

Network as Generator

Real Video

Video Prediction

Prediction

Prediction

(The same input has different outputs.)

Especially for the tasks needs "creativity"

Drawing

Chatbot

Generative Adversarial Network (GAN)

GAN

How to pronounce "GAN"?

Google 小姐

All Kinds of GAN ...

https://github.com/hindupuravinash/the-gan-zoo

GAN ACGAN BGAN CGAN DCGAN **EBGAN fGAN GoGAN**

- SeUDA Semantic-Aware Generative Adversarial Nets for Unsupervised Domain Adaps
 Segmentation
- SG-GAN Semantic-aware Grad-GAN for Virtual-to-Real Urban Scene Adaption (githu
- SG-GAN Sparsely Grouped Multi-task Generative Adversarial Networks for Facial Attr
- SGAN Texture Synthesis with Spatial Generative Adversarial Networks
- SGAN Stacked Generative Adversarial Networks (github)
- SGAN Steganographic Generative Adversarial Networks
- SGAN SGAN: An Alternative Training of Generative Adversarial Networks
- SGAN CT Image Enhancement Using Stacked Generative Adversarial Networks and Tree Segmentation Improvement
- sGAN Generative Adversarial Training for MRA Image Synthesis Using Multi-Contrast
- SiftingGAN SiftingGAN: Generating and Sifting Labeled Samples to Improve the Rem Classification Baseline in vitro
- SiGAN SiGAN: Siamese Generative Adversarial Network for Identity-Preserving Face I
- SimGAN Learning from Simulated and Unsupervised Images through Adversarial Train
- SisGAN Semantic Image Synthesis via Adversarial Learning

Mihaela Rosca, Balaji Lakshminarayanan, David Warde-Farley, Shakir Mohamed, "Variational Approaches for Auto-Encoding Generative Adversarial Networks", arXiv, 2017

²We use the Greek α prefix for α -GAN, as AEGAN and most other Latin prefixes seem to have been taken https://deephunt.in/the-gan-zoo-79597dc8c347.

Basic Idea of GAN

Basic Idea of GAN

This is where the term "adversarial" comes from.

Algorithm

- Initialize generator and discriminator
- G
- D

In each training iteration:

Step 1: Fix generator G, and update discriminator D

Discriminator learns to assign high scores to real objects and low scores to generated objects.

14

Algorithm

- Initialize generator and discriminator
- G

D

In each training iteration:

Step 2: Fix discriminator D, and update generator G

Generator learns to "fool" the discriminator

large network

Algorithm

- Initialize generator and discriminator
- G
- D

In each training iteration:

100 updates

Source of training data: https://zhuanlan.zhihu.com/p/24767059

1000 updates

2000 updates

5000 updates

10,000 updates

20,000 updates

50,000 updates

The faces generated by machine.

圖片生成: 吳宗翰、謝濬丞、 陳延昊、錢柏均

In 2019, with StyleGAN

Source of video:

https://www.gwern.net/Faces

Progressive GAN

The first GAN

Today BigGAN

$$\text{c.f.} \quad w^*, b^* = \arg\min_{w,b} L$$

$$G^* = arg \min_{G} \underline{Div(P_G, P_{data})}$$

Divergence between distributions P_G and P_{data} How to compute the divergence?

Sampling is good enough

$$G^* = arg \min_{G} Div(P_G, P_{data})$$

Although we do not know the distributions of P_G and P_{data} , we can sample from them.

Discriminator
$$G^* = arg \min_{G} Div(P_G, P_{data})$$

 \star : data sampled from P_{data}

 \star : data sampled from P_G

Training: $D^* = arg \max V(D, \overline{G})$

The value is related to JS divergence.

