KỸ THUẬT LẬP TRÌNH HƯỚNG ĐỐI TƯỢNG VỚI JAVA CONTEST 2

A. NGĂN XÉP 1

Cho một ngăn xếp các số nguyên. Các thao tác được mô tả trong file văn bản gồm 3 lệnh: push, pop và show. Trong đó thao tác push kèm theo một giá trị cần thêm. Hãy viết chương trình ghi ra kết quả của các lệnh show.

Dữ liệu vào: Gồm nhiều dòng, mỗi dòng chứa một lệnh push, pop hoặc show.

Kết quả: Ghi ra màn hình các phần tử đang có trong stack theo thứ tự lưu trữ mỗi khi gặp lệnh show. Các số viết cách nhau đúng một khoảng trống. Nếu trong stack không còn gì thì in ra dòng "empty"

Ví du:

Input	Output
push 3	3 5
push 5	3 5 7
show	3
push 7	
show	
pop	
pop	
show	

B. NGĂN XÉP 2

Yêu cầu ban xây dựng một stack với các truy vấn sau đây:

"PUSH x": Thêm phần tử x vào stack ($0 \le x \le 1000$).

"PRINT": In ra phần tử đầu tiên của stack. Nếu stack rỗng, in ra "NONE".

"POP": Xóa phần tử đầu tiên của stack. Nếu stack rỗng, không làm gì cả.

Input:

Dòng đầu tiên là số lượng truy vấn Q (Q <= 100000).

Mỗi truy vấn có dạng như trên.

Output:

Với mỗi truy vấn "PRINT", hãy in ra phần tử đầu tiên của stack. Nếu stack rỗng, in ra "NONE".

Input:	Output
9	1
PUSH 1	3
PUSH 2	NONE
POP	
PRINT	
PUSH 3	
PRINT	

POP	
POP	
PRINT	

C. BIỂU THỨC HẬU TỐ

Hãy sử dụng ngăn xếp để thực hiện việc chuyển các biểu thức trung tố sang hậu tố

Dữ liệu vào: Dòng 1 ghi số N là số biểu thức trung tố (đúng khuôn dạng) chỉ bao gồm các phép cộng, trừ, nhân, chia, các chữ cái thường từ a đến z và các dấu ngoặc đơn. N dòng tiếp theo mỗi dòng ghi môt biểu thức.

Kết quả: Ghi ra màn hình các biểu thức hậu tố kết quả.

Ví dụ:

Input	Output		
1	ab+cd+*		
((a+b) * (c+d))			

D. KIỂM TRA DÃY NGOẶC ĐÚNG

Cho một xâu chỉ gồm các kí tự '(', ')', '[', ']', ' $\{$ ', ' $\}$ '. Một dãy ngoặc đúng được định nghĩa như sau:

- Xâu rỗng là 1 dãy ngoặc đúng.
- Nếu A là 1 dãy ngoặc đúng thì (A), [A], {A} là 1 dãy ngoặc đúng.
- Nếu A và B là 2 dãy ngoặc đúng thì AB là 1 dãy ngoặc đúng.

Cho một xâu S. Nhiệm vu của ban là xác định xâu S có là dãy ngoặc đúng hay không?

Input:

Dòng đầu tiên là số lương bô test T (T <= 20).

Mỗi test gồm 1 xâu S có độ dài không vượt quá 100 000.

Output:

Với mỗi test, in ra "YES" nếu như S là dãy ngoặc đúng, in ra "NO" trong trường hợp ngược lại.

Ví dụ:

Input:	Output
2	YES
[()]{}{[()()]()} [(])	NO

E. CẤU TRÚC DỮ LIỆU HÀNG ĐỢI 1

Ban đầu cho một queue rỗng. Bạn cần thực hiện các truy vấn sau:

- 1. Trả về kích thước của queue
- 2. Kiểm tra xem queue có rỗng không, nếu có in ra "YES", nếu không in ra "NO".
- 3. Cho một số nguyên và đẩy số nguyên này vào cuối queue.
- 4. Loại bỏ phần tử ở đầu queue nếu queue không rỗng, nếu rỗng không cần thực hiện.
- 5. Trả về phần tử ở đầu queue, nếu queue rỗng in ra -1.

