DECIDING SATISFIABILITY FOR OVERLAID SYMBOLIC HEAPS

Nicolas Peltier¹ Quentin Petitjean² Mihaela Sighireanu²

¹Univ. Grenoble Alpes, CNRS, LIG, 38000 Grenoble France

 2 Univ. Paris-Saclay, CNRS, ENS Paris-Saclay, Laboratoire Méthodes Formelles, 91190 Gif-sur-Yvette, France

French National Research Agency project NARCO ${\tt ANR-21-CE48-0011}$

FROCOS, Reykjavik, 30/09/2025

Introduction

- ♦ Separation Logic is widely used to reason about programs manipulating memory.
- \diamond SL use the connective \star to compose disjoint structures and reason about them.

Frame Rule:
$$\frac{\{P\}C\{Q\}}{\{P \star I\}C\{Q \star I\}}$$

♦ SL is an expressive program logic for data structures specified using inductive predicates:

ls(x, y): non-empty list

$$\begin{array}{lcl} \mathtt{ls}(x,y) & \Leftarrow & x \to (y) \\ \mathtt{ls}(x,y) & \Leftarrow & x \to (z) \star \mathtt{ls}(z,y) \end{array}$$

bt(x): binary tree

$$\begin{array}{lll} \mathtt{bt}(x) & \Leftarrow & x \to () \\ \mathtt{bt}(x) & \Leftarrow & x \to (y,z) \star \mathtt{bt}(y) \star \mathtt{bt}(z) \end{array}$$

Figure. A more complex structure.

INTRODUCTION — DECIDABILITY RESULTS

- ♦ The satisfiability problem is decidable for various fragments of SL, in particular with inductive predicates¹.
- \diamond The entailment problem is decidable in more restricted fragments of SL^2 .
- ♦ General overlaid data structures raise issues for SL with inductive predicates:
 - expressivity;
 - compositional reasonning;
 - decidability of satisfibility and entailement.

James Brotherston et al. "A decision procedure for satisfiability in separation logic with inductive predicates". In: Proceedings of the Joint Meeting of the Twenty-Third EACSL Annual Conference on Computer Science Logic (CSL) and the Twenty-Ninth Annual ACM/IEEE Symposium on Logic in Computer Science (LICS). July 2014
Radu Iosif, Adam Rogalewicz, and Jiri Simacek. "The Tree Width of Separation

Logic with Recursive Definitions". In: Automated Deduction - CADE-24. 2013

Figure. An overlaid data structure that slips out of inductive predicates.

1. Overlaid Separation Logic

OVERLAID SEPARATION LOGIC — CONTRIBUTION

- ♦ We propose an extension of SL, Overlaid Separation Logic (OSL):
 - expressivity: capture complex data structure by still using inductive predicates;
 - allow composition reasoning due to a special overlaid separating conjunction;
 - decidability of satisfiability.
- ♦ We propose a decision procedure for the satisfiability problem for OSL.

Theorem

The satisfiability problem for OSL is decidable in Nexptime if each predicate only allocates a single field.

♦ Syntax:

$$\varphi := \operatorname{emp} \mid x.f \to (y_1, \dots, y_d) \mid \mathbf{L} \mid \mathbf{B} \mid \mathbf{A} \mid \varphi_1 \vee \varphi_2 \mid \varphi_1 \star \varphi_2 \mid \varphi_1 \otimes \varphi_2 \mid p(x_1, \dots, x_{\#(p)-1}, \mathbf{X})$$

♦ Syntax:

$$\varphi := \operatorname{emp} \mid x.f \to (y_1, \dots, y_d) \mid \mathbf{L} \mid \mathbf{B} \mid \mathbf{A} \mid \varphi_1 \vee \varphi_2 \mid \varphi_1 \star \varphi_2 \mid \varphi_1 \otimes \varphi_2 \mid p(x_1, \dots, x_{\#(p)-1}, \mathbf{X})$$

♦ Semantics:

 \odot Structures $(\mathfrak{s}, \mathfrak{h}, \Sigma)$ composed of a *store* \mathfrak{s} and a *heap* \mathfrak{h} of domain $\mathcal{L} \times \mathcal{F}$, and a set interpretation Σ .

♦ Syntax:

$$\varphi := \operatorname{emp} \mid x.f \to (y_1, \dots, y_d) \mid \mathbf{L} \mid \mathbf{B} \mid \mathbf{A} \mid \varphi_1 \vee \varphi_2 \mid \varphi_1 \star \varphi_2 \mid \varphi_1 \otimes \varphi_2 \mid p(x_1, \dots, x_{\#(p)-1}, \mathbf{X})$$

♦ Semantics:

 \odot Structures $(\mathfrak{s}, \mathfrak{h}, \Sigma)$ composed of a *store* \mathfrak{s} and a *heap* \mathfrak{h} of domain $\mathcal{L} \times \mathcal{F}$, and a set interpretation Σ .

