Definíciók és tételek

Analízis 1.

Programtervező informatikus szak

2017-2018. tanév tavaszi félév

• Egyenlőtlenségek

1. Mondja ki a háromszög-egyenlőtlenségeket.

Válasz. Minden a és b valós számra

- (a) $|a+b| \le |a| + |b|$,
- (b) $|a| |b| \le |a b|$.
- 2. Hogyan szól a Bernoulli-egyenlőtlenség?

Válasz. Minden $h \geq -1$ valós számra és minden $n \in \mathbb{N}$ természetes számra

$$(1+h)^n \ge 1 + nh.$$

Ezekre a h és n értékekre egyenlőség akkor és csak akkor teljesül, ha h=0, vagy n=0, vagy n=1.

3. Fogalmazza meg a számtani és a mértani közép közötti egyenlőtlenséget.

Válasz. Legyen $n \geq 2$ tetszőleges természetes szám és a_1, a_2, \ldots, a_n tetszés szerinti nemnegatív valós szám. Ekkor

$$\sqrt[n]{a_1 a_2 \cdots a_n} \le \frac{a_1 + a_2 + \cdots + a_n}{n}.$$

Egyenlőség akkor és csak akkor áll fenn, ha $a_1 = a_2 = \cdots = a_n$.

• Valós számok

4. Mit mond ki a teljességi axióma?

Válasz. Ha $A, B \subset \mathbb{R}, A \neq \emptyset, B \neq \emptyset$ és $\forall a \in A, \forall b \in B$ esetén a < b, akkor

$$\exists \ \xi \in \mathbb{R}, \ \text{hogy} \ \ \forall \ a \in A \ \text{\'es} \ \forall \ b \in B \ \ \text{eset\'en} \ \ a \leq \xi \leq b.$$

5. Mit jelent az, hogy a $H \subset \mathbb{R}$ halmaz induktív?

Válasz. $H \subset \mathbb{R}$ induktív halmaz, ha $0 \in H$, továbbá, ha $x \in H$, akkor $x + 1 \in H$.

6. Hogyan értelmezi a természetes számok halmazát?

Válasz. $\mathbb N$ a legszűkebb induktív részhalmaza $\mathbb R$ -nek.

7. Fogalmazza meg a teljes indukció elvét.

Válasz. Legyen A(n) egy állítás minden $n \in \mathbb{N}$ -re. Tegyük fel, hogy

- (i) A(0) igaz és
- (ii) ha A(n) igaz, akkor A(n+1) is igaz $(n \in \mathbb{N})$.

Ekkor A(n) igaz minden $n \in \mathbb{N}$ -re.

8. Mikor van egy $\emptyset \neq H \subset \mathbb{R}$ halmaznak maximuma?

Válasz. Ha $\exists \alpha \in H$, amelyre $\forall x \in H$ esetén $x \leq \alpha$.

9. Fogalmazza meg pozitív állítás formájában azt, hogy egy $\emptyset \neq H \subset \mathbb{R}$ halmaznak nincs maximuma.

Válasz. $\forall \ \alpha \in H\text{-hoz} \ \exists \ x \in H, \ \text{hogy} \ x > \alpha.$

10. Mikor van egy $\emptyset \neq H \subset \mathbb{R}$ halmaznak minimuma?

Válasz. Ha $\exists \beta \in H$, amelyre $\forall x \in H$ esetén $\beta \leq x$.

11. Mikor felülről korlátos egy $\emptyset \neq H \subset \mathbb{R}$ halmaz?

Válasz. Ha $\exists K \in \mathbb{R}$, hogy $\forall a \in H$ esetén $a \leq K$.

12. Fogalmazza meg a szuprémum elvet.

Válasz. Ha $\emptyset \neq H \subset \mathbb{R}$ felülről korlátos halmaz, akkor H felső korlátai között van legkisebb.

13. Mi a szuprémum definíciója?

Válasz. A $\emptyset \neq H \subset \mathbb{R}$ felülről korlátos halmaz szuprémuma H legkisebb felső korlátja, azaz

$$\sup H := \min\{K \in \mathbb{R} \mid K \text{ felső korlátja } H\text{-nak}\}.$$

14. Fogalmazza meg egyenlőtlenségekkel azt a tényt, hogy $\xi = \sup H \in \mathbb{R}$.

Válasz. A $\xi = \sup H \in \mathbb{R}$ egyenlőség a következőkkel ekvivalens:

- (i) $\forall x \in H$ esetén $x \leq \xi$ és
- (ii) $\forall \varepsilon > 0$ számhoz $\exists x \in H$, amelyre $\xi \varepsilon < x$.
- 15. Mi az infimum definíciója?

Válasz. A $\emptyset \neq H \subset \mathbb{R}$ alulról korlátos halmaz infimuma H legnagyobb alsó korlátja, azaz

$$\inf H := \max\{k \in \mathbb{R} \mid k \text{ alsó korlátja } H\text{-nak}\}.$$

16. Fogalmazza meg egyenlőtlenségekkel azt a tényt, hogy $\xi = \inf H \in \mathbb{R}$.

Válasz. A $\xi = \inf H \in \mathbb{R}$ egyenlőség a következőkkel ekvivalens:

- (i) $\forall x \in H$ esetén $\xi \leq x$ és
- (ii) $\forall \varepsilon > 0$ számhoz $\exists x \in H$, amelyre $x < \xi + \varepsilon$.
- 17. Irja le az Arkhimédész-tételt.

Válasz. $\forall a, b \in \mathbb{R}, \ a > 0$ valós számokhoz $\exists n \in \mathbb{N}$ természetes szám, hogy b < na.

18. Mit állít a Cantor-féle közösrész-tétel?

Válasz. Tegyük fel, hogy $\forall n \in \mathbb{N}$ természetes számra adott az $[a_n, b_n] \subset \mathbb{R}$ korlátos és zárt intervallum úgy, hogy

$$[a_{n+1}, b_{n+1}] \subset [a_n, b_n] \quad (\forall n \in \mathbb{N}).$$

Ekkor

$$\bigcap_{n=0}^{+\infty} [a_n, b_n] \neq \emptyset.$$

• Függvények

19. Mit jelent az $f \in A \to B$ szimbólum?

Válasz. Az $A \neq \emptyset$ és $B \neq \emptyset$ halmaz esetén az $f \in A \rightarrow B$ szimbólum egy olyan függvényt jelent, amelyre $\mathcal{D}_f \subset A$ és $\mathcal{R}_f \subset B$.

20. Mit jelent az $f: A \to B$ szimbólum?

Válasz. Az $A \neq \emptyset$ és $B \neq \emptyset$ halmaz esetén az $f: A \to B$ szimbólum egy olyan függvényt jelent, amelyre $\mathcal{D}_f = A$ és $\mathcal{R}_f \subset B$.

