System for Encoding and Manipulating Models of Objects
Inventor: Rockwood, et al. Attny. Docket: MERL-1281
une 30, 2000 Serial Number: 09/609,106 1 of 5 Drawing

Filed: June 30, 2000

System for Encoding and Manipulating Models of Objects
Inventor: Rockwood, et al. Attny. Docket: MERL-1281
une 30, 2000 Serial Number: 09/609,106 2 of 5 Drawing

Filed: June 30, 2000

System for Encoding and Manipulating Models of Objects
Inventor: Rockwood, et al. Attny. Docket: MERL-1281
une 30, 2000 Serial Number: 09/609,106 3 of 5 Drawing

Filed: June 30, 2000

System for Encoding and Manipulating Models of Objects
Inventor: Rockwood, et al. Attny. Docket: MERL-1281
Filed: June 30, 2000 Serial Number: 09/609,106 4 of 5 Drawing

Type Euclidean Homogeneous \mathcal{J} Reflecton -nxn + 2n $s = n + e \mathcal{J}$ Inversion $\frac{\rho^2}{x \cdot c} + c$ $s = c \cdot \frac{1}{2} \rho^2 e$ $\left(\frac{x}{\lambda}\right)$ Rotation $x \cdot x \cdot a$ $X \cdot a$ $X \cdot a$ $X \cdot a$ $A \cdot a$ A		402	403	404
-nxn + 2n $s = n + e\delta$ $\frac{\rho^2}{x - c} + c$ $s = c - \frac{1}{2}\rho^2 e$ $R(x - c) R^{-1} + c$ $R_c = R + e(cxR)$ $x - x^2 a$ $K_a = 1 + \frac{1}{2}ae$ $\frac{x - x^2 a}{\Theta(x)}$ $K_a = 1 + ae_0$ $\frac{x - x^2 a}{\Theta(x)}$ $K_a = 1 + ae_0$ $\frac{x - x^2 a}{\Theta(x)}$ $D = e^{\frac{1}{2}}E^{\ln \lambda}$ λx $D = e^{\frac{1}{2}}E^{\ln \lambda}$		Euclidean	Homogeneous	Q (X)
$\frac{\rho^2}{x-c} + c \qquad s = c - \frac{1}{2}\rho^2 e$ $R(x-c) R^{-1} + c \qquad R_c = R + e(cxR)$ $x-a \qquad T_a = 1 + \frac{1}{2}ae$ $x - x^2 a \qquad K_a = 1 + ae_0$ $\frac{x - x^2 a}{e \cdot (x)} \qquad K_a = 1 + ae_0$ $\lambda x \qquad D = e^{-\frac{1}{2}E \ln \lambda}$ $x^* = -x \qquad E = e \wedge e_0$		-nxn + 2n	s = n + e đ	1
$R(x-c) R^{-1} + c \qquad R_c = R + e(cxR)$ $x-a \qquad T_a = 1 + \frac{1}{2}ae$ $\frac{x-x^2a}{\Theta(x)} \qquad K_a = 1 + ae_0$ $\lambda x \qquad D = e^{\frac{1}{2}E \ln \lambda}$ $x^* = -x \qquad E = e \wedge e_0$		$\frac{p^2}{x-c}+c$	$s = c - \frac{1}{2}p^2e$	$\left(\frac{x-c}{\boldsymbol{\rho}}\right)^2$
on $\frac{x-x^2a}{\Theta^*(x)}$ $K_a=1+\frac{1}{2}ae$ for $\frac{x-x^2a}{\Theta^*(x)}$ $K_a=1+ae_0$ λx		R(x - c) R ⁻¹ + c	$R_c = R + e(cxR)$	-
on $\frac{x - x^2a}{\Theta(x)}$ $K_a = 1 + ae_0$ λx $D = e^{-\frac{1}{2}E \ln \lambda}$ $\lambda^* = -x$ $E = e \wedge e_0$	U(х-а	$T_a = 1 + \frac{1}{2}ae$	-
λx $D = e^{-\frac{1}{2}E \ln \lambda}$ $x^* = -x$ $E = e \wedge e_0$	ion	$\frac{x-x^2a}{\Theta(x)}$	K _a = 1 + ae ₀	1 - 2a - x + x²a²
x* = -x E = e/e ₀		×γ	$D = e^{-\frac{1}{2}E \ln \lambda}$	٠.
		x- = *x	E = e∧e ₀	-1

System for Encoding and Manipulating Models of Objects
Inventor: Rockwood, et al. Attny. Docket: MERL-128
une 30, 2000 Serial Number: 09/609,106 5 of 5 Drawi

Attny. Docket: MERL-1281

Filed: June 30, 2000

