8.25 (d, J= 4.8 Hz, 1H), 7.67 (s, 2H), 7.24 (s, 2H), 7.14 (s, 1H), 6.80 (s, 1H), 2.25 (s, 3H), 2.21 (s, 6H); 19F NMR (282 MHz, DMSO-d6): -61.76, -161.10; LCMS: purity: 99%; MS (m/e): 390 (M+).			
331	N2-(3,5-Dimethylphenyl)-5-fluoro-N4-(3-methoxy-5- trifluoromethylphenyl)-2,4-pyrimidinediamine	¹ H NMR (DMSO-d6): d 9.86 (bs, 1H), 9.42 (bs, 1H), 8.20 (d, J= 4.2 Hz, 1H), 7.80-7.76 (m, 1H), 7.56-7.51 (m, 1H), 7.18 (s, 2H), 6.94 (s, 1H), 6.59 (s, 1H), 3.74 (s, 3H), 2.15 (s, 6H); LCMS: purity: 97%; MS (m/e): 407 (MH+).			
332	N2-(3,5-Dimethoxyphenyl)-5-fluoro-N4-(3-methoxy-5- trifluoromethylphenyl)-2,4-pyrimidinediamine	¹ H NMR (DMSO-d6): d 9.59 (bs, 1H), 9.24 (bs, 1H), 8.18 (d, J=3.3 Hz, 1H), 7.84-7.68 (m, 1H), 7.61-7.57 (m, 1H), 6.89 (d, J= 2.4 Hz, 3H), +6.06 (t, J= 2.4 Hz, 1H), 3.77 (s, 3H), 3.61 (s, 6H); 19F NMR (282 MHz, DMSO-d6): -61.85, -163.20; LCMS: purity: 97%;	٨		
333	V2,N4-Bis(3-methoxy-5-trifluoromethylphenyl)-5-fluoro-2,4. oyrimidinediamine	¹ H NMR (DMSO-d6): d 9.80 (bs, 1H), 9.72 (s, 1H), 8.25 (d, J= 3.3 Hz, 1H), 7.77-7.72 (m, 1H), 7.60-7.52 (m, 3H), 6.92 (s, 1H), 6.75 (s, 1H), +3.77 (s, 3H), 3.71 (s, 3H); 19F NMR (282 MHz, DMSO-d6): -61.90, -161.82; LCMS: purity: 97%; MS (m/e): 477 (MH+).		00	
334	5-Fluoro-N4-(3-methoxy-5-trifluoromethylphenyl)-N2-(3- methyl-5-trifluoromethylphenyl)-2,4-pyrimidinediamine	TH NIMR (DMSO-d6): d 9.83 (bs, 1H), 9.72 (bs, 1H), 8.25 (d, J= 3.6 Hz, 1H), 7.81-7.68 (m, 3H), 7.57-7.52 (m, 1H), 7.06 (s, 1H), 6.96-6.91 (m, 1H), 3.75 (s, 3H), 2.26 (s, 3H); 19F NIMR (282 MHz, DMSO-d6): -61.82, -162.02; LCMS: purity: 91%; MS (m/e): 461 (M	,		
335	335 5-Fluoro-N4-(3-methoxy-5-trifluoromethylphenyl)-N2-(3,4,5-trimethoxyphenyl)-2,4-pyrimidinediamine	¹ H NMR (DMSO-d6): d 9.67 (bs, 1H), 9.24 (bs, 1H), 8.17 (d, J= 3.6 Hz, 1H), 7.84-7.78 (m, 1H), 7.59 (s, 1H), 6.95-6.87 (m, 3H), 3.74 (s, 3H), 3.59 (s, 6H); 19F NMR (282 MHz, DMSO-d6): -61.86, -163.40; LCMS: purity: 96%; MS (m/e): 469 (MH+).	+	,	

Tryptase, Tryptase, fp_syk, CHMC, CHMC, CHMC, 11pt IgE, 3pt IgE, 8pt Iono, 3pt +							
LU Tryptase CHMC, IgE, 8pt		+		+		+	,+
	+ .	, +	1	+	+		+
Physical Data H NMR (DMSO-d6): d 9.56 (s, 1H), 9.09 (s, 1H), 8.61 (s, 1H), 8.14 (d, J= 3.6 Hz, 1H), 7.52-7.77 (m, 1H), 7.57-7.53 (m, 1H), 7.52-7.48 (m, 1H), 7.27-7.23 (m, 1H), 6.89 (bs, 1H), 3.76 (s, 3H), 2.10 (s, 3H); 19F NMR (282 MHz, DMSO-d6): -61.80, -164.13; LCM	¹ H NMR (DMSO-d6): d 9.74 (s, 1H), 9.70 (s, 1H), 8.25 (d, J= 3.6 Hz, 1H), 7.77-7.71 (m, 3H), 7.55-7.50 (m, 1H), 7.03-7.01 (m, 1H), 6.95-6.93 (m, 1H), 3.79 (s, 3H); 19F NMR (282 MHz, DMSO-d6): -61.78, -161.76; LCMS: purity: 96%; MS (m/e): 448 (MH+).	Hz, 1H), 7.83-7.79 (m, 1H), 7.57-7.51 (m, 1H), 7.34 (bs, 2H), 6.99-6.94 (m, 2H), 4.38 (s, 4H), 3.74 (s, 3H); LCMS: purity: 92%; MS (m/e): 439 (MH+).	¹ H NMR (DMSO-d6): d 9.98 (bs, 1H), 9.66 (bs, 1H), 8.24 (d, J= 4.2 Hz, 1H), 7.76-7.71 (m, 1H), 7.56-7.52 (m, 1H), 7.37 (s, 2H), 6.98-6.95 (m, 1H), 3.75 (s, 3H), 2.20 (s, 6H); LCMS: purity: 98%; MS (m/e): 442 (MH+).	1H NMR (DMSO-d6); d 9.27 (s, 1H), 9.18 (s, 1H), 8.10 (d, 1H, J= 3.9 Hz), 6.99 (d, 2H, J= 2.1 Hz), 6.92 (d, 2H, J= 2.4 Hz), 6.21 (t, 1H, J= 2.1 Hz), 6.05 (t, 1H, J= 2.4 Hz), 3.68 (s, 6H), 3.62 (s, 6H); LCMS: purity: 100%; MS (m/e); 401 (MH+)	¹ H NMR (DMSO-d6): d 9.11 (s, 1H), 8.98 (s, 1H), 8.05 (d, 1H, J= 3.9 (A-pyrimidinediamine Hz), 7.33 (bs, 2H), 7.24 (bd, 2H), 6.69 (bs, 1H), 6.51 (bs, 1H), 2.25 (bs, 6H), 2.14 (s, 6H); LCMS: purity: 100%; MS (m/e): 336 (M+).	¹ H NMR (DMSO-d6): d 9.10 (s, 1H), 9.09 (s, 1H), 8.02 (d, 1H, J= 3.9 Hz), 7.44 (s, 2H), 7.28 (d, 1H, J= 3.0 Hz), 7.24 (d, 1H, J= 2.7 Hz), 6.86 (s, 1H), 6.79 (d, 1H, J= 8.7 Hz), 5.05 (t, 2H, J= 6 Hz), 4.39 (d, 4H, J= 5.4 Hz), 4.22 (bs, 4H); LCMS: purity: 97	11 NMR (DMSO-46); d 9.19 (s, 11), 9.15 (s, 11), 8.08 (d, 11, J= 3.6 Hz), 7.46 (s, 2H), 7.01 (d, 2H, J= 2.1 Hz), 6.86 (s, 1H), 6.21 (t, 1H, J= 1.8 Hz), 5.03 (t, 2H, J= 5.4 Hz), 4.38 (d, 4H, J= 5.4 Hz), 3.68 (s, 6H); LCMS; purity: 86%; MS (m/e): 401 (MH+
Compound Name Number Number Number Number Number Number Name Name Name Name Name Name Name Name	N2-(3,5-Dichlorophenyl)-5-fluoro-N4-(3-methoxy-5-trifluoromethylphenyl)-2,4-pyrimidinediamine	N2-[3,5-Bis(hydroxymethylene)phenyl]-5-fluoro-N4-(3- 338 methoxy-5-trifluoromethylphenyl)-2,4-pyrimidinediamine	N2-(4-Chloro-3,5-dimethylphenyl)-5-fluoro-N4-(3-methoxy-5-trifluoromethylphenyl)-2,4-pyrlmidinediamine	N2,N4-Bis(3,5-dimethoxyphenyl)-5-fluoro-2,4- pyrimidinediamine	341 N2,N4-Bis(3,5-dimethylphenyl)-5-fluoro-2,4-pyrimidinediamine	N2-[3,5-Bis(hydroxymethylene)phenyl}-N4-(3,4-ethylenedloxyphenyl)-5-fluoro-2,4-pyrimidinedlamine	N2-[3,5-Bis(hydroxymethylene)phenyl]-N4-(3,5-dimethoxyphenyl)-5-fluoro-2,4-pyrlmidinediamine

ć

CHMC, Compound Name Thysical Data CHMC, Inge, 3pt 14 No. 13.5-Bis(hydoxymethylene)phenyl]-N4-(2,2-dimethyl-3-oxo- (d, 1H, 3.6 Hz), 7.44 (d, 2H, 3=1.2 Hz), 7.39 (dd, 1H, 3=2.4 and 8.4 Hz), 7.24 (d, 1H, 3=2.4 Hz), 6.88 (d, 1H, 3=8.7 Hz), 6.85 (bs, 1H), Hz), 7.24 (d, 1H, 3=2.4 Hz), 6.88 (d, 1H, 3=8.7 Hz), 6.85 (bs, 1H),	CHMC,	CMIC	
H NIMR (DMSO-d6): d 10.55 (s,1H), 9.27 (bd, 1H), 8.97 (s, 1H), 8.04 (d, 1H, 3.6 Hz), 7.44 (d, 2H, J= 1.2 Hz), 7.39 (dd, 1H, J= 2.4 and 8.4 Hz), 7.24 (d, 1H, J= 2.4 Hz), 6.88 (d, 1H, J= 8.7 Hz), 6.85 (bs, 1H),	18 - 18 - 18 - 18 - 18 - 18 - 18 - 18 -	lono, 3pt	11pt
6.38 (s, 2H), 5.08 (t, 1H, J= 5.6 Hz), 4.93 (t	+		+
'H NMR (DMSO-d6): d 9.26 (s,1H), 9.15 (s, 1H), 8.07 (bd, 1H, J= 3.9 Hz), 7.79 (dd, 1H, J= 2.7 and 9 Hz), 7.74 (d, 1H, J= 2.7 Hz), 7.43 (s, 2H), 7.11 (d, 1H, J= 9 Hz), 6.86 (s, 1H), 5.06 (t, 2H, J= 5.4 Hz), 4.38 (d, 4H, J= 5.4 Hz), 3.84 (s, 3H); LCMS: puri	+		
TH NMR (DMSO-d6); d 9.50 (bs, 1H), 9.28 (s, 1H), 8.16 (d, 1H, J= 3.6 Hz), 8.05 (d, 1H, J= 2.7 Hz), 7.93 (dd, 1H, J= 2.7 and 9.0 Hz), 7.52 (d, 1H, J= 8.7 Hz), 7.44 (s, 2H), 6.87 (s, 1H), 5.09 (t, 2H, J= 5.7 Hz), 4.41 (d, 4H), J= 5.4 Hz); LCMS: purity: 97%;	+		·
¹ H NMR (DMSO-d6): d 11.02 (s, 1H), 10.49 (s, 1H), 9.69 (d, 1H, J= 4.8 Hz), 9.53 (s, 1H), 8.12 (d, 1H, J= 3.6 Hz), 7.52 (d, 1H, J= 8.4 Hz), 7.38 (t, 1H, J= 2.7 Hz), 7.11 (s, 1H), 6.81 (d, 1H, J= 2.4 Hz), 6.72 (dd, 1H, J= 1.8 and 8.4 Hz), 6.59 (dd, 1H, J= 2.4 Hz), 6.59 (dd, 1H,			
1H NMR (DMSO-d6): d 11.01 (s, 1H), 10.44 (s, 1H), 9.50 (s, 1H), 8.16 (d, 1H, J= 3.6 Hz), 8.07 (d, 1H, J= 5.4 Hz), 7.52 (d, 1H, J= 8.4 Hz), 7.38 (t, 1H, J= 2.7 Hz), 6.73 (dd, 1H, J= 1.5 and 8.4 Hz), 6.54 (m, 2H), 5.69 (d, 1H, J= 8.7 Hz), 2.93 (s, 2H), 1.29 (s, 6H); LCMS: purity: 95%; MS (m/e): 462 (MH+)			
N2-(4-Chloro-3,5-dimethylphenyl)-N4-(3,5-dimethoxyphenyl)-Hz), 7.48 (s, 2H), 6.94 (d, 2H, J= 2.4 Hz), 6.24 Hz), 6.24 Hz), 3.68 + 5-fluoro-2,4-pyrimidinediamine (s, 6H), 2.20 (s, 6H); LCMS: purity: 92%; MS (m/e): 403 (MH+).			
¹ H NMR (DMSO-d6): d 9.20 (s, 1H), 9.05 (s, 1H), 8.08 (d, 1H, J= 3.6 Hz), 7.27 (s, 2H), 6.97 (d, 2H, J= 2.1 Hz), 6.51 (s, 1H), 6.21 (t, 1H, J= 1.8 Hz), 3.67 (s, 6H), 2.15 (s, 6H); LCMS:purity: 96%; MS (m/e): 369 (MH+).	+	1	+
	9 7 7 6 7 9 8 6 7 6 8 6 7 6 8 6 7 6 8 6 7 6 8 6 7 6 7	+ + + + + + + + + + + + + + + + + + +	+ + + + + + + + + + + + + + + + + + +

Compound	Compound Name	Physical Data CHMC, [gE, 3pt	CHMC, IgE, 8pt	Tryptase, CHMC, lono, 3pt	fp_syk, 11pt
351	N4-(3,5-Dimethoxyphenyl)-N2-(3,4-ethylenedioxyphenyl)-5- fluoro-2,4-pyrimidinediamine	¹ H NMR (DMSO-d6): d 9.16 (s, 1H), 9.96 (s, 1H), 8.05 (d, 1H, J= 3.3 Hz), 7.22 (d, 1H, J= 2.7 Hz), 7.06 (dd, 1H, J= 2.4 and 8.7 Hz), 6.99 (d, 2H, J= 2.1 Hz), 6.65 (d, 1H, J= 8.7 Hz), 6.20 (t, 1H, J= 2.1 Hz), 4.17 (s, 4H), 3.69 (s, 6H); LCMS: purity: 91%; M			
352	N2-(3,5-Dichlorophenyl)-N4-(3,5-dimethoxyphenyl)-5-fluoro- 2,4-pyrimidinediamine	¹ H NMR (DMSO-d6): d 9.82 (bs, 1H), 9.58 (bs, 1H), 8.21 (d, 1H, J= 3.6 Hz), 7.75 (bs, 2H), 7.04 (t, 1H, J= 1.8 Hz), 6.89 (d, 2H, J= 1.8 Hz), 6.27 (t, 1H, J= 2.1 Hz), 3,67 (s, 6H); LCMS: purity: 95%; MS (m/e): 410 (MH+).			
353	N4-(3,5-Dimethoxyphenyl)-5-fluoro-N2-(3-methyl-5-trifluoromethylphenyl)-2,4-pyrimidinediamine	¹ H NMR (DMSO-d6): d 9.47 (s, 1H), 9.31 (s, 1H), 8.15 (d, 1H, J= 3.6 Hz), 7.86 (s, 1H), 7.79 (s, 1H), 6.98 (m, 3H), 6.23 (t, 1H, J= 2.4 Hz), 3.68 (s, 6H), 2.27 (s, 3H); LCMS: putity: 96%; MS (m/e): 423 (MH+).			
354	N2-(3,5-Dichlorophenyl)-N4-(3,4-ethylenedioxyphenyl)-5- fluoro-2,4-pyrimidinediamine	¹ H NMR (DMSO-d6): d 9.56 (s, 1H), 9.28 (s, 1H), 8.11 (d, 1H, J= 3.6 Hz), 7.76 (d, 2H, J= 1.8 Hz), 7.18 (d, 1H, J= 2.4 Hz), 7.13 (dd, 1H, J= 3.6 and 9 Hz), 6.98 (t, 1H, J= 1.8 Hz), 6.82 (d, 1H, J= 8.7 Hz), 4.21 (bs, 4H); LCMS: purity: 81%; MS (m/e): 407 (M	+		
355	N4-(3,5-Dimethoxyphenyl)-5-fluoro-N2-(3-methoxy-5- trifluoromethylphenyl)-2,4-pyrimidinediamine	¹ H NMR (DMSO-d6): d 9.53 (s, 1H), 9.33 (d, 1H, J= 1.5 Hz), 8.16 (d, 1H, J= 2.1 Hz), 6.98 (d, 2H, J= 2.1 Hz), 6.72 (bs, 1H), 6.22 (t, 1H, J= 2.4 Hz), 3.72 (s, 3H), 3.69 (s, 6H); LCMS: purity: 96%; MS (m/e): 439 (MH+).			
356	N4-(3,4-Ethylenedioxyphenyl)-5-fluoro-N2-(3-methoxy-5- trifluoromethylphenyl)-2,4-pyrimidinediamine	¹ H NMR (DMSO-d6): d 9.47 (s, 1H), 9.23 (s, 1H), 8.09 (d, 1H, J= 3.9 Hz), 7.67 (s, 1H), 7.59 (s, 1H), 7.27 (d, 1H, J= 2.7 Hz), 7.18 (dd, 1H, J= 2.4 and 8.4 Hz), 6.78 (d, 1H, J= 8.7 Hz), 6.78 (s, 1H), 4.21, bs, 4H), 3.72 (s, 3H); LCMS: purity: 90%; MS (m/e)	+		
357	N2-(3,5-Dimethoxyphenyl)-5-fluoro-N4-[3,4- (tetrafluoroethylenedloxy)phenyl]-2,4-pyrimidinediamine	'H NMR (DMSO-d6): d 9.64 (s, 1H), 9.29 (s, 1H), 8.15 (m, 2H), 7.62 (dd, 1H, J= 2.4 and 9 Hz), 7.39 (d, 1H, J= 8.7 Hz), 6.90 (d, 2H, J= 2.4 Hz), 6.09 (t, 1H, J= 1.8 Hz), 3.66 (s, 6H); LCMS: purity: 97%; MS (m/e): 471 (MH+)	+		
358	V2-(4-Chloro-3,5-dimethylphenyl)-5-fluoro-N4-[3,4- tetrafluoroethylenedioxy)phenyl]-2,4-pyrimidinediamine	¹ H NMR (DMSO-d6): d 9.90 (bs, 1H), 9.56 (bs, 1H), 8.21 (bd, 1H, J=3.6 Hz), 8.06 (bs, 1H), 7.57 (dd, 1H, J= 2.4 and 9.0 Hz), 7.43 (d, 1H, J= 9.3 Hz), 7.39 (s, 2H), 7.06 (bs, 1H), .25 (s, 6H); LCMS: purity: 97%; MS (m/e): 473 (MH+).			i.

-

syk,						
tase,fp_sy IC, 11pt , 3pt						
e,Tryptase, CHMC, Iono, 3pt						
Tryptase, Tryptase, fp_syk, CHMC, CHMC, CHMC, 11pt igE, 3pt igE, 8pt lono, 3pt +			1			
Tryptase, CHMC, IgE, 3pt	1	+	+	+	+	+
Physical Data 'H NMR (DMSO-d6): d 9.60 (s, 1H), 9.32 (s, 1H), 8.16 (d, 2H, J= 3.6 Hz), 7.70 (dd, 1H, J= 2.7 and 9 Hz), 7.47 (s, 2H), 7.40 (d, 1H, J= 9.0 Hz), 6.88 (bs, 1H), 5.11 (t, 2H, J= 5.4 Hz), 4.42 (d, 4H, J= 5.4 Hz); LCMS: purity: 98%; MS (m/e): 471 (MH+).	¹ H NMR (DMSO-d6): d 9.76 (s, 1H), 9.72 (s, 1H), 8.25 (d, 1H, J= 3.6 Hz), 8.00 (d, 1H, J= 2.4 Hz), 7.74 (d, 2H, J= 1.8 Hz), 7.58 (dd, 1H, J= 2.4 and 9.0 Hz), 7.44 (d, 1H, J= 9.0 Hz), 7.04 (t, 1H, J= 1.8 Hz); LCMS: purity: 98 %; MS (m/e): 480 (MH+).	¹ H NMR (DMSO-d6): d 9.72 (s, 1H), 9.64 (s, 1H), 8.23 (d, 1H, J= 3.6 Hz), 8.07 (d, 1H, J= 2.4 Hz), 7.67 (bs, 1H), 7.60 (dd, 1H, J= 2.4 and 9.3 Hz), 7.54 (bs, 1H), 7.39 (d, 1H, J= 9 Hz), 6.75 (bs, 1H), 3.75 (s, 3H); LCMS: purity: 97 %: MS (m/e): 509 (MH+)	¹ H NMR (DMSO-d6): d 9.60 (s, 1H), 9.19 (s, 1H), 8.15 (d, 1H, J= 3.6 Hz), 8.12 (d, 1H, J= 2.4 Hz), 7.60 (dd, 2.4 and 8.7 Hz), 7.40 (d, 1H, J= 9 Hz), 7.22 (s, 2H), 6.56 (s, 1H), 2.18 (s, 6H); LCMS: purity: 100%; MS (m/e): 439 (MH+).	¹ H NMR (DMSO-d6): d 9.53 (s, 1H), 9.27 (s, 1H), 8.08 (d, 1H, J= 3.6 Hz), 7.93 (d, 1H, J= 2.4 Hz), 7.37 (dd, 1H, J= 2.4 and 9.3 Hz), 7.26 (d, 1H, J= 9 Hz), 7.11 (dd, 1H, J= 2.4 and 8.7 Hz), 6.80 (d, 1H, J= 8.4 Hz), 4.22 (s, 4H); LCMS: purity: 96%; MS (m/e)	¹ H NMR (DMSO-d6): d 9.59 (s, 1H), 9.37 (d, 1H, J= 0.9 Hz), 8.14 (d, 1H, J= 2.4 Hz), 7.38 (dd, 1H, J= 2.7 and 9.3 Hz), 7.27 (d, 1H, J= 9.0 Hz), 6.91 (d, 2H, J= 2.4 Hz), 6.26 (t, 1H, J= 2.4 Hz), 3.69 (s, 6H); LCMS: purity: 96%; MS (m/e): 471 (MH+).	¹ H NMR (DMSO-d6): d 11.59 (s, 1H), 9.66 (s, 1H), 9.34 (s, 1H), 8.46 (d, 1H, J= 4.8 Hz), 8.20 (d, 1H, J= 3.6 Hz), 8.10 (d, 1H, J= 2.4 Hz), 7.91 (d, 1H, J= 7.2 Hz), 7.60 (dd, 1H, J= 2.7 and 9 Hz), 7.39 (d, 1H, J= 9.0 Hz), 7.24 (d, 1H, J= 7.5 Hz), 7.06 (d, 1
Compound Name Number Number 359 (tetrafluoroethylenedioxy)phenyl]-2,4-pyrimidinediamine	N2-(3,5-Dichlorophenyl)-5-fluoro-N4-[3,4- 360 (tetrafluoroethylenedioxy)phenyl]-2,4-pyrimidinediamine	5-Fluoro-N2-(3-methoxy-5-trifluoromethylphenyl)-N4-[3,4- (tetrafluoroethylenedloxy)phenyl]-2,4-pyrimidinediamine	N2-(3,5-Dimethyphenyl)-5-fluoro-N4-[3,4- 362 (tetrafluoroethylenedioxy)phenyl]-2,4-pyrimidinediamine	N4-(3,4-Ethylenedioxyphenyl)-5-fluoro-N2-[3,4- 363 (tetrafluoroethylenedioxy)phenyl]-2,4-pyrimidinediamine	N4-(3,5-Dimethoxyphenyl)-5-fluoro-N2-[3,4- 364 (tetrafluoroethylenedioxy)phenyl]-2,4-pyrimidinediamine	5-Fluoro-N2-[2-(N-methylamino)carbonylindol-7-yl]-N4-[3,4- 365] (tetrafluoroethylenedioxy)phenyl]-2,4-pyrimidinediamine

fp_syk, 11pt			+				
Tryptase, CHMC, lono, 3pt							
LLV Tryptase, CHMC, IgE, 8pt		+		+	+	+	+
Tryptase, CHMC, IgE, 3pt	+	+	+				
Physical Data H NMR (DMSO-d6): d 9.70 (s, 1H), 9.60 (s, 1H), 8.22 (d, 1H, J= 2.4	Hz), 8.07 (d, 1H, J= 2.4 Hz), 7.87 (s, 1H), 7.70 (s, 1H), 7.60 (dd, 1H, J= 2.1 and 9 Hz), 7.41 (d, 1H, J= 9 Hz), 7.04 (s, 1H), 2.31 (s, 3H); LCMS: purity: 100%; MS (m/e): 493 (MH+).	¹ H NMR (DMSO-d6): d 9.48 (s, 1H), 9.12 (s, 1H), 8.11 (d, 2H, J= 3.6 Hz), 7.59 (dd, 1H, J= 2.4 and 9 Hz), 7.39 (d, 1H, J= 9.3 Hz), 7.22 (d, 1H, J= 2.4 Hz), 6.99 (dd, 1H, J= 2.4 and 8.7 Hz), 6.70 (d, 1H, J= 9 Hz); LCMS: purity: 96%; MS (m/e): 469 (MH+).	¹ H NMR (DMSO-d6): d 11.70 (s, 1H), 9.31 (s, 1H), 9. 28 (s, 1H), 8.43 (d, 1H, J= 4.8 Hz), 8.14 (d, 1H, J= 4.8 Hz), 8.04 (dd, 1H, J= 0.9 and 8.4 Hz), 7.19 (d, 1H, J= 7.5 Hz), 7.03 (d, 1H, J= 2H, J= 2.4 Hz), 6.89 (t, 1H, J= 8.4 Hz), 6.24 (t, 1H, J= 2.4 Hz),	¹ H NMR (DMSO-d6): d 10.57 (s, ¹ H), 9.35 (s, ¹ H), 9.27 (s, ¹ H), 8.10 (d, ¹ H, ¹ =3.6 Hz), 7.47 (m, ¹ H), 7.25 (dd, ¹ H, ¹ =2.7 and 8.7 Hz), 7.16 (d, ² H, ¹ =2.1 Hz), 6.87 (d, ¹ H, ¹ =8.4 Hz), 6.49 (t, ¹ H, ¹ =1.8 Hz), 3.66 (s, ³ H), 1.40 (s, ⁶ H); LCMS: purity: 10	¹ H NMR (DMSO-d6): d 9.31 (s, 1H), 9.21 (s, 1H), 8.08 (d, 1H, J= 3.9 ethylenedioxyphenyl)-Hz), 7.48 (t, 1H, J= 1.8 Hz), 7.20 (m, 3H), 6.80 (d, 1H, J= 8.4 Hz), 6.49 (t, 1H, J= 2.4 Hz), 4.21 (s, 4H), 3.67 (s, 3H); LCMS: purity: 95%; MS (m/e); 403 (MH+).	¹ H NMR (DMSO-d6): d 11.27 (s, 1H), 9.25 (s, 2H), 8.43 (d, 1H, J= 4.5 Hz), 8.09 (d, 1H, J= 3.9 Hz), 8.01 (d, 1H, J= 7.8 Hz), 7.51 (d, 1H, J= 2.1 Hz), 7.6 (m, 2H), 7.04 (d, 1H, J= 1.8 Hz), 6.92 (t, 1H, J= 7.8 Hz), 6.84 (d, 1H, J= 8.1 Hz), 6.01 (s, 2H), 2.81	¹ H NMR (DMSO-d6): d 9.20 (s, 1H), 9.10 (s, 1H), 8.05 (d, 1H, J= 3.6 Hz), 7.44 (d, 1H, J= 2.1 Hz), 7.16 (dd, 1H, J= 2.1 and 8.4 Hz), 6.93 (d, 2H, J= 2.4 Hz), 6.84 (d, 1H, J= 8.4 Hz), 6.04 (t, 1H, J= 2.1 Hz), 5.99 (s, 2H), 3.54 (s, 6H); LCMS: purity: 89%; M
Compound Name Number	366 (tetrafluoroethylenedioxy)phenyl]-2,4-pyrimidinediamine	N2-(3,4-Ethylenedioxyphenyl)-5-fluoro-N4-[3,4- (tetrafluoroethylenedioxy)phenyl]-2,4-pyrimidinediamine	N4-(3,5-Dimethoxyphenyl)-5-fluoro-N2-[2-(N-368 methylamino)carbonylindol-7-yl]-2,4-pyrimidinediamine	N2-(3-Chloro-5-methoxyphenyl)-N4-(2,2-dimethyl-3-oxo-4H-369 benz[1,4]oxazin-6-yl)-5-fluoro-2,4-pyrimidinediamine	N2-(3-Chloro-5-methoxyphenyl)-N4-(3,4-ethylenedioxyphenyl)-5-fluoro-2,4-pyrimidinediamine	5-Fluoro-N4-(3,4-methylenedioxyphenyl)-N2-[2-(N-methylamino)carbonylindol-7-yl]-2,4-pyrimidinediamine	N2-(3,5-Dimethoxyphenyl)-5-fluoro-N4-(3,4- methylenedioxyphenyl)-2,4-pyrimidinediamine

Compound Number	Compound Name Number	Physical Data CH Ige	Tryptase, CHMC, IgE, 3pt	LL Tryptase, CHMC, IgE, 8pt	Tryptase, Tryptase, fp_syk, CHMC, CHMC, CHMC, 11pt IgE, 8pt Iono, 3pt	fp_syk, 11pt
373	5-Fluoro-N4-(3,4-methylenedloxyphenyl)-N2-(3-methoxy-5-trifluoromethylphenyl)-2,4-pyrimidinediamine	¹ H NMR (DMSO-d6): d 9.49 (s, 1H), 9.30 (s, 1H), 8.10 (d, 1H, J= 3.6 Hz), 9.67 (bs, 1H), 7.58 (bs, 1H), 7.40 (d, 1H, J= 1.8 Hz), 7.11 (dd, 1H, J= 1.8 and 8.4 Hz), 6.84 (d, 1H, J= 8.4 Hz), 6.70 (bs, 1H), 6.99 (s, 2H), 3.73 (s, 3H); LCMS: purity: 97%; MS (m/	+			
374	5-Fluoro-N4-(3,4-methylenedioxyphenyl)-N2-(3-methyl-5- trifluoromethylphenyl)-2,4-pyrimidinediamine	'H NMR (DMSO-d6): d 9.46 (s, 1H), 9.29 (s, 1H), 8.10 (d, 1H, J=3.6 Hz), 7.78 (bs, 1H), 7.39 (d, 1H, J=2.1 Hz), 7.10 (1H, J=2.4 and 8.4 Hz), 6.99 (bs, 1H), 6.85 (d, 1H, J=8.4 Hz), 5.99 (s, 2H), 2.28 (s, 3H); LCMS: purity: 99%; MS (m/e): 407 (MH+).	ı			
375	N2-(3,5-Dichlorophenyl)-5-fluoro-N4-(3,4- 375 methylenedioxyphenyl)-2,4-pyrimidinediamine	'H NMR (DMSO-d6): d 9.59 (s, 1H), 9.36 (s, 1H), 8.12 (d, 1H, J= 3.9 Hz), 7.74 (d, 2H, J= 2.1 Hz), 7.30 (d, 1H, J= 2.1 Hz), 7.06 (dd, 1H, J= 2.4 and 8.4 Hz), 6.97 (t, 1H, 2.1 Hz), 6.88 (d, 1H, J= 8.4 Hz); 6.00 (s, 2H); LCMS: purity: 94%; MS (m/e): 393 (M+	+			
376	N2-(3,5-Dimethylphenyl)-5-fluoro-N4-(3,4- methylenedioxyphenyl)-2,4-pyrimidinediamine	'H NMR (DMSO-d6): d 9.18 (bs, 1H), 9.03 (s, 1H), 8.04 (d, 1H, J= 3.9 Hz), 7.43 (d, 1H, J= 2.1 Hz), 7.24 (s, 2H), 7.11 (dd, 1H, J= 2.1 and 8.4 Hz), 6.85 (d, 1H, J= 8.4 Hz), 6.50 (bs, 1H), 5.98 (s, 2H), 2.16 (s, 6H); LCMS: purity: 87%; MS (m/e): 353 (MH+).		+		
377	N2-(4-Chloro-2,5-dimethoxyphenyl)-N4-(3-chloro-4-methoxyphenyl)-5-fluoro-2,4-pyrimidinediamine	LCMS: purity. 100%; MS (m/e): 439 (M+).	+			
378	N2-(3-Chloro-4-methoxyphenyl)-N4-(2,2-dimethyl-3-oxo-4H-378 benz[1,4]oxazin-6-yl)-5-fluoro-2,4-pyrimidinediamine p-Toluene Sulfonic Acid Salt	'H NMR (DMSO-d6): d 10.63 (s, 1H), 10.05 (s, 1H), 9.62 (s, 1H), 8.15 (d, 1H, J= 4.8 Hz), 7.66 (bs, 1H), 7.44 (dd, 2H, J= 1.8 and 8.7 Hz), 7.35 (bd, 1H, J= 9 Hz), 7.20 (dd, 1H, J= 2.1 and 8.7 Hz), 7.10 (bd, 2H, J= 7.5 Hz), 7.02 (d, 1H, J= 9 Hz), 6.89 (d, 1		+		
379	N2-(4-Chloro-2,5-dimethoxyphenyl)-N4-(3,4-ethylenedioxyphenyl)-5-fluoro-2,4-pyrimidinediamine	'H NMR (DMSO-d6): d 9.24 (s, 1H), 8.05 (d, 1H, J= 3.9 Hz), 7.87 (s, 1H), 7.70 (s, 1H), 7.17 (d, 1H, J= 2.4 Hz), 7.06 (m, 2H), 6.74 (d, 1H, J= 8.7 Hz), 4.21 (s, 4H), 3.79 (s, 3H), 3.54 (s, 3H); LCMS: purity: 100 %; MS (m/e): 433 (MH+).	+	7		
380	N2-(4-Chloro-2,5-dimethoxyphenyl)-N4-(3,5- dimethoxyphenyl)-5-fluoro-2,4-pyrimidinediamine	LCMS: purity: 100%; MS (m/e): 435 (MH+).	+			

Ţ								
fp_sy 11pt				+				
Tryptase, Tryptase, fp_syk, CHMC, CHMC, CHMC, 11pt igE, 8pt lono, 3pt		•			1	ı	ı	ı
Tryptase, CHMC, IgE, 8pt	+			+	+	+		
Tryptase, CHMC, IgE, 3pt	+	. •	+	+	+	+	+	ı
Physical Data	¹ H NMR (DMSO-d6): d 9.36 (s, 1H), 8.25 (d, 1H, J= 1.8 Hz), 8.11 (d, 1H, J= 3.9 Hz), 7.57 (m, 3H), 6.99 (m, 2H), 6.26 (t, 1H, J= 2.1 Hz), 3.88 (s, 3H), 3.69 (s, 6H); LCMS: purity: 92%; MS (m/e): 439 (MH+).	LCMS: purity: 91%; MS (m/e): 425 (МН+).	1H NMR (DMSO-d6): d 11.85 (s, 1H), 9.31 (s, 1H), 9.26 (s, 1H), 8.16 (d, 1H, J= 3.6 Hz), 8.12 (d, 1H, J= 8.1 Hz), 7.22 (d, 1H, J= 8.1 Hz), 7.02 (d, 2H, J= 2.1 Hz), 6.91 (f, 1H, J= 7.8 Hz), 6.25 (s, 1H)3.70 (bs, 6H); LCMS: purity: 80%; MS: 424 (MH+)	14. NWR (DMSO-46): d 11.52 (s, 1H), 9.30 (bs, 1H), 9.27 (s, 1H), 8.14 (d, 1H, 1= 8.5 Hz), 8.04 (m, 1H), 7.22 (d, 1H, J= 8.4 Hz), 7.03 (m, 2H), 8.04 (m, 1H), 7.22 (d, 1H, J= 8.4 Hz), 7.03 (m, 2H), methylamino)carbonylindol-7-yl]-2,4-pyrlmidinediamine (5.90 9m, 2H), 6.23 9bs, 1H), 3.68 (s, 6H), 3.64 (bs, 4H), 3.20 (s, 3H); LCMS: purity: 94%; MS (m/e): 481 (MH+).	1H NMR (CDCl3): d 7.50 (bs, 1H), 7.30 (m, 2H), 6.91 (bd, 1H, J= 7.2 Hz), 6.73 (m, 5H), 4.49 (s, 2H), 4.31 (s, 4H), 3.60 (s, 3H), 2.92 (d, 3H, J= 4.5 Hz); :CMS: purity: 97%, MS (m/e):440 (MH+)	1H NMR (CDC(3): d 7.94 (d, 1H, J= 5.1 Hz), 7.50 (bd, 1H), 6.90 (d, 1H, J= 9 Hz), 6.83 (s, 1H), 6.73 (m, 3H), 6.62 (d. 1H, 2.4 Hz), 4.31 (m, 4H), 3.80 (s, 3H), 3.79 (s, 3H), 3.60 (s, 3H); LCMS: purity: 90%, MS: 413 (MH+).	11 NMR (CDCl3): d 7.50 (bd, 114), 7.40 (s, 114), 7.27 (m, 114), 6.90 (bdd, 114), 6.81 (m, 114), 6.77 (d, 214, J= 2.4 Hz), 6.70 (dd, 114, J= 2.7 and 8.7 Hz), 4.30 (s, 414), 3.50 (s, 314), 2.32 (s, 614); LCMS: purity: 94%, MS (m/e): 381 (MH+).	1H NMR (DMSO-d6): d 10.60 (s, 1H), 9.21 (s, 1H), 7.94 (d, 1H, J= 6.0 Hz), 7.01 (d, 2H, J= 1.2 Hz), 6.88 (m, 2H), 6.75 (d, 1H, J= 2.4 Hz), 6.05 (t, 1H, J= 2.4 Hz), 3.60 (s, 6H), 3.41 (s, 3H), 1.34 (s, 6H); LCMS: purity: 92%, MS (m/e): 454 (MH+).
Compound Name Number	N4-(3,5-Dimethoxyphenyl)-5-fluoro-N2-(2- 381 methoxycarbonylbenzofuran-5-yl)-2,4-pyrimidinediamine	N2-(2-Carboxybenzofuran-5-yl)-N4-(3,5-dimethoxyphenyl)-5-382 fluoro-2,4-pyrimidinediamine	N2-(2-Carboxyindol-7-yl)-N4-(3,5-dimethoxyphenyl)-5-fluoro- 2,4-pyrimidinediamine	N4-(3,5-Dimethoxyphenyl)-5-fluoro-N2-[2-(N-2-hydroxyethyl-N-384 methylamino)carbonylindol-7-yl]-2,4-pyrimidinediamine	N4-(3,4-Ethylenedioxyphenyl)-5-fluoro-N4-methyl-N2-[3-(N-385 methylamino)carbonylmethyleneoxyphenyl]-2,4-pyrimidinediamine	N4-(3,4-Ethylenedioxyphenyl)-N2-(3,5-dimethoxyphenyl)-5- 386 fluoro-N4-methyl-2,4-pyrimidinediamine	N2-(3,5-Dimethylphenyl)-N4-(3,4-ethylenedioxyphenyl)-5- 387 fluoro-N4-methyl-2,4-pyrimidinediamine	N2-(3,5-Dimethoxyphenyl)-N4-(2,2-dimethyl-3-oxo-4H-388benz[1,4]oxazin-6-yl)-5-fluoro-N4-methyl-2,4-pyrimidinediamine

Compound Number	Compound Name	Physical Data	Tryptase, 'CHMC, (IgE, 3pt	Tryptase, CHMC, IgE, 8pt	Tryptase, Tryptase, Tryptase, fp_syk, CHMC, CHMC, CHMC, 11pt 19E, 3pt lgE, 8pt lono, 3pt	fp_syk, 11pt
386	N4-(3,5-Dimethoxyphenyl)-N2-[2-(N-1,1-dimethyl-2-389 hydroxyethylamino)carbonylindol-7-yl]-5-fluoro-2,4-pyrimidinediamine	¹ H NMR (DMSO-d6): d 11.63 (s, 1H), 9.25 (d, 1H, J= 7.8 Hz), 8.14 (d, 1H, J= 3.6 Hz), 8.02 (d, 1H, J= 8.1 Hz), 7.53 (s, 1H), 7.19 (d, 1H, J= 7.5 Hz), 7.14 (s, 1H), 7.04 (s, 2H), 6.89 (t, 1H, J= 7.5 Hz), 6.23 (s, 1H), 4.94 (t, 1H, J= 6.3 Hz), 3.69 (s, 6H),	+			
39(2-Chloro-N4-(3,4-ethylenedioxyphenyl)-5-fluoro-N4-methyl-4-pyrimidineamine	1H NMR (CDCl3): d 7.85 (d, 1H, J= 4.8 H2),6.86 (d, 1H, J= 8.4 Hz), 6.73 (d, 1H, J= 2.7 Hz), 6.60 (dd, 1H, J= 2.7 and 8.1 Hz); LCMS: purity: 100%, MS (m/e);296 (M+).	1			,
391	N2-(3,5-Dimethylphenyl)-5-fluoro-N4-methyl-N4-(3-oxo-2,2,4- rimethylbenz[1,4]oxazin-6-yl)-2,4-pyrimidinediamine	1H NMR (CDCl3): d 7.95 (d, 1H, J= 6.4 Hz), 7.67 (bs, 1H), 7.21 (s, 2H), 6.96 (s, 1H), 6.87 (dd, 1H, J= 2.4 and 8.7 Hz), 6.78 (d, 1H, J= 2.4 Hz), 6.72 (s, 1H), 3.55 (s, 3H), 3.32 (s, 3H), 2.30 (s, 6H), 1.53 (s, 6H); LCMS: purity: 92%, MS (m/e); 436 (MH+).	+		+	
362	N2-(3-Chloro-4-methoxyphenyl)-5-fluoro-N4-methyl-N4-(3-oxo-2,2,4-trimethylbenz[1,4]oxazin-6-yl)-2,4-pyrimidinediamine	1H NMR (CD3OD): d 7.77 (d, 1H, J= 2.4 Hz), 7.75 (bd, 1H), 7.34 (dd, N2-(3-Chloro-4-methoxyphenyl)-5-fluoro-N4-methyl-N4-(3-oxo-1H, J= 2.7 and 9.3 Hz), 7.05 (d, 1H, J= 1.8 Hz), 6.95 (m, 3H), 4.62 (s, 2,2,4-trimethylbenz[1,4]oxazin-6-yl)-2,4-pyrimidinediamine 3H), 3.83 (s, 3H), 3.51 (s, 3H), 1.48 (s, 6H); LCMS: purity: 94%, MS (m/e): 472 (M+).	+		+	
395		1H NMR (CD3OD): d 7.78 (d, 1H, J= 8.4 Hz), 7.07 (bs, 1H), 6.96 (bs, 2H), 6.87 (d, 2H, J= 2.4 Hz), 6.10 (t, 1H, J= 2.4 Hz), 3.70 (s, 6H), 3.54 (s, 3H), 3.32 (s, 3H), 1.48 (s, 6H); LCMS: purity: 97%, MS (m/e): 468 (MH+).	+		+	
394	thyl-3-oxo-4H-	LCMS: purity: 93%, MS (m/e): 351 (MH+).	+		+	
395	N4-(3,4-Ethylenedioxyphenyl)-5-fluoro-N2-(2-395 methoxycarbonyl-benzofuran-5-yl)-N4-methyl-2,4-pyrimidinediamine	1H NMR (DMSO-d6): d 7.95 (s, 1H), 7.76 (bd, 1H), 7.54 (s, 1H), 7.49 (bd, 2H), 6.87 (d, 1H, J= 8.4 Hz), 6.79 (dd, 1H, J= 2.4 and 6.6 Hz), 6.74 (bd, 1H); LCMS: purity: 94%, MS (m/e): 452 (MH+).	+	+	+	
396	N2-(3,5-Dimethylphenyl)-N4-(3-oxo-2,2,4- trimethylbenz[1,4]oxazin-6-yl)-5-fluoro-2,4-pyrimidinediamine	LCMS: purity: 90%; MS (m/e): 422 (MH+).	+	+	+	
397	N2-(3,5-Dimethoxyphenyl)-N4-(3-oxo-2,2,4- trimethylbenz[1,4]oxazin-6-yl)-5-fluoro-2,4-pyrimidinediamine	LCMS: purity: 94%; MS (m/e): 454 (MH+).	+	+	+	

.

Compound	d Compound Name	Physical Data	Tryptase, CHMC, (CHMC, (IgE, 3pt)	Tryptase, CHMC, IgE, 8pt	Typtase, Tryptase, fp_syk, CHMC, CHMC, CHMC, 11pt gE, 3pt lgE, 8pt lono, 3pt	fp_syk, 11pt
39	N4-(3,5-Dimethoxyphenyl)-5-fluoro-N4-methyl-N2-[3-(N-398 methylamino)carbonylmethyleneoxyphenyl]-2,4-pyrimidinediamine	LCMS: purity: 94%, MS (m/e):442 (MH+).	+		ı	
399	N4-(3,5-Dimethoxyphenyl)-N2-(3,5-dimethylphenyl)-5-fluoro- 9 N4-methyl-2,4-pyrimidinediamine	LCMS: purity: 92%, MS (m/e):382 (MH+).	+	+	1	+
40	N2,N4-Bis(3,5-dimethoxyphenyl)-5-fluoro-N4-methyl-2,4-pyrimidinediamine	1H NMR (DMSO-d6): d 9.23 (s, 1H), 7.97 (d, 1H, J= 5.1 Hz), 7.01 (d, 2H, J= 1.8 Hz), 6.34 (bt, 1H), 6.05 (bt, 1H), 3.72 (s, 6H), 3.68 (6H), 3.45 (s, 3H); LCMS: purity: 95%, MS (m/e):415 (MH+).	+		·	1
401	N4-(3,5-Dimethoxyphenyl)-5-fluoro-N2-(2-methoxycarbonyl-benzofuran-5-yl)-N4-methyl-2,4-pyrimidinediamine	1H NMR (DMSO): d 9.70 (s, 1H), 8.13 (s, 1H), 8.04 (d, 1H, J= 3.8 Hz), 7.69 (s, 1H), 7.62 (m, 2H), 6.51 (d, 2H, J= 1.5 Hz), 6.44 (bt, 1H); 3.88 (s, 3H), 3.72 (s, 6H), 3.46 (s, 3H); LCMS: MS (m/e): 453 (MH+), purity: 95%.	+		+	
40	N4-[3-Chloro-4-(methoxycarbonyl-1,1-402 dimethylmethyleneoxy)phenyl]-N2-(3,5-dimethylphenyl)-5-fluoro-2,4-pyrimidinediamine	LCMS: purity: 81%; MS (m/e): 459 (MH+)		+		
403	N2-(3,5-Dimethylphenyl)-N4-[4-(methoxycarbonyl-1,1-3 3 dimethylmethyleneoxy)phenyl]-5-fluoro-2,4-pyrimidinediamine	LCMS: purity: 80%; MS (m/e): 425 (MH+).		+	,	
404	N2-(3-Chloro-4-methoxyphenyl)-N4-(3,5-dimethoxyphenyl)-5- fluoro-N4-methyl-2,4-pyrimidinediamine	1H NMR (DMSO-d6): d 10.00 (s, 1H), 8.08 (d, 1H, J= 6.00 Hz), 7.89 (d, 1H, J= 5.1 Hz), 7.47 (dd, 1H, J= 2.7 and 9.3 Hz), 7.08 (d, 1H, J= 9.0 Hz), 6.53 (d, 2H, J= 1.8 Hz), 6.46 (f, 1H, J= 2.1 Hz); LCMS: purity: 92%, 419 (MH+).	1		1	
40;	N2-(4-Chloro-3-methoxyphenyl)-N4-(3,5-dimethoxyphenyl)-5- fluoro-N4-methyl-2,4-pyrimidinediamine	1H NMR (DMSO-d6): d 9.30 (s, 1H), 9.03 (s, 1H), 8.07 (d, 1H, J= 4.2 Hz), 7.48 (d, 1H, J= 2.1 Hz), 7.37 (dd, 1H, J= 2.4 and 8.4 Hz), 7.24 (s, 2H); LCMS: purity: 91%, MS (m/e): 419 (M+).	+		1	0
40j	N4-(3,5-Dimethoxyphenyl)-5-fluoro-N4-methyl-N2-[2-(N-methylamino)carbonylindol-7-yl]-2,4-pyrimidinediamine	1H NMR (DMSO-d6): d 11.71 (s, 1H), 9.39 (s, 1H), 8.44 (bd, 1H, J= 4.8 Hz), 8.02 (m, 2H), 7.20 (d, 1H, J= 7.5 Hz), 7.04 (d, 1H, J= 2.1 Hz), 6.93 (t, 1H, J= 7.8 Hz), 6.47 (d, 2H, J= 2.1 Hz), 6.41 (t, 1H, J= 2.1 Hz), 3.72 (s, 6H), 3.46 (s, 3H), 2.81 (d, 3H,	+		1	

]

punodujo		Tryptase Physical Data	tase,Tryptase	Tryptase,	fp_syk,
umber	Compound Name			lono, 3pt	-
415	44-(3,4-Dimethoxyphenyl)-N2-[2-(ethoxycarbonyl)indol-7-yl]-5- luoro-2,4-pyrimidinediamine		+	1	
416	V4-(3,4-Ethylenedioxyphenyl)-5-fluoro-N4-methyl-N2-[4- oxazol-2-yl)phenyl]-2,4-pyrimidinediamine	<u> </u>	+	1	
417	2-Chloro-N4-(3,4-dimethoxyphenyl)-5-fluoro-N4-methyl-4-pyrimidineamine	1H NMR (DMSO-d6); d 8.09 (d, 1H, J= 5.4 Hz), f.32 (u, 1H, J= 2.4 Hz), 6.93 (d, 1H, J= 8.4 Hz), 6.84 (dd, 1H, J= 2.1 and 8.4 Hz), 3.75 (s, 3H), 3.71 (s, 3H); LCMS: purity: 87%, MS (m/e):298 (M+).	1	3	t
41	2-Chloro-N4-(3,4-ethylenedioxyphenyl)-5-fluoro-N4- 418 (methoxycarbonylmethyl)-4-pyrimidineamine	LCMS: purity: 99%, MS (m/e): 354 (M+).	1	,	
419	N4-(3,4-Dimethoxyphenyl)-5-fluoro-N2-[3- 2,4-pyrimidinediamine	1 H NMR (DMSO-d6); d 9.29 (s, 171), 9.21 (s, 171), 9.31 (s, 171), 9.33 (s, 171), 9.33 (s, 171), 9.33 (s, 171), 7.29 (bdd, (oxazol-5-yl)phenylj- (d, 111, J= 3.0 Hz), 8.04 (s, 111), 7.61 (bd, 111), 7.39 (s, 111), J= 2.7 and 8.4 Hz), 7.25 (m, 311), 6.76 (d, 111, J= 8.7 Hz), 3.70 (s, 311), 3.64 (s, 311), LCMS: purity: 98%, MS	+	1	
45	N4-(3,4-Ethylenedioxyphenyl)-5-fluoro-N2-(indol-6-yl)-N4-(methoxycarbonylmethyl)-2,4-pyrimldinediamine	1H NMR (DMSO-46): d 10.77 (s, 1H), 9.05 (s, 1H), 7.94 (d, 1H, J=5.7 Hz), 7.70 (s, 1H), 7.32 (d, 1H, J=2.8 Hz), 7.19 (d, 1H, J=1.5 Hz), 7.17 (t, 1H, J=3 Hz), 6.82 (m, 3H), 6.28 (d, 1H, J=2.1 Hz), 4.60 (s, 2H), 4.24 (s, 4H), 3.33 (s, 3H); LCMS: purity: 99	+	,	
4	N4-(3,4-Dimethoxyphenyl)-5-fluoro-N2-[2-(N-methylaminocarbonyl)indol-7-yl]-2,4-pyrimldinediamine	1H NMR (DMSO-d6): d 11.66 (s, 1H), 9.27 (s, 1H), 9.22 (s, 1H), 8.41 (bd, 1H, J= 4.8 Hz), 8.09 (d, 1H, J= 3.3 Hz), 7.99 (d, 1H, J= 7.8 Hz), 7.33 (dd, 1H, J= 2.4 and 8.4 Hz), 7.28 (d, 1H, J= 2.7 Hz), 7.18 (d, 1H, J= 7.5 Hz), 7.03 (d, 1H, J= 2.1 Hz), 6.89 (m	+	1	
4	N4-(3,4-Dimethoxyphenyl)-5-fluoro-N2-[4-(oxazol-5-yl)phenyl]	1H NMR (DMSO-d6): d 9.36 (s, 1H), 9.24 (s, 1H), 8.33 (s, 1H), 9.24 (s, 1H), 8.03 (s, 1H), 8.07 (d, 4.4-Dimethoxyphenyl)-5-fluoro-N2-[4-(oxazol-5-yl)phenyl]- (d, 1H, J= 3.9 Hz), 7.75 (d, 2H, J= 6.0 Hz), 7.50 (d, 2H, J= 8.7 Hz), 7.75 (d, 2H, J= 8.7 Hz), 7.47 (s, 1H), 7.26 (m, 2H), 6.92 (d, 1H, J= 9.6 Hz), 3.76 (s, 3H), 3.69 (s, 3H); LCMS: purity	+	+	

Compound Number	Compound Name.	Physical Data	Tryptase, Tryptase, Tryptase, fp_syk, CHMC, CHMC, 11pt lgE, 3pt lgE, 8pt lono, 3pt	Tryptase, CHMC, IgE, 8pt	Tryptase,1 CHMC, lono, 3pt	fp_syk, 11pt
431	N2-I3-(4-Acetylpiperazino)phenylj-5-fluoro-N4-(3,4- (tetrafluoroethylenedioxyphenyl)-2,4-pyrimidinediamine	1H NMR (DMSO-d6): d 9.62 (s, 1H), 9.19 (s, 1H), 8.14 (m, 1H), 7.62 (dd, 1H, J= 2.7 and 9.6 Hz), 7.39 (d, 1H, J= 9 Hz), 7.23 (d, 1H, J= 8 Hz), 7.16 (s, 1H), 7.07 (t, 1H, J= 2.6 Hz), 6.55 (d, 1H, J= 2.6 Hz), 6.12 (s, 1H), 3.54 (bs, 4H), 2.02 (s, 3H); LCMS:	+	+		
432	V2-[4-(4-Acetylpiperazino)phenyl]-5-fluoro-N4-(3,4- tetrafluoroethylenedioxyphenyl)-2,4-pyrimidinediamine	1H NMR (DMSO-d6): d 9.57 (s, 1H), 9.11 (s, 1H), 8.15 (bd, 1H), 8.10 (d, 1H, J=3.3 Hz), 7.57 (bdd, 1H, J= 9.6 Hz), 7.45 (d, 2H, J= 8.7 Hz), 7.37 (d, 1H, J= 9 Hz), 6.87 (d, 2H, J= 9.3 Hz), 6.69 (d, 1H, J= 8.7 Hz), 6.47 (d, 1H, J= 8.7 Hz), 3.52 (m, 4H), 2.99	+			
433	N4-(3,4-Dimethoxyphenyl)-N2-(3,5-dimethylphenyl)-5-fluoro- N4-methyl-2,4-pyrimidinediamine	1H NMR (DMSO-d6): d 9.05 (s, 1H), 7.89 (d, 1H, J= 6.0 Hz), 7.31 (s, 2H), 6.93 (d, 1H, J= 2.7 Hz), 6.90 (s, 1H), 6.81 (dd, 1H, J= 2.4 and 8.1 Hz), 6.50 (s, 1H), 3.75 (s, 3H), 3.71 (s, 1H), 3.42 (s, 3H), 2.18 (s, 6H); LCMS: purity: 95%, MS (m/e): 383 (MH+).	+		1	
434	N2-(3,5-Dimethoxyphenyl)-N4-(3,4-dimethoxyphenyl)-5-fluoro- N4-methyl-2,4-pyrimidinediamine	LCMS: purity: 96%, MS (m/e): 415 (MH+).	+		, ,	
435	N4-(3,4-Dimethoxyphenyl)-N2-[2-(ethoxycarbonyl)indol-7-yl]-5- fluoro-N4-methyl-2,4-pyrimidinediamine	1H NMR (DMSO-d6): d 11.94 (s, 1H), 9.32 (s, 1H), 8.15 (d, 1H, J= J= N4.(3,4-Dimethoxyphenyl)-N2-[2-(ethoxycarbonyl)indol-7-yl]-5-7.5 Hz), 7.97 (d, 1H, J= 6.0 Hz), 7.22 (d, 1H, J= 7.8 Hz), 7.12 (d, 1H, J= 1.4.7), 6.96 (m, 3H), 6.82 (m, 1H), 4.33 (q, 2H, J= 4.2 Hz), 3.76 (s, 3H), 3.76 (s, 3H), 3.35 (t, 1.35 (t	+		1	
436	N4-(3,4-Dimethoxyphenyl)-5-fluoro-N2-(indol-6-yl)-N4-methyl- 2,4-pyrimidinediamine	1H NMR (DMSO-d6); d 10.85 (s, 1H), 9.07 (s, 1H), 8.03 (s, 1H), 7.87 N4-(3,4-Dimethoxyphenyl)-5-fluoro-N2-(indol-6-yl)-N4-methyl- (d, 1H, J= 8.4 Hz), 7.34 (d, 1H, J= 8.7 Hz), 7.16 (m, 2H), 6.93 (m, 2H), 2,4-pyrimidinediamine 6.90 (s, 1H), 6.80 (m, 1H), 6.28 (s, 1H), 3.75 (s, 3H), 3.73 (s, 3H), 3.44 (s, 3H); LCMS: purity: 94%, MS (m/e): 3	+		ı	
437	N2-[4-(4-Acetylpiperazino)phenyl]-N4-(3,5-dimethoxyphenyl)- 5-fluoro-2,4-pyrimidinediamine	LCMS: purity: 80%, MS (m/e): 467 (MH+).	+		,	
438	N4-(3,4-Dimethoxyphenyl)-5-fluoro-N4-methyl-N2-[3-(oxazol- 5-yl)phenyl]-2,4-pyrimidinediamine	1 H NMR (DMSO-d6): d 9.42 (s, 1H), 8.40 (s, 1H), 8.28 (bs, 1H), 7.93 (d, 1H, J= 8.7 Hz), 7.58 (bd, 1H, J= 6.8 Hz), 7.55 (s, 1H), 7.27 (m, 2H), 6.96 (d, 1H, J= 2.4 Hz), 6.92 (m, 1H), 6.81 (dd, 1H, J= 2.1 and 8.4 Hz), 3.75 (s, 3H), 3.75 2 (s, 3H), 3.47 (s,	+	+	1	

Compound	Compound Name	Physical Data	Tryptase, Tryptase, Tryptase, fp_syk, CHMC, CHMC, CHMC, 11pt	LU Tryptase, CHMC, IgE, 8pt	Tryptase, f CHMC, lono, 3pt	fp_syk, 11pt
439	N4-(3,4-Dimethoxyphenyl)-5-fluoro-N4-methyl-N2-[3-(oxazol-2-yl)phenyl]-2,4-pyrimidinediamine	1H NMR (DMSO-d6): d 9.50 (s, 1H), 8.62 (d, 1H, J= 3.6 Hz), 8.17 (s, 1H), 7.94 (d, 1H, J= 6.0 Hz), 7.70 (dd, 1H, J= 2.4 Hz), 7.33 (m, 2H), 6.97 (d, 1H, J= 2.4 Hz), 6.92 (d, 1H, J= 8.4 Hz), 6.82 (dd, 1H, J= 2.4 Hz), 8.73 (s, 3H), 3.73 (s, 3H), 3.48	+	+	t	t
440,	N4-(3,4-Dimethoxyphenyl)-5-fluoro-N4-methyl-N2-[4-(oxazoi- 2-yl)phenyl]-2,4-pyrimidinediamine	1H NMR (DMSO-d6): d 9.59 (s, 1H), 8.10 (s, 1H), 7.98 (m, 2H), 7.62 (dd, 1H, J= 2.1 and 6.6 Hz), 7.27 (s, 1H), 6.96 (m, 2H), 6.92 (s, 1H), 6.81 (dd, 2.4 and 8.4 Hz), 6.61 (dd, 1H, J= 2.1 and 6.6 Hz), 5.67 (bs, 1H), 3.77 (s, 3H), 3.72 (s, 3H), 3.45 (s, 3H).	+			
144	N2-(3,5-Dimethylphenyl)-N4-(3,4-ethylenedioxyphenyl)-5- 441 fluoro-N4-(methoxycarbonylmethyl)-2,4-pyrimidinediamine	LCMS: purity: 91%, MS 9m/e): 439 (MH+).	+		t	
442	N2-(3,5-Dimethoxyphenyl)-N4-(3,4-ethylenedioxyphenyl)-5- fluoro-N4-(methoxycarbonylmethyl)-2,4-pyrimidinediamine	1H NMR (DMSO-d6): d 9.14 (s, 1H), 7.97 (d, 1H, J= 5.7 Hz), 6.84 (m, 5H), 6.07 (m, 1H), 4.62 (s, 2H), 4.24 (s, 3H), 3.68 (bs, 4H), 3.34 (s, 6H); LCMS: purity: 94%, MS: 471 (MH+).	+		t	
443	N4-(3,4-Ethylenedioxyphenyl)-5-fluoro-N4- 443 (methoxycarbonylmethyl)-N2-[3-(oxazol-5-yl)phenyl]-2,4- pyrimidinediamine	1H NMR (DMSO-d6): d 9.40 (s, 1H), 8.40 (s, 1H), 8.00 (d, 1H, J= J= 4.2 Hz), 7.93 (bs, 1H), 7.60 (m, 1H), 7.57 (s, 1H), 7.27 (m, 2H), 6.83 (m, 3H), 4.63 (s, 2H), 4.23 (s, 4H), 3.51 (s, 3H); LCMS: purity: 95%, MS (m/e): 478 (MH+).	+		1.0	
444	N4-(3,4-Ethylenedioxyphenyl)-5-fluoro-N4- 444 (methoxycarbonylmethyl)-N2-[3-(oxazol-2-yl)phenyl]-2,4- pyrimidinediamine	1H NMR (DMSO-d6): d 9.49 (s, 1H), 8.24 (s, 1H), 8.17 (s, 1H), 8.00 (d, 1H, J= 5.7 Hz), 7.76 (bd, 1H, J= 9.6 Hz), 7.51 (bd, 1H, J= 8.1 Hz), 7.34 (m, 2H), 6.86 (m, 1H), 6.83 (m, 1H), 4.64 (s, 2H), 4.24 (s, 4H), 3.54 (s, 3H); LCMS: purity: 91%, MS (m/e): 478	+		l l	
445	N4-(3,4-Ethylenedioxyphenyl)-5-fluoro-N4- 445(methoxycarbonylmethyl)-N2-[4-(oxazol-2-yl)phenyl]-2,4- pyrimidinediamine	1H NMR (DMSO-d6): d 9.61 (s, 1H), 8.10 (s, 1H), 8.05 (d, 1H, J= 8.1 Hz), 7.77 (dd, 2H, J= 8.4 Hz), 7.70 (dd, 2H, J= 8.4 Hz), 7.29 (s, 1H), 6.85 (m, 3H), 4.64 (s, 2H), 4.25 (s, 4H), 3.63 (s, 3H); LCMS: purity: 92%, MS (m/e): 478 (MH+).	+		ı	
446	N4-(3,4-Ethylenedioxyphenyl)-5-fluoro-N4- 446 (methoxycarbonylmethyl)-N2-[3-(N- methylamino)carbonylmethyleneoxyphenyl]-2,4- pyrimidinediamine	1H NMR (DMSO-d6): d 9.24 (s, 1H), 7.97 (d, 1H, J= 5.7 Hz), 7.94 (m, 1H), 7.22 (m, 2H), 7.08 (t, 1H, J= 7.8 Hz), 6.83 (m, 3H), 6.49 (m, 1H), 4.62 (s, 2H), 4.39 (s, 2H), 4.24 (s, 4H), 3.60 (s, 3H), 2.66 (d, 3H, J= 5.1 Hz); LCMS: purity: 97%, MS (498 (MH+).	+		3	

Competed	Compound Name	Physical Data CH [BE	Tryptase, Try CHMC, CH	Tryptase, Tryptase, CHMC, CHMC, IgE, 8pt Iono, 3pt		fp_syk, 11pt
44.	N4-(3,4-Dimethoxyphenyl)-5-fluoro-N4-methyl-N2-[3-(N-447 methylamino)carbonylmethyleneoxyphenyl]-2,4-pyrimidinediamine	1H NMR (DMSO-d6): d 9.24 (s, 1H), 7.94 (bs, 1H), 7.90 (d, 1H, J= 5.7 Hz), 7.46 (t, 1H, J= 2.1 Hz), 7.27 (bd, 1H, J= 9 Hz), 7.10 (t, 1H, J= 5.1 Hz), 6.93 (m, 1H), 6.79 (dd, 1H, J= 2.7 and 8.7 Hz), 6.45 (dd, 1H, J= 1.8 and 8.7 Hz), 6.12 (m, 1H), 4.38 (s, 2	+			
44	N2-[4-Chloro-3-(N-methylamino)carbonylphenyl]-N4-(3,4-ethylenedioxyphenyl)-5-fluoro-2,4-pyrimidinediamine	1H NMR (DMSO-d6); d 9.37 (s, 1H), 9.18 (s, 1H), 8.21 (d, 1H, J= 4.5 Hz), 8.05 (d, 1H, J= 3.6 Hz), 7.72 (m, 2H), 7.22 (m, 2H), 7.20 (m, 3H), 6.80 (bdd, 1H, J= 2.1 and 9 Hz), 4.11 (bs, 4H), 2.71 (d, 3H, J= 4.5 Hz); LCMS: purity: 95%; MS (m/e): 430 (MH+).	+	+	1	
449	N2-[4-Chloro-3-(N-methylamino)carbonylphenyl]-N4-(3,4- dimethoxyphenyl)-5-fluoro-2,4-pyrimidinediamine	1H NMR (DMSO-d6): d 8.20 (d, 1H), 8.05 (d, 1H, J= 3.9 Hz), 7.75 (d, 1H, J= 2.7 Hz), 7.66 (dd, 1H, J= 3.0 and 8.7 Hz), 7.32 (dd, 1H, J= 2.4 and 9.0 Hz), 7.23 (s, 1H), 7.18 (m, 1H), 6.88 (d, 1H, J= 8.7 Hz), 4.00 (s, 4H), 3.76 (s, 3H), 3.71 (s, 3H), 2.69 (d,	+		1	
450	N2-[4-Chloro-3-(N-methylamino)carbonylphenyl]-N4-(3,5-dimethoxyphenyl)-5-fluoro-2,4-pyrimidinediamine	1H NMR (DMSO-d6): d 8.15 (d, 1H, J= 4.2 Hz), 7.82 (dd, 1H, J= 2.7 and 9.0 Hz), 7.61 (d, 1H, J= 2.7 Hz), 7.25 (d, 1H, J= 9.0 Hz), 6.96 (t, 2H, J= 2.4 Hz), 6.26 (t, 1H, J= 2.1 Hz), 3.71 (s, 6H), 2.71 (d, 3H, 3.3 Hz); LCMS: purity: 87%, MS (m/e): 432 (M+).	+		ı	
451	N4-(3-Chloro-4-methoxyphenyl)-N2-[4-chloro-3-(N-methylamino)carbonylphenyl]-5-fluoro-2,4-pyrimidinediamine	1H NMR (DMSO-d6): d 8.16 (d, 1H, J= 3.9 Hz), 7.70 (d, 1H, J= 2.7 Hz), 7.64 (m, 2H), 7.30 (d, 1H, J= 9.3 Hz), 7.10 (d, 1H, J= 9 Hz), 3.87 (s, 3H); 2.69 (s, 3H); LCMS: purity: 91%, MS (m/e): 536 (M+).	+		+	
45:	N4-[3-Chloro-4-(ethoxycarbonyl-1,1-452 dimethylmethyleneoxy)phenyl]-N2-[4-chloro-3-(N-methylamino)carbonylphenyl]-5-fluoro-2,4-pyrimidinediamine	114 NMR (DMSO-d6): d 9.65 (bs, 2H), 8.26 (d, 1H, J= 4.8 Hz), 8.17 (s, 1H), 7.80-7.58 (m, 4H), 7.27 (d, 1H, J= 8.7 Hz), 6.89 (d, 1H, J= 9 Hz), 4.20 (q, 2H, J= 6.9 Hz), 2.71 (d, 3H, J= 4.2 Hz), 1.54 (s, 6H), 1.21 (t, 3H, J= 7.2 Hz); LCMS: purity: 91%, MS (m/	+		+	
453	N2-[4-Chloro-3-(N-methylamino)carbonylphenyl]-N4-(3,4- ethylenedioxyphenyl)-5-fluoro-N4-methyl-4-pyrimidinediamine		+		,	
454	N2-[4-Chloro-3-(N-methylamino)carbonylphenyl]-N4-(3,4- dimethoxyphenyl)-5-fluoro-N4-methyl-4-pyrimidinediamine	1H NMR (DMSO-d6): d 9.50 (s, 1H), 8.26 (d, 1H, J= 4.5 Hz), 7.93 (d, 1H, 6.0 Hz), 7.87 (d, 1H, J= 2.7 Hz), 7.68 (dd, 1H, J= 2.4 and 5.7 Hz), 7.26 (d, 1H, J= 8.7 Hz), 6.93 (m, 2H), 6.80 (dd, 1H, J= 2.4 and 8.4 Hz), 3.76 (s, 3H), 3.72 (s, 3H),	+		1	

Compound	Compound Name	Physical Data	Tryptase, CHMC,	Tryptase, CHMC,	Tryptase, Tryptase, Tryptase, fp_syk, CHMC, CHMC, CHMC, 11pt	fp_syk, 11pt
455	N2-[4-Chloro-3-(N-methylamino)carbonylphenyl]-N4-(2,2-455 dimethyl-3-oxo-4H-benz[1,4]oxazin-6-yl)-5-fluoro-2,4-pyrtmidinediamine	1H NMR (DMSO-d6): d 10.71 (s, 1H), 9.87 (s, 1H), 8.26 (d, 1H, J= 4.2 Hz), 8.16 (d, 1H, J= 4.2 Hz), 7.63 (m, 2H), 7.25 (m, 2H), 7.17 (d, 1H, J= 2.1 Hz), 6.90 (d, 1H, J= 8.7 Hz), 2.71 (d, 3H, J= 4.5 Hz), 1.40 (s, 6H); LCMS: purity: 97%, MS (m/e): 471 (M+).		+		
456	N2-[3-Chloro-4-(N-methylamino)carbonylphenyl]-N4-(2,2-456 dimethyl-3-oxo-4H-benz[1,4]oxazin-6-yl)-5-fluoro-2,4-pyrimidinediamine	1H NMR (DMSO-d6): d 10.74 (s, 1H), 10.34 (s, 1H), 10.09 (s, 1H), 8.24 (d, 1H, J= 4.8 Hz), 8.15 (d, 1H, J= 4.5 Hz), 7.83 (d, 1H, J= 1.5 Hz), 7.44 (dd, 1H, J= 1.8 and 8.4 Hz), 7.23 (m, 2H), 6.93 (d, 1H, J= 8.4 Hz), 2.71 (d, 3H, J= 4.2 Hz), 1.40 (s, 6H); LCM	+	+	+	
457	N2-(2,6-Dimethoxypyrid-3-yl)-N4-(3,5-dimethoxyphenyl)-5- fluoro-N4-methyl-2,4-pyrimidinediamine	1H NMR (DMSO-d6): d 8.02 (d, 1H, J= 8.4 Hz), 7.87 (d, 1H, J= 6.4 Hz), 7.76 (s, 1H), 6.41 (m, 3H), 6.32 (d, 1H, J= J=8.4 Hz), 3.89 (s, 3H), 3.82 (s, 3H), 3.71 (s, 3H), 3.34 (s, 3H); LCMS: purity: 95%, MS (m/e): 416 (MH+).	+	+	+	
458	N2-(2,6-Dimethoxypyrid-3-yl)-N4-(3,4-ethylenedioxyphenyl)-5- fluoro-N4-methyl-2,4-pyrimidinediamine	14 NMR (DMSO-d6); d 8.02 (d, 14, J= 8.4 Hz), 7.82 (d, 11, J= 6.6 N2-(2,6-Dimethoxypyrid-3-yl)-N4-(3,4-ethylenedioxyphenyl)-5- Hz), 7.68 (s, 11), 6.79 (m, 21), 6.72 (dd, 11, J= 2.1 and 8.1 Hz), 6.30 (d, 11, J= 8.1 Hz), 4.23 (s, 41), 3.89 (s, 31), 3.81 (s, 31), 3.28 (s, 31); LCMS: purity: 97%, MS (m/e): 414 (MH+).	ı		t	
459	N4-(3,5-Dimethoxyphenyl)-N2-(2,6-dimethoxypyrid-3-yl)-5- fluoro-2,4-pyrimidinediamine	1 H NMR (DMSO-d6): d 9.12 (s, 1H), 7.97 (d, 1H, J= 5.1 Hz), 7.89 (s, 1H), 7.82 (d, 1H, J= 7.8 Hz), 6.95 (s, 1H), 6.28 (d, 1H, J= 7.8 Hz), 6.15 (s, 1H), 3.84 (s, 3H), 3.83 (s, 3H), 23.64 (s, 6H); LCMS: purity: 85%, MS (m/e): 402 (MH+).	+		•	
460	N2-(2,6-Dimethoxypyrid-3-yl)-N4-(3,4-ethylenedioxyphenyl)-5- fluoro-2,4-pyrimidinediamine	LCMS: purity: 93%, MS (m/e): 400 (MH+).	+			
461	N4-(3,4-Ethylenedioxyphenyl)-5-fluoro-N2-methyl-N4-methyl- 2,4-pyrimidinediamine	1H NMR (DMSO-d6): d 7.72 (d, 1H, J= 5.1 Hz), 6.79 (d, 1H, J= 9.0 Hz), 6.73 (bs, 1H), 6.66 (bd, 1H), 2.74 (d, 3H, J= 4.5 Hz); LCMS: purity: 93%, MS (m/e): 291 (MH+).	1		1	
462	N2-Dimethyl-N4-(3,4-ethylenedioxyphenyl)-5-fluoro-N4- methyl-2,4-pyrimidinediamine	1H NMR (DMSO-d6): d 7.78 (d, 1H, J= 6.0 Hz), 6.80 (d, 1H, J= 8.4 Hz), 6.75 (d, 1H, J= 2.7 Hz), 6.66 (dd, 1H, J= 1.8 and 8.4 Hz), 4.22 (s, 4H), 3.31 (s, 3H), 3.30 (s, 3H); LCMS: purity: 95%; MS (m/e): 305 (MH+).	1		1	

Compound	Compound Name	Physical Data	LD LD LD Tryptase, Tryptase, fp_syk, CHMC, CHMC, CHMC, 11pt IgE, 8pt Ige, 8pt Iono, 3pt	LD Tryptase, CHMC, ígE, 8pt	LD Tryptase, CHMC, Iono, 3pt	fp_syk, 11pt
4	N2-[3-Chloro-4-(N-methylamino)carbonylphenyl]-N4-(3,4-ethylenedioxyphenyl)-5-fluoro-2,4-pyrimidinediamine	1H NMR (DMSO-d6): d 9.45 (s, 1H), 9.24 (s, 1H), 8.11 (m, 2H), 7.89 (d, 1H, J= 2.1 Hz), 7.54 (dd, 2.1 and 8.7 Hz), 7.20 (m, 3H), 6.82 (d, 1H, J= 8.4 Hz), 4.22 (bs, 4H), 2.71 (d, 3H, J= 4.5 Hz); LCMS: purity: 99%, MS (m/e); 430 (MH+).				
4	N2-[3-Chloro-4-(N-methylamino)carbonylphenyl]-N4-(3,4-dimethoxyphenyl)-5-fluoro-2,4-pyrimidinediamine	1H NMR (DMSO-d6): d 10.34 (s, 1H), 10.10 (s, 1H), 8.25 (d, 1H, J= 4.5 Hz), 8.18 (d, 1H, J= 4.8 Hz), 7.81 (s, 1H), 7.41 (d, 1H, J= 8.1 Hz), 7.27 (d, 1H, J= 8.4 Hz), 7.18 (m, 2H), 6.95 (d, 1H, J= 8.7 Hz), 3.75 (s, 3H), 3.68 (s, 3H), 2.71 (d, 3H); LCMS: puri	+		,	
4	N2-I3-Chloro-4-(N-methylamino)carbonylphenyl]-N4-(3,5-dimethoxyphenyl)-5-fluoro-2,4-pyrimidinediamine	LCMS: purity: 100%, MS (m/e): 432 (MH+).	+		1	
4	N4-(3-Chloro-4-methoxyphenyl)-N2-[3-chloro-4-(N-methylamino)carbonylphenyl]-5-fluoro-2,4-pyrimidinediamine	LCMS: purity: 100%, MS (m/e): 436 (MH+).	+	+		
46	N4-{3-Chloro-4-(ethoxycarbonyl-1,1-467 dimethylmethyleneoxy)phenyl]-N2-{3-chloro-4-(N-methylamino)carbonylphenyl]-5-fluoro-2,4-pyrimidinediamine	LCMS: purity: 95%, MS (m/e): 536 (MH+).	+	+	+	
46	N2-[3-Chloro-4-(N-methylamino)carbonylphenyl]-5-fluoro-N4-(3-hydroxyphenyl)-2,4-pyrlmidinediamine	LCMS: purity: 100%, MS (m/e): 388 (MH+).	+	+		
469	N4-(3,4-Ethylenedioxyphenyl)-5-fluoro-N2-(2-hydroxyethyl)- N4-methyl-2,4-pyrimidinediamine	1H NMR (DMSO-d6): d 7.70 (d, 1H, J= 5.7 Hz), 6.79 (d, 1H, J= 8.7 Hz), 6.74 (d, 1H, J= 8.7 Hz), 6.74 (d, 1H, J= 2.4 Hz), 6.66 (dd, 1H, J= 2.4 and 8.4 Hz), 6.50 (t, 1H, J≈ 5.1 Hz), 4.61 (t, 1H, J≈ 5.4 Hz), 4.22 (s, 4H), 3.47 (q, 2H, J= 6.3 Hz), 3.29 (t, 2H, J= 5.4 Hz), 3.25 (s, 3H)	,		1	
47,	2-Chloro-N4-[3-chloro-4-(ethoxycarbonyl-1,1- 470 dimethylmethyleneoxy)phenyl]-5-fluoro-N4-methyl-4- pyrimidineamine	1H NMR (CDCl3): d 7.87 (d, 1H, J= 7.8 Hz), 7.25 (m, 1H), 6.95 (m, 2H), 4.25 (q, 2H, J= 4.8 Hz), 3.46 (s, 3H), 1.65 (s, 6H), 1.29 (t, 3H, J= 4.8 Hz); LCMS: purity: 95%, MS (m/e): 404 (MH+; Cl37).	,		+	
471	N4-(3,4-Ethylenedloxyphenyl)-5-fluoro-N2-isopropyl-N4- methyl-2,4-pyrimidinediamine	1H NMR (DMSO-46): d 7.70 (d, 1H, J= 5.7 Hz), 6.77 (d, 1H, J= 8.7 Hz), 6.37 (d, 1H, J= 2.4 Hz), 6.68 (dd, 1H, J=2.4 and 8.7 Hz), 6.44 (d, 1H, J= 8.1 Hz), 4.22 (s, 4H), 3.90 (sept, 1H, J= 7.5 Hz), 3.27 (s, 3H), 1.12 (d, 6H, J= 6.6 Hz); LCMS: purity: 93%, MS	1		1	

WO 2005/016893	PCT/US2004/024716
11pt	
ptase,	
se, Try CHI	
LD ,Tryptase CHMC, lgE, 8pt	
Tryptase, CHMC, IgE, 3pt + +	+ + +
	+
Pry: sk:al Data 14 NMR (DMSO-d6): d 11.98 (s, 1H), 10.28 (s, 1H), 10.05 (s, 1H), 15 (d, 1H, J= 4.2 Hz), 8.21 (d, 1H, J= 4.8 Hz), 7.86 (bd, 1H, J= 8.7 Hz), 7.77 (d, 1H, J= 2.7 Hz), 7.54 (s, 1H), 7.47 (d, 1H, J= 8.4 Hz), 7.35 16 (d, 1H, J= 8.7 Hz), 7.30 (m, 1H), 7.05 (dd, 1 17 CMS: purity: 97%, MS (m/e): 292 (M+). 17 NMR (DMSO-d6): d 9.85 (bs, 1H), 9.50 (bs, 1H), 8.22 (m, 2H), 1.5 (d, 1H, J= 9.0 Hz), 6.85 (d, 2H, J= 1.5 Hz), 6.13 (d, MSR (DMSO-d6): d 10.01 (s, 1H), 9.65 (s, 1H), 8.24 (d, 1H, 1- 4.5 Hz), 1.56 (b, 1H, 1- 6.7).	4 - 8
Physical Data 14 NMR (DMSO-d6): d 11.98 (s, 1H), 10.28 (s, 1H), 10.05 (s, 1H), 1	Pobb (s, 1H), 2.74 (d, 3H, J= 4.8 Hz), 2.29 (s, 3H), 7.16 (s, 2H), 6.94 (s, 2H), 7.14 (s) 8%, MS (m/e): 400 (M+). THINMR (DMSO-d6): d 9.82 (bs, 1H), 9.56 (bs, 1H), 8.22 (m, 2H), 1.14, J= 8.7 Hz), 7.37 (d, 1H, J= 8.7 Hz), 7.37 (d, 3H, J= 4.8 Hz); LCMS: pu 1. 14, J= 8.7 Hz), 2.64 (d, 3H, J= 4.8 Hz); LCMS: pu 1. 15, J= 8.7 Hz), 2.64 (d, 3H, J= 4.8 Hz); LCMS: pu 1. 16, J= 8.7 Hz), 2.64 (d, 3H, J= 4.8 Hz); LCMS: pu 1. 17, J= 8.7 Hz), 2.64 (d, 3H, J= 4.8 Hz); LCMS: pu 1. 18, J= 8.7 Hz), 2.64 (d, 3H, J= 4.2 Hz), 2.70 (d, 3H, J= 4.5 Hz); 1. 19, J= 8.1 Hz), 2.75 (d, 1H), 10.10 (s, 1H), 9.80 (bs, 1H), 7.30 (m, 2H), 7.38 (bd, 1H, J= 9.6 Hz), 7.58 (s, 1H), 7.47 (m, 2H), 7.30 (m, 2H), 7.39 (d, 1H, J= 8.1 Hz), 6.38 (s, 1H); LCMS: p 1. 18, CD3OD): d 1.64, J= 7.2 Hz), 6.83 (d, 1H, J= 8.4 Hz), 7.45 (m, 2H), 6.32 (dd, 1H, J= 2.4 Hz), 6.72 (dd, 1H, J= 2.7 and 8.4 Hz), 4.25 (s, 4H), 7.30 (m, 2H), 7.30 (m, 2H), 7.30 (m, 2H), 7.30 (m, 2H), 6.32 (dd, 1H, J= 2.4 Hz), 6.72 (dd, 1H, J= 2.7 and 8.4 Hz), 4.25 (s, 4H), 7.30 (m, 2H), 6.72 (dd, 1H, J= 2.7 and 8.4 Hz), 4.25 (s, 4H), 7.30 (m, 2H), 6.72 (dd, 1H, J= 2.7 and 8.4 Hz), 4.25 (s, 4H), 7.30 (m, 2H), 6.72 (dd, 1H, J= 2.7 and 8.4 Hz), 4.25 (s, 4H), 7.30 (m, 2H), 6.72 (dd, 1H, J= 2.7 and 8.4 Hz), 4.25 (s, 4H), 7.30 (m, 2H), 6.72 (dd, 1H, J= 2.7 and 8.4 Hz), 4.25 (s, 4H), 7.30 (m, 2H), 6.72 (dd, 1H, J= 2.7 and 8.4 Hz), 4.25 (s, 4H), 7.30 (m, 2H), 6.72 (dd, 1H, J= 2.7 and 8.4 Hz), 4.25 (s, 4H), 7.30 (m, 2H), 6.72 (dd, 1H, J= 2.7 and 8.4 Hz), 4.25 (s, 4H), 7.30 (m, 2H), 6.72 (dd, 1H, J= 2.7 and 8.4 Hz), 4.25 (s, 4H), 7.30 (m, 2H), 6.72 (dd, 1H, J= 2.7 and 8.4 Hz), 4.25 (s, 4H), 7.30 (m, 2H), 6.72 (dd, 1H, J= 2.7 and 8.4 Hz), 4.25 (s, 4H), 7.30 (m, 2H), 6.72 (dd, 1H, J= 2.7 and 8.4 Hz), 4.25 (s, 4H), 7.30 (m, 2H), 6.72 (dd, 1H, J= 2.7 and 8.4 Hz), 4.25 (s, 4H), 6.72 (dd, 1H, J= 2.7 and 8.4 Hz), 4.25 (s, 4H), 6.72 (dd, 1H, J= 2.7 and 8.4 Hz), 4.25 (s, 4H), 6.72 (dd, 1H, J= 2.7 and 8.4 H
H), 1086 (bo -1H, J= -1.5 H, -1.5 H, -24 (d1.)	(s, 3H, 1), 6.94 (s, 3H, 2.7, Hz), 1, 2.7, Hz), 1, 3H), 1, 2.7, Hz), 1, 3H, 1, 2.7, Hz, 2, 2, 4, 5, 4, 4, 5, 4, 4, 5, 6, 4, 4, 5, 6, 4, 4, 5, 6, 4, 4, 5, 6, 4, 4, 5, 6, 4, 4, 5, 6, 4, 4, 5, 6, 4, 4, 5, 6, 4, 4, 5, 6, 4, 4, 5, 6, 4, 4, 5, 6, 4, 4, 5, 6, 4, 4, 5, 6, 4, 4, 5, 6, 4, 4, 5, 6, 4, 4, 5, 6, 4, 4, 5, 6, 4, 4, 5, 6, 6, 4, 4, 5, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6,
8 (s, 1) Hz), 7, Hz), 7, 47 (d, s, 1H), 5 Hz);	(s, 2H H), 8.2 H, J= 8 (s, 2l H, J= 8 (d, 1H, 1, 3H, 1, 1, 3H, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
Physical Data 14 NMR (DMSO-d6): d 11.98 (s. 14), 10.2 18.35 (d, 14, J= 4.2 Hz), 8.21 (d, 14, J= 4.8 14.1, 7.77 (d, 14, J= 2.7 Hz), 7.54 (s, 14), 7.7 15.1, 7.77 (d, 14, J= 2.7 Hz), 7.54 (s, 14), 7.55 16.1, 14, J= 8.7 Hz), 7.30 (m, 14), 7.05 (dd, 1.4 15.1, 16.	(S, 3H (S, 3H (bd, 1 (bd, 1 (bd, 1 (h), 4.3 (S; pu 1H), E 2.70 ((m, 2) (m, 2) (m, 2) (m, 2) (m, 2) (m, 1 (m, 2) (m, 1 (m, 1) (m, 1) (m
Physical Data 8.35 (4, 1H, J= 4.2 Hz), 8.21 (4, 1H), J= (4, 1H, J= 8.7 Hz), 7.54 (8, 1H), J= (4, 1H, J= 8.7 Hz), 7.30 (m, 1H), 7.05 (a) LCMS: purity: 97%, MS (m/e): 292 (M+), 1H NMR (DMSO-d6): d 9.85 (bs, 1H), 9.55 (bs, MS (m/e)); 3.66 (s, 1H), 2.74 (d, 3H, J) 1 NMR (DMSO-d6): d 10.01 (s, 1H), 9.65 (bs, 1H), 9.65 (bs, 1H), 7.35 (d, 1H, J= 9.0 Hz), 6.85 (bs, 1H), 2.74 (d, 3H, J) 1 NMR (DMSO-d6): d 10.01 (s, 1H), 9.65 (bs, 1H), 7.35 (d, 1H, J= 9.0 Hz), 6.85 (bs, 1H), 7.35 (d, 1H, J= 9.0 Hz), 6.85 (bs, 1H), 7.35 (d, 1H, J= 9.0 Hz), 6.85 (bs, 1H), 7.35 (d, 1H, J= 9.0 Hz), 9.65 (bs, 1H), 7.35 (d, 1H, J= 9.0 Hz), 9.65 (bs, 1H), 7.35 (d, 1H, J= 9.0 Hz), 6.85 (bs, 1H), 7.35 (d, 1H, J= 9.0 Hz), 9.65 (bs, 1H), 9.65	8.7 Hz 8.7 Hz 8.7 Hz 9.5 (1, 9.5 (6, 1), 9.5 (6, 1), 9.5 (6, 1), 7.82 9.5 (m, 1, 7.42 Hz), 7.4 (4.2 Hz), 7.4 (4.2 Hz), 6.8 (5, 10 (6, 10)(6, 10 (6, 10 (6, 10)(6, 10)(6, 10)(6, 10)(6, 10 (6, 10)(6, 1
111.98 8.21 (m, 11.77 (m, 11.77 (m, 11.77) (m/e): 2 35 (bs 35 (bs 35 (bs 37 (s, 11.77)	4.8 Hz 4.8 Hz 4.8 Hz 1.5 Hz 1.5 Hz 1.1 Hz 1.1 Hz 1.1 Hz 1.1 Hz 1.2 Hz 1.3 (M+ 1.4 Jz 1.4 Jz 1.5 Hz 1.7 H
)-d6): -2 Hz); -2 Tz); -7 7.30; -7 7.30	3H, J= 400 (1 19.82) 11, J= 11
Physical Data 1H NMR (DMSC 3.35 (4, 1H, J= 4, 12), 7.77 (4, 1H, J, 1H, J= 8.7 Hz) 3.45 (4, 1H, J= 8.7 Hz) 3.45 (4, 1H, J= 8.7 Hz) 3.46 (4, 2H, J= 8.7 Hz) 3.48 (1, 2H, J= 8.66 3.48 (1, 2H, J= 3.66 3.48 (1, 3.66	74 (d, ;; (m/e); (m/e); -d6); -d6); -d6); -d6); -d6); -d6); -d6); -d6); -d6); -d6; -d6; -d6; -d6; -d6; -d6; -d6; -d6
NMR (1) 1.77 (1) 1.77 (1) 1.77 (1) 1.77 (1) 1.77 (1) 1.77 (1) 1.8 Hz (1) 1.8	(H), 2. %, MS (H), 7. (Hz), 2. (Hz), 2. (Hz), 7. (Hz),
	0.05 (s, 1H), 2.74 (d, 3H, J=4.8 Hz), 2.29 (s, 3H), 7.16 (s, 2H), 6.94 (s, 2H) Purity: 98%, MS (m/e): 400 (M+). 7.98 (bd, 1H), 7.91 (d, 1H, J= 1.5 Hz), 7.82 (bs, 1H), 8.22 (m, 2H), 7.37 (d, 1H, J=8.7 Hz), 7.22 (m, 3H), 6.56 (bs, 1H), 4.38 (s, 2H), 7.37 (d, 1H, J=8.7 Hz), 7.22 (m, 3H), 6.56 (m, 1H), 4.38 (s, 2H), 2.74 (d, 1H NMR (DMSO-d6): d. 3H, J=4.8 Hz); LCMS: pu (m, 3H), 7.36 (m, 3H), 2.75 (d, 3H, J=4.8 Hz); LCMS: pu (m, 3H), 2.75 (d, 3H, J=4.8 Hz); LCMS: pu (m, 3H), 2.75 (d, 3H, J=4.8 Hz), 2.70 (d, 3H, J=4.5 Hz); 1.35 (d, 1H, J=4.5 Hz); 2.70 (d, 3H, J=4.5 Hz); 2.55 (d, 1H, J=4.5 Hz); 2.50 (d, 1H), 9.80 (bs, 1H); 1.2 (bd, 1H, J=9.6 Hz), 7.58 (s, 1H), 7.47 (m, 2H), 7.30 (m, 2H); 1.38 (bd, 1H, J=9.6 Hz), 7.58 (s, 1H), 7.47 (m, 2H), 7.30 (m, 2H); 1.39 and 5.1 Hz); LCMS: pu (M+1) = 2.4 Hz); LCMS: purity: 92%, MS (m/e): 240 (M+). 8 (d, 1H, J=2.4 Hz), 6.72 (dd, 1H, J=2.7 and 8.4 Hz), 4.25 (s, 4H); 1.3 (s, 3H); LCMS: purity: 100%, MS (m/e): 278 (MH+).
9-109	O-05 (8, 1H), 2.74 (d, 3H, J=-8.1 Hz), 7.16 (s, 2H), 6.94 (s, purity: 98%, MS (m/e): 400 (M+). 7.98 (bd, 1H), 7.91 (d, 1H, J= 1.5 Hz), 7.82 (bs, 1H), 8.22 (m, 2H), 3H, J=-4.5 Hz), 7.82 (bd, 1H, J=-8.7 Hz), 7.33 (d, 1H, J=-8.7 Hz), 7.32 (m, 1H), 4.38 (s, 2H), 2.74 (d, 1H, J=-8.7 Hz), 7.32 (m, 1H), 4.38 (s, 2H), 2.74 (d, 1H, J=-8.7 Hz), 7.32 (m, 1H), 4.38 (s, 2H), 2.74 (d, 1H, MMR (DMSO-d6): d-9.69 (s, 1H), 9.60 (s, 1H), 8.25 (m, 3H), 7.85 (m, 3H), 2.75 (d, 3H, J-4.8 Hz), 2.70 (d, 3H, J=-4.5 Hz), 1.825 (d, 1H, J=-4.5 Hz), 2.75 (d, 1H, J=-4.5 Hz), 2.75 (d, 1H, J=-4.5 Hz), 2.75 (d, 1H, J=-4.5 Hz), 2.70 (d, 3H, J=-4.5 Hz), 7.38 (m, 1H, MMR (DMSO-d6): d-10.99 (s, 1H), 10.10 (s, 1H), 9.80 (bs, 1H), 1.81 (bd, 1H, J=-8.6 Hz), 7.58 (s, 1H), 7.47 (m, 2H), 7.30 (m, 2H), 1H, MMR (CD3OD): d-1.81 (d, 1H, J=-3.6 Hz), 7.46 (m, 2H), 6.32 (dd, 1H, J=-3.9 and 5.1 Hz); LCMS: purity: 92%, MS (m/e): 240 (M+). 8.78 (d, 1H, J=-2.4 Hz), 6.72 (dd, 1H, J=-2.7 and 8.4 Hz), 4.25 (s, 4H), 3.70 (s, 3H); LCMS: purity: 100%, MS (m/e): 278 (MH+).
N4-[4-Chloro-3-(N-methylamino)carbonylphenyl]-N2-(In N4-[3,4-Ethylenediamine 4-pyrimidineamine N4-[3-Chloro-4-(N-methylamino)carbonylphenyl]-N2-(3,5-dimethoxyphenyl)-5-fluoro-2,4-pyrimidinediamine 4-[3-Chloro-4-(N-methylamino)carbonylphenyl]-N2-(3,5-methylphenyl)-5-fluoro-2,4-pyrimidinediamine	1-5-fluoro-N2. 1-2,4- 1-13-chloro-1 11-1 11-1 11-1 11-1 11-1 11-1 11-1
N4-[4-Chloro-3-(N-methylamino)carbonylphenyl]-N2-(N)-2,4-pyrimidinediamine N4-(3,4-Ethylenedioxyphenyl)-5-fluoro-2-methoxy-N4-(-4-pyrimidineamine) M4-[3-Chloro-4-(N-methylamino)carbonylphenyl]-N2-(3,5-dimethylphenyl)-5-fluoro-2,4-pyrimidinediamine	/l-5-flu
N4-[4-Chloro-3-(N-methylamino)carbonylphenyl)-2,4-Pyrlmidinediamine N4-[3,4-Eftylenedioxyphenyl)-5-fluoro-2-methoxyphenyll-13-Chloro-4-(N-methylamino)carbonylphenyll-ngimethoxyphenyl)-5-fluoro-2,4-pyrimidinediamine M4-[3-Chloro-4-(N-methylamino)carbonylphenyll-ngimethylphenyll-5-fluoro-2,4-pyrimidinediamine	ipheny Ypheny henyl]- -2,4- anyl]-5
nino)a)-5-flu o)carb Pyrirmi carbor	eneox leneox bonylp 5-fluorc 0-4-byn
ethylar nine ylamin ro-2,4 amino,	mino)car ho)carbc lenyl]-{ 5-fluor
S-(N-m nedian edioxy ne -5-fluo methyl	ethylau arbonyl hylami onylpt, chloro-
N4-[4-Chloro-3-(N-methylyl)-2,4-pyrimidinediamine N4-(3,4-Eftylenedioxyphen 4-pyrimidineamine w4-[3-Chloro-4-(N-methylaminethoxyphenyl)-5-fluoro-2,4-py	+ (N-m nino)ce ine (N-met (N-met o)carb e e -methy imidinc syphen
4-[4-C)-2,4-p	hiloro sthylan rediam rediam viro-3-1 ylamin diamin diamin o-4-(N 2,4-pyr nnedioy
80 479 479 Iiime 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	N4-(3-Chloro-4-(N-methylamino)carbonylphenyll-5-fluoro-N2. 1483(3-(N-methylamino)carbonylphenyll-5-fluoro-N2. 1483(3-(N-methylamino)carbonylphenyll-5-fluoro-N2. 1483(3-(N-methylamino)carbonylphenyll-5-fluoro-N2. 1483(3-(N-methylamino)carbonylphenyll-5-fluoro-N2. 1483(3-(N-methylamino)carbonylphenyll-5-fluoro-N2. 1484-(N-methylamino)carbonylphenyll-5-fluoro-N2. 1484-(N-methylamino)carbonylphenyll-5-fluoro-N2. 1484-(N-methylamino)carbonylphenyll-5-fluoro-N2. 1484-(N-methylamino)carbonylphenyll-5-fluoro-N2. 1484-(N-methylamino)carbonylphenyll-5-fluoro-N2. 148-(N-methylamino)carbonylphenyll-5-fluoro-N2. 148-(N
4 482	8 4 7 5 1 4 1 1 5 1
	4 485 485 A85 A85 A85 A85 A85 A85 A85 A85 A85 A

fp_syk, 11pt								
Tryptase, Tryptase, fp_syk, CHMC, CHMC, CHMC, 11pt IgE, 3pt Iono, 3pt	,	1	h	•	1	1		+
Tryptase, CHIMC, (IgE, 8pt II					+	+		+
Tryptase, CHMC, IgE, 3pt	1	1	•	1	+	+	+	+
Physical Data TH NIMR (CD30D): d 7.93 (d, 1H, J= 5.4 Hz), 6.46 (s, 3H,), 4.62 (s, 6H), 3.77 (s, 3H); LCMS: purity: 100%, MS (m/e): 298 (MH+).	1H NMR (CD30D): d 7.73 (m, 2H), 7.34 (dd, 1H, J= 1.2 and 8.1 Hz), 7.17 (s, 1H), 7.04 (t, 2H, J= 7.8 Hz), 4.38 (q, 2H, J= 6.9 Hz), 3.69 (t, 2H, J= 5.1 Hz), 3.58 (t, 2H, J= 6.6 Hz), 1.42 (t, 3H, J= 7.2 Hz); LCMS: purity: 98%, MS (m/e): 360 (MH+).	1H NMR (CD30D): d 7.89 (d, 1H, J= 5.7 Hz), 7.57 (d, 1H, J= 8.1 Hz), 6.37 (d, 1H, J= 8.7 Hz), 3.94 (s, 3H), 3.91 (s, 3H), 3.37 (s, 3H); LCMS: purity: 97%, MS (m/e): 299 (MH+).	1H NMR (CD3OD); d 8.02 (d, 1H, J= 5.4 Hz), 7.43 (s, 2H), 3.91 (s, 3H), 3.47 (s, 3H); LCMS: purity: 89%, MS (m/e): 366 (MH+).	1H NMR (DMSO-d6); d 7.76 (d, 1H, J= 4.7 Hz), 6.79 (d, 1H, J= 6.3 Hz), 6.75 (d, 1H, J= 2.4 Hz), 6.67 (dd, 1H, J= 2.7 and 9.3 Hz), 4.71 (bs, 2H), 4.22 (bs, 4H), 3.57 (bs, 4H), 3.31 (bs, 4H), 3.28 (s, 3H); LCMS: purity: 97%, MS (m/e): 416 (MH+).	14 NMR (DMSO-d6): d 9.58 (s, 1H), 9.29 (s, 1H), 8.11 (d, 1H, J= 3.6 Hz), 7.47 (m, 2H), 7.42 (bdd, 1H), 7.27 (d, 1H, J= 2.1 Hz), 7.13 (dd, 2.4-pyrimidinediamine 1H, J= 2.1 and 8.4 Hz), 6.79 (d, 1H, J= 8.7 Hz), 6.73 (m, 1H), 4.22 (s, 4.4), 3.68 (s, 3H), 2.34 (d, 3H, J= 4.8 Hz); L	1H NMR (DMSO-d6): d 9.57 (s, 1H), 9.33 (s, 1H), 8.11 (d, 1H, J= 3.6 Hz), 7.51 (d, 1H, J= 1.8 Hz), 7.45 (d, 1H, J= 8.4 Hz), 7.34 (dd, 1H, J= 1.8 and 8.7 Hz), 7.24 (m, 2H), 6.90 (d, 1H, J= 9.0 Hz), 6.72 (d, 1H, J= 4.8 Hz), 3.75 (s, 3H), 3.67 (s, 3H), 3.63 (1H NMR (DMSO-d6); d 9.64 (s, 1H), 9.37 (s, 1H), 8.16 (bd, 1H), 7.51 (m, 3H), 6.97 (bs, 2H), 6.71 (bd, 1H), 6.24 (bs, 1H), 3.69 (s, 6H), 3.31 (s, 3H), 2.34 (d, 3H, J= 4.8 Hz); LCMS; purity: 94%, MS (m/e); 464 (M+).	1H NMR (DMSO-d6); d 10.62 (s, 1H), 9.50 (s, 1H), 9.43 (s, 1H), 8.12 (d, 1H, J=3.9 Hz), 7.46 (s, 1H), 7.44 (s, 1H), 7.26 (dd, 1H, J=2.4 and 8.7 Hz), 7.14 (d, 1H, J=2.4 Hz), 6.90 (d, 1H, J=8.4 Hz), 6.70 (d, 1H, J=5.4 Hz), 3.69 (s, 3H), 2.32 (d, 3H, J=
Compound Name Number 2-Chloro-N4-(3,5-dimethoxyphenyl)-5-fluoro-N4-methyl-4-pyrimidineamine	N2-(2-Ethoxycarbonylindol-7-yl)-5-fluoro-N4-(2-hydroxyethyl)- 2,4-pyrimidinediamine	2-Chloro-N4-(2,6-dimethoxypyrid-5-yl)-5-fluoro-N4-methyl-4- pyrimidineamine	2-Chloro-N4-(3,5-dichloro-4-methoxyphenyl-5-fluoro-N4- methyl-4-pyrimldineamiņe	N2-(Bis-2-hydroxyethyl)-N4-(3,4-ethylenedioxyphenyl)-5- fluoro-N4-methyl-2,4-pyrimidinediamine	N4-(3,4-Ethylenedioxyphenyl)-5-fluoro-N2-[4-(N- 493 methylamino)sulfonyl-3-methoxyphenyl]-2,4-pyrimidinediamine	N4-(3,4-Dimethoxyphenyl)-5-fluoro-N2-[3-methoxyphenyl-4- (N-methylamino)sulfonyl]-2,4-pyrimidinediamine	N4-(3,5-Dimethoxyphenyl)-5-fluoro-N2-[3-methoxyphenyl-4- (methylamino)sulfonyl]-2,4-pyrimidinediamine	N4-(2,2-Dimethyl-3-oxo-4H-benz[1,4]oxazin-6-yl)-5-fluoro-N2-496[3-methoxyphenyl-4-(methylamino)sulfonyl]-2,4-pyrimidinediamine