21. Hogyan értelmezzük halmaz függvény által létesített *képét*?

Válasz. Legyen $f: A \to B$ függvény. A $C \subset A$ halmaz f által létesített képe az

$$f[C] := \{f(x) \in B \mid x \in C\} \subset B$$

halmaz (speciálisan $f[\emptyset] := \emptyset$).

22. Hogyan értelmezzük halmaz függvény által létesített ősképét?

Válasz. Legyen $f:A\to B$ függvény. A $D\subset B$ halmaz f által létesített ősképe az

$$f^{-1}[D] := \{x \in A \mid f(x) \in D\} \subset A$$

halmaz (speciálisan $f^{-1}[\emptyset] := \emptyset$).

23. Mikor nevezünk egy függvényt invertálhatónak?

Válasz. Az $f:A\to B$ függvény invertálható, ha f különböző értelmezési tartománybeli elemekhez különböző helyettesítési értékeket rendel, azaz

$$\forall x, y \in \mathcal{D}_f, x \neq y \implies f(x) \neq f(y).$$

24. Milyen ekvivalens átfogalmazást ismer az invertálhatóságra?

Válasz. Az $f: A \to B$ függvény akkor és csak akkor invertálható, ha

$$\forall x, y \in \mathcal{D}_f, f(x) = f(y) \implies x = y.$$

25. Definiálja az inverz függvényt.

Válasz. Legyen $f: A \to B$ invertálható függvény. f inverz függvénye az

$$f^{-1}: \mathcal{R}_f \ni y \mapsto x$$
, amelyre $f(x) = y$

függvény.

26. Írja le az összetett függvény fogalmát.

Válasz. Legyen $f:A\to B,\,g:C\to D$ és tegyük fel, hogy $\mathcal{R}_g\cap\mathcal{D}_f\neq\emptyset$, azaz

$$\{x \in \mathcal{D}_g \mid g(x) \in \mathcal{D}_f\} \neq \emptyset.$$

Ekkor f és g összetett függvénye az

$$f \circ g : \{x \in \mathcal{D}_q \mid g(x) \in \mathcal{D}_f\} \to B, \quad (f \circ g)(x) := f(g(x)).$$

függvény.

• Valós sorozatok, elemi tulajdonságok

27. Definiálja a következő fogalmakat: valós sorozat, sorozat n-edik tagja, index.

Válasz. Egy $a: \mathbb{N} \to \mathbb{R}$ függvényt $valós\ sorozatnak$ (röviden sorozatnak) nevezünk. Ennek a függvénynek az $n \in \mathbb{N}$ helyen felvett a(n) helyettesítési értékét az a sorozat n-edik tagjának mondjuk és az a_n szimbólummal jelöljük. Az n szám az a_n tag indexe.

28. Mit jelent az, hogy egy $(a_n): \mathbb{N} \to \mathbb{R}$ sorozat felülről korlátos?

Válasz. $\exists K \in \mathbb{R}$, hogy $\forall n \in \mathbb{N}$ indexre $a_n \leq K$.

29. Mit jelent az, hogy egy $(a_n): \mathbb{N} \to \mathbb{R}$ sorozat alulról korlátos? **Válasz.** $\exists k \in \mathbb{R}$, hogy $\forall n \in \mathbb{N}$ indexre $k \leq a_n$.

30. Mit jelent az, hogy egy $(a_n): \mathbb{N} \to \mathbb{R}$ sorozat korlátos?

Válasz. Az $(a_n): \mathbb{N} \to \mathbb{R}$ sorozat *korlátos*, ha alulról és felülről is korlátos, azaz $\exists K \in \mathbb{R}$, hogy $\forall n \in \mathbb{N}$ indexre $|a_n| \leq K$.

31. Mikor mondja azt, hogy egy valós sorozat monoton növő?

Válasz. Az $(a_n): \mathbb{N} \to \mathbb{R}$ sorozat monoton növő, ha $\forall n \in \mathbb{N}$ indexre $a_n \leq a_{n+1}$.

32. Mikor mondja azt, hogy egy valós sorozat szigorúan monoton növő?

Válasz. Az $(a_n): \mathbb{N} \to \mathbb{R}$ sorozat szigorúan monoton növő, ha $\forall n \in \mathbb{N}$ indexre $a_n < a_{n+1}$.

33. Mikor mondja azt, hogy egy valós sorozat monoton csökkenő?

Válasz. Az $(a_n): \mathbb{N} \to \mathbb{R}$ sorozat monoton csökkenő, ha $\forall n \in \mathbb{N}$ indexre $a_n \geq a_{n+1}$.

34. Mikor mondja azt, hogy egy valós sorozat szigorúan monoton csökkenő?

Válasz. Az $(a_n): \mathbb{N} \to \mathbb{R}$ sorozat szigorúan monoton csökkenő, ha $\forall n \in \mathbb{N}$ indexre $a_n > a_{n+1}$.

35. Hogyan definiálja egy sorozat *részsorozatát*?

Válasz. Legyen $a=(a_n)$ sorozat és $\nu=(\nu_n):\mathbb{N}\to\mathbb{N}$ egy szigorúan monoton növő sorozat (azaz ν egy indexsorozat). Ekkor az $a\circ\nu$ függvény is sorozat, amelyet az a sorozat ν indexsorozat által meghatározott részsorozatának nevezünk. Így az $a\circ\nu$ sorozat n-edik tagja:

$$(a \circ \nu)_n = (a \circ \nu)(n) = a(\nu_n) = a_{\nu_n} \qquad (n \in \mathbb{N}),$$

azaz $a \circ \nu = (a_{\nu_n}).$

36. Milven tételt tud mondani valós sorozatok és monoton sorozatok viszonyáról?

4

Válasz. Minden $a: \mathbb{N} \to \mathbb{R}$ valós sorozatnak van monoton részsorozata, azaz létezik olyan ν indexsorozat, amellyel az $a \circ \nu$ sorozat monoton növő, vagy monoton csökkenő.

37. Mit értettünk egy valós sorozat csúcsán?

Válasz. a_{n_0} az $(a_n): \mathbb{N} \to \mathbb{R}$ sorozat csúcsa, ha $\forall n \geq n_0$ esetén $a_{n_0} \geq a_n$.

• Konvergens sorozatok

38. Mikor nevezünk egy (a_n) valós sorozatot konvergensnek?

Válasz. Az $(a_n): \mathbb{N} \to \mathbb{R}$ sorozat konvergens, ha

 $\exists A \in \mathbb{R}, \ \forall \varepsilon > 0 \text{ számhoz } \exists n_0 \in \mathbb{N} \text{ küszöbindex}, \text{ hogy } \forall n \in \mathbb{N}, \ n \geq n_0 \text{ indexre } |a_n - A| < \varepsilon.$

Ekkor az A valós számot a sorozat egy határértékének nevezzük.

