30.05.22

Note 1

9a902d381d8f4e4fh5ff8c1e77h38c57

Пусть G — непустое множество. «Спо Отображение вида

$$G \times G \to G$$

 $_{
m B}$ называется $_{
m BC}$ бинарной операцией на множестве $G_{
m BC}$

Note 2

6fdd3ac4b4f644cea3704bcc79918836

Пусть $\{(c): G-$ непустое множество,(c): G- бинарная операция на G. $(c): Пара <math>(G, \circ)$ называется $\{(c): Группой, (c): G-$ она удовлетворяет аксиомам группы.(c): G- она удовлетворяет аксиомам группы.(c): G-

Note 3

827b57c3950c42b28e381d37a49ddf39

Сколько утверждений представлено в наборе аксиом из определения группы (G,\circ) ?

Три.

Note 4

f526d0257921478ca77a37b97abb9d06

Какова первая аксиома в наборе аксиом из определения группы (G,\circ) ?

Операция ∘ ассоциативна.

Note 5

ce2298302937453e87e0cf850f17af90

Какова вторая аксиома в наборе аксиом из определения группы (G, \circ) ?

Для операции ∘ существует нейтральный элемент.

Note 6

9f917456f2bf4fe6bf4e35f8042c9499

Пусть (G,\circ) — группа, $\{(c4:a\in G.)\}$ $\{(c2:a)$ Элемент $\tilde{a}\in G\}$ называется $\{(c3:a)$ Обратным к a, $\{(c4:a)\}$ если $\{(c4:a)\}$

$$a \circ \tilde{a} = \tilde{a} \circ a = e$$
.

}}

Note 8

13c9853893a445d9a33db6823c3a5146

Какова третья аксиома в наборе аксиом из определения группы (G,\circ) ?

 $\forall a \in G$ существует обратный к a элемент.

Note 9

ba5e27ac8a9481eac4302c3159a659

Пусть (G, \circ) — группа, $a \in G$. (СС) Обратный элемент к a обычно обозначают (СС) a^{-1} .

Note 10

9f4da30e71b1403a998b7c3fdf192252

 $\{(c)^2M$ ножество всех невырожденных $n \times n$ матриц над полем $F_{\|}$ вместе с $\{(c)^2, (c)^2\}$ общей линейной группой.

Note 11

27a09e6a00d14e859d7ad1d78a4f74a3

 $\{e^{2n}$ Общая линейная группа из n imes n матриц над полем $F\}$ обозначается $\{e^{2n}$ $\mathrm{GL}(n,F).\}$

Note 12

2ed3e0b5ee424059ae3baeb77a99c828

 $\{A\in \mathrm{GL}(n,\mathbb{R})|\det A=1\}$ вместе с невоперацией умножения называется невоспециальной линейной группой.

Note 13

7b61df257fe7441fa69b9d03205e3c8c

Специальная линейная группа из $n \times n$ матриц над $\mathbb{R}_{\mathbb{N}}$ обозначается (ст. $\mathrm{SL}(n)$.)

Пусть V — линейное пространство. Тогда

$$(V, \{\{c1:: + \}\}) - \{\{c2:: \mathbf{группа.}\}\}$$

Note 15

aff87807663a4a91b5401bdf6899fbf6

$$(\mathbb{Z}^n, \{\{c1::+\}\}) - \{\{c2:: \mathbf{группа.}\}\}$$

Note 16

8ced218a1c26445e933dbfd17c1eaad6

 $\{(c)\}$ Множество всех ортогональных $n \times n$ матриц над \mathbb{R}_{\parallel} вместе с $\{(c)\}$ операцией умножения $\{(c)\}$ называется $\{(c)\}$ ортогональной группой. $\{(c)\}$

Note 17

91b1cca934884832853d2b3b5ba12743

 ${}_{\text{(C2)}}$ Общая ортогональная группа из n imes n матриц над $\mathbb{R}_{\mathbb{N}}$ обозначается ${}_{\text{(C1)}}\mathrm{O}(n).{}_{\mathbb{N}}$

