Math 200a (lecture 6)

<u>Sylow's 2nd. Theorem:</u> Suppose $P_0 \in \operatorname{Syl}_p(G)$ and Q is a p-subgroup of G. Then there exists $x \in G$ such that $Q \subseteq xP_0x^{-1}$.

Proof:

 $Q \curvearrowright G/P_0$ by left-translation. Then by the theorem in the middle of *page 271*, we have that $|G/P_0| \equiv |(G/P_0)^Q| \pmod p$. But since $P_0 \in \operatorname{Syl}_p(G)$, we have that $|G/P_0| \not\equiv 0 \pmod p$. Hence, there must exist some $gP_0 \in (G/P_0)^Q$.

In turn, xgP=gP for all $x\in Q$. Or in other words, $g\in gPg^{-1}$ for all $x\in Q$. Hence, $Q\subseteq gPg^{-1}$. \blacksquare

Corollary: If $P_1, P_2 \in \operatorname{Syl}_p(G)$ then there exists $g \in G$ such that $gP_1g^{-1} = P_2$.

Proof:

By Sylow's 2nd theorem we know there exists $g \in G$ such that $P_2 \subseteq gP_1g^{-1}$. And since $|P_2| = |P_1|$ we deduce $P_2 = gP_1g^{-1}$.

Note the following observations:

- If $\theta \in \operatorname{Aut}(G)$ and $P \in \operatorname{Syl}_p(G)$ then $\theta(P) \in \operatorname{Syl}_p(G)$.
- $G \curvearrowright \operatorname{Syl}_p(G)$ by conjugation and this actions is transitive (by the last corollary).
- A subgroup H < G is called a <u>characteristic</u> subgroup if $\forall \theta \in \operatorname{Aut}(G)$ we have that $\theta(H) = H$. By the last two observations, if $\operatorname{Syl}_p(G) = \{P\}$, then P is a characteristic subgroup of G (which automatically means P is normal since conjugation is an automorphism of G).

 $\underline{\text{Corollary:}} \text{ If } P \lhd G \text{ and } P \in \mathrm{Syl}_p(G) \text{, then } P \text{ is a characteristic subgroup of } G.$

Proof:

Since $P \triangleleft G$, $P \in \operatorname{Syl}_p(G)$, and $G \curvearrowright \operatorname{Syl}_p(G)$ transitively via conjugation, we must have that $\operatorname{Syl}_p(G) = \{P\}$. Hence P is a characteristic subgroup of G.

Lemma: If $P \in \operatorname{Syl}_p(G)$, then $\operatorname{Syl}_p(N_G(P)) = \{P\}$.

Proof:

We know $|P| = p^{\nu_p(|G|)}$. Also, $P < N_G(P) < G$ means that |P| divides $|N_G(P)|$ and $|N_G(P)|$ divides |G|. Thus $\nu_p(|G|) = \nu_p(|N_G(P)|)$ and so $P \in \operatorname{Syl}_p(N_G(P))$. Finally, since $P \lhd N_G(P)$, we know from the last corollary that $\operatorname{Syl}_p(N_G(P)) = \{P\}$.

<u>Lemma:</u> If $P_0 \in \operatorname{Syl}_p(G)$ and we consider $P_0 \curvearrowright \operatorname{Syl}_p(G)$ by conjugation, then $(\operatorname{Syl}_p(G))^{P_0} = \{P_0\}.$

Proof:

 $P \in (\operatorname{Syl}_p(G))^{P_0}$ if and only if for all $x \in P_0$, $xPx^{-1} = P$. That's to say, iff $P_0 \subseteq N_G(P)$. But that would mean $P_0 \in \operatorname{Syl}_p(N_G(P)) = \{P\}$. So $(\operatorname{Syl}_p(G))^{P_0} = \{P_0\}$.

Sylow's 3rd. Theorem: If G is a finite group, $|\operatorname{Syl}_p(G)| \equiv 1 \pmod{p}$.

Proof:

Suppose $P_0 \in \operatorname{Syl}_p(G)$. Then $|\operatorname{Syl}_p(G) \equiv |(\operatorname{Syl}_p(G))^{P_0} \pmod p$. But from the prior lemma we know $|(\operatorname{Syl}_p(G))^{P_0}| = 1$.

So as a recap, suppose G is a finite group and p is a prime number dividing |G|. Then:

- Sylow's first theorem guarentees that $\operatorname{Syl}_n(G) \neq \emptyset$.
- Sylow's third theorem guarentees that $|\mathrm{Syl}_p(G)| \equiv 1 \pmod{p}$.
- Sylow's second theorem guarentees that $|\operatorname{Syl}_p(G)|$ equals the number of conjugates of P_0 where $P_0 \in \operatorname{Syl}_p(G)$. Thus (see *page 271*), we have for any $P_0 \in \operatorname{Syl}_p(G)$ that $|\operatorname{Syl}_p(G)| = [G:N_G(P_0)]$. And in particular, since $P_0 < N_G(P_0) < G$, we have that $|\operatorname{Syl}_p(G)| = \frac{|G|}{|N_G(P_0)|} = \frac{[G:P_0]|P_0|}{[N_G(P_0):P_0]|P_0|} = \frac{[G:P_0]}{[N_G(P_0):P_0]}$. So $|\operatorname{Syl}_p(G)|$ divides $[G:P_0]$.

Proposition: $P \in \operatorname{Syl}_p(G) \Longrightarrow N_G(N_G(P)) = N_G(P)$.

Proof:

The \supseteq inclusion is obvious. Meanwhile, $x \in N_G(N_G(P))$ implies that $xN_G(P)x^{-1} = N_G(P)$. But note that if $\theta \in \operatorname{Aut}(G)$ and H < G, then $\theta(N_G(H)) = N_G(\theta(H))$.

If $x \in N_G(H)$ then we know that $xHx^{-1} = H$. So: $\phi(x)\phi(H)\phi(x)^{-1} = \phi(xHx^{-1}) = \phi(H).$

This shows that $\phi(x) \in N_G(\phi(H))$ and hence $\phi(N_G(H)) \subseteq N_G(\phi(H))$ whenever $\phi \in \operatorname{Aut}(G)$. Using this fact, now note that for any $\phi \in \operatorname{Aut}(G)$, we have that: $N_G(H) = \phi^{-1}(\phi(N_G(H))) \subseteq \phi^{-1}(N_G(\phi(H))) \subseteq N_G(\phi^{-1}(\phi(H))) = N_G(H)$

So, $N_G(H)=\phi^{-1}(N_G(\phi(H))).$ And by composing ϕ we get that: $\phi(N_G(H))=N_G(\phi(H)).$

It follows that $N_G(xPx^{-1})=xN_G(P)x^{-1}=N_G(P)$ whenever $x\in N_G(N_G(P))$. But in that case we have that $\mathrm{Syl}_p(N_G(xPx^{-1}))=\mathrm{Syl}_p(N_G(P))$. And as P and xPx^{-1} are both Sylow p-groups, we conclude $xPx^{-1}=P$. So $x\in N_G(P)$

I probably should have been taught this in math 100a but never was. So, I guess I'll just refresh myself now. The book I'm following along with is *Abstract Algebra* by Dummit and Foote.

Suppose ${\cal G}$ is a group and ${\cal H}, {\cal K}$ are subgroups of ${\cal G}.$ Then we define:

$$HK := \{hk \in G : h \in H \text{ and } k \in K\}.$$

<u>Proposition 3.2.13:</u> If H and K are finite subgroups of a group, then $|HK| = \frac{|H||K|}{|H \cap K|}$.

Proof:

Note that $HK=\bigcup_{h\in H}hK$. Thus |HK| equals |K| times the number of distinct left cosets hK where $h\in H$. But note that for any $h_1,h_2\in H$:

$$h_1K = h_2K \iff h_2^{-1}h_1 \in H \cap K \iff h_1(H \cap K) = h_2(H \cap K).$$

Hence $|HK|=|K|\cdot [H:H\cap K]=|K|\frac{|H|}{|H\cap K|}$ by Lagrange's theorem. \blacksquare

<u>Proposition 3.2.14:</u> If H and K are subgroups of G, then HK < G iff HK = KH.

 (\Longrightarrow)

Suppose HK < G. Since K < HK and H < HK, we thus know that $KH \subseteq HK$. Meanwhile, suppose $h \in H$ and $k \in K$. Since HK is a group, we know $(hk)^{-1} \in HK$. So there exists $h' \in H$ and $k' \in K$ such that $(hk)^{-1} = h'k'$. But then $hk = (k')^{-1}(h')^{-1}$ which is in KH. So $HK \subseteq KH$.

