Kuratowskin upotuslause

Pekka Keipi

1. elokuuta 2016

Sisältö

1	Johdanto	2
2	Funktion rajoittuma, normi ja sup-normi	3
3	Metrinen avaruus	6
4	Konveksi verho	9
5	Banachin avaruus	11
6	Kuratowskin upotuslause	12

Johdanto

Tämän tutkielman tarkoituksena on esitellä Kuratowskin upotuslause jne.. Luku 2, ks. [2]

Funktion rajoittuma, normi ja sup-normi

Tässä kappaleessa esitellään vektori- ja normiavaruuksien ja näiden funktioiden perusominaisuuksia. Enemmän aiheesta löytyy kirjoista [2] ja [3].

Määritelmä 2.1. Vektoriavaruus

Joukko V on \mathbb{R} -kertoiminen vektoriavaruus, jos kaikkiin $v,w\in V$ ja $a\in\mathbb{R}$ on liitetty yksikäsitteinen summa $v+w\in V$ ja tulo $av\in V$ niin, että seuraavat ominaisuudet ovat voimassa:

- i) (u+v)+w=u+(v+w) kaikilla $u,v,w\in V$.
- ii) v + w = w + v kaikilla $v, w \in V$.
- iii) On olemassa sellainen $0 = 0_v$, että v + 0 = v kaikilla $v \in V$.
- iv) Jokaiseen $v \in V$ liittyy sellainen $-v \in V$, että v + (-v) = 0.
- v) a(v+w) = av + aw kaikilla $a \in \mathbb{R}, v, w \in V$.
- vi) (a+b)v = av + bv kaikilla $a, b \in \mathbb{R}, v \in V$.
- vii) a(bv) = (ab)v kaikilla $a, b \in \mathbb{R}, v \in V$.
- viii) $1_v = v$ kaikilla $v \in V$.

Tässä avaruuden V alkioita kutsutaan vektoreiksi ja avaruuden $\mathbb R$ alkioita skalaareiksi.

Määritelmä 2.2. Vektorialiavaruus

Osajoukko $W \subset V$ on vektoriavaruuden V (vektori)aliavaruus, jos

- i) $v + w \in W$ kaikilla $v, w \in W$,
- ii) $av \in W$ kaikilla $a \in \mathbb{R}, v \in W$ ja
- iii) $0_v \in W$

Määritelmä 2.3. Rajoitettu funktio

Olkoon D avaruus ja $F(D, \mathbb{R})$ kaikkien avaruudessa D määriteltyjen reaaliarvoisten funktioiden $f: D \to \mathbb{R}$ joukko. Joukko $F(D, \mathbb{R})$ on vektoriavaruus [2]. Funktio $f: D \to \mathbb{R}$ on rajoitettu, jos on olemassa sellainen $M \in \mathbb{R}, M \geq 0$, jolla $|f(x)| \leq M$ kaikilla $x \in D$.

Rajoitettujen funktioiden avaruus $Raj(D,\mathbb{R})$ koostuu kaikista rajoitetuista funktioista $f: D \to \mathbb{R}$.

Lemma 2.4. Rajoitettujen funktioiden avaruus $Raj(D, \mathbb{R})$ on reaaliarvoisten funktioiden vektoriavaruuden $F(D, \mathbb{R})$ aliavaruus.

Todistus. Olkoon $f, g \in Raj(D, \mathbb{R}), M, N \in \mathbb{R}, M, N \geq 0$ niin, että $|f(x)| \leq M$ ja $|g(x)| \leq N$ kaikilla $x \in D$. Tällöin seuraavat kohdat pätevät:

- i) $|f(x) + g(x)| \le |f(x)| + |g(x)| \le M + N \le \infty$, siis $f + g \in Raj(D, \mathbb{R})$ kaikilla $f, g \in Raj(D, \mathbb{R})$,
- ii) $|af(x)| = |a| \cdot |f(x)| \le |a| \cdot M \le \infty$, siis $af \in Raj(D, \mathbb{R})$ kaikilla $a \in \mathbb{R}, f \in Raj(D, \mathbb{R})$ ja
- iii) $0_{F(D,\mathbb{R})}(x) = 0$ kaikilla $x \in D$, jolloin $0_{F(D,\mathbb{R})} \in Raj(D,\mathbb{R})$.

