# **NEC**

# **Design Manual**

# **CB-9 Family VX/VM Type Core Library**

0.35  $\mu$ m CMOS Cell-Based IC (CBIC)

**CPU Core, Memory Controller** 

**78K/0 Core** 

V851<sup>™</sup> Core

V853<sup>™</sup> Core

V30MX<sup>™</sup>

V30MZ<sup>™</sup>

NB85E

NB85E901

NB85ET

NB85E500

NU85E500

NU85E502

Document No. A13195EJ5V1DM00 (5th edition)
Date Published January 2002 NS CP(N)

© NEC Corporation 1998 Printed in Japan

# [MEMO]

#### **NOTES FOR CMOS DEVICES -**

#### 1 PRECAUTION AGAINST ESD FOR SEMICONDUCTORS

Note:

Strong electric field, when exposed to a MOS device, can cause destruction of the gate oxide and ultimately degrade the device operation. Steps must be taken to stop generation of static electricity as much as possible, and quickly dissipate it once, when it has occurred. Environmental control must be adequate. When it is dry, humidifier should be used. It is recommended to avoid using insulators that easily build static electricity. Semiconductor devices must be stored and transported in an anti-static container, static shielding bag or conductive material. All test and measurement tools including work bench and floor should be grounded. The operator should be grounded using wrist strap. Semiconductor devices must not be touched with bare hands. Similar precautions need to be taken for PW boards with semiconductor devices on it.

# (2) HANDLING OF UNUSED INPUT PINS FOR CMOS

Note:

No connection for CMOS device inputs can be cause of malfunction. If no connection is provided to the input pins, it is possible that an internal input level may be generated due to noise, etc., hence causing malfunction. CMOS devices behave differently than Bipolar or NMOS devices. Input levels of CMOS devices must be fixed high or low by using a pull-up or pull-down circuitry. Each unused pin should be connected to VDD or GND with a resistor, if it is considered to have a possibility of being an output pin. All handling related to the unused pins must be judged device by device and related specifications governing the devices.

#### (3) STATUS BEFORE INITIALIZATION OF MOS DEVICES

Note:

Power-on does not necessarily define initial status of MOS device. Production process of MOS does not define the initial operation status of the device. Immediately after the power source is turned ON, the devices with reset function have not yet been initialized. Hence, power-on does not guarantee out-pin levels, I/O settings or contents of registers. Device is not initialized until the reset signal is received. Reset operation must be executed immediately after power-on for devices having reset function.

OPENCAD, V850 Family, V851, V853, V30MX, V30MZ, V30HL, and V.sim are trademarks of NEC Corporation.

Verilog-XL is a trademark of Cadence Design Systems, Inc.

Purchase of NEC I<sup>2</sup>C components conveys a license under the Philips I<sup>2</sup>C Patent Rights to use these components in an I<sup>2</sup>C system, provided that the system conforms to the I<sup>2</sup>C Standard Specification as defined by Philips.

The export of this product from Japan is regulated by the Japanese government. To export this product may be prohibited without governmental license, the need for which must be judged by the customer. The export or re-export of this product from a country other than Japan may also be prohibited without a license from that country. Please call an NEC sales representative.

- The information in this document is current as of November, 2000. The information is subject to change without notice. For actual design-in, refer to the latest publications of NEC's data sheets or data books, etc., for the most up-to-date specifications of NEC semiconductor products. Not all products and/or types are available in every country. Please check with an NEC sales representative for availability and additional information.
- No part of this document may be copied or reproduced in any form or by any means without prior written consent of NEC. NEC assumes no responsibility for any errors that may appear in this document.
- NEC does not assume any liability for infringement of patents, copyrights or other intellectual property rights of
  third parties by or arising from the use of NEC semiconductor products listed in this document or any other
  liability arising from the use of such products. No license, express, implied or otherwise, is granted under any
  patents, copyrights or other intellectual property rights of NEC or others.
- Descriptions of circuits, software and other related information in this document are provided for illustrative
  purposes in semiconductor product operation and application examples. The incorporation of these
  circuits, software and information in the design of customer's equipment shall be done under the full
  responsibility of customer. NEC assumes no responsibility for any losses incurred by customers or third
  parties arising from the use of these circuits, software and information.
- While NEC endeavours to enhance the quality, reliability and safety of NEC semiconductor products, customers
  agree and acknowledge that the possibility of defects thereof cannot be eliminated entirely. To minimize
  risks of damage to property or injury (including death) to persons arising from defects in NEC
  semiconductor products, customers must incorporate sufficient safety measures in their design, such as
  redundancy, fire-containment, and anti-failure features.
- NEC semiconductor products are classified into the following three quality grades:
  - "Standard", "Special" and "Specific". The "Specific" quality grade applies only to semiconductor products developed based on a customer-designated "quality assurance program" for a specific application. The recommended applications of a semiconductor product depend on its quality grade, as indicated below. Customers must check the quality grade of each semiconductor product before using it in a particular application.
  - "Standard": Computers, office equipment, communications equipment, test and measurement equipment, audio and visual equipment, home electronic appliances, machine tools, personal electronic equipment and industrial robots
  - "Special": Transportation equipment (automobiles, trains, ships, etc.), traffic control systems, anti-disaster systems, anti-crime systems, safety equipment and medical equipment (not specifically designed for life support)
  - "Specific": Aircraft, aerospace equipment, submersible repeaters, nuclear reactor control systems, life support systems and medical equipment for life support, etc.

The quality grade of NEC semiconductor products is "Standard" unless otherwise expressly specified in NEC's data sheets or data books, etc. If customers wish to use NEC semiconductor products in applications not intended by NEC, they must contact an NEC sales representative in advance to determine NEC's willingness to support a given application.

(Note)

- (1) "NEC" as used in this statement means NEC Corporation and also includes its majority-owned subsidiaries.
- (2) "NEC semiconductor products" means any semiconductor product developed or manufactured by or for NEC (as defined above).

M8E 00.4

# **Regional Information**

Some information contained in this document may vary from country to country. Before using any NEC product in your application, please contact the NEC office in your country to obtain a list of authorized representatives and distributors. They will verify:

- Device availability
- Ordering information
- · Product release schedule
- Availability of related technical literature
- Development environment specifications (for example, specifications for third-party tools and components, host computers, power plugs, AC supply voltages, and so forth)
- Network requirements

In addition, trademarks, registered trademarks, export restrictions, and other legal issues may also vary from country to country.

#### **NEC Electronics Inc. (U.S.)**

Santa Clara, California Tel: 408-588-6000 800-366-9782 Fax: 408-588-6130 800-729-9288

#### **NEC Electronics (Europe) GmbH**

Duesseldorf, Germany Tel: 0211-65 03 01 Fax: 0211-65 03 327

• Branch The Netherlands Eindhoven. The Netherlands

Tel: 040-244 58 45 Fax: 040-244 45 80

• Branch Sweden Taeby, Sweden Tel: 08-63 80 820 Fax: 08-63 80 388

# **NEC Electronics (France) S.A.**

Vélizy-Villacoublay, France Tel: 01-3067-58-00 Fax: 01-3067-58-99

#### **NEC Electronics (France) S.A.** Representación en España

Madrid, Spain Tel: 091-504-27-87 Fax: 091-504-28-60

#### **NEC Electronics Italiana S.R.L.**

Milano, Italy Tel: 02-66 75 41 Fax: 02-66 75 42 99

#### **NEC Electronics (UK) Ltd.**

Milton Kevnes, UK Tel: 01908-691-133 Fax: 01908-670-290

### **NEC Electronics Hong Kong Ltd.**

Hong Kong Tel: 2886-9318 Fax: 2886-9022/9044

#### **NEC Electronics Hong Kong Ltd.**

Seoul Branch Seoul, Korea Tel: 02-528-0303 Fax: 02-528-4411

#### **NEC Electronics Singapore Pte. Ltd.**

Novena Square, Singapore

Tel: 253-8311 Fax: 250-3583

#### **NEC Electronics Taiwan Ltd.**

Taipei, Taiwan Tel: 02-2719-2377 Fax: 02-2719-5951

#### NEC do Brasil S.A.

Electron Devices Division Guarulhos-SP. Brasil Tel: 11-6462-6810

Fax: 11-6462-6829

J01.12

# Major Revisions in This Edition

| Pages         | Description                                       |
|---------------|---------------------------------------------------|
| p.17          | Addition of 1.3 Timing Verification               |
| p.91          | Addition of 5.3.7 Timing Verification             |
| p.105         | Addition of 6.2.2 Timing Verification             |
| p.108         | Modification of 6.5.2 Recommended operation range |
| p.134         | Modification of 7.4.4 (3) VSB arbitration timing  |
| p.144         | Modification of 7.4.4 (8) VFB access timing       |
| p.175         | Modification of 9.4.2 Recommended operation range |
| p.176         | Modification of 9.4.4 (1) Clock timing            |
| p.177         | Modification of 9.4.4 (3) VSB arbitration timing  |
| p.186         | Modification of 9.4.4 (8) VFB access timing       |
| p.262         | Modification of 12.4.4 (1) SDRAM read timing      |
| p.264         | Modification of 12.4.4 (2) SDRAM write timing     |
| p.267         | Modification of 12.4.4 (4) VSB timing             |
| pp.268 to 270 | Addition of APPENDIX REVISION HISTORY             |

The mark  $\star$  shows major revised points.

#### INTRODUCTION

#### Readers

This manual is intended for users who will design ASIC employing the CB-9 Family VX/VM Type of NEC's high-speed, highly integrated CMOS CBIC.

#### **Purpose**

The purpose of this manual is to help the user understand the outlines and electrical specifications of the following CPU cores, run control unit (RCU), and memory controllers (MEMC) necessary for designing the system.

• NU85E502

 <CPU core>
 <RCU>

 • 78K/0 core
 • NB85E901

 • V851 core
 <MEMC>

 • V30MX
 • NB85E500

 • V30MZ
 • NU85E500

NB85ENB85ET

#### Organization

This manual is generally divided into the following sections.

#### **CHAPTER 1 COMMON PART**

Explains information which is common to the above CPU cores.

Be sure to read this chapter when you use any of the CPU cores listed above.

#### CHAPTER 2 78K/0 CORE or later chapters

Explains information peculiar to each CPU core, RCU, and MEMC.

Read the chapter explaining the CPU core, RCU, and MEMC to be used.

#### **How To Read This Manual**

It is assumed that the readers of this manual have general knowledge on electric engineering, logic circuits, and microcontrollers.

Before using this manual, be sure to read the related manual CB-9 Family VX/VM Type Design Manual (A12745E).

#### Conventions

Data significance: Higher digits on the left and lower digits on the right

Active low representation: xxxB or xxxZ ("B" or "Z" is appended to the pin name or signal name)

Note: Footnote for item marked with Note in the text Caution: Information requiring particular attention

Remark: Supplementary information Numerical representation: Binary ... xxxx or xxxxB

Decimal ... xxxx Hexadecimal ... xxxxH

Prefix indicating power of 2 (in address space or memory capacity):

K (kilo) ...  $2^{10} = 1024$ M (mega) ...  $2^{20} = 1024^2$ G (giga) ...  $2^{30} = 1024^3$ 

#### **Related Documents**

The related documents indicated in this publication may include preliminary versions. However, preliminary versions are not marked as such.

- CB-9 Family VX/VM Type Design Manual (A12745E)
- CB-9 Family VX/VM Type Design Manual 78K/0 Core User's Manual (A13688E)
- CB-9 Family VX/VM Type V851 Core, V853 Core Design Manual User's Manual (A13602E)
- CB-9 Family VX/VM Type NB85E, NB85ET Design Manual (A14335E)
- 78K/0 Core User's Manual (A13142E)
- V851 Core Hardware User's Manual (A12757E)
- V853 Core Hardware User's Manual (A13141E)
- V30MX Hardware User's Manual (A11897E)
- V30MZ Hardware User's Manual (A13761E)
- NB85E Hardware User's Manual (A13971E)
- NB85ET Hardware User's Manual (A14342E)
- Memory Controller NB85E, NB85ET User's Manual (A14206E)

The related documents listed above are subject to change without notice. Be sure to use the latest version of each document for designing.

# **CONTENTS**

|              | ER 1 COMMON PART                                                                                                        |   |
|--------------|-------------------------------------------------------------------------------------------------------------------------|---|
| 1. 1         | Macro Area                                                                                                              |   |
| 1. 2         | Test Design                                                                                                             |   |
|              | 1. 2. 1 Test pattern                                                                                                    |   |
|              | 1. 2. 2 Test program for total chip simulation                                                                          |   |
|              | 1. 2. 3 Test pins                                                                                                       |   |
|              | 1. 2. 4 Initialize                                                                                                      |   |
|              | 1. 2. 5 Prohibition on spike input                                                                                      |   |
| 1. 3         | Timing Verification                                                                                                     | 1 |
| СНАРТ        | ER 2 78K/0 CORE                                                                                                         | 1 |
| 2. 1         | Outline                                                                                                                 | 1 |
|              | 2. 1. 1 Symbol diagram                                                                                                  | 1 |
|              | 2. 1. 2 Pin capacitance                                                                                                 | 2 |
| 2. 2         | Pin Functions                                                                                                           | 2 |
| 2. 3         | Electrical Specifications                                                                                               | 2 |
|              | 2. 3. 1 Absolute maximum ratings                                                                                        | 2 |
|              | 2. 3. 2 Recommended operation range                                                                                     | 2 |
|              | 2. 3. 3 DC characteristics (T <sub>A</sub> = -40 to +85°C, V <sub>DD</sub> = 3.3 V ±0.3 V)                              | 2 |
|              | 2. 3. 4 AC characteristics ( $T_A = -40 \text{ to } +85^{\circ}\text{C}$ , $V_{DD} = 3.3 \text{ V} \pm 0.3 \text{ V}$ , |   |
|              | load capacitance of output pin CL = 5 pF)                                                                               | 2 |
|              | 2. 3. 5 Low-voltage data retention characteristics of data memory in STOP mode (T <sub>A</sub> = -40 to +85°C)          | 3 |
| 2. 4         | Timing Chart                                                                                                            | 3 |
| CHART        | ER 3 V851 CORE                                                                                                          | 4 |
| 3. 1         | Outline                                                                                                                 |   |
| J. I         | 3. 1. 1 Symbol diagram                                                                                                  |   |
|              | 3. 1. 2 Pin capacitance                                                                                                 |   |
| 3. 2         | RESETB Signal                                                                                                           |   |
| 3. 2         | Initialization of Internal Registers                                                                                    |   |
| 3. 4         | Pin Functions                                                                                                           |   |
| 3. 5         | Electrical Specifications                                                                                               |   |
| 0.0          | 3. 5. 1 Absolute maximum ratings                                                                                        |   |
|              | 3. 5. 2 Recommended operation range                                                                                     |   |
|              | 3. 5. 3 DC characteristics (T <sub>A</sub> = -40 to +85°C, V <sub>DD</sub> = 3.3 V ±0.3 V)                              |   |
|              | 3. 5. 4 AC characteristics (TA = -40 to +85°C, VDD = 3.3 V ±0.3 V)                                                      |   |
| СНАРТ        | ER 4 V853 CORE                                                                                                          | 6 |
| 4. 1         | Outline                                                                                                                 |   |
| 7. 1         | 4. 1. 1 Symbol diagram                                                                                                  |   |
|              | , -                                                                                                                     |   |
| 4. 2         | 4. 1. 2 Pin capacitance                                                                                                 |   |
| 4. 2         | Initialization of Internal Registers                                                                                    |   |
| 4. 3<br>4. 4 | Pin Functions                                                                                                           |   |
| 4. 4<br>4. 5 | Electrical Specifications                                                                                               |   |
| 4. J         | 4. 5. 1 Absolute maximum ratings                                                                                        |   |
|              | 9 D T AUSONOE HAXIOUH IANOS                                                                                             | 1 |

|       | 4. 5. 2 Recommended operation range                                                        | 71  |
|-------|--------------------------------------------------------------------------------------------|-----|
|       | 4. 5. 3 DC characteristics (TA = -40 to +85°C, VDD = 3.3 V ±0.3 V)                         | 71  |
|       | 4. 5. 4 AC characteristics (T <sub>A</sub> = -40 to +85°C, V <sub>DD</sub> = 3.3 V ±0.3 V) | 73  |
| СНАРТ | TER 5 V30MX                                                                                | 86  |
| 5. 1  | Outline                                                                                    |     |
|       | 5. 1. 1 Symbol diagram                                                                     |     |
|       | 5. 1. 2 Pin capacitance                                                                    |     |
| 5. 2  | Notes for Initialization                                                                   |     |
| 5. 3  | Notes for Pattern Generation and Circuit Designing                                         | 90  |
|       | 5. 3. 1 Handling 3-state outputs                                                           | 90  |
|       | 5. 3. 2 RESET signal                                                                       | 90  |
|       | 5. 3. 3 CLK input                                                                          | 90  |
|       | 5. 3. 4 Initialization of internal registers                                               | 91  |
|       | 5. 3. 5 Restriction of test program size                                                   | 91  |
|       | 5. 3. 6 Segment specification in the test program                                          | 91  |
| *     | 5. 3. 7 Timing verification                                                                | 91  |
| 5. 4  | Pin Functions                                                                              | 92  |
| 5. 5  | Electrical Specifications                                                                  | 93  |
|       | 5. 5. 1 Absolute maximum ratings                                                           | 93  |
|       | 5. 5. 2 Recommended operation range                                                        | 93  |
|       | 5. 5. 3 DC characteristics (T <sub>A</sub> = -40 to +85°C, V <sub>DD</sub> = 3.3 V ±0.3 V) | 93  |
|       | 5. 5. 4 AC characteristics (TA = -40 to +85°C, VDD = 3.3 V ±0.3 V)                         | 94  |
| CHAPT | TER 6 V30MZ                                                                                | 103 |
| 6. 1  | Outline                                                                                    | 103 |
|       | 6. 1. 1 Symbol diagram                                                                     | 104 |
|       | 6. 1. 2 Pin capacitance                                                                    | 104 |
| 6. 2  | Notes for Simulation Execution                                                             | 105 |
|       | 6. 2. 1 Notes for V.sim simulation                                                         | 105 |
| *     | 6. 2. 2 Timing Verification                                                                | 105 |
| 6. 3  | Notes for Initialization                                                                   | 106 |
|       | 6. 3. 1 RESET signal                                                                       | 106 |
|       | 6. 3. 2 CLK input                                                                          | 106 |
|       | 6. 3. 3 Initialization of internal registers                                               | 106 |
| 6. 4  | Pin Functions                                                                              | 107 |
| 6. 5  | Electrical Specifications (Preliminary)                                                    | 108 |
|       | 6. 5. 1 Absolute maximum ratings                                                           | 108 |
|       | 6. 5. 2 Recommended operation range                                                        | 108 |
|       | 6. 5. 3 DC characteristics (T <sub>A</sub> = -40 to +85°C)                                 | 108 |
|       | 6. 5. 4 AC characteristics (T <sub>A</sub> = -40 to +85°C)                                 | 109 |
| CHAPT | ΓER 7 NB85E                                                                                | 114 |
| 7. 1  | Outline                                                                                    | 114 |
|       | 7. 1. 1 Symbol diagram                                                                     | 115 |
|       | 7. 1. 2 Pin capacitance                                                                    |     |
| 7. 2  | Initialization of Internal Registers                                                       |     |
| 7 3   | Din Functions                                                                              | 129 |

| 7. 4  | Electrical Specifications (Preliminary)                                                                 | 132 |
|-------|---------------------------------------------------------------------------------------------------------|-----|
|       | 7. 4. 1 Absolute maximum ratings                                                                        | 132 |
|       | 7. 4. 2 Recommended operation range                                                                     | 132 |
|       | 7. 4. 3 DC characteristics (T <sub>A</sub> = -40 to +85°C, V <sub>DD</sub> = 3.3 V ±0.3 V)              | 132 |
|       | 7. 4. 4 AC characteristics (T <sub>A</sub> = -40 to +85°C, V <sub>DD</sub> = 3.3 V ±0.3 V)              | 133 |
| CHAPT | ER 8 NB85E901                                                                                           | 151 |
| 8. 1  | Outline                                                                                                 | 151 |
|       | 8. 1. 1 Symbol diagram                                                                                  | 151 |
|       | 8. 1. 2 Pin capacitance                                                                                 | 152 |
| 8. 2  | Pin Functions                                                                                           |     |
| 8. 3  | Electrical Specifications (Preliminary)                                                                 | 155 |
|       | 8. 3. 1 Absolute maximum ratings                                                                        | 155 |
|       | 8. 3. 2 Recommended operation range                                                                     | 155 |
|       | 8. 3. 3 DC characteristics (T <sub>A</sub> = $-40$ to $+85$ °C, V <sub>DD</sub> = 3.3 V ±0.3 V)         | 155 |
|       | 8. 3. 4 AC characteristics (TA = -40 to +85°C, VDD = 3.3 V ±0.3 V)                                      | 155 |
| СНАРТ | ER 9 NB85ET                                                                                             | 156 |
| 9. 1  | Outline                                                                                                 | 156 |
|       | 9. 1. 1 Symbol diagram                                                                                  | 157 |
|       | 9. 1. 2 Pin capacitance                                                                                 |     |
| 9. 2  | Initialization of Internal Registers                                                                    | 169 |
| 9. 3  | Pin Functions                                                                                           | 170 |
| 9. 4  | Electrical Specifications (Preliminary)                                                                 | 175 |
|       | 9. 4. 1 Absolute maximum ratings                                                                        | 175 |
|       | 9. 4. 2 Recommended operation range                                                                     | 175 |
|       | 9. 4. 3 DC characteristics (TA = -40 to +85°C, VDD = 3.3 V ±0.3 V)                                      |     |
|       | 9. 4. 4 AC characteristics (TA = -40 to +85°C, VDD = 3.3 V ±0.3 V)                                      | 176 |
| CHAPT | ER 10 NB85E500                                                                                          | 194 |
| 10. 1 | Outline                                                                                                 | 194 |
|       | 10. 1. 1 Symbol diagram                                                                                 | 194 |
|       | 10. 1. 2 Pin capacitance                                                                                |     |
| 10. 2 | Initialization of Internal Registers                                                                    |     |
| 10. 3 |                                                                                                         |     |
| 10. 4 |                                                                                                         |     |
|       | 10. 4. 1 Absolute maximum ratings                                                                       |     |
|       | 10. 4. 2 Recommended operation range                                                                    |     |
|       | 10. 4. 3 DC characteristics (TA = $-40$ to $+85^{\circ}$ C, VDD = $3.3 \text{ V} \pm 0.3 \text{ V}$ )   |     |
|       | 10. 4. 4 AC characteristics (T <sub>A</sub> = $-40$ to $+85$ °C, V <sub>DD</sub> = $3.3$ V $\pm 0.3$ V) | 206 |
| CHAPT | ER 11 NU85E500                                                                                          | 224 |
| 11. 1 | Outline                                                                                                 | 224 |
|       | 11. 1. 1 Symbol diagram                                                                                 | 224 |
|       | 11. 1. 2 Pin capacitance                                                                                |     |
| 11. 2 | Initialization of Internal Registers                                                                    |     |
|       | Pin Functions                                                                                           |     |
| 11. 4 | Electrical Specifications (Preliminary)                                                                 | 235 |

|       | 11. 4. 1 Absolute maximum ratings                                                                       | 235 |
|-------|---------------------------------------------------------------------------------------------------------|-----|
|       | 11. 4. 2 Recommended operation range                                                                    | 235 |
|       | 11. 4. 3 DC characteristics (TA = -40 to +85°C, VDD = 3.3 V ±0.3 V)                                     | 235 |
|       | 11. 4. 4 AC characteristics (T <sub>A</sub> = $-40$ to $+85$ °C, V <sub>DD</sub> = $3.3$ V $\pm 0.3$ V) | 236 |
| CHAPT | ER 12 NU85E502                                                                                          | 254 |
| 12. 1 | Outline                                                                                                 | 254 |
|       | 12. 1. 1 Symbol diagram                                                                                 | 255 |
|       | 12. 1. 2 Pin capacitance                                                                                | 256 |
| 12. 2 | Initialization of Internal Registers                                                                    | 258 |
| 12. 3 | Pin Functions                                                                                           | 259 |
| 12. 4 | Electrical Specifications (Preliminary)                                                                 | 260 |
|       | 12. 4. 1 Absolute maximum ratings                                                                       | 260 |
|       | 12. 4. 2 Recommended operation range                                                                    | 260 |
|       | 12. 4. 3 DC characteristics (T <sub>A</sub> = -40 to +85°C, V <sub>DD</sub> = 3.3 V ±0.3 V)             | 260 |
|       | 12. 4. 4 AC characteristics (TA = $-40$ to $+85$ °C, VDD = 3.3 V $\pm 0.3$ V)                           |     |
| APPEN | IDIX REVISION HISTORY                                                                                   | 268 |

# **LIST OF FIGURES**

| Figure No. Title |                                                                             | Page |
|------------------|-----------------------------------------------------------------------------|------|
| 2-1              | Example of Circuit Construction of Serial Interface (IIC0) Input/Output Pin | 32   |
| 3-1              | RESETB Signal Input Example                                                 | 47   |
| 4-1              | RESETB Signal Input Example                                                 | 68   |
| 5-1              | RESET Signal Input Example                                                  | 90   |
| 6-1              | RESET Signal Input Example                                                  | 106  |

# **CHAPTER 1 COMMON PART**

#### 1. 1 Macro Area

The area of a macro is expressed as a number of grids.

The number of grids is an index that indicates the area of the circuit of a cell-based IC.

Number of grids = X grids (size in X direction)  $\times Y$  grids (size in Y direction)

For example, the circuit shown below consists of 35 grids.



#### 1. 2 Test Design

Test design is very important when designing the circuit of an ASIC.

This section explains the test functions of a CPU core. These test functions are necessary when designing the CB-9 family VX/VM type using any of the CPU cores explained in this manual.

#### 1. 2. 1 Test pattern

When developing a CB-9 family VX/VM type product including a CPU core, simulation is implemented for each internal block in the following three stages, unlike when the circuit consists of only user logic.

#### (1) User logic separation simulation

Checks the functions of the user logic in detail.

#### (2) Test circuit check simulation

Checks the path (test bus) that tests the internal functions of the CPU core.

The test patterns for the internal functions of the CPU cores have been created by NEC.

#### (3) Total chip simulation

Checks mutual connection between the CPU core, user logic, and interface block.

Theoretically, it is possible to check the circuit operation in (1) through (3) with one test pattern, but it is more efficient to use the above three stages for the following reasons:

#### (a) To avoid creating test pattern for checking CPU core functions in detail

The internal circuits of the CPU core are very complicated and in effect a kind of black box.

Therefore, it is extremely difficult to create a simulation test pattern that can check the internal functions taking delicate timing into consideration, and it is practically impossible for the user to create a test pattern that tests all the internal functions of the CPU core.

For this reason, separate the simulation process to check the internal circuits of the CPU core from the user logic block, and insert a test circuit. NEC offers ready-made test patterns.

# (b) To mitigate the simulation load of the CPU core, and to avoid the limitations of using a CAD tool that can simulate the CPU core

Some CPU cores have several 10,000 of gates and therefore have a heavy simulation load.

Consequently, the types of machines that can execute simulation of these CPU cores are limited and the execution time is very long.

The user logic separation simulation in (1) above can mitigate the simulation load of the user logic block where a mistake is most likely to occur, by creating a model, called a dummy macro, of only the CPU core cut-out section. Consequently, the design period can be shortened. In addition, a wider range of CAD tools can be used. Note, however, that the kinds of tools that can use a dummy macro are also limited.

#### 1. 2. 2 Test program for total chip simulation

A test program that is executed by the CPU core is also necessary for executing total chip simulation. When using an external memory instead of the internal memory of the CB-9 family VX/VM type, simulation is easier if a circuit in which an external memory is connected to the circuit of the CB-9 family VX/VM type is created and if total chip simulation is executed in the same manner as above, rather than if instructions are given in the form of a test pattern. In this case, the test pattern for the actual chip can be created if the signals at the cut-out section of the circuit block of the original CB-9 family VX/VM type is dumped.

For details, refer to **Design Manual** of each CPU core.

#### 1. 2. 3 Test pins

#### (1) TBO (n:0), TBI (m:0)

These are test pins for simulation to check the test circuit.

The pins of a CPU core can be broadly divided into test pins and normal pins used for application circuit design.

The signals input to or output from the test pins are separated from those input to or output from the normal pins.

The number of test pins differs depending on the CPU core.

#### (2) BUNRI, TEST

These pins select the modes of the test pins and normal pins.

Depending on the combination of the signals input to these pins, the CPU core operates as follows:

| BUNRI | TEST | Operation Mode           |
|-------|------|--------------------------|
| 0     | 0    | Normal mode              |
|       | 1    |                          |
| 1     | 0    | Test mode (standby test) |
|       | 1    | Test mode (unit test)    |

#### (a) Normal mode

This mode is used to perform normal operations such as during total chip simulation. In this mode, the normal pins are valid.

#### (b) Test mode (standby test)

This mode is used when the CPU core is not tested during test circuit check simulation or user logic separation simulation.

#### (c) Test mode (unit test)

This mode is used when the CPU core is tested during test circuit check simulation.

Each pin is in the following status in each operation mode.

| Mode                     |               | No                                        | Test Pins      |               |               |               |
|--------------------------|---------------|-------------------------------------------|----------------|---------------|---------------|---------------|
|                          | Input         | Input Output 3-State Output Bidirectional |                |               |               | Output (TBOx) |
| Normal mode              | Valid         | Valid                                     | Valid          | Valid         | Input ignored | High          |
| Test mode (standby test) | Input ignored | Undefined                                 | High impedance | Input ignored |               | impedance     |
| Test mode (unit test)    |               |                                           |                |               | Valid         | Valid         |

For details on circuit design, refer to CB-9 Family VX/VM Type Design Manual (A12745E).

#### 1. 2. 4 Initialize

The steps for initialization are explained in below. Initialize each CPU core by following these steps.

#### (1) Input an initialization pattern from the normal pins

#### (a) Apply a reset pulse

Apply a pulse with a specified width or more.

Some CPUs require operation of the clock signal while the reset pulse is input.

#### (b) Write initial values to the internal registers

Some registers, such as the stack pointer of the CPU, require that initial values be set in advance.

## (2) Input an initialization pattern from a test pin

This step is used to initialize a CPU core for which NEC has already created an initialization pattern because the test pattern is very complicated.

In this case, the initialization pattern is input in the same test mode as for test circuit check simulation, and then the mode is changed back to that of total chip simulation.

Although this step allows you to ignore the details of the pattern, it requires care when changing the mode from test to normal, so that a malfunction does not occur.

#### 1. 2. 5 Prohibition on spike input

It is necessary to take care not to input a spike to input pins that operate at the edge of an input signal, such as interrupt and clock input pins.

#### ★ 1. 3 Timing Verification

Verify that the input timing is satisfied at the boundary between the CPU core and memory controller using a delay analysis tool.

Observe the description on timing verification for each CPU core and memory controller if described in this manual (refer to the design manual of each CPU core).

#### CHAPTER 2 78K/0 CORE

The 78K/0 core is a CPU core containing many peripheral functions such as timers, serial interfaces, and an interrupt controller. The instruction set of the 78K/0 core is common to that of the 78K/0 Series 8-bit single-chip microcontrollers.

#### 2. 1 Outline

• CPU function: 78K/0 Series standard

• Minimum instruction execution time: 0.24 μs (maximum input frequency: 8.38 MHz)

Internal memory

| Part Number | Part Number ROM Capacity |      |
|-------------|--------------------------|------|
| NAK0HM0     | 0 (ROMless)              | 1 KB |
| NAK0HM4     | 32 KB (mask ROM)         |      |
| NAK0HM8     | 60 KB (mask ROM)         |      |

#### Port

Up to 128 port pins can be used by using an I/O buffer.

Input port: 64 pins
Output port: 64 pins
• Timers/counters

16-bit timer/event counter: 1 ch 8-bit timer/event counter: 2 chs Watch timer: 1 ch Watchdog timer: 1 ch

Serial interface

3-wire serial I/O mode: 2 chs UART mode: 2 chs I<sup>2</sup>C bus mode: 2 chs

• Vectored interrupt source: 29 (internal: 17, external: 12)

• External memory expansion space: 64 KB (address/DIN/DOUT separation)

• Standby function: HALT/STOP mode (can be released by interrupt)

• Supply voltage: VDD = 3.0 to 3.6 V

#### 2. 1. 1 Symbol diagram

# (1) NAK0HM0

# Number of grids

147k grids

192k grids (value including wiring area)

# Number of separation simulation patterns

165k



# (2) NAK0HM4, NAK0HM8

# Number of grids

• NAK0HM4: 193k grids

243k grids (value including wiring area)

• NAK0HM8: 217k grids

270k grids (value including wiring area)

#### Number of separation simulation patterns

NAK0HM4: 230kNAK0HM8: 285k



# 2. 1. 2 Pin capacitance

Remark C<sub>IN</sub>: Capacitance of only input pin

Cinewi: Value of CIN with wiring capacitance (estimated wire length capacitance) taken into consideration (I = 10 mm)

# (1) NAK0HM0

# (a) Input pins

| Pin Name                  | Cin (pF) | Cinewl (pF) | Pin Name      | C <sub>IN</sub> (pF) | Cinewl (pF) |
|---------------------------|----------|-------------|---------------|----------------------|-------------|
| DIN7 to DIN0              | 0.102    | 2.002       | SCLI00        | 0.233                | 2.133       |
| WAITB                     | 0.059    | 1.959       | SDAI01        | 0.067                | 1.967       |
| X1IN                      | 0.059    | 1.959       | SCLI01        | 0.065                | 1.965       |
| XT1IN                     | 0.046    | 1.946       | TI00          | 0.056                | 1.956       |
| ROMLESS                   | 0.630    | 2.530       | TI01          | 0.075                | 1.975       |
| RESETB                    | 0.109    | 2.009       | TI50          | 0.045                | 1.945       |
| PIn7 to PIn0 (n = 7 to 0) | 0.153    | 2.053       | TI51          | 0.050                | 1.950       |
| INT11 to INT0             | 0.210    | 2.110       | TBI23 to TBI0 | 1.019                | 2.919       |
| SI30                      | 0.062    | 1.962       | TEST          | 3.983                | 5.883       |
| SCK30IB                   | 0.068    | 1.968       | BUNRI         | 4.455                | 6.355       |
| SI31                      | 0.081    | 1.981       | TOTALCM       | 1.544                | 3.444       |
| SCK31IB                   | 0.168    | 2.068       | DMBTM         | 0.859                | 2.759       |
| RXD30                     | 0.087    | 1.987       | EMUMD         | 0.747                | 2.647       |
| RXD31                     | 0.152    | 2.052       | INTFLT        | 0.373                | 2.273       |
| SDAI00                    | 0.082    | 1.982       | FLASHEN       | 0.629                | 2.529       |

# (b) Output pins

| Pin Name                     | C <sub>MAX</sub> (pF) | Pin Name | C <sub>MAX</sub> (pF) | Pin Name      | C <sub>MAX</sub> (pF) |
|------------------------------|-----------------------|----------|-----------------------|---------------|-----------------------|
| A15 to A0                    | 6.459                 | SO30     | 6.561                 | SDAO01        | 6.567                 |
| DOUT7 to DOUT0               | 6.501                 | SCK30OB  | 6.561                 | SCLO01        | 6.562                 |
| ASTB                         | 6.452                 | SO31     | 6.545                 | TO0           | 6.566                 |
| RDB                          | 6.415                 | SCK31OB  | 6.523                 | TO50          | 6.567                 |
| WRB                          | 6.500                 | TXD30    | 6.555                 | TO51          | 6.566                 |
| STOPX1                       | 6.564                 | TXD31    | 6.522                 | CKUPCL        | 6.550                 |
| STOPXT1                      | 6.555                 | SDAO00   | 6.496                 | CKUBUZ        | 6.545                 |
| POn7 to POn0<br>(n = 7 to 0) | 6.496                 | SCLO00   | 6.527                 | TBO38 to TBO0 | 6.322                 |

# (2) NAK0HM4

# (a) Input pins

| Pin Name                  | C <sub>IN</sub> (pF) | Cinewl (pF) | Pin Name      | C <sub>IN</sub> (pF) | C <sub>inewl</sub> (pF) |
|---------------------------|----------------------|-------------|---------------|----------------------|-------------------------|
| DIN7 to DIN0              | 0.090                | 1.990       | SDAI00        | 0.057                | 1.957                   |
| WAITB                     | 0.061                | 1.961       | SCLI00        | 0.042                | 1.942                   |
| X1IN                      | 0.049                | 1.949       | SDAI01        | 0.043                | 1.943                   |
| XT1IN                     | 0.045                | 1.945       | SCLI01        | 0.046                | 1.946                   |
| ROMLESS                   | 0.569                | 2.469       | T100          | 0.056                | 1.956                   |
| RESETB                    | 0.047                | 1.947       | TI01          | 0.073                | 1.973                   |
| PIn7 to PIn0 (n = 7 to 0) | 0.178                | 2.078       | TI50          | 0.081                | 1.981                   |
| INT11 to INT0             | 0.258                | 2.158       | TI51          | 0.050                | 1.950                   |
| SI30                      | 0.049                | 1.949       | TBI23 to TBI0 | 0.925                | 2.825                   |
| SCK30IB                   | 0.043                | 1.943       | TEST          | 4.125                | 6.025                   |
| SI31                      | 0.084                | 1.984       | BUNRI         | 4.493                | 6.393                   |
| SCK31IB                   | 0.068                | 1.968       | TOTALCM       | 1.434                | 3.334                   |
| RXD30                     | 0.058                | 1.958       | DMBTM         | 0.794                | 2.694                   |
| RXD31                     | 0.064                | 1.964       | EMUMD         | 0.779                | 2.679                   |

# (b) Output pins

| Pin Name                     | C <sub>MAX</sub> (pF) | Pin Name | Смах (рF) | Pin Name      | Смах (рF) |
|------------------------------|-----------------------|----------|-----------|---------------|-----------|
| A15 to A0                    | 6.445                 | SO30     | 6.568     | SDAO01        | 6.568     |
| DOUT7 to DOUT0               | 6.542                 | SCK30OB  | 6.568     | SCLO01        | 6.567     |
| ASTB                         | 6.529                 | SO31     | 6.563     | TO0           | 6.554     |
| RDB                          | 6.564                 | SCK31OB  | 6.559     | TO50          | 6.528     |
| WRB                          | 6.562                 | TXD30    | 6.557     | TO51          | 6.568     |
| STOPX1                       | 6.557                 | TXD31    | 6.566     | CKUPCL        | 6.528     |
| STOPXT1                      | 6.540                 | SDAO00   | 6.530     | CKUBUZ        | 6.561     |
| POn7 to POn0<br>(n = 7 to 0) | 6.347                 | SCLO00   | 6.564     | TBO38 to TBO0 | 6.322     |

# (3) NAK0HM8

# (a) Input pins

| Pin Name                  | Cin (pF) | Cinewl (pF) | Pin Name      | Cin (pF) | Cinewl (pF) |
|---------------------------|----------|-------------|---------------|----------|-------------|
| DIN7 to DIN0              | 0.090    | 1.990       | SDAI00        | 0.057    | 1.957       |
| WAITB                     | 0.061    | 1.961       | SCLI00        | 0.042    | 1.942       |
| X1IN                      | 0.049    | 1.949       | SDAI01        | 0.043    | 1.943       |
| XT1IN                     | 0.045    | 1.945       | SCLI01        | 0.046    | 1.946       |
| ROMLESS                   | 0.569    | 2.469       | TI00          | 0.056    | 1.956       |
| RESETB                    | 0.047    | 1.947       | TI01          | 0.073    | 1.973       |
| PIn7 to PIn0 (n = 7 to 0) | 0.178    | 2.078       | TI50          | 0.081    | 1.981       |
| INT11 to INT0             | 0.258    | 2.158       | TI51          | 0.051    | 1.951       |
| SI30                      | 0.049    | 1.949       | TBI23 to TBI0 | 0.925    | 2.825       |
| SCK30IB                   | 0.043    | 1.943       | TEST          | 4.123    | 6.023       |
| SI31                      | 0.084    | 1.984       | BUNRI         | 4.493    | 6.393       |
| SCK31IB                   | 0.068    | 1.968       | TOTALCM       | 1.434    | 3.334       |
| RXD30                     | 0.058    | 1.958       | DMBTM         | 0.794    | 2.694       |
| RXD31                     | 0.064    | 1.964       | EMUMD         | 0.779    | 2.679       |

# (b) Output pins

| Pin Name                     | C <sub>MAX</sub> (pF) | Pin Name | Смах (рF) | Pin Name      | Смах (рF) |
|------------------------------|-----------------------|----------|-----------|---------------|-----------|
| A15 to A0                    | 6.445                 | SO30     | 6.568     | SDAO01        | 6.567     |
| DOUT7 to DOUT0               | 6.542                 | SCK30OB  | 6.568     | SCLO01        | 6.567     |
| ASTB                         | 6.529                 | SO31     | 6.563     | TO0           | 6.554     |
| RDB                          | 6.564                 | SCK31OB  | 6.559     | TO50          | 6.528     |
| WRB                          | 6.562                 | TXD30    | 6.557     | TO51          | 6.568     |
| STOPX1                       | 6.557                 | TXD31    | 6.566     | CKUPCL        | 6.528     |
| STOPXT1                      | 6.540                 | SDAO00   | 6.530     | CKUBUZ        | 6.561     |
| POn7 to POn0<br>(n = 7 to 0) | 6.347                 | SCLO00   | 6.564     | TBO38 to TBO0 | 6.322     |

# 2. 2 Pin Functions

(1/2)

|                           |        | (1/2)                                                              |
|---------------------------|--------|--------------------------------------------------------------------|
| Pin Name                  | I/O    | Function                                                           |
| A15 to A0                 | Output | Output address output for external access.                         |
| DIN7 to DIN0              | Input  | Input data input for external access.                              |
| DOUT7 to DOUT0            | Output | Output data output for external access.                            |
| ASTB                      | Output | External address strobe signal.                                    |
| RDB                       | Output | External read strobe signal.                                       |
| WRB                       | Output | External write strobe signal.                                      |
| WAITB                     | Input  | Control signal input to insert wait to external bus cycle.         |
| X1IN                      | Input  | Main system clock oscillator input.                                |
| STOPX1                    | Output | Main system clock oscillator stop signal.                          |
| XT1IN                     | Input  | Subsystem clock oscillator input.                                  |
| STOPXT1                   | Output | Subsystem clock oscillator stop signal.                            |
| ROMLESS                   | Input  | ROMless mode select signal.                                        |
| RESETB                    | Input  | System reset input.                                                |
| PIn7 to PIn0 (n = 7 to 0) | Input  | 8-bit input port.                                                  |
| POn7 to POn0 (n = 7 to 0) | Output | 8-bit output port.                                                 |
| INT11 to INT0             | Input  | External interrupt request input.                                  |
| SI30                      | Input  | Serial interface (SIO30) serial data input.                        |
| SO30                      | Output | Serial interface (SIO30) serial data output.                       |
| SCK30IB                   | Input  | Serial interface (SIO30) serial clock input.                       |
| SCK30OB                   | Output | Serial interface (SIO30) serial clock output.                      |
| SI31                      | Input  | Serial interface (SIO31) serial data input.                        |
| SO31                      | Output | Serial interface (SIO31) serial data output.                       |
| SCK31IB                   | Input  | Serial interface (SIO31) serial clock input.                       |
| SCK310B                   | Output | Serial interface (SIO31) serial clock output.                      |
| RXD30                     | Input  | Asynchronous serial interface (UART30) serial data input.          |
| TXD30                     | Output | Asynchronous serial interface (UART30) serial data output.         |
| RXD31                     | Input  | Asynchronous serial interface (UART31) serial data input.          |
| TXD31                     | Output | Asynchronous serial interface (UART31) serial data output.         |
| SDAI00                    | Input  | Serial interface (IIC00) serial data input.                        |
| SDAO00                    | Output | Serial interface (IIC00) serial data output.                       |
| SCLI00                    | Input  | Serial interface (IIC00) serial clock input.                       |
| SCLO00                    | Output | Serial interface (IIC00) serial clock output.                      |
| SDAI01                    | Input  | Serial interface (IIC01) serial data input.                        |
| SDAO01                    | Output | Serial interface (IIC01) serial data output.                       |
| SCLI01                    | Input  | Serial interface (IIC01) serial clock input.                       |
| SCLO01                    | Output | Serial interface (IIC01) serial clock output.                      |
| TI00                      | Input  | Capture trigger input 1 to capture register of 16-bit timer (TM0). |
| TI01                      | Input  | Capture trigger input 2 to capture register of 16-bit timer (TM0). |
| L                         | L.     |                                                                    |

(2/2)

| Pin Name      | I/O    | Function                                          |
|---------------|--------|---------------------------------------------------|
| TO0           | Output | 16-bit timer (TM0) PWM output.                    |
| TI50          | Input  | External count clock input to 8-bit timer (TM50). |
| TO50          | Output | 8-bit timer (TM50) output.                        |
| TI51          | Input  | External count clock input to 8-bit timer (TM51). |
| TO51          | Output | 8-bit timer (TM51) output.                        |
| CKUPCL        | Output | Clock output.                                     |
| CKUBUZ        | Output | Buzzer output.                                    |
| TBI23 to TBI0 | Input  | Test bus input signal.                            |
| TBO38 to TBO0 | Output | Test bus output signal.                           |
| TEST          | Input  | Test bus control signal input.                    |
| BUNRI         | Input  | Normal test mode select signal input.             |
| TOTALCM       | Input  | Test mode select signal input.                    |
| DMBTM         | Input  | Test mode select signal input.                    |
| EMUMD         | Input  | Emulation mode.                                   |

#### 2. 3 Electrical Specifications

The following specifications are for a single macro. An actual chip consists of two or more macros. Design the system so that all the specifications of the individual macros are satisfied when the chip is used.

#### 2. 3. 1 Absolute maximum ratings

| Parameter                     | Symbol           | Ratings      | Unit |
|-------------------------------|------------------|--------------|------|
| Supply voltage                | V <sub>DD</sub>  | -0.5 to +4.6 | V    |
| Operating ambient temperature | TA               | -40 to +85   | °C   |
| Storage temperature           | T <sub>stg</sub> | -65 to +150  | °C   |

Caution Product quality may suffer if the absolute maximum rating is exceeded even momentarily for any parameter. That is, the absolute maximum ratings are rated values at which the product is on the verge of suffering physical damage, and therefore the product must be used under conditions that ensure that the absolute maximum ratings are not exceeded.

#### 2. 3. 2 Recommended operation range

| Parameter                     | Symbol          | MIN. | TYP. | MAX. | Unit |
|-------------------------------|-----------------|------|------|------|------|
| Supply voltage                | V <sub>DD</sub> | 3.0  | 3.3  | 3.6  | V    |
| Operating ambient temperature | TA              | -40  |      | +85  | °C   |

#### 2. 3. 3 DC characteristics ( $T_A = -40 \text{ to } +85^{\circ}\text{C}$ , $V_{DD} = 3.3 \text{ V } \pm 0.3 \text{ V}$ )

| Parameter      | Symbol           | Conditions               | MIN. | TYP. | MAX. | Unit   |
|----------------|------------------|--------------------------|------|------|------|--------|
| Supply current | I <sub>DD1</sub> | In normal operation mode |      | 0.8  | 1.2  | mA/MHz |
|                | IDD2             | In HALT mode             |      | 0.2  | 0.3  | mA/MHz |
|                | I <sub>DD3</sub> | In STOP mode             |      | 1.0  | 10   | μΑ     |

#### 2. 3. 4 AC characteristics (T<sub>A</sub> = −40 to +85°C, V<sub>DD</sub> = 3.3 V ±0.3 V, load capacitance of output pin C<sub>L</sub> = 5 pF)

#### (1) Clock timing

| Parameter                         | Sy  | mbol | Conditions | MIN. | MAX. | Unit |
|-----------------------------------|-----|------|------------|------|------|------|
| CLKIN cycle time                  | <1> | tcyx |            | 120  |      | ns   |
| CLKIN input high-level width Note | <2> | twxн |            | 50   | 64   | ns   |
| CLKIN input low-level width Note  | <3> | twxL |            | 50   | 64   | ns   |
| CPU operating frequency           | _   | φ    |            | 0    | 8.38 | MHz  |

**Note** The slew rate clock is taken into consideration for the high-level and low-level widths of the clock, where the rate of change in the duty factor is 15% MAX.

# (2) Fetch operation

| Parameter                                   | Syn  | nbol           | Conditions                                       | MIN. | MAX. | Unit |
|---------------------------------------------|------|----------------|--------------------------------------------------|------|------|------|
| Delay time from CLKIN to address            | <4>  | <b>t</b> DXA   | When divider is not used, CLKIN↓                 |      | 25   | ns   |
|                                             |      |                | When divider is used, CLKIN↑                     |      | 25   | ns   |
| Delay time from CLKIN to ASTB               | <5>  | toxst          |                                                  |      | 25   | ns   |
| Delay time from CLKIN to RDB↓↑              | <6>  | toxr           |                                                  |      | 25   | ns   |
| Address hold time from CLKIN                | <7>  | thxa           | When divider is not used, CLKIN↓                 | 15   |      | ns   |
|                                             |      |                | When divider is used, CLKIN↑                     | 15   |      | ns   |
| Setup time from CLKIN to WAITB↓             | <8>  | tsxwт          | When divider is not used, CLKIN↑ 0.5tcyx – 20 ns |      | 40   | ns   |
|                                             |      |                | When divider is used, CLKIN↓ 0.5tcyx – 20 ns     |      | 40   | ns   |
| Hold time from CLKIN to WAITB↑              | <9>  | tнхwт          | When divider is not used, CLKIN↓                 | 25   |      | ns   |
|                                             |      |                | When divider is used, CLKIN↑                     | 25   |      | ns   |
| Delay time from CLKIN to WAITB↑             | <10> | tохwт          | When divider is not used, CLKIN↑ 0.5tcyx – 25 ns |      | 35   | ns   |
|                                             |      |                | When divider is used, CLKIN↓ 0.5tcyx – 25 ns     |      | 35   | ns   |
| Delay time from address to ASTB↓            | <15> | tDAST          | 0.5tcyк – 30 ns                                  | 30   |      | ns   |
| ASTB high-level width                       | <16> | twsтн          | 0.5tcyк – 10 ns                                  | 50   |      | ns   |
| Setup time from address to data input*      | <17> | <b>t</b> SAID  | (1.5 + n)tcүк – 50 ns                            |      | 130  | ns   |
| Setup time from RDB↓ to data input*         | <18> | tsrid          | (1.0 + n)tcyk - 50 ns                            |      | 70   | ns   |
| RDB low-level width*                        | <19> | twrL           | (1.0 + n)tcүк – 15 ns                            | 105  |      | ns   |
| Read data hold time                         | <20> | thrid          |                                                  | 0    |      | ns   |
| Delay time from RDB↑ to ASTB↑*              | <21> | torstl         | 0.5tcүк – 20 ns                                  | 40   |      | ns   |
| Address hold time (from RDB <sup>↑</sup> )* | <22> | <b>t</b> HRA   | 0.5tcүк – 20 ns                                  | 40   |      | ns   |
| Delay time from RDB↑ to ASTB↓*              | <23> | <b>t</b> DRSTH | tcүк – 20 ns                                     | 100  |      | ns   |
| Setup time from ASTB↓ to data input*        | <24> | tsstid         | (1.0 + n)tcүк – 50 ns                            |      | 70   | ns   |
| Setup time from address to WAITB↓*          | <31> | <b>t</b> sawt  | tcvк – 40 ns                                     |      | 80   | ns   |
| Setup time from ASTB↓ to WAITB↓*            | <32> | tsstwt         | 0.5tcүк – 30 ns                                  |      | 30   | ns   |
| Hold time from ASTB↓ to WAITB↑*             | <33> | <b>t</b> нѕтwт | (n – 0.5)tcүк + 10 ns                            | 70   |      | ns   |
| Delay time from ASTB↓ to WAITB↑*            | <34> | <b>t</b> DSTWT | (0.5 + n)tcүк – 40 ns                            |      | 140  | ns   |
| Setup time from RDB↓ to WAITB↓*             | <35> | tsrwt          | 0.5tcүк – 30 ns                                  |      | 30   | ns   |
| Hold time from RDB↓ to WAITB↑*              | <36> | thrwt          | (n – 0.5)tcүк + 10 ns                            | 70   |      | ns   |
| Setup time from WAITB↑ to data input        | <38> | tswTID         | 0.5tcүк – 10 ns                                  |      | 50   | ns   |
| Delay time from WAITB↑ to RDB↑              | <39> | <b>t</b> DWTR  | 0.5tcүк + 40 ns                                  | 100  |      | ns   |

Remarks 1. tcyx: CLKIN cycle time (120 ns (MIN.))

- 2. tcyk: CPU clock selected with processor clock control register (PCC) (120 ns (MIN.))
- **3.** n: Number of wait cycles (software wait: n = 1, external wait input:  $n \ge 1$ )
- **4.** The minimum and maximum values are calculated where  $t_{CYX} = t_{CYK} = 120 \text{ ns.}$
- **5.** The values of the operations marked \* differ from the calculated value during data access read.

# (3) Data access read operation

| Parameter                                    | Syr  | mbol           | Conditions                                       | MIN. | MAX. | Unit |
|----------------------------------------------|------|----------------|--------------------------------------------------|------|------|------|
| Delay time from CLKIN to address             | <4>  | <b>t</b> DXA   | When divider is not used, CLKIN↓                 |      | 25   | ns   |
|                                              |      |                | When divider is used, CLKIN↑                     |      | 25   | ns   |
| Delay time from CLKIN to ASTB                | <5>  | toxst          |                                                  |      | 25   | ns   |
| Delay time from CLKIN to RDB↓↑               | <6>  | toxr           |                                                  |      | 25   | ns   |
| Hold time from CLKIN to address              | <7>  | thxa           | When divider is not used, CLKIN↓                 | 15   |      | ns   |
|                                              |      |                | When divider is used, CLKIN↑                     | 15   |      | ns   |
| Setup time from CLKIN↓ to WAITB↓ input       | <8>  | tsxwт          | 0.5tcyx – 20 ns                                  |      | 40   | ns   |
| Hold time from CLKIN↑ to WAITB↑              | <9>  | tнхwт          |                                                  | 25   |      | ns   |
| Delay time from CLKIN to WAITB↑              | <10> | tрхwт          | When divider is not used, CLKIN↓ 0.5tcyx – 25 ns |      | 35   | ns   |
|                                              |      |                | When divider is used, CLKIN↑ 0.5tcyx – 25 ns     |      | 35   | ns   |
| Delay time from address to ASTB $\downarrow$ | <15> | <b>t</b> DAST  | 0.5tcүк – 30 ns                                  | 30   |      | ns   |
| ASTB high-level width                        | <16> | twsтн          | 0.5tcyк – 10 ns                                  | 50   |      | ns   |
| Setup time from address to data input*       | <17> | tsaid          | (2 + n)tcүк – 50 ns                              |      | 190  | ns   |
| Setup time from RDB↓ to data input*          | <18> | tsrid          | (1.5 + n)tcүк – 50 ns                            |      | 130  | ns   |
| RDB low-level width*                         | <19> | twrL           | (1.5 + n)tcүк – 15 ns                            | 165  |      | ns   |
| Read data hold time                          | <20> | <b>t</b> HRID  |                                                  | 0    |      | ns   |
| Delay time from RDB↑ to ASTB↑*               | <21> | <b>t</b> DRSTL | tcyк – 20 ns                                     | 100  |      | ns   |
| Address hold time (from RDB↑)*               | <22> | tHRA           | tcyк – 20 ns                                     | 100  |      | ns   |
| Delay time from RDB↑ to ASTB↓*               | <23> | <b>t</b> DRSTH | 1.5tcyк – 20 ns                                  | 160  |      | ns   |
| Setup time from ASTB↓ to data input*         | <24> | <b>t</b> sstid | (1.5 + n)tcүк – 50 ns                            |      | 0    | ns   |
| Setup time from address to WAITB↓*           | <31> | <b>t</b> sawt  | 1.5tcүк – 40 ns                                  |      | 140  | ns   |
| Setup time from ASTB↓ to WAITB↓*             | <32> | <b>t</b> sstwt | tсук – 30 ns                                     |      | 90   | ns   |
| Hold time from ASTB↓ to WAITB↑*              | <33> | tнsтwт         | ntcyk + 10 ns                                    | 130  |      | ns   |
| Delay time from ASTB↓ to WAITB↑*             | <34> | tostwt         | (1 + n)tcyk – 40 ns                              |      | 200  | ns   |
| Setup time from RDB↓ to WAITB↓*              | <35> | <b>t</b> srwT  | tcүк – 30 ns                                     |      | 90   | ns   |
| Hold time from RDB↓ to WAITB↑*               | <36> | <b>t</b> HRWT  | ntсүк + 10 ns                                    | 130  |      | ns   |
| Delay time from RDB↓ to WAITB↑               | <37> | <b>t</b> DASWT | (1 + n)tcyk – 40 ns                              |      | 200  | ns   |
| Setup time from WAITB↑ to data input         | <38> | tswTID         | 0.5tcүк – 10 ns                                  |      | 50   | ns   |
| Delay time from WAITB↑ to RDB↑               | <39> | towtr          | 0.5tcүк + 40 ns                                  | 100  |      | ns   |

Remarks 1. tcyx: CLKIN cycle time (120 ns (MIN.))

- 2. tcyk: CPU clock selected with processor clock control register (PCC) (120 ns (MIN.))
- **3.** n: Number of wait cycles (software wait: n = 1, external wait input:  $n \ge 1$ )
- **4.** The minimum and maximum values are calculated where  $t_{CYX} = t_{CYK} = 120 \text{ ns}$ .
- **5.** The values of the operations marked \* differ from the calculated value during fetch.

# (4) Data access write operation

| Parameter                                                     | Syr  | nbol           | Conditions                                        | MIN. | MAX. | Unit |
|---------------------------------------------------------------|------|----------------|---------------------------------------------------|------|------|------|
| Delay time from CLKIN to address                              | <4>  | <b>t</b> DXA   | When divider is not used, CLKIN $\downarrow$      |      | 25   | ns   |
|                                                               |      |                | When divider is used, CLKIN↑                      |      | 25   | ns   |
| Delay time from CLKIN to ASTB                                 | <5>  | <b>t</b> DXST  |                                                   |      | 25   | ns   |
| Hold time from CLKIN to address                               | <7>  | thxa           | When divider is not used, CLKIN $\downarrow$      | 15   |      | ns   |
|                                                               |      |                | When divider is used, CLKIN↑                      | 15   |      | ns   |
| Setup time from CLKIN to WAITB↓                               | <8>  | <b>t</b> sxwT  | When divider is not used, CLKIN↑ 0.5 tcvx − 20 ns |      | 40   | ns   |
|                                                               |      |                | When divider is used, CLKIN↓ 0.5tcγx – 20 ns      |      | 40   | ns   |
| Hold time from CLKIN to WAITB↑                                | <9>  | tнхwт          | When divider is not used, CLKIN $\downarrow$      | 25   |      | ns   |
|                                                               |      |                | When divider is used, CLKIN↑                      | 25   |      | ns   |
| Delay time from CLKIN to WAITB↑                               | <10> | <b>t</b> DXWT  | When divider is not used, CLKIN↑  0.5tcγx − 25 ns |      | 35   | ns   |
|                                                               |      |                | When divider is used, CLKIN↓<br>0.5tcγx – 25 ns   |      | 35   | ns   |
| Delay time from CLKIN $\uparrow$ to WRB $\downarrow \uparrow$ | <11> | toxw           |                                                   |      | 25   | ns   |
| Delay time from CLKIN <sup>↑</sup> to data output             | <12> | <b>t</b> DKOD  |                                                   |      | 75   | ns   |
| Write data hold time (from CLKIN)                             | <13> | thkod          |                                                   | 15   |      | ns   |
| Delay time from WRB↑ to ASTB↑                                 | <14> | <b>t</b> DWST  | tcүк – 20 ns                                      | 100  |      | ns   |
| Delay time from address to ASTB $\downarrow$                  | <15> | <b>t</b> DAST  | 0.5tcүк – 30 ns                                   | 30   |      | ns   |
| ASTB high-level width                                         | <16> | twsтн          | 0.5tcүк – 10 ns                                   | 50   |      | ns   |
| Delay time from ASTB $\downarrow$ to WRB $\downarrow$         | <25> | tostw          | tcүк – 15 ns                                      | 105  |      | ns   |
| WRB low-level width                                           | <26> | tww∟           | (1.0 + n)tcyк – 15 ns                             | 105  |      | ns   |
| Delay time from WRB $\downarrow$ to data output               | <27> | <b>t</b> DWOD  |                                                   |      | 50   | ns   |
| Data setup time (to WRB <sup>↑</sup> )                        | <28> | tsodw          | (1.0 + n)tcyk - 50 ns                             | 70   |      | ns   |
| Data hold time (from WRB↑)                                    | <29> | thodw          | 0.5tcүк – 15 ns                                   | 45   |      | ns   |
| Address hold time (from WRB↑)                                 | <30> | thaw           | 0.5tcүк – 20 ns                                   | 40   |      | ns   |
| Setup time from address to WAITB↓                             | <31> | <b>t</b> sawt  | 2tcүк – 40 ns                                     |      | 200  | ns   |
| Setup time from ASTB↓ to WAITB↓                               | <32> | <b>t</b> sstwt | 1.5tcүк – 30 ns                                   |      | 150  | ns   |
| Hold time from ASTB↓ to WAITB↑                                | <33> | <b>t</b> HSTWT | (0.5 + n)tcyk + 10 ns                             | 190  |      | ns   |
| Delay time from ASTB↓ to WAITB↑                               | <34> | tostwt         | (1.5 + n)tcyk – 40 ns                             |      | 260  | ns   |
| Delay time from WAITB↑ to WRB↑                                | <40> | towtw          | 0.5tcүк + 40 ns                                   | 100  |      | ns   |
| Setup time from WRB↓ to WAITB↓                                | <41> | tswwT          | 0.5tcүк – 30 ns                                   |      | 30   | ns   |
| Hold time from WRB↓ to WAITB↑                                 | <42> | tнwwт          | (n – 0.5)tcүк + 10 ns                             | 70   |      | ns   |
| Delay time from WRB↓ to WAITB↑                                | <43> | <b>t</b> DWWT  | (0.5 + n)tcүк – 40 ns                             |      | 140  | ns   |

Remarks 1. tcyx: CLKIN cycle time (120 ns (MIN.))

