

RESTRICTED 内部文件

1890

RESTRICTED 内部文件

Solutions	Marks	Remarks
<p>4. (a) (i) $6x + 1 \geq 2x - 3$ $6x - 2x \geq -3 - 1$ $\therefore x \geq -1$</p> <p>(ii) $(2 - x)(x + 3) > 0$ (By considering the graph of the quadratic function), the solution is given by $-3 < x < 2$.</p> <p>(b) From (i) and (ii), the values of x are given by $-1 \leq x < 2$.</p>	<p>1M 1A</p> <p>2A</p> <p>2A 6</p>	<p>Collecting terms</p> <p>OR $(+) x (+) -3 < x < 2$ 1A $(-) x (-)$ no solution $\therefore -3 < x < 2$ 1A Accept graphical representation of solution. Withhold 1 mark for weak inequality.</p> <p>1 mark for $-1 \leq x \leq 2$, etc</p>
<p>5. By sliding the line ℓ, it is observed that P takes the greatest value at A and the least value at D.</p> <p>Putting $x = 0$ in ℓ_1, $y = 6$ $\therefore A = (0, 6)$</p> <p>The greatest value of $P = 22$.</p> <p>Putting $y = -2$ in ℓ_4, $x = -1$ $D = (-1, -2)$.</p> <p>The least value of $P = -11$.</p>	<p>1 1 1A 1A 1A 1A 1A 6</p>	
<p><u>Alternatively</u></p> <p>$A = (0, 6)$, $B = (3, 4)$, $C = (5, -2)$, $D = (-1, -2)$, ... $\therefore (-3, 0)$</p> <p>The values of P at these points are respectively $22, 17, -5, -11, -5$</p> <p>$\therefore P$ takes the greatest value of 22 at A and the least value of -11 at D.</p>	<p>1A+1A 1A+ 1A+ 1A 1A 1A 1A 6</p>	<p>1A for any 5 correct points Testing value at any pt. 1A for any one correct value Must first score the above 5 points</p>

RESTRICTED 内部文件

RESTRICTED 内部文件

Solutions	Marks	Remarks
8. (a) Centre = $(1, -3)$ Radius = $\sqrt{(-1)^2 + (3)^2} = 3$	1A <hr/> 1A <hr/> 2	$x=1, y=-3$
(b) Distance between the centre and A $= \sqrt{(5 - 1)^2 + (0 - -3)^2}$ $= 5$ radius of (C_1) (=3) A lies outside (C_1)	1M <hr/> 1A <hr/> 1M <hr/> 3	
(c) (i) $s = 5 - 3$ $= 2$ (ii) Equation of (C_2) is $(x - 5)^2 + (y - 0)^2 = 2^2$ or $x^2 + y^2 - 10x + 21 = 0$	1M <hr/> 1A <hr/> 2 <hr/> 1A <hr/> 3	
(d)	1	For sketch. A line touching two circles at 2 distinct points. May draw the other common tangent. Follow through.
	$EF = DA$ $BD = BE - AF$ $EF = \sqrt{AB^2 - BD^2}$ $= \sqrt{5^2 - (3-2)^2}$ $= \sqrt{24}$ $= 2\sqrt{6} (= 4.90)$	1M+1A <hr/> 1A <hr/> Any figure roundable to 4.90 <hr/> 4

