TERCEIRO TESTE

Universidade Federal de Goiás (UFG) - Regional Jataí Bacharelado em Ciência da Computação Teoria da Computação Esdras Lins Bispo Jr.

28 de junho de 2016

ORIENTAÇÕES PARA A RESOLUÇÃO

- A avaliação é individual, sem consulta;
- A pontuação máxima desta avaliação é 10,0 (dez) pontos, sendo uma das 06 (seis) componentes que formarão a média final da disciplina: quatro testes, uma prova e exercícios;
- $\bullet\,$ A média final (MF) será calculada assim como se segue

$$MF = MIN(10, S)$$

 $S = (\sum_{i=1}^{4} 0, 2.T_i) + 0, 2.P + 0, 1.E$

em que

- -S é o somatório da pontuação de todas as avaliações,
- $-T_i$ é a pontuação obtida no teste i,
- -P é a pontuação obtida na prova, e
- E é a pontuação total dos exercícios.
- O conteúdo exigido desta avaliação compreende o seguinte ponto apresentado no Plano de Ensino da disciplina: (3) Problemas Decidíveis,
 (4) Problemas Indecidíveis e (5) Complexidade de Tempo.

Nome:		
Assinatura:		

Terceiro Teste

- 1. (5,0 pt) Seja $A = \{\langle R, S \rangle \mid \text{em que } R \in S \text{ são expressões regulares e } L(R) \subseteq L(S) \}$. Mostre que A é decidível.
 - R Para que $L(R) \subseteq L(S)$, é necessário garantir que $L(R) \cap \overline{L(S)} = \emptyset$ (pois nenhuma cadeia em $\overline{L(S)}$ pode pertencer a L(R)). Para isto, criamos os AFDs T e U de forma que L(T) = L(R) e $L(U) = \overline{L(S)}$, respectivamente (Definição 1.16, Teorema 1.26.1 e Teorema 1.54). Por fim, criamos o AFD V de forma que $L(V) = L(T) \cap L(U)$ (Teorema 1.49.1) e verificamos se $\langle V \rangle$ é membro de V_{AFD} (Teorema 4.4).

Diante disto, será construído a seguir um decisor M_A para A:

 $M_A=$ "Sobre a entrada $\langle R,S\rangle,$ em que R e Ssão expressões regulares, faça:

- (a) Construa o AFD V conforme descrito anteriormente;
- (b) Construa a MT X que decide V_{AFD} (Teorema 4.4);
- (c) Rode X sobre $\langle V \rangle$;
 - i. Se X aceita, aceite;
 - ii. Caso contrário, rejeite.

A linguagem A é decidível pois foi possível construir uma máquina de Turing que a decide (Definição 3.6)

- 2. (5,0 pt) Responda cada item como verdadeiro ou falso. **Justifique** todos os itens que forem falsos.
 - (a) 2n = O(n) Verdadeiro
 - (b) $n^2 = O(n)$ Falso, pois $n^2 = \Omega(n)$ e $n^2 = O(n^2)$.
 - (c) $n^2 = O(n\log^2 n)$ Falso, pois $\log^2 n = \Omega(1)$ e $\log^2 n = O(n)$.
 - (d) $n\log n = O(n^2)$ Verdadeiro
 - (e) $3^n = 2^{O(n)}$ Verdadeiro
 - (f) $2^{2^n} = O(2^{2^n})$ Verdadeiro

Teoremas Auxiliares

Definição 1.16: Uma linguagem é chamada de uma linguagem regular se algum autômato finito a reconhece.

Teorema 1.25: A classe de linguagens regulares é fechada sob a operação de união.

Teorema 1.26: A classe de linguagens regulares é fechada sob a operação de concatenação.

Teorema 1.26.1: A classe de linguagens regulares é fechada sob a operação de complemento.

Teorema 1.39: Todo autômato finito não-determinístico tem um autômato finito determinístico equivalente.

Teorema 1.49: A classe de linguagens regulares é fechada sob a operação estrela.

Teorema 1.49.1: A classe de linguagens regulares é fechada sob a operação de intersecção.

Teorema 1.54: Uma linguagem é regular se e somente se alguma expressão regular a descreve.

Definição 3.5: Chame uma linguagem de Turing-reconhecível se alguma máquina de Turing a reconhece.

Definição 3.6: Chame uma linguagem de Turing-decidível ou simplesmente decidível se alguma máquina de Turing a decide.

Teorema 3.13: Toda máquina de Turing multifita tem uma máquina de Turing que lhe é equivalente.

Teorema 3.16: Toda máquina de Turing não-determinística tem uma máquina de Turing determinística que lhe é equivalente.

Teorema 3.21: Uma linguagem é Turing-reconhecível se e somente se algum enumerador a enumera.

Teorema 4.1: A_{AFD} é uma linguagem decidível.

Teorema 4.2: A_{AFN} é uma linguagem decidível.

Teorema 4.3: A_{EXR} é uma linguagem decidível.

Teorema 4.4: V_{AFD} é uma linguagem decidível.

Teorema 4.5: EQ_{AFD} é uma linguagem decidível.

Teorema 4.9: Toda linguagem livre-de-contexto é decidível.

Teorema 4.11: A_{MT} é uma linguagem indecidível.

Definição 4.14: Um conjunto A é contável se é finito ou tem o mesmo tamanho que N.