Grundbegriffe der Informatik

Aufgaben, wie sie vielleicht in einer Klausur dran kommen könnten

Die nachfolgenden Aufgaben könnten so oder so ähnlich, evtl. in vereinfachter Form, in der Klausur dran kommen könnten.

Achtung: Aus der Tatsache, dass gewisse Aufgabentypen oder Themen im folgenden nicht abgedeckt werden, darf man nicht schließen, dass Entsprechendes auch nicht in der Klausur dran kommen kann.

Noch mal Achtung: Die Anzahl der nachfolgend aufgeführten Aufgaben hat nichts mit der Anzahl Aufgaben in der Klausur zu tun.

Und noch mal Achtung: Die angegebene Punktzahlen geben nicht in allen Fällen den Schwierigkeitsgrad der Teilaufgaben wider.

Aufgabe Ü.15 (3+3+1+1 Punkte)

Es sei $L = \{a^nba^n \mid n \in \mathbb{N}_0\}$ und \equiv_L die zugehörige Nerode-Äquivalenz.

- a) Geben Sie für jede Äquivalenzklasse A aus $\{a,b\}_{t=1}^*$ ein Element $w\in A$ an.
- b) Geben Sie für jede Äquivalenzklasse $[w]_{\equiv_L} \in \{a,b\}_{/\equiv_L}^*$ die Menge $\{w' \in \{a,b\}^* \mid ww' \in L\}$ an.
- c) Gibt es eine rechtslineare Grammatik G, für die L(G)=G gilt?
- d) Begründen Sie Ihre Antwort aus Teilaufgabe c).

Aufgabe Ü.16 (2+1+1+2+3 Punkte)

Es sei $f : \mathbb{N}_0 \to \mathbb{N}_0$ eine Funktion, für die die Äquivalenzrelation $F = \{(x,y) \in \mathbb{N}_0 \times \mathbb{N}_0 \mid f(x) = f(y)\}$ mit der Addition verträglich ist.

Zeigen Sie:

- a) $f(0) = f(1) \Rightarrow \forall n \in \mathbb{N}_0 : f(n) = f(0).$
- b) $\forall n \in \mathbb{N}_0 : [f(n) = f(0) \to \forall k \in \mathbb{N}_0 : f(kn) = f(0)].$
- c) $\forall n \in \mathbb{N}_0 : \forall k \in \mathbb{N}_0 : \forall m \in \mathbb{N}_0 : [f(n) = f(0) \Rightarrow f(kn + m) = f(m)].$
- d) $\forall n_1 \in \mathbb{N}_0 : \forall n_2 \in \mathbb{N}_0 : [n_1 > n_2 \land f(n_1) = f(n_2) \Rightarrow f(n_1 n_2) = f(0)].$
- e) (schwer!)

$$\exists n \in \mathbb{N}_0: \ \forall n_1 \in \mathbb{N}_0: \ \forall n_2 \in \mathbb{N}_0:$$
$$\left[f(n_1) = f(n_2) \iff \exists k \in \mathbb{N}_0: |n_1 - n_2| = kn \right]$$

Aufgabe Ü.17 (3+1 Punkte)

Es sei G=(N,T,S,P) eine kontextfreie Grammatik mit der Eigenschaft, dass für jede Produktion $X\to w\in P$ gilt:

$$\exists Y \in N : \exists w_1, w_2 \in T^* : w = w_1 Y w_2 \land |w_1| = |w_2| \text{ oder } w \in T^*.$$

a) Zeigen Sie durch Induktion über die Ableitungslänge:

$$S \Rightarrow^* w \land w \notin T^* \Rightarrow \exists v_1, v_2 \in T^* : \exists Y \in N : w = v_1 Y v_2 \land |v_1| = |v_2|$$
.

b) Was "bedeutet" diese Aussage umgangssprachlich?

