CSE 587 FA2024: Parallel Computing Assignment 1

Yichen Lu nechy@umich.edu

September 10, 2024

1 completely connected computer

Require: The total processor p, the current process p_id and the current value v_id

1.1 Program in pseudo-code

Algorithm 1 scan(A,0,p-1,min)

```
Ensure: The min value from V_0 to V_p-1

1: int step = 1

2: while step < p - 1 do

3: start_id = p_id + step

4: end_id = p_id - step

5: if end_id < p then

6: send(end_id, v_id)
```

- 8: **if** start_id >= 0 **then** 9: receive(start_id, min_id)
- 9: receive(start_id, min_id)
 10: v_id = min(v_id, min_id)
- 11: **end if** 12: step = step * 2

end if

7:

13: **end while**

1.2 Analysis

The while loop will continue until step is larger than p. Thus, the loop time should be $\log p$. In every loop, the statement will decide to either send the value or receive the value to the min operation. So the time complexity is O(1). Totally, the time complexity is $O(\log p)$

2 2-dimensional mesh

2.1 Program in pseudo-code

In the second page.

2.2 Analysis

Each loop will take $\sqrt{p}-1$ times. Thus, the time complexity of the algorithm is $O(3*(\sqrt{p}-1))=O(\sqrt{p})$

Algorithm 2 scan(A, 0, p-1, min)

26: end for

Require: The total number of processors p, the current processor id p_id, and the current value v_id Ensure: The minimum value from v_0 to v_p-1 1: int sqrtp = sqrt(p)2: int row_id = p_id / sqrtp 3: int col_id = p_id - row_id * sqrtp 4: for int step = 1; step < sqrtp - 1; step *= 2 doif $col_id > 0$ and $col_id < sqrtp - 1$ then 5: $send(p_id + 1, v_id)$ 6: receive(p_id - 1, min_id) 7: $v_{id} = min(v_{id}, min_{id})$ 8: end if 9: 10: end for 11: int global_min = 012: for int step = 1; step < sqrtp - 1; step *= 2 do if $row_id > 0$ and $row_id < sqrtp - 1$ then 13: $send(p_id + sqrtp, v_id)$ 14: receive(p_id - sqrtp, min_id) 15: 16: $v_{id} = min(v_{id}, min_{id})$ $global_min = v_id$ 17: end if 18: 19: end for 20: for int step = 1; step < sqrtp - 1; step *= 2 do $\mathbf{if} \ \mathrm{row_id} > 0 \ \mathbf{and} \ \mathrm{row_id} < \mathrm{sqrtp}$ - 1 \mathbf{then} 21: send(p_id - 1, global_min) 22: $receive(p_id + 1, min_id)$ 23: $v_{id} = min(v_{id}, min_{id})$ 24: end if 25: