



## V703

# Das Geiger-Müller-Zählrohr

Pelle Ofenbach pelle.ofenbach@udo.edu

Robert Appel robert.appel@udo.edu

Durchführung: 23.05.17 Abgabe: 30.05.17

TU Dortmund – Fakultät Physik

# Inhaltsverzeichnis

| 1 Theorie |                                             |   |  |  |  |  |  |
|-----------|---------------------------------------------|---|--|--|--|--|--|
| 2         | Durchführung                                | 3 |  |  |  |  |  |
| 3         | Auswertung 3.1 Charakteristik des Zählrohrs | 5 |  |  |  |  |  |
| 4         | Diskussion                                  | 7 |  |  |  |  |  |
| Lit       | Literatur                                   |   |  |  |  |  |  |

### 1 Theorie

## 2 Durchführung

## 3 Auswertung

#### 3.1 Charakteristik des Zählrohrs

Um die Charakteristik des Zählrohrs zu untersuchen wir zu erst die Zählrate

$$N_m = N \pm \sqrt{N} \tag{1}$$

bestimmt und mit Fehlerbalcken in ein Diagramm (s. Abb. 1) eingetragen. Dabei bezeichne<br/>t $N_m$  die gemessenen Zerfälle. Daraus kann dann die Auslösespannung<br/>  $U_e=470\,\mathrm{V}$ entnommen werden. Weiter muss nun da<br/>sPlateau [1] bestimmt werden, da dieses den Arbeitsbereich des Zählrohrs kennzeichent. Auf diesem Bereich des Graphen wird dann eine Ausgleichsgerade

$$f(x) = a \cdot x + b$$

berechnet. Daraus ergibt sich, dass die Steigung a im Plateau

$$a = (5.5 \pm 0.6) \,\mathrm{V}^{-1}$$
 oder  $a \approx 1.39 \,\% \,\mathrm{V}^{-1}$ 

beträgt. Der y-Abschnitt b beträgt dabei

$$b = (4.63 \pm 0.03) \cdot 10^4$$
.

Alle Werte dazu sind in den Tabellen 1 und 2



Abbildung 1: Charakteristik des Zählrohr; Zerflälle N gegen die Spannung U aufgetragen.

#### 3.2 Beobachtung der Nachentladungen und Bestimmung der Totzeit

Bei der Messung der Totzeit mit einem Oszilloskop ist diese einfach abzulesen. Die Totzeit  $t_T$  wurde für verschiedene Spannungen bestimmt und gemittelt. Somit ergibt sich

$$t_T = (232 \pm 8) \, \mu s$$
.

Bei der Messung der Totzeit ist auf dem Oszilloskop ein Graph wie in Abbildung 2 zu sehen. Der Abfall und somit die Todzeit ist gut zu erkennen. Die während der Erhohlungszeit auftetende Impuls können auf die Nachentladungen zurückgeführt werden.

| U/V | -     | $N \pm \sqrt{N}$ | Ī   |
|-----|-------|------------------|-----|
| 450 | 0     | ±                | 0   |
| 460 | 30    | $\pm$            | 5   |
| 470 | 47134 | $\pm$            | 217 |
| 480 | 48235 | $\pm$            | 220 |
| 490 | 48657 | $\pm$            | 221 |
| 500 | 48799 | $\pm$            | 221 |
| 510 | 49062 | $\pm$            | 221 |
| 520 | 49338 | $\pm$            | 222 |
| 530 | 49327 | $\pm$            | 222 |
| 540 | 49176 | $\pm$            | 222 |
| 550 | 49704 | $\pm$            | 223 |
| 560 | 49937 | $\pm$            | 223 |
| 570 | 49593 | $\pm$            | 223 |
| 580 | 50021 | $\pm$            | 224 |
| 590 | 49748 | $\pm$            | 223 |
| 600 | 49960 | $\pm$            | 224 |
| 610 | 49764 | $\pm$            | 223 |
| 620 | 50106 | $\pm$            | 224 |
| 630 | 50371 | $\pm$            | 224 |
| 640 | 50327 | $\pm$            | 224 |
| 650 | 50213 | $\pm$            | 224 |



Abbildung 2: Bild vom Graphen des Oszilloskop bei der Messung der Totzeit (1 Kästchen horizontal =  $50\,\mu s$ ).

