Università degli Studi di Padova

DIPARTIMENTO DI MATEMATICA "TULLIO LEVI-CIVITA"

CORSO DI LAUREA MAGISTRALE IN INFORMATICA

Il modello Bradley-Terry per l'analisi delle partite della Serie A italiana di calcio

Tesi di laurea magistrale

D	_	7	_		ı	_		_	_	
K.	e_{\cdot}	١,١	(Ι, Ι	1,1	()	ľ	ı	Р.	

Prof. Annamaria Guolo

Laureando Federico Perin

Anno Accademico 2022-2023

Abstract

Viviamo nell'era dei cosiddetti *Big Data*, dove grazie all'interconnessione, un grande flusso di informazioni e di dati può essere ricavato da ogni possibile attività.

Non fa eccezione il calcio in cui da un paio d'anni, le società calcistiche si affidano a sistemi di analisi per produrre tattiche di gioco ma anche per effettuare *scouting* di giocatori emergenti. Nel calcio moderno, perciò, numerose variabili ad esempio il possesso palla, il numero di tiri effettuati da una squadra ecc. vengono raccolte durante una partita di calcio.

Tale fatto scaturisce l'attenzione su un ulteriore tematica d'analisi: dato che si hanno a disposizione un gran numero di dati sulle prestazioni delle squadre nelle loro partite, è possibile individuare quali variabili vanno ad influenzare in modo significativo il successo o il fallimento sportivo delle singole squadre?

Da questo quesito nasce la tesi qui presentata. L' obbiettivo è quello di presentare un'analisi che risponda a tale quesito, attraverso l'utilizzo di tecniche di *Data Mining*, in particolare lo sfruttamento di un modello a comparazione a coppie per le partite di calcio che sia in grado di tenere conto delle variabili esplicative specifiche per le partite. Il modello scelto per l'analisi sarà il modello *Bradley-Terry* con le sue estensioni. Infine, verrà presentata un'applicazione di metodi di *Machine Learning* per la predizione dei risultati delle singole partite.

Lo studio prenderà in considerazione i dati relativi alle partite della Serie A italiana della stagione 2021/2022.

TO DO + POSSIBLE ADDITIONS

"If something's important en	enough, you	should try.	Even if t	the probable	outcome is
					failure."

— Elon Musk

RINGRAZIAMENTI

Innanzitutto, vorrei esprimere la mia gratitudine al Prof. Annamaria Guolo, relatrice della mia tesi, per l'aiuto ed il sostegno fornitomi durante tutto il lavoro.

Desidero ringraziare con affetto i miei genitori per il sostegno, per il grande aiuto che mi hanno dato e per essermi stati vicini in ogni momento durante gli anni di studio.

Voglio inoltre ringraziare i miei amici per questi tre bellissimi anni trascorsi assieme e per avermi sempre sostenuto anche nei momenti più difficili.

Padova, Febbraio 2023

Federico Perin

INDICE

1	Intr	oduzione 1
	1.1	Dominio del problema
	1.2	Applicazione
	1.3	Tecnologie e Tools usati
		1.3.1 Tecnologie
		1.3.2 Tools
	1.4	Motivazioni personali
	1.5	Struttura della tesi
2	Cons	
2	2.1	e A 2021/2022 dataset 3 Serie A 2021/2022
	2.1	,
	0.0	2.1.1 Ranking
	2.2	Costruzione del dataset
	2.3	Struttura del dataset
		2.3.1 Dati generali
		2.3.2 Dati relativi ai tiri
		2.3.3 Dati relati al possesso
		2.3.4 Dati relativi ai passaggi
		2.3.5 Dati difensivi
3	Ana	disi dei dati
	3.1	Preprocessing dei dati
	3.2	Analisi grafica dei dati
	J	3.2.1 Relazione tra la variabile risposta e le covariate
		3.2.2 Analisi possibili interazioni
	3.3	Ulteriori modifiche del dataset
	5.5	3.3.1 Modifiche per il pacchetto BradleyTerry2
		3.3.2 Modifiche per il pacchetto BTLLasso
		5.5.2 Wodinche per il pacchetto BTLLasso
4	Il m	odello Bradley-Terry 43
	4.1	Introduzione al Modello Bradley-Terry
	4.2	Modello Bradley-Terry con categorie di risposta ordinate
	4.3	Modello Bradley–Terry con effetti dell'ordine
	4.4	Modello Bradley–Terry con variabili esplicative
	4.5	Stima e penalizzazione
		4.5.1 LASSO
		4.5.2 Scelta del parametro di tuning
_	ъ.	
5	Ris i 5.1	ıltati dei modelli Bradley-Terry 51 Premesse
	$5.1 \\ 5.2$	
	•	BTM con effetto dell'ordine
	5.3	BTM con covariate specifiche dell'oggetto

6	5.4 5.5 5.6 5.7 Met 6.1	Modello Bradley-Terry e LASSO BTM senza l'intercetta e con LASSO Conclusione dei risultati ottenuti Predizioni codi di Machine Learning Componenti essenziali 6.1.1 Distanza di Minkowski	57 70 82 84 89 89
		6.1.2 Funzione kernel	89
7	Con	aclusioni	91
8	Cod	lice in R	93
	8.1	extractRowsAway	93
	8.2	createYFull	94
	8.3	extractData	95
	8.4	extractAll	96
	8.5	colLabel	97
	8.6	rowLabel	97
Bi	bliog	grafia	99
Si	togra	ufia 1	L 01

Elenco delle figure

2.1	Logo di FBref	5
2.2	Rappresentazione del fuorigioco	7
2.3	In rosso l'area di rigore in un campo da calcio	9
2.4	In rosso la mediana nel campo da calcio	10
2.5	In rosso il centrocampo nel campo da calcio	11
2.6	In rosso la trequarti dell'avversario nel campo da calcio	11
2.7	Esecuzione di un passaggio filtrante	13
2.8	Esecuzione di un cambio di gioco	13
2.9	Rappresentazione di un cross	14
2.10	Rappresentazione di un contrasto in scivolata	15
3.1	Barplot della distribuzione della variabile di risposta Res	20
3.2	Barplot della distribuzione della variabile di risposta per squadraRes .	21
3.3	Mosaicplot che mostra la distribuzione degli esiti rispetto alle partite giocate in casa e fuori casa	22
3.4	Boxplot della distribuzione della variabile Poss rispetto ai valori della	
0.5	variabile risposta Res	23
3.5	Boxplot della distribuzione della variabile SoT rispetto ai valori della variabile risposta Res	24
3.6	Boxplot della distribuzione della variabile G/Sh rispetto ai valori della	
	variabile risposta Res	24
3.7	Boxplot della distribuzione della variabile Saves rispetto ai valori della variabile risposta Res	25
3.8	A sinistra il boxplot della variabile numerica PAtt rispetto ai valori	
	della variabile risposta Res e a destra il boxplot della variabile numerica PCmp% rispetto ai valori della variabile risposta Res	27
3.9	Boxplot della distribuzione della variabile ToDefPen rispetto ai valori	21
ა.ყ	della variabile risposta Res	27
3.10	Boxplot della distribuzione della variabile ToAttPen rispetto ai valori	
	della variabile risposta Res	28
3.11	A sinistra il boxplot della variabile numerica Fls rispetto ai valori della	
	variabile risposta Res e a destra il boxplot della variabile numerica Fld	
	rispetto ai valori della variabile risposta Res	29
3.12	Boxplot della distribuzione della variabile Int rispetto ai valori della	
	variabile risposta Res	30
3.13	Boxplot della distribuzione della variabile TklWin rispetto ai valori della	
	variabile risposta Res	31
3.14	Boxplot della distribuzione della variabile Recov rispetto ai valori della	
	variabile risposta Res	31
	Grafico delle correlazioni di ogni coppia di variabili	33
3.16	Scatterplot della distribuzione della variabile Sh rispetto ai valori della	
	variabile ToAttPen	34

3.17	Scatterplot della distribuzione della variabile Sh rispetto ai valori della variabile G/Sh	35
3.18	Scatterplot della distribuzione della variabile Sh rispetto ai valori della variabile Poss	36
3.19	Scatterplot della distribuzione della variabile ToMid3rd rispetto ai valori della variabile LPAtt	37
3.20	Scatterplot della distribuzione della variabile ToMid3rd rispetto ai valori della variabile PCmp%	37
3.21	Scatterplot della distribuzione della variabile TotDist rispetto ai valori della variabilePCmp%	38
3.22	Scatterplot della distribuzione della variabile PAtt rispetto ai valori della variabile PCmp%	39
3.23	Scatterplot della distribuzione della variabile ToDefPen rispetto ai valori della variabile ToAttPen	39
5.1	Barplot che indica per ogni squadra l'abilità stimata dal modello (4.9). A fianco al grafico viene riportato lo <i>Standard Error</i> (SE), il <i>Quasi Standard Error</i> (QSE) e il <i>Quasi Variance</i> (QV). Nel grafico viene indicato con un asterisco le squadre con un piazzamento stimato diverso da quello reale, anche esso riportato a destra del grafico	52
5.2	Barplot che indica per ogni squadra l'abilità stimata dal modello (5.1). A fianco al grafico vengono riportati i relativi <i>Standard Error</i> (SE), <i>Quasi Standard Error</i> (QSE) e <i>Quasi Variance</i> (QV). Nel grafico viene indicato con un asterisco le squadre con un piazzamento stimato diverso da quello reale, anche esso riportato a destra del grafico	54
5.3	Barplot che indica per ogni squadra l'abilità stimata dal modello (4.12). Viene indicato con un asterisco le squadre con un piazzamento stimato diverso da quello reale anche esso riportato a destra del grafico	58
5.4	Grafico che riporta l'andamento stimato dal modello (4.12) della stima del possesso della palla per ogni squadra al variare del parametro di tuning λ . La linea rossa tratteggiata indica il parametro di tuning λ ottimo che è stato scelto per ottenere i risultati finali	62
5.5	Grafico che riporta l'andamento stimato dal modello (4.12) della stima del numero di tiri in porta per ogni squadra al variare del parametro di tuning λ . La linea rossa tratteggiata indica il parametro di tuning λ ottimo che è stato scelto per ottenere i risultati finali	63
5.6	Grafico che riporta l'andamento stimato dal modello (4.12) della stima del numero di passaggi corti tentati per ogni squadra al variare del parametro di tuning λ . La linea rossa tratteggiata indica il parametro di tuning λ ottimo che è stato scelto per ottenere i risultati finali	63
5.7	Grafico che riporta l'andamento stimato dal modello (4.12) della stima della percentuale di passaggi corti riusciti per ogni squadra al variare del parametro di tuning λ . La linea rossa tratteggiata indica il parametro di tuning λ ottimo che è stato scelto per ottenere i risultati finali	64
5.8	Grafico che riporta l'andamento stimato dal modello (4.12) della stima della percentuale di passaggi medi riusciti per ogni squadra al variare del parametro di tuning λ . La linea rossa tratteggiata indica il parametro	
	di tuning λ ottimo che è stato scelto per ottenere i risultati finali	65

5.9	Grafico che riporta l'andamento stimato dal modello (4.12) della stima della percentuale di passaggi lunghi riusciti per ogni squadra al variare del parametro di tuning λ . La linea rossa tratteggiata indica il parametro di tuning λ ottimo che è stato scelto per ottenere i risultati finali	65
5.10	Grafico che riporta l'andamento stimato dal modello (4.12) della stima del numero di tocchi fatti nell'area di rigore avversaria per ogni squadra al variare del parametro di tuning λ . La linea rossa tratteggiata indica il parametro di tuning λ ottimo che è stato scelto per ottenere i risultati finali.	66
5.11	Grafico che riporta l'andamento stimato dal modello (4.12) della stima del numero di falli subiti per ogni squadra al variare del parametro di tuning λ . La linea rossa tratteggiata indica il parametro di tuning λ ottimo che è stato scelto per ottenere i risultati finali	66
5.12	Grafico che riporta l'andamento stimato dal modello (4.12) della stima del numero di falli fatti per ogni squadra al variare del parametro di tuning λ . La linea rossa tratteggiata indica il parametro di tuning λ ottimo che è stato scelto per ottenere i risultati finali	67
5.13	Grafico che riporta l'andamento stimato dal modello (4.12) della stima del numero di fuorigioco fatti per ogni squadra al variare del parametro di tuning λ . La linea rossa tratteggiata indica il parametro di tuning λ ottimo che è stato scelto per ottenere i risultati finali	68
5.14	Grafico che riporta l'andamento stimato dal modello (4.12) della stima del numero di cross fatti per ogni squadra al variare del parametro di tuning λ . La linea rossa tratteggiata indica il parametro di tuning λ ottimo che è stato scelto per ottenere i risultati finali	68
5.15	Grafico che riporta l'andamento stimato dal modello (4.12) della stima del numero di contrasti vinti per ogni squadra al variare del parametro di tuning λ . La linea rossa tratteggiata indica il parametro di tuning λ ottimo che è stato scelto per ottenere i risultati finali	69
5.16	Grafico che riporta l'andamento stimato dal modello (4.12) della stima del numero di recuperi per ogni squadra al variare del parametro di tuning λ . La linea rossa tratteggiata indica il parametro di tuning λ ottimo che è stato scelto per ottenere i risultati finali	69
5.17	Grafico che riporta l'importanza delle covariate rispetto alle norme L2 al variare del parametro di tuning λ secondo le stime del modello (4.12). La linea rossa tratteggiata indica il parametro di tuning λ ottimo che è stato scelto per ottenere i risultati finali	70
5.18	Grafico che riporta l'andamento stimato dal modello (5.2) della stima del possesso della palla per ogni squadra al variare del parametro di tuning λ . La linea rossa tratteggiata indica il parametro di tuning λ	
5.19	ottimo che è stato scelto per ottenere i risultati finali	74
5.20	ottimo che è stato scelto per ottenere i risultati finali Grafico che riporta l'andamento stimato dal modello (5.2) della stima della percentuale di passaggi corti riusciti per ogni squadra al variare del parametro di tuning λ . La linea rossa tratteggiata indica il parametro	74
	di tuning λ ottimo che è stato scelto per ottenere i risultati finali	75

5.21	Grafico che riporta l'andamento stimato dal modello (5.2) della stima	
	della percentuale di passaggi medi riusciti per ogni squadra al variare del	
	parametro di tuning λ . La linea rossa tratteggiata indica il parametro	
	di tuning λ ottimo che è stato scelto per ottenere i risultati finali	75
5.22	Grafico che riporta l'andamento stimato dal modello (5.2) della stima	
	della percentuale di passaggi lunghi riusciti per ogni squadra al variare	
	del parametro di tuning λ . La linea rossa tratteggiata indica il parametro	
	di tuning λ ottimo che è stato scelto per ottenere i risultati finali	76
5.23	Grafico che riporta l'andamento stimato dal modello (5.2) della stima	
	del numero di tocchi fatti nell'area di rigore avversaria per ogni squadra	
	al variare del parametro di tuning λ . La linea rossa tratteggiata indica	
	il parametro di tuning λ ottimo che è stato scelto per ottenere i risultati	
	finali	77
5.24	Grafico che riporta l'andamento stimato dal modello (5.2) della stima	
	del numero di falli fatti per ogni squadra al variare del parametro di	
	tuning $\lambda.$ La linea rossa tratteggiata indica il parametro di tuning λ	
	ottimo che è stato scelto per ottenere i risultati finali	77
5.25	Grafico che riporta l'andamento stimato dal modello (5.2) della stima	
	del numero di falli subiti per ogni squadra al variare del parametro di	
	tuning λ . La linea rossa tratteggiata indica il parametro di tuning λ	-0
	ottimo che è stato scelto per ottenere i risultati finali.	78
5.26	Grafico che riporta l'andamento stimato dal modello (5.2) della stima	
	del numero di fuorigioco fatti per ogni squadra al variare del parametro	
	di tuning λ . La linea rossa tratteggiata indica il parametro di tuning λ	70
F 07	ottimo che è stato scelto per ottenere i risultati finali.	78
5.27	Grafico che riporta l'andamento stimato dal modello (5.2) della stima	
	del numero di cross fatti per ogni squadra al variare del parametro di	
	tuning λ . La linea rossa tratteggiata indica il parametro di tuning λ	79
5 28	ottimo che è stato scelto per ottenere i risultati finali	19
3.20	del numero di contrasti vinti per ogni squadra al variare del parametro	
	di tuning λ . La linea rossa tratteggiata indica il parametro di tuning λ	
	ottimo che è stato scelto per ottenere i risultati finali	80
5 20	Grafico a effetto stella che riporta il contributo medio di una covariata	00
0.23	sull'abilità di una singola squadra secondo il modello (5.2)	80
5 30	Grafico a effetto stella che riporta il contributo medio di una covariata	00
0.00	sull'abilità di una singola squadra secondo il modello (5.2)	81
5 31	Grafico che riporta il contributo medio di una covariata sull'abilità di	01
0.01	una singola squadra secondo il modello 5.2	83
5.32	Grafico che riporta l'importanza delle covariate rispetto alle norme L2	00
0.02	al variare del parametro di tuning λ	84
5.33	La prima tabella indica le predizioni di 80 partite fatte dal modello (4.1),	
0.00	la seconda dal modello (5.1), la terza dal modello (4.12), la quarta dal	
	modello (5.2) e la quinta dai bookmakers	85
5.34	La prima tabella indica le sensibilità delle predizioni del modello (4.1),	
	la seconda del modello (5.1), la terza del modello (4.12), la quarta del	
	modello (5.2) e la quinta dei bookmakers	86
5.35	La prima tabella indica le specificità delle predizioni del modello (4.1),	
	la seconda del modello (5.1), la terza del modello (4.12), la quarta del	
	modello (5.2) e la quinta dei bookmakers	86

Elenco delle tabelle

2.1	zamento. Inoltre viene mostrata la percentuale di punti guadagnati in	
	casa	4
2.2	La tabella mostra un estratto del dataset utilizzato i cui dati sono stati	
	ricavati da FBref	5
2.3	La tabella riassuntiva variabili presenti nel dataset	16
2.4	Tabella corrispondenza nomi originali e nomi nel $dataset$	17
4.1	Tipi di covariate e possibili parametrizzazioni applicabili al parametro abilità γ	48
5.1	Stime delle covariate con relativo Standard Error (SE), stimate dal	55
5.2	Stime delle covariate stimate dal modello (4.12)	59
5.3		60
5.4		72
5.5		73

1 | Introduzione

MEMO: Spiegazione del problema affrontato (il suo dominio) alcune applicazioni fatte nell'ambito delle comparazioni sportive, con maggior attenzione a qui studi con approccio statistico, esporre tecnologie usate e tools (Packages R ecc), motivazione scelta argomento della tesi e esposizione struttura della tesi(capitoli) TO DO

- 1.1 Dominio del problema
- 1.2 Applicazione
- 1.3 Tecnologie e Tools usati
- 1.3.1 Tecnologie
- **1.3.2** Tools
- 1.4 Motivazioni personali
- 1.5 Struttura della tesi

$\mathbf{2}$ | Serie A 2021/2022 dataset

Nel seguente capitolo verrà descritta la raccolta dati effettuata per costruire il dataset riguardante le partite di calcio della Serie A italiana della stagione 2021/2022 e la struttura di tale dataset.

2.1 Serie A 2021/2022

L'analisi effettuata ha preso in considerazione le partite della Serie A italiana della stagione 2021/2022. La Serie A è un torneo che comprende 20 squadre sparse per tutta l'Italia, alcune anche della stessa città, come ad esempio Milan e Inter per Milano. Tale torneo è organizzato con una struttura *Double-Round-Robin*, dove ogni squadra affronta due volte le altre 19 avversarie del torneo. Vi è quindi una partita di andata e una di ritorno. In base al sorteggio necessario alla creazione del calendario delle partite si decide quale delle due partite sarà giocata in casa oppure fuori casa (in casa dell'avversario).

Il torneo della stagione 2021/2022 è iniziato il 22 Agosto con Inter - Genoa e si è concluso il 22 Maggio con le partite Salernitana - Udinese e Venezia - Cagliari, per un totale 380 partite giocate, suddivise in 38 turni, ciascuno composto da 10 partite.

2.1.1 Ranking

Le squadre di calcio sono classificate in base all'ordine dei punti che hanno totalizzato al termine della stagione. In un torneo calcistico, per ogni partita, la squadra vincitrice guadagna tre punti, la squadra sconfitta guadagna un punto, mentre, in caso di pareggio, entrambe le squadre guadagnano un punto. Nel torneo della Serie A chi guadagna più punti vince il campionato, mentre chi si classifica tra le ultime tre retrocede alla lega inferiore, la Serie B. Il posto delle tre squadre retrocesse verrà preso da tre squadre della Serie B che hanno guadagnato la promozione alla Serie A.

La classifica della stagione 2021/2022 è riportata nella Tabella 2.1.

2.2 Costruzione del dataset

Al giorno d'oggi, nelle partite di calcio professionistico viene raccolta un'enorme quantità di variabili. Ad esempio, per ogni squadra è noto il tempo in percentuale del possesso della palla e il numero di tiri in porta in una determinata partita. L'obbiettivo principale di questo lavoro è determinare l'influenza che queste variabili hanno sull'esito della partita.

A tale scopo, sono state raccolte un gran numero di variabili che si suppone essere associate all'esito della partita.

Tali dati sono stati offerti dal sito web **fbref**, un sito web dedicato al tracciamento delle statistiche relative ai calciatori e alle squadre di calcio di tutto il mondo. **fbref**

Posizione	Squadra	Punti	% casa
1	Milan	86	0.47
2	Inter	84	0.54
3	Napoli	79	0.46
4	Juventus	70	0.50
5	Lazio	64	0.56
6	Roma	63	0.57
7	Fiorentina	62	0.66
8	Atalanta	59	0.33
9	Hellas Verona	53	0.57
10	Torino	50	0.58
11	Sassuolo	50	0.48
12	Udinese	47	0.53
13	Bologna	46	0.61
14	Empoli	41	0.42
15	Sampdoria	36	0.58
16	Spezia	36	0.50
17	Salernitana	31	0.48
18	Genoa	30	0.50
19	Cagliari	28	0.61
20	Venezia	27	0.52

Tabella 2.1: La tabella mostra i punti guadagnati da ogni squadra con il loro piazzamento. Inoltre viene mostrata la percentuale di punti guadagnati in casa.

mette a disposizione i dati sotto forma di tabelle che possono essere modificate per mantenere solo i dati di nostro interesse.

Dunque, per ogni squadra che ha partecipato alla stagione 2021/2022 di Serie A, sono state esportate le variabili di interesse per ogni partita giocata, selezionando le macroaree opportune e adattando le tabelle per ottenere solo i dati utili. Le varie tabelle hanno composto un file Excel divenuto il dataset per le analisi svolte nelle tesi

Figura 2.1: Logo di FBref. Source: https://fbref.com

2.3 Struttura del dataset

Il dataset risultante dalla raccolta dati è composto da 760 righe e 35 colonne. Ogni riga riguarda una specifica partita di calcio giocata dalla squadra indicata nella colonna Team contro la squadra indicata nella colonna Vs. Ogni riga contiene informazioni riguardati solo la squadra indicata in Team fatta eccezione per la data della partita (Date), il turno (Round) e gli spettatori (Spec). Quindi, per ogni partita esistono due righe, una per ciascuna squadra coinvolta. Come risultato finale, ogni squadra appare nella colonna Team 38 volte e, siccome il numero totale di squadre è 20, si ottengono 760 righe. La Tabella 2.2 mostra un breve estratto dei dati riguardanti le prime tre partite della stagione.

