#### 1. 교과목 수강인원







| 수업년도 | 수업학기 | 계열구분  | 수강인원 | 이수인원 |
|------|------|-------|------|------|
| 2021 | 1    | 자연과학  | 7    | 7    |
| 2021 | 1    | 공학    | 100  | 93   |
| 2022 | 1    | 자연과학  | 3    | 3    |
| 2022 | 1    | 공학    | 84   | 81   |
| 2023 | 1    | 공학    | 89   | 82   |
| 2024 | 1    | 인문.사회 | 1    | 1    |
| 2024 | 1    | 공학    | 73   | 70   |
| 2025 | 1    | 인문.사회 | 1    | 0    |
| 2025 | 1    | 자연과학  | 3    | 0    |
| 2025 | 1    | 공학    | 63   | 0    |
| 2025 | 1    | 예,체능  | 2    | 0    |



#### 2. 평균 수강인원



| 수업년도 | 수업학기 | 캠퍼스   | 공통교과목 | 학과교과목 | 해당교과목 | 내교과목 |
|------|------|-------|-------|-------|-------|------|
| 2018 | 1    | 39.54 | 61.09 | 35.36 | 87    |      |
| 2017 | 2    | 37.26 | 63.09 | 32.32 |       |      |
| 2017 | 1    | 38.26 | 65.82 | 33.5  | 44    |      |
| 2016 | 2    | 37.24 | 72.07 | 31.53 |       |      |
| 2016 | 1    | 37.88 | 73.25 | 32.17 | 99    |      |

### 3. 성적부여현황(평점)



| 수업년도 | 수업학기 | 캠퍼스  | 공통교과목 | 학과교과목 | 해당교과목 | 내교과목 |
|------|------|------|-------|-------|-------|------|
| 2017 | 1    | 3.44 | 3.02  | 3.58  | 3.38  |      |
| 2016 | 1    | 3.52 | 3.29  | 3.61  | 3.47  |      |
| 2015 | 1    | 3.49 | 2.94  | 3.64  | 3.46  |      |

비율

21.13 11.27 25.35 15.49

21.13 4.23 1.41

### 교과목 포트폴리오 (CHE3005 화공열역학1)

#### 4. 성적부여현황(등급)

2023

1

C0

4



|      |      |    |    |       |      | L    |    |    |
|------|------|----|----|-------|------|------|----|----|
| 수업년도 | 수업학기 | 등급 | 인원 | 비율    | 수업년도 | 수업학기 | 등급 | 인원 |
| 2021 | 1    | Α+ | 41 | 41    | 2024 | 1    | A+ | 15 |
| 2021 | 1    | A0 | 43 | 43    | 2024 | 1    | Α0 | 8  |
| 2021 | 1    | B+ | 9  | 9     | 2024 | 1    | B+ | 18 |
| 2021 | 1    | ВО | 3  | 3     | 2024 | 1    | ВО | 11 |
| 2021 | 1    | C+ | 2  | 2     | 2024 | 1    | C+ | 15 |
| 2021 | 1    | C0 | 1  | 1     | 2024 | 1    | C0 | 3  |
| 2021 | 1    | D+ | 1  | 1     | 2024 | 1    | D+ | 1  |
| 2022 | 1    | Α+ | 31 | 36.9  |      |      |    |    |
| 2022 | 1    | A0 | 27 | 32.14 |      |      |    |    |
| 2022 | 1    | B+ | 14 | 16.67 | -    |      |    |    |
| 2022 | 1    | В0 | 7  | 8.33  | -    |      |    |    |
| 2022 | 1    | C+ | 2  | 2.38  | -    |      |    |    |
| 2022 | 1    | C0 | 2  | 2.38  | -    |      |    |    |
| 2022 | 1    | D+ | 1  | 1.19  | -    |      |    |    |
| 2023 | 1    | Α+ | 24 | 29.27 | -    |      |    |    |
| 2023 | 1    | A0 | 11 | 13.41 | -    |      |    |    |
| 2023 | 1    | B+ | 28 | 34.15 | -    |      |    |    |
| 2023 | 1    | ВО | 10 | 12.2  | -    |      |    |    |
| 2023 | 1    | C+ | 5  | 6.1   | -    |      |    |    |

