Binary Logics:

> Consist of binary variables and logical operation

> AND

> A,B,C, x,y=

> Possible values [0,1]

> etc.

Logic Gates

- Most Basic Digital Device

> 1 or more input & 1 outputs

> Output follows a certain logics

Truthtable:

-> A list of all possible inputs and outputs

All logic gales

NOT, AND, OR, XOR
NAND, NOR, XNOR

* NOT, AND, OR one Basic gates.

NAND & NOR are universal gate.

A universal gate is a gate which can implement any other gate.

AND !

$$\frac{A}{B}$$
 \longrightarrow \triangle

Outrot 1 when all inputs are 1,

A	B	AB
٥	0	0
0	(0
l	0	0
J	1	٥

OR:

$$A \rightarrow A+B$$

Outrat 1 when atleast one input is 1

A	B	A+3
O	0	0
O	(1
1	0	1
}	1	(

NOT (Inverter)

A	A'	
0	1	
(0	

& Output is inverse of input

NAND

$$A \longrightarrow (AB)'$$

uka

$$\begin{array}{c} A \\ B \end{array}$$

A	B	(A.B)'
Q	0	1
0	(1
1	0	<u>1</u>
})	0

* Enverse of AND

NOR

uka

$$\begin{array}{c} A \\ A \\ B \end{array}$$

_	A	B	(A+B)'
	O	0	1
	Ó	(0
	l	0	0
	J	1	0

Enverse of OR

Output 1 if odd number of input is 1

A	B	(A&B)'	
Q	0	0	
O	(ſ	
1	0	ſ	
])	0	

XNOR:

$$\frac{A}{B} \longrightarrow D \longrightarrow A \odot B = AB + A'B$$

Enverse of XOR

A	B	(A OB)/
Q	0	(
O	(0
1	0	0
])	1

Basic	Godes	using	MAND

NOT
$$A \longrightarrow A$$

AND $A \longrightarrow AB$

OR $A \longrightarrow A+B$

$$A \longrightarrow (AA)' = A'$$

$$A \longrightarrow (AB)'$$

$$A \longrightarrow (AB)' = AB$$

$$A \longrightarrow (A'B')' = (A'B')'$$

$$B \longrightarrow (A'B')' = A+B$$

> Using De Morgan's law

$$NOR$$
 $A \longrightarrow O-(A+B)^{\vee}$

OR
$$B \longrightarrow A+B$$

Proof using Truth table:

* Proof that
$$x \cdot (y+z) = (x \cdot y) + (x \cdot z)$$

CHS

X	y	Z	H2	x. (y+ z)	x.y	X·Z	(x.y) + (x.z)
0	0	D	0	6	0	Ó	0
0	0	l		0	0	٥	0
0	l	0	l	0	0	٥	0
	l		1	0	6	0	<u> </u>
1	0	0	0	0	6	0	0
l	0	l	l	1	0	1	l
(1	D	l		l	٥	1
	l	1	1			1]

Boolean Algebra

of Boolean Algebra Basic theorem

* Theorem can be proved using Truthtable or Algebric Manipulation

Basic Theorems are:

		
x +0 = x	χ , 0 = χ	identity
	x.x(= 0	con ple munt
x + x = X	7C- 2C = X	
x + 1 = 1	x.0 = 0	
(x')' = x		
x+y=y+x	ス· y = y, x	commutative
x (y=) = (xy)=	x + (y + z) = (x + y) + z	
	*x+y2 = (x+y) (x+2)	Distributiv
(x+y)'=x'y'	* (xy)' = x' + y'	De Margan
x + xy = x	xx(x+y) -x	Absorption
	$z + x' = 1$ $x + x = x$ $x + 1 = 1$ $(x')' = x$ $x + y = y + x$ $x(y^2) = (xy)^2$ $x(y+2) = xy + x^2$ $(x+y)' = x'y'$	$x + x' = 1$ $x + x = x$ $x + 1 = 1$ $x + y = y + x$ $x(y^2) = (xy)^2$ $x(y+2) = xy + xz$ $x + y^2 = xy + xz$ $x(x+y)' = x'y'$

but student tend to forget & All are important while simplifying stor marked enes

Duality Principle:

At we interchange operators and elements as follows,

$$(OR) + \Longrightarrow (AND)$$

$$0 \Longrightarrow 1$$

Example:

if
$$a + (b \cdot c) + 0 = (a + b) \cdot (a + c) \cdot 1$$

then we can find its dual expression

$$a \cdot (b+c) \cdot 1 = (a \cdot b) + (b \cdot c) + 0$$

* Duality Gives us free theorems

If a theorem/expression for example,

$$x + 1 = 1$$
 is valid / Proved

then its dual expression,

Operator Precedence:

Boolean Expression simplification: (Using Boolean Algebric Manipulation)

$$\begin{array}{ll}
x & \text{Simplify:} & (x'y'z) + (x'yz) + (xy') \\
&= x'z & (y+y') + xy' \\
&= x'z \cdot 1 + xy' \\
&= x'z + xy'
\end{array}$$

