Cormack-Jolly-Seber

Rob W Rankin

Post-doc (Georgetown University), PhD (Murdoch University)

October 27, 2017

Cormack-Jolly-Seber

First-Capture

- ▶ conditions on first-capture
- no modelling of recruitment
- ▶ open population

Parameters

- $ightharpoonup p_t$ (capture probability) and ϕ_t (apparent survival)
- \triangleright N_t via Horvitz-Thompson-type estimator

$$\hat{N}_{t} \approx \sum_{i=1}^{n} \frac{\mathbb{I}[y_{i,t} = 1]}{\hat{p}_{i,t}} = \underbrace{\frac{n_{t}^{(observed)}}{\hat{p}_{t}}}_{\text{homogeneous } p_{t}}$$
(1)

Data:

- $\{t_i^0\}_{i=1}^n \equiv$ the primary-period of each individuals' first-capture.
- $\mathbf{Y}^{(t_i^0 < T)}$ ragged matrix of 0-1 outcomes for individuals whose first-capture is less than T

Cormack-Jolly-Seber

some notes

▶ non-separable: $\phi_{\mathcal{T}-1}$ & $p_{\mathcal{T}}$ (in a $\phi(\cdot)p(\cdot)$ model. Need to either constrain one (or use hierarchical model)

often set
$$\phi_{T-1} = \phi_{T-2}$$
 and/or $p_T = p_{T-1}$

▶ no p₁ (first captures are not modelled)

$$\mathbf{1} \xrightarrow{\varphi_1} \mathbf{2} \xrightarrow{\varphi_2} \mathbf{3} \xrightarrow{\varphi_3} \mathbf{4} \xrightarrow{\varphi_4} \mathbf{5} \xrightarrow{\varphi_5} \mathbf{6} \xrightarrow{\varphi_6} \mathbf{7}$$

$$p_2 \xrightarrow{p_3} p_4 \xrightarrow{p_4} p_5 \xrightarrow{p_5} p_6 \xrightarrow{p_7} p_7$$

Figure: CJS process fom Program MARK: A Gentle Introduction

► can include individual heterogeneity with external covariates

$$logit(p_{i,t}) = \underbrace{\beta_0}_{intercept} + \underbrace{x_i \beta_x}_{covariat}$$

CJS as an HMM

simplest HMM only 2 latent states:

- {alive} and
- { dead}

Transition Matrix

$$oldsymbol{\Phi}_t = egin{array}{ccc} {\sf Alive} & {\sf Alive} & {\sf Dead} \ oldsymbol{\phi}_{t-1} & 0 \ 1-\phi_{t-1} & 1 \ \end{array}$$

Emission Matrix

$$oldsymbol{\Psi}_t = egin{pmatrix} extst{Capture} & extst{Alive} & extst{Dead} \ & p_t & 0 \ 1-
ho_t & 1 \ \end{pmatrix}$$

First Capture

As an HMM, the CJS is very simple

```
tr[1,1] <- phi # alive
tr[2,1] <- 1-phi # dead
# FROM dead to ...
tr[1,2] <- 0 # alive (illegal)
tr[2,2] <-1 \# dead to dead
# HMM EMISSION MATRIX
# state 1: alive
em[1,1] < -1-p # miss
em[2,1]<- p # capture
# state 2: dead
em[1,2] < -1 # miss
em[2,2]<- 0 # capture
```

HMM TRANSITION MATRIX # FROM alive to...

```
The CJS conditional likelihood in JAGS... (notice it starts at t= first capture+1 period)
```

```
for(i in 1:N){
    # loop though capture periods after first capture
    for(t in (first[i]+1):T){
       y[i,t] ~ dcat(em[,z[i,t]])
    } # t
} # i
```

beware the for loop

```
for(t in (first[i]+1):T){
```

```
The CJS latent state process in JAGS... (notice it starts at t= first capture period)
```

```
for(i in 1:N){
    # HMM LATENT STATE PROCESS: at t=1
    z[i,first[i]+1] ~ dcat(tr[,1]) # initialize state 1 (alive)
    # loop though capture periods after first capture
    for(t in (first[i]+1):(T-1)){
        z[i,t+1] ~ dcat(tr[,z[i,t]]) # z_t+1 | z_t
    } # t
} # t
```

```
for(t in 2:T){ # loop through time
   for(i in 1:n){ # loop through individuals
      N_i[i,t-1] <- equals(y[i,t],2)/p[t-1]
} # i
# H-T estimate of abundance at time t
   N[t-1] <- sum(N_i[,t-1]) # sum over all individuals
} # t</pre>
```

(notice weird offset of t and t-1)

First Capture vs Full Capture

Full Capture

- ► N in likelihood (for mle)
- N often more reliable
- estimates recruitment
- uses full capture history <u>leading</u> zeros
- no individual covariates (sometimes)

First Capture

- N not in likelihood
- N biased at low p
- no recruitment
- ightharpoonup models only t> first capture
- easier to model <u>individual</u> covariates

In JAGS

- ▶ Notice the for loop and its structure first[i]+1:T
- ► N estimation: no longer about counting equals(z[i,t], alive)
- ▶ N estimation: Horvitz-type, now we sum equals(y[i,t],capture)/p

JAGS CJS DEMONSTRATION

Because the CJS is so easy, it is time to complicate things with \dots

SEX and EFFORT

In the following demonstrataion (using data from Nicholson et al ¹), there will be two ways to parameterize $\phi(\text{sex})p(\text{sex})$.

