```
In [1]:
         import numpy as np
         import pandas as pd
         import matplotlib.pyplot as plt
         import seaborn as sns
         import warnings
         warnings.filterwarnings("ignore")
In [2]:
         df=pd.read_csv("diabetes.csv")
         df
Out[2]:
              Pregnancies Glucose BloodPressure SkinThickness Insulin BMI DiabetesPedigreeFunction
           0
                       6
                              148
                                             72
                                                           35
                                                                   0 33.6
                                                                                             0.627
                       1
                                                           29
                                                                   0 26.6
           1
                               85
                                             66
                                                                                             0.351
           2
                       8
                              183
                                             64
                                                            0
                                                                   0 23.3
                                                                                             0.672
                       1
           3
                               89
                                                           23
                                                                                             0.167
                                             66
                                                                  94
                                                                      28.1
           4
                       0
                                             40
                                                                                             2.288
                              137
                                                           35
                                                                 168 43.1
                      10
                              101
         763
                                             76
                                                           48
                                                                 180 32.9
                                                                                             0.171
                       2
                              122
         764
                                             70
                                                           27
                                                                   0 36.8
                                                                                             0.340
                       5
                              121
                                             72
                                                                                             0.245
         765
                                                           23
                                                                 112 26.2
                       1
                                                                   0 30.1
                                                                                             0.349
         766
                              126
                                             60
                                                            0
         767
                       1
                               93
                                             70
                                                           31
                                                                   0 30.4
                                                                                             0.315
        768 rows × 9 columns
In [3]: df.info()
         <class 'pandas.core.frame.DataFrame'>
         RangeIndex: 768 entries, 0 to 767
         Data columns (total 9 columns):
              Column
                                          Non-Null Count
                                                           Dtype
          0
              Pregnancies
                                                            int64
                                          768 non-null
          1
              Glucose
                                          768 non-null
                                                            int64
          2
              BloodPressure
                                          768 non-null
                                                            int64
          3
              SkinThickness
                                          768 non-null
                                                            int64
          4
              Insulin
                                          768 non-null
                                                            int64
          5
                                                            float64
              BMI
                                          768 non-null
          6
              DiabetesPedigreeFunction
                                          768 non-null
                                                            float64
          7
                                                            int64
              Age
                                          768 non-null
                                          768 non-null
                                                            int64
              Outcome
         dtypes: float64(2), int64(7)
         memory usage: 54.1 KB
In [4]: x=df.iloc[:,0:-1]
         Х
```

Out[4]:		Pregnancies	Glucose	BloodPressure	SkinThickness	Insulin	ВМІ	DiabetesPedigreeFunction
	0	6	148	72	35	0	33.6	0.627
	1	1	85	66	29	0	26.6	0.351
	2	8	183	64	0	0	23.3	0.672
	3	1	89	66	23	94	28.1	0.167
	4	0	137	40	35	168	43.1	2.288
	•••		***				•••	
	763	10	101	76	48	180	32.9	0.171
	764	2	122	70	27	0	36.8	0.340
	765	5	121	72	23	112	26.2	0.245
	766	1	126	60	0	0	30.1	0.349
	767	1	93	70	31	0	30.4	0.315

