Computer Vision HW1 Report

Student ID: R10943131 Name: 周奕節

<u>Part 1.</u>

Visualize the DoG images of 1.png.

V ISUUIIZO VI	DoG Image (threshold = 3)		DoG Image (threshold = 3)
DoG1-1.png	ANPANMAN Francis Production, Del NY GARCEL COCO	DoG2-1.png	ANPANMAN
DoG1-2.png	ANPANMAN OTHER PROJECTION THE NEW CAPCILIP	DoG2-2.png	ANPANMAN
DoG1-3.png	ANPANMAN	DoG2-3.png	ANPANMAN
DoG1-4.png	ANPANMAN	DoG2-4.png	ANPANMAN

Use three thresholds (1,2,3) on 2.png and describe the difference.

Discuss:

The value of thresholds matters, too high will get fewer feature points, and too low will get too many. For example, the image from threshold=1 has too many keypoints, thus, a threshold of about 2-3 is a more proper value.

Part 2.

- Report the cost for each filtered image.

Gray Scale Setting	Cost (1.png)	
cv2.COLOR_BGR2GRAY	1207799	
R*0.0+G*0.0+B*1.0	1439568	
R*0.0+G*1.0+B*0.0	1305961	
R*0.1+G*0.0+B*0.9	1393620	
R*0.1+G*0.4+B*0.5	1279697	
R*0.8+G*0.2+B*0.0	1127913	
Gray Scale Setting	Cost (2.png)	
Gray Scale Setting cv2.COLOR_BGR2GRAY	Cost (2.png) 183850	
, ,	, <u>, , , , , , , , , , , , , , , , , , </u>	
cv2.COLOR_BGR2GRAY	183850	
cv2.COLOR_BGR2GRAY R*0.1+G*0.0+B*0.9	183850 77882	
cv2.COLOR_BGR2GRAY R*0.1+G*0.0+B*0.9 R*0.2+G*0.0+B*0.8	183850 77882 86023	

- Show original RGB image / two filtered RGB images and two grayscale images with highest and lowest cost.

Describe:

The image with the highest cost has a dark leaf and bright background, and the image with the lowest cost has a lighter leaf and dark background. Both of them have similar costs.

Original RGB image (2.png)	Filtered RGB image and	Filtered RGB image and
Original ROD image (2.piig)	Grayscale image of	Grayscale image of

Describe:

The image with the highest cost clearly distinguishes the original shape, and the image with the lowest cost makes all the colors too close to gray, which is hard to distinguish.

Describe how to speed up the implementation of bilateral filter.

- Use a look-up-table for both spatial and range gaussian kernels to reduce the repeating calculation.
- Reduce the usage of for-loop from 4 to 2 to enhance parallel processing.