离散数学作业(5.6)

中国人民大学 信息学院 崔冠宇 2018202147

P23, T1 若关系 R 具有自反性, 求证它的逆关系 R^{-1} 也具有自反性. 类似地, 对于对称性、传递性、 反自反性、反对称性进行证明.

证: 设 *R* 是 *X* 上的关系.

- (1) $\forall x \in X$, 因为 R 具有自反性, 所以 $< x, x > \in R$, 即 $< x, x > \in R^{-1}$, 故 R^{-1} 具有自反性.
- (2) 若 $\langle x, y \rangle \in R^{-1}$, 则 $\langle y, x \rangle \in R$, 又因为 R 具有对称性, 所以 $\langle x, y \rangle \in R$, 即 $\langle y, x \rangle \in R^{-1}$, 故 R^{-1} 具有对称性.
- (3) 若 $< x, y > \in R^{-1}$ 且 $< y, z > \in R^{-1}$,则 $< y, x > \in R$ 且 $< z, y > \in R$,又因为 R 具有传递性,所以 $< z, x > \in R$, 即 $< x, z > \in R^{-1}$, 故 R^{-1} 具有传递性.
- (4) $\forall x \in X$, 因为 R 具有反自反性, 所以 $< x, x > \notin R$, 即 $< x, x > \notin R^{-1}$, 故 R^{-1} 具有反自反性.
- (5) 若 $\langle x, y \rangle \in R^{-1}$ 且 $\langle y, x \rangle \in R^{-1}$, 则 $\langle y, x \rangle \in R$, 且 $\langle x, y \rangle \in R$, 又因为 R 具有反对称性, 所以 x = y, 故 R^{-1} 具有反对称性.

P23, **T2** 在集合 $\{a,b,c\}$ 上的关系 R 具有关系矩阵

$$\mathbf{M}_R = egin{pmatrix} 1 & 0 & 1 \\ 1 & 1 & 0 \\ 1 & 1 & 1 \end{pmatrix}$$

求
$$R^2$$
, R^3 , R^{-1} 和 $R \circ R^{-1}$ 的关系矩阵.

解: $\mathbf{M}_{R^2} = \mathbf{M}_R \cdot \mathbf{M}_R = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix}$, $\mathbf{M}_{R^3} = \mathbf{M}_{R^2} \cdot \mathbf{M}_R = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix}$, $\mathbf{M}_{R^{-1}} = \mathbf{M}_R^T = \begin{pmatrix} 1 & 1 & 1 \\ 0 & 1 & 1 \\ 1 & 0 & 1 \end{pmatrix}$, $\mathbf{M}_{R^{-1}} = \mathbf{M}_R \cdot \mathbf{M}_{R^{-1}} = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix}$.

P27, **T2** 设 R_1 , R_2 是集合 X 上的关系, $R_1 \supseteq R_2$, 试证明:

- (1) $r(R_1) \supseteq r(R_2)$;
- $(2) \ s(R_1) \supseteq s(R_2);$
- (3) $t(R_1) \supseteq t(R_2)$.
- 证: (1) 若 $\langle x, y \rangle \in r(R_2)$, 则 $\langle x, y \rangle \in R_2 \cup I_x$, 即 $\langle x, y \rangle \in R_2$ 或 $\langle x, y \rangle \in I_x$. 又因为 $R_1 \supseteq R_2$, 故 $\langle x, y \rangle \in R_1$ 或 $\langle x, y \rangle \in I_x$, 即 $\langle x, y \rangle \in R_1 \cup I_x$, 也即 $\langle x, y \rangle \in r(R_1)$. 所以 $r(R_1) \supseteq r(R_2)$.
- (2) 若 $\langle x, y \rangle \in s(R_2)$, 则 $\langle x, y \rangle \in R_2 \cup R_2^{-1}$, 即 $\langle x, y \rangle \in R_2$ 或 $\langle x, y \rangle \in R_2^{-1}$. 又因为 $R_1 \supseteq R_2$, 故
- (3) 先用归纳法证明 $R_2^n \subseteq R_1^n$:

- ① n=1 时, $R_2 \subseteq R_1$, 成立;
- ② 假设 n = k 时有 $R_2^k \subseteq R_1^k$. 对任意 $\langle x, y \rangle \in R_2^{k+1} = R_2^k \circ R_2$, $\exists u \in R_2$, 使得 $\langle x, u \rangle \in R_2^k \subseteq R_1^k$ 且 $\langle u, y \rangle \in R_2 \subseteq R_1$, 故 $\langle x, u \rangle \in R_1^k$ 且 $\langle u, y \rangle \in R_1$, 即 $\langle x, y \rangle \in R_1$. 所以 $S(R_1) \supseteq S(R_2)$.

由 ① ② , 及数学归纳法可知 $R_2^n \subseteq R_1^n$ 对任意正整数 n 都成立.

