Optimization for Machine Learning CS-439

Lecture 3: Faster, and Projected Gradient Descent

Martin Jaggi

EPFL - github.com/epfml/OptML_course

March 8, 2019

Can we go even faster?

So far: Error decreases with $1/\sqrt{T}$, or 1/T...

Could it decrease exponentially in T?

Can we go even faster?

$$x_{t+1} = x_t - \frac{1}{2}\nabla f(x_t) = x_t - x_t = 0,$$

- converged in one step!
- ▶ Same $f(x) := x^2$: Stepsize $\gamma := \frac{1}{4}$ (f is L = 4 smooth)

$$x_{t+1} = x_t - \frac{1}{4}\nabla f(x_t) = x_t - \frac{x_t}{2} = \frac{x_t}{2},$$

so
$$f(x_t) = f(\frac{x_0}{2^t}) = \frac{1}{2^{2t}}x_0^2$$
.

Exponential in t!

Strongly convex functions

"Not too flat"

Definition

Let $f:\mathbf{dom}(f)\to\mathbb{R}$ be a differentiable function, $X\subseteq\mathbf{dom}(f)$ convex and $\mu\in\mathbb{R}_+,\mu>0$. Function f is called strongly convex (with parameter μ) over X if

$$f(\mathbf{y}) \ge f(\mathbf{x}) + \nabla f(\mathbf{x})^{\top} (\mathbf{y} - \mathbf{x}) + \frac{\mu}{2} ||\mathbf{x} - \mathbf{y}||^2, \quad \forall \mathbf{x}, \mathbf{y} \in X.$$

Lemma (Exercise 17)

If f is strongly convex with parameter $\mu > 0$, then f is strictly convex and has a unique global minimum.

Strongly convex functions II

Strong convexity: For any x, the graph of f is above a f not too flat tangential paraboloid at f(x):

Smooth and strongly convex functions: $\mathcal{O}(\log(1/\varepsilon))$ steps

Want to show: $\lim_{t\to\infty} \mathbf{x}_t = \mathbf{x}^*$

Vanilla Analysis:

$$\nabla f(\mathbf{x}_t)^{\top} (\mathbf{x}_t - \mathbf{x}^{\star}) = \frac{\gamma}{2} \|\nabla f(\mathbf{x}_t)\|^2 + \frac{1}{2\gamma} \left(\|\mathbf{x}_t - \mathbf{x}^{\star}\|^2 - \|\mathbf{x}_{t+1} - \mathbf{x}^{\star}\|^2 \right)$$

Now use stronger lower bound on left hand side, coming from strong convexity:

$$\nabla f(\mathbf{x}_t)^{\top}(\mathbf{x}_t - \mathbf{x}^{\star}) \ge f(\mathbf{x}_t) - f(\mathbf{x}^{\star}) + \frac{\mu}{2} \|\mathbf{x}_t - \mathbf{x}^{\star}\|^2$$

Putting it together:

$$f(\mathbf{x}_t) - f(\mathbf{x}^*) \le \frac{1}{2\gamma} \left(\gamma^2 \|\nabla f(\mathbf{x}_t)\|^2 + \|\mathbf{x}_t - \mathbf{x}^*\|^2 - \|\mathbf{x}_{t+1} - \mathbf{x}^*\|^2 \right) - \frac{\mu}{2} \|\mathbf{x}_t - \mathbf{x}^*\|^2.$$

Rewriting:

$$\|\mathbf{x}_{t+1} - \mathbf{x}^{\star}\|^{2} \leq 2\gamma (f(\mathbf{x}^{\star}) - f(\mathbf{x}_{t})) + \gamma^{2} \|\nabla f(\mathbf{x}_{t})\|^{2} + (1 - \mu\gamma) \|\mathbf{x}_{t} - \mathbf{x}^{\star}\|^{2}.$$

Smooth and strongly convex functions: $\mathcal{O}(\log(1/\varepsilon))$ steps II

$$\|\mathbf{x}_{t+1} - \mathbf{x}^{\star}\|^{2} \leq 2\gamma (f(\mathbf{x}^{\star}) - f(\mathbf{x}_{t})) + \gamma^{2} \|\nabla f(\mathbf{x}_{t})\|^{2} + (1 - \mu\gamma) \|\mathbf{x}_{t} - \mathbf{x}^{\star}\|^{2}.$$

Squared distance to x^* goes down by a constant factor, up to some "noise".