- 2. tcyk: CPU clock selected with processor clock control register (PCC) (120 ns (MIN.))
- 3. n: Number of wait cycles (software wait: n = 1, external wait input:  $n \ge 1$ )
- **4.** The minimum and maximum values are calculated where tcyx = tcyk = 120 ns.

# (5) Basic operation

| Parameter                                | Symbol |                   | Conditions                      | MIN.               | TYP. | MAX. | Unit |
|------------------------------------------|--------|-------------------|---------------------------------|--------------------|------|------|------|
| Cycle time (minimum instruction          | _      | Tcy               | Operates with main system clock | 0.24               |      | 32   | μs   |
| execution time)                          |        |                   | Operates with subsystem clock   | 40                 | 122  | 125  | μs   |
| TI01, TI00 input high-/low-level width   | <44>   | tтіно             |                                 | 2/f <sub>sam</sub> |      |      | μs   |
|                                          | <45>   | <b>t</b> TILO     |                                 | +0.1 Note          |      |      |      |
| TI51, TI50 input frequency               | <46>   | <b>f</b> T15      |                                 | 0                  |      | 10   | MHz  |
| TI51, TI50 input high-/low-level         | <47>   | <b>t</b> TIH5     |                                 | 40                 |      |      | ns   |
| width                                    | <48>   | t <sub>TIL5</sub> |                                 |                    |      |      |      |
| Interrupt request input high-level width | <49>   | tinth             | INT11 to INT0                   | 1                  |      |      | μs   |
| RESETB low-level width                   | <50>   | trsL              |                                 | 10                 |      |      | μs   |

**Note**  $f_{sam} = fx$ , fx/4, or fx/64 can be selected by using bits 0 and 1 (PRM00 and PRM01) of the prescaler mode register 0 (PRM0). However, if the TI00 valid edge is selected as the count clock,  $f_{sam} = fx/8$ .

# (6) Serial interface

#### (a) 3-wire serial I/O mode (SCK310B, SCK300B ... internal clock output)

| Parameter                                                     | Syn  | nbol          | Conditions | MIN.    | TYP. | MAX. | Unit |
|---------------------------------------------------------------|------|---------------|------------|---------|------|------|------|
| SCK31OB, SCK30OB cycle time                                   | <51> | tkcY1         |            | 954     |      |      | ns   |
| SCK31OB, SCK30OB<br>high-/low-level width                     | <52> | <b>t</b> кн1  |            | tkcy1/2 |      |      | ns   |
|                                                               | <53> | <b>t</b> KL1  |            | -20     |      |      |      |
| SI31, SI30 setup time<br>(to SCK31OB, SCK30OB↑)               | <54> | tsıĸ1         |            | 50      |      |      | ns   |
| SI31, SI30 hold time<br>(from SCK310B, SCK300B <sup>↑</sup> ) | <55> | <b>t</b> KSI1 |            | 70      |      |      | ns   |
| Delay time from SCK31OB,<br>SCK30OB↓ to SO31, SO30 output     | <56> | <b>t</b> kso1 |            |         |      | 70   | ns   |

## (b) 3-wire serial I/O mode (SCK31IB, SCK30IB ... external clock input)

| Parameter                                                 | Symbol |               | Conditions | MIN. | TYP. | MAX. | Unit |
|-----------------------------------------------------------|--------|---------------|------------|------|------|------|------|
| SCK31IB, SCK30IB cycle time                               | <57>   | tkcy2         |            | 800  |      |      | ns   |
| SCK31IB, SCK30IB<br>high-/low-level width                 | <58>   | <b>t</b> KH2  |            | 380  |      |      | ns   |
|                                                           | <59>   | <b>t</b> KL1  |            |      |      |      |      |
| SI31, SI30 setup time<br>(to SCK31IB, SCK30IB↑)           | <60>   | tsık2         |            | 50   |      |      | ns   |
| SI31, SI30 hold time<br>(from SCK31IB, SCK30IB↑)          | <61>   | tksi2         |            | 70   |      |      | ns   |
| Delay time from SCK31IB,<br>SCK30IB↓ to SO31, SO30 output | <62>   | <b>t</b> KSO2 |            |      |      | 70   | ns   |

# (c) UART mode (dedicated baud rate generator output)

| Parameter     | Symbol | Conditions | MIN. | TYP. | MAX.   | Unit |
|---------------|--------|------------|------|------|--------|------|
| Transfer rate | -      |            |      |      | 262144 | bps  |

#### (d) UART mode (infrared data transfer mode)

| Parameter                  | Symbol | Conditions | MIN. | MAX.     | Unit |
|----------------------------|--------|------------|------|----------|------|
| Transfer rate              | _      |            |      | 115200   | bps  |
| Permissible bit rate error | _      |            |      | ±0.87    | %    |
| Number of output pulses    | _      |            | 1.2  | 0.24/fbr | μs   |
| Number of input pulses     | _      |            | 4/fx |          | μs   |

Remark fbr: set baud rate

# (e) I<sup>2</sup>C bus mode

| Parameter                                         | Symbol |               | Standard Mode |      | High-Speed Mode |      | Unit |
|---------------------------------------------------|--------|---------------|---------------|------|-----------------|------|------|
|                                                   |        |               | MIN.          | MAX. | MIN.            | MAX. |      |
| SCL0 clock frequency                              | <63>   | fclk          | 0             | 100  | 0               | 400  | kHz  |
| Bus free time (between stop and start conditions) | <64>   | <b>t</b> BUF  | 4.8           |      | 1.4             |      | μs   |
| Hold time <sup>Note</sup>                         | <65>   | tho:STA       | 4.1           |      | 0.7             |      | μs   |
| Low-level width of SCL0 clock                     | <66>   | <b>t</b> LOW  | 5.0           |      | 1.25            |      | μs   |
| High-level width of SCL0 clock                    | <67>   | <b>t</b> HIGH | 5.0           |      | 1.25            |      | μs   |
| Setup time of start/restart condition             | <68>   | tsu:STA       | 4.8           |      | 0.7             |      | μs   |
| Data setup time (reception)                       | <69>   | tsu: DAT      | 0             |      | 0               |      | ns   |
| Data hold time (transmission)                     | <70>   | thd : DAT     | 0.72          | 3.5  | 0.48            | 1.0  | μs   |

**Note** The first clock pulse is created after this period in the start condition.

Caution The serial data line (SDA0) and serial clock line (SCL0) pins of serial interface (IIC0) incorporated in the 78K/0 core are separated to input pins (SDAI00, SCLI00) and output pins (SDAO00, SCLO00). Therefore, when the configuration consists of external device and I<sup>2</sup>C bus, the circuit should be as shown in Figure 2-1 (for details, refer to 78K/0 Core User's Manual (A13142E)).



Figure 2-1. Example of Circuit Construction of Serial Interface (IIC0) Input/Output Pin

# 2. 3. 5 Low-voltage data retention characteristics of data memory in STOP mode (TA = -40 to +85°C)

| Parameter                      | Sy   | mbol          | Conditions                    | MIN. | TYP. | MAX. | Unit |
|--------------------------------|------|---------------|-------------------------------|------|------|------|------|
| Release signal set time        | <72> | <b>t</b> SREL |                               | 0    |      |      | μs   |
| Oscillation stabilization wait | <73> | twait         | Released by RESETB            |      | 0    |      | ms   |
| time <sup>Note</sup>           |      |               | Released by interrupt request |      | 0    |      | ms   |

**Note** The user should ensure the lapse of the oscillation stabilization time if necessary.

# 2. 4 Timing Chart

# (1) Clock timing



# (2) Fetch timing 1 (when divider (fx/2) is used, no wait)



# (3) Fetch timing 2 (when divider is not used, no wait)



# (4) Read timing 1 (when data is accessed and when divider is used, no wait)



#### (5) Read timing 2 (when data is accessed and when divider is not used, no wait)



# (6) Write timing 1 (when data is accessed and when divider is used, no wait)



# (7) Write timing 2 (when data is accessed and when divider is not used, no wait)



# (8) External wait input fetch timing 1 (when divider is used, 1 wait)



# (9) External wait input fetch timing 2 (when divider is not used, 1 wait)



#### (10) External wait input read timing 1 (when data is accessed and when divider is used, 1 wait)



## (11) External wait input read timing 2 (when data is accessed and when divider is not used, 1 wait)



## (12) External wait input write timing 1 (when data is accessed and when divider is used, 1 wait)



## (13) External wait input write timing 2 (when data is accessed and when divider is not used, 1 wait)



## (14) TI timing





# (15) Interrupt request input timing



## (16) RESETB input timing



## (17) Serial transfer timing

## (a) 3-wire serial I/O mode



## (b) I<sup>2</sup>C bus mode



#### (18) Data retention timing (standby release signal: STOP mode is released by interrupt request signal)



#### (19) Data retention timing (STOP mode is released by RESETB)



#### **CHAPTER 3 V851 CORE**

The V851 core is a CPU core having peripheral functions such as a real-time pulse unit and serial interfaces. The instruction set of the V851 core is common to that of the V850 Family  $^{TM}$  32-bit single-chip microcontrollers.

#### 3.1 Outline

- CPU performance: 38 MIPS (@ 33 MHz operation)
- Internal memory (ROM can be removed.)

Mask ROM: 48, 64, 96, 128, and 256 KB

RAM: 4, 8, 16, and 24 KB

- Minimum instruction execution time: 30 ns (@ 33 MHz operation)
- External bus interface

16-bit data bus (DIN/DOUT separated)

24-bit address bus

• Interrupt/exception

External interrupt: 9 (including NMI)

Internal interrupt: 14 sources
Software exception: 32 sources
Exception trap: 1 source

Eight priority levels can be specified.

• Real-time pulse unit

16-bit timer/event counter: 1 ch16-bit interval timer: 1 ch

Serial interface

Asynchronous serial interface (UART): 1 ch Clocked serial interface (CSI): 1 ch

Power save function

HALT, STOP, IDLE mode

Clock output stop function

## 3. 1. 1 Symbol diagram

## Number of grids

139k grids

156k grids (including wiring area)

## Number of separation simulation patterns

| ROM Size | 0 byte    | 48 KB    | 64 KB    | 96 KB    | 128 KB   | 256 KB   |
|----------|-----------|----------|----------|----------|----------|----------|
| RAM Size | (ROMless) |          |          |          |          |          |
| 4 KB     | NA851M02  | NA851M32 | NA851M42 | NA851M62 | NA851M82 | NA851MG2 |
|          | 258.5k    | 270.6k   | 278.8k   | 295.2k   | 311.5k   | 377.1k   |
| 8 KB     | NA851M04  | NA851M34 | NA851M44 | NA851M64 | NA851M84 | NA851MG4 |
|          | 258.5k    | 270.6k   | 278.8k   | 295.2k   | 311.5k   | 377.1k   |
| 16 KB    | NA851M08  | NA851M38 | NA851M48 | NA851M68 | NA851M88 | NA851MG8 |
|          | 266.1k    | 278.2k   | 286.4k   | 302.8k   | 319.2k   | 384.7k   |
| 24 KB    | NA851M0C  | NA851M3C | NA851M4C | NA851M6C | NA851M8C | NA851MGC |
|          | 266.1k    | 278.2k   | 286.4k   | 302.8k   | 319.2k   | 384.7k   |

**Remark** The upper figure in each column of the above table indicates the part number and the lower figure indicates the total number of patterns.



#### 3. 1. 2 Pin capacitance

## (1) Input pins

| Pin Name | C <sub>IN</sub> (pF) | Cinewl (pF) | Pin Name | C <sub>IN</sub> (pF) | Cinewl (pF) | Pin Name | C <sub>IN</sub> (pF) | Cinewl (pF) |
|----------|----------------------|-------------|----------|----------------------|-------------|----------|----------------------|-------------|
| DIN15    | 0.025                | 1.925       | SCKINB   | 0.015                | 1.915       | TBI24    | 0.023                | 1.923       |
| DIN14    | 0.020                | 1.920       | SI       | 0.019                | 1.919       | TBI23    | 0.024                | 1.924       |
| DIN13    | 0.016                | 1.916       | TBCENB   | 0.017                | 1.917       | TBI22    | 0.015                | 1.915       |
| DIN12    | 0.022                | 1.922       | TI1      | 0.021                | 1.921       | TBI21    | 0.017                | 1.917       |
| DIN11    | 0.021                | 1.921       | TCLR1    | 0.028                | 1.928       | TBI20    | 0.015                | 1.915       |
| DIN10    | 0.021                | 1.921       | RXD      | 0.013                | 1.913       | TBI19    | 0.020                | 1.920       |
| DIN9     | 0.024                | 1.924       | WAITB    | 0.171                | 2.071       | TBI18    | 0.019                | 1.919       |
| DIN8     | 0.018                | 1.918       | NMI      | 0.015                | 1.915       | TBI17    | 0.027                | 1.927       |
| DIN7     | 0.015                | 1.915       | RESETB   | 0.027                | 1.927       | TBI16    | 0.019                | 1.919       |
| DIN6     | 0.021                | 1.921       | ICI1     | 0.013                | 1.913       | TBI15    | 0.018                | 1.918       |
| DIN5     | 0.016                | 1.916       | ICI0     | 0.013                | 1.913       | TBI14    | 0.016                | 1.916       |
| DIN4     | 0.014                | 1.914       | TBI41    | 0.064                | 1.964       | TBI13    | 0.018                | 1.918       |
| DIN3     | 0.014                | 1.914       | TBI40    | 0.023                | 1.923       | TBI12    | 0.015                | 1.915       |
| DIN2     | 0.014                | 1.914       | TBI39    | 0.022                | 1.922       | TBI11    | 0.014                | 1.914       |
| DIN1     | 0.015                | 1.915       | TBI38    | 0.016                | 1.916       | TBI10    | 0.013                | 1.913       |
| DIN0     | 0.033                | 1.933       | TBI37    | 0.011                | 1.911       | TBI9     | 0.014                | 1.914       |
| CLKIN    | 0.020                | 1.920       | TBI36    | 0.022                | 1.922       | TBI8     | 0.016                | 1.916       |
| HLDRQB   | 0.137                | 2.037       | TBI35    | 0.014                | 1.914       | TBI7     | 0.019                | 1.919       |
| INTP13   | 0.014                | 1.914       | TBI34    | 0.022                | 1.922       | TBI6     | 0.013                | 1.913       |
| INTP12   | 0.013                | 1.913       | TBI33    | 0.014                | 1.914       | TBI5     | 0.017                | 1.917       |
| INTP11   | 0.014                | 1.914       | TBI32    | 0.014                | 1.914       | TBI4     | 0.019                | 1.919       |
| INTP10   | 0.014                | 1.914       | TBI31    | 0.156                | 2.056       | TBI3     | 0.020                | 1.920       |
| INTP03   | 0.016                | 1.916       | TBI30    | 0.147                | 2.047       | TBI2     | 0.019                | 1.919       |
| INTP02   | 0.014                | 1.914       | TBI29    | 0.018                | 1.918       | TBI1     | 0.020                | 1.920       |
| INTP01   | 0.021                | 1.921       | TBI28    | 0.024                | 1.924       | TBI0     | 0.038                | 1.938       |
| INTP00   | 0.014                | 1.914       | TBI27    | 0.015                | 1.915       | BUNRI    | 1.433                | 3.333       |
| MODE1    | 0.017                | 1.917       | TBI26    | 0.022                | 1.922       | TEST     | 1.740                | 3.640       |
| MODE0    | 0.017                | 1.917       | TBI25    | 0.016                | 1.916       |          |                      |             |

Remark CIN: Capacitance of only input pin

C<sub>inewl</sub>: Value of C<sub>IN</sub> with wiring capacitance (estimated wire length capacitance) taken into consideration (I = 10 mm)

## (2) Output pins

| Pin Name   | CMAX (pF) | Pin Name | CMAX (pF) | Pin Name      | Смах (рF) |
|------------|-----------|----------|-----------|---------------|-----------|
| A23 to A0  | 6.570     | OSCEN    | 13.340    | ST1           | 6.587     |
| ADOENB     | 13.072    | RDB      | 6.570     | ST0           | 6.587     |
| ADOUT15 to | 6.570     | RWB      | 6.570     | TO11          | 4.993     |
| ADOUT0     |           | SCKOENB  | 4.993     | TO10          | 4.993     |
| DSTBB      | 6.570     | SCKOUTB  | 3.300     | TXD           | 4.993     |
| HLDAKB     | 6.570     | so       | 4.775     | ICO1          | 6.587     |
| ASTB       | 3.300     | SOENB    | 6.587     | ICO0          | 6.570     |
| CLKOUT     | 13.072    | UBENB    | 6.587     | TBO23 to TBO0 | 6.536     |
| LBENB      | 6.587     | WRB      | 6.570     |               |           |

## 3. 2 RESETB Signal

In view of the evaluations performed by NEC, when the RESETB signal is changed, do not synchronize it with the system clock's rising and falling edges (See **Figure 3-1**).



Figure 3-1. RESETB Signal Input Example

## 3. 3 Initialization of Internal Registers

Before executing the test program, be sure to execute an instruction to assign initial values to the internal registers used in test program execution. Failure to do this will result in the propagation of undefined values.

## 3. 4 Pin Functions

(1/2)

| Pin Name          | I/O    | (1/2)<br>Function                                                                    |
|-------------------|--------|--------------------------------------------------------------------------------------|
| TO11, TO10        | Output | Pulse signal output from timer 1.                                                    |
| TCLR1             | Input  | External clear signal input to timer 1.                                              |
| TI1               | Input  | External count clock input to timer 1.                                               |
| INTP13 to INTP10  | Input  | External capture trigger input to timer 1/External maskable interrupt request input. |
| INTP03 to INTP00  | Input  | External maskable interrupt request input.                                           |
| NMI               | Input  | Non-maskable interrupt request input.                                                |
| so                | Output | Serial transmit data output from CSI.                                                |
| SI                | Input  | Serial receive data input to CSI.                                                    |
| SOENB             | Output | SO pin control signal output.                                                        |
| SCKINB            | Input  | Serial clock input to CSI.                                                           |
| SCKOUTB           | Output | Serial clock output from CSI.                                                        |
| SCKOENB           | Output | Signal output indicating input/output direction of serial clock of CSI.              |
| TXD               | Output | Serial transmit data output from UART.                                               |
| RXD               | Input  | Serial receive data input to UART                                                    |
| ADOUT15 to ADOUT0 | Output | Timer-division output of address/data when accessing external device.                |
| ADOENB            | Output | ADOUT15 to ADOUT0 pins control signal output.                                        |
| DIN15 to DIN0     | Input  | Data input when accessing external device.                                           |
| A23 to A0         | Output | Address output when accessing external device.                                       |
| LBENB             | Output | Lower byte enable signal output of external data bus.                                |
| UBENB             | Output | Upper byte enable signal output of external data bus.                                |
| RWB               | Output | External read/write status output.                                                   |
| RDB               | Output | External read strobe output.                                                         |
| WRB               | Output | External write strobe output.                                                        |
| DSTBB             | Output | External data strobe signal output.                                                  |
| ASTB              | Output | External address strobe signal output.                                               |
| ST1, ST0          | Output | External bus cycle status output.                                                    |
| HLDAKB            | Output | Bus hold acknowledge output.                                                         |
| HLDRQB            | Input  | Bus hold request input.                                                              |
| WAITB             | Input  | Inputs control signal that inserts wait states to bus cycle.                         |
| RESETB            | Input  | System reset input.                                                                  |
| CLKIN             | Input  | External clock input.                                                                |
| CLKOUT            | Output | Internal system clock output.                                                        |
| TBCENB            | Input  | Inputs control signal to time base counter (TBC).                                    |
| OSCEN             | Output | Specifies operation of external OSC.                                                 |
| MODE1, MODE0      | Input  | Specifies operation mode of V851 core.                                               |
| TBI41 to TBI0     | Input  | Pin for test using test bus.                                                         |
| TBO23 to TBO0     | Output |                                                                                      |
| TEST              | Input  |                                                                                      |

#### **CHAPTER 3 V851 CORE**

(2/2)

| Pin Name   | I/O    | Function                     |
|------------|--------|------------------------------|
| BUNRI      | Input  | Pin for test using test bus. |
| ICO1, ICO0 | Output | NEC reserved pin.            |
| ICI1, ICI0 | Input  |                              |

#### 3. 5 Electrical Specifications

The following specifications are for a single macro. An actual chip consists of two or more macros. Design the system so that all the specifications of the individual macros are satisfied when the chip is used.

#### 3. 5. 1 Absolute maximum ratings

| Parameter                     | Parameter Symbol Ratings |              | Unit |
|-------------------------------|--------------------------|--------------|------|
| Supply voltage                | V <sub>DD</sub>          | -0.5 to +4.6 | V    |
| Operating ambient temperature | TA                       | -40 to +85   | °C   |
| Storage temperature           | T <sub>stg</sub>         | -65 to +150  | °C   |

Caution Product quality may suffer if the absolute maximum rating is exceeded even momentarily for any parameter. That is, the absolute maximum ratings are rated values at which the product is on the verge of suffering physical damage, and therefore the product must be used under conditions that ensure that the absolute maximum ratings are not exceeded.

#### 3. 5. 2 Recommended operation range

| Parameter                     | Symbol          | MIN. | TYP. | MAX. | Unit |
|-------------------------------|-----------------|------|------|------|------|
| Supply voltage                | V <sub>DD</sub> | 3.0  | 3.3  | 3.6  | ٧    |
| Operating ambient temperature | TA              | -40  |      | +85  | °C   |
| Clock cycle                   | <b>t</b> cyk    | 30   |      |      | ns   |

#### 3. 5. 3 DC characteristics ( $T_A = -40 \text{ to } +85^{\circ}\text{C}$ , $V_{DD} = 3.3 \text{ V} \pm 0.3 \text{ V}$ )

| Parameter      | Symbol            | Cond                     | MIN.                 | TYP.                                       | MAX. | Unit |        |
|----------------|-------------------|--------------------------|----------------------|--------------------------------------------|------|------|--------|
| Supply current | DD1a              | In normal operation mode | Without ROM,<br>RAM  | r than the See (1) How to calculate the cu |      |      | mA/MHz |
|                | I <sub>DD1b</sub> |                          | Other than the above |                                            |      |      |        |
|                | I <sub>DD2</sub>  | In HALT mode             |                      |                                            | 0.2  | 0.3  | mA/MHz |
|                | I <sub>DD3</sub>  | In STOP mode             |                      |                                            | 1.0  | 15   | μΑ     |

**Remark** The TYP. value is a reference value for when TA = 25°C, VDD = 3.3 V.

Caution The current flow to the internal ROM in the reset interval is a maximum 5 mA.

#### (1) How to calculate the current consumption value of the V851 core

The current consumption value (TYP.) of the V851 core with internal ROM and RAM is defined by the following expression.

| DD1b = | DD1a + | DDROM + | DDRAM

- IDDROM: the current consumption value of internal ROM
- IDDRAM: the current consumption value of internal RAM

The following is an example of how to calculate the current consumption value of the NA851M82 (Internal ROM: 128 KB/Internal RAM: 4 KB).

# Caution This current consumption calculation is for reference only; the values calculated herein are not guaranteed.

Conditions: VDD = 3.3 V $\phi = 33 \text{ MHz}$ 

Operation percentage of internal ROM = 80%

Operation percentage of internal RAM = 20% (the ratio of read operation to write operation = 1:1)

Internal RAM read operation frequency (fR) = 33 MHz

Internal RAM write operation frequency (fw) = 33 MHz

The current consumption value when an operation is performed under the above conditions is calculated by the following expression.

From <3> and <4>.

```
IDDRAM = (IDDRAM (READ) + IDDRAM (WRITE)) = 2.706 + 2.739 = 5.445 [mA] ... < 5 >
```

From <1>, <2>, and <5>,

$$IDD1b = 13.2 + 7.556 + 5.445 = 26.201 [mA]$$

Therefore, from the above, the current consumption (TYP.) of the NA851M82 is 26.201 mA.

Notes 1. Use the following expression regardless of the internal ROM size (excepting ROMless versions).

```
( (2.2 + (V<sub>DD</sub> - 2.7) \times 3.0) + (0.05 \times V<sub>DD</sub> \times \phi) ) \times operating ratio %
```

2. Use the following expressions for 8 KB, 16 KB, and 24 KB internal RAM sizes respectively.

8 KB:  $2.55 \times f_R \times operating ratio \%$ 16 KB:  $3.02 \times f_R \times operating ratio \%$ 24 KB:  $3.34 \times f_R \times operating ratio \%$ 

3. Use the following expressions for 8 KB, 16 KB, and 24 KB internal RAM sizes respectively.

8 KB:  $2.41 \times \text{fw} \times \text{operating ratio } \%$ 16 KB:  $2.41 \times \text{fw} \times \text{operating ratio } \%$ 24 KB:  $2.62 \times \text{fw} \times \text{operating ratio } \%$ 

# 3. 5. 4 AC characteristics (T<sub>A</sub> = -40 to +85°C, V<sub>DD</sub> = 3.3 V $\pm 0.3$ V)

## (1) Clock timing

| Parameter                    | Syı | mbol         | Conditions | MIN.      | MAX. | Unit |
|------------------------------|-----|--------------|------------|-----------|------|------|
| CLKIN input cycle            | <1> | tcyx         |            | 30        |      | ns   |
| CLKIN input high-level width | <2> | twxн         |            | 14        |      | ns   |
| CLKIN input low-level width  | <3> | twxL         |            | 14        |      | ns   |
| CPU operating frequency      | _   | φ            |            | 0         | 33   | MHz  |
| CLKOUT output cycle          | <4> | <b>t</b> cyk |            | 30        |      | ns   |
| CLKOUT high-level width      | <5> | <b>t</b> wĸн |            | 0.5tсүк-5 |      | ns   |
| CLKOUT low-level width       | <6> | twkl         |            | 0.5tcүк-5 |      | ns   |



## (2) Reset timing

| Parameter               | Symbol |       | Conditions           | MIN. | MAX. | Unit |
|-------------------------|--------|-------|----------------------|------|------|------|
| RESETB high-level width | <7>    | twrsh |                      | 500  |      | ns   |
| RESETB low-level width  | <8>    | twrsl | On power application | 500  |      | ns   |



## (3) Read timing (1/2)

| Parameter                                                  | Syr  | mbol           | Conditions | MIN.           | MAX.            | Unit |
|------------------------------------------------------------|------|----------------|------------|----------------|-----------------|------|
| Delay time from CLKOUT <sup>↑</sup> to address             | <9>  | <b>t</b> dka   |            |                | 3               | ns   |
| Delay time from CLKOUT↓ to ASTB                            | <11> | <b>t</b> DKST  |            |                | 4               | ns   |
| Delay time from CLKOUT↑ to DSTBB                           | <12> | <b>t</b> DKD   |            |                | 3               | ns   |
| Delay time from CLKOUT↑ to status                          | <13> | toks           |            |                | 3               | ns   |
| Data input setup time (to CLKOUT <sup>↑</sup> )            | <14> | tsidk          |            | 2              |                 | ns   |
| Data input hold time (from CLKOUT↑)                        | <15> | <b>t</b> HKID  |            | 2              |                 | ns   |
| WAITB setup time (to CLKOUT↓)                              | <16> | <b>t</b> swtk  |            | 2              |                 | ns   |
| WAITB hold time (from CLKOUT↓)                             | <17> | tнкwт          |            | 2              |                 | ns   |
| Address setup time (to ASTB↓)                              | <19> | tsast          |            | 0.5T - 6       |                 | ns   |
| Address hold time (from ASTB↓)                             | <20> | <b>t</b> HSTA  |            | 0.5T - 6       |                 | ns   |
| Delay time from CLKOUT↑ to LBENB                           | <22> | <b>t</b> DKLB  |            |                | 3               | ns   |
| Delay time from CLKOUT↑ to UBENB                           | <23> | <b>t</b> DKUB  |            |                | 3               | ns   |
| Delay time from ASTB↓ to DSTBB↓                            | <24> | tosto          |            | 0.5T - 6       |                 | ns   |
| Data input hold time (from DSTBB↑)                         | <25> | <b>t</b> HDID  |            | 0              |                 | ns   |
| Delay time from DSTBB↑ to address output                   | <26> | <b>t</b> DDA   |            | (1 + i)T       |                 | ns   |
| Delay time from DSTBB↑ to ASTB↑                            | <27> | <b>t</b> DDSTH |            | 0.5T - 6       |                 | ns   |
| Delay time from DSTBB↑ to ASTB↓                            | <28> | todstl         |            | (1.5 + i)T - 6 |                 | ns   |
| Status setup time (to ASTB↓)                               | <29> | tssst          |            | 0.5T – 6       |                 | ns   |
| Status hold time (from ASTB↑)                              | <30> | <b>t</b> HSTS  |            | 0.5T - 6       |                 | ns   |
| DSTBB low-level width                                      | <31> | twdl           |            | (1 + n)T – 5   |                 | ns   |
| ASTB high-level width                                      | <32> | <b>t</b> wsth  |            | T – 5          |                 | ns   |
| WAITB setup time (to address)                              | <33> | tsawt1         | n ≥ 1      |                | 1.5T – 11       | ns   |
|                                                            | <34> | tsawt2         |            |                | (1.5 + n)T - 11 | ns   |
| WAITB hold time (from address)                             | <35> | thawt1         | n ≥ 1      | 1.5T + 6       |                 | ns   |
|                                                            | <36> | tHAWT2         |            | (1.5 + n)T + 6 |                 | ns   |
| WAITB setup time (to ASTB↓)                                | <37> | tsstwt1        | n ≥ 1      |                | T – 10          | ns   |
|                                                            | <38> | tsstwt2        |            |                | (1 + n)T – 10   | ns   |
| WAITB hold time (from ASTB↓)                               | <39> | <b>t</b> HSTWT | n ≥ 1      | NT + 5         |                 | ns   |
|                                                            |      | 1              |            |                |                 |      |
|                                                            | <40> | <b>t</b> HSTWT |            | (1 + n)T + 5   |                 | ns   |
|                                                            | .44: | 2              |            |                |                 |      |
| Delay time from CLKOUT↑ to ADOENB                          | <41> | †DKADEN        |            |                | 3               | ns   |
| Delay time from CLKOUT <sup>↑</sup> to address/data output | <42> | <b>t</b> DKAD  |            |                | 5               | ns   |

#### Remarks 1. T = tcyk

- **2.** n indicates the number of wait clocks inserted in the bus cycle. The sampling timing changes when programmable wait cycles are inserted.
- 3. i indicates the number of idle states (0 or 1) inserted after read cycle.
- 4. Be sure to satisfy at least one of data input hold times thkin and thdin.

## (3) Read timing (2/2)



## (4) Write timing (1/2)

| Parameter                                      | Syı  | mbol            | Conditions | MIN.           | MAX.            | Unit |
|------------------------------------------------|------|-----------------|------------|----------------|-----------------|------|
| Delay time from CLKOUT <sup>↑</sup> to address | <9>  | <b>t</b> DKA    |            |                | 3               | ns   |
| Delay time from CLKOUT↓ to ASTB                | <11> | <b>t</b> DKST   |            |                | 4               | ns   |
| Delay time from CLKOUT↑ to DSTBB               | <12> | <b>t</b> DKD    |            |                | 3               | ns   |
| Delay time from CLKOUT↑ to status              | <13> | toks            |            |                | 3               | ns   |
| WAITB setup time (to CLKOUT↓)                  | <16> | <b>t</b> swtk   |            | 2              |                 | ns   |
| WAITB hold time (from CLKOUT↓)                 | <17> | <b>t</b> нкwт   |            | 2              |                 | ns   |
| Address setup time (to ASTB↓)                  | <19> | tsast           |            | 0.5T – 6       |                 | ns   |
| Address hold time (from ASTB↓)                 | <20> | thsta           |            | 0.5T – 6       |                 | ns   |
| Delay time from ASTB↓ to DSTBB↓                | <24> | tosto           |            | 0.5T – 6       |                 | ns   |
| Delay time from DSTBB↑ to ASTB↑                | <27> | todsth          |            | 0.5T - 6       |                 | ns   |
| Status setup time (to ASTB↓)                   | <29> | tssst           |            | 0.5T - 6       |                 | ns   |
| Status hold time (from ASTB↑)                  | <30> | thsts           |            | 0.5T – 6       |                 | ns   |
| DSTBB low-level width                          | <31> | twdL            |            | (1+n)T – 5     |                 | ns   |
| ASTB high-level width                          | <32> | <b>t</b> wsTH   |            | T – 5          |                 | ns   |
| WAITB setup time (to address)                  | <33> | tsawt1          | n ≥ 1      |                | 1.5T – 11       | ns   |
|                                                | <34> | tsawt2          |            |                | (1.5 + n)T - 11 | ns   |
| WAITB hold time (from address)                 | <35> | thawT1          | n ≥ 1      | 1.5T + 6       |                 | ns   |
|                                                | <36> | thawt2          |            | (1.5 + n)T + 6 |                 | ns   |
| WAITB setup time (to ASTB↓)                    | <37> | tsstwt1         | n ≥ 1      |                | T – 10          | ns   |
|                                                | <38> | tsstwt2         |            |                | (1 + n)T – 10   | ns   |
| WAITB hold time (from ASTB↓)                   | <39> | <b>t</b> нsтwт  | n ≥ 1      | NT + 5         |                 | ns   |
|                                                | <40> | <b>t</b> нsтwт  |            | (1 + n)T + 5   |                 | ns   |
| Delay time from CLKOUT↑ to ADOENB              | <41> | <b>t</b> DKADEN |            |                | 3               | ns   |
| Delay time from CLKOUT↑ to address/data output | <42> | <b>t</b> DKAD   |            |                | 5               | ns   |
| Delay time from DSTBB↓ to data output          | <43> | tddod           |            |                | 5               | ns   |
| Data output hold time (from CLKOUT↑)           | <44> | <b>t</b> HKOD   |            |                | 5               | ns   |
| Data output setup time (to DSTBB↑)             | <45> | tsodd           |            | (1 + n)T – 5   |                 | ns   |
| Data output hold time (from DSTBB↑)            | <46> | thdod           |            | T – 5          |                 | ns   |

Remarks 1. T = tcyk

**2.** n indicates the number of wait clocks inserted in the bus cycle. The sampling timing changes when programmable wait cycles are inserted.

## (4) Write timing (2/2)



## (5) Bus hold timing (1/2)

| Parameter                                   | Syn  | nbol            | Conditions | MIN.  | MAX.                | Unit |
|---------------------------------------------|------|-----------------|------------|-------|---------------------|------|
| HLDRQB setup time (to CLKOUT $\downarrow$ ) | <47> | <b>t</b> shqk   |            | 2     |                     | ns   |
| HLDRQB hold time (from CLKOUT↓)             | <48> | <b>t</b> нкно   |            | 2     |                     | ns   |
| Delay time from CLKOUT↑ to HLDAKB           | <49> | <b>t</b> DKHA   |            |       | 3                   | ns   |
| HLDRQB high-level width                     | <50> | twнqн           |            | T + 5 |                     | ns   |
| HLDAKB low-level width                      | <51> | <b>t</b> whal   |            | T – 5 |                     | ns   |
| Delay time from HLDRQB↓ to HLDAKB↓          | <53> | <b>t</b> DHQHA1 |            |       | (2n + 7.5)T<br>+ 11 | ns   |
| Delay time from HLDRQB↑ to HLDAKB↑          | <54> | tdhqha2         |            |       | 1.5T + 11           | ns   |

Remarks 1. T = tcyk

**2.** n indicates the number of wait clocks inserted in the bus cycle. The sampling timing changes when programmable wait cycles are inserted.

#### (5) Bus hold timing (2/2)



## (6) Interrupt timing

| Parameter               | Symbol |       | Conditions | MIN.    | MAX. | Unit |
|-------------------------|--------|-------|------------|---------|------|------|
| NMI high-level width    | <55>   | twnih |            | 500     |      | ns   |
| NMI low-level width     | <56>   | twnil |            | 500     |      | ns   |
| INTPmn high-level width | <57>   | twiтн |            | 3T + 10 |      | ns   |
| INTPmn low-level width  | <58>   | twitl |            | 3T + 10 |      | ns   |

Remarks 1. T = tcyk

**2.** m = 1, 0

n = 3 to 0



# (7) CSI timing

## (a) Master mode

| Parameter                                  | Syr  | mbol          | Conditions | MIN.           | MAX. | Unit |
|--------------------------------------------|------|---------------|------------|----------------|------|------|
| SCKOUTB cycle                              | <59> | <b>t</b> cysk | Output     | 120            |      | ns   |
| SCKOUTB high-level width                   | <60> | twsĸн         | Output     | 0.5 tcysк – 10 |      | ns   |
| SCKOUTB low-level width                    | <61> | twskL         | Output     | 0.5 tcysк – 10 |      | ns   |
| SI setup time (to SCKOUTB↑)                | <62> | tssisk        |            | 5              |      | ns   |
| SI hold time (from SCKOUTB↑)               | <63> | thsksi        |            | 5              |      | ns   |
| SO delay time (from SCKOUTB $\downarrow$ ) | <64> | toskso        |            |                | 5    | ns   |

#### (b) Slave mode

| Parameter                    | Syı  | mbol          | Conditions | MIN. | MAX. | Unit |
|------------------------------|------|---------------|------------|------|------|------|
| SCKINB cycle                 | <59> | <b>t</b> cysk | Input      | 120  |      | ns   |
| SCKINB high-level width      | <60> | twskH         | Input      | 30   |      | ns   |
| SCKINB low-level width       | <61> | twskl         | Input      | 30   |      | ns   |
| SI setup time (to SCKINB↑)   | <62> | tssisk        |            | 5    |      | ns   |
| SI hold time (from SCKINB↑)  | <63> | thsksi        |            | 5    |      | ns   |
| SO delay time (from SCKINB↓) | <64> | toskso        |            |      | 5    | ns   |



## (8) RPU timing

| Parameter                     | Syı  | mbol          | Conditions | MIN.    | MAX. | Unit |
|-------------------------------|------|---------------|------------|---------|------|------|
| TI1 high-level width          | <66> | <b>t</b> wTIH |            | 3T + 10 |      | ns   |
| TI1 low-level width           | <67> | twtil         |            | 3T + 10 |      | ns   |
| TCLR1 high-level width        | <68> | twтсн         |            | 3T + 10 |      | ns   |
| TCLR1 low-level width         | <69> | twtcl         |            | 3T + 10 |      | ns   |
| Delay time from CLKOUT↑ to TO | <70> | <b>t</b> DKTO |            |         | 5    | ns   |

Remark T = tcyk





#### **CHAPTER 4 V853 CORE**

The V853 core is a CPU core having peripheral functions such as a real-time pulse unit, PWM output, and serial interfaces. The instruction set of the V853 core is common to that of the V850 Family 32-bit single-chip microcontrollers.

#### 4. 1 Outline

- CPU performance: 38 MIPS (@ 33 MHz operation)
- Internal memory (ROM can be removed.)

Mask ROM: 48, 64, 96, 128, and 256 KB

RAM: 4, 8, 16, and 24 KB

- Minimum instruction execution time: 30 ns (@ 33 MHz operation)
- External bus interface

16-bit data bus (DIN/DOUT separated)

24-bit address bus

Interrupt/exception

External interrupt: 17 (including NMI)

Internal interrupt: 31 sources
Software exception: 32 sources
Exception trap: 1 source
Eight priority levels can be specified.

Real-time pulse unit

16-bit timer/event counter: 4 chs16-bit interval timer: 1 ch

Serial interface

Asynchronous serial interface (UART)

Clocked serial interface (CSI)

UART/CSI: 2 chs CSI: 2 chs

Dedicated baud rate generator: 3 chs

• PWM (Pulse Width Modulation)

8/9/10/12-bit resolution PWM: 2 chs

• Power save function

HALT, STOP, IDLE mode

Clock output stop function

## 4. 1. 1 Symbol diagram

## Number of grids

239k grids

262k grids (including wiring area)

## Number of separation simulation patterns

| ROM Size | 0 byte    | 48 KB    | 64 KB    | 96 KB    | 128 KB   | 256 KB   |
|----------|-----------|----------|----------|----------|----------|----------|
| RAM Size | (ROMless) |          |          |          |          |          |
| 4 KB     | NA853M02  | NA853M32 | NA853M42 | NA853M62 | NA853M82 | NA853MG2 |
|          | 306.0k    | 318.4k   | 326.6k   | 342.9k   | 359.3k   | 424.8k   |
| 8 KB     | NA853M04  | NA853M34 | NA853M44 | NA853M64 | NA853M84 | NA853MG4 |
|          | 306.0k    | 318.4k   | 326.6k   | 342.9k   | 359.3k   | 424.8k   |
| 16 KB    | NA853M08  | NA853M38 | NA853M48 | NA853M68 | NA853M88 | NA853MG8 |
|          | 313.2k    | 325.6k   | 333.8k   | 350.1k   | 366.5k   | 432.0k   |
| 24 KB    | NA853M0C  | NA853M3C | NA853M4C | NA853M6C | NA853M8C | NA853GC  |
|          | 313.2k    | 325.6k   | 333.8k   | 350.1k   | 366.5k   | 432.0k   |

**Remark** The upper figure in each column of the above table indicates the part number and the lower figure indicates the total number of patterns.



## 4. 1. 2 Pin capacitance

## (1) Input pins

(1/2)

| Pin Name | Cin (pF) | Cinewl (pF) | Pin Name | C <sub>IN</sub> (pF) | Cinewl (pF) | Pin Name | C <sub>IN</sub> (pF) | Cinewl (pF) |
|----------|----------|-------------|----------|----------------------|-------------|----------|----------------------|-------------|
| DIN15    | 0.067    | 1.967       | TI12     | 0.013                | 1.913       | TBI47    | 0.038                | 1.938       |
| DIN14    | 0.094    | 1.994       | TCLR12   | 0.047                | 1.947       | TBI46    | 0.017                | 1.917       |
| DIN13    | 0.075    | 1.975       | INTP113  | 0.081                | 1.981       | TBI45    | 0.085                | 1.985       |
| DIN12    | 0.097    | 1.997       | INTP112  | 0.082                | 1.982       | TBI44    | 0.020                | 1.920       |
| DIN11    | 0.068    | 1.968       | INTP111  | 0.099                | 1.999       | TBI43    | 0.068                | 1.968       |
| DIN10    | 0.066    | 1.966       | INTP110  | 0.110                | 2.010       | TBI42    | 0.016                | 1.916       |
| DIN9     | 0.066    | 1.966       | TI11     | 0.051                | 1.951       | TBI41    | 0.020                | 1.920       |
| DIN8     | 0.066    | 1.966       | TCLR11   | 0.072                | 1.972       | TBI40    | 0.014                | 1.914       |
| DIN7     | 0.067    | 1.967       | SI3      | 0.017                | 1.917       | TBI39    | 0.007                | 1.907       |
| DIN6     | 0.068    | 1.968       | SCK3INB  | 0.016                | 1.916       | TBI38    | 0.016                | 1.916       |
| DIN5     | 0.070    | 1.970       | SI2      | 0.035                | 1.935       | TBI37    | 0.018                | 1.918       |
| DIN4     | 0.072    | 1.972       | SCK2INB  | 0.044                | 1.944       | TBI36    | 0.009                | 1.909       |
| DIN3     | 0.094    | 1.994       | RXDSI1   | 0.017                | 1.917       | TBI35    | 0.013                | 1.913       |
| DIN2     | 0.066    | 1.966       | SCK1INB  | 0.027                | 1.927       | TBI34    | 0.007                | 1.907       |
| DIN1     | 0.068    | 1.968       | RXDSI0   | 0.035                | 1.935       | TBI33    | 0.008                | 1.908       |
| DIN0     | 0.067    | 1.967       | SCK0INB  | 0.017                | 1.917       | TBI32    | 0.008                | 1.908       |
| HLDRQB   | 0.267    | 2.167       | NMI      | 0.034                | 1.934       | TBI31    | 0.009                | 1.909       |
| WAITB    | 0.139    | 2.039       | RESETB   | 0.017                | 1.917       | TBI30    | 0.046                | 1.946       |
| INTP143  | 0.100    | 2.000       | CLKIN    | 0.051                | 1.951       | TBI29    | 0.041                | 1.941       |
| INTP142  | 0.113    | 2.013       | ICI1     | 0.017                | 1.917       | TBI28    | 0.039                | 1.939       |
| INTP141  | 0.115    | 2.015       | ICI0     | 0.023                | 1.923       | TBI27    | 0.018                | 1.918       |
| INTP140  | 0.132    | 2.032       | MODE     | 0.035                | 1.935       | TBI26    | 0.016                | 1.916       |
| TI14     | 0.015    | 1.915       | TBCENB   | 0.025                | 1.925       | TBI25    | 0.017                | 1.917       |
| TCLR14   | 0.196    | 2.096       | TEST     | 3.041                | 4.941       | TBI24    | 0.052                | 1.952       |
| INTP133  | 0.116    | 2.016       | BUNRI    | 0.078                | 1.978       | TBI23    | 0.203                | 2.103       |
| INTP132  | 0.069    | 1.969       | TBI56    | 0.015                | 1.915       | TBI22    | 0.037                | 1.937       |
| INTP131  | 0.100    | 2.000       | TBI55    | 0.067                | 1.967       | TBI21    | 0.052                | 1.952       |
| INTP130  | 0.108    | 2.008       | TBI54    | 0.019                | 1.919       | TBI20    | 0.051                | 1.951       |
| TI13     | 0.013    | 1.913       | TBI53    | 0.055                | 1.955       | TBI19    | 0.018                | 1.918       |
| TCLR13   | 0.035    | 1.935       | TBI52    | 0.019                | 1.919       | TBI18    | 0.040                | 1.940       |
| INTP123  | 0.057    | 1.957       | TBI51    | 0.068                | 1.968       | TBI17    | 0.023                | 1.923       |
| INTP122  | 0.054    | 1.954       | TBI50    | 0.142                | 2.042       | TBI16    | 0.016                | 1.916       |
| INTP121  | 0.043    | 1.943       | TBI49    | 0.240                | 2.140       | TBI15    | 0.069                | 1.969       |
| INTP120  | 0.059    | 1.959       | TBI48    | 0.016                | 1.916       | TBI14    | 0.072                | 1.972       |

Remark CIN: Capacitance of only input pin

Cinewi: Value of CIN with wiring capacitance (estimated wire length capacitance) taken into consideration (I = 10 mm)

(2/2)

| Pin Name | C <sub>IN</sub> (pF) | Cinewl (pF) | Pin Name | C <sub>IN</sub> (pF) | Cinewl (pF) | Pin Name | C <sub>IN</sub> (pF) | Cinewl (pF) |
|----------|----------------------|-------------|----------|----------------------|-------------|----------|----------------------|-------------|
| TBI13    | 0.074                | 1.974       | TBI8     | 0.066                | 1.966       | TBI3     | 0.084                | 1.984       |
| TBI12    | 0.100                | 2.000       | TBI7     | 0.075                | 1.975       | TBI2     | 0.067                | 1.967       |
| TBI11    | 0.068                | 1.968       | TBI6     | 0.067                | 1.967       | TBI1     | 0.069                | 1.969       |
| TBI10    | 0.067                | 1.967       | TBI5     | 0.071                | 1.971       | TBI0     | 0.068                | 1.968       |
| TBI9     | 0.071                | 1.971       | TBI4     | 0.068                | 1.968       |          |                      |             |

Remark C<sub>IN</sub>: Capacitance of only input pin

Cinewi: Value of CIN with wiring capacitance (estimated wire length capacitance) taken into consideration (I = 10 mm)

## (2) Output pins

| Pin Name | CMAX (pF) | Pin Name  | CMAX (pF) | Pin Name | CMAX (pF) |
|----------|-----------|-----------|-----------|----------|-----------|
| A23      | 6.565     | ADOUT0    | 6.565     | TBO38    | 6.516     |
| A22      | 6.562     | LBENB     | 6.461     | TBO37    | 6.271     |
| A21      | 6.563     | UBENB     | 6.500     | TBO36    | 6.516     |
| A20      | 6.558     | RWB       | 6.532     | TBO35    | 6.535     |
| A19      | 6.567     | DSTBB     | 6.541     | TBO34    | 6.531     |
| A18      | 6.536     | RDB       | 6.517     | TBO33    | 6.534     |
| A17      | 6.539     | WRB       | 6.532     | TBO32    | 6.530     |
| A16      | 6.566     | ASTB      | 6.553     | TBO31    | 6.528     |
| A15      | 6.512     | ADOENB    | 6.553     | TBO30    | 6.511     |
| A14      | 6.561     | HLDAKB    | 6.444     | TBO29    | 6.533     |
| A13      | 6.570     | TO141     | 6.569     | TBO28    | 6.513     |
| A12      | 6.569     | TO140     | 6.569     | TBO27    | 3.301     |
| A11      | 6.557     | TO131     | 6.475     | TBO26    | 6.452     |
| A10      | 6.567     | TO130     | 6.569     | TBO25    | 6.404     |
| A9       | 6.567     | TO121     | 6.535     | TBO24    | 6.501     |
| A8       | 6.570     | TO120     | 6.567     | TBO23    | 6.489     |
| A7       | 6.554     | TO111     | 6.539     | TBO22    | 6.443     |
| A6       | 6.561     | TO110     | 6.547     | TBO21    | 6.433     |
| A5       | 6.560     | SO3       | 6.560     | TBO20    | 6.523     |
| A4       | 6.552     | SO3ENB    | 6.568     | TBO19    | 3.313     |
| A3       | 6.536     | SCK3OUTB  | 6.564     | TBO18    | 3.295     |
| A2       | 6.569     | SCK30ENB  | 6.565     | TBO17    | 3.313     |
| A1       | 6.568     | SO2       | 6.569     | TBO16    | 3.295     |
| A0       | 6.498     | SO2ENB    | 6.569     | TBO15    | 6.479     |
| ADOUT15  | 6.519     | SCK2OUTB  | 6.569     | TBO14    | 6.526     |
| ADOUT14  | 6.558     | SCK2OENB  | 6.569     | TBO13    | 6.448     |
| ADOUT13  | 6.569     | TXDSO1    | 6.568     | TBO12    | 6.533     |
| ADOUT12  | 6.557     | TXDSO1ENB | 6.567     | TBO11    | 6.460     |
| ADOUT11  | 6.560     | SCK10UTB  | 6.569     | TBO10    | 6.487     |
| ADOUT10  | 6.532     | SCK10ENB  | 6.569     | ТВО9     | 6.513     |
| ADOUT9   | 6.561     | TXDSO0    | 6.548     | TBO8     | 6.516     |
| ADOUT8   | 6.570     | TXDSO0ENB | 6.563     | ТВО7     | 6.468     |
| ADOUT7   | 6.568     | SCK0OUTB  | 6.540     | TBO6     | 6.535     |
| ADOUT6   | 6.568     | SCK00ENB  | 6.536     | TBO5     | 6.535     |
| ADOUT5   | 6.570     | PWM1      | 6.569     | TBO4     | 6.507     |
| ADOUT4   | 6.544     | PWM0      | 6.569     | ТВО3     | 6.533     |
| ADOUT3   | 6.569     | CLKOUT    | 13.063    | TBO2     | 6.513     |
| ADOUT2   | 6.569     | OSCEN     | 6.337     | TBO1     | 6.496     |
| ADOUT1   | 6.568     | TBO39     | 3.308     | TBO0     | 6.509     |

#### 4. 2 RESETB Signal

In view of the evaluations performed by NEC, when the RESETB signal is changed, do not synchronize it with the system clock's rising and falling edges (See **Figure 4-1**).

CLKOUT (output)

Reset period

RESETB (input)

Figure 4-1. RESETB Signal Input Example

## 4. 3 Initialization of Internal Registers

Before executing the test program, be sure to execute an instruction to assign initial values to the internal registers used in test program execution. Failure to do this will result in the propagation of undefined values.

## 4. 4 Pin Functions

(1/2)

| Pin Name           | I/O    | Function (1/2                                                                               |
|--------------------|--------|---------------------------------------------------------------------------------------------|
| TO141, TO140       | Output | Pulse signal output from timer 1 (TM14).                                                    |
| TO131, TO130       | Output | Pulse signal output from timer 1 (TM13).                                                    |
| TO121, TO120       | Output | Pulse signal output from timer 1 (TM12).                                                    |
| TO111, TO110       | Output | Pulse signal output from timer 1 (TM11).                                                    |
| TCLR14             | Input  | External clear signal input to timer 1 (TM14).                                              |
| TCLR13             | Input  | External clear signal input to timer 1 (TM13).                                              |
| TCLR12             | Input  | External clear signal input to timer 1 (TM12).                                              |
| TCLR11             | Input  | External clear signal input to timer 1 (TM11).                                              |
| TI14               | Input  | External count clock input to timer 1 (TM14).                                               |
| TI13               | Input  | External count clock input to timer 1 (TM13).                                               |
| TI12               | Input  | External count clock input to timer 1 (TM12).                                               |
| TI11               | Input  | External count clock input to timer 1 (TM11).                                               |
| INTP143 to INTP140 | Input  | External capture trigger input to timer 1 (TM14)/External maskable interrupt request input. |
| INTP133 to INTP130 | Input  | External capture trigger input to timer 1 (TM13)/External maskable interrupt request input. |
| INTP123 to INTP120 | Input  | External capture trigger input to timer 1 (TM12)/External maskable interrupt request input. |
| INTP113 to INTP110 | Input  | External capture trigger input to timer 1 (TM11)/External maskable interrupt request input. |
| NMI                | Input  | Non-maskable interrupt request input.                                                       |
| PWM1, PWM0         | Output | Pulse output from PWM.                                                                      |
| SO3                | Output | Serial transmit data output from CSI3.                                                      |
| SO2                | Output | Serial transmit data output from CSI2.                                                      |
| TXDSO1             | Output | Serial transmit data output from UART1/Serial transmit data output from CSI1.               |
| TXDSO0             | Output | Serial transmit data output from UART0/Serial transmit data output from CSI0.               |
| SI3                | Input  | Serial reception data input to CSI3.                                                        |
| SI2                | Input  | Serial reception data input to CSI2.                                                        |
| RXDSI1             | Input  | Serial reception data input to UART1/Serial reception data input to CSI1.                   |
| RXDSI0             | Input  | Serial reception data input to UART0/Serial reception data input to CSI0.                   |
| SO3ENB             | Output | SO3 pin control signal output.                                                              |
| SO2ENB             | Output | SO2 pin control signal output.                                                              |
| TXDSO1ENB          | Output | TXDSO1 pin control signal output.                                                           |
| TXDSO0ENB          | Output | TXDSO0 pin control signal output.                                                           |
| SCK3INB            | Input  | Serial clock input to CSI3.                                                                 |
| SCK2INB            | Input  | Serial clock input to CSI2.                                                                 |
| SCK1INB            | Input  | Serial clock input to CSI1.                                                                 |
| SCK0INB            | Input  | Serial clock input to CSI0.                                                                 |
| SCK3OUTB           | Output | Serial clock output from CSI3.                                                              |
| SCK2OUTB           | Output | Serial clock output from CSI2.                                                              |

(2/2)

| Pin Name          | I/O    | Function (2/2                                                            |
|-------------------|--------|--------------------------------------------------------------------------|
| SCK10UTB          | Output | Serial clock output from CSI1.                                           |
| SCK0OUTB          | Output | Serial clock output from CSI0.                                           |
| SCK30ENB          | Output | Signal output indicating input/output direction of serial clock of CSI3. |
| SCK2OENB          | Output | Signal output indicating input/output direction of serial clock of CSI2. |
| SCK10ENB          | Output | Signal output indicating input/output direction of serial clock of CSI1. |
| SCK00ENB          | Output | Signal output indicating input/output direction of serial clock of CSI0. |
| ADOUT15 to ADOUT0 | Output | Timer-division output of address/data when accessing external device.    |
| ADOENB            | Output | ADOUT15 to ADOUT0 pins control signal output.                            |
| DIN15 to DIN0     | Input  | Data input when accessing external device.                               |
| A23 to A0         | Output | Address output when accessing external device.                           |
| LBENB             | Output | Lower byte enable signal output of external data bus.                    |
| UBENB             | Output | Upper byte enable signal output of external data bus.                    |
| RWB               | Output | External read/write status output.                                       |
| RDB               | Output | External read strobe output.                                             |
| WRB               | Output | External write strobe output.                                            |
| DSTBB             | Output | External data strobe signal output.                                      |
| ASTB              | Output | External address strobe signal output.                                   |
| HLDAKB            | Output | Bus hold acknowledge output.                                             |
| HLDRQB            | Input  | Bus hold request input.                                                  |
| WAITB             | Input  | Inputs control signal that inserts wait states to bus cycle.             |
| RESETB            | Input  | System reset input.                                                      |
| CLKIN             | Input  | External clock input.                                                    |
| CLKOUT            | Output | Internal system clock output.                                            |
| TBCENB            | Input  | Inputs control signal to time base counter (TBC).                        |
| OSCEN             | Output | Specifies operation of external OSC.                                     |
| MODE              | Input  | Specifies operation mode of V853 core.                                   |
| TBI56 to TBI0     | Input  | Pin for test using test bus.                                             |
| TBO39 to TBO0     | Output |                                                                          |
| TEST              | Input  |                                                                          |
| BUNRI             | Input  |                                                                          |
| ICI1, ICI0        | Output | NEC reserved pin.                                                        |

#### 4. 5 Electrical Specifications

The following specifications are for a single macro. An actual chip consists of two or more macros. Design the system so that all the specifications of the individual macros are satisfied when the chip is used.

#### 4. 5. 1 Absolute maximum ratings

| Parameter                     | Symbol           | Ratings      | Unit     |
|-------------------------------|------------------|--------------|----------|
| Supply voltage                | V <sub>DD</sub>  | -0.5 to +4.6 | <b>V</b> |
| Operating ambient temperature | TA               | -40 to +85   | °C       |
| Storage temperature           | T <sub>stg</sub> | -65 to +150  | °C       |

Caution Product quality may suffer if the absolute maximum rating is exceeded even momentarily for any parameter. That is, the absolute maximum ratings are rated values at which the product is on the verge of suffering physical damage, and therefore the product must be used under conditions that ensure that the absolute maximum ratings are not exceeded.

#### 4. 5. 2 Recommended operation range

| Parameter                     | Symbol          | MIN. | TYP. | MAX. | Unit |
|-------------------------------|-----------------|------|------|------|------|
| Supply voltage                | V <sub>DD</sub> | 3.0  | 3.3  | 3.6  | V    |
| Operating ambient temperature | TA              | -40  |      | +85  | °C   |
| Clock cycle                   | <b>t</b> cyk    | 30   |      |      | ns   |

#### 4. 5. 3 DC characteristics ( $T_A = -40 \text{ to } +85^{\circ}\text{C}$ , $V_{DD} = 3.3 \text{ V} \pm 0.3 \text{ V}$ )

| Parameter      | Symbol            | Conditions               |                      | MIN. | TYP.      | MAX. | Unit   |
|----------------|-------------------|--------------------------|----------------------|------|-----------|------|--------|
| Supply current | IDD1a             | In normal operation mode | Without ROM,<br>RAM  |      | 0.6       | 0.8  | mA/MHz |
|                | I <sub>DD1b</sub> |                          | Other than the above | ` ′  | How to ca |      |        |
|                | I <sub>DD2</sub>  | In HALT mode             |                      |      | 0.3       | 0.4  | mA/MHz |
|                | I <sub>DD3</sub>  | In STOP mode             |                      |      | 1.0       | 30   | μΑ     |

**Remark** The TYP. value is a reference value for when TA = 25°C, VDD = 3.3 V.

Caution The current flow to the internal ROM in the reset interval is a maximum 5 mA.

#### (1) How to calculate the current consumption value of the V853 core

The current consumption value (TYP.) of the V853 core with internal ROM and RAM is defined by the following expression.

|DD1b = |DD1a + |DDROM + |DDRAM

- IDDROM: the current consumption value of internal ROM
- IDDRAM: the current consumption value of internal RAM

The following is an example of how to calculate the current consumption value of the NA853M82 (Internal ROM: 128 KB/Internal RAM: 4KB).

Caution This current consumption calculation is for reference only; the values calculated herein are not guaranteed.