Määritelmä 2.5. Normi

Olkoon E vektoriavaruus ja $|\cdot|: E \to \mathbb{R}_+, x \mapsto |x|$ kuvaus joukossa E. Kuvaus $|\cdot|$ on normi avaruudessa E, jos seuraavat ominaisuudet pätevät kaikilla $x, y \in E, a \in \mathbb{R}$.

- (N1) $|x+y| \le |x| + |y|$,
- (N2) |ax| = |a||x|,
- (N3) Jos |x| = 0, niin $x = \bar{0}$.

Vektoriavaruutta, jossa on annettu jokin normi, sanotaan normiavaruudeksi.

Esimerkki 2.6. Määritellään joukossa \mathbb{R}^n tavallinen euklidinen normi $|x| = \sqrt{x_1^2 + \dots + x_n^2}$.

Määritelmä 2.7. Sup-normi

Olkoon D epätyhjä joukko ja $Raj(D,\mathbb{R})$ kaikkien avaruudessa D määriteltyjen rajoitettujen funktioiden $f\colon D\to\mathbb{R}$ vektoriavaruus. Yhtälö $||f||=\sup\{|f(x)|\colon x\in D\}$ määrittelee normin avaruudessa $Raj(D,\mathbb{R})$. Tätä normia sanotaan avaruuden $Raj(D,\mathbb{R})$ supnormiksi.

Todistus. (N1) Olkoon $f, g \in Raj(D, \mathbb{R})$ ja $x \in D$. Tällöin

$$|f + g|(x) = |f(x) + g(x)| \le |f(x)| + |g(x)| \le ||f|| + ||g||$$

kaikilla $x \in D$, joten $||f + g|| \le ||f|| + ||g||$.

(N2) Olkoon $f \in Raj(D, \mathbb{R})$ ja $x \in D$. Tällöin

$$|af|(x) = |af(x)| = |a||f(x)| \le |a|||f||$$

kaikilla $x \in D$, joten $||af|| \le |a|||f||$. Jos a = 0, niin (N2) pätee muodossa 0 = 0. Jos $a \ne 0$, niin $f = a^{-1}af$ ja edellisen mukaan $||f|| \le |a^{-1}|||af||$ ja edelleen $||af|| \ge |a|||f||$ kaikilla $x \in D$. Tällöin siis ||af|| = |a|||f||.

(N3) Jos ||f|| = 0, niin |f(x)| = 0 kaikilla $x \in D$, eli $f = \overline{0}$.

Esimerkki 2.8. Tapauksessa $D = \mathbb{N}$ saadaan kaikkien rajoitettujen jonojen joukko $raj(\mathbb{N}, \mathbb{R})$. Joukon alkioita ovat rajoitetut jonot $x = (x_1, x_2, \dots)$. Tälle joukolle käytetään usein merkintää l_{∞} .

Metrinen avaruus

Tässä luvussa esitellään metristen avaruuksien ominaisuuksia.

Määritelmä 3.1. Metrinen avaruus on pari (X, d), jossa X on joukko ja d on metriikka joukossa X. Tällöin $d: X \times X \to \mathbb{R}_+$ on kuvaus, jolle pätee seuraavat ominaisuudet kaikilla $x, y, z \in X$:

- (M1) $d(x,z) \le d(x,y) + d(y,z)$
- $(M2) \ d(x,y) = d(y,x)$
- (M3) d(x,y) = 0, jos ja vain jos x = y.

Esimerkki 3.2. Euklidinen metriikka avaruuden \mathbb{R}^n kahden pisteen $p = (p_1, p_2, \dots, p_n)$ ja $q = (q_1, q_2, \dots, q_n)$ välillä on määritelty

$$d(p,q) = \sqrt{(p_1 - q_1)^2 + (p_2 - q_2)^2 + \dots + (p_n - q_n)^2}.$$

Esimerkki 3.3. Normiavaruus on aina metrinen avaruus.

Todistus. Olkoon E normiavaruus ja $x,y\in E.$ Metriikaksi voidaan valita d(x,y)=|x-y|, jolloin kaikilla $x,y\in E$ pätee

(M1)
$$d(x,z) = |x-z| = |x-y+y-z| = |(x-y)+(y-z)| \le |x-y|+|y-z| = d(x,y)+d(y,z)$$

(M2)
$$d(x,y) = |x - y| = |y - x| = d(y,x)$$

(M3) d(x,y) = |x - y| = 0, jos ja vain jos x = y.

