

Signaling & SynchronizationFall 2020

Topic 3 **TX Circuitry**

Sameh A. Ibrahim
Ain Shams University
ICL

(Courtesy of S. Pamarti – UCLA, S. Palermo – TAMU, and E. Alon – UCB)

Outline

Signaling Basics

- Single-ended vs. differential
- Voltage-mode vs. current-mode

Termination Circuits

- On-Chip vs. off-chip
- AC vs. DC coupled
- Active vs. passive

TX Driver Circuits

- Large swing drivers
- Small swing drivers
- Pre-drivers

Multiplexing

- Multiplexing depth
- Multiplexing circuits

Single-Ended Signaling

Sources of signal corruption

Return-path impedances, $Z_{R,TX}$ and $Z_{R,RX}$

- Supply coupling impedances, $Z_{G,TX}$ and $Z_{G,RX}$
- Supply mismatch and noise, V_N
- Clean reference (V_{REF}) generation is very difficult
 - Tx and Rx grounds could be different.
 - The difference, V_N, has a significant high frequency content because of supply noise generated by high speed switching.
- We can use an additional line to send the reference signal
 - Matching becomes a problem.

SE Signaling for Multiple Links

- Finite supply impedance causes significant Simultaneous Switching Output (SSO) noise.
 - Imagine many TXs switching at the same time
- Necessitates large amounts of decoupling capacitance for supplies and reference voltage
 - Decap limits I/O area more than circuitry
- Is it still used? Why?

Classic Debate

- Area constraints mandates single ended.
- "Differential must be twice as fast as single ended in order to win"
- Reality more complicated
 - Ex: SSO mandates the use of more ground and supply pins for SE
 - i.e. higher supply to signaling pin ratio in SE
- Differential is a lot easier to build and get right the first time.
- SE can be built to work but needs more care and is more painful.
- Differential links can possibly save power.

Differential Signaling

- Use of two transmission lines per I/O link
- No reference voltage is used to extract data. ©
- Swing is twice as large as SE signaling. ©
- No return path corruption ©
- Minimum self-induced power supply noise ©
- Matching between lines is crucial ⊗
- Low pin/wire utilization is becoming a problem. ⊗

Voltage-Mode Signaling

- Output Impedance is low.
- Older systems used Z_{TX} << Z_o.
- Newer Systems use Z_{TX} = Z_o to minimize reflections.
- Thevenin-equivalent series termination

Current-Mode Signaling

- Output Impedance is high.
- Older systems used Z_{TX} >> Z_o.
- Newer Systems use Z_{TX} = Z_o to minimize reflections.
- Norton-equivalent parallel termination

Old "Voltage-Mode" vs. "Current-Mode"

Differential

Gb/s "Voltage-Mode" vs. "Current-Mode"

	Voltage-Mode	Current-Mode
Single-Ended	$V_{s} \xrightarrow{R=Z_{0}} V_{s}$ $V_{d,1} = (V_{s}/2)$ $V_{d,0} = -(V_{s}/2)$ $V_{d,pp} = V_{s}$ $I = \frac{V_{d,pp}}{2R}$	$V_{d,1} = (I/2)R$ $V_{d,0} = -(I/2)R$ $V_{d,pp} = IR$ $I = \frac{V_{d,pp}}{R}$
Differential	$V_{s} \xrightarrow{R=Z_{0}} Z_{0}$ $V_{s} \xrightarrow{W} D$ $V_{2R=2Z_{0}} V_{d}$ $V_{d,1} = (V_{s}/2)$ $V_{d,0} = -(V_{s}/2)$ $V_{d,pp} = V_{s}$ $I = \frac{V_{d,pp}}{4R}$ $I = (V_{s}/4R)$	$V_{d,1} = (I/4)(2R)$ $V_{d,0} = -(I/4)(2R)$ $I = \frac{V_{d,pp}}{R}$ $V_{d,pp} = IR$

Voltage-Mode vs. Current-Mode Summary

Driver/Termination	Current Level	Normalized Current Level
Current-Mode/SE	$V_{d,pp}/Z_0$	1x
Current-Mode/Diff	$V_{d,pp}/Z_0$	1x
Voltage-Mode/SE	$V_{d,pp}/2Z_0$	0.5x
Voltage-Mode/Diff	$V_{d,pp}/4Z_0$	0.25x

- An ideal voltage-mode driver with differential RX termination enables a potential 4x reduction in driver power.
- Finally, since TL has both voltage and current, terminology can mean
 - Whether or not the termination is high
 - How termination is set
 - What sets the output swing (supply or current source)

Outline

Signaling Basics

- Single-ended vs. differential
- Voltage-mode vs. current-mode

Termination Circuits

- On-Chip vs. off-chip
- AC vs. DC coupled
- Active vs. passive

TX Driver Circuits

- Large swing drivers
- Small swing drivers
- Pre-drivers

Multiplexing

- Multiplexing depth
- Multiplexing circuits

On-Chip vs. Off-Chip Termination

- Package parasitics act as an unterminated stub which sends reflections back onto the line.
- On-chip termination makes package inductance part of transmission line.
- But on-chip termination needs control.

