Class Attendance https://forms.gle/yPP7zqEHyn9iHzod8 Use the secret number: 556755

S(n) = sum of all positive integers until n is
$$\frac{n(n+1)}{2}$$

$$S(3)=1+2+3=6$$
 $S(4)=1+2+3+4=10$ $S(5)=2016$

Base Case:
$$S(1) = \frac{1*(1+1)}{2} = 1$$

Assume true for all n, $n < n_{0}$, $S(n) = \frac{n(n+1)}{2}$

Show it is true to S(n+1).

$$S(n+1)=1+2+3+.....+n+(n+1)$$

$$=\frac{n(n+1)}{2}+(n+1)$$

$$=\frac{n(n+1)}{2}+\frac{2*(n+1)}{2}$$

$$=\frac{(n+1)(n+2)}{2}$$

Induction:

- 1. Base Case
- 2. Inductive step:

Prove for 1

Assume if works for some positive integer k,
Then we can prove it is going to work for the
Next positive integer K+1

Assume for S(K), and prove it is true for S(K+1)

Prove that: $n! > 2^n$ for n>=4

Base Case:

n=4, 4!=24 and $2^4=16$, so true

Induction step:

Suppose it is true for a k, k>=4, show it is true For k+1, meaning: $(K+1)! > 2^{(K+1)}$

(K+1)!=k!(K+1)> $2^{K}(K+1)$ (by induction hypothesis) >= $2^{k}.2$ (since k>=4 (k+1) >= $2^{(K+1)}$

Induction:

1. Base Case

Prove for 1

2. Inductive step:

Assume if works for some positive integer k, Then we can prove it is going to work for the Next positive integer K+1

Assume for S(K), and prove it is true for S(K+1)

Inductive step:
P(1)
P(2)
Implies P(K+1) true
P(K)

Asymptotic proof difference:

$$(a \times c)(100^2) + (a \times d + b \times c) (100) + b \times d$$

Karatsuba

Recursively compute:

- 1. ac,bd,(a+b)(c+d)
- 2. ad+bc=(a+b)(c+d) -ac-bd
- 3. $ac \times 100^2 + (ad + bc) \times 100 + bd$

2 addition,

4n subtraction

4n addition

Approximately, Not exactly

Karatsuba (ab,cd)

1 7 8 9 × 1 4 3 2

a b c d

BASE CASE:

return b × d if inputs are 1 digit

ELSE:

Compute ac=karatsuba(a,c) $\xrightarrow{T(\frac{n}{2})}$ Compute bd=karatsuba(b,d) $\xrightarrow{T(\frac{n}{2})}$ Compute t=karatsuba((a+b),(c+d)) $\xrightarrow{T(\frac{n}{2})}$ $\xrightarrow{2n}$ mid=t-ac-bd

$$T(n)=3T(\frac{n}{2}) + 8n$$
Ignoring issue of carries

Return ac × ((10)^(number of digit of a))² +mid×(10)^(number of digit of a) +bd

$$T(n)=3T(\frac{n}{2}) +8n$$

8n

$$3 \times \frac{8n}{2} = \left(\frac{3}{2}\right)^1 \times 8n$$

$$9 \times \frac{8n}{4} = \left(\frac{3}{2}\right)^2 \times 8n$$

$$27 \times \frac{8n}{8} = \left(\frac{3}{2}\right)^3 \times 8n$$

$$\left(\frac{3}{2}\right)$$
 $\lceil \log n \rceil \times 8n$

Calculations:

$$(1+a+a^2+....+a^L) = \frac{a^{L+1-1}}{a-1}$$

$$\sum_{i=0}^{L} a^i = \frac{a^{L+1-1}}{a-1}$$

$$T(n) = 8n + \frac{3}{2} \times 8n + (\frac{3}{2})^2 \times 8n + \dots + (\frac{3}{2})^{\lceil \log n \rceil} \times 8n$$
$$= 8n \times (1 + \frac{3}{2} + (\frac{3}{2})^2 + \dots + (\frac{3}{2})^{\lceil \log n \rceil})$$

