

Sign In

Search Medium

用GGML和美洲駝量化美洲駝模型.cpp

GGML vs. GPTQ vs. NF4

馬克西姆 拉博納 💠 - 跟隨 發表於 邁向數據科學 9 分鐘閱讀 · 4月<>

(▶) Listen

∫[↑]
) Share

圖片來源:作者

由於大型語言模型(LLM)的規模龐大,量化已成為有效運行它們的基本技術。通過降 低其權重的精度,您可以節省記憶體並加快推理速度,同時保留模型的大部分性能。最 近,8位和4位量化解鎖了**在消費類硬體上運行LLM**的可能性。再加上駱駝模型和參數高 效技術的發佈來微調它們(LoRA, QLoRA), 這創造了一個豐富的本地LLM生態系 統,現在正在與OpenAI的GPT-3.5和GPT-4競爭。

除了<u>本文介紹</u>的樸素方法外,還有三種主要的量化技術:NF4、GPTQ 和 GGML。NF4 是 QLoRA 使用的一種靜態方法,用於以 4 位精度載入模型以執行微調。<u>在上一篇文章</u> 中,我們探討了 GPTQ 方法,並量化了我們自己的模型以在消費者 GPU 上運行它。在本文中,我們將介紹 GGML 技術,瞭解如何量化駱駝模型,並提供實現最佳結果的提示和技巧。

您可以在Google Colab和GitHub上找到代碼。

什麼是 GGML?

GGML是一個專注於機器學習的C庫。它是由Georgi Gerganov創建的,這就是首字母"GG"所代表的。該庫不僅提供機器學習的基礎元素,例如張量,而且還提供分發LLM的獨特二進位格式。

這種格式最近改為**GGUF**。這種新格式設計為可擴展,因此新功能不應破壞與現有模型的相容性。它還將所有元數據集中在一個檔中,例如特殊令牌、RoPE 縮放參數等。簡而言之,它回答了一些歷史痛點,應該是面向未來的。有關更多資訊,您可以閱讀<u>此地</u>址的規範。在本文的其餘部分,我們將"GGML 模型"稱為所有使用 GGUF 或以前格式的模型。

GGML被設計為與同樣由Georgi Gerganov創建的<u>llama.cpp</u>庫一起使用。該庫是用 C/C++ 編寫的,用於高效推理 Llama 模型。它可以載入GGML模型並在CPU上運行它 們。最初,這是與GPTQ模型的主要區別,GPTQ模型在GPU上載入和運行。但是,您現在可以使用llama.cpp將LLM的某些層卸載到GPU。舉個例子,35b 參數模型有 7 個層。 這大大加快了推理速度,並允許您運行不適合 VRAM 的 LLM。

圖片來源:作者

如果你喜歡命令行工具,llama.cpp和GGUF支持已經集成到許多GUI中,比如oobabooga的文本生成web-ui,koboldcpp,LM Studio或ctransformers。您可以簡單地使用這些工具載入您的 GGML 模型,並以類似 ChatGPT 的方式與它們進行交互。幸運的是,許多量化模型可以直接在<u>擁抱面部中心</u>獲得。您很快就會注意到,其中大多數都是由LLM社區中的流行人物TheBloke量化的。

在下一節中,我們將瞭解如何量化我們自己的模型並在消費者 GPU 上運行它們。

如何使用GGML量化LLM?

讓我們看看 TheBloke/Llama-2-13B-chat-GGML 儲存庫中的檔。我們可以看到 **14 種不同的 GGML 模型**,對應於不同類型的量化。它們遵循特定的命名約定:「q」+用於儲存權重(精度)的位數+特定變體。以下是所有可能的定量方法及其相應用例的清單,基於TheBloke製作的模型卡:

- q2_k:將 Q4_K 用於 attention.vw 和 feed_forward.w2 張量·Q2_K用於其他張量。
- q3_k_1:將 Q5_K 用於 attention.wv、attention.wo 和 feed_forward.w2 張量,否則 Q3_K
- q3_k_m:將 Q4_K 用於 attention.wv、attention.wo 和 feed_forward.w2 張量,否則 Q3_K

