THE RISE OF MARKET POWER AND THE MACROECONOMIC IMPLICATIONS

Jan De Loecker¹ Jan Eeckhout² Gabriel Unger³

¹KU Leuven, NBER and CEPR ²University College London and UPF ³Harvard

> IIES December 13, 2018

MOTIVATION

- Several secular trends in last decades
- Market Power: common cause?
- Little known about evolution & cross-section markup in macro
 - 1. Data needed: long time series of firm-level data
 - Estimation methods: demand approach uses model of consumer behavior and competition
- This paper:
 - 1. Document time-series and cross section of markup 1955-2016
 - 2. Cost-based method; no inference from demand; mkt structure
 - 3. Macro Implications: secular trends
- Today, do not focus on causes of change in markup

DATA

- Accounting data on publicly listed firms:
 - Long time series: 1955-2016
 - Broad Cross Section: average 5,000 firms per year
- Selection?
 - Large firms; miss many small firms
 - Small subset of all firms
 - Publicly traded ≠ privately held firms
- But:
 - Covers all sectors and industries (contrast: Cens. of Manuf.)
 - 30% of US employment (Cens. of Manuf. 8.8%)
- ⇒ Allow for markup variation across producers and time; heterogeneity has substantial economic implications

ESTIMATING MARKUPS

- Two steps:
 - 1. Estimate Production Function: different models
 - 2. Derive Markup
- Important Caveats about the method:
 - 1. Frictionless adjustment (variable inputs) ideally, e.g. electricity
 - 2. Use 'Cost of Goods Sold' as a variable input bundle
 - 3. Construct 'User Cost of Capital'
 - 4. Markup = Market Power?

Intangibles?

• Cost vs. Demand approach: De Loecker-Scott (2016) Beer industry \rightarrow similar estimates $\mu \approx 1.5$ (7 case studies Appendix)

PRODUCER BEHAVIOR

Production technology

$$Q_{it}(\boldsymbol{V}_{it}, K_{it}, \Omega_{it}) = F_{it}(\boldsymbol{V}_{it}, K_{it})\Omega_{it},$$

- **V**_{it}: variable inputs (labor, intermediate inputs)
- K_{it}: capital stock
- Ω_{it} : Hicks-neutral productivity term (TFP)
- Associated Lagrangian function (with one composite input):

$$\mathcal{L}(V_{it}, K_{it}, \lambda_{it}) = P_{it}^{V} V_{it} + r_{it} K_{it} - \lambda_{it} (Q_{it}(\cdot) - Q_{it})$$

Consider FOC wrt the variable input V:

$$\frac{\partial \mathcal{L}_{it}}{\partial V_{it}} = P_{it}^{V} - \lambda_{it} \frac{\partial Q_{it}(\cdot)}{\partial V_{it}} = 0$$

• Rearranging \Rightarrow expression of output elasticity of input V_{it} :

$$heta_{it}^{V} \equiv rac{\partial Q_{it}(\cdot)}{\partial V_{it}} rac{V_{it}}{Q_{it}} = rac{1}{\lambda_{it}} rac{P_{it}^{V} V_{it}}{Q_{it}}$$

PRODUCER BEHAVIOR

- Lagrangian multiplier λ is a direct measure of marginal cost
- Define markup $\mu = \frac{P}{\lambda}$ or

$$\mu_{it} = \theta_{it}^{V} \frac{P_{it} Q_{it}}{P_{it}^{V} V_{it}}.$$

depending on Sales $S_{it} = P_{it}Q_{it}$ and expenditure share θ_{it}^V , which is specific to technology

- Method:
 - Hall (1988): aggregate data
 - De Loecker-Warzynski (2012): micro data

ESTIMATING MARKUPS

$$\mu_{it} = \theta_{it}^{V} \frac{P_{it} Q_{it}}{P_{it}^{V} V_{it}}.$$

- The method relies heavily on the data: sales/input expenditure
- Ratio is scaled by elasticity, $\theta(\beta)$:
 - 1. Estimate production function (parametric):
 - 1.1 Benchmark: time, sector-varying Cobb-Douglas $(q_{it} = x\beta_{st} + \omega_{it})$
 - 1.2 Constant by sector/year, $(q_{it} = x\beta + \omega_{it})$
 - 1.3 Firm/time specific: Translog $(q_{it} = x\beta_{1,s} + x^2\beta_{2,s} + \omega_{it})$

