컴퓨터 구조

디지털 논리회로(1)

목 차

Numeral System Digital Code Logic Gate Boolean Algebra

Unit

- ❖ Unit(단위)
- Bit(Binary digit)
 - 데이터를 나타내는 최소 단위 (0 또는 1)
- Byte
 - Bit들의 집합 (1byte = 8bit)
 - 대부분의 경우 데이터 크기를 표시하는 최소 단위
- Word
 - 다양하게 구성이 가능(2/4/8byte)
 - 대부분 4byte(=32bit)
 - Doubleword = 2word

	SI 표준		IEC 표준
1000(10 ³)B	1KB	1024(2 ¹⁰)B	1KiB
1000(10 ⁶)B (=1000KB)	1MB	1048576 (2 ²⁰)B (=1024KB)	1MiB
1000(10 ⁹)B (=1000MB)	1GB	1073741824 (2 ³⁰)B (=1024MB)	1GiB
1000(10 ¹²)B (=1000GB)	1TB	109951162777 (2 ⁴⁰)B (=1024GB)	1TiB

< 단위 비교 >

Unit

표 2-1 SI 단위와 IEC 단위 비교

SI(10진수 단위)			IEC(2진수 단위)						
값	기호	이름	값	기호	이름	10진수 변환 크기			
$(10^3)^1 = 10^3$	k, K	kilo-	$(2^{10})^1 = 2^{10} \cong 10^{3.01}$	Ki	kibi-	1,024			
$(10^3)^2 = 10^6$	М	mega-	$(2^{10})^2 = 2^{20} \cong 10^{6.02}$	Mi	mebi-	1,048,576			
$(10^3)^3 = 10^9$	G	giga-	$(2^{10})^3 = 2^{30} \cong 10^{9.03}$	Gi	gibi-	1,073,741,824			
$(10^3)^4 = 10^{12}$	Т	tera-	$(2^{10})^4 = 2^{40} \cong 10^{12.04}$	Ti	tebi-	1,099,511,627,776			
$(10^3)^5 = 10^{15}$	Р	peta-	$(2^{10})^5 = 2^{50} \cong 10^{15.05}$	Pi	pebi-	1,125,899,906,842,624			
$(10^3)^6 = 10^{18}$	Е	exa-	$(2^{10})^6 = 2^{60} \cong 10^{18.06}$	Ei	exbi-	1,152,921,504,606,846,976			
$(10^3)^7 = 10^{21}$	Z	zetta-	$(2^{10})^7 = 2^{70} \cong 10^{21.07}$	Zi	zebi-	1,180,591,620,717,411,303,424			
$(10^3)^8 = 10^{24}$	Υ	yotta-	$(2^{10})^8 = 2^{80} \cong 10^{24.08}$	Yi	yobi-	1,208,925,819,614,629,174,706,176			

kibi-: kilobinary, mebi-: megabinary, gibi-: gigabinary,

tebi-: terabinary, pebi-: petabinary, exbi-: exabinary,

zebi-: zettabinary, yobi-: yottabinary

Radix

- ❖ Radix(기수법)
- 수를 나타내는 방식
- N진법
 - Digits의 개수가 N인 진법
 - 숫자(N)으로 표시

10진수((Decimal)
-------------------------	-----------

- $1x10^2 + 4x10^1 = 140$
- 2진수(Binary)
 - $10001100_{(2)} = 1 \times 2^7 + 1 \times 2^3 + 1 \times 2^2 = 140$
- 16진수(Hexadecimal)
 - $8C_{(16)} = 8x16^1 + Cx16^0 = 8x16 + 12 = 140$

Radix	Digits	표기
10진법	0 ~ 9	140
2진법	0, 1	10001100 ₍₂₎
8진법	0 ~ 7	214 ₍₈₎
16진법	0 ~ 9, A ~ F(10 ~ 15)	8C ₍₁₆₎

< N 진법 >

Radix

표 2-2 2진수에 해당하는 8진수, 16진수, 10진수 표현

2진수	8진수	10진수
000	0	0
001	1	1
010	2	2
011	3	3
100	4	4
101	5	5
110	6	6
111	7	7

2진수	16진수	10진수	2진수	16진수	10진수
0000	0	0	1000	8	8
0001	1	1	1001	9	9
0010	2	2	1010	А	10
0011	3	3	1011	В	11
0100	4	4	1100	С	12
0101	5	5	1101	D	13
0110	6	6	1110	Е	14
0111	7	7	1111	F	15

