Two's Complement Representation

Two's Complement is very similar to One's Complement, **except**:

- 1. Eliminates two zeros
- 2. No multiple additions to get the correct result

Note: To eliminate the two zeros the range of negative value ends up being shifted up by one

Assume a 4-bit fixed length

Decimal	Two's Complement	Hex
Number	Representation	
7	0111	7
6	0110	6
5	0101	5
4	0100	4
3	0011	3
2	0010	2
1	0001	1
0	0000	0
-1	1111	F
-2	1110	Е
-3	1101	D
-4	1100	С
-5	1011	В
-6	1010	Α
-7	1001	9
-8	1000	8

Positive traits from One's Complement are kept:

- Positives all start with zero, negatives all start with one
- Positive numbers are unchanged

Traits that have changed:

- Range for Two's Complement
 - \circ -(2^(N-1)) to 2^(N-1) 1

Two's Complement - Addition

Add any positive value and its negative

Example: 5 and -5

```
1 111
0101
+ 1011
0000
```

Adding two value together gets zero, not negative zero

- Adding a 2's complement value and its negative will give the max value + 1
 - E.g. 5 (0101) + (-5) (1011) = 10000
 - \circ 10000 = 2^4 = 16
 - o max 4-bit value = F_{16} or 15_{10}
- $NEG_{2's Comp}(N) = (max value + 1) N or$
- NEG_{2's Comp}(N) = flip each bit **then** add 1
 - Order of the two operations is IMPORTANT!
 - Order does not change regardless of direction of negation

Two's Complement - Conversion

Convert decimal to n-bit two's complement binary

- 1. result = abs(num) converted to binary
- 2. IF (num!= -(2ⁿ) AND MSBit(result)!= 0) OR length(result) > n THEN "num cannot be represented in n bits"
- 3. ELSE

```
IF num < 0 THEN
    result = NEG<sub>2's Comp</sub>(result)
```

Convert 115₁₀ to 8-bit two's complement binary, expressed in hex

- 1. abs(115) = 115
- 115₁₀ converted to 8-bit binary is 01110011₂
- 3. Since the bit 7 is 0 (and no bit 8 or more was required) 115_{10} is valid
- 4. Since the number is positive nothing further is done
- 5. In hex => 73_{16}

Convert -67₁₀ to 8-bit two's complement binary, expressed in hex

- 1. abs(-67) = 67
- 2. 67₁₀ converted to 8-bit binary is 01000011₂
- 3. Since bit 7 is 0 (and no bit 8 or more was required) -67₁₀ is valid
- 4. Since the number is negative apply $NEG_{2's comp}(01000011_2) = 101111101_2$
- 5. In hex => BD_{16}

Two's Complement - Conversion

Convert two's complement to decimal

- 1. **IF** MSbit(binary) == 1 **THEN** binary = NEG_{2's Comp}(binary)
- 2. result = binary converted to decimal
- 3. **ELSE**

```
IF original binary was negative THEN result = -1 * result
```

Convert 00011011₂ 2's comp to base 10

- 1. The MSBit is 0 so this is a positive number No changes made to the number
- 2. 00011011_2 converted to base-10: result = $16 + 8 + 2 + 1 = 27_{10}$
- 3. Since the MSBit = 0 nothing further needs to be done result = 27_{10}

Convert 10100110₂ 2's comp to base 10

1. The MSBit is 1 so this is a negative number $NEG_{2,s comp}$ (10100110₂) = 01011010₂

- 2. 01011010_2 converted to base-10 result = $64 + 16 + 8 + 2 = 90_{10}$
- 3. The MSBit is 1 $result = -1 * result = -90_{10}$

Convert the following 12 bit fixed length binary numbers that are represented in Two's Complement to base-10.

- **1.** 000000101101₂
- **2.** 111011100100₂

Now we do not have the issue of two representations of zero. Also for a signed fixed-length number of N bits we can represent the numbers

$$-(2^{N-1})$$
 to $2^{N-1}-1$

Because there is no **-0** there is an additional negative number

It could have been made positive, but then not all positive numbers would start with 1

Addition:

YAY?

Pros:

- ✓ addition is identical to unsigned (no special cases)
- ✓ one zero (zero-test circuit will be simple)
- ✓ the MSB indicates the sign (negative-test circuit will be simple)
- ✓ subtraction is just addition of negation (no new circuit required)

Cons:

- × negative numbers not directly identifiable
- two numbers have no inverse, but OH WELL!
 - zero and maximum negative number
 - their inverse is themselves
 - $NEG_{2's Comp}(0) = 0$
 - NEG_{2's Comp}(-(2ⁿ)) = -(2ⁿ)

Binary Number Ranges Summary

For a fixed length of N bits we get the following number ranges based on number representation

Representation	Min Number	Max Number
Unsigned	0	2 ^N -1
Signed Magnitude	-(2 ^(N-1) -1)	2 ^(N-1) -1
One's Complement	-(2 ^{N-1} -1)	2 ^{N-1} -1
Two's Complement	-(2 ^{N-1})	2 ^{N-1} -1