Real Analysis Assignments

Mostafa Hassanein

9 January 2024

1.1.7

```
A_n is the set of all positive multiples of (n+1).
```

a.

```
A_1 \cap A_2 = \{x : x \text{ is a positive multiple of both 2 and 3} \}
= \{x : x \text{ is a positive multiple of 6} \}
= A_5
= \{6, 12, 18, \ldots\}.
```

b.

i.

$$\cup \{A_n : n \in \mathbf{N}\} = \{x : x \text{ is a positive multiple of 2 or 3 or 4 or } \dots \}$$
$$= \mathbf{N} - \{1\}.$$

ii.

```
 \cap \{A_n : n \in \mathbf{N}\} = \{x : x \text{ is a positive multiple of 2 and 3 and 4 and } \dots \} = \emptyset \text{ (because } \forall n \in N \ n \notin A_n \text{)}.
```

1.1.22

a.

```
Proof.
```

```
Let x_1, x_2 \in A, and assume f(x_1) = f(x_2)

\implies g(f(x_1)) = g(f(x_2))

\implies (g \circ f)(x_1) = (g \circ f)(x_2)

\implies x_1 = x_2, by injectivity of g \circ f

\implies f is injective.
```

b.

Proof.

```
Let c \in C

\implies \exists a \in A : (g \circ f)(a) = c

\implies \exists a \in A : g(f(a)) = c
```

$$\implies \exists b \in B : g(b) = c$$

 \implies g is surjective.

1.3.7

Proof:

<u>Forward direction</u>: If a set T_1 is denumerable, then there exists a bijection from T_1 onto a denumerable set T_2 .

Since T_1 is denumerable, then there exists a bijection f_1 from N onto T_1 . And since T_2 is denumerable, then there exists a bijection f_2 from N onto T_2 . Also, since f_1 is a bijection, then f_1^{-1} exists and is a bijection from T_1 onto N. Then, the function defined by $f_2 \circ f_1^{-1}$ is a bijection from T_1 onto T_2 , since the composition of bijective functions is bijective.

Reverse direction: If there exists a bijection from a set T1 onto a denumerable set T_2 , then T_1 is denumerable.

Let g be the bijection from T1 to T2.

Since T_2 is denumerable, then there exists a bijection f_2 from N onto T_2 . Also, since g is a bijection, then g^{-1} exists and is a bijection from T_2 onto T_1 . Then, the function defined as $f_1 := g^{-1} \circ f_2$ is a bijection from N onto T_1 , since the composition of bijective functions is bijective.

This implies that the set T_1 is denumerable.

This completes the proof.

1.3.8

Let's define the set S_i as $S_i := \{i\}$, then for each i, S_i is a finite set (of cardinality = 1).

But the union $\bigcup_{i=1}^{\infty} S_i = N$ is infinite, because N is infinite.

2.1.4

By the trichotomy of a, we have three cases: (i) a < 0, (ii) a = 0, and (iii) a > 0.

(i): $a < 0 \Rightarrow a \cdot a > 0 \Rightarrow a \cdot a > a \Rightarrow a \cdot a \neq a$. Therefore, a cannot be less than 0.

(ii): $a = 0 \Rightarrow a \cdot a = a$, because $0 \cdot 0 = 0$.

(iii): a > 0 and $a \cdot a = a \Rightarrow a^{-1} \cdot a \cdot a = a^{-1} \cdot a \Rightarrow a = 1$.

Therefore, a = 0 or a = 1.

2.1.23

Proof:

Forward direction: For a > 0, b > 0, and $n \in \mathbb{N}$: If a < b, then $a^n < b^n$.

We use induction.

Base case (n = 1): This case is trivially true because it is given by the hypothesis: $a < b \iff a^1 < b^1$.

Inductive step (n > 1): By the induction hypothesis, we have:

$$a < b \Rightarrow a^n < b^n$$

Since b > 0, multiplying $a^n < b^n$ by b, we get:

$$ba^n < b^{n+1} \tag{1}$$

Since a < b, then b - a > 0; and since a > 0, then $a^n > 0$.

Also, since (b-a) > 0 and $a^n > 0$, we have:

$$(b-a)a^n > 0 \Rightarrow ba^n - a^{n+1} > 0 \Rightarrow ba^n > a^{n+1}$$
 (2)

Combining (1) and (2) together, we get:

$$a^{n+1} < ba^n < b^{n+1}$$

Therefore, $a < b \Rightarrow a^{n+1} < b^{n+1}$, thus closing the induction.

