Politecnico di Bari

Analisi Matematica – modulo B – Corsi B e C

Appello 16 gennaio 2017 A.A. 2016/2017 Traccia A

Cognome	_Nome	_Nº Matricola	_Corso

1) Dimostrare che

$$\exists \lim_{b \to +\infty} \int_0^b \frac{\sin x}{x} \mathrm{d}x \in \mathbb{R}.$$

6 pts.

2) Determinare la soluzione del problema di Cauchy:

$$\begin{cases} y' = \frac{e^{y-1}}{x^2 - 1} \\ y(0) = 1 \end{cases}$$

8 pts.

Stabilire se la funzione $f(x,y) = \sin\left(\frac{x-y}{x+y}\pi\right)$ ammette limite nel punto (0,0). Stabilire poi se f è differenziabile in $(x_0,y_0)=(1,0)$ e, in caso positivo, determinare l'equazione del piano tangente al suo grafico nel punto $(x_0, y_0, f(x_0, y_0))$.

9 pts.

4) Calcolare

$$\int_{A} (x+y)\sin x \mathrm{d}x \mathrm{d}y,$$

dove A è l'insieme rappresentato in grigio in figura:

Politecnico di Bari

Analisi Matematica – modulo B – Corsi B e C A.A. 2016/2017 Appello 16 gennaio 2017 Traccia B

				_
Cognome	Nome	Νo	Matricola(Corso
cognome_	_1101116	_, ,	Watircola	_0130

1) Enunciare e dimostrare il teorema di confronto per la convergenza di $\int_a^b f(x) dx$, essendo f una funzione non-negativa, definita in [a, b) e integrabile su ogni intervallo [a, c], $c \in [a, b)$.

6 pts.

2) Determinare l'integrale generale dell'equazione:

$$y'' + 2y = \sin(\sqrt{2}x).$$

8 pts.

3) Stabilire se la funzione $f(x,y) = \cos\left(\frac{x^2 + y^2}{x^2 - y^2}\pi\right)$ ammette limite nel punto (0,0). Stabilire poi se f è differenziabile in $(x_0,y_0) = (0,1)$ e, in caso positivo, determinare l'equazione del piano tangente al suo grafico nel punto $(x_0,y_0,f(x_0,y_0))$.

9 pts.

4) Calcolare

$$\int_{A} |x| y^2 \mathrm{d}x \mathrm{d}y,$$

dove A è l'insieme rappresentato in grigio in figura:

Politecnico di Bari Analisi Matematica – modulo B – Corsi B e C A.A. 2016/2017 Appello 16 gennaio 2017 Traccia C

Cognome	_Nome	_Nº Matricola	.Corso
998			

1) Sia $f \in C^0([a, +\infty))$. Dimostrare che se $\lim_{x \to +\infty} f(x) = l > 0$ allora $\int_a^{+\infty} f(x) dx = +\infty$.

6 pts.

2) Determinare l'integrale generale dell'equazione:

$$y'' - 3y' = x - e^x.$$

8 pts.

3) Stabilire se la funzione $f(x,y) = \arctan\left(\frac{2x-y}{2x+y}\right)$ ammette limite nel punto (0,0). Stabilire poi se f è differenziabile in $(x_0,y_0)=(1,0)$ e, in caso positivo, determinare l'equazione del piano tangente al suo grafico nel punto $(x_0,y_0,f(x_0,y_0))$.

9 pts.

4) Calcolare

$$\int_{A} (y-1) \mathrm{d}x \mathrm{d}y,$$

dove A è l'insieme rappresentato in grigio in figura:

$$A = A_1 UA_2$$
 C_1 arcs della circonferenza
di cutro $O_1(-1,1)$ e raggis 1
 C_2 arcs della
 C_3 rous della
 C_4 rous della
 C_5 circonferenza di
 C_6 cutro $O_2(1,1)$ e raggis 1

Politecnico di Bari Analisi Matematica – modulo B – Corsi B e C A.A. 2016/2017 Appello 16 gennaio 2017 Traccia D

_	8.1	NIO NA L	
Cognome	Nome	Nº Matricola	Corso

1) Dimostrare che se una funzione non-negativa $f \in C^0([a,b))$, $b \in \mathbb{R}$, è un infinito di ordine $\alpha > 1$ per $x \to b^-$ allora $\int_a^b f(x) dx = +\infty$..

6 pts.

2) Determinare la soluzione del problema di Cauchy:

$$\begin{cases} y' = y + (x - 1)^2 \\ y(1) = e \end{cases}$$

8 pts.

3) Stabilire se la funzione $f(x,y) = \left(\frac{x+2y}{x-2y}\right)^{2/5}$ ammette limite nel punto (0,0). Stabilire poi se f è differenziabile in $(x_0,y_0) = (0,1)$ e, in caso positivo, determinare l'equazione del piano tangente al suo grafico nel punto $(x_0,y_0,f(x_0,y_0))$.

9 pts.

4) Calcolare

$$\int_A y^2 \mathrm{d}x \mathrm{d}y,$$

dove A è l'insieme rappresentato in grigio in figura:

A = A_A UA₂

P_A aror della parabola

oli vertice (-1,0)

e asse parallelo all'asse delle y

Oli vertice (1,0)

e asse parallelo all'asse delle y

entrembe le parabole

passanti per per il punto

(0,1)