Week 10-1 COMP3211/9211

MORE HARDWARE DESIGNS ON PARALLEL PROCESSING

https://tutorcs.com

Lecturer: Hui Annie Guo WeChat: cstutorcs

h.guo@unsw.edu.au

K17-501F

Lecture overview

- Topics
 - Multithreaded processor
 - GPU

Assignment Project Exam Help

https://tutorcs.com

- Suggested reading
 - H&P Chapter 4.10, 6.4
 - https://en.wikipedia.org/wiki/Computer_graphics
 - https://en.wikipedia.org/wiki/Graphics_pipeline

Speed gap affects the processor performance!

Multi-threaded execution

 When one thread is not available due to an operation delay (e.g. long memory access), the processor can switch to other thread

Assignment Project Exam Help

Multithreaded processor

- Hardware level multi-threading
 - Fast switching between threads
 - Replicated registers, PC, etc.
- Two designs approaches et Exam Help
 - Fine-grained multithreading com
 - Switch threads after each cycle
 - · If one thread states, anothertistexecuted
 - Coarse-grained multithreading
 - Only switch threads on long stall (e.g., L2-cache miss)

Example

- Fine grained multithreading
 - The base pipeline is given in the next slide

```
T1: a: /w $5,5igsment Project Exam Holp 10, $11, $12 b: add $7, $5, $9 d: ori $5, $10, $11 https://tutorcs.com
```


Example

- Fine grained multithreading
 - The base pipeline is given in the next slide

```
T1: a: /w $5, signment Project Exam Holp 10, $11, $12 b: add $7, $5, $9 d. ori $5, $10, $11 https://tutorcs.com
```


Multithreaded processor (cont.)

- Simultaneous multi-threading (SMT)
 - A variation of HW multi-threading that uses the resources of superscalar architecture
 - Exploiting both instituction celebrated parallelism and thread-level parallelism

https://tutorcs.com

Coarse MT vs. Fine MT vs. SMT

Remarks

- Superscalar and multi-threaded processor are the processor level design for parallel processing
 - Dynamic scheduling is a very efficient approach to exploit instruction panalielism Exam Help
 - The hardware rearranges instruction execution to reduce the pipeline stalls https://tutorcs.com
 - Can handle cases when dependencies are unknown at compiler time WeChat: cstutorcs
 - Allows code that was compiled with one processing unit in mind to run efficiently on multiple parallel processing unit.
 - Multi-threaded execution exploits the thread-level parallelism and achieves performance through high resource utilization
- But both designs have a limited scalability

GPU - background

- Initially developed for computer graphics
- Computer graphics
 - A study area for digitally synthesizing and assignment Project Exam Help manipulating visual contents.
- Visual contentsps://tutorcs.com
 - A scene of objects hat: cstutorcs
 - Motion of objects
 - For example
 - Shape
 - Surface color
 - Surface reflectance
 - Surface texture

How visual contents are processed?

Typical processing tasks

• HSR: hidden-surface removal Assignment Project Exam Higher position. Right: perspective projection

- Shading: makittgsa//fllat/tookmore like 3D

WeChat: cstutorcs

 Texture mapping: providing high frequency details, surface texture, or color information.

Examples of multitexturing (click for larger image);

- 1: Untextured sphere, 2: Texture and bump maps,
- 3: Texture map only, 4: Opacity and texture maps.

How visual contents are processed? (cont.)

- All tasks involve huge computations
 - Many are of high parallelism
 - Embarrassingly parallel
 - Demanding competing system with massive parallel processing capability → GPU https://tutorcs.com

Assignment Project Exam Help

The following slides are based on "How a GPU Works" by Kayvon Fatahalian

Graphics pipeline

Calculations at each stage are independent and can be performed in parallel

Assignment Project Exam Help

https://tutorcs.com

arallel
WeChat: cstutorcs

perfectly parallel

- With a powerful but expensive processor
 - Not scalable

for one fragment

With replicated cheap processors

Parallel processing with many cheap processors

- Multiple processors perform the same instruction stream on different data/fragments
 - SIMD is more efficient
 Assignment Project Exam Help

https://tutorcs.com

SIMD

- The same instruction stream is performed on different inputs by different processing units
- Each execution unit has its own local memory Assignment Project Exam Help
 All execution units share a large memory

16 cores = 128 ALUs, 16 simultaneous instruction streams

Hiding thread stall

Multi-threaded execution is applied

Remarks

- Three key ideas used in the GPU design
 - Use many "cheap cores" and run them in parallel
 - Pack cores full of ALUs by sharing instruction stream across groups by data sets. Helpexample
 - using SIMD vector instructions https://tutorcs.com
 - Avoid long stalls by interleaving execution of many threads WeChat: cstutorcs

GPU application

- Given the hardware invested to do graphics well, how can we supplement it to improve performance of a wider range of applications?

 Assignment Project Exam Help
- · An example sources.com
 - CUDA WeChat: cstutorcs
 - With a heterogeneous execution model
 - CPU is the host, GPU is the device
 - Use a C-like programming language for GPU
 - Unify all forms of GPU parallelism as CUDA thread

Example of execution hierarchy

- Application program calls parallel kernels
- Each kernel executes in parallel a set of parallel threads. Each thread has a private local memory Assignment Project Exam
- Threads are groupe hiptostip thread block has a shared memory
- Thread blocks are further packed into torcs grids.
- An application can have threads spanned to different grids, but have a shared global memory
- GPU hardware handles thread scheduling