Conditions:  $V_{DD} = 3.3 \text{ V}$   $\phi = 33 \text{ MHz}$ Operation percentage of internal ROM = 80%
Operation percentage of internal RAM = 20% (the ratio of read operation to write operation = 1:1)
Internal RAM read operation frequency (fR) = 33 MHz
Internal RAM write operation frequency (fW) = 33 MHz

The current consumption value when an operation is performed under the above conditions is calculated by the following expression.

```
\begin{aligned} &\text{Iddia} = 0.6 \times \phi = 0.6 \times 33 = 19.8 \text{ [mA]} \dots <1> \\ &\text{Iddrom}^{\text{Note 1}} = (\ (2.2 + (\text{Vdd} - 2.7) \times 3.0) + (0.05 \times \text{Vdd} \times \phi)\ ) \times \text{operating ratio \%} \\ &= (\ (2.2 + (3.3 - 2.7) \times 3.0) + (0.05 \times 3.3 \times 33)\ ) \times 0.8 \\ &= 7.556 \text{ [mA]} \dots <2> \\ &\text{Iddram (READ)}^{\text{Note 2}} = 0.82 \times \text{fr} \times \text{operating ratio \%} = 0.82 \times 33 \times 0.2 \times 0.5 = 2.706 \text{ [mA]} \dots <3> \\ &\text{Iddram (Write)}^{\text{Note 3}} = 0.83 \times \text{fw} \times \text{operating ratio \%} = 0.83 \times 33 \times 0.2 \times 0.5 = 2.739 \text{ [mA]} \dots <4> \end{aligned} From <3> and <4>, \text{Iddram (READ)} + \text{Iddram (Write)} = 2.706 + 2.739 = 5.445 \text{ [mA]} \dots <5> \\ &\text{From <1>, <2>, and <5>,} \\ &\text{Iddia} = 19.8 + 7.556 + 5.445 = 32.801 \text{ [mA]} \end{aligned}
```

Therefore, from the above, the current consumption (TYP.) of the NA853M82 is 32.801 mA.

Notes 1. Use the following expression regardless of the internal ROM size (excepting ROMless versions).

```
((2.2 + (V_{DD} - 2.7) \times 3.0) + (0.05 \times V_{DD} \times \phi)) \times \text{operating ratio } \%
```

2. Use the following expressions for 8 KB, 16 KB, and 24 KB internal RAM sizes respectively.

```
8 KB: 2.55 \times f_R \times operating ratio \%
16 KB: 3.02 \times f_R \times operating ratio \%
24 KB: 3.34 \times f_R \times operating ratio \%
```

3. Use the following expressions for 8 KB, 16 KB, and 24 KB internal RAM sizes respectively.

```
8 KB: 2.41 \times \text{fw} \times \text{operating ratio } \%
16 KB: 2.41 \times \text{fw} \times \text{operating ratio } \%
24 KB: 2.62 \times \text{fw} \times \text{operating ratio } \%
```

# 4. 5. 4 AC characteristics (T<sub>A</sub> = -40 to +85°C, V<sub>DD</sub> = 3.3 V $\pm 0.3$ V)

# (1) Clock timing

| Parameter                    | Syı | mbol         | Conditions | MIN.      | MAX. | Unit |
|------------------------------|-----|--------------|------------|-----------|------|------|
| CLKIN input cycle            | <1> | tcyx         |            | 30        |      | ns   |
| CLKIN input high-level width | <2> | twxн         |            | 14        |      | ns   |
| CLKIN input low-level width  | <3> | twxL         |            | 14        |      | ns   |
| CPU operating frequency      | _   | φ            |            | 0         | 33   | MHz  |
| CLKOUT output cycle          | <4> | tсүк         |            | 30        |      | ns   |
| CLKOUT high-level width      | <5> | <b>t</b> wĸн |            | 0.5tсүк-5 |      | ns   |
| CLKOUT low-level width       | <6> | twkl         |            | 0.5tсүк-5 |      | ns   |



## (2) Reset timing

| Parameter               | Symbol |       | Conditions           | MIN. | MAX. | Unit |
|-------------------------|--------|-------|----------------------|------|------|------|
| RESETB high-level width | <7>    | twrsh |                      | 500  |      | ns   |
| RESETB low-level width  | <8>    | twrsl | On power application | 500  |      | ns   |



# (3) Read timing (1/2)

| Parameter                                               | Sy   | mbol            | Conditions | MIN.           | MAX.            | Unit |
|---------------------------------------------------------|------|-----------------|------------|----------------|-----------------|------|
| Delay time from CLKOUT <sup>↑</sup> to address          | <9>  | <b>t</b> DKA    |            |                | 3               | ns   |
| Delay time from CLKOUT↓ to ASTB                         | <10> | <b>t</b> DKST   |            |                | 4               | ns   |
| Delay time from CLKOUT↑ to DSTBB                        | <11> | <b>t</b> DKD    |            |                | 3               | ns   |
| Data input setup time (to CLKOUT <sup>↑</sup> )         | <12> | tsidk           |            | 2              |                 | ns   |
| Data input hold time (from CLKOUT <sup>↑</sup> )        | <13> | <b>t</b> HKID   |            | 2              |                 | ns   |
| WAITB setup time (to CLKOUT↓)                           | <14> | <b>t</b> swtk   |            | 2              |                 | ns   |
| WAITB hold time (from CLKOUT↓)                          | <15> | <b>t</b> HKWT   |            | 2              |                 | ns   |
| Address setup time (to ASTB↓)                           | <17> | <b>t</b> sast   |            | 0.5T - 6       |                 | ns   |
| Address hold time (from ASTB↓)                          | <18> | <b>t</b> HSTA   |            | 0.5T - 6       |                 | ns   |
| Delay time from CLKOUT <sup>↑</sup> to LBENB            | <19> | <b>t</b> DKLB   |            |                | 3               | ns   |
| Delay time from CLKOUT <sup>↑</sup> to UBENB            | <20> | <b>t</b> DKUB   |            |                | 3               | ns   |
| Delay time from ASTB $\downarrow$ to DSTBB $\downarrow$ | <21> | tosto           |            | 0.5T - 6       |                 | ns   |
| Data input hold time (from DSTBB↑)                      | <22> | thdid           |            | 0              |                 | ns   |
| Delay time from DSTBB <sup>↑</sup> to address output    | <23> | <b>t</b> DDA    |            | (1 + i)T       |                 | ns   |
| Delay time from DSTBB↑ to ASTB↑                         | <24> | <b>t</b> DDSTH  |            | 0.5T - 6       |                 | ns   |
| Delay time from DSTBB↑ to ASTB↓                         | <25> | <b>t</b> DDSTL  |            | (1.5 + i)T - 6 |                 | ns   |
| DSTBB low-level width                                   | <26> | twdL            |            | (1 + n)T – 5   |                 | ns   |
| ASTB high-level width                                   | <27> | <b>t</b> wsTH   |            | T – 5          |                 | ns   |
| WAITB setup time (to address)                           | <28> | tsawt1          | n ≥ 1      |                | 1.5T – 11       | ns   |
|                                                         | <29> | tsawt2          |            |                | (1.5 + n)T - 11 | ns   |
| WAITB hold time (from address)                          | <30> | <b>t</b> HAWT1  | n ≥ 1      | 1.5T + 6       |                 | ns   |
|                                                         | <31> | tHAWT2          |            | (1.5 + n)T + 6 |                 | ns   |
| WAITB setup time (to ASTB↓)                             | <32> | tsstwt1         | n ≥ 1      |                | T – 10          | ns   |
|                                                         | <33> | tsstwt2         |            |                | (1 + n)T – 10   | ns   |
| WAITB hold time (from ASTB↓)                            | <34> | thstwt1         | n ≥ 1      | nT + 5         |                 | ns   |
|                                                         | <35> | tHSTWT2         |            | (1 + n)T + 5   |                 | ns   |
| Delay time from CLKOUT↑ to ADOENB                       | <36> | <b>t</b> DKADEN |            |                | 3               | ns   |
| Delay time from CLKOUT↑ to address/data output          | <37> | <b>t</b> DKAD   |            |                | 5               | ns   |

## Remarks 1. T = tcyk

- **2.** n indicates the number of wait clocks inserted in the bus cycle. The sampling timing changes when programmable wait cycles are inserted.
- 3. i indicates the number of idle states (0 or 1) inserted after read cycle.
- 4. Be sure to satisfy at least one of data input hold times thkid and thdid.

# (3) Read timing (2/2)



# (4) Write timing (1/2)

| Parameter                                                  | Sy   | mbol            | Conditions | MIN.           | MAX.            | Unit |
|------------------------------------------------------------|------|-----------------|------------|----------------|-----------------|------|
| Delay time from CLKOUT↑ to address                         | <9>  | <b>t</b> dka    |            |                | 3               | ns   |
| Delay time from CLKOUT↓ to ASTB                            | <10> | <b>t</b> DKST   |            |                | 4               | ns   |
| Delay time from CLKOUT↑ to DSTBB                           | <11> | <b>t</b> DKD    |            |                | 3               | ns   |
| WAITB setup time (to CLKOUT↓)                              | <14> | <b>t</b> swtk   |            | 2              |                 | ns   |
| WAITB hold time (from CLKOUT↓)                             | <15> | <b>t</b> HKWT   |            | 2              |                 | ns   |
| Address setup time (to ASTB↓)                              | <17> | <b>t</b> sast   |            | 0.5T - 6       |                 | ns   |
| Address hold time (from ASTB↓)                             | <18> | <b>t</b> HSTA   |            | 0.5T - 6       |                 | ns   |
| Delay time from ASTB↓ to DSTBB↓                            | <21> | <b>t</b> DSTD   |            | 0.5T - 6       |                 | ns   |
| Delay time from DSTBB↑ to ASTB↑                            | <24> | <b>t</b> DDSTH  |            | 0.5T - 6       |                 | ns   |
| DSTBB low-level width                                      | <26> | twdL            |            | (1 + n)T – 5   |                 | ns   |
| ASTB high-level width                                      | <27> | <b>t</b> wsTH   |            | T – 5          |                 | ns   |
| WAITB setup time (to address)                              | <28> | tsawt1          | n ≥ 1      |                | 1.5T – 11       | ns   |
|                                                            | <29> | tsawt2          |            |                | (1.5 + n)T - 11 | ns   |
| WAITB hold time (from address)                             | <30> | <b>t</b> HAWT1  | n ≥ 1      | 1.5T + 6       |                 | ns   |
|                                                            | <31> | <b>t</b> HAWT2  |            | (1.5 + n)T + 6 |                 | ns   |
| WAITB setup time (to ASTB↓)                                | <32> | <b>t</b> sstwt1 | n ≥ 1      |                | T – 10          | ns   |
|                                                            | <33> | tsstwt2         |            |                | (1 + n)T - 10   | ns   |
| WAITB hold time (from ASTB↓)                               | <34> | thstwt1         | n ≥ 1      | nT + 5         |                 | ns   |
|                                                            | <35> | thstwt2         |            | (1 + n)T + 5   |                 | ns   |
| Delay time from CLKOUT <sup>↑</sup> to ADOENB              | <36> | <b>t</b> DKADEN |            |                | 3               | ns   |
| Delay time from CLKOUT <sup>↑</sup> to address/data output | <37> | <b>t</b> DKAD   |            |                | 5               | ns   |
| Delay time from DSTBB↓ to data output                      | <38> | <b>t</b> DDOD   |            |                | 5               | ns   |
| Data output hold time (from CLKOUT↑)                       | <39> | thkod           |            |                | 5               | ns   |
| Data output setup time (to DSTBB↑)                         | <40> | tsodd           |            | (1 + n)T – 5   |                 | ns   |
| Data output hold time (from DSTBB↑)                        | <41> | <b>t</b> HDOD   |            | T – 5          |                 | ns   |

Remarks 1. T = tcyk

**2.** n indicates the number of wait clocks inserted in the bus cycle. The sampling timing changes when programmable wait cycles are inserted.

# (4) Write timing (2/2)



# (5) Bus hold timing (1/2)

| Parameter                          | Sy   | mbol            | Conditions | MIN.  | MAX.                | Unit |
|------------------------------------|------|-----------------|------------|-------|---------------------|------|
| HLDRQB setup time (to CLKOUT↓)     | <42> | <b>t</b> shqk   |            | 2     |                     | ns   |
| HLDRQB hold time (from CLKOUT↓)    | <43> | tнкна           |            | 2     |                     | ns   |
| Delay time from CLKOUT↑ to HLDAKB  | <44> | <b>t</b> DKHA   |            |       | 3                   | ns   |
| HLDRQB high-level width            | <45> | twнqн           |            | T + 5 |                     | ns   |
| HLDAKB low-level width             | <46> | <b>t</b> WHAL   |            | T – 5 |                     | ns   |
| Delay time from HLDRQB↓ to HLDAKB↓ | <47> | <b>t</b> DHQHA1 |            |       | (2n + 7.5)T<br>+ 11 | ns   |
| Delay time from HLDRQB↑ to HLDAKB↑ | <48> | tdhqha2         |            |       | 1.5T + 11           | ns   |

## Remarks 1. T = tcyk

**2.** n indicates the number of wait clocks inserted in the bus cycle. The sampling timing changes when programmable wait cycles are inserted.

## (5) Bus hold timing (2/2)



# (6) Interrupt timing

| Parameter                | Symbol |       | Conditions | MIN.    | MAX. | Unit |
|--------------------------|--------|-------|------------|---------|------|------|
| NMI high-level width     | <49>   | twnih |            | 500     |      | ns   |
| NMI low-level width      | <50>   | twnil |            | 500     |      | ns   |
| INTP1mn high-level width | <51>   | twiтн |            | 3T + 10 |      | ns   |
| INTP1mn low-level width  | <52>   | twitl |            | 3T + 10 |      | ns   |

Remarks 1. T = tcyk

**2.** m = 4 to 1

n = 3 to 0



# [MEMO]

# (7) CSI timing (1/2)

# (a) Master mode

| Parameter                                                        | Symbol |               | Conditions | MIN.         | MAX. | Unit |
|------------------------------------------------------------------|--------|---------------|------------|--------------|------|------|
| SCKnOUTB cycle                                                   | <53>   | <b>t</b> cysk | Output     | 120          |      | ns   |
| SCKnOUTB high-level width                                        | <54>   | twsĸн         | Output     | 0.5 tcysk-10 |      | ns   |
| SCKnOUTB low-level width                                         | <55>   | twskl         | Output     | 0.5 tcysк-10 |      | ns   |
| SI3, SI2, RXDSI1, RXDSI0 setup time (to SCKnOUTB1)               | <56>   | tssisk        |            | 5            |      | ns   |
| SI3, SI2, RXDSI1, RXDSI0 hold time (from SCKnOUTB <sup>↑</sup> ) | <57>   | thsksi        |            | 5            |      | ns   |
| SO3, SO2, TXDSO1, TXDSO0 delay time (from SCKnOUTB↓)             | <58>   | tdskso        |            |              | 5    | ns   |

**Remark** n = 3 to 0

# (b) Slave mode

| Parameter                                                      | Symbol |                | Conditions | MIN. | MAX. | Unit |
|----------------------------------------------------------------|--------|----------------|------------|------|------|------|
| SCKnINB cycle                                                  | <53>   | <b>t</b> cysk  | Input      | 120  |      | ns   |
| SCKnINB high-level width                                       | <54>   | twsĸн          | Input      | 30   |      | ns   |
| SCKnINB low-level width                                        | <55>   | <b>t</b> wskL  | Input      | 30   |      | ns   |
| SI3, SI2, RXDSI1, RXDSI0 setup time (to SCKnINB <sup>↑</sup> ) | <56>   | <b>t</b> ssisk |            | 5    |      | ns   |
| SI3, SI2, RXDSI1, RXDSI0 hold time (from SCKnINB1)             | <57>   | thsksi         |            | 5    |      | ns   |
| SO3, SO2, TXDSO1, TXDSO0 delay time (from SCKnINB↓)            | <58>   | toskso         |            |      | 5    | ns   |

**Remark** n = 3 to 0

# (7) CSI timing (2/2)



# (8) RPU timing

| Parameter                        | Symbol |               | Conditions | MIN.    | MAX. | Unit |
|----------------------------------|--------|---------------|------------|---------|------|------|
| TI1n high-level width            | <60>   | <b>t</b> wTIH |            | 3T + 10 |      | ns   |
| TI1n low-level width             | <61>   | twtil         |            | 3T + 10 |      | ns   |
| TCLR1n high-level width          | <62>   | <b>t</b> wtch |            | 3T + 10 |      | ns   |
| TCLR1n low-level width           | <63>   | <b>t</b> wtcl |            | 3T + 10 |      | ns   |
| Delay time from CLKOUT↑ to TO1nm | <64>   | <b>t</b> DKTO |            |         | 5    | ns   |

Remarks 1. T = tcyk

**2.** n = 4 to 1

m = 1, 0





# (9) PWM timing

| Parameter                                   | Symbol |                | Conditions | MIN. | MAX. | Unit |
|---------------------------------------------|--------|----------------|------------|------|------|------|
| Delay time from CLKOUT <sup>↑</sup> to PWMn | <65>   | <b>t</b> DKPWM |            |      | 3    | ns   |

# **Remark** n = 1, 0



## **CHAPTER 5 V30MX**

The V30MX is an ASIC original CPU core that has improved the bus efficiency by separating the address and data buses of NEC's original microprocessor " $\mu$  PD70116H" (commonly known as V30HL<sup>TM</sup>). As the instruction set is the same as V30HL, V30MX can be used without making any program changes.

## 5. 1 Outline

- Complete static circuit configuration and simplified standby and clock stop.
- Low power consumption
- Minimum instruction execution time: 60 ns (33 MHz, 3.3 V)
- On-chip LIM EMS 4.0 supporting register
- Abundant memory addressing modes
- Fourteen 16-bit register sets
- 101 kinds of instruction sets (complete compatibility with  $\mu$  PD70116H)
- High speed execution of address calculation

## 5. 1. 1 Symbol diagram

## **Number of grids**

177k grids

228k grids (including wiring area)

## Number of separation simulation patterns

80k



# 5. 1. 2 Pin capacitance

Remark C<sub>IN</sub>: Capacitance of only input pin

Cinewi: Value of CIN with wiring capacitance (estimated wire length capacitance) taken into consideration

(I = 10 mm)

# (1) Input pins

| Pin Name   | C <sub>IN</sub> (pF) | Cinewl (pF) | Pin Name      | C <sub>IN</sub> (pF) | Cinewl (pF) |
|------------|----------------------|-------------|---------------|----------------------|-------------|
| CLK        | 0.033                | 1.933       | POLLB         | 0.033                | 1.933       |
| EI3 to EI0 | 0.033                | 1.933       | READY         | 0.033                | 1.933       |
| EMSREN     | 0.033                | 1.933       | RESET         | 0.033                | 1.933       |
| HLDRQ      | 0.033                | 1.933       | TBI27 to TBI0 | 0.033                | 1.932       |
| INT        | 0.033                | 1.933       | TEST          | 0.033                | 1.933       |
| NMI        | 0.033                | 1.933       | BUNRI         | 0.039                | 1.939       |

# (2) Output pins

| Pin Name   | C <sub>MAX</sub> (pF) | C <sub>IN</sub> (pF) | Cinewl (pF) | Pin Name      | C <sub>MAX</sub> (pF) | Cin (pF) | Cinewl (pF) |
|------------|-----------------------|----------------------|-------------|---------------|-----------------------|----------|-------------|
| A23 to A0  | 4.001                 | 0.063                | 1.963       | EO8 to EO0    | 5.421                 | -        | -           |
| ASTB       | 5.421                 | _                    | _           | HLDAK         | 5.421                 | -        | _           |
| BS2 to BS0 | 4.007                 | 0.063                | 1.963       | INTAKB        | 5.421                 | -        | -           |
| BUFENB     | 4.007                 | 0.063                | 1.963       | MIOB          | 4.007                 | 0.063    | 1.963       |
| BUFRBW     | 4.007                 | 0.063                | 1.963       | PS3 to PS0    | 5.421                 | -        | _           |
| BUSLOCKB   | 4.007                 | 0.063                | 1.963       | QS1, QS0      | 5.421                 | -        | _           |
| CLKO       | 5.421                 | _                    | _           | RDB           | 4.007                 | 0.063    | 1.963       |
| CNT1       | 5.421                 | -                    | -           | UBEB          | 4.007                 | 0.063    | 1.963       |
| CNT2       | 5.421                 | _                    | _           | WRB           | 4.007                 | 0.063    | 1.963       |
| DC         | 5.421                 | _                    | _           | TBO71 to TBO0 | 4.007                 | 0.063    | 1.963       |

# (3) Input/output pins

| Pin Name    | C <sub>MAX</sub> (pF) | Cin (pF) | Cinewl (pF) |
|-------------|-----------------------|----------|-------------|
| DO15 to DO0 | 4.007                 | 0.096    | 1.996       |

#### 5. 2 Notes for Initialization

#### (1) Internal gate initialization method

Although the initial state of flip-flops does not cause a problem in the actual product, it has been known to do so during simulation. To avoid such problems, portions that cannot be initialized at a usual reset are initialized using the following methods.

## (a) Verilog-XL<sup>™</sup>

As initialization is carried out automatically during simulation, there is no special need to do anything.

# (b) V.sim<sup>TM</sup>

Input the following command when executing simulation.

Command>iv instance-name/ U248:N01 = 1

If this command is set in the additional-command file, it will save the necessity of re-typing it each time simulation is executed.

## (2) Inputting the initialization pattern from the test pin is not necessary.

## (3) The initialization pattern is input from the normal pin in the following manner.

#### (a) Hardware reset

Input logic 1 of at least four system clock (clock input to the CLK pin) cycles to the RESET pin.

The V30MX executes instructions from address 0FFFF0H when logic 0 is input to the RESET pin and the reset is released.

## (b) Instruction input

Input instructions as necessary after the hardware reset is released.

Instructions tend to become long (from several hundred bytes to several KB) and the CPU instruction read timing is then difficult to catch, so use a method that will store the total chip simulation program in the memory.

#### 5. 3 Notes for Pattern Generation and Circuit Designing

## 5. 3. 1 Handling 3-state outputs

3-state output pins such as RDB and WRB (refer to **5. 4 Pin Functions** for the 3-state output pins) become high impedance when the CPU is put on hold. If a floating level is supplied to a functional cell connected to a 3-state pin, errors and overlapping current due to a middle level input may occur. Use the CNT2 and CNT1 pins to avoid high impedance and ensure that a floating level is not input directly.

#### 5. 3. 2 RESET signal

The RESET signal is executed from an instruction in the FFFF0H address after the high levels of at least four clocks have been input to the RESET pin, and upon the release of the reset following the input of the low levels.

Be aware that if the variable timing of the RESET signal conflicts with the clock rise, a timing error will be generated and the reset operation may not run normally.

The RESET input must be set to low level when the reset is released.

CLK (input)

Reset period

RESET (input)

Reset released

Figure 5-1. RESET Signal Input Example

## 5. 3. 3 CLK input

A CPU reset occurs only when the CLK input toggles. Care should be taken when a frequency divider is inserted at the CLK input of the CPU.



#### 5. 3. 4 Initialization of internal registers

Before executing the test program, be sure to execute an instruction to assign initial values to the internal registers used in test program execution.

Take particular care not to overlook the stack pointer (SP).

To minimize the execution time, avoid using subroutines as much as possible.

#### 5. 3. 5 Restriction of test program size

The number of execution steps in the test program will ultimately determine the length of the test pattern, so try to reduce the number of these steps.

Make sure the number of patterns in the execution steps does not exceed 64000 (note that this is not the number of execution steps). To do this, ensure that the test program size is no more than 8 KB.

If the test program contains loops, however, the number of patterns in the execution steps can exceed 64000, even if the test program size is 8 KB or less. Note that the value of 8 KB is only a rough estimate.

#### 5. 3. 6 Segment specification in the test program

The V30MX can use 16 MB of address space in the EMS mode. However, as it is necessary to load the test program in an address that consists of eight consecutive KB, code segment specification should be carried out once only.

For similar reasons, data and stack segment specification should also be carried out once only.

#### ★ 5. 3. 7 Timing verification

Input timing verification methods vary depending on the simulator used.

For Verilog-XL, input timing verification is performed at execution, but for V.sim, no error message is output even if the input error ocurred at execution. For V.sim, be sure to verify by executing the OPENCAD<sup>TM</sup> menu "Megamacro Timing Check".

If other simulators are used, contact NEC for verification methods.

# 5. 4 Pin Functions

| Pin Name      | I/O            | Function                                                    |
|---------------|----------------|-------------------------------------------------------------|
| A23 to A0     | 3-state output | Address output                                              |
| D15 to D0     | Input/output   | Data input/output                                           |
| UBEB          | 3-state output | Upper byte enable signal output of data bus                 |
| RDB           | 3-state output | Read strobe output                                          |
| READY         | Input          | Inputs control signal that inserts wait states to bus cycle |
| INT           | Input          | Maskable interrupt request input                            |
| POLLB         | Input          | Synchronized sense signal input from external system        |
| NMI           | Input          | Non-maskable interrupt request input                        |
| RESET         | Input          | System reset input                                          |
| CLK           | Input          | System clock input                                          |
| QS1, QS0      | Output         | Queue status output                                         |
| BUSLOCKB      | 3-state output | Bus lock output                                             |
| BS2 to BS0    | 3-state output | Bus cycle status output                                     |
| MIOB          | 3-state output | I/O access/memory access select output                      |
| PS3 to PS0    | Output         | Processor status output                                     |
| WRB           | 3-state output | Write strobe output                                         |
| INTAKB        | Output         | Interrupt acknowledge output                                |
| ASTB          | Output         | Address strobe output                                       |
| BUFRBW        | 3-state output | Buffer read/write output                                    |
| BUFENB        | 3-state output | Buffer enable output                                        |
| HLDRQ         | Input          | Bus hold request input                                      |
| HLDAK         | Output         | Bus hold acknowledge output                                 |
| EMSREN        | Input          | EMS registers access enable input                           |
| CNT2, CNT1    | Output         | 3-state output control output                               |
| DC            | Output         | D15 to D0 control output                                    |
| BUNRI         | Input          | Pin for test using test bus                                 |
| TEST          | Input          |                                                             |
| TBI27 to TBI0 | Input          |                                                             |
| TBO71 to TBO0 | 3-state output |                                                             |
| EI3 to EI0    | Input          | NEC reserved pin                                            |
| EO8 to EO0    | Output         |                                                             |
| CLKO          | Output         |                                                             |

## 5. 5 Electrical Specifications

The following specifications are for a single macro. An actual chip consists of two or more macros. Design the system so that all the specifications of the individual macros are satisfied when the chip is used.

## 5. 5. 1 Absolute maximum ratings

| Parameter                     | Symbol           | Ratings      | Unit     |
|-------------------------------|------------------|--------------|----------|
| Supply voltage                | V <sub>DD</sub>  | -0.5 to +4.6 | <b>V</b> |
| Operating ambient temperature | TA               | -40 to +85   | °C       |
| Storage temperature           | T <sub>stg</sub> | -65 to +150  | °C       |

Caution Product quality may suffer if the absolute maximum rating is exceeded even momentarily for any parameter. That is, the absolute maximum ratings are rated values at which the product is on the verge of suffering physical damage, and therefore the product must be used under conditions that ensure that the absolute maximum ratings are not exceeded.

#### 5. 5. 2 Recommended operation range

| Parameter                     | Symbol          | MIN. | TYP. | MAX. | Unit |
|-------------------------------|-----------------|------|------|------|------|
| Supply voltage                | V <sub>DD</sub> | 3.0  | 3.3  | 3.6  | ٧    |
| Operating ambient temperature | TA              | -40  |      | +85  | °C   |
| Clock cycle                   | <b>t</b> cyk    | 30   |      |      | ns   |

## 5. 5. 3 DC characteristics ( $T_A = -40 \text{ to } +85^{\circ}\text{C}$ , $V_{DD} = 3.3 \text{ V} \pm 0.3 \text{ V}$ )

| Parameter      | Symbol | Conditions              | MIN. | TYP. | MAX. | Unit   |
|----------------|--------|-------------------------|------|------|------|--------|
| Supply current | IDD    | During normal operation |      | 0.5  | 1.0  | mA/MHz |
|                |        | In standby (HALT) mode  |      | 0.05 | 0.10 | mA/MHz |
|                |        | When clock is stopped   |      |      | 30   | μΑ     |

# 5. 5. 4 AC characteristics (T<sub>A</sub> = -40 to +85°C, V<sub>DD</sub> = 3.3 V $\pm 0.3$ V)

# (1) Read timing (1/2)

| Parameter                                    | Syr  | nbol           | Conditions | MIN. | MAX. | Unit |
|----------------------------------------------|------|----------------|------------|------|------|------|
| Clock cycle                                  | <1>  | tcyk           |            | 30   |      | ns   |
| Delay time from CLK↓ to address              | <2>  | <b>t</b> DKA   |            | 2.4  | 11   | ns   |
| Delay time from CLK↑ to UBEB,<br>BUSLOCKB    | <3>  | <b>t</b> DKUB  |            | 2.4  | 11   | ns   |
| Delay time from CLK↑ to BS1, BS0             | <4>  | <b>t</b> DKB   |            | 2.4  | 11   | ns   |
| Data setup time (to CLK↑)                    | <5>  | tsdk           |            | 3    |      | ns   |
| Data hold time (from CLK↑)                   | <6>  | <b>t</b> HKD   |            | 6    |      | ns   |
| READY setup time (to CLK <sup>↑</sup> )      | <7>  | tsryk          |            | 3    |      | ns   |
| READY hold time (from CLK↑)                  | <8>  | thkry          |            | 3    |      | ns   |
| Delay time from CLK↓ to ASTB↑                | <9>  | toksth         |            | 1.3  | 6    | ns   |
| Delay time from CLK↑ to ASTB↓                | <10> | <b>t</b> DKSTL |            | 1.3  | 5.5  | ns   |
| Delay time from CLK↑ to BUFRBW↓              | <11> | <b>t</b> DKCT  |            | 1.9  | 9    | ns   |
| Delay time from BUFRBW↓ to BUFENB↓           | <12> | trwen          |            | 0    | 2    | ns   |
| Delay time from BUFENB↑ to BUFRBW↑           | <13> | tDENRW         |            | 0    | 2    | ns   |
| Delay time from CLK↑ to BUFENB↑ (Read cycle) | <14> | <b>t</b> DKENR |            | 1.9  | 9    | ns   |
| Delay time from CLK↑ to RDB↓, WRB↓           | <15> | <b>t</b> DKCML |            | 1.8  | 8.4  | ns   |
| Delay time from CLK↑ to RDB↑, WRB↑           | <16> | <b>t</b> DKCMH |            | 1.8  | 8.4  | ns   |

# (1) Read timing (2/2)



# (2) Write timing (1/2)

| Parameter                                        | Syı  | mbol            | Conditions | MIN. | MAX. | Unit |
|--------------------------------------------------|------|-----------------|------------|------|------|------|
| Clock cycle                                      | <1>  | <b>t</b> cyk    |            | 30   |      | ns   |
| Delay time from CLK↓ to address                  | <2>  | <b>t</b> DKA    |            | 2.4  | 11   | ns   |
| Delay time from CLK↑ to UBEB, BUSLOCKB           | <3>  | tокив           |            | 2.4  | 11   | ns   |
| Delay time from CLK↑ to BS1, BS0                 | <4>  | <b>t</b> DKB    |            | 2.4  | 11   | ns   |
| READY setup time (to CLK <sup>↑</sup> )          | <7>  | <b>t</b> sryk   |            | 3    |      | ns   |
| READY hold time (from CLK <sup>↑</sup> )         | <8>  | <b>t</b> HKRY   |            | 3    |      | ns   |
| Delay time from CLK↓ to ASTB↑                    | <9>  | <b>t</b> DKSTH  |            | 1.3  | 6    | ns   |
| Delay time from CLK↑ to ASTB↓                    | <10> | <b>t</b> DKSTL  |            | 1.3  | 5.5  | ns   |
| Delay time from CLK↑ to RDB↓, WRB↓               | <15> | <b>t</b> DKCML  |            | 1.8  | 8.4  | ns   |
| Delay time from CLK↑ to RDB↑, WRB↑               | <16> | <b>t</b> DKCMH  |            | 1.8  | 8.4  | ns   |
| Delay time from CLK↓ to data float               | <17> | <b>t</b> FKD    |            | 2.3  | 10   | ns   |
| Delay time from CLK↓ to BUFENB↓<br>(Write cycle) | <18> | <b>t</b> DKENWH |            | 1.4  | 7    | ns   |
| Delay time from CLK↓ to BUFENB↑<br>(Write cycle) | <19> | <b>t</b> DKENWL |            | 1.4  | 7    | ns   |

## (2) Write timing (2/2)



# (3) Entering the bus hold status timing

| Parameter                          | Symbol |               | Conditions | MIN. | MAX. | Unit |
|------------------------------------|--------|---------------|------------|------|------|------|
| Delay time from CLK↓ to data float | <17>   | <b>t</b> FKD  |            | 2.3  | 10   | ns   |
| HLDRQ setup time (to CLK)          | <20>   | tsıĸ          |            | 3    |      | ns   |
| Delay time from CLK↓ to HLDAK      | <21>   | <b>t</b> DKHA |            | 1.4  | 6    | ns   |



# (4) Exiting the bus hold status timing

| Parameter                           | Syı  | mbol          | Conditions | MIN. | MAX. | Unit |
|-------------------------------------|------|---------------|------------|------|------|------|
| Delay time from CLK↓ to address     | <2>  | <b>t</b> dka  |            | 2.4  | 11   | ns   |
| Delay time from CLK↑ to BS1, BS0    | <4>  | <b>t</b> DKB  |            | 2.4  | 11   | ns   |
| HLDRQ setup time (to CLK)           | <20> | <b>t</b> sık  |            | 3    |      | ns   |
| Delay time from CLK↓ to HLDAK       | <21> | <b>t</b> DKHA |            | 1.4  | 6    | ns   |
| Delay time from CLK↓ to data output | <22> | <b>t</b> DKD  |            | 2.2  | 10   | ns   |



# (5) Standby (HALT) mode setup timing

| Parameter                                        | Symbol |                 | Conditions | MIN. | MAX. | Unit |
|--------------------------------------------------|--------|-----------------|------------|------|------|------|
| Delay time from CLK↓ to address                  | <2>    | <b>t</b> dka    |            | 2.4  | 11   | ns   |
| Delay time from CLK↑ to UBEB,<br>BUSLOCKB        | <3>    | <b>t</b> DKUB   |            | 2.4  | 11   | ns   |
| Delay time from CLK↑ to BS1, BS0                 | <4>    | <b>t</b> DKB    |            | 2.4  | 11   | ns   |
| Delay time from CLK↑ to RDB↑, WRB↑               | <16>   | <b>t</b> DKCMH  |            | 1.8  | 8.4  | ns   |
| Delay time from CLK↓ to BUFENB↑<br>(Write cycle) | <19>   | <b>t</b> DKENWL |            | 1.4  | 7    | ns   |



## (6) Interrupt acknowledge timing

| Parameter                       | Symbol |               | Conditions | MIN. | MAX. | Unit |
|---------------------------------|--------|---------------|------------|------|------|------|
| Delay time from CLK↑ to INTAKB↓ | <23>   | <b>t</b> DKIF |            | 1.4  | 7    | ns   |
| Delay time from CLK↑ to INTAKB↑ | <24>   | <b>t</b> DKIR |            | 1.4  | 7    | ns   |



# (7) RESET, INT, NMI, HLDRQ input timing

| Parameter                                                 | Symbol |      | Conditions | MIN. | MAX. | Unit |
|-----------------------------------------------------------|--------|------|------------|------|------|------|
| Asynchronous signals Note setup time (to CLK)             | <20>   | tsıĸ |            | 3    |      | ns   |
| Asynchronous signals <sup>Note</sup> hold time (from CLK) | <25>   | tнік |            | 6    |      | ns   |

Note Asynchronous signals: RESET, INT, NMI, HLDRQ



# (8) CLK input timing

| Parameter              | Symbol |              | Conditions | MIN. | MAX. | Unit |
|------------------------|--------|--------------|------------|------|------|------|
| Clock high-level width | <26>   | <b>t</b> ккн |            | 10   |      | ns   |
| Clock low-level width  | <27>   | tkkl         |            | 10   |      | ns   |



# (9) Reset timing

| Parameter              | Symbol |        | Conditions | MIN.  | MAX. | Unit |
|------------------------|--------|--------|------------|-------|------|------|
| RESET high-level width | <28>   | twrsth |            | 4tcyk |      | ns   |



## **CHAPTER 6 V30MZ**

(Under development)

The V30MZ is a CPU core that has further improved the CPU core "V30MX", which has increased bus efficiency of the NEC original microprocessor " $\mu$  PD70116H" (commonly known as V30HL).

High-speed processing at the speed of a RISC microprocessor has been made possible due to the raising of bus efficiency with the realization of a 1 clock/1 bus cycle, and the considerable increase in instruction execution speed through internal pipelining.

Compared to the 4.3 MIPS (at 33 MHz operation, no wait) of the V30MX, the V30MZ has realized a processing performance of 35 MIPS (at 66 MHz operation, no wait).

#### 6. 1 Outline

- Processing performance: 35MIPS (@ 66 MHz operation, no wait)
- CMOS static design (capable of complete stop of the internal system clock)
- 1 clock/1 bus cycle
- External bus interface

Address bus: 20 bits

Data bus: 16 bits (I/O separate buses)

- Bus hold function
- Standby function (HALT mode)

## 6. 1. 1 Symbol diagram

## **Number of grids**

207k grids

251k grids (including wiring area)

## Number of separation simulation patterns

52k



## 6. 1. 2 Pin capacitance

Remark CIN: Capacitance of only input pin

Cinewi: Value of CIN with wiring capacitance (estimated wire length capacitance) taken into consideration

(I = 10 mm)

## (1) Input pins

| Pin Name | Cin (pF) | Cinewl (pF) | Pin Name      | C <sub>IN</sub> (pF) | Cinewl (pF) |
|----------|----------|-------------|---------------|----------------------|-------------|
| CLK      | 0.012    | 1.912       | DI15 to DI0   | 0.012                | 1.912       |
| RESET    | 0.012    | 1.912       | BUNRI         | 0.037                | 1.937       |
| NMI      | 0.012    | 1.912       | TEST          | 0.010                | 1.910       |
| INT      | 0.012    | 1.912       | TBI22 to TBI0 | 0.011                | 1.911       |
| HLDRQ    | 0.012    | 1.912       | DBINT         | 0.008                | 1.908       |
| POLLB    | 0.012    | 1.912       | DBNMIM        | 0.008                | 1.908       |
| READYB   | 0.012    | 1 912       |               |                      |             |

## (2) Output pins

| Pin Name      | CMAX (pF) | Cin (pF) | Cinewl (pF) | Pin Name         | CMAX (pF) | Cin (pF) | Cinewl (pF) |
|---------------|-----------|----------|-------------|------------------|-----------|----------|-------------|
| A19 to A0     | 13.072    | _        | _           | DBA20            | 13.072    | -        | -           |
| BS3 to BS0    | 13.072    | -        | _           | DBRD             | 13.072    | _        | _           |
| DO15 to DO0   | 13.072    | -        | _           | DBWR             | 13.072    | _        | _           |
| BUSLOCKB      | 13.072    | -        | -           | DBHLTST          | 13.072    | _        | _           |
| HLDAK         | 13.072    | -        | -           | TEOI             | 13.072    | _        | _           |
| UBEB          | 13.072    | -        | -           | TILEN3 to TILEN0 | 13.072    | _        | _           |
| TBO42 to TBO0 | 6.536     | 0.047    | 1.947       | TBRA             | 13.072    | _        | _           |
| DBMODE        | 13.072    | _        | _           | TINTA            | 13.072    | -        | _           |

#### 6. 2 Notes for Simulation Execution

## 6. 2. 1 Notes for V.sim simulation

When simulation is executed through V.sim, input the following command.

Command>mr instance-name/\_NTMZROM NTMZROM.nincf

## **★** 6. 2. 2 Timing verification

Input timing verification methods vary depending on the simulator used.

For Verilog-XL, input timing verification is performed at execution, but for V.sim, no error message is output even if the input error ocurred at execution. For V.sim, be sure to verify by executing the OPENCAD menu "Megamacro Timing Check".

If other simulators are used, contact NEC for verification methods.

#### 6. 3 Notes for Initialization

## 6. 3. 1 RESET signal

The RESET signal is executed from an instruction in the FFFF0H address after the high levels of at least four clocks have been input to the RESET pin, and upon the release of the reset following the input of the low levels.

Be aware that if the variable timing of the RESET signal conflicts with the clock rise, a timing error will be generated and the reset operation may not run normally.

The RESET input must be set to low level when the reset is released.

CLK (input)

Reset period

RESET (input)

Reset released

Figure 6-1. RESET Signal Input Example

## 6. 3. 2 CLK input

A CPU reset occurs only when the CLK input toggles. Care should be taken when a frequency divider is inserted at the CLK input of the CPU.



## 6. 3. 3 Initialization of internal registers

Before executing the test program, be sure to execute an instruction to assign initial values to the internal registers used in test program execution.

# 6. 4 Pin Functions

| Pin Name         | I/O    | Function                                                    |
|------------------|--------|-------------------------------------------------------------|
| A19 to A0        | Output | Address output                                              |
| DI15 to DI0      | Input  | Data input                                                  |
| DO15 to DO0      | Output | Data output                                                 |
| UBEB             | Output | Upper byte enable signal output of data bus                 |
| BS3 to BS0       | Output | Bus cycle status output                                     |
| READYB           | Input  | Inputs control signal that inserts wait states to bus cycle |
| BUSLOCKB         | Output | Bus lock output                                             |
| POLLB            | Input  | Synchronized sense signal input from external system        |
| RESET            | Input  | System reset input                                          |
| HLDRQ            | Input  | Bus hold request input                                      |
| HLDAK            | Output | Bus hold acknowledge output                                 |
| NMI              | Input  | Non-maskable interrupt request input                        |
| INT              | Input  | Maskable interrupt request input                            |
| CLK              | Input  | System clock input                                          |
| BUNRI            | Input  | Pin for test using test bus                                 |
| TEST             | Input  |                                                             |
| TBI22 to TBI0    | Input  |                                                             |
| TBO42 to TBO0    | Output |                                                             |
| DBINT            | Input  | NEC reserved pin                                            |
| DBMODE           | Output |                                                             |
| DBA20            | Output |                                                             |
| DBRD             | Output |                                                             |
| DBWR             | Output |                                                             |
| DBNMIM           | Input  |                                                             |
| DBHLTST          | Output |                                                             |
| TEOI             | Output |                                                             |
| TILEN3 to TILEN0 | Output |                                                             |
| TBRA             | Output |                                                             |
| TINTA            | Output |                                                             |

# 6. 5 Electrical Specifications (Preliminary)

The following specifications are for a single macro. An actual chip consists of two or more macros. Design the system so that all the specifications of the individual macros are satisfied when the chip is used.

#### 6. 5. 1 Absolute maximum ratings

| Parameter                     | Symbol           | Ratings      | Unit     |
|-------------------------------|------------------|--------------|----------|
| Supply voltage                | V <sub>DD</sub>  | −0.5 to +4.6 | <b>V</b> |
| Operating ambient temperature | TA               | -40 to +85   | °C       |
| Storage temperature           | T <sub>stg</sub> | -65 to +150  | °C       |

Caution Product quality may suffer if the absolute maximum rating is exceeded even momentarily for any parameter. That is, the absolute maximum ratings are rated values at which the product is on the verge of suffering physical damage, and therefore the product must be used under conditions that ensure that the absolute maximum ratings are not exceeded.

#### 6. 5. 2 Recommended operation range

| Parameter                     | Symbol          | Conditions              | MIN. | TYP. | MAX. | Unit        |
|-------------------------------|-----------------|-------------------------|------|------|------|-------------|
| Supply voltage                | V <sub>DD</sub> | At 2.0 V supply voltage | 1.8  | 2.0  | 2.2  | V           |
|                               |                 | At 3.3 V supply voltage | 3.0  | 3.3  | 3.6  | <b>&gt;</b> |
| Operating ambient temperature | TA              |                         | -40  |      | +85  | °C          |
| Clock cycle                   | <b>t</b> cyk    | At 2.0 V supply voltage | 31   |      |      | ns          |
|                               |                 | At 3.3 V supply voltage | 15   |      |      | ns          |

#### 6. 5. 3 DC characteristics ( $T_A = -40 \text{ to } +85^{\circ}\text{C}$ )

## (1) At 2.0 V supply voltage ( $V_{DD} = 2.0 \text{ V} \pm 0.2 \text{ V}$ )

| Parameter      | Symbol | Conditions            | MIN. | TYP. | MAX. | Unit   |
|----------------|--------|-----------------------|------|------|------|--------|
| Supply current | IDD    | During operation      |      | 0.4  | 0.8  | mA/MHz |
|                |        | In HALT mode          |      | 2    | 4    | μA/MHz |
|                |        | When clock is stopped |      |      | 0    | μΑ     |

## (2) At 3.3 V supply voltage ( $V_{DD} = 3.3 \text{ V} \pm 0.3 \text{ V}$ )

| Parameter      | Symbol | Conditions            | MIN. | TYP. | MAX. | Unit   |
|----------------|--------|-----------------------|------|------|------|--------|
| Supply current | IDD    | During operation      |      | 0.6  | 1.2  | mA/MHz |
|                |        | In HALT mode          |      | 5    | 10   | μA/MHz |
|                |        | When clock is stopped |      |      | 0    | μΑ     |

## 6. 5. 4 AC characteristics ( $T_A = -40 \text{ to } +85^{\circ}\text{C}$ )

## (1) CLK input timing

## (a) At 2.0 V supply voltage ( $V_{DD} = 2.0 \text{ V} \pm 0.2 \text{ V}$ )

| Parameter              | Symbol |              | Conditions | MIN. | MAX. | Unit |
|------------------------|--------|--------------|------------|------|------|------|
| Operating frequency    | φ      |              |            |      | 32   | MHz  |
| Clock cycle            | <1>    | <b>t</b> cyk |            | 31   |      | ns   |
| Clock high-level width | <2>    | <b>t</b> ккн |            | 15.5 |      | ns   |
| Clock low-level width  | <3>    | <b>t</b> kkl |            | 15.5 |      | ns   |

## (b) At 3.3 V supply voltage ( $V_{DD} = 3.3 \text{ V} \pm 0.3 \text{ V}$ )

| Parameter              | Syr | mbol         | Conditions | MIN. | MAX. | Unit |
|------------------------|-----|--------------|------------|------|------|------|
| Operating frequency    | φ   |              |            |      | 66   | MHz  |
| Clock cycle            | <1> | <b>t</b> cyk |            | 15   |      | ns   |
| Clock high-level width | <2> | <b>t</b> ккн |            | 7    |      | ns   |
| Clock low-level width  | <3> | tĸĸĿ         |            | 7    |      | ns   |



# (2) RESET, INT, NMI, HLDRQ, POLLB input timing

### (a) At 2.0 V supply voltage ( $V_{DD} = 2.0 \text{ V} \pm 0.2 \text{ V}$ )

| Parameter                            | Symbol |              | Conditions | MIN. | MAX. | Unit |
|--------------------------------------|--------|--------------|------------|------|------|------|
| Asynchronous signals Note setup time | <4>    | <b>t</b> sık |            | 2    |      | ns   |
| Asynchronous signals Note hold time  | <5>    | <b>t</b> HKI |            | 2    |      | ns   |
| POLLB setup time                     | <6>    | <b>t</b> spk |            | 2    |      | ns   |
| POLLB hold time                      | <7>    | thkp         |            | 6    |      | ns   |

Note Asynchronous signals: RESET, INT, NMI, HLDRQ

## (b) At 3.3 V supply voltage ( $V_{DD} = 3.3 \text{ V} \pm 0.3 \text{ V}$ )

| Parameter                            | Syı | mbol         | Conditions | MIN. | MAX. | Unit |
|--------------------------------------|-----|--------------|------------|------|------|------|
| Asynchronous signals Note setup time | <4> | <b>t</b> sık |            | 2    |      | ns   |
| Asynchronous signals Note hold time  | <5> | tнкı         |            | 2    |      | ns   |
| POLLB setup time                     | <6> | tspk         |            | 2    |      | ns   |
| POLLB hold time                      | <7> | thkp         |            | 4    |      | ns   |

Note Asynchronous signals: RESET, INT, NMI, HLDRQ



# [MEMO]

# (3) Timings of signals related to bus cycle (1/2)

# (a) At 2.0 V supply voltage ( $V_{DD} = 2.0 \text{ V} \pm 0.2 \text{ V}$ )

| Parameter                     | Symbol |               | Conditions | MIN. | MAX. | Unit |
|-------------------------------|--------|---------------|------------|------|------|------|
| Address bus output delay time | <8>    | <b>t</b> DKA  |            | 1    | 10   | ns   |
| Bus status output delay time  | <9>    | <b>t</b> DKB  |            | 1    | 10   | ns   |
| Data output delay time        | <10>   | <b>t</b> DKD  |            | 2    | 15   | ns   |
| BUSLOCKB delay time           | <11>   | <b>t</b> DKBL |            | 1    | 10   | ns   |
| HLDAK delay time              | <12>   | <b>t</b> DKHA |            | 1    | 10   | ns   |
| Data input setup time         | <13>   | tsdk          |            | 2    |      | ns   |
| Data input hold time          | <14>   | <b>t</b> HKD  |            | 6    |      | ns   |
| READYB setup time             | <15>   | tsrk          |            | 7    |      | ns   |
| READYB hold time              | <16>   | thkr          |            | 4    |      | ns   |

## (b) At 3.3 V supply voltage ( $V_{DD} = 3.3 \text{ V} \pm 0.3 \text{ V}$ )

| Parameter                     | Syı  | mbol          | Conditions | MIN. | MAX. | Unit |
|-------------------------------|------|---------------|------------|------|------|------|
| Address bus output delay time | <8>  | <b>t</b> DKA  |            | 1    | 5    | ns   |
| Bus status output delay time  | <9>  | <b>t</b> DKB  |            | 1    | 5    | ns   |
| Data output delay time        | <10> | <b>t</b> DKD  |            | 2    | 7.5  | ns   |
| BUSLOCKB delay time           | <11> | <b>t</b> DKBL |            | 1    | 5    | ns   |
| HLDAK delay time              | <12> | <b>t</b> DKHA |            | 0.5  | 5    | ns   |
| Data input setup time         | <13> | tsdk          |            | 1    |      | ns   |
| Data input hold time          | <14> | <b>t</b> HKD  |            | 3    |      | ns   |
| READYB setup time             | <15> | tsrk          |            | 3    |      | ns   |
| READYB hold time              | <16> | thkr          |            | 2    |      | ns   |

## (3) Timings of signals related to bus cycle (2/2)



#### **CHAPTER 7 NB85E**

(Under Development)

The NB85E is a CPU core provided for incorporation in ASICs and includes on chip the "V850E1" CPU, NEC's 32-bit RISC microprocessor, as well as various peripheral I/O functions such as DMA and interrupt controllers.

#### 7.1 Outline

• Processing performance: 82 MIPS (@ 66 MHz operation)

Memory space

Program area: 64 MB linear Data area: 4 GB linear

Memory bank division function: 2, 4, and 8 MB/bank

• Minimum instruction execution time: 15 ns (@ 66 MHz operation)

· External bus interface

VSB (V850E System Bus)

NPB (NEC Peripheral I/O Bus)

Interrupt/exception control function
 Non-maskable interrupts: 3 sources
 Maskable interrupts: 64 sources
 Exceptions: 1 source

8 priority levels specifiable (maskable interrupts)

DMA control function

4-channel structure

Transfer unit: 8, 16, and 32 bits

Maximum number of transfers: 65536 (2<sup>16</sup>)

Transfer type: Flyby (1-cycle) transfer, 2-cycle transfer

Transfer mode: Single transfer, single step transfer, line transfer, block transfer

Terminal count output signals (DMTCO3 to DMTCO0)

• Power save function

HALT, hardware/software STOP modes

• NB85E901 (RCU<sup>Note</sup>) interface function

Note RCU (Run Control Unit): A control unit for executing JTAG communication or debug processing.

## 7. 1. 1 Symbol diagram

# Number of grids

351.6k grids 574.4k grids (including wiring area)

## Number of separation simulation patterns

194.7k



### 7. 1. 2 Pin capacitance

Remark C<sub>IN</sub>: Capacitance of only input pin

Cinewi: Value of CIN with wiring capacitance (estimated wire length capacitance) taken into consideration

(I = 10 mm)

## (1) Input pins (1/5)

| Pin Name | Cin (pF) | Cinewl (pF) | Pin Name | Cin (pF) | Cinewl (pF) |
|----------|----------|-------------|----------|----------|-------------|
| VPRETR   | 0.746    | 2.646       | INT45    | 0.029    | 1.929       |
| VPDACT   | 0.297    | 2.197       | INT44    | 0.014    | 1.914       |
| VAREQ    | 0.175    | 2.075       | INT43    | 0.017    | 1.917       |
| DCRESZ   | 0.166    | 2.066       | INT42    | 0.041    | 1.941       |
| VBCLK    | 0.480    | 2.380       | INT41    | 0.014    | 1.914       |
| CGREL    | 0.204    | 2.104       | INT40    | 0.021    | 1.921       |
| DCSTOPZ  | 0.260    | 2.160       | INT39    | 0.018    | 1.918       |
| STPAK    | 0.230    | 2.130       | INT38    | 0.011    | 1.911       |
| IDMASTP  | 0.178    | 2.078       | INT37    | 0.008    | 1.908       |
| DMARQ3   | 0.180    | 2.080       | INT36    | 0.007    | 1.907       |
| DMARQ2   | 0.189    | 2.089       | INT35    | 0.009    | 1.909       |
| DMARQ1   | 0.153    | 2.053       | INT34    | 0.032    | 1.932       |
| DMARQ0   | 0.177    | 2.077       | INT33    | 0.068    | 1.968       |
| DCNMI2   | 0.021    | 1.921       | INT32    | 0.016    | 1.916       |
| DCNMI1   | 0.015    | 1.915       | INT31    | 0.012    | 1.912       |
| DCNMI0   | 0.010    | 1.910       | INT30    | 0.016    | 1.916       |
| INT63    | 0.020    | 1.920       | INT29    | 0.018    | 1.918       |
| INT62    | 0.014    | 1.914       | INT28    | 0.016    | 1.916       |
| INT61    | 0.014    | 1.914       | INT27    | 0.013    | 1.913       |
| INT60    | 0.014    | 1.914       | INT26    | 0.010    | 1.910       |
| INT59    | 0.035    | 1.935       | INT25    | 0.011    | 1.911       |
| INT58    | 0.023    | 1.923       | INT24    | 0.024    | 1.924       |
| INT57    | 0.011    | 1.911       | INT23    | 0.023    | 1.923       |
| INT56    | 0.029    | 1.929       | INT22    | 0.023    | 1.923       |
| INT55    | 0.008    | 1.908       | INT21    | 0.016    | 1.916       |
| INT54    | 0.011    | 1.911       | INT20    | 0.028    | 1.928       |
| INT53    | 0.014    | 1.914       | INT19    | 0.014    | 1.914       |
| INT52    | 0.041    | 1.941       | INT18    | 0.009    | 1.909       |
| INT51    | 0.029    | 1.929       | INT17    | 0.008    | 1.908       |
| INT50    | 0.019    | 1.919       | INT16    | 0.039    | 1.939       |
| INT49    | 0.041    | 1.941       | INT15    | 0.007    | 1.907       |
| INT48    | 0.011    | 1.911       | INT14    | 0.026    | 1.926       |
| INT47    | 0.022    | 1.922       | INT13    | 0.022    | 1.922       |
| INT46    | 0.027    | 1.927       | INT12    | 0.026    | 1.926       |

# (1) Input pins (2/5)

| Pin Name | Cin (pF) | Cinewl (pF) | Pin Name | Cin (pF) | Cinewl (pF) |
|----------|----------|-------------|----------|----------|-------------|
| INT11    | 0.061    | 1.961       | IROMZ4   | 0.726    | 2.626       |
| INT10    | 0.051    | 1.951       | IROMZ3   | 0.848    | 2.748       |
| INT9     | 0.028    | 1.928       | IROMZ2   | 0.731    | 2.631       |
| INT8     | 0.025    | 1.925       | IROMZ1   | 0.581    | 2.481       |
| INT7     | 0.013    | 1.913       | IROMZ0   | 0.717    | 2.617       |
| INT6     | 0.027    | 1.927       | IROMWT   | 0.070    | 1.970       |
| INT5     | 0.023    | 1.923       | IRAMZ31  | 0.274    | 2.174       |
| INT4     | 0.018    | 1.918       | IRAMZ30  | 0.159    | 2.059       |
| INT3     | 0.012    | 1.912       | IRAMZ29  | 0.255    | 2.155       |
| INT2     | 0.022    | 1.922       | IRAMZ28  | 0.298    | 2.198       |
| INT1     | 0.030    | 1.930       | IRAMZ27  | 0.280    | 2.180       |
| INT0     | 0.012    | 1.912       | IRAMZ26  | 0.275    | 2.175       |
| IROMZ31  | 0.673    | 2.573       | IRAMZ25  | 0.200    | 2.100       |
| IROMZ30  | 1.383    | 3.283       | IRAMZ24  | 0.281    | 2.181       |
| IROMZ29  | 1.122    | 3.022       | IRAMZ23  | 0.207    | 2.107       |
| IROMZ28  | 0.754    | 2.654       | IRAMZ22  | 0.189    | 2.089       |
| IROMZ27  | 0.695    | 2.595       | IRAMZ21  | 0.320    | 2.220       |
| IROMZ26  | 1.017    | 2.917       | IRAMZ20  | 0.290    | 2.190       |
| IROMZ25  | 1.267    | 3.167       | IRAMZ19  | 0.415    | 2.315       |
| IROMZ24  | 1.203    | 3.103       | IRAMZ18  | 0.295    | 2.195       |
| IROMZ23  | 1.381    | 3.281       | IRAMZ17  | 0.389    | 2.289       |
| IROMZ22  | 0.860    | 2.760       | IRAMZ16  | 0.322    | 2.222       |
| IROMZ21  | 0.645    | 2.545       | IRAMZ15  | 0.234    | 2.134       |
| IROMZ20  | 1.473    | 3.373       | IRAMZ14  | 0.202    | 2.102       |
| IROMZ19  | 0.738    | 2.638       | IRAMZ13  | 0.289    | 2.189       |
| IROMZ18  | 0.751    | 2.651       | IRAMZ12  | 0.296    | 2.196       |
| IROMZ17  | 0.631    | 2.531       | IRAMZ11  | 0.317    | 2.217       |
| IROMZ16  | 0.653    | 2.553       | IRAMZ10  | 0.254    | 2.154       |
| IROMZ15  | 0.805    | 2.705       | IRAMZ9   | 0.320    | 2.220       |
| IROMZ14  | 0.662    | 2.562       | IRAMZ8   | 0.344    | 2.244       |
| IROMZ13  | 0.783    | 2.683       | IRAMZ7   | 0.305    | 2.205       |
| IROMZ12  | 0.757    | 2.657       | IRAMZ6   | 0.225    | 2.125       |
| IROMZ11  | 0.855    | 2.755       | IRAMZ5   | 0.317    | 2.217       |
| IROMZ10  | 0.712    | 2.612       | IRAMZ4   | 0.495    | 2.395       |
| IROMZ9   | 0.686    | 2.586       | IRAMZ3   | 0.542    | 2.442       |
| IROMZ8   | 0.769    | 2.669       | IRAMZ2   | 0.418    | 2.318       |
| IROMZ7   | 0.781    | 2.681       | IRAMZ1   | 0.264    | 2.164       |
| IROMZ6   | 0.775    | 2.675       | IRAMZ0   | 0.289    | 2.189       |
| IROMZ5   | 0.635    | 2.535       | IRAMWT   | 0.463    | 2.363       |

