### 강의교안 이용 안내

- 본 강의교안의 저작권은 김영길과 한빛아카데미㈜에 있습니다.
- 이 자료를 무단으로 전제하거나 배포할 경우 저작권법 136조에 의거하여 벌금에 처할 수 있고 이를 병과(倂科)할 수도 있습니다.







## CHAPTER 11

## 정보 이론과 부호 이론

# 기초 통신이론

디지털 통신 중심으로



## Contents

- 11.1 엔트로피
- 11.2 결합 엔트로피와 조건부 엔트로피
- 11.3 채널 용량
- 11.4 데이터 압축

- 11.5 블록 부호
- 11.6 생성 행렬과 패리티 체크 행렬
- 11.7 표준 배열 복호화와 신드롬
- 11.8 컨볼루션 부호



확률변수 X의 엔트로피 H(X)

$$H(X) = -\sum_{i=1}^{m} p(x_i) \cdot \log_2 p(x_i)$$
 (11.1)



#### 예제 11-1

다음과 같은 pmf를 갖는 베르누이 확률변수 X의 엔트로피 H(X)를 구하시오.

$$X = \begin{cases} 1, & P(X=1) = p \\ 0, & P(X=0) = 1 - p \end{cases}$$

#### 풀이

 $H(X) = -\sum_{i=1}^m p(x_i) \cdot \log_2 p(x_i)$ 이므로  $H(X) = -p \log_2 p - (1-p) \log_2 (1-p)$ 가 된다. 베르누이 확률변수의 엔트로피 H(X)를 H(p)로 쓰고, 이진 엔트로피 함수 binary entropy function라고 부른다.

이진 엔트로피 함수 H(p)는 [그림 11-2]와 같다.



[그림 11-2] 이진 엔트로피 함수

$$H(p) = -p \log_2 p - (1-p) \log_2 (1-p)$$

#### 예제 11-2

다음 확률변수 X의 엔트로피 H(X)를 구하시오.

$$X = \begin{cases} a, P(X=a) = \frac{1}{2} \\ b, P(X=b) = \frac{1}{4} \\ c, P(X=c) = \frac{1}{4} \end{cases}$$

$$H(X) = \sum_{i=1}^m p(x_i) \cdot \log_2 \frac{1}{p(x_i)}$$
이므로  $H(X)$ 는 다음과 같다.

$$H(X) = \frac{1}{2}\log_2 2 + \frac{1}{4}\log_2 4 + \frac{1}{4}\log_2 4$$
$$= \frac{1}{2} + \frac{1}{2} + \frac{1}{2} = \frac{3}{2} \text{ bits/symbol}$$



#### • 결합 엔트로피

$$H(X,Y) = -\sum_{i=1}^{m} \sum_{j=1}^{n} p(x_i, y_j) \cdot \log_2 p(x_i, y_j)$$
 (11.3)

#### • 조건부 엔트로피

$$H(Y|X) = \sum_{i=1}^{m} p(x_i) \cdot H(Y|X = x_i)$$

$$= -\sum_{i=1}^{m} p(x_i) \sum_{j=1}^{n} p(y_j|x_i) \cdot \log_2 p(y_j|x_i)$$

$$= -\sum_{i=1}^{m} \sum_{j=1}^{n} p(x_i, y_j) \cdot \log_2 p(y_j|x_i)$$

$$= -E[\log_2 p(Y|X)]$$
(11.4)

$$\begin{split} H(X, \ Y) &= -\sum_{i=1}^{m} \sum_{j=1}^{n} p(x_i, \ y_j) \cdot \log_2 p(x_i, \ y_j) \\ &= -\sum_{i=1}^{m} \sum_{j=1}^{n} p(x_i, \ y_j) \cdot \log_2 \left[ p(x_i) \, p(y_j \, | \, x_i) \right] \\ &= -\sum_{i=1}^{m} \sum_{j=1}^{n} p(x_i, \ y_j) \cdot \log_2 p(x_i) - \sum_{i=1}^{m} \sum_{j=1}^{n} p(x_i, \ y_j) \cdot \log_2 p(y_j \, | \, x_i) \\ &= -\sum_{i=1}^{m} p(x_i) \cdot \log_2 p(x_i) - \sum_{i=1}^{m} \sum_{j=1}^{n} p(x_i, \ y_j) \cdot \log_2 p(y_j \, | \, x_i) \\ &= H(X) + H(Y \, | \, X) \end{split}$$

#### 예제 11-3

[표 11-1]과 같이 확률변수 X, Y의 joint pmf가 주어질 때, 다음을 구하시오.

