Electrochemical cell and Applications of EMF MEASUREMENTS

Electrochemical cell-

 An electrochemical cell is a device capable of either generating electrical energy from chemical reactions (Chemical energy) or using electrical energy to cause chemical reactions.

Electrical energy Chemical energy

- Electrochemical cell are two types-
 - (1) Electrolytic cell: which convert electrical energy to chemical reactions.

 e.g. electrolysis of aqueous solution NaCl by passing electricity.
 - (2) Galvanic cells or Voltaic cell: which generate an electric current by using chemical reactions.
 - e.g. Daniel cell

Parts of Electrochemical cell-

- Vessel: which contains all electrochemical system.
- ► **Electrolyte:** in the form of electrolytic solutions into which two electrodes are submerged.
- ► Electrodes: usually metal strips/wires connected by an electrically conducting wire.
- Anode: electrode where oxidation takes place.
- Cathode: electrode where reduction takes place.
- ► Salt Bridge: U-shaped tube that contains a gel permeated with a solution of an inert electrolyte. Present in galvanic cell for maintaining electro neutrality of two half cell's electrolytic solutions.

Figure: Electrolytic cell

Figure: Galvanic cell

Figure: Chemical reactions in Daniel cell

Figure: Chemical reactions in Daniel cell

Galvanic cell:

- A galvanic cell is also referred to as a voltaic cell. The common household battery is an example of a galvanic cell.
- Galvanic cell composed of two half cells or two electrode-
 - (i) Left hand electrode or Anode:

Zn electrode submerged in ZnSO₄ aqueous solution

(ii) Right hand electrode or Cathode:

Cu electrode submerged in CuSO₄ aqueous solution

- The electricity or EMF is generated due to half cell reactions taking place at different cell
- The combination of two half reactions whose addition gives the overall cell reaction or net cell reaction:

→ At anode (Left hand electrode):

$$Zn_{(s)} \rightleftharpoons Zn^{2+} + 2e^{-}$$
 --- (oxidation half reaction)

At cathode (Right hand electrode):

$$Cu^{2+} + 2e^{-} \rightleftarrows Cu_{(s)}$$
 --- (reduction half reaction)

Net overall cell reaction can be obtained by adding oxidation and reduction half cell reactions

$$Zn_{(s)} + Cu^{2+} \rightleftharpoons Zn^{2+} + Cu_{(s)}$$

EMF of this galvanic cell is given by Nernst equation as follows:

$$E = E^0 + \frac{RT}{nF} ln \frac{[Cu^{+2}]}{[Zn^{+2}]}$$
 ---- Eq. no. (1)

$$E = E^0 + \frac{2.303RT}{nF} log_{10} \frac{[Cu^{+2}]}{[Zn^{+2}]}$$
 ---- Eq. no. (2)

Where, E^0 = Standard EMF of Galvanic cell = 1.10 V

On putting the values of Temperature (T) = 25° C (298.15K), Value of gas constant, R= 8.31 J/K/mol, Faraday, F= 96500 Coulomb

$$E = E^0 + \frac{0.0591}{2} log_{10} \frac{[Cu^{+2}]}{[Zn^{+2}]}$$
 ---- Eq. no. (3)

Cell notation for Electrochemical cell:

This is the way of representation of electrochemical cell by combination of symbols.

- A galvanic cell is generally represented by putting a vertical line between species which are in direct contact e.g. metal and electrolyte solution
- Species which are not in direct contact are represented by putting a double vertical line between them e.g. the two electrolytes connected by a salt bridge.
- Anode is denoted on the left and the cathode on the right

Cell notation for Galvanic cell:

Electromotive Force (EMF)-

- The potential difference between the two electrodes of a galvanic cell is called the cell potential and is measured in volts.
- By latest consideration, the cell potential is the difference between the electrode potentials (reduction potentials) of the cathode and anode.
- It is called the cell electromotive force (EMF) of the cell when no current is drawn through the cell.
- So, EMF of cell is determined by techniques or devices which draw no current From the cell during measurements.
- ► By observing cell notation , $E_{cell} = E_{right} E_{left}$ or $E_{cell} = E_{cathode} E_{anode}$
- According to latest convention of IUPAC all the electrode potential all expressed in terms of reduction potential with respect to standard hydrogen electrode (S.H.E.)

