Contrôle d'algèbre linéaire N°4

Durée: 1 heure 15 minutes. Barème sur 10 points.

NOM:	
	Groupe
PRENOM:	

1. On considère la matrice A dépendant d'un paramètre $a \in \mathbb{R}$:

$$A = \left(\begin{array}{ccc} 3 & -2 & 1 - a \\ -2 & 3 & 0 \\ 0 & 0 & a \end{array}\right) .$$

Pour quelles valeurs de a la matrice A est-elle diagonalisable?

2.5 pts

2. Soient \vec{u} et \vec{v} deux vecteurs de \mathbb{R}^3 tels que $\vec{u} \cdot \vec{v} = k \neq 0$.

Soit f l'endomorphisme dans \mathbb{R}^3 défini par la projection orthogonale de l'espace sur le plan $\Pi(0, \vec{u}, \vec{v})$.

(a) Donner une base propre de f et la matrice de f relativement à cette base.

Soit q l'endomorphisme de \mathbb{R}^3 défini par

$$g : \mathbb{R}^3 \longrightarrow \mathbb{R}^3$$

$$\vec{x} \longmapsto (\vec{x} \cdot \vec{u}) \, \vec{v} + (\vec{u} \cdot \vec{v}) \, \vec{x} \, .$$

- (b) A l'aide d'une base propre de g, donner une interprétation géométrique de g.
- (c) En utilisant une base propre commune à f et g à construire, déterminer k tel que l'endomorphisme h défini par

$$h = k^2 f - g + i_3$$

comporte dans sa décomposition une projection de \mathbb{R}^3 sur une droite (i_3 étant l'application identité dans \mathbb{R}^3). 4 pts 3. Soit f un endomorphisme de \mathbb{R}^3 dont la matrice relativement à la base canonique est

$$M_f = \begin{pmatrix} 2m & m-1 & (m+1)^2 \\ -2m & 1-m & -1 \\ m & 0 & 3m \end{pmatrix},$$

m étant un paramètre réel.

(a) Déterminer $m \geq 0$ pour que le noyau de f soit une droite de \mathbb{R}^3 . Donner alors une base de $\ker f$.

On pose m=-2 . Soit \vec{b} donné par

$$\vec{b} = \begin{pmatrix} \alpha^2 - 1 \\ \alpha + 1 \\ 2 \end{pmatrix}, \quad \alpha \in \mathbb{R}.$$

(b) Déterminer α pour que $f^{-1}(\{\,\vec{b}\,\})$ soit l'ensemble vide.

3.5 pts