♦ Syntax:

$$\varphi := \operatorname{emp} \mid x.f \to (y_1, \dots, y_d) \mid L \mid B \mid A \mid \varphi_1 \vee \varphi_2 \mid \varphi_1 \star \varphi_2 \mid \varphi_1 \otimes \varphi_2 \mid p(x_1, \dots, x_{\#(p)-1}, X)$$

- \odot Structures $(\mathfrak{s}, \mathfrak{h}, \Sigma)$ composed of a *store* \mathfrak{s} and a *heap* \mathfrak{h} of domain $\mathcal{L} \times \mathcal{F}$, and a set interpretation Σ .
- \odot x is said allocated and y_1, \ldots, y_d are said pointed-to.
- \odot $(\mathfrak{s},\mathfrak{h}) \models_{\mathcal{R}} (x.f \to (y_1,\ldots,y_d)) \text{ if } \mathfrak{h} = [(\mathfrak{s}(x),f) \mapsto (\mathfrak{s}(y_1),\ldots,\mathfrak{s}(y_d))].$

♦ Syntax:

$$\varphi := \operatorname{emp} \mid x.f \to (y_1, \dots, y_d) \mid L \mid B \mid A \mid \varphi_1 \vee \varphi_2 \mid \varphi_1 \star \varphi_2 \mid \varphi_1 \otimes \varphi_2 \mid p(x_1, \dots, x_{\#(p)-1}, X)$$

- \odot Structures $(\mathfrak{s}, \mathfrak{h}, \Sigma)$ composed of a *store* \mathfrak{s} and a *heap* \mathfrak{h} of domain $\mathcal{L} \times \mathcal{F}$, and a set interpretation Σ .
- \odot x is said allocated and y_1, \ldots, y_d are said pointed-to.
- \odot $(\mathfrak{s},\mathfrak{h},\Sigma) \models_{\mathcal{R}} \varphi_1 \star \varphi_2$ if there exist $\mathfrak{h}_1,\mathfrak{h}_2$ such that $\mathfrak{h} = \mathfrak{h}_1 \cup \mathfrak{h}_2$, there is no location ℓ allocated in \mathfrak{h}_1 and in \mathfrak{h}_2 , and $(\mathfrak{s},\mathfrak{h}_i,\Sigma) \models_{\mathcal{R}} \varphi_i$.
- \odot $(\mathfrak{s},\mathfrak{h},\Sigma) \models_{\mathcal{R}} \varphi_1 \otimes \varphi_2$ if there exist $\mathfrak{h}_1,\mathfrak{h}_2$ such that $\mathfrak{h} = \mathfrak{h}_1 \cup \mathfrak{h}_2$, there is no location ℓ allocated in \mathfrak{h}_1 and in \mathfrak{h}_2 with the same field, and $(\mathfrak{s},\mathfrak{h}_i,\Sigma) \models_{\mathcal{R}} \varphi_i$.

♦ Syntax:

$$\varphi := \operatorname{emp} \mid x.f \to (y_1, \dots, y_d) \mid L \mid B \mid A \mid \varphi_1 \vee \varphi_2 \mid \varphi_1 \star \varphi_2 \mid \varphi_1 \otimes \varphi_2 \mid p(x_1, \dots, x_{\#(p)-1}, X) \qquad L := x \approx y \mid x \not\approx y$$

- \odot Structures $(\mathfrak{s}, \mathfrak{h}, \Sigma)$ composed of a *store* \mathfrak{s} and a *heap* \mathfrak{h} of domain $\mathcal{L} \times \mathcal{F}$, and a set interpretation Σ .
- Equality constraints L over locations.

♦ Syntax:

$$\varphi := \operatorname{emp} \mid x.f \to (y_1, \dots, y_d) \mid L \mid B \mid A \mid \varphi_1 \vee \varphi_2 \mid \varphi_1 \star \varphi_2 \mid \varphi_1 \otimes \varphi_2 \mid p(x_1, \dots, x_{\#(p)-1}, X) \qquad L := x \approx y \mid x \not\approx y$$

$$\mathbf{T} := \{x\} \mid \mathbf{X} \mid \emptyset \mid \mathbf{T}_1 \sqcup \mathbf{T}_2 \mid \mathbf{T}_1 \sqcap \mathbf{T}_2 \qquad \mathbf{B} := \mathbf{T}_1 \approx \mathbf{T}_2 \mid \mathbf{T}_1 \not\approx \mathbf{T}_2 \mid \mathbf{T}_1 \sqsubseteq \mathbf{T}_2 \mid \mathbf{T}_1 \not\sqsubseteq \mathbf{T}_2$$

- \odot Structures $(\mathfrak{s}, \mathfrak{h}, \Sigma)$ composed of a *store* \mathfrak{s} and a *heap* \mathfrak{h} of domain $\mathcal{L} \times \mathcal{F}$, and a set interpretation Σ .
- Equality constraints L over locations.
- ⊙ Set constraints B over set terms T, interpreted by finite sets of locations.