6. Trả về phần tử ở cuối queue, nếu queue rỗng in ra -1.

Dữ liệu vào

Dòng đầu tiên chứa số nguyên T là số bộ dữ liệu, mỗi bộ dữ theo dạng sau.

Dòng đầu tiên chứa số nguyên n - lượng truy vấn ($1 \le n \le 1000$)

N dòng tiếp theo, mỗi dòng sẽ ghi loại truy vấn như trên, với truy vấn loại 3 sẽ có thêm một số nguyên, không quá 10^6 .

Kết quả: In ra kết quả của các truy vấn..

Ví du:

Input	Output
1	1
14	3
3 1	5
3 2	2
3 3	
5	
6	
4	
4	
4	
4	
4	
3 5	
3 6	
5	
1	

F. CÁU TRÚC DỮ LIỆU HÀNG ĐỢI 2

Yêu cầu bạn xây dựng một queue với các truy vấn sau đây:

"PUSH x": Thêm phần tử x vào cuối của queue (0 \leq x \leq 1000).

"PRINTFRONT": In ra phần tử đầu tiên của queue. Nếu queue rỗng, in ra "NONE".

"POP": Xóa phần tử ở đầu của queue. Nếu queue rỗng, không làm gì cả.

Input:

Dòng đầu tiên là số lượng truy vấn Q (Q <= 100000).

Mỗi truy vấn có dạng như trên.

Output:

Với mỗi truy vấn "PRINT", hãy in ra phần tử đầu tiên của queue. Nếu queue rỗng, in ra "NONE".

Test ví dụ:

Input:	Output
9	2
PUSH 1	2
PUSH 2	NONE
POP	

PRINTFRONT	
PUSH 3	
PRINTFRONT	
POP	
POP	
PRINTFRONT	

G. HÀNG ĐỢI HAI ĐẦU (DEQUEUE)

Yêu cầu bạn xây dựng một hàng đợi hai đầu với các truy vấn sau đây:

"PUSHFRONT x": Thêm phần tử x vào đầu của dequeue $(0 \le x \le 1000)$.

"PRINTFRONT": In ra phần tử đầu tiên của dequeue. Nếu dequeue rỗng, in ra "NONE".

"POPFRONT": Xóa phần tử đầu của dequeue. Nếu dequeue rỗng, không làm gì cả.

"PUSHBACK x": Thêm phần tử x vào cuối của dequeue (0 <= x <= 1000).

"PRINTBACK": In ra phần tử cuối của dequeue. Nếu dequeue rỗng, in ra "NONE".

"POPBACK": Xóa phần tử cuối của dequeue. Nếu dequeue rỗng, không làm gì cả.

Input:

Dòng đầu tiên là số lượng truy vấn Q (Q <= 100000).

Mỗi truy vấn có dạng như trên.

Output:

Với mỗi truy vấn "PRINTFRONT" và "PRINTBACK", hãy in ra kết quả trên một dòng.

Test ví du:

Input:	Output
10	2
PUSHBACK 1	1
PUSHFRONT 2	3
PUSHBACK 3	NONE
PRINTFRONT	
POPFRONT	
PRINTFRONT	
POPFRONT	
PRINTBACK	
POPFRONT	
PRINTBACK	

H. QUAY HÌNH VUÔNG

Có một chiếc bảng hình chữ nhật với 6 miếng ghép, trên mỗi miếng ghép được điền một số nguyên trong khoảng từ 1 đến 6. Tại mỗi bước, chọn một hình vuông (bên trái hoặc bên phải), rồi quay theo chiều kim đồng hồ.