Radix Conversion(1)

- 2진수/16진수 → 10진수
- 각 자리수에 Base의 거듭제곱을 곱해서 더함
- 2진수 → 10진수
 - $1100.101_{(2)} = 1 \times 2^3 + 1 \times 2^2 + 1 \times 2^{-1} + 1 \times 2^{-3} = 12 + 0.5 + 0.125 = 12.625$
- 16진수 → 10진수
 - $A3.D2_{(16)} = 10x16^1 + 3x16^0 + 13x16^{-1} + 2x16^{-2} = 163 + 13x0.0625 + 2x0.00390625 = 63.8203125$
- 10진수 → 2진수/16진수
- 10진수 값을 몫이 0이 될 때 까지 Base로 나누고, 나머지 값을 역순으로 연결
- 10진수 → 2진수
 - \bullet 12 = 1100₍₂₎
- 10진수 → 16진수
 - $1000 = 3E8_{(16)}$

Radix Conversion(2)

- **❖** 2진수 → 16진수
- 4bit식 묶어서 표현
 - $1000 = 0011 \ 1110 \ 1000_{(2)} = 3E8_{(16)}$

- ❖ 2진수의 음수 표현
- MSB를 부호 bit로 사용
 - 0이면 양수 / 1이면 음수
- ❖ 2진수의 음수 표현 방식
- 부호와 절대값(sign-magnitude)
 - MSB를 제외한 bit는 절대값을 표현
- 1의 보수(1's complement)
 - 양수 값의 0 → 1, 1 → 0으로 변환
- 2의 보수(2's complement)
 - 양수 값의 1의 보수 + 1

2진수 표현(1)

최상위비트(Most Significant Bit, MSB)

< 부호와 절대값 >

2진수 표현

표 2-3 수의 표현 방법에 따른 10진수 대응 값

4비트 2진수	부호 없는 수	부호와 절댓값	1의 보수	2의 보수
0000	0	0	0	0
0001	1	1	1	1
0010	2	2	2	2
0011	3	3	3	3
0100	4	4	4	4
0101	5	5	5	5
0110	6	6	6	6
0111	7	7	7	7
1000	8	-0	-7	-8
1001	9	-1	-6	-7
1010	10	-2	-5	-6
1011	11	-3	-4	-5
1100	12	-4	-3	-4
1101	13	-5	-2	-3
1110	14	-6	-1	-2
1111	15	-7	-0	-1

2진수 표현(2)

- ❖ 2진수의 뺄셈
- 양수 값과 2의 보수를 더하면 유효 자리수는 항상 0
- $X + Y = 0 \leftrightarrow X = -Y$
- X Y = X + (X의 2의 보수)
 - 뺄셈 연산기를 직접 구현하는 대신 2의 보수를 더하여 뺄셈을 구현
- ❖ 정수의 범위
- n bit이 표시할 수 있는 정수 값의 개수는 2ⁿ
- 2의 보수는 0이 양수로 취급되어, 표시 범위 -2ⁿ⁻¹ ~ 2ⁿ⁻¹-1

크기	범위
1byte	$-2^{7}(-128) \sim 2^{7}-1(127)$
2byte	-2 ¹⁵ (-32,768)~ 2 ¹⁵ -1(32,767)
4byte	$-2^{31}(-2,147,483,648) \sim 2^{31}-1(2,147,483,647)$
8byte	-2 ⁶³ ~ 2 ⁶³ -1

< 정수 값의 범위 >

2진수	부호 없는 정수	2의 보수
000	0	0
001	1	1
010	2	2
011	3	3
100	4	-4
101	5	-3
110	6	-2
111	7	-1

< 3bit 2진수의 표현 >

2진수 표현(3)

- ❖ 부호 확장
- bit수가 늘어날 때, 부호 bit를 처리하는 방법
- 부호와 절대값(sign-magnitude)
 - 부호만 MSB로 옮기고, 나머지는 0으로 채움
- 1의 보수(1's complement)
 - 늘어난 bit를 부호와 같은 bit로 채움
- 2의 보수(2's complement)
 - 늘어난 bit를 부호와 같은 bit로 채움

