1 Einleitung

2 Vorbereitungsaufgaben

3 Theorie

4 Durchführung

5 Auswertung

Im Folgenden sind die während des Versuchs aufgenommenen Messwerte und die aus diesen berechneten Größen tabellarisch dargestellt. An entsprechender Stelle sind Erklärungen zu den zu den Werten und Rechnungen gegeben.

5.1 Bestimmung der Verdampfungswärme bei Drücken unter einem bar

In Tabelle 1 sind die, für diese Auswertung verwendeten, Messwerte für Temperatur und Druck dieses Teilversuches zu finden. Dabei sind die angegebenen Messunsicherheiten der Temperaturen durch die Einteilung Skala des Thermometers und die Unsicherheiten der Drücke durch die Anzeigegenauigkeit des verwendeten Barometers bestimmt. Letztere änderte sich im Verlauf des Versuchs, beziehungsweise musste im Verlauf des Versuchs angepasste werden, da sich die Fluktuation der auf dem Barometer angezeigten Messwerte vergrößerte.

Temperatur	Druck	Temperatur	Druck
$T\left[\mathrm{K}\right]$	p [mbar]	T[K]	$p [\mathrm{mbar}]$
333 ± 1	244 ± 1	353 ± 1	467 ± 1
335 ± 1	260 ± 1	355 ± 1	506 ± 10
337 ± 1	275 ± 1	357 ± 1	553 ± 10
339 ± 1	291 ± 1	359 ± 1	591 ± 10
341 ± 1	310 ± 1	361 ± 1	643 ± 10
343 ± 1	332 ± 1	363 ± 1	694 ± 10
345 ± 1	349 ± 1	365 ± 1	747 ± 10
347 ± 1	374 ± 1	367 ± 1	796 ± 10
349 ± 1	400 ± 1	368 ± 1	821 ± 10
351 ± 1	429 ± 1	369 ± 1	851 ± 10

Tabelle 1: Werte der Messung bei p < 1 bar

Diese Messwerte sind zusammen mit einer Regressionskurve der Form (??) in Abbil-

dung 1 aufgetragen, die wegen der halblogarithmischen Skalierung und der Definition $x:=\frac{1}{T}$ eine Gerade der Form (??) darstellt.

Abbildung 1: Halblogarithmische Darstellung der Messwerte mit Regressionsfunktion

Die mit Hilfe der Python Bibliothek SciPy [1] bestimmten Parameter der Regerssionsfunktion

$$f(x) = Ax + B \tag{1}$$

sind:

$$A = (-0.040 \pm 0.001) \,\text{bar K} \tag{1a}$$

$$B = (11 \pm 9) \,\text{bar} \tag{1b}$$

Mit der Steigung $A=-\frac{L}{R}$ und der allgemeinen Gaskonstante $R=8,314\,\mathrm{J\,mol^{-1}\,K^{-1}}$ [1] lässt sich die Verdampfungswärme aus (1a) zu

$$L = (3.31 \pm 0.08) \cdot 10^4 \,\mathrm{J}\,\mathrm{mol}^{-1}$$

berechnen.

5.2 Bestimmung der inneren Verdampfungswärme

Für die äußere Verdampfungswärme L_a erhält man unter Verwendung der allgemeinen Gasgleichung (??) und der Annahme $V_F \ll V_D$ die Näherung

$$L_a = RT. (2)$$

Bei der gegebenen Temperatur $T=373\,\mathrm{K}$ ergibt sich damit die notwendige Energie, um das Volumen V_F auf V_D zu vergrößern zu

$$L_a = 3101 \,\mathrm{J} \,\mathrm{mol}^{-1}$$
.

Aus der gesamten L und äußeren Verdampfungswärme L_a lässt sich mit (??) die innere Verdampfungswärme bestimmen. Durch Skalierung mit der Avogadro-Konstante $N_A = 6,022 \cdot 10^{23} \,\mathrm{mol}^{-1}$ [1] und Umrechnung in eV[®], erhält man die für die Verdampfung eins einzelnen Wassermoleküls benötigte Energie

$$L_i = (0.331 \pm 0.008) \,\text{eV}$$
.

5.3 Bestimmung der Temperaturabhängigkeit der Verdampfungswärme

Die für die folgende Auswertung verwendeten Werte für Druck und Temperatur der zweiten Messung, sind in Tabelle 2 dargestellt.