Note 18

eb84d3b2cf0c4432ad56a0dbdc8604af

 $\{a\in O(n)\mid \det A=1\}$ вместе с $\{a\in O(n)\mid \det A=1\}$ вместе с $\{a\in A=1$

Note 19

56e431becef842f4bb0c6b21484e440b

 $_{\mathbb{R}^n}$ обозначается $_{\mathbb{R}^n}$

Note 20

5c9f837485594f04924f55f586958257

Пусть $\{(c):K\subset\mathbb{R}^n.\}$ $\{(c):M$ ножество $\{A\in\mathrm{O}(n)\mid A(K)=K\}\}$ $\}$ вместе с $\{(c):$ операцией умножения $\}$ называется $\{(c):$ группой симметрий K. $\}$

Note 21

822e126f31c7481393a42cee53def0b6

Пусть $K\subset \mathbb{R}^n$. {{e2=} Группа симметрий K}} обозначается {{c1=} Sym K.}} Группа (G,\circ) называется (сагабелевой,)) если (сагоперация \circ коммутативна.)

Note 23

59ac970ec54461083354dae9eeb4047

Может ли группа иметь несколько нейтральных элементов?

Нет, нейтральный элемент единственен.

Note 24

13fee55238844118889a790b6e0c7e37

Пусть (G, \circ) — группа. Тогда если e и e' — нейтральные элементы для \circ , то e=e'. В чём основная идея доказательства?

Рассмотреть $e \circ e'$.

Note 25

afa616033db44cee8d39131bb90173bd

Пусть (G, \circ) — группа, $a \in G$. Может ли в G существовать несколько элементов, обратных к a?

Нет, обратный элемент единственен.

Note 26

9f4dcde939af46639169bda602d721c5

Пусть (G,\circ) — группа, $a\in G$. Тогда если a^{-1} и \tilde{a} — обратные элементы к a, то $\tilde{a}=a^{-1}$. В чём основная идея доказательства?

Представить \tilde{a} как $\tilde{a} \circ (a \circ a^{-1})$.

Note 27

3db3d03590c84407bfb64b2a80b0e1c5

Пусть (G,\circ) — группа, {{ca:}} $a,b\in G$.} Тогда

$$(a \circ b)^{-1} = \{\{c1: b^{-1} \circ a^{-1}.\}\}$$

Пусть (G,\circ) — группа, (G,\circ) — Тогда (G,\circ) называется (G,\circ) подгруппой группы (G,\circ) если (G,\circ) является группой.

Note 29

9de4580c8d2545bcad2c525fe42930ec

Пусть (G,\circ) — группа, $H\subset G$. Выражение " (G,\circ) является подгруппой (G,\circ) " обозначается (G,\circ)

$$(H, \circ) \leqslant (G, \circ).$$

,

Note 30

bd4835b2c522436fac41030bf6b13a66

Пусть (G,\circ) — группа, {{c4::}} $a\in G$,}} {{c3::}} $n\in\mathbb{N}$.}}

$$\{\{c2:a^n\}\} \stackrel{\text{def}}{=} \{\{c1:\underbrace{a \circ \cdots \circ a}_{n \text{ pas}}.\}\}$$

Note 31

2e41bce96a5249ca9d372d04f772b9b4

Пусть (G,\circ) — группа, {{c2::}} $a\in G$.}}

$$a^0 \stackrel{\mathrm{def}}{=} \{\{c1::e.\}\}$$

Note 32

2cfa92bf39b847d4aa21d381a0d2c428

Пусть (G, \circ) — группа, $a \in G$, $n \in \mathbb{N}$.

$$\{\{c2::a^{-n}\}\} \stackrel{\text{def}}{=} \{\{c1::(a^{-1})^n.\}\}$$

Note 33

3994ad9b38154ec081e7042011939b50

Пусть (G,\circ) — группа, $\{(c):a\in G.\}$ $\{(c)\in\Pi$ Порядком элемента $a\}$ называется $\{(c):\Pi$ ибо

$$\min \left\{ n \in \mathbb{N} \mid a^n = e \right\}.$$

либо ∞ , если таких n не существует.