Date	AtHome	Res	\mathbf{GF}	$\mathbf{G}\mathbf{A}$	Team	V_{S}	Poss	
21/08/2021	TRUE	1	4	0	Inter	Genoa	0,59	
22/08/2021	TRUE	1	2	0	Napoli	Venezia	0,56	
•••	•••							
23/08/2021	FALSE	1	1	0	Milan	Sampdoria	0,51	
•••	•••							
21/08/2021	FALSE	-1	0	4	Genoa	Inter	0,41	
	•••				•••	•••		
22/08/2021	FALSE	-1	0	2	Venezia	Napoli	0,44	
	•••				•••	•••		
23/08/2021 1	TRUE	1	0	1	Sampdoria	Milan	0,49	
					•••		•••	

Tabella 2.2: La tabella mostra un estratto del *dataset* utilizzato i cui dati sono stati ricavati da FBref.

Come scritto precedentemente all'interno del dataset sono presenti 35 colonne. Oltre

alle già citate Date, Round e Spec che hanno solo un valore di completezza dei dati, le restanti 32 colonne sanno le possibili variabili che possono influenzare l'esito della partita. Le covariate sono state raggruppate nelle seguenti cinque macroaree:

- * dati generali,
- * dati relativi ai tiri,
- * dati possesso,
- * dati passaggi,
- * dati difensivi,

che sono illustrate di seguito.

2.3.1 Dati generali

In questo gruppo sono presenti le variabili legate a statistiche che non fanno parte di una precisa macroarea ma che descrivono più genericamente la partita giocata. Le possibili covariate sono le seguenti:

- * AtHome: indica se la squadra specificata della variabile Team gioca nel proprio stadio, quindi in casa oppure fuori casa. Per indicare se la squadra gioca in casa viene messo come valore TRUE altrimenti FALSE.
 - Come mostrato nella terza colonna della Tabella 2.1, la quale indica in percentuale quante partite sono state vinte in casa per ogni singola squadra, ci sono 11 squadre che hanno avuto un leggero vantaggio nel giocare in casa le partite di calcio rispetto a altre sei squadre che hanno avuto l'effetto opposto, mentre le rimanti tre hanno avuto un effetto nullo.
- * Res: indica se la squadra specificata della variabile Team ha vinto, pareggiato o perso la partita. Per indicare se ha vinto viene inserito il valore 1, se ha pareggiato 0, altrimenti se ha perso -1. Res sarà la variabile risposta.
- * GF: indica il numero di gol fatti dalla squadra specificata della variabile Team.
 È stata inserita perché può permettere di valutare la qualità della fase offensiva della squadra e quindi ci si aspetta che possa essere utile ai fini dell'analisi.
- * GA: Indica il numero di gol subiti dalla squadra specificata della variabile Team e quindi fatti dalla squadra indicata nella variabile Vs.
 - Essa può essere utile perché subire pochi gol incide positivamente sull'esito della partita, limitando l'esposizione della squadra ad uno sbilanciamento in attacco per recuperare lo svantaggio e quindi rischiando maggiormente di subire ulteriori gol dagli avversari. Inoltre, è un fatto riconosciuto che aver la miglior difesa del campionato è associato ad una maggiore probabilità di vittoria del campionato.
- * Team: indica il nome della squadra a cui i dati della riga fanno riferimento.
- * Vs: indica il nome della squadra avversaria.

* Fls: indica il numero di falli fatti dai giocatori della squadra specificata della variabile Team.

Questa variabile è stata inserita per capire se una squadra adotta un gioco più fisico/tattico. In questo caso sarà più propensa a interrompere il gioco della squadra avversaria e a commettere più falli. Si vuole perciò capire come questa variabile possa essere associata all'esito della partita, ricordando però che una squadra che commette molti falli è più soggetta a ricevere cartellini gialli o rossi che condizionano la prestazione dei giocatori.

* Fld: indica il numero di falli subiti ai giocatori della squadra specificata della variabile Team da parte della squadra avversaria specificata della variabile Vs.

Si è deciso di inserire questa covariata perché un alto numero di falli può portare a molte interruzioni della manovra di gioco e quindi permettere alla squadra avversaria di riorganizzarsi.

* Off: indica il numero di volte che la squadra specificata della variabile Team è finita in fuorigioco. Un calciatore si trova in posizione di fuorigioco quando una qualsiasi parte del suo corpo, fatta eccezione per braccia e mani, si trova nella metà campo avversaria ed è più vicina alla linea di porta avversaria, sia rispetto al pallone che rispetto al penultimo giocatore difendente avversario, portiere compreso nel caso in cui un compagno di questi è più vicino alla linea di porta. Una rappresentazione grafica del fuorigioco è mostrata nella Figura 2.2.

Figura 2.2: Rappresentazione del fuorigioco

Source: https://sport.sky.it/calcio/2021/10/05/fifa-figc-var-fuorigioco

È stata inserita perché, se una squadra viene colta molte volte in fuorigioco allora il suo gioco sarà interrotto con vantaggio della squadra avversaria che farà ripartire la sua azione a proprio favore.

2.3.2 Dati relativi ai tiri

In questo gruppo sono presenti le variabili collegata alla fase offensiva della squadra in esame.

* Sh: indica il numero di tiri totali fatti dalla squadra specificata della variabile Team. Quindi vengono conteggiati il numero di tiri in porta più i tiri fuori dalla porta.

Una squadra che effettua tanti tiri ha più probabilità di segnare un gol. Occorre però capire quanto è precisa una squadra nel centrare la porta.

* SoT: Indica il numero di tiri in porta totali fatti dalla squadra specificata della variabile Team.

Una squadra con un alto valore di tiri in porta è più probabile che possa segnare un gol. SoT permette di capire quanto è precisa in combinazione con Sh la squadra di calcio nel centrare la porta.

* G/Sh: indica la proporzione tra gol e tiri fatti dalla squadra specificata della variabile Team.

Questo può permettere di capire quanto la produzione di tiri della squadra è efficace o meno. Con Sh e SoT si riesce a valutare quanto sia offensiva la squadra, cioè se essa gioca costantemente in attacco o utilizza la tattica "difesa e contropiede". Inoltre, permette di capire quanto la squadra sia precisa nell'effettuare i tiri in porta.

2.3.3 Dati relati al possesso

In questo gruppo sono contenute le variabili collegate al possesso della palla

* Poss: indica la quantità di tempo (in percentuale) di possesso palla durante una partita di calcio per la squadra specificata della variabile Team. Nel gioco del calcio, con il termine "possesso palla" si intende un'azione manovrata di due o più giocatori che riescono a passarsi la palla evitando i contrasti degli avversari. Durante la partita, ogni volta che una squadra ha il dominio della palla si dice che questa squadra è in fase di "possesso palla", quindi in questa variabile viene indicato quanto questa fase è durata nell'intera partita.

Il metodo più comune utilizzato per calcolare il possesso palla di una squadra si basa sull'utilizzo di tre cronometri, uno per ciascuna formazione più uno per i tempi morti. Quando un giocatore della squadra A tocca un pallone che prima era in possesso della squadra B, il cronometro della squadra A parte e quello della squadra B si ferma e così via. Il terzo cronometro registra il tempo in tutte le situazioni di palla inattiva, ad esempio, rimesse laterali, calci di punizione ecc... I tempi vengono poi trasformati in percentuali. Per una registrazione più sofisticata, si possono utilizzare ventidue cronometri, uno per ogni giocatore.

La variabile è stata inserita perché, la supremazia nel possesso palla è solitamente desiderabile e utile, dati i seguenti vantaggi:

 spingere l'avversario a muoversi verso la palla per allontanarlo dalla difesa della propria porta per poi sorprenderlo negli spazi lasciati incustoditi. modulare il ritmo della gara, ad esempio, se una squadra sta vincendo con un gol di scarto, "congela" il risultato mantenendo il possesso della palla in modo da non ricevere attacchi da parte della squadra avversaria.

Il possesso palla però non garantisce la vittoria. Produrre un possesso palla "sterile", cioè senza che questo porti alla produzione di azioni offensive, può esporre la squadra in possesso della palla a contropiedi nel caso in cui la palla venga persa e quindi all'alto rischio di subire gol perché sbilanciata e non ben posizionata. Vedremo di seguito quali variabili possono essere utili per capire se il possesso palla fatto dalla squadra è "sterile" oppure no.

* ToDefPen: indica il numero di tocchi fatti dai giocatori della squadra specificata della variabile Team nella propria area di rigore.

Questa variabile è stata inserita perché può essere utile per capire come venga gestito il possesso della palla. Se vi è un alto numero di tocchi, vuol dire che la squadra subisce molto la pressione della squadra avversaria, viceversa cerca di fare un gioco più offensivo. Questa variabile, in combinazione con le variabili ToDef3rd, ToMid3rd, ToAtt3rd e ToAttPen permette di capire se il possesso della palla fatto della squadra sia utile e porti benefici ai fini del risultato oppure sia sterile. Inoltre, si vuole capire in che misura come ToDefPen influenza il risultato della partita con un alto o un basso valore di numero di tocchi nella propria area di rigore, la cui area è indicata nella Figura 2.3.

Figura 2.3: In rosso l'area di rigore in un campo da calcio.

Source: https://it.freepik.com/foto-vettori-gratuito/campo-da-calcio

* ToDef3rd: indica il numero di tocchi fatti dai giocatori della squadra specificata della variabile Team nella propria mediana o trequarti difensiva.

Questa variabile è stata inserita perché può essere utile per capire come venga gestito il possesso della palla. Se vi è un alto numero di tocchi, vuol dire che la squadra cerca di mantenere il possesso palla creando poche azioni offensive, viceversa cerca di fare un gioco più offensivo. Questa variabile, in combinazione con ToDefPen, ToMid3rd, ToAtt3rd e ToAttPen, permette di capire se il possesso della palla fatto della squadra sia utile e porti benefici ai fini del risultato oppure

sia sterile. Inoltre, si vuole capire in che misura ToDef3rd influenza il risultato della partita con un alto o un basso valore di numero di tocchi nella propria mediana la cui area, è indicata nella Figura 2.4.

Figura 2.4: In rosso la mediana nel campo da calcio.

Source: https://it.freepik.com/foto-vettori-gratuito/campo-da-calcio

* ToMid3rd: indica il numero di tocchi fatti dai giocatori della squadra specificata della variabile Team a centrocampo.

Questa variabile è stata inserita perché può essere utile per capire come venga gestito il possesso della palla. Se vi è un alto numero di tocchi, vuol dire che la squadra cerca di mantenere il possesso palla cercando di creare delle azioni offensive, viceversa cerca di fare un gioco più difensivo. Questa variabile, in combinazione con le variabili ToDefPen, ToDef3rd, ToAtt3rd e ToAttPen, permette di capire se il possesso della palla fatto dalla squadra sia utile e porti benefici ai fini del risultato oppure sia sterile. Inoltre, si vuole capire in che misura ToMid3rd influenza il risultato della partita con un alto o un basso valore di numero di tocchi a centrocampo la cui area, è indicata nella Figura 2.5.

* ToAtt3rd: indica il numero di tocchi fatti dai giocatori della squadra specificata della variabile Team a nella trequarti dell'avversario.

Questa variabile è stata inserita perché può essere utile per capire come venga gestito il possesso della palla. Se vi è un alto numero di tocchi, vuol dire che la squadra cerca di mantenere il possesso palla per effettuare una pressione sulla squadra avversaria affinché si possano creare degli spazi per delle azioni offensive, viceversa cerca di fare un gioco molto più difensivo. Questa variabile, in combinazione con le variabili ToDefPen, ToDef3rd, ToMid3rd e ToAttPen, permette di capire se il possesso della palla fatto della squadra sia utile e porti benefici ai fini del risultato oppure sia sterile. Inoltre, si vuole capire in che misura ToAtt3rd influenza il risultato della partita con un alto o un basso valore di numero di tocchi nella trequarti dell'avversario la cui area, è indicata nella Figura 2.6.

* ToAttPen: indica il numero di tocchi fatti dai giocatori della squadra specificata della variabile Team a nell'area di rigore dell'avversario.

Figura 2.5: In rosso il centrocampo nel campo da calcio. Source: https://it.freepik.com/foto-vettori-gratuito/campo-da-calcio

Figura 2.6: In rosso la trequarti dell'avversario nel campo da calcio. Source: https://it.freepik.com/foto-vettori-gratuito/campo-da-calcio

Questa variabile è stata inserita perché può essere utile per capire come venga gestito il possesso della palla. Se vi è un alto numero di tocchi, vuol dire che la squadra cerca di mantenere il possesso palla applicando un'alta pressione sulla squadra avversaria affinché si possano creare molte occasioni da gol in area, viceversa o la squadra subisce troppo la pressione dell'avversario oppure tende ad avere un gioco molto difensivo. Questa variabile, in combinazione con le variabili ToDefPen, ToDef3rd, ToMid3rd e ToAtt3rd permette di capire se il possesso della palla fatto della squadra sia utile e porti benefici ai fini del risultato oppure sia sterile. Inoltre, si vuole capire in che misura ToAttPen influenza il risultato della partita con un alto o un basso valore di numero di tocchi nell'area di rigore dell'avversario.

* ToDist: Indica la distanza totale, espressa in metri, in cui un giocatore della squadra specificata della variabile Team si è mosso con la palla in qualsiasi direzione, controllandola con i piedi.

Questa variabile è stata inserita perché permette di comprendere se il possesso della palla sia stato statico, ovvero i giocatori si sono mossi poco senza avanzare, oppure no. Sarà di interesse analizzare se un alto valore di metri percorsi con palla al piede possa essere utile ad ottenere la vittoria.

2.3.4 Dati relativi ai passaggi

In questo gruppo vi sono raggruppate le variabili collegate ai passaggi della palla.

* PAtt: Indica il numero di tutti i passaggi tentati dai giocatori della squadra specificata della variabile Team.

Utile a capire quanto la squadra sia incline a tentare i passaggi.

* PCmp%: Indica la percentuale di passaggi riusciti ai giocatori della squadra specificata della variabile Team.

È stata inserita perché permette di capire quanti passaggi siano andati a buon fine tra tutti quelli tentati e quindi la precisione dei giocatori della squadra.

* SPAtt: Indica il numero di passaggi corti tentati dai giocatori della squadra specificata della variabile Team. Per passaggi corti si intendono tutti quelli effettuati all'interno di una lunghezza tra i tre e quattordici metri.

È stata inserita per capire se un alto numero di passaggi corti possa essere determinanti ai fini dell'esito della partita.

* SPCmp%: Indica la percentuale di passaggi corti riusciti ai giocatori della squadra specificata della variabile Team.

È stata inserita perché permette di capire quanti passaggi andati a buon fine tra tutti quelli tentati e quindi la precisione dei giocatori della squadra.

* MPAtt: Indica il numero di passaggi medi tentati dai giocatori della squadra specificata della variabile Team. Per passaggi medi si intendono tutti quelli effettuati all'interno di una lunghezza tra i tredici e ventisette metri. Questi passaggi possono essere considerati come passaggi filtranti, cioè non diretti al proprio compagno di squadra ma verso un'area del campo dove il compagno di squadra deve andare a prendere la palla. Spesso questi passaggi vengono fatti per sorprendere la difesa avversaria ed evitare che la palla venga intercettata. Nella Figura 2.7 viene mostrato l'esecuzione di un passaggio filtrante.

È stata inserita per capire se un alto numero di passaggi medi possa essere determinante ai fini dell'esito della partita.

* MPCmp%: Indica la percentuale di passaggi medi riusciti ai giocatori della squadra specificata della variabile Team.

È stata inserita perché permette di capire quanti passaggi siano andati a buon fine tra tutti quelli tentati e quindi la precisione dei giocatori della squadra.

Figura 2.7: Esecuzione di un passaggio filtrante

Source: https://www.ilmisterone.com/2019/01/16/passaggi-filtranti/

* LPAtt: Indica il numero di passaggi lunghi tentati dai giocatori della squadra specificata della variabile Team. Per passaggi lunghi si intendono tutti quelli effettuati all'interno di una lunghezza superiore ai ventisette metri. Questi passaggi possono essere considerati come lanci lunghi per cambi di gioco o per lanciare le punte, cioè i giocatori che giocano come attaccanti, in profondità. Una rappresentazione di passaggio lungo è mostrata nella Figura 2.8.

Figura 2.8: Esecuzione di un cambio di gioco

Source: https://www.mistercalcio.com/tattica/il-cambio-di-gioco/

È stata inserita per capire se un alto numero di passaggi lunghi possa essere determinante ai fini dell'esito della partita.

- * LPCmp%: Indica la percentuale di passaggi lunghi riusciti ai giocatori della squadra specificata della variabile Team.
 - È stata inserita perché permette di capire quanti passaggi sono andati a buon fine tra tutti quelli tentati e quindi qual'è la precisione dei giocatori della squadra.
- * Crs: Indica il numero di cross effettuati dalla squadra specificata della variabile Team. Un cross (in italiano traversone) è un tipo di passaggio medio o lungo, solitamente effettuato sulle fasce laterali dell'area avversaria o comunque vicino all'area avversaria, che permette al compagno di squadra posizionato vicino alla porta avversaria di colpire la palla al volo di testa oppure di piede per segnare un possibile gol. Quindi, se eseguito correttamente, il cross può diventare un assist, cioè l'ultimo passaggio per la realizzazione del gol.

Figura 2.9: Rappresentazione di un cross

Source: http://www.allfootball.it/blog/calcio-vincere-allenando-i-dettagli/27-2-2017/calcio-la-marcatura-a-uomo-su-cross-laterale/

Una rappresentazione di cross è mostrata nella Figura 2.9.

2.3.5 Dati difensivi

In questo gruppo sono contenute le variabili collegate alla fase difensiva.

- * Saves: Indica il numero di parate fatte del portiere della squadra specificata della variabile Team.
 - È stata inserita perché permette di valutare se la squadra subisce tanti tiri dagli avversari, così come la qualità del portiere nel salvare la squadra da un possibile gol subito.
- * Int: Indica il numero di intercettazioni fatte dai giocatori della squadra specificata della variabile Team. Per intercettazione della palla si intende l'intercettazione di un passaggio della squadra avversaria entrando in possesso del pallone andando ad interrompere il passaggio avversario.
- * TklWin: Indica il numero di contrasti vinti dai giocatori della squadra specificata della variabile Team. Per contrasto si intende il tentativo da parte di un giocatore

difendente di sottrarre il possesso della palla all'avversario. Quindi chi ha in possesso la palla viene attaccato da chi ne è privo. Se si riesce a prendere il pallone all'avversario allora si avrà vinto il contrasto. I contrasti vengono effettuati anche per allontanare l'avversario dalle zone pericolose. La Figura 2.10 mostra un contrasto di gioco.

Figura 2.10: Rappresentazione di un contrasto in scivolata Source: https://www.ilmisterone.com/2022/01/24/partita-solo-tackle/

Visto che tale intervento senza palla modifica il gioco dell'avversario, si è deciso di inserire i contrasti vinti come variabile.

* Recov: Indica il numero di palle vaganti recuperate dalla squadra specificata della variabile Team. Per palle vaganti si intendono quei palloni che, a seguito di un contrasto di gioco, non sono stati recuperati dalla squadra che ha effettuato il contrasto ma chi ha subito il contrasto, ne ha comunque perso il controllo. Quindi nessuno ha in possesso il pallone e la palla viene detta vagante.

Dato che questa variabile sembra essere legata al possesso del pallone, potrebbe essere interessante per l'analisi.

Nella Tabella 2.3 è riassunto l'insieme delle variabili presenti e le loro macro-aree di appartenenza.

Di seguito nella Tabella 2.4 è mostrato per ogni variabile il nome che ha all'interno del dataset.

Statistiche generali	Tiri	Possesso	Passaggi	Difensive
AtHome	Sh	Poss	PAtt	Saves
Res	SoT	ToDefPen	$\mathrm{PCmp}\%$	Int
GF	G/Sh	ToDef3rd	SPAtt	TklWin
GA		ToMid3rd	$\mathrm{SPCmp}\%$	Recov
Team		ToAtt3rd	MPAtt	
VS		ToAttPen	$\mathrm{MPCmp}\%$	
Fls		ToDist	LPAtt	
Fld			$\mathrm{LPCmp}\%$	
Off			Crs	

 ${\bf Tabella~2.3:}~{\bf La~tabella~riassuntiva~variabili~presenti~nel~\it dataset.$

Originale	Rinominate		
AtHome	AtHome		
Res	Res		
GF	GF		
GA	GF		
Team	Team		
VS	Vs		
Poss	Poss		
Sh	Sh		
SoT	SoT		
G/Sh	G.Sh		
Saves	Saves		
PAtt	PAtt		
$\mathrm{PCmp}\%$	PCmp.		
SPAtt	SPAtt		
$\mathrm{SPCmp}\%$	SPCmp.		
MPAtt	MPAtt		
$\mathrm{MPCmp}\%$	MPCmp.		
LPAtt	LPAtt		
$\mathrm{LPCmp}\%$	LPCmp.		
ToDefPen	ToDefPen		
ToDef3rd	ToDef3rd		
ToMid3rd	${\rm ToMid3rd}$		
ToAtt3rd	ToAtt3rd		
ToAttPen	ToAttPen		
ToDist	ToDist		
Fls	Fls		
Fld	Fld		
Off	Off		
Crs	Crs		
Int	Int		
TklWin	TklWin		
Recov	Recov		

Tabella 2.4: Tabella corrispondenza nomi originali e nomi nel $\mathit{dataset}$

Analisi dei dati

Nel seguente capitolo verrà illustrata la fase di preprocessing e le analisi grafiche dei dati. Le analisi verranno svolte usando il linguaggio di programmazione di (R-language).

3.1 Preprocessing dei dati

Dopo aver importato il dataset utilizzando il linguaggio di programmazione R (**R-language**), il primo step da effettuare durante il prepocessing è individuare e risolvere possibili anomalie nei dati. Il dataset è stato importato in modo che la prima riga contenga l'intestazione, mentre le restanti righe tutte le osservazioni. Il comando usato per importare il dataset è il seguente:

```
> soccer <-read.xlsx("SerieA.xlsx", 1, header=TRUE)
```

Il dataset non ha valori mancanti. Questo è stato possibile grazie a **fbref** che ha messo a disposizione dati quasi sempre completi; in quei rari casi di mancanza di dati sono stati reperiti manualmente da altre fonti altrettanto attendibili.

Sono state inoltre tolte le variabili Date e Round.

Il passo successivo è stato controllare che le variabili fossero interpretate correttamente. Team e Vs vengono interpretate erroneamente come tipo character. Team e Vs devono essere interpretate come un fattore cioè è un valore non numerico, espresso in termini verbali, ad esempio una categoria; quindi ogni squadra sarà un livello del fattore. Analogamente, AtHome è stata fatta trasformata in un fattore a due livelli. Invece, Res è stata trasformata in un fattore ordinato con i livelli: -1 = sconfitta < 0 = pareggio < 1 = vittoria.