With correction for unanticipated shocks to output (ξ)

▶ Estimation

- 2. Estimate cost-shares ("non-parametric", but... CRTS CD)
- Average markup (weighted by sales share m_{it}):

$$\mu_t = \sum_i m_{it} \mu_{it}$$

BENCHMARK No Change...

BENCHMARK

NO CHANGE... IN MEDIAN MARKUP

BENCHMARK

SECULAR INCREASE SINCE 1980: +40 PTS

DIFFERENT ESTIMATES FOR θ_{it}

DIFFERENT ESTIMATES FOR θ_{it}

EVOLUTION OF ELASTICITIES AND COST SHARES

$$\frac{p^V V}{p^V V + r K}$$
 and θ^V

OVERHEAD

 Conventional production function: treat overhead as a fixed cost ("overhead is necessary, but does not increase units manufactured")

$$\Pi = PQ(V, K) - p^{V}V - rK - F$$

OVERHEAD

 Conventional production function: treat overhead as a fixed cost ("overhead is necessary, but does not increase units manufactured")

$$\Pi = PQ(V, K) - p^{V}V - rK - F$$
vs.

$$\Pi = PQ(V, K, X) - p^{V}V - rK - p^{X}X$$

- Overhead as an input of production: Q(V, K, X) where $p^X X = F$
- In accounting, SG&A: Selling, General & Administrative Expenses
- Shed light on rise of Intangible Capital (e.g. Corrado, Hulten, Sichel)

OVERHEAD

EVOLUTION OF ELASTICITIES AND COST SHARES

$$\frac{p^VV}{p^VV+rK+p^XX}$$
 and θ^V

PRODUCTION FUNCTION: OVERHEAD AS FACTOR

DIFFERENT ESTIMATES FOR θ_{it}

DIFFERENT ESTIMATES FOR θ_{it}

RETURNS TO SCALE ESTIMATED PF TECHNOLOGIES

RETURNS TO SCALE

Syverson (2004)

$$q = \gamma \left[\alpha_V \mathbf{v} + \alpha_K \mathbf{k} + \alpha_X \mathbf{x} \right] + \omega$$

RETURNS TO SCALE

Syverson (2004)

$$q = \gamma \left[\alpha_V \mathbf{v} + \alpha_K \mathbf{k} + \alpha_X \mathbf{x} \right] + \omega$$

REPRESENTATIVENESS OF SAMPLE BEA ECONOMY-WIDE WEIGHTS

Predominantly Within Industry

IN All Sectors (2-digit)

$$\Delta U_t = \underbrace{\sum_{s} s_{s,t-1} \Delta \mu_{st}}_{\Delta \text{ within}} + \underbrace{\sum_{s} \mu_{s,t-1} \Delta s_{s,t}}_{\Delta \text{ between}} + \underbrace{\sum_{s} \Delta \mu_{s,t} \Delta s_{s,t}}_{\Delta \text{ reallocation}}.$$

	Markup	Δ Markup	Δ Within	Δ Between	Δ Realloc.
1966	1.337	0.083	0.057	-0.017	0.041
1976	1.270	-0.067	-0.055	0.002	-0.014
1986	1.312	0.042	0.035	0.010	-0.003
1996	1.406	0.094	0.098	0.004	-0.008
2006	1.455	0.049	0.046	0.007	-0.005
2016	1.610	0.154	0.133	0.014	0.007