39. Definiálja egy konvergens sorozat határértékét.

Válasz. Ha az $a=(a_n):\mathbb{N}\to\mathbb{R}$ sorozat konvergens, akkor egyértelműen létezik olyan $A\in\mathbb{R}$ szám, amellyel $\forall\,\varepsilon>0$ számhoz $\exists\,n_0\in\mathbb{N},$ hogy $\forall\,n\geq n_0$ indexre $|a_n-A|<\varepsilon$. Ezt az A számot az (a_n) sorozat határértékének nevezzük.

40. Mit jelent az, hogy az $(a_n): \mathbb{N} \to \mathbb{R}$ sorozat divergens?

Válasz. Az (a_n) sorozat divergens, ha nem konvergens, azaz

 $\forall A \in \mathbb{R} \text{ számhoz } \exists \varepsilon > 0, \text{ hogy } \forall n_0 \in \mathbb{N} \text{ indexhez } \exists n \in \mathbb{N}, n \geq n_0 : |a_n - A| \geq \varepsilon.$

41. Milyen állítást ismer sorozatok esetén a konvergencia és a korlátosság kapcsolatáról?

Válasz. Ha az $(a_n): \mathbb{N} \to \mathbb{R}$ sorozat konvergens, akkor korlátos is.

42. Mit tud mondani konvergens sorozatok részsorozatainak a konvergenciájáról?

Válasz. Ha az $a: \mathbb{N} \to \mathbb{R}$ sorozat konvergens, akkor tetszőleges ν indexsorozat esetén az $a \circ \nu$ részsorozat is konvergens és $\lim (a \circ \nu) = \lim a$.

43. Mi a *nullas o rozat* definíció ja?

Válasz. Az $(a_n): \mathbb{N} \to \mathbb{R}$ nullasorozat, ha a határértéke 0, azaz ha

 $\forall \varepsilon > 0 \text{ számhoz } \exists n_0 \in \mathbb{N}, \text{ hogy } \forall n \in \mathbb{N}, n \geq n_0 \text{ indexre } |a_n| < \varepsilon.$

44. Milyen műveleti tételeket ismer a nullasorozatokra?

Válasz. 1^o Ha (a_n) és (b_n) nullasorozat, akkor (a_n+b_n) is nullasorozat. 2^o Ha (a_n) nullasorozat és (c_n) korlátos sorozat, akkor $(a_n\,c_n)$ nullasorozat. 3^o Ha (a_n) és (b_n) nullasorozat, akkor $(a_n\,b_n)$ is nullasorozat.

45. Milyen műveleti tételeket ismer konvergens sorozatokra?

Válasz. Ha az (a_n) és a (b_n) sorozat konvergens és $\lim (a_n) =: A \in \mathbb{R}$, $\lim (b_n) =: B \in \mathbb{R}$, akkor

 1^o az $(a_n + b_n)$ összegsorozat is konvergens és $\lim (a_n + b_n) = A + B$,

5

 2^o az $(a_n b_n)$ szorzatsorozat is konvergens és $\lim (a_n b_n) = A \cdot B$,

 3^o ha még $b_n \neq 0 \ (n \in \mathbb{N})$ és $B \neq 0$ is teljesül, akkor

az $\left(\frac{a_n}{b_n}\right)$ hányadossorozat is konvergens és $\lim \left(\frac{a_n}{b_n}\right) = \frac{A}{B}$.

46. Milyen állítást ismer a (q^n) mértani sorozat konvergenciájával és határértékével kapcsolatosan?

Válasz. A (q^n) mértani sorozat konvergens, akkor és csak akkor, ha |q| < 1 vagy q = 1. Ekkor

$$\lim_{n\to +\infty}q^n=\begin{cases} 0, & \text{ha } |q|<1\\ 1, & \text{ha } q=1. \end{cases}$$

47. Milyen nevezetes sorozatokat tekintettünk a nagyságrendi kérdésekkel kapcsolatosan?

Válasz. $\mathbf{1}^o$ Ha $k \in \mathbb{N}$ és a > 1, akkor $\lim_{n \to +\infty} \frac{n^k}{a^n} = 0$.

 $\mathbf{2}^{o}$ Ha $k \in \mathbb{N}$ és |q| < 1, akkor $\lim_{n \to \infty} n^{k} \cdot q^{n} = 0$.

 $\mathbf{3}^o$ Minden $a \in \mathbb{R}$ esetén $\lim_{n \to +\infty} \frac{a^n}{n!} = 0$.

 $\mathbf{4}^o \lim_{n \to +\infty} \frac{n!}{n^n} = 0.$

48. Mit jelent az, hogy az (a_n) sorozat határértéke $(+\infty)$?

Válasz. $\lim_{n\to+\infty} a_n = +\infty \iff$

 $\forall P \in \mathbb{R}$ számhoz $\exists n_0 \in \mathbb{N}$ küszöbindex, hogy $\forall n \in \mathbb{N}, n \geq n_0$ indexre $a_n > P$.

49. Mi a definíciója annak, hogy az (a_n) sorozatnak $(-\infty)$ a határértéke?

Válasz. $\lim(a_n) = -\infty \iff \forall \ P \in \mathbb{R} \quad \exists \ n_0 \in \mathbb{N} \quad \forall \ n \in \mathbb{N}, \ n \geq n_0 : \quad a_n < P.$

50. Definiálja az $A \in \overline{\mathbb{R}}$ elem r > 0 sugarú környezetét.

Válasz. Az $A \in \mathbb{R}$ valós szám r > 0 sugarú környezetén a

$$K_r(A) := (A - r, A + r)$$

intervallumot értjük. Az $A=+\infty$ elem r>0 sugarú környezete a

$$K_r(+\infty) := \left(\frac{1}{r}, +\infty\right),$$

az $A=-\infty$ elemé pedig a

$$K_r(-\infty) := \left(-\infty, -\frac{1}{r}\right)$$

intervallum.

51. Mit jelent az, hogy az (a_n) sorozatnak van határértéke?

Válasz. Azt, hogy a sorozat *konvergens*, vagy *plusz végtelenhez*, vagy pedig *mínusz végtelenhez* tart. Ez azzal egyenértékű, hogy

 $\exists A \in \overline{\mathbb{R}}, \text{ hogy } \forall \varepsilon > 0 \text{ számhoz } \exists n_0 \in \mathbb{N}, \text{ hogy } \forall n \in \mathbb{N}, n \geq n_0 : \text{ indexre } a_n \in K_{\varepsilon}(A).$

52. Fogalmazza meg a sorozatokra vonatkozó közrefogási elvet.

Válasz. Tegyük fel, hogy az (a_n) , a (b_n) és a (c_n) valós sorozatokra teljesülnek a következők:

6

- (a) $\exists N \in \mathbb{N} : \forall n \geq N \text{ indexre } a_n \leq b_n \leq c_n;$
- (b) $\exists \lim (a_n), \exists \lim (c_n) \text{ és } \lim (a_n) = \lim (c_n) =: A \in \overline{\mathbb{R}}.$

Ekkor a közrefogott (b_n) sorozatnak is van határértéke és $\lim (b_n) = A$.

