ATK-MB020 模块用户手册

心率血氧模块

用户手册

修订历史

版本	日期	原因				
V1.0	2024/11/01	第一次发布				

目 录

1,	特性参数	1
	使用说明	
_,	2.1 模块引脚说明	
	2.2 模块工作原理	
	2.3 MAX30102 简介	
	2.4 心率和血氧测量原理	
	2.5 MAX30102 寄存器介绍	
	2.6 MAX30102 驱动流程	8
3,	结构尺寸	9
	其他	

1,特性参数

ATK-MB020 心率血氧模块是正点原子推出的一款高精度生物传感器模块。该模块采用了 Maxim 公司的 MAX30102 心率血氧传感器芯片作为核心,MAX30102 整合了 LED、光电探测器和低噪声模拟前端,可以通过 IIC 接口获取心率和血氧饱和度(SpO2)等生物数据。该模块广泛应用于可穿戴设备、健康监测设备等场景,能够实现对用户心率和血氧的实时监测。其小巧设计使其适合嵌入到多种便携式应用中,为开发者提供了极大的设计自由度和便利性。

ATK-MB020 心率血氧模块的各项基本参数,如下表所示:

项目	说明					
接口特性	3.3V~5V					
通信接口	C接口					
通信速率	OOKHz (Max)					
测量参数	心率、血氧、温度					
超低待机电流	0.7uA					
超低功耗	<1mW					
工作温度	-20°C ~80°C					
模块尺寸	20mm*20mm (不含排针)					

表 1.1 ATK-MB020 心率血氧模块基本参数

2, 使用说明

2.1 模块引脚说明

ATK-MB020 心率血氧模块通过 1*5 排针(2.54mm 间距)与外部设备连接,方便用户安装到自己的设备中,模块的外观如下图所示:

图 2.1.1 ATK-MB020 心率血氧模块实物图

ATK-MB020 心率血氧模块各引脚的描述,如下表所示:

序号	名称	说明					
1	VCC	且源输入(3.3V~5V)					
2	GND	L源地					
3	SDA	IC 通信数据线					
4	SCL	IIC 通信时钟线					
5	INT	中断信号线					

表 2.1.1 ATK-MB020 心率血氧模块引脚说明

2.2 模块工作原理

ATK-MB020 心率血氧模块的原理图,如下图所示:

图 2.1.2 ATK-MB020 心率血氧模块原理图

从上图可以看出,模块内置了 3.3V 和 1.8V 的超低压差稳压芯片,其中 1.8V 为 MAX30102 心率血氧传感器提供供电,该电压由 3.3V 通过 LDO 转换得来。因此,外部输入电压可以是 3.3V 或 5V。模块通过 J1 排针与外部连接,提供 VCC、GND、SDA、SCL 和 INT 五个引脚。其中,SDA 和 SCL 引脚上已经接有 1K 的上拉电阻,无需外部再添加。模块采用 IIC 通信方式,IIC 从机地址为 0xAE。

2.3 MAX30102 简介

MAX30102 是一款高性能的心率和血氧传感器,具有低功耗和小尺寸的优点。该传感器能够通过 I2C 接口与单片机进行数据通信,传输速率可达 400kHz。MAX30102 集成了红光和红外 LED 以及光电探测器,能够准确测量心率和血氧饱和度。其工作电压范围为 1.8V至 3.3V,使其适用于便携式设备和健康监测应用。MAX30102 广泛应用于可穿戴设备、智能手环、健康监测仪器等场景。

MAX30102 的特点包括:

- 1) 具有红光和红外 LED, 支持心率和血氧饱和度的精准测量。
- 2) 低功耗设计,适合长时间佩戴和便携式设备
- 3) 集成光电探测器,具备高灵敏度和低噪声性能
- 4) 支持 I2C 接口,方便与单片机进行数据通信

5) 超小封装尺寸: 5.6mm x 3.3mm x 1.55mm (LGA) MAX30102 心率血氧传感器的总体框图,如下图所示:

图 2.3.1 MAX30102 心率血氧传感器框图

可以看到,MAX30102 结构主要包括两个光电二极管(RED:即红光 LED,用于测量血氧饱和度(SpO2),IR:即红外 LED,用于监测心率变化);集成的温度传感器用于监测环境温度、接收器、ADC 通道、数字滤波器、数据寄存器和 I2C 通信模块。

整体大致流程:心率血氧传感器通过发射可见红光(RED)和红外光(IR)来工作。光电探测器(包括可见光和红外光)会检测经过皮肤反射回来的光线,并将其转换为电信号,输入到模块内部的信号处理电路。该电路对反射光信号进行放大、环境光消除、模数转换和滤波处理。处理后的数据会被存储在 FIFO 数据寄存器中,主控通过 I2C 接口读取这些数据寄存器中的信息。

