MAT 226B Large Scale Matrix Computation Final Project

Ahmed Mahmoud

March, 22nd 2020

Problem 1:

(a) We know from nonsymmetric Lanczos process that

$$MV_k = V_k T_k + \beta_{k+1} [0 \dots 0 v_{k+1}]$$

We can multiply the above by e_1 to extract the first column (v_1) from V_k before multiplying it by M and the result is

$$MV_k e_1 = V_k T_k e_1 + \beta_{k+1} [0 \dots 0 v_{k+1}] e_1$$

 $MV_k e_1 = V_k T_k e_1 + 0$

Note that $MV_ke_1 = Mv_1$. Now, we can easily give the proof as

$$M^j r = M^j(\beta_1 v_1) = \beta_1 M^j v_1$$

$$M^{j}r = \beta_{1}V_{k}T_{k}^{j}e_{1}, \quad \forall j = 0, 1, \dots, k-1$$
 (1)

(b) We follow the same steps as in (a). First we have

$$M^{T}W_{k} = W_{k}\hat{T}_{k} + \gamma_{k+1}[0\dots 0w_{k+1}]$$

$$M^{T}W_{k}e_{1} = W_{k}\hat{T}_{k}e_{1} + \gamma_{k+1}[0\dots 0w_{k+1}]e_{1}$$

$$M^{T}w_{1} = W_{k}\hat{T}_{k}e_{1} + 0$$

Taking the transpose of the above, we get

$$(M^T w_1)^T = w_1^T M = e_1^T \hat{T}_k^T W_k^T$$

We also know that $\hat{T_k}^T = D_k T_k D_k^{-1}$. Thus,

$$w_1^T M = e_1^T D_k T_k D_k^{-1} W_k^T$$

Now, we can give the proof as

$$c^T M^j = \gamma_1 w_1^T M^j$$

$$c^T M^j = \gamma_1 e_1^T D_k T_k^j D_k^{-1} W_k^T$$

$$c^T M^j = \gamma_1 \delta_1 e_1^T T_k^j D_k^{-1} W_k^T$$

(c) We can write the Z(s) as

$$Z(s) = \sum_{j=0}^{\infty} \sigma^j c^T M^j r \tag{2}$$

We can find two values positive j_1 and j_2 such that $j_1 + j_2 = j$. Then, we can write 2 as

$$Z(s) = \sum_{j=0}^{\infty} \sigma^{j} c^{T} M^{j_{1}} M^{j_{2}} r$$

$$Z(s) = \sum_{j=0}^{\infty} \sigma^{j} (\gamma_{1} \delta_{1} e_{1}^{T} T_{k}^{j_{1}} D_{k}^{-1} W_{k}^{T}) (\beta_{1} V_{k} T_{k}^{j_{2}} e_{1})$$

$$Z(s) = \sum_{j=0}^{\infty} \sigma^{j} \gamma_{1} \delta_{1} \beta_{1} e_{1}^{T} T_{k}^{j_{1}} D_{k}^{-1} W_{k}^{T} V_{k} T_{k}^{j_{2}} e_{1}$$
(3)

We know from Lanczos process that $W_k V_k = D_k$. In addition, we have $c^T r = (\gamma_1 w_1)^T (\beta_1 v_1) = \gamma_1 \beta_1 w_1^T v_1 = \gamma_1 \delta_1 \beta_1$. We can plug this relations in 3 to get

$$Z(s) = \sum_{j=0}^{\infty} \sigma^{j}(c^{T}r)e_{1}^{T}T_{k}^{j_{1}}D_{k}^{-1}D_{k}T_{k}^{j_{2}}e_{1}$$

$$Z(s) = \sum_{j=0}^{\infty} \sigma^{j}(c^{T}r)e_{1}^{T}T_{k}^{j_{1}}T_{k}^{j_{2}}e_{1} = \sum_{j=0}^{\infty} \sigma^{j}(c^{T}r)e_{1}^{T}T_{k}^{j}e_{1}$$

Letting the summation only runs up to 2k + 1, we can show that

$$Z(s) = \sum_{j=0}^{2k+1} \sigma^{j}(c^{T}r)e_{1}^{T}T_{k}^{j}e_{1} = \sum_{j=0}^{2k+1} \sigma^{j}\mu_{j} + \mathcal{O}(\sigma^{2k})$$

where $\mu_j = (c^T r) e_1^T T_k^j e_1$.