4	1	3	1	2	3	1	5	2
5	2	6	4	5	6	4	6	3

Yêu cầu: Cho một trạng thái của bảng, hãy tính số phép biến đổi ít nhất để đưa bảng đến trạng thái đích.

Input:

Dòng đầu tiên chứa 6 số là trạng thái bảng ban đầu (thứ tự từ trái qua phải, dòng 1 tới dòng 2).

Dòng thứ hai chứa 6 số là trạng thái bảng đích (thứ tự từ trái qua phải, dòng 1 tới dòng 2).

Output:

In ra một số nguyên là đáp số của bài toán.

Ví dụ:

Input	Output
1 2 3 4 5 6	2
4 1 2 6 5 3	

I. TÍNH TOÁN GIÁ TRỊ BIỂU THỨC

Cho biểu thức S với các toán tử +, -, *, / và dấu ngoặc (). Các toán hạng là các số có giá trị không vượt quá 100. Hãy tính giá trị biểu thức S. Phép chia thực hiện với số nguyên, input đảm bảo số bị chia luôn khác 0, đáp số biểu thức có không quá 10 chữ số.

Input:

Dòng đầu tiên là số lượng bộ test ($T \le 100$).

Mỗi dòng gồm một xâu S, không quá 100 kí tự. Các toán hạng là các số nguyên không âm.

Output:

Với mỗi test, in ra đáp án tìm được.

Ví dụ:

Input	Output
4	16
6*3+2-(6-4/2)	2278
100+99*22	102
6* ((4*3)+5)	-1
1-2	

J. PHẦN TỬ BÊN PHẢI ĐẦU TIÊN LỚN HƠN

Cho dãy số A[] gồm N phần tử. Với mỗi A[i], bạn cần tìm phần tử bên phải đầu tiên lớn hơn nó. Nếu không tồn tại, in ra -1.

Input:

Dòng đầu tiên là số lượng bộ test T ($T \le 20$).

Mỗi test bắt đầu bởi số nguyên N $(1 \le N \le 100000)$.

Dòng tiếp theo gồm N số nguyên A[i] $(0 \le A[i] \le 10^9)$.

Output:

Với mỗi test, in ra trên một dòng N số R[i], với R[i] là giá trị phần tử đầu tiên lớn hơn A[i].

Ví dụ

Input	Output
3	5 25 25 -1
4	-1 -1 -1
4 5 2 25	5 5 -1 -1
3	
2 2 2	
4	
4 4 5 5	

K. HÌNH CHỮ NHẬT LỚN NHẤT

Cho N cột, mỗi cột có chiều cao bằng H[i]. Bạn hãy tìm hình chữ nhật lớn nhất bị che phủ bởi các cột?

Input:

Dòng đầu tiên là số lượng bộ test T ($T \le 20$).

Mỗi test bắt đầu bởi số nguyên N (N \leq 100 000).

Dòng tiếp theo gồm N số nguyên H[i] $(1 \le H[i] \le 10^9)$.

Output:

Với mỗi test, in ra diện tích hình chữ nhật lớn nhất tìm được.

Input	Output
2	12
7	6
6 2 5 4 5 1 6	
3	
2 2 2	

L. ĐƯỜNG NGUYÊN TỐ

Cho hai số nguyên tố khác nhau có bốn chữ số. Người ta cho rằng hoàn toàn có thể biến đổi từ số này thành số kia sau một số bước theo quy tắc: Tại mỗi bước ta chỉ thay đổi một chữ số trong số trước đó sao cho số tạo được trong mỗi bước đều là một số nguyên tố có bốn chữ số. Một cách biến đổi như vậy gọi là một "đường nguyên tố".

Bài toán đặt ra là với một cặp số nguyên tố đầu vào, hãy tính ra số bước của đường nguyên tố ngắn nhất. Giả sử đầu vào là hai số 1033 và 8179 thì đường nguyên tố ngắn nhất sẽ có độ dài là 6 với các bước chuyển là:

8179

Input: Dòng đầu tiên ghi số bộ test, không lớn hơn 100. Mỗi bộ test viết trên một dòng bao gồm hai số nguyên tố có 4 chữ số..