#### [丑 11-1]

| Y $X$ | 1              | 2              | 3              |
|-------|----------------|----------------|----------------|
| 1     | $\frac{1}{8}$  | $\frac{3}{16}$ | $\frac{1}{16}$ |
| 2     | $\frac{1}{16}$ | $\frac{1}{8}$  | $\frac{1}{16}$ |
| 3     | $\frac{1}{16}$ | $\frac{1}{16}$ | $\frac{1}{4}$  |

- (a) H(X), H(Y) (b) H(X|Y) (c) H(X, Y)

### 풀이

(a) 확률변수 X의 pmf는  $\left(\frac{1}{4}, \frac{3}{8}, \frac{3}{8}\right)$ 이고, 확률변수 Y의 pmf는  $\left(\frac{3}{8}, \frac{1}{4}, \frac{3}{8}\right)$ 이다. 그러므로 H(X)는 다음과 같다.

$$H(X) = -\frac{1}{4}\log_2\frac{1}{4} - \frac{3}{8}\log_2\frac{3}{8} - \frac{3}{8}\log_2\frac{3}{8} = \frac{11}{4} - \frac{3}{4}\log_23$$

확률변수 Y는 확률변수 X와 같은 형태의 pmf를 가지므로  $H(Y) = \frac{11}{4} - \frac{3}{4} \log_2 3$ 이 된다.

(b) 
$$H(X|Y) = \sum_{i=1}^{3} p(Y=i)H(X|Y=i)$$
  
=  $\frac{3}{8}H\left(\frac{1}{3}, \frac{1}{2}, \frac{1}{6}\right) + \frac{1}{4}H\left(\frac{1}{4}, \frac{1}{2}, \frac{1}{4}\right) + \frac{3}{8}H\left(\frac{1}{6}, \frac{1}{6}, \frac{2}{3}\right)$ 

$$H(X|Y) = \frac{3}{8} \left( \frac{2}{3} + \frac{1}{2} \log_2 3 \right) + \frac{1}{4} \left( \frac{3}{2} \right) + \frac{3}{8} \left( \log_2 3 - \frac{1}{3} \right) = \frac{1}{2} + \frac{9}{16} \log_2 3$$

(c) 
$$H(X, Y) = H(Y) + H(X|Y) = \frac{11}{4} - \frac{3}{4}\log_2 3 + \frac{1}{2} + \frac{9}{16}\log_2 3 = \frac{13}{4} - \frac{3}{16}\log_2 3$$

#### • 상호 정보량

$$I(X; Y) = \sum_{i=1}^{m} \sum_{j=1}^{n} p(x_i, y_j) \cdot \log_2 \frac{p(x_i|y_j)}{p(x_i)}$$

$$= -\sum_{i=1}^{m} \sum_{j=1}^{n} p(x_i, y_j) \cdot \log_2 p(x_i) + \sum_{i=1}^{m} \sum_{j=1}^{n} p(x_i, y_j) \cdot \log_2 p(x_i|y_j)$$

$$= -\sum_{i=1}^{m} p(x_i) \cdot \log_2 p(x_i) - \left(-\sum_{i=1}^{m} \sum_{j=1}^{n} p(x_i, y_j) \cdot \log_2 p(x_i|y_j)\right)$$

$$= H(X) - H(X|Y)$$
(11.9)



$$C = \max_{p(x)} I(X;Y)$$
 (11.10)

#### 예제 11-4

[그림 11-4]의 이진 대칭 채널<sup>binary symmetric channel</sup>에서 채널 용량 C를 구하시오. 단, P(X=0)=1-p이고 P(X=1)=p이다.



[그림 11-4] 이진 대칭 채널( $P(Y=1|X=0)=P(Y=0|X=1)=\epsilon$ )

풀이

$$\begin{split} H(\,Y|X) &= \sum_{i\,=\,1}^m p(\,x_i)\, \boldsymbol{\cdot}\, H(\,Y|X \!\!=\! x_i) \\ &= (1 \!-\! p)\, \boldsymbol{\cdot}\, H(\,Y|X \!\!=\! 0) + p\, \boldsymbol{\cdot}\, H(\,Y|X \!\!=\! 1) \\ &= (1 \!-\! p)\, \boldsymbol{\cdot}\, H(\epsilon) + p\, \boldsymbol{\cdot}\, H(\epsilon) \\ &= H(\epsilon) = -\epsilon \log_2 \epsilon - (1 \!-\! \epsilon) \log_2 (1 \!-\! \epsilon) \end{split}$$