Пусть (G,\circ) — группа, $a\in G$. «с²-Порядок элемента a» обозначается «са ord a»

Note 35

2e3b057efc1e40b1843700b41b2052b9

Пусть (G,\circ) — группа, (св. $a\in G$.)) (св. Множество $\{a^k\mid k\in\mathbb{Z}\}$ с операций \circ)) называется (св. подгруппой (G,\circ) , порождённой элементом a.))

Note 36

fd96a89fdb1b45559782a7213101e400

Пусть (G,\circ) — группа, $a\in G$. Подгруппа (G,\circ) , порождённая элементом a, обозначается $\{c: a \land a\}$,

Note 37

54a6a6775d1940b09be51518008fabdc

Пусть (G,\circ) — группа, $a\in G$. Тогда если посто $a<\infty$, то

$$\{(\operatorname{C3::}(\langle a\rangle,\circ)\}\} \simeq \{(\operatorname{C1::}(\mathbb{Z}_{\operatorname{ord} a},+).)\}$$

Note 38

d83fe9abbfca4fc99b99e08866cc83a9

Пусть (G,\circ) — группа, $a\in G$. Тогда если «салот $a=\infty$,» то

$$\text{\{c3:}(\langle a\rangle,\circ)\text{\}\}}\simeq\text{\{\{c1:}(\mathbb{Z},+).\text{\}\}}$$

Note 1

053e51258ecd4ca588d279e34a89a3d3

Пусть $(G,\circ),(H,*)$ — группы, $\{(c3):f:G\to H.\}\}$ Отображение f называется $\{(c2):$ гомоморфизмом групп, $\{(c1):$

$$\forall a, b \in G \quad f(a \circ b) = f(a) * f(b).$$

}}

Note 2

i266d124dc1d4300h1204c6286h3e25e

Пусть $(G,\circ),(H,*)$ — группы, $f:G\to H$ — гомоморфизм. Тогда

$$f(e) = \{\{c1:: e.\}\}$$

Note 3

5fa9d3c343dc4c9dbd8cee9c37bbac42

Пусть $(G,\circ),(H,*)$ — группы, $f:G\to H$ — гомоморфизм. Тогда

$$f(a^{-1}) = \{\{c_1 : f(a)^{-1}\}\} \quad \forall a \in G.$$

Note 4

181a648ef262451fb18b4237c6c7f429

Пусть $(G,\circ),(H,*)$ — группы, $f:G\to H.$ Отображение f называется примом групп, если примом ввляется гомоморфизмом и биективно.

Note 5

743a7ef3a0c045548f43006f58969493

$$\text{(c2:}\mathbb{R}_+\text{)} \stackrel{\mathrm{def}}{=} \text{(c1:}\left\{x \in \mathbb{R} \mid x > 0\right\}.\text{)}$$

(не как в матане!)

Note 6

7618af52019f4c6bb8a64f426a797e4

$$\text{for } \overline{\mathbb{R}}_{+}\text{ and } \overset{\mathrm{def}}{=} \text{for } \{x \in \mathbb{R} \mid x \geqslant 0\} \text{ .}$$

(не как в матане!)

Пример изоморфизма групп (\mathbb{R}_+,\cdot) и $(\mathbb{R},+)$.

 $f: x \mapsto \ln x$.

