Toutes les réponses doivent être soigneusement justifiées. La qualité de la rédaction interviendra de manière importante dans la notation.

Durée: 2h

EXERCICE 1 Soit n un entier supérieur ou égal à 2. On considère l'anneau $\mathbb{Z}/n\mathbb{Z} = \{\overline{0}, \overline{1}, \dots, \overline{n-1}\}$. On note \mathbb{Z}_n^{\times} le groupe multiplicatif des éléments inversibles de $\mathbb{Z}/n\mathbb{Z}$. On rappelle que l'ordre d'un groupe fini désigne son cardinal, i.e. son nombre d'éléments. On rappelle que la fonction indicatrice d'Euler, notée ϕ , associe à un entier $n \geq 2$, le nombre d'entiers k dans [1, n] premiers avec n. Par exemple, $\phi(2) = 1$, $\phi(6) = 2$.

- 1. Donner la liste des éléments de \mathbb{Z}_5^{\times} .
- 2. Soit p un nombre premier. Quel est l'ordre de \mathbb{Z}_p^{\times} ?
- 3. Donner la liste des éléments de \mathbb{Z}_{15}^{\times} .
- 4. Soit n = pq avec p et q deux nombres premiers distincts. Montrer que l'ordre de \mathbb{Z}_n^{\times} est (p-1)(q-1). Indication: On rappelle que les seuls nombres qui ne sont pas premiers avec n sont des multiples de p ou des multiples de q.
- 5. Soit n = pqr avec p, q et r trois nombres premiers deux à deux distincts. Montrer que l'ordre de \mathbb{Z}_n^{\times} est (p-1)(q-1)(r-1).
- 6. Calculer $\phi(15)$ et $\phi(30)$.
- 7. Montrer que lorsque $x \in \{1, ..., n-1\}$ est premier avec n, alors $x^{\phi(n)} = 1 \mod n$. Indication: Pensez au théorème d'Euler, généralisation du petit théorème de Fermat.
- 8. Calculer $3^{124356} \mod 7$ et $2^{12435634127} \mod 15$.

Exercice 2

On considère le sous-ensemble $V\subset S_4$ défini par

$$V = \{id, (12)(34), (13)(24), (14)(23)\}.$$

- 1. Montrer que V est un sous-groupe de S_4 .
- 2. Quel est l'indice $[S_4:V]$ de V dans S_4 ?
- 3. Soit W le sous-groupe de S_4 engendré par (12)(34). W est-il un groupe cyclique?
- 4. Quel est l'indice $[S_4:W]$ de W dans S_4 ?
- 5. Montrer que W est un sous-groupe distingué de V ($W \triangleleft V$).
- 6. On rappelle que A_4 désigne le sous-groupe de S_4 , formé par les permutations de signature 1. Montrer que W est un sous-groupe de A_4 .
- 7. Quel est l'indice $[A_4:W]$ de W dans A_4 ?

Exercice 3

- 1. Soit G un groupe d'ordre 15. Quels sont les ordres possibles pour les sous-groupes de G?
- 2. Soit G un groupe fini contenant un élément d'ordre 7 et un élément d'ordre 9. Pourquoi a-t-on $|G| \ge 63$?

Exercice 4

On considère les deux permutations suivantes σ et φ de S_9 définies par :

$$\sigma = \left(\begin{array}{ccccccc} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\ 8 & 5 & 6 & 4 & 2 & 1 & 9 & 7 & 3 \end{array}\right),$$

$$\varphi = (3,4,1)(2,7)(3,7)(3,5,7,8,)(2,6,7)(2,9)$$
.

- 1. Trouver pour chacune d'elles :
 - (a) la décomposition en produit de cycles à supports disjoints,
 - (b) la signature,
 - (c) l'ordre,
 - (d) une décomposition en produit de transpositions
- 2. Calculer σ^{2018} et φ^{2018} .
- 3. Calculer $\sigma\varphi\sigma^{-1}$.
- 4. On rappelle que deux permutations α et β sont conjuguées, si il existe une permutation γ telle que $\alpha = \gamma \beta \gamma^{-1}$. Les permutations σ et φ sont-elles conjuguées? Justifier.

Exercice 5

Soit (G, .) un groupe. On appelle conjugaison par $a \in G$, l'application f_a de G dans G définie par $f_a(x) = a.x.a^{-1}$. On rappelle qu'un automorphisme de G est un isomorphisme de G dans G et que l'ensemble des automorphismes d'un groupe, muni de \circ (la composition des applications) est un groupe. Il sera noté Aut(G).

- 1. Montrer que f_a est un automorphisme de G.
- 2. Soit $\Gamma = \{f_a : a \in G\}$. Montrer que (Γ, \circ) est un groupe. (Indication : il suffit de montrer que c'est un sous-groupe de Aut(G)).
- 3. Soit $\Phi: G \to \Gamma, a \mapsto f_a$. Vérifier que Φ est un morphisme. Est-il injectif? (Indication: Calculer le noyau ker Φ , lorsque G est un groupe commutatif).