 (\Longleftrightarrow)

Assume HK=KH and let $a,b\in HK$. Then there exists $h_1,h_2\in H$ and $k_1,k_2\in K$ such that $a=h_1k_1$ and $b=h_2k_2$. Now it's clear that $1_G\in HK$. So, if we can show that $ab^{-1}\in HK$, then we will know that HK is a group.

Fortunately, $ab^{-1} = h_1k_1k_2^{-1}h_2^{-1}$. And since KH = HK, we know there is $h_3 \in H$ and $k_3 \in K$ such that $(k_1k_2^{-1})h_2^{-1} = h_3k_3$. Thus, $ab^{-1} = (h_1h_3)(k_3) \in HK$.

<u>Corollary 3.2.15:</u> If H and K are subgroups of G and $H < N_G(K)$, then HK is a subgroup of G. In particular, if $K \lhd G$ then HK < G for any H < G.

Proof:

Let $h\in H$ and $k\in K$. Then $hkh^{-1}\in K$. So $hk=(hkh^{-1})h\in KH$ and we've proven that HK=KH. \blacksquare

<u>Second Isomorphism Theorem:</u> Let G be a group, let A and B be subgroups of G, and assume $A < N_G(B)$. Then AB < G, $B \lhd AB$, $A \cap B \lhd A$, and $AB/B \cong A/(A \cap B)$.

Proof:

By the last corollary we know that AB < G. Also, since $A < N_G(B)$ and $B < N_G(B)$, it follows $AB < N_G(B)$. Hence $B \lhd AB$.

Now we know there is a well-defined group homomorphism $\phi:A\to AB/B$ given by $\phi(a)=aB$. Clearly ϕ is surjective. Meanwhile, it's easy to see that $\ker(\phi)=A\cap B$. So by the first isomorphism theorem, we have that $A\cap B\lhd A$ and that:

$$AB/B \cong A/(A \cap B)$$
.

Here is one more miscellaneous result before getting back to the lecture:

<u>Lemma:</u> If $N_1, N_2 \triangleleft G$, then $\forall x \in N_1$ and $\forall y \in N_2$ we have that $xyx^{-1}y^{-1} \in N_1 \cap N_2$. Proof:

$$(xyx^{-1}) \in N_2 \text{ and } (yx^{-1}y^{-1}) \in N_1 \text{ since both } N_1 \text{ and } N_2 \text{ are normal. Hence: } (xyx^{-1})y^{-1} = x(yx^{-1}y^{-1}) \in N_1 \cap N_2. \ \blacksquare$$

Corollary: If $N_1, N_2 \triangleleft G$ and $N_1 \cap N_2 = \{1\}$, then xy = yx for all $x \in N_1$ and $y \in N_2$.

So here are some uses of Sylow's theorems:

• Suppose p < q are distinct primes with $p \not | q-1$. If |G| = pq then $G \cong C_{pq}$. Let s_q and s_p be shorthand for $|\mathrm{Syl}_q(G)|$ and $|\mathrm{Syl}_p(G)|$. Now we know by Sylow's third theorem that $s_q \equiv 1 \pmod q$.

Also, we know that $s_q \mid p$ by Sylow's second theorem. And since p < q, we must have that $s_q = 1$. Hence $\mathrm{Syl}_q(G) = \{Q\}$ for some $Q \lhd G$ such that |Q| = q and Q is cylic of order q.

Next, note once again by Sylow's second theorem that $s_p \mid q$. Hence, we must have that either $s_p = 1$ or $s_p = q$. That said, we know $q - 1 \not\equiv 0 \pmod{p}$ by assumption and that $s_p \equiv 1 \pmod{p}$ by Sylow's third theorem. So, we must have that $s_p = 1$ and it follows that $\mathrm{Syl}_p(G) = \{P\}$ for some $P \lhd G$ such that |P| = p and P is cyclic of order p.

Now $|P\cap Q| |\gcd(|P|,|Q|) = 1$. So $P\cap Q = \{1\}$. And by our prior corollary, this means that xy = yx for all $x\in P$ and $y\in Q$.

Now consider the map $f: P \times Q \to G$ given by $(x,y) \mapsto xy$. We claim this is a group isomorphism.

• Note that: $f(x_1,y_1)f(x_2,y_2)=x_1y_1x_2y_2=x_1x_2y_1y_2\\ =f(x_1x_2,y_1y_2)=f((x_1,y_1)(x_2,y_2)).$

Thus f is a group homomorphism.

- Suppose f(x,y)=1. Then xy=1 which means that $x=y^{-1}$. But now $x,y^{-1}\in P\cap Q=\{1\}.$ So (x,y)=(1,1) and we've shown that f is injective.
- $|\operatorname{im}(f)| = |PQ| = \frac{|P||Q|}{|P\cap Q|} = \frac{pq}{1} = |G|$. So f is surjective.

It follows that $G \cong P \times Q \cong \mathbb{Z}/p\mathbb{Z} \times \mathbb{Z}/q\mathbb{Z} \cong \mathbb{Z}/pq\mathbb{Z}$. (The last equivalence is from Chinese remainder theorem...)

I am not fully caught up with this class yet. But, I'll stop here for now so that I can go back to taking functional analysis notes. For more math 200a notes go to page .

10/14/2025

Math 241a (lectures 3-5 continued):

If $\mathcal X$ is a topological vector space, then here is one more topology on $\mathcal X^*$ to be aware of. Let $\mathcal A$ be the collection of all (Von-Neumann) bounded sets in $\mathcal X$ and then for each $A\in\mathcal A$ define the seminorm $p_A(\lambda)=\sup_{x\in A}|\lambda(x)|$ on $\mathcal X^*$. Since every singleton is bounded, we know this defines a sufficient family. Also, the topology generated by that family is finer than the weak* topology. So, we call it the strong topology on $\mathcal X^*$.

(<u>Definition 1.2.19:</u>) If \mathcal{X} , \mathcal{Y} are topological (K-)vector spaces and $T \in B(\mathcal{X}, \mathcal{Y})$, then T's adjoint is defined as the map $T^*: \mathcal{Y}^* \to \mathcal{X}^*$ given by $T^*(\lambda) = \lambda \circ T$.

Note that:

• T^* is a well-defined linear operator.

To show that T^* is well defined, suppose $c_1, c_2 \in K$ and $x_1, x_2 \in \mathcal{X}$. Then:

$$T^*(\lambda)(c_1x_1 + c_2x_2) = \lambda(T(c_1x_1 + c_2x_2))$$

= $c_1\lambda(T(x_1)) + c_2\lambda(T(x_2)) = c_1T^*(\lambda)(x_1) + c_2T^*(\lambda)(x_2).$

Next, to show that T^* is linear, suppose $c_1, c_2 \in K$ and $\lambda_1, \lambda_2 \in \mathcal{Y}^*$. Then for any $x \in \mathcal{X}$ we have that:

$$T^*(c_1\lambda_1 + c_2\lambda_2)(x) = (c_1\lambda_1 + c_2\lambda_2)(T(x))$$

= $c_1\lambda_1(T(x)) + c_2\lambda_2(T(x)) = c_1T^*(\lambda_1)(x) + c_2T^*(\lambda_2)(x)$
= $(c_1T^*(\lambda_1) + c_2T^*(\lambda_2))(x)$

• T^* is continuous if \mathfrak{X}^* and \mathfrak{Y}^* are equipped with the weak* topologies.

This is because if $\lambda_{\beta}(y) \to \lambda(y)$ for all $y \in \mathcal{Y}$ then $\lambda_{\beta}(Tx) \to \lambda(\beta)(Tx)$ for all $x \in \mathcal{X}$. Hence, we have for any weak*-ly convergent net $\langle \lambda_{\beta} \rangle$ that $\langle T^*(\lambda_{\beta}) \rangle$ is also weak*-ly convergent.

• T^* is also continuous if X^* and Y^* are equipped with the strong topologies.

This is because if ${\cal T}$ is continuous, then ${\cal T}$ maps bounded sets to bounded sets.

Proof:

Suppose $A\subseteq \mathcal{X}$ is bounded and let N be any neighborhood of $0\in \mathcal{Y}$. Because T is continuous, we know that $T^{-1}(N)$ is a neighborhood of $0\in \mathcal{X}$. And since A is bounded, there is some r>0 such that $A\subseteq sT^{-1}(N)$ for all $s\in K$ with $|s|\geq r$. In turn, $T(A)\subseteq T(sT^{-1}(N))=sT(T6-1(N))=sN$ whenever $|s|\geq r$. And this proves that $T(A)\subseteq \mathcal{Y}$ is bounded.

Thus by similar logic to the last bullet point, if $\langle \lambda_{\beta} \rangle$ is a strongly convergent net then $\langle T^*(\lambda_{\beta}) \rangle$ is also a strongly convergent net.