Compound Name	Physical Data	Tryptase CHMC, IgE, 3pt	se, Tryptase, CHMC, t lgE, 8pt	Tryptase, CHMC, lono, 3pt	fp_syk, 11pt
N4-(4-Chloro-3-trifluoromethylphenyl)-5-fluoro-N2-[3-497 methoxyphenyl-4-(methylamino)sulfonyl]-2,4-pyrimidinediamine	-[3- (d, 1H, J= 4.5 Hz), 7.65 (d, 1H, J= 8.7 Hz), 7.51 (d, 1H, J= 8.7 Hz), 7.51 (d, 1H, J= 8.7 Hz), 7.44 (m, 2H), 6.74 (d, 1H, J= 8.4 Hz), 3.72 (s, 3H), 2.34 (d, 3H, J= 5.1 Hz); LCMS: purity: 97%, MS (m/e): 506 (M+).	.26 (m, 2H), 8.18 1H, J= 8.7 Hz), + 2.34 (d, 3H, J= 5.1	+	t	
N4-(3-Chloro-4-trifluoromethoxyphenyl)-5-fluoro-N2-[4-(3-498methoxyphenyl-N-methylamino)sulfonyl]-2,4-pyrimidinediamine	14 NMR (DMSO-d6): d 9.78 (s, 1H), 9.72 (s, 1H), 8.25 (m, 1H), 8.15 (d, 1H, J= 3.6 Hz), 7.84 (dd, 1H, J= 2.4 and 9.0 Hz), 7.52 (m, 2H), 7.43 (m, 2H), 6.74 (m, 1H), 3.74 (s, 3H), 2.33 (d, 3H, J= 2.1 Hz); LCMS: purity: 83%, MS (m/e): 522 (M+).	.25 (m, 1H), 8.15 , 7.52 (m, 2H), 7.43 2.1 Hz); LCMS:	+	1	
5-Fluoro-N4-(3-hydroxyphenyl)-N2-[3-methoxyphenyl-4-(N-methylamino)sulfonyl]-2,4-pyrimidinediamine	1H NMR (DMSO-d6): d 9.57 (s, 1H), 9.38 (s, 1H), 9.31 (s, 1H), 8.13 enyl-4-(N- (d, 1H, J= 3.9 Hz), 7.51 (m, 1H), 7.47 (m, 2H), 7.21 (d, 1H, J= 1.5 Hz), 7.08 (m, 2H), 6.70 (d, 1H, J= 5.4 Hz), 6.51 (bdd, 1H, J= 8.1 Hz), 3.31 (s, 3H), 2.30 (d, 3H, J= 2.4 Hz); LCMS: puri	.31 (s, 1H), 8.13 (d, 1H, J= 1.5 Hz), + (, J= 8.1 Hz), 3.31	+		
N4-(2,6-Dimethoxypyrid-3-yl)-N2,N4-dimethyl-5-fluoro-2,4- pyrimidinediamine	uoro-2,4- Hz), 6.54 (bd, 1H), 6.35 (d, 1H, J= 5.4 Hz), 7.59 (d, 1H, J= 7.5 Hz), 6.54 (bd, 1H), 6.35 (d, 1H, J= 8.4 Hz), 3.85 (s, 3H), 3.83 (s, 3H), 2.71 (d, 3H, J= 3.9 Hz); LCMS: purity: 92%, MS (m/e): 294 (M+).	9 (d, 1H, J= 7.5 3H), 3.83 (s, 3H), - (e): 294 (M+).		1	1
N4-(3,5-Dichloro-4-methoxyphenyl)-N2,N4-dimethyl-5-fluoro- 2,4-pyrimidinediamine	1H NMR (DMSO-d6): d 7.86 (d, 1H, J= 5.4 Hz), 7.42 (s, 2H), 3.80 (s, 3yl)-5-fluoro-3H), 3.38 (s, 3H), 2.73 (d, 3H, J= 4.8 Hz); LCMS: purity: 98%, MS (m/e): 331 (M+).	2 (s, 2H), 3.80 (s, urity: 98%, MS		1	
2-Chloro-5-fluoro-N4-[4-(N-methylamino)sulfonyl-3-methoxyphenyl]-2,4-pyrimidineamine	1H NMR (DMSO-d6): d 10.28 (ş, 1H), 8.42 (d, 1H, J= 3.0 Hz), 7.71 (d, 1H, J= 1.8 Hz), 7.67 (d, 1H, J= 8.4 Hz), 7.46 (dd, 1H, J= 1.5 and 8.4 Hz), 6.95 (d, 1H, J= 5.4 Hz), 3.87 (s, 3H), 2.38 (2.38 (d, 3H, J= 4.8 Hz); LCMS: purity: 80%, MS (m/e): 349 (M+2).	J= 3.0 Hz), 7.71 (d, H, J= 1.5 and 8.4 B (d, 3H, J= 4.8		1	
N2-(3,5-Dimethoxyphenyl)-5-fluoro-N4-[2-(2- nydroxyethyleneoxy)pyrid-5-yl]-2,4-pyrimidinediamine		.57 (d, 1H, J= 2.7 nd 8.7 Hz), 6.91 (d, J= 3.6 Hz), 4.23 (t,	+	1	
N2-(3,5-Dimethylphenyl)-5-fluoro-N4-[2-(2- hydroxyethyleneoxy)pyrid-5-yl]-2,4-pyrimidinediamine	14 NMR (DMSO-d6): d 9.30 (s, 14), 9.06 (s, 14), 8.54 (d, 14, J= 2.4 Hz), 8.06 (d, 14, J= 3.6 Hz), 7.94 (dd, 14, J= 2.7 and 9.0 Hz), 7.20 (d, 24, J= 0.9 Hz), 6.79 (d, 14, J= 9.0 Hz), 6.50 (s, 14), 4.8 (t, 14, J= 5.7 Hz), 3.70 (q, 2	.54 (d, 1H, J= 2.4 nd 9.0 Hz), 7.20 (d, h, 4.8 (t, 1H, J= 5.7	+	1	

Ì

Tryptase, Tryptase, fp_syk, CHMC, CHMC, CHMC, 11pt IgE, 3pt IgE, 8pt Iono, 3pt							
Tryptase CHMC, lono, 3pt	ı	1	ı		,	1	ı
Tryptase, CHMC, IgE, 8pt			,				
Tryptase CHMC, IgE, 3pt	+	+	+	3	, .	+	+
Physical Data 1H NMR (DMSO-d6): d 9.53 (s, 1H), 9.29 (s, 1H), 8.21 (s, 1H), 8.10	(d, 1H, J=3.9 Hz), 7.79 (dd, 1H, J= 1.2 and 8.4 Hz), 7.33 (m, 3H), 7.16 (s, 1H), 6.94 (d, 1H, J= 8.7 Hz), 3.75 (s, 3H), 3.70 (s, 3H); LCMS: purity: 95%, MS (m/e): 407 (MH-).			1H NMR (DMSO-d6): d 9.64 (s, 1H), 9.23 (s, 1H), 8.17 (s, N4-(3,4-Ethylenedioxyphenyl)-5-fluoro-N2-[5-	1H NMR (DMSO-d6): d 10.51 (s, 1H), 9.54 (s, 1H), 9.40 (s, 1H), 8.63 (s, 1H), 8.39 (s, 1H), 8.18 (s, 1H), 8.14 (d, 1H, J= 3.9 Hz), 8.04 (s, 1H), 7.44 (dd, 1H, J= 2.1 and 8.7 Hz), 7.37 (s, 1H), 6.77 (d, 1H, J= 8.4 Hz), 3.84 (s, 3H), 1.38 (s, 6H); LCMS: puri	1H NMR (DMSO-d6): d 9.64 (s, 1H), 9.25 (s, 1H), 8.62 (s, 1H), 8.43 (s, 1H), 8.19 (s, 1H), 8.15 (d, 1H, J= 3.9 Hz), 8.05 (s, 1H), 7.38 (s, 2H), 7.36 (s, 2H), 7.13 (s, 1H), 6.98 (t, 1H, J= 8.7 Hz), 6.42 (dd, 1H, J= 2.4 and 6.6 Hz), 3.83 (s, 3H); LCMS: purit	14 NMR (DMSO-46): d 9.75 (s, 1H), 9.23 (s, 1H), 8.59 (s, 1H), 8.22 (t, 2H, J= 0.9 Hz), 8.14 (d, 1H, J= 3.9 Hz), 7.69 (s, 1H), 7.40 (s, 1H), 7.31 (d, 1H, J= 2.4 Hz), 7.19 (dd, 1H, J= 2.7 and 9.0 Hz), 6.72 (d, 1H, J= 2.4 Hz), 7.19 (dd, 1H, J= 2.7 and 9.0 Hz), 6.72 (d, 1H, J= 2.4 Hz), 7.19 (dd, 1H, J= 2.7 and 9.0 Hz), 6.72 (d, 1H, J= 2.4 Hz), 6.72
Compound Name Number	N4-(3,4-Dimethoxyphenyl)-5-fluoro-N2-[3-(1,2,4-oxadiazol-3-yl)phenyl]-2,4-pyrimidinediamine	N4-(2,2-Dimethyl-3-oxo-4H-benz[1,4]oxazin-6-yl)-5-fluoro-N2- [3-(1,2,4-oxadiazol-3-yl)phenyl]-2,4-pyrimidinediamine	N4-(3,4-Dimethoxyphenyl)-5-fluoro-N2-[5-methoxycarbonyl-3- (oxazol-2-yl)phenyl]-2,4-pyrimidinediamine	N4-(3,4-Ethylenedioxyphenyl)-5-fluoro-N2-15- methoxycarbonyl-3-(oxazol-2-yl)phenyl]-2,4-pyrimidinediamine	N4-(2,2-Dimethyl-3-oxo-4H-benz[1,4]oxazin-6-yl)-5-fluoro-N2-517 [5-methoxycarbonyl-3-(oxazol-2-yl)phenyl]-2,4-pyrimidinedlamine	5-Fluoro-N4-(3-hydroxyphenyl)-N2-[5-methoxycarbonyl-3- (oxazol-2-yl)phenyl]-2,4-pyrimidinediamine	N4-(3,4-Ethylenedioxyphenyl)-5-fluoro-N2-[3-(oxazol-2-yl)-5-frifluoromethylphenyl]-2,4-pyrlmidinediamine

fp_syk, 11pt								
Tryptase, Tryptase, Tryptase, fp_syk, CHMC, CHMC, CHMC, 11pt 1gE, 3pt lgE, 8pt lono, 3pt	1	ı						
Tryptase, CHMC, IgE, 8pt								
Tryptase, CHMC, IgE, 3pt	+	+	+	1	+	+	+	+
လိ	1H), 8.20 (bs, 1H), 8.14 (d, 1H, J= 4.2 Hz), 7.68 (s, 1H), 7.40 (s, 1H), 7.33 (bdd, 1H, J= 9.0 Hz), 7.23 (bs, 1H), 6.82 (d, 1H, J= 7.5 Hz), 3.71 (s, 3H), 3.68 (s, 3H); LCMS: purity: 97	1H NMR (DMSO-d6): d 10.54 (s, 1H), 9.70 (s, 1H), 9.42 (s, 1H), 8.54 N4-(2,2-Dimethyl-3-oxo-4H-benz[1,4]oxazin-6-yl)-5-fluoro-N2- (s, 1H), 8.27 (s, 1H), 8.21 (s, 1H), 8.16 (d, 1H, J= 2.7 Hz), 7.67 (s, 1H), [3-(oxazol-2-yl)-5-trifluoromethylphenyl]-2,4-pyrimidinediamine [7.40 (d, 1H), 7.33 (bdd, 1H, J= 8.4 Hz), 7.17 (d, 1H, J= 2.4 Hz), 6.81 (d, 1H, J= 8.4 Hz), 1.39 (s, 6H); LCMS:	1H NMR (DMSO-d6); d 9.55 (s, 1H), 9.36 (s, 1H), 9.30 (s, 1H), 8.13 (m, 2H), 7.88 (bd, 1H, J=7.8 Hz), 7.38 (t, 1H, J=7.8 Hz), 7.27 (m, 2H), 7.13 (t, 1H, J=7.8 Hz), 7.02 (s, 1H), 6.50 (bdd, 1H, J=5.7 Hz); LCMS: purity: 95%; MS (m/e): 364 (M+).	1H NMR (DMSO-d6); d 8.11 (d, 1H, J= 5.4 Hz), 6.79 (s, 2H), 3.74 (s, 3H), 3.72 (s, 3H), 3.65 (s, 3H), 3.38 (s, 3H); LCMS: purity: 94%, MS (m/e): 329 (MH+).	1H NMR (DMSO-d6): d 10.45 (s, 1H), 9.59 (s, 1H), 8.33 (s, 1H), 8.21 (d, 1H, J= 2.7 Hz), 8.18 (s, 1H), 7.83 (bd, 1H, J= 7.2 Hz), 7.55 (bd, 1H, J= 8.1 Hz), 7.40 (t, 1H, J= 8.1 Hz), 7.35 (s, 1H, J= 6.92 (s, 1H), 2.29 9s, 3H); LCMS: purity: 100%, MS (m/e): 35		1H NMR (DMSO-d6): d 9.48 (m, 2H), 8.19 (m, 2H), 8.11 (m, 2H), 7.77 (m, 2H), 7.35 (m, 6H), 6.73 (s, 1H), 3.32 (s, 3H); LCMS: purity: 83%, MS (m/e): 428 (MH+).	1H NMR (DMSO-d6); d 9.89 (s, 1H), 8.88 (s, 1H), 8.49 (s, N2, N4-Bis[3-methoxycarbonyl-5-(oxazol-2-yl)phenyl]-5-fluoro- 1H), 8.45 (s, 1H), 8.35 (s, 1H), 8.27 (d, 1H, J= 3.6 Hz), 8.08 (m, 3H), 7.4-pyrimidinediamine 7.30 (s, 1H), 7.27 (s, 3H), 3.71 (s, 3H), 3.68 (s, 3H); LCMS: purity: 86%, MS (M/e): 531 (MH+).
Compound Name Number	N4-(3,4-Dimethoxyphenyl)-5-fluoro-N2-(3-(oxazol-2-yl)-5-trifluoromethylphenyl]-2,4-pyrimidinediamine	N4-(2,2-Dimethyl-3-oxo-4H-benz[1,4]oxazin-6-yl)-5-fluoro-N2- [3-(oxazol-2-yl)-5-trifluoromethylphenyl]-2,4-pyrimidinediamine	522 yl)phenyl]-2,4-pyrimidinediamine	2-Chloro-5-fluoro-N4-methyl-N4-(3,4,5-trimethoxyphenyl)-4- pyrimidineamine	524 yl)phenyl]-2,4-pyrimidinediamine	525 yl)phenylj-2,4-pyrimidinediamine	5-Fluoro-N4-(1-methyl-3-phenylpyrazol-5-yl)-N2-[3-(oxazol-2- yl)phenyl]-2,4-pyrimidinediamine	N2,N4-Bis[3-methoxycarbonyl-5-(oxazol-2-yl)phenyl]-5-fluoro- 2,4-pyrimidinedlamine

Tryptase, Tryptase, fp_sy, CHMC, CHMC, CHMC, CHMC, 11pt GE, 8pt Iono, 3pt	+		_
LD CHMC, Iono, 3pt			
LD ,Tryptase CHMC, IgE, 8pt	+		
LD Tryptase CHMC, IgE, 3pt	+		
J=3.9 S: purity: 8.54 (s, 7.779 %, MS	88 HZ; (S, S, T,	+ .	+ +
B (d, 1H, H); LCM(s, 1H), (s, 1H), ourity: 92	s, 1H), 8. 1, J= 7.5, Hz), 3.70 1H, J= 1. (bd, 1H, 0 (d, 1H,	H), 8.24 (d, 1H, J= 2 (f, 1H, 6.69 (m, 9.92	8.14 (s, 1H, J= 3H),
1.85 (s, 3. 1.14), 7.85 (s, 3. 1.14), 8.600 (1.142), 8.500 (1.142)	9 9bd, 11 H, J= 8.7 H, S.25 (t, HZ), 7.51 7 HZ), 6.7	(m, 1H), S (m/e); S (m/e); S	7.45 (d, 71, 1), 2.87 (s,
(s, 3H), (s, 3H), (9.19 (s, 11H, J= 5)? (s, 1H)	7 Hz), 7.4 3.75 (d, 11 19 (s, 1H) H, J= 2.4 4 and 8.	J=8.1 H IH, J=8.4 HZ), 6.86 7.90%, Mi	7.8 Hz), = 8.1 Hz)
76 (s, 11H 34), 2.03 34), 2.03 1. 9 (s, 11H), 7.2 (s, 11H), 9	1H, J= 8.7 2.4 Hz), 6 6, 1H), 9.1 1H, J= 2 11H, 9.28	.30 (bd, 1H, .30 (bd, 1), 6	d, 1H, J= 3 (f, 1H, J (m/ H+).
-d6); d 8 2.10 (s, 19 (MH+ d6); d 9.9 = 2.7 Hz)), 7.31 (s	.93 (bd, 1) (1,11, J= 1) (s, 9H) (2, 9H) (3, 9H) (4, 9H) (4, 9H) (4, 9H) (5, 9H) (5, 9H) (6, 9	Hz), 8.00 3.4 Hz), 7 = 8.4 Hz) .61 (d, 11) 3H); LCI 35 (s, 1H)), 7.71 (b Hz), 7.29 96%, MS 96%, MS
Phr.Sib.al Data 1	1), 7.25 (c 1), 7.25 (c 1), 7.25 (c 11, J= 3 (m, 2H), 1 SO-d6); q	3, 1H, J= 8 3 (f, 1H, J= 8 3-46); d 7 3-51 (s, 3.51 (s, -46); d 9;	3: purity:: MS (m/e
Pry: No.10 Data Psychological para Psychologi	7.35 (m, 2H), 7.25 (d, 1H, J= 8.7 Hz), 7.49 9bd, 1H, J= 7.5 Hz), 3.46 (s, 3H), 7.25 (d, 1H, J= 2.4 Hz), 6.75 (d, 1H, J= 8.7 Hz), 7.49 9bd, 1H, J= 7.5 Hz), 1H NMR (DMSO-d6): d 9.45 (s, 1H), 9.19 (s, 1H), 8.25 (t, 1H, J= 1.8 Hz), 8.07 (d, 1H, J= 3.3 Hz), 7.87 (bd, 1H, J= 2.4 Hz), 7.51 (bd, 1H, J= 1.8 9 Hz), 7.40 (m, 2H), 7.16 (dd, 1H, J= 2.4 and 8.7 Hz), 7.51 (bd, 1H, J= 1.4 Hz), 4.15 (m, 4H), 1.37 (s, 9H); LCMS:	7.8 Hz), 7.39 (f, 1H, J= 8.4 Hz), 7.30 (bd, 1H, J= 8.1 Hz), 7.50 (d, 1H, J= 1.1 Hz), 7.50 (d, 1H, J= 2.1 Hz), 6.99 (f, 1H, J= 8.4 Hz), 7.30 (bd, 1H, J= 8.4 Hz), 7.50 (d, 1H, J= 1.1 Hz), 6.99 (f, 1H, J= 8.4 Hz), 6. 2H), 4.29 (s, 4H), 3.51 (s, 3H); LCMS: purity:90%, MS (m/e): 292 1H NMR (DMSO-d6): d 9.35 (s, 1H), 8.88 (s, 1H), 6.69 (m,	6.6 Hz), 7.32 (d, 1H, J= 3.6 Hz), 7.71 (bd, 1H, J= 7.8 Hz), 7.45 (d, 1H, B.14 (s, 2.10 (s, 3H); LCMS: purity: 96%, MS (m/LCMS: purity: 96%, MS (m/LCMS: purity: 85%, MS (m/LCMS: purity: 95%, MS (m/
U000-2,4-	+ F 0 = E		6.6 Hz), 2.10 (s, 3 -CMS: pu
I)-5-fluoro-2,4- lethylphenyl]-5-fl	-(3,4- nine oro-N4-(3	-hydrazin	
vl)-5-fluo	henyi]-N4 ildinedian	methyl-2-hyc	vrimidine
Oxazol-4 5-trifluoro azol-5-yl) 4-pyrimie	2,4-pyrin 2,4-pyrin 1-5-yl)phe amine	luoro-N4	710-N2-[5
almethylisne	4-oxadiaz 5-fluoro- oxadiazo	henyl)-5-f 4-yl)-5-fli	yl)-5-flu. -2-yl)pher
528 N2,N4-Bis(3,5-dimethylisoxazol-4-yl)-5-fluoro-2,4- 529 N2,N4-Bis[3-(oxazol-2-yl)-5-trifluoromethylphenyl]-5- Pyrimidinediamine 530 N2-[(2-tert-Butyl-1,3,4-oxadiazol-5-yl)phenyl]-N4-(3,4-oxadiazol-5-yl)phenyl]-N4-(3,4-	N2-[(2-tert-Butyl-1,3,4-oxadiazol-5-yl)phenyl]-N4-(3,4-effnylenedioxyphenyl)-5-fluoro-2,4-pyrimidinediamine 532 N2-[(2-tert-Butyl-1,3,4-oxadiazol-5-yl)phenyl]-5-fluoro-N4-(3-hydroxyphenyl)-2,4-pyrimidinediamine	N4-(3,4-Ethylenedioxyphenyl)-5-fluoro-N4-methyl-2-hydrazine-f-pyrimidineamine N4-(3,5-Dimethylisoxazol-4-yl)-5-fluoro-N2-[3-(0xazol-2-7)]	N4-(3,5-Dimethylisoxazol-4-yl)-5-fluoro-N2-[5- methoxycarbonyl-3-(oxazol-2-yl)phenyl]-2,4-pyrimidinediamine
528 N2,N4 Pyrimic Pyrimic Pyrimidil Pyrimidil Pyrimidil Pyrimidil Pyrimidil N2-[(2-ter	2-[(2-tert-) ylenedio; [(2-tert-Bt	533 N4-(3,4-Ethylenedio 4-pyrimidineamine 4-byrimidineamine 534 N4-(3,5-Dimethylisox	Dimethyli carbonyl
520 528	531 N.; ett 532 N2-i	533 N4-(3 4-pyrti 534 N4-(3,5 VI)pheni	N4-(3,5-
	, .	1 10 1 10	235

֖֖֖֖֭֡֞֞֝֡ ֖֖֓

Id Name Physical Data CHMC, CHMC, CHMC, 11pt IgE, 3pt IgE, 8pt Iono, 3pt	N4-(2-Amino-3-methoxy-pyrid-6-yl)-N2-(3,5-dimethoxyphenyl)- 5-fluoro-2,4-pyrimidinediamine	N4-(2-Amino-3-methoxypyrid-6-yl)-5-fluoro-N2-(3,4,5- LCMS: purity:94%; MS (m/e): 417 (MH+) +	N4-(2-Amino-3-methoxypyrid-6-yl)-5-fluoro-N2-(2- LCMS: purity: 82%; MS (m/e);425 (MH+) +	N4-(2-Amino-3-methoxypyrid-6-yl)-5-fluoro-N2[3-(N-547 methylaminocarbonylmethyleneoxy)phenyl]-2,4- LCMS: purity: 89%; MS (m/e); 414 (MH+) +	N2-(3,5-Dichloro-4-hydroxyphenyl)-N4-(3,5-dichloro-4-LCMS: purity: 92%; MS (m/e);465 (MH+) + + + + + + + + + + + + + + + + + +	N4-(4-Acetyl-2,2-dimethyl-3-oxo-pyrid[1,4]oxazin-6-yl)-5- LCMS: purity: 97%; MS (m/e): 513 (M+) fluoro-N2-(3,4,5-trimethoxyphenyl)-2,4-pyrimidinediamine	N4-Acetyl-N4-(2,2-dimethyl-3-oxo-4H-pyrid[1,4]oxazin-6-yl)-5- LCMS: purity: 96%; MS (m/e): 513 (M+) fluoro-N2-(3,4,5-trimethoxyphenyl)-2,4-pyrimidinediamine	N2-Acetyl-N4-(2,2-dimethyl-3-oxo-4H-pyrid[1,4]oxazin-6-yl)-5- fluoro-N2-(3,4,5-trimethoxyphenyl)-2,4-pyrimidinediamine	2,N4-Bis[3-methyl-4-(4-methylpiperazinyl)phenyl)-5-fluoro-2,4- pyrimidinediamine	N4-(3,5-Dimethylphenyl)-5-fluoro-N2-(3,4,5-trimethoxyphenyl)-1+1, 7.40-7.36 (m, 2H), 6.95 (s, 2H), 6.67 (s, 1H), 3.58-3.56 (m, 9H), +2.4-pyrimidinediamine 2.19 (s, 6H); LCMS: purity: 96%; MS (m/e): 399 (MH+).	¹ H NMR (DMSO-d6): d 9.21 (bs, 1H), 9.04 (bs, 1H), 8.63 (bs, 1H), 1.7.34-7.30 (m, 2H), 7.24-4 (m, 2H), 7.24-4 (m, 1H), 7.24-4 (m, 1H), 7.24-4 (m, 1H), 6.69 (bs, 1H), 2.22 (s, 6H), 2.09 (s, 3H); LCMS: purity:
Compound Name Number	N4-(2-Amino-3-methoxy-pyrid-544 5-fluoro-2,4-pyrimidinediamine	N4-(2-Amino-3-methoxypy 545 trimethoxyphenyl)-2,4-pyrir	N4-(2-Amino-3-methoxypy 546 methoxycarbonylbenzofura	N4-(2-Amino-3-methoxypy 547 methylaminocarbonylmethypy pyrimidinediamine	N2-(3,5-Dichloro-4-hydroxy 548 methoxyphenyl)-5-fluoro-2,	549 fluoro-N2-(3,4,5-trimethoxy	N4-Acetyl-N4-(2,2-dimethy 550 fluoro-N2-(3,4,5-trimethoxy	N2-Acetyl-N4-(2,2-dimethy fluoro-N2-(3,4,5-trimethoxy	2,N4-Bis[3-methyl-4-(4-met pyrimidinediamine	N4-(3,5-Dimethylphenyl)-5 2,4-pyrimidinediamine	N2-(3-Chloro-4-hydroxy-5-r 554 dimethylphenyl)-2,4-pyrimi

Gonneaun Nujoker	Compound Name	Physical Date	Tryptase, Tryptase, CHMC, (CHMC, (IQE, 3pt I	Tryptase, Tryptase, fp_sy CHMC, CHMC, CHMC, 11pt IgE, 3pt IgE, 8pt Iono, 3pt	Tryptase, f CHMC, 1 lono, 3pt	fp_sy 11pt
555	N2-[3,5-Bis(hydroxymethylene)phenyl]-N4-(3,5- dimethylphenyl)-5-fluoro-2,4-pyrimidinedlamine	¹ H NMR (DMSO-d6): d 9.11 (s, 2H), 8.06 (d, J= 3.9 Hz, 1H), 7.45 (s, 2H), 7.38 (s, 2H), 6.85 (s, 1H), 6.68 (s, 1H), 4.38-4.34 (m, 4H), 2.22 (s, 6H); LCMS: purity: 99%; MS (m/e): 369 (MH+).		+		
556	N2-(3,5-Dichlorophenyl)-N4-(3,5-dimethylphenyl)-5-fluoro-2,4- 6 pyrimidinediamine	¹ H NMR (DMSO-d6): d 9.76 (bs, 1H), 9.51 (bs, 1H), 8.18 (d, J= 3.9 Hz, 1H), 7.73-7.69 (m, 2H), 7.29-7.25 (m, 2H), 7.04 (t, J= 1.8 Hz, 1H), 6.75 (s, 1H), 2.25 (s, 6H); LCMS: purity: 92%; MS (m/e): 378 (MH+).	+	+		
557	N4-(3,5-Dimethylphenyl)-5-fluoro-N2-[2-(N- methylamino)carbonylindol-7-yl]-2,4-pyrimidinediamine	¹ H NMR (DMSO-d6): d 11.66 (s, 1H), 9.37 (s, 1H), 9.28 (s, 1H), 8.48-8.40 (m, 1H), 8.13 (d, J= 3.6 Hz, 1H), 7.98-7.88 (m, 1H), 7.33 (s, 2H), 7.22 (d, J= 7.8 Hz, 1H), 7.04 (d, J= 1.8 Hz, 1H), 6.90 (t, J= 8.1 Hz, 1H), 6.71 (s, 1H), 2.80 (d, J= 3.0 Hz, 3H), 2			6	
558	5-Fluoro-N4-(3-methoxy-5-trifluoromethylphenyl)-N2-[2-(N- 558 methylamino)carbonylindol-7-yl]-2,4-pyrimidinediamine	¹ H NMR (DMSO-d6): d 11.57 (s, 1H), 9.65 (s, 1H), 9.40 (s, 1H), 8.39-8.35 (m, 1H), 8.15 (d, J= 3.9 Hz, 1H), 7.78 (d, J= 7.5 Hz, 1H), 7.73-7.69 (m, 1H), 7.57-7.52 (m, 1H), 7.18 (d, J= 7.8 Hz, 1H), 9.98 (d, J= 1.8 Hz, 1H), 6.87-6.80 (m, 2H), 3.70 (s, 3H), 2.	+			
556	N2-(3,5-Dichloro-4-hydroxyphenyl)-N4-(3,5-dimethylphenyl)-5- fluoro-2,4-pyrimidinediamine		+	+		
26(N2-(4-Chloro-3,5-dimethylphenyl)-N4-(3,5-dimethylphenyl)-5- fluoro-2,4-pyrimidinediamine	¹H NMR (DMSO-d6): d 9.17 (s, 1H), 9.13 (s, 1H), 8.07 (d, J= 3.9 Hz, 1H), 7.45 (s, 2H), 7.30 (s, 2H), 6.72 (s, 1H), 2.22 (s, 6H), 2.18 (s, 6H); LCMS: purity: 93%; MS (m/e): 372 (MH+).		,		
561	N4-[3,4-(Difluoromethylenedioxy)phenyl]-5-fluoro-N2-(3,4,5- trimethoxyphenyl)-2,4-pyrimidinediamine	¹ H NMR (DMSO-d6): d 9.53 (s, 1H), 9.13 (s, 1H), 8.17-8.12 (m, 1H), 8.11 (d, J= 3.9 Hz, 1H), 7.42 (dd, J= 2.4 and 9.0 Hz, 1H), 7.32 (d, J= 8.4 Hz, 1H), 7.00 (s, 2H), 3.64 (s, 6H); 19F NMR (282 MHz, DMSO-d6): -49.77, -164.19; LCMS: purity: 93%; MS (m/e): 4		+		
295	N4-[3,4-(Difluoromethylenedioxy)phenyl]-N2-(3,5-dimethoxyphenyl)-5-fluoro-2,4-pyrimidinediamine	'H NMR (DMSO-d6): d 9.54 (s, 1H), 9.22 (s, 1H), 8.12 (d, J= 3.6 Hz, 1H), 8.11-8.08 (m, 1H), 7.42 (dd, J= 2.1 and 9.0 Hz, 1H), 7.32 (d, J= 8.7 Hz, 1H), 6.90 (d, J= 2.1 Hz, 2H), 6.07 (t, J= 2.4 Hz, 1H), 3.65 (s, 6H); 19F NMR (282 MHz, DMSO-d6): 49.69, -16	+	+		

Compound	Compound Name	Physical Date	Tryptase, Tryptase, Tryptase, fp_syk, CHMC, CHMC, CHMC, 11pt	Tryptase, T CHMC, C IgE, 8pt Ic	Tryptase, fr CHMC, 1	fp_syk, 11pt
563	N4-[3,4-(Difluoromethylenedioxy)phenyl]-N2-(3,5- dimethylphenyl)-5-fluoro-2,4-pyrimidinediamine	¹ H NMR (DMSO-46): d 9.51 (s, 1H), 9.13 (s, 1H), 8.11 (d, J= 3.6 Hz, 1H), 8.09-8.06 (m, 1H), 7.39 (dd, J= 2.1 and 8.7 Hz, 1H), 7.34 (d, J= 9.0 Hz, 1H), 7.22 (s, 2H), 6.53 (s, 1H), 2.16 (s, 6H); 19F NMR (282 MHz, DMSO-46): -49.67, -164.51; LCMS: purity: 98	+	+		
564	N2-(3,5-Dichloro-4-hydroxyphenyl)-N4-[3,4- 564 (difluoromethylenedioxy)phenyl]-5-fluoro-2,4- pyrimidinediamine	¹ H NMR (DMSO-46); d 9.59 (s, 1H), 9.45 (bs, 1H), 9.31 (s, 1H), 8.08 (d, J= 3.6 Hz, 1H), 7.85-7.79 (m, 1H), 7.55 (s, 1H), 7.29 (s, 1H); 19F NMR (282 MHz, DMSO-46); -49.50, -163.68; LCMS; purity: 96%; MS (m/e); 446 (MH+).		+		
565	N2-(3,5-Dichlorophenyl)-N4-[3,4- 565 (difluoromethylenedioxy)phenyl]-5-fluoro-2,4- pyrimidinediamine	¹ H NMR (DMSO-46): d 9.62-9.68 (m, 2H), 8.19 (d, J= 3.6 Hz, 1H), 7.92-7.88 (m, 1H), 7.71 (s, 1H), 7.70 (s, 1H), 7.38-7.33 (m, 2H), 7.00 (t, J= 1.8 Hz, 1H); 19F NMR (282 MHz, DMSO-46): ~49.51, -162.64; LCMS: purity: 99%; MS (m/e): 430 (MH+).	+			
266	N2-(4-Chloro-3,5-dimethylphenyl)-N4-[3,4- 566 (difluoromethylenedioxy)phenyl]-5-fluoro-2,4- pyrlmidinediamine	¹ H NMR (DMSO-d6): d 9.84 (s, 1H), 9.51 (s, 1H), 8.18 (s, J= 2.7 Hz, 1H), 7.99 (bs, 1H), 7.41-7.35 (m, 4H), 2.22 (s, 6H); LCMS: purity: 94%; MS (m/e): 424 (MH+).	1			
567	N2-(3-Chloro-4-hydroxy-5-methylphenyl)-N4-[3,4-567 (difluoromethylenedioxy)phenyl]-5-fluoro-2,4-pyrimidinediamine	¹ H NMR (DMSO-46): d 9.57 (s, 1H), 9.14 (s, 1H), 8.58 (bs, 1H), 8.05 (d, J= 3.9 Hz, 1H), 7.90 (s, 1H), 7.44 (d, J= 1.8 Hz, 1H), 7.31 (dd, J= 1.8 and 8.7 Hz, 1H), 7.26 (d, J= 8.4 Hz, 1H), 7.14-7.09 (m, 1H), 2.06 (s, 3H); 19F NMR (282 MHz, DMSO-46): -49.60,		+		
568	N4-[3,4-(Difluoromethylenedioxy)phenyl]-5-fluoro-N2-(3- methoxy-5-trifluoromethylphenyl)-2,4-pyrimidinediamine	¹ H NMR (DMSO-d6): d 9.60 (s, 1H), 9.56 (s, 1H), 8.17 (d, J= 3.3 Hz, 1H), 8.00 (s, 1H), 7.66 (s, 1H), 7.52 (s, 1H), 7.41-7.31 (m, 2H), 6.72 (s, 1H), 3.74 (s, 3H); 19F NMR (282 MHz, DMSO-d6): -49.75, -61.96, -162.93; LCMS: purity: 93%; MS (m/e): 459 (MH+).	1			
569	N4-[3,4-(Difluoromethylenedioxy)phenyl]-5-fluoro-N2-(3- methyl-5-trifluoromethylphenyl)-2,4-pyrimidinediamine	¹ H NMR (DMSO-d6): d 9.66 (s, 1H), 9.59 (s, 1H), 8.19 (d, J= 3.6 Hz, 1H), 8.04-7.97 (m, 1H), 7.84 (bs, 1H), 7.68 (bs, 1H), 7.36 (bs, 2H), 7.03 (s, 1H), 2.29 (s, 3H); 19F NMR (282 MHz, DMSO-d6): 49.63, -61.86, -163.10; LCMS: purity: 98%; MS (m/e): 443 (MH	+			
570	N4-[3,4-(Difluoromethylenedioxy)phenyl]-5-fluoro-N2-[2-(N-methylamino)carbonylindol-7-yl]-2,4-pyrimidinediamine	¹ H NWR (DMSO-d6): d 11.56 (s, 1H), 9.63 (s, 1H), 9.34 (s, 1H), 8.44-8.38 (m, 1H), 8.12 (d, J= 3.6 Hz, 1H), 7.97 (bs, 1H), 7.84-7.78 (m, 1H), 7.38-7.32 (m, 1H), 7.26 (d, J= 9.0 Hz, 1H), 7.20 (d, J= 8.1 Hz, 1H), 7.00 (s, 1H), 6.87 (t, J= 7.8 Hz, 1H), 2.74 (+			

Compound	Compound Name	Physical Data CH	ptase, MC, , 3pt	LLJ Tryptase, Try CHMC, CH IgE, 8pt Ion	Tryptase, fp CHMC, 11 Iono, 3pt	fp_syk, 11pt
571	N4-(3-Chloro-4-methoxyphenyl)-N2-[3,5-dimethyl-4-(N-571 methylamino)carbonylmethyleneoxyphenyl]-5-fluoro-2,4-pyrimidinediamine	¹ H NMR (DMSO-d6): d 9.28 (s, 1H), 9.03 (s, 1H), 8.15-8.07 (m, 1H), 8.05 (d, J= 3.3 Hz, 1H), 7.76-7.72 (m, 2H), 7.69-7.60 (m, 1H), 7.23 (s, 2H), 7.09 (d, J= 9.0 Hz, 1H), 4.10 (s, 2H), 3.83 (s, 3H), 2.69 (d, J= 4.2 Hz, 3H), 2.11 (s, 6H); LCMS: purity: 99%;	+	+		
572	N2-[3,5-dimethyl-4-(N-572 methylamino)carbonylmethyleneoxyphenyl]-N4-(3,4-ethylenedioxyphenyl)-5-fluoro-2,4-pyrimidinediamine	¹ H NMR (DMSO-d6); d 9.08 (s, 1H), 8.95 (s, 1H), 8.14-8.06 (m, 1H), 8.00 (d, J= 3.6 Hz, 1H), 7.23-7.25 (m, 3H), 7.20-7.14 (m, 1H), 6.78 (d, J= 8.7 Hz, 1H), 4.21 (s, 4H), 4.11 (s, 2H), 2.69 (d, J= 4.5 Hz, 3H), 2.13 (s, 6H); LCMS: purity: 99%; MS (m/e): 454	+	+		
573	N4-(3,5-Dimethoxyphenyl)-N2-[3,5-dimethyl-4-(N-573 methylamino)carbonylmethyleneoxyphenyl]-5-fluoro-2,4-pyrimidinediamine	"H NMR (DMSO-d6); d 9.20 (s, 1H), 9.01 (s, 1H), 8.14-8.05 (m, 2H), 7.29 (s, 2H), 7.00-6.96 (m, 2H), 6.24-6.19 (m, 1H), 4.11 (s, 2H), 3.67 (s, 6H), 2.70 (d, J= 4.8 Hz, 3H), 2.12 (s, 6H); LCMS: purity: 99%; MS (m/e): 456 (MH+).	+	+		
574	N2-[3,5-dimethyl-4-(N-574 methylamino)carbonylmethyleneoxyphenyl]-N4-(2,2-dimethyl-3-oxo-4H-benz[1,4]oxazin-6-yl)-5-fluoro-2,4-pyrimidinediamine		+	+		
575	N2-[3,5-dimethyl-4-(N-575 methylamino)carbonylmethyleneoxyphenyl]-5-fluoro-N4-(3,4-methylenedioxyphenyl)-2,4-pyrimidinediamine	¹ H NMR (DMSO-d6): d 9.15 (s, 1H), 8.96 (s, 1H), 8.12-8.05 (m, 1H), 8.01 (d, J= 3.9 Hz, 1H), 7.44-7.40 (m, 1H), 7.25 (s, 2H), 7.15-7.07 (m, 1H), 6.84 (d, J= 8.1 Hz, 1H), 5.98 (s, 2H), 4.11 (s, 2H), 2.69 (d, J= 4.8 Hz, 3H), 2.13 (s, 6H); LCMS: purity: 99%;	+	+		
576	2-Chloro-5-fluoro-N4-(2-isopropoxypyrid-5-yl)-N4-methyl-4- pyrimidineamine	1H NMR (DMSO-d6): d 8.17 (d, J= 2.7 Hz, 1H), 8.14 (d, J= 5.4 Hz, 1H), 7.74 (dd, J= 2.7 and 8.7 Hz, 1H), 6.77 (dd, J= 0.6 and 8.7 Hz, 1H), 5.21 (quintet, J= 6.3 Hz, 1H), 3.38 (s, 3H), 1.29 (d, J= 6.3 Hz, 6H); LCMS: purity: 95%; MS (m/e): 298(MH+).	ı			
577	N4-(3-Chloro-4-methoxyphenyl)-N2-(3,5-dimethoxyphenyl)-5- fluoro-N4-methyl-2,4-pyrimidinediamine	1H NMR (DMSO-d6): d 7.95 (d, J= 5.7 Hz, 1H), 7.46 (d, J= 2.7 Hz, 1H), 7.28 (dd, J= 2.4 and 9.0 Hz, 1H), 7.13 (d, J= 9.0 Hz, 1H), 6.98 (s, 1H), 6.97 (s, 1H), 6.09-6.06 (m, 1H), 3.86 (s, 3H), 3.69 (s, 6H), 3.44 (s, 3H); LCMS: purity: 96%; MS (m/e): 419(MH+	+		ı	

Campoune Number	Compound Name	Physical designation	Typtase, T	Typtase, CHMC, GE, 8pt	Tryptase, Tryptase, Tryptase, fp_s) CHMC, CHMC, CHMC, 11pt	p_s) 11pt
578	N2-(3-Chloro-4-methoxy-5-methylphenyl)-N4-(3-chloro-4- methoxyphenyl)-5-fluoro-N4-methyl-2,4-pyrimidinediamine	1H NMR (DMSO-d6); d 9.41 (s, 1H), 7.99 (d, J= 6.3 Hz, 1H), 7.69 (d, J= 2.7 Hz, 1H), 7.47 (d, J= 2.4 Hz, 1H), 7.36 (d, J= 1.8 Hz, 1H), 7.28 (dd, J= 2.7 and 8.7 Hz, 1H), 7.14 (d, J= 8.7 Hz, 1H), 3.87 (s, 3H), 3.68 (s, 3H), 3.42 (s, 3H), 2.19 (s, 3H); LCMS:	+			
579	N4-(3-Chloro-4-methoxyphenyl)-N2-[3,5-dimethyl-4-(N-579 methylamino)carbonylmethyleneoxyphenyl]-5-fluoro-N4-methyl-2,4-pyrimidinediamine	1H NMR (DMSO-d6); d 9.24 (s, 1H), 8.16-8.04 (m, 1H), 7.96 (d, J= 6.0 Hz, 1H), 7.47 (d, J= 2.4 Hz, 1H), 7.31-7.24 (m, 3H), 7.15 (d, J= 8.7 Hz, 1H), 4.12 (s, 2H), 3.87 (s, 3H), 3.42 (s, 3H), 2.69 (d, J= 4.8 Hz, 3H), 2.15 (s, 6H); LCMS: purity: 92%; MS (m/e	+			
580	N4-(3-Chloro-4-methoxyphenyl)-N2-[3-(N-580 methylamino)carbonylmethyleneoxyphenyl]-5-fluoro-N4-methyl-2,4-pyrimidinediamine	11 NMR (DMSO-d6); d 9.63 (bs, 111), 8.02 (d, J= 6.3 Hz, 111), 8.00-7.97 (m, 111), 7.50 (d, J= 2.7 Hz, 111), 7.36-7.34 (m, 111), 7.33-7.20 (m, 311), 7.16 (d, J= 9.0 Hz, 211), 6.57-6.52 (m, 111), 4.41 (s, 211), 3.87 (s, 311), 3.44 (s, 311), 2.64 (d, J= 4.8 Hz, 311); L	+			,
581	N2-(3,5-Dimethoxyphenyl)-5-fluoro-N4-(2-isopropoxypyrid-5- yl)-N4-methyl-2,4-pyrimidinediamine	1H NMR (DMSO-d6): d 9.47 (bs, 1H), 8.14 (d, J= 2.7 Hz, 1H), 7.99 (d, J= 6.0 Hz, 1H), 7.71 (dd, J= 3.0 and 8.7 Hz, 1H), 6.96-6.93 (m, 2H), 6.77 (dd, J= 0.6 and 8.7 Hz, 1H), 6.12 (t, J= 2.1 Hz, 1H), 5.21 (quintet, J= 6.3 Hz, 1H), 3.70 (s, 6H), 3.45 (s, 3H)	+		1	
. 582	5-Fluoro-N4-(2-isopropoxypyrid-5-yl)-N4-methyl-N2-[3-(N-582 methylamino)carbonylmethyleneoxyphenyl]-2,4-pyrimidinediamine	1H NMR (DMSO-d6): d 9.53 (s, 1H), 8.14 (d, J= 3.0 Hz, 1H), 8.02-7.93 (m, 2H), 7.70 (dd, J= 2.7 and 8.7 Hz, 1H), 7.37 (t, J= 2.1 Hz, 1H), 7.26-7.20 (m, 1H), 7.13 (t, J= 8.1 Hz, 1H), 6.78 (d, J= 8.7 Hz, 1H), 6.56-6.50 (m, 1H), 5.22 (quintet, J= 6.0 Hz, 1H)	+			
583	N2-(3,5-Dimethylphenyl)-5-fluoro-N4-(2-isopropoxypyrid-5-yl)- N4-methyl-2,4-pyrimldinediamine	1H NMR (DMSO-d6); d 9.42 (s, 1H), 8.14 (d, J= 2.7 Hz, 1H), 8.01 (d, J= 6.6 Hz, 1H), 3.45 (s, 3H), 2.19 (s, 6H), 1.29 (d, J= 6.3 Hz, 6H), 7.70 (dd, J= 2.7 and 8.7 Hz, 1H), 7.24 (s, 2H), 6.77 (d, J= 8.4 Hz, 1H), 6.57 (s, 1H), 5.22 (quintet, J= 6.3 Hz, 1H);	+		1	
584	N4-(3-Chloro-4-methoxyphenyl)-N2-(3,5-dimethylphenyl)-5- fluoro-N4-methyl-2,4-pyrimidinediamine	1H NMR (DMSO-d6); d 9.09 (s, 1H), 7.94 (d, J= 6.0 Hz, 1H), 7.45 (d, J= 2.1 Hz, 1H), 7.31-7.23 (m, 3H), 7.13 (d, J= 9.0 Hz, 1H), 6.51 (s, 1H), 3.86 (s, 3H), 3.42 (s, 3H), 2.18 (s, 6H); LCMS: purity: 88%; MS (m/e); 387(MH+).	+		•	

Compound	Compound Name	Physical Data	Tryptase,7 CHMC, (C	LL Tryptase, CHMC, IgE, 8pt	Tryptase, Tryptase, Tryptase, fp_syk, CHMC, CHMC, CHMC, 11pt 19E, 3pt 19E, 3pt 10no, 3pt	fp_syk,
586	N4-(3-Chloro-4-methoxyphenyl)-5-fluoro-N2-(2-585 methoxycarbonylbenzofuran-5-yl)-N4-methyl-2,4-pyrimidinediamine	1H NMR (DMSO-d6): d 9.45 (s, 1H), 8.16 (d, J= 1.8 Hz, 1H), 8.05 (d, J= 6.0 Hz, 1H), 7.68 (dd, J= 2.1 and 9.0 Hz, 1H), 7.65 (d, J= 0.9 Hz, 1H), 7.63-7.57 (m, 1H), 7.54 (d, J= 2.7 Hz, 1H), 7.35 (dd, J= 2.7 and 8.7 Hz, 1H), 7.23 (d, J=8.7 Hz, 1H), 3.95 (s,				
586	5-Fluoro-N4-(2-isopropoxypyrld-5-yl)-N2-(2- 586 methoxycarbonylbenzofuran-5-yl)-N4-methyl-2,4- pyrimidinediamine	1H NMR (DMSO-d6): d; 9.39 (s, 1H), 8.13 (d, J= 2.4 Hz, 1H), 8.09 (d, J= 1.8 Hz, 1H), 7.98 (d, J= 6.3 Hz, 1H), 7.70 (dd, J= 3.0 and 8.7 Hz, 1H), 7.64-7.57 (m, 2H), 7.54 (d, J= 8.7 Hz, 1H), 6.79 (d, J= 8.7 Hz, 1H), 5.22 (quintet, J= 6.3 Hz, 1H), 3.87 (s,	+		+	
587	N4-(4-Chloro-3-methoxyphenyl)-N2-(3,5-dimethoxyphenyl)-5- fluoro-N4-methyl-2,4-pyrimidinediamine	1H NMR (DMSO-d6): d 9.44 (bs, 1H), 8.03 (d, J= 6.0 Hz, 1H), 7.40 (d, J= 8.1 Hz, 1H), 7.15 (d, J= 2.1 Hz, 1H), 6.95 (d, J= 1.2 Hz, 2H), 6.90 (dd, J= 2.1 and 8.4 Hz, 1H), 6.12-6.08 (m, 1H), 3.82 (s, 3H), 3.69 (s, 6H), 3.49 (s, 3H); LCMS: purity: 96%; MS (m	+	+	r	
588	N4-(4-Chloro-3-methoxyphenyl)-N2-(3,5-dimethylphenyl)-5- fluoro-N4-methyl-2,4-pyrimidinediamine	1H NMR (DMSO-d6): d 9.35 (bs, 1H), 8.03 (d, J= 6.0, 1H), 7.41 (d, J= 8.4, 1H), 7.26-7.23 (m, 2H), 7.16 (d, J= 2.4 Hz, 1H), 6.90 (dd, J= 2.1 and 8.7 Hz, 1H), 6.58-6.55 (m, 1H), 3.82 (s, 3H), 3.49 (s, 3H), 2.19 (s, 6H); LCMS: purity: 91%; MS (m/e): 387(MH+	+		ı	
586	N4-(4-Chloro-3-methoxyphenyl)-5-fluoro-N4-methyl-N2-[3-(N-589methylamino)carbonylmethyleneoxyphenyl]-2,4-pyrlmidinediamine	1H NMR (DMSO-d6): d 9.34 (s, 1H), 8.00 (d, J= 5.4, 1H), 7.93-8.00 (m, 1H), 7.44 (t, J= 1.8 Hz, 1H), 7.39 (d, J= 8.4 Hz, 1H), 7.26 (dd, J= 1.2 and 8.4 Hz, 1H), 7.15-7.12 (m, 1H), 7.09 (d, J= 8.4 Hz, 1H), 6.87 (dd, J= 2.1 and 9.0 Hz, 1H), 6.47 (dd, J= 2.7	+	+	1	
590	N4-(4-Chloro-3-methoxyphenyl)-5-fluoro-N2-(indol-5-yl)-N4-methyl-2,4-pyrimidinediamine	1H NMR (DMSO-d6): d 10.84 (s, 1H), 9.010 (s, 1H), 7.96 (d, J=5.4 Hz, 1H), 7.87-7.84 (m, 1H), 7.39 (d, J=8.1 Hz, 1H), 7.27-7.19 (m, 3H), 7.12 (d, J=2.1 Hz, 1H), 6.87 (dd, J=2.4 and 8.7 Hz, 1H), 6.29-6.25 (m, 1H), 3.82 (s, 3H), 3.47 (s, 3H); LCMS: puri	+	+	1	
591	N4-(4-Chloro-3,5-dimethylphenyl)-N2-(3,5-dimethoxyphenyl)- 5-fluoro-N4-methyl-2,4-pyrimidinediamine	1H NMR (DMSO-d6): d 9.51 (bs, 1H), 8.03 (d, J= 6.0 Hz, 1H), 7.19 (s, 2H), 6.93 (d, J= 1.8 Hz, 2H), 6.12 (t, J= 2.4 Hz, 1H), 3.70 (s, 6H), 3.46 (s, 3H), 2.32 (s, 6H); LCMS: purity: 98%; MS (m/e): 418(MH+).	+	+	ı	
592	N4-(4-Chloro-3,5-dimethylphenyl)-N2-(3,5-dimethylphenyl)-5- fluoro-N4-methyl-2,4-pyrimidinediamine	1H NMR (DMSO-d6): d 9.49 (bs, 1H), 8.04 (d, J= 6.0 Hz, 1H), 7.24 (s, 2H), 7.20 (s, 2H), 6.60 (s, 1H), 3.45 (s, 3H), 2.32 (s, 6H), 2.19 (s, 6H); LCMS: purity: 98%; MS (m/e): 386(MH+).	ı		,	

*

WO 2005/016893		PCT/US2004/024716
ha was from the part of the was the man with the]]. (ta)	
		1 2
+		+
, ,		+
; + +	+ +	+
1000 + +	HZ TZ (\$) 17.7.	5.0 1=4.2 1=4.2 5, 1H),
(H, 8.00- (H), 8.00- (H, 8.2H), + (4.39 (s, 2H), + (d, J= 5.7 Hz, + (t, J= 2.1 Hz, + (m/e):	(s, MS %; MS %; MS (m, 1H / 1.20 / 1.5.7 (s, 1H) (s, 1H) (s, 1H) (s, 1H) (s, 1H)	NIMR (DIMSO-05); 1), 7.76 (d, J= 8.7 Hz, 2H), 7.57 (d, J= 8.7 Hz, 2H); 2.32 (s, 6H); LCMS: purity: 96%; MS (mle): 2.41), 3.46 (s, 3H), 2.32 (s, 6H); LCMS: purity: 96%; MS (mle): 2.5(MH+). 1.41), 7.89 (s, 1H), 7.41 (d, J= 8.4 Hz, 1H), 7.24-7.18 (m, 3H), 7.11 1.41 NIMR (DIMSO-d6): d 11.00 (s, 1H), 6.35-6.31 (m, 1H), 7.24-7.18 (m, 3H), 2.33 (s, Hz, 1H), 7.89 (s, 1H), 6.35-6.31 (m, 1H), 7.24-7.18 (d, J= 4.2 (6H); LCMS: purity: 95%; MS (mle): 397 (MH+). 1.41 NIMR (DIMSO-d6): d 9.94 (bs, 1H), 9.65 (bs, 1H), 7.66 (dd, J= 2.7 Hz, 1H), 7.65 (dd, J= 2.7 Hz, 1H), 7.93-7.84 (m, 1H), 7.74 (d, J= 2.4 Hz, 1H), 7.66 (dd, J= 2.7 Hz, 1H), 7.12 (s, 2H), 6.99 (d, J= 9.0 Hz, 1H), 6.64 (s, 1H), 114, 7.93-7.84 (m, 1H), 7.12 (s, 2H), 2.18 (s, J= 9.0 Hz, 1H), 6.64 (s, 1H), 114, 7.95 (s, 2H), 2.66 (d, J= 4.8 Hz, 3H), 2.18 (s, J= 2.7 Hz, 2H), 2.18 (s, J= 2.7 Hz
6 (s, 2H 6 (s, 2H 39 (s, 2' 1, 1=5. 1, 1=5.	HZ, 1H), 8, 11H), 8, 11H), 7.17 HZ, 1H HZ, 1	3.47 (s 3.47 (s 3.47 (s 7, 1H), 7 1, 1H), 7
1H), 7.1 1H), 4. 1H), 4. 1H), 4. 6.26 (t, 6.36 (t, 6.36) (r, 6.36) (r, 6.36)	3.3 Hz, 1 CMS: pt J=0.90 Iz, 1H), Iz, 1H), 8 I; 1H), 8 I; 96%; I; 96%;	(m, 1H), 7, (m, 1H
23 (m, 23 (m, 7.8 Hz (s, 24), 14 (s, 24), 17 (s, 24),	17 (d, J= 9 (d, J= 9 (d, J= 9 (d, J= 9) (d, J= 0.6 F (a, S.40 (f (s, Purit (s); purit (s); purit	(d, J= 8 LCMS: LCMS: 3,1H), 9 (5-6.31 (bs, 1H) (bs, 1H) 74 (d, J 74 (d, J 72,3H),
7.98 (c) 7.98 (c) 7.98 (d) 7.29-7 (2.4 and 1.9.32 (d) 7.15 (H), 8.9 (H), 7.15 (h), 7.1	1H), 8. 1H), 7.55 2.32 (s, 2.32 (s, 1H), 8. 128 (d, 128 (d, 11H), 12. 128 (d, 11H), 12. 138 (d, 11H), 12. 138 (d, 11H), 12. 138 (d, 11H), 12. 138 (d, 11H),	(s, 6H); (s, 6H); (s, MS (r, 19, 19, 6.3, 11H), 6.3 (s, MS (r, 11H), 7, 11H
(dd, 1+) (dd, 1-) (Hz, 3H) (Hz, 3H) (Hz, 3H) (Hz, 3H) (Hz, 3H) (Hz, 3H)	67); LY (m, 24); (s, 34); (s, 34); (s, 34); (s, 34); (s, 34); (s, 36); (d, 9.71); (d, 9.71); (d, 9.71); (d, 9.71); (e, 6); (e,	7 Hz, 2H 19, 2.32 19, 2.32 11, 7.4 11, 7.4 10, 7.12 10, 7.12 1141
, J=2.1 H), 6.47 H), 6.47 H, J=4.5 G): d 10	-46): d. 1. 3.45 (5, 1.3.45 (6, 1.3.45 (7.8.7.6); 3.45 (8, 6.4); 4. 4.5 (8, 6.4); 4. 4.5 (9.4.7.6); 3.41, 2. 4.5 (9.4.7.7.8); 3.41, 2. 4.5 (9.4.7.7.8); 5.0 Hz. 1, 3.41, 2. 4.5 (9.4.7.8); 5.0 Hz. 1, 3.41, 2. 4.5 (9.4.7.8); 5.0 Hz. 1, 3.41, 2. 4.5 (9.4.7.8); 5.0 Hz. 1, 3.41, 3.42 (9.4.7.8); 5.0 Hz. 1, 3.41, 3.42 (9.4.7.8); 5.0 Hz. 1, 3.41, 3.42 (9.4.7.8); 5.0 Hz. 1, 3.42 (9.4.7.8); 5.0 Hz. 1, 3.43 (9.4.7.8); 5.0	NIMR (DM3O-0.0). 7.76 (d, J= 8.7 Hz, 2H), 7.57 (d, J= 8.7 Hz, 2H), 7.76 (d, J= 8.7 Hz, 2H); LCMS: purity: 91, 7.76 (d, J= 8.7 Hz, 2H); LCMS: purity: 92H), 3.46 (s, 3H), 2.32 (s, 6H); LCMS: purity: 956; 1H), 6.35-6.31 (m, 1H), 7.74 (d, J= 1.8 and 8.4 Hz, 1H), 6.35-6.31 (m, 1H), 7.74 (d, J= 1.8 and 8.4 Hz, 1H), 6.35-6.31 (mH), 7.76 (d, J= 2.4 Hz, 1H), 7.93-7.84 (m, 1H), 7.74 (d, J= 2.4 Hz, 1H), 7.93-7.84 (m, 1H), 7.74 (d, J= 2.4 Hz, 1H), 7.93-7.84 (m, 1H), 7.74 (s, 2H), 6.99 (d, J= 9.0 Hz, 1H), 7.12 (s, 2H), 6.99 (d, J= 9.0 Hz, 1H), 7.12 (s, 2H), 2.66 (d, J= 4.8 Hz, 3H), 2.18 (s, 2H), 2.66 (d, J= 4.8 Hz, 3H),
(s, 1H), 2.64 (s, 1H), 1H), 2.64 (s, 1H), 1H)	1), 3.42 (s, 3H), 2.32 (s, 6H); LOWER (h), 3.42 (s, 3H), 2.32 (s, 6H); LOWER (h), 3.42 (d, J=1.8 Hz, 1H), 8.01 (d, J=1.8 Hz, 1H), 7.17 (s, H) NMR (DMSO-d6); d 9.43 (s, 1H), 7.55 (d, J=9.3 Hz, 1H), 7.17 (s, H), 3.45 (s, 3H), 7.32 (s, 6H), ; LCMS: purity: 97%; MS (2H), 3.45 (s, 3H), 2.32 (s, 6H), ; LCMS: purity: 97%; MS (m/e): 457 (MH+). 14 NMR (DMSO-d6); d 9.66 (s, 1H), 8.11 (d, J=0.90 Hz, 1H), 8.04 (d, 1H), 8.14 (d, J=0.6 Hz, 1H), 7.34 (s, 2H), 3.46 (s, 3H), 2.33 (s, 6H); LCMS: purity: 89%; MS (m/e): 8.06 (d, J=6.0 Hz, 1H), 7.59-7.53 (m, 2H), 7.34-7.29 (m, 2H), 7.20 (s, H), 3.49 (s, 3H), 2.32 (s, 6H); LCMS: purity: 96%; MS (m/e): 8.06 (d, J=6.0 Hz, 1H), 7.59-7.53 (m, 2H), 8.35 (s, 1H), 8.04 (d, J=5.7 Hz, 1H), 3.49 (s, 3H), 2.32 (s, 6H); LCMS: purity: 96%; MS (m/e): 8.06 (d, J=6.0 Hz, 1H), 7.14, 8.35 (s, 1H), 8.35 (s, 1H), 8.04 (d, J=5.7 Hz, 1H), 3.49 (s, 3H), 2.32 (s, 6H); LCMS: purity: 96%; MS (m/e): 9.11, 7.14, 7.14)	1H NMR (DMSO-03). 1H, 7.76 (d, J= 8.7 Hz, 2H), 7.57 (d, J= 8.7 Hz, 2.1). 1H), 7.76 (d, J= 8.7 Hz, 2H), 7.57 (d, J= 8.7 Hz, 2.1). (s, 2H), 3.46 (s, 3H), 2.32 (s, 6H); LCMS: purity: 96%; MS (m/e): 425(MH+). 425(MH+). 1H NIMR (DMSO-d6): d 11.00 (s, 1H), 7.24-7.18 (m, 3H), 7.11 (dd, J= 1.8 and 8.4 Hz, 1H), 6.35-6.31 (m, 1H), 7.24-7.18 (m, 3H), 2.33 (s, Hz, 1H), 7.89 (s, 1H), 6.35-6.31 (m, 1H), 3.47 (s, 3H), 2.33 (s, Hz, 1H), 7.89 (s, 1H), 6.39 (b, J= 2.4 Hz, 1H), 7.66 (dd, J= 2.7 Hz, 1H), 7.93-7.84 (m, 1H), 7.74 (d, J= 2.4 Hz, 1H), 7.66 (dd, J= 2.7 Hz, 1H), 7.93-7.84 (m, 1H), 7.74 (d, J= 2.4 Hz, 1H), 6.64 (s, 1H), Hz, 1H), 7.93-7.84 (m, 1H), 7.12 (s, 2H), 6.99 (d, J= 9.0 Hz, 1H), 6.64 (s, 1H), Hz, 1H), 7.12 (s, 2H), 6.99 (d, J= 9.0 Hz, 1H), 6.64 (s, 1H), Hz, 1H), 7.12 (s, 2H), 2.18 (s, Hz, 3H), 2.18 (s, Hz, 2H), 2.18 (s, Hz, 2H
Fity, sical Data (b) 1 - 5.7 Hz, 1H), 8.00-1H NIMR (DMSO-d0): d 9.32 (s, 1H), 7.29-7.23 (m, 1H), 7.16 (s, 2H), 7.92 (m, 1H), 7.44 (t, J= 2.1 Hz, 1H), 7.29-7.23 (m, 1H), 4.39 (s, 2H), 7.92 (m, 1H), 7.44 (t, J= 2.1 Hz, 1H), 6.47 (dd, J= 2.4 and 7.8 Hz, 1H), 4.39 (s, 2H), 7.10 (t, J= 8.1 Hz, 1H), 6.47 (dd, J= 2.4 and 7.8 Hz, 1H), 7.94 (d, J= 5.7 Hz, 3H), 2.32 (1.14 (s, 3H), 2.64 (d, J= 4.5 Hz, 3H), 2.32 (1.14 (s, 3H), 7.94 (s, 1H), 7.29-7.19 (m, 3H), 7.15 (s, 2H), 6.26 (t, J= 2.1 Hz, 1H) NIMR (DMSO-d6): d 10.84 (s, 1H), 8.98 (s, 1H), 6.26 (t, J= 2.1 Hz, 1H) NIMR (DMSO-d6): d 10.84 (s, 3H), 7.15 (s, 2H), 6.26 (t, J= 2.1 Hz, 1H), 7.84 (s, 1H), 7.29-7.19 (m, 3H), 7.15 (s, 2H), 6.26 (t, J= 2.1 Hz, 1H), 7.84 (s, 1H), 7.29-7.19 (m, 3H), 7.15 (s, 2H), 6.26 (t, J= 2.1 Hz, 1H), 7.84 (s, 1H), 7.84 (s, 1H), 7.84 (s, 1H), 7.89-7.19 (m, 3H), 7.15 (s, 2H), 6.26 (t, J= 2.1 Hz, 1H), 7.84 (s, 1H), 7.84 (s, 1H), 7.84 (s, 1H), 7.85; purity: 9urity: 9	(c)	4 X2
	==:8	Nazol-5-yi)pnenyi, -; Na-(4-Chloro-3,5-dimethylphenyi)-5-fluoro-NA-methyl-N2-[4- 1] Na-(4-Chloro-3,5-dimethylphenyi)-5-fluoro-N2-(indol-6-yl) ₅ NA- NA-(4-Chloro-3,5-dimethylphenyi)-5-fluoro-N2-(indol-6-yl) ₅ NA- NA-(3-Chloro-4-(N- NA-[3-Chloro-4-(N- Gool methylamino)carbonylmethyleneoxyphenyi]-N2-(3,5- dimethylphenyi)-5-fluoro-2,4-pyrimidinediamine dimethylphenyi)-5-fluoro-2,4-pyrimidinediamine
H-N2-13-		ol-5-yl)phei iyi 2
4-methy	-N2-(ind-N2-(2'o-N2-(2'o-N2-(2'o-N2-(2'o-N2-(2'o-N2-(2'o-N4-(2'o-N4-(2'o-N4-(2'o-N2-(-')))))))))))))	5-fluoro ediamin ediamin l)-5-fluo neoxypl
lùoro-N xyphen	5-fluoro)-5-fluor yl)-N4-m yl)-5-fluori idinedia enyl)-5-	yrimidin yrimidin ylpheny amine methyle
yiphenyl)-5-f /methylene	ine //phenyl	imethyl ij-2,4-p) i-dimeth idinedi? -(N- sarbonyl
ethylph	inethylt inediam inediam dinediam dinediam dineth d	ro-3,5-d Iloro-3,5 Iloro-3,5 Iloro-4 Shloro-4 amino)
ompound Name ompound Name ompound Name N2-13- N4-(4-Chloro-3,5-dimethylphenylly-5-fluoro-N4-methyl-N2-13- N4-(4-Chloro-3,5-dimethylphenylly-2,4- pyrimidinediamine	N4-(4-Chloro-3,5-dimethylphenyl)-5-fluoro-N2-(indol-5-yl)-N4-1 N4-(4-Chloro-3,5-dimethylphenyl)-5-fluoro-N2-(2- N4-(4-Chloro-3,5-dimethylphenyl)-5-fluoro-N4-methyl-N2-[4- pyrimidinediamine pyrimidinediamine S96 (oxazol-2-yl)phenyl]-2,4-pyrimidinediamine S96 (oxazol-2-yl)phenyl]-2,4-pyrimidinediamine S96 (oxazol-2-yl)phenyl]-2,4-pyrimidinediamine	Nazol-5-yl)phei iyi
Compound Name Compound Name N4-(4-Chloro-3,5-dir N4-(4-Chloro-3,5-dir pyrimidinediamine	(4-Chlo) (th.Chlo) (th.Chl	598 AV (0) 2 2 698 AV (0) 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
10 1 2 8 C	594 NA-(595 met	
punoduuo punoduuo		

Compound Number	Compound Name		Tryptase, Tryptase, Tryptase, fp_syk, CHMC, CHMC, CHMC, 11pt IgE, 3pt IgE, 8pt Iono, 3pt	ase, Tryptase, C, CHMC, 8pt lono, 3pt	e,fp_syk, 11pt
601	N4-[3-Chloro-4-(N-601 methyleneoxyphenyl]-N2-(3,5-dimethoxylphenyl)-5-fluoro-2,4-pyrimidinediamine	1H NMR (DMSO-d6): d 9.52 (bs, 1H), 9.30 (bs, 1H), 8.11 (d, J=3.9 Hz, 1H), 7.92-7.85 (m, 1H), 7.79 (d, J= 2.4 Hz, 1H), 7.74 (dd, J= 2.7 and 8.7 Hz, 1H), 6.96 (d, J= 9.0 Hz, 1H), 6.85 (d, J= 1.8 Hz, 2H), 6.10 (t, J= 2.4 Hz, 1H), 4.54 (s, 2H), 3.64 (s, 6H)	+ .		
602	N2-(3-Chloro-4-methoxyphenyl)-N4-[3-chloro-4-(N-602 methylamino)carbonylmethyleneoxyphenyl]-5-fluoro-2,4-pyrimidinediamine	1H NMR (DMSO-d6): d 9.45 (bs, 1H), 9.25 (bs, 1H), 8.03 (d, J=3.3 Hz, 1H), 7.86-7.78 (m, 1H), 7.70 (d, J=2.4 Hz, 1H), 7.54 (d, J=2.4 Hz, 1H), 7.58 (dd, J=2.7 and 9.3 Hz, 1H), 6.96 (d, J=9.3 Hz, 1H), 6.93 (d, J=9.3 Hz, 1H), 4.48 (s, 2H), 3.73 (s, 3H)	+		
603	N2-(4-Chloro-3,5-dimethylphenyl)-N4-[3-chloro-4-(N-603 methylamino)carbonylmethyleneoxyphenyl]-5-fluoro-2,4-pyrimidinediamine	1H NMR (DMSO-d6): d 9.45 (bs, 1H), 9.2=8 (bs, 1H), 8.11 (d, J= 3.9 Hz, 1H), 7.92-7.87 (m, 1H), 7.75 (d, J= 2.4, 1H), 7.68 (dd, J= 2.7 and 9.3 Hz, 1H), 7.40 (s, 2H), 6.99 (d, J= 8.7 Hz, 1H), 4.54 (s, 2H), 2.67 (d, J= 4.2 Hz, 3H), 2.22 (s, 6H), ; LCMS: pur	+	1	
604	N4-(4-Chloro-3,5-dimethylphenyl)-5-fluoro-N4-methyl-N2-[4- (oxazol-4-yl)phenyl]-2,4-pyrimidinediamine	1H NMR (DMSO-d6): d 9.42 (s, 1H), 8.46-8.43 (m, 1H), 8.39-8.37 (m, 1H), 8.00 (d, J= 5.4 Hz, 1H), 7.73 (d, J= 9.0 Hz, 2H), 7.62 (d, J= 9.0 Hz, 2H), 7.17 (s, 2H), 3.45 (s, 3H), 2.32 (s, 6H); LCMS: purity: 96%; MS (m/e): 424(MH+).	+	,	
605	N4-[3-Chloro-4-(N-605 imethyleneoxyphenyl]-5-fluoro-N2-(indol-6-yl)-2,4-pyrimidinediamine	1H NMR (DMSO-d6): d 10.80 (s, 1H), 9.26 (s, 1H), 9.07 (s, 1H), 8.06 (s, J= 3.9 Hz, 1H), 7.93-7.75 (m, 4H), 7.36 (d, J= 8.4 Hz, 1H), 7.22-7.15 (m, 2H), 6.95 (d, J= 8.7 Hz, 1H), 6.33-6.27 (m, 1H), 4.54 (s, 2H), 2.67 (d, J= 4.2 Hz, 3H); LCMS: purity: 96%; M	+		
909	N4-(4-Chloro-3-methoxyphenyl)-5-fluoro-N4-methyl-N2-[4- (oxazol-4-yl)phenyl]-2,4-pyrimidinedlamine	1H NMR (DMSO-d6): d 9.44 (s, 1H), 8.44 (d, J= 0.90 Hz, 1H), 8.38 (d; J= 0.90 Hz, 1H), 8.02 (d, J= 5.7 Hz, 1H), 7.73 (d, J= 8.7 Hz, 2H), 7.63 (d, J= 8.7 Hz, 2H), 7.41 (d, J= 8.4 Hz, 1H), 7.14 (d, J= 2.4 Hz, 1H), 6.92-6.86 (m, 1H), 3.83 (s, 3H), 3.49 (s, 3	+	+	
607	N4-(4-Chloro-3-methoxyphenyl)-N2-[4-chloro-3-(N-methylamino)carbonylphenyl]-5-fluoro-2,4-pyrimidinediamine	1H NMR (DMSO-d6): d 9.70 (bs, 2H), 8.23-8.18 (m, 1H), 8.15 (d, J=4.2 Hz, 1H), 7.71 (d, J=2.7 Hz, 1H), 7.54 (dd, J=2.7 and 9.0 Hz, 1H), 7.45 (dd, J=2.4 Hz, 1H), 7.28 (d, J=8.7 Hz, 1H), 7.28 (d, J=9.0 Hz, 1H), 3.73 (s)	+	1	

Compound Number	Compound Name	Physical Data	Tryptase, CHMC, IgE, 3pt	Tryptase, CHMC, IgE, 8pt	Typtase, Tryptase, Tryptase, fp_syk, CHMC, CHMC, CHMC, 11pt 19E, 3pt lgE, 8pt lono, 3pt	fp_syk, 11pt ·
909	N4-[3-Chloro-4-(N-8 methyleneoxyphenyl]-N2-[4-chloro-3-(N-methylamino)carbonylphenyl]-5-fluoro-2,4-pyrimidinediamine	N4-{3-Chloro-4-(N-608 methylamino)carbonylmethyleneoxyphenyl]-N2-[4-chloro-3-(N-7.28 (d, J= 8.7 Hz, 1H), 6.98 (d, J= 9.0 Hz, 1H), 4.59 (s, 2H), 2.70 (d, J= 4.8 Hz, 3H), 2.67 (d, J= 4.5 Hz, 3H); LCMS: pu	+			
609	N2-[4-Chloro-3-(N-methylamino)carbonylphenyl]-N4-(4-chloro- 3-trifluoromethylphenyl)-5-fluoro-2,4-pyrimidinediamine	14 NMR (DMSO-d6): d 9.84 (s, 1H), 9.59 (s, 1H), 8.35-8.27 (m, 2H), N2-[4-Chloro-3-(N-methylamino)carbonylphenyl]-N4-(4-chloro-8.23 (d, J= 3.9 Hz, 1H), 8.06 (d, J= 2.7 Hz, 1H), 7.75 (d, J= 2.4 Hz, 3-4.5 Hz, 1H), 7.67-7.60 (m, 2H), 7.29 (d, J= 9.0 Hz, 1H), 2.71 (d, J= 4.5 Hz, 3H); LCMS: purity: 92%; MS (m/e): 475(MH+).	+	+		
610	N4-(4-Chloro-3,5-dimethylphenyl)-N2-[4-chloro-3-(N-610 methylamino)carbonylphenyl]-5-fluoro-N4-methyl-2,4-pyrimidinediamine	1H NMR (DMSO-d6): d 9.55 (s, 1H), 8.30-8.24 (m, 1H), 8.01 (d, J=6.6 Hz, 1H), 7.86 (d, J=2.7 Hz, 1H), 7.68 (dd, J=2.7 and 9.0 Hz, 1H), 7.27 (d, J=8.7 Hz, 1H), 7.16 (s, 2H), 3.42 (s, 3H), 2.72 (d, J=4.5 Hz, 3H), 2.32 (s, 6H); LCMS: purity: 98%; MS (m/			1	
611	N4-(4-Chloro-3-methoxyphenyl)-N2-[3-chloro-4-(N- methylamino)carbonylphenyl]-5-fluoro-2,4-pyrimidinediamine	1H NMR (DMSO-d6): d 9.57 (s, 1H), 9.54 (s, 1H), 8.19 (d, J= 3.6 Hz, 1H), 8.15-8.08 (m, 1H), 7.93 (d, J= 2.1 Hz, 1H), 7.51 (dd, J= 2.4 and 8.7 Hz, 1H), 7.47 (dd, J= 2.45 and 8.7 Hz, 1H), 7.43 (d, J= 2.1 Hz, 1H), 7.34 (d, J= 8.7 Hz, 1H), 7.27 (d, J= 8.4 Hz	+	+	,	
612	N2-[3-Chloro-4-(N-methylamino)carbonylphenyl]-N4-(4-chloro-83-trifluoromethylphenyl)-5-fluoro-2,4-pyrimidinediamine	1H NMR (DMSO-d6): d 9.83 (s, 1H), 9.65 (s, 1H), 8.33-8.26 (m, 1H), N2-[3-Chloro-4-(N-methylamino)carbonylphenyl]-N4-(4-chloro-8.25 (d, J= 3.6 Hz, 1H), 8.16-8.11 (m, 1H), 8.06 (d, J= 2.7 Hz, 1H), 3-4-filuoro-2,4-pyrimidinediamine	+	+	1	
613	N4-(4-Chloro-3,5-dimethylphenyl)-N2-[3-chloro-4-(N-613 methylamino)carbonylphenyl]-5-fluoro-N4-methyl-2,4-pyrimidinediamine	1H NMR (DMSO-d6): d 9.66 (s, 1H), 8.17-8.09 (m, 1H), 8.05 (d, J=5.4 Hz, 1H), 7.94 (d, J=2.1 Hz, 1H), 7.54 (dd, J=2.1 and 8.4 Hz, 1H), 7.28 (d, J=8.1 Hz, 1H), 7.18 (s, 2H), 3.44 (s, 3H), 2.71 (d, J=4.5 Hz, 3H), 2.32 (s, 6H); LCMS: purity: 99%; MS (m/	+			
614	N4-[3-Chloro-4-(methoxycarbonyl)methyleneoxyphenyl]-N2- h (3,5-dimethylphenyl)-5-fluoro-2,4-pyrimidinediamine	1H NMR (DMSO-d6): d 10.28 (s, 1H), 10.05 (s, 1H), 8.26 (d, J= 4.8 Hz, 1H), 7.74 (d, J= 2.7 Hz, 1H), 7.57 (dd, J= 2.7 and 8.7 Hz, 1H), 7.10-7.01 (m, 3H), 6.69 (s, 1H), 4.93 (s, 2H), 3.70 (s, 3H), 2.17 (s, 6H); LCMS: purity: 98%; MS (m/e): 431(MH+).	+	+	+	

Compound	Compound Name	Physical Data	Tryptase, Try CHMC, CH	Tryptase, T CHMC, C IgE, 8pt Ic	Tryptase, Tryptase, fp_syk, CHMC, CHMC, CHMC, 11pt IGE, 8pt Iono, 3pt	syk,
615	N4-[3-Chloro-4-(methoxycarbonyl)methyleneoxyphenyl]-N2- (3,5-dimethoxyphenyl)-5-fluoro-2,4-pyrimidinediamine	1H NMR (DMSO-d6): d 9.75 (s, 1H), 9.53 (s, 1H), 8.15 (d, J=4.5 Hz, 1H), 7.80 (d, J=2.7 Hz, 1H), 7.66 (dd, J=2.7 and 9.0 Hz, 1H), 7.00 (d, J=9.0 Hz, 1H), 6.81 (d, J=2.4 Hz, 1H), 6.14 (t, J=2.1 Hz, 1H), 4.90 (s, 2H), 3.71 (s, 3H), 3.64 (s, 6H); LCMS:	+	+	+	
616	44-[3-Chloro-4-(methoxycarbonyl)methyleneoxyphenyl]-N2-(3- xhloro-4-methoxyphenyl)-5-fluoro-2,4-pyrimidinediamine	1H NMR (DMSO-d6): d 9.63 (s, 1H), 9.41 (s, 1H), 8.12 (d, J= 4.2 Hz, 1H), 7.60 (d, J= 2.7 Hz, 1H), 7.69 (d, J= 2.4 Hz, 1H), 7.60 (dd, J= 8.7 Hz, 1H), 7.60 (d, J= 8.7 Hz, 1H), 7.00 (d, J= 8.7	+	+	+	
617	N2-(4-Chloro-3,5-dimethylphenyl)-N4-[3-chloro-4-617 (methoxycarbonyl)methyleneoxyphenyl]-5-fluoro-2,4-pyrimidinediamine	1H NWR (DMSO-d6): d 9.64 (s, 1H), 9.45 (s, 1H), 8.14 (d, J=4.2 Hz, 1H), 7.75 (d, J= 2.4 Hz, 1H), 7.61 (dd, J= 2.4 and 9.0 Hz, 1H), 7.38 (s, 2H), 7.02 (d, J= 9.0 Hz, 1H), 4.91 (s, 2H), 3.70 (s, 3H), 2.21 (s, 6H); LCMS: purity: 95%; MS (m/e): 465(M+).	+	+	+	
618	N4-[3-Chloro-4-(methoxycarbonyl)methyleneoxyphenyl]-5- fluoro-N2-(indol-5-yl)-2,4-pyrimidinediamine	14 NMR (DMSO-d6): d 10.86 (s, 1H), 9.23 (s, 1H), 8.94 (s, 1H), 8.03 (d, J= 3.9 Hz, 1H), 7.83 (d, J= 2.4 Hz, 1H), 7.79 (s, 1H), 7.68 (dd, J= 2.4 and 9.0 Hz, 1H), 7.25-7.21 (m, 3H), 6.93 (d, J= 9.0 Hz, 1H), 6.27 (t, J= 2.4 Hz, 1H), 4.89 (s, 2H), 3.71 (s, 3	+	+		
619	N4-[3-Chloro-4-(2-hydroxyethyleneoxy)phenyl]-N2-(3,5-dimethylphenyl)-5-fluoro-2,4-pyrimidinediamine	1H NMR (DMSO-d6): d 9.63 (bs, 1H), 9.34 (bs, 1H), 8.11 (d, J= 4.2 Hz, 1H), 7.72 (d, J= 2.7 Hz, 1H), 7.64 (dd, J= 2.7 and 9.0 Hz, 1H), 7.12 (d, J= 8.7 Hz, 1H), 6.58 (s, 1H), 4.05 (t, J= 5.1 Hz, 2H), 3.73 (t, J= 5.1 Hz, 2H), 2.16 (s, 6H), ; LCMS: purity. 9	+	+	+	
620	N4-[3-Chloro-4-(2-hydroxyethyleneoxy)phenyl]-N2-(3,5-dimethoxyphenyl)-5-fluoro-2,4-pyrimidinediamine	1H NMR (DMSO-d6); d 9.29 (s, 1H), 9.13 (s, 1H), 8.08 (d, J= 3.6 Hz, 1H), 7.75 (d, J= 2.7 Hz, 1H), 7.71 (dd, J= 2.7 and 8.7 Hz, 1H), 7.08 (d, J= 9.0 Hz, 1H), 6.90 (d, J= 2.1 Hz, 2H), 6.05 (t, J= 2.1 Hz, 1H), 4.89 (t, J= 5.1 Hz, 1H), 4.05 (t, J= 5.1 Hz, 2H)	+	+	+	
621	N4-[3-Chloro-4-(2-hydroxyethyleneoxy)phenyl]-N2-(3-chloro-4-methoxyphenyl)-5-fluoro-2,4-pyrimidinediamine	1H NWR (DMSO-d6): d 9.29 (s, 1H), 9.15 (s, 1H), 8.06 (d, J= 3.6 Hz, N4-[3-Chloro-4-(2-hydroxyethyleneoxy)phenyl]-N2-(3-chloro-4-1H), 7.74 (d, J= 2.1 Hz, 2H), 7.63 (dd, J= 2.7 and 9.0 Hz, 1H), 7.46 (dd, J= 2.7 and 9.0 Hz, 1H), 7.10 (d, J= 9.0 Hz, 1H), 7.00 (d, J= 9.0 Hz, 1H), 4.05 (t, J= 5.4 Hz,	+	+	т	

W U 2005/016893	PC1/US2004/024/16
than alka " on the train that well " on the who " " I think	
+	+ ' '
+ + +	+
+ + + + + + + + + + + + + + + + + + +	(S, 17, 14, 18, 44 (S, 14), 14, 14, 14), 14, 14, 14), 14, 14, 14, 14, 14, 14, 14, 14, 14, 14
9 Hz, 9 Hz, 5.1 Hz, 1, 1H), 1, 1H, 1, 1H, 1, 1H), 1, 1H, 1, 1	(4, 2H), 3.38 (4, J=9.6 F) (6, J=9.6 F) (8, 3H); LCI (1), 9.14 (8, ¹ (1), 8.12 (4,
(a, Je Data) (b) 7.72 (d, J=2.7 Hz, 1H), 7.63 (dd, J=2.4 and 9.0 Hz, 1H), 7.42 (s, 1H), 7.72 (d, J=2.7 Hz, 1H), 7.63 (dd, J=5.7 Hz, 1H), 4.04 (t, J=5.1 Hz, 1H), 7.12 (d, J=9.0 Hz, 1H), 4.87 (t, J=5.7 Hz, 1H), 8.90 (s, 1H), 8.01 (c) 1.5.3 (d, J=9.0 Hz, 1H), 4.87 (t, J=5.7 Hz, 1H), 8.90 (s, 1H), 8.01 (d) 3.73 (q, J=5.1 Hz, 2H), 2.20 (s, 1H), 9.17 (s, 1H), 8.90 (s, 1H), 8.01 (d) 1.5.3 Hz, 1H), 7.82-7.76 (m, 2H), 7.67 (dd, J=3.0 and 9.3 Hz, 1H), 7.25-7.21 (m, 3H), 7.03 (d, J=9.0 Hz, 1H), 6.28-6.25 (m, 1H), 7.40-4.87 (t, J=5.4 Hz, 1H), 4.04 (t, J=5.1 Hz, 2H), 1H), 7.25-7.21 (m, 3H), 7.03 (d, J=2.7 and 8.4 Hz, 1H), 7.20 (d, J=8.7 Hz, 1H), 7.30 (dd, J=2.7 and 8.4 Hz, 1H), 7.30 (dd, J=2.4 and 9.0 Hz, 1H), 7.30 (dd, J=2.7 and 8.4 Hz, 1H), 7.30 (dd, J=2.4 and 9.0 Hz, 1H), 7.30 (dd, J=2.7 and 8.4 Hz, 1H), 7.30 (dd, J=2.4 and 9.0 Hz, 1H), 7.30 (dd, J=2.7 and 8.4 Hz, 1H), 7.30 (dd, J=2.4 and 9.0 Hz, 1H), 6.28 (t, J=2.4 Hz, 1H), 7.30 (dd, J=2.7 and 8.2 (t, J=2.4 and 9.0 Hz, 1H), 6.28 (t, J=2.4 Hz, 1H), 7.30 (dd, J=2.7 and 6.2 (t, J=3.4 Hz, 1H), 6.28 (t, J=2.4 Hz, 1H), 6.24 (t, J=3.2 t, Hz, 1H), 6.	(d, J=3.9 PL, 17.7) (d, J=3.9 PL, 17.7) (e, J=3.9 PL, 17.7) (e, J=4.5 PL, 3H); LCMS (h1), 7.26-7.19 (m, 3H), 6.93 (d, J=5.1 PL, 1H), 7.23 (s, 2H), 3.38 (s, 1H), 7.26-7.19 (m, J=4.5 PL, 1H), 7.17 (d, J=9.6 PL, 1H), 1.232 (s, 6H); LCMS: purity: 98%; MS (mle): 301(MH+1). (h1), 2.32 (s, 6H); LCMS: purity: 98%; MS (mle): 369 (d, J=8.4 PL, 1H), 7.17 (d, J=9.6 PL, 1H), 7.05-7.00 (m, 2H), 3.50 (s, 3H); LCMS: purity: 100%; MS (mle): 368(MH+1). (h1), 7.17 (d, J=9.6 PL, 1H), 7.05-7.00 (m, 2H), 6.98 (d, J=8.4 PL, 1H), 8.44 (h1), 6.90-6.83 (m, 2H), 3.40 (s, 3H); LCMS: purity: 100%; MS (mle): 318(MH+1). (h1), 6.90-6.83 (m, 2H), 3.40 (s, 3H); LCMS: purity: 100%; MS (mle): 318(MH+1). (h2), 11, 11, 11, 12, 14, 14, 16, 15, 14, 16, 15, 14, 17, 17, 17, 14, 14, 16, 15, 18.8
18 (5, 1H), 8 18 (5, 1H), 8 2.5.7 Hz, 1H 3.0 Hz, 1H), 9.17 (3d, J 1, 9.42 (8, T), 1Hz, 2H), 1J, 9.42 (8, T), 1Hz, 2H), 1J, 9.42 (8, T), 1J, 9.20 (dd, J=2.7 % (dd, J=2.7 % (dd	1, 1= 8.7 (12) (d, 1= 5.1 H; (d, 1= 5.1 H; 1 (d, 1= 4.8 H; 1, 7, 05-7, 00 (1) 10, 86 (5, 1H; 11), 8.15 (4, 1= 9.5; 11), 8.15 (4, 1= 9.5; 17, 14 (dd, 1= 9.5; 7, 14 (dd, 1= 9.5; 17, 14 (dd, 1= 9.5; 17, 14 (dd, 1= 9.5; 18, 18, 18, 18, 18, 18, 18, 18, 18, 18,
(a) Data (b) (a) 9.31 (s, 11H), 9.18 (s, 11H), 17.72 (d, J= 2.7 Hz, 11H), 4.87 (t, J= 5.7 Hz, 11H), 7.63 (dd, J= 2.4 and 9.7.72 (d, J= 9.0 Hz, 11H), 4.87 (t, J= 5.7 Hz, 11H), 3.73 (q, J= 5.1 Hz, 2H), 2.20 (s, 11H), 9.17 (s, 11H), 3.73 (q, J= 5.1 Hz, 2H), 2.20 (s, 11H), 9.17 (s, 11H), 3.73 (q, J= 5.1 Hz, 2H), 7.03 (d, J= 9.0 Hz, 11H), 4.34 (t, J= 5.1 Hz, 2H), 14H), 7.25-7.21 (m, 3H), 7.03 (d, J= 9.0 Hz, 11H), 7.25-7.21 (m, 3H), 7.03 (d, J= 5.1 Hz, 2H), 14H), 7.25-7.21 (m, 3H), 7.03 (d, J= 5.1 Hz, 2H), 14H NMIR (DMSO-46): d 9.49 (s, 1H), 9.42 (s, 1H), 7.30 (d, J= 2.7 and 8.4 Hz, 1H), 7.30 (dd, J= 8.7 Hz, 1H), 4.06 (t, J= 4.8 Hz, 1H), 14.06 (t, J= 4.8 Hz, 1H), 14.0	J= 3.9 FL, 11.77 J= 3.9 FL, 11.77 S2 (s, 2H), 2.67 (d, J= 4.5 Hz, 3H); LCMS J= 1.0 LCMS; Durity; 98%; MS (m/e); HNMR (DMSO-d6); d 7.94 (d, J= 4.8 Hz, 1H) H), 2.32 (s, 6H); LCMS; Durity; 98%; MS (m/e); HNMR (DMSO-d6); d 7.94 (d, J= 4.8 Hz, 1H) H), 7.17 (d, J= 9.6 Hz, 1H), 7.05-7.00 (m, 2H) HNNR (DMSO-d6); d 7.82 (d, J= 4.5 Hz, 1H) HH), 6.90-6.83 (m, 2H), 3.40 (s, 3H); LCMS; HNH), 6.90-6.83 (m, 2H), 7.51 (d, J= 9.3 Hz, 1H), 6.90-6.84 (m, 2H), 7.51 (d, J= 9.3 Hz, 1H), 6.90-6.84 (m, 2H), 7.51 (d, J= 9.3 Hz, 1H), 1.51 (d, J= 2.4 and 9.0 Hz, 1H), 7.51 (d, J= 9.3 Hz, 1H), 1.17 (dd, J= 1.8 a) Hz, 1H), 7.77 (s, 1H), 7.14 (dd, J= 1.8 a)
6-46); d 9; 3 1= 9.0 Hz, 1+ 1= 9.0 Hz, 2; 1H, 7.82- 2, 1H, 7.82- 3, 1H), 7.82- 5.4 Hz, 1H), 7.82- 1H), 7.30 (d, 1= 2.4 H; 1H), 7.30 (d, 1= 2.4 H	3.9 P.4. 11.7. 1.26-7.19 (m., 7.26-7.19 (m., 2.32 (s., 6H), 2.67 (s., 6H), 2.67 (s., 6H), 7.17 (d., J=H), 7.17 (d., J=2.4%; MR/MR (DMR/H). 11.19 (d., J=2.4%; MR/MR (DMR/H). 11.19 (f., J=2.4%; MR/H), 7.19 (f., J=2.4%; MR/
2-Hy, w. Jr. Data (G. J= 2.7 Hz, 1H), 9.18 (s, 1H), 8.08 (d, J= 3.9 Hz, 1H), 7.72 (d, J= 2.7 Hz, 1H), 7.63 (dd, J= 2.4 and 9.0 Hz, 1H), 7.42 (s, J= 2.7 Hz, 1H), 4.87 (t, J= 5.7 Hz, 1H), 4.04 (t, J= 5.1 Hz, 2H), 7.12 (d, J= 9.0 Hz, 1H), 4.87 (t, J= 5.7 Hz, 1H), 8.00 (s, 1H), 8.01 (s, 1H), 7.82-7.76 (m, 2H), 7.67 (dd, J= 3.0 and 9.3 Hz, 1H), 7.82-7.76 (m, 2H), 7.67 (dd, J= 3.0 and 9.3 Hz, 1H), 7.82-7.21 (m, 3H), 7.03 (d, J= 9.0 Hz, 1H), 6.28-6.25 (m, 1H), 7.25-7.21 (m, 3H), 7.03 (d, J= 9.0 Hz, 1H), 8.00 Hz, 1H), 7.40 (d, J= 2.4 Hz, 1H), 4.04 (t, J= 5.1 Hz, 2H), 7.50 (d, J= 8.7 Hz, 1H), 7.30 (dd, J= 2.4 Hz, 1H), 7.50 (dd, J= 2.7 and 8.4 Hz, 1H), 7.20 (d, J= 8.7 Hz, 1H), 7.30 (dd, J= 2.7 and 8.4 Hz, 1H), 7.20 (d, J= 8.7 Hz, 1H), 7.30 (dd, J= 2.7 and 8.4 Hz, 1H), 7.30 (dd, J= 2.4 and 9.0 Hz, 1H), 7.30 (dd, J= 8.7 Hz, 1H), 8.01 (s, 1H), 8.01 (s, 1H), 7.30 (dd, J= 2.7 and 8.4 Hz, 1H), 7.30 (dd, J= 2.4 and 9.0 Hz, 1H), 7.30 (dd, J= 8.7 Hz, 1H), 7.30 (dd, J= 2.7 and 8.4 Hz, 1H), 7.30 (dd, J= 2.4 and 9.0 Hz, 1H), 7.30 (dd, J= 2.7 and 8.4 Hz, 1H), 7.30 (dd, J= 2.4 and 9.0 Hz, 1H), 7.30 (dd, J= 2.7 and 8.4 Hz, 1H), 7.30 (dd, J= 2.4 and 9.0 Hz, 1H), 7.30 (dd, J= 2.7 and 8.4 Hz, 1H), 7.30 (dd, J= 2.4 and 9.0 Hz, 1H), 7.30 (dd, J= 2.7 and 8.4 Hz, 1H), 7.30 (dd, J= 2.7 and 8.4 Hz, 1H), 7.30 (dd, J= 2.4 and 9.0 Hz, 1H), 7.30 (dd, J= 2.7 and 8.4 Hz, 1H), 7.30 (dd, J= 2.4 and 9.0 Hz, 1H), 7.30 (dd, J= 2.7 and 8.4 Hz, 1H), 7.30 (dd, J= 2.4 and 9.0 Hz, 1H), 7.30 (dd, J= 2.7 and 8.4 Hz, 1H), 7.30 (dd, J= 2.4 and 9.0 Hz, 1H), 7.30 (dd, J= 2.7 and 8.4 Hz, 1H), 7.30 (dd, J= 2.4 and 9.0 Hz, 1H), 7.30 (dd, J= 2.4 and 9.0 Hz, 1H), 7.30 (dd, J= 2.7 and 8.4 Hz, 1H), 7.30 (dd, J= 2.4 and 9.0 Hz, 1H), 7.30 (dd, J= 2.7 and 8.4 Hz, 1H), 7.30 (dd, J= 2.4 and 9.0 Hz, 1H), 7.30 (dd, J= 2.4 Hz, 1H), 7.30 (dd, J=	Indol-6-yl), 7, 11-yl, 7, 11-yl, 7, 11-yl, 1
amine 24 14 14 12 14 14 14 14 14 14 14 14 14 14 14 14 14	fluoro-N2-(ir -fluoro-N4-rr Jineamine Jineamine Jinoro-N2-(
hloro-4-(2- pyrimidinedi phenylj-5-flu y)phenylj-N	xyphenyll-5- nylphenyll-5- nylg-4-pyrimic yyl-4-pyrimic thylphenyll-f
inyl)-N4-[3-c. 6-fluoro-2.4 fiamine liamine vyetnyleneoxy)	imethyleneo amine ro-3,5-dimet ro-3,5-dimet dedioxy)pher edistuorome lineamine Linituorome diamine
ompound Name Interpolation of the control of the c	(d, J= 3.9 Ft., Th.) 6.93 (d, J= 8.7 Ft., Th.) 6.93 (d, J= 8.7 Ft., Th.) 7.23 (s, 2H), 3.38 (s, 2H), 2.67 (d, J= 4.5 Ft., 3H), 1.CMS NA4-13-Chloro-Ard-methyl-Britingle amine 4.52 (s, 2H), 2.67 (d, J= 4.5 Ft., 3H), 1.CMS 5.91/2.4-pyrimidine amine 5.91/2.4-pyrimidine
Compound Name N2-(4-Chloro-3,5-di N4-(3-Chloro-4-(25 methylam 628
623 K2 K2 K3	, we have a second seco
In the second se	

Compound Number	Corripound Name		ptase, IMC, ;, 3pt	Tryptase, CHMC, IgE, 8pt	Tryptase, f CHMC,	fp_syk, 11pt
630	N4-(4-Chloro-3-methoxyphenyl)-5-fluoro-N2-(indol-6-yl)-2,4- pyrimidinediamine	1H NMR (DMSO-d6): d 10.85 (s, 1H), 9.35 (s, 1H), 9.04 (s, 1H), 8.10 (d, J= 3.6 Hz, 1H), 7.79 (s, 1H), 7.62-7.57 (m, 2H), 7.36 (d, J= 8.4 Hz, 1H), 7.24 (d, J= 9.0 Hz, 1H), 7.19 (t, J= 2.7 Hz, 1H), 7.15 (dd, J= 1.8 and 8.4 Hz, 1H), 6.34-6.30 (m, 1H), 3.67	+ .	+ .	Y-	
631	N4-(3-Chloro-4-methoxycarbonylmethyleneoxyphenyl)-5- fluoro-N2-(indol-6-yl)-2,4-pyrimidinediamine	1H NWR (DMSO-d6): d 10.78 (s, 1H), 9.23 (s, 1H), 9.03 (s, 1H), 8.05 (d, J= 3.6 Hz, 1H), 7.85 (d, J= 2.7 Hz, 1H), 7.79-7.73 (m, 2H), 7.36 (d, J= 8.4 Hz, 1H), 7.19 (dd, J= 2.1 and 8.7 Hz, 1H), 7.16 (t, J= 3.0 Hz, 1H), 6.95 (d, J= 9.0 Hz, 1H), 6.32-6.28 (m,	+	+	+	
632	N4-[3-Chloro-4-(2-hydroxyefhyleneoxy)phenyl]-5-fluoro-N2- (indol-6-yl)-2,4-pyrimidinediamine	1H NWR (DMSO-d6); d 10.79 (s, 1H), 9.19 (d, J=1.2 Hz, 1H), 9.01 (s, 1H), 8.04 (d, J=3.6 Hz, 1 H), 7.84 (d, J=2.7, 1 H), 7.79-7.73 (m, 2 H), 7.36 (d, J=8.4 Hz, 1H), 7.19 (dd, J=1.8 and 8.4 Hz, 1H), 7.16 (t, J=2.4 Hz, 1H), 7.05 (d, J=9.3 Hz, 1H),	+	+	ı	
633	5-Fluoro-N2-[3-(oxazol-2-yl)phenyl]-N4-[3,4- (tetrafluoroethylenedioxy)phenyl]-2,4-pyrimidinediamine	1H NMR (DMSO-d6): d 9.76 (s, 1H), 9.63 (s, 1H), 8.33-8.29 (m, 1H), 8.22 (d, J= 3.6 Hz, 1H), 8.16-8.13 (m, 1H), 7.78-7.74 (m, 1H), 7.62 (dd, J= 2.4 and 9.0 Hz, 1H), 7.58-7.53 (m, 1H), 7.42-7.31 (m, 3H), : LCMS: purity: 92%; MS (m/e): 478(MH+).	+		ı	
634	5-Fluoro-N4-methyl-N2-[3-(oxazol-2-yl)phenyl]-N4-[3,4- (tetrafluoroethylenedioxy)phenyl]-2,4-pyrimidinediamine	1H NMR (DMSO-d6): d 9.67 (s, 1H), 8.57 (t, J= 1.8 Hz, 1H), 8.18-8.16 (m, 1H), 8.09 (d, J= 5.7 Hz, 1H), 7.72-7.66 (m, 1H), 7.60 (d, J= 1.8 Hz, 1H), 7.54-7.47 (m, 2H), 7.39-7.32 (m, 3H), 3.53 (s, 3H); LCMS: purity: 96%; MS (m/e): 492(MH+).	ı	+		
635	N2-[3,5-Dimethyl-4-(N-635) methylamino)carbonylmethyleneoxyphenyl]-N4-(3,4-645) ethylenedioxyphenyl)-5-fluoro-N4-methyl-2,4-pyrimidinediamine	1H NWR (DMSO-46): d 9.02 (s, 1H), 8.12-8.06 (m, 1H), 7.88 (d, J= 5.7 Hz, 1H), 7.34 (s, 2H), 6.83 (d, J= 6.9 Hz, 1H), 6.82 (s, 1H), 6.73 (dd, J= 3.0 and 9.0 Hz, 1H), 4.24 (s, 4H), 4.11 (s, 2H), 3.38 (s, 3H), 2.69 (d, J= 4.8 Hz, 3H), 2.16 (s, 6H); LCMS: pu	+	+	+	
636	N2-[3,5-Dimethyl-4-(N-methyleneoxyphenyl]-5-fluoro-N4-methylamino)carbonylmethyleneoxyphenyl]-5-fluoro-N4-methyl-N4-[3,4-(tetrafluoroethylenedioxy)phenyl]-2,4-yyrimidinediamine	1H NMR (DMSO-d6): d 9.15 (s, 1H), 8.12-8.05 (m, 1H), 8.02 (d, J= 5.7 Hz, 1H), 7.55 (dd, J= 0.9 and 2.7 Hz, 1H), 7.48 (d, J= 9.3 Hz, 1H), 7.31 (s, 2H), 7.27 (dd, J= 0.9 and 2.1 Hz, 1H), 4.11 (s, 2H), 3.46 (s, 3H), 2.69 (d, J= 4.8	, +	+	+	

7 .

