COMP498G/691G COMPUTER VISION

LECTURE 3
IMAGE SAMPLING

Administrative

- Lab session starts tonight
 - Attend, follow the instructions, and ask questions

Review of last week's lectures

- Introduction to computer vision
- Image filtering
 - Images
 - Morph demo
 - •GIMP demo
- Questions

Today's Lecture

- Image Sampling
 - Slides acknowledgment: A. Farhadi, S. Seitz
- Questions

Image Sampling

Moire patterns

- http://www.sandlotscience.com/Moire/Circular 3 Moire.htm

Image Sampling

Image Scaling

This image is too big to fit on the screen. How can we reduce it?

How to generate a half-sized version?

Throw away every other row and column to create a 1/2 size image - called image sub-sampling

Throw away every other row and column to create a 1/2 size image - called image sub-sampling

1/4

Throw away every other row and column to create a 1/2 size image - called image sub-sampling

1/4

1/8

Why is this a bad effect?

Image credit: F. Durand

Why is this a bad effect?

Even worse for synthetic images

Down-sampling

Aliasing can arise when you sample a continuous signal or image

- occurs when your sampling rate is not high enough to capture the amount of detail in your image
- Can give you the wrong signal/image—an alias
- formally, the image contains structure at different scales
 - o called "frequencies" in the Fourier domain
- the sampling rate must be high enough to capture the highest frequency in the image

Sampling and the Nyquist rate

- To avoid aliasing:
 - sampling rate ≥ 2 * max frequency in the image
 - said another way: ≥ two samples per cycle
 - This minimum sampling rate is called the Nyquist rate

Wagon-wheel effect

Imagine a spoked wheel moving to the right (rotating clockwise). Mark wheel with dot so we can see what's happening.

If camera shutter is only open for a fraction of a frame time (frame time = 1/30 sec. for video, 1/24 sec. for film):

Without dot, wheel appears to be rotating slowly backwards! (counterclockwise)

Source: L. Zhang

2D example

Good sampling

Bad sampling

How to fix this?

Gaussian 1/2

Solution: filter the image, then subsample

• Filter size should double for each ½ size reduction. Why?

G 1/4

Gaussian 1/2

Solution: filter the image, then subsample

• Filter size should double for each ½ size reduction. Why?

G 1/4

Gaussian 1/2

Solution: filter the image, then subsample

• Filter size should double for each ½ size reduction. Why?

Gaussian 1/2 G 1/4 Solution: filter the image, then subsample

Why does this work?

G 1/8

Compare with...

1/2 1/4 (2x zoom) 1/8 (4x zoom)

Solution: filter the image, then subsample

- Filter size should double for each ½ size reduction. Why?
- How can we speed this up?

Gaussian pre-filtering

 Solution: filter the image, then subsample

Gaussian pyramid

The Gaussian Pyramid $G_4 = (G_3 * gaussian) \downarrow 2$

Low resolution

$$G_4 = (G_3 * gaussian) \downarrow 2$$

 $G_3 = (G_2 * gaussian) \downarrow 2$

$$G_2 = (G_1 * gaussian) \downarrow 2$$

$$G_1 = (G_0 * gaussian) \downarrow 2$$

$$G_0 =$$
Image

High resolution

Gaussian Pyramid

The Laplacian Pyramid

$$L_i = G_i - \operatorname{expand}(G_{i+1})$$

Gaussian Pyramid $G_i = L_i + \operatorname{expand}(G_{i+1})$ Laplacian Pyramid

Some times we want many resolutions

Known as a Gaussian Pyramid [Burt and Adelson, 1983]

- In computer graphics, a mip map [Williams, 1983]
- A precursor to wavelet transform

Gaussian Pyramids have all sorts of applications in computer vision

We'll talk about these later in the course

Gaussian pyramid construction

Repeat

- Filter
- Subsample

Until minimum resolution reached

can specify desired number of levels (e.g., 3-level pyramid)

Moire patterns in real-world images. Here are comparison images by Dave Etchells of Imaging Resource using the Canon D60 (with an antialias filter) and the Sigma SD-9 (which has no antialias filter). The bands below the fur in the image at right are the kinds of artifacts that appear in images when no antialias filter is used. Sigma chose to eliminate the filter to get more sharpness, but the resulting apparent detail may or may not reflect features in the image.

More examples

How do we compute the values of pixels at fractional positions?

How do we compute the values of pixels at fractional positions?

How do we compute the values of pixels at fractional positions?

Bilinear sampling:

$$f(x + a, y + b) =$$

$$(1 - a)(1 - b) f(x, y) +$$

$$a(1 - b) f(x + 1, y) +$$

$$(1 - a)b f(x,y + 1) +$$

$$ab f(x + 1, y + 1)$$

Bicubic sampling fits a higher order function using a larger area of support

Up-sampling methods

CONCORDIA.CA

Copyright © Charalambos Poullis

Image resampling

So far, we considered only power-of-two subsampling

- What about arbitrary scale reduction?
- How can we increase the size of the image?

d = 1 in this example

Recall how a digital image is formed

$$F[x, y] = quantize\{f(xd, yd)\}$$

- It is a discrete point-sampling of a continuous function
- If we could somehow reconstruct the original function, any new image could be generated, at any resolution and scale

Image resampling

So far, we considered only power-of-two subsampling

- What about arbitrary scale reduction?
- How can we increase the size of the image?

d = 1 in this example

Recall how a digital image is formed

$$F[x, y] = quantize\{f(xd, yd)\}$$

- It is a discrete point-sampling of a continuous function
- If we could somehow reconstruct the original function, any new image could be generated, at any resolution and scale

Image resampling

So what to do if we don't know f

- Answer: guess an approximation \tilde{f}
- Can be done in a principled way: filtering

d = 1 in this example

Image reconstruction

- Convert f_F^F continuous function $f_F(x) = F(\frac{x}{d})$ when $\frac{x}{d}$ is an integer, 0 otherwise
- Reconstruct by $\tilde{f} = h \otimes \tilde{f}_F$ n:

Resampling filters

What does the 2D version of this hat function look like?

Simpler implementation of bilinear interpolation

Better filters give better resampled images

- Bicubic is common choice
- fit 3rd degree polynomial surface to pixels in neighborhood
- can also be implemented by a convolution

CONCORDIA.CA

Copyright © Charalambos Poullis