Objective Function for D

$$V(G,D) = E_{y \sim P_{data}}[logD(y)] + E_{y \sim P_G}[log(1 - D(y))]$$

$$D^* = \underset{D}{arg \max} V(D, G)$$
negative cross entropy

Training classifier: minimize cross entropy

Discriminator
$$G^* = arg \min_{G} Div(P_G, P_{data})$$

 \star : data sampled from P_{data}

r: data sampled from P_G

Training:

$$D^* = \arg\max_{D} V(D, G)$$

large divergence

easy to discriminate

$$G^* = arg \min_{G} \max_{D} V(G, D)$$

$$\max_{D} V(G, D)$$

$$D^* = \arg \max_{D} V(D, G)$$

The maximum objective value is related to JS divergence.

- Initialize generator and discriminator
- In each training iteration:

Step 1: Fix generator G, and update discriminator D

Step 2: Fix discriminator D, and update generator G

Can we use other divergence?

·		
Name	$D_f(P Q)$	Generator $f(u)$
Total variation	$\frac{1}{2} \int p(x) - q(x) \mathrm{d}x$	$\frac{1}{2} u-1 $
Kullback-Leibler	$\int p(x) \log \frac{p(x)}{q(x)} dx$	$u \log u$
Reverse Kullback-Leibler	$\int q(x) \log \frac{\hat{q}(x)}{p(x)} dx$	$-\log u$
Pearson χ^2	$\int \frac{(q(x)-p(x))^2}{p(x)} dx$	$(u-1)^2$
Neyman χ^2	$\int \frac{(p(x) - q(x))^2}{q(x)} \mathrm{d}x$	$\frac{(1-u)^2}{u}$
Squared Hellinger	$\int \left(\sqrt{p(x)} - \sqrt{q(x)}\right)^2 dx$	$\left(\sqrt{u}-1\right)^2$
Jeffrey	$\int (p(x) - q(x)) \log \left(\frac{p(x)}{q(x)}\right) dx$	$(u-1)\log u$
Jensen-Shannon	$ \frac{1}{2} \int p(x) \log \frac{2p(x)}{p(x) + q(x)} + q(x) \log \frac{2q(x)}{p(x) + q(x)} dx $ $ \int p(x) \pi \log \frac{p(x)}{\pi p(x) + (1 - \pi)q(x)} + (1 - \pi)q(x) \log \frac{q(x)}{\pi p(x) + (1 - \pi)q(x)} dx $ $ \int p(x) \log \frac{2p(x)}{p(x) + q(x)} + q(x) \log \frac{2q(x)}{p(x) + q(x)} dx - \log(4) $	$-(u+1)\log\frac{1+u}{2} + u\log u$
Jensen-Shannon-weighted	$\int p(x)\pi \log \frac{p(x)}{\pi p(x) + (1-\pi)q(x)} + (1-\pi)q(x) \log \frac{q(x)}{\pi p(x) + (1-\pi)q(x)} dx$	$\pi u \log u - (1 - \pi + \pi u) \log(1 - \pi + \pi u)$
GAN	$\int p(x) \log \frac{2p(x)}{p(x) + q(x)} + q(x) \log \frac{2q(x)}{p(x) + q(x)} dx - \log(4)$	$u\log u - (u+1)\log(u+1)$

Using the divergence you like ©

https://arxiv.org/abs/1606.00709

Name	Conjugate $f^*(t)$
Total variation	t
Kullback-Leibler (KL)	$\exp(t-1)$
Reverse KL	$-1 - \log(-t)$
Pearson χ^2	$\frac{1}{4}t^2 + t$
Neyman χ^2	$(2-2\sqrt{1-t})$
Squared Hellinger	$\frac{t}{1-t}$
Jeffrey	$W(e^{1-t}) + \frac{1}{W(e^{1-t})} + t - 2$
Jensen-Shannon	$-\log(2-\exp(t))$
Jensen-Shannon-weighted	
GAN	$-\log(1-\exp(t))$ 36

GAN is difficult to train

(I found this joke from 陳柏文's facebook.)

JS divergence is not suitable

• In most cases, P_G and P_{data} are not overlapped.

