<u>צוות נתיב הזהב</u> משימת בית

מבוא לביצוע המשימה

- משימה זו נועדה לבחון את יכולתכם להביא לכדי ביטוי אופן מחשבה מתאים לפיתוח מערכות תוכנה, וכן לאפשר לכם לקבל הצצה לאופי העבודה בצוות.
- 2. המשימה הינה משימת קוד, אך שמה דגש על **אופן חשיבה** ולא על **קוד מדויק.** גם אלו שאינם בקיאים באופן מוחלט בקידוד יכולים לענות על סעיפים המשימה באופן מילולי או גרפי אשר מבטא את התהליד החשיבתי.
 - 3. אתם לא בהכרח תכירו את כלל המושגים מצופה מכם ללמוד באופן עצמאי!
 - 4. ניתן יהיה לשלב בין מענה קוד למענה מילולי.
 - ל- גירון טקסט, נדרש כי הוא יהיה בסיומת .md או נדרש כי הוא נדרש כי הוא נדרש כי הוא (Github Repo
- 6. הגשת המשימה תתבצע באמצעות העלאת הקבצים כ-Repo ציבורית לחשבון 6. שלכם ולשלוח אלינו את הקישור. מי שאינו בקיא בשימוש ב-Github נדרש ללמוד זאת. מצורף בזאת סרטון Youtube אשר יהווה התחלה טובה.
 - .7 ניתן לפנות במייל אם ישנן שאלות.
 - 8. זמן להשלמת המשימה יפורט במייל המלווה.
 - 9. בהצלחה!

<u>רקע</u>

- 1. הרמטכייל רב-אלוף עיגולי הורה על הקמת חיל טילים חדש.
- 2. כשלב ראשון של הקמת החיל, ייקלט חימוש מסווג ביותר בשם "זבובון".
- 3. חימושי זבובון הינם למעשה פצצות חכמות המסוגלות להגיע אל מטרתן באמצעות תעופה בליסטית.
 - 4. הוטל עלינו, צוות נתיב הזהב, לממש מערכת מטה ושדה לחישוב מיקום הפגיעה המדויק ופרמטרים נוספים של חימוש זבובון, על בסיס קלט שיספק המשתמש.

שלב 1 – לוגיקה עסקית

- 1. מוצר הקוד הראשון שנממש יהיה ימחשבון פיזיקהי של הזבובון.
- 2. לצורך פיתוח מהיר ובצעדים קטנים, נניח כי הזבובון מתנהג כגוף בתעופה בליסטית קלאסית כפי שנלמדת בפיזיקה בתיכון.
 - א. להרחבה על תנועה בליסטית
 - ב. נתעלם מהשפעות הרוח בשלב הראשון.
 - 3. עליכם לממש מוצר תוכנה אשר מבצע את חישובי הפיזיקה המתאימים.

<u>קלט:</u>

- מהירות התחלתית בעת הירי של הזבובון
 - זווית התחלתית אל מול האופק
 - גובה התחלתי מעל פני הקרקע

<u>פלט:</u>

- מיקום הזבובון בעת פגיעתו בקרקע -
 - מהירות הפגיעה בקרקע
 - בונוס: זווית הפגיעה בקרקע

- 4. **שאלה:** איך נוכל לוודא כי המוצר שבנינו מוסר ללקוח תשובות נכונות? אילו מקרי קצה עלולים לצוץ בעת שימוש במערכת? כיצד נתמודד איתם?
- 5. שאלת בונוס: המודל הפיזיקלי שאנחנו מממשים כאן לא מתאר בצורה מדויקת לחלוטין התנהגות מציאותית. כיצד נשפר את המודל כך שיהיה מדויק יותר! אילו תנאי סביבה של המציאות ניתן יהיה לדעתכם לממש במודל!

שלב 2 – ארכיטקטורה

- 1. עתה נרצה להנגיש את הלוגיקה העסקית שפיתחנו על גבי הרשת המבצעית.
- 2. נניח כי הרשת המבצעית והאינטרנט האזרחי זהים לחלוטין מבחינת משאבים ותשתיות.
- 3. בהתאם לסטנדרט השולט כיום בעולם, אנחנו מעוניינים לייצר מערכת **מבוזרת**, כלומר, Micro-Services מבוססת
 - 4. **שאלה:** כיצד תבחרו לממש את הארכיטקטורה? ניתן לצרף בשלב זה גרף או שרטוט Flow המתאר את
- . עליכם לממש מוצר תוכנה נוסף, **רשתי**, אשר מאפשר גישה למחשבון הפיזיקלי שמומש בסעיף הקודם.
 - a. המוצר החדש יוכל לקבל בקשת HTTP
 - b. המוצר החדש יחזיר תגובת HTTP אשר תכיל את התשובה לחישוב.
 - שאלה: מה על המערכת לעשות אם נשלחה בקשת חישוב לא צפויה!
- 7. **שאלת בונוס:** בהתחשב בסיווג המערכת, כיצד נוכל להגן על הנתונים שזורמים במהלך התקשורת?
 - 8. **שאלת בונוס 2:** ישנו סיכוי כי 2 או יותר משתמשים יבקשו את אותו החישוב (אותו קלט). כיצד ניתן לייעל את המערכת לאור זאת?
- 9. שאלת בונוס 3: אנו צופים כי עלולים להיות פרקי זמן בהם השימוש במערכת יהיה אינטנסיבי (המון משתמשים בבת אחת). כיצד נוכל לשפר את המערכת כך שתוכל לתת מענה מהיר למשתמשים רבים!

שלב 3 – אפליקציה

- לאחר הטמעת ובדיקת המערכת, נרצה להציגה לחייל הקרבי המפעיל את הזבובון באמצעות ממשק משתמש נוח ופשוט.
- 2. על בסיס הארכיטקטורה שבחרנו, נרצה להקים Single Page Application. תציג יכולת להזין קלט למחשבון הפיזיקלי ובעקבותיו תציג פלט.
 - 3. שרטטו או ממשו ממשק משתמש אשר יאפשר שימוש ויזואלי במערכת. הממשק נדרש להציג את היכולת להכניס את הקלט ולהציג את הפלט של המחשבון הפיזיקלי.
 - 4. **שאלה:** על מה נשים דגש בעת פיתוח ממשק המשתמש!
 - 5. **שאלת בונוס:** איך נפתח את הממשק? באילו טכנולוגיות? מאילו אבני בניין נבנה את ממשק המשתמש?
 - 6. בונוס 2: ציירו את מעוף הזבובון באפליקציה.