Theorem

Let $f: \mathbb{R}^d \to \mathbb{R}$ be differentiable with a global minimum \mathbf{x}^* ; suppose that f is smooth with parameter L and strongly convex with parameter $\mu > 0$. Choosing $\gamma := \frac{1}{L}$, gradient descent with arbitrary \mathbf{x}_0 satisfies the following two properties.

(i) Squared distances to x^* are geometrically decreasing:

$$\|\mathbf{x}_{t+1} - \mathbf{x}^{\star}\|^2 \le \left(1 - \frac{\mu}{L}\right) \|\mathbf{x}_t - \mathbf{x}^{\star}\|^2, \quad t \ge 0.$$

(ii) The absolute error after T iterations is exponentially small in T:

Smooth and strongly convex functions: $\mathcal{O}(\log(1/\varepsilon))$ steps III

$$\|\mathbf{x}_{t+1} - \mathbf{x}^{\star}\|^{2} \leq 2\gamma (f(\mathbf{x}^{\star}) - f(\mathbf{x}_{t})) + \gamma^{2} \|\nabla f(\mathbf{x}_{t})\|^{2} + (1 - \mu\gamma) \|\mathbf{x}_{t} - \mathbf{x}^{\star}\|^{2}.$$

Proof of (i).

Bounding the noise:

$$\gamma=1/L$$
 , sufficient decrease

$$2\gamma(f(\mathbf{x}^{*}) - f(\mathbf{x}_{t})) + \gamma^{2} \|\nabla f(\mathbf{x}_{t})\|^{2} = \frac{2}{L} (f(\mathbf{x}^{*}) - f(\mathbf{x}_{t})) + \frac{1}{L^{2}} \|\nabla f(\mathbf{x}_{t})\|^{2}$$

$$\leq \frac{2}{L} (f(\mathbf{x}_{t+1}) - f(\mathbf{x}_{t})) + \frac{1}{L^{2}} \|\nabla f(\mathbf{x}_{t})\|^{2}$$

$$\leq -\frac{1}{L^{2}} \|\nabla f(\mathbf{x}_{t})\|^{2} + \frac{1}{L^{2}} \|\nabla f(\mathbf{x}_{t})\|^{2} = 0.$$

Hence, the noise is nonpositive, and we get (i):

$$\|\mathbf{x}_{t+1} - \mathbf{x}^{\star}\|^{2} \le (1 - \mu \gamma) \|\mathbf{x}_{t} - \mathbf{x}^{\star}\|^{2} = \left(1 - \frac{\mu}{I}\right) \|\mathbf{x}_{t} - \mathbf{x}^{\star}\|^{2}.$$

Smooth and strongly convex functions: $\mathcal{O}(\log(1/\varepsilon))$ steps III

Proof of (ii).

From (i):

$$\|\mathbf{x}_T - \mathbf{x}^{\star}\|^2 \le \left(1 - \frac{\mu}{L}\right)^T \|\mathbf{x}_0 - \mathbf{x}^{\star}\|^2.$$

Smoothness together with $\nabla f(\mathbf{x}^*) = \mathbf{0}$:

$$f(\mathbf{x}_T) - f(\mathbf{x}^*) \leq \nabla f(\mathbf{x}^*)^\top (\mathbf{x}_T - \mathbf{x}^*) + \frac{L}{2} ||\mathbf{x}_T - \mathbf{x}^*||^2 = \frac{L}{2} ||\mathbf{x}_T - \mathbf{x}^*||^2.$$

Putting it together:

$$f(\mathbf{x}_T) - f(\mathbf{x}^*) \le \frac{L}{2} \|\mathbf{x}_T - \mathbf{x}^*\|^2 \le \frac{L}{2} \left(1 - \frac{\mu}{L}\right)^T \|\mathbf{x}_0 - \mathbf{x}^*\|^2.$$

Smooth and strongly convex functions: $\mathcal{O}(\log(1/\varepsilon))$ steps IV

$$R^2 := \|\mathbf{x}_0 - \mathbf{x}^\star\|^2.$$

$$T \geq \frac{L}{\mu} \ln \left(\frac{R^2 L}{2\varepsilon} \right) \quad \Rightarrow \quad \operatorname{error} \ \leq \frac{L}{2} \left(1 - \frac{\mu}{L} \right)^T R^2 \leq \varepsilon.$$

Conclusion: To reach absolute error at most ε , we only need $\mathcal{O}(\log \frac{1}{\varepsilon})$ iterations, e.g.