Real Number

- ❖ Real Number(실수) 표현
- 고정 소수점(Fixed point number)
 - 정수 값과 소수 값을 분리해서 표현
- 부동 소수점(Floating point number)
 - 부호(Sign), 지수(Exponent), 가수(Mantissa)로 표현
 - $N = (-1)^S \times M \times 2^E$
 - 정밀도에 따라 Single precision(단정도) / Double precision(배정도)로 구분

구분	IEEE 754 표준 부동 소수점 수의 비트 할당								
단정도 부동 소수점 수	8비트 23비트 31 30 29 ··· 24 23 22 21 ··· 1 0 S 지수 가수	127							
배정도 부동 소수점 수	11世 52世 63 62 61 ··· 53 52 51 50 ··· 1 0 S スト オト プト	1023							

그림 2-5 단정도 및 배정도 부동 소수점 수에 할당된 비트 수

단정도(단일정밀도): 32비트, 배정도(2배정밀도): 64비트,

4배정도(4배정밀도): 128비트

목 차

Numeral System

Digital Code

Logic Gate

Boolean Algebra

Code

- ❖ Code(코드 or 부호)
- 문자를 컴퓨터에 저장하는 방식
- Ex) Binary Coded Decima(BCD) / Excess-3 Code / etc...
- Gray Code
- 연속된 값들 간의 code 차이는 1bit
- Data 전송시 오류 발생 확률 감소

정수	Binary Code	Gray Code
0	000	000
1	001	001
2	010	011
3	011	010
4	100	110
5	101	111
6	110	101
7	111	100

< Gray Code >

Character Code(1)

- ❖ Character Code(문자 코드)
- 모든 문자는 숫자로 변환되어 저장됨
 - Character Set(문자 집합)과 Encoding(인코딩)방식이 필요
- ASCII(American Standard Code for Information Interchange) Code
- 미국 국립 표준 연구소(ANSI)가 제정한 정보 교환용 미국 표준 코드
- 영문 Alphabet을 사용하는 문자 처리 방식
- 1Byte로 구성
 - 많은 글자를 표현할 수 없음
- ❖ 한글 Code
- Character Set KS X 1001, KS X 1002, ...
- Encoding 방식 EUC-KR, CP949, MS949 ...

0x	0	1	2	3	4	5	6	7	8	9	Α	В	C	D	E	F
B0A0		가	각	간	갇	갈	갉	갊	감	갑	값	갓	갔	강	갖	갗
B0B0	같	갚	갛	개	객	갠	갤	갬	갭	갯	갰	갱	갸	갹	갼	걀
B0C0	걋	걍	걔	걘	걜	거	걱	건	걷	걸	걺	검	겁	것	겄	겅
B0D0	겆	겉	겊	겋	게	겐	겔	겜	겝	겟	겠	겡	겨	격	겪	견
B0E0	겯	결	겸	겹	겻	겼	경	곁	계	곈	곌	곕	곗	고	곡	곤
B0F0	곧	골	곮	곬	곯	곰	곱	곳	공	곶	과	곽	관	괄	괆	

< KS X 1001 >

< ASCII Code >

Character Code(2)

- ❖ Unicode(유니코드)
- Unicode Consortium에서 제정
- 전 세계의 모든 문자를 다루도록 설계된 문자 처리 방식
- Plain(평면) 단위로 구별
 - Unicode 한 글자의 크기 ≠ 16bit
 - 가장 많이 쓰이는 BMP(다국어 기본 평면)은 16bit
- 한글은 U+로 시작 (U+AC00 : "가")
 - 주로 U+AC00 ~ U+DA7F에 존재

다국어 기본 평면	다국어 보충 평면	상형 문자 보충 평면	상형 문자 제3 평면	특수 목적 보충 평면
BMP	SMP	SIP	TIP	SSP
U+0000 U+8000	U+10000 U+18000	U+20000 U+28000	U+30000	U+E0000
U+1000 U+9000	U+11000	U+21000 U+29000	U+31000	
U+2000 U+A000	U+12000	U+22000 U+2A000		
U+3000 U+B000	U+13000 U+1B000	U+23000 U+2B000		
U+4000 U+C000	U+14000	U+24000 U+2C000		
U+5000 U+D000	U+1D000	U+25000 U+2D000		
U+6000 U+E000	U+16000 U+1E000	U+26000 U+2E000		
U+7000 U+F000	U+17000 U+1F000	U+27000 U+2F000		