<u> </u>	Commission of the contract of	and a second sec	-	9		ļ
Number		Physical Data	Tryptase,	Tryptase, Tryptase, fo_syk, CHMC, CHMC, CHMC	LD Tryptase,	fp_syk,
	N2-[3,5-Dimethyl-4-(N-		lgE, 3pt		lono, 3pt	11pt
	(tetrafluoroethylenedioxy)phenyl]-2,4-pyrimidinediamine		+		1	
	N2-[3,5-Dimethyl-4-(N-	1H NMR (DMSO-d6): d 9.07 (s. 1H): 8.13-8.05 (m 411): 2.2.1				
	osolmethylamino)carbonylmethyleneoxyphenylj-N4-(3,5- dimethoxyphenyl)-5-fluoro-N4-methyl-2,4-pyrimidinediamine	5.7 Hz, 1H), 7.35 (s, 2H), 6.44 (dd, J= 0.6 and 2.4 Hz, 2H), 6.39 (t, J= 2.4 Hz, 1H), 4.16 (s, 2H), 3.72 (s, 6H), 3.43 (s, 3H), 2.69 (d, J= 4.8 Hz)	+	+	+	
	N4-(2,2-Dimethyl-3-oxo-4H-benz[1,4]oxazin-6-yl)-5-fluoro-N2-			1		
	pyrimidinediamine		+	+		
<u>ئ</u> 	N4-[3-Chloro-4-(N-	11, 7-31 (5, ZH), 3.63 (s, 3H), 1.40 (s, 6H) 1H NMR (DMSO-d6): d 9.42 (s, 1H), 9.24 (s, 1H) 8.07 (d 1-5.5.1)				
	(methoxycarbonylmethyleneoxyphenyl]-5-fluoro-N2-[1-	1H), 7.92-7.84 (m, 2H), 7.71 (dd, J= 2.7 and 9.3 Hz, 1H), 7.55 (s, 1H), 7.41 (d, J= 8.4 Hz, 1H), 7.29 (dd, J= 1.5 and 8.4 Hz, 1H), 7.20 (d. J=	+	+		
641	N4-(4-Chloro-3-methoxyphenyl)-5-fluoro No 14	7,7,7,1H), 6.94 (d, J= 9.0 Hz, 1H), 6.36 1H NMR (DMSO-d6): d 9.34 (s, 1H), 9.10 (s. 1H) 8.00 (4 1-2.0 Hz)	× .			
·	(methoxycarbonylmethylene)indol-6-ylj-2,4-pyrimidinediamine	14), 7.62-7.59 (m, 1H), 7.54 (d, J=2.4 Hz, 1H), 7.49 (dd, J=2.4 and 8.4 Hz, 1H), 7.38 (d, J= 8.7 Hz, 1H), 7.27-7.27 (m, 2H), 7.37 (d, J= 8.7 Hz, 1H), 7.27-7.27 (m, 2H), 7.27-7	+	+	-	T
	N4-(3,4-Ethylenedinxmhemil) E a	Hz, 1H), 6.36 (dd, J= 0.6 and 3.0 Hz, 1H), 1H NMR (DMSO-d6): d 9.19 (s, 1H), 0.14 (c, 41), 2.25		 -	· · · · · · · · · · · · · · · · · · ·	
7	methoxycarbonylmethylene)indol-6-yl]-2,4-pyrimidinediamine	7 (m, 3H), 6.74 (d, J= 9.0)	+	+	-	T-
643	3-yl)-5-fluoro-N2-	3H); LCMS: purity: 93%; MS (m/e); 450(MH+) 1H NMR (DMSO-d6): d 10.56 (s, 1H), 9.20 (s, 1H) 8.70 (s, 41); 5.03 (s,				
		(d, J= 3.6 Hz, 1H), 7.86 (s, 1H), 7.33 (dd, J= 2.1 and 8.7 Hz, 1H), 7.27-7.16 (m, 4H), 6.83 (d, J= 8.7 Hz, 1H), 6.27 (d, J= 3.0 Hz, 1H) F. 0.5.7	+			T
	2	2H), 3.66 (s, 3H), 1.40 (s, 6H); LCMS: p				

Compound	compound Name	Physical Data	Tryptase,	ריט Tryptase,		fp_syk,
Number			CHMC, IgE, 3pt	CHMC, IgE, 8pt	CHMC, lono, 3pt	11pt
644	N4-[3-Chloro-4-(N-644 methylamino)carbonylmethyleneoxyphenyl]-5-fluoro-N2-[1-644 methoxycarbonylmethylene)indol-5-yl]-2,4-pyrimidinediamine		+	+	1	
. 64	645 (methoxycarbonylmethylene)indol-5-yl]-2,4-pyrimidinediamine	1H NMR (DMSO-d6): d 9.32 (s, 1H), 8.96 (s, 1H), 8.07 (d, J= 3.6 Hz, N4-(4-Chloro-3-methoxyphenyl)-5-fluoro-N2-[1-	+	+	,	
646	N4-(3-Chloro-4-methoxyphenyl)-5-fluoro-N2-[1- (methoxycarbonylmethylene)indol-5-yl]-2,4-pyrimidinediamine	1H NMR (DMSO-d6): d 9.18 (s, 1H), 8.94 (s, 1H), 8.02 (d, J= 3.0 Hz, N4-(3-Chloro-4-methoxyphenyl)-5-fluoro-N2-[1-	+	+	,	
647	N4-(3,4-Ethylenedioxyphenyl)-5-fluoro-N2-[1- (methoxycarbonylmethylene)indol-5-yl]-2,4-pyrimidinediamine	1H NMR (DMSO-d6): d 10.18 (s, 1H), 9.99 (s, 1H), 8.16 (d, J- 4.5 Hz, N4-(3,4-Ethylenedioxyphenyl)-5-fluoro-N2-[1-	+	+	ı	
648	N4-[3-Chloro-4-(N-methyleneoxyphenyl]-5-fluoro-N2-[1-(N-8)methylamino)carbonylmethyleneindol-6-yl]-2,4-pyrfmidinediamine	M4-[3-Chloro-4-(N-methylamino)carbonylmethyleneoxyphenyl]-5-fluoro-N2-[1-(N-1H), 7.90-7.83 (m, 3H), 7.77-7.73 (m, 1H), 7.55-7.52 (m, 1H), 7.39 (d, J=3.0 Hz, 1H), 7.32-7.26 (m, 1H), 7.16 (d, J=3.3 Hz, 1H), 6.91 (d, J=9.0 Hz, 1H), 6.33 (d, J=3.0 Hz, 1H), 4.62 (+	+	ı	+
646	N4-(3,4-Ethylenedioxyphenyl)-5-fluoro-N2-[1-(N-649 methylamino)carbonylmethyleneIndol-6-yl]-2,4-pyrimidinediamine	1H NMR (DMSO-d6); d 9.06 (s, 1H), 9.02 (s, 1H), 7.99 (d, J=3.9 Hz, 1H), 7.88-7.82 (m, 1H), 7.58 (s, 1H), 7.39-7.33 (m, 2H), 7.32-7.25 (m, 2H), 7.16 (d, J= 3.3 Hz, 1H), 6.71 (d, J= 8.7 Hz, 1H), 6.33 (d, J= 3.3 Hz, 1H), 4.63 (s, 2H), 4.19 (s, 4H), 2.58 (d	+	+	1	
650	5-Fluoro-N4-[2-(2-hydroxyethyleneoxy)pyrid-5-yl]-N2-[1-(N-650 methylamino)carbonylmethyleneindol-5-yl]-2,4-pyrimidinediamine	1H NMR (DMSO-d6): d 9.26 (s, 1H), 8.98 (s, 1H), 8.51 (s, 1H), 8.07 (dd, J= 2.4 and 9.0 Hz, 1H), 8.03 (d, J= 3.9 Hz, 1H), 7.98-7.92 (m, 1H), 7.87 (s, 1H), 7.24-7.14 (m, 3H), 6.76 (d, J= 9.0 Hz, 1H), 6.27 (d, J= 3.0 Hz, 1H), 4.84 (t, J= 5.4 Hz, 1H), 4.72 (+		

Compound Number	Compound Name	Physical Data	Tryptase, Tryptase, fp_syk, CHMC, CHMC, 11pt 16E, 3pt 19E, 8pt 1000, 3pt	ase, Tryptase, C, CHMC, pt lono, 3pt	a, fp_syk, 11pt t
651	N4-(3-Chloro-4-trifluoromethoxyphenyl)-5-fluoro-N2-[1-(N-651 methylamino)carbonylmethyleneindol-5-yl]-2,4-pyrimidinediamine	1H NMR (DMSO-d6): d 9.55 (s, 1H), 9.09 (s, 1H), 8.15-7.99 (m, 2H), 8.02-7.95 (m, 1H), 7.89 (dd, J= 1.5 and 9.6 Hz, 1H), 7.75 (s, 1H), 7.40 (d, J= 9.0 Hz, 1H), 7.27-7.21 (m, 3H), 6.30 (d, J= 2.7 Hz, 1H), 4.73 (s, 2H), 2.61 (d, J= 4.5 Hz, 3H); LCMS: purity	+		6
652	N4-[3-Chloro-4-(N-methyleneoxyphenyl]-5-fluoro-N2-[1-(N-methylamino)carbonylmethyleneindol-5-yl]-5-fluoro-N2-[1-(N-methylamino)carbonylmethyleneindol-5-yl]-2,4-pyrimidinediamine	N4-[3-Chloro-4-(N-methyleneoxyphenyl]-5-fluoro-N2-[1-(N-7.94-7.87 (m, 1H), 7.81 (d, J= 2.4 Hz, 1H), 7.69-7.63 (m, 2H), 7.35-7.27 (m, 2H), 7.17 (d, J= 8.7 Hz, 1H), 6.94 (d, J= 9.0 Hz, 1H), 6.35 (d, J= 3.0 Hz, 1H), 4.77 (s, 2H), 4.55 (s, 2H), 2.	+		+
653	N4-(4-Chloro-3-methoxyphenyl)-5-fluoro-N2-[1-(N-653 methylamino)carbonylmethyleneindol-5-yl]-2,4-pyrimidinedlamine	1H NMR (DMSO-d6): d 10.22 (s, 1H), 9.91 (s, 1H), 8.16 (d, J= 4.8 Hz, 1H), 8.12-8.05 (m, 1H), 7.70-7.66 (m, 1H), 7.52-7.48 (m, 1H), 7.42 (d, J= 7.8 Hz, 1H), 7.37-7.28 (m, 3H), 7.16-7.10 (m, 1H), 6.35 (d, J=2.7 Hz, 1H), 4.79 (s, 2H), 3.63 (s, 3H), 2.62 (d,	+		
654	N4-(3-Chloro-4-methoxyphenyl)-5-fluoro-N2-[1-(N-654 methylamino)carbonylmethyleneindol-5-yl]-2,4-pyrimidinediamine	1H NMR (DMSO-d6): d 10.21 (s, 1H), 9.94 (s, 1H), 8.16-8.03 (m, 2H), 7.79-7.74 (m, 1H), 7.65-7.58 (m, 2H), 7.37-7.30 (m, 2H), 7.14 (d, J=8.4 Hz, 1H), 7.05 (d, J=8.7 Hz, 1H), 6.37 (d, J=3.0 Hz, 1H), 4.78 (s, 2H), 3.84 (s, 3H), 2.61 (d, J=4.5 Hz, 3H); LC			
655	N4-(3,4-Ethylenedioxyphenyl)-5-fluoro-N2-[1-(N-655 methylamino)carbonylmethyleneindol-5-yl]-2,4-pyrimidinediamine	1H NMR (DMSO-d6): d 10.19 (bs, 1H), 10.04 (bs, 1H), 8.12-8.03 (m, 2H), 7.66-7.61 (m, 1H), 7.36-7.30 (m, 2H), 7.27-7.09 (m, 3H), 6.78 (d, J= 8.4 Hz, 1H), 6.38 (d, J= 2.7 Hz, 1H), 4.79 (s, 2H), 4.23 (s, 4H), 2.61 (d, J= 4.2 Hz, 3H); LCMS: purity: 99%; MS (+		
656	N4-[3-Chloro-4-(N-methylamino)carbonylphenyl]-5-fluoro-N2-656[1-(N-methylamino)carbonylmethyleneindol-5-yl]-2,4-pynimidinediamine	1H NIMR (DMSO-d6): d 9.46 (s, 1H), 9.07 (s, 1H), 8.24-8.17 (m, 1H), 8.11 (d, J= 3.0 Hz, 1H), 8.00-7.94 (m, 1H), 7.94-7.86 (m, 2H), 7.77 (s, 1H), 7.31-7.22 (m, 4H), 6.33 (d, J= 3.3 Hz, 1H), 4.73 (s, 2H), 2.73 (d, J= 4.8 Hz, 3H), 2.60 (d, J= 4.8 Hz, 3H); LC	+		
657	2-Chloro-5-fluoro-N4-(2-methoxypyrid-5-yl)-N4-methyl-4- pyrimidineamine	1H NMR (DMSO-d6): d 8.21 (d, J= 3.0 Hz, 1H), 8.15 (d, J= 5.7 Hz, 1H), 7.78 (dd, J= 2.7 and 8.7 Hz, 1H), 6.87 (d, J= 8.7 Hz, 1H), 3.86 (s, 3H), 3.38 (s, 3H); LCMS: purity: 95%; MS (m/e): 269(MH+).	ı	t	
658	2-Chloro-N4-(4-chloro-3-trifluoromethylphenyl)-5-fluoro-N4- nethyl-4-pyrimidineamine	1H NMR (DMSO-d6): d 8.25 (d, J= 5.4 Hz, 1H), 7.97-7.94 (m, 1H), 7.78-7.72 (m, 2H), 3.45 (s, 3H); LCMS: purity: 96%; MS (m/e): 341 (MH+).	t	t	

Compound	Compound Name		Tryptase, Tryptase, Tryptase, fp_syk, CHMC, CHMC, CHMC, 11pt 10no, 3pt IgE, 8pt Iono, 3pt	Tryptase, fit CHMC, 1 Iono, 3pt	fp_syk, 11pt
629	2-Chloro-N4-(4-chloro-3-methoxyphenyl)-5-fluoro-N4-methyl- 4-pyrimidineamine	1H NMR (DMSO-d6); d 8.18 (d, J= 5.1 Hz, 1H), 7.42 (d, J= 8.7 Hz, 1H), 7.24 (s, 1H), 6.96 (d, J= 8.7 Hz, 1H), 3.82 (s, 1H), 3.31 (s, 3H); LCMS: purity: 99%; MS (m/e): 303(MH+).	,	ı	
099	2-Chloro-N4-(3-chloro-4-methoxyphenyl)-5-fluoro-N4-methyl-4-pyrimidineamine	1H NMR (DMSO-d6): d 8.14 (d, J= 5.4 Hz, 1H), 7.56 (d, J= 2.7 Hz, 1H), 7.34 (dd, J= 2.4 and 8.7 Hz, 1H), 7.15 (d, J= 8.4 Hz, 1H), 3.87 (s, 3H), 3.36 (s, 3H); LCMS: purity: 96%; MS (m/e): 303(MH+).	ı	1	
661	2-Chloro-N4-[3-chloro-4-(N-661 methylamino)carbonylmethyleneoxyphenyl]-5-fluoro-N4-methyl-4-pyrimidineamine	1H NMR (DMSO-d6): d 8.15 (d, J= 5.4 Hz, 1H), 7.94-7.87 (m, 1H), 7.58 (d, J= 2.4 Hz, 1H), 7.32 (dd, J= 2.4 and 8.7 Hz, 1H), 7.02 (d, J= 9.0 Hz, 1H), 4.60 (s, 2H), 3.36 (s, 3H), 2.66 (d, J= 4.8 Hz, 3H), ; LCMS: purity: 90%; MS (m/e): 360(MH+).	1	1	
. 662	N4-(3-Chloro-4-trifluoromethoxyphenyl)-5-fluoro-N2-[1-(N-662 methylamino)carbonylmethyleneindol-6-yl]-2,4-pyrimidinediamine	1H NMR (DMSO-d6): d 10.22 (s, 1H), 9.88 (s, 1H), 8.22 (d, J= 3.9 Hz, 1H), 8.14 (d, J= 2.7 Hz, 1H), 8.02-7.95 (m, 1H), 7.84-7.78 (m, 1H), 7.49 (d, J= 8.1 Hz, 1H), 7.45-7.37 (m, 2H), 7.27 (d, J= 2.7 Hz, 1H), 7.18 (d, J= 8.4 Hz, 1H)	+	t	
663	N4-(4-Chloro-3-methoxyphenyl)-5-fluoro-N2-[1-(N-663 methylamino)carbonylmethyleneindol-6-yl]-2,4-pyrimidinediamine	11 NWR (DMSO-d6): d 10.13 (s, 111), 9.90 (s, 111), 8.10 (d, J= 4.5 Hz, 111), 7.91 (d, J= 3.9 Hz, 111), 7.49-7.34 (m, 411), 7.23 (d, J= 3.3 Hz, 111), 7.17 (d, J= 8.4 Hz, 111), 7.07 (d, J= 8.4 Hz, 111), 6.37 (d, J= 3.0 Hz, 111), 4.62 (s, 211), 3.52 (s, 311), 2.51 (d,	+	1	
664	N4-(3-Chloro-4-methoxyphenyl)-5-fluoro-N2-[1-(N-664 methylamino)carbonylmethyleneindol-6-yl]-2,4-pyrimidinediamine	1H NMR (DMSO-d6): d 10.21 (s, 1H), 10.04 (s, 1H), 8.14 (d, J=5.1 Hz, 1H), 7.98-7.92 (m, 1H), 7.84 (d, J=2.7 Hz, 1H), 7.60 (dd, J=2.4 and 8.7 Hz, 1H), 7.51 (d, J=8.7 Hz, 1H), 7.39 (s, 1H), 7.30 (d, J=3.3 Hz, 1H), 7.15 (d, J=7.8 Hz, 1H), 7.01 (d, J=	+ .	1	
665	N4-[3-Chloro-4-(N-methylamino)carbonylphenyl]-5-fluoro-N2-665[1-(N-methylamino)carbonylmethyleneindol-6-yl]-2,4-pyrimidinediamine	1H NMR (DMSO-d6): d 9.50 (s, 1H), 9.19 (s, 1H), 8.28-8.20 (m, 1H), 8.12 (d, J= 3.3 Hz, 1H), 7.97-7.84 (m, 3H), 7.53 (s, 1H), 7.42 (d, J= 8.7 Hz, 1H), 7.32-7.25 (d, J= 3.3 Hz, 1H), 6.35 (d, J= 3.0 Hz, 1H), 4.63 (s, 2H), 2.74 (d, J= 4.5 Hz, 3H), 2.58 (d, J	+		
999	2-Chloro-N4-(3-chloro-4-methoxyphenyl)-5-fluoro-4- pyrimidineamine	1H NMR (DMSO-d6): d 9.94 (s, 1H), 8.28 (dd, J= 0.6 and 3.6 Hz, 1H), 7.75 (d, J= 2.1 Hz, 1H), 7.58 (dd, J= 2.4 and 8.7 Hz, 1H), 7.16 (d, J= 8.7 Hz, 1H), 3.84 (s, 3H); LCMS: purity: 96%; MS (m/e): 288(M+).	1	1	

l T

Compound	Compound Name	Physical Data CH	Tryptase, Tryptase, Tryptase, fp_syk, CHMC, CHMC, CHMC, 11pt 19E, 3pt lgE, 8pt lono, 3pt	Tryptase, f CHMC, 1 Iono, 3pt	fp_syk, 11pt
99	5-Fluoro-N2-[3-(oxazol-2-yl)phenyl]-N4-(3,4,5-trimethoxyphenyl)-2,4-pyrimidinediamine	1H NMR (DMSO-d6): d 9.38 (s, 1H), 9.28 (s, 1H), 8.28 (s, 1H), 8.14-8.10 (m, 2H), 7.87 (d, J=7.2 Hz, 1H), 7.50 (d, J=7.5 Hz, 1H), 7.34-7.27 (m, 2H), 7.06 (s, 2H), 3.70 (s, 6H), 3.63 (s, 3H); LCMS: purity: 98%; MS (m/e): 438(MH+).	+		
899	N4-(3,4-Ethylenedioxyphenyl)-5-fluoro-N2-(2,3,4-trimethoxyphenyl)-2,4-pyrimidinediamine	1H NMR (DMSO-d6): d 9.10 (s, 1H), 7.96 (d, J= 3.9 Hz, 1H), 7.75 (s, 1H), 7.50 (d, J= 8.7 Hz, 1H), 7.26 (d, J= 2.4 Hz, 1H), 7.10 (dd, J= 2.4 Hz, 1H), 6.74-6.64 (m, 2H), 4.25-4.18 (m, 4H), 3.77 (s, 3H), 3.75 (s, 3H), 3.74 (s, 3H); LCMS: purity: 99%; MS (m/	+		
699	N4-(3-Chloro-4-methoxyphenyl)-5-fluoro-N2-(2,3,4- trimethoxyphenyl)-2,4-pyrimidinediamine	1H NMR (DMSO-d6): d 9.26 (s, 1H), 8.01 (d, J= 3.6 Hz, 1H), 7.86 (s, 1H), 7.81 (d, J= 2.7 Hz, 1H), 7.54 (dd, J= 2.4 and 9.0 Hz, 1H), 7.43 (d, J= 9.0 Hz, 1H), 7.03 (d, J= 9.0 Hz, 1H), 6.70 (d, J= 9.3 Hz, 1H), 3.81 (s, 3H), 3.76 (s, 3H), 3.74 (s, 3H), 3.73	, .		
029	N4-(4-Chloro-3-methoxyphenyl)-5-fluoro-N2-(2,3,4-trimethoxyphenyl)-2,4-pyrimidinediamine	1H NMR (DMSO-d6): d 816 (d, J= 4.8 Hz, 1H), 7.56-7.51 (m, 1H), 7.36-7.24 (m, 4H), 6.74 (d, J= 9.3 Hz, 1H), 3.80 (s, 3H), 3.74 (s, 3H), 3.73 (s, 3H), 3.68 (s, 3H), ; LCMS: purity: 95%; MS (m/e): 436(MH+).	1		
671	N4-(3-Chloro 4-trifluoromethoxyphenyl)-5-fluoro-N2-(2,3,4-trimethoxyphenyl)-2,4-pyrimidinediamine	1H NMR (DMSO-d6): d 8.20 (d, J= 4.5 Hz, 1H), 8.05 (d, J= 2.7 Hz, 1H), 7.73-7.66 (m, 1H), 7.45 (d, J= 9.6 Hz, 1H), 7.24 (d, J= 8.7 Hz, 1H), 6.75 (d, J= 9.0 Hz, 1H), 3.78 (s, 3H), 3.74 (s, 3H), 3.73 (s, 3H); LCMS: purity: 95%; MS (m/e): 490(MH+).	+	2	
172	N4-(2,2-Dimethyl-3-oxo-4H-benz[1,4]oxazin-6-yl)-5-fluoro-N2- (2,3,4-trimethoxyphenyl)-2,4-pyrimidinediamine	1H NMR (DMSO-d6): d 10.73 (s, 1H), 10.44 (s, 1H), 8.21 (d, J= 4.8 Hz, 1H), 7.43-7.32 (m, 1H), 7.27-7.13 (m, 2H), 6.89 (d, J= 8.4 Hz, 1H), 6.65 (d, J= 9.6 Hz, 1H), 3.77 (s, 3H), 3.76 (s, 3H), 3.74 (s, 3H), 1.41 (s, 6H); LCMS: purity: 98%; MS (m/e): 470(MH	+		
73	N4-(2,2-Dimethyl-3-oxo-4H-5-pyrid[1,4]oxazin-6-yl)-5-fluoro-673 N2-(3,4,5-trimethoxyphenyl)-2,4-pyrimidinediamine Benzenesulfonic Acid Salt	1H NMR (DMSO-d6): d 11.14 (s, 1H), 9.98 (s, 1H), 9.63 (s, 1H), 8.17 (d, J=3.9 Hz, 1H), 7.62-7.52 (m, 3H), 7.36-7.25 (m, 4H), 6.87 (s, 2H), 3.66 (s, 6H), 3.61 (s, 3H), 1.43 (s, 6H).	+		
4	N4-(2,2-Dimethyl-3-oxo-4H-5-pyrid[1,4]oxazin-6-yl)-5-fluoro- 674 N2-(3,4,5-trimethoxyphenyl)-2,4-pyrimidinediamine Methanesulfonic Acid Salt	1H NMR (DMSO-d6): d 11.13 (s, 1H), 9.95 (s, 1H), 9.62 (s, 1H), 8.18 (d, J= 3.9 Hz, 1H), 7.56 (d, J= 9.0 Hz, 1H), 7.31 (d, J= 8.4 Hz, 1H), 6.88 (s, 2H), 3.66 (s, 6H),3.61 (s, 3H), 2.33 (s, 3H), 1.43 (s, 6H).	+		

Compound	Compound Name	Physical Date:	Tryptase, Tryptase, fp_syk, CHMC, CHMC, 11pt IgE, 3pt IgE, 8pt Iono, 3pt	Tryptase, CHMC, IgE, 8pt	Tryptase, fr CHMC, 1 Iono, 3pt	,fp_syk, 11pt
675	N4-(2,2-Dimethyl-3-oxo-4H-5-pyrid[1,4]oxazin-6-yl)-5-fluoro- 675 N2-(3,4,5-trimethoxyphenyl)-2,4-pyrimidinediamine p-Toluene Sulfonic Acid Salt	1H NMR (DMSO-d6): d 11.12 (s, 1H), 9.89 (s, 1H), 9.57 (s, 1H), 8.17 (d, J= 3.9 Hz, 1H), 7.57 (d, J= 8.4 Hz, 1H), 7.45 (d, J= 7.8 Hz, 2H), 7.31 (d, J= 8.4 Hz, 1H), 7.09 (d, J= 7.8 Hz, 2H), 6.89 (s, 2H), 3.66 (s, 6H), 3.61 (s, 3H), 2.28 (s, 3H), 1.43 (s, 6	+	+		:
976	N4-(2,2-Dimethyl-3-oxo-4H-5-pyrid[1,4]oxazin-6-yl)-5-fluoro- 676N2-(3,4,5-trimethoxyphenyl)-2,4-pyrimidinediamine 4- Hydroxybenzenesulfonic Acid Salt	1H NMR (DMSO-d6): d 11.12 (s, 1H), 9.81 (s, 1H), 9.53 (s, 1H), 8.16 (d, J= 4.2 Hz, 1H), 7.58 (d, J= 8.1 Hz, 2H), 7.37 (d, J= 8.1 Hz, 2H), 7.31 (d, J= 8.7 Hz, 1H), 6.90 (s, 2H), 6.64 (d, J= 8.7 Hz, 2H), 3.66 (s, 6H), 3.61 (s, 3H), 1.43 (s, 6H).	+	+		
677	N4-(2,2-Dimethyl-3-oxo-4H-5-pyrid[1,4]oxazin-6-yl)-5-fluoro-677N2-(3,4,5-trimethoxyphenyl)-2,4-pyrimidinediamine 2,4,6-Trimethylbenzenesulfonic Acid Salt	1H NMR (DMSO-d6): d 11.10 (s, 1H), 9.72 (s, 1H), 9.47 (s, 1H), 8.15 (d, J= 4.2 Hz, 1H), 7.62-7.56 (m, 1H), 7.31 (d, J= 8.1 Hz, 1H), 6.91 (s, 2H), 6.72 (s, 2H), 3.66 (s, 6H), 3.61 (s, 3H), 2.48 (s, 6H), 2.16 (s, 3H), 1.43 (s, 6H).	+			
678	N4-(2,2-Dimethyl-3-oxo-4H-5-pyrid[1,4]oxazin-6-yl)-5-fluoro-678N2-(3,4,5-trimethoxyphenyl)-2,4-pyrimidinediamine 0.5 Pyridine-3-sulfonic Acid Salt	1H NMR (DMSO-d6): d 11.08 (s, 2H), 9.46 (s, 2H), 9.30 (s, 2H), 8.91 (s, 1H), 8.70 (d, J= 5.4 Hz, 1H), 8.37 (dd, J= 1.5 and 7.8 Hz, 1H), 8.13 (d, J= 3.6 Hz, 2H), 7.80-7.74 (m, 1H), 7.62 (d, J= 8.1 Hz, 2H), 7.31 (d, J= 8.1 Hz, 2H), 6.97 (s, 4H), 3.66 (s, 1	+	+		
679	N4-(2,2-Dimethyl-3-oxo-4H-5-pyrid[1,4]oxazin-6-yl)-5-fluoro-679 N2-(3,4,5-trimethoxyphenyl)-2,4-pyrimidinediamine p-Ethylbenzenesulfonic Acid Salt	1H NMR (DMSO-d6): d 11.08 (s, 1H), 9.44 (s, 1H), 9.26 (s, 1H), 8.13 (d, J= 3.3 Hz, 1H), 7.63 (d, J= 8.4 Hz, 1H), 7.47 (d, J= 8.1 Hz, 2H), 7.31 (d, J= 8.1 Hz, 1H), 7.12 (d, J= 7.8 Hz, 2H), 6.97 (s, 2H), 3.65 (s, 6H), 3.59 (s, 3H), 2.57 (q, J= 7.8 Hz, 2H),	+	+		
989	N4-(2,2-Dimethyl-3-oxo-4H-5-pyrid[1,4]oxazin-6-yl)-5-fluoro-680 N2-(3,4,5-trimethoxyphenyl)-2,4-pyrimidinediamine 0,51,2-Ethanedisulfonic Acid Salt	1H NMR (DMSO-d6): d 11.08 (s, 2H), 9.54 (s, 2H), 9.35 (s, 2H), 8.14 (d, J= 3.9 Hz, 2H), 7.31 (d, J= 8.4 Hz, 2H), 6.95 (s, 4H), 3.66 (s, 12H), 3.60 (s, 6H), 2.62 (s, 4H), 1.43 (s, 12H).	+	+		
681	N4-(2,2-Dimethyl-3-oxo-4H-5-pyrid[1,4]oxazin-6-yl)-5-fluoro-681 N2-(3,4,5-trimethoxyphenyl)-2,4-pyrimidinediamine (1R)-10-Camphorsulfonic Acid Salt	1H NMR (DMSO-d6): d 11.11 (s, 1H), 9.83 (s, 1H), 9.54 (s, 1H), 8.17 (d, J= 3.9 Hz, 1H), 7.57 (d, J=8.7 Hz, 1H), 7.30 (d, J= 8.4 Hz, 1H), 6.99 (s, 2H), 3.66 (s, 6H), 3.61 (s, 3H), 2.86 (d, J= 14.7 Hz, 1H), 2.67 (t, J= 9.9 Hz, 1H), 2.38 (d, J= 14.7 Hz, 1H)	+	+		
682	N4-(2,2-Dimethyl-3-oxo-4H-5-pyrid[1,4]oxazin-6-yl)-5-fluoro-682 N2-(3,4,5-trimethoxyphenyl)-2,4-pyrimidinediamine (1S)-10-Camphorsulfonic Acid Salt	1H NMR (DMSO-d6): d 11.08 (s, 1H), 9.55 (s, 1H), 9.36 (s, 1H), 8.14 (d, J= 3.9 Hz, 1H), 7.60 (d, J= 8.7 Hz, 1H), 7.31 (d, J= 8.4 Hz, 1H), 6.94 (s, 2H), 3.66 (s, 6H), 3.60 (s, 3H), 2.85 (d, J= 14.7 Hz, 1H), 2.68 (t, 11.4 Hz, 1H), 2.36 (d, J= 14.7 Hz, 1H),	+	+	- 1	

Compound Name	and the second	Physical Data (CH1) 104 (s, 1H), 9.08-8.90 (m, 2H), 8.07 (d, J=	LLV LLV Tryptase, Tryptase, CHMC, CHMC, IgE, 8pt	Tryptase, Tryptase, fp_syk, CHMC, CHMC, 11pt igE, 3pt igE, 8pt lono, 3pt	
	683N2-[1-(N-methylamino)carbonylmethyleneindol-5-yl]-2,4- pyrimidinediamine	3.3 Hz, 1H), 7.99-7.89 (m, 1H), 7.81-7.96 (m, 1H), 7.70-7.64 (m, 1H), 7.29-7.20 (m, 4H), 6.29 (d, J= 3.0 Hz, 1H), 4.73 (s, 2H), 2.61 (d, J= 4.5 Hz, 3H), 1.42 (s, 6H), ; LCMS: purity: 99%;	+		
ובֿ ז הֹ	N2-(4-Chloro-3,5-dimethylphenyl)-N4-(2,2-dimethyl-3-oxo-4H-16845-pyrid[1,4]oxazin-6-yl)-5-fluoro-2,4-pyrimidinediamine p-7oluenesulfonic Acid Salt	N2-(4-Chloro-3,5-dimethylphenyl)-N4-(2,2-dimethyl-3-oxo-4H- 1H NMR (DMSO-d6): d 11.13 (s, 1H), 9.68 (s, 1H), 9.46 (s, 1H), 8.17 (b. yelden single) (b. yelden single) (c) 1 = 3.6 Hz, 1H), 7.51-7.35 (m, 6H), 7.09 (d, J = 8.4 Hz, 2H), 2.28 (s, 6H), 1.43 (s, 6H).	+		
ĝ	N4-(2,2-Dimethyl-3-oxo-4H-5-pyrid[1,4]oxazin-6-yl)-5-fluoro-685 N2-(3,4,5-trimethoxyphenyl)-2,4-pyrimidinediamine Hydrogen (Chloride Salt	1H NMR (DMSO-d6): d 11.31 (s, 1H), 9.89 (s, 1H), 9.66 (s, 1H), 8.18 (d, J= 4.5 Hz, 1H), 7.55 (d, J= 8.4 Hz, 1H), 7.30 (d, J= 8.7 Hz, 1H), 6.89 (s, 2H), 3.65 (s, 6H), 3.61 (s, 3H), 1.43 (s, 6H)	+		
J 및 및	N4-(2,2-Dimethyl-3-oxo-4H-5-pyrid[1,4]oxazin-6-yl)-N2-(3,5-dichloro-4-hydroxyphenyl)-5-fluoro-2,4-pyrimidinediamine	1H NMR (DMSO-d6): d 11.07 (s, 1H), 9.32 (s, 1H), 9.27 (s, 1H), 8.13 (d, J= 3.3 Hz, 1H), 7.63 (s, 2H), 7.45 (d, J= 8.7 Hz, 1H), 7.35 (d, J= 8.7 Hz, 1H), 1.43 (s, 6H); LCMS: purity: 92%; MS (m/e): 467(MH ⁺).	+		
,2,2,	N2,N4-Bis(3-oxo-2,2,4-trimethyl-5-pyrid[1,4]oxazin-6-yl)-5- fluoro-2,4-pyrimidinediamine	1H NWR (DMSO-d6): d 9.49 (bs, 2H), 8.18 (d, J=3.3 Hz, 1H), 7.93 (d, J=8.7 Hz, 1H), 7.74 (d, J=8.4 Hz, 1H), 7.37 (d, J=8.7 Hz, 1H), 7.28 (d, J=8.4 Hz, 1H), 3.34 (s, 3H), 3.33 (s, 3H), 1.44 (s, 6H), 1.41 (s, 6H); LCMS: purity: 98%; MS (m/e): 509(MH ⁺).			
neth -yl)-	1 N2,N4-Bis(2,2-dimethyl-4-carbomethoxymethyl-3-oxo-5- pyrid[1,4]oxazin-6-yl)-2,4-pyrimidinediamine	1H NMR (DMSO-d6): d 9.55 (s, 1H), 9.49 (s, 1H), 8.19 (d, J= 2.7 Hz, 1H), 7.97 (d, J= 8.7 Hz, 1H), 7.79 (d, J= 8.7 Hz, 1H), 7.45 (d, J= 8.7 Hz, 1H), 7.38 (d, J= 8.7 Hz, 1H), 4.81 (s, 2H), 4.80 (s, 2H), 3.67 (s, 3H), 3.66 (s, 3H), 1.48 (s, 6H), 1.45 (s, 6H)	1		
xo-2 pher	1 5-Fluoro-N4-(3-oxo-2,2,4-trimethyl-5-pyrid[1,4]oxazin-6-yl)-N2- 1 (3,4,5-trimethoxyphenyl)-2,4-pyrimidinediamine	1H NMR (DMSO-d6): d 9.42 (s, 1H), 9.13 (s, 1H), 8.14 (d, J= 3.6 Hz, 5-Fluoro-N4-(3-oxo-2,2,4-trimethyl-5-pyrid[1,4]oxazin-6-yl)-N2- 1H), 7.80 (d, J= 8.4 Hz, 1H), 7.32 (d, J= 8.4 Hz. 1H), 7.03 (s, 2H), 3.66 (s, 4,5-trimethoxyphenyl)-2,4-pyrimidinediamine (s, 6H), 3.60 (s, 3H), 1.44 (s, 6H); LCMS: purity: 97%; MS (m/e): 485(MH ⁺).	+		
N4-(2,2-Dimethyl-4-cc pyrid[1,4]oxazin-6-yl)- pyrimidinediamine	N4-(2,2-Dimethyl-4-carbomethoxymethyl-3-oxo-5-1690 pyrid[1,4]oxazin-6-yl)-5-fluoro-N2-(3,4,5-trimethoxyphenyl)-2,4-16pyrimidinediamine	1H NMR (DMSO-d6): d 9.46 (s, 1H), 9.15 (s, 1H), 8.15 (d, J=3.6 Hz, 1H), 7.86 (d, J= 8.7 Hz, 1H), 7.37 (d, J= 8.7 Hz, 1H), 7.04 (s, 2H), 4.80 (s, 2H), 3.67 (s, 6H), 3.66 (s, 3H), 3.60 (s, 3H), 1.47 (s, 6H); LCMS: purity: 96%; MS (m/e): 543(MH ⁺).	+		

WO 2005/016893	PCT/US2004/024716
In the first that the time that the time will have also in the	+
In " was first given days	+ ,
	+ +
+	+ +
+ +	, , , , , , , , , , , , , , , , , , ,
+ + + + + + + + + + + + + + + + + + +	11. (dd, 1H, J= 11. J=8. 11. J=8.
(2, (d., 14), (m., 44), (m., 44), (m., 44), (m., 14), 1.43, (d., 114, J=4 (d., 114, J=4 (d., 114, J=7.38 (dd, 114, J=7.38 (dd	(e) 30 mil; (e) 30 mil; (e) 30 mil; (e) 14), 7 42 (2), 7 42 (2), 6.81 (6); (e) 14, 8.21 (6); (e) 19 (dd, 1); (
1H), 7.4 1H), 7.4 1H), 3.57 (§ 10.06(s, 1) 11.06(s, 1	ret. time; (s, 1H), 7.87 (4, 1H), 10.29 (s, 1F), 7.87 (4, 1H), 7.87 (4, 1H), 7.87 (4, 1H), 7.87 (8, 8), 8 (8, 1H), 7.87 (8, 80)
ad 8.4 Hz. ad 8.4 Hz. ad 8.4 Hz. bg (s, 3H), 9 (s, 1H), 9 (s, 1H), 3 (s, 1H), 3 (s, 1H), 3 (d, 1-8) (d, 1-8) (d, 1H), 4 (d, 1H), 4 (d, 1H), 2.3 and 2.3 and 2.3 and	1 (17) 4,7 (17) 10.02 (14) 11,7 (17) 11,7 (17) 11,7 (17) 11,7 (18)
3,22 (d. J. 3,22 (d. J. 3,33 (d. J. 3,33 (d. J. 3,33 (d. J. 4,33 (1H, J=9. 1H, J=9. 4 (MH+) 6.28 (s, 11 2.3 Hz), 7.55 (qt, 2H, J 100, 7.89 (s, 12), 7.89 (s, 12)
(6, 1H), 8 6.81 (dd, 6.81 (dd, 1), 3.63 (gg%; MS) 99%; MS 99%; MS 1007 (g, 11), 1007 (g, 11), 10	(f, 3H, J= 7.09 (d, 1) (d, 3H, J= 1.04) (d, 1) (d,
(d, J= 6.0 Hz, 2H), 8.22 (d, J= 4.8 Hz, 1H), 7.42 (d, H), 8.22 (d, J= 4.8 Hz, 1H), 7.42 (d, H), 8.27 (s, 2H), 6.81 (dd, J= 3.3 and 8.4 Hz, 1H), 4.83 (s, 2H), 8.63 (s, 2H), 3.59 (s, 3H), 3.57 (s, 3H), 11.04 (s, 1H), 9.14 (s, 1H), 9.09 (s, 1H), 8.11 (s, 6H); LCMS: purity: 99%; MS (m H), 7.31 (d, J= 8.4 Hz, 1H), 7.31 (d, J= 8.4 Hz, 1H), 7.31 (d, J= 8.4 Hz, 1H), 7.32 (d, J= 8.4 Hz, 1H), 7.32 (d, J= 8.4 Hz, 1H), 7.32 (d, J= 8.4 Hz, 1H), 7.22 (d, J= 9.0 Hz, 1H), 7.65 (d, J= 8.4 Hz, 1H), 7.69 (d, J= 8.4 Hz, 1H), 7.60 (d, J= 8.4 Hz, 1H), 7.22 (d, J= 9.0 Hz, 1H), 7.43 (d, J= 3.3 Hz, 1H), 7.22 (d, J= 9.0 Hz, 1H), 7.32 (d, J= 8.4 Hz, 1H), 7.22 (d, J= 9.0 Hz, 1H), 7.38 (d, 1H, J= 9.0 Hz, 1H), 7.39 (s, 6H); LCMS: purity: 99%; MS (s, 9H), 1.39 (s, 6H); LCMS: purity: 99%; MS (s, 1H), 1.39 (s, 6H); LCMS: purity: 99%; MS (s, 9H), 1.39 (s, 6H); LCMS: purity: 99%; MS (s, 1H), 1.39 (s, 6H); LCMS: purity: 99%; MS (s, 1H), 1.39 (s, 6H); LCMS: purity: 99%; MS (s, 1H), 1.39 (s, 6H); LCMS: purity: 99%; MS (s, 1H), 1.39 (s, 6H); LCMS: purity: 99%; MS (s, 1H), 1.39 (s, 6H); LCMS: purity: 99%; MS (s, 1H), 1.39 (s, 6H); LCMS: purity: 99%; MS (s, 1H), 1.39	14, J = 9.1 Hz), 7.54 (aby) (a, 1H, J = 9.1 Hz), 4.40 (yr) (b, 18.28 (d, 1H, J) = 1.8 and 9.1 Hz), 7.09 (d, 1H, J) = 1.8 and 9.1 Hz), 7.09 (d, 1H, J) = 1.8 and 9.1 Hz), 7.09 (d, 1H, J) = 1.8 and 9.1 Hz), 7.09 (d, 1H, J) = 1.8 Hz), 7.87 (s, 1H), 7.70 (s, 1H), 7.87 (s, 1H), 7.70 (s, 1H), 7.87 (s, 1H), 7.742 (dd, 1H, J) = 2.3 Hz), 7.52 (d, 1H, J) = 8.8 Hz), 7.42 (dd, 1H, J) = 8.8 Hz), 7.60 (dd, 1H, J) = 2.3 and 8.8 Hz), 7.61 (d, 1H, J) = 8.8 Hz), 7.37 (d, 1H), 7.69 (s, 1H), 10.29 (s, 1H), 10.29 (s, 1H), J) = 8.22 (d, 1H, J) = 5.3 Hz), 7.89 (s, 2H), 7.61 (d, 1H, J) = 8.8 Hz), 7.20 (dd, 2H, J) = 2.3 and 8.2 Hz), 7.44 (d, 1H, J) = 8.8 Hz), 4.39 (qt, 2H, J) = 7.0 Hz), 11.37 (s, 6) (d, 1H, J) = 8.8 Hz), 7.60 (dd, 2H, J) = 2.3 (d, 1H, J) = 8.8 Hz), 7.44 (d, 1H, J) = 8.8 Hz), 7.63 (d, 1H, J) = 8.8 Hz), 7.44 (d, 1H, J) = 8.8 Hz), 7.61 (d, 1H, J) = 8.8 Hz), 7.62 (d, 1H, J) = 9.0 Hz), 7.31 - 7.23 (m, 1H), 7.19 (dd, 1H, J) = 8.8 Hz), 7.84 (d, 1H, J) = 9.0 Hz), 7.31 - 7.23 (m, 1H), 7.19 (dd, 1H, J) = 8.8 Hz), 4.9 Hz), 4.9 (d, 2H, J) = 7.0 Hz), 3.60
(s, 2H), 6.36 (s, 2H), 3.36 (b, 2H), 3.86 (c, 1H), 3.86 (s, 1H), 3.86 (s, 1H), 3.91 (s, 1H), 3.91 (s	83 (8, 83, 87, 14, 14). H.
47 (4) 4	2 1 -
F 7 4 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Chloro-4-methoxyphenyl)-N2-(1-ethylindazol-5-yl)-2-(3,4-Dichlorophenyl)-N2-(1-ethylindazol-5-yl)-5-fl rimidinediamine rimidinediamine N4-(2,2-Dimethyl-3-oxo-4H-benz(1,4)oxazin-6-yl)-6-fluylindazol-5-yl)-5-fluoro-2,4-pyrimidinediamine NA-(1-Ethylindazol-5-yl)-5-fluoro-N4-(4-fluoro-3
5- 5- 5- 5- 5- 6- 6- 6- 71)-5-fluo 71)-5-fluo	-ethylind: ylindazol- z[1,4]oxa z[1,4]oxa oro-N4-{ oro-N4-{ oro-N4-{
no)ethylc	y)-N2-(1 yy)-N2-(1 yy)-AH-ben oro-2,4-p oro-2,4-p -yy)-5-flu
noxymeth -N4-carb -Nyrimidir -3-oxo-4 mine	loro-4-methoxyphenyl)-N2-(1-ethylindaza 4-pyrimidinediamine 4-Dichlorophenyl)-N2-(1-ethylindazol-5- idinediamine iidinediamine iidinediamine iidinediamine iidinediamine iidinediamine iidinediamine iidinediamine iidinediamine V2.(1-Ethylindazol-5-yl)-5-fluoro-N4-(4-fl methoxyphenyl)-2,4-pyrimidinediamine
narbometh 1)-5-fluoro 1)-5-fluoro 1)-5-fluoro 1-dimethyl -dimethyl	-(3-Chloro-4-methoxy-(3-Chloro-4-methoxy-13-4-Dichloropheryrimidinediamine pyrimidinediamine N4-(2,2-Dimethyl-196 ethylindazol-5-yl) (N2-(1-Ethylindagol-5-yl) (1-Ethylindagol-5-yl) (1-Ethylindagol-5
7 4 4 4 7 8 9 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	N4-(3-Chloro-4-methoxyphenyl)-N2-(1-ethylindazol-5-yl)-5- fluoro-2,4-pyrimidinediamine fluoro-2,4-pyrimidinediamine N4-(3,4-Dichlorophenyl)-N2-(1-ethylindazol-5-yl)-5-fluoro-2, pyrimidinediamine lN4-(2,2-Dimethyl-3-oxo-4H-benz[1,4]oxazin-6-yl)-N2-(1-696 ethylindazol-5-yl)-5-fluoro-2,4-pyrimidinediamine N2-(1-Ethylindazol-5-yl)-5-fluoro-N4-(4-fluoro-3-697) methoxyphenyl)-2,4-pyrimidinediamine
Compound Name Compound Name 691 pyridt1,4 Joxazin- 692 pyridt1,4 Joxazin- 692 (2,2-dimethyl- 692 (2,2-dimethyl- 693 N.Z. N4-Bis N.Z. N4-Bis	44 N N N N N N N N N N N N N N N N N N
punodill	

Compound Name Virtuber	Physical Data CH	LU LU Tryptase, Tryptase CHMC, CHMC, IgE, 3pt IgE, 8pt	LU LU Tryptase, Tryptase, fp_syk, CHMC, CHMC, CHMC, 11pt IgE, 3pt IgE, 8pt Iono, 3pt	fp_syk, 11pt
N4-(3-Chloro-4-methoxyphenyl)-N2-(1-ethylindazol-6-yl)-5- 698 fluoro-2,4-pyrimidinediamine	¹ H NMR (DMSO-d6): d 10.44 (s, 1H), 10.40 (s, 1H), 8.32 (d, 1H, J = 4.9 Hz), 7.92 (s, 1H), 7.78 (app t, 2H, J = 2.6 Hz), 7.67 (d, 1H, J = 8.5 Hz), 7.58-7.52 (dt, 1H, J = 2.6 and 9.1 Hz), 7.16 (d, 1H, J = 8.8 Hz), 7.10 (d, 1H, J = 9.1 Hz), 4.11 (qt, 2H, J	+		
N4-(3,4-Dichlorophenyl)-N2-(1-ethylindazol-6-yl)-5-fluoro-2,4- pyrimidinediamine	¹ H NMR (DMSO-d6): d 9.92 (s, 1H), 9.78 (s, 1H), 8.27 (d, 1H, J = 4.1 Hz0, 8.08 (app d, 1H, J = 2.6 Hz), 7.93 (s, 1H), 7.91 (s, 1H), 7.76 (dt, 1H, J = 2.6 and 8.1 Hz), 7.62 (d, 1H, J = 8.5 Hz), 7.54 (d, 1H, J = 8.8 Hz), 7.23 (d, 1H, J = 8.5 Hz), 4.14 (qt, 2	+	+	
N4-(2,2-Dimethyl-3-oxo-4H-benz[1,4]oxazin-6-yl)-N2-(1- ethylindazol-6-yl)-5-fluoro-2,4-pyrimidinediamine	¹ H NMR (DMSO-d6): d 10.75 (s, 1H), 10.18 (s, 2H), 8.25 (d, 1H, J = 4.7 Hz), 7.94 (s, 1H), 7.84 (s, 1H), 7.63 (d, 1H, J = 8.5 Hz), 7.27-7.17 (m, 3H), 6.86 (d, 1H, J = 8.5 Hz), 4.14 (qt, 2H, J = 7.0 Hz), 1.38 (s, 6H), 1.28 (t, 3H, J = 7.0 Hz). LCMS: ref. t	+	+	
701 N2-(1-Ethylindazol-6-yl)-5-fluoro-N4-(4-fluoro-3- methoxyphenyl)-2,4-pyrimidinediamine	¹ H NMR (DMSO-d6): d 10.18 (s, 2H), 8,26 (d, 1H, J = 4.7 Hz), 7.93 (s, 1H), 7.90 (s, 1H), 7.62 (d, 1H, J = 8.5 Hz), 7.50-7.46 (m, 1H), 7.30-7.27 (m, 1H), 7.19-7.13 (m, 2H), 4.09 (qt, 2H, J = 7.0 Hz), 3.60 (s, 3H), 1.27 (t, 3H, J = 7.0 Hz). LCMS: ret. time	+	+	
N4-(3-Chloro-4-methoxyphenyl)-5-fluoro-N2-(1- <i>n</i> -propylindazol-5-yl)-2,4-pyrimidinediamine	¹ H NIMR (DMSO-d6): d 10.39 (s, 1H), 10.26 (s, 1H), 8.26 (d, 1H, J = 4.7 Hz), 7.92 (s, 1H), 7.82 (s, 1H), 7.75 (d, 1H, J = 2.7 Hz), 6.66 (d, 1H, J = 9.1 Hz), 7.54 (dt, 1H, J = 2.3 and 9.1 Hz), 7.08 (d, 1H, J = 9.1 Hz), 4.33 (t, 2H, J = 7.0 Hz), 3.83 (s, 3H)		+	
703 2,4-pyrimidinediamine	¹ H NMR (DMSO-d6): d 10.21 (s, 1H), 9.93 (s, 1H), 8.26 (d, 1H, J = 4.4 Hz), 8.01 (d, 1H, J = 2.6 Hz), 7.94 (s, 1H), 7.87 (s, 1H), 7.69 (dd, 1H, J = 1.8 and 8.8 Hz), 7.65 (d, 1H, J = 9.1 Hz), 7.49 (d, 1H, J = 8.8 Hz), 7.41 (dd, 1H, J = 9.1 Hz), 4.34 (t, 2H,	+		
704 (1-n-propylindazol-5-yl)-2,4-pyrimidinediamine	¹ H NMR (DMSO-d6); d 10.75 (s, 1H), 10.21 (s, 2H), 8.26 (d, 1H, J = N4-(2,2-Dimethyl-3-oxo-4H-benz[1,4]oxazin-6-yl)-5-fluoro-N2- 4.9 Hz), 7.94 (s, 1H), 7.83 (s, 1H), 7.63 (d, 1H, J = 8.8 Hz), 7.27-7.17 (m, 3H), 6.86 (d, 1H, J = 8.8 Hz), 4.06 (t, 2H, J = 7.0 Hz), 1.72 (qt, 2H, J = 7.0 Hz), 1.72 (qt, 2H, J = 7.0 Hz), 1.38 (s, 6H), 0.71 (t, 3H,			+

mpound	Compound Name	Fig. scal Data CHIMC, CHIMC, IGE, 3pt 19E; 3pt	chinypiaco, CHMC, pt IgE; 8pt	CHMC, lono, 3pt	11pt
705	5-Fluoro-N4-(4-fluoro-3-methoxyphenyl)-N2-(1-n-705) propylindazol-5-yl)-2,4-pyrimidinediamine	¹ H NMR (DMSO-d6): d 10.46 (s. 1H), 10.35 (s, 1H), 8.28 (d, 1H, J = 4.9 Hz), 7.90 (s,1 H), 7.87 (s, 1H), 7.63 (d, 1H, J = 9.1 Hz), 7.43 (dd, 1H, J = 2.3 and 8.8 Hz), 7.27-7.22 (m, 1H), 7.14 (dd, 1H, J = 1.8 and 11 + 17), 4.34 (t, 2H, J = 7.0 Hz), 3.60 (s,	+		
706	N4-(3-Chloro-4-methoxyphenyl)-5-fluoro-N2-(1- <i>n</i> -propylindazol-6-yl)-2,4-pyrimidinediamine	THINMR (DMSO-d6): d 10.51 (s, 1H), 10.44 (s, 1H), 8.33 (d, 1H, J = 1H) NMR (DMSO-d6): d 10.51 (s, 1H), 1 = 2.6 Hz), 7.67 (d, 1H, J = 8.8 Hz), 7.55 (dd, 1H, J = 2.6 and 8.8 Hz), 7.16 (dd, 1H, J = 2.6 and 8.8 Hz), 7.16 (dd, 1H, J = 2.6 and 8.8 Hz), 7.03 (t, 2H, J = 7.0 Hz), 3.83 (s, 3H), 1.6	+	+	
707	44-(3,4-Dichlorophenyl)-5-fluoro-N2-(1- <i>n</i> -propylindazol-6-yl)- 2,4-pyrimidinediamine	TH NIMR (DMSO-d6): d 10.15 (s, 1H), 10.02 (s, 1H), 8.30 (d, 1H, 3 – 4.4 Hz), 8.06 (d, 1H, J = 2.6 Hz), 7.93 (s, 1H), 7.89 (s, 1H), 7.73 (dd, 1H, J = 2.6 and 8.5 Hz), 7.65 (d, 1H, J = 8.5 Hz), 7.55 (d, 1H, J = 8.8 Hz), 4.07 (t, 2H, 1.2 (d, 1H, 1.2 (d,	+	-	
708	N4-(2,2-Dimethyl-3-oxo-4H-benz[1,4]oxazin-6-yl)-5-fluoro-N2- (1-n-propylindazol-6-yl)-2,4-pyrimidinediamine	¹ H NMR (DMSO-d6): d 10.77 (s, 1H), 10.37 (s, 1H), 10.10 (s, 1H), 18.8 (d, 1H, J = 5.3 Hz), 7.89 (s, 1H), 7.87 (s, 1H), 7.61 (d, 1H, J = 8.8 Hz), 7.37 (dd, 1H, J = 1.8 and 8.8 Hz), 7.20 (d, 1H, J = 8.8 Hz), 8.87 (d, 1H, J = 8.8 Hz), 4.31 (t, 2H, J = 7.0 Hz)	+		+
702	5-Fluoro-N4-(4-fluoro-3-methoxyphenyl)-N2-(1- <i>n</i> -propylindazol-6-yl)-2,4-pyrimidinediamine	¹ H NIMR (DMSO-d6): d 10.40 (s, 1H), 10.37 (s, 1H), 8.33 (d, 1H, J = 5.0 Hz), 7.96 (s, 1H), 7.84 (s, 1H), 7.64 (d, 1H, J = 8.5 Hz), 7.47 (dt, 1H, J = 1.8 and 8.5 Hz), 7.26-7.22 (m, 2H), 7.15 (dd, 1H, J = 11.8 and 8.8 Hz), 4.02 (t, 2H, J = 7.0 Hz), 3.55 (s,	+		
7.	N2-(1-n-Butylindazol-5-yl)-N4-(3-chloro-4-methoxyphenyl)-5- fluoro-2,4-pyrimidinediamine	2 ± ±	+		
	N2-(1-n-Butylindazol-5-yl)-N4-(3,4-dichlorophenyl)-5-fluoro- 7111 2,4-pyrimldinediamine	TH NMR (DMSO-d6): d 10.43 (s, 11h), 10.20 (s, 11h), 0.32 (u, 11; 5) 4.7 Hz), 8.00 (d, 11h, J = 2.3 Hz), 7.95 (s, 11h), 7.83 (s, 11h), 7.67 (d, 2th, J = 8.8 Hz), 7.49 (d, 11h, J = 8.8 Hz), 7.41 (dd, 11h, J = 2.3 and 8.8 Hz), 4.38 (t, 2th, J = 7.3 Hz), 1.79 (q, 2th,	+		

But Read	WU 2005/U											US2004/02
11pt	+						+					
HMC, ono, 3pt										1		
CHMC, CHMC, C lgE, 3pt lgE, 8pt lk	+	+	+				+				+	
CHIMC, (IgE, 3pt		+			+		80		1	9		
Physical Data	(s, 1H), 10.05 (s, 1H), (d, 1H, J = 9.1 Hz), 7,38 (d, 9.1 Hz), 7.16 (s, 1H), 6.86	(d, 1H, J = 9.1 Hz), 4.35 (t, ZH, J=7.312) (d, 1H, J = 9.1 Hz), 4.35 (t, ZH, J=7.312) TH NIMR (DMSO-d6): d 10.42 (s, 1H), 10.29 (s, 1H), 8.8 Hz), 7.43 (dd, 4.9 Hz), 7.89 (s, 1H), 7.87 (s, 1H), 7.63 (d, 1H, J=8.8 Hz), 7.28-7.23	1H, J = 2.3 and 8.8 Hz), 7.36 (da, 1n, J = 1.0 cm) (m, 1H), 7.13 (dd, 1H, J = 11.3 and 9.1 Hz0, (m, 1H), 7.13 (dd, 1H, J = 4.7 Hz), 7.94 (s, 1H NMR (DMSO-d6); d 10.27 (s, 2H), 8.30 (d, 1H, J = 4.7 Hz), 7.94 (s, 1H, J = 8.8 Hz),	1H), 7.82 (s, 1H), 7.77 (d, 1H, J = 2.6 n2), 7.32 (s, 7.7) 7.56 (dd, 1H, J = 2.6 and 8.8 Hz), 7.16 (d, 1H, J = 8.8 Hz0, 7.11 (d, 7.56 (d,	14, J = 8.8 Hz), 4.00 (t, Zh, J = 7.5 hz), 10.09 (s, 1H), 8.32 (d, 1H, J = 4H NIMR (DMSO-d6); d 10.21 (s, 1H), 10.09 (s, 1H), 7.86 (s, 1H0, 7.72 (d,	4.4 Hz), 8.05 (d, 1H, J = 2.3 Hz), 7.57 (c, 7.7) 1H, J = 8.8 Hz), 7.66 (d, 1H, J = 8.8 Hz), 7.55 (d, 1H, J = 8.8 Hz), 7.20	(d, 1H, J = 8.8 Hz), 4.11 (t, ZH, J = 7.3) (d, 1H, J = 8.8 Hz), 4.11 (t, ZH), 10.40 (s, 1H), 10.36 (s, 1H), H NMR (DMSO-d6): d 11.77 (s, 1H), 10.40 (s, 1H), 7 R2 (d, 1H, J = 1)	8.29 (d, 1H, J = 4.9 Hz), 7.94 (s, 1H), 7.01 (s, 1H), 1.02 (s, 1H), 1 = 8.8 Hz), Hz), 7.23 (s, 2H), 7.18 (d, 1H, J = 8.8 Hz), 6.85 (d, 1H, J = 8.8 Hz)	4.10 (t, 2H, J = 7.3 Hz), 1.07 (4, 2.17) 14.10 (t, 2H, J = 7.3 Hz), 10.42 (s, 1H), 10.37 (s, 1H), 8.33 (d, 1H, J = 1.14) NMR (DMSO-46); d 10.42 (s, 1H), 12.8 Hz), 7.50-7.46	4.7 Hz), 7.96 (s, 1H), 7.84 (s, 1H), 7.94 (v, 1H, 7) = 11.8 and 8.8 Hz), 4.06 (m, 1H), 7.27-7.22 (m, 1H), 7.16 (app t, 1H, J = 11.8 and 8.8 Hz), 4.06 (m, 1H), 7.27-7.22 (m, 1H), 7.16 (app t, 1H, J = 11.8 and 8.8 Hz), 4.06	(t, 2H, J = 7.3 Hz), 3.54 (s, 3H), 1.05 (4, 1H), 8.22 (d, 1H, J = 1H) NMR (DMSO-46); d 10.19 (s, 1H), 10.03 (s, 1H), 1 = 2.6 Hz), 7.62 (d, 1H, J = 2	4.9 Hz), 7.90 (s, 1H), 7.84 (s, 1H), 7.95 (s, 1H), 7.84 (s, 1H), 7.39 (dd, 1H, J = 9.0 Hz), 7.39 (dd
Carried Manuel	izol-5-yl)-N4-(2,2-dimethyl-3-oxo-4H-		N2-(1-n-Butylindazol-5-yl)-5-iluolo-14- (1-n-Butylindazol-5-yl)-3-iluolo-14- (1-n-Butylindazol-5-yl)-2- (1-n-Butylindazol-5-yl)-2	N2-(1-n-Butylindazol-6-yl)-N4-(3-chloro-4-methoxyphenyl)-5-	fluoro-2,4-pyrmluiredianiino	N2-(1-n-Butylindazol-6-yl)-N4-(3,4-dichlorophenyl)-5-fluoro-	2,4-pyrimidinediamine	N2-(1-n-Butylindazol-6-yl)-N4-(2,2-dimethyl-3-oxo-4H-	benz[1,4]oxazin-0-y-y-	N2-(1-n-Butylindazol-6-yl)-5-fluoro-N4-(4-fluoro-3-	methoxyphenyl)-z,4-pyillillulliculus	N4-(3-Chloro-4-methoxyphenyl)-N2-[1-718] (cyclohexylmethyl)indazol-5-yl]-5-fluoro-2,4-pyrimidinedian
punoc	NZ-712	pe	713 m	X 45.	=	712	2	716	•	7.7	-	12

ŗ

Tryptase, Tryptase, Tryptase, fp_syk, CHMC, CHMC, CHMC, 11pt IgE, 3pt IgE, 8pt Iono, 3pt							
Tryptase, Tryptass CHMC, CHMC, IgE, 8pt Iono, 3g		+		+		+	
Tryptase, Try CHMC, CH	+		+	+	1		+
Physical Data	¹ H NMR (DMSO-d6): d 9.69 (s, 1H), 9.38 (s, 1H), 8.17 (d, 1H, J = 3.8 N2-[1-(Cyclohexylmethyl)indazol-5-yl]-N4-(3,4-dichlorophenyl)- Hz), 8.07 (app d, 1H, J = 2.6 Hz), 7.92 (s, 1H), 7.88 (s, 1H0, 7.78 (d, 1H, J = 2.4-pyrimidinediamine 2H, J = 8.8 Hz), 7.58 (d, 1H, J = 9.1 Hz0, 7.49-7.44 (m, 2H), 4.19 (d, 2H, J = 7.3 Hz), 1.91-1.84 (m, 1H), 1.62 (m	N2-[1-(Cyclohexylmethyl)indazol-5-yl]-N4-(2,2-dimethyl-3-oxo-2.3 and 8.8 Hz), 7.23 (dd, 1H, J = 2.3 and 9.1 Hz), 7.17 (s, 1H), 6.84 4H-benz[1,4]oxazin-6-yl)-5-fluoro-2,4-pyrimidinediamine (d, 1H, J = 9.1 Hz), 4.19 (d, 2H, J = 7.3 Hz), 1.91-1.84 (m, 1H), 1.62 (br s, 3H), 1.47-1.38 (m, 2H), 1.36 (s	¹ H NMR (DMSO-d6): d 10.31 (s, 1H), 10.13 (s, 1H), 8.25 (d, 1H, J = 4.9 Hz), 7.89 (s, 1H), 7.87 (s, 1H), 7.62 (d, 1H, J = 8.8 Hz), 7.43 (dd, 1H, J = 2.6 and 8.8 Hz), 7.36 (dd, 1H, J = 1.8 and 9.1 Hz), 7.29-7.25 (s, 1H), 7.12 (dd, 1H, J = 8.8 and 11.4 Hz),	¹ H NMR (DMSO-d6): d 10.12 (s, 2H), 8.26 (d, 1H, J = 4.7 Hz), 7.93 (s, 722 (cyclohexylmethyl)indazol-6-yl]-5-fluoro-2,4-pyrimidinediamine 7.58 (dd, 1H, J = 2.6 and 8.8 Hz), 7.19 (d, 1H, J = 8.8 Hz), 7.11 (d, 2H, J = 7.3 Hz), 3	¹ H NMR (DMSO-d6): d 10.05 (s, 1H), 9.91 (s, 1H), 8.29 (d, 1H, J = 4.1 N2-f1-(Cyclohexylmethyl)indazol-6-yl]-N4-(3,4-dichlorophenyl)-Hz0, 8.05 (d, 1H, J = 2.3 Hz), 7.92 (s, 1H), 7.90 (s, 1H), 7.73 (dd, 1H, J = 2.4 pyrimidinediamine J = 2.3 and 8.8 Hz), 7.63 (d, 1H, J = 8.8 Hz), 7.54 (d, 1H, J = 8.8 Hz), 7.55 (d, 2H, J = 8.8 Hz), 7.55 (d, 1H, J = 8.8 Hz), 7.55 (d, 1H, J = 8.8 Hz), 7.55 (d, 1H, J = 8.8 Hz), 7.55 (d, 2H, J = 8.8 Hz), 7.55 (d, 1H, J = 8.8 Hz), 7.55 (d, 2H, J = 8.8 Hz), 7.55 (d, 1H, J = 8.8 Hz), 7.55 (d, 2H, J = 8.8 Hz), 7.55 (d, 1H, J = 8.8 Hz), 7.55 (d, 2H, J = 8.8 Hz	14 NMR (DMSO-d6): d 10.73 (s, 1H), 10.07 (s, 1H), 10.01 (s, 1H), 1	¹ H NMR (DMSO-d6): d 10.24 (s, 2H), 8.29 (d, 1H, J = 4.7 Hz), 7.95 (s, 1H), 7.86 (s, 1H), 7.63 (d, 1H, J = 8.8 Hz), 7.49 (dd, 1H, J = 2.3 and 8.8 Hz), 7.28-7.24 (m, 1H), 7.19-7.12 (m, 2H), 3.91 (d, 2H, J = 7.3 Hz), 3.55 (s, 3H), 1.75-1.73 (m, 1H), 1.54 (br
Compound Name	N2-[1-(Cyclohexylmethyl)indazol-5-yl]-N4-(3,4-dichlorophenyl)- 5-fluoro-2,4-pyrimidinediamine	N2-[1-(Cyclohexylmethyl)indazol-5-yl]-N4-(2,2-dimethyl-3-oxo-4H-benz[1,4]oxazin-6-yl)-5-fluoro-2,4-pyrimidinediamine	N2-[1-(Cyclohexylmethyl)indazol-5-yl)-5-fluoro-N4-(4-fluoro-3-methoxyphenyl)-2,4-pyrimidinediamine	N4-(3-Chloro-4-methoxyphenyl)-N2-[1- (cyclohexylmethyl)indazol-6-yl]-5-fluoro-2,4-pyrimidinediamine	N2-[1-(Cyclohexylmethyl)indazol-6-yl]-N4-(3,4-dichlorophenyl)-5-fluoro-2,4-pyrimidinediamine	N2-[1-(Cyclohexylmethyl)indazol-6-yl]-N4-(2,2-dimethyl-3-oxo-4H-benz[1,4]oxazin-6-yl)-5-fluoro-2,4-pyrimidinediamine	N2-[1-(Cyclohexylmethyl)indazol-6-yl)-5-fluoro-N4-(4-fluoro-3-methoxyphenyl)-2,4-pyrimidinediamine

Compound have Townsound have the think and think an	_	ۍد																	<u> </u>											
# NMRK [DMSO-66); d 10.40 (s, 11), 10.26 (s, 11), 8.26 (d, 11), J = 8.41 b.7.75 (d, 11), J = 2.6 b.9, 7.88 (d, 11), J = 8.41 b.7.75 (d, 11), J = 2.6 b.9, 7.88 (d, 11), J = 8.41 b.7.75 (d, 11), J = 2.6 b.9, 7.88 (d, 11), J = 8.41 b.7.75 (d, 11), J = 2.6 b.9, 7.88 (d, 11), J = 8.41 b.7.75 (d, 11), J = 2.6 b.9, 7.88 (d, 11), J = 8.41 b.7.75 (d, 11), J = 2.3 and 8.81 b.7.75 (d, 11), J = 2.3 b.7.75 (d, 11),		,fp_sy 11pt																												
# NMRK [DMSO-66); d 10.40 (s, 11), 10.26 (s, 11), 8.26 (d, 11), J = 8.41 b.7.75 (d, 11), J = 2.6 b.9, 7.88 (d, 11), J = 8.41 b.7.75 (d, 11), J = 2.6 b.9, 7.88 (d, 11), J = 8.41 b.7.75 (d, 11), J = 2.6 b.9, 7.88 (d, 11), J = 8.41 b.7.75 (d, 11), J = 2.6 b.9, 7.88 (d, 11), J = 8.41 b.7.75 (d, 11), J = 2.6 b.9, 7.88 (d, 11), J = 8.41 b.7.75 (d, 11), J = 2.3 and 8.81 b.7.75 (d, 11), J = 2.3 b.7.75 (d, 11),	<u> </u>	Tryptase CHMC,																						-						
# NMRK [DMSO-66); d 10.40 (s, 11), 10.26 (s, 11), 8.26 (d, 11), J = 8.41 b.7.75 (d, 11), J = 2.6 b.9, 7.88 (d, 11), J = 8.41 b.7.75 (d, 11), J = 2.6 b.9, 7.88 (d, 11), J = 8.41 b.7.75 (d, 11), J = 2.6 b.9, 7.88 (d, 11), J = 8.41 b.7.75 (d, 11), J = 2.6 b.9, 7.88 (d, 11), J = 8.41 b.7.75 (d, 11), J = 2.6 b.9, 7.88 (d, 11), J = 8.41 b.7.75 (d, 11), J = 2.3 and 8.81 b.7.75 (d, 11), J = 2.3 b.7.75 (d, 11),	9	Tryptase, CHMC,	lgE, 8pt									4	÷			-1	•											+		
# NMK (DMSO-66); a 10.40 (s. 1H), 10.26 (s. 1H), 8.26 (d. 1H.) = 8.41 (d. 1H.) = 8.41 (d. 1H.) = 1.75 (d. 1H.) = 1.6 and 2.6 and 8.8 hz), 7.86 (d. 1H.) = 1.8 hz), 7.36 (d. 1H.) = 2.6 and 2.6 and 8.8 hz), 7.86 (d. 1H.) = 1.8 hz), 7.36 (d. 1H.) = 2.6 and 2.6 and 8.8 hz), 7.86 (d. 1H.) = 1.8 hz), 7.36 (d. 1H.) = 2.6 and 2.6 and 8.8 hz), 7.86 (d. 1H.) = 1.8 hz), 7.36 (d. 1H.) = 2.6 and 2.6 and 8.8 hz), 7.86 (d. 1H.) = 2.6 and 2.6 and 8.8 hz), 7.86 (d. 1H.) = 2.6 and 2.6 and 8.8 hz), 7.86 (d. 1H.) = 2.6 and 2.6 and 8.8 hz), 7.86 (d. 1H.) = 2.6 and 2.6 and 8.8 hz), 7.86 (d. 1H.) = 2.6 and 2.6 and 8.8 hz), 7.86 (d. 1H.) = 2.6 and 2.6 and 8.8 hz), 7.86 (d. 1H.) = 2.6 and 2.6 and 8.8 hz), 7.86 (d. 1H.) = 2.6 and 2.6 and 8.8 hz), 7.86 (d. 1H.) = 2.8 hz), 7.40 (d. 1H.) = 2.6 and 2.6 and 8.8 hz), 7.40 (d. 2H.) = 2.8 hz), 7.40 (d. 1H.) = 2.6 and 2.6 and 8.8 hz), 7.40 (d. 2H.) = 2.8 hz), 7.40 (d. 1H.) = 2.8 hz), 7.60 (d.	9	Tryptase, CHMC,						4	-											4	+			-	-					
Compound Name N4-(3-Chloro-4-methoxyphenyl)-N2-[1- Cyclobutylmethyl)indazol-5-yl]-5-fluoro-2,4-pyrimidinediamine (cyclobutylmethyl)indazol-5-yl]-N4-(3,4-dichlorophenyl)- 5-fluoro-2,4-pyrimidinediamine N2-[1-(Cyclobutylmethyl)indazol-5-yl]-N4-(2,2-dimethyl-3-oxo- N2-[1-(Cyclobutylmethyl)indazol-5-yl]-5-fluoro-N4-(4-fluoro-3- methoxyphenyl)-2,4-pyrimidinediamine N4-(3-Chloro-4-methoxyphenyl)-N2-[1- N4-(3-Chloro-4-pyrimidinediamine N2-[1-(Cyclobutylmethyl)indazol-6-yl]-N4-(3,4-dichlorophenyl)- 730 N2-[1-(Cyclobutylmethyl)indazol-6-yl]-N4-(2,2-dimethyl-3-oxo- N2-[1-(Cyclobutylmethyl)indazol-6-yl]-N4-(1-(Cyclobutylmet		Physical Data		"H NMR (DMSO-d6): d 10.40 (s, 1H), 10.26 (s, 1H), 8.26 (d, 1H, J = 15.2 L-) 7 64 (s, 1H) 7 84 (s, 1H) 7 756 (d, 1H) 7 756 (d, 1H) 7 756 (d, 1H)	1H, J = 9.1 Hz), 7.55 (dd, 1H, J = 2.6 and 2.6 and 8.8 Hz), 7.38 (d, 1H,	J = 8.8 Hz), 7.09 (d, 1H, J = 9.1 Hz), 4.39	¹ H NMR (DMSO-d6): d 10.32 (s, 1H), 10.06 (s, 1H), 8.29 (d, 1H, J =	4.7 Hz), 8.00 (s, 1H), 7.93 (s, 1H), 7.84 (s, 1H), 7.68 (d, 2H, J = 8.8	Hz), 7.49 (d, 1H, J = 8.8 Hz), 7.41 (d, 1H, J = 8.8 Hz), 4.40 (d, 2H),	2.86-2.76 (m, 1H), 1.96-1.75 (m, 6H). LCMS:	¹ H NMR (DMSO-d6): d 10.79 (s, 1H), 10.40(s, 1H), 10.25 (s, 1H), 8.23	(d, 1H, J = 4.9 Hz), 7.88(s, 1H0, 7.86 (s, 1H0, 7.64 (d, 1H, J = 8.8 Hz),	7.37 (d, 1H, J = 9.1 Hz), 7.21 (s, 1H), 7.18 (s, 1H), 6.86 (d, 1H, J = 9.1	Hz), 4.37 (d, 1H, J = 7.0 Hz), 2.83-2	¹ H NMR (DMSO-d6): d 10.48 (s, 1H), 10.36 (s, 1H), 8.29 (d, 1H, J =	5.3 Hz), 7.88 (s, 1H), 7.86 (s, 1H0, 7.67 (d, 1H, J = 8.0 Hz), 7.43 (dd,	1H, J = 2.3 and 8.0 Hz), 7.35 (dd, 1H, J = 1.8 and 8.8 Hz), 7.26-7.23	(m, 1H), 7.14 (dd, 1H, J = 9.1 and 11.8 Hz),	¹ H NMR (DMSO-d6): d 10.35 (s, 2H), 8.31 (d, 1H, J = 4.7 Hz), 7.94 (s,	1H0, 7.86 (s, 1H), 7.78 (d, 1H, J = 2.3 Hz), 7.66 (d, 1H, J = 8.8 Hz),	7.57 (dd, 1H, J = 2.3 and 8.8 Hz0, 7.16 (d, 1H, J = 8.8 Hz), 7.12 (d,	1H, J = 8.8 Hz), 4.09 (d, 2H, J = 7.3 Hz), 3	¹ H NMR (DMSO-d6): d 10.27 (s, 1H), 10.16 (s, 1H), 8.30 (d, 1H, J =	4.4 Hz), 7.99 (d, 1H, J = 2.3 Hz), 7.88 (s, 1H), 7.85 (s, 1H), 7.67 (dd,	1H, $J = 2.3$ and 8.8 Hz), 7.60 (d, 1H, $J = 8.8$ Hz), 7.51 (d, 1H, $J = 8.8$	Hz), 7.13 (d, 1H, J = 8.8 Hz), 4.07 (d, 2H,	¹ H NMR (DMSO-d6): d 10.81 (s, 1H), 10.63 (s, 1H), 10.55 (s, 1H),	8.33 (d, 1H, J = 5.3 Hz), 7.94 (s, 1H), 7.81 (s, 1H), 7.64 (d, 1H, J = 8.8	Hz), 7.24-7.21 (m, 2H), 7.17 (d, 1H, J = 8.5 Hz), 6.86 (d, 1H, J = 8.5	Hz), 4.12 (d, 2H, J = 7.0 Hz), 2.71-2.61 (m,
				NA 10 Obligate A mother mhomili ND 74	726 http://docum.com/street/st			N2-[1-(Cydobutylmethyl)indazol-5-yl]-N4-(3,4-dichlorophenyl)-	727 5-fluoro-2,4-pyrimidinediamine			N2-[1-(Cyclobutylmethyl)indazol-5-yl]-N4-(2,2-dimethyl-3-oxo-	/ 28 H-benz[1,4]oxazin-6-yl)-5-fluoro-2,4-pyrimidinediamine			N2-[1-(Cyclobuylmethyl)indazol-5-yl)-5-fluoro-N4-(4-fluoro-3-	methoxyphenyl)-2,4-pyrimidinediamine			N4-(3-Chloro-4-methoxyphenyl)-N2-[1-	(cyclobutyImethyI)indazol-6-yI]-5-fluoro-2,4-pyrimidinediamine			N2-[1-(Cyclobutylmethyl)indazol-6-yl]-N4-(3,4-dichlorophenyl)-	7.5 5-fluoro-2,4-pyrimidinediamine			N2-[1-(Cyclobutylmethyl)indazol-6-yl]-N4-(2,2-dimethyl-3-oxo-	4H-benz[1,4]oxazin-6-yl)-5-fluoro-2,4-	

Lu von Hill little Hill with via min in in	
	+
lono, 3pt	+ +
+ + CHWIC,	+ + + + + + + + + + + + + + + + + + +
(CHMC, CHMC, 1, 1, 1, 1, 2, 2, 3, 3, 4, 1, 1, 2, 8, 8, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,	9(s, 1H), 9(s, 1H), (d, 1H, J= 9, (d, 1H, J= 9, 17.48 (do, 17.769 (d, 1H, J= 1.18), 18, 1H, J= 1.18 18, 1H, J= 1.18 18, 1H, J= 1.18 18, 1H, 7.77 18, 1H), 7.77 18, 1H), 7.77
(d, 2H, J = 7.4 (d, 1H, J = 7.4 (d, 1H, J = 7.5 (d, 1H, J = 7.5 (d, 1H, J = 1.5 (d, 1H, B.31 (d, 1H, B.31 (d, 1H),	5 (dd, 1H, J= (s, 1H0, 7.71 (s, 1H0, 7.71 (s, 1H), 8. 27 (s, 1H), 8. 27 (s, 1H), 8. 27 (s, 1H), 8. 27 (s, 1H), 1= 2.6 F 11, J= 2.6 F 12, J= 2.6 F 13, J= 2.6 F 14, J= 2.6 F 14, J= 2.6 F 16, J= 2.6 F 17, J= 2.6 F 17, J= 2.6 F 18, J= 2.6 F 18, J= 2.6 F 19, J= 2.6 F 19, J= 2.6 F 10, J= 2.6 F
1H), 10.58 (s, 1H), 10.58 (d, 1H, J), 1.7.66 (d, 1H, J), 1.11 (m, 3H), 4.07 (s, 1H), 9.91 (s, 1H), 7.7 (d, 1H, J = 9.1 H), 7.7 (d, 1H, J = 9.1 H), 7.7 (d, 1H), 10.14 (s, 1	34-1.24 (m 1.34-1.24 (m 1.34-1.24 (m 1.34-1.24 (m 1.34-1.24 (m 1.34-1.24 (m 1.34-1.24 (m 1.34-1.32 (d, 1.14), 7.71 (g, 1.14), 7.71 (g, 1.14), 7.71 (g, 1.14), 7.79 (d, 1.14), 7.65 (d, 1.14),
7.067 (s, 1H) 7.85 (s, 1H), 7.7.23-7.11 (m, 6H). L(7.7 (m, 6H). L(7.7 (m, 6H). L(87 (s, 1H), 7.8 87 (s, 1H), 7.8 87 (s, 1H), 7.8 87 (s, 1H), 7.8 1.2 (s, 1H), 7.8 (d, 1.2), 3.4 1.2 (d, 10.39 (s, 1.2))	HZ), 8.05 (d, 1H, J = 2.3 HZ), 7.45 (dd, 1H, J = 2.3 and 0.2) Hz), 8.05 (d, 1H, J = 8.8 Hz), 7.45 (dd, 1H, J = 2.3 and 0.2) J = 9.1 Hz), 7.54 (d, 1H, J = 8.8 Hz), 7.45 (dd, 1H), 10.29 (s, 1H), J, 4.32 (d, 2H, J = 7.0 Hz), 1.34-1.24 (m. 1H), 70.29 (s, 1H), 10.29 (s, 1H), 7.24 (d, 1H, J = 8.5 Hz), 7.25 R3 (d, 1H, J = 5.3 Hz), 7.95 (s, 1H), 7.27 (d, 1H, J = 8.5 Hz), 7.25 R3 (d, 1H, J = 8.5 Hz), 7.94 (s, 1H), 7.27 (d, 1H, J = 9.1 Hz), 7.48 (dd, 1H, J = 8.95 (d, 1H, J = 8.8 Hz), 7.41 (dd, 1H, J = 2.3 and 9.1 Hz), 7.34 (dd, 1H, J = 2.3 and 9.1 Hz), 7.34 (dd, 1H, J = 2.3 and 9.1 Hz), 7.34 (dd, 1H, J = 8.8 and 11.1 Hz), HNMR (DMSO-d6): d 10.28 (s, 2H), 8.31 (d, 1H, J = 2.6 Hz), 7.69 (d, 1H, J = 1.8 and 1H), 7.30 (dd, 1H, J = 2.6 and 9.1 Hz), 7.10 (dd, 1H, J = 1.8 and 1H), 7.30 (dd, 1H, J = 2.6 and 9.1 Hz), 7.39 (dd, 1H, J = 2.8 and 9.1 Hz), 7.39 (dd, 1H, J = 2.6 and 8.8 Hz), 7.58 (dd, 1H, J = 2.6 hz), 7.95 (s, 1H), 10.10 (s, 1H), 7.91 (s, 1H), 7.71 (dd, 1H, J = 2.6 and 8.8 Hz), 7.55 (d, 1H, J = 8.8 Hz), 7.55 (d, 1H, J = 8.8 Hz), 7.55 (d, 1H, J = 8.8 Hz), 7.50 (d, 1H, J = 8.8 Hz), 7.55 (d, 1H, J = 8.8 Hz), 7.50 (d, 1H, J = 8.8
CHANGE (2) Detz. H. NIMR (DMSO-d6): d 10.67 (s, 1H), 10.58 (s, 1H), 8.38 (d, 1H, J = 1.3 Hz), 7.48 (dd, H, J = 2.3 and 8.5 Hz), 7.23-7.11 (m, 3H), 4.07 (d, 2H, J = 7.0 Hz), 3.51 (s, 3H), 2.67-2.57 (m, 6H). LCMS: ret. 3.51 (s, 3H), 2.67-2.57 (m, 6H). LCMS: ret. H. J = 2.3 and 8.5 Hz), 7.23-7.11 (m, 3H), 4.07 (d, 1H, J = 8.8 Hz), 3.51 (s, 3H), 2.67-2.57 (m, 6H). LCMS: ret. 1.50 (s, 1H), 7.87 (s, 1H), 7.80 (s, 1H), 7.72 (d, 1H, J = 8.8 Hz), 7.36 (s, 1H), 7.34 (d, 1H, J = 8.8 Hz), 7.43 (d, 1H, J = 9.1 Hz), 7.14 (d, 1H, J = 8.8 Hz), 7.43 (d, 1H, J = 9.1 Hz), 7.14 (d, 1H, J = 8.4 Hz), 7.34 (s, 1H), 7.39 (s, 1H), 7.89 (s, 1H), 7.73 (d, 1H, MMR) (DMSO-d6); d 10.39 (s, 1H), 10.14 (s, 1H), 7.89 (s, 1H), 7.73 (d, 1H, MMR) (DMSO-d6); d 10.39 (s, 1H), 7.89	ignediamine H Num (Dir.) (1-(c)-doptropylmethyl)indazol-5-ylj-N4-(3.4 H L) 8.05 (d. 1H, J = 2.3 Hz), 7.35 (d. 1H, J = 8.5 Hz), 7.45 (dd. 1H, J = 8.3 Hz), 7.25 H Num (Diviso-doj; d. 10.85 (s. 1H), 10.40 (s. 1H), 10.29 (s. 1H), 7.25 H Num (Diviso-doj; d. 10.85 (s. 1H), 10.40 (s. 1H), 10.29 (s. 1H), 10.29 (s. 1H), 10.29 (s. 1H), 10.20 (s. 1H), 10.
Navard H	ediamine H
o-N4-(4-fluoro	14-(3,4- lamine -N4-(2,2-dime -2,4-pyrimidin 2,4-pyrimidin 2-[1fluoro-2,4fluo
-6-yl)-5-fluoro-N4-(4 diamine diamine yl)-N2-[1- yl]-5-fluoro-2,4-	4-pyrimidined 4-pyrimidined 4-pyrimidined 6-yl)-5-fluoro 6-yl)-5-fluoro cxyphenyl)-N oxyphenyl)-N imethyl)indaz fluoro-2,4-pyf
nethyl)indazol y,4-pyrimidine methoxyphen	imidinediamine 2-11-(Cyclopropylmethyl)indazol-5-ylj-N4-(3,4- ichlorophenyl)-5-fluoro-2,4-pyrimidinediamine [N2-[1-(Cyclopropylmethyl)indazol-5-ylj-N4-(2,2-dimethyl-3- oxo-4H-benz[1,4]oxazin-6-yl)-5-fluoro-2,4-pyrimidinediamine N2-[1-(Cyclopropylmethyl)indazol-5-yl)-5-fluoro-N4-(4-fluoro N2-[1-(Cyclopropylmethyl)indazol-5-yl]-N2-[1- N4-(3-Chloro-4-methoxyphenyl)-N2-[1- N4-(3-Chloro-4-methoxyphenyl)-15-fluoro-2,4- pyrimidinediamine 738 [cyclopropylmethyl)indazol-6-yl]-N4-(3,4- N2-[1-(Cyclopropylmethyl)indazol-6-yl]-N4-(3,4- N2-[1-(Cyclopropylmethyl)indazol-6-yl]-N4-(3,4- N2-[1-(Cyclopropylmethyl)indazol-6-yl]-N4-(3,4- N2-[1-(Cyclopropylmethyl)indazol-6-yl]-N4-(3,4- N2-[1-(Cyclopropylmethyl)indazol-6-yl]-N4-(3,4- N2-[1-(Cyclopropylmethyl)]-5-fluoro-2,4-pyrimidinediamine
Compound Name Compound Name Compound Name N2-[1-(Cyclobuylmethyl)indazol-5-yl)-5-fluoro-N4-(4-fluoro-3-methoxyphenyl)-2,4-pyrimidinediamine N2-[1-(Cyclobuylmethyl)indazol-5-yl]-5-fluoro-2,4- N4-(3-Chloro-4-methoxyphenyl)-N2-[1- N4-(3-Chloro-4-methoxyphenyl)-5-fluoro-2,4-	pyrimidinediamine pyrimidinediamine N2-{1-(Cyclopropylmethyl)indazol-5-ylj-N4-(3,4- dichlorophenyl)-5-fluoro-2,4-pyrimidinediamine N2-{1-(Cyclopropylmethyl)indazol-5-ylj-N4-(2,7- N2-{1-(Cyclopropylmethyl)indazol-5-ylj-N4-{1- N2-{1-(Cyclopropylmethyl)indazol-5-ylj-5-fluoro-738(cyclopropylmethyl)indazol-6-ylj-5-fluoro-738(cyclopropylmethyl)indazol-6-ylj-5-fluoro-738(cyclopropylmethyl)indazol-6-ylj-5-fluoro-738(cyclopropylmethyl)indazol-6-ylj-5-fluoro-738(cyclopropylmethyl)indazol-6-ylj-5-fluoro-738(cyclopropylmethyl)indazol-6-ylj-5-fluoro-738(cyclopropylmethyl)indazol-6-ylj-5-fluoro-738(cyclopropylmethyl)indazol-6-ylj-5-fluoro-738(cyclopropylmethyl)indazol-6-ylj-5-fluoro-738(cyclopropylmethyl)indazol-6-ylj-5-fluoro-738(cyclopropylmethyl)indazol-6-ylj-5-fluoro-738(cyclopropylmethyl)indazol-6-ylj-5-fluoro-738(cyclopropylmethyl)indazol-6-ylj-5-fluoro-738(cyclopropylmethyl)indazol-6-ylj-5-fluoro-738(cyclopropylmethyl)-5-fluoro-2,4-pyrimidine
ompound Compt umber 733 met NA-1	2385 788