- $\frac{L}{\mu} \ln(50 \cdot R^2 L)$ iterations for error $0.01 \dots$
- ightharpoonup . . . as opposed to $50 \cdot R^2L$ in the smooth case

In Practice:

What if we don't know the smoothness parameter L?

 \rightarrow (similar to) Exercise 15

Chapter 3 Projected Gradient Descent

Constrained Optimization

Constrained Optimization Problem

minimize $f(\mathbf{x})$ subject to $\mathbf{x} \in X$

Solving Constrained Optimization Problems

- A Projected Gradient Descent
- B Transform it into an unconstrained problem

Constrained Optimization

Solving Constrained Optimization Problems

minimize $f(\mathbf{x})$ subject to $\mathbf{x} \in X$

► Here: Projected Gradient Descent

Projected Gradient Descent

Idea: project onto X after every step: $\Pi_X(\mathbf{y}) := \operatorname{argmin}_{\mathbf{x} \in X} \|\mathbf{x} - \mathbf{y}\|$

Projected gradient update
$$\mathbf{x}_{t+1} \leftarrow \Pi_X[\mathbf{x}_t - \gamma \nabla f(\mathbf{x}_t)]$$

The Algorithm

Projected gradient descent:

$$\mathbf{y}_{t+1} := \mathbf{x}_t - \gamma \nabla f(\mathbf{x}_t),$$

$$\mathbf{x}_{t+1} := \Pi_X(\mathbf{y}_{t+1}) := \operatorname*{argmin}_{\mathbf{x} \in X} \|\mathbf{x} - \mathbf{y}_{t+1}\|^2.$$

for timesteps $t = 0, 1, \ldots$, and stepsize $\gamma \geq 0$.

Properties of Projection

Fact

Let $X \subseteq \mathbb{R}^d$ be closed and convex, $\mathbf{x} \in X, \mathbf{y} \in \mathbb{R}^d$. Then

- (i) $(\mathbf{x} \Pi_X(\mathbf{y}))^{\top} (\mathbf{y} \Pi_X(\mathbf{y})) \leq 0.$
- (ii) $\|\mathbf{x} \Pi_X(\mathbf{y})\|^2 + \|\mathbf{y} \Pi_X(\mathbf{y})\|^2 \le \|\mathbf{x} \mathbf{y}\|^2$.

Properties of Projection II

Fact

Let $X \subseteq \mathbb{R}^d$ be closed and convex, $\mathbf{x} \in X, \mathbf{y} \in \mathbb{R}^d$. Then

(i)
$$(\mathbf{x} - \Pi_X(\mathbf{y}))^{\top} (\mathbf{y} - \Pi_X(\mathbf{y})) \leq 0.$$

(ii)
$$\|\mathbf{x} - \Pi_X(\mathbf{y})\|^2 + \|\mathbf{y} - \Pi_X(\mathbf{y})\|^2 \le \|\mathbf{x} - \mathbf{y}\|^2$$
.

Proof.

(i) $\Pi_X(\mathbf{y})$ is minimizer of (differentiable) convex function $d_{\mathbf{y}}(\mathbf{x}) = \|\mathbf{x} - \mathbf{y}\|^2$ over X.

