Convergence almost surley
$$x_n \xrightarrow{a.s.} x$$

$$P(saes/x_n(a) \rightarrow x(a)s) = 1$$

$$Convergence in probability $x_n \xrightarrow{P} x$

$$\lim_{n \to \infty} P(|x_n - x| > \epsilon) = 0$$$$

distributional convergence
$$X_n \xrightarrow{d} X$$

Hx $F_{X_n}(x) \longrightarrow F_{X_n}(x)$

Theorem: Algebraic Properter of Convergence

For seg of number
$$\chi_n, y_n \in \mathbb{R}$$
; $\chi_n \to \chi$, $y_n \to y$
 $\to \chi_n + y_n \to \chi + y$
 $\to \chi_n + y_n \to \chi + y$

Theorem: Continuas Mapping Theorem

If $g: R \to R$ is a continuous function

and $X_n \to X$ (for any type of convergence)

then $g(X_n) \to g(X)$.

proof? Aside! in real analysis we define a cts function as a function that preserves $(x_n) \rightarrow (x_n) \rightarrow g(x_n) \rightarrow g(x_n)$.

Ex, If $y_h \rightarrow y$ and $y_h > 0$ and $y_h > 0$ then cts mappy theaten says $g(y) = y_y$ is continued for $y \ge 0$ here $g(y_h) \rightarrow g(y_h)$ i.e. $y_h \rightarrow y_h$

Means, if 1/2 > 1/4 then 1/4 -> 1/4. Defin: Consistant Estimator saxonies

We say an estimata $\hat{\partial}_{N}$ is consistant

for $\hat{\partial}_{N}$ $\hat{\partial}_{N}$ $\hat{\partial}_{N}$ a constant. increase > n o ppf to Wer arad o lin P(10,-012E) = 0 eventually collapse to a point dist $N \rightarrow \infty$ Concentrated on Q. Another way: consistency = asymptotically unbiased (x) for regular.

(Enagh alsts) $S^{2} = \frac{1}{2} \left[\left(X_{n} - \overline{X} \right)^{2} \right]$ Know $\left[S^{2} \right] = 6^{3}$ (mbiased) $\frac{\partial^2 z}{\partial z} = \frac{1}{N} \frac{N}{N} \left(\frac{N}{N} - \frac{N}{N} \right)^2 = \frac{N}{N} \frac{1}{N} \frac{1}{N}$ (not en biased) honever E (2) N 6 2 Theorem: MSE > 0 then & consistent If MSE(ô) →0 then ô P. O. (il- ê corsistent for 0)

ef Show consisteny: $Y \in P(1\hat{\theta} - 0|z \in) \rightarrow 0$ Markov's lneg: P(X > a) < E[X] $1 \le P(1\hat{\theta} - 0|z \in) = P((\hat{\theta} - 0)^2 > \hat{\epsilon}^2)$ $0 \leq \mathbb{P}(|\hat{\theta} - \theta| \geq \varepsilon) = \mathbb{P}((\hat{\theta} - \theta)^2 \geq \varepsilon^2)$ $\mathcal{E}\left[(\hat{\theta}-\theta)^2\right] = \frac{MSE(\hat{\theta})}{\varepsilon^2}$ if MSE(6) & O flue MSG(0)/E2 2 Squeeze Hearm P(10-017E) -> 0 il A D. Intuition! $X_N = \frac{1}{N} \sum_{n=1}^{N} X_n$ this shald be a good approx of M=E[Xn]. Theorem: Weak law of Large Numbers (WLLN) We have some XnS that one uncorrelated () $E[X_h] = \mu$ (2) $Var(\chi_n) = 6^2 < \infty$

Lecture Notes Page 6

Then $X_{N} = \frac{1}{N} \sum_{n=1}^{N} \chi_{n} \xrightarrow{P} \mathcal{U}$. Called "weak" b/c its conveyere in prob. also has weaker reguvernents. Sunney: WLLN sup XN By. Ef, let X_n one iid and $E(X_n) = M$. $Var(X_n) = 6^2 < \infty$. Notice flat $E[X_N] = \mu$ and $Var(X_N) = \int_N^2 Var(X_N) = \int_N^2 Var(X_N)$ $0 \leq P(|X-u| > e) \leq \frac{Var(X)}{e^2} = \frac{5^2}{Ne^2}$ here by Squeeze thealur

$$P(1\overline{X}-\mu 1 \geq \epsilon) \xrightarrow{N} 0$$
hence $\overline{X} \xrightarrow{P} \mu$.

