[B3M38DIT1] Assignment

David Strašák

5.10.2025

1. Vyberte si jednoduchý technický objekt (systém), který byl např. součástí Vaší bakalářské práce.

Můj objekt bude deska plošných spojů kterou jsem navrhoval pro moji bakalářskou práci. Jedná se o shield pro vývojovou desku WEMOS D1 Mini Pro, který posílal logické digitální signály do ovládacího panelu průmyslové frekvenčního měniče, díky čemuž umožňoval řídit motory na dálku.

WEMOS D1 Mini Pro řídí dálkové ovládání přes WiFi pomocí webserveru s mobilní aplikací. Alternativně je možné desku řídit ještě lokálně pomocí spínačů.

Obrázek 1: Schéma jednotlivých bloků v DPS

2. Zpracujte pro něj kvalitativní analýzu FMECA (Failure Mode, Effects and Criticality Analysis). Analýza nemusí pokrývat všechny části objektu, minimální počet možných způsobů poruchy (failure modes) je 10, typický rozsah 1 strana A4. Určujte i Failure Risk Priority Number.

Z analýzy lze vidět, že nejhorší potenciální porucha jsou studené spoje během pájení. Proto by bylo rozumné upravit návrh desky (pokud na to je čas a peníze) a použít čipy, které podporují boundary scan a JTAG. Pomocí toho se dá zautomatizovat kontrola zapájení součástek pomocí interconnection testu.

Z analýzy poté vyplývají ještě další možnost vylepšení návrhu systému jako je úprava designu krabičky nebo přidání senzorů na volné GPIO piny. Mimo to obsahuje i nějaké body ke kontrole při montáži.

Předmět (Item)	Potenciální mód poruchy (Failure Mode)	Dopad poruchy (Effect)	Závažnost (S)	Potenciální příčina poruchy (Cause)	Výskyt (0)	Současná kontrola / Detekce	Detekce (D)	# RPN	Doporučené opatření (Action)
Vývojová deska	Zničení	Nefunkčnost dálkového ovládání, systém se nespustí.	9	Manipulace bez ochrany proti statické elektřině.	3	Dálkové ovládání nebude fungovat.	6	162	Před osazením do krabičky ošetřit desku proti statické elektřině a mít ji při tom na ESD podložce.
Vývojová deska	Selhání dílčích komponent	Nefunkčnost dálkového ovládání, občasné výpadky.	8	Chyba na straně výrobce (špatná kvalita součástek).	4	Kontrola funkce (jestli se spustí a ovládá).	4	128	Provozovat desku chvíli při testu (pár hodin) a zjistit, jestli se vady projeví.
Kontakty relé	Otevřený obvod	Není možné ovládat panel na dálku, zátěž se nespustí.	7	Koroze kontaktů (vlhkost), nebo se opálily obloukem.	5	Boundary scan na testování konektivity.	7	245	Použít návrh čipu s JTAG/boundary scan rozhraním a zahrnout do testu i funkci relé.
Ochranná dioda relé	Napěťové špičky na relé	Zničení ovládacího panelu (řídící tranzistor).	10	Špatná orientace diody (při osazení).	1	Kontrola multimetrem po montáži.	3	30	Dát do dokumentace upozornění na správnou orientaci diody a vizuálně kontrolovat.
LCD displej	Ulomení vodičů	Displej se odpojí → zhorší ovládání systému.	6	Špatný návrh krabičky bez šroubů pro upevnění.	6	Manuální kontrola během běžného užívání.	8	288	Do nové krabičky přidat díry na upevnění LCD displeje (šrouby).
Měnič napětí	Tepelné přetížení	Zhoršená životnost (rychle odejde).	5	Dlouhodobě vysoký odběr výkonu (více než se čekalo).	7	Měření teploty na volném GPIO (teploměr).	5	175	Udělat aplikaci co nejvíce "Low power" nebo přidat pasivní chladič.
Měnič napětí	Selhání galvanického oddělení	Spojí se země ovládacího panelu → Potečou vyrovnávací proudy.	8	Chyba na straně výrobce (izolace).	2	Zkontrolovat galvanické oddělení multimetrem.	2	32	Po montáži zkontrolovat izolační odpor multimetrem (izolační zkouška).
Filtrující kondenzátor vstupního napájení	Ztráta kapacity	Měně stabilní napájení → vyšší zvlnění.	6	Ztráta elektrolytu časem (stárnutí).	8	Kontrola multimetrem (měření kapacity).	6	288	Použít větší kapacitu kondenzátoru při návrhu, nebo kondenzátor s delší životností (Low ESR).
Pájka / Montáž	Studené spoje/přerušené spoje	Přerušovaný kontakt → Nestabilní provoz (nebo úplně vypne).	7	Chyba během montáže → nedostatečné prohřátí nebo špatná pájka.	9	Boundary scan (kontrola konektivity na desce).	7	441	Použít návrh čipu s JTAG interface a zkontrolovat každý spoj.
Deska plošných spojů	VIhkost komponent	Zkrat a poškození komponent.	9	Vlhkost uvnitř krabičky (rosný bod).	3	Měření vlhkosti na volném GPIO.	5	135	Implementovat vlhkoměr a posílat informaci do mobilní aplikace ovládání.

3. Pro jeden způsob selhání zvoleného objektu vytvořte strom poruch (Fault Tree Analysis).

Zvolil jsem si typ selhání "Neovladatelný systém"- kritický stav systému kdy není možné ovládat systém podle potřeby.

Systém je navržený ve smyslu bezpečného selhání, což je důležitá informace nezahrnuta v FTA diagramu. Pokud ovládací panel přestane dostávat signály, bude nejdéle 30 sekund zpomalovat až do zastavení. Alternativně systém obsahuje i E-STOP který přímo zastavuje motory napojené na frekvenční měnič.

Z grafu lze vidět, že už v systému jsou navrhnuty bezpečnostní prvky aby se systém nestal neovladatelným. Bylo by potřeba velké množství nepravděpodobných selhání aby došlo k nebezpečné situaci.

 ${\bf V}$ návrhu není žádná redundance, protože kritický parametr systému byla cena.

Systém taky obsahuje hodně podsystémů (značené trojúhelníky), které mají vlastní možné módy selhání.