Compound	Compound Name	Physical Data	LD LD LD Tryptase, fp_syk, CHMC, CHMC, CHMC, 11pt IgE, 3pt Ige, 8pt Iono, 3pt	LD se, Tryptase, CHMC, ot lono, 3pt	fp_syk, 11pt
740	N2-[1-(Cyclopropylmethyl)indazol-6-yl]-N4-(2,2-dimethyl-3- oxo-4H-benz[1,4]oxazin-6-yl}-5-fluoro-2,4-pyrimidinedlamine	¹ H NMR (DMSO-d6): d 10.82 (s, 1H), 10.22 (s, 1H), 10.16 (s, 1H), 8.31 (d, 1H, J = 4.7 Hz), 8.00 (d, 1H, J = 0.8 Hz), 7.97 (s, 1H), 7.34 (d, 1H, J = 8.8 Hz), 7.35-7.27 (m, 3H), 6.92 (d, 1H, J = 8.5 Hz), 4.32 (d, 2H, J = 7.0 Hz), 1.36 (s, 6H), 1.33-1.17 (m,	+		+
741	N2-[1-(Cyclopropylmethyl)indazol-6-yl)-5-fluoro-N4-(4-fluoro-3-methoxyphenyl)-2,4-pyrimidinediamine	¹ H NMR (DMSO-d6): d 10.23 (s, 2H), 8.31 (d, 1H, J = 4.9 Hz), 7.95 (s, R) N2-{1-(Cyclopropylmethyl)indazol-6-yl)-5-fluoro-N4-(4-fluoro-3-1H), 7.91 (s, 1H), 7.65 (d, 1H, J = 8.8 Hz), 7.48 (dd, 1H, J = 2.3 and 8.8 Hz), 7.29-7.24 (m, 1H), 7.20-7.13 (m, 3H), 4.09 (d, 2H, J = 6.7 Hz), 3.65 (s, 3H), 1.33-1.17 (m, 1H), 0.55-0	+		
742	N4-(3-Chloro-4-methoxyphenyl)-N2-(1 5-fluoro-2,4-pyrimidinediamine	¹ H NMR (DMSO-d6): d 10.35 (s, 1H), 10.20 (s, 1H), 8.24 (d, 1H, J = -cyclohexylindazol-5-yl)- 5.3 Hz), 7.92 (s, 1H), 7.81 (s, 1H), 7.74 (d, 1H, J = 2.6 Hz), 7.71 (d, 1H, J = 8.1 Hz), 7.55 (dd, 1H, J = 2.6 and 8.8 Hz), 7.36 (dd, 1H, J = 1.8 and 8.8 Hz), 7.09 (d, 1H, J = 8.1 Hz), 4.5	+		
743	N2-(1-Cyclohexylindazol-5-yl)-N4-(3,4-dichlorophenyl)-5- fluoro-2,4-pyrimidinediamine	"H NMR (DMSO-d6): d 10.26 (s, 1H), 9.99 (s, 1H), 8.23 (d, 1H, J = 4.9 Hz), 7.96 (s, 1H), 7.89 (s, 1H), 7.80 (s, 1H), 7.66 (d, 1H, J = 8.1 Hz), 7.61 (app s, 1H), 7.45 (d, 1H, J = 9.1 Hz), 7.34 (d, 1H, J = 9.1 Hz), 4.53-4.49 (m, 1H), 1.87-1.78 (m, 6H), 1.67	+		
744	N2-(1-Cyclohexylindazol-5-yl)-N4-(2,2-dimethyl-3-oxo-4H-benz[1,4]oxazin-6-yl)-5-fluoro-2,4-pyrimidinediamine	¹ H NWR (DMSO-d6): d 10.80 (s, 1H), 10.36 (s, 1H), 10.15 (s, 1H), 8.21 (d, 1H, J = 4.9 Hz), 7.89 (s, 1H), 7.86 (s, 1H), 7.64 (d, 1H, J = 9.4 Hz), 7.36 (dd, 1H, J = 2.3 and 8.8 Hz), 7.18 (d, 1H, J = 2.3 Hz), 6.86 (d, 1H, J = 9.4 Hz), 4.53-4.49 (m, 1H), 1.89	+		+
745	N2-(1-Cyclohexylindazol-5-yl)-5-fluoro-N4-(4-fluoro-3- methoxyphenyl)-2,4-pyrimidinediamine	¹ H NMR (DMSO-d6): d 10.26 (s, 1H), 10.07 (s, 1H), 8.22 (d, 1H, J = 5.0 Hz), 7.90 (s, 1H), 7.89 (s, 1H), 7.67 (d, 1H, J = 8.8 Hz), 7.44 (dd, 1H, J = 8.5 Hz), 7.34 (dd, 1H, J = 1.8 and 8.8 Hz), 7.28-7.24 (m, 1H), 7.15 (dd, 1H, J = 8.8 and 11.1 Hz), 4.53-4.4	+		
746	N4-(3-Chloro-4-methoxyphenyl)-N2-(1-cyclohexylindazol-6-yl)-	¹ H NMR (DMSO-d6): d 10.21 (s, 1H), 10.19 (s, 1H), 8.28 (d, 1H, J = N4-(3-Chloro-4-methoxyphenyl)-N2-(1-cyclohexylindazol-6-yl)- 4.9 Hz), 7.95 (s, 1H), 7.86 (d, 1H, J = 2.6 Hz), 7.84 (s, 1H), 7.66 (d, 1H, J = 2.6 and 9.1 Hz), 7.21 (dd, 1H, J = 1.8 and 8.5 Hz), 7.59 (dd, 1H, J = 9.1 Hz), 4.19	+		

Compound	Compound Name	Prysical Data	LD L Tryptase, 7 CHMC, (0	LD Tryptase, CHMC, (GE, 8pt I	LD LD LD Tryptase, Tryptase, fp_syk, CHMC, CHMC, 11pt IgE, 3pt IgE, 8pt Iono, 3pt	p_syk, 11pt
747	N2-(1-Cyclohexylindazol-6-yl)-N4-(3,4-dichlorophenyl)-5- fluoro-2,4-pyrimidinediamine	¹ H NMR (DMSO-d6): d 10.05 (s, 1H), 9.88 (s, 1H), 8.29 (d, 1H, J = 4.9 Hz), 8.11 (d, 1H, J = 2.6 Hz), 7.93 (s, 1H), 7.92 (s, 1H), 7.78 (dd, 1H, J = 2.6 and 8.8 Hz), 7.64 (d, 1H, J = 8.5 Hz), 7.51 (d, 1H, J = 8.8 Hz), 7.22 (dd, 1H, J = 1.7 and 8.5 Hz), 4.19	+			
748	N2-(1-Cyclohexylindazol-6-yl)-N4-(2,2-dimethyl-3-oxo-4H- oenz[1,4]oxazin-6-yl)-5-fluoro-2,4-pyrimidinediamine	¹ H NWR (DMSO-d6): d 10.76 (s, 1H), 10.25 (s, 1H), 10.18 (s, 1H), 8.24 (d, 1H, J = 4.9 Hz), 7.94 (s, 1H), 7.83 (s, 1H), 7.63 (d, 1H, J = 8.5 Hz), 7.31-7.22 (m, 3H), 6.80 (d, 1H, J = 8.5 Hz), 4.23-4.12 (m, 1H), 1.85-1.77 (m, 6H), 1.65-1.62 (m, 1H), 1.38 (s,		+		
749	N2-(1-Cyclohexylindazol-6-yl)-5-fluoro-N4-(4-fluoro-3- methoxyphenyl)-2,4-pyrimidinediamine	¹ H NWR (DMSO-d6): d 10.02 (s, 1H), 9.95 (s, 1H), 8.26 (d, 1H, J = 4.3 Hz), 7.93 (s, 2H), 7.83 (s, 1H), 7.63 (d, 1H, J = 8.8 Hz), 7.55 (dd, 1H, J = 2.6 and 8.8 Hz0, 7.31-7.28 (m, 1H), 7,18 (d, 1H, J = 8.8 Hz), 7.12 (dd, 1H, J = 8.8 and 11.4 Hz), 4.11-4.00	+			
750	N4-(3,4-Dichlorophenyl)-5-fluoro-N2-(3-methylindazol-6-yl)- 2,4-pyrimidinediamine	'H NWR (DMSO-d6): d 12.23 (s, 1H), 9.53 (s, 1H), 9.36 (s, 1H), 8.14 (d, 1H, J = 3.5 Hz), 8.10 (d, 1H, J = 2.7 Hz), 7.88 (s, 1H), 7.86 (dd, 1H, J = 2.7 and 8.8 Hz), 7.47 (d, 2H, J = 8.8 Hz), 7.16 (dd, 1H, J = 1.8 and 8.8 Hz), 2.36 (s, 3H). LCMS: ret. time	+	+		
751	N4-(2,2-Dimethyl-3-oxo-4H-benz[1,4]oxazin-6-yl)-5-fluoro-N2- (3-methylindazol-6-yl)-2,4-pyrimidinediamine	¹ H NMR (DMSO-d6): d 10.62 (s, 1H), 9.63 (s, 1H), 9.44 (s, 1H), 8.13 (d, 1H, J = 41. Hz), 7.84 (s, 1H), 7.50 (d, 1H, J = 8.8 Hz), 7.36 (dd, 1H, J = 41. Hz), 7.84 (s, 1H), 7.50 (d, 1H, J = 8.8 Hz), 7.36 (dd, 1H, J = 2.3 md 8.5 Hz), 7.31 (d, 1H, J = 2.3 Hz), 7.24 (dd, 1H, J = 1.8 and 8.8 Hz), 6.89 (d, 1H, J = 8.5 Hz), 2.41	+	+		
752	V4-(3-Chloro-4-methoxyphenyl)-N2-(1,3-dimethylindazol-6-yl)-5-fluoro-2,4-pyrimidinediamine	¹ H NMR (DMSO-d6): d 10.49 (s, 1H), 10.43 (s, 1H), 8.33 (d, 1H, J = 3.4 dimethylindazol-6-yl)- 5.3 Hz), 7.77 (d, 1H, J = 2.6 Hz), 7.67 (d, 1H, J = 1.2 Hz), 7.62 (d, 1H, J = 8.8 Hz), 7.55 (dd, 1H, J = 2.6 and 8.8 Hz), 7.10 (d, 1H, J = 8.8 Hz), 7.09 (d, 1H, J = 8.8 Hz), 3.83 (s, 3H),	+	+		
753	N4-(3,4-Dichlorophenyl)-N2-(1,3-dimethylindazol-6-yl)-5- fluoro-2,4-pyrimidinediamine	'H NMR (DMSO-d6): d 9.65 (s, 1H), 9.50 (s, 1H), 8.22 (d, 1H, J = 3.5 H), 8.12 (d, 1H, J = 2.3 Hz), 7.91 (d, 1H, J = 1.8 Hz), 7.79 (dd, 1H, J = 2.3 and 8.8 Hz), 7.52 (dd, 2H, J = 2.3 and 8.8 Hz), 7.18 (dd, 1H, J = 1.8 and 8.8 Hz), 3.69 (s, 3H), 2.39 (s, 3H)	+	+		

Physical Drain Phys	, K	+						
WMR (DMSO-d6); d 10.72 (s, 14), 10.26 (s, 24), 8.26 (d, 14, J = 8.24 (d,	e, fp_s							
WMR (DMSO-d6); d 10.72 (s, 14), 10.26 (s, 24), 8.26 (d, 14, J = 8.24 (d,	LD Tryptas CHMC, lono, 3p							
WMR (DMSO-d6); d 10.72 (s, 14), 10.26 (s, 24), 8.26 (d, 14, J = 8.24 (d,	LD Tryptase, CHMC, IgE, 8pt	+	+			+		+
H NMR (DMSO-d6); d 10.72 (s, 1th, 10.25 (s, 2th), 8.26 (d, 1th, 1 = 2.3 and 8.5 tz), 6.87 (s, 1th, 1 = 5.5 tz), 8.26 (d, 1th, 1 = 2.3 and 8.5 tz), 6.87 (s, 1th, 1 = 5.5 tz), 7.26 (d, 1th, 1 = 2.3 and 8.5 tz), 6.87 (s, 1th, 1 = 5.5 tz), 7.26 (d, 1th, 1 = 2.3 and 8.5 tz), 6.87 (s, 1th, 1 = 5.5 tz), 7.26 (d, 1th, 1 = 5.3 and 8.5 tz), 6.87 (s, 1th, 1 = 5.5 tz), 7.26 (d, 1th, 1 = 5.3 and 8.5 tz), 6.87 (s, 1th, 1 = 5.3 and 8.5 (s, 1th, 1 = 5.3 tz), 6.87 (s, 1th, 1 = 5.3 tz), 6.	LD Tryptase CHMC, IgE, 3pt	+	+	+	+	+	+	+
Compound Name N2-(1,3-Dimethylindazol-6-yl)-N4-(2, benz[1,4]oxazin-6-yl)-5-fluoro-2,4-py N2-(1,3-Dimethylindazol-6-yl)-5-fluor methoxyphenyl)-2,4-pyrimidinediamine 5-fluoro-2,4-pyrimidinediamine fluoro-2,4-pyrimidinediamine N2-(1,6-Dimethylindazol-5-yl)-N4-(2,3, benz[1,4]oxazin-6-yl)-5-fluoro N2-(1,6-Dimethylindazol-5-yl)-5-fluoro methoxyphenyl)-2,4-pyrimidinediamin N2-(1,6-Dimethylindazol-5-yl)-5-fluoro methoxyphenyl)-2,4-pyrimidinediamine N4-(3,4-Dichlorophenyl)-N2-(2-ethylir) pyrimidinediamine	O-d6): d 10.72 (s, 1H), 10.25 (s, 2H), 8.26 (d, 1H, J =	4.9 Hz), 7.72 (s, 1H), 7.57 (d, 1H, J = 8.5 Hz), 7.25 (dd, 1H, J = 2.3 and 8.5 Hz), 7.22 (app s, 1H), 7.14 (dd, 1H, J = 2.3 and 8.5 Hz), 6.87 (d, 1H, J = 8.5 Hz), 3.37 (s, 3H), 2.40 (s, 3H	"H NMR (DMSO-d6): d 10.14 (s, 2H), 8.28 (d, 1H, J = 3.7 Hz), 7.79 (d, 1H, J = 1.8 Hz), 7.57 (d, 1H, J = 8.5 Hz), 7.48 (dd, 1H, J = 2.3 and 8.5 Hz), 7.31-7.26 (m, 1H), 7.17 (dd, 1H, J = 8.8 and 11.4 Hz), 7.10 (dd, 1H, J = 1.8 and 8.8 Hz), 3.66 (s, 3H), 3.6	¹ H NMR (DMSO-d6): d 10.44 (s, 1H), 9.89 (s, 1H), 8.21 (d, 1H, J = 5.6 Hz), 7.97 (s, 1H), 7.70 (s, 1H), 7.62 (s, 1H), 7.58 (s, 1H), 7.46 (d, 1H, J = 8.5 Hz), 6.91 (d, 1H, J = 8.5 Hz), 4.00 (s, 3H), 3.75 (s, 3H), 2.32 (s, 3H). LCMS: ref. time: 9.25 min.;	"H NMR (DMSO-d6): d 10.34 (s, 1H), 9.70 (s, 1H), 8.24 (d, 1H, J = 4.7 Hz), 7.97 (s, 1H), 7.87 (s, 1H), 7.68 (s, 1H), 7.58 (s, 1H), 7.55 (d, 1H, J = 8.5 Hz), 7.37 (d, 1H, J = 8.5 Hz), 4.01 (s, 3H), 2.32 (s, 3H). LCMS: ret. time: 11.58 min.; purity: 91%;	'H NMR (DMSO-d6): d 10.70 (s, 1H), 10.51 (s, 1H), 8.16 (d, 1H, J = 4.9 Hz), 7.95 (s, 1H), 7.74 (s, 1H), 7.55 (s, 1H), 7.17 (d, 1H, J = 8.5 Hz), 6.69 (d, 1H, J = 8.5 Hz), 4.00 (s, 3H), 2.34 (s, 3H), 1.31 (s, 6H). LCMS: ret. time: 8.24 min.; purity: 96%;	"H NMR (DMSO-d6): d 10.42 (s, 1H), 9.84 (s, 1H), 8.18 (d, 1H, J = 3.9 Hz), 7.96 (s, 1H), 7.74 (s, 1H), 7.57 (s, 1H), 7.45 (d, 1H, J = 8.5 Hz), 7.20 (m, 1H), 6.97 (m, 1H), 4.02 (s, 3H), 3.55 (s, 3H), 2.33 (s, 3H). LCMS: ret. time: 9.33 min.; purity: 96%;	'H NMR (DMSO-d6): d 10.25 (s, 1H), 10.06 (s, 1H), 8.36 (d, 1H, J = 1.8 Hz), 8.30 (d, 1H, J = 4.4 Hz), 8.03 (d, 1H, J = 2.3 Hz), 7.86 (s, 1H), 7.82 (dd, 1H, J = 2.6 and 8.8 Hz), 7.66 (d, 1H, J = 8.8 Hz), 7.53 (d, 1H, J = 8.8 Hz), 7.14 (dd, 1H, J = 1.8 and
200720 C 20 C 20 T 20 T 20 T 20 T 20 T 20 T	Compound Compound Name Number	N2-(1,3-Dimethylindazol-6-yl)-N4-(2,2-dimethyl-3-oxo-4H- benz[1,4]oxazin-6-yl)-5-fluoro-2,4-pyrlmidinediamine	755 methoxyphenyl)-2,4-pyrimidinediamine)-N2-(757 fluoro-2,4-pyrimidinediamine	N2-(1,6-Dimethylindazol-5-yl)-N4-(2,2-dimethyl-3-oxo-4H-benz[1,4]oxazin-6-yl)-5-fluoro- 2,4-pyrlmidinediamine	N2-(1,6-Dimethylindazol-5-yl)-5-fluoro-N4-(4-fluoro-3- methoxyphenyl)-2,4-pyrimidinediamine	760 pyrimidinediamine

what has first the same of the
tds
<u>t</u> + + +
15 H + + + + + + + + + + + + + + + + + +
4 (4, 2, 3) 4 (4, 4, 4) 4 (4, 6, 4) 4 (4, 6, 4) 4 (4, 6, 4) 4 (4, 6, 6, 6, 6) 4 (4, 6, 6, 6, 6) 4 (4, 6, 6, 6, 6) 4 (4, 6, 6, 6, 6) 4 (4, 6, 6, 6, 6) 4 (4, 6, 6, 6, 6) 4 (4, 6, 6, 6, 6) 4 (4, 6, 6, 6, 6) 4 (4, 6, 6, 6, 6) 4 (4, 6, 6, 6, 6) 4 (4,
CHMC, 11, 12, 14, 14, 14, 15, 14, 17, 14, 1, 1, 22, (br. 14), 1, 102, (br. 15), 1, 103, (br. 16), 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1.7.11 (d, 114, J, 17.77 (d, 1
(d, 1H), 7.51 (d
(s, 1H), 3, 7.51 (s, 1H), 7.51 (s, 1H), 7.50 (s, 1H), 10 (h), 10 (s, 1H), 10
(6, 1H, 7, 11H), 7, 11H, 1, 12, 13, 14, 14, 15, 14, 16, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17
CHMC, LTM, 8.21 (6, 1H), 9.30 (6, 1H), 8.21 (7, 1H), 9.30 (6, 1H), 8.21 (7, 1H), 9.51 (6, 1H), 9.30 (6, 1H), 1.3 (4, 1H, 1.3 (
10.57 10
SO-d6): d 10. SO-d6): d 10. SO-d6): d 10. J = 2.3 Hz), 7.57 S. 11H, J = 2.3 at TH, J = 5.3 H SO-d6): d 10.8 Hz), 1.3 = 4.1 Hz), 1.4 = 5.3 H SO (Sextet, 2H 80), 1.4 = 9.1 (DMSO-d6): d, 11H, J = 9.1 (DMSO-d6): d, 11H, J = 9.1 (DMSO-d6): d, 11H, J = 4.7 (DMSO-d6): d,
14. J. H. J.
Hamilian
Imdazo IImdazo IImdazo IImdazo IIme IIme IIme IIme IIme IIme IIme IIm
Joxazin-6-yl)-N2 Joxazin-6-yl)-N2 12-(2-n-propylmo midinediamine midinediamine yrimidinediamine uoro-N2-(2-n-pr uoro-N2-(2-n-pr
4)0xazi nidinedi nidinedi nizi1,4]o rimidine rim
44-ber 44-ber 41-ber 41
3-oxo-4H-b 3-oxo-4H-b 5-fluoro-2, fluoro-2, fluoro-2, fluorophe sichlorophe sichlorophe fluorophe indinediami fluindazol-6-y fluorophe indinediami
Name Name Imethyl-3-oxo-4H-ben Izol-6-yl)-5-fluoro-2,4-P Izol-6-yl)-5-fluoro-4H-ben L-Dichlorophenyl)-5-fluoro-4H-ben L-Dichlorophenyl)-3-oxo-4H-ben L-Dichlorophenyl,3-oxo-4H-ben L-Dimethyl-3-oxo-4H-ben L-Dimethyl-3-oxo-4H-ben L-C,2-Dimethyl-3-oxo-4H-ben L-C,2-Dimethyl-3-oxo-4H-ben L-C,2-Dimethyl-3-oxo-4H-ben L-C,2-Dimethyl-3-oxo-4H-ben L-C,2-Dimethyl-3-oxo-4H-ben L-C,2-Dimethyl-3-oxo-4H-ben L-C,2-Dimethyl-3-oxo-4H-ben L-C,2-Dimethyl-3-oxo-4H-ben L-C,2-Dimethylindazol-6-yl) L-C,3-Dimethylindazol-6-yl) L-C,2-Dimethylindazol-6-yl) L-C,3-Dimethylindazol-6-yl)
ompound Name N4-(2,2-Dimethyl-3-oxo-4+1-benzt1,4joxazin-6-yl)-N2-(2-fluoro-2,4-pyrlmidinediamine ethylindazol-6-yl)-5-fluoro-2,4-pyrlmidinediamine S2_4-pyrlmidinediamine 763] R4-(2,2-Dimethyl-3-oxo-4+1-benzt1,4joxazin-6-yl)-5-fluoro-N N4-(2,2-Dimethyl-3-oxo-4+1-benzt1,4joxazin-6-yl)-5-fluoro-N NA-(2,2-Dimethyl-3-0xo-4+1-benzt1,4joxazin-6-yl)-5-fluoro-N NA-(2,2-Dimethyl-3-0xo-4+1-benzt1,4jo
764 224 44.2
Jumpanum 1997

Compound	Compound Name	III Trivsical Bata	LD LD LD Tryptase, Tryptase, 17yptase, 11pt CHMC, CHMC, CHMC, 11pt	LD LD Tryptase, Tryptase, CHMC, CHMC,	LD Tryptase,ft	fp_syk, 11pt
792	N4-(2,2-Dimethyl-3-oxo-4H-benz[1,4]oxazin-6-yl)-5-fluoro-N2-767 (1-methylindazol-6-yl)-2,4-pyrimidinediamine Ethanesulfonic Acid Salt	¹ H NMR (DMSO-d6): d 10.70 (s, 1H), 10.22 (s, 1H), 10.00 (s, 1H), 8.24 (d, 1H, J = 4.9 Hz), 7.92 (d, 1H, J = 0.8 Hz), 7.80 (s, 1H), 7.63 (d, 1H, J = 8.8 Hz), 7.28 (dd, 1H, J = 2.3 and 8.8 Hz), 7.16 (d, 1H, J = 1.8 and 8.5 Hz), 7.11 (d, 1H, J = 2.3 Hz), 6.8				
768	N4-(2,2-Dimethyl-3-oxo-4H-benz[1,4]oxazin-6-yl)-5-fluoro-N2-768(1-methylindazol-6-yl)-2,4-pyrimidinediamine p-Hydroxybenzenesulfonic Acid Salt	¹ H NMR (DMSO-d6): d 10.69 (s, 1H), 10.17 (s, 1H), 9.92 (s, 1H), 8.21 (d, 1H, J = 4.7 Hz), 7.92 (d, 1H, J = 0.8 Hz), 7.81 (s, 1H), 7.62 (d, 1H, J = 8.5 Hz), 7.38 (td, 2H, J = 2.6 and 8.8 Hz), J = 7.28 (dd, 1H, J = 2.3 and 8.5 Hz), 7.16 (d, 1H, J = 1.8 and 8.5 Hz), 7.16 (d, 2Hz), 7.	+	+	,	
269	N4-(2,2-Dimethyl-3-oxo-4H-benz[1,4]oxazin-6-yl)-5-fluoro-N2-769 (1-methylindazol-6-yl)-2,4-pyrimidinediamine Benzenesulfonic Acid Salt	¹ H NMR (DMSO-d6): d 10.70 (s, 1H), 10.28 (s, 1H), 10.00 (s, 1H), 8.22 (d, 1H, J = 4.9 Hz), 7.94 (d, 1H, J = 0.8 Hz), 7.78 (s, 1H), 7.64 (d, 1H, J = 8.8 Hz), 7.60-7.56 (m, 2H), 7.33-7.26 (m, 4H), 7.15 (d, 1H, J = 18 and 8.5 Hz), 7.10 (d, 1H, J = 2.3 Hz),	+	+	,	
077	N4-(2,2-Dimethyl-3-oxo-4H-benz[1,4]oxazin-6-yl)-5-fluoro-N2-770 (1-methylindazol-6-yl)-2,4-pyrfmidinediamine Hydrochloric Acid Salt	oxazin-6-yl)-5-fluoro-N2-4 (a, 1H), 10.21 (s, 2H), 8.26 (d, 1H, J = 4.9 Hz), 7.92 (d, 1H, J = 0.8 Hz), 7.82 (s, 1H), 7.62 (d, 1H, J = 8.8 Hz), 7.27 (dd, 1H, J = 2.3 and 8.5 Hz), 7.21 (d, 1H, J = 2.3 Hz), 7.18 (dd, 1H, J = 1.8 and 8.5 Hz), 7.21 (d, 1H, J = 1.8 and 8.5 Hz), 7.21 (d, 1H, J = 2.3 Hz), 7.18 (dd, 1H, J = 1.8 and 8.5 Hz), 6.86 (d, 1H, J =	+	+	1	
771	N4-(3,4-Dichlorophenyl)-5-fluoro-N2-[1-(2- methoxyethyl)indazol-5-yl]-2,4-pyrimidinediamine	'H NMR (DMSO-d6): d 10.18 (s, 1H), 9.91 (s, 1H), 8.21 (d, 1H, J = 4.7 Hz), 7.98 (d, 1H, J = 2.3 Hz), 7.90 (s, 1H), 7.81 (s, 1H), 7.66 (app d, 1H, J = 8.8 Hz), 7.60 (d, 1H, J = 9.1 Hz), 7.46 (d, 1H, J = 9.1 Hz), 7.37 (dd, 1H, J = 2.3 and 8.8 Hz), 4.48 (t,	+	+	1	
772	N4-(3-Chloro-4-methoxyphenyl)-5-fluoro-N2-[1-(2- methoxyethyl)indazol-5-yl]-2,4-pyrimidinediamine	¹ H NMR (DMSO-d6): d 10.45 (s, 1H), 10.33 (s, 1H), 8.27 (d, 1H, J = 4.9 Hz), 7.93 (s, 1H), 7.81 (d, 1H, J = 1.5 Hz), 7.74 (d, 1H, J = 2.3 Hz), 7.65 (d, 1H, J = 8.8 Hz), 7.54 (dd, 1H, J = 2.3 and 9.1 Hz), 7.37 (dd, 1H, J = 2.6 and 9.1 Hz), 7.10 (d, 1H, J =	+	+	ı	
773	N4-(2,2-Dimethyl-3-oxo-4H-benz[1,4]oxazin-6-yl)-5-fluoro-N2- [1-(2-methoxyethyl)Indazol-5-yl]-2,4-pyrimidinediamine	¹ H NMR (DMSO-d6): d 10.78 (s, 1H), 10.35 (s, 1H), 10.19 (s, 1H), N4-(2,2-Dimethyl-3-oxo-4H-benz[1,4]oxazin-6-yl]-5-fluoro-N2- 8.21 (d, 1H, J = 4.9 Hz), 7.90 (s, 1H), 7.87 (s, 1H), 7.60 (d, 1H, J = 8.8 Hz), 7.21 (dd, 1H, J = 1.8 and 8.5 Hz), 7.21 (dd, 1H, J = 1.8 and 8.5 Hz), 7.17 (s, 1H), 6.87 (d, 1H, J = 8.5 Hz),	+	+	1	

yk, t							
11pl							
LD Tryptase, fp_sy CHMC, 11pt Iono, 3pt	r	•	1	1	t		
LD Tryptase, CHMC, IgE, 8pt	+	+	+	+		+	+
LD LD LD Tryptase, Tryptase, fp_syk, CHMC, CHMC, CHMC, 11pt IgE, 3pt IgE, 8pt Iono, 3pt	+ .	+	+	+	+		
株式 / 17、次本 (日本) (株式 大学 中央 - 大学 (1887 / 1987	¹ H NMR (DMSO-d6): d 10.19 (s, 1H), 9.93 (s, 1H), 8.20 (d, 1H, J = 4.7 Hz), 7.90 (s, 2H), 7.61 (d, 1H, J = 8.8 Hz), 7.44 (dd, 1H, J = 2.6 and 8.8 Hz), 7.37 (dd, 1H, J = 2.0 and 8.8 Hz), 7.29-7.26 (m, 1H), 7.13 (dd, 1H, J = 8.8 and 11.1 Hz), 4.53 (t, 2H, J	¹ H NMR (DMSO-d6): d 10.08 (s, 1H), 9.96 (s, 1H), 8.26 (d, 1H, J = 4.4 Hz), 8.03 (d, 1H, J = 2.3 Hz), 7.91 (d, 1H, J = 0.8 Hz), 7.82 (s, 1H), 7.70 (dd, 1H, J = 2.3 and and 8.8 Hz), 7.60 (d, 1H, J = 8.8 Hz), 7.19 (dd, 1H, J = 1.8 a	¹ H NMR (DMSO-d6): d 10.02 (br s, 2H), 8.24 (d, 1H, J = 4.7 Hz), 7.95 (d, 1H, J = 0.8 Hz), 7.83 (s, 1H), 7.79 (d, 1H, J = 2.6 Hz), 7.63 (d, 1H, J = 8.8 Hz), 6.59 (dd, 1H, J = 2.6 and 9.1 Hz), 7.21 (dd, 1H, J = 1.8 and 8.8 Hz), 7.09 (d, 1H, J = 9.1 Hz), 4.2	¹ H NMR (DMSO-d6): d 10.71 (s, 1H), 10.18 (br s, 2H), 8.20 (d, 1H, J = N4-(2,2-Dimethyl-3-oxo-4H-benz[1,4]oxazin-6-yl]-5-fluoro-N2- 4.9 Hz), 7.91 (d, 1H, J = 0.8 Hz), 7.75 (s, 1H), 7.57 (d, 1H, J = 8.5 Hz), 7.24-pyrimidinediamine 7.23-7.15 (m, 3H), 6.81 (d, 1H, J = 8.8 Hz), 4.24 (t, 2H, J = 5.3 Hz), 3.61 (t, 3H, J = 5.3 Hz), 3.06 (s, 3H),	¹ H NMR (DMSO-d6): d 9.92 (br s, 2H), 8.23 (d, 1H, J = 4.4 Hz), 7.94 (d, 1H, J = 0.8 Hz), 7.91 (s, 1H), 7.59 (d, 1H, J = 8.5 Hz), 7.48 (dd, 1H, J = 2.6 and 8.8 Hz), 7.34-7.30 (m, 1H), 7.21 (dd, 1H, J = 1.8 and 8.8 Hz), 7.15 (dd, 1H, J = 8.8 and 11.1 Hz),	¹ H NWR (DMSO-d6): d 10.39 (s, 1H), 10.27 (s, 1H), 8.26 (d, 1H, J = 4.9 Hz), 7.93 (s, 1H), 7.81 (d, 1H, J = 1.4 Hz), 7.74 (d, 1H, J = 2.3 Hz), 6.67 (d, H, J = 9.1 Hz), 7.54 (dd, 1H, J = 2.3 and 9.1 Hz), 7.37 (dd, 1H, J = 1.8 and 8.8 Hz), 7.09 (d, 1H, J =	¹ H NMR (DMSO-d6): d 10.20 (s, 1H), 9.91 (s, 1H), 8.26 (d, 1H, J = N4-(3,4-Dichlorophenyl)-5-fluoro-N2-[1-(1-methylethyl)indazol- 4.7 Hz), 8.02 (d, 1H, J = 2.3 Hz), 7.94 (s, 1H), 7.86 (s, 1H), 7.86 (d, 1H, J = 9.1 Hz), 7.41 (dd, 1H, J = 8.8 Hz), 7.66 (d, 1H, J = 9.1 Hz), 7.50 (d, 1H, J = 8.8 Hz), 7.41 (dd, 1H, J = 1.8 and 9.1 Hz), 4.95 (q, 1H, J = 8.8 Hz), 7.41
Compound Compound Name	5-Fluoro-N4-(4-fluoro-3-methoxyphenyl)- N2-[1-(2-methoxyethyl)indazol-5-yl]-2,4-pyrimidinediamine	N4-(3,4-Dichlorophenyl)-5-fluoro-N2-[1-(2-methoxyethyl)indazol-6-yl]-2,4-pyrimidinediamine	N4-(3-Chloro-4-methoxyphenyl)-5-fluoro-N2-[1-(2-methoxyethyl)indazol-6-yl]-2,4-pyrimidinediamine	N4-(2,2-Dimethyl-3-oxo-4H-benz[1,4]oxazin-6-yl)-5-fluoro-N2- [1-(2-methoxyethyl)indazol-6-yl]-2,4-pyrimidinediamine	5-Fluoro-N4-(4-fluoro-3-methoxyphenyl)- N2-[1-(2- 778 methoxyethyl)indazol-6-yl]-2,4-pyrimidinediamine	N4-(3-Chloro-4-methoxyphenyl)-5-fluoro-N2-[1-(1-methylethyl)indazol-5-yl]-2,4-pyrimidinediamine	N4-(3,4-Dichlorophenyl)-5-fluoro-N2-[1-(1-methylethyl)indazol- 5-yl]-2,4-pyrimidinediamine

Physical Data Physic	LD Tryptase,fp_syk, CHMC, 11pt	3pt						
Physical Data **H NMMR (DMSO-d6): d 10.76 (s, 11h), 10.32 (s, 11h), 10.11 (s, 11h), **H NMMR (DMSO-d6): d 10.76 (s, 11h), 10.32 (s, 11h), 10.11 (s, 11h), **Hundre (dd, 11h, J = 5.3 Hz), 7.90 (s, 11h), 7.89 (s, 11h), 7.62 (d, 11h, J = 8.9 Hz), 6.87 **G(11h, J = 8.8 Hz), 4.91 (q, 11h, J = 6.4 H) **H NMMR (DMSO-d6): d 10.35 (s, 11h), 10.21 (s, 11h), 8.25 (d, 11h, J = 4.9 Hz), 7.26-7.22 **(m, 11h), 7.14 (dd, 11h, J = 8.8 and 11.1 Hz), **H NMMR (DMSO-d6): d 10.10 (s, 21h), 8.25 (d, 11h, J = 8.1 Hz), 7.26-7.22 **(m, 11h), 7.36 (s, 11h), 7.78 (d, 11h, J = 2.3 Hz), 7.84 (d, 11h, J = 8.8 Hz), **T.56 (dd, 11h, J = 2.3 and 8.8 Hz), 7.18 (d, 11h, J = 8.8 Hz), 7.10 (d, 11h, J = 8.9 Hz), 4.45 (q, 11h, J = 6.4 Hz), **H NMMR (DMSO-d6): d 10.06 (s, 11h), 9.93 (s, 11h), 8.30 (d, 11h, J = 9.3 and 8.8 Hz), 7.54 (d, 11h, J = 8.8 Hz), 7.24 (d, 11h, J = 8.8 Hz), 7.25 (d, 11h, J = 6.4 Hz), **H NMMR (DMSO-d6): d 10.76 (s, 11h), 10.14 (s, 21h), 8.24 (d, 11h, J = 8.8 Hz), 7.27 (d, 11h, J = 8.8 Hz), 7.33 (d, 11h, J = 8.8 Hz), 7.33 (s, 11h), 7.86 (d, 11h, J = 6.4 Hz), 1.35 (s, 11h), 7.80 (q, 11h, J = 6.4 Hz), 1.35 (s, 11h), 7.80 (g, 11h), 7.60 (d, 11h, J = 8.5 Hz), 7.64 (d, 11h, J = 4.7 hz), 7.33 (s, 11h), 7.82 (s, 11h), 7.60 (d, 11h, J = 8.5 Hz), 7.27 (dd, 11h, J = 4.7 hz), 7.33 (s, 11h), 7.92 (s, 11h), 7.60 (d, 11h, J = 8.5 Hz), 7.27 (dd, 11h, J = 2.3 and 8.5 Hz), 7.21 (f, 11h, J = 8.5 Hz), 7.27 (dd, 11h, J = 2.3 and 8.5 Hz), 7.20 (s, 11h), 7.80 (g, 11h), 1.80 (d, 11h, J = 8.8 Hz), 7.27 (dd, 11h, J = 2.3 and 8.5 Hz), 7.20 (s, 11h), 7.80 (g, 11h), 7.80 (g, 11h), 1.80 (g, 11h, J = 8.8 Hz), 7.20 (g, 11h), 1.80 (LD Trypta CHMC							,
Physical Data "H NMAR (DMSO-d6): d 10.76 (s, 11h, 10.32 (s, 11h, 10.11 (s, 11h), 10.11 (s, 11h, 10.1	LD Tryptase CHMC,		+	+	+	+	+	+
Physical Data H NMR (DMSO-d6): d 10.76 (s, 1H), 10.32 (s, 1H), 10.11 (s, 1H), 10.10 (s, 1H), 2.8 (s, 1H), 7.89 (s, 1H), 7.62 (d, 1H, J = 8.8 Hz), 7.90 (s, 1H), 7.89 (s, 1H), 7.62 (d, 1H, J = 8.8 Hz), 7.90 (s, 1H), 7.89 (s, 1H), 7.62 (d, 1H, J = 8.9 Hz), 6.87 (d, 1H, J = 8.8 Hz), 7.36 (dd, 1H, J = 6.4 H) H NMR (DMSO-d6): d 10.35 (s, 1H), 10.21 (s, 1H), 8.25 (d, 1H, J = 4.9 Hz), 7.26 7.22 (m, 1H), 7.36 (d, 1H, J = 1.8 and 8.8 Hz), 7.26 7.22 (m, 1H), 7.36 (d, 1H, J = 1.8 and 8.8 Hz), 7.26 7.22 (m, 1H), 7.36 (d, 1H, J = 1.8 and 8.8 Hz), 7.26 (d, 1H, J = 8.8 Hz), 7.66 (dd, 1H, J = 2.3 and 8.8 Hz), 7.64 (d, 1H, J = 8.8 Hz), 7.33 (s, 1H), 8.30 (d, 1H, J = 8.9 Hz), 4.45 (q, 1H, J = 6.4 Hz), 7.46 (d, 1H, J = 8.8 Hz), 7.34 (d, 1H, J = 8.9 Hz), 7.64 (d, 1H, J = 8.9 Hz), 7.64 (d, 1H, J = 8.8 Hz), 7.64 (d, 1H, J = 8.9 Hz), 7.64 (d, 1H, J = 8.9 Hz), 7.64 (d, 1H, J = 6.4 Hz), 1.35 (s, 2H), 7.64 (d, 1H, J = 8.9 Hz), 7.36 (d, 1H, J = 8.9 Hz), 7.36 (d, 1H, J = 8.9 Hz), 7.37 (d, 1H, J = 8.9 Hz), 7.64 (d, 1H, J = 8.8 Hz), 7.27 (dd, 1H, J = 1.8 and 8.9 Hz), 7.65 (d, 1H, J = 8.9 Hz), 7.26 (d, 1H, J = 8.9 Hz), 7.38 (s, 1H), 7.60 (d, 1H, J = 8.9 Hz), 7.38 (s, 1H), 7.60 (d, 1H, J = 8.8 Hz), 7.27 (d, 1H, J = 6.4 Hz), 1.35 (s, 1H), 7.69 (g, 1H), 7.60 (d, 1H, J = 8.9 Hz), 7.39 (s, 1H), 7.60 (d, 1H, J = 8.9 Hz), 7.39 (s, 1H), 7.60 (d, 1H, J = 8.9 Hz), 7.39 (s, 1H), 7.60 (d, 1H, J = 8.9 Hz), 7.39 (s, 1H), 7.60 (d, 1H, J = 8.9 Hz), 7.39 (s, 1H), 7.60 (d, 1H, J = 8.9 Hz), 7.39 (s, 1H), 7.60 (d, 1H, J = 8.9 Hz), 7.39 (s, 1H), 7.60 (d, 1H, J = 8.9 Hz), 7.39 (s, 1H), 7.60 (d, 1H, J = 8.9 Hz), 7.39 (s, 1H), 7.90 (s, 1H), 7.60 (d, 1H, J = 8.8 Hz), 7.27 (dd, 1H, J = 8.9 Hz), 7.39 (s, 1H), 7.90 (s, 1H), 7.60 (d, 1H, J = 8.9 Hz), 7.90 (d, 1H, J = 2.3 and 8.9 Hz), 7.90 (d, 1H, J = 2.3 and 8.9 Hz), 7.90 (d, 1H, J = 2.3 and 8.9 Hz), 7.90 (d, 1H, J = 2.3 and 8.9 Hz), 7.90 (d, 1H, J = 2.3 and 8.9 Hz), 7.90 (d, 1H, J = 2.3	LD Tryptase CHMC,	lgE, 3pt						+
nd Name Dimethyl-3-oxo-4H-benz[1,4]oxazin-6-yl)-5-fluoro-N2- thylethyl)indazol-5-yl]-2,4-pyrimidinediamine N4-(4-fluoro-3-methoxyphenyl)- N2-[1-(1- hyl)indazol-5-yl]-2,4-pyrimidinediamine nyl)indazol-6-yl]-2,4-pyrimidinediamine pyrimidinediamine Dichlorophenyl)-5-fluoro-N2-[1-(1-methylethyl)indazol-pyrimidinediamine 2-Methyl-3-oxo-4H-benz[1,4]oxazin-6-yl]-5-fluoro-methylethyl)indazol-6-yl]-2,4-pyrimidinediamine Acetvioxoropyl)indazol-6-yl]-2,4-pyrimidinediamine Acetvioxoropyl)indazol-6-yl]-2,4-pyrimidinediamine	Physical Data	¹ H NMR (DMSO-d6): d 10.76 (s, 1H), 10.32 (s, 1H), 10.11 (s, 1H), 8.19 (d, 1H, J = 5.3 Hz), 7.90 (s, 1H), 7.89 (s, 1H), 7.62 (d, 1H, J = 8.8 Hz), 7.19 (d, 2H, J = 8.9 Hz), 6.87 (d, 1H, J = 8.8 Hz), 7.19 (d, 2H, J = 8.9 Hz), 6.87 (d, 1H, J = 8.8 Hz), 4.91 (d, 1H, J = 6.4 Hz)	¹ H NMR (DMSO-d6); d 10.35 (s, 1H), 10.21 (s, 1H), 8.25 (d, 1H, J = 4.9 Hz), 7.90 (s, 1H), 7.88 (s, 1H), 7.65 (d, 1H, J = 8.1 Hz), 7.43 (dd, 1H, j = 2.3 and 8.8 Hz), 7.35 (dd, 1H, J = 1.8 and 8.8 Hz), 7.26-7.22 (m, 1H), 7.14 (dd, 1H, J = 8.8 and 11.1 Hz),	¹ H NMR (DMSO-d6): d 10.10 (s, 2H), 8.25 (d, 1H, J = 4.7 Hz), 7.93 (s, 1H), 7.86 (s, 1H), 7.78 (d, 1H, J = 2.3 Hz), 7.56 (dd, 1H, J = 2.3 and 8.8 Hz), 7.18 (d, 1H, J = 8.8 Hz), 7.10 (d, 1H, J = 8.9 Hz), 7.45 (q, 1H, J = 6.4 Hz),	¹ H NWR (DMSO-d6); d 10.06 (s, 1H), 9.93 (s, 1H), 8.30 (d, 1H, J = 4.3 Hz), 8.06 (d, 1H, J = 2.3 Hz), 7.93 (s, 2H), 7.76(dd, 1H, J = 2.3 and 8.8 Hz), 7.64 (d, 1H, J = 8.8 Hz), 7.54 (d, 1H, J = 8.8 Hz), 7.21 (dd, 1H, J = 1.8 and 8.8 Hz), 4.55 (q, 1H, J = 6	¹ H NWR (DMSO-d6): d 10.76 (s, 1H), 10.14 (s, 2H), 8.24 (d, 1H, J = 4.9 Hz), 7.93 (s, 1H), 7.88 (s, 1H), 7.61 (d, 1H, J = 8.8 Hz), 7.27-7.16 (m, 3H), 6.88 (d, 1H, J = 8.8 Hz), 4.50 (q, 1H, J = 6.4 Hz), 1.37 (d, 6H, J = 6.4 Hz), 1.35 (s, 6H). LCMS: ret. t	¹ H NWR (DMSO-d6); d 10.77 (s, 1H), 10.14 (s, 1H), 9.93 (s, 1H0, 8.22 (d, 1H, J = 4.7 hz), 7.93 (s, 1H), 7.92 (s, 1H), 7.60 (d, 1H, J = 8.5 Hz), 7.27 (dd, 1H, J = 2.3 and 8.5 Hz0, 7.21-7.16 (m, 2H), 6.90 (d, 1H, J = 8.5 Hz), 4.65 (qt, 1H, J = 6.7 Hz), 4.4	1H NWR (DMSO-d6): d 10.17 (s, 1H), 9.90 (s, 1H), 8.21 (d, 1H, $J = 4.7$ Hz), 7.97 (d, 1H, $J = 2.3$ Hz), 7.90 (dd, 1H, $J = 2.3$ and 8.8 Hz), 7.59 (d, 1H, $J = 8.8$ Hz), 7.47 (d, 1H, $J = 8.8$ Hz), 7.38 (dd, 1H, $J = 2.0$ and 8.8 Hz), 4.41 (d, 2H, $J = 6.7$ Hz), 3.88
Compound Compou Number Compound Compoun	Compound Name	N4-(2,2-Dimethyl-3-oxo-4H-benz[1,4]oxazin-6-yl)-5-fluoro-N2- [1-(1-methylethyl)indazol-5-yl]-2,4-pyrimidinediamine	782 methylethyl)indazol-5-ylj-2,4-pyrimidinedlamine	N4-(3-Chloro-4-methoxyphenyl)-5-fluoro-N2-[1-(1-methylethyl)indazol-6-yl]-2,4-pyrimidinediamine	V4-(3,4-Dichlorophenyl)-5-fluoro-N2-[' 5-yl]-2,4-pyrimidinediamine	N4-(2,2-Dimethyl-3-oxo-4H-benz[1,4]oxazin-6-yl)-5-fluoro-N2- [1-(1-methylethyl)indazol-6-yl]-2,4-pyrimidinediamine	(S)-N4-[2-Methyl-3-oxo-2H,4H-benz[1,4]oxazin-6-yl]-5-fluoro- N2-[1-(1-methylethyl)indazol-6-yl]-2,4-pyrimidinediamine	N2-[1-(3-Acetyloxypropyl)indazol-5-yl]-N4-(3,4- dichlorophenyl)-5-fluoro-2,4-pyrimidinediamine

Compound	Compound Compound Name	II Physical Data	1	LD L	LD Tryptase, fi	p_syk,
Number			CHIMC, IgE, 3pt	IgE, 8pt lono, 3pt		Ĕ.
788	N2-[1-(3-Acetyloxypropyl)indazol-5-yl]-N4-(3-chloro-4- methoxyphenyl)-5-fluoro-2,4-pyrimidinediamine	1H NMR (DMSO-d6): d 10.32 (s, 1H), 10.19 (s, 1H), 8.24 (d, 1H, J = 5.3 Hz), 7.93 (s, 1H), 7.85 (s, 1H), 7.74 (d, 1H, J = 2.3 Hz), 7.63 (d, 1H, J = 8.8 Hz), 7.54 (dd, 1H, J = 2.3 and 9.1 Hz), 7.40 (dd, 1H, J = 2.3 and 8.8 Hz), 7.09 (d, 1H, J = 9.1 Hz), 4.	+	+	,	
789	N2-[1-(3-Acetyloxypropyl)indazol-5-yl]-5-fluoro-N4-(4-fluoro-3-methoxyphenyl)-2,4-pyrimidinediamine	1H NMR (DMSO-d6): d 10.31 (s, 1H), 10.15 (s, 1H), 8.24 (d, 1H, J = N2-[1-(3-Acetyloxypropyl)indazol-5-yl]-5-fluoro-N4-(4-fluoro-3- 4.7 Hz), 7.91 (s, 2H), 7.61 (d, 1H, J = 8.8 Hz), 7.44 (dd, 1H, J = 2.3 and 8.8 Hz), 7.38 (dd, 1H, J = 1.8 and 9.1 Hz), 7.27-7.25 (m, 1H), 7.15 (dd, 1H, J = 8.8 and 11.1 Hz), 4.45 (t, 2H, J	+	+	ı	
790	N2-[1-(3-Acetyloxypropyl)indazol-6-yl]-N4-(3,4- dichlorophenyl)-5-fluoro-2,4-pyrimidinediamine	1H NMR (DMSO-d6): d 9.96 (s, 1H), 9.83 (s, 1H), 8.27 (d, 1H, J = 4.1 Hz), 8.09 (d, 1H, J = 2.3 Hz), 7.94 (s, 1H), 7.92 (s, 1H), 7.75 (dd, 1H, J = 2.3 and 8.8 Hz), 7.63 (d, 1H, J = 8.8 Hz), 7.53 (d, 1H, J = 8.8 Hz), 7.53 (dd, 1H, J = 1.8 and 8.8 Hz), 4.20	+	+	ı	
791	N4-(2,2-Dimethyl-3-oxo-4H-benz[1,4]oxazin-6-yl)-5-fluoro-N2- [1-(3-hydroxypropyl)indazol-6-yl]-2,4-pyrimidinediamine	14 NMR (DMSO-d6): d 10.68 (s, 14), 9.84 (s, 14), 9.74 (s, 14), 8.18 N4-(2,2-Dimethyl-3-oxo-4H-benz[1,4]oxazin-6-yl)-5-fluoro-N2- (d, 14, J = 4.4 Hz), 7.90 (s, 14), 7.56 (s, 14), 7.58 (d, 14, J = 8.8 Hz), [1-(3-hydroxypropyl)indazol-6-yl]-2,4-pyrimidinediamine 7.32-7.24 (m, 34), 6.85 (d, 14, J = 8.8 Hz), 4.20 (t, 24, J = 6.7 Hz), 3.29 (t, 24, J = 6.4 Hz), 1.87 (app q, 2H	+	+	1	
792	N4-(3-Chloro-4-methoxyphenyl)-5-fluoro-N2-[1-(3-methoxypropyl)indazol-5-yl]-2,4-pyrimidinediamine	1H NWR (DMSO-d6): d 10.42 (s, 1H), 10.30 (s, 1H), 8.26 (d, 1H, J = 5.2 Hz), 7.93 (s, 1H), 7.82 (d, 1H, J = 1.8 Hz), 7.74 (d, 1H, J = 2.3 Hz), 7.60 (d, 1H, J = 9.1 Hz), 7.53 (dd, 1H, J = 2.3 and 9.1 Hz), 7.38 (dd, 1H, J = 1.8 and 9.1 Hz), 7.09 (d, 1H, J = 9	+	+	1	+
793	N4-(3,4-Dichlorophenyl)-5-fluoro-N2-[1-(3- methoxypropyl)indazol-5-yl]-2,4-pyrimidinediamine	1H NMR (DMSO-d6): d 10.36 (s, 1H), 10.13 (s, 1H), 8.30 (d, 1H, J = 5.0 Hz), 8.01 (d, 1H, J = 2.3 Hz), 7.95 (s, 1H), 7.86 (s, 1H), 7.68 (dd, 1H, J = 2.3 and 8.8 Hz), 7.61 (d, 1H, J = 9.1 Hz), 7.51 (d, 1H, J = 8.8 Hz), 7.41 (dd, 1H, J = 1.8 and 9.1 Hz), 4.4	+	+	1	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
794	N4-(2,2-Dimethyl-3-oxo-4H-benz[1,4]oxazin-6-yl)-5-fluoro-N2- [1-(3-methoxypropyl)indazol-5-yl]-2,4-pyrimidinediamine	14 NMR (DMSO-d6): d 10.77 (s, 14), 10.42 (s, 14), 10.27 (s, 14), 10.42 (s, 14), 10.27 (s, 14), 10.42 (s, 14), 1	+	+	ı	

Compound	Compound Name	 Physical Data	1 -2	LD Tryptase,	LD Tryptase,	fp_syk,
Number			CHMC, (IgE, 3pt	CHMC, IgE, 8pt	CHIMC, Iono, 3pt	11pt
795	(S)-5-Fluoro-N2-[1-(3-methoxypropyl)indazol-5-yl]-N4-(2-795 methyl-3-oxo-2H,4H-benz[1,4]oxazin-6-yl)-2,4-pyrimidinediamine	1H NMR (DMSO-d6): d 10.73 (s, 1H), 10.32 (s, 1H), 10.15 (s, 1H), 8.17 (d, 1H, J = 4.9 Hz), 7.85 (s, 1H), 7.83 (s, 1H), 7.51 (d, 1H, J = 8.8 Hz), 7.33 (dd, 1H, J = 2.1 and 9.1 Hz), 7.16 (dd, 2H, J = 2.3 and 9.1 Hz), 6.84 (d, 1H, J = 8.8 Hz), 4.60 (qt, 1H,	+	+		
796	N4-(3-Chloro-4-methoxyphenyl)-5-fluoro-N2-[1-(3-methoxypropyl)indazol-6-yl]-2,4-pyrimidinediamine	1H NMR (DMSO-d6): d 10.16 (s, 2H), 8.27 (d, 1H, J = 4.7 Hz), 7.95 (d, 1H, J = 0.8 Hz), 7.80 (s, 1H), 7.78 (d, 1H, J = 8.8 Hz), 7.65 (d, 1H, J = 2.3 and 9.1 Hz), 7.58 (dd, 1H, J = 2.3 and 9.1 Hz), 7.20 (dd, 1H, J = 1.8 an 8.8 Hz), 7.09 (d, 1H, J = 9.1 Hz),	+	+	1	
797	N4-(3,4-Dichlorophenyl)-5-fluoro-N2-[1-(3- methoxypropyl)indazol-6-yl]-2,4-pyrimidinediamine	1H NMR (DMSO-d6): d 10.13 (s, 1H), 10.02 (s, 1H), 8.31 (d, 1H, J = 4.1 Hz), 8.06 (d, 1H, J = 2.3 Hz), 7.95 (s, 1H), 7.87 (s, 1H), 7.74 (dd, 1H, J = 2.3 and 8.8 Hz), 7.65 (d, 1H, J = 8.5 Hz), 7.54 (d, 1H, J = 8.8 Hz), 7.22 (d, 1H, J = 8.5 Hz), 4.17 (t, 2H,	+	+	ı	
298	N4-(2,2-Dimethyl-3-oxo-4H-benz[1,4]oxazin-6-yl)-5-fluoro-N2- [1-(3-methoxypropyl)indazol-6-yl]-2,4-pyrimidinediamine	1H NMR (DMSO-d6): d 10.73 (s, 1H), 9.92 (s, 2H), 8.21 (d, 1H, J = 4.7 Hz), 7.92 (s, 1H), 7.89 (s, 1H), 7.58 (d, 1H, J = 8.8 Hz), 7.29-7.24 (m, 3H), 6.85 (d, 1H, J = 8.5 Hz), 4.17 (t, 2H, J = 6.7 Hz), 3.14 (app qt, 2H, J = 6.4 Hz), 3.13 (s, 3H), 1.92 (app	+	+	+	
662	(S)-5-Fluoro-N2-[1-(3-methoxypropyl)indazol-6-yl]-N4-(2-799 methyl-3-oxo-2H,4H-benz[1,4]oxazin-6-yl]-2,4-pyrimidinediamine	1H NMR (DMSO-d6): d 10.76 (s, 1H), 10.11 (s, 2H), 8.23 (d, 1H, J = 4.7 hz), 7.94 (s, 1H), 7.86 (s, 1H), 7.62 (d, 1H, J = 8.5 Hz), 7.28-7.19 (m, 3H), 6.88 (d, 1H, J = 8.5 Hz), 4.64 (qt, 1H, J = 6.7 Hz), 4.17 (t, 2H, J = 6.7 Hz), 3.16 (app qt, 2H, J = 6.7 Hz	+	+	ı	
800	N4-(3-Chioro-4-methoxyphenyl)-5-fluoro-N2-(2-trifluoromethyl-1H-benzimidazol-5-yl)-2,4-pyrimidinediamine	14 NMR (DMSO-d6): d 10.17 (s, 14), 8.20 (d, 14, J = 4.9 Hz), 7.85 (s, N4-(3-Chloro-4-methoxyphenyl)-5-fluoro-N2-(2-trifluoromethyl-14), 7.69 (d, 14, J = 2.3 Hz), 7.61 (d, 14, J = 8.8 Hz), 7.59 (dd, 14, J = 4.4 Hz), 7.59 (dd, 14, J = 2.0 and 8.8 Hz), 7.04 (d, 14, J = 2.0 and 8.8 Hz), 7.04 (d, 14, J = 9.1 Hz), 3.76 (s, 34).	+	+	+	+
801	N4-(3,4-Dichlorophenyl)-5-fluoro-N2-(2-trifluoromethyl-1H- benzimidazol-5-yl)-2,4-pyrimidinediamine	1H NMR (DMSO-d6): d 9.84 (s, 1H), 9.70 (s, 1H), 8.19 (d, 1H, J = 4.1 Hz), 8.05 (d, 1H, J = 2.3 Hz), 7.96 (s, 1H), 7.75 (dd, 1H, J = 2.3 and 8.8 Hz), 7.60 (d, 1H, J = 9.1 Hz), 7.47-7.43 (m, 2H).	+	+	+	+
802	N4-(2,2-Dimethyl-3-oxo-4H-benz[1,4]oxazin-6-yl)-5-fluoro-N2- (2-trifluoromethyl-1H-benzimidazol-5-yl)-2,4-pyrimidinediamine	1H NMR (DMSO-d6): d 10.71 (s, 1H), 10.26 (s, 1H), 10.21 (s, 1H), 1.4-2.2-Dimethyl-3-oxo-4H-benz[1,4]oxazin-6-yl)-5-fluoro-N2- 8.22 (d, 1H, J = 4.9 Hz), 7.88 (s, 1H), 7.61 (d, 1H, J = 8.8 Hz), 7.49 (2-trifluoromethyl-1H-benzimidazol-5-yl)-2,4-pyrimidinediamine (dd, 1H, J = 2.3 and 8.8 Hz), 7.24 (s, 1H), 7.22 (s, 1H), 6.86 (d, 1H, J = 8.8 Hz), 1.36 (s, 6H).	+	+	ı	+

Compound Number	Compound Name	LD Physical Delta CH UgE	LD L Tryptase, T CHMC, C	LD Tryptase, CHMC, IgE, 8pt	LD LD LD Tryptase, Tryptase, fp_syk, CHMC, CHMC, CHMC, 11pt IgE, 3pt Ige, 8pt Iono, 3pt	fp_syk, 11pt
803	(S)-5-Fluoro-N4-(2-methyl-3-oxo-2H,4H-benz[1,4]oxazin-6-yl)-803 N2-(2-trifluoromethyl-1H-benzimidazol-5-yl)-2,4-pyrimidinediamine	1H NWR (DMSO-d6): d 10.71 (s, 1H), 10.27 (s, 1H), 10.22 (s, 1H), 8.22 (d, 1H, J = 4.9 Hz), 7.93 (s, 1H), 7.62 (d, 1H, J = 8.8 Hz), 7.46 (dd, 1H, J = 2.3 and 8.8 Hz), 7.24 (s, 1H), 7.21 (s, 1H), 6.89 (d, 1H, J = 8.8 Hz), 4.66 (qt, 1H, J = 6.7 Hz), 1.40 (d,	+	+	ī	
804	N2-(3-Amino-1-methylindazol-5-yl)-N4-(3-chloro-4- nethoxyphenyl)-5-fluoro-2,4-pyrimidinediamine	1H NWR (DMSO-d6): d 10.13 (s, 1H), 9.94 (s, 1H), 8.17 (d, 1H, J = 4.9 Hz), 7.76 (s, 1H), 7.75 (d, 1H, J = 2.3 Hz), 7.61 (dd, 1H, J = 2.3 and 9.1 Hz), 7.44 (s, 2H), 7.05 (d, 1H, J = 9.1 Hz), 3.80 (s, 3H), 3.79 (s, 3H).		+		+
80€	N2-(3-Amino-1-methylindazol-5-yl)-N4-(3,4-dichlorophenyl)-5-diuoro-2,4-pyrimidinediamine	114 NMR (DMSO-d6): d 10.17 (s, 114), 9.90 (s, 114), 8.21 (d, 114, J = 4.7 Hz), 7.97 (d, 114, J = 2.3 Hz), 7.90 (dd, 114, J = 2.3 and 8.8 Hz), 7.59 (d, 114, J = 8.8 Hz), 7.47 (d, 114, J = 8.8 Hz), 7.38 (dd, 114, J = 2.0 and 8.8 Hz), 4.41 (d, 214, J = 6.7 Hz), 3.88		+		
908	N2-(3-Amino-1-methylindazol-5-yl)-N4-(2,2-dimethyl-3-oxo-4H-8) benz[1,4]oxazin-6-yl)-5-fluoro-2,4-pyrimidinediamine	1H NMR (DMSO-d6): d 10.75 (s, 1H), 10.46 (s, 1H), 10.40 (s, 1H), 1		+		+
807	(S)-N2-(3-Amino-1-methylindazol-5-yl)-5-fluoro-N4-(2-methyl- 3-oxo-4H-benz[1,4]oxazin-6-yl)-2,4-pyrimidinediamine	114 NMR (DMSO-d6): d 10.76 (s, 114), 10.38 (s, 114), 10.28 (s, 114), 8.20 (d, 114, J = 5.3 Hz), 7.80 (s, 114), 7.53 (d, 114, J = 9.1 Hz), 7.48 (d, 114, J = 9.1 Hz), 7.27 (s, 114), 7.25 (s, 114), 6.87 (d, 114, J = 9.1 Hz), 4.63 (qt, 114, J = 6.7 Hz), 3.83 (s, 314), 1.3		+		+
808	N4-(3-Chloro-4-methoxyphenyl)-5-fluoro-N2-(2-methyl-3H- oenzimidazol-5-yl)-2,4-pyrimidinediamine	1H NMR (DMSO-d6): d 9.53 (s, 1H), 9.40 (s, 1H), 8.14 (d, 1H, J = 3.8 Hz), 8.13 (s, 1H), 7.86 (d, 1H, J = 2.6 Hz), 7.72-7.67 (m, 2H), 7.59 (d, 1H, J = 8.8 Hz), 7.11 (d, 1H, J = 9.1 Hz), 3.83 (s, 3H), 2.72 (s, 3H).	+	+	1	+
808	N4-(3,4-Dichlorophenyl)-5-fluoro-N2-(2-methyl-3H- benzimidazol-5-yl)-2,4-pyrimidinediamine	1H NWR (DMSO-d6): d 9.93 (s, 2H), 8.28 (d, 1H, J = 4.8 Hz), 8.12 (d, 1H, J = 2.6 Hz), 8.07 (s, 1H), 7.81 (dd, 1H, J = 2.3 and 9.1 Hz), 7.66 (s, 2H), 7.56 (d, 1H, J = 8.8 Hz), 2.75 (s, 3H).	+	+	1	+
810	N4-(2,2-Dimethyl-3-oxo-4H-benz[1,4]oxazin-6-yl)-5-fluoro-N2- (2-methyl-3H-benzimidazol-5-yl)-2,4-pyrimidinediamine	1H NMR (DMSO-d6): d 10.70 (s, 1H), 9.56 (s, 1H), 9.40 (s, 1H), 8.21 (s, 1H), 8.12 (d, 1H, J = 3.8 Hz), 7.79 (dd, 1H, J = 2.3 and 9.1 Hz), 7.55 (d, 1H, J = 8.8 Hz), 7.52 (s, 1H), 7.31 (dd, 1H, J = 2.3 and 8.8 Hz), 6.88 (d, 1H, J = 8.8 Hz), 2.72 (s, 3H), 1.	+	+	1	+

fp_syk, 11pt	+						
LD LD LD Tryptase,Tryptase,fp_syk,CHMC,CHMC,CHMC,11pt							
LD Tryptase, CHMC, IgE, 8pt	+	+	+	+	+		+
LD LD Tryptase, Tryptase CHMC, CHMC, IgE, 8pt	+						
23	(s, 1H), 8.12 (d, 1H, J = 3.5 Hz), 7.74 (dd, 1H, J = 2.3 and 8.8 Hz), 7.57 (d, 1H, J = 9.1 Hz), 7.53 (d, 1H, J = 2.3 Hz), 7.29 (dd, 1H, J = 2.3 Hz), 7.29 (dd, 1H, J = 2.3 Hz), 7.29 (dd, 1H, J = 2.3 Hz), 4.64	(d, 1H, J = 3.5 Hz), 7.83 (s, 1H), 7.53 (d, 1H, J = 8.5 Hz), 7.45 (d, 1H, J = 8.5 Hz), 7.30 (d, 1H, J = 8.5 Hz), 7.15 (dd, 1H, J = 2.3 and 8.8 Hz), 3.67 (s, 3H), 2.33 (s, 3H), 1.36 (s, 6H	(s, 1H), 8.11 (d, 1H, J = 3.5 Hz), 7.90 (s, 1H), 7.69 (d, 1H, J = 8.5 Hz), 7.30 (s, 1H), 7.69 (d, 1H, J = 8.5 Hz), 7.33 (d, 1H, J = 8.8 Hz), 7.19 (d, 1H, J = 8.8 Hz), 7.35 (s, 1H, J = 8.8 Hz), 7.19 (d, 1H, J = 8.8 Hz), 7.10 (d	14 NMR (DMSO-d6): d 11.10 (s, 1H), 9.22 (s, 1H), 9.19 (s, 1H), 8.12 (d, 1H, J = 3.5 Hz), 8.05 (s, 1H), 7.84 (s, 1H), 7.57 (d, 1H, J = 8.5 Hz), 7.46 (d, 1H, J = 8.8 Hz), 7.46 (d, 1H, J = 8.8 Hz), 7.35 (d, 1H, J = 8.8 Hz), 4.37 (t, 2H, J = 6.4 Hz), 3.22 (t, 1H, J = 8.8 Hz), 7.46 (d, 1H, J = 8.8 Hz), 7.45 (d, 1H, J = 8.8 Hz), 7.46 (d, 1H, J = 8.8 Hz), 7.45 (d, 1H, J = 8.8 Hz), 7.47 (t, 2H, J = 6.4 Hz), 3.22 (t, 1H, J = 8.8 Hz), 7.48 (d, 1H, J = 8.8 Hz), 7.48	1H NMR (DMSO-d6): d 10.36 (s, 1H), 10.25 (s, 1H), 8.21 (d, 1H, J = 4.9 Hz), 7.85 (s, 1H), 7.79-7.75 (m, 5H), 7.67 (d, 1H, J = 2.3 Hz), 7.63 (d, 1H, J = 8.8 Hz), 7.49 (dd, 1H, J = 2.3 and 8.8 Hz), 7.32 (dd, 1H, J = 1.8 and 9.1 Hz), 7.03 (dd, 1H, J = 8.8 Hz), 7.03 (1H NMR (DMSO-d6): d 10.24 (s, 1H), 9.99 (s, 1H), 8.23 (d, 1H, J = 4.7 Hz), 7.95 (d, 1H, J = 2.0 Hz), 7.87 (s, 1H), 7.80 (s, 1H), 7.78-7.73 (m, 4H), 7.64 (d, 1H, J = 9.1 Hz), 7.45 (d, 1H, J = 8.8 Hz), 7.36 (dd, 1H, J = 1.8 and 9.1 Hz), 4.41 (t, 2H, 1 = 5.7)	N4-(2,2-Dimethyl-3-oxo-4H-benz[1,4]oxazin-6-yl)-5-fluoro-N2- 8.24 (d, 1H, J = 4.9 Hz), 7.88 (s, 1H), 10.45 (s, 1H), 10.32 (s, 1H), [1-[3-(N-phthalimidopropyl)]indazol-5-yl]-2,4-pyrimidinediamine 7.65 (d, 1H, J = 8.8 Hz), 7.37 (dd, 1H, J = 1.8 and 9.1 Hz), 7.20 (d, 1H, J = 9.9 Hz), 1.3 (dd, 1H, J = 1.8 and 9.1 Hz), 7.20 (d, 1H, J = 9.1 Hz), 4.4
Compound Compound Name Number (S)-5-Fluoro-N2-(2-methyl-3H-benzimidazol-5-yl)-N4-(2-	811 methyl-3-oxo-2H,4H-benz[1,4]oxazin-6-yl)-2,4- pyrimidinediamine	812 Pyrid[1,4]oxazin-6-y]-5-fluoro-2,4-pyrlmidinediamine	813 N2-(3-methyl-1H-indazol-6-yl)-2,4-pyrimidinediamine	N4-(2,2-Dimethyl-3-oxo-4H-5-pyrid[1,4]oxazin-6-yl)-5-fluoro- N2-[1-(3-methoxypropyl)indazol-5-yl]-2,4-pyrimidinediamine	N4-(3-Chloro-4-methoxyphenyl)-5-fluoro-N2-[1-[3-(N-phthalimidopropyl)]indazol-5-yl]-2,4-pyrimidinediamine	N4-(3,4-Dichlorophenyl)-5-fluoro-N2-[1-[3-(N-phthalimidopropyl)]indazol-5-yl]-2,4-pyrimidinediamine	1H NMR (DMSO-d6): d 10.78 (s, 1H), 10.45 (s, 1H), 10.32 (s, 1H), 10.32 (s, 1H), 10.45 (s, 1H), 10.32 (s, 1H), 11.43-0.7 (m, 4H), 11.43-0.7 (m, 4H)

Compound Number	Compound Name:	Physical Data CHMC,	LD LD LD LD Tryptase,fp_syk, CHMC, CHMC, CHMC, CHMC, 11pt loE. 30t loE. 80t lono. 30t	LD Tryptase,fr CHMC, 1	,fp_syk, 11pt
818	(S)-5-Fluoro-N4-(2-methyl-3-oxo-2H,4H-benz[1,4]oxazin-6-yl)-818 N2-[1-[3-(N-phthalimidopropyl)]indazol-5-yl]-2,4-pyrimidinediamine	1H NMR (DMSO-d6): d 10.80 (s, 1H), 10.44 (s, 1H), 10.30 (s, 1H), 8.24 (d, 1H, J = 5.3 Hz), 7.89 (s, 1H), 7.87 (s, 1H), 7.82-7.77 (m, 4H), 7.67 (d, 1H, J = 8.8 Hz), 7.37 (dd, 1H, J = 1.8 and 9.1 Hz), 7.22 (dd, 1H, J = 1.8 and 8.8 Hz), 7.18 (s, 1H), 6.89 (d			
819	N2-[1-[3-(N-Acetylamino)propyljindazol-5-yl]-N4-(3-chloro-4- nethoxyphenyl)-5-fluoro-2,4-pyrimidinediamine	1H NMR (DMSO-d6): d 10.22 (s, 1H), 10.05 (s, 1H), 8.21 (d, 1H, J = 4.9 Hz), 7.92 (s, 1H), 7.90 (m, 1H), 7.86 (s, 1H), 7.75 (d, 1H, J = 2.3 Hz), 7.64 (d, 1H, J = 9.1 Hz), 7.57 (dd, 1H, J = 2.3 and 8.8 Hz), 7.39 (dd, 1H, J = 1.8 and 8.8 Hz), 7.09 (d, 1H, J	+		+
820	N2-[1-[3-(N-Acetylamino)propyljindazol-5-yl]-N4-(3,4- dichlorophenyl)-5-fluoro-2,4-pyrimidinediamine	1H NWR (DMSO-d6): d 9.51 (s, 1H), 9.23 (s, 1), 8.10 (d, 1H, J = 3.8 Hz), 8.04 (d, 1H, J = 2.3 Hz), 7.95 (s, 1H), 7.82 (m, 2H), 7.74 (dd, 1H, J = 2.0 and 9.1 Hz), 7.51 (d, 1H, J = 9.1 Hz), 7.44 (d, 1H, J = 9.1 Hz), 7.43 (dd, 1H, J = 1.8 and 9.1 Hz), 4.30 (+		
821		1H NMR (DMSO-d6): d 10.77 (s, 1H), 10.38 (s, 1H), 10.18 (s, 1H), N. 10.18 (s, 1H), N	+		
822	N2-[1-[3-(N-Acetylamino)propyl]indazol-5-yl]-N4-(2,2-dimethyl-822 3-oxo-4H-5-pyrid[1,4]oxazin-6-yl)-5-fluoro-2,4-pyrimidinediamine	1H NMR (DMSO-d6): d 11.05 (s, 1H), 9.18 (s, 1H), 9.15 (s, 1H), 8.07 (d, 1H), 3.5 Hz), 8.01 (s, 1H), 7.80 (d, 1H, J = 6.3 Hz), 7.79 (s, 1H), 7.52 (d, 1H, J = 8.5 Hz), 7.40 (m, 2H), 7.31 (d, 1H, J = 8.5 Hz), 7.42 (d, 2H, J = 7.0 Hz), 2.94 (qt, 2H, J =	+		+
823	N2-[1-(3-Aminopropyl)indazol-5-yl]-N4-(3-chloro-4- methoxyphenyl)-5-fluoro-2,4-pyrimidinediamine	1H NMR (DMSO-d6): d 10.25 (s, 1H), 10.21 (s, 1H), 8.21 (d, 1H, J = 4.8 Hz), 7.97 (br s, 2H), 7.88 (s, 1H), 7.84-7.78 (m, 2H), 7.70 (d, 1H, J = 2.6 Hz), 9.08 (d, 1H, J = 9.1 Hz), 7.49 (dd, 1H, J = 2.6 and 8.8 Hz), 7.36 (dd, 1H, J = 1.8 and 8.8 Hz), 7.06 (d	+		
824	N2-[1-(3-Aminopropyl)indazol-5-yl]-N4-(3,4-dichlorophenyl)-5- fluoro-2,4-pyrimidinediamine	1H NMR (DMSO-d6): d 10.01 (s, 1H), 9.77 (s, 1H), 8.24 (d, 1H, J = 3.1 NN2-[1-(3-Aminopropyl)indazol-5-yl]-N4-(3,4-dichlorophenyl)-5- Hz), 8.06 (d, 1H, J = 2.6 Hz), 7.96 (s, 1H), 7.95 (s, 1H), 7.90-7.85 (m, 2H), 7.75 (d, 1H, J = 8.5 Hz), 7.67 (d, 1H, J = 8.8 Hz), 7.53 (d, 1H, J = 8.8 Hz), 7.53 (d, 1H, J = 8.8 Hz), 7.53 (d, 1H, J = 8.8 Hz), 7.54 (dd, 1H, J = 2.0 and 9.1	+		

syk,							
LD LD LD Tryptase, Tryptase, fp_syk, CHMC, CHMC, CHMC, 11pt IgE, 3pt IgE, 8pt Iono, 3pt			ı	1	+	ı	1
LD L Tryptase, 7 CHMC, C IgE, 8pt I	+	+		+	+	+	+
LD Tryptase, CHMC, IgE, 3pt	*		+	+	+	+	+
Physical Eata. 1H NMR (DMSO-d6): d 10.77 (s, 1H), 10.35 (s, 2H), 8.20 (d, 1H, J =	N2-[1-(3-Aminopropyl)indazol-5-yl]-N4-(2,2-dimethyl-3-oxo-4H-5.0 Hz), 7.94 (br s , 2H), 7.94 (s, 1H), 7.86 (s, 1H), 7.82-7.79 (m, 1H), 26bnz[1,4]oxazin-6-yl)-5-fluoro-2,4-pyrimidinediamine 7.62 (d, 1H, J = 9.1 Hz), 7.34 (dd, 1H, J = 1.8 and 9.1 Hz), 7.21 (br s , 1H), 7.15 (dd, 1H, J = 1.8 and 8.8 Hz),	1H NMR (DMSO-d6): d 10.78 (s, 1H), 10.30 (s, 2H), 8.18 (d, 1H, J = 4.9 Hz), 7.93 (br s, 2H), 7.91 (s, 1H), 7.87 (s, 1H), 7.83-7.80 (m, 1H), 7.63 (d, 1H, J = 8.8 Hz), 7.36 (dd, 1H, J = 1.8 and 8.8 Hz), 7.21 (br s, 1H), 7.17 (dd, 1H, J = 2.3 and 8.5 Hz),	1H NMR (DMSO-d6): d 10.39 (s, 1H), 10.03 (s, 1H), 8.20 (d, 1H, J = 5.3 Hz), 7.95 (s, 1H), 7.80 (d, 1H, J = 1.8 Hz), 7.74 (d, 1H, J = 2.6 Hz), 7.64 (d, 1H, J = 8.8 Hz), 7.54 (dd, 1H, J = 2.6 and 9.1 Hz), 7.46 (d, 2H, J = 8.1 Hz), 7.38 (dd, 1H, J = 2.1 and	1H NMR (DMSO-d6): d 10.63 (s, 1H), 10.23 (s, 1H), 8.24 (d, 1H, $J = 5.5$ Hz), 7.97 (s, 1H), 7.76 (d, 1H, $J = 1.8$ Hz), 7.72 (d, 1H, $J = 2.4$ Hz), 7.66 (d, 1H, $J = 9.1$ Hz), 7.52 (dd, 1H, $J = 2.6$ and 8.8 Hz), 7.47 (d, 4H, $J = 8.1$ Hz), 7.35 (dd, 1H, $J = 1.8$ and	1H NMR (DMSO-46): d 10.38 (s, 1H), 10.02 (s, 1H), 8.19 (d, 1H, J = 4.7 Hz), 7.95 (s, 1H), 7.80 (s, 1H), 7.74 (s, 1H), 7.65-7.58 (m, 4H), 7.38 (d, 1H, J = 9.1 Hz), 7.29 (s, 3H), 7.07 (d, 1H, J = 8.8 Hz), 4.42 (t, 2H, J = 6.7 Hz), 3.82 (s, 3H), 3.37 (t, 2H,	1H NMR (DMSO-d6): d 10.29 (s, 1H), 9.95 (s, 1H), 8.19 (d, 1H, J = 5.1 Hz), 7.94 (s, 1H), 7.81 (d, 1H, J = 1.8 Hz), 7.75 (d, 1H, J = 2.6 Hz), 7.65-7.53 (m, 7H), 7.39 (dd, 1H, J = 2.0 and 8.8 Hz), 7.31-7.26 (m, 5H), 7.07 (d, 1H, J = 8.8 Hz), 4.42 (t, 2H, J	1H NMR (DMSO-d6): d 10.36 (s, 1H), 10.25 (s, 1H), 8.21 (d, 1H, J = 5.3 Hz), 7.87 (s, 1H), 7.77 (d, 1H, J = 1.5 Hz), 7.69 (d, 1H, J = 2.1 Hz), 7.57 (d, 1H, J = 9.1 Hz), 7.49 (dd, 1H, J = 2.3 and 8.8 Hz), 7.33 (dd, 1H, J = 2.0 and 9.1 Hz), 7.03 (d, 1H, J =
Compound Name Number	N2-[1-(3-Aminopropyl)indazol-5-yl]-N4-(2,2-dimethyl-3-oxo-4H-benz[1,4]oxazin-6-yl)-5-fluoro-2,4-pyrimidinediamine	(S)-N2-[1-(3-Aminopropyl)indazol-5-yl]-5-fluoro-N4-(2-methyl- 3-oxo-2H,4H-benz[1,4]oxazin-6-yl)-2,4-pyrimidinediamine	N4-(3-Chloro-4-methoxyphenyl)-5-fluoro-N2-[1-(3-827 hydroxypropyl)indazol-5-yl]-2,4-pyrimidinediamine p-Toluenesuifonic Acid Salt	N4-(3-Chloro-4-methoxyphenyl)-5-fluoro-N2-[1-(3-828 hydroxypropyl)indazol-5-yl]-2,4-pyrimidinediamine Bis p-Toluenesulfonic Acid Salt	N4-(3-Chloro-4-methoxyphenyl)-5-fluoro-N2-[1-(3-829 hydroxypropyl)indazol-5-yl]-2,4-pyrimidinediamine Benzenesulfonic Acid Salt	N4-(3-Chloro-4-methoxyphenyl)-5-fluoro-N2-[1-(3-830 hydroxypropyl)indazol-5-yl]-2,4-pyrimidinediamine Bis Benzenesulfonic Acid Salt	N4-(3-Chloro-4-methoxyphenyl)-5-fluoro-N2-[1-(3-831 hydroxypropyl)indazol-5-yl]-2,4-pyrimidinediamine Hydrogen Chloride Salt

Compound	Compound Name	Physical Data	LD Tryptase, CHMC, IgE, 3pt	LD LD LD Tryptase, Tryptase, fp_syk, CHMC, CHMC, CHMC, 11pt IgE, 8pt Iono, 3pt	LD Tryptase,fp_CHMC, 11	fp_syk, 11pt
83%	N4-(3-Chloro-4-methoxyphenyl)-5-fluoro-N2-[1-[3-(N-832methylsulfonylamino)propyljindazol-5-yl]-2,4-pyrimidinediamine	1H NMR (DMSO-d6): d 10.60 (s, 1H), 10.52 (s, 1H), 8.30 (d, 1H, J = 5.6 Hz), 7.95 (s, 1H), 7.81 (d, 1H, J = 1.8 Hz), 7.73 (d, 1H, J = 2.3 Hz), 7.69 (d, 1H, J = 9.1 Hz), 7.52 (dd, 1H, J = 2.3 and 8.8 Hz), 7.37 (dd, 1H, J = 2.0 and 8.8 Hz), 7.10 (br s, 1H), 7	+	+		
833	N4-(3,4-Dichlorophenyl)-5-fluoro-N2-[1-[3-(N-833 methylsulfonylamino)propyljindazol-5-yl]-2,4-pyrimidinediamine	1H NMR (DMSO-d6): d 9.53 (s, 1H), 9.25 (s, 1H), 8.11 (d, 1H, J = 3.8 Hz), 8.04 (d, 1H, J = 2.3 Hz), 7.97 (br s, 1H), 7.83 (s, 1H), 7.73 (d, 1H, J = 2.3 and 8.8 Hz), 7.53 (d, 1H, J = 8.8 Hz), 7.43 (dd, 1H, J = 2.3 and 8.8 Hz), 7.0	+	+	B B	
834	N4-(2,2-Dimethyl-3-oxo-4H-benz[1,4]oxazin-6-yl)-5-fluoro-N2-834[1-[3-(N-methylsulfonylamino)propyl]indazol-5-yl]-2,4-pyrimidinediamine	1H NMR (DMSO-d6): d 10.74 (s, 1H), 10.24 (s, 1H), 19.98 (s, 1H), 8.21 (d, 1H, J = 4.3 Hz), 7.93 (s, 1H), 7.90 (s, 1H), 7.61 (d, 1H, J = 8.8 Hz), 7.38 (dd, 1H, J = 1.8 and 9.1 Hz), 7.22 (dd, 1H, J = 1.8 and 8.8 Hz), 7.17 (s, 1H), 7.09 (app t, 1H, J = 5.3	,	+	t	
83.5	(S)-5-Fluoro-N4-(2-methyl-3-oxo-2H,4H-benz[1,4]oxazin-6-yl)-835N2-[1-(3-(N-methylsulfonylamino)propyl)indazol-5-yl]-2,4-pyrimidinediamine	1H NMR (DMSO-d6): d 10.80 (s, 1H), 10.42 (s, 1H), 10.25 (s, 1H), 9.98 (s, 1H), 8.22 (d, 1H, J = 4.9 Hz), 7.92 (s, 1H), 7.90 (d, 1H, J = 1.5 Hz), 7.64 (d, 1H, J = 8.8 Hz), 7.38 (dd, 1H, J = 2.0 and 9.1 Hz), 7.24-7.19 (m, 3H), 7.09 (t, 1H, J = 5.3 Hz), 6.91	+	+		
836	N4-(2,2-Dimethyl-3-oxo-4H-5-pyrid[1,4]oxazin-6-yl)-5-fluoro-836N2-[1-[3-(N-methylsulfonylamino)propyljindazol-5-yl]-2,4-pyrimidinediamine	1H NMR (DMSO-d6): d 11.11 (s, 1H), 9.25 (s, 1H), 9.24 (s, 1H), 8.11 (d, 1H, J = 3.0 Hz), 8.07 (s, 1H), 7.85 (s, 1H), 7.58 (d, 1H, J = 8.5 Hz), 7.54 (d, 1H, J = 9.1 Hz), 7.48 (d, 1H, J = 9.1 Hz), 7.36 (d, 1H, J = 8.5 Hz), 4.39 (t, 1H, J = 6.7 Hz), 4.39	+	+	•	
837	N2-(3-Amino-1-methylindazol-5-yl)-N4-(2,2-dimethyl-3-oxo-4H- 5-pyrid[1,4]oxazin-6-yl)-5-fluoro-2,4-pyrimidinediamine		+	+		
838	N4-(2,2-Dimethyl-3-oxo-4H-5-pyrid[1,4]oxazin-6-yl)-5-fluoro- N2-[1-(3-hydroxypropyl)indazol-5-yl]-2,4-pyrimidinediamine	1H NMR (DMSO-d6): d 11.22 (s, 1H), 10.22 (s, 1H), 10.09 (s, 1H), 8.25 (d, 1H, J = 4.4 Hz), 7.90 (s, 2H), 7.57 (d, 1H, J = 9.3 Hz), 7.41-7.35 (m, 3H), 4.40 (t, 2H, J = 6.7 Hz), 3.35 (t, 2H, J = 6.4 Hz), 1.93 (app q, 2H, J = 6.7 Hz), 1.40 (s, 6H).	+	+		
839	N4-(2,2-Dimethyl-3-oxo-4H-5-pyrid[1,4]oxazin-6-yl)-5-fluoro- N2-[1-(3-methoxypropyl)indazol-6-yl]-2,4-pyrimidinediamine	14 NMR (DMSO-d6): d 11.10 (s, 1H), 9.46 (s, 1H), 9.27 (s, 1H), 8.19 (d, 1H, J = 3.5 Hz), 8.01 (s, 1H), 7.87 (s, 1H), 7.65 (d, 1H, J = 8.5 Hz), 7.54 (d, 1H, J = 8.8 Hz), 7.35 (d, 1H, J = 8.5 Hz), 7.29 (d, 1H, J = 8.8 Hz), 4.19 (t, 2H, J = 6.7 Hz), 3.16 (t,	+	+		

NC, 111pt					+ + +	+ + +	
CHMC, CHMC, 19E, 8pt 10no, 3pt +	+	+	+	'			-
SO-d6): d 9.47 (br s, 1H), 9.28 (s, 1H), 9.17 (s, 1H), 1=2.6 1=3.8 Hz), 8.04 (s, 1H), 7.84 (s, 1H), 1=8.8 Hz), 7.49	Hz), 7.64 (dd, 1Pr, 7) (d, 1H, J = 8.8 H (d, 1H, J = 9.1 Hz), 7.07 (d, 1H, J = 8.8 H (1H, 1H, J = 9.1 Hz), 7.07 (d, 1H, J = 8.8 Hz), 7.98 (s, 1H), 1H NMR (DMSO-d6); d 10.48 (s, 1H), 8.00 (d, 1H, J = 2.0 Hz), 7.98 (s, 1H), 1 = 4.9 Hz), 8.32 (d, 1H, J = 8.8 Hz), 7.42	7.85-7.81 (III, 117), 17, 17, 17, 17, 18, 17, 17, 17, 18, 17, 17, 18, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17	(app d, 271, 2) J = 2.0 Hz), 6.89 (d, 1H, J = 8.8 Hz), 4.37 1 H NMR (DMSO-d6): d 10.74 (s, 1H), 9.88 (s, 1H), 7.87 (s, 1H), 1.11 (h, 1 = 6.7 Hz), 8.01 (s, 1H), 7.87 (s, 1H), 1.11 (t, 1H, J = 6.7 Hz), 8.13 (d, 1H, J = 4.7 Hz), 9.1 Hz), 7.26 (d, 1H, J = 8.5)	7.56 (d, 1H, J = 9.1 Hz), 7.43 (m, 11), 1 = 8.5 Hz), 7.21 (s, 1H), 6.90 (d, 1H, J = 8.5 1H NMR (DMSO-d6): d 11.10 (s, 1H), 9.46 (br s, 1H), 9.23 (s, 1H), 7.86 (s, 1H NMR (DMSO-d6): d 11.10 (s, 1H), 9.9 and 3.5 Hz), 8.07 (s, 1H), 7.86 (s, 1H, J = 0.9 and 3.5 Hz), 8.07 (s, 1H), 7.86 (s, 1H, J = 0.9 and 3.5 Hz), 8.07 (s, 1H), 7.86 (s, 1H, J = 0.9 and 3.5 Hz), 8.07 (s, 1H), 7.86 (s, 1H, J = 0.9 and 3.5 Hz), 8.07 (s, 1H), 7.86 (s, 1H, J = 0.9 and 3.5 Hz), 8.07 (s, 1H), 7.86 (s, 1H, J = 0.9 and 3.5 Hz), 8.07 (s, 1H), 7.86 (s, 1H, J = 0.9 and 3.5 Hz), 8.07 (s, 1H), 7.49 (s, 1H, J = 0.9 and 3.5 Hz), 8.07 (s, 1H), 7.49 (s, 1H, J = 0.9 and 3.5 Hz), 8.07 (s, 1H), 7.49 (s, 1H	9.19 (5, 11), 1H), 7.59 (d, 1H, J = 8.5 Hz), 7.53 (d, 1H, J = 9.11 Lz), 8.8 Hz), 7.35 (d, 1H, J = 8.5 Hz), 4.39 (f, 8.8 Hz), 7.35 (d, 1H, J = 8.5 Hz), 4.39 (f, 1H NMR (DMSO-d6); d 11.11 (s, 1H), 7.73 (dd, 1H, J = 1.8 and 9.1 Hz), (d, 1H, J = 3.5 Hz), 8.13 (s, 1H), 7.73 (dd, 1H, J = 1.8 (d, 1H, J = 8.5)		1
<u> </u>			<u> </u>			N4-(2,2-Dimethyl-3-oxo-4H-5-pyrtd[1,4]oxazin-6-yl)-3-nuxo- N4-(2,2-methyl-3H-benzimidazol-5-yl)-2,4-pyrimidinediamine N2-(2-methyl-3H-benzimidazol-5-yl)-2,4-pyrimidinediamine	N4-(2,2-Dimethyl-3-oxo-4H-5-pyrid 1,4Joxazzın

Compound	Compound Name	LD LD LD Tryptase, Tryptase, Tryptase, Fp_syk, Physical Data	fp_syk,
			<u>.</u>
847	N4-(3-Chloro-4-methoxyphenyl)-N2-[1-(3-847 (diethylphosphonamido)propyl]indazol-5-yl]-5-fluoro-2,4-pyrimidinediamine	1H NMR (DMSO-d6): d 9.27 (s, 1H), 9.16 (s, 1H), 8.07 (d, 1H, J = 3.5 Hz), 8.03 (s, 1H), 7.82 (s, 1H), 7.79 (d, 1H, J = 2.3 Hz), 7.65 (dd, 1H, J = 8.5 Hz), 7.47 (d, 1H, J = 9.1 Hz), 7.53 (d, 1H, J = 8.5 Hz), 7.47 (d, 1H, J = 9.1 Hz), 7.91 (dt, 1H, J = 9.1 Hz), 4.91	
846	N4-(3-Chloro-4-methoxyphenyl)-5-fluoro-N2-[1-(3-pivalamidopropyl)indazol-5-yl]-2,4-pyrimidinediamine	1H NMR (DMSO-d6): d 10.42 (s, 1H), 10.29 (s, 1H), 8.26 (d, 1H, J = 4.9 Hz), 7.93 (s, 1H), 7.83 (s, 1H), 7.74 (s, 1H), 7.62 (d, 1H, J = 8.8 Hz), 7.55-7.47 (m, 2H), 7.39 (d, 1H, J = 9.1 Hz), 7.09 (d, 1H, J = 8.8 Hz), 4.35 (t, 2H, J = 7.0 Hz), 3.82 (s, 3H),	
846	N4-(3,4-Dichlorophenyl)-5-fluoro-N2-[1-(3- pivalamidopropyl)indazol-5-yl]-2,4-pyrimidinediamine	1H NMR (DMSO-d6): d 9.55 (s, 1H), 9.28 (s, 1H), 8.15 (dd, 1H, J = 1.2 and 3.7 Hz), 8.09 (d, 1H, J = 1.5 Hz), 8.00 (s, 1H), 7.87 (s, 1H), 7.79 (dd, 1H, J = 1.8 and 9.1 Hz), 7.54-7.44 (m, 4H), 4.33 (t, 2H, J = 6.7 Hz), 3.04 (qt, 2H, J = 6.4 Hz), 1.94 (app q	
850	N4-(2,2-Dimethyl-3-oxo-4H-benz[1,4] [1-(3-pivalamidopropyl)indazol-5-yl]-2	1H NMR (DMSO-d6): d 10.74 (s, 1H), 10.21 (s, 1H), 9.89 (s, 1H), 8.18 (d, 1H, J = 4.4 Hz), 7.93 (s, 1H), 7.88 (s, 1H), 7.56 (d, 1H, J = 8.5 Hz), 4-pyrimidinediamine 7.46 (t, 1H, J = 5.6 Hz), 7.37 (d, 1H, J = 9.1 Hz), 7.23 (d, 1H, J = 9.1 Hz), 7.17 (s, 1H), 6.88 (d, 1H, J = 8.	
851	5-Fluoro-(S)-N4-(2-methyl-3-oxo-4H-benz[1,4]oxazin-6-yl)-N2- [1-(3-pivalamidopropyl)indazol-5-yl]-2,4-pyrimidinediamine	1H NMR (DMSO-d6): d 10.80 (s, 1H), 10.42 (s, 1H), 10.28 (s, 1H), 1	
852	N4-(2,2-Dimethyl-3-oxo-4H-5-pyrido[1,4]oxazin-6-yl)-5-fluoro- N2-[1-(3-pivalamidopropyl)indazol-5-yl]-2,4-pyrlmidinediamine	11 NMR (DMSO-d6): d 11.10 (s, 11H), 9.22 (s, 11H), 9.18 (s, 11H), 8.12 N4-(2,2-Dimethyl-3-oxo-4H-5-pyrido[1,4]oxazin-6-yl)-5-fluoro- (d, 11H, J = 3.5 Hz), 7.84 (s, 11H), 7.82 (s, 11H), 7.59 (d, 11H, J = 8.8 Hz), + N2-[1-(3-pivalamidopropyl)indazol-5-yl]-2,4-pyrlmidinediamine 7.48-7.43 (m, 3H), 7.36 (d, 11H, J = 8.5 Hz), 4.32 (t, 2H, J = 6.7 Hz), 3.02 (qt, 2H, J = 6.7 Hz), 1.92 (app q, 2	
853	N4-(3-Chloro-4-methoxyphenyl)-5-fluoro-N2-[1-[3-(N-succinimidopropyl)]Indazol-5-yl]-2,4-pyrimidinedlamine	1H NMR (DMSO-d6): d 9.28 (s, 1H), 9.17 (s, 1H), 8.07 (d, 1H, J = 3.5 Hz), 7.82 (s, 1H), 7.78 (d, 1H, J = 2.0 Hz), 7.66 (dd, 1H, J = 2.0 and 8.5 Hz), 7.52 (d, 1H, J = 9.1 Hz), 7.46 (d, 1H, J = 9.1 Hz), 7.09 (d, 1H, J = 9.1 Hz), 7.09 (d, 1H, J = 6.3 Hz), 3.3 (t, 2H, J = 6.3 Hz), 3.	

