

Asst. Prof. USEM

GGS IP University

Team and Institutional Details:

	1,12,121			
Kunwar Raj BMS (3 rd year) SSCBS, University of Delhi		Aditi Sangar B.Tech Electronics and Telecommunication (3 rd year) IGDTUW		Shreeya Nangia Economics (H) (3 rd year) JMC, University Of Delhi
	Saksham Grover B.Tech Chemical Engineering USCT, GGSIPU		Shriya Dargan BMS (3 rd year) SSCBS, University of Delhi	MENTOR:
				Dr. Neetu Rani

Najafgarh Drain

Population 686875

Households

14,000

Backward Community
Households

4,000

Source: Census of India, 201

Rationale And Context:

Aimed area for demarcation spans over 6km and includes small colonies of Hastsal and Nilothi villages Economically weaker as compared to the surrounding estate of Vikas Puri, a major proportion of the population is involved in serving as half and full time maids, drivers

Most of the population includes immigrants from Bihar and Jharkhand

There are many variations of passages but The proportion of school going children and educated individuals is very low among the group

Literature Survey

Department of Geology, India

- Presence of Pb, Cr, As, Cu
- Main Cause: Anthropogenic

Tokyo Engineering Consultants

- Poor water quality, high BOD, solid wastes
- Industrial and Agricultural Effluents

CPCB

- Defunct Sewage Treatment Plants
- Industrial Discharge without waste treatment

Stakeholders

Communities/ Households

NGO'S, Government

Objectives Of The Project

Detailed Methodology

Sustainability Of The Project

Awareness Campaigns

Awareness campaigns which aim at improvement of sanitation habits will help achieve a reduction on open defecation

Monitoring

Monitoring the industrial waste being discharged directly into the drain will help achieve a reduction in the presence of heavy metals

Improving Water Quality

Improvement in water quality using phytoremediation has long term benefits

Waste Stabilisation Ponds

Waste stabilization ponds and wetlands to treat wastewater

Modern Techniques

Modern techniques like Biosanitizers and DEWAT systems to be incorporated for future use

Community Involvement

Community involvement helps create a sense of responsibility, much required as a long term benefit for preservation of biosphere

Innovations Of The Project

Duckweed and Water hyacinth

Immediate measures include restoration and improvement in water quality for long term benefits using duckweed and water hyacinth

Intelligent Systems

Installing intelligent systems like
Decentralized wastewater treatment
using modern techniques like DEWAT,
Soil biotechnology and bio sanitizers for
promising long term benefits. These
systems need to be inculcated in the
day to day so that load on the existing
system can reduce and an efficient
management system can be put into
place.

Internet Of Things

With the advent of technology, we plan to incorporate IoT (Internet of Things) for real time monitoring of the area under surveillance. Water quality meters with micro controller interfacing can be used to upload real time data to the server, making it easier for the government bodies to monitor water quality and take appropriate measures on site.

Outcomes And Impact

Immediate measures plan on improving the water quality. Works as a short term benefit

Immediate Measures

Eco-Sanitation

Eco sanitation recycles human excreta safely and productively

Duckweed based wastewater treatment yields direct economic returns from pisciculture

Decentralized System

Decentralized system reduces the load and makes the sewer functioning less prone the damages and breakdowns. Also ensures longer endurance life.

Linkages With Improved Water Sanitation

Immediate Measures

Immediate
measures aim at
improving water
quality. For long
term benefits, we
propose installment
of intelligent systems
like DEWAT, use of
Bio-sanitizers and Soil
Biotechnology

Internet Of Things

Advanced
measures which
make use of Internet
of Things aim at
intelligent
monitoring of the
drain making it less
prone to frequent
damages in quality

Social Campaigns

Social campaigns aim at promotion of importance of sanitation and personal hygiene.
These also aim at educating the population about the safer methods of waste disposal.

Community

Community
involvement will
help to foster a long
term symbiotic
relationship.

Cost Benefit Analysis

Population Affected (Approximation)	686875
Delhi Population Density (2011 Census Report)	19625/sq. km
Area Covered in our research	35 sq. km
Population Affected	686875
Avg. no of people in each household	5
No. of school going children	2
No. of people in working age group	2
No. of elderly	1

Resource Plan with Cost Estimation:

A . 1		4.0
Cost	ctim	ntinn.
1 11/11	r VIIIII II	alimi
UUJLI		uuvii

		Cost of	Cost of	Cost of		Total	
S.No	INTERVENTIONS	Procurement	Installation	Maintenance	Units	(Rupees)	Source
1	Road Markers	200	20	NA	400	88000	Market Suppliers
2	Basic Sanitation (affordable toilets)	2000	1000		50	150000	Approximation
	Sanitation Awareness Campaign (Instruction as to operation and						
	maintenance)					5000	Approximation
3	Planting Duckweed	Rs 1000/kg	NA	NA	0.1kg/m2	500000	Market Suppliers
4	Creation of Wetland (Root Zone Treatment Plant)					500000	Approximation
5	Marketing and Community Involvement					25000	Approximation
	Investment Cost					1268000	
	Recurrent Cost (Annualized)					70000	Estimation
	Cost Per Capita (For First Year of Program)	1.846041856					