By first-order characterization of optimality (Lemma 1.22),

$$0 \geq \nabla d_{\mathbf{y}}(\Pi_{X}(\mathbf{y}))^{\top}(\mathbf{x} - \Pi_{X}(\mathbf{y}))$$

$$= 2(\Pi_{X}(\mathbf{y}) - \mathbf{y})^{\top}(\mathbf{x} - \Pi_{X}(\mathbf{y}))$$

$$\Leftrightarrow 0 \leq 2(\mathbf{y} - \Pi_{X}(\mathbf{y}))^{\top}(\mathbf{x} - \Pi_{X}(\mathbf{y}))$$

$$\Leftrightarrow 0 \leq (\mathbf{x} - \Pi_{X}(\mathbf{y}))^{\top}(\mathbf{y} - \Pi_{X}(\mathbf{y}))$$

Properties of Projection III

Fact

Let $X \subseteq \mathbb{R}^d$ be closed and convex, $\mathbf{x} \in X, \mathbf{y} \in \mathbb{R}^d$. Then

(i)
$$(\mathbf{x} - \Pi_X(\mathbf{y}))^{\top} (\mathbf{y} - \Pi_X(\mathbf{y})) \leq 0.$$

(ii)
$$\|\mathbf{x} - \Pi_X(\mathbf{y})\|^2 + \|\mathbf{y} - \Pi_X(\mathbf{y})\|^2 \le \|\mathbf{x} - \mathbf{y}\|^2$$
.

Proof.

(ii)

$$\mathbf{v} := (\mathbf{x} - \Pi_X(\mathbf{y})), \quad \mathbf{w} := (\mathbf{y} - \Pi_X(\mathbf{y})).$$

By (i),

$$0 \ge 2\mathbf{v}^{\top}\mathbf{w} = \|\mathbf{v}\|^2 + \|\mathbf{w}\|^2 - \|\mathbf{v} - \mathbf{w}\|^2$$
$$= \|\mathbf{x} - \Pi_X(\mathbf{v})\|^2 + \|\mathbf{v} - \Pi_X(\mathbf{v})\|^2 - \|\mathbf{x} - \mathbf{v}\|^2.$$

Results for projected gradient descent over closed and convex X

The same number of steps as gradient over \mathbb{R}^d !

- ▶ Lipschitz convex functions over X: $\mathcal{O}(1/\varepsilon^2)$ steps
- ▶ Smooth convex functions over X: $\mathcal{O}(1/\varepsilon)$ steps
- ▶ Smooth and strongly convex functions over X: $\mathcal{O}(\log(1/\varepsilon))$ steps

We will adapt the previous proofs for gradient descent.

BUT:

- ► Each step involves a projection onto *X*
- may or may not be efficient (in relevant cases, it is)...

Lipschitz convex functions over X: $\mathcal{O}(1/\varepsilon^2)$ **steps**

Assume that all gradients of f are bounded in norm over closed and convex X.

- ightharpoonup Equivalent to f being Lipschitz over X.
- ightharpoonup Many interesting functions are Lipschitz over bounded sets X.

Theorem (same as the unconstrained one, but more useful)

Let $f: \mathbb{R}^d \to \mathbb{R}$ be convex and differentiable, $X \subseteq \mathbb{R}^d$ closed and convex, \mathbf{x}^* a minimizer of f over X; furthermore, suppose that $\|\mathbf{x}_0 - \mathbf{x}^*\| \le R$ with $\mathbf{x}_0 \in X$, and that $\|\nabla f(\mathbf{x})\| \le B$ for all $\mathbf{x} \in X$. Choosing the constant stepsize

$$\gamma := \frac{R}{B\sqrt{T}},$$

projected gradient descent yields

$$\frac{1}{T} \sum_{t=0}^{T-1} f(\mathbf{x}_t) - f(\mathbf{x}^*) \le \frac{RB}{\sqrt{T}}.$$

Lipschitz convex functions: $\mathcal{O}(1/\varepsilon^2)$ steps II

Proof.