Määritelmä 3.4. Joukkojen välinen etäisyys

Olkoon (X, d) metrinen avaruus ja $A, B \subset X$. Tällöin etäisyys osajoukkojen A ja B välillä on määritelty $d(A, B) = \inf\{d(a, b) : a \in A, b \in B\}$, eli etäisyyksien d(a, b) suurin alaraja, kun $a \in A$ ja $b \in B$.

Tällöin pätee $d(A, B) \ge 0$ ja jos $A = \emptyset$ tai $B = \emptyset$, niin d(A, B) = 0.

Lause 3.5. Olkoon (X, d) metrinen avaruus, $x, y \in X$ ja $A \subset X$ epätyhjä. Tällöin $|d(x, A) - d(y, A)| \le d(x, y)$. Erityisesti $|d(x, z) - d(y, z)| \le d(x, y)$ kaikilla $z \in X$.

Todistus. Olkoon $a \in A$. Tällöin kaikilla $y \in A$ pätee $d(x,A) \leq d(x,a) \leq d(x,y) + d(y,a)$. Ottamalla infimum kaikkien $a \in A$ yli saadaan $d(x,A) \leq d(x,y) + d(y,A)$ ja edelleen $d(x,A) - d(y,A) \leq d(x,y)$. Vastaavasti olkoon $y \in A$, jolloin kaikilla $x \in X$ pätee $d(y,A) - d(x,A) \leq d(y,x) = d(x,y)$. Nyt $d(x,A) - d(y,A) \leq d(x,y)$ ja $d(y,A) - d(x,A) \leq d(x,y)$, jolloin siis $|d(x,A) - d(y,A)| \leq d(x,y)$.

Määritelmä 3.6. Homeomorfismi tarkoittaa kuvausta $f: X \to Y$, jolla

- (1) f on bijektio,
- (2) f on jatkuva,
- (3) $f^{-1}: Y \to X$ on jatkuva.

Määritelmä 3.7. Upotus tarkoittaa kuvausta $f: X \to Y$, joka määrittelee homeomorfismin $f_1: X \to f[X]$, jolla $f_1(x) = f(x)$ kaikilla $x \in X$.

Määritelmä 3.8. Isometria on etäisyydet säilyttävä kuvaus. Olkoon (X,d) ja (X',d') metrisiä avaruuksia. Tällöin kuvaus $h: X \to X'$ on isometria, jos $d(x_1,x_2) = d'(h(x_1),h(x_2))$ kaikilla $x_1,x_2 \in X$.

Esimerkki 3.9. Peilaus, rotaatio ja siirtokuvaus ovat geometriasta tuttuja isometrioita avaruudessa \mathbb{R}^2 .

Lemma 3.10. Olkoon (X, d) metrinen avaruus. Tällöin

$$d' \colon X \times X \to \mathbb{R}, \quad d'(x,y) = \frac{d(x,y)}{1 + d(x,y)}, \qquad x,y \in X$$

on metriikka joukossa X ja joukon X pisteiden d'-etäisyydet toisistaan ovat korkeintaan 1.

Todistus. Olkoon (X, d) metrinen avaruus. Kaikilla $x, y, z \in X$ pätee

$$(M1) \ d'(x,z) = \frac{d(x,z)}{1+d(x,z)} \le \frac{d(x,y)+d(y,z)}{1+d(x,y)+d(y,z)}$$

$$= \frac{d(x,y)}{1+d(x,y)+d(y,z)} + \frac{d(y,z)}{1+d(x,y)+d(y,z)}$$

$$\le \frac{d(x,y)}{1+d(x,y)} + \frac{d(y,z)}{1+d(y,z)} = d'(x,y) + d'(y,z),$$

(M2)
$$d'(x,y) = \frac{d(x,y)}{1+d(x,y)} = \frac{d(y,x)}{1+d(y,x)} = d'(y,x)$$
 ja

(M3)
$$d'(x,y) = \frac{d(x,y)}{1+d(x,y)} = 0$$
, jos ja vain jos $d(x,y) = 0$, eli jos ja vain jos $x = y$.

Joukon X pisteiden d'-etäisyydet toisistaan ovat korkeintaan 1, sillä $d(x,y) \leq 1 + d(x,y)$ kaikilla $x,y \in X$.

