

Escuela Superior de Computo

Paradigmas de programación

Practica 1

Integrantes

Elizalde Hernández Alan

Toral Hernández Leonardo Javier

Solis lugo Mayra

Solares Velasco Arturo Misael

Reyes Ruiz Yoselyn Estefany 3CV1

Repositorio:

https://github.com/alaneh/paradigmas-escom-2024

Diseño de la solución

Hemos desglosado cada una de las especificaciones del problema en pequeñas funciones para un enfoque más claro y modular

Funció'n 'generar'

Esta función se encarga de escribir en un archivo de texto los números del 1 a 'n', dependiendo de la cantidad que se desee manejar. Por defecto, utiliza el valor mínimo de 'n' como 1000.

Función 'shuffle'

Toma el archivo de texto generado previamente y reordena de forma aleatoria los números que contiene.

Función 'leer'

Diseñada para la lectura de archivos de texto, permite pasar el contenido a arreglos permitiendo su manipulación.

Función 'escribir'

Facilita la escritura o reescritura de archivos de texto para su uso posterior o para marcar la salida de datos.

Función de búsqueda

Permite la búsqueda de un elemento especifico en los archivos de texto.

Función 'ordenar'

Esta función posibilita el reordenamiento del archivo de texto utilizando el orden aleatorio generado previamente.

Cálculo del tiempo

Contamos el tiempo desde la función generar hasta el final de imprimir el arreglo ordenado en un archivo de texto.

Función principal

Nos permite ordenar como se manejarán las funciones y que el cálculo de tiempo sea mas sencillo

Se explicará detalladamente cada una de las funciones con el lenguaje Python porque es más simplificado.

Desarrollo del programa

Funció'n generar

En esta primera sección abrimos el archivo "numeros.txt" para proceder a llenar el archivo utilizando un ciclo for para llenar el archivo con los números de 1 a N en el archivo como una cadena de caracteres.

```
def generar():
    with open("numeros.txt", "w") as archivo:
        for i in range(1, 1001):
            archivo.write(str(i) + "\n")
```

Función shuffle

Python tiene una función para ordenar un arreglo de forma aleatoria integrada así que es con la que trabajamos para poder llenar el arreglo con números aleatorios.

```
random.shuffle(numeros)
```

Función 'leer'

```
def leer(filename):
    numeros = []
    with open(filename, "r") as archivo:
        for linea in archivo:
```

```
numeros.append(int(linea.strip()))
return numeros
```

la función va a abrir un archivo, lo asigna al identificador archivo y se procede a iterar sobre cada línea del archivo se van agregando los números a la lista después de eliminar los espacios en blanco y después devuelve la lista de números en un arreglo.

Función 'escribir'

Abre un archivo y escribe el contenido de un arreglo en cada una de las líneas del archivo y luego regresa un mensaje para saber que archivo fue el que se modificó, escribe cada numero seguido de un salto de línea.

```
def escribir(numeros, filename):
    with open(filename, "w") as archivo:
        for num in numeros:
            archivo.write(str(num) + "\n")
    print(f"Se escribió en el archivo '{filename}'")
```

Función de bú'squeda

La función recorrerá todo el arreglo y comparará la entrada que le dimos para saber si esta o no esta en el arreglo elemento a elemento

```
def busqueda_secuencial(numeros, dato):
    for i, num in enumerate(numeros):
        if num == dato:
            return True, i
        return False, -1
```

Función de ordenamiento

Python ya incluye sort para ordenar así que que ese será el algoritmo que se utilizara para el ordenamiento

```
numeros.sort()
```

Función main: Es la función principal del programa. Aquí se realizan las siguientes acciones:

- Se reserva memoria para un arreglo de 1000 enteros llamado numeros.
- Se llama a la función generar() para crear un archivo de texto llamado numeros.txt que contiene los números del 1 al 1000.
- Se llama a la función leer() para leer los números del archivo numeros.txt y cargarlos en el arreglo numeros.
- Se llama a la función shuffle() para aleatorizar el orden de los números en el arreglo numeros.
- Se llama a la función escribir() para escribir los números aleatorios en un archivo llamado numeros_aleatorios.txt.
- Se solicita al usuario que ingrese un número para buscar en el arreglo.
- Se llama a la función busqueda_secuencial() para buscar el número ingresado por el usuario en el arreglo numeros.
- Se llama a la función ordenar_numeros() para ordenar los números en el arreglo numeros.
- Se llama a la función escribir() para escribir los números ordenados en un archivo llamado numeros_ordenados.txt.
- Se libera la memoria del arreglo numeros.
- Se calcula y muestra el tiempo de ejecución del programa.

```
def main():
   inicio = time.time()
   generar()
   numeros = leer("numeros.txt")
   random.shuffle(numeros)
   escribir(numeros, "numeros_aleatorios.txt")
   print("Archivo de texto de números aleatorios generado")
   dato = int(input("Ingrese el número a buscar: "))
   encontrado, posicion = busqueda_secuencial(numeros, dato)
   if encontrado:
       print(f"El número {dato} fue encontrado en la posición {posicion}")
   else:
        print(f"El número {dato} no fue encontrado en el archivo")
   numeros.sort()
   escribir(numeros, "numeros_ordenados.txt")
   fin = time.time()
   tiempo_ejecucion = fin - inicio
    print(f"Tiempo de ejecución: {tiempo_ejecucion:.6f} segundos")
```