▶ Replace \mathbf{x}_{t+1} in the vanilla analysis with \mathbf{y}_{t+1} (the unprojected gradient step):

$$\mathbf{g}_t^{\top}(\mathbf{x}_t - \mathbf{x}^{\star}) = \frac{1}{2\gamma} \left(\gamma^2 \|\mathbf{g}_t\|^2 + \|\mathbf{x}_t - \mathbf{x}^{\star}\|^2 - \|\underline{\mathbf{y}_{t+1}} - \mathbf{x}^{\star}\|^2 \right).$$

- ▶ Use Fact (ii): $\|\mathbf{x} \Pi_X(\mathbf{y})\|^2 + \|\mathbf{y} \Pi_X(\mathbf{y})\|^2 \le \|\mathbf{x} \mathbf{y}\|^2$.
- With $\mathbf{x} = \mathbf{x}^{\star}, \mathbf{y} = \mathbf{y}_{t+1}$, we have $\Pi_X(\mathbf{y}) = \mathbf{x}_{t+1}$, and hence

$$\|\mathbf{x}^{\star} - \mathbf{x}_{t+1}\|^2 \leq \|\mathbf{x}^{\star} - \mathbf{y}_{t+1}\|^2$$

▶ We go back to the original vanilla analyis and continue from there as before:

$$\mathbf{g}_t^{\top}(\mathbf{x}_t - \mathbf{x}^{\star}) \leq \frac{1}{2\gamma} \left(\gamma^2 \|\mathbf{g}_t\|^2 + \|\mathbf{x}_t - \mathbf{x}^{\star}\|^2 - \|\mathbf{x}_{t+1} - \mathbf{x}^{\star}\|^2 \right).$$

Smooth functions over X

Recall:

f is called smooth (with parameter L) over X if

$$f(\mathbf{y}) \leq f(\mathbf{x}) + \nabla f(\mathbf{x})^{\top} (\mathbf{y} - \mathbf{x}) + \frac{L}{2} ||\mathbf{x} - \mathbf{y}||^2, \quad \forall \mathbf{x}, \mathbf{y} \in X.$$

Sufficient decrease

Lemma

Let $f: \mathbb{R}^d \to \mathbb{R}$ be differentiable and smooth with parameter L over X. Choosing stepsize

$$\gamma := \frac{1}{L},$$

projected gradient descent with arbitrary $\mathbf{x}_0 \in X$ satisfies

$$f(\mathbf{x}_{t+1}) \le f(\mathbf{x}_t) - \frac{1}{2L} \|\nabla f(\mathbf{x}_t)\|^2 + \frac{L}{2} \|\mathbf{y}_{t+1} - \mathbf{x}_{t+1}\|^2, \quad t \ge 0.$$

Remark: More specifically, this already holds if f is smooth with parameter L over the line segment connecting \mathbf{x}_t and \mathbf{x}_{t+1} .

Sufficient decrease II

$$f(\mathbf{x}_{t+1}) \le f(\mathbf{x}_t) - \frac{1}{2L} \|\nabla f(\mathbf{x}_t)\|^2 + \frac{L}{2} \|\mathbf{y}_{t+1} - \mathbf{x}_{t+1}\|^2.$$

Proof.

Use smoothness, $\mathbf{y}_{t+1} - \mathbf{x}_t = -\nabla f(\mathbf{x}_t)/L$, $2\mathbf{v}^{\top}\mathbf{w} = \|\mathbf{v}\|^2 + \|\mathbf{w}\|^2 - \|\mathbf{v} - \mathbf{w}\|^2$:

$$f(\mathbf{x}_{t+1}) \leq f(\mathbf{x}_{t}) + \nabla f(\mathbf{x}_{t})^{\top} (\mathbf{x}_{t+1} - \mathbf{x}_{t}) + \frac{L}{2} \|\mathbf{x}_{t} - \mathbf{x}_{t+1}\|^{2}$$

$$= f(\mathbf{x}_{t}) - L(\mathbf{y}_{t+1} - \mathbf{x}_{t})^{\top} (\mathbf{x}_{t+1} - \mathbf{x}_{t}) + \frac{L}{2} \|\mathbf{x}_{t} - \mathbf{x}_{t+1}\|^{2}$$

$$= f(\mathbf{x}_{t}) - \frac{L}{2} (\|\mathbf{y}_{t+1} - \mathbf{x}_{t}\|^{2} + \|\mathbf{x}_{t+1} - \mathbf{x}_{t}\|^{2} - \|\mathbf{y}_{t+1} - \mathbf{x}_{t+1}\|^{2}) + \frac{L}{2} \|\mathbf{x}_{t} - \mathbf{x}_{t+1}\|^{2}$$

$$= f(\mathbf{x}_{t}) - \frac{L}{2} \|\mathbf{y}_{t+1} - \mathbf{x}_{t}\|^{2} + \frac{L}{2} \|\mathbf{y}_{t+1} - \mathbf{x}_{t+1}\|^{2}$$

$$= f(\mathbf{x}_{t}) - \frac{1}{2L} \|\nabla f(\mathbf{x}_{t})\|^{2} + \frac{L}{2} \|\mathbf{y}_{t+1} - \mathbf{x}_{t+1}\|^{2}.$$

