Лабораторная работа 4

Луняк Николай

30 марта 2021 г.

Оглавление

1	Сво	йства	преобразования Фурье	4				
	1.1	Обще	e	4				
	1.2		тва	4				
		1.2.1	Линейность	4				
		1.2.2	Смещение функции	5				
		1.2.3	Масштабирование функции	5				
		1.2.4	Перемножение функции	6				
		1.2.5	Свертывание функции	6				
		1.2.6	Дифференциирование функции	6				
		1.2.7	Интегрирование функции	7				
		1.2.8	Обратимость	8				
2	Про	обуем	примеры из «A Soft Murmur»	9				
3	Me	год Ба	рлетта	19				
4	Bite	Coin		22				
5	б Счетчик Гейгера							
6	Алгоритм Восса-МакКартни							

Список иллюстраций

2.1	Гонг
2.2	Спектр гонга (линейный масштаб)
2.3	Спектр гонга (логарифмический масштаб)
2.4	Спектрограмма гонга
2.5	Сверчки
2.6	Спектр сверчков (линейный масштаб)
2.7	Смотрим ближе
2.8	Вещественная часть
2.9	Мнимая часть
2.10	Спектр сверчков (логарифмический масштаб)
2.11	Спектрограмма сверчков
2.12	Толпа
2.13	Спектр толпы (линейный масштаб)
2.14	Спектр толпы (логарифмический масштаб)
2.15	Спектрограмма толпы
3.1	Линейный масштаб
3.2	Логарифмический масштаб
4.1	DataFrame
4.2	Визуализация
4.3	Спектр
4.0	Опектр
5.1	Wave
5.2	Спектр
6.1	Сигнал
6.2	Спектр
	1

Листинги

2.1	Анализ файлов	9
2.2	Смотрим ближе	13
2.3	Проверяем предположение	14
3.1	Барлетт	19
4.1	Загрузка DataFrame	22
4.2	Визуализация	22
4.3	Спектр	23
4.4	Спектр	24
5.1	Реализация	25
5.2	Подсчитываем частицы	25
5.3	Wave	26
5.4	Спектр	26
6.1	Алгоритм	28
6.2	Спектр	29

Глава 1

Свойства преобразования Фурье

Общее 1.1

На последней лекции Наталья Владимировна попросила добавить в ближайший отчет описание свойств преобразования Фурье, что и будет сделано в данном разделе.

О том, что такое само по себе преобразование Фурье, мы говорили на лекции, однако в качестве еще одного источника возможной интуиции мне показался примечательным ролик 3Blue1Brown [3Bl].

Пусть формулы тоже будут под рукой. Для сигнала f(t):

Прямое:
$$F(\nu) = \int_{-\infty}^{\infty} f(t)e^{-2\pi i\nu t}dt$$

Обратное: $f(t) = \int_{-\infty}^{\infty} F(\nu)e^{2\pi i\nu t}d\nu$

Свойства 1.2

1.2.1 Линейность

По определению, для некоторого векторного пространства $(V, K, +, \cdot)$, $a, b \in V, \gamma \in K$:

$$f:V o V$$
 - линейна $\Longleftrightarrow egin{cases} \gamma\cdot f(a)=f(\gamma\cdot a)\ f(a)+f(b)=f(a+b) \end{cases}$

Очевидно, $\Pi\Phi$ удовлетворяет этому условию (как функция на $(\mathbb{R} \to$ $\mathbb{R}, \mathbb{C}, +, \cdot)$), а следовательно:

Fourier
$$\left(\sum_{i} \alpha_{i} \phi_{i}(t)\right) = \sum_{i} \alpha_{i} \cdot Fourier(\phi_{i}(t))$$

$$= \sum_{i} \alpha_{i} \Phi_{i}(\nu)$$

1.2.2 Смещение функции

При смещении нашей подопытной функции $\phi(t)$ на Δt результат ПФ умножается на $e^{2\pi i \nu \Delta t}$. Пусть $t' = t + \Delta t$, тогда:

Fourier
$$(\phi(t + \Delta t)) = \int_{-\infty}^{\infty} \phi(t + \Delta t)e^{-2\pi i\nu t}dt$$

= $\int_{-\infty}^{\infty} \phi(t')e^{-2\pi i\nu(t' - \Delta t)}dt$

Так как $dt' = d(t + \Delta t) = dt$, то:

$$\int_{-\infty}^{\infty} \phi(t')e^{-2\pi i\nu(t'-\Delta t)}dt' = e^{2\pi i\nu\Delta t} \cdot \int_{-\infty}^{\infty} \phi(t')e^{-2\pi i\nu t'}dt'$$
$$= e^{2\pi i\nu\Delta t} \cdot F(\nu)$$

