EE24BTECH11005 - Arjun Pavanje

Question: Solve the differential equation $y' + y = e^x$ with initial conditions $y(0) = \frac{1}{2}$ Solution:

Computational Solution:

Aim is to find a computational solution to the differential equation using trapezoidal law.

$$y' + y = e^x \tag{1}$$

Integrating by setting limits after discretizing,

$$\int_{y_n}^{y_{n+1}} dy = \int_{x_n}^{x_{n+1}} -y dx + \int_{x_n}^{x_{n+1}} e^x dx$$
 (2)

We can solve the two integrals on the R.H.S by using trapezoid method

$$\int_{x_n}^{x_{n+1}} y dx = h \left[\frac{y(x_{n+1}) + y(x_n)}{2} \right]$$
 (3)

$$\int_{x_n}^{x_{n+1}} e^x dx = h \left[\frac{e^{x_{n+1}} + e^{x_n}}{2} \right]$$
 (4)

Here, h is the step-size. Using smaller values of h will give a more accurate plot. Substituting into equation (11) we get,

$$y_{n+1} - y_n = -h\left(\frac{y_{n+1} + y_n}{2}\right) + h\left(\frac{e^{x_{n+1}} + e^{x_n}}{2}\right)$$
 (5)

$$y_{n+1}(2+h) = y_n(2-h) + he^{x_n}(1+e^h)$$
 (6)

The general difference equation comes out to be,

$$y_{n+1} = y_n \left(\frac{2-h}{2+h} \right) + e^{x_n} h \left(\frac{1+e^h}{2+h} \right)$$
 (7)

$$x_{n+1} = x_n + h \tag{8}$$

Theoretical Solution:

Let us verify the solution obtained above (using trapezoid law) theoretically to see if it matches.

This is a linear differential equation of the first order.

$$\frac{dy}{dx} + y = e^x \tag{9}$$

(10)

1

Finding integrating factor

$$e^{\int 1dx} \tag{11}$$

$$=e^{x} \tag{12}$$

Multiplying both sides of (2) with integrating factor,

$$\frac{dy}{dx}(e^x) + ye^x = e^{2x} \tag{13}$$

$$\frac{d(ye^x)}{dx} = e^{2x} \tag{14}$$

$$ye^x = \frac{e^{2x}}{2} + c {15}$$

$$y = \frac{e^x}{2} + ce^{-x} \tag{16}$$

On substituting initial conditions we get,

$$y = \frac{e^x}{2} \tag{17}$$

Below is a comparission between Simulated Plot and Theoretical Plot.

Fig. 1: Differential Equation $y' + y = e^x$ solved using trapezoid method