Feedforward-Aided Course Designs for Similarity Search

Thomas Hütter and **Daniel Kocher**

University of Salzburg, Austria

2nd Int. Workshop on Data Systems Education (DataEd'23)
Seattle, WA, USA June 23, 2023

Introduction

Course Facts:

- Similarity Search in Large Databases
- 2.5 ECTS (\approx 62.5 hours), 20–30 Master's level students per year
- Distance measures, lower/upper bounds, and similarity indexes

Bayardo et al. Scaling up all pairs similarity search. WWW 2007. https://doi.org/10.1145/1242572.1242591

Introduction

Course Facts:

- Similarity Search in Large Databases
- 2.5 ECTS (\approx 62.5 hours), 20–30 Master's level students per year
- Distance measures, lower/upper bounds, and similarity indexes

Learning by Design ■ Functional Artifact Set Similarity Joins¹

Bayardo et al. Scaling un all pairs similarity search WWW 2007, https://doi.org/10.1145/1242572.1242591

Set Similarity Joins

Given two collections *R* and *S*, a distance threshold ϵ under a function d(.,.):

$$\{(r,s)\in R\times S\mid d(r,s)\leq\epsilon\}$$

Jaccard
$$d_j = \frac{|r \cap s|}{|r \cup s|}$$
 $\epsilon_J = 0.5$

Set Similarity Joins

Given two collections *R* and *S*, a distance threshold ϵ under a function d(.,.):

$$\{(r,s)\in R\times S\mid d(r,s)\leq\epsilon\}$$

Project-Based Learning (PBL) Task-Based Learning (TBL)

Project-Based Learning (PBL)

Project-Based Learning (PBL)

Task-Based Learning (TBL)

Project-Based Learning (PBL)

Task-Based Learning (TBL)

PBL vs. TBL - The Case for AllPairs²

Figure 1: Implementation of the AllPairs² algorithm – PBL vs. TBL.

Z
Bayardo et al. Scaling up all pairs similarity search. WWW 2007. https://doi.org/10.1145/1242572.1242591

Experiences

Auto-Grader System

Continuous and immediate feedforward.

Automated basis for grading.

Support for **heterogeneity**.

Motivation by (unexpected) competition.

Auto-Grader System

Continuous and immediate feedforward.

Automated basis for grading.

Support for heterogeneity.

Motivation by (unexpected) competition.

Take Away: An auto-grader system is indispensable.

Heterogeneous Groups

Accounting for different backgrounds is challenging.

Programming knowledge vs. conceptualization.

Students may complement each other's strengths.

Heterogeneous Groups

Accounting for different backgrounds is challenging.

Programming knowledge vs. conceptualization.

Students may **complement** each other's **strengths**.

Take Away: Heterogeneity is an opportunity.

Individualization & Group Size

Individual feedforward is good but time-consuming.

Scaling individual feedforward to large groups is hard.

Individualization & Group Size

Individual feedforward is good but time-consuming.

Scaling individual feedforward to large groups is hard.

Future Prospect: Extended diagnosis capabilities for auto-grader.

Student Evaluation

 $\textbf{Various criteria:} \ \ \text{Degree of difficulty, relevance of topic, teaching material quality,} \ \dots$

Cohorts: 10-27 students

Scale: 1–7 (higher is better)

Student Evaluation

Various criteria: Degree of difficulty, relevance of topic, teaching material quality, ...

Cohorts: 10–27 students

Scale: 1–7 (higher is better)

Highlights

	Relevance	Goal	Overall	Support	Objectives	Material
PBL		† 1.4%		0.4%	85%	89%
TBL	↑ 8.3%		† 5.9%	94%	83%	89%

Conclusion

Two feedforward-aided course designs for similarity search.

Project-Based vs. Task-Based Learning.

Experiences for **both designs** in class.

Both designs are suitable for teaching similarity search.

Auto-grader and active communication channels are indispensible.

Feedforward-Aided Course Designs for Similarity Search

Questions?

thomas.huetter@plus.ac.at

dkocher@cs.sbg.ac.at

