$p(x_i)\Delta$. This gives a discrete distribution for which the entropy takes the form

$$H_{\Delta} = -\sum_{i} p(x_i) \Delta \ln (p(x_i) \Delta) = -\sum_{i} p(x_i) \Delta \ln p(x_i) - \ln \Delta$$
 (2.90)

where we have used $\sum_i p(x_i)\Delta=1$, which follows from (2.89) and (2.25). We now omit the second term $-\ln \Delta$ on the right-hand side of (2.90), since it is independent of p(x), and then consider the limit $\Delta \to 0$. The first term on the right-hand side of (2.90) will approach the integral of $p(x) \ln p(x)$ in this limit so that

$$\lim_{\Delta \to 0} \left\{ -\sum_{i} p(x_i) \Delta \ln p(x_i) \right\} = -\int p(x) \ln p(x) \, \mathrm{d}x \tag{2.91}$$

where the quantity on the right-hand side is called the differential entropy. We see that the discrete and continuous forms of the entropy differ by a quantity $\ln \Delta$, which diverges in the limit $\Delta \to 0$. This reflects that specifying a continuous variable very precisely requires a large number of bits. For a density defined over multiple continuous variables, denoted collectively by the vector \mathbf{x} , the differential entropy is given by

$$H[\mathbf{x}] = -\int p(\mathbf{x}) \ln p(\mathbf{x}) \, d\mathbf{x}. \tag{2.92}$$

2.5.4 Maximum entropy

We saw for discrete distributions that the maximum entropy configuration corresponds to a uniform distribution of probabilities across the possible states of the variable. Let us now consider the corresponding result for a continuous variable. If this maximum is to be well defined, it will be necessary to constrain the first and second moments of p(x) and to preserve the normalization constraint. We therefore maximize the differential entropy with the three constraints:

$$\int_{-\infty}^{\infty} p(x) \, \mathrm{d}x = 1 \tag{2.93}$$

$$\int_{-\infty}^{\infty} x p(x) \, \mathrm{d}x = \mu \tag{2.94}$$

$$\int_{-\infty}^{\infty} (x - \mu)^2 p(x) \, \mathrm{d}x = \sigma^2. \tag{2.95}$$

Appendix C

The constrained maximization can be performed using Lagrange multipliers so that we maximize the following functional with respect to p(x):

$$-\int_{-\infty}^{\infty} p(x) \ln p(x) dx + \lambda_1 \left(\int_{-\infty}^{\infty} p(x) dx - 1 \right) + \lambda_2 \left(\int_{-\infty}^{\infty} x p(x) dx - \mu \right) + \lambda_3 \left(\int_{-\infty}^{\infty} (x - \mu)^2 p(x) dx - \sigma^2 \right). \quad (2.96)$$