LD LD LD Tryptase, fp_syk, CHMC, CHMC, CHMC, 11pt	10						
LD se, Tryptase CHMC,	t lono, 3pt						
LD se, Tryptase, CHMC,	f (gE, 8pt	+	+	+	+	+	+
LD Tryptase, CHMC,	lgE, 3pt	+	+	+	+	+	+
Physical Data	1H NMR (DMSO-d6): d 9.55 (s, 1H), 9.28 (s, 1H), 8.16 (d, 1H, J = 3.5 Hz), 8.08 (d, 1H, J = 2.3 Hz), 8.01 (s, 1H), 7.88 (s, 1H), 7.80 (dd, 1H, J ≈ 2.3 and 8.8 Hz), 7.56 (d, 1H, J = 8.8 Hz), 7.51-7.46 (m, 2H), 4.35 (t, 2H, J ≈ 6.7 Hz), 2.40, 4.51, 1.51	N4-(2,2-Dimethyl-3-oxo-4H-benz[1,4]oxazin-6-yl)-5-fluoro-N2- 8.18 (d, 1H, J = 3.9 Hz), 7.85 (s, 1H), 10.38 (s, 1H), 10.25 (s, 1H), 1-3.9 (l-f3-(N-succinimidopropyl)]indazol-5-yl]-2,4-pyrimidinediamine Hz), 7.32 (d, 1H, J = 8.8 Hz), 7.44 (d, 2H, J = 9.1 Hz), 6.84 (d, 1H, J = 8.8 Hz), 7.14 (d, 2H, J = 9.1 Hz), 6.84 (d, 1H, J = 8.8 Hz), 7.13 (d, 2H, J = 9.1 Hz), 6.84 (d, 1H, J = 8.8 Hz), 7.13 (d, 2H, J = 9.1 Hz), 6.84 (d, 1H, J = 8.8 Hz), 7.13 (d, 2H, J = 9.1 Hz), 6.84 (d, 1H, J = 8.8 Hz), 7.13 (d, 2H, J = 9.1 Hz), 6.84 (d, 1H, J = 8.8 Hz), 7.13 (d, 2H, J = 9.1 Hz), 6.84 (d, 1H, J = 8.8 Hz), 7.13 (d, 2H, J = 9.1 Hz), 6.84 (d, 1H, J = 8.8 Hz), 7.13 (d, 2H, J = 9.1 Hz), 6.84 (d, 1H, J = 8.8 Hz), 7.13 (d, 2H, J = 9.1 Hz), 6.84 (d, 1H, J = 8.8 Hz), 7.13 (d, 2H, J = 9.1 Hz), 6.84 (d, 1H, J = 8.8 Hz), 7.13 (d, 2H, J = 9.1 Hz), 6.84 (d, 1H, J = 8.8 Hz), 7.13 (d, 2H, J = 9.1 Hz), 6.84 (d, 1H, J = 8.8 Hz), 7.13 (d, 2Hz), 6.84 (d, 2H, J = 9.1 Hz), 6.84	14 NMR (DMSO-d6): d 10.82 (s, 1H), 10.52 (s, 1H), 10.42 (s, 1H), 8.24 (d, 1H, J = 4.9 Hz), 7.92 (s, 1H), 7.87 (s, 1H), 7.63 (d,1H, J = 8.8 Hz), 7.20 (d, 2H, J = 8.8 Hz), 6.91	(d, 1H, J = 3.5 Hz), 4.55 (qt, 1H, J = 6.7 Hz) 1H NMR (DMSO-d6): d 11.10 (s, 1H), 9.23 (s, 1H), 9.19 (s, 1H), 8.12 (d, 1H, J = 3.5 Hz), 8.06 (s, 1H), 7.57 (d, 1H, J = 8.8 Hz), 7.53-7.46 (m, 2H), 7.36 (d, 1H, J = 8.8 Hz), 4.33 (t, 2H, J = 7.0 Hz), 3.39 (t, 2H, J	7.1 12), 2.34 (s, ZH), Z.48 (s, ZH), 2 1H NMR (DMSO-d6): d 10.26 (s, 1H), 10.08 (s, 1H), 8.22 (d, 1H, J = 4.3 Hz), 7.92 (s, 1H), 7.85 (s, 1H), 7.74 (d,1H, J = 2.0 Hz), 7.62 (d, 1H, J = 8.8 Hz), 7.57 (dd, 1H, J = 2.3 and 8.8 Hz), 7.39 (dd, 1H, J = 2.0	And 6.3 Fz), 7.09 (d, 1H, J = 8.8 Hz), 4.35 1H NMR (DMSO-d6): d 10.05 (s, 1H), 9.77 (s, 1h), 8.23 (d, 1H, J = 5.1 Hz), 8.03 (s, 1H), 7.92 (s, 1H), 7.91 (s, 1H), 7.73 (d, 1H, J = 8.8 Hz), 7.61 (d, 1H, J = 8.8 Hz), 7.51 (d,1H, J = 8.8 Hz), 7.44 (d, 1H, J = 8.8	HZ), 4.35 (t, 2H, J = 6.7 Hz), 3.67 (t, 2 1H NIMR (DMSO-d6): d 10.76 (s, 1H), 10.34 (s, 1H), 10.16 (s, 1H), 8.21 (d, 1H, J = 4.3 Hz), 7.89 (s, 2H), 7.59 (d, 1H, J = 8.5 Hz), 7.37 (dd, 1H, J = 1.5 and 8.5 Hz), 7.21 (d, 1H, J = 8.8 Hz), 7.19 (s, 1H), 6.88 (d, 1H, J = 8.8 Hz), 4.35 (t, 2H, 1 = 7.5)
Compound Compound Name	N4-(3,4-Dichlorophenyl)-5-fluoro-N2-[1-[3-(N-succinimidopropyl)]indazol-5-yl]-2,4-pyrimidinediamine	N4-(2,2-Dimethyl-3-oxo-4H-benz[1,4]oxazin-6-yl)-5-fluoro-N2- [1-[3-(N-succinimidopropyl)]indazol-5-yl]-2,4-pyrlmidinediamin	(S)-5-Fluoro-N4-(2-methyl-3-oxo-2H,4H-benz[1,4]oxazin-6-yl)-856\N2-[1-{3-(N-succinimidopropyl)}indazol-5-yl]-2,4-pyrimidinediamine	N4-(2,2-Dimethyl-3-oxo-4H-5-pyrid[1,4]oxazin-6-yl)-5-fluoro- 857 N2-{1-[3-(N-succinimidopropyl)]indazol-5-yl]-2,4- pyrimidinediamine	N4-(3-Chloro-4-methoxyphenyl)-N2-[1-13-(2,6-858 dioxopiperidino]propyl)indazol-5-yl]-5-fluoro-2,4-pyrimidinediamine	N4-(3,4-Dichlorophenyl)-N2-[1-[3-(2,6-859]dioxopiperidino)propyljindazol-5-yl]-5-fluoro-2,4-Pyrimidinediamine	N4-(2,2-Dimethyl-3-oxo-4H-benz[1,4]oxazin-6-yl)-N2-[1-[3-7]) 860(2,6-dioxopiperidino]propyl)indazol-5-yl]-5-fluoro-2,4-7 (d

Compound Number	Compound Name	Physical Data CH Inglesia	LD LD Tryptase, Try CHMC, CH	LD LD LD Tryptase, fp_syk, CHMC, CHMC, CHMC, 11pt IgE, 3pt Ige, 8pt Iono, 3pt	se, fp_syk, , 11pt pt
861	(S)-N2-[1-[3-(2,6-Dioxopiperidino]propyl)indazol-5-yl]-5-fluoro- 861 N4-(2-methyl-3-oxo-2H,4H-benz[1,4]oxazin-6-yl)-2,4- pyrimidinediamine	1H NMR (DMSO-d6): d 10.78 (s, 1H), 10.49 (s, 1H), 10.44 (s, 1H), 8.21 (d, 1H, J = 4.9 Hz), 7.85 (s, 1H), 7.82 (s, 1H), 7.56 (d, 1H, J = 8.8 Hz), 7.17 (s, 1H), 7.16 (d, 1H, J = 8.8 Hz), 6.86 (d, 1H, J = 8.8 Hz), 4.59 (dt, 1H, J =	+	+	
862	N4-(2,2-Dimethyl-3-oxo-4H-5-pyrid[1,4]oxazin-6-yl)-N2-[1-[3-862(2,6-dioxopiperidino]propyl)indazol-5-yl]-5-fluoro-2,4-pyrimidinediamine	1H NMR (DMSO-d6): d 11.10 (s, 1H), 9.22 (s, 1H), 9.18 (s, 1H), 8.12 (d, 1H, J = 3.2 Hz), 8.05 (s, 1H), 7.84 (s, 1H), 7.58 (d, 1H, J = 8.2 Hz), 7.48 (s, 2H), 7.36 (d, 1H, J = 8.2 Hz), 4.32 (t, 2H, J= 7.3 Hz), 3.66 (t, 2H, J = 7.3 Hz), 2.45 (t, 2H, J = 7.3	+	+	
863	N4-(3,4-Dichlorophenyl)-5-fluoro-N2-(2-trifluoromethyl-1H-863benzimidazol-5-yl)-2,4-pyrimidinediamine Hydrogen Chloride Salt	1H NMR (DMSO-d6): d 10.33 (s, 1H), 10.23 (s, 1H), 8.32 (d, 1H, J = 4.7 Hz), 8.03 (d, 1H, J = 2.0 Hz), 7.90 (s, 1H), 7.74 (d, 1H, J = 2.0 Hz), 7.69 (d, 1H, J = 8.8 Hz), 7.51 (d, 1H, J = 8.8 Hz), 7.51 (d, 1H, J = 8.8 Hz).	+	+	
864	cid	1H NMR (DMSO-d6): d 10.11 (s, 1H), 9.92 (s, 1H), 8.27 (d, 1H, J=4.4 Hz), 8.06 (d, 1H, J=2.0 Hz), 7.94 (s, 1H), 7.76 (d, 1H, J=2.0 Hz), 7.67 (d, 1H, J=8.8 Hz), 7.51 (d, 1H, J=8.8 Hz), 7.41 (dd, 1H, J=2.0 and 8.8 Hz), 2.42 (qt, 2H, J=7.3 Hz), 1		+	
865	N4-(3,4-Dichlorophenyl)-5-fluoro-N2-(2-trifluoromethyl-1H- 865 benzimidazol-5-yl)-2,4-pyrimidinediamine Benzenesulfonic Acid Salt	1H NMR (DMSO-d6): d 10.25 (s, 1H), 10.04 (s, 1H), 8.29 (d, 1H, J = 4.4 Hz), 8.03 (s, 1H), 7.91 (s, 1H), 7.73-7.26 (m, 2H), 7.58-7.43 (m, 4H), 7.29-7.27 (m, 3H).	1	+	
866	N4-(3,4-Dichlorophenyl)-5-fluoro-N2-(2-trifluoromethyl-1H- 866 benzimidazol-5-yl)-2,4-pyrimidinediamine p-Toluenesulfonic Acid Salt	1H NMR (DMSO-d6): d 10.30 (s, 1H), 10.08 (s, 1H), 8.30 (d, 1H, J = 4.7 Hz), 8.03 (d, 1H, J = 2.0 Hz), 7.90 (s, 1H), 7.71 (d, 2H, J = 8.8 Hz), 7.51 (d, 1H, J = 8.8 Hz), 7.47-7.43 (m, 3H), 7.10 (d, 2H, J = 8.8 Hz), 2.26 (s, 3H).	ì	+	
867	N4-(3,4-Dichlorophenyl)-5-fluoro-N2-(2-methyl-3H- 867 benzimidazol-5-yl)-2,4-pyrimidinediamine Benzenesulfonic Acid Salt	1H NMR (DMSO-d6): d 9.77 (s, 1H), 9.74 (s, 1H), 8.25 (d, 1H, J= 3.8 Hz), 8.14 (d, 1H, J = 2.3 Hz), 8.12 (s, 1H), 7.81 (dd, 1H, J = 2.3 and 8.8 Hz), 7.66 (d, 2H, J = 9.1 Hz), 7.59-7.52 (m, 3H), 7.33-7.27 (m, 3H), 2.74 (s, 3H).	+	+	
898	N4-(3,4-Dichlorophenyl)-5-fluoro-N2-(2-methyl-3H- 868 benzimidazol-5-yl)-2,4-pyrimidinediamine p-Toluenesulfonic Acid Salt	1H NMR (DMSO-d6): d 9.78 (s, 1H), 9.74 (s, 1H), 8.25 (d, 1H, J= 3.8 Hz), 8.14 (d, 1H, J = 2.3 Hz), 8.12 (s, 1H), 7.81 (dd, 1H, J = 2.3 and 8.8 Hz), 7.66 (d, 2H, J = 9.1 Hz), 7.54 (d, 1H, J = 8.8 Hz), 7.46 (d, 2H, J = 8.2 Hz), 7.10 (d, 2H, J = 8.2 Hz), 2.7	+	+	

			LD (L	LD Tryptase,	LD LD LU Tryptase, fp_syk,	p_syk,
Compound Number	Compound Name	Physical Data	CHMC, C	CHMC,	CHMC, CHMC, 1	11pt
		1H NIMR (DMSO-d6): d 9.93 (s, 2H), 8.28 (d, 1H, J= 3.8 Hz), 8.12 (d,				
8698	N4-(3,4-Dichioropheriyi)-3-illari oʻzhzhizhi oʻzh oʻzh oʻzh oʻzh oʻzh oʻzh oʻzh oʻzh	1H, J = 2.3 Hz), 8.07 (s, 1H), 7.81 (dd, 1H, J = 1.8 and 8.8 Hz), 7.66	+	+		
		(d, 2H, J = 8.8 Hz), 7.56 (d, 1H, J = 8.8 Hz), 2.75 (s, 3H).				
		1H NMR (DMSO-d6): d 9.75 (s, 2H), 9.72 (s, 1H), 8.24 (d, 1H, J=3.8				_
		Hz), 8.14 (d, 1H, J = 2.0 Hz), 8.12 (s, 1H), 7.82 (d, 1H, J = 8.8 Hz),	+	+		
870	870 benzimidazol-5-yl)-2,4-pyrimidinediamine Ethanesulfonic Acid	7.66 (d, 2H, J = 8.5 Hz), 7.53 (d, 1H, J = 8.8 Hz), 2.74 (s, 3H), 2.40 (qt,				
	Salt	2H, J=7.3 Hz), 1.05 (t, 3H, J=7.3 H				
		1H NMR (DMSO-d6): d 10.37 (s, 1H), 10.23 (s, 1H), 8.25 (d, 1H, J =				
	-6)-11-CN-(Ivandrawotham 1 ozolaz ez kie	5.3 Hz), 7.92 (s, 1H), 7.83 (s, 1H), 7.74 (d, 1H, J = 2.6 Hz), 7.59 (d, H,	+	+		
871		J = 8.8 Hz), 7.53 (dd, 1H, J = 2.3 and 8.5 Hz), 7.38 (dd, 1H, J = 1.8				
		and 8.8 Hz), 7.09 (d, 1H, J = 9.1 Hz), 4.40				
		1H NMR (DMSO-46); d 10.27 (s, 1H), 10.02 (s, 1H), 8.28 (d, 1H, J =	<u></u>			
	-3-17-5-10-10-10-10-10-10-10-10-10-10-10-10-10-	4.7 Hz), 8.02 (d, 1H, J = 2.3 Hz), 7.95 (s, 1H), 7.87 (s, 1H), 7.68 (d, 1h, J = 2.3 Hz), 7.95 (s, 1H), 7.87 (s, 1H), 7.68 (d,	+			
872	N4-(3,4-Digniolophiely)-ivz-[1-(3-caloxypropy)////////////////////////////////////	1H, J = 8.8 Hz), 7.60 (d, 1H, J = 8.8 Hz), 7.51 (d,1H, J = 8.8 Hz), 7.42				
	muoro-z,4-pymmained	(dd, 1H, J = 2.3 and 8.8 Hz), 4.41 (t, 2H,				
		1H NMR (DMSO-d6); d 10.76 (s, 1H), 10.36 (s, 1H), 10.19 (s, 1H),				
	-6,-1,-00-1,0-9,-1,-1,-00-1,-1,-00-1,-1,-00-1,-1,-00-1,-1,-00-1,-1,-00-1,-1,-00-1,-1,-00-1,-1,-00-1,-1,-00-1	8.22 (d, 1H, J = 5.3 Hz), 7.90 (s, 2H), 7.55 (d, 1H, J = 9.1 Hz), 7.37	+	+		
873	N4-(2,2-Dimensyl-3-0x0-th record, 1,1/3xxxxxx 0,7,7 xx 1,3 xxxxxxx 1,3 xx 1,3 x	(dd, 1H, J = 1.8 and 8.8 Hz), 7.20 (d, 1H, J = 8.8 Hz), 7.18 (s, 1H),				
		6.87 (d, 1H, J = 8.8 Hz), 4.39 (t, 2H, J = 6.7 Hz				
		1H NMR (DMSO-d6): d 10.79 (s, 1H), 10.40 (s, 1H), 10.24 (s, 1H),				
	/sN2-11-(3-Efhoxypropyl)indazol-5-yll-5-fluoro-N4-(2-methyl-	(d, 1H, J = 5.3 Hz), 7.90 (d, 1H, J = 1.8 Hz), 7.88 (s, 1H), 7.57 (d, 1H, J = 5.3 Hz), 7.90 (d, 1H, J = 1.8 Hz), 7.88 (s, 1H), 7.57 (d, 1H, J = 1.8 Hz), 7.88 (s, 1H), 7.57 (d, 1H, J = 1.8 Hz), 7.88 (s, 1H), 7.57 (d, 1H, J = 1.8 Hz), 7.88 (s, 1H), 7.87 (d, 1H, J = 1.8 Hz), 7.88 (s, 1H), 7.87 (d, 1H, J = 1.8 Hz), 7.88 (s, 1H), 7.87 (d, 1H, J = 1.8 Hz), 7.88 (s, 1H), 7.87 (d, 1H, J = 1.8 Hz), 7.88 (s, 1H), 7.87 (d, 1H, J = 1.8 Hz), 7.88 (s, 1H), 7.88 (s, 1H), 7.87 (d, 1H, J = 1.8 Hz), 7.88 (s, 1H), 7.87 (d, 1H), 7.87	+	+		
874	(5) 12-11 (5) 2-20 (5) 13-0x0-2H,4H-benz[1,4] 0xazin-6-yl)-2,4-pyrimidinediamine	1H, J = 9.1 Hz), 7.37 (dd, 1H, J = 1.8 and 9.1 Hz), 7.22 (dd, 2H, J =				
		1.8 and 8.5 Hz), 6.89 (d, 1H, J = 8.5 Hz), 4.				
		1H NMR (DMSO-d6): d 11.10 (s, 1H), 9.22 (s, 1H), 9.19 (s, 1H), 8.11				
		(d, 1H, J = 3.5 Hz), 8.05 (s, 1H), 7.84 (s, 1H), 7.58 (d, 1H, J = 8.5 Hz),	+	+		
87	875 (1-2-2-2-11) 1-2-2-2-3-3-3-3-3-3-3-3-3-3-3-3-3-3-3-3-	7.42 (d, 2H, J = 8.8 Hz), 7.35 (d, 1H, J = 8.5 Hz), 4.37 (t, 2H, J = 6.7				
		Hz), 3.32 (qt, 2H, J = 7.0 Hz), 3.28 (t				
		1H NMR (DMSO-d6); d 10.32 (s, 1H), 9.63 (s, 1H), 8.19 (d, 1H, J = 4.1	-			
	N4-(2-Chloro-3-methoxypyrid-6-yl)-5-fluoro-N2-(3,4,5-	Hz), 8.06 (d, 1H, J = 8.5 Hz), 7.52 (d, 1H, J = 8.5 Hz), 6.91 (s, 2H),	+	+		
δ 	o/oltrimethoxyphenyl)-2,4-pyrimidinediamine	3.88 (s, 3H), 3.64 (s, 6H), 3.61 (s, 3H).			_	

Compound Number:	Compound Name	Physical Data	LD LD LD Tryptase, Tryptase, fp_syk, CHMC, CHMC, CHMC, 11pt IgE, 3pt IgE, 8pt Iono, 3pt	LD L Tryptase, T CHMC, C	LD Tryptase, fr CHMC, 1	fp_syk, 11pt
877	N4-(2-Chioro-3-methoxypyrid-6-yl)-N2-(3,4-dimethoxyphenyl)-5-fluoro-2,4-pyrimidinediamine	1H NMR (DMSO-d6): d 9.84 (s, 1H), 9.23 (s, 1H), 8.15 (d, 1H, J = 8.8 Hz), 8.14 (d, 1H, J = 3.5 Hz), 7.55 (d, 1H, J = 9.1 Hz), 6.90 (d, 1H, J = 2.3 Hz), 3.88 (s, 3H), 3.65 (s, 3H).	+			
878	N2-(3-Chloro-4-methoxyphenyl)-N4-(2-chloro-3-methoxypyrid-18-yl)-5-fluoro-2,4-pyrimidinediamine	1H NMR (DMSO-d6): d 9.83 (s, 1H), 9.26 (s, 1H), 8.14 (d, 1H, J = 3.5 N2-(3-Chloro-4-methoxyphenyl)-N4-(2-chloro-3-methoxypyrid- Hz), 8.01 (d, 1H, J = 9.1 Hz), 7.80 (d, 1H, J = 2.6 Hz), 7.59 (d, 1H, J = 6-yl)-5-fluoro-2,4-pyrimidinediamine 3.88 (s, 3H), 7.43 (dd, 1H, J = 2.6 and 9.1 Hz), 7.03 (d, 1H, J = 9.1 Hz), 7.88 (s, 3H).	1			-
879	N4-(2-Chloro-3-methoxypyrid-6-yl)-N2-(3,5-dimethylphenyl)-5- fluoro-2,4-pyrimidinediamine	1H NMR (DMSO-d6): d 9.79 (s, 1H), 9.15 (s, 1H), 8.13 (d, 1H, J = 3.5 Hz), 8.08 (dd, 1H, J = 2.3 and 8.8 Hz), 7.57 (d, 1H, J = 8.8 Hz), 7.22 (s, 2H), 6.53 (s, 1H), 3.82 (s, 3H), 2.19 (s, 6H). H+).	+	+		
980		1H NMR (DMSO-d6): d 9.84 (s, 1H), 9.32 (s, 1H), 8.14 (d, 1H, J = 3.5 Hz), 8.12 (d, 1H, J = 8.8 Hz), 7.96 (qt, 1H, J = 4.7 Hz), 7.60 (d, 1H, J = 8.8 Hz), 7.37 (app s, 1H), 7.23 (d, 1H, J = 8.2 Hz), 7.13 (t, 1H, J = 8.2 Hz), 6.48 (dd, 1H, J = 2.3 and 8.2 Hz	+	+		
881	2-Chloro-N4-(2-chloro-3-methoxypyrid-6-yl)-5-fluoro-4- pyrimidineamine	1H NMR (DMSO-d6): d 8.33 (d, 1H, J = 8.8 Hz), 8.12 (d, 1H, J = 2.3 Hz), 7.65 (br s, 1H), 7.38 (d, 1H, J = 8.8 Hz), 3.94 (s, 3H).				
882	N4-(2-Chloro-3-methoxypyrid-6-yl)-5-fluoro-N2-(indazol-6-yl)-882 2,4-pyrimidinediamine	LCMS: ret. time: 10.99 min.; purity: 93%; MS (m/e): 386 (MH ⁺).	+			
883	ypyrid-6-yl)-5-fluoro-N2-(2- zimidazol-5-yl)-2,4-pyrimidinediamine	LCMS: ret. time: 11.74 min.; purity: 97%; MS (m/e): 454 (MH ⁺).	+			
884	N4-(2-Chloro-3-methoxypyrid-6-yl)-5-fluoro-N2-(2-methyl-3H-benzimidazol-5-yl)-2,4-pyrimidinediamine	LCMS: ret. time: 7.71 min.; purity: 93%; MS (m/e): 400 (MH*).	+			
885	V4-(2-Chloro-3-methoxypyrid-6-yl)-5-fluoro-N2-(1- nethylindazol-6-yl)-2,4-pyrimidinediamine	LCMS: ret. time: 12.20 min.; purity: 93%; MS (m/e): 400 (MH³).	+			
988	fluoro-N2-(1- mine	LCMS: ret. time: 10.79 min.; purity: 94%; MS (m/e): 400 (MH ¹).				
887	N4-(2-Chloro-3-methoxypyrid-6-yl)-5-fluoro-N2-(1-ethylindazol-6-yl)-2,4-pyrimidinediamine	LCMS: ret. time: 12.97 min.; purity: 95%; MS (m/e): 414 (MH ⁺).	+			

	т											
fp_syk, 11pt										+	+	
LD LD LD LD Tryptase, Tryptase, fp_syk, CHMC, CHMC, CHMC, 11pt IgE, 8pt Iono, 3pt												
LD Tryptase, CHMC, IgE, 8pt									+	+	+	+
LD Tryptase, CHMC, IgE, 3pt	+	+	+	+	+	+	+	+	+	+	+	+
Physical Data	LCMS: ret. time: 13.86 min.; purity: 92%; MS (m/e): 428 (MH*).	LCMS: ret. time: 11.84 min.; purity: 94%; MS (m/e): 445 (MH*).	LCMS: ret. time: 9.42 min.; purity: 95%; MS (m/e): 485 (MH*).	LCMS: ret. time: 10.30 min.; purity: 95%; MS (m/e): 511 (MH ⁺).	LCMS: ret. time: 11.73 min.; purity: 99%; MS (m/e): 527 (MH*).	LCMS: ret. time: 10.71 min.; purity: 97%; MS (m/e): 514 (MH*).	N4-(3,4-Dichlorophenyl)-N2-(1,2-dimethylbenzimidazol-5-yl)-5-LCMS: ret. time: 9.44 min.; purity: 100%; MS (m/e): 418 (MH*). fluoro-2,4-pyrimidinediamine	LCMS: ret. time: 7.66 min.; purity: 96%; MS (m/e): 413 (MH ⁺).	LCMS: ret. time: 7.09 min.; purity: 99%; MS (m/e): 448 (MH*).	LCMS: ret. time: 6.52 min.; purity: 97%; MS (m/e): 434 (MH*).	LCMS: ret. time: 7.85 min.; purity: 91%; MS (m/e): 449 (MH*).	LCMS: ret. time: 8.77 min.; purity: 97%; MS (m/e): 448 (MH*).
Compound Name	N4-(2-Chloro-3-methoxypyrid-6-yl)-5-fluoro-N2-(1-8) N4-(2-Chloro-3-methoxypyrid-6-yl)-2,4-pyrimidinediamine	N4-(2-Chloro-3-methoxypyrid-6-yl)-N2-(2,2-dimethyl-3-oxo-4H-9benz[1,4]oxazin-6-yl)-5-fluoro-2,4-pyrimidinediamine	N2-[1-[3-(N-Acetylamino)propyl]indazol-5-yl]-N4-(2-chloro-3-methoxypyrid-6-yl)-5-fluoro-2,4-pyrimidinediamine	N4-(2-Chloro-3-methoxypyrid-6-yl)-N2-[1-[3-(N-891 cyclopropanecarbonylamino)propyljindazol-5-yl]-5-fluoro-2,4-pyrimidinediamine	N4-(2-Chloro-3-methoxypyrid-6-yl)-5-fluoro-N2-[1-(3- 892 pivalamidopropyl)indazol-5-yl]-2,4-pyrimidinediamine	N4-(2-Chloro-3-methoxypyrid-6-yl)-5-fluoro-N2-[1-[3-(N-893 sobutyrylamino)propyl]indazol-5-yl]-2,4-pyrimidinediamine	N4-(3,4-Dichlorophenyl)-N2-(1,2-dimethylbenzimidazol-5-yl)-5-fluoro-2,4-pyrimidinediamine	N4-(3-Chloro-4-methoxyphenyl)-N2-(1,2-dimethylbenzimidazol-5-yl)-5-fluoro-2,4-pyrimidinediamine	N2-(1,2-Dimethylbenzimidazol-5-yl)-N4-(2,2-dimethyl-3-oxo-896 4H-benz[1,4]oxazin-6-yl)-5-fluoro-2,4-pyrimidinediamine	(S)-N2-(1,2-Dimethylbenzimidazol-5-yl)-5-fluoro-N4-(2-methyl-3-oxo-2H,4H-benz[1,4]oxazin-6-yl)-2,4-pyrimidinediamine	N2-(1,2-Dimethylbenzimidazol-5-yl)-N4-(2,2-dimethyl-3-oxo-898 4H-5-pyrid[1,4]oxazin-6-yl)-5-Fluoro-2,4-pyrimidinediamine	N4-(3,4-Dichlorophenyl)-5-fluoro-N2-[1-(2-hydroxyethyl)-2- · methylbenzimidazol-5-yl)-2,4-pyrimidinediamine
Compound	888	889	890	891	892	893	894	895	968	897	368	866

F. Funco-644-(2-methy 1.1.3-incoo-214.41-benzoli/ a)inizan-β- 15-Funco-44-(2-methy 1.1.3-incoo-214.41-benzoli/ a)inizan-β- 17-Funco-44-(2-methy 1.1.3-incoo-214.41-benzoli/ a)inizan-β- 17-Funco-4-methocyteny)-S-funco-N2-(1-methy-2- 17-Funco-4-methocyteny)-S-funco-N2-(1-methy-2- 17-Funco-4-methocyteny)-S-funco-N2-(1-methy-2- 17-Funco-4-methocyteny)-S-funco-N2-(1-methy-2- 17-Funco-4-methocyteny)-S-funco-N2-(1-methy-2- 17-Funco-4-methocyteny)-S-funco-N2-(1-methy-2- 17-Funco-4-methocyteny)-S-funco-N2-(1-methy-2- 17-Funco-4-methy-2-methocyteny)-S-funco-N2-(1-methy-2- 17-Funco-4-methy-2-methocyteny)-S-funco-N2-(1-methy-2- 17-Funco-4-methy-2-methocyteny)-S-funco-N2-(1-methy-2- 17-Funco-4-methy-2-methy-2-methocyteny)-S-funco-1-(1-2-hydroxyethy)-2- 17-Funco-4-methy-2-methy-2-methocyteny)-S-funco-1-(1-2-hydroxyethy)-2- 17-Funco-4-methy-2-methocyteny)-S-funco-1-(1-2-hydroxyethy)-2- 17-Funco-4-methy-2-methocyteny)-S-funco-1-(1-2-hydroxyethy)-2- 17-Funco-4-methy-2-methocyteny)-S-funco-1-(1-2-hydroxyethy)-2- 17-Funco-4-methy-2-methocyteny)-S-funco-1-(1-2-hydroxyethy)-2- 17-Funco-4-methy-2-methy-2-methocyteny)-S-funco-1-(1-2-hydroxyethy)-2- 17-Funco-4-methy-2-methy-2-methy-2-methy-2-methocyteny)-S-funco-1-(1-2-hydroxyethy)-2- 17-Funco-4-methy-2-meth	Compound Name	Physical Data	LD Tryptase, CHMC, IgE, 3pt	LD Tryptase, CHMC, IgE, 8pt	LD LD LD LD Tryptase, Tryptase, fp_syk, CHMC, CHMC, CHMC, 11pt GE, 3pt IgE, 8pt Iono, 3pt	fp_syk, 11pt
LCMS: ret. time: 14.28 min.; purity: 97%; MS (m/e): 472 (MH*). LCMS: ret. time: 10.21 min.; purity: 91%; MS (m/e): 502 (MH*). LCMS: ret. time: 10.21 min.; purity: 94%; MS (m/e): 502 (MH*). LCMS: ret. time: 11.48 min.; purity: 95%; MS (m/e): 503 (MH*). LCMS: ret. time: 12.15 min.; purity: 96%; MS (m/e): 502 (MH*). 1)-2. LCMS: ret. time: 9.08 min.; purity: 96%; MS (m/e): 532 (MH*). + LCMS: ret. time: 9.08 min.; purity: 96%; MS (m/e): 518 (MH*). + LCMS: ret. time: 8.67 min.; purity: 96%; MS (m/e): 518 (MH*). + CCMS: ret. time: 8.67 min.; purity: 92%; MS (m/e): 518 (MH*).	-methyl-1,1,3-trioxo-2H,4H-benzo[1,4]thiazl oromethyl-1H-benzimidazol-5-yl)-2,4- nine		+			+
LCMS: ret. time: 11.38 min.; purity: 91%; MS (m/e): 467 (MH ⁻). LCMS: ret. time: 10.21 min.; purity: 94%; MS (m/e): 502 (MH ⁻). LCMS: ret. time: 9.66 min.; purity: 93%; MS (m/e): 503 (MH ⁻). LCMS: ret. time: 11.48 min.; purity: 94%; MS (m/e): 503 (MH ⁻). LCMS: ret. time: 12.15 min.; purity: 96%; MS (m/e): 532 (MH ⁻). + LCMS: ret. time: 9.90 min.; purity: 96%; MS (m/e): 532 (MH ⁻). + LCMS: ret. time: 9.08 min.; purity: 96%; MS (m/e): 532 (MH ⁺). + LCMS: ret. time: 9.08 min.; purity: 96%; MS (m/e): 532 (MH ⁺).	orophenyl)-5-fluoro-N2-(1-methyl-2-lbenzimidazol-5-yl)-2,4-pyrimidinediamine	LCMS: ret. time: 14.28 min.; purity: 97%; MS (m/e): 472 (MH ⁺).		+		
LCMS: ret. time: 10.21 min.; purity: 94%; MS (m/e); 502 (MH*). LCMS: ret. time: 9.66 min.; purity: 93%; MS (m/e); 488 (MH*). LCMS: ret. time: 11.48 min.; purity: 94%; MS (m/e); 503 (MH*). 1- LCMS: ret. time: 9.90 min.; purity: 96%; MS (m/e); 532 (MH*). 1- LCMS: ret. time: 9.08 min.; purity: 96%; MS (m/e); 532 (MH*). + LCMS: ret. time: 9.08 min.; purity: 96%; MS (m/e); 532 (MH*). + LCMS: ret. time: 9.08 min.; purity: 92%; MS (m/e); 518 (MH*). +	-4-methoxyphenyl)-5-fluoro-N2-(1-methyl-2- /lbenzimidazol-5-yl)-2,4-pyrimidinediamine	LCMS: ret. time: 11.38 min.; purity: 91%; MS (m/e): 467 (MH ⁺).		+		
LCMS: ret. time: 9.66 min.; purity: 93%; MS (m/e): 488 (MH ⁺). LCMS: ret. time: 11.48 min.; purity: 91%; MS (m/e): 503 (MH ⁺). LCMS: ret. time: 12.15 min.; purity: 96%; MS (m/e): 502 (MH ⁺). 1-2 LCMS: ret. time: 9.90 min.; purity: 94%; MS (m/e): 532 (MH ⁺). + LCMS: ret. time: 9.08 min.; purity: 96%; MS (m/e): 532 (MH ⁺). + LCMS: ret. time: 8.67 min.; purity: 92%; MS (m/e): 518 (MH ⁺).	sthyl-3-oxo-4H-benz[1,4]oxazin-6-yl)-N2-(1- uoromethylbenzimidazol-5-yl)-2,4- amine	LCMS: ret. time: 10.21 min.; purity: 94%; MS (m/e): 502 (MH ⁺).		+		
LCMS: ref. time: 11.48 min.; purity: 91%; MS (m/e): 503 (MH*). LCMS: ref. time: 12.15 min.; purity: 96%; MS (m/e): 502 (MH*). 1- LCMS: ref. time: 9.90 min.; purity: 94%; MS (m/e): 532 (MH*). + LCMS: ref. time: 9.08 min.; purity: 96%; MS (m/e): 532 (MH*). + LCMS: ref. time: 8.67 min.; purity: 92%; MS (m/e): 518 (MH*).	-N4-(2-methyl-3-oxo-2H,4H-benz[1,4]oxazin-6 1-2-trifluoromethylbenzimidazol-5-yl)-2,4- amine			, +		
LCMS: ref. time: 12.15 min.; purity: 96%; MS (m/e): 502 (MH ⁺). 1- LCMS: ref. time: 9.90 min.; purity: 94%; MS (m/e): 497 (MH ⁺). 1- LCMS: ref. time: 9.08 min.; purity: 96%; MS (m/e): 532 (MH ⁺). + LCMS: ref. time: 8.67 min.; purity: 92%; MS (m/e): 518 (MH ⁺). +	ethyl-3-oxo-4H-5-pyrid[1,4]oxazin-6-yl)-N2-(1- luoromethylbenzimidazol-5-yl)-2,4- amine	LCMS: ret. time: 11.48 min.; purity: 91%; MS (m/e): 503 (MH*).		+		
1)-2- LCMS: ref. time: 9.90 min.; purity: 94%; MS (m/e): 497 (MH*). 1- LCMS: ref. time: 9.08 min.; purity: 96%; MS (m/e): 532 (MH*). + LCMS: ref. time: 8.67 min.; purity: 92%; MS (m/e): 518 (MH*). +	nlorophenyl)-5-fluoro-[1-(2-hydroxyethyl)-2- ylbenzimidazol-5-yl]-2,4-pyrimidinediamine	LCMS: ret. time: 12.15 min.; purity: 96%; MS (m/e): 502 (MH*).		+		
1- LCMS: ref. time: 9.08 min.; purity: 96%; MS (m/e): 532 (MH**). + Izol- LCMS: ref. time: 8.67 min.; purity: 92%; MS (m/e): 518 (MH**). +	o-4-methoxyphenyl}-5-fluoro-[1-(2-hydroxyethy ylbenzimidazol-5-yl]-2,4-pyrimidinediamine)-2- LCMS: ret. time: 9.90 min.; purity: 94%; MS (m/e): 497 (MH ⁺).		+	,	
	ethyl-3-oxo-4H-benz[1,4]oxazin-6-yl)-5-fluoro- hyl)-2-trifluoromethylbenzimidazol-5-yl]-2,4- amine		+	+		
	-[1-(2-hydroxyethyl)-2-trifluoromethylbenzimid: nethyl-3-oxo-2H,4H-benz[1,4]oxazin-6-yl)-2,4- amine		+	+		

CHMC, CHMC, 11pt pt lgE, 8pt lono, 3pt t t + + +	+	+	+	+	+	+ +
ysical Data ysical Data ysical Data ysical Data ysical Data	-	922(2-hydroxymethyl)-2-trifluoronieusy.epperance pyrimidinediamine pyrimidinediamine pyrimidinediamine pyrimidinediamine pyrimidinediamine pyrimidinediamine pyrimidinediamine pyrimidinediamine pyrimidinediamine pyrimidiazol-5-yll-N4-(2-methyl-3-oxo-2H,4H- LCMS: ret. time: 10.43 min.; purity: 92%; MS (m/e): 502 (MH ⁺).	923/trifluoromethyliberianine benz[1,4]oxazin-6-yl)-2,4-pyrimidinediamine benz[1,4]oxazin-6-yl)-5-fluoro-[1- LCMS: ret. time: 12.25 min.; purity: 98%; MS (m/e): 517 (MH [†]).	- 1-2-	925 N2-(1,2-Benzisoxazor 2,4-pyrimidinediamine N2-(1,2-Benzisoxazol-5-yl)-N4-(2,2-dimetryl-3-oxo-4H-	4H-5- ne thyl-1,1,3- sdiamine

CHMC, CHMC, 11pt (gE, 8pt iono, 3pt +	, +	+	+ +	+	+	+	+ +	+	
Ombound Compound Name Physical Data Physical Data Compound Name Comp	itry!-5	yl)-5-fluoro-2, 7-77. yl)-5-fluoro-4-methoxyphenyl)-N2-(1-ethyl-2- N4-(3-Chloro-4-methoxyphenyl)-N2-(1-ethyl-2- signathylbenzimidazol-5-yl)-5-fluoro-2,4-pyrimidinediamine signathylbenzimidazol-5-yl)-5-fluoro-2,4-pyrimidinediamine LCMS: ret. time: 8.64 min.; purity: 52.03 LCMS: ret. time: 7.91 min.; purity: 99%; MS (m/e): 462 (MH**).	nediamine Joro-N4-(2-	1-6-yl)-N2-(1-	, di			NA4-(2,2-Dimetnyl-3-0x) 939[1-(3-hydroxypropyl)-2-trifluoromethylbenzlmidazol-5-yl]-2,4- pyrimidinediamine pyrimidinediamine pyrimidinediamine pyrimidinediamine pyrimidinediamine pyrimidinediamine pyrimidinediamine	methyl-3-oxo-2h,4hramine

fp_syk 11pt		+	+	+						
LD LD LD Tryptase, Tryptase, fp_syk, CHMC, CHMC, CHMC, 11pt IGE, 8pt Iono, 3pt										
LD Tryptase, TCHMC, (CHMC, (IgE, 8pt I	+	+		+	+	+	+	+	+	+
LD Tryptase, CHMC, IgE, 3pt	+	+	+	+	+	+				
Physical Data	LCMS: ret. time: 9.85 min.; purity: 93%; MS (m/e): 547 (MH ⁺).	LCMS: ret. time: 9.49 min.; purity: 97%; MS (m/e): 489 (MH ⁺).	LCMS: ret. time: 7.79 min.; purity: 93%; MS (m/e): 484 (MH ⁺).	LCMS: ret. time: 7.20 min.; purity: 99%; MS (m/e); 519 (MI-t ⁺).	LCMS: ret. time: 6.78 min.; purity: 90%; MS (m/e): 505 (MH ⁺).	LCMS: ret. time: 7.86 min.; purity: 96%; MS (m/e): 520 (MH²).	LCMS: ret. time: 9.65 min.; purity: 95%; MS (m/e): 462 (MH ⁺).	LCMS: ret. time: 8.28 min.; purity: 90%; MS (m/e): 457 (MH ⁺).	LCMS: ret. time: 7.70 min.; purity: 96%; MS (m/e): 492 (MH ⁺).	LCMS: ret. time: 7.22 min.; purity: 90%; MS (m/e): 478 (MH*).
Compound Compound Name Number	N4-(2,2-Dimethyl-3-oxo-4H-5-pyrido[1,4]oxazin-6-yl)-5-fluoro-941 N2-[1-(3-hydroxypropyl)-2-trifluoromethylbenzimidazol-5-yl]-2,4-pyrimidinediamine	N4-(3,4-Dichlorophenyl)-5-fluoro-N2-[1-methyl-2-(4-morpholino)benzimidazol-5-yl]-2,4-pyrimidinediamine	N4-(3-Chloro-4-methoxyphenyl)-5-fluoro-N2-[1-methyl-2-(4-morpholino)benzimidazol-5-yl]-2,4-pyrimidinediamine	N4-(2,2-Dimethyl-3-oxo-4H-benz[1,4]oxazin-6-yl)-5-fluoro-N2-944 [1-methyl-2-(4-morpholino)benzimidazol-5-yl]-2,4-pyrimidinediamine	(S)-5-Fluoro- N2-[1-methyl-2-(4-morpholino)benzimidazol-5-945yl]-N4-(2-methyl-3-oxo-2H,4H-benz[1,4]oxazin-6-yl)-2,4-pyrimidinediamine	N4-(2,2-Dimethyl-3-oxo-4H-5-pyrido[1,4]oxazin-6-yl)-5-fluoro-946 N2-[1-methyl-2-(4-morpholino)benzimidazol-5-yl]-2,4-pyrimidinediamine	N4-(3,4-Dichlorophenyl)-5-fluoro-N2-[1-(3-hydroxypropyl)-2-methylbenzimidazol-5-yl]-2,4-pyrimidinediamine	N4-(3-Chloro-4-methoxyphenyl)-5-fluoro-N2-[1-(3-948 hydroxypropyl)-2-methylbenzimidazol-5-yl]-2,4-pyrimidinediamine	N4-(2,2-Dimethyl-3-oxo-4H-benz[1,4]oxazin-6-yl)-5-fluoro- N2-949[1-(3-hydroxypropyl)-2-methylbenzimidazol-5-yl]-2,4-pyrimidinediamine	(S)-5-Fluoro-N2-[1-(3-hydroxypropyl)-2-methylbenzimidazol-5-950 yl]-N4-(2-methyl-3-oxo-2H,4H-benz[1,4]oxazin-6-yl)-2,4-pyrimidinediamine

Compound	Compound Name	Physical Data	LD L Tryptase, 7 CHMC, (0	LD LD LD Tryptase, Tryptase, fp_syk, CHMC, CHMC, CHMC, 11pt IgE, 3pt IgE, 8pt Iono, 3pt	LD Tryptase, fi CHMC, 1	fp_syk, 11pt
951	N4-(2,2-Dimethyl-3-oxo-4H-5-pyrido[1,4]oxazin-6-yl)-5-fluoro-951 N2-[1-(3-hydroxypropyl)-2-methylbenzimidazol-5-yl]-2,4-pyrimidinediamine	LCMS: ret. time: 7.97 min.; purity: 94%; MS (m/e): 493 (MH*).	+	+		
952	N2-[1-[3-(N-Acetylamino)propyl]-2-methylbenzimidazol-5-yl]-952N4-(2,2-dimethyl-3-oxo-4H-benz[1,4]oxazin-6-yl)-5-fluoro-2,4-pyrimidinediamine	LCMS: ret. time: 7.89 min.; purity: 97%; MS (m/e): 533 (MH ⁺).	+	+		
953	N2-[1-[3-(N-Acetylamino)propyl]-2-methylbenzimidazol-5-yl]- 953 N4-(2,2-Dimethyl-3-oxo-4H-5-pyrido[1,4]oxazin-6-yl)-5-fluoro- 2,4-pyrimidinediamine	LCMS: ret. time: 8.09 min.; purity: 97%; MS (m/e): 534 (MH*).	+	+		
954	N4-(3,4-Dichlorophenyl)-5-fluoro-N2-[1-methyl-2-(4- morpholinomethyl)benzimidazol-5-yl]-2,4-pyrimidinediamine	LCMS: ret. time: 10.04 min.; purity: 96%; MS (m/e): 503 (MH ⁺).	+	+		
955	N4-(3-Chloro-4-methoxyphenyl)-5-fluoro-N2-[1-methyl-2-(4- 5 morpholinomethyl)benzimidazol-5-yl]-2,4-pyrimidinediamine	LCMS: ret. time: 9.29 min.; purity: 93%; MS (m/e): 498 (MH*).		+		
956	N4-(2,2-Dimethyl-3-oxo-4H-benz[1,4]oxazin-6-yl)-5-fluoro-N2- 956[1-methyl-2-(4-morpholinomethyl)benzimidazol-5-yl]-2,4- pyrimidinediamine	LCMS: ret. time: 8.09 min.; purity: 94%; MS (m/e): 533 (MH*).		+		, ,
957	(S)-5-Fluoro-N2-[1-methyl-2-(4- 957 morpholinomethyl)benzimidazol-5-yl]-N4-(2-methyl-3-oxo- 2H,4H-benz[1,4]oxazin-6-yl)2,4-pyrimidinediamine	LCMS: ret. time: 7.55 min.; purity: 98%; MS (m/e): 519 (MH*).	+	+		
958	N4-(2,2-Dimethyl-3-oxo-4H-5-pyrido[1,4]oxazin-6-yl)-5-fluoro- 958 N2-[1-methyl-2-(4-morpholinomethyl)benzimidazol-5-yl]-2,4- pyrimidinediamine	LCMS: ret. time: 8.34 min.; purity: 98%; MS (m/e): 534 (MH ⁺).		+		
696	N4-(3,4-Dichlorophenyl)-5-fluoro-N2-[2-(4-morpholinomethyl)- IH-benzimidazol-5-yl]-2,4-pyrimidinediamine	LCMS: ret. time: 9.12 mln.; purity: 95%; MS (m/e): 489 (MH*).		+		
096	N4-(3-Chloro-4-methoxyphenyl)-5-fluoro-N2-[2-(4- 960 morpholinomethyl)-1H-benzimidazol-5-yl]-2,4- pyrimidinediamine	LCMS: ret. time: 8.10 min.; purity: 97%; MS (m/e): 484 (MH*).		+		

Comparison of Name	, k	+	+							
Compound Name Compound Name Physical Ceta Physic	e,fp_s 111pt	·							,	
Compound Name Compound Name Physical Ceta Physic	LD Tryptasi CHMC, Iono, 3p	<u> </u>								
Compound Name Compound Name Physical Ceta Physic	LD Tryptase, CHMC, IgE, 8pt	+	+	+	+			+	+	+
Compound Name Compou	LD Tryptase, CHMC, IgE, 3pt				+	+	+	+	+	+
Compound Name N4-(2,2-Dimethyl-3-oxo-4H-benz[1,4]oxazin-6-yl)-5-fluoro-N2-pyrimidinediamine N4-(2,2-Dimethyl-3-oxo-4H-benz[1,4]oxazin-6-yl)-5-fluoro-N2-pyrimidinediamine N4-(2,2-Dimethyl-3-oxo-4H-5-pyrido[1,4]oxazin-6-yl)-5-fluoro-N2-pyrimidinediamine N4-(2,2-Dimethyl-1-3-oxo-4H-benz[1,4]oxazin-6-yl)-5-fluoro-N2-yl-2,4-pyrimidinediamine N4-(2,2-Dimethyl-3-oxo-4H-benz[1,4]oxazin-6-yl)-5-fluoro-N2-yl-2,4-pyrimidinediamine N4-(2,2-Dimethyl-3-oxo-4H-5-pyrido[1,4]oxazin-6-yl)-5-fluoro-N2-yl-2,4-pyrimidinediamine N4-(3,4-Dichlorophenyl)-5-fluoro-N2-{1-methyl-2-pyrimidinediamine} N4-(3,4-Dichlorophenyl)-5-fluoro-N2-{1-methyl-2-pyrimidinediamine} N4-(3,4-Dichlorophenyl)-5-fluoro-N2-{1-methyl-2-pyrimidinediamine} N4-(3,2-Dimethyl-3-oxo-4H-benz[1,4]oxazin-6-yl)-5-fluoro-N2-tl-methyl-2-fluoro-N2-{1-methy		LCMS: ret. time: 7.70 min.; purity: 93%; MS (m/e): 519 (MH ⁺).	LCMS: ret. time: 7.93 min.; purity: 95%; MS (m/e): 520 (MH ⁺).	LCMS: ret. time: 8.01 min.; purity: 95%; MS (m/e): 569 (MH ⁺).	LCMS: ret. time: 8.36 min.; purity: 95%; MS (m/e): 570 (MH³).	LCMS: ret. time: 10.63 min.; purity: 94%; MS (m/e): 496 (MH ⁺).	LCMS: ret. time: 9.10 min.; purity: 95%; MS (m/e): 491 (MH ⁺).	LCMS: ret. time: 9.22 min.; purity: 91%; MS (m/e): 525 (MH ⁺).	LCMS: ret. time: 8.62 min.; purity: 91%; MS (m/e): 512 (MH ⁺).	LCMS: ret. time: 9.14 min.; purity: 94%; MS (m/e): 527 (MH*).
		N4-(2,2-Dimethyl-3-oxo-4H-benz[1,4]oxazin-6-yl)-5-fluoro-N2- 961 [2-(4-morpholinomethyl)-1H-benzimidazol-5-yl]-2,4- pyrimidinediamine	N4-(2,2-Dimethyl-3-oxo-4H-5-pyrido[1,4]oxazin-6-yl)-5-fluoro- 962 N2-[2-(4-morpholinomethyl)-1H-benzimidazol-5-yl]-2,4- pyrimidinediamine	N4-(2,2-Dimethyl-3-oxo-4H-benz[1,4]oxazin-6-yl)-5-fluoro-N2-963[2-methyl-1-[3-(N-methylsulfonylamino)propyl]benzimidazol-5-yl]-2,4-pyrimidinediamine	N4-(2,2-Dimethyl-3-oxo-4H-5-pyrido[1,4]oxazin-6-yl)-5-fluoro-964 methyl-1-[3-(N-methylsulfonylamino)propyl]benzimidazol-5-yl]-2,4-pyrimidinediamine	N4-(3,4-Dichlorophenyl)-5-fluoro-N2-{1-methyl-2-965[(methylsulfonyl)methyl]benzimidazol-5-yl}-2,4-pyrimidinediamine	N4-(3-Chloro-4-methoxyphenyl)-5-fluoro- N2-(1-methyl-2-966 [(methylsulfonyl)methyl]benzimidazol-5-yl)-2,4-pyrimidinediamine	3-oxo-4H-benz[1,4 ylsulfonyl)methyl]b	(S)-5-Fluoro-N2-(1-methyl-2-968 [(methylsulfonyl)methyl]benzimidazol-5-yl}-N4-(2-methyl-3-oxo-2H,4H-benz[1,4]oxazin-6-yl)-2,4-pyrimidinediamine	N4-(2,2-Dimethyl-3-oxo-4H-5-pyrido[1,4]oxazin-6-yl)-5-fluoro-969 N2-{1-methyl-2-[(methylsulfonyl)methyl]benzimidazol-5-yl}-2,4-pyrimidinediamine

Compound Compound Name		LD Tryptase, Physical Data CHMC, IgE, 3pt	LD ase, Tryptase C, CHMC, tht lgE, 8pt	LD ,,Tryptase, CHMC, lono, 3pt	fp_syk, 11pt
970 M4-(3,4-Dichlorophenyl)-N2-[2-(N,N-diethylaminomethyl) methylbenzimidazol-5-yl]-5-fluoro-2,4-pyrimidinediamine	ninomethyl)-1- Jinediamine	LCMS: ret. time: 9.42 min.; purity: 91%; MS (m/e): 489 (MH*).			
N4-(3-Chloro-4-methoxyphenyl)-N2-[2-(N,N-971 diethylaminomethyl)-1-methylbenzimidazol-5-yl]-5-fluoro-2,4-pyrimidinediamine		LCMS: ret. time: 7.76 min.; purity: 94%; MS (m/e): 485 (MH*).			
N2-[2-(N,N-Diethylaminomethyl)-1-methylbenzimidazol-5-ylj-972 N4-(2,2-dimethyl-3-oxo-4H-benz[1,4]oxazin-6-yl)-5-fluoro-2,4-pyrimidinediamine		LCMS: ret. time: 7.56 min.; purity: 94%; MS (m/e): 519 (MH*).	+		
(S)-N2-[2-(N,N-Diethylaminomethyl)-1-methylbenzimidazol-5-973 yi]-5-fluoro-N4-(2-methyl-3-oxo-2H,4H-benz[1,4]oxazin-6-yl)-2,4-pyrimidinediamine		LCMS: ret. time: 7.21 min.; purity: 97%; MS (m/e); 505 (MH ⁺).	+		
N2-[2-(N,N-Diethylaminomethyl)-1-methylbenzimidazol-5-yi]- 974 N4-(2,2-dimethyl-3-oxo-4H-5-pyrido[1,4]oxazin-6-yl)-5-fluoro- 2,4-pyrimidinediamine		LCMS: ret. time: 7.51 min.; purity: 97%; MS (m/e): 520 (MH*).	+		
N4-(3,4-Dichlorophenyl)-5-fluoro-N2-[2-(4-morpholino)-1H-benzimidazol-5-yl]-2,4-pyrimidinediamine		LCMS: ret. time: 8.89 min.; purity: 90%; MS (m/e): 475 (MH*).	+		+
N4-(2,2-Dimethyl-3-oxo-4H-be 976 [2-(4-morpholino)-1H-benzimic	N4-(2,2-Dimethyl-3-oxo-4H-benz[1,4]oxazin-6-yl)-5-fluoro-N2- [2-(4-morpholino)-1H-benzimidazol-5-yl]-2,4-pyrimidinediamine	LCMS: ret. time: 7.76 min.; purity: 96%; MS (m/e); 505 (MH*).	+		+
N4-(2,2-Dimethyl-3-oxo-4H-5-pyrido[1,4]oxazin-6 977 N2-[2-(4-morpholino)-1H-benzimidazol-5-yl]-2,4- pyrimidinediamine	3-yl)-5-fluoro-	LCMS: ret. time: 8.05 min.; purity: 926%; MS (m/e): 506 (MH*).	+		+
N4-(3-Chloro-4-methoxypheny 978 1H-benzimidazol-5-yi]-2,4-pyri	/I)-5-fluoro-N2-[2-(4-morpholino)-Limidinediamine	N4-(3-Chloro-4-methoxyphenyl)-5-fluoro-N2-[2-(4-morpholino)-LCMS: ret. time: 8.03 min.; purity: 92%; MS (m/e): 470 (MH*).	+		
979 piperazino)-1H-benzimidazol-5-yl-2,4-pyrlmidinediamine		LCMS: ret. time: 8.12 min.; purity: 98%; MS (m/e): 502 (MH*).			
N4-(3-Chloro-4-methoxyphenyl)-5-fluoro-N2-[1-methyl-2-(4-980 methyl-1-piperazino)-1H-benzimidazol-5-yl]-2,4-pyrimidinediamine	nethyl-2-(4-	LCMS: ret. time: 7.34 min.; purity: 96%; MS (m/e): 497 (MH*).			

								+
fp_syk, 11pt				+	+			
Tryptase, Tryptase, fp_syk, CHMC, CHMC, 11pt IgE, 3pt IgE, 8pt Iono, 3pt								
Tryptase, CHMC, (gE, 8pt				+	+	+	+	+
Tryptase, Try CHMC, CH				+	+	+	+	
Physical Data	LCMS: ret. time: 6.99 min.; purity: 97%; MS (m/e): 532 (MH*).	LCMS: ret. time: 6.62 min.; purity: 97%; MS (m/e): 518 (MH*).	LCMS: ret. time: 7.05 min.; purity: 96%; MS (m/e): 533 (MH ⁺).	¹ H NMR (DMSO-d6): d 11.22 (1H, s), 9.79 (1H, s), 9.62 (1H, s), 8.27 (1H, d, J = 3.9 Hz), 8.08 (1H, d, J = 4.5 Hz), 7.68-7.64 (3H, m), 7.47 (1H, d, J = 8.7 Hz), 7.42-7.31 (5H, m), 7.22 (1H, t, J = 8.1 Hz), 6.63 (1H, dd, J = 8.1 Hz, J = 2.4 Hz), 4.47 (2H,	(1H, d, J = 3.9 Hz), 8.06 (1H, m), 7.65-7.61 (1H, m), 7.55 (1H, d, J = 8.1 Hz), 7.38-7.18 (5H, m), 6.66 (1H, d, J = 8.1 Hz), 7.38-7.18 (5H, m), 6.66 (1H, d, J = 8.1 Hz), 7.38-7.18 (5H, m), 6.66 (1H, d, J = 8.1 Hz), 7.5 Hz)	17.5 F.J., MAR (DMSO-d6): d 11.18 (1H, s), 9.54 (2H, broad s), 8.26 (1H, H) NMR (DMSO-d6): d 11.18 (1H, m), 7.47 (1H, d, J = 8.4 Hz), 7.40 (1H, s), 7.34 (1H, d, J = 9 Hz), 7.20 (1H, t, J = 7.9 Hz), 6.61 (1H, d, J = 7.5 Hz), 4.47 (2H, s), 2.75 (3H, d, J	H, NMR (DMSO-d6): d 11.18 (1H, s), 9.50 (2H, broad s), 8.25 (1H, d, J = 3.3 Hz), 8.06 (1H, m), 7.74-7.67 (1H, m), 7.47 (1H, d, J = 8.4 Hz), 7.41 (1H, s), 7.37 (1H, d, J = 8.1 Hz), 7.20 (1H, t, J = 7.9 Hz), 6.59 (1H, d, J = 8.1 Hz), 4.47 (2H, s), 2.74 (S. S
Compound Compound Name	N4-(2,2-Dimethyl-3-oxo-4H-benz[1,4]oxazin-6-yl)-5-fluoro-N2- 981 [1-methyl-2-(4-methyl-1-piperazino)-1H-benzimidazol-5-yl]-2,4- LCMS: ret. time: 6.99 min.; purity: 97%; MS (m/e): 532 (MH¹). porimidinediamine	(S)-5-Fluoro-N2-[1-methyl-2-(4-methyl-1-piperazino)-1H- 982 benzimidazol-5-ylj-N4-(2-methyl-3-oxo-2H,4H- benz[1,4]oxazin-6-yl)-2,4-pyrimidinediamine	NA-(2,2-Dimethyl-3-oxo-4H-5-pyrido[1,4]oxazin-6-yl]-5-fluoro-983 N2-[1-methyl-2-(4-methyl-1-piperazino)-1H-benzimidazol-5-yl]- LCMS: ret. time: 7.05 min.; purity: 96%; MS (m/e): 533 (MH ⁺).	2,4-pyrmaineuranine N4-(2,2-Dimethyl-3-oxo-4H-5-pyrid[1,4]oxazin-6-yl)-5-fluoro- 984 N2-[3-(N-methylamino)carbonylmethyleneoxyphenyl]-2,4-	N4-(2,2-Dimethyl-3-oxo-4H-5-pyrid[1,4]oxazin-6-yl)-5-fluoro- 985 N2-[3-(N-methylamino)carbonylmethyleneoxyphenyl]-2,4-	N4-(2,2-Dimethyl-3-oxo-4H-5-pyrid[1,4]oxazin-6-yl)-5-fluoro-986 N2-[3-(N-methylamino)carbonylmethyleneoxyphenyl]-2,4-	N4-(2,2-Dimethyl-3-oxo-4H-5-pyrid[1,4]oxazin-6-yl]-5-fluoro- 987 N2-[3-(N-methylamino)carbonylmethyleneoxyphenyl]-2,4- nyrimidinediamine Bis-Hydrogen Chloride Salt	N4-(2,2-Dimethyl-3-oxo-4H-5-pyrid[1,4]oxazin-6-yl)-5-fluoro- 988 N2-[3-(N-methylamino)carbonylmethyleneoxyphenyl]-2,4- pyrimidinediamine Nitric Acid Salt

Compound Number	 Compound Name	Physical Data	LD Tryptase, CHMC,	LD LD LD Tryptase, Tryptase, fp_syk, CHMC, CHMC, CHMC, 11pt	LD Tryptase,ff CHMC, 1	fp_syk, 11pt
			lgE, 3pt	lgE, 8pt lo	lono, 3pt	
586	N4-(2,2-Dimethyl-3-oxo-4H-5-pyrid[1,4]oxazin-6-yl)-5-fluoro- 989 N2-[3-(N-methylamino)carbonylmethyleneoxyphenyl]-2,4- pyrimidinediamine Bis-Nitric Acid Salt	"H NMR (DMSO-d6); d 11.21 (1H, s), 9.64 (1H, broad s), 9.54 (1H, s), 8.26 (1H, d, J = 3.6 Hz), 8.07 (1H, m), 7.67 (1H, d, J = 8.4 Hz), 7.47 (1H, d, J = 8.7 Hz), 7.39 (1H, s), 7.34 (1H, d, J = 7.8 Hz), 7.21 (1H, t, J = 8.2 Hz), 6.62 (1H, d, J = 8.4 Hz), 4	+	. +		
066	N4-(2,2-Dimethyl-3-oxo-4H-5-pyrid[1,4]oxazin-6-yl)-5-fluoro- 990 N2-[3-(N-methylamino)carbonylmethyleneoxyphenyl]-2,4- pyrimidinediamine Methanesulfonic Acid Salt	¹ H NMR (DMSO-d6): d 11.24 (1H, s), 9.79 (1H, broad s), 9.63 (1H, s), 8.27 (1H, d, J = 3.9 Hz), 8.07 (1H, m), 7.64 (1H, d, J = 8.4 Hz), 7.48 (1H, d, J = 8.4 Hz), 7.36 (1H, s), 7.32 (1H, d, J = 7.5 Hz), 7.22 (1H, t, J = 7.9 Hz), 6.64 (1H, d, J = 8.7 Hz),	+	+		
991	N4-(2,2-Dimethyl-3-oxo-4H-5-pyrid[1,4]oxazin-6-yl)-5-fluoro- 991 N2-[3-(N-methylamino)carbonylmethyleneoxyphenyl]-2,4- pyrimidinediamine (1S)-(+)-Camphorsulfonic Acid Salt	¹ H NMR (DMSO-d6): d 11.25 (1H, s), 9.72 (1H,brad s), 9.59 (1H, s), 8.27 (1H, d, J = 3.6 Hz), 8.07 (1H, m), 7.65 (1H, d, J = 8.4 Hz), 7.47 (1H, d, J = 8.7 Hz), 7.37 (1H, s), 7.33 (1H, d, J = 8.7 Hz), 7.21 (1H, t, J = 8.1 Hz), 6.62 (1H, dd, J = 8.1 Hz, J	+	+		, 1844
895	N4-(2,2-Dimethyl-3-oxo-4H-5-pyrid[1,4]oxazin-6-yl)-5-fluoro- 992N2-[3-(N-methylamino)carbonylmethyleneoxyphenyl]-2,4- pyrimidinediamine (+)-Camphorsulfonic Acid Salt	¹ H NMR (DMSO-d6); d 11.21 (1H, s), 9.63 (1H,brad s), 9.54 (1H, s), 8.26 (1H, d, J = 3.6 Hz), 8.07 (1H, m), 7.67 (1H, d, J = 8.4 Hz), 7.47 (1H, d, J = 8.7 Hz), 7.39 (1H, s), 7.34 (1H, d, J = 8.1 Hz), 7.21 (1H, t, J = 8.1 Hz), 6.61 (1H, dd, J = 8.1 Hz, J	+	+	1	
666	N4-(2,2-Dimethyl-3-oxo-4H-benz[1,4]oxazin-6-yl)-5-fluoro-N2-993 (1-methylindazol-6-yl)-2,4-pyrimidinediamine p-Toluenesulfonic Acid Salt	¹ H NMR (DMSO-d6): d 10.78 (1H, s), 10.11 (1H, broad s), 9.89 (1H, broad s), 8.29 (1H, d, J = 4.8 Hz), 8.01 (1H, s), 7.95 (1H, s), 7.70 (1H, d, J = 8.7 Hz), 7.55 (2H, d, J = 8.1 Hz), 7.40 (1H, d, J = 8.4 Hz), 7.29-7.18 (4H, m), 6.95 (1H, d, J = 8.7 Hz),	+	+	+	
994	N2-(3-Chloro-4-methoxy-5-methylphenyl)-N4-(2,2-dimethyl-3- 994 oxo-4H-benz[1,4]oxazin-6-yl)-5-fluoro-2,4-pyrimidinediamine p-Toluenesulfonic Acid Salt	¹ H NMR (DMSO-d6): d 10.73 (1H, s), 9.65 (1H, s), 9.41 (1H, s), 8.20 (1H, d, J = 4.2 Hz), 7.71 (1H, s), 7.54 (2H, d, J = 8.1 Hz), 7.43 (1H, s), 7.35 (1H, dd, J = 8.4 Hz, J = 2.4 Hz), 7.23-7.17 (3H, m), 7.00 (1H, d, J = 8.4 Hz), 3.76 (3H, s), 2.38 (3H, s)	+	+	+	+
995	N2-(3-Chloro-4-hydroxy-5-methylphenyl)-N4-(3,4- sthylenedioxyphenyl)-5-fluoro-2,4-pyrimidinediamine	"H NMR (DMSO-d6): d 9.19 (1H, d, J= 1.5 Hz), 9.05 (1H, s), 8.64 (1H, s), 8.10 (1H, d, J= 3.9 Hz), 7.62 (1H, d, J= 2.7 Hz), 7.36 (1H, d, J= 1.8 Hz), 7.31 (1H, m), 7.27 (1H, d, J= 2.7 Hz), 6.87 (1H, d, J= 8.4 Hz), 4.31 (4H, s), 2.22 (3H, s); LCMS: purity:	+	+	+	

Compound	Compound Name	Physical Data	LD LD Tryptase, Tryptase CHMC, CHMC, IgE, 3pt IgE, 8pt	LD Tryptase, CHMC, IgE, 8pt	LD LD LD Tryptase, Tryptase, fp_syk, CHMC, CHMC, CHMC, 11pt IgE, 3pt IgE, 8pt Iono, 3pt	p_syk, 11pt
)66 	N2-(3-Chloro-4-hydroxy-5-methylphenyl)-N4-(2,2-dimethyl-3-oxo-4H-5-pyrid[1,4]oxazin-6-yl)-5-fluoro-2,4-pyrimidinediamine	 H NMR (DMSO-d6): d 11.16 (1H, s), 9.27 (1H, s), 9.15 (1H, s), 8.67 N2-(3-Chloro-4-hydroxy-5-methylphenyl)-N4-(2,2-dimethyl-3- (1H, s), 8.19 (1H, d, J= 3.6 Hz), 7.64 (2H, m), 7.42 (1H, d, J= 8.4 Hz), oxo-4H-5-pyrid[1,4]oxazin-6-yl)-5-fluoro-2,4-pyrimidinediamine 7.29 (1H, d, J= 2.7 Hz), 2.22 (3H, s), 1.53 (6H, s); LCMS: purity: 97.69%; MS (m/e): 444 (M+). 	+	+	3	
.66	N2-(3,5-Dimethyl-4-methoxyphenyl)-N4-(2,2-dimethyl-3-oxo-4H-5-pyrid[1,4]oxazin-6-yl)-5-fluoro-2,4-pyrimidinediamine	¹ H NMR (DMSO-d6): d 11.16 (1H, s), 9.23 (1H, s), 9.11 (1H, s), 8.19 (1H, d, J= 3.6 Hz), 7.69 (1H, d, J= 8.1 Hz), 7.44 (1H, d, J= 8.4 Hz), 7.33 (2H, s), 3.68 (3H, s), 2.23 (6H, s), 1.53 (6H, s); LCMS: purity: 99%; MS (m/e); 439 (MH+).	+	+	ı	+
)66 	N2-(3,5-Dimethyl-4-methoxyphenyl)-N4-(3,4- ethylenedioxyphenyl)-5-fluoro-2,4-pyrimidinediamine	'H NMR (DMSO-46): d 10.06 (1H, s), 9.85 (1H, s), 8.25 (1H, d, J= 4.8 Hz), 7.33 (1H, d, J= 2.4 Hz), 7.24 (2H, s), 7.20 (1H, d, J= 2.7 Hz), 6.91 (1H, d, J= 8.4 Hz), 4.32 (4H, s), 3.71 (3H, s), 2.25 (6H, s); LCMS: purity: 96.69%; MS (m/e): 397 (MH+).	+	+	t	
)66 	N2-(3-Chloro-4-methoxy-5-methylphenyl)-N4-(3,4- ethylenedioxyphenyl)-5-fluoro-2,4-pyrimidinediamine	"H NMR (DMSO-d6): d 9.88 (2H, broad s), 8.26 (1H, d, J= 4.2 Hz), 7.64 (1H, s), 7.41 (1H, s), 7.30-7.28 (1H, m), 7.25-7.20 (1H, m), 6.92 (1H, d, J= 10.2 Hz), 4.32 (4H, s), 3.79 (3H, s), 2.29 (3H, s); LCMS: purity: 94.81%; MS (m/e): 417 (MH+).	+	+	+	
1000	N4-(3,4-Dihydro-2,2-dimethyl-4H-benz[1,4]oxazin-6-yl)-5- 1000 fluoro-N2-[3-(N-methylamino)carbonylmethyleneoxyphenyl]- 2,4-pyrimidinediamine	¹ H NMR (DMSO-d6): d 9.15 (1H, s), 9.08 (1H, s), 8.09 (1H, d, J = 3.6 Hz), 8.04 (1H, d, J = 4.5 Hz), 7.45-7.42 (2H, m), 7.17 (1H, t, J = 8.4 Hz), 7.01 (1H, d, J = 2.4 Hz), 6.95 (1H, d, J = 8.4 Hz), 6.53 (1H, d, J = 9.3 Hz), 5.88		+		
1001	N2-(3-Chloro-4-methoxy-5-methylphenyl)-N4-(3,4-dihydro-2,2-1001 dimethyl-4H-benz[1,4]oxazin-6-yl)-5-fluoro-2,4-pyrimidinediamine	N2-(3-Chloro-4-methoxy-5-methylphenyl)-N4-(3,4-dihydro-2,2-dihydro-2,2-dihydro-2,2-dihydro-2,2-dimydro-2,2-dimydro-2,4-dihydro		+		
1002	N4-(3,4-Dihydro-2,2-dimethyl-4H-benz[1,4]oxazin-6-yl)-N2- (3,5-dimethoxyphenyl)-5-fluoro-2,4-pyrimidinediamine	'H NMR (DMSO-d6): d 9.06 (2H, s), 8.09 (1H, d, J = 3.6 Hz), 7.03 (1H, dd, J = 6.9 Hz, J = 1.8 Hz), 6.95 (1H, dd, J = 8.1 Hz, J = 2.7 Hz), 6.63 (1H, d, J = 8.7 Hz), 6.11 (1H, s), 5.82 (1H, s), 3.71 (6H, s), 3.07 (2H, s), 1.34 (6H, s); purity 95.9%; MS (+		

Carbon C	and the sea the same all their
17.00 17.0	
	+
C.2.Dimality2-accounts.5-pyrd1, Agreemin-6-pyr3-factor C. C. C. C. C. C. C. C	+
C2-Dimetriky-2-coc-4H-5-pyrid1, 4[pozzari-5-yl)-5-finor C2-4	
H. Nurk (DMSO-Obj d 11,17 (11h, s), 9.24 (11h, s)	+ + +
HNWR (DMSO-06): d 11.17 (11th, s), 9.24 (11th, d), 1 = 9.12, 7.32 (11th, d), 1 = 7.12 (11th, d), 1	
H. Nurk (DMSO-Obj d 11,17 (11h, s), 9.24 (11h, s)	158 + + + + + + + + + + + + + + + + + + +
H. Nurk (DMSO-Obj d 11,17 (11h, s), 9.24 (11h, s)	+ + + + + + + + + + + + + + + + + + +
H. Nurk (DMSO-Obj d 11,17 (11h, s), 9.24 (11h, s)	+ + + + + + + + + + + + + + + + + + +
(2,2-Dimeth) (2,2-Dimeth) (4-(2,2-Dime N2-(2-methy) N2-(2-methy) N2-(2-methy) N2-(2-methy) 1006 (6-yl)-4-p) N2-(3-1009 (1009) 1010	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1
(2,2-Dimeth) (2,2-Dimeth) (4-(2,2-Dime N2-(2-methy) N2-(2-methy) N2-(2-methy) N2-(2-methy) 1006 (6-yl)-4-p) N2-(3-1009 (1009) 1010	14, 15, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16
(2,2-Dimeth) (2,2-Dimeth) (4-(2,2-Dime N2-(2-methy) N2-(2-methy) N2-(2-methy) N2-(2-methy) 1006 (6-yl)-4-p) N2-(3-1009 (1009) 1010	2.7. 7.57 (14, s) 9.9.9. (14, s) 9.9.
(2,2-Dimeth) (2,2-Dimeth) (4-(2,2-Dime N2-(2-methy) N2-(2-methy) N2-(2-methy) N2-(2-methy) 1006 (6-yl)-4-p) N2-(3-1009 (1009) 1010	1,9,9,9,1,1,22,1,1,1,23,1,1,1,23,1,1,23,1,3,1,3
(2,2-Dimeth) (2,2-Dimeth) (4-(2,2-Dime N2-(2-methy) N2-(2-methy) N2-(2-methy) N2-(2-methy) 1006 (6-yl)-4-p) N2-(3-1009 (1009) 1010	(3H, %) 7.44 (3H, %) 7.44 (1H, %) 7.44 (1
(2,2-Dimeth) (2,2-Dimeth) (4-(2,2-Dime N2-(2-methy) N2-(2-methy) N2-(2-methy) N2-(2-methy) 1006 (6-yl)-4-p) N2-(3-1009 (1009) 1010	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1
(2,2-Dimeth) (2,2-Dimeth) (4-(2,2-Dime N2-(2-methy) N2-(2-methy) N2-(2-methy) N2-(2-methy) 1006 (6-yl)-4-p) N2-(3-1009 (1009) 1010	19 (14, 4, 11), 7.7.76 (14, 4, 4), 7.7.76 (14, 4, 4), 7.7.76 (14, 4, 4), 7.7.76 (14, 4, 4), 7.7.76 (14, 4, 4), 7.7.76 (14, 4, 4, 4, 4), 7.7.76 (14, 4, 4, 4, 4, 4), 7.7.76 (14, 4, 4, 4, 4, 4, 4, 4, 4), 7.7.76 (14, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4), 7.7.76 (14, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4
(2,2-Dimeth) (2,2-Dimeth) (4-(2,2-Dime N2-(2-methy) N2-(2-methy) N2-(2-methy) N2-(2-methy) 1006 (6-yl)-4-p) N2-(3-1009 (1009) 1010	(1) (1) (1) (1) (1) (1) (1) (1) (1) (1)
(2,2-Dimeth) (2,2-Dimeth) (4-(2,2-Dime N2-(2-methy) N2-(2-methy) N2-(2-methy) N2-(2-methy) 1006 (6-yl)-4-p) N2-(3-1009 (1009) 1010	1. (1. (1. (1. (1. (1. (1. (1. (1. (1. (
(2,2-Dimeth) (2,2-Dimeth) (4-(2,2-Dime N2-(2-methy) N2-(2-methy) N2-(2-methy) N2-(2-methy) 1006 (6-yl)-4-p) N2-(3-1009 (1009) 1010	Second Se
(2,2-Dimeth) (2,2-Dimeth) (4-(2,2-Dime N2-(2-methy) N2-(2-methy) N2-(2-methy) N2-(2-methy) 1006 (6-yl)-4-p) N2-(3-1009 (1009) 1010	1
(2,2-Dimeth) (2,2-Dimeth) (4-(2,2-Dime N2-(2-methy) N2-(2-methy) N2-(2-methy) N2-(2-methy) 1006 (6-yl)-4-p) N2-(3-1009 (1009) 1010	2-dime midine midine 2.4-pyrimici
(2,2-Dimeth) (2,2-Dimeth) (4-(2,2-Dime N2-(2-methy) N2-(2-methy) N2-(2-methy) N2-(2-methy) 1006 (6-yl)-4-p) N2-(3-1009 (1009) 1010	-5-fluor -5-fluor pyrid pyrid
(2,2-Dimeth) (2,2-Dimeth) (4-(2,2-Dime N2-(2-methy) N2-(2-methy) N2-(2-methy) N2-(2-methy) 1006 (6-yl)-4-p) N2-(3-1009 (1009) 1010	1,4]ox rimidin free lee lee lee lee lee lee lee lee lee
(2,2-Dimeth) (2,2-Dimeth) (4-(2,2-Dime N2-(2-methy) N2-(2-methy) N2-(2-methy) N2-(2-methy) 1006 (6-yl)-4-p) N2-(3-1009 (1009) 1010	1,4-trim 1,4-trim 1,4-trim 1,5-me 4,4]oxa 4,4[
(2,2-Dimeth) (2,2-Dimeth) (4-(2,2-Dime N2-(2-methy) N2-(2-methy) N2-(2-methy) N2-(2-methy) 1006 (6-yl)-4-p) N2-(3-1009 (1009) 1010	midine mi
(2,2-Dimeth) (2,2-Dimeth) (4-(2,2-Dime N2-(2-methy) N2-(2-methy) N2-(2-methy) N2-(2-methy) 1006 (6-yl)-4-p) N2-(3-1009 (1009) 1010	14-5-Py 1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-
(2,2-Dimeth) (2,2-Dimeth) (4-(2,2-Dime N2-(2-methy) N2-(2-methy) N2-(2-methy) N2-(2-methy) 1006 (6-yl)-4-p) N2-(3-1009 (1009) 1010	anyl)-2-oxo-4-oxo-4-oxo-4-oxo-4-oxo-4-oxo-4-oxo-4-oxo-4-oxo-4-oxo-4-oxo-4-oxo-4-oxo-4-oxo-4-oxo-4-oxo-4-oxo-4-oxo-4-oxo-6-oxo-4-oxo-6-oxo-4-oxo-6-oxo-4-oxo-6-oxo-4-oxo-6-oxo-4-oxo-6-oxo-
(2,2-Dim (2,2-L) (2,2-Dim (3,1) (2,2-L) (3,1) (3	methylph imethylph (2,2.2-D / 3,4.5 /
2 2 2 1 4 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2	1008 Children 1008 Child
OO TOO	Too on the set of the

fp_syk, 11pt	+					+	
LD Tryptase, f CHMC,	ı		ı	+	ı		1
LD LD LD Tryptase, Tryptase, fp_syk, CHMC, CHMC, CHMC, 11pt IgE, 3pt IgE, 8pt Iono, 3pt	+	+		+	+	+	+
LD Tryptase, CHMC, IgE, 3pt	+	+	+	+	+	+	+
Physical Data	1H NMR (DMSO-d6); d 10.74 (1H, s), 9.56 (1H, s), 9.49 (1H, s), 8.21-8.19 (2H, m), 7.89 (2H, d, J = 9 Hz), 7.84 (2H, d, J = 9 Hz), 7.37 (1H, d, J = 0.6 Hz), 7.33 (1H, dd, J = 8.1 Hz, J = 2.4 Hz), 7.26 (1H, d, J = 2.7 Hz), 7.02 (1H, d, J = 8.7 Hz), 1.53 (5-Fluoro-N2-[3-(oxazol-2-yl)phenyl]-N4-[3-oxo-2,2,4-trimethyl- (1H, d, J = 3.6 Hz), 8.25 (1H, s), 7.89-7.83 (2H, m), 7.64 (1H, d, J = 7.8 Hz), 7.48 (1H, d, J = 7.8 Hz), 7.44 (1H, s), 7.44 (1H, s), 7.36 (1H, d, J = 7.2 Hz), 7.45 (6H, s); purity 96%.	1H NMR (DMSO-d6): d 9.76 (1H, s), 9.73 (1H, s), 8.31 (1H, d, J = 3.6 (4H, s), 9.73 (1H, d, J = 3.6 (4H, d, J = 0.9 Hz), 7.92 (2H, d, J = 9.3 Hz), 7.88 (2H, d, J = 9.6 Hz), 7.76 (1H, d, J = 8.4 Hz), 7.54 (1H, d, J = 8.4 Hz), 7.38 (1H, d, J = 0.9 Hz), 3.44 (3H, s), 1.57 (6H,	1H NMR (DMSO-d6): d 10.69 (1H, s), 9.43 (1H, s), 9.27 (1H, s), 8.17 (1H, d, J = 3.6 Hz), 7.76 (1H, d, J = 2.7 Hz), 7.46 (1H, d, J = 2.4 Hz), 7.36 (1H, dd, J = 9 Hz, J = 2.7 Hz), 7.24 (1H, d, J = 2.4 Hz), 6.99 (1H, d, J = 8.4 Hz), 4.58 (2H, s), 4.28 (2H,	5-Fluoro-N2-13-(N-methylamino)carbonylmethyleneoxyphenyll- N4-13-oxo-2,2,4-trimethyl-5-pyrid[1,4]oxazin-6-yl]-2,4-pyridinediamine	114 NMR (DMSO-d6): d 10.67 (114, s), 9.53 (114, s), 9.38 (114, s), 8.20 (114, d, J = 3.6 Hz), 8.04 (114, s), 7.78 (114, m), 7.58 (114, dd, J = 8.7 Hz, J = 2.4 Hz), 7.35 (214, d, J = 4.8 Hz), 7.29 (114, d, J = 2.4 Hz), 6.89 (114, d, J = 4.8 Hz), 7.29	1017 5-Fluoro-N2-[3-(oxazol-5-yl)phenyl]-N4-[3-oxo-2,2,4-trimethyl- (1H, d, J = 3.6 Hz), 8.12 (1H, s), 8.84 (1H, d, J = 8.1 Hz), 7.74 (1H, m), 5-pyrid[1,4]oxazin-6-yl]-2,4-pyrimidinediamine 7.62 (1H, s), 7.43-7.32 (3H, m), 3.42 (3H, s), 1.54 (6H, s); purity 96.4%; MS (m/e): 462 (MH+).
Compound Name Number	N4-(2,2-Dimethyl-3-oxo-4H-benz[1,4]oxazin-6-yl)-5-fluoro-N2- [4-(oxazol-2-yl)phenyl]-2,4-pyrimidinediamine	5-Fluoro-N2-[3-(oxazol-2-yl)phenyl]-N4-[3-oxo-2,2,4-trimethyl-5-pyrid[1,4]oxazin-6-yl]-2,4-pyrimidinediamine	5-Fluoro-N2-[4-(oxazol-2-yl)phenyl]-N4-[3-oxo-2,2,4-trimethyl-5-pyrid[1,4]oxazin-6-yl]-2,4-pyrimidinediamine	N2-[3-Chloro-4-ethoxycarbonylmethyleneoxy-5-methylphenyl]-1014 N4-(2, 2-dimethyl-3-oxo-4H-benz[1,4]oxazin-6-yl)-5-fluoro-2,4-pyrimidinediamine	5-Fluoro-N2-[3-(N-methylamino)carbonylmethyleneoxyphenyl]-1015 N4-[3-oxo-2,2,4-trimethyl-5-pyrid[1,4]oxazin-6-yl]-2,4-pyrimidinediamine	N4-(2,2-Dimethyl-3-oxo-4H-benz[1,4]oxazin-6-yl)-5-fluoro-N2- [3-(oxazol-5-yl)phenyl]-2,4-pyrimidinediamine	5-Fluoro-N2-[3-(oxazol-5-yl)phenyl]-N4-[3-oxo-2,2,4-trimethyl-5-pyrid[1,4]oxazin-6-yl]-2,4-pyrimidinediamine

Compound	Compound Name	LD Try Physical Data (H)	ptase, MC,	LD Tryptase, CHMC, IgE, 8pt	LD Tryptase, CHMC, Iono, 3pt	fp_syk, 11pt
1025	5-Fluoro-N4-methyl-N2-[3-(oxazol-2-yl)phenyl]-N4-(3-oxo- 2,2,4-trimethylbenz[1,4]oxazin-6-yl)-2,4-pyrimidinediamine	1H NIMR (DMSO-d6): d 9.65 (1H, s), 8.72 (1H, d, J = 1.8 Hz), 8.27 (1H, d, J = 0.6 Hz), 8.08 (1H, d, J = 6Hz), 7.83-7.79 (1H, m), 7.60 (1H, d, J = 7.2 Hz), 7.47 (1H, d, J = 7.8 Hz), 7.43 (1H, d, J = 0.9 Hz), 7.28 (1H, s), 7.07 (2H, s), 3.62 (3H, s), 3.35	+		+	
1026	5-Fluoro-N4-methyl-N2-[4-(oxazol-5-yl)phenyl]-N4-(2,2,4- trimethyl-3-oxo-benz[1,4]oxazin-6-yl)-2,4-pyrimidinediamine	1H NIMR (DMSO-46): d 9.60 (1H, s), 8.44 (1H, s), 8.07 (1H, d, J = 6 Hz), 7.88 (2H, d, J = 8.4 Hz), 7.65 (2H, d, J = 8.7 Hz), 7.57 (1H, s), 7.08 (2H, s), 3.58 (3H, s), 3.34 (3H, s), 1.52 (6H, s); purity 98.61%; MS (m/e); 475 (MH+).	+		t	
1027	N2-(3-Chloro-4-cyclopentyloxy-5-methylphenyl)-N4-(2,2-1027 dimethyl-3-oxo-4H-5-pyrid[1,4]oxazin-6-yl)-5-fluoro-2,4-pyrimidinediamine	1H NMR (DMSO-d6): d 11.18 (1H, s), 9.38 (1H, s), 9.35 (1H, s), 8.22 (1H, d, J = 3.6 Hz), 7.74 (1H, d, J = 2.4 Hz), 7.61 (1H, d, J = 8.7 Hz), 7.46 (1H, d, J = 8.4 Hz), 7.41 (1H, d, J = 2.7 Hz), 4.67 (1H, m), 2.26 (3H, s), 2.00-1.60 (8H, m), 1.53 (6H, s)	+		ı	
1028	N4-(2,2-Dimethyl-3-oxo-4H-5-pyrid[1,4]oxazin-6-yl)-5-fluoro- N2-[3-(oxazol-2-yl)phenyl]-2,4-pyrimidinediamine	114 NMR (DMSO-d6): d 11.18 (114, s), 9.60 (114, s), 9.37 (114, s), 8.38 (114, s), 8.27 (214, m), 7.93 (114, d, J = 8.4 Hz), 7.71 (114, d, J = 8.7 Hz), 7.60 (114, d, J = 8.1 Hz), 7.44-7.34 (314, m), 1.53 (614, s); purity 95%; MS (m/e): 448 (MH+).	+	+	ı	
1029	V4-(2,2-Dimethyl-3-oxo-4H-5-pyrid[1,4]oxazin-6-yl)-5-fluoro- V2-[3-(oxazol-4-yl)phenyl]-2,4-pyrimidinediamine	1H NWR (DMSO-d6): d 11.17 (1H, s), 9.45 (1H, s), 9.31 (1H, s), 8.54 (2H, dd, J = 9.9 Hz, J = 0.9 Hz), 8.24 (1H, d, J = 3.6 Hz), 8.10 (1H, s), 7.78-7.72 (2H, m), 7.42-7.29 (3H, m), 1.52 (6H, s); purity 96.4%; MS (m/e): 448 (MH+).	+	+	ı	
1030	5-Fiuoro-N4-methyl-N2-[3-(oxazol-4-yl)phenyl]-N4-(3-oxo- 2,2,4-trimethylbenz[1,4]oxazin-6-yl)-2,4-pyrimidinediamine	1H NWR (DMSO-46): d 9.47 (1H, s), 8.59 (1H, s), 8.51 (1H, s), 8.41 (1H, s), 8.05 (1H, d, J = 5.4 Hz), 7.66 (1H, d, J = 7.5 Hz), 7.41-7.32 (2H, m), 7.27 (1H, s), 7.07 (2H, s), 3.60 (3H, s), 3.35 (3H, s), 1.51 (6H, s); purity 97.4%; MS (m/e): 475 (MH+).	+		+	
1031	N2-(3,5-Dimethyl-4-methoxyphenyl)-5-fluoro-N4-methyl-N4-(3-1031) oxo-2,2,4-trimethyl-benz[1,4]oxazin-6-yl)-2,4-pyrimidinediamine	N2-(3,5-Dimethyl-4-methoxyphenyl)-5-fluoro-N4-methyl-N4-(3- 114 NMR (DMSO-d6): d 9.11 (1H, s), 8.00 (1H, J = 5.7 Hz), 7.42 (2H, cost) (2H, s), 7.24 (1H, s), 7.05 (2H, s), 3.68 (3H, s), 3.55 (3H, s), 3.33 (3H, s), 2.25 (6H, s), 1.51 (6H, s); purity 97.84%; MS (m/e): 466(M).	+		1	
1032	N2-(3-Chloro-4-cyclopentyloxy-5-methylphenyl)-5-fluoro-N4-1032 methyl-N4-(3-oxo-2,2,4-trimethyl-benz[1,4]oxazin-6-yl)-2,4-pyrimidinediamine	1H NMR (DMSO-d6); d 9.49 (1H, s), 8.07 (1H, dd, J = 6 Hz, J = 1.5 Hz), 7.81 (1H, d, J = 2.7 Hz), 7.47 (1H, d, J = 2.4 Hz), 7.27 (1H, s), 7.07 (2H, s), 4.69 (1H, m), 3.61 (3H, s), 3.33 (3H, s), 2.29 (3H, s), 2.0-1.6 (8H, m), 1.51 (6H, s); purity 96.15%;				

Compound	Compound Name	Physical Data	ptase, MC,	LD LD Tryptase, Try CHMC, CH	LD Tryptase, fp CHMC, 1	fp_syk, 11pt
8	N2-(3,5-Dimethyl-4-methoxyphenyl)-5-fluoro-N4-(3-oxo-2,2,4- trimethyl-benz[1,4]oxazin-6-yl)-2,4-pyrimidinediamine	1033 N2-(3,5-Dimethyl-4-methoxyphenyl)-5-fluoro-N4-(3-oxo-2,2,4- (111, d, J = 3.6 Hz), 7.81 (111, d, J = 8.7 Hz), 7.45 (111, d, J = 8.4 Hz), 7.35 (211, s), 3.69 (311, s), 2.23 (611, s), 1.54 (611, s); purity 98.82%; MS (m/e): 453(M).	+	+	+	
28	N2-(3-Chloro-4-cyclopentyloxy-5-methylphenyl)-5-fluoro-N4-1034 (3-oxo-2,2,4-trimethyl-benz[1,4]oxazin-6-yl)-2,4-pyrimidinediamine	1H NMR (DMSO-d6): d 9.63 (1H, s), 9.40 (1H, s), 8.26 (1H, d, J = 3.6 Hz), 7.78 (1H, d, J = 2.4 Hz), 7.72 (1H, d, J = 8.4 Hz), 7.48 (1H, d, J = 2.4 Hz), 4.68 (1H, m), 3.41 (3H, s), 2.26 (3H, s), 1.35-1.60 (8H, m), 1.54 (6H, s);	+		1	
335	N4-(2,2-Dimethyl-3-oxo-4H-5-pyrid[1,4]oxazin-6-yl)-5-fluoro- N2-[4-(oxazol-2-yl)phenyl]-2,4-pyrimidinediamine	1H NMR (DMSO-d6): d 11.23 (1H, s), 9.70 (1H, s), 9.53 (1H, s), 8.27 (1H, d, J = 3.6 Hz), 8.20 (1H, d, J = 0.9 Hz), 7.90 (2H, d, J = 9.3 Hz), 8.86 (2H, d, J = 9.5 Hz), 7.55 (1H, d, J = 8.4 Hz), 7.51 (1H, d, J = 8.4 Hz), 7.37 (1H, J = 0.9 Hz), 1.56 (6H, s				,
386	N4-(2,2-Dimethyl-3-oxo-4H-benz[1,4]oxazin-6-yl)-5-fluoro-N2- [3-(oxazol-4-yl)phenyl]-2,4-pyrimidinediamine	1th NMR (DMSO-d6): d 10.65 (1th, s), 9.41 (1th, d, J = 1.2 Hz), 9.32 (2th, s), 5-fluoro-N2- (1th, s), 8.50 (1th, d, J = 0.6 Hz), 8.47 (1th, s), 8.17 (1th, d, J = 3.9 Hz), 8.08 (1th, s), 7.78 (1th, d, J = 8.7 Hz), 7.43 (1th, dd, J = 8.7 Hz, J = 2.4 Hz), 7.39-7.27 (3th, m), 6.88 (1th, d, J	+	+	+	
1037	N2-[3-Chloro-5-methyl-4-(N-methylamino)carbonylmethyleneoxyphenyl]-N4-(2,2-dimethyl-3-oxo-4H-5-pyrid[1,4]oxazin-6-yl)-5-fluoro-2,4-pyrimidinediamine	1H NMR (DMSO-d6): d 11.19 (1H, s), 9.43 (2H, s), 8.24 (1H, d, J = 7.8 Hz), 8.18 (1H, d, J = 4.5 Hz), 7.78 (1H, d, J = 2.4 Hz), 7.60 (1H, d, J = 8.4 Hz), 7.47 (1H, d, J = 8.4 Hz), 7.43 (1H, d, J = 2.4 Hz), 4.32 (2H, s), 2.79 (3H, d, J = 4.8 Hz), 2.29 (3H		+		
388	N2-(3,5-Dimethyl-4-ethoxycarbonylmethyleneoxyphenyl)-N4-1038(2,2-dimethyl-3-oxo-4H-5-pyrid[1,4]oxazin-6-yl)-5-fluoro-2,4-pyrimidinediamine	1H NMR (DMSO-d6): d 11.18 (1H, s), 9.26 (1H, s), 9.16 (1H, s), 8.19 (1H, d, J = 3.3 Hz), 7.68 (1H, d, J = 8.4 Hz), 7.46 (1H, d, J = 8.4 Hz), 7.33 (2H, s), 4.49 (2H, s), 4.28 (2H, q, J = 7.2 Hz), 2.23 (6H, s), 1.52 (6H, s), 1.33 (3H, t, J = 7.2 Hz); pur		+	ı	
139	N2-(3-Chloro-4-isopropoxy-5-methylphenyl)-N4-(2,2-dimethyl-3-oxo-4H-benz[1,4]oxazin-6-yl)-5-fluoro-2,4-pyrimidinediamine	1039 (1H, s), 9.68 (1H, s), 9.44 (1H, s), 8.20 (1H, s), 9.68 (1H, s), 9.44 (1H, s), 8.20 (1H, s), 9.44 (1H, s), 9.44 (1H, s), 8.20 (1H, d, J = 2.1 Hz), 7.42 (1H, d, J = 2.4 Hz), 3-oxo-4H-benz[1,4]oxazln-6-yl)-5-fluoro-2,4-pyrimidinediamine 7.35 (1H, dd, J = 8.7 Hz, J = 2.4 Hz), 7.24 (1H, d, J = 2.4 Hz), 6.98 (1H, quint, J =		+	+	

