THE MARKOV CHAIN MONTE CARLO METHOD

David Kirkby, UC Irvine

LSSTC Data Science Fellows Program Caltech, January 2017

WHAT IS MARKOV CHAIN MONTE CARLO (MCMC)?

- ➤ MCMC is a computational tool to solve the following:
 - \triangleright Given $p(\theta)$ proportional to some prob. density function:
 - $ightharpoonup prob(\theta) = p(\theta)/N$
 - $p(\theta) \ge 0$

$$N = \int p(\theta) d\theta$$
 , $0 < N < \infty$

- > suppose you have a written a function to evaluate $p(\theta)$
 - ➤ def p(theta): ...
- \triangleright generate values $\theta_1, \theta_2, \theta_3, \dots$ sampled from this p.d.f.
 - ➤ for i in range(10): print generate()

WHY IS THIS PROBLEM IMPORTANT IN MACHINE LEARNING?

- ➤ Central to Bayesian inference:
 - $ightharpoonup P(\theta | D) = P(D | \theta) P(\theta) / P(D)$
 - \triangleright $D = \text{data}, \theta = \text{parameters}.$
 - \triangleright Evidence P(D) is usually not practical to calculate.
 - Take $p(\theta) = P(D|\theta) P(\theta)$, which is often much easier to calculate.
- ➤ Can now use MCMC to generate a random sequence of parameter values.
- ➤ MCMC is often the only (or most straightforward) method for doing this.

HOW ARE RANDOM SAMPLES USEFUL?

HOW ARE RANDOM SAMPLES USEFUL?

- ➤ Can marginalize over any subset of (nuisance) parameters.
- ➤ Can estimate distributions of arbitrary functions of params.
- ➤ Can perform Monte-Carlo integrations:

OUTLINE

- ➤ Stochastic Processes and Markov Chains
- ➤ Markov Chain Monte Carlo
- ➤ Practical Advice
- > Exercise

STOCHASTIC PROCESSES

➤ A stochastic process is a black box generator of random samples:

$$X_1, X_2, ..., X_n, X_{n+1}, ...$$

- ➤ In general, the next sample depends on all previous samples, *i.e.*, the samples form a correlated sequence
- ➤ For example:

```
history = []
def stochastic():
   history.append(random.uniform())
   return sum(history)
```

MARKOV CHAINS

➤ A Markov chain is a special type of stochastic process:

$$X_1, X_2, \ldots, X_n, X_{n+1}, \ldots$$

$$X_{n+1} \text{ depends } \underline{only} \text{ on } X_n$$

 X_{n+1} aepenas <u>only</u> on X_n (and not on $X_1, X_2, ..., X_{n-1}$)

➤ An important subset of Markov chains are "stationary":

$$X_{1}, X_{2}, ..., X_{n}, X_{n+1}, ..., X_{m}, X_{m+1}, ...$$

$$P(X_{n+1}|X_{n}) = P(X_{m+1}|X_{m})$$

$$\sim time\ invariant$$

MARKOV CHAINS

➤ Another important property is "reversibility":

➤ A <u>reversible</u> chain is <u>stationary</u> but not vice versa.

ACTIVITY: STATIONARY / NON-STATIONARY / NON-REVERSIBLE?

ACTIVITY: STATIONARY / NON-STATIONARY / NON-REVERSIBLE?

ACTIVITY: BUILD YOUR FIRST MARKOV CHAIN

- ➤ Build a Markov chain for the weather where you grew up:
 - ➤ Identify the main types of weather (raining, windy, ...)
 - > Write down the probabilities for each possible transition

	tomorrow				
	Prob		-	***	
today	100	0.50	0.25	0.25	ro
	-				

row sum = 100%

➤ Enter your probabilities at http://setosa.io/markov/

```
[[0.50, 0.25, 0.25], [...], [...]
```

ACTIVITY: IDENTIFY (APPROXIMATE) MARKOV CHAINS

- ➤ Is the sequence of letters in a book a Markov chain?
- ➤ Is the sequence of words in a book a Markov chain?

$$X_1, X_2, ..., X_n, X_{n+1}, ...$$

$$X_{n+1} \text{ depends } \underline{only} \text{ on } X_n$$

$$(and not on $X_1, X_2, ..., X_{n-1})$$$

- ➤ If you answered NO, is it at least approximately YES?
- ➤ How could you generate a random book with a Markov chain?

MARKOV CHAINS FOR NATURAL LANGUAGE

- Examples of randomly generated words
- ➤ Use a more general stochastic process for better results:
 - ➤ for practical implementation, use a "recurrent neural network" with "long-short-term memory".
 - ➤ The unreasonable effectiveness of RNNs

```
static void num_serial_settings(struct tty_struct *tty)
{
  if (tty == tty)
    disable_single_st_p(dev);
  pci_disable_spool(port);
  return 0;
}
```

MARKOV CHAIN STATE SPACE

- ➤ The "state space" of a process is the set of all possible values.
- ➤ The weather and language examples have a finite state space.
- The possible values in a scientific application are usually real numbers: the state space is (uncountably) infinite.
 - ➤ Can no longer represent transition probabilities with a matrix or graph.
- ➤ The output values can also be multi-dimensional.
- ➤ The essential elements of Markov theory still hold in an infinite multi-dimensional state space.