- When all the standard electrode potential (in terms of reduction potential) are arranged from higher to lower value then this is termed as Electrochemical series.
- Electrochemical series is given on next page.
- There are so many applications of this Electrochemical series.
- Out of these applications, some one can calculate standard EMF (E₀) of a particular cell alternatively.
- For example the standard EMF of Galvanic cell

Anode-
$$Zn_{(s)} \stackrel{?}{=} Zn^{2+} + 2e^{-}$$
 (E $_{el}^{0} = -0.76 \text{ Volt}$)

Cathode- $Cu^{2+} + 2e^{-} \stackrel{?}{=} Cu_{(s)}$ (E $_{el}^{0} = 0.34 \text{ Volt}$)

 $E_{cell}^{0} = E_{cathode}^{0} - E_{anode}^{0} = 0.34 - (-0.76) = 1.10 \text{ Volt}$

Table 1 The standard electrode potentials at 298 K

Ions are present as aqueous species and H2O as liquid; gases and solids are shown by g and s.

Re	action (Oxidised form + ne	→ Reduced form)		E°/V	
Increasing strength of oxidising agent	F ₂ (g) + 2e	→ 2F ⁻		2.87	
	Co ³⁺ + e ⁻	\rightarrow Co ²⁺		1.81	- 1
	$H_2O_2 + 2H^+ + 2e^-$	\rightarrow 2H _Z O		1.78	- 1
	$MnO_4^- + 8H^+ + 5e^-$	\rightarrow Mn ²⁺ + 4H ₂ O		1.51	
	Au ³⁺ + 3e ⁻	\rightarrow Au(s)		1.40	
	$Cl_2(g) + 2e^-$	\rightarrow 2Cl ⁻		1.36	
	$Cr_2O_7^{2-} + 14H^+ + 6e^-$	\rightarrow 2Cr ³⁺ + 7H ₂ O		1.33	
	$O_2(g) + 4H^+ + 4e^-$	\rightarrow 2H ₂ O		1.23	
	$MnO_2(s) + 4H^+ + 2e^-$	\rightarrow Mn ²⁺ + 2H ₂ O		1.23	
	$Br_2 + 2e^-$	\rightarrow 2Br ⁻		1.09	
	$NO_3^- + 4H^+ + 3e^-$	\rightarrow NO(g) + 2H ₂ O		0.97	
	$2Hg^{2+} + 2e^{-}$	$\rightarrow Hg_2^{2+}$	<u>-</u>	0.92	
	$Ag^* + e^-$	\rightarrow Ag(s)	Increasing strength of reducing agent	0.80	
	$Fe^{3+} + e^{-}$	\rightarrow Fe ²⁺		0.77	
	$O_2(g) + 2H^+ + 2e^-$	\rightarrow H ₂ O ₂		0.68	-1
	$I_2 + 2e^-$	\rightarrow 2I $^{-}$		0.54	-1
	Cu ⁺ + e ⁻	→ Cu(s)		0.52	-1
	Cu ²⁺ + 2e ⁻	\rightarrow Cu(s)		0.34	-1
	AgCl(s) + e	\rightarrow Ag(s) + Cl ⁻		0.22	-1
	$AgBr(s) + e^{-}$	\rightarrow Ag(s) + Br		0.10	-1
	2H° + 2e	\rightarrow H ₂ (g)		0.00	-1
	Pb ²⁺ + 2e	\rightarrow Pb(s)		-0.13	-1
	Sn ²⁺ + 2e ⁻	\rightarrow Sn(s)		-0.14	-1
	Ni ²⁺ + 2e ⁻	\rightarrow Ni(s)		-0.25	-1
	Fe ²⁺ + 2e ⁻	\rightarrow Fe(s)		-0.44	
	Cr ³⁺ + 3e ⁻	\rightarrow Cr(s)		-0.74	
	$Zn^{2+} + 2e^{-}$	\rightarrow Zn(s)		-0.76	
	$2H_2O + 2e^-$	\rightarrow H ₂ (g) + 2OH ⁻ (aq)		-0.83	
	Al ³⁺ + 3e ⁻	\rightarrow Al(s)		-1.66	
	$Mg^{2+} + 2e^{-}$	\rightarrow Mg(s)		-2.36	
	Na* + e-	\rightarrow Na(s)		-2.71	
	Ca ²⁺ + 2e ⁻	→ Ca(s)		-2.87	
	K* + e-	\rightarrow K(s)		-2.93	
	Li ⁺ + e ⁻	→ Li(s)	+	-3.05	

