Spatial organisation of fish communities in the St. Lawrence River: a test for longitudinal gradients and spatial heterogeneities in a large river system[†]

Aline Foubert^{1,2}, Frédéric Lecomte^{1,2}, Pierre Legendre³, Mathieu Cusson¹

Accepted for publication in Hydrobiologia (11/2017)

1- Université du Québec à Chicoutimi, Département des Sciences Fondamentales, 555 boulevard de l'Université, Chicoutimi, G7H 2B1, Canada

2- Ministère des Forêts, de la Faune et des Parcs, Direction de l'Expertise sur la Faune Aquatique, 880 Ch. Ste-Foy, Québec City, G1S 4X4, Canada

3- Université de Montréal, Département de Sciences Biologiques, C.P. 6128, Succursale Centre-Ville, Montréal, QC H3C 3J7, Canada

* Corresponding author: frederic.lecomte@mffp.gouv.qc.ca, 418-627-8694 # 7121

† Contribution to the "Chaire de recherche sur les espèces aquatiques exploitées" (CREAE)

Concise title: Testing the spatial heterogeneity of fish communities in a large river

Keywords: fish diversity, discontinuities, multiscale, riverscape, seine nets, gillnets

Abstract

Typified by heterogeneous habitats, large rivers host diversified communities throughout their course. As the spatial organisation of fish communities within these ecosystems remains little studied, longitudinal gradients and spatial heterogeneities of fish diversity were analysed in the large temperate St. Lawrence River, Canada. We used two distinct datasets obtained from either seine nets or gillnets from governmental standardised fish surveys (1995-2012) consisting of a total of 299 662 individuals from 76 fish species captured in 1 051 sites. Results from diversity indices and multivariate analysis revealed a gradual downstream increase in taxonomic diversity, and a gradual change of the community structure along the river. In addition, we observed different fish communities within fluvial lakes and corridors and found significant differences in fish community structure between opposite shores. The fish communities described along the river using seine nets are spatially more heterogeneous than when described using gillnets. This discrepancy is likely resulting both from the more mobile species targeted by gillnets and sampling sites located farther from the shallower shoreline habitat targeted by seine nets. The organisation of fish communities stresses the need to implement science-based policies and actions to preserve biodiversity and restore communities distributed over large heterogeneous ecosystems.

Introduction

Large rivers are composed of a mosaic of habitats supporting diversified communities of plants and animals. Landscape heterogeneity, as well as environmental conditions and disturbances, are recognized as primary forces shaping the spatial distribution of fish communities (Robinson et al., 2002; Ward et al., 2002; Nilsson et al., 2005). Albeit widely studied in streams and small to medium-size rivers (Pekárik et al., 2011; Suvarnaraksha et al., 2012; Konan et al., 2015), only a few large rivers were studied over extensive stretch (e.g. Galat et al., 2005; Das et al., 2013; Chea et al., 2016) perhaps due to the sheer size of those systems and the lack of large scale standardised surveys. Large rivers are distinguished from medium-sized rivers as the former's mean annual discharge exceed 7 500 m³·s⁻¹ and their watershed is larger than 900 000 km² (Bethemont, 2003).

In past years, several theoretical concepts focusing on communities organisation along entire river systems were proposed (reviewed in Johnson & Host, 2010; Melles et al., 2012; Ellis & Jones, 2013). For example, the River Continuum Concept (RCC; Vannote et al., 1980) describes rivers as a longitudinal gradient of environmental conditions shaping the distribution and organisation of communities from the headwater to the river mouth (e.g. Naiman et al., 1987; Jiang et al., 2011; Wolff et al., 2013). In parallel, the Serial Discontinuity Concept (SDC; Ward & Stanford, 1983; Ward & Stanford, 1995) predicts that natural and anthropogenic disruptions will lead to longitudinal discontinuities in biological organisation at the population (e.g. abundance), community (e.g. richness, dominance) or even at the ecosystem level (e.g. productivity). The SDC is a conceptual framework often used to explain the effects of dams, tributaries or

geomorphological discontinuities on biological organisation in the river continuum (Hillbricht-Ilkowska, 1999; Stanford & Ward, 2001; Kiffney et al., 2006).

Considering the river as a single flowing channel, both RCC and SDC do not offer a complete perspective on the spatial heterogeneity of fish organisation in large river systems (e.g. Sedell et al., 1989; Johnson et al., 1995; Dettmers et al., 2001; Araújo et al., 2009). On the other hand, integrative theoretical concepts with a broader framework were developed (e.g. Riverscape and River Wave Concept, Poole, 2002; Humphries et al., 2014). For exemple, the concept of riverscape (Fausch et al., 2002; Poole, 2002; Wiens, 2002), which recognized the importance of continuous, hierarchical and heterogeneous properties of rivers, integrates longitudinal gradients and discontinuities within a spatially explicit framework (e.g. Massicotte et al., 2014; Le Pichon et al., 2017). This concept assumes that while geomorphologically-distinct entities (e.g. fluvial lakes, rapids, channellized areas, etc.) observed along a riverscape (i.e. between 1-100 km; Fausch et al., 2002) are ecologically connected along the upstream-downstream axis, they nevertheless possess unique biologial caracteristics owing to local spatial heterogeneity (importance of uniqueness, Poole, 2002). Considering the overall heterogeneity of the river at different spatial scales, the riverscape concept may ultimately help explaining the complex biotic community patterns observed in large rivers (e.g. Frenette et al., 2012; Massicotte et al., 2014; Gladyshev et al., 2015).

The main objective of this study was to assess the spatial organisation of fish communities in a large temperate river across multiple spatial scales. Specifically, we (1) characterised fish diversity along the longitudinal upstream-downstream axis of the St. Lawrence River (Québec, Canada), (2) identified potential longitudinal discontinuities

along north and south shores and (3) assessed relationships between riverscape heterogeneity and fish communities at i) hydro-morphological (fluvial lakes vs. corridors), ii) sector and iii) shore scales. To fulfil these objectives, we analysed the fish community structure using a large data set covering the St. Lawrence River from Cornwall to Québec City (424 km stretch). The portion studied is highly heterogeneous both longitudinally and transversally (i.e. between opposing shores) due to the hydro-morphological characteristics of water bodies. We predicted that species distribution along the St. Lawrence River is associated with the longitudinal series of fluvial lakes alternating with narrow corridors, rapids, archipelagos, and the presence of a freshwater tidal zone in the downstream portion. Moreover, as the deep navigational channel is dividing the river in a northern and southern portion all along its course, we expected that fish communities are structured differently along each shore.

Methods

Study area

The St. Lawrence River is one of the largest rivers in the world, both in terms of watershed area (1 344 200 km²) and mean annual discharge (12,600 m³.s¹ at Québec city; Morin et Bouchard 2000). The St. Lawrence River drains the North American Great Lakes, which contains more than 20% of all freshwater reserves of the world, to the Gulf of St.Lawrence which is connected to the Atlantic Ocean. The 550 km freshwater portion of the river, from the lake Ontario outlet to Québec City (Fig.1), is generally shallow (<3 m) except for an artificially maintained navigation channel that divides the river

transversally (the St. Lawrence Seaway; width ≥300 m; depth ≥11.3 m downstream Montréal harbour and ≥8.2 m upstream Montréal; mean current velocity of 0.5-2.0 m•s¹). Most of water flow occurs in the navigation channel (up to 90%) and no water exchanges occur between the north and south shores. Indeed, three main water masses are flowing side-by-side without mixing in the portion upstream of Trois-Rivières (Frenette et al., 2006; Hudon & Carignan, 2008). Downstream of this area, mixing occurs as the influence of tides increases and even tidal flow reversal is noticeable downstream of Donnacona (Fig.1, Centre-Saint-Laurent, 1998). The uninterrupted freshwater river section (350 km) of the St. Lawrence River spans from the Beauharnois Dam downstream to the middle estuary where it continues uninterrupted to the sea (Fig.1). In our study site, only Lake Saint-François is located upstream of the Beauharnois Dam and downstream of the Moses-Saunders Dam. Lake Saint-François water level is fully stabilised and its water flow regulated by the two dams operated for hydroelectric power production (Morin et al., 2000; La Violette, 2004).

A total of 97 freshwater and diadromous fish species, including 9 non-native species, are known to exploit the St. Lawrence River (Ministère de la Faune, des Forêts et des Parcs du Québec data bases). Compared to similar large temperate rivers, fish richness in the St. Lawrence River is relatively high and comparable to Mississippi River (102 species), while it is more diversified than Volga (63 species) or Danube (58 species; Galat et Zweimüller 2001 and the references therein). The high diversity observed in the St. Lawrence River may result from the combination of the inland post-glacial recolonization routes following the Wisconsinan glaciation to the natural connectivity with the Atlantic

coast through the Gulf of St. Lawrence (Legendre & Legendre, 1984; Lacasse & Magnan, 1994).

The standardised fish survey

The standardised governmental fish survey in the St. Lawrence River, known as the RSI ("Réseau de Suivi Ichtyologique", described in La Violette et al., 2003), characterizes the fish community structure at the end of the growing season (August to October). Due to such late sampling, and the sampling gear employed, only relatively large juvenile (>50 mm) to adult were captured. The whole river is divided in seven different areas (hereafter called sectors) according to their specific hydrological and morphometric characteristics. We thus recognise (Fig.1) three distinct fluvial lakes; (1) Lake Saint-François (LSF; width: 7 km, length: 27 km), (2) Lake Saint-Louis (LSL; width: 11 km, length: 18.5 km), and (3) Lake Saint-Pierre (LSP; width: 12.8 km, length: 25.6 km), (4) an archipelago called Lake Saint-Pierre Archipelago (A-LSP; width: 10.5 km, length: 22.4 km) and three narrower corridor sections including (5) Montréal-Sorel (MS; width: 3 km, length: 46 km), (6) Bécancour-Batiscan (BB; width: 3 km, length: 28 km), and (7) Grondines-Saint-Nicolas (GSN; width: 3 km, length: 55 km). Numbers were added to sector acronyms to ease locate them along the upstream / downstream axis of the river (Fig.1). The fluvial lakes observed along the St.Lawrence river are natural (e.g. not manmade). Although seemingly analogous to pools observed along a stream gradient, they are functionally dissimilar since fluvial lakes are not associated with the presence of deeper portions of the river (i.e. pools) but rather created by water flowing over shallower areas combined with an enlargement of the main tributary. Although Lake Saint-François increased in size after damming the river, it did exist prior to the construction of the

Beauharnois Dam. While the last two sectors are contiguous (6-BB and 7-GSN), they are considered separately as Grondines marks the beginning of mesotidal portion of the fluvial estuary with average tidal amplitude of 1.8 m (Gauthier, 2000). The Lachine Rapids, south of Montréal, were not considered in the present study because the powerful hydrodynamic flow regime prevents the use of the standardised sampling surveys protocol.

Fish communities were sampled approximately every one km of shoreline; such sampling scheme was determined as a trade-off between sampling effort vs. area covered while allowing enough statistical power to detect significant spatial changes in the community structure (Flotemersch et al., 2011). A multiple-gear approach was implemented in the RSI as it is considered the most efficient approach to assess fish community organisation in large heterogeneous rivers (Galat et al., 2005; De Leeuw et al., 2007). The RSI uses (1) a standardised beach seine net (12.5 m long × 4 m deep and 3.2 mm stretched mesh) and (2) an array of two multimesh gillnets (60 m long × 1.8 m deep; eight panels of 25, 38, 51, 64, 76, 102, 127 and 152 mm stretched mesh, 15-28.5 hours fishing period; La Violette et al., 2003). Seine nets were preferred for sampling the fish community in lentic and nearshore littoral habitats (depth <1.5 m), while gillnets were used for sampling lentic and lotic midshore littoral habitats in the deeper water column adjacent to the seine (depth between 1.5 and 14 m; average of 6.2 m; Fig.1). Two distinct gears were analysed separately to take into account bias related to selectivity and the specific habitats sampled. Gillnets captured larger and more mobile fishes in a deeper water column located farther from the shallower shoreline habitat targeted by seine nets (La Violette et al., 2003). Both gears have been shown to be efficient in assessing fish community diversity in rivers and detecting changes in fish community structure (Leclerc, 1990; Argent & Kimmel, 2005; Ri & Gelwick, 2005; Lapointe et al., 2006).

