Математические модели обработки сигналов

Тема 4: Преобразования Фурье

Лектор: Кривошеин А.В.

Пространства сигналов

Под пространствами сигналов будем понимать следующие гильбертовы пространства:

Дискретные сигналы	$\mathbf{x} \in \mathbb{C}^N$	x := (x[0],x[1],,x[N-1])	$\langle \mathbf{x}, \mathbf{y} \rangle := \sum_{n=0}^{N-1} \mathbf{x}[n] \overline{y[n]}$
	$\mathbf{X} \in \ell_2(\mathbb{Z})$	$ \mathbf{x} ^2 = \sum_{n=-\infty}^{+\infty} \mathbf{x}[n] ^2 < +\infty$	$\langle \mathbf{x}, \mathbf{y} \rangle := \sum_{n=-\infty}^{+\infty} \mathbf{x}[n] \overline{y[n]}$
Аналоговые сигналы	$\mathbf{x} \in L_2[0,1]$	$ x ^2 = \int_0^1 x(t) ^2 dt < +\infty$	$\langle x,y\rangle := \int_{0}^{1} x(t)\overline{y(t)}dt$
	$\mathbf{x} \in L_2(\mathbb{R})$	$ \mathbf{x} ^2 = \int_{\mathbb{R}} \mathbf{x}(\mathbf{t}) ^2 d\mathbf{t} < +\infty$	$\langle x,y\rangle := \int_{\mathbb{R}} x(t)\overline{y(t)}dt$

Интегралы понимаются в смысле Лебега — это обобщение интеграла Римана.

Спектральный анализ

Спектральный анализ (в широком смысле) — это представление сигнала в новом "базисе" для выявления тех или иных особенностей сигнала.

Спектральный анализ (в узком смысле) — это применение преобразования Фурье к сигналу или разложение сигнала на "базовые частоты". Это одна из самых базовых операций в рамках цифровой обработки сигналов.

Результат преобразования Фурье — это информация о том, какие частоты содержатся в сигнале и какова их амплитуда.

Частота — количество повторений колебательного процесса в единицу времени.

Базовой частотой будем считать синусоиду (гармоническое колебание)

 $A\cos\left(2\pi\omega\,t+arphi
ight)$ – где A – амплитуда, ω – частота, arphi – фаза.

С помощью этих базовых частот можно извлекать частотную информацию из сигналов.

Комплексная экспонента

В силу ряда причин удобно использовать не синусоиды, а комплексные экспоненты:

$$A e^{i(2\pi\omega t + \varphi)} = A\cos(2\pi\omega t + \varphi) + i A\sin(2\pi\omega t + \varphi).$$

Точка $z(t) = e^{2\pi i \omega t}$ на комплексной плоскости с изменением t, пробегает по окружности единичного радиуса. От частоты ω зависит как скорость этого вращения, так и направление (против часовой стрелки с ростом t, если $\omega > 0$, и по часовой стрелке с ростом t, если $\omega < 0$).

Комплексные экспоненты для $L_2(\mathbb{R})$ и $l_2(\mathbb{Z})$.

Комплексные экспоненты **для** $L_2(\mathbb{R})$: $e^{2\pi i \omega t}$. Частоты изменяются непрерывно, то есть $\omega \in \mathbb{R}$.

Комплексные экспоненты для $\ell_2(\mathbb{Z})$: $\left\{e^{2\pi i \omega n}\right\}_n$. Частоты изменяются непрерывно, НО достаточно рассматривать $\omega \in \left[-\frac{1}{2}, \frac{1}{2}\right]$.

Синусоиды с частотой ω и $\omega + k$, где $k \in \mathbb{Z}$, неотличимы друг от друга:

$$e^{2\pi i (\omega+k)n} = e^{2\pi i \omega n} e^{2\pi i kn} = e^{2\pi i \omega n}, \forall n \in \mathbb{Z}.$$

$$e^{i(2\pi k n)} = \cos(2\pi k n) + i \sin(2\pi k n).$$

Комплексные экспоненты для $L_2[0, 1]$

Это пространство содержит сигналы конечной длины.

Для характеристики частоты сигналов из $L_2[0,1]$ будем использовать комплексные экспоненты, период которых целое число раз укладывается в [0, 1].

Комплексные экспоненты для $L_2[0,1]$: $e^{2\pi i mt}$, $m \in \mathbb{Z}$.

Комплексные экспоненты для \mathbb{C}^N

Рассмотрим значения функции $e^{2\pi i m t}$ при $t = \frac{k}{N}, \ k = 0, ..., N-1$.

