The status of unstressed lax-mid vowels in northern dialects of Brazilian Portuguese

Arthur Santana

(Universidade de São Paulo, University of Southern California) (Research granted by: Capes, CNPq)

Overview of the talk

- 1. The problem
- 2. Questions
- 3. Methods
- 4. Results
- 5. Formal analysis of the pattern
- 6. Conclusion

The problem

'foot bug' S[i]co S[e]co 'dry' S[ε]co 'I dry' SD S[a]co 'bag' <u>S[ɔ]</u>co 'I punch' S[o]co 'punch' 'juice' S[u]co

P[i]cado 'chopped' P[e]lado 'naked' P[a]letra 'talk n.' P[o]lar 'polar' P[u]dor 'modesty'

Inéd[i]to 'unseen' Câm[e]ra 'camera' <u>Á</u>c[a]ro 'mite' Abób[o]ra 'pumpkin' Vo<u>cá</u>b[u]lo 'word'

Bat[i] 'I hit past' Bat[a] 'hit imp.' Bat[u] 'I hit pres.'

u

The problem

Stressed

Pre-tonic

Non-final post-tonic

Final post-tonic

ND

S[i]co 'foot bug'
S[e]co 'dry'
S[e]co 'I dry'
S[a]co 'bag'
S[o]co 'I punch'
S[o]co 'punch'
S[u]co 'juice'

P[i]cado 'chopped'
P[ɛ]lado 'naked'
P[a]letra 'talk n.'
P[ɔ]lar 'polar'
P[u]dor 'modesty'

I<u>né</u>d[i]to 'unseen'
Câm[ɛ]ra 'camera'
Ác[a]ro 'mite'
Abób[ɔ]ra 'pumpkin'
Vo<u>cá</u>b[u]lo 'word'

Bat[i] 'I hit past'
Bat[a] 'hit imp.'
Bat[u] 'I hit pres.'

u

Previous studies

- Non-final postonic (abɔ́bɔ̞rɐ 'pumpkin')
 [ε, ɔ] result from harmony. No reduction via laxing
 Experimental study Santana, 2016
- Pretonic (pεhfúmī 'perfume')
 [ε, ɔ] cannot be fully accounted for via harmony. Reduction via laxing
 Sociolinguistic studies Barbosa da Silva (1988), Silva (2008)

Questions

- Is there really reduction via laxing in northern dialects of Brazilian Portuguese?
- How can this be accounted for?

Methodology

- 80 trisyllabic words ($\underline{\sigma}' \sigma \sigma$) words in a carrier sentence randomly repeated 3 times throughout the experiment
- 20 participants from São Luís (northern dialect);

Total: 4800 tokens

Variables: Height of the stressed vowel

Syllable weight

Preceding context

Place of articulation of the stressed vowel

Chi-square and ANOVA

General distribution

Fı	ont vowe	el	Back vowel			
[٤]	[e]	[i]	[၁]	[o]	[u]	
926	926 1.314 160			1.283	114	
(38,6%)	54,7%	(6,7%)	(41,8%)	(53,4%)	(4,8%)	
2.400 tokens 2.400 tokens						
Total: 4.800						

General distribution (without nasal context)

• Nasal in coda position triggers nasalization. As * $[\tilde{\epsilon}, \tilde{\sigma}]$ in Portuguese, this bias the result

Front vowel			Back vowel			
[8]	[e]	[i]	[c]	[o]	[u]	
926	700 55		1.002	609	9	
(55%)	(41,7%)	(3,3%)	(62%)	(37,5%)	(0,5%)	
1.680 tokens 1.620 tokens						
Total: 3.300						

Pretonic X Stressed

Pretonic Stressed	[ε]	[e]	[i]	Pretonic Stressed	[၁]	[o]	[u]
high	173	306	1	high	165	192	3
(480)	(36%)	(63,8%)	(0,2%)	(360)	(45,8%)	(53,3%)	(0,9%)
tense-mid	120	300	0	tense-mid	55	362	3
(420)	(28,6%)	(71,4%)	(0%)	(420)	(13%)	(86,2%)	(0,8%)
lax-mid	458	22	0	lax-mid	342	18	0
(480)	(95,4%)	(4,6%)	(0%)	(360)	(95%)	(5%)	(0%)
low	175	71	54	low	440	37	3
(300)	(58,3%)	(23,7%)	(18%)	(480)	(91,7%)	(7,7%)	(0,6%)
Total: 3300 tokens							
p-value < 0.001							

Pretonic X Syllable Weight

Pretonic	[ε]	[e]	[i]	Pretonic C-11 W-1-14	[c]	[o]	[u]
Syll. Weight light	518	322	0	Syll. Weight light	474	303	3
(840)	(61,6%)	(38,4%)	(0%)	(780)	(60,8%)	(38,8%)	(0,4%)
heavy (660)	396 (60%)	263 (39,8%)	1 (0,2%)	heavy (720)	468 (65%)	246 (34,1%)	6 (0,9%)
heavy by nasal (0)	0 (0%)	0 (0%)	0 (0%)	heavy by nasal (0)	0 (0%)	0 (0%)	0 (0%)
heavy by cor. fric. (180)	12 (6,7%)	114 (63,3%)	54 (30%)	heavy by cor. fric. (120)	60 (50%)	60 (50%)	0 (%)
Total: 3300							
p-value < 0.001							

Coarticulation effect

Task Dynamics Application – TaDA (Nam et al, 2004)

Disharmonic contexts

- Cases of [e, o] outside harmonic contexts are much less frequent.