Due to the sheer size of the St. Lawrence River, only one or two sectors were sampled yearly. From 1995 to 2012, all sectors were sampled three times, except for 3-MS, 7-GSN and 6-BB that were sampled one, two and four times respectively. As we intend to focus on spatial patterns in the present study, we analysed the interaction between the space and time factors to ensure that sites sampled from different years can be pooled into their sectors/segments (defined below). The space-time interaction method (STI) allows testing space—time interaction in repeated ecological survey data, when there is no replication at the level of individual sampling sites (Legendre et al., 2010). A significant interaction would indicate that the spatial structure of the communities has changed between surveys, so that survey results could not be pooled. Due to the RSI sampling design, STI was performed on the five sectors that have been sampled tree times (1-LSF, 2-LSL, 4-A-LSP, 5-LSP, 6-BB) at the sector and segment scales, for both the seine and gillnet gears. None of the analysis showed significant space-time interaction (Online Resource 1). Since the spatial structure of the fish communities did not change significantly between the RSI sampling periods for both gears, we pooled the site samples from different years into their sectors/segments to better represent the "average" local community structure.

When considering both gears, a total of 1 051 sites were sampled one to four times over the 17 years period (total of 2 386 samples; Online Resource 2). A grand total of 519 sites were sampled using seine nets (total of 1 127 samples) and 532 sites were sampled using gillnets (total of 1 259 samples). In each sector, an average (± SD) of 74 (± 34) sites were

sampled with seine nets and 76 (± 12) with gillnets. While considering seine net and gillnet samples separately, sites were grouped within ecological segment (named hereafter segment) predefined by the ecological reference framework from the present Ministère du Développement Durable, de l'Environnement et de la Lutte contre les Changements Climatiques du Québec (DesGranges & Ducruc, 1998). The ecological segments were defined by the general shoreline morphology (i.e. based on 25 specific shapes such as straight, sinuous, indented, "closed" or "open" bay) observed by satellite imagery and aerial photography (see Fig. 1) and various geomorphologic features describing the physical landscape both below and above water (e.g. sandy vs. rocky shores, presence of cliffs, water velocity, urbanisation, occupation of the coastline, extent of floodplain/intertidal zone, etc.; see DesGranges & Ducruc, 1998). Finally, as the deep navigational channel is dividing the river in a northern and southern portion along its entire course, it was possible to analyse each shore separately for either seine and gillnet samples. As such, individual segment includes samples collected along only one shore. The average number of sites per segment was $19 (\pm 9)$ and $20 (\pm 12)$ for the seine and gillnet respectively. Along the entire study area, a total of 63 segments were defined with an average of $9 (\pm 1)$ segments per sector (Fig.1; Online Resource 2).

Indices of diversity

Fish diversity was analysed using three complementary and robust indices. Firstly, the rarefaction index (ES_n) of Hurlbert (1971) corresponds to the expected number of species identified from a random subsample; the subsample size was set to 70 individuals for the seine (ES_{70}) and 30 individuals for the gillnet (ES_{30}). The rarefaction index allows the

comparison of species richness from unequal sampling effort. A minimum of (n) 30 individuals is usually required for a good estimate of the rarefaction index (Gotelli & Colwell, 2001). This criterion was not met for only one segment sampled using gillnet located in the Montréal-Sorel sector. Secondly, we calculated the Simpson diversity $(1-\lambda')$ that takes into account both species richness and abundance distribution. Thirdly, we used the average taxonomic distinctness (Δ^* , that is the expected taxonomic distance to the order level apart from two individuals from different species chosen at random from the sample) to estimate the taxonomic "breadth" of an assemblage and the relatedness of its constituent species (Clarke & Warwick, 1998).

Data analysis

All analyses targeting fish communities sampled by either seine of gillnet were always analysed separately. The smallest statistical unit is represented by the ecological segments rather than sampling sites (i.e. unit of analyses); all samples collected within an individual ecological segment were pooled without regard to the sampling year. We used a hierarchical subset design to test differences among (i) opposing shores within sectors (north vs. south shores); (ii) sectors (1-LSF, 2-LSL, 3-MS, 4-A-LSP, 5-LSP, 6-BB, 7-GSN), and (iii) hydro-morphological scale (fluvial lakes vs. corridor vs. archipelago).

Longitudinal gradients

Differences in diversity indices among the fixed factors of sectors were tested, one at a time, using a non-parametric permutational multivariate analysis of variance (PERMANOVA, with 9999 permutations; Anderson et al., 2008) with Euclidian distance matrix. PERMANOVA generates the null distribution of the test statistic without

assumptions of normality (Fairclough et al., 2008). Moreover, the gradual downstream increased in diversity indices (i.e. rarefaction index, Simpson diversity and average taxonomic distinctness) was tested using the non-parametric Spearman correlation coefficient (Zar, 1972). As we believe that 7-GSN specificities (e.g. beginning of mesotidal portion of the fluvial estuary) may impede detecting such diversity patterns, Spearman correlations were also performed excluding this most downstream sector.

A multivariate seriation test (Index of Multivariate Seriation IMS; RELATE procedure with maximum 999 permutations with Bray-Curtis dissimilarity, segments oriented upstream-downstream were compared for each shore separately) was used to determine if fish community structure changes gradually along the longitudinal axis of the river (Somerfield et al., 2002; Clarke et al., 2014). Abundance data were log transformed to adjust the balance between the contributions of dominant and rarer species (Clarke, 1993) and were separately analysed along the north and south shores. If community changes along the St. Lawrence River conform to a stepping-stone model of variation (e.g. segment one is more similar to its neighbouring segments than distant segments while the amplitude of dissimilarity is correlated with distance), the correlation will be maximized and the index, IMS (Rho), would equal the highest value (=1). IMS results were visualised using nonmetric multidimensional scaling plot (nMDS plot).

Longitudinal discontinuities

As data can be listed as a spatial sequence, the contiguity information can be used to identify discontinuities along the series (De'ath & Fabricius, 2000; Borcard et al., 2011).

A multivariate regression tree (MRT) was used to identify discontinuities along the

upstream-downstream gradient of north and south shores of St. Lawrence River using log-transformed species abundance (segments oriented upstream-downstream were compared for each shore separately). The result is a tree whose "leaves" (terminal groups of segments) are made up of subsets of segments, which minimize the within-group sums of squares.

Spatial heterogeneities

Differences among fish community structure (log-transformed abundance, Bray-Curtis dissimilarity) among the fixed factors of (i) opposing shores within sectors (north vs. south), (ii) sectors and (iii) hydro-morphological units (fluvial lakes vs. corridors vs. archipelago) were investigated using PERMANOVA with 9999 permutations. Due to small number of permutations for all treatments when comparing shores within sector, Monte Carlo *P*-values (pmc) were used (Anderson et al., 2008).

Community structure discriminated according to the abovementioned factors was compared using a Principal Coordinate Analysis (PCoA; Anderson et al., 2008) that represents the distance between every pair of segments in a 2 dimentional array (only axis 1 and 2 were considered). The later was combined to an Indicator Species Analysis (IndVal; Dufrene & Legendre, 1997) that identify species significantly associated to the various factors considered in the PCoA (e.g. considering only the north shore sampled using a seine, what are the species significantly associated to lakes vs. corridors vs. archipelago?). As the IndVal can identify indicative species only for dichotomous contrasts (e.g. lakes vs. corridors), the presence of the third category in the form of the archipelago (4-A-LSP) requires the IndVal to be coupled to a multi-levels pattern

analysis (e.g. De Cáceres et al., 2010a; Casatti et al., 2012). Significance was tested using a random permutation procedure (Dufrene & Legendre, 1997). IndVal analysis were also performed to identify indicator species in each seven sectors (1-LSF, 2-LSL, 3-MS, 4-A-LSP, 5-LSP, 6-BB, 7-GSN), in each hydro-morphological units and to contrast the fish community sampled by seine and gillnet at river scale.

All analysis were performed using PRIMER-PERMANOVA (version 6.1, Plymouth Marine Laboratory; Clarke & Gorley, 2006) and R functions (version 3.1.3; R Core Team, 2015) with *mvpart* function for the MRT analysis and *multipatt* function for the IndVal analysis. A significant level of α =0.05 was used for all statistical tests. The "Holm" adjustment method (Holm, 1979) was used to correct the significance level when multiple comparison were done (with p.adjust function in R, De Cáceres et al., 2010a).

Results

Fish communities collected

The entire data set encompassed a total of 299 662 individual fish belonging to 76 species and 25 families (Online Resource 3). A total of 249 309 fish were captured by seine nets in nearshore littoral habitats (<1.5 m), while 50 353 fish were captured by gillnets in midshore littoral habitats (>1.5 m). The two gears captured different array of species in all sectors of the St. Lawrence River (PERMANOVA, P < 0.001); the seine collected 71 species belonging to 24 families while the gillnet captured 45 species belonging to 20 families. The number of species observed per sample varied from 0 to 26 species (mean \pm SD: 8.3 ± 4.6) for seine sites and 0 to 18 species (6.4 ± 2.8) for gillnet sites. As revealed by the IndVal analyses, the community captured by seine was composed of 27 indicator species, including several Cyprinids, whereas 10 species, including larger and more mobile fishes, such as *Acipenser fulvescens* and *Lota lota*, characterised the community captured by gillnet (Online Resource 4).

Longitudinal gradients

Diversity indices

From upstream to downstream, the total number of species changed from 46 species in 1-LSF, 58 in 2-LSL, 52 in 3-MS, 55 in 4-A-LSP, 56 in 5-LSP, 56 in 6-BB and finally 37 in 7-GSN. In 1-LSF, all diversity indices for both seine and gillnet were low (Fig.2). Conversely, except for the average taxonomic distinctness for community collected by seine (Fig.2e), the 4-A-LSP exhibited high values of diversity. Illustrating the

complementarity of information brought by the various indices, despite the fact that 7-GSN showed high average taxonomic distinctness values for both gears (Fig.2e, f), 7-GSN had lower values for rarefaction indices (i.e. expected richness for ES70 and ES30, see methods) and Simpson diversity (1 λ). The 2-LSL community captured by seine exhibited high values of rarefaction and Simpson indices (Fig.2a, c) but not the community captured by gillnet (Fig.2b, d). For both gears, 6-BB exhibited high values of three diversity indices while 5-LSP and 3-MS showed intermediate values. Only the average taxonomic distinctness values in successive sectors gradually increase from the headwater to the river mouth for the communities captured by seine (Spearman correlation coefficient of 0.86, P = 0.01, Fig.2e). However, when excluding 7-GSN that marks the beginning of mesotidal portion of the fluvial estuary, the rarefaction index (Spearman correlation coefficient of 0.94, P = 0.008), the Simpson diversity (Spearman correlation coefficient of 0.83, P = 0.02) and the average taxonomic distinctness (Spearman correlation coefficient of 0.77, P = 0.05) also gradually increase downstream for communities captured by gillnet (Fig.2b, d, f). Conversely, even when 7-GSN was excluded, the rarefaction index and Simpson diversity for communities captured by seine still do not support a significant downstream increase (Fig.2a, c).

IMS results

Results from the index of multivariate seriation (IMS) analysis revealed that fish communities gradually changed along the St. Lawrence River with a significant IMS trend (P < 0.007; Fig.3). Rho values indicating the strength of a gradual change along the upstream-downstream axis, were higher for gillnet (0.59) than for seine (0.48) and higher

for north shore (0.64 for both seine and gillnet) than for south shore communities (0.43 for seine and 0.56 for gillnet).