As a side note, technically only the third bullet point actually required the continuity of ${\cal T}.$

Lemma 1.2.21: If \mathcal{X} and \mathcal{Y} are normed vector spaces and $T \in B(\mathcal{X}, \mathcal{Y})$, then $\|T^*\|_{\mathrm{op}} = \|T\|_{\mathrm{op}}$.

Proof:

For all $x \in \mathcal{X}$ and $\lambda \in \mathcal{Y}^*$, we have that $|T^*(\lambda)(x)| = |\lambda(Tx)| \leq \|\lambda\| \|T\| \|x\|$. So $\|T^*(\lambda)\| \leq \|\lambda\| \|T\|$ for all $\lambda \in \mathcal{Y}^*$. And this shows that $\|T^*\| \leq \|T\|$.

On the other hand, for all $\varepsilon>0$ there exists $x\in E$ such that $\|x\|=1$ and $\|Tx\|\geq \|T\|-\varepsilon$. Also, as a consequence of the Hahn Banach theorem (see Folland theorem 5.8 in my math 240b notes), there exists $\lambda\in\mathcal{Y}^*$ such that $\lambda(Tx)=\|Tx\|$ and $\|\lambda\|=1$. So:

$$||T^*|| \ge ||\lambda||^{-1} ||T^*(\lambda)||$$

$$= 1 \cdot ||T^*(\lambda)|| \ge ||x||^{-1} ||T^*(\lambda)(x)||$$

$$= 1 \cdot ||T^*(\lambda)(x)|| = ||\lambda(Tx)|| = ||Tx|| \ge ||T|| - \varepsilon. \blacksquare$$

Let $\mathcal H$ be a real of complex Hilbert space. Then recall that there is an isometric bijection $i:\mathcal H\to\mathcal H^*$ where we identify every $x\in\mathcal H$ with the linear functional $i(x)\coloneqq\langle\cdot,x\rangle$. Therefore, when working on Hilbert spaces it's often convenient to just identify $\mathcal H\cong\mathcal H^*$.

As an example of this, consider any $T\in B(\mathcal{H})$ and define $T'=i^{-1}\circ T^*\circ i$. Then $T'\in B(\mathcal{H})$ as well. Also, since $i\circ T'=T^*\circ i$, we have that:

$$\langle Tx, y \rangle = (i(y))(Tx) = (T^*(i(y)))(x) = (i(T'(y)))(x) = \langle x, T'y \rangle$$

Now by a typical abuse of notation, we just say $T' \cong T^*$.

Note: if $\{e_i\}_{i\in I}$ is an orthonormal basis for \mathcal{H} , then:

$$T_{i,j}^* \coloneqq \langle T^*e_j, e_i \rangle = \overline{\langle e_i, T^*e_j \rangle} = \overline{\langle Te_j, e_i \rangle} \eqqcolon \overline{T_{j,i}}$$

So, if we "expressed T^{\ast} and T as matrices", then T^{\ast} would be the conjugate transpose of T.

We say $T \in B(\mathcal{H})$ is <u>self-adjoint</u> if $T^* = T$.

We say $U \in B(\mathcal{H})$ is <u>unitary</u> if U is an isometric isomorphism. Also, we often denote $\mathrm{Iso}(\mathcal{H})$ as $U(\mathcal{H})$ when working on Hilbert spaces.

<u>Proposition:</u> $U \in B(\mathcal{H})$ is unitary if and only if U is surjective and $\langle Ux, Uy \rangle = \langle x, y \rangle$ for all x, y.

(==)

We know that U is an isometry since $\|Ux\|=\langle Ux,Ux\rangle=\langle x,x\rangle=\|x\|$ for all $x\in\mathcal{H}$. This also proves that U is injective and continuous. And when we then consider that U is also surjective, we know by the open map theorem that U^{-1} is continuous. Hence $U\in U(\mathcal{H})$.

 (\Longrightarrow)

Since U is an isomorphism, we automatically know U is surjective. Meanwhile, to see that U preserves inner products, note that:

$$\langle x, y \rangle = \frac{1}{4} (\|x + y\|^2 - \|x - y\|^2 + i\|x + iy\|^2 - i\|x - iy\|^2)$$

To prove this, note that:

•
$$\frac{\|x+y\|^2 - \|x-y\|^2}{4} = \frac{\|x\|^2 + \langle x,y \rangle + \langle y,x \rangle + \|y\|^2 - \|x\|^2 + \langle x,y \rangle + \langle y,x \rangle - \|y\|^2}{4}$$

$$= \frac{2\langle x,y \rangle + 2\langle y,x \rangle}{4} = \frac{\langle x,y \rangle + \langle y,x \rangle}{2} = \operatorname{Re}(\langle x,y \rangle)$$

•
$$\frac{\|x+iy\|^2 - \|x-iy\|^2}{4} = \frac{\|x\|^2 + \langle x,iy\rangle + \langle iy,x\rangle + \|iy\|^2 - \|x\|^2 + \langle x,iy\rangle + \langle iy,x\rangle - \|iy\|^2}{4}$$
$$= \frac{-2i\langle x,y\rangle + 2i\langle y,x\rangle}{4} = -i\frac{\langle x,y\rangle - \langle y,x\rangle}{2} = \operatorname{Im}(\langle x,y\rangle)$$

And since $\langle x,y\rangle=\mathrm{Re}(\langle x,y\rangle)+\mathrm{Im}(\langle x,y\rangle)i$, our claimed identity falls out. And now it is clear that by preserving norms U also preserves inner products. \blacksquare

 $\underbrace{\text{Proposition:}}_{\left(\Longrightarrow\right)}U\in B(\mathcal{H}) \text{ is unitary iff } U^{-1}=U^{*}.$

Suppose U is unitary. Then for all $x,y\in\mathcal{H}$ we have that:

- $(U^*Ux)(y) = \langle y, U^*Ux \rangle = \langle Uy, Ux \rangle = \langle y, x \rangle = x(y)$,
- $(UU^*x)(y) = \langle y, UU^*x \rangle = \langle U^{-1}y, U^*x \rangle = \langle UU^{-1}y, x \rangle = \langle y, x \rangle = x(y)$

Thus $U^*U(x)=x=UU^*(x)$ for all $x\in\mathcal{H}$. And this proves that $U^{-1}=U^*$.

 (\Longleftrightarrow)

Since U has an inverse, we automatically know that U is surjective. Also note that for any $x,y\in\mathcal{H}$, since $U^*Uy=y$, we have that $\langle x,y\rangle=\langle x,U^*Uy\rangle=\langle Ux,Uy\rangle$.

Suppose X is a measure space and let $\mathcal{H}=L^2(X)$. Then recalling *example 1.2.1* on page 284, let $\varphi\in L^\infty(X)$ and consider the linear operator $M_\varphi\in B(L^2(X))$. Then note for all $f,g\in\mathcal{H}$ that:

$$\langle g, M_{\varphi}^* f \rangle = \langle M_{\varphi} g, f \rangle = \int M_{\varphi} g \overline{f} = \int \varphi g \overline{f} = \int g \overline{\overline{\varphi}} f = \langle g, \overline{\varphi} f \rangle = \langle g, M_{\overline{\varphi}} f \rangle$$

This implies that $M_{\varphi}^*=M_{\overline{\varphi}}.$ So, we are able to say that M_{φ} is self-adjoint iff φ is real a.e. and M_{φ} is unitary iff $|\varphi|=1$ a.e.

(<u>Definition 1.3.1:</u>) Let \mathcal{X} and \mathcal{Y} be normed vector spaces. Then we define the following topologies on $B(\mathcal{X}, \mathcal{Y})$.

- (a) The norm topology on $B(\mathfrak{X}, \mathfrak{Y})$ is the topology defined by the operator norm on B(E,F).
- (b) For all $x \in \mathcal{X}$ define the seminorm $p_x(T) := ||Tx||$ for all $T \in B(\mathcal{X}, \mathcal{Y})$. This is a well-defined seminorm and the family of these seminorms is sufficient on $B(\mathcal{X}, \mathcal{Y})$. The topology generated by that family is the strong operator topology.

(Note that strong operator convergence on $B(\mathcal{X},\mathcal{Y})$ is equivalent to pointwise convergence on \mathcal{X} ...)

(c) For all $x \in \mathcal{X}$ and $\lambda \in \mathcal{Y}^*$ let $p_{x,\lambda}(T) := |\lambda(Tx)|$. By the Hahn-Banach theorem, this defines a sufficient family of seminorms. And the topology generated by that family is the weak operator topology.

(Note that weak operator convergence on $B(\mathcal{X},\mathcal{Y})$ is equivalent to weak pointwise convergence on \mathcal{X} ...)