따라서 [그림 11-4]에서 이진 대칭 채널의 상호 정보량 I(X;Y)는 다음과 같다.

$$I(X; Y) = H(Y) - H(Y|X)$$
  
=  $H(Y) + \epsilon \log_2 \epsilon + (1 - \epsilon) \log_2 (1 - \epsilon)$  (11.11)

채널 용량 C는 p를 바꿔 가면서 식 (11.11)의 최댓값을 구한 것이다. 식 (11.11)에서 H(Y)만 p의 함수이고 H(Y)는  $p=\frac{1}{2}$ 일 때 최댓값 1을 갖는다. 따라서 [그림 11-4]의 이진 대칭 채널의 채널 용량 C는 식 (11.12)와 같다.

$$C = 1 + \epsilon \log_2 \epsilon + (1 - \epsilon) \log_2 (1 - \epsilon) \tag{11.12}$$



[그림 11-5] 이진 대칭 채널의 채널 용량 C

#### ★ 핵심 포인트 ★

- 채널 용량 :  $C = \max_{p(x)} I(X; Y)$
- 채널 용량의 의미 : 어떤 채널을 한 번 사용할 때 최대 몇 비트를 보낼 수 있는가
- 이진 대칭 채널의 채널 용량 :  $C=1+\epsilon\log_2\epsilon+(1-\epsilon)\log_2(1-\epsilon)$





[그림 11-6] 출력이 코드워드  $\mathit{C}(x_i)$ 인 소스 부호화 블록

#### 예제 11-5

확률변수 X가 다음과 같이 정의되어 있다.

$$X = \begin{cases} a, & P(X=a) = \frac{1}{2} \\ b, & P(X=b) = \frac{1}{4} \\ c, & P(X=c) = \frac{1}{4} \end{cases}$$

코드워드를 다음과 같이 할당했을 때, 코드워드 길이의 평균값 L(C)를 구하고 이것을 확률변수 X의 엔트로피와 비교하시오.

$$C(a) = 0$$
,  $C(b) = 10$ ,  $C(c) = 11$ 

#### 풀이

코드워드 길이의 평균값은  $L(C)=\frac{1}{2}\cdot 1+\frac{1}{4}\cdot 2+\frac{1}{4}\cdot 2=\frac{3}{2}$ 이 된다. 확률변수 X의 엔트로피는  $H(X)=-\frac{1}{2}\log_2\frac{1}{2}-\frac{1}{4}\log_2\frac{1}{4}-\frac{1}{4}\log_2\frac{1}{4}=\frac{3}{2}$ 이므로, 이 예제의 경우 H(X)=L(C)가 됨을 알 수 있다.

#### 예제 11-6

확률변수 X가 다음과 같이 정의되어 있다.

$$X = \begin{cases} a, & P(X=a) = \frac{1}{3} \\ b, & P(X=b) = \frac{1}{3} \\ c, & P(X=c) = \frac{1}{3} \end{cases}$$

코드워드를 다음과 같이 할당했을 때, 코드워드 길이의 평균값 L(C)를 구하고 이것을 확률변수 X의 엔트로피와 비교하시오.

$$C(a) = 0$$
,  $C(b) = 10$ ,  $C(c) = 11$ 

#### 풀이

코드워드 길이의 평균값은  $L(C)=\frac{1}{3}\cdot 1+\frac{1}{3}\cdot 2+\frac{1}{3}\cdot 2=\frac{5}{3}$ 이다. 확률변수 X의 엔트로피는  $H(X)=\log_2 3$ 이므로, 이 예제의 경우 H(X)< L(C)가 된다.

## 허프만 부호

#### 예제 11-7

아래와 같은 pmf를 갖는 확률변수 X가 있다.

$$X = \begin{cases} a, & P(X=a) = 0.25 \\ b, & P(X=b) = 0.25 \\ c, & P(X=c) = 0.2 \\ d, & P(X=d) = 0.15 \\ e, & P(X=e) = 0.15 \end{cases}$$

이 확률변수를 정보 소스라고 가정할 때, 허프만 코드를 만드시오.

#### 풀이



[그림 11-8] 허프만 코드를 만드는 과정





[그림 11-9] (n, k) 이진 블록 오류 정정 부호를 사용하는 채널 부호화 과정

#### • 최소 해밍 거리

$$d_{\min} = \min_{v_1 \neq v_2} d_H(v_1, v_2)$$
 (11.13)

선형 부호 C에서는  $v_1, v_2 \in C$ 이면  $v_1 + v_2 \in C$ 이므로 식 (11.14)가 성립한다.

$$d_{\min} = \min_{\boldsymbol{v} \neq \boldsymbol{0}} w_H(\boldsymbol{v}) \tag{11.14}$$

#### 예제 11-8

다음 코드워드들로 구성된 선형 부호 C의 최소 해밍 거리  $d_{\min}$ 을 구하시오.

