### LAB REPORT: 2

NAME: Arya Marda

ROLL NUMBER: 2021102021

**GROUP NUMBER: 3** 

### Part A:

Aim: We are intending to find the tipping point voltage for the IC which it considers to be HIGH or LOW in both INPUT and OUTPUT pins.

Electronic components used: Wires, Not gate IC, Arduino UNO, Breadboard, LED, Resistance, Multimeter.

### Reference circuit:



- Procedure: 1. Set up the circuit shown in Fig above on the breadboard and turn the potentiometer shaft to one end so that the multimeter reads 0V.
  - 2. DP1 and DP2 are LEDs connected with appropriate resistors. DP2 must be glowing.
  - 3. Now rotate the potentiometer shaft gradually up to the other end and tabulate the transitions in DP1 and DP2.

 $0V \le V \text{ OL} \le 0.1V$ ,  $2.44V \le V \text{ OH} \le 5.0V$ ,

 $1.2V \le V \text{ IL} \le 2.5Mv$ ,  $1.3 V \le V \text{ IH} \le 5.0V$ .

### Link to the tinkercad circuit:

https://www.tinkercad.com/things/bFJBl0nOHhj

Part B:

Part 1:

Aim : The goal of this part of the experiment is to take input from the serial monitor and verify the truth table of NOT gates .

Electronic components used: Wires, Not gate, Arduino UNO, Breadboard, LED, Resistance.

### Reference circuit:



Procedure: 1. Place the IC on breadboard and give V cc and Gnd connection to it.

2. Take inputs from the Serial Monitor for values of A route them to the input pins of the IC.

- 3. Connect an LED with appropriate resisitor to the output of the NOT GATE.
- 4. Note the output of the chosen gate for different values of input in a truth table.

```
int pin2 = 3;
int x, k;
void setup()
pinMode(pin2, OUTPUT);
Serial.begin(9600);
}
void loop()
Serial.print("\nx=");
while(Serial.available() == 0){}
x=Serial.read();
x=x-'0';
Serial.println(x);
digitalWrite(pin2,x);
Serial.print("Enter anything to go to Read again");
while(Serial.available() == 0){}
k=Serial.read();
```

# Conclusion:

| INPUT THROUGH PIN2 | OUTPUT |
|--------------------|--------|
| 1                  | 0      |
| 0                  | 1      |

# Part 2:

Aim: The goal of this part of the experiment is to take input from the serial monitor and verify the truth table of NAND gates.

Electronic components used: Wires, NAND gate, Arduino UNO, Breadboard, LED, Resistance.

# Reference circuit:



- Procedure: 1. Place the IC on breadboard and give V cc and Gnd connection to it.
  - 2. Take inputs from the Serial Monitor for values of A and B and route them to the input pins of the IC.
  - 3. Connect an LED with appropriate resisitor to the output of the NAND GATE.
  - 4. Note the output of the chosen gate for different values of input in a truth table.

```
int pin1 = 2;
int pin2 = 3;
int x, y, k;
void setup()
pinMode(pin1, OUTPUT);
pinMode(pin2, OUTPUT);
Serial.begin(9600);
void loop()
Serial.print("\nx=");
while(Serial.available() == 0){}
x=Serial.read();
x=x-'0';
Serial.println(x);
Serial.print("y=");
while(Serial.available() == 0){}
y=Serial.read();
y=y-'0';
Serial.println(y);
digitalWrite(pin1,x);
digitalWrite(pin2,y);
Serial.print("Enter anything to go to Read again");
while(Serial.available() == 0){}
k=Serial.read();
}
```

| Input through pin2 | Input through pin3 | Output |
|--------------------|--------------------|--------|
| 1                  | 1                  | 0      |
| 1                  | 0                  | 1      |
| 0                  | 1                  | 1      |
| 0                  | 0                  | 1      |

#### Link:

https://www.tinkercad.com/things/8c7sLocsfb3

### Part 3:

Aim : The goal of this part of the experiment is to take input from the serial monitor and verify the truth table of AND gates .

