Funções

Dados conjuntos A e B, uma **função** f de A para B é "algo" (uma regra? uma correspondência?) que a cada elemento de A faz corresponder um e um só elemento de B. (O que é uma regra? O que é uma correspondência?)

Mais formalmente:

Uma relação binária f de A para B diz-se funcional se

$$\forall_{x \in A} \forall_{y \in B} \forall_{z \in B} \left(((x, y) \in f \land (x, z) \in f) \Rightarrow y = z \right)$$

Uma **função** do conjunto A para o conjunto B é um terno (f, A, B), representado por $f: A \to B$, onde f é uma relação funcional de A para B, com domínio A.

(Ou seja, além da condição de f ser uma relação funcional, tem-se $\forall_{x \in A} \exists_{y \in B} (x, y) \in f$).

Dada uma função $f: A \to B$, normalmente representa-se por f(a) o único elemento $b \in B$ tal que $(a,b) \in f$; assim, escreve-se f(a) = b, em vez de $(a,b) \in f$ ou $a \notin b$.

A diz-se também o **domínio** da função $f: A \rightarrow B$.

Ao conjunto B chama-se **conjunto de chegada** da função $f:A\to B$.

O **contradomínio** de $f: A \to B$ é o contradomínio da relação f; isto é, é o conjunto $\{y \in B \mid \exists_{x \in A} : f(x) = y\}$.

Normalmente chama-se função só à relação funcional f e se não houver perigo de confusão falaremos na "função f", em vez de "função $f:A\to B$ "; mas, por exemplo, a relação

$$f = \{(x, x^2) \mid x \in \mathbb{R}\}$$

pode dar origem às funções $f: \mathbb{R} \to \mathbb{R}$ e $f: \mathbb{R} \to \mathbb{R}_0^+$ que formalmente são distintas, por terem conjuntos de chegada distintos.

Quando temos uma expressão explícita de f(x) para cada $x \in A$, podemos apresentar a função $f: A \to B$ da seguinte forma:

$$f: A \rightarrow B$$

 $x \mapsto [expressão de f(x)]$

Ex.:

$$\begin{array}{cccc} & f: \mathbb{Z} & \to & \mathbb{Z} \\ & n & \mapsto & n^2 \end{array}$$

$$\begin{array}{cccc} & g: \mathbb{Z} & \to & \mathbb{Z} \\ & n & \mapsto & \left\{ \begin{array}{ccc} n & \text{se } n \geq 0 \\ -n & \text{se } n < 0 \end{array} \right. \end{array}$$

Dado um conjunto A, a função identidade em A é a função

$$id_A: A \rightarrow A$$

 $x \mapsto x$

Uma função $f:A\to B$ diz-se **constante** se existe $b\in B$ tal que f(x)=b, para todo o $x\in A$.

Por exemplo, a função

$$\begin{array}{cccc} f: \{1,2,3\} & \to & \{3,4\} \\ & 1 & \mapsto & 3 \\ & 2 & \mapsto & 3 \\ & 3 & \mapsto & 3 \end{array}$$

é constante.

Sejam $f: A \rightarrow B$ uma função, $X \subseteq A$ e $Y \subseteq B$.

- ▶ A imagem de X por f é o conjunto $f(X) = \{f(x) \mid x \in X\}$.
- ▶ A pré-imagem, ou imagem inversa, de Y por f é o conjunto $f^{-1}(Y) = \{x \in A \mid f(x) \in Y\}.$

Ex.:

- Consideremos a função $f: \mathbb{Z} \to \mathbb{Z}$. $n \mapsto n^2$ $f(\{-1,0,1,2\}) = \{0,1,4\};$ $f^{-1}(\{0,1,2,3,4\}) = \{-2,-1,0,1,2\}.$
- Dada qualquer função f : A → B, a imagem de A é o contradomínio de f; e a pré-imagem de B é o domínio A.

Algumas propriedades

Sejam $f:A\to B$ uma função, $X_1,X_2\subseteq A$ e $Y_1,Y_2\subseteq B$. Então

- 1. $f(\emptyset) = \emptyset$
- $2. \ f^{-1}(\emptyset) = \emptyset$
- 3. $f^{-1}(B) = A$
- 4. Se $X_1 \subseteq X_2$, então $f(X_1) \subseteq f(X_2)$
- 5. $f(X_1) \subseteq Y_1$ se e só se $X_1 \subseteq f^{-1}(Y_1)$
- 6. $f(X_1 \cup X_2) = f(X_1) \cup f(X_2)$
- 7. $f(X_1 \cap X_2) \subseteq f(X_1) \cap f(X_2)$
- 8. $f^{-1}(Y_1 \cup Y_2) = f^{-1}(Y_1) \cup f^{-1}(Y_2)$
- 9. $f^{-1}(Y_1 \cap Y_2) = f^{-1}(Y_1) \cap f^{-1}(Y_2)$

Dadas funções $f:A\to B$ e $g:B\to C$, a função composta de g com f ("g após f") é a função

$$g \circ f : A \rightarrow C$$

 $x \mapsto g(f(x))$

Ex.:

Consideremos as funções
$$f: \mathbb{Z} \to \mathbb{Z}$$
 e $g: \mathbb{Z} \to \mathbb{Z}$; $n \mapsto n^2$ $n \mapsto n+1$

com estas funções formam-se as compostas $g \circ f : \mathbb{Z} \to \mathbb{Z}$ $n \mapsto n^2 + 1$

e
$$f \circ g : \mathbb{Z} \rightarrow \mathbb{Z}$$

 $n \mapsto (n+1)^2$

[Nota: $g \circ f$, entendida como relação funcional, é precisamente a composta das relações funcionais $g \in f$.]