Pretonic Stressed	[ε]	[၁]	Pretonic Stressed	[e]	[o]
high	173	165	lax-mid	22	18
tense-mid	120	55	low	10	37

- [ε, ɔ] cannot be fully accounted for through harmony.

"True" lax-mid vowels?

Paired t-test. No significant difference (*p-value* = 0.9)

Reduction via laxing?

• Yes. Evidence from sociolinguistic and experimental studies.

• But not across the board:

Pretonic: /i, ϵ , a, \flat , u/

Non-final postonic /i, e, a, o, u/

What is different?

Claim: prominence

How can this be accounted for?

• Two types of neutralization (Crosswhite, 2004)

Constrast enhancement /i, u, a/

Prominence alignment /i, u, ə/

• Prominence alignment selects the mid vowels:

*a/
$$\sigma_{NFP}$$
 >> * ϵ , σ_{NFP} >> e, σ_{NFP} >> i, σ_{NFP} >> i, σ_{NFP} *i, σ_{NFP} *e, σ_{NFP} >> * σ_{NFP} *e, σ_{NFP} >> * σ_{NFP} *a/ σ_{NFP} >> *a/ σ_{NFP} *a/ $\sigma_{$

But what about /a, i, u/? They're never affected by this alignment

How can this be accounted for?

Corner vowels are special due to their contrastive power.

Contrast enhancement: protects corner vowels

Prominence alignment: selects mid vowels

 Reduction via laxing can be accounted for with an interaction between costrast enhancement and prominence alignment

Contrast enhancement in OT (Padgett, 1997)

- N-way contrast: maintain a number of n contrasts
- Space constraints: two segments contrasting in F1 differ by at least 1/nth of the F1 range

	3-way Cont.	Space F1≥3	4-way Cont.
a. i, a	*!W	L	*
b. i, ε, e, a		**!*W	L
c.☞ i, e, a		*	*
d. [©] i, ε, a		*	*

Contrast enhancement + Prominence alignment

Prominence alignment selects the set of mid vowels to be produced

	*{i, u}/σ ₁	*{e, o}/ σ_1	*{ε, ɔ}/σ ₁	*{a}/σ ₁
a. ☞i, ε, a	*		*	*
b. i, e, a	*	*!W	L	*

In Non-final postonic context, the reverse constraint order selects (b).

Next steps...

- Extend the analysis:
 - -Non-final postonic and pretconic syllables that do not bear secondary stress and are not in word-infial position: /i, e, a, o, u/
 - Pretonic in word-intial position and syllables bearing secondary stress: /i, ϵ , a, \circ , u/

This predicts that the following should not be attested:

*[xi.kɔ.'ʃe.tʃɪ] 'rebound'

Conclusion

- Reduction via laxing is the neutralization strategy used in northern dialects of Brazilian Portuguese.
- This pattern, however, is not observed across the board. It occurs in pretonic context (word-initial) but not in non-final postonic contexts
- An interaction between contrast enahancement and prominence alignment types of neutralizatin is able to capture reduction via laxing and the difference that exists between the two contexts

References

BARBOSA DA SILVA, Myrian. As pretônicas no falar baiano: a variedade culta de Salvador. 1989. 377f. Tese (Doutorado em Língua Portuguesa) — Faculdade de Letras, Universidade Federal do Rio de Janeiro, Rio de Janeiro.

CROSSWHITE, K. Vowel Reduction. In: HAYES, B.; KIRCHNER, R.; STERIADE, D. (Ed.). Phonetically Based Phonology. Cambridge: Cambridge University Press, 2004.

NAM, Hosung; GOLDSTEIN, Louis; SALTZMAN, Elliot; BYRD, Dani. TADA: An enhanced, portable Task Dynamics model in MATLAB. Journal of the Acoustical Society of America. 2004; 115:2430.

SANTANA, Arthur. Uma abordagem fonológica para as postônicas não-finais. Domínios de Lingu@Gem, v. 10, p. 494-518, 2016.

SILVA, Ailda do Nascimento. As pretônicas no Falar Teresinense. 2009. 236 fls. Tese (Doutorado em Letras) – Programa de Pós-Graduação em letras, Pontifícia Católica do Rio Grande do Sul, Porto Alegre, 2009.