Reverse direction: For a > 0, b > 0, and $n \in \mathbb{N}$: If $a^n < b^n$, then a < b.

We use induction.

Base case (n = 1): This case is trivially true because it is given by the hypothesis: $a^1 < b^1 \iff a < b$.

Inductive step (n > 1): By the induction hypothesis, we have:

$$a^n < b^n \Rightarrow a < b \tag{3}$$

The contrapositive of (3) is:

$$a \ge b \Rightarrow a^n \ge b^n \tag{4}$$

Since b > 0, multiplying $a^n \ge b^n$ by b, we get:

$$ba^n \ge b^{n+1} \tag{5}$$

Since $a \ge b$, then $a - b \ge 0$; and since a > 0, then $a^n > 0$.

Also, since $(a - b) \ge 0$ and $a^n > 0$, we have:

$$(a-b)a^n \ge 0 \Rightarrow a^{n+1} - ba^n \ge 0 \Rightarrow a^{n+1} \ge ba^n \tag{6}$$

Combining (5) and (6) together, we get:

$$a^{n+1} \ge ba^n \ge b^{n+1} \tag{7}$$

Putting (4), (5), (6), and (7) together, we get:

$$a \ge b \Rightarrow a^{n+1} \ge b^{n+1} \tag{8}$$

Taking the contrapositive of (8), we get:

$$a^{n+1} < b^{n+1} \Rightarrow a < b \tag{9}$$

This closes the induction and completes the proof.

2.2.16

$$\begin{aligned} V_{\epsilon}(a) &= \{x \in R : |x - a| < \epsilon\} \\ V_{\delta}(a) &= \{x \in R : |x - a| < \delta\} \end{aligned}$$

(i)
$$V_{\epsilon}(a) \cup V_{\delta}(a) = \{x \in R : |x - a| < \epsilon \text{ and } |x - a| < \delta\}$$

Let $\gamma = \min(\epsilon, \delta)$.

Lower Bound: $|x-a| < \epsilon$ and $|x-a| < \delta \Rightarrow x > a - \epsilon$ and $x > a - \delta \Rightarrow x > a - \gamma$

Upper Bound: $|x-a| < \epsilon$ and $|x-a| < \delta \Rightarrow x < a + \epsilon$ and $x < a + \delta \Rightarrow x < a + \gamma$

Therefore, $V_{\epsilon}(a) \cup V_{\delta}(a)$ is in the γ -neighbourhood of a.

(ii)
$$V_{\epsilon}(a) \cap V_{\delta}(a) = \{x \in R : |x - a| < \epsilon \text{ or } |x - a| < \delta \}$$

Let $\gamma = \max(\epsilon, \delta)$.

Lower Bound: $|x-a| < \epsilon$ or $|x-a| < \delta \Rightarrow x > a - \epsilon$ or $x > a - \delta \Rightarrow x > a - \gamma$

Upper Bound: $|x-a| < \epsilon$ and $|x-a| < \delta \Rightarrow x < a + \epsilon$ and $x < a + \delta \Rightarrow x < a + \gamma$

Therefore, $V_{\epsilon}(a) \cap V_{\delta}(a)$ is in the γ -neighbourhood of a.

2.2.17

Without loss of generality, assume that b > a. Let $\epsilon = \frac{b-a}{2}$

Then,
$$U_{\epsilon}(a) = \{x \in R : |x - a| < \epsilon\}, \text{ and } V_{\epsilon}(b) = \{x \in R : |x - b| < \epsilon\}$$

$$U_{\epsilon}(a) \cap V_{\epsilon}(b) = \{x \in R : |x - a| < \epsilon \text{ and } |x - b| < \epsilon \}$$

Lower Bound:

$$\begin{aligned} |x-a| &< \epsilon \text{ and } |x-b| < \epsilon \\ \Longrightarrow & x > a - \epsilon \text{ and } x > b - \epsilon \\ \Longrightarrow & x > a - \frac{b-a}{2} \text{ and } x > b - \frac{b-a}{2} \\ \Longrightarrow & x > \frac{3a-b}{2} \text{ and } x > \frac{b+a}{2} \\ \Longrightarrow & x > \frac{b+a}{2} \end{aligned}$$