Código en Python

```
Python
import random
import time
def generar():
    with open("numeros.txt", "w") as archivo:
        for i in range(1, 1001):
            archivo.write(str(i) + "\n")
def leer(filename):
    numeros = []
    with open(filename, "r") as archivo:
        for linea in archivo:
            numeros.append(int(linea.strip()))
    return numeros
def escribir(numeros, filename):
    with open(filename, "w") as archivo:
        for num in numeros:
            archivo.write(str(num) + "\n")
    print(f"Se escribió en el archivo '{filename}'")
def busqueda_secuencial(numeros, dato):
    for i, num in enumerate(numeros):
        if num == dato:
            return True, i
    return False, -1
def main():
    inicio = time.time()
    generar()
    numeros = leer("numeros.txt")
```

```
random.shuffle(numeros)
escribir(numeros, "numeros_aleatorios.txt")
print("Archivo de texto de números aleatorios generado")
dato = int(input("Ingrese el número a buscar: "))
encontrado, posicion = busqueda secuencial(numeros, dato)
if encontrado:
    print(f"El número {dato} fue encontrado en la posición {posicion}")
else:
    print(f"El número {dato} no fue encontrado en el archivo")
numeros.sort()
escribir(numeros, "numeros_ordenados.txt")
fin = time.time()
tiempo ejecucion = fin - inicio
print(f"Tiempo de ejecución: {tiempo_ejecucion:.6f} segundos")
                                               if name ==
                                                 main ":
                                                   main()
```

Codigo en lenguaje C

```
#include <stdio.h>
#include <stdib.h>
#include <time.h>
#include <string.h>

/* Prototipos */
void generar();
void leer(int numeros[], const char* filename);
void shuffle(int array[], int n);
void escribir(int numeros[], const char* filename);
int busqueda_secuencial(int *numeros, int tamanio, int dato, int *posicion);
void ordenar_numeros(int *numeros, int tamanio);
int main() {
```

```
int *numeros = (int *)malloc(1000 * sizeof(int));
    int tamanio = 1000;
    int dato;
    int posicion;
    clock_t inicio, fin;
    double tiempo;
    inicio = clock();
    generar();
    leer(numeros, "numeros.txt");
    shuffle(numeros, 1000);
    escribir(numeros, "numeros_aleatorios.txt");
    printf("%s\n", "Archivo de texto de numeros aleatorios generado");
    printf("Ingrese el numero a buscar: ");
    scanf("%d", &dato);
    if (busqueda_secuencial(numeros, tamanio, dato, &posicion)) {
        printf("El numero %d fue encontrado en la posicion %d\n", dato,
posicion);
   } else {
        printf("El numero %d no fue encontrado en el archivo\n", dato);
    }
    ordenar_numeros(numeros, tamanio);
    escribir(numeros, "numeros_ordenados.txt");
    free(numeros); /* libera la memoria del arreglo */
    fin = clock();
    tiempo = (double)(fin - inicio) / CLOCKS_PER_SEC;
    printf("Tiempo de ejecucion: %.6f segundos\n", tiempo);
    return 0;
void generar() {
    FILE *archivo;
    archivo = fopen("numeros.txt", "w");
    if (archivo == NULL) {
        printf("Error al abrir el archivo.");
        return;
```

```
for (int i = 1; i <= 1000; i++) {
        fprintf(archivo, "%d\n", i);
    fclose(archivo);
void swap(int *a, int *b) {
    int temp = *a;
    *a = *b;
    *b = temp;
void shuffle(int array[], int n) {
    srand(time(NULL));
    for (int i = n - 1; i > 0; i--) {
        int j = rand() \% (i + 1);
        swap(&array[i], &array[j]);
    }
void leer(int numeros[], const char* filename) {
    FILE *archivo;
    archivo = fopen(filename, "r");
    if (archivo == NULL) {
        printf("Error al abrir el archivo.");
        return;
    }
    int i = 0;
    while (fscanf(archivo, "%d", &numeros[i]) != EOF && i < 1000) {</pre>
    fclose(archivo);
void escribir(int numeros[], const char* filename) {
    FILE *archivo;
    archivo = fopen(filename, "w");
    if (archivo == NULL) {
        printf("Error al abrir el archivo.");
        return;
```

```
for (int i = 0; i < 1000; i++) {
        fprintf(archivo, "%d\n", numeros[i]);
    }
    fclose(archivo);
    printf("Se escribio en el archivo '%s'\n", filename);
int busqueda_secuencial(int *numeros, int tamanio, int dato, int *posicion)
    for (int i = 0; i < tamanio; i++) {
        if (numeros[i] == dato) {
            *posicion = i;
            return 1; // Se encontró el dato
        }
    }
    return 0; // No se encontró el dato
void ordenar_numeros(int *numeros, int tamanio) {
    for (int i = 0; i < tamanio - 1; i++) {
        for (int j = 0; j < tamanio - i - 1; j++) {
            if (numeros[j] > numeros[j + 1]) {
                int temp = numeros[j];
                numeros[j] = numeros[j + 1];
                numeros[j + 1] = temp;
        }
    }
```