- q3_k_s : 對所有張量使用Q3_K
- q4 0:原始定量方法,4位。
- q4_1:精度高於q4_0,但不如q5_0高。但是,推理速度比 q5 模型更快。
- q4_k_m:使用 Q6_K 表示一半的 attention.wv 和 feed_forward.w2 張量, 否則Q4_K
- q4_k_s:對所有張量使用Q4_K
- q5 0:更高的準確性、更高的資源使用率和更慢的推理速度。
- q5 1:更高的準確性、資源使用率和更慢的推理速度。
- q5_k_m:使用 Q6_K 表示一半的 attention.wv 和 feed_forward.w2 張量, 否則Q5_K
- q5_k_s : 對所有張量使用Q5_K
- q6_k : 對所有張量使用Q8_K
- q8_0:與浮點數16幾乎無法區分。資源使用率高,速度慢。不建議大多數使用者使用。

根據經驗,**我建議使用 Q5_K_M**,因為它可以保留模型的大部分性能。或者,如果要節省一些記憶體,可以使用 $Q4_K_M$ 。通常, K_M 版本比 K_S 版本更好。我不能推薦Q2或 Q3版本,因為它們會大大降低模型性能。

現在我們對可用的量化類型有了更多的瞭解,讓我們看看如何在真實模型上使用它們。您可以在<u>Google Colab</u>上的**免費T4 GPU**上執行以下代碼。第一步包括編譯 llama.cpp並在我們的 Python 環境中安裝所需的庫。

```
# Install llama.cpp
!git clone https://github.com/ggerganov/llama.cpp
!cd llama.cpp && git pull && make clean && LLAMA_CUBLAS=1 make
!pip install -r llama.cpp/requirements.txt
```

現在我們可以下載我們的模型了。我們將使用我們在<u>上一篇文章中</u>微調的模型。

mlabonne/EvolCodeLlama-7b

```
MODEL_ID = "mlabonne/EvolCodeLlama-7b"

# Download model
!git lfs install
!git clone https://huggingface.co/{MODEL_ID}
```

此步驟可能需要一段時間。完成後,我們需要將權重轉換為 GGML FP16 格式。

```
MODEL_NAME = MODEL_ID.split('/')[-1]
GGML_VERSION = "gguf"

# Convert to fp16
fp16 = f"{MODEL_NAME}/{MODEL_NAME.lower()}.{GGML_VERSION}.fp16.bin"
!python llama.cpp/convert.py {MODEL_NAME} --outtype f16 --outfile {fp16}
```

最後,我們可以使用一種或多種方法量化模型。在這種情況下,我們將使用我之前推薦的Q4_K_M和Q5_K_M方法。這是實際需要 GPU 的唯一步驟。

```
QUANTIZATION_METHODS = ["q4_k_m", "q5_k_m"]
for method in QUANTIZATION_METHODS:
    qtype = f"{MODEL_NAME}/{MODEL_NAME.lower()}.{GGML_VERSION}.{method}.bin"
    !./llama.cpp/quantize {fp16} {qtype} {method}
```

我們的兩個量化模型現在已經**準備好進行推理**了。我們可以檢查 bin 檔的大小,看看我們壓縮了多少。FP16 型號佔用 13.5 GB,而 Q4_K_M 型號佔用 4.08 GB(小 3.3 倍),Q5_K_M 型號佔用 4.78 GB(小 2.8 倍)。

讓我們使用駱駝.cpp來有效地運行它們。由於我們使用的是具有 16 GB VRAM 的 GPU,因此我們可以將每一層卸載到 GPU。在本例中,它表示 35 層(7b 參數模型),因此我們將使用該參數。在下面的代碼塊中,我們還將輸入提示和要使用的量化方法。-ngl

35

```
import os

model_list = [file for file in os.listdir(MODEL_NAME) if GGML_VERSION in file]
prompt = input("Enter your prompt: ")
chosen_method = input("Please specify the quantization method to run the model (o)

# Verify the chosen method is in the list
if chosen_method not in model_list:
    print("Invalid method chosen!")
else:
    qtype = f"{MODEL_NAME}/{MODEL_NAME.lower()}.{GGML_VERSION}.{method}.bin"
    !./llama.cpp/main -m {qtype} -n 128 --color -ngl 35 -p "{prompt}"
```

