

Relations: summary so far

- Given two sets A and B, a **relation** from A to B is a subset of $A \times B$.
- Relations can be defined by enumeration or by comprehension.
- The main relational operations are
 - composition (R ; S)
 - inverse (R^{-1})
- Since a relation is just a (special kind of) set, the usual set-theory operations (union, intersection, difference) also work with relations.

Some notation

- Given some n-ary relation R, we denote membership of that relation by saying something like $(x_1, x_2, \dots, x_n) \in R$
- Sometimes it is more convenient to use prefix notation: if we want to express that x_1, x_2, \dots, x_n are related by the relation R we might just write $R(x_1, x_2, \ldots, x_n)$
- When we are dealing with a binary relation, we might choose to write the relation symbol infix, as in xRy.
 - The usual integer relations (<, >, etc.) are examples of binary relations that are typically written using infix notation.

Part I:

Representing relations using an adjacency matrix

Adjacency Matrix

- One way of representing a (finite) binary relation is as an adjacency matrix.
- Each entry in the adjacency matrix is a boolean value.
- Given any finite binary relation $R \subseteq A \times B$, we can construct its adjacency matrix M_R as follows:
 - We index the rows and columns of the matrix by the elements of A and B respectively (assumed to be in some fixed order).
 - For any $(a, b) \in (A \times B)$ we set the entry M_R for row a and column b to true iff $(a, b) \in R$

Adjacency Matrix: example 1

- $\bullet \ \mathsf{Tudors} = \{\mathsf{Henry} \ \mathsf{VII}, \ \mathsf{Henry} \ \mathsf{VIII}, \ \mathsf{Edward} \ \mathsf{VI}, \ \mathsf{Mary} \ \mathsf{I}, \ \mathsf{Elizabeth} \ \mathsf{I} \ \}$
- Relation: $is-a-parent-of \subseteq Tudors \times Tudors$

	Henry VII	Henry VIII	Edward VI	Mary I	Elizabeth I
Henry VII	F	T	F	F	F
Henry VIII	F	F	T	T	T
Edward VI	F	F	F	F	F
Mary I	F	F	F	F	F
Elizabeth I	F	F	F	F	F

Adjacency Matrix: example 2

- Tudors = $\{Henry VII, Henry VIII, Edward VI, Mary I, Elizabeth I \}$
- Relation: lived-longer-than \subseteq Tudors \times Tudors

	Henry VII	Henry VIII	Edward VI	Mary I	Elizabeth l
Henry VII	F	F	T	T	F
Henry VIII	T	F	T	T	F
Edward VI	F	F	F	F	F
Mary I	F	F	T	F	F
Elizabeth I	T	T	T	T	F

Questions:

- How many elements in the relation?
- Who did Henry VII live longer than?
- Who lived longer then Mary I?

Adjacency Matrix: relational operations

The relational operations map quite nicely to matrix operations:

- relational application: matrix multiplication
- relational composition: matrix multiplication
- relational inverse: transpose of a matrix
- relational union: (point-wise) disjunction of the matrices
- relational intersection: (point-wise) conjunction of the matrices

For matrix multiplication:

- addition is disjunction, multiplication is conjunction.
- if you prefer, use 1 and 0 with the rule that 1+1=1

Who was the parent of Elizabeth I?

is-a-parent-of { Elizabeth I }

Who was the parent of Elizabeth I?

Who were parents of either Elizabeth I or Henry VIII?

Who were parents of either Elizabeth I or Henry VIII?

Adjacency Matrix: examples of operators (inverse)

Who are the *children* of Henry VIII?

$$\begin{pmatrix} 0 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \end{pmatrix} \times \begin{pmatrix} 0 \\ 1 \\ 0 \\ 0 \\ 0 \end{pmatrix} =$$
is-a-child-of
= is-a-parent-of^T

$$\{HenryVIII\}$$

The relation is-a-child-of is the relational inverse of is-a-parent-of.

Adjacency Matrix: examples of operators (inverse)

Who are the children of Henry VIII?

$$\begin{pmatrix}
0 & 0 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0
\end{pmatrix}
\times
\begin{pmatrix}
0 \\
1 \\
0 \\
0 \\
0
\end{pmatrix}
=
\begin{pmatrix}
0 \\
0 \\
1 \\
1 \\
1
\end{pmatrix}$$
is-a-child-of
= is-a-parent-of^T

$$\{HenryVIII\}$$

$$\begin{cases}
Edward VI, \\
Mary I, \\
Elizabeth I
\end{cases}$$

The relation is-a-child-of is the relational inverse of is-a-parent-of.