=
$$8n \times \left[\frac{\left(\frac{3}{2}\right)^{\lceil \log n \rceil + 1} - 1}{\frac{3}{2} - 1}\right] = 8n \times (2) \times \left[\left(\frac{3}{2}\right)^{\lceil \log n \rceil + 1} - 1\right]$$

$$= 2 \times 8n[2^{\log_2 \frac{3}{2}}]^{\log n+1} - 16n = 16n[2^{(\log_2 3 - 1)}]^{(\log n+1)} - 16$$

$$= 16n[2] ((\log_{2}n)^{n} \log_{2}3 - \log_{2}n + \log_{2}3 - 1) \\ = 16\times2 (\log_{2}3 - 1) \times n^{\log_{2}3} - 16n = 0 (n^{\log_{2}3})$$
]-16n=16n[\frac{n^{\log_{2}3} \log_{2}3 - 1}{n} \rightarrow 16n = \frac{16\times2 (\log_{2}3 - 1) \times n^{\log_{2}3} \rightarrow 16n = 0 (n^{\log_{2}3})}{n} \rightarrow 16n = \frac{16\times2 (\log_{2}3 - 1) \times n^{\log_{2}3} \rightarrow 16n = 0 (n^{\log_{2}3})}{n} \rightarrow 16n = \frac{16}{16} \f

O(n^{1.6})

$$T(n)=3T(n/2)+8n$$

Prove: $T(n)=O(n^{1.6})$ So, we are going to prove: $T(n) < 800*n^{1.6}$

Base case: Notice that for all, n=1/2, $T(n) < 800*n^{1.6} = 800 \times 2$

Inductive step: consider that $T(n) < 800*n^{1.6}$ for all $n < n_0$. We would like to show $T(n_0+1) < 800*(n_0+1)^{1.6}$

$$T(n_0+1) = 3*T(\frac{n_0+1}{2}) + 8*(n_0+1)$$

$$< 3*(\frac{n_0+1}{2})^{1.6}*800 + 8*(n_0+1)$$

$$< \frac{3}{2^{16}} *800*(n_0+1)^{1.6} + 8*(n_0+1)$$

$$< 0.99*800*(n_0+1)^{1.6} + 8*(n_0+1)$$

$$< 1*800*(n_0+1)^{1.6} - 0.01*800*(n_0+1)^{1.6} + 8*(n_0+1)$$

$$< 800*(n_0+1)^{1.6} - 8*(n_0+1) + 8*(n_0+1)$$

$$< 800*(n_0+1)^{1.6} - 8*(n_0+1) + 8*(n_0+1)$$

$$< 800*(n_0+1)^{1.6} - 8*(n_0+1) + 8*(n_0+1)$$

$$T(n)=3T(n/2)+8n$$

Prove: $T(n)=O(n^{1.6})$ So, we are going to prove: $T(n) < 800*n^{1.6}$ \longrightarrow $O(n^{1.6})$

Base case: Notice that for all, n=1,2, $T(n) < 800*n^{1.6}$

Inductive step: consider that $T(n) < 800*n^{1.6}$ for all $n < n_{0}$. We would like to show $T(n_0+1) < 800*(n_0+1)^{1.6}$

$$T(n_{0}+1)=3*T(\frac{n_{0}+1}{2})+8*(n_{0}+1)$$

$$<3*(\frac{n_{0}+1}{2})^{1.6}*800+8*(n_{0}+1)$$

$$<\frac{3}{2^{16}}*800*(n_{0}+1)^{1.6}+8*(n_{0}+1)$$

$$<0.99*800*(n_{0}+1)^{1.6}+8*(n_{0}+1)$$

$$<1*800*(n_{0}+1)^{1.6}+(0.01*800*(n_{0}+1)^{1.6}+8*(n_{0}+1)$$

$$<800*(n_{0}+1)^{1.6}-8*(n_{0}+1)^{1.6}+8*(n_{0}+1)$$

$$<800*(n_{0}+1)^{1.6}$$

Merge Sort

MergeSort(A, start, end)

- 1 If start < end
- 2 q ← [start + end] /2
- Mergesort(A, start, q)
 Mergesort(A,q+1,end)
- 4 Merge(A,start,q,end)
- 5 Else base case

2* T(n/2)

n

MergeSort(A, start, end)

$$T(n) = \frac{n\log n}{4}$$

$$= O(n\log n)$$

T(n)=2*T(n/2)+n

O(nlogn)

Proof: T(n) <= nlogn

base case: T(1)=0, T(2)=2

Observe that the statement holds for small n.