# (1) Input pins (3/5)

| Pin Name | Cin (pF) | C <sub>inewl</sub> (pF) | Pin Name | Cin (pF) | Cinewl (pF) |
|----------|----------|-------------------------|----------|----------|-------------|
| IBDRRQ   | 0.166    | 2.066                   | IIEDI19  | 0.054    | 1.954       |
| IBEA25   | 0.153    | 2.053                   | IIEDI18  | 0.067    | 1.967       |
| IBEA24   | 0.050    | 1.950                   | IIEDI17  | 0.058    | 1.958       |
| IBEA23   | 0.141    | 2.041                   | IIEDI16  | 0.017    | 1.917       |
| IBEA22   | 0.171    | 2.071                   | IIEDI15  | 0.074    | 1.974       |
| IBEA21   | 0.169    | 2.069                   | IIEDI14  | 0.055    | 1.955       |
| IBEA20   | 0.196    | 2.096                   | IIEDI13  | 0.059    | 1.959       |
| IBEA19   | 0.040    | 1.940                   | IIEDI12  | 0.074    | 1.974       |
| IBEA18   | 0.101    | 2.001                   | IIEDI11  | 0.051    | 1.951       |
| IBEA17   | 0.105    | 2.005                   | IIEDI10  | 0.066    | 1.966       |
| IBEA16   | 0.129    | 2.029                   | IIEDI9   | 0.071    | 1.971       |
| IBEA15   | 0.059    | 1.959                   | IIEDI8   | 0.059    | 1.959       |
| IBEA14   | 0.082    | 1.982                   | IIEDI7   | 0.034    | 1.934       |
| IBEA13   | 0.084    | 1.984                   | IIEDI6   | 0.057    | 1.957       |
| IBEA12   | 0.058    | 1.958                   | IIEDI5   | 0.068    | 1.968       |
| IBEA11   | 0.018    | 1.918                   | IIEDI4   | 0.061    | 1.961       |
| IBEA10   | 0.114    | 2.014                   | IIEDI3   | 0.073    | 1.973       |
| IBEA9    | 0.066    | 1.966                   | IIEDI2   | 0.060    | 1.960       |
| IBEA8    | 0.131    | 2.031                   | IIEDI1   | 0.085    | 1.985       |
| IBEA7    | 0.061    | 1.961                   | IIEDI0   | 0.088    | 1.988       |
| IBEA6    | 0.041    | 1.941                   | IBBTFT   | 0.189    | 2.089       |
| IBEA5    | 0.040    | 1.940                   | IDDRRQ   | 0.444    | 2.344       |
| IBEA4    | 0.045    | 1.945                   | IDDWRQ   | 0.287    | 2.187       |
| IBEA3    | 0.170    | 2.070                   | IDSEQ4   | 0.177    | 2.077       |
| IBEA2    | 0.180    | 2.080                   | IDSEQ2   | 0.570    | 2.470       |
| IIAACK   | 0.186    | 2.086                   | IDRRDY   | 0.495    | 2.395       |
| IIDLEF   | 0.073    | 1.973                   | IDHUM    | 0.329    | 2.229       |
| IIEDI31  | 0.062    | 1.962                   | IDEA27   | 0.425    | 2.325       |
| IIEDI30  | 0.056    | 1.956                   | IDEA26   | 0.474    | 2.374       |
| IIEDI29  | 0.103    | 2.003                   | IDEA25   | 0.401    | 2.301       |
| IIEDI28  | 0.067    | 1.967                   | IDEA24   | 0.382    | 2.282       |
| IIEDI27  | 0.053    | 1.953                   | IDEA23   | 0.345    | 2.245       |
| IIEDI26  | 0.055    | 1.955                   | IDEA22   | 0.346    | 2.246       |
| IIEDI25  | 0.077    | 1.977                   | IDEA21   | 0.399    | 2.299       |
| IIEDI24  | 0.016    | 1.916                   | IDEA20   | 0.414    | 2.314       |
| IIEDI23  | 0.064    | 1.964                   | IDEA19   | 0.283    | 2.183       |
| IIEDI22  | 0.063    | 1.963                   | IDEA18   | 0.298    | 2.198       |
| IIEDI21  | 0.065    | 1.965                   | IDEA17   | 0.303    | 2.203       |
| IIEDI20  | 0.064    | 1.964                   | IDEA16   | 0.292    | 2.192       |

# (1) Input pins (4/5)

| IDEA15         0.292         2.192         PHEVA         1.468         3.368           IDEA14         0.292         2.192         IFIROBE         0.470         2.370           IDEA13         0.270         2.170         IFIROPR         0.424         2.324           IDEA12         0.289         2.189         IFIRASE         0.715         2.615           IDEA11         0.277         2.177         IFIRABE         0.923         2.823 |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| IDEA13         0.270         2.170         IFIROPR         0.424         2.324           IDEA12         0.289         2.189         IFIRASE         0.715         2.615                                                                                                                                                                                                                                                                          |  |
| IDEA12 0.289 2.189 IFIRASE 0.715 2.615                                                                                                                                                                                                                                                                                                                                                                                                           |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |
| IDEA11 0.277 2.177 IFIRABE 0.923 2.823                                                                                                                                                                                                                                                                                                                                                                                                           |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |
| IDEA10 0.313 2.213 IFIMODE3 0.478 2.378                                                                                                                                                                                                                                                                                                                                                                                                          |  |
| IDEA9 0.244 2.144 IFIMODE2 0.557 2.457                                                                                                                                                                                                                                                                                                                                                                                                           |  |
| IDEA8 0.269 2.169 IFIUSWE 0.277 2.177                                                                                                                                                                                                                                                                                                                                                                                                            |  |
| IDEA7 0.270 2.170 FCOMB 0.284 2.184                                                                                                                                                                                                                                                                                                                                                                                                              |  |
| IDEA6 0.249 2.149 TBI39 0.022 1.922                                                                                                                                                                                                                                                                                                                                                                                                              |  |
| IDEA5 0.273 2.173 TBI38 0.008 1.908                                                                                                                                                                                                                                                                                                                                                                                                              |  |
| IDEA4 0.268 2.168 TBI37 0.009 1.909                                                                                                                                                                                                                                                                                                                                                                                                              |  |
| IDEA3 0.290 2.190 TBI36 0.137 2.037                                                                                                                                                                                                                                                                                                                                                                                                              |  |
| IDEA2 0.276 2.176 TBI35 0.497 2.397                                                                                                                                                                                                                                                                                                                                                                                                              |  |
| IDEA1 0.331 2.231 TBI34 0.007 1.907                                                                                                                                                                                                                                                                                                                                                                                                              |  |
| IDEA0 0.386 2.286 TBI33 0.146 2.046                                                                                                                                                                                                                                                                                                                                                                                                              |  |
| DBI5 0.199 2.099 TBI32 0.134 2.034                                                                                                                                                                                                                                                                                                                                                                                                               |  |
| DBI4 0.296 2.196 TBI31 0.011 1.911                                                                                                                                                                                                                                                                                                                                                                                                               |  |
| DBI3 0.530 2.430 TBI30 0.012 1.912                                                                                                                                                                                                                                                                                                                                                                                                               |  |
| DBI2 0.413 2.313 TBI29 0.009 1.909                                                                                                                                                                                                                                                                                                                                                                                                               |  |
| DBI1 0.543 2.443 TBI28 0.009 1.909                                                                                                                                                                                                                                                                                                                                                                                                               |  |
| DBIO 0.691 2.591 TBI27 0.011 1.911                                                                                                                                                                                                                                                                                                                                                                                                               |  |
| EVASTB 0.459 2.359 TBI26 0.011 1.911                                                                                                                                                                                                                                                                                                                                                                                                             |  |
| EVDSTB 0.091 1.991 TBI25 0.010 1.910                                                                                                                                                                                                                                                                                                                                                                                                             |  |
| EVIREL 0.274 2.174 TBI24 0.009 1.909                                                                                                                                                                                                                                                                                                                                                                                                             |  |
| EVCLRIP 0.035 1.935 TBI23 0.013 1.913                                                                                                                                                                                                                                                                                                                                                                                                            |  |
| EVINTAK 0.150 2.050 TBI22 0.016 1.916                                                                                                                                                                                                                                                                                                                                                                                                            |  |
| IFIROME 0.281 2.181 TBI21 0.011 1.911                                                                                                                                                                                                                                                                                                                                                                                                            |  |
| IFIROB2 0.292 2.192 TBI20 0.051 1.951                                                                                                                                                                                                                                                                                                                                                                                                            |  |
| IFIRA64 0.596 2.496 TBI19 0.043 1.943                                                                                                                                                                                                                                                                                                                                                                                                            |  |
| IFIRA32 0.524 2.424 TBI18 0.169 2.069                                                                                                                                                                                                                                                                                                                                                                                                            |  |
| IFIRA16 0.441 2.341 TBI17 0.035 1.935                                                                                                                                                                                                                                                                                                                                                                                                            |  |
| IFIMAEN 0.363 2.263 TBI16 0.022 1.922                                                                                                                                                                                                                                                                                                                                                                                                            |  |
| IFID256 0.424 2.324 TBI15 0.020 1.920                                                                                                                                                                                                                                                                                                                                                                                                            |  |
| IFINSZ1 0.405 2.305 TBI14 0.017 1.917                                                                                                                                                                                                                                                                                                                                                                                                            |  |
| IFINSZ0 0.573 2.473 TBI13 0.011 1.911                                                                                                                                                                                                                                                                                                                                                                                                            |  |
| IFIWRTH 0.377 2.277 TBI12 0.039 1.939                                                                                                                                                                                                                                                                                                                                                                                                            |  |
| IFIUNCH1 0.694 2.594 TBI11 0.035 1.935                                                                                                                                                                                                                                                                                                                                                                                                           |  |
| IFIUNCHO 0.709 2.609 TBI10 0.027 1.927                                                                                                                                                                                                                                                                                                                                                                                                           |  |

# (1) Input pins (5/5)

| Pin Name | Cin (pF) | Cinewl (pF) | Pin Name | Cin (pF) | Cinewl (pF) |
|----------|----------|-------------|----------|----------|-------------|
| TBI9     | 0.019    | 1.919       | TBI2     | 0.007    | 1.907       |
| TBI8     | 0.025    | 1.925       | TBI1     | 0.008    | 1.908       |
| TBI7     | 0.012    | 1.912       | TBI0     | 0.013    | 1.913       |
| TBI6     | 0.024    | 1.924       | TEST     | 0.018    | 1.918       |
| TBI5     | 0.045    | 1.945       | BUNRI    | 0.371    | 2.271       |
| TBI4     | 0.030    | 1.930       | PHTDO1   | 0.535    | 2.435       |
| TBI3     | 0.007    | 1.907       | PHTDO0   | 0.535    | 2.435       |

## (2) Output pins (1/4)

| Pin Name | C <sub>MAX</sub> (pF) | Cin (pF) | Cinewl (pF) | Pin Name | Смах (рF) | Cin (pF) | Cinewl (pF) |
|----------|-----------------------|----------|-------------|----------|-----------|----------|-------------|
| VPA13    | 3.250                 | -        | -           | DMACTV2  | 3.168     | -        | -           |
| VPA12    | 3.243                 | -        | _           | DMACTV1  | 3.006     | _        | _           |
| VPA11    | 3.243                 | -        | _           | DMACTV0  | 2.949     | _        | _           |
| VPA10    | 3.239                 | -        | _           | IROMA19  | 13.008    | _        | _           |
| VPA9     | 3.234                 | -        | -           | IROMA18  | 3.191     | _        | -           |
| VPA8     | 3.245                 | -        | _           | IROMA17  | 3.177     | _        | _           |
| VPA7     | 3.238                 | -        | _           | IROMA16  | 3.195     | _        | _           |
| VPA6     | 3.241                 | -        | _           | IROMA15  | 3.079     | _        | _           |
| VPA5     | 3.239                 | -        | _           | IROMA14  | 3.177     | _        | _           |
| VPA4     | 3.228                 | -        | _           | IROMA13  | 3.168     | _        | _           |
| VPA3     | 3.294                 | -        | _           | IROMA12  | 3.189     | _        | _           |
| VPA2     | 3.293                 | -        | _           | IROMA11  | 3.186     | _        | _           |
| VPA1     | 3.292                 | -        | _           | IROMA10  | 3.092     | _        | _           |
| VPA0     | 3.211                 | -        | -           | IROMA9   | 3.095     | _        | -           |
| VPWRITE  | 3.176                 | _        | _           | IROMA8   | 13.001    | _        | _           |
| VPSTB    | 3.174                 | -        | -           | IROMA7   | 3.102     | _        | -           |
| VPLOCK   | 3.254                 | -        | -           | IROMA6   | 6.532     | _        | -           |
| VPUBENZ  | 3.294                 | -        | -           | IROMA5   | 6.536     | _        | -           |
| VAACK    | 13.316                | =        | -           | IROMA4   | 6.564     | -        | -           |
| VBDC     | 13.021                | =        | -           | IROMA3   | 6.525     | -        | -           |
| SWSTOPRQ | 4.630                 | =        | -           | IROMA2   | 6.531     | -        | -           |
| HWSTOPRQ | 12.809                | =        | -           | IROMEN   | 12.912    | -        | -           |
| STPRQ    | 4.578                 | =        | -           | IROMCS   | 4.754     | -        | -           |
| DMTCO3   | 3.159                 | -        | -           | IROMIA   | 6.503     | _        | -           |
| DMTCO2   | 3.180                 | -        | -           | IROMAE   | 12.933    | _        | -           |
| DMTCO1   | 3.141                 | -        | -           | IRAMA27  | 3.040     | _        | -           |
| DMTCO0   | 3.135                 | -        | -           | IRAMA26  | 3.246     | _        | -           |
| DMACTV3  | 3.044                 | 1        | -           | IRAMA25  | 3.273     | _        | -           |

# (2) Output pins (2/4)

| Pin Name | Смах (рF) | C <sub>IN</sub> (pF) | Cinewl (pF) | Pin Name | Смах (рЕ) | C <sub>IN</sub> (pF) | Cinewl (pF) |
|----------|-----------|----------------------|-------------|----------|-----------|----------------------|-------------|
| IRAMA24  | 3.020     | _                    | _           | IRAOZ15  | 3.159     | _                    | _           |
| IRAMA23  | 3.030     | -                    | _           | IRAOZ14  | 3.362     | -                    | _           |
| IRAMA22  | 3.241     | _                    | _           | IRAOZ13  | 3.360     | _                    | _           |
| IRAMA21  | 3.032     | _                    | _           | IRAOZ12  | 3.351     | _                    | _           |
| IRAMA20  | 3.049     | -                    | _           | IRAOZ11  | 3.354     | -                    | _           |
| IRAMA19  | 3.298     | -                    | _           | IRAOZ10  | 3.349     | _                    | _           |
| IRAMA18  | 2.969     | -                    | _           | IRAOZ9   | 3.055     | -                    | _           |
| IRAMA17  | 3.293     | -                    | _           | IRAOZ8   | 3.155     | -                    | _           |
| IRAMA16  | 3.256     | _                    | _           | IRAOZ7   | 3.295     | _                    | _           |
| IRAMA15  | 3.292     | _                    | _           | IRAOZ6   | 3.293     | _                    | _           |
| IRAMA14  | 3.279     | _                    | _           | IRAOZ5   | 3.290     | _                    | _           |
| IRAMA13  | 3.290     | -                    | _           | IRAOZ4   | 3.289     | -                    | _           |
| IRAMA12  | 3.292     | -                    | _           | IRAOZ3   | 3.296     | -                    | -           |
| IRAMA11  | 4.957     | -                    | _           | IRAOZ2   | 3.339     | -                    | _           |
| IRAMA10  | 3.291     | -                    | _           | IRAOZ1   | 3.134     | -                    | _           |
| IRAMA9   | 3.179     | -                    | _           | IRAOZ0   | 3.333     | -                    | _           |
| IRAMA8   | 3.290     | -                    | _           | IRAMEN   | 3.292     | _                    | _           |
| IRAMA7   | 3.176     | -                    | _           | IRAMWR3  | 3.284     | _                    | _           |
| IRAMA6   | 3.292     | -                    | _           | IRAMWR2  | 3.288     | _                    | _           |
| IRAMA5   | 3.256     | -                    | _           | IRAMWR1  | 13.068    | -                    | _           |
| IRAMA4   | 3.273     | -                    | _           | IRAMWR0  | 3.287     | -                    | _           |
| IRAMA3   | 13.067    | -                    | _           | IRAMRWB  | 3.288     | -                    | _           |
| IRAMA2   | 3.287     | -                    | _           | IBAACK   | 3.296     | -                    | _           |
| IRAOZ31  | 3.061     | -                    | _           | IBDRDY   | 3.293     | -                    | _           |
| IRAOZ30  | 3.360     | -                    | _           | IBDLE3   | 12.933    | -                    | _           |
| IRAOZ29  | 3.359     | -                    | _           | IBDLE2   | 4.799     | -                    | _           |
| IRAOZ28  | 3.360     | -                    | _           | IBDLE1   | 4.803     | -                    | _           |
| IRAOZ27  | 3.350     | -                    | _           | IBDLE0   | 4.679     | -                    | _           |
| IRAOZ26  | 3.352     | -                    | _           | IBEDI31  | 3.292     | -                    | _           |
| IRAOZ25  | 3.211     | -                    | _           | IBEDI30  | 3.293     | -                    | _           |
| IRAOZ24  | 3.353     | -                    | _           | IBEDI29  | 3.270     | _                    | _           |
| IRAOZ23  | 3.357     | -                    | _           | IBEDI28  | 3.285     | _                    | _           |
| IRAOZ22  | 2.998     | _                    | _           | IBEDI27  | 3.294     | _                    | _           |
| IRAOZ21  | 3.345     | _                    | _           | IBEDI26  | 3.290     | _                    | _           |
| IRAOZ20  | 3.151     | _                    | -           | IBEDI25  | 3.287     | _                    | -           |
| IRAOZ19  | 3.347     | _                    | _           | IBEDI24  | 3.292     | _                    | _           |
| IRAOZ18  | 3.170     | _                    | _           | IBEDI23  | 3.294     | _                    | _           |
| IRAOZ17  | 3.362     | _                    | -           | IBEDI22  | 3.289     | _                    | -           |
| IRAOZ16  | 3.362     | _                    | _           | IBEDI21  | 3.288     | _                    | _           |

# (2) Output pins (3/4)

| Pin Name | C <sub>MAX</sub> (pF) | Cin (pF) | Cinewl (pF) | Pin Name | Смах (рF) | C <sub>IN</sub> (pF) | Cinewl (pF) |
|----------|-----------------------|----------|-------------|----------|-----------|----------------------|-------------|
| IBEDI20  | 3.295                 | _        | -           | IIEA8    | 4.874     | -                    | _           |
| IBEDI19  | 3.295                 | _        | -           | IIEA7    | 13.046    | -                    | -           |
| IBEDI18  | 3.291                 | -        | _           | IIEA6    | 13.066    | -                    | _           |
| IBEDI17  | 3.293                 | _        | -           | IIEA5    | 13.068    | -                    | _           |
| IBEDI16  | 3.294                 | _        | -           | IIEA4    | 13.055    | -                    | _           |
| IBEDI15  | 3.292                 | _        | -           | IIEA3    | 12.956    | -                    | _           |
| IBEDI14  | 3.292                 | _        | -           | IIEA2    | 12.956    | -                    | _           |
| IBEDI13  | 3.290                 | _        | -           | IIBTFT   | 3.242     | _                    | -           |
| IBEDI12  | 3.289                 | _        | -           | IIRCAN   | 3.292     | -                    | _           |
| IBEDI11  | 3.293                 | _        | -           | BCUNCH   | 12.990    | -                    | -           |
| IBEDI10  | 3.286                 | _        | -           | IDDARQ   | 3.214     | -                    | _           |
| IBEDI9   | 3.286                 | -        | -           | IDAACK   | 2.990     | -                    | _           |
| IBEDI8   | 3.280                 | _        | -           | IRRSA    | 13.001    | -                    | -           |
| IBEDI7   | 3.283                 | _        | -           | IDRETR   | 9.004     | -                    | -           |
| IBEDI6   | 3.288                 | _        | -           | IDUNCH   | 3.286     | -                    | _           |
| IBEDI5   | 3.290                 | _        | -           | IDDRDY   | 12.877    | -                    | _           |
| IBEDI4   | 3.289                 | _        | -           | IDES     | 12.836    | -                    | _           |
| IBEDI3   | 3.282                 | _        | _           | DBO14    | 7.685     | _                    | -           |
| IBEDI2   | 3.289                 | _        | _           | DBO13    | 2.793     | _                    | -           |
| IBEDI1   | 3.285                 | -        | -           | DBO12    | 2.868     | -                    | _           |
| IBEDI0   | 3.287                 | _        | -           | DBO11    | 3.105     | -                    | _           |
| IIDRRQ   | 12.951                | _        | -           | DBO10    | 2.700     | -                    | _           |
| IIEA25   | 12.929                | _        | -           | DBO9     | 2.745     | -                    | _           |
| IIEA24   | 4.989                 | _        | -           | DBO8     | 2.813     | -                    | _           |
| IIEA23   | 4.982                 | _        | -           | DBO7     | 2.882     | -                    | _           |
| IIEA22   | 4.857                 | _        | -           | DBO6     | 2.877     | -                    | _           |
| IIEA21   | 4.951                 | _        | -           | DBO5     | 2.883     | -                    | _           |
| IIEA20   | 4.953                 | _        | -           | DBO4     | 2.761     | -                    | -           |
| IIEA19   | 6.533                 | _        | -           | DBO3     | 12.566    | -                    | _           |
| IIEA18   | 4.911                 | -        | _           | DBO2     | 12.614    | -                    | _           |
| IIEA17   | 6.529                 | _        | -           | DBO1     | 2.777     | -                    | -           |
| IIEA16   | 12.996                | _        | -           | DBO0     | 2.894     | -                    | _           |
| IIEA15   | 13.040                | _        | -           | EVIEN    | 3.261     | -                    | -           |
| IIEA14   | 13.060                | -        | _           | EVOEN    | 4.988     | _                    | -           |
| IIEA13   | 13.038                | -        | -           | EVINTRQ  | 4.675     | -                    | -           |
| IIEA12   | 4.945                 | -        | -           | EVINTLV6 | 12.810    | -                    | -           |
| IIEA11   | 13.067                | -        | -           | EVINTLV5 | 12.708    | -                    | -           |
| IIEA10   | 12.966                | -        | -           | EVINTLV4 | 12.760    | -                    | -           |
| IIEA9    | 13.066                | -        | -           | EVINTLV3 | 12.708    | -                    | -           |

# (2) Output pins (4/4)

| Pin Name | Смах (рF) | Cin (pF) | Cinewl (pF) | Pin Name | Смах (рF) | Cin (pF) | Cinewl (pF) |
|----------|-----------|----------|-------------|----------|-----------|----------|-------------|
| EVINTLV2 | 6.212     | -        | -           | TBO13    | 6.511     | 0.071    | 1.971       |
| EVINTLV1 | 12.687    | _        | _           | TBO12    | 6.513     | 0.069    | 1.969       |
| EVINTLV0 | 12.683    | _        | _           | TBO11    | 6.524     | 0.059    | 1.959       |
| TBO34    | 4.959     | 0.036    | 1.936       | TBO10    | 6.516     | 0.067    | 1.967       |
| TBO33    | 4.950     | 0.045    | 1.945       | TBO9     | 6.501     | 0.081    | 1.981       |
| TBO32    | 4.932     | 0.063    | 1.963       | TBO8     | 6.511     | 0.072    | 1.972       |
| TBO31    | 4.864     | 0.131    | 2.031       | ТВО7     | 6.507     | 0.075    | 1.975       |
| TBO30    | 4.672     | 0.323    | 2.223       | TBO6     | 6.527     | 0.055    | 1.955       |
| TBO29    | 4.780     | 0.215    | 2.115       | TBO5     | 6.532     | 0.050    | 1.950       |
| TBO28    | 4.889     | 0.106    | 2.006       | TBO4     | 6.502     | 0.080    | 1.980       |
| TBO27    | 6.343     | 0.239    | 2.139       | TBO3     | 6.528     | 0.054    | 1.954       |
| TBO26    | 6.503     | 0.080    | 1.980       | TBO2     | 6.509     | 0.073    | 1.973       |
| TBO25    | 6.257     | 0.325    | 2.225       | TBO1     | 6.519     | 0.063    | 1.963       |
| TBO24    | 6.469     | 0.113    | 2.013       | TBO0     | 6.518     | 0.065    | 1.965       |
| TBO23    | 6.488     | 0.094    | 1.994       | TESEN    | 3.174     | _        | _           |
| TBO22    | 6.462     | 0.121    | 2.021       | VPTCLK   | 3.250     | _        | _           |
| TBO21    | 6.445     | 0.137    | 2.037       | PHTDIN1  | 3.288     | _        | _           |
| TBO20    | 6.500     | 0.083    | 1.983       | PHTDIN0  | 3.290     | _        | _           |
| TBO19    | 6.515     | 0.067    | 1.967       | VPRESZ   | 4.731     | _        | _           |
| TBO18    | 6.441     | 0.141    | 2.041       | PHTEST   | 12.785    | _        | -           |
| TBO17    | 6.485     | 0.097    | 1.997       | TMODE1   | 2.483     | _        | -           |
| TBO16    | 6.506     | 0.076    | 1.976       | TMODE0   | 2.758     | _        | _           |
| TBO15    | 4.937     | 0.058    | 1.958       | TBREDZ   | 3.113     | _        | -           |
| TBO14    | 6.480     | 0.103    | 2.003       |          |           |          |             |

# (3) I/O pins (1/3)

| Pin Name | C <sub>MAX</sub> (pF) | C <sub>IN</sub> (pF) | Cinewl (pF) | Pin Name | Смах (рF) | C <sub>IN</sub> (pF) | Cinewl (pF) |
|----------|-----------------------|----------------------|-------------|----------|-----------|----------------------|-------------|
| VPD15    | 5.962                 | 0.620                | 2.520       | VPD4     | 5.962     | 0.620                | 2.520       |
| VPD14    | 5.897                 | 0.686                | 2.586       | VPD3     | 5.936     | 0.646                | 2.546       |
| VPD13    | 5.843                 | 0.740                | 2.640       | VPD2     | 5.908     | 0.675                | 2.575       |
| VPD12    | 5.846                 | 0.736                | 2.636       | VPD1     | 5.906     | 0.676                | 2.576       |
| VPD11    | 5.907                 | 0.675                | 2.575       | VPD0     | 5.912     | 0.670                | 2.570       |
| VPD10    | 5.921                 | 0.661                | 2.561       | VBA27    | 4.343     | 0.652                | 2.552       |
| VPD9     | 5.902                 | 0.680                | 2.580       | VBA26    | 4.252     | 0.743                | 2.643       |
| VPD8     | 5.910                 | 0.672                | 2.572       | VBA25    | 2.661     | 0.678                | 2.578       |
| VPD7     | 5.946                 | 0.636                | 2.536       | VBA24    | 4.336     | 0.659                | 2.559       |
| VPD6     | 5.954                 | 0.629                | 2.529       | VBA23    | 4.352     | 0.643                | 2.543       |
| VPD5     | 5.922                 | 0.661                | 2.561       | VBA22    | 4.302     | 0.693                | 2.593       |

# (3) I/O pins (2/3)

| Pin Name | C <sub>MAX</sub> (pF) | Cin (pF) | Cinewl (pF) | Pin Name | C <sub>MAX</sub> (pF) | Cin (pF) | Cinewl (pF) |
|----------|-----------------------|----------|-------------|----------|-----------------------|----------|-------------|
| VBA21    | 4.316                 | 0.679    | 2.579       | VBD14    | 3.469                 | 1.525    | 3.425       |
| VBA20    | 4.307                 | 0.687    | 2.587       | VBD13    | 3.563                 | 1.432    | 3.332       |
| VBA19    | 4.304                 | 0.691    | 2.591       | VBD12    | 3.537                 | 1.458    | 3.358       |
| VBA18    | 4.236                 | 0.758    | 2.658       | VBD11    | 3.500                 | 1.494    | 3.394       |
| VBA17    | 4.195                 | 0.800    | 2.700       | VBD10    | 3.444                 | 1.551    | 3.451       |
| VBA16    | 2.614                 | 0.724    | 2.624       | VBD9     | 3.596                 | 1.399    | 3.299       |
| VBA15    | 4.235                 | 0.760    | 2.660       | VBD8     | 3.389                 | 1.606    | 3.506       |
| VBA14    | 4.291                 | 0.704    | 2.604       | VBD7     | 3.267                 | 1.728    | 3.628       |
| VBA13    | 4.201                 | 0.794    | 2.694       | VBD6     | 3.133                 | 1.862    | 3.762       |
| VBA12    | 4.181                 | 0.814    | 2.714       | VBD5     | 3.250                 | 1.745    | 3.645       |
| VBA11    | 4.201                 | 0.794    | 2.694       | VBD4     | 3.205                 | 1.790    | 3.690       |
| VBA10    | 4.196                 | 0.799    | 2.699       | VBD3     | 3.186                 | 1.808    | 3.708       |
| VBA9     | 4.220                 | 0.775    | 2.675       | VBD2     | 3.173                 | 1.822    | 3.722       |
| VBA8     | 4.229                 | 0.766    | 2.666       | VBD1     | 3.211                 | 1.784    | 3.684       |
| VBA7     | 4.174                 | 0.821    | 2.721       | VBD0     | 3.215                 | 1.780    | 3.680       |
| VBA6     | 4.186                 | 0.809    | 2.709       | VBTTYP1  | 5.827                 | 0.756    | 2.656       |
| VBA5     | 4.255                 | 0.740    | 2.640       | VBTTYP0  | 5.809                 | 0.773    | 2.673       |
| VBA4     | 4.219                 | 0.776    | 2.676       | VBSTZ    | 2.596                 | 0.742    | 2.642       |
| VBA3     | 4.191                 | 0.804    | 2.704       | VBBENZ3  | 5.737                 | 0.845    | 2.745       |
| VBA2     | 4.212                 | 0.783    | 2.683       | VBBENZ2  | 5.783                 | 0.799    | 2.699       |
| VBA1     | 4.179                 | 0.816    | 2.716       | VBBENZ1  | 5.689                 | 0.894    | 2.794       |
| VBA0     | 4.161                 | 0.834    | 2.734       | VBBENZ0  | 5.599                 | 0.983    | 2.883       |
| VBD31    | 3.720                 | 1.275    | 3.175       | VBSIZE1  | 4.081                 | 0.914    | 2.814       |
| VBD30    | 3.419                 | 1.576    | 3.476       | VBSIZE0  | 4.208                 | 0.787    | 2.687       |
| VBD29    | 3.733                 | 1.262    | 3.162       | VBWRITE  | 2.543                 | 0.796    | 2.696       |
| VBD28    | 3.690                 | 1.304    | 3.204       | VBLOCK   | 4.130                 | 0.865    | 2.765       |
| VBD27    | 3.823                 | 1.172    | 3.072       | VBCTYP2  | 4.176                 | 0.819    | 2.719       |
| VBD26    | 3.651                 | 1.344    | 3.244       | VBCTYP1  | 2.612                 | 0.727    | 2.627       |
| VBD25    | 3.760                 | 1.235    | 3.135       | VBCTYP0  | 2.564                 | 0.775    | 2.675       |
| VBD24    | 3.737                 | 1.258    | 3.158       | VBSEQ2   | 4.204                 | 0.791    | 2.691       |
| VBD23    | 3.724                 | 1.271    | 3.171       | VBSEQ1   | 4.174                 | 0.821    | 2.721       |
| VBD22    | 3.706                 | 1.289    | 3.189       | VBSEQ0   | 4.199                 | 0.796    | 2.696       |
| VBD21    | 3.699                 | 1.296    | 3.196       | VBBSTR   | 2.595                 | 0.744    | 2.644       |
| VBD20    | 3.705                 | 1.290    | 3.190       | VBWAIT   | 5.742                 | 0.840    | 2.740       |
| VBD19    | 3.751                 | 1.244    | 3.144       | VBLAST   | 5.785                 | 0.797    | 2.697       |
| VBD18    | 3.668                 | 1.327    | 3.227       | VBAHLD   | 5.811                 | 0.771    | 2.671       |
| VBD17    | 3.741                 | 1.254    | 3.154       | VDCSZ7   | 4.336                 | 0.659    | 2.559       |
| VBD16    | 3.617                 | 1.377    | 3.277       | VDCSZ6   | 4.347                 | 0.648    | 2.548       |
| VBD15    | 3.458                 | 1.537    | 3.437       | VDCSZ5   | 4.344                 | 0.651    | 2.551       |

# (3) I/O pins (3/3)

| Pin Name | Смах (рF) | Cin (pF) | Cinewl (pF) | Pin Name | C <sub>MAX</sub> (pF) | Cin (pF) | Cinewl (pF) |
|----------|-----------|----------|-------------|----------|-----------------------|----------|-------------|
| VDCSZ4   | 4.291     | 0.704    | 2.604       | IDED1    | 5.912                 | 0.670    | 2.570       |
| VDCSZ3   | 4.369     | 0.626    | 2.526       | IDED0    | 5.895                 | 0.688    | 2.588       |
| VDCSZ2   | 4.336     | 0.659    | 2.559       | DBB15    | 4.055                 | 0.940    | 2.840       |
| VDCSZ1   | 4.357     | 0.637    | 2.537       | DBB14    | 4.023                 | 0.972    | 2.872       |
| VDCSZ0   | 4.347     | 0.648    | 2.548       | DBB13    | 4.031                 | 0.964    | 2.864       |
| VDSELPZ  | 4.180     | 0.815    | 2.715       | DBB12    | 4.012                 | 0.983    | 2.883       |
| IDED31   | 5.749     | 0.833    | 2.733       | DBB11    | 3.993                 | 1.002    | 2.902       |
| IDED30   | 4.419     | 0.576    | 2.476       | DBB10    | 3.999                 | 0.996    | 2.896       |
| IDED29   | 5.798     | 0.785    | 2.685       | DBB9     | 3.971                 | 1.024    | 2.924       |
| IDED28   | 5.798     | 0.784    | 2.684       | DBB8     | 4.019                 | 0.976    | 2.876       |
| IDED27   | 4.424     | 0.571    | 2.471       | DBB7     | 4.012                 | 0.982    | 2.882       |
| IDED26   | 5.819     | 0.763    | 2.663       | DBB6     | 4.028                 | 0.967    | 2.867       |
| IDED25   | 5.809     | 0.774    | 2.674       | DBB5     | 3.949                 | 1.046    | 2.946       |
| IDED24   | 5.767     | 0.815    | 2.715       | DBB4     | 4.002                 | 0.993    | 2.893       |
| IDED23   | 5.726     | 0.856    | 2.756       | DBB3     | 3.863                 | 1.131    | 3.031       |
| IDED22   | 5.764     | 0.818    | 2.718       | DBB2     | 3.952                 | 1.043    | 2.943       |
| IDED21   | 5.833     | 0.750    | 2.650       | DBB1     | 4.051                 | 0.944    | 2.844       |
| IDED20   | 5.786     | 0.797    | 2.697       | DBB0     | 4.048                 | 0.947    | 2.847       |
| IDED19   | 5.751     | 0.831    | 2.731       | EVAD15   | 5.971                 | 0.611    | 2.511       |
| IDED18   | 4.236     | 0.759    | 2.659       | EVAD14   | 5.886                 | 0.696    | 2.596       |
| IDED17   | 4.229     | 0.766    | 2.666       | EVAD13   | 5.659                 | 0.923    | 2.823       |
| IDED16   | 4.275     | 0.720    | 2.620       | EVAD12   | 5.842                 | 0.740    | 2.640       |
| IDED15   | 5.815     | 0.767    | 2.667       | EVAD11   | 5.852                 | 0.731    | 2.631       |
| IDED14   | 5.832     | 0.750    | 2.650       | EVAD10   | 5.927                 | 0.655    | 2.555       |
| IDED13   | 5.866     | 0.717    | 2.617       | EVAD9    | 5.914                 | 0.668    | 2.568       |
| IDED12   | 5.829     | 0.754    | 2.654       | EVAD8    | 5.923                 | 0.660    | 2.560       |
| IDED11   | 5.834     | 0.748    | 2.648       | EVAD7    | 5.981                 | 0.606    | 2.506       |
| IDED10   | 5.861     | 0.721    | 2.621       | EVAD6    | 5.992                 | 0.595    | 2.495       |
| IDED9    | 5.817     | 0.765    | 2.665       | EVAD5    | 5.917                 | 0.666    | 2.566       |
| IDED8    | 5.853     | 0.729    | 2.629       | EVAD4    | 5.965                 | 0.618    | 2.518       |
| IDED7    | 5.843     | 0.739    | 2.639       | EVAD3    | 5.949                 | 0.639    | 2.539       |
| IDED6    | 5.841     | 0.741    | 2.641       | EVAD2    | 5.730                 | 0.852    | 2.752       |
| IDED5    | 5.898     | 0.684    | 2.584       | EVAD1    | 5.942                 | 0.641    | 2.541       |
| IDED4    | 5.892     | 0.690    | 2.590       | EVAD0    | 5.799                 | 0.783    | 2.683       |
| IDED3    | 5.856     | 0.726    | 2.626       | EVLKRT   | 6.013                 | 0.569    | 2.469       |
| IDED2    | 5.856     | 0.727    | 2.627       |          |                       |          |             |

# 7. 2 Initialization of Internal Registers

Before executing the test program, be sure to execute an instruction to assign initial values to the internal registers used in test program execution. Failure to do this will result in the propagation of undefined values.

## 7. 3 Pin Functions

(1/4)

|                | Pin Name                              | I/O    | Function                                                   |
|----------------|---------------------------------------|--------|------------------------------------------------------------|
| NPB pins       | VPA13 to VPA0                         | Output | Address output for peripheral macro connected to NPB       |
|                | VPD15 to VPD0 <sup>Note</sup>         | I/O    | Data I/O for peripheral macro connected to NPB             |
|                | VPWRITE                               | Output | Write access strobe output of signals VPD15 to VPD0        |
|                | VPSTB                                 | Output | Data strobe output of signals VPD15 to VPD0                |
|                | VPLOCK                                | Output | Bus lock output                                            |
|                | VPUBENZ                               | Output | Upper byte enable output                                   |
|                | VPRETR <sup>Note</sup>                | Input  | Retry request input from peripheral macro connected to NPB |
|                | VPDACT                                | Input  | Retry function control input                               |
| VSB pins       | VAREQ                                 | Input  | Bus access right request input                             |
|                | VAACK                                 | Output | Bus access right acknowledge output                        |
|                | VBA27 to VBA0 <sup>Note</sup>         | I/O    | Address I/O for peripheral macro connected to VSB          |
|                | VBD31 to VBD0 <sup>Note</sup>         | I/O    | Data I/O for peripheral macro connected to VSB             |
|                | VBTTYP1, VBTTYP0 <sup>Note</sup>      | I/O    | Bus transfer type I/O                                      |
|                | VBSTZ <sup>Note</sup>                 | I/O    | Transfer start I/O                                         |
|                | VBBENZ3 to<br>VBBENZ0 <sup>Note</sup> | I/O    | Byte enable I/O                                            |
|                | VBSIZE1, VBSIZE0 <sup>Note</sup>      | I/O    | Transfer size I/O                                          |
|                | VBWRITE <sup>Note</sup>               | I/O    | Read/write status I/O                                      |
|                | VBLOCK <sup>Note</sup>                | I/O    | Bus lock I/O                                               |
|                | VBCTYP2 to VBCTYP0 <sup>Note</sup>    | I/O    | Bus cycle status I/O                                       |
|                | VBSEQ2 to VBSEQ0 <sup>Note</sup>      | I/O    | Sequential status I/O                                      |
|                | VBBSTR <sup>Note</sup>                | I/O    | Burst read status I/O                                      |
|                | VBWAIT <sup>Note</sup>                | I/O    | Wait response I/O                                          |
|                | VBLAST <sup>Note</sup>                | I/O    | Last response I/O                                          |
|                | VBAHLD <sup>Note</sup>                | I/O    | Address hold response I/O                                  |
|                | VBDC                                  | Output | Data bus direction control output                          |
|                | VDCSZ7 to VDCSZ0 <sup>Note</sup>      | I/O    | Chip select I/O                                            |
|                | VDSELPZ <sup>Note</sup>               | I/O    | Peripheral I/O area access status I/O                      |
| System control | DCRESZ                                | Input  | System reset input                                         |
| pins           | VBCLK                                 | Input  | Internal system clock input                                |
|                | CGREL                                 | Input  | Clock generator release input                              |
|                | SWSTOPRQ                              | Output | Software STOP mode request output to clock generator       |
|                | HWSTOPRQ                              | Output | Hardware STOP mode request output to clock generator       |
|                | DCSTOPZ                               | Input  | Hardware STOP mode request input                           |
|                | STPRQ                                 | Output | Hardware/software STOP mode request output to MEMC         |
|                | STPAK                                 | Input  | Acknowledge input for input of STPRQ of MEMC               |

**Note** Connected internally to the bus holder.

(2/4)

|                                        | Pin Name           | I/O      | (2/4)<br>Function                                                        |
|----------------------------------------|--------------------|----------|--------------------------------------------------------------------------|
| DMAC pins                              | IDMASTP            | Input    | DMA transfer terminate input                                             |
| DIVIAC PINS                            | DMARQ3 to DMARQ0   | Input    | DMA transfer request input                                               |
|                                        | DMTCO3 to DMTCO0   | Output   | Terminal count (DMA transfer completed) output                           |
|                                        | DMACTV3 to DMACTV0 | Output   | DMA acknowledge output                                                   |
| INTC pins                              | DCNMI2 to DCNMI0   | Input    | Non-maskable interrupt request (NMI) input                               |
| INTO pills                             | INT63 to INT0      | Input    | Maskable interrupt request (NMI) input  Maskable interrupt request input |
| VFB pins                               | IROMA19 to IROMA2  | Output   | Address output for ROM                                                   |
| VFB pills                              |                    | <u> </u> | ·                                                                        |
|                                        | IROMZ31 to IROMZ0  | Input    | Data input for ROM                                                       |
|                                        | IROMEN             | Output   | Access enable output for ROM                                             |
|                                        | IROMWT             | Input    | Wait input for ROM                                                       |
|                                        | IROMCS             | Output   | NEC reserved pin (leave open)                                            |
|                                        | IROMIA             | Output   |                                                                          |
| \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ | IROMAE             | Output   |                                                                          |
| VDB pins                               | IRAMA27 to IRAMA2  | Output   | Address output for RAM                                                   |
|                                        | IRAMZ31 to IRAMZ0  | Input    | Data input for RAM                                                       |
|                                        | IRAOZ31 to IRAOZ0  | Output   | Data output for RAM                                                      |
|                                        | IRAMEN             | Output   | Access enable output for RAM                                             |
|                                        | IRAMWR3 to IRAMWR0 | Output   | Write enable output for RAM                                              |
|                                        | IRAMRWB            | Output   | Read/write status output for RAM                                         |
|                                        | IRAMWT             | Input    | Wait input for RAM                                                       |
| Instruction cache                      | IBDRRQ             | Input    | Fetch request input from instruction cache                               |
| pins                                   | IBEA25 to IBEA2    | Input    | Fetch address input from instruction cache                               |
|                                        | IBAACK             | Output   | Address acknowledge output to instruction cache                          |
|                                        | IBDRDY             | Output   | Data ready output to instruction cache                                   |
|                                        | IBDLE3 to IBDLE0   | Output   | Data latch enable output to instruction cache                            |
|                                        | IBEDI31 to IBEDI0  | Output   | Data output to instruction cache                                         |
|                                        | IIDRRQ             | Output   | Fetch request output to instruction cache                                |
|                                        | IIEA25 to IIEA2    | Output   | Fetch address output to instruction cache                                |
|                                        | IIAACK             | Input    | Address acknowledge input from instruction cache                         |
|                                        | IIDLEF             | Input    | Data latch enable input from instruction cache                           |
|                                        | IIEDI31 to IIEDI0  | Input    | Data input from instruction cache                                        |
|                                        | IIBTFT             | Output   | Branch target fetch status output to instruction cache                   |
|                                        | IIRCAN             | Output   | Code cancel status output to instruction cache                           |
|                                        | BCUNCH             | Output   | Uncache status output to instruction cache                               |
|                                        | IBBTFT             | Input    | NEC reserved pin (input a low level)                                     |

**Remark** VFB: V850E Fetch Bus VDB: V850E Data Bus

(3/4)

|                 | Pin Name                          | I/O    | Function                                       |
|-----------------|-----------------------------------|--------|------------------------------------------------|
| Data cache pins | IDDARQ                            | Output | Read/write access request output to data cache |
|                 | IDAACK                            | Output | Acknowledge output                             |
|                 | IDDRRQ                            | Input  | VSB read operation request input to BCU        |
|                 | IDDWRQ                            | Input  | VSB write operation request input to BCU       |
|                 | IDSEQ4                            | Input  | Read/write operation type setting input        |
|                 | IDSEQ2                            | Input  | Read/write operation type setting input        |
|                 | IRRSA                             | Output | VDB hold status output                         |
|                 | IDRETR                            | Output | Read retry request output                      |
|                 | IDUNCH                            | Output | Uncache status output                          |
|                 | IDDRDY                            | Output | Read data ready output                         |
|                 | IDRRDY                            | Input  | Read data ready input from data cache          |
|                 | IDHUM                             | Input  | Hit under miss-hit read input                  |
|                 | IDEA27 to IDEA0                   | Input  | Address input                                  |
|                 | IDED31 to IDED0 <sup>Note 1</sup> | I/O    | Data I/O                                       |
|                 | IDES                              | Output | NEC reserved pin <sup>Note 2</sup>             |
| RCU pins        | DBI5 to DBI0                      | Input  | Debug control input                            |
|                 | DBO14 to DBO0                     | Output | Debug control output                           |
|                 | DBB15 to DBB0 <sup>Note 1</sup>   | I/O    | Debug control I/O                              |
| Peripheral EVA  | EVASTB                            | Input  | Address strobe input                           |
| chip mode pins  | EVDSTB                            | Input  | Data strobe input                              |
|                 | EVAD15 to EVAD0 <sup>Note 1</sup> | I/O    | Address/data I/O                               |
|                 | EVIEN                             | Output | EVADn input enable output (n = 15 to 0)        |
|                 | EVOEN                             | Output | EVADn output enable output (n = 15 to 0)       |
|                 | EVLKRT <sup>Note 1</sup>          | I/O    | Lock/retry I/O                                 |
|                 | EVIREL                            | Input  | Standby release input                          |
|                 | EVCLRIP                           | Input  | ISPR clear input                               |
|                 | EVINTAK                           | Input  | Interrupt acknowledge input                    |
|                 | EVINTRQ                           | Output | Interrupt request output                       |
|                 | EVINTLV6 to EVINTLV0              | Output | Interrupt vector output                        |
| Operation mode  | IFIROME                           | Input  | ROM mapping enable input                       |
| setting pins    | IFIROB2                           | Input  | Location setting input of ROM area             |
|                 | IFIRA64                           | Input  | RAM area size selection input                  |
|                 | IFIRA32                           | Input  | RAM area size selection input                  |
|                 | IFIRA16                           | Input  | RAM area size selection input                  |
|                 | IFIMAEN                           | Input  | Misalign access setting input                  |

**Notes 1.** Connected internally to the bus holder.

**2.** When using the data cache, always connect this pin to the IDES pin of the data cache. Leave open when unused.

(4/4)

|                             | Pin Name                       | I/O    | Function (4/4)                                           |
|-----------------------------|--------------------------------|--------|----------------------------------------------------------|
| 0 " 1                       |                                |        |                                                          |
| Operation mode setting pins | IFID256                        | Input  | Data area setting input                                  |
| octaing paris               | IFINSZ1, IFINSZ0               | Input  | VSB data bus size selection input                        |
|                             | IFIWRTH                        | Input  | Data cache write-back/write-through mode selection input |
|                             | IFIUNCH1                       | Input  | Data cache setting input                                 |
|                             | IFIUNCH0                       | Input  | Instruction cache setting input                          |
|                             | PHEVA                          | Input  | Peripheral EVA chip mode setting input                   |
|                             | IFIROBE                        | Input  | NEC reserved pin (input a low level)                     |
|                             | IFIROPR                        | Input  |                                                          |
|                             | IFIRASE                        | Input  |                                                          |
|                             | IFIRABE                        | Input  |                                                          |
|                             | IFIMODE3                       | Input  |                                                          |
|                             | IFIMODE2                       | Input  |                                                          |
|                             | IFIUSWE                        | Input  |                                                          |
|                             | FCOMB                          | Input  |                                                          |
| Test mode pins              | TBI39 to TBI0                  | Input  | Input test bus                                           |
|                             | TBO34 to TBO0                  | Output | Output test bus                                          |
|                             | TEST                           | Input  | Test bus control input                                   |
|                             | BUNRI                          | Input  | Normal/test mode selection input                         |
|                             | PHTDO1, PHTDO0 <sup>Note</sup> | Input  | Peripheral macro test input                              |
|                             | TESEN                          | Output | Peripheral macro test enable output                      |
|                             | VPTCLK                         | Output | Clock output for peripheral macro test                   |
|                             | PHTDIN1, PHTDIN0               | Output | Peripheral macro test output                             |
|                             | VPRESZ                         | Output | Peripheral macro reset output                            |
|                             | PHTEST                         | Output | Peripheral test mode status output                       |
|                             | TMODE1                         | Output | Test mode selection output                               |
|                             | TMODE0                         | Output | NEC reserved pin (leave open)                            |
|                             | TBREDZ                         | Output |                                                          |

Note Connected internally to the bus holder.

### 7. 4 Electrical Specifications (Preliminary)

The following specifications are for a single macro. An actual chip consists of two or more macros. Design the system so that all the specifications of the individual macros are satisfied when the chip is used.

#### 7. 4. 1 Absolute maximum ratings

| Parameter                     | Symbol           | Ratings      | Unit |
|-------------------------------|------------------|--------------|------|
| Supply voltage                | V <sub>DD</sub>  | -0.5 to +4.6 | V    |
| Operating ambient temperature | TA               | -40 to +85   | °C   |
| Storage temperature           | T <sub>stg</sub> | -65 to +150  | °C   |

Caution Product quality may suffer if the absolute maximum rating is exceeded even momentarily for any parameter. That is, the absolute maximum ratings are rated values at which the product is on the verge of suffering physical damage, and therefore the product must be used under conditions that ensure that the absolute maximum ratings are not exceeded.

#### 7. 4. 2 Recommended operation range

| Parameter                     | Symbol          | MIN. | TYP. | MAX. | Unit |
|-------------------------------|-----------------|------|------|------|------|
| Supply voltage                | V <sub>DD</sub> | 3.0  | 3.3  | 3.6  | V    |
| Operating ambient temperature | Та              | -40  |      | +85  | °C   |
| Clock cycle                   | tсүк            | 15.0 |      |      | ns   |

### 7. 4. 3 DC characteristics ( $T_A = -40 \text{ to } +85^{\circ}\text{C}$ , $V_{DD} = 3.3 \text{ V} \pm 0.3 \text{ V}$ )

| Parameter      | Symbol           | Conditions                                | MIN. | TYP. | MAX. | Unit   |
|----------------|------------------|-------------------------------------------|------|------|------|--------|
| Supply current | I <sub>DD1</sub> | In normal operation mode                  |      | 0.5  | 0.6  | mA/MHz |
|                | IDD2             | In HALT mode (when DMAC is not operating) |      | 0.17 | 0.2  | mA/MHz |
|                | I <sub>DD3</sub> | In STOP mode                              |      | 0    | 1.0  | μΑ     |

**Remark** The TYP. value is a reference value for when  $T_A$  = 25°C,  $V_{DD}$  = 3.3 V.

# 7. 4. 4 AC characteristics (T<sub>A</sub> = -40 to +85°C, V<sub>DD</sub> = 3.3 V $\pm 0.3$ V)

# (1) Clock timing

| Parameter                    | Symbol |              | Conditions | MIN. | MAX. | Unit |
|------------------------------|--------|--------------|------------|------|------|------|
| VBCLK input cycle            | <1>    | <b>t</b> cyk |            | 15.0 |      | ns   |
| VBCLK input high-level width | <2>    | <b>t</b> ккн |            | 7.5  |      | ns   |
| VBCLK input low-level width  | <3>    | <b>t</b> kkl |            | 7.5  |      | ns   |
| CPU operating frequency      | -      | φ            |            | 0    | 66   | MHz  |



# (2) Reset timing

| Parameter                        | Symbol |               | Conditions | MIN. | MAX. | Unit |
|----------------------------------|--------|---------------|------------|------|------|------|
| DCRESZ setup time (to VBCLK↑)    | <4>    | <b>t</b> skr  |            | 2.0  |      | ns   |
| DCRESZ hold time (from VBCLK↓)   | <5>    | thkr          |            | 1.9  |      | ns   |
| Delay time from DCRESZ to VPRESZ | -      | <b>t</b> DRPR |            | 1    | 2.5  | ns   |



## (3) VSB arbitration timing

| Parameter                       | Symbol |              | Conditions | MIN. | MAX. | Unit |
|---------------------------------|--------|--------------|------------|------|------|------|
| VAREQ setup time (to VBCLK↓)    | <6>    | <b>t</b> skq |            | 0    |      | ns   |
| VAREQ hold time (from VBCLK↓)   | <7>    | tнкq         |            | 3.4  |      | ns   |
| Delay time from VBCLK↓ to VAACK | <8>    | <b>t</b> dkk |            | 1.3  | 4.7  | ns   |



# [MEMO]

# (4) VSB master read timing (1/2)

| Parameter                                                            | Syr  | mbol              | Conditions | MIN. | MAX. | Unit |
|----------------------------------------------------------------------|------|-------------------|------------|------|------|------|
| Delay time from VBCLK↑ to VBTTYP                                     | <9>  | <b>t</b> DKT      |            | 1.3  | 4.1  | ns   |
| VBTTYP hold time (from VBCLK $\downarrow$ )                          | <10> | tнкт              |            | 2.8  |      | ns   |
| Delay time from VBCLK↑ to VBA                                        | <11> | <b>t</b> dka      |            | 1.3  | 6.3  | ns   |
| Delay time from VBCLK <sup>↑</sup> to VBSTZ, VBSIZE, VBWRITE, VBCTYP | <12> | t <sub>DKS1</sub> |            | 1.3  | 6.1  | ns   |
| Delay time from VBCLK↑ to VBBENZ                                     | <13> | t <sub>DKS2</sub> |            | 1.3  | 6.7  | ns   |
| Delay time from VBCLK↑ to VBSEQ,<br>VBLOCK                           | <14> | t <sub>DKS3</sub> |            | 1.3  | 6.6  | ns   |
| Delay time from VBCLK <sup>↑</sup> to VDCSZ,<br>VDSELPZ              | <15> | <b>t</b> DKC      |            | 1.3  | 5.6  | ns   |
| Delay time from VBCLK↑ to VBBSTR                                     | <61> | <b>t</b> DKBSR    |            | 1.3  | 5.5  | ns   |
| VBD data setup time (to VBCLK↓)                                      | <16> | tskd              |            | 0    |      | ns   |
| VBD data hold time (from VBCLK↓)                                     | <17> | <b>t</b> HKD      |            | 2.8  |      | ns   |
| VBWAIT, VBAHLD, VBLAST setup time (to VBCLK↑)                        | <18> | tskw              |            | 0    |      | ns   |
| VBWAIT, VBAHLD, VBLAST hold time (from VBCLK↑)                       | <19> | tнкw              |            | 2.9  |      | ns   |
| Delay time from VBCLK↓ to VBDC                                       | <20> | tDKS4             |            | 1.3  | 4.7  | ns   |

#### (4) VSB master read timing (2/2)



**Remarks 1.** The level of the broken line portion indicates the undefined state (weak unknown) in which the bus holder in the NB85E is driving.

Rdy: When the VBWAIT, VBAHLD, and VBLAST signals are all low level
 Wait: When the VBWAIT signal is high level, and the VBAHLD and VBLAST signals are low level

# (5) VSB master write timing (1/2)

| Parameter                                                  | Syr  | nbol              | Conditions | MIN. | MAX. | Unit |
|------------------------------------------------------------|------|-------------------|------------|------|------|------|
| Delay time from VBCLK <sup>↑</sup> to VBTTYP               | <9>  | <b>t</b> DKT      |            | 1.3  | 4.1  | ns   |
| VBTTYP hold time (from VBCLK $\downarrow$ )                | <10> | <b>t</b> HKT      |            | 2.8  |      | ns   |
| Delay time from VBCLK↑ to VBA                              | <11> | <b>t</b> DKA      |            | 1.3  | 6.3  | ns   |
| Delay time from VBCLK↑ to VBSTZ, VBSIZE, VBWRITE, VBCTYP   | <12> | toks1             |            | 1.3  | 6.1  | ns   |
| Delay time from VBCLK↑ to VBBENZ                           | <13> | t <sub>DKS2</sub> |            | 1.3  | 6.7  | ns   |
| Delay time from VBCLK↑ to VBSEQ, VBLOCK                    | <14> | t <sub>DKS3</sub> |            | 1.3  | 6.6  | ns   |
| Delay time from VBCLK <sup>↑</sup> to VDCSZ, VDSELPZ       | <15> | <b>t</b> DKC      |            | 1.3  | 5.6  | ns   |
| VBWAIT, VBAHLD, VBLAST setup time (to VBCLK <sup>↑</sup> ) | <18> | tskw              |            | 0    |      | ns   |
| VBWAIT, VBAHLD, VBLAST hold time (from VBCLK↑)             | <19> | tнкw              |            | 2.9  |      | ns   |
| Delay time from VBCLK↓ to VBDC                             | <20> | t <sub>DKS4</sub> |            | 1.3  | 4.7  | ns   |
| Delay time from VBCLK↑ to VBD data                         | <21> | t <sub>DKD0</sub> |            | 0    | 5.5  | ns   |
| Delay time from VBCLK↓ to VBD data                         | <22> | <b>t</b> DKD1     |            | 1.2  | 5.8  | ns   |

#### (5) VSB master write timing (2/2)



**Remarks 1.** The level of the broken line portion indicates the undefined state (weak unknown) in which the bus holder in the NB85E is driving.

Rdy: When the VBWAIT, VBAHLD, and VBLAST signals are all low level
 Wait: When the VBWAIT signal is high level, and the VBAHLD and VBLAST signals are low level

# (6) NPB read timing (1/2)

| Parameter                                                     | Syr  | nbol         | Conditions | MIN. | MAX. | Unit |
|---------------------------------------------------------------|------|--------------|------------|------|------|------|
| Delay time from VBCLK↓ to VPSTB                               | <23> | <b>t</b> DKP |            | 2.5  | 7.8  | ns   |
| VPSTB output high-level width                                 | <24> | <b>t</b> ssH |            | 60   |      | ns   |
| VPSTB output low-level width                                  | <25> | tssL         |            | 20   |      | ns   |
| VPA address, VPWRITE, VPLOCK, VPUBENZ setup time (to VPSTB↑)  | <26> | tssa         |            | 20   |      | ns   |
| VPA address, VPWRITE, VPLOCK, VPUBENZ hold time (from VPSTB↓) | <27> | <b>t</b> HSA |            | 20   |      | ns   |
| VPD read data setup time (to VPSTB↓)                          | <28> | tssp         |            | 20   |      | ns   |
| VPD read data hold time (from VPSTB↓)                         | <29> | <b>t</b> HSD |            | 0    |      | ns   |
| VPRETR setup time (to VPSTB↓)                                 | <30> | tssr         |            | 20   |      | ns   |
| VPRETR hold time (from VPSTB↓)                                | <31> | thsr         |            | 0    |      | ns   |
| VPDACT setup time (to VPSTB↑)                                 | <32> | tssc         |            | 20   |      | ns   |
| VPDACT hold time (from VPSTB↓)                                | <33> | <b>t</b> HSC |            | 20   |      | ns   |

### (6) NPB read timing (2/2)



**Remark** The level of the broken line portion indicates the undefined state (weak unknown) in which the bus holder in the NB85E is driving.

# (7) NPB write timing (1/2)

| Parameter                                                     | Syr  | nbol         | Conditions | MIN. | MAX. | Unit |
|---------------------------------------------------------------|------|--------------|------------|------|------|------|
| Delay time from VBCLK↓ to VPSTB                               | <23> | <b>t</b> DKP |            | 2.5  | 7.8  | ns   |
| VPSTB output high-level width                                 | <24> | <b>t</b> ssH |            | 60   |      | ns   |
| VPSTB output low-level width                                  | <25> | tssL         |            | 20   |      | ns   |
| VPA address, VPWRITE, VPLOCK, VPUBENZ setup time (to VPSTB↑)  | <26> | tssa         |            | 20   |      | ns   |
| VPA address, VPWRITE, VPLOCK, VPUBENZ hold time (from VPSTB↓) | <27> | <b>t</b> HSA |            | 20   |      | ns   |
| VPD write data setup time (to VPSTB↑)                         | <28> | tssp         |            | 20   |      | ns   |
| VPD write data hold time (from VPSTB↓)                        | <29> | <b>t</b> HSD |            | 20   |      | ns   |
| VPRETR setup time (to VPSTB↓)                                 | <30> | tssr         |            | 20   |      | ns   |
| VPRETR hold time (from VPSTB↓)                                | <31> | thsr         |            | 0    |      | ns   |
| VPDACT setup time (to VPSTB↑)                                 | <32> | tssc         |            | 20   |      | ns   |
| VPDACT hold time (from VPSTB↓)                                | <33> | thsc         |            | 20   |      | ns   |

### (7) NPB write timing (2/2)



**Remark** The level of the broken line portion indicates the undefined state (weak unknown) in which the bus holder in the NB85E is driving.

# (8) VFB access timing

| Parameter                                   | Symbol |                | Conditions | MIN. | MAX. | Unit |
|---------------------------------------------|--------|----------------|------------|------|------|------|
| Delay time from VBCLK↓ to IROMEN            | <34>   | <b>t</b> DKROE |            | 1.3  | 8.9  | ns   |
| Delay time from VBCLK <sup>↑</sup> to IROMA | <35>   | <b>t</b> dkroa |            | 1.3  | 11.8 | ns   |
| IROMZ setup time (to VBCLK↑)                | <36>   | <b>t</b> skroz |            | 3.4  |      | ns   |
| IROMZ hold time (from VBCLK↑)               | <37>   | <b>t</b> HKROZ |            | 3.2  |      | ns   |



### (9) VDB read timing

| Parameter                         | Symbol |                | Conditions | MIN. | MAX. | Unit |
|-----------------------------------|--------|----------------|------------|------|------|------|
| Delay time from VBCLK↓ to IRAMRWB | <38>   | <b>t</b> dkrar |            | 1.3  | 8.4  | ns   |
| Delay time from VBCLK↓ to IRAMEN  | <39>   | <b>t</b> DKRAE |            | 1.3  | 8.9  | ns   |
| Delay time from VBCLK↓ to IRAMA   | <40>   | <b>t</b> dkraa |            | 1.3  | 8.3  | ns   |
| IRAMZ setup time (to VBCLK↑)      | <41>   | <b>t</b> skraz |            | 2.6  |      | ns   |
| IRAMZ hold time (from VBCLK↑)     | <42>   | thkraz         |            | 3.7  |      | ns   |



#### (10) VDB write timing

| Parameter                        | Symbol      |                | Conditions | MIN. | MAX. | Unit |
|----------------------------------|-------------|----------------|------------|------|------|------|
| Delay time from VBCLK↓ to IRAMWR | <43> tdkraw |                |            | 1.3  | 8.8  | ns   |
| Delay time from VBCLK↓ to IRAOZ  | <44>        | <b>t</b> DKRAZ |            | 1.3  | 9.1  | ns   |



Note Signals IRAOZ31 to IRAOZ0 are always output and do not become high impedance.

