

Segmentation

Introduction

What is segmentation?

It consists of dividing an image in regions or objects. It is based on two concepts:

- -<u>Discontinuities:</u> Partition of an image based in abrupt changes of intensity (example: contours)
- -<u>Similarities:</u> Partition of an image into regions that meet a pre-established criterion

Types of discontinuities

- -Points
- -Lines
- -Borders

Use of masks

w_1	w_2	w_3
w_4	w_5	w_{6}
w_7	w_8	w_9

$$R = w_1 z_1 + w_2 z_2 + \dots + w_0 z_0$$

= $\sum_{i=1}^{9} w_i z_i$

Detection of points and lines

Points

 $|R| \ge T$ Threshold

Idea: To detect a point by checking the differences with its neighbors. If the pixel is very different, then it is an isolated point.

Lines

-1	-1	-1	-1	2	-1
2	2	2	-1	2	-1
-1	-1	· -1	-1	2.	-1

Horizontal Vertical

-1	-1	2	2	-1	-1
-1	2	-1	-1	2.	-1
2	-1	-1	-1	-1	2
MES.	+45°	+	L 7	-45°	

Contour detection

Masks:

$$abla \mathbf{f} = egin{bmatrix} G_x \ G_y \end{bmatrix} = egin{bmatrix} rac{\partial f}{\partial x} \ rac{\partial f}{\partial y} \end{bmatrix}$$

$$abla f = ext{mag}(
abla f) = \left[G_x^2 + G_y^2\right]^{1/2}$$

$$\alpha(x, y) = an^{-1} \left(\frac{G_y}{G_x}\right)$$

Simplifying:

$$\nabla f \approx G_x^2 + G_y^2$$
$$\nabla f \approx |G_x| + |G_y|$$

	Gx		Gy		
-1	-2	-1	-1	0	1
0	0	0	-2	0	2
1	2	1	-1	0	1

Sobel

					To all the
-1	-1	-1	-1	0	1
0	0	0	-1	0	1
1	1	1	-1	0	1

Prewitt

-1	0	0	-1
0	1	Î	0

Roberts

Contour detection

Laplacian

Canny: The most powerful for line detection

- 1. Gaussian filter for noise reduction
- 2. Calculates the gradient and direction
- 3. Threshold for eliminating weak pixels
- 4. Retains the pixels in 8-A

Masks: Diagonals

0	1	1	-1	-1	0
-1	0	1.	-1	0	1
-1	-1	0	0	1	1

		Pre	ewitt		
0	1	2	-2	-1	0
-1	0	1	-1	0	1
-2	-1	0	0	1	2

Sobel

Contour (edge) detection

Hough Transform

 $\underline{ Problem \ of \ the \ methods \ aforementioned:} \ Sensitive \ to \ noise, \ lines \ cut, \\ discontinuities \ due \ to \ illumination, \ etc.$

Hough Transform: line detection + robustness

Principle

2 planes: xy plane

ab plane (plane of parameters)

Hough Transform

If
$$a \to \infty$$
 $x \cos \theta + y \sin \theta = \rho$.

If θ =0, p>0 (intercepts x) If θ =90, p>0 (intercepts y)

If θ =-90, p<0 (intercepts -y)

Matlab: [H,theta,rho] = hough(f,dtheta,drho);

Spacing

Hough Transform-Application

- 1. Line detection using any method
- 2. Calculate the Hough Transform
- 3. Detect the most important intersections (peaks)

[r,c] = houghpeaks(H,numpeaks);

4. Reconstruct the lines from the peaks

lines=houghlines(f,theta,rho,r,c);

Circular Hough Transform

Objective: Circle detection with robustness

xy plane

ab plane

4 parameters (**R**³) → r constant

Circular Hough Transform

Principle

Application:

- 1. Determine the radius (range or unique value) of the circles to be found
- 2. Contour (edge) detection by any method
- 3. Obtain the Circle Hough Transform (circle_hough)
- 4. Detect the most important intersections or peaks (circle_houghpeaks)
- 5. Reconstruct the circles from the Circular Hough Transform peaks (*circlepoints*)

Segmentation – Watershed Transform

In geography, *watershed* is the line that divides two land areas with water Base: distance transform

Distance of a pixel to the closest non-zero pixel

Algorithm:

- -Binarization: Black object in white background
- -Obtain the distance transform
- -Obtain the watershed (from the negative of the distance transform) L=watershed(~D)
- -Post-processing