Who are the children of either Henry VII or Henry VIII?

$$\begin{pmatrix} 0 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \end{pmatrix} \quad \times \qquad \begin{pmatrix} 1 \\ 1 \\ 0 \\ 0 \\ 0 \end{pmatrix} \qquad =$$

Who are the children of either Henry VII or Henry VIII?

$$\begin{pmatrix} 0 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \end{pmatrix} \quad \times \qquad \begin{pmatrix} 1 \\ 1 \\ 0 \\ 0 \\ 0 \end{pmatrix} \qquad = \qquad \begin{pmatrix} 0 \\ 1 \\ 1 \\ 1 \\ 1 \end{pmatrix}$$

$$\left\{ \begin{array}{l} \text{Henry VII,} \\ \text{Henry VIII} \end{array} \right\} \qquad \left\{ \begin{array}{l} \text{Henry VIII,} \\ \text{Edward VI,} \\ \text{Mary I,} \\ \text{Elizabeth I,} \end{array} \right\}$$

Adjacency Matrix: examples of operators (composition)

The relation is-a-grandparent-of = is-a-parent-of $\frac{1}{9}$ is-a-parent-of:

is-a-parent-of after is-a-parent-of = is-a-grandparent-of

Adjacency Matrix: examples (inverse and composition)

What happens if I compose a relation with its inverse? For example: is-a-parent-of ; is-a-child-of:

is-a-child-of after is-a-parent-of

Adjacency Matrix: examples (inverse and composition)

What happens if I compose a relation with its inverse? For example: is-a-parent-of ; is-a-child-of:

is-a-child-of after is-a-parent-of = is-a-sibling-of

- Maps a person to their siblings (including themselves).

Part II:

Classifying Relations

- reflexive
- symmetric
- transitive
- partial/total order
- equivalence relation

Kinds of relations: reflexive

- If A is a set, then the relation $I = \{a \in A \bullet (a, a)\}$ is called the identity relation on A.
 - That is, the identity relation just maps every object to itself.
- Any binary relation R that has the property that $I \subseteq R$ called a reflexive relation.
 - That is, a reflexive relation at least maps every object to itself, and maybe to some other objects too.
- Any binary relation R that has the property that $I \cap R = \emptyset$ called an irreflexive relation.
 - That is, an irreflexive relation never maps any object to itself.

Kinds of relations: symmetric

- Any binary relation R that has the property that $R^{-1} \subseteq R$ is called symmetric.
 - i.e. whenever it contains the pair (a, b) it also contains the pair (b, a).
- An antisymmetric relation is a binary relation with the property that if it ever contains both (a, b) and (b, a) then we must have a = b.
 i.e. an antisymmetric relation can be reflexive, but is not otherwise symmetric.
- Aside: A relation that is both antisymmetric and also irreflexive is called *asymmetric*.

```
reflexive: for all x, R(x,x) irreflexive: for all x, \neg R(x,x) symmetric: for all x, y, R(x,y) \rightarrow R(y,x) antisymmetric: for all x, y, (R(x,y) \land R(y,x)) \rightarrow x = y asymmetric: for all x, y, R(x,y) \rightarrow \neg R(y,x)
```

Relation reflexive irreflexive symmetric antisymmetric asymmetric

<

==

! =

 $\leq =$

>=

```
reflexive: for all x, R(x,x) irreflexive: for all x, \neg R(x,x) symmetric: for all x, y, R(x,y) \rightarrow R(y,x) antisymmetric: for all x, y, (R(x,y) \land R(y,x)) \rightarrow x = y asymmetric: for all x, y, R(x,y) \rightarrow \neg R(y,x)
```

Relation	reflexive	irreflexive	symmetric	antisymmetric	asymmetric
<	×				
>	×				
==	✓				
! =	×				

```
reflexive: for all x, R(x,x) irreflexive: for all x, \neg R(x,x) symmetric: for all x, y, R(x,y) \rightarrow R(y,x) antisymmetric: for all x, y, (R(x,y) \land R(y,x)) \rightarrow x = y asymmetric: for all x, y, R(x,y) \rightarrow \neg R(y,x)
```

Relation	reflexive	irreflexive	symmetric	antisymmetric	asymmetric
<	×	✓			
>	×	✓			
==	✓	×			
! =	×	✓			
<=	✓	×			

X

```
reflexive: for all x, R(x,x) irreflexive: for all x, \neg R(x,x) symmetric: for all x, y, R(x,y) \rightarrow R(y,x) antisymmetric: for all x, y, (R(x,y) \land R(y,x)) \rightarrow x = y asymmetric: for all x, y, R(x,y) \rightarrow \neg R(y,x)
```