3.2 Analisi grafica dei dati

In questa sezione attraverso il supporto di grafici, si analizzerà graficamente i dati disponibili e le loro relazione per avere una prima visione dei dati raccolti. Si valuteranno le relazioni tra covariate e la variabile di risposta, le relazioni tra due covariate. Tutto ciò per individuare quali covariate possano essere significative per la variabile risposta e quali interazioni emergono dall'analisi grafica.

Come primo passo, è stata valutata la distribuzione della variabile risposta ${\tt Res}$, come è mostrato in Figura 3.1.

Si può notare come le classi sembrino ben distribuite, dato che abbiamo 196 pareggi e 282 vittorie e altrettante sconfitte. Si ha quindi un campione abbastanza ampio, distribuito e privo di classi povere.

Figura 3.1: Barplot della distribuzione della variabile di risposta Res

La Figura 3.2 mostra la distribuzione delle vittorie, dei pareggi e delle sconfitte per ogni squadra.

Figura 3.2: Barplot della distribuzione della variabile di risposta per squadraRes

3.2.1 Relazione tra la variabile risposta e le covariate

La prima relazione che si analizza riguarda la variabile categorica AtHome. Nella Figura 3.3 viene riportato il mosaicplot tra la variabile risposta e AtHome. Tale grafico è un particolare tipo di diagramma a barre impilate che mostra la relazione che c'è tra due fattori. Il numero di colonne è uguale al numero livelli della variabile inserita sull'asse orizzontale. L'altezza delle barre in verticale, invece, è proporzionale al numero di osservazioni della variabile inserita sull'asse verticale per ciascun livello della variabile nell'asse orizzontale. In sostanza, il mosaicplot è una rappresentazione grafica di una tabella di contingenza che permette un confronto visivo tra gruppi. Nella Figura 3.3 c'è una leggera variazione dei risultati tra la squadra che gioca in casa e l'avversaria, infatti per le squadre che giocano in casa, c'è una maggior presenza di vittorie e di minor sconfitte. Naturalmente non c'è alcuna variazione per il pareggio dato che entrambe le squadre lo ottengono.

Figura 3.3: Mosaicplot che mostra la distribuzione degli esiti rispetto alle partite giocate in casa e fuori casa

Nella Figura 3.4 viene riportato il boxplot della distribuzione della variabile Poss rispetto ai valori della variabile risposta Res. Il boxplot è un grafico che consente di visualizzare il centro e la distribuzione dei dati. Inoltre, può essere uno strumento visivo per la verifica della normalità o per l'identificazione di possibili outlier. Dal grafico si nota che Poss sembra essere significativa per l'esito. Infatti, i valori crescono dal boxplot della sconfitta al boxplot della vittoria. C'è una buona distribuzione dei dati perché la lunghezza dei baffi per ogni boxplot è simmetrica. Si segnala che la mediana della sconfitta è più vicina al 3° quantile mentre la mediana della vittoria è più vicina al 1° quantile. Non sono presenti outliers.

Nella Figura 3.5 viene riportato il boxplot della distribuzione della variabile SoT rispetto ai valori della variabile risposta Res. Valori più alti sono presenti nella vittoria mentre valori molto più bassi sono presenti nella sconfitta. C'è una buona distribuzione dei valori nella vittoria dato che i baffi sono simmetrici, viceversa per gli altri due boxplot

Figura 3.4: Boxplot della distribuzione della variabile Poss rispetto ai valori della variabile risposta Res

non c'è simmetria, infatti, il baffo inferiore è molto più corto rispetto al baffo superiore, segno che la maggior parte dei valori sono bassi e simili tra loro. Inoltre, alcuni outliers si discostano dalla distribuzione di tutti e tre i boxplot, questo perché ci sono state squadre che hanno tirato molte volte in porta. Le mediane dei boxplot pareggio e vittoria non sono equidistanti dai quantili ma più vicine al 1° quantile. Il boxplot della sconfitta ha una bassa varianza. In conclusione, avere un valore alto di tiri in porta sembra essere utile ai fini della vittoria.

Per la relazione tra la variabile risposta e la variabile Sh, si ha un boxplot molto simile al boxplot mostrato nella Figura 3.4. Il grafico di Sh rispetto al grafico di Poss, ha degli outliers e la mediana della sconfitta non è equidistante dai quantili ma più vicina al 1° quantile.

Nella Figura 3.6 viene riportato il boxplot della distribuzione della variabile G/Sh rispetto ai valori della variabile risposta Res. Si nota che ci sono valori molto bassi ma leggermente più alti per la vittoria. La distribuzione non è buona perché i baffi sono asimmetrici, infatti, tutti i valori sono concentrati in basso e pochi verso il baffo superiore, segno che la maggior parte dei valori sono bassi e simili tra loro. C'è una bassa varianza tra i valori. C'è la presenza di outliers perché alcune squadre sono riuscite a ottenere il massimo da ogni tiro. I risultati mostrati, nonostante la distribuzione, sono comunque coerenti dato che non ci si aspetta dal rapporto tiri-gol un numero alto ma comunque una tendenza che favorisca la vittoria.

Nella Figura 3.7 viene riportato il boxplot della distribuzione della variabile Saves rispetto ai valori della variabile risposta Res. Come si può notare sembra che Saves sia poco significativa ai fini del risultato. Infatti, c'è poca variazione tra un boxplot e l'altro

Figura 3.5: Boxplot della distribuzione della variabile SoT rispetto ai valori della variabile risposta Res

Figura 3.6: Boxplot della distribuzione della variabile G/Sh rispetto ai valori della variabile risposta Res

perché sembra che avere un alto numero di parate non è determinante a fini del risultato.

Figura 3.7: Boxplot della distribuzione della variabile Saves rispetto ai valori della variabile risposta Res

La Figura 3.8 viene riportato a sinistra il boxplot della variabile numerica PAtt rispetto ai valori della variabile risposta Res e a destra il boxplot della variabile numerica PCmp% rispetto ai valori della variabile risposta Res. Per entrambi sembra significativo l'elevato numero di passaggi tentati ma soprattutto quelli completati ai fini della vittoria. Nel grafico a sinistra, nel secondo e terzo boxplot il baffo superiore è più lungo rispetto al baffo inferiore, segno che molti valori sono bassi e simili tra loro, viceversa il primo boxplot ha una buona distribuzione perché i baffi sono simmetrici. Il boxplot della vittoria ha una maggiore varianza rispetto agli altri due e in più ha valori più alti; sia la mediana del boxplot della vittoria e sia quello del pareggio sono più vicine al 1° quantile, viceversa quella della sconfitta. I dati nel primo boxplot sembrano essere coerenti con l'esito della partita perché, maggior numero di passaggi si prova ad effettuare, maggiori sono le possibilità di vittoria. Occorre però sapere quanto è precisa la squadra e questo lo si può scoprire con la variabile PCmp%

Nel grafico a destra, si notano valori alti e molti outliers con valori bassi dovuti al fatto che ci sono state partite dove alcune squadre sono state poco precise nei passaggi. I baffi superiori di tutti e tre i boxplot sono molto meno lunghi rispetto ai baffi inferiori segno che molti valori sono alti e simili tra loro, inoltre, le varianze dei box sembrano essere uguali tra di loro. Sorprendentemente l'andamento invece di essere sempre crescente, prima scende da sconfitta a pareggio e poi sale da pareggio a vittoria.

Per la relazione tra la variabile risposta e la variabile SPAtt, si ha un grafico molto simile al grafico a sinistra della Figura 3.8. Il grafico di SPAtt rispetto al grafico di PAtt, ha un maggior numero di outliers soprattutto per la sconfitta rispetto al grafico

PAtt inoltre, c'è una minor varianza per tutti i tre boxplot oltre a valori più bassi in generale, questo è naturale perché PAtt contiene tutti i passaggi tentati e non solo quelli corti.

Per la relazione tra la variabile risposta e la variabile SPCmp%, si ha un grafico molto simile al grafico a destra della Figura 3.8. Il grafico di SPCmp% rispetto al grafico di PCmp%, il boxplot della sconfitta ha una maggior varianza, viceversa per la vittoria, che ha una minor varianza.

Per la relazione tra la variabile risposta e la variabile MPAtt, si ha un grafico molto simile al grafico a sinistra della Figura 3.8. Il grafico di MPAtt rispetto al grafico di PAtt, il boxplot della sconfitta ha una maggior varianza. In generale i valori sono più bassi rispetto al grafico di PAtt ma questo è naturale perché PAtt contiene tutti i passaggi tentati e non solo quelli medi.

Per la relazione tra la variabile risposta e la variabile MPCmp%, si ha un grafico molto simile al grafico a destra della Figura 3.8. Il grafico di MPCmp% rispetto al grafico di PCmp%, ha valori più alti e molti più outliers, inoltre i baffi inferiore dei boxplot della sconfitta e della vittoria sono più corti.

Per la relazione tra la variabile risposta e la variabile LPAtt, si ha un grafico molto simile al grafico a sinistra della Figura 3.8. Il grafico di LPAtt rispetto al grafico di PAtt, ha per il boxplot della sconfitta valori più bassi rispetto agli boxplot del pareggio e della vittoria inoltre, il boxplot del pareggio ha una maggior varianza valori mentre il boxplot della vittoria ha una minor varianza.

In generale i valori sono più bassi rispetto al grafico di PAtt ma questo è naturale perché PAtt contiene tutti i passaggi tentati e non solo quelli lunghi.

Per la relazione tra la variabile risposta e la variabile LPCmp%, si ha un grafico molto simile al grafico a destra della Figura 3.8. Il grafico di LPCmp% rispetto al grafico di PCmp%, ha valori più bassi, la distribuzione dei valori per il boxplot della sconfitta è ben equilibrata perché i baffi sono della stessa lunghezza e in più la mediana è equidistante dai due quantili, analogamente anche il boxplot del pareggio ha una distribuzione equilibrata ma con più varianza e una mediana equidistante dai quantili.

Nella Figura 3.9 viene riportato il boxplot della distribuzione della variabile ToDefPen rispetto ai valori della variabile risposta Res. Si nota che non c'è nessuna variazione dei tre boxplot, oltre ad avere la stessa varianza. L'esito può essere giustificato dal fatto che le squadre cercano di rimane fuori il più possibile dalla propria area di rigore per non portare troppo vicino alla porta l'avversario. Da ciò si può ipotizzare che ToDefPen non è significativa per la variabile risposta. Prima di escluderla si andrà ad analizzare se c'è qualche interazione con altre variabili che la fanno diventare significativa.

Nella Figura 3.10 viene riportato il boxplot della distribuzione della variabile ToAttPen rispetto ai valori della variabile risposta Res. Contrariamente quanto visto con la Figura 3.9 qui si nota una certa variazione tra i boxplot infatti, i valori crescono dal boxplot della sconfitta fino al boxplot della vittoria. C'è una maggior varianza per il boxplot della vittoria rispetto agli altri due boxplot. Per tutti e tre i boxplot i baffi inferiori sono leggermente meno lunghi rispetto ai baffi superiori, segno che i valori sono bassi e simili tra loro, infatti, ci sono alcuni outliers sopra al baffo superiore, segno

Figura 3.8: A sinistra il boxplot della variabile numerica PAtt rispetto ai valori della variabile risposta Res e a destra il boxplot della variabile numerica PCmp% rispetto ai valori della variabile risposta Res

Figura 3.9: Boxplot della distribuzione della variabile ToDefPen rispetto ai valori della variabile risposta Res

che alcune squadre in qualche partita, si sono particolarmente rese note nel produrre un quantitativo di tocchi maggiore rispetto alla distribuzione, ciò però non sembra influenzare l'esito. Le mediane sono equidistanti.

Per la relazione tra la variabile risposta e la variabile ToDef3rd, si ha un grafico molto simile a quello mostrato nella Figura 3.10. Il grafico di ToDef3rd rispetto al grafico di ToAttPen, ha un minore numero di outliers soprattutto per il boxplot del pareggio, tale boxplot ha inoltre una varianza simile al boxplot della sconfitta. Il boxplot della vittoria invece, ha una distribuzione ben equilibrata.

Per la relazione tra la variabile risposta e la variabile ToMid3rd, si ha un grafico molto simile a quello mostrato nella Figura 3.10. Il grafico di ToMid3rd rispetto al grafico di ToAttPen, ha un minore numero di outliers e la varianza del boxplot della sconfitta è molto simile alla mediana del boxplot del pareggio ma con la mediana più vicina al 3° quantile.

Per la relazione tra la variabile risposta e la variabile ToAtt3rd, si ha un grafico molto simile a quello mostrato nella Figura 3.10. Il grafico di ToAtt3rd rispetto al grafico di ToAttPen, ha una minor varianza in generale per tutti e tre i boxplot e una distribuzione sbilanciata verso valori più bassi dato che tutti i baffi inferiori sono più corti rispetto ai baffi superiori. L'andamento però rimane lo stesso presente nella Figura 3.10.

Figura 3.10: Boxplot della distribuzione della variabile ToAttPen rispetto ai valori della variabile risposta Res

Nella Figura 3.11 vengono riportati a sinistra il boxplot della variabile numerica F1s rispetto ai valori della variabile risposta Res e a destra il boxplot della variabile numerica F1d rispetto ai valori della variabile risposta Res. Nel boxplot a sinistra si può notare che i valori più alti sono nel boxplot del pareggio e della vittoria ma nel boxplot

del pareggio ci sono più valori alti. Ciò fa ipotizzare che subire molti falli può impedire la vittoria alla squadra che li subisce. Per quanto riguarda la distribuzione sembra essere buona; c'è una minor varianza per quanto riguarda il boxplot della sconfitta.

Figura 3.11: A sinistra il boxplot della variabile numerica Fls rispetto ai valori della variabile risposta Res e a destra il boxplot della variabile numerica Fld rispetto ai valori della variabile risposta Res

Nel secondo boxplot si hanno valori valori più alti nel boxplot della vittoria e una maggior varianza rispetto al boxplot della sconfitta. Sembra perciò che dal grafico si può intuire che se la squadra non commette dei falli allora sarà più soggetta a perdere.

Per la relazione tra la variabile risposta e la variabile Off, si ha un grafico molto simile a quello mostrato nella Figura 3.7. Il grafico di Off rispetto al grafico di Saves, ha un numero minore di valori per il boxplot della sconfitta rispetto agli altri due boxplot inoltre, le mediane del boxplot della sconfitta e del pareggio sono attaccate al 1° quantile.

Per la relazione tra la variabile risposta e la variabile Crs, si ha un grafico molto simile a quello mostrato nella Figura 3.12. Il grafico di Crs rispetto al grafico di Saves, ha per il boxplot della sconfitta maggior varianza e il baffo inferiore dei boxplot della sconfitta e della vittoria sono più corti rispetto ai baffi superiori.

Nella Figura 3.12 viene riportato il boxplot della distribuzione della variabile Int rispetto ai valori della variabile risposta Res. Sorprendentemente valori più alti sono registrati nel boxplot della sconfitta, anche se la mediana risulta essere più vicina al 1° quantile sottolineando che c'è un maggior numero di valori bassi piuttosto che alti. Le mediane dei restanti boxplot invece, sono ben equilibrate ma il boxplot del pareggio risulta avere meno varianza. Sembra perciò che effettuare troppe intercettazioni dei passaggi avversari contrariamente da quanto si pensi sia controproducente per la

vittoria. Si segnala inoltre la presenza di alcuni outliers con valori alti di intercettazioni, che si discostano dalle distribuzioni.

Figura 3.12: Boxplot della distribuzione della variabile Int rispetto ai valori della variabile risposta Res

Nella Figura 3.13 viene riportato il boxplot della distribuzione della variabile TklWin rispetto ai valori della variabile risposta Res. Come si può notare, vincere più contrasti possibili evita di subire una sconfitta. Infatti, ci sono valori più alti nei boxplot del pareggio e della vittoria rispetto al boxplot della sconfitta. Nello specifico però si nota che: nella distribuzione ci sono maggior valori alti nella vittoria rispetto al pareggio, graficamente lo si vede dalla mediana che nel boxplot del pareggio è più vicina al 1° quindi ha valori più bassi e lo si nota anche dal baffo inferiore che è meno lungo rispetto a quello superiore viceversa, la mediana del boxplot della vittoria risulta più vicina al 3° oltre ad avere il baffo superiore più corto rispetto a quello inferiore. C'è inoltre qualche outliers con valori più alti di contrasti vinti ma sembrano non influenzare la classificazione.

Infine nella Figura 3.14 viene riportato il Boxplot della distribuzione della variabile Recov rispetto ai valori della variabile risposta Res. Per entrambi i boxplot la distribuzione sembra più sbilanciata verso valori bassi quindi ad una loro maggior presenza; infatti, entrambe i baffi inferiori sono più corti rispetto a quelli superiori. Per quanto riguarda la mediana sembra equidistante dai quantili per entrambi i tre boxplot. Si nota che il boxplot del pareggio presenta minor varianza rispetto agli altri due boxplot ma valori più alti soprattutto nei confronti del boxplot della vittoria. Sembra perciò che un eccessivo numero di recuperi non porti alla vittoria. Si nota inoltre che ci sono numerosi outliers.

Figura 3.13: Boxplot della distribuzione della variabile TklWin rispetto ai valori della variabile risposta Res

 $\textbf{Figura 3.14:} \ \, \text{Boxplot della distribuzione della variabile } \textbf{Recov} \, \text{rispetto ai valori della variabile } \\ \text{risposta Res}$

3.2.2 Analisi possibili interazioni

Per concludere l'attività di preprossening, non resta che analizzare le relazioni tra le covariate per individuare possibili interazioni tra di loro che possono influenzare la variabile risposta. Chiaramente dato che ci sono più di trenta variabili e dunque, un grandissimo numero di combinazioni, non si sono esaminate tutte le relazioni ma sono state selezionate solo alcune per l'analisi, basandosi su teorie calcistiche esaminate durante la fase di studio del problema.

Per l'analisi delle interazioni si sono utilizzati i grafici di dispersione. Un grafico di dispersione mostra la relazione tra due variabili continue. A tali grafici si è inserito una terza variabile, la variabile risposta Res, dove ogni punto è colorato in tre possibili colori che rappresentano una delle tre categorie di Res. Di conseguenza il grafico permette di visualizzare se le categorie sono ben separati e quindi se un'interazione può spiegare l'andamento dei punti della variabile risposta.

Inoltre, è stato utilizzato l'indice di correlazione, che indica la forza dell'associazione lineare espressa in valori compresi tra -1 e 1. Tale misura permette di escludere da subito alcune relazioni tra variabili se l'indice è troppo alto o basso, infatti, le relazioni troppo forti vanno escluse perché può presentarsi il fenomeno della collinearità. La collinearità è quel fenomeno che va a nasconde il legame tra le variabili e la variabile risposta, a causa di un legame troppo forte tra le covariate.

Nella Figura 3.15 viene mostrato il valore della correlazione per ogni possibile relazione tra variabili numeriche. Si nota che ci sono molte relazioni che hanno un valore di correlazione molto vicino a 1, in basso a sinistra del grafico. Ad esempio notiamo che la variabile SPCmp% ha una relazione molto forte con la variabile PCmp% (correlazione = 0.82), ciò è coerente perché, la variabile SPCmp% contiene solo i passaggi corti completati mentre PCmp% contiene tutti i tipi di passaggi completati, ne consegue che la ridondanza dei dati causa questa alta correlazione. Analogamente la stessa motivazione la si può applicare tra la variabile PAtt e la variabile SPAtt (correlazione = 0.91). Perciò tale motivazione è applicabile a tutte le variabili relative ai passaggi completati o relative ai passaggi tentati.

Di seguito si riporteranno le interazioni che sono state individuate come significative.

Sono state individuate le seguenti tre interazioni con la variabile Sh:

- * Interazione tra la variabile Sh e la variabile ToAttPen. È ragionevole ipotizzare che il numero di tocchi fatti nell'area di rigore avversaria possano creare azioni da tiro. È quindi possibile che tra le due variabili possa esserci una relazione. La Figura 3.16 mostra una relazione positiva tra le due variabili infatti, quando aumenta la variabile Sh aumenta anche la variabile ToAttPen e viceversa. Sono distinguibili tre differenti gruppi che rappresentano le tre categorie della variabile risposta, inoltre la correlazione tra le due variabili non è troppo alta (0.72). Ne consegue che un'interazione tra la variabile Sh e la variabile ToAttPen, sembra essere significativa rispetto alla variabile risposta.
- * Interazione tra la variabile Sh e la variabile G/Sh. È ragionevole ipotizzare che ci sia un legame naturale tra tiri fatti e rapporto tiri-gol. La Figura 3.17 mostra una relazione negativa tra le due variabili infatti, quando aumenta la variabile Sh diminuisce anche la variabile G/Sh e viceversa. Sono distinguibili tre differenti gruppi che rappresentano le tre categorie della variabile risposta, infatti, i punti della categoria vittoria sono più in alto mentre i punti delle categorie pareggio

Figura 3.15: Grafico delle correlazioni di ogni coppia di variabili

Figura 3.16: Scatterplot della distribuzione della variabile Sh rispetto ai valori della variabile ToAttPen

e sconfitta più in basso. Inoltre, la correlazione tra le due variabili non è bassa (-0.15). Ne consegue che un'interazione tra la variabile Sh e la variabile G/Sh, sembra essere significativa rispetto alla variabile risposta.

* Interazione tra la variabile Sh e la variabile Poss. Generalmente è possibili ipotizzare che il possesso della palla possa favorire nell'effettuare i tiri. Infatti, la Figura 3.18 mostra una relazione positiva tra le due variabili, quando aumenta la variabile Sh aumenta anche la variabile Poss e viceversa. Sono distinguibili tre differenti gruppi che rappresentano le tre categorie della variabile risposta, inizialmente i vari punti sono mescolati tra di loro ma, con l'avanzamento emergono le direzioni di ogni categoria, infatti, i punti della categoria vittoria vanno più verso destra mentre i punti della categoria sconfitta si spostano verso l'alto senza tendere verso destra, i punti della categoria pareggio pareggio invece, si muovono in mezzo ai punti delle altre due categorie. La correlazione tra le due variabili non è alta (0.51). Ne consegue che un'interazione tra la variabile Sh e la variabile Poss, sembra essere significativa rispetto alla variabile risposta.

Sono state individuate le seguenti tre interazioni con la variabile ToMid3rd:

* Interazione tra la variabile ToMid3rd e la variabile LPAtt. Si suppone che tra le due variabili ci sia una relazione perché molti lanci lunghi per le punte partono proprio del centrocampo. La Figura 3.19 mostra un andamento un po' a "nuvola" ma comunque, è possibile individuare una relazione positiva tra le due variabili infatti, quando aumenta la variabile ToMid3rd aumenta anche la variabile LPAtt e viceversa. Sono distinguibili tre differenti gruppi che rappresentano le tre categorie della variabile risposta, inizialmente i vari punti sono mescolati tra di loro ma, successivamente i punti della categoria vittoria vanno molto in alto

Figura 3.18: Scatterplot della distribuzione della variabile Sh rispetto ai valori della variabile Poss

mentre i punti della categoria sconfitta rimangono molto più bassi muovendosi verso destra, invece i punti della categoria pareggio anche essi vanno verso destra ma rimanendo più alti rispetto ai punti della categoria sconfitta. La correlazione tra le due variabili non è alta (0.45). Ne consegue che un'interazione tra la variabile ToMid3rd e la variabile LPAtt, sembra essere significativa rispetto alla variabile risposta.