4.88

#### 5. 강의평가점수



| 수업년도 | 수업학기 | 캠퍼스   | 공통교과목 | 학과교과목 | 해당교과목 | 내교과목 |
|------|------|-------|-------|-------|-------|------|
| 2024 | 1    | 91.5  | 93.79 | 91.1  | 88.5  |      |
| 2023 | 2    | 91.8  | 93.15 | 91.56 |       |      |
| 2023 | 1    | 91.47 | 93.45 | 91.13 | 90.5  |      |
| 2022 | 2    | 90.98 | 92.48 | 90.7  |       |      |
| 2022 | 1    | 90.98 | 92.29 | 90.75 | 91.33 |      |

#### 6. 강의평가 문항별 현황

|    |           | 본인평<br>균<br>(가중<br>치적용) |                                 |      |                     |               | 점수병      | 별 인원    | 년분포           |    |
|----|-----------|-------------------------|---------------------------------|------|---------------------|---------------|----------|---------|---------------|----|
| 번호 | 평가문항<br>호 |                         | 소속학과,대학평균과의<br>차이<br>(+초과,-:미달) |      | 매우<br>그렇<br>치않<br>다 | 그렇<br>치않<br>다 | 보통<br>이다 | 그렇<br>다 | 매우<br>그렇<br>다 |    |
|    |           |                         | 학과                              |      | 내학                  | 1 24          | 2 Z-l    | 그래      | 4점            | 디저 |
|    | 교강사:      | 5점<br>미만                | 차이 평균                           | · 차이 | 평균                  | · 1점          | 2점       | 3점      | 42            | 5점 |

No data have been found.

#### 7. 개설학과 현황

| 학과    | 2025/1   | 2024/1   | 2023/1   | 2022/1   | 2021/1   |
|-------|----------|----------|----------|----------|----------|
| 화학공학과 | 2강좌(6학점) | 2강좌(6학점) | 2강좌(6학점) | 3강좌(9학점) | 3강좌(9학점) |

#### 8. 강좌유형별 현황

| 강좌유형 | 2021/1   | 2022/1  | 2023/1  | 2024/1  | 2025/1  |
|------|----------|---------|---------|---------|---------|
| 일반   | 3강좌(107) | 3강좌(87) | 2강좌(89) | 2강좌(74) | 2강좌(69) |

### 9. 교과목개요

| 교육과정                       | 관장학과             | 국문개요                                                                                                                                                                                                                                                                                                                                                               | 영문개요                                                                                                                                                                                                                                                                                                                                                                                                                 | 수업목표 |
|----------------------------|------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|
| 학부 2024 -<br>2027 교육과<br>정 | 서울 공과대학<br>화학공학과 | 열역학의 기본개념에 대하여 이를 이해하는데<br>중점이 되어진다. 즉, 에너지, 엔트로피 그리고<br>평형에 대한 기본개념과 이들 상호관계에 대해<br>다루어질 것이고, 또 이들로부터 야기되는 공학<br>적 관계에 언급이 될 수 있겠다. 엔트로피와 일<br>손실에 대한 개념을 이해시키기 위해 거시적인<br>평형상태에 대한 기준이 다루어 질 것이고, 이렇<br>게 충분한 이해를 통하여 다성분계에 대한 물리<br>적, 화학적 평형을 용이하게 다룰 수 있는 능력<br>을 키운다. 끝으로 자세하게 짜여진 연습문제를<br>다룸으로써 중요한 원리를 유도하고, 그렇게 함<br>으로써 열역학 전반을 충분히 이해하고, 활용하<br>도록 한다. | The following items are stressed in the class: Chemical engineering thermodynamics of single-component systems; energy and entropy balances combined with mathematical manipulations that apply to various state properties; Thermodynamic applications in areas of energy conversion and fluid flow; Phase separation and equilibrium between phases for nonreacting systems; systems undergoing chemical reaction. |      |
| 학부 2020 -<br>2023 교육과<br>정 | 서울 공과대학<br>화학공학과 | 열역학의 기본개념에 대하여 이를 이해하는데<br>중점이 되어진다. 즉, 에너지, 엔트로피 그리고<br>평형에 대한 기본개념과 이들 상호관계에 대해<br>다루어질 것이고, 또 이들로부터 야기되는 공학<br>적 관계에 언급이 될 수 있겠다. 엔트로피와 일<br>손실에 대한 개념을 이해시키기 위해 거시적인                                                                                                                                                                                           | The following items are stressed in the class: Chemical engineering thermodynamics of single-component systems; energy and entropy balances combined with mathematical manipulations that apply to various state                                                                                                                                                                                                     |      |