Beta Priors

$$\pi(p_f) = Beta(p; a_f, b_f)$$

 $\pi(p_m) = Beta(p; a_m, b_m)$
 $\pi(p_u) = Beta(p; a_u, b_u)$

independent priors and parameters per sex

Logit-Normal Priors

$$\pi(\mu_p) = \mathcal{N}(x; \mu_0, \tau_0)$$

$$\pi(\beta_m) = \mathcal{N}(\beta; \mu_m, \tau_m)$$

$$\pi(\beta_u) = \mathcal{N}(\beta; \mu_u, \tau_u)$$

$$p_f = \frac{1}{1+e^{-\mu_p}}$$

$$p_m = \frac{1}{1+e^{-(\mu_p + \beta_m)}}$$

$$p_u = \frac{1}{1+e^{-(\mu_p + \beta_m)}}$$

$$r_{\mu} = \frac{1}{1+e^{-(\mu_p + \beta_m)}}$$

sex effect

¹ Nicholson et al 2012. Abundance, survival and temporary emigration of bottlenose dolphins (Tursiops sp.) off Useless Loop in the western gulf of Shark Bay, Western Australia.

Mar. Freshwater Res. 63

Beta Priors

$$\pi(p_f) = Beta(p; a_f, b_f)$$

Advantages

- ► Simple
- ► Independent parameters for F,M,U
- Clear connection between p and priors

Disadvantages

- Bad for: multiple covariates (time, effort, individual covariates)
- Need <u>lots</u> of separate priors for complex effects: p_{f,=1}, p_{f,=2}, p_{f,=3}, p_{f,=4}, p_{f,=5}, . . .

JAGS CJS DEMONSTRATION: logit-Normal Priors

logit-Normal Priors

$$\pi(\mu_{p}) = \mathcal{N}(x; \mu_{0}, \tau_{0}) \ p_{f} = \frac{1}{1 + e^{-\mu_{p}}}$$

Advantages

- ► Some like the Normal
- ▶ complex linear-models with multiple effects

$$\begin{aligned} \rho_{x} &= \frac{1}{1 + e^{-(\beta_{0} + \beta_{1} \cdot X_{1} + \beta_{2} \cdot X_{2} + \dots + \beta_{j} \cdot X_{j})}} \\ \text{logit}(\rho_{x}) &= \beta_{0} + \beta_{1} \cdot X_{1} + \beta_{2} \cdot X_{2} + \dots + \beta_{j} \cdot X_{j} \end{aligned}$$

▶ just a type of logistic regresion

Disadvantages

- must master the logit transformation
- boundaries, strange behaviour

Logit-Normal: Just a type of logistic regression

... just a type of logistic regression

Recall: main effects and interactions

Let's say we have two covariates: sex and effort

▶ main effects model:

$$logit(p_i) = \overbrace{\beta_0}^{intercept} + \underbrace{\beta_m \cdot \mathbb{I}[sex_i = M]}_{sex effect} + \overbrace{\beta_{eff} \cdot X_{eff}}_{eff}$$

▶ interaction model:

$$logit(p_i) = \beta_0 + \beta_m \cdot \mathbb{I}[sex_i = M] + \beta_{eff} \cdot X_{eff} + \underbrace{\beta_{m \times eff} \cdot \mathbb{I}[sex_i = M] \cdot X_{eff}}_{interaction \ term}$$

Logit-Normal: Prelude to Hierarchical Bayesian

 the logit-Normal (or probit-Normal) is very common for specifying Hierarchical Bayesian models

$$logit(p_{i,t}) = \beta_0 + \beta_{t=2}\mathbb{I}[t=2] + \cdots + \beta_T\mathbb{I}[t=T] + \epsilon_i$$
$$\epsilon_i \sim \mathcal{N}(0, \tau_0)$$

JAGS CJS Demo

Time to open up JAGS!

- **Demonstration 1**: CJS model $\phi(\text{sex})p(\text{sex})$ with Beta priors
- ▶ Demonstration 2 : CJS model $\phi(\text{sex})p(\text{sex}, \text{effort})$ with logit-Normal Priors
- Exercise : Convert <u>one</u> of the models into a fully-time-varying model $\phi(t, \text{sex})p(\text{sex}, t)$

JAGS CJS Demo

Remeber to watch out for . . .

- different handling of first capture period
- special way to estimate abundance (Horvitz-Thompson-type)
- ▶ inclusion of sex: how different in Beta vs Logit-Normal priors