Note: if $\mathcal{Y}=K$, then both the strong operator topology and the weak operator topology are just the weak* topology on \mathcal{X}^* .

(Example 1.3.2:) Suppose $\mathcal H$ is a Hilbert space with an orthonormal basis $\{e_i\}_{i\in I}$, and let $T,T_n\in B(\mathcal H)$ for all $n\in\mathbb N$ with $\|T_n\|,\|T\|\leq 1$.

- If $T_n \to T$ in operator norm, then $T_n e_i \to T e_i$ uniformly over the $i \in I$.

 This is just because for all $i \in I$ we have that $\|T_n e_i T e_i\| \le \|T_n T\|$ for all n.
- $T_n \to T$ operator strongly if and only if $T_n e_i \to T e_i$ for all $i \in I$.

The (\Longrightarrow) direction is obvious. To prove the converse, we need to show that if $T_ne_i\to Te_i$ for all $i\in I$, then $T_nx\to Tx$ for all $x\in \mathcal{H}$. Fortunately, note that there is some countable collection $\{i_k\}_{k\in\mathbb{N}}$ such that $x=\sum_{k\in\mathbb{N}}\langle x,e_{i_k}\rangle e_{i_k}$ and the latter sum converges absolutely.

Since T and each T_n are continuous, we have that:

$$T(x) = T(\sum_{k \in \mathbb{N}} \langle x, e_{i_k} \rangle e_{i_k}) = \sum_{k \in \mathbb{N}} \langle x, e_{i_k} \rangle T(e_{i_k})$$

And similarly we have $T_n(x) = \sum_{k \in \mathbb{N}} \langle x, e_{i_k} \rangle T_n(e_{i_k}).$

Now, you can use somewhat standard analysis arguments to show $T_n x \to T x$. I'm gonna skip doing that...

• $T_n \to T$ operator weakly if and only if $\langle T_n e_i, e_j \rangle \to \langle T e_i, e_j \rangle$ for all $i, j \in I$.

Once again the (\Longrightarrow) direction is obvious. As for the other direction, we need to show that for any $x,y\in\mathcal{H}$ we have that $\langle T_nx,y\rangle\to\langle Tx,y\rangle$. If I'm inspired, I'll prove this later on page _____. But I'm tired. Goodnight.

10/15/2025

I need to work on math 200a again so I will be taking a break from the math 241a notes. See *page* ____ to skip ahead to more functional analysis notes.

Math 200a (lectures 7-8):

Examples of uses of Sylow's theorems continued:

- Suppose p is prime and |G|=p(p-1). Then there exists $P\lhd G$ such that |P|=p. By Sylow's theorems, we know that $s_p\mid p-1$ and $s_p\equiv 1\pmod p$. Together, that tells us that $s_p=1$. Hence, G has a unique Sylow p-subgroup which we'll call P. Also $P\lhd G$ and |P|=p.
- Suppose p is prime and |G|=p(p+1). Then G has a normal subgroup of order either p or p+1.

We may assume that $s_p \neq 1$ since otherwise we'd know that G has a unique subgroup of order p which is automatically normal.

Now by Sylow's theorems, we have that $s_p \mid p+1$ (which means that $s_p \leq p+1$) and that $s_p \equiv 1 \pmod p$ (which means that $s_p \in \{1, p+1, 2p+1, \ldots\}$). Since we already assumed $s_p \neq 1$, this means that $s_p = p+1$. Hence, we may say that $\mathrm{Syl}_p(G) = \{P_1, \ldots, P_{p+1}\}$.

Now note that each $P_i\cong C_p$ (i.e. each P_i is cyclic with order p). As a consequence, we have that $P_i\cap P_j=\{1\}$ if $i\neq j$. So, let $X:=G-(\bigcup_{i=1}^{p+1}P_i-\{1\})$. Also note that $|X|=p(p+1)-(p+1)(p-1)=p^2+p-p^2+1=p+1$.

Note: For every finite group G, $\bigcup_{P \in \operatorname{Syl}_p(G)} P = \{x \in G : o(x) \text{ is a power of } p\}.$

To see why, first note that if $x \in P \in \operatorname{Syl}_p(G)$, then $o(x) \mid |P| = p^k$ for some $k \in \mathbb{N}$. Hence, the \subseteq inclusion is obvious. Meanwhile, the other inclusion is just a direct application of Sylow's second theorem.

Hence, $X = \{x \in G : o(x) \neq p\}$. And from that we also know $\mathrm{Cl}(x) \subseteq X - \{1\}$ for all $x \in X - \{1\}$.

(As a reminder,
$$\operatorname{Cl}(x) \coloneqq \{gxg^{-1} : g \in G\}$$
...)

Now by Sylow's second theorem, $p+1=s_p=[G:N_G(P_i)]$ for all P_i . But also note that $P_i\subseteq N_G(P_i)$ and $[G:P_i]=p+1$. Hence, $N_G(P_i)=P_i$ for all $P_i\in \operatorname{Syl}_p(G)$. But note that since P_i has prime order, if $y\in P_i-\{1\}$ then $\langle y\rangle=P_i$. Also, note that for any $y\in G$ and positive integer n we have that $C_G(y)\subseteq C_G(y^n)$.

This is because if gy=yg, then $gy^2=ygy=y(yg)=y^2g$. And continuing by induction, if $gy^n=y^ng$, then $gy^{n+1}=y^ngy=y^n(yg)=y^{n+1}g$.

It follows for any $y\in P_i-\{1\}$ that the elements of $C_G(y)$ must commute with all the elements of P_i . So, $C_G(y)\subseteq N_G(P_i)=P_i$. But also since P_i is abelian (since it's cyclic), we have that $P_i\subseteq C_G(y)$. So, $C_G(y)=P_i$ for all $y\in P_i-\{1\}$.

Now from that we also know $C_G(x) \subseteq X$ for all $x \in X - \{1\}$. After all, if $x, y \in G$ then we have that $x \in C_q(y) \iff y \in C_q(x)$.

This is because $x \in C_G(y) \Longrightarrow xy = yx \Longleftrightarrow x \in C_G(y)$.

But we know that any $x\in X-\{1\}$ isn't in $C_G(y)$ for any $y\in\bigcup_{i=1}^{p+1}P_i$. Hence, $C_G(x)\subseteq X=G-\bigcup_{i=1}^{p+1}P_i$.

Now since for $\mathrm{Cl}(x)\subseteq X-\{1\}$ and $C_G(x)\subseteq X$ for all $x\in X-\{1\}$, we in turn know that $|\mathrm{Cl}(x)|\leq p$ and $|C_G(x)|\leq p+1$ for all $x\in X-\{1\}$.

Now by the orbit stabilizer theorem (when considering the action $G \curvearrowright G$ by conjugation), we know $|\operatorname{Cl}(x)| = [G:C_G(x)]$. Also, by Lagrange we have that $|C_G(x)|[G:C_G(x)] = |G| = p(p+1)$. So, $|C_G(x)| \cdot |\operatorname{Cl}(x)| = p(p+1)$. And this implies that $|C_G(x)| = p+1$ and $|\operatorname{Cl}(x)| = p$ for all $x \in X - \{1\}$. Hence, $X = C_G(x)$ and $X - \{1\} = \operatorname{Cl}(x)$ for all $x \in X - \{1\}$.

This proves that X is an abelian normal subgroup of G with order p+1. \blacksquare

As a side note, the case where $s_p=p+1$ is actually going to be really rare. To see this, note that if p is odd, then $2\mid p+1$ and hence there exists $x_0\in X$ such that $o(x_0)=2$ (by *Cauchy's theorem*). But then since $\mathrm{Cl}(x_0)=X-\{1\}$ and conjugation preserves the order of elements, we must have that o(x)=2 for all $x\in X-\{1\}$. And so, by another application of Cauchy's theorem we know that |X| must have no prime factor other than 2. Or in other words, $|X|=2^n$ for some $n\in\mathbb{N}$.

This shows that in the prior example, we can only have that $s_p = p+1$ if p is a Mersenne prime (i.e. a prime number such that $p=2^n-1$ for some $n \in \mathbb{N}$).

An <u>exact sequence</u> is a commutative diagram:

$$G_1 \xrightarrow{f_1} G_2 \xrightarrow{f_2} \dots \xrightarrow{f_k} G_{k+1}$$

where the nodes of the diagram are groups, the arrows are group homomorphisms, and $\operatorname{im}(f_i) = \ker(f_{i+1})$ for all $i \in \{1, \dots, k-1\}$.

If the first and last groups in an exact sequence are trivial, then we call that exact sequence a short exact sequence (or S.E.S.).