Electronic components used: Wires, AND gate, Arduino UNO, Breadboard, LED, Resistance.

### Reference circuit:



Procedure: 1. Place the IC on breadboard and give V cc and Gnd connection to it.

- 2. Take inputs from the Serial Monitor for values of A and B and route them to the input pins of the IC.
- 3. Connect an LED with appropriate resisitor to the output of the AND GATE.
- 4. Note the output of the chosen gate for different values of input in a truth table.

```
int pin1 = 2;
int pin2 = 3;
int x, y, k;
void setup()
pinMode(pin1, OUTPUT);
pinMode(pin2, OUTPUT);
Serial.begin(9600);
void loop()
Serial.print("\nx=");
while(Serial.available() == 0){}
x=Serial.read();
x=x-'0';
Serial.println(x);
Serial.print("y=");
while(Serial.available() == 0){}
y=Serial.read();
y=y-'0';
Serial.println(y);
digitalWrite(pin1,x);
digitalWrite(pin2,y);
Serial.print("Enter anything to go to Read again");
while(Serial.available() == 0){}
k=Serial.read();
}
```

| Input through pin2 | Input through pin3 | Output |
|--------------------|--------------------|--------|
| 1                  | 1                  | 1      |
| 1                  | 0                  | 0      |
| 0                  | 1                  | 0      |
| 0                  | 0                  | 0      |

# Link of tinkercad circuit:

https://www.tinkercad.com/things/bS5xUSFKepr

### Part 4:

Aim : The goal of this part of the experiment is to take input from the serial monitor and verify the truth table of OR gates .

Electronic components used: Wires, OR gate, Arduino UNO, Breadboard, LED, Resistance.

# Reference circuit:



Procedure: 1. Place the IC on breadboard and give V cc and Gnd connection to it.

- 2. Take inputs from the Serial Monitor for values of A and B and route them to the input pins of the IC.
- 3. Connect an LED with appropriate resisitor to the output of the OR GATE.

4. Note the output of the chosen gate for different values of input in a truth table.

Code:

}

```
int pin1 = 2;
int pin2 = 3;
int x, y, k;
void setup()
pinMode(pin1, OUTPUT);
pinMode(pin2, OUTPUT);
Serial.begin(9600);
}
void loop()
Serial.print("\nx=");
while(Serial.available() == 0){}
x=Serial.read();
x=x-'0';
Serial.println(x);
Serial.print("y=");
while(Serial.available() == 0){}
y=Serial.read();
y=y-'0';
Serial.println(y);
digitalWrite(pin1,x);
digitalWrite(pin2,y);
Serial.print("Enter anything to go to Read again");
while(Serial.available() == 0){}
k=Serial.read();
```

| Input through pin2 | Input through pin3 | Output |
|--------------------|--------------------|--------|
| 1                  | 1                  | 1      |
| 1                  | 0                  | 1      |
| 0                  | 1                  | 1      |
| 0                  | 0                  | 0      |

# Link of tinkercad circuit:

https://www.tinkercad.com/things/8wGmP53KBUm

# Part 5:

Aim: The goal of this part of the experiment is to take input from the serial monitor and verify the truth table of NOR gates.

Electronic components used: Wires, NOR gate, Arduino UNO, Breadboard, LED, Resistance.

# Reference circuit:



Procedure: 1. Place the IC on breadboard and give V cc and Gnd connection to it.

