Μελέτη Πρωτοκόλλων Ασφαλούς Υπολογισμού Πολλών Μερών (Study on Secure Multi Party Computation Protocols)

Θεόδωρος Συμεωνίδης Α.Μ. 1064870

Τμήμα Μηχανικών Η/Υ και Πληροφορικής Πανεπιστήμιο Πατρών

31 Οκτωβρίου 2022

Εισαγωγή

Αντικείμενο μελέτης

Το αντικείμενο αυτής της διπλωματικής εργασίας :

- Μελέτη Πρωτοκόλλων Ασφαλούς Υπολογισμού Πολλών Μερών (Secure Multi Party Computation (SMPC) Protocols)
- Εφαρμογή τους στην κατασκευή μιας Ασφαλούς Υπολογισμού Δύο Μερών BLAS Level-1 Βιβλιοθήκης, για πρώτη φορά στη βιβλιογραφία

Για να επιτευχθεί το παραπάνω έγινε εισαγωγή και αναπτύχθηκε το εξής θεωρητικό υπόβαθρο :

- Μαθηματικά της κρυπτογραφίας
- Σύγχρονα κρυπτογραφικά εργαλεία που χρησιμοποιούνται σε πρωτόκολλα SMPC
- Θεωρητικά αποδείξιμη ασφάλεια

Βασικοί ορισμοί

Ασφαλής Υπολογισμός: Όλες οι υπολογιστικές μέθοδοι που επιτρέπουν τον υπολογισμό επάνω σε δεδομένα κρατώντας τα δεδομένα μυστικά. Χρησιμοποιείται σε περιπτώσεις όπου τα δεδομένα ή ένα μέρος των δεδομένων μπορεί να ανήκουν σε κάποιον τρίτο ο οποίος δε θέλει να μας φανερώσει τις τιμές τους.

Παραδείγματα:

- Υπολογισμός του εσωτερικού γινομένου δυό διανυσμάτων από ένα άτομο, ενώ τα διανύσματα παρέχονται από κάποιο άλλο άτομο. Το πρώτο άτομο μπορεί να υπολογίσει το αποτέλεσμα χωρίς να μάθει τις πραγματικές τιμές των διανυσμάτων αυτών του δεύτερου ατόμου
- Υπολογισμός της Ευκλείδειας Νόρμας ενός διανύσματος από το οποίο κάθε άτομο μιας ομάδας άτομο διαθέτει ένα στοιχείο

Επαληθεύσιμος Υπολογισμός: Όλες οι υπολογιστικές μέθοδοι που επιτρέπουν να επαληθευτεί πως ένα αποτέλεσμα έχει προκύψει πράγματι από την εφαρμογή συγκεκριμένων γνωστών εισόδων σε μια επίσης γνωστή συνάρτηση.

Βασικοί ορισμοί

Κατηγορίες Ασφαλούς και Επαληθεύσιμου Υπολογισμού

- Ασφαλής Αναθέσιμος Υπολογισμός : Μη διαδραστικά πρωτόκολλα υπολογισμού (π.χ. ΗΕ, SWHE, FHE)
- Ασφαλής Υπολογισμός Πολλών Μερών : Διαδραστικά πρωτόκολλα υπολογισμού

Ασφαλής Υπολογισμός Πολλών Μερών (Secure Multi Party Computation (SMPC))

Ορισμός

Ασφαλής Υπολογισμός Πολλών Μερών (Secure Multi Party Computation ή SMPC): Είναι μια κλάση διαδραστικών κρυπτογραφικών σχημάτων που επιτρέπουν σε συμμετέχοντες P_1,P_2,\ldots,P_n με αντίστοιχες εισόδους x_1,x_2,\ldots,x_n να υπολογίσουν την έξοδο y της συνάρτησης f, ως $y=f(x_1,x_2,\ldots,x_n)$ και ικανοποιούν τις παρακάτω ιδιότητες:

- Ορθότητα : Η έξοδος y είναι η σωστή έξοδος της συνάρτησης για τις δεδομένες εισόδους.
- Ιδιωτικότητα: Η έξοδος y είναι η μόνη πληροφορία που φανερώνει το πρωτόκολλο σε έναν αντίπαλο που ελέγχει κάποιους διεφθαρμένους συμμετέχοντες.

