4.4.13

BALU-ai25btech11017

September 13, 2025

Question

If A, B, C are three non-coplanar vectors, then

$$\frac{\mathbf{A} \cdot (\mathbf{B} \times \mathbf{C})}{(\mathbf{C} \times \mathbf{A}) \cdot \mathbf{B}} + \frac{\mathbf{B} \cdot (\mathbf{A} \times \mathbf{C})}{\mathbf{C} \cdot (\mathbf{A} \times \mathbf{B})} = \tag{1}$$

BALU-ai25btech11017 4.4.13 September 13, 2025

Theoretical Solution

Let us solve the given equation theoretically and then verify the solution computationally

According to the question,

Let us take three non coplanar vectors

$$\mathbf{A} = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} \ \mathbf{B} = \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix} \ \mathbf{C} = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \tag{2}$$

$$\mathbf{A}^{T}(\mathbf{B} \times \mathbf{C}) = \begin{bmatrix} \mathbf{A} & \mathbf{B} & \mathbf{C} \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} = 1$$
 (3)

$$(\mathbf{C} \times \mathbf{A})^T \mathbf{B} = [\mathbf{C} \quad \mathbf{A} \quad \mathbf{B}] = \left\| \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{pmatrix} \right\| = 1$$
 (4)

BALU-ai25btech11017 4.4.13 September 13, 2025 3/1

Theoretical Solution

$$\mathbf{B}^{T}(\mathbf{A} \times \mathbf{C}) = \begin{bmatrix} \mathbf{B} & \mathbf{A} & \mathbf{C} \end{bmatrix} = \begin{bmatrix} \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix} \end{bmatrix} = -1$$
 (5)

$$\mathbf{C}^{T}(\mathbf{A} \times \mathbf{B}) = \begin{bmatrix} \mathbf{C} & \mathbf{A} & \mathbf{B} \end{bmatrix} = \begin{bmatrix} \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{pmatrix} \end{bmatrix} = 1$$
 (6)

$$\frac{\mathbf{A}^{T}(\mathbf{B} \times \mathbf{C})}{(\mathbf{C} \times \mathbf{A})^{T}\mathbf{B}} + \frac{\mathbf{B}^{T}(\mathbf{A} \times \mathbf{C})}{\mathbf{C}^{T}(\mathbf{A} \times \mathbf{B})} = \frac{1}{1} + \frac{-1}{1} = 1 - 1 = 0$$
 (7)

By verification method we showed the result is 0

- 4 ロ ト 4 御 ト 4 章 ト 4 章 ト 3 章 り 9 0 0

C Code

```
#include <stdio.h>
// Function to compute cross product of two vectors
void crossProduct(double u[], double v[], double result[]) {
   result[0] = u[1]*v[2] - u[2]*v[1];
   result[1] = u[2]*v[0] - u[0]*v[2];
   result[2] = u[0]*v[1] - u[1]*v[0];
// Function to compute dot product of two vectors
double dotProduct(double u[], double v[]) {
   return u[0]*v[0] + u[1]*v[1] + u[2]*v[2]:
int main() {
   // Define vectors A = i, B = j, C = k
   double A[3] = \{1, 0, 0\};
   double B[3] = \{0, 1, 0\};
   double C[3] = \{0, 0, 1\};
```

```
double BxC[3], CxA[3], AxC[3], AxB[3];
double numerator1, denominator1, numerator2, denominator2,
   result;
// Compute cross products
crossProduct(B, C, BxC);
crossProduct(C, A, CxA);
crossProduct(A, C, AxC);
crossProduct(A, B, AxB);
// Compute terms
numerator1 = dotProduct(A, BxC);
denominator1 = dotProduct(CxA, B);
numerator2 = dotProduct(B, AxC);
denominator2 = dotProduct(C, AxB);
```

C Code

```
// Final result
result = (numerator1 / denominator1) + (numerator2 /
   denominator2);
// Print results
printf("Numerator1 = %.2f, Denominator1 = %.2f\n", numerator1
    . denominator1):
printf("Numerator2 = %.2f, Denominator2 = %.2f\n", numerator2
    , denominator2);
printf("Final Result = %.2f\n", result);
return 0;
```