Upper Bound:

$$|x-a| < \epsilon \text{ and } |x-b| < \epsilon$$

$$\implies x < a + \epsilon \text{ and } x < b + \epsilon$$

$$\implies x < a + \frac{b-a}{2} \text{ and } x < b + \frac{b-a}{2}$$

$$\implies x < \frac{a+b}{2} \text{ and } x < b + \frac{b-a}{2}$$

$$\implies x < \frac{a+b}{2}$$

$$\implies x < \frac{a+b}{2}$$

Since the lower bound and the upper bound do not intersect, then $U_{\epsilon}(a) \cap V_{\epsilon}(b) = \emptyset$.

2.3.4

$$S_4 = \{1 - (-1)^n / n : n \in N\}$$

Let
$$S' = \{-(-1)^n/n : n \in \mathbb{N}\}$$
. Then: $S_4 = 1 + S'$.

$$inf(S') = -(-1)^2/2 = -1/2$$

$$sup(S') = -(-1)^1/1 = 1$$

 $inf(S_4)$:

$$inf(S_4) = 1 + inf(S') = 1 + (-1/2) = 1/2$$

$$sup(S_4)$$
:

$$sup(S_4) = 1 + sup(S') = 1 + 1 = 2$$

2.3.11

Proof. By the definition of the infimum and supremum we have $inf(S_0) \leq sup(S_0)$. So we need only show that (i) $inf(S) \leq inf(S_0)$, and (ii) $sup(S_0) \leq sup(S)$.

i. $inf(S) \leq inf(S_0)$: We prove this by contradiction.

Suppose that $inf(S_0) < inf(S)$.

Since $inf(S_0)$ is a infimum for S_0 , then $\forall \epsilon > 0 \ \exists s \in S_0 : s < inf(S_0) + \epsilon$.

Taking $\epsilon = [inf(S) - inf(S_0)]/2$

 $\Rightarrow \exists s \in S_0 \text{ and } s < inf(S)$

 $\Rightarrow s \in S_0 \text{ and } s \notin S$

 $\Rightarrow S_0 \not\subset S$.

This is a contradiction. Therefore, we must conclude that $inf(S) \leq inf(S_0)$.

ii. $sup(S_0) \leq sup(S)$: We prove this by contradiction.

Suppose that $sup(S_0) > sup(S)$.

Since $sup(S_0)$ is a supremum for S_0 , then $\forall \epsilon > 0 \ \exists s \in S_0 : s > sup(S_0) + \epsilon$.

Taking $\epsilon = [sup(S_0) - sup(S)]/2$

 $\Rightarrow \exists s \in S_0 \text{ and } s > \sup(S)$

 $\Rightarrow s \in S_0 \text{ and } s \notin S$

 $\Rightarrow S_0 \not\subset S$.

This is a contradiction. Therefore, we must conclude that $sup(S_0) \leq sup(S)$.

3.1.1.b

$$x_n := (-1)^n/n = (-1, 1/2, -1/3, 1/4, -1/5, ...)$$

3.1.5.d

Required to show: $\lim(\frac{n^2-1}{2n^2+3}) = \frac{1}{2}$

Proof. Given any $\epsilon > 0$, we need to find $k(\epsilon)$ such that for all $n \geq k$: $\left| \frac{n^2 - 1}{2n^2 + 3} - \frac{1}{2} \right| < \epsilon$:

$$\begin{split} |\frac{n^2-1}{2n^2+3}-\frac{1}{2}| &< \epsilon \\ |\frac{2n^2-2-2n^2-3}{4n^2+6}| &< \epsilon \\ |\frac{-5}{4n^2+6}| &< \epsilon \\ \frac{5}{4n^2+6} &< \epsilon \\ \frac{5}{4n^2+6} &\leq \frac{5}{n^2} \leq \frac{5}{n} < \epsilon \end{split}$$

Taking $k(\epsilon) = 5/\epsilon$ satisfies the required conditions.