Output: Với mỗi bộ test, in ra màn hình trên một dòng số bước của đường nguyên tố ngắn nhất.

Ví du:

Input	Output
3	6
1033 8179	7
1373 8017	0
1033 1033	

M. DI CHUYÊN

Cho một bảng kích thước N x N, trong đó có các ô trống '.' và vật cản 'X'. Các hàng và các cột được đánh số từ 0.

Mỗi bước di chuyển, bạn có thể đi từ ô (x, y) tới ô (u, v) nếu như 2 ô này nằm trên cùng một hàng hoặc một cột, và không có vật cản nào ở giữa.

Cho điểm xuất phát và điểm đích. Bạn hãy tính số bước di chuyển ít nhất?

Input:

Dòng đầu tiên là số nguyên dương N (1 \leq N \leq 100).

N dòng tiếp theo, mỗi dòng gồm N kí tự mô tả bảng.

Cuối cùng là 4 số nguyên a, b, c, d với (a, b) là tọa độ điểm xuất phát, (c, d) là tọa độ đích. Dữ liệu đảm bảo hai vị trí này không phải là ô cấm.

Output:

In ra một số nguyên là đáp số của bài toán.

Ví du:

Input	Output
3	3
.x.	
.x.	

N. LŨY THÙA

Cho số nguyên dương N và K. Hãy tính N^K modulo 10⁹+7.

Input:

Dòng đầu tiên là số lượng bộ test T ($T \le 20$).

Mỗi test gồm 1 số nguyên N và K $(1 \le N \le 1000, 1 \le K \le 10^9)$.

Output:

Với mỗi test, in ra đáp án trên một dòng.

Ví dụ:

Input:	Output
2	8
2 3	16
4 2	

O. GÁP ĐÔI DÃY SỐ

Một dãy số tự nhiên bắt đầu bởi con số 1 và được thực hiện N-1 phép biến đổi "gấp đôi" dãy số như sau:

Với dãy số A hiện tại, dãy số mới có dạng A, x, A trong đó x là số tự nhiên bé nhất chưa xuất hiện trong A.

Ví dụ với 2 bước biến đổi, ta có [1] \rightarrow [1 2 1] \rightarrow [1 2 1 3 1 2 1].

Các bạn hãy xác định số thứ K trong dãy số cuối cùng là bao nhiều?

Input:

Dòng đầu tiên là số lượng bộ test T ($T \le 20$).

Mỗi test gồm số nguyên dương N và K (1 \leq N \leq 50, 1 \leq K \leq 2^N - 1).

Output:

Với mỗi test, in ra đáp án trên một dòng.

Test ví dụ:

Input:	Output
2	2
3 2	4
4 8	

Giải thích test 1: Dãy số thu được là [1, 2, 1, 3, 1, 2, 1].

Giải thích test 2: Dãy số thu được là [1, 2, 1, 3, 1, 2, 1, 4, 1, 2, 1, 3, 1, 2, 1].

P. DÃY XÂU FIBONACI

Một dãy xâu ký tự G chỉ bao gồm các chữ cái A và B được gọi là dãy xâu Fibonacci nếu thỏa mãn tính chất: G(1) = A; G(2) = B; G(n) = G(n-2) + G(n-1). Với phép cộng (+) là phép nối hai xâu với nhau. Bài toán đặt ra là tìm ký tự ở vị trí thứ i (tính từ 1) của xâu Fibonacci thứ n.

Dữ liệu vào: Dòng 1 ghi số bộ test. Mỗi bộ test ghi trên một dòng 2 số nguyên N và i (1<N<93). Số i đảm bảo trong phạm vi của xâu G(N) và không quá 18 chữ số. **Kết quả:** Ghi ra màn hình kết quả tương ứng với từng bộ test.

