Definiton and statements—Laplace transform

Definition. For $f: [0, \infty) \to \mathbb{R}$ we define its **Laplace transform** $\mathcal{L}\{f(t)\}$ by

$$\mathcal{L}{f(t)}: p \mapsto \int_{0}^{\infty} f(t)e^{-pt}dt,$$

assuming that the integral converges for at least one p.

Notation: $\mathcal{L}{f(t)}$, $\mathcal{L}{f}$, F, alternative f(t) = F(p).

Heaviside function is defined $H(t) = \begin{cases} 1, & t \geq 0; \\ 0, & t < 0. \end{cases}$ We say that a function f is **piecewise continuous** on an interval I if there are $x_0 < x_1 < 0$ Definition.

Definition. $\ldots \in \overline{I}$ such that $\{x_k\}$ is either finite or a sequence going to infinity as $k \to \infty$, $\overline{I} = \bigcup [x_{k-1}, x_k]$ and for every $k=1,2,\ldots$ the function f is continuous on (x_{k-1},x_k) and it has one-sided limits $f(x_{k-1}^+)$, $f(x_k^-)$.

We say that a function f is of at most exponential growth if $\exists \alpha, M > 0$ such that $\forall t : |f(t)| \leq Me^{\alpha t}$.

We define the space \mathcal{L}_0 by Definition.

 $\mathcal{L}_0 = \{f : [0, \infty) \mapsto \mathbb{R}; \ f \text{ is of at most exponential growth and piecewise continuous on } [0, \infty)\}.$

Theorem. If $f \in \mathcal{L}_0$ then $\mathcal{L}\{f\}$ exists on some (p_f, ∞) .

Moreover, $\lim_{n\to\infty} (\mathcal{L}\{f\}(p)) = 0$.

Theorem. (dictionary)

- (i) $\forall \alpha \in \mathbb{R}: e^{\alpha t} \in \mathcal{L}_0 \text{ and } \mathcal{L}\{e^{\alpha t}\} = \frac{1}{p-\alpha}, p > \alpha;$ (ii) $\forall n \in \mathbb{N}_0: t^n \in \mathcal{L}_0 \text{ and } \mathcal{L}\{t^n\} = \frac{n!}{p^{n+1}}, p > 0;$

- (iii) $\forall \omega \in \mathbb{R}$: $\sin(\omega t) \in \mathcal{L}_0$ and $\mathcal{L}\{\sin(\omega t)\} = \frac{\omega}{p^2 + \omega^2}$, $p \in \mathbb{R}$; (iv) $\forall \omega \in \mathbb{R}$: $\cos(\omega t) \in \mathcal{L}_0$ and $\mathcal{L}\{\cos(\omega t)\} = \frac{p}{p^2 + \omega^2}$, $p \in \mathbb{R}$.

Theorem. (linearity)

Let $f, g \in \mathcal{L}_0$. Then $\forall a, b \in \mathbb{R}$: $af + bg \in \mathcal{L}_0$ and $\mathcal{L}\{af(t) + bg(t)\} = a\mathcal{L}\{f(t)\} + b\mathcal{L}\{g(t)\}$. **Theorem.** (grammar) Let $f \in \mathcal{L}_0$. Then the following are true:

- (i) (change of scale) $\forall a > 0$: $f(at) \in \mathcal{L}_0$ and $\mathcal{L}\{f(at)\} = \frac{1}{a}\mathcal{L}\{f(t)\}|_{p/a}$, $p_{f(at)} = ap_f$;
- (ii) (shift in image) $\forall a \in \mathbb{R}: e^{at}f(t) \in \mathcal{L}_0 \text{ and } \mathcal{L}\{e^{at}f(t)\} = \mathcal{L}\{f(t)\}\Big|_{p-a}^{p_{t,a}}, p_{e^{at}f(t)} = a + p_f;$
- (iii) (shift in preimage) $\forall a > 0$: $f(t-a)H(t-a) \in \mathcal{L}_0$ and $\mathcal{L}\{f(t-a)H(t-a)\} = e^{-ap}\mathcal{L}\{f(t)H(t)\},$ $p_{f(t-a)H(t-a)} = p_f;$
- (iv) (derivative of image) $\forall n \in \mathbb{N}: t^n f(t) \in \mathcal{L}_0 \text{ and } \mathcal{L}\{t^n f(t)\} = (-1)^n \frac{\mathrm{d}^n}{\mathrm{d} p^n} \mathcal{L}\{f(t)\};$
- (v) (integration of image) If $\lim_{t\to 0^+} \left(\frac{f(t)}{t}\right)$ converges, then $\frac{f(t)}{t} \in \mathcal{L}_0$ and $\mathcal{L}\left\{\frac{1}{t}f(t)\right\} = \int\limits_{p}^{\infty} \mathcal{L}\{f(t)\}(q) \, dq$. (vi) If $f^{(n)} \in \mathcal{L}_0$, then $\mathcal{L}\{f^{(n)}(t)\} = p^n \mathcal{L}\{f(t)\}(p) p^{n-1}f(0^+) p^{n-2}f'(0^+) \dots pf^{(n-2)}(0^+) f^{(n-1)}(0^+)$;
- (vii) $\int_{0}^{t} f(s) ds \in \mathcal{L}_{0}$ and $\mathcal{L}\left\{\int_{0}^{t} f(s) ds\right\} = \frac{1}{p} \mathcal{L}\left\{f(t)\right\}.$

