Tutorial-5 & 6 Winter 2024 Basic Electronics (ECE113)

Q1: In the given following circuit (Figure-1), the switch was initially closed to Position-1 for long time. At time t=0 sec, the switch was transferred to Position-2, now find the value of voltage across capacitor at time t=0 sec and t=160 µsec.

Q2: In the given following circuit (Figure-2), the switch was initially opened for a long time. The switch was closed at time t=0 sec. Do-

- (a) Choose R_{1} , so that the response after t=0 sec will be critically damped.
- **(b)** Choose R_{2} , so that $V_{C}(0)=100$ Volt
- (c) Find $V_C(t)$ at time t=1 msec.

Figure 2

Q3: Find the value of I_c and I in the given following circuit (Figure-3).

Figure 3

Q4: Find the value of current I_1 and I_L in the circuit shown in Figure-4 for t>0 sec.

Figure 4

Q5: In the given following circuit (Figure-5), the switch was initially opened for a long time. The switch is closed at t=0 sec then find out the value of-

- (a) I_L(0⁻)
- (b) $V_c(0^-)$
- (c) $I_{R}(0^{+})$
- (d) $I_c(0^+)$
- (e) $V_c(0.2)$

Figure 5

Q6: For the circuit of Figure-6, find the value of i(t) for $t=\infty$, 0^- , 0^+ and 100 µsec.

Figure 6

Q7: Determine the value and draw the curve of i(t) for all value of time in the circuit of Figure-7.

Figure 7

Q8: Find the capacitor voltage $V_C(t)$ and the current i(t) in the 200 Ω resistor of Figure-8 for all time.(The switch transfer from position **a** to **b** at time t=0 sec).

Figure 8