- 2. Take inputs from the Serial Monitor for values of A and B and route them to the input pins of the IC.
- 3. Connect an LED with appropriate resisitor to the output of the NOR GATE.
- 4. Note the output of the chosen gate for different values of input in a truth table.

```
int pin1 = 2;
int pin2 = 3;
int x, y, k;
void setup()
pinMode(pin1, OUTPUT);
pinMode(pin2, OUTPUT);
Serial.begin(9600);
}
void loop()
Serial.print("\nx=");
while(Serial.available() == 0){}
x=Serial.read();
x=x-'0';
Serial.println(x);
Serial.print("y=");
while(Serial.available() == 0){}
y=Serial.read();
y=y-'0';
Serial.println(y);
digitalWrite(pin1,x);
digitalWrite(pin2,y);
Serial.print("Enter anything to go to Read again");
while(Serial.available() == 0){}
```

```
k=Serial.read();
}
```

| Input through pin2 | Input through pin3 | Output |
|--------------------|--------------------|--------|
| 1                  | 1                  | 0      |
| 1                  | 0                  | 0      |
| 0                  | 1                  | 0      |
| 0                  | 0                  | 1      |

# Link of tinkercad circuit:

https://www.tinkercad.com/things/4M7GVp8WeVr

# Part 6:

Aim : The goal of this part of the experiment is to take input from the serial monitor and verify the truth table of XOR gates .

Electronic components used : Wires , XOR gate , Arduino UNO, Breadboard , LED, Resistance .

# Reference circuit:



Procedure : 1. Place the IC on breadboard and give V cc and Gnd connection to it.

- 2. Take inputs from the Serial Monitor for values of A and B and route them to the input pins of the IC.
- 3. Connect an LED with appropriate resisitor to the output of the XOR GATE.
- 4. Note the output of the chosen gate for different values of input in a truth table.

```
int pin1 = 2;
int pin2 = 3;
int x, y, k;
void setup()
pinMode(pin1, OUTPUT);
pinMode(pin2, OUTPUT);
Serial.begin(9600);
}
void loop()
Serial.print("\nx=");
while(Serial.available() == 0){}
x=Serial.read();
x=x-'0';
Serial.println(x);
Serial.print("y=");
while(Serial.available() == 0){}
y=Serial.read();
y=y-'0';
Serial.println(y);
digitalWrite(pin1,x);
digitalWrite(pin2,y);
Serial.print("Enter anything to go to Read again");
while(Serial.available() == 0){}
```

```
k=Serial.read();
}
```

| Input through pin2 | Input through pin3 | Output |
|--------------------|--------------------|--------|
| 1                  | 1                  | 0      |
| 1                  | 0                  | 1      |
| 0                  | 1                  | 1      |
| 0                  | 0                  | 0      |

# Link of tinkercad circuit:

https://www.tinkercad.com/things/3eZbnpxB34y

# PART C:

Aim : Verifing De Morgan's theorems that state's that  $(A + B)' = A' \cdot B'$  and  $(A \cdot B)' = A' + B'$ .

Electronic components used : Arduino UNO, Breadboard , wires, NOT GATE , AND GATE , OR GATE , LED, resistance.

Reference circuits :  $1.(A + B)' = A' \cdot B'$   $2.(A \cdot B)' = A' + B'$ 





Procedure: 1. Set up a circuit consisting of two NOT gates and one AND gate to perform function  $Y = A' \cdot B'$  and one OR gate to preform (A+B)'.

- 2. Obtain the truth table of this circuits by noting the output of the function for different values of A and B. Verify that the both funnction give the same output.
- 3. Repeat steps 1 and 2 using an OR gate instead of an AND gate and AND gate instead of OR gate to verify that the truth table is same for  $(A \cdot B)$ ' and A' + B'.

int pin1 = 2;

int pin2 = 3;

int x, y, k;

void setup()

```
pinMode(pin1, OUTPUT);
pinMode(pin2, OUTPUT);
Serial.begin(9600);
}
void loop()
Serial.print("\nx=");
while(Serial.available() == 0){}
x=Serial.read();
x=x-'0';
Serial.println(x);
Serial.print("y=");
while(Serial.available() == 0){}
y=Serial.read();
y=y-'0';
Serial.println(y);
digitalWrite(pin1,x);
digitalWrite(pin2,y);
Serial.print("Enter anything to go to Read again");
while(Serial.available() == 0){}
k=Serial.read();
}
```

| Input A | Input B | A'⋅B' | (A+B)' |
|---------|---------|-------|--------|
| 1       | 1       | 0     | 0      |
| 1       | 0       | 0     | 0      |
| 0       | 1       | 0     | 0      |
| 0       | 0       | 1     | 1      |