If G is a group and $N \triangleleft G$, then the standard S.E.S. is:

$$\{1\} \longrightarrow N \stackrel{i}{\longrightarrow} G \stackrel{\pi}{\longrightarrow} G/N \longrightarrow \{1\}$$

where i is the inclusion map and π is the projection map $x \mapsto xN$.

Note: \longrightarrow denotes an injective (i.e. monomorphic) homormorphism and \longrightarrow denotes a surjective (i.e. epimorphic) homomorphism.

Given two S.E.Ss (which for now I'll just take to have length 5), we say a homomorphism between those S.E.Ss is a ordered collection $(\theta_1,\theta_2,\theta_3)$ of group homomorphisms $\theta_i:G_i\to G_i'$ such that the diagram below commutes:

$$\begin{cases}
1\} & \longrightarrow G_1 \xrightarrow{f_1} G_2 \xrightarrow{f_2} G_3 \longrightarrow \{1\} \\
\theta_1 \downarrow & \theta_2 \downarrow & \theta_3 \downarrow \\
\{1\} & \longrightarrow G'_1 \xrightarrow{f'_1} G'_2 \xrightarrow{f'_2} G'_3 \longrightarrow \{1\}
\end{cases}$$

Short Five Lemma: Suppose $(\theta_1, \theta_2, \theta_3)$ is an S.E.S. homomorphism from one S.E.S to another as shown in the above commutative diagram.

(a) If θ_1 , θ_3 are injective, then so is θ_2 .

Proof:

It suffices to show that $\ker(\theta_2)$ is trivial. So suppose $x_2 \in \ker(\theta_2)$. Then $\theta_3(f_2(x_2)) = f_2'(\theta_2(x_2)) = 1$. And since θ_3 is injective, this implies that $f_2(x_2) = 1$. Hence, $x_2 \in \ker(f_2) = \operatorname{im}(f_1)$.

Now pick $x_1\in G_1$ such that $x_2=f_1(x_1)$. Notably, $f_1'(\theta_1(x))=\theta_2(f_1(x_1))=1$. So, $\theta_1(x)\in \ker(f_1')$. And since $\ker(f_1')=\operatorname{im}(\{1\}\to G_1')$ is trivial, this means that $\theta_1(x_1)=1$. In turn, since θ_1 is injective, $x_1=1$. So, $x_2=f_1(x_1)=f_1(1)=1$.

(b) If θ_1, θ_3 are surjective, then so is θ_2 .

Proof:

Let $x_2'\in G_2'$. Then since θ_3 is surjective, there exists $x_3\in G_3$ such that $\theta_3(x_3)=f_2'(x_2')$. Also, since $\operatorname{im}(f_2)=\ker(G_3\to\{1\})=G_3$, we know there exists $x_2\in G_2$ such that $f(x_2)=x_3$. And now:

$$f_2'(\theta_2(x_2)) = \theta_3(f_2(x_2)) = \theta_3(x_3) = f_2'(x_2')$$

We thus know that $\theta_2(x_2^{-1})x_2' \in \ker(f_2') = \operatorname{im}(f_1')$. Hence, there exists $x_1' \in G_1'$ such that $f_1'(x_1') = \theta_2(x_2^{-1})x_2'$. Also, since θ_1 is surjective, we know there exists $x_1 \in G_1$ such that $\theta_1(x_1) = x_1'$. And now:

$$\theta_2(f_1(x_1)) = f_1'(\theta_1(x_1)) = f_1'(x_1') = \theta_2(x_2^{-1})x_2'.$$

So
$$x_2' = \theta_2(x_2)\theta_2(f_1(x_1)) = \theta_2(x_2f_1(x_1))$$
.

Note that every length five S.E.S. is isomorphic to a standard S.E.S.

Note that $\ker(f_1)=\operatorname{im}(\{1\}\to G_1)=\{1\}$ and so f_1 is injective. It follows that $G_1\cong\operatorname{im}(f_1)=\ker(f_2)$ by the map $x\mapsto f_1(x)$. So, just define $\bar f_1$ to be f_1 with it's codomain restricted.

Meanwhile, note that $\operatorname{im}(f_2)=\ker(G_3\to\{1\})=G_3$. So, by the first isomorphism theorem we have that $G_2/\ker(f_2)\cong G_3$ via the map $x\ker(f_2)\mapsto f_2(x)$. We'll call this map \bar{f}_2 .

Now our claim is that the following diagrams commute:

$$\{1\} \xrightarrow{G_1} \xrightarrow{f_1} G_2 \xrightarrow{f_2} G_3 \xrightarrow{f_2} \{1\}$$

$$\downarrow f_1^{-1} \uparrow \qquad \uparrow \operatorname{Id} \qquad \downarrow f_2 \uparrow \qquad \downarrow f_2 \uparrow \qquad \downarrow f_3 \downarrow \qquad \downarrow f$$

$$\{1\} \longrightarrow G_1 \xrightarrow{f_1} G_2 \xrightarrow{f_2} G_3 \longrightarrow \{1\}$$

$$\downarrow_{\bar{f}_1} \qquad \downarrow_{\mathrm{Id}} \qquad \downarrow_{\bar{f}_2^{-1}}$$

$$\{1\} \longrightarrow \ker(f_2) \xrightarrow{i} G_2 \xrightarrow{\pi} G_2/\ker(f_2) \longrightarrow \{1\}$$

To prove this, it suffices to show that each square commutes (I'll prove this by induction after I'm done with this). Fortunately though, it is easy to see at a glance that each square commutes.

Consider the following diagram:

$$A_{1} \xrightarrow{f_{1}} A_{2} \xrightarrow{f_{2}} \cdots \xrightarrow{f_{n-1}} A_{n} \xrightarrow{f_{n}} A_{n+1}$$

$$\downarrow^{h_{1}} \qquad \downarrow^{h_{2}} \qquad \qquad \downarrow^{h_{n}} \qquad \downarrow^{h_{n+1}}$$

$$B_{1} \xrightarrow{g_{1}} B_{2} \xrightarrow{g_{2}} \cdots \xrightarrow{g_{n-1}} B_{n} \xrightarrow{g_{n}} B_{n+1}$$

To express composing two arrows i and j together (where j starts at where i ends), we write ij. Also, we can identify certain compositions of arrows with each other. For example, we always say (ij)k = i(jk), thus making arrow composition associative. And hence, it is well defined to just write of a composition ijk.

Now we can also identify other arrow compositions with each other. For example, we say a diagram <u>commutes</u> if given any two compositions of arrows $i_1 \cdots i_r$ and $j_1 \cdots j_s$ starting and ending at the same node of our diagram we have that $i_1 \cdots i_r = j_1 \cdots j_s$.

We claim that specifically for the diagram above, the arrows in this diagram commute iff $f_i h_{i+1} = h_i g_i$ for all $i \in \{1, \dots, n\}$.

Proof:

The (\Longrightarrow) implication is trivial. Meanwhile, to show the other implication we proceed by induction. For our base case, we have that the claim is trivial if n=1. Meanwhile, suppose we've already proven our desired claim for a diagram of the form (where $k \le n$):

$$A'_{1} \xrightarrow{f'_{1}} A'_{2} \xrightarrow{f'_{2}} \cdots \xrightarrow{f'_{k-2}} A'_{k-1} \xrightarrow{f'_{k-1}} A'_{k}$$

$$\downarrow^{h_{1}} \qquad \downarrow^{h_{2}} \qquad \qquad \downarrow^{h_{k-1}} \qquad \downarrow^{h_{k}}$$

$$B'_{1} \xrightarrow{g'_{1}} B'_{2} \xrightarrow{g'_{2}} \cdots \xrightarrow{g'_{k-2}} B'_{k-1} \xrightarrow{g'_{k-1}} B'_{k}$$

Then in the n+1 case, by overlaying that smaller diagram we can show that every path from A_{k_1} or B_{k_1} to A_{k_2} or B_{k_2} commutes so long as $k_2-k_1< n$. Hence, we just need to show that any two walks in the diagram from A_1 to A_{n+1} or from A_1 to B_{n+1} or from B_1 to B_{n+1} are considered equivalent. But since there is only one walk from A_1 to A_{n+1} and B_1 to B_{n+1} , the only actual nontrivial thing to prove is that all walks from A_1 to B_{n+1} are considered equivalent.

So consider any walk in our diagram going from A_1 to B_{n+1} . Then we know there exists $r \in \{1, \ldots, n+1\}$ such that the walk is equal to $f_1 \cdots f_{r-1}h_rg_r \ldots g_n$. And then if $r \leq n$, we can say that $f_1 \cdots f_{r-1}(h_rg_r) \ldots g_n = (f_1 \cdots f_{r-1}f_rg_{r+1}g_{r+1} \ldots g_n)$.

