```
In [1]: # Import necessary libraries
    import pandas as pd
    from sklearn.model_selection import train_test_split
    from sklearn.tree import DecisionTreeClassifier
    from sklearn.metrics import accuracy_score, precision_score, recall_score
    import matplotlib.pyplot as plt
    import seaborn as sns
    from sklearn.datasets import load_iris
```

```
In [2]: # Load the Iris dataset
iris = load_iris()
iris_df = pd.DataFrame(data=iris.data, columns=iris.feature_names)
iris_df['target'] = iris.target
```

In [3]: # EDA
Explore the distribution of each feature
 iris_df.describe()

Out[3]:

	sepal length (cm)	sepal width (cm)	petal length (cm)	petal width (cm)	target
count	150.000000	150.000000	150.000000	150.000000	150.000000
mean	5.843333	3.057333	3.758000	1.199333	1.000000
std	0.828066	0.435866	1.765298	0.762238	0.819232
min	4.300000	2.000000	1.000000	0.100000	0.000000
25%	5.100000	2.800000	1.600000	0.300000	0.000000
50%	5.800000	3.000000	4.350000	1.300000	1.000000
75%	6.400000	3.300000	5.100000	1.800000	2.000000
max	7.900000	4.400000	6.900000	2.500000	2.000000

In [5]: # Visualizations
Histograms
iris_df.hist(bins=20, figsize=(12, 8))
plt.show()


```
In [6]: # Box plots
plt.figure(figsize=(15, 10))
for i, feature in enumerate(iris.feature_names):
    plt.subplot(2, 2, i + 1)
    sns.boxplot(x='target', y=feature, data=iris_df)
    plt.title(f'{feature} distribution by target')
plt.show()
```



```
In [8]: # Scatter plots
          sns.pairplot(iris_df, hue='target', markers=["o", "s", "D"])
          plt.show()
          C:\Users\Admin\anaconda3\Lib\site-packages\seaborn\axisgrid.py:118: UserWarning: The figure layout has ch
          anged to tight
             self._figure.tight_layout(*args, **kwargs)
            sepal length (cm)
              4.5
              4.0
           sepal width (cm)
              3.0
             2.5
              2.0
                                                                                                                               0
               7
               6
             petal length (cm)
               5
               3
              2.5
              2.0
           petal width (cm)
              1.5
              1.0
              0.5
              0.0
                                                                                              8
                      sepal length (cm)
                                                 sepal width (cm)
                                                                           petal length (cm)
                                                                                                      petal width (cm)
 In [9]: # Split the dataset into training and testing sets
          X_train, X_test, y_train, y_test = train_test_split(iris.data, iris.target, test_size=0.2, random_state=42
In [10]: # Train the Decision Tree model
          model = DecisionTreeClassifier(random_state=42)
          model.fit(X_train, y_train)
Out[10]:
                     DecisionTreeClassifier
           DecisionTreeClassifier(random_state=42)
In [11]: # Make predictions on the testing set
          y_pred = model.predict(X_test)
```

```
In [12]: # Evaluate the model
    accuracy = accuracy_score(y_test, y_pred)
    precision = precision_score(y_test, y_pred, average='weighted')
    recall = recall_score(y_test, y_pred, average='weighted')

print(f"Accuracy: {accuracy:.2f}")
    print(f"Precision: {precision:.2f}")
    print(f"Recall: {recall:.2f}")
```

Accuracy: 1.00 Precision: 1.00 Recall: 1.00