< Unicode Plain >

U+	0	1	2	3	4	5
AC00	가	각	갂	갃	간	갅
AC10	감	갑	값	갓	갔	강
AC20	갠	갡	갢	갣	갤	갥
AC30	갰	갱	갲	갳	갴	갵
AC40	걀	걁	걂	걃	걄	걅
AC50	걐	걑	걒	걓	걔	걕
AC60	걠	걡	걢	걣	걤	걥

< Unicode >

Character Code(3)

- ❖ Encoding(인코딩 방식)
- Unicode를 Memory에 저장하는 방식
 - 대표적으로 UTF-8, UTF-16

Code 범위	UTF-8	설명
0x0 ~ 0x7F	0xxxxxx	ASCII와 동일
0x80 ~ 0x7FF	110xxxxx 10xxxxxx	첫 byte는 110 or 1110 / 나머지는 10으로 시작
0x800 ~ 0xFFFF	1110xxxx 10xxxxxx 10xxxxxx	나머지는 10으로 시작

< UTF-8 >

- UTF-8
- 가장 많이 쓰이는 Encoding 방식
 - 기존 ASCII Code와 호환성 유지(ASCII 문자의 MSB가 0)
- ❖ UTF-16
- BMP(기본 평면) 문자는 16bit 단위로 저장
 - Ex) Java의 기본 Encoding 방식

Error Detecting Code

- ❖ Parity Bit(패리티 비트)
- Data에 오류가 있는지 확인하기 위해 추가된 bit
- 오류 검출만 가능
- Even(짝수) parity
 - Data의 1의 개수를 짝수로 맞춤
- Odd(홀수) parity
 - Data의 1의 개수를 홀수로 맞춤
- Hamming Code
- Data의 오류를 검출 및 정정을 위해 parity bit들이 추가
- $2^{P} \ge D + P + 1$
 - D: bit 수 / P: 추가되는 bit 수
 - Ex) $D = 4 \rightarrow P = 3 / D = 8 \rightarrow P = 4 / D = 16 \rightarrow P = 5$

표 2-16 해밍 코드에서 패리티 비트의 위치와 패리티 생성 영역

비트 위치	1	2	3	4	5	6	7	8	9	10	11	12
기호	P_1	P_2	D_3	P_4	D_5	D_6	D_7	P_8	D_9	D_{10}	D_{11}	D_{12}
P ₁ 영역	✓		✓		✓		✓		✓		✓	
P ₂ 영역		✓	✓			✓	✓			✓	✓	
P ₄ 영역				✓	✓	✓	✓					✓
P ₈ 영역								✓	✓	√	√	✓

목 차

Numeral System

Digital Code

Logic Gate

Boolean Algebra

Physical Device(1)

- Semiconductor
- Conductor / Insulator / Semiconductor?

Physical Device(2)

- Semiconductor
- Conductor / Insulator / Semiconductor?
- Fabrication process
- Channel length 3nm?

Circuit Level

- nmos / pmos / cmos
- Conductor / Insulator / Semiconductor?
- Fabrication process
- Channel length 3nm?

Logic Gate(1)

- ❖ Logic Level(논리 레벨)
- 연속적인 값을 가지는 전압을 불연속적인 Logic 값으로 표시
 - Analog 값을 Digital 값으로 변환
- ❖ Logic Gate(논리 게이트)
- 한 개 이상의 Input과 한 개 이상의 Output이 존재하는 회로
- Hardware 구성의 기본 요소
 - 0과 1의 신호를 사용
- ❖ Truth Table(진리표)
- 모든 가능한 입력에 대한 출력을 기록한 표

Input	Output
0	1
1	0

< Truth Table >

그림 3-1 TTL과 CMOS 논리 레벨 정의 영역

Logic Gate(2)

- NOT Gate(Inverter)
- 논리 부정
- Input과 Output의 값이 다름
- AND Gate
- Input이 모두 1이면 Output도 1, 아니면 0

