PART 2 The Tate Profile

Definition 4. Assume $E[m] \subseteq E(\mathbb{F}_q)$ and let (P_1, P_2) be a basis for E[m]. Then, the m-Tate profile is the map $t_{[m]} : E(\mathbb{F}_q) \to \mu_{m'}^2 \qquad Q \mapsto \left(\ t_2(P_1, Q), \ t_2(P_2, Q) \ \right).$

For $Q \in E(\mathbb{F}_q)$, we say that $t_{\lceil m \rceil}(Q)$ is the *m-profile* of Q. When $t_{\lceil m \rceil}(Q) = (1,1)$, we say the profile is *trivial*.

If the Tate pairing t_m is bilinear, then the Tate profile $t_{\lceil m \rceil}$ is linear.

If the Tate pairing t_m is non-degenerate, then $\ker t_{[m]} = [m]E(\mathbb{F}_q)$. Thus, $t_{[m]}(Q)$ is trivial if and only if there is an $R \in E(\mathbb{F}_q)$ with [m]R = Q.

Together, $t_{[m]}$ gives us isomorphisms $E[m] \cong E(\mathbb{F}_q)/[m]E(\mathbb{F}_q) \cong \mu_m^2.$ Thus, the basis (P_1,P_2) together with $t_{[m]}$ gives us coordinates.

Example 1

Theorem 3. For an elliptic curve $E: y^2 = (x - r_1)(x - r_2)(x - r_3)$ with $r_i \in \mathbb{F}_p$, we have $P \in [2]E(\mathbb{F}_p)$ if and only if $(x_P - r_1)$, $(x_P - r_2)$, and $(x_P - r_3)$ are squares.

Consequently, $P \in E(\mathbb{F}_p) \setminus [2]E(\mathbb{F}_p)$ if any $(x_P - r_i)$ is a non-square.

PART 2 The Tate Profile

Definition 4. Assume $E[m] \subseteq E(\mathbb{F}_q)$ and let (P_1, P_2) be a basis for E[m]. Then, the m-Tate profile is the map $t_{[m]}: E(\mathbb{F}_q) \to \mu_{m'}^2$ $Q \mapsto \left(t_2(P_1, Q), t_2(P_2, Q) \right)$.

For $Q \in E(\mathbb{F}_q)$, we say that $t_{[m]}(Q)$ is the *m-profile* of Q. When $t_{[m]}(Q) = (1,1)$, we say the profile is *trivial*.

If the Tate pairing t_m is bilinear, then the Tate profile $t_{\lceil m \rceil}$ is linear.

If the Tate pairing t_m is non-degenerate, then $\ker t_{[m]} = [m]E(\mathbb{F}_q)$. Thus, $t_{[m]}(Q)$ is trivial if and only if there is an $R \in E(\mathbb{F}_q)$ with [m]R = Q.

Together, $t_{[m]}$ gives us isomorphisms $E[m] \cong E(\mathbb{F}_q)/[m]E(\mathbb{F}_q) \cong \mu_m^2.$ Thus, the basis (P_1,P_2) together with $t_{[m]}$ gives us coordinates.

Example 1 · - - - -

Theorem 3. For an elliptic curve $E: y^2 = (x - r_1)(x - r_2)(x - r_3)$ with $r_i \in \mathbb{F}_p$, we have $P \in [2]E(\mathbb{F}_p)$ if and only if $(x_P - r_1)$, $(x_P - r_2)$, and $(x_P - r_3)$ are squares.

Consequently, $P \in E(\mathbb{F}_p) \setminus [2]E(\mathbb{F}_p)$ if any $(x_P - r_i)$ is a non-square.

Theorem 3. We have $P \in [2]E(\mathbb{F}_p)$ if and only if $t_{[2]}(P)$ is trivial.