AC vs. DC-Coupled Termination

- DC coupling allows for uncoded data.
- RX common-mode set by transmitter signal level.

- AC coupling allows for independent RX common-mode level.
- Data must be coded because of channel's low frequency cut-off.

Passive Termination

- Choice of integrated resistors involves trade-offs in manufacturing steps, sheet resistance, parasitic capacitance, linearity, and ESD tolerance.
- Integrated passive termination resistors are typically realized with unsilicided poly, diffusion, or n-well resistors.
- Poly resistors are typically used due to better linearity, but they typically vary +/-30% over process and temperature.

Resistor Options (90nm CMOS)

Resistor	Poly	N-diffusion	N-well
Sheet R (Ω/sq)	90±10	300±50	450±200
VC1(V-1)	0	10 -3	8x10 ⁻³
Parasitic Cap	2-3fF/um² (min L poly)	0.9fF/um² (area), 0.04fF/um (perimeter)	0.2fF/um² (area), 0.7fF/um (perimeter)

Active Termination

- Transistors must be used for termination in CMOS processes with no resistors.
- Triode-based FET works well for low-swing (<500 mV)
 - Adding a diode-connected FET increases linear range.

- Pass-gate structure allows for differential termination.
- Not ESD robust, needs adjustment loop (Analog or Digital), and adds extra capacitance.

Combination of Active and Passive

- Fixed resistor and digitally-controlled resistor to account for variations
- Better ESD robustness and linearity
- Device capacitances are partially shielded.
- But adjustment loop is still required.

Termination Capacitance

- Many parasitic caps: ~500 fF ESD and pads and ~500 fF driver.
- This gives a BW of ~ 6 GHz for double-terminated links.

T-Coils

 Old technology recently used in bandwidth extension and ESD capacitance compensation.

[Schmatz JSSC Dec. 2008]

 T-coil consists of two mutually coupled inductor and a bridged capacitor.

Distributed ESD

- At higher data rates (ex 40 Gb/s), even T-coil Extension is not enough.
- Distributed ESD is a possible solution.
- More on-chip inductors are used but with smaller values.
- Delay through transmission line sections can help implement equalizers at RX side.

Impedance of inductors at ESD events is negligible (low-

frequency events).

[Navid, JSSC Apr. 2015]

Outline

Signaling Basics

- Single-ended vs. differential
- Voltage-mode vs. current-mode

Termination Circuits

- On-Chip vs. off-chip
- AC vs. DC coupled
- Active vs. passive

TX Driver Circuits

- Large swing drivers
- Small swing drivers
- Pre-drivers

Multiplexing

- Multiplexing depth
- Multiplexing circuits

Conceptual I/O Transmitter

Multiplexers and Synchronizers

 To facilitate data exchange between sources and the link

Driver

 Generates signals suitable for signaling

Pre-driver

 Condition the driver e.g., level shifting etc.

Goals

- High bit rate
- Low power consumption
- Low noise, free of unnecessary timedomain spikes
- Low coupling to other links

Main Driver Circuit Choices

- Single Ended or Differential
- Voltage mode or current mode
- On-chip or off-chip supplies
- Source termination
- Each choice has an implication on signal fidelity, power consumption, noise coupling, and data rate.

A Very Simple Large Swing Driver

- Characteristics
 - Push-pull architecture
 - Large signal amplitude, V_{swing} = V_{DD}
- Supply noise contribution is very large.
 - V_{DD} on chip can be very noisy
- Reflections are significant due to lack of source termination
- Large crowbar current
 - Causes significant power consumption

Another Simple Large Swing Driver

- Break-before-make connection
 - Ensures that NMOS and PMOS are not simultaneously ON, even for short duration
- Supply noise, reflection problems remain
- These are mainly legacy I/Os
 - Good for low data rate, generic interfaces with other ICs

Source Terminated Large Swing Driver

- Add a resistance in series to provide source termination.
 - Prevents some reflection
- Actual source impedance is a series combination of R_{TERM} and Z_{NMOS} or Z_{PMOS}.
 - Increase NMOS and PMOS sizes to maintain switching speed performance.
- Difficult to terminate precisely
 - Transistor impedance varies with region of operation and PVT corners.