Konveksi verho

Tässä luvussa käsitellään konveksisuutta ja konveksia verhoa.

Määritelmä 4.1. Konveksius. Olkoon E normiavaruus, $A \subset E$ ja $a, b \in A$. Yhtälö

$$\alpha(t) = a + t(b - a) = (1 - t)a + tb$$

määrittelee janapolun $\alpha \colon [0,1] \to E$. Kuvajoukko $\alpha[0,1] = [a,b]$ on jana, jonka päätepisteet ovat $\alpha(0) = a \in A$ ja $\alpha(1) = b \in A$. Joukko $A \subset E$ on konveksi, jos ja vain jos $[a,b] \subset A$ kaikilla $a,b \in A$.

Esimerkki 4.2. Avaruuden \mathbb{R}^n suljettu yksikkökuula $\bar{B}(0,1) = \{x \in \mathbb{R}^n : |x| \leq 1\}$ on konveksi.

Määritelmä 4.3. Konveksi verho. Olkoon E normiavaruus, $A \subset E$ ja $(A_j)_{j \in J} \subset \mathcal{P}(E)$ kaikkien sellaisten konveksien osajoukkojen $A_k \subset E$, $k \in J$ muodostama perhe, joilla $A \subset A_k$. Tällöin joukko $C(A) = \bigcap_{j \in J} A_j$ on joukon A konveksi verho.

Lemma 4.4. Konveksi verho C(A) on konveksi.

Todistus. Olkoon $a, b \in C(A) = \bigcap_{j \in J} A_j$. Tällöin $a, b \in A_i$ kaikilla $i \in J$. Jokainen A_i on konveksi, joten kaikilla $i \in J$ pätee $[a, b] \subset A_i$. Tällöin kaikilla $a, b \in C(A)$ pätee $[a, b] \subset C(A)$, joten konveksi verho C(A) on konveksi.

Korollaari 4.5. Konveksi verho C(A) on pienin konveksi joukko, joka sisältää joukon A.

Todistus. Olkoon B sellainen konveksi joukko, jolla $A \subset B \subset C(A)$. Joukko B on konveksi ja $A \subset B$, joten $B \in (A_j)_{j \in J}$. Tällöin

$$C(A) = \bigcap_{j \in J} A_j \subset B.$$

Siis B = C(A) ja C(A) on pienin konveksi joukko, jolla $A \subset C(A)$.

Lemma 4.6. Olkoon E normiavaruus ja $A \subset E$. Konveksi verho C(A) on muotoa

$$\lambda_0 x_0 + \lambda_1 x_1 + \dots + \lambda_n x_n$$
, missä $x_i \in A, \lambda_i \ge 0$, ja $\lambda_0 + \lambda_1 + \dots + \lambda_n = 1$

 $olevien\ lineaarikombinaatioiden\ muodostama\ joukko.$

Todistus. Konveksi verho C(A) on konveksi ja $A \subset C(A)$, joten kaikilla $a,b \in A$ pätee $[a,b] \subset C(A)$, toisin sanoen, $(1-t)a+tb \in C(A)$ kaikilla $0 \le t \le 1$, erityisesti

(4.7)
$$c_0 a + c_1 b \in C(A)$$
, kun $c_0, c_1 \ge 0$ ja $c_0 + c_1 = 1$.

Olkoon $x_0, x_1, \ldots, x_n, x_{n+1} \in A, d_0, d_1, \ldots, d_n, e, \lambda_{n+1} \in \mathbb{R}$ ja $d_i, e, \lambda_{n+1} \geq 0$ kaikilla $i \in \mathbb{N}$. Oletetaan, että jollain $n \geq 1$ pätee

$$d_0x_0 + d_1x_1 + \dots + d_nx_n \in C(A)$$
, kun $d_0 + d_1 + \dots + d_n = 1$.

