15-887: Assignment #2

Due on Wednesday, October 19, 2016

Jordan Ford

Contents

Problem 1	
(a)	
(b)	
Problem 2	
2.1	
2.2	
2.3	
2.4	

Problem 1

(a)

To run this planner, please use the following command: python world.py -a prob1.txt

This planner performs a forward djikstra search in x and y and uses the result as an informed heuristic for a single backward A^* search in x, y, and t.

The 2D djikstra search expands all nodes in the graph - one million nodes for test case one. On my machine, it takes about 8 seconds to complete this phase of the search. The distances calculated by the djikstra search are then used as the heuristic for a backward A^* search which searches in both position and time.

TODO: Time, cost, number of states expanded

(b)

To run this planner, please use the following command: python world.py -b prob1.txt

One of the advantages of the algorithm I chose for part (a) is its ease of extension to part (b). By weighting the backward A* search, it is easy to trade optimality for speed, and it comes with the typical weighted A* performance guarantees.

TODO: Time, cost, number of states expanded

Problem 2

2.1

Suppose you have two consistent heuristic functions: h_1 and h_2 . Prove that $h(s) = \max(h_1(s), h_2(s))$ for all states s in the graph is also a consistent heuristic function.

A heuristic is consistent if

$$h(n) \le c(n, n') + h(n')$$

for every node n and its child node n'.

Proof:

$$h(n) = \max(h_1(n), h_2(n))$$

$$\leq \max(c(n, n') + h_1(n'), c(n, n') + h_2(n'))$$

$$\leq c(n, n') + \max(h_1(n'), h_2(n'))$$

$$\leq c(n, n') + h(n')$$

Suppose you have two consistent heuristic functions: h_1 and h_2 . Prove that $h(s) = \min(h_1(s), h_2(s))$ for all states s in the graph is also a consistent heuristic function.

A heuristic is consistent if

$$h(n) \le c(n, n') + h(n')$$

for every node n and its child node n'.

Proof:

$$h(n) = min(h_1(n), h_2(n))$$

$$\leq min(c(n, n') + h_1(n'), c(n, n') + h_2(n'))$$

$$\leq c(n, n') + min(h_1(n'), h_2(n'))$$

$$\leq c(n, n') + h(n')$$

2.2

 ${\bf d.}$ Monotonically non-increasing sequence

2.3

f. None of the above

2.4

e. None of the above