Exp. No.:

FEEDBACK AMPLIFIER (VOLTAGE SERIES)

AIM: To determine Bandwidth, Input &Output impedances, voltage gain, current gain and power gain of the Voltage Series Feedback Amplifier.

APPARATUS:

S.No.	Name of the Apparatus	Range	Quantity
1.	CL100	-	2No.
2.	Power Supply	0-30V	1No.
3.	Resistors (Ω)	100K, 10K, 4.7K	Each 2No.
	Resistors (22)	4.7K, 1K, 1.5K, 100	Each 1No.
4.	Capacitor	4.7μF,	3No.
	Capacitoi	10μF	
5.	CRO	-	1No.

CIRCUIT DIAGRAM:

PROCEDURE:

- 1. Connect the circuit as shown in figure without feedback network.
- 2. Apply the biasing voltage of 7V.

Exp. No.: Date:

- 3. Adjust the Signal generator voltage so as to get $V_i = 15$ mV and measure $V_{s.}$
- 4. Vary the frequency of the signal generator from 100Hz to 1MHz, in steps and note down corresponding output voltage.
- 5. In the mid band range remove R_L and note down the output which is V_{NL} .
- 6. Connect the circuit as shown in figure with feedback network
- 7. Repeat the steps 2 to 5
- 8. Plot the frequency response and determine the bandwidth.
- 9. Calculate the input and output impedance in the mid band region using

WITH FEEDBACK

WITHOUT FEEDBACK

$$R_i = \frac{ViR_S}{V_S - V_I} =$$

$$R_i = \frac{V_i R_S}{V_S - V_I} =$$

$$R_O = \frac{V_{NL} - V_{FL}}{V_{FL}} \times R_L =$$

$$R_O = \frac{V_{NL} - V_{FL}}{V_{FL}} \times R_L =$$

8. Calculate the current gain A_I , voltage gain A_V and power gain (A_P) using

WITH FEEDBACK

$$A_I = \frac{I_O}{I_i} =$$

$$A_I = \frac{I_O}{I_{\cdot}} =$$

$$I_O = \frac{V_O}{R_O} =$$

$$I_O = \frac{V_O}{R_O} =$$

$$A_V = \frac{V_O}{V_i} =$$

$$A_V = \frac{V_O}{V_{\cdot}} =$$

$$I_i = \frac{V_s - V_i}{R_s} =$$

$$I_i = \frac{V_s - V_i}{R_s} =$$

Exp. No.:	Date:
-----------	-------

Power gain(
$$A_P$$
)= A_V . A_I =

Power gain(
$$A_P$$
)= A_V . A_I =

TABULATION:

	WITHOUT FEEDBACK			WITH FEEDBACK				
	,	V _s =	•	/ _{NL} =	\	/ _s =	V	_{NL} =
Frequency (Hz)	V _i (mV)	V _o (V)	$Av = \frac{V_o}{V_i}$	20 log A _V	V _i (mV)	V _o (V)	$Av = \frac{V_o}{V_i}$	20 log A _V
]						

Exp. No.:

MODEL GRAPH:

Bandwidth(Without Feedback)

Bandwidth(Without Feedback)

$$f_2 - f_1 =$$

$$f_2 - f_1 =$$

RESULTS:

WITH FEE	DBACK	WITHOUT FEEDBACK		
Input impedance(R_i)	=	Input impedance(R_i)	=	
Current gain(A _i)	=	Current gain(A_i)	=	
Output impedance(R_o)	=	Output impedance(R_o)	=	
Voltage gain(A _v)	=	Voltage gain(A _v)	=	
Power gain(A_P)	=	Power gain(A _P)	=	
Bandwidth	=	Bandwidth	=	