1.2.3 Масштабирование функции

Аналогично, $t' = \alpha t$:

Fourier
$$(\phi(\alpha t)) = \int_{-\infty}^{\infty} \phi(\alpha t) e^{-2\pi i \nu t} dt$$

= $\int_{-\infty}^{\infty} \phi(t') e^{-2\pi i \nu \frac{t'}{\alpha}} dt$

Так как $dt' = \alpha dt$, то для a > 0:

$$\int_{-\infty}^{\infty} \phi(t') e^{-2\pi i \nu \frac{t'}{\alpha}} dt = \frac{1}{\alpha} \int_{-\infty}^{\infty} \phi(t') e^{-2\pi i \frac{\nu}{\alpha} t'} dt$$
$$= \frac{1}{\alpha} \Phi\left(\frac{\nu}{\alpha}\right)$$

А вот для a < 0 мы получим dt' < 0 при dt > 0. Тогда надо поменять местами пределы интегрирования и выскочит минус в результате:

$$-\frac{1}{\alpha}\Phi\left(\frac{\nu}{\alpha}\right)$$

Тогда в одной форме это:

$$\frac{1}{|\alpha|}\Phi\left(\frac{\nu}{\alpha}\right)$$

Вывод: при сжатии функции по времени в α раз, ее $\Pi\Phi$ расширяется по частоте в α раз.

1.2.4 Перемножение функции

ПФ произведения двух функций - это свертка их ПФ.

$$Fourier (\phi(t)\xi(t)) = \int_{-\infty}^{\infty} \phi(t)\xi(t)e^{-2\pi i\nu t}dt$$

$$= \int_{-\infty}^{\infty} \left(\int_{-\infty}^{\infty} \Phi(k)e^{2\pi ikt}dk\right)\xi(t)e^{-2\pi i\nu t}dt$$

$$= \int_{-\infty}^{\infty} \Phi(k)\left(\int_{-\infty}^{\infty} \xi(t)e^{2\pi i(k-\nu)t}dt\right)dk$$

$$= \int_{-\infty}^{\infty} \Phi(k)\left(\int_{-\infty}^{\infty} \xi(t)e^{-2\pi i(\nu-k)t}dt\right)dk$$

$$= \int_{-\infty}^{\infty} \Phi(k)\Xi(\nu-k)dk$$

$$= (\Phi * \Xi)(\nu)$$

1.2.5 Свертывание функции

 $\Pi\Phi$ свертки двух функций есть произведение $\Pi\Phi$ этих функций. Доказывается аналогично в силу «симметрии» прямого и обратного преобразований Φ урье.

1.2.6 Дифференциирование функции

При дифференциировании $\phi(t)$ по t ее ПФ умножается на $2\pi i\nu$.

Fourier
$$\left(\frac{d\phi(t)}{dt}\right) = \int_{-\infty}^{\infty} \frac{d\phi(t)}{dt} e^{-2\pi i \nu t} dt$$

$$= \int_{-\infty}^{\infty} e^{-2\pi i \nu t} d\phi(t)$$

$$= \phi(t) e^{-2\pi \nu t} \Big|_{-\infty}^{\infty} - \int_{-\infty}^{\infty} \phi(t) d\left(e^{-2\pi i \nu t}\right)$$

$$= \phi(t) e^{-2\pi \nu t} \Big|_{-\infty}^{\infty} + 2\pi i \nu \int_{-\infty}^{\infty} \phi(t) e^{-2\pi i \nu t} dt$$

$$= \phi(t) e^{-2\pi \nu t} \Big|_{-\infty}^{\infty} + 2\pi i \nu \cdot \Phi(\nu)$$

Прямое и обратное преобразование Фурье существует для функций с органиченной энергией, то есть:

$$\int_{-\infty}^{\infty} |\phi(t)|^2 dt \neq \infty$$

И из этого следует, что первое слагаемое должно быть 0.

