Homework Assignment 1 - Iterative Algorithms and Framework

Prewords

- Deadline for submission is 09-27-2017 11:59 PM (PST).
- Please submit your assignment online at the submission page.
- Please upload a pdf file with the following naming conventions LastnameFirst-Name_HW1.pdf
- If you submit a hand-written scan of your homework, please submit also a physical copy of your homework through the homework box.
- This is NOT a group assignment!!! You are allowed to ask everybody and use every kind of help BUT you need to submit your own solution.

Grading

We will grade your work according to the following criteria:

- Question 1 20 Points 5 per prove
- Question 2 10 Points
- Question 3 20 Points
- Question 4 20 Points

Problem sets

Problem 1.

Prove the following assertions by using the definition of the asymptotic notations.

- a) Show 4n + 8 = O(n)
- b) Show $15n^2 50 = \theta(n^2)$
- c) Show n is not in $O(\sqrt{n})$
- d) Show $n^2 = O(10^n)$

Problem 2.

Consider the following algorithm.

```
 \begin{array}{l} Secret1\,(n) \\ \{i=0;\ j=0;\ k=0; \\ for\ (i=0;\ i< n;\ i++) \\ \{for\ (j=0;\ j< n;\ j++\ ) \\ \{G(); \\ G(); \\ G(); \\ \} \\ for\ (k=0;\ k< n;\ k++) \\ G(); \\ G(); \\ G(); \\ G(); \\ G(); \\ \end{array}
```

Assuming the cost of the basic operation G() is 2 unit.

- a) What is the concrete running time (T(n))?
- b) What is the efficiency class of this algorithm? Prove that!

Problem 3.

Prove the correctness of algorithm ALG(A). Hint: algorithm return 2A.

```
ALG(A) {  R = 0 \\ I = A \\ while (I>0) \\ \{ \\ R = R + 2 \\ I = I - 1 \\ \} \\ return R \}
```

Problem 4.

Prove correctness of the following algorithm:

```
ALG(A) {  R = 0 \\ I = 2 \\ while (I <=\!\! A) \\ \{ \\ if (I is even) \{ R = R + 1 \} \\ I = I + 1 \}  return R }
```

Hint: algorithm returns $\frac{A}{2}$

Hint: Invariant (assuming indexing starts at 0):

$$\begin{cases} R_k = \lfloor \frac{k+1}{2} \rfloor \\ I_k = k+2 \end{cases}$$

An equivalent invariant (simpler, but longer proof – you will have to consider 2 cases each time):

$$\begin{cases} R_k = (I_k - 1)/2 \text{ if } I_k \text{ is odd} \\ R_k = (I_k - 2)/2 \text{ otherwise} \end{cases}$$