Note 8

2ec8dcb4e81d40eebde4db2b2702daa

Пусть $n \in \mathbb{N}$.

$$\mathbb{Z}_n \stackrel{\mathrm{def}}{=} \{\{\mathrm{clin}[0:n-1].\}\}$$

Note 9

ae71026122c54154a213e03843c8abcb

Пусть $a, b \in Z_n$.

$$a+b\stackrel{\mathsf{def}}{=} \{\{\mathrm{cli}(a+b) \bmod n.\}\}$$

Note 10

8e7c4384053947bc8f40faae3d3bc34f

Пусть (G, \circ) — группа, $a \in G$, ord $a < \infty$. Тогда

$$(\langle a \rangle, \circ) \simeq (\mathbb{Z}_{\text{ord } a}, +).$$

В чём основная идея доказательства?

Построить изоморфизм $\mathbb{Z}_{\operatorname{ord} a} o \langle a
angle, \quad k \mapsto a^k.$

Note 11

129a1bab504e409cb12b31bb2da9c1ff

Пусть (G,\circ) — группа, $a\in G$, ord $a<\infty$. Как показать, что $f:k\mapsto a^k,\ \mathbb{Z}_{\mathrm{ord}\, a}\to\langle a\rangle$ — гомоморфизм?

Представить $f(k_1+k_2)$ как $g^{k_1+k_2-l\cdot n},\ l\in\{0,1\}.$

Note 12

0b8b587049647ca85d7cdc871bebb05

Пусть (G,\circ) — группа, $a\in G$, ord $a<\infty$. Как показать, что $f:k\mapsto a^k,\ \mathbb{Z}_{\mathrm{ord}\,a}\to\langle a\rangle$ — сюръекция?

Представить $a^p \in \langle a \rangle$ как $a^{l \cdot n + k_0}$.

Note 13

36c7386b47444f4cab166aecea358d5b

Пусть (G,\circ) — группа, $a\in G$, ord $a<\infty$. Как показать, что $f:k\mapsto a^k,\ \mathbb{Z}_{\mathrm{ord}\, a}\to \langle a\rangle$ — инъекция?

$$k \neq l \implies a^{k-l} \neq e.$$

Note 14

326a83d344554cb38aab476534b6f5e8

Пусть (G, \circ) — группа, $a \in G$, ord $a = \infty$. Тогда

$$(\langle a \rangle, \circ) \simeq (\mathbb{Z}, +).$$

В чём основная идея доказательства?

Построить изоморфизм $\mathbb{Z} o \langle a
angle, \quad k \mapsto a^k.$

Note 15

31fd624715c244b2ba453e6ffe19dd74

Пусть
$$(G,\circ)$$
 — группа, $(G:G:H,\circ)$ — подгруппа, $g\in G.$ $(G:G:G\circ H)$ $\stackrel{\mathrm{def}}{=}$ $(G:G:G\circ h)$ $(G:G:G\circ H)$ $\stackrel{\mathrm{def}}{=}$ $(G:G:G\circ h)$ $(G:G:G\circ h)$ $(G:G:G\circ h)$ $(G:G:G\circ h)$

Note 16

ac542c349e5b43e886540f1f0e62bacc

Пусть
$$(G,\circ)$$
 — группа, (ез:: (H,\circ) — подгруппа, $g\in G$.))

$$\text{(c2:} H \circ g\text{)} \stackrel{\text{def}}{=} \text{(c1::} \left\{h \circ g \mid h \in H\right\}.\text{)}$$

Note 17

20affff668b04e9e80ea15dc66eab2c2

Пусть (G,\circ) — группа, (H,\circ) — подгруппа, $g\in G$. (кан Множество $g\circ H$)) называется (кан левым классом смежности элемента g по подгруппе H.)

Пусть (G,\circ) — группа, (H,\circ) — подгруппа, $g\in G$. «Следимножество $H\circ g$ » называется (спеправым классом смежности элемента g по подгруппе H.)

Note 19

810cc5be7cb2498280729b27d347be4f

Пусть
$$(G,\circ)$$
 — группа, (све (H,\circ) — подгруппа,)) (све $a,b\in G$.))
$$(e^2 = a \equiv b \pmod H)$$
 (све $a\circ b^{-1}\in H$.))