Therfore :  $(A + B)' = A' \cdot B'$ 

| Input A | Input B | (A · B)' | A'+ B' |
|---------|---------|----------|--------|
| 1       | 1       | 0        | 0      |
| 1       | 0       | 1        | 1      |
| 0       | 1       | 1        | 1      |
| 0       | 0       | 1        | 1      |

Therfore :  $(A \cdot B)' = A' + B'$ 

### Link to tinkercad circuit

https://www.tinkercad.com/things/9dEInNi2mVu

How would you use NAND gates to perform function of NOT gates?

ANS-> NAND gate can act as NOT gate if we keep one input as 1 and take other input from user .

| INPUT FROM USER | 1 AS DEFAULT | OUTPUT(NAND) |
|-----------------|--------------|--------------|
| 1               | 1            | 0            |
| 0               | 1            | 1            |

### PART D

Aim: Building a binary Full Adder that adds two bits A and B along with a carry in C to generate SUM and CARRY bits as output.

Electronic components used : Arduino UNO, Breadboard , wires, XOR GATE , AND GATE , LED,resistance.

# Reference circuit:



Procedure: 1) Make half Adder circuit which adds two binary inputs A and B to give a sum S1 and a carry C1 according to the following Boolean expressions for the outputs S1 and C1:

$$S1 = A' \cdot B + A \cdot B' = A \oplus B$$
 and  $C1 = A \cdot B$ 

- 2)Set up a circuit consisting of one XOR gates and one AND gate to perform function S1 = A  $\oplus$  B and C1 = A  $\cdot$  B
- 3) Finding Final sum and Carry C2 using the same Gates, here 'C' is the third input from the user .

SU M = S1 
$$\oplus$$
 C1 and C2 = S1  $\cdot$  C  
4)Final carry is callculated using XOR and AND gate as  
Carry = (C1  $\oplus$  C2) $\oplus$ (C1 $\cdot$  C2).

```
Code:
int pin3 = 4;
int pin1 = 2;
int pin2 = 3;
int x, y, z, k;
void setup()
{
pinMode(pin1, OUTPUT);
pinMode(pin2, OUTPUT);
Serial.begin(9600);
void loop()
Serial.print("\nx=");
while(Serial.available() == 0){}
x=Serial.read();
x=x-'0';
Serial.println(x);
Serial.print("y=");
while(Serial.available() == 0){}
y=Serial.read();
y=y-'0';
Serial.println(y);
Serial.print("z=");
while(Serial.available() == 0){}
z=Serial.read();
z=z-'0';
Serial.println(z);
digitalWrite(pin1,x);
```

digitalWrite(pin2,y);
digitalWrite(pin3,z);

```
Serial.print("Enter anything to go to Read again");
while(Serial.available() == 0){}
k=Serial.read();
}
```

| A | В | С | S1 | SUM | C1 | C2 | CARR<br>Y | ANS |
|---|---|---|----|-----|----|----|-----------|-----|
| 0 | 0 | 0 | 0  | 0   | 0  | 0  | 0         | 00  |
| 0 | 0 | 1 | 0  | 1   | 0  | 0  | 0         | 01  |
| 0 | 1 | 0 | 1  | 1   | 0  | 0  | 0         | 01  |
| 0 | 1 | 1 | 1  | 0   | 0  | 1  | 1         | 10  |
| 1 | 0 | 0 | 1  | 1   | 0  | 0  | 0         | 01  |
| 1 | 0 | 1 | 1  | 0   | 0  | 1  | 1         | 10  |
| 1 | 1 | 0 | 0  | 0   | 1  | 0  | 1         | 10  |
| 1 | 1 | 1 | 0  | 1   | 1  | 0  | 1         | 11  |

# Link to tinkercad circuit:

https://www.tinkercad.com/things/hbNuevpWhh9