1. The nature of data

Both P_{data} and P_{G} are low-dimmanifold in high-dim space.

The overlap can be ignored.

2. Sampling

Even though P_{data} and P_{G} have overlap.

If you do not have enough sampling

What is the problem of JS divergence?

JS divergence is always log2 if two distributions do not overlap.

Intuition: If two distributions do not overlap, binary classifier achieves 100% accuracy.

Its accuracy (or loss) means nothing during GAN training.

Wasserstein distance

- Considering one distribution P as a pile of earth, and another distribution Q as the target
- The average distance the earth mover has to move the earth.

Wasserstein distance

There are many possible "moving plans".

Using the "moving plan" with the smallest average distance to define the Wasserstein distance.

What is the problem of JS divergence?

What is the problem of JS divergence?

pigment spot (limpet, Patella)

Complex eye (octopus)

WGAN

Evaluate Wasserstein distance between P_{data} and P_{G}

$$\max_{D \in 1-Lipschitz} \left\{ E_{x \sim P_{data}}[D(x)] - E_{x \sim P_{G}}[D(x)] \right\}$$

D has to be smooth enough. How to fulfill this constraint?

Without the constraint, the training of D will not converge.

Keeping the D smooth forces D(x) become ∞ and $-\infty$

$$\max_{D \in 1-Lipschitz} \left\{ E_{x \sim P_{data}}[D(x)] - E_{x \sim P_G}[D(x)] \right\}$$

- Original WGAN → Weight
 Force the parameters w between c and -c
 After parameter update, if w > c, w = c; if w < -c, w = -c</p>
- Improved WGAN → Gradient Penalty

Spectral Normalization → Keep gradient norm
 smaller than 1 everywhere
 https://arxiv.org/abs/1802.05957

GAN is still challenging ...

• Generator and Discriminator needs to match each other (棋逢敵手)

GAN is still challenging ...

Generate fake images to fool discriminator

Tell the difference between real and fake

More Tips

- Tips from Soumith
 - https://github.com/soumith/ganhacks
- Tips in DCGAN: Guideline for network architecture design for image generation
 - https://arxiv.org/abs/1511.06434
- Improved techniques for training GANs
 - https://arxiv.org/abs/1606.03498
- Tips from BigGAN
 - https://arxiv.org/abs/1809.11096

GAN for Sequence Generation

GAN for Sequence Generation

Reinforcement learning (RL) is involved

Sequence Generation GAN (RL+GAN)

GAN for Sequence Generation

- Usually, the generator are fine-tuned from a model learned by other approaches.
- However, with enough hyperparameter-tuning and tips,
 ScarchGAN can train from scratch.

Training language GANs from Scratch

https://arxiv.org/abs/ 1905.09922

Generative Models

• This lecture: Generative Adversarial Network (GAN)

Full version

https://www.youtube.com/playlist?list=PLJV_el3uVTsMq6JEFPW35BCiOQTsoqwNw

More Generative Models

Variational Autoencoder (VAE)

https://youtu.be/8zomhgKrsmQ

FLOW-based Model

https://youtu.be/uXY18nzdSsM

Possible Solution?

$$\begin{bmatrix} 0.3 \\ -0.1 \\ \vdots \\ 0.7 \end{bmatrix}$$

$$\begin{bmatrix} 0.1 \\ -0.1 \\ \vdots \\ 0.7 \end{bmatrix}$$

$$\begin{bmatrix} -0.3 \\ 0.1 \\ \vdots \\ 0.9 \end{bmatrix}$$

Using typical learning approaches?

Generative Latent Optimization (GLO), https://arxiv.org/abs/1707.05776 Gradient Origin Networks, https://arxiv.org/abs/2007.02798

Evaluation of Generation 56

Inception Score

x: imagey: class (output of CNN)

e.g. Inception net, VGG, etc.

