Computer Vision - Assignment 3

Michal Sinai, Oded Golden

- 1. Homography: Let $(p_1, p_2, ..., p_n)$ be points in image I_1 and $(q_1, q_2, ..., q_n)$ be points in image I_2 . We will prove that there exists a 3x3 matrix H such that $\forall i \in [1, n] : p_i = Hq_i$
 - (a) Assumption: I_1 has the same coordinates system as the world.
 - (b) Given: $C = COP_1 = COP_2$
 - (c) Let M_1 denote the camera calibration matrix of I_1 and M_2 denote the camera calibration matrix of I_2 .
 - (d) We can then express any point P from A as $p = M_1P, q = M_2P$
 - (e) From (a) and (b) we get that $p = M_1 * P = M_{int} * Projection * P$ and $q = M_2 * P = M_{int} * Projection * Rotation_2 * P$
 - (f) Let P' = Projection * P denote the projected point of P, then $p = M_{int} * P'$ and $q = M_{int} * R_2 * P'$
 - (g) Since both M_{int} and $M_{int} * R_2$ are 3x3 matrices, then $p = M_{int} * [M_{int} * R_2]' * q$
 - (h) The homography is $H = M_{int} * [M_{int} * R_2]'$
- 2. Detect the ground plane in a sequence using the optical flow:
 - (a) Assumption: points on the ground plane have relatively the same optical flow orientation.
 - (b) Method:
 - Build an histogram from the orientation (the O) matrix.
 - ullet For every point with the common O value color it as the ground plane.
- 3. Determine whether the camera is only rotating using the optical flow:
 - (a) Assumption: If the camera is only rotating, then if the scene is static all the points in the image have relatively the same optical flow orientation.
 - (b) Method:
 - Build an histogram from the orientation (the O) matrix.
 - If the histogram "looks like" a spike the camera is only rotating. That is, if the common value of O appears more than the second common by a factor of k, where k is our threshold.