Smooth convex functions over X: $\mathcal{O}(1/\varepsilon)$ steps

Theorem

Let $f: \mathbb{R}^d \to \mathbb{R}$ be convex and differentiable. Let $X \subseteq \mathbb{R}^d$ be a closed convex set, and assume that there is a minimizer \mathbf{x}^* of f over X; furthermore, suppose that f is smooth over X with parameter L. Choosing stepsize

$$\gamma := \frac{1}{L},$$

gradient descent yields

$$f(\mathbf{x}_T) - f(\mathbf{x}^*) \le \frac{L}{2T} ||\mathbf{x}_0 - \mathbf{x}^*||^2, \quad T > 0.$$

Smooth convex functions over X: $\mathcal{O}(1/\varepsilon)$ steps II

$$f(\mathbf{x}_T) - f(\mathbf{x}^*) \le \frac{L}{2T} ||\mathbf{x}_0 - \mathbf{x}^*||^2, \quad T > 0.$$

Proof.

As before, use sufficient decrease to bound sum of squared gradients in vanilla analysis:

$$\frac{1}{2L} \|\nabla f(\mathbf{x}_t)\|^2 \le f(\mathbf{x}_t) - f(\mathbf{x}_{t+1}) + \frac{L}{2} \|\mathbf{y}_{t+1} - \mathbf{x}_{t+1}\|^2$$

But now: extra term $\frac{L}{2} ||\mathbf{y}_{t+1} - \mathbf{x}_{t+1}||^2$.

Compensate in the vanilla analysis itself!

Recall: Constrained vanilla analysis

Proof.

▶ Replace \mathbf{x}_{t+1} in the vanilla analysis with \mathbf{y}_{t+1} (the unprojected gradient step):

$$\mathbf{g}_t^{\top}(\mathbf{x}_t - \mathbf{x}^{\star}) = \frac{1}{2\gamma} \left(\gamma^2 \|\mathbf{g}_t\|^2 + \|\mathbf{x}_t - \mathbf{x}^{\star}\|^2 - \|\mathbf{y}_{t+1} - \mathbf{x}^{\star}\|^2 \right).$$

- ▶ Use Fact (ii): $\|\mathbf{x} \Pi_X(\mathbf{y})\|^2 + \|\mathbf{y} \Pi_X(\mathbf{y})\|^2 \le \|\mathbf{x} \mathbf{y}\|^2$.
- lacksquare With $\mathbf{x}=\mathbf{x}^\star,\mathbf{y}=\mathbf{y}_{t+1}$, we have $\Pi_X(\mathbf{y})=\mathbf{x}_{t+1}$, and hence

$$\|\mathbf{x}^{*} - \mathbf{x}_{t+1}\|^{2} + \|\mathbf{y} - \Pi_{X}(\mathbf{y})\|^{2} \le \|\mathbf{x}^{*} - \mathbf{y}_{t+1}\|^{2}$$

▶ We get back to the vanilla analysis. . . but with a saving!

$$\mathbf{g}_{t}^{\top}(\mathbf{x}_{t} - \mathbf{x}^{*}) \leq \frac{1}{2\gamma} \left(\gamma^{2} \|\mathbf{g}_{t}\|^{2} + \|\mathbf{x}_{t} - \mathbf{x}^{*}\|^{2} - \|\mathbf{x}_{t+1} - \mathbf{x}^{*}\|^{2} - \|\mathbf{y}_{t+1} - \mathbf{x}_{t+1}\|^{2} \right)$$

Smooth convex functions over X: $\mathcal{O}(1/\varepsilon)$ steps III

$$f(\mathbf{x}_T) - f(\mathbf{x}^*) \le \frac{L}{2T} \|\mathbf{x}_0 - \mathbf{x}^*\|^2, \quad T > 0.$$

Proof.