Relation	reflexive	irreflexive	symmetric	antisymmetric	asymmetric
<	×	✓	×		
>	×	✓	×		
==	✓	×	✓		
! =	×	✓	✓		
<=	✓	×	×		
<u> </u>	/	~	~		

```
reflexive: for all x, R(x,x) irreflexive: for all x, \neg R(x,x) symmetric: for all x, y, R(x,y) \rightarrow R(y,x) antisymmetric: for all x, y, (R(x,y) \land R(y,x)) \rightarrow x = y asymmetric: for all x, y, R(x,y) \rightarrow \neg R(y,x)
```

Relation	reflexive	irreflexive	symmetric	antisymmetric	asymmetric
<	×	✓	×	✓	
>	×	✓	×	✓	
==	✓	×	✓	✓	
! =	×	✓	✓	×	
<=	✓	×	×	✓	
>=	/	×	×	J	

```
reflexive: for all x, R(x,x) irreflexive: for all x, \neg R(x,x) symmetric: for all x, y, R(x,y) \rightarrow R(y,x) antisymmetric: for all x, y, (R(x,y) \land R(y,x)) \rightarrow x = y asymmetric: for all x, y, R(x,y) \rightarrow \neg R(y,x)
```

Relation	reflexive	irreflexive	symmetric	antisymmetric	asymmetric
<	×	✓	×	✓	✓
>	×	✓	×	✓	✓
==	✓	×	✓	✓	×
! =	×	✓	✓	×	×
<=	✓	×	×	✓	×
>=	✓	×	×	✓	×

Transitive Relations

- Any binary relation R that has the property that whenever $(x,y) \in R$ and $(y,z) \in R$ then $(x,z) \in R$ is called transitive.
- Any binary relation that is reflexive, transitive and also antisymmetric is called a partial order. (no cycles) If, in addition, for every two objects x, y we have either $(x, y) \in R$ or $(y, x) \in R$, then we call it a total order. (a chain)
- Any binary relation that is reflexive, transitive and also *symmetric* is called an equivalence relation.

Examples: Tudors

Relation	reflexive	symmetric	transitive
is-a-parent-of			
was-succeeded-by*			
lived-longer-than			

^{*} assuming was-*immediately*-succeeded-by

Relation	reflexive	symmetric	transitive
sibling-of			
is-an-ancestor-of			
lived-in-reign-of			
same-gender-as			
different-gender-to			

Examples: Numeric relations

Let $x, y \in \mathbb{N}$, and suppose the following relations are all defined as sets of tuples $(x, y) \in \mathbb{N} \times \mathbb{N}$:

Relation	reflexive	symmetric	transitive
x < y			
$x \le y$			
x = y			
$y = \sqrt{x}$			
y = x%2			
y%2 = x%2			

Equivalence relations and partitions

 Given any set S, a partition of S is a set of subsets that are collectively exhaustive and mutually exclusive.

That is, sets S_1, \ldots, S_n are a partition of S if:

- $(S_1 \cup \ldots \cup S_n) = S$ [collectively exhaustive]
- for any sets S_i and S_j , if $i \neq j$ then $S_i \cap S_j = \emptyset$ [mutually exclusive]

Equivalence relations and partitions

• Given any set S, a partition of S is a set of subsets that are collectively exhaustive and mutually exclusive.

That is, sets S_1, \ldots, S_n are a partition of S if:

- $(S_1 \cup \ldots \cup S_n) = S$ [collectively exhaustive]
- for any sets S_i and S_j , if $i \neq j$ then $S_i \cap S_j = \emptyset$ [mutually exclusive]
- Any *equivalence relation* over some set *S* automatically partitions *S* into a set of equivalence classes.

(- sometimes called the *quotient set* of S)

• Example: using *equality* as the equivalence relation we partition a set into subsets each with exactly one element.

Equivalence relations: modulo example

Suppose we take the set of natural numbers, \mathbb{N} .

Than we can form a partition of $\mathbb N$ using e.g. modulo 3, getting three equivalence classes:

•
$$S_0 = \{ n \in \mathbb{N} \mid n \% 3 = 0 \}$$

= $\{ 0, 3, 6, 9, 12, 15, 18, \ldots \}$

•
$$S_1 = \{ n \in \mathbb{N} \mid n \% \ 3 = 1 \}$$

= $\{ 1, 4, 7, 10, 13, 16, 19, \ldots \}$

•
$$S_2 = \{ n \in \mathbb{N} \mid n \% \ 3 = 2 \}$$

= $\{ 2, 5, 8, 11, 14, 17, 20, \ldots \}$

Thus $\{S_0, S_1, S_2\}$ is a partition of $\mathbb N$