MARKOV CHAIN DISTRIBUTIONS

➤ A Markov chain is specified by two distributions:

$$1 \longrightarrow X_1, X_2, \ldots, X_n, X_{n+1}, \ldots$$

THE EQUILIBRIUM DISTRIBUTION OF A MARKOV CHAIN

➤ A stationary Markov chain eventually reaches an equilibrium distribution of states:

THE EQUILIBRIUM DISTRIBUTION OF A MARKOV CHAIN

➤ The equilibrium distribution depends only on the transition probabilities, and not on the initial distribution.

THE EQUILIBRIUM DISTRIBUTION OF A MARKOV CHAIN

➤ Given transition probabilities for a stationary Markov chain, we can generate samples from <u>some</u> distribution.

- To be useful, we want to specify a target distribution.
- ➤ This requires solving a difficult inverse problem!
 - ➤ Given the target distribution, select appropriate transition probabilities.
 - ➤ Transition probabilities are encoded in an "update rule".

MARKOV CHAIN UPDATE METHODS

- ➤ MCMC algorithms do not use stationary Markov chains!
- ➤ Instead, they are carefully designed to have similar properties.
- ➤ All practical methods are special cases of the Metropolis-Hastings-Green algorithm:
 - Metropolis-Hastings
 - Metropolis
 - ➤ Gibbs
 - ➤ Hamiltonian
- ➤ The simpler Metropolis-Hastings algorithm contains the essential ideas, so we will focus on that.

- ► Goal is to sample a target probability density $p(\theta)/N$.
 - ► N is too expensive to calculate, unlike $p(\theta)$.
 - > target is typically a Bayesian posterior, but this is not required.
- ► Generate <u>proposed</u> updates $\theta_n \rightarrow \theta_{n+1}$ by sampling a distribution $q(\theta_{n+1} | \theta_n)$.
 - ➤ Chose *q* that is easier to sample than *p* (you don't need MCMC if you can sample *p* directly!)
 - \succ q is often a (multivariate correlated) Gaussian, for convenience.
 - \triangleright Choice of *q* affects the algorithm efficiency but not its validity.

```
sample = proposal_density.sample()
if mode == 'random-walk':
   new_theta = old_theta + sample
elif mode == 'independent':
   new_theta = sample
```


➤ Calculate the "Hastings ratio":

$$r(\theta_n, \theta_{n+1}) = \frac{p(\theta_{n+1}) q(\theta_n | \theta_{n+1})}{p(\theta_n) q(\theta_{n+1} | \theta_n)}$$

► Accept the proposed update $\theta_n \rightarrow \theta_{n+1}$ with probability:

$$P_{acc} = \min(1, r(\theta_n, \theta_{n+1}))$$

- ► If the proposed update is not accepted, keep the original value, $\theta_{n+1} = \theta_n$, with probability 1 P_{acc} .
 - ➤ The generated chain will normally have some repeats!

```
ratio = p(new) / p(old) * q(old, new) / q(new, old)
accept_prob = min(1, ratio)
```

Which points will be favored for these proposal distributions?


```
ratio = p(new) / p(old) * q(old, new) / q(new, old)
accept_prob = min(1, ratio)
```

Which points will be favored for these proposal distributions?

METROPOLIS UPDATES

► MH updates reduce to Metropolis updates when the proposal function is reversible, $q(\theta_n | \theta_{n+1}) = q(\theta_{n+1} | \theta_n)$:

$$r(\theta_n, \theta_{n+1}) = \frac{p(\theta_{n+1}) q(\theta_n | \theta_{n+1})}{p(\theta_n) q(\theta_{n+1} | \theta_n)} = \frac{p(\theta_{n+1})}{p(\theta_n)}$$

- ➤ Recap of Metropolis-Hastings requirements:
 - \triangleright Can <u>evaluate</u> target probability density $p(\theta_n)$ up to a constant.
 - ► Can evaluate proposal density $q(\theta_{n+1} | \theta_n)$ (up to a constant).
 - ► Can <u>sample</u> from proposal density, $\theta_n \rightarrow \theta_{n+1}$.

1. Decompose state space into subspaces:

2. Update variables of each subspace in consecutive steps:

3. Sample updated variables from the conditional probability $P(\theta \mid \phi)$

4. Condition on new values of earlier subsets $P(\theta \mid \phi_{new}, \phi_{old})$

5. Start over and repeat this cycle.

- ➤ Special case of Metropolis Hastings.
- ➤ Acceptance probability is always one, by construction.
- ➤ Requires that conditional probabilities can be sampled.
- ➤ Freedom to choose whatever subsets make this easiest most efficient.