Longitudinal discontinuities

The multivariate regression trees (MRT; Fig.4 and Fig.5) highlighted the elevated disparities between sectors along the river, such as between the 1-LSF and the 2-LSL separated by a dam. Furthermore, the precision of the MRT analysis even suggest that the St. Lawrence River may be subdivided differently depending on the gear considered compared to the actual generalisation of the dichotomous lake vs. corridor sectors (Fig.4). For example, the MRT identify a major break in the community captured by seine of northern 5-LSP while such break is inexistent for the community captured by gillnet (Fig.5). On the other hand, different sectors appeared undifferentiated for some community such as the northern community of the 5-LSP captured by seine that stretches downstream into the 6-BB sector (Fig.4).

Spatial heterogeneities

Differences between hydro-morphological units

Fluvial lakes (1-LSF, 2-LSL and 5-LSP), corridors (3-MS, 6-BB and 7-GSN) and the archipelago (4-A-LSP) are home to different fish communities. There were significant differences between hydro-morphological units for the community structure sampled using either seine (PERMANOVA; Pseudo- $F_{2;55}$ =8.2; all P <0.004) or gillnet (Pseudo- $F_{2;60}$ =10.6; all P <0.02). These differences were also identified in the PCoA ordination plots (Fig.6).

In fluvial lakes, four indicator species were identified using IndVal analysis for the community captured by seine (e.g. *Ameiurus nebulosus* and *Notemigonus crysoleucas*) and seven for the community captured by gillnet (e.g. *Perca flavescens* and *Lepomis gibbosus*). In corridors, four species were also indicators of the seine (e.g. *Alosa sapidissima* and *Percopsis omiscomaycus*) while none were found for gillnet (Fig.6). In the archipelago, 11 and nine indicator species were identified for the seine and the gillnet respectively. The smaller number of segments (n=8) present in the archipelago as likely biased upward the number of indicator species detected for this unique sector. A total of 13 of the combined 21 indicator species identified for the archipelago were common with either the fluvial lakes (9) or the corridors (4).

The Bray-Curtis dissimilarity comparisons show that, for both gears, corridor segments are structurally more variable than fluvial lake segments (Fig.7). This observation is supported by both (1) the non-overlapping confidence intervals between lakes and corridors and (2) the higher total variance of Bray-Curtis distances observed for the corridors segments (Fig.7). The variability observed within the archipelago is difficult to judge, as only a few segments were available to calculate Bray-Curtis distances.

Differences among sectors

For both gears analysed separately, almost every sector hosted significantly distinct fish communities (PERMANOVA, all pairwise P < 0.05), the only pairwise comparisons not significant were all from the gillnets database (4-A-LSP vs. 2-LSL, 4-A-LSP vs. 5-LSP, 4-A-LSP vs. 6-BB where P = 0.06, P = 0.06 and P = 0.1 respectively), while 7-GSN

appears as the most divergent sector (Online Resource 5). This latter result reinforces the observation that the St. Lawrence is highly heterogeneous at the sector scale.

Some species are indicators of only one sector such as *Notropis stramineus* in 1-LSF and *Apeltes quadracus* in 6-BB for communities captured by seine (see complete results in Online Resource 4). In contrast, some species were more common across all sectors with one exception. For example, *Lepomis gibbosus*, *Notemigonus crysoleucas* and *Perca flavescens* were common in all sectors except in 7-GSN for communities captured by seine (Online Resource 4). Although marine/estuarine species such as *Microgadus tomcod*, *Acipenser oxyrinchus* and *Morone saxatilis* were observed in the 7-GSN sector (Online Resource 3) and contribute to boost the taxonomic diversity index, they were not recognized as significant indicator species when using the IndVal analysis.

Differences between shores

The structure of fish communities was significantly different between north and south shores in 2-LSL, 5-LSP and 6-BB sectors for the communities collected by seine and in 4-A-LSP, 5-LSP and 6-BB for gillnet (PERMANOVA, all $P_{\rm mc}$ <0.05).

Different indicator species were identified in north and south shores. For example, in community captured by seine, *Cyprinella spiloptera* was identified as an indicator species along the north shore whereas *Notropis rubellus* was identified along the south shore of the 2-LSL (see complete results in Online Resource 4).

Discussion

The spatial organisation of St. Lawrence fish communities reflects the influence of the river heterogeneity on ecological processes at different spatial scales. It appeared that despite longitudinal gradients, a more complex and patchy patterns are defining the spatial organisation of the St. Lawrence River fish communities. The combination of complementary univariate and multivariate analysis of community characteristics greatly improved our ability to detect diversity patterns in a highly heterogeneous ecosystem (Clarke et al., 2014). The present study stresses the importance of analysing global patterns of diversity using robust diversity indices to avoid biasing estimates resulting from gears used and sampling effort (Gotelli & Colwell, 2001) and to go beyond the overly simplistic view provided by considering the total number of species as an index describing the organisation of fish communities. Moreover, the sensitivity of the various univariate diversity indices (e.g. specific vs. taxonomic indices) had to be considered toward their relevance in covering general assembly rules such as ecological gradients.

Longitudinal patterns

The results revealed the presence of a longitudinal component (*i.e.* upstream-downstream axis) of fish cummunities organisation along the St. Lawrence River; diversified sectors are not only the result of their intrinsic properties but also the result of their position along the continuum. More generally, the longitudinal pattern along the St. Lawrence River appears as a combination of (1) the decreasing anthropogenic habitat alterations from the headwater toward the river mouth and (2) the riverscape heterogeneity along the continuum (e.g. hydro-morphological changes), which increase the dissimilarity between

upstream and downstream fish communities and contribute to the gradual increase in taxonomic diversity. Firstly, as predicted by the Serial Discontinuity Concept, the reduced specific and taxonomic fish diversity in the upstream Lake Saint-François (1-LSF) and the distinct communities observed in the adjacent sector of Lake Saint-Louis (2-LSL) reflect the impacts of the physical isolation of the 1-LSF created by the Moses-Saunders and the Beauharnois dams. It is clear that dams located on both sides of the 1-LSF have created a distinct water body characterized by altered connectivity, stabilized water level and increased current velocity that most likely impacted the fish communities, including a reduced number of species (La Violette et al., 2003). In many rivers, including large systems, biodiversity observed close to dams is lower than downstream (Stanford & Ward, 2001; Nilsson et al., 2005; Santos et al., 2013; Holt et al., 2015). Downstream of Beauharnois dam, the hydrology gradually lose the imprints of water level regulation (Warwick & Dodson, 1999). Secondly, the complex mosaic of habitats in the archipelagos (i.e. Boucherville archipelago in the upper part of the 3-MS and 4-A-LSP) increases the specific diversity in the middle part of the St. Lawrence River. The 4-A-LSP hosts the richest (in rarefaction values) and the most diversified (in Simpson diversity values) fish communities. Thirdly, downstream sectors, marking the beginning of the mesotidal portion of the fluvial estuary, are home to distinct fish communities compared to the upstream part of the river (seen also by Leclerc & DesGranges, 2005). 6-BB and 7-GSN are composed of fluvial and estuarine species (e.g. Microgadus tomcod, Acipenser oxyrinchus, Morone saxatilis) due to their position along the longitudinal gradient. While only a few species were captured in 7-GSN, the local diversity is nevertheless important thanks to the average taxonomic difference existing between constituent species. Such observation is associated with (1) the smaller number of congeneric species found locally for species families (i.e. Centrarchidae, Cyprinidae) and (2) the simultaneous presence of species from the upper freshwater portion of the river together with estuarine / euryhaline species (e.g. *M. tomcod*) from the estuary bringing together distantly related species.

Longitudinal patterns from headwater toward the mouth were observed by several studies targeting small to medium-size rivers (e.g. Belliard et al., 1997; Bhat & Magnan, 2006; Araújo et al., 2009; Wu et al., 2011). In large rivers, such as the Gange and the Mekong, the middle part of the river appears as the most diversified along the continuum when considering the specific fish diversity (e.g. Simpson diversity; Das et al., 2013; Chea et al., 2016). This pattern is also observed in the St.Lawrence for Simpson diversity and the rarefaction index (Fig. 2). The presence of phylogenetically-distant estuarine and marine species observed in the lower part of large rivers is a likely reason explaining the local increase in taxonomic diversity at the end of the river continuum (i.e. river mouth).

Spatial heterogeneities at different scales

Even if both man-made longitudinal discontinuities (e.g. upstream dams) and riverscape heterogeneities are contributing to the longitudinal gradient observed in the St. Lawrence fish communities, a more complex and patchy organisation appear when considering the fish community at different spatial scales. As for results observed in the upper Mississippi (Chick et al., 2005), our results suggest a hierarchical structure of the spatial organisation in the St. Lawrence fish community. Firstly, contrasted hydrogeomorphological units along the river, such as the presence of a fluvial lake, largely

increase habitat heterogeneity and may be seen as discontinuities along the continuum supporting different communities (e.g. plankton communities; Hillbricht-Ilkowska, 1999). Large fluvial lakes contain more shallow habitats with limnophilic and vegetation-dependant species than corridor units typified by deep habitats and high current velocity with more rheophilic species (Leclerc & DesGranges, 2005).

Secondly, at sector scale (\approx 15-50 km), it appear that every sector identified according to their specific hydrological and morphometric characteristics hosted significantly distinct fish communities. Similar to the situation observed in the upper Paraná River (Agostinho et al., 2007; Ferrareze et al., 2014), our result confirms the importance of uniqueness in fluvial landscapes (Poole, 2002) which largely determine the fish community structure in large rivers. The type of spatial heterogeneity observed in each sectors such as the numerous islands and channels of the 4-A-LSP, the extensive floodplain of the 5-LSP, and the tidal movement in 7-GSN, appears as key elements structuring fish communities organisation of the St. Lawrence River.

Thirdly, when the heterogeneity of physical and biological conditions prevailing independently along either shore of a large temperate river are considered, such as in the St. Lawrence river, the global fish communities organisation revealed a much more complex pattern. To our knowledge, large rivers have been never studied at the shore scale. However, this finer scale allowed highlighting similarities between adjacent sectors and transversal discontinuities within sectors in the St. Lawrence River. The 4-A-LSP and the nearby Maskinongé bay (see Fig.1) identified as a productive habitats, seem to influence fish community structure of the upstream part of the 5-LSP, which contribute to fish community similarities along north shore (seine nets results, Fig.4). More

surprisingly, the downstream part of the 5-LSP and the 6-BB sector have similar communities (using the seine nets data) suggesting an higher homogeneity between these two sectors that previously expected considering that they are different hydromorphological units. Since the 4-A-LSP and the 5-LSP are both considered highly productive areas (e.g. Tall et al., 2008; Mingelbier et al., 2016), they have the potential to "export" surplus production downstream (e.g. plankton; Basu et al., 2000) in sectors where emigrant fishes will eventually contribute to homogenize local communities. Moreover, results revealed differences between fish communities along north and south shores in several sectors of the St. Lawrence River. The local heterogeneity of habitats along each shore (e.g. watershed land use, hydro-geomorphology, tributaries etc.), in some areas the large distance between opposing shores (e.g. ≥11 km in 2-LSL and 5-LSP) and, for several species, the large (≥ 300 m) and deep (≥ 8.2 m) navigation channel that may prevent fish dispersal (Leclerc & DesGranges, 2005; Leclerc et al., 2008) can account for the significant transversal differences observed in the St. Lawrence River. Even if the main channel can be a barrier for only some species (e.g. Perca flavescens, Leclerc et al., 2008) and not to the entire riverine specialists, the limited dispersal capacity of only a few species may change the overall community structure and diversity. Furthermore, the dominant land use in watershed and the water masses flowing along the north (suburban landscape, brown waters of the Ottawa River) and south (agricultural and industrial landscapes, green waters of the upper St. Lawrence River) shores of the 2-LSL are likely contributor to the perceived differences between northern and southern sector of the lake. Downstream in the 4-A-LSP, the southern sector is close to the navigation channel whereas the northern sector is made out of multiple islands and numerous small channels (Fig.1). The Yamaska and Saint-François tributaries drains polluted waters into the southern region of 5-LSP (MDDEP, 1998; Hudon & Carignan, 2008) which had deeply impacted the vegetation (an important loss of the underwater vegetation). As the tributaries' waters did not cross the central navigation channel, they had not impacted the northern part of 5-LSP. Finally, the north shore of 6-BB is largely artificialized while the south shore is composed of large vegetated shoals similar to what was the 5-LSP until recently.