Problem 2:

Here we are required to find an efficient way to compute q = Mv and $q = M^Tv$ for $v \in \mathbb{C}^n$ where $M = (A - s_0 E)^{-1} E$. We can compute the matrix-vector multiplication efficiently using LU factorization. We first can write the multiplication as

$$q = (A - s_0 E)^{-1} E v = \underbrace{(A - s_0 E)^{-1}}_{W} \underbrace{E v}_{f}$$

$$q = W^{-1} f \quad \Rightarrow \quad W q = f \quad \Rightarrow \quad \underbrace{P D^{-1} W Q}_{LU} \underbrace{Q^{T} q}_{d} = P D^{-1} f$$

Thus, we can fist solve $Lc = PD^{-1}f$ for $c \in \mathbb{C}^n$ via forward substitution, then solve Ud = c for $d \in \mathbb{C}^n$ via backward substitution, and finally set q = Qd.

We can use the same LU factorization to compute $q=M^Tv$ efficiently. We first not that transposing the LU factorization for a given matrix W is $U^TL^T=Q^TW^TD^{-T}P^T$ We can write this multiplication as

$$q = ((A - s_0 E)^{-1} E)^T v = E^T \underbrace{(A - s_0 E)^{-T} v}_{g}$$

$$q = W^{-T} v \Rightarrow W^T g = v \Rightarrow \underbrace{Q^T W^T D^{-T} P^T}_{U^T L^T} \underbrace{(D^{-T} P^T)^{-1} g}_{d} = Q^T v$$

Thus, we can first solve $U^Tc=Q^Tv$ for c via forward substitution, then solve $L^Td=c$ for d via backward substitution, and then set $g=D^{-T}P^Td$. Finally, we multiply g from the left by E^T to get q. The functions Mv and transposeMv implements these operations as discussed.

Problem 3:

The leading 2k moments $\mu_j = c^T M^j r$ for $j = 0, 1, \dots, 2k - 1$ can be computing as follows. Let $f_j = M^j r$. It is easy to see that $f_j = M f_{j-1}$ from which we can compute the moment at j as

 $\mu_j = c^T f_j$ and compute f_j recursively. We can use the same LU factorization to compute r and used the function Mv to compute f_j . The function computeMoments compute the moments as discussed here.

We wrote another function textbookAlgo that utilizes computeMoments to implement the textbook algorithm for computing $Z_k(s)$. More precisely, it compute the coefficient of the polynomials $p(\sigma)$ and $q(\sigma)$ such that $Z_k(s) = \frac{p(\sigma)}{q(\sigma)}$ where $p(\sigma) = \alpha_0 + \alpha_1 \sigma + \cdots + \alpha_{k-1} \sigma^{k-1}$, $q(\sigma) = \beta_0 + \beta_1 \sigma + \cdots + \beta_k \sigma^k$, $\alpha_0, \ldots, \alpha_{k-1}, \beta_1 \ldots \beta_k \in \mathbb{C}$, and $\beta_0 = 1$. The output of this function is two vectors α and β containing the coefficients.

Problem 4:

We wrote the function zkViaLanczos which computes Z_k given T_k , s and s_0 . T_k is computed from our previous implementation of the nonsymmetric Lanczos in Homework 3 which feed in with the efficient implementation of the Mv and M^Tv from Problem 2.

Problem 5:

System Specs: All our experiments run on Intel(R) Xeon(R) CPU E3-1280 v5 with 3.70 GHz and 32 GB of RAM on 64-bit operating system running Windows 7.

Plots: Figure 1 shows the results of the three algorithms plotted on top of each others. It shows that Lanczos-based algorithm is able to capture Z(s) almost exactly using k=100. For such value of k, the textbook algorithm will return NaN everywhere. Thus, we used k=10 in the plot. Function Figure 1 () in driver.m file generates this plot.

 s_0 with fast convergence: We test our implementation of the textbook and Lanczos-based algorithm for different values of s_0 and found that it runs fairly fast for the small input given in FP_Ex1.mat; it takes less than a second even for large i.e., k < 100.

We followed the recommendation given in the lectures for how to pick s_0 . We choose $s_0 = 1e5 + 2\pi i 5.5e8$.

Comparison: We run both our implementation for different values of k and the above s_0 and compared between both. Table 1 shows the average different ($\|\cdot\|^2$) and the maximum (absolute) different between the two vectors containing the output of both algorithms for different values of s. Function Table 1 () in driver m file generates these data. We can see that when k > 13, the two algorithms will give difference numerical results.

