

ÜBERBLICK

- 1. OCR arabischer Schrift
- 2. Projekt: Leiden UB, Or. 680 für Ptolemaeus Arabus et Latinus
- 3. Segmentierung
- 4. GT und Modelle
- 5. Exkurs: Alignierung existierender GT
- 6. Modelltraining

OCR ARABISCHER SCHRIFT

- seit der Einführung zeilenbasierter trainierbarer OCR im Prinzip unproblematisch
- Unterstützung für Bidirektionalität erforderlich
- verfügbare GT deutlich weniger als für lateinische Schriften

PROJEKT: PTOLEMAEUS ARABUS ET LATINUS

- Edition der ar. und lat. Versionen der astronomischen und astrologischen Texte des Ptolemaeus
- https://ptolemaeus.badw.de

ALMAGEST-HANDSCHRIFT LEIDEN UB, OR. 680, FF. 2R-219R

- Almagest in der ar. Übersetzung al-Ḥajjāj b. Yūsuf b. Maṭar und Sirjis b. Hiliyyā al-Rūmī (214/828-9)
- Handschrift undatiert, ältester Besitznachweis 615/1219
- 172 von 435 Seiten bereits transkribiert

SEGMENTIERUNG

- Regionensegmentierung in LAREX
- Zeilensegmentierung Ocropus/Kraken (vgl. OCR4all)
- Vereinigung nebeneinanderliegender Zeilensegmente
- manuelle Nachkorrektur dringend nötig

elables with the state of the server of the

الدوروورية ولا والمرحل مرابعد الله والمنطوع المعروب والمرابع والم

GT UND MODELLE

- arabische Drucke: OpenITI
- arabische Handschriften: RASM2018/RASM2019

OPENITI

- github: OpenITI/OCR_GS_Data
- arabische Drucke: ~7k Zeilen
- Zeilenbilder, binarisiert

RASM

- doi: 10.23636/1135
- ICDAR: Recognition of Historical Arabic Scientific Manuscripts
- Seitenbilder, Farbe, PAGE XML
- Problem: keine Rotationswinkel
- ~2.6k Zeilen nutzbar ohne Rotationskorrektur

MODELLE

- github: Calamari-OCR/calamari_models_experimental
- def_arabic: auf Daten des Arabic Latin Corpus trainiert
- weitere Modelle für ar. Texte werden dort in nächster Zeit veröffentlicht

EXKURS: ALIGNIERUNG EXISTIERENDER GT

- 6k von 12k Zeilen bereits transkribiert
- Seiten- und Zeilenumbrüche in Transkription markiert
- Problem: Fehler in Zeilensegmentierung und hohe Fehlerrate bestehender Modelle → Gefahr von Fehlalignierungen und dadurch fehlerhafter GT

STRATEGIE

- 1. OCR mit bestehendem Modell
- 2. Alignierung mit optimaler Übereinstimmung
- 3. Übernahme von Zeilen mit einer unter einem Schwellwert liegenden CER als GT
- 4. Training eines neuen Modells
- 5. zurück zu 1.

IMPLEMENTIERUNG DER ALIGNIERUNG

- einspaltiges Layout, einfache Sortierung der Zeilensegmente →
 Sequenzalignierung
- Alignierung Zeile-Zeile ähnlich Needleman–Wunsch, dabei Minimierung des Levenshtein-Abstands der Zeilen
- bei "Equal" oder "Replace" mit ausreichend hoher Ähnlichkeit: Transkription gilt als Ground Truth

MODELLTRAINING

- jeweils Set aus fünf Modellen CF-validiert
- fünffache Augmentierung
- cnn=40:3x3,pool=2x2,cnn=60:3x3,pool=2x2, cnn=120:3x3,lstm=200,lstm=200, lstm=200,dropout=0.5
- drei Modelle (CER jeweils auf Validierungsdaten):
 - Drucke (OpenITI): avg. CER 1.66%
 - Handschriften (RASM): avg. CER 16.77%
 - Drucke, dann Handschriften: avg. CER 15.84%

ALIGNIERUNG 1: THRESHOLD?

21: Drucke, 22: MSS, 23 Drucke+MSS.

Anteil der GT-Zeilen in Abhängigkeit von der CER.

→ Modell 3, Threshold 0.4, 493/6087 Zeilen

FINETUNING 1, ALIGNIERUNG 2

- avg. val. CER 9.05%
- → Threshold 0.4, 5719/6087 Zeilen

FINETUNING 2, ALIGNIERUNG 3

avg. val. CER 3.52%

23: Drucke+MSS, 13: Finetuning 1, 3: Finetuning 2.

Anteil der GT-Zeilen in Abhängigkeit von der CER.

→ Threshold 0.1, 5877/6087 Zeilen

GT	PRED	COUNT	PERCENT		
{ }	{}	35	5.25%		
{ب}	{}	20			
{ }	{}	19			
{ي}	{}	17	2.55%		
دَّت}	{}	15	2.25%		
{و}	{}	13	1.95%		
{J}	{}	13	1.95%		
{ن}	{}	10	1.50%		
{ت}	{ي}	10	1.50%		
{م}	{}	10	1.50%		
{ي}	{ت}	9	1.35%		
{ }	{}	8	1.20%		
{ }	{}	8 7	1.20%		
{ث}	{}	7	1.05%		
{ر}	{}	7	1.05%		
{ن}	{ي} { }	6	0.90%		
{	{ }	6			
{ف}	{}	6	0.90%		
{د}	{}	5	0.75%		
{۶}	{}	5	0.75%		
The	remaining	but hidden e	rrors make up	p 65.67%	

AUSBLICK

- Training und Evaluation von spezifischen Segmentierungsmodellen
- weitere ar. Handschriften, z.B. Tunis, Dār al-kutub al-waṭaniyya, 7116
- Veröffentlichung von vortrainierten OCR-Modellen