♦ Syntax:

$$\begin{split} \varphi := & \text{ emp } \mid \ x.f \rightarrow (y_1, \dots, y_d) \mid \text{ L} \mid \text{ B} \mid \text{ A} \mid \varphi_1 \vee \varphi_2 \mid \varphi_1 \star \varphi_2 \mid \varphi_1 \otimes \varphi_2 \\ \mid \ p(x_1, \dots, x_{\#(p)-1}, \text{X}) \qquad \quad \text{L} := x \approx y \mid x \not\approx y \qquad \quad t := \text{K} \mid t_1 \oplus t_2 \mid \text{K} \odot t \mid |\text{T}| \\ \text{A} := t_1 \approx t_2 \mid t_1 \not\approx t_2 \mid t_1 \prec t_2 \mid t_1 \not\prec t_2 \mid \text{K} \operatorname{div} t \mid \text{K} \operatorname{ndiv} t \\ \text{T} := \{x\} \mid \text{X} \mid \emptyset \mid \text{T}_1 \sqcup \text{T}_2 \mid \text{T}_1 \sqcap \text{T}_2 \qquad \text{B} := \text{T}_1 \approx \text{T}_2 \mid \text{T}_1 \not\approx \text{T}_2 \mid \text{T}_1 \sqsubseteq \text{T}_2 \mid \text{T}_1 \not\sqsubseteq \text{T}_2 \end{split}$$

- \odot Structures $(\mathfrak{s}, \mathfrak{h}, \Sigma)$ composed of a *store* \mathfrak{s} and a *heap* \mathfrak{h} of domain $\mathcal{L} \times \mathcal{F}$, and a set interpretation Σ .
- Equality constraints L over locations.
- ⊙ Set constraints B over set terms T, interpreted by finite sets of locations.
- \odot Arithmetic constraints A over arithmetic terms t, interpreted by integers.

♦ Syntax:

$$\begin{split} \varphi := & \text{ emp } \mid x.f \rightarrow (y_1, \dots, y_d) \mid \mathbf{L} \mid \mathbf{B} \mid \mathbf{A} \mid \varphi_1 \vee \varphi_2 \mid \varphi_1 \star \varphi_2 \mid \varphi_1 \otimes \varphi_2 \\ & \mid p(x_1, \dots, x_{\#(p)-1}, \mathbf{X}) \qquad \mathbf{L} := x \approx y \mid x \not\approx y \qquad t := \mathbf{K} \mid t_1 \oplus t_2 \mid \mathbf{K} \odot t \mid |\mathbf{T}| \\ \mathbf{A} := & t_1 \approx t_2 \mid t_1 \not\approx t_2 \mid t_1 \prec t_2 \mid t_1 \not\prec t_2 \mid \mathbf{K} \operatorname{div} t \mid \mathbf{K} \operatorname{ndiv} t \\ \mathbf{T} := & \{x\} \mid \mathbf{X} \mid \emptyset \mid \mathbf{T}_1 \sqcup \mathbf{T}_2 \mid \mathbf{T}_1 \sqcap \mathbf{T}_2 \qquad \mathbf{B} := \mathbf{T}_1 \approx \mathbf{T}_2 \mid \mathbf{T}_1 \not\approx \mathbf{T}_2 \mid \mathbf{T}_1 \sqsubseteq \mathbf{T}_2 \mid \mathbf{T}_1 \not\sqsubseteq \mathbf{T}_2 \end{split}$$

♦ Semantics:

- \odot Structures $(\mathfrak{s}, \mathfrak{h}, \Sigma)$ composed of a *store* \mathfrak{s} and a *heap* \mathfrak{h} of domain $\mathcal{L} \times \mathcal{F}$, and a set interpretation Σ .
- \odot p is a predicate defined by a set of inductive rules (SID) \mathcal{R} with a unique set variable X.

$$p(z_1, \dots, z_{\#(p)-1}, \mathbf{X}) \Leftarrow z_j.f \to (\overrightarrow{z}) \star \bigstar_{i=1}^m q_i(\overrightarrow{y}_i, \mathbf{Y}_i) \star \varphi \star (\mathbf{X} \approx \mathbf{E} \sqcup \bigsqcup_{i \in \mathbf{J}} \mathbf{Y}_i),$$

where Y_i are pairwise distinct and distinct from X; E is either \emptyset or $\{z_j\}$; J $\subseteq [1, m]$; φ is a \star -conjunction of equalities and disequalities.

 \odot $(\mathfrak{s},\mathfrak{h},\Sigma) \models_{\mathcal{R}} p(x_1,\ldots,x_{\#(p)-1},X)$, if $(\mathfrak{s},\mathfrak{h},\Sigma) \models_{\mathcal{R}} \psi$ for some ψ such that $p(x_1,\ldots,x_{\#(p)-1},X) \Leftarrow \psi$ (unfolding).

OVERLAID SEPARATION LOGIC — EXAMPLES

$$\begin{aligned} \operatorname{bt}(x,Y) & \otimes \operatorname{ls}(y,Y) \text{ with:} \\ \operatorname{bt}(x,Y) & \Leftarrow x.f \to () \star Y \approx \{x\} \\ \operatorname{bt}(x,Y) & \Leftarrow x.f \to (x_1,x_2) \star \operatorname{bt}(x_1,Y_1) \\ & \star \operatorname{bt}(x_2,Y_2) \star Y \approx \{y\} \sqcup Y_1 \sqcup Y_2 \\ \operatorname{ls}(y,Y) & \Leftarrow y.g \to () \star Y \approx \{y\} \\ \operatorname{ls}(y,Y) & \Leftarrow y.g \to (y') \star \operatorname{ls}(y',Y') \\ & \star Y \approx \{y\} \sqcup Y' \end{aligned}$$

Figure. A model of $bt(x, Y) \otimes ls(y, Y)$.

OVERLAID SEPARATION LOGIC — EXAMPLES

Figure. An OSL structure.

Figure. An OSL structure.