Compound	Compound Name	Physical Data	LD Tryptase, CHMC, IgE, 3pt	LD L Tryptase, T CHMC, C	LD LD LD CHAsse, Tryptase, fp_syk, CHMC, CHMC, CHMC, I1pt IgE, 3pt IgE, 8pt Iono, 3pt	fp_syk, 11pt
1040	N2-(3-Chloro-4-isopropoxy-5-methylphenyl)-N4-(2,2-dimethyl-1040 3-oxo-4H-5-pyrid[1,4]oxazin-6-yl)-5-fluoro-2,4-pyrimidinediamine	1H NMR (DMSO-d6): d 11.17 (1H, s), 9.37 (1H, s), 9.35 (1H, s), 8.22 (1H, d, J = 3.0 Hz), 7.74 (1H, d, J = 2.7 Hz), 7.61 (1H, d, J = 8.7 Hz), 7.45 (1H, d, J = 8.7 Hz), 7.41 (1H, d, J = 2.7 Hz), 4.36 (1H, quint, J = 6.0 Hz), 2.25 (3H, s), 1.52 (6H, s), 1.		ı	+	
1041	N2-[3,5-Dimethyl-4-(N-methylamino)carbonylmethyleneoxyphenyl[-N4-(2,2-dimethyl-3-oxo-4H-5-pyrid[1,4]oxazin-6-yl)-5-fluoro-2,4-pyrimidinediamine	1H NMR (DMSO-d6): d 11.18 (1H, s), 9.28 (1H, s), 9.18 (1H, s), 8.19 henyl]-N4-(2,2-dimethyl- (2H, d, J = 3.6 Hz), 7.68 (1H, d, J = 8.4 Hz), 7.45 (1H, d, J = 8.7 Hz), 7.34 (2H, s), 4.22 (2H, s), 2.79 (3H, d, J = 4.5 Hz), 2.23 (6H, s), 1.52 (6H, s); purity 98%; MS (m/e): 496(MH	+	+	+	
1042	N2-(3-Chloro-4-ethoxycarbonylmethyleneoxy-5-methylphenyl)-1042N4-(2,2-dimethyl-3-oxo-4H-5-pyrid[1,4]oxazin-6-yl)-5-fluoro-2,4-pyrimidinediamine	N2-(3-Chloro-4-ethoxycarbonylmethyleneoxy-5-methylphenyl)-3.6 Hz), 7.76 (1H, d, J = 2.4 Hz), 7.60 (1H, d, J = 8.4 Hz), 7.47 (1H, d, J = 8.4 Hz), 7.47 (1H, d, J = 2.4 Hz), 7.60 (2H, s), 4.27 (2H, d, J = 7.2 Hz), 7.42 (1H, d, J = 2.1 Hz), 4.60 (2H, s), 4.27 (2H, q, J = 7.2 Hz), 2.29 (3H, s), 1.52 (6H, s), 1.33 (ı		3	
1043	N2-[3-Chloro-4-[N-(2,3-dihydroxypropyl)amino]carbonylmethyleneoxy-5-methylphenyl]-N4-(2,2-dimethyl-3-oxo-4H-5-pyrid[1,4]oxazin-6-yl)-5-fluoro-2,4-pyrimidinediamine	N2-[3-Chloro-4-[N-(2,3-fin-(2,3-fin-(2,3-fin-(2,3-fin-(2,3-fin-(2,3-fin-(2,3-fin-(2,3-fin-(2,3-fin-(2,3-fin-(2,3-fin-(2,3-fin-(2,2-fin-(2,	+	+	ı	
1044	N2-[3,5-Dimethyl-4-(N-cyclopentylamino)carbonylmethyleneoxyphenyl]-N4-(2,2-dimethyl-3-oxo-4H-5-pyrid[1,4]oxazin-6-yl)-5-fluoro-2,4-pyrimidinediamine	1H NMR (DMSO-d6): d 11.18 (1H, s), 9.27 (1H, s), 9.17 (1H, s), 8.19 (1H, d, J = 3.6 Hz), 8.03 (1H, d, J = 7.8 Hz), 7.67 (1H, d, J = 8.7 Hz), 7.45 (1H, d, J = 8.7 Hz), 7.34 (2H, s), 4.23 (1H, m), 4.21 (2H, s), 2.23 (6H, s), 1.91 (2H, m), 1.76 (2H, m), 1.	ı	b	ı	
1045	N4-(2,2-Difluoro-3-oxo-4H-benz[1,4]oxazin-6-yl)-5-fluoro-N2-1045[3-(N-methylamino)carbonylmethyleneoxyphenyl]-2,4-pyrimidinediamine Hydrogen Chloride Salt	1H NMR (DMSO-d6): d 12.12 (1H, s), 9.95 (1H, s), 9.58 (1H, s), 8.26 (1H, d, J = 3.6 Hz), 8.06 (1H, d, J = 4.2 Hz), 7.65 (1H, d, J = 2.1 Hz), 7.61 (1H, d, J = 2.4 Hz), 7.41 (1H, s), 7.35 (1H, d, J = 8.7 Hz), 7.30 (1H, d, J = 9.0 Hz), 7.21 (1H, t, J = 7.8	+	+	ı	
1046	N4-(2,2-Difluoro-3-oxo-4H-benz[1,4]oxazin-6-yl)-5-fluoro-N2-1046[3-(N-methylamino)carbonylmethyleneoxyphenyl]-2,4-pyrimidinediamine Methanesulfonic Acid Salt	1H NMR (DMSO-d6): d 12.05 (1H, s), 9.81 (1H, s), 9.38 (1H, s), 8.24 (1H, d, J = 3.6 Hz), 8.04 (1H, d, J = 4.2 Hz), 7.66 (1H, dd, J = 10.5 Hz, J = 1.5 Hz), 7.51 (1H, d, J = 1.8 Hz), 7.43 (1H, s), 7.36-7.29 (2H, m), 7.19 (1H, t, J = 7.8 Hz), 6.59 (1H, d,	+	+	1	

Compound	Compound Name	Physical Data	LD Tryptase, CHMC, IgE, 3pt	LD Tryptase, CHMC, IgE, 8pt	LD LD LD Tryptase, Tryptase, fp_syk, CHMC, CHMC, CHMC, 11pt IgE, 3pt IgE, 8pt Iono, 3pt	fp_syk, 11pt
1047	N4-(2,2-Dimethyl-3-oxo-4H-benz[1,4]oxazin-6-yl)-5-fluoro-N2- (indazol-6-yl)-2,4-pyrimidinediamine Methanesulfonic Acid Salt	14 NMR (DMSO-d6): d 10.74 (1H, s), 10.11 (1H, s), 9.82 (1H, s), N4-(2,2-Dimethyl-3-oxo-4H-benz[1,4]oxazin-6-yl)-5-fluoro-N2- 8.26 (1H, d, J = 4.5 Hz), 8.05 (1H, s), 7.88 (1H, s), 7.71 (1H, d, J = 8.4 (indazol-6-yl)-2,4-pyrimidinediamine Methanesulfonic Acid Salt Hz), 7.45 (1H, dd, J = 9.0 Hz, J = 2.7 Hz), 7.31 (1H, dd, J = 8.7 Hz, J = 1.5 Hz), 7.24 (1H, d, J = 2.4 Hz), 6.97		+		
1048	N4-(2,2-Dimethyl-3-oxo-4H-benz[1,4]oxazin-6-yl)-5-fluoro-N2- (indazol-6-yl)-2,4-pyrimidinediamine Hydrogen Chloride Salt	1H NMR (DMSO-d6); d 10.73 (1H, s), 9.282 (1H, s), 9.60 (1H, s), 8.24 (1H, d, J = 4.2 Hz), 8.02 (2H, s), 7.67 (1H, d, J = 8.4 Hz), 7.47 (1H, d, J = 8.7 Hz), 7.36-7.33 (2H, m), 6.98 (1H, d, J = 8.7 Hz), 1.49 (6H, s); purity 99.3%; MS (m/e); 420 (MH+).	+	+	1	
1049	N4-(2,2-Dimethyl-3-oxo-4H-5-pyrid[1,4]oxazin-6-yl)-N2-(1- ethylindazol-6-yl)-5-fluoro-2,4-pyrimidinediamine	1H NMR (DMSO-d6); d 11.21 (1H, s), 9.56 (1H, s), 9.40 (1H, s), 8.29 (1H, d, J = 3.6 Hz), 8.11 (1H, s), 7.96 (1H, s), 7.71 (1H, d, J = 7.2 Hz), 7.64 (1H, d, J = 9.0 Hz), 7.46 (1H, d, J = 8.4 Hz), 7.36 (1H, dd, J = 8.7 Hz, J = 1.5 Hz), 4.25 (2H, q, J = 7.	+	+		
1050	V4-(2,2-Dimethyl-3-oxo-4H-5-pyrid[1,4]oxazin-6-yl)-N2-(1- sopropylindazol-6-yl)-5-fluoro-2,4-pyrimidinediamine	1H NMR (DMSO-d6): d 11.22 (1H, s), 9.56 (1H, s), 9.41 (1H, s), 8.29 (1H, d, J = 3.3 Hz), 8.15 (1H, s), 7.96 (1H, s), 7.70 (1H, d, J = 8.4 Hz), 7.63 (1H, d, J = 8.4 Hz), 7.46 (1H, d, J = 8.7 Hz), 7.35 (1H, dd, J = 8.7 Hz, J = 1.2 Hz), 4.63 (1H, quint, J	+	+	ı	
1051	2-Chloro-N4-(3,4-dihydro-2,2-dimethyl-4H-5-pyrid[1,4]oxazin- 6-yl)-5-fluoro-4-pyrimidineamine	1H NMR (DMSO-d6); d 9.84 (1H, s), 8.35 (1H, d, J = 3.3 Hz), 7.09 (1H, d, J = 8.1 Hz), 7.06 (1H, d, J = 8.1 Hz), 6.79 (1H, s), 3.23 (2H, s), 1.36 (6H, s); purity 96.73%; MS (m/e); 310(MH+).	1		1	
1052	N4-(3,4-Dihydro-2,2-dimethyl-4H-5-pyrid[1,4]oxazin-6-yl)-5- luoro-N2-(1-methylindazol-6-yl)-2,4-pyrimidinediamine	1H NMR (DMSO-d6); d 9.50 (1H, s), 8.94 (1H, s), 8.21 (1H, d, J = 3.6 Hz), 8.17 (1H, s), 7.93 (1H, s), 7.63 (1H, d, J = 8.7 Hz), 7.35 (1H, d, J = 1.5 Hz), 7.30 (1H, d, J = 7.8 Hz), 7.01 (1H, d, J = 8.4 Hz), 6.72 (1H, s), 3.92 (3H, s), 3.24 (2H, d, J = 2.	+	+	+	
1053	N4-(3,4-Dihydro-2,2-dimethyl-4H-5-pyrid[1,4]oxazin-6-yl)-5- 1053 fluoro-N2-[3-(N-methylamino)carbonylmethyleneoxyphenyl]- 2,4-pyrimidinediamine	1H NMR (DMSO-d6); d 9.29 (1H, s), 8.83 (1H, s), 8.15 (1H, d, J = 3.6 Hz), 8.03 (1H, m), 7.47 (1H, t, J = 2.1 Hz), 7.40 (1H, d, J = 7.5 Hz), 7.34 (1H, d, J = 6.9 Hz), 7.20 (1H, t, J = 8.4 Hz), 7.02 (1H, d, J = 8.1 Hz), 6.67 (1H, s), 6.56 (1H, dd, J = 7.8	+	+		
1054	N2-[3-Chloro-4-(N-methylamino)carbonylphenyl]-N4-(2,2-1054 dimethyl-3-oxo-4H-5-pyrid[1,4]oxazin-6-yl)-5-fluoro-2,4-pyrimidinediamine	1H NMR (DMSO-d6): d 11.19 (1H, s), 9.70 (1H, s), 9.52 (1H, s), 8.28 (1H, d, J = 2.4 Hz), 8.21 (1H, d, J = 5.1 Hz), 7.97 (1H, s), 7.62-7.57 (2H, m), 7.50 (1H, d, J = 9.0 Hz), 7.34 (1H, d, J = 8.4 Hz), 2.81 (3H, d, J = 3.6 Hz), 1.53 (6H, s); purity 99.5%	+	+	1	

Compound Number	Compound Name			LD e, Tryptase,f CHMC,	fp_syk, 11pt
1055	1055 ethylenedioxyphenyl)-5-fluoro-2,4-pyrid[1,4]oxazin-6-yl)-N2-(3,4-	195 14 NMR (DMSO-46): d 11.12 (1H, s), 9.25 (1H, s), 9.12 (1H, s), 8.17 (1H, d, J = 3.3 Hz), 7.64 (1H, d, J = 8.4 Hz), 7.43 (1H, d, J = 8.4 Hz), 7.35 (1H, d, J = 2.4 Hz), 7.10 (1H, dd, J= 9.0 Hz, J= 2.4 Hz), 6.76 (1H, d, J = 9.0 Hz), 4.26 (4H, m), 1.53 (6H,	+ + + + + + + + + + + + + + + + + + +	1000	
1056	N4-(2,2-Dimethyl-3-oxo-4H-5-pyrid[1,4]oxazin-6-yl)-5-fluoro-1056N2-[1-methylindazol-6-yl]-2,4-pyrimidinediamine Hydrogen Chloride Salt	1H NMR (DMSO-d6): d 11.23 (1H, s), 9.88 (1H, s), 9.28 (1H, s), 8.33 (1H, d, J = 3.6 Hz), 8.02 (1H, s), 7.98 (1H, s), 7.66 (2H, t, J = 8.4 Hz). 7.45 (1H, d, J = 8.4 Hz), 7.31 (1H, dd, J = 8.4 Hz, J = 1.5 Hz), 3.93 (3H, s), 1.53 (6H, s); purity 100%; MS	+		
1057	N4-(2,2-Dimethyl-3-oxo-4H-5-pyrid[1,4]oxazin-6-yl)-5-fluoro- 1057 N2-[1-methylindazol-6-yl]-2,4-pyrimidinediamine p- Toluenesulfonic Acid Salt	1H NMR (DMSO-d6): d 11.23 (1H, s), 9.81 (2H, s), 8.32 (1H, d, J = 3.9 Hz), 8.02 (1H, s), 7.98 (1H, s), 7.67 (2H, t, J = 8.7 Hz), 7.55 (2H, d, J = 7.8 Hz), 7.44 (1H, d, J = 8.4 Hz), 7.31 (1H, dd, J = 8.4 Hz, J = 0.9 Hz), 7.19 (2H, d, J = 8.4 Hz), 3.94 (3	+		
1058	N4-(2,2-Dimethyl-3-oxo-4H-5-pyrid[1,4]oxazin-6-yl)-5-fluoro- 1058 N2-[1-methylindazol-6-yl]-2,4-pyrimidinediamine Methanesulfonic Acid Salt	1H NMR (DMSO-d6); d 11.22 (1H, s), 9.76 (1H, s), 9.72 (1H, s), 8.31 (1H, d, J = 3.3 Hz), 8.04 (1H, s), 7.97 (1H, s), 7.67 (2H, d, J = 8.4 Hz), 7.45 (1H, d, J = 8.1 Hz), 3.32 (1H, d, J = 8.4 Hz), 3.93 (3H, s), 2.41 (3H, s), 1.53 (6H, s); purity 99%; MS	+	1	
1059	N2-(3,5-Dimethyl-4-methoxyphenyl)-5-fluoro-N4-(3-oxo- 2H,4H-5-pyrid[1,4]oxazin-6-yl)-2,4-pyrimidinediamine	1H NMR (DMSO-d5): d 2.13 (s, 6H), 3.58 (s, 3H), 4.62 (s, 2H), 7.22 (s, 2H), 7.33 (d, J= 9.0 Hz, 1H), 7.57 (d, J= 8.4 Hz, 1H), 8.08 (d, J= 3.6 Hz, 1H), 9.01 (s, 1H), 9.15 (s, 1H), 11.13 (s, 1H); 19F NMR (282 MHz, DMSO-d6): d - 163.82; LCMS: ret. time: 10.29 min.; purity: 97.75%; MS (m/e): 411.18 (MH+)	+		
1060	V4-(2,2-Dimethyl-3-oxo-4H-benz[1,4]oxazin-6-yl)-5-fluoro-N2- 3-hydroxy-2-methylphenyl)-2,4-pyrimidinediamine	¹ H NMR (CDCl3): d 1.45 (s, 6H), 2.13 (s, 3H), 6.78 (m, 3H), 6.90 (d, J= 7.5 Hz, 1H), 7.04 (t, J= 8.1 Hz, 1H), 7.27 (s, 1H), 7.74 (d, J= 5.1 Hz, 1H), 7.91 (s, 1H), 9.09 (s, 1H), 10.86 (s, 1H); 19F NMR (282 MHz, CDCl3): d - 162.90; LCMS: ret. time: 8.06 min	+		
1061	5-Fluoro-N2-(3-methoxy-2-methylphenyl)-N4-(3-oxo-2H,4H-5- oyrid[1,4]oxazin-6-yl)-2,4-pyrimidinediamine	¹ H NMR (DMSO-d6): d 1.99 (s, 3H), 3.79 (s, 3H), 4.60 (s, 2H), 6.54 (d, J= 7.8 Hz, 1H), 6.78 (d, J= 8.1 Hz, 1H), 6.98 (dd, J= 2.4 and 8.1 Hz, 1H), 7.12 (t, J= 8.4 Hz, 1H), 7.44 (d, J= 8.7 Hz, 1H), 8.03 (d, J= 3.9 Hz, 1H), 8.73 (s, 1H), 9.23 (s, 1H), 11.08	+		

Compound	Compound Name	LD LD LD LD CD LD CD LD LD L	LD Tryptase, fr CHMC, 1	fp_syk, 11pt
1062	N4-(2,2-Dimethyl-3-oxo-4H-benz[1,4]oxazin-6-yl)-5-fluoro-N2- (3-methoxy-2-methylphenyl)-2,4-pyrimidinediamine	¹ H NMR (CDCl3): d 1.49 (s, 6H), 2.12 (s, 3H), 3.95 (s, 3H), 6.71 (dd, J=2.1 and 8.4 Hz, 1H), 6.79 (d, J= 8.4 Hz, 1H), 6.89 (d, J= 7.8 Hz, Hz, 1H), 7.26 (m, 3H), 7.66 (d, J= 4.2 Hz, 1H), 7.26 (m, 3H), 7.80 (d, J= 4.2 Hz, 1H), 1.04 (s, 1H); 19F NMR (282 MHz, 1Hz, 1Hz, 1Hz, 1Hz, 1Hz, 1Hz, 1Hz, 1		
1063	5-Fluoro-N2-(3-hydroxy-2-methylphenyl)-N4-(3-oxo-2H,4H-5- yyrid[1,4]oxazin-6-yl)-2,4-pyrimidinediamine	¹ H NMR (CDCl3); d 2.02 (s, 3H), 4.48 (s, 2H), 6.72 (m, 2H), 6.82 (m, 1H), 6.96 (t, J= 8.1 Hz, 1H), 7.25 (m, 1H), 7.79 (d, J= 4.8 Hz, 1H); + LCMS: ret. time: 7.10 min.; purity: 77.55%; MS (m/e): 383.14 (MH+).		
1064	N4-(2,2-Dimethyl-3-oxo-4H-5-pyrid[1,4]oxazin-6-yl)-5-fluoro- N2-(3-hydroxy-2-methylphenyl)-2,4-pyrimidinediamine	¹ H NMR (CDCl3): d 1.41 (s, 6H), 2.04 (s, 3H), 6.61 (t, J= 4.5 Hz, 1H), 6.94 (m, 3H), 7.58 (d, J= 8.7 Hz, 1H), 7.77 (d, J= 3.9 Hz, 1H); 19F hNR (282 MHz, CDCl3): d - 165.40; LCMS: ret. time: 7.83 min.; purity: 99.01%; MS (m/e): 411.19 (MH+).		
1065	V4-(2,2-Dimethyl-3-oxo-4H-5-pyrid[1,4]oxazin-6-yl)-5-fluoro- V2-(3-methoxy-2-methylphenyl)-2,4-pyrimidinediamine	¹ H NMR (CDCl3): d 1.57 (s, 6H), 2.19 (s, 3H), 3.88 (s, 3H), 6.79 (dd, J= 2.1 and 7.2 Hz, 1H), 7.05 (d, J= 8.7 Hz, 1H), 7.17 (m, 2H), 7.70 (d, J= 8.7 Hz, 1H), 7.85 (d, J= 3.6 Hz, 1H); 19F NMR (282 MHz, CDCl3): d - 161.49; LCMS: ret. time: 10.92 min.; purit		
1066	N4-(2,2-Dimethyl-3-oxo-4H-benz[1,4]oxazin-6-yl)-5-fluoro-N2-1066[3-methoxycarbonylmethyleneoxy-2-methylphenyl]-2,4-pyrimidinediamine	¹ H NMR (CDCl3): d 1.49 (s, 6H), 2.26 (s, 3H), 3.80 (s, 3H), 4.84 (s, 2H), 6.69 (dd, J= 2.4 and 8.4 Hz, 1H), 6.82 (d, J= 8.7 Hz, 1H), 6.86 (d, 3H), 6.98 (d, J= 8.1 Hz, 1H), 7.19 (t, J= 8.1 Hz, 1H), 7.26 (s, 1H), 7.72 (s, 1H), 7.79		
1067	N4-(2,2-Dimethyl-3-oxo-4H-benz[1,4]oxazin-6-yl)-5-fluoro-N2-1067[2-methyl-3-(N-methylamino)carbonylmethyleneoxyphenyl]-2,4-pyrimidinediamine	¹ H NMR (CDCl3): d 1.50 (s, 6H), 2.25 (s, 3H), 2.93 (d, J= 4.8 Hz, 3H), 4.57 (s, 2H), 6.82 (m, 4H), 6.97 (t, J= 8.1 Hz, 1H), 7.19 (m, 2H), 7.40 (s, 1H), 7.54 (s, 1H), 7.81 (d, J= 4.2 Hz, 1H); LCMS: ret. time: 8.08 min.; purity: 99.78%; MS (m/e): 481.21 (MH		
1068	5-Fluoro-N2-[2-methyl-3-(N-1068methylamino)carbonylmethyleneoxyphenyl]-N4-(3-oxo-2H,4H-5-pyrid[1,4]oxazin-6-yl)-2,4-pyrimidinediamine	'H NMR (DMSO-d6): d 2.08 (s, 3H), 2.66 (d, J= 4.5 Hz, 3H), 4.46 (s, 2H), 4.58 (s, 2H), 6.65 (dd, J= 1.8 and 7.2 Hz, 1H), 7.04 (m, 2H), 7.15 (d, J= 8.7 Hz, 1H), 7.47 (d, J= 8.7 Hz, 1H), 7.84 (d, J= 4.2 Hz, 1H), 7.85 (s, 1H), 8.54 (s, 1H), 8.56 (,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
1069	N2-(3,5-Dimethyl-4-hydroxyphenyl)-5-fluoro-N4-(3-oxo-2H,4H- 、 5-pyrid[1,4]oxazin-6-yl)-2,4-pyrimidinediamine	¹ H NMR (DMSO-d6): d 2.09 (s, 6H), 4.62 (s, 2H), 7.05 (s, 2H), 7.28 (d, 16.9) N2-(3,5-Dimethyl-4-hydroxyphenyl)-5-fluoro-N4-(3-oxo-2H,4H- J= 8,4 Hz, 1H), 7.55 (d, J= 8,1 Hz, 1H), 7.89 (br, 1H), 8.07 (d, J= 3.6 + Hz, 1H), 9.03 (s, 1H), 9.36 (s, 1H), 11.15 (s, 1H); 19F NMR (282 MHz, 10MSO-d6): d - 163.98; LCMS: ret. time: 7.9		

CHMC, CHMC, 11pt lgE, 8pt lono, 3pt + +	+	+	+	+	+	
CHMC, CHMC, 18 18 18 18 18 18 18 18 18 18 18 18 18	1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1	3.69 (t, J= 5.1 Hz, 4H), = 7.5 Hz, 1H), 7.17 (d,	2H), 3.23 (m, 4H), 3.67 4 Hz, 1H), 7.08 (t, J= 8.1	H, 1.42 (s, 6H), 3.00 (t, Hz, 2H), 6.51 (d, J= 9.3	3H), 3.08 (t, J= 5.1 Hz, 2H), 2H), 3.65 (t, J= 5.1 Hz, 2H), 2H), 1.7.01 (ddd, J=	
Physical Data Physical Data H NWR (CDCi3): d 1.14 (t, J= 7.2 Hz, 3H), 3.00 (t, J= 5.1 Hz, 4H), H-NWR (CDCi3): d 1.14 (t, J= 7.2 Hz, 2H), 4.47 (s, 2H), 6.55 (dd, H-N), 4.00 (q, J= 7.2 Hz, 2H), 4.47 (s, 2H), 6.56 (dd, J= 7.2 Hz, 2H), 7.8 Hz, 1H), 6.98 (t, J= 3.46 (t, J= 4.1 H), 7.04 (d, J= 8.7 Hz, 1H), 7.08 2.1 Hz, 1H), 7.04 (d, J= 8.7 Hz, 1H), 7.08 H-NWR (CDCi3): d 2.01 (s, 3H), 3.02 (t, J= 5.1 Hz, 2H), 3.08 (t, J= 5.1 Hz, 2H), 4.50 (s, 2H),	Hz, ZHJ, JOSON (1, 12, 14), 6.87 (t, 1-2.7) (1, 1-6.66 (dd, 1-2.4 and 8.4 Hz, 114), 6.98 (d, 1) (1, 1-5.1 Hz, 44), 6.98 (d, 1) (0.9, 2.1 and 7.8 Hz, 114), 6.98 (d, 1) (4, 1-7.2 Hz, 3H), 2.99 (t, 1=5.1 Hz, 4H), 1.20 (t, 1=7.2 Hz, 2H), 4.63 (s, 2H), 6.83 (d, 14) (MNR (DMSO-d6): d 1.20 (t, 1=7.2 Hz, 2H), 4.63 (s, 2H), 6.83 (d, 1=6.1 Hz, 4H), 4.05 (q, 1=7.2 Hz, 2H), 4.63 (s, 2H), 7.56	3.49 (t, J-5), 112, 126 (d, J=8.4 Hz, 1H), 7.41 (u, J-5), 3.6 J=9.3 Hz, 2H), 7.36 (d, J=3.6 Hz, 1 (d, J=8.4 Hz, 1H), 8.06 (d, J=5.1 Hz, 4H), 3.69 (t, J=5.1 Hz, 4H), 14, JHN, 7.17 (d, HNMR (DMSO-d6); d.2.98 (t, J=5.1 Hz, 4H), 7.04 (t, J=7.5 Hz, 1H), 7.17 (d, J=7.2 Hz, 1H), 7.04 (t, J=7.5 Hz, 1H), 7.18 (d, J=8.7)	4.62 (8, 271), 3.7.18 (8, 1H), 7.33 (d, J= 8.4 P.4, 11), 7.18 (8, 1H), 7.33 (d, J= 8.4 P.4, 11), 7.2 Hz, 1H), 7.18 (8, 1H), 9.09 (8 Hz, 1H), 8.11 (d, J= 3.6 Hz, 1H), 9.09 (m, 2H), 3.23 (m, 4H), 3.67 (Hz, 1H), 8.00 (t, J= 8.1 H), NIMR (DMSO-d6); d.2.85 (s, 3H), 2.30 (m, 2H), 7.08 (t, J= 8.1 H), 7.69 (t, J= 8.1 H), 7.69 (t, J= 8.1 H), 7.59 (d, J= 2.1 A), 6.57 (dd,	(m, 2H), 4.02 (s, 1H), 7.28 (m, 1H), 7.35 (d, 3= 0.1 fr.) Hz, 1H), 7.20 (s, 1H), 7.28 (m, 1H), 9.1 8.4 Hz, 1H), 8.11 (d, 3= 3.3 Hz, 1H), 9.1 HNNR (DMSO-d6); d.1.19 (t, 3= 7.2 Hz, 2H), 6.51 (d, 3= 9.3 HNNR (DMSO-46); d.1.44 (d, 3= 7.2 Hz, 2H), 6.51 (d, 3= 6.6 Hz, 1H))	Hz, 17.03 (t, J= 8.1 Hz, 1H), 7.18 (s, 11), 7.28 (t, J= 5.1 Hz, 2H), 7.34 (t, J= 8.4 Hz, 1H), 7.59 (d, J= 8.7 Hz, 7Hz, 7.34 (t, J= 8.4 Hz, 1H), 7.59 (d, J= 8.7 Hz, 2H), 7.04 (t, J= 6.7 Hz, 2H), 7.04 (s, 6H), 2.06 (s, 3H), 3.08 (t, J= 5.1 Hz, 2H), 7.01 (ddd, J= 6.7 Hz, 2H), 3.54 (t, J= 5.1 Hz, 2H), 7.01 (ddd, J= 6.7 H	3.13 (t, J= 2.4 and 8.4 Hz, 1H), 6.94 (t, J= 2.1 fz) 6.67 (dd, J= 2.4 and 8.4 Hz, 1H), 7.05 (d, J 0.9, 1.8 and 7.8 Hz, 1H), 7.05 (d, J
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	100	8 3	4 3 -	-(3-0x0-2H,4H-		-H4-0x
Compound Name Compound Name N2-13-(4-Ethoxycarbonylpiperazino)phenylj-5-fluoro-N4-(3-n2-13-(4-Ethoxycarbonylpiperazin-6-yl)-2,4-pyrimidinedlamine	N2-[3-(4-Acetylpiperazino)phenylj-5-fluoro-N4- pyrid[1,4]oxazin-6-yl)-2,4-pyrimidinediamine	N2-[4-(4-Ethoxycarbonylpiperazino)phenyl]-5-fluoro-N4-(3- 1072 oxo-2H,4H-5-pyrid[1,4]oxazin-6-yl)-2,4-pyrimidinediamine	5-Fluoro-N2-(3-morpholinophenyl)-N4-(3-oxo-2H,4H-5-1073) pyrid[1,4]oxazin-6-yl]-2,4-pyrimidinediamine	5-Fluoro-N2-{3-(4-methylpiperazino)phenylj-N4	N4-(2,2-Dimethyl-3-oxo-4H-5-pyrid[1,4]oxazın-o-yı'' 1075 ethoxycarbonylpiperazino)phenyll-5-fluoro-2,4-pyrimidinediamine	N2-[3-(4-Acetylpiperazino)phenyl]-N4-(2,2-dimethyl-3-0: 1076 5-pyrid[1,4]oxazin-6-yl)-5-fluoro-2,4-pyrimidinediamine
ompound Corr tumber 1070 N2	1071	1072	101			

+
1100
15 + + + + + + + + + + + + + + + + + + +
+ (3) + (4) + (4) + (7) + (8) + (14) + (
(CHIML, 138) 19E, 8pt 10no, 3pt 19E, 3pt 10no, 3pt 19E, 3pt 10no, 3pt 19E, 8pt 10no, 3pt 19E, 8pt 10no, 3pt 19E, 8pt 19E, 8pt 19E, 19E, 19E, 19E, 19E, 19E, 19E, 19E,
(1, 1, 1), 7.38 (1, 1, 1), 7.38 (1, 1, 24), 7, 16 (%, 1, 24), 7, 16 (%, 1, 24), 7, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14
1, 3.03 1, 3.03 1, 3.03 1, 3.03 1, 1, 3.03 1,
43.6, 6 43.6, 6 (4, 1-9.3 43.6, 6 (4, 1-9.3 43.1, 11), 7.38 (4, 1-3.4), 7.38 (6, 1-3.4), 7.38 (6, 1-3.4), 7.38 (6, 1-3.4), 7.38 (6, 1-3.4), 7.38 (6, 1-3.4), 7.38 (7, 14), 7.38 (8, 1-14), 7.38 (9, 1-3.4), 7.38 (1, 1-14), 7.38 (1,
44 44 44 47.51 4.1, 7.51 4.1, 7.51 4.1, 7.51 4.1, 10.5 4.1, 10.5 4.1
Hz, 2H), 9.17, 12, Hz, 2H), 6.96, 1H), 6.96, 1H), 6.96, 1H, 6.96, 1H, 6.96, 1H, 6.96, 1H, 6.96, 1H, 7.145, 1H, 1H, 6.96, 1H, 7.145, 1H, 1H, 6.96, 1H, 7.145, 1H, 7.14
CHANK, Table CHAN
19. 14. 14. 14. 14. 14. 14. 14. 14. 14. 14
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Name Name Name Name Name Name Name 10, J= 8.4 Hz 11, 410 11, 410 11, 410 12, 2-10 14, J= 8.4 Hz 14, 7.17 14, 11, 7.17 14, 11, 7.17 12, 2-10 14, J= 8.4 Hz 14, 41, 7.17 14, 11, 7.17 14, 11, 7.17 14, 11, 7.17 14, 11, 7.17 14, 11, 7.17 14, 11, 11, 11, 11, 11, 11, 11, 11, 11,
ound Name ound Name ound Name ound Name 2,2-Dimethyl-3-oxo-4H-5-pyrid [1,4]oxazin-6-yl)-N2-[4-(4-4H-), 3-56 2,2-Dimethyl-3-oxo-4H-5-pyrid [1,4]oxazin-6-yl)-5-fluoro- 4,8-Hz 11H, 7 12-(3-morpholinophenyl)-2,4-pyrimidinediamine htz,1-HNMi 12-(3-morpholinophenyl)-2,4-pyrimidinediamine htz,1-Dimethyl-3-oxo-4H-5-pyrid [1,4]oxazin-6-yl)-5-fluoro- Hyminidinediamine NA-(2,2-Dimethyl-3-oxo-4H-5-pyrid [1,4]oxazin-6-yl)-5-fluoro- Hyminidinediamine NA-(2,2-Dimethyl-3-oxo-4H-5-pyrid [1,4]oxazin-6-yl)-5-fluoro- Hyminidinediamine NA-(2,2-Dimethyl-3-oxo-4H-5-pyrid [1,4]oxazin-6-yl)-5-fluoro- Hyminidinediamine (S)-N2-(3-(4-methyloiperazino)phenyl)-2,4-pyrimidinediamine (S)-Fluoro-A-4-(2-methyl-3-oxo-2H,4H-5-pyrid[1,4]oxazin-6-yl)-5-fluoro-2/ (S)-Fluoro-A-4-(2-me
nly-N2-14-(4-7l)-5-fluoro-N4-(2-7luoro-N4-(2
azin-6-) -2-40xazin-1 ediamir ediamir phenyli-5-4-py 1-2-4-py 1
yrid [1,4]oxa: yrid [1,4]oxa: yrid [1,4]ox 5-pyrid[1,4]ox 4-pyrid[1,4]ox tryleneoxypt tryleneoxypt trylenetyl-3-0; 2-metryl-3-0; 2-metryl-3-0; 14]oxazin-6-y ine o-2H,4H-ben ine
1-5-pyric 1-5-py
e mine mine mine mine tryl-3-oxo-4H-5-pyrid l myl-3-oxo-4H-5-pyrid l mine tryl-3-oxo-4H-5-pyrid l mino)carbonylmetryle mino)carbonylmet
ound Name C.2-Dimethyl-3-oxo-4H-5-pyrid [1,4]oxazin-6-yl)-Ni C.2-Dimethyl-3-oxo-4H-5-pyrid[1,4]oxazin-6-yl)-Ni Indinediamine I4-(2,2-Dimethyl-3-oxo-4H-5-pyrid[1,4]oxazin-6-yl)-Vi INZ-[2-morthyloinophenyl)-2,4-pyrimidinediamine INZ-[2-methyl-3-oxo-4H-5-pyrid[1,4]oxazin-6-yl)-2,4-pyrimidinediamine INZ-[2-methyl-3-oxo-4H-5-pyrid[1,4]oxazin-6-yl)-2,4-pyrimidinediamine INZ-[3-Chloro-4-methoxyphenyl]-2,4-pyrimidinediamine IO82 INZ-[3-Chloro-4-methoxyphenyl]-2,4-pyrimidix-1082 INZ-13-(4-methyloiperazino)phenyl]-2,4-pyrimidix-1083 INZ-NA-Bis(3-oxo-2H,4H-5-pyrid[1,4]oxazin-6-yl)-2,4-pyrimidimediamine IO83 INZ-NA-Bis(3-oxo-2H,4H-benz[1,4]oxazi
Compound Name Compound Name Tethoxycarbonybiperazino)phenyli-5-fluoro-2.4- N4-(2,2-Dimethyl-3-oxo-4H-5-pyrid [1,4]oxazin-6-yl)-N2-[4-(4- N4-(2,2-Dimethyl-3-oxo-4H-5-pyrid [1,4]oxazin-6-yl)-5-fluoro- N4-(2,2-Dimethyl-3-oxo-4H-5-pyrid [1,4]oxazin-6-yl)-5-fluoro- N4-(2,2-Dimethyl-3-oxo-4H-5-pyrid [1,4]oxazin-6-yl)-5-fluoro- N4-(2,2-Dimethyl-3-oxo-4H-5-pyrid [1,4]oxazin-6-yl)-5-fluoro- N4-(2,2-Dimethyl-3-oxo-4H-5-pyrid [1,4]oxazin-6-yl)-5-fluoro- N4-(2,2-Dimethyl-3-oxo-4H-5-pyrid [1,4]oxazin-6-yl)-5-fluoro- N4-(2,2-Dimethyl-3-oxo-4H-5-pyrid [1,4]oxazin-6-yl)-2,4-pyrimidinediamine (S)-N2-(3-Chloro-4-methoxyphenyl)-5-fluoro-N4-(2-n- 1080) N2-(3-H-4H-5-pyrid[1,4]oxazin-6-yl)-2,4-pyrimidinediamine (S)-8-Fluoro-N4-(2-methoxyphenyl)-2,4-pyrimidinediamine 1082) youngle of the first
mber 10

Tryptase, Ts, 2H), 7.35 (d, Je 8.7 Hz, 1H), 7.89 Hz, 1H), 9.09 (s, 1H), 9.16 (s, 1H), 1.800 (s, 1H), 2.15 (s, 3H), 2.46 (m, 2H), 2.15 (s, 3H), 2.46 (m, 2H), 2.15 (s, 3H), 2.46 (m, 2H), 3.69 (s, 1H), 7.10 (d, 41 H), 10.02 (s, 1H), 10.04 (s, 1H); Lz, 1H), 10.02 (s, 1H), 10.40 (s, 1H); Hz, 1H), 10.02 (s, 1H), 10.40 (s, 1H); Hz, 1H), 5.26 (d, Je 7.8 Hz, 1.85 (s, 1.					01	9	
WMR (DMSO-de); d 1.44 (d. J= 6.9 Hz, 3H), 2.17 (s. 6H), 4.72 (q. J= 6.9 Hz, 3H), 2.17 (s. 6H), 4.72 (q. J= 6.9 Hz, 1H), 7.28 (a. J= 6.7 Hz, 1H), 7.28 (a. J= 7.2 Hz, 1H), 7.28 (a. J= 3.8 Hz, 1H), 7.28 (a. J= 3.8 Hz, 1H), 7.78 (a. J= 3.8 Hz, 1H), 7.78 (a. J= 3.8 Hz, 1H), 7.78 (a. J= 3.8 Hz, 2H), 7.38 (a. J= 5.4 Hz, 2H), 7.39 (a. J= 5.3 Hz, 2H),	3 8	Compound Name		ryptase, T	ryptase,	ryptase,	fp_syk,
H NMR (DWBC-dG); d 1.44 (d _ J = 6.9 Hz, 3H), 2.17 (s, 6H), 4.72 (q _ J = 6.9 Hz, 14), 2.05 (d _ J = 8.7 Hz, 14), 7.89				HMC, C	HMC,	CHMC,	11pt
To Name (UMB-Code): 0 1.44 (d,= 6.9 ft.; 34), 2.17 (s. 64), 4.72 (q, 17 (s. 64), 4.72 (q, 17 (s. 64), 4.72 (q, 14), 2.26 (d)= 8.7 Hz, 119, 7.29 (d)= 6.9 Hz, 119, 7.29 (s. 24), 7.25 (d)= 8.7 Hz, 119, 7.29 (d)= 6.9 Hz, 119, 7.29 (s. 24), 7.25 (d)= 8.7 Hz, 119, 7.29 (d)= 6.74				gE, 3pt lg		ono, 3pt	
(d, J= 8.4 Hz, 11h), 8.11 (d, J= 3.8 Hz, 11h), 9.08 (s, 11h), 9.16 (s, 11h), 10.08 (s, 11h), 19.18 (s, 11h), 10.08 (s, 11h), 1	ĝ	(S)-N2-(3,5-Dimethylphenyl)-5-fluoro-N4-(2-methyl-3-oxo-	J= 6.9 Hz, 1H), 6.52 (s. 1H), 7.22 (s. 2H), 7.35 (d. J= 8.7 Hz, 1H), 7.22 (s. 2H)		-		
11.08 (s, 1th); 19F NMR (222 MHz, DMSO-d6 'H NMR (CDCI3); d 1.82 (m, 2th), 2.03 (m, 2th), 2.16 (s, 3th), 2.48 (m, 1th), 3.00 (m, 4th), 3.63 (t, J= 5.1 Hz, 2th), 3.78 (t, J= 5.1 Hz, 2th), 4.58 (m, J= 8.1 Hz, 1th), 5.06 (d, J= 6.8 Hz, 1th), 6.58 (dd, J= 1.8 and 8.1 Hz, 1th), 7.10 (dd, J= 1.5 and 7.8 Hz, 1th), 4.64 (s, 2th), 5.59 (s, 1th), 7.10 (dd, J= 1.8 and 8.1 Hz, 1th), 7.10 (dd, J= 1.5 and 7.8 Hz, 1th), 4.0.02 (s, 1th), 7.10 (d, J= 1.8 hz, 1th), 7.10 (5	2H,4H-5-pyrid[1,4]oxazin-6-yl)-2,4-pyrimidinediamine	(d, J= 8.4 Hz, 1H), 8.11 (d, J= 3.6 Hz, 1H), 9.09 (s, 1H), 9.16 (s, 1H),	1	+		
M-cyclobuty/5-fluoro-2.4	ļ		11.08 (s, 1H); 19F NMR (282 MHz, DMSO-d6				
M4-cyclobuty/5-fluoro-2.4		NO 73 (1 Month of the control of the	ŀ				
(m, J= 8. Hz, 1H), 5.26 (d, J= 6.6 Hz, 1H), 6.58 (dd, J= 1.8 and 8.1 Hz, 1H), 7.01 (dd, J= 1.5 and 7.8 Hz, 1H), Hz, 1H), 7.01 (dd, J= 1.5 and 7.8 Hz, 1H), HNMR (DMSO-d6): d. 1.29 (s, 9H), 4.64 (s, 2H), 5.59 (s, 1H), 7.10 (d, 1H), 7.47 (d, J= 6.6 Hz, 1H), 8.24 (d, 1H), 10.02 (s, 1H), 10.40 (s, 1H); 19F NMR (2R2 MHz, DMSO-d6): d- 162.59; LCMS: ret. time: 10.51 min.; purity: 78.44%, MS (m/e): 399.24 (MH+), 11H NMR (CDC03): d. 1.78-1.87 (m, 2H), 1.96-2.03 (m, 2H), 2.32 (s, 1H), 6.67 (s, 1H), 7.23 (s, 2H), 7.48 (m, 2H), 1.33-2.06 (m, 2H), 2.43-2.53 11H NMR (CDC03): d. 1.77-1.86 (m, 2H), 1.33-2.06 (m, 2H), 2.43-2.53 11H NMR (CDC03): d. 1.75-2.04 (m, 4H), 2.43-2.53 (m, 2H), 3.85 (s, 11H NMR (CDC03): d. 1.75-2.04 (m, 4H), 2.43-2.33 (m, 2H), 3.85 (s, 11H NMR (CDC03): d. 1.75-2.04 (m, 4H), 2.43-2.33 (m, 2H), 3.85 (s, 11H NMR (CDC03): d. 1.75-2.04 (m, 4H), 2.43-2.33 (m, 2H), 3.85 (s, 11H NMR (CDC03): d. 1.67-2.04 (m, 4H), 2.43-2.33 (m, 2H), 3.85 (s, 11H NMR (CDC03): d. 1.67-2.04 (m, 4H), 2.43-2.33 (m, 2H), 3.85 (s, 11H NMR (CDC03): d. 1.67-2.04 (m, 4H), 2.43-2.33 (m, 2H), 3.85 (s, 11H NMR (CDC03): d. 1.67-2.04 (m, 4H), 2.43-2.33 (m, 2H), 3.85 (s, 11H NMR (CDC03): d. 1.67-2.04 (m, 4H), 2.43-2.33 (m, 2H), 3.85 (s, 11H NMR (CDC03): d. 1.67-2.04 (m, 4H), 2.43-2.33 (m, 2H), 3.85 (s, 11H NMR (CDC03): d. 1.67-2.04 (m, 4H), 2.43-2.33 (m, 2H), 3.81 (s, J=5.4 Hz, 2H), 11H NMR (CDC03): d. 1.67-2.04 (m, 4H), 2.43-2.33 (m, 2H), 3.91 (s, Hz, 2H), 11H NMR (CDC03): d. 1.67-2.04 (s, 3H), 3.06 (t, J=5.4 Hz, 2H), 11H NMR (CDC03): d. 1.67-20, 63-67; LCMS: ret. time: 11H NMR (CDC03): d. 1.67-20, 63-67; LCMS: ret. time: 11H NMR (CDC03): d. 1.67-20, 63-67; LCMS: ret. time: 11H NMR (CDC03): d. 1.67-20, 63-67; LCMS: ret. time: 11H NMR (CDC03): d. 1.67-20, 63-67; LCMS: ret. time: 11H NMR (CDC03): d. 1.67-20, 63-67; LCMS: ret. time: 11H NMR (CDC03): d. 1.67-20, 63-67; LCMS: ret. time: 11H NMR (CDC03): d. 1.67-20, 63-67; LCMS: ret. time: 11H NMR (CDC03): d. 1.67-20, 63-67; LCMS: ret. time: 11H NMR (CDC03): d. 1.67-20,	<u>ğ</u>	INZ-1.9-(4-ACE(y)Ipiperazino)phenylj-N4-cyclobutyl-5-fluoro-2,4- Sp Invrimidinediamine			-	-	
HWAR CONSO-61: 41.26; 9H), 4.64 (s, 2H), 5.89 (s, 1H), 7.10 (d, 1H), 7.47 (d, J= 6.6 Hz, 1H), 8.24 (d, 1H), 10.02 (s, 1H), 7.47 (d, J= 6.6 Hz, 1H), 8.24 (d, 1H), 10.02 (s, 1H), 7.47 (d, J= 6.6 Hz, 1H), 8.24 (d, 1H), 10.02 (s, 1H), 7.47 (d, J= 6.8 Hz, 1H), 8.24 (d, 1H), 10.02 (s, 1H), 7.47 (d, J= 6.8 Hz, 1H), 8.24 (d, 1H), 10.02 (s, 1H), 7.24 (d, J= 7.8 Hz, 1H), 5.26 (d, J= 7.8 Hz, 1H), 1.39-2.03 (m, 2H), 2.32 (s, 6H), 2.44-2.53 (m, 2H), 4.56 (m, J= 7.8 Hz, 1H), 5.26 (d, J= 7.8 Hz, 1H), 7.72 (d, J= 2.7 Hz, 1H), 6.67 (s, 1H), 7.23 (s, 2H), 7.34 (br, NH, 1H), 7.72 (d, J= 2.7 Hz, 1H), 19F NMR (2DC13); d. 1.71-1.86 (m, 2H), 1.39-2.06 (m, 2H), 2.43-2.53 (m, 2H), 3.81 (s, 6H), 4.60 (m, J= 7.8 Hz, 1H), 5.31 (d, 1H), 6.16 (t, J= 2.1 Hz, 1H), 6.84 (d, J= 2.1 Hz, 2H), 7.57 (br, NH, 1H), 7.72 (d, J= 3.6 Hz, 1H), 6.84 (d, J= 2.1 Hz, 2H), 7.57 (br, NH, 1H), 7.76 (s, 1H), 6.76 (s, 1H), 7.86 (m, J= 7.8 Hz, 1H), 5.32 (d, J= 6.6 Hz, 1H), 6.76 (s, 1H), 7.86 (m, J= 7.8 Hz, 1H), 5.32 (d, J= 6.6 Hz, 1H), 6.76 (s, 1H), 7.86 (m, J= 7.8 Hz, 1H), 5.32 (d, J= 6.6 Hz, 1H), 6.76 (s, 1H), 7.86 (m, J= 7.8 Hz, 1H), 5.32 (d, J= 6.6 Hz, 1H), 6.76 (s, 1H), 7.81 (h, J= 7.8 Hz, 1H), 6.76 (s, 1H), 7.71 (m, 2H), 3.81 (t, J= 5.1 Hz, 2H), 4.81 (m, J= 7.8 Hz, 1H), 6.86 (s, 1H), 7.72 (m, J= 5.1 Hz, 2H), 8.81 (t, J= 5.1 Hz, 2H), 8.83 (t, J= 5.1 Hz, 2H), 7.82 (d, J= 3.9), 4.67 (m, 1H), 6.96 (s, 1H), 7.13 (m, 2H), 7.82 (d, J= 3.9), 4.71 (t, J= 5.1 Hz, 2H), 8.94 (m, J= 7.1 Hz, 1H), 6.84 (m, 1H), 7.13 (m, 2H), 7.82 (d, J= 3.9), 4.71 (t, J= 5.1 Hz, 2H), 7.71 (m, 2H), 7.82 (d, J= 3.9), 4.71 (t, J= 5.1 Hz, 2H), 7.71 (m, 2H), 7.82 (d, J= 3.9), 4.71 (t, J= 3.9), 4.71 (t, J= 6.1 Hz, 2H), 7.13 (m, 2H), 7.13 (m, 2H), 7.82 (d, J= 3.9), 4.71 (t, J= 3.9), 4.72 (t, J= 3			(m, J= 8.1 Hz, 1H), 5.26 (d, J= 6.6 Hz, 1H), 6.58 (dd, J= 1.8 and 8.1 Hz 1H) 7 01 (dd 1= 1 5 and 2 6 Hz 11)			,	
0-N4-(3-0xo-2H,4H-5-11), 7.10 (d., 1-1), 7.10			14 NMP (DMSO 46): 44 20 / 101 4 2				
ediamine min; purity; 78,44%; MS (m/e); 399,24 (MH+). 19F NMR (282 MHz, DMSO-d8); d - 162,59; LCMS: ret. time; 10,51 min; purity; 78,44%; MS (m/e); 399,24 (MH+). 11 NMR (CDC(3); d 1.78-1.87 (m, 2H), 1.36-2.03 (m, 2H), 2.32 (s, 6H), 2.44-2.53 (m, 2H), 7.34 (br, NH, 1H), 7.72 (d, J= 2.7 Hz, 1H), 6.67 (s, 1H), 7.23 (s, 2H), 7.34 (br, NH, 1H), 7.72 (d, J= 2.7 Hz, 1H), 6.67 (s, 1H), 7.13 (s, 2H), 7.34 (br, NH, 1H), 7.72 (d, J= 3.6 Hz, 1H), 6.84 (d, J= 2.1 Hz, 1H), 5.31 (d, 1H), 6.16 (t, J= 2.1 Hz, 1H), 6.84 (d, J= 2.1 Hz, 2H), 7.57 (br, NH, 1H), 7.72 (d, J= 3.6 Hz, 1H), 6.84 (d, J= 2.1 Hz, 2H), 7.57 (br, NH, 1H), 6.76 (s, 1H), 7.74 (s, 1H), 4.86 (m, J= 7.8 Hz, 1H), 5.32 (d, J= 6.6 Hz, 1H), 6.76 (s, 1H), 7.74 (s, 2H), 3.85 (s, 3H), 4.58 (m, J= 7.8 Hz, 1H), 5.32 (d, J= 6.6 Hz, 1H), 6.76 (s, 1H), 7.74 (s, 2H), 3.83 (t, J= 2.1 Hz, 1H), 7.82 (b, 3H), 3.06 (t, J= 5.4 Hz, 2H), 6.10 (s, 1H), 6.51 Hz, 2H), 6.10 (s, 1H), 6.57 (m, 1H), 6.96 (s, 1H), 7.13 (m, 2H), 7.82 (d, J= 3.9 Hz, 1H), 6.10 (s, 1H), 6.57 (m, 1H), 6.96 (s, 1H), 7.13 (m, 2H), 7.82 (d, J= 3.9 Hz, 1H), 1.00 (s, 1H), 6.97 (s, 1H), 7.13 (m, 2H), 7.82 (d, J= 3.9 Hz, 1H), 1.00 (s, 1H), 6.96 (s, 1H), 7.13 (m, 2H), 7.82 (d, J= 3.9 Hz, 1H), 1.00 (s, 1H), 6.96 (s, 1H), 7.13 (m, 2H), 7.82 (d, J= 3.9 Hz, 1H), 1.00 (s, 1H), 6.96 (s, 1H), 7.13 (m, 2H), 7.82 (d, J= 3.9 Hz, 1H), 1H), 1.00 (s, 1H), 6.96 (s, 1H), 7.13 (m, 2H), 7.82 (d, J= 3.9 Hz, 1H), 1H), 1H), 1H), 1H)	5	N2-(5-tert-Butylpyrazol-3-vl)-5-fluoro-N4-(3-oxo-2H 4H-5-	11) 7 47 (4 1-6 6 12 41) 9 24 4 411 4 (5) 27)				
min.; purity; 78.44%; MS (m/e); 399.24 (MH+). 1H NMR (CDCI3): d 1.78-1.87 (m, 2H), 1.96-2.03 (m, 2H), 2.32 (s, 6H), 2.44-2.53 (m, 2H), 4.56 (m, J= 7.8 Hz, 1H), 5.26 (d, J= 7.8 Hz, 1H), 6.67 (s, 1H), 7.23 (s, 2H), 7.34 (br, NH, 1H), 7.72 (d, J= 2.7 Hz, 1H), 6.67 (s, 1H), 7.23 (s, 2H), 7.34 (br, NH, 1H), 7.72 (d, J= 2.7 Hz, 1H), 6.67 (s, 1H), 6.67 (s, 1H), 7.23 (s, 2H), 7.34 (br, NH, 1H), 7.72 (d, J= 3.6 (m, 2H), 3.81 (s, 6H), 4.60 (m, J= 7.8 Hz, 1H), 5.31 (d, 1H), 6.16 (t, J= 2.1 Hz, 1H), 6.84 (d, J= 2.1 Hz, 2H), 7.57 (br, NH, 1H), 7.72 (d, J= 3.6 Hz, 1H); 19F NMR (282 MHz, CDCI3); d - 167 1H NMR (CDCI3); d 1.75-2.04 (m, 4H), 2.43-2.53 (m, 2H), 3.85 (s, 1H), 7.18 (t, J= 2.1 Hz, 1H), 7.52 (br, NH, 1H), 7.76 (s, 2H); 19F NMR (282 MHz, CDCI3); d - 167.20, -63.67; LCMS: ret. time: 1uoro-N2-(3- LCMS: ret. time: 11.58 min.; purity: 90.45%; MS (m/e): 412.33 (MH+), + + 1	3	byrid[1,4]oxazin-6-yl}-2,4-pyrimidinediamine	1.0, 1.1, (3, 3 – 3, 3, 11), 5, 24 (4, 11), 10, 02 (8, 11), 10, 40 (8, 11); 19F NMR (282 MHz. DMSQ-d6); d - 482 50:1 CMS; 224 1120, 24	+		1	
1H NMR (CDCI3): d 1.78-1.87 (m, 2H), 1.96-2.03 (m, 2H), 2.32 (s, my)-5-fluoro-2.4 6H), 2.44-2.53 (m, 2H), 4.56 (m, J= 7.8 Hz, 1H), 5.26 (d, J= 7.8 Hz, 1H), 6.67 (s, 1H), 7.23 (s, 2H), 7.34 (br, NH, 1H), 7.72 (d, J= 2.7 Hz, 1H), 6.67 (s, 1H), 7.23 (s, 2H), 7.34 (br, NH, 1H), 7.72 (d, J= 2.7 Hz, 1H); 19F NMR (CDCI3): d 1.71-1.86 (m, 2H), 1.93-2.06 (m, 2H), 2.43-2.53 (m, 2H), 3.81 (s, 6H), 4.60 (m, J= 7.8 Hz, 1H), 5.31 (d, 1H), 6.16 (t, J= 2.1 Hz, 1H); 6.84 (d, J= 2.1 Hz, 2H), 7.57 (br, NH, 1H), 7.72 (d, J= 3.6 Hz, 1H); 6.84 (d, J= 2.1 Hz, 2H), 7.57 (br, NH, 1H), 7.72 (d, J= 3.6 Hz, 1H); 6.84 (d, J= 2.1 Hz, 2H), 7.57 (br, NH, 1H), 7.76 (s, 2H); 19F NMR (2B2 Mtz, CDCI3); d - 167 1H NMR (CDCI3): d 1.75-2.04 (m, 4H), 2.43-2.53 (m, 2H), 3.85 (s, 3H), 4.58 (m, J= 2.1 Hz, 1H), 7.76 (s, 2H); 19F NMR (2B2 Mtz, CDCI3); d - 167 Lz0, -63.67; LCMS: ret. time: 11.58 min.; purity: 90.45%; MS (m/e); 412.33 (MH+). 1H NMR (CDCI3): d 1.20 (s, 9H), 2.04 (s, 3H), 7.82 (d, J= 5.4 Hz, 2H), 1 Hr, 2 Hr			min.; purity: 78.44%; MS (m/e): 399.24 (MH+).				
hy)-5-fluoro-2,4- 6H), 2.44-2.53 (m, 2H), 4.56 (m, J= 7.8 Hz, 1H), 5.26 (d, J= 7.8 Hz, 1H), 6.67 (s, 1H), 7.23 (s, 2H), 7.34 (br, NH, 1H), 7.72 (d, J= 2.7 Hz, 1H), 6.67 (s, 1H), 7.23 (s, 2H), 7.34 (br, NH, 1H), 7.72 (d, J= 2.7 Hz, 1H), 19F NMR (282 MHz, CDCi3): d - 168.35; LCMS: 1H NMR (CDCi3): d 1.77-1.86 (m, 2H), 1.93-2.06 (m, 2H), 2.43-2.53 (m, 2H), 3.81 (s, 6H), 4.60 (m, J= 7.8 Hz, 1H), 6.31 (d, 1H), 6.16 (t, J= 2.1 Hz, 1H), 6.84 (d, J= 2.1 Hz, 2H), 7.57 (br, NH, 1H), 7.72 (d, J= 3.6 Hz, 1H), 19F NMR (282 MHz, CDCi3): d - 167 1H NMR (CDCi3): d 1.75-2.04 (m, 4H), 2.43-2.53 (m, 2H), 3.85 (s, 3H), 4.58 (m, J= 7.8 Hz, 1H), 5.32 (d, J= 6.6 Hz, 1H), 6.76 (s, 1H), 7.18 (t, J= 2.1 Hz, 1H), 7.52 (br, NH, 1H), 7.76 (s, 2H); 19F NMR (282 MHz, CDCi3): d - 167.20, -63.67; LCMS: ret. time: 11H NMR (CDCi3): d 1.20 (s, 9H), 2.04 (s, 3H), 3.06 (t, J= 5.4 Hz, 2H), 14 ht, 14 ht, 14 ht, 15 ht, 16.7 (m, 1H), 6.36 (s, 1H), 7.13 (m, 2H), 7.82 (d, J= 3.9 ht, 1H); 14 ht, 16.57 (m, 1H), 6.36 (s, 1H), 7.13 (m, 2H), 7.82 (d, J= 3.9 ht, 1H); 14 ht, 16.57 (m, 1H), 6.36 (s, 1H), 7.13 (m, 2H), 7.82 (d, J= 3.9 ht, 1H); 14 ht, 16.57 (m, 1H), 6.36 (s, 1H), 7.13 (m, 2H), 7.82 (d, J= 3.9 ht, 1H); 14 ht, 16.57 (m, 1H), 6.36 (s, 1H), 7.13 (m, 2H), 7.82 (d, J= 3.9 ht, 1H); 14 ht, 16.57 (m, 1H); 16.57 (m, 1H); 16.56 (s, 1H); 7.13 (m, 2H), 7.82 (d, J= 3.9 ht, 1H); 14 ht, 16.57 (m, 1H); 16.56 (m, 1H); 16.57 (m			1H NMR (CDCl3); d 1.78-1.87 (m, 2H), 1.96-2.03 (m, 2H), 2.32 (s.	-	-		
14), 6.67 (s, 14), 7.23 (s, 24), 7.34 (br, NH, 14), 7.72 (d, J=2.7 Hz, 14); 19F NWR (282 MHz, CDCi3); d - 168.35; LCMS: 14 NWR (CDCi3); d 1.77-1.86 (m, 2H), 1.93-2.06 (m, 2H), 2.43-2.53 (m, 2H), 3.81 (s, 6H), 4.60 (m, J=7.8 Hz, 1H), 5.31 (d, 1H), 6.16 (t, J= 2.1 Hz, 1H), 6.84 (d, J=2.1 Hz, 2H), 7.57 (br, NH, 1H), 7.72 (d, J=3.6 Hz, 1H); 19F NWR (282 MHz, CDCi3); d - 167 14 NMR (CDCi3); d 1.75-2.04 (m, 4H), 2.43-2.53 (m, 2H), 3.85 (s, 3H), 4.58 (m, J=7.1 Hz, 1H), 7.52 (br, NH, 1H), 7.76 (s, 2H); 19F NMR (282 MHz, CDCi3); d - 167.20, -63.67; LCMS: ret. time: 15 LCMS: ret. time: 11.58 min.; purity: 90.45%; MS (m/e); 412.33 (MH+). 16 LCMS: ret. time: 11.58 min.; purity: 90.45%; MS (m/e); 412.33 (M++). 17 A.4(5-tert-butyl-1H-pyrazol-3.11 (t, J=5.1 Hz, 2H), 3.63 (t, J=5.4 Hz, 2H), 6.10 (s, 1H), 6.57 (m, 1H), 6.36 (s, 1H), 7.13 (m, 2H), 7.82 (d, J=3.9 Hz, 1H); LCMS: ret. time: 8.84 min.;	108	N4-Cyclobutyl-N2-(3,5-dimethylphenyl)-5-fluoro-2,4-	6H), 2.44-2.53 (m, 2H), 4.56 (m, J= 7.8 Hz, 1H), 5.26 (d, J= 7.8 Hz,				
1H); 19F NMR (282 MHz, CDCi3): d - 168.35; LCMS: 1H NMR (CDCi3): d 1.71-1.86 (m, 2H), 1.93-2.06 (m, 2H), 2.43-2.53 (m, 2H), 3.81 (s, 6H), 4.60 (m, J= 7.8 Hz, 1H), 5.31 (d, 1H), 6.16 (t, J= 2.1 Hz, 1H), 6.84 (d, J= 2.1 Hz, 2H), 7.57 (br, NH, 1H), 7.72 (d, J= 3.6 Hz, 1H); 19F NMR (282 MHz, CDCi3): d - 167 1H NMR (CDCi3): d 1.75-2.04 (m, 4H), 2.43-2.53 (m, 2H), 3.85 (s, 3H), 4.58 (m, J= 7.8 Hz, 1H), 5.32 (d, J= 6.6 Hz, 1H), 6.76 (s, 1H), 7.18 (t, J= 2.1 Hz, 1H), 7.52 (br, NH, 1H), 7.76 (s, 2H); 19F NMR (282 MHz, CDCi3): d - 167.20, -63.67; LCMS: ret. time: 1uoro-N2-(3- LCMS: ret. time: 11.58 min.; purity: 90.45%; MS (m/e): 412.33 (MH+), + + 1H NMR (CDCi3): d 1.20 (s, 9H), 2.04 (s, 3H), 3.06 (t, J= 5.4 Hz, 2H), + + + 1H NMR (CDCi3): d 1.20 (s, 9H), 2.04 (s, 3H), 7.82 (d, J= 3.9 Hz, 2H), + + + 6.10 (s, 1H), 6.57 (m, 1H), 6.96 (s, 1H), 7.13 (m, 2H), 7.82 (d, J= 3.9 Hz, 1H); LCMS: ret. time: 8.84 min.;		pyrimidinediamine	1H), 6.67 (s, 1H), 7.23 (s, 2H), 7.34 (br, NH, 1H), 7.72 (d, J=2.7 Hz,	+	+	,	
1H NMR (CDCi3): d 1.71-1.86 (m, 2H), 1.33-2.06 (m, 2H), 2.43-2.53 (m, 2H), 3.81 (s, 6H), 4.60 (m, J= 7.8 Hz, 1H), 5.31 (d, 1H), 6.16 (t, J= 2.1 Hz, 1H), 6.84 (d, J= 2.1 Hz, 2H), 7.57 (br, NH, 1H), 7.72 (d, J= 3.6 Hz, 1H), 19F NMR (282 MHz, CDCi3): d - 167 1H NMR (CDCi3): d 1.75-2.04 (m, 4H), 2.43-2.53 (m, 2H), 3.85 (s, 3H), 4.58 (m, J= 7.8 Hz, 1H), 5.32 (d, J= 6.6 Hz, 1H), 6.76 (s, 1H), 7.18 (t, J= 2.1 Hz, 1H), 7.52 (br, NH, 1H), 7.76 (s, 2H); 19F NMR (282 MHz, CDCi3): d - 167.20, -63.67; LCMS: ret. time: 1uoro-N2-(3- LCMS: ret. time: 11.58 min.; purity: 90.45%; MS (m/e); 412.33 (MH+), + + + + + + + + + + + + + + + + + +			1H); 19F NMR (282 MHz, CDCI3); d - 168.35; LCMS;				
lenyl)-5-fluoro-2,4- (m, 2H), 3.81 (s, 6H), 4.60 (m, J= 7.8 Hz, 1H), 5.31 (d, 1H), 6.16 (t, J= + + + 2.1 Hz, 1H), 6.84 (d, J= 2.1 Hz, 2H), 7.57 (br, NH, 1H), 7.72 (d, J= 3.6 Hz, 1H), 6.84 (d, J= 2.1 Hz, 2H), 7.57 (br, NH, 1H), 7.72 (d, J= 3.6 Hz, 1H), 7.72 (d, J= 3.6 Hz, 1H), 7.72 (d, J= 6.6 Hz, 1H), 6.76 (s, 1H), 7.18 (m, J= 7.8 Hz, 1H), 5.32 (d, J= 6.6 Hz, 1H), 6.76 (s, 1H), 7.18 (t, J= 2.1 Hz, 1H), 7.52 (br, NH, 1H), 7.76 (s, 2H); 19F NMR (282 MHz, CDCi3): d - 167.20, -63.67; LCMS: ret. time: Lower		S C W	1H NMR (CDCI3): d 1.71-1.86 (m, 2H), 1.93-2.06 (m, 2H), 2.43-2.53	+			
2.1 Hz, 1H), 6.84 (d, J= 2.1 Hz, 2H), 7.57 (br, NH, 1H), 7.72 (d, J= 3.6 Hz, 1H); 19F NMR (282 MHz, CDC(3); d - 167 1H NMR (CDC(3); d 1.75-2.04 (m, 4H), 2.43-2.53 (m, 2H), 3.85 (s, 3H), 4.58 (m, J= 7.8 Hz, 1H), 5.32 (d, J= 6.6 Hz, 1H), 6.76 (s, 1H), 7.18 (t, J= 2.1 Hz, 1H), 7.52 (br, NH, 1H), 7.76 (s, 2H); 19F NMR (282 MHz, CDC(3); d - 167.20, -63.67; LCMS: ret. time: LCMS: ret. time: 11.58 min.; purity: 90.45%; MS (m/e); 412.33 (MH+). H NMR (CDC(3); d 1.20 (s, 9H), 2.04 (s, 3H), 3.06 (t, J= 5.4 Hz, 2H), 14.7 (t, J= 5.1 Hz, 2H), 6.10 (s, 1H), 6.57 (m, 1H), 6.96 (s, 1H), 7.13 (m, 2H), 7.82 (d, J= 3.9 Hz, 1H); LCMS: ret. time: 8.84 min.;	8	V4-Cyclobutyl-NZ-(3,5-dimethoxyphenyl)-5-fluoro-2,4-	(m, 2H), 3.81 (s, 6H), 4.60 (m, J= 7.8 Hz, 1H), 5.31 (d, 1H), 6.16 (t, J=				
Hz, 1H); 19F NMR (282 MHz, CDCi3); d - 167 1H NMR (CDCi3); d 1.75-2.04 (m, 4H), 2.43-2.53 (m, 2H), 3.85 (s, 3H), 4.58 (m, J= 7.8 Hz, 1H), 5.32 (d, J= 6.6 Hz, 1H), 6.76 (s, 1H), 7.18 (t, J= 2.1 Hz, 1H), 7.52 (br, NH, 1H), 7.76 (s, 2H); 19F NMR (282 MHz, CDCi3); d - 167.20, -63.67; LCMS: ret. time: LCMS: ret. time: 11.58 min.; purity: 90.45%; MS (m/e); 412.33 (MH+). + + + + + + + + + + + + + + + + + +		pyrimiginediamine	2.1 Hz, 1H), 6.84 (d, J= 2.1 Hz, 2H), 7.57 (br, NH, 1H), 7.72 (d, J= 3.6	+	+	,	
1H NWR (CDCl3): d 1.75-2.04 (m, 4H), 2.43-2.53 (m, 2H), 3.85 (s, 3H), 4.58 (m, J= 7.8 Hz, 1H), 5.32 (d, J= 6.6 Hz, 1H), 6.76 (s, 1H), + + + T.18 (t, J= 2.1 Hz, 1H), 7.52 (br, NH, 1H), 7.76 (s, 2H); 19F NWR (282 MHz, CDCl3): d - 167.20, -63.67; LCMS: ret. time: LCMS: ret. time: 11.58 min.; purity: 90.45%; MS (m/e): 412.33 (MH+), + + + + + + + + + + + + + + + + + +			Hz, 1H); 19F NMR (282 MHz, CDCI3); d - 167				
adiamine 7.18 (t, J= 2.1 Hz, 1H), 5.32 (d, J= 6.6 Hz, 1H), 6.76 (s, 1H), + + + + + + + + + + + + + + + + + + +		M O N	1H NMR (CDCl3): d 1.75-2.04 (m, 4H), 2.43-2.53 (m, 2H), 3.85 (s,	-	+	-	
diamine 7.18 (t, J= 2.1 Hz, 1H), 7.52 (br, NH, 1H), 7.76 (s, 2H); 19F NMR (282	8	144cyclobutyl-5-fluoro-N2-(3-methoxy-5-	3H), 4.58 (m, J=7.8 Hz, 1H), 5.32 (d, J=6.6 Hz, 1H), 6.76 (s, 1H),				
MHz, CDCl3): d - 167.20, -63.67; LCMS: ret. time: LCMS: ret. time: 11.58 min.; purity: 90.45%; MS (m/e): 412.33 (MH+). 1H NMR (CDCl3): d 1.20 (s, 9H), 2.04 (s, 3H), 3.06 (t, J= 5.4 Hz, 2H), 4-(5-tert-butyl-1H-pyrazol- 3.11 (t, J= 5.1 Hz, 2H), 3.53 (t, J= 5.1 Hz, 2H), 3.63 (t, J= 5.1 Hz, 2H), 6.10 (s, 1H), 6.57 (m, 1H), 6.96 (s, 1H), 7.13 (m, 2H), 7.82 (d, J= 3.9 Hz, 1H); LCMS: ret. time: 8.84 min.;		u muoromethylpnenyl)-2,4-pyrimidinediamine	7.18 (t, J= 2.1 Hz, 1H), 7.52 (br, NH, 1H), 7.76 (s, 2H); 19F NMR (282	+	+		
uoro-N2-(3- LCMS: ret. time: 11.58 min.; purity: 90.45%; MS (m/e): 412.33 (MH+). + + + 1H NMR (CDCl3): d 1.20 (s, 9H), 2.04 (s, 3H), 3.06 (t, J= 5.4 Hz, 2H), 4-(5-tert-butyl-1H-pyrazol- 3.11 (t, J= 5.1 Hz, 2H), 3.53 (t, J= 5.1 Hz, 2H), 3.63 (t, J= 5.1 Hz, 2H), 6.10 (s, 1H), 6.57 (m, 1H), 6.96 (s, 1H), 7.13 (m, 2H), 7.82 (d, J= 3.9 Hz, 1H); LCMS: ret. time: 8.84 min.;			MHz, CDCl3): d - 167.20, -63.67; LCMS: ret. time:				_
4.(5-tert-butyl-1H-pyrazol- 3.11 (t, J= 5.1 Hz, 2H), 3.53 (t, J= 5.1 Hz, 2H), 7.13 (m, 2H), 7.82 (d, J= 3.9 Hz, 1H). LAMS. ref. (s, 1H), 6.56 (s, 1H), 7.13 (m, 2H), 7.82 (d, J= 3.9 Hz, 1H). LAMS. ref. time: 8.84 min.;	8	N4-(5-tert-Butyl-1H-pyrazol-3-yl)-5-fluoro-N2-(3-	OMS, roof films, 44 EO	+			
4-(5-tert-butyl-1H-pyrazol- 3.11 (t, J= 5.1 Hz, 2H), 3.53 (t, J= 5.1 Hz, 2H), 3.53 (t, J= 5.1 Hz, 2H), 6.57 (m, 1H), 6.96 (s, 1H), 7.13 (m, 2H), 7.82 (d, J= 3.9 Hz, 1H); LCMS: ret. time: 8.84 min.;		morpholinophenyl)-2,4-pyrimidinediamine	COMO. 18t. Mile. 1 1.30 Mil.; purity: 90.45%; MS (m/e); 412.33 (MH+).	+	+		
4-(5-tert-butyl-1H-pyrazol- 3.11 (t, J= 5.1 Hz, 2H), 3.53 (t, J= 5.1 Hz, 2H), 3.63 (t, J= 5.1 Hz, 2H), 6.10 (s, 1H), 6.57 (m, 1H), 6.96 (s, 1H), 7.13 (m, 2H), 7.82 (d, J= 3.9 Hz, 1H); LCMS: ret. time: 8.84 min.;		CO 13 14 And the first of the f	1H NMR (CDCI3): d 1.20 (s, 9H), 2.04 (s, 3H), 3.06 (t, J= 5.4 Hz, 2H),				
	9	3-yl)-5-fluoro-2,4-pyrimidinediamine	3.11 (t, J= 5.1 Hz, 2H), 3.53 (t, J= 5.1 Hz, 2H), 3.63 (t, J= 5.1 Hz, 2H), 6.10 (s, 1H), 6.57 (m, 1H), 6.86 (s. 1H), 7.13 (m, 2H), 7.82 (d, J= 3.0)	+	+		
	- 1		Hz, 1H); LCMS: ref. time: 8.84 min.;				

Compound Name Compou	L CVK	11pt						4	ŀ													•								
Compound Name (S)-N2-(S-tert-Butyl-11-pytrazot 3-y)-S-fluoro-N4-(2-methyl-3- 18 2 Hz, 1H), 5.00 (s, 1H), 7.09 (s, 1H), 1.00 (s, 1H), 7.09 (s, 1H), 1.00 (s, 1H), 1.00 (s, 1H), 1.00 (s, 1H), 1.00 (s, 1H), 7.00 (s, 1H), 7.00 (s, 1H), 7.00 (s, 1H), 7.00 (s, 1H), 1.00 (s, 1H), 1.11 (s,	LD	CHIMC,	lono, 3pt		•		:	ı	1				,			1		A1114.			,				1					
Compound Name (S)-N2-(S-tert-Butyl-11-pytrazot 3-y)-S-fluoro-N4-(2-methyl-3- 18 2 Hz, 1H), 5.00 (s, 1H), 7.09 (s, 1H), 1.00 (s, 1H), 7.09 (s, 1H), 1.00 (s, 1H), 1.00 (s, 1H), 1.00 (s, 1H), 1.00 (s, 1H), 7.00 (s, 1H), 7.00 (s, 1H), 7.00 (s, 1H), 7.00 (s, 1H), 1.00 (s, 1H), 1.11 (s,	LD	CHMC,	lgE, 8pt		+			4	+																					
Compound Name (S)-N2-(S-tert-Bury-1H-pyrazol-3-yl)-S-fluoro-N4-(2-methyl-3- 16.3 Hz, 14h), 560 (s, 11h), 709 (s, 19h), 1.47 (d, 1-6.6 Hz, 3th), 4.74 (q, 1-6.2 Hz, 14h), 560 (s, 11h), 709 (s, 11h),	LD Trumface	CHMC,	lgE, 3pt		+			4	-					4	•						•			•						
		Physical Data		1H NMR (DMSO-d6): d 1.30 (s, 9H), 1.47 (d, J= 6.6 Hz, 3H), 4.74 (q, J= 6.3 Hz, 1H), 5.60 (s, 1H), 7.09 (d, J= 9.0 Hz, 1H), 7.49 (d, J= 8.4	Hz, 1H), 8.23 (d, J= 3.9 Hz, 1H), 10.02 (s, 1H), 10.39 (s, 1H); 19F	NMR (282 MHz, DMSO-d6); d - 162.62; LCMS; ret. t	1H NMR (DMSO-d6): d 2.16 (s, 6H), 3.61 (s, 4H), 3.64 (s, 3H), 6.98	(d, J= 11 Hz, 1H), 7.00 (s, 1H), 7.23 (s, 1H), 7.35 (t, J= 8.1 Hz, 1H),	7.75 (d, J= 6.6 Hz, 1H), 8.19 (d, J= 4.5 Hz, 1H), 8.29 (s, 2H), 9.57 (s,	1H), 9.89 (s, 1H), 10.82 (s, 1H); 19F NMR (1H NMR (DMSO-d6): d 3.63 (s, 4H), 3.79 (s, 3H), 6.96 (d, J= 9.3 Hz,	1H), 7.04 (t, J= 9.3 Hz, 1H), 7.28 (m, 1H), 7.36 (t, J= 8.1 Hz, 1H), 7.63	(dd, J= 2.1, 13.8 Hz, 1H), 7.68 (d, J= 9.6 Hz, 1H), 7.80 (s, 1H), 8.18 (d	J= 4.2 Hz, 1H), 8.27 (s, 1H), 9.56 (s,	1H NMR (DMSO-d6): d 2.20 (s, 6H), 3.60 (s, 4H), 6.92 (s, 1H), 6.98	(m, 1H), 7.22 (s, 1H), 7.35 (t, J= 8.1 Hz, 1H), 7.73 (d, J= 7.8 Hz, 1H),	7.80 (s, 1H), 8.21 (d, J= 4.2 Hz, 1H), 8.26 (s, 2H), 9.60 (s, 1H), 9.86 (s	1H), 10.80 (s, 1H); 19F NMR (282 MHz, D	1H NMR (DMSO-d6): d 3.62 (s, 4H), 3.66 (s, 6H), 6.13 (t, J= 2.1 Hz,	1H), 6.92 (d, J= 2.1 Hz, 1H), 6.95 (dd, J= 1.5, 8.4 Hz, 1H), 7.34 (t, J=	8.4 Hz, 1H), 7.71 (d, J= 8.1 Hz, 1H), 7.93 (s, 1H), 8.20 (d, J= 3.9 Hz,	1H), 8.26 (s, 2H), 9.61 (s, 1H), 9.81 (s,	1H NMR (DMSO-d6); d 3.01 (t, J=4.5 Hz, 4H), 3.60 (s, 4H), 3.70 (t, J=	4.5 Hz, 4H), 6.51 (dd, J= 2.1, 8.4 Hz, 1H), 6.90 (dd, J= 1.5, 7.8 Hz,	1H), 7.05 (t, J= 8.1 Hz, 1H), 7.29 (m, 3H), 7.64 (d, J= 7.8 Hz, 1H), 8.01	(s, 1H), 8.12 (d, J= 3.6 Hz, 1H), 9.20 (1H NMR (DMSO-d6): d 1.20 (t, J= 7.2 Hz, 3H), 3.02 (t, J= 5.4 Hz, 4H),	3.47 (t, J= 5.4 Hz, 4H), 3.60 (s, 4H), 4.05 (q, J= 7.2 Hz, 2H), 6.53 (dd,	J=1.5, 8.4 Hz, 1H), 6.90 (d, J= 8.1 Hz, 1H), 7.06 (t, J= 8.1 Hz, 1H),	7.30 (m, 3H), 7.66 (d, J= 8.7 Hz, 1H), 7
Compound 1092 1095 1096 1097	Pun			(S)-N2-(5-tert-Butyl-1H-pyrazol-3-yl)-5-fluoro-N4-(2-methyl-3-	1092 oxo-2H,4H-5-pyrid[1,4]oxazin-6-yl]-2,4-pyrimidinediamine			N2-(3,5-Dimethyl-4-methoxyphenyl)-5-fluoro-[3-(N-2-	imidazolin-2-yl)aminophenyl]-2,4-pyrimidinediamine			5-Fluoro-N2-(3-fluoro-4-methoxyphenyl)-N4-[3-(N-2-	Imidazolin-2-yl)aminophenyl]-2,4-pyrimidinediamine			N2-(3,5-Dimethylphenyl)-5-fluoro-N4-[3-(N-2-imidazolin-2-	yl)aminophenyl]-2,4-pyrimidinediamine			N2-(3,5-Dimethoxyphenyl)-5-fluoro-N4-[3-(N-2-imidazolin-2-	yl)aminophenyl]-2,4-pyrimidinediamine			5-Fluoro-N4-[3-(N-2-imidazolin-2-yl)aminophenyl]-N2-(3-	morpholinophenyl)-2,4-pyrimidinediamine			N2-[3-(4-Ethoxycarbonylpiperazino)phenyi]-5-fluoro-N4-[3-(N-	2-imidazolin-2-yl)aminophenyl]-2,4-py	

Compound	Compound Name	Physical Data	LD LD LD Tryptase, fp_syk, CHMC, CHMC, CHMC, CHMC, 11pt lgE, 8pt lono, 3pt	LD Typtase,7 CHMC, 01gE, 8pt 1	LD Tryptase, fr CHMC, 1 Iono, 3pt	fp_syk, 11pt
1096	5-Fluoro-N4-[3-(N-2-imidazolin-2-yl)aminophenyl]-N2-[4-(4-methylpiperazino)phenyl]-2,4-pyrimidinediamine	1H NMR (DMSO-d6): d 3.30 (m, 4H), 3.62 (s, 4H), 6.84 (d, J= 9.0 Hz, 2H), 6.91 (d, J= 8.1 Hz, 1H), 7.35 (t, J= 8.1 Hz, 1H), 7.49 (d, J= 8.4 Hz, 2H), 7.73 (d, J= 8.4 Hz, 1H), 7.80 (s, 1H), 8.09 (d, J= 3.3 Hz, 1H), 8.27 (s, 1H), 9.06 (s, 1H), 9.44 (s, 1H); 1	ı			
1100	5-Fluoro-N4-[3-(N-2-imidazolin-2-yl)aminophenyl]-N2-[4-(4- methoxycarbonylpiperazino)phenyl]-2,4-pyrimidinediamine	1H NMR (DMSO-d6): d 3.00 (t, J= 5.1 Hz, 4H), 3.50 (t, J= 4.5 Hz, 4H), 3.61 (s, 7H), 6.84 (d, J= 9.0 Hz, 2H), 6.91 (dd, J= 1.5, 7.5 Hz, 1H), 7.34 (t, J= 7.8 Hz, 1H), 7.52 (d, J= 8.7 Hz, 2H), 7.66 (d, J= 8.1 Hz, 1H), 7.94 (s, 1H), 8.08 (d, J= 3.6 Hz, 1H), 9	t	- 1 2 - 1		
1101	N4-(5-tert-Butyl-1H-pyrazol-3-yl)-N2-[3-(4- 1101 ethoxycarbonylpiperazino)phenyl[-5-fluoro-2,4- pyrimidinediamine	1H NMR (CDCl3): d 1.28 (t, J= 7.2 Hz, 3H), 1.31 (s, 9H), 3.13 (t, J= 5.1 Hz, 4H), 3.60 (t, J= 5.4 Hz, 4H), 4.15 (q, J= 7.2 Hz, 2H), 6.35 (s, 1H), 6.61 (m, 1H), 7.03 (s, 1H), 7.18 (m, 2H), 7.73 (br, 1H), 7.90 (d, J= 3.3 Hz, 1H), 8.20 (br, 1H); 19F NMR (282	+		,	
1102	N2-[4-(4-Acetylpiperazino)phenyl]-N4-(5-tert-butyl-1H-pyrazol- 3-yl)-5-fluoro-2,4-pyrimidinediamine	LCMS: ret. time: 8.02 min.; purity: 94.49%; MS (m/e): 453.29 (MH+).	+	+		
1103	N4-(5-tert-Butyl-1H-pyrazol-3-yl)-5-fluoro-N2-[4-(4-methoxycarbonylpiperazino)phenyl]-2,4-pyrimidinediamine	LCMS: ret. time: 10.38 min.; purity: 97.48%; MS (m/e): 469.35 (MH+).	+	+		
1104	N4-(5-tert-Butyl-1H-pyrazol-3-yl)-5-fluoro-N2-[4-(4- methylpiperazino)phenyl]-2,4-pyrimidinediamine	114 NWR (DMSO-d6): d 1.26 (s, 9H), 2.61 (m, 7H), 3.00 (m, 4H), 6.30 (br, 1H), 6.86 (d, J= 8.4 Hz, 2H), 7.48 (d, J= 9.3 Hz, 2H), 7.97 (s, 1H); 19F NMR (282 MHz, DMSO-d6): d - 165.34; LCMS: ret. time: 6.04 min.; purity: 90.75%; MS (m/e): 425 (MH+).	+	+		
1105	N2-[4-(4-Acetylpiperazino)phenyl]-5-fluoro-N4-[3-(N-2- imidazolin-2-yl)aminophenyl]-2,4-pyrimidinediamine	1H NMR (DMSO-d6): d 2.04 (s, 3H), 2.97 (t, J= 4.8 Hz, 2H), 3.04 (t, J= 4.8 Hz, 2H), 3.57 (m, 4H), 3.61 (s, 4H), 6.84 (d, J= 9.0 Hz, 2H), 6.90 (d, J= 9.3 Hz, 1H), 7.33 (t, J= 7.8 Hz, 1H), 7.50 (d, J= 8.7 Hz, 2H), 7.69 (d, J= 8.7 Hz, 1H), 7.79 (s, 1H), 8.08	ı		3	
1106	N2-[3-(4-Acetylpiperazino)phenyl[-5-fluoro-N4-[3-(N-2-inidazolin-2-yl)aminophenyl[-2,4-pyrimidinediamine	LCMS: ret. time: 7.31 min.; purity: 84.11%; MS (m/e): 490.34 (MH+).	•		1	
1107	N4-Cyclobutyl-N2-[2-(ethoxycarbonyl)indol-7-yl]-5-fluoro-2,4-pyrimidinediamine	1H NMR (CDCl3): d 1.42 (t, J=7.2 Hz, 3H), 1.63-2.06 (m, 4H), 2.27-2.36 (m, 2H), 4.41 (q, J=7.2 Hz, 2H), 5.17 (d, J=6.0 Hz, 1H), 7.06 (t, J=7.8 Hz, 1H), 7.14 (d, 1H), 7.22 (m, 2H), 7.28 (br, 1H), 7.44 (d, J=7.8 Hz, 1H), 7.76 (d, J=3.6 Hz, 1H), 10.68	+		+	