Concentrated distribution means higher visual quality

Mode Collapse

★ : real data

: generated data

Mode Dropping

Generator switches mode during training

Generator at iteration t

Generator at iteration t+1

Generator at iteration t+2

$$x^{1} \longrightarrow CNN \longrightarrow P(y^{1}|x^{1}) \qquad P(y) = \frac{1}{N} \sum_{n} P(y^{n}|x^{n})$$

$$x^{2} \longrightarrow CNN \longrightarrow P(y^{2}|x^{2}) \qquad \qquad Uniform distribution means higher variety$$

$$\vdots \qquad \qquad \vdots$$

Inception Score

Inception Score

[Tim Salimans, et al., NIPS 2016]

$$= \sum_{x} \sum_{y} P(y|x) log P(y|x)$$

Negative entropy of P(y|x)

$$-\sum_{y} P(y)logP(y)$$
 Entropy of P(y)

Fréchet Inception Distance (FID)

GAN	DISCRIMINATOR LOSS	GENERATOR LOSS
MM GAN	$\mathcal{L}_{\mathrm{D}}^{\mathrm{GAN}} = -\mathbb{E}_{x \sim p_d}[\log(D(x))] + \mathbb{E}_{\hat{x} \sim p_g}[\log(1 - D(\hat{x}))]$	$\mathcal{L}_G^{GAN} = -\mathcal{L}_D^{GAN}$
NS GAN	$\mathcal{L}_{\scriptscriptstyle D}^{\scriptscriptstyle m NSGAN} = \mathcal{L}_{\scriptscriptstyle D}^{\scriptscriptstyle m GAN}$	$\mathcal{L}_{G}^{\text{NSGAN}} = \mathbb{E}_{\hat{x} \sim p_g}[\log(D(\hat{x}))]$
WGAN	$\mathcal{L}_{\mathrm{D}}^{\mathrm{WGAN}} = -\mathbb{E}_{x \sim p_{d}}[D(x)] + \mathbb{E}_{\hat{x} \sim p_{g}}[D(\hat{x})]$	$\mathcal{L}_{G}^{WGAN} - = \mathcal{L}_{D}^{WGAN}$
WGAN GP	$\mathcal{L}_{\mathrm{D}}^{\mathrm{WGAN}} = \mathcal{L}_{\mathrm{D}}^{\mathrm{WGAN}} + \lambda \mathbb{E}_{\hat{x} \sim p_g} [(\nabla D(\alpha x + (1 - \alpha \hat{x}) _2 - 1)^2]$	$\mathcal{L}_{\mathbf{G}}^{\mathbf{WGAN}} = -\mathbb{E}_{\hat{x} \sim p_g}[D(\hat{x})]$
LS GAN	$\mathcal{L}_{\mathrm{D}}^{\mathrm{LSGAN}} = -\mathbb{E}_{x \sim p_d}[(D(x) - 1)^2] + \mathbb{E}_{\hat{x} \sim p_g}[D(\hat{x})^2]$	$\mathcal{L}_{G}^{LSGAN} = -\mathbb{E}_{\hat{x} \sim p_g} [(D(\hat{x} - 1)^2)]$
DRAGAN	$\mathcal{L}_{\mathrm{D}}^{\mathrm{DRAGAN}} = \mathcal{L}_{\mathrm{D}}^{\mathrm{GAN}} + \lambda \mathbb{E}_{\hat{x} \sim p_d + \mathcal{N}(0,c)}[(\nabla D(\hat{x}) _2 - 1)^2]$	$\mathcal{L}_{\mathrm{G}}^{\mathrm{DRAGAN}} = -\mathcal{L}_{\mathrm{D}}^{\mathrm{NS \ GAN}}$
BEGAN	$\mathcal{L}_{D}^{BEGAN} = \mathbb{E}_{x \sim p_d}[x - AE(x) _1] - k_t \mathbb{E}_{\hat{x} \sim p_g}[\hat{x} - AE(\hat{x}) _1]$	$\mathcal{L}_{G}^{BEGAN} = \mathbb{E}_{\hat{x} \sim p_g}[\hat{x} - AE(\hat{x}) _1]$

FIT: Smaller is better

Are GANs Created Equal? A Large-Scale Study https://arxiv.org/abs/1711.10337

We don't want memory GAN.

