ELETTRONICA DIGITALE

Corso di Laurea in Ingegneria Informatica

Prova scritta del 21 luglio 2014

Esercizio A

$R_1 = 1 k\Omega$	$R_{10} = 100 \Omega$
$R_2 = 1250 \Omega$	$R_{11} = 900 \Omega$
$R_4=1480\;\Omega$	$R_{12} = 50 \Omega$
$R_5 = 600 \Omega$	$C_1 = 1 \mu F$
$R_6 = 10 \text{ k}\Omega$	C ₂ =2.2 μF
$R_7 = 9 \text{ k}\Omega$	$C_3=1 \mu F$
$R_8 = 18 k \Omega$	C ₄ = 68 nF
$R_9 = 2 k\Omega$	$V_{CC} = 18 \text{ V}$

 Q_1 è un transistore BJT BC179A resistivo con $h_{re} = h_{oe} = 0$; per gli altri parametri forniti dal costruttore si utilizzino i valori tipici o, in loro assenza, i valori massimi; Q_2 è un transistore MOS a canale n resistivo, con la corrente di drain in saturazione data da $I_{DS} = k(V_{GS} - V_T)^2$ con k = 0.25 mA/ V^2 e $V_T = 1$ V. Con riferimento all'amplificatore in figura:

- 1) Calcolare il valore della resistenza R_3 in modo che, in condizioni di riposo, la tensione sul drain di Q_2 sia 10 V; si ipotizzi di trascurare la corrente di base di Q_1 rispetto alla corrente che scorre nella resistenza R_2 . Determinare, inoltre, il punto di riposo dei due transistori e verificare la saturazione di Q_2 . (R: $R_3 = 4650 \Omega$)
- 2) Determinare V_U/V_i alle frequenze per le quali C_1 , C_2 , C_3 e C_4 possono essere considerati dei corto circuiti. (R: $V_U/V_i = 3.964$)
- 3) (Solo per 12 CFU) Determinare la funzione di trasferimento V_U/V_i e tracciarne il diagramma di Bode quotato asintotico del modulo. (R: $f_{z1} = 34.23$ Hz; $f_{p1} = 12793.8$ Hz; $f_{z2} = 7.23$ Hz; $f_{p2} = 16.187$ Hz; $f_{z3} = 176.84$ Hz; $f_{p3} = 442.1$ Hz; $f_{z4} = 0$ Hz; $f_{p4} = 1141.7$ Hz)

Esercizio B

Progettare una porta logica in tecnologia CMOS, utilizzando la tecnica della pull-up network e della pull-down network, che implementi la funzione logica:

$$Y = \overline{AC}(\overline{B}C + \overline{C}\overline{D}) + \overline{B}(\overline{A} + C) + \overline{D}E$$

Determinare il numero dei transistori necessari e disegnarne lo schema completo. Dimensionare inoltre il rapporto (W/L) di tutti i transistori, assumendo, per l'inverter di base, W/L pari a 2 per il MOS a canale n e pari a 5 per quello a canale p. Si specifichino i dettagli della procedura di dimensionamento dei transistori.

Esercizio C

$R_1 = 1 \text{ k}\Omega$	$R_5 = 1 \text{ k}\Omega$
$R_2 = 9 \kappa \Omega$	$R_6 = 2 k\Omega$
$R_3 = 1 \text{ k}\Omega$	C = 330 nF
$R_4 = 4 \text{ k}\Omega$	$V_{CC} = 5 \text{ V}$

Il circuito IC_1 è un NE555 alimentato a $V_{CC} = 5V$, Q_1 ha una $R_{on} = 0$ e $V_T = -1V$. Determinare la frequenza del segnale di uscita del multivibratore in figura. (R: f = 1398 Hz)