Sprint 7, Tasca M7 T01: Algoritmes d'aprenentatge supervisat: Classificació

```
Importació, ordenació i informació bàsica de les dades
In [1]:
        # Importem les llibreries bàsiques
        import pandas as pd
        import numpy as np
        import matplotlib.pyplot as plt
        import seaborn as sns
        import sklearn
        import warnings
In [2]:
        # Importo les dades del cocument txt i els hi poso el títol que els hi correspon a cada co
        wines = pd.read csv(r'C:\Users\Anna\DataScience\SPRINTS\SPRINT 7 Classificacio\wineData.tx
        wines.columns= ["class", "alcohol", "malic acid", "ash", "alcalinity of ash", "magnesium", "total
        display(wines)
```

	class	alcohol	malic_acid	ash	alcalinity_of_ash	magnesium	total_phenols	flavanoids	nonflavanoids_phenols
0	1	13.20	1.78	2.14	11.2	100	2.65	2.76	0.26
1	1	13.16	2.36	2.67	18.6	101	2.80	3.24	0.30
2	1	14.37	1.95	2.50	16.8	113	3.85	3.49	0.24
3	1	13.24	2.59	2.87	21.0	118	2.80	2.69	0.39
4	1	14.20	1.76	2.45	15.2	112	3.27	3.39	0.34
•••									
172	3	13.71	5.65	2.45	20.5	95	1.68	0.61	0.52
173	3	13.40	3.91	2.48	23.0	102	1.80	0.75	0.43
174	3	13.27	4.28	2.26	20.0	120	1.59	0.69	0.43
175	3	13.17	2.59	2.37	20.0	120	1.65	0.68	0.53
176	3	14.13	4.10	2.74	24.5	96	2.05	0.76	0.56

177 rows × 14 columns

```
In [3]:
         wines.describe()
```

Out[3]:		class	alcohol	malic_acid	ash	alcalinity_of_ash	magnesium	total_phenols	flavanoids	non
	count	177.000000	177.000000	177.000000	177.000000	177.000000	177.000000	177.000000	177.000000	
	mean	1.943503	12.993672	2.339887	2.366158	19.516949	99.587571	2.292260	2.023446	
	std	0.773991	0.808808	1.119314	0.275080	3.336071	14.174018	0.626465	0.998658	
	min	1.000000	11.030000	0.740000	1.360000	10.600000	70.000000	0.980000	0.340000	
	25%	1.000000	12.360000	1.600000	2.210000	17.200000	88.000000	1.740000	1.200000	

```
3.100000
          75%
                3.000000
                         13.670000
                                             2.560000
                                                          21.500000
                                                                    107.000000
                                                                                 2.800000
                                                                                           2.860000
                3.000000
                         14.830000
                                    5.800000
                                             3.230000
                                                          30.000000
                                                                    162.000000
                                                                                 3.880000
                                                                                           5.080000
          max
In [4]:
         wines.info()
         <class 'pandas.core.frame.DataFrame'>
         RangeIndex: 177 entries, 0 to 176
         Data columns (total 14 columns):
             Column
                                             Non-Null Count Dtype
             _____
                                             _____
             class
                                             177 non-null int64
                                             177 non-null float64
          1
             alcohol
          2
             malic acid
                                             177 non-null float64
          3
             ash
                                             177 non-null float64
                                            177 non-null float64
          4
             alcalinity of ash
                                            177 non-null int64
177 non-null float64
          5
             magnesium
          6
             total phenols
          7
                                             177 non-null float64
             flavanoids
                                            177 non-null float64
177 non-null float64
             nonflavanoids_phenols
          8
             proanthocyanins
          10 color intensity
                                             177 non-null float64
          11 hue
                                             177 non-null float64
         12 OD280/OD315 of diluted wines 177 non-null
                                                            float64
         13 proline
                                             177 non-null
                                                            int64
         dtypes: float64(11), int64(3)
         memory usage: 19.5 KB
 In [5]:
         wines.shape
         (177, 14)
Out[5]:
In [6]:
         wines.columns
         Index(['class', 'alcohol', 'malic acid', 'ash', 'alcalinity of ash',
Out[6]:
                'magnesium', 'total_phenols', 'flavanoids', 'nonflavanoids phenols',
                'proanthocyanins', 'color intensity', 'hue',
                'OD280/OD315 of diluted wines', 'proline'],
               dtype='object')
In [37]:
         wines.hist()
         plt.rcParams['figure.figsize'] = [10, 10]
         plt.show()
```

ash alcalinity_of_ash magnesium total_phenols flavanoids non-

2.350000

2.130000

98.000000

class

2.000000

50%

alcohol malic_acid

1.870000

2.360000

19.500000

13.050000

Exercici 1

Crea almenys dos models de classificació diferents per intentar predir el millor les classes de l'arxiu adjunt.