 Using k-nearest neighbor to check whether the generator generates new objects

To learn more about evaluation ...

Measure		Description	
	1. Average Log-likelihood [18, 22]	• Log likelihood of explaining realworld held out/test data using a density estimated from the generated data (e.g. using KDE or Parzen window estimation). $L = \frac{1}{N} \sum_i \log P_{model}(\mathbf{x}_i)$	
	2. Coverage Metric [33]	 The probability mass of the true data "covered" by the model distribution C := P_{data}(dP_{model} > t) with t such that P_{model}(dP_{model} > t) = 0.95 	
	3. Inception Score (IS) [3]	• KLD between conditional and marginal label distributions over generated data. exp (E _x KL (p(y x) p(y)))	
	4. Modified Inception Score (m-IS) [34]	• Encourages diversity within images sampled from a particular category. $\exp(\mathbb{E}_{\mathbf{x}_i}[\mathbb{E}_{\mathbf{x}_j}[(\mathbb{KL}(P(y \mathbf{x}_i)) P(y \mathbf{x}_j))]])$	
		Similar to IS but also takes into account the prior distribution of the labels over real data.	
	5. Mode Score (MS) [35]	$\exp \left(\mathbb{E}_{\mathbf{x}}\left[\mathbb{KL}\left(p\left(y\mid\mathbf{x}\right)\mid p\left(y^{train}\right)\right)\right] - \mathbb{KL}\left(p\left(y\right)\mid p\left(y^{train}\right)\right)\right)$	
	6. AM Score [36]	 Takes into account the KLD between distributions of training labels vs. predicted labels, 	
	e. Am score [se]	as well as the entropy of predictions. $\mathbb{KL}(p(y^{\text{train}}) \parallel p(y)) + \mathbb{E}_{\mathbf{x}}[H(y \mathbf{x})]$	
	7. Fréchet Inception Distance (FID) [37]	 Wasserstein-2 distance between multi-variate Gaussians fitted to data embedded into a feature space 	
		$FID(r, g) = \mu_r - \mu_g _2^2 + Tr(\Sigma_r + \Sigma_g - 2(\Sigma_r \Sigma_g)^{\frac{1}{2}})$	
	8. Maximum Mean Discrepancy (MMD)	 Measures the dissimilarity between two probability distributions P_r and P_g using samples drawn independently 	
	[38]	from each distribution. $M_k(P_r, P_g) = \mathbb{E}_{\mathbf{x}, \mathbf{x}' \sim P_r}[k(\mathbf{x}, \mathbf{x}')] - 2\mathbb{E}_{\mathbf{x} \sim P_r, \mathbf{y} \sim P_g}[k(\mathbf{x}, \mathbf{y})] + \mathbb{E}_{\mathbf{y}, \mathbf{y}' \sim P_g}[k(\mathbf{y}, \mathbf{y}')]$	
	9. The Wasserstein Critic [39]	 The critic (e.g. an NN) is trained to produce high values at real samples and low values at generated samples 	
		$\hat{W}(\mathbf{x}_{test}, \mathbf{x}_g) = \frac{1}{N} \sum_{i=1}^{N} \hat{f}(\mathbf{x}_{test}[i]) - \frac{1}{N} \sum_{i=1}^{N} \hat{f}(\mathbf{x}_g[i])$	
Š	 Birthday Paradox Test [27] 	 Measures the support size of a discrete (continuous) distribution by counting the duplicates (near duplicates) 	
30	 Classifier Two Sample Test (C2ST) [40] 		
Quantitat	12. Classification Performance [1, 15]	 An indirect technique for evaluating the quality of unsupervised representations 	
		(e.g. feature extraction; FCN score). See also the GAN Quality Index (GQI) [41].	
	13. Boundary Distortion [42]	 Measures diversity of generated samples and covariate shift using classification methods. 	
7	14. Number of Statistically-Different Bins	Given two sets of samples from the same distribution, the number of samples that	
	(NDB) [43]	fall into a given bin should be the same up to sampling noise	
