Aufgabe 4

Betrachten Sie die beiden folgenden Probleme:

VERTEX COVER

Gegeben: Ein ungerichteter Graph G = (V, E) und eine Zahl $k \in \{1, 2, 3, ...\}$.

Frage: Gibt es eine Menge $C \subseteq V$ mit $|C| \le k$, so dass für jede Kante (u, v) aus E mindestens einer der Knoten u und v in C ist?

VERTEX COVER 3

Gegeben: Ein ungerichteter Graph G = (V, E) und eine Zahl $k \in \{3, 4, 5 \dots\}$.

Frage: Gibt es eine Menge $C \subseteq V$ mit $|C| \le k$, so dass für jede Kante (u, v) aus E mindestens einer der Knoten u und v in C ist?

Geben Sie eine polynomielle Reduktion von VERTEX COVER auf VERTEX COVER 3 an und begründe anschließend, dass die Reduktion korrekt ist.

VERTEX COVER \leq_p VERTEX COVER 3

f fügt vier neue Knoten hinzu, von denen jeweils ein Paar verbunden ist. Außerdem erhöht $f\,k$ um 2.

Total: Jeder Graph kann durch f so verändert werden.

Korrektheit: Wenn VC für k in G existiert, dann existiert auch VC mit k+2 Knoten in G 0 , da für den eingefügten Teilgraphen ein VC mit k=2 existiert.

In Polyzeit berechenbar: für Adjazenzmatrix müssen lediglich 4 neue Spalten/Zeilen ein- gefügt werden und k+2 berechnet werden.