Pontes e Pontos de Articulação

Prof. Edson Alves

Faculdade UnB Gama

Seja G(V,E) um grafo não-direcionado conectado. Uma aresta $e\in E$ é uma ponte se a exclusão de e torna o grafo G desconectado.

Seja G(V,E) um grafo não-direcionado conectado. Uma aresta $e\in E$ é uma ponte se a exclusão de e torna o grafo G desconectado.

Seja G(V,E) um grafo não-direcionado conectado. Uma aresta $e\in E$ é uma ponte se a exclusão de e torna o grafo G desconectado.

 \star Uma DFS em um grafo G gera uma árvore

 \star Uma DFS em um grafo G gera uma árvore

 \star Os vértices são os mesmos de G

 \star Uma DFS em um grafo G gera uma árvore

 \star Os vértices são os mesmos de G

* As arestas dependem da ordem de descoberta dos vértices

- \star Uma DFS em um grafo G gera uma árvore
- \star Os vértices são os mesmos de G
- * As arestas dependem da ordem de descoberta dos vértices
- * Esta ordem também determina uma permutação dos vértices

- \star Uma DFS em um grafo G gera uma árvore
- \star Os vértices são os mesmos de G
- * As arestas dependem da ordem de descoberta dos vértices
- * Esta ordem também determina uma permutação dos vértices
- \star 0 índice de cada vértice nesta permutação tem importantes propriedades

Grafo

Grafo

Grafo

Grafo

Grafo

Grafo

Grafo

Grafo

Grafo

Grafo

 \star Seja $i_s(u)$ o índice do vértice u na permutação gerada pela DFS que tem s como vértice inicial

 \star Seja $i_s(u)$ o índice do vértice u na permutação gerada pela DFS que tem s como vértice inicial

 \star Se $i_s(u) < i_s(v)$ então ou u é ancestral de v ou u está em uma subárvore de s da distinta da subárvore que contém v

 \star Seja $i_s(u)$ o índice do vértice u na permutação gerada pela DFS que tem s como vértice inicial

 \star Se $i_s(u) < i_s(v)$ então ou u é ancestral de v ou u está em uma subárvore de s da distinta da subárvore que contém v

 \star Se $(u,v) \in E$ e $i_s(v) < i_s(u)$, então (u,v) é uma aresta reversa

 \star Seja $\mu_s(u)$ o menor índice dentre todos os vértices atingíveis a partir da subárvore (ou subgrafo) cuja raiz é u

 \star Seja $\mu_s(u)$ o menor índice dentre todos os vértices atingíveis a partir da subárvore (ou subgrafo) cuja raiz é u

 \star A DFS a partir de u gera uma subárvore se não houverem arestas reversas

 \star Seja $\mu_s(u)$ o menor índice dentre todos os vértices atingíveis a partir da subárvore (ou subgrafo) cuja raiz é u

 \star A DFS a partir de u gera uma subárvore se não houverem arestas reversas

 \star Neste caso, $i_s(w) = \mu_s(w)$ para todo vértice w nesta subárvore

Menor ancestral alcançável

- \star Seja $\mu_s(u)$ o menor índice dentre todos os vértices atingíveis a partir da subárvore (ou subgrafo) cuja raiz é u
 - \star A DFS a partir de u gera uma subárvore se não houverem arestas reversas
 - \star Neste caso, $i_s(w) = \mu_s(w)$ para todo vértice w nesta subárvore
 - \star As arestas reversas impactam nos valores de $\mu_s(u)$

Menor ancestral alcançável

- \star Seja $\mu_s(u)$ o menor índice dentre todos os vértices atingíveis a partir da subárvore (ou subgrafo) cuja raiz é u
 - \star A DFS a partir de u gera uma subárvore se não houverem arestas reversas
 - \star Neste caso, $i_s(w) = \mu_s(w)$ para todo vértice w nesta subárvore
 - \star As arestas reversas impactam nos valores de $\mu_s(u)$
 - \star Se (u,v) é aresta reversa, então $\mu_s(u)=\min\{\mu_s(u),i_s(v)\}$

Identificação de pontes

Seja G(V,E) um grafo conectado e $s\in V$ o vértice de partida de uma DFS.

A aresta $(u,v)\in E$ é uma ponte se $\mu_s(v)>i_s(u)$.