53. Milyen állításokat ismer a határérték és a rendezés között?

Válasz. Tegyük fel, hogy az $(a_n), (b_n)$ sorozatoknak van határértékük és

$$\lim (a_n) =: A \in \overline{\mathbb{R}}, \qquad \lim (b_n) =: B \in \overline{\mathbb{R}}.$$

Ekkor

 1^o ha A > B, akkor $\exists N \in \mathbb{N}, \ \forall n \ge N, \ n \in \mathbb{N}: \ a_n > b_n$.

 2^{o} ha $\exists N \in \mathbb{N}, \forall n \geq N, n \in \mathbb{N}$ index $a_n \geq b_n$, akkor $A \geq B$.

54. Mondja ki a monoton sorozatok konvergenciájára és határértékére vonatkozó állításokat.

Válasz. Minden monoton sorozatnak van határértéke.

 1^o Ha az (a_n) sorozat monoton $n\"{o}veked\~{o}$ és $fel\"{u}lr\~{o}l$ $korl\'{a}tos$ [monoton cs\"{o}kken\~{o} és alulr´{o}l korl $\'{a}tos$], akkor konvergens, és

$$\lim (a_n) = \sup \{ a_n \mid n \in \mathbb{N} \} \in \mathbb{R} \quad [\lim (a_n) = \inf \{ a_n \mid n \in \mathbb{N} \} \in \mathbb{R}].$$

 2^o Ha az (a_n) sorozat monoton növekedő és felülről nem korlátos [monoton csökkenő és alulról nem korlátos], akkor

$$\lim (a_n) = +\infty$$
 $[\lim (a_n) = -\infty].$

55. Hogyan értelmeztük az *e* számot?

Válasz. Az $a_n := \left(1 + \frac{1}{n}\right)^n \ (n = 1, 2, ...)$ sorozat monoton növekedő és felülről korlátos, tehát konvergens. e-vel jelöljük ennek a sorozatnak a határértékét:

$$e := \lim_{n \to +\infty} \left(1 + \frac{1}{n} \right)^n.$$

56. Milyen állítást tud mondani (tágabb értelemben) határértékkel bíró sorozatok szorzatáról?

Válasz. Tegyük fel, hogy az (a_n) és a (b_n) sorozatoknak $van\ határértéke$, és

$$\lim (a_n) =: A \in \overline{\mathbb{R}}, \qquad \lim (b_n) =: B \in \overline{\mathbb{R}}.$$

Ekkor az $(a_n b_n)$ szorzatsorozatnak is van határértéke, és $\lim (a_n b_n) = AB$, feltéve hogy AB értelmezve van.

57. Milyen állítást tud mondani (tágabb értelemben) határértékkel bíró sorozatok hányadosáról?

Válasz. Tegyük fel, hogy az (a_n) és a $(b_n): \mathbb{N} \to \mathbb{R} \setminus \{0\}$ sorozatoknak van határértéke, és

$$\lim (a_n) =: A \in \overline{\mathbb{R}}, \qquad \lim (b_n) =: B \in \overline{\mathbb{R}}.$$

Ekkor az (a_n/b_n) hányadossorozatnak is van határértéke, és $\lim (a_n/b_n) = A/B$, feltéve hogy A/B értelmezve van.

58. Fogalmazza meg a Bolzano-Weierstrass-féle kiválasztási tételt.

Válasz. Minden korlátos valós sorozatnak van konvergens részsorozata.

59. Definiálja a Cauchy-sorozatot.

Válasz. Az (a_n) sorozat Cauchy-sorozat, ha $\forall \ \varepsilon > 0$ számhoz $\exists \ n_0 \in \mathbb{N}$ küszöbindex, hogy $\ \forall \ m,n \in \mathbb{N}, \ m,n \geq n_0$ indexre $\ |a_n - a_m| < \varepsilon$.

60. Fogalmazza meg a sorozatokra vonatkozó Cauchy-féle konvergenciakritériumot.

Válasz. Egy valós sorozat akkor és csak akkor konvergens, ha Cauchy-sorozat.

61. Milyen állítást ismer a (q^n) mértani sorozat határértékével kapcsolatosan? **Válasz.**

$$\lim_{n \to +\infty} q^n \begin{cases} = 0, & \text{ha } |q| < 1 \\ = 1, & \text{ha } q = 1 \\ = +\infty, & \text{ha } q > 1 \\ \text{nem létezik}, & \text{ha } q \le -1. \end{cases}$$

62. Milyen konvergenciatételt tanult az $(\sqrt[n]{a})$ (a > 0) sorozatról?

Válasz. Bármely $0 < a \in \mathbb{R}$ esetén az $(\sqrt[n]{a})$ sorozat konvergens és $\lim (\sqrt[n]{a}) = 1$.

63. Milyen konvergenciatételt tanult az $(\sqrt[n]{n})$ sorozatról?

Válasz. Az $(\sqrt[n]{n})$ sorozat konvergens és $\lim (\sqrt[n]{n}) = 1$.

- **64.** Fogalmazza meg egy valós szám m-edik gyökének a létezésére vonatkozó tételt. **Válasz.** Ha $m \in \mathbb{N}, \ m \geq 2$, akkor $\forall \ A \geq 0 \ \exists \ ! \ \alpha \geq 0 : \ \alpha^m = A$.
- **65.** Legyen $A > 0, 1 < m \in \mathbb{N}$. Melyik az a sorozat, amelynek határértéke $\sqrt[m]{A}$? Válasz.

$$\begin{cases} x_0 > 0, \\ x_{n+1} := \frac{1}{m} \left(\frac{A}{x_n^{m-1}} + (m-1)x_n \right) & (n = 0, 1, 2, \ldots). \end{cases}$$

ullet Végtelen sorok

66. Mi a végtelen sor definíciója?

Válasz. Az $(a_n): \mathbb{N} \to \mathbb{R}$ sorozatból képzett

$$s_n := a_1 + a_2 + \dots + a_n \quad (n \in \mathbb{N})$$

sorozatot nevezzük az (a_n) sorozat által generált végtelen sornak, aminek a jelölésére a $\sum a_n$ szimbólumot használjuk.

67. Mit jelent az, hogy a $\sum a_n$ végtelen sor konvergens, és hogyan értelmezzük az összegét?

Válasz. A $\sum a_n$ sor *konvergens*, ha a részletösszegeinek az $s_n = a_1 + \cdots + a_n$ $(n \in \mathbb{N})$ sorozata konvergens. A $\lim(s_n)$ számot nevezzük a *sor összegének*, amit így jelölünk:

$$\sum_{n=0}^{+\infty} a_n.$$

68. Milyen tételt ismer $q \in \mathbb{R}$ esetén a $\sum_{n=0}^{\infty} q^n$ geometriai sor konvergenciájáról?

Válasz. A $\sum_{n=0}^{\infty} q^n$ sor akkor és csak akkor konvergens, ha |q|<1 és ekkor $\frac{1}{1-q}$ az összege.