Implications for management

Unexpected diversity pattern

While considering the general spatial pattern of diversity, we identified two sectors exhibiting levels either much higher (i.e. 6-BB) or lower (i.e. 5-LSP) than expected (Mingelbier et al., 2008). Rarely considered as a hotspot for diversity, the little studied downstream Bécancour-Batiscan (6-BB) sector exhibits high values of rarefaction, Simpson diversity and taxonomic distinctness for both fish communities captured by seine and gillnet (Fig.2). The 6-BB is located downstream of the Lake Saint-Pierre (5-LSP), with large vegetated shoals along the southern shore. These results emphasize the importance of better describing this sector in the eventuality of formulating plans to protect its biodiversity. In contrast, elevated values for fish diversity indices were expected for the 5-LSP thanks to the sheer size of the area and the diversity of fish habitats it contains. The 5-LSP is an extensive marshland due to its shallow topography (mean depth 2.7 m, maximum depth 13.7 m; Carignan & Lorrain, 2000) with ubiquitous macrophyte beds and large floodplains generated during spring freshets (up to 54 500 ha;

Richard et al., 2011). However, the values of rarefaction, Simpson diversity and taxonomic distinctness of the community collected by seine were lower than expected if LSP should be a hotspot of diversity (i.e. the LSP was not the richest and more diversified sector along the St. Lawrence River). Cumulative human pressures in the 5-LSP may partly explain this pattern. For example, the advent of intensive agricultural practices (e.g. corn and soy) on the 5-LSP floodplains has been identified as a primary cause for the collapse of the once locally super-abundant yellow perch (de la Chenelière et al., 2014).

Specific and Taxonomic diversity patterns

Specific and taxonomic diversity indices revealed different hotspots along the St. Lawrence River (e.g. 4-A-LSP and 7-GSN sectors). Since taxonomic diversity considers the evolutionary relationships within fish communities, it explicitly incorporates species differences rather than just the number of species that may be taxonomically-redundant. In the St. Lawrence, while the number of fish families observed in the 4-A-LSP is higher than in the 7-GSN sector, the elevated number of congeneric species in the 4-A-LSP (i.e. Cyprinidae, Centrarchidae and Percidae; Online Resource 3) lowers the value of the taxonomic diversity. For this reason, a higher taxonomical fish diversity is observed in the 7-GSN sector. Recognizing the difficulties associated to decision-making when prioritizing which areas should be protected in the face of limited financial resources, protecting the highest number of species possible without further consideration (e.g. ecological role, taxonomical redundancies, overall rarity, etc.) is not necessarily the most rewarding action; for the St. Lawrence River fishes community, the taxonomic distinctness appears as a measure worth further considerations (Vellend et al., 2011).

Conversely, this index may be misleading as a seemingly "diversified" community may be the result of the combination of a few taxonomically-divergent species. Theses perspectives underline the importance of considering simultaneously different measures of biodiversity in the overall evaluation of sites (e.g. richness species and taxonomic distinctness, Heino et al., 2005).

Management Units

Management units have to be based on the structure of fish communities taking into account ecological gradients, discontinuities and heterogeneities. Even if hydromorphological characteristics are useful to delineate functional management units in the St. Lawrence River (i.e. sector units; Mingelbier et al., 2016), other elements or processes such as human disturbances and fish dispersal can influence the fish community organisation. The differences between shores as well as the continuity observed between several sectors (i.e. 4-A-LSP/5-LSP and 5-LSP/6-BB) could be useful to define new fish management units reflecting the observed heterogeneity of fish communities. Such differences were in fact observed in the genetic pattern of yellow perch (Perca flavescens) populations in the St. Lawrence River. Genetic discontinuities between the north and south shores of the 2-LSL were associated to the sedentarity nature of these two populations (Leclerc et al., 2008). Moreover, two sympatric populations of rainbow smelt (Osmerus mordax) found in the St. Lawrence Estuary were found to be spatially segregated along the north and south shores (Lecomte & Dodson, 2004; Dodson et al., 2015). Then, spatial processes observed at a broader scale (e.g. longitudinal dynamics) improve our understanding of how fish community is organised at the scale of the sector.

The usefulness of large and standardised sampling program

Only the system-wide, multiannual and standardised surveys have allowed the detection of patterns within the fish community organisation along the St. Lawrence River. The RSI has captured to date almost a third of a million fishes, including rare species such as Moxostoma valenciennesi, Ammocrypta pellucida and Noturus flavus (Online Resource 3). However, the selectivity of gears used, the sampling period (e.g. some migratory species were not in the area at the moment of sampling) and the fact that some habitats were not sampled by the RSI (e.g. rapids, navigational channel) limits our ability to capture all species exploiting the St. Lawrence River (i.e. 97 fish species) and accurately quantify densities for several species (e.g. Anguilla rostrata, lampreys, alosines, salmons, carps). For example, whereas millions of Anguilla rostrata have migrated in the St. Lawrence River (Guillemette et al., 2014), only two were found in our samples. While this dataset has already revealed key observations since 1995 (e.g. stocks collapse and spread of invasive species; La Violette et al., 2003; Mingelbier et al., 2016) we consider that the RSI reflects the abundance of the vast majority of species present in the system and allows depicting how communities are structured along the St. Lawrence River.

Acknowledgments

This study would have been impossible without the contribution and dedication of all biologists and wildlife technicians involved over the past 21 years in collecting, analysing and managing the RSI database. A special thanks to Rachel Pagé for her contribution in the database validation. Drs J.J. Dodson, M. Mingelbier comments on this MS were much appreciated. We are grateful to the editorial board and two anonymous reviewers who provided very constructive comments on the original MS. This study is part of A.F.'s Ph.D. thesis. Financial support was provided by grants from the "Chaire de Recherche sur les Espèces Aquatiques Exploitées" (CREAE), from the present Ministère de la Faune, des Forêts et des Parcs du Québec, from the Plan d'Action Saint-Laurent, from the "Ressources Aquatiques Québec" (RAQ) and from the Natural Sciences and Engineering Research Council of Canada (NSERC; Discovery Grants) to M.C.

- Agostinho, A. A., F. M. Pelicice, A. C. Petry, L. C. Gomes & H. F. Júlio, 2007. Fish diversity in the upper Paraná River basin: habitats, fisheries, management and conservation. Aquatic Ecosystem Health & Management 10(2):174-186 doi:10.1080/14634980701341719.
- Anderson, M. J., R. N. Gorley & K. R. Clarke, 2008. PERMANOVA+ for PRIMER: Guide to software and statistical methods. PRIMER-E, Plymouth, UK.
- Araújo, F. G., B. C. T. Pinto & T. P. Teixeira, 2009. Longitudinal patterns of fish assemblages in a large tropical river in southeastern Brazil: evaluating environmental influences and some concepts in river ecology. Hydrobiologia 618:89-107.
- Argent, D. G. & W. G. Kimmel, 2005. Efficiency and Selectivity of Gill Nets for Assessing Fish Community Composition of Large Rivers. North American Journal of Fisheries Management 25:1315-1320.
- Basu, B. K., J. Kalff & B. Pinel-Alloul, 2000. The influence of macrophyte beds on plankton communities and their export from fluvial lakes in the St. Lawrence River. Freshwater Biology 45:373-382.
- Belliard, J., P. Boët & E. Tales, 1997. Regional and longitudinal patterns of fish community structure in the Seine River basin, France. Environmental Biology of Fishes 50:133-147.
- Bethemont, J., 2003. Qu'est ce qu'un grand fleuve? VertigO 4:1-7.
- Bhat, A. & A. E. Magnan, 2006. Taxonomic distinctness in a linear system: a test using a tropical freshwater fish assemblage. Ecography 29:104-110.
- Borcard, D., F. Gillet & P. Legendre, 2011. Numerical Ecology with R. Springer-Verlag New York.
- Carignan, R. & S. Lorrain, 2000. Sediment dynamics in the fluvial lakes of the St. Lawrence River: accumulation rates and characterization of the mixed sediment layer. Canadian Journal of Fisheries and Aquatic Sciences 5:63-77.
- Casatti, L., F. B. Teresa, T. Gonçalves-Souza, E. Bessa, A. R. Manzotti, C. da Silva Gonçalves & Z. de Oliveira, 2012. From forests to cattail: how does the riparian zone influence stream fish? Neotropical Ichthyology 10:205-214.
- Centre-Saint-Laurent, 1998. Le fleuve en bref: capsules-éclair sur l'état du Saint-Laurent. Environnement Canada, Région du Québec: Saint-Laurent Vision 2000, 121.
- Chea, R., S. Lek, P. Ngor & G. Grenouillet, 2016. Large-scale patterns of fish diversity and assemblage structure in the longest tropical river in Asia. Ecology of Freshwater Fish:1-11 doi:10.1111/eff.12301.
- Chick, J. H., B. S. Ickes, M. A. Pegg, V. A. Barko, R. A. Hrabik & D. P. Herzog, 2005. Spatial Structure and Temporal Variation of Fish Communities in the Upper Mississippi River System. Technical Report T004, U.S. Geological Survey, 24.
- Clarke, K. R., 1993. Non-parametric analyses of changes in community structure. Australian Journal of Ecology 18:117-143.
- Clarke, K. R. & R. N. Gorley, 2006. PRIMER v6.1.6: User manual/tutorial. PRIMER-E Ltd, Plymouth.
- Clarke, K. R., R. N. Gorley, P. J. Somerfield & R. M. Warwick, 2014. Change in marine communities: an approach to statistical analysis and interpretation. 3rd edition. PRIMER-E: Plymonth.

- Clarke, K. R. & R. M. Warwick, 1998. A taxonomic distincness index and its statistical properties. Journal of Applied Ecology 35:523-531.
- Das, M. K., A. P. Sharma, K. K. Vass, R. K. Tyagi, V. R. Suresh, M. Naskar & A. B. Akolkar, 2013. Fish diversity, community structure and ecological integrity of the tropical River Ganges, India. Aquatic Ecosystem Health & Management 16:395-407.
- De Cáceres, M., P. Legendre & M. Moretti, 2010a. Improving indicator species analysis by combining groups of sites. Oikos 119:1674-1684.
- De Cáceres, M., P. Legendre & M. Moretti, 2010b. Improving indicator species analysis by combining groups of sites. Oikos 119(10):1674-1684 doi:10.1111/j.1600-0706.2010.18334.x.
- de la Chenelière, V., P. Brodeur & M. Mingelbier, 2014. Restauration des habitats du lac Saint-Pierre: un prérequis au rétablissement de la perchaude. Le Naturaliste Canadien 138:50-61.
- De Leeuw, J. J., A. D. Buijse, G. Haidvogl, M. Lapinska, R. Noble, R. Repecka, T. Virbickas, W. WiŚNiewolski & C. Wolter, 2007. Challenges in developing fish-based ecological assessment methods for large floodplain rivers. Fisheries Management and Ecology 14:483-494.
- De'ath, G. & K. E. Fabricius, 2000. Classification and regression trees: a powerful yet simple technique for ecological data analysis. Ecology 8:3178-3192.
- DesGranges, J. L. & J. P. Ducruc, 1998. Portrait de la biodiversité du Saint-Laurent: atlas de la diversité écologique potentielle et de la biodiversité du Saint-Laurent au Québec. Service canadien de la faune, Environnement Canada, région du Québec, ministère de l'environnement et de la Faune du Québec et Pêches et Océans Canada, région du Québec, 77.
- Dettmers, J. M., D. H. Wahl, D. A. Soluk & S. Gutreuter, 2001. Life in the fast lane: fish and foodweb structure in the main channel of large rivers. Journal of the North American Benthological Society 20:255-265.
- Dodson, J. J., A. Bourret, M. F. Barrette, J. Turgeon, G. Daigle, M. Legault & F. Lecomte, 2015. Intraspecific genetic admixture and the morphological diversification of an estuarine fish population complex. PLoS One 10:1-21.
- Dufrene, M. & P. Legendre, 1997. Species assemblages and indicator species: the need for a flexible asymmetrical approach. Ecological Monographs 67:345-366.
- Ellis, L. E. & N. E. Jones, 2013. Longitudinal trends in regulated rivers: a review and synthesis within the context of the serial discontinuity concept. Environmental Reviews 21:136-148.
- Fairclough, D. V., K. R. Clarke, F. J. Valesini & I. C. Potter, 2008. Habitat partitioning by five congeneric and abundant Choerodon species (*Labridae*) in a large subtropical marine embayment. Estuarine Coastal and Shelf Science 77:446-456.
- Fausch, K. D., C. E. Torgersen, C. V. Baxter & H. W. Li, 2002. Landscapes to riverscapes: bridging the gap between research and conservation of stream fishes. Bioscience 52:483-498.
- Ferrareze, M., L. Casatti & M. G. Nogueira, 2014. Spatial heterogeneity affecting fish fauna in cascade reservoirs of the Upper Paraná Basin, Brazil. Hydrobiologia 738(1):97-109 doi:10.1007/s10750-014-1922-5.