Write operations are controlled by the IRAMEN signal and signals IRAMWR3 to IRAMWR0. Data cannot be written when the IRAMEN signal is low level.

#### (11) DMA transfer request, transfer completion timing

| Parameter                                  | Symbol |               | Conditions | MIN. | MAX. | Unit |
|--------------------------------------------|--------|---------------|------------|------|------|------|
| DMARQ setup time (to VBCLK↓)               | <45>   | <b>t</b> skdq |            | 0    |      | ns   |
| DMARQ hold time (from VBCLK <sup>↑</sup> ) | <46>   | thkdq         |            | 0.8  |      | ns   |
| Delay time from VBCLK↑ to DMACTV, DMTCO    | <47>   | <b>t</b> DKDC |            | 1.3  | 6.5  | ns   |



Remark n = 3 to 0

### (12) DMA transfer abort timing

| Parameter                       | Symbol |       | Conditions | MIN. | MAX. | Unit |
|---------------------------------|--------|-------|------------|------|------|------|
| IDMASTP setup time (to VBCLK↑)  | <48>   | tskds |            | 3.5  |      | ns   |
| IDMASTP hold time (from VBCLK↑) | <49>   | thkds |            | 1.7  |      | ns   |



### (13) Software STOP mode timing

| Parameter                                  | Symbol |               | Conditions | MIN. | MAX. | Unit |
|--------------------------------------------|--------|---------------|------------|------|------|------|
| Delay time from VBCLK↑ to STPRQ            | <50>   | <b>t</b> DKSQ |            | 1.3  | 4.6  | ns   |
| STPAK setup time (to VBCLK↓)               | <51>   | <b>t</b> sksa |            | 0    |      | ns   |
| STPAK hold time (from STPRQ $\downarrow$ ) | <52>   | <b>t</b> HQSA |            | 7.0  |      | ns   |
| Delay time from VBCLK↓ to SWSTOPRQ↑        | <53>   | tokss         |            | 1.3  | 4.7  | ns   |
| Delay time from INT, DCNMI to SWSTOPRQ↓    | <54>   | torsr         |            | 0    | 15.0 | ns   |
| CGREL setup time (to VBCLK↑)               | <55>   | <b>t</b> sksg |            | 0    |      | ns   |
| CGREL hold time (from VBCLK↑)              | <56>   | <b>t</b> HKSG |            | 2.5  |      | ns   |



2. Input an active level (high level) of 1 clock or more.

### (14) Hardware STOP mode timing

| Parameter                            | Symbol |               | Conditions | MIN. | MAX. | Unit |
|--------------------------------------|--------|---------------|------------|------|------|------|
| Delay time from VBCLK↑ to STPRQ      | <50>   | <b>t</b> DKSQ |            | 1.3  | 4.6  | ns   |
| STPAK setup time (to VBCLK↓)         | <51>   | <b>t</b> sksa |            | 0    |      | ns   |
| STPAK hold time (from STPRQ↓)        | <52>   | <b>t</b> HQSA |            | 7.0  |      | ns   |
| Delay time from VBCLK↓ to HWSTOPRQ↑  | <53>   | tokss         |            | 1.3  | 4.7  | ns   |
| Delay time from DCSTOPZ to HWSTOPRQ↓ | <54>   | torsr         |            | 0    | 15.0 | ns   |
| CGREL setup time (to VBCLK↑)         | <55>   | tsksg         |            | 0    |      | ns   |
| CGREL hold time (from VBCLK↑)        | <56>   | <b>t</b> HKSG |            | 2.5  |      | ns   |
| DCSTOPZ setup time (to VBCLK↑)       | <57>   | <b>t</b> skst |            | 0    |      | ns   |



**Notes** 1. Hardware STOP mode is released upon detection of the rising edge of this signal.

2. Input an active level (high level) of 1 clock or more.

# (15) Interrupt timing

| Parameter                   | Symbol |      | Conditions | MIN.         | MAX. | Unit |
|-----------------------------|--------|------|------------|--------------|------|------|
| INT, DCNMI high-level width | <58>   | twiн |            | 5.0          |      | ns   |
| INT, DCNMI low-level width  | <59>   | twiL |            | 5.0          |      | ns   |
| INT, DCNMI interval time    | <60>   | tcyı |            | 3 	imes tсүк |      | ns   |



#### **CHAPTER 8 NB85E901**

(Under Development)

The NB85E901 is a run control unit (RCU) used by connecting to the NB85E.

#### 8.1 Outline

The NB85E901 (RCU) is a run control unit that realizes the execution of JTAG communication and debug processing. Connection of the NB85E901 with an N-Wire type in-circuit emulator (N-Wire type IE) makes it possible to perform on-chip debugging on the NB85E.

#### 8. 1. 1 Symbol diagram

#### **Number of grids**

36.2k grids

46.4k grids (including wiring area)

#### Number of separation simulation patterns

41.8k



### 8. 1. 2 Pin capacitance

Remark CIN: Capacitance of only input pin

Cinewi: Value of CIN with wiring capacitance (estimated wire length capacitance) taken into consideration

(I = 10 mm)

### (1) Input pins

| Pin Name | Cin (pF) | Cinewl (pF) | Pin Name | Cin (pF) | Cinewl (pF) |
|----------|----------|-------------|----------|----------|-------------|
| DCK      | 0.027    | 1.927       | DBO10    | 0.020    | 1.920       |
| DRSTZ    | 0.017    | 1.917       | DBO9     | 0.054    | 1.954       |
| DMS      | 0.088    | 1.988       | DBO8     | 0.024    | 1.924       |
| DDI      | 0.054    | 1.954       | DBO7     | 0.062    | 1.962       |
| DBINT    | 0.019    | 1.919       | DBO6     | 0.077    | 1.977       |
| RESETZ   | 0.069    | 1.969       | DBO5     | 0.048    | 1.948       |
| STOPZ    | 0.066    | 1.966       | DBO4     | 0.057    | 1.957       |
| NMI2     | 0.036    | 1.936       | DBO3     | 0.065    | 1.965       |
| NMI1     | 0.063    | 1.963       | DBO2     | 0.090    | 1.990       |
| NMI0     | 0.048    | 1.948       | DBO1     | 0.009    | 1.909       |
| VAREQ    | 0.021    | 1.921       | DBO0     | 0.067    | 1.967       |
| WAITZ    | 0.024    | 1.924       | TMODE1   | 0.029    | 1.929       |
| ROMTYPE  | 0.132    | 2.032       | VBWAIT   | 0.050    | 1.950       |
| VBCLK    | 0.035    | 1.935       | VBTCLK   | 0.040    | 1.940       |
| DBO14    | 0.057    | 1.957       | STPAK    | 0.014    | 1.914       |
| DBO13    | 0.062    | 1.962       | BUNRI    | 0.096    | 1.996       |
| DBO12    | 0.079    | 1.979       | TEST     | 0.034    | 1.934       |
| DBO11    | 0.065    | 1.965       |          |          |             |

### (2) Output pins

| Pin Name | C <sub>MAX</sub> (pF) | Pin Name | C <sub>MAX</sub> (pF) | Pin Name | Смах (pF) |
|----------|-----------------------|----------|-----------------------|----------|-----------|
| DDO      | 6.518                 | DCOP4    | 6.482                 | DBI0     | 12.901    |
| DCOP13   | 6.399                 | DCOP3    | 6.474                 | DCRESZ   | 6.462     |
| DCOP12   | 6.306                 | DCOP2    | 6.399                 | DCSTOPZ  | 4.884     |
| DCOP11   | 6.404                 | DCOP1    | 6.560                 | DCNMI2   | 13.191    |
| DCOP10   | 6.358                 | DCOP0    | 6.553                 | DCNMI1   | 13.319    |
| DCOP9    | 12.922                | DBI5     | 12.958                | DCNMI0   | 13.308    |
| DCOP8    | 12.855                | DBI4     | 4.555                 | DCVAREQ  | 13.201    |
| DCOP7    | 12.917                | DBI3     | 6.435                 | DCWAITZ  | 13.306    |
| DCOP6    | 12.818                | DBI2     | 13.311                |          |           |
| DCOP5    | 12.850                | DBI1     | 6.462                 |          |           |

# (3) I/O pins

| Pin Name | Смах (рF) | Cin (pF) | Cinewl (pF) | Pin Name | Смах (рЕ) | Cin (pF) | Cinewl (pF) |
|----------|-----------|----------|-------------|----------|-----------|----------|-------------|
| DBB15    | 6.487     | 0.095    | 1.995       | DBB7     | 6.462     | 0.120    | 2.020       |
| DBB14    | 6.420     | 0.163    | 2.063       | DBB6     | 6.451     | 0.132    | 2.032       |
| DBB13    | 6.492     | 0.091    | 1.991       | DBB5     | 6.389     | 0.194    | 2.094       |
| DBB12    | 6.432     | 0.150    | 2.050       | DBB4     | 6.373     | 0.210    | 2.110       |
| DBB11    | 6.517     | 0.066    | 1.966       | DBB3     | 6.443     | 0.139    | 2.039       |
| DBB10    | 6.524     | 0.059    | 1.959       | DBB2     | 6.412     | 0.170    | 2.070       |
| DBB9     | 6.487     | 0.096    | 1.996       | DBB1     | 6.466     | 0.116    | 2.016       |
| DBB8     | 6.496     | 0.087    | 1.987       | DBB0     | 6.384     | 0.199    | 2.099       |

### 8. 2 Pin Functions

| Р                   | in Name          | I/O    | Function                             |
|---------------------|------------------|--------|--------------------------------------|
| N-Wire type IE      | DCK              | Input  | Clock input for RCU                  |
| connection pins     | DRSTZ            | Input  | Reset input for RCU                  |
|                     | DMS              | Input  | Debug mode selection input           |
|                     | DDI              | Input  | Debug data input                     |
|                     | DDO              | Output | Debug data output                    |
|                     | DBINT            | Input  | External debug interrupt input       |
| System control pins | RESETZ           | Input  | System reset input                   |
|                     | STOPZ            | Input  | Hardware STOP mode request input     |
|                     | NMI2 to NMI0     | Input  | Non-maskable interrupt input         |
|                     | VAREQ            | Input  | Bus access right request input       |
|                     | WAITZ            | Input  | Wait request input                   |
|                     | ROMTYPE          | Input  | NEC reserved pin (input a low level) |
|                     | DCOP13 to DCOP0  | Output | NEC reserved pin (leave open)        |
| NB85E connection    | VBCLK            | Input  | System clock input                   |
| pins                | DBI5 to DBI0     | Output | Debug control output                 |
|                     | DBO14 to DBO0    | Input  | Debug control input                  |
|                     | DBB15 to DBB0    | I/O    | Debug control I/O                    |
|                     | TMODE1           | Input  | Test mode selection input            |
|                     | VBWAIT           | Input  | Wait response input                  |
|                     | DCRESZ           | Output | Reset output                         |
|                     | DCSTOPZ          | Output | Hardware STOP mode request output    |
|                     | DCNMI2 to DCNMI0 | Output | Non-maskable interrupt output        |
|                     | DCVAREQ          | Output | Bus access right request output      |
|                     | VBTCLK           | Input  | Clock input for testing              |
| Peripheral          | DCWAITZ          | Output | Wait request output                  |
| connection pins     | STPAK            | Input  | STOP mode request acknowledge input  |
| Test mode pins      | BUNRI            | Input  | Normal/test mode selection input     |
|                     | TEST             | Input  | Test bus control input               |

#### 8. 3 Electrical Specifications (Preliminary)

The following specifications are for a single macro. An actual chip consists of two or more macros. Design the system so that all the specifications of the individual macros are satisfied when the chip is used.

#### 8. 3. 1 Absolute maximum ratings

| Parameter                     | Symbol          | Ratings      | Unit |
|-------------------------------|-----------------|--------------|------|
| Supply voltage                | V <sub>DD</sub> | -0.5 to +4.6 | >    |
| Operating ambient temperature | TA              | -40 to +85   | °C   |
| Storage temperature           | Tstg            | -65 to +150  | °C   |

Caution Product quality may suffer if the absolute maximum rating is exceeded even momentarily for any parameter. That is, the absolute maximum ratings are rated values at which the product is on the verge of suffering physical damage, and therefore the product must be used under conditions that ensure that the absolute maximum ratings are not exceeded.

#### 8. 3. 2 Recommended operation range

| Parameter                     | Symbol       | MIN. | TYP. | MAX. | Unit |
|-------------------------------|--------------|------|------|------|------|
| Supply voltage                | VDD          | 3.0  | 3.3  | 3.6  | V    |
| Operating ambient temperature | TA           | -40  |      | +85  | °C   |
| Clock cycle                   | <b>t</b> cyk | 15.0 |      |      | ns   |

#### 8. 3. 3 DC characteristics (T<sub>A</sub> = -40 to +85°C, V<sub>DD</sub> = 3.3 V $\pm 0.3$ V)

| Parameter      | Symbol           | Conditions         | MIN. | TYP. | MAX. | Unit   |
|----------------|------------------|--------------------|------|------|------|--------|
| Supply current | I <sub>DD1</sub> | When operating     |      | 0.33 | 0.43 | mA/MHz |
|                | I <sub>DD2</sub> | When not operating |      | 0    | 1.0  | μΑ     |

**Remark** The TYP. value is a reference value for when T<sub>A</sub> = 25°C, V<sub>DD</sub> = 3.3 V.

#### 8. 3. 4 AC characteristics ( $T_A = -40 \text{ to } +85^{\circ}\text{C}$ , $V_{DD} = 3.3 \text{ V} \pm 0.3 \text{ V}$ )

| Parameter                        | Symbol         | Conditions | MIN. | MAX. | Unit |
|----------------------------------|----------------|------------|------|------|------|
| Delay time from RESETZ to DCRESZ | todres         |            |      | 2.0  | ns   |
| Delay time from STOPZ to DCSTOPZ | <b>t</b> DDSTP |            |      | 2.0  | ns   |
| Delay time from NMI to DCNMI     | <b>t</b> ddnmi |            |      | 2.0  | ns   |
| Delay time from WAITZ to DCWAITZ | <b>t</b> DDWT  |            |      | 2.0  | ns   |
| Delay time from VAREQ to DCVAREQ | <b>t</b> DDVRQ |            |      | 2.0  | ns   |

#### **CHAPTER 9 NB85ET**

(Under Development)

The NB85ET is a CPU core incorporating debug controller that realizes on-chip debugging using a single NB85ET, and includes on chip the "V850E1" CPU, NEC's 32-bit RISC microprocessor, as well as various peripheral I/O functions such as DMA and interrupt controllers.

#### 9. 1 Outline

• Processing performance: 62 MIPS (@ 50 MHz operation)

• Memory space

Program area: 64 MB linear Data area: 4 GB linear

Memory bank division function: 2, 4, and 8 MB/bank

• Minimum instruction execution time: 20 ns (@ 50 MHz operation)

• External bus interface

VSB (V850E System Bus) NPB (NEC Peripheral I/O Bus)

Interrupt/exception control function
 Non-maskable interrupts: 3 sources
 Maskable interrupts: 64 sources
 Exceptions: 1 source

8 priority levels specifiable (maskable interrupts)

DMA control function

4-channel structure

Transfer unit: 8, 16, and 32 bits

Maximum number of transfers: 65536 (2<sup>16</sup>)

Transfer type: Flyby (1-cycle) transfer, 2-cycle transfer

Transfer mode: Single transfer, single step transfer, line transfer, block transfer

Terminal count output signals (DMTCO3 to DMTCO0)

• Power save function

HALT, hardware/software STOP modes

• Debug control function

CPU break, trace, event detection

### 9. 1. 1 Symbol diagram

# Number of grids

574.6k grids 857.4k grids (including wiring area)

### Number of separation simulation patterns

498.5k



#### 9. 1. 2 Pin capacitance

Remark C<sub>IN</sub>: Capacitance of only input pin

Cinewi: Value of CIN with wiring capacitance (estimated wire length capacitance) taken into consideration

(I = 10 mm)

### (1) Input pins (1/5)

| Pin Name | Cin (pF) | Cinewl (pF) | Pin Name | Cin (pF) | Cinewl (pF) |
|----------|----------|-------------|----------|----------|-------------|
| VPRETR   | 0.663    | 2.563       | INT45    | 0.032    | 1.932       |
| VPDACT   | 0.205    | 2.105       | INT44    | 0.052    | 1.952       |
| VAREQ    | 0.248    | 2.148       | INT43    | 0.032    | 1.932       |
| RESETZ   | 0.196    | 2.096       | INT42    | 0.023    | 1.923       |
| VBCLK    | 0.070    | 1.970       | INT41    | 0.051    | 1.951       |
| CGREL    | 0.047    | 1.947       | INT40    | 0.084    | 1.984       |
| STOPZ    | 0.447    | 2.347       | INT39    | 0.228    | 2.128       |
| STPAK    | 0.263    | 2.163       | INT38    | 0.070    | 1.970       |
| IDMASTP  | 0.137    | 2.037       | INT37    | 0.075    | 1.975       |
| DMARQ3   | 0.020    | 1.920       | INT36    | 0.088    | 1.988       |
| DMARQ2   | 0.211    | 2.111       | INT35    | 0.071    | 1.971       |
| DMARQ1   | 0.169    | 2.069       | INT34    | 0.033    | 1.933       |
| DMARQ0   | 0.259    | 2.159       | INT33    | 0.053    | 1.953       |
| NMI2     | 0.390    | 2.290       | INT32    | 0.031    | 1.931       |
| NMI1     | 0.340    | 2.240       | INT31    | 0.039    | 1.939       |
| NMI0     | 0.363    | 2.263       | INT30    | 0.050    | 1.950       |
| INT63    | 0.022    | 1.922       | INT29    | 0.024    | 1.924       |
| INT62    | 0.031    | 1.931       | INT28    | 0.042    | 1.942       |
| INT61    | 0.013    | 1.913       | INT27    | 0.013    | 1.913       |
| INT60    | 0.023    | 1.923       | INT26    | 0.044    | 1.944       |
| INT59    | 0.034    | 1.934       | INT25    | 0.012    | 1.912       |
| INT58    | 0.032    | 1.932       | INT24    | 0.017    | 1.917       |
| INT57    | 0.046    | 1.946       | INT23    | 0.053    | 1.953       |
| INT56    | 0.024    | 1.924       | INT22    | 0.058    | 1.958       |
| INT55    | 0.016    | 1.916       | INT21    | 0.019    | 1.919       |
| INT54    | 0.057    | 1.957       | INT20    | 0.019    | 1.919       |
| INT53    | 0.016    | 1.916       | INT19    | 0.034    | 1.934       |
| INT52    | 0.033    | 1.933       | INT18    | 0.019    | 1.919       |
| INT51    | 0.054    | 1.954       | INT17    | 0.045    | 1.945       |
| INT50    | 0.043    | 1.943       | INT16    | 0.023    | 1.923       |
| INT49    | 0.015    | 1.915       | INT15    | 0.027    | 1.927       |
| INT48    | 0.025    | 1.925       | INT14    | 0.016    | 1.916       |
| INT47    | 0.020    | 1.920       | INT13    | 0.044    | 1.944       |
| INT46    | 0.057    | 1.957       | INT12    | 0.034    | 1.934       |

# (1) Input pins (2/5)

| Pin Name | Cin (pF) | Cinewl (pF) | Pin Name | Cin (pF) | Cinewl (pF) |
|----------|----------|-------------|----------|----------|-------------|
| INT11    | 0.034    | 1.934       | IROMZ4   | 0.651    | 2.551       |
| INT10    | 0.023    | 1.923       | IROMZ3   | 0.612    | 2.512       |
| INT9     | 0.037    | 1.937       | IROMZ2   | 0.707    | 2.607       |
| INT8     | 0.028    | 1.928       | IROMZ1   | 0.599    | 2.499       |
| INT7     | 0.024    | 1.924       | IROMZ0   | 0.632    | 2.532       |
| INT6     | 0.026    | 1.926       | IROMWT   | 0.117    | 2.017       |
| INT5     | 0.028    | 1.928       | IRAMZ31  | 0.057    | 1.957       |
| INT4     | 0.030    | 1.930       | IRAMZ30  | 0.037    | 1.937       |
| INT3     | 0.025    | 1.925       | IRAMZ29  | 0.513    | 2.413       |
| INT2     | 0.035    | 1.935       | IRAMZ28  | 0.483    | 2.383       |
| INT1     | 0.026    | 1.926       | IRAMZ27  | 0.198    | 2.098       |
| INT0     | 0.030    | 1.930       | IRAMZ26  | 0.036    | 1.936       |
| IROMZ31  | 0.318    | 2.218       | IRAMZ25  | 0.051    | 1.951       |
| IROMZ30  | 0.405    | 2.305       | IRAMZ24  | 0.045    | 1.945       |
| IROMZ29  | 0.313    | 2.213       | IRAMZ23  | 0.036    | 1.936       |
| IROMZ28  | 0.358    | 2.258       | IRAMZ22  | 0.037    | 1.937       |
| IROMZ27  | 0.534    | 2.434       | IRAMZ21  | 0.152    | 2.052       |
| IROMZ26  | 0.411    | 2.311       | IRAMZ20  | 0.473    | 2.373       |
| IROMZ25  | 0.352    | 2.252       | IRAMZ19  | 0.380    | 2.280       |
| IROMZ24  | 0.427    | 2.327       | IRAMZ18  | 0.209    | 2.109       |
| IROMZ23  | 0.373    | 2.273       | IRAMZ17  | 0.233    | 2.133       |
| IROMZ22  | 0.527    | 2.427       | IRAMZ16  | 0.078    | 1.978       |
| IROMZ21  | 0.544    | 2.444       | IRAMZ15  | 0.075    | 1.975       |
| IROMZ20  | 0.335    | 2.235       | IRAMZ14  | 0.052    | 1.952       |
| IROMZ19  | 0.406    | 2.306       | IRAMZ13  | 0.239    | 2.139       |
| IROMZ18  | 0.603    | 2.503       | IRAMZ12  | 0.197    | 2.097       |
| IROMZ17  | 0.400    | 2.300       | IRAMZ11  | 0.234    | 2.134       |
| IROMZ16  | 0.399    | 2.299       | IRAMZ10  | 0.184    | 2.084       |
| IROMZ15  | 0.388    | 2.288       | IRAMZ9   | 0.407    | 2.307       |
| IROMZ14  | 0.569    | 2.469       | IRAMZ8   | 0.222    | 2.122       |
| IROMZ13  | 0.559    | 2.459       | IRAMZ7   | 0.322    | 2.222       |
| IROMZ12  | 0.597    | 2.497       | IRAMZ6   | 0.063    | 1.963       |
| IROMZ11  | 0.612    | 2.512       | IRAMZ5   | 0.278    | 2.178       |
| IROMZ10  | 0.643    | 2.543       | IRAMZ4   | 0.265    | 2.165       |
| IROMZ9   | 0.375    | 2.275       | IRAMZ3   | 0.241    | 2.141       |
| IROMZ8   | 0.434    | 2.334       | IRAMZ2   | 0.169    | 2.069       |
| IROMZ7   | 0.602    | 2.502       | IRAMZ1   | 0.050    | 1.950       |
| IROMZ6   | 0.399    | 2.299       | IRAMZ0   | 0.292    | 2.192       |
| IROMZ5   | 0.537    | 2.437       | IRAMWT   | 0.393    | 2.293       |

# (1) Input pins (3/5)

| Pin Name | C <sub>IN</sub> (pF) | Cinewl (pF) | Pin Name | C <sub>IN</sub> (pF) | Cinewl (pF) |
|----------|----------------------|-------------|----------|----------------------|-------------|
| IBDRRQ   | 0.110                | 2.010       | IIEDI19  | 0.043                | 1.943       |
| IBEA25   | 0.168                | 2.068       | IIEDI18  | 0.084                | 1.984       |
| IBEA24   | 0.110                | 2.010       | IIEDI17  | 0.075                | 1.975       |
| IBEA23   | 0.014                | 1.914       | IIEDI16  | 0.042                | 1.942       |
| IBEA22   | 0.025                | 1.925       | IIEDI15  | 0.067                | 1.967       |
| IBEA21   | 0.074                | 1.974       | IIEDI14  | 0.070                | 1.970       |
| IBEA20   | 0.017                | 1.917       | IIEDI13  | 0.049                | 1.949       |
| IBEA19   | 0.050                | 1.950       | IIEDI12  | 0.047                | 1.947       |
| IBEA18   | 0.057                | 1.957       | IIEDI11  | 0.054                | 1.954       |
| IBEA17   | 0.014                | 1.914       | IIEDI10  | 0.022                | 1.922       |
| IBEA16   | 0.043                | 1.943       | IIEDI9   | 0.056                | 1.956       |
| IBEA15   | 0.016                | 1.916       | IIEDI8   | 0.038                | 1.938       |
| IBEA14   | 0.024                | 1.924       | IIEDI7   | 0.049                | 1.949       |
| IBEA13   | 0.139                | 2.039       | IIEDI6   | 0.038                | 1.938       |
| IBEA12   | 0.032                | 1.932       | IIEDI5   | 0.029                | 1.929       |
| IBEA11   | 0.109                | 2.009       | IIEDI4   | 0.038                | 1.938       |
| IBEA10   | 0.150                | 2.050       | IIEDI3   | 0.029                | 1.929       |
| IBEA9    | 0.082                | 1.982       | IIEDI2   | 0.022                | 1.922       |
| IBEA8    | 0.125                | 2.025       | IIEDI1   | 0.030                | 1.930       |
| IBEA7    | 0.133                | 2.033       | IIEDI0   | 0.020                | 1.920       |
| IBEA6    | 0.128                | 2.028       | IBBTFT   | 0.175                | 2.075       |
| IBEA5    | 0.117                | 2.017       | IDDRRQ   | 0.549                | 2.449       |
| IBEA4    | 0.089                | 1.989       | IDDWRQ   | 0.522                | 2.422       |
| IBEA3    | 0.168                | 2.068       | IDSEQ4   | 0.373                | 2.273       |
| IBEA2    | 0.180                | 2.080       | IDSEQ2   | 0.568                | 2.468       |
| IIAACK   | 0.069                | 1.969       | IDRRDY   | 0.155                | 2.055       |
| IIDLEF   | 0.090                | 1.990       | IDHUM    | 0.361                | 2.261       |
| IIEDI31  | 0.159                | 2.059       | IDEA27   | 0.249                | 2.149       |
| IIEDI30  | 0.143                | 2.043       | IDEA26   | 0.264                | 2.164       |
| IIEDI29  | 0.124                | 2.024       | IDEA25   | 0.293                | 2.193       |
| IIEDI28  | 0.110                | 2.010       | IDEA24   | 0.375                | 2.275       |
| IIEDI27  | 0.115                | 2.015       | IDEA23   | 0.255                | 2.155       |
| IIEDI26  | 0.094                | 1.994       | IDEA22   | 0.260                | 2.160       |
| IIEDI25  | 0.178                | 2.078       | IDEA21   | 0.251                | 2.151       |
| IIEDI24  | 0.124                | 2.024       | IDEA20   | 0.356                | 2.256       |
| IIEDI23  | 0.105                | 2.005       | IDEA19   | 0.259                | 2.159       |
| IIEDI22  | 0.081                | 1.981       | IDEA18   | 0.333                | 2.233       |
| IIEDI21  | 0.083                | 1.983       | IDEA17   | 0.248                | 2.148       |
| IIEDI20  | 0.066                | 1.966       | IDEA16   | 0.273                | 2.173       |

# (1) Input pins (4/5)

| Pin Name | Cin (pF) | Cinewl (pF) | Pin Name | Cin (pF) | Cinewl (pF) |
|----------|----------|-------------|----------|----------|-------------|
| IDEA15   | 0.328    | 2.228       | IFIRA32  | 0.944    | 2.844       |
| IDEA14   | 0.291    | 2.191       | IFIRA16  | 0.831    | 2.731       |
| IDEA13   | 0.303    | 2.203       | IFIMAEN  | 0.430    | 2.330       |
| IDEA12   | 0.325    | 2.225       | IFID256  | 0.450    | 2.350       |
| IDEA11   | 0.248    | 2.148       | IFINSZ1  | 0.476    | 2.376       |
| IDEA10   | 0.361    | 2.261       | IFINSZ0  | 0.491    | 2.391       |
| IDEA9    | 0.328    | 2.228       | IFIWRTH  | 0.549    | 2.449       |
| IDEA8    | 0.256    | 2.156       | IFIUNCH1 | 0.657    | 2.557       |
| IDEA7    | 0.249    | 2.149       | IFIUNCH0 | 0.506    | 2.406       |
| IDEA6    | 0.344    | 2.244       | PHEVA    | 1.405    | 3.305       |
| IDEA5    | 0.235    | 2.135       | IFIEVA   | 0.311    | 2.211       |
| IDEA4    | 0.244    | 2.144       | IFIMODE2 | 0.586    | 2.486       |
| IDEA3    | 0.235    | 2.135       | IFIROBE  | 0.413    | 2.313       |
| IDEA2    | 0.274    | 2.174       | IFIROPR  | 0.523    | 2.423       |
| IDEA1    | 0.259    | 2.159       | IFIRASE  | 1.053    | 2.953       |
| IDEA0    | 0.234    | 2.134       | IFIRABE  | 0.610    | 2.510       |
| EINTLV6  | 0.034    | 1.934       | IFIMODE3 | 0.642    | 2.542       |
| EINTLV5  | 0.062    | 1.962       | IFIUSWE  | 0.377    | 2.277       |
| EINTLV4  | 0.040    | 1.940       | FCOMB    | 0.131    | 2.031       |
| EINTLV3  | 0.013    | 1.913       | TBI39    | 0.013    | 1.913       |
| EINTLV2  | 0.066    | 1.966       | TBI38    | 0.013    | 1.913       |
| EINTLV1  | 0.046    | 1.946       | TBI37    | 0.060    | 1.960       |
| EINTLV0  | 0.055    | 1.955       | TBI36    | 0.034    | 1.934       |
| EINTRQ   | 0.048    | 1.948       | TBI35    | 0.023    | 1.923       |
| DCK      | 0.408    | 2.308       | TBI34    | 0.007    | 1.907       |
| DMS      | 0.196    | 2.096       | TBI33    | 0.031    | 1.931       |
| DDI      | 0.016    | 1.916       | TBI32    | 0.014    | 1.914       |
| DRSTZ    | 0.014    | 1.914       | TBI31    | 0.017    | 1.917       |
| MWAIT    | 0.065    | 1.965       | TBI30    | 0.017    | 1.917       |
| DBINT    | 0.074    | 1.974       | TBI29    | 0.021    | 1.921       |
| ROMTYPE  | 0.080    | 1.980       | TBI28    | 0.011    | 1.911       |
| EVASTB   | 0.410    | 2.310       | TBI27    | 0.028    | 1.928       |
| EVDSTB   | 0.181    | 2.081       | TBI26    | 0.018    | 1.918       |
| EVIREL   | 0.135    | 2.035       | TBI25    | 0.010    | 1.910       |
| EVCLRIP  | 0.225    | 2.125       | TBI24    | 0.023    | 1.923       |
| EVINTAK  | 0.133    | 2.033       | TBI23    | 0.021    | 1.921       |
| IFIROME  | 0.462    | 2.362       | TBI22    | 0.034    | 1.934       |
| IFIROB2  | 0.550    | 2.450       | TBI21    | 0.158    | 2.058       |
| IFIRA64  | 1.016    | 2.916       | TBI20    | 0.168    | 2.068       |

# (1) Input pins (5/5)

| Pin Name | C <sub>IN</sub> (pF) | Cinewl (pF) | Pin Name | Cin (pF) | Cinewl (pF) |
|----------|----------------------|-------------|----------|----------|-------------|
| TBI19    | 0.103                | 2.003       | TBI7     | 0.022    | 1.922       |
| TBI18    | 0.186                | 2.086       | TBI6     | 0.047    | 1.947       |
| TBI17    | 0.190                | 2.090       | TBI5     | 0.032    | 1.932       |
| TBI16    | 0.171                | 2.071       | TBI4     | 0.013    | 1.913       |
| TBI15    | 0.008                | 1.908       | TBI3     | 0.016    | 1.916       |
| TBI14    | 0.032                | 1.932       | TBI2     | 0.007    | 1.907       |
| TBI13    | 0.041                | 1.941       | TBI1     | 0.043    | 1.943       |
| TBI12    | 0.031                | 1.931       | TBI0     | 0.025    | 1.925       |
| TBI11    | 0.042                | 1.942       | TEST     | 0.305    | 2.205       |
| TBI10    | 0.041                | 1.941       | BUNRI    | 0.459    | 2.359       |
| TBI9     | 0.025                | 1.925       | PHTDO1   | 0.545    | 2.445       |
| TBI8     | 0.031                | 1.931       | PHTDO0   | 0.540    | 2.440       |

### (2) Output pins (1/4)

| Pin Name | Смах (рF) | Cin (pF) | Cinewl (pF) | Pin Name | Смах (рF) | Cin (pF) | Cinewl (pF) |
|----------|-----------|----------|-------------|----------|-----------|----------|-------------|
| VPA13    | 12.854    | -        | -           | STPRQ    | 12.443    | -        | -           |
| VPA12    | 12.877    | -        | _           | DMTCO3   | 12.973    | -        | _           |
| VPA11    | 12.799    | -        | _           | DMTCO2   | 12.905    | -        | -           |
| VPA10    | 13.300    | -        | _           | DMTCO1   | 13.145    | _        | _           |
| VPA9     | 12.852    | -        | _           | DMTCO0   | 13.157    | _        | _           |
| VPA8     | 12.801    | -        | _           | DMACTV3  | 13.185    | -        | -           |
| VPA7     | 13.284    | -        | _           | DMACTV2  | 13.275    | -        | _           |
| VPA6     | 13.272    | -        | -           | DMACTV1  | 13.229    | -        | -           |
| VPA5     | 13.242    | -        | _           | DMACTV0  | 13.338    | -        | _           |
| VPA4     | 13.102    | -        | _           | IROMA19  | 13.056    | -        | _           |
| VPA3     | 13.149    | -        | _           | IROMA18  | 13.071    | -        | -           |
| VPA2     | 13.192    | -        | _           | IROMA17  | 13.069    | _        | _           |
| VPA1     | 12.839    | -        | -           | IROMA16  | 13.069    | -        | -           |
| VPA0     | 13.188    | -        | _           | IROMA15  | 13.068    | -        | -           |
| VPWRITE  | 13.151    | -        | _           | IROMA14  | 13.334    | -        | -           |
| VPSTB    | 12.758    | -        | -           | IROMA13  | 13.333    | -        | -           |
| VPLOCK   | 13.025    | 1        | -           | IROMA12  | 13.332    | -        | -           |
| VPUBENZ  | 13.191    | -        | _           | IROMA11  | 13.055    | _        | _           |
| VAACK    | 12.977    | -        | -           | IROMA10  | 13.329    | -        | -           |
| VBDC     | 13.018    | -        | _           | IROMA9   | 13.064    | _        | _           |
| CLKB1    | 13.071    | -        | _           | IROMA8   | 13.328    | _        | _           |
| SWSTOPRQ | 12.778    | -        | _           | IROMA7   | 13.338    | _        | _           |
| HWSTOPRQ | 12.945    | -        | _           | IROMA6   | 13.062    | -        | -           |

# (2) Output pins (2/4)

| Pin Name | Смах (рF) | Cin (pF) | Cinewl (pF) | Pin Name | Смах (рF) | C <sub>IN</sub> (pF) | Cinewl (pF) |
|----------|-----------|----------|-------------|----------|-----------|----------------------|-------------|
| IROMA5   | 13.071    | _        | -           | IRAOZ26  | 13.291    | -                    | -           |
| IROMA4   | 13.059    | -        | -           | IRAOZ25  | 13.331    | -                    | -           |
| IROMA3   | 13.046    | -        | =           | IRAOZ24  | 13.286    | -                    | -           |
| IROMA2   | 13.052    | -        | -           | IRAOZ23  | 13.326    | -                    | -           |
| IROMEN   | 13.056    | -        | -           | IRAOZ22  | 13.334    | -                    | -           |
| IROMCS   | 13.055    | -        | -           | IRAOZ21  | 13.336    | -                    | -           |
| IROMIA   | 12.985    | -        | -           | IRAOZ20  | 13.336    | -                    | -           |
| IROMAE   | 13.006    | =        | -           | IRAOZ19  | 13.327    | -                    | -           |
| IRAMA27  | 13.071    | _        | -           | IRAOZ18  | 13.312    | 1                    | -           |
| IRAMA26  | 13.291    | -        | -           | IRAOZ17  | 13.269    | ı                    | -           |
| IRAMA25  | 13.006    | -        |             | IRAOZ16  | 13.103    | -                    | -           |
| IRAMA24  | 13.322    | -        | -           | IRAOZ15  | 13.260    | ı                    | -           |
| IRAMA23  | 13.325    | _        | _           | IRAOZ14  | 13.314    | -                    | -           |
| IRAMA22  | 13.332    | -        | -           | IRAOZ13  | 13.335    | ı                    | -           |
| IRAMA21  | 13.009    | _        | _           | IRAOZ12  | 13.292    | -                    | -           |
| IRAMA20  | 13.325    | -        | -           | IRAOZ11  | 13.118    | -                    | -           |
| IRAMA19  | 13.323    | _        | -           | IRAOZ10  | 13.275    | -                    | -           |
| IRAMA18  | 13.297    | -        | -           | IRAOZ9   | 13.333    | -                    | -           |
| IRAMA17  | 13.283    | _        | -           | IRAOZ8   | 13.257    | -                    | -           |
| IRAMA16  | 13.303    | -        | -           | IRAOZ7   | 13.338    | -                    | -           |
| IRAMA15  | 13.269    | _        | -           | IRAOZ6   | 13.314    | -                    | -           |
| IRAMA14  | 13.324    | _        | -           | IRAOZ5   | 13.334    | -                    | -           |
| IRAMA13  | 13.317    | -        | -           | IRAOZ4   | 13.321    | -                    | -           |
| IRAMA12  | 13.323    | _        | -           | IRAOZ3   | 13.194    | -                    | -           |
| IRAMA11  | 13.320    | =        | =           | IRAOZ2   | 13.112    | =                    | -           |
| IRAMA10  | 13.272    | -        | -           | IRAOZ1   | 13.331    | _                    | -           |
| IRAMA9   | 13.284    | -        | -           | IRAOZ0   | 13.338    | -                    | -           |
| IRAMA8   | 13.311    | _        | =           | IRAMEN   | 13.194    | -                    | -           |
| IRAMA7   | 13.270    | -        | -           | IRAMWR3  | 13.139    | -                    | -           |
| IRAMA6   | 13.274    | -        | -           | IRAMWR2  | 13.152    | -                    | -           |
| IRAMA5   | 13.270    | =        | =           | IRAMWR1  | 13.202    | =                    | -           |
| IRAMA4   | 13.273    | _        | _           | IRAMWR0  | 13.262    | -                    | -           |
| IRAMA3   | 13.329    | -        | -           | IRAMRWB  | 13.191    | -                    | -           |
| IRAMA2   | 13.319    | _        | _           | IBAACK   | 13.338    | -                    | -           |
| IRAOZ31  | 13.337    | -        | -           | IBDRDY   | 13.338    | -                    | -           |
| IRAOZ30  | 13.334    | _        | _           | IBDLE3   | 12.818    | _                    | -           |
| IRAOZ29  | 13.338    | _        | _           | IBDLE2   | 12.785    | -                    | -           |
| IRAOZ28  | 13.333    | =        | =           | IBDLE1   | 12.744    | _                    | -           |
| IRAOZ27  | 13.333    | _        | _           | IBDLE0   | 12.620    | _                    | -           |

# (2) Output pins (3/4)

| Pin Name | Смах (рF) | Cin (pF) | Cinewl (pF) | Pin Name | Смах (рF) | Cin (pF) | Cinewl (pF) |
|----------|-----------|----------|-------------|----------|-----------|----------|-------------|
| IBEDI31  | 12.929    | -        | _           | IIEA19   | 13.035    | -        | -           |
| IBEDI30  | 12.948    | I        | -           | IIEA18   | 13.061    | ı        | _           |
| IBEDI29  | 13.056    | ı        | -           | IIEA17   | 13.070    | ı        | -           |
| IBEDI28  | 12.980    | -        | _           | IIEA16   | 13.048    | -        | _           |
| IBEDI27  | 13.025    | -        | -           | IIEA15   | 13.071    | ı        | -           |
| IBEDI26  | 13.017    | ı        | _           | IIEA14   | 13.070    | ı        | _           |
| IBEDI25  | 12.969    | -        | -           | IIEA13   | 12.948    | -        | _           |
| IBEDI24  | 13.000    | -        | _           | IIEA12   | 13.057    | -        | _           |
| IBEDI23  | 12.990    | -        | -           | IIEA11   | 12.956    | -        | -           |
| IBEDI22  | 13.039    | -        | -           | IIEA10   | 12.981    | -        | -           |
| IBEDI21  | 13.044    | -        | -           | IIEA9    | 13.028    | -        | _           |
| IBEDI20  | 13.051    | -        | -           | IIEA8    | 13.005    | -        | _           |
| IBEDI19  | 13.049    | -        | -           | IIEA7    | 13.026    | -        | -           |
| IBEDI18  | 13.041    | -        | -           | IIEA6    | 13.067    | -        | _           |
| IBEDI17  | 13.033    | =        | =           | IIEA5    | 12.964    | =        | =           |
| IBEDI16  | 13.067    | -        | -           | IIEA4    | 12.999    | -        | -           |
| IBEDI15  | 13.027    | -        | -           | IIEA3    | 12.929    | -        | -           |
| IBEDI14  | 13.024    | -        | =           | IIEA2    | 12.948    | =        | =           |
| IBEDI13  | 13.061    | -        | -           | IIBTFT   | 12.924    | -        | -           |
| IBEDI12  | 13.052    | -        | =           | IIRCAN   | 12.889    | -        | =           |
| IBEDI11  | 13.048    | -        | -           | BCUNCH   | 13.062    | -        | -           |
| IBEDI10  | 13.070    | -        | -           | IDDARQ   | 13.037    | -        | -           |
| IBEDI9   | 13.038    | -        | =           | IDAACK   | 13.030    | -        | =           |
| IBEDI8   | 13.059    | -        | -           | IRRSA    | 13.287    | -        | _           |
| IBEDI7   | 13.054    | -        | =           | IDRETR   | 13.039    | -        | =           |
| IBEDI6   | 13.046    | -        | =           | IDUNCH   | 12.574    | =        | =           |
| IBEDI5   | 13.067    | -        | -           | IDDRDY   | 13.289    | -        | -           |
| IBEDI4   | 13.066    | -        | =           | IDES     | 13.049    | -        | =           |
| IBEDI3   | 13.066    | -        | =           | EINTAK   | 13.025    | =        | =           |
| IBEDI2   | 13.066    | -        | =           | ECLRIP   | 13.049    | -        | =           |
| IBEDI1   | 13.060    | -        | -           | DDO      | 13.007    | -        | _           |
| IBEDI0   | 13.065    | -        | -           | TRCCLK   | 12.885    | -        | -           |
| IIDRRQ   | 13.019    | _        |             | TRCDATA3 | 12.803    | -        | _           |
| IIEA25   | 12.985    | _        | _           | TRCDATA2 | 12.796    | _        | _           |
| IIEA24   | 12.972    | _        |             | TRCDATA1 | 12.683    | -        | _           |
| IIEA23   | 13.070    | -        | _           | TRCDATA0 | 12.852    | -        | _           |
| IIEA22   | 13.067    | -        | _           | TRCEND   | 12.736    | -        | _           |
| IIEA21   | 13.020    | _        | _           | IDBR2    | 12.638    | _        | _           |
| IIEA20   | 13.056    | -        | _           | IDBR1    | 12.206    | -        | _           |

# (2) Output pins (4/4)

| Pin Name | Смах (рF) | Cin (pF) | Cinewl (pF) | Pin Name | C <sub>MAX</sub> (pF) | Cin (pF) | Cinewl (pF) |
|----------|-----------|----------|-------------|----------|-----------------------|----------|-------------|
| IDBR0    | 12.673    | _        | -           | TBO27    | 6.493                 | 0.137    | 2.037       |
| EVTTRG   | 13.238    | -        | -           | TBO26    | 6.276                 | 0.353    | 2.253       |
| DCRESZ   | 13.071    | -        | -           | TBO25    | 6.396                 | 0.233    | 2.133       |
| DCWAIT   | 12.844    | -        | -           | TBO24    | 6.470                 | 0.159    | 2.059       |
| EXHLT    | 12.343    | -        | -           | TBO23    | 6.575                 | 0.055    | 1.955       |
| DDOOUT   | 12.869    | -        | -           | TBO22    | 6.484                 | 0.145    | 2.045       |
| DDOENB   | 12.829    | -        | -           | TBO21    | 6.578                 | 0.051    | 1.951       |
| TAPSM3   | 12.942    | -        | -           | TBO20    | 6.576                 | 0.053    | 1.953       |
| TAPSM2   | 12.851    | _        | _           | TBO19    | 6.496                 | 0.133    | 2.033       |
| TAPSM1   | 12.885    | -        | -           | TBO18    | 6.515                 | 0.114    | 2.014       |
| TAPSM0   | 12.857    | _        | _           | TBO17    | 6.487                 | 0.142    | 2.042       |
| TRG1     | 12.976    | -        | -           | TBO16    | 6.505                 | 0.124    | 2.024       |
| TRG0     | 12.610    | -        | -           | TBO15    | 6.571                 | 0.058    | 1.958       |
| DBRESZ   | 13.149    | -        | -           | TBO14    | 6.578                 | 0.052    | 1.952       |
| RESMK    | 13.316    | -        | -           | TBO13    | 6.577                 | 0.052    | 1.952       |
| MSKSTP   | 13.011    | -        | -           | TBO12    | 6.579                 | 0.050    | 1.950       |
| MSKNMI2  | 12.807    | -        | _           | TBO11    | 6.581                 | 0.048    | 1.948       |
| MSKNMI1  | 12.691    | -        | -           | TBO10    | 6.565                 | 0.064    | 1.964       |
| MSKNMI0  | 12.690    | -        | -           | TBO9     | 6.576                 | 0.053    | 1.953       |
| MSKHRQ   | 13.274    | _        | _           | TBO8     | 6.556                 | 0.074    | 1.974       |
| DBRDY    | 13.243    | -        | -           | TBO7     | 6.571                 | 0.058    | 1.958       |
| EVIEN    | 13.192    | -        | -           | TBO6     | 6.561                 | 0.068    | 1.968       |
| EVOEN    | 13.328    | _        | _           | TBO5     | 6.561                 | 0.068    | 1.968       |
| EVINTRQ  | 13.324    | -        | -           | TBO4     | 6.573                 | 0.056    | 1.956       |
| EVINTLV6 | 13.028    | -        | -           | TBO3     | 6.561                 | 0.068    | 1.968       |
| EVINTLV5 | 12.762    | -        | -           | TBO2     | 6.571                 | 0.059    | 1.959       |
| EVINTLV4 | 12.936    | -        | -           | TBO1     | 6.566                 | 0.063    | 1.963       |
| EVINTLV3 | 13.012    | -        | -           | TBO0     | 6.562                 | 0.067    | 1.967       |
| EVINTLV2 | 13.183    | _        | _           | TESEN    | 13.064                |          | -           |
| EVINTLV1 | 13.252    | -        | -           | VPTCLK   | 13.054                | -        | -           |
| EVINTLV0 | 13.006    | -        | _           | PHTDIN1  | 13.071                | -        | -           |
| TBO34    | 6.581     | 0.048    | 1.948       | PHTDIN0  | 13.071                | -        | -           |
| TBO33    | 6.577     | 0.052    | 1.952       | VPRESZ   | 13.304                | _        | _           |
| TBO32    | 6.572     | 0.057    | 1.957       | PHTEST   | 13.054                | -        | -           |
| TBO31    | 6.569     | 0.060    | 1.960       | TMODE1   | 12.802                |          | _           |
| TBO30    | 6.581     | 0.048    | 1.948       | TMODE0   | 12.737                | _        | _           |
| TBO29    | 6.576     | 0.053    | 1.953       | TBREDZ   | 13.338                | -        | _           |
| TBO28    | 6.578     | 0.051    | 1.951       |          |                       |          |             |

# (3) I/O pins (1/2)

| Pin Name | C <sub>MAX</sub> (pF) | C <sub>IN</sub> (pF) | Cinewl (pF) | Pin Name | Смах (рF) | C <sub>IN</sub> (pF) | Cinewl (pF) |
|----------|-----------------------|----------------------|-------------|----------|-----------|----------------------|-------------|
| VPD15    | 5.926                 | 0.703                | 2.603       | VBA4     | 5.515     | 1.161                | 3.061       |
| VPD14    | 5.903                 | 0.727                | 2.627       | VBA3     | 5.472     | 1.204                | 3.104       |
| VPD13    | 5.877                 | 0.752                | 2.652       | VBA2     | 5.492     | 1.184                | 3.084       |
| VPD12    | 5.841                 | 0.788                | 2.688       | VBA1     | 5.833     | 0.842                | 2.742       |
| VPD11    | 5.871                 | 0.758                | 2.658       | VBA0     | 5.772     | 0.903                | 2.803       |
| VPD10    | 5.891                 | 0.738                | 2.638       | VBD31    | 5.156     | 1.520                | 3.420       |
| VPD9     | 5.892                 | 0.737                | 2.637       | VBD30    | 5.261     | 1.414                | 3.314       |
| VPD8     | 5.897                 | 0.732                | 2.632       | VBD29    | 5.218     | 1.457                | 3.357       |
| VPD7     | 5.886                 | 0.744                | 2.644       | VBD28    | 5.245     | 1.431                | 3.331       |
| VPD6     | 5.846                 | 0.783                | 2.683       | VBD27    | 4.763     | 1.913                | 3.813       |
| VPD5     | 5.774                 | 0.855                | 2.755       | VBD26    | 4.889     | 1.786                | 3.686       |
| VPD4     | 5.741                 | 0.888                | 2.788       | VBD25    | 5.085     | 1.591                | 3.491       |
| VPD3     | 5.768                 | 0.861                | 2.761       | VBD24    | 5.168     | 1.508                | 3.408       |
| VPD2     | 5.867                 | 0.762                | 2.662       | VBD23    | 5.204     | 1.471                | 3.371       |
| VPD1     | 5.836                 | 0.793                | 2.693       | VBD22    | 5.135     | 1.541                | 3.441       |
| VPD0     | 5.860                 | 0.769                | 2.669       | VBD21    | 4.962     | 1.714                | 3.614       |
| VBA27    | 5.944                 | 0.731                | 2.631       | VBD20    | 4.982     | 1.694                | 3.594       |
| VBA26    | 5.915                 | 0.760                | 2.660       | VBD19    | 4.801     | 1.875                | 3.775       |
| VBA25    | 5.986                 | 0.690                | 2.590       | VBD18    | 4.973     | 1.703                | 3.603       |
| VBA24    | 5.985                 | 0.691                | 2.591       | VBD17    | 5.199     | 1.477                | 3.377       |
| VBA23    | 5.945                 | 0.731                | 2.631       | VBD16    | 4.879     | 1.797                | 3.697       |
| VBA22    | 5.920                 | 0.756                | 2.656       | VBD15    | 3.517     | 1.607                | 3.507       |
| VBA21    | 5.932                 | 0.744                | 2.644       | VBD14    | 3.581     | 1.542                | 3.442       |
| VBA20    | 5.935                 | 0.741                | 2.641       | VBD13    | 4.948     | 1.775                | 3.675       |
| VBA19    | 5.915                 | 0.761                | 2.661       | VBD12    | 5.215     | 1.507                | 3.407       |
| VBA18    | 5.819                 | 0.857                | 2.757       | VBD11    | 4.863     | 1.860                | 3.760       |
| VBA17    | 5.906                 | 0.770                | 2.670       | VBD10    | 3.578     | 1.546                | 3.446       |
| VBA16    | 5.910                 | 0.765                | 2.665       | VBD9     | 3.435     | 1.688                | 3.588       |
| VBA15    | 5.922                 | 0.754                | 2.654       | VBD8     | 3.500     | 1.624                | 3.524       |
| VBA14    | 5.905                 | 0.771                | 2.671       | VBD7     | 4.892     | 1.831                | 3.731       |
| VBA13    | 5.656                 | 1.020                | 2.920       | VBD6     | 3.637     | 1.487                | 3.387       |
| VBA12    | 5.790                 | 0.886                | 2.786       | VBD5     | 3.535     | 1.588                | 3.488       |
| VBA11    | 5.491                 | 1.185                | 3.085       | VBD4     | 3.528     | 1.596                | 3.496       |
| VBA10    | 5.531                 | 1.145                | 3.045       | VBD3     | 4.727     | 1.996                | 3.896       |
| VBA9     | 5.630                 | 1.046                | 2.946       | VBD2     | 3.492     | 1.631                | 3.531       |
| VBA8     | 5.652                 | 1.024                | 2.924       | VBD1     | 3.463     | 1.661                | 3.561       |
| VBA7     | 5.415                 | 1.260                | 3.160       | VBD0     | 4.814     | 1.909                | 3.809       |
| VBA6     | 5.430                 | 1.245                | 3.145       | VBTTYP1  | 5.956     | 0.719                | 2.619       |
| VBA5     | 5.438                 | 1.238                | 3.138       | VBTTYP0  | 5.982     | 0.694                | 2.594       |

# (3) I/O pins (2/2)

|          |                       | ı        | ı           |          |           |                      |             |
|----------|-----------------------|----------|-------------|----------|-----------|----------------------|-------------|
| Pin Name | C <sub>MAX</sub> (pF) | Cin (pF) | Cinewl (pF) | Pin Name | Смах (рF) | C <sub>IN</sub> (pF) | Cinewl (pF) |
| VBSTZ    | 5.750                 | 0.925    | 2.825       | IDED20   | 5.929     | 0.700                | 2.600       |
| VBBENZ3  | 5.984                 | 0.691    | 2.591       | IDED19   | 5.956     | 0.673                | 2.573       |
| VBBENZ2  | 6.001                 | 0.674    | 2.574       | IDED18   | 5.987     | 0.642                | 2.542       |
| VBBENZ1  | 5.847                 | 0.829    | 2.729       | IDED17   | 5.940     | 0.689                | 2.589       |
| VBBENZ0  | 6.006                 | 0.670    | 2.570       | IDED16   | 5.895     | 0.734                | 2.634       |
| VBSIZE1  | 5.884                 | 0.792    | 2.692       | IDED15   | 5.884     | 0.745                | 2.645       |
| VBSIZE0  | 5.898                 | 0.778    | 2.678       | IDED14   | 5.876     | 0.753                | 2.653       |
| VBWRITE  | 5.725                 | 0.950    | 2.850       | IDED13   | 5.998     | 0.631                | 2.531       |
| VBLOCK   | 5.820                 | 0.856    | 2.756       | IDED12   | 5.937     | 0.692                | 2.592       |
| VBCTYP2  | 5.904                 | 0.771    | 2.671       | IDED11   | 5.915     | 0.714                | 2.614       |
| VBCTYP1  | 5.955                 | 0.721    | 2.621       | IDED10   | 5.923     | 0.706                | 2.606       |
| VBCTYP0  | 5.941                 | 0.735    | 2.635       | IDED9    | 5.891     | 0.739                | 2.639       |
| VBSEQ2   | 5.952                 | 0.724    | 2.624       | IDED8    | 5.917     | 0.713                | 2.613       |
| VBSEQ1   | 5.957                 | 0.719    | 2.619       | IDED7    | 5.985     | 0.645                | 2.545       |
| VBSEQ0   | 5.971                 | 0.704    | 2.604       | IDED6    | 6.021     | 0.608                | 2.508       |
| VBBSTR   | 5.972                 | 0.704    | 2.604       | IDED5    | 5.828     | 0.801                | 2.701       |
| VBWAIT   | 4.961                 | 1.715    | 3.615       | IDED4    | 5.858     | 0.771                | 2.671       |
| VBLAST   | 5.842                 | 0.834    | 2.734       | IDED3    | 5.901     | 0.729                | 2.629       |
| VBAHLD   | 5.771                 | 0.905    | 2.805       | IDED2    | 6.034     | 0.595                | 2.495       |
| VDCSZ7   | 6.017                 | 0.659    | 2.559       | IDED1    | 6.031     | 0.598                | 2.498       |
| VDCSZ6   | 6.044                 | 0.632    | 2.532       | IDED0    | 5.928     | 0.701                | 2.601       |
| VDCSZ5   | 6.015                 | 0.661    | 2.561       | EVAD15   | 5.875     | 0.754                | 2.654       |
| VDCSZ4   | 6.020                 | 0.656    | 2.556       | EVAD14   | 5.905     | 0.724                | 2.624       |
| VDCSZ3   | 6.036                 | 0.640    | 2.540       | EVAD13   | 5.818     | 0.811                | 2.711       |
| VDCSZ2   | 6.017                 | 0.659    | 2.559       | EVAD12   | 5.849     | 0.780                | 2.680       |
| VDCSZ1   | 5.983                 | 0.693    | 2.593       | EVAD11   | 5.830     | 0.799                | 2.699       |
| VDCSZ0   | 6.036                 | 0.640    | 2.540       | EVAD10   | 5.827     | 0.802                | 2.702       |
| VDSELPZ  | 5.599                 | 1.077    | 2.977       | EVAD9    | 5.821     | 0.808                | 2.708       |
| IDED31   | 5.888                 | 0.742    | 2.642       | EVAD8    | 5.783     | 0.846                | 2.746       |
| IDED30   | 5.862                 | 0.767    | 2.667       | EVAD7    | 5.772     | 0.857                | 2.757       |
| IDED29   | 5.927                 | 0.702    | 2.602       | EVAD6    | 5.814     | 0.815                | 2.715       |
| IDED28   | 5.964                 | 0.666    | 2.566       | EVAD5    | 5.849     | 0.780                | 2.680       |
| IDED27   | 5.944                 | 0.685    | 2.585       | EVAD4    | 5.747     | 0.882                | 2.782       |
| IDED26   | 5.907                 | 0.723    | 2.623       | EVAD3    | 5.850     | 0.779                | 2.679       |
| IDED25   | 5.896                 | 0.733    | 2.633       | EVAD2    | 5.845     | 0.784                | 2.684       |
| IDED24   | 5.928                 | 0.701    | 2.601       | EVAD1    | 5.828     | 0.801                | 2.701       |
| IDED23   | 5.944                 | 0.686    | 2.586       | EVAD0    | 5.820     | 0.809                | 2.709       |
| IDED22   | 5.898                 | 0.731    | 2.631       | EVLKRT   | 5.981     | 0.648                | 2.548       |
|          |                       |          |             | LVLIXIXI | J.301     | 0.040                | 2.040       |
| IDED21   | 5.973                 | 0.656    | 2.556       | ]        |           |                      |             |

### 9. 2 Initialization of Internal Registers

Before executing the test program, be sure to execute an instruction to assign initial values to the internal registers used in test program execution. Failure to do this will result in the propagation of undefined values.