768 rows × 8 columns

```
In [5]: y=df.Outcome
                                                 У
                                                                                         1
Out[5]:
                                                 1
                                                                                         0
                                                 2
                                                                                         1
                                                 3
                                                 4
                                                                                         1
                                                 763
                                                                                         0
                                                 764
                                                                                         0
                                                 765
                                                                                         0
                                                 766
                                                                                         1
                                                 767
                                                                                         0
                                                 Name: Outcome, Length: 768, dtype: int64
                                                def sigmoid(x):
In [6]:
                                                                          import math
                                                                         y=1/(1+math.exp(-x))
                                                                         return y
In [7]:
                                                   sigmoid(2.5)
                                                 0.9241418199787566
Out[7]:
In [8]:
                                                  import math
                                                print(dir(math))
In [9]:
                                               ['__doc__', '__loader__', '__name__', '__package__', '__spec__', 'acos', 'acosh', 'asin', 'asinh', 'atan', 'atan2', 'atanh', 'cbrt', 'ceil', 'comb', 'copysign', 'cos', 'cosh', 'degrees', 'dist', 'e', 'erf', 'erfc', 'exp', 'exp2', 'expm1', 'fabs', 'factorial', 'floor', 'fmod', 'frexp', 'fsum', 'gamma', 'gcd', 'hypot', 'inf', 'is close', 'isfinite', 'isinf', 'isnan', 'isqrt', 'lcm', 'ldexp', 'lgamma', 'log', 'log1', 'log1', 'log2', 'modf', 'novtaften', 'novt
                                                og10', 'log1p', 'log2', 'modf', 'nan', 'nextafter', 'perm', 'pi', 'pow', 'prod', 'radians', 'remainder', 'sin', 'sinh', 'sqrt', 'tan', 'tanh', 'tau', 'trunc', 'ul
                                                 p']
```

```
In [10]: # train_test_split
         from sklearn.model_selection import train_test_split
         x_train,x_test,y_train,y_test=train_test_split(x,y,test_size=0.2,random_state=42)
In [11]: | print(x train.shape)
         print(y train.shape)
         print(x test.shape)
         print(y_test.shape)
         (614, 8)
         (614,)
         (154, 8)
         (154,)
In [12]: from sklearn.linear_model import LogisticRegression
         model=LogisticRegression()
         model.fit(x_train,y_train)
Out[12]: ▼ LogisticRegression
         LogisticRegression()
In [13]:
         model.score(x test,y test)
         0.7467532467532467
Out[13]:
In [14]: y_predicted=model.predict(x_test)
         y_predicted
         array([0, 0, 0, 0, 0, 0, 1, 1, 1, 0, 1, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0,
Out[14]:
                1, 0, 1, 1, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 0, 1, 1, 0,
                0, 1, 1, 0, 0, 1, 0, 1, 1, 0, 0, 0, 1, 0, 0, 1, 1, 0, 0, 0, 1,
                0, 1, 0, 1, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 1, 0,
                0, 0, 0, 0, 0, 1, 1, 1, 0, 0, 1, 0, 1, 0, 1, 1, 1, 0, 0, 1, 0, 1,
                0, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1,
                0, 0, 1, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0],
               dtype=int64)
In [15]:
         model.coef
         array([[ 0.0579772 , 0.03406027, -0.01410581, 0.00428063, -0.00187732,
Out[15]:
                  0.09908123, 0.61205411, 0.03731179]])
In [16]:
         model.intercept_
         array([-8.85497785])
Out[16]:
In [17]:
         x_test
```

Out[17]:		Pregnancies	Glucose	BloodPressure	SkinThickness	Insulin	ВМІ	DiabetesPedigreeFunction
	668	6	98	58	33	190	34.0	0.430
	324	2	112	75	32	0	35.7	0.148
	624	2	108	64	0	0	30.8	0.158
	690	8	107	80	0	0	24.6	0.856
	473	7	136	90	0	0	29.9	0.210
	•••		•••				•••	
	355	9	165	88	0	0	30.4	0.302
	534	1	77	56	30	56	33.3	1.251
	344	8	95	72	0	0	36.8	0.485
	296	2	146	70	38	360	28.0	0.337
	462	8	74	70	40	49	35.3	0.705

154 rows × 8 columns

In [18]: x_test["actual"]=y_test
 x_test

Out[18]:		Pregnancies	Glucose	BloodPressure	SkinThickness	Insulin	вмі	DiabetesPedigreeFunction
	668	6	98	58	33	190	34.0	0.430
	324	2	112	75	32	0	35.7	0.148
	624	2	108	64	0	0	30.8	0.158
	690	8	107	80	0	0	24.6	0.856
	473	7	136	90	0	0	29.9	0.210
	•••							
	355	9	165	88	0	0	30.4	0.302
	534	1	77	56	30	56	33.3	1.251
	344	8	95	72	0	0	36.8	0.485
	296	2	146	70	38	360	28.0	0.337
	462	8	74	70	40	49	35.3	0.705

154 rows × 9 columns

In [19]: x_test["predicted"]=y_predicted
x_test

4, 5:02 PM	ML3 (LOGISTIC REGRESSION)							
Out[19]:		Pregnancies	Glucose	BloodPressure	SkinThickness	Insulin	ВМІ	DiabetesPedigreeFunction
	668	6	98	58	33	190	34.0	0.430
	324	2	112	75	32	0	35.7	0.148
	624	2	108	64	0	0	30.8	0.158
	690	8	107	80	0	0	24.6	0.856
	473	7	136	90	0	0	29.9	0.210
	•••	•••			***			
	355	9	165	88	0	0	30.4	0.302
	534	1	77	56	30	56	33.3	1.251
	344	8	95	72	0	0	36.8	0.485
	296	2	146	70	38	360	28.0	0.337
	462	8	74	70	40	49	35.3	0.705
	154 r	ows × 10 col	umns					
4								•
In [20]:	k=0.	.06576265*24	-0.033837	761*146-0.0135	57809*70 + 0.004	418336*:	38-0.	00180533*360+0.10095649

4 In [20]: -1.203754904490002 Out[20]: def sigmoid(k): In [21]: import math y=1/(1+math.exp(-k))**return** y sigmoid(k) 0.23080791348266091 Out[21]: if sigmoid(k)<0.5:</pre> In [22]: print("the person has no diabetes") else: print("person have diabetes") the person has no diabetes In []: