Roll No.:	

National Institute of Technology, Delhi

Name of the Examination: B. Tech

Branch : ECES EEE & CSE Semester : III

Title of the Course : Analog Electronics Course Code : ECB 206

Time: 3 Hours Maximum Marks: 50

Note:

Answers should be CLEAR, TO THE POINT AND LEGIBLE.

- All parts of a single question must be answered together. ELSE QUESTION SHALL NOT BE EVALUATED.
- All questions in Section A are compulsory. Attempt any 4 questions from Section B and 2 questions from Section C.

Section A

Q 1 Solve the following problems

 (2×5)

- a. Draw the full wave center-tap rectifier circuit, input/output waveform and explain its working. Calculate PIV of the citcuit.
- **b.** An N-channel JFET has $I_{DSS} = 2$ mA and $V_P = -4$ V. Calculate the trans-conductance (g_m) for an applied gate to source voltage V_{GS} of -2 V.
- c. A silicon transistor with $V_{BE,sat} = 0.8$ V, $\beta = 100$, $V_{CE,sat} = 0.2$ V and $R_S = 200$ K Ω is used in the circuit shown below. Find the minimum value of R_C for which the transistor will remain in the saturation.

- d. Define CMRR and input offset voltage of an op-amp.
- e. An op-amp has a slew rate of 0.5 V/ μ s. If the input signal varies by 0.25 in 10 μ s, find the maximum voltage gain?

- Q 2 Consider an ideal op-amp in the circuit below
 - (a) Find I_1 , I_2 , I_4 and V_x .
 - (b) If V_o is not to be lower than -13 V, find maximum allowed value for R_L
 - (c) If R_L is varied in the range 100 Ω to 1 K Ω , what is the corresponding change in I_L and V_o ?

(5)

Q 3 (a) Determine the stability factor $S(I_{co})$ for the circuit shown below. (2.5)

(b) Find CMRR of the opamp circuit shown below. (2.5)

Q 4 Define the pinch-off voltage of the JFET. A JFET amplifier with stabilized biasing circuit shown below has following parameters: $V_P = -2 V$, $I_{DSS} = 5 mA$. $R_L = 910 \Omega$, $R_F = 2.29 k\Omega$, $R_1 = 12 M\Omega$, $R_2 = 8.57 M\Omega$ and $V_{DD} = 24 V$. Determine the value of drain current I_D at the operating point. Also verify that FET will operate in pinch-off region. 50 V, 5 to 40 mA is used as shown in the regulator circuit- (5)

- Q 5 Design an op-amp circuit whose output is given as $V_0 = 3V_1 5V_2 + 4V_3 2V_4$. (5)
- Q 6 How is the voltage series feedback amplifier different from voltage shunt feedback amplifier? Find out the expressions of the input impedance in both cases. (5)

Section C

Q 7 For the circuit shown below, calculate $A_I = I_o/I_i$, A_V , A_{Vs} , and R_i . Assume suitable h-parameters. (10)

- Q 8 Draw the schematic diagram of Depletion mode MOSFET. Explain its working principle along with drain characteristics and transfer characteristics curves. (10)
- Q 9 Analyze the following characteristics of the basic differential amplifier (sketch the circuit diagram) in which a constant current bias with compensating diodes are used:
 - (a): Emitter current flowing in constant current source.
 - (b): AC-voltage gain in common-mode operation. (10)
