there exists $M \ge 0$ such that $\|R(\lambda_0 + i\eta, A)\| \le M/|\eta|$ for all $\eta \in \mathbb{R}$. Consequently, $\|R(\lambda_0 + i\eta, A + B)\| \le \|(Id - BR(\lambda_0 + i\eta, A)^{-1}\| \cdot M/|\eta| \le 2M/|\eta|$ for all $\eta \in \mathbb{R}$. Thus A + B generates a holomorphic semigroup by the corollary of Thm.1.14. Moreover, it follows from (1.12) that $R(\lambda, A + B)$ is compact whenever $R(\lambda, A)$ is compact. Consequently by Theorem 1.25 and the assertion proved above, $(S(t))_{t \ge 0}$ is compact whenever $(T(t))_{t \ge 0}$ is compact.

Finally assume that B is compact and $t_0 \ge 0$ such that $(T(t))_{t \ge 0}$ is norm continuous for $t > t_0$. Fix $t > t_0$. Denote by U the unit ball of E and fix $s \in (0,t]$. Then $\lim_{h \to 0} (T(t+s-h) - T(t-s))f = 0$ for all $f \in \overline{BS}(\overline{s})\overline{U} =: K$.

Since K is compact it follows that the limit exists uniformly in $f \in K$; i.e. $\lim_{h \to 0} \| (T(t+s-h) - T(t-s))BS(s) \| = 0$. It follows from the dominated convergence theorem that

In C-IV,Ex.2.15 a generator A of an eventually differentiable and eventually compact semigroup and a bounded operator B will be given such that the semigroup generated by A+B is not eventually norm continuous.

Using Theorem 1.29 we now prove a perturbation result due to Desch-Schappacher(1984). Instead of assuming that $B \in L(E)$ we assume that $B \in L(D(A))$. The short proof given below is due to G.Greiner.

Theorem 1.31. Let $(T(t))_{t\geq 0}$ be a strongly continuous semigroup with generator A. Assume that B: D(A) \rightarrow D(A) is linear and continuous for the graph norm on D(A).

Then A + B with domain D(A + B) = D(A) is the generator of a strongly continuous semigroup. Moreover, there exists a <u>bounded</u> operator C on E such that A + B is similar to A + C.

<u>Proof.</u> We first show that (Id - BR(λ ,A)) is invertible for some $\lambda \in \mathbb{C}$. Choose $\lambda_0 \in \rho(A)$. Then $S := (\lambda_0 - A)BR(\lambda_0, A) \in L(E)$. Let $\lambda > s(A)$ be so large such that $\|SR(\lambda, A)\| < 1$.