DISPERSION OF MARKUP

ALL ACTION IN UPPER HALF DISTRIBUTION

DISPERSION OF MARKUP

Kernel Density 1980, 2016

MARKUP VS. REALLOCATION

DECOMPOSITION AT THE FIRM LEVEL

$$\Delta \mu_t = \underbrace{\sum_{i} m_{i,t-1} \Delta \mu_{it}}_{\Delta \text{ within}} + \underbrace{\sum_{i} \mu_{i,t-1} \Delta m_{i,t}}_{\Delta \text{ market share}} + \underbrace{\sum_{i} \Delta \mu_{i,t} \Delta m_{i,t}}_{\Delta \text{ cross-term}} + \underbrace{\sum_{i \in \text{Entry}} \mu_{i,t} m_{i,t} - \sum_{i \in \text{Exit}} \mu_{i,t-1} m_{i,t-1}}_{\text{net entry}}$$

MARKUP AND FIRM SIZE

THE PROCESS OF MARKUPS

Suppose markup, sales and employment follow an AR process ($\hat{
ho}=0.84$):

$$x_{it} = \rho x_{it-1} + \varepsilon_{it}, \quad x \in \{\log \mu, \log S, \log L\}$$

ROBUSTNESS: US CENSUSES

MANUFACTURING

ROBUSTNESS: US CENSUSES

RETAIL

ROBUSTNESS: US CENSUSES

WHOLESALE

Markup = Market Power?

Profit Rate: +7 Ppt

MARKUP = MARKET POWER?

PROFIT RATE: NO CAPITAL

MARKUP = MARKET POWER?

PROFIT RATE: KERNEL DENSITY

MARKUP = MARKET POWER? MARKET VALUE

Markup = Market Power?

AT THE FIRM LEVEL

	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	
	$\ln\bigg(\frac{Market\ Value}{Sales}\bigg)$					In(Market Value)			
In(Markup PF1)	0.71 (0.03)	0.64 (0.02)	0.56 (0.02)	0.17 (0.03)	0.71 (0.02)	0.65 (0.02)	0.58 (0.02)	0.27 (0.02)	
In(Sales)	()	()	()	(* * * *)	0.81 (0.00)	0.81	0.83	0.68	
Year Fixed Effects		Υ	Υ	Υ		Υ	Υ	Υ	
Sector Fixed Effects Firm Fixed Effects			Υ	Y			Υ	Υ	
R ²	0.05	0.13	0.21	0.68	0.68	0.71	0.73	0.89	
	$\ln\left(\frac{\text{Dividends}}{\text{Sales}}\right)$					In(Dividends)			
In(Markup PF1)	1.05	0.97	0.80	0.26	1.03	0.93	0.78	0.26	
In(Sales)	(0.04)	(0.03)	(0.04)	(0.05)	(0.04) 0.94 (0.01)	(0.04) 0.92 (0.01)	(0.04) 0.93 (0.01)	(0.05) 0.76 (0.02)	
Year Fixed Effects Sector Fixed Effects		Υ	Y Y	Υ	(===)	Y	Y	Y	
Firm Fixed Effects				Y				Υ	
R^2	0.06	0.11	0.17	0.70	0.66	0.68	0.70	0.89	

Markup = Market Power?

RETURN ON ASSETS

MARKUP = MARKET POWER?

PROFITS AND SG&A

MARKUP = MARKET POWER?

PROFITS AND SG&A

	N	/larkup (l	Profit Rate (log)		
	(1)	(2)	(3)	(4)	(5)
SG&A (log)	0.56			0.15	
	(0.01)			(0.03)	
R&D Exp. (log)		0.16			0.10
		(0.01)			(0.01)
Advertising Exp. (log)		0.05			0.03
		(0.00)			(0.01)
R&D dummy			0.06		
			(0.01)		
Advertising dummy			-0.00		
			(0.03)		
\mathbb{R}^2	0.61	0.07	0.43	0.04	0.05
N	26,743		247,615	26,743	

MAGNITUDE OF INCREASE

PROFIT RATE VS MARKUP

• The profit rate:

$$\pi_{it} = \frac{P_{it}Q_{it} - C(Q_{it})}{P_{it}Q_{it}} = 1 - \frac{1}{\mu_{it}} \frac{AC_{it}}{MC_{it}}$$

 \Rightarrow With $\mu: 1.2 \rightarrow 1.6$, implied profit rate in 2016 is 50% of sales

