CS 498 VR

Lecture 5 - 1/31/2018

Slides here: go.illinois.edu/VRIect5

Review

- What is vection?
- What is the McGurk effect?

VR System: Hardware, Software and Perceptual Psychology

Do You Trust Your Vision?

Psychophysics - Just Noticeable Difference

Psychophysics - Steven's Power Law

Perceived magnitude

vs actual magnitude

Adaptation! A trap for VR developers...

Creating Virtual Worlds (Ch.3)

Geometric Modeling

Geometric Modeling

Static vs Dynamic Models

Stationary objects:

Static vs Dynamic Models

Movable objects:

Static vs Dynamic Models

Movable objects:

3D Primitives vs 2D Boundary Representations

3D Primitives

2D Primitives

Transforming Rigid Bodies

Movable Objects (click to view)

<u>Perception of stationarity</u> →

Rigid Body Transformations Degrees of Freedom?

	2D	3D
Easy Translation		
More Difficult Rotation		
Most Difficult Rotation + Translation		

3D Translations

2D Linear Transformations

2D Linear Transformations: Example

2D Linear Transformations: Example

Draw a polygon that IS NOT a result of linear transformation of our starting square

2D Rotations

2x2 matrix has 4 DOFs

- 1. No Scaling
- 2. No Shearing
- 3. The determinant of the rotation matrix should be +1 or -1

2D Rotations

3D Rotations

3x3 matrix has 9 DOFs

- 1. No Scaling
- 2. No Shearing
- 3. The determinant of the rotation matrix should be +1 or -1

2D and 3D Matrices: Linear Transformations

3D Picture Box

2D Linear Transformations: Compositions

M1 - Current Frame

M12 - transformation from M1 to M2

Then $M2 = M_{12} M1$

2D Linear Transformations: Compositions

1. Order of multiplication matters?

2. Which one gets applied first

2D Linear Transformations: Inverses

1. Definition

2. Stretch

3. Shear

4. Rotation

5. Composition

Review

- 1. Write down the 2D transformation matrix of rotating 30 degrees counterclockwise
- 2. Write down the 2D transformation matrix that translates point (3, 2) to (-1, 4)
- 3. Write down the matrix that first translates point (3, 2) to (-1, 4) then rotates 30 degrees counterclockwise
- 4. Assuming the answer for question 1 is M₁ and the answer for question 2 is M₂, what is the inverse of the matrix in question 3?

Announcements

- MP 1 Part 1.1 & Part 1.2 was due Monday
- MP 1 Part 2.1 & Part 2.2 is due Feb 5th
- NEXT LECTURE: CLASS PROJECT PRESENTATIONS (and some material)
- You will have 1 week after to decide what project you want to work on and submit a survey with your preferences