* Interazione tra la variabile ToMid3rd e la variabile PCmp%. Per le stesse ragioni illustrate nel punto precedente si ipotizza una relazione tra le variabili. La Figura 3.20 mostra una relazione positiva tra le due variabili infatti, quando aumenta la variabile ToMid3rd aumenta anche la variabile PCmp%, con un'andamento simile ad una funzione esponenziale. Sono distinguibili tre differenti gruppi che rappresentano le tre categorie della variabile risposta, dove i punti più in alto sono della categoria del pareggio, leggermente più sotto ci sono i punti della vittoria che però verso la fine del grafico raggiungono i valori più alti, e infine i punti della sconfitta. La correlazione tra le due variabili non è alta (0.66). Ne consegue che un'interazione tra la variabile ToMid3rd e la variabile PCmp%, sembra essere significativa rispetto alla variabile risposta.

Infine sono state individuate le seguenti interazioni:

* Interazione tra la variabile TotDist e la variabile PCmp%. Naturalmente per effettuare i passaggi e completarli è possibile farlo solo se ci si muove con la palla. La Figura 3.21 mostra una relazione positiva tra le due variabili infatti, quando aumenta la variabile TotDist aumenta anche la variabile PCmp%, con un'andamento simile ad una funzione esponenziale. Sono distinguibili tre differenti

 $\textbf{Figura 3.19:} \ \, \textbf{Scatterplot della distribuzione della variabile ToMid3rd rispetto ai valori della variabile LPAtt }$

 $\begin{tabular}{ll} \textbf{Figura 3.20:} & Scatterplot della distribuzione della variabile $\tt ToMid3rd$ rispetto ai valori della variabile $\tt PCmp\%$ \\ \end{tabular}$

gruppi che rappresentano le tre categorie della variabile risposta, dove i punti più in alto sono della categoria del pareggio, leggermente più sotto ci sono i punti della vittoria e infine i punti della sconfitta. La correlazione tra le due variabili non è troppo alta (0.75). Ne consegue che un'interazione tra la variabile TotDist e la variabile PCmp%, sembra essere significativa rispetto alla variabile risposta.

Figura 3.21: Scatterplot della distribuzione della variabile TotDist rispetto ai valori della variabilePCmp%

- * Interazione tra la variabile PAtt e la variabile PCmp%. Data la loro naturale correlazione si ipotizza che ci sia un'interazione. La Figura 3.22 mostra una relazione positiva tra le due variabili infatti, quando aumenta la variabile PAtt aumenta anche la variabile PCmp%, con un'andamento simile ad una funzione esponenziale. Sono distinguibili tre differenti gruppi che rappresentano le tre categorie della variabile risposta, dove i punti più in alto sono della categoria del pareggio, leggermente più sotto ci sono i punti della vittoria e infine i punti della sconfitta. La correlazione tra le due variabili non è troppo alta (0.74). Ne consegue che un'interazione tra la variabile PAtt e la variabile PCmp%, sembra essere significativa rispetto alla variabile risposta.
- * Interazione tra la variabile ToDefPen e la variabile ToAttPen. Come ci si può aspettare la Figura 3.23 mostra una relazione negativa tra le due variabili, quando aumenta la variabile ToDefPen diminuisce anche la variabile ToAttPen e viceversa. Sono distinguibili tre differenti gruppi che rappresentano le tre categorie della variabile risposta, infatti, i punti della categoria vittoria sono quelli più distanti dallo zero mentre i punti delle categorie pareggio e sconfitta sono più vicini allo zero. Inoltre, la correlazione tra le due variabili non è bassa (-0.45). Ne consegue che un'interazione tra la variabile ToDefPen e la variabile ToAttPen, sembra essere significativa rispetto alla variabile risposta.

 $\begin{tabular}{ll} \textbf{Figura 3.22:} & Scatterplot della distribuzione della variabile $\tt PAtt$ rispetto ai valori della variabile $\tt PCmp\%$ \\ \end{tabular}$

Figura 3.23: Scatterplot della distribuzione della variabile ToDefPen rispetto ai valori della variabile ToAttPen

3.3 Ulteriori modifiche del dataset

Nelle sezioni precedenti si è descritto come si è costruito il dataset e come esso è stato strutturato. Tale struttura ha il vantaggio di rendere il dataset di facile interpretazione, ma deve essere riadattato per poter utilizzare le funzioni del pacchetto **bt2** e del pacchetto **bt1**.

Innanzitutto la variabile risposta Res viene modificata in modo tale che valga le seguenti condizioni

$$Res = \begin{cases} 1 & \text{se la squadra in casa batte la squadra ospite,} \\ 2 & \text{se la partita termina con un pareggio,} \\ 3 & \text{se la squadra ospite batte la squadra in casa.} \end{cases}$$
(3.1)

La variabile risposta Res rimane ancora un fattore ordinato.

Di seguito vengono presentate le modifiche effettuate specifiche per i due pacchetti.

3.3.1 Modifiche per il pacchetto BradleyTerry2

Innanzitutto il modello richiede che le due variabili Team e Vs siano di tipo fattore oppure che costituiscano un data.frame. Un data.frame è una raccolta di vettori di osservazioni, che devono avere tutti la stessa lunghezza, ma possono essere di tipo diverso: variabili nominali (fattori) o variabili numeriche. Le variabili Team e Vs sono state trasformate in data.frame in modo da poter inserire al loro interno tutte le variabili descritte nella sezione precedente.

Inoltre i valori della variabile AtHome sono stati converti in 1 se TRUE mentre in 0 se FALSE.

Per poter creare i due data.frame occorre raccogliere le informazioni sulle partite giocate fuori casa dalle squadre indicate nella variabile Team. Con la funzione 8.1 viene implementato ciò in R. La definizione è la seguente.

Innanzitutto viene creato un vettore vuoto per ogni variabile presente nel dataset, ad eccezione di AtHome che verrà gestita in un modo diverso. Viene creato il vettore del che tiene traccia di quali osservazioni saranno da eliminare. Si eliminano le osservazioni delle partite giocate fuori casa dalle squadre indicate nella variabile Team perché dopo le modifiche saranno ridondanti. La variabile k è l'indice usato per scorre il dataset per trovare i dati dell'avversario. La variabile z è l'indice usato per inserire un nuovo elemento nel vettore del. Il funzionamento è il seguente

Il primo ciclo for scorre tutto il dataset alla ricerca delle righe con i dati delle partite giocate in casa dalla squadra indicata in Team, infatti al suo interno il primo costrutto if controlla se la partita è in casa per Team se sì, parte un secondo ciclo for che anche esso scorre tutto il dataset per cercare la riga con la partita giocata della squadra indicata in Vs. All'interno del secondo ciclo for c'è un costrutto if che controlla se la j-esima riga si riferisce alla stessa partita indicata nella i-esima riga, se sì allora si salvano tutti i dati nei vettori e si incrementa l'indice k. Se il primo if da esito negativo allora si andrà a inserire l'indice dell'i-esima riga nel vettore del perché contiene informazioni di una partita giocata fuori casa dalla squadra indicata in Team e viene incrementato l'indice di uno z.

Di seguito vengono riportati i comandi fatti per applicare le modifiche al dataset.

```
> AdjserieA2 <- AdjserieA[-del,]
```

Con il precedente comando si va a creare un nuovo dataset con 380 righe, eliminando tutte quelle righe con valore FALSE su AtHome.

Con il comando 3.1 si va a modificare Team rendendolo un data.frame, andando a inserire i dati della riga relativi alla squadra che gioca in casa. Si inserisce come chiave team = AdjserieA2\$Team e si indica che la partita è in casa per la squadra di riferimento con at.home = 1.

```
> AdjserieA2$Team <- data.frame(team = AdjserieA2$Team, GF =
   AdjserieA2$GF, GA = AdjserieA2$GA, at.home = 1, Poss = AdjserieA2$
   Poss, Sh = AdjserieA2$Sh, SoT = AdjserieA2$SoT, G.Sh = AdjserieA2$G.
   Sh, PAtt = AdjserieA2$PAtt, PCmp. = AdjserieA2$PCmp., SPAtt =
   AdjserieA2$SPAtt, SPCmp. = AdjserieA2$PCmp., MPAtt = AdjserieA2$
   MPAtt, MPCmp. = AdjserieA2$MPCmp., LPAtt = AdjserieA2$LPAtt, LPCmp. =
   AdjserieA2$LPCmp., ToDef3rd = AdjserieA2$ToDef3rd, ToAtt3rd =
   AdjserieA2$ToAtt3rd, ToAttPen = AdjserieA2$ToAttPen, TotDist =
   AdjserieA2$TotDist, Fls = AdjserieA2$Fls, Fld = AdjserieA2$Fld, Crs =
   AdjserieA2$Crs, Int = AdjserieA2$Int, TklWin = AdjserieA2$TklWin,
   Recov = AdjserieA2$Recov)</pre>
```

Listing 3.1: Codice per la creazione del data.frame Team

Con il comando 3.2 si va a modificare Vs rendendolo un data.frame, andando a inserire i dati della riga relativi alla squadra che gioca fuori casa. Si inserisce come chiave team = AdjserieA2\$Vs e si indica che la partita è fuori casa per la squadra Vs con at.home = 0. Per quanto riguarda il resto dei dati, vengono riportati attraverso l'inserimento dei vettori costruiti e riempiti precedentemente.

```
> AdjserieA2$Vs <- data.frame(team = AdjserieA2$Vs, GF = GFVs, GA = GAVs, at.home = 0, Poss = PossVs, Sh = ShVs, SoT = ShTVs, G.Sh = G. ShVs, PAtt = PAttVs, PCmp. = PCmp.Vs, SPAtt = SPAttVs, SPCmp. = SPCmp.Vs, MPAtt = MPAttVs, MPCmp. = MPCmp.Vs, LPAtt = LPAttVs, LPCmp. = LPCmp.Vs, ToDef3rd = ToDef3rdVs, ToAtt3rd = ToAtt3rdVs, ToAttPen = ToAttPenVs, TotDist = ToDistVs, Fls = FlsVs, Fld = FldVs, Crs = CrsVs, Int = IntVs, TklWin = TklWinVs, Recov = RecovVs)
```

Listing 3.2: Codice per la creazione del data.frame Vs

3.3.2 Modifiche per il pacchetto BTLLasso

Il pacchetto richiede una specifica lista strutturata nel seguente modo:

- * Y3: Oggetto risposta per il pacchetto con tre categorie di risposta, inoltre include i seguenti attributi:
 - response: Variabile risposta di tipo fattore ordinato,
 - ${\tt first.object:}$ Vettore che indica il nome della squadra che gioca in casa
 - second.object: Vettore che indica il nome della squadra che gioca fuori casa,
 - subject: Vettore che indica a quale giornata appartiene ogni partita,
 - subject.names: Vettore di tipo fattore che indica l'identificativo di ogni giornata,
 - object.names: Vettore di tipo fattore che indica l'identificativo di ogni squadra,

- m: Indica il numero di giornate presenti,
- n: Indica il numero di squadre presenti,
- k: Indica il numero di categorie presenti,
- with.order: Vettore di tipo logico che indica per ogni partita se considerare l'effetto dell'ordine.
- * Z1: Matrice che contiene tutti i dati sulle variabili raccolte suddivise per squadra e per partita.

Con la funzione 8.2 vengono raccolte le informazioni per produrre l'elemento Y3. Nella funzione ci sono tre cicli, il primo per scorre le giornate, il secondo per scorrere le partite della i-esima giornata, il terzo per trovare l'altra osservazione della j-esima partita, dato che si ricorda per ogni partita ci sono due osservazioni. Quindi man mano vengono raccolte le varie informazioni e ritornata attraverso side effects.

Per creare la matrice Z1 viene utilizzata la funzione 8.4, la quale estrae tutte le variabili indicate nell'attributo covs. Per funzionare tale funzione estrae una alla volte le variabile attraverso la funzione 8.3. La funzione 8.3 scorre tutto il dataset raccogliendo per ogni squadra tutti i valori registra in ogni partita per la variabile indicata nell'attributo cov. Una volta estratte tutti i dati della z-esima variabile viene creata una nuova matrice contenente i dati raccolti precedentemente sulle altre variabili, insieme alle informazioni della z-esima variabile, inserendo n colonne dove n indica il numero di squadre presenti. Perciò, viene creata una colonna per ogni squadra per ogni variabile raccolta. Infine viene creata per ogni colonna la sua etichetta, nella forma variabile.squadra. Per creare le etichette viene utilizzata la funzione 8.5.

Infine, vengono riportati i comandi per eseguire le modifiche

```
Ztmp <-c()</pre>
row <- rowLabel(str1, 38)
createYFull(SerieA)
subject.name <- levels(as.factor(SerieA$Round))</pre>
object.name <- levels(as.factor(SerieA$Team))</pre>
Ztmp<-extractAll(c("Poss", "Sh", "SoT", "G/Sh", "Saves", "PAtt", "PCmp%",
                   11(c( ...
"SPCmp%",
"" "LPAtt",
- ^++p
     'SPAtt", "SICL,
"MPCmp%",
                                               "LPCmp%", "ToDefPen", "ToDef3rd",
"MPAtt".
"MPAtt", "MPCmp%", "LPAtt, LFCmp%, Tobellel, Tobelola, "ToMid3rd", "ToAtt3rd", "ToAttPen", "TotDist", "Fls", "Fld", "Off", Crs", "Int", "TklWin", "Recov"), row, object.name)
#"Poss", "SoT", "G/Sh", "PCmp%", "LPAtt", "ToDefPen", "ToMid3rd", "
  ToAttPen", "Fld", "TklWin"
SerieA2122 <- list(Y3 = list(response = as.ordered(response), first.</pre>
  object = as.double(first.object), second.object = as.double(second.
  object), subject = subject, withS = TRUE, subject.names = subject.
  name, object.names = object.name, n = 38, m = 20, k = 3, q = 2, with.
   order = with.order), Z1 = Ztmp)
```

Listing 3.3: Comandi per la creazione della lista per il pacchetto BTLLAsso

4 | Il modello Bradley-Terry

Nel seguente capitolo verranno introdotti differenti modelli per il confronto a coppie, iniziando con il modello Bradley-Terry versione base fino a presentare tutte le sue estensioni usate per l'analisi trattata. Infine, verrà illustrata la penalizzazione applicata.

4.1 Introduzione al Modello Bradley-Terry

Il modello Bradley-Terry (**bradley1952rank**) è un modello probabilistico che permette di predire il risultato di un confronto a coppie. Un confronto a coppie è un processo di comparazione tra una serie di oggetti dove ogni oggetto viene confrontato in coppia con un altro oggetto determinando per ogni confronto, se l'oggetto è preferibile all'altro. Formalmente, dato un set di n oggetti $\{\alpha_1,...,\alpha_n\}$, un set di n parametri $\{\gamma_1,...,\gamma_n\}$ che rappresentano ciascuno l'abilità/forza dell'i-esimo oggetto, la variabile casuale associata al risultato del confronto a coppie $Y_{i,j}$ con $i < j \in \{1,...,n\}$, la probabilità che il risultato sia $\alpha_i \succ \alpha_j$ è

$$P(\alpha_i \succ \alpha_j) = P(Y_{i,j} = 1) = \frac{exp(\gamma_i - \gamma_j)}{1 + exp(\gamma_i - \gamma_j)}.$$
 (4.1)

Il risultato $\alpha_i \succ \alpha_j$ può essere letto come "l'oggetto α_i è preferito all'oggetto α_j ", " α_i batte l'oggetto α_j " oppure " α_i è migliore dell'oggetto α_j ". La variabile casuale $Y_{i,j}$ è di tipo binario, cioè $Y_{i,j}=1$ se l'oggetto α_i è preferito all'oggetto α_j e $Y_{i,j}=0$ se l'oggetto α_j è preferito all'oggetto α_i . I parametri γ_i sono stimati dal modello attraverso la massima verosimiglianza. È necessario imporre un vincolo per identificare gli oggetti. Tali vincoli possono essere il vincolo di somma $\sum_{i=1}^n \gamma_i = 0$ oppure il vincolo dell'oggetto di riferimento. Per il vincolo dell'oggetto di riferimento si intende che viene fissato $\gamma_i=0$ per un oggetto $\alpha_i\in\{1,\ldots,n\}$, mentre il valore dei parametri γ_j degli altri oggetti α_j sarà la differenza rispetto all'oggetto di riferimento α_i .

Il modello può essere alternativamente espresso in forma di logit lineare

$$logit(\alpha_i \succ \alpha_j) = log\left(\frac{P(\alpha_i \succ \alpha_j)}{P(\alpha_i \succ \alpha_i)}\right) = log\left(\frac{exp(\gamma_i)}{exp(\gamma_i)}\right) = \gamma_i - \gamma_j. \tag{4.2}$$

Il modello descritto è chiamato modello non strutturato. Il modello non strutturato non considera covariate e, in generale, non presta alcuna attenzione all'eterogeneità causata dai soggetti dei confronti. Per la nostra analisi, vengono considerati un numero di oggetti pari a n=20, cioè il numero di squadre partecipanti alla Serie A.

4.2 Modello Bradley-Terry con categorie di risposta ordinate

In molti contesti di comparazione tra oggetti, è possibile che sia richiesto di dare una scala di preferenza tra un oggetto e un altro. In tal caso, la variabile casuale presenta K possibili categorie di risposta con K>2. Le scelte di preferenza devono avere un ordine, dal risultato meno gradevole al più gradevole per ogni oggetto. Avere K categorie di risposta ordinate con K>2 è di interesse per le comparazioni calcistiche. Infatti, non è sufficiente stimare la probabilità di vittoria o di sconfitta ma deve essere obbligantemente preso in considerazione anche il pareggio come risultato. Inoltre, anche l'ordine delle K categorie di risposta e importante, infatti, un oggetto preferisce il pareggio piuttosto che la sconfitta. Perciò il modello (4.2) con una variabile risposta binaria non è adeguato.

Modelli che consentono un numero generale di categorie K sono stati proposti da bradley1952rank e tutz1986bradley. In particolare, tutz1986bradley mostrò come due modelli per l'analisi di dati ordinati possono essere adattati per i confronti a coppie.

Il primo modello presentato è detto a collegamento cumulativo il quale sarà usato per l'analisi. Il modello sfrutta la rappresentazione tramite variabili latenti. In generale, data la variabile continua casuale latente $Z_{i,j}$, sia K il numero di gradi della scala di preferenza e siano $\theta_1 < \theta_2 < < \theta_{K-1}$ le soglie tale che $Y_{i,j} = k$ quando $\theta_{k-1} < Z_{i,j} < \theta_k$. Allora:

$$P(Y_{i,j} \le k) = \frac{exp(\theta_k + \gamma_i - \gamma_j)}{1 + exp(\theta_k + \gamma_i - \gamma_j)},$$
(4.3)

con $k \in \{1,....,K\}$ che indica le possibili categorie di risposta. I parametri θ_k rappresentano le cosiddette soglie per le singole categorie di risposta, cioè sono i migliori valori in cui dividere le categorie. Tali soglie vengono stimate dai dati. In generale vi è imposta una simmetria del modello, in modo che valga: $P(Y_{i,j}=k)=P(Y_{j,i}=K-k+1)$. Pertanto le soglie sono ristrette a $\theta_k=-\theta_{K-k}$ e se, K è dispari, $\theta_{K/2}=0$, per garantire che le probabilità siano simmetriche, cioè il risultato opposto abbia la stessa probabilità di verificarsi. Per garantire che le probabilità siano non negative per le singole categorie di risposta si impone il seguente vincolo $-\infty=\theta_0<\theta_1<\ldots<\theta_{K-1}<\theta_K=\infty$. Dato che la soglia per l'ultima categoria è fissata a $\theta_K=\infty$, allora $P(Y_{i,j}\leq K)=1$. La probabilità di una singola categoria di risposta può essere derivata dalla differenza tra categorie adiacenti, come segue,

$$P(Y_{i,j} = k) = P(Y_{i,j} \le k) - P(Y_{i,j} \le k - 1).$$

Il modello ha anche la seguente rappresentazione logit lineare

$$logit(Y_{i,j} \le k) = \theta_k + \gamma_i - \gamma_j. \tag{4.4}$$

Il secondo modello invece proposto da **agresti1992analysis** è detto *modello a categorie adiacenti*. In questo caso il collegamento è applicato alle probabilità di risposte adiacenti piuttosto che alle probabilità cumulative, riducendosi così al modello Bradley-Terry quando sono consentite solo due categorie. Quando sono consentite solo tre categorie, il modello coincidere con quello di **davidson1970extending** che verrà presentato di seguito.

Il modello a categorie adiacenti è più semplice da interpretare rispetto ai modelli a collegamenti cumulativi poiché la probabilità si riferisce a un determinato risultato anziché a raggruppamenti di risultati.

Sia θ il parametro stimato dai dati che indica quanto è auspicabile la non preferenza. Allora (davidson1970extending)

$$P(Y_{i,j} = 2|Y_{i,j} \neq 0) = \frac{exp(\gamma_i - \gamma_j)}{1 + exp(\gamma_i - \gamma_j)},$$
 (4.5)

$$P(Y_{i,j} = 1) = \frac{\theta \sqrt{exp(\gamma_i) * exp(\gamma_j)}}{exp(\gamma_i) + exp(\gamma_j) + \theta \sqrt{exp(\gamma_i) * exp(\gamma_j)}},$$
(4.6)

$$P(Y_{i,j} = 0 | Y_{i,j} \neq 1) = \frac{exp(\gamma_j - \gamma_i)}{1 + exp(\gamma_j - \gamma_i)}.$$
 (4.7)

Si è riportato la modellazione di tutti e tre i possibili risultati, con γ_n che rappresenta la forza degli oggetti in comparazione. La probabilità che l'oggetto α_i batta l'oggetto α_j è rappresentata da (4.5), mentre la probabilità che l'oggetto α_j batta l'oggetto α_i è rappresentata da (4.7). Sia (4.5)sia (4.7) rimangono uguali alla probabilità (4.2) descritta precedentemente. Invece, per la probabilità che l'oggetto α_i pareggi con l'oggetto α_j (4.6), viene aggiunto il parametro θ . Il parametro θ rappresenta, quindi, quanto sia auspicabile il pareggio.

4.3 Modello Bradley-Terry con effetti dell'ordine

Nel modello descritto nella sezione 4.2 è necessario imporre la simmetria tra le categorie di risposta. Purtroppo, la simmetria imposta risulta essere non adeguata in alcuni contesti. Tra questi vi è anche il calcio poiché l'ordine degli oggetti (le squadre) conta. Infatti, in una partita di calcio, la prima squadra che viene indicata tra le due squadre è quella che gioca in casa, per cui ci si attende crei un vantaggio sull'avversario. Perciò, il presupposto che le categorie di risposta siano simmetriche non vale più.

Un possibile modello riadattato al problema esposto è il seguente:

$$P(\alpha_i \succ \alpha_j) = P(Y_{i,j} = 1) = \frac{exp(\delta + \gamma_i - \gamma_j)}{1 + exp(\delta + \gamma_i - \gamma_j)}.$$
 (4.8)

L'effetto dell'ordine come, ad esempio, il vantaggio di giocare in casa in ambito calcistico, viene trattato come un parametro δ . Se $\delta>0$, viene attribuito un vantaggio all'oggetto α_i , aumentando la probabilità che vinca il confronto o, nel caso di categorie di risposta ordinate, di avere un risultato superiore rispetto all'oggetto α_j . Chiaramente il valore di δ deve essere stimato dai dati.

