Домашнее задание 4

Это домашнее задание по материалам 4-8 неделей семестра (4-7 семинары). Дедлайн по отправке - 23:59 8 мая.

- Домашнее задание желательно оформлять в L^AT_EX, но можно прислать скан **разборчивого и аккуратного** рукописного текста (предварительно согласуйте с Георгием Кормаковым разборчивость и аккуратность своего почерка).
- Файл с решением домашнего задания необходимо назвать: Фамилия_Имя. Пример: Иванов Иван.
- ДЗ нужно отправлять на OptimizationHomework@yandex.ru. Тема письма: МГУ_номер задания (без пробелов в начале и конце). Для данного ДЗ тема письма: МГУ_4.
- В качестве решения присылается 1 файл, а не набор сканов/фотографий на каждую задачу.
- Не забывайте добавлять необходимые пояснения и комментарии, а не просто набор формул.
- Суммарный балл за задание равен 160. Чтобы получить максимальный оценку за задание, нужно набрать 75 баллов. Баллы сверх 75 позволяют набрать оценку выше максимума.
- Часть задач помечена \triangle . Они также входят в максимальный балл за задание, но мы считаем, что достаточно выполнить задания без \triangle , чтобы вникнуть в основные вещи, происходящие в соотвествующей части задания.

Желаем успехов!

Часть 1. Сопряженность. Двойственность. ККТ

Задача 1. (всего 30 баллов) Для каждой из следующих функций f вычислите сопряженную функцию f^* :

- а). (8 баллов) $f: \mathbb{R}^d_+ \to \mathbb{R}$, где $f(x) = -\left(\prod_{i=1}^d x_i\right)^{1/d}$, а \mathbb{R}^d_+ векторы с неотрицательными компонентами.
- б). (10 баллов) $f: \mathbb{R}^d \to \mathbb{R}$, где $f(x) = \max_{i=1,...,d} \{x_i\}$.
- в). (12 баллов) $f: \mathbb{S}_{++}^d \to \mathbb{R}$, где $f(X) = \operatorname{trace}(X^{-1})$ и \mathbb{S}_{++}^d положительно определенные матрицы.

Задача 2. (10 баллов) Построите двойственную задачу для следующей задачи оптимизации:

$$\min_{x} - \sum_{i=1}^{m} \log(b_i - a_i^T x)$$

с областью определения $\{x \in \mathbb{R}^d \mid a_i^T x < b_i \ \forall i = 1 \dots m\}.$

 Hint : Сначала введите дополнительные переменные y_i и ограничения $y_i = b_i - a_i^T x$.

Задача 3. (всего 30 баллов) Рассмотрим задачу следующего вида:

$$\min_{x} c^{T} x$$
s.t. $Ax \leq b$,
$$x_{i} \in \{0, 1\}, \ \forall i = 1, \dots, d.$$

Эта задачу довольно трудно решать, поэтому есть две релаксации, которые помогают построить нижнюю оценку на оптимальное значение исходной задачи. Рассмотрим следующие две задачи оптимизации, которые схожи с начальной:

$$\min_{x} c^{T} x$$
s.t. $Ax \leq b$,
$$0 \leq x_{i} \leq 1, \ \forall i = 1, \dots, d$$

И

$$\min_{x} c^{T} x$$
s.t. $Ax \leq b$,
$$x_{i}(1 - x_{i}) = 0, \ \forall i = 1, \dots, d.$$

Первая задача называется LP-релаксацией исходной задачи, и, как следует из ее записи, она дает нижнюю оценку на наше исходное оптимальное значение, а вторая задача является прямой перезаписью исходной задачи.

- а). (10 баллов) Выпишите двойственные задачи к LP-релаксации и ко второй задаче.
- **б**). \triangle (20 баллов) Двойственная задача ко второй задаче называется Лагранжевой релаксацией. Как следствие, она тоже дает нижнюю оценку на оптимальное значение исходной задачи. Покажите, что нижние оценки, которые вытекают из LP-релаксации и Лагранжевой релаксации, совпадают.

Задача 4. \triangle **(15 баллов)** Рассмотрим следующую функцию $f: \mathbb{R}^d \to \mathbb{R}$:

$$f(x) = \sum_{i=1}^{r} x_{[i]},$$

где r - число от 1 до d и $x_{[1]} \ge \ldots \ge x_{[d]}$. Другими словами, это функция равна сумме r наибольших компонент вектора x. Покажите, что f(x) равняется оптимальному значению следующей задачи оптимизации:

$$\max_{y \in \mathbb{R}^d} x^T y$$
s.t. $0 \le y \le 1$.
$$1^T y = r$$
.

Постройте двойственную задачу к задаче выше, изменив задачу максимизации на задачу минимизации.

Задача 5. (10 баллов) Рассмотрим следующую задачу минимизации:

$$\min_{x \in \mathbb{R}^d} ||Ax - b||_2^2$$

s.t. $Gx = h$,

где $A\in\mathbb{R}^{m\times d}$, rank A=d и $G\in\mathbb{R}^{n\times d}$, rank G=n. Выпишите ККТ для этой задачи, и найдите оптимальные значения x^* и ν^* прямых и двойственных переменных соответственно.

Часть 2. Субградиент и субдифференциал

Задача 1. (5 баллов) Пусть функция $f: \mathbb{R} \to \mathbb{R}$ задана следующим образом $f(x) = \max\{-x, x, x^2\}$. Найдите субдифференциал данной функции $\partial f(x)$.

Задача 2. (5 баллов) Пусть функция $f: \mathbb{R} \to \mathbb{R}$ задана следующим образом f(x) = |x-2| + |x+2| + |x-1|. Найдите субдифференциал данной функции $\partial f(x)$.

Задача 3. (10 баллов) Пусть функция $f: \mathbb{R}^n \to \mathbb{R}$ задана следующим образом $f(x) = \exp(\|Ax - b\|_p)$, где $A \in \mathbb{R}^{m \times n}$, $b \in \mathbb{R}^m$, $p \in [1; +\infty]$. Найдите субдифференциал $\partial f(x)$.

Задача 4. (10 баллов) Пусть $f: \mathbb{R}^n \to \mathbb{R}$ есть индикаторная функция следующего множества

$$\mathcal{B}_{\|\cdot\|}(0,1) = \{x : \|x\|_p \le 1\},$$

где $p \in [1; +\infty]$. Найдите субдифференциал $\partial f(x)$.

Задача 5. \triangle (15 баллов) Пусть $f: S \to \mathbb{R}$ - функция, определенная на множестве S из Евклидова пространства E. Пусть $x_0 \in S$ и пусть $f^*: S_* \to \mathbb{R}$ - сопряженная функция, где S_* из сопряженного пространства E^* . Покажите, что

$$\partial f(x) = \{ g \in S_* : \langle g, x \rangle = f^*(g) + f(x) \}$$

Задача 6. \triangle (всего 20 баллов)

а). \triangle (10 баллов) Пусть $\lambda_{\max}: \mathbb{S}^d \to \mathbb{R}$ - функция максимального собственного значения, заданная на \mathbb{S}^d . Найдите субдифференциал $\partial \lambda_{\max}(X)$. Здесь \mathbb{S}^d - симметричные матрицы.

 Hint : воспользуйтесь вариационным представлением λ_{\max} и формулой для субдифференциала максимума.

б). \triangle (10 баллов) Покажите, что функция $\lambda_{\max}(X)$ дифференцируема в точке $X \in \mathbb{S}^d$ тогда и только тогда, когда максимальное собственное значение матрицы X является простым (т. е. имеет кратность 1). Чему равен градиент $\nabla \lambda_{\max}(X)$?