Εφαρμογές

Εφαρμογές Ασφαλούς Υπολογισμού Πολλών Μερών :

- Κατανεμημένες ψηφοφορίες με ιδιωτικές ψήφους
- Μηχανική Μάθηση που Διατηρεί την Ιδιωτικότητα (Privacy Preserving Machine Learning)
- Στατιστική που Διατηρεί την Ιδιωτικότητα (Privacy Preserving Statistics)
- Ψηφιακές Υπογραφές Κατωφλίου (Threshold Digital Signatures) με μοναδικό ιδιωτικό κλειδί το οποίο διανέμεται σε κατάλληλη μορφή στους συμμετέχοντες ώστε αν ο κατάλληλος αριθμός συμμετεχόντων συνεργαστεί να μπορεί να παράξει μια υπογραφή χωρίς να χρειάζεται να ανακατασκευαστεί το κλειδί

Κατηγορίες ως προς το μοντέλο αναπαράστασης υπολογισμού

Κατηγορίες SMPC πρωτοκόλλων ως προς το μοντέλο αναπαράσταση του υπολογισμού :

- Αναπαράσταση ως Boolean δίκτυο/κύκλωμα Συνδυαστικής Λογικής
- Αναπαράσταση ως Αριθμητικό δίκτυο/κύκλωμα
- Πιο σύνθετες αναπαραστάσεις, όπως ως Μηχανή Turing ή RAM (Random Access Machine)

Κατηγορίες ως προς τις ιδιότητες ασφάλειας

Κατηγορίες πρωτοκόλλων SMPC ως προς τις ιδιότητες ασφάλειας :

- Πρωτόκολλα ασφαλή ενάντια σε Παθητικούς Αντιπάλους
 - Ασφαλή ενάντια σε διεφθαρμένη μειοψηφία
 - Ασφαλή ενάντια σε διεφθαρμένη πλειοψηφία
- Πρωτόκολλα ασφαλή ενάντια σε Ενεργητικούς Αντιπάλους
 - Ασφαλή ενάντια σε διεφθαρμένη μειοψηφία
 - Ασφαλή ενάντια σε διεφθαρμένη πλειοψηφία

Παραδείγματα πρωτοκόλλων

		Αριθμητικό δίκτυο		Boolean κύκλωμα	
	Υπολογιστικό Μοντέλο Μοντέλο Ασφάλειας	$modp \circ GF(2^n)$	$mod2^n$	Δυαδική Διαμοίραση Μυστικών	Μπερδεμένα Δίκτυα
Ενεργη-	Διεφθαρμένη Πλειοψηφία	MASCOT / LowGear / HighGear		Tiny / Tinier	BMR
τικός	Εμπιστή Πλειοψηφία	Shamir / Rep3 / PS / SY	Brain / Rep3 / PS / SY	Rep3 / CCD / PS	BMR
	Έμπιστη Υπερ-πλειοψηφία	Rep4	Rep4	Rep4	N/A
Συγκαλυμμένος	Διεφθαρμένη Πλειοψηφία	CowGear / ChaiGear	N/A	N/A	N/A
Παθη-	Διεφθαρμένη Πλειοψηφία	Semi / Hemi / Temi / Soho	Semi2k	SemiBin	Yao's GC / BMR
τικός	Έμπιστη Πλειοψηφία	Shamir / ATLAS / Rep3	Rep3	Rep3 / CCD	BMR
	Dealer	Dealer	Dealer	Dealer	N/A

Πίνακας: Παράδειγμα υποστηριζόμενων πρωτοκόλλων της βιβλιοθήκης MP-SPDZ. Ο παρών είναι εμπνευσμένος από έναν παρόμοιο, αλλά δυσανάγνωστο, πίνακα που υπάρχει στα εγχειρίδια χρήσης της.