Seja $f: A \rightarrow B$ uma função. Diz-se que

- ► $f: A \to B$ é injetiva se $\forall_{x \in A} \forall_{y \in A} (x \neq y \Rightarrow f(x) \neq f(y))$ (ou, equivalentemente, se $\forall_{x \in A} \forall_{y \in A} (f(x) = f(y) \Rightarrow x = y))$)
- ▶ $f: A \to B$ é sobrejetiva se $\forall_{y \in B} \exists_{x \in A} : f(x) = y$
- f: A → B é bijetiva se é injetiva e sobrejetiva (neste caso, também se diz que f: A → B é uma bijeção)

Ex.:

Consideremos as funções
$$f: \mathbb{R} \to \mathbb{R}_0^+$$
 e $g: \mathbb{R} \to \mathbb{R}$; $x \mapsto x^2$ $x \mapsto x^2$

 $f: \mathbb{R} \to \mathbb{R}_0^+$ é sobrejetiva, mas não é injetiva; $g: \mathbb{R} \to \mathbb{R}$ não é sobrejetiva nem injetiva;

e ainda as funções $h: \mathbb{N} \rightarrow \mathbb{N}$ e $k: \mathbb{Z} \rightarrow \mathbb{Z}$; $n \mapsto n+1$ $n \mapsto n+1$

 $h: \mathbb{N} \to \mathbb{N}$ é injetiva, mas não é sobrejetiva;

 $k: \mathbb{Z} \to \mathbb{Z}$ é bijetiva.

Sejam $f: A \rightarrow B \ e \ g: B \rightarrow C \ funções.$

- ► Se $f: A \to B$ e $g: B \to C$ são injetivas, então $g \circ f: A \to C$ é injetiva.
- ▶ Se $f: A \to B$ e $g: B \to C$ são sobrejetivas, então $g \circ f: A \to C$ é sobrejetiva.
- ▶ Se $f: A \rightarrow B$ e $g: B \rightarrow C$ são bijetivas, então $g \circ f: A \rightarrow C$ é bijetiva.

Uma função $f:A\to B$ é injetiva se e só se a relação f^{-1} é funcional. Uma função $f:A\to B$ é sobrejetiva se e só se o domínio da relação f^{-1} é o conjunto B.

Uma função $f: A \to B$ é bijetiva se e só se existe a função $f^{-1}: B \to A$.

Seja $f:A\to B$ uma função bijetiva. Chamamos **função inversa** à função $f^{-1}:B\to A$ e dizemos que $f:A\to B$ é **invertível**.

Se $f: A \rightarrow B$ é invertível,

- $f^{-1} \circ f = id_A; e$
- $f \circ f^{-1} = id_B.$

Seja $f:A\to B$ uma função invertível. A única função g tal que $g\circ f=id_A$ e $f\circ g=id_B$ é $g=f^{-1}$.

Se $f: A \to B$ não é bijetiva, não existe nenhuma função g tal que $g \circ f = id_A$ e $f \circ g = id_B$.

Seja $f: A \to B$ uma função invertível; então $f^{-1}: B \to A$ também é invertível e a sua inversa é $f: A \to B$.

Ex.:

Consideremos as funções $k: \mathbb{Z} \to \mathbb{Z}$ e $j: \mathbb{Z} \to \mathbb{Z}$ $n \mapsto n+1$ $n \mapsto n-1$ Cada uma destas funções é inversa da outra.

Sejam $f: A \to B$ e $g: B \to C$ funções bijetivas. Então a função $g \circ f$ é invertível e $(g \circ f)^{-1} = f^{-1} \circ g^{-1}$.

Nota: Se uma função $f:A\to B$ é injetiva mas não sobrejetiva $(f(A)=C\subsetneq B)$, a mesma relação funcional f dá origem a uma função bijetiva $f:A\to C$; e a relação f^{-1} dá origem a uma função $f^{-1}:C\to A$; esta função não é inversa de $f:A\to B$ $(f\circ f^{-1}=id_C\neq id_B)$;

mas é inversa da função $f: A \rightarrow C$ e é frequentemente chamada, com

Ex.:

Consideremos a função
$$f: \mathbb{R}_0^+ \to \mathbb{R}$$
; $x \mapsto \sqrt{x}$

alguma ambiguidade, inversa de f.

esta função é injetiva, mas não sobrejetiva, logo, estritamente falando não tem inversa;

mas a função
$$f: \mathbb{R}_0^+ \to \mathbb{R}_0^+$$
 tem inversa, $x \mapsto \sqrt{x}$ que é $f^{-1}: \mathbb{R}_0^+ \to \mathbb{R}_0^+$. $x \mapsto x^2$