Remark: Instead of (iii) we usually prefer $\mathcal{L}\{f(t)H(t-a)\}=e^{-ap}\mathcal{L}\{f(t+a)H(t)\}$.

By a **finite impuls** we mean any function defined on $[0,\infty)$ that is non-zero only on some Definition. bounded closed interval.

Let M be a subset of \mathbb{R} . We define its **characteristic function** $\chi_M = \begin{cases} 1, & x \in M; \\ 0, & x \notin M. \end{cases}$

Theorem. (on **periodic** function)

Let f be a function that is T-periodic on $[0,\infty)$. We mark one period by $f_T = f \cdot \chi_{[0,T)}$.

Then $\mathcal{L}{f(t)} = \frac{\mathcal{L}{f_T(t)}}{1 - e^{-pT}}$.

If $f, g \in \mathcal{L}_0$ have $\mathcal{L}\{f\} = \mathcal{L}\{g\}$ on some $[p_0, \infty)$, then f = g with exception of a countable set of Theorem. isolated points.

If moreover f and g are continuous from the right everywhere, then f = g.

Theorem. (dictionary for
$$\mathcal{L}^{-1}$$
)
$$\mathcal{L}^{-1}\left\{\frac{1}{p-\alpha}\right\} = e^{\alpha t}, \qquad \mathcal{L}^{-1}\left\{\frac{1}{p^n}\right\} = \frac{1}{(n-1)!}t^{n-1}, \qquad \mathcal{L}^{-1}\left\{\frac{\omega}{p^2+\omega^2}\right\} = \sin(\omega t), \qquad \mathcal{L}^{-1}\left\{\frac{p}{p^2+\omega^2}\right\} = \cos(\omega t).$$
 Theorem. (grammar for \mathcal{L}^{-1})

- (0) \mathcal{L}^{-1} is linear;
- (1) $\mathcal{L}^{-1}\{e^{-ap}F(p)\} = \mathcal{L}^{-1}\{F(p)\}|_{t=a} \cdot H(t-a);$
- (2) $\mathcal{L}^{-1}\{F(p-a)\} = e^{at}\mathcal{L}^{-1}\{F(p)\};$ (3) $\mathcal{L}^{-1}\{F(ap)\} = \frac{1}{a}\mathcal{L}^{-1}\{F(p)\}\big|_{t/a};$
- (4) $\mathcal{L}^{-1}\{F'(p)\} = -t\mathcal{L}^{-1}\{F(p)\};$ (5) $\mathcal{L}^{-1}\{pF(p)\} = \left[\mathcal{L}^{-1}\{F(p)\}\right]' + \mathcal{L}^{-1}\{F(p)\}(0^+).$

If F(p) is a proper rational function, then $\mathcal{L}^{-1}\{F(p)\}$ exists and it can be found using partial fractions decomposition.

Let f,g be functions defined on \mathbb{R} . We define their **convolution** as the function f*g on \mathbb{R} given by $(f * g)(t) = \int_{-\infty}^{\infty} f(t-s)g(s) ds = \int_{-\infty}^{\infty} f(s)g(t-s) ds$.

If f, g are zero on $(-\infty, 0)$, for instance if $f, g \in \mathcal{L}_0$, then $(f * g)(t) = \int_0^t f(t-s)g(s) \, ds$.

Fact. f * g = g * f, f * (g * h) = (f * g) * h, a(f * g) = (af) * g, f * (g + h) = f * g + f * h.

Theorem. Let $f, g \in \mathcal{L}_0$. Then $f * g \in \mathcal{L}_0$ and $\mathcal{L}\{f * g\} = \mathcal{L}\{f\} \cdot \mathcal{L}\{g\}$.

From this $\mathcal{L}^{-1}\{F \cdot G\} = \mathcal{L}^{-1}\{F\} * \mathcal{L}^{-1}\{G\}$.