1. A negative E° means that the redox couple is a stronger reducing agent than the H^{*}/H_{2} couple. 2. A positive E° means that the redox couple is a weaker reducing agent than the H^{*}/H_{2} couple

1. A negative E° means that the redox couple is a stronger reducing agent than the H $^{\prime}$ H $_{2}$ couple. 2. A positive E° means that the redox couple is a weaker reducing agent than the H $^{\prime}$ H $_{2}$ couple

Figure: Electrochemical Series

 $Ca^{c+} + 2e^{-}$ \rightarrow $Ca^{c+} + e^{-}$ \rightarrow K(

-2.87 2.93 -3.05

- **Example 1:** Find the standard electrode potential of the cell using electrochemical series; $Cu_{(s)} | Cu^{2+} | | Cl^{-} | AgCl_{(s)} | Ag_{(s)}$ and predict the direction of electron flow when the two electrodes are connected.
- Solution. The reactions corresponding to this cell will be:

$$Cu(s) \rightarrow Cu^{2+}_{(aq)} + 2e^{-}$$
 Anode reaction (oxidation)

$$AgCl_{(s)} + e^{-} \rightarrow Ag_{(s)} + Cl_{(aq)}^{-}$$
 Cathode reaction (reduction)

Net Reaction can be obtained by adding anode and cathode reaction

$$Cu_{(s)} + 2AgCl_{(s)} \rightarrow Cu^{2+}_{(aq)} + 2Cl_{(aq)}^{-} + 2Ag_{(s)}^{-}$$

Value of $E^0_{cathode}$ and E^0_{anode} can be obtained by using electrochemical series.

$$E_{cell}^{0} = E_{cathode}^{0} - E_{anode}^{0} = (0.22 - 0.34) \text{ Volt} = -0.12 \text{ V}$$

Applications of EMF Measurements-

(i) Determination of Equilibrium Constant

- By measurement of the standard Emf of the cell, E°, some one enable to evaluate the equilibrium constant for the electrode reaction.
- ► The relation between the standard free energy change(**G**⁰) and the equilibrium constant(K) is:

$$G^0 = -RT \ln K$$
 ---- Eq. no. (4)

Standard free energy is related to the standard electrode potential by relation:

$$G^0 = - n FE^0$$
 ----- Eq. no. (5)

From Eq. no. (1) and (2)

$$E^0 = (RT/nF) \text{ In } K$$
 ----- Eq. no. (6)

$$E^0 = (2.303RT/nF) \log_{10} K$$

at T = 298K, R= 8.13J/K/mol, F=96500 Coulomb Eq. no. (3) becomes

$$E^0 = (0.0591/n) \log_{10} K$$
 ----- Eq. no. (7)

For determining equilibrium constant (K) of particular type of equilibrium reaction some one has:

- To design a electrochemical cell in which net cell reaction is same as equilibrium reaction.
- To determine EMF of above cell.
- To calculate equilibrium constant by Eq. no. (7)

(ii) Determination of Solubility Products-

- Solubility product of sparingly soluble salt MX_(s) viz. AgCl etc. can be determined.
- Sparingly soluble salt is type of equilibrium constant.
- Let us suppose a sparingly soluble salt MX_(s) in equilibrium with its ions in a saturated solution

$$MX_{(s)} \rightleftharpoons M^{+}_{(aq.)} + X^{-}_{(aq.)}$$

$$K_{SP} = a_{M}^{+} \cdot a_{X}^{-}$$

The above cell reaction is the cell reaction for following cell

$$M, M^+ X^-$$
 (saturated soln) $| MX_{(s)}, M$

The half cell reaction are:

At Right hand electrode
$$M X_{(S)} + e^- \rightleftharpoons M + X^-_{(aqueous)}$$