讓我們使用 $Q5_K_M$ 方法詢問模型「編寫一個 Python 函數來列印第 n 個斐波那契數」。如果我們查看日誌,我們可以確認我們成功地卸載了我們的層,這要歸功於" $llm_load_tensors$:將 35/35 層卸載到 GPU"這一行。下面是模型產生的代碼:

```
def fib(n):
    if n == 0 or n == 1:
        return n
    return fib(n - 2) + fib(n - 1)

for i in range(1, 10):
    print(fib(i))
```

這不是一個非常複雜的提示,但它很快就成功地生成了一段工作代碼。使用此 GGML,您可以使用互動模式(標誌)將本地 LLM 用作終端中的助手。請注意,這也適用於帶有Apple的Metal Performance Shaders(MPS)的Macbook,這是運行LLM的絕佳選擇。 - i

最後,我們可以將量化模型推送到擁抱面部集線器上帶有"-GGUF"後綴的新存儲庫。首先,讓我們登錄並修改以下代碼塊以匹配您的使用者名。

```
!pip install -q huggingface_hub
```

```
username = "mlabonne"

from huggingface_hub import notebook_login, create_repo, HfApi
notebook_login()
```

現在,我們可以創建存儲庫並上傳模型。我們使用參數來過濾要上傳的檔,因此我們不會推送整個目錄。 allow_patterns

```
api = HfApi()

# Create repo
create_repo(
    repo_id=f"{username}/{MODEL_NAME}-GGML",
    repo_type="model",
    exist_ok=True
)

# Upload bin models
api.upload_folder(
    folder_path=MODEL_NAME,
    repo_id=f"{username}/{MODEL_NAME}-GGML",
    allow_patterns=f"*{GGML_VERSION}*",
)
```

我們已經成功地量化、運行了 GGML 模型,並將其推送到擁抱面部中心!在下一節中, 我們將探討 GGML 如何實際量化這些模型。

使用 GGML 進行定量

GGML量化權重的方式並不像GPTQ那樣複雜。基本上,它對值塊進行分組並將它們捨入到較低的精度。某些技術(如Q4_K_M和Q5_K_M)為**關鍵層實現了更高的精度**。在這種情況下,每個權重都以 4 位精度存儲,除了一半的 attention.wv 和 feed_forward.w2 張量。實驗證明,這種混合精度是準確性和資源使用之間的良好權衡。

如果我們查看 ggml.c 文件,我們可以看到塊是如何定義的。例如,結構定義為: $block_q4_0$

在 GGML 中,權重以塊的形式處理,每個塊由 32 個值組成。對於每個塊,比例因數 (delta) 是從最大權重值派生的。然後,對塊中的所有重量進行縮放、量化和高效包裝以進行存儲(半位元節)。這種方法大大降低了存儲要求,同時允許在原始權重和量化權重之間進行相對簡單和確定的轉換。

現在我們對量化過程有了更多的瞭解,我們可以將結果與 NF4 和 GPTQ 進行比較。

NF4 vs. GGML vs. GPTQ

哪種技術更適合 4 位量化?為了回答這個問題,我們需要介紹運行這些量化LLM的不同後端。對於GGML模型,美洲駝.cpp Q4_K_M模型是要走的路。對於 GPTQ 模型,我們有兩個選擇:AutoGPTQ 或 ExLlama。最後,NF4型號可以直接在帶有標誌的變壓器中運行。 --load-in-4bit

Oobabooga 在一篇出色的<u>博客文章中</u>進行了多個實驗,比較了不同模型的困惑度(越低越好):

基於這些結果,我們可以說GGML模型在困惑度方面略有優勢。差異不是特別顯著,這就是為什麼最好以代幣/秒為單位關注生成速度的原因。最好的技術取決於您的GPU:如果您有足夠的VRAM來擬合整個量化模型,那麼**帶有ExLlama的GPTQ**將是最快的。如果不是這種情況,您可以卸載一些層並將 **GGML 模型與 llama 一起使用.cpp**來運行您的LLM。

