Recall the lemma that was used in the proof that \mathbb{R} is connected:

Lemma. Let $S \subset \mathbb{R}$ be bounded above and nonempty. Let $c = \sup S$.

- i) If x > c then x is not in S.
- ii) If x < c then there is a y in S with x < y.

Theorem Let $a, b \in \mathbb{R}$. Then [a, b] is compact.

Proof. Let $\{A_{\alpha}\}$ be an open cover of [a,b].

Let $S = \{x \in [a, b] | [a, s] \text{ is covered by finitely many of the } A_{\alpha} \}$. Let $c = \sup S$, which exists since S is nonempty and bounded above.

There is an α_0 with $c \in A_{\alpha_0}$. There is an open set U of \mathbb{R} such that $A_{\alpha_0} = U \cap [a,b]$, and there are $d_1,d_2 \in \mathbb{R}$ with $c \in (d_1,d_2) \subset U$. By part (ii) of the lemma, there is an $s \in S$ with $d_1 < s$, and we also have $s \leq c < d_2$. Then $[a,c] = [a,s] \cup [s,c]$ is covered by finitely many A_{α} , since $s \in S$ and $[s,c] \subset (d_1,d_2) \cap [a,b] \subset A_{\alpha_0}$.

We claim that c = b (and then we're done).

To prove the claim, if c < b then there is an e with $c < e < \min(d_2, b)$, and then $[c, e] \subset (d_1, d_2) \cap [a, b] \subset A_{\alpha_0}$, so $[a, e] = [a, c] \cup [c, e]$ is covered by finitely many A_{α} . But then $e \in S$, which contradicts part (i) of the lemma since e > c.

QED