Note 20

ff25dee3ae6f4b1ab34700578cceaed5

Пусть
$$(G,\circ)$$
 — группа, (H,\circ) — подгруппа, $a,b\in G$. Тогда
$$\{a \equiv b \pmod H\} \} \iff \{\{c : a \in H = b \circ H.\} \}$$

(в терминах классов смежности)

Note 21

189a77d7bd2a4523886a65a220d953f4

Пусть
$$(G,\circ)$$
 — группа, (H,\circ) — подгруппа. Отношение
$$\cdot \equiv \cdot \pmod H$$

является отношением ((с1::Эквивалентности.))

Note 22

a07284200e0b4649bb1357b2aeaf3cc0

Пусть (G, \circ) — группа, (H, \circ) — подгруппа. Как показать, что отношение $\cdot \equiv \cdot \pmod{H}$ является симметричным?

$$a \circ b^{-1} \in H \implies (a \circ b^{-1})^{-1} \in H.$$

Note 23

745cc90590ef4d0784af24f93c539a9f

Пусть (G,\circ) — группа, (H,\circ) — подгруппа, (G,\circ) — Тогда всегда $g_1\circ H$ и $g_2\circ H$ либо (G,\circ) — не пересекаются, (G,\circ) либо (G,\circ) либо (G,\circ) подгруппа, (G,\circ) либо (G,\circ) подгруппа, (G,\circ) подгруппа, (G,

Пусть (G,\circ) — группа, (H,\circ) — подгруппа, $\{(G,\circ) \in G_*\}$ $\{(G,\circ) \in G_*\}$ Тогда количество элементов в $g\circ H_*\}$ равно $\{(G,\circ) \in G_*\}$ элементов в H_*

Note 25

5bd2c9c51fd4a398ac4adaf9172dfc6

Пусть (G,\circ) — группа. ([c]::Количество элементов в G[] называется ([c2::порядком группы (G,\circ) .)]

Note 26

0590e16f8b204e27a704de1a4d810d76

Пусть (G,\circ) — $\{(G,\circ)$ — подгруппа, (G,\circ) — подгруппа. (G,\circ) — подгруппы (G,\circ)

«{{с4::Теорема Лагранжа}}»

Note 27

6bbf33cf39f34f34afa5cf2be59fd219

В чём основная идея доказательства теоремы Лагранжа для конечных групп?

Представить G как конечное объединение непересекающихся классов смежности $g_i \circ H$.

Note 28

7fa9d6859025408f868211197328bf30

Пусть (G,\circ) — группа, (H,\circ) — подгруппа, $a,b\in G$. Тогда $(a\circ H)\cdot (b\circ H)=\bigoplus_{i=0}^{def}((a\circ b)\circ H)$

Note 29

daf66fd18e1b4e50b007b6a820bfc2b7

Пусть (G,\circ) — группа, (H,\circ) — подгруппа. Подгруппа (H,\circ) называется (кальной, кесли (кальной)

$$\forall g \in G \quad g \circ H = H \circ g.$$

Пусть (G,\circ) — группа, (H,\circ) — подгруппа. Тогда если (св. (H,\circ) — нормальная подгруппа,) то

$$\mathrm{dec}\left(\left.\left\{g\circ H\mid g\in G\right\},\,\cdot\,\right)\right\}-\mathrm{dec}\left.\mathrm{def}\right.$$

Note 31

8a3768ad050440ab84f132b57ff2665

Пусть (G,\circ) — группа, (H,\circ) — подгруппа. Тогда если (H,\circ) — нормальная подгруппа, то

$$(\{g \circ H \mid g \in G\}, \cdot)$$
 – группа.

Почему важно, что (H, \circ) — нормальная подгруппа?

В противном случае операция умножения может не быть корректно определённой.