Комплексные экспоненты для \mathbb{C}^N : $\mathcal{E}_m = \left(e^{2\pi i m \frac{0}{N}}, e^{2\pi i m \frac{1}{N}}, ..., e^{2\pi i m \frac{N-1}{N}}\right), m \in \mathbb{Z}.$

Комплексные экспоненты с параметром m и m+N n, $n\in\mathbb{Z}$, не отличимы друг от друга, так как $\exp\!\left(2\,\pi\,i\,\,\frac{k\cdot (m+N\,n)}{N}\right) = \,\exp\!\left(2\,\pi\,i\,\,\frac{k\cdot m}{N} + 2\,\pi\,i\,k\,n\right) = \exp\!\left(2\,\pi\,i\,\,\frac{k\cdot m}{N}\right), \,\,\forall\,\, k = 0,\,\, \dots N-1. \quad \, \text{Значит}\,\,\mathcal{E}_m \,=\, \mathcal{E}_{m+\,n\,N}.$ поэтому параметр $m \in \mathbb{Z}$ можно выбирать из множества m=0, ..., N-1 или $m=-\left[\frac{N}{2}\right]+1, ..., \left[\frac{N}{2}\right]$.

Высокие и низкие частоты

Для случая $L_2(\mathbb{R})$: $e^{2\pi i \omega t}$, $\omega \in \mathbb{R}$.

Низкие частоты: при малых значениях параметра ω или m по модулю.

Высокие частоты: при больших значениях параметра ω или m по модулю.

Для случая $L_2([0,1])$: $e^{2\pi i m t}$, $m \in \mathbb{Z}$.

Низкие частоты: при значениях параметра m около нуля.

Высокие частоты: при больших значениях параметра m по модулю.

Для случая $\ell_2(\mathbb{Z})$: $\left\{e^{2\pi i\,\omega\,n}\right\}_n,\;\omega\in\left[-\frac{1}{2},\,\frac{1}{2}\right]$.

Низкие частоты: при значениях параметра ω около нуля.

Высокие частоты: при значениях параметра ω вблизи значений 1/2 и -1/2.

Out[=]=

Высокие и низкие частоты

Для случая \mathbb{C}^N : $\mathcal{E}_m = \left(e^{2 \pi i \, m \, \frac{0}{N}}, \, e^{2 \pi i \, m \, \frac{1}{N}}, \, \, ..., \, e^{2 \pi i \, m \, \frac{N-1}{N}} \right), \, m \, = \, - \left[\frac{N}{2} \right] + 1, \, \, ..., \left[\frac{N}{2} \right].$

Низкие частоты: при значениях параметра m около о.

Высокие частоты: при значениях параметра m вблизи $\frac{N}{2}$ по модулю.

Для случая \mathbb{C}^N удобно использовать **нормализованные частоты**: вектору \mathcal{E}_m соответствует нормализованная частота $\frac{m}{N}$. Таким образом, нормализованная частота принимает значения в промежутке $\left(-\frac{1}{2}, \frac{1}{2}\right]$.

Спектр произвольного сигнала

Спектральный анализ или разложение сигнала на базовые частоты заключается в ответе на вопросы:

- 1. Каким образом установить из каких частот состоит произвольный сигнал?
- 2. Насколько велик вклад каждой синусоиды в сигнал?
- 3. Можно ли по информации о частотах и амплитудах восстановить сигнал?

Инструментом для проведения спектрального анализа является скалярное произведение.

Величину скалярного произведения можно интерпретировать, как "меру похожести" двух элементов.

Например, в \mathbb{R}^d более "похожие" вектора — это "более сонаправленные" вектора, то есть угол между ними мал.

$$\frac{\langle A,B\rangle}{\|A\|\,\|B\|}=\cos\theta,\;\;$$
где θ — угол между векторами A и B .

Рассмотрим разложение вектора $x\in\mathbb{C}^N$ по ортонормированному базису $e_1,\ ...\ e_N\in\mathbb{C}^N$

$$x=\sum_{n=1}^N\langle x,\,e_n\rangle\,e_n.$$

Каждое слагаемое $\langle x, e_n \rangle e_n$ — это вклад вектора e_n в вектор x.

Число $\langle x, e_n \rangle$ — это "мера" этого вклада.

Спектр произвольного сигнала

Одна из причин использования комплексных экспонент для $L_2[0,1]$:

 $\cos(2 \pi n t)$, n = 0, 1, ..., не образуют ортонормированного базиса.

Для ортонормированного базиса надо добавить $\sin(2\pi n t)$, n=0,1,...

Формулы, записанные с помощью sin, соя имеют более "громоздкий" вид .

Комплексные гармонические колебания: $e^{2\pi i n t} = \cos(2\pi n t) + i \sin(2\pi n t)$.