Magnitude of Increase

PROFIT RATE VS MARKUP

• The profit rate:

$$\pi_{it} = \frac{P_{it}Q_{it} - C(Q_{it})}{P_{it}Q_{it}} = 1 - \frac{1}{\mu_{it}} \frac{AC_{it}}{MC_{it}}$$

- \Rightarrow With $\mu: 1.2 \rightarrow 1.6$, implied profit rate in 2016 is 50% of sales
 - This logic uses:
 - 1. Representative Firm Economy: but Aggregation (Jensen's Inequality)
 - 2. Returns to Scale constant: but $\frac{AC_{it}}{MC_{it}} \uparrow \text{ (Overhead } \uparrow \text{)}$

MAGNITUDE OF INCREASE PROFIT RATE VS MARKUP

Magnitude of Increase

Profit Rate vs Markup

- Markups based on COGS and SG&A: V + X?
- Then

$$\tau_{it} = \theta^{V+X} \frac{PQ}{p^V V + p^X X}$$

measure proposed by James Traina

• τ equivalent to (operating) profit rate $\pi^k = \frac{PQ - p^V V - p^X X}{PQ}$:

$$\tau_{it} = \theta^{V+X} \frac{1}{1 - \pi_{it}^k}$$

MAGNITUDE OF INCREASE PROFIT RATE VS MARKUP

- 1. Markup \neq Profit Rate
 - Markup since 1980: +30 − 40 points
 - Profit rate since 1980: +7 8 points
- 2. Driven by Heterogeneity:
 - Only in the upper half of distribution (P90 \(\frac{1}{1}\); P50 constant)
 - Mostly within industry (in all; no particular industries)
 - Substantial Reallocation: 2/3 of rise

Joint Distributions

Joint Distributions

INPUT WEIGHTS

GLOBAL MARKUP

134 Countries; 70,000 Firms; 1980-2016

GLOBAL MARKUP

134 COUNTRIES; 70,000 FIRMS; 1980-2016

MARKUP CONTINENTS

EUROPE

SWEDEN

DECLINE IN LABOR SHARE

$$\mu_{it} = \theta_{it}^{V} \frac{P_{it}Q_{it}}{P_{it}^{V}V_{it}} \quad \stackrel{V=L}{\Rightarrow} \quad \frac{w_{t}L_{it}}{S_{it}} = \frac{\theta_{it}^{L}}{\mu_{it}}$$

DECLINE IN LABOR SHARE

$$\mu_{it} = \theta_{it}^{V} \frac{P_{it} Q_{it}}{P_{it}^{V} V_{it}} \quad \stackrel{V=L}{\Rightarrow} \quad \frac{w_t L_{it}}{S_{it}} = \frac{\theta_{it}^{L}}{\mu_{it}}$$

DECLINE IN LABOR SHARE

RELATION AT FIRM LEVEL?

	Labor Share (log)					
	(1)	(2)	(3)	(4)		
Markup (log)	-0.24	-0.23	-0.20	-0.24		
	(0.03)	(0.03)	(0.03)	(0.03)		
Year F.E.		X	X	X		
Industry F. E.			Χ			
Firm F.E.				X		
R ²	0.02	0.08	0.21	0.88		

DECLINE IN CAPITAL SHARE

$$K \text{ variable } \stackrel{V=K}{\Rightarrow} \frac{r_t K_{it}}{S_{it}} = \frac{\theta_{it}^k}{\mu_{it}}$$

DECLINE IN CAPITAL SHARE

$$K$$
 variable $\stackrel{V=K}{\Rightarrow}$ $\frac{r_t K_{it}}{S_{it}} = \frac{\theta_{it}^k}{\mu_{it}}$

Gross Capital adjusted by input price deflator, federal funds rate, depreciation rate 12%.

$$wL + rK + \Pi_i = S_i \iff \frac{wL_i}{S_i} + \frac{rK_i}{S_i} + \frac{\Pi_i}{S_i} = 1$$