3.1.7

a

Required to show: $\lim(\frac{1}{\ln(n+1)}) = 0$

Proof. Given any $\epsilon > 0$, we need to find $k(\epsilon)$ such that for all $n \ge k$: $\left| \frac{1}{\ln(n+1)} - 0 \right| < \epsilon$:

$$\begin{aligned} |\frac{1}{\ln(n+1)} - 0| &< \epsilon \\ \frac{1}{\ln(n+1)} &< \epsilon \\ \ln(n+1) &> \frac{1}{\epsilon} \\ n+1 &> e^{\frac{1}{\epsilon}} \\ n &> e^{\frac{1}{\epsilon}} - 1 \end{aligned}$$

Taking $k(\epsilon) = e^{\frac{1}{\epsilon}} - 1$ satisfies the required conditions.

b

i.
$$k(1/2) = e^2 - 1 = 7$$

ii. $k(1/10) = e^{10} - 1 = 22026$

3.1.9

Proof. $\lim(x_n) = 0 \Rightarrow \forall \epsilon > 0$ there exists $k(\epsilon)$ such that for all $n \geq k$: $|x_n - 0| < \epsilon$.

 $\Rightarrow \forall \epsilon > 0$ there exists $k(\epsilon)$ such that for all $n \geq k : x_n < \epsilon$ (because $x_n > 0$).

 $\Rightarrow \forall \epsilon > 0$ there exists $k(\epsilon)$ such that for all $n \geq k : \sqrt{x_n} - 0 < \sqrt{\epsilon} = \epsilon'$.

Since ϵ' can take on any value greater than zero, then by the definition of the limit of a sequence this shows that $\lim(\sqrt{x_n}) = 0$.

3.1.12

Required to show: $\lim(\sqrt{n^2+1}-n)=0$

Proof. Given any $\epsilon > 0$, we need to find $k(\epsilon)$ such that for all $n \ge k$: $|(\sqrt{n^2 + 1} - n) - 0| < \epsilon$:

$$\begin{split} |(\sqrt{n^2+1}-n)-0| < \epsilon \\ |\sqrt{n^2+1}-n| < \epsilon \\ \sqrt{n^2+1}-n \le \sqrt{(n+1/n)^2}-n < \epsilon \\ \sqrt{n^2+1}-n \le (n+1/n)-n < \epsilon \\ \sqrt{n^2+1}-n \le 1/n < \epsilon \end{split}$$

Taking $k(\epsilon) = \frac{1}{\epsilon}$ satisfies the required conditions.

3.2.2

a.

$$X=(sin^2(n)),\,Y=(cos^2(n))\implies X+Y=(1).$$

b.

$$X = ((-1)^n), Y = ((-1)^{n+1}) \implies X * Y = (-1).$$

3.2.13

Multiply and divide by the complex conjugate to put the sequence into a more favorable form:

$$\begin{split} (\sqrt{(n+a)(n+b)} - n) * \frac{\sqrt{(n+a)(n+b)} + n}{\sqrt{(n+a)(n+b)} + n} &= \frac{(n+a)(n+b) - n^2}{\sqrt{(n+a)(n+b)} + n} \\ &= \frac{n^2 + an + bn - ab - n^2}{\sqrt{(n+a)(n+b)} + n} \\ &= \frac{an + bn - ab}{\sqrt{(n+a)(n+b)} + n} \\ &= \frac{an + bn - ab}{\sqrt{(n+a)(n+b)} + n} \\ &= \frac{a + b - \frac{ab}{n}}{\sqrt{(1 + \frac{a}{n})(1 + \frac{b}{n})} + 1} \end{split}$$

Now taking the limit:

$$\lim \frac{a+b-\frac{ab}{n}}{\sqrt{(1+\frac{a}{n})(1+\frac{b}{n})}+1} = \frac{\lim a+\lim b-\lim \frac{ab}{n}}{\lim \sqrt{1+\frac{a}{n}}*\lim \sqrt{1+\frac{b}{n}}+\lim 1}$$
$$=\frac{a+b-0}{1*1+1} = \frac{a+b}{2}$$

3.2.14

a.

We have:

$$0 \le 1/n^2 \le 1/n$$

$$\implies n^0 \le n^{1/n^2} \le n^{1/n}$$

And we know the following limits:

$$\lim_{n \to \infty} (n^0) = 1 \wedge \lim_{n \to \infty} (n^{1/n}) = \lim_{n \to \infty} (n^{\lim_{n \to \infty} 1/n}) = \lim_{n \to \infty} (n^0) = 1$$

$$\implies \lim_{n \to \infty} (n^{1/n^2}) = 1 \text{ (By the squeeze theorem)}.$$

b.

