

*	Problem 2: Cradient Descent Algo and Logistic Regression.
,	Logistic Regression
(1)	Likelihood function with respect to
	parameter wis given by
	L (w)= $\prod_{n=1}^{\infty} p(c_1 x_n)^n (y-p(c_1 x_n))^{1-y_n}$
	n=1 (00-1000 01) 106
4	Applying negative logarithm on both sides,
\	
	$\frac{1}{n} = \ln \left(\frac{1}{2} \ln \left(\frac{1}{2} \ln \frac{y}{n} \right) \right)$ $\frac{1}{n} = \ln \left(\frac{1}{2} \ln \frac{y}{n} \right)$ $\frac{1}{n} = \ln \left(\frac{1}{2} \ln \frac{y}{n} \right)$
	$\frac{1}{2} \left(\frac{1}{2} + \frac{1}{2} \right)$
	$(1-p(G x_n))$
	NA C WAS EAST
	$= - \sum_{n=1}^{N} \left(y_n \ln \left(p \left(c_1 \right) z_n \right) \right) +$
	n=1
	26. (1-00-1900 + 1(1-yn) ln (1-p(4 lxn))
	has white of the constraint of
-	Now, $p(G x) = \sigma(w^Tx + \omega_0) = f(x)$
	P(G(xn) = F(wTxn + wo) = f(xn)
	6 (103/2001) (00-19001)
	(11)
	s6. (10) = 1) (11) = =
>	Also, or (a) post = I and a GO = wTy
	Also, σ (a) σ = 1 and σ (1+ e^{2}) σ + e^{2}
	DE CONTRACTION TO SCORE I S.
	n'- Talong = 1
	1 + exp(-(w+ wo))

> Now ; = long 1 (w) = 1 & (w) priling of . : from equations (i) and (ii) $-\ln L(w) = -\frac{\Sigma}{E}\left(y_n \ln (\sigma(a)) + (1-y_n) \ln (1-\sigma a)\right)$ n=1Now taking derivation of above sequation with request to w, $\frac{\partial \varphi(\omega)}{\partial \omega} = -\frac{\mathcal{E}}{\partial \omega} \left(\frac{y_n \partial \ln(\sigma(\alpha)) + (1 - y_n)}{\partial \omega} \right)$ $\frac{\partial \ln(1 - \sigma(\alpha))}{\partial \omega}$ $= -\frac{2}{\sqrt{2}} \left(\frac{1}{\sqrt{2}} - \frac{1}{\sqrt{2}} \left(\frac{1}{\sqrt{2}} - \frac{1}{\sqrt{2}} \right) \right)$ $= -\frac{2}{\sqrt{2}} \left(\frac{1}{\sqrt{2}} - \frac{1}{\sqrt{2}} \right) \left(\frac{1}{\sqrt{2}} - \frac{1}{\sqrt{2}} \right)$ dw (o (a)) > From equation (iii) i we get, $\frac{\partial \mathcal{E}(\omega)}{\partial \omega} = -\frac{\sum_{n=1}^{\infty} \left(y_n - y_n - y_n$ (1-4n) (a) (1-0a)

Problem 2. Gradient Descent Algorithm and Logistic Regression

Importing Libraries

```
In [118...
          import numpy as np
          import pandas as pd
          import seaborn as sns
          from sklearn.model_selection import train_test_split
          from sklearn.metrics import confusion matrix
          from sklearn.metrics import accuracy score
          from sklearn.preprocessing import StandardScaler
          import matplotlib.pyplot as plt
          from sklearn.decomposition import PCA
          from sklearn.metrics import mean_squared_error
          from sklearn.model_selection import KFold
          from sklearn.model selection import RepeatedKFold
          from sklearn.model selection import cross val score
          from numpy import log, dot, e
          from sklearn.model selection import KFold
          import random
          from sklearn.metrics import confusion matrix, classification report
          from sklearn.preprocessing import MinMaxScaler
          from sklearn.datasets import load_breast_cancer
```

Reading the dataset

```
In [119...
url = 'https://archive.ics.uci.edu/ml/machine-learning-databases/breast-cance
headers = ['id', 'type', 'mean radius', 'mean texture', 'mean perimeter', 'me
dataset = pd.read_csv(url,names = headers)

dataset
```

Out[119...

	id	type	mean radius	mean texture	mean perimeter	mean area	mean smoothness	mean compactness	mear concavity
0	842302	М	17.99	10.38	122.80	1001.0	0.11840	0.27760	0.30010
1	842517	М	20.57	17.77	132.90	1326.0	0.08474	0.07864	0.08690
2	84300903	М	19.69	21.25	130.00	1203.0	0.10960	0.15990	0.1974(
3	84348301	М	11.42	20.38	77.58	386.1	0.14250	0.28390	0.2414(
4	84358402	М	20.29	14.34	135.10	1297.0	0.10030	0.13280	0.1980(
•••				•••					
564	926424	М	21.56	22.39	142.00	1479.0	0.11100	0.11590	0.2439(
565	926682	М	20.13	28.25	131.20	1261.0	0.09780	0.10340	0.1440(
566	926954	М	16.60	28.08	108.30	858.1	0.08455	0.10230	0.0925
567	927241	М	20.60	29.33	140.10	1265.0	0.11780	0.27700	0.3514(
568	92751	В	7.76	24.54	47.92	181.0	0.05263	0.04362	0.00000