Use $f(\mathbf{x}_t) - f(\mathbf{x}^*) \leq \mathbf{g}_t^\top (\mathbf{x}_t - \mathbf{x}^*)$ (convexity), vanilla analysis with saving, $\gamma = 1/L$:

$$\sum_{t=0}^{T-1} (f(\mathbf{x}_t) - f(\mathbf{x}^*)) \leq \sum_{t=0}^{T-1} \mathbf{g}_t^{\top} (\mathbf{x}_t - \mathbf{x}^*)
\leq \frac{1}{2L} \sum_{t=0}^{T-1} \|\mathbf{g}_t\|^2 + \frac{L}{2} \|\mathbf{x}_0 - \mathbf{x}^*\|^2 - \frac{L}{2} \sum_{t=0}^{T-1} \|\mathbf{y}_{t+1} - \mathbf{x}_{t+1}\|^2.$$

Use sufficient decrease to bound $\frac{1}{2L}\sum_{t=0}^{T-1}\|\mathbf{g}_t\|^2$ by

$$\sum_{t=0}^{T-1} \left(f(\mathbf{x}_t) - f(\mathbf{x}_{t+1}) + \frac{L}{2} \|\mathbf{y}_{t+1} - \mathbf{x}_{t+1}\|^2 \right) = f(\mathbf{x}_0) - f(\mathbf{x}_T) + \frac{L}{2} \sum_{t=0}^{T-1} \|\mathbf{y}_{t+1} - \mathbf{x}_{t+1}\|^2.$$

Smooth convex functions over X: $\mathcal{O}(1/\varepsilon)$ steps IV

$$f(\mathbf{x}_T) - f(\mathbf{x}^*) \le \frac{L}{2T} ||\mathbf{x}_0 - \mathbf{x}^*||^2, \quad T > 0.$$

Proof.

Putting it together: extra terms cancel, and as in unconstrained case, we get

$$\sum_{t=1}^{T} \left(f(\mathbf{x}_t) - f(\mathbf{x}^*) \right) \le \frac{L}{2} \|\mathbf{x}_0 - \mathbf{x}^*\|^2.$$

Exercise 19: again, we make progress in every step (not immediate from sufficient decrease here). Hence,

$$f(\mathbf{x}_T) - f(\mathbf{x}^*) \le \frac{1}{T} \sum_{t=1}^T (f(\mathbf{x}_t) - f(\mathbf{x}^*)) \le \frac{L}{2T} ||\mathbf{x}_0 - \mathbf{x}^*||^2.$$

Smooth and strongly convex functions over X

Recall:

f is strongly convex (with parameter μ) over X if

$$f(\mathbf{y}) \ge f(\mathbf{x}) + \nabla f(\mathbf{x})^{\top} (\mathbf{y} - \mathbf{x}) + \frac{\mu}{2} ||\mathbf{x} - \mathbf{y}||^2, \quad \forall \mathbf{x}, \mathbf{y} \in X.$$

Smooth and strongly convex functions over X: $\mathcal{O}(\log(1/\varepsilon))$ steps

Exercise 20: a strongly convex function has a unique minimizer \mathbf{x}^* of f over X.

Theorem

Let $f: \mathbb{R}^d \to \mathbb{R}$ be convex and differentiable. Let $X \subseteq \mathbb{R}^d$ be a nonempty closed and convex set and suppose that f is smooth over X with parameter L and strongly convex over X with parameter $\mu > 0$. Choosing $\gamma := \frac{1}{L}$, projected gradient descent with arbitrary \mathbf{x}_0 satisfies the following two properties.

