- Donner la forme algébrique des nombres complexes suivants:
 - 1. a = 4i(1 i)
 - 2. b = 3i[(1+2i) (4+i)]
 - 3. $c = 2i^4 + i + 2(1 2i)$
 - 4. $d = i^3 1$
- Donner la forme algébrique des nombres complexes z_1, z_2, z_3 et z_4 définis dans la console python par les commandes suivantes:
 - Pour z_1 :

• Pour z_2 :

• Pour z_3 :

• Pour z_4 :

- Donner la forme algébrique des nombres complexes suivants puis vérifier les résultats à la calculatrice :
 - 1. a = 5 (2 3i)(2 + 3i)
 - 2. b = (2+i)(3-5i)(1+2i)
 - 3. $c = (4+2i)^2 5i(1-3i)$
 - 4. $d = (5 i)^2$
- On considère deux nombres complexes z = a + ibet z' = a' + ib'.
 - 1. Démontrer que $Re(z \times z') = aa' bb'$.
 - 2. Déterminer $\text{Im}(z \times z')$.
- On considère la suite (u_n) à valeurs complexes définies par : $u_0 = 1$ et $u_{n+1} = (1+i)u_n$ pour tout entier naturel n.
 - 1. Calculer les trois premiers termes de cette
 - 2. Démontrer que pour tout entier naturel n on a $u_n = (1 + i)^n$.
 - 3. Soit $k \in \mathbb{N}$. Démontrer que u_{2k} est réel.
- Pour tout nombre complexe z = x + iy, on donne :

$$P(z) = z^2 - i.$$

- 1. Exprimer la partie réelle de P(z) en fonction de x et y.
- 2. Faire de même pour la partie imaginaire.

- 3. En déduire la forme algébrique de $P\left(\frac{1}{2} - \frac{1}{2}i\right)$.
- Soit la suite $(u_n)_{n\in\mathbb{N}}$ définie par $u_n=\mathbf{i}^n$. 43
 - 1. On dit qu'une suite est périodique de période T si pour tout entier naturel n, $u_{n+T} = u_n$. Démontrer que la suite $(u_n)_{n\in\mathbb{N}}$ est périodique de période 4.
 - 2. Calculer $S_n = \sum_{k=0}^{n-1} i^k$.
 - 3. Pour quelles valeurs de n a-t-on $S_n = 0$?
- Écrire le conjugué de chacun des complexes suivants:
 - 1. 3 + 7i
 - 2. 5 2i
 - 3. 2i (4 + 5i)
 - 4. (3+4i)(1-7i)
- Écrire le conjugué de chacun des nombres suivants :

 - 1. 52. $\frac{2-4i}{3+2i}$
 - 3. $(4+5i)^2$
 - 4. $\frac{(3-4i)(4+i)}{2+3i}$
- 46 Écrire le conjugué de \overline{z} le conjugué des nombres complexes suivants:
 - 1. $z^2 iz + 3i 4$
 - 2. 3i + (2 + i)z
 - 3. $\frac{3z+i}{z-i}$
- 47 On considère un polynôme P(z) de degré 2 à coef-

Montrer que si z_0 est une racine de P alors $\overline{z_0}$ l'est aussi.

- 48 Donner la forme algébrique des nombres complexes suivants puis vérifier les résultats à la calculatrice :
 - 1. $a = \frac{1}{2 i}$
 - 2. $b = \frac{3}{2+i}$
 - 3. $c = \frac{2i}{5 3i}$
 - 4. $d = \frac{-1+i}{1+i}$
- 49 Résoudre dans $\mathbb C$ les équations suivantes :
 - 1. 7z 1 = 7i
 - 2. 5z + 5 = 2z + 3 + 2i
 - 3. $(4+z)(5+2z) = 4i + 2z^2$