Aufgabe Ü.18 (2+2+2+2 Punkte)

Die Turingmaschine T sei durch folgende Überführungstabelle gegeben:

Die Eingabe sei ein Wort $w \in \{a^n b^m \mid n, m \in \mathbb{N}_+\}.$

- a) Es sei n > m. Welches Wort steht auf dem Band, nachdem der Zustand zum ersten Mal von z_2 zu z_0 gewechselt hat?
- b) Es sei n < m. Welches Wort steht auf dem Band, nachdem der Zustand zum ersten Mal von z_4 zu z_0 gewechselt hat?
- c) Es sei n=m. Welches Wort steht auf dem Band, nachdem der Zustand f geworden ist?
- d) Welches Wort steht am Ende auf dem Band für $(n, m) \in \{(3, 4), (8, 5), (9, 12), (12, 9), (12, 8)\}$?
- e) Welches Wort steht am Ende auf dem Band für allgemeine $n, m \in \mathbb{N}_+$?

Aufgabe Ü.19 (1+1+1+1+2+2 Punkte)

Alle folgenden Mengen sind Sprachen über dem Alphabet {a, b}. Geben Sie für die folgenden Mengen reguläre Ausdrücke an:

- 1. Die Menge aller Wörter gerader Länge.
- 2. Die Menge aller Wörter, die mit a anfangen und mit a aufhören.
- 3. Die Menge aller Wörter gerader Länge, die mit a anfangen und mit b enden.
- 4. Die Menge aller Wörter, deren fünftletztes Zeichen a ist.
- 5. Die Menge aller Wörter, die aba als Teilwort enthalten.
- 6. Die Menge aller Wörter, die aba nicht als Teilwort enthalten.
- 7. Für zwei Wörter u, v gilt: u ist Präfix von v, falls es ein Wort w gibt, so dass uw = v gilt.

Geben Sie einen regulären Ausdruck für die Menge aller Wörter v an, für die gilt: Alle Präfixe von v enthalten a höchstens einmal mehr als b und b höchstens einmal mehr als a. (abb ist so ein Wort, abbbaa nicht, da abbb das Zeichen b zweimal mehr enthält als a).

Aufgabe Ü.20 (3+3 Punkte)

Geben Sie zu jedem der folgenden regulären Ausdrücke R jeweils einen endlichen Akzeptor A_R an mit $L(A_R) = \langle R \rangle$.

- a) (ab*a|b) (b*ab*a)* (Hinweis: Drei Zustände reichen aus.)
- b) $(a*bb)*(\emptyset*|ba(a|b)*)$ (Hinweis: $\langle\emptyset*\rangle=\{\epsilon\}$.)

Aufgabe Ü.21 (4 Punkte)

Gegeben sei die Grammatik
$$G = (\{\mathtt{S},\mathtt{X},\mathtt{Y}\}, \{\mathtt{a},\mathtt{b},\mathtt{c}\}, S, P)$$
 mit $P = \{\mathtt{S} \to \mathtt{a}\mathtt{X} \mid \mathtt{b}\mathtt{Y},\mathtt{X} \to \mathtt{a}\mathtt{c}\mathtt{X} \mid \mathtt{b}\mathtt{Y},\mathtt{Y} \to \mathtt{b} \mid \mathtt{c} \mid \mathtt{a}\mathtt{S}\}.$

Geben Sie einen regulären Ausdruck R an, so dass $\langle R \rangle = L(G)$ gilt.

Aufgabe Ü.22 (4 Punkte)

Für ein Wort $w \in \{a, b\}^*$ bezeichne $w' \in \{a, b, c\}^*$ das Wort, das man erhält, wenn man jedes Vorkommnis des Teilworts abb in w durch ccc ersetzt.

Für w= aaababba erhält man zum Beispiel aaabccca.

Geben Sie einen Mealy-Automaten A an, so dass man bei Eingabe von $w \in \{a, b\}^*$ das Wort w' wie oben beschrieben erhält.

Aufgabe Ü.23 (3 Punkte)

Es sei M eine Menge mit einer Halbordnung \sqsubseteq und $T\subseteq M$ eine Teilmenge von M mit folgenden Eigenschaften:

- $\bullet \ T$ besitzt ein größtes Element g.
- ullet T besitzt ein Supremum s.

Beweisen Sie: g = s.