 $\frac{2x}{x_{h}}$ (ef x_{h} iid x_{h} Pois $(x_{h}) = x < \infty$

WLLN: XN P> X.

More intests relaxuation

Assure that Var (Xn) = on but

 $\frac{1}{N}\sum_{N=1}^{N}6_{N}^{2}<\infty \forall N$

can derive a simular rule b/c by Chelysher's

 $P(|\overline{X} - \mu| \ge e) \le \frac{Var(\overline{X})}{\varepsilon^2}$

 $\frac{haw:}{N^2} = \frac{1}{N^2} \sum_{n=1}^{N} 6_n^2$

 $=\frac{1}{N}\left(\frac{1}{N}\sum_{n=1}^{\infty}C_{n}^{2}\right)$

$$= \frac{1}{N} \left(\frac{N e^{-1} \ln l}{N e^{-2}} \right)$$

$$= \frac{1}{N} \left(\frac{N e^{-1} \ln l}{N e^{-2}} \right)$$

$$= \frac{1}{N} \left(\frac{N e^{-1} \ln l}{N e^{-1}} \right)$$

$$= \frac{1}{N} \left(\frac{N e^{-1} \ln l}{N e^{-1}} \right)$$

$$= \frac{1}{N} \left(\frac{N e^{-1} \ln l}{N e^{-1}} \right)$$

$$= \frac{1}{N} \left(\frac{N e^{-1} \ln l}{N e^{-1}} \right)$$

$$= \frac{1}{N} \left(\frac{N e^{-1} \ln l}{N e^{-1}} \right)$$

$$= \frac{1}{N} \left(\frac{N e^{-1} \ln l}{N e^{-1}} \right)$$

$$= \frac{1}{N} \left(\frac{N e^{-1} \ln l}{N e^{-1}} \right)$$

$$= \frac{1}{N} \left(\frac{N e^{-1} \ln l}{N e^{-1}} \right)$$

$$= \frac{1}{N} \left(\frac{N e^{-1} \ln l}{N e^{-1}} \right)$$

$$= \frac{1}{N} \left(\frac{N e^{-1} \ln l}{N e^{-1}} \right)$$

$$= \frac{1}{N} \left(\frac{N e^{-1} \ln l}{N e^{-1}} \right)$$

$$= \frac{1}{N} \left(\frac{N e^{-1} \ln l}{N e^{-1}} \right)$$

$$= \frac{1}{N} \left(\frac{N e^{-1} \ln l}{N e^{-1}} \right)$$

$$= \frac{1}{N} \left(\frac{N e^{-1} \ln l}{N e^{-1}} \right)$$

$$= \frac{1}{N} \left(\frac{N e^{-1} \ln l}{N e^{-1}} \right)$$

$$= \frac{1}{N} \left(\frac{N e^{-1} \ln l}{N e^{-1}} \right)$$

$$= \frac{1}{N} \left(\frac{N e^{-1} \ln l}{N e^{-1}} \right)$$

$$= \frac{1}{N} \left(\frac{N e^{-1} \ln l}{N e^{-1}} \right)$$

$$= \frac{1}{N} \left(\frac{N e^{-1} \ln l}{N e^{-1}} \right)$$

$$= \frac{1}{N} \left(\frac{N e^{-1} \ln l}{N e^{-1}} \right)$$

$$= \frac{1}{N} \left(\frac{N e^{-1} \ln l}{N e^{-1}} \right)$$

$$= \frac{1}{N} \left(\frac{N e^{-1} \ln l}{N e^{-1}} \right)$$

$$= \frac{1}{N} \left(\frac{N e^{-1} \ln l}{N e^{-1}} \right)$$

$$= \frac{1}{N} \left(\frac{N e^{-1} \ln l}{N e^{-1}} \right)$$

$$= \frac{1}{N} \left(\frac{N e^{-1} \ln l}{N e^{-1}} \right)$$