結論

在本文中,我們介紹了GGML庫和新的GGUF格式,以有效地存儲這些量化模型。我們用它來**量化我們自己的不同**格式(Q4_K_M和Q5_K_M)的駱駝模型。然後,我們運行GGML模型並將我們的 bin 檔推送到 Hugging Face Hub。最後,我們深入研究了GGML的代碼,以瞭解它如何實際量化權重,並將其與NF4和GPTQ進行比較。

量化是通過降低運行LLM的成本來實現LLM民主化的強大載體。未來,混合精度和其他技術將繼續提高我們用量化權重實現的性能。在那之前,我希望你喜歡閱讀這篇文章並學到一些新東西。

如果您對有關LLM的更多技術內容感興趣,請在Medium上關注我。

有關量化的文章

第1部分:重量量化簡介

使用8位量化減小大型語言模型的大小

towardsdatascience.com

第2部分:使用 GPTQ 進行 4 位量化

使用 AutoGPTQ 量化您自己的 LLM

towardsdatascience.com

瞭解有關機器學習的更多資訊,只需按兩下即可支援我的工作-在此處成為 Medium 會員:

使用我的推薦連結加入Medium — 馬克西姆-拉博納

作為 Medium 會員,您的部分會員費將用於您閱讀的作家,您可以完全訪問每個故事......

medium.com

程式設計

大型語言模型

數據科學

量化

機器學習

作者: Maxime Labonne 😊

2.8K 粉絲 · 作家邁向數據科學

博士,高級機器學習科學家@摩根大通•"動手圖神經網路"的作者•<u>twitter.com/maximelabonne</u>

更多來自 Maxime Labonne 和 Towards Data Science

Maxime Labonne 😛 in Towards Data Science

Fine-Tune Your Own Llama 2 Model in a Colab Notebook

A practical introduction to LLM fine-tuning

→ 12 min read → Jul 26

○ 37

 \Box

Heiko Hotz in Towards Data Science

RAG vs Finetuning—Which Is the Best Tool to Boost Your LLM Application?

The definitive guide for choosing the right method for your use case

→ 19 min read Aug 25

1.8K

🚱 Cameron R. Wolfe, Ph.D. in Towards Data Science

Advanced Prompt Engineering

What to do when few-shot learning isn't enough...

→ · 17 min read · Aug 7

8

Maxime Labonne 💠 in Towards Data Science

A Beginner's Guide to LLM Fine-Tuning

How to fine-tune Llama and other LLMs with one tool

→ 8 min read • Aug 30

400

See all from Maxime Labonne

See all from Towards Data Science

Recommended from Medium

est access to the next version of Llama
Last Name
n / Affiliation
odels you would like access to:
ama Chat
Michael Humor in GoPenAl
How to run Llama 2 and Code Llama on your laptop without GPU?
Can you run Llama 2 on a standard laptop, such as a Mac Pro?
4 min read · Aug 28
© 7 Q

Model Quantization with 😂 Hugging Face Transformers and Bitsandbytes Integration

Introduction:

4 min read · Aug 21

Lists

Predictive Modeling w/ Python

20 stories 378 saves -

Practical Guides to Machine Learning

10 stories422 saves -

Natural Language Processing

599 stories215 saves -

It's never too late or early to start something

15 stories116 saves •

Heiko Hotz in Towards Data Science

RAG vs Finetuning—Which Is the Best Tool to Boost Your LLM Application?

The definitive guide for choosing the right method for your use case

→ 19 min read - Aug 25

1.8K

Understanding LoRA and QLoRA—The Powerhouses of Efficient **Finetuning in Large Language Models**

Background

8 min read - Aug 8

 \Box

The ChatGPT Hype Is Over—Now Watch How Google Will Kill ChatGPT.

It never happens instantly. The business game is longer than you know.

→ 6 min read • Sep 2

5.8K

 \Box

The Building Blocks of Generative AI

A Beginners Guide to The Generative Al Infrastructure Stack

22 min read · Jul 10

See more recommendations