569 rows × 32 columns

Changes to dataset for ease of use

```
In [120...
# Replacing M with 1 and B with 0
dataset = dataset.replace('M',1)
dataset = dataset.replace('B',0)

# Converting to array
y = dataset[dataset.columns[1:2]]
y = y.to_numpy().reshape(len(temp))
X = dataset[dataset.columns[2:]]
X = X.to_numpy()

dataset
```

Out[120...

	id	type	mean radius	mean texture	mean perimeter	mean area	mean smoothness	mean compactness	mear concavity
0	842302	1	17.99	10.38	122.80	1001.0	0.11840	0.27760	0.30010
1	842517	1	20.57	17.77	132.90	1326.0	0.08474	0.07864	0.08690
2	84300903	1	19.69	21.25	130.00	1203.0	0.10960	0.15990	0.1974(
3	84348301	1	11.42	20.38	77.58	386.1	0.14250	0.28390	0.24140
4	84358402	1	20.29	14.34	135.10	1297.0	0.10030	0.13280	0.19800
•••									
564	926424	1	21.56	22.39	142.00	1479.0	0.11100	0.11590	0.24390
565	926682	1	20.13	28.25	131.20	1261.0	0.09780	0.10340	0.1440(
566	926954	1	16.60	28.08	108.30	858.1	0.08455	0.10230	0.0925
567	927241	1	20.60	29.33	140.10	1265.0	0.11780	0.27700	0.35140
568	92751	0	7.76	24.54	47.92	181.0	0.05263	0.04362	0.00000

569 rows × 32 columns

Stochastic Gradient Descent

```
In [121...
          class LR_Stochastic:
              # Sigmoid function
              def _sigmoid(self, x):
                  return 1/(1 + np \cdot exp(-x))
              # instance variables
              def __init__(self, lr = 0.0002, iters = 10000):
                  self.lr = lr
                  self.iters = iters
                  self.weights = None
                  self.bias = None
              def fit(self, X, y):
                  # initialize parameters
                  samples, features = X.shape
                  # set weights to zero
                  self.weights = np.zeros(features)
                  self.bias = 0
                  costs = []
                  epochs = []
                  # stochastic gradient descent algorithm
```

```
for i in range(self.iters):
        r index = random.randint(0, samples - 1)
        sample_x = X[r_index]
        sample_y = y[r_index]
        # logistic regression equation values
        linear_model = np.dot(sample_x, self.weights) + self.bias
        # sigmoid values
       y_pred = self._sigmoid(linear_model)
        # derivativation
       dw = (1/samples) * np.dot(sample x.T,y pred - sample y)
       db = (1/samples) * np.sum(y pred - sample y)
        # updating the weights
        self.weights -= self.lr*dw
        self.bias -= self.lr*db
        # cost function
       cost = np.square(sample y-y pred)
        if i%100==0: # at every 100th iteration record the cost and iters
            costs.append(cost)
            epochs.append(i)
   return costs, epochs
# Testing the model
def predict(self, X):
   linear model = np.dot(X, self.weights) + self.bias
   y pred = self. sigmoid(linear model)
   y pred cls = [1 if i > 0.5 else 0 for i in y pred]
   return y pred cls
```

Implementing, training, testing, evaluating, recall, precision, and accuracy

```
if __name__ == "__main__":

    # accuracy of the predictions
    def accuracy(y_true, y_pred):
        accuracy = np.sum(y_true == y_pred) / len(y_true)
        return accuracy

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.25,
    regressor = LR_Stochastic(lr = 0.0002, iters=11000)
    axisx,axisy = regressor.fit(X_train, y_train)
    predictions = regressor.predict(X_test)

print("Prediction accuracy:", accuracy(y_test, predictions))
```

```
# Confusion matrix and different scores
confusionM = [[0,0],[0,0]]
for i in range(len(y_test)):
    if(y_test[i] == 0 and predictions[i] == 0):
        confusionM[0][0] += 1
    if(y_test[i] == 0 and predictions[i] == 1):
        confusionM[0][1] += 1
    if(y_test[i] == 1 and predictions[i] == 0):
        confusionM[1][0] += 1
    if(y test[i] == 1 and predictions[i] == 1):
        confusionM[1][1] += 1
# true negative, false positive, false negative, true positive
tn = confusionM[0][0]
fp = confusionM[0][1]
fn = confusionM[1][0]
tp = confusionM[1][1]
precision_score = tp/(fp + tp)
recall_score = tp/(fn + tp)
accuracy_score = (tp + tn)/(tp + fn + tn + fp)
print('Precision: %.3f' % precision_score)
print('Recall: %.3f' % recall_score)
print('Accuracy: %.3f' % accuracy_score)
plt.xlabel("epoch")
plt.ylabel("cost")
plt.plot(axisy,axisx)
#cross-validation
kFold = KFold(n_splits=3, random_state=None)
acc_score = []
for train , test in kFold.split(X):
    X_train , X_test = X[train,:],X[test,:]
    y_train , y_test = y[train] , y[test]
    regressor.fit(X train,y train)
    pred_values = regressor.predict(X_test)
    acc = accuracy(pred_values, y_test)
    acc_score.append(acc)
avg_acc_score = sum(acc_score)/3
print('accuracy of each fold - {}'.format(acc_score))
print('Avg accuracy : {}'.format(avg_acc_score))
```

```
Prediction accuracy: 0.8951048951048951
Precision: 0.975
Recall: 0.736
Accuracy: 0.895
accuracy of each fold - [0.9157894736842105, 0.8894736842105263, 0.9312169312169312]
Avg accuracy: 0.9121600297038893
```