$$= \frac{1}{N} \left(\frac{N e^{-1} \ln l}{N e^{-1}} \right)$$

$$= \frac{1}{N} \left(\frac{N e^{-1} \ln l}{N e^{-1}} \right)$$

$$= \frac{1}{N} \left(\frac{N e^{-1} \ln l}{N e^{-1}} \right)$$

$$= \frac{1}{N} \left(\frac{N e^{-1} \ln l}{N e^{-1}} \right)$$

$$= \frac{1}{N} \left(\frac{N e^{-1} \ln l}{N e^{-1}} \right)$$

$$= \frac{1}{N} \left(\frac{N e^{-1} \ln l}{N e^{-1}} \right)$$

$$= \frac{1}{N} \left(\frac{N e^{-1} \ln l}{N e^{-1}} \right)$$

$$= \frac{1}{N} \left(\frac{N e^{-1} \ln l}{N e^{-1}} \right)$$

$$= \frac{1}{N} \left(\frac{N e^{-1} \ln l}{N e^{-1}} \right)$$

$$= \frac{1}{N} \left(\frac{N e^{-1} \ln l}{N e^{-1}} \right)$$

$$= \frac{1}{N} \left(\frac{N e^{-1} \ln l}{N e^{-1}} \right)$$

$$= \frac{1}{N} \left(\frac{N e^{-1} \ln l}{N e^{-1}} \right)$$

$$= \frac{1}{N} \left(\frac{N e^{-1} \ln l}{N e^{-1}} \right)$$

Consider:
$$S^2 = \frac{1}{N-1} \sum_{n=1}^{N} (x_n - x)^2$$

If x_n are independent and $E(x_n) = \mu$
 $Var(x_n) = 6^2$

Con Show $S^2 \xrightarrow{P} 6^2$? $[S^2 \text{ consistant for } 6^2]$

Chebyshev's: $P(|Y - E(Y)| \ge E) \le \frac{Var(Y)}{E^2}$
 $P(|S^2 - 6^2| \ge E) \le \frac{Var(S^2)}{E^2}$

If $Var(S^2) \xrightarrow{P} 6^2$

Then we have $S^2 \xrightarrow{P} 6^2$

Ex. $x_n \xrightarrow{iid} N(x_i 6^2)$ then we can show

26.
$$\times_{N} \stackrel{\text{iid}}{\sim} N(\mu_{1} 6^{2})$$
 then we can show $Var(S^{2}) = \frac{26^{4}}{N-1} \stackrel{N}{\rightarrow} 0$

hen S² - B 6². Add on: Cts mapping theorem say Vis is continue so if s2 562 then VS2 P> V62 sample Sid. S Pop. Sid. What about $\hat{G}^2 = \frac{1}{N_s} \sum_{n=1}^{N} (X_n - \overline{X})^2$? let $C_n = \frac{N-1}{N}$. Then $C_n \to 1$ by an algebraic properties sina $S^2 \xrightarrow{P} 56^2$ ad $\Lambda^2 = C_n S^2 + 1.6^2 = 6^2$ Thealm: Strong Law of Lange Number (SLLN) If Kn i'd w/ E(Xh]-u ad Var(Xn)=6200. Then $\frac{1}{\chi_N} \xrightarrow{a.s.} M$.

Lecture Notes Page 1

Assume
$$y_n = \frac{\overline{X} - M}{6/\sqrt{N}}$$
 $\longrightarrow N(0(1))$

Let
$$t_{N} = \frac{\overline{X} - M}{S \sqrt{N}}$$

$$= \frac{G}{G} \frac{1}{X} - \frac{M}{Y N} = \frac{G}{G} \left(\frac{\overline{X} - M}{G \sqrt{N}} \right)$$
hy Slotsky's theorem say
$$\frac{d}{d} = \frac{1 \cdot N(0,1)}{1 \cdot N(0,1)}$$

$$= N(0,1)$$