Система $\{e^{2\pi i n t}\}_{n\in\mathbb{Z}}$ образует ортонормированный базис в $L_2[0,1]$.

$$\langle e^{2\pi i n t}, e^{2\pi i m t} \rangle = \int_{0}^{1} e^{2\pi i (n-m)t} dt = \begin{cases} 0, & n \neq m \\ 1, & n = m \end{cases}.$$

Аналогично: вектора $\mathcal{E}_m = \left(e^{2\,\pi\,i\,\frac{0\,m}{N}},\,e^{2\,\pi\,i\,\frac{1\,m}{N}},\,...,\,e^{2\,\pi\,i\,\frac{(N-1)\,m}{N}}\right) \in \mathbb{C}^N$ образуют ортогональный базис в $\mathbb{C}^N,\,m=0,\,...,\,N-1.$

 $\langle \mathcal{E}_m, \mathcal{E}_n \rangle = \left\{ egin{array}{ll} 0, & n \neq m \\ N, & n = m \end{array} \right.$ что можно проверить непосредственным вычислением.

Спектр сигнала (формы преобразования Фурье)

Nº	Сигнал	Комплексные экспоненты	Формула преобразования	Принадлежность спектра
1	$x \in \mathbb{C}^N$	$\mathcal{E}_m[n] = e^{2\pi i \frac{mn}{N}}, n=0,,N-1$	$X[m]:=\langle x, \mathcal{E}_m \rangle = \sum_{n=0}^{N-1} x[n] e^{-2\pi i \frac{mn}{N}}, m=0,,N-1$	$(X[o],,X[N-1]) \in \mathbb{C}^N$
2	$x \in L_2[0,1]$	$e^{2\pi i n t},$ $n \in \mathbb{Z}$	$C_n := \langle \mathbf{x}, e^{2\pi i n(\cdot)} \rangle = \int_0^1 \mathbf{x}(t) e^{-2\pi i n t} dt, \mathbf{n} \in \mathbb{Z}$	$\{C_n\}_{n\in\mathbb{Z}}\in\ \ell_2(\mathbb{Z})$
3	$X \in \ell_2(\mathbb{Z})$	$\{e^{2\pi i \omega n}\}_n, \omega \in [0,1]$	$\hat{x}(\omega) := \sum_{n=-\infty}^{+\infty} x[n] e^{-2\pi i \omega n}, \omega \in [0,1]$	$\hat{x}(\omega) \in L_2[0,1]$
4	$x \in L_2(\mathbb{R})$	$e^{2\pi i\omega t},\omega\in\mathbb{R}$	$\hat{x}(\omega) := \int_{\mathbb{R}} x(t)e^{-2\pi i \omega t} dt, \omega \in \mathbb{R}$	$\hat{x}(\omega) \in L_2(\mathbb{R})$

Спектр — это результат "скалярного произведения" сигнала с комплексными гармоническими колебаниями.

- 1. Дискретное преобразование Фурье (ДПФ)
- 2. Разложение в ряд Фурье (нахождение коэффициентов тригонометрического ряда Фурье)
- 3. Дискретное по времени преобразование Фурье (ДВПФ)
- 4. Преобразование Фурье

Для пространств $L_2(\mathbb{R})$ и $\ell_2(\mathbb{Z})$ надо отметить, что формально комплексные экспоненты $e^{2\,\pi\,i\,\omega\,t}$ и $\left\{\,e^{2\,\pi\,i\,\omega\,t}\,\right\}_n$ в эти пространства не попадают. Но можно формально записать скалярное произведение сигнала и комплексной экспоненты и известно, что это будет иметь смысл.

Восстановление сигнала по его спектру

Сигнал	Спектр	Формула восстановления сигнала по спектру
$x \in \mathbb{C}^N$	$X \in \mathbb{C}^N$	$x[n] = \frac{1}{N} \sum_{m=0}^{N-1} X[m] e^{2\pi i \frac{mn}{N}}, n=0,,N-1$ и $x \in \mathbb{C}^N$
$\mathbf{x} \in L_2[0,1]$	$\{C_n\}_{n\in\mathbb{Z}}\in\ell_2(\mathbb{Z})$	$x(t) = \sum_{n=-\infty}^{+\infty} C_n e^{2\pi i t n}$ и $x(t) \in L_2[0,1]$
$\mathbf{x} \in \ell_2(\mathbb{Z})$	$\hat{x} \in L_2[0,1]$	$\mathbf{x}[\mathbf{n}] = \int_{0}^{1} \hat{\mathbf{x}}(\omega) e^{2\pi i \mathbf{n} \omega} d\omega$ и $\{\mathbf{x}[\mathbf{n}]\}_n \in \ell_2(\mathbb{Z})$
$\mathbf{x} \in L_2(\mathbb{R})$	$\hat{x} \in L_2(\mathbb{R})$	$\mathbf{x}(\mathbf{t}) = \int\limits_{\mathbb{R}} \hat{x}(\omega) e^{2\pi i \omega t} d\omega$ и $\mathbf{x}(\mathbf{t}) \in L_2(\mathbb{R})$

Сигнал и его спектр — это эквивалентные формы представления сигнала.

Будем говорить, что сам сигнал представлен во временной или пространственной области (англ. time domain, spatial domain), а его спектр — это представление сигнала в частотной области (англ. *frequency domain*).