Tällöin konveksiuden ja kaavan 4.7 nojalla pätee

$$e(d_0x_0 + d_1x_1 + \dots + d_nx_n) + \lambda_{n+1}x_{n+1}$$

= $ed_0x_0 + ed_1x_1 + \dots + ed_nx_n + \lambda_{n+1}x_{n+1} \in C(A)$,

kun $e + \lambda_{n+1} = 1$. Valitsemalla $ed_i = \lambda_i$ kaikilla $i \in [0, 1, ..., n]$ saadaan

$$\lambda_0 x_0 + \lambda_1 x_1 + \dots + \lambda_n x_n + \lambda_{n+1} x_{n+1} \in C(A).$$

Siis C(A) sisältää kaikki muotoa

$$\lambda_0 x_0 + \lambda_1 x_1 + \dots + \lambda_n x_n$$
, missä $x_i \in A, \lambda_i \ge 0$, ja $\sum_{i=0}^n \lambda_i = 1$

olevat lineaarikombinaatiot. Osoitetaan seuraavaksi, että C(A) sisältää ainoastaan kyseisiä lineaarikombinaatiota.

Banachin avaruus

Määritelmä 5.1. Kompakti joukko

Määritelmä 5.2. Cauchyn jono Jono $(x_n: n \in \mathbb{N})$

Määritelmä 5.3. Banachin avaruus on täydellinen normiavaruus.

Määritelmä 5.4. Separoituva avaruus. Olkoon X metrinen avaruus ja $\mathcal{B} \subset \mathcal{P}(X)$ epätyhjien avointen osajoukkojen perhe. Tällöin avaruus X on separoituva, jos seuraava ehto pätee: On olemassa numeroituva tiheä osajoukko $\{a_0, a_1, \cdots\} = A \subset X$, toisin sanoen, jokaista $B \in \mathcal{B}$ kohti löytyy ainakin yksi $a_i \in A$, jolla $a_i \in B$ jollain $i \in \mathbb{N}$.

Määritelmä 5.5. Homotopia

Kaksi kuvausta ovat homotooppisia keskenään, jos ne voidaan muuntaa jatkuvalla kuvauksella toisikseen. Olkoon $f,g\colon X\to Y$. Sanomme kuvauksen f olevan homotooppinen kuvauksen g kanssa, jos on olemassa jatkuva $h\colon X\times I\to Y$, jolla h(x,0)=f(x) ja h(x,1)=g(x) kaikilla $x\in X$. Merkitsemme tällöin $f\simeq g$ ja $h\colon f\simeq g$. Kuvaus h on homotopia, joka yhdistää kuvaukset f ja g.

Kuratowskin upotuslause

Lause 6.1. Jokaista metristä avaruutta (X,d) kohti on olemassa normiavaruus Z ja upotus $h: X \to Z$ missä $hX \subset Z$ on suljettu konveksissa verhossa C(hX).

Todistus. Olkoon (X, d) metrinen avaruus. Tällöin

$$d'(x,y) = \frac{d(x,y)}{1 + d(x,y)}, \qquad x,y \in X$$

on lemman 3.10 mukaan metriikka joukossa X ja joukon X pisteiden d'-etäisyydet toisistaan ovat korkeintaan 1.

Olkoon D epätyhjä joukko ja $Raj(D,\mathbb{R})$ kaikkien avaruudessa D määriteltyjen rajoitettujen funktioiden $f\colon D\to\mathbb{R}$ vektoriavaruus. Yhtälö $||f||=\sup\{|f(x)|\colon x\in D\}$ määrittelee normin avaruudessa $Raj(D,\mathbb{R})$. Tätä normia sanotaan avaruuden $Raj(D,\mathbb{R})$ sup-normiksi.

Olkoon Z = joukon X kaikkien rajoitettujen jatkuvien funktioiden joukko. Asetetaan

$$|f_1| = \sup_{x \in X} |f_1(x)|, \quad f_1 \in Z$$

ja

$$d(f_1, f_2) = |f_1 - f_2| = \sup_{x \in X} |f_1(x) - f_2(x)|, \qquad f_1, f_2 \in Z.$$

Tällöin Z on normiavaruus, sillä kaikilla $g_1, g_2 \in Z, a \in \mathbb{R}$:

(N1)
$$|g_1 + g_2| = \sup_{x \in X} |g_1(x) + g_2(x)|$$

 $\leq \sup_{x \in X} |g_1(x)| + \sup_{x \in X} |g_2(x)| = |g_1| + |g_2|$

(N2)
$$|ag_1| = \sup_{x \in X} |ag_1(x)| = \sup_{x \in X} (|a||g_1(x)|)$$

= $|a| \sup_{x \in X} |g_1(x)| = |a||g_1|$

(N3)
$$|g_1| = \sup_{x \in X} |g_1(x)| = 0 \implies g_1(x) = 0$$
 kaikilla $x \in X$