Diese Messwerte sind zusammen mit einem Regressionspolynoms 3. Grades der Form

$$f(x) = Ax^3 + Bx^2 + Cx + D \tag{3}$$

in Abbildung 2 aufgetragen. Die unter Verwendung von SciPy [1] bestimmten Regressionsparameter dieses Polynoms sind:

$$A = (0.97 \pm 0.02) \,\text{bar} \,\text{K}^{-3} \tag{3a}$$

$$B = (-1062 \pm 19) \,\text{bar} \,\text{K}^{-2} \tag{3b}$$

$$C = (3.89 \pm 0.08) \cdot 10^5 \,\text{bar} \,\text{K}^{-1} \tag{3c}$$

$$D = (-4.7 \pm 0.1) \,\text{bar} \tag{3d}$$

 $^{^{\}circ}1 \, \text{eV} = 1,602 \cdot 10^{-19} \, \text{J} \, [1]$

Temperatur	Druck	Temperatur	Druck
$T\left[\mathrm{K}\right]$	p [bar]	$T\left[\mathrm{K}\right]$	$p\left[\mathrm{bar}\right]$
$343,2 \pm 0,1$	0.90 ± 0.01	$413,2 \pm 0,1$	$2,33 \pm 0,01$
$348,2 \pm 0,1$	0.92 ± 0.01	$418,2 \pm 0,1$	$2,72 \pm 0,01$
$353,2 \pm 0,1$	0.93 ± 0.01	$423,2 \pm 0,1$	$3,18 \pm 0,01$
$358,2 \pm 0,1$	0.95 ± 0.01	$428,2 \pm 0,1$	$3,72 \pm 0,01$
$363,2 \pm 0,1$	0.97 ± 0.01	$433,2 \pm 0,1$	$4,36 \pm 0,01$
$368,2 \pm 0,1$	$1,01 \pm 0,01$	$438,2 \pm 0,1$	$5,12 \pm 0,01$
$373,2 \pm 0,1$	$1,05 \pm 0,01$	$443,2 \pm 0,1$	$5,93 \pm 0,01$
$378,2 \pm 0,1$	$1,10 \pm 0,01$	$448,2 \pm 0,1$	$6,84 \pm 0,01$
$383,2 \pm 0,1$	$1,17 \pm 0,01$	$453,2 \pm 0,1$	$7,93 \pm 0,01$
$388,2 \pm 0,1$	$1,26 \pm 0,01$	$458,2 \pm 0,1$	$9,17 \pm 0,01$
$393,2 \pm 0,1$	$1,37 \pm 0,01$	$463,2 \pm 0,1$	$10,54 \pm 0,01$
$398,2 \pm 0,1$	$1,57 \pm 0,01$	$468,2 \pm 0,1$	$12,02 \pm 0,01$
$403,2 \pm 0,1$	$1,74 \pm 0,01$	$473,2 \pm 0,1$	$13,74 \pm 0,01$
$408,2 \pm 0,1$	$2,00 \pm 0,01$		

Tabelle 2: Werte der Messung bei $1 \le p \le 15$ bar

Abbildung 2: Messwerte und Regressionspolynom der Form $f(x) = Ax^3 + Bx^2 + Cx + D$

Zur Berechnung der Temperaturabhängigkeit der Verdampungswärme L, unter großen

Drücken und Temperaturen, wird zunächst (??) umgestellt, um die Gleichung

$$L = T \cdot (V_D - V_F) \frac{\mathrm{d}p}{\mathrm{d}T} \tag{4}$$

zu erhalten. Der in dieser Gleichung auftretende Differentialquotient kann durch Differentiation des Regressionsploynoms (3) mit den Parametern (3a) bis (3d) zu

$$\frac{\mathrm{d}p}{\mathrm{d}T} = 3AT^2 + 2BT + C \tag{5}$$

bestimmen werden.

Zur Berechnung des Dampfvolumen V_D wird mit (??) eine im Vergleich zur allgemeinen Gasgleichung (??) bessere Näherung verwendet. Durch Auflösen dieser Gleichung nach V_D erhält man Mittels pq-Formel die zwei möglichen Volumina:

$$V_{D_{1,2}} = \frac{RT}{2p} \pm \sqrt{\left(\frac{RT}{2p}\right)^2 - \frac{a}{p}} \tag{6}$$

Die Mittels (6) berechneten Volumina für die Temperaturen und Drücke aus Tabelle 2 sind in Tabelle 3 aufgelistet. Dabei sind für die Volumina keine Fehler angegeben, da diese für das relevante Volumen V_{D_2} von der Größenordnung $1 \cdot 10^{-8}$ sind.

