Mécanique Question 18

Force et énergie potentielle: poids, force gravitationnelle, force électrique, force d'un ressort, force d'entraînement

	Force	Energie potentielle
Poids dans un champ de gravité $\overrightarrow{g} = -g\overrightarrow{z}$	$\vec{P} = m\vec{g}$	$E_p = mgz$
Force gravitationnelle pour une masse m autour d'une masse M à la distance r	$ec{F}=-\mathcal{G}rac{Mm}{r^3}ec{r}$	$E_p = mgz$ $E_p = -\mathcal{G}\frac{Mm}{r}$
Force électrique pour une charge q autour d'une charge Q à la distance r	$\vec{F} = \frac{1}{4\pi\epsilon_0} \frac{qQ}{r^3} \vec{r}$	$E_p = \frac{1}{4\pi\epsilon_0} \frac{qQ}{r}$ $E_p = \frac{1}{2}k(l - l_0)^2$
Force d'un ressort de raideur k et de longueur à vide l_0 sur l'axe \overrightarrow{x}	$\vec{F} = -k(l - l_0)\vec{x}$	$E_p = \frac{1}{2}k(l - l_0)^2$
Force d'entraı̂nement pour un référentiel tournant à vitesse ω autour d'un axe du référentiel galiléen	$\overrightarrow{F_{\rm ent}} = m\omega^2\overrightarrow{HM}$ avec H projeté orthogonal de M sur l'axe	$E_p = -\frac{1}{2}m\omega^2 H M^2$