1.2.7 Интегрирование функции

Как можно предположить, тут произойдет обратное - деление на эту величину. Правда, теперь мы еще требуем, чтобы в функции не было константной составляющей (при дифференциировании она бы пропала, а вот при интегрировании - нет).

$$Fourier\left(\int_{-\infty}^{t} \phi(t')dt'\right) = \int_{-\infty}^{\infty} \left(\int_{-\infty}^{t} \phi(t')dt'\right) e^{-2\pi i \nu t} dt$$

$$= -\frac{1}{2\pi i \nu} \cdot \int_{-\infty}^{\infty} \left(\int_{-\infty}^{t} \phi(t')dt'\right) d\left(e^{-2\pi i \nu t}\right)$$

$$= -\frac{1}{2\pi i \nu} \cdot \left[e^{-2\pi i \nu t} \int_{-\infty}^{t} \phi(t')dt'\right]_{-\infty}^{\infty} - \int_{-\infty}^{\infty} e^{-2\pi i \nu t} d\left(\int_{-\infty}^{t} \phi(t')dt'\right)\right]$$

$$= -\frac{1}{2\pi i \nu} \cdot \left[e^{-2\pi i \nu t} \int_{-\infty}^{t} \phi(t)dt\right]_{-\infty}^{\infty} - \int_{-\infty}^{\infty} e^{-2\pi i \nu t} \phi(t)dt$$

$$= -\frac{1}{2\pi i \nu} \cdot \left[0 - \int_{-\infty}^{\infty} e^{-2\pi i \nu t} \phi(t)dt\right]$$

$$= \frac{1}{2\pi i \nu} \cdot \int_{-\infty}^{\infty} e^{-2\pi i \nu t} \phi(t)dt$$

$$= \frac{1}{2\pi i \nu} \cdot \Phi(\nu)$$

А 0 там появился из-за того, что $\int_{-\infty}^{\infty} \phi(t') dt' = 0$.

1.2.8 Обратимость

Ну и само собой то, что прямой и обратное преобразование Фурье - два брата-близнеца с точностью до знака.

Глава 2

Пробуем примеры из «A Soft Murmur»

Скачиваем с сайта три файла и смотрим на их спектры.

```
1 from thinkdsp import Signal, Sinusoid, SquareSignal,
     TriangleSignal, SawtoothSignal, ParabolicSignal
2 from thinkdsp import normalize, unbias, PI2, decorate
3 from thinkdsp import Chirp
4 from thinkdsp import read_wave
6 import numpy as np
8 from matplotlib import pyplot
10 files = [
     'Sounds/169289__qubodup__gong-bell-monkay-s-singing-bowl-
     modified.wav',
     'Sounds/22604__martypinso__dmp010037-crickets-texas.wav',
      'Sounds/136977__audionautics__crowd-long.wav',
13
14
16 def analyze(file):
     print(f'Analyzing "{file}"')
      wave = read_wave(file)
      segment = wave.segment(start=0, duration=5)
      pyplot.title('Waveform')
     segment.plot()
      pyplot.show()
      spectrum = segment.make_spectrum()
      pyplot.title('Spectrum (Linear Scale)')
      spectrum.plot_power()
      decorate(
```

```
xlabel='Frequency (Hz)',
           ylabel='Power',
30
31
      pyplot.show()
32
33
      pyplot.title('Spectrum (Log-Log Scale)')
34
      spectrum.plot_power(linewidth=0.5)
      loglog = dict(xscale='log', yscale='log')
36
      decorate(
37
           xlabel='Frequency (Hz)',
           ylabel='Power',
40
           **loglog
41
      pyplot.show()
42
      pyplot.title('Spectrogram')
44
      segment.make_spectrogram(512).plot(high=5000)
      pyplot.show()
47
48
      return segment.make_audio()
50 [analyze(it) for it in files]
```

Листинг 2.1: Анализ файлов

В изображениях ниже присутствует опечатка: те, что подписаны как «Amplitude», являются так же квадратом амплитуды, просто они отражены не в «log-log scale», а те, что подписаны как «Power», являются квадратом амплитуды, отраженном как раз в логарифмическом масштабе. Ввиду некомфортности работы с изображниями в IATEX, я решил их не исправлять.

Начнем с гонга.

Рис. 2.1: Гонг

Рис. 2.2: Спектр гонга (линейный масштаб)

Большие значения аплитуды соответствуют малым значениям частоты, что дает основания полагать, что это «красный» bkb «розовый» шум, хотя наличие всего лишь трех «пиков» можно с натяжкой считать настоящим шумом, но такой уж файл скачался...

Рис. 2.3: Спектр гонга (логарифмический масштаб)

Рис. 2.4: Спектрограмма гонга

В спектрограмме виднеется определенный периодический «шаблон», а также присутствуют лишь определенные частоты, которые мы видели ранее, что четко дает понять, что мы работаем не с шумом, а со сигналом, обладающим стабильным четким «временным профилем».

