

Art of Problem Solving 2007 USA Team Selection Test

USA Team Selection Test 2007

Day 1	
1	Circles ω_1 and ω_2 meet at P and Q . Segments AC and BD are chords of ω_1 and ω_2 respectively, such that segment AB and ray CD meet at P . Ray BD and segment AC meet at X . Point Y lies on ω_1 such that $PY \parallel BD$. Point Z lies on ω_2 such that $PZ \parallel AC$. Prove that points Q, X, Y, Z are collinear.
2	Let n be a positive integer and let $a_1 \leq a_2 \leq \cdots \leq a_n$ and $b_1 \leq b_2 \leq \cdots \leq b_n$ be two nondecreasing sequences of real numbers such that
	$a_1 + \dots + a_i \le b_1 + \dots + b_i$ for every $i = 1, \dots, n$
	and $a_1 + \dots + a_n = b_1 + \dots + b_n.$
	Suppose that for every real number m , the number of pairs (i, j) with $a_i - a_j = m$ equals the numbers of pairs (k, ℓ) with $b_k - b_\ell = m$. Prove that $a_i = b_i$ for $i = 1, \ldots, n$.
3	Let θ be an angle in the interval $(0, \pi/2)$. Given that $\cos \theta$ is irrational, and that $\cos k\theta$ and $\cos[(k+1)\theta]$ are both rational for some positive integer k , show that $\theta = \pi/6$.
Day 2	
4	Determine whether or not there exist positive integers a and b such that a does not divide $b^n - n$ for all positive integers n .
5	Triangle ABC is inscribed in circle ω . The tangent lines to ω at B and C meet at T . Point S lies on ray BC such that $AS \perp AT$. Points B_1 and C_1 lie on ray ST (with C_1 in between B_1 and S) such that $B_1T = BT = C_1T$. Prove that triangles ABC and AB_1C_1 are similar to each other.
6	For a polynomial $P(x)$ with integer coefficients, $r(2i-1)$ (for $i=1,2,3,\ldots,512$) is the remainder obtained when $P(2i-1)$ is divided by 1024. The sequence
	$(r(1),r(3),\ldots,r(1023))$

Contributors: N.T.TUAN, rrusczyk

Art of Problem Solving

2007 USA Team Selection Test

is called the *remainder sequence* of P(x). A remainder sequence is called *complete* if it is a permutation of $(1, 3, 5, \ldots, 1023)$. Prove that there are no more than 2^{35} different complete remainder sequences.

These problems are copyright © Mathematical Association of America (http://maa.org).

www.artofproblemsolving.com/community/c4637

Contributors: N.T.TUAN, rrusczyk