Compound Number	Compound Name	Physical Data		LD Tryptase, CHMC,	LD Tryptase,f CHMC,	fp_syk, 11pt
		1H NMR (CDCl3): d 1.73-2.05 (m, 4H), 2.40-2.50 (m, 2H), 3.20 (t. J=	ige, spr	ige, spr	iono, spr	
4	N4-Cyclobutyl-5-fluoro-N2-(3-morpholinophenyl)-2,4-	4.8 Hz, 4H), 3.88 (t, J=4.8 Hz, 4H), 4.60 (m, J=7.8 Hz, 1H), 5.14 (d,	-	-		
301	pyrimidinediamine	J= 6.3 Hz, 1H), 6.57 (dd, J= 2.4, 8.1 Hz, 1H), 6.97 (dd, J= 1.8, 7.5 Hz,	+	+	1	
		1H), 7.06 (br, NH, 1H), 7.19 (t, J= 8.1 Hz				
		1H NMR (CDCI3): d 1.29 (t, J= 6.9 Hz, 3H), 1.71-2.02 (m, 4H), 2.41-				
1100	N4-Cyclobutyl-N2-[3-(4-ethoxycarbonylpiperazino)pheny]-5-	2.51 (m, 2H), 3.18 (t, J= 5.1 Hz, 4H), 3.64 (t, J= 5.1 Hz, 4H), 4.17 (q,	4		1	
<u>.</u>	fluoro-2,4-pyrimidinediamine	J= 6.9 Hz, 2H), 4.59 (m, J= 8.1 Hz, 1H), 5.16 (d, J= 7.8 Hz, 1H), 6.58	ŀ		1	
		(dd, J=2.4, 8.1 Hz, 1H), 6.97 (dd, J= 1.8,				
		1H NMR (CDCl3): d 1.65-1.74 (m, 2H), 1.85-1.95 (m, 2H), 2.19-2.33				
1110	N4-Cyclobutyl-5-fluoro-N2-[4-(4-methylpiperazino)phenyl]-2,4-	N4-Cyclobutyl-5-fluoro-N2-[4-(4-methylpiperazino)phenyl]-2,4- (m, 2H), 2.71 (s, 3H), 3.15 (t, 4H), 3.32 (t, J= 4.8 Hz, 4H), 4.36 (m, J=	+			
=	pyrimidinediamine	8.1 Hz, 1H), 6.80 (d, J= 9.0 Hz, 2H), 7.36 (d, J= 9.3 Hz, 2H), 7.55 (d,	-		1	
		J= 4.2 Hz, 1H); 19F NMR (282 MHz, CDCI3); d				
		1H NMR (CDCl3): d 1.31 (t, 3H), 1.50-2.04 (m, 4H), 2.41-2.50 (m, 2H),				
7	N4-Cyclobutyl-N2-[4-(4-ethoxycarbonylpiperazino)phenyl]-5-	3.08 (t, J= 4.8 Hz, 4H), 3.64 (t, J= 5.1 Hz, 4H), 4.17 (q, 2H), 4.52 (m,	4			
	fluoro-2,4-pyrimidinediamine	J= 7.8 Hz, 1H), 5.18 (d, J= 6.6 Hz, 1H), 6.90 (d, J= 9.0 Hz, 2H), 7.07	+		1	
		(br, 1H), 7.45 (d, J= 9.0 Hz, 2H), 7.70 (
1112	N2-[3-(4-Acetylpiperazino)phenyl]-N4-(3-cyclopropyl-1H-pyrazol-5-yl)-5-fluoro-2,4-pyrimidinediamine	LCMS: ret. time: 9.04 min.; purity: 87.21%; MS (m/e): 437.32 (MH+).	+	+	+	
		1H NMR (CDCl3): d 0.54-0.64 (m, 2H), 0.76-0.86 (m, 2H), 1.74 (m,				
1113	V4-(3-Cyclopropyl-1H-pyrazol-5-yl)-5-fluoro-N2-[4-(4-	1H), 2.42 (s, 3H), 2.76 (br, 4H), 3.17 (t, J= 4.8 Hz, 4H), 5.90 (br, 1H),	+	+		
<u> </u>	nethylpiperazino)phenyl]-2,4-pyrimidinediamine	6.82 (d, J= 8.7 Hz, 2H), 7.29 (d, J= 8.7 Hz, 2H), 7.71 (d, J= 3.6 Hz,		-		
		1H); 19F NMR (282 MHz, CDCi3): d - 167.69; LCM				
1114	N4-(3-Cyclopropyl-1H-pyrazol-5-yl)-5-fluoro-N2-(3- morpholinophenyl)-2,4-pyrimidinediamine	LCMS: ret. time: 8.57 mln.; purity: 88.76%; MS (m/e): 396.24 (MH+).	+	+	,	
		1H NMR (DMSO-d6): d 0.67 (m. 2H), 0.88 (m. 2H), 1.19 (f. J= 7.1 Hz				T
1115	-1H-pyrazol-5-yl)-N2-[3-(4- erazino)phenyl]-5-fluoro-2,4-	3H), 1.85 (m, 1H), 3.06 (m, 4H), 3.48 (m, 4H), 4.05 (q, J= 7.1 Hz, 2H), 6.52 (d. J= 8.1 Hz, 1H), 7.07 (m. 4H), 7.20 (m. 2H); I CMS: ref. firms:	+		+	
	pyrimidinediamine	11.80 min.; purity: 79.43%; MS (m/e): 467.30		,_		
					1	

an interior of the post from an a	
T	
15 + + + + + + + + + + + + + + + + + + +	
td. + + + ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' '	
+ + + + + + + + + + + + + + + + + + +	
CHMC, q, J= + + G, J= + + G, J= + + G, J= + G, J= + G, J= G,	
7.2 Hz, (q, J= 8.4 Hz, 2.3.4; LCt, 3.4; LCt, 4.4, 2.4), 3.6 (dd, J= 8.7; (d, J= 8.7; (m/e); 51)	
20 (t, J= 4, (t, J= 4, 4.05 (t, J= 9.0 + 1.02 (t, J= 9.0 + 1.03 (t, J= 9.04 (t	
(4, 11, 12, 14), 4.10 (m, 16); 2, 24), 7, 24), 7, 4.24), 4.10 (m, 16); 2, 24), 4.70 (m, 17, 19F N); 19F N, 19F N, 19F N, 19F, 19F, 19F, 19F, 19F, 19F, 19F, 19F	
0.90 (m) 0.90 (m) 0.90 (m) 0.90 (m) 0.91 Hz, 2Hz, 3.18 (f, 19.2.16 (m, 1H), 2.16 (m, 1H), 2.16 (m, 1H), 2.7.2 (d, 1=5.1 t, 19.2.1), 1.=5.1 t, 1.5.1	~
(m, 2H), (3.08 (b), 3.08 (b), 9.37 (f), 1.93.93, (d, J), 9.37 (f), 1.93.93, (d, J), 4.69 (d, J), 4.69 (d, J), 3.78 (f), 1.45 (s), 1.45 (208
The control Name The control	
(d, J= 4.1 (d, J= 4.1) (e, J= 4.1) (h, J= 4.1) (h, J= 4.1) (h, J= 4.1) (h, J= 4.1) (h, J= 5.1) (h, J=	1
ne physical Date The NMR (DMR (DMR (DMR (DMR (DMR (DMR (DMR (D	
ound Name a.Cyclopropyl-11H-pyrazol-5-yl)-N2-f4-(4- a.Cyclopropyl-11H-pyrazol-5-yl)-N2-f4-(4- a.Cyclopropyl-11H-pyrazol-5-yl)-N2-f4-(4- midinediamine haltoro-é-fiuoro-N4-(3,4-dihydro-2H,4H-5-pyridi[1,4]oxazin- Chloro-é-fiuoro-N4-(3,4-dihydro-2H,4H-5-pyridi[1,4]oxazin- Chloro-é-fiuoro-N4-(3,4-dihydro-2H,4H-5-pyridi[1,4]oxazin- N4-(1-tert-Butoxycarbony)azetidin-3-yl)-5-fiuoro-N2-(4- N2-f4-(4-Acetylpiperazino)phenyll-N4-(1-tert- N2-f4-(4-Acetylpiperazino)phenyll-N4-(1-tert- N2-f3-(4-Acetylpiperazino)phenyll-5-fluoro-2,4-pyrimidinediamine 1121 morpholinophenyll-2,4-pyrimidinediamine 1121 morpholinophenyll-2,4-pyrimidinediamine 1121 morpholinophenyll-2,4-pyrimidinediamine 1121 morpholinophenyll-2,4-pyrimidinediamine pyrimidinediamine pyrimidinediamine pyrimidinediamine N4-(4-zertidin-3-yl)-5-fluoro-N2-(4-morpholinophen) N4-(4-zertidin-3-yl)-5-fluoro-N2-(4-morpholinophen) N4-(4-zertidin-3-yl)-5-fluoro-N2-(4-morpholinophen) N4-(1-tert-Butoxycarbonylphenyll-5-fluoro-2,4-morpholinophen) Na-f1-fert-Butoxycarbonylphenyll-5-fluoro-2,4-morpholinophen) Na-f1-fert-Butoxycarbonylphenyll-5-fluoro-12-fluoro-2,4-morpholinophenyll-5-fluoro-12-fluoro-12-fluoro-12-fluoro-12-fluoro-11-fluoro-12-fluoro-12-fluoro-11-fluoro-	
-(40-2,4-0-2,4-1-12-	
Inydro-2H,4 Inydro-2H,4 Ino)phenyll-5-fluor n-3-yl)-5-fluor azino)phenyl azino)phenyl azino)phenyl in-3-yl)-5-fl din-3-yl)-5-fl din-3-yl)-5-fl din-3-yl)-5-fl din-3-yl)-5-fl	mine
vrazol-5- vrazol-6- vo)phen) serazino serazino serazino piperazi piperazi piperazi nopyl-1H renyl)-2, renyl)-2, renyl)-6, renyl)-7, renyl)-6, renyl)-7, renyl)-6, renyl)-7, renyl)-6, renyl)-7, renyl)-6, renyl)-7, renyl)-7, renyl)-7, renyl)-7, renyl)-8, renyl)-7, renyl)-8, renyl)-7, renyl)-8, renyll)-8, renyll)-	Acetylpip idinedia
J. Name J. Name Indiamine Inediamine pyrimidine amine pyrimidine diamine pholinophenyl)-2,4-pyrimidine diamine Incxycarbonylazetidin-3-yl)-5-fluoro-2,4-pyrimi butoxycarbonylazetidin-3-yl)-5-fluoro-2,4-pyrimi pyrimidine diamine	N2-14-(4-Acetypiperamine 2,4-pyrimidinediamine
ompound Name NA-(3-Cyclopropyl-1H-pyrazol-5-yl)-N2-{4-(4-(4-(4-(4-(3-4-(4-(3-4-(4-(3-4-(4-(3-4-(4-(3-4-(4-(3-4-(4-(3-4-(4-(3-(4-(3-(3-(4-(3-(3-(4-(3-(3-(3-(3-(3-(3-(3-(3-(3-(3-(3-(3-(3-	1124
Compound Name N4-(3-Cyclopropyl-1H-pyrazol-5-yl)-N2-[4-(4-N4-(3-4-d)-N2-[4-(4-N4-(3-4-d)-N4-(3-4-d	
Number 1111	

fp_syk, 11pt										
LD LD LD LD Tryptase, Tryptase, fp_syk, CHMC, CHMC, CHMC, 11pt	1	+	,	,						
LD Tryptase, CHMC, IgE, 8pt				+				+		+
LD Tryptase, CHMC, IgE, 3pt	1	,	+		1	,	,		1	+
Physical Data	LCMS: ret. time: 7.44 min.; purity: 85.69%; MS (m/e): 416 (MH+).	LCMS: ret. time: 2.85 min.; purity: 100%; MS (m/e): 345.24 (MH+).	LCMS: ret. time: 3.10 min.; purity: 88.30%; MS (m/e): 386.28 (MH+).	1128 NA-(3,4-Dihydro-2H,4H-5-pyrid[1,4]oxazin-6-yi)-5-fluoro-N2-(4-4.8 Hz, 4H), 4.08 (t, J= 4.2 Hz, 2H), 6.50 (br, 1H), 6.82 (d, J= 9.0 Hz, 2H), 7.20 (d, J= 8.1 Hz, 1H), 7.20 (d, J= 8.1 Hz, 1H), 7.48 (d, J= 9.3 Hz, 2H), 7.99 (d, J= 3.6 Hz, 1H), 8.65 (LCMS: ret. time: 11.35 min.; purity: 86.05%; MS (m/e): 516.32 (MH+).	LCMS: ret. time: 8.39 min.; purity: 96.94%; MS (m/e): 416 (MH+).	LCMS: ret. time: 1.20 min.; purity: 96.44%; MS (m/e): 358.24 (MH+).	1132 (0xazol-5-yl)phenyl]-2,4-pyrid[1,4]oxazin-6-yl)-5-fluoro-N2-[3-1H), 6.78 (d, J= 8.1 Hz, 1H), 7.27 (m, 3H), 7.50 (s, 1H), 7.67 (d, J= 8.1 Hz, 1H), 7.67 (m, 3H), 7.50 (s, 1H), 8.88 (s, 1H), 8.82 (s, 1H), 9.35 (s, 1H); 9.35	1H NMR (CDCi3): d 1.68-1.76 (m, 2H), 2.17-2.25 (m, 4H), 3.14 (d, J=3.0 Hz, 3H), 4.79 (m, J= 8.4 Hz, 1H), 7.85 (d, J= 6.0 Hz, 1H); 19F NMR (282 MHz, CDCi3): d - 150.50; LCMS: ref. time: 13.83 min.; purity: 96.47%; MS (m/e): 216.10 (MH+).	1H NMR (DMSO-d6); d 2.03 (s, 3H), 2.97 (t, J= 5.1 Hz, 2H), 3.03 (t, J= 5.1 Hz, 2H), 3.39 (t, 2H), 3.56 (t, 4H), 4.08 (t, J= 4.2 Hz, 2H), 6.51 (s, 1H), 6.84 (d, J= 9.0 Hz, 2H), 6.93 (d, J= 8.4 Hz, 1H), 7.19 (d, J= 8.1 Hz, 1H), 7.49 (d, J= 9.0 Hz, 2H), 7.99
id Compound Name:	N4-(Azetidin-3-yl)-N2-[4-(4-ethoxycarbonylpiperazino)phenyl]- 5-fluoro-2,4-pyrimidinediamine	N4-(Azetidin-3-yl)-5-fluoro-N2-(3-morpholinophenyl)-2,4- pyrimidinediamine	N2-[3-(4-Acetylpiperazino)phenyl]-N4-(azetidin-3-yl)-5-fluoro- 2,4-pyrimidinediamine	N4-(3,4-Dihydro-2H,4H-5-pyrid[1,4]oxazin-6-yl)-5-fluoro-N2-(4 morpholinophenyl)-2,4-pyrimidinediamine	N4-(1-tert-Butoxycarbonylazetidin-3-yl)-N2-[3-(4-1129 ethoxycarbonylpiperazino)phenyl]-5-fluoro-2,4-pyrimidinediamine	N4-(Azetidin-3-yl)-N2-[3-(4-ethoxycarbonylpiperazino)phenyi]- 5-fluoro-2,4-pyrimidinediamine	N4-(Azetidin-3-yl)-5-fluoro-N2-[4-(4-methylpiperazino)phenyl]-	N4-(3,4-Dihydro-2H,4H-5-pyrid[1,4]oxazin-6-yl)-5-fluoro-N2-[3 (oxazol-5-yl)phenyl]-2,4-pyrimidinediamine	11332-Chloro-N4-cyclobutyl-5-fluoro-N4-methyl-4-pyrimidineamine	N2-[4-(4-Acetylpiperazino)phenyl]-N4-(3,4-dihydro-2H,4H-5- pyrid[1,4]oxazin-6-yl)-5-fluoro-2,4-pyrimidinediamine
Compound	11:	17.	1127	7.	#	#	11:	#	11:	11;

Compound Compound Name			LD LD LD LD Tryptase, Tryptase, fp_syk, CHMC, CHMC, CHMC, 11pt IgE, 3pt IgE, 8pt Iono, 3pt	LD ,Tryptase,fp_s) CHMC, 11pt lono, 3pt	fp_syk, 11pt
N4-(3,4-Dihydro-2H,4H-5-p) ethoxycarbonylpiperazino)p pyrimidinediamine	N4-(3,4-Dihydro-2H,4H-5-pyrid[1,4]oxazin-6-yl)-N2-[4-(4-3135]ethoxycarbonylpiperazino)phenyl]-5-fluoro-2,4- pyrimidinediamine	1H NMR (DMSO-d6): d 1.19 (t, J=7.2 Hz, 3H), 2.99 (t, J= 5.4 Hz, 4H), 3.39 (t, 2H), 3.49 (t, 4H), 4.04 (q, J= 7.2 Hz, 2H), 4.08 (t, J= 4.8 Hz, 2H), 6.51 (s, 1H), 6.84 (d, J= 9.3 Hz, 2H), 6.93 (d, J= 8.4 Hz, 1H), 7.49 (d, J= 9.0 Hz	+		
N4-(3,4-Dihydro-2H,4H-5-pyrid[1,4]oxa morpholinophenyl)-2,4-pyrimidinediam	ızin-6-yl)-5-fluoro-N2-(3-	1H NWR (DMSO-d6): d 2.99 (t, J= 5.1 Hz, 4H), 3.39 (t, 2H), 3.69 (t, J= N4-4H), 3.99	+		
.cetylpiperazino)p xazin-6-yl)-5-fluo	N2-[3-(4-Acetylpiperazino)phenyl]-N4-(3,4-dihydro-2H,4H-5-4pyrid[1,4]oxazin-6-yl)-5-fluoro-2,4-pyrimidinediamine	1H NIMR (DMSO-d6): d 2.03 (s, 3H), 2.98 (t, J= 4.8 Hz, 2H), 3.05 (t, J= 4.8 Hz, 2H), 3.39 (t, 2H), 3.53 (t, J= 5.4 Hz, 4H), 4.08 (t, 2H), 6.50 (m, 2H), 6.91 (d, J= 8.4 Hz, 1H), 7.04 (t, J= 8.4 Hz, 1H), 7.21 (m, 3H), 8.04 (d, J= 3.6 Hz, 1H), 8.75 (s, 1H), 9	+		
N4-(3,4-Dihydro-2H,4H-5-pv ethoxycarbonylpiperazino)p pyrimidinediamine	1 N4-(3,4-Dihydro-2H,4H-5-pyrid[1,4]oxazin-6-yı]-N2-[3-(4-3)-138 ethoxycarbonylpiperazino)phenyi]-5-fluoro-2,4-byrimidinediamine	1H NIMR (DMSO-d6): d 1.20 (t, J= 7.2 Hz, 3H), 3.01 (t, J= 4.8 Hz, 4H), 3.41 (t, 2H), 3.46 (t, J= 4.8 Hz, 4H), 4.08 (t, 2H), 6.50 (m, 2H), 6.91 (d, J= 8.4 Hz, 1H), 7.04 (t, J= 8.4 Hz, 1H), 7.19 (d, J= 8.1 Hz, 2H), 7.25 (t, 1H), 8.04 (d, J= 3.6 Hz, 1H), 8.73	+		
N4-Cyclobutyl-5-fluoro-N4-methyl-N2-(2,4-pyrimidinediamine	.4-morpholinophenyl)-	1H NMR (DMSO-d6): d 1.56-1.69 (m, 2H), 2.07-2.27 (m, 4H), 3.07 (t, J= 4.5 Hz, 4H), 3.12 (d, J= 3.0 Hz, 3H), 3.73 (t, J= 4.5 Hz, 4H), 4.76 (m, J= 8.4 Hz, 1H), 6.92 (d, J= 9.0 Hz, 2H), 7.42 (d, J= 8.7 Hz, 2H), 7.97 (d, J= 7.2 Hz, 1H), 9.36 (br, 1H); 19F NMR		t	
N2-[4-(4-Acetylpiperazino)phe methyl-2,4-pyrimidinediamine	nylj-N4-cyclobutyl-5-fluoro-N4-	1H NMR (DMSO-d6): d 1.59-1.69 (m, 2H), 2.03 (s, 3H), 2.10-2.27 (m, 4H), 3.03 (t, J= 4.5 Hz, 2H), 3.11 (d, J= 3.0 Hz, 5H), 3.56 (t, 4H), 4.76 (m, J= 7.5 Hz, 1H), 6.93 (d, J= 9.0 Hz, 2H), 7.45 (d, J= 9.0 Hz, 2H), 7.96 (d, J= 7.2 Hz, 1H), 9.26 (br, 1H); LCMS			
hydro-2H,4H-5-p. iperazino)phenyi]	1 N4-(3,4-Dihydro-2H,4H-5-pyrid[1,4]oxazin-6-yl)-5-fluoro-N2-[4- 2 (4-methylpiperazino)phenyl]-2,4-pyrimidinediamine	14 NMR (DMSO-d6): d 2.23 (s, 3H), 3.03 (t, 4H), 3.29 (m 4H), 3.38 (t, 1H) MA-(3,4-Dihydro-2H,4H-5-pyrid[1,4]oxazin-6-yi)-5-fluoro-N2-[4-2H), 4.08 (t, J= 4.5 Hz, 2H), 6.50 (br, 1H), 6.81 (d, J= 8.7 Hz, 2H), 6.92 (d, J= 8.4 Hz, 1H), 7.20 (d, J= 8.1 Hz, 1H), 7.46 (d, J= 9.0 Hz, 2H), 7.98 (d, J= 3.6 Hz, 1H), 8.64 (br, 1H),	+	1	

Compound Name		LD Tryptase Physical Data CHMC,	LD LD LD Tryptase, Tryptase, fp_syk, CHMC, CHMC, CHMC, 11pt	LD LD Tryptase, Tryptase, CHMC, CHMC,	fp_syk, 11pt
N4-(3,4-Dihydro-2H,4H-5-pyrid[1,4]ox (4-methylpiperazino)phenyl]-2,4-pyrim	1 ,4]oxazin-6-yl)-5-fluoro-N2-(3- 2 pyrimidinediamine	1955, 3pt. 1947, 3pt.	+ +	י י	
N4-(3,4-Dinydro-2H,4H-5-pyrid[1,4]oxazin- (oxazol-2-yl)phenyl]-2,4-pyrimidinediamine	,4]oxazin-6-yl)-5-fluoro-N2-{3-6	1H NMR (DMSO-d6): d 3.53 (f, J= 4.2 Hz, 2H), 4.16 (f, J= 4.2 Hz, 2H), 7.16 (f, J= 4.2 Hz, 2H), 7.40 (f, J= 4.2 Hz, 2H), 7.24 (d, J= 8.7 Hz, 1H), 7.24 (d, J= 8.7 Hz, 1H), 7.35 (s, 1H), 7.40 (f, J= 7.8 Hz, 1H), 7.56 (dt, J= 1.2, 8.1 Hz, 1H), 7.89 (d, J= 8.4 Hz, 1H), 7.89 (d, J= 8.4 Hz, 1H), 8.32 (d, J= 3.3 Hz, 1H), 8.32 (+		
N4-(3-Cyclopropyl-1H-pyrazol-5- yl)phenyl]-2,4-pyrimidinediamine	yl)-5-fluoro-N2-[3-(oxazol-2-	1H NWR (DMSO-d6): d 0.61-0.66 (m, 2H), 0.86 (m, 2H), 1.81 (m, 1H), 6.41 (br, 1H), 7.35 (m, 2H), 7.52 (d, J= 7.5 Hz, 1H), 7.86 (s, 1H), 8.04 (s, 1H), 8.19 (m, 2H), 9.34 (s, 1H), 9.60 (s, 1H); 19F NMR (282 MHz, DMSO-d6): d - 163.42; LCMS: ret. time: 9.50 mi	+	,	+
N4-(3,4-Dihydro-2H,4H-5-pyrid[1,4]ox (3,4,5-trimethoxyphenyl)-2,4-pyrimidin	azin-6-yl}-5-fluoro-N2- iediamine	1H NWR (DMSO-d6): d 3.49 (f, 2H), 3.61 (s, 3H), 3.69 (s, 6H), 4.14 (f, J=4.5 Hz, 2H), 6.94 (d, J=7.8 Hz, 1H), 7.07 (s, 2H), 7.14 (d, 1H), 8.20 (d, J=3.6 Hz, 1H), 9.75 (s, 1H); LCMS: ref. time: 8.80 min.; purity: 100%; MS (m/e): 429.45 (MH+).	+	,	+
N2-(3-Chloro-4-methoxyphenyl)-N4-(6 pyrid[1,4]oxazin-6-yl)-5-fluoro-2,4-pyri	s,4-dihydro-2H,4H-5- midinediamine	1H NMR (DMSO-d6): d 3.39 (s, 2H), 3.78 (s, 3H), 4.08 (t, J= 3.9 Hz, 2H), 6.54 (br, 1H), 6.95 (d, J= 8.4 Hz, 1H), 7.00 (d, J= 8.7 Hz, 1H), 7.18 (d, J= 8.4 Hz, 1H), 7.46 (dd, J= 2.4, 9.0 Hz, 1H), 7.84 (d, J= 2.4 Hz, 1H), 8.80 (s, 1H)	_	,	
N4-Cyclobutyl-5-fluoro-N4-methyl-N2-[4-(4- methylpiperazino)phenyl]-2,4-pyrimidinediamine		1H NMR (DMSO-d6): d 1.56-1.68 (m, 2H), 2.10-2.26 (m, 4H), 2.21 (s, 3H), 2.44 (t, 4H), 3.02 (t, J= 4.8 Hz, 4H), 3.05 (d, J= 2.7 Hz, 3H), 4.74 (m, J= 7.8 Hz, 1H), 6.82 (d, J= 9.0 Hz, 2H), 7.49 (d, J= 8.7 Hz, 2H), 7.88 (d, J= 6.6 Hz, 1H), 8.79 (br, 1H); 19F	+		+
N4-Cyclobutyl-N2-[4-(4-ethoxycarbonylp fluoro-N4-methyl-2,4-pyrimidinediamine	iperazino)phenyl]-5-	11 NMR (DMSO-d6): d 1.19 (t, J= 7.2 Hz, 3H), 1.56-1.69 (m, 2H), 2.07-2.27 (m, 4H), 3.06 (t, J= 4.8 Hz, 4H), 3.11 (d, J= 3.0 Hz, 3H), 3.05 (t, 4H), 4.05 (q, J= 7.2 Hz, 2H), 4.76 (m, J= 8.4 Hz, 1H), 6.93 (d, J= 9.0 Hz, 2H), 7.43 (d, J= 8.7 Hz, 2H), 7.97 (d,	+	ı	

Compound	Compound Name	Physical Data	LD LD LD Tryptase, Tryptase, fp_syk, CHMC, CHMC, CHMC, 11pt IgE, 3pt IgE, 8pt Iono, 3pt	sse, Tryptase, fp_s) CHMC, 11pt	,fp_syk, 11pt
1149	N4-Cyclobutyl-5-fluoro-N4-methyl-N2-(3-morpholinophenyl)- 2,4-pyrimidinediamine	1H NMR (DMSO-d6); d 1.57-1.70 (m, 2H), 2.13-2.24 (m, 4H), 3.07 (t, J= 4.8 Hz, 4H), 3.11 (d, J= 3.3 Hz, 3H), 3.73 (t, J= 4.5 Hz, 4H), 4.78 (m, J= 8.7 Hz, 1H), 6.57 (m, 1H), 7.08 (m, 2H), 7.24 (m, 1H), 7.98 (d, J= 6.9 Hz, 1H), 9.19 (br, 1H); LCMS: ret. time	+	ı	
1150	N2-[3-(4-Acetylpiperazino)phenyl]-N4-cyclobutyl-5-fluoro-N4- methyl-2,4-pyrimidinediamine	1H NMR (CDCi3): d 1.66-1.78 (m, 2H), 2.15 (s, 3H), 2.22 (m, 4H), 3.17 (d, J= 2.7 Hz, 3H), 3.22 (m, 4H), 3.62 (t, J= 4.8 Hz, 2H), 3.77 (t, J= 5.1 Hz, 2H), 4.85 (m, J= 8.4 Hz, 1H), 6.58 (dd, J= 2.4, 8.1 Hz, 1H), 7.04 (d, J= 8.4 Hz, 1H), 7.19 (t, J= 8.1 Hz,	+		
1151	N4-Cyclobutyl-5-fluoro-N4-methyl-N2-[3-(4- methylpiperazino)phenyl]-2,4-pyrimidinediamine	1H NMR (CDCl3): d 1.63-1.77 (m, 2H), 2.21 (m, 4H), 2.45 (s, 3H), 2.72 (t, J= 4.8 Hz, 4H), 3.13 (d, J= 3.9 Hz, 3H), 3.32 (t, J= 4.8 Hz, 4H), 4.84 (m, J= 8.7 Hz, 1H), 6.56 (dd, J= 2.4, 8.1 Hz, 1H), 6.82 (br, 1H), 7.00 (d, J= 8.1 Hz, 1H), 7.17 (t, J= 7.8 Hz,	+	1	
1152	N4-Cyclobutyl-N2-[3-(4-ethoxycarbonylpiperazino)phenyl]-5- fluoro-N4-methyl-2,4-pyrimidinediamine	1H NMR (DMSO-d6): d 1.19 (t, J= 7.2 Hz, 3H), 1.60-1.70 (m, 2H), 2.13-2.28 (m, 4H), 3.08 (t, J= 5.1 Hz, 4H), 3.12 (d, J= 3.3 Hz, 3H), 3.50 (t, 4H), 4.05 (q, J= 7.2 Hz, 2H), 4.79 (m, J= 9.0 Hz, 1H), 6.59 (d, J= 6.9 Hz, 1H), 7.09 (m, 2H), 7.27 (s, 1H), 7.99	÷	t	
1153	N2-(2-Aminocarbonyl-5-benzoxy-4-methoxyphenyl)-N4- syclobutyl-5-fluoro-N4-methyl-2,4-pyrimidinediamine	1H NMR (DMSO-d6): d 1.69-1.78 (m, 2H), 2.28 (m, 4H), 3.36 (d, J=3.3 Hz, 3H), 3.90 (s, 3H), 4.94 (m, 1H), 5.30 (s, 2H), 7.12 (s, 1H), 7.35-7.48 (m, 6H), 9.04 (d, J= 9.0 Hz, 1H); LCMS: ret. time: 11.25 min.; purity: 98.01%; MS (m/e): 435.22 (M-16).	1	ı	
1154	N2-(4-Benzamidophenyl)-N4-cyclobutyl-5-fluoro-2,4- pyrimidinediamine	1H NMR (DMSO-d6): d 1.62-1.74 (m, 2H), 2.02-2.15 (m, 2H), 2.23-2.31 (m, 2H), 4.50 (m, J= 8.1 Hz, 1H), 7.46-7.68 (m, 8H), 7.84 (d, J= 3.6 Hz, 1H), 7.92 (td, J= 1.2, 6.6 Hz, 2H), 8.99 (s, 1H), 10.07 (s, 1H); 19F NMR (282 MHz, DMSO-d6): d - 167.01; LCMS: ret	+		
1155	N4-Cyclopentyl-5-fluoro-N2-(4-morpholinophenyl)-2,4- pyrimidinediamine	1H NMR (DMSO-d6): d 1.54 (m, 4H), 1.70 (m, 2H), 1.94 (m, 2H), 2.98 (t, J= 4.8 Hz, 4H), 3.70 (t, J= 4.8 Hz, 4H), 4.30 (q, J= 6.9 Hz, 1H), 6.80 (d, J= 9.0 Hz, 2H), 7.22 (d, J= 6.9 Hz, 1H), 7.55 (d, J= 9.3 Hz, 2H), 7.76 (d, J= 3.6 Hz, 1H), 8.74 (br, 1H); 19F	+	,	

LD LD LD Tryptase, fp_syk, CHMC, CHMC, CHMC, 11pt IgE, 3pt IgE, 3pt Iono, 3pt	+	+					1
LD LD Tryptase, Tryptase CHMC, CHMC, IgE, 3pt IgE, 8pt	+	+	+	+	+	+	+
LD Tryptase Physical Deta: CHMC, [gE, 3pt	1164 NA-Cyclohexyl-5-fluoro-N2-[4-(4-methylpiperazino)phenyl]-2,4- (m, 2H), 2.21 (s, 3H), 2.46 (t, J= 4.8 Hz, 4H), 3.01 (t, J= 4.8 Hz, 4H), 3.01 (t, J= 4.8 Hz, 4H), 3.01 (t, J= 4.8 Hz, 1H), 7.52 (d, J= 9.0 Hz, 2H), 7.12 (d, J= 8.4 Hz, 1H), 7.52 (d, J= 9.0 Hz, 2H), 7.15 (d, J= 3.9 Hz, 1H), 8	1H NIMR (DMSO-d6): d 1.19 (t, J= 7.2 Hz, 3H), 1.31 (m, 5H), 1.64 (d, 1H), 1.76 (m, 2H), 1.90 (m, 2H), 2.97 (t, J= 4.8 Hz, 4H), 3.48 (t, 4H), 3.86 (m, 1H), 4.04 (q, J= 7.2 Hz, 2H), 6.82 (d, J= 9.0 Hz, 2H), 7.12 (d, J= 6.9 Hz, 1H), 7.55 (d, J= 9.3 Hz, 2H), 7	1H NMR (DMSO-d6): d 1.27 (m, 5H), 1.63 (d, 1H), 1.76 (m, 2H), 1.87 (m, 2H), 3.04 (t, J= 4.8 Hz, 4H), 3.72 (t, J= 4.8 Hz, 4H), 3.90 (m, 1H), 6.46 (dd, J= 2.1, 7.8 Hz, 1H), 7.03 (t, J= 8.4 Hz, 1H), 7.16 (d, J= 7.8 Hz, 1H), 7.24 (m, 2H), 7.80 (d, J= 3.9 Hz, 1H), 7.24 (m, 2H), 7.80 (d, J= 3.9 Hz, 1H), 7.80 (d, J= 3.9 Hz), 9.80 (d, J= 3.9 H	1H NMR (DMSO-d6): d 1.31 (m, 5H), 1.61 (m, 1H), 1.76 (m, 2H), 1.87 (m, 2H), 2.03 (s, 3H), 3.04 (t, 2H), 3.09 (t, 2H), 3.56 (t, 4H), 3.90 (m, 2H), 6.48 (d, J= 9.0 Hz, 1H), 7.04 (t, J= 8.4 Hz, 1H), 7.17 (d, J= 8.4 Hz, 1H),	1168 NA-Cyclohexyl-5-fluoro-N2-[3-(4-methylpiperazino)phenyl]-2,4- (m, 2H), 1.86 (m, 2H), 2.26 (s, 3H), 3.09 (t, 4H), 3.32 (t, 4H), 3.88 (m, 1168 pyrimidinediamine Hz, 1H), 7.24 (m, 2H), 7.24 (m, 2H), 7.24 (m, 2H), 7.01 (t, J= 8.1 Hz, 1H), 7.16 (d, J= 7.2 Hz, 1H), 7.24 (m, 2H), 7.80 (d, J= 3.9 Hz, 1H), 7.16 (d, J= 7.2 Hz, 1H), 7.24 (m, 2H), 7.80 (d, J= 3.9 Hz, 1H), 7.16 (d, J= 7.2 Hz, 1H), 7.24 (m, 2H), 7.80 (d, J= 3.9 Hz, 1H), 7.16 (d, J= 3.9 Hz, 1H), 7.24 (m, 2H), 7.80 (d, J= 3.9 Hz, 1H), 7.84 (m, 2H), 7.84 (m, 2H), 7.80 (d, J= 3.9 Hz, 1H), 7.16 (d, J= 3.9 Hz)	1H NMR (DMSO-d6): d 1.19 (t, J= 6.9 Hz, 3H), 1.31 (m, 5H), 1.62 (d, 1H), 1.76 (m, 2H), 1.87 (m, 2H), 3.05 (t, J= 4.8 Hz, 4H), 3.49 (t, 4H), 3.90 (m, 1H), 4.05 (q, J= 7.2 Hz, 2H), 6.48 (d, J= 4.5 Hz, 1H), 7.03 (t, J= 8.1 Hz, 1H), 7.16 (d, J= 6.6 Hz, 1H), 7	1H NMR (DMSO-d6): d 1.57 (m, 4H), 1.72 (m, 2H), 1.96 (m, 2H), 4.32 (q, J= 7.5 Hz, 1H), 7.29 (d, J= 6.3 Hz, 1H), 7.46-7.69 (m, 7H), 7.81 (d, J= 3.9 Hz, 1H), 7.92 (d, J= 9.6 Hz, 2H), 8.97 (s, 1H), 10.05 (s, 1H);
Compound Name Compound Name	N4-Cyclohexyl-5-fluoro-N2-[4-(4-methylpiperazino)phenyl]-2,4-pyrimidinediamine	N4-Cyclohexyl-N2-[4-(4-ethoxycarbonylpiperazino)phenyl]-5- fluoro-2,4-pyrimidinediamine	N4-Cyclohexyl-5-fluoro-N2-(3-morpholinophenyl)-2,4- pyrimidinediamine	N2-[3-(4-Acetylpiperazino)phenyl]-N4-cyclohexyl-5-fluoro-2,4- pyrimidinediamine	N4-Cyclohexyl-5-fluoro-N2-[3-(4-methylpiperazino)phenyl]-2,4-pyrimidinediamine	N4-Cyclohexyl-N2-[3-(4-ethoxycarbonylpiperazino)phenyl]-5- fluoro-2,4-pyrimidinediamine	N2-(4-Benzamidophenyl)-N4-cyclopentyl-5-fluoro-2,4- pyrimidinediamine

fp_syk, 11pt				+				
LD LD LD LD Tryptase, Tryptase, fp_syk, CHMC, CHMC, CHMC, 11pt lgE, 3pt lgE, 8pt lono, 3pt	1	1		ı	t	t	•	•
LD Tryptase, CHMC, IgE, 8pt				+				
LD Tryptase, CHMC, IgE, 3pt	+	+	1	1	+	+	,	
Physical Data	1H NMR (DMSO-46): d 1.60 (m, 4H), 1.74 (m, 2H), 1.96 (m, 2H), 3.85 (s, 3H), 4.43 (q, J= 6.9 Hz, 1H), 5.24 (s, 2H), 7.06 (s, 1H), 7.31-7.50 (m, 6H), 8.53 (d, J= 7.2 Hz, 1H), 8.70 (d, J= 6.9 Hz, 1H); 19F NMR (282 MHz, DMSO-46): d - 155,92; LCMS: ret. time:	1H NMR (DMSO-d6); d 1.55 (m, 4H), 1.71 (m, 2H), 1.94 (m, 2H), 3.09 (s, 3H), 3.31 (s, 3H), 4.32 (q, J=7.2 Hz, 1H), 7.13 (d, J= 9.0 Hz, 2H), 7.34 (d, J=7.2 Hz, 1H), 7.77 (d, J= 8.7 Hz, 2H), 7.83 (d, J= 3.9 Hz, 1H), 9.14 (s, 1H); 19F NMR (282 MHz, DMSO-d6)	1H NMR (DMSO-d6); d 1.55 (m, 4H), 1.71 (m, 2H), 1.93 (m, 2H), 3.62 (s, 4H), 4.31 (q, J= 6.6 Hz, 1H), 6.71 (d, J= 7.8 Hz, 1H), 7.25 (t, J= 7.8 Hz, 1H), 7.40 (d, J= 7.2 Hz, 1H), 7.53 (d, J= 7.5 Hz, 1H), 7.84 (s, 2H), 8.22 (s, 1H), 9.23 (s, 1H), 10.54 (br, 1	1H NMR (DMSO-d6); d 1.33 (m, 5H), 1.65 (d, 1H), 1.78 (m, 2H), 1.92 (m, 2H), 3.88 (m, 1H), 7.22 (d, J= 8.1 Hz, 1H), 7.46-7.69 (m, 7H), 7.81 (d, J= 3.9 Hz, 1H), 7.92 (d, J= 6.6 Hz, 2H), 8.99 (s, 1H), 10.05 (s, 1H); 19F NMR (282 MHz, DMSO-d6); d - 166.98; LC	1H NMR (DMSO-d6); d 1.36 (m, 5H), 1.65 (d, 1H), 1.79 (m, 2H), 1.88 (m, 2H), 3.85 (s, 3H), 4.05 (m, 1H), 5.24 (s, 2H), 7.06 (s, 1H), 7.31-7.50 (m, 6H), 8.44 (d, J= 7.5 Hz, 1H), 8.70 (d, J= 6.9 Hz, 1H); 19F NMR (282 MHz, DMSO-d6); d - 156.00; LCMS: ret. tim	1H NMR (DMSO-d6); d 1.32 (m, 5H), 1.64 (d, 1H), 1.74 (m, 2H), 1.90 (m, 2H), 3.09 (s, 3H), 3.32 (s, 3H), 3.88 (m, 1H), 7.13 (d, J= 8.4 Hz, 2H), 7.26 (d, J= 7.5 Hz, 1H), 7.75 (d, J= 8.7 Hz, 2H), 7.83 (d, J= 3.9 Hz, 1H), 9.15 (s, 1H); 19F NMR (282 MHz, DMSO-	LCMS: ref. time: 6.42 min.; purity: 86.49%; MS (m/e): 370.47 (MH+).	1H NMR (DMSO-d6): d 7.22 (t, J= 7.8 Hz, 1H), 7.31 (d, J= 9.3 Hz, 2H), 7.40 (t, J= 8.1 Hz, 1H), 7.46 (d, J= 7.5 Hz, 1H), 7.64 (d, J= 7.5 Hz, 1H), 7.81 (d, J= 7.8 Hz, 1H), 8.08 (d, J= 7.5 Hz, 1H), 8.11 (d, 2H), 8.18 (d, J= 3.6 Hz, 1H), 8.24 (t, J= 1.8 Hz, 1
Compound Name Number	N2-(2-Aminocarbonyl-5-benzoxy-4-methoxyphenyl)-N4-cyclopentyl-5-fluoro-2,4-pyrimidinediamine	N2-[4-(N-Acetyl-N-methylamino)phenyl]-N4-cyclopentyl-5- fluoro-2,4-pyrimidinediamine	N4-Cyclopentyl-5-fluoro-N2-[3-(N-2-imidazolin-2-y)aminophenyl]-2,4-pyrimidinediamine	N2-(4-Benzamidophenyl)-N4-cyclohexyl-5-fluoro-2,4- pyrimidinediamine	N2-(2-Aminocarbonyl-5-benzoxy-4-methoxyphenyl)-N4- cyclohexyl-5-fluoro-2,4-pyrimidinediamine	N2-[4-(N-Acetyl-N-methylamino)phenyl]-N4-cyclohexyl-5- fluoro-2,4-pyrimidinediamine	N4-Cyclohexyl-5-fluoro-N2-[3-(N-2-imidazolin-2- yl)aminophenyl]-2,4-pyrimidinediamine	N2,N4-Bis[3-(oxazol-2-yl)phenyl]-5-fluoro-2,4- pyrimidinediamine

Compound	Compound Name	Physical Data	LD L Tryptase, T CHMC, C	LD LD LTyptase, CHMC, (GE, 8pt II	LD LD LD Tryptase, Tryptase, fp_syk, CHMC, CHMC, CHMC, 11pt IgE, 3pt IgE, 8pt Iono, 3pt	fp_syk, 11pt
1179	N4-Cyclobutyl-5-fluoro-N4-methyl-N2-[3-(oxazol-2-yl)phenyl]-	1H NMR (DMSO-d6): d 1.53-1.71 (m, 2H), 2.11-2.32 (m, 4H), 3.16 (d, J= 3.6 Hz, 3H), 4.89 (m, J= 8.4 Hz, 1H), 7.36 (d, J= 0.9 Hz, 1H), 7.40 (t, J= 7.8 Hz, 1H), 7.57 (m, 2H), 8.06 (d, J= 7.2 Hz, 1H), 8.20 (d, J= 0.9 Hz, 1H), 9.57 (t, J= 1.8 Hz, 1H), 9.68 (s,	+			
1180	(S)-N4-(1-Benzylpyrrolidin-3-yl)-5-fluoro-N2-(4- morpholinophenyl)-2,4-pyrimidinediamine	1H NMR (DMSO-d6): d 1.83 (m, 1H), 2.16 (m, 1H), 2.40 (dd, J=5.1, 9.3 Hz, 1H), 2.58 (m, 2H), 2.89 (dd, J=7.2, 9.3 Hz, 1H), 2.99 (t, J=4.8 Hz, 4H), 3.58 (d, J=1.8 Hz, 2H), 3.72 (t, J=4.8 Hz, 4H), 4.41 (m, 1H), 6.78 (d, J=9.0 Hz, 2H), 7.22 (m, 1H), 7.2	+		1	
1181	(S)-N2-[4-(4-Acetylpiperazino)phenyl]-N4-(1-benzylpyrrolidin- 3-yl)-5-fluoro-2,4-pyrlmidinediamine	1H NMR (DMSO-d6): d 1.81-1.87 (m, 1H), 2.03 (s, 3H), 2.14-2.23 (m, 1H), 2.40 (dd, J= 5.7, 9.6 Hz, 1H), 2.56 (m, 2H), 2.89 (dd, J= 7.2, 9.3 Hz, 1H), 2.95 (t, J= 5.1 Hz, 2H), 3.02 (t, J= 5.1 Hz, 2H), 3.55 (m, 4H), 3.58 (s, 2H), 4.41 (m, 1H), 6.81 (d, J= 9.0	+	, i	1	
1182	(S)-N4-(1-Benzylpyrrolidin-3-yl)-5-fluoro-N2-[4-(4- methylpiperazino)phenyl]-2,4-pyrimidinediamine	LCMS: ret. time: 1.17 min.; purity: 95.41%; MS (m/e): 462.15 (MH+).	,			
1183		1H NMR (DMSO-d6): d 1.19 (t, J=7.2 Hz, 3H), 1.83 (m, 1H), 2.17 (m, 1H), 2.40 (dd, J=5.1, 9.0 Hz, 1H), 2.56 (m, 2H), 2.89 (dd, J=7.2, 9.0 Hz, 1H), 2.98 (t, J=5.1 Hz, 4H), 3.49 (t, J=5.1 Hz, 4H), 3.58 (d, J=1.8 Hz, 2H), 4.05 (q, J=7.2 Hz, 2H), 4.44 (+		1	
1184	S)-N4-(1-Benzylpyrrolldin-3-yl)-5-fluoro-N2-(3- norpholinophenyl)-2,4-pyrimidinediamine	LCMS: ret. time: 6.81 min.; purity: 100%; MS (m/e): 449 (MH+).	+		3	
1185	рулrolidin-3-	1H NMR (DMSO-d6): d 1.82-1.88 (m, 1H), 2.02 (s, 3H), 2.16-2.26 (m, 1H), 2.37 (dd, J= 5.7, 9.0 Hz, 1H), 2.56 (m, 2H), 2.92 (dd, J= 6.9, 9.0 Hz, 1H), 3.03 (t, J= 5.1 Hz, 2H), 3.10 (t, J= 5.1 Hz, 2H), 3.56 (m, 4H), 3.58 (s, 2H), 4.53 (m, 1H), 6.47 (d, J= 8.4	+			
1186	(S)-N4-(1-Benzylpyrrolidin-3-yl)-5-fluoro-N2-[3-(4- methylpiperazino)phenyl]-2,4-pyrimidinediamine	LCMS: ret. time: 2.79 mln.; purity: 97.87%; MS (m/e): 462 (MH+).	+		1	
1187	(S)-N4-(1-Benzylpyrrolidin-3-yl)-N2-[3-(4-1187] ethoxycarbonylpiperazino)phenyl]-5-fluoro-2,4-pyrimidinediamine	1H NMR (DMSO-d6): d 1.18 (t, J= 7.2 Hz, 3H), 1.82 (m, J= 6.5 Hz, 1H), 2.19 (m, 1H), 2.37 (dd, J= 5.7, 9.0 Hz, 1H), 2.56 (m, 2H), 2.91 (dd, J= 7.2, 9.0 Hz, 1H), 3.06 (t, J= 5.1 Hz, 4H), 3.51 (t, J= 5.1 Hz, 4H), 3.58 (s, 2H), 4.04 (q, J= 7.2 Hz, 2H), 4.55 (+		1	

Compound	Compound Name	Physical Date:	LD LD LD Tryptase, Tryptase, fp_syk, CHMC, CHMC, 11pt IgE, 3pt IgE, 8pt Iono, 3pt	LD I Tryptase, CHMC, C	LD Tryptase, fp_s) CHMC, 11pt lono, 3pt	p_syk,
1188	N4-Cyclobutyl-5-fluoro-N2-[3-chloro-4-(4-methylpiperazino)phenyl]-2,4-pyrimidinediamine	1H NMR (DMSO-d6): d 1.61-1.73 (m, 2H), 2.01-2.14 (m, 2H), 2.25-2.33 (m, 2H), 2.29 (s, 3H), 2.55 (m, 4H), 2.91 (t, 4H), 4.47 (m, J= 8.1 Hz, 1H), 7.03 (d, J= 8.7 Hz, 1H), 7.43 (dd, J= 2.7, 9.0 Hz, 1H), 7.69 (d, J= 7.2 Hz, 1H), 7.84 (d, J= 3.6 Hz, 1H), 8.07	+			
1186	N4-(3,4-Dihydro-2H,4H-5-pyrid[1,4]oxazin-6-yl)-5-fluoro-N2-[3- 1189(4-methylpiperazino)phenyl]-2,4-pyrimidinediamine Bis p- Toluenesulfonic Acid Salt	1H NMR (DMSO-d6): d 2.28 (s, 6H), 2.86 (d, J= 4.8 Hz, 3H), 2.92 (m, 2H), 3.13 (q, J= 10.8 Hz, 2H), 3.49 (m, 4H), 3.74 (d, J= 13.2 Hz, 2H), 4.15 (t, J= 4.2 Hz, 2H), 6.66 (d, J= 7.8 Hz, 1H), 6.96 (d, J= 8.7 Hz, 1H), 7.08 (d, J= 8.4 Hz, 4H), 7.17 (m, 4H), 7.	+	+	-	
1190	N4-(3,4-Dihydro-2H,4H-5-pyrid[1,4]oxazin-6-yl)-5-fluoro-N2-[3-1190(4-methylpiperazino)phenyl]-2,4-pyrimidinediamine Bis Hydrogen Chloride Salt	1H NMR (DMSO-d6): d 2.81 (d, J= 4.5 Hz, 3H), 3.08 (m, 4H), 3.48 (d, J= 11.7 Hz, 2H), 3.55 (t, 2H), 3.72 (d, J= 11.7 Hz, 2H), 4.18 (t, J= 4.2 Hz, 2H), 6.65 (d, J= 9.0 Hz, 1H), 6.74 (d, J= 8.1 Hz, 1H), 7.15 (t, J= 8.1 Hz, 1H), 7.36 (d, J= 8.1 Hz, 1H), 7.41	+	+		
1191	N2-[3-Chloro-4-(4-methylpiperazino)phenyl]-N4-cyclohexyl-5- lluoro-2,4-pyrimidinediamine	1H NMR (DMSO-d6): d 1.14 (m, 1H), 1.33 (m, 4H), 1.63 (d, 1H), 1.74 (m, 2H), 1.90 (m, 2H), 2.21 (s, 3H), 2.45 (m, 4H), 2.88 (t, 4H), 3.89 (m, 1H), 7.01 (d, J= 8.7 Hz, 1H), 7.24 (d, J= 7.8 Hz, 1H), 7.39 (dd, J= 2.4, 8.4 Hz, 1H), 7.81 (d, J= 3.9 Hz, 1H), 8.0	+			+
1192	V2-[4-(4-Acetylpiperazino)phenylj-N4-cydobutyl-5-fluoro-2,4- yyrimidinediamine Bis Hydrogen Chloride Salt	1H NMR (DMSO-46): d 1.65-1.76 (m, 2H), 2.04 (s, 3H), 2.08-2.26 (m, 4H), 3.10 (t, 2H), 3.17 (t, 2H), 3.58 (t, 4H), 4.43 (m, J= 7.8 Hz, 1H), 7.02 (d, J= 8.1 Hz, 2H), 7.37 (d, J= 8.4 Hz, 2H), 8.00 (d, J= 5.1 Hz, 1H), 9.10 (br, 1H), 10.02 (br, 1H); 19F NMR (2	+			
1193	N4-Cyclohexyl-5-fluoro-N2-[4-(4-methylpiperazino)phenyl]-2,4-	14 NMR (DMSO-d6): d 1.24 (m, 4H), 1.37 (q, 1H), 1.62 (d, 1H), 1.76 (M, 2H), 2.28 (s, 6H), 2.86 (d, J= 3.9 Hz, 3H), 2.92 (d, 1183) pyrimidinediamine Bis p-Toluenesulfonic Acid Salt (2H), 3.15 (m, 2H), 3.52 (d, 2H), 3.80 (d, 3H), 7.00 (d, J= 9.3 Hz, 2H), 7.09 (d, J= 7.8 Hz, 4H), 7.36 (d, J= 9.3 Hz, 2H)	+			
1194	V4-Cyclohexyl-5-fluoro-N2-[4-(4-methylpiperazino)phenyl]-2,4- oyrimidinediamine Bis Hydrogen Chloride Salt	14 NMR (DMSO-d6); d 1.33 (m, 5H), 1.61 (d, 1H), 1.77 (d, 2H), 1.87 (d, 2H), 2.79 (d, J= 4.8 Hz, 3H), 3.09 (m, 4H), 3.47 (d, 2H), 3.78 (d, 2H), pyrimidinediamine Bis Hydrogen Chloride Salt 8.10 (d, J= 5.4 Hz, 1H), 9.08 (d, J= 8.1 Hz, 1H)	+			

to when been first string limit with the string wells to a some some
in the state of th
+ + +
4 + + + +
5 + + + + + +
1
(G-HMU-) 1.36 (m, 24), 1.77 (m, 24), 1.86 (m, 24), 2.31 1.41, 1.73 (m, 44), 2.91 (t, 44), 4.30 (t, 1, 6.9 Hz, 14), 7.03 (d, 1, 4), 4.30 (t, 1, 6.9 Hz, 14), 7.03 (d, 1, 4), 2.90 Hz, 14), 7.36 (d, 1, 4, 6.9 Hz, 14), 7.43 (dd, 1, 2.7, 9.0 Hz, 14), 1.222 1.52 (d, 1, 2, 39 Hz, 14), 8.07 (d, 1, 2.2.4 Hz, 14), 7.04 (d, 1, 2.9.0 Hz, 14), 7.05 (d, 1, 1), 7.05 (d
3.3.7. H., 1.1.1. 3.2.7.8 (A.H.), 3.2.8 (M.S. (m. 1.63) (M.S.
19. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.
1.1.38 (1.1.1.1.39) 1.1.34 (1.1.1.3) 1.34 (1.1.1.3)
m; purity: 88 11, 7, 7, 19, 19, 19, 19, 19, 19, 19, 19, 19, 19
34 min.; pum min
(m, 4H), 7.7 (h, 4H), 7.30 (h, 4H), 6.30 (h, 4H), 6.33 (h, 4H), 8.02 (h, 4H), 8.03 (h, 4H), 8.04 (h, 4H), 8.04 (h), 2.83 (h), 2.83 (h), 2.83 (h), 2.83 (d), 7.97 (H), 7.97 (H), 7.97 (H), 7.97 (H), 7.97 (H), 7.97 (H), 7.97 (H), 7.97 (H), 7.97 (H), 7.96 (H), 7.96 (H), 7.96 (H), 7.96 (H), 7.96 (H), 7.96 (H), 7.96 (H), 7.96 (H), 7.96 (H), 7.97 (H), 7.96 (H), 7.96 (H), 7.96 (H), 7.96 (H), 7.97 (H), 7.96 (H), 7.96 (H), 7.96 (H), 7.96 (H), 7.96 (H), 7.97 (H), 7.96 (H), 7.97 (H), 7.97
(14) (13) (14) (13) (14) (13) (14) (13) (14) (13) (14) (14) (14) (14) (14) (14) (14) (14
(d, 1-1), 2.86 (H), 4. (H), 7.7 (H), 7.8 (H), 8.7 (H), 8.7 (H), 8.7 (H), 8.7 (H), 8.7 (H), 8.7 (H), 8.8 (H), 8.7 (H), 8.
Parical Bests 8.7 HZ, HJ, 7.30 (G, Je 6.9 HZ, 141), 7.03 (G, Je 141), 7.03 (G, Je 141), 7.03 (G, Je 6.9 HZ, 141), 7.43 (Gd, Je 2.7, 9.0 HZ, 141), 7.36 (G, Je 6.9 HZ, 141), 7.43 (Gd, Je 2.7, 9.0 HZ, 141), 7.36 (G, Je 6.9 HZ, 141), 7.43 (Gd, Je 2.7, 9.0 HZ, 141), 7.36 (G, Je 6.9 HZ, 141), 7.43 (Gd, Je 2.7, 9.0 HZ, 141), 7.37 (Gr. 141), 2.30 (H, 441), 6.31 (Gr. 141), 7.04 (G, Je 9.0 HZ, 141), 7.51 (Gr. 141), 12.07 (Gr. 141), 13.08 (H, 441), 2.46 (G, Je 2.7, 8.7 HZ, 141), 7.51 (Gr. 141), 12.07 (Gr. 141), 13.08 (Gr. 141), 2.46 (Gr. Je 8.7 HZ, 141), 7.42 (Gr. Je 8.7 HZ, 141), 7.43 (Gr. Je 2.7 HZ, 141), 7.44 (Gr. Je 2.7 HZ, 141), 7.48 (Gr. Je
anse (2015) THIMIR (DMSO-46): 01.56 (m. 44), 1.71 (m. 24), 1.60 (m. 24), 1.231 THIMIR (DMSO-46): 01.56 (m. 44), 4.30 (n. 126.9 Hz. 111), 7.30 (d. 15.50 (m. 44), 4.30 (n. 126.9 Hz. 111), 7.30 (d. 15.50 (m. 44), 4.30 (n. 126.9 Hz. 111), 7.30 (d. 15.50 (m. 44), 4.30 (n. 126.9 Hz. 111), 7.30 (d. 15.50 (m. 44), 4.30 (n. 126.9 Hz. 111), 7.30 (d. 15.50 (m. 24), 1.67 (m
tame the control of
opent 143.4 143.4 144.4
hand in initial in initial in initial in initial in initial initial in initial in
no)phenylj-N4-cyclope azino)phenylj-N4-(3-co azino)phenylj-N4-(3-co azino)phenylj-N4-(3-co erazino)phenylj-N4-(3-co ine Bis Hydrogen Chl ine Bis Hydrogen Ch
ol)phe seazin se
strylpiperazin wypiperazin strylpiperazin-6-y loxazin-
thylpif liamin limidin liamin limidin liamin limidin liamin limidin li
are o-4-(4-methylpiperazino)phenylj-N4-cyclopentyl-5- o-4-(4-methylpiperazino)phenylj-N4-(3-cyclopentyl-5- toro-4-(4-methylpiperazino)phenylj-N4-(3-4-dihyd col-5-yl)-5-fluoro-2,4-pyrimidinediamine col-5-yl)-5-fluoro-2,4-pyrimidinediamine col-5-yl)-5-fluoro-2,4-pyrimidinediamine col-5-yl)-5-fluoro-2,4-pyrimidinediamine col-5-yl)-5-fluoro-4-(4-methylpiperazino)phenylj-N4-cyclobu col-2,4-pyrimidinediamine Bis Hydrogen Chloride Sa 3-Chloro-4-(4-methylpiperazino)phenylj-N4-cyclobu coro-2,4-pyrimidinediamine Bis Hydrogen Chloride 2-i3-Chloro-4-(4-methylpiperazino)phenylj-2,4-pyrimidinediamine N4-Cycloperopyl-1H-pyrazcol-5-yl)-5-fluoro-N2- methylpiperazino)phenylj-2,4-pyrimidinediamine N4-(3-Cyclopropyl-1H-pyrazcol-5-yl)-5-fluoro-N2- methylpiperazino)phenylj-2,4-pyrimidinediamine N4-(3-Cyclopropyl-1H-pyrazcol-5-yl)-5-fluoro-N2- methylpiperazino)phenylj-2,4-pyrimidinediamine N4-(3-Cyclopropyl-1H-pyrazcol-5-yl)-5-fluoro-N2- methylpiperazino)phenylj-2,4-pyrimidinediamine N4-(3-Cyclopropyl-1H-pyrazcol-5-yl)-5-fluoro-N2- methylpiperazino)phenylj-2,4-pyrimidinediamine N4-(3-Cyclopropyl-1H-pyrazcol-5-yl)-5-fluoro-N2- methylpiperazino)phenylj-2,4-pyrimidinediamine N4-(3-Cyclopropyl-1H-pyrazcol-5-yl)-5-fluoro-N2- methylpiperazino)phenylj-2,4-pyrimidinediamine N4-(3-4-Dihydro-2H,4H-5-pyrimidinediamine N4-(3-4-Dihydro-2H,4H-5-pyrimidinediamine
und Name 3-Chloro-4 (4-methylpiperazino)phenylj-N4-cyclopentyl-5 (s. 341), 2-57 (m. 141), 7-51 (b. 141), 7-51
ompound Name Mi2-13-Chloro-4-(4-methylpiperazino)phenyll-N4-Cyclopentyl-5- (s, 3H 14-15-pyrimidinediamine Mi2-13-Chloro-4-(4-methylpiperazino)phenyll-N4-(3-cyclopropyl-(s, 7-182) (14-18-19-19-19-19-19-19-19-19-19-19-19-19-19-
numper 114

LD LD LD Tryptase, Tryptase, fp_syk, CHMC, CHMC, CHMC, 11pt igE, 3pt lgE, 8pt lono, 3pt						-					-A-11-87-7-1		
LD Tryptase, CHMC, IgE, 8pt			•										
LD Tryptase, CHMC, IgE, 3pt	+	+	+	+	+	+	+	+	,	,	,	,	1
Physical Data	LCMS: ret. time: 3.64 min.; purity: 95.29%; MS (m/e): 345 (MH+).	LCMS: ret. time: 5.14 min.; purity: 92.47%; MS (m/e): 379 (MH+).	LCMS: ret. time: 1.99 min.; purity: 93.17%; MS (m/e): 359 (MH+).	LCMS: ret. time: 15.09 min.; purity: 94.19%; MS (m/e): 425 (MH+).	LCMS: ret. time: 15.32 min.; purity: 92.83%; MS (m/e): 439.30 (MH+).	LCMS: ret. time: 15.74 min.; purity: 95.26%; MS (m/e): 453 (MH+).	LCMS: ret. time: 7.29 min.; purity: 88.24%; MS (m/e): 413.05 (MH+).	LCMS: ret. time: 8.27 min.; purity: 94.19%; MS (m/e): 477 (MH+).	LCMS: ret. time: 9.57 min.; purity: 90.78%; MS (m/e): 301.19 (MH+).	LCMS: ret. time: 10.29 min.; purity: 94%; MS (m/e): 303.04 (MH+).	LCMS: ret. time: 4.63 min.; purity: 97.16%; MS (m/e): 345.41 (MH+).	LCMS: ret. time: 2.80 min.; purity: 97.03%; MS (m/e): 359 (MH+).	LCMS: ret. time: 7.81 min.; purity: 94.56%; MS (m/e): 359.23 (MH+).
d Corripound Name	5-Fluoro-N4-isopropyl-N2-[4-(4-methylpiperazino)phenyi]-2,4- pyrimidinediamine	N2-[3-Chloro-4-(4-methylpiperazino)phenyi]-5-fluoro-N4- lsopropyl-2,4-pyrimidinediamine	5-Fluoro-N4-Isopropyl-N2-[3-methyl-4-(4-methylpiperazino)phenyl]-2,4-pyrimidinediamine	N4-Cyclobutyl-5-fluoro-N2-[4-(4-methylpiperazino)-3- frifluoromethylphenyl]-2,4-pyrimidinediamine	N4-Cyclopentyl-5-fluoro-N2-[4-(4-methylpiperazino)-3- trifluoromethylphenyl]-2,4-pyrimidinediamine	N4-Cyclohexyl-5-fluoro-N2-[4-(4-methylpiperazino)-3- frifluoromethylphenyl]-2,4-pyrimidinediamine	5-Fluoro-N4-isopropyl-N2-[4-(4-methylpiperazino)-3- frifluoromethylphenyl]-2,4-pyrimidinediamine	N4-(3-Cyclopropyl-1H-pyrazol-5-yl)-5-fluoro-N2-[(4- 1211 methylpiperazino)-3-trifluoromethylphenyl]-2,4- pyrimidinediamine	2-chloro-5-fluoro-N4-(1,2,2,6,6-pentamethylpiperidin-4-yl)-4-pyrimidineamine	2-chloro-N4-(1-ethoxycarbony/piperidin-4-yl)-5-fluoro-4- pyrimidineamine	5-Fluoro-N4-isopropyl-N2-[3-(4-methylpiperazino)phenyl]-2,4-pyrimidinediamine	N4-tert-Butyl-5-fluoro-N2-[4-(4-methylpiperazino)phenyl]-2,4-pyrimidinediamine	N4-tert-Butyl-5-fluoro-N2-[3-(4-methylpiperazino)phenyl]-2,4-pyrimidinediamine
Compound Number	120	1205	120	1207	1208	1209	1210	12.	1212	1213	1214	1215	1216

Compound Number	Compound Name:	Physical Data	LD LD Tryptase, Try CHMC, CH IgE, 3pt IgE	LD LD LD Tryptase, Tryptase, fp_syk, CHMC, CHMC, CHMC, 11pt GE, 8pt Iono, 3pt	ase,fp_syk, C, 11pt 3pt	
1217	N4-tert-Butyl-N2-[3-chloro-4-(4-methylpiperazino)pl iluoro-2,4-pyrimidinediamine	LCMS: ret. time: 10.53 min.; purity: 93.25%; MS (m/e): 393 (MH+).	+			
1218	N4-tert-Butyl-5-fluoro-N2-[3-methyl-4-(4- methylpiperazino)phenyl]-2,4-pyrimidinediamine	LCMS: ret. time: 4.35 min.; purity: 87.23%; MS (m/e): 373.26 (MH+).		+		
1219	5-Fluoro-N2-[4-(4-methylpiperazino)phenyl]-N4-(1,2,2,6,6-pentamethylpiperidin-4-yl)-2,4-pyrimidinediamine	LCMS: ret. time: 1.30 min.; purity: 95.14%; MS (m/e): 456.63 (MH+).	1			
1220	N4-Cyclobutyl-5-fluoro-N2-[3-methyl-4-(4- methylpiperazino)phenyl]-2,4-pyrimidinediamine	LCMS: ret. time: 9.16 min.; purity: 93.00%; MS (m/e): 371.26 (MH+).		+		
1221	5-Fluoro-N2-[3-(4-methylpiperazino)phenyl]-N4-(1,2,2,6,6-pentamethylpiperidin-4-yl)-2,4-pyrimidinediamine	LCMS: ret. time: 1.40, 1.71 min.; purity: 95%; MS (m/e): 456.30 (MH+).	1			
1222	N2-[3-Chloro-4-(4-methylpiperazino)phenyl]-5-fluoro-N4- (1,2,2,6,6-pentamethylpiperidin-4-yl)-2,4-pyrimidinediamine	LCMS: ret. time: 1.44, 1.74 min.; purity: 97%; MS (m/e): 490.11 (MH+).	1			1
1223	5-Fluoro-N2-[3-methyl-4-(4-methylpiperazino)phenyl]-N4- (1,2,2,6,6-pentamethylpiperidin-4-yl)-2,4-pyrimidinediamine	LCMS: ret. time: 1.46, 2.03 min.; purity: 100%; MS (m/e): 470.29 (MH+).	+	· · · · · · · · · · · · · · · · · · ·		
1224	5-Fluoro-N4-(1,2,2,6,6-pentamethylpiperidin-4-yl)-N2-[3-1224 trifluoromethyl-4-(4-methylpiperazino)phenyl]-2,4-pyrimidinediamine	LCMS: ret. time: 1.46, 2.70 min.; purity: 97%; MS (m/e): 524.23 (MH+).	1			
1225	N4-(1-Ethoxycarbonylpiperidin-4-yl)-5-fluoro-N2-[4-(4-methylpiperazino)phenyl]-2,4-pyrimidinediamine	LCMS: ret. time: 6.13 min.; purity: 95.45%; MS (m/e): 458 (MH+).	+			l
1226	N4-(1-Ethoxycarbonylpiperidin-4-yl)-5-fluoro-N2-[3-(4-methylpiperazino)phenyl]-2,4-pyrimidinediamine	LCMS: ret. time: 9.94 min.; purity: 97%; MS (m/e): 458.27 (MH+).	+			l
1227	N2-[3-Chloro-4-(4-methylpiperazino)phenyl]-N4-(1-ethoxycarbonylpiperidin-4-yl)-5-fluoro-2,4-pyrimidinediamine	LCMS: ret. time: 14.71 min.; purity: 98.79%; MS (m/e): 492 (MH+).	+			l
1228	N4-(1-Ethoxycarbonylpiperidin-4-yl)-5-fluoro-N2-[3-methyl-4- (4-methylpiperazino)phenyl]-2,4-pyrimidinediamine	LCMS: ret. time: 9.26 min.; purity: 97.16%; MS (m/e): 472 (MH+).	+			

LD LD LD Tryptase, fp_syk, CHMC, CHMC, 11pt IgE, 3pt Igno, 3pt													
LD se, Tryptase, CHMC, ot Iono, 3pt			741										
LD a, Tryptase CHMC, IgE, 8pt							'						
LD Tryptase, CHMC, IgE, 3pt	+	+	+	+	+	+			1	,	1	+	+
Prysical Data	LCMS: ret. time: 15.48 min.; purity	LCMS: ret. time: 5.52 min.; purity: 94.98%; MS (m/e): 372 (MH+).	LCMS: ret. time: 6.27 min.; purity: 90.61%; MS (m/e): 386.36 (MH+).	LCMS: ret. time: 6.83 min.; purity: 97.62%; MS (m/e): 400 (MH+).	LCMS: ret. time: 15.37 min.; purity: 96.00%; MS (m/e): 427 (MH+).	LCMS: ref. time: 1.44, 1.80 min.; purity: 96%; MS (m/e): 360.28 (MH+).	LCMS: ref. time: 1.82 min.; purity: 90%; MS (m/e): 387.14 (MH+).	LCMS: ref. time: 4.27 min.; purity: 100%; MS (m/e): 374.18 (MH+).	LCMS: ret. time: 1.27 min.; purity: 99.58%; MS (m/e): 471.73 (MH+).	LCMS: ret. time: 7.03 min.; purity: 94.74%; MS (m/e): 473 (MH+).	LCMS: ret. time: 9.65 min.; purity: 97.08%; MS (m/e): 372.11 (MH+).	LCMS: ret. time: 10.50 min.; purity: 91.36%; MS (m/e): 385.85 (MH+).	LCMS: ret. time: 9.22 min.; purity: 93.96%; MS (m/e): 400.11 (MH+).
Compound Name	N4-(1-Ethoxycarbonylpiperidin-4-yl)-5-fluoro-N2-[4-(4-1229 methylpiperazino)-3-frifluoromethylphenyl]-2,4-pyrimidinediamine	N4-Cyclobutyl-N2-[2-(4-ethylpiperazino)pyrid-5-yl]-5-fluoro-2,4-pyrimidinediamine	N4-Cyclopentyl-N2-[2-(4-ethylpiperazino)pyrid-5-yl]-5-fluoro-	N4-Cyclohexyl-N2-[2-(4-ethylpiperazino)pyrid-5-yl]-5-fluoro- 2,4-pyrimidinediamine	N4-tert-Butyl-5-fluoro-N2-[4-(4-methylpiperazino)-3- trifluoromethylphenyl]-2,4-pyrimidinediamine	N2-[2-(4-Ethylpiperazino)pyrid-5-yl]-5-fluoro-N4-isopropyl-2,4-pyrimidinediamine	N4-Cyclobutyl-5-fluoro-N2-[3-hydroxymethyl-4-(4-methylpiperazino)phenyl]-2,4-pyrimidinediamine	N4-tert-Butyl-N2-[2-(4-ethylpiperazino)pyrid-5-yl]-5-fluoro-2,4- pyrimidinediamine	N2-[2-(4-Ethylpiperazino)pyrid-5-yl]-5-fluoro-N4-(1,2,2,6,6-pentamethylpiperidin-4-yl)-2,4-pyrimidinediamine	N4-(1-Ethoxycarbonylpiperidin-4-yl)-N2-[2-(4-ethylpiperazino)pyrid-5-yl]-5-fluoro-2,4-pyrimidinediamine	N4-Cyclobutyl-5-fluoro-N2-[2-(4-methylpiperazino)-3-methylpyrid-5-yl]-2,4-pyrimidinediamine	N4-Cyclopentyl-5-fluoro-N2-[2-(4-methylpiperazino)-3-methylpyrid-5-yl]-2,4-pyrimidinediamine	N4-Cyclohexyl-5-fluoro-N2-[2-(4-methylpiperazino)-3-methylpyrid-5-yl]-2,4-pyrimidinediamine
Compound	122	123	1231	123	1233	123	123	1236	123	123	123	1240	1241

ase,fp_sy C, 11pt 3pt										1
1 22 2						.,				
LD e, Tryptase, CHMC, lono, 3pt										
LD Tryptase, CHMC, IgE, 8pt									+	1
pt pt	+ +	s.	,	•	+	1	1	+		
	LCMS: ret. time: 4.21 min.; purity: 91.67%; MS (m/e): 360.15 (MH+). LCMS: ret. time: 1.43, 1.85 min.; purity: 94%; MS (m/e): 387.05 (MH+).	LCMS: ret. time: 7.05 min.; purity: 95.56%; MS (m/e): 471.26 (MH+).	LCMS: ret. time: 9.37 min.; purity: 92.45%; MS (m/e): 371.99 (MH+).	LCMS: ret. time: 10.12 min.; purity: 95.69%; MS (m/e): 386.09 (MH+).	LCMS: ret. time: 10.35 min.; purity: 92.30%; MS (m/e): 400.13 (MH+).	LCMS: ret. time: 6.77 min.; purity: 84.20%; MS (m/e): 359.97 (MH+).	LCMS: ret. tlme: 1.48, 2.77 min.; purity; 98%; MS (m/e); 471.22 (MH+).	LCMS: ret. time: 11.16 min.; purity: 99.47%; MS (m/e): 415.57 (MH+).	LCMS: purity; 93.2%; MS (m/e): 374.52 (MH+, 100).	¹ H NMR (DMSO): d 8.71 (d, 1H, J = 4.5 Hz), 7.75 (s, 1H), 7.53 (s, 2H), 7.21 (s, 1H), 6.61-6.74 (m, 2H), 5.83 (bs, 2H), 2.43 (s, 6H); LCMS: purity: 88.8%; MS (m/e): 315.24 (MH+, 100).
Compound Compound Name Number 5-Fluoro-N4-isopropyl-N2-f2-(4-methylpiperazino)-3-	1242 methylpyrid-5-yl]-2,4-pyrimidinediamine methylpyrid-5-yl]-2,4-pyrimidinediamine N4-Cyclobutyl-5-fluoro-N2-[3-hydroxymethyl-4-(4- 1243 methylpiperazino)phenyl]-2,4-pyrimidinediamine Bishydrogen chloride salt	5-Fluoro-N2-[2-(4-methylpiperazino)-3-methylpyrid-5-yl]-N4- (1,2,2,6,6-pentamethylpiperidin-4-yl)-2,4-pyrimidinediamine	N4-Cyclobutyl-5-fluoro-N2-[2-(4-methylpiperazino)-4-methylpyrid-5-yl]-2,4-pyrimidinediamine	N4-Cyclopentyl-5-fluoro-N2-[2-(4-methylpiperazino)-4- methylpyrid-5-yl]-2,4-pyrimidinediamine	N4-Cyclohexyl-5-fluoro-N2-[2-(4-methylpiperazino)-4-methylpyrid-5-yl]-2,4-pyrimidinediamine	5-Fluoro-N4-isopropyl-N2-[2-(4-methylpiperazino)-4- 1248 methylpyrid-5-yl]-2,4-pyrimidinediamine	5-Fluoro-N2-[2-(4-methylpiperazino)-4-methylpyrid-5-yl]-N4- (1,2,2,6,6-pentamethylpiperidin-4-yl)-2,4-pyrimidinediamine	5-Fluoro-N4-(1-hydroxymethylcyclopent-1-yl)-N2-[3-methyl-4- (4-methylpiperazino)phenyl]-2,4-pyrimidinediamine	N4-(5-Amino-1,2,4-triazol-3-yl)-5-fluoro-N2-[3-(N-1251 methylamino)carbonylmethyleneoxyphenyl]-2,4-pyrimidinediamine	N4-(3-Amino-1,2,4-triazol-5-yl)-N2-(3,5-dimethylphenyl)-5- fluoro-2,4-pyrimidinediamine

Compound	Compound Name	Physical Date	LD ITyptase, CHMC, GIE, 3pt I	LD Tryptase," CHMC, IgE, 8pt	LD LD LD LD Tryptase, fp_syk, CHMC, CHMC, CHMC, 11pt lgE, 3pt lgE, 3pt lono, 3pt	fp_syk, 11pt
1253	shloro-4- ediamine	LCMS: purity: 92.8%; MS (m/e): 351.09 (MH+, 100).		,		
1254	N4-(5-Amino-1,2,4-trlazol-3-yl)-N2-(3,4-dichlorophenyl)-5- fluoro-2,4-pyrimidinediamine	LCMS: purity: 93.2%; MS (m/e): 355.23 (MH+, 100).				
125€	N4-(5-Amino-1,2,4-triazol-3-yl)-5-fluoro-N2-(indazol-6-yl)-2,4-pyrimidinediamine	LCMS: purity: 94.3%; MS (m/e): 327.14 (MH+, 100).		+		+
1256	N4-[(2,3-Dihydro-1,4-benzodioxan-2-yl)methyl]-N2-(3,5- dimethylphenyl)-5-fluoro-2,4-pyrimidinediamine	¹ H NMR (DMSO): d 10.09 (bs, 1H), 9.12 (bs, 1H), 8.13 (d, 1H, J = 5.1 Hz), 7.17 (s, 2H), 6.74-6.87 (m, 5H), 4.29-4.50 (m, 2H), 3.98 (dd, 1H, 6.3, 11.4 Hz), 3.59-3.80 (m, 2H), 2.23 (s, 6H); LCMS: purity: 97.8%; MS (m/e): 379.14 (M-, 100).	+			
1257	N4-[(2,3-Dihydro-1,4-benzodioxan-2-yl)methyll-5-fluoro-N2-[3-1257 (N-methylamino)carbonylmethyleneoxyphenyl]-2,4-pyrimidinediamine	LCMS: purity: 97.4%; MS (m/e): 438.13 (M-, 100).		+		
1258	N4-[(2,3-Dihydro-1,4-benzodioxan-2-yl)methyl]-N2-(3,5-lidinethoxyphenyl)-5-fluoro-2,4-pyrimidinediamine	¹ H NMR (DMSO): d 10.13 (s, 1H), 9.05 (bs, 1H), 8.19 (d, 1H, J = 4.8 Hz), 6.79-6.86 (m, 6H), 6.24 (m, 1H), 4.29-4.49 (m, 2H), 4.00 (dd, 1H, 6.9, 11.4 Hz), 3.62-3.79 (m, 8H); LCMS: purity: 96.7%; MS (m/e): 411.10 (M-, 100).	+			
1259		¹ H NMR (DMSO): d 10.22 (s, 1H), 9.11 (bs, 1H), 8.12 (d, 1H, J = 5.1 Hz), 7.70 (d, 1H, J = 2.4 Hz), 7.35 (dd, 1H, J = 2.7, 9.0 Hz), 7.08 (d, 1H, J = 9.0 Hz), 6.78-6.87 (m, 4H), 4.28-4.49 (m, 2H), 3.99 (dd, 1H, 6.9, 11.7 Hz), 3.59-3.84 (m, 5H); LCMS: purity	+			
1260	nethyl]-5-fluoro-N2-	LCMS: purity: 95.0%; MS (m/e): 391.10 (M-, 100).		+		
1261	N4-(3,4-Dichlorophenyl)-5-fluoro-N2-(4- methoxycarbonylphenyl)-2,4-pyrimidinediamine	LCMS: purity: 100%; MS (m/e): 405.09 (M-, 100).	1			
1262	N2-[4-(N-Carboxymeihyleneamino)carbonylphenyl]-N4-(3,4- dichlorophenyl)-5-fluoro-2,4-pyrimidinediamine	LCMS: purity: 100%; MS (m/e): 450.11 (M-)	ı			

Compound Number	Compound Name	L T Physical Beita		LD L Tryptase, T CHMC, C	LD Tryptase,ff CHMC, 1	fp_syk, 11pt
1263	(S)-5-Fluoro-N2-(4-methoxycarbonylphenyl)-N4-(2-methyl-3- oxo-2H,4H-benz[1,4]oxazin-6-yl)-2,4-pyrimidinediamine	¹ H NMR (DMSO): d 10.74 (s, 1H), 9.95 (s, 1H), 9.80 (s, 1H), 8.18 (d, 1H, J = 4.2 Hz), 7.20-7.79 (m, 6H), 6.96 (d, 1H, J = 9.3Hz), 4.66 (q, 1H, J = 6.6 Hz), 3.78 (s, 3H), 1.45 (d, 3H, J = 6.6 Hz); LCMS: purity:	lge, 3pt	1gtr, 8pt +	lono, 3pt	
1264	(S)-N2-[4-(N-Carboxymethyleneamino)carbonylphenyl]-5-1264 fluoro-N4-(2-methyl-3-oxo-2H,4H-benz[1,4]oxazin-6-yl)-2,4-	96.8%; MS (m/e); 422.12 (M-, 100). ¹ H NMR (DMSO): d 10.75 (s, 1H), 9.88 (s, 1H), 9.63 (m, 1H), 8.19 (d, 1H, J = 4.5 Hz), 7.19-7.75 (m, 6H), 6.98 (d, 1H, J = 8.7Hz), 4.67 (q, 1H, J = 6.9 Hz), 3.89 (d, 1H, 5.7 Hz), 1.44 (d, 3H, J = 6.9 Hz); LCMS:				
1265	purity: 91.2%; MS (m/e): 465.21 (M-, 100). (R)-N2-(4-Aminocarbonylphenyl)-5-fluoro-N4-(2-methyl-3-oxo-LCMS: purity: 95.5%; MS (m/e): 407.17 (M-, 100).	purity: 91.2%; MS (m/e); 465.21 (M-, 100). LCMS: purity: 95.5%; MS (m/e): 407.17 (M-, 100).		+		
1266	(R)-5-Fluoro-N2-(4-methoxycarbonylphenyl)-N4-(2-methyl-3-oxo-2H,4H-benz[1,4]oxazin-6-yl)-2,4-pyrimidinediamine	¹ H NMR (DMSO): d 10.74 (s, 1H), 9.95 (s, 1H), 9.80 (s, 1H), 8.18 (d, 1H, J = 4.2 Hz), 7.20-7.79 (m, 6H), 6.96 (d, 1H, J = 9.3Hz), 4.66 (q, 1H, J = 6.6 Hz); 3.78 (s, 3H), 1.45 (d, 3H, J = 6.6 Hz); LCMS: purity: 98.5%; MS (m/e): 422.17 (M-, 100).		+		
1267	(R)-N2-[4-(N-Carboxymethyleneamino)carbonylphenyl]-5-1267 fluoro-N4-(2-methyl-3-oxo-2H,4H-benz[1,4]oxazin-6-yl)-2,4-pyrimidinediamine	¹ H NMR (DMSO): d 10.75 (s, 1H), 9.88 (s, 1H), 9.63 (m, 1H), 8.19 (d, 1H, J = 4.5 Hz), 7.19-7.75 (m, 6H), 6.98 (d, 1H, J = 8.7Hz), 4.67 (q, 1H, J = 6.9 Hz), 3.89 (d, 1H, 5.7 Hz), 1.44 (d, 3H, J = 6.9 Hz); LCMS: purity: 87.5%; MS (m/e): 465.21 (M-, 100).	1			
1268	N2,N4-Bis[4-(N-tert-butoxycarbonylamino)methylenephenyl]-5-Iuoro-2,4-pyrimidinediamine	LCMS: purity: 100%; MS (m/e): 537,34 (M-, 100).	+			
1269	N2,N4-Bis(4-aminomethylenephenyl)-5-fluoro-2,4- pyrimidinediamine	1H NMR (DMSO): d 9.25 (bs, 1H), 9.09 (bs, 1H), 8.05 (d, 1H, J = 2.4 Hz), 7.69 (d, 2H, J = 8.7Hz), 7.56 (d, 2H, J = 8.7 Hz), 7.04-7.40 (m, 4H), 3.67 (s, 3H), 3.61 (s, 3H), 3.35 (bs, 4H); LCMS: purity: 95.5%; MS (m/e): 337.18 (M-, 100)	+	+	+	+
1270	N4-(3,4-Dichlorophenyl)-5-fluoro-N2-[4-(N-1270]methoxycarbonylmethyleneamino)carbonylphenyl]-2,4-pyrimidinediamine	¹ H NMR (DMSO): d 10.21 (s, 2H), 8.33 (m, 1H), 8.33 (d, 1H, J = 4.5 Hz), 8.10 (d, 1H, J = 2.4 Hz), 7.59-7.83 (m, 6H), 3.99 (m, 2H), 3.65 (s, 3H); LCMS: purity: 100%; MS (m/e): 462.11 (M-, 100).		+		

Compound Name	Division Data	yptase, Tryr	LD LD LD LD LD LYptase, fp_syk,	fp_syk,
		CHMC, CHMC, IgE, 8pt	CHMC, CHMC, IgE, 8pt Iono, 3pt	11pt
(S)-5-Fluoro-N2-[4-(N-	H NMR (DMSO): d 10.77 (s, 1H), 9.93 (bs, 1H), 8.77 (m, 1H), 8.20 (d,			
methoxycarbonylmethyleneamino)carbonylphenyl]-N4-(2-methyl-3-oxo-2H,4H-benzl1,4loxazh-6-vl)-2,4-	1H, J = 4.5 Hz), 7.21-7.75 (m, 6H), 6.97 (d, 1H, J = 8.4 Hz), 4.66 (q, 1H, J = 6.6 Hz), 3.97 (m. 2H), 3.64 (s, 3H), 1.44 (d, 3H, J = 6.6 Hz):		+	
	LCMS: purity: 96.7%; MS (m/e): 481.16 (MH+,			
(R)-5-Fluoro-N2-[4-(N-	H NMR (DMSO): d 10.77 (s, 1H), 9.93 (bs, 1H), 8.77 (m, 1H), 8.20 (d,			
methoxycarbonylmethyleneamino)carbonylphenyl]-N4-(2-	1H, J = 4.5 Hz), 7.21-7.75 (m, 6H), 6.97 (d, 1H, J = 8.4 Hz), 4.66 (q,			
	14, J=6.6 Hz), 3.97 (m, 2H), 3.64 (s, 3H), 1.44 (d, 3H, J=6.6 Hz);			
	14 NMR (OMS): 4943 (11176): 491.39 (MITT)			
(N-tert-butoxycarbonylamino)methylenephenyi]-5-	N2,N4-Bis[3-(N-tert-butoxycarbonylamino)methylenephenyl]-5-[7.24-7.72 (m, 7H), 7.15 (t, 1H, J = 7.8 Hz), 6.94 (d, 1H, J = 7.5 Hz),			
fluoro-2,4-pyrimidinediamine	6.78 (d, 1H, J = 7.5 Hz), 4.08 (m, 4H), 1.39 (s, 18H); LCMS: purity:			
	95.8%; MS (m/e): 537.16 (M-, 100).	•		
N2,N4-Bis(3-aminomethylenephenyl)-5-fluoro-2,4-	H NIMR (DMSO): d 9.24 (s, 1H), 8.35 (s, 1H), 8.01-8.07 (m, 2H), 6.73-		-	-
	(m/e); 337,21 (М-, 100).			+
N2-[3-(N-tert-Butoxycarbonylamino)methylenephenyl]-N4-(3,4-dichlorophenyl]-5-fluoro-2,4-pyrimidinediamine	LCMS: purity: 93.5%; MS (m/e): 476.19 (M-, 100).	+	+	
Ť	H NMB (DMSO); d 10.61 (s. 1H), 9.30 (s. 1H), 9.04 (s. 1H), 8.03 (d.			
. 1	14, J = 3.9 Hz), 7.22-7.54 (m, 5H), 7.10 (t, 1H, J = 7.5 Hz), 6.92 (d,			
12.fo iiuofo-iN4-(z-metnyi-3-0x0-zh,4H-benzi1,4joxazin-6-yi)-z,4-	1H, J = 7.5 Hz), 4.64 (q, 1H, J = 6.6 Hz), 4.01 (m, 2H), 1.44 (d, 3H, J =	+	+	
	6.6 Hz), 1.39 (s, 9H); LCMS: purity: 95.1			
	H NMR (DMSO): d 10.61 (s, 1H), 9.30 (s, 1H), 9.04 (s, 1H), 8.03 (d,			
nyl]-5-	1H, J = 3.9 Hz), 7.22-7.54 (m, 5H), 7.10 (t, 1H, J = 7.5 Hz), 6.92 (d,	+		
	1H, $J = 7.5 \text{ Hz}$), 4.64 (q, 1H, $J = 6.6 \text{ Hz}$), 4.01 (m, 2H), 1.44 (d, 3H, $J = 1.5 \text{ Hz}$			
	6.6 Hz), 1.39 (s, 9H); LCMS: purity: 92.2			
N2-(3-Aminomethylenephenyl)-N4-(3,4-dichlorophenyl)-5-	¹ H NMR (DMSO): d 9.60 (bs, 1H), 9.31 (s, 1H), 8.16 (d, 1H, J = 3.6			
	Hz), 8.12 (d, 1H, J = 2.7 Hz), 6.81-7.88 (m, 6H), 3.70 (s, 2H); LCMS:	+	+	
	purity: 96.4%; MS (m/e): 376.11 (M-, 100).			

Compound	Compound Name Number	Physical Data	LD Tryptase, CHMC, 619E, 3pt 1	LD Tryptase, CHMC, IgE, 8pt	LD LD LD LD Tryptase, Tryptase, fp_syk, CHMC, CHMC, CHMC, 11pt IgE, 3pt IgE, 8pt Iono, 3pt	fp_syk, 11pt
1279	(S)-N2-(3-Aminomethylenephenyl)-5-fluoro-N4-(2-methyl-3-oxo-2H,4H-benz[1,4]oxazin-6-yl)-2,4-pyrimidinediamine	¹ H NMR (DMSO): d 9.30 (s, 1H), 9.08 (s, 1H), 8.05 (m, 1H), 6.76-7.60 (m, 8H), 4.63 (q, 1H, J = 6.9 Hz), 3.64 (s, 2H), 1.43 (d, 3H, J = 6.9 Hz); LCMS: purity: 100%; MS (m/e): 393.20 (M-, 100).	+	+		
1280	(R)-N2-(3-Aminomethylenephenyl)-5-fluoro-N4-(2-methyl-3-oxo-2H,4H-benz[1,4]oxazin-6-yl-2,4-pyrimidinediamine	¹ H NMR (DMSO); d 9.30 (s, 1H), 9.08 (s, 1H), 8.05 (m, 1H), 6.76-7.60 (m, 8H), 4.63 (q, 1H, J = 6.9 Hz), 3.64 (s, 2H), 1.43 (d, 3H, J = 6.9 Hz); LCMS: purity: 98.5%; MS (m/e): 393.20 (M-, 100).	+	+		
1281	N4-(2,2-Dimethyl-3-oxo-4H-benz[1,4]oxazin-6-yl)-5-fluoro-N2- 3-(oxazol-2-yl)phenyl]-2,4-pyrimidinediamine	¹ H NMR (DMSO): d 10.69 (s, 1H), 10.18 (bs, 1H), 8.25 (d, 1H, J = 4.5 Hz), 8.12-8.17 (m, 2H), 7.73 (d, 1H, J = 8.1 Hz), 7.62 (d, 1H, J = 7.5 Hz), 7.21-7.39 (m, m, 4H), 6.76 (d, 1H, J = 8.4 Hz), 1.38 (s, 6H); LCMS: purity: 100%; MS (m/e): 445.14 (M-, 100).	+	+	r	
1282	(S)-5-Fluoro-N4-(2-methyl-3-oxo-2H,4H-benz[1,4]oxazin-6-yl)- N2-[3-(oxazol-2-yl)phenyl]-2,4-pyrimidinediamine	¹ H NMR (DMSO): d 10.69 (s, 1H), 9.98 (bs, 2H), 8.22 (d, 1H, J = 2.4 (S)-5-Fluoro-N4-(2-methyl-3-oxo-2H,4H-benz[1,4]oxazin-6-yl)-Hz), 8.16 (m, 1H), 7.21-7.75 (m, 6H), 6.78 (d, 1H, J = 8.4 Hz), 4.62 (q, 12-13-(oxazol-2-yl)phenyl]-2,4-pyrimidinediamine (m/e): 431.15 (M-, 100).	+	+	l l	
1283	(R)-5-Fluoro-N4-(2-methyl-3-oxo-2H,4H-benz[1,4]oxazin-6-yl)- N2-[3-(oxazol-2-yl)phenyl]-2,4-pyrimidinediamine	(R)-5-Fluoro-N4-(2-methyl-3-oxo-2H,4H-benz[1,4]oxazin-6-yl)-Hz), 8.16 (m, 1H), 7.21-7.75 (m, 6H), 6.78 (d, 1H, J = 8.4 Hz), 4.62 (q, 18.25) (oxazol-2-yl)phenyl]-2,4-pyrimidinediamine (m/e): 431.15 (M-, 100).	+	+	1	
1284	N4-(2,2-Difluoro-3-oxo-4H-benz[1,4]oxazin-6-yl)-5-fluoro-N2- i3-(oxazol-2-yl)phenyl]-2,4-pyrimidinediamine	¹ H NMR (DMSO): d 12.05 (s, 1H), 10.05 (s, 1H), 9.95 (s, 1H), 8.27 (m, 1H), 8.25 (d, 1H, J = 4.5 Hz), 8.14 (s, 1H), 7.32-7.75 (m, 6H), 7.13 (d, 1H, J = 9.0 Hz); LCMS: purity: 98.0%; MS (m/e): 453.12 (M-, 100).	+	+	•	
1285	N4-(4-Amino-3,4-dihydro-2H-1-benzopyran-6-yl)-5-fluoro-N2- [3-(oxazol-2-yl)phenyl]-2,4-pyrimidinediamine	LCMS: purity: 87.8%; MS (m/e): 417.18 (M-, 100).	+	+		
1286	N4-(2,2-Dimethyl-3-oxo-4H-benz[1,4]oxazin-6-yl)-5-fluoro-N2-1286[4-(N-methoxycarbonylmethyleneamino)carbonylphenyl]-2,4-pyrimidinediamine	¹ H NMR (DMSO): d 10.71 (s, 1H), 9.91 (bs, 1H), 8.73 (m, 1H), 1.19 (d, 1H, J = 4.5 Hz), 7.19-7.74 (m, 6H), 6.94 (d, 1H, J = 8.4 Hz), 3.97 (m, 2H), 3.64 (s, 3H), 1.38 (s, 6H); LCMS: purity: 97.5%; MS (m/e): 493.22 (M-, 100).	+	+		+
1287	N4-(4-N-tert-Butoxycarbonylamino-3,4-dihydro-2H-1- 1287 benzopyran-6-yl)-5-fluoro-N2-[3-(oxazol-5-yl)phenyl]-2,4- pyrimidinediamine	LCMS: purity: 89.3%; MS (m/e): 517.26 (M-, 100).	+		1	

Coling Part Part	W O 2003/010893		1 € 1/032004/024/10
	The state of the s		
	Compound Name Compound Name Nat (4-N-tert-Butox vcarbonylamino-3,4-dilivjdro-2H-1- Is8benzopyran-6-yi)-5-fluoro-N2-[4-(oxazot-5-yi)phenyl]-2-4- Is8benzopyran-6-yi)-5-fluoro-N2-[4-(oxazot-5-yi)phenyl]-2-4- Is8benzopyran-6-yi)-5-fluoro-N2-[4-(oxazot-2y-1)	14- Now No. MS (m/e): 518.16 (M-, 100). 16-M)- LCMS: purity. 100%; MS (m/e): 518.16 (M-, 100). 17-MINIR (DMSO): d 10.40 (6, 7H), 10.25 (6, 7H), 8.26 (d, 1H, J = 8.7 Hz), 7.40 (dd. + + + 1.4). 8.15 (6, 1H), 7.30 (4, 1H, J = 8.7 Hz), 4.59 (t, 1H, J 2.7; 8.4 Hz), 7.32 (6, 1H), 6.81 (d, 1H, J = 8.7 Hz), 6.62 (d, J = 8.7 Hz), 8.05 (6, 1H), 9.18 (6, 1H), 7.30 (m, 1H), 7.20-7.63 (m, 5H), 6.62 (d, J = 8.7 Hz, 1H), 7.86-4.20 (m, 2H); 1.75-2.0 (m, 2H); LCMS: purity: 91.8%; MS (m/e): 419.2 (MH+). 18-6-yll-5- LCMS: purity: 98.0%; MS (m/e): 419.2 (MH+). 19-6-yll-5- LCMS: purity: 93.5%; MS (m/e): 419.3 (m.H+). 19-6-yll-5- LCMS: purity: 93.5%; MS (m/e): 7.1H), 9.87 (6, 7H), 9.87 (6, 7H), 9.87 (6, 7H), 9.87 (6, 7H), 7.24-7.27 (m, 2H).	(R,S)-N4-f4-Amino-3,4-dihydro-27-7 (m, 1H), 8.19 (d, J = 4.2 Hz, 1H), 7.66-7.83 (m, 1H), 8.58 (d, J = 4.5 Hz, 1H), 7.66-7.83 (m, 1H), 8.19 (d, J = 4.2 Hz, 1H), 3.78 (d, J = 5.7 Hz, 2H), 2.58 (d, J = 4.5 Hz, 1H), 8.78 (m, 1H), 8.19 (m, 1H), 8.19 (m, 1H), 8.19 (m, J = 8.4 Hz, 1H), 10.21 (s, 1H), 9.88 (s, 1H), 7.23 (m, 1H), 7.23 (m, 1H), 7.25 (m, 1H), 7.68-7.79 (m, 6H), 7.43 (m, 1H), 7.29 (m, 6H), 7.43 (m, 1H), 8.22 (d, J = 4.5 Hz, 1H), 7.68-7.79 (m, 6H), 7.43 (m, 1H), 8.22 (d, J = 9.0 Hz, 1H), 4.65 (q, J = 6.3 Hz, 1H), 3.79 (m, 1H), 6.95 (m, 1H), 6.95 (d, J = 9.0 Hz, 1H), 4.65 (q, J = 6.3 Hz, 1H), 3.79 (m, 1H), 2.58 (m, 1H), 2.58 (d, J = 4.5 Hz, 3H), 1.43 (d, J = 6.3 Hz, 1H), 2.4- (m, 1H), 2.58 (d, J = 4.5 Hz, 3H), 1.43 (d, J = 6.3 Hz, 1H), 2.96 (methylamine) pyrimidinediamine
	ompoun humber		

	THAT'S A THE SE	Dec. 10 Page 14	LD L Tryptase, T CHMC, C IgE, 3pt II	LD Tryptase, CHMC, IgE, 8pt	LD LD LD Tryptase, Tryptase, fp_syk, CHMC, CHMC, CHMC, 11pt GE, 3pt IgE, 8pt Iono, 3pt	fp_syk, 11pt
いっぱり	N4-(2,2-Difluoro-3-oxo-4H-benz[1,4]oxazin-6-yl)-5-fluoro-N2-1297 [4-[N-(N-methylamino)carbonylmethylene]aminocarbonylphenyl]-2,4-pyrimidinediamine	1H NMR (DMSO-d6): d 12.11 (s, 1H), 9.87 (s, 1H), 9.81 (s, 1H), 8.53 (m, 1H), 8.20 (d, J = 3.9 Hz, 1H), 7.67-7.78 (m, 6H), 7.54 (dd, J = 2.4, 8.7 Hz, 1H), 7.29 (d, J = 9.0 Hz, 1H), 3.79 (d, J = 6.0 Hz, 2H), 2.58 (d, J = 4.2 Hz, 1H); LCMS: purity: 97.8%; MS	+		1	
	(R,S)-N4-[4-(N-tert-Butoxycarbonyl)amino-3,4-dihydro-2H-1-1298 methylamino)carbonylmethylene]aminocarbonylphenyl]-2,4-pyrimidinediamine	LCMS: purity 97% ; MS (π/e): 566.4 (MH+).	+		1	
	(R,S)-N4-[4-Amino-3,4-dihydro-2H-1-benzopyran-6-yl]-5- fluoro-N2-[4-[N-(N- methylamino)carbonylmethylene]aminocarbonylphenyl]-2,4- pyrimidinediamine	LCMS: purity: 93.5%; MS (m/e): 466.3(MH+).	+	+	1	+
	N4-(3,4-Dichlorophenyl)-5-fluoro-N2-[4-[N-(N-1300]methylamino)carbonylmethylene]aminocarbonylphenyl]-2,4-pyrimidinediamine	1H NMR (DMSO-d6): d 9.84 (s, 1H), 9.81 (s, 1H), 8.54 (m, 1H), 8.24 (d, J = 3.9 Hz, 1H), 8.10 (d, J = 2.4 Hz, 1H), 7.68-7.81 (m, 6H), 7.56 (d, J = 9.0 Hz, 1H), 3.79 (d, J = 6.0 Hz, 2H), 2.58 (d, J = 3.9 Hz, 3H); LCMS: purity: 100%; MS (m/e): 463.2 (MH+).	+	+	1	
	N4-(3,4-Dichlorophenyl)-5-fluoro-N4-methyl-N2-[4-[N-(N-1301 methylamino)carbonylmethylene]aminocarbonylphenyl]-2,4-pyrimidinediamine	1H NMR (DMSO-d6): d 9.75 (s, 1H), 8.50 (m, 1H), 8.12 (d, J = 4.8 Hz, 1H), 7.63-7.79 (m, 7H), 7.34 (dd, J = 2.4, 9.6 Hz, 1H), 3.78 (d, J = 4.8 Hz, 2H), 3.09 (s, 3H), 2.58 (d, J = 4.5 Hz, 3H); LCMS: purity: 94.1%; MS (m/e): 477.2 (MH+).	+	+	3	
	N4-(2,2-Dimethyl-3-oxo-4H-benz[1,4]oxazin-6-yl)-5-fluoro-N2-1302[4-{N-(2-methoxycarbonylethyl)aminocarbonyl]phenyl]-2,4-pyrimidinediamine		+	+	+	
ווח כייצו	(S)-5-Fluoro-N2-[4-[N-(2-1303 methoxycarbonylphenyl]-N4-(2-methyl-3-oxo-2H,4H-benz[1,4]oxazin-6-yl)-2,4-pyrimidinediamine	1H NWR (DMSO-d6); d 10.83 (s, 1H), 10.32 (s, 1H), 10.13 (s, 1H), 8.39 (m, 1H), 8.25 (d, J = 4.8 Hz, 1H), 7.62-7.72 (m, 4H), 7.35 (s, 1H), 7.21 (dd, J = 2.4, 8.7 Hz, 1H), 6.96 (d, J = 8.7 Hz, 1H), 4.66 (q, J = 6.9 Hz, 1H), 3.59 (s, 3H), 3.43 (m, 2H), 2.57	+	+	1	