Dedicated Driver Supplies

- $V_{SWING} = V_{DD.I/O} > Core-V_{DD}$ is possible.
 - I/O signals are better protected from noise on core supplies.
- The driver supplies could be on-chip or off-chip.
- Large DC driver currents are possible
 - Depends on relation between Core-V_{DD} and V_{DD,I/O}

A Very Simple Low Swing Driver

- Replace the pull-up PMOS with a resistance.
 - Signal swings between V_{DD,I/O} and V_{DD,I/O} I_{DS}R
- Pull-up time constant is determined by R.
 - Small R results in quick pull-up.
- Received signal is smaller than with large swing drivers.
 - Threatens receiver margins and could increase BER.
- More susceptible to variations in R and I_{drv}.

Why Low Swing Drivers?

Higher speed

- Devices switch faster.
- Smaller devices and hence lower capacitance

Better linearity

Driver transistor stays in a single region of operation when ON.

Lower power

Power is proportional to swing e.g. 0.5C_LV²f

Low Swing Differential Drivers

- Differential pair steers the current into a differential I/O link.
- High output impedance can cause reflection problems on the source side.
- Pre-driver works hard
 - Currents need to be steered completely.

Terminated Low Swing Differential Drivers

- Z_{TX} are actual termination resistors.
 - Driver is based on current mode logic. [Mizuno JSSC Jun. 1996]
 - Triode PMOS could be used instead.
 - Additional power consumption
- Doubly terminated differential signaling is popular among very high speed signaling.

Current-Mode Logic (CML) Driver

- Used in most high-performance serial links.
- Low voltage operation relative to push-pull driver
 - High output common-mode keeps current source saturated.
- Can use DC or AC coupling
- Differential pp RX swing is ±IR/2 with double termination

CML Power Consumption

$$P = I_b V_{TT}$$

$$V_{SW,diff} = I_b R_T$$

$$V_{SW,amp} = \frac{I_b R_T}{2}$$

$$I_b = \frac{2V_{SW,amp}}{R_T}$$

$$P = V_{SW,amp} V_{TT} \frac{2}{R_T}$$

$$V_{TT,min} = 2V_{DSAT} + V_{SW,amp}$$

$$P_{min} = V_{SW,amp}^{2} \left(1 + \frac{2V_{DSAT}}{V_{SW,amp}} \right) \frac{2}{R_{T}}$$

Lower Power Using Voltage-Mode Drivers

- Voltage-mode driver implementation depends on output swing requirements.
- For low-swing (<400-500mVpp), an all NMOS driver is suitable.
- For high-swing, CMOS driver is used.

Low-Swing Voltage-Mode Driver

High-Swing Voltage-Mode Driver

VM Driver Power Consumption

$$V_{SW,amp} = \frac{V_{TT}}{2}$$

$$I_{V_{TT}} = \frac{V_{TT}}{4R_T}$$

$$P = V_{SW,amp}V_{TT} \frac{1}{2R_T}$$

$$P = V_{SW,amp}^2 \frac{1}{R_T}$$

However

- Termination is set by devices
- Impedance control loops are complicated
- Matching pull-up and pull-down is difficult.

Low-Swing VM Driver Example

- A linear regulator sets the output stage supply, V_s.
- Termination is implemented by output NMOS transistors.
- To compensate for PVT and varying output swing levels, the pre-driver supply is adjusted with a feedback loop.
- The top and bottom output stage transistors need to be sized differently, as they see a different V_{DSAT}.

High-Swing VM Driver Example

- High-swing voltage-mode driver termination is implemented with a combination of output driver transistors and series resistors.
- To meet termination resistance levels (50 Ω), large output transistors are required.
 - Degrades potential power savings.

TX Swing Control

- Uncertainty in R_{TERM} and I_B can degrade output swing
 - In low-swing drivers, this could be a big problem.
- Extend R_{TERM} control to control the swing too.
- Control is done in two steps
 - Impedance control
 - I-control by adaptively changing bias current.
- Typically, a replica driver is used.

TX Slew-Rate Control

- Output transition times should be controlled.
 - Too Slow
 - Limits maximum data rate
 - Too fast
 - Can excite resonant circuits, resulting in ISI due to ringing
 - Cause excessive cross-talk because of large di/dt
- Slew rate control reduces reflections and cross-talk.
- Controlling pre-driver is an effective means of controlling driver output slew-rate.

Slew-Rate Control Implementation

Idea

- Break the driver into segments.
- Turn on each segment sequentially.

Delay element

- Transistor-based doesn't track PVT changes well.
- Use poly resistor that is relatively constant.
- Use a timing element to sequentially time the switching.

Pre-Drivers

- Pre-drivers are needed for
 - Capacitance driving
 - Level shifting
 - Timing control
 - Transient waveform improvement
 - Up and down impedance matching
- A pre-driver is similar to the driver but with much lower current.