#### 3.3 Bestimmung der Totzeit mit der Zwei-Quellen-Methode

Aus der Versuchsanleitung [1] wird der Zusammenhang

$$t_T\!\approx = \frac{N_1 + N_2 - N_{1+2}}{2N_1N_2}$$

entnommen. Dabei bezeichnet  $N_1$  die Zählrate des einen Präperats und  $N_2$  die des anderen Präperats folglich bezeichnet  $N_{1+2}$  die Zählrate für die Messung bei der beide Präperate gleichzeitig verwendet wurden. Werden nun für die Zählraten die selben Fehler angenommen wie in Gleichung (1) dann folgt

$$t_T = (3.0 \pm 0.9) \,\mu s$$
.

### 3.4 Bestimmung der freigesetzten Ladungsmenge

Es gilt der Zusammenhang

$$I = \frac{\Delta Q}{\Delta t} \cdot Z \,,$$

dabei bezeichnet  $\Delta Q$  die Ladungsmenge,  $\Delta t$  die Messzeit (hier:  $\Delta t = 60\,\mathrm{s}$ ) und Z die Anzahl der regrestrierten Teilchen. Die Ladungsmenge ergibt sich also mit

$$\frac{I\cdot \Delta t}{Z} = \Delta Q \ .$$

Die Ladungsmenge kann auch über die Elementarladung e [2] ausgedrückt werden mit

$$M = \frac{\Delta Q}{e}$$
.

Alle Werte und Ergebnisse dazu sind in der Tabelle 3 dargestellt.

Tabelle 3: Strom I, Anzahl der Teilchen Z, Ladungsmenge  $\Delta Q$  und die Ladungsmenge ausgedrückt über die Elementraladung im Überblick.

| I/V                  | Z      | $\Delta Q/{ m C}$      | $\Delta Q/_{ m e}$     |
|----------------------|--------|------------------------|------------------------|
| $0,20 \cdot 10^{-6}$ | 30     | $4,00 \cdot 10^{-7}$   | $249,66 \cdot 10^{10}$ |
| $0.40 \cdot 10^{-6}$ | 47134  | $5,09 \cdot 10^{-10}$  | $0.32 \cdot 10^{10}$   |
| $0.40 \cdot 10^{-6}$ | 48235  | $4,98 \cdot 10^{-10}$  | $0.31 \cdot 10^{10}$   |
| $0.60 \cdot 10^{-6}$ | 48657  | $7,40 \cdot 10^{-10}$  | $0,46 \cdot 10^{10}$   |
| $0.60 \cdot 10^{-6}$ | 48799  | $7,38 \cdot 10^{-10}$  | $0,46 \cdot 10^{10}$   |
| $0.70 \cdot 10^{-6}$ | 49062  | $8,56 \cdot 10^{-10}$  | $0,\!53\cdot 10^{10}$  |
| $0.80 \cdot 10^{-6}$ | 49338  | $9.73 \cdot 10^{-10}$  | $0.61 \cdot 10^{10}$   |
| $0.90 \cdot 10^{-6}$ | 49327  | $1,09 \cdot 10^{-9}$   | $0.68 \cdot 10^{10}$   |
| $1,00 \cdot 10^{-6}$ | 49176  | $1,22 \cdot 10^{-9}$   | $0,76\cdot10^{10}$     |
| $1,00 \cdot 10^{-6}$ | 49704  | $1,21 \cdot 10^{-9}$   | $0,75\cdot 10^{10}$    |
| $1,20 \cdot 10^{-6}$ | 49937  | $1,44 \cdot 10^{-9}$   | $0,90 \cdot 10^{10}$   |
| $1,20 \cdot 10^{-6}$ | 49593  | $1,45 \cdot 10^{-9}$   | $0.91\cdot10^{10}$     |
| $1,20 \cdot 10^{-6}$ | 50021  | $1,44 \cdot 10^{-9}$   | $0.90 \cdot 10^{10}$   |
| $1,30 \cdot 10^{-6}$ | 49748  | $1,57 \cdot 10^{-9}$   | $0.98 \cdot 10^{10}$   |
| $1,40 \cdot 10^{-6}$ | 49960  | $1,68 \cdot 10^{-9}$   | $1,05 \cdot 10^{10}$   |
| $1,40 \cdot 10^{-6}$ | 49764  | $1,69 \cdot 10^{-9}$   | $1,05 \cdot 10^{10}$   |
| $1,60 \cdot 10^{-6}$ | 50106  | $1,92 \cdot 10^{-9}$   | $1,20 \cdot 10^{10}$   |
| $1,60 \cdot 10^{-6}$ | 50371  | $1,91 \cdot 10^{-9}$   | $1{,}19 \cdot 10^{10}$ |
| $1,80 \cdot 10^{-6}$ | 50327  | $2{,}15\cdot10^{-9}$   | $1,34 \cdot 10^{10}$   |
| $1,80 \cdot 10^{-6}$ | 50213  | $2{,}15 \cdot 10^{-9}$ | $1,34 \cdot 10^{10}$   |
| $1,90 \cdot 10^{-6}$ | 50286  | $2,27 \cdot 10^{-9}$   | $1,41 \cdot 10^{10}$   |
| $2,00 \cdot 10^{-6}$ | 50246  | $2,39 \cdot 10^{-9}$   | $1,49 \cdot 10^{10}$   |
| $2,20 \cdot 10^{-6}$ | 50106  | $2,63 \cdot 10^{-9}$   | $1,64 \cdot 10^{10}$   |
| $2,20 \cdot 10^{-6}$ | 49964  | $2,64 \cdot 10^{-9}$   | $1,65 \cdot 10^{10}$   |
| $2,20 \cdot 10^{-6}$ | 49966  | $2,64 \cdot 10^{-9}$   | $1,65 \cdot 10^{10}$   |
| $2,30 \cdot 10^{-6}$ | 49780  | $2,77\cdot10^{-9}$     | $1,73 \cdot 10^{10}$   |
| $2,40 \cdot 10^{-6}$ | 50579  | $2,85\cdot10^{-9}$     | $1{,}78\cdot10^{10}$   |
| $2,40 \cdot 10^{-6}$ | 50218  | $2,87 \cdot 10^{-9}$   | $1{,}79\cdot10^{10}$   |
| $2,60 \cdot 10^{-6}$ | 49852  | $3{,}13\cdot10^{-9}$   | $1,95 \cdot 10^{10}$   |
| $2,80 \cdot 10^{-6}$ | 50601  | $3,32 \cdot 10^{-9}$   | $2,07 \cdot 10^{10}$   |
| $2,80 \cdot 10^{-6}$ | 50111  | $3,35 \cdot 10^{-9}$   | $2,09 \cdot 10^{10}$   |
| $3,00 \cdot 10^{-6}$ | 50551  | $3,56 \cdot 10^{-9}$   | $2,22 \cdot 10^{10}$   |
| $3,00 \cdot 10^{-6}$ | 50619  | $3,56 \cdot 10^{-9}$   | $2,22 \cdot 10^{10}$   |
| $3,00 \cdot 10^{-6}$ | 50362  | $3,57 \cdot 10^{-9}$   | $2,23 \cdot 10^{10}$   |
| $3,20 \cdot 10^{-6}$ | 50550  | $3.80 \cdot 10^{-9}$   | $2,37 \cdot 10^{10}$   |
| $3,20 \cdot 10^{-6}$ | 50613  | $3,79 \cdot 10^{-9}$   | $2,37 \cdot 10^{10}$   |
| $3,40 \cdot 10^{-6}$ | 50391  | $4.05 \cdot 10^{-9}$   | $2.53 \cdot 10^{10}$   |
| $3,40 \cdot 10^{-6}$ | 50634  | $4.03 \cdot 10^{-9}$   | $2.51 \cdot 10^{10}$   |
| $3,60 \cdot 10^{-6}$ | 50911  | $4.24 \cdot 10^{-9}$   | $2,65 \cdot 10^{10}$   |
| $3,80 \cdot 10^{-6}$ | 50 723 | $4,50 \cdot 10^{-9}$   | $2,81 \cdot 10^{10}$   |

# 4 Diskussion

## Literatur

- [1] TU Dortmund. Versuch Nr. 703 Das Geiger-Müller-Zählrohr. 2014.
- [2] Eric Jones, Travis E. Oliphant, Pearu Peterson u. a. SciPy: Open source scientific tools for Python. Version 0.16.0. URL: http://www.scipy.org/.