ENSEMBLE SAMPLERS

- ➤ Based on the paper:
 - ➤ Goodman & Weare, Ensemble Samplers with Affine Invariance
- ➤ Implemented in <u>emcee</u>
- ➤ Ensemble: many "walkers" simultaneously generating correlated Markov chains.
- ➤ Affine invariance: efficiency not affected by any linear (aka "affine") transformation of the parameter space.

ENSEMBLE SAMPLERS

- ➤ Each walker performs Metropolis-Hastings updates but using a proposal distribution that depends on the current positions of all other walkers.
- > Straightforward to parallelize
- Does not require derivatives

- Relies on a nifty physics analogy.
- ➤ "Recall" that the equations of motion for a system with Hamiltonian H are:

$$\frac{dq_i}{dt} = +\frac{\partial H}{\partial p_i} \quad , \quad \frac{dp_i}{dt} = -\frac{\partial H}{\partial q_i}$$

- $ightharpoonup q_i$ and p_i are the position and momentum of particle i.
- ➤ Can often split H into kinetic and potential terms:

$$H(q, p) = U(q) + K(p)$$

$$K(p) = \sum_{i} \frac{p_i^2}{2m_i}$$

➤ This leads to simpler eqns. of motion:

$$\frac{dq_i}{dt} = \frac{p_i}{m_i} \quad , \quad \frac{dp_i}{dt} = -\frac{\partial U}{\partial q_i}$$

- ➤ We turn Hamiltonian dynamics into a Markov chain by:
 - ➤ Identify positions *q* with the parameters we wish to sample.
 - ➤ Create new parameters *p* for the corresponding momenta . We will treat these as nuisance parameters, but this doesn't look promising since we just doubled the dimension of our sampling space!
 - ➤ Pick a random starting point then follow its evolution according to Hamiltonian dynamics for some fixed time.

- ➤ Each time we repeat the last step, we add a new point to the generated chain.
- ➤ Total energy is conserved (by construction) so the distribution of the resulting values is given by the canonical distribution from statistical mechanics:

$$\operatorname{prob}(q) \propto \exp\left(-\frac{U(q)}{kT}\right)$$

Therefore, pick a "potential energy" to recover the probability distribution P(q) that we actually want $(q \sim parameters)$:

$$U(q) = -\log P(q)$$

- ➤ In practice, you can usually set the temperature and all masses equal to 1 and this works surprisingly well!
- ➤ The disadvantage is that the method is relatively complex to implement (so let someone else do the work for you!)
- ➤ It also requires that you can write a function to evaluate partial derivatives of your logP with respect to each parameter, which is not always feasible.
- ➤ Tensorflow and Theano are two (complex) packages that can perform automatic differentiation.

USEFUL LINKS

- ➤ Visualizations of sampling:
 - ➤ MH, Gibbs, NUTS in pymc3
 - > pymc3 vs emcee
 - ➤ Hamiltonian MC
- ➤ Comparison of different packages (emcee, pymc2, pystan)

MCMC METRICS

- ➤ Efficiency: what fraction of proposals are accepted?
- ➤ Coverage: is the target density fully explored?
- ➤ Correlation:
 - ➤ how correlated is each sample with previous samples?
 - ➤ how independent are the generated samples of the initial starting point?
- ➤ Prefer coverage and low correlations over efficiency!

ACTIVITY: VISUAL DIAGNOSTICS

- ➤ Target density is a top-hat (disk) of radius 5.
- ➤ Which samplers are: most efficient? have good coverage?
- ➤ Which samplers use "random-walk" updates?

PRACTICAL ADVICE

- ➤ How long should the chain be?
 - ➤ Large multiple of whatever sequence length is necessary for autocorrelations to drop near zero.
 - ➤ One long chain is safer than many short chains if you aren't sure.
- ➤ Should I remove the initial "burn-in" samples?
 - Mostly harmless, but un-necessary.
 - ➤ Instead, start with a value you don't mind including in your generated samples (also, MCMC is a terrible optimizer).
- ➤ Should I "thin" the generated samples to reduce correlations?
 - ➤ No! You can never get a better answer by throwing away information.

PRACTICAL ADVICE

- ➤ Which updating algorithm should I use?
 - random walks are robust but inefficient.
 - ➤ fancier algorithms suppress random walk behavior to improve efficiency but are generally more fragile.
 - > no "best algorithm": need to benchmark your problem.
- ➤ Which MCMC package should I use?
 - > Start with emcee.
 - Try <u>pymc3</u> if you need a fancier updating algorithm (e.g., Hamiltonian).
 - ➤ Don't write your own, except to learn how they work.
- ➤ Its still too slow: what do I do?
 - Try <u>variational methods</u> to obtain exact results for an approx. posterior.

REFERENCES

Chapter 1
Chapter 5

Section 5.8

Chapters 29-30

