# **Lead Scoring Case Study**

### **SUMMARY REPORT**

Build a model in order to increase the lead conversion rate to around 80% i,e: get in touch with those leads who are more likely to be converted into a customer. In order to achieve the objective, we need to build a logistic regression model which can assign a score from 0 to 100 next to the lead . A higher score means a lead who is most likely to convert or a hot lead. Whereas, a lower score means a cold lead which is less likely to be converted

- Predict a Lead Conversion Probability for each lead
- o Decide the cutoff above which a lead will be predicted as converted
- From Lead Conversion Probability calculate Lead Score for each Lead

## Steps conducted in this analysis are listed below:-

- 1. Understanding the data frame by conducting EDA and removed the non-required dataset as well as imputing missing value
- 2. Split the data into Train & Test set and scale the features
- 3. Run Logistic Regression Model and use RFE and remove columns with high p-value and VIF
- 4. Evaluate the model with various metrics like Accuracy, Sensitivity, Specificity, Precision, Recall etc.
- 5. Find the Optimal Cutoff point and predict the dependent variable based on probability threshold value
- 6. Use the model on the test dataset and perform the model evaluation

Originating features of dummy variables are removed

## Modeling:

The data was first partitioned into 70-30 split. 70% of the data was used as a training set and 30% of the data was used a validation set. By portioning the data, we were able to see the performance of the model on the unseen data set.

- The dataset is divided into training and test dataset by 70:30 ratio.
- Training dataset is used to build the model whereas the test dataset is used to test the model.
- Scaling is done for all the features to bring all the numeric features into same scale
- Perform Feature Elimination using RFE. RFE is used for 20 features initially and checked the p-value and VIF based on p-value (<0.05) and VIF(<5). Higher pvalue features are eliminated from the dataset.

- Find the Optimal threshold and it is required to balance the sensitivity and specificity and hence required a threshold point. Hence, we ran accuracy, sensitivity and specificity for various probability cut-off value to determine the same
- And by using probability threshold value of 0.20 on the test dataset to predict if a lead will convert or not

### **Receiver Operating Characteristic Curve (ROC Curve)**



| KPIs                            | value  |
|---------------------------------|--------|
| False Positive Rate FP/ (TN+FP) | 0.0766 |
| Area Under the Curve**          | 0.9555 |

<sup>\*</sup> True Positive Rate value can also found from the formula of sensitivity

## **Lead Score Calculation & Conclusion:**

<sup>\*\*</sup>From the area under the curve (AUC) of a ROC curve, one can determine how good the model is. The larger the AUC, the better will be the model.

Lead Score Formula: 100\*Conversion Probability

- Since, we divided the actual dataset into train and test at the beginning, we append them again to get the entire list of leads
- Conversion probability is multiplied by 100 to get the score
- Higher lead score denotes that the lead is more likely to convert

|   | Lead Number | Converted | Conversion_Prob | final_predicted | Lead_Score |
|---|-------------|-----------|-----------------|-----------------|------------|
| 0 | 660737      | 0.00      | 0.01            | 0.00            | 1.00       |
| 1 | 660728      | 0.00      | 0.01            | 0.00            | 1.00       |
| 2 | 660727      | 1.00      | 0.97            | 1.00            | 97.00      |
| 3 | 660719      | 0.00      | 0.00            | 0.00            | 0.00       |
| 4 | 660681      | 1.00      | 0.84            | 1.00            | 84.00      |
| 5 | 660680      | 0.00      | 0.03            | 0.00            | 3.00       |
| 6 | 660673      | 1.00      | 0.84            | 1.00            | 84.00      |
| 7 | 660664      | 0.00      | 0.03            | 0.00            | 3.00       |
| 8 | 660624      | 0.00      | 0.19            | 0.00            | 19.00      |
| 9 | 660616      | 0.00      | 0.19            | 0.00            | 19.00      |

<sup>\*</sup>Lead score with >=20 will have a final prediction of 1 as we consider the threshold value of 0.20