Invece un modello con categorie di risposta ordinate con l'effetto dell'ordine è il seguente

$$P(Y_{i,j} \le k) = \frac{exp(\delta + \theta_k + \gamma_i - \gamma_j)}{1 + exp(\delta + \theta_h + \gamma_i - \gamma_j)}.$$
(4.9)

Il modello (4.8) e il modello (4.9) hanno anche la seguente rappresentazione logit lineare rispettivamente,

$$logit(\alpha_i \succ \alpha_j) = \delta + \gamma_i - \gamma_j, \tag{4.10}$$

$$logit(\alpha_i \succ \alpha_j) = \delta + \theta_h + \gamma_i - \gamma_j. \tag{4.11}$$

Perciò si fissa che la prima squadra che viene indicata tra le due squadre è quella che gioca in casa.

4.4 Modello Bradley-Terry con variabili esplicative

In precedenza, è stato descritto un modello che valutasse il grado di preferenza per un oggetto α_i rispetto a un oggetto α_j , senza considerare nessuna covariata. Spesso, però, si è interessati a capire quali elementi possono essere associati al risultato della comparazione. Prima di esporre il modello con covariate, è necessario fare una distinzione tra soggetti e oggetti e successivamente distinguere i tre tipi di covariate di un confronto a coppie, ovvero, le covariate specifiche al soggetto x_p , le covariate specifiche all'oggetto z_i e infine le covariate specifiche al soggetto e all'oggetto z_pi per i soggetti $p, p = 1, \ldots, m$ e gli oggetti $\alpha_i, i = 1, \ldots, n$.

Gli oggetti sono le entità che vengono confrontate in un confronto a coppie. I soggetti invece, sono le unità che stabiliscono la preferenza tra gli oggetti in un confronto a coppie. Nel calcio gli oggetti sono le squadre di calcio, mentre i soggetti sono le partite di calcio tramite le quali avviene la comparazione tra le squadre. Nell'analisi tratta il numero di soggetti sarà pari a m=380, cioè il numero di partite giocate nel campionato di Serie A.

Di seguito vengono illustrate le tre tipologie di covariate in un confronto a coppie:

* covariate specifiche del soggetto. Caratterizzano i soggetti che eseguono i confronti tra oggetti e quindi queste covariate variano solo tra soggetti. Ad esempio, nel calcio, covariate specifiche del soggetto sono il numero spettatori o le condizioni meteo sono specifiche al soggetto. Sia x_p un vettore di covariate specifiche del soggetto, β_i il peso stimato delle covariate per ogni oggetto α_i e β_{i0} l'intercetta. Allora l'abilità γ_{pi} dell'oggetto α_i nel soggetto p sarà

$$\gamma_{pi} = \beta_{i0} + x_p^T \beta_i.$$

Con l'inclusione di covariate specifiche del soggetto, il modello è in grado di spiegare l'eterogeneità tra i soggetti. Le covariate specifiche del soggetto nei confronti a coppie sono state considerate, ad esempio da francis2010 e Turner2012Firth.

* covariate specifiche dell'oggetto. Caratterizzano gli oggetti che vengono confrontati. Non variano tra i soggetti, ma tra gli oggetti. Nel caso del calcio, una covariata specifica dell'oggetto può essere il valore di mercato della rosa della squadra di calcio. Un loro utilizzo lo si può trovare in **schauberger2017**. Sia z_i un vettore di covariate specifiche all'oggetto, τ il peso uguale per tutti gli oggetti e β_{i0} l'intercetta. Allora l'abilità γ_i dell'oggetto α_i sarà

$$\gamma_{pi} = \gamma_i = \beta_{i0} + z_i^T \tau.$$

Il peso τ è un parametro globale che insieme a z_i rappresenta l'abilità spiegata delle covariate, mentre β_{i0} rappresenta la parte dell'abilità non spiegata dalle covariate. Nell'analisi in esame questo tipo di covariate non verrà usato.

* covariate specifiche del soggetto e dell'oggetto. Questi tipi di covariate possono variare sia per oggetti e sia per i soggetti. Nel calcio, ad esempio il possesso palla, è una covariata che varia per ogni singola squadra e per ogni singola partita. Tali variabili vengono approfondite in **thurner2000policy** e in **mauerer2015modeling**. Sia z_{pi} un vettore di covariate specifiche del soggetto e dell'oggetto, η_i il peso stimato delle covariate per ogni oggetto, β_{i0} l'intercetta. Allora l'abilità γ_{pi} dell'oggetto α_i nel soggetto p sarà

$$\gamma_{pi} = \beta_{i0} + z_{pi}^T \eta_i.$$

Contrariamente alle coviariate specifiche al soggetto, le covariate specifiche al soggetto e all'oggetto posso essere modellate con un effetto globale

$$\gamma_{pi} = \beta_{i0} + z_{pi}^T \tau,$$

dove τ rappresenta il peso stimato delle covariate. Come si può notare, il parametro τ non ha alcun indice, questo perché l'effetto della covariate è uguale su tutti gli oggetti.

Il parametro β_{i0} nelle specificazioni precedenti è l'intercetta specifica dell'oggetto. Tale parametro spiega la maggior parte della forza dell'oggetto. Infatti, le covariate possono essere viste come estensioni contenenti effetti aggiuntivi dell'abilità dell'oggetto che non sono spiegati dall'intercetta. In tal senso, gli effetti della covariata possono aiutare a spiegare i risultati imprevisti di un soggetto che non possono essere completamente spiegati esclusivamente dall'intercetta (cattelan2012models) e (schauberger2017). Nella Sezione 4.3 viene presentato l'effetto dell'ordine degli oggetti in competizione. Invece dell'effetto d'ordine globale δ , che è uguale per tutti gli oggetti, è possibile specificare l'effetto d'ordine specifico per ogni oggetto α_i , quindi δ_i . Nella Tabella 4.1 vengono riassunti tutti i tipi di covariate e tutte le possibili parametrizzazioni che possono essere applicate.

Quindi, il parametro abilità γ_{pi} di un oggetto α_i con i=1,....,n su un soggetto p, p=1,....,m non è altro che una combinazione lineare dei parametri precedentemente spiegati. Da ciò si ottiene il modello capace di utilizzare le covariate. Tale modello viene chiamato modello strutturato e fa parte dei generalized linear models (GLMs). Aggiungendo al modello 4.9 le covariate di tipo specifiche del soggetto e dell'oggetto al modello e l'effetto dell'ordine con effetto specifico dell'oggetto si ha

$$P(Y_{p(i,j)} \le k) = \frac{exp(\delta_i + \theta_k + \beta_{i0} - \beta_{j0} + x_{pi}^T \eta_i - x_{pj}^T \eta_j)}{1 + exp(\delta_i + \theta_k + \beta_{i0} - \beta_{j0} + x_{pi}^T \eta_i - x_{pj}^T \eta_j)},$$
(4.12)

con $i < j \in \{1, ..., 20\}$ e $p \in \{1, ..., 380\}$.

Come si può vedere, il parametro abilità γ_i è stato sostituito da β_{i0} e $x_{pi}^T \eta_i$. Analogamente anche per γ_i .

Tipo di covariate	Tipo di effetto	$\gamma_{pi} =$	$\gamma_{pj} =$	$\gamma_{p(ij)} = \gamma_{pi} - \gamma_{pj}$
Intercetta	Spec. dell'oggetto	β_{i0}	eta_{j0}	$eta_{i0} - eta_{j0}$
Effetto dell'ordine	Globale	$+ \delta$		$+\delta$
Effetto dell'ordine	Spec. dell'oggetto	$+ \delta_i$		$+ \delta_i$
Spec. del soggetto x_p	Spec. dell'oggetto	$+ x_p^T \beta_i$	$+ x_p^T \beta_j$	$+ x_p^T (\beta_i - \beta_j)$
Spec.dell'oggetto z_i	Globale	$+\ z_i^T \tau$	$+\;z_{si}^T\tau$	$+ (z_i - z_j)^T \tau$
Spec. del sogg. e dell'ogg. z_{pi}	Globale	$+\ z_{pi}^T\tau$	$+ z_{pj}^T \tau$	$+ (z_{pi} - z_{pj})^T \tau$
Spec. del sogg. e dell'ogg. z_{pi}	Spec. dell'oggetto	$+ x_{pi}^T \eta_i$	$+ x_{pj}^T \eta_i$	$+ x_{pi}^T \eta_i - x_{pj}^T \eta_j$

Tabella 4.1: Tipi di covariate e possibili parametrizzazioni applicabili al parametro abilità γ .

4.5 Stima e penalizzazione

È importante considerare che, con l'inserimento di un elevato numero di covariate, si ha un aumento di complessità del modello. Dato che si utilizza un modello lineare, un eccessivo livello di complessità può portare a problemi di identificabilità ed efficienza. Infatti, se si include una covariata specifica del soggetto e dell'oggetto equivale a inserire n covariate dove n è il numero di oggetti in considerazione. Nel nostro caso abbiamo 26 covariate di tipo specifiche del soggetto e dell'oggetto da inserire, cioè significa che se abbiamo 20 squadre abbiamo 520 parametri da stimare, un numero chiaramente troppo grande. Inoltre, la complessità è aumentata dalla presenza di una intercetta per ogni oggetto. La soluzione alla gestione di modelli complessi è l'utilizzo di metodi di shrinkage, che includono termini di penalizzazione nelle procedure di stima. I metodi di shrinkage (copas1983regression) regolarizzano il processo di stima spingendo le stime dei parametri verso zero. L'inclusione della penalizzazione dei termini potrebbe migliorare o leggermente peggiorare il modello, ma la variabilità associata alle stime sarà minore. C'è perciò un trade off di cui occuparsi, infatti più è forte la penalità inserita, più i parametri saranno vicini a zero e quindi meno informazioni si avranno sui parametri, di conseguenza sarà elevata la varianza a causa della perdita di informazioni. Ovviamente più informazioni vengono perse meno complesso sarà il modello ma allo stesso tempo sarà poco preciso. Non si massimizzerà la log verosimiglianza ma la log verosimiglianza penalizzata

$$L(\varepsilon)^p = L(\varepsilon) - \lambda P(\varepsilon),$$

dove $L(\varepsilon)$ è la log verosimiglianza con ε che rappresenta il vettore contenente tutti i parametri del modello e $P(\varepsilon)$ è un termine di penalizzazione. Il parametro λ è il parametro di tuning che stabilisce quanto forte deve essere la penalizzazione sui parametri.

Per eseguire la penalizzazione è necessario trasformare in scale comparabili tutte le covariate, per evitare che la penalizzazione influisca in modo diverso sui parametri. Oltre a una riduzione di complessità del modello, si vogliono ottenere i seguenti due obbiettivi:

- * Eseguire una selezione delle covariate spingendo a zero quelle non significative,
- * Valutare se vi è la formazione di un *cluster* di valori di una covariata su più squadre, in modo tale da utilizzare un effetto globale piuttosto che un effetto specifico dell'oggetto.

Quello che si intende per cluster di valori è che, durante la penalizzazione può accadere che una covariata ha come valore del parametro lo stesso per tutti gli oggetti in esame, perciò non occorre considerare n volte la covariata ma soltanto una volta, riducendo così la complessità. Per soddisfare questi punti, come metodo di penalizzazione verrà applicato il LASSO (tibshirani1996regression).

4.5.1 LASSO

Il metodo Least Absolute Shrinkage and Selection Operator detto LASSO (tibshirani1996regression) è un metodo di penalizzazione che permette di eseguire una selezione delle covariate. La selezione è possibile perché la penalizzazione applicata spinge i parametri ad essere uguali a zero. Si ha la seguente penalizzazione

$$L(\varepsilon)^P = L(\varepsilon) + \lambda \sum_{j=1}^p |\beta_j|,$$

dove $\lambda \sum_{j=1}^{p} |\beta_j|$ è il fattore di penalizzazione che include una norma L_1 dei parametri. Grazie alla norma L_1 è possibile eseguire la selezione delle covariate. Sono state utilizzate solo alcune modalità di penalizzazione tra quelle disponibili; quindi, verranno esposte solo quelle effettivamente utilizzate. Si veda ad esempio,

schauberger 2019 btllasso per una trattazione delle varie penalizzazioni esistenti.

Le applicazioni del LASSO sono le seguenti:

* Penalizzazione all'effetto partita in casa Si è applicata la seguente penalizzazione su 20 parametri che rappresentano l'effetto di giocare una partita in casa

$$P_{\delta}(\delta_1,....\delta_n) = \sum_{i < j}^{n} |\delta_i - \delta_j|.$$

Come si può notare l'effetto partita in casa δ_i è un parametro con effetto specifico all'oggetto. La penalizzazione risultate è data dai valori delle differenze assolute tra tutti i parametri. Tale tipo di penalizzazione permette di formare clusters di oggetti, nel nostro caso squadre, con un valore dell'abilità simile.

È possibile applicare una penalizzazione sul valore assoluto del parametro ma, dato che non vi sono dubbi che l'effetto casa sia determinante per l'esito di una partita di calcio (lago2016home), non verrà applicata nessun'altra penalizzazione.

* Penalizzazione alla covariata specifica del soggetto e dell'oggetto Si è applicata la seguente penalizzazione sui parametri della c-esima covariata

$$P_{\eta_c}(\eta_{1,1},...,\eta_{n,m}) = \sum_{p=1}^m \sum_{i< j}^n |\eta_{ip} - \eta_{jp}| + \sum_{p=1}^m \sum_{i< j}^n |\eta_{ip}|.$$

Rispetto alla penalizzazione precedente è stata aggiunta una penalizzazione al valore assoluto delle covariate. Questo perché non sappiamo in anticipo se una variabile è associata alla risposta oppure no. Perciò con la penalizzazione al valore assoluto possiamo fare selezione delle covariate.

Le penalizzazioni illustrate precedentemente se combinate permettono di ottenere il parametro

$$P(\varepsilon) = \sum_{c=1}^{C} P_{\eta_c} + P_{\delta},$$

con C=26 che indica il numero di covariate descritte nel Capitolo 2.

4.5.2 Scelta del parametro di tuning

Un punto cruciale per le tecniche di shrinkage è la determinazione del parametro di tuning ottimo λ , cioè il grado di penalizzazione che fornisce il miglior trade off tra complessità e precisione del modello. Per farlo ci si affiderà alla K-Fold Cross-Validation con k=10, che sceglierà la miglior λ rispetto alla metrica ranked probability score (RPS). Il RPS (gneiting2007strictly) per categorie di risposte ordinate $y \in \{1, ..., K\}$ misura quanto siano buone le previsioni espresse come distribuzioni di probabilità rispetto ai valori osservati. Sia K il numero di categorie della variabile risposta y, il RPS è così espresso

$$RPS(y, \pi(k)) = \sum_{k=1}^{K} \pi(k) - 1(y \le k)^{2}$$

dove $\pi(k)$ rappresenta la probabilità cumulativa $\pi(k) = P(y \le k)$ mentre $\mathbbm{1}$ è una funzione che restituisce 1 se il parametro in ingresso è vero, 0 altrimenti. A differenza delle altre possibili misure dell'errore, ad esempio la devianza, il RPS tiene conto dell'ordine di preferenza.

5 | Risultati dei modelli Bradley-Terry

In questo capitolo vengono presentate le stime e i risultati ottenuti dai modelli Bradley-Terry (BTM) descritti nel Capitolo 4. Inoltre, sarà riportata l'applicazione del metodo LASSO con relativi risultati. Infine si riporteranno le predizioni sugli esiti delle partite prodotte dai modelli per essere poi confrontate con le predizioni dei bookmakes

5.1 Premesse

I risultati che verranno esposti non tengono in considerazione le variabili esplicative del numero di gol fatti ${\tt GF}$ e dei gol subiti ${\tt GA}$. Questo perché provocano la non convergenza del modello. Infatti, le librerie usate non sono in grado di interpretare correttamente i dati. Una possibile soluzione è allargare il numero di categoria K inserendo per ogni possibile risultato finale una categoria. Ovviamente questa soluzione rende troppo complesso il modello, perciò si è deciso di lasciare K=3. Inoltre, data l'elevata complessità che raggiunge il modello esteso Bradley-Terry, non sono state inserite le interazioni illustrate nel Capitolo 3.

5.2 BTM con effetto dell'ordine

Le analisi dello studio iniziano con l'applicazione del modello (4.9). Tale modello presenta una struttura abbastanza semplice, in cui la stima dell'abilità delle squadre tiene conto solo degli esiti osservati delle varie partite e del vantaggio di giocare in casa. La stima dei parametri soglia θ_1 e θ_2 è pari rispettivamente, a -0.669 e 0.669 mentre il parametro δ globale per tutte le squadre è di 0.099 con uno standard error (SE) di 0.126. Si nota che la possibilità di giocare in casa è effettivamente in quanto la stima del parametro è positiva. Nella Figura 5.1 vengono riportati i risultati ottenuti in ordine dell'abilità stimata. Inoltre viene riportato lo Standard Error (SE) il Quasi Standard Error (QSE) (firth2004quasi) e il Quasi Variance (QV)(firth2004quasi) per ogni squadra.

Nonostante, la semplicità del modello, viene offerta una stima delle abilità delle squadre che rispecchia molto il piazzamento mostrato nella Tabella 2.1. Infatti, solo quattro squadre hanno un piazzamento diverso da quello reale. L'Udinese e il Sassuolo hanno il piazzamento invertito con una stima dell'abilità che è molto simile. Ciononostante, il risultato è comunque soddisfacente dato che nella stagione in esame il distacco tra Udinese e Sassuolo è stato solo di tre punti. Anche Genoa e Salernitana hanno un piazzamento differente da quello reale.

Figura 5.1: Barplot che indica per ogni squadra l'abilità stimata dal modello (4.9). A fianco al grafico viene riportato lo *Standard Error* (SE), il *Quasi Standard Error* (QSE) e il *Quasi Variance* (QV). Nel grafico viene indicato con un asterisco le squadre con un piazzamento stimato diverso da quello reale, anche esso riportato a destra del grafico.

Per quanto riguarda il Genoa tale risultato può essere spiegato dal fatto che all'inizio del campionato ha avuto un buon andamento (vedi **storyGenoa**) e dall'ottenimento di punti contro Juventus, Inter, Roma e Atalanta, cioè squadre considerate tra le più forti del campionato. Per quanto la stima al ribasso della Salernitana è determinata dal suo pessimo andamento per la maggior parte del campionato fatta eccezione per l'ultima parte, dove sono stati guadagnati la maggior parte dei punti, tanto da permettere alla squadra di guadagnare all'ultima giornata la salvezza (vedi **storySal**).

Il Quasi Variance (QV)(firth2004quasi) è un metodo che fornisce un'approssimazione della varianza, ed è utilizzato per confrontare livelli differenti di un fattore. Il tipo fattore è stato illustrato nel Capitolo 3. Il QV è stato introdotto da firth2004quasi per risolvere il problema della categoria di riferimento. Tale problema si riferisce al fatto che risulta essere semplice confrontare un livello qualsiasi del fattore con il suo livello di riferimento ma confrontare tra loro due livelli entrambi non di riferimento non è possibile. Grazie al QV cioè è possibile, infatti permette di confrontare tra di loro diversi livelli che non sono di riferimento con il vantaggio di non dover riportare tutta la matrice delle varianze e delle covarianze per effettuare i confronti. Nel nostro caso abbiamo la variabile team di tipo fattore con la squadra Atalanta come livello di riferimento. Grazie al QV ci viene fornita il QSE, una stima dello SE che verrà utilizzata per confrontare le abilità stimate dei diversi livelli, ovvero le squadre, per poter dedurre se la differenza di abilità tra due squadre sia significativa dal punto di vista statistico. Con il QSE le squadre vengono trattate come unità indipendenti. Esempio di applicazioni del QSE e del QV su BTM è possibile trovarli in firth2004quasi e in turner2012bradley.

Perciò, confrontiamo le stime dei valori delle abilità delle squadre classificatesi nelle prime due posizioni, rispettivamente Milan e Inter. Il QSE per Milan è di 0.359, mentre per l'Inter è di 0.400. La differenza assoluta tra le loro abilità è paria a |1.492 - 1.4| = 0.092. Applicando il calcolo pitagorico è possibile calcolare lo QSE, cioè un SE approssimato, relativo alla differenza tra abilità. Questo risulta essere $(0.359^2 + 0.400^2)^{\frac{1}{2}} = 0.537 > 0.092$. Perciò la differenza in termini di abilità tra le due squadre non è significativa da un punto di vista statistico. Infatti, le due squadre hanno una differenza di soli due punti.

5.3 BTM con covariate specifiche dell'oggetto

Si consideri l'estensione del modello Bradley-Terry con covariate specifiche dell'oggetto. Il modello applicato è il seguente

$$P(Y_{p(i,j)} \le k) = \frac{exp(\delta + \theta_k + \beta_{i0} - \beta_{j0} + x_{pi}^T \tau - x_{pj}^T \tau)}{1 + exp(\delta + \theta_k + \beta_{i0} - \beta_{j0} + x_{pi}^T \tau - x_{pj}^T \tau)},$$
(5.1)

dove l'effetto dell'ordine δ , cioè il vantaggio di giocare la partita in casa, ha ancora un effetto globale per tutte le squadre, mentre x_{pi}^T è il vettore con tutti i valori delle ventisei covariate per l'i-esima squadra e per la p-esima partita. Il parametro τ è il peso medio stimato di ogni covariata. Le covariate, perciò, sono specifiche del soggetto e dell'oggetto ma con un effetto specifico dell'oggetto.

La stima dei parametri soglia θ_1 e θ_2 è pari, rispettivamente a -1.113 e 1.113, mentre il parametro δ globale per tutte le squadre è salito a 0.27, con uno SE di 0.142. Nella Figura 5.2 e nella Tabella 5.1 vengono riportate le stime delle abilità delle squadre con i relativi SE, QSE e QV, e le stime di ogni covariata sul modello con relativo SE.