2. Decidability

³ Viktor Kuncak, Huu Hai Nguyen, and Martin Rinard. "An Algorithm for Deciding BAPA: Boolean Algebra with Presburger Arithmetic". In: Automated Deduction – CADE-20, 2005

- \diamond First, decorate all the predicates appearing in φ and \mathcal{R} to handle the spacial part, i.e, guessing and fixing:
 - the aliasing and non-aliasing relations between the location variables;
 - the set of location variables that occur in the set parameter of the predicate;
 - the set of allocated location variables.

³ Viktor Kuncak, Huu Hai Nguyen, and Martin Rinard. "An Algorithm for Deciding BAPA: Boolean Algebra with Presburger Arithmetic". In: Automated Deduction – CADE-20. 2005

- \diamond First, decorate all the predicates appearing in φ and \mathcal{R} to handle the spacial part, i.e, guessing and fixing:
 - the aliasing and non-aliasing relations between the location variables;
 - \odot the set of location variables that occur in the set parameter of the predicate;
 - the set of allocated location variables.
- \diamond Then, compute a set of rules for these decorated predicates using the rules in \mathcal{R} , keeping only those with coherent decorations.

Viktor Kuncak, Huu Hai Nguyen, and Martin Rinard. "An Algorithm for Deciding BAPA: Boolean Algebra with Presburger Arithmetic". In: Automated Deduction – CADE-20, 2005

- \diamond First, decorate all the predicates appearing in φ and \mathcal{R} to handle the spacial part, i.e, guessing and fixing:
 - the aliasing and non-aliasing relations between the location variables;
 - the set of location variables that occur in the set parameter of the predicate;
 - the set of allocated location variables.
- \diamond Then, compute a set of rules for these decorated predicates using the rules in \mathcal{R} , keeping only those with coherent decorations.
- \diamond Next, use the decorations of the decorated pair to calculate Presburger formulæ describing the possible cardinalities of all set variables of φ .

³ Viktor Kuncak, Huu Hai Nguyen, and Martin Rinard. "An Algorithm for Deciding BAPA: Boolean Algebra with Presburger Arithmetic". In: Automated Deduction – CADE-20. 2005

- \diamond First, decorate all the predicates appearing in φ and \mathcal{R} to handle the spacial part, i.e, guessing and fixing:
 - the aliasing and non-aliasing relations between the location variables;
 - the set of location variables that occur in the set parameter of the predicate;
 - the set of allocated location variables.
- \diamond Then, compute a set of rules for these decorated predicates using the rules in \mathcal{R} , keeping only those with coherent decorations.
- \diamond Next, use the decorations of the decorated pair to calculate Presburger formulæ describing the possible cardinalities of all set variables of φ .
- \diamond Finally, translate the guessed decorated pair into an equi-satisfiable formula in the logic BAPA by applying a recursive function on φ .

Viktor Kuncak, Huu Hai Nguyen, and Martin Rinard. "An Algorithm for Deciding BAPA: Boolean Algebra with Presburger Arithmetic". In: Automated Deduction – CADE-20, 2005

- \diamond Decorated predicates: $p_{\mathrm{I},\mathrm{J},\sim,\not\simeq}(x_1,\ldots,x_n,\mathrm{X})$ where:
 - $oldsymbol{\cdot}$ $i \in I$ iff $x_i \in X$;
 - \odot $j \in J$ iff x_j is allocated;
 - \odot ~ encodes the aliasing relation;
 - \odot $\not\simeq$ encodes the distinguishing relation.

- \diamond Decorated predicates: $p_{\mathrm{I},\mathrm{J},\sim,\not\simeq}(x_1,\ldots,x_n,\mathrm{X})$ where:

 - \odot $j \in J$ iff x_j is allocated;
 - \odot ~ encodes the aliasing relation;
 - \odot $\not\simeq$ encodes the distinguishing relation.
- \Diamond [Y] $_{\psi}$, $alloc(\psi)$, \equiv_{ψ} , $\not\succeq_{\psi}$, are the extension of decoration to formulæ, induced by the decorations of predicates.

- \diamond Decorated predicates: $p_{\mathrm{I},\mathrm{J},\sim,\not\simeq}(x_1,\ldots,x_n,\mathrm{X})$ where:

 - \odot $j \in J$ iff x_j is allocated;
 - \odot ~ encodes the aliasing relation;
 - \odot $\not\simeq$ encodes the distinguishing relation.
- \Diamond [Y] $_{\psi}$, $alloc(\psi)$, \equiv_{ψ} , $\not\succeq_{\psi}$, are the extension of decoration to formulæ, induced by the decorations of predicates.
- ♦ Decorated rules must have coherent decorations for the right-hand and left-hand side.

Handling the spacial part with decorations.