Explanation: We believe the reason why the textbook algorithm does not perform well is because it depends on computing $M^j r$ (to compute the moments) for increasing values of j which convergences quickly to the eigenvector of M with largest eigenvalue. Thus, the information it

Figure 1: The results of the three algorithms; exact algorithm, textbook algorithm with k=10, and Lanczos-based algorithm with k=100. We used expansion point $s_0=1e5+2\pi i 5.5e8$ for both algorithms.

contains comes from a single eigenvector where the information should comes from all eigenvectors of M. In contrast, Lanczos's T_k represents oblique projection of M onto the $K_k(M,r)$ Krylov subspace which contains information about k eigenvectors.

Lanczos approach with difference s_0 : For this experiment, we defined the "good approximation" such that the average difference between the Lanczos-based algorithm and the exact algorithm is less than 10^{-5} . We tested using different s_0 and for each value we run the algorithm in a loop for $200 \le k \le 1000$ and stop when the results meet the good-approximation criterion we set thus obtaining the minimum k value that results into the best approximation given s_0 . Table 2 show the results for different s_0 . Function Table-2 () in driver.m file generates these data.

We notice that complex s_0 take more time for the same k value (first and last row in Table 2. Expansion point with complex part equal to the maximum or minimum frequency take double the time it takes for s_0 suggested in the lecture notes. Getting closer y-axis can results in higher k values and thus slower convergence.

Problem 6:

We used our implementation of Lanczos-based approach and run it on the data of FP_Ex2.mat. Figure 2 shows the results with $s0=10^{10}$ and k=1000. Function Figure_2 () in driver.m file generates this plot.

k	Average Difference	Maximum Difference
2	2.082747e - 28	2.109424e-15
3	7.919421e - 27	$6.439294e{-15}$
4	$5.026520e{-25}$	$4.618528e{-14}$
5	$8.547583e{-26}$	$2.664535e{-14}$
6	$3.052289e{-23}$	4.112266e-13
7	$1.148403e{-19}$	$4.235057e{-11}$
8	2.656897e - 17	3.190033e-09
9	$6.690131e{-15}$	1.812676e - 08
10	$6.292776e{-12}$	3.008865e - 07
11	$7.619719e{-11}$	$6.315981e{-06}$
12	$4.360106e{-04}$	$1.650155e{-02}$
13	9.107709e - 04	1.494378e - 02
14	7.052574e + 00	3.945073e - 01
15	5.904627e+01	1.279984e+00
16	1.779754e + 02	1.488481e+00
17	1.105689e + 02	1.625567e + 00
18	1.100795e+02	1.632208e+00
19	1.219843e+02	1.688382e+00
20	1.075413e+02	$9.725151e{-01}$
21	1.108709e+02	1.217680e+00
22	4.712087e + 02	1.762950e + 00
23	1.160591e+03	2.593543e+00
24	3.507356e+03	4.102138e+00
25	7.329648e + 03	5.568756e + 00
26	2.245490e + 04	8.889336e+00
27	2.633420e+04	9.681861e+00
28	4.881768e + 04	1.252447e + 01
29	7.066637e + 04	1.471937e + 01
30	1.151561e + 05	1.801101e+01

Table 1: Average and maximum (absolute) difference between the results of the textbook algorithm and Lanczos approach for different k values.

Lanczos approach with difference s_0 : We runs similar test as we did in previous problem to see the effect of s_0 . Since the problem is more expensive to solve, we run k in a loop that increment by 100 between 200 and 10000. We choose similar s_0 as we did before and the results is shown in Table 3. In addition, we reduce the tolerance to 10^-3 . The tolerance here means the norm squared of difference between results of $Z_k(s)$ and $Z_{k-1}(s)$.

s_0	k	Time	Average Difference
$10^5 + 2\pi i f_{avg}$	212	3.416422	7.9513e - 6
$10^5 + 2\pi i f_{min}$	278	7.300847	6.419988e - 6
$10^5 + 2\pi i f_{max}$	262	6.130839	8.102979e - 7
10^9	290	6.739243	$8.396701e{-6}$
10^{10}	212	2.901619	$4.187281e{-6}$

Table 2: Lanczos approach using different k and s_0 values and comparing it with the exact solution $(f_{avg} = \frac{f_{min} + f_{max}}{2})$

Figure 2: Results of the Lanczos-based approach on Example 2 input with $s0=10^{10}$ and k=1000

s_0	k	Time	Average Difference
$10^{10} + 2\pi i f_{avg}$	600	1.420857e2	2.174922e-4
$10^{10} + 2\pi i f_{min}$	700	1.673579e2	3.999830e-4
$10^{10} + 2\pi i f_{max}$	1500	4.133558e2	1.401831e-4
10^8		e	e
10^{12}		e	e

Table 3: Experimenting with Lanczos approach using different s_0 values $(f_{avg} = \frac{f_{min} + f_{max}}{2})$