Figura 5.2: Barplot che indica per ogni squadra l'abilità stimata dal modello (5.1). A fianco al grafico vengono riportati i relativi Standard Error stimato diverso da quello reale, anche esso riportato a destra del grafico (SE), Quasi Standard Error (QSE) e Quasi Variance (QV). Nel grafico viene indicato con un asterisco le squadre con un piazzamento

Covariata	Stima	SE
ToMid3rd	1.57	0.025
G/Sh	1.135	0.317
Sh	0.787	0.085
SoT	0.536	0.324
$\mathrm{PCmp}\%$	0.534	0.300
ToDefPen	0.375	0.027
ToDef3rd	0.347	0.026
${\bf ToAtt3rd}$	0.283	0.025
Saves	0.280	0.312
Fls	0.138	0.204
Fld	0.100	0.204
TklWin	0.082	0.049
LPAtt	0.078	0.049
Poss	0.032	0.169
${\bf ToAttPen}$	0.027	0.044
TotDist	-0.039	0.001
Off	-0.054	0.144
PAtt	-0.080	0.053
Int	-0.082	0.057
$\mathrm{SPCmp}\%$	-0.100	0.136
Crs	-0.199	0.062
$\mathrm{LPCmp}\%$	-0.309	0.380
Recov	-0.512	0.030
SPAtt	-0.650	0.053
$\mathrm{MPCmp}\%$	-0.748	0.126
MPAtt	-1.011	0.050

Tabella 5.1: Stime delle covariate con relativo *Standard Error* (SE), stimate dal modello

Dai risultati si nota che alcune variabili esplicative sono fortemente associate all'esito della partita. Come ci si aspetta le variabili esplicative legate ai tiri quindi, tiri Sh, tiri in porta SoT e il rapporto tiri/gol G/Sh hanno un peso stimato molto alto e positivo. Sono perciò fortemente decisive per aumentare la probabilità di vittoria. Da notare che sia G/Sh e sia Sh hanno un alto SE, quindi un' elevata variabilità. Sarà interessante, perciò, analizzare nel prossimo modello, il peso di queste covariate per ogni singola squadra. Sorprendentemente la variabile esplicativa ha una forte associazione positiva con la probabilità di vittoria è il numero di tocchi con la palla fatti a centrocampo ToMid3rd. Le altre covariate legate ai tocchi nelle altre zone del campo quindi ToDefPen, ToDef3rd, ToAtt3rd e ToAttPen hanno un'associazione positiva seppur minore rispetto a ToMid3rd. Sembra perciò che avere il controllo del centrocampo sia fondamentale per costruire azioni da gol, ma anche per mantenere un risultato positivo dalla partita. Anzi, mantenere il pallone in zone difensive con meno transizioni in zone d'attacco sembra che dia maggior probabilità di vittoria. Infatti, si può notare che un elevato numero di tocchi in area di rigore avversaria ToAttPen aumenti di molto poco la probabilità di vittoria. A sostegno di ciò, si consideri che il campionato italiano è spesso considerato un campionato difensivista e tattico (vedi **speculazione**), dove si spinge l'avversario a sbilanciarsi per poi attaccarlo in contropiede.

Un aspetto difensivo chiave sembra essere rappresentato dalle parate fatte Saves. Inoltre, anche il numero di contrasti vinti TklWin è positivo quando associato alla probabilità di vittoria. Sorprendentemente però per quanto riguarda le altre variabili esplicative difensive rispettivamente, numero di intercetti Int e numero di recuperi Recov hanno un'associazione negativa con la probabilità di vittoria. Al contrario di quanto si pensi il possesso della palla non sembra essere un elemento chiave per la vittoria. Infatti, la sua stima fa aumentare di molto poco la probabilità di vittoria. Analogamente, anche la distanza percorsa con la palla TotDist non sembra essere un elemento chiave per la vittoria, anzi va a diminuire la probabilità di vittoria. Perciò sembra che stia emergendo dall'analisi una tendenza ad avere il controllo del gioco nei momenti giusti e nelle zone giuste del campo per aver maggior probabilità di vittoria. Per quanto riguarda l'aggressività della squadra, la stima del modello indica che commettere falli F1d aumenti le probabilità di vittoria, d'altra parte subire falli F1s è più conveniente.

Si nota che subire un fuorigioco Off ha un impatto negativo sulle probabilità di vittoria. Per quanto riguarda le covariate legate ai passaggi notiamo che solo la percentuale dei passaggi completati PCmp% e il numero di lanci lunghi tentati LPAtt hanno un'associazione positiva con la probabilità di vittoria, le restanti covariate invece presentano un'associazione negativa. Un abuso di passaggi filtrati MPAtt o di cross Crs sembra essere controproducente per la vittoria. Una buona precisione sui passaggi PCmp% e tentare i cambi di gioco LPAtt invece, suggeriscono la possibilità di maggiori probabilità di vittoria.

Come fatto nella sezione precedente è possibile anche qui confrontare tra loro le squadre utilizzando i loro QSE relativi alla loro abilità stimata. Confrontando ancora le prime due squadre cioè Milan e Inter, la loro differenza assoluta di abilità è pari|1.406 - |1.097| = 0.309 e il relativo QSE è pari a $(0.455^2 + 0.433^2)^{\frac{1}{2}} = 0,628 > 0.309$. Si ottiene per ciò che la differenza di abilità tra le due squadre è ancora non significativa anche con l'effetto delle covariate.

5.4 Modello Bradley-Terry e LASSO

Nella sezione precedente si sono presentati i risultati ottenutiel modello Bradley-Terry con l'inserimento di covariate con effetto specifico dell'oggetto. È però di interesse per le nostre analisi capire come ogni singola covariata sia determinante per la vittoria a seconda della squadra in esame. Per esempio, è possibile che il possesso della palla possa essere determinante per una squadra mentre per un'altra no. A tale scopo si applicherà il modello (4.12) utilizzando covariate specifiche del soggetto e dell'oggetto. Ovviamente con l'inserimento di questo tipo di covariate il modello sarà estremante complesso, essendo basato su 520 covariate. Di conseguenza sarà applicata una selezione delle covariate operata attraverso il metodo LASSO illustrato nel Capitolo 4. Sempre attraverso il LASSO sarà di interesse individuare clusters di squadre che per una certa covariata hanno un effetto simile. Allo stesso tempo si cercherà di individuare quali squadre invece si discostano maggiormente da questi clusters.

Purtroppo, non è stato possibile riportare gli SE delle stime a causa dell'elevata complessità del procedimento di calcolo. Questo è possibile solo attraverso la procedura di tipo bootstrap (henderson2005bootstrap), molto onerosa in termini computazionalmente, soprattutto con un numero elevato di covariate.

Nella Figura 5.3 e nelle Tabelle 5.2 e 5.3 vengono riportate le stime dei parametri delle abilità e delle covariate per ogni singola squadra. Si noti che non tutte le covariate hanno un'unica stima per tutte le squadre, ma in alcuni casi ci sono più stime per alcune covariate. Perciò, per ogni stima del parametro di una covariata verrà indicata quale squadra ha tale valore stimato. Nell'analisi dei risultati spesso si farà un confronto con i risultati ottenuti con il modello della sezione precedente.

Nella Figura 5.3 si può notare che le abilità stimate tramite LASSO sono quasi sempre in linea con il piazzamento reale, migliorando perciò le prestazione del modello rispetto al modello con effetto specifico dell'oggetto stimato nella sezione precedente.

Purtroppo, l'abilità dell'Atalanta viene sovrastimata nonostante al termine della stagione si sia classificata dietro a Roma e Fiorentina. Tale fenomeno può essere spiegato dal fatto che l'Atalanta per larga parte della stagione militava tra il terzo e il quarto posto, ma nell'ultima parte della stagione l'Atalanta è crollata di prestazione (vedi **storyAta**). Si nota che l'abilità della Sampdoria viene sottostimata, infatti in generale, non ha avuto un buon rendimento soprattutto verso la fine della stagione (vedi **storySamp**). Nella Tabella 5.2 e nella Tabella 5.3 alcune variabili esplicative sono state portate a zero, quindi eliminate per effetto della regolarizzazione tramite *LASSO*, mentre altre hanno diversi valori a seconda della squadra in considerazione.

Tra le covariate eliminate c'è il numero di passaggi tentati PAtt che nella Tabella 5.1 del modello precedente aveva un valore stimato quasi nullo. Sorprendentemente anche la percentuale di passaggi tentati PCmp% viene eliminata dal modello nonostante per il modello precedente avesse un valore stimato alto del parametro. Anche il numero di tocchi nella trequarti di difesa ToDef3rd viene tolta dal modello nonostante un valore stimato alto nella Tabella 5.1. Infine l'ultima variabile esplicativa eliminata interamente del modello è la distanza percorsa con la palla TotDist rimanendo in linea con quanto visto nella Tabella 5.1. Anche qui viene confermato che giocare la partita Home ha un effetto positivo stimato in 0.310. Per quanto riguarda invece il possesso della palla Poss, come visto dal precedente modello viene stimato con un peso nullo per la maggior parte delle squadre ad eccezione di Lazio e Torino, il quale ha una stima positiva positiva.

Il risultato della stima legata alla Lazio è un risultato in realtà non è sorprendente, infatti il **sarrismotr**, neologismo per indicare il gioco applicato dall'allenatore

Figura 5.3: Barplot che indica per ogni squadra l'abilità stimata dal modello (4.12). Viene indicato con un asterisco le squadre con un piazzamento stimato diverso da quello reale anche esso riportato a destra del grafico.

Covariata	Stima	Squadra
Home	0.310	Tutti
Poss	0.239	Lazio
Poss	0.171	Torino
Poss	0.000	Tutti tranne Lazio e Torino
Sh	0.520	Tutti
SoT	0.596	Atalanta, Cagliari, Empoli, Genoa, Verona, Juventus, Lazio, Milan, Napoli, Salernitana, Sampdoria, Sassuolo, Spezia, Torino, Venezia
SoT	0.495	Inter, Roma
SoT	0.361	Bologna
SoT	0.263	Fiorentina
SoT	0.007	Udinese
G/Sh	1.107	Tutti
Saves	0.260	Tutti
PAtt	0.000	Tutti
$\mathrm{PCmp}\%$	0.000	Tutti
SPAtt	0.124	Napoli
SPAtt	0.000	Tutti tranne Napoli
$\mathrm{SPCmp}\%$	0.067	Tutti tranne Genoa
$\mathrm{SPCmp}\%$	-0.235	Genoa
MPAtt	-0.058	Tutti
$\mathrm{MPCmp}\%$	-0.246	Tutti tranne Bologna e Genoa
$\mathrm{MPCmp}\%$	-0.255	Bologna e Genoa
LPAtt	0.077	Tutti
$\mathrm{LPCmp}\%$	0.199	Hellas Verona
$\mathrm{LPCmp}\%$	0.000	Tutti tranne Bologna e Verona
$\mathrm{LPCmp}\%$	-0.303	Bologna

Tabella 5.2: Stime delle covariate stimate dal modello (4.12).

Covariata	Stima	Squadra
ToDefPen	0.135	Tutti
ToDef3rd	0.000	Tutti
${\rm ToMid3rd}$	0.147	Tutti
ToAtt3rd	-0.154	Tutti
${\bf ToAttPen}$	0.000	Tutti tranne Atalanta
${\bf ToAttPen}$	-0.311	Atalanta
TotDist	0.000	Tutti
Fls	0.219	Bologna
Fls	0.012	Tutti tranne Bologna, Napoli, Genoa e Salernitana
Fls	-0.001	Napoli
Fls	-0.030	Genoa, Salernitana
Fld	0.100	Spezia
Fld	0.015	Tutti tranne Spezia e Udinese
Fld	-0.005	Udinese
Off	0.055	Hellas Verona
Off	0.002	Tutti tranne Verona, Inter, Juventus, Milan e Napoli
Off	-0.097	Inter, Juventus, Milan e Napoli
Crs	0.000	Torino
Crs	-0.180	Tutti tranne Milan, Roma, Torino, Atalanta e Napoli
Crs	-0.391	Milan e Roma
Crs	-0.671	Atalanta e Napoli
Int	0.012	Tutti
TklWin	0.225	Empoli
TklWin	0.086	Tutti tranne Empoli
Recov	-0.132	Tutti tranne Udinese
Recov	-0.189	Udinese

Tabella 5.3: Stime delle covariate stimate dal modello (4.12).

Maurizio Sarri, allenatore della Lazio nella stagione 2021/2022, ha tra le sue caratteristiche il mantenimento del possesso della palla, oltre a una propensione offensiva (vedi sarrismo). Analogamente anche il gioco del Torino si fonda sul possesso palla, ma con minor propensione offensiva (vedi torino).

Come era atteso, il numero di tiri Sh, il numero di tiri in porta SoT, il rapporto tiri/gol G/Sh e il numero di parate Saves sono fortemente associate all'aumento della probabilità di vittoria. Si nota che per SoT ci sono ben cinque stime, ciò poteva essere atteso dato che nella Tabella 5.1 era stato stimato un SE pari a 0.324 che giustifica la variazione di stima da squadra a squadra.

Per quanto riguarda le variabili legate ai passaggi non ancora illustrate, abbiamo che, il numero di passaggi corti tentati SPAtt non risulta associato alla probabilità di vittoria per le squadre ad eccezione del Napoli, per la quale invece la stima risulta positiva. La percentuale di passaggi corti completati SPCmp%, invece, presenta una stima del parametro molto bassa per tutte le squadre ad eccezione del Genoa, squadra per la quale il valore stimato è associato ad una diminuzione della probabilità di vittoria. Il numero di passaggi medi tentati MPAtt diminuisce le probabilità di vittoria per tutte le squadre. Analogamente anche per la percentuale di passaggi medi riusciti MPCmp% ha il parametro stimato fortemente negativo.

Si nota che il numero di passaggi lunghi tentati LPAtt ha la stessa stima calcolata con il modello precedente per tutte le squadre. È interessante notare come la percentuale di passaggi lunghi riusciti LPCmp% per la maggior parte delle squadre non ha alcuna associazione con l'esito della partita. Per l'Hellas Verona è associato ad un aumento della probabilità di vittoria, al contrario al Bologna è associato ad una diminuzione delle probabilità di vittoria. Infine, si nota che al crescere del numero di cross Crs si ha una diminuzione della probabilità di vittoria, principalmente per Atalanta e Napoli. Resta escluso il Torino, con una stima pari a 0.

Per quanto riguarda le variabili legate al possesso, al crescere del numero di tocchi in area di rigore ToDefPen e a centrocampo ToMid3rd si ha una crescita della probabilità di vittoria. Viceversa, il numero di tocchi fatti nella trequarti avversaria ToAtt3rd e nell'area di rigore avversaria ToAttPen è associato ad una riduzione della probabilità di vittoria.

Al subire falli Fls viene associato ad un aumento della probabilità di vittoria per molte squadre, specialmente per il Bologna, mentre la relazione si inverte per Napoli, Genoa e Salernitana. Per quanto riguarda l'effettuare falli Fld si associa una leggera probabilità di vittoria per la maggior parte delle squadre, soprattutto per la Spezia. Tendenza inversa per l'Udinese.

Il numero di fuorigioco Off in generale ha una associazione non rilevante con l'esito della partita. Curiosamente per le quattro squadre con la maggior abilità stimata, cioè Milan, Inter, Napoli e Juventus, Off ha un impatto negativo sull'esito della partita. Tale risultato può essere spiegato dal fatto che le squadre più forti ad esempio Milan, Inter ecc., creano più azioni d'attacco, mentre le squadre meno forti per difendersi da esse, utilizzano la trappola del fuorigioco per fermarle.

Per quanto riguarda le variabili esplicative difensive, il numero di intercetti Int e il numero di contrasti vinti TklWin sono associati ad un aumento della probabilità di vittoria. Viceversa, il numero di recuperi si associa ad una diminuzione della probabilità di vittoria a tutte le squadre. Anche qui rispetto al modello precedente è cambiato la stima delle soglie θ_1 e θ_2 che valgono rispettivamente -1.075 e 1.075.

In alcuni casi nelle stime dei parametri delle variabili esplicative c'è un alta variabilità delle stime tanto da essere negative per alcune squadre mentre per altre nulle o positive.

Inoltre, in altri casi invece, si vengono a formare dei clusters per alcune covariate. Questo fenomeno lo si può osservare chiaramente dalla Figura 5.4 alla Figura 5.16. Nei grafici vengono mostrati come cambiano le stime dei parametri associati ad ogni covariata e per ogni squadra al variare del parametro di tuning espresso in scala logaritmica. Ovviamente con un valore alto di penalizzazione si vede all'inizio che tutte le stime sono spinte a zero, ma con il diminuire della penalizzazione si iniziano ad ottenere stime diverse per la stessa covariata. La linea rossa tratteggiata indica il parametro di tuning ottimo che è stato scelto per ottenere i risultati illustrati precedentemente. Si ricorda che il parametro di tuning ottimo è stato scelto attraverso la procedura di Cross Validation spiegata nel Capitolo 4. In questo caso il parametro di tuning λ scelto è pari a 2.307.

Figura 5.4: Grafico che riporta l'andamento stimato dal modello (4.12) della stima del possesso della palla per ogni squadra al variare del parametro di tuning λ . La linea rossa tratteggiata indica il parametro di tuning λ ottimo che è stato scelto per ottenere i risultati finali.

In Figura 5.4 viene mostrato l'andamento relativo alla stima della covariata del possesso della palla Poss, si diversificano i risultati per Lazio e Torino che si discostano nettamente dall'andamento nullo tenuto dalla maggior parte delle squadre.

In Figura 5.5 viene mostrato l'andamento relativo alla stima della covariata del numero di tiri in porta SoT. Si notano cinque clusters con stima positiva. Il cluster con la stima più alta contiene la maggioranza delle squadre, seguito dal secondo cluster per stima contenente Inter e Roma. Il terzo cluster per stima contiene solo il Bologna, anche il quarto cluster per stima contiene solo una squadra, la Fiorentina. Infine, il quinto cluster per stima contiene l'Udinese che ha un valore positivo prossimo a zero.

In Figura 5.6 viene mostrato l'andamento relativo alla stima della covariata del numero di passaggi corti tentati SPAtt. Si nota che il Napoli ha un andamento positivo che si discosta nettamente dall'andamento nullo tenuto dalla maggior parte delle squadre.

Figura 5.5: Grafico che riporta l'andamento stimato dal modello (4.12) della stima del numero di tiri in porta per ogni squadra al variare del parametro di tuning λ . La linea rossa tratteggiata indica il parametro di tuning λ ottimo che è stato scelto per ottenere i risultati finali.

Figura 5.6: Grafico che riporta l'andamento stimato dal modello (4.12) della stima del numero di passaggi corti tentati per ogni squadra al variare del parametro di tuning λ . La linea rossa tratteggiata indica il parametro di tuning λ ottimo che è stato scelto per ottenere i risultati finali.

Figura 5.7: Grafico che riporta l'andamento stimato dal modello (4.12) della stima della percentuale di passaggi corti riusciti per ogni squadra al variare del parametro di tuning λ . La linea rossa tratteggiata indica il parametro di tuning λ ottimo che è stato scelto per ottenere i risultati finali.

In Figura 5.7 viene mostrato l'andamento relativo alla stima della covariata della percentuale di passaggi corti riusciti SPCmp%. Si nota che il Genoa ha un andamento negativo che si discosta nettamente dall'andamento leggermente positivo tenuto dalla maggior parte delle squadre.

In Figura 5.8 viene mostrato l'andamento relativo alla stima della covariata della percentuale di passaggi medi riusciti MPCmp%. Si nota che il Genoa e il Bologna hanno un andamento leggermente più negativo rispetto all'andamento, comunque, negativo tenuto dalla maggior parte delle squadre.

In Figura 5.9 viene mostrato l'andamento relativo alla stima della covariata della percentuale di passaggi lunghi riusciti LPCmp%. Sono presenti tre clusters. Il primo contenente solo l'Hellas Verona con un percorso positivo, il cluster più grande che contiene quasi tutte le squadre ha un andamento nullo. Infine, il terzo cluster con il Bologna che presenta un andamento negativo.

In Figura 5.10 viene mostrato l'andamento relativo alla stima della covariata del numero di tocchi fatti nell'area di rigore avversari ToAttPen. Si nota che l'Atalanta ha un andamento negativo che si discosta nettamente dall'andamento nullo tenuto dalla maggior parte delle squadre.

In Figura 5.11 viene mostrato l'andamento relativo alla stima della covariata del numero di falli subiti Fls, in cui si notano quattro clusters. Il primo cluster contenente il Bologna che con un percorso positivo, è seguito dal cluster più grande che contiene quasi tutte le squadre che ha un andamento leggermente positivo. Invece il cluster che contiene il Napoli ha un andamento leggermente negativo, mentre ancora più negativo è il cluster contenente Genoa e Salernitana.

In Figura 5.12 viene mostrato l'andamento relativo alla stima della covariata del

Figura 5.8: Grafico che riporta l'andamento stimato dal modello (4.12) della stima della percentuale di passaggi medi riusciti per ogni squadra al variare del parametro di tuning λ . La linea rossa tratteggiata indica il parametro di tuning λ ottimo che è stato scelto per ottenere i risultati finali.

Figura 5.9: Grafico che riporta l'andamento stimato dal modello (4.12) della stima della percentuale di passaggi lunghi riusciti per ogni squadra al variare del parametro di tuning λ . La linea rossa tratteggiata indica il parametro di tuning λ ottimo che è stato scelto per ottenere i risultati finali.

Figura 5.10: Grafico che riporta l'andamento stimato dal modello (4.12) della stima del numero di tocchi fatti nell'area di rigore avversaria per ogni squadra al variare del parametro di tuning λ . La linea rossa tratteggiata indica il parametro di tuning λ ottimo che è stato scelto per ottenere i risultati finali.

Figura 5.11: Grafico che riporta l'andamento stimato dal modello (4.12) della stima del numero di falli subiti per ogni squadra al variare del parametro di tuning λ . La linea rossa tratteggiata indica il parametro di tuning λ ottimo che è stato scelto per ottenere i risultati finali.

Figura 5.12: Grafico che riporta l'andamento stimato dal modello (4.12) della stima del numero di falli fatti per ogni squadra al variare del parametro di tuning λ . La linea rossa tratteggiata indica il parametro di tuning λ ottimo che è stato scelto per ottenere i risultati finali.

numero di falli fatti, in cui si notano tre clusters. C'è il cluster contenete lo Spezia che ha un percorso positivo, il cluster più grande che contiene quasi tutte le squadre che ha un andamento leggermente positivo. Invece il cluster che contiene l'Udinese ha un andamento leggermente negativo.

In Figura 5.13 viene mostrato l'andamento relativo alla stima della covariata del numero di fuorigioco fatti Off. Ci sono tre clusters. Il primo cluster contenente l'Hellas Verona ha un percorso positivo. Il cluster più grande contiene quasi tutte le squadre ha un andamento leggermente positivo. Infine, il cluster terzo che contiene Milan, Inter, Napoli e Juventus ha un andamento negativo.

In Figura 5.14 viene mostrato l'andamento relativo alla stima della covariata del numero di cross fatti Crs. Ci sono quattro clusters. Il primo cluster contenente il Torino ha un andamento nullo. Il cluster più grande che contiene quasi tutte le squadre ha un percorso negativo. Ancora più negativi sono il percorso del cluster contenente Milan e Roma, secondo solo al cluster contenente Atalanta e Napoli che si discosta nettamente da tutti gli altri clusters.

In Figura 5.15 viene mostrato l'andamento relativo alla stima della covariata del numero di contrasti vinti TklWin, in cui si nota che l'Empoli ha un percorso positivo che si discosta nettamente dall'andamento comunque positivo ma in minor misura tenuto dalla maggior parte delle squadre.

In Figura 5.16 viene mostrato l'andamento relativo alla stima della covariata del numero di recuperi Recov. Si nota che l'Udinese ha un percorso leggermente più negativo rispetto all'andamento negativo tenuto dalla maggior parte delle squadre.

Per riassumere quanto visto finora, la Figura 5.17 mostra i percorsi delle norme L2 che

Figura 5.13: Grafico che riporta l'andamento stimato dal modello (4.12) della stima del numero di fuorigioco fatti per ogni squadra al variare del parametro di tuning λ . La linea rossa tratteggiata indica il parametro di tuning λ ottimo che è stato scelto per ottenere i risultati finali.