- \diamond Decorated predicates: $p_{I,J,\sim,\not\simeq}(x_1,\ldots,x_n,X)$ where:
 - $oldsymbol{\cdot}$ $i \in I$ iff $x_i \in X$;
 - \odot $j \in J$ iff x_j is allocated;
 - \odot ~ encodes the aliasing relation;
 - \odot $\not\simeq$ encodes the distinguishing relation.
- \Diamond [Y] $_{\psi}$, $alloc(\psi)$, \equiv_{ψ} , $\not\succeq_{\psi}$, are the extension of decoration to formulæ, induced by the decorations of predicates.
- ♦ Decorated rules must have coherent decorations for the right-hand and left-hand side.
- \diamond Consider $\varphi = ls(x_1, y_1, X_1) \star ls(x_2, y_2, X_2)$ with

$$\mathtt{ls}(x,y,\mathbf{X}) \Leftarrow x.f \to (y) \star \mathbf{X} \approx \{x\} \,, \,\, \mathtt{ls}(x,y,\mathbf{X}) \Leftarrow x.f \to (z) \star \mathtt{ls}(z,y,\mathbf{Y}) \star \mathbf{X} \approx \{x\} \,\, \sqcup \, \mathbf{Y} \,.$$

The only decoration resulting in coherent rules is $I = \{1\}$, $J = \{1\}$, $\sim = Id$, and $\not \simeq = \emptyset$.

We want to know the possible cardinalities of all set variables.

We want to know the possible cardinalities of all set variables.

We want to know the possible cardinalities of all set variables.

 $\begin{tabular}{l} \diamondsuit \mbox{ Grammar of cardinalities: } \mathcal{G}_{\mathtt{ls}_{\mathrm{I},\mathrm{J},\sim,\not\simeq}(x,y,\mathrm{X})} = (\mathcal{N},\mathcal{T},\mathcal{R},\mathrm{N}_0) \mbox{ with } \\ \mathcal{N} = \{\mathrm{N}_{\mathtt{ls}_{\mathrm{I},\mathrm{J},\sim,\not\simeq}(x,y,\mathrm{X})},\mathrm{N}_{\mathtt{ls}_{\mathrm{I},\mathrm{J},\sim,\not\simeq}(x,y,\mathrm{Y})}\}, \ \mathcal{T} = \{1\},\ \mathrm{N}_0 = \mathrm{N}_{\mathtt{ls}_{\mathrm{I},\mathrm{J},\sim,\not\simeq}(x,y,\mathrm{X})} \mbox{ and } \mathcal{R} \mbox{ containing: } \\ \mbox{ The substitution of the$

- $\odot \ \mathrm{N}_{\mathtt{ls}^1_{\mathrm{I},\mathrm{J},\sim,\not\simeq}(x,y,\mathrm{Y})} \to 1; \qquad \mathrm{N}_{\mathtt{ls}^1_{\mathrm{I},\mathrm{J},\sim,\not\simeq}(x,y,\mathrm{Y})} \to 1 \mathrm{N}_{\mathtt{ls}^2_{\mathrm{I},\mathrm{J},\sim,\not\simeq}(x,y,\mathrm{X})};$
- $\odot \operatorname{N}_{\operatorname{1s}_{1,1}^{2},\sim^{2}}^{1,3,7,7,\neq} \to 1 \operatorname{N}_{\operatorname{1s}_{1,1}^{1},\sim^{2}}^{1,3,7,7,\neq}$

We want to know the possible cardinalities of all set variables.

- - $\begin{array}{ll} \odot & \mathrm{N}_{\mathbf{1s}^1_{\mathrm{I},\mathrm{J},\sim,\not\simeq}(x,y,\mathrm{Y})} \to \mathrm{1}; & \mathrm{N}_{\mathbf{1s}^1_{\mathrm{I},\mathrm{J},\sim,\not\simeq}(x,y,\mathrm{Y})} \to \mathrm{1N}_{\mathbf{1s}^2_{\mathrm{I},\mathrm{J},\sim,\not\simeq}(x,y,\mathrm{X})}; \\ \odot & \mathrm{N}_{\mathbf{1s}^2_{\mathrm{I},\mathrm{I},\sim,\not\simeq}(x,y,\mathrm{X})} \to \mathrm{1N}_{\mathbf{1s}^1_{\mathrm{I},\mathrm{I},\sim,\not\simeq}(x,y,\mathrm{Y})}. \end{array}$
- $\diamond L(\mathcal{G}_{\mathbf{1s}^2_{\mathbf{I},\mathbf{J},\sim,\cancel{\angle}}(x,y,\mathbf{X})})$ corresponds to $Sp(\mathbf{1s}^2_{\mathbf{I},\mathbf{J},\sim,\cancel{\angle}}(x,y,\mathbf{X}))$, the set of values of $\mathrm{card}(\Sigma(\mathbf{X}))$.

We want to know the possible cardinalities of all set variables.