Рис. 2.5: Сверчки

Рис. 2.6: Спектр сверчков (линейный масштаб)

Приблизим этот фрагмент, отрезав начало:

Листинг 2.2: Смотрим ближе

Рис. 2.7: Смотрим ближе

Тут действительно присутствуют много разных частот, однако это не похоже ни на «розовый» шум, ни на «белый». Это так же не походит и на Броуновский шум. Однако, этот «колокол» кое-на-что похож. Проведем эксперимент.

```
1 import thinkstats2
2 thinkstats2.NormalProbabilityPlot(spectrum.real)
3 pyplot.figure()
4 thinkstats2.NormalProbabilityPlot(spectrum.imag)
Листинг 2.3: Проверяем предположение
```

1000 -500 -0 --500 --1000 --4 -2 0 2 4

Рис. 2.8: Вещественная часть

Рис. 2.9: Мнимая часть

Тут как будто бы есть 3 линейных сегмента. Возможно, тут мы имеем дело не с одним нормальным распределением, а несколькими, наложенными друг на дружку.

Рис. 2.10: Спектр сверчков (логарифмический масштаб)

Рис. 2.11: Спектрограмма сверчков

Динамика этого сигнала уже позволяет его назвать шумом, просто он имеет «предпочтительную» частоты.

Рис. 2.12: Толпа

Рис. 2.13: Спектр толпы (линейный масштаб)

Вот это уже походит на «розовый» шум!

Рис. 2.14: Спектр толпы (логарифмический масштаб)

Однако данная спектрограмма в логарифмическом масштабе все же дает понять, что перед нами не он.

Рис. 2.15: Спектрограмма толпы

Поведение сигнала во времени не оставляет сомнений в том, что

Глава 3

Метод Барлетта

Разобъем наш сигнал на отдельные участки, в пределах которых будем брать спектры.

```
1 import numpy
3 wave = read_wave('Sounds/136977__audionautics__crowd-long.wav
    ')
5 TIME_INTERVAL = 6 * 60
6 DURATION = 0.01
7 SAMPLES_COUNT = int(TIME_INTERVAL / DURATION)
9 summed = numpy.zeros((int(24001 * DURATION + 1)))
11 for it in range(SAMPLES_COUNT):
      spectrum = wave.segment(start=it * DURATION, duration=
     DURATION).make_spectrum()
     summed += spectrum.power
15 result = numpy.sqrt(summed / SAMPLES_COUNT)
17 pyplot.figure()
18 pyplot.plot(spectrum.fs, result)
19 pyplot.show()
21 average_spectrum = Spectrum(result, spectrum.fs, wave.
     framerate)
23 loglog = dict(xscale='log', yscale='log')
25 pyplot.figure()
26 average_spectrum.plot_power()
27 decorate(xlabel='Frequency (Hz)',
           ylabel='Power',
```

**loglog)

Листинг 3.1: Барлетт

В коде выше можно видеть, как длина временного участка накладывает ограничение на диапазон частот в соответствии с тем, как мы это обсуждали в предыдущей лекции.

Код выше почти эквивалентен коду, предложенному в chap04soln.ipynb c seg_length 512, но работающий чуть побыстрее.

Рис. 3.1: Линейный масштаб

Рис. 3.2: Логарифмический масштаб

Видно, что график не похож на горизонтальную прямую или на какую-либо линейную зависимость, при этом сигнал обладает определенной стабильностью во времени (разные частоты неравнозначны, и это сохраняется на протяжении всего времени сигнала).

Глава 4

BitCoin

Листинг 4.1: Загрузка DataFrame

	Currency	Date	Closing Price (USD)	24h Open (USD)	24h High (USD)	24h Low (USD)
0	втс	2020-12-31	28768.836208	27349.327233	28928.214391	27349.283204
1	BTC	2021-01-01	29111.521567	28872.829775	29280.045328	27916.625059
2	BTC	2021-01-02	29333.605121	28935.810981	29601.594898	28753.412314
3	BTC	2021-01-03	32154.167363	29353.640608	33064.673534	29012.927887
4	BTC	2021-01-04	33002.536427	32074.106611	34452.080337	31885.581619
85	BTC	2021-03-26	52173.867980	52335.565034	53209.406384	50458.099965
86	BTC	2021-03-27	54483.045732	51344.048980	54806.881514	51286.291177
87	BTC	2021-03-28	56234.356105	55067.824399	56520.307287	54022.076941
88	BTC	2021-03-29	55343.925815	55843.748916	56541.006527	54741.626373
89	BTC	2021-03-30	57627.679249	55786.546075	58353.529393	54929.680588

Рис. 4.1: DataFrame

90 rows × 6 columns

Я скачал данные не за весь период, а только за последний год.

