CS201: Discrete Math for Computer Science 2025 Spring Semester Written Assignment #2

Please answer questions in English. Using any other language will lead to a zero point.

Q. 1. Suppose that A, B and C are three finite sets. For each of the following, determine whether or not it is true. Explain your answers.

(a)
$$(A - B = A) \rightarrow (B \subset A)$$

(b)
$$(A \cap B \cap C) \subseteq (A \cup B)$$

(c)
$$\overline{(A-B)} \cap (B-A) = B$$

Solution:

- (a) False. As an counterexample, let $A=\{1\}$, and $B=\{2\}$. Then A-B=A, but B is not a subset of A.
- (b) True. $A \cap B \cap C \subseteq A \cap B \subseteq A \cup B$.
- (c) False. Let $A=B=\{1\}.$ Then, $\overline{A-B}\cap (B-A)=U\cap \emptyset \neq B=\{1\}.$

Q. 2. The <u>symmetric difference</u> of A and B, denoted by $A \oplus B$, is the set containing those elements in either A or B, but not in both A and B.

- (a) Determine whether the symmetric difference is associative; that is, if A, B and C are sets, does it follow that $A \oplus (B \oplus C) = (A \oplus B) \oplus C$?
- (b) Suppose that A, B and C are sets such that $A \oplus C = B \oplus C$. Must it be the case that A = B?

Solution:

(a) Using membership table, one can show that each side consists of the elements that are in an odd number of the sets A, B and C. Thus, it follows.

(b) Yes. We prove that for every element $x \in A$, we have $x \in B$ and vice versa. We use proof by cases.

First, for elements $x \in A$ and $x \notin C$, since $A \oplus C = B \oplus C$, we know that $x \in A \oplus C$ and thus $x \in B \oplus C$. Since $x \notin C$, we must have $x \in B$. For elements $x \in A$ and $x \in C$, we have $x \notin A \oplus C$. Thus, $x \notin B \oplus C$. Since $x \in C$, we must have $x \in B$.

The proof of the other way around is similar.

Q. 3. Prove or disprove that there exists an infinite set A such that $|A| < |\mathbf{Z}^+|$.

Solution: This statement is false. Suppose there exists an infinite set A such that $|A| < |\mathbf{Z}^+|$. This means that $|A| \le |\mathbf{Z}^+|$ and $|A| \ne |\mathbf{Z}^+|$.

- Since $|A| \neq |\mathbf{Z}^+|$, there does not exist any one-to-one correspondence that maps from A to \mathbf{Z}^+ . Thus, A cannot be countable infinite.
- Since $|A| \leq |\mathbf{Z}^+|$, there exists a one-to-one function maps from A to \mathbf{Z}^+ . There is a subset $S \subset \mathbf{Z}^+$ such that there exists a one-to-one correspondence that maps from A to S. Since the subset of a countable set is also countable, S is countable. Thus, S is either finite or there exists a one-to-one correspondence from S to \mathbf{Z}^+ . This leads to the fact that A is either finite or countable infinite.

Thus, contradiction occurs. This complete the disprove.

- **Q. 4.** Suppose that two functions $g:A\to B$ and $f:B\to C$ and $f\circ g$ denotes the composition function.
 - (a) If $f \circ g$ is one-to-one and g is one-to-one, must f be one-to-one? Explain your answer.
 - (b) If $f \circ g$ is one-to-one and f is one-to-one, must g be one-to-one? Explain your answer.
 - (c) If $f \circ g$ is one-to-one, must g be one-to-one? Explain your answer.
 - (d) If $f \circ g$ is onto, must f be onto? Explain your answer.

- (e) If $f \circ g$ is onto, must g be onto? Explain your answer.
- (a) No. We prove this by giving a counterexample. Let $A = \{1, 2\}$, $B = \{a, b, c\}$, and C = A. Define the function g by g(1) = a and g(2) = b, and define the function f by f(a) = 1, and f(b) = f(c) = 2. Then it is easily verified that $f \circ g$ is one-to-one and g is one-to-one. But f is not one-to-one.
- (b) Yes. For any two elements $x, y \in A$ with $x \neq y$, assume to the contrary that g(x) = g(y). On one hand, since $f \circ g$ is one-to-one, we have $f \circ g(x) \neq f \circ g(y)$. One the other hand, $f \circ g(x) = f(g(x)) = f(g(y)) = f \circ g(y)$. This leads to a contradiction. Thus, $g(x) \neq g(y)$, which means that g must be one-to-one.
- (c) Yes. Similar to (b), the condition that f is one-to-one is in fact not used.
- (d) Yes. Since $f \circ g$ is onto, we know that $f \circ g(A) = C$, which means that f(g(A)) = C. Note that g(A) is a subset of B, thus, f(B) must also be C. This means that f is also onto.
- (e) No. A counterexample is the same as that in (a).

