Работа 3.3.4

Эффект Холла в полупроводниках

Цель работы: измерение подвижности и концентрации носителей заряда в полупроводниках.

В работе используются: электромагнит с источником питания, амперметр, миллиамперметр, миллиамперметр, миллиамперметр, источник питания (1.5В), образцы легированного германия.

Экспериментальная установка:

Рис. 1: Схема установки для исследования эффекта Холла в полупроводниках

Обработка результатов

Построим график зависимости $B(I_{\rm M})$, чтобы определять индукцию магнитного поля по току в катушке (рис. 2, табл. 1). $\sigma_{I_{\rm M}}=0.01{\rm A},\,\sigma_B$ пренебрежима мала.

Таблица 1: Зависимость $B(I_{\scriptscriptstyle \mathrm{M}})$

$I_{\scriptscriptstyle \mathrm{M}},\mathrm{A}$	B, м T л
0.00	17.2
0.20	181.9
0.40	378.1
0.60	571.8
0.80	730.7
1.00	854.4
1.20	934.9
1.40	1,003.0

Рассчитаем ЭДС Холла по формуле

$$\varepsilon_{\rm x} = U_{34} - U_0$$

и построим графики $\varepsilon_{\mathbf{x}}(B)$ для различных I_0 (табл. 2, рис. 3). Для каждого графика посчитаем коэффициент наклона $k(I_0) = \Delta \varepsilon / \Delta B$. Построим график $k = f(I_0)$ (табл. 3, рис. 4). Коэффициент его наклона:

$$K = 87 \pm 8 \text{ B/(Tл·A)}$$

Выражение для коэффициента Холла:

$$\varepsilon_{\rm x} = -R_{\rm x} \cdot \frac{I_0 B}{a}, \quad \frac{\varepsilon_{\rm x}}{B} = -\frac{R_{\rm x}}{a} I_0, \quad k = K I_0, \quad K = \frac{R_{\rm x}}{a}$$

$$R_{\rm x} = -\frac{K}{a}, \quad \sigma_{R_{\rm x}} = \frac{K}{a^2} \sigma_a$$

Зависимость В(I_M) 1,000 800 400 200 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6

Рис. 2: Зависимость $B(I_{\scriptscriptstyle \mathrm{M}})$

I_м, A

(B) для различных I_0

$\mathcal{E}_{\mathbf{x}}(D)$ And passin libix 10						DIX 10	
I_0 , мА	0.30	0.45	0.50	0.65	0.80	0.95	0.95 (обратно)
B, м T л	$arepsilon_{ ext{x}}, ext{мB}$						
17.2	0.000	0.000	0.000	0.000	0.000	0.000	0.000
181.9	0.051	0.072	0.084	0.109	0.129	0.159	0.166
378.1	0.103	0.151	0.169	0.218	0.266	0.319	0.328
571.8	0.151	0.224	0.251	0.322	0.396	0.472	0.496
730.7	0.195	0.288	0.323	0.417	0.508	0.605	0.640
854.4	0.228	0.336	0.378	0.487	0.595	0.710	0.750
934.9	0.251	0.368	0.418	0.535	0.655	0.781	0.831
1,003.0	0.269	0.394	0.446	0.569	0.698	0.830	0.884

$$R_{\rm x} = (-0.087 \pm 0.004)$$
 м³/Кл

Концентрания носителей тока:

$$n = \frac{1}{R_x e}, \quad \sigma_n = \frac{\sigma_{R_x}}{R_x^2 e}$$
$$n = (7.0 \pm 0.3) \cdot 10^{19} \text{ m}^{-3}$$

Результат совпадает с табличным значением $n \sim 10^{19}$ в пределах погрешности.

Рассчитаем удельную проводимость σ по формуле:

$$\sigma = \frac{IL_{35}}{U_{35}al}, \quad \sigma_{\sigma} = \frac{IL_{35}}{U_{35}al} \cdot \frac{\sigma_a}{a}$$
$$\sigma = (3.2 \pm 0.3) \text{ (Om·m)}^{-1}$$

Вычислим подвижность носителей тока:

$$b = \frac{\sigma}{en}, \quad \sigma_b = \sqrt{\left(\frac{1}{en}\sigma_\sigma\right)^2 + \left(\frac{\sigma}{en^2}\sigma_n\right)^2}$$
$$b = (2900 \pm 300) \text{ cm}^2/(\text{B} \cdot \text{c})$$

Вывод. В ходе данной работы были получены значения постоянной Холла, удельной проводимости и подвижности носителей тока для германия.

Рис. 3: Зависимость $\varepsilon_{\mathbf{x}}(B)$ для различных I_0

Таблица 3: Зависимость $k(I_0)$

I_0 , мА	k, мВ / мТл	σ_k , м $\mathrm{B}\ /\ \mathrm{м}\mathrm{T}$ л
0.3	0.269	0.002
0.45	0.397	0.003
0.5	0.448	0.004
0.65	0.573	0.005
0.8	0.703	0.005
0.95	0.835	0.008
-0.95	0.891	0.007

Рис. 4: Зависимость $k(I_0)$