1. (\$ 1.6. Ex 4(a))

Pf. Consider induction on the cardinality of finite set A If |A|=1, the largest element would be the only element. Suppose |A|=k and A has a largest element for some $k \in \mathbb{N}$. When |A|=k+1. Nandomly remove an element as from A $|A| \le k+1$. Pandomly remove an element as from A $|A| \le k+1$. By hypothesis $|A| \le k+1$ element, denoted by a $|A| \le k+1$ and $|A| \le k+1$ element.

if ao < as the largest element of A would be as else the largest element of A would be ao.

By induction. A nonempty finite simply ordered set has a largest element.

2. (§ 1.6. Ex 6).

f is obviously a bijection.
given
$$x=(x_1, x_2, ..., x_n) \in X^n$$
. $f^{-1}(x) = \{i \in A \mid x_i = 1\} \in \mathcal{P}(A)$.

(b). Pf. In (a). Since there's a bijection from P(A) to X^n .

When A is finite. n is finite. Also $x = \{0,1\}$ is finite by Corollary 6.8. X^n is finite.

So P(A) is finite.

3. (& 1.6. Ex7).

Pf. Denote the set of all functions $f:A \Rightarrow B$ by B^A By definition $\forall f \in B^A$. $f = A \times B \Rightarrow B^A = P(A \times B)$ Since A and B are finite. By Corollary 6.8 $A \times B$ is finite By $E \times b \cdot (b)$. $P(A \times B)$ is finite So $B^A = P(A \times B)$ should be finite. 4. (§ 1.7. Ex 1)

Pf. In Corollary 7.4. It was proved that \mathbb{Q}^{+} is countable. Let \mathbb{Q}^{-} be the set of all negative rational numbers. there's a dijection $f: \mathbb{Q}^{+} \to \mathbb{Q}^{-}$

There's a dijection $f: \mathbb{Q}^+ \to \mathbb{Q}^-$ 2 \mapsto -9

so Q is countably infinite.

By Theorem 7.5 since $Q = Q^+ U Sog UQ^-$

so Q is countably infinite.

5. (§ 1.7. Ex 4),

(a) Pflet $P_n(x)$ be the set of polynomial of degree n with rational coefficients. Here's a bijection

 $f: \mathbb{Q}^n \to \mathbb{P}_n(x)$

 $(a_0, a_1, \cdots, a_{n-1}) \mapsto \chi^n + a_{n-1} \chi^{n-1} + \cdots + a_0$

In § 1.7. Ex 1. I showed that Q is countable so by Theorem 7.6. $\forall n \in \mathbb{N}$. Q^n is countable by Theorem 7.5. $\bigcup Q^n$ is countable Q^n is countable

So $P(x) := \bigcup_{n \in \mathbb{N}} P_n(x)$ is countable Since $\forall p \in |P(x)|$. p(x) = 0 has only finitely many roots. $\begin{cases} x \mid p(x) = 0 \text{ . } p(x) \in P(x) \end{cases}$ by Theorem 7.5 is countable i.e. the set of algebraic numbers is countable.

Lb). Pf. since IR is uncountable.

if the set of transcendental numbers is countable. by definition |R = |Sa|a is algebraic |St| |t| = |Tanscendental|

by Theorem 7.5. IR should be comtable.

contradiction.

so the set of transcendental numbers is uncountable. II.

6. (§ 1.7. Exs)
(a). Pf. Yes.

Denote the set of all functions from $\{0,1\}$ to \mathbb{Z}_+ by $\mathbb{Z}_+^{\{0,1\}}$ by definition $\mathbb{Z}_+^{\{0,1\}} = \{(0,m) \mid m \in \mathbb{Z}_+\} \times \{(1,n) \mid n \in \mathbb{Z}_+\}$ by Theorem 7.6. $\mathbb{Z}_+^{\{0,1\}}$ is countable.

(i). Pf. let $f: I \rightarrow A$ $\{a,b\} \mapsto 0 \mapsto \min\{a,b\}$ $1 \mapsto \max\{a,b\}$ by definition f is injective.

as proved in (a) that A is constable so I is countable.

I is obviously infinite because it contains $\{(0.z)|z\in\mathbb{Z}_+\}$