2.4 心率和血氧测量原理

MAX30102 心率血氧传感器的工作原理基于光电容积脉搏波(PPG)技术,通过发射和检测光信号来测量血氧饱和度和心率。以下是其基本原理的详细说明:

- 1, **光源发射**: MAX30102 配备了 LED 灯,通常包括红光(波长约为 660 nm)和红外光(波长约为 940 nm)发射器。这些光源通过皮肤照射到血液中。
- 2, 光信号的反射: 血液中的氧合血红蛋白(HbO₂)和脱氧血红蛋白(Hb)对不同波长的光有不同的吸收特性。氧合血红蛋白对红光的吸收较强,而脱氧血红蛋白对红外光的吸收较强。当 LED 光照射到皮肤时,部分光被皮肤、血管和血液反射回来。
- 3, **信号处理**: 模块内部的光电探测器会捕获反射回来的光信号,并将其转换为电信号。 捕获的电信号经过放大和滤波,经过模数转换后,信号会被转换成数字信号,并存储在 FIFO 数据寄存器中,主控单元通过 I2C 接口读取数据,并进行算法处理,计算出心率和血氧饱和度(SpO₂)。

总结如下:

心率测量原理: 当心脏跳动时,血液进入血管,导致血管扩张,反射光的强度增加;而 当心脏放松时,血液流出,反射光强度减弱。光电探测器捕捉到反射光的变化,并将其转换 为电信号。随着时间的推移,这些信号形成了脉搏波形。通过分析电信号的变化来计算出心 率。

血氧测量原理:血氧测量基于血红蛋白对不同波长光的吸收特性。血红蛋白在氧合状态和缺氧状态下对红光(RED)和红外光(IR)的吸收不同。当红光和红外光穿过血液时,光电探测器捕捉到反射回来的光信号,并将其转换为电信号。通过分析红光和红外光信号的比值,计算出血液中的血氧饱和度(SpO2)。

2.5 MAX30102 寄存器介绍

MAX30102 心率血氧传感器的寄存器主要包括三大部分:状态寄存器、设置寄存器、温度寄存器以及版本号和设备 ID 的寄存器,如下图。

REGISTER	B7	В6	В5	B4	В3	B2	B1	В0	REG ADDR	POR STATE	R/W
STATUS	'										
Interrupt Status 1	A_FULL	PPG_ RDY	ALC_ OVF					PWR_ RDY	0x00	0X00	R
Interrupt Status 2							DIE_TEMP _RDY		0x01	0x00	R
Interrupt Enable 1	A_FULL_ EN	PPG_ RDY_EN	ALC_ OVF_EN						0x02	0X00	R/W
Interrupt Enable 2							DIE_TEMP _RDY_EN		0x03	0x00	R/W
					FIFO						
FIFO Write Pointer					FIFO	D_WR_PTR[4	1:0]		0x04	0x00	R/W
Overflow Counter					OVF	_COUNTER[4:0]		0x05	0x00	R/W
FIFO Read Pointer					FIF	O_RD_PTR[4	1:0]		0x06	0x00	R/W
FIFO Data Register				FIFO_D	ATA[7:0]				0x07	0x00	R/W
CONFIGURATIO	ON										
FIFO Configuration	SM	SMP_AVE[2:0]				FIFO_A_FULL[3:0]				0x00	R/W
Mode Configuration	SHDN	RESET			MODE[2:0]				0x09	0x00	R/W
SpO ₂ Configuration	0 (Reserved)	SPO2_A	DC_RGE :0]	SPO2_SR[2:0] LED_PW[1:0]				0x0A	0x00	R/W	
RESERVED									0x0B	0x00	R/W
LED Pulse					PA[7:0]				0x0C	0x00	R/W
Amplitude		LED2_PA[7:0]							0x0D	0x00	R/W
RESERVED									0x0E	0x00	R/W
RESERVED							0x0F	0x00	R/W		
Multi-LED Mode Control			SLOT2[2:0]			SLOT1[2:0]		0x11	0x00	R/W
Registers			SLOT4[2:0	0]			SLOT3[2:0]		0x12	0x00	R/W
RESERVED								0x13- 0x17	0xFF	R/W	
RESERVED									0x18- 0x1E	0x00	R
DIE TEMPERAT	URE										
Die Temp Integer	TINT[7:0]							0x1F	0x00	R	
Die Temp Fraction				TFRAC[C[3:0]		0x20	0x00	R
Die Temperature Config								TEMP _EN	0x21	0x00	R/W
RESERVED									0x22- 0x2F	0x00	R/W
PART ID											
Revision ID				REV_I	D[7:0]				0xFE	0xXX*	R
Part ID				PART	ID[7]				0xFF	0x15	R