OTHER IMPLICATIONS

- Decline in (Low-skill) Wages
- Decline in Labor Force Participation
- Decline in Labor Reallocation (and in Migration)
- Decline in Output Growth
- Increase in Wage Inequality
 - ⇒ Quantify the macroeconomic implications: market power in a GE model (new paper with Jan De Loecker and Simon Mongey)

Conclusions

- 1. Sharp rise in Market Power since 1980
 - Markups: increase 30 40 points
 - Profit Rate: increase 7 − 8 points
- 2. Heterogeneity: no representative firm
 - Median constant; P90 ↑↑
 - Substantial reallocation
- 3. Significant macroeconomic implications
 - Labor and Capital share decline
 - (Low skill) wages and LF participation
 - · Reallocation rates, job flows and migration decline
 - Measured TFP
 - ⇒ aim to quantify market power in oligopolistic GE framework

THE RISE OF MARKET POWER AND THE MACROECONOMIC IMPLICATIONS

Jan De Loecker¹ Jan Eeckhout² Gabriel Unger³

¹KU Leuven, NBER and CEPR ²University College London and UPF ³Harvard

> IIES December 13, 2018

ESTIMATION ELASTICITIES: DETAIL

• Translog production function for each industry:

$$q_{it} = \beta_{v1}v_{it} + \beta_{k1}k_{it} + \beta_{v2}v_{it}^2 + \beta_{k2}k_{it}^2 + \omega_{it} + \epsilon_{it}$$

- Variation output elasticity over time and firms
- Output elasticity of the composite variable input:

$$\theta_{it}^{v} = \beta_{v} 1 + 2\beta_{v2} v_{it}$$

- Preserves identification results, with two key ingredients:
 - 1. $v = h(k, \omega)$
 - 2. $\omega = g(\omega) + \xi$
- Moment conditions from static optimization of variable inputs:

$$\mathbb{E}\left(\xi_{it}(\boldsymbol{\beta})\left[\begin{array}{c}v_{it-1}\\v_{it-1}^2\end{array}\right]\right)=0$$

ESTIMATION PRODUCTION TECHNOLOGY

Cobb Douglas:

$$q_{it} = \beta_{v} v_{it} + \beta_{k} k_{it} + \omega_{it} + \epsilon_{it}$$

- Olley-Pakes (1996): productivity is function of inputs: $\omega_{it} = h(v_{it}, k_{it})$
- Let:

$$q_{it} = \phi_t(v_{it}, k_{it}) + \epsilon_{it}$$
 where $\phi = \beta_v v_{it} + \beta_k k_{it} + h(v_{it}, k_{it})$

- Assume AR(1) productivity process: $\omega_{it} = \rho \omega_{it-1} + \xi_{it}$
 - 1. Regress deflated sales on variable inputs, capital and year dummies
 - 2. $\xi_{it}(\beta_{\nu})$: from $\omega_{it}(\beta_{\nu})$ on $\omega_{it-1}(\beta_{\nu})$, where $\omega_{it} = \phi_{it} \beta_{\nu}v_{it} + \beta_{k}k_{it}$
- Identify output elasticities $\mathbb{E}(\xi_{it}(\beta_{\nu})v_{it-1}) = 0$ under assumption:
 - 1. *v_{it}* responds to productivity shock
 - 2. v_{it-1} does not

Translog Production Technology

- Industry-specific, time-varying output elasticities
- Preserves identification results (De Loecker-Warzynski (2012))
- Moment conditions from static optimization of variable inputs:

$$\mathbb{E}\left(\xi_{it}(\boldsymbol{\beta})\left[\begin{array}{c}v_{it-1}\\v_{it-1}^2\end{array}\right]\right)=0,$$

With translog production function for each industry:

$$q_{it} = \beta_{v1}v_{it} + \beta_{k1}k_{it} + \beta_{v2}v_{it}^2 + \beta_{k2}k_{it}^2 + \omega_{it} + \epsilon_{it}$$

- ullet Variation output elasticity over i, t, no longer attributed to markup
- Output elasticity of the composite variable input:

$$\theta_{it}^{v} = \beta_{v} 1 + 2\beta_{v2} v_{it}$$

• Markup defined as before; level difference, but normalization