69. Mi a *teleszkópikus sor* és mi az összege?

Válasz. A
$$\sum_{n=1}^{\infty} \frac{1}{n(n+1)}$$
 sor és az összege $\sum_{n=1}^{+\infty} \frac{1}{n(n+1)} = 1$.

70. Mi a *harmonikus sor*, és milyen állítást ismer a konvergenciájával kapcsolatban?

Válasz. A $\sum_{n=1}^{\infty} \frac{1}{n}$ sor, ami divergens.

71. Milyen állítást ismer a $\sum \frac{1}{n^{\alpha}}$ hiperharmonikus sor konvergenciájával kapcsolatban?

Válasz. A sor $1 < \alpha \in \mathbb{R}$ esetén konvergens, ha $\alpha \leq 1$ valós szám, akkor pedig divergens.

72. Hogyan szól a Cauchy-kritérium végtelen sorokra?

Válasz. A $\sum a_n$ végtelen sor akkor és csak akkor konvergens, ha

$$\forall \, \varepsilon > 0 \ \text{számhoz} \ \exists \, n_0 \in \mathbb{N}, \ \forall \, m,n \in \mathbb{N}, m > n \geq n_0: \ |a_{n+1} + a_{n+2} + \dots + a_m| < \varepsilon.$$

73. Mondjon szükséges feltételt arra nézve, hogy a $\sum a_n$ végtelen sor konvergens legyen.

Válasz. Ha a $\sum a_n$ végtelen sor konvergens, akkor $\lim (a_n) = 0$.

74. Igaz-e az, hogy ha $\lim (a_n) = 0$, akkor a $\sum a_n$ sor konvergens? (A válaszát indokolja meg!)

Válasz. Nem igaz, ui. a $\sum \frac{1}{n}$ harmonikus sor divergens és $\lim(\frac{1}{n}) = 0$.

75. Mikor nevez egy végtelen számsort abszolút konvergensnek?

Válasz. Legyen $(a_n): \mathbb{N} \to \mathbb{R}$, ekkor a $\sum a_n$ végtelen sor abszolút konvergens, ha a $\sum |a_n|$ végtelen sor konvergens.

76. Adjon meg egy olyan végtelen sort, amelyik konvergens, de nem abszolút konvergens.

Válasz.
$$\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n}.$$

77. Fogalmazza meg a végtelen sorokra vonatkozó összehasonlító kritériumokat.

Válasz. Tegyük fel, hogy az $(a_n), (b_n) : \mathbb{N} \to \mathbb{R}$ sorozatokra

$$\exists N \in \mathbb{N} \ \forall n \in \mathbb{N}, n > N : 0 < a_n < b_n.$$

Ekkor:

 1^o ha a $\sum b_n$ sor konvergens, akkor $\sum a_n$ is konvergens (majoráns kritérium); 2^o ha a $\sum a_n$ sor divergens, akkor $\sum b_n$ is divergens (minoráns kritérium).

78. Fogalmazza meg a végtelen sorokra vonatkozó Cauchy-féle gyökkritériumot.

Válasz. Tekintsük a $\sum a_n$ sort, és tegyük fel, hogy létezik az $A := \lim (\sqrt[n]{|a_n|}) \in \overline{\mathbb{R}}$ határérték. Ekkor:

 1^o ha $0 \leq A < 1,$ akkor a $\sum a_n$ sor abszolút konvergens, tehát konvergens is;

 2° ha A > 1, akkor a $\sum a_n$ sor divergens;

 3° ha A=1, akkor a $\sum a_n$ sor lehet konvergens is és divergens is.

79. Fogalmazza meg a végtelen sorokra vonatkozó D'Alembert-féle hányadoskritériumot.

Válasz. Tekintsük a $\sum a_n$ sort, és tegyük fel, hogy $a_n \neq 0$ $(n \in \mathbb{N})$, továbbá létezik az $A := \lim \left(\frac{|a_{n+1}|}{|a_n|}\right) \in \overline{\mathbb{R}}$ határérték. Ekkor:

 1^o ha $0 \le A < 1$, akkor a $\sum a_n$ sor abszolút konvergens, tehát konvergens is;

 2^{o} ha A > 1, akkor a $\sum a_n$ sor divergens;

 3° ha A=1, akkor a $\sum a_n$ sor lehet konvergens is és divergens is.

80. Mik a *Leibniz-típusú sorok* és milyen konvergenciatételt ismer ezekkel kapcsolatban?

Válasz. Ha $0 \le a_{n+1} \le a_n$ $(n \in \mathbb{N})$, akkor a $\sum (-1)^{n+1}a_n$ sort nevezzük Leibniz-típusú sornak. Ezek akkor és csak akkor konvergensek, ha $\lim(a_n) = 0$. Ha $A := \sum_{n=1}^{+\infty} (-1)^{n+1}a_n$, akkor

$$\left| A - \sum_{k=1}^{n} (-1)^{k+1} a_k \right| \le a_n \qquad (n = 1, 2, \ldots).$$

81. Milyen állítást tanult valós számok tizedestört-alakjával kapcsolatban?

Válasz. Tetszőleges $\alpha \in [0,1]$ számhoz van olyan $(a_n): \mathbb{N}^+ \to \{0,1,\ldots,9\}$ sorozat, amellyel $\alpha = \sum_{n=1}^{+\infty} \frac{a_n}{10^n}$

82. Hogyan értelmezi egy végtelen sor zárójelelezését?

Válasz. Tekintsük az (a_n) sorozat által generált $\sum_{n=1}^{\infty} a_n$ végtelen sort. Legyen adott az (m_n) indexsorozat és tegyük fel, hogy $m_0 = 0$. Ekkor a $\sum_{n=1}^{\infty} a_n$ sor (m_n) indexsorozat által meghatározott zárójelezésén a $\sum_{n=1}^{\infty} \alpha_n$ végtelen sort értjük, ahol

$$\alpha_n := \sum_{i=m_{n-1}+1}^{m_n} a_i \qquad (n = 1, 2, \ldots).$$

83. Tegyük fel, hogy a $\sum_{n=1} a_n$ végtelen sor konvergens. Mit tud mondani a szóban forgó sor $\sum_{n=1} \alpha_n$ zárójelezéseinek a konvergenciájáról?

Válasz. Ha a $\sum_{n=1} a_n$ végtelen sor konvergens, akkor bármely $\sum_{n=1} \alpha_n$ zárójelezett sora is konvergens és

$$\sum_{n=1}^{+\infty} a_n = \sum_{n=1}^{+\infty} \alpha_n.$$

84. Tegyük fel, hogy a $\sum a_n$ végtelen sor valamely $\sum \alpha_n$ zárójelezett sora konvergens. Milyen feltételek mellett konvergens a $\sum a_n$ végtelen sor?