- $\begin{array}{l} \diamondsuit \ \ \text{Grammar of cardinalities:} \ \mathcal{G}_{\mathbf{ls}_{\mathbf{I},\mathbf{J},\sim,\not\simeq}(x,y,\mathbf{X})} = (\mathcal{N},\mathcal{T},\mathcal{R},\mathbf{N}_0) \ \text{with} \\ \mathcal{N} = \{\mathbf{N}_{\mathbf{ls}_{\mathbf{I},\mathbf{J},\sim,\not\simeq}(x,y,\mathbf{X})}, \mathbf{N}_{\mathbf{ls}_{\mathbf{I},\mathbf{J},\sim,\not\simeq}(x,y,\mathbf{Y})}\}, \ \mathcal{T} = \{\mathbf{1}\}, \ \mathbf{N}_0 = \mathbf{N}_{\mathbf{ls}_{\mathbf{I},\mathbf{J},\sim,\not\simeq}(x,y,\mathbf{X})} \ \text{and} \ \mathcal{R} \ \text{containing:} \end{array}$
 - $\begin{array}{ll} \odot & \mathrm{N}_{\mathtt{ls}^1_{\mathrm{I},\mathrm{J},\sim,\not\simeq}(x,y,\mathrm{Y})} \to \mathrm{1}; & \mathrm{N}_{\mathtt{ls}^1_{\mathrm{I},\mathrm{J},\sim,\not\simeq}(x,y,\mathrm{Y})} \to \mathrm{1N}_{\mathtt{ls}^2_{\mathrm{I},\mathrm{J},\sim,\not\simeq}(x,y,\mathrm{X})}; \\ \odot & \mathrm{N}_{\mathtt{ls}^2_{\mathtt{I},\mathrm{I},\sim,\swarrow}(x,y,\mathrm{X})} \to \mathrm{1N}_{\mathtt{ls}^1_{\mathtt{I},\mathrm{I},\sim,\swarrow}(x,y,\mathrm{Y})}. \end{array}$
- $\diamond L(\mathcal{G}_{ls^2_{I,J,\sim,\not\simeq}(x,y,X)})$ corresponds to $Sp(ls^2_{I,J,\sim,\not\simeq}(x,y,X))$, the set of values of $card(\Sigma(X))$.
- \diamond An existential Presburger formula $\xi_{1s_{I,J,\sim,\neq}^2(x,y,X)}$, describing the Parikh image⁴ of the language can be computed in linear time⁵. It simplifies into $\exists k.i_X = 2(k+1)$.

⁴ Rohit J. Parikh. "On Context-Free Languages". In: J. ACM 4 (Oct. 1966)

⁵ Kumar Neeraj Verma, Helmut Seidl, and Thomas Schwentick. "On the Complexity of Equational Horn Clauses". In: Automated Deduction – CADE-20. 2005

Let $\psi = \mathtt{ls}_{\mathrm{I},\mathrm{J},\sim,\not\simeq}^f(x,z,\mathrm{X}) \otimes \mathtt{ls}_{\mathrm{I},\mathrm{J},\sim,\not\simeq}^f(y,z,\mathrm{Y}) \star \mathrm{X} \approx \mathrm{Y}$ with $\mathrm{I},\mathrm{J},\sim,\not\simeq$ defined as previously. We translate into:

$$C(\psi) =$$

Let $\psi = \mathtt{ls}_{\mathrm{I},\mathrm{J},\sim,\not\simeq}^f(x,z,\mathrm{X}) \oplus \mathtt{ls}_{\mathrm{I},\mathrm{J},\sim,\not\simeq}^f(y,z,\mathrm{Y}) \star \mathrm{X} \approx \mathrm{Y}$ with $\mathrm{I},\mathrm{J},\sim,\not\simeq$ defined as previously. We translate into:

$$\mathcal{C}(\psi) = (|V_x| \approx_{BP} 1) \land (|V_y| \approx_{BP} 1) \land (|V_z| \approx_{BP} 1)$$

 \diamond We associate to each free variable x of ψ a fresh BAPA set variable V_x .

Let $\psi = \mathbf{1s}_{\mathrm{I},\mathrm{J},\sim,\not\simeq}^f(x,z,\mathrm{X}) \oplus \mathbf{1s}_{\mathrm{I},\mathrm{J},\sim,\not\simeq}^f(y,z,\mathrm{Y}) \star \mathrm{X} \approx \mathrm{Y}$ with $\mathrm{I},\mathrm{J},\sim,\not\simeq$ defined as previously. We translate into:

$$\mathcal{C}(\psi) = (|\mathbf{V}_x| \approx_{\mathsf{BP}} 1) \wedge (|\mathbf{V}_y| \approx_{\mathsf{BP}} 1) \wedge (|\mathbf{V}_z| \approx_{\mathsf{BP}} 1) \\ \wedge (|\mathbf{X}| \approx_{\mathsf{BP}} i_{\mathbf{X}}) \wedge \xi_{\mathsf{1s}_{\mathrm{I},\mathrm{J},\sim,2}^f(x,y,\mathrm{X})}(i_{\mathbf{X}}) \wedge (\mathbf{V}_x \sqsubseteq_{\mathsf{BP}} \mathrm{X}) \wedge (\mathbf{V}_z \sqcap_{\mathsf{BP}} \mathrm{X} \approx_{\mathsf{BP}} \emptyset)$$

- \diamond We associate to each free variable x of ψ a fresh BAPA set variable V_x .
- ♦ The translation of a decorated quantifier-free symbolic heap into a BAPA formula:

Let $\psi = \mathbf{1s}_{\mathrm{I},\mathrm{J},\sim,\not\simeq}^f(x,z,\mathrm{X}) \oplus \mathbf{1s}_{\mathrm{I},\mathrm{J},\sim,\not\simeq}^f(y,z,\mathrm{Y}) \star \mathrm{X} \approx \mathrm{Y}$ with $\mathrm{I},\mathrm{J},\sim,\not\simeq$ defined as previously. We translate into:

$$\begin{split} \mathcal{C}(\psi) &= (|\mathbf{V}_x| \approx_{\mathsf{BP}} 1) \wedge (|\mathbf{V}_y| \approx_{\mathsf{BP}} 1) \wedge (|\mathbf{V}_z| \approx_{\mathsf{BP}} 1) \\ &\wedge (|\mathbf{X}| \approx_{\mathsf{BP}} i_{\mathbf{X}}) \wedge \xi_{\mathbf{1s}_{\mathbf{I},\mathbf{J},\sim,\cancel{\mathcal{Z}}}(x,y,\mathbf{X})}(i_{\mathbf{X}}) \wedge (\mathbf{V}_x \sqsubseteq_{\mathsf{BP}} \mathbf{X}) \wedge (\mathbf{V}_z \sqcap_{\mathsf{BP}} \mathbf{X} \approx_{\mathsf{BP}} \emptyset) \\ &\wedge (|\mathbf{Y}| \approx_{\mathsf{BP}} i_{\mathbf{Y}}) \wedge \xi_{\mathbf{1s}_{\mathbf{I},\mathbf{J},\sim,\cancel{\mathcal{Z}}}(x,z,\mathbf{Y})}(i_{\mathbf{Y}}) \wedge (\mathbf{V}_y \sqsubseteq_{\mathsf{BP}} \mathbf{Y}) \wedge (\mathbf{V}_z \sqcap_{\mathsf{BP}} \mathbf{Y} \approx_{\mathsf{BP}} \emptyset) \end{split}$$

- \diamond We associate to each free variable x of ψ a fresh BAPA set variable V_x .
- ♦ The translation of a decorated quantifier-free symbolic heap into a BAPA formula:

$$\mathfrak{T}(p_{\mathrm{I},\mathrm{J},\sim,\not\simeq}(x_1,\ldots,x_n,\mathrm{X})) = |\mathrm{X}| \approx_{\mathrm{BP}} i_{\mathrm{X}} \wedge \xi_{p_{\mathrm{I},\mathrm{J},\sim,\not\simeq}(x_1,\ldots,x_n,\mathrm{X})}(i_{\mathrm{X}}) \\
\wedge (\bigsqcup_{i\in\mathrm{I}}^{\mathrm{BP}} \mathrm{V}_{x_i}) \sqsubseteq_{\mathrm{BP}} \mathrm{X} \wedge \left(\bigsqcup_{x\in\{x_1,\ldots,x_n\}\smallsetminus\{x_j\mid j\in\mathrm{I}\}}^{\mathrm{BP}} \mathrm{V}_x\right) \sqcap_{\mathrm{BP}} \mathrm{X} \approx_{\mathrm{BP}} \emptyset;$$

Let $\psi = \mathbf{1s}_{\mathrm{I},\mathrm{J},\sim,\not\simeq}^f(x,z,\mathrm{X}) \otimes \mathbf{1s}_{\mathrm{I},\mathrm{J},\sim,\not\simeq}^f(y,z,\mathrm{Y}) \star \mathrm{X} \approx \mathrm{Y}$ with $\mathrm{I},\mathrm{J},\sim,\not\simeq$ defined as previously. We translate into:

$$\begin{split} \mathcal{C}(\psi) &= (|\mathbf{V}_x| \approx_{\mathsf{BP}} 1) \wedge (|\mathbf{V}_y| \approx_{\mathsf{BP}} 1) \wedge (|\mathbf{V}_z| \approx_{\mathsf{BP}} 1) \\ &\wedge (|\mathbf{X}| \approx_{\mathsf{BP}} i_{\mathbf{X}}) \wedge \xi_{\mathbf{1s}_{\mathbf{I},\mathbf{J},\sim,\neq}^f(x,y,\mathbf{X})}(i_{\mathbf{X}}) \wedge (\mathbf{V}_x \sqsubseteq_{\mathsf{BP}} \mathbf{X}) \wedge (\mathbf{V}_z \sqcap_{\mathsf{BP}} \mathbf{X} \approx_{\mathsf{BP}} \emptyset) \\ &\wedge (|\mathbf{Y}| \approx_{\mathsf{BP}} i_{\mathbf{Y}}) \wedge \xi_{\mathbf{1s}_{\mathbf{I},\mathbf{J},\sim,\neq}^f(x,z,\mathbf{Y})}(i_{\mathbf{Y}}) \wedge (\mathbf{V}_y \sqsubseteq_{\mathsf{BP}} \mathbf{Y}) \wedge (\mathbf{V}_z \sqcap_{\mathsf{BP}} \mathbf{Y} \approx_{\mathsf{BP}} \emptyset) \\ &\wedge ((\mathbf{V}_x \sqcup \mathbf{X}) \sqcap_{\mathsf{BP}} (\mathbf{V}_y \sqcup \mathbf{Y}) \approx_{\mathsf{BP}} \emptyset) \end{split}$$

- \diamond We associate to each free variable x of ψ a fresh BAPA set variable V_x .
- ♦ The translation of a decorated quantifier-free symbolic heap into a BAPA formula:

$$\odot \ \mathcal{T}(\psi_1 \star \psi_2) = \mathcal{T}(\psi_1) \wedge \mathcal{T}(\psi_2) \wedge \left(\bigsqcup_{f \in \mathcal{F}}^{\mathrm{BP}} \mathcal{T}^f(\psi_1) \right) \sqcap_{\mathrm{BP}} \left(\bigsqcup_{f \in \mathcal{F}}^{\mathrm{BP}} \mathcal{T}^f(\psi_2) \right) \approx_{\mathrm{BP}} \emptyset;$$

- $\odot \ \mathcal{T}(\psi_1 \otimes \psi_2) = \mathcal{T}(\psi_1) \wedge \mathcal{T}(\psi_2) \wedge \bigwedge_{f \in \mathcal{F}} \Big(\mathcal{T}^f(\psi_1) \sqcap_{\mathrm{BP}} \mathcal{T}^f(\psi_2) \approx_{\mathrm{BP}} \emptyset \Big).$
- $\mathcal{T}^f(\psi)$ is a set term denoting the set of named locations allocated by φ , for field f.