Seuraavaksi määritellään homeomorfismi $h: X \to h(X) \subset Z$. Tätä varten asetamme funktion $f_x \in Z$ jokaiselle $x \in X$ yhtälön $f_x(y) = d(x, y)$ mukaisesti, eli

$$h(x) = f_x, \qquad x \in X.$$

Tällöin pätee

$$d(f_{x_1}, f_{x_2}) \ge |d(x_1, x_2) - d(x_2, x_2)| = d(x_1, x_2).$$

Toisaalta mielivaltaiselle $y \in X$ pätee

$$|f_{x_1}(y), f_{x_2}(y)| = |d(x_1, y) - d(x_2, y)| \le d(x_1, x_2),$$

jolloin siis $d(f_{x_1}, f_{x_2}) \leq d(x_1, x_2)$. Edeltävistä epäyhtälöistä saadaan $d(f_{x_1}, f_{x_2}) = d(x_1, x_2)$, joka osoittaa, että kuvaus h säilyttää pisteiden väliset etäisyydet ja on siten homeomorfismi.

Osoitetaan, että hX on suljettu konveksissa verhossa C(hX). Tavoitteena on osoittaa, että minkä tahansa jonon $f_{x_n} \in hX$ raja-arvo kuuluu joukkoon hX. Olkoon $f \in C(hX)$ ja määritellään

$$f = \lim_{n \to \infty} f_{x_n} \,, \qquad f_{x_n} \in hX.$$

Tällöin koska f kuuluu konveksiin verhoon C(hX), niin f on lineaarikombinaatio vektorialiavaruuden hX vektoreista. Tällöin olkoon $a_0, a_1, \cdots, a_k \in X, \lambda_0, \lambda_1, \cdots, \lambda_k \in \mathbb{R}$ ja $\lambda_i \geq 0$, kaikilla $i \in \mathbb{N}$ niin, että

$$f = \sum_{i=0}^{k} \lambda_i f_{a_i}$$
 missä $\sum_{i=0}^{k} \lambda_i = 1$.

Tällöin on ainakin yksi $i \leq k$, jolla $\lambda_i \geq 1/(k+1)$. Tämä seuraa siitä, että

$$\sum_{k=0}^{k} \frac{1}{k+1} = k \cdot \frac{1}{k+1} = \frac{k}{k+1} < 1.$$

Tällöin voidaan vaihtaa λ_0 ja λ_i keskenään ja vastaavasti a_0 ja a_i keskenään, jolloin saadaan $\lambda_0 \geq 1/(k+1)$. Jos jollain $i \neq j$ ja $i, j \leq k$ pätee $a_i = a_j$, niin on mahdollista valita uudet

$$a_0, a_1, \cdots a_i, \cdots, a_{i-1}, a_{i+1}, \cdots a_k$$

ja vastaavat

$$\lambda_0, \lambda_1, \cdots, (\lambda_i + \lambda_j), \cdots, \lambda_{j-1}, \lambda_{j+1}, \cdots, \lambda_{k-1}.$$

Voidaan siis valita sellaiset a_0,a_1,\cdots,a_k , jotka ovat erillisiä ja sellaiset $\lambda_0,\lambda_1,\cdots\lambda_k$, että λ_0 täyttää ehdon $\lambda_0\geq 1/(k+1)$. Tällöin

$$d(f, f_{x_n}) \ge |f(x_n) - f_{x_n}(x_n)| = |f(x_n)| \ge \lambda_0 f_{a_0}(x_n) \ge \frac{1}{k+1} d(a_0, x_n).$$

Tällöin yhtälöstä $\lim_{n\to\infty} f_{x_n} = f$ seuraa, että $\lim_{n\to\infty} x_n = a_0$. Siis $f = f_{a_0} \in hX$ pätee.

Kirjallisuutta

- [1] Karol Borsuk: Theory of retracts, n. painos, Państwowe Wydawn. Naukowe, 1967.
- [2] Jussi Väisälä: Topologia I, 4. korjattu painos, Limes ry, 2007.
- [3] Jussi Väisälä: Topologia II, 2. korjattu painos, Limes ry, 2005.
- [4] Juha Heinonen: Geometric embeddings of metric spaces, luentomoniste, Jyväskylän yliopisto, 2003