- Flotemersch, J. E., J. B. Stribling, R. M. Hughes, L. Reynolds, M. J. Paul & C. Wolter, 2011. Site length for biological assessment of boatable rivers. River Research and Applications 27:520-535.
- Frenette, J., M. T. Arts, J. Morin, D. Gratton & C. Martin, 2006. Hydrodynamic control of the underwater light climate in fluvial Lac Saint-Pierre. Limnology and Oceanography 51:2632-2645.
- Frenette, J. J., P. Massicotte & J. F. Lapierre, 2012. Colorful niches of phytoplankton shaped by the spatial connectivity in a large river ecosystem: a riverscape perspective. PLoS One 7:1-18.
- Galat, D. L., C. R. Berry, W. M. Gardner, J. C. Hendrickson, G. E. Mestl, G. J. Power, C. Stone & M. R. Winston, 2005. Spatiotemporal patterns and changes in missouri river fishes. American Fisheries Society Symposium 45:249-291.
- Gauthier, B., 2000. L'estuaire du Saint-Laurent: synthèse phytogéographique. Gouvernement du Québec, Ministère de l'Environnement, Direction du patrimoine écologique et du développement durable, Québec, 33.
- Gladyshev, M. I., O. V. Kolmakova, A. P. Tolomeev, O. V. Anishchenko, O. N. Makhutova, A. A. Kolmakova, E. S. Kravchuk, L. A. Glushchenko, V. I. Kolmakov & N. N. Sushchik, 2015. Differences in organic matter and bacterioplankton between sections of the largest Arctic river: Mosaic or continuum? Limnology and Oceanography 60:1314-1331.
- Gotelli, N. J. & R. K. Colwell, 2001. Quantifying biodiversity: procedures and pitfalls in the measurement and comparison of species richness. Ecology Letters 4:379-391.
- Guillemette, S., A. Guindon & D. Desrochers, 2014. Suivi des passes migratoires à anguille de la centrale de Beauharnois et du barrage de Chambly-2014. Milieu inc. pour l'unité Environnement, Gestion des actifs et conformité réglementaire, Hydro-Québec Production, Montréal, 80.
- Heino, J., J. Soininen, J. Lappalainen & R. Virtanen, 2005. The relationship between species richness and taxonomic distinctness in freshwater organisms. Limnology and Oceanography 50:978-986.
- Hillbricht-Ilkowska, A., 1999. Shallow lakes in lowland river systems: Role in transport and transformations of nutrients and in biological diversity. Hydrobiologia 408:349-358.
- Holm, S., 1979. A simple sequentially rejective multiple test procedure. Scandinavian Journal of Statistics 6:65-70.
- Holt, C. R., D. Pfitzer, C. Scalley, B. A. Caldwell, P. I. Capece & D. P. Batzer, 2015. Longitudinal variation in macroinvertebrate assemblages below a large-scale hydroelectric dam. Hydrobiologia 755:13-26.
- Hudon, C. & R. Carignan, 2008. Cumulative impacts of hydrology and human activities on water quality in the St. Lawrence River (Lake Saint-Pierre, Québec, Canada). Canadian Journal of Fisheries and Aquatic Sciences 65:1165-1180.
- Humphries, P., H. Keckeis & B. Finlayson, 2014. The River Wave Concept: integrating river ecosystem models. BioScience 64:870-882.
- Hurlbert, S. H., 1971. The nonconcept of species diversity: a critique and alternative parameters. Ecology 52:577-586.

- Jiang, X., J. Xiong, Z. Xie & Y. Chen, 2011. Longitudinal patterns of macroinvertebrate functional feeding groups in a Chinese river system: A test for river continuum concept (RCC). Quaternary International 244:289-295.
- Johnson, B. L., W. B. Richardson & T. J. Naimo, 1995. Past, present, and future concepts in large river ecology. BioSicences 45:134-141.
- Johnson, L. B. & G. E. Host, 2010. Recent developments in landscape approaches for the study of aquatic ecosystems. Journal of the North American Benthological Society 29:41-66.
- Kiffney, P. M., C. M. Greene, J. E. Hall & J. R. Davies, 2006. Tributary streams create spatial discontinuities in habitat, biological productivity, and diversity in mainstem rivers. Canadian Journal of Fisheries and Aquatic Sciences 63:2518-2530.
- Konan, K. F., O. E. Edia, K. Y. Bony, K. M. Kouané & G. Gourène, 2015. Fish diversity and assemblages according to distance from source along a coastal river gradient (Ehania River; south-east of Ivory Coast). Iranian Journal of Fisheries Sciences 14:112-129.
- La Violette, N., 2004. Les lacs fluviaux du Saint-Laurent: hydrologie et modifications humaines. Le Naturaliste Canadien 128:98-104.
- La Violette, N., D. Fournier, P. Dumont & Y. Mailhot, 2003. Caratérisation des communautés de poissons et développement d'un indice d'intégrité biotique pour le fleuve Saint-Laurent, 1995-1997. Société de la faune et des parcs du Québec, Direction de la recherche sur la faune, 237.
- Lacasse, S. & P. Magnan, 1994. Distribution post-glaciaire de l'omble de fontaine dans le bassin hydrographique du fleuve Saint-Laurent: impact des interventions humaines. Université du Québec à Trois-Rivières, pour le ministère de l'Environnement et de la Faune du Québec, 99.
- Lapointe, N. W. R., L. D. Corkum & N. E. Mandrak, 2006. A comparison of methods for sampling fish diversity in shallow offshore waters of large rivers. North American Journal of Fisheries Management 26:503-513.
- Le Pichon, C., É. Tales, J. Belliard & C. E. Torgersen, 2017. Spatially intensive sampling by electrofishing for assessing longitudinal discontinuities in fish distribution in a headwater stream. Fisheries Research 185:90-101.
- Leclerc, E., Y. Mailhot, M. Mingelbier & L. Bernatchez, 2008. The landscape genetics of yellow perch (*Perca flavescens*) in a large fluvial ecosystem. Molecular ecology 17:1702-1717.
- Leclerc, J. & J. L. DesGranges, 2005. Exploratory multiscale analysis of the fish assemblages and habitats of the lower St. Lawrence River, Québec, Canada. Biodiversity and Conservation 14:1153-1174.
- Leclerc, P., 1990. Caractérisation des communautés ichtyennes pour mesurer l'état de santé des écosystèmes du fleuve Saint-Laurent. Centre Saint-Laurent, Environnement Canada, Montréal, Québec, 69.
- Lecomte, F. & J. Dodson, 2004. Role of early life-history constraints and resource polymorphism in the segregation of sympatric populations of an estuarine fish. Evolutionary Ecology Research 6:631-658.

- Legendre, P., M. De Cáceres & D. Borcard, 2010. Community surveys through space and time: testing the space-time interaction in the absence of replication. Ecology 91:262-272.
- Legendre, P. & V. Legendre, 1984. Postglacial dispersal of freshwater fishes in the Québec Peninsula. Canadian Journal of Fisheries and Aquatic Sciences 41:1781-1801
- Massicotte, P., J. Frenette, R. Proulx, B. Pinel-Alloul & A. Bertolo, 2014. Riverscape heterogeneity explains spatial variation in zooplankton functional evenness and biomass in a large river ecosystem. Landscape Ecology 29:67-79.
- MDDEP, 1998. État de l'écosystème aquatique du bassin versant de la rivière Yamaska—Synthèse 1998. In. http://www.mddep.gouv.qc.ca/eau/ecoaqua/yamaska/index.htm.
- Melles, S. J., N. E. Jones & B. Schmidt, 2012. Review of theoretical developments in stream ecology and their influence on stream classification and conservation planning. Freshwater Biology 57:415-434.
- Mingelbier, M., Y. Paradis, P. Brodeur, V. de la Chenelière, F. Lecomte, D. Hatin & G. Verreault, 2016. Gestion des poissons d'eau douce et migrateurs dans le Saint-Laurent : mandats, enjeux et perspectives. Le Naturaliste Canadien 140:74-90.
- Mingelbier, M., Y. Reyjol, P. Dumont, Y. Mailhot, P. Brodeur, D. Deschamps & C. Côté, 2008. Les communautés de poissons d'eau douce dans le Saint-Laurent, 2ème édition. Secteur Faune, Ministère des Ressources naturelles et de la Faune, 8.
- Morin, J., P. Boudreau, Y. Secretan & M. Leclerc, 2000. Pristine Lake Saint-François, St. Lawrence River: hydrodynamic simulation and cumulative impact. Journal of Great Lakes Research 26:384-401.
- Naiman, R. J., J. M. Melillo, M. A. Lock, T. E. Ford & S. R. Reice, 1987. Longitudinal patterns of ecosystem processes and community structure in a subarctic river continuum. Ecology 68:1139-1156.
- Nilsson, C., C. A. Reidy, M. Dynesius & C. Revenga, 2005. Fragmentation and flow regulation of the world's Large River Systems. Science 308:405-408.
- Pekárik, L., M. Svátora, J. Cerný & J. Kosco, 2011. Longitudinal structure of fish assemblages in a minimally disrupted stream. Biologia 66:886-892.
- Poole, G. C., 2002. Fluvial landscape ecology: addressing uniqueness within the river discontinuum. Freshwater Biology 47:641-660.
- R Core Team, 2015. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL http://www.R-project.org/.
- Ri, R. Y. & F. P. Gelwick, 2005. The relationship of environmental factors to spatial and temporal variation of fish assemblages in a floodplain river in Texas, USA. Ecology of Freshwater Fish 14:319-330.
- Richard, G., D. Côté, M. Mingelbier, B. Jobin, J. Morin & P. Brodeur, 2011. Utilisation du sol dans la plaine inondable du lac Saint-Pierre (fleuve Saint-Laurent) durant les périodes 1950, 1964 et 1997: interprétation de photos aériennes, numérisation et préparation d'une base de données géoréférencées. Ministère des Ressources naturelles et de la Faune, Gouvernement du Québec, 42.
- Robinson, C. T., K. Tockner & J. V. Ward, 2002. The fauna of dynamic riverine landscapes. Freshwater Biology 47:661-667.

