

Navegación visual autónoma de un drone real en 3D

Autor: Andrés Hernández Escobar

Correo: aj.hernandez@alumnos.urjc.es Fecha de defensa: 13 de Julio de 2018

Índice

- Introducción
- Objetivos
- Infraestructura
- Desarrollo
- Experimentos
- Conclusiones

Introducción

- Motivación
- Robótica
 - Software en Robots
 - Simuladores
 - Visión Artificial
- Robótica Aérea
- Robótica Aérea en JdeRobot

Introducción

Robótica Aérea en JdeRobot:

Driver

Alberto Martín

Simulador

Daniel Yagüe

Autolocalización y Navegación

Alberto López

Manuel Zafra

Jesus Saiz

Despegue y aterrizaje controlado

Jorge Vela

Objetivos

Objetivo principal

Despegue controlado, navegación en 3D y aterrizaje controlado utilizando visión artificial.

Módulo autolocalización 3D a partir de balizas visuales

Subobjetivos

Módulo de navegación por balizas visuales

Programación del comportamiento del drone (autómata estados finito)

Validación experimental

Objetivos

Requisitos:

- JdeRobot 5.6.4
- Navegación controlada y fluida
- Computacionalmente eficiente
- Sistema Operativo Ubuntu 16.04
- Programado en Python

Infraestructura

- Parrot Ar. Drone 2
- Intel Compute Stick
- OpenCV
- AprilTags
- JdeRobot
 - color_turner
 - uav_viewer
 - slam_Markers
 - VisualStates
- ICE
- Simulador Gazebo

Navegación autónoma de un drone guiado por balizas visuales:

- Diseño
- Detección visual de las balizas
- Autómata de navegación
- Configuración
- Herramienta CalibrationTool

Diseño de la solución:

Detección visual de las balizas:

Autómata de navegación:

CalibrationTool:

Calibración utilizando deslizadores

Transformaciones morfológicas

Filtro combinado en tiempo real

Fichero de configuración XML

Experimentos

Pruebas en Simulador:

Elección de balizas de despegue y aterrizaje

Ajuste del control de navegación

Experimentos

Pruebas con el drone real y PC externo:

Ajuste del control de navegación

Desfase entre imágenes y órdenes

Problemas con la detección de las balizas arlequinadas

Experimentos

Pruebas con el drone real y un miniordenador:

Preparación y configuración

Teleoperación con miniordenador a bordo

Retardo detectado en uav_viewer

Prueba con miniordenador en tierra

Conclusiones

Conclusiones:

Autolocalización y navegación autónoma en 3D satisfactoria en dron real

Validación experimental satisfactoria en drone real

Rendimiento en ordenador externo y miniordenador similares

Potencia Ar. Drone 2 insuficiente

Conclusiones

Líneas futuras de investigación:

Aumentar complejidad de la navegación

Algoritmos más sofisticados de SLAM o DeepLearning

Cambio de drone por otro más potente