Note 32

6df4f13013d04e2d81bc271465e769b9

Пусть (G,\circ) — группа, (H,\circ) — нормальная подгруппа. Пруппа классов смежности по подгруппе $H_{\mathbb{H}}$ называется при фактор группой группы (G,\circ) по подгруппе $H_{\mathbb{H}}$

Note 33

30b68180adac4dab81ea034157975d43

Пусть (G, \circ) — группа, (H, \circ) — нормальная подгруппа. (с2:: Фактор группа (G, \circ) по подгруппе $H_{\mathbb{R}}$ обозначается

$$G/H$$
.

Note 34

e44f6c96679478284d511f7a3be6f0e

$$\text{\{\{c2::}\mathbb{Z}_n\text{\}\}}\simeq\text{\{\{c1::}\mathbb{Z}/n\mathbb{Z}.\text{\}\}}$$

Note 35

9f1bb49a26844d51a59a5c4aac626fa9

Как показать, что $f: k \mapsto k + n\mathbb{Z}, \ \mathbb{Z}_n \to \mathbb{Z}/n\mathbb{Z}$ — биекция?

Из теоремы о делении с остатком определить f^{-1} .

Семинар 01.06.22

Note 1

86d221e9357e4a0ch1335c1926aheca7

Множество $\sqrt[n]{1}$ образует ((с2-группу)) относительно ((с1-умножения.))

Note 2

451622b7a7564fc4aa814dd526055fe6

Множество $\bigcup_{n} \sqrt[n]{1}$ образует (с2-группу) относительно (с1-умножения.)

Note 3

6c7fab41a91e4d339555af9508593e9

Пусть (G,\circ) — группа, $a\in G$. Тогда количество элементов в $\{(c): (a)\}$ равно $\{(c): ord\ a.\}$

Note 4

0e23db5db674658b20e95a3c304e1c7

Пусть (G,\circ) — группа, $a\in G$. Тогда

$$\operatorname{ord}(a^{-1}) = \{\{\operatorname{cl}:: \operatorname{ord} a.\}\}$$

Note 5

95b9c2ecea 204819ba17ec 6952a3cafd

Пусть (G,\circ) — группа, $\,a\in G$. Тогда

$$a^{-n} = e_{\text{{\{c2::}}} \iff \text{{\}\{\{c1::}} a^n = e.\text{{\}}\}}$$

Note 6

b9e7bf38ba554ac89a7dbe249ac1a0ca

Пусть
$$(G,\circ)$$
 — группа, $a\in G$, (свя ord $a=n$,)) $k\in\mathbb{N}$. Тогда
$$(a=n) = \frac{n}{\gcd(n,k)}.$$

Пусть (G, \circ) — группа, $a \in G$, ord a = n, $k \in \mathbb{N}$. Тогда

$$\operatorname{ord}(x^k) = \frac{n}{\gcd(n,k)}.$$

В чём основная идея доказательства?

$$a^{kp} = a^{\alpha n} \implies p = \frac{\alpha n}{k}.$$

Note 8

50e7ebab24cf4ba7b56cba450b2ee6ed

Пусть ($\langle a \rangle, \circ$) — циклическая группа порядка $n, \pmod{k \mid n}$ Тогда

$$\operatorname{\mathrm{dist}}\left\{g\in\langle a\rangle\mid g^k=e\right\} \operatorname{\mathrm{dist}}\left\{\operatorname{\mathrm{dist}}\left(a^{\frac{pn}{k}}\right)\right\}\mid p\in\operatorname{\mathrm{dist}}\left[0:k-1\right]\operatorname{\mathrm{dist}}\right\}.$$

Note 9

a2f886f5a18747b3be104ae46fbce7bf

Пусть ($\langle a \rangle, \circ$) — циклическая группа порядка n, ((c4- $k \mid n$.)) Тогда

Figure
$$\operatorname{ord}(a^{rac{pn}{k}})=k$$
 figure \iff figure $\gcd(p,k)=1.$ Figure $\gcd(p,k)=1.$