- Santos, A. B. I., R. J. Albieri & F. G. Araújo, 2013. Influences of dams with different levels of river connectivity on the fish community structure along a tropical river in Southeastern Brazil. Journal of Applied Ichthyology 29:163-171.
- Sedell, J. R., J. E. Richey & F. J. Swanson, 1989. The River Continuum Concept: a basis for the expected ecosystem behavior of very large rivers? Canadian Special Publication of Fisheries and Aquatic Sciences 106:49-55.
- Somerfield, P. J., K. R. Clarke & F. Olsgard, 2002. A comparison of the power of categorical and correlational tests applied to community ecology data from gradient studies. Journal of Animal Ecology 71:581-593.
- Stanford, J. A. & J. V. Ward, 2001. Revisiting the serial discontinuity concept. Regulated Rivers: Research & Management 17:303-310.
- Suvarnaraksha, A., S. Lek, S. Lek-Ang & T. Jutagate, 2012. Fish diversity and assemblage patterns along the longitudinal gradient of a tropical river in the Indo-Burma hotspot region (Ping-Wang River Basin, Thailand). Hydrobiologia 694:153-169.
- Tall, L., G. Méthot, A. Armellin & B. Pinel-Alloul, 2008. Bioassessment of benthic macroinvertebrates in wetland habitats of Lake Saint-Pierre (St. Lawrence River). Journal of Great Lakes Research 34:599-614.
- Vannote, R. L., G. Wayne Minshall, K. W. Cummins, J. R. Sedell & C. E. Cushing, 1980. The river continuum concept. Canadian Journal of Fisheries and Aquatic Sciences 37:130-137.
- Vellend, M., W. K. Cornwell, K. Magnuson-Ford & A. Mooers, 2011. Measuring phylogenetic biodiversity. In Magurran, A. E. & B. J. McGill (eds) Biological Diversity: Frontiers in Measurement and Assessment. Oxford University Press, 194-207.
- Ward, J. V. & J. A. Stanford, 1983. The serial discontinuity concept of lotic ecosystems In T.D. Fontaine, S. M. B. (ed) In Dynamics of Lotic Ecosystems Ann Arbor Science Publishers, 29-42.
- Ward, J. V. & J. A. Stanford, 1995. The serial discontinuity concept: extending the model to floodplain rivers. Regulated Rivers: Research & Management 10:159-168.
- Ward, J. V., K. Tockner, D. B. Arscott & C. Claret, 2002. Riverine landscape diversity. Freshwater Biology 47:517-539.
- Warwick, F. V. & J. J. Dodson, 1999. The St. Lawrence River, Canada-USA: the need for an ecosystem-level understanding of large rivers. Japanese Journal of Limnology 60:29-50.
- Wiens, J. A., 2002. Riverine landscapes: taking landscape ecology into the water. Freshwater Biology 47:501-515.
- Wolff, L. L., N. Carniatto & H. N.S., 2013. Longitudinal use of feeding resources and distribution of fish trophic guilds in a coastal Atlantic stream, southern Brazil. Neotropical Ichthyology 11:375-386.
- Wu, J., J. Wang, Y. He & W. Cao, 2011. Fish assemblage structure in the Chishui River, a protected tributary of the Yangtze River. Knowledge and Management of Aquatic Ecosystems 400:1-11.
- Zar, J. H., 1972. Significance Testing of the Spearman Rank Correlation Coefficient. Journal of the American Statistical Association 67:578-580.

FIGURES

Fig.1 Map of the sectors studied (1-LSF, 2-LSL, 3-MS, 4-A-LSP, 5-LSP, 6-BB and 7-GSN) along the St. Lawrence River. The ecological segments and the navigation channel separating the shores are also shown. Note that for clarity the map was cut into two portions (upstream, upper part and downstream, lower part)

Fig.2 Point bars showing average values (\pm SE) of rarefaction index (ES₃₀ and ES₇₀ for gillnets and seine nets respectively, see methods), Simpson diversity and taxonomic distinctness among sectors of the St. Lawrence River for fish communities collected by seine nets (graphs a, c, e) and gillnets (graphs b, d, f). Sectors were ordered from upstream (left) to downstream (right). Different letters above bars represent significant differences (P < 0.05)

Fig.3 Index of Multivariate Seriation (IMS) were visualised on a nonmetric multidimensional scaling plot representing sequential changes in segments of each sector for seine nets (a, c) and gillnets (b, d) along the north and south shores of the St. Lawrence River. The lines indicate successive segments along the river (upstream to downstream) where fish communities' changes is significant in all case ($P \le 0.007$) and follows a longitudinal gradient. Reading across rows, stress values = 0.15, 0.12, 0.14, 0.09.

Fig.4 Discontinuities (dotted line) in fish communities captured by seine nets (with their node numbers) identified along the St. Lawrence River using a multivariate regression tree analysis (MRT). The navigation channel is used to separate the north from the south shore. For each leaf, the number of segments pooled is indicated. The tree explained 66% and 61.8% of the total sum of squares for the north and south shore respectively

Fig.5 Discontinuities in fish communities captured by gillnets identified using a multivariate regression tree analysis (MRT): see legend of Fig.4. The tree explained 70.4% and 76.2% of the total sum of squares for the north and south shore respectively

Fig.6 Principal Coordinate Analysis (PCoA) plots showing fish communities captured by seine nets (a, c) and gillnets (b, d) at the segment scale among sectors and shores. Indicator species abbreviations, that characterize fluvial lakes (black symbols), corridors (white symbols) and the archipelago (stars), are as follows: ALSA = *Alosa sapidissima*; AMCA = *Amia calva*; AMNE = *Ameiurus nebulosus*; ESLU = *Esox lucius*; ETNI = *Etheostoma nigrum*; HITE = *Hiodon tergisus*; HYRE = *Hybognathus regius*; LASI = *Labidesthes sicculus*; LEGI = *Lepomis gibbosus*; NOAT = *Notropis atherinoides*; NOCR = *Notemigonus crysoleucas*; NOHU = *Notropis hudsonius*; PEFL = *Perca flavescens*;

PEOM = *Percopsis omiscomaycus*; PONI = *Pomoxis nigromaculatus*. The circle is a unit circle (radius =1.0), whose position of origin (centre) corresponds to the centre of the plot (0,0). Each vector begins at the centre of the circle and ends at the coordinates (x, y) consisting of the Pearson correlations between indicator species and each of PCoA axis 1 and 2, respectively. The length and direction of each vector indicates the strength and sign, respectively, of the relationship between indicator species and the PCoA axes.

Fig.7 Point bars showing average values (\pm CI 95%) of Bray-Curtis dissimilarity between the seine nets and gillnets for the fluvial lakes, the corridors and the archipelago of the St. Lawrence River. Numbers on the top correspond to the total variance of Bray-Curtis distances and numbers under the bar correspond to the total number of segments

APPENDIX

Online Resource 1: space-time interaction (STI) results on the five sectors that have been sampled tree times in the St. Lawrence River (Québec, Canada) at the sector and segment scales, for both the seine and gillnet gears.

		Sein	e nets			Gill	nets	
Space-Time Interaction	Sector	Segment	Segment North	Segment South	Sector	Segment	Segment North	Segment South
N° of space points (s)	5	38	20	18	5	38	20	18
N° of time points (t)	3	3	3	3	3	3	3	3
N° of observations (n=s*t)	15	114	60	54	15	114	60	54
N° of response variables (p)	71	71	71	71	45	45	45	45
R ²	0.09	0.19	0.18	0.22	0.12	0.2	0.17	0.21
F	0.66	1.20	1.20	1.22	0.75	1.18	0.94	1.30
P(999 perm)	0.86	0.054	0.14	0.09	0.74	0.06	0.66	0.07

Analyses were restricted to the spatial component since the sampling scheme in place in the St. Lawrence River (Canada) does not allow a full temporal comparison as only a few sectors were covered often enough to observe temporal variation (year as a factor). A space-time analyse was performed to ensure that sites sampled from different years can be pooled into their sectors/segments. As several sectors have been samples only one (Montréal-Sorel) or two times (Grondines Saint-Nicolas), the space-time interaction method (STI; Legendre et al. 2010) was performed on the sectors that have been sampled at least three times (5 sectors: Lake Saint-François, Lake Saint-Louis, Lake Saint-Pierre Archipelago, Lake Saint-Pierre, Bécancour-Batiscan). The STI was calculated at the sector and segment scales, for both the seine and gillnet gears. As none of the analyses showed significant space-time interaction (all P >0.05), the spatial structure of the fish communities has not significantly changed over the period covered by our surveys. This statistical procedure justify that all samples collected over the years could be pooled to analyze the system-wide spatial pattern.

Online Resource 2: Number of samples and number of sites targeted in each sector by the RSI ("Réseau de Suivi Ichtyologique") using seine nets and gillnets in the St. Lawrence River (Québec, Canada). All sites were embedded in ecological segments dividing each sector.

SECTORS	Gears	Samples	Sites	Ecological segments
Lake Saint-François (LSF)	Seine nets	163	62	8
3 \	Gillnets	198	71	9
Lake Saint-Louis (LSL)	Seine nets	236	98	9
Zane Same Zouis (252)	Gillnets	222	78	
Montréal-Sorel (MS)	Seine nets	115	115	10
World car soller (WIS)	Gillnets	79	79	_
Archipelago of Lake Saint-	Seine nets	176	72	8
Pierre (A-LSP)	Gillnets	187	76	_
Lake Saint-Pierre (LSP)	Seine nets	155	63	9
Zune sume Tierre (Zsz.)	Gillnets	238	100	
Becancour-Batiscan (BB)	Seine nets	179	56	8
Decaneour Batiseun (BB)	Gillnets	231	64	
Grondines-Saint-Nicolas	Seine nets	103	53	6
(GSN)	Gillnets	104	64	10
	Seine nets	1 127	519	
Total	Gillnets	1 259	532	63
	All	2 386	1,051	-

Online Resource 3: Average ($\bar{x} \pm SD$) abundance of each species sampled by seine nets (a) and gillnets (b) in the RSI ("Réseau de Suivi Ichtyologique") from 1995 to 2012 in each sectors targeted of the St. Lawrence River. A total of 71 species from 24 families were collected by seine nets while a total of 45 species from 20 families were collected by gillnets. It appears that no sector is home to all species captured at the river scale.