- Προτάθηκε από τους Goldreich, Micali, Wigderson το 1987
- Βασίζεται σε Δυαδική Διαμοίραση Μετοχών
- Είναι ασφαλές ενάντια σε παθητικούς αντιπάλους
- ullet Μπορεί να χρησιμοποιηθεί για $n\geq 2$ συμμετέχοντες
- Μπορεί να εκτελέσει Boolean και Αριθμητικά κυκλώματα
- Οι Boolean πύλες NOT και XOR μπορούν να αποτιμηθούν, μη διαδραστικά
- Η Boolean πύλη ΑΝD απαιτεί διάδραση για την αποτίμηση της

Θα εξετάσουμε την περίπτωση δύο συμμετεχόντων, P_1 και P_2 , και μιας Boolean πύλης με δύο bit εισόδου και ένα bit εξόδου :

- Πύλη εισόδου : Έστω πως ο συμμετέχων P_1 διαθέτει ένα ιδιωτικό bit εισόδου x_i το οποίο αντιστοιχεί σε ένα καλώδιο w_i του κυκλώματος. Έστω επίσης s_i^j η μετοχή για το καλώδιο w_i του παίχτη j. Για κάθε καλώδιο i επιθυμούμε $s_i^j \oplus s_i^{j-1} = w_i$. Ο P_1 δημιουργεί τις μετοχές ως εξής :
 - Στέλνει στον P_2 το $r_i \leftarrow \{0,1\}$, η οποία είναι η μετοχή του P_2 για το καλώδιο $w_i, s_i^2 = r_i$
 - Δημιουργεί τη δική του μετοχή του w_i ως εξής : $s_i^1 = x_i \oplus r_i$

- Πύλη NOT : Έστω το καλώδιο εισόδου w_k και το καλώδιο εξόδου w_{k+1} . Στην περίπτωση της Πύλης NOT, ένας από τους δύο συμμετέχοντες (όχι και οι δύο), έστω ο P_1 , το μόνο που έχει να κάνει είναι να αντιστρέψει το bit της μετοχής του, δηλαδή $s_{k+1}^1=1-s_k^1$
- Πύλη XOR : Έστω τα καλώδια εισόδου w_k, w_{k+1} και το καλώδιο εξόδου w_{k+2} . Στην περίπτωση της Πύλης XOR, οι δύο συμμετέχοντες κάνουν XOR τις μετοχές που έχουν για κάθε μία από τις δύο εισόδους της πύλης. Δηλαδή $s_{k+2}^1=s_k^1\oplus s_{k+1}^1$ και $s_{k+2}^2=s_k^2\oplus s_{k+1}^2$

• Πύλη AND: Έστω τα καλώδια εισόδου w_k, w_{k+1} και το καλώδιο εξόδου w_{k+2} . Στην περίπτωση της Πύλης AND, ο ένας από τους δύο συμμετέχοντες, έστω ο P_1 πρέπει να ετοιμάσει ένα 1-4 OT της παρακάτω συνάρτησης :

$$S = S_{s_i^1,s_j^1}\left(s_i^2,s_j^2\right) = \left(s_i^1 \oplus s_i^2\right) \wedge \left(s_j^1 \oplus s_j^2\right)$$

Αυτό το κάνει επιλέγοντας $r \leftarrow \$\{0,1\}$ και στη συνέχεια δημιουργώντας τον παρακάτω πίνακα από τον οποία στέλνει την κατάλληλη γραμμή μέσω 1/4 ΟΤ ανάλογα με το τι τιμή έχουν οι μετοχές του P_2 :

$$T_G = \left(\begin{array}{c} r \oplus S(0,0) \\ r \oplus S(0,1) \\ r \oplus S(1,0) \\ r \oplus S(1,1) \end{array}\right)$$

BLAS (Basic Linear Algebra Subroutines)

Βασικοί ορισμοί

BLAS: Είναι μια διεπαφή/πρότυπο συναρτήσεων και ρουτινών γραμμικής άλγεβρας που επιτρέπει σε έναν κατασκευαστή υλικού να δημιουργήσει μια δική του υλοποίηση του προτύπου είναι παραμετροποιημένη για το συγκεκριμένο υλικό. Χωρίζεται σε τρία επίπεδα.