RESTRICTED 内部文件

RESTRICTED 内部文件

Solutions	Marks	Remarks
10.(a) $\frac{OT}{OA} = \tan 30^\circ$ ($\frac{OA}{OT} = \tan 60^\circ$) $\therefore OA = \frac{h}{\tan 30^\circ}$ $= h\sqrt{3}$ metres ($= 1.73h$) Similarly $OB = \frac{h}{\tan 60^\circ} = \frac{h}{\sqrt{3}}$ metres ($= 0.577h$)	1A 1A <hr/> 1A <hr/> 3	2 + 1
(b) $\angle AOB = 60^\circ$ By the cosine rule, $AB^2 = OA^2 + OB^2 - 2(OA)(OB)\cos \angle AOB$ $= (h\sqrt{3})^2 + (\frac{h}{\sqrt{3}})^2 - 2(h\sqrt{3})(\frac{h}{\sqrt{3}}) \cos 60^\circ$ $= 3h^2 + \frac{h^2}{3} - h^2$ $= \frac{7}{3}h^2$ $\therefore AB = h\sqrt{\frac{7}{3}}$ metres ($1.53h$) As $h\sqrt{\frac{7}{3}} = 500$ $h = 500\sqrt{\frac{3}{7}}$ ($= 327$ or 328)	1M <hr/> 1A <hr/> 1M <hr/> 1A <hr/> 5	Any fig. roundable to $1.53h$ Any figure roundable to 327 or 328
(c) By the sine rule $\frac{h/\sqrt{3}}{\sin \angle OAB} = \frac{500}{\sin 60^\circ}$ $\sin \angle OAB = \frac{h}{\sqrt{3}} \times \frac{\sin 60^\circ}{500}$ $= \frac{500\sqrt{\frac{3}{7}}}{\sqrt{3}} \times \frac{\frac{\sqrt{3}}{2}}{500} = \frac{1}{2}\sqrt{\frac{3}{7}}$ (0.327) $\therefore \angle OAB = 19.1^\circ = 19^\circ$ (correct to the nearest degree)	1M	
(i) The bearing of B from A is N 39° E (039° or 34°) (ii) The bearing of A from B is S 39° W (219°) T	1A <hr/> 1A <hr/> 4	Accept figure roundable to 39° $39^\circ / 219^\circ$

RESTRICTED 内部文件

Solutions	Marks	Remarks																		
11.(a) (i) $S = 2\pi r^2 + 2\pi rh$	1A																			
(ii) As $V = \pi r^2 h$, $h = \frac{V}{\pi r^2}$	1M																			
$S = 2\pi r^2 + 2\pi r \left(\frac{V}{\pi r^2} \right)$ $= 2\pi r^2 + \frac{2V}{r}$	<u>1</u> <u>3</u>	$\frac{\partial R}{2\pi r^2 + \frac{2V}{r}} = 2\pi r^2 + 2\frac{(\pi r^2 h)}{r} = S$																		
(b) Putting $V = 2\pi$, $S = 6\pi$																				
$6\pi = 2\pi r^2 + \frac{2(2\pi)}{r}$	1.																			
$\therefore r^3 - 3r + 2 = 0$	1A	OR $r-1$ is a factor OR $r+2$ is a factor																		
By inspection, $r = 1$ is a root (or $r = -2$)	1A																			
$\therefore r^3 - 3r + 2 = (r - 1)(r^2 + r - 2)$	1A																			
$= (r - 1)^2(r + 2)$	1A																			
$= 0$																				
i.e. $r = 1$ (as $r \neq -2$)	<u>1A</u> <u>4</u>																			
(c) Putting $V = 3\pi$, $S = 10\pi$, we have																				
$10\pi = 2\pi r^2 + \frac{2(3\pi)}{r}$																				
$r^3 - 5r + 3 = 0$	1A																			
Let $f(r) = r^3 - 5r + 3$																				
$f(1) < 0$ and $f(2) > 0$, there is a root of $f(r) = 0$ between 1 and 2	1A	Signs of $f(1)$, $f(2)$																		
<table border="1" style="width: 100%; border-collapse: collapse;"> <thead> <tr> <th>Interval</th> <th>Mid-value, r_i</th> <th>$f(r_i)$</th> </tr> </thead> <tbody> <tr> <td>$1 < r < 2$</td> <td>1.5</td> <td>-</td> </tr> <tr> <td>$1.5 < r < 2$</td> <td>1.75</td> <td>-</td> </tr> <tr> <td>$1.75 < r < 2$</td> <td>1.875</td> <td>+</td> </tr> <tr> <td>$1.75 < r < 1.875$</td> <td>1.8125 (1.813)</td> <td>-</td> </tr> <tr> <td>$1.8125 < r < 1.875$</td> <td>1.84375 (1.844)</td> <td>+</td> </tr> </tbody> </table>	Interval	Mid-value, r_i	$f(r_i)$	$1 < r < 2$	1.5	-	$1.5 < r < 2$	1.75	-	$1.75 < r < 2$	1.875	+	$1.75 < r < 1.875$	1.8125 (1.813)	-	$1.8125 < r < 1.875$	1.84375 (1.844)	+	1M 1M	Testing at mid-value Choosing interval
Interval	Mid-value, r_i	$f(r_i)$																		
$1 < r < 2$	1.5	-																		
$1.5 < r < 2$	1.75	-																		
$1.75 < r < 2$	1.875	+																		
$1.75 < r < 1.875$	1.8125 (1.813)	-																		
$1.8125 < r < 1.875$	1.84375 (1.844)	+																		
$\therefore 1.8125 < r < 1.84375$																				
$\therefore r = 1.8$ (correct to 1 d.p.)	<u>1A</u> <u>5</u>																			

