Taxi Demand Prediction

By Eddie Amaitum

Demand in taxi/car share industry

Drivers (Supply) Vs Customers (Demand)

Companies need to forecast demand

Solution: Predict taxi demand per hour by location

Operations team can adjust the distribution of drivers

+ \$3 for pick-ups around the arena

Operations team

Impact

- Predictive models shown to cut wait times by up to 20%
- Improved efficiency in driver deployment hence companies generate more revenue
- Increased customer satisfaction

- NYC Taxi & Limousine Commission (TLC) Trip Records
- The data is relatively clean
- Feature engineering needed

Sample Time Series Data

Data transformation into (features, targets)

Sample Features & Target Variables

Split the data **Train data** Tabular data with Split by date e.g Aug Data preparation features and **target Test data**

Baseline models

Model comparison

Model	Mean Absolute Error (MAE)	Notes
Ad Hoc model 1	6.05	Baseline model
Ad Hoc model 2	3.68	Baseline model
Ad Hoc model 3	3.19	Baseline model
XGBoost	2.70	Models improved
Lightgbm	2.57	Models improved
Lightgbm + feature engineering	2.59	Added average rides per month
Lightgbm + hyperparameter tuning	2.54(num_leaves,min_child_samples,etc)	Best model for production

- → Further improve model performance by adding more features
- → Build pipelines to automate processes
- → Complete model operationalization

Application dashboard

Eddie Amaitum Data Scientist

THANK YOU