We have:

$$\begin{array}{c} 1 \leq n! \leq n^n \\ \Longrightarrow 1^{1/n^2} \leq (n!)^{1/n^2} \leq (n^n)^{1/n^2} \end{array}$$

And we know the following limits:
$$\lim (1^{1/n^2}) = 1^0 = 1 \wedge \lim ((n^n)^{1/n^2}) = \lim (n^{1/n}) = n^0 = 1$$

$$\implies \lim ((n!)^{1/n^2}) = 1 \text{ (By the squeeze theorem)}.$$

3.2.22

The definition given for (y_n) is exactly the definition of the limit. Therefore, $\lim (y_n) = (x_n)$.

And, because (x_n) is convergent, then (y_n) must also be convergent.

3.3.3

We first show that (x_n) is bounded below by 2 using induction.

Proof.

Base case (n = 1): This case is trivially true since $x_1 \ge 2$.

Inductive step
$$(n > 1)$$
: Assume $x_n \ge 2$
 $\implies x_{n+1} = 1 + \sqrt{x_n - 1} \ge 1 + \sqrt{2 - 1} = 2$.

Next, we show that (x_n) is decreasing using induction.

Proof.

Base case
$$(n = 1)$$
: $x_2 = 1 + \sqrt{x_1 - 1} \le x_1 f$ for $x \ge 2$.

Inductive step
$$(n > 1)$$
: Assume $x_{n+1} \le x_n$
 $\implies x_{n+2} = 1 + \sqrt{x_{n+1} - 1} \le 1 + \sqrt{x_n - 1} = x_{n+1}$.

Finally, to find the limit we note that at the limit we have:

$$x_{n+1} = x_n$$

$$\implies \lim(x_n) = x = 1 + \sqrt{x-1}$$

$$\implies x = 2.$$

3.4.9

Proof. (By contradiction)

Suppose $\lim X = a \neq 0$.

- \implies All subsequences of X must converge to a (By theorem 3.4.2).
- \implies All subsequences of subsequences of X must converge to a (Again by theorem 3.4.2).

But this is a contradiction to our initial assumption that all subsequences of X contain a subsequence that converges to zero. Therefore, we conclude that $\lim X=0$.

3.5.9

Proof.

$$\begin{split} m>n &\implies |x_m-x_n| < r^n + r^{n+1} + \ldots + r^{m-1} \\ &\le \frac{r^n}{1-r} \\ &< \epsilon \ \, \forall \epsilon>0 \,\, and \,\, n \ge H(\epsilon) \,\, (\text{Because } \lim \frac{r^n}{1-r} = 0). \end{split}$$

 $\implies (x_n)$ is a Cauchy sequence.

3.7.9

a.

Proof.

The sequence $(\cos(n))$ does not converge to zero. $\implies \sum_{n=1}^{\infty} \cos(n)$ is divergent.

b.

Proof.

Let $X := (\frac{1}{n^2})$ and $Y = (\frac{cos(n)}{n^2})$. $\implies X$ is convergent and $x_n < y_n$ $\implies Y$ is convergent (By the comparison test).

4.2.14

 ${\it Proof.}$

$$\lim_{x \to c} f = L \implies |f(x) - L| < \epsilon$$

And we have: $|f(x) - L| \ge ||f(x)| - |L||$

Therefore: $||f(x)| - |L|| < \epsilon$

This implies that $\lim_{x\to c} |f| = |L|$

5.4.2

On $A = [1, \infty)$:

Proof.

Let $x, u \ge 1$.

$$\implies |f(x) - f(u)| = |\frac{1}{x^2} - \frac{1}{u^2}|$$

$$= |\frac{u^2 - x^2}{u^2 x^2}|$$

$$= |\frac{(u+x)(u-x)}{u^2 x^2}|$$

$$= |\frac{(u+x)(u-x)}{u^2 x^2}|$$

$$= \frac{(u+x)}{u^2 x^2}|u-x|$$

$$= (\frac{1}{ux^2} + \frac{1}{u^2 x})|u-x|$$

$$\leq 2|u-x|$$

$$\implies \forall \epsilon > 0 \ \exists \delta(\epsilon) = \frac{\epsilon}{2} : (\forall x, u \in A : |x - u| < \delta \implies |f(x) - f(u)| < \epsilon)$$

$$\implies f \text{ is uniformly continuous on } A.$$

On B = $[0, \infty)$:

Proof.