Válasz. Tegyük fel, hogy a $\sum a_n$ végtelen sorra és az (m_n) indexsorozatra teljesülnek a következő feltételek:

 $1^o\ m_0=0$ és $(m_{n+1}-m_n)$ korlátos sorozat;

$$2^o \lim(a_n) = 0,$$

 3^o a $\sum a_n$ sor (m_n) indexsorozat által meghatározott $\sum \alpha_n$ zárójelezése konvergens. Ekkor a $\sum a_n$ végtelen sor is konvergens.

85. Hogyan értelmezi egy végtelen sor átrendezését?

Válasz. Legyen $(p_n): \mathbb{N} \to \mathbb{N}$ egy bijekció, $\sum_{n=0} a_n$ pedig egy végtelen sor. Ekkor a $\sum_{n=0} a_n$ sor (p_n) által meghatározott *átrendezésén* a

$$\sum_{n=0} a_{p_n} = a_{p_0} + a_{p_1} + a_{p_2} + \cdots$$

végtelen sort értjük.

86. Milyen állítást ismer abszolút konvergens sorok átrendezéseit illetően?

Válasz. Ha a $\sum_{n=0} a_n$ végtelen sor abszolút konvergens, akkor minden $(p_n): \mathbb{N} \to \mathbb{N}$ bijekció esetén a $\sum_{n=0} a_{p_n}$ átrendezése is abszolút konvergens és $\sum_{n=0}^{+\infty} a_n = \sum_{n=0}^{+\infty} a_{p_n}$.

87. Fogalmazza meg a feltételesen konvergens sorok átrendezésére vonatkozó Riemann-tételt.

Válasz. Tegyük fel, hogy a $\sum_{n=0} a_n$ végtelen sor feltételesen konvergens (vagyis konvergens, de nem abszolút konvergens). Ekkor

$$1^o \ \, \forall \; A \in \overline{\mathbb{R}}$$
esetén $\exists \; \sum\limits_{n=0} a_{p_n}$ átrendezés, hogy $\sum\limits_{n=0}^{+\infty} a_{p_n} = A;$

$$2^o \exists \sum_{n=0}^{\infty} a_{p_n}$$
 átrendezés, ami divergens.

88. Definiálja a $\sum_{n=0} a_n$, $\sum_{n=0} b_n$ végtelen sorok $t\acute{e}gl\acute{a}nyszorzat\acute{a}t$.

Válasz. A
$$\sum_{n=0}^{\infty} t_n$$
 végtelen sor, ahol $t_n := \sum_{\max\{i,j\}=n}^{\infty} a_i b_j \ (n \in \mathbb{N}).$

89. Definiálja a $\sum_{n=0}^{\infty} a_n$, $\sum_{n=0}^{\infty} b_n$ végtelen sorok Cauchy-szorzatát.

Válasz. A
$$\sum_{n=0}^{\infty} c_n$$
 végtelen sor, ahol $c_n := \sum_{i+j=n}^{\infty} a_i b_j \ (n \in \mathbb{N}).$

90. Milyen tételt ismer végtelen sorok $t\acute{e}gl\acute{a}nyszorzat\acute{a}nak$ a konvergenciáját illetően?

Válasz. Ha a $\sum_{n=0} a_n$ és a $\sum_{n=0} b_n$ sor konvergens, akkor a $\sum_{n=0} t_n$ *téglányszorzatuk* is konvergens és

$$\sum_{n=0}^{+\infty} t_n = \left(\sum_{n=0}^{+\infty} a_n\right) \cdot \left(\sum_{n=0}^{+\infty} b_n\right).$$

91. Adjon meg olyan végtelen sorokat, amelyek Cauchy-szorzata divergens.

Válasz. A $\sum_{n=0}^{\infty} \frac{(-1)^n}{\sqrt{n+1}}$ konvergens sor önmagával vett Cauchy-szorzata divergens.

92. Fogalmazza meg az *abszolút konvergens* sorok szorzatára vonatkozó *Cauchy- tételt.*

Válasz. Tegyük fel, hogy a $\sum_{n=0}^{\infty} a_n$ és a $\sum_{n=0}^{\infty} b_n$ sorok mindegyike abszolút konvergens. Ekkor

- (a) a $\sum_{n=0} t_n$ téglányszorzatuk is abszolút konvergens,
- (b) a $\sum_{n=0}^{\infty} c_n$ Cauchy-szorzatuk is abszolút konvergens,
- (c) az összes a_ib_j $(i,j=0,1,2,\ldots)$ szorzatból tetszés szerinti sorrendben képzett $\sum_{n=0} d_n$ végtelen sor is abszolút konvergens, és az összeg mindegyik esetben a tényezők összegeinek a szorzata:

$$\sum_{n=0}^{+\infty} t_n = \sum_{n=0}^{+\infty} c_n = \sum_{n=0}^{+\infty} d_n = \left(\sum_{n=0}^{+\infty} a_n\right) \cdot \left(\sum_{n=0}^{+\infty} b_n\right).$$

93. Fogalmazza meg a Mertens-tételt.

Válasz. Tegyük fel, hogy a $\sum_{n=0} a_n$, $\sum_{n=0} b_n$ sorok konvergensek és legalább az egyikük abszolút konvergens. Ekkor a $\sum_{n=0} c_n$ Cauchy-szorzatuk konvergens és

$$\sum_{n=0}^{+\infty} c_n = \left(\sum_{n=0}^{+\infty} a_n\right) \cdot \left(\sum_{n=0}^{+\infty} b_n\right).$$

• Hatványsorok

94. Írja le a *hatványsor* definícióját.

Válasz. Az $(\alpha_n): \mathbb{N} \to \mathbb{R}$ sorozattal és az $a \in \mathbb{R}$ számmal képzett

$$\sum_{n=0}^{\infty} \alpha_n (x-a)^n \qquad (x \in \mathbb{R})$$

végtelen sort a középpontú, (α_n) együtthatós hatványsornak nevezzük.

95. Hogyan szól a hatványsor konvergenciahalmazára vonatkozó, a konvergenciasugarát meghatározó tétel?

Válasz. Tetszőlegesen megadott (α_n) sorozattal és $a \in \mathbb{R}$ számmal képzett

$$\sum \alpha_n (x-a)^n \qquad (x \in \mathbb{R})$$

hatványsor konvergenciahalmazára a következő három egymást kizáró esetek egyike érvényes:

- (a) $\exists ! R > 0$ valós szám, hogy a hatványsor $x \in \mathbb{R}$ esetén abszolút konvergens, ha |x a| < R és divergens, ha |x a| > R;
- (b) a hatványsor csak az x = a pontban konvergens (legyen ekkor R := 0);
- (c) a hatványsor $\forall x \in \mathbb{R}$ pontban konvergens (ekkor $R := +\infty$).

 $0 \le R \le +\infty$ a hat ványsor konvergencia sugara.