Figura 5.14: Grafico che riporta l'andamento stimato dal modello (4.12) della stima del numero di cross fatti per ogni squadra al variare del parametro di tuning λ . La linea rossa tratteggiata indica il parametro di tuning λ ottimo che è stato scelto per ottenere i risultati finali.

Figura 5.15: Grafico che riporta l'andamento stimato dal modello (4.12) della stima del numero di contrasti vinti per ogni squadra al variare del parametro di tuning λ . La linea rossa tratteggiata indica il parametro di tuning λ ottimo che è stato scelto per ottenere i risultati finali.

Figura 5.16: Grafico che riporta l'andamento stimato dal modello (4.12) della stima del numero di recuperi per ogni squadra al variare del parametro di tuning λ . La linea rossa tratteggiata indica il parametro di tuning λ ottimo che è stato scelto per ottenere i risultati finali.

rappresentano l'importanza complessiva dei singoli effetti delle covariate.

Figura 5.17: Grafico che riporta l'importanza delle covariate rispetto alle norme L2 al variare del parametro di tuning λ secondo le stime del modello (4.12). La linea rossa tratteggiata indica il parametro di tuning λ ottimo che è stato scelto per ottenere i risultati finali.

Dal grafico si nota che il rapporto tiri/gol G/Sh è la variabile che incide maggiormente nella determinazione dell'esito di una partita. Analogamente, il numero di tiri in porta SoT e il numero di parate Saves sono determinanti sull'esito di una partita, ma con un minor peso rispetto a G/Sh. Anche il numero di cross Crs è significativamente associato all'esito della partita, ma al contrario di G/Sh sappiamo che contribuisce a diminuire le probabilità di vittoria. Si nota anche qui che il possesso della palla ha un ruolo molto marginale nel determinare il risultato di una partita. Viene confermata la tendenza che mantenere il pallone in zone difensive con meno transizioni in zone d'attacco sembra che si associ maggior probabilità di vittoria. Si riconferma importante il numero di lanci lunghi tentati LPAtt per l'esito favorevole della partita. Dal grafico si nota che sia il numero di contrasti vinti TklWin e il numero di fuorigioco Off sono determinanti per l'ottenimento della vittoria. Diversamente, il numero di recuperi Recov, la distanza percorsa con la palla TotDist e il numero di intercetti Int sono poco significativi. Infine, notiamo che il numero di falli fatti fld è più determinante di quelli subiti fls. Perciò, la maggior parte delle stime ottenute sembrano essere in linea con i risultati osservati nel precedente modello con covariate specifiche dell'oggetto senza l'applicazione del metodo LASSO.

5.5 BTM senza l'intercetta e con LASSO

Come era stato accennato nel Capitolo 4, l'intercetta spiega la maggior parte dell'abilità relativa alla squadra. Per cui le covariate possono essere viste come estensioni contenenti

effetti aggiuntivi dell'abilità della squadra che non sono spiegati dall'intercetta. In tal senso, gli effetti della covariata possono aiutare a spiegare i risultati imprevisti di una partita. Nelle tre precedenti applicazione del modello Bradley-Terry è sempre stata inserita un intercetta per ogni squadra. Perciò, di seguito verranno mostrati i risultati relativi a un modello Bradley-Terry della stessa forma del modello (4.12) ma senza le intercette, con lo scopo di capire quale sia l'effetto che ogni variabile esplicativa sull'abilità della squadra senza l'interferenza dell'intercetta. Ovviamente dato il numero elevato di covariate è stata applicata una selezione attraverso il metodo LASSO. Il modello applicato è il seguente

$$P(Y_{p(i,j)} \le k) = \frac{exp(\delta_i + \theta_k + x_{pi}^T \eta_i - x_{pj}^T \eta_j)}{1 + exp(\delta_i + \theta_k + x_{pi}^T \eta_i - x_{pj}^T \eta_j)}.$$
 (5.2)

Nella Tabella 5.4 e nella Tabella 5.5 vengono riportati i risultati nella stessa modalità utilizza nella precedente sezione.

Anche in questa applicazione sono state eliminate alcune covariate. Come già visto nel modello precedente, vengono confermate l'eliminazione del numero di passaggi tentati PAtt, della percentuale dei passaggi completati PCmp% e della distanza percorsa con la palla TotDist. Viene tolta dal modello la variabile esplicativa del numero di passaggi corti tentati SPAtt la quale nel modello precedente andava ad aumentare le probabilità di vittoria solo per il Napoli. Viene eliminata la covariata del numero di passaggi medi tentati MPAtt e quella del numero di intercettazioni Int. Infine, si rivela l'eliminazione della variabile esplicativa che indica il numero di recuperi che nel precedente modello era valutata come una covariata che incideva negativamente sulla probabilità di vittoria.

In questa nuovo tipo di modello la stima del parametro del possesso palla Poss ha subito una piccola variazione. Infatti, ora la stima non è più nulla per la maggior parte delle squadre ma e leggermente positiva. Ciononostante, la significatività si riconferma ancora bassa. Si riconferma però significativa solo per il gioco della Lazio, ma non più per il Torino come nello scorso modello. Tale risultato è visibile nella Figura 5.18.

Il numero di tiri Sh, il rapporto tiri/gol G/Sh e il numero di parate Saves sono ancora determinati per aumentare la probabilità di vittoria. Analogamente anche il numero di tiri in porta SoT mantiene una stima positiva del parametro, comune variabilità più ristretta rispetto al modello precedente. Infatti nella Figura 5.19 è possibile individuare tre clusters. Il più grande con la maggiore stima contiene la maggior parte delle squadre. Il secondo contiene solo l'Inter e infine il terzo contiene Bologna, Fiorentina e Udinese. Il risultato è visibile nella Figura 5.19.

Nella percentuale di passaggi corti riusciti SPCmp% ora viene a crearsi un cluster con un percorso nullo contenente quasi tutte le squadre eccetto il Genoa che è contenuto in un cluster con un percorso negativo. Tali risultati sono visibili nella Figura 5.20.

Per la variabile esplicativa della percentuale di passaggi medi riusciti MPCmp% ora viene a crearsi un cluster con un percorso fortemente negativo contenente quasi tutte le squadre eccetto l'Udinese dove si distingue per avere un percorso leggermente meno negativo. Tali risultati sono visibili nella Figura 5.21.

Il numero di passaggi lunghi tentati è ancora una covariata con una stima del parametro che aumenta la probabilità di vittoria. Si nota che la stima della covariata della percentuale di passaggi lunghi riusciti LPCmp% ha un cluster con un percorso nullo contenente quasi tutte le squadre eccetto l'Hellas Verona, che si distingue per un percorso positivo. Tali risultati sono visibili nella Figura 5.22.

Sia il numero di tocchi fatti in area di rigore ToDefPen sia il numero di tocchi fatti nella trequarti di difesa ToDef3rd sono associate ad un aumento della probabilità di

Covariata	Stima	Squadra
Home	0.270	Tutti
Poss	0.299	Lazio
Poss	0.047	Tutti tranne Lazio
Sh	0.317	Tutti
SoT	0.495	Atalanta, Cagliari, Empoli, Genoa, Verona, Juventus, Lazio, Milan, Napoli, Roma, Salernitana, Sampdoria, Sassuolo, Spezia, Torino e Venezia
SoT	0.438	Inter
SoT	0.399	Bologna, Fiorentina e Udinese
G/Sh	0.867	Tutti
Saves	0.242	Tutti
PAtt	0.000	Tutti
$\mathrm{PCmp}\%$	0.000	Tutti
SPAtt	0.000	Tutti
$\mathrm{SPCmp}\%$	0.000	Tutti tranne Genoa
$\mathrm{SPCmp}\%$	-0.076	Genoa
MPAtt	0.000	Tutti
$\mathrm{MPCmp}\%$	-0.230	Udinese
$\mathrm{MPCmp}\%$	-0.236	Tutti tranne Udinese
LPAtt	0.178	Tutti
$\mathrm{LPCmp}\%$	0.016	Hellas Verona
$\mathrm{LPCmp}\%$	0.000	Tutti tranne Verona
ToDefPen	0.080	Tutti
ToDef3rd	0.024	Tutti

Tabella 5.4: Stime delle covariate stimate dal modello (5.2).

Covariata	Stima	Squadra
ToMid3rd	0.002	Tutti tranne Inter e Sampdoria
${\rm ToMid3rd}$	0.000	Inter e Sampdoria
ToAtt3rd	-0.013	Tutti
ToAttPen	0.035	Tutti tranne Atalanta
ToAttPen	-0.083	Atalanta
TotDist	0.000	Tutti
Fls	0.256	Bologna
Fls	0.088	Tutti tranne Bologna
Fld	0.066	Tutti tranne Udinese
Fld	0.023	Udinese
Off	0.055	Hellas Verona
Off	0.000	Tutti tranne Juventus
Off	-0.085	Juventus
Crs	-0.190	Tutti tranne Atalanta
Crs	-0.464	Atalanta
Int	0.000	Tutti
TklWin	0.117	Empoli
TklWin	0.000	Tutti tranne Empoli
Recov	0.000	Tutti

Tabella 5.5: Stime delle covariate stimate dal modello (5.2).

Figura 5.18: Grafico che riporta l'andamento stimato dal modello (5.2) della stima del possesso della palla per ogni squadra al variare del parametro di tuning λ . La linea rossa tratteggiata indica il parametro di tuning λ ottimo che è stato scelto per ottenere i risultati finali.

Figura 5.19: Grafico che riporta l'andamento stimato dal modello (5.2) della stima del numero di tiri in porta per ogni squadra al variare del parametro di tuning λ . La linea rossa tratteggiata indica il parametro di tuning λ ottimo che è stato scelto per ottenere i risultati finali.

Figura 5.20: Grafico che riporta l'andamento stimato dal modello (5.2) della stima della percentuale di passaggi corti riusciti per ogni squadra al variare del parametro di tuning λ . La linea rossa tratteggiata indica il parametro di tuning λ ottimo che è stato scelto per ottenere i risultati finali.

Figura 5.21: Grafico che riporta l'andamento stimato dal modello (5.2) della stima della percentuale di passaggi medi riusciti per ogni squadra al variare del parametro di tuning λ . La linea rossa tratteggiata indica il parametro di tuning λ ottimo che è stato scelto per ottenere i risultati finali.

Figura 5.22: Grafico che riporta l'andamento stimato dal modello (5.2) della stima della percentuale di passaggi lunghi riusciti per ogni squadra al variare del parametro di tuning λ . La linea rossa tratteggiata indica il parametro di tuning λ ottimo che è stato scelto per ottenere i risultati finali.

vittoria. Nella stima del parametro della covariata che indica il numero di tocchi fatti a centrocampo ToMid3rd, viene a crearsi un cluster con un percorso poco significativo contenente quasi tutte le squadre eccetto l'Inter e la Sampdoria, le quali formano un cluster con un percorso non significante.

Il numero di tocchi fatti nella trequarti offensiva ToAtt3rd si conferma essere associato ad una riduzione della probabilità di vittoria.

Per la stima della variabile esplicativa che indica il numero di tocchi fatti nell'area di rigore avversaria ToAttPen, c'è un cluster con un percorso negativo contenente quasi tutte le squadre eccetto l'Atalanta che si distingue per un percorso positivo. Tali risultati sono visibili nella Figura 5.23. Per quanto riguarda l'aggressività della squadra, il numero di falli fatti Fld si associa ad un aumento della probabilità di vittoria per tutte le squadre. Come mostrato della Figura 5.24 però, la stima per l'Udinese è minore rispetto a tutte le altre squadre. Analogamente anche il numero di falli subiti Fls si associa ad una aumento della probabilità di vittoria di tutte le squadre, in particolare il Bologna si distingue con una stima maggiore come mostrato nella Figura 5.25. Nella stima della covariata che indica il numero di fuorigioco fatti Off, viene a crearsi un cluster con un percorso nullo contenente quasi tutte le squadre eccetto la Juventus, la quale forma un cluster con un percorso negativo. Tali risultati sono visibili nella Figura 5.26. La stima della variabile esplicativa del numero di cross fatti Crs si conferma essere ancora determinante per diminuire la probabilità di vittoria. L'Atalanta inoltre si distingue dalle altre squadre con un percorso ancora pù negativo rispetto, come mostrato nella Figura 5.27. Si nota che nella stima della covariata che indica il numero di contrasti vinti TklWin, viene a crearsi un cluster con un percorso nullo contenente quasi tutte le squadre eccetto l'Empoli, il quale forma un cluster

Figura 5.23: Grafico che riporta l'andamento stimato dal modello (5.2) della stima del numero di tocchi fatti nell'area di rigore avversaria per ogni squadra al variare del parametro di tuning λ . La linea rossa tratteggiata indica il parametro di tuning λ ottimo che è stato scelto per ottenere i risultati finali.

Figura 5.24: Grafico che riporta l'andamento stimato dal modello (5.2) della stima del numero di falli fatti per ogni squadra al variare del parametro di tuning λ . La linea rossa tratteggiata indica il parametro di tuning λ ottimo che è stato scelto per ottenere i risultati finali.

Figura 5.25: Grafico che riporta l'andamento stimato dal modello (5.2) della stima del numero di falli subiti per ogni squadra al variare del parametro di tuning λ . La linea rossa tratteggiata indica il parametro di tuning λ ottimo che è stato scelto per ottenere i risultati finali.

Figura 5.26: Grafico che riporta l'andamento stimato dal modello (5.2) della stima del numero di fuorigioco fatti per ogni squadra al variare del parametro di tuning λ . La linea rossa tratteggiata indica il parametro di tuning λ ottimo che è stato scelto per ottenere i risultati finali.

Figura 5.27: Grafico che riporta l'andamento stimato dal modello (5.2) della stima del numero di cross fatti per ogni squadra al variare del parametro di tuning λ . La linea rossa tratteggiata indica il parametro di tuning λ ottimo che è stato scelto per ottenere i risultati finali.

con un percorso positivo. Tali risultati sono visibili nella Figura 5.28. Infine, viene confermato che giocare la partita Home ha un effetto positivo stimato in 0.270, mentre è cambiato la stima delle soglie θ_1 e θ_2 che valgono rispettivamente -0.803 e 0.803. Tutti i risultati sono stati ottenuti impostando come parametro di tuning λ pari a 3.299.

Un' ulteriore analisi che può essere condotta è la validazione dell'effetto medio dei valori assunti della covariata per ogni partita e per ogni squadra, insieme alle stime dei singoli parametri per squadra. Si utilizzeranno i grafici a effetto stella proposti da tutz2013 visualization. In questi grafici è possibile visualizzare i valori medi per squadra e per covariata moltiplicati per le rispettive stime riportate precedentemente. Quindi verrà illustrato graficamente il contributo medio di una variabile esplicativa sull'abilità di una singola squadra. Il grafico funziona nel seguente modo: esso mostra il prodotto esponenziale tra la media dei valori assunti da una covariate e le sue stime per ogni squadra. Per ogni grafico, viene creato un cerchio con raggio $exp(\theta) = 1$ il quale rappresenta il caso con stima nulla. I valori oltre il cerchio indicano che la covariata ha effetto positivo in media sulla squadra. Viceversa, i valori all'interno del cerchio indicano che la variabile esplicativa si associa a effetti negativi in media sulla squadra. Nella Figura 5.29 nella Figura 5.30 e nella Figura 5.31 vengono mostrati i grafici a effetto stella. Nella Figura 5.29 si possono vedere tutte le variabili esplicative in cui la maggioranza delle squadre ha ricevuto una stima dei parametri delle variabili esplicative uguale a zero. Si possono comunque notare alcune squadre distinguersi in alcune covariate. Ad esempio la Lazio si differenzia dalle altre squadre con il possesso palla Poss mentre l'Empoli con il numero di contrasti vinti TklWin.

Figura 5.28: Grafico che riporta l'andamento stimato dal modello (5.2) della stima del numero di contrasti vinti per ogni squadra al variare del parametro di tuning λ . La linea rossa tratteggiata indica il parametro di tuning λ ottimo che è stato scelto per ottenere i risultati finali.

Figura 5.29: Grafico a effetto stella che riporta il contributo medio di una covariata sull'abilità di una singola squadra secondo il modello (5.2).

Per la Figura 5.30 abbiamo due particolari grafici. Entrambi rappresentano l'effetto negativo delle covariate che indicano, rispettivamente, il numero di tocchi nella trequarti avversaria fatti ToAtt3rd e il numero di cross fatti Crs. Notiamo che a subire più gli effetti negativi sono Inter e Atalanta per entrambe le variabili esplicative. Infine,

Figura 5.30: Grafico a effetto stella che riporta il contributo medio di una covariata sull'abilità di una singola squadra secondo il modello (5.2).

risultati più interessanti si hanno nella Figura 5.31. Innanzitutto si vede che con riferimento al numero di tiri Sh l'Inter ha un grosso beneficio. In minor misura ne beneficiano Milan, Roma, Atalanta, Napoli, Juventus e Sassuolo. Analoghi risultati sono visibili con il numero di tiri in porta SoT, con l'aggiunta della Lazio tra le squadre che ricevano più benefici. In generale, nel grafico relativo al numero di parate Saves, tutte le squadre ottengo benefici. Stesso risultato si rileva per il numero di passaggi lunghi tentati LPAtt. Nel grafico del numero di tocchi in area di rigore ToDefPen c'è un particolare beneficio ottenuto dal Venezia, così come Inter, Lazio, Empoli e Sassuolo. Analoghi risultati anche per il numero di tocchi nella trequarti difensiva ToDef3rd, ma con la differenza di minori benefici per il Venezia. Pertanto, si nota la tendenza delle squadre italiana ad attuare tattiche che prediligono di giocare nella propria metà campo. Il numero di tocchi a centrocampo ToMid3rd vengono in media effettuati molto dalle squadre, tranne Inter e Sampdoria per le quali l'effetto è nullo. Analogo effetto anche per il numero di tocchi fatti in area di rigore ToAttPen, con l'unica differenza si registra ora un effetto positivo per Inter e Sampdoria e un effetto negativo solo per Atalanta. In generali i falli subiti F1s portano benefici alle squadre, come si era notato dalle stime del modello. Per i falli fatti, invece abbiamo che l'Udinese ha minori benefici rispetto a tutte le altre squadre.

Dai grafici effetto stella emerge la tendenza da parte delle squadre italiana a ricorrere alla cosiddetta **costrdalbasso**. Ossia la costruzione dell'azione partendo dal proprio portiere e l'utilizzo di lanci lunghi. Inoltre, sapendo che ai paramatri del numero di tocchi in area di rigore ToDefPen, del numero di tocchi nella trequarti difensiva ToDef3rd, del numero di tocchi a centrocampo ToMid3rd e del numero di passaggi lunghi tentati LPAtt sono associati degli aumenti della probabilità di vittoria, è possibile affermare che la costruzione dal basso offre maggiori probabilità di vittoria.

Infine, come fatto nella sezione precedente, si analizzano i percorsi delle norme L2 che rappresentano l'importanza complessiva dei singoli effetti delle covariate. Tali percorsi sono visibili nella Figura 5.32.

Gli andamenti ottenuti nella Figura 5.32 sono molto simili a quelli visti nella Figura 5.17, con un aumento di importanza per la covariata ToAttPen in termini di diminuzione della probabilità di vittoria. Pertanto, quanto ricavato del modello (4.12) ora trova conferma anche nel modello (5.2).

5.6 Conclusione dei risultati ottenuti

(BOZZA) (****Probabilmente da spostare nel capitolo delle conclusioni*****)

Dai risultati ottenuti e dalle analisi condotte è possibile concludere quanto segue. Nel campionato italiano, ai fini della vittoria o, in generale, dell'ottenimento di buoni risultati è rilevante per una squadra adottare un comportamento tattico, in particolare, dell'utilizzo della costruzione dal basso e giocare prevalentemente nella propria metà campo. È importante che la squadra adotti un comportamento meno propenso a controllare il pallone per lungo tempo perché sia il possesso della palla Poss e sia la distanza percorsa con la palla TotDist non sono significavi. Inoltre, la squadra deve essere più propensa a giocare maggiormente la palla nella propria area di difesa per evitare contropiedi perché sia le stime del numero di tocchi in area di rigore ToDefPen, sia il numero di tocchi nella trequarti difensiva ToDef3rd e sia il numero di tocchi a centrocampo ToMid3rd sono associati ad un aumento della probabilità di vittoria. Avere perciò una buona difesa è fondamentale. La fase offensiva non deve essere troppo lunga in termini di possesso della palla. Infatti, il numero di tocchi fatti nella trequarti offensiva ToAtt3rd porta ad avere una diminuzione delle probabilità di vittoria ma se si fanno i giusti passaggi per entrare nell'area di rigore avversaria mantenendo sempre un possesso palla breve si aumentano le probabilità di vittoria come visto nella stima del numero di tocchi in area di rigore avversaria ToAttPen. Dalle analisi emerge che uno sbilanciamento verso la fase offensiva porta una forte diminuzione alle probabilità di vittoria. Considerando i casi di Inter e Atalanta. La prima si dimostra essere una dalle squadre che più tira in generale (Sh) e in porta (SoT). Alti valori sono presenti anche per l'Atalanta. Entrambe però mantengono troppo il controllo del pallone nell'area avversaria. Infatti, per entrambe le squadre si riscontrano notevoli diminuzioni della probabilità di vittoria a causa della stima del parametro di ToAtt3rd. Peggio ancora per l'Atalanta, che ha un gioco particolarmente offensivo (vedi ataGioco), che le fa ottenere una diminuzione della probabilità della vittoria dalla stima del parametro ToAttPen. Questo perché il prolungato controllo del pallone la porta a esporsi e a subire contropiede. Si è parlato spesso di contropiedi nella nostra analisi. Quello che emerge sempre in tema di fase offensiva è che, il numero di tiri è relativamente basso, fatto dimostrato dal notevole aumento della probabilità di vittoria portato della stima del rapporto tiri/gol G/Sh. Di conseguenza le squadre attaccano poco e, quando lo fanno, cercano di massimizzare la loro fase offensiva. Infatti, le partite nel campionato italiano spesso finiscono con un massimo di due o tre gol segnati. Pertanto, l'efficacia di un azione offensiva che porta al gol e la carenza di azioni offensive portano Sh, SoT ma soprattutto G/Sh ad assumere un elevato contributo nel determinare la vittoria. Concludendo la trattazione sulla fase offensiva, si illustra quale sia il miglior modo di

Figura 5.31: Grafico che riporta il contributo medio di una covariata sull'abilità di una singola squadra secondo il modello 5.2.

Figura 5.32: Grafico che riporta l'importanza delle covariate rispetto alle norme L2 al variare del parametro di tuning λ

attaccare che emerge dai modelli. Si sa che il contropiede è efficace, ma allo stesso tempo difficile da attuare per via del comportamento delle squadre a non sbilanciarsi. Una valida alternativa che emerge è il lancio lungo che parte dall'area compressa tra l'area di rigore della squadra fino a centrocampo ed arriva nell'area avversaria. Infatti, la stima del parametro del numero di passaggi lunghi tentati LPAtt è associata ad una crescita della probabilità di vittoria. L'utilizzo di passaggi filtrati MPCmp% non è una buona tattica. Analogamente anche i cross Crs non danno benefici. Anzi, causano svantaggi, e ancora una volta ne rimangono penalizzate Inter e soprattutto Atalanta che con il suo gioco sfrutta molto le fasce (vedi ataGioco). In conclusione, è importante sottolineare che un atteggiamento troppo speculativo o difensivo da parte della squadra non porta alla vittoria. Questo è il caso del Venezia, classificatosi come ultimo, e che ha ottenuto benefici dalle covariate ToDefPen e ToDef3rd ma non dalle variabili esplicative offensive. In conclusione, dall'analisi emerge che per ottenere la vittoria una squadra debba mantenere un comportamento tattico e giocare prevalentemente nella propria metà campo.