 $C = \{00000, 11111, 11000, 00111, 10000, 01111, 10111, 01000\}$ 

$$d_{\min} = \min_{\mathbf{v}_1 \neq \mathbf{v}_2} d_H(\mathbf{v}_1, \mathbf{v}_2) = 1$$

• 블록 부호의 오류정정능력

$$t = \left[ \frac{d_{\min} - 1}{2} \right]$$



[그림 11-10]  $d_{\min}$  만큼 떨어져 있는 코드워드  $c_i$ 와  $c_j$ 

## 11.5.1 (n,1) 반복부호



[그림 11-11] (5, 1) 반복 부호의 부호화기

$$c_1 = a_1$$
  $c_2 = a_1$   $c_3 = a_1$   $c_4 = a_1$   $c_5 = a_1$  (11.15)

- □ 최소 해밍 거리 = *n*
- □ 차원 = 1
- □ 부호율 = 1/n

## 11.5.2 (n,n-1) 싱글 패리티 체크 부호



[그림 11-12] (4, 3) 싱글 패리티 체크 부호의 부호화기

$$c_1 = a_1$$
  $c_2 = a_2$  (11.16)  $c_3 = a_3$   $c_4 = a_1 + a_2 + a_3$ 

- □ 최소 해밍 거리 = 2
- □ 차원 = n 1
- 부호율 = (n-1)/n

## 11.5.3 (7,4) 해밍 부호



[그림 11-13] (7, 4) 해밍 부호의 부호화기

$$c_1 = a_1$$
  $c_2 = a_2$   $c_3 = a_3$   $c_4 = a_4$  
$$c_5 = a_1 + a_2 + a_3$$
  $c_6 = a_2 + a_3 + a_4$   $c_7 = a_1 + a_2 + a_4$  (11.17)

- □ 최소 해밍 거리 = 3
- □ 차원 = 4
- □ 부호율 = 4/7

## 11.5.3 (7,4) 해밍 부호



[그림 11-14] (7, 4) 해밍 부호 부호화 식들의 그림 표현

$$a_1 + a_2 + a_3 + c_5 = 0$$

$$a_2 + a_3 + a_4 + c_6 = 0$$

$$a_1 + a_2 + a_4 + c_7 = 0$$



### • 생성 행렬

$$c = aG$$

(11.18)

#### 예제 11-14

(5, 1) 반복부호의 생성 행렬 G를 구하시오.

$$G = [111111]$$

$$[c_1\,c_2\,c_3\,c_4\,c_5] = [a_1][11111]$$

#### 예제 11-10

(4, 3) 싱글 패리티 체크 부호의 생성 행렬 G를 구하시오.

$$G = \begin{bmatrix} 1 & 0 & 0 & 1 \\ 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 1 \end{bmatrix}$$

$$[c_1\,c_2\,c_3\,c_4] = [a_1\,a_2\,a_3] \begin{bmatrix} 1\ 0\ 0\ 1\\ 0\ 1\ 0\ 1\\ 0\ 0\ 1\ 1 \end{bmatrix}$$

#### 예제 11-11

(7, 4) 해밍 부호의 생성 행렬 G를 구하시오.

$$G = \begin{bmatrix} 1 & 0 & 0 & 0 & 1 & 0 & 1 \\ 0 & 1 & 0 & 0 & 1 & 1 & 1 \\ 0 & 0 & 1 & 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 1 & 0 & 1 & 1 \end{bmatrix}$$

$$[c_1c_2c_3c_4c_5c_6c_7] = [a_1a_2a_3a_4] \begin{bmatrix} 1\ 0\ 0\ 0\ 1\ 0\ 1 \\ 0\ 1\ 0\ 0\ 1\ 1\ 1 \\ 0\ 0\ 0\ 1\ 0\ 1\ 1 \end{bmatrix}$$

#### 예제 11-12

(5, 1) 반복부호의 패리티 체크 행렬 H를 구하시오.