96. Fogalmazza meg a Cauchy-Hadamard-tételt.

Válasz. Tekintsük a $\sum_{n=0}^{\infty} \alpha_n (x-a)^n$ hatványsort, és tegyük fel, hogy

$$\exists \lim \left(\sqrt[n]{|\alpha_n|}\right) =: A \in \overline{\mathbb{R}}.$$

Ekkor

$$R := \begin{cases} \frac{1}{A}, & \text{ha } 0 < A < +\infty \\ 0, & \text{ha } A = +\infty \\ +\infty, & \text{ha } A = 0 \end{cases}$$

a hatványsor konvergenciasugara. Ez azt jelenti, hogy

- (a) ha $0 < R < +\infty$, akkor a hatványsor $x \in \mathbb{R}$ esetén abszolút konvergens, ha |x-a| < R és divergens, ha |x-a| > R;
- (b) ha R = 0, akkor a hatványsor csak az x = a pontban konvergens;
- (c) ha $R = +\infty$, akkor a hatványsor $\forall x \in \mathbb{R}$ pontban konvergens.
- **97.** Adjon meg egy olyan hatványsort, amelyiknek a konvergenciahalmaza a (-1,1) intervallum.

Válasz.
$$\sum_{n=0} x^n$$
.

98. Adjon meg egy olyan hatványsort, amelyiknek a konvergenciahalmaza a (-1,1] intervallum.

Válasz.
$$\sum_{n=0}^{\infty} \frac{(-1)^n}{n} x^n.$$

99. Adjon meg egy olyan hatványsort, amelyiknek a konvergenciahalmaza a [-1,1) intervallum.

Válasz.
$$\sum_{n=0}^{\infty} \frac{x^n}{n}$$
.

100. Adjon meg egy olyan hatványsort, amelyiknek a konvergenciahalmaza a [-1, 1] intervallum.

Válasz.
$$\sum_{n=0}^{\infty} \frac{x^n}{n^2}$$
.

101. Adjon meg egy olyan hatványsort, amelyik csak az a=2 pontban konvergens.

Válasz.
$$\sum_{n=0}^{\infty} n^n (x-2)^n$$
.

102. Adjon meg egy olyan hatványsort, amelyiknek \mathbb{R} a konvergenciahalmaza.

Válasz.
$$\sum_{n=0}^{\infty} \frac{1}{n^n} x^n$$
.

• Függvény határértéke

- **103.** Mit jelent az, hogy $a \in \overline{\mathbb{R}}$ torlódási pontja a $H \subset \mathbb{R}$ halmaznak? **Válasz.** Az a bármely környezetében végtelen sok H-beli elem van.
- **104.** Mivel egyenlő az \mathbb{R}' , a \mathbb{Q}' és az $\left(\left\{\frac{1}{n} \mid 0 < n \in \mathbb{N}\right\}\right)'$ halmaz?

Válasz.
$$\mathbb{R}' = \overline{\mathbb{R}}, \ \mathbb{Q}' = \overline{\mathbb{R}} \text{ és } \left(\left\{\frac{1}{n} \mid 0 < n \in \mathbb{N}\right\}\right)' = \{0\}.$$

105. Mikor mondja azt, hogy egy $f \in \mathbb{R} \to \mathbb{R}$ függvénynek valamely $a \in \mathcal{D}_f'$ helyen van határértéke?

Válasz. Legyen $f \in \mathbb{R} \to \mathbb{R}$ és tegyük fel, hogy $a \in \mathcal{D}'_f$. Ekkor azt mondjuk, hogy az f függvénynek az a helyen van határértéke, ha

$$\exists A \in \overline{\mathbb{R}}, \ \forall \varepsilon > 0 \quad \exists \delta > 0 \quad \forall \ x \in (K_{\delta}(a) \setminus \{a\}) \cap \mathcal{D}_f: \ f(x) \in K_{\varepsilon}(A).$$

106. Adott $f \in \mathbb{R} \to \mathbb{R}$, $a \in \mathcal{D}'_f$, $A \in \overline{\mathbb{R}}$ esetén mit jelent a $\lim_a f = A$ egyenlőség?

Válasz.
$$\forall \varepsilon > 0 \ \exists \delta > 0 \ \forall x \in (k_{\delta}(a) \setminus \{a\}) \cap \mathcal{D}_f : \ f(x) \in k_{\varepsilon}(A).$$

107. Adja meg egyenlőtlenségek segítségével a *végesben vett véges* határérték definícióját.

Válasz. Legyen $f \in \mathbb{R} \to \mathbb{R}$, $a \in \mathcal{D}'_f \cap \mathbb{R}$, $A \in \mathbb{R}$. Ekkor:

$$\lim_{a} f = A \in \mathbb{R} \iff \forall \varepsilon > 0 \quad \exists \delta > 0 \quad \forall x \in \mathcal{D}_f, \ 0 < |x - a| < \delta : \quad |f(x) - A| < \varepsilon.$$

108. Adja meg egyenlőtlenségek segítségével a *végesben vett plusz végtelen* határérték definícióját.

Válasz. Legyen $f \in \mathbb{R} \to \mathbb{R}, \ a \in \mathcal{D}_f' \cap \mathbb{R}$. Ekkor:

$$\lim_{a} f = +\infty \iff \forall P > 0 \ \exists \delta > 0 \ \forall x \in \mathcal{D}_f, \ 0 < |x - a| < \delta : \ f(x) > P.$$

109. Adja meg egyenlőtlenségek segítségével a *plusz végtelenben vett véges* határérték definícióját.

Válasz. Legyen $f \in \mathbb{R} \to \mathbb{R}, +\infty \in \mathcal{D}_f', A \in \mathbb{R}$. Ekkor:

$$\lim_{+\infty} f = A \iff \forall \varepsilon > 0 \ \exists x_0 > 0 \quad \forall x \in \mathcal{D}_f, x > x_0 : \quad |f(x) - A| < \varepsilon.$$

110. Adja meg egyenlőtlenségek segítségével a *plusz végtelenben vett plusz végtelen* határérték definícióját.

Válasz. Legyen $f \in \mathbb{R} \to \mathbb{R}, +\infty \in \mathcal{D}_f'$. Ekkor:

$$\lim_{+\infty} f = +\infty \iff \forall P > 0 \ \exists x_0 > 0 \ \forall x \in \mathcal{D}_f, x > x_0 : f(x) > P.$$

111. Írja le a határértékre vonatkozó átviteli elvet.

Válasz. Legyen $f \in \mathbb{R} \to \mathbb{R}$, $a \in \mathcal{D}_f'$ és $A \in \overline{\mathbb{R}}$. Ekkor

$$\lim_{a} f = A \quad \Longleftrightarrow \quad \forall \ (x_n) : \mathbb{N} \to \mathcal{D}_f \setminus \{a\}, \ \lim(x_n) = a \text{ eset\'en } \lim_{n \to +\infty} (f(x_n)) = A.$$

- 112. Fogalmazza meg függvények határértékére vonatkozó közrefogási elvet.
- 113. Milyen műveleti tételeket ismer függvények határértékére vonatkozóan?