			157	158	165	A-15P	132	86	GSM	Total
	Sunter of ca	region	140	218	111	176	716	128	100	1327
Cráss	Familia	Species	7.1.50	7110	me SO	V.T.507	F230	50.50	F150	81.50
Viceneille mes	Accessorate	Jirlanese Minneres	10.01-00.		03 + 01	C. Carriera	174.00	0.1 / 0.1	1,000	08 4 8
militaria.	Amithum	dim to solve			9.8 + 9.8	62 E 63	-			94 a 10
rend Wilder	Angelliche	Asquillé rosnote	A	10 1 01	- A			2 2		02 3 6
charles persen	Activa foregandess	JobiAstect includes	446 t 289	13.0 4 20.3	44 1 15	12 t 33	53 1, 138	0.5 1 1.9	P. P.	14.1.10
		Sieus punyleburreges	14 s 38	43 4 763	2.1 a 1.5	34 p. 29	63 + LN	28 4 83	2.5 ± 12.7	23 0 21
Ligar Formati	Outwinte	Most repidentes		8.5 1 0.0	0.5 1 0.5	SH E 25	63 8 93	23 2 24	13 1 28	03 1 1
		Renume bandweet	N 5	6 6	100			0.6 2 07	RE # 93	0.0 1 8
		Datasterne untrakerne				CA 1 SA	81 + 63	58 * 91	88 # 98	02 4 1
		Delantement commonwealth	53 a 681	ER 4 GR	28 6 12	30 t 61	83 ± 68	12 × 41	82 + 98	12 = 4
	Carsonomidae	Distribution (America)	S	14 1 03	0.4 2 15	DA E 3.4	A	02 5 15		0.1 1 1
		Microsterio principia	RE L EX	85 1 03	0.6 3 3.6	65 t 36	E1 1: 02	05 (63		07 1 1
		Minara lamor marcolegna lotare	10 h 14	85 + 02	08 + 09	38 10 41	83 4 18	E8 A R3	BE 8 12	1.2 4 1
	-	Management of the Common of th		11 1 97	93 4 09	60 t 01	65 1: 02	02 1 69	Kh z 92	01 1 1
		Cyprinche pilapteo	16 : 18	16 1 73	35 1 124	65 : 43	64 8 15	0) 1 17	N. F. W.	0.8 1 5
		Engleson continue		20 4 14	94 + 94	100		23 . 11	1.5	08 : 8
		And operation region	S 6	3 3	03 2 42	29.4 ± 264.9	63 5 54	0.6 ± 65	1 2	48 2 2
		Esella comuni	10	10 1 03	0.1 3 0.0	and the second	2 2 22	(0) 1 66	P 20	03 1 1
		Alutropio et heriocoles	12 × 12	26 4 154	84 + 758	MEAN NO. NO. OF	41 6 182	63 × 324	20 + 41	73 0 3
Special Research		Nichoph All yearing	8.2 ± 2.8	16 4 15	ON + MI	17 h 814	150 t 864	61 1 11	20 20	62 1 2
		Notice per dispersion	16 E 149	128 1 168	7.5 t 35.4	33.0 E 53.3:	30.0 a. 72.6	25 1 51	6 6	100 1 4
		Actorio Astanajos	8.8 E 4.F	13 1 82	0.5 1 00	62 n 36	16 1 13	9.1 2 63	5 5	02 1 5
	Continue	Notices belowings	86 + 88	48.4 367		01 t 33	23 + 118	08 + 10	. S	12 : 3
		Antogo, hasher or	ST 8 53	LS a 160	12.6 a 3.6	173 s 24	23 8 58	13 4 80	0.8 or 1.8	68.4 3
		MOROSIO NAVINE		84.1 25			63 1: 03	95 1 115		03 1 5
		Motoric speniors	5367 t 4519	53.2 40.6	05 8 19	60° E 53	E 1 1	0.2 2 0.1		100 1 8
		Miningly voluntiles	1291.7 to 1298.6	372 + 3864		18 × 288	13 4 188	53 a 31 a	0 0	191.4 (5)
		Feogrados micelos	28 F WK	55.0 + 138.7	388 a 312	46 to 13	28.6 + 310.3	NN N 32.8	10 + 18	211.0 4 53
		Pinspholes prometer	2 5	14 1 03	2 5	A	86 0 08	53 1-16	.5	95 4 5
		Receiving priorities	8 8	8 8	via a raile	56 E 68		0.0	RR + 0.3	GH = 8
		Sematika at emandetus Sematika posporalis	4	46 . 44	0.0 4 00	62 1 31	11 1 21	03-1-17		07 1 1
oprisodant/former	Continue	Kristylus dophorus	8.5 t 3.9	117 1 25	25.6 ± 110.2	18 E 66	NG 5 1 179.1	15.9 × 96.0	26.1 ± 99.8	and the second second second
27-100-100-10	THE CHICAGO	Day come home amornisms	45 1 45	100	TAN A AND	24 t 23	M. F. J. 31-2	154 5 465	254 4 554	OH H B
	Concrete:	fair lain	52 × 57	62 4 68	0.5 a '0.8	D4 n 24	43 41 42	0.2 + 0.3	12 a 41	02 4 1
(actorner		(компансова	8.0 t 8.1	88 1 93	0.1 1 05	66 t 68		22 2 63		02 1 8
	Ombridae	into la	10	14 1 03		-	63 3: 03		2 2	0.0 1 1
Cadillianias	Letter	Links links :		44 + 43		- X				08.4 1
		Species species so:	0 0	0.0	F 6	F 10	10 10	93 x 08	F F	02:1
Contract to the Community	Keromorasidak	Calabo Reprotons	2 2	85 1 23	0.1 1 02			0.4 2.65	1	02 1 1
A-7 11A-5	2007 11122	Santania espiratur		4000				08 H 07	10 + LE	02 d B
application may	Legislander Size	Industrial manus		11 4 03	4 1 0 1	Did to Mile	64 + 58	Ga a GT		01 + 1
Sentent Montrey	Other than	Sheers receipt	26 L EE	86 1 93	92 1 11	63 1 31	RS 2 18	34 2 33	10 1 95	23 3 3
Strogosof terms	Hodovádke	Microsi renginus	14 4	10 10	93 4 34	61 t 86	-	92 2 17	R1 1 L2	0.8 3 8
		An Maydillery Aspectation	3.2 0 63	376 a 123	6.E 8 M.B	4.8 F 3.9	84 + 24	0.8 # 11	27 1 03	3.7 4 8
		Appearing philosophy	5.6 ± 36.6	26.8 4 56.3	158 4 558	28.8 ± 36.2	22 E + 418	13 1 368	82 + 02	HAR - H
	Contractición	Japonii Hoonshine	Sec. 25.	12 1 03	10 . 10	40	S	20	W . W	02 1 8
		Microstonii dolomini Microstonio selmicilio	11 1 14	17 4 AN	0.7 1 13	0.6 t 30	63 L 02	02 1 09	15 L LS	03 1 3
		Percent nigneronalistics	83 + 14	28 + 74	LR + OR	20 t 20	84 4 - 95	05 + 01		02 + 4
	Gold-dec	Noopabus inclandational	119 E N.J	56 1 153	28-2-100-	60 t 33	65 1: 32	0.9 2 18-5	RE # 24	13-1 3
		Moreor celeritoria	E4 E E5	86 1 93	02 1 01	61 1 61	100	25 2 06	8.2 d 0.3	0.0 I B
	Maryenian	Microst searths		20.0	20.00	200 11 100	0 0	03 4 61		02 4 8
		Anteriorizati poliucita			0.8 1 0.9	63 t 81	14 1 03	THE RESERVE	-	02 1 8
ters/flemede		Etheosteino-skily	DE L 53	DE 1 25	12.00	65 t 88	63 1: 03			28 1 3
		Alternations Sales law	3. 9	88 4 93		-			1 1	02 4 8
		Ethnishens rigram	81 + 86	89 4 03	0.2 + 0.7	2.8 h 2.3	83 4 48	04 0 03	20 20	02 1 3
	A	Ethiophies olmenti	8.5 E 18.9	The second second	163 1 414	The second secon	63 8 325	46 1 99	35 4 92	95 1 2
	Percian	Pytote squedra	40 t 29	47 a 123		33 1/51	8.9 a 2.3	25 2 13	The second secon	2.8 1 3
		Process coperance	\$6 a \$8			02 E 38	68 8 25	03 8 61	RE + 02	02 1 3
		Ferral (Ferranders	A2 1 156	514 a 124	153 4 312	ALR & SLT	84 8 183	15.6 a 15.6	14 # 11	182 4 3
		Scheller somanierwis		84.1 03	63 7 05	65 t 63	1	0.2 1 01	10 1 13	0.7 1 1
		SOMETHERS.	42 t 61	19 1 06	24 2 11	DA E R.W.	45 1 07	0.1 2 65	21 2 04	
	la involve	Sphilington granders.	Y		1	23 F 83	10 11 10		100	0.8 4 8
and Kernel	Persperidio	Peopei enecessori	16 t U	82 a 10	7.1 1: 34.8	57 E 254	3.0 3: 63	12 1 44	20 £ A)	
		White report of the Co.	16 1 15						P	0.8 1 8
a acquirecture mes.	Critishe	Debus kerski	16 + 18	21.4 03	0.8 4 0.8	P. P.		1	F F	G8 = 2
		Anning polyleus	10 1 11	Ad a Ld	0.4 1 18	49 P RIE	93 + 183	53 4 14		25 4 26
durformes:	scholaridae	ESERVI JANOSES			08-3:09	0.0 E 8.0	RF-X: 03		3 5	03 1 1
C. C. C. C. C.		Motorcyclinus	Sec. 3.	Sec. 12		97 t 84	3. v As	0.6 s 0.7 03 s 03		OB # B
		Notures perime	5.6 + 5.8	BT + 98			83 4 42			