풀이

$$H = [P^T | I_{n-k}] = \begin{bmatrix} 1 & 1 & 0 & 0 & 0 \\ 1 & 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 1 & 0 \\ 1 & 0 & 0 & 0 & 1 \end{bmatrix}$$

#### 예제 11-13

(4, 3) 싱글 패리티 체크 부호의 패리티 체크 행렬 H를 구하시오.

$$H = [P^T | I_{n-k}] = [1111]$$



• 수신벡터

$$r = c + e \tag{11.20}$$

• 최소 해밍거리 복호화 기법

$$\hat{\boldsymbol{c}} = \operatorname{arg\,min}_{\boldsymbol{c}' \in C} d_H(\boldsymbol{r}, \ \boldsymbol{c'}) \tag{11.21}$$

#### 예제 11-14

(5, 2) 블록 부호이고 코드워드가 00000, 01011, 10101, 11110이다. 수신 벡터가 r=11011 일 때, 최소 해밍 거리 복호화를 이용하여 복호하시오.

#### 풀이

모든 코드워드로부터 수신 벡터 r=11011까지의 해밍 거리를 구한다.

$$d_H(11011,00000) = 4$$
,  $d_H(11011,01011) = 1$ ,  $d_H(11011,10101) = 3$ ,  $d_H(11011,11110) = 2$ 

 $d_H(11011,01011)=1$ 로 해밍 거리가 가장 작으므로  $\hat{c}=01011$ 로 복호화한다.

[표 11-2] (3, 1) 반복 부호의 표준 배열

| 000 | 111 |
|-----|-----|
| 001 | 110 |
| 010 | 101 |
| 001 | 110 |

#### 예제 11-15

생성 행렬  $G = \begin{bmatrix} 10101\\ 01011 \end{bmatrix}$ 인 (5, 2) 선형 블록 부호의 표준 배열을 그리고, 이것을 이용하여 수신 벡터가 11011일 때 복호화하시오.

#### 풀이

[표 11-3] [예제 11-15] (5, 2) 부호의 표준 배열

| 00000 | 01011 | 10101 | 11110 |
|-------|-------|-------|-------|
| 00001 | 01010 | 10100 | 11111 |
| 00010 | 01001 | 10111 | 11100 |
| 00100 | 01111 | 10001 | 11010 |
| 01000 | 00011 | 11101 | 10110 |
| 10000 | 11011 | 00101 | 01110 |
| 11000 | 10011 | 01101 | 00110 |
| 10010 | 11001 | 00111 | 01100 |

#### • 신드롬

$$s = Hr \tag{11.22}$$

#### 예제 11-16

생성 행렬  $G = \begin{bmatrix} 1 \ 0 \ 1 \ 0 \ 1 \end{bmatrix}$ 인 (5, 2) 선형 블록 부호를 사용한다. 수신 벡터가 11011일 때 신드롬 s 를 구하시오.

#### 풀이

$$s = Hr = \begin{bmatrix} 1 & 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & 1 & 0 \\ 1 & 1 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \\ 0 \\ 1 \\ 1 \end{bmatrix} = \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix}$$

[표 11-4] 생성 행렬  $G = \begin{bmatrix} 1 \ 0 \ 1 \ 0 \ 1 \end{bmatrix}$ 인  $(5,\ 2)$  선형 블록 부호의 신드롬 표

| 신드롬 | 추정 오류 벡터 $\hat{e}$ (코셋 리더) |
|-----|----------------------------|
| 000 | 00000                      |
| 001 | 00001                      |
| 010 | 00010                      |
| 100 | 00100                      |
| 011 | 01000                      |
| 101 | 10000                      |
| 110 | 11000                      |
| 111 | 10010                      |





[그림 11-15]  $\frac{1}{2}$  컨볼루션 부호의 부호화기 예

$$c_i^1 = a_i + a_{i-2} = (1+D^2)[a_i]$$

$$c_i^2 = a_i + a_{i-1} + a_{i-2} = (1+D+D^2)[a_i]$$
(11.24)



다이어그램



[그림 11-16] [그림 11-15]의 컨볼루션 부호의 상태 변화 [그림 11-17] [그림 11-15]의 컨볼루션 부호의 트렐리스



[그림 11-19] 다섯 개의 비트를 복호화하는 비터비 알고리즘 첫 단계(꼬리 비트 : 00)



[그림 11-20] 다섯 개의 비트를 복호화하는 비터비 알고리즘 두 번째 단계(꼬리 비트 : 00)



[그림 11-21] 다섯 개의 비트를 복호화하는 비터비 알고리즘 세 번째 단계(꼬리 비트 : 00)



[그림 11-22] 다섯 개의 비트를 복호화하는 비터비 알고리즘 마지막 단계(꼬리 비트 : 00)



# Q&A

수고하셨습니다.