By another induction argument, you can thus show that every walk from A_1 to B_{n+1} is considered equivalent to $f_1 \cdots f_n h_{n+1}$.

We say the following S.E.S. <u>splits</u> if there exists a group homomorphism $f:G_3\to G_2$ such that $f_2\circ f=\mathrm{Id}_{G_3}$:

$$1 \longrightarrow G_1 \xrightarrow{f_1} G_2 \xleftarrow{f_2} G_3 \longrightarrow 1$$

Note that we don't necessarily have that $f\circ f_2=\mathrm{Id}_{G_2}$. After all, f_2 is not necessarily injective so it may not have a left inverse. f_2 is always surjective though so the question of whether f exists can be summed up as: does f_2 have a right inverse that's also a group homomorphism.

For more 200a notes, go to *page* _____.

Math 220a (lecture 8):

Using power series we can define more interesting holomorphic functions. For example (and I'm only doing this because I didn't take notes on this in math 140b) let:

- $\exp(z) := \sum_{n=0}^{\infty} \frac{1}{n!} z^n$
- $\cos(z)\coloneqq\sum_{n=0}^\infty\frac{(-1)^n}{(2n)!}z^{2n}$,
- $\sin(z) := \sum_{n=0}^{\infty} \frac{(-1)^n}{(2n+1)!} z^{2n+1}$.

These power series have infinite radii of convergence. To see that, note by a basic induction argument that $(n+k)! \ge k^n$ for all positive integers n,k. Therefore, we can say for all $k \in \mathbb{N}$ that:

$$\limsup_{n\to\infty} \sqrt[n]{\frac{1}{n!}} \leq \limsup_{n\to\infty} \sqrt[n]{\frac{1}{k^{n-k}}} = \limsup_{n\to\infty} \frac{\sqrt[n]{k^k}}{k} = \frac{1}{k}.$$

And by taking $k \to \infty$ we get that all three power series have radius of convergence $1/0 = \infty$.

<u>Lemma:</u> If $G \subseteq \mathbb{C}$ is a region, $f: G \to \mathbb{C}$ is differentiable, and f' = 0 on G, then f equals a constant c.

Proof:

By corollary 9.20 in my math 140c notes, we know that this is true when G is convex. As for the general case, consider that every point in G has a convex neighborhood on which f is constant. So if $A\subseteq G$ is the set of points where f(z)=f(w) for some arbitrary $w\in G$, then we can easily show that A is open. At the same time though, if $f(z')\neq f(w)$, then there must be a neighborhood around z' where $f\neq f(w)$. Hence, A^{C} is open too.

Since G is connected, the only way this is possible is if $A^{\mathsf{C}} = \emptyset$.

Proposition: $\exp(z, w) = \exp(z) \exp(w)$ for all $z, w \in \mathbb{C}$.

Proof:

Fix any $\alpha\in\mathbb{C}$ and note by product and chain rule that:

$$\frac{\mathrm{d}}{\mathrm{d}z}(\exp(z)\exp(a-z)) = \exp(z)\exp(a-z) - \exp(z)\exp(a-z) = 0$$

Thus $\exp(z)\exp(a-z)$ equals some constant. And by plugging in z=0 we can then calculate that this constant is $\exp(a)$. Hence, $\exp(z)\exp(a-z)=\exp(a)$ for all $z,a\in\mathbb{C}$.

To complete the proof, set a = z + w.

Since $\exp(1)=e$ and $\exp(0)=1$, we thus typically just use the abuse of notation that $\exp(z)=e^z$.

Also note that $e^{iz} = \cos(z) + i\sin(z)$ for all $z \in \mathbb{C}$.

I'd love to take more notes on rigorously defining \exp , \cos , and \sin since I never got around to taking notes on that back when I took undergrad real analysis. But unfortunately I don't have time right now. Maybe one day in the future I'll work through it finally.

Math 200a Homework:

Set 3 Problem 2: Suppose G is a finite group, $N \triangleleft G$, and $P \in \operatorname{Syl}_p(N)$. Then $G = N_G(P)N$. Proof:

Note that for any $g\in G$, we have that $gPg^{-1}\subseteq N$ since $P\subseteq N$ and N is normal. That said, we also know for any $P'\in \operatorname{Syl}_p(G)$ that there exists $g\in G$ such that $gPg^{-1}=P'$. Hence, we must have that $\operatorname{Syl}_p(G)=\operatorname{Syl}_p(N)$, and from now on in this proof I'll refer to their common value s_p .

Now we know
$$\frac{|N|}{|N_N(P)|} = [N:N_N(P)] = s_p = [G:N_G(P)] = \frac{|G|}{|N_G(P)|}$$
. It thus follows that $|N_G(P)| = |N_N(P)| \cdot [G:N]$. But also note that $N_N(P) = N_G(P) \cap N$. Therefore: $|N_G(P)N| = \frac{|N_G(P)||N|}{|N_G(P)\cap N|} = \frac{(|N_G(P)\cap N|[G:N])\cdot |N|}{|N_G(P)\cap N|} = [G:N]\cdot |N| = |G|$.

It follows that $N_G(P)N=G$.

Set 3 Problem 6: Suppose p and q are prime numbers and G is a group with $|G|=p^2q$. Prove that G is not simple.

Proof:

Let s_p and s_q denote $|\operatorname{Syl}_p(G)|$ and $|\operatorname{Syl}_q(G)|$ respectively. Now by Sylow's theorems, we have that $s_p \equiv 1 \pmod p$ and that $s_p \in \{1,q\}$. But if $s_p = 1$, then we are already done showing that G is not simple. Hence, we can without loss of generality assume that $s_p = q$ and therefore $p \mid q-1$.

Next, $s_q\equiv 1\pmod q$ and $s_1\in\{1,p,p^2\}$ by Sylow's theorems. But also like before, if $s_q=1$ then we're already done showing that G is not simple. Hence, we shall assume $s_q\ne 1$. In turn, this means that either $q\mid p-1$ (if $s_q=p$) or $q\mid p^2-1=(p-1)(p+1)$ (if $s_q=p^2$). Or equivalently, this means that $q\mid p-1$ or $q\mid p+1$.

But note that if $q \mid p-1$, then $q+1 \leq p$. Yet this contradicts that $p \leq q-1$ (which we know since $p \mid q-1$). Hence, we must instead have that $q \mid p+1$. Firstly, this guarentees that $s_q = p^2$. Secondly, by also considering the fact that $p \mid q-1$, we know that p+1=q. And since p and q are both prime numbers, this must mean that p=2 and q=3.

Finally though, we now have that |G|=12 and that there are $s_q(q-1)=4(3-1)=8$ elements of G with order 3. This is a contradiction since there aren't enough elements leftover for s_p to be greater than 1 and we already assumed $s_p=q=3$.

Set 3 Problem 1: Suppose $p < q < \ell$ are three primes, G is a group, and $|G| = pq\ell$. Then G has a normal Sylow ℓ -subgroup.

Proof:

By Sylow's second theorem, we know that $|\mathrm{Syl}_\ell(G)| =: s_\ell \in \{1, p, q, pq\}$. But we also know by Sylow's third theorem that $s_\ell \equiv 1 \pmod{\ell}$. Since $1 < p, q < \ell$, this means that the only actual options that s_ℓ could be are 1 and pq. In the former case that $s_\ell = 1$, we'd already be done since the unique $L \in \mathrm{Syl}_\ell(G)$ would automatically be normal. Hence, we'll instead assume for the sake of contradiction that $s_\ell = pq$.

Next note that for any two distinct $L, L' \in \operatorname{Syl}_{\ell}(G)$, since L and L' are cyclic with prime order, we must have that $L \cap L' = \{1\}$. It follows that if $X = G - \bigcup_{L \in \operatorname{Syl}_{\ell}(G)} (L - \{1\})$ then we have that $|X| = pq\ell - pq(\ell - 1) = pq$. But also since X contains precisely the elements of G with order not equal to ℓ , we know that any Sylow q-groups must be entirely contained in X.

We now consider $|\mathrm{Syl}_q(G)| =: s_q$. By Sylow's theorems, we have that $s_1 \equiv 1 \pmod q$ and that $s_q \in \{1, p, \ell, p\ell\}$. But since $1 , we automatically can rule out that <math>s_q = p$. By a slightly more involved argument, we can also rule out that $s_q = \ell$ or $p\ell$.

To see why, note that for any distinct $Q,Q'\in \operatorname{Syl}_q(G)$, since Q and Q' are cyclic with prime order, we must have that $Q\cap Q'=\{1\}$. Hence, if $Y-\bigcup_{Q\in\operatorname{Syl}_q(G)}Q$, then we must have that $|Y|=s_q(q-1)+1$.

