

Universidad Nacional de Ingeniería Escuela Profesional de Matemática Ciclo 2021-1

[Análisis Convexo - CM3E2] [Prof: Jonathan Munguia]

UNI, 18 de junio de 2021

Sexta Práctica Dirigida

1. Haga un dibujo para ayudarse a calcular la función de soporte σ_P del conjunto parabólico

$$P = \left\{ (\xi, \eta) \in \mathbb{R}^2 : \xi \ge \frac{1}{2} \eta^2 \right\}.$$

- a) Hallar el dom σ_P .
- b) Demostrar que σ_P no es semicontinua superior sobre su dominio.
- 2. Sea C convexo, compacto con $0 \in \text{int } C$. Mostrar que C° disfruta de las mismas propiedades.
- 3. Con respecto al Problema 2. Mostrar que las siguientes proposiciones son equivalentes
 - a) El hiperplano $H_{s,1}$ soporta a C en $x \in C$.
 - b) El hiperplano $H_{x,1}$ soporta a C° en $s \in C^{\circ}$.
 - c) Dados $x \in \partial C$ y $s \in \partial C^{\circ}$, $\langle s, x \rangle = 1$.
- 4. Mostrar que la conjugada de $\frac{1}{2}\|\cdot\|^2$ es ella misma.
- 5. Sea f convexa y sci sobre \mathbb{R} . Dada g(x,t):=tf(x/t), demuestre que

$$g^{**}(x,t) = \begin{cases} tf(x/t) & \text{si } t > 0\\ 0^+ f(x) & \text{si } t = 0\\ +\infty & \text{en otro caso,} \end{cases}$$

donde se define la función as intótica $0^+f(x):=\lim_{t\to+\infty}\frac{f(z+tx)-f(z)}{t}$ para $z\in\mathrm{dom}f.$ (Sug. Considere por ejemplo $g(x,t)=x^2/t$ sobre $\mathbb{R}\times\mathbb{R}_{>0}$)

- 6. Sea H un hiperplano en \mathbb{R}^n y suponga que el conjunto S está contenido en uno de los correspondientes semiespacios: $S \subset H^-$. Mostrar que $\overline{\operatorname{co}}(S \cap H) = (\overline{\operatorname{co}} S) \cap H$.
- 7. Dada la función $f(x) = \sqrt{1 + ||x||^2}$. Responda y justifique:
 - a) ¿Es f estrictamente convexa?
 - b) Halle f^* .
- 8. Sea $x \in C$, donde C es un conjunto convexo cerrado de \mathbb{R}^n . Mostrar que $x \in \text{ri } C$ si y solo si el cono normal $N_C(x)$ es un subespacio.
- 9. Sea $f: \mathbb{R}^n \to \mathbb{R} \cup \{+\infty\}$ (no necesariamente convexa) tal que $f \not\equiv +\infty$ y existe una función afín minorizando f sobre \mathbb{R}^n . Demuestre que
 - a) Si $x_0 \in \text{int dom } f \text{ entonces } f^* \langle x_0, \cdot \rangle \text{ es 0-coerciva};$
 - b) En particular, si f es finita sobre \mathbb{R}^n , entonces f^* es 1-coerciva.
- 10. Hallar las funciones conjugadas de
 - a) $\frac{1}{2} \| p_H \cdot \|^2$, donde H es subespacio de \mathbb{R}^n y p_H es la proyección ortogonal.
 - b) $\frac{1}{2}(u^t \cdot)^2$, donde u es un vector columna de \mathbb{R}^n .
- 11. Halle la función conjugada de $f: \mathbb{R} \to \mathbb{R}$:

$$f(x) = |x| + \frac{1}{2}x^2.$$