| 교육과정                       | 관장학과                              | 국문개요                                                                                                                                                                                                                                                                                                                                                               | 영문개요                                                                                                                                                                                                                                                                                                                                                                                                                 | 수업목표 |
|----------------------------|-----------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|
|                            |                                   | 평형상태에 대한 기준이 다루어 질 것이고, 이렇게 충분한 이해를 통하여 다성분계에 대한 물리적, 화학적 평형을 용이하게 다룰 수 있는 능력을 키운다. 끝으로 자세하게 짜여진 연습문제를 다룸으로써 중요한 원리를 유도하고, 그렇게 함으로써 열역학 전반을 충분히 이해하고, 활용하도록 한다.                                                                                                                                                                                                    | properties; Thermodynamic applications in<br>areas of energy conversion and fluid flow;<br>Phase separation and equilibrium between<br>phases for nonreacting systems; systems<br>undergoing chemical reaction.                                                                                                                                                                                                      |      |
| 학부 2016 -<br>2019 교육과<br>정 | 서울 공과대학<br>화학공학과                  | 열역학의 기본개념에 대하여 이를 이해하는데<br>중점이 되어진다. 즉, 에너지, 엔트로피 그리고<br>평형에 대한 기본개념과 이들 상호관계에 대해<br>다루어질 것이고, 또 이들로부터 야기되는 공학<br>적 관계에 언급이 될 수 있겠다. 엔트로피와 일<br>손실에 대한 개념을 이해시키기 위해 거시적인<br>평형상태에 대한 기준이 다루어 질 것이고, 이렇<br>게 충분한 이해를 통하여 다성분계에 대한 물리<br>적, 화학적 평형을 용이하게 다룰 수 있는 능력<br>을 키운다. 끝으로 자세하게 짜여진 연습문제를<br>다룸으로써 중요한 원리를 유도하고, 그렇게 함<br>으로써 열역학 전반을 충분히 이해하고, 활용하<br>도록 한다. | The following items are stressed in the class: Chemical engineering thermodynamics of single-component systems; energy and entropy balances combined with mathematical manipulations that apply to various state properties; Thermodynamic applications in areas of energy conversion and fluid flow; Phase separation and equilibrium between phases for nonreacting systems; systems undergoing chemical reaction. |      |
| 학부 2013 -<br>2015 교육과<br>정 | 서울 공과대학<br>화공생명공학<br>부 화학공학전<br>공 | 열역학의 기본개념에 대하여 이를 이해하는데 중점이 되어진다. 즉, 에너지, 엔트로피 그리고 평형에 대한 기본개념과 이들 상호관계에 대해 다루어질 것이고, 또 이들로부터 야기되는 공학적 관계에 언급이 될 수 있겠다. 엔트로피와 일 손실에 대한 개념을 이해시키기 위해 거시적인 평형상태에 대한 기준이 다루어 질 것이고, 이렇게 충분한 이해를 통하여 다성분계에 대한 물리적, 화학적 평형을 용이하게 다룰 수 있는 능력을 키운다. 끝으로 자세하게 짜여진 연습문제를 다룸으로써 중요한 원리를 유도하고, 그렇게 함으로써 열역학 전반을 충분히 이해하고, 활용하도록 한다.                                           | The following items are stressed in the class: Chemical engineering thermodynamics of single-component systems; energy and entropy balances combined with mathematical manipulations that apply to various state properties; Thermodynamic applications in areas of energy conversion and fluid flow; Phase separation and equilibrium between phases for nonreacting systems; systems undergoing chemical reaction. |      |
| 학부 2013 -<br>2015 교육과<br>정 | 서울 공과대학<br>화학공학과                  | 열역학의 기본개념에 대하여 이를 이해하는데 중점이 되어진다. 즉, 에너지, 엔트로피 그리고 평형에 대한 기본개념과 이들 상호관계에 대해 다루어질 것이고, 또 이들로부터 야기되는 공학적 관계에 언급이 될 수 있겠다. 엔트로피와 일 손실에 대한 개념을 이해시키기 위해 거시적인 평형상태에 대한 기준이 다루어 질 것이고, 이렇게 충분한 이해를 통하여 다성분계에 대한 물리적, 화학적 평형을 용이하게 다룰 수 있는 능력을 키운다. 끝으로 자세하게 짜여진 연습문제를 다룸으로써 중요한 원리를 유도하고, 그렇게 함으로써 열역학 전반을 충분히 이해하고, 활용하도록 한다.                                           | The following items are stressed in the class: Chemical engineering thermodynamics of single-component systems; energy and entropy balances combined with mathematical manipulations that apply to various state properties; Thermodynamic applications in areas of energy conversion and fluid flow; Phase separation and equilibrium between phases for nonreacting systems; systems undergoing chemical reaction. |      |
| 학부 2009 -<br>2012 교육과<br>정 | 서울 공과대학<br>화공생명공학<br>부 화학공학전<br>공 | 열역학의 기본개념에 대하여 이를 이해하는데<br>중점이 되어진다. 즉, 에너지, 엔트로피 그리고<br>평형에 대한 기본개념과 이들 상호관계에 대해<br>다루어질 것이고, 또 이들로부터 야기되는 공학<br>적 관계에 언급이 될 수 있겠다. 엔트로피와 일<br>손실에 대한 개념을 이해시키기 위해 거시적인<br>평형상태에 대한 기준이 다루어 질 것이고, 이렇<br>게 충분한 이해를 통하여 다성분계에 대한 물리<br>적, 화학적 평형을 용이하게 다룰 수 있는 능                                                                                                   | The following items are stressed in the class: Chemical engineering thermodynamics of single-component systems; energy and entropy balances combined with mathematical manipulations that apply to various state properties; Thermodynamic applications in areas of energy conversion and fluid flow; Phase separation and equilibrium between                                                                       |      |

