Question 1

Consider 2 semiconductor samples: Sample A: $N_D = 10^{16}$ cm⁻³ (donors); Sample B: $N_A = 10^{16}$ cm⁻³ (acceptors). Sample A is longer than Sample B by two times. Both samples have the same width and height.

- a) Find the concentration of holes (p) and electrons (n) for each sample
- b) Determine whether the samples are P-type or N-type semiconductors
- c) Find the conductivity and resistivity of each sample
- d) Which sample has larger resistance?

Assume the values of carrier mobility provided in the reference sheet.

Question 2

For the circuit below, determine the state of the diode and find I, V₁, V₂, and V₀.

Question 3

For the circuit below, determine the state of diodes D₁ and D₂, and find I₁, I_{D1}, I_{D2}, and V₀.

Question 4

For the circuit below, determine the state of diodes D₁ and D₂, and find I₁, I₂, and I₃.

Question 5

For the circuit below, determine the states of diodes D_1 and D_2 , and find V_o and the diode currents.

Question 6

In the case of an NMOS, by convention we have always assumed that V_{DS} is always positive for the normal operation of the NMOS. If V_{DS} is negative (say -1V), what is the state of the pn-junctions at the source and drain regions in relation to the body (which is connected to the source)?

Explain why V_{DS} cannot be negative for an NMOS in the normal operation of a MOSFET.