DEPARTMENT OF COMPUTER APPLICATIONS 23MX11 - LPP - BIG - M METHOD

Find the optimal solution for the following LPP using BIG – M Method.

Maximize Z = 5x1+12x2+4x3

Subject to: $x1+2x2+x3 \le 5$

2x1-x2+3x3 = 2

 $x1, x2, x3 \ge 0$

First convert the given LPP into standard form

Maximize
$$Z = 5x1+12x2+4x3-Ma$$

Subject to:
$$x1+2x2+x3+s = 5$$

$$2x1-x2+3x3+a=2$$

$$x1, x2, x3, s, a \ge 0$$

a is the artificial and s is the slack variable.

The objective function is

$$Z-5x1-12x2-4x3+0s+Ma = 0$$

Now, eliminate the artificial variable from Z.

New Z row:

$$-(M)[2 -1 3 0 1 2]$$

$$= [-5-2M -12+M -4-3M 0 0 -2M]$$

	x1	x2	х3	S	а	RHS	Ratio
S	1	2	1	1	0	5	5
a	2	-1	3	0	1	2	$\frac{2}{3}$
Z	-5-	-12+M	-4-3M	0	0	-2M	
	2M						

Most Negative Coefficient

Pivotal Element

New "a" row

 $[2 -1 3 0 1 2] \div 3$

=
$$\left[\frac{2}{3} \quad \frac{-1}{3} \quad 1 \quad 0 \quad \frac{1}{3} \quad \frac{2}{3}\right]$$
 [x3 row]

New "s" row

[1 2 1 1 0 5]

-(1)
$$\begin{bmatrix} \frac{2}{3} & \frac{-1}{3} & 1 & 0 & \frac{1}{3} & \frac{2}{3} \end{bmatrix}$$

$$= \begin{bmatrix} \frac{1}{3} & \frac{7}{3} & 0 & 1 & \frac{-1}{3} & \frac{13}{3} \end{bmatrix}$$

New "Z" row

$$= [-5-2M -12+M -4-3M 0 0 -2M]$$

-(-4-3M)
$$\left[\frac{2}{3} \quad \frac{-1}{3} \quad 1 \quad 0 \quad \frac{1}{3} \quad \frac{2}{3}\right]$$

$$=\left[\frac{-7}{3} \quad \frac{-40}{3} \quad 0 \quad 0 \quad \frac{4+3M}{3} \quad \frac{8}{3}\right]$$

Simplex table after this iteration

		x1	x2	x3	S	а	RHS	Ratio
	S	1	7	n	1	-1	13	13
		3	3	<u> </u>	1	3	3	7
	х3	2	- 1	1	0	1	2	NO
		3	3	-)	3	3	
-	Z	<u>-7</u>	-40	0	C	4+3M	8	
	_	3	3)	3	3	

New "a" row

$$\begin{bmatrix} \frac{1}{3} & \frac{7}{3} & 0 & 1 & \frac{-1}{3} & \frac{13}{3} \end{bmatrix} X \frac{3}{7}$$

$$= \begin{bmatrix} \frac{1}{7} & 1 & 0 & \frac{3}{7} & \frac{-1}{7} & \frac{13}{7} \end{bmatrix}$$

New "x3" row

$$\begin{bmatrix} \frac{2}{3} & \frac{-1}{3} & 1 & 0 & \frac{1}{3} & \frac{2}{3} \end{bmatrix}$$

$$-(\frac{-1}{3})\left[\frac{1}{7} \quad 1 \quad 0 \quad \frac{3}{7} \quad \frac{-1}{7} \quad \frac{13}{7}\right]$$

$$= \begin{bmatrix} \frac{5}{7} & 0 & 1 & \frac{1}{7} & \frac{2}{7} & \frac{9}{7} \end{bmatrix}$$

New "Z" row

$$= \begin{bmatrix} \frac{-7}{3} & \frac{-40}{3} & 0 & 0 & \frac{4+3M}{3} & \frac{8}{3} \end{bmatrix}$$

$$-(\frac{-40}{3})[\frac{1}{7} \quad 1 \quad 0 \quad \frac{3}{7} \quad \frac{-1}{7} \quad \frac{13}{7}]$$

$$= \begin{bmatrix} \frac{-3}{7} & 0 & 0 & \frac{40}{7} & \frac{21M-12}{21} & \frac{192}{7} \end{bmatrix}$$

Simplex table after this iteration

	x1	x2	х3	S	а	RHS	Ratio
x2	1	1	0	3	-1	13	13
	7			$\frac{1}{7}$	7	7	
x3	5	0	1	1	2	9	9
	7		_	$\frac{1}{7}$	$\frac{\overline{7}}{7}$	7	- 5
Z	-3	0	0	40	21M - 12	192	
	7			7	21	7	

New "x3" row
$$\begin{bmatrix} \frac{5}{7} & 0 & 1 & \frac{1}{7} & \frac{2}{7} & \frac{9}{7} \end{bmatrix} \times \frac{7}{5}$$

$$= \begin{bmatrix} 1 & 0 & \frac{7}{5} & \frac{1}{5} & \frac{2}{5} & \frac{9}{5} \end{bmatrix}$$

New "x2" row
$$\begin{bmatrix} \frac{1}{7} & 1 & 0 & \frac{3}{7} & \frac{-1}{7} & \frac{13}{7} \end{bmatrix} \\
-(\frac{-1}{7}) \begin{bmatrix} 1 & 0 & \frac{7}{5} & \frac{1}{5} & \frac{2}{5} & \frac{9}{5} \end{bmatrix}$$

$$= [0 \quad 1 \quad \frac{-1}{5} \quad \frac{2}{5} \quad \frac{-1}{5} \quad \frac{8}{5}]$$

New "Z" row

$$= \begin{bmatrix} \frac{-3}{7} & 0 & 0 & \frac{40}{7} & \frac{21M-12}{21} & \frac{192}{7} \end{bmatrix}$$

$$-\left(\frac{-3}{7}\right) \left[1 \quad 0 \quad \frac{7}{5} \quad \frac{1}{5} \quad \frac{2}{5} \quad \frac{9}{5} \right]$$

=
$$\begin{bmatrix} 0 & 0 & 3 & \frac{29}{5} & \frac{5M-2}{5} & \frac{141}{5} \end{bmatrix}$$

Simplex table after this iteration

	x1	x2	х3	S	а	RHS
x2	0	1	-1	2	-1	8
			5	- 5	5	5
x1	1	0	7	1	2	9
			- 5	- 5	<u>-</u> 5	<u>5</u>
Z	0	0	3	29	5M - 2	141
				5	5	5

There is no negative coefficient in the Z row. Therefore, the optimal solution is obtained for Z.

Solution:

$$x1 = \frac{9}{5}$$
, $x2 = \frac{8}{5}$ and $Z = \frac{141}{5}$

Any Questions