Take
$$x = \frac{1}{n}$$
 and $u = \frac{1}{n+1}$.

$$\implies |x - u| = \left| \frac{1}{n} - \frac{1}{n+1} \right| = \left| \frac{1}{n^2 + n} \right|$$

$$\implies \lim(|x - u|) = 0.$$

But we also have:

$$|f(x) - f(u)| = |n^2 - (n+1)^2| = |n^2 - n^2 - 2n - 1| = 2n + 1 \ge 1.$$

This shows that if we take ϵ to be any value < 1, then there is no corresponding δ that can satisfy the condition $|x - u| < \delta \implies |f(x) - f(u)|$.

 $\implies f$ is not uniformly continuous on B.

6.2.14

Proof. (By Contradiction)

Suppose there exists $a, b \in I$ such that f'(a) > 0 and f'(b) < 0.

$$\implies \exists c \in I : f'(c) = 0$$
 (By Darboux's theorem)

This is a contradiction. Therefore, we must conclude that either $f'(x) > 0 \ \forall x \in I$ or $f'(x) < 0 \ \forall x \in I$.

6.2.15

Proof.

Let $f'(x) \leq C$, and $x_1, x_2 \in I$.

$$\implies \exists z \in I : |f(x_1) - f(x_2)| = |f'(z)(x_1 - x_2)|$$
 (By the Mean Value Theorem)
 $\leq C|x_1 - x_2|$

 $\implies f$ satisfies the Lipschitz condition.

7.2.18

Proof.

Let $M := \sup(f)$ and $p \in [a, b]$ such that f(p) = M.

Since f is continuous at p, then given an $\epsilon > 0$, there exists $\delta > 0$ such that:

$$|x - p| \le \delta \implies |f(x) - f(p)| \le \epsilon$$

$$\implies f(p) - \epsilon \le f(x) \le f(p)$$

$$\implies M - \epsilon \le f(x) \le M$$

$$\implies (M - \epsilon)^n \le f(x)^n \le M^n$$

$$\implies 2\delta(M - \epsilon)^n \le \int_{p - \delta}^{p + \delta} f(x)^n \le (b - a)M^n$$

$$\implies 2\delta(M - \epsilon)^n \le \int_{p - \delta}^{p + \delta} f(x)^n \le \int_a^b f(x)^n \le (b - a)M^n$$

$$\implies 2\delta(M - \epsilon)^n \le \int_a^b f(x)^n \le (b - a)M^n$$

$$\implies 2\delta(M - \epsilon)^n \le \int_a^b f(x)^n \le (b - a)M^n$$

$$\implies (2\delta)^{\frac{1}{n}}(M - \epsilon) \le \left(\int_a^b f(x)^n\right)^{\frac{1}{n}} \le (b - a)^{\frac{1}{n}}M$$

$$\implies (M - \epsilon) \le M_n \le M.$$

 $\implies \lim M_n = M.$

7.4.7

a.

Proof.

Let
$$P = [0, \frac{1}{2} - \epsilon, \frac{1}{2} + \epsilon, 1]$$

$$\Longrightarrow L(g;P) = 0 * (\frac{1}{2} - \epsilon) + 0 * (2\epsilon) + 1 * (\frac{1}{2} - \epsilon) = \frac{1}{2} - \epsilon$$

$$U(g;P) = 0 * (\frac{1}{2} - \epsilon) + 1 * (2\epsilon) + 1 * (\frac{1}{2} - \epsilon) = \frac{1}{2} + \epsilon$$

$$\implies U(g;P) - L(g;P) = 2\epsilon$$

 \implies The Darboux integral of g on [0,1] is $\frac{1}{2}$.

b.

Let
$$P = [0, \frac{1}{2} - \epsilon, \frac{1}{2} + \epsilon, 1]$$

$$\implies L(g;P) = 0 * (\frac{1}{2} - \epsilon) + 0 * (2\epsilon) + 1 * (\frac{1}{2} - \epsilon) = \frac{1}{2} - \epsilon$$
$$U(g;P) = 0 * (\frac{1}{2} - \epsilon) + 13 * (2\epsilon) + 1 * (\frac{1}{2} - \epsilon) = \frac{1}{2} + 25\epsilon$$

$$\implies U(g;P) - L(g;P) = 26\epsilon$$

 \implies g is Darboux integrable on [0, 1] with an integral value of $\frac{1}{2}$.