Листинг 4.2: Визуализация

Рис. 4.2: Визуализация

Выше мы превратили данные в сигнал, означающий зависимость цены от номера дня.

```
spectrum = wave.make_spectrum()
spectrum.plot_power()
decorate(xlabel='Frequency (1/days)', **loglog)
Листинг 4.3: Спектр
```


Рис. 4.3: Спектр

Полученный спектр походит на прямую линию, что намекает на воз-

можный «красный» или «розовый» шум. Для более точной оценки можно оценить наклон прямой более формально:

spectrum.estimate_slope()[0]

Листинг 4.4: Спектр

Для «красного» шума характерен наклон -2, поэтому предположу, что это все-таки «розовый». Физический же смысл данного спектра в том, что частота изменения стоимости обратно пропорциональна изначимости этих изменений. Другими словами, серьезные изменения остаются достаточно редкими в сравнении с ежедневными флуктуациями.

Глава 5

Счетчик Гейгера

Нам необходимо реализовать сигнал в соответствии с распределением Пуассона, которое имеет следующий вид:

$$P(x) = \frac{\lambda^x e^{-\lambda}}{x!}$$

Парамет λ соответствует мат. ожиданию и вариации случайной величины ($\lambda = E\xi = E(\xi - E\xi)$). В нашем случае логично говорить об ожидаемом числе попавшихся частиц в неком промежутке времени. Или даже лучше сказать, о среднем количестве встреченных частиц на одно изменение (и измерений в секунду у нас framerate штук).

```
1 from thinkdsp import Noise
2
3 class MyUncorrelatedPoissonNoise(Noise):
4    def evaluate(self, ts):
5         ys = numpy.random.poisson(self.amp, len(ts))
6         return ys
7
8 signal = MyUncorrelatedPoissonNoise(amp=0.001)
9 wave = signal.make_wave(duration=10, framerate=10_000)
10 wave.make_audio()
```

Листинг 5.1: Реализация

Прослушать это в РТЕХнельзя, но звучит правдоподобно. Можно посмотреть, сколько на самом деле нам прилетело частиц:

```
1 \text{ sum(wave.ys)}, 0.001 * 10_000 * 10
```

Листинг 5.2: Подсчитываем частицы

Получаем на выходе (108, 100.0), что означает, что примерно столько и прилетело частиц, сколько мы хотели.

Можно еще посчитать пики на вейвформе.

1 wave.plot()

Листинг 5.3: Wave

Рис. 5.1: Wave

А вот и спектр:

```
spectrum = wave.make_spectrum()
spectrum.plot_power()
decorate(xlabel='Frequency (Hz)',
ylabel='Power',
**loglog)
```

Листинг 5.4: Спектр

Рис. 5.2: Спектр

Он походит на прямую горизонтальную линию, а оценка его наклона показывает величину, близкую к 0. Похоже, что это «белый» шум.

Глава 6

Алгоритм Восса-МакКартни

Это просто более хороший алгоритм для генерации «розового» шума.

```
1 def voss(rows, columns=16):
      array = numpy.empty((rows, columns))
      array.fill(numpy.nan)
      array[0, :] = numpy.random.random(columns)
      array[:, 0] = numpy.random.random(rows)
      target_columns = numpy.random.geometric(0.5, rows)
      target_columns[target_columns >= columns] = 0
      target_rows = numpy.random.randint(rows, size=rows)
      array[target_rows, target_columns] = numpy.random.random(
     rows)
      dataframe = pandas.DataFrame(array)
      dataframe.fillna(method='ffill', axis=0, inplace=True)
      total = dataframe.sum(axis=1)
      return total.values
21 wave = Wave(voss(11025))
22 wave.unbias()
23 wave.plot()
24 wave.make_audio()
```

Листинг 6.1: Алгоритм

Идея алгоритма заключается в сложении нескольких последовательностей случайных чисел, изменяющихся с разной частотой (эти числовые последоваьельности представлены столбцами, вдоль которых потом производится суммирование).

Рис. 6.1: Сигнал

```
1 spectrum = wave.make_spectrum()
2 spectrum.hs[0] = 0
3 spectrum.plot_power()
4 decorate(xlabel='Frequency (Hz)',
5 **loglog)
```

Листинг 6.2: Спектр

Рис. 6.2: Спектр

Виднеется прямая. Оценка ее наклона дает величину, близкую к -1, что говорит о том, что перед нами точно «розовый» шум.

Список литературы

[3Bl] 3Blue1Brown. But what is the Fourier Transform? A visual introduction. URL: https://youtu.be/spUNpyF58BY.