图 2.5.1 MAX30102 寄存器

由于寄存器较多,就不一一介绍了,我们这里仅对我们重点关注的 FIFO 数据寄存器进行介绍。

图 2.5.2 FIFO 数据寄存器的缓存图

MAX30102 芯片的 FIFO 数据寄存器可以存储 32 个数据样本。每个样本的大小取决于 所配置的通道数量:

- 配置为 Heart Rate 模式时,每个样本包含一个红外(IR)通道的数据,大小为3个字节。
- 配置为 SpO2 模式时,每个样本包含 RED(红光)和 IR(红外)两个通道的数据,总 共 6 个字节。前 3 个字节为 RED 通道数据,后 3 个字节为 IR 通道数据。

因此,FIFO 最多可以存储 192 字节的数据(32 个样本)。在读取 FIFO 数据寄存器时,I2C 寄存器地址不会自动递增,数据会从同一地址重复读取。

在 Heart Rate 模式下,每个样本 3 字节,因此需要通过 I2C 连续读取 3 次才能获取一个 完整样本的数据;而 SpO2 模式下,每个样本 6 字节,所以需要连续读取 6 次才能获取一个 完整样本数据。

BYTE 1							FIFO_ DATA[17]	FIFO_ DATA[16]
BYTE 2	FIFO_	FIFO_						
	DATA[15]	DATA[14]	DATA[13]	DATA[12]	DATA[11]	DATA[10]	DATA[9]	DATA[8]
BYTE 3	FIFO_	FIFO_						
	DATA[7]	DATA[6]	DATA[5]	DATA[4]	DATA[3]	DATA[2]	DATA[1]	DATA[0]

图 2.5.3 FIFO 数据存储格式示意图

上图是 18 位 ADC 采样一通道的数据示意图,显示了数据是如何填充到 FIFO_DATA 寄存器的。数据从 FIFO DATA[17] 开始排列,其中 FIFO DATA[18]~[23] 并未使用到。

FIFO 中每个通道的数据占用 3 个字节,且数据为左对齐。这意味着无论 ADC 分辨率如何设置,最高位 (MSB)始终在固定位置。而 FIFO_DATA[2]~[0]随 ADC 分辨率配置来决定使用。如下图所示:

图 2.5.4 不同 ADC 分辨率的数据排布

2.6 MAX30102 驱动流程

- 1) **初始化 I2C 接口:** 确保 MCU 和 MAX30102 之间的 I2C 通信已正确配置;
- 2) 芯片复位: 复位 MAX30102 心率血氧传感器;
- 3) 配置传感器模式 (源码配置为 SpO2 模式):
 - 心率模式: 仅使用 RED (红光) 光通道;
 - SpO2 模式: 使用 RED (红光) 和 IR (红外) 通道;
 - 多 LED 模式: 允许用户选择不同的 LED 进行测量;
- 4) **设置采样率和分辨率**:通过配置 0x0A(SpO2 Configuration)寄存器,设置传感器的 LED 脉冲宽度、采样率和 ADC 分辨率。需根据实际应用调整: LED 脉冲宽度越长,信号越稳定。采样率应与测量要求匹配。ADC 分辨率决定数据的精度;
- 5) **设置 LED 驱动电流**:通过写入寄存器 0x0C 和 0x0D (LED Pulse Amplitude)配置红光和红外 LED 的驱动电流。一般推荐开始时设置为较低值,然后根据实际信号质量调整;
- 6) **启用 FIFO 寄存器**:设置 FIFO 存储的样本数量、FIFO 溢出标志以及读写指针,设置 FIFO 存储的样本数量、FIFO 溢出标志以及读写指针;
- 7) 读取数据: 当中断发生时,读取 FIFO 寄存器 (0x07),获取 RED 和 IR 样本数据;
- 8) **处理数据:** 处理获得的 RED 和 IR 样本数据,利用特定的算法计算出心率以及血氧浓度。

3,结构尺寸

ATK-MB020 心率血氧模块的尺寸结构,如下图所示:

图 3.1 ATK-MB020 心率血氧模块尺寸图

4, 其他

1、购买地址:

天猫: https://zhengdianyuanzi.tmall.com

淘宝: https://openedv.taobao.com

2、资料下载

模块资料下载地址: http://www.openedv.com/docs/index.html

3、技术支持

公司网址: www.alientek.com

技术论坛: http://www.openedv.com/forum.php

在线教学: www.yuanzige.com

B 站视频: https://space.bilibili.com/394620890

传真: 020-36773971 电话: 020-38271790