Let $\psi = \mathbf{1s}_{\mathrm{I},\mathrm{J},\sim,\not\simeq}^f(x,z,\mathrm{X}) \otimes \mathbf{1s}_{\mathrm{I},\mathrm{J},\sim,\not\simeq}^f(y,z,\mathrm{Y}) \star \mathrm{X} \approx \mathrm{Y}$ with $\mathrm{I},\mathrm{J},\sim,\not\simeq$ defined as previously. We translate into:

$$\begin{split} \mathcal{C}(\psi) &= (|\mathbf{V}_x| \approx_{\mathsf{BP}} 1) \wedge (|\mathbf{V}_y| \approx_{\mathsf{BP}} 1) \wedge (|\mathbf{V}_z| \approx_{\mathsf{BP}} 1) \\ &\wedge (|\mathbf{X}| \approx_{\mathsf{BP}} i_{\mathbf{X}}) \wedge \xi_{\mathsf{1s}_{\mathsf{I},\mathsf{J},\sim,\not{\neq}}^f(x,y,\mathsf{X})}(i_{\mathbf{X}}) \wedge (\mathbf{V}_x \sqsubseteq_{\mathsf{BP}} \mathsf{X}) \wedge (\mathbf{V}_z \sqcap_{\mathsf{BP}} \mathsf{X} \approx_{\mathsf{BP}} \emptyset) \\ &\wedge (|\mathbf{Y}| \approx_{\mathsf{BP}} i_{\mathbf{Y}}) \wedge \xi_{\mathsf{1s}_{\mathsf{I},\mathsf{J},\sim,\not{\neq}}^f(x,z,\mathsf{Y})}(i_{\mathbf{Y}}) \wedge (\mathbf{V}_y \sqsubseteq_{\mathsf{BP}} \mathsf{Y}) \wedge (\mathbf{V}_z \sqcap_{\mathsf{BP}} \mathsf{Y} \approx_{\mathsf{BP}} \emptyset) \\ &\wedge ((\mathbf{V}_x \sqcup \mathsf{X}) \sqcap_{\mathsf{BP}} (\mathbf{V}_y \sqcup \mathsf{Y}) \approx_{\mathsf{BP}} \emptyset) \\ &\wedge (\mathsf{X} \approx_{\mathsf{BP}} \mathsf{Y}) \,. \end{split}$$

- \diamond We associate to each free variable x of ψ a fresh BAPA set variable V_x .
- ♦ The translation of a decorated quantifier-free symbolic heap into a BAPA formula:

$$\mathfrak{T}(p_{\mathrm{I},\mathrm{J},\sim,\not\simeq}(x_1,\ldots,x_n,\mathrm{X})) = |\mathrm{X}| \approx_{\mathrm{BP}} i_{\mathrm{X}} \wedge \xi_{p_{\mathrm{I},\mathrm{J},\sim,\not\simeq}(x_1,\ldots,x_n,\mathrm{X})}(i_{\mathrm{X}}) \\
\wedge (\bigsqcup_{i\in\mathrm{I}}^{\mathrm{BP}} \mathrm{V}_{x_i}) \sqsubseteq_{\mathrm{BP}} \mathrm{X} \wedge \left(\bigsqcup_{x\in\{x_1,\ldots,x_n\}\smallsetminus\{x_j\mid j\in\mathrm{I}\}}^{\mathrm{BP}} \mathrm{V}_x\right) \sqcap_{\mathrm{BP}} \mathrm{X} \approx_{\mathrm{BP}} \emptyset;$$

- $\odot \mathcal{T}^f(\psi)$ is a set term denoting the set of named locations allocated by φ , for field f.

3. Conclusion and Future Work

CONCLUSION AND FUTURE WORK

Contributions:

- ♦ The SL extension OSL captures a wide range of overlaid data structures specified compositionally using inductively defined predicates.
- ♦ The satisfiability problem is decidable in Nexptime.

CONCLUSION AND FUTURE WORK

Contributions:

- ♦ The SL extension OSL captures a wide range of overlaid data structures specified compositionally using inductively defined predicates.
- ♦ The satisfiability problem is decidable in Nexptime.

Some lines of **future work**:

- ♦ Explore the decidability of the entailment problem: this work is ongoing and requires additional restrictions.
- ♦ Investigate the optimality of the procedure: satisfiability is clearly EXPTIME-hard, but it is not clear whether NEXPTIME represents a tight upper bound.
- ♦ Investigate whether the systematic enumeration of all decorations could be circumvented.
- ♦ Determine whether the conditions on the inductive rules could be relaxed.

THANK YOU!