Volumen "+"	Volumen "-"	Volumen ,,+"	Volumen "-"
$V_{D_1} [\mathrm{dm}^3]$	$V_{D_2} [\mathrm{dm}^3]$	$V_{D_1} [\mathrm{dm}^3]$	$V_{D_2} [\mathrm{dm}^3]$
31,383	0,319	14,476	0,267
31,150	0,314	12,518	0,264
31,263	0,310	10,802	0,262
31,040	0,305	9,310	0,260
30,827	0,301	8,002	0,258
30,010	0,297	6,859	0,256
29,255	0,293	5,959	0,255
28,294	0,289	5,194	0,253
26,943	0,286	4,499	0,252
25,331	0,282	3,903	0,252
23,582	0,279	3,403	0,251
20,810	0,276	2,988	0,251
18,992	0,272	2,612	0,251
16,698	0,270		

Tabelle 3: Mögliche Dampfvolumina nach (6)

Daraus ist ersichtlich, dass V_{D_1} zwar Lösungen der Gleichung (6) sind, jedoch nicht zu dem Verwendeten Versuchsaufbau passen, da der genutzten Stahlbolzen nicht das nötige Volumen hatte um mehrere Liter Wasserdampf zu fassen.

Mit dem Volumen $V_D := V_{D_2}$, den Temperaturen Tabelle 2, den entsprechenden Differn-

tialquotienten (5) und der Näherung $V_F \ll V_D$ erhält man aus (4) die neben den Differntialquotienten in Tabelle 4 dargestellten Werte für die Verdampfungswärme L.

Differentialquotient	Verdampungswärme	Differentialquotient	Verdampungswärme
$\frac{\mathrm{d}p}{\mathrm{d}T} \left[\mathrm{mbar} \mathrm{K}^{-1} \right]$	$L[\mathrm{J}\mathrm{mol}^{-1}]$	$\frac{\mathrm{d}p}{\mathrm{d}T} \left[\mathrm{mbar} \mathrm{K}^{-1} \right]$	$L[\operatorname{J} \operatorname{mol}^{-1}]$
18.8 ± 0.1	205 ± 1	$71,0 \pm 0,3$	783 ± 3
$13,1 \pm 0,1$	142 ± 1	$85,6 \pm 0,3$	946 ± 4
$8,78 \pm 0,07$	96.0 ± 0.8	$101,7 \pm 0,3$	1128 ± 4
$5,97 \pm 0,04$	$65,3 \pm 0,4$	$119,2 \pm 0,4$	1327 ± 4
$4,61 \pm 0,01$	50.4 ± 0.1	$138,2 \pm 0,4$	1545 ± 5
$4,71 \pm 0.02$	$51,4 \pm 0,2$	$158,7 \pm 0,4$	1782 ± 5
$6,25 \pm 0,05$	68.4 ± 0.5	$180,6 \pm 0,5$	2038 ± 6
$9,26 \pm 0,08$	$101,2 \pm 0,8$	$203,9 \pm 0,5$	2315 ± 6
13.7 ± 0.1	150 ± 1	228.8 ± 0.5	2615 ± 6
19.6 ± 0.1	215 ± 2	$255,0 \pm 0,5$	2938 ± 7
27.0 ± 0.2	296 ± 2	$282,7 \pm 0,6$	3286 ± 7
35.8 ± 0.2	393 ± 2	311.9 ± 0.6	3660 ± 8
$46,1 \pm 0,2$	506 ± 3	$342,5 \pm 0,6$	4064 ± 8
57.8 ± 0.3	636 ± 3		

Tabelle 4: Differntialquotient und Temperaturabhängige Verdampungswärme

In Abbildung ?? sind die berechneten Verdampfungswärmen aus Tabelle 4 zusammen mit einem Regressionspolynom 2. Grades der Form

$$f(x) = Ax^2 + Bx + C (7)$$

gegen die Temperaturen aus Tabelle 2 aufgetragen. Die mit SciPy bestimmten Regressionsparamter für dieses Polynom sind:

$$A = (0.334 \pm 0.002) \,\mathrm{J} \,\mathrm{mol}^{-1} \,\mathrm{K}^{-2} \tag{7a}$$

$$B = (-244 \pm 2) \,\mathrm{J} \,\mathrm{mol}^{-1} \,\mathrm{K}^{-1} \tag{7b}$$

$$C = (4.47 \pm 0.04) \cdot 10^4 \,\mathrm{J}\,\mathrm{mol}^{-1}$$
 (7c)

5.4 Fehlerrechnung

6 Diskussion