Grafo

Grafo

Grafo

Grafo

Grafo

Grafo

Grafo

Grafo

Grafo

ponte

ponte

ponte

ponte

ponte

ponte

ponte


```
void dfs_bridge(int u, int p, int& next, vector<edge>& bridges)
{
    dfs_low[u] = dfs_num[u] = next++;
    for (auto v : adi[u])
        if (not dfs_num[v]) {
            dfs bridge(v, u, next, bridges);
            if (dfs low[v] > dfs num[u])
                bridges.emplace back(u, v):
            dfs_low[u] = min(dfs_low[u], dfs_low[v]);
        } else if (v != p)
            dfs low[u] = min(dfs low[u], dfs num[v]);
```

```
vector<edge> bridges(int N)
{
    memset(dfs_num, 0, (N + 1)*sizeof(int));
    memset(dfs_low, 0, (N + 1)*sizeof(int));
    vector<edge> bridges;
    for (int u = 1, next = 1; u \le N; ++u)
        if (not dfs_num[u])
            dfs_bridge(u, u, next, bridges);
    return bridges;
```


Pontos de articulação

Seja G(V,E) um grafo não-direcionado conectado. Um vértice $u\in V$ é um ponto de articulação se a exclusão de u e de todas as arestas que incidem em u torna o grafo desconectado.

Pontos de articulação

Seja G(V,E) um grafo não-direcionado conectado. Um vértice $u\in V$ é um ponto de articulação se a exclusão de u e de todas as arestas que incidem em u torna o grafo desconectado.

Pontos de articulação

Seja G(V,E) um grafo não-direcionado conectado. Um vértice $u\in V$ é um ponto de articulação se a exclusão de u e de todas as arestas que incidem em u torna o grafo desconectado.

Identificação de pontos de articulação

Identificação de pontos de articulação

Seja G(V,E) um grafo conectado e $s\in V$ o vértice de partida de uma DFS.

A aresta $(v,u) \in E$ identifica o ponto de articulação u se $\mu_s(v) \geq i_s(u)$.

Identificação de pontos de articulação

Seja G(V,E) um grafo conectado e $s\in V$ o vértice de partida de uma DFS.

A aresta $(v,u) \in E$ identifica o ponto de articulação u se $\mu_s(v) \geq i_s(u)$.

Caso especial: s só é ponto de articulação se ele tem, no mínimo, dois filhos.

Identificação de pontos de articulação

Seja G(V,E) um grafo conectado e $s\in V$ o vértice de partida de uma DFS.

A aresta $(v,u) \in E$ identifica o ponto de articulação u se $\mu_s(v) \geq i_s(u)$.

Caso especial: s só é ponto de articulação se ele tem, no mínimo, dois filhos.

Definição: Se G não tem pontos de articulação ele é denominado biconectado.

Grafo

Grafo

Grafo

Grafo

Grafo

Grafo

Grafo

Grafo

Grafo

ponto de articulação


```
int dfs_articulation_points(int u, int p, int& next, set<int>& points)
ł
    int children = 0;
    dfs_low[u] = dfs_num[u] = next++;
    for (auto v : adj[u])
        if (not dfs_num[v]) {
            ++children:
            dfs_articulation_points(v, u, next, points);
            if (dfs_low[v] >= dfs_num[u])
                points.insert(u);
            dfs_low[u] = min(dfs_low[u], dfs_low[v]):
        } else if (v != p)
            dfs low[u] = min(dfs low[u], dfs num[v]);
    return children:
```

```
set<int> articulation_points(int N)
ł
    memset(dfs_num, 0, (N + 1)*sizeof(int));
    memset(dfs_low, 0, (N + 1)*sizeof(int));
    set<int> points;
    for (int u = 1, next = 1; u \le N; ++u)
        if (not dfs_num[u])
            auto children = dfs_articulation_points(u, u, next, points);
            if (children == 1)
                points.erase(u);
    return points;
```

Problemas sugeridos

- 1. AtCoder Beginner Contest 075 Problem C: Bridge
- 2. OJ 315 Network
- 3. OJ 610 Street Directions
- 4. SPOJ SUBMERGE Submerging Islands

Referências

- 1. HALIM, Felix; HALIM, Steve. Competitive Programming 3, 2010.
- 2. LAAKSONEN, Antti. Competitive Programmer's Handbook, 2018.
- 3. SKIENA, Steven; REVILLA, Miguel. Programming Challenges, 2003.