### 9. 3 Pin Functions

(1/5)

|                | Pin Name                              | I/O    | Function                                                   |
|----------------|---------------------------------------|--------|------------------------------------------------------------|
| NPB pins       | VPA13 to VPA0                         | Output | Address output for peripheral macro connected to NPB       |
|                | VPD15 to VPD0 <sup>Note</sup>         | I/O    | Data I/O for peripheral macro connected to NPB             |
|                | VPWRITE                               | Output | Write access strobe output of signals VPD15 to VPD0        |
|                | VPSTB                                 | Output | Data strobe output of signals VPD15 to VPD0                |
|                | VPLOCK                                | Output | Bus lock output                                            |
|                | VPUBENZ                               | Output | Upper byte enable output                                   |
|                | VPRETR <sup>Note</sup>                | Input  | Retry request input from peripheral macro connected to NPB |
|                | VPDACT                                | Input  | Retry function control input                               |
| VSB pins       | VAREQ                                 | Input  | Bus access right request input                             |
|                | VAACK                                 | Output | Bus access right acknowledge output                        |
|                | VBA27 to VBA0 <sup>Note</sup>         | I/O    | Address I/O for peripheral macro connected to VSB          |
|                | VBD31 to VBD0 <sup>Note</sup>         | I/O    | Data I/O for peripheral macro connected to VSB             |
|                | VBTTYP1, VBTTYP0 <sup>Note</sup>      | I/O    | Bus transfer type I/O                                      |
|                | VBSTZ <sup>Note</sup>                 | I/O    | Transfer start I/O                                         |
|                | VBBENZ3 to<br>VBBENZ0 <sup>Note</sup> | I/O    | Byte enable I/O                                            |
|                | VBSIZE1, VBSIZE0 <sup>Note</sup>      | I/O    | Transfer size I/O                                          |
|                | VBWRITE <sup>Note</sup>               | I/O    | Read/write status I/O                                      |
|                | VBLOCK <sup>Note</sup>                | I/O    | Bus lock I/O                                               |
|                | VBCTYP2 to VBCTYP0 <sup>Note</sup>    | I/O    | Bus cycle status I/O                                       |
|                | VBSEQ2 to VBSEQ0 <sup>Note</sup>      | I/O    | Sequential status I/O                                      |
|                | VBBSTR <sup>Note</sup>                | I/O    | Burst read status I/O                                      |
|                | VBWAIT <sup>Note</sup>                | I/O    | Wait response I/O                                          |
|                | VBLAST <sup>Note</sup>                | I/O    | Last response I/O                                          |
|                | VBAHLD <sup>Note</sup>                | I/O    | Address hold response I/O                                  |
|                | VBDC                                  | Output | Data bus direction control output                          |
|                | VDCSZ7 to VDCSZ0 <sup>Note</sup>      | I/O    | Chip select I/O                                            |
|                | VDSELPZ <sup>Note</sup>               | I/O    | Peripheral I/O area access status I/O                      |
| System control | RESETZ                                | Input  | System reset input                                         |
| pins           | VBCLK                                 | Input  | Internal system clock input                                |
|                | CLKB1                                 | Output | Internal system clock output                               |
|                | CGREL                                 | Input  | Clock generator release input                              |
|                | SWSTOPRQ                              | Output | Software STOP mode request output to clock generator       |
|                | HWSTOPRQ                              | Output | Hardware STOP mode request output to clock generator       |
|                | STOPZ                                 | Input  | Hardware STOP mode request input                           |
|                | STPRQ                                 | Output | Hardware/software STOP mode request output to MEMC         |
|                | STPAK                                 | Input  | Acknowledge input for input of STPRQ of MEMC               |

Note Connected internally to the bus holder.

(2/5)

|                   |                    |        | (2/5)                                                  |  |
|-------------------|--------------------|--------|--------------------------------------------------------|--|
|                   | Pin Name           | I/O    | Function                                               |  |
| DMAC pins         | IDMASTP            | Input  | DMA transfer terminate input                           |  |
|                   | DMARQ3 to DMARQ0   | Input  | DMA transfer request input                             |  |
|                   | DMTCO3 to DMTCO0   | Output | Terminal count (DMA transfer completed) output         |  |
|                   | DMACTV3 to DMACTV0 | Output | DMA acknowledge output                                 |  |
| INTC pins         | NMI2 to NMI0       | Input  | Non-maskable interrupt request (NMI) input             |  |
|                   | INT63 to INT0      | Input  | Maskable interrupt request input                       |  |
| VFB pins          | IROMA19 to IROMA2  | Output | Address output for ROM                                 |  |
|                   | IROMZ31 to IROMZ0  | Input  | Data input for ROM                                     |  |
|                   | IROMEN             | Output | Access enable output for ROM                           |  |
|                   | IROMWT             | Input  | Wait input for ROM                                     |  |
|                   | IROMCS             | Output | NEC reserved pin (leave open)                          |  |
|                   | IROMIA             | Output |                                                        |  |
|                   | IROMAE             | Output |                                                        |  |
| VDB pins          | IRAMA27 to IRAMA2  | Output | Address output for RAM                                 |  |
|                   | IRAMZ31 to IRAMZ0  | Input  | Data input for RAM                                     |  |
|                   | IRAOZ31 to IRAOZ0  | Output | Data output for RAM                                    |  |
|                   | IRAMEN             | Output | Access enable output for RAM                           |  |
|                   | IRAMWR3 to IRAMWR0 | Output | Write enable output for RAM                            |  |
|                   | IRAMRWB            | Output | Read/write status output for RAM                       |  |
|                   | IRAMWT             | Input  | Wait input for RAM                                     |  |
| Instruction cache | IBDRRQ             | Input  | Fetch request input from instruction cache             |  |
| pins              | IBEA25 to IBEA2    | Input  | Fetch address input from instruction cache             |  |
|                   | IBAACK             | Output | Address acknowledge output to instruction cache        |  |
|                   | IBDRDY             | Output | Data ready output to instruction cache                 |  |
|                   | IBDLE3 to IBDLE0   | Output | Data latch enable output to instruction cache          |  |
|                   | IBEDI31 to IBEDI0  | Output | Data output to instruction cache                       |  |
|                   | IIDRRQ             | Output | Fetch request output to instruction cache              |  |
|                   | IIEA25 to IIEA2    | Output | Fetch address output to instruction cache              |  |
|                   | IIAACK             | Input  | Address acknowledge input from instruction cache       |  |
|                   | IIDLEF             | Input  | Data latch enable input from instruction cache         |  |
|                   | IIEDI31 to IIEDI0  | Input  | Data input from instruction cache                      |  |
|                   | IIBTFT             | Output | Branch target fetch status output to instruction cache |  |
|                   | IIRCAN             | Output | Code cancel status output to instruction cache         |  |
|                   | BCUNCH             | Output | Uncache status output to instruction cache             |  |
|                   | IBBTFT             | Input  | NEC reserved pin (input a low level)                   |  |
|                   |                    | •      | •                                                      |  |

(3/5)

| Pin Name               |                                   | I/O    | (3/5)<br>Function                               |  |
|------------------------|-----------------------------------|--------|-------------------------------------------------|--|
| Data cache pins IDDARQ |                                   | Output | Read/write access request output to data cache  |  |
|                        | IDAACK                            | Output | Acknowledge output                              |  |
|                        | IDDRRQ                            | Input  | VSB read operation request input to BCU         |  |
|                        | IDDWRQ                            | Input  | VSB write operation request input to BCU        |  |
|                        | IDSEQ4                            | Input  | Read/write operation type setting input         |  |
|                        | IDSEQ2                            | Input  | Read/write operation type setting input         |  |
|                        | IRRSA                             | Output | VDB hold status output                          |  |
|                        | IDRETR                            | Output | Read retry request output                       |  |
|                        | IDUNCH                            | Output | Uncache status output                           |  |
|                        | IDDRDY                            | Output | Read data ready output                          |  |
|                        | IDRRDY                            | Input  | Read data ready input from data cache           |  |
|                        | IDHUM                             | Input  | Hit under miss-hit read input                   |  |
|                        | IDEA27 to IDEA0                   | Input  | Address input                                   |  |
|                        | IDED31 to IDED0 <sup>Note 1</sup> | I/O    | Data I/O                                        |  |
|                        | IDES                              | Output | NEC reserved pin <sup>Note 2</sup>              |  |
| External INTC          | EINTLV6 to EINTLV0                | Input  | Interrupt type input from external INTC         |  |
| pins                   | EINTRQ                            | Input  | Interrupt request input from external INTC      |  |
|                        | EINTAK                            | Output | Interrupt acknowledge output to external INTC   |  |
|                        | ECLRIP                            | Output | Interrupt servicing end output to external INTC |  |
| DCU pins               | DCK                               | Input  | Clock input for DCU                             |  |
|                        | DMS                               | Input  | Debug mode selection input                      |  |
|                        | DDI                               | Input  | Debug data input                                |  |
|                        | DDO                               | Output | Debug data output                               |  |
|                        | DRSTZ                             | Input  | Reset input for DCU                             |  |
|                        | TRCCLK                            | Output | Trace clock output                              |  |
|                        | TRCDATA3 to TRCDATA0              | Output | Trace data output                               |  |
|                        | TRCEND                            | Output | Trace processing end output                     |  |
|                        | IDBR2 to IDBR0                    | Output | Debug mode output                               |  |
|                        | EVTTRG                            | Output | Event trigger output                            |  |
|                        | DCRESZ                            | Output | Forcible reset output                           |  |
|                        | MWAIT                             | Input  | Wait insertion control input                    |  |
|                        | DCWAIT                            | Output | Wait insertion control output                   |  |
|                        | EXHLT                             | Output | HALT mode status output                         |  |

**Notes 1.** Connected internally to the bus holder.

**2.** When using the data cache, always connect this pin to the IDES pin of the data cache. Leave open when unused.

(4/5)

| Pin Name       |                                 | I/O    | Function (4/5                                            |
|----------------|---------------------------------|--------|----------------------------------------------------------|
| DCU pins       | DBINT                           | Input  | External debug interrupt input                           |
|                | ROMTYPE                         | Input  | NEC reserved pin (input a low level)                     |
|                | DDOOUT                          | Output | NEC reserved pin (leave open)                            |
|                | DDOENB                          | Output |                                                          |
|                | TAPSM3 to TAPSM0                | Output |                                                          |
|                | TRG1, TRG0                      | Output |                                                          |
|                | DBRESZ                          | Output |                                                          |
|                | RESMK                           | Output |                                                          |
|                | MSKSTP                          | Output |                                                          |
|                | MSKNMI2 to MSKNMI0              | Output |                                                          |
|                | MSKHRQ                          | Output |                                                          |
|                | DBRDY                           | Output |                                                          |
| Peripheral EVA | EVASTB                          | Input  | Address strobe input                                     |
| chip mode pins | EVDSTB                          | Input  | Data strobe input                                        |
|                | EVAD15 to EVAD0 <sup>Note</sup> | I/O    | Address/data I/O                                         |
|                | EVIEN                           | Output | EVADn input enable output (n = 15 to 0)                  |
|                | EVOEN                           | Output | EVADn output enable output (n = 15 to 0)                 |
|                | EVLKRT <sup>Note</sup>          | I/O    | Lock/retry I/O                                           |
|                | EVIREL                          | Input  | Standby release input                                    |
|                | EVCLRIP                         | Input  | ISPR clear input                                         |
|                | EVINTAK                         | Input  | Interrupt acknowledge input                              |
|                | EVINTRQ                         | Output | Interrupt request output                                 |
|                | EVINTLV6 to EVINTLV0            | Output | Interrupt vector output                                  |
| Operation mode | IFIROME                         | Input  | ROM mapping enable input                                 |
| setting pins   | IFIROB2                         | Input  | Location setting input of ROM area                       |
|                | IFIRA64                         | Input  | RAM area size selection input                            |
|                | IFIRA32                         | Input  | RAM area size selection input                            |
|                | IFIRA16                         | Input  | RAM area size selection input                            |
|                | IFIMAEN                         | Input  | Misalign access setting input                            |
|                | IFID256                         | Input  | Data area setting input                                  |
|                | IFINSZ1, IFINSZ0                | Input  | VSB data bus size selection input                        |
|                | IFIWRTH                         | Input  | Data cache write-back/write-through mode selection input |

**Note** Connected internally to the bus holder.

(5/5)

|                | Pin Name                       | I/O    | Function (5/5)                              |
|----------------|--------------------------------|--------|---------------------------------------------|
| Operation mode | IFIUNCH1                       | Input  | Data cache setting input                    |
| setting pins   | IFIUNCH0                       | Input  | Instruction cache setting input             |
|                | PHEVA                          | Input  | Peripheral EVA chip mode setting input      |
|                | IFIEVA                         | Input  | External INTC/internal INTC selection input |
|                | IFIMODE2                       | Input  | NEC reserved pin (input a low level)        |
|                | IFIROBE                        | Input  |                                             |
|                | IFIROPR                        | Input  |                                             |
|                | IFIRASE                        | Input  |                                             |
|                | IFIRABE                        | Input  |                                             |
|                | IFIMODE3                       | Input  |                                             |
|                | IFIUSWE                        | Input  |                                             |
|                | FCOMB                          | Input  |                                             |
| Test mode pins | TBI39 to TBI0 Input            |        | Input test bus                              |
|                | TBO34 to TBO0                  | Output | Output test bus                             |
|                | TEST                           | Input  | Test bus control input                      |
|                | BUNRI                          | Input  | Normal/test mode selection input            |
|                | PHTDO1, PHTDO0 <sup>Note</sup> | Input  | Peripheral macro test input                 |
|                | TESEN                          | Output | Peripheral macro test enable output         |
|                | VPTCLK                         | Output | Clock output for peripheral macro test      |
|                | PHTDIN1, PHTDIN0               | Output | Peripheral macro test output                |
|                | VPRESZ                         | Output | Peripheral macro reset output               |
|                | PHTEST                         | Output | Peripheral test mode status output          |
|                | TMODE1, TMODE0                 | Output | NEC reserved pin (leave open)               |
|                | TBREDZ                         | Output |                                             |

**Note** Connected internally to the bus holder.

#### 9. 4 Electrical Specifications (Preliminary)

The following specifications are for a single macro. An actual chip consists of two or more macros. Design the system so that all the specifications of the individual macros are satisfied when the chip is used.

#### 9. 4. 1 Absolute maximum ratings

| Parameter                     | Symbol          | Ratings      | Unit |
|-------------------------------|-----------------|--------------|------|
| Supply voltage                | V <sub>DD</sub> | -0.5 to +4.6 | ٧    |
| Operating ambient temperature | TA              | -40 to +85   | °C   |
| Storage temperature           | Tstg            | –65 to +150  | °C   |

Caution Product quality may suffer if the absolute maximum rating is exceeded even momentarily for any parameter. That is, the absolute maximum ratings are rated values at which the product is on the verge of suffering physical damage, and therefore the product must be used under conditions that ensure that the absolute maximum ratings are not exceeded.

#### 9. 4. 2 Recommended operation range

| Parameter                     | Symbol          | MIN. | TYP. | MAX. | Unit |
|-------------------------------|-----------------|------|------|------|------|
| Supply voltage                | V <sub>DD</sub> | 3.0  | 3.3  | 3.6  | V    |
| Operating ambient temperature | TA              | -40  |      | +85  | °C   |
| Clock cycle                   | tсүк            | 20.0 |      |      | ns   |

#### 9. 4. 3 DC characteristics ( $T_A = -40 \text{ to } +85^{\circ}\text{C}$ , $V_{DD} = 3.3 \text{ V} \pm 0.3 \text{ V}$ )

| Parameter      | Symbol           | Conditions                                | MIN. | TYP. | MAX. | Unit   |
|----------------|------------------|-------------------------------------------|------|------|------|--------|
| Supply current | I <sub>DD1</sub> | In normal operation mode                  |      | 0.5  | 0.6  | mA/MHz |
|                | IDD2             | In HALT mode (when DMAC is not operating) |      | 0.17 | 0.2  | mA/MHz |
|                | I <sub>DD3</sub> | In STOP mode                              |      | 0    | 1.0  | μΑ     |

**Remark** The TYP. value is a reference value for when  $T_A = 25$ °C,  $V_{DD} = 3.3$  V.

4

# 9. 4. 4 AC characteristics (T<sub>A</sub> = -40 to +85°C, V<sub>DD</sub> = 3.3 V $\pm 0.3$ V)

# (1) Clock timing

|   | Parameter                    | Symbol |              | Conditions | MIN. | MAX. | Unit |
|---|------------------------------|--------|--------------|------------|------|------|------|
| * | VBCLK input cycle            | <1>    | <b>t</b> cyk |            | 20.0 |      | ns   |
| * | VBCLK input high-level width | <2>    | <b>t</b> ккн |            | 10.0 |      | ns   |
| * | VBCLK input low-level width  | <3>    | <b>t</b> kkl |            | 10.0 |      | ns   |
|   | CPU operating frequency      | -      | φ            |            | 0    | 50   | MHz  |



# (2) Reset timing

| Parameter                                   | Symbol |               | Conditions | MIN. | MAX. | Unit |
|---------------------------------------------|--------|---------------|------------|------|------|------|
| RESETZ setup time (to VBCLK↑)               | <4>    | tskr          |            | 2.3  |      | ns   |
| RESETZ hold time (from VBCLK $\downarrow$ ) | <5>    | <b>t</b> HKR  |            | 1.9  |      | ns   |
| Delay time from RESETZ to VPRESZ            | -      | <b>t</b> DRPR |            | 0.9  | 3.2  | ns   |



# (3) VSB arbitration timing

| Parameter                       | Symbol |              | Conditions | MIN. | MAX. | Unit |
|---------------------------------|--------|--------------|------------|------|------|------|
| VAREQ setup time (to VBCLK↓)    | <6>    | <b>t</b> skq |            | 0    |      | ns   |
| VAREQ hold time (from VBCLK↓)   | <7>    | tнка         |            | 3.4  |      | ns   |
| Delay time from VBCLK↓ to VAACK | <8>    | <b>t</b> dkk |            | 2.0  | 5.4  | ns   |



# (4) VSB master read timing (1/2)

| Parameter                                                | Syn  | nbol              | Conditions | MIN. | MAX. | Unit |
|----------------------------------------------------------|------|-------------------|------------|------|------|------|
| Delay time from VBCLK↑ to VBTTYP                         | <9>  | <b>t</b> DKT      |            | 1.8  | 7.0  | ns   |
| VBTTYP hold time (from VBCLK↓)                           | <10> | tнкт              |            | 3.2  |      | ns   |
| Delay time from VBCLK↑ to VBA                            | <11> | <b>t</b> dka      |            | 2.0  | 7.8  | ns   |
| Delay time from VBCLK↑ to VBSTZ, VBSIZE, VBWRITE, VBCTYP | <12> | t <sub>DKS1</sub> |            | 2.1  | 7.4  | ns   |
| Delay time from VBCLK↑ to VBBENZ                         | <13> | tDKS2             |            | 2.2  | 8.7  | ns   |
| Delay time from VBCLK↑ to VBSEQ, VBLOCK                  | <14> | t <sub>DKS3</sub> |            | 2.3  | 8.2  | ns   |
| Delay time from VBCLK↑ to VDCSZ, VDSELPZ                 | <15> | <b>t</b> DKC      |            | 2.3  | 8.0  | ns   |
| Delay time from VBCLK↑ to VBBSTR                         | <61> | <b>t</b> DKBSR    |            | 2.1  | 6.6  | ns   |
| VBD data setup time (to VBCLK↓)                          | <16> | <b>t</b> skd      |            | 0    |      | ns   |
| VBD data hold time (from VBCLK↓)                         | <17> | tнко              |            | 2.8  |      | ns   |
| VBWAIT, VBAHLD, VBLAST setup time (to VBCLK↑)            | <18> | tskw              |            | 0.6  |      | ns   |
| VBWAIT, VBAHLD, VBLAST hold time (from VBCLK↑)           | <19> | tнкw              |            | 3.5  |      | ns   |
| Delay time from VBCLK↓ to VBDC                           | <20> | tDKS4             |            | 2.2  | 6.1  | ns   |

#### (4) VSB master read timing (2/2)



**Remarks 1.** The level of the broken line portion indicates the undefined state (weak unknown) in which the bus holder in the NB85ET is driving.

Rdy: When the VBWAIT, VBAHLD, and VBLAST signals are all low level
 Wait: When the VBWAIT signal is high level, and the VBAHLD and VBLAST signals are low level

# (5) VSB master write timing (1/2)

| Parameter                                                | Symbol |                   | Conditions | MIN. | MAX. | Unit |
|----------------------------------------------------------|--------|-------------------|------------|------|------|------|
| Delay time from VBCLK <sup>↑</sup> to VBTTYP             | <9>    | <b>t</b> DKT      |            | 1.8  | 7.0  | ns   |
| VBTTYP hold time (from VBCLK↓)                           | <10>   | <b>t</b> HKT      |            | 3.2  |      | ns   |
| Delay time from VBCLK↑ to VBA                            | <11>   | <b>t</b> dka      |            | 2.0  | 8.0  | ns   |
| Delay time from VBCLK↑ to VBSTZ, VBSIZE, VBWRITE, VBCTYP | <12>   | t <sub>DKS1</sub> |            | 2.1  | 7.4  | ns   |
| Delay time from VBCLK↑ to VBBENZ                         | <13>   | t <sub>DKS2</sub> |            | 2.2  | 8.7  | ns   |
| Delay time from VBCLK↑ to VBSEQ, VBLOCK                  | <14>   | t <sub>DKS3</sub> |            | 2.3  | 8.2  | ns   |
| Delay time from VBCLK <sup>↑</sup> to VDCSZ, VDSELPZ     | <15>   | <b>t</b> DKC      |            | 2.3  | 8.0  | ns   |
| VBWAIT, VBAHLD, VBLAST setup time (to VBCLK↑)            | <18>   | tskw              |            | 0.6  |      | ns   |
| VBWAIT, VBAHLD, VBLAST hold time (from VBCLK↑)           | <19>   | tнкw              |            | 3.5  |      | ns   |
| Delay time from VBCLK↓ to VBDC                           | <20>   | t <sub>DKS4</sub> |            | 2.2  | 6.2  | ns   |
| Delay time from VBCLK↑ to VBD data                       | <21>   | t <sub>DKD0</sub> |            | 1.9  | 6.3  | ns   |
| Delay time from VBCLK↓                                   | <22>   | t <sub>DKD1</sub> |            | 2.1  | 7.1  | ns   |

#### (5) VSB master write timing (2/2)



**Remarks 1.** The level of the broken line portion indicates the undefined state (weak unknown) in which the bus holder in the NB85ET is driving.

Rdy: When the VBWAIT, VBAHLD, and VBLAST signals are all low level
 Wait: When the VBWAIT signal is high level, and the VBAHLD and VBLAST signals are low level

# (6) NPB read timing (1/2)

| Parameter                                                     | Syr  | mbol         | Conditions | MIN. | MAX. | Unit |
|---------------------------------------------------------------|------|--------------|------------|------|------|------|
| Delay time from VBCLK↓ to VPSTB                               | <23> | <b>t</b> DKP |            | 2.4  | 7.1  | ns   |
| VPSTB output high-level width                                 | <24> | <b>t</b> ssн |            | 60   |      | ns   |
| VPSTB output low-level width                                  | <25> | tssL         |            | 20   |      | ns   |
| VPA address, VPWRITE, VPLOCK, VPUBENZ setup time (to VPSTB↑)  | <26> | <b>t</b> ssa |            | 20   |      | ns   |
| VPA address, VPWRITE, VPLOCK, VPUBENZ hold time (from VPSTB↓) | <27> | thsa         |            | 20   |      | ns   |
| VPD read data setup time (to VPSTB↓)                          | <28> | tssp         |            | 20   |      | ns   |
| VPD read data hold time (from VPSTB↓)                         | <29> | <b>t</b> HSD |            | 0    |      | ns   |
| VPRETR setup time (to VPSTB↓)                                 | <30> | tssr         |            | 20   |      | ns   |
| VPRETR hold time (from VPSTB↓)                                | <31> | thsr         |            | 0    |      | ns   |
| VPDACT setup time (to VPSTB↑)                                 | <32> | tssc         |            | 20   |      | ns   |
| VPDACT hold time (from VPSTB↓)                                | <33> | tusc         |            | 20   |      | ns   |

## (6) NPB read timing (2/2)



**Remark** The level of the broken line portion indicates the undefined state (weak unknown) in which the bus holder in the NB85ET is driving.

# (7) NPB write timing (1/2)

| Parameter                                                     | Syr  | nbol         | Conditions | MIN. | MAX. | Unit |
|---------------------------------------------------------------|------|--------------|------------|------|------|------|
| Delay time from VBCLK↓ to VPSTB                               | <23> | <b>t</b> DKP |            | 2.4  | 7.1  | ns   |
| VPSTB output high-level width                                 | <24> | <b>t</b> ssн |            | 60   |      | ns   |
| VPSTB output low-level width                                  | <25> | tssL         |            | 20   |      | ns   |
| VPA address, VPWRITE, VPLOCK, VPUBENZ setup time (to VPSTB↑)  | <26> | tssa         |            | 20   |      | ns   |
| VPA address, VPWRITE, VPLOCK, VPUBENZ hold time (from VPSTB↓) | <27> | <b>t</b> HSA |            | 20   |      | ns   |
| VPD write data setup time (to VPSTB↑)                         | <28> | tssp         |            | 20   |      | ns   |
| VPD write data hold time (from VPSTB↓)                        | <29> | <b>t</b> HSD |            | 20   |      | ns   |
| VPRETR setup time (to VPSTB↓)                                 | <30> | tssr         |            | 20   |      | ns   |
| VPRETR hold time (from VPSTB↓)                                | <31> | thsr         |            | 0    |      | ns   |
| VPDACT setup time (to VPSTB↑)                                 | <32> | tssc         |            | 20   |      | ns   |
| VPDACT hold time (from VPSTB↓)                                | <33> | thsc         |            | 20   |      | ns   |

### (7) NPB write timing (2/2)



**Remark** The level of the broken line portion indicates the undefined state (weak unknown) in which the bus holder in the NB85ET is driving.

# (8) VFB access timing

| Parameter                                   | Symbol |                | Conditions | MIN. | MAX. | Unit |
|---------------------------------------------|--------|----------------|------------|------|------|------|
| Delay time from VBCLK↓ to IROMEN            | <34>   | <b>t</b> DKROE |            | 2.5  | 9.1  | ns   |
| Delay time from VBCLK <sup>↑</sup> to IROMA | <35>   | <b>t</b> dkroa |            | 2.6  | 13.7 | ns   |
| IROMZ setup time (to VBCLK↑)                | <36>   | <b>t</b> skroz |            | 3.3  |      | ns   |
| IROMZ hold time (from VBCLK↑)               | <37>   | <b>t</b> HKROZ |            | 3.2  |      | ns   |



## (9) VDB read timing

| Parameter                         | Symbol |                | Conditions | MIN. | MAX. | Unit |
|-----------------------------------|--------|----------------|------------|------|------|------|
| Delay time from VBCLK↓ to IRAMRWB | <38>   | <b>t</b> dkrar |            | 2.5  | 9.7  | ns   |
| Delay time from VBCLK↓ to IRAMEN  | <39>   | <b>t</b> DKRAE |            | 2.2  | 10.4 | ns   |
| Delay time from VBCLK↓ to IRAMA   | <40>   | <b>t</b> dkraa |            | 2.7  | 10.2 | ns   |
| IRAMZ setup time (to VBCLK↑)      | <41>   | <b>t</b> skraz |            | 4.6  |      | ns   |
| IRAMZ hold time (from VBCLK↑)     | <42>   | thkraz         |            | 3.8  |      | ns   |



### (10) VDB write timing

| Parameter                        | Symbol      |                | Conditions | MIN. | MAX. | Unit |
|----------------------------------|-------------|----------------|------------|------|------|------|
| Delay time from VBCLK↓ to IRAMWR | <43> tdkraw |                |            | 2.6  | 10.2 | ns   |
| Delay time from VBCLK↓ to IRAOZ  | <44>        | <b>t</b> DKRAZ |            | 2.5  | 10.2 | ns   |



Note Signals IRAOZ31 to IRAOZ0 are always output and do not become high impedance.

Write operations are controlled by the IRAMEN signal and signals IRAMWR3 to IRAMWR0. Data cannot be written when the IRAMEN signal is low level.

### (11) DMA transfer request, transfer completion timing

| Parameter                                  | Symbol |               | Conditions | MIN. | MAX. | Unit |
|--------------------------------------------|--------|---------------|------------|------|------|------|
| DMARQ setup time (to VBCLK $\downarrow$ )  | <45>   | <b>t</b> skdq |            | 0    |      | ns   |
| DMARQ hold time (from VBCLK <sup>↑</sup> ) | <46>   | <b>t</b> HKDQ |            | 2.3  |      | ns   |
| Delay time from VBCLK↑ to DMACTV, DMTCO    | <47>   | <b>t</b> DKDC |            | 2.1  | 6.5  | ns   |



**Remark** n = 3 to 0

## (12) DMA transfer abort timing

| Parameter                       | Symbol |       | Conditions | MIN. | MAX. | Unit |
|---------------------------------|--------|-------|------------|------|------|------|
| IDMASTP setup time (to VBCLK↑)  | <48>   | tskds |            | 3.5  |      | ns   |
| IDMASTP hold time (from VBCLK↑) | <49>   | thkds |            | 2.9  |      | ns   |



## (13) Software STOP mode timing

| Parameter                                   | Symbol |               | Conditions | MIN. | MAX. | Unit |
|---------------------------------------------|--------|---------------|------------|------|------|------|
| Delay time from VBCLK <sup>↑</sup> to STPRQ | <50>   | <b>t</b> DKSQ |            | 2.2  | 6.1  | ns   |
| STPAK setup time (to VBCLK↓)                | <51>   | <b>t</b> sksa |            | 1.0  |      | ns   |
| STPAK hold time (from STPRQ $\downarrow$ )  | <52>   | <b>t</b> HQSA |            | 9.6  |      | ns   |
| Delay time from VBCLK↓ to SWSTOPRQ↑         | <53>   | tokss         |            | 2.1  | 5.7  | ns   |
| Delay time from INT, NMI to SWSTOPRQ↓       | <54>   | torsr         |            | 0    | 20.8 | ns   |
| CGREL setup time (to VBCLK↑)                | <55>   | tsksg         |            | 0    |      | ns   |
| CGREL hold time (from VBCLK↑)               | <56>   | <b>t</b> HKSG |            | 3.2  |      | ns   |



2. Input an active level (high level) of 1 clock or more.

## (14) Hardware STOP mode timing

| Parameter                                   | Symbol |               | Conditions | MIN. | MAX. | Unit |
|---------------------------------------------|--------|---------------|------------|------|------|------|
| Delay time from VBCLK <sup>↑</sup> to STPRQ | <50>   | <b>t</b> DKSQ |            | 2.2  | 6.1  | ns   |
| STPAK setup time (to VBCLK↓)                | <51>   | tsksa         |            | 1.0  |      | ns   |
| STPAK hold time (from STPRQ↓)               | <52>   | <b>t</b> HQSA |            | 9.6  |      | ns   |
| Delay time from VBCLK↓ to HWSTOPRQ↑         | <53>   | tokss         |            | 2.2  | 5.9  | ns   |
| Delay time from STOPZ to HWSTOPRQ↓          | <54>   | torsr         |            | 0    | 20.8 | ns   |
| CGREL setup time (to VBCLK↑)                | <55>   | tsksg         |            | 0    |      | ns   |
| CGREL hold time (from VBCLK↑)               | <56>   | <b>t</b> HKSG |            | 3.2  |      | ns   |
| STOPZ setup time (to VBCLK↑)                | <57>   | <b>t</b> skst |            | 0    |      | ns   |



**Notes** 1. Hardware STOP mode is released upon detection of the rising edge of this signal.

2. Input an active level (high level) of 1 clock or more.

# (15) Interrupt timing

| Parameter                 | Symbol |              | Conditions | MIN.         | MAX. | Unit |
|---------------------------|--------|--------------|------------|--------------|------|------|
| INT, NMI high-level width | <58>   | twiн         |            | 5.0          |      | ns   |
| INT, NMI low-level width  | <59>   | twiL         |            | 5.0          |      | ns   |
| INT, NMI interval time    | <60>   | <b>t</b> cyı |            | 3 	imes tсүк |      | ns   |



# (16) DCU timing

# (a) DCK input timing

| Parameter                  | Symbol |              | Conditions | MIN. | MAX. | Unit |
|----------------------------|--------|--------------|------------|------|------|------|
| DCK input cycle            | <62>   | <b>t</b> CYD |            | 30.0 |      | ns   |
| DCK input high-level width | <63>   | <b>t</b> DDH |            | 10.0 |      | ns   |
| DCK input low-level width  | <64>   | <b>t</b> DDL |            | 10.0 |      | ns   |
| DCK rise time              | <65>   | <b>t</b> DR  |            |      | 5.0  | ns   |
| DCK fall time              | <66>   | <b>t</b> DF  |            |      | 5.0  | ns   |



# (b) DDI, DMS, DDO timing

| Parameter                                   | Symbol |               | Conditions | MIN. | MAX. | Unit |
|---------------------------------------------|--------|---------------|------------|------|------|------|
| DDI, DMS setup time (to DCK↑)               | <67>   | <b>t</b> SDTD |            | 7.0  |      | ns   |
| DDI, DMS hold time (from DCK <sup>↑</sup> ) | <68>   | <b>t</b> HDDT |            | 3.0  |      | ns   |
| Delay time from DCK↓ to DDO                 | <69>   | <b>t</b> DDDT |            | 2.0  | 10.0 | ns   |



#### **CHAPTER 10 NB85E500**

(Under Development)

The NB85E500 is used as follows according to the type of external memory that is connected.

| Target CPU Core | Types of Connected External Memory | Memory Controller (MEMC) |  |  |
|-----------------|------------------------------------|--------------------------|--|--|
| NB85E, NB85ET   | SRAM, ROM, page ROM, flash memory  | NB85E500                 |  |  |
|                 | SDRAM                              | NB85E500 + NU85E502      |  |  |

Remark For details of the NU85E502, refer to CHAPTER 12 NU85E502.

### 10.1 Outline

The NB85E500 is a basic core macro used to control external memory. It features on chip SRAM, and I/O controller, and a page ROM controller.

The NB85E500 can be used to start the external bus cycle when it is connected to the NB85E (or NB85ET) via VSB.

It can also be used to control SDRAM by connecting an SDRAM controller (NU85E502) to the NB85E500.

#### 10. 1. 1 Symbol diagram

#### **Number of grids**

34.0k grids

96.9k grids (including wiring area)

## Number of separation simulation patterns

14.3k



## 10. 1. 2 Pin capacitance

Remark C<sub>IN</sub>: Capacitance of only input pin

Cinewi: Value of CIN with wiring capacitance (estimated wire length capacitance) taken into consideration

(I = 10 mm)

## (1) Input pins (1/2)

| Pin Name | Cin (pF) | Cinewl (pF) | Pin Name | Cin (pF) | Cinewl (pF) |
|----------|----------|-------------|----------|----------|-------------|
| VBCLK    | 0.029    | 1.929       | VPSTB    | 0.009    | 1.909       |
| VBA25    | 0.081    | 1.981       | VPUBENZ  | 0.011    | 1.911       |
| VBA24    | 0.064    | 1.964       | VPA13    | 0.035    | 1.935       |
| VBA23    | 0.063    | 1.963       | VPA12    | 0.036    | 1.936       |
| VBA22    | 0.065    | 1.965       | VPA11    | 0.034    | 1.934       |
| VBA21    | 0.071    | 1.971       | VPA10    | 0.045    | 1.945       |
| VBA20    | 0.099    | 1.999       | VPA9     | 0.035    | 1.935       |
| VBA19    | 0.061    | 1.961       | VPA8     | 0.013    | 1.913       |
| VBA18    | 0.155    | 2.055       | VPA7     | 0.052    | 1.952       |
| VBA17    | 0.062    | 1.962       | VPA6     | 0.043    | 1.943       |
| VBA16    | 0.063    | 1.963       | VPA5     | 0.046    | 1.946       |
| VBA15    | 0.102    | 2.002       | VPA4     | 0.008    | 1.908       |
| VBA14    | 0.107    | 2.007       | VPA3     | 0.008    | 1.908       |
| VBA13    | 0.076    | 1.976       | VPA2     | 0.061    | 1.961       |
| VBA12    | 0.087    | 1.987       | VPA1     | 0.012    | 1.912       |
| VBA11    | 0.112    | 2.012       | VPA0     | 0.075    | 1.975       |
| VBA10    | 0.122    | 2.022       | VPWRITE  | 0.013    | 1.913       |
| VBA9     | 0.068    | 1.968       | STPRQ    | 0.182    | 2.082       |
| VBA8     | 0.091    | 1.991       | MCE      | 0.137    | 2.037       |
| VBA7     | 0.069    | 1.969       | BCPEN    | 0.131    | 2.031       |
| VBA6     | 0.096    | 1.996       | WAITZ    | 0.151    | 2.051       |
| VBA5     | 0.075    | 1.975       | HLDRQZ   | 0.135    | 2.035       |
| VBA4     | 0.068    | 1.968       | SELFREF  | 0.162    | 2.062       |
| VBA3     | 0.075    | 1.975       | CTCSI73  | 0.043    | 1.943       |
| VBA2     | 0.070    | 1.970       | CTCSI72  | 0.041    | 1.941       |
| VBA1     | 0.107    | 2.007       | CTCSI71  | 0.042    | 1.942       |
| VBA0     | 0.070    | 1.970       | CTCSI70  | 0.178    | 2.078       |
| VBCTYP2  | 0.025    | 1.925       | CTCSI63  | 0.149    | 2.049       |
| VBCTYP1  | 0.036    | 1.936       | CTCSI62  | 0.067    | 1.967       |
| VBCTYP0  | 0.049    | 1.949       | CTCSI61  | 0.136    | 2.036       |
| VPRESZ   | 0.011    | 1.911       | CTCSI60  | 0.232    | 2.132       |
| VBSEQ2   | 0.100    | 2.000       | CTCSI53  | 0.110    | 2.010       |
| VBSEQ1   | 0.092    | 1.992       | CTCSI52  | 0.105    | 2.005       |
| VBSEQ0   | 0.085    | 1.985       | CTCSI51  | 0.069    | 1.969       |
| VAACK    | 0.146    | 2.046       | CTCSI50  | 0.126    | 2.026       |

# (1) Input pins (2/2)

| Pin Name | Cin (pF) | Cinewl (pF) | Pin Name | Cin (pF) | Cinewl (pF) |
|----------|----------|-------------|----------|----------|-------------|
| CTCSI43  | 0.069    | 1.969       | CT502I10 | 0.224    | 2.124       |
| CTCSI42  | 0.064    | 1.964       | CT502I01 | 0.079    | 1.979       |
| CTCSI41  | 0.150    | 2.050       | CT502I00 | 0.090    | 1.990       |
| CTCSI40  | 0.199    | 2.099       | PHTEST   | 0.016    | 1.916       |
| CTCSI33  | 0.119    | 2.019       | PHTDIN1  | 0.014    | 1.914       |
| CTCSI32  | 0.073    | 1.973       | PHTDIN0  | 0.028    | 1.928       |
| CTCSI31  | 0.156    | 2.056       | VPTCLK   | 0.176    | 2.076       |
| CTCSI30  | 0.081    | 1.981       | MPXEN    | 0.166    | 2.066       |
| CTCSI23  | 0.079    | 1.979       | CT501I72 | 0.111    | 2.011       |
| CTCSI22  | 0.067    | 1.967       | CT501I71 | 0.025    | 1.925       |
| CTCSI21  | 0.132    | 2.032       | CT501I70 | 0.214    | 2.114       |
| CTCSI20  | 0.350    | 2.250       | CT501I62 | 0.093    | 1.993       |
| CTCSI13  | 0.168    | 2.068       | CT501I61 | 0.171    | 2.071       |
| CTCSI12  | 0.054    | 1.954       | CT501I60 | 0.044    | 1.944       |
| CTCSI11  | 0.146    | 2.046       | CT501I52 | 0.180    | 2.080       |
| CTCSI10  | 0.080    | 1.980       | CT501I51 | 0.058    | 1.958       |
| CTCSI03  | 0.134    | 2.034       | CT501I50 | 0.298    | 2.198       |
| CTCSI02  | 0.046    | 1.946       | CT501I42 | 0.044    | 1.944       |
| CTCSI01  | 0.109    | 2.009       | CT501I41 | 0.140    | 2.040       |
| CTCSI00  | 0.045    | 1.945       | CT501I40 | 0.073    | 1.973       |
| CT502I71 | 0.043    | 1.943       | CT501I32 | 0.051    | 1.951       |
| CT502I70 | 0.105    | 2.005       | CT501I31 | 0.053    | 1.953       |
| CT502I61 | 0.216    | 2.116       | CT501I30 | 0.057    | 1.957       |
| CT502I60 | 0.201    | 2.101       | CT501I22 | 0.208    | 2.108       |
| CT502I51 | 0.092    | 1.992       | CT501I21 | 0.048    | 1.948       |
| CT502I50 | 0.125    | 2.025       | CT501I20 | 0.196    | 2.096       |
| CT502I41 | 0.061    | 1.961       | CT501I12 | 0.074    | 1.974       |
| CT502I40 | 0.270    | 2.170       | CT501I11 | 0.209    | 2.109       |
| CT502I31 | 0.242    | 2.142       | CT501I10 | 0.131    | 2.031       |
| CT502I30 | 0.231    | 2.131       | CT501I02 | 0.286    | 2.186       |
| CT502I21 | 0.062    | 1.962       | CT501I01 | 0.056    | 1.956       |
| CT502I20 | 0.070    | 1.970       | CT501I00 | 0.175    | 2.075       |
| CT502I11 | 0.112    | 2.012       |          |          |             |

# (2) Output pins (1/3)

| Pin Name | Смах (рF) | Cin (pF) | Cinewl (pF) | Pin Name | CMAX (pF) | Cin (pF) | Cinewl (pF) |
|----------|-----------|----------|-------------|----------|-----------|----------|-------------|
| VAREQ    | 13.311    | _        | _           | WRZ1     | 13.298    | _        | -           |
| VBLOCK   | 6.565     | 0.063    | 1.963       | WRZ0     | 13.300    | =        | -           |
| VBTTYP1  | 6.580     | 0.049    | 1.949       | IORDZ    | 13.314    | _        | -           |
| VBTTYP0  | 6.580     | 0.048    | 1.948       | IOWRZ    | 13.323    | _        | -           |
| VBBSTR   | 6.569     | 0.059    | 1.959       | HLDAKZ   | 13.289    | _        | -           |
| VDSELPZ  | 6.574     | 0.055    | 1.955       | DC3      | 13.043    | _        | -           |
| VBWAIT   | 6.526     | 0.102    | 2.002       | DC2      | 13.067    | _        | -           |
| VBAHLD   | 6.527     | 0.102    | 2.002       | DC1      | 13.062    | _        | -           |
| VBLAST   | 6.524     | 0.104    | 2.004       | DC0      | 13.070    | -        | _           |
| STPAK    | 13.276    | _        | -           | CSZ7     | 13.338    | -        | -           |
| A25      | 13.055    | _        | -           | CSZ6     | 13.326    | -        | -           |
| A24      | 13.047    | _        | _           | CSZ5     | 13.337    | -        | _           |
| A23      | 13.001    | _        | _           | CSZ4     | 13.324    | -        | -           |
| A22      | 13.053    | _        | _           | CSZ3     | 13.333    | =        | _           |
| A21      | 13.052    | _        | _           | CSZ2     | 13.337    | =        | _           |
| A20      | 13.068    | _        | _           | CSZ1     | 13.328    | _        | _           |
| A19      | 13.060    | -        |             | CSZ0     | 13.335    | -        | -           |
| A18      | 13.049    | _        | _           | BENZ3    | 13.043    | _        | _           |
| A17      | 13.051    | _        | _           | BENZ2    | 13.047    | _        | _           |
| A16      | 13.051    | -        |             | BENZ1    | 13.048    | -        | -           |
| A15      | 13.057    | -        |             | BENZ0    | 13.043    | -        | -           |
| A14      | 13.049    | -        |             | BCYSTZ   | 13.035    | -        | -           |
| A13      | 13.024    | _        | _           | REFRQZ   | 13.296    | _        | _           |
| A12      | 13.058    | -        |             | SDCLK    | 13.066    | -        | -           |
| A11      | 13.047    | _        | _           | CTCSO74  | 13.067    | -        | -           |
| A10      | 13.066    | _        | _           | CTCSO73  | 13.064    | -        | -           |
| A9       | 13.052    | _        | _           | CTCSO72  | 13.271    | -        | -           |
| A8       | 13.063    | _        | _           | CTCSO71  | 13.067    | -        | -           |
| A7       | 13.053    | _        | _           | CTCSO70  | 13.068    | _        | _           |
| A6       | 13.051    | _        | _           | CTCSO64  | 13.059    | _        | _           |
| A5       | 13.034    | _        | _           | CTCSO63  | 13.063    | _        | _           |
| A4       | 13.029    | _        | _           | CTCSO62  | 13.064    | _        | _           |
| A3       | 13.049    | _        | _           | CTCSO61  | 13.068    | _        | _           |
| A2       | 13.044    | _        | _           | CTCSO60  | 13.061    | _        | _           |
| A1       | 13.054    | _        | _           | CTCSO54  | 13.039    | _        | _           |
| A0       | 13.055    | _        | _           | CTCSO53  | 13.051    | _        | _           |
| RDZ      | 13.012    | _        | _           | CTCSO52  | 13.237    | _        | _           |
| WRZ3     | 13.280    | _        | _           | CTCSO51  | 13.034    | _        | _           |
| WRZ2     | 13.326    | _        | _           | CTCSO50  | 13.037    | _        | _           |

# (2) Output pins (2/3)

| Pin Name | Смах (рF) | Cin (pF) | Cinewl (pF) | Pin Name | C <sub>MAX</sub> (pF) | Cin (pF) | Cinewl (pF) |
|----------|-----------|----------|-------------|----------|-----------------------|----------|-------------|
| CTCSO44  | 13.056    | -        | -           | CT502O11 | 12.972                | -        | -           |
| CTCSO43  | 13.063    | _        | -           | CT502O10 | 13.061                | _        | -           |
| CTCSO42  | 13.314    | _        | -           | CT502O01 | 13.026                | _        | -           |
| CTCSO41  | 13.048    | _        | _           | CT502O00 | 13.035                | _        | -           |
| CTCSO40  | 13.056    | _        | _           | PHTDO1   | 3.248                 | _        | -           |
| CTCSO34  | 12.963    | _        | _           | PHTDO0   | 3.296                 | _        | -           |
| CTCSO33  | 12.867    | _        | _           | ASTBZ    | 13.049                | _        | -           |
| CTCSO32  | 13.335    | _        | _           | DSTBZ    | 13.332                | _        | -           |
| CTCSO31  | 13.015    | _        | -           | MPXCZ    | 13.329                | _        | _           |
| CTCSO30  | 12.959    | _        | _           | RDCYZ    | 13.068                | _        | _           |
| CTCSO24  | 13.043    | _        | _           | BUSST    | 13.316                | _        | _           |
| CTCSO23  | 13.069    | _        | _           | CT501O73 | 13.064                | _        | _           |
| CTCSO22  | 13.311    | -        | -           | CT501O72 | 13.330                | -        | _           |
| CTCSO21  | 13.063    | _        | _           | CT501O71 | 12.967                | _        | _           |
| CTCSO20  | 13.068    | -        | -           | CT501O70 | 12.952                | -        | _           |
| CTCSO14  | 13.065    | -        | -           | CT501O63 | 13.039                | -        | _           |
| CTCSO13  | 13.063    | _        | -           | CT501O62 | 13.065                | -        | _           |
| CTCSO12  | 13.233    | -        | _           | CT501O61 | 13.056                | -        | _           |
| CTCSO11  | 13.063    | -        | -           | CT501O60 | 13.058                | -        | _           |
| CTCSO10  | 12.910    | -        | -           | CT501O53 | 13.334                | -        | _           |
| CTCSO04  | 13.030    | _        | -           | CT501O52 | 13.065                | -        | -           |
| CTCSO03  | 13.022    | _        | -           | CT501O51 | 13.061                | -        | _           |
| CTCSO02  | 13.300    | _        | -           | CT501O50 | 12.990                | -        | _           |
| CTCSO01  | 13.040    | _        | -           | CT501O43 | 13.264                | -        | _           |
| CTCSO00  | 13.041    | _        | -           | CT501O42 | 13.140                | _        | _           |
| CTLO1    | 13.326    | _        | -           | CT501O41 | 13.062                | _        | _           |
| CTLO0    | 13.062    | _        | -           | CT501O40 | 13.067                | _        | _           |
| MTEN     | 12.950    | _        | _           | CT501O33 | 13.056                | _        | _           |
| CT502O71 | 13.070    | _        | -           | CT501O32 | 12.893                | _        | _           |
| CT502O70 | 13.062    | -        | -           | CT501O31 | 13.056                | _        | _           |
| CT502O61 | 13.067    | -        | -           | CT501O30 | 13.065                | -        | _           |
| CT502O60 | 12.944    | -        | _           | CT501O23 | 13.028                | _        | _           |
| CT502O51 | 13.012    | -        | -           | CT501O22 | 13.021                | -        | _           |
| CT502O50 | 13.065    | _        | -           | CT501O21 | 12.984                | -        |             |
| CT502O41 | 13.057    | -        | _           | CT501O20 | 12.970                | -        | _           |
| CT502O40 | 12.925    | -        | -           | CT501O13 | 13.176                | -        | _           |
| CT502O31 | 13.046    | -        | _           | CT501O12 | 13.210                | -        | -           |
| CT502O30 | 13.054    | -        | _           | CT501O11 | 13.061                | -        | -           |
| CT502O21 | 12.934    | -        | _           | CT501O10 | 13.060                | -        | -           |
| CT502O20 | 12.999    | _        | _           | CT501O03 | 13.064                | _        | _           |

# (2) Output pins (3/3)

| Pin Name | C <sub>MAX</sub> (pF) | C <sub>IN</sub> (pF) | Cinewl (pF) | Pin Name | C <sub>MAX</sub> (pF) | C <sub>IN</sub> (pF) | Cinewl (pF) |
|----------|-----------------------|----------------------|-------------|----------|-----------------------|----------------------|-------------|
| CT501O10 | 13.060                | _                    | -           | RWC7     | 12.959                | _                    | _           |
| CT501O03 | 13.064                | -                    | ı           | RWC6     | 12.992                | -                    | -           |
| CT501O02 | 13.319                | _                    | -           | RWC5     | 13.062                | _                    | _           |
| CT501O01 | 13.038                | -                    | ı           | RWC4     | 13.009                | _                    | _           |
| CT501O00 | 13.029                | -                    | ı           | RWC3     | 12.929                | _                    | -           |
| ВСР      | 13.046                | -                    | ı           | RWC2     | 13.060                | _                    | _           |
| PISL     | 13.063                | _                    | ı           | RWC1     | 13.062                | _                    | _           |
| CTL501   | 12.941                | _                    | ı           | RWC0     | 13.067                | _                    | _           |

# (3) I/O pins (1/2)

| Pin Name | CMAX (pF) | Cin (pF) | Cinewl (pF) | Pin Name | CMAX (pF) | Cin (pF) | Cinewl (pF) |
|----------|-----------|----------|-------------|----------|-----------|----------|-------------|
| VDCSZ7   | 6.313     | 0.315    | 2.215       | VBD16    | 6.459     | 0.170    | 2.070       |
| VDCSZ6   | 6.282     | 0.347    | 2.247       | VBD15    | 6.509     | 0.120    | 2.020       |
| VDCSZ5   | 6.263     | 0.365    | 2.265       | VBD14    | 6.500     | 0.128    | 2.028       |
| VDCSZ4   | 6.226     | 0.403    | 2.303       | VBD13    | 6.509     | 0.120    | 2.020       |
| VDCSZ3   | 6.312     | 0.316    | 2.216       | VBD12    | 6.473     | 0.155    | 2.055       |
| VDCSZ2   | 6.233     | 0.395    | 2.295       | VBD11    | 6.407     | 0.221    | 2.121       |
| VDCSZ1   | 6.207     | 0.421    | 2.321       | VBD10    | 6.420     | 0.209    | 2.109       |
| VDCSZ0   | 6.294     | 0.335    | 2.235       | VBD9     | 6.509     | 0.120    | 2.020       |
| VBBENZ3  | 6.494     | 0.135    | 2.035       | VBD8     | 6.474     | 0.155    | 2.055       |
| VBBENZ2  | 6.496     | 0.132    | 2.032       | VBD7     | 6.459     | 0.170    | 2.070       |
| VBBENZ1  | 6.502     | 0.126    | 3.026       | VBD6     | 6.488     | 0.140    | 2.040       |
| VBBENZ0  | 6.488     | 0.141    | 2.041       | VBD5     | 6.460     | 0.169    | 2.069       |
| VBD31    | 6.509     | 0.120    | 2.020       | VBD4     | 6.489     | 0.140    | 2.040       |
| VBD30    | 6.512     | 0.117    | 2.017       | VBD3     | 6.487     | 0.142    | 2.042       |
| VBD29    | 6.519     | 0.110    | 2.010       | VBD2     | 6.511     | 0.117    | 2.017       |
| VBD28    | 6.469     | 0.160    | 2.060       | VBD1     | 6.457     | 0.171    | 2.071       |
| VBD27    | 6.508     | 0.121    | 2.021       | VBD0     | 6.452     | 0.177    | 2.077       |
| VBD26    | 6.510     | 0.119    | 2.019       | VBWRITE  | 6.455     | 0.173    | 2.073       |
| VBD25    | 6.506     | 0.123    | 2.023       | VBSTZ    | 6.389     | 0.240    | 2.140       |
| VBD24    | 6.450     | 0.179    | 2.079       | VPD15    | 6.564     | 0.111    | 2.011       |
| VBD23    | 6.490     | 0.139    | 2.039       | VPD14    | 6.492     | 0.183    | 2.083       |
| VBD22    | 6.481     | 0.147    | 2.047       | VPD13    | 6.487     | 0.188    | 2.088       |
| VBD21    | 6.485     | 0.144    | 2.044       | VPD12    | 6.528     | 0.147    | 2.047       |
| VBD20    | 6.486     | 0.142    | 2.042       | VPD11    | 6.548     | 0.127    | 2.027       |
| VBD19    | 6.436     | 0.193    | 2.093       | VPD10    | 6.555     | 0.120    | 2.020       |
| VBD18    | 6.477     | 0.151    | 2.051       | VPD9     | 6.545     | 0.130    | 2.030       |
| VBD17    | 6.465     | 0.164    | 2.064       | VPD8     | 6.535     | 0.140    | 2.040       |

## (3) I/O pins (2/2)

| Pin Name | CMAX (pF) | Cin (pF) | Cinewl (pF) | Pin Name | Смах (рГ) | Cin (pF) | Cinewl (pF) |
|----------|-----------|----------|-------------|----------|-----------|----------|-------------|
| VPD7     | 6.522     | 0.199    | 2.099       | D19      | 6.483     | 0.146    | 2.046       |
| VPD6     | 6.552     | 0.169    | 2.069       | D18      | 6.455     | 0.173    | 2.073       |
| VPD5     | 6.548     | 0.173    | 2.073       | D17      | 6.463     | 0.166    | 2.066       |
| VPD4     | 6.529     | 0.192    | 2.092       | D16      | 6.458     | 0.171    | 2.071       |
| VPD3     | 6.509     | 0.212    | 2.112       | D15      | 6.423     | 0.206    | 2.106       |
| VPD2     | 6.473     | 0.248    | 2.148       | D14      | 6.436     | 0.193    | 2.093       |
| VPD1     | 6.467     | 0.255    | 2.155       | D13      | 6.410     | 0.219    | 2.119       |
| VPD0     | 6.479     | 0.242    | 2.142       | D12      | 6.454     | 0.175    | 2.075       |
| D31      | 6.433     | 0.196    | 2.096       | D11      | 6.505     | 0.124    | 2.024       |
| D30      | 6.393     | 0.235    | 2.135       | D10      | 6.474     | 0.155    | 2.055       |
| D29      | 6.414     | 0.214    | 2.114       | D9       | 6.423     | 0.205    | 2.105       |
| D28      | 6.452     | 0.177    | 2.077       | D8       | 6.440     | 0.189    | 2.089       |
| D27      | 6.427     | 0.201    | 2.101       | D7       | 6.449     | 0.180    | 2.080       |
| D26      | 6.421     | 0.208    | 2.108       | D6       | 6.417     | 0.212    | 2.112       |
| D25      | 6.435     | 0.194    | 2.094       | D5       | 6.463     | 0.166    | 2.066       |
| D24      | 6.437     | 0.192    | 2.092       | D4       | 6.431     | 0.197    | 2.097       |
| D23      | 6.436     | 0.193    | 2.093       | D3       | 6.393     | 0.236    | 2.136       |
| D22      | 6.450     | 0.179    | 2.079       | D2       | 6.361     | 0.267    | 2.167       |
| D21      | 6.439     | 0.189    | 2.089       | D1       | 6.472     | 0.156    | 2.056       |
| D20      | 6.443     | 0.185    | 2.085       | D0       | 6.472     | 0.157    | 2.057       |

### 10. 2 Initialization of Internal Registers

Before executing the test program, be sure to execute an instruction to assign initial values to the internal registers used in the test program. Failure to this so will result in the propagation of undefined values.

## 10. 3 Pin Functions

(1/3)

| F                    | Pin Name           | I/O    | Function (173)                                                  |
|----------------------|--------------------|--------|-----------------------------------------------------------------|
| NB85E/NB85ET         | VBCLK              | Input  | Internal system clock input                                     |
| connection pins      | VDCSZ7 to VDCSZ0   | I/O    | Chip select I/O                                                 |
|                      | VBA25 to VBA0      | Input  | Address input                                                   |
|                      | VBBENZ3 to VBBENZ0 | I/O    | Byte enable I/O                                                 |
|                      | VBCTYP2 to VBCTYP0 | Input  | Bus cycle status input                                          |
|                      | VBD31 to VBD0      | I/O    | Data I/O                                                        |
|                      | VPRESZ             | Input  | Reset input                                                     |
|                      | VBSEQ2 to VBSEQ0   | Input  | Sequential status input                                         |
|                      | VBWRITE            | I/O    | Read/write status I/O                                           |
|                      | VBSTZ              | I/O    | Transfer start I/O                                              |
|                      | VAREQ              | Output | Bus access right request output                                 |
|                      | VAACK              | Input  | Bus access right acknowledge input                              |
|                      | VBLOCK             | Output | Bus lock output                                                 |
|                      | VBTTYP1, VBTTYP0   | Output | Bus transfer type output                                        |
|                      | VBBSTR             | Output | Burst read status output                                        |
|                      | VDSELPZ            | Output | Peripheral I/O area access status output                        |
|                      | VBWAIT             | Output | Wait response output                                            |
|                      | VBAHLD             | Output | Address hold response output                                    |
|                      | VBLAST             | Output | Last response output                                            |
|                      | VPSTB              | Input  | Data strobe input (for NPB)                                     |
|                      | VPUBENZ            | Input  | Upper byte enable input (for NPB)                               |
|                      | VPA13 to VPA0      | Input  | Address input (for NPB)                                         |
|                      | VPWRITE            | Input  | Write access strobe input (for NPB)                             |
|                      | VPD15 to VPD0      | I/O    | Data I/O (for NPB)                                              |
|                      | STPRQ              | Input  | STOP mode request input                                         |
|                      | STPAK              | Output | Acknowledge output for STPRQ input                              |
| Initial setting pins | MCE                | Input  | MEn bit reset value control input for BCT register (n = 0 to 7) |
|                      | BCPEN              | Input  | BCP bit reset value control input for BCP register              |
| External memory      | A25 to A0          | Output | External memory address output                                  |
| connection pins      | D31 to D0          | I/O    | External memory data I/O                                        |
|                      | RDZ                | Output | SRAM/page ROM read strobe output                                |
|                      | WRZ3 to WRZ0       | Output | SRAM/page ROM write strobe output                               |
|                      | IORDZ              | Output | External I/O read strobe output                                 |
|                      | IOWRZ              | Output | External I/O write strobe output                                |
|                      | WAITZ              | Input  | Wait request input                                              |
|                      | HLDRQZ             | Input  | External bus hold request input                                 |
|                      | HLDAKZ             | Output | External bus hold request acknowledge output                    |

(2/3)

|                 |                    | _      | (2/3)                                      |
|-----------------|--------------------|--------|--------------------------------------------|
|                 | Pin Name           | I/O    | Function                                   |
| External memory | DC3 to DC0         | Output | Data bus control output                    |
| connection pins | CSZ7 to CSZ0       | Output | Chip select output                         |
|                 | BENZ3 to BENZ0     | Output | Byte enable output                         |
|                 | BCYSTZ             | Output | Bus cycle start status output              |
|                 | REFRQZ             | Output | Refresh status output                      |
|                 | SELFREF            | Input  | Self refresh request input                 |
|                 | SDCLK              | Output | SDRAM sync clock output                    |
| NU85E502        | CTCSI73 to CTCSI70 | Input  | Control input from NU85E502 (for CS7 area) |
| connection pins | CTCSI63 to CTCSI60 | Input  | Control input from NU85E502 (for CS6 area) |
|                 | CTCSI53 to CTCSI50 | Input  | Control input from NU85E502 (for CS5 area) |
|                 | CTCSI43 to CTCSI40 | Input  | Control input from NU85E502 (for CS4 area) |
|                 | CTCSI33 to CTCSI30 | Input  | Control input from NU85E502 (for CS3 area) |
|                 | CTCSI23 to CTCSI20 | Input  | Control input from NU85E502 (for CS2 area) |
|                 | CTCSI13 to CTCSI10 | Input  | Control input from NU85E502 (for CS1 area) |
|                 | CTCSI03 to CTCSI00 | Input  | Control input from NU85E502 (for CS0 area) |
|                 | CTCSO74 to CTCSO70 | Output | Control output to NU85E502 (for CS7 area)  |
|                 | CTCSO64 to CTCSO60 | Output | Control output to NU85E502 (for CS6 area)  |
|                 | CTCSO54 to CTCSO50 | Output | Control output to NU85E502 (for CS5 area)  |
|                 | CTCSO44 to CTCSO40 | Output | Control output to NU85E502 (for CS4 area)  |
|                 | CTCSO34 to CTCSO30 | Output | Control output to NU85E502 (for CS3 area)  |
|                 | CTCSO24 to CTSO20  | Output | Control output to NU85E502 (for CS2 area)  |
|                 | CTCSO14 to CTCSO10 | Output | Control output to NU85E502 (for CS1 area)  |
|                 | CTCSO04 to CTCSO00 | Output | Control output to NU85E502 (for CS0 area)  |
|                 | CTLO1, CTLO0       | Output | Control output to NU85E502                 |
|                 | MTEN               | Output | Test mode enable output to NU85E502        |
|                 | CT502I71, CT502I70 | Input  | Control input from NU85E502 (for CS7 area) |
|                 | CT502l61, CT502l60 | Input  | Control input from NU85E502 (for CS6 area) |
|                 | CT502I51, CT502I50 | Input  | Control input from NU85E502 (for CS5 area) |
|                 | CT502l41, CT502l40 | Input  | Control input from NU85E502 (for CS4 area) |
|                 | CT502l31, CT502l30 | Input  | Control input from NU85E502 (for CS3 area) |
|                 | CT502l21, CT502l20 | Input  | Control input from NU85E502 (for CS2 area) |
|                 | CT502I11, CT502I10 | Input  | Control input from NU85E502 (for CS1 area) |
|                 | CT502I01, CT502I00 | Input  | Control input from NU85E502 (for CS0 area) |
|                 | CT502O71, CT502O70 | Output | Control output to NU85E502 (for CS7 area)  |
|                 | CT502O61, CT502O60 | Output | Control output to NU85E502 (for CS6 area)  |
|                 | CT502O51, CT502O50 | Output | Control output to NU85E502 (for CS5 area)  |
|                 | CT502O41, CT502O40 | Output | Control output to NU85E502 (for CS4 area)  |

(3/3)

| Pin Name          |                      | I/O    | Function (3/3)                            |
|-------------------|----------------------|--------|-------------------------------------------|
| NU85E502          | CT502O31, CT502O30   | Output | Control output to NU85E502 (for CS3 area) |
| connection pins   | CT502O21, CT502O20   | Output | Control output to NU85E502 (for CS2 area) |
|                   | CT502O11, CT502O10   | Output | Control output to NU85E502 (for CS1 area) |
|                   | CT502O01, CT502O00   | Output | Control output to NU85E502 (for CS0 area) |
| Test mode pins    | PHTEST               | Input  | Peripheral test mode status input         |
|                   | PHTDIN1, PHTDIN0     | Input  | Peripheral macro test input               |
|                   | PHTDO1, PHTDO0       | Output | Peripheral macro test output              |
|                   | VPTCLK               | Input  | Test clock input                          |
| NEC reserved pins | MPXEN                | Input  | NEC reserved pin (input a low level)      |
|                   | ASTBZ                | Output | NEC reserved pin (leave open)             |
|                   | DSTBZ                | Output | NEC reserved pin (leave open)             |
|                   | MPXCZ                | Output | NEC reserved pin (leave open)             |
|                   | RDCYZ                | Output | NEC reserved pin (leave open)             |
|                   | BUSST                | Output | NEC reserved pin (leave open)             |
|                   | CT501I72 to CT501I70 | Input  | NEC reserved pin (input a low level)      |
|                   | CT501I62 to CT501I60 | Input  | NEC reserved pin (input a low level)      |
|                   | CT501I52 to CT501I50 | Input  | NEC reserved pin (input a low level)      |
|                   | CT501I42 to CT501I40 | Input  | NEC reserved pin (input a low level)      |
|                   | CT501I32 to CT501I30 | Input  | NEC reserved pin (input a low level)      |
|                   | CT501I22 to CT501I20 | Input  | NEC reserved pin (input a low level)      |
|                   | CT501I12 to CT501I10 | Input  | NEC reserved pin (input a low level)      |
|                   | CT501I02 to CT501I00 | Input  | NEC reserved pin (input a low level)      |
|                   | CT501O73 to CT501O70 | Output | NEC reserved pin (leave open)             |
|                   | CT501O63 to CT501O60 | Output | NEC reserved pin (leave open)             |
|                   | CT501O53 to CT501O50 | Output | NEC reserved pin (leave open)             |
|                   | CT501O43 to CT501O40 | Output | NEC reserved pin (leave open)             |
|                   | CT501O33 to CT501O30 | Output | NEC reserved pin (leave open)             |
|                   | CT501O23 to CT501O20 | Output | NEC reserved pin (leave open)             |
|                   | CT501O13 to CT501O10 | Output | NEC reserved pin (leave open)             |
|                   | CT501O03 to CT501O00 | Output | NEC reserved pin (leave open)             |
|                   | ВСР                  | Output | NEC reserved pin (leave open)             |
|                   | PISL                 | Output | NEC reserved pin (leave open)             |
|                   | CTL501               | Output | NEC reserved pin (leave open)             |
|                   | RWC7 to RWC0         | Output | NEC reserved pin (leave open)             |

### 10. 4 Electrical Specifications (Preliminary)

The following specifications are for a single macro. An actual chip consists of two or more macros. Design the system so that all the specifications of the individual macros are satisfied when the chip is used.