BENEFIT ANALYSIS

VALUE OF DEATHS AVOIDED 01 6 Million Rupees Patient Expenses Avoided Due To Avoided Illness 02 140 Million Rupees 03 avoided illness Annual value of time savings due to access to water and 04 sanitation 91 Million Rupees Value of days of school attendance gained of 05 those with avoided illness 50,000 Days

Estimating Value of Avoided Deaths

Age of the		No of			
Person at		No of working days	Minimum	Discounting	Present Value of Future
Time of Death	Years Ahead	in 1 year	Wage Rate	Factor (0.10)	Earnings
19	41	240	250	0.0200863	49412.29387
20	40	240	250	0.02209493	53027.82757
21	39	240	250	0.02430442	56872.34506
22	38	240	250	0.02673486	60955.48779
23	37	240	250	0.02940835	65286.5356
24	36	240	250	0.03234918	69874.2381
25	35	240	250	0.0355841	74726.61575
26	34	240	250	0.03914251	79850.72654
27	33	240	250	0.04305676	85252.39334
28	32	240	250	0.04736244	90935.88623
29	31	240	250	0.05209868	96903.55376
30	30	240	250	0.05730855	103155.3959
31	29	240	250	0.06303941	109688.571
32	28	240	250	0.06934335	116496.8272
33	27	240	250	0.07627768	123569.8488
34	26	240	250	0.08390545	130892.5065
35	25	240	250	0.092296	138443.9973
36	24	240	250	0.1015256	146196.8611
37	23	240	250	0.11167816	154115.8578
38	22	240	250	0.12284597	162156.6851
39	21	240	250	0.13513057	170264.5194
40	20	240	250	0.14864363	178372.3536
41	19	240	250	0.16350799	186399.1095
42	18	240	250	0.17985879	194247.4931
43	17	240	250	0.19784467	201801.5623
44	16	240	250	0.21762914	208923.9704
45	15	240	250	0.23939205	215452.8444
46	14	240	250	0.26333125	221198.2536
47	13	240	250	0.28966438	225938.2162
48	12	240	250	0.31863082	229414.1888
49	11	240	250	0.3504939	231325.9737
50	10	240	250	0.38554329	231325.9737
51	9	240	250	0.42409762	229012.7139
52	8	240	250	0.46650738	223923.5425
53	7	240	250	0.51315812	215526.4097
54	6	240	250	0.56447393	203210.6148
55	5	240	250	0.62092132	186276.3969
56	4	240	250	0.68301346	163923.2293
57	3	240	250	0.7513148	135236.6642
58	2	240	250	0.82644628	99173.55372
59	1	240	250	0.90909091	54545.45455

Population reached through the programme	19625 inhabitants/ sq.km* 35 sq.km=686875
2) School attendance days gained due to less diarrhoeal illness	Column1
No. of children reached through the program	275140
Children incidence rate	0.0602
Avg recovery time (children)	3 days
No. of children affected	275140*0.0602= 16563.8
Child mortality rate due to diarhoea	0.000185
School days gained on an average	275140*0.0602*3 = 49690
3) Value of (adult) productive days gained	Column1
Adult incidence rate	0.0291
Avg recovery time (adults)	2 days
Minimum Wage Rate	Rs. 250
Loss due to Illness (=0.0291*2*250*411735)	5990744.25
4) Annual Value of Time Savings	
Average time reqd. to collect safe water	0.5hrs
No. of people working population	274490
Minimum Wage Rate	250
Monetary value of time savings per day	274490*{250*0.5/9} =3812361
Annual Value of Time Savings	240*3812361 =91496660
5) Patient expenses avoided due to avoided illness	
Doctor Consultation Expense	Rs. 150
No. of Visits Reqd. (Child)	1.5
Child Incidence Rate	0.0602
Transportation Charges	Rs. 30
Expenses (children)	150*1.5*0.0602*30 = 406.35
No. Children Influenced	275140
Expenses Saved (children)	406.35*275140 = 111803139
Adult Incidence Rate	0.0291
No. of Visits Reqd. (Adult)	0.5
Expenses (Adult)	150*0.0291*.5*30= 65.475
Expenses Saved (adult)	65.475*411735 = 26958349
Patient Expenses Avoided Annually	111803139+26958349 =138761488
Sum of Economic Benefits	159875199

Benefits	Values (INR)
Patient expenses avoided due to avoided illness	138761488
Value of deaths avoided	5973307
Annual value of time savings due to access to water and sanitation	91496660
Value of productive days gained of those with avoided illness	5990744.25
Value of days of school attendance gained of those with avoided illness	49690.284 days
Benefit/Cost Ratio	159875199/1268000 = 126.08

Due to concerns regarding large scale applicability of data collected through means of primary research and quantitative data collection techniques across the chosen territorial field, sensitivity analysis has not shown reliable results. The obtained cost benefit ratio of 126.08 takes into account the best case scenario. Anyhow, it goes on to prove the viability and feasibility of the project and the long term benefits it will impart to the community at large.

Conclusion

As per the proposed plans:

We plan to achieve short as well as long term goals

The short term goals include immediate improvement in water quality and spread of awareness through social campaigns

The long term goals include regular monitoring of the drain and real time management through authority as well as community involvement, fostering stronger bonds for a symbiotic relationship

Thank you