But also note that $Y\subseteq X$ and therefore $|Y|\leq |X|=pq$. Hence, we must have that $pq\geq s_1(q-1)+1\geq s_1p+1$ (where the last inequality follows since q>p). And thus s_1 equaling ℓ or ℓp (which are both greater than q) would be a contradiction.

It follows that $s_q=1$ and hence there is a unique group $Q\in \operatorname{Syl}_q(G)$ which is automatically normal. And to finish off our proof, we now consider the subgroups QL_1 and QL_2 of G where L_1 and L_2 are distinct groups in $\operatorname{Syl}_\ell(G)$. Note that QL_i is a group for both i since $Q\lhd G$. Also, once again since Q and L_i are distinct cyclic groups of prime order, we know that $Q\cap L_i=\{1\}$ for both i. Hence $|QL_1|=|QL_2|=ql$.

Since $(QL_1)\cap (QL_2)$ is a subgroup of QL_1 , we know $|(QL_1)\cap (QL_2)|\in \{1,q,\ell,q\ell\}$. However, we also know that $(QL_1)(QL_2)\subseteq G$ and hence:

$$|(QL_1)(QL_2)| = \frac{q^2\ell^2}{|(QL_1)\cap (QL_2)|} \le |G| = pql.$$

Since $q^2\ell^2$, $q\ell^2$, and $q^2\ell$ are all greater than $pq\ell$, it must be that $|(QL_1)\cap (QL_2)|=q\ell$. But that implies that $QL_1=QL_2$, which in turn gives us a different contradiction. After all, since $QL_1=QL_2$ is a group and $L_1,L_2\subseteq QL_1=QL_2$, we have that $L_1L_2\subseteq QL_1$. However, we already went over that $L_1\cap L_2=\{1\}$. Hence $|L_1L_2|=\ell^2$ and we've shown that $\ell^2=|L_1L_2|\leq |QL_1|=q\ell$. But that contradicts that $q<\ell$.

Set 3 Problem 7:

(a) Suppose $N \triangleleft G$ and K is a characteristic subgroup of N. Then $K \triangleleft G$.

Since $N \lhd G$, we know that conjugation by x is an automorphism of N for all $x \in G$. And since K is a characteristic subgroup of N, this means that $xKx^{-1} = K$ for all $x \in G$. Hence, $K \lhd G$.

(b) We say a group is <u>characteristically simple</u> if the only characteristic subgroups of H are 1 and H. Suppose N is a *minimal* normal subgroup of G, meaning that if M < N and $M \lhd G$ then $M = \{1\}$ or N. Then N is characteristically simple.

Let M be a characteristic subgroup of N. Then by part (a) we know that $M \lhd G$. And since N is minimally normal, then means that either $M = \{1\}$ or M = N.

Math 220a Homework:

Exercise II.5.7: Let G be an open subset of $\mathbb C$ and P be a polygon (recall the definition on *page 247* of my journal) in G going from a to b. Then show that there is a polygon $Q\subseteq G$ from a to b which is composed of line segments which are parallel to either the real or imaginary axes.

For now, we'll just focus on the case that P is a line segment [a,b]. Then note that [a,b] is precisely the image of the map f(t) = tb + (1-t)a from $[0,1] \subseteq \mathbb{R}$.

Since f is continuous and [0,1] is compact, it follows that [a,b] is compact as well and that f is actually uniformly continuous. So firstly, for every $z\in [a,b]$ consider picking $r_z>0$ such that the open ball $B_{r_z}(z)\subseteq G$. Then let $\mathcal U$ be an open cover of [a,b] consisting of smaller balls: $\{B_{\frac{r_z}{3}}(z):z\in [a,b]\}$.

By the Lebesgue number lemma, we know there is some $\varepsilon>0$ such that whenever $w_1,w_2\in[a,b]$ satisfy that $|w_1-w_2|<\varepsilon$, then w_1,w_2 are contained in a single ball $B_{\frac{r_z}{3}}(z)$. And importantly in that case, if $w_1=x_1+iy_1$ and $w_2=x_2+iy_2$, then the polygon $[x_1+iy_1,x_2+iy_1,x_2+iy_2]$ going from w_1 to w_2 is contained in G and clearly consists of line segments parallel to the real and imaginary axes.

Why? Since $B_{r_z}(z)$ is convex, it suffices to show that $x_2+iy_1\in B_{r_z}(z)$. But luckily, note that:

$$\begin{aligned} |x_2 + iy_1 - z| &= |x_2 - x_1 + x_1 + iy_1 - z| \\ &\leq |\text{Re}(w_2 - w_1)| + |w_1 - z| \\ &\leq |w_2 - w_1| + |w_1 - z| \leq |w_2 - z| + 2|w_1 - z| < 3\frac{r_z}{3} = r_z \end{aligned}$$

Next, using the uniform continuity of f, pick $\delta>0$ such that $|f(t_2)-f(t_1)|<\varepsilon$ when $|t_2-t_1|\leq \delta$. In particular, this means that if $n\in\mathbb{N}$ satisfies that $n\delta\leq 1$ but $(n+1)\delta>1$, then we apply the above observation to the points $f(0)=a,f(\delta),f(2\delta),\ldots,f(n\delta),$ f(1)=b to construct a polygon from a to b contained in G which consists of 2(n+1) line segments parallel to either the real or imaginary axes.

To generalize this to when the polygon P isn't a single line segment, just apply the prior reasoning to each line segment making up P.

Exercise II.6.1: Let $(f_n)_{n\in\mathbb{N}}$ be a sequence of uniformly continuous functions from the metric space (X,d) to the metric space (Ω,p) , and suppose $f_n\to f$ uniformly. Then f is uniformly continuous.

Proof:

For any $\varepsilon>0$ pick $n\in\mathbb{N}$ such that $p(f(x),f_n(x))<\varepsilon/3$ for all $x\in X$. Then since f_n is uniformly continuous, pick $\delta>0$ such that $p(f_n(x),f_n(y))<\varepsilon/3$ whenever $d(x,y)<\delta$. Then, we can see that $p(f(x), f(y)) < \varepsilon$ whenever $d(x, y) < \delta$. Hence f is uniformly continuous.

Furthermore, if each f_n is a Lipschitz function with constant M_n and $\sup M_n < \infty$, then f is a Lipschitz function.

Proof:

Pick $M \ge \sup M_n$ and then note for all $n \in \mathbb{N}$ that:

$$p(f(x), f(y)) \le p(f(x), f_n(x)) + p(f_n(x), f_n(y)) + p(f(y), f_n(y)) \le p(f(x), f_n(x)) + Md(x, y) + p(f(y), f_n(y))$$

And by taking $n \to \infty$ we get that $p(f(x), f_n(x)) \to 0$ and $p(f(y), f_n(y)) \to 0$. Hence $p(f(x), f(y)) \leq Md(x, y).$

Finally, if $\sup M_n = \infty$ then f can fail to be Lipschitz.

Let $X=[0,\infty)$, $\Omega=\mathbb{R}$, and define $f_n(x):=\sqrt{x+\frac{1}{n}}$ for all $x\in X$ and $n\in\mathbb{N}$. Our first claim is that $f_n \to f$ uniformly where $f(x) = \sqrt[4]{x}$.

To see this, note that for all
$$x\in X$$
 and $n\in\mathbb{N}$ that:
$$\left(\sqrt{x+\frac{1}{n}}-\sqrt{x}\right)^2=2x+\frac{1}{n}-2\sqrt{x^2+\frac{x}{n}}\leq \frac{1}{n}.$$

Hence $|f_n(x) - f(x)| < n^{-1/2}$ for all $n \in \mathbb{N}$ and $x \in X$.

Next, we claim that each f_n is Lipschitz on X with the the constant $\frac{\sqrt{n}}{2}$. To see this, note that $f_n'(x)=\frac{1}{2\sqrt{x+\frac{1}{n}}}$ for all $x\in X$.

It follows that $f_n'(x)$ attains a maximum of $\frac{\sqrt{n}}{2}$ at x = 0. And by the mean value theorem it follows that $\frac{\sqrt{n}}{2}$ is a Lipschitz constant for f on X.

That said, $\frac{\sqrt{n}}{2} \to \infty$ as $n \to \infty$. Also note that f is not Lipschitz on X.

To see this, note that f is differentiable when $x \neq 0$ and that $f'(x) = \frac{1}{2}x^{-1/2}$. But now $f'(x) \to 0$ as $x \to 0$. Hence for any M > 0 there is some interval $[a, b] \subseteq X$ such that f'(x) > M for all $x \in [a,b]$. And in turn, by the mean value theorem we have that |f(b)-f(a)|>M|b-a|. So, M cannot be a Lipschitz constant for f and this proves f isn't Lipschitz.

