Évaluation formative

GEN441, GEL450 et GIF590

14 septembre 2023

Exercice nº 1

Vous préparez la fin de votre baccalauréat et vous souhaitez tirer des feux d'artifices. Pour lancer le projectile, vous disposer d'un mécanisme à ressort activé par un bouton ¹. Un simple tube permet de diriger le projectile de façon parfaitement verticale.

Le ressort est comprimé jusqu'à une position $y_A = -0$, 12 m où le système est au repos, puis vous appuyez sur le bouton. Le projectile de masse $m = 35.10^{-3}$ kg quitte le ressort à la position $y_B = 0$ m et s'élève jusqu'à la position maximale y_C comme indiquée sur la figure 1.

FIGURE 1 – Représentation d'un tir de feux d'artifice.

^{1.} D'ici la fin de votre bac, on s'attend à ce que le bouton soit remplacé par un contrôle électronique commandé à distance.

- 1. On considère que toutes les forces de frottement sont négligeables et que $y_C = 20 \text{ m}$:
 - a) déterminez la constante de rappel du ressort;
 - b) déterminez la vitesse du projectile au point B.
- 2. On considère que la somme de toutes les forces de frottement tout le long du parcours du projectile vaut 2 N (les forces de frottements tiennent comptes du frottement dans le tube et dans l'air) :
 - c) déterminez la nouvelle position maximale y_C atteinte par le projectile.

Exercice nº 2

La figure 2 représente deux rondelles de hockey identiques qui se déplacent sans frottement sur une surface lisse avec des vitesses initiales $v_A = 15 \text{ m s}^{-1}$ et $v_B = 10 \text{ m s}^{-1}$. L'axe horizontale est l'axe des x. Le coefficient de restitution d'énergie vaut e = 0, 9.

FIGURE 2 – Représentation des rondelles au moment du choc.

Déterminez la vitesse (amplitude et direction par rapport à l'axe x) pour chacun des rondelles juste après l'impact.

Exercice nº 3

En partant d'une vitesse nulle, un sprinter de 70 kg accélère sur une distance de 7 m. La somme des forces appliquées sur le coureur en fonction

de sa position a été mesurée en différents points tel qu'illustré à la figure 3. L'instrument utilisé pour mesurer les forces a une précision d'environ 2 N en valeur RMS. Le tableau 1 donne le résultat de ces mesures.

TABLEAU 1 – Mesures des forces F s'exerçant sur le sprinter en fonction de la distance x.

<i>x</i> (m)	0	1	2	3	4	5	6	7
F (N)	0	37.91	58.51	82.37	128.2	154.3	144.5	17.78

FIGURE 3 – Représentation des mesures des forces s'exerçant sur le sprinter.

Cet exercice peut se faire à l'aide de Matlab.

a)	Trouvez une fonction polynômiale $g(x)$ pour représenter les mesures du tableau 1. L'ordre du polynôme est à déterminer. Écrivez la fonction $g(x)$ ci-dessous. Écrivez les coefficients du polynôme avec 2 chiffres significatifs après la virgule. Assurez-vous de bien arrondir.						
b)	Avec la fonction $g(x)$ trouvée en a), quel est le facteur de corrélation \mathbb{R}^2 obtenu ? Quel est l'erreur RMSE obtenue ?						
	$R^2 = RMSE =$						
c)	Justifiez le choix du degré du polynôme.						
d)	Sachant que le travail total de toutes les forces appliquées sur le coureur est de 636 J, calculez sa vitesse à la fin du sprint de 7 m.						

Exercice nº 4

Un système dynamique est régi par l'équation suivante :

$$y(x) = x^3 - 12x - 1$$

- 1. Linéariser l'équation autour d'un point x_0 sous la forme mx + b.
- 2. En quel(s) point(s) x_0 la fonction a été linéarisée si la pente de la fonction linéarisée est de 36?