Q. 5. Give an example of two uncountable sets A and B such that the difference A - B is (a) finite, (b) countably infinite, (c) uncountable. Note: one example for each subquestion (a), (b), or (c).

Solution: In each case, let A be the set of real numbers.

- (a) Let B be the set of real numbers as well, then $A B = \emptyset$, which is finite.
- (b) Let B be the set of real numbers that are not positive integers, then $A B = \mathbf{Z}^+$, which is countably infinite.
- (c) Let B be the set of positive real numbers. Then A B is the set of negative real numbers, which is uncountable.

Q. 6. If A is an uncountable set and B is a countable set, must A - B be uncountable?

Solution: Since $A = (A - B) \cup (A \cap B)$, if A - B is countable, the elements of A can be listed in a sequence by alternating elements of A - B and elements of $A \cap B$. This contradicts the uncountability of A.

Q. 7. Show that the set $\mathbf{Z}^+ \times \mathbf{Z}^+$ is countable by showing that the polynomial function $f: \mathbf{Z}^+ \times \mathbf{Z}^+ \to \mathbf{Z}^+$ with f(m,n) = (m+n-2)(m+n-1)/2 + m is one-to-one and onto.

Solution: It is clear from the formula that the range of values the function takes on for a fixed value of m+n, say m+n=x, is (x-2)(x-1)/2+1 through (x-2)(x-1)/2+(x-1), because m can assume the values $1,2,3,\ldots,(x-1)$ under these conditions, and the first term in the formula is a fixed positive integer when m+n is fixed. To show that this function is one-to-one and onto, we merely need to show that the range of values for x+1 picks up precisely where the range of values for x left off, i.e., that f(x-1,1)+1=f(1,x). We have $f(x-1,1)+1=(x-2)(x-1)/2+(x-1)+1=(x^2-x+2)/2=(x-1)x/2+1=f(1,x)$.

Q. 8. Assume that |S| denotes the cardinality of the set S. Show that if |A| = |B| and |B| = |C|, then |A| = |C|.

By definition, we have one-to-one and onto functions $f:A\to B$ and $g:B\to C$. Then $g\circ f$ is a one-to-one and onto function from A to C, so we have |A|=|C|.

Q. 9. Suppose that f(x), g(x) and h(x) are functions such that f(x) is $\Theta(g(x))$ and g(x) is $\Theta(h(x))$. Show that f(x) is $\Theta(h(x))$.

Solution: The definition of "f(x) is $\Theta(g(x))$ " is that f(x) if both O(g(x)) and $\Omega(g(x))$. This means that there are positive constants C_1, k_1, C_2 , and k_2 such that $|f(x)| \leq C_2|g(x)|$ for all $x > k_2$ and $|f(x)| \geq C_1|g(x)|$ for all

 $x > k_1$. Similarly, we have that there are positive constants C_1', k_1', C_2' , and k_2' such that $|g(x)| \le C_2'|h(x)|$ for all $x > k_2'$ and $|g(x)| \ge C_1'|h(x)|$ for all $x > k_1'$. We can combine these inequalities to obtain $|f(x)| \le C_2C_2'|h(x)|$ for all $x > \max(k_2, k_2')$ and $|f(x)| \ge C_1C_1'|h(x)|$ for all $x > \max(k_1, k_1')$. This means that f(x) is $\Theta(h(x))$.

Q. 10. Suppose that $f_1(x)$ is $\Theta(g_1(x))$ and $f_2(x)$ is $\Theta(g_2(x))$. Prove or disprove that $f_1(x) - f_2(x)$ is $\Theta(g_1(x) - g_2(x))$.

Solution: Disprove. Let $f_1(x) = 2x$, $f_2(x) = g_1(x) = g_2(x) = x$. $f_1(x) - f_2(x) = x$ is not $\Theta(g_1(x) - g_2(x)) = 0$