Amiliantes Chipeliantes	Number of can Family Actionnessing Analysis Clapsidae	Species Aciperture fulumicanic Aciperture suprinches Acimercuse Alamin colice Alamin suprinches Alamin suprinches Alamin suprinches	DAI.	68 4 0.2	-	3 5	_	-	79 a 52	\exists	_	E2		234	-	-	231		_	LISH A SID	+	32	-
Acpenteriformo Amiliotras Cupelformes	Actornosticias Amistria	Acijemum fuhimomie Acijemser swynheliga Amir odica Alosa pseudohanengus Alosa saprafosima	0.2				Ø .	x	a \$2	\neg		.5-5		_	_	_	_	-	_	1.00	_		_
Arnifotrus Chapeifotrus	Artis	Actionner austriches Amir calies Alass associationnerges Alass sagnificante	0.2	4 0.2	1.9	-				S. I	- NO	30	- 7	W.S.	0:	- 4	W.50	2	- 40	AL HALF		F. 2	SD
Arnifotrus Chapeifotrus	Artis	Amir colus Aloss preodobavengus Aloss regislorins	475	-			3.6	Lt	8 3	.5	0.8	1.18	0.8	4	1.7	1.8	1 3	1.0	2.7	4 4	6 1	3 7	2.7
Chapelformes		Alasa aseodoharengus Alasa sapialooma	475	-						- 1		- 4				0.4	# 3	2.7	1.0	± 1	0 0	7 5	0.0
	Clupeldse	Alma sagralouime	475		0.1	5	D.I.	17.5		-	0.2	2 0.8	0.1	±	0.1	0.1	2 6	11			- 5	13 3	0.3
	Clupeldse		-	± 0.6	0.2		1.8			-	0.1	± 1.1	0.4	±	2.5	0.4	± 0	1.7	0.4	± 1	1 0	2 :	1.5
			1.0		0.1	:	0.6	16		-	1.3	1, 5,3	0.5	±	1.0	0.5	# 3	2.4			. 0	14 1	3.6
		Сапожена спрезвитиет	4		-		-		_	-	0.3	1.02	-		-	-		-	-		- 0	3 1	0.5
		Cetastornas consolareso		-	-		15	O.L	1 5	15	0.5	2 0.7	0.2	±	0.9	0.1	-	3.5	5.5	± 4	5 0	1.3 5	
		Cefestores commercioni/	1.5	± 1.7	1.5		1.7	0.7	: 3	13	0.7	± 1.5	5.4	±	3.5	1.1	# 3	8.5	17	± 1	1 1	3 3	2.4
Constanting and	Catostomidae	Certalisales cyprinus	1		0.9	=	0.6			- 1	0.2	1 0.7	A.			0.9	2 (2.1	-		- 0	14 3	0.4
According to the same		Motoscoma aeisurves	9.0	4 0.3	9.0		13	0.1	8 8	1.4	0.7	# 0.7	0.5	4	13	0.6	# 1	0.0	1.0	a 1	100		0.1
		Mosostoma macralispidotum	1.0	1 0.5	DB	8	1.2	0.9	8 3	-	-	4 24	3.2	1	4.1	3.2		4-14	2.2	-		9 6	3.7
- He cannot have		Cyprinus carpila	0.2	1 05	0.4		1.4	0.5	8 1	38.0	0.6	1.0	0.4	4	F3	2.0	# 3	1.6	0.2	# 0	420		1 1
		Hybognathus regius	10		3.			3		-	0.5	4 0.5	0.8		0.1	-		-	-		3	0 1	0.3
	Cyprinidae	Westeriganus crysoleuces	0.8	4 44	0.4	-	-	0.9	100	-	2.4	1.14	1.5		5.7	2.0	114	7	-		-	3 1	1 1 1 1 1 1 1
		Wetropie Audioniae	2 2 2 2 2	1 74	DE	1	2.9	0.6	8 8	1	0.1	0.5	0.2		2.8	0.2	# 2	2.0	300		-	16 1	
		Serpatifus corporate	0.6	4 0.7	-		14			-	-	- 2	12		-	-			4		_	19 1	_
Conforms	Docates	Eron Niclus	1.9	1 24	1.7		-	0.6	-		1.4	6.22	-		3.5	0.0		2.2			1.0	4 1	
CHARACTOLYTEIN	LEON SHIPE	Exon rearquisonoy	0.6	4 0.7	0.5		0.2	0.1	8.5	14	,m.,		0.4	4	Œ.	0.4	# 6	2.4	-		- 0	1.2 3	Œ.
Gadiformos	Carlifae.	Microgenius tamacel	16.		-		1,01	.6		-	ж.	14.	1,0		.0.			-	14	± 1	.0 0	18 5	0.3
	Lottelec	Kata fata		-			-	0.3	2 1	-	-	2 0.1	D.I.	_	-	0.2	2.5	1.1	1.0	± 1	0.0	11 3	
	Legiscotelelar	CeptionArus osonus	0.5	± 0.2	0.1	1	0.5			\rightarrow	-	1 0.7	0.4	*	0.5	-			-		_	13 3	
The Contract of the Contract o	Ownerstee	Overcras resortes	14		-	_	- 0		_		-	1 0.7			-	-		-	-		-	18 3	ونتقيب
Cotequitori Extres	Hodor/Her.	Chicofool Jorginson	-4	-	1.3	1	-	******		Section 2	or Princeton	1.33			3.8	9.4	إصبالية	Settem	HEND'S	± 0	579 000	12_3	
		Ambhaltas nacolnis	100	± 1.4	4.5	-	5.9	1.7	-			2 15	0.5	±	1.2	0.5	-	-	1.0	# 1	37		5.7
		Ceptures pithones	9.70	± 1.9	9.7	:	1.5	0.4	= 5	2.3	0.2	± 0.6	0.3	±	0.7	0.4	# (1.7	-			14 3	
	Contrarchidae	Departs macrochinus		± 0.7	3.			A.,		*	۳.	- 3			×.	× .		-	-		100	18 3	
		Microptenus dolarties	12	4 2.8	1.0		2.7	0.7	# 2		200	* 14	D.A	-	1.0	0.8	1141	77.27	a.a	4 0	20	19 1	1 171
		Afforopte/sat salmoides		1.5	Dat	E	15	5				0.9	0.4		0.2	0.2		2.5	350		100	12 1	110
	and the second	Pomouis nigromoculatus		4 04	0.7		0.1		_	\rightarrow	_	# D.S	10.0			0.1	_	2.2	-	_	_	15 1	_
Pertiforms	Gobědar	Włogobiur reelanostoetus:	_	a 0.3	0.2	ü	0.3	2.	_	_	0.2		0.8	_	0.3	0.2		1.1		_	_	_	0.2
	Monoridee	Morane perericana	29.	- 0	0.4		0.2	0.1			G.A	1.7	0.7	. 4	0.1	0.3	177	7.77	0.3	4 1	-	14 3	1
		Morane savatile	-	_	1.0	_	0.9	-	_	-	d a	101	0.0		0.4	0.1	-	2.5	-	_	_	12 1	
		Pencino copro des		# 30.3	42.4	:	65.9	6.0		- 1		4 15	17.8		24.8				0.1	41.00	1.0		
-	Percidae	Percu (Newscores:	34.5	8 42.4												5.8							
		Sander convalence	0.8	+ 12	9.4	5	5.0	0.8		-	1	1: IA 4: 27	4.7	-	37	2.5		5.4	2.5	± 6		7 :	
	E-10-1-10-2	Sander Hinne	-	1 12	0.5	-	0.3	1.2	÷	-	dii.	2 0.3	-	_	0.2	0.4	-	September 1	distri-	4 1	425	13 5	
	Scierredae Percentidae	Antodronia gramiero Percusab ombeomoscas	-	-	100		0.7	-	-	\rightarrow	_	± 0.1	0.2	_		0.4	_	1.7	1.4	2.1	-	17 3	-
		Echthyamazon aniciasab	-	-	-	_	0.5	0.1	4 1	_	-	1 0.2	0.2	_	_	0.1		2.1	1.0	± 1	_	12 :	
KINTELWINIONSS	AND DESCRIPTIONS	Covegores o'sexcidentis	-	-	0.6	-	0.5	WE	-	Coli.	4.7	4.00	10000	_	0.1	W. 0	2 1	di d	O'CHECK	± 1	COLUMN TOWNS	18 :	_
Salmoniformes	Sulmonidae	Circlianlymetrics librately	0.6	± 0.7				1.0			2	-	5554	- 60	.91:41	10			+11	404	400	18 5	7
And Comments	Jeen Pul Publis	Oncontractus objevidado	2000	± 0.7			-	2			0.4	± 0.7	2		-	8		31			100	110	a
		Areniana retulosas	-	1 0.7	0.3			0.2	h 1	_	-	4 6.9	2.2	*	9.7	0.4	4 3	1.5		_	_	_	5.7
Skelformo	telephotelag	ictulusus aunctorus	0.0		0.4	ũ	0.9	100	-		1	1 18	13		21	1.3		2.8	1.6	. 4	100	17 3	
CONTRACTOR OF THE PARTY OF THE	THE PARTY NAMED.	Water State			60.00		No.	7,4,190		***	4.0	4. 4.6	4190	. 161	41.18	0.4	111	23	#-FF.	4		10 1	1 1545

Online Resource 4: Indicator Species Analysis (IndVal analysis; Dufrene & Legendre, 1997) performed in the St. Lawrence River (Canada) identified indicator species (black boxes) in (1) the overall fish communities, (2) in each seven sectors, and (3) in the two opposing shores. Species captured by seine nets (a) and gillnets (b) were analysed separately. Significance was tested using a random permutation procedure and the "Holm" adjustment method (Holm, 1979) was used to correct for multiple testing (De Cáceres et al., 2010b).

(1) Indicator species (black boxes) of the overall fish communities.

Species	Seine nets	Gillnets
Acipenser fulvescens		
Alosa pseudoharengus		
Aplodinotus grunniens		
Catostomus catostomus		
Culaea inconstans		
Cyprinella spiloptera		
Esox lucius		
Etheostoma exile		
Etheostoma nigrum		
Etheostoma olmstedi		
Fundulus diaphanus		
Hiodon tergisus		
Hybognathus regius		
Ictalurus punctatus		
Ichthyomyzon unicuspis		
Labidesthes sicculus		
Lepomis gibbosus		
Lota lota		
Negobius melanostomus		
Notropis atherinoides		
Notropis bifrenatus		
Notemigonus crysoleucas		
Noturus gyrinus		
Notropis heterodon		
Notropis heterolepis		
Notropis hudsonius		
Notropis rubellus		
Notropis stramineus		
Notropis volucellus		
Osmerus mordax		
Percina caprodes		
Percina copelandi		
Percopsis omiscomaycus		
Pimephales notatus		
Sander canadensis		
Sander vitreus		
Semotilus corporalis		

(2.a.) Indicator species (black boxes) in each seven sectors captured by seine nets. Species followed by "*" are indicators of only one sector.

	Lake Saint- François (LSF)	Lake Saint- Louis (LSL)	Montréal- Sorel (MS)	Archipelago of Lake Saint- Pierre (A-LSP)	Lake Saint- Pierre (LSP)	Becancour- Batiscan (BB)	Grondines- Saint-Nicolas (GSN)
Hybognathus regius *							
Percina copelandi							
Notemigonus bifrenatus							
Ameiurus nebulosus							
Esox lucius							
Notropis atheriniodes							
Percopsis omiscomaycus							
Alosa sapidissima							
Carpiodes cyprinus							
Cyprinus carpio							
Notropis volucellus							
Lepomis gibbosus							
Notemigonus crysoleucas							
Perca flavescens							
Pimephales notatus							
Ambloplites rupestris							
Labidesthes sicculus							
Micropterus salmoides							
Neogobius melanostomus							
Notropis stramineus *							
Apeltes quadracus *							

(2.b.) Indicator species (black boxes) in each seven sectors captured by gillnets. Species followed by "*" are indicators of only one sector.

	Lake Saint- François (LSF)	Lake Saint- Louis (LSL)	Montréal- Sorel (MS)	Archipelago of Lake Saint- Pierre (A-LSP)	Lake Saint- Pierre (LSP)	Becancour- Batiscan (BB)	Grondines- Saint-Nicolas (GSN)
Esox masquinongy							
Morone americana							
Pomoxis nigromaculatus							
Neogobius melanostomus							
Coregonus clupeaformis *							
Catostomus catostomus							
Sander canadensis							
Moxostoma macrolepidotum							
Ictalurus punctatus							
Alosa pseudoharengus							
Catostomus commersonii							
Acipenser fulvescens							
Ambloplites rupestris							
Micropterus dolomieu							
Ameiurus nebulosus							
Esox lucius							
Notemigonus crysoleucas							
Perca flavescens							
Cyprinus carpio							
Hiodon tergisus							
Moxostoma anisurum							
Alosa sapidissima							
Aplodinotus grunniens							
Lepomis gibbosus							
Micropterus salmoides							
Notropis hudsonius							
Lepisosteus osseus							
Carpiodes cyprinus							
Amia calva *							

(3.a.) Indicator species (black boxes) in the two opposing shores captured by seine nets. The analysis was performed only for sectors where the structure of fish communities was significantly different between north and south shores.

Chasias	Lake Saint-	-Louis (LSL)	Lake Saint-	Pierre (LSP)	Becancour-E	Batiscan (BB)
Species	North	South	North	South	North	South
Apeltes quadracus						
Carpiodes cyprinus						
Cyprinella spiloptera						
Fundulus diaphanus						
Labidesthes sicculus						
Micropterus dolomieu						
Notropis heterodon						
Notropis heterolepis						
Notropis rubellus						
Notropis volucellus						
Pimephales notatus						

(3.b.) Indicator species (black boxes) in the two opposing shores captured by gillnets. The analysis was performed only for sectors where the structure of fish communities was significantly different between north and south shores.

Species	Archipelago (of Lake Saint- (A-LSP)	Lake Saint-	Pierre (LSP)	Becancour-E	Batiscan (BB)
	North	South	North	South	North	South
Ameiurus nebulosus						
Amia calva						
Cyprinus carpio						
Esox lucius						
Hiodon tergisus						
Lepomis gibbosus						
Morone americana						
Notemigonus crysoleucas						
Perca flavescens						
Percina caprodes						
Pomoxis nigromaculatus						

Online Resource 5: Average dissimilarity (Bray-Curtis, log-transformed abundance) among sectors for fish communities collected by seine nets (a) and gillnets (b) in the St. Lawrence River (Québec, Canada). Sectors were ordered from upstream to downstream.

SECTORS	Lake Saint- François (LSF)	Lake Saint- Louis (LSL)	Montréal- Sorel (MS)	Archipelago of Lake Saint- Pierre (A-LSP)	Lake Saint- Pierre (LSP)	Bécancour- Batiscan (BB)
Lake Saint-Louis (LSL)	33.16					
Montréal-Sorel (MS)	47.26	43.55				
Archipelago of Lake Saint-Pierre (A-LSP)	47.80	40.18	39.98			
Lake Saint-Pierre (LSP)	49.14	44.72	50.21	44.35		
Bécancour-Batiscan (BB)	48,04	42.28	40.82	40.24	46.86	
Grondines-Saint-Nicolas (GSN)	70.52	66.54	56.12	62.01	63.36	52.08
b):						
SECTORS	Lake Saint- François (LSF)	Lake Saint- Louis (LSL)		Archipelago of Lake Saint- Pierre (A-LSP)	Lake Saint- Pierre (LSP)	Bécancour- Batiscan (BB)
SECTORS Lake Saint-Louis (LSL)	François (LSF) 35,38	The state of the s		Lake Saint-	The state of the s	Batiscan
SECTORS	François (LSF)	The state of the s		Lake Saint-	The state of the s	Batiscan
SECTORS Lake Saint-Louis (LSL)	François (LSF) 35,38	Lauis (LSL)		Lake Saint-	The state of the s	Batiscan
SECTORS Lake Saint-Louis (LSL) Montréal-Sorel (MS)	35.38 56.52	Louis (LSL) 54.69	Sorel (MS)	Lake Saint-	The state of the s	Batiscan
SECTORS Lake Saint-Louis (LSL) Montréal-Sorel (MS) Archipelago of Lake Saint-Pierre (A-LSP)	35,38 36,52 51,95	Louis (LSL) 54.69 38.97	Sorel (MS) 55.48	Lake Saint- Pierre (A-LSP)	The state of the s	Batiscan