5.7 Predizioni

In questa sezione si vuole valutare le prestazioni dei quattro modelli presentati nelle precedenti sezioni. I modelli vengono valutati in base alle loro capacità di predizioni dell'esito di una partita, sulla base delle informazioni (covariate) disponibili. Per predizione si intende che il modello stabilisce l'esito di una partita senza conoscerne il risultato reale. Per rendere più interessante il confronto si aggiungere un quinto elemento nel confronto, ossia le predizioni fatte dai bookmakers, ad esempio Bet365, William Hill ecc... I dati dei bookmakers sono stati presi da bet, il quale fornisce

5.7. PREDIZIONI 85

la media delle probabilità dei bookmakers per ogni risultato, su un gran numero di campionati di calcio, tra cui la Serie A italiana. Si è quindi preso come predizione il risultato più probabile secondo i bookmakers.

Le predizioni dei modelli sono state eseguite nel seguente modo: il dataset è stato diviso in modo casuale in due parti chiamate solitamente training set e test set. Il training set contiene quasi l'80% delle 38 giornate, ossia 30 giornate per un totale di 300 partite. Invece il test set contiene circa il restante 20% ossia 8 giornate per un totale di 80 partite. Il training set è utilizzato per stimare i parametri del modello mentre il test set è utilizzato per fare predizione. Perciò una parte delle osservazioni è stata utilizzata per allenare il modello, mentre la restante parte per predire l'esito delle restanti osservazioni.

Prima di discutere delle misurazioni e delle predizioni ottenute, è importante tener presente che i modelli (4.1), (5.1), (4.12) e (5.2) utilizzano informazioni e statistiche che sono disponibili solo dopo il termine delle partite, cioè non disponibili per i bookmakers. Infatti, i bookmakers calcolano le loro predizioni prima che le partite comincino. Certamente i quattro modelli non sono utilizzabili per poter fare predizioni, ma l'obbiettivo del confronto è quello di capire se le informazioni sono state impiegate nel modo opportuno per acquisire maggior conoscenza. Ossia se i modelli ottengono delle prestazioni peggiori rispetto ai bookmakers, nonostante abbiano più informazioni sulle partite allora, non sono state utilizzate nel modo corretto le informazioni, viceversa se le prestazioni dei modelli sono migliori rispetto ai bookmakers allora le informazioni sono state utilizzate correttamente.

La capacità predittiva di un modello sarà valutata come segue:

- * Accuratezza. Indica il rapporto tra il numero di predizioni classificate correttamente e il numero totale delle osservazioni in esame.
- * Sensibilità. Indica il rapporto tra il numero di predizioni identificate correttamente con la categoria k e il numero totale delle osservazioni classificate con la categoria k con $k \in \{1,...,K\}$.
- * Specificità. Indica il rapporto tra il numero di predizioni identificate correttamente con una categoria diversa dalla categoria k e il numero totale delle osservazioni classificate con una categoria diversa dalla categoria k con $k \in \{1,...,K\}$.

Nella Figura 5.33 sono mostrate le classificazione ottenute sulle 80 partite del test set per ogni modello e per la predizione dei bookmakers. Dai risultati ottenuti, l'accuratezza

1	Иod	ello	(4.	.1)	Mo	ode	llo	(5.1)		Mo	ode	llo (4.12	2)	Mo	ode	llo	(5.2))	Bo	ok	ma	kers	5
	Res	oss			F	Reso	oss				Res	oss			F	Res	oss				Res	055		
ResPre	1	2	3	Sum	ResPre	1	2	3	Sum	ResPre	1	2	3	Sum	ResPre	1	2	3	Sum	Resprev	1	2	3	Sum
1	13	0	0	13	1	13	0	0	13	1	15	0	0	15	1	15	0	0	15	1	27	12	9	48
2	13	19	8	40	2	12	20	12	44	2	0	10	0	10	2	0	8	0	8	2	0	0	0	0
3	3	4	20	27	3	4	3	16	23	3	14	13	28	55	3	14	15	28	57	3	6	9	17	32
Sum	29	23	28	80	Sum	29	23	28	80	Sum	29	23	28	80	Sum	29	23	28	80	Sum	33	21	26	80

Figura 5.33: La prima tabella indica le predizioni di 80 partite fatte dal modello (4.1), la seconda dal modello (5.1), la terza dal modello (4.12), la quarta dal modello (5.2) e la quinta dai *bookmakers*

dei quattro modelli è rispettivamente 0.65, 0.6125, 0.6625 e 0.6375, mentre per i bookmakers è di 0.55. Si può subito notare che tutti e quattro i modelli sono migliori

delle predizioni dei bookmakers. In particolare, il modello (4.12) risulta essere quello che produce più predizioni corrette. Sorprendentemente il modello (4.1) che utilizza solo le abilità medie delle squadre e quindi senza l'utilizzo delle variabili esplicative risulta essere migliore di tutti eccetto del modello (4.12). In particolare, si conferma quanto enunciato nel Capitolo 4 riguardo al ruolo dell'intercetta e delle covariate, infatti il modello senza intercetta (5.2) risulta essere leggermente peggiore del modello con l'intercetta (4.12). A tal proposito si può confermare l'esistenza di una differente relazione delle variabili esplicative da squadra a squadra. Infatti, tra i quattro modelli confrontati, il modello (5.1) ottiene le peggiori prestazioni dato che ha ignorato la diversa relazione delle variabili esplicative con ogni singola squadra.

Nella Figura 5.34 vengono mostrate le misurazioni della sensibilità per ognuna delle tre categorie per i quattro modelli e per i bookmakers.

Figura 5.34: La prima tabella indica le sensibilità delle predizioni del modello (4.1), la seconda del modello (5.1), la terza del modello (4.12), la quarta del modello (5.2) e la quinta dei bookmakers

Come si può notare i bookmakers hanno molti problemi a classificare correttamente l'esito di una partita quando questa termina con un pareggio. Infatti, vediamo che la sensibilità è pari a zero, questo perché ci sono zero partite classificate con il pareggio, ma dai dati osservati si sa che ci sono delle partite che terminano con un pareggio. Tuttavia, sono molto affidabili nel predire la vittoria della squadra in casa contro la squadra ospite. I modelli (4.12) e (5.2) sanno predire correttamente la vittoria della squadra ospite sulla squadra che gioca in casa. La sensibilità associata, infatti è pari a uno. Infine, notiamo che i modelli (4.1) e (5.1) riescono a identificare correttamente una partita che termina con un pareggio.

Nella Figura 5.35 vengono mostrate le misurazioni della specificità per ognuna delle tre categorie per i quattro modelli e per i bookmakers.

Figura 5.35: La prima tabella indica le specificità delle predizioni del modello (4.1), la seconda del modello (5.1), la terza del modello (4.12), la quarta del modello (5.2) e la quinta dei bookmakers

Ovviamente in questa misurazione i bookmakes ottengono il miglior risultato per quanto riguarda l'identificazione di una partita che non termina in un pareggio. Si nota che tutti e quattro i modelli riescono a predire quando l'esito della partita non è la vittoria della squadra di casa, infatti la misurazione ottenuta è uno. Inoltre, anche i modelli

5.7. PREDIZIONI 87

(4.12)e(5.2)riescono a predire quando una partita non termina in un pareggio. D'altra parte, i modelli (4.1)e(5.1)ottengono le migliori misurazione nell'identificare quando una partita non termina con la vittoria della squadra ospite.

In conclusione, dai risultati ottenuti si evince che i modelli mostrano una maggiore accuratezza nelle previsioni rispetto a quanto fornito dai *bookmakers*. Se ne deduce quindi un buon utilizzo delle informazioni a disposizione nei modelli.

METODI DI MACHINE LEARNING

Questo capitolo illustrerà i metodi di Machine Learning che sono stati utilizzati per la predizione degli esiti delle partite di calcio della Seria A italiana della stagione 2021/2022. Purtroppo, non è stato possibile applicare metodi di Machine learning che corrispondessero al modello Bradley-Terry perché, nonostante esistano metodi in Machine learning che forniscono modelli basati sul modello Bradley-Terry, essi non sono in grado di gestire l'esito del pareggio ma solo un esito binario. Ne consegue che tali metodi non sono adatti per contesti come il calcio ma ad altri tipi di sport dove il pareggio non è previsto come il baseball. I metodi di Machine learning considerati sono: il K-Nearest-Neighbors (KNN), la Support Vector Machine (SVM), gli alberi di decisione per la classificazione, la Random Forests e in fine l'Adaboost.

6.1 Componenti essenziali

In questa sezione vengono definite alcune misure e tecniche che sono necessarie per il funzionamento dei metodi di *Machine Learning* applicati.

6.1.1 Distanza di Minkowski

La **minkdist** è una misura utilizzata per la valutazione della distanza ovvero, nel nostro contesto della somiglianza tra due punti in spazio di n-dimensioni. La distanza di Minkowski di ordine d tra due punti $A = (a_1,...a_n)$ e $B = (b_1,...b_n)$ vale

$$Dist(A,B) = \left(\sum_{i=1}^{n} |a_i - b_i|^d\right)^{1/d}$$

Si sottolinea che quando l'ordine d=1, la distanza utilizzata è la **manhattan** ovvero la distanza tra due punti è la somma del valore assoluto delle differenze delle loro coordinate. Quando l'ordine d=2 è applicata la **euclidea** dove la distanza tra due punti è la lunghezza del segmento con agli estremi i due punti d'interesse. Tale misura sarà utilizzata nel metodo K-Nearest-Neighbors (KNN).

6.1.2 Funzione kernel

Nel contesto dell'apprendimento automatico, la **kernel** permette di trasformare uno spazio di input non linearmente separabile in uno nuovo spazio delle istanze di input detto feature space di dimensione superiore rispetto a quello originale tale da diventare linearmente separabile. Per spazio linearmente separabile si intende che esiste un iperpiano in grado di separare correttamente i dati in due gruppi distinti. Perciò aumentando la dimensionalità dello spazio d'interesse è possibile trovare la dimensione opportuna che permetta di separare linearmente i dati. Tale applicazione è chiamata kernel trick. Perciò, una funzione kernel è una funzione K che per ogni $x, y \in \chi$ dove χ è lo spazio di input di dimensione n, vale

$$K(x,y) = \langle \psi(x), \psi(y) \rangle.$$

Dove ψ è la funzione che mappa i punti di uno spazio di dimensione n in uno spazio di dimensione m con m>n, invece, $\langle . \rangle$ indica il prodotto scalare. Nelle nostre predizioni saranno usati questi kernel:

- $\ast\,$ Linear kernel: è la funzione precedentemente definita.
- * Polynomial kernel: $K(x,y) = (1 + \sum_{i=1}^{p} x_i y_i)^d$ dove p è il numero di istanze di input presenti in χ mentre d la dimensione del spazio (l'ordine).
- * Gaussian Radial Basis kernel (RBF): $K(x,y)=\exp(-\gamma||x-y||^2)$ con $\gamma=\frac{1}{2\sigma^2}$ mentre σ è un paramento libero.

La funzione kernel sarà utilizza nella Support Vector Machine (SVM).

7 | Conclusioni

MEMO Riassunto del lavoro/risultati ottenuti, possibili estensione e migliorie che possono essere apportate. Sottolineare che alcune variabili possono avere un peso differente a seconda della lega in cui si svolge la partita, (ad esempio Premier league è un campionato più fisico con alti ritmi rispetto alla Serie A che è più "tattica") TO DO

8 CODICE IN R

8.1 extractRowsAway

Codice della funzione per la raccolta delle partite giocate fuori casa dalla squadra indicata nella variabile Team.

```
extractRowsAway <-function(){</pre>
    k <- 1
z <- 1
     for(i in 1:nrow(AdjserieA)){
       if (AdjserieA$AtHome[i] == TRUE){
          for(j in 1:nrow(AdjserieA)){
            if((AdjserieA$Team[j] == AdjserieA$Vs[i]) && (AdjserieA$Team[i]
       == AdjserieA$Vs[j]) && (AdjserieA$AtHome[j] == FALSE)){
              PossVs[k] <-- AdjserieA$Poss[j]
              ShVs[k] <-- AdjserieA$Sh[j]
9
              ShTVs[k] <<- AdjserieA$SoT[j]</pre>
10
              G.ShVs[k] <<- AdjserieA$'G/Sh'[j]</pre>
              SavesVs[k] <<- AdjserieA$Saves[j]</pre>
12
              PAttVs[k] <<- AdjserieA$PAtt[j]
              PCmp.Vs[k] <-- AdjserieA$'PCmp%'[j]
SPAttVs[k] <-- AdjserieA$SPAtt[j]
14
              SPCmp.Vs[k] <<- AdjserieA$'SPCmp%'[j]</pre>
16
              MPAttVs[k] <<- AdjserieA$MPAtt[j]</pre>
              MPCmp.Vs[k] <<- AdjserieA$'MPCmp%'[j]</pre>
18
              LPAttVs[k] <-- AdjserieA$LPAtt[j]
19
              LPCmp.Vs[k] <-- AdjserieA$'LPCmp%'[j]
20
              ToDefPenVs[k] <<- AdjserieA$ToDefPen[j]</pre>
              ToDef3rdVs[k] <<- AdjserieA$ToDef3rd[j]</pre>
22
              ToMid3rdVs[k] <-- AdjserieA$ToMid3rd[j]
23
              ToAtt3rdVs[k] <-- AdjserieA$ToAtt3rd[j]
24
              ToAttPenVs[k] <<- AdjserieA$ToAttPen[j]
25
              ToDistVs[k] <<- AdjserieA$TotDist[j]</pre>
26
              FlsVs[k] <<- AdjserieA$Fls[j]</pre>
27
              FldVs[k] <<- AdjserieA$Fld[j]
28
              OffVs[k] <<- AdjserieA$Off[j]
              CrsVs[k] <<- AdjserieA$Crs[j]</pre>
30
              IntVs[k] <<- AdjserieA$Int[j]</pre>
31
              TklWinVs[k] <<- AdjserieA$TklWin[j]</pre>
32
              RecovVs[k] <<- AdjserieA$Recov[j]
GFVs[k] <<- AdjserieA$GF[j]
33
34
              GAVs[k] <<- AdjserieA$GA[j]</pre>
35
                <- k + 1
36
37
         }
38
39
       } else{
         del[z] <<- i
40
         z < -z + 1
41
42
     }
43
44 }
```

Listing 8.1: Codice di adattamento dataset per il trasferimento dati.

8.2 createYFull

Codice della funzione per la creazione della variabile Y3.

```
1 createYFull <- function(SerieA){</pre>
     for(i in 1:38){
        for(y in 1:10){
            for(z in 1:nrow(SerieA)){
 4
         if((paste(str1, i) == SerieA$Round[z]) && (SerieA$AtHome[z] ==
TRUE ) && (first.time[z] == TRUE)){
                  if(SerieA$Res[z] == -1)
                  {
                    response[w] <<- 3
 8
                  }
9
10
                  else{
                    if(SerieA$Res[z] == 0){
11
                       response[w] <<- 2
12
                    else{
14
                       response[w] <<- SerieA$Res[z]
15
16
17
                  }
18
                  switch(
19
                  SerieA$Team[z],
20
                  "Atalanta" = first.object[w] <<- 1,
"Bologna" = first.object[w] <<- 2,
"Cagliari" = first.object[w] <<- 3,
21
                                       first.object[w] <<- 1,
22
23
                  "Empoli" = first.object[w] <<- 4,
"Fiorentina" = first.object[w] <<- 5,</pre>
24
25
                  "Genoa" = first.object[w] <<- 6,
26
                  "Hellas Verona" = first.object[w] <<- 7,
27
                  "Inter" = first.object[w] <<- 8,
28
                  "Juventus" = first.object[w] <<- 9,

"Lazio" = first.object[w] <<- 10,

"Milan" = first.object[w] <<- 11,
29
30
31
                  "Napoli" = first.object[w] <<- 12,
"Roma" = first.object[w] <<- 13,
32
33
                  "Salernitana" = first.object[w] <<- 14,
"Sampdoria" = first.object[w] <<- 15,
"Sassuolo" = first.object[w] <<- 16,
34
35
36
                  "Spezia" = first.object[w] <<- 17,
"Torino" = first.object[w] <<- 18,
37
38
                  "Udinese" = first.object[w] <<- 19,
"Venezia" = first.object[w] <<- 20,
39
40
41
42
                  switch(
                  SerieA$Vs[z],
43
                  "Atalanta" = second.object[w] <<- 1,
44
                  "Bologna" = second.object[w] <<- 2,
"Cagliari" = second.object[w] <<- 3,
45
46
                  "Empoli" = second.object[w] <<- 4,
"Fiorentina" = second.object[w] <<- 5,
47
                  "Genoa" = second.object[w] <<- 6,
49
                  "Hellas Verona" = second.object[w] <<- 7,
50
                  "Inter" = second.object[w] <<- 8,

"Juventus" = second.object[w] <<- 9,

"Lazio" = second.object[w] <<- 10,

"Milan" = second.object[w] <<- 11,
51
52
53
54
                  "Napoli" = second.object[w] <<- 12,
55
                  "Roma" = second.object[w] <<- 13,
                  "Salernitana" = second.object[w] <<- 14,
57
                  "Sampdoria" = second.object[w] <<- 15,
58
```

```
"Sassuolo" = second.object[w] <<- 16,

"Spezia" = second.object[w] <<- 17,

"Torino" = second.object[w] <<- 18,

"Udinese" = second.object[w] <<- 19,

"Venezia" = second.object[w] <<- 20,
59
60
61
62
63
64
65
                            subject[w] <<- paste(str1, i)
with.order[w] <<- TRUE</pre>
66
67
                            first.time[z] <- FALSE</pre>
                            w <- w + 1
69
                            break
70
                      }
71
                 }
72
             }
73
         }
74
75 }
```

Listing 8.2: Codice per la creazione della variabile Y3.

8.3 extractData

Codice della funzione per estrarre le informazioni di una variabile.

```
1 extractData <-function(cov){</pre>
2
    for(i in 1:nrow(SerieA)){
      switch(
3
        SerieA$Team[i],

"Atalanta" = {ata[it[1]] <<- SerieA[[cov]][i]
          it[1] <- it[1] + 1
6
        "Bologna" = {bol[it[2]] <<- SerieA[[cov]][i]
          it[2] <- it[2] + 1
9
10
11
        "Cagliari" = {cag[it[3]] <<- SerieA[[cov]][i]
          it[3] <- it[3] + 1
12
13
        "Empoli" = {emp[it[4]] <<- SerieA[[cov]][i]
14
          it[4] <- it[4] + 1
15
16
        "Fiorentina" = {fio[it[5]] <<- SerieA[[cov]][i]
17
          it[5] <- it[5] + 1
18
19
         "Genoa" = {gen[it[6]] <<- SerieA[[cov]][i]
20
21
          it[6] <- it[6] + 1
22
        "Hellas Verona" = {ver[it[7]] <<- SerieA[[cov]][i]
23
          it[7] <- it[7] + 1
25
        "Inter" = {int[it[8]] <<- SerieA[[cov]][i]
26
          it[8] <- it[8] + 1
27
28
        "Juventus" = {juv[it[9]] <<- SerieA[[cov]][i]
29
          it[9] <- it[9] + 1
30
31
        "Lazio" = {laz[it[10]] <<- SerieA[[cov]][i]
32
          it[10] <- it[10] + 1
33
34
        "Milan" = {mil[it[11]] <<- SerieA[[cov]][i]
35
          it[11] <- it[11] + 1
36
        },
37
```

```
"Napoli" = {nap[it[12]] <<- SerieA[[cov]][i]
38
          it[12] <- it[12] + 1
39
40
        "Roma" = {rom[it[13]] <<- SerieA[[cov]][i]
41
42
          it[13] <- it[13] + 1
43
        "Salernitana" = {sal[it[14]] <<- SerieA[[cov]][i]
44
          it[14] <- it[14] + 1
45
46
        "Sampdoria" = {sam[it[15]] <<- SerieA[[cov]][i]
          it[15] <- it[15] + 1
48
49
        "Sassuolo" = {sas[it[16]] <<- SerieA[[cov]][i]
50
          it[16] <- it[16] + 1
51
52
        "Spezia" = {spe[it[17]] <<- SerieA[[cov]][i]
53
          it[17] <- it[17] + 1
54
55
        "Torino" = {tor[it[18]] <<- SerieA[[cov]][i]
56
          it[18] <- it[18] + 1
57
58
        "Udinese" = {udi[it[19]] <<- SerieA[[cov]][i]
59
          it[19] <- it[19] + 1
60
61
         "Venezia" = {ven[it[20]] <<- SerieA[[cov]][i]
62
          it[20] <- it[20] + 1
63
        },
64
      )
65
    }
66
67 }
```

Listing 8.3: Codice per estrarre le informazioni di una variabile.

8.4 extractAll

Codice della funzione per estrarre le informazioni di tutte le variabili.

```
1 extractAll <- function(covs, row, teams, n = 20, m = 38){</pre>
    clear()
    num <- 20
    isFirst = TRUE
    tab <-c()
    for(z in 1:length(covs)){
      extractData(covs[z])
      if(isFirst){
        tab <- matrix(cbind(ata,bol,cag,emp,fio,gen,ver,int,juv,laz,mil,</pre>
9
      nap,rom,sal,sam,sas,spe,tor,udi,ven), nrow = m, ncol = num)
        isFirst = FALSE
10
11
12
        tab <- matrix(cbind(tab, ata,bol,cag,emp,fio,gen,ver,int,juv,laz,
13
      mil, nap, rom, sal, sam, sas, spe, tor, udi, ven), nrow = m, ncol = num)
14
      refresh()
15
16
      num <- num + n
17
18
    col <- colLabel(teams, covs)</pre>
    num2 <- num - n
19
    dimnames(tab) <- list(row[1:m], col[1:num2])</pre>
20
21
   return(tab)
```

8.5. COLLABEL 97

22 **}**

Listing 8.4: Codice per estrarre le informazioni di tutte le variabili.

8.5 colLabel

Codice della funzione per creare le etichette delle colonne.

```
1 colLabel <- function(teams, cov){
2    nameCov <- c()
3    z <- 1
4    for(i in 1:length(cov)){
5        for(y in 1:length(teams)){
6            nameCov[z] <- paste(cov[i], teams[y], sep=".")
7            z <- z + 1
8        }
9    }
10    return(nameCov)
11 }</pre>
```

Listing 8.5: Codice per creare le etichette delle colonne.

8.6 rowLabel

Codice della funzione per creare le etichette delle righe.

```
1 rowLabel <- function(str, n){
2    nameRows <- c()
3    for(i in 1:n){
4        nameRows[i] <- paste(str, i)
5    }
6    return(nameRows)
7 }</pre>
```

Listing 8.6: Codice per creare le etichette delle righe.

Bibliografia

SITOGRAFIA