| 교육과정                       | 관장학과                                | 국문개요                                                                                           | 영문개요                                                                                                                                                                                                                                                                                                                                                                                                                 | 수업목표 |
|----------------------------|-------------------------------------|------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|
|                            |                                     | 력을 키운다. 끝으로 자세하게 짜여진 연습문제<br>를 다룸으로써 중요한 원리를 유도하고, 그렇게<br>함으로써 열역학 전반을 충분히 이해하고, 활용<br>하도록 한다. | phases for nonreacting systems; systems<br>undergoing chemical reaction.                                                                                                                                                                                                                                                                                                                                             |      |
| 학부 2009 -<br>2012 교육과<br>정 | 서울 공과대학<br>응용화공생명<br>공학부 화학공<br>학전공 | 손실에 대한 개념을 이해시키기 위해 거시적인 편형사태에 대한 기존이 다르어 지 거이고 이렇                                             | The following items are stressed in the class: Chemical engineering thermodynamics of single-component systems; energy and entropy balances combined with mathematical manipulations that apply to various state properties; Thermodynamic applications in areas of energy conversion and fluid flow; Phase separation and equilibrium between phases for nonreacting systems; systems undergoing chemical reaction. |      |
| 학부 1989 -<br>1992 교육과<br>정 | 서울 공과대학<br>화학공학                     |                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                      |      |

### 10. CQI 등록내역

No data have been found.