Notes on the GlueX FSRoot Format

Ryan Mitchell

March 4, 2019

Abstract

This document describes the GlueX FSRoot format.

Contents

1	Overview	1
2	Final States	1
3	Event Information	2
4	Particle Four-Momenta	2
5	Track Information	3

1 Overview

The GlueX FSRoot format is a flat TTree format. All variables are float. Multiple combinations within an event are listed as separate TTree entries, just like entries from distinct events.

2 Final States

The FSRoot format can hold information from any final state composed of a combination of Λ (decaying to $p\pi^-$), $\overline{\Lambda}$ (decaying to $\overline{p}\pi^+$), e^+ , e^- , μ^+ , μ^- , p, \overline{p} , η (decaying to $\gamma\gamma$), γ , K^+ , K^- , K^0_S (decaying to $\pi^+\pi^-$), π^+ , π^- , and π^0 (decaying to $\gamma\gamma$).

Final state particles are listed in trees in the following order:

Lambda ALambda e+ e- mu+ mu- p+ p- eta gamma K+ K- Ks pi+ pi- pi0

For example, in the process $\gamma p \to \pi^+\pi^- J/\psi p; J/\psi \to \mu^+\mu^-$, the μ^+ is particle 1, the μ^- is particle 2, the p is particle 3, the π^+ is particle 4, and the π^- is particle 5. Or as another example, in the process $\gamma p \to \gamma \chi_{c1} p; \chi_{c1} \to \eta \pi^0 \pi^0$, the p is particle 1, the η is particle 2, the γ is particle 3, one π^0 is particle 4, and the other π^0 is particle 5. In cases like this where there are identical particles, no ordering is assumed.

3 Event Information

The "Event Information" variables contain information about the event as a whole:

Run: run number Event: event number chi2 of the kinematic fit Chi2: Chi2DOF: chi2/dof of the kinematic fit RFTime: RF time determined from the kinematic fit RFDeltaT: difference between RF time and beam photon time EnUnusedSh: total energy of unused showers ProdVx: production vertex parameters ProdVy: ProdVz: ProdVt: PxPB: kinematically fit beam parameters PyPB: 11 PzPB: EnPB: RPxPB: measured beam parameters RPyPB:

4 Particle Four-Momenta

11

RPzPB: REnPB:

The "Particle Four-Momenta" variables contain the four-momentum for each particle in the final state:

```
(prefix)PxP(n): x momentum of particle (n)
(prefix)PyP(n): y momentum of particle (n)
(prefix)PzP(n): z momentum of particle (n)
(prefix)EnP(n): energy of particle (n)
```

Different types of four-momenta are distinguished using prefixes. Raw four-momenta have a prefix R; the final four-momenta (the fully-constrained four-momenta resulting

from the kinematic fit) have no prefix.

Different particles are differentiated using the postfix P(n), where (n) is the number of the particle in the ordered list. Four-momenta for secondaries originating from particle (n), such as the two γ 's from a π^0 , are recorded using P(n)a and P(n)b, where the ordering follows the same conventions as above, or, in the case of identical daughter particles, no ordering is assumed. As two examples: in the process $\gamma p \to \pi^+\pi^-J/\psi p; J/\psi \to \mu^+\mu^-$, the raw energy of the π^+ is given by REnP4; and in the process $\gamma p \to \pi^+\pi^-J/\psi p; J/\psi \to \pi^+\pi^-\pi^0$, the y-momentum of a photon from the π^0 decay, after the kinematic fit, is given by PyP6b.

5 Track Information

Track information is written out for every reconstructed track that is part of a final state. The postfix P(n) follows the same convention as for the four-momenta (section 4).

TkChi2P(n): chi2 of the track fit

TkNDFP(n): number of degrees of freedom for the track fit