Exercise III.1.5: If $(a_n)_{n\in\mathbb{N}}$ is a convergent sequence in \mathbb{R} and $a=\lim a_n$, show that $a = \lim \inf a_n = \lim \sup a_n$.

To start off, how the hell is this a grad level problem? Like god I know the professor said that he reviews everything cause "A IOt Of PeOpLe ArE rUsTy" or something. But it's not his job to unrust us! Literally, I would argue that since math 140c is a prerequisite for this class, the professor should be obligated to assume we all have a working proficiency at undergrad real-analysis. Otherwise, why not just make the class have zero prerequisites?

Anyways the definition of \liminf and \limsup which Conway gives is that:

$$\liminf a_n = \lim_{n \to \infty} \inf_{k \ge n} a_k \text{ and } \limsup a_n = \lim_{n \to \infty} \sup_{k \ge n} a_k.$$

Now let $\varepsilon>0$ and note that because $a_n\to a$ as $n\to\infty$, we know there exists $N\in\mathbb{N}$ such that $a-\varepsilon< a_n< a+\varepsilon$ for all $n\ge N$. Hence $\inf\{a_n,a_{n+1},\ldots\}\ge a-\varepsilon$ and $\sup\{a_n,a_{n+1},\ldots\}\le a+\varepsilon$ for all $n\ge N$.

This in turn means that $\liminf a_n \geq a - \varepsilon$ and $\limsup a_n \leq a + \varepsilon$ for any $\varepsilon > 0$. Taking $\varepsilon \to 0$ and noting that $\liminf a_n \leq \limsup a_n$ just by comparison test, we have that: $a \leq \liminf a_n \leq \limsup a_n \leq a$.

Exercise III.1.7: Show that the radius of convergence of the power series $f(z) = \sum_{n=1}^{\infty} \frac{(-1)^n}{n} z^{n(n+1)}$ is 1 and discuss convergence for z=1, -1, and i.

Firstly, consider the power series $g(z)=\sum_{n=1}^{\infty}\frac{(-1)^n}{n}z^n$ since it's simpler than f. Importantly, $|\frac{(-1)^n}{n}|^{1/n}=\frac{1}{\sqrt[n]{n}}\to 1$ as $n\to\infty$. Hence, the radius of convergence of g is $1^{-1}=1$.

This in turn also tells us that the radius of convergence of f is 1. After all, if |z|<1 then $|z^{n(n+1)}|\leq |z|^n$ and so we know by comparison test with g(|z|) that f(z) converges. So, the radius of convergence of f is at least 1. Meanwhile, if |z|>1 then $|z^{n(n+1)}|\geq |z|^n$ and so by comparison test with g(|z|) we know that f(z) doesn't absolutely converge. Hence, the radius of convergence is at most |z| for any $z\in\mathbb{C}$ with |z|>1.

Next we examine the convergence of f(1), f(-1), and f(i).

- f(1) is the alternating harmonic series. So it converges but not absolutely to ln(2).
- $f(-1)=\sum_{n=1}^{\infty}\frac{1}{n}(-1)^n(-1)^{n(n+1)}=\sum_{n=1}^{\infty}\frac{1}{n}(-1)^{n(n+2)}$. But no matter if n is even or odd, n(n+2) is even. So $(-1)^{n(n+2)}=1$ and thus f(-1) is the harmonic series which diverges.
- $f(i) = \sum_{n=1}^{\infty} \frac{1}{n} i^{2n} i^{n(n+1)} = \sum_{n=1}^{\infty} \frac{1}{n} i^{n(n+3)} = \sum_{n=1}^{\infty} \frac{1}{n} (-1)^{\psi(n)}$ where $\psi(n) = 0$ if $n \equiv 0$ or $1 \pmod 4$ and $\psi(n) = 1$ otherwise. In other words:

$$f(i) = 1 - \frac{1}{2} - \frac{1}{3} + \frac{1}{4} + \frac{1}{5} - \frac{1}{6} - \cdots$$

Now note that the partial sums $\sum_{k=1}^n (-1)^{\psi(k)}$ are bounded between -1 and 1. Also, $(\frac{1}{n})_{n\to\infty}$ is a decreasing sequence of nonnegative numbers converging to 0. Therefore, by the result below from my math 140a notes we know that f(i) converges (although again not absolutely).

Proposition 57: If the partial sums of Σa_n are bounded and we have a sequence $b_0 \geq b_1 \geq b_2 \geq \cdots$ such that $b_n \to 0$, then $\sum a_n b_n$ will converge. Proof: Set $A_n = \sum_{k=0}^n a_k$. Then pick M>0 such that $\forall n, \;\; |A_n| < M$.

Given $\varepsilon > 0$, pick N with $b_N < \frac{\varepsilon}{2M}$. Then when $q \geq p \geq N$, we have:

$$\left| \sum_{n=p}^{q} a_n b_n \right| = \left| \sum_{n=p}^{q-1} A_n (b_n - b_{n+1}) + A_q b_q - A_{p-1} b_p \right|$$

$$\leq \sum_{n=p}^{q-1} |A_n| (b_n - b_{n+1}) + |A_q| b_q + |A_{p-1}| b_p$$

$$\leq M(b_p - b_q + b_q + b_p) = 2M b_p \leq 2M b_N < \varepsilon$$

Exercise III.2.1: Show that $f(z) = |z|^2$ is complex differentiable only at the origin.

Identify $\mathbb C$ with $\mathbb R$ and consider f as the function $f(x,y)=(x^2+y^2,0)$ going from $\mathbb R^2$ to $\mathbb R^2$. Then $f\in C^\infty(\mathbb R^2)$ with a derivative matrix $(\begin{smallmatrix}2x&2y\\0&0\end{smallmatrix})$. Now for f to satisfy the Cauchy-Riemann equations (see the theorem on *page 296*) at a point (x,y), we must have that 2x=0 and -2y=0. Hence the only point where f is complex differentiable is at (0,0)=0+i0.

Exercise III.2.3: Show that $\lim_{n\to\infty} n^{1/n} = 1$.

If you want to prove this theorem without using logarithms (because you hadn't defined logarithms yet when you first relied on this fact), then here is the proof from math 140a:

(C)
$$\sqrt[n]{n} \to 1$$

Proof:

Let $x_n = \sqrt[n]{n} - 1$. Then $x_n \ge 0$ and by the binomial theorem:

$$\frac{n(n-1)}{2}(x_n)^2 \le \sum_{k=0}^n \binom{n}{k} (x_n)^k = (x_n+1)^n = n$$

Then we have that $0 \le x_n \le \sqrt{\frac{2n}{n(n-1)}} = \sqrt{\frac{2}{n-1}}$ when $n \ge 2$.

Now,
$$\sqrt{rac{2}{n-1}}
ightarrow 0$$
.

Proof: Let
$$\varepsilon>0$$
 . Then $\sqrt{\frac{2}{n-1}}<\varepsilon$ whenever $n>1+\frac{2}{\varepsilon^2}$.

Therefore, by proposition 43, we know that $x_n \to 0$. So finally, we conclude that:

$$\sqrt[n]{n} \to \lim_{n \to \infty} (x_n) + 1 = 0 + 1$$

If you are willing to rely on logarithms and calculus though, then here is a slicker proof: Note that $\log(n^{1/n}) = \frac{1}{n}\log(n)$ for all n. Then by L'Hôpital's rule we have that $\lim_{x\to\infty} x^{-1}\log(x) = \lim_{x\to\infty} (1)^{-1}\frac{1}{n} = 0$. And hence $\log(n^{1/n}) \to 0$ as $n\to\infty$.

Finally, since \exp is continuous, we have that $n^{1/n} = \exp(\log(n^{1/n})) \to \exp(0) = 1$ as $n \to \infty$.

Exercise III.2.19: Let G be a region and define $G^*=\{z:\overline{z}\in G\}$. If $f:G\to\mathbb{C}$ is holomorphic prove that $f^*:G^*\to\mathbb{C}$ defined by $f^*(z)=\overline{f(\overline{z})}$ is also holomorphic.

Once again identify $\mathbb C$ with $\mathbb R^2$ and write f as f(x,y)=(u(x,y),v(x,y)). Then we have that $f^*(x,y)=(u(x,-y),-v(x,-y))$. And since f is C^1 , we can calculate that the derivative matrix of f^* is $\mathrm D(f^*)=\left(\begin{smallmatrix} u_x(x,-y)&-u_y(x,-y)\\-v_x(x,-y)&v_y(x,y)\end{smallmatrix}\right)$.

Firstly, this shows that f^* is also C^1 since all the partial derivatives of f^* are continuous. Also, this shows that if f satisfies the Cauchy-Riemann ewquations, then so does f^* . Hence f being holomorphic on G implies f^* is as well.