- OR Gate
- Input이 모두 0이면 Output도 0, 아니면 1

Α	F
0	1
1	0

Α	В	F
0	0	0
0	1	0
1	0	0
1	1	1

< AND Gate >

Α	В	F
0	0	0
0	1	1
1	0	1
1	1	1

< OR Gate >

Logic Gate(3)

- NAND Gate
- Input이 모두 1이면 Output이 0, 아니면 1
- AND Gate의 Output의 논리 부정
 - NOT-AND
- NOR Gate
- Input이 모두 0이면 Output이 0, 아니면 1
- OR Gate의 Output의 논리 부정
 - NOT-OR

Α	В	F
0	0	1
0	1	1
1	0	1
1	1	0

< NAND Gate >

Α	В	F
0	0	1
0	1	0
1	0	0
1	1	0

< NOR Gate >

Logic Gate(4)

- XOR(Exclusive-OR) Gate
- Input 1의 개수가 홀수이면 Output이 0
- XNOR Gate
- Input 1의 개수가 짝수이면 Output이 0
- XOR Gate의 Output의 논리 부정
 - NOT-XOR

Α	В	F
0	0	0
0	1	1
1	0	1
1	1	0

< XOR Gate >

Α	В	F
0	0	0
0	1	0
1	0	0
1	1	1

< NOR Gate >

목 차

Numeral System Digital Code Logic Gate Boolean Algebra

Boolean Algebra

- ❖ Boolean Algebra(불 대수)
- 1854년 영국의 수학자 Geroge Boole이 제안
- 논리식을 형식화하여 표현하는 방식
- 기본적으로 AND, OR, NOT를 이용하여 표현
 - A AND B $\rightarrow AB$
 - A OR B \rightarrow A + B
 - NOT A $\rightarrow \bar{A}$

• Ex) $F = A + B\bar{C}$	$B \longrightarrow A \longrightarrow F$
--------------------------	---

Α	В	C	F
0	0	0	0
0	0	1	0
0	1	0	1
0	1	1	0
1	0	0	1
1	0	1	1
1	1	0	1
1	1	1	1
<u> </u>			

$$< F = A + B\overline{C} >$$

공리 및 법칙(1)

❖ Boolean Algebra 공리 및 법칙

공리	내용
P1	A = 0 or A = 1
P2	0.0 = 0
P3	1.1 = 1
P4	0 + 0 = 0
P5	1 + 1 = 1
P6	0.1 = 1.0 = 0
P7	0 + 1 = 1 + 0 = 1

< Boolean Algegra 공리 >

법칙	내용
기본 법칙	A+0=0+A=A
	A + 1 = 1 + A = 1
	$A \cdot 1 = 1 \cdot A = A$
	$A \cdot 0 = 0 \cdot A = 0$
	$A + A = A \cdot A = A$
	$A + \bar{A} = 1$
	$A \cdot \bar{A} = 0$
교환 법칙	A + B = B + A
	$A \cdot B = B \cdot A$

법칙	내용
결합 법칙	(A+B)+C=A+(B+C)
	$(A \cdot B) \cdot C = A \cdot (B \cdot C)$
분배 법칙	$A \cdot (B + C) = A \cdot B + A \cdot C$
	$A + B \cdot C = (A + B) \cdot (A + C)$
드모르간의 정리	$\overline{A+B} = \overline{A} \cdot \overline{B}$
	$\overline{A \cdot B} = \overline{A} + \overline{B}$
흡수 법칙	$A + A \cdot B = A$
	$A \cdot (A+B) = A$

< Boolean Algegra법칙 >

공리 및 법칙(2)

- ❖ 분배 법칙
- $\bullet \quad A + B \cdot C = (A + B) \cdot (A + C)$

Α	В	С	F	
0	0	0	0	
0	0	1	0	
0	1	0	0	
0	1	1	1	4
1	0	0	1	
1	0	1	1	
1	1	0	1	
1	1	1	1	
<	F = A	+ BC	>	•

Α	В	C	A+B	A+C	F
0	0	0	0	0	0
0	0	1	0	1	0
0	1	0	0	1	0
0	1	1	1	1	1
1	0	0	1	1	1
1	0	1	1	1	1
1	1	0	1	1	1
1	1	1	1	1	1

< F = (A + B)(A + C) >

논리 회로 변환(1)

- ❖ 논리 회로 변환
- Boolean Algebra 식은 논리 회로로 표현이 가능
- ❖ AND-OR 논리 회로(Sum of Product, SOP)
- 주 연산자가 OR인 경우
 - 우선, AND 대수식을 AND Gate로 변환하고, OR Gate의 입력으로 연결
 - Ex) $F(A, B, C) = \overline{A}B + A\overline{B} + BC$

논리 회로 변환(2)

- ❖ OR-AND 논리 회로(Product of Sum, POS)
- 주 연산자가 AND인 경우
 - 우선, OR 대수식을 OR Gate로 변환하고, AND Gate의 입력으로 연결
 - Ex) $F(A, B, C) = (A + B)(\bar{A} + \bar{B} + C)$

논리식의 간소화

- ❖ Boolean Algebra 법칙을 이용한 논리식의 간소화
- $\bar{A}B\bar{C} + \bar{A}BC + A\bar{B}\bar{C} + A\bar{B}C + ABC$
- $\bullet = \bar{A}B(\bar{C} + C) + A\bar{B}(\bar{C} + C) + ABC$
- $\bullet = \bar{A}B + A\bar{B} + ABC$
- $\bar{A}B\bar{C} + \bar{A}BC + A\bar{B}\bar{C} + A\bar{B}C + ABC$
- = $\bar{A}B\bar{C} + \bar{A}BC + A\bar{B}\bar{C} + A\bar{B}C + ABC + A\bar{B}C$
- $\bullet = \bar{A}B(\bar{C} + C) + A\bar{B}(\bar{C} + C) + AC(B + \bar{B})$
- $\bullet = \bar{A}B + A\bar{B} + AC$
- $A + \overline{A}B(\overline{E}H \Box \Box)$
- $\bullet = (A + \overline{A})(A + B) = A + B$

법칙	내용
결합 법칙	(A+B)+C=A+(B+C)
	$(A \cdot B) \cdot C = A \cdot (B \cdot C)$
분배 법칙	$A \cdot (B+C) = A \cdot B + A \cdot C$
	$A + B \cdot C = (A + B) \cdot (A + C)$
드모르간의 정리	$\overline{A+B} = \bar{A} \cdot \bar{B}$
	$\overline{A \cdot B} = \overline{A} + \overline{B}$
흡수 법칙	$A + A \cdot B = A$
	$A \cdot (A+B) = A$

법칙	내용
기본 법칙	A+0=0+A=A
	A+1=1+A=1
	$A \cdot 1 = 1 \cdot A = A$
	$A \cdot 0 = 0 \cdot A = 0$
	$A + A = A \cdot A = A$
	$A + \bar{A} = 1$
	$A \cdot \bar{A} = 0$
교환 법칙	A+B=B+A
	$A \cdot B = B \cdot A$

기출문제

- ❖ 기출문제
- 5. 010110과 01110의 XOR결과는?
- 10. A=1101, B=0111이 입력되면, Y값은?

• 12. 불 대수식의정리 중 옳지않은것은?

$$\bigcirc A + \overline{A}B = A + B$$

$$3A+0=A$$

$$\textcircled{4} A (\overline{A} + AB) = A + B$$

• 23. 논리회로의 출력함수식 F를 구하시오.

• 28. $F = (\bar{A} + \bar{B} + \bar{C})(\bar{A} + B + \bar{C})$ 일때, \bar{F} 식을 간소화하시오.

Homework

- ❖ 다음의 식이 성립하는지 Truth Table을 구해서 증명하시오
- 1) $\overline{A+B+C} = \overline{A} \cdot \overline{B} \cdot \overline{C}$
- 2) $A \cdot \overline{B} + \overline{B} \cdot \overline{C} + \overline{A} \cdot \overline{C} = A \cdot \overline{B} + \overline{A} \cdot \overline{C}$
- ❖ 다음 Boolean Algebra식을 논리 회로로 표시하시오
- 5) $F = B\overline{C} + AB + ABD$
- 6) $F = (A + B)(C + D)(\bar{A} + B + D)$
- ❖ 다음 논리식을 간소화하고, Truth Table을 구해서 증명하시오
- 7) $(A\bar{B}(C+BD)+\bar{A}\bar{B})C$
- 8) $\overline{AB + AC} + \overline{AB}C$