#### 10. 4. 1 Absolute maximum ratings

| Parameter                     | Symbol           | Ratings      | Unit |
|-------------------------------|------------------|--------------|------|
| Supply voltage                | V <sub>DD</sub>  | −0.5 to +4.6 | V    |
| Operating ambient temperature | TA               | -40 to +85   | °C   |
| Storage temperature           | T <sub>stg</sub> | –65 to +150  | °C   |

Caution Product quality may suffer if the absolute maximum rating is exceeded even momentarily for any parameter. That is, the absolute maximum ratings are rated values at which the product is on the verge of suffering physical damage, and therefore the product must be used under conditions that ensure that the absolute maximum ratings are not exceeded.

#### 10. 4. 2 Recommended operation range

| Parameter                     | Symbol       | MIN. | TYP. | MAX. | Unit |
|-------------------------------|--------------|------|------|------|------|
| Supply voltage                | VDD          | 3.0  | 3.3  | 3.6  | V    |
| Operating ambient temperature | TA           | -40  |      | +85  | °C   |
| Clock cycle                   | <b>t</b> cyk | 15.0 |      |      | ns   |

### 10. 4. 3 DC characteristics ( $T_A = -40 \text{ to } +85^{\circ}\text{C}$ , $V_{DD} = 3.3 \text{ V} \pm 0.3 \text{ V}$ )

| Parameter      | Symbol           | Conditions               | MIN. | TYP. | MAX. | Unit   |
|----------------|------------------|--------------------------|------|------|------|--------|
| Supply current | I <sub>DD1</sub> | In normal operation mode |      | 0.18 | 0.27 | mA/MHz |
|                | IDD2             | In STOP mode             |      | 0    | 1.0  | μΑ     |

**Remarks 1.** The above supply current value is a reference value calculated from the number of grids.

2. The TYP. value is a reference value for when  $T_A = 25^{\circ}C$ ,  $V_{DD} = 3.3 \text{ V}$ .

### 10. 4. 4 AC characteristics ( $T_A = -40$ to +85°C, $V_{DD} = 3.3 \text{ V} \pm 0.3 \text{ V}$ )

## (1) SRAM/page ROM read timing (1/3)

| Parameter                                           | Syr  | mbol             | Conditions | MIN.                                    | MAX.                                    | Unit |
|-----------------------------------------------------|------|------------------|------------|-----------------------------------------|-----------------------------------------|------|
| VBCLK input cycle                                   | <1>  | <b>t</b> cyk     |            | 15.0                                    |                                         | ns   |
| Delay time from VBCLK↑ to address                   | <2>  | tad              |            | tdka + 0.4 <sup>Note</sup>              | tdka + 2.5 <sup>Note</sup>              | ns   |
| Delay time from VBCLK↑ to CSZ                       | <3>  | tcszD1           |            | t <sub>DKC</sub> + 0.5 <sup>Note</sup>  | t <sub>DKC</sub> + 2.5 <sup>Note</sup>  | ns   |
| Delay time from VBCLK↓ to RDZ                       | <4>  | <b>t</b> RDZD1   |            | 1.5                                     | 5.4                                     | ns   |
| Delay time from VBCLK↑ to RDZ                       | <5>  | tRDZD2           |            | 1.5                                     | 5.0                                     | ns   |
| Data setup time (to VBCLK↑)                         | <6>  | t <sub>DS1</sub> |            | 0                                       |                                         | ns   |
| Data hold time (from VBCLK <sup>↑</sup> )           | <7>  | <b>t</b> DH1     |            | 1.0                                     |                                         | ns   |
| Delay time from VBCLK↑ to BCYSTZ                    | <8>  | <b>t</b> BCYD    |            | 1.6                                     | tdks1 + 1.7 Note                        | ns   |
| WAITZ setup time (to VBCLK↑)                        | <9>  | <b>t</b> wrs     |            | 0                                       |                                         | ns   |
| WAITZ hold time (from VBCLK <sup>↑</sup> )          | <10> | twтн             |            | 0.9                                     |                                         | ns   |
| Delay time from VBCLK↓ to VBWAIT,<br>VBAHLD, VBLAST | <11> | tvRD1            |            |                                         | 5.6                                     | ns   |
| Delay time from VBCLK↑ to VBWAIT, VBAHLD, VBLAST    | <12> | tvrd2            |            | 1.2                                     |                                         | ns   |
| Delay time from VBCLK↑ to VBD                       | <13> | tvBD1            |            |                                         | 6.5                                     | ns   |
| Delay time from VBCLK↓ to VBD                       | <14> | tvBD2            |            | 1.7                                     |                                         | ns   |
| Delay time from VBCLK <sup>↑</sup> to DC            | <15> | tDCD1            |            | t <sub>DKS1</sub> + 0.7 <sup>Note</sup> | t <sub>DKS1</sub> + 3.1 <sup>Note</sup> | ns   |

Note toka: Delay time from VBCLK↑ to VBA

tdkc: Delay time from VBCLK  $\!\!\!\uparrow$  to VDCSZ, VDSELPZ

toks1: Delay time from VBCLK↑ to VBSTZ, VBSIZE, VBWRITE, VBCTYP

The above are the electrical specifications of the NB85E (or NB85ET). Refer to section **7. 4. 4 AC** characteristics (or **9. 4. 4 AC** characteristics).

### (1) SRAM/page ROM read timing (2/3)

## (a) When wait is inserted



## Remarks 1. T1, T2: Basic state in which NB85E500 access is performed

TW1: Wait state inserted by setting data wait control registers 0, 1 (DWC0, DWC1)

TI: Idle state inserted by setting bus cycle control register (BCC)

2. The level of the broken line portion of the VBWAIT, VBAHLD, VBLAST, and VBD31 to VBD0 signals indicates the undefined state (weak unknown) in which the bus holder in the NB85E (or NB85ET) is driving.

### (1) SRAM/page ROM read timing (3/3)

## (b) When address setting wait is inserted



Remarks 1. T1, T2: Basic state in which NB85E500 access is performed

TW1: Wait state inserted by setting data wait control registers 0, 1 (DWC0, DWC1)

TW2: Wait state through WAITZ pin input

TA: Address setting wait state inserted by setting the address setting wait control register (ASC)

2. The level of the broken line portion of the VBWAIT, VBAHLD, VBLAST, and VBD31 to VBD0 signals indicates the undefined state (weak unknown) in which the bus holder in the NB85E (or NB85ET) is driving.

### (2) SRAM write timing (1/3)

| Parameter                                           | Syr  | mbol             | Conditions | MIN.                                    | MAX.                                    | Unit |
|-----------------------------------------------------|------|------------------|------------|-----------------------------------------|-----------------------------------------|------|
| VBCLK input cycle                                   | <1>  | <b>t</b> cyk     |            | 15.0                                    |                                         | ns   |
| Delay time from VBCLK↑ to address                   | <2>  | <b>t</b> ad      |            | t <sub>DKA</sub> + 0.4 <sup>Note</sup>  | t <sub>DKA</sub> + 2.5 <sup>Note</sup>  | ns   |
| Delay time from VBCLK↑ to CSZ                       | <3>  | tcszD1           |            | t <sub>DKC</sub> + 0.5 <sup>Note</sup>  | t <sub>DKC</sub> + 2.5 <sup>Note</sup>  | ns   |
| Delay time from VBCLK↑ to BCYSTZ                    | <8>  | <b>t</b> BCYD    |            | 1.6                                     | t <sub>DKS1</sub> + 1.7 <sup>Note</sup> | ns   |
| WAITZ setup time (to VBCLK↑)                        | <9>  | <b>t</b> wrs     |            | 0                                       |                                         | ns   |
| WAITZ hold time (from VBCLK↑)                       | <10> | twтн             |            | 0.9                                     |                                         | ns   |
| Delay time from VBCLK↓ to VBWAIT, VBAHLD, VBLAST    | <11> | <b>t</b> VRD1    |            |                                         | 5.6                                     | ns   |
| Delay time from VBCLK↑ to VBWAIT,<br>VBAHLD, VBLAST | <12> | tvrd2            |            | 1.2                                     |                                         | ns   |
| Delay time from VBCLK↓ to DC                        | <16> | tDCD2            |            | 1.8                                     | 6.0                                     | ns   |
| Delay time from VBCLK↓ to WRZ                       | <17> | twrzd            |            | 1.6                                     | 4.9                                     | ns   |
| Delay time from VBCLK↓ to data                      | <18> | t <sub>DD1</sub> |            | t <sub>DKD1</sub> + 0.4 <sup>Note</sup> | t <sub>DKD1</sub> + 2.0 <sup>Note</sup> | ns   |
| Delay time from VBCLK↑ to data                      | <19> | t <sub>DD2</sub> |            | t <sub>DKD0</sub> + 0.4 <sup>Note</sup> | t <sub>DKD0</sub> + 2.0 <sup>Note</sup> | ns   |
| Delay time from VBBENZ to BENZ                      | _    | <b>t</b> BNZD    |            | 0.4                                     | 1.8                                     | ns   |

Note toka: Delay time from VBCLK↑ to VBA

tDKC: Delay time from VBCLK↑ to VDCSZ, VDSELPZ

toks1: Delay time from VBCLK↑ to VBSTZ, VBSIZE, VBWRITE, VBCTYP

tdkd1: Delay time from VBCLK↓ to VBD data

tdkdo: Delay time from VBCLK↑ to VBD data

The above are the electrical specifications of the NB85E (or NB85ET). Refer to section **7. 4. 4 AC characteristics** (or **9. 4. 4 AC characteristics**).

#### (2) SRAM write timing (2/3)

### (a) When wait is inserted



### Remarks 1. T1, T2: Basic state in which NB85E500 access is performed

TW1: Wait state inserted by setting data wait control registers 0, 1 (DWC0, DWC1)

TI: Idle state inserted by setting bus cycle control register (BCC)

2. The level of the broken line portion of the D31 to D0 signals is undefined. The level of the broken line portion of the VBWAIT, VBAHLD, and VBLAST signals indicates undefined state (weak unknown) in which the bus holder in the NB85E (or NB85ET) is driving.

#### (2) SRAM write timing (3/3)

### (b) When address setting wait is inserted



Remarks 1. T1, T2: Basic state in which NB85E500 access is performed

TW1: Wait state inserted by setting data wait control registers 0, 1 (DWC0, DWC1)

TW2: Wait state through WAITZ pin input

TA: Address setting wait state inserted by setting the address setting wait control register (ASC)

2. The level of the broken line portion of the D31 to D0 signals is undefined. The level of the broken line portion of the VBWAIT, VBAHLD, and VBLAST signals indicates undefined state (weak unknown) in which the bus holder in the NB85E (or NB85ET) is driving.

### (3) SRAM read/write timing (1/2)

| Parameter                                           | Syr  | mbol             | Conditions | MIN.                                    | MAX.                                    | Unit |
|-----------------------------------------------------|------|------------------|------------|-----------------------------------------|-----------------------------------------|------|
| VBCLK input cycle                                   | <1>  | <b>t</b> cyk     |            | 15.0                                    |                                         | ns   |
| Delay time from VBCLK↑ to address                   | <2>  | tad              |            | t <sub>DKA</sub> + 0.4 <sup>Note</sup>  | t <sub>DKA</sub> + 2.5 <sup>Note</sup>  | ns   |
| Delay time from VBCLK↑ to CSZ                       | <3>  | tcszD1           |            | t <sub>DKC</sub> + 0.5 <sup>Note</sup>  | tokc + 2.5 <sup>Note</sup>              | ns   |
| Delay time from VBCLK↓ to RDZ                       | <4>  | tRDZD1           |            | 1.5                                     | 5.4                                     | ns   |
| Delay time from VBCLK↑ to RDZ                       | <5>  | tRDZD2           |            | 1.5                                     | 5.0                                     | ns   |
| Data setup time (to VBCLK↑)                         | <6>  | t <sub>DS1</sub> |            | 0                                       |                                         | ns   |
| Data hold time (from VBCLK↑)                        | <7>  | <b>t</b> DH1     |            | 1.0                                     |                                         | ns   |
| Delay time from VBCLK↑ to BCYSTZ                    | <8>  | <b>t</b> BCYD    |            | 1.6                                     | t <sub>DKS1</sub> + 1.7 <sup>Note</sup> | ns   |
| WAITZ setup time (to VBCLK↑)                        | <9>  | <b>t</b> wrs     |            | 0                                       |                                         | ns   |
| WAITZ hold time (from VBCLK↑)                       | <10> | twтн             |            | 0.9                                     |                                         | ns   |
| Delay time from VBCLK↓ to VBWAIT,<br>VBAHLD, VBLAST | <11> | tvrd1            |            |                                         | 5.6                                     | ns   |
| Delay time from VBCLK↑ to VBWAIT,<br>VBAHLD, VBLAST | <12> | tvrd2            |            | 1.2                                     |                                         | ns   |
| Delay time from VBCLK↑ to VBD                       | <13> | <b>t</b> VBD1    |            |                                         | 6.5                                     | ns   |
| Delay time from VBCLK↓ to VBD                       | <14> | tvBD2            |            | 1.7                                     |                                         | ns   |
| Delay time from VBCLK↑ to DC                        | <15> | tDCD1            |            | t <sub>DKS1</sub> + 0.7 <sup>Note</sup> | t <sub>DKS1</sub> + 3.1 Note            | ns   |
| Delay time from VBCLK↓ to DC                        | <16> | tDCD2            |            | 1.8                                     | 6.0                                     | ns   |
| Delay time from VBCLK↓ to WRZ                       | <17> | twrzd            |            | 1.6                                     | 4.9                                     | ns   |
| Delay time from VBCLK↓ to data                      | <18> | t <sub>DD1</sub> |            | t <sub>DKD1</sub> + 0.4 <sup>Note</sup> | t <sub>DKD1</sub> + 2.0 <sup>Note</sup> | ns   |
| Delay time from VBCLK↑ to data                      | <19> | t <sub>DD2</sub> |            | tokoo + 0.4 Note                        | tdkd0 + 2.0 Note                        | ns   |

Note toka: Delay time from VBCLK↑ to VBA

tokc: Delay time from VBCLK↑ to VDCSZ, VDSELPZ

toks1: Delay time from VBCLK↑ to VBSTZ, VBSIZE, VBWRITE, VBCTYP

tdkd1: Delay time from VBCLK $\downarrow$  to VBD data tdkd0: Delay time from VBCLK $\uparrow$  to VBD data

The above are the electrical specifications of the NB85E (or NB85ET). Refer to section **7. 4. 4 AC** characteristics (or **9. 4. 4 AC** characteristics).

#### (3) SRAM read/write timing (2/2)



## Remarks 1. T1, T2: Basic state in which NB85E500 access is performed

2. The level of the broken line portion of the D31 to D0 signals is undefined. The level of the broken line portion of the VBWAIT, VBAHLD, VBLAST, and VBD31 to VBD0 signals indicates undefined state (weak unknown) in which the bus holder in the NB85E (or NB85ET) is driving.

#### (4) SDRAM write timing

| Parameter                      | Symbol |              | Conditions | MIN.                                    | MAX.             | Unit |
|--------------------------------|--------|--------------|------------|-----------------------------------------|------------------|------|
| Delay time from VBCLK↑ to data | <19>   | <b>t</b> DD2 |            | t <sub>DKD0</sub> + 0.4 <sup>Note</sup> | tokdo + 2.0 Note | ns   |

Note tokdo: Delay time from VBCLK↑ to VBD data

The above is the electrical specifications of the NB85E (or NB85ET). Refer to section **7. 4. 4 AC** characteristics (or **9. 4. 4 AC** characteristics).



#### (5) SDRAM sequential write timing

| Parameter                                  | Syn  | nbol             | Conditions | MIN.                                    | MAX.                                    | Unit |
|--------------------------------------------|------|------------------|------------|-----------------------------------------|-----------------------------------------|------|
| Delay time from VBCLK↓ to data             | <18> | <b>t</b> DD1     |            | t <sub>DKD1</sub> + 0.4 <sup>Note</sup> | toko1 + 2.0 Note                        | ns   |
| Delay time from VBCLK <sup>↑</sup> to data | <19> | t <sub>DD2</sub> |            | t <sub>DKD0</sub> + 0.4 <sup>Note</sup> | t <sub>DKD0</sub> + 2.0 <sup>Note</sup> | ns   |

Note tokd1: Delay time from VBCLK↓ to VBD data tokd0: Delay time from VBCLK↑ to VBD data

The above are the electrical specifications of the NB85E (or NB85ET). Refer to section **7. 4. 4 AC characteristics**).



Note Signal of the NU85E502

Remarks 1. TW: Wait state

TPREC: Bank precharge command state

TBCW: Wait state inserted by setting the BCW1 and BCW0 bits of the SDRAM configuration

register n (SCRn) (n = 0 to 7)

TACT: Bank active command state

TWR: Write command state

TWPRE:State indicating a precharge

TWE: State indicating the end of a write cycle

2. The level of the broken line portion of the VBD31 to VBD0 signals indicates undefined state (weak unknown) in which the bus holder in the NB85E (or NB85ET) is driving. The level of the broken line portion of the D31 to D0 signals is undefined.

## (6) SDRAM refresh timing

| Parameter                                    | Symbol |                | Conditions | MIN.              | MAX.              | Unit |
|----------------------------------------------|--------|----------------|------------|-------------------|-------------------|------|
| Delay time from VBCLK <sup>↑</sup> to REFRQZ | -      | <b>t</b> RFRQD |            | 1.5               | 4.9               | ns   |
| SELFREF setup time (to VBCLK <sup>↑</sup> )  | -      | tsrfs          |            | 0.8               |                   | ns   |
| SELFREF hold time (from VBCLK↑)              | -      | <b>t</b> srfh  |            | 1.0               |                   | ns   |
| Delay time from CT502In1 to CSZ              | -      | tcszd2         |            | tc2I1D + 0.4 Note | tc2I1D + 2.3 Note | ns   |

Note tc2l1D: Delay time from VBCLK↑ to CT502I1

The above is the electrical specifications of the NU85E502. Refer to section 12. 4. 4 (3) NU85E500/NB85E500 connection signal timing.

**Remark** n = 7 to 0

### (7) SDCLK output timing

| Parameter                        | Symbol |        | Conditions | MIN. | MAX. | Unit |
|----------------------------------|--------|--------|------------|------|------|------|
| Delay time from VBCLK↑ to SDCLK↑ | <23>   | tsdckd |            | 1.1  | 3.7  | ns   |



### (8) Bus hold timing

| Parameter                                                                | Symbol |                | Conditions | MIN. | MAX. | Unit |
|--------------------------------------------------------------------------|--------|----------------|------------|------|------|------|
| HLDRQZ setup time (to VBCLK↑)                                            | <24>   | <b>t</b> HRQS  |            | 0    |      | ns   |
| HLDRQZ hold time (from VBCLK↑)                                           | <25>   | thrqh          |            | 0.6  |      | ns   |
| Delay time from VBCLK↑ to HLDAKZ                                         | <26>   | <b>t</b> HAKD  |            | 1.5  | 4.6  | ns   |
| Delay time from VBCLK↑ to VAREQ                                          | <27>   | tvaqd          |            | 1.6  | 4.6  | ns   |
| VAACK setup time (to VBCLK↑)                                             | <28>   | tvaks          |            | 0.5  |      | ns   |
| VAACK hold time (from VBCLK↓)                                            | <29>   | tvakh          |            | 0.8  |      | ns   |
| Delay time from VAACK↑ to VBLOCK                                         | <30>   | <b>t</b> VLKD  |            | 1.7  | 5.6  | ns   |
| Delay time from VAACK↑ to VBTTYP                                         | <31>   | <b>t</b> VTTPD |            | 1.8  | 6.0  | ns   |
| Delay time from VAACK↑ to VBWRITE, VBBENZ, VDSELPZ, VDCSZ, VBSTZ, VBBSTR | <32>   | tvsbd          |            | 1.7  | 6.1  | ns   |



**Remark** The level of the broken line portion of the VBLOCK, VBTTYP1, and VBTTYP0 signals indicates undefined state (weak unknown) in which the bus holder in the NB85E (or NB85ET) is driving.

# (9) STOP mode timing

| Parameter                       | Symbol |                | Conditions | MIN. | MAX. | Unit |
|---------------------------------|--------|----------------|------------|------|------|------|
| STPRQ setup time (to VBCLK↓)    | <33>   | <b>t</b> spqs  |            | 0    |      | ns   |
| STPRQ hold time (from VBCLK↑)   | <34>   | <b>t</b> spqh  |            | 0.7  |      | ns   |
| Delay time from VBCLK↑ to STPAK | <35>   | <b>t</b> SPAKD |            | 1.5  | 4.7  | ns   |



### (10) I/O control signal timing

| Parameter                       | Symbol     |  | Conditions                | MIN. | MAX. | Unit |
|---------------------------------|------------|--|---------------------------|------|------|------|
| Delay time from VBCLK↓ to IORDZ | <36> tiord |  | During DMA flyby transfer | 1.6  | 5.1  | ns   |
| Delay time from VBCLK↓ to IOWRZ | <37> tiowd |  | During DMA flyby transfer | 1.6  | 5.1  | ns   |



### (11) NU85E502 connection signal timing

| Parameter                         | Syr  | nbol           | Conditions | MIN. | MAX. | Unit |
|-----------------------------------|------|----------------|------------|------|------|------|
| CTCSIn3 setup time (to VBCLK↑)    | <38> | tcsiss         |            | 0.5  |      | ns   |
| CTCSIn3 hold time (from VBCLK↑)   | <39> | tcsi3H         |            | 0.6  |      | ns   |
| CTCSIn2 setup time (to VBCLK↑)    | <40> | tcsi2s         |            | 0.9  |      | ns   |
| CTCSIn2 hold time (from VBCLK↑)   | <41> | tcsi2H         |            | 0.5  |      | ns   |
| CTCSIn1 setup time (to VBCLK↓)    | <42> | tcsiis         |            | 0    |      | ns   |
| CTCSIn1 hold time (from VBCLK↑)   | <43> | tcsi1H         |            | 0.9  |      | ns   |
| Delay time from VBCLK↑ to CTCSOn2 | <44> | tcso2D         |            | 1.5  | 5.0  | ns   |
| CT502In0 setup time (to VBCLK↓)   | <45> | tc210S         |            | 0    |      | ns   |
| CT502In0 hold time (from VBCLK↓)  | <46> | <b>t</b> C210H |            | 0.5  |      | ns   |
| Delay time from VBCLK↓ to CTLO1   | <47> | tctl1D         |            | 1.6  | 5.2  | ns   |

**Remark** n = 7 to 0



# (12) VSB timing

| Parameter                       | S | Symbol              | Conditions          | MIN. | MAX. | Unit |
|---------------------------------|---|---------------------|---------------------|------|------|------|
| VBA setup time (to VBCLK↑)      | _ | tvbas1              | When using page ROM | 0    |      | ns   |
| VBA hold time (from VBCLK↑)     | _ | tvbah1              | When using page ROM | 1.0  |      | ns   |
| VDCSZ setup time (to VBCLK↓)    | _ | tcszs1              |                     | 2.0  |      | ns   |
| VDCSZ hold time (from VBCLK↑)   | _ | tcszh1              |                     | 0.6  |      | ns   |
| VBWRITE setup time (to VBCLK↓)  | _ | tvBWRS1             |                     | 0    |      | ns   |
| VBWRITE hold time (from VBCLK↓) | _ | tvBWRH1             |                     | 1.3  |      | ns   |
| VBBENZ setup time (to VBCLK↓)   | _ | tBENZS1             |                     | 0    |      | ns   |
| VBBENZ hold time (from VBCLK↓)  | - | t <sub>BENZH1</sub> |                     | 1.3  |      | ns   |
| VBCTYP setup time (to VBCLK↓)   | _ | tctyps1             |                     | 0.8  |      | ns   |
| VBCTYP hold time (from VBCLK↓)  | _ | <b>t</b> стурн1     |                     | 0.7  |      | ns   |
| VBSEQ setup time (to VBCLK↓)    | _ | tseqs1              |                     | 0.9  |      | ns   |
| VBSEQ hold time (from VBCLK↑)   | _ | tseqH1              |                     | 1.1  |      | ns   |
| VBSTZ setup time (to VBCLK↓)    | _ | <b>t</b> stzs1      |                     | 0    |      | ns   |
| VBSTZ hold time (from VBCLK↑)   | _ | <b>t</b> stzh1      |                     | 1.2  |      | ns   |

# [MEMO]

# (13) NPB timing (1/2)

| Parameter                               | Syn  | nbol           | Conditions | MIN. | MAX. | Unit |
|-----------------------------------------|------|----------------|------------|------|------|------|
| VPA address setup time (to VPSTB↑)      | <48> | tvpas          |            | 20   |      | ns   |
| VPA address hold time (from VPSTB↓)     | <49> | tvpah          |            | 20   |      | ns   |
| VPWRITE setup time (to VPSTB↑)          | <50> | tvpwrs         |            | 20   |      | ns   |
| VPWRITE hold time (from VPSTB↓)         | <51> | tvpwrh         |            | 20   |      | ns   |
| VPD data setup time (to VPSTB↑)         | <52> | tvpds          |            | 20   |      | ns   |
| VPD data hold time (from VPSTB↓)        | <53> | <b>t</b> vpdh  |            | 20   |      | ns   |
| Delay time from VPSTB↑ to VPD data      | <54> | <b>t</b> VPDD  |            | 1.1  | 9.5  | ns   |
| VPUBENZ setup time (to VPSTB↑)          | <55> | tvpubs         |            | 20   |      | ns   |
| VPUBENZ hold time (from VPSTB↓)         | <56> | <b>t</b> vpubh |            | 20   |      | ns   |
| Delay time from VPSTB↓ to CTCSOn4       | <57> | tcso4D         |            |      | 5    | ns   |
| Delay time from VPSTB↓ to CTCSOn3       | <58> | tcso3D         |            |      | 5    | ns   |
| Delay time from VPSTB↓ to CTCSOn1       | <59> | tcso1D         |            |      | 5    | ns   |
| Delay time from VPSTB↓ to CTCSOn0       | <60> | tcsood         |            |      | 5    | ns   |
| Delay time from VPA address to CT502On1 | <61> | <b>t</b> C2O1D |            |      | 5    | ns   |
| Delay time from VPA address to CT502On0 | <62> | tc200D         |            |      | 5    | ns   |

**Remark** n = 7 to 0

### (13) NPB timing (2/2)



#### **CHAPTER 11 NU85E500**

(Under Development)

The NU85E500 is used as follows according to the type of external memory that is connected.

| Target CPU Core | Types of Connected External Memory | Memory Controller (MEMC) |
|-----------------|------------------------------------|--------------------------|
| NB85E           | SRAM, ROM, page ROM, flash memory  | NU85E500                 |
|                 | SDRAM                              | NU85E500 + NU85E502      |

Remark For details of the NU85E502, refer to CHAPTER 12 NU85E502.

### 11. 1 Outline

The NU85E500 is a basic core macro used to control external memory. It features on chip SRAM, and I/O controller, and a page ROM controller.

The NU85E500 can be used to start the external bus cycle when it is connected to the NB85E via VSB.

It can also be used to control SDRAM by connecting an SDRAM controller (NU85E502) to the NU85E500.

### 11. 1. 1 Symbol diagram

### **Number of grids**

35.6k grids

106.0k grids (including wiring area)

#### Number of separation simulation patterns

14.3k



### 11. 1. 2 Pin capacitance

Remark C<sub>IN</sub>: Capacitance of only input pin

Cinewi: Value of CIN with wiring capacitance (estimated wire length capacitance) taken into consideration

(I = 10 mm)

### (1) Input pins (1/3)

| Pin Name | C <sub>IN</sub> (pF) | Cinewl (pF) | Pin Name | Cin (pF) | Cinewl (pF) |
|----------|----------------------|-------------|----------|----------|-------------|
| VBCLK    | 0.135                | 2.035       | VAACK    | 0.157    | 2.057       |
| VBA25    | 0.051                | 1.951       | VPSTB    | 0.017    | 1.917       |
| VBA24    | 0.120                | 2.020       | VPUBENZ  | 0.036    | 1.936       |
| VBA23    | 0.140                | 2.040       | VPA13    | 0.013    | 1.913       |
| VBA22    | 0.166                | 2.066       | VPA12    | 0.016    | 1.916       |
| VBA21    | 0.133                | 2.033       | VPA11    | 0.014    | 1.914       |
| VBA20    | 0.101                | 2.001       | VPA10    | 0.016    | 1.916       |
| VBA19    | 0.166                | 2.066       | VPA9     | 0.013    | 1.913       |
| VBA18    | 0.014                | 1.914       | VPA8     | 0.020    | 1.920       |
| VBA17    | 0.106                | 2.006       | VPA7     | 0.015    | 1.915       |
| VBA16    | 0.494                | 2.394       | VPA6     | 0.037    | 1.937       |
| VBA15    | 0.097                | 1.997       | VPA5     | 0.015    | 1.915       |
| VBA14    | 0.091                | 1.991       | VPA4     | 0.014    | 1.914       |
| VBA13    | 0.108                | 2.008       | VPA3     | 0.013    | 1.913       |
| VBA12    | 0.110                | 2.010       | VPA2     | 0.021    | 1.921       |
| VBA11    | 0.056                | 1.956       | VPA1     | 0.013    | 1.913       |
| VBA10    | 0.129                | 2.029       | VPA0     | 0.016    | 1.916       |
| VBA9     | 0.100                | 2.000       | VPWRITE  | 0.012    | 1.912       |
| VBA8     | 0.163                | 2.063       | STPRQ    | 0.161    | 2.061       |
| VBA7     | 0.143                | 2.043       | MCE      | 0.110    | 2.010       |
| VBA6     | 0.021                | 1.921       | BCPEN    | 0.113    | 2.013       |
| VBA5     | 0.189                | 2.089       | DI31     | 0.027    | 1.927       |
| VBA4     | 0.054                | 1.954       | DI30     | 0.018    | 1.918       |
| VBA3     | 0.119                | 2.019       | DI29     | 0.025    | 1.925       |
| VBA2     | 0.025                | 1.925       | DI28     | 0.019    | 1.919       |
| VBA1     | 0.131                | 2.031       | DI27     | 0.018    | 1.918       |
| VBA0     | 0.161                | 2.061       | DI26     | 0.024    | 1.924       |
| VBCTYP2  | 0.017                | 1.917       | DI25     | 0.018    | 1.918       |
| VBCTYP1  | 0.022                | 1.922       | DI24     | 0.022    | 1.922       |
| VBCTYP0  | 0.018                | 1.918       | DI23     | 0.022    | 1.922       |
| VPRESZ   | 0.013                | 1.913       | DI22     | 0.026    | 1.926       |
| VBSEQ2   | 0.016                | 1.916       | DI21     | 0.032    | 1.932       |
| VBSEQ1   | 0.023                | 1.923       | DI20     | 0.024    | 1.924       |
| VBSEQ0   | 0.022                | 1.922       | DI19     | 0.029    | 1.929       |

# (1) Input pins (2/3)

| Pin Name | Cin (pF) | Cinewl (pF) | Pin Name | Cin (pF) | Cinewl (pF) |
|----------|----------|-------------|----------|----------|-------------|
| DI18     | 0.020    | 1.920       | CTCSI32  | 0.026    | 1.926       |
| DI17     | 0.016    | 1.916       | CTCSI31  | 0.039    | 1.939       |
| DI16     | 0.014    | 1.914       | CTCSI30  | 0.237    | 2.137       |
| DI15     | 0.026    | 1.926       | CTCSI23  | 0.063    | 1.963       |
| DI14     | 0.024    | 1.924       | CTCSI22  | 0.126    | 2.026       |
| DI13     | 0.040    | 1.940       | CTCSI21  | 0.287    | 2.187       |
| DI12     | 0.034    | 1.934       | CTCSI20  | 0.212    | 2.112       |
| DI11     | 0.018    | 1.918       | CTCSI13  | 0.143    | 2.043       |
| DI10     | 0.023    | 1.923       | CTCSI12  | 0.031    | 1.931       |
| DI9      | 0.055    | 1.955       | CTCSI11  | 0.037    | 1.937       |
| DI8      | 0.030    | 1.930       | CTCSI10  | 0.196    | 2.096       |
| DI7      | 0.020    | 1.920       | CTCSI03  | 0.243    | 2.143       |
| DI6      | 0.020    | 1.920       | CTCSI02  | 0.171    | 2.071       |
| DI5      | 0.024    | 1.924       | CTCSI01  | 0.165    | 2.065       |
| DI4      | 0.017    | 1.917       | CTCSI00  | 0.151    | 2.051       |
| DI3      | 0.023    | 1.923       | CT502I71 | 0.017    | 1.917       |
| DI2      | 0.025    | 1.925       | CT502I70 | 0.234    | 2.134       |
| DI1      | 0.028    | 1.928       | CT502I61 | 0.097    | 1.997       |
| DI0      | 0.014    | 1.914       | CT502I60 | 0.094    | 1.994       |
| WAITZ    | 0.063    | 1.963       | CT502I51 | 0.029    | 1.929       |
| HLDRQZ   | 0.051    | 1.951       | CT502I50 | 0.201    | 2.101       |
| SELFREF  | 0.184    | 2.084       | CT502I41 | 0.055    | 1.955       |
| CTCSI73  | 0.491    | 2.391       | CT502I40 | 0.070    | 1.970       |
| CTCSI72  | 0.167    | 2.067       | CT502I31 | 0.227    | 2.127       |
| CTCSI71  | 0.130    | 2.030       | CT502I30 | 0.098    | 1.998       |
| CTCSI70  | 0.151    | 2.051       | CT502I21 | 0.020    | 1.920       |
| CTCSI63  | 0.068    | 1.968       | CT502I20 | 0.181    | 2.081       |
| CTCSI62  | 0.018    | 1.918       | CT502I11 | 0.022    | 1.922       |
| CTCSI61  | 0.018    | 1.918       | CT502I10 | 0.118    | 2.018       |
| CTCSI60  | 0.157    | 2.057       | CT502I01 | 0.015    | 1.915       |
| CTCSI53  | 0.198    | 2.098       | CT502I00 | 0.211    | 2.111       |
| CTCSI52  | 0.023    | 1.923       | PHTEST   | 0.076    | 1.976       |
| CTCSI51  | 0.102    | 2.002       | PHTDIN1  | 0.034    | 1.934       |
| CTCSI50  | 0.124    | 2.024       | PHTDIN0  | 0.054    | 1.954       |
| CTCSI43  | 0.089    | 1.989       | VPTCLK   | 0.064    | 1.964       |
| CTCSI42  | 0.076    | 1.976       | MPXEN    | 0.117    | 2.017       |
| CTCSI41  | 0.017    | 1.917       | CT501I72 | 0.066    | 1.966       |
| CTCSI40  | 0.267    | 2.167       | CT501I71 | 0.096    | 1.996       |
| CTCSI33  | 0.069    | 1.969       | CT501I70 | 0.293    | 2.193       |

# (1) Input pins (3/3)

| Pin Name | Cin (pF) | Cinewl (pF) | Pin Name | Cin (pF) | Cinewl (pF) |
|----------|----------|-------------|----------|----------|-------------|
| CT501I62 | 0.044    | 1.944       | CT501I30 | 0.273    | 2.173       |
| CT501I61 | 0.044    | 1.944       | CT501I22 | 0.318    | 2.218       |
| CT501I60 | 0.042    | 1.942       | CT501I21 | 0.094    | 1.994       |
| CT501I52 | 0.360    | 2.260       | CT501I20 | 0.043    | 1.943       |
| CT501I51 | 0.121    | 2.021       | CT501I12 | 0.066    | 1.966       |
| CT501I50 | 0.064    | 1.964       | CT501I11 | 0.123    | 2.023       |
| CT501I42 | 0.358    | 2.258       | CT501I10 | 0.078    | 1.978       |
| CT501I41 | 0.077    | 1.977       | CT501I02 | 0.262    | 2.162       |
| CT501I40 | 0.016    | 1.916       | CT501I01 | 0.193    | 2.093       |
| CT501l32 | 0.055    | 1.955       | CT501I00 | 0.331    | 2.231       |
| CT501I31 | 0.062    | 1.962       |          |          | ·           |

# (2) Output pins (1/3)

| Pin Name | C <sub>MAX</sub> (pF) | Cin (pF) | Cinewl (pF) | Pin Name | CMAX (pF) | Cin (pF) | Cinewl (pF) |
|----------|-----------------------|----------|-------------|----------|-----------|----------|-------------|
| VAREQ    | 12.885                | -        | -           | A11      | 13.065    | -        | -           |
| VBLOCK   | 6.549                 | 0.084    | 1.984       | A10      | 13.065    | -        | -           |
| VBTTYP1  | 6.581                 | 0.048    | 1.948       | A9       | 13.068    | -        | -           |
| VBTTYP0  | 6.581                 | 0.048    | 1.948       | A8       | 13.064    | -        |             |
| VBBSTR   | 6.575                 | 0.053    | 1.953       | A7       | 13.066    | _        | _           |
| VDSELPZ  | 6.579                 | 0.050    | 1.950       | A6       | 13.305    | =        | =           |
| VBWAIT   | 6.577                 | 0.051    | 1.951       | A5       | 13.041    | =        | =           |
| VBAHLD   | 6.574                 | 0.054    | 1.954       | A4       | 13.320    | =        | =           |
| VBLAST   | 6.571                 | 0.057    | 1.957       | A3       | 13.067    | =        | =           |
| STPAK    | 12.914                | _        | _           | A2       | 13.071    | =        | =           |
| A25      | 13.066                | -        | -           | A1       | 13.071    | _        | -           |
| A24      | 13.054                | -        | -           | A0       | 13.058    | _        | -           |
| A23      | 13.064                | -        | -           | DO31     | 13.071    | _        | -           |
| A22      | 13.063                | -        | -           | DO30     | 13.066    | _        | -           |
| A21      | 13.069                | _        | _           | DO29     | 13.071    | =        | =           |
| A20      | 13.071                | _        | _           | DO28     | 13.067    | =        | =           |
| A19      | 13.071                | -        | _           | DO27     | 13.068    | _        | _           |
| A18      | 13.063                | _        | _           | DO26     | 13.069    | =        | =           |
| A17      | 13.060                | _        | _           | DO25     | 13.069    | =        | =           |
| A16      | 13.044                | _        | _           | DO24     | 13.071    | =        | =           |
| A15      | 13.069                | -        | -           | DO23     | 13.061    | _        | -           |
| A14      | 13.037                | -        | -           | DO22     | 13.063    | _        | -           |
| A13      | 13.071                | -        | -           | DO21     | 13.070    | _        | -           |
| A12      | 13.045                | _        | _           | DO20     | 13.062    | -        | -           |

# (2) Output pins (2/3)

| Pin Name | C <sub>MAX</sub> (pF) | Cin (pF) | Cinewl (pF) | Pin Name | C <sub>MAX</sub> (pF) | Cin (pF) | Cinewl (pF) |
|----------|-----------------------|----------|-------------|----------|-----------------------|----------|-------------|
| DO19     | 13.070                | _        | _           | CSZ0     | 13.054                |          | -           |
| DO18     | 13.064                | -        | _           | BENZ3    | 12.962                |          | -           |
| DO17     | 13.071                | -        | _           | BENZ2    | 12.968                |          | -           |
| DO16     | 13.059                | -        | _           | BENZ1    | 13.307                | -        |             |
| DO15     | 13.071                | -        | _           | BENZ0    | 13.328                | -        |             |
| DO14     | 13.062                | -        | _           | BCYSTZ   | 13.203                | -        | -           |
| DO13     | 13.071                | -        | _           | REFRQZ   | 13.054                | _        | -           |
| DO12     | 13.070                | -        | _           | SDCLK    | 13.071                | _        | -           |
| DO11     | 13.071                | -        | _           | CTCSO74  | 13.335                | _        | -           |
| DO10     | 13.070                | -        | _           | CTCSO73  | 13.332                | _        | -           |
| DO9      | 13.071                | _        | _           | CTCSO72  | 13.118                | _        | -           |
| DO8      | 13.070                | -        | _           | CTCSO71  | 13.338                | =        | -           |
| DO7      | 13.071                | -        | _           | CTCSO70  | 13.335                | =        | -           |
| DO6      | 13.068                | -        | _           | CTCSO64  | 13.338                | _        | -           |
| DO5      | 13.062                | _        | _           | CTCSO63  | 13.334                | =        | -           |
| DO4      | 13.071                |          | _           | CTCSO62  | 13.039                | -        | -           |
| DO3      | 13.068                | _        | _           | CTCSO61  | 13.274                | =        | -           |
| DO2      | 13.062                | _        | _           | CTCSO60  | 13.335                | =        | -           |
| DO1      | 7.907                 | _        | _           | CTCSO54  | 13.329                | =        | -           |
| DO0      | 7.904                 | _        | _           | CTCSO53  | 13.337                | =        | -           |
| RDZ      | 12.905                | _        | _           | CTCSO52  | 13.202                | =        | -           |
| WRZ3     | 13.175                | _        | _           | CTCSO51  | 13.332                | =        | -           |
| WRZ2     | 13.177                | _        | _           | CTCSO50  | 13.334                | =        | -           |
| WRZ1     | 13.141                |          | _           | CTCSO44  | 13.325                | -        | -           |
| WRZ0     | 13.187                | -        | _           | CTCSO43  | 13.291                | -        | -           |
| IORDZ    | 13.014                | -        | _           | CTCSO42  | 13.041                | -        | -           |
| IOWRZ    | 12.873                | -        | _           | CTCSO41  | 13.267                | -        | -           |
| HLDAKZ   | 13.338                | -        | _           | CTCSO40  | 13.336                | _        | -           |
| DC3      | 13.320                | -        | _           | CTCSO34  | 13.311                | -        | -           |
| DC2      | 13.035                | -        | _           | CTCSO33  | 13.311                | _        | -           |
| DC1      | 13.048                | _        | _           | CTCSO32  | 13.279                | =        | -           |
| DC0      | 13.071                | -        | _           | CTCSO31  | 13.331                | -        | -           |
| CSZ7     | 13.037                | _        | _           | CTCSO30  | 13.309                | _        | _           |
| CSZ6     | 13.311                | _        | _           | CTCSO24  | 13.336                | _        | _           |
| CSZ5     | 13.035                | -        | -           | CTCSO23  | 13.311                | _        | -           |
| CSZ4     | 12.999                | -        | _           | CTCSO22  | 12.939                | _        | _           |
| CSZ3     | 13.002                | _        | _           | CTCSO21  | 13.331                | _        | _           |
| CSZ2     | 13.071                | _        | _           | CTCSO20  | 13.330                | _        | _           |
| CSZ1     | 13.025                | _        | -           | CTCSO14  | 13.277                | _        | -           |

# (2) Output pins (3/3)

| Pin Name | Смах (рF) | C <sub>IN</sub> (pF) | Cinewl (pF) | Pin Name | CMAX (pF) | C <sub>IN</sub> (pF) | Cinewl (pF) |
|----------|-----------|----------------------|-------------|----------|-----------|----------------------|-------------|
| CTCSO13  | 13.251    | -                    | _           | CT501O63 | 13.334    | _                    | _           |
| CTCSO12  | 13.039    | -                    | _           | CT501O62 | 13.256    | _                    | _           |
| CTCSO11  | 13.324    | -                    | _           | CT501O61 | 13.334    | -                    | _           |
| CTCSO10  | 13.323    | -                    | _           | CT501O60 | 13.323    | -                    | _           |
| CTCSO04  | 13.278    | -                    | _           | CT501O53 | 13.336    | -                    | _           |
| CTCSO03  | 13.255    | _                    | -           | CT501O52 | 13.031    | -                    | _           |
| CTCSO02  | 12.931    | -                    | _           | CT501O51 | 13.338    | -                    | _           |
| CTCSO01  | 13.326    | -                    | _           | CT501O50 | 13.108    | -                    | _           |
| CTCSO00  | 13.324    | _                    | -           | CT501O43 | 13.283    | -                    | _           |
| CTLO1    | 13.210    | _                    | _           | CT501O42 | 13.248    | _                    | _           |
| CTLO0    | 13.261    | _                    | _           | CT501O41 | 13.283    | _                    | _           |
| MTEN     | 13.314    | -                    | _           | CT501O40 | 13.338    | -                    | _           |
| CT502O71 | 13.224    | -                    | _           | CT501O33 | 13.325    | -                    | _           |
| CT502O70 | 13.328    | -                    | _           | CT501O32 | 13.333    | -                    | _           |
| CT502O61 | 13.335    | -                    | _           | CT501O31 | 13.338    | -                    | _           |
| CT502O60 | 13.338    | -                    | _           | CT501O30 | 13.333    | -                    | _           |
| CT502O51 | 13.140    | _                    | _           | CT501O23 | 13.334    | _                    | _           |
| CT502O50 | 13.219    | _                    | _           | CT501O22 | 13.322    | _                    | _           |
| CT502O41 | 13.334    | _                    | _           | CT501O21 | 13.338    | _                    | _           |
| CT502O40 | 13.330    | -                    | -           | CT501O20 | 13.328    | -                    | _           |
| CT502O31 | 13.332    | -                    | _           | CT501O13 | 13.170    | -                    | _           |
| CT502O30 | 13.324    | -                    | _           | CT501O12 | 13.324    | -                    | _           |
| CT502O21 | 13.130    | -                    | _           | CT501O11 | 13.319    | -                    | _           |
| CT502O20 | 13.338    | -                    | _           | CT501O10 | 13.318    | -                    | _           |
| CT502O11 | 13.332    | _                    | _           | CT501O03 | 13.324    | -                    | _           |
| CT502O10 | 13.335    | _                    | _           | CT501O02 | 13.228    | -                    | _           |
| CT502O01 | 13.320    | _                    | _           | CT501O01 | 13.107    | -                    | _           |
| CT502O00 | 13.325    | -                    | _           | CT501O00 | 13.313    | -                    | _           |
| PHTDO1   | 13.223    | -                    | _           | ВСР      | 13.286    | -                    | _           |
| PHTDO0   | 13.309    | -                    | _           | PISL     | 13.338    | -                    | _           |
| ASTBZ    | 13.172    | -                    | _           | CTL501   | 13.308    | _                    | _           |
| DSTBZ    | 13.161    | -                    | _           | RWC7     | 13.296    | _                    | _           |
| MPXCZ    | 12.961    | -                    | _           | RWC6     | 13.334    | _                    | _           |
| RDCYZ    | 13.039    | -                    | _           | RWC5     | 13.323    | _                    | _           |
| BUSST    | 12.955    | -                    | _           | RWC4     | 13.282    | _                    | _           |
| CT501O73 | 13.331    | _                    | _           | RWC3     | 13.315    | _                    | _           |
| CT501O72 | 12.986    | _                    | -           | RWC2     | 13.242    | _                    | -           |
| CT501O71 | 13.148    | _                    |             | RWC1     | 13.303    |                      | _           |
| CT501O70 | 13.063    | _                    | _           | RWC0     | 13.325    | _                    | _           |

# (3) I/O pins

| Pin Name | Смах (рF) | Cin (pF) | Cinewl (pF) | Pin Name | Смах (рF) | C <sub>IN</sub> (pF) | Cinewl (pF) |
|----------|-----------|----------|-------------|----------|-----------|----------------------|-------------|
| VDCSZ7   | 6.446     | 0.183    | 2.083       | VBD12    | 6.338     | 0.290                | 2.190       |
| VDCSZ6   | 6.374     | 0.254    | 2.154       | VBD11    | 6.345     | 0.284                | 2.184       |
| VDCSZ5   | 6.320     | 0.308    | 2.208       | VBD10    | 6.344     | 0.285                | 2.185       |
| VDCSZ4   | 6.298     | 0.331    | 2.231       | VBD9     | 6.329     | 0.299                | 2.199       |
| VDCSZ3   | 6.211     | 0.418    | 2.318       | VBD8     | 6.315     | 0.314                | 2.214       |
| VDCSZ2   | 6.355     | 0.273    | 2.173       | VBD7     | 6.329     | 0.300                | 2.200       |
| VDCSZ1   | 6.313     | 0.316    | 2.216       | VBD6     | 6.344     | 0.285                | 2.185       |
| VDCSZ0   | 6.477     | 0.152    | 2.052       | VBD5     | 6.314     | 0.315                | 2.215       |
| VBBENZ3  | 6.428     | 0.200    | 2.100       | VBD4     | 6.318     | 0.311                | 2.211       |
| VBBENZ2  | 6.462     | 0.166    | 2.066       | VBD3     | 6.359     | 0.270                | 2.170       |
| VBBENZ1  | 6.489     | 0.140    | 2.040       | VBD2     | 6.333     | 0.296                | 2.196       |
| VBBENZ0  | 6.484     | 0.145    | 2.045       | VBD1     | 6.366     | 0.263                | 2.163       |
| VBD31    | 6.385     | 0.244    | 2.144       | VBD0     | 6.394     | 0.235                | 2.135       |
| VBD30    | 6.375     | 0.254    | 2.154       | VBWRITE  | 6.492     | 0.137                | 2.037       |
| VBD29    | 6.383     | 0.246    | 2.146       | VBSTZ    | 6.394     | 0.234                | 2.134       |
| VBD28    | 6.366     | 0.263    | 2.163       | VPD15    | 6.493     | 0.188                | 2.088       |
| VBD27    | 6.364     | 0.265    | 2.165       | VPD14    | 6.555     | 0.120                | 2.020       |
| VBD26    | 6.393     | 0.236    | 2.136       | VPD13    | 6.525     | 0.150                | 2.050       |
| VBD25    | 6.390     | 0.239    | 2.139       | VPD12    | 6.530     | 0.145                | 2.045       |
| VBD24    | 6.399     | 0.230    | 2.130       | VPD11    | 6.504     | 0.176                | 2.076       |
| VBD23    | 6.373     | 0.256    | 2.156       | VPD10    | 6.519     | 0.161                | 2.061       |
| VBD22    | 6.394     | 0.235    | 2.135       | VPD9     | 6.519     | 0.161                | 2.061       |
| VBD21    | 6.378     | 0.251    | 2.151       | VPD8     | 6.537     | 0.143                | 2.043       |
| VBD20    | 6.373     | 0.256    | 2.156       | VPD7     | 6.503     | 0.218                | 2.118       |
| VBD19    | 6.373     | 0.256    | 2.156       | VPD6     | 6.514     | 0.207                | 2.107       |
| VBD18    | 6.384     | 0.244    | 2.144       | VPD5     | 6.508     | 0.213                | 2.113       |
| VBD17    | 6.346     | 0.282    | 2.182       | VPD4     | 6.534     | 0.188                | 2.088       |
| VBD16    | 6.366     | 0.262    | 2.162       | VPD3     | 6.475     | 0.246                | 2.146       |
| VBD15    | 6.364     | 0.264    | 2.164       | VPD2     | 6.478     | 0.244                | 2.144       |
| VBD14    | 6.362     | 0.266    | 2.166       | VPD1     | 6.493     | 0.228                | 2.128       |
| VBD13    | 6.348     | 0.281    | 2.181       | VPD0     | 6.489     | 0.233                | 2.133       |

### 11. 2 Initialization of Internal Registers

Before executing the test program, be sure to execute an instruction to assign initial values to the internal registers used in the test program. Failure to this so will result in the propagation of undefined values.

### 11.3 Pin Functions

(1/3)

| Р                    | in Name            | I/O    | Function (173)                                                  |
|----------------------|--------------------|--------|-----------------------------------------------------------------|
| NB85E connection     | VBCLK              | Input  | Internal system clock input                                     |
| pins                 | VDCSZ7 to VDCSZ0   | I/O    | Chip select I/O                                                 |
|                      | VBA25 to VBA0      | Input  | Address input                                                   |
|                      | VBBENZ3 to VBBENZ0 | I/O    | Byte enable I/O                                                 |
|                      | VBCTYP2 to VBCTYP0 | Input  | Bus cycle status input                                          |
|                      | VBD31 to VBD0      | I/O    | Data I/O                                                        |
|                      | VPRESZ             | Input  | Reset input                                                     |
|                      | VBSEQ2 to VBSEQ0   | Input  | Sequential status input                                         |
|                      | VBWRITE            | I/O    | Read/write status I/O                                           |
|                      | VBSTZ              | I/O    | Transfer start I/O                                              |
|                      | VAREQ              | Output | Bus access right request output                                 |
|                      | VAACK              | Input  | Bus access right acknowledge input                              |
|                      | VBLOCK             | Output | Bus lock output                                                 |
|                      | VBTTYP1, VBTTYP0   | Output | Bus transfer type output                                        |
|                      | VBBSTR             | Output | Burst read status output                                        |
|                      | VDSELPZ            | Output | Peripheral I/O area access status output                        |
|                      | VBWAIT             | Output | Wait response output                                            |
|                      | VBAHLD             | Output | Address hold response output                                    |
|                      | VBLAST             | Output | Last response output                                            |
|                      | VPSTB              | Input  | Data strobe input (for NPB)                                     |
|                      | VPUBENZ            | Input  | Upper byte enable input (for NPB)                               |
|                      | VPA13 to VPA0      | Input  | Address input (for NPB)                                         |
|                      | VPWRITE            | Input  | Write access strobe input (for NPB)                             |
|                      | VPD15 to VPD0      | I/O    | Data I/O (for NPB)                                              |
|                      | STPRQ              | Input  | STOP mode request input                                         |
|                      | STPAK              | Output | Acknowledge output for STPRQ input                              |
| Initial setting pins | MCE                | Input  | MEn bit reset value control input for BCT register (n = 7 to 0) |
|                      | BCPEN              | Input  | BCP bit reset value control input for BCP register              |
| External memory      | A25 to A0          | Output | External memory address output                                  |
| connection pins      | DI31 to DI0        | Input  | External memory data input                                      |
|                      | DO31 to DO0        | Output | External memory data output                                     |
|                      | RDZ                | Output | SRAM/page ROM read strobe output                                |
|                      | WRZ3 to WRZ0       | Output | SRAM/page ROM write strobe output                               |
|                      | IORDZ              | Output | External I/O read strobe output                                 |
|                      | IOWRZ              | Output | External I/O write strobe output                                |
|                      | WAITZ              | Input  | Wait request input                                              |

(2/3)

|                 |                    |        | (2/3)                                        |
|-----------------|--------------------|--------|----------------------------------------------|
|                 | Pin Name           | I/O    | Function                                     |
| External memory | HLDRQZ             | Input  | External bus hold request input              |
| connection pins | HLDAKZ             | Output | External bus hold request acknowledge output |
|                 | DC3 to DC0         | Output | Data bus control output                      |
|                 | CSZ7 to CSZ0       | Output | Chip select output                           |
|                 | BENZ3 to BENZ0     | Output | Byte enable output                           |
|                 | BCYSTZ             | Output | Bus cycle start status output                |
|                 | REFRQZ             | Output | Refresh status output                        |
|                 | SELFREF            | Input  | Self refresh request input                   |
|                 | SDCLK              | Output | SDRAM sync clock output                      |
| NU85E502        | CTCSI73 to CTCSI70 | Input  | Control input from NU85E502 (for CS7 area)   |
| connection pins | CTCSI63 to CTCSI60 | Input  | Control input from NU85E502 (for CS6 area)   |
|                 | CTCSI53 to CTCSI50 | Input  | Control input from NU85E502 (for CS5 area)   |
|                 | CTCSI43 to CTCSI40 | Input  | Control input from NU85E502 (for CS4 area)   |
|                 | CTCSI33 to CTCSI30 | Input  | Control input from NU85E502 (for CS3 area)   |
|                 | CTCSI23 to CTCSI20 | Input  | Control input from NU85E502 (for CS2 area)   |
|                 | CTCSI13 to CTCSI10 | Input  | Control input from NU85E502 (for CS1 area)   |
|                 | CTCSI03 to CTCSI00 | Input  | Control input from NU85E502 (for CS0 area)   |
|                 | CTCSO74 to CTCSO70 | Output | Control output to NU85E502 (for CS7 area)    |
|                 | CTCSO64 to CTCSO60 | Output | Control output to NU85E502 (for CS6 area)    |
|                 | CTCSO54 to CTCSO50 | Output | Control output to NU85E502 (for CS5 area)    |
|                 | CTCSO44 to CTCSO40 | Output | Control output to NU85E502 (for CS4 area)    |
|                 | CTCSO34 to CTCSO30 | Output | Control output to NU85E502 (for CS3 area)    |
|                 | CTCSO24 to CTSO20  | Output | Control output to NU85E502 (for CS2 area)    |
|                 | CTCSO14 to CTCSO10 | Output | Control output to NU85E502 (for CS1 area)    |
|                 | CTCSO04 to CTCSO00 | Output | Control output to NU85E502 (for CS0 area)    |
|                 | CTLO1, CTLO0       | Output | Control output to NU85E502                   |
|                 | MTEN               | Output | Test mode enable output to NU85E502          |
|                 | CT502I71, CT502I70 | Input  | Control input from NU85E502 (for CS7 area)   |
|                 | CT502l61, CT502l60 | Input  | Control input from NU85E502 (for CS6 area)   |
|                 | CT502I51, CT502I50 | Input  | Control input from NU85E502 (for CS5 area)   |
|                 | CT502I41, CT502I40 | Input  | Control input from NU85E502 (for CS4 area)   |
|                 | CT502I31, CT502I30 | Input  | Control input from NU85E502 (for CS3 area)   |
|                 | CT502I21, CT502I20 | Input  | Control input from NU85E502 (for CS2 area)   |
|                 | CT502I11, CT502I10 | Input  | Control input from NU85E502 (for CS1 area)   |
|                 | CT502I01, CT502I00 | Input  | Control input from NU85E502 (for CS0 area)   |

(3/3)

| F                 | Pin Name             | I/O    | Function (3/3)                            |
|-------------------|----------------------|--------|-------------------------------------------|
| NU85E502          | CT502O71, CT502O70   | Output | Control output to NU85E502 (for CS7 area) |
| connection pins   | CT502O61, CT502O60   | Output | Control output to NU85E502 (for CS6 area) |
|                   | CT502O51, CT502O50   | Output | Control output to NU85E502 (for CS5 area) |
|                   | CT502O41, CT502O40   | Output | Control output to NU85E502 (for CS4 area) |
|                   | CT502O31, CT502O30   | Output | Control output to NU85E502 (for CS3 area) |
|                   | CT502O21, CT502O20   | Output | Control output to NU85E502 (for CS2 area) |
|                   | CT502O11, CT502O10   | Output | Control output to NU85E502 (for CS1 area) |
|                   | CT502O01, CT502O00   | Output | Control output to NU85E502 (for CS0 area) |
| Test mode pins    | PHTEST               | Input  | Peripheral test mode status input         |
|                   | PHTDIN1, PHTDIN0     | Input  | Peripheral macro test input               |
|                   | PHTDO1, PHTDO0       | Output | Peripheral macro test output              |
|                   | VPTCLK               | Input  | Test clock input                          |
| NEC reserved pins | MPXEN                | Input  | NEC reserved pin (input a low level)      |
|                   | ASTBZ                | Output | NEC reserved pin (leave open)             |
|                   | DSTBZ                | Output | NEC reserved pin (leave open)             |
|                   | MPXCZ                | Output | NEC reserved pin (leave open)             |
|                   | RDCYZ                | Output | NEC reserved pin (leave open)             |
|                   | BUSST                | Output | NEC reserved pin (leave open)             |
|                   | CT501I72 to CT501I70 | Input  | NEC reserved pin (input a low level)      |
|                   | CT501I62 to CT501I60 | Input  | NEC reserved pin (input a low level)      |
|                   | CT501I52 to CT501I50 | Input  | NEC reserved pin (input a low level)      |
|                   | CT501I42 to CT501I40 | Input  | NEC reserved pin (input a low level)      |
|                   | CT501I32 to CT501I30 | Input  | NEC reserved pin (input a low level)      |
|                   | CT501I22 to CT501I20 | Input  | NEC reserved pin (input a low level)      |
|                   | CT501I12 to CT501I10 | Input  | NEC reserved pin (input a low level)      |
|                   | CT501I02 to CT501I00 | Input  | NEC reserved pin (input a low level)      |
|                   | CT501O73 to CT501O70 | Output | NEC reserved pin (leave open)             |
|                   | CT501O63 to CT501O60 | Output | NEC reserved pin (leave open)             |
|                   | CT501O53 to CT501O50 | Output | NEC reserved pin (leave open)             |
|                   | CT501O43 to CT501O40 | Output | NEC reserved pin (leave open)             |
|                   | CT501O33 to CT501O30 | Output | NEC reserved pin (leave open)             |
|                   | CT501O23 to CT501O20 | Output | NEC reserved pin (leave open)             |
|                   | CT501O13 to CT501O10 | Output | NEC reserved pin (leave open)             |
|                   | CT501O03 to CT501O00 | Output | NEC reserved pin (leave open)             |
|                   | ВСР                  | Output | NEC reserved pin (leave open)             |
|                   | PISL                 | Output | NEC reserved pin (leave open)             |
|                   | CTL501               | Output | NEC reserved pin (leave open)             |
|                   | RWC7 to RWC0         | Output | NEC reserved pin (leave open)             |

### 11. 4 Electrical Specifications (Preliminary)

The following specifications are for a single macro. An actual chip consists of two or more macros. Design the system so that all the specifications of the individual macros are satisfied when the chip is used.