若 $< x, y > \in t(R_2) = \bigcup_{i=1}^{\infty} R_2^i$,必存在某正整数 m 使得 $< x, y > \in R_2^m \subseteq R_1^m \subseteq \bigcup_{i=1}^{\infty} R_1^i = t(R_1)$,即 $< x, y > \in t(R_1)$,所以 $t(R_1) \supseteq t(R_2)$.

P28, **T3** 设 R_1 , R_2 是集合 X 上的关系, 试证明:

- (1) $r(R_1 \cup R_2) = r(R_1) \cup r(R_2);$
- (2) $s(R_1 \cup R_2) = s(R_1) \cup s(R_2);$
- (3) $t(R_1 \cup R_2) \supseteq t(R_1) \cup t(R_2)$.

 $\mathbf{i}\mathbf{E} \colon (1) \ r(R_1) \cup r(R_2) = (R_1 \cup I_x) \cup (R_2 \cup I_x) = (R_1 \cup R_2) \cup I_x = r(R_1 \cup R_2).$

- $(2) \ s(R_1) \cup s(R_2) = (R_1 \cup R_1^{-1}) \cup (R_2 \cup R_2^{-1}) = (R_1 \cup R_2) \cup (R_1 \cup R_2)^{-1} = s(R_1 \cup R_2).$
- (3) 若 $\langle x, y \rangle \in t(R_1) = \bigcup_{i=1}^{\infty} R_1^i$,必存在某正整数 m 使得 $\langle x, y \rangle \in R_1^m$,也即存在 $e_1, e_2, \dots, e_{m-1} \in X$,使得 $xR_1e_1, e_1R_1e_2, \dots, e_{m-1}R_1y$,即有 $x(R_1 \cup R_2)e_1, \dots, e_{m-1}(R_1 \cup R_2)y$,

所以 $< x, y > \in (R_1 \cup R_2)^m \subseteq \bigcup_{i=1}^{\infty} (R_1 \cup R_2)^i = t(R_1 \cup R_2),$ 即 $t(R_1 \cup R_2) \supseteq t(R_1),$ 同理 $t(R_1 \cup R_2) \supseteq t(R_2),$ 所以 $t(R_1 \cup R_2) \supseteq t(R_1) \cup t(R_2).$

P28, T4 设 R 是集合 X 上的关系, 试证明:

- (1) r(s(R)) = s(r(R)); (2) r(t(R)) = t(r(R)).
- **i.** (1) $r(s(R)) = r(R \cup R^{-1}) = (R \cup R^{-1}) \cup I_x$.

 $s(r(R)) = s(R \cup I_x) = (R \cup I_x) \cup (R \cup I_x)^{-1} = R \cup I_x \cup R^{-1} \cup I_x.$

所以左边=右边.

- (2) 因为 $t(r(R)) = t(R \cup I_x) \supseteq t(R) \cup t(I_x) = t(R) \cup I_x = r(t(R))$, 故只需证 $t(r(R)) \subseteq r(t(R)) = t(R) \cup I_x$. 若 $< x, y > \in t(r(R)) = \bigcup_{i=1}^{\infty} (R \cup I_x)^i$, 必存在正整数(取最小的) m, 使得 $< x, y > \in (R \cup I_x)^m$.
- ① 若 x = y, 则 $\langle x, y \rangle \in I_x \subseteq t(R) \cup I_x = r(t(R))$.
- ② 若 $x \neq y$, 则存在互不相同的 $e_1, e_2, \dots, e_{m-1} \in X$, 使得 $xRe_1, \dots e_{m-1}Ry$, 即 $< x, y > \in R^m \subseteq \bigcup_{i=1}^{\infty} R^i = t(R) \subseteq t(R) \cup I_x = r(t(R))$.

所以 $(r(R)) \subseteq r(t(R)) = t(R) \cup I_x$.

综上: 左边=右边.

P28, T5 设 $X = \{a, b, c, d\}$, 令 $R = \{\langle a, b \rangle, \langle b, d \rangle, \langle b, c \rangle, \langle c, d \rangle\}$, 求出 R 的自反闭包、对称闭包和传递闭包.

解: 由题意, R 的关系矩阵 $\mathbf{M}_R = \begin{pmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \end{pmatrix}$.

- (1) $r(R) = R \cup I_x = \{ \langle a, b \rangle, \langle b, \dot{d} \rangle, \langle b, c \rangle, \langle c, d \rangle, \langle a, a \rangle, \langle b, b \rangle, \langle c, c \rangle, \langle d, d \rangle \};$
- $(2) \ s(R) = R \cup R^{-1} = \{ \langle a, b \rangle, \langle b, d \rangle, \langle b, c \rangle, \langle c, d \rangle, \langle b, a \rangle, \langle d, b \rangle, \langle c, b \rangle, \langle d, c \rangle \};$

因为,
$$R^{+} = \bigcup_{i=1}^{\infty} R^{i}$$
, 故 $\mathbf{M}_{R^{+}} = \begin{pmatrix} 0 & 1 & 1 & 1 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \end{pmatrix}$, $R^{+} = \{ < a, b > < a, c > < a, d > < b, c > < a \}$