ALGORITME K-NN (K - NEAREST NEIGHBORS)

from sklearn.preprocessing import StandardScaler

scaler = StandardScaler()

scaler.fit(X train)

Normalitzem (scaler) el rang de totes les característiques de manera que cada caracterís

```
X train = scaler.transform(X train)
         X test = scaler.transform(X test)
In [204...
         # Importem la llibreria de classificació de KNN i diem que volem que es faci la classifica
         from sklearn.neighbors import KNeighborsClassifier
         classificacio knn = KNeighborsClassifier(n neighbors=5)
         classificacio knn.fit(X train, y train)
Out[204...
        ▼ KNeighborsClassifier
        KNeighborsClassifier()
In [205...
         # Fem la predicció
         y pred = classificacio knn.predict(X test)
In [206...
         # Evaluació de l'algoritme
         from sklearn.metrics import classification report, confusion matrix
         print(confusion matrix(y test, y pred))
         print(classification report(y test, y pred))
        [[19 0 0]
         [ 0 20 1]
         [ 0 0 14]]
                     precision recall f1-score support
                          1.00
                                   1.00
                                             1.00
                                                          19
                   2
                          1.00
                                   0.95
                                             0.98
                                                           21
                           0.93
                                    1.00
                                             0.97
                                                          14
                                              0.98
                                                          54
            accuracy
                                             0.98
                         0.98 0.98
           macro avg
                                                          54
        weighted avg
                          0.98
                                   0.98
                                             0.98
                                                          54
In [207...
         print("Precisió del K-NN en la part d'entrenament: {:.2f}"
              .format(classificacio knn.score(X train, y train)))
         print("Precisió del K-NN en la part de test: {:.2f}"
              .format(classificacio knn.score(X test, y test)))
        Precisió del K-NN en la part d'entrenament: 0.97
        Precisió del K-NN en la part de test: 0.98
In [208...
         # Comparació de la taxa d'error amb el K-Value
         error = []
         for i in range (1, 40):
             knn = KNeighborsClassifier(n neighbors=i)
             knn.fit(X train, y train)
             pred i = knn.predict(X test)
             error.append(np.mean(pred i != y test))
In [209...
        plt.figure(figsize=(12, 6))
         plt.plot(range(1, 40), error, color='red', linestyle='dashed', marker='o',
                  markerfacecolor='blue', markersize=10)
         plt.title("Percentatge d'error del K-Value")
         plt.xlabel('K Value')
         plt.ylabel('Error mitjà')
```

Out[209... Text(0, 0.5, 'Error mitjà')

ALGORITME SVM (Support Vector Machines)

In [212...

Fem la predicció

y pred = classificacio sve.predict(X test)

```
In [168...
         X features = ['alcohol', 'malic acid', 'ash', 'alcalinity of ash',
                 'magnesium', 'total phenols', 'flavanoids', 'nonflavanoids phenols',
                 'proanthocyanins', 'color intensity', 'hue',
                 'OD280/OD315 of diluted wines', 'proline']
         X = wines[X features]
         y = wines["class"]
         data dmatrix = xgb.DMatrix(data=X,label=y)
In [210...
         X train, X test, y train, y test = train test split(X, y, test size=0.20, random state=0)
In [211...
          #Aprofitem el train i test anterior, i la divisió per grups anterior i cridem a la llibre
         from sklearn import svm
          # I creem l'algoritme classificador
         classificacio sve = svm.SVC(kernel="linear")
         classificacio sve.fit(X train, y train)
Out[211...
                  SVC
        SVC(kernel='linear')
```

```
In [213... # Evaluem 1'algoritme, és a dir, volem saber en quin percentatge la classificació és corre
from sklearn import metrics

print("La classificació és correcta un", (metrics.accuracy score(y test, y pred))*100, " of the correct of the
```