Input	Output
2	A
6 4	В
8 19	

O. SÓ FIBONACCI THỨ N

Dãy số Fibonacci được xác định bằng công thức như sau:

F[0] = 0, F[1] = 1;

 $F[n] = F[n-1] + F[n-2] \text{ với mọi } n \ge 2.$

Các phần tử đầu tiên của dãy số là 0, 1, 1, 2, 3, 5, 8, ...

Nhiệm vụ của bạn là hãy xác định số Fibonaci thứ n. Do đáp số có thể rất lớn, in ra kết quả theo modulo 10^9+7.

Input:

Dòng đầu tiên là số lượng bộ test T (T <= 1000).

Mỗi test bắt gồm một số nguyên N (1 <= N <= 10^9).

Output:

Với mỗi test, in ra đáp án trên một dòng.

Ví du:

Input:	Output
3	1
2	8
6	6765
20	

R. CHỌN SỐ TỪ MA TRẬN VUÔNG CẤP N

Cho ma trận vuông $C_{i,j}$ cấp N ($1 \le i, j \le N \le 10$) gồm N^2 số tự nhiên và số tự nhiên K (các số trong ma trận không nhất thiết phải khác nhau và đều không quá 1000, K không quá 10^5). Hãy viết chương trình lấy mỗi hàng, mỗi cột duy nhất một phần tử sao cho tổng các phần tử này đúng bằng K.

Dữ liệu vào: Dòng 1 ghi hai số N và K. N dòng tiếp theo ghi ma trận C.

Kết quả: dòng đầu ghi số cách tìm được. Mỗi dòng tiếp theo ghi một cách theo vị trí của số đó trong lần lượt từng hàng của ma trận. Xem ví dụ để hiểu rõ hơn.

Ví dụ:

INPUT	OUTPUT
3 10	2
2 4 3	1 3 2
1 3 6	3 2 1
4 2 4	

S. XÂU NHỊ PHÂN CÓ K BIT 1

Hãy in ra tất cả các xâu nhị phân độ dài N, có K bit 1 theo thứ tự từ điển tăng dần.

Input:

Dòng đầu tiên là số lượng bộ test T (T <= 20).

Mỗi test gồm 2 số nguyên N, K (1 \leq K \leq N \leq 16).

Output:

Với mỗi test, in ra đáp án tìm được, mỗi xâu in ra trên một dòng.

Ví dụ:

Input	Output
2	0011
4 2	0101
3 2	0110
	1001
	1010
	1100
	011
	101
	110

T. SẮP XẾP QUÂN HẬU

Cho một bàn cờ vua có kích thước n * n, ta biết ràng quân hậu có thể di chuyển theo chiều ngang, dọc, chéo. Vấn đề đặt ra rằng, có n quân hậu, bạn cần đếm số cách đặt n quân hậu này lên bàn cờ sao cho với 2 quân hậu bất kì, chúng không "ăn" nhau.

Input: Một số nguyên dương n duy nhất (không quá 10)

Output: Số cách đặt quân hậu.

Input	Output
4	2

U. NGƯỜI DU LỊCH

Cho n thành phố đánh số từ 1 đến n và các tuyến đường giao thông hai chiều giữa chúng, mạng lưới giao thông này được cho bởi mảng C[1...n, 1...n] ở đây C[i][j] = C[j][i] là chi phí đi đoạn đường trực tiếp từ thành phố i đến thành phố j.

Một người du lịch xuất phát từ thành phố 1, muốn đi thăm tất cả các thành phố còn lại mỗi thành phố đúng 1 lần và cuối cùng quay lại thành phố 1. Hãy chỉ ra chi phí ít nhất mà người đó phải bỏ ra.

Dữ liệu vào: Dòng đầu tiên là số nguyên n- số thành phố $(n \le 15)$; n dòng sau, mỗi dòng chứa n số nguyên thể hiện cho mảng 2 chiều C.