	15. Image Retrieval Performance [44] 16. Generative Adversarial Metric (GAM)	 Measures the distributions of distances to the nearest neighbors of some query images (i.e. diversity) Compares two GANs by having them engaged in a battle against each other by swapping discriminators 	
	[31]	or generators. $p(\mathbf{x} y=1;M_1)/p(\mathbf{x} y=1;M_2) = (p(y=1 \mathbf{x};D_1)p(\mathbf{x};G_2))/(p(y=1 \mathbf{x};D_2)p(\mathbf{x};G_1))$	
	17. Tournament Win Rate and Skill	• Implements a tournament in which a player is either a discriminator that attempts to distinguish between	
	Rating [45]	real and fake data or a generator that attempts to fool the discriminators into accepting fake data as real.	
	18. Normalized Relative Discriminative	 Compares n GANs based on the idea that if the generated samples are closer to real ones, 	
	Score (NRDS) [32]	more epochs would be needed to distinguish them from real samples.	
	19. Adversarial Accuracy and Divergence	 Adversarial Accuracy. Computes the classification accuracies achieved by the two classifiers, one trained 	
	[46]	on real data and another on generated data, on a labeled validation set to approximate $P_g(y \mathbf{x})$ and $P_r(y \mathbf{x})$.	
	2 TOTAL TO SEE THE SEC. (1)	Adversarial Divergence: Computes $KL(P_y(y x), P_r(y x))$	
	20. Geometry Score [47]	Compares geometrical properties of the underlying data manifold between real and generated data.	
	21. Reconstruction Error [48]	 Measures the reconstruction error (e.g. L₂ norm) between a test image and its closest 	
	22 I C	generated image by optimizing for z (i.e. $min_{\mathbf{z}} G(\mathbf{z}) - \mathbf{x}^{(test)} ^2$)	
	22. Image Quality Measures [49, 50, 51]	 Evaluates the quality of generated images using measures such as SSIM, PSNR, and sharpness difference Evaluates how similar low-level statistics of generated images are to those of natural scenes 	
	 Low-level Image Statistics [52, 53] 	in terms of mean power spectrum, distribution of random filter responses, contrast distribution, etc.	
	24. Precision, Recall and F ₁ score [23]	These measures are used to quantify the degree of overfitting in GANs, often over toy datasets.	
	1 Nanpart Naighbors	• To detect overfitting, generated samples are shown next to their nearest neighbors in the training set	
Ve	at a reserved a resignation	In these experiments, participants are asked to distinguish generated samples from real images	
at	2. Rapid Scene Categorization [18]	in a short presentation time (e.g. 100 ms); i.e. real v.s fake	
alitative	 Preference Judgment [54, 55, 56, 57] 	 Participants are asked to rank models in terms of the fidelity of their generated images (e.g. pairs, triples) 	
2	4. Mode Drop and Collapse [58, 59]	 Over datasets with known modes (e.g. a GMM or a labeled dataset), modes are computed as by measuring. 	
	4. more proband consists (so, so)	the distances of generated data to mode centers	
	 Network Internals [1, 60, 61, 62, 63, 64] 	 Regards exploring and illustrating the internal representation and dynamics of models (e.g. space continuity) 	
	or recovery meaning [r] out or out out out	as well as visualizing learned features	

Pros and cons of GAN evaluation measures

https://arxiv.org/abs/1802.03446

Concluding Remarks

Introduction of Generative Models

Generative Adversarial Network (GAN)

Theory behind GAN

Tips for GAN

Evaluation of Generative Models

