51 5 4 1 1

Big Data Analytics

Data Mining

Attention aux différents biais de vos données!

 variables confondantes (Ex : "obésité" dans la corrélation entre "conso. viande" et "cancer colon")

- variables confondantes (Ex : "obésité" dans la corrélation entre "conso. viande" et "cancer colon")
- biais statistiques

- variables confondantes (Ex : "obésité" dans la corrélation entre "conso. viande" et "cancer colon")
- biais statistiques
 - sélection, autosélection

- variables confondantes (Ex : "obésité" dans la corrélation entre "conso. viande" et "cancer colon")
- biais statistiques
 - sélection, autosélection
 - mesure

- variables confondantes (Ex : "obésité" dans la corrélation entre "conso. viande" et "cancer colon")
- biais statistiques
 - sélection, autosélection
 - mesure
 - attrition

- variables confondantes (Ex : "obésité" dans la corrélation entre "conso. viande" et "cancer colon")
- biais statistiques
 - sélection, autosélection
 - mesure
 - attrition
 - ...

- variables confondantes (Ex : "obésité" dans la corrélation entre "conso. viande" et "cancer colon")
- biais statistiques
 - sélection, autosélection
 - mesure
 - attrition
 - ...
- trouver de fausses variables explicatives

 $\label{eq:meilleures} \mbox{Meilleures donn\'ees} > \mbox{Meilleurs mod\`eles} \\ \mbox{(trash-in, trash-out)}$

Préparation des données

- valeurs manquantes
- préprocessing (texte, image)
- standardisation
- transformation

Gênant pour certains modèles. Plusieurs options :

supprimer les enregistrements

- supprimer les enregistrements
- remplacer par une valeur (imputation) :

- supprimer les enregistrements
- remplacer par une valeur (imputation) :
 - constante

- supprimer les enregistrements
- remplacer par une valeur (imputation) :
 - constante
 - moyenne de la colonne

- supprimer les enregistrements
- remplacer par une valeur (imputation) :
 - constante
 - moyenne de la colonne
 - prédiction d'un autre modèle

Préparation des données — préprocessing

- tokenizer, POS-tagger le texte (https://spacy.io/)
- utiliser un réseau de neurones préentraîné sur les images (https://keras.io/applications/)
- appliquer une transformée de fourier sur le son
- ٠.

Préparation des données — standardisation

Beaucoup de modèles travaillent mieux avec des données normales et sont plus efficaces autour de [-5,5]:

- centrer sur la moyenne puis diviser par l'écart-type
- transformation de Box-Cox en cas d'asymétrie
- transformations spécifiques en fonction de la distribution

Préparation des données — transformation

Quand un modèle n'accepte pas de données catégorielles :

- label encoding si ordinal
- one-hot encoding sinon

Préparation des données — label encoding

Si les données sont ordinales :

Ordinal	:

Température	_
Froid	
Froid	
Tiède	
Chaud	
Tiède	

Label encoding:

Température		
1		
1		
2		
3		
2		

Préparation des données — one-hot encoding

Remplacer une feature par n features avec n le nombre de catégories.

Catégoriel :

One-hot:

Couleur	•
Rouge	-
Rouge	
Jaune	
Vert	
Jaune	

Rouge	Jaune	Vert
1	0	0
1	0	0
0	1	0
0	0	1
0	1	0

Outils — count plot

Outils — dist plot

Outils — scatter plot

Outils — correlation matrix