Kết quả: Chi phí mà người đó phải bỏ ra.

Ví dụ:

OUTPUT
117

V. XÂU CON CHUNG DÀI NHẤT

Xâu ký tự X được gọi là xâu con của xâu ký tự Y nếu ta có thể xoá đi một số ký tự trong xâu Y để được xâu X.

Cho hai xâu ký tự A và B dài không quá 1000 ký tự (chữ cái viết thường hoặc chữ số), hãy tìm xâu ký tự C có độ dài lớn nhất và là con của cả A và B.

Input: Dòng 1: chứa xâu A. Dòng 2: chứa xâu B

Output: Chỉ gồm một dòng ghi độ dài xâu C tìm được

Ví du:

Input	Output
abc1def2ghi3	10
abcdefghi123	

W. DÃY CON TĂNG DÀI NHẤT

Cho một dãy số nguyên gồm N phần tử A[1], A[2], ... A[N].

Biết rằng dãy con tăng đơn điệu là 1 dãy $A[i_1],...$ $A[i_k]$

thỏa mãn $i_1 < i_2 < ... < i_k$ và $A[i_1] < A[i_2] < ... < A[i_k]$.

Hãy cho biết dãy con tăng đơn điều dài nhất của dãy này có bao nhiều phần tử?

Input: Dòng 1 gồm 1 số nguyên là số N ($1 \le N \le 1000$). Dòng thứ 2 ghi N số nguyên A[1], A[2], ... A[N] ($1 \le A[i] \le 10000$).

Output: Ghi ra đô dài của dãy con tăng đơn điệu dài nhất.

Input	Output
6	4
1 2 5 4 6 2	

X. DÃY CON CÓ TÔNG BẰNG S

Cho N số nguyên dương tạo thành dãy $A=\{A_1,\,A_2,\,...,\,A_N\}$. Tìm ra một dãy con của dãy A (không nhất thiết là các phần tử liên tiếp trong dãy) có tổng bằng S cho trước.

Input: Dòng đầu tiên ghi hai số nguyên dương N và S $(0 \le N \le 200)$ và S $(0 \le S \le 40000)$. Các dòng tiếp theo lần lượt ghi N số hạng của dãy A là các số A_1 , A_2 , ..., A_N $(0 \le A_i \le 200)$.

Output: Nếu bài toán vô nghiệm thì in ra "NO". Nếu bài toán có nghiệm thì in ra "YES"

Ví du:

Input	Output
5 6	YES
1 2 4 3 5	

Y. DÃY CON DÀI NHẤT CÓ TỔNG CHIA HẾT CHO K

Cho một dãy gồm n ($n \le 1000$) số nguyên dương $A_1, A_2, ..., A_n$ và số nguyên dương k ($k \le 50$). Hãy tìm dãy con gồm nhiều phần tử nhất của dãy đã cho sao cho tổng các phần tử của dãy con này chia hết cho k.

Input: Dòng đầu tiên chứa hai số n, k ghi cách nhau bởi ít nhất 1 dấu trống. Các dòng tiếp theo chứa các số A_1 , A_2 , ..., A_n được ghi theo đúng thứ tự cách nhau ít nhất một dấu trống hoặc xuống dòng.

Output: Gồm 1 dòng duy nhất ghi số lượng phần tử của dãy con dài nhất thoả mãn

Ví dụ:

Input	Output
10 3	9
2 3 5 7	
9 6 12 7	
11 15	

Z. TÔ HỢP C(n, k)

Cho 2 số nguyên n, k. Bạn hãy tính C(n, k) modulo 10^9+7.

Input:

Dòng đầu tiên là số lượng bộ test T ($T \le 20$).

Mỗi test gồm 2 số nguyên n, k $(1 \le k \le n \le 1000)$.

Output:

Với mỗi test, in ra đáp án trên một dòng.

Ví du:

Input	Output
2	10
5 2	120
10 3	