武汉大学计算机学院

《数字逻辑》期末考试(A卷)参考答案 2008~2009 学年第二学期(闭卷考试)

- 、填空题(每空1分,共16分)
 - 1. $[X]_{\underline{a}\underline{d}} = -0.0100$, $[X]_{\underline{c}} = 1.1011$.
 - 2. $(30.5)_{10}$ = $(11110.1)_{2}$ = $(36.4)_{8}$ = $(1E.8)_{16}$
 - 3. 反函数 $\overline{F} = (A + \overline{C})(\overline{B} + \overline{D} + C)$,对偶函数 $F' = (\overline{A} + C)(B + D + \overline{C})$ 。
 - 4. (158) ₁₀
- 5. 甲
- 6. 可以(允许)
- 7. 1

- 8. 不允许 9. 可以(允许) 10. 可 11. 增加冗余项 *BC* 12. 4

、证明题(6分)

$$AB + \overline{A}C + (\overline{B} + \overline{C})D = AB + \overline{A}C + BC + \overline{B}CD$$
$$= AB + \overline{A}C + BC + D$$
$$= AB + \overline{A}C + D$$

三、化简题(每小题5分,共10分)

$$F = \overline{B}(A + \overline{C}) + \overline{A}C + \overline{A}BD$$

$$= \overline{B}\overline{A}C + \overline{A}C + \overline{A}BD$$

1. 解:
$$= \overline{A}C + \overline{B} + B\overline{A}D$$

 $= \overline{A}C + \overline{B} + \overline{A}D$
 $= \overline{B} + \overline{A}C + \overline{A}D$

2. 解①: 画卡诺图

②最简与一或式 $F = BD + \bar{B}\bar{D}$

四、分析题(每小题10分,共20分)

1. 解答

$$F_1 = \overline{A}B$$

(1) 输出函数表达式:
$$F_2 = \overline{AB} + A\overline{B} = \overline{A \oplus B} = A \odot B$$

$$F_3 = A\overline{B}$$

(2) 列真值表

输入			输出	
A	В	F_1	F_2	F_3
0	0	0	1	0
0	1	1	0	0
1	0	0	0	1
1	1	0	1	0

(3) 功能说明: 该电路对二个 1 位二进制数 A、B 进行比较,产生小于 (F_1) ,等于 (F_2) 和大于 (F_3) 三种比较结果。

2. 解答

(1) 输出函数和激励函数表达式:
$$Z = x_2 x_1 + \overline{x_1} y$$
 (电路属于 Mealy 模型) $Y = x_2 x_1 + \overline{x_1} y$

(2) 流程表

二次状态	激励状态/输出状态 Y/Z					
у	$x_2x_1=0\ 0$	0 1	1 1	1 0		
0	()/0	0/0	1/1	()/0		
1	1)/1	0/0	1/1	1)/1		

(3) 总整图

五、设计题(每小题 12 分, 共 24 分)

1. 解:设初态为A,由题意得:

现态	次态	/输出 x=1	
y	<i>x</i> =0		
A	A/0	B/0	
В	A/0	C/0	
C	D/1	C/0	
D	A/0	B/0	

2. 解(1): 列次态转换真值表

(2) 用卡诺图化简得:

$$\begin{cases} J_2 = xy_1 \\ K_2 = \overline{x} \end{cases} \qquad \begin{cases} J_1 = x \\ K_1 = \overline{x} \end{cases} \qquad Z = xy_2$$

(3) 讨论当电路进入多余状态 10 时, 电路能否自启动。

х	<i>y</i> 2	<i>y</i> ₁	J_2	K_2	J_1	K_1	y_2^{n+1}	y_1^{n+1}	z
0	1	0	0	1	0	1	0	0	0
1	1	0	0	0	1	0	0 1	1	0

可见电路能自启动。

(4) 画逻辑图(略)

六、综合应用题(每小题12分,共24分)

1. \mathbf{M} (1): 设输入变量为 $A \times B \times C$, 输出为 F, 列真值表如下:

	•		
	输出		
A	В	C	F
0	0	0	0
0	0	1	1
0	1	0	1
0	1	1	0
1	0	0	1
1	0	1	0
1	1	0	0
1	1	1	1

- (2) 写输出函数表达式: $F = \sum m(1, 2, 4, 7)$
- (3) 选A、B作地址端,确定输入数据 D_0 、 D_1 、 D_2 、 D_3 。

(4) 画逻辑图

2. 解:

①工作原理

当合上电源瞬间, 电容上的电压不能突变,

 $V_{C} < \frac{1}{3}V_{CC}$,所以 $V_{TH} = V_{TR} < \frac{1}{3}V_{CC}$,输出 $V_{O} = 1$,放电三极管截止,电源电压经 R_{1} 、 R_{2} 和电容 C 充电, V_{C} 逐步上升,当 V_{C} 上升到 $\frac{1}{3}V_{CC} < V_{C} < \frac{2}{3}V_{CC}$ 时,放电三极管仍然截止, V_{O} 仍然为 1,电路处于第一个暂稳态。当 V_{C} 继续充电到 $> \frac{2}{3}V_{CC}$ 时,此时 $V_{TR} > \frac{1}{3}V_{CC}$, $V_{TH} > \frac{2}{3}V_{CC}$,放电三极管开始导通,输出 $V_{O} = 0$,电容经过 C、 R_{2} 和放电三极管 T 放电, V_{C} 开始下降。当 $V_{C} = V_{TH} = V_{TR}$ 下降到 $\frac{1}{3}V_{CC} < V_{C} < \frac{2}{3}V_{CC}$ 时,输出 V_{O} 仍为 V_{C} 中的表态。当 V_{C} 继续放电下降到 $V_{C} < \frac{1}{3}V_{CC}$ 时, V_{TH} 就 V_{C} 记, 就电三极管 V_{C} 就电三极管又截止,输出 V_{C} 又变到 V_{C} 只有意态,如此循环产生振荡,输出矩形波。

(2) 电容电压 V_C 的充放电波形和输出电压 V_o 的振荡波形如下:

(3)输出矩形波的高电平时间 t_H 是电容电压 V_C 的充电时间,与 $(R_1+R_2)C$ 有关,即 $t_H=f\left[(R_1+R_2)C\right]$ 或 $t_H\approx 0.7(R_1+R_2)C$ 。

输出低电平的时间 t_L 为 V_C 的放电时间,与 R_2C 有关。

即
$$t_L = f(R_2C)$$
 或 $t_L = 0.7R_2C$

: 矩形波的振荡周期

$$T_W = t_H + t_L = f \left\lceil \left(R_1 + R_2 \right) C \right\rceil + f \left(R_2 C \right)$$

或
$$T_W = t_H + t_L = 0.7(R_1 + 2R_2)C$$