

mecanizado

Taladrado Avellanado Roscado **Torneado Fresado**

Tanto la chapa antidesgaste HARDOX como la chapa estructural de alta resistencia WELDOX pueden trabajarse por arranque de viruta con herramientas de acero rápido (HSS) o metal duro (MD). Este folleto proporciona una guía a la elección de la herramienta y datos de corte. También se tratan otros factores que deben considerase en todo trabajo de mecanizado. Esta guía ha sido obtenida a través de ensayos propios con herramientas de distinta concepción y origen y en cooperación con fabricantes líderes en herramientas.

PROPRIEDADES TÍPICAS DE LAS CHAPAS WELDOX Y HARDOX

	WELDOX 420 / 460	_	_	WELDOX 900 / 960	_	HARDOX 400	HARDOX 450	HARDOX 500
Carga de rotura, R _m [N/mm²]	~550	~620	~860	~1040	~1350	~1250	~1400	~1550
Dureza [HBW]	~ 180	~200	~260	~320	~430	~400	~450	~500

Taladrado

El taladrado puede efectuarse con brocas de acero rápido o de metal duro. La elección de la broca dependerá del tipo de máquina disponible y la rigidez de la misma.

Trabajos en taladradoras radiales o de columna

Con el fin de minimizar la vibraciones y aumentar la vida de la broca recomendamos:

- Minimizar la distancia entre la broca y la columna
- Evitar el uso de bridas/placas de fijación de madera
- Fijar rígidamente la pieza y taladrar lo más cerca posible de las bridas de fijación.
- Minimizar el brazo de palanca sobre la broca, utilizando brocas cortas y husillos portabrocas cortos.
- Poco antes de que la broca atraviese totalmente el espesor a taladrar, desacoplar el avance, durante aproximadamente 1 segundo. Esta precaución neutralizará los juegos/huelgos y el retorno elástico de la máquina que podrían deteriorar la broca. Reacoplar el avance apenas los juegos y el retorno elástico hayan sido absorbidos.

Utilizar brocas HSS-Co (8% Co) con ángulo de espiral pequeño y núcleo robusto, que soporta elevados momentos torsores.

	WELDOY	WELDOY	WELDOY	WELDOY	WELDOY	HARROY	HARROY	HARROY	
	WELDOX 420 / 460	WELDOX 500	WELDOX 700	WELDOX 900 / 960	WELDOX 1100	HARDOX 400	HARDOX 450	HARDOX 500	
$v_c[m/min]$	~26	~22	~18	~15	~7	~9	~7	~5	
D [mm]		Avanc	e, f [mm/rev	/olución]/	/ r.p.m, n [revoluciónes/min]				
5	0,14 / 1700	0,12 / 1520	0,10 / 1150	0,10 / 950	0,05 / 445	0,05 / 570	0,05 / 445	0,05 / 320	
10	0,17 / 860	0,15 / 760	0,10 / 575	0,10 / 475	0,09 / 220	0,10 / 290	0,09 / 220	0,08 / 130	
15	0,18 / 570	0,17 / 500	0,16 / 400	0,16 / 325	0,15 / 150	0,16 / 190	0,15 / 150	0,13 / 85	
20	0,28 / 430	0,26 / 380	0,23 / 300	0,23 / 235	0,20 / 110	0,23 / 150	0,20 / 110	0,18 / 65	
25	0,30 / 340	0,30 / 300	0,30 / 240	0,30 / 195	0,25 / 90	0,30 / 110	0,25 / 90	0,22 / 50	
30	0,38 / 280	0,36 / 250	0,35 / 200	0,35 / 165	0,30 / 75	0,35 / 90	0,30 / 75	0,25 / 45	

Brocas macizas de metal duro

- Diámetros a partir de ~ 3 mm
- Tolerancias estrechas (alta precisión)
- Reafilables
- Frágiles en presencia de vibraciones

Trabajos en máquinas intrínsecamente rígidas como mandrinadoras o fresadoras de lecho plano

En máquinas modernas y rígidas deben aprovecharse las ventajas de mayor productividad ofrecidas por las brocas de metal duro.

Existen tres tipos principales de brocas con filos de corte de metal duro. La elección del tipo de broca depende de la rigidez de la máquina herramienta, de la fijación de la pieza, del diámetro del agujero y su tolerancia. Utilizar brocas lo más cortas posible.

Líquido de corte/emulsión

- Utilizar líquido de corte/emulsión indicado para taladrado.
- Valor guía para taladrado con brocas con canales de refrigeración internos: Caudal de líquido de corte [l/min] ≈ Diámetro del agujero [mm]

Brocas con plaquitas de metal duro soldadas

- Diámetros a partir de ~ 10 mm
- Tolerancias estrechas (alta precisión)
- Reafilables
- Menos frágiles que las de MD macizas, en presencia de vibraciones

Brocas con plaquitas de fijación mecánica

- Diámetros a partir de ~ 12 mm
- Alta productividad
- Tolerancias mayores que en los dos casos anteriores (menor precisión)
- Buena economía de producción

		WELDOX 420 / 460	WELDOX 500	WELDOX 700	WELDOX 900 / 960	WELDOX 1100	HARDOX 400	HARDOX 450	HARDOX 500
			Velocio	dad de corte	, v _c [m/mir	n] y Avance	, f [mm/rev	1	
Metal duro,	V _c	50-70	50-70	50-70	40-50	30-40	35-45	30-40	25-35
maciza	f	0,1-0,2	0,1-0,2	0,10-0,18	0,10-0,18	0,10-0,15	0,10-0,15	0,10-0,15	0,08-0,12
Metal duro,	V _c	50-70	40-60	40-60	40-60	30-40	35-45	30-40	20-30
soldadas	f	0,12-0,20	0,12 – 0,20	0,12-0,18	0,12-0,18	0,10-0,15	0,10-0,15	0,10-0,15	0,08-0,12
De fijación	V _c	160–180	110 – 130	100-120	70-90	50-70	60-80	50-70	40-60
mecánica	f	0,1-0,2	0,1 – 0,2	0,10-0,18	0,10-0,18	0,06-0,14	0,06-0,14	0,06-0,14	0,06-0,12

Si el diámetro de la broca es pequeño, elegir un valor de avance bajo, dentro del intervalo dado.

Así se calcula el número de r.p.m. a partir de la velocidad de corte:

Ejemplo para diámetro de broca D = 15 mm y velocidad de corte $v_c = 80 \text{ m/min}$

r.p.m., n =
$$\frac{v_c \times 1000}{\pi \times D}$$
 = $\frac{80 \times 1000}{3,14 \times 15}$ = 1698 \approx 1700 r.p.m.

Fórmulas:

 $v_c = velocidad de corte [m/min]$

D = diametro del agujero [mm]

n = número de revoluciones por minuto [r.p.m.]

 $\pi = 3.14$

 $v_f = avance [mm/min]$

f = avance [mm/revolución]

El avellanado plano y el cónico se efectúan mejor con herramientas con plaquitas intercambiables de metal duro, dotadas de guía piloto giratoria. Utilizar líquido de corte.

IMPORTANTE

- Disminuir los valores de datos de corte de 30% en caso de avellanado cónico.
- 2. Utilizar guía piloto giratoria.

	WELDOX 420 / 460	WELDOX 500 ¹	WELDOX 700 ¹	WELDOX 900 / 960	WELDOX 1100	HARDOX 400	HARDOX 450	HARDOX 500
$v_c[m/min]$	90-140 ²	80-120 ²	70-100 ²	40-65 ²	20-502	25-70 ²	20-50 ²	17-50 ²
Avance, f [mm/rev]	0,10-0,20	0,10-0,20	0,10-0,20	0,10-0,20	0,10-0,20	0,10-0,20	0,10-0,20	0,10-0,20
D [mm]		Número de revoluciones por minuto, n [r.p.m.]						
19	1510-2345	1340-2010	1175–1675	670-1090	335-840	420-1175	335-840	285-840
24	1195-1860	1060-1590	930-1325	530-865	265-665	330-930	265-665	225-665
34	845-1310	750-1125	655-935	375-610	185-470	235-655	185-470	160-470
42	680-1060	605-910	530-760	300-495	150-380	190-530	150-380	130-380
57	505-780	445-670	390-560	225-365	110-280	140-390	110-280	95-280

- 1) En caso de problema para romper la viruta, avellanar 2 mm por vez.
- 2) En máquinas de baja potencia, elegir la velocidad de corte entre los valores inferiores del intervalo.

Las herramientas de acero rápido para avellanado cónico, de tres filos y con guía piloto giratoria, pueden utilizarse para las calidades de acero WELDOX abajo indicadas. Se requiere abundante líquido de corte.

		WELDOX 420 / 460	WELDOX 500	WELDOX 700	WELDOX 900 / 960
v_c [m/min]	~12	~10	~8	~7
D [mm]	Avance f [mm / rev]	Número d	e revolucione	s por minuto,	n [r.p.m.]
15	0,05-0,20	250	210	170	150
19	0,05-0,20	200	170	130	120
24	0,07-0,30	160	130	100	90
34	0,07-0,30	110	90	70	70
42	0,07-0,30	90	60	60	50
57	0,07-0,30	70	60	40	40

Roscado

Con la herramienta de roscado adecuada se puede roscar en todas las calidades de aceros hardox y weldox. Se recomiendan machos de 4 filos, los cuales soportan los elevados momentos de torsión originados durante el roscado de materiales duros. Para el roscado de hardox y weldox se recomienda usar aceite o grasa para roscado. Para los aceros más blandos, weldox 420, weldox 460 y weldox 500, puede también utilizarse aceite emulsionado.

En aplicaciones en que la resistencia de la rosca no es un factor esencial, se puede taladrar un agujero un poco más grande (3%) que el estándar y de este modo disminuir los esfuerzos en el macho de roscar. Esta precaución aumenta la vida útil del macho de roscar, especialmente en el roscado de hardox y de Weldox 1100.

	HSS recubierto conTiN	HSS-Co recubierto co	(HSS-E) onTiN o TiCN		HSS-Co (HSS-E) recubiertoTiCN			
	WELDOX 420/460/500	WELDOX 700	WELDOX 900 / 960	WELDOX 1100	HARDOX 400	HARDOX 450	HARDOX 500	
$v_c[m/min]$	15	10	8	3	5	3	2.5	
Dimensión		Número de revoluciones por minuto, n [r.p.m.]						
M10	475	320	255	95	160	95	80	
M12	395	265	210	80	130	80	65	
M16	300	200	160	60	100	60	50	
M20	235	160	125	45	80	45	40	
M24	200	130	105	40	65	40	30	
M30	160	105	85	32	50	32	25	
M42	110	75	60	22	35	22	20	

Fresado

ELECCIÓN DEL MÉTODO Y HERRAMIENTA DE FRESADO

Para una producción en serie se recomienda fresar con plaquitas (insertos) de metal duro

Consideraciones a tener en cuenta en trabajos de fresado:

- Sujetar rígidamente la pieza.
- En caso de máquina de baja potencia, utilizar fresas con dientes bien separados.
- Evitar en lo posible el uso de cabezal universal, dado que ésta debilita la sujeción de la herramienta y la transmisión de potencia.
- En caso de fresado plano, el ancho de la zona trabajada deberá ser de 75-80% del diámetro de la fresa (ver figura a la derecha).
- En caso de fresado plano de superficies de ancho inferior al diámetro de la fresa, ésta debe posicionarse excéntricamente, para que el mayor número de dientes corte simultáneamente.
- En el fresado de un borde oxicortado, la profundidad de corte deberá ser por lo menos de 2 mm para evitar la capa superficial dura del borde /ver figura).

Distribución de dureza en borde oxicortado (en aire)

Ancho de trabajo recomendado en caso de fresado plano

		FRESADO	PLANO		FRESADO CON FRESA DE PUNTA PLANA				
	MD rec	ubierto	Cermet	MD recub.		HSS-Co			
Tipo de material de la herramienta	P40 / C5	P25/C6	P20/C6-C7	K20/C2	K10 / C3- no recubierto	K10 / C3- recubierto	P10 / C7- fij. mecánica	TiCN- recubierto	
Rigidez máquina	baja	media	alta	alta	alta	alta	alta	baja	
Avance (f _z)	0,1-0,2-0,3	0,1 - 0,2 - 0,3	0,1 – 0,2	0,1 – 0,2	0,02 – 0,10	0,02 – 0,20	0,05 – 0,15	0,03 – 0,09	
Calidad de chapa			Vel	ocidad de co	rte, v _c [m/m	nin]			
WELDOX 420/460	220-180-120	250-210-180	350 – 280	-	130	210	220 – 180	60	
WELDOX 500	220-180-120	250-210-180	350 – 280	-	125	210	220 – 180	50	
WELDOX 700	195–150–95	220-180-150	240 - 200	_	100	180	195 – 150	40	
WELDOX 900/960	95-75-50	200-160-130	220 – 170	-	90	130	140 – 120	18	
WELDOX 1100	-	150-120-110	150 – 120	-	90	100	110 –90	18	
HARDOX 400	-	150-120-110	150 – 120	-	90	100	110 –90	18	
HARDOX 450	-	150-120-110	150 – 120	-	90	100	110 –90	18	
HARDOX 500	-	120-100	120 – 100	120 – 100	50	80	90-70	-	

A un aumento del avance deberá corresponder una disminución de la velocidad de corte.

Fórmulas:

Torneado

Los datos de corte indicados abajo se aplican a calidades de metal duro tenaces, que se requieren para trabajos en que la herramienta recibe impactos, por ej. en el torneado de bordes oxicortados.

Calidad de MD	P25 / C6	P35 / C6-C5	K20 / C2				
Avance, f _n [mm/rev]	0,1-0,4-0,8	0,1-0,4-0,8	0,1-0,3				
	Velocidad de corte, v _c [m/min]						
WELDOX 420/460	450 – 300 – 210	285 – 175 – 130	_				
WELDOX 500	450 – 300 – 210	285 – 175 – 130	_				
WELDOX 700	285 – 195 – 145	230 – 150 – 100	-				
WELDOX 900/960	130 – 90 – 70	105 – 65 – 45	-				
WELDOX 1100	130 – 90 – 70	105 – 65 – 45	-				
HARDOX 400	130 – 90 – 70	105 – 65 – 45	-				
HARDOX 450	130 – 90 – 70	105 – 65 – 45	_				
HARDOX 500	-	_	100-80				

A un aumento del avance deberá corresponder una disminución de la velocidad de corte.

Fórmulas:

 $v_c = \frac{\pi \times D \times n}{1000}$

 $n = \frac{v_c \times 1000}{\pi \times D}$

 $v_f = f_n \times n$

 $v_c = velocidad de corte [m/min]$

D = diámetro de la pieza [mm]

n = revoluciones por minuto [r.p.m.]

 $\pi = 3,14$

 $v_f = avance [mm/min]$

 $f_n = avance [mm/rev]$

Materiales para herramientas / Calidades de metal duro

Este folleto ha sido elaborado en cooperación con Sandvik Coromant AB y Dormer Tools AB. La empresa Granlund Tools AB ha contribuido con material gráfico y datos de corte de la sección avellanado.

Contacte con nuestra división de Servicio Técnico Clientes para mayor información.

El folleto *Mecanizado* forma parte de una serie de impresos que dan recomendaciones e instrucciones sobre cómo trabajar con las chapas HARDOX y WELDOX. Los demás folletos son *Soldadura* y *Plegado*. Solicítelos a nuestra división de Market Communication.

