Deep Learning for Music Analysis and Generation

Pitch

Music transcription, melody extraction & chord recognition (audio \rightarrow score)

Yi-Hsuan Yang Ph.D. yhyangtw@ntu.edu.tw

FMP Notebook

https://www.audiolabs-erlangen.de/resources/MIR/FMP/C1/C1.html

Part	Title	Notions, Techniques & Algorithms	HTML	IPYNB
B P jupyter	<u>Basics</u>	Basic information on Python, Jupyter notebooks, Anaconda package management system, Python environments, visualizations, and other topics	[html]	[ipynb]
O 1913, 1511	<u>Overview</u>	Overview of the notebooks (https://www.audiolabs- erlangen.de/FMP)	[html]	[ipynb]
1 3-4	Music Representations	Music notation, MIDI, audio signal, waveform, pitch, loudness, timbre	[html]	[ipynb]
2	Fourier Analysis of Signals	Discrete/analog signal, sinusoid, exponential, Fourier transform, Fourier representation, DFT, FFT, STFT	[html]	[ipynb]
3	Music Synchronization	Chroma feature, dynamic programming, dynamic time warping (DTW), alignment, user interface	[html]	[ipynb]

Part	Title	Notions, Techniques & Algorithms	HTML	IPYNB
4	Music Structure Analysis	Similarity matrix, repetition, thumbnail, homogeneity, novelty, evaluation, precision, recall, F- measure, visualization, scape plot	[html]	[ipynb]
5 6=0	Chord Recognition	Harmony, music theory, chords, scales, templates, hidden Markov model (HMM), evaluation	[html]	[ipynb]
6 W ++++	Tempo and Beat Tracking	Onset, novelty, tempo, tempogram, beat, periodicity, Fourier analysis, autocorrelation	[html]	[ipynb]
7	Content-Based Audio Retrieval	Identification, fingerprint, indexing, inverted list, matching, version, cover song	[html]	[ipynb]
8	Musically Informed Audio Decomposition	signal reconstruction, instantaneous frequency, fundamental frequency (F0), trajectory, nonnegative matrix factorization (NMF)	[html]	[ipynb]

ISMIR 2018& 2021 Tutorials

https://rachelbittner.weebly.com/tutorials-and-courses.html

Tutorials

Programming MIR Baselines from Scratch: Three Case Studies

2021

International Society for Music InformationRetrieval (ISMIR) conference

- Part 1: Transcription with NMF (Ethan Manilow)
- Part 2: Pitch Tracking with pytorch (Rachel Bittner)
- Part 3: Instrument Classification with OpenL3 & Tensorflow (Mark Cartwright)
- See the recording here.

Fundamental Frequency Estimation in Music

2018

International Society for Music Information Retrieval (ISMIR) conference

- Part 1: Pitch (Alain de Cheveigné)
- Part 2: Polyphonic fundamental frequency estimation (Rachel Bittner)
- Part 3: Applications (Johana Devaney)

- Melody extraction
- Chord recognition
- Multi-pitch estimation
- Transcription

Melody Extraction vs. Note Transcription

- Melody extraction: F0 (can reflect overshoot, vibrato, glissando, etc)
- Note transcription: Note pitch (quantized in frequency)

Figure from: Saitou et al, "Speech-to-singing synthesis: converting speaking voices to singing voices by controlling acoustic features unique to singing voices," WASPAA 2007

Melody Extraction Tools

- DSP-based
 - YIN: https://librosa.org/doc/main/generated/librosa.pyin.html
 - WORLD: https://github.com/JeremyCCHsu/Python-Wrapper-for-World-Vocoder
- DL-based
 - CREPE (ICASSP'18): https://github.com/marl/crepe
 - Also used in DDSP (ICLR'20)
 - TONet (ICASSP'22): https://github.com/RetroCirce/TONet

Melody Extraction in the Symbolic Domain

- Symbolic-domain melody identification: identify the melody track from multi-track MIDI
 - Lyrics-informed method: https://github.com/gulnazaki/lyrics-melody
 - Used in Compose & Embellish (ICASSP'22)
 - Random forest: https://github.com/wayne391/midi-track-identification
- Symbolic-domain melody extraction from a single track of polyphonic music (e.g., piano)
 - Skyline algorithm: https://github.com/wazenmai/MIDI-BERT/tree/CP/melody_extraction/skyline
 - Used in Compose & Embellish (ICASSP'22) and MidiBERT (arXiv'21)
 - CNN: https://github.com/sophia1488/symbolic-melody-identification

- Melody extraction
- Chord recognition
- Multi-pitch estimation
- Transcription

Chord Recognition in the Audio Domain

- Sheet Sage (ISMIR'22):
 - https://github.com/chrisdonahue/sheetsage
 - For both melody and chord
 - Computationally heavy but pretty accurate

Chord Recognition in the Symbolic Domain

- Rule-based
 - Chorder: https://github.com/joshuachang2311/chorder

DL-based

- Melody extraction
- Chord recognition
- Multi-pitch estimation
- Transcription

Multi-pitch Estimation

- For piano
 - Onset-and-frames (ISMIR'18):
 https://github.com/magenta/magenta/magenta/magenta/magenta/magenta/magenta/models/onsets_frame
 s_transcription
 - High-resolution Piano Transcription (arXiv'20):
 https://github.com/bytedance/piano_transcription

Multi-pitch Estimation

- For being instrument-agnostic
 - Basic pitch (ICASSP'22): https://github.com/spotify/basic-pitch (it's lightweight!)

Fig. 1. The NMP architecture. The matrix posteriorgram outputs Y_o , Y_p , and Y_n are outlined in green. σ indicates a sigmoid activation.

Try Basic Pitch, a free audio-to-MIDI converter with pitch bend detection, built by Spotify. Learn more or follow the instructions below.

- Press record and sing a ditty into your computer. Or drop a recording of any single instrument (piano, guitar, xylophone, you name it).
- Then get a MIDI version back. Just like that.
- Download the MIDI file to fine tune and make corrections in your favorite digital audio workstation.

- Melody extraction
- Chord recognition
- Multi-pitch estimation
- Transcription

Multi-instrument Music Transcription

- Omnizart (JOSS'21): https://github.com/Music-and-Culture-Technology-Lab/omnizart
- MT3 (ICLR'22): https://github.com/magenta/mt3
- Unaligned Supervision for Automatic Music Transcription in The Wild (ICML'22): https://github.com/benadar293/benadar293.github.io
 - Claimed to outperform MT3

Multi-instrument Music Transcription

https://benadar293.github.io/

Carmen original

Carmen transcription

Toto Africa original

Toto Africa transcription

Toto / in lea original

Source: https://www.youtube.com/watch?v=jL-Csf1pNCI&ab_channel=FranceMusique Source: https://www.youtube.com/watch? v=FTQbiNvZqaY&ab_channel=TotoVEVO