- **50** Résoudre dans \mathbb{C} les équations suivantes :
 - 1. $i\overline{z} 1 = 7i + \overline{z}$
 - 2. $4i\overline{z} 4i = 1 \overline{z} + i$
- **51** Résoudre dans \mathbb{C} les équations suivantes :
 - 1. $z + 3 + i = 2\overline{z} + 7 + 3i$
 - 2. $2z 4 = 5i + 4\overline{z}$
 - $3. \ z\overline{z} = z + 2$
 - 4. $\overline{z} 1 = z\overline{z} i$
- **52** Résoudre dans \mathbb{C} l'équation $z^2 2\overline{z} = -1$.
- Soit a et b deux réels non nuls en même temps. Démontrer que $Z = \frac{a+\mathrm{i}b}{a-\mathrm{i}b} + \frac{a-\mathrm{i}b}{a+\mathrm{i}b}$ est réel.
- On considère le nombre complexe z = a + 2i avec $a \in \mathbb{R}$.

Déterminer a pour que z^2 soit imaginaire pur.

- Soit z un nombre complexe non nul.
 - 1. Écrire le conjugué des nombres suivants en fonction de z et \overline{z} :
 - (a) $Z_1 = z + \overline{z}$
 - (b) $Z_2 = z^2 + \overline{z}^2$
 - (c) $Z_3 = \frac{z \overline{z}}{z + \overline{z}}$
 - (d) $Z_4 = \frac{z^2 \overline{z}^2}{z\overline{z} + 3}$
 - 2. Déterminer si chacun des nombres précédents est un nombre réel, un nombre imaginaire pur ou ni l'un ni l'autre.
- Soit $Z = \frac{z+i}{z-i}$ pour tout $z \neq i$.
 - 1. Exprimer \overline{Z} en fonction de \overline{z} .
 - 2. En déduire tous les nombres complexes z tels que Z soit réel.
- Soit k un nombre réel et on pose :

$$z = 5k^2 + 3k - 8 - (k^2 + k - 2)i$$
.

- 1. Déterminer la ou les valeur(s) du réel k pour que z soit un nombre réel.
- 2. Déterminer la ou les valeur(s) du réel k pour que z soit un nombre imaginaire pur.
- 3. Existe-t-il une valeur ou plusieurs valeurs du réel k pour que z soit nul?

- À l'aide du binôme de Newton et du triangle de Pascal, donner la forme algébrique des nombres suivants :
 - 1. $(1+i)^3$
 - 2. $(1+2i)^4$
 - 3. $(2-i)^4$
- 1. Dans la formule du binôme de Newton avec $(x+y)^8$, trouve-t-on un terme en x^5y^3 ? Si oui, préciser son coefficient.
 - 2. Même question avec x^2y^6 .
- On considère la fonction Python suivante :

- 1. (a) Que représente les termes de la liste L?
 - (b) Déterminer l'expression de S en fonction de a et b.
 - (c) Quelle valeur renvoie la fonction pour : a = 1 et b = i?
- 2. Louise a testé la fonction et a obtenu le résultat suivant :

Quelle égalité mathématique peut-elle en déduire?

1. Développer $(1+z)^n$ pour tout $(z; n) \in \mathbb{C} \times \mathbb{N}^*$.

62

2. En remplaçant z successivement par 1, -1, i, -i, évaluer les quantités suivantes :

(a)
$$S_1 = 1 + \binom{n}{1} + \binom{n}{2} + \binom{n}{3} + \binom{n}{4} + \cdots$$

(b)
$$S_2 = 1 - \binom{n}{1} + \binom{n}{2} - \binom{n}{3} + \binom{n}{4} - \cdots$$

(c)
$$S_3 = 1 - \binom{n}{2} + \binom{n}{4} - \binom{n}{6} + \cdots$$

(d)
$$S_4 = \binom{n}{1} - \binom{n}{3} + \binom{n}{5} - \cdots$$

- 1. Écrire une formule inspirée par le binôme de Newton pour $(a b)^n$ en remarquant que a b = a + (-b).
- 2. En déduire que $\sum_{k=0}^{k=n} (-1)^k \binom{n}{k} = 0.$
- 3. Quel est le coefficient du terme en a^3b^7 dans le développement de $(a-b)^{10}$?