At Left hand electrode $M \rightleftharpoons M^+_{(aqueous)} + e^-$
Overall reaction $M X_{(S)} \rightleftharpoons M^+_{(aqueous)} + X^-_{(aqueous)}$

$$E_{\text{cell}}^0 = E_{\text{right}}^0 - E_{\text{left}}^0$$
 ----- Eq. no. (8)

By considering K_{SP} as equilibrium constant and using eq. no.(4), (5), (6)

$$nFE_{cell}^{0} = 2.303RT \log_{10} K_{SP}$$

$$\log_{10} K_{SP} = nFE_{cell}^{0} / 2.303 RT$$

$$At 25 ° C \qquad \log_{10} K_{SP} = nE_{cell}^{0} / 0.0591 \qquad ----- Eq. no. (9)$$

 E_{cell}^{0} can be determined by using eq. no. (8) and electrochemical series.

So, by using eq. no. (9) some one can determine $K_{\rm SP}$

(iii) Determination of pH-

- For this half cell (Hydrogen electrode) is setup with the test solution as electrolyte.
- ► EMF of the cell depends on the concentration of H⁺ or pH of solution.
- Principle behind this method is to determine the activity of H⁺ or the concentration of H⁺.

Since,
$$pH = -log H^+$$

- Conc./ activity of H⁺ can be determined by setting a cell in which one of the electrodes is reversible to hydrogen ions.
- In practice the EMF OF hydrogen electrode is combined with another reference electrode such as standard hydrogen electrode (SHE) or a saturated calomel electrode (SCE) or any other reference electrode. ..

By using S.H.E. cell notation of considered cell can be given as follows:

For single hydrogen electrode Pt/H₂ (1atm) /H⁺, the electrode reaction is:

$$H^{+} + e^{-} \rightarrow \frac{1}{2} H_{2 (g)}$$
 $E_{right} = E_{SHE}^{0} + \frac{RT}{nF} ln \frac{[H^{+}]}{[P_{H^{2}}]^{1/2}}$

$$E_{right} = E_{SHE}^0 + \frac{2.303RT}{nF} log_{10} \frac{[H^+]}{[P_{H^2}]^{1/2}}$$

Since, $E_{SHE}^0 = 0$ and $P_{H2}^{1/2} = 1$

$$E_{right} = 0.0591 \log_{10} [H^{+}]$$

$$E_{right} = -0.0591 \text{ pH}$$
 ---- Eq. no. (10)

► Since, EMF (E_{cell}) of cell constructed for pH determination can be given by

$$E_{cell} = E_{right} - E_{left}$$

E_{left} is S.H.E. whose Electrode potential is arbitrarily assigned equal to zero by IUPAC.

So,
$$E_{cell} = E_{right} - 0$$

$$E_{cell} = E_{right} - ---- Eq. no. (11)$$

From eq. no. (11) and (12)

$$E_{cell} = -0.0591 \text{ pH}$$

$$pH = \frac{E_{cell}}{0.0591}$$

E_{cell} m is determined by no current drawing based measurement (viz. potentiometer) and hence pH can be determined.

Exercise 1

The standard EMF of the Daniel cell involving the cell reaction $Zn_{(s)} + Cu^{2+} = Zn^{2+} + Cu_{(s)}$ is 1.10 Volts. Calculate the equilibrium constant of the cell reaction at 25°C

Exercise 2

Calculate equilibrium constant for the following electrochemical cell Zn/Zn^{2+} //Fe³⁺, Fe²⁺ /Pt; Whose standard EMF is 1 .534V, the overall cell reaction is Fe³⁺ + 1/2Zn = Fe²⁺ + 1/2 Zn²⁺

Exercise 3

Find the standard electrode potential of the cell using electrochemical series; $Cu_{(s)} | Cu^{2+} | Cl^{-} | AgCl_{(s)} | Ag_{(s)}$ and predict the direction of electron flow when the two electrodes are connected.

References-

- P C Jain , M. Jain, Engineering Chemistry, Dhanpat Rai Publications.
- S. S. Dara, A Text Book of Engineering Chemistry, S. Chand & Company.
- Shashi Chawla, Engineering Chemistry, Dhanpat Rai Publications.
- https://quizlet.com/312668465/galvanic-cells-flash-cards/

THANK YOU