- Now suppose $T(n) \le n \log n$ for all $n \le n_0$
- Consider $T(n+1) = 2*T(\frac{n_0+1}{2}) + (n_0+1)$

$$<= 2* \left(\frac{n_0+1}{2}\right) \log_2\left(\frac{n_0+1}{2}\right) + (n_0+1)$$

 $<= (n_0+1)\log(n_0+1) - (n_0+1)\log_2(2+(n_0+1))$

$$<= (n_0 + 1) \log(n_0 + 1) = (n_0 + 1) \log_2 2 + (n_0 + 1)$$

 $<= (n_0 + 1)\log(n_0 + 1)$

$$T(n)=3T(n/2)+8n$$

(with appropriate base case)

Prove
$$T(n) < n^{\log_2(3)} - 16n$$

By inspection, the statement holds for small n. Suppose that it holds for all $n < n_0$

$$T(n_0+1) = 3*T(\frac{n_0+1}{2}) + 8*(n_0+1)$$

$$< 3*[(\frac{n_0+1}{2})\log 2^{(3)} - 16*(\frac{n_0+1}{2})] + 8*(n_0+1)$$

$$*(n_0+1)^{\log 2(3)} - 24*(n_0+1) + 8*(n_0+1)$$

$$(n_0+1)^{\log 2^{(3)}} - 16*(n_0+1)$$

Karatsuba

2 digits

Base case for Karatsuba is n=2

4 multiplication, 3 additions

Let's see how many operation is needed in assembly language?

4 digits

3 operations on
$$T(2) = 3*T(2) +$$

2 =62

Karatsuba

T(n)=3T(n/2)+8n

Guess+check

Prove: $T(n) \le 14^* n^{\log_2(3)} -16n$

By inspection, indeed, $T(n) \le 14^* n^{\log_2(3)} - 16n$ when $n \le 128$

Now let's assume that $T(n) \le 14*n^{\log_2(3)} - 16n$ when $n \le n_0$. We have to show it is true to

$$T(n_0+1)$$

Consider
$$T(n_0+1) = 3*T(\frac{n_0+1}{2}) + 8*(n_0+1)$$

Consider
$$T(n_0+1) = 3*T(\frac{n_0+1}{2}) + 8*(n_0+1)$$

$$<= 3*[14*(\frac{n_0+1}{2})^{\log}2^{(3)} - 16*(\frac{n_0+1}{2})] + 8*(n_0+1)$$

$$<= \frac{3}{3}*14*(n_0+1)^{\log}2^{(3)} - 24*(n_0+1) + 8*(n_0+1)$$

$$=\frac{3}{3}*14*(n_0+1)^{\log 2^{(3)}}-24*(n_0+1)+8*(n_0+1)$$

$$(n_0+1)^{\log 2^{(3)}} - 16* (n_0+1)$$

T(n)=3T(n/2)+8n

Guess+check

Prove: $T(n) \le 14^* n^{\log_2(3)} -16n$

By inspection, indeed, $T(n) \le 14 \cdot n^{\log_2(3)} - 16n$ when n < 128

Now let's assume that $T(n) \le 14^* n^{\log_2(3)} - 16n$ when $n \le n_{0}$. We have to show it is true to $T(n_0+1)$

consider
$$T(n_0+1) = 3*T(\frac{n_0+1}{2}) + 8*(n_0+1)$$

 $<= 3*[14*(\frac{n_0+1}{2})^{\log}2^{(3)} - 16*(\frac{n_0+1}{2})] + 8*(n_0+1)$
 $<= \frac{3}{3}*14*(n_0+1)^{\log}2^{(3)} - 24*(n_0+1) + 8*(n_0+1)$

$$<= 14 * (n_0+1)^{\log 2^{(3)}} - 16 * (n_0+1)$$

Asymptotic notation: $T(n) = O(n^{\log_2(3)})$ What happens if we skip the -16n!!!

T(n)=3T(n/2)+8n

Prove: $T(n) \le 14 \cdot n^{\log_2(3)} - 16n$

By inspection, indeed, $T(n) \le 14* n^{\log_2(3)} - 16n$ when n < 128

Now let's assume that $T(n) \le 14* n^{\log_2(3)}$ -16n when $n < n_{0}$, We have to show it is true to $T(n_0+1)$

$$T(n_0+1) \le 14*(n_0+1)^{\log_2(3)}$$

consider
$$T(n_0+1) = 3*T(\frac{n_0+1}{2}) + 8*(n_0+1)$$

$$<= 3*[14*(\frac{n_0+1}{2})^{\log 2}(3) - 16*(\frac{n_0+1}{2})] + 8*(n_0+1)$$

$$<= 14 * (n_0+1)^{\log_2(3)} + 8* (n_0+1)$$

Basically we are concluding, $T(n_0+1)^{(n_0+1)\log 2^{(3)}} + 8* (n_0+1)^{(n_0+1)\log 2^{(3)}}$

Question

Big-O Notation: In Practice

- Use these simplification rules:
 - Only pay attention to the dominant terms (x^3 more important than x^2)
 - Don't include constants in your big-O expression