RESTRICTED 内部文件

Solutions	Marks	Remarks
12.(a) (i) The modal class is \$6000 - \$7000 By symmetry of the distribution, the median salary = \$6500, the mean salary = \$6500. The interquartile range = 8000 - 5000 = \$3000	1A 1A 1A 1A	Accept \$6500 <u>Optional</u>
The mean deviation = $\frac{1}{100} \times 2 [7(6500 - 2500) + 8(6500 - 3500)$ + 10(6500 - 4500) + 15(6500 - 5500)] = \$1740	1A 1A 1A <hr/> <hr/> <hr/> <hr/>	For answer <u>OR</u> By calculation $\sum (x - \bar{x})^2$ unchanged $\sum f$ is greater
(ii) The standard deviation of salaries will become smaller because the salaries of the additional 10 employees have no deviation from the mean while the total number of employees has become larger.	1A 1 <hr/> <hr/> <hr/>	
(b) The standard deviation = $\sqrt{\frac{1}{7} (9 + 4 + 1 + 0 + 1 + 4 + 9)}$ = 2	2A 1A <hr/> <hr/> <hr/>	

RESTRICTED 内部文件

Solutions	Marks	Remarks
13.(a) (i) The probability that Bag B is chosen = $\frac{1}{3}$. \therefore the probability that the ball drawn is green $= \frac{1}{3} \times \frac{2}{3}$ $= \frac{2}{9} (0.222)$	1A 1M 1A	$P_1 \times P_2$
(ii) the probability that Bag B is chosen and the yellow ball is drawn = $\frac{1}{3} \times \frac{1}{3}$ $= \frac{1}{9} (0.111)$ \therefore the required probability = $\frac{1}{3} \times \frac{1}{3} + \frac{1}{3} \times 1$ $= \frac{4}{9} (0.444)$	1A 1M 1A	OR probability of drawing Y from bag C. $P_1 + P_2 \quad \frac{1}{3} \times \frac{1}{3} \times 1$ no mark
		<u>6</u>
(b) (i) The probability that Peter and Alice both draw a green ball = $\frac{2}{9} \times \frac{2}{9}$ $= \frac{4}{81} (0.0494)$	1M 1A	Followed from (a)(i)
(ii) The probability that they both draw a yellow ball from Bag B = $\frac{1}{9} \times \frac{1}{9}$ $= \frac{1}{81} (0.0123)$ The probability that they both draw a yellow ball from Bag C = $\frac{1}{3} \times \frac{1}{3}$ $= \frac{1}{9} (0.111)$ \therefore the required probability = $\frac{1}{81} + \frac{1}{9}$ $= \frac{10}{81} (0.123)$	1A 1A 1A 1A 1A	<u>6</u>

RESTRICTED 内部文件

Solutions	Marks	Remarks
14.(a) (i) The integers in G_6 are 16, 17, 18, 19, 20, 21	1M+1A	1M for 6 consecutive integers (5 correct)
(ii) The total number of integers in G_1, G_2, \dots, G_6 $= 1 + 2 + 3 + \dots + 6$ $= 21$	1A <hr/> 1A <hr/> 4	Optional
(b) (i) $u_{k-1} = 1 + 2 + \dots + (k - 1)$ $= \frac{(k - 1)}{2} [1 + (k - 1)]$ $= \frac{k(k - 1)}{2}$ \therefore the first term in $G_k = \frac{k(k - 1)}{2} + 1 (= \frac{k^2 - k + 2}{2})$	1A <hr/> 1M <hr/> 1A <hr/> 1M+1A	Sum of AP = $\frac{n}{2}[a + l]$ 1M for $v_1 = u_{k-1} + 1$
(ii) The sum of all integers in G_k $= \frac{k}{2} [2 (\frac{k(k-1)}{2} + 1) + (k - 1) \times 1]$ $= \frac{k(k^2 + 1)}{2} (= \frac{k^3 + k}{2})$	1M+1A <hr/> 1A <hr/> 8	1M for Sum of AP