Mini-Batch gradient descent

```
In [123...
          class LR Mini Batch:
              # Sigmoid function
              def _sigmoid(self, x):
                  return 1/(1 + np.exp(-x))
              # defining instance variables
              def __init__(self, lr = 0.0001, iters = 200, batch_size = 20):
                  self.lr = lr
                  self.iters = iters
                  self.weights = None
                  self.bias = None
                  self.batch_size = batch_size
              def fit(self, X, y):
                  # initialize paramenters
                  samples, features = X.shape
                  # set all weights equal to 0 and bias equal to 0
                  self.weights = np.zeros(features)
                  self.bias = 0
                  costs = []
                  epochs = []
                  # mini-batch gradient descent algorithm
                  for i in range(self.iters):
```

```
r indices = np.random.permutation(samples)
        sample x = X[r indices]
        sample_y = y[r_indices]
        # iterations in batches
        for j in range(0, samples, self.batch_size):
            Xt = sample_x[j:j+self.batch_size]
            yt = sample y[j:j+self.batch size]
            # linear logistic regression equation
            linear_model = np.dot(Xt, self.weights) + self.bias
            # sigmoid values
            y pred = self. sigmoid(linear model)
            # derivativation
            dw = (1/samples) * np.dot(Xt.T,y pred - yt)
            db = (1/samples) * np.sum(y_pred - yt)
            # updating the weights
            self.weights -= self.lr*dw
            self.bias -= self.lr*db
            # MeanSquaredError of costs
            cost = np.mean(np.square(yt-y_pred))
        if i%10==0: # at every 10th iteration record the cost and iters v
            costs.append(cost)
            epochs.append(i)
   return costs, epochs
# Testing of model
def predict(self, X):
   linear model = np.dot(X, self.weights) + self.bias
   y_pred = self._sigmoid(linear_model)
   y_pred_cls = [1 if i > 0.5 else 0 for i in y_pred]
   return y pred cls
```

Implementing, training, testing, evaluating, recall, precision, and accuracy

```
if __name__ == "__main__":

    # accuracy of predictions
    def accuracy(y_true, y_pred):
        accuracy = np.sum(y_true == y_pred) / len(y_true)
        return accuracy
```

```
X train, X test, y train, y test = train test split(X, y, test size=0.25,
regressor = LR_Mini_Batch(lr = 0.0001, iters=100, batch_size = 10)
axisx,axisy = regressor.fit(X_train, y_train)
predictions = regressor.predict(X_test)
print("Prediction accuracy:", accuracy(y_test, predictions))
plt.xlabel("epoch")
plt.ylabel("cost")
plt.plot(axisy,axisx)
# Confusion matrix and different scores
confusionM = [[0,0],[0,0]]
for i in range(len(y_test)):
    if(y test[i] == 0 and predictions[i] == 0):
        confusionM[0][0] += 1
    if(y_test[i] == 0 and predictions[i] == 1):
        confusionM[0][1] += 1
    if(y_test[i] == 1 and predictions[i] == 0):
        confusionM[1][0] += 1
    if(y test[i] == 1 and predictions[i] == 1):
        confusionM[1][1] += 1
# true negative, false positive, false negative, true positive
tn = confusionM[0][0]
fp = confusionM[0][1]
fn = confusionM[1][0]
tp = confusionM[1][1]
precision score = tp/(fp + tp)
recall_score = tp/(fn + tp)
accuracy_score = (tp + tn)/(tp + fn + tn + fp)
print('Precision: %.3f' % precision_score)
print('Recall: %.3f' % recall_score)
print('Accuracy: %.3f' % accuracy_score)
# cross-validation
kFold = KFold(n splits=3, random state=None)
acc score = []
for train , test in kFold.split(X):
    X train , X test = X[train,:],X[test,:]
    y_train , y_test = y[train] , y[test]
    regressor.fit(X_train,y_train)
    pred_values = regressor.predict(X_test)
    acc = accuracy(pred_values , y_test)
    acc_score.append(acc)
```

```
avg_acc_score = sum(acc_score)/3
print('accuracy of each fold - {}'.format(acc_score))
print('Avg accuracy : {}'.format(avg_acc_score))
```

Prediction accuracy: 0.8951048951048951

Precision: 0.975 Recall: 0.736 Accuracy: 0.895

59259]

Avg accuracy : 0.9068875893437297