Válasz. Tegyük fel, hogy $f, g \in \mathbb{R} \to \mathbb{R}$, $a \in (\mathcal{D}_f \cap \mathcal{D}_g)'$ és léteznek az

$$A := \lim_{a} f \in \overline{\mathbb{R}}, \quad B := \lim_{a} g \in \overline{\mathbb{R}}$$

határértékek.

Ekkor

 1^o az f+g összegfüggvénynek is van határértéke az a pontban és

$$\lim_{a} (f+g) = A+B,$$

feltéve, hogy az $A + B \in \overline{\mathbb{R}}$ összeg értelmezve van;

 2^o az fg szorzatfüggvénynek is van határértéke az a pontban és

$$\lim_{a} (f g) = A B,$$

feltéve, hogy az $AB \in \overline{\mathbb{R}}$ szorzat értelmezve van;

 3^o az f/ghányadosfüggvénynek is van határértéke az a pontban és

$$\lim_{a} \frac{f}{g} = \frac{A}{B},$$

feltéve, hogy az $A/B \in \overline{\mathbb{R}}$ hányados értelmezve van.

114. Mit tud mondani a hatványsor összegfüggvényének a határértékéről?

Válasz. Tegyük fel, hogy a $\sum_{n=0}^{\infty} \alpha_n (x-a)^n$ hatványsor R konvergenciasugara pozitív. Legyen

$$f(x) := \sum_{n=0}^{+\infty} \alpha_n (x-a)^n \quad (x \in K_R(a))$$

az összegfüggvény. Ekkor bármely $b \in K_R(a)$ esetén létezik a $\lim_b f$ határérték és

$$\lim_{b} f = f(b) = \sum_{n=0}^{+\infty} \alpha_n (b-a)^n.$$

115. Definiálja függvény jobb oldali határértékét.

Válasz. Legyen $f \in \mathbb{R} \to \mathbb{R}$ és tegyük fel, hogy $a \in (\mathcal{D}_f \cap (a, +\infty))'$. Azt mondjuk, hogy az f függvénynek az a helyen létezik a jobb oldali határértéke, ha a

$$g(x) := f(x)$$
 $(x \in \mathcal{D}_f \cap (a, +\infty))$

függvénynek a-ban van határértéke. Ezt a határértéket az f függvény a helyen vett jobb oldali határértékének nevezzük és így jelöljük:

$$\lim_{a \to 0} f := \lim_{a} g \in \overline{\mathbb{R}}.$$

• Függvények folytonossága

116. Definiálja egy $f \in \mathbb{R} \to \mathbb{R}$ függvény pontbeli folytonosságát.

Válasz. Egy $f \in \mathbb{R} \to \mathbb{R}$ függvény az $a \in \mathcal{D}_f$ pontban folytonos, ha

$$\forall \epsilon > 0 \ \exists \delta > 0 \ \forall x \in \mathcal{D}_f, |x - a| < \delta : |f(x) - f(a)| < \epsilon.$$

117. Mi a kapcsolat a pontbeli folytonosság és a határérték között?

Válasz. Ha $a \in \mathcal{D}_f \cap \mathcal{D}_f'$, akkor $f \in C\{a\} \iff \exists \lim_a f \text{ és } \lim_a f = f(a)$.

118. Milyen tételt ismer hatványsor összegfüggvényének a folytonosságáról?

Válasz. Hatványsor összegfüggvénye a konvergenciahalmaz minden pontjában folytonos.

119. Hogyan szól a folytonosságra vonatkozó átviteli elv?

Válasz.
$$f \in C\{a\} \iff \forall (x_n) : \mathbb{N} \to \mathcal{D}_f, \lim_{n \to +\infty} x_n = a \text{ eset\'en } \lim_{n \to +\infty} f(x_n) = f(a).$$

120. Fogalmazza meg a hányadosfüggvény pontbeli folytonosságára vonatkozó tételt.

Válasz. Ha $f,g \in C\{a\}$ és $g(a) \neq 0$, akkor $\frac{f}{g} \in C\{a\}$.

121. Milyen tételt ismer az összetett függvény pontbeli folytonosságáról?

Válasz.
$$g \in C\{a\}, f \in C\{g(a)\} \Longrightarrow f \circ g \in C\{a\}.$$

122. Mit tud mondani a korlátos és zárt $[a,b]\subset\mathbb{R}$ intervallumon folytonos függvény értékkészletéről?

Válasz. Legyen $a,b \in \mathbb{R},\ a < b$. Ha az $f:[a,b] \to \mathbb{R}$ függvény folytonos [a,b]-n, akkor f korlátos [a,b]-n.

123. Hogyan szól a Weierstrass-tétel?

Válasz. Legyen $-\infty < a < b < +\infty$. Ha az $f : [a, b] \to \mathbb{R}$ függvény folytonos az [a, b] intervallumon, akkor f-nek létezik abszolút maximum- és abszolút minimumhelye, azaz

$$\exists \alpha, \beta \in [a, b]: f(\beta) < f(x) < f(\alpha) (\forall x \in [a, b]).$$

124. Mit mond ki a Bolzano-tétel?

Válasz. Tegyük fel, hogy $f:[a,b] \to \mathbb{R}$ folytonos függvény $(a < b, a, b \in \mathbb{R})$. Ha f a két végpontban különböző előjelű értéket vesz fel, vagyis ha $f(a) \cdot f(b) < 0$, akkor van olyan $\xi \in (a,b)$ pont, amelyre $f(\xi) = 0$.

125. Mit mond ki a Bolzano-Darboux-tétel?

Válasz. Legyen $-\infty < a < b < +\infty$. Tegyük fel, hogy az $f:[a,b] \to \mathbb{R}$ függvény folytonos [a,b]-n és $f(a) \neq f(b)$. Ekkor f minden f(a) és f(b) közötti értéket felvesz [a,b]-n, azaz ha f(a) < f(b), akkor $\forall c \in (f(a),f(b))$ -hez $\exists \xi \in (a,b): f(\xi) = c$.

126. Mit jelent az, hogy egy f függvény Darboux-tulajdonságú?

Válasz. Legyen $I \subset \mathbb{R}$ tetszőleges intervallum. Az $f: I \to \mathbb{R}$ függvény Darbouxtulajdonságú I-n, ha minden $a,b \in I$, $-\infty < a < b < +\infty$, $f(a) \neq f(b)$ esetén az f függvény minden f(a) és f(b) közötti értéket felvesz [a,b]-ben.

127. Milyen állítást ismer az inverz függvény folytonosságáról?

Válasz. Legyen $-\infty < a < b < +\infty$. Tegyük fel, hogy az $f:[a,b] \to \mathbb{R}$ függvény folytonos [a,b]-n és invertálható. Ekkor az f^{-1} inverz függvény folytonos a $\mathcal{D}_{f^{-1}} = \mathcal{R}_f$ halmazon.