()	Compound Name	Physical Data	LD LD LD Tryptase, Tryptase, fp_syk, CHMC, CHMC, CHMC, 11pt IgE, 3pt IgE, 8pt Iono, 3pt	LD ITyptase, TCHMC, (GE, 8pt I	LD Tryptase, fp_sy CHMC, 11pt lono, 3pt	fp_syk, 11pt
4 4 1 4 1 4 1 4 1 4 1 4 1 4 1 4 1 4 1 4	N4-(2,2-Difluoro-3-oxo-4H-benz[1,4]oxazin-6-yl)-5-fluoro-N2-1304 [4-[N-(2-methoxycarbonylethyl)aminocarbonyl]phenyl]-2,4-pyrimidinediamine	1H NMR (DMSO-d6): d 12.15 (s, 1H), 9.85 (m, 2H), 8.31 (m, 1H), 8.20 (d, J = 4.2 Hz, 1H), 7.70-7.78 (m, 5H), 7.50 (d, J = 9.6 Hz, 1H), 7.27 (d, J = 9.90 Hz, 1H), 3.59 (s, 3H), 3.42 (m, 2H), 2.56 (t, J = 6.9 Hz, 2H); LCMS: purity; 88.5%; MS (m/e): 517.3 (MH	+	+	ı	
4 5 E	N4-(3,4-Dichlorophenyl)-5-fluoro-N2-[4-[N-(2-1305]methoxycarbonylethyl)aminocarbonyl]phenyl]-2,4-pyrimidinediamine	1H NMR (DMSO-d6): d 9.82 (s, 1H), 9.77 (s, 1H), 8.36 (m, 1H), 8.24 (d, J = 3.9 Hz, 1H), 8.11 (d, J = 2.4 Hz, 1H), 7.65-7.79 (m, 5H), 7.56 (d, J = 8.7 Hz, 1H), 3.60 (s, 3H), 3.47 (q, J = 6.6 Hz, 2H), 2.57 (t, J = 6.6 Hz, 1H); purity 90.9%; MS (m/e): 478	+	+	+	
\$\frac{1}{2} \times \frac{1}{2} \times \frac{1}{2}	N4-(3,4-Dichlorophenyl)-5-fluoro-N2-[4-[N-(2-1306 methoxycarbonylethyl)aminocarbonyl]phenyl]-N4-methyl-2,4-pyrimidinediamine	1H NMR (DMSO-d6); d 9.94 (s, 1H), 8.41 (m, 1H), 8.16 (d, J = 5.7 Hz, 1H), 7.64-7.75 (m, 6H), 7.36 (dd, J = 2.4, 8.7 Hz, 1H), 3.59 (s, 3H), 3.50 (s, 3H), 3.45 (m, 2H), 2.57 (t, J = 7.6 Hz, 2H); LCMS: purity: 88.5%; MS (m/e); 492.2(MH+).	+	+		
R B E	N2-[4-[1-(tert-Butoxycarbonylamino)methylenecarbonylamino]methylphenyl]- N4-(2,2-dimethyl-3-oxo-4H-benz[1,4]oxazin-6-yl)-5-fluoro-2,4- pyrimidinediamine	N2-[4-[1-(tert- Butoxycarbonylamino)methylenecarbonylamino]methylphenyl]- (m, 1H), 8.03 (d, J = 3.6 Hz, 1H), 7.56 (d, J = 9.0 Hz, 2H), 7.27 (dd, J = 1307 N4-(2,2-dimethyl-3-oxo-4H-benz[1,4]oxazin-6-yl)-5-fluoro-2,4- 2.1, 8.4 Hz, 1H), 7.21 (d, J = 2.4 Hz, 1H), 7.05 (d, J = 8.7 Hz, 2H), pyrimidinediamine 6.90 (d, J = 9.0 Hz, 2H), 4.16 (d, J = 5.4	+	+	+	
(S) But 5-fl	(S)-N2-[4-[1-(tert-Butoxycarbonylamino]methylphenyl]-Butoxycarbonylamino)methylphenyl]-5-fluoro-N4-(2-methyl-3-oxo-2H,4H-benz[1,4]oxazin-6-yl)-2,4-pyrimidinediamine	(S)-N2-[4-[1-(tert-Butoxycarbonylamino]methyleneyl]-(m, 1H), 8.03 (d, J = 3.6 Hz, 1H), 7.29 - 7.57 (m, 3H), 7.21 (d, J = 2.1 5-fluoro-N4-(2-methyl-3-oxo-2H,4H-benz[1,4]oxazin-6-yl)-2,4-Hz, 1H), 7.05 (d, J = 9.0 Hz, 2H), 6.90 (d, J = 8.4 Hz, 2H), 4.65 (q, J = pyrimidinediamine	+	+	+	
N T T T	N2-[4-[1-(tert-Butoxycarbonylamino)methylenecarbonylamino]methylphenyl]-1309 N4-(2,2-difluoro-3-oxo-4H-benz[1,4]oxazin-6-yl)-5-fluoro-2,4-pyrimidinediamine	N2-[4-[1-(tert-Butoxycarbonylamino]methylphenyl]-(d, J = 3.3 Hz, 1H), 7.46-7.62 (m, 4H), 7.23 (d, J = 8.7 Hz, 2H), 7.07 N4-(2,2-difluoro-3-oxo-4H-benz[1,4]oxazin-6-yl)-5-fluoro-2,4- [d, J = 8.4 Hz, 2H), 6.92 (m, 1H), 4.18 (d, J = 5.7 Hz, 2H), 3.54 (d, J = pyrimidinediamine	+	+	,	
N B 4	N2-[4-[1-(tert- Butoxycarbonylamino)methylenecarbonylamino]methylphenyl]- N4-(3,4-dichlorophenyl)-5-fluoro-2,4-pyrimidinediamine	N2-[4-[1-(tert- 1310] Butoxycarbonylamino)methylenecarbonylamino]methylphenyl]- N4-(3,4-dichlorophenyl)-5-fluoro-2,4-pyrimidinediamine 94.1%; MS (m/e): 535.3 (MH+).	+	, +	+	

Compound	Compound Name	Physical Data	LD LD Tryptase, Tryptase CHMC, CHMC, IgE, 3pt IgE, 8pt		LD Tryptase, fi CHMC, 1 Iono, 3pt	11pt
1311	N2-[4-[1-(tert-Butoxycarbonylamino)methylenecarbonylamino]methylphenyl]-1N4-(3,4-dichlorophenyl)-5-fluoro-N4-methyl-2,4-pyrimidinediamine	N2-[4-[1-(tert- Butoxycarbonylamino)methylenecarbonylamino]methylphenyl]-1H), 7.55-7.66 (m, 4H), 7.30 (m, 1H), 7.08 (d, J = 8.7 Hz, 2H), 6.94 (m, 1311 N4-(3,4-dichlorophenyl)-5-fluoro-N4-methyl-2,4- pyrimidinediamine 1.38 (s, 9H); LCMS: purity: 90.1%; MS (m/e	+		1	
1312	N4-(2,2-Dimethyl-3-oxo-4H-5-pyrid[1,4]oxazin-6-yl)-5-fluoro-1312N2-[4-[N-(2-methoxycarbonylethyl)aminocarbonyl]phenyl]-2,4-pyrimidinediamine	LCMS: ret. time: 3.67 min. (9 min. method); purity: 95.3%; MS (m/e): 496.3(MH+).	+			+
1313	N4-(2,2-Dimethyl-3-oxo-4H-5-pyrid[1,4]oxazin-6-yl)-5-fluoro- 1313 N2-(4-methoxycarbonylphenyl)-2,4-pyrimidinediamine	LCMS: ret, time: 4.45 min. (9 min. method); purity: 97.3%; MS (m/e): 439.3(MH+).	+	•		
1314	N4-(2,2-Dimethyl-3-oxo-4H-5-pyrid[1,4]oxazin-6-yl)-5-fluoro- N2-(3-methoxycarbonylppyrid-2yl)-2,4-pyrimidinediamine	LCMS: ret. time: 4.00 min. (9 min. method); purity: 95.1%; MS (m/e): 440.4(MH+).	+			
1315		LCMS: ret. time: 3.28 min. (9 min. method); purity: 98.1%; MS (m/e): 424.3(MH+).	+			
1316	N2-(2-Aminocarbonylphenyl)-N4-(2,2-dimethyl-3-oxo-4H-5-1316 pyrid[1,4]oxazin-6-yl)-5-fluoro-2,4-pyrimidinediamine	LCMS: ret. time: 3.98 min. (9 min. method); purity: 90.1%; MS (m/e): 424.5(MH+).	+	-		
1317	N4-(2,2-Dimethyl-3-oxo-4H-benz[1,4]oxazin-6-yl)-5-fluoro-N2- (Indazol-6-yl)-2,4-pyrimidinediamine Methanesulfonic Acid Salt	LCMS: ret. time: 8.50 min. (20 min. method); purity: 98.8%; MS (m/e): 420.1 (MH+).			-	
1318	N4-(2,2-Difluoro-3-oxo-4H-benz[1,4]oxazin-6-yl)-5-fluoro-N2- [318[3-(N-methylamino)carbonylmethyleneoxyphenyl]-2,4- pyrimidinediamine Methanesulfonic Acid Salt	LCMS: ret. time: 9.69 min. (20 min. method); purity: 98.4%; MS (m/e): 475.3(MH+).				
1316	N4-(3-Chloro-4-methoxyphenyl)-5-fluoro-N2-(4-[N- 1319[methoxycarbonylmethylene]aminocarbonyl]phenyl)-2,4- pyrimidinediamine	LCMS: ret. time: 3.17 min. (7 min. method); purity: 97.5%; MS (m/e): 460.3(MH+).		+		- Albanda - Alba

Compound	Compound Name	Physical Data CH	LD LD LD Tryptase, fp_syk, CHMC, CHMC, CHMC, 11pt IgE, 3pt IgE, 8pt Iono, 3pt	LD e, Tryptase, CHMC, lono, 3pt	fp_syk, 11pt
132(N4-(3-Chloro-4-methoxyphenyl)-5-fluoro-N2-(4-[2-[N,N-1320] diethylaminojethyleneaminocarbonyl]phenyl)-2,4-pyrimidinediamine	LCMS: ret. time: 2.64 min. (7 min. method); purity: 100%; MS (m/e): 487.3(MH+).	+		+
1321	N2-(4-Aminocarbonylphenyl)-N4-(3-chloro-4-methoxyphenyl)- 5-fluoro-2,4-pyrimidinediamine	LCMS: ret. time: 2.86 min. (7 min. method); purity: 100%; MS (m/e): 488.3(MH+).	+		+
1322	N4-(3-Chloro-4-methoxyphenyl)-5-fluoro-N2-(4- methoxycarbonylphenyl)-2,4-pyrimidinediamine	LCMS: ret. time: 4.02 min. (7 min. method); purity: 98.4%; MS (m/e): 403.3(MH+).	+		
1323	N4-(3-Chloro-4-methoxyphenyl)-5-fluoro-N2-(4-[N-tert- 3 butoxycarbonylaminomethylene]phenyl)-2,4-pyrimidinediamine 474.3(MH+).	LCMS: ret. time: 3.83 min. (7 min. method); purity: 92.3%; MS (m/e): 474.3(MH+).	+		
1324	N2-(4-Aminomethylenephenyl)-N4-(3-chloro-4- methoxyphenyl)-5-fluoro-2,4-pyrimidinediamine	LCMS: ret. time: 2.53 min. (7 min. method); purity: 96.6%; MS (m/e): 374.2(MH+).	+		
132	N4-(3-Chloro-4-methoxyphenyl)-5-fluoro-N2-(4-[N-[N-1325]methyl]aminocarbonylmethylene]aminocarbonyl]phenyl)-2,4-pyrimidinediamine	LCMS: ret. time: 2.81 min. (7 min. method); purity: 100%; MS (m/e): 459.3(MH+).	+		
1326	rbony[]phenyl)-4-	LCMS: ret. time: 2.79 min. (7 min. method); purity: 100%; MS (m/e): 339.2(MH+).	1		
1327	N4-[4-Aminocarbonylphenyl]-2-chloro-5-fluoro4- pyrimidineamine	LCMS: ret. time: 2.40 min. (7 min. method); purity: 100%; MS (m/e): 267.1(MH+).	ı		
1328	5-Fluoro-N2-(3-hydroxyphenyl)-N4-(4-[N-1328 [methoxycarbonylmethylene]aminocarbonyl]phenyl)-2,4-pyrimidinediamine	LCMS: ret. time: 2.44 min. (7 min. method); purity: 94.9%; MS (m/e): 412.3(MH+).	+		
1326	N2-(3,5-Dichloro-4-hydroxyphenyl)-5-fluoro-N4-(4-[N-1329[methoxycarbonylmethylene]aminocarbonyl]phenyl)-2,4-pyrimidinediamine	LCMS: ret. time: 9.92 min. (20 min. method); purity: 95.0%; MS (m/e): 482.0(MH+).	+		

уи т рег Сотроилд	Compound Name	Physical Data	LD LD LD LD Tryptase, fp_syk, CHMC, CHMC, CHMC, 11pt 16E, 3pt 1ono, 3pt	LD L Tryptase, T CHMC, C	LD Tryptase, fr CHMC, 1 Iono, 3pt	fp_syk, 11pt
ਲ <u>୍</u>	N2-(3-Chloro-4-methoxyphenyl)-5-fluoro-N4-(4-[N-1330 [methoxycarbonylmethylene]aminocarbonyl]phenyl)-2,4-pyrimidinediamine	LCMS: ret. time: 3.13 min. (7 min. method); purity: 95% MS (m/e): 460.3(MH+).	+	+		+
<u>8</u>	N2-(2,2-Dimethyl-3-oxo-4H-benz[1,4]oxazin-6-yl}-5-fluoro-N4-1331 (4-[N-[methoxycarbonylmethylene]aminocarbonyl]phenyl}-2,4-pyrimidinediamine	LCMS: ret. time: 2.80 min. (7 min. method); purity: 92.2%; MS (m/e): 495.3(MH+).	+	+		
88	5-Fluoro-N2,N4-bis(4-[N-1332[methoxycarbonyl]phenyl)-2,4-pyrimidinediamine	LCMS: ret. time: 2.77 min. (7 min. method); purity: 100%; MS (m/e): 511.4(MH+).	+	+		
33	N2-(4-Aminocarbonylphenyl)-5-fluoro-N4-(4-[N-1333 [methoxycarbonylmethylene]aminocarbonyl]phenyl)-2,4-pyrimidinediamine	LCMS: ret. time: 2.48 min. (7 min. method); purity: 97.6%; MS (m/e): 439.3(MH+).	,			
1334	N4-(4-Aminocarbonylphenyl)-5-fluoro-N2-(3-hydroxyphenyl)- 2,4-pyrimidinediamine	LCMS: ref. time: 2.10 min. (7 min. method); purity: 100%; MS (m/e): 340.2(MH+).	+	+		
335	N4-(4-Aminocarbonylphenyl)-N2-(3,5-dichloro-4- hydroxyphenyl)-5-fluoro-2,4-pyrimidinediamine	LCMS: ret. time: 8.72 min. (20 min. method); purity: 93.0%; MS (m/e): 410.0(MH+).	+	+		
336	N4-(4-Aminocarbonylphenyl)-N2-(3-chloro-4-methoxyphenyl)- 5-fluoro-2,4-pyrimidinediamine	LCMS: ret. time: 2.79 min. (7 min. method); purity: 100%; MS (m/e): 388.3(MH+).	+	+	-	
1337	N4-(4-Aminocarbonylphenyl)-N2-(2,2-dimethyl-3-oxo-4H-benz[1,4]oxazin-6-yl)-5-fluoro-2,4-pyrimidinediamine	LCMS: ret. time: 2.50 min. (7 min. method); purity: 100%; MS (m/e): 423.3(MH+).	+	+		+
338	N4-(Aminocarbonylphenyl)-5-fluoro-N2-(4-[N-1338 [methoxycarbonylmethylene]aminocarbonyl]phenyl)-2,4-pyrimidinediamine	LCMS: ret. time: 2.52 min. (7 min. method); purity: 94.4%; MS (m/e): 439.3(MH+).	+	+		
1339	N2,N4-Bis (4-aminocarbonylphenyl)-5-fluoro-2,4- pyrimidinediamine	LCMS: ref. time: 2.26 min. (7 min. method); purity: 100%; MS (m/e): 367.3(MH+).	ı			
1340	N4-(2,2-Dimethyl-3-oxo-4H-N4-oxo-5-pyrido[1,4]oxazin-6-yl)-5-fluoro-N2-(3,4,5-trimethoxyphenyl)-2,4-pyrimidinediamine	LCMS: ret. time: 3.48 min. (7 min. method); purity: 97.4%; MS (m/e): 487.3(MH+).	+	+		

Compound	Compound Name	Physical Defa	LD L Tryptase, T CHMC, (G	LD LD LD Tryptase, fp_syk, CHMC, CHMC, CHMC, 11pt IgE, 3pt IgE, 8pt Iono, 3pt	LD Tryptase,fr CHMC, 1	p_syk,
1351	N4-(Cyclopentyl)-5-fluoro-N2-(4-[N-1351 [methoxycarbonylmethylene]aminocarbonyl]phenyl)-2,4-pyrimidinediamine	LCMS: ret. time: 2.62 min. (7 min. method); purity: 100%; MS (m/e): 388.3(MH+).	+	+		
1352	nloro-3-methoxyphenyl)-	LCMS: ret. time: 3.13 min. (7 min. method); purity: 96.4%; MS (m/e): 388.3(MH+).	+			
1353	N2-(4-Aminocarbonyl-3-chlorophenyl)-N4-(3-chloro-4-methoxyphenyl)-5-fluoro-2,4-pyrimidinediamine	LCMS: ret. time: 2.91 min. (7 min. method); purity: 89.5%; MS (m/e): 422.2(MH+).	+	+		
1354	N2-(4-Aminocarbonyl-3-chlorophenyl)-N4-(4-chloro-3- methoxyphenyl)-5-fluoro-2,4-pyrimidinediamine	LCMS: ret. time: 3.14 min. (7 min. method); purity: 95.0%; MS (m/e): 422.2(MH+).	+	+		
1355	N4-(4-Chloro-3-methoxyphenyl)-N2-(4-[2-[N,N-1355]diethylamino]ethyleneaminocarbonyl]phenyl)-5-fluoro-2,4-pyrimidinediamine	LCMS: ret. time: 2.80 min. (7 min. method); purity: 95.6%; MS (m/e): 487.4(MH+).	+	+		
1356	ro-N2-(4-[N- bonyl]phenyl)-2,4-	LCMS: ret. time: 3.45 min. (7 min. method); purity: 94.6%; MS (m/e): 460.3(MH+).	+	+		
1357	N2-(4-Aminocarbonylphenyl)-5-fluoro-N4-phenyl-2,4- pyrimidinediamine	LCMS: ret. time: 2.58 mln. (7 min. method); purity: 100%; MS (m/e): 424.3(MH+).	+	+		
1358	5-Fluoro-N2-(3-hydroxyphenyl)-N4-(4-[3-methyl-1,2,4-1358 oxadiazol-5-yl]methyleneoxyphenyl)-2,4-pyrimidinediamine hydrochloric acid salt	LCMS: ret. time: 2,72 min. (7 min. method); purity: 89.9%; MS (m/e): 409.3(MH+),				

7.5 The Compounds Are Effective for the Treatment of Autoimmunity

The *in vivo* efficacy of certain 2,4-pyrimidinediamine compounds towards autoimmune diseases was evaluated in the reverse passive Arthus reaction, an acute model of antigen-antibody mediated tissue injury, and in several disease models of autoimmunity and inflammation. These models are similar in that antibody to a specific antigen mediates immune complex-triggered (IC-triggered) inflammatory disease and subsequent tissue destruction. IC deposition at specific anatomic sites (central nervous system (CNS) for experimental autoimmune encephalomyelitis (EAE) and synovium for collagen-induced arthritis (CIA)) leads to activation of cells expressing surface $Fc\gamma R$ and $Fc\epsilon R$, notably mast cells, macrophages, and neutrophils, which results in cytokine release, and neutrophil chemotaxis. Activation of the inflammatory response is responsible for downstream effector responses, including edema, hemorrhage, neutrophil infiltration, and release of proinflammatory mediators. The consequences of these IC-triggered events are difficult to identify in autoimmune disorders; nonetheless, many investigators have demonstrated that inhibition of the $Fc\gamma R$ signaling pathway in these animal models has resulted in a significant reduction in disease onset and severity.

7.5.1 The Compounds Are Effective In Mouse Arthus Reaction

The in vivo efficacy of compounds 810, 944, 994 and 1007 to inhibit the IC-triggered inflammatory cascade was demonstrated in a mouse model of Reverse Passive Arthus Reaction (RPA reaction).

7.5.1.1 Model

5

10

15

20

25

30

Immune complex (IC)-mediated acute inflammatory tissue injury is implicated in a variety of human autoimmune diseases, including vasculitis syndrome, sick serum syndrome, systemic lupus erythematosus (SLE), rheumatoid arthritis, Goodpasture's syndrome, and glomerulonephritis. The classical experimental model for IC-mediated tissue injury is the reverse passive Arthus reaction. The RPA reaction model is a convenient *in vivo* method to study localized inflammation, induced by ICs, without systemic effects. Intradermal injection of antibodies (Abs) specific to chicken egg albumin (rabbit anti-OVA IgG), followed by intravenous (IV) injection of antigens (Ags), specifically chicken egg albumin (ovalbumin, OVA), causes perivascular deposition of ICs and a rapid inflammatory

response characterized by edema, neutrophil infiltration and hemorrhage at the injection sites. Aspects of the mouse RPA reaction model resemble the inflammatory response of patients with rheumatoid arthritis, SLE and glomerulonephritis.

7.5.1.2 Study Protocol

5

10

15

20

25

In this model system, test compounds are administered at several timepoints prior to administration of Abs and Ags. A solution of rabbit anti-OVA IgG (50µg in 25µl/mouse) is injected intradermally, and immediately following is an intravenous injection of chicken egg albumin (20 mg/kg of body weight) in a solution containing 1% Evans blue dye. The degree of edema and hemorrhage is measured in the dorsal skin of C57BL/6 mice using the Evan's Blue dye as an indicator of local tissue damage. Purified polyclonal rabbit IgG is used as a control.

Pretreatment time, in which the test compounds are administered prior to Ab/Ag challenge, depends on the pharmacokinetic (PK) properties of each individual compound. Four hours after induction of Arthus reaction, mice are euthanized, and tissues are harvested for assessment of edema. This model system allows us to rapidly screen the in vivo activity of many inhibitors.

7.5.1.3 Results

All compounds tested were administered by the oral route.

Compound 994, when administered at a dose level of 100 mg/kg 90 minutes prior to Ab/Ag challenge in C57Bl6 mice, showed dose-dependent inhibition of edema formation (75%).

Compounds 1007 and 810 showed the efficacy of edema inhibition by 89.4% and 81.3%, respectively, when administered at 1.0 mg/kg, 30 minutes prior to challenge.

Compound 1007 showed 64.3%, 78.7%, 98.1% and 99.8%, inhibition of edema formation when administered at dose levels of 0.1 mg/kg, 0.5 mg/kg, 1.0 mg/kg and 5 mg/kg and a pretreatment time of 30, respectively. Results for the compounds tested are summarized in Table 2.

				% inhibition to vehicle control	Satellite: At time of challenge	Exposure = Pretreatment Time + 4 hours	in vitro Potency (CHMC
Compound Name	Compound Number	Dosage (mg/kg)	Pretreatment Time (hrs)	Edema Size ± SEM	Plasma Concentration ± SEM (ng/ml)	Plasma Concen SEM (ng/r	
994		100		75.0 ± 6.2	78.6 ± 26.4	44.2 ± 8.9	0.047
1007		1	0.5	89.4 ± 2.2			
		3	0.5	86.3 ± 7.9			
		10	0.5	97.8 ± 1.1			
		30	0.5	88.2 ± 5.7			
1007		0.1	0.5	64.3 ± 11.2	24.4 ± 9.6	BLQ	
		0.5	0.5	78.7 ± 6.3	73.1 ± 14.5	BLQ	
		1	0.5	98.1 ± 0.8	90.0 ± 11.0	2.3 ± 0.9	
		5	0.5	99.8 ± 0.2	398.0 ± 30.2	19.8 ± 15.7	
810		0.1	0.5	69.5 ± 19.6			
***************************************		0.5	0.5	60.9 ± 9.6			
		1	0.5	81.3 ± 8.4			
		5	0.5	92.1 ± 3.1			
944		2	1	39.3 ± 13.8	NA	4.3 ± 4.2	
		5	1	48.4 ± 12.0	NA	3.5 ± 5.3	
		15	1	56.1 ± 9.2	NA	29.7 ± 25.9	
944		0.5	5	-16.0 ± 17.3	22.1 ± 52.4	3.4 ± 9.1	
		0.5	15	8.3 ± 13.4	1074.0 ± 492.3	85.1 ± 161.9	

Table 2

7.5.2 The Compounds are effective in Mouse Collagen Antibody Induced Arthritis Model

The in vivo efficacy of compounds towards autoimmune diseases can be demonstrated in a mouse model of collagen antibody-induced arthritis (CAIA).

7.5.2.1 Model

Collagen-induced arthritis (CIA) in rodents is frequently used as one of the experimental models for IC-mediated tissue injury. Administration of type II collagen into mice or rats results in an immune reaction that characteristically involves inflammatory destruction of cartilage and bone of the distal joints with concomitant swelling of surrounding tissues. CIA is commonly used to evaluate compounds that might be of potential use as drugs for treatment of rheumatoid arthritis and other chronic inflammatory conditions.

In recent years, a new technique emerged in CIA modeling, in which the anti-type II collagen antibodies are applied to induce an antibody-mediated CIA. The advantages of the method are: Short time for induction of disease (developing within 24-48 hrs after an intravenous (IV) injection of antibodies); arthritis is inducible in both CIA-susceptible and CIA-resistant mouse strains; and the procedure is ideal for rapid screening of anti-inflammatory therapeutic agents.

Arthrogen-CIA® Arthritis-inducing Monoclonal Antibody Cocktail (Chemicon International Inc.) is administered intravenously to Balb/c mice (2mg/mouse) on Day 0. Forty-eight hours later, 100 μl of LPS (25μg) is injected intraperitoneally. On Day 4, toes may appear swollen. By Day 5, one or two paws (particular the hind legs) begin to appear red and swollen. On Day 6, and thereafter, red and swollen paws will remain for at least 1-2 weeks. During the study, the clinical signs of inflammation are scored to evaluate the intensity of edema in the paws. The severity of arthritis is recorded as the sum score of both hind paws for each animal (possible maximum score of 8). The degree of inflammation with involved paws is evaluated by measurement of diameter of the paws. Body weight changes are monitored.

Animals can be treated at the time of induction of arthritis, beginning on Day 0. Test compounds and control compounds can be administered once a day (q.d.) or twice a day (b.i.d.), via per os (PO), depending on previously established PK profiles.

At the end of the study (1-2 weeks after induction of arthritis), mice are euthanized and the paws are transected at the distal tibia using a guillotine and weighed. The mean \pm standard error of the mean (SEM) for each group is determined each day from individual animal clinical scores, and hind paw weights for each experimental group are calculated and recorded at study termination. Histopathological evaluation of paws are obtained.

7.5.2.2 Results

Reduced inflammation and swelling should be evident in animals treated with compounds of the invention, and the arthritis would progress more slowly. Treatment with compounds should (b.i.d.) significantly reduce clinical arthritis compared with animals treated with vehicle only.

7.5.3 The Compounds Can Be Effective In Rat Collagen-Induced Arthritis

The in vivo efficacy of compounds of the invention towards autoimmune diseases can be demonstrated in a rat model of collagen-induced arthritis (CIA).

7.5.3.1 Model Description

Rheumatoid arthritis (RA) is characterized by chronic joint inflammation eventually leading to irreversible cartilage destruction. IgG-containing IC are abundant in the synovial tissue of patients with RA. While it is still debated what role these complexes play in the etiology and pathology of the disease, IC communicate with the hematopoetic cells via the $Fc\gamma R$.

CIA is a widely accepted animal model of RA that results in chronic inflammatory synovitis characterized by pannus formation and joint degradation. In this model, intradermal immunization with native type II collagen, emulsified with incomplete Freund's adjuvant, results in an inflammatory polyarthritis within 10 or 11 days and subsequent joint destruction in 3 to 4 weeks.

7.5.3.2 Study Protocol

Syngeneic LOU rats were immunized on Day 0 with native chicken CII/IFA (performed at UCLA; E. Brahn, Principal Investigator). Beginning on the day of arthritis onset (Day 10), a total of 59 rats can be treated with either a vehicle control or a compound of the invention at one of four dose levels (1, 3, 10, and 30 mg/kg, q.d. by p.o. gavage).

7.5.3.3 Results

Hind limbs would be scored daily for clinical arthritis severity using a standardized method based on the degree of joint inflammation. High resolution digital radiographs of hind limbs can be obtained at the conclusion of the study (Day 28). These limbs can also be analyzed for histopathologic changes. IgG antibodies to native CII can be measured in quadruplicate by ELISA.

Although the foregoing invention has been described in some detail to facilitate understanding, it will be apparent that certain changes and modifications may be practiced within the scope of the appended claims. Accordingly, the described embodiments are to be considered as illustrative and not restrictive, and the invention is not to be limited to the details given herein, but may be modified within the scope and equivalents of the appended claims.

All literature and patent references cited throughout the application are incorporated by reference into the application for all purposes.

What is claimed is:

1. A 2,4 pyrimidinediamine compound according to structure:

$$\begin{array}{c|c}
R^5 & R^6 \\
 & N \\
 & R^2
\end{array}$$

including salts, hydrates, solvates and N-oxides thereof, wherein:

L¹ is a direct bond or a linker;

L² is a direct bond or a linker;

X is selected from the group consisting of N and CH;

Y is selected from the group consisting of O, S, SO, SO₂, SONR³⁶, NH, NR³⁵

and NR³⁷;

Z is selected from the group consisting of O, S, SO, SO₂, SONR³⁶, NH, NR³⁵ and NR³⁷;

 R^5 is selected from the group consisting of R^6 , (C1-C6) alkyl optionally substituted with one or more of the same or different R^8 groups, (C1-C4) alkanyl optionally

substituted with one or more of the same or different R⁸ groups, (C2-C4) alkenyl optionally substituted with one or more of the same or different R⁸ groups and (C2-C4) alkynyl optionally substituted with one or more of the same or different R⁸ groups;

each R⁶ independently is selected from the group consisting of hydrogen, an electronegative group, -OR^d, -SR^d, (C1-C3) haloalkyloxy, (C1-C3) perhaloalkyloxy, -NR^cR^c, halogen, (C1-C3) haloalkyl, (C1-C3) perhaloalkyl, -CF₃, -CH₂CF₃, -CF₂CF₃, -CN, -NC, -OCN, -SCN, -NO, -NO₂, -N₃, -S(O)R^d, -S(O)₂R^d, -S(O)₂OR^d, -S(O)₂NR^cR^c; -S(O)₂NR^cR^c, -OS(O)₂R^d, -OS(O)₂OR^d, -OS(O)₂NR^cR^c, -OS(O)₂NR^cR^c, -C(O)OR^d, -C(O)OR^d, -C(O)NR^cR^c, -C(NH)NR^cR^c, -OC(O)R^d, -OC(O)OR^d, -OC(O)OR^d, -OC(O)NR^cR^c, -OC(NH)NR^cR^c, -SC(NH)NR^cR^c, -[NHC(O)]_nR^d, -[NHC(O)]_nOR^d, -[NHC(O)]_nNR^cR^c and -[NHC(NH)]_nNR^cR^c, (C5-C10) aryl optionally substituted with one or more of the same or different R⁸ groups, (C6-C16) arylalkyl optionally substituted with one or more of the same or different R⁸ groups, 5-10 membered heteroaryl optionally substituted with one or more of the same or different R⁸ groups and 6-16 membered heteroarylalkyl optionally substituted with one or more of the same or different R⁸ groups and 6-16 membered heteroarylalkyl optionally substituted with one or more of the same or different R⁸ groups;

 R^8 is selected from the group consisting of R^a , R^b , R^a substituted with one or more of the same or different R^a or R^b , $-OR^a$ substituted with one or more of the same or different R^a or R^b , $-B(OR^a)_2$, $-B(NR^cR^c)_2$, $-(CH_2)_m - R^b$, $-(CHR^a)_m - R^b$, $-O-(CH_2)_m - CH_2$, and $-O-(CH_2)_m - C$

each R³¹, independently of the others, is methyl or (C1-C6) alkyl;

each R^{35} is, independently of the others, selected from the group consisting of hydrogen and R^8 , or, alternatively, two R^{35} bonded to the same carbon atom are taken together to form an oxo (=O), NH or NR^{38} group and the other two R^{35} are each, independently of one another, selected from the group consisting of hydrogen and R^8 ;

each R^{36} is independently selected from the group consisting of hydrogen and (C1-C6) alkyl;

each R³⁷ is independently selected from the group consisting of hydrogen and a progroup;

R³⁸ is selected from the group consisting of (C1-C6) alkyl and (C5-C14) aryl; each R^a is independently selected from the group consisting of hydrogen, (C1-C6) alkyl, (C3-C8) cycloalkyl, cyclohexyl, (C4-C11) cycloalkylalkyl, (C5-C10) aryl, phenyl, (C6-C16) arylalkyl, benzyl, 2-6 membered heteroalkyl, 3-8 membered cycloheteroalkyl, morpholinyl, piperazinyl, homopiperazinyl, piperidinyl, 4-11 membered cycloheteroalkylalkyl, 5-10 membered heteroaryl and 6-16 membered heteroarylalkyl;

each R^b is a suitable group independently selected from the group consisting of =O, $-OR^d$, (C1-C3) haloalkyloxy, $-OCF_3$, =S, $-SR^d$, $=NR^d$, $=NOR^d$, $-NR^cR^c$, halogen, $-CF_3$, -CN, -NC, -OCN, -SCN, -NO, $-NO_2$, $=N_2$, $-N_3$, $-S(O)R^d$, $-S(O)_2R^d$, $-S(O)_2OR^d$, $-S(O)NR^cR^c$, $-S(O)_2NR^cR^c$, $-OS(O)_2R^d$, $-OS(O)_2R^d$, $-OS(O)_2NR^cR^c$, $-C(O)R^d$, $-C(O)OR^d$, $-C(O)NR^cR^c$, $-C(NH)NR^cR^c$, $-C(NR^a)NR^cR^c$, $-C(NOH)NR^cR^c$, $-OC(O)R^d$, $-OC(O)OR^d$, $-OC(O)NR^cR^c$, $-OC(NH)NR^cR^c$, $-OC(NR^a)NR^cR^c$, $-[NHC(O)]_nR^d$, $-[NR^aC(O)]_nR^d$, $-[NHC(O)]_nOR^d$, $-[NR^aC(O)]_nOR^d$, $-[NHC(O)]_nNR^cR^c$, $-[NHC(O)]_nNR^c$

each R^c is independently a protecting group or R^a , or, alternatively, each R^c is taken together with the nitrogen atom to which it is bonded to form a 5 to 8-membered cycloheteroalkyl or heteroaryl which may optionally include one or more of the same or different additional heteroatoms and which may optionally be substituted with one or more of the same or different R^a or suitable R^b groups;

each R^d is independently a protecting group or R^a ; each m is independently an integer from 1 to 3; each n is independently an integer from 0 to 3; and yy is 1 through 6.

2. The compound of Claim 1 in which R⁵ is fluoro.

- 3. The compound of Claim 2 in which R⁶ is hydrogen.
- 4. The compound of Claim 1 in which Y and Z are each, independently of one another, selected from the group consisting of O and NH.
 - 5. The compound of Claim 4 in which X is CH.
 - 6. The compound of Claim 5 in which Y and Z are each O.
 - 7. The compound of Claim 6 in which each R³⁵ is hydrogen.
 - 8. The compound of Claim 5 in which Y is O and Z is NH.
 - 9. A 2,4 pyrimidinediamine compound according to structure:

including salts, hydrates, solvates and N-oxides thereof, wherein:

L¹ is a direct bond or a linker;

L² is a direct bond or a linker;

 R^2 is a disubstituted phenyl group with two R^b groups or R^2 is a trisubstituted phenyl group with three R^b groups;

$$R^{35}$$
 R^{35}
 R^{35}

X is selected from the group consisting of N and CH;

Y is selected from the group consisting of O, S, SO, SO₂, SONR³⁶, NH, NR³⁵ and NR³⁷;

Z is selected from the group consisting of O, S, SO, SO₂, SONR³⁶, NH, NR³⁵ and NR³⁷;

R⁵ is selected from the group consisting of R⁶, (C1-C6) alkyl optionally substituted with one or more of the same or different R⁸ groups, (C1-C4) alkanyl optionally substituted with one or more of the same or different R⁸ groups, (C2-C4) alkenyl optionally substituted with one or more of the same or different R⁸ groups and (C2-C4) alkynyl optionally substituted with one or more of the same or different R⁸ groups;

each R⁶ independently is selected from the group consisting of hydrogen, an electronegative group, -OR^d, -SR^d, (C1-C3) haloalkyloxy, (C1-C3) perhaloalkyloxy, -NR^cR^c, halogen, (C1-C3) haloalkyl, (C1-C3) perhaloalkyl, -CF₃, -CH₂CF₃, -CF₂CF₃, -CN, -NC, -OCN, -SCN, -NO, -NO₂, -N₃, -S(O)R^d, -S(O)₂R^d, -S(O)₂OR^d, -S(O)NR^cR^c; -S(O)₂NR^cR^c, -OS(O)R^d, -OS(O)₂R^d, -OS(O)₂OR^d, -OS(O)₂NR^cR^c, -C(O)OR^d, -C(O)OR^d, -C(O)OR^cR^c, -C(NH)NR^cR^c, -OC(O)R^d, -OC(O)OR^d, -OC(O)OR^d, -OC(O)NR^cR^c, -OC(NH)NR^cR^c, -SC(NH)NR^cR^c, -[NHC(O)]_nR^d, -[NHC(O)]_nOR^d, -[NHC(O)]_nNR^cR^c and -[NHC(NH)]_nNR^cR^c, (C5-C10) aryl optionally substituted with one or more of the same or different R⁸ groups, (C6-C16) arylalkyl optionally substituted with one or more of the same or different R⁸ groups, 5-10 membered heteroaryl optionally substituted with one or more of the same or different R⁸ groups and 6-16 membered heteroarylalkyl optionally substituted with one or more of the same or different R⁸ groups;

 R^8 is selected from the group consisting of R^a , R^b , R^a substituted with one or more of the same or different R^a or R^b , $-OR^a$ substituted with one or more of the same or different R^a or R^b , $-B(OR^a)_2$, $-B(NR^cR^c)_2$, $-(CH_2)_m-R^b$, $-(CHR^a)_m-R^b$, $-O-(CH_2)_m-R^b$

each R³⁵ is, independently of the others, selected from the group consisting of hydrogen and R⁸, or, alternatively, two R³⁵ bonded to the same carbon atom are taken together to form an oxo (=O), NH or NR³⁸ group and the other two R³⁵ are each, independently of one another, selected from the group consisting of hydrogen and R⁸;

each R³⁶ is independently selected from the group consisting of hydrogen and (C1-C6) alkyl;

each R³⁷ is independently selected from the group consisting of hydrogen and a progroup;

R³⁸ is selected from the group consisting of (C1-C6) alkyl and (C5-C14) aryl; each R^a is independently selected from the group consisting of hydrogen, (C1-C6) alkyl, (C3-C8) cycloalkyl, cyclohexyl, (C4-C11) cycloalkylalkyl, (C5-C10) aryl, phenyl, (C6-C16) arylalkyl, benzyl, 2-6 membered heteroalkyl, 3-8 membered cycloheteroalkyl, morpholinyl, piperazinyl, homopiperazinyl, piperidinyl, 4-11 membered cycloheteroalkylalkyl, 5-10 membered heteroaryl and 6-16 membered heteroarylalkyl;

each R^b is a suitable group independently selected from the group consisting of =O, $-OR^d$, (C1-C3) haloalkyloxy, $-OCF_3$, =S, $-SR^d$, $=NR^d$, $=NOR^d$, $-NR^cR^c$, halogen, $-CF_3$, -CN, -NC, -OCN, -SCN, -NO, $-NO_2$, $=N_2$, $-N_3$, $-S(O)R^d$, $-S(O)_2R^d$, $-S(O)_2OR^d$, $-S(O)NR^cR^c$, $-S(O)_2NR^cR^c$, $-OS(O)_2R^d$, $-OS(O)_2OR^d$, $-OS(O)_2NR^cR^c$, $-C(O)R^d$, $-C(O)OR^d$, $-C(O)NR^cR^c$, $-C(NH)NR^cR^c$, $-C(NR^a)NR^cR^c$, $-C(NOH)R^a$, $-C(NOH)NR^cR^c$, $-OC(O)R^d$, $-OC(O)OR^d$, $-OC(O)NR^cR^c$, $-OC(NH)NR^cR^c$, $-OC(NH)NR^c$, -OC(N

each R^c is independently a protecting group or R^a, or, alternatively, each R^c is taken together with the nitrogen atom to which it is bonded to form a 5 to 8-membered cycloheteroalkyl or heteroaryl which may optionally include one or more of the same or different additional heteroatoms and which may optionally be substituted with one or more of the same or different R^a or suitable R^b groups;

each R^d is independently a protecting group or R^a ; each m is independently an integer from 1 to 3; and each n is independently an integer from 0 to 3; with the provisio that

N4-(2,2-Dimethyl-3-oxo-4H-5-pyrid[1,4]oxazin-6-yl)-N2-(3-chloro-4-methoxyphenyl)-5-fluoro-2,4-pyrimidinediamine;

N4-(2,2-Dimethyl-3-oxo-4H-5-pyrid[1,4]oxazin-6-yl)-N2-(3,5-dimethoxyphenyl)-5-fluoro-2,4-pyrimidinediamine;

N2-(3,4-Dichlorophenyl)-N4-(2,2-dimethyl-3-oxo-4H-5-pyrid[1,4]oxazin-6-yl)-5-fluoro-2,4-pyrimidinediamine;

N4-(2,2-dimethyl-3-oxo-4H-5-pyrid[1,4]oxazin-6-yl)-N2-(3-fluoro-4-methoxyphenyl)-5-fluoro-2,4-pyrimidinediamine;

N2-(3,5-Dichlorophenyl)-N4-(2,2-dimethyl-3-oxo-4H-5-pyrid[1,4]oxazin-6-yl)-5-fluoro-2,4-pyrimidinediamine;

N2-(3-Chloro-4-trifluoromethoxyphenyl)-N4-(2,2-dimethyl-3-oxo-4H-5-pyrid[1,4]oxazin-6-yl)-5-fluoro-2,4-pyrimidinediamine;

N2-(3-Chloro-4-methoxy-5-methylphenyl)-N4-(2,2-dimethyl-3-oxo-4H-5-pyrid[1,4]oxazin-6-yl)-5-fluoro-2,4-pyrimidinediamine;

N2-(3-Chloro-4-hydroxy-5-methylphenyl)-N4-(2,2-dimethyl-3-oxo-4H-5-pyrid[1,4]oxazin-6-yl)-5-fluoro-2,4-pyrimidinediamine; and

N2-(3,5-Dimethyl-4-methoxyphenyl)-N4-(2,2-dimethyl-3-oxo-4H-5-pyrid[1,4]oxazin-6-yl)-5-fluoro-2,4-pyrimidinediamine are not included.

10. A compound according to the structural formula:

$$R^4$$
 N
 N
 N
 R^2

and salts, hydrates, solvates, N-oxides and prodrugs thereof, wherein:

 R^2 is selected from the group consisting of (C1-C6) alkyl optionally substituted with one or more of the same or different R^8 groups, (C3-C8) cycloalkyl optionally substituted with one or more of the same or different R^8 groups, cyclohexyl optionally substituted with one or

more of the same or different R⁸ groups, 3-8 membered cycloheteroalkyl optionally substituted with one or more of the same or different R⁸ groups, (C5-C15) aryl optionally substituted with one or more of the same or different R⁸ groups, phenyl optionally substituted with one or more of the same or different R⁸ groups and 5-15 membered heteroaryl optionally substituted with one or more of the same or different R⁸ groups;

$$R^{4}$$
 is R^{35} , R^{35} , R^{35} , R^{35} , or R^{35}

R^{6a} is (C5-C10) aryl optionally substituted with one or more of the same or different R⁸ groups or phenyl optionally substituted with one or more of the same or different R⁸ groups;

R⁸ is selected from the group consisting of R^a, R^b, R^a substituted with one or more of the same or different R^a or R^b, -OR^a substituted with one or more of the same or different R^a or R^b, -B(OR^a)₂, -B(NR^cR^c)₂, -(CH₂)_m-R^b, -(CHR^a)_m-R^b, -O-(CH₂)_m-R^b, -S-(CH₂)_m-R^b, -O-CHR^aR^b, -O-CR^a(R^b)₂, -O-(CHR^a)_m-R^b, -O-(CH₂)_m-CH[(CH₂)_mR^b]R^b, -S-(CHR^a)_m-R^b, -C(O)NH-(CH₂)_m-R^b, -O-(CH₂)_m-C(O)NH-(CH₂)_m-R^b, -S-(CH₂)_m-C(O)NH-(CH₂)_m-R^b, -O-(CHR^a)_m-C(O)NH-(CHR^a)_m-R^b, -NH[(CH₂)_mR^b], -S-(CHR^a)_m-C(O)NH-(CHR^a)_m-R^b, -NH-(CH₂)_m-R^b, -NH-(CH₂)_m-R^b, -NH-(CH₂)_m-CHR^bR^b and -NH-(CH₂)_m-C(O)-NH-(CH₂)_m-R^b;

each R^a is independently selected from the group consisting of hydrogen, (C1-C6) alkyl, (C3-C8) cycloalkyl, cyclohexyl, (C4-C11) cycloalkylalkyl, (C5-C10) aryl, phenyl, (C6-C16) arylalkyl, benzyl, 2-6 membered heteroalkyl, 3-8 membered cycloheteroalkyl, morpholinyl, piperazinyl, homopiperazinyl, piperidinyl, 4-11 membered cycloheteroalkylalkyl, 5-10 membered heteroaryl and 6-16 membered heteroarylalkyl;

each R^b is a suitable group independently selected from the group consisting of =O, -OR^d, (C1-C3) haloalkyloxy, -OCF₃, =S, -SR^d, =NR^d, =NOR^d, -NR^cR^c, halogen, -CF₃, -CN, -NC, -OCN, -SCN, -NO, -NO₂, =N₂, -N₃, -S(O)R^d, -S(O)₂R^d, -S(O)₂OR^d, -S(O)NR^cR^c, -S(O)R^d, -OS(O)₂NR^cR^c, -C(O)R^d, -C(O)OR^d,

 $-C(O)NR^{c}R^{c}, -C(NH)NR^{c}R^{c}, -C(NR^{a})NR^{c}R^{c}, -C(NOH)R^{a}, -C(NOH)NR^{c}R^{c}, -OC(O)R^{d}, \\ -OC(O)OR^{d}, -OC(O)NR^{c}R^{c}, -OC(NH)NR^{c}R^{c}, -OC(NR^{a})NR^{c}R^{c}, -[NHC(O)]_{n}R^{d}, \\ -[NR^{a}C(O)]_{n}R^{d}, -[NHC(O)]_{n}OR^{d}, -[NR^{a}C(O)]_{n}OR^{d}, -[NHC(O)]_{n}NR^{c}R^{c}, -[NR^{a}C(O)]_{n}NR^{c}R^{c}, \\ -[NHC(NH)]_{n}NR^{c}R^{c} \text{ and } -[NR^{a}C(NR^{a})]_{n}NR^{c}R^{c};$

each R^c is independently R^a, or, alternatively, each R^c is taken together with the nitrogen atom to which it is bonded to form a 5 to 8-membered cycloheteroalkyl or heteroaryl which may optionally include one or more of the same or different additional heteroatoms and which is optionally substituted with one or more of the same or different R^a or suitable R^b groups;

each R^d is independently R^a ; each m is independently an integer from 1 to 3; each n is independently an integer from 0 to 3;

R³⁵ is a hydrogen or a suitable R⁸; and

 R^{45} is a (C3-C8) cycloalkyl optionally substituted with one or more of the same or different R^8 groups.

11. A compound according to the structural formula:

and salts, hydrates, solvates and N-oxides thereof, wherein:

R² is selected from the group consisting of

-
$$\xi$$

$$\mathbb{R}^{21}$$
, wherein each \mathbb{R}^{21} is independently a halogen atom or an alkyl optionally

substituted with one or more of the same or different halo groups, R²² and R²³ are each, independently of one another, a hydrogen atom, methyl or ethyl optionally substituted with one or more of the same or different halo groups;

R⁴ is a (C3-C8) cycloalkyl optionally substituted with one or more of the same or different R⁸ groups; and

 R^8 is selected from the group consisting of R^a , R^b , R^a substituted with one or more of the same or different R^a or R^b , $-OR^a$ substituted with one or more of the same or different R^a or R^b , $-B(OR^a)_2$, $-B(NR^cR^c)_2$, $-(CH_2)_m-R^b$, $-(CHR^a)_m-R^b$, $-O-(CH_2)_m-R^b$, $-S-(CH_2)_m-R^b$, $-O-CHR^aR^b$, $-O-CR^a(R^b)_2$, $-O-(CHR^a)_m-R^b$, $-O-(CH_2)_m-CH[(CH_2)_mR^b]R^b$, $-S-(CHR^a)_m-R^b$, $-C(O)NH-(CH_2)_m-R^b$, $-O-(CH_2)_m-C(O)NH-(CH_2)_m-R^b$, $-S-(CH_2)_m-C(O)NH-(CH_2)_m-R^b$, $-O-(CH_2)_m-C(O)NH-(CH_2)_m-R^b$, $-NH-(CH_2)_m-R^b$, $-NH-(CH_2)_m-R^b$, $-NH-(CH_2)_m-R^b$, $-NH-(CH_2)_m-R^b$, and $-NH-(CH_2)_m-C(O)-NH-(CH_2)_m-R^b$;

each R^a is independently selected from the group consisting of hydrogen, (C1-C6) alkyl, (C3-C8) cycloalkyl, cyclohexyl, (C4-C11) cycloalkylalkyl, (C5-C10) aryl, phenyl, (C6-C16) arylalkyl, benzyl, 2-6 membered heteroalkyl, 3-8 membered cycloheteroalkyl, morpholinyl, piperazinyl, homopiperazinyl, piperidinyl, 4-11 membered cycloheteroalkylalkyl, 5-10 membered heteroaryl and 6-16 membered heteroarylalkyl;

each R^b is a suitable group independently selected from the group consisting of =O, -OR^d, (C1-C3) haloalkyloxy, -OCF₃, =S, -SR^d, =NR^d, =NOR^d, -NR^cR^c, halogen, -CF₃, -CN, -NC, -OCN, -SCN, -NO, -NO₂, =N₂, -N₃, -S(O)R^d, -S(O)₂R^d, -S(O)₂OR^d, -S(O)NR^cR^c, -S(O)₂NR^cR^c, -OS(O)₂NR^cR^c, -OS(O)₂NR^cR^c, -C(O)R^d, -C(O)OR^d, -C(O)NR^cR^c, -C(NH)NR^cR^c, -C(NR^a)NR^cR^c, -C(NOH)R^a, -C(NOH)NR^cR^c, -OC(O)R^d, -OC(O)OR^d, -OC(O)NR^cR^c, -OC(NH)NR^cR^c, -OC(NR^a)NR^cR^c, -[NHC(O)]_nR^d, -[NHC(O)]_nOR^d, -[NR^aC(O)]_nOR^d, -[NHC(O)]_nNR^cR^c, -

each R^c is independently R^a, or, alternatively, each R^c is taken together with the nitrogen atom to which it is bonded to form a 5 to 8-membered cycloheteroalkyl or heteroaryl which may optionally include one or more of the same or different additional heteroatoms and

which is optionally substituted with one or more of the same or different R^a or suitable R^b groups;

each R^d is independently R^a ; each m is independently an integer from 1 to 3; and each n is independently an integer from 0 to 3.

12. A compound according to the structural formula:

and salts, hydrates, solvates and N-oxides thereof, wherein:

R² is selected from the group consisting of (C1-C6) alkyl optionally substituted with one or more of the same or different R⁸ groups, (C3-C8) cycloalkyl optionally substituted with one or more of the same or different R⁸ groups, cyclohexyl optionally substituted with one or more of the same or different R⁸ groups, 3-8 membered cycloheteroalkyl optionally substituted with one or more of the same or different R⁸ groups, (C5-C15) aryl optionally substituted with one or more of the same or different R⁸ groups, phenyl optionally substituted with one or more of the same or different R⁸ groups and 5-15 membered heteroaryl optionally substituted with one or more of the same or different R⁸ groups;

R⁴ is selected from the group consisting of hydrogen, (C1-C6) alkyl optionally substituted with one or more of the same or different R⁸ groups, (C3-C8) cycloalkyl optionally substituted with one or more of the same or different R⁸ groups, cyclohexyl optionally substituted with one or more of the same or different R⁸ groups, 3-8 membered cycloheteroalkyl optionally substituted with one or more of the same or different R⁸ groups, (C5-C15) aryl optionally substituted with one or more of the same or different R⁸ groups, phenyl optionally substituted with one or more of the same or different R⁸ groups and 5-15

membered heteroaryl optionally substituted with one or more of the same or different R⁸ groups; and

R⁸ is selected from the group consisting of R^a, R^b, R^a substituted with one or more of the same or different R^a or R^b, -OR^a substituted with one or more of the same or different R^a or R^b, -B(OR^a)₂, -B(NR^cR^c)₂, -(CH₂)_m-R^b, -(CHR^a)_m-R^b, -O-(CH₂)_m-R^b, -S-(CH₂)_m-R^b, -O-CHR^aR^b, -O-CR^a(R^b)₂, -O-(CHR^a)_m-R^b, -O-(CH₂)_m-CH[(CH₂)_mR^b]R^b, -S-(CHR^a)_m-R^b, -C(O)NH-(CH₂)_m-R^b, -O-(CH₂)_m-C(O)NH-(CH₂)_m-R^b, -S-(CH₂)_m-C(O)NH-(CH₂)_m-R^b, -O-(CHR^a)_m-C(O)NH-(CHR^a)_m-R^b, -NH[(CH₂)_m-R^b, -NH-(CH₂)_m-R^b, -NH-(CH₂)_m-R^b, -NH-(CH₂)_m-CHR^bR^b and -NH-(CH₂)_m-C(O)-NH-(CH₂)_m-R^b;

each R^a is independently selected from the group consisting of hydrogen, (C1-C6) alkyl, (C3-C8) cycloalkyl, cyclohexyl, (C4-C11) cycloalkylalkyl, (C5-C10) aryl, phenyl, (C6-C16) arylalkyl, benzyl, 2-6 membered heteroalkyl, 3-8 membered cycloheteroalkyl, morpholinyl, piperazinyl, homopiperazinyl, piperidinyl, 4-11 membered cycloheteroalkylalkyl, 5-10 membered heteroaryl and 6-16 membered heteroarylalkyl;

each R^b is a suitable group independently selected from the group consisting of =O, -OR d , (C1-C3) haloalkyloxy, -OCF $_3$, =S, -SR d , =NR d , =NOR d , -NR c R c , halogen, -CF $_3$, -CN, -NC, -OCN, -SCN, -NO, -NO $_2$, =N $_2$, -N $_3$, -S(O)R d , -S(O) $_2$ R d , -S(O) $_2$ OR d , -S(O) $_2$ OR d , -C(O)NR c R c , -C(O)R d , -OS(O) $_2$ RR d , -C(NOH)NR c R c , -C(NOH)NR c R c , -C(NOH)NR c R c , -OC(O)OR d , -OC(O)OR d , -OC(O)NR c R c , -OC(NH)NR c R c , -OC(NH)NR c R c , -OC(NH)NR c R c , -INHC(O)] $_n$ R d , -[NHC(O)] $_n$ OR d , -[NHC(O)] $_n$ OR d , -[NHC(O)] $_n$ NR c R c , -[NHC(NH)] $_n$ NR c R c and -[NR a C(NR a)] $_n$ NR c R c ;

each R° is independently R^a, or, alternatively, each R° is taken together with the nitrogen atom to which it is bonded to form a 5 to 8-membered cycloheteroalkyl or heteroaryl which may optionally include one or more of the same or different additional heteroatoms and which is optionally substituted with one or more of the same or different R^a or suitable R^b groups;

each R^d is independently R^a;

each m is independently an integer from 1 to 3; each n is independently an integer from 0 to 3; and

R⁵⁵ is selected from the group consisting of (C1-C6) alkyl optionally substituted with one or more of the same or different R⁸ groups, (C3-C8) cycloalkyl optionally substituted with one or more of the same or different R⁸ groups, cyclohexyl optionally substituted with one or more of the same or different R⁸ groups, 3-8 membered cycloheteroalkyl optionally substituted with one or more of the same or different R⁸ groups, (C5-C15) aryl optionally substituted with one or more of the same or different R⁸ groups, phenyl optionally substituted with one or more of the same or different R⁸ groups and 5-15 membered heteroaryl optionally substituted with one or more of the same or different R⁸ groups.

13. A compound according to the structural formula:

and salts, hydrates, solvates and N-oxides thereof, wherein:

$$R^{2}$$
 is R^{35} or R^{35}

R⁴ is selected from the group consisting of hydrogen, (C1-C6) alkyl optionally substituted with one or more of the same or different R⁸ groups, (C3-C8) cycloalkyl optionally substituted with one or more of the same or different R⁸ groups, cyclohexyl optionally substituted with one or more of the same or different R⁸ groups, 3-8 membered cycloheteroalkyl optionally substituted with one or more of the same or different R⁸ groups, (C5-C15) aryl optionally substituted with one or more of the same or different R⁸ groups, phenyl optionally substituted with one or more of the same or different R⁸ groups and 5-15

membered heteroaryl optionally substituted with one or more of the same or different R⁸ groups; and

R⁸ is selected from the group consisting of R^a, R^b, R^a substituted with one or more of the same or different R^a or R^b, -OR^a substituted with one or more of the same or different R^a or R^b, -B(OR^a)₂, -B(NR^cR^c)₂, -(CH₂)_m-R^b, -(CHR^a)_m-R^b, -O-(CH₂)_m-R^b, -S-(CH₂)_m-R^b, -O-CHR^aR^b, -O-CR^a(R^b)₂, -O-(CHR^a)_m-R^b, -O-(CH₂)_m-CH[(CH₂)_mR^b]R^b, -S-(CHR^a)_m-R^b, -C(O)NH-(CH₂)_m-R^b, -O-(CH₂)_m-C(O)NH-(CH₂)_m-R^b, -S-(CH₂)_m-C(O)NH-(CH₂)_m-R^b, -O-(CHR^a)_m-C(O)NH-(CHR^a)_m-R^b, -NH[(CH₂)_mR^b], -S-(CHR^a)_m-C(O)NH-(CHR^a)_m-R^b, -NH-(CH₂)_m-R^b, -NH-(CH₂)_m-R^b, -NH-(CH₂)_m-CHR^bR^b and -NH-(CH₂)_m-C(O)-NH-(CH₂)_m-R^b;

each R^a is independently selected from the group consisting of hydrogen, (C1-C6) alkyl, (C3-C8) cycloalkyl, cyclohexyl, (C4-C11) cycloalkylalkyl, (C5-C10) aryl, phenyl, (C6-C16) arylalkyl, benzyl, 2-6 membered heteroalkyl, 3-8 membered cycloheteroalkyl, morpholinyl, piperazinyl, homopiperazinyl, piperidinyl, 4-11 membered cycloheteroalkylalkyl, 5-10 membered heteroaryl and 6-16 membered heteroarylalkyl;

each R^b is a suitable group independently selected from the group consisting of =O,
-OR^d, (C1-C3) haloalkyloxy, -OCF₃, =S, -SR^d, =NR^d, =NOR^d, -NR^cR^c, halogen, -CF₃, -CN,
-NC, -OCN, -SCN, -NO, -NO₂, =N₂, -N₃, -S(O)R^d, -S(O)₂R^d, -S(O)₂OR^d, -S(O)NR^cR^c,
-S(O)₂NR^cR^c, -OS(O)R^d, -OS(O)₂R^d, -OS(O)₂OR^d, -OS(O)₂NR^cR^c, -C(O)R^d, -C(O)OR^d,
-C(O)NR^cR^c, -C(NH)NR^cR^c, -C(NR^a)NR^cR^c, -C(NOH)R^a, -C(NOH)NR^cR^c, -OC(O)R^d,
-OC(O)OR^d, -OC(O)NR^cR^c, -OC(NH)NR^cR^c, -OC(NR^a)NR^cR^c, -[NHC(O)]_nR^d,
-[NR^aC(O)]_nR^d, -[NHC(O)]_nOR^d, -[NR^aC(O)]_nOR^d, -[NHC(O)]_nNR^cR^c, -[NR^aC(O)]_nNR^cR^c,

each R^c is independently R^a, or, alternatively, each R^c is taken together with the nitrogen atom to which it is bonded to form a 5 to 8-membered cycloheteroalkyl or heteroaryl which may optionally include one or more of the same or different additional heteroatoms and which is optionally substituted with one or more of the same or different R^a or suitable R^b groups;

each R^d is independently R^a;

each m is independently an integer from 1 to 3; each n is independently an integer from 0 to 3; and each R^{35} individually is a hydrogen or R^8 .

14. A 2,4-pyrimidinediamine compound according to structure:

$$R^4$$
 N
 N
 N
 R^2

and salts, hydrates, solvates and N-oxides thereof, wherein

R² is a phenyl group or indazole group, substituted with one or more of the same R⁸ groups;

R⁵ is a fluorine atom;

R⁶ is a hydrogen atom:

 R^8 is selected from the group consisting of R^a , R^b , R^a substituted with one or more of the same or different R^a or R^b , $-OR^a$ substituted with one or more of the same or different R^a or R^b , $-B(OR^a)_2$, $-B(NR^cR^c)_2$, $-(CH_2)_m$ - R^b , $-(CHR^a)_m$ - R^b , $-O-(CH_2)_m$ - R^b , $-S-(CH_2)_m$ - R^b , $-O-CHR^aR^b$, $-O-CR^a(R^b)_2$, $-O-(CHR^a)_m$ - R^b , $-O-(CH_2)_m$ - $CH[(CH_2)_mR^b]R^b$, $-S-(CHR^a)_m$ - R^b , $-C(O)NH-(CH_2)_m$ - R^b , $-O-(CH_2)_m$ - $C(O)NH-(CH_2)_m$ - R^b , $-O-(CH_2)_m$ - $C(O)NH-(CH_2)_m$ - R^b , $-O-(CH_2)_m$ - $-CH_2$ - $-O-(CH_2)_m$ --

each R^a is independently selected from the group consisting of hydrogen, (C1-C6) alkyl, (C3-C8) cycloalkyl, cyclohexyl, (C4-C11) cycloalkylalkyl, (C5-C10) aryl, phenyl, (C6-C16) arylalkyl, benzyl, 2-6 membered heteroalkyl, 3-8 membered cycloheteroalkyl, morpholinyl,

piperazinyl, homopiperazinyl, piperidinyl, 4-11 membered cycloheteroalkylalkyl, 5-10 membered heteroaryl and 6-16 membered heteroarylalkyl;

```
each R<sup>b</sup> is a suitable group independently selected from the group consisting of =O,
-OR<sup>d</sup>, (C1-C3) haloalkyloxy, =S, -SR<sup>d</sup>, =NR<sup>d</sup>, =NOR<sup>d</sup>, -NR<sup>c</sup>R<sup>c</sup>, halogen, -CF<sub>3</sub>, -CN, -NC,
-OCN, -SCN, -NO, -NO<sub>2</sub>, =N<sub>2</sub>, -N<sub>3</sub>, -S(O)R<sup>d</sup>, -S(O)<sub>2</sub>R<sup>d</sup>, -S(O)<sub>2</sub>OR<sup>d</sup>, -S(O)NR<sup>c</sup>R<sup>c</sup>, -S(O)<sub>2</sub>NR<sup>c</sup>R<sup>c</sup>,
-OS(O)R<sup>d</sup>, -OS(O)<sub>2</sub>R<sup>d</sup>, -OS(O)<sub>2</sub>OR<sup>d</sup>, -OS(O)<sub>2</sub>NR<sup>c</sup>R<sup>c</sup>, -C(O)R<sup>d</sup>, -C(O)OR<sup>d</sup>, -C(O)NR<sup>c</sup>R<sup>c</sup>,
-C(NH)NR<sup>c</sup>R<sup>c</sup>, -C(NR<sup>a</sup>)NR<sup>c</sup>R<sup>c</sup>, -C(NOH)R<sup>a</sup>, -C(NOH)NR<sup>c</sup>R<sup>c</sup>, -OC(O)R<sup>d</sup>, -OC(O)OR<sup>d</sup>,
-OC(O)NR<sup>c</sup>R<sup>c</sup>, -OC(NH)NR<sup>c</sup>R<sup>c</sup>, -OC(NR<sup>a</sup>)NR<sup>c</sup>R<sup>c</sup>, -[NHC(O)]<sub>n</sub>R<sup>d</sup>, -[NR<sup>a</sup>C(O)]<sub>n</sub>R<sup>d</sup>,
-[NHC(O)]<sub>n</sub>OR<sup>d</sup>, -[NR<sup>a</sup>C(O)]<sub>n</sub>OR<sup>d</sup>, -[NHC(O)]<sub>n</sub>NR<sup>c</sup>R<sup>c</sup>, -[NR<sup>a</sup>C(O)]<sub>n</sub>NR<sup>c</sup>R<sup>c</sup>,
-[NHC(NH)]<sub>n</sub>NR<sup>c</sup>R<sup>c</sup> and -[NR<sup>a</sup>C(NR<sup>a</sup>)]<sub>n</sub>NR<sup>c</sup>R<sup>c</sup>;
```

each R^c is independently a protecting group or R^a, or, alternatively, each R^c is taken together with the nitrogen atom to which it is bonded to form a 5 to 8-membered cycloheteroalkyl or heteroaryl which may optionally include one or more of the same or different additional heteroatoms and which may optionally be substituted with one or more of the same or different R^a or suitable R^b groups;

each R^d is independently an R^a ; each m is independently an integer from 1 to 3; and each n is independently an integer from 0 to 3.

- 15. The compound of Claim 14 in which R² is a di or tri substituted phenyl group.
- 16. The compound of Claim 15 in which one or more of the R⁸ groups are selected from the group consisting of halogens and alkoxy groups.
- 17. The compound of Claim 16 in which the 2,4-pyrimidinediamine compound is 1256, 1257, 1258, 1259 or 1260.
 - 18. A 2,4-pyrimidinediamine compound according to structure:

$$R^{5}$$
 R^{4}
 R^{4}
 R^{4}
 R^{4}
 R^{4}
 R^{4}
 R^{4}
 R^{5}
 R^{4}
 R^{5}

and salts, hydrates, solvates and N-oxides thereof, wherein

$$R^2$$
 is R^{11} or phenyl substituted with one or more R^8 groups;

$$R^{4} \text{ is} \xrightarrow{R^{11}} 0 \xrightarrow{R^{12}} \xi^{-1}$$

R⁵ is a fluorine atom;

R⁶ is a hydrogen atom;

R¹¹ and R¹² are each, independently of one another, selected from the group consisting of hydrogen, alkyl, alkoxy, halogen, haloalkoxy, aminoalkyl and hydroxyalkyl;

R³⁵ is hydrogen or R⁸; and

 R^8 is selected from the group consisting of R^a , R^b , R^a substituted with one or more of the same or different R^a or R^b , $-OR^a$ substituted with one or more of the same or different R^a or R^b , $-B(OR^a)_2$, $-B(NR^cR^c)_2$, $-(CH_2)_m-R^b$, $-(CHR^a)_m-R^b$, $-O-(CH_2)_m-R^b$, $-S-(CH_2)_m-R^b$, $-O-CHR^aR^b$, $-O-CR^a(R^b)_2$, $-O-(CHR^a)_m-R^b$, $-O-(CH_2)_m-CH[(CH_2)_mR^b]R^b$, $-S-(CHR^a)_m-R^b$,

 $-C(O)NH-(CH_2)_m-R^b, -C(O)NH-(CHR^a)_m-R^b, -O-(CH_2)_m-C(O)NH-(CH_2)_m-R^b, \\$

 $-\mathrm{S-}(\mathrm{CH_2})_m\mathrm{-C(O)NH-}(\mathrm{CH_2})_m\mathrm{-R}^{\mathrm{b}},\,-\mathrm{O-}(\mathrm{CHR^a})_m\mathrm{-C(O)NH-}(\mathrm{CHR^a})_m\mathrm{-R}^{\mathrm{b}},$

 $-S-(CHR^{a})_{m}-C(O)NH-(CHR^{a})_{m}-R^{b}, -NH-(CH_{2})_{m}-R^{b}, -NH-(CHR^{a})_{m}-R^{b}, -NH[(CH_{2})_{m}R^{b}],$

-N[(CH₂) $_m$ R^b]₂, -NH-C(O)-NH-(CH₂) $_m$ -R^b, -NH-C(O)-(CH₂) $_m$ -CHR^bR^b and

-NH-(CH₂)_m-C(O)-NH-(CH₂)_m-R^b;

each R^a is independently selected from the group consisting of hydrogen, (C1-C6) alkyl, (C3-C8) cycloalkyl, cyclohexyl, (C4-C11) cycloalkylalkyl, (C5-C10) aryl, phenyl, (C6-C16) arylalkyl, benzyl, 2-6 membered heteroalkyl, 3-8 membered cycloheteroalkyl, morpholinyl,

piperazinyl, homopiperazinyl, piperidinyl, 4-11 membered cycloheteroalkylalkyl, 5-10 membered heteroaryl and 6-16 membered heteroarylalkyl;

each R^b is a suitable group independently selected from the group consisting of =O, $-OR^d$, (C1-C3) haloalkyloxy, =S, $-SR^d$, $=NR^d$, $=NOR^d$, $-NR^cR^c$, halogen, $-CF_3$, -CN, -NC, -OCN, -SCN, -NO, $-NO_2$, $=N_2$, $-N_3$, $-S(O)R^d$, $-S(O)_2R^d$, $-S(O)_2OR^d$, $-S(O)NR^cR^c$, $-S(O)_2NR^cR^c$, $-OS(O)R^d$, $-OS(O)_2R^d$, $-OS(O)_2NR^cR^c$, $-C(O)R^d$, $-C(O)OR^d$, $-C(O)NR^cR^c$, $-C(NH)NR^cR^c$, $-C(NR^a)NR^cR^c$, $-C(NOH)R^a$, $-C(NOH)NR^cR^c$, $-OC(O)R^d$, $-OC(O)OR^d$, $-OC(O)NR^cR^c$, $-OC(NH)NR^cR^c$, $-OC(NR^a)NR^cR^c$, $-[NHC(O)]_nR^d$, $-[NR^aC(O)]_nR^d$, $-[NHC(O)]_nOR^d$, $-[NR^aC(O)]_nOR^d$, $-[NHC(O)]_nNR^cR^c$, $-[NR^aC(O)]_nNR^cR^c$, $-[NHC(NH)]_nNR^cR^c$ and $-[NR^aC(NR^a)]_nNR^cR^c$;

each R^c is independently a protecting group or R^a, or, alternatively, each R^c is taken together with the nitrogen atom to which it is bonded to form a 5 to 8-membered cycloheteroalkyl or heteroaryl which may optionally include one or more of the same or different additional heteroatoms and which may optionally be substituted with one or more of the same or different R^a or suitable R^b groups;

each R^d is independently an R^a ; each m is independently an integer from 1 to 3; and each n is independently an integer from 0 to 3.

- 19. The compound of claim 18 in which R³⁵ is not a methyl group.
- 20. The compound of Claim 18 in which the 2,4-pyrimidinediamine compound is 1000, 1001 or 1002..
 - 21. A 2,4-pyrimidinediamine compound according to structure:

and salts, hydrates, solvates and N-oxides thereof, wherein

R⁵ is a fluorine atom;

R⁶ is a hydrogen atom;

Y is selected from the group consisting of O, S, SO, SO₂, SONR³⁶, NH and NR³⁷;

Z is selected from the group consisting of O, S, SO, SO₂, SONR³⁶, NH and NR³⁷;

eac R^{35} is, independently of the others, selected from the group consisting of hydrogen and R^8 , or, alternatively, two R^{35} bonded to the same carbon atom are taken together to form an oxo (=O), NH or NR^{38} group and the other two R^{35} each, independently of one another, are selected from the group consisting of hydrogen and R^8 ;

 R^8 is selected from the group consisting of R^a , R^b , R^a substituted with one or more of the same or different R^a or R^b , $-OR^a$ substituted with one or more of the same or different R^a or R^b , $-B(OR^a)_2$, $-B(NR^cR^c)_2$, $-(CH_2)_m-R^b$, $-(CHR^a)_m-R^b$, $-O-(CH_2)_m-R^b$, $-S-(CH_2)_m-R^b$, $-O-CHR^aR^b$, $-O-CR^a(R^b)_2$, $-O-(CHR^a)_m-R^b$, $-O-(CH_2)_m-CH[(CH_2)_mR^b]R^b$, $-S-(CHR^a)_m-R^b$, $-C(O)NH-(CH_2)_m-R^b$, $-O-(CH_2)_m-C(O)NH-(CH_2)_m-R^b$, $-S-(CH_2)_m-C(O)NH-(CH_2)_m-R^b$, $-O-(CHR^a)_m-C(O)NH-(CHR^a)_m-R^b$, $-NH-(CH_2)_m-R^b$, $-NH-(CH_2)_m-R^b$, $-NH-(CH_2)_m-R^b$, $-NH-(CH_2)_m-R^b$ and $-NH-(CH_2)_m-C(O)-NH-(CH_2)_m-R^b$;

each R^a is independently selected from the group consisting of hydrogen, (C1-C6) alkyl, (C3-C8) cycloalkyl, cyclohexyl, (C4-C11) cycloalkylalkyl, (C5-C10) aryl, phenyl, (C6-C16) arylalkyl, benzyl, 2-6 membered heteroalkyl, 3-8 membered cycloheteroalkyl, morpholinyl, piperazinyl, homopiperazinyl, piperidinyl, 4-11 membered cycloheteroalkylalkyl, 5-10 membered heteroaryl and 6-16 membered heteroarylalkyl;

each R^b is a suitable group independently selected from the group consisting of =O, -OR^d, (C1-C3) haloalkyloxy, =S, -SR^d, =NR^d, =NOR^d, -NR^cR^c, halogen, -CF₃, -CN, -NC,

-OCN, -SCN, -NO, -NO₂, =N₂, -N₃, -S(O)R^d, -S(O)₂R^d, -S(O)₂OR^d, -S(O)NR^cR^c, -S(O)₂NR^cR^c, -OS(O)R^d, -OS(O)₂R^d, -OS(O)₂NR^cR^c, -C(O)R^d, -C(O)OR^d, -C(O)NR^cR^c, -C(NH)NR^cR^c, -C(NR^a)NR^cR^c, -C(NOH)R^a, -C(NOH)NR^cR^c, -OC(O)R^d, -OC(O)OR^d, -OC(O)NR^cR^c, -OC(NH)NR^cR^c, -OC(NR^a)NR^cR^c, -[NHC(O)]_nR^d, -[NR^aC(O)]_nR^d, -[NHC(O)]_nOR^d, -[NR^aC(O)]_nOR^d, -[NHC(O)]_nNR^cR^c, -[NR^aC(O)]_nNR^cR^c, -[NHC(NH)]_nNR^cR^c and -[NR^aC(NR^a)]_nNR^cR^c;

each R^c is independently a protecting group or R^a, or, alternatively, each R^c is taken together with the nitrogen atom to which it is bonded to form a 5 to 8-membered cycloheteroalkyl or heteroaryl which may optionally include one or more of the same or different additional heteroatoms and which may optionally be substituted with one or more of the same or different R^a or suitable R^b groups;

each R^d is independently an R^a ; each m is independently an integer from 1 to 3; each n is independently an integer from 0 to 3; R^{36} is hydrogen or alkyl; and R^{37} is selected from the group consisting of hydrogen and a progroup.

22. The compound of Claim 21 in which Y is oxygen, Z is NH and one or more R³⁵ is an alkyl group.

- 23. The compound of Claim 21 in which R⁴ is

 H

 Me

 Y

 O

 Z4. The compound of Claim 21 in which R⁴ is
- 25. The compound of Claim 21 in which Y is oxygen, Z is NH.
- 26. The compound of Claim 21 in which the 2,4-pyrimidinediamine compound is 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 1281, 1283, 1283, 1284, 1285, 1287, 1288, 1289, 1290 or 1291.

27. A 2,4-pyrimidinediamine compound according to structure:

$$R^{4}$$
 R^{4}
 R^{4}
 R^{4}
 R^{4}
 R^{2}

and salts, hydrates, solvates and N-oxides thereof, wherein

R⁴ is selected from the group consisting of (C1-C6) alkyl optionally substituted with one or more of the same or different R⁸ groups, (C3-C8) cycloalkyl optionally substituted with one or more of the same or different R⁸ groups, cyclohexyl optionally substituted with one or more of the same or different R⁸ groups, 3-8 membered cycloheteroalkyl optionally substituted with one or more of the same or different R⁸ groups, (C5-C15) aryl optionally substituted with one or more of the same or different R⁸ groups, phenyl optionally substituted with one or more of the same or different R⁸ groups and 5-15 membered heteroaryl optionally substituted with one or more of the same or different R⁸ groups;

R⁵ is a fluorine atom;

R⁶ is a hydrogen atom;

 R^8 is selected from the group consisting of R^a , R^b , R^a substituted with one or more of the same or different R^a or R^b , $-OR^a$ substituted with one or more of the same or different R^a or R^b , $-B(OR^a)_2$, $-B(NR^cR^c)_2$, $-(CH_2)_m$ - R^b , $-(CHR^a)_m$ - R^b , $-O-(CH_2)_m$ - R^b , $-S-(CH_2)_m$ - R^b , $-O-CHR^aR^b$, $-O-CR^a(R^b)_2$, $-O-(CHR^a)_m$ - R^b , $-O-(CH_2)_m$ - $CH[(CH_2)_mR^b]R^b$, $-S-(CHR^a)_m$ - R^b , $-C(O)NH-(CH_2)_m$ - R^b , $-O-(CH_2)_m$ - $C(O)NH-(CH_2)_m$ - R^b , $-O-(CH_2)_m$ - $C(O)NH-(CH_2)_m$ - R^b , $-O-(CH_2)_m$ - $-O-(CH_2)_m$ --O

each R^a is independently selected from the group consisting of hydrogen, (C1-C6) alkyl, (C3-C8) cycloalkyl, cyclohexyl, (C4-C11) cycloalkylalkyl, (C5-C10) aryl, phenyl, (C6-C16)

arylalkyl, benzyl, 2-6 membered heteroalkyl, 3-8 membered cycloheteroalkyl, morpholinyl, piperazinyl, homopiperazinyl, piperidinyl, 4-11 membered cycloheteroalkylalkyl, 5-10 membered heteroaryl and 6-16 membered heteroarylalkyl;

```
each R^b is a suitable group independently selected from the group consisting of =O, -OR^d, (C1-C3) haloalkyloxy, =S, -SR^d, =NR^d, =NOR^d, -NR^cR^c, halogen, -CF_3, -CN, -NC, -OCN, -SCN, -NO, -NO_2, =N_2, -N_3, -S(O)R^d, -S(O)_2R^d, -S(O)_2OR^d, -S(O)NR^cR^c, -S(O)_2NR^cR^c, -OS(O)_2R^d, -OS(O)_2R^d, -OS(O)_2NR^cR^c, -C(O)R^d, -C(O)OR^d, -C(O)NR^cR^c, -C(NH)NR^cR^c, -C(NR^a)NR^cR^c, -C(NOH)NR^cR^c, -OC(O)R^d, -OC(O)OR^d, -OC(O)NR^cR^c, -OC(NH)NR^cR^c, -OC(NH)NR^c, -OC(NH)NR
```

each R^c is independently a protecting group or R^a, or, alternatively, each R^c is taken together with the nitrogen atom to which it is bonded to form a 5 to 8-membered cycloheteroalkyl or heteroaryl which may optionally include one or more of the same or different additional heteroatoms and which may optionally be substituted with one or more of the same or different R^a or suitable R^b groups;

```
each R^d is independently an R^a;
each m is independently an integer from 1 to 3;
each n is independently an integer from 0 to 3;
R^{35} is hydrogen or R^8;
R^{36} is hydrogen or alkyl; and
R^{37} is selected from the group consisting of hydrogen and a progroup
```

- 28. The compound of Claim 27 in which the 2,4-pyrimidinediamine compound is 1070, 1071, 1073, 1074, 1075, 1076, 1078, 1080, 1085, 1091 or 1092.
 - 29. A 2, 4-pyrimidinediamine compound according to structure:

$$R^{4}$$
 R^{4}
 R^{4}
 R^{4}
 R^{4}
 R^{2}

and salts, hydrates, solvates and N-oxides thereof, wherein

R² is selected from the group consisting of (C1-C6) alkyl optionally substituted with one or more of the same or different R⁸ groups, (C3-C8) cycloalkyl optionally substituted with one or more of the same or different R⁸ groups, cyclohexyl optionally substituted with one or more of the same or different R⁸ groups, 3-8 membered cycloheteroalkyl optionally substituted with one or more of the same or different R⁸ groups, (C5-C15) aryl optionally substituted with one or more of the same or different R⁸ groups, phenyl optionally substituted with one or more of the same or different R⁸ groups and 5-15 membered heteroaryl optionally substituted with one or more of the same or different R⁸ groups;

R⁵ is a fluorine atom;

R⁶ is a hydrogen atom; and

 R^{8} is selected from the group consisting of R^{a} , R^{b} , R^{a} substituted with one or more of the same or different R^{a} or R^{b} , -OR substituted with one or more of the same or different R^{a} or R^{b} , -B(OR^a)₂, -B(NR^cR^c)₂, -(CH₂)_m-R^b, -(CHR^a)_m-R^b, -O-(CH₂)_m-R^b, -S-(CH₂)_m-R^b,

 $-\text{O-CHR}^{\text{a}}\text{R}^{\text{b}}, -\text{O-CR}^{\text{a}}(\text{R}^{\text{b}})_{2}, -\text{O-(CHR}^{\text{a}})_{m} - \text{R}^{\text{b}}, -\text{O-(CH}_{2})_{m} - \text{CH}[(\text{CH}_{2})_{m}\text{R}^{\text{b}}]\text{R}^{\text{b}}, -\text{S-(CHR}^{\text{a}})_{m} - \text{R}^{\text{b}}, -\text{S-(CHR}^{\text{$

 $-C(O)NH-(CH_2)_m-R^b, -C(O)NH-(CHR^a)_m-R^b, -O-(CH_2)_m-C(O)NH-(CH_2)_m-R^b, \\$

-S-(CH₂)_m-C(O)NH-(CH₂)_m-R^b, -O-(CHR^a)_m-C(O)NH-(CHR^a)_m-R^b,

 $-S-(CHR^{a})_{m}-C(O)NH-(CHR^{a})_{m}-R^{b}, -NH-(CH_{2})_{m}-R^{b}, -NH-(CHR^{a})_{m}-R^{b}, -NH[(CH_{2})_{m}R^{b}],$

 $-N[(CH_2)_mR^b]_2$, $-NH-C(O)-NH-(CH_2)_m-R^b$, $-NH-C(O)-(CH_2)_m-CHR^bR^b$ and

-NH-(CH₂)_m-C(O)-NH-(CH₂)_m-R^b;

each R^a is independently selected from the group consisting of hydrogen, (C1-C6) alkyl, (C3-C8) cycloalkyl, cyclohexyl, (C4-C11) cycloalkylalkyl, (C5-C10) aryl, phenyl, (C6-C16)

arylalkyl, benzyl, 2-6 membered heteroalkyl, 3-8 membered cycloheteroalkyl, morpholinyl, piperazinyl, homopiperazinyl, piperidinyl, 4-11 membered cycloheteroalkylalkyl, 5-10 membered heteroaryl and 6-16 membered heteroarylalkyl;

each R^b is a suitable group independently selected from the group consisting of =O, $-OR^d$, (C1-C3) haloalkyloxy, $-OCF_3$, =S, $-SR^d$, $=NR^d$, $=NOR^d$, $-NR^cR^c$, halogen, $-CF_3$, -CN, -NC, -OCN, -SCN, -NO, $-NO_2$, $=N_2$, $-N_3$, $-S(O)R^d$, $-S(O)_2R^d$, $-S(O)_2OR^d$, $-S(O)NR^cR^c$, $-S(O)_2NR^cR^c$, $-OS(O)_2R^d$, $-OS(O)_2NR^cR^c$, $-C(O)R^d$, $-C(O)OR^d$, $-C(O)NR^cR^c$, $-C(NH)NR^cR^c$, $-C(NR^a)NR^cR^c$, $-C(NOH)R^a$, $-C(NOH)NR^cR^c$, $-OC(O)R^d$, $-OC(O)OR^d$, $-OC(O)NR^cR^c$, $-OC(NH)NR^cR^c$, $-OC(NR^a)NR^cR^c$, $-[NHC(O)]_nR^d$, $-[NR^aC(O)]_nR^d$, $-[NHC(O)]_nOR^d$, $-[NR^aC(O)]_nOR^d$, $-[NHC(O)]_nNR^cR^c$, $-[NHC(O)]_nNR^c$

each R^c is independently a protecting group or R^a, or, alternatively, each R^c is taken together with the nitrogen atom to which it is bonded to form a 5 to 8-membered cycloheteroalkyl or heteroaryl which may optionally include one or more of the same or different additional heteroatoms and which may optionally be substituted with one or more of the same or different R^a or suitable R^b groups;

each R^d is independently a protecting group or R^a ; each m is independently an integer from 1 to 3; and each n is independently an integer from 0 to 3.

- 30. The compound of Claim 29 in which R² is , and each R⁴⁶, R⁴⁷ and R⁴⁸ independently is selected from the group consisting of a hydrogen, alkyl, alkoxy, hydroxyl, halogen, isoxazole, piperazino, N-alkyl piperazine, morpholino and CH₃NHC(O)CH₂O-, with the proviso that R⁴⁶, R⁴⁷ and R⁴⁸ are all not hydrogen and when one of R⁴⁶, R⁴⁷ or R⁴⁸ is isoxazole, piperazino, N-alkyl piperazine, morpholino or CH₃NHC(O)CH₂O-, then the remaining R⁴⁶, R⁴⁷ or R⁴⁸ are hydrogen.
 - 31. The compound of Claim 29 in which

R² is selected from the group consisting of

each R²¹, R²² and R²³ are each, independently of one another, an alkyl group.

- 32. The compound of claim 31 in which R^{22} and R^{23} or R^{21} and R^{22} or R^{21} , R^{22} and R^{23} are each methyl groups.
 - 33. A 2, 4-pyrimidinediamine compound according to structure:

$$R^5$$
 R^4
 N
 N
 N
 N
 R^2

and salts, hydrates, solvates and N-oxides thereof, wherein

$$R^2$$
 is R^2 or R^{23}

$$R^4$$
 is selected from the group consisting of R^{28} R^{28}

R⁵ is a fluorine atom;

R⁶ is a hydrogen atom;

 R^{b} is selected from the group consisting of R^{a} , R^{b} , R^{a} substituted with one or more of the same or different R^{a} or R^{b} , $-OR^{a}$ substituted with one or more of the same or different R^{a} or R^{b} , $-B(OR^{a})_{2}$, $-B(NR^{c}R^{c})_{2}$, $-(CH_{2})_{m}-R^{b}$, $-(CHR^{a})_{m}-R^{b}$, $-O-(CH_{2})_{m}-R^{b}$, $-S-(CH_{2})_{m}-R^{b}$,

-O-CHR^aR^b, -O-CR^a(R^b)₂, -O-(CHR^a)_m-R^b, -O-(CH₂)_m-CH[(CH₂)_mR^b]R^b, -S-(CHR^a)_m-R^b,

 $-C(O)NH-(CH_2)_m-R^b$, $-C(O)NH-(CHR^a)_m-R^b$, $-O-(CH_2)_m-C(O)NH-(CH_2)_m-R^b$,

 $-S-(CH_2)_m-C(O)NH-(CH_2)_m-R^b$, $-O-(CHR^a)_m-C(O)NH-(CHR^a)_m-R^b$,

-S-(CHR^a)_m-C(O)NH-(CHR^a)_m-R^b, -NH-(CH₂)_m-R^b, -NH-(CHR^a)_m-R^b, -NH[(CH₂)_mR^b],

-N[(CH₂)_mR^b]₂, -NH-C(O)-NH-(CH₂)_m-R^b, -NH-C(O)-(CH₂)_m-CHR^bR^b and

-NH-(CH₂)_m-C(O)-NH-(CH₂)_m-R^b;

R²¹ is an alkyl group;

R²³ is an alkyl group;

each R²⁸ individually is a halogen or alkoxy;

R²⁹ is a (C1-C6) alkyl or (C3-C9) cycloalkyl;

X is selected from the group consisting of N and CH

Y is selected from the group consisting of O, S, SO, SO₂, SONR³⁶, NH and NR³⁷;

Z is selected from the group consisting of O, S, SO, SO₂, SONR³⁶, NH and NR^{37;}

each R^{35} is, independently of the others, selected from the group consisting of hydrogen and R^8 , or, alternatively, two R^{35} bonded to the same carbon atom are taken together to form an oxo (=O), NH or NR^{38} group and the other two R^{35} each, independently of one another, are selected from the group consisting of hydrogen and R^8 ;

each R³⁶ is independently selected from the group consisting of hydrogen and (C1-C6) alkyl;

each R³⁷ is independently selected from the group consisting of hydrogen and a progroup;

R³⁸ is selected from the group consisting of (C1-C6) alkyl and (C5-C14) aryl; each R^a is independently selected from the group consisting of hydrogen, (C1-C6) alkyl, (C3-C8) cycloalkyl, cyclohexyl, (C4-C11) cycloalkylalkyl, (C5-C10) aryl, phenyl, (C6-C16) arylalkyl, benzyl, 2-6 membered heteroalkyl, 3-8 membered cycloheteroalkyl, morpholinyl, piperazinyl, homopiperazinyl, piperidinyl, 4-11 membered cycloheteroalkylalkyl, 5-10 membered heteroaryl and 6-16 membered heteroarylalkyl;

each R^b is a suitable group independently selected from the group consisting of =O, -OR^d, (C1-C3) haloalkyloxy, -OCF₃, =S, -SR^d, =NR^d, =NOR^d, -NR^cR^c, halogen, -CF₃, -CN, -NC, -OCN, -SCN, -NO, -NO₂, =N₂, -N₃, -S(O)R^d, -S(O)₂R^d, -S(O)₂OR^d, -S(O)NR^cR^c, -S(O)₂NR^cR^c, -OS(O)₂R^d, -OS(O)₂OR^d, -OS(O)₂NR^cR^c, -C(O)R^d, -C(O)OR^d, -C(O)NR^cR^c, -C(NH)NR^cR^c, -C(NR^a)NR^cR^c, -C(NOH)R^a, -C(NOH)NR^cR^c, -OC(O)R^d, -OC(O)OR^d, -OC(O)OR^d, -OC(O)NR^cR^c, -OC(NH)NR^cR^c, -OC(NR^a)NR^cR^c, -[NHC(O)]_nR^d, -[NHC(O)]_nOR^d, -[NR^aC(O)]_nOR^d, -[NHC(O)]_nNR^cR^c, -[NR^aC(O)]_nNR^cR^c, -[NHC(O)]_nNR^cR^c, -[NHC(O)]_nNR^cR^c

each R^c is independently a protecting group or R^a, or, alternatively, each R^c is taken together with the nitrogen atom to which it is bonded to form a 5 to 8-membered cycloheteroalkyl or heteroaryl which may optionally include one or more of the same or different additional heteroatoms and which may optionally be substituted with one or more of the same or different R^a or suitable R^b groups;

each R^d is independently a protecting group or R^a ; each m is independently an integer from 1 to 3; and each n is independently an integer from 0 to 3.

- 34. The compound of claim 33 in which R²⁸ is a methoxy.
- 35. The compound of claim 33 in which R²¹ is a methyl group.
- 36. The compound of claim 33 in which each R^{28} is a chlorine.
- 37. The compound of claim 33 in which R²¹ is a methyl group and R²⁸ is a chlorine.
- 38. A 2, 4-pyrimidinediamine compound according to structure:

and salts, hydrates, solvates and N-oxides thereof, wherein

$$R^2$$
 is R^2 is selected from the group consisting of R^{28}

R⁵ is a fluorine atom;

R⁶ is a hydrogen atom;

 R^{8} is selected from the group consisting of R^{a} , R^{b} , R^{a} substituted with one or more of the same or different R^{a} or R^{b} , $-OR^{a}$ substituted with one or more of the same or different R^{a} or R^{b} , $-B(OR^{a})_{2}$, $-B(NR^{c}R^{c})_{2}$, $-(CH_{2})_{m}-R^{b}$, $-(CHR^{a})_{m}-R^{b}$, $-O-(CH_{2})_{m}-R^{b}$, $-S-(CH_{2})_{m}-R^{b}$, $-O-CHR^{a}R^{b}$, $-O-CR^{a}(R^{b})_{2}$, $-O-(CHR^{a})_{m}-R^{b}$, $-O-(CH_{2})_{m}-CH[(CH_{2})_{m}R^{b}]R^{b}$, $-S-(CHR^{a})_{m}-R^{b}$,

```
-C(O)NH-(CH_2)_m-R^b, -C(O)NH-(CHR^a)_m-R^b, -O-(CH_2)_m-C(O)NH-(CH_2)_m-R^b, \\ -S-(CH_2)_m-C(O)NH-(CH_2)_m-R^b, -O-(CHR^a)_m-C(O)NH-(CHR^a)_m-R^b, \\ -S-(CHR^a)_m-C(O)NH-(CHR^a)_m-R^b, -NH-(CH_2)_m-R^b, -NH-(CHR^a)_m-R^b, -NH[(CH_2)_mR^b], \\ -N[(CH_2)_mR^b]_2, -NH-C(O)-NH-(CH_2)_m-R^b, -NH-C(O)-(CH_2)_m-CHR^bR^b \ and \\ -NH-(CH_2)_m-C(O)-NH-(CH_2)_m-R^b; \\ \end{aligned}
```

R²¹ is an alkyl group;

each R²⁸ individually is a halogen or alkoxy;

X is selected from the group consisting of N and CH

Y is selected from the group consisting of O, S, SO, SO₂, SONR³⁶, NH and NR³⁷;

Z is selected from the group consisting of O, S, SO, SO₂, SONR³⁶, NH and NR³⁷;

each R^{35} is, independently of the others, selected from the group consisting of hydrogen and R^8 , or, alternatively, two R^{35} bonded to the same carbon atom are taken together to form an oxo (=O), NH or NR^{38} group and the other two R^{35} each, independently of one another, are selected from the group consisting of hydrogen and R^8 ;

each R³⁶ is independently selected from the group consisting of hydrogen and (C1-C6) alkyl;

each R³⁷ is independently selected from the group consisting of hydrogen and a progroup;

R³⁸ is selected from the group consisting of (C1-C6) alkyl and (C5-C14) aryl; each R^a is independently selected from the group consisting of hydrogen, (C1-C6) alkyl, (C3-C8) cycloalkyl, cyclohexyl, (C4-C11) cycloalkylalkyl, (C5-C10) aryl, phenyl, (C6-C16) arylalkyl, benzyl, 2-6 membered heteroalkyl, 3-8 membered cycloheteroalkyl, morpholinyl, piperazinyl, homopiperazinyl, piperidinyl, 4-11 membered cycloheteroalkylalkyl, 5-10 membered heteroaryl and 6-16 membered heteroarylalkyl;

each R^b is a suitable group independently selected from the group consisting of =O,
-OR^d, (C1-C3) haloalkyloxy, -OCF₃, =S, -SR^d, =NR^d, =NOR^d, -NR^cR^c, halogen, -CF₃, -CN,
-NC, -OCN, -SCN, -NO, -NO₂, =N₂, -N₃, -S(O)R^d, -S(O)₂R^d, -S(O)₂OR^d, -S(O)NR^cR^c,
-S(O)₂NR^cR^c, -OS(O)R^d, -OS(O)₂R^d, -OS(O)₂OR^d, -OS(O)₂NR^cR^c, -C(O)R^d, -C(O)OR^d,
-C(O)NR^cR^c, -C(NH)NR^cR^c, -C(NR^a)NR^cR^c, -C(NOH)R^a, -C(NOH)NR^cR^c, -OC(O)R^d,
-OC(O)OR^d, -OC(O)NR^cR^c, -OC(NH)NR^cR^c, -OC(NR^a)NR^cR^c, -[NHC(O)]_nR^d,

 $-[NR^{a}C(O)]_{n}R^{d}, -[NHC(O)]_{n}OR^{d}, -[NR^{a}C(O)]_{n}OR^{d}, -[NHC(O)]_{n}NR^{c}R^{c}, -[NR^{a}C(O)]_{n}NR^{c}R^{c}, -[NHC(NH)]_{n}NR^{c}R^{c} \text{ and } -[NR^{a}C(NR^{a})]_{n}NR^{c}R^{c};$

each R^c is independently a protecting group or R^a, or, alternatively, each R^c is taken together with the nitrogen atom to which it is bonded to form a 5 to 8-membered cycloheteroalkyl or heteroaryl which may optionally include one or more of the same or different additional heteroatoms and which may optionally be substituted with one or more of the same or different R^a or suitable R^b groups;

```
each R^d is independently a protecting group or R^a; each m is independently an integer from 1 to 3; each n is independently an integer from 0 to 3; p is 1, 2 or 3; R^{50} is an alkyl group or -(CH_2)_qOH; q is an integer from 1 to 6; and R^{52} is an alkyl group or a substituted alkyl group.
```

- 39. The compound of claim 38 in which R^{21} is a methyl group.
- 40. The compound of claim 38 in which each R²⁸ is a chlorine.
- 41. The compound of claim 38 in which R^{21} is a methyl group and R^{28} is a chlorine.
- 42. The compound of claim 38 in which R⁵⁰ is -CH₂CH₂OH.
- 43. The compound of claim 38 in which R^{52} is trifluoromethyl.
- 44. The compound of claim 38 in which R⁵⁰ is a methyl group.
- 45. The compound of claim 38 in which each R²⁸ is a chlorine.
- 46. The compound of claim 38 in which R^{50} is a methyl group and R^{28} is a chlorine.
- 47. A 2, 4-pyrimidinediamine compound according to structure:

$$R^{4}$$
 N
 N
 R^{2}

and salts, hydrates, solvates and N-oxides thereof, wherein

$$R^2$$
 is $\frac{7}{2}$

R⁴ is a cycloalkyl;

R⁵ is a fluorine atom;

R⁶ is a hydrogen atom;

R²¹ is an alkyl group; and

R³⁰ is an alkyl group or a halogen.

- 48. The compound of claim 47 in which R^{21} is a methyl group.
- 49. The compound of any one of Claims 1-48 further comprising a pharmaceutically acceptable carrier, diluent or excipient.
- 50. A method of treating or preventing an autoimmune disease and/or one or more symptoms associated therewith, comprising the step of administering to a subject suffering from an autoimmune disease or at risk of developing an autoimmune disease an effective amount of a 2,4-pyrimidinediamine compound according to any one of Claims 1-49.