#### 11. 4. 1 Absolute maximum ratings

| Parameter                     | Symbol           | Ratings      | Unit |
|-------------------------------|------------------|--------------|------|
| Supply voltage                | V <sub>DD</sub>  | −0.5 to +4.6 | V    |
| Operating ambient temperature | TA               | -40 to +85   | °C   |
| Storage temperature           | T <sub>stg</sub> | –65 to +150  | °C   |

Caution Product quality may suffer if the absolute maximum rating is exceeded even momentarily for any parameter. That is, the absolute maximum ratings are rated values at which the product is on the verge of suffering physical damage, and therefore the product must be used under conditions that ensure that the absolute maximum ratings are not exceeded.

#### 11. 4. 2 Recommended operation range

| Parameter                     | Symbol       | MIN. | TYP. | MAX. | Unit |
|-------------------------------|--------------|------|------|------|------|
| Supply voltage                | VDD          | 3.0  | 3.3  | 3.6  | V    |
| Operating ambient temperature | TA           | -40  |      | +85  | °C   |
| Clock cycle                   | <b>t</b> cyk | 15.0 |      |      | ns   |

### 11. 4. 3 DC characteristics ( $T_A = -40 \text{ to } +85^{\circ}\text{C}$ , $V_{DD} = 3.3 \text{ V} \pm 0.3 \text{ V}$ )

| Parameter      | Symbol           | Conditions               | MIN. | TYP. | MAX. | Unit   |
|----------------|------------------|--------------------------|------|------|------|--------|
| Supply current | I <sub>DD1</sub> | In normal operation mode |      | 0.18 | 0.27 | mA/MHz |
|                | DD2              | In STOP mode             |      | 0    | 1.0  | μΑ     |

**Remarks 1.** The above supply current value is a reference value calculated from the number of grids.

2. The TYP. value is a reference value for when  $T_A = 25^{\circ}C$ ,  $V_{DD} = 3.3 \text{ V}$ .

### 11. 4. 4 AC characteristics ( $T_A = -40 \text{ to } +85^{\circ}\text{C}$ , $V_{DD} = 3.3 \text{ V} \pm 0.3 \text{ V}$ )

### (1) SRAM/page ROM read timing (1/3)

| Parameter                                           | Syı  | mbol           | Conditions | MIN.                                    | MAX.                                    | Unit |
|-----------------------------------------------------|------|----------------|------------|-----------------------------------------|-----------------------------------------|------|
| VBCLK input cycle                                   | <1>  | <b>t</b> cyk   |            | 15.0                                    |                                         | ns   |
| Delay time from VBCLK↑ to address                   | <2>  | <b>t</b> AD    |            | tdka + 0.7 <sup>Note</sup>              | tdka + 3.4 <sup>Note</sup>              | ns   |
| Delay time from VBCLK↑ to CSZ                       | <3>  | tcszd1         |            | t <sub>DKC</sub> + 0.8 <sup>Note</sup>  | t <sub>DKC</sub> + 3.4 <sup>Note</sup>  | ns   |
| Delay time from VBCLK↓ to RDZ                       | <4>  | <b>t</b> RDZD1 |            | 2.1                                     | 6.2                                     | ns   |
| Delay time from VBCLK↑ to RDZ                       | <5>  | tRDZD2         |            | 1.9                                     | 5.3                                     | ns   |
| Data setup time (to VBCLK↑)                         | <6>  | tois           |            | 0                                       |                                         | ns   |
| Data hold time (from VBCLK↑)                        | <7>  | <b>t</b> DIH   |            | 1.5                                     |                                         | ns   |
| Delay time from VBCLK <sup>↑</sup> to BCYSTZ        | <8>  | <b>t</b> BCYD  |            | 1.7                                     | tdks1 + 1.8 Note                        | ns   |
| WAITZ setup time (to VBCLK↑)                        | <9>  | <b>t</b> wrs   |            | 0                                       |                                         | ns   |
| WAITZ hold time (from VBCLK↑)                       | <10> | twтн           |            | 1.3                                     |                                         | ns   |
| Delay time from VBCLK↓ to VBWAIT, VBAHLD, VBLAST    | <11> | tvRD1          |            |                                         | 5.9                                     | ns   |
| Delay time from VBCLK↑ to VBWAIT,<br>VBAHLD, VBLAST | <12> | tvrd2          |            | 1.6                                     |                                         | ns   |
| Delay time from VBCLK↑ to VBD                       | <13> | tvBD1          |            |                                         | 6.5                                     | ns   |
| Delay time from VBCLK↓ to VBD                       | <14> | tvBD2          |            | 1.7                                     |                                         | ns   |
| Delay time from VBCLK↑ to DC                        | <15> | tDCD1          |            | t <sub>DKS1</sub> + 0.8 <sup>Note</sup> | t <sub>DKS1</sub> + 2.9 <sup>Note</sup> | ns   |

Note toka: Delay time from VBCLK↑ to VBA

tdkc: Delay time from VBCLK  $\!\!\!\uparrow$  to VDCSZ, VDSELPZ

toks1: Delay time from VBCLK↑ to VBSTZ, VBSIZE, VBWRITE, VBCTYP

The above are the electrical specifications of the NB85E. Refer to section 7.4.4 AC characteristics.

### (1) SRAM/page ROM read timing (2/3)

### (a) When wait is inserted



Remarks 1. T1, T2: Basic state in which NU85E500 access is performed

TW1: Wait state inserted by setting data wait control registers 0, 1 (DWC0, DWC1)

TI: Idle state inserted by setting bus cycle control register (BCC)

2. The level of the broken line portion of the DI31 to DI0 signals is undefined. The level of the broken line portion of the VBWAIT, VBAHLD, VBLAST, and VBD31 to VBD0 signals indicates the undefined state (weak unknown) in which the bus holder in the NB85E is driving.

### (1) SRAM/page ROM read timing (3/3)

#### (b) When address setting wait is inserted



#### Remarks 1. T1, T2: Basic state in which NU85E500 access is performed

TW1: Wait state inserted by setting data wait control registers 0, 1 (DWC0, DWC1)

TW2: Wait state through WAITZ pin input

TA: Address setting wait state inserted by setting the address setting wait control register (ASC)

2. The level of the broken line portion of the DI31 to DI0 signals is undefined. The level of the broken line portion of the VBWAIT, VBAHLD, VBLAST, and VBD31 to VBD0 signals indicates the undefined state (weak unknown) in which the bus holder in the NB85E is driving.

### (2) SRAM write timing (1/3)

| Parameter                                                    | Syr  | nbol          | Conditions | MIN.                                    | MAX.                                    | Unit |
|--------------------------------------------------------------|------|---------------|------------|-----------------------------------------|-----------------------------------------|------|
| VBCLK input cycle                                            | <1>  | <b>t</b> cyk  |            | 15.0                                    |                                         | ns   |
| Delay time from VBCLK↑ to address                            | <2>  | tad           |            | t <sub>DKA</sub> + 0.7 <sup>Note</sup>  | t <sub>DKA</sub> + 3.4 <sup>Note</sup>  | ns   |
| Delay time from VBCLK↑ to CSZ                                | <3>  | tcszd1        |            | t <sub>DKC</sub> + 0.8 <sup>Note</sup>  | t <sub>DKC</sub> + 3.4 <sup>Note</sup>  | ns   |
| Delay time from VBCLK↑ to BCYSTZ                             | <8>  | <b>t</b> BCYD |            | 1.7                                     | t <sub>DKS1</sub> + 1.8 <sup>Note</sup> | ns   |
| WAITZ setup time (to VBCLK↑)                                 | <9>  | twrs          |            | 0                                       |                                         | ns   |
| WAITZ hold time (from VBCLK↑)                                | <10> | twтн          |            | 1.3                                     |                                         | ns   |
| Delay time from VBCLK↓ to VBWAIT, VBAHLD, VBLAST             | <11> | tvRD1         |            |                                         | 5.9                                     | ns   |
| Delay time from VBCLK <sup>↑</sup> to VBWAIT, VBAHLD, VBLAST | <12> | tvrd2         |            | 1.6                                     |                                         | ns   |
| Delay time from VBCLK↓ to DC                                 | <16> | tDCD2         |            | 1.9                                     | 5.9                                     | ns   |
| Delay time from VBCLK↓ to WRZ                                | <17> | twrzd         |            | 2.0                                     | 5.6                                     | ns   |
| Delay time from VBCLK↓ to data                               | <18> | <b>t</b> DOD1 |            | t <sub>DKD1</sub> + 0.3 <sup>Note</sup> | t <sub>DKD1</sub> + 1.7 <sup>Note</sup> | ns   |
| Delay time from VBCLK↑ to data                               | <19> | tDOD2         |            | t <sub>DKD0</sub> + 0.3 <sup>Note</sup> | t <sub>DKD0</sub> + 1.7 <sup>Note</sup> | ns   |
| Delay time from VBBENZ to BENZ                               | _    | <b>t</b> BNZD |            | 0.5                                     | 2.2                                     | ns   |

**Note** toka: Delay time from VBCLK↑ to VBA

tDKC: Delay time from VBCLK↑ to VDCSZ, VDSELPZ

toks1: Delay time from VBCLK↑ to VBSTZ, VBSIZE, VBWRITE, VBCTYP

tdkd1: Delay time from VBCLK↓ to VBD data tdkd0: Delay time from VBCLK↑ to VBD data

The above are the electrical specifications of the NB85E. Refer to section 7. 4. 4 AC characteristics.

#### (2) SRAM write timing (2/3)

#### (a) When wait is inserted



### Remarks 1. T1, T2: Basic state in which NU85E500 access is performed

TW1: Wait state inserted by setting data wait control registers 0, 1 (DWC0, DWC1)

TI: Idle state inserted by setting bus cycle control register (BCC)

2. The level of the broken line portion of the DO31 to DO0 signals is undefined. The level of the broken line portion of the VBWAIT, VBAHLD, and VBLAST signals indicates undefined state (weak unknown) in which the bus holder in the NB85E is driving.

#### (2) SRAM write timing (3/3)

### (b) When address setting wait is inserted



#### Remarks 1. T1, T2: Basic state in which NU85E500 access is performed

TW1: Wait state inserted by setting data wait control registers 0, 1 (DWC0, DWC1)

TW2: Wait state through WAITZ pin input

TA: Address setting wait state inserted by setting the address setting wait control register (ASC)

2. The level of the broken line portion of the DO31 to DO0 signals is undefined. The level of the broken line portion of the VBWAIT, VBAHLD, and VBLAST signals indicates undefined state (weak unknown) in which the bus holder in the NB85E is driving.

### (3) SRAM read/write timing (1/2)

| Parameter                                           | Syı  | mbol          | Conditions | MIN.                                    | MAX.                                    | Unit |
|-----------------------------------------------------|------|---------------|------------|-----------------------------------------|-----------------------------------------|------|
| VBCLK input cycle                                   | <1>  | <b>t</b> cyk  |            | 15.0                                    |                                         | ns   |
| Delay time from VBCLK↑ to address                   | <2>  | tad           |            | t <sub>DKA</sub> + 0.7 <sup>Note</sup>  | t <sub>DKA</sub> + 3.4 <sup>Note</sup>  | ns   |
| Delay time from VBCLK↑ to CSZ                       | <3>  | tcszD1        |            | t <sub>DKC</sub> + 0.8 <sup>Note</sup>  | t <sub>DKC</sub> + 3.4 <sup>Note</sup>  | ns   |
| Delay time from VBCLK↓ to RDZ                       | <4>  | tRDZD1        |            | 2.1                                     | 6.2                                     | ns   |
| Delay time from VBCLK↑ to RDZ                       | <5>  | tRDZD2        |            | 1.9                                     | 5.3                                     | ns   |
| Data setup time (to VBCLK↑)                         | <6>  | tois          |            | 0                                       |                                         | ns   |
| Data hold time (from VBCLK <sup>↑</sup> )           | <7>  | <b>t</b> DIH  |            | 1.5                                     |                                         | ns   |
| Delay time from VBCLK <sup>↑</sup> to BCYSTZ        | <8>  | <b>t</b> BCYD |            | 1.7                                     | t <sub>DKS1</sub> + 1.8 <sup>Note</sup> | ns   |
| WAITZ setup time (to VBCLK↑)                        | <9>  | <b>t</b> wrs  |            | 0                                       |                                         | ns   |
| WAITZ hold time (from VBCLK <sup>↑</sup> )          | <10> | twтн          |            | 1.3                                     |                                         | ns   |
| Delay time from VBCLK↓ to VBWAIT,<br>VBAHLD, VBLAST | <11> | tvrd1         |            |                                         | 5.9                                     | ns   |
| Delay time from VBCLK↑ to VBWAIT, VBAHLD, VBLAST    | <12> | tvrd2         |            | 1.6                                     |                                         | ns   |
| Delay time from VBCLK↑ to VBD                       | <13> | <b>t</b> VBD1 |            |                                         | 6.5                                     | ns   |
| Delay time from VBCLK↓ to VBD                       | <14> | tvBD2         |            | 1.7                                     |                                         | ns   |
| Delay time from VBCLK↑ to DC                        | <15> | tDCD1         |            | t <sub>DKS1</sub> + 0.8 <sup>Note</sup> | t <sub>DKS1</sub> + 2.9 <sup>Note</sup> | ns   |
| Delay time from VBCLK↓ to DC                        | <16> | tDCD2         |            | 1.9                                     | 5.9                                     | ns   |
| Delay time from VBCLK↓ to WRZ                       | <17> | twrzd         |            | 2.0                                     | 5.6                                     | ns   |
| Delay time from VBCLK↓ to data                      | <18> | <b>t</b> DOD1 |            | t <sub>DKD1</sub> + 0.3 <sup>Note</sup> | t <sub>DKD1</sub> + 1.7 <sup>Note</sup> | ns   |
| Delay time from VBCLK↑ to data                      | <19> | tDOD2         |            | tokdo + 0.3 Note                        | tokdo + 1.7 Note                        | ns   |

Note toka: Delay time from VBCLK↑ to VBA

tokc: Delay time from VBCLK↑ to VDCSZ, VDSELPZ

toks1: Delay time from VBCLK↑ to VBSTZ, VBSIZE, VBWRITE, VBCTYP

tdkd1: Delay time from VBCLK↓ to VBD data tdkd0: Delay time from VBCLK↑ to VBD data

The above are the electrical specifications of the NB85E. Refer to section **7.4.4 AC characteristics**.

### (3) SRAM read/write timing (2/2)



### Remarks 1. T1, T2: Basic state in which NU85E500 access is performed

2. The level of the broken line portion of the DI31 to DI0 and DO31 to DO0 signals is undefined. The level of the broken line portion of the VBWAIT, VBAHLD, VBLAST, and VBD31 to VBD0 signals indicates undefined state (weak unknown) in which the bus holder in the NB85E is driving.

#### (4) SDRAM write timing

| Parameter                      | Symbol |               | Conditions | MIN.                        | MAX.                        | Unit |
|--------------------------------|--------|---------------|------------|-----------------------------|-----------------------------|------|
| Delay time from VBCLK↑ to data | <19>   | <b>t</b> DOD2 |            | tokdo + 0.3 <sup>Note</sup> | tokdo + 1.7 <sup>Note</sup> | ns   |

Note tokdo: Delay time from VBCLK↑ to VBD data

The above is the electrical specifications of the NB85E. Refer to section 7. 4. 4 AC characteristics.



Note Signal of the NU85E502

Remarks 1. TW: Wait state

TPREC: Bank precharge command state

TBCW: Wait state inserted by setting the BCW1 and BCW0 bits of the SDRAM configuration

register n (SCRn) (n = 7 to 0)

TACT: Bank active command state

TWR: Write command state

TWPRE:State indicating a precharge

TWE: State indicating the end of a write cycle

2. The level of the broken line portion of the VBD31 to VBD0 signals indicates undefined state (weak unknown) in which the bus holder in the NB85E is driving. The level of the broken line portion of the DO31 to DO0 signals is undefined.

#### (5) SDRAM sequential write timing

| Parameter                                               | Symbol |               | Conditions | MIN. | MAX. | Unit |
|---------------------------------------------------------|--------|---------------|------------|------|------|------|
| Delay time from VBCLK↑ to data (SDRAM sequential write) | <20>   | <b>t</b> DOD3 |            | 1.9  | 5.7  | ns   |
| VBD data setup time (to VBCLK↑)                         | <21>   | tvbds         |            | 0    |      | ns   |
| VBD data hold time (from VBCLK↑)                        | <22>   | <b>t</b> vBDH |            | 1.8  |      | ns   |



### Note Signal of the NU85E502

Remarks 1. TW: Wait state

TPREC: Bank precharge command state

TBCW: Wait state inserted by setting the BCW1 and BCW0 bits of the SDRAM configuration

register n (SCRn) (n = 0 to 7)

TACT: Bank active command state

TWR: Write command state

TWPRE: State indicating a precharge

TWE: State indicating the end of a write cycle

2. The level of the broken line portion of the VBD31 to VBD0 signals indicates undefined state (weak unknown) in which the bus holder in the NB85E is driving. The level of the broken line portion of the DO31 to DO0 signals is undefined.

### (6) SDRAM refresh timing

| Parameter                                    | Symbol |                | Conditions | MIN.              | MAX.              | Unit |
|----------------------------------------------|--------|----------------|------------|-------------------|-------------------|------|
| Delay time from VBCLK <sup>↑</sup> to REFRQZ | -      | <b>t</b> RFRQD |            | 2.0               | 5.7               | ns   |
| SELFREF setup time (to VBCLK↑)               | -      | tsrfs          |            | 0                 |                   | ns   |
| SELFREF hold time (from VBCLK↑)              | -      | <b>t</b> srfh  |            | 1.4               |                   | ns   |
| Delay time from CT502In1 to CSZ              | -      | tcszd2         |            | tc2I1D + 0.5 Note | tc2I1D + 2.4 Note | ns   |

Note tc2I1D: Delay time from VBCLK↑ to CT502I1

The above is the electrical specifications of the NU85E502. Refer to section 12. 4. 4 (3) NU85E500/NB85E500 connection signal timing.

**Remark** n = 7 to 0

### (7) SDCLK output timing

| Parameter                        | Symbol |        | Conditions | MIN. | MAX. | Unit |
|----------------------------------|--------|--------|------------|------|------|------|
| Delay time from VBCLK↑ to SDCLK↑ | <23>   | tsdckd |            | 1.6  | 4.5  | ns   |



### (8) Bus hold timing

| Parameter                                                                | Syn  | nbol           | Conditions | MIN. | MAX. | Unit |
|--------------------------------------------------------------------------|------|----------------|------------|------|------|------|
| HLDRQZ setup time (to VBCLK↑)                                            | <24> | <b>t</b> HRQS  |            | 0    |      | ns   |
| HLDRQZ hold time (from VBCLK↑)                                           | <25> | thrqh          |            | 1.2  |      | ns   |
| Delay time from VBCLK↑ to HLDAKZ                                         | <26> | <b>t</b> hakd  |            | 2.0  | 5.6  | ns   |
| Delay time from VBCLK↑ to VAREQ                                          | <27> | tvaqd          |            | 1.9  | 5.3  | ns   |
| VAACK setup time (to VBCLK↑)                                             | <28> | tvaks          |            | 0    |      | ns   |
| VAACK hold time (from VBCLK↓)                                            | <29> | tvakh          |            | 1.6  |      | ns   |
| Delay time from VAACK↑ to VBLOCK                                         | <30> | <b>t</b> VLKD  |            | 0.6  | 2.4  | ns   |
| Delay time from VAACK↑ to VBTTYP                                         | <31> | <b>t</b> VTTPD |            | 0.4  | 1.9  | ns   |
| Delay time from VAACK↑ to VBWRITE, VBBENZ, VDSELPZ, VDCSZ, VBSTZ, VBBSTR | <32> | tvsbd          |            | 0.5  | 2.5  | ns   |



# (9) STOP mode timing

| Parameter                       | Symbol |                | Conditions | MIN. | MAX. | Unit |
|---------------------------------|--------|----------------|------------|------|------|------|
| STPRQ setup time (to VBCLK↓)    | <33>   | <b>t</b> spqs  |            | 0    |      | ns   |
| STPRQ hold time (from VBCLK↑)   | <34>   | <b>t</b> spqh  |            | 1.2  |      | ns   |
| Delay time from VBCLK↑ to STPAK | <35>   | <b>t</b> SPAKD |            | 1.9  | 5.2  | ns   |



# (10) I/O control signal timing

| Parameter                       | Symbol |       | Conditions                | MIN. | MAX. | Unit |
|---------------------------------|--------|-------|---------------------------|------|------|------|
| Delay time from VBCLK↓ to IORDZ | <36>   | tiord | During DMA flyby transfer | 2.1  | 5.9  | ns   |
| Delay time from VBCLK↓ to IOWRZ | <37>   | tiowd | During DMA flyby transfer | 1.9  | 5.6  | ns   |



### (11) NU85E502 connection signal timing

| Parameter                         | Symbol |                | Conditions | MIN. | MAX. | Unit |
|-----------------------------------|--------|----------------|------------|------|------|------|
| CTCSIn3 setup time (to VBCLK↑)    | <38>   | tcsiss         |            | 0    |      | ns   |
| CTCSIn3 hold time (from VBCLK↑)   | <39>   | tcsізн         |            | 0.8  |      | ns   |
| CTCSIn2 setup time (to VBCLK↑)    | <40>   | tcsi2s         |            | 0    |      | ns   |
| CTCSIn2 hold time (from VBCLK↑)   | <41>   | tcsi2H         |            | 1.4  |      | ns   |
| CTCSIn1 setup time (to VBCLK↓)    | <42>   | tcsiis         |            | 0    |      | ns   |
| CTCSIn1 hold time (from VBCLK↑)   | <43>   | tcsi1H         |            | 1.3  |      | ns   |
| Delay time from VBCLK↑ to CTCSOn2 | <44>   | tcso2D         |            | 1.9  | 5.7  | ns   |
| CT502In0 setup time (to VBCLK↓)   | <45>   | tc210S         |            | 0    |      | ns   |
| CT502In0 hold time (from VBCLK↓)  | <46>   | <b>t</b> C210H |            | 0.5  |      | ns   |
| Delay time from VBCLK↓ to CTLO1   | <47>   | tctl1D         |            | 1.9  | 5.5  | ns   |

**Remark** n = 7 to 0



# (12) VSB timing

| Parameter                       | S | symbol              | Conditions          | MIN. | MAX. | Unit |
|---------------------------------|---|---------------------|---------------------|------|------|------|
| VBA setup time (to VBCLK↑)      | - | tvbas1              | When using page ROM | 1.5  |      | ns   |
| VBA hold time (from VBCLK↑)     | _ | tvbah1              | When using page ROM | 1.2  |      | ns   |
| VDCSZ setup time (to VBCLK↓)    | - | tcszs1              |                     | 1.4  |      | ns   |
| VDCSZ hold time (from VBCLK↑)   | - | tcszн1              |                     | 1.0  |      | ns   |
| VBWRITE setup time (to VBCLK↓)  | - | tvBWRS1             |                     | 0    |      | ns   |
| VBWRITE hold time (from VBCLK↓) | - | tvbwrh1             |                     | 1.7  |      | ns   |
| VBBENZ setup time (to VBCLK↓)   | - | tBENZS1             |                     | 0    |      | ns   |
| VBBENZ hold time (from VBCLK↓)  | _ | t <sub>BENZH1</sub> |                     | 2.0  |      | ns   |
| VBCTYP setup time (to VBCLK↓)   | - | tctyps1             |                     | 0    |      | ns   |
| VBCTYP hold time (from VBCLK↓)  | - | <b>t</b> стурн1     |                     | 1.3  |      | ns   |
| VBSEQ setup time (to VBCLK↓)    | - | tseqs1              |                     | 0    |      | ns   |
| VBSEQ hold time (from VBCLK↑)   | - | tseqH1              |                     | 1.3  |      | ns   |
| VBSTZ setup time (to VBCLK↓)    | - | tstzs1              |                     | 0    |      | ns   |
| VBSTZ hold time (from VBCLK↑)   | - | <b>t</b> sтzн1      |                     | 1.5  |      | ns   |

# [MEMO]

# (13) NPB timing (1/2)

| Parameter                               | Syn  | nbol           | Conditions | MIN. | MAX. | Unit |
|-----------------------------------------|------|----------------|------------|------|------|------|
| VPA address setup time (to VPSTB↑)      | <48> | tvpas          |            | 20   |      | ns   |
| VPA address hold time (from VPSTB↓)     | <49> | <b>t</b> vpah  |            | 20   |      | ns   |
| VPWRITE setup time (to VPSTB↑)          | <50> | tvpwrs         |            | 20   |      | ns   |
| VPWRITE hold time (from VPSTB↓)         | <51> | tvpwrh         |            | 20   |      | ns   |
| VPD data setup time (to VPSTB↑)         | <52> | tvpds          |            | 20   |      | ns   |
| VPD data hold time (from VPSTB↓)        | <53> | <b>t</b> vpdh  |            | 20   |      | ns   |
| Delay time from VPSTB↑ to VPD data      | <54> | <b>t</b> vpdd  |            | 0.7  | 8.0  | ns   |
| VPUBENZ setup time (to VPSTB↑)          | <55> | tvpubs         |            | 20   |      | ns   |
| VPUBENZ hold time (from VPSTB↓)         | <56> | <b>t</b> vpubh |            | 20   |      | ns   |
| Delay time from VPSTB↓ to CTCSOn4       | <57> | tcso4D         |            |      | 5    | ns   |
| Delay time from VPSTB↓ to CTCSOn3       | <58> | tcso3D         |            |      | 5    | ns   |
| Delay time from VPSTB↓ to CTCSOn1       | <59> | tcso1D         |            |      | 5    | ns   |
| Delay time from VPSTB↓ to CTCSOn0       | <60> | tcsood         |            |      | 5    | ns   |
| Delay time from VPA address to CT502On1 | <61> | <b>t</b> C2O1D |            |      | 5    | ns   |
| Delay time from VPA address to CT502On0 | <62> | tc200D         |            |      | 5    | ns   |

**Remark** n = 7 to 0

## (13) NPB timing (2/2)



#### **CHAPTER 12 NU85E502**

(Under Development)

The NU85E502 is an SDRAM controller for the NB85E and NB85ET.

The NU85E502 is used by connecting to the NU85E500 or NB85E500 according to the target CPU core.

| Target CPU Core | Type of Connected External Memory | Memory Controller (MEMC) |
|-----------------|-----------------------------------|--------------------------|
| NB85E           | SDRAM                             | NU85E500 + NU85E502      |
| NB85E, NB85ET   |                                   | NB85E500 + NU85E502      |

Remark For details of the NB85E500 and NU85E500, refer to CHAPTER 10 NB85E500 and CHAPTER 11 NU85E500, respectively.

#### 12.1 Outline

The NU85E502 is a macro for controlling synchronous DRAM (SDRAM).

The NU85E502 can be used to start the external SDRAM bus cycle when it is connected to the NU85E500 (or NB85E500), and to the NB85E (or NB85ET) via the VSB.

The NU85E502 is used connected to the NU85E500 (or NB85E500).

Up to eight NU85E502 can be connected.

#### 12. 1. 1 Symbol diagram

## Number of grids

22.3k grids

41.6k grids (including wiring area)

#### Number of separation simulation patterns

20.3k



## 12. 1. 2 Pin capacitance

Remark CIN: Capacitance of only input pin

 $C_{\text{inewl}}$ : Value of  $C_{\text{IN}}$  with wiring capacitance (estimated wire length capacitance) taken into

consideration (I = 10 mm)

## (1) Input pins (1/2)

| Pin Name | Cin (pF) | Cinewl (pF) | Pin Name | Cin (pF) | Cinewl (pF) |
|----------|----------|-------------|----------|----------|-------------|
| VBCLK    | 0.021    | 1.921       | VBSEQ0   | 0.013    | 1.913       |
| VBA25    | 0.060    | 1.960       | VBWRITE  | 0.057    | 1.957       |
| VBA24    | 0.064    | 1.964       | VPSTB    | 0.012    | 1.912       |
| VBA23    | 0.095    | 1.995       | VPWRITE  | 0.015    | 1.915       |
| VBA22    | 0.061    | 1.961       | CTCSO4   | 0.049    | 1.949       |
| VBA21    | 0.062    | 1.962       | CTCSO3   | 0.051    | 1.951       |
| VBA20    | 0.060    | 1.960       | CTCSO2   | 0.013    | 1.913       |
| VBA19    | 0.061    | 1.961       | CTCSO1   | 0.021    | 1.921       |
| VBA18    | 0.101    | 2.001       | CTCSO0   | 0.008    | 1.908       |
| VBA17    | 0.100    | 2.000       | CT502O1  | 0.019    | 1.919       |
| VBA16    | 0.068    | 1.968       | CT502O0  | 0.030    | 1.930       |
| VBA15    | 0.092    | 1.992       | CTLO1    | 0.066    | 1.966       |
| VBA14    | 0.114    | 2.014       | CTLO0    | 0.019    | 1.919       |
| VBA13    | 0.080    | 1.980       | MTEN     | 0.082    | 1.982       |
| VBA12    | 0.092    | 1.992       | HLDAKZ   | 0.097    | 1.997       |
| VBA11    | 0.093    | 1.993       | D31      | 0.057    | 1.957       |
| VBA10    | 0.094    | 1.994       | D30      | 0.076    | 1.976       |
| VBA9     | 0.061    | 1.961       | D29      | 0.085    | 1.985       |
| VBA8     | 0.062    | 1.962       | D28      | 0.089    | 1.989       |
| VBA7     | 0.068    | 1.968       | D27      | 0.114    | 2.014       |
| VBA6     | 0.061    | 1.961       | D26      | 0.109    | 2.009       |
| VBA5     | 0.061    | 1.961       | D25      | 0.090    | 1.990       |
| VBA4     | 0.099    | 1.999       | D24      | 0.068    | 1.968       |
| VBA3     | 0.094    | 1.994       | D23      | 0.066    | 1.966       |
| VBA2     | 0.092    | 1.992       | D22      | 0.095    | 1.995       |
| VBA1     | 0.061    | 1.961       | D21      | 0.089    | 1.989       |
| VBA0     | 0.093    | 1.993       | D20      | 0.066    | 1.966       |
| VDCSZ    | 0.024    | 1.924       | D19      | 0.060    | 1.960       |
| VBBENZ3  | 0.008    | 1.908       | D18      | 0.093    | 1.993       |
| VBBENZ2  | 0.008    | 1.908       | D17      | 0.062    | 1.962       |
| VBBENZ1  | 0.008    | 1.908       | D16      | 0.062    | 1.962       |
| VBBENZ0  | 0.036    | 1.936       | D15      | 0.064    | 1.964       |
| VPRESZ   | 0.011    | 1.911       | D14      | 0.068    | 1.968       |
| VBSEQ2   | 0.008    | 1.908       | D13      | 0.061    | 1.961       |
| VBSEQ1   | 0.013    | 1.913       | D12      | 0.087    | 1.987       |

# (1) Input pins (2/2)

| Pin Name | C <sub>IN</sub> (pF) | Cinewl (pF) | Pin Name | Cin (pF) | Cinewl (pF) |
|----------|----------------------|-------------|----------|----------|-------------|
| D11      | 0.028                | 1.928       | D4       | 0.056    | 1.956       |
| D10      | 0.073                | 1.973       | D3       | 0.102    | 2.002       |
| D9       | 0.033                | 1.933       | D2       | 0.058    | 1.958       |
| D8       | 0.060                | 1.960       | D1       | 0.056    | 1.956       |
| D7       | 0.067                | 1.967       | D0       | 0.078    | 1.978       |
| D6       | 0.048                | 1.948       | VPTCLK   | 0.061    | 1.961       |
| D5       | 0.060                | 1.960       |          |          |             |

## (2) Output pins

| Pin Name | CMAX (pF) | Pin Name | Смах (рF) | Pin Name | Смах (рF) |
|----------|-----------|----------|-----------|----------|-----------|
| VBD31    | 6.566     | VBD6     | 6.558     | A16      | 12.976    |
| VBD30    | 6.579     | VBD5     | 6.575     | A15      | 13.069    |
| VBD29    | 6.572     | VBD4     | 6.578     | A14      | 13.067    |
| VBD28    | 6.562     | VBD3     | 6.576     | A13      | 13.001    |
| VBD27    | 6.579     | VBD2     | 6.570     | A12      | 13.276    |
| VBD26    | 6.563     | VBD1     | 6.569     | A11      | 13.245    |
| VBD25    | 6.576     | VBD0     | 6.578     | A10      | 13.016    |
| VBD24    | 6.575     | VBWAIT   | 6.560     | A9       | 13.006    |
| VBD23    | 6.580     | VBAHLD   | 6.493     | A8       | 13.026    |
| VBD22    | 6.571     | VBLAST   | 6.580     | A7       | 12.980    |
| VBD21    | 6.579     | CTCSI3   | 13.057    | A6       | 13.245    |
| VBD20    | 6.575     | CTCSI2   | 13.336    | A5       | 12.954    |
| VBD19    | 6.578     | CTCSI1   | 13.338    | A4       | 13.265    |
| VBD18    | 6.564     | CTCSI0   | 13.236    | A3       | 13.031    |
| VBD17    | 6.575     | CT502I1  | 13.336    | A2       | 13.040    |
| VBD16    | 6.576     | CT502I0  | 13.338    | A1       | 13.002    |
| VBD15    | 6.571     | A25      | 13.057    | A0       | 13.040    |
| VBD14    | 6.574     | A24      | 12.993    | SDRASZ   | 13.058    |
| VBD13    | 6.573     | A23      | 12.989    | SDCASZ   | 13.056    |
| VBD12    | 6.579     | A22      | 12.977    | SDWEZ    | 13.054    |
| VBD11    | 6.571     | A21      | 12.981    | CKE      | 13.064    |
| VBD10    | 6.579     | A20      | 12.990    | DQM3     | 13.065    |
| VBD9     | 6.574     | A19      | 12.972    | DQM2     | 13.070    |
| VBD8     | 6.573     | A18      | 13.070    | DQM1     | 13.055    |
| VBD7     | 6.562     | A17      | 12.892    | DQM0     | 13.062    |

## (3) I/O pins

| Pin Name | Смах (рF) | Cin (pF) | Cinewl (pF) | Pin Name | C <sub>MAX</sub> (pF) | C <sub>IN</sub> (pF) | Cinewl (pF) |
|----------|-----------|----------|-------------|----------|-----------------------|----------------------|-------------|
| VPD15    | 6.565     | 0.069    | 1.969       | VPD7     | 6.575                 | 0.059                | 1.959       |
| VPD14    | 6.560     | 0.073    | 1.973       | VPD6     | 6.556                 | 0.077                | 1.977       |
| VPD13    | 6.573     | 0.061    | 1.961       | VPD5     | 6.561                 | 0.072                | 1.972       |
| VPD12    | 6.554     | 0.079    | 1.979       | VPD4     | 6.575                 | 0.058                | 1.958       |
| VPD11    | 6.585     | 0.049    | 1.949       | VPD3     | 6.577                 | 0.057                | 1.957       |
| VPD10    | 6.578     | 0.056    | 1.956       | VPD2     | 6.571                 | 0.063                | 1.963       |
| VPD9     | 6.560     | 0.073    | 1.973       | VPD1     | 6.573                 | 0.061                | 1.961       |
| VPD8     | 6.573     | 0.061    | 1.961       | VPD0     | 6.567                 | 0.067                | 1.967       |

## 12. 2 Initialization of Internal Registers

Before executing the test program, be sure to execute an instruction to assign initial values to the internal registers used in the test program execution. Failure to do this will result in the propagation of undefined values.

## 12. 3 Pin Functions

| Pin Na            | ame                | I/O    | Function                                      |
|-------------------|--------------------|--------|-----------------------------------------------|
| NB85E/NB85ET      | VBCLK              | Input  | Internal system clock input                   |
| connection pins   | VBA25 to VBA0      | Input  | Address input                                 |
|                   | VBD31 to VBD0      | Output | Data output                                   |
|                   | VDCSZ              | Input  | Chip select input                             |
|                   | VBBENZ3 to VBBENZ0 | Input  | Byte enable input                             |
|                   | VPRESZ             | Input  | Reset input                                   |
|                   | VBSEQ2 to VBSEQ0   | Input  | Sequential status input                       |
|                   | VBWRITE            | Input  | Read/write status input                       |
|                   | VBWAIT             | Output | Wait response output                          |
|                   | VBAHLD             | Output | Address hold response output                  |
|                   | VBLAST             | Output | Last response output                          |
|                   | VPD15 to VPD0      | I/O    | Data I/O (for NPB)                            |
|                   | VPSTB              | Input  | Data strobe input (for NPB)                   |
|                   | VPWRITE            | Input  | Write access strobe input (for NPB)           |
| NU85E500/NB85E500 | CTCSI3 to CTCSI0   | Output | Control output to NU85E500/NB85E500           |
| connection pins   | CTCSO4 to CTCSO0   | Input  | Control input from NU85E500/NB85E500          |
|                   | CT502I1, CT502I0   | Output | Control output to NU85E500/NB85E500           |
|                   | CT502O1, CT502O0   | Input  | Control input from NU85E500/NB85E500          |
|                   | CTLO1, CTLO0       | Input  | Control input from NU85E500/NB85E500          |
|                   | MTEN               | Input  | Test mode enable input from NU85E500/NB85E500 |
|                   | HLDAKZ             | Input  | Bus hold status input from NU85E500/NB85E500  |
| External memory   | A25 to A0          | Output | External memory address output                |
| connection pins   | D31 to D0          | Input  | External memory data input                    |
|                   | SDRASZ             | Output | SDRAM row address strobe output               |
|                   | SDCASZ             | Output | SDRAM column address strobe output            |
|                   | SDWEZ              | Output | SDRAM data write enable output                |
|                   | CKE                | Output | Clock enable output                           |
|                   | DQM3 to DQM0       | Output | Data mask output                              |
| Test mode pins    | VPTCLK             | Input  | Test clock input                              |

#### 12. 4 Electrical Specifications (Preliminary)

The following specifications are for a single macro. An actual chip consists of two or more macros. Design the system so that all the specifications of the individual macros are satisfied when the chip is used.

#### 12. 4. 1 Absolute maximum ratings

| Parameter                     | Symbol          | Ratings      | Unit |
|-------------------------------|-----------------|--------------|------|
| Supply voltage                | V <sub>DD</sub> | -0.5 to +4.6 | V    |
| Operating ambient temperature | TA              | -40 to +85   | °C   |
| Storage temperature           | Tstg            | –65 to +150  | °C   |

Caution Product quality may suffer if the absolute maximum rating is exceeded even momentarily for any parameter. That is, the absolute maximum ratings are rated values at which the product is on the verge of suffering physical damage, and therefore the product must be used under conditions that ensure that the absolute maximum ratings are not exceeded.

#### 12. 4. 2 Recommended operation range

| Parameter                     | Symbol          | MIN. | TYP. | MAX. | Unit |
|-------------------------------|-----------------|------|------|------|------|
| Supply voltage                | V <sub>DD</sub> | 3.0  | 3.3  | 3.6  | V    |
| Operating ambient temperature | Та              | -40  |      | +85  | °C   |
| Clock cycle                   | tсүк            | 15.0 |      |      | ns   |

#### 12. 4. 3 DC characteristics (T<sub>A</sub> = -40 to +85°C, V<sub>DD</sub> = 3.3 V $\pm 0.3$ V)

| Parameter      | Symbol           | Conditions               | MIN. | TYP. | MAX. | Unit   |
|----------------|------------------|--------------------------|------|------|------|--------|
| Supply current | I <sub>DD1</sub> | In normal operation mode |      | 0.11 | 0.17 | mA/MHz |
|                | IDD2             | In STOP mode             |      | 0    | 1.0  | μΑ     |

**Remarks 1.** The above supply current value is a reference value calculated from the number of grids.

2. The TYP. value is a reference value for when  $TA = 25^{\circ}C$ , VDD = 3.3 V.

# [MEMO]

# 12. 4. 4 AC characteristics ( $T_A = -40 \text{ to } +85^{\circ}\text{C}$ , $V_{DD} = 3.3 \text{ V} \pm 0.3 \text{ V}$ )

# (1) SDRAM read timing (1/2)

| Parameter                                           | Syr  | nbol             | Conditions                    | MIN. | MAX. | Unit |
|-----------------------------------------------------|------|------------------|-------------------------------|------|------|------|
| VBCLK input cycle                                   | <1>  | <b>t</b> cyk     |                               | 15.0 |      | ns   |
| Delay time 1 from VBCLK <sup>↑</sup> to row address | <2>  | tsdrad1          | During bank precharge command | 2.7  | 9.5  | ns   |
| Delay time 2 from VBCLK <sup>↑</sup> to row address | <3>  | tsdrad2          | During bank active command    | 2.7  | 9.5  | ns   |
| Delay time from VBCLK↑ to column address            | <4>  | tsdcad           |                               | 2.2  | 8.6  | ns   |
| Delay time from VBCLK↑ to SDRASZ                    | <5>  | tsrd             |                               | 2.3  | 6.9  | ns   |
| Delay time from VBCLK↑ to SDCASZ                    | <6>  | tsco             |                               | 2.4  | 7.1  | ns   |
| Delay time from VBCLK↑ to SDWEZ                     | <7>  | tswD             |                               | 2.3  | 6.9  | ns   |
| Delay time from VBCLK↑ to DQM                       | <8>  | togo             |                               | 2.3  | 7.1  | ns   |
| Data setup time (to VBCLK↑)                         | <9>  | t <sub>DS2</sub> |                               | 0    |      | ns   |
| Data hold time (from VBCLK↑)                        | <10> | t <sub>DH2</sub> |                               | 0.8  |      | ns   |
| Delay time from VBCLK↑ to VBD                       | <11> | tvBD3            |                               |      | 5.5  | ns   |
| Delay time from VBCLK↓ to VBD                       | <12> | tvBD4            |                               | 1.5  |      | ns   |
| Delay time from VBCLK↓ to VBWAIT, VBAHLD, VBLAST    | <13> | tvrd3            |                               |      | 5.0  | ns   |
| Delay time from VBCLK↑ to VBWAIT,<br>VBAHLD, VBLAST | <14> | tvRD4            |                               | 1.4  |      | ns   |
| Delay time from VBCLK↑ to CKE                       | <15> | tcked            |                               | 2.2  | 6.6  | ns   |

262

#### (1) SDRAM read timing (2/2)



Note Signal of the NU85E500 (or NB85E500)

Remarks 1. TW: Wait state

TPREC: Bank precharge command state

TBCW: Wait state inserted by setting the BCW1 and BCW0 bits of the SDRAM configuration

register n (SCRn) (n = 7 to 0)

TACT: Bank active command state

TREAD: Read command state

TLATE: Wait state of latency portion

2. The level of the broken line portion of the D31 to D0 signals is undefined. The level of the broken line portion of the VBD31 to VBD0, VBWAIT, VBAHLD, and VBLAST signals indicates undefined state (weak unknown) in which the bus holder in the NB85E (or NB85ET) is driving.

# (2) SDRAM write timing (1/2)

|   | Parameter                                           | Syn  | nbol         | Conditions                    | MIN. | MAX. | Unit |
|---|-----------------------------------------------------|------|--------------|-------------------------------|------|------|------|
|   | VBCLK input cycle                                   | <1>  | <b>t</b> cyk |                               | 15.0 |      | ns   |
|   | Delay time 1 from VBCLK <sup>↑</sup> to row address | <2>  | tsdrad1      | During bank precharge command | 2.7  | 9.5  | ns   |
|   | Delay time 2 from VBCLK↑ to row address             | <3>  | tsdrad2      | During bank active command    | 2.7  | 9.5  | ns   |
| * | Delay time from VBCLK↑ to column address            | <4>  | tsdcad       |                               | 2.2  | 8.6  | ns   |
|   | Delay time from VBCLK↑ to SDRASZ                    | <5>  | tsrd         |                               | 2.3  | 6.9  | ns   |
|   | Delay time from VBCLK↑ to SDCASZ                    | <6>  | tscd         |                               | 2.4  | 7.1  | ns   |
|   | Delay time from VBCLK↑ to SDWEZ                     | <7>  | <b>t</b> swd |                               | 2.3  | 6.9  | ns   |
|   | Delay time from VBCLK↑ to DQM                       | <8>  | <b>t</b> DQD |                               | 2.3  | 7.1  | ns   |
|   | Delay time from VBCLK↓ to VBWAIT,<br>VBAHLD, VBLAST | <13> | tvrd3        |                               |      | 5.0  | ns   |
|   | Delay time from VBCLK↑ to VBWAIT, VBAHLD, VBLAST    | <14> | tvRD4        |                               | 1.4  |      | ns   |
|   | Delay time from VBCLK↑ to CKE                       | <15> | tcked        |                               | 2.2  | 6.6  | ns   |

#### (2) SDRAM write timing (2/2)



#### Note Signal of the NU85E500

Remarks 1. TW: Wait state

TPREC: Bank precharge command state

TBCW: Wait state inserted by setting the BCW1 and BCW0 bits of the SDRAM configuration

register n (SCRn) (n = 7 to 0)

TACT: Bank active command state

TWR: Write command state

TWPRE: State indicating a precharge

TWE: State indicating the end of a write cycle

2. The level of the broken line portion of the VBD31 to VBD0, VBWAIT, VBAHLD, and VBLAST signals indicates undefined state (weak unknown) in which the bus holder in the NB85E is driving. The level of the broken line portion of the DO31 to DO0 signals is undefined.

## (3) NU85E500/NB85E500 connection signal timing

| Parameter                                     | Syr  | mbol           | Conditions | MIN. | MAX. | Unit |
|-----------------------------------------------|------|----------------|------------|------|------|------|
| Delay time from VBCLK <sup>↑</sup> to CT502I1 | <16> | <b>t</b> C2l1D |            | 1.4  | 4.0  | ns   |
| Delay time from VBCLK <sup>↑</sup> to CT502I0 | <17> | tc210D         |            | 1.8  | 5.5  | ns   |
| CTLO1 setup time (to VBCLK↑)                  | <18> | tcTL1S         |            | 1.3  |      | ns   |
| CTLO1 hold time (from VBCLK↑)                 | <19> | tcTL1H         |            | 1.0  |      | ns   |
| Delay time from VBCLK↑ to CTCSI3              | <20> | tcsi3D         |            | 1.8  | 5.2  | ns   |
| Delay time from VBCLK↑ to CTCSI2              | <21> | tcsi2D         |            | 1.8  | 5.3  | ns   |
| Delay time from VBCLK <sup>↑</sup> to CTCSI1  | <22> | tcsi1D         |            | 1.5  | 4.2  | ns   |
| CTCSO2 setup time (to VBCLK↑)                 | <23> | tcso2s         |            | 1.9  |      | ns   |
| CTCSO2 hold time (from VBCLK↑)                | <24> | tcso2H         |            | 0.5  |      | ns   |
| HLDAKZ setup time (to VBCLK↑)                 | <25> | <b>t</b> HAKS  |            | 0    |      | ns   |
| HLDAKZ hold time (from VBCLK↑)                | <26> | <b>t</b> hakh  |            | 0.8  |      | ns   |



# (4) VSB timing

\*

| Parameter                       | Syn | nbol               | Conditions | MIN. | MAX. | Unit |
|---------------------------------|-----|--------------------|------------|------|------|------|
| VBA setup time (to VBCLK↑)      | -   | tvbas2             |            | 7.9  |      | ns   |
| VBA hold time (from VBCLK↑)     | -   | tvbah2             |            | 0.3  |      | ns   |
| VDCSZ setup time (to VBCLK↑)    | -   | tcszs2             |            | 3.7  |      | ns   |
| VDCSZ hold time (from VBCLK↑)   | -   | tcszH2             |            | 0.1  |      | ns   |
| VBWRITE setup time (to VBCLK↓)  | -   | tvBWRS2            |            | 0    |      | ns   |
| VBWRITE hold time (from VBCLK↓) | -   | tvBWRH2            |            | 1.6  |      | ns   |
| VBBENZ setup time (to VBCLK↑)   | -   | tBENZS2            |            | 0    |      | ns   |
| VBBENZ hold time (from VBCLK↑)  | -   | tBENZH2            |            | 1.0  |      | ns   |
| VBSEQ setup time (to VBCLK↑)    | _   | tseqs2             |            | 5.2  |      | ns   |
| VBSEQ hold time (from VBCLK↑)   | -   | tseq <sub>H2</sub> |            | 0.5  |      | ns   |

Revisions up to the previous edition are shown below. The "Pages" column indicates pages in the older documents.

# (1) 1st edition $\rightarrow$ 2nd edition

| Pages         | Description                                                                                         |
|---------------|-----------------------------------------------------------------------------------------------------|
| p.16          | Modification of the explanation in 1. 2. 4 Initialize                                               |
| pp.18 to 20   | Modification of the number of grids in 2. 1. 1 Symbol diagram                                       |
| pp.21 to 23   | Modification of 2. 1. 2 Pin capacitance                                                             |
| p.26          | Modification of 2. 3. 3 DC characteristics                                                          |
| p.26          | Addition of CPU operating frequency in 2. 3. 4 AC characteristics                                   |
| p.31          | Addition of Caution in 2. 3. 4 (6) (e) I <sup>2</sup> C bus mode                                    |
| p.32          | Addition of Figure 2-1. Example of Circuit Construction of Serial Interface (IIC0) Input/Output Pin |
| p.35          | Modification of 2. 4 (6) Write timing 1                                                             |
| p.35          | Modification of 2. 4 (7) Write timing 2                                                             |
| p.38          | Modification of 2. 4 (12) External wait input write timing 1                                        |
| p.38          | Modification of 2. 4 (13) External wait input write timing 2                                        |
| p.40          | Modification of 2. 4 (17) (a) 3-wire serial I/O mode                                                |
| p.43          | Modification of 3. 1 Outline                                                                        |
| p.44          | Modification of the number of separation simulation patterns in 3. 1. 1 Symbol diagram              |
| pp.46, 47     | Modification of 3. 1. 2 Pin capacitance                                                             |
| p.48          | Modification of 3. 2 RESETB Signal                                                                  |
| pp.51 to 62   | Modification of 3. 5 Electrical Specifications                                                      |
| p.63          | Modification of 4. 1 Outline                                                                        |
| p.64          | Modification of the number of separation simulation patterns in 4. 1. 1 Symbol diagram              |
| pp.66 to 68   | Modification of 4. 1. 2 Pin capacitance                                                             |
| p.69          | Modification of 4. 2 RESETB Signal                                                                  |
| pp.72 to 87   | Modification of 4. 5 Electrical Specifications                                                      |
| pp.89 to 107  | Addition of CHAPTER 5 V30MX                                                                         |
| pp.109 to 119 | Addition of CHAPTER 6 V30MZ                                                                         |

# (2) 2nd edition $\rightarrow$ 3rd edition

| Pages                                      | Description                                                                                                                                                                              |
|--------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| p.17                                       | Change of "Under development" for the 78K/0 Core to "Developed" in <b>CHAPTER 2 78K/0 CORE</b> .  Deletion of flash memory versions (NAK0HF4 and NAK0HF8)                                |
| p.25                                       | Deletion of description "Preliminary" from 2.3 Electrical Specifications                                                                                                                 |
| p.41                                       | Deletion of a flash memory version (NA851Fxx)                                                                                                                                            |
| p.42                                       | Modification of the number of grids (including wiring area) in 3.1.1 Symbol diagram                                                                                                      |
| p.50                                       | Deletion of description "External capacitance load of internal RAM data output pin" from (1) How to calculate the current consumption value of the V851 core in 3.5.3 DC characteristics |
| p.61                                       | Deletion of a flash memory version (NA853Fxx)                                                                                                                                            |
| p.62                                       | Modification of the number of grids in 4.1.1 Symbol diagram                                                                                                                              |
| p.71                                       | Deletion of description "External capacitance load of internal RAM data output pin" from (1) How to calculate the current consumption value of the V853 core in 4.5.3 DC characteristics |
| pp.119 through 154                         | Addition of CHAPTER 7 NB85E                                                                                                                                                              |
| pp.155 through 204                         | Addition of CHAPTER 8 NB85E50x                                                                                                                                                           |
| pp. 139, 140, 142, 148, 149, 151, 152, 153 | Modification of the hold time in <b>7.4.4 AC characteristics</b>                                                                                                                         |
| pp.155 through 204                         | Change of name of SDRAM controller from "NB85E502" to "NU85E502"                                                                                                                         |
| pp. 194, 195, 198, 204                     | Addition of description regarding HLDAKZ pin                                                                                                                                             |

# (3) 3rd edition $\rightarrow$ 4th edition

| Pages                                 | Description                                                                                                                                                      |
|---------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Throughout                            | <ul> <li>Deletion of description regarding DRAM controller (NB85E501)</li> <li>Modification of name of SDRAM controller from "NB85E502" to "NU85E502"</li> </ul> |
| pp.20, 21                             | Correction of the number of grids of NAK0HM0, NAK0HM4, and NAK0HM8                                                                                               |
| p.44                                  | Correction of the number of grids of V851 core                                                                                                                   |
| p.64                                  | Correction of the number of grids of V853 core                                                                                                                   |
| p.90                                  | Correction of the number of grids of V30MX                                                                                                                       |
| p.93                                  | Correction of 5. 3. 2 RESET signal                                                                                                                               |
| p.108                                 | Correction of the number of grids of V30MZ                                                                                                                       |
| p.110                                 | Correction of 6. 3. 1 RESET signal                                                                                                                               |
| p.120                                 | Correction of the number of grids and the number of separation simulation patterns of NB85E                                                                      |
| pp.135, 136                           | Correction of 7. 3 Pin Functions                                                                                                                                 |
| pp.138 to 142, 144 to 149, 151 to 153 | Correction of 7. 4. 4 AC characteristics (TA = -40 to +85°C, VDD = 3.3 V ±0.3 V)                                                                                 |
| pp.155 to 159                         | Addition of CHAPTER 8 NB85E901                                                                                                                                   |
| pp.161 to 199                         | Addition of CHAPTER 9 NB85ET                                                                                                                                     |
| p.201                                 | Correction of the number of grids and the number of separation simulation patterns of NB85E500                                                                   |
| p.211                                 | Correction of 10. 3 Pin Functions                                                                                                                                |
| p.212                                 | Correction of 10. 4. 3 DC characteristics (TA = $-40$ to $+85$ °C, VDD = 3.3 V $\pm 0.3$ V)                                                                      |
| pp.214 to 233                         | Correction of 10. 4. 4 AC characteristics (TA = -40 to +85°C, VDD = 3.3 V ±0.3 V)                                                                                |
| pp.235 to 267                         | Addition of CHAPTER 11 NU85E500                                                                                                                                  |
| p.270                                 | Correction of the number of grids and the number of separation simulation patterns of NU85E502                                                                   |
| pp.270, 271, 274                      | Addition of description regarding HLDAKZ pin                                                                                                                     |
| pp.276 to 281                         | Correction of 12. 4. 4 AC characteristics (TA = -40 to +85°C, VDD = 3.3 V ±0.3 V)                                                                                |



# Facsimile Message Although NEC has taken all possible steps to ensure that the documentation supplied to our customers is complete, bug free

Organization

| precautions we've taken, you may encounterproblems in the documentation. Please complete this form whenever you'd like to report errors or suggest improvements to us.  Thank you for your kind support.  Asian Nations except Philippines NEC Electronics Singapore Pte. Ltd. Fax: +65-250-3583 |  |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Thank you for your kind support.  Asian Nations except Philippines NEC Electronics Singapore Pte. Ltd.                                                                                                                                                                                           |  |  |
| Asian Nations except Philippines NEC Electronics Singapore Pte. Ltd.                                                                                                                                                                                                                             |  |  |
| Asian Nations except Philippines NEC Electronics Singapore Pte. Ltd.                                                                                                                                                                                                                             |  |  |
| Asian Nations except Philippines NEC Electronics Singapore Pte. Ltd.                                                                                                                                                                                                                             |  |  |
| NEC Electronics Singapore Pte. Ltd.                                                                                                                                                                                                                                                              |  |  |
|                                                                                                                                                                                                                                                                                                  |  |  |
| Japan NEC Semiconductor Technical Hotline Fax: +81- 44-435-9608                                                                                                                                                                                                                                  |  |  |
|                                                                                                                                                                                                                                                                                                  |  |  |
| uggestion:                                                                                                                                                                                                                                                                                       |  |  |
|                                                                                                                                                                                                                                                                                                  |  |  |
| Page number:                                                                                                                                                                                                                                                                                     |  |  |
|                                                                                                                                                                                                                                                                                                  |  |  |
|                                                                                                                                                                                                                                                                                                  |  |  |
|                                                                                                                                                                                                                                                                                                  |  |  |
| Acceptable Poor                                                                                                                                                                                                                                                                                  |  |  |
|                                                                                                                                                                                                                                                                                                  |  |  |
|                                                                                                                                                                                                                                                                                                  |  |  |

This datasheet has been download from:

www.datasheetcatalog.com

Datasheets for electronics components.