- Level-1 : Πράξεις μεταξύ διανυσμάτων
- Level-2 : Πράξεις πινάκων με διανύσματα
- Level-3 : Πράξεις μεταξύ πινάκων

Η διεπαφή της BLAS υπάρχει για δύο γλώσσες προγραμματισμού:

- FORTRAN και αποκαλείται BLAS
- C/C++ και αποκαλείται CBLAS

Η BLAS διεπαφή χρησιμοποιείται σχεδόν από κάθε πρόγραμμα που κάνει πράξεις γραμμικής άλγεβρας, ενδεικτικά αναφέρουμε τα εξής:

- Βιβλιοθήκες/Προγράμματα επιστημονικού υπολογισμού όπως η NumPy, η Sci-Py και το MATLAB
- Βιβλιοθήκες μηγανικής μάθησης όπως η Tensorflow και η PyTorch

Παραδείγματα προτύπου CBLAS

```
1 float cblas sdot (const CBLAS INT N,
                   const float *X, const CBLAS INT incX,
                   const float *Y, const CBLAS INT incY);
```

```
void cblas saxpy (const CBLAS INT N,
                   const float alpha,
                   const float *X, const CBLAS INT incX,
                   float *Y, const CBLAS INT incY);
```

Πρόβλημα

Περιγραφή προβλήματος

- Οι BLAS βιβλιοθήκες χρησιμοποιούνται σχεδόν παντού, από τον
 Επιστημονικό Υπολογισμό μέχρι την Μηχανική Μάθηση, και σε τομείς που η ιδιωτικότητα των επεξεργαζόμενων δεδομένων είναι ιδιαίτερα επιθυμητή
- Ωστόσο, δεν υπάρχει στη βιβλιογραφία, τουλάχιστον στη δική μας γνώση, κάποια βιβλιοθήκη που να επιτρέπει τη χρήση BLAS συναρτήσεων για Ασφαλή Υπολογισμό Πολλών Μερών και να μπορεί να λειτουργήσει ως σχεδόν drop-in υποκατάστατο μιας κανονικής βιβλιοθήκης

Επίλυση προβλήματος

Επίλυση προβλήματος

Επίλυση προβλήματος

Εφαρμογή του SMPC πρωτοκόλλου GMW στην κατασκευή της βιβλιοθήκης MPC-BLAS, μιας Ασφαλούς Υπολογισμού Δύο Μερών BLAS Level-1 βιβλιοθήκης, η οποία κατά τη γνώση μας, παρουσιάζεται πρώτη φορά στη βιβλιογραφία.

Η βιβλιοθήκη MPC-BLAS

Περιγραφή:

- Ένα πρόγραμμα που είναι χρησιμοποιεί τη διεπαφή CBLAS απαιτεί ελάχιστες αλλαγές στον πηγαίο του κώδικα για να χρησιμοποιήσει την διεπαφή MPC-BLAS
- Απαιτεί δύο διεργασίες, μία για κάθε συμμετέχων οι οποίες μπορούν να τρέχουν στο ίδιο μηχάνημα ή σε διαφορετικό
- Υποστηρίζει μόνο το λειτουργικό σύστημα Linux, διότι είναι το μοναδικό που υποστηρίζεται από την βιβλιοθήκη ABY. Έχει αναπτυχθεί και ελεγχθεί σε Ubuntu 22.04 LTS
- Υλοποιεί όλες τις Level-1 BLAS ρουτίνες εκτός από τις xROTx, διότι η βιβλιοθήκη ABY έχει πολύ περιορισμένη υποστήριξη για πράξεις πινάκων

Η βιβλιοθήκη MPC-BLAS

Τεχνικές Προδιαγραφές:

- Γραμμένη σε C++20 και χτισμένη με CMake
- Βασισμένη στην βιβλιοθήκη ΑΒΥ για τις κρυπτογραφικές πράξεις και την εκτέλεση του πρωτοκόλλου GMW
- Απαιτεί στατική σύνδεση (static linking), λόγω περιορισμών της βιβλιοθήκης ABY

```
float result 1 =
    cblas_sdot(4,
               test vector 1,1,
               test vector 2,1);
```

```
mpcblas initialize (SERVER,
                      " 127.0.0.1".
                      7766,
                      bitlen);
  float result 1 =
      mpcblas sdot(4,
                     test vector 1,1,
                    MPCBLAS IGNORE, 1)
               -> get_value();
10
  mpcblas uninitialize();
```

```
mpcblas initialize (SERVER,
                       " 1 2 7 . 0 . 0 . 1 " .
                       7766,
                       bitlen);
  float result 1 =
       mpcblas sdot(4,
                     MPCBLAS_IGNORE, 1,
                      test vector 2,1)
                -> get_value();
10
  mpcblas uninitialize();
```

```
cblas_saxpy(4,
    cblas_sdot(4,
                test vector 1,1,
                test_vector_2,1),
            test vector 1,1,
            test vector 2,1);
float result =
    cblas snrm2 (4,
                test vector 2,1);
```

```
mpcblas_initialize (CLIENT,
                    "127.0.0.1",
                     7766,
                     bitlen);
auto result y =
mpcblas saxpy (4,
    mpcblas_sdot(4,
                  test vector 1,1,
                  MPCBLAS IGNORE, 1)
               test_vector_1,1,
               MPCBLAS IGNORE, 1);
float result 2 =
    mpcblas snrm2(4, y, 1)
            -> get value();
mpcblas_uninitialize();
```

```
mpcblas_initialize (CLIENT,
                       " 127.0.0.1".
                        7766.
                        bitlen);
  auto result y =
  mpcblas saxpy (4,
      mpcblas_sdot(4,
                    MPCBLAS IGNORE.1.
                    test vector 2,1),
                 MPCBLAS IGNORE, 1,
10
                 test vector 2,1);
  float result 2 =
      mpcblas snrm2(4, y, 1)
               -> get value();
14
  mpcblas_uninitialize();
```

Πείραμα

Ερμηνεία Πειράματος

- Η επιβάρυνση που εισάγεται από τη χρήση της MPC-BLAS σε σύγκριση με την CBLAS είναι γραμμική και είναι της τάξης των 10.000-100.000 χρονικών μονάδων
- Η διαφορά των χρονικών ασυμπτωτικών πολυπλοκοτήτων των δύο βιβλιοθηκών είναι σταθερή τιμή
- Υπάρχει τεράστιο περιθώριο βελτίωσης, ίσως και κατά αρκετές τάξεις μεγέθους

Μελλοντική Μελέτη

- Υλοποίηση των BLAS-2 και BLAS-3 υπορουτινών και ολοκλήρωση μιας εύχρηστης βιβλιοθήκης
- Υλοποίηση αποδοτικότερου αλγορίθμου Κινητής Υποδιαστολής (χρήση αριθμητικών δικτύων αντί για Boolean)
- Επέκταση της ABY για SMPC ή χρήση βιβλιοθήκης για υποστήριξη SMPC
- Επέκταση της ΑΒΥ ή χρήση βιβλιοθήκης με υποστήριξη πρωτοκόλλων ασφαλών ενάντια σε Ενεργητικούς Αντιπάλους

Βιβλιογραφία Ι

Demmler, Daniel, Thomas Schneider και Michael Zohner (2015). ``ABY-A framework for efficient mixed-protocol secure two-party computation.". Στο: NDSS

Evans, David, Vladimir Kolesnikov και Mike Rosulek (Δεκ. 2018). ``A Pragmatic Introduction to Secure Multi-Party Computation". Στο: Found. Trends Priv. Secur. 2.2-3, $\sigma\sigma$. 70–246. ISSN: 2474-1558. DOI: 10.1561/3300000019. URL: https://doi.org/10.1561/3300000019.

Goldreich, Oded, Silvio Micali και Avi Wigderson (2019). ``How to play any mental game, or a completeness theorem for protocols with honest majority". Στο: Providing Sound Foundations for Cryptography: On the Work of Shafi Goldwasser and Silvio Micali, σσ. 307–328.

Lindell, Yehuda (2020). *Secure Multiparty Computation (MPC)*. Cryptology ePrint Archive, Paper 2020/300. https://eprint.iacr.org/2020/300. doi: 10.1145/3387108. URL: https://eprint.iacr.org/2020/300.

Βιβλιογραφία ΙΙ

Rathee, Deevashwer κ.ά. (2022). SecFloat: Accurate Floating-Point meets Secure 2-Party Computation. Cryptology ePrint Archive, Paper 2022/322. https://eprint.iacr.org/2022/322. url: https://eprint.iacr.org/2022/322.

Τέλος

Ευχαριστώ για την προσοχή σας