(i) Squared distances to x^* are geometrically decreasing:

$$\|\mathbf{x}_{t+1} - \mathbf{x}^{\star}\|^2 \le \left(1 - \frac{\mu}{L}\right) \|\mathbf{x}_t - \mathbf{x}^{\star}\|^2, \quad t \ge 0.$$

(ii) The absolute error after T iterations is exponentially small in T:

$$\begin{split} f(\mathbf{x}_T) - f(\mathbf{x}^\star) & \leq & \|\nabla f(\mathbf{x}^\star)\| \left(1 - \frac{\mu}{L}\right)^{T/2} \|\mathbf{x}_0 - \mathbf{x}^\star\| & \leftarrow \textit{in general, } \nabla f(\mathbf{x}^\star) \neq \mathbf{0}! \\ & + & \frac{L}{2} \left(1 - \frac{\mu}{L}\right)^T \|\mathbf{x}_0 - \mathbf{x}^\star\|^2, \quad T > 0. \quad \leftarrow \textit{as in unconstrained case} \end{split}$$

Smooth and strongly convex functions over X: $\mathcal{O}(\log(1/\varepsilon))$ steps I

Proof.

- (i) Geometric decrease plus noise: $\|\mathbf{x}_{t+1} \mathbf{x}^{\star}\|^2 \leq \cdots$
 - unconstrained case:

$$2\gamma (f(\mathbf{x}^*) - f(\mathbf{x}_t)) + \gamma^2 \|\nabla f(\mathbf{x}_t)\|^2 + \underline{(1 - \mu\gamma)\|\mathbf{x}_t - \mathbf{x}^*\|^2}.$$

constrained case (vanilla analysis with a saving):

$$2\gamma(f(\mathbf{x}^{*}) - f(\mathbf{x}_{t})) + \gamma^{2} \|\nabla f(\mathbf{x}_{t})\|^{2} - \|\mathbf{y}_{t+1} - \mathbf{x}_{t+1}\|^{2} + (1 - \mu\gamma)\|\mathbf{x}_{t} - \mathbf{x}^{*}\|^{2},$$

Smooth and strongly convex functions over X: $\mathcal{O}(\log(1/\varepsilon))$ steps II Proof.

To bound the noise, we use sufficient decrease.

unconstrained case:

$$f(\mathbf{x}_{t+1}) \le f(\mathbf{x}_t) - \frac{1}{2L} \|\nabla f(\mathbf{x}_t)\|^2$$
 , $t \ge 0$.

constrained case:

$$f(\mathbf{x}_{t+1}) \le f(\mathbf{x}_t) - \frac{1}{2L} \|\nabla f(\mathbf{x}_t)\|^2 + \frac{L}{2} \|\mathbf{y}_{t+1} - \mathbf{x}_{t+1}\|^2, \quad t \ge 0.$$

Putting it together, the terms $\|\mathbf{y}_{t+1} - \mathbf{x}_{t+1}\|^2$ cancel, and we get

$$\|\mathbf{x}_{t+1} - \mathbf{x}^{\star}\|^{2} \le (1 - \mu \gamma) \|\mathbf{x}_{t} - \mathbf{x}^{\star}\|^{2} = \left(1 - \frac{\mu}{L}\right) \|\mathbf{x}_{t} - \mathbf{x}^{\star}\|^{2}.$$

in both cases.

Smooth and strongly convex functions over X: $\mathcal{O}(\log(1/\varepsilon))$ steps II

Proof.

(ii) Error bound from smoothness:

$$\begin{split} f(\mathbf{x}_T) - f(\mathbf{x}^\star) & \leq & \nabla f(\mathbf{x}^\star)^\top (\mathbf{x}_T - \mathbf{x}^\star) + \frac{L}{2} \|\mathbf{x}^\star - \mathbf{x}_T\|^2 \\ & \leq & \|\nabla f(\mathbf{x}^\star)\| \, \|\mathbf{x}_T - \mathbf{x}^\star\| + \frac{L}{2} \|\mathbf{x}^\star - \mathbf{x}_T\|^2 \text{ (Cauchy-Schwarz)} \\ & \leq & \|\nabla f(\mathbf{x}^\star)\| \, \Big(1 - \frac{\mu}{L}\Big)^{T/2} \, \|\mathbf{x}_0 - \mathbf{x}^\star\| + \frac{L}{2} \, \Big(1 - \frac{\mu}{L}\Big)^T \, \|\mathbf{x}_0 - \mathbf{x}^\star\|^2 \,. \text{ (i)} \end{split}$$

constrained error bound $\approx \sqrt{\text{unconstrained error bound}}$ required number of steps roughly doubles.