8.1.23

Proof.

Let M be the larger of the upper bounds on f_n and g_n .

$$\implies |f_n g_n - fg| = |f_n g_n + f_n g - f_n g - fg|$$

$$\leq |f_n g_n - f_n g| + |f_n g - fg|$$

$$= |f_n||g_n - g| + |g||f_n - f|$$

$$\leq M|g_n - g| + M|f_n - f|$$

$$< \epsilon.$$

$$\implies lim(f_ng_n) = fg.$$

Extras

Theorem 3.1.4 (Uniqueness of Limits).

A sequence in \mathbb{R} can have at most one limit.

Proof. (By contradiction)

Suppose for the sake of contradiction that x' and x'' are two limits of the sequence (x_n) and $x' \neq x''$.

$$\implies \forall \epsilon > 0: \ (\exists K': \forall n \geq K': |x_n - x'| < \epsilon) \land \ (\exists K'': \forall n \geq K'': |x_n - x''| < \epsilon)$$

$$\implies \forall n \ge K = \max(K', K'') : |x' - x''| = |x' - x_n + x_n - x''| \\ \le |x' - x_n| + |x_n - x''| \\ < \epsilon + \epsilon = 2\epsilon.$$

 $\implies x' = x''$, since we can make ϵ as small as we wish.

But this is a contradiction to our initial assumption that $x' \neq x''$. Therefore, we conclude that a sequence in \mathbb{R} can have at most one limit.

Theorem 3.2.2.

A convergent sequence of real numbers is bounded.

Proof.

Let
$$\lim_{n \to \infty} (x_n) = x$$
 and $\epsilon := 1$.
 $\implies \exists K = K(1) : \forall n \ge K : |x_n - x| < \epsilon = 1$.
 $\implies |x_n| = |x_n - x + x|$.
 $\le |x_n - x| + |x|$.
 $< 1 + |x|$.

Define
$$M := \sup\{|x_1|, |x_2|, \dots, |x_{K-1}|, 1 + |x|\}.$$

 $\implies \forall n \in \mathbf{N} : |x_n| \le M.$

 \implies The sequence (x_n) is bounded.

Theorem 3.4.8 (Bolzano-Weierstrass Theorem).

A bounded sequence of real numbers has a convergent subsequence.

Proof.

Let X be our bounded sequence.

By the Monotone Subsequence Theorem, X has a subsequence X^\prime that is monotone.

Since X is bounded, then so is X'.

Since X' is monotone and bounded, then, by the Monotone Convergence Theorem, it is convergent.

Theorem 5.3.7 (Bolzano's Intermediate Value Theorem).

Let I be an interval and let $f: I \to \mathbf{R}$ be continuous on I. If $a, b \in I$ and if $k \in \mathbf{R}$ satisfies f(a) < k < f(b), then there exists a point $c \in I$ between a and b such that f(c) = k.

```
Proof. (By Cases)
\frac{\text{Case 1: } a < b:}{\text{Define } g(x) := f(x) - k.}
\implies g(a) < 0 < g(b)
\implies \exists c \text{ where } a < c < b: g(c) = 0 \text{ (By the Location of Roots Theorem)}
\implies \exists c: f(c) = g(c) + k = k.
\frac{\text{Case 2: } b < a:}{\text{Define } h(x) := k - f(x).}
\implies h(b) < 0 < h(a)
\implies \exists c \text{ where } b < c < a: g(c) = 0 \text{ (By the Location of Roots Theorem)}
\implies \exists c: f(c) = k - h(c) = k.
```

Theorem 6.2.12 (Darboux's Theorem).

If f is differentiable on I = [a,b] and if k is a number between f'(a) and f'(b), then there is at least one point c in (a,b) such that f'(c) = k.

Proof.

Suppose that f'(a) < k < f'(b).

Define g(x) := kx - f(x) for $x \in I$.

Since g is continuous, it attains a maximum value on I.

Since g'(a) = k - f'(a) > 0, then the maximum of g does not occur at x = a. Similarly, since g'(b) = k - f'(b) < 0, then the maximum of g does not occur at x = b.

Therefore, by the Interior Extremum theorem, g attains its maximum at some point c in (a, b) where g'(c) = k - f'(c) = 0. Hence f'(c) = k.