$$\begin{array}{ll}
xy + xy' \\
= x (y+y') = x \cdot 1 = x
\end{array}$$

* Simplify,
$$BC + AB' + AB + BCD$$

$$= BC (I+D) + AB' + AB$$

$$= BC \cdot 1 + AB' + AB$$

$$= BC + A (B'+B)$$

$$= BC + A.1$$

= BC +A

Prove,
$$(A \oplus B)' = A \otimes B$$
 using Boolean Manipulation:
 $(A \oplus B)'$
 $= (A B' + A'B)'$
 $= (A B)' \cdot (A'B)' \longrightarrow Applied Demorgan$
 $= (A' + B'') \cdot (A'' + B') \longrightarrow Demorgan$
 $= (A' + B) \cdot (A + B') \longrightarrow Demorgan$
 $= (A' + B) \cdot (A + B') \longrightarrow Demorgan$
 $= (A' + B) \cdot (A + B') \longrightarrow Demorgan$
 $= (A' + B) \cdot (A + B') \longrightarrow Demorgan$
 $= (A' + B) \cdot (A + B') \longrightarrow Demorgan$
 $= (A' + B) \cdot (A + B') \longrightarrow Demorgan$
 $= (A' + B) \cdot (A + B') \longrightarrow Demorgan$
 $= (A' + B) \cdot (A + B') \longrightarrow Demorgan$
 $= (A' + B) \cdot (A + B') \longrightarrow Demorgan$
 $= (A' + B) \cdot (A + B') \longrightarrow Demorgan$
 $= (A' + B) \cdot (A + B') \longrightarrow Demorgan$
 $= (A' + B) \cdot (A + B') \longrightarrow Demorgan$
 $= (A' + B) \cdot (A + B') \longrightarrow Demorgan$
 $= (A' + B) \cdot (A + B') \longrightarrow Demorgan$
 $= (A' + B) \cdot (A + B') \longrightarrow Demorgan$
 $= (A' + B) \cdot (A + B') \longrightarrow Demorgan$
 $= (A' + B) \cdot (A + B') \longrightarrow Demorgan$
 $= (A' + B) \cdot (A + B') \longrightarrow Demorgan$
 $= (A' + B) \cdot (A + B') \longrightarrow Demorgan$
 $= (A' + B) \cdot (A + B') \longrightarrow Demorgan$
 $= (A' + B) \cdot (A + B') \longrightarrow Demorgan$
 $= (A' + B) \cdot (A + B') \longrightarrow Demorgan$
 $= (A' + B) \cdot (A + B') \longrightarrow Demorgan$
 $= (A' + B) \cdot (A + B') \longrightarrow Demorgan$
 $= (A' + B) \cdot (A + B') \longrightarrow Demorgan$
 $= (A' + B) \cdot (A' + B') \longrightarrow Demorgan$
 $= (A' + B) \cdot (A' + B') \longrightarrow Demorgan$
 $= (A' + B) \cdot (A' + B') \longrightarrow Demorgan$
 $= (A' + B) \cdot (A' + B') \longrightarrow Demorgan$
 $= (A' + B) \cdot (A' + B') \longrightarrow Demorgan$
 $= (A' + B) \cdot (A' + B') \longrightarrow Demorgan$
 $= (A' + B) \cdot (A' + B') \longrightarrow Demorgan$
 $= (A' + B) \cdot (A' + B') \longrightarrow Demorgan$
 $= (A' + B) \cdot (A' + B') \longrightarrow Demorgan$
 $= (A' + B) \cdot (A' + B') \longrightarrow Demorgan$
 $= (A' + B) \cdot (A' + B') \longrightarrow Demorgan$
 $= (A' + B) \cdot (A' + B') \longrightarrow Demorgan$
 $= (A' + B) \cdot (A' + B') \longrightarrow Demorgan$
 $= (A' + B) \cdot (A' + B') \longrightarrow Demorgan$
 $= (A' + B) \cdot (A' + B') \longrightarrow Demorgan$
 $= (A' + B) \cdot (A' + B') \longrightarrow Demorgan$
 $= (A' + B) \cdot (A' + B') \longrightarrow Demorgan$
 $= (A' + B) \cdot (A' + B') \longrightarrow Demorgan$
 $= (A' + B) \cdot (A' + B') \longrightarrow Demorgan$
 $= (A' + B) \cdot (A' + B') \longrightarrow Demorgan$
 $= (A' + B) \cdot (A' + B') \longrightarrow Demorgan$
 $= (A' + B) \cdot (A' + B') \longrightarrow Demorgan$
 $= (A' + B) \cdot (A' + B') \longrightarrow Demorgan$
 $= (A' + B) \cdot (A' + B') \longrightarrow Demorgan$
 $= (A' + B) \cdot (A' + B') \longrightarrow Demorgan$
 $= (A' + B) \cdot (A' + B') \longrightarrow Demorgan$
 $= (A' + B) \cdot (A' + B') \longrightarrow Demorgan$
 $= (A' + B) \cdot (A' + B') \longrightarrow Demorgan$

= $A \odot B$

Complement of a function:

if
$$F = (x+y)$$
, then its complement is $F' = (x+y)'$

However, we can also find complement of a function by

- 1. Taking Dual of the function
- 2. Complement each variables

1. Onal =
$$(x'+y+z')\cdot(x'+y'+z)$$

2. Complement each var =
$$(x+y+z) \cdot (x+y+z') = F$$

* Find complement of x(y'21+y2)

1. Dud =
$$\times + ((4'+2') \cdot (4+2))$$

2. Complement =
$$x/+(y+z)$$
, $(y'+z')$

$$F' = \chi' + (y+z)(y'+z')$$

Using NAND or NOR to Draw circuit of a function:

Steps:

- 1. Represent the expression using AND, OR, NOT gate.
- 2. Draw each gote with equavalent NAND/NOR representation.
- 3. Remove any 2 carcading inverter.
- 4. Remove inverter from single input connection and replace input with it's complement. Only if there is a constraint

Amplement F = A(B+CD) + BC' using NAND only.

Now, if we want to reduce number of gates, we can remove cascading inverters. $\frac{x}{\sqrt{x}} \frac{x}{\sqrt{x}} = x$