La classificació és correcta un 97.222222222221 de vegades In [214... # També podem avaluar la precisió i la recuperació del model print("Precissió:", (metrics.precision score(y test, y pred, average="micro"))*100) print("Recuperació:", (metrics.recall score(y test,y pred,average="micro"))*100) # He provat de fer-ho amb kernel linear i poly i totes tres avaluacions em surten iqual se Precissió: 97.222222222221 Recuperació: 97.222222222221 ALGORITME XGBoost In [174... # Importem la llibreria import xgboost as xgb from sklearn.metrics import mean squared error In [175... # Utilitzo la separació de dades X,y feta anteriorment i converteixo el dataset en una est X features = ['alcohol', 'malic acid', 'ash', 'alcalinity of ash', 'magnesium', 'total_phenols', 'flavanoids', 'nonflavanoids phenols', 'proanthocyanins', 'color intensity', 'hue', 'OD280/OD315 of diluted wines', 'proline'] X = wines[X features] y = wines["class"] data dmatrix = xgb.DMatrix(data=X,label=y) In [215... # Creo un train i test nou # Dividim en train i test X train, X test, y train, y test = train test split(X, y, test size=0.20, random state=0) In [216... # Creo una instancia d'un objecte regressor XGBoost cridant a la classe XGBRegressor() des xgb regressor = xgb.XGBRegressor(objective ='reg:linear', colsample bytree = 0.3, learning max depth = 5, alpha = 10, n estimators = 10, verbosity = 0) In [217... # Creo l'algoritme classificador xgb regressor.fit(X train,y train)

Out[217... XGBRegressor XGBRegressor(alpha=10, base_score=0.5, booster='gbtree', callbacks=None, colsample_bylevel=1, colsample_bynode=1, colsample_bytree=0.3, early_stopping_rounds=None, enable_categorical=False, eval_metric=None, gamma=0, gpu_id=-1, grow_policy='depthwise', importance_type=None, interaction_constraints='', learning_rate=0.1, max_bin=256, max_cat_to_onehot=4, max_delta_step=0, max_depth=5, max_leaves=0, min_child_weight=1, missing=nan, monotone_constraints='()', n_estimators=10, n_jobs=0, num_parallel_tree=1, objective='reg:linear', predictor='auto', random_state=0, ...)

```
In [218...
          # Faig la predició
         prediccio = xgb regressor.predict(X test)
```

```
In [219...
         # Calculo l'rmse invocant la funció del modul metrics
         rmse = np.sqrt(mean squared error(y test, prediccio))
         print("RMSE: %f" % (rmse))
         RMSE: 0.657604
In [220...
          # Ara faré una k-fold Cross Validation
          # Primer creo una espècie de diccionari de paràmetres per crear un model de validació cre
         parametres = {"objective":"reg:linear",'colsample bytree': 0.3,'learning rate': 0.1,
                           'max depth': 10, 'alpha': 10}
         cv resultats = xgb.cv(dtrain=data dmatrix, params=parametres, nfold=3,
                               num boost round=50,early stopping rounds=10,metrics="rmse", as pandas=
In [221...
          # cv resultats conté les mètriques rmse de train i test per a cada ronda d'impuls
         cv resultats.head()
           train-rmse-mean train-rmse-std test-rmse-mean test-rmse-std
Out[221...
         0
                  1.502976
                               0.056357
                                            1.500794
                                                        0.123377
         1
                  1.386959
                              0.046195
                                            1.388364
                                                        0.129427
         2
                 1.283967
                              0.043695
                                            1.288652
                                                       0.125935
         3
                 1.189494
                              0.036620
                                            1.197208
                                                       0.127406
         4
                  1.107248
                              0.033224
                                            1.114055
                                                       0.119623
In [222...
          # Extraiem la mètrica final
         print((cv resultats["test-rmse-mean"]).tail(1))
          #Veiem que l'rmse es redeuix considerablement des del càlcul anterior, i encara es podria
            0.365565
         Name: test-rmse-mean, dtype: float64
In [223...
          # L'XGBoost ens dona la possibilitat de fer un arbre sobre el que hem fet abans
         xgb regressor =xgb.train(params=parametres, dtrain=data dmatrix, num boost round=10)
In [224...
          # Creem l'arbre ama matplotlib
         xgb.plot_tree(xgb_regressor,num trees=0)
         plt.rcParams["figure.figsize"] =[10,10]
         plt.show()
```



```
In [225...
# Fem un gràfic que ens diu la imortància de cada factor en la classificació
xgb.plot_importance(xgb_regressor)
plt.rcParams['figure.figsize'] = [10, 10]
plt.show()
```



```
In [ ]:
```

Exercici 2

Compara els models de classificació utilitzant la precisió (accuracy), una matriu de confiança i d'altres mètriques més avançades.

Tot això ho he fet a l'exercici 1 dins de cada classificació

Exercici 3

	Entrena'ls usant els diferents paràmetres que admeten per tal de millorar-ne la predicció.
In []:	
	Exercici 4
	Compara el seu rendiment fent servir l'aproximació traint/test o cross-validation.
	També està fet dins l'exercici 1
	Exercici 5
	Exercici 5 Aplica algun procés d'enginyeria per millorar els resultats (normalització, estandardització, mostreig)
In []:	