Pre-Driver Level Shifting

- If swing $V_s > V_{dd}$, the pre-driver needs to level shift the output
 - If not, the PMOS will not shut off completely when needed.
- Level shifting can be achieved by a "pump" circuit.
- Reliability issues
 - Cross-coupled PMOS devices need to have their wells tied to external voltage.

Pre-Drivers for CML

- Ideal waveforms for the CML driver will cause big drops on the tail current voltage and current.
- This affects overall performance.
- Skewed inverters can be used as pre-drivers.
- CML pre-drivers can be used as well to have a smaller input swing.
 - Low current

Outline

Signaling Basics

- Single-ended vs. differential
- Voltage-mode vs. current-mode

Termination Circuits

- On-Chip vs. off-chip
- AC vs. DC coupled
- Active vs. passive

TX Driver Circuits

- Large swing drivers
- Small swing drivers
- Pre-drivers

Multiplexing

- Multiplexing depth
- Multiplexing circuits

TX Circuit Speed Limitations

- High-speed links can be limited by both the channel and the circuits.
- Clock generation and distribution is key circuit bandwidth bottleneck.
- Multiplexing circuitry also limits maximum data rate.

Full-Rate Multiplexing

- Tree-mux architecture with cascaded 2:1 stages is often used.
- Full-rate architecture relaxes clock duty-cycle, but limits max data rate.
 - Needs to generate and distribute high-speed clock.
 - Needs to design highspeed flip-flop.
- CML logic is sometimes used in last stages.
 - Minimize CML to save power.

Clock Distribution Speed Limitations

- Max clock frequency that can be efficiently distributed is limited by clock buffers ability to propagate narrow pulses.
- CMOS buffers are limited to a min clock period near 8FO4 inverter delays.
 - About 4GHz in typical 90nm CMOS
 - Full-rate architecture limited to this data rate in Gb/s.
- Need a faster clock, use faster clock buffers.
 - CML
 - CML w/ inductive peaking

Multiplexing Techniques – 1/2 Rate

- Full-rate architecture is limited by maximum clock frequency to 8FO4 T_b.
- To increase data rates
 eliminate final retiming and
 use multiple phases of a
 slower clock to mux data.
- Half-rate architecture uses 2 clock phases separated by 180° to mux data.
 - Allows for 4FO4 T_b
 - 180° phase spacing (duty cycle) critical for uniform output eye

Half-Rate Multiplexing Timing Waveforms

- Half-rate architecture eliminates high-speed clock and flip-flop.
- Output eye is sensitive to clock duty cycle.
- Critical path no longer has flip-flop setup time.

2:1 CMOS Multiplexer

- 2:1 CMOS mux is able to propagate a minimum pulse near 2FO4 Tb.
- However, with a ½-rate architecture it is still limited by clock distribution to 4FO4 Tb.
 - 8Gb/s in typical 90nm

2:1 CML Multiplexer

- CML mux can achieve higher speeds due to reduced selfloading factor.
 - Cost is higher power consumption that is independent of data rate (static current).

Increasing Multiplexing Factor — 1/4 Rate

- Increase multiplexing factor to allow for lower frequency clock distribution.
- ¼-rate architecture
 - 4-phase clock distribution spaced at 90° allows for 2FO4 Tb.
 - 90° phase spacing and duty cycle critical for uniform output eye.

Mux Speed vs. Fan-in

- Higher fan-in muxes run slower due to increased cap at mux node.
- 1/4-rate architecture
 - 4:1 CMOS mux can potentially achieve 2FO4 Tb with low fanout.
 - An aggressive CMOS-style design has potential for 16Gb/s in typical 90nm CMOS
- 1/8-rate architecture
 - 8-phase clock distribution spaced at 45° allows for 1FO4 Tb
 - No way a CMOS mux can achieve this!!

Current-Mode Output-Multiplexed

- 8:1 current-mode mux directly at output pad.
- Makes sense if output time constant smaller than on-chip time constant.
- Very sensitive to clock phase spacing.
- Yang achieved 6Gb/s in 0.35µm CMOS.
- Equivalent to 33Gb/s in 90nm CMOS (now channel (not circuit) limited)

Current-Mode Input-Multiplexed

- Reduces output capacitance relative to outputmultiplexed driver
 - Easier to implement TX equalization
- Not sensitive to output stage current mismatches
- Reduces power due to each mux stage not having to be sized to deliver full output current

Voltage-Mode Output-Multiplexed

1:1MUX

[Song, JSSC May 2013]

- 8:1 voltage-mode mux directly at output pad.
- Makes sense if output time constant smaller than on-chip time constant.
- Allowed running from lower supply with lower jitter performance.
- Song achieved 6.4Gb/s in 65nm CMOS with only 0.3 pJ/bit excluding clocking power.

