Table 6. Summary of input parameters and results from iSALE-2D numerical parameter study. The layer thickness was $H \cong 12.5$ mm.

Parameter varied	Upper layer	Bottom layer	Constants	$D_{\it in}/D_{\it out}$	D_{out}/H
Control case	$ \rho_0 = 2.65 \text{ g/cm}^3 $ $ \phi = 40\% $ $ f = 0.50 $ $ \chi = 0.5 $ $ A = 36 \text{ GPa} $	$ \rho_{0B} = 7.8 \text{ g/cm}^3 $ $ \phi_B = 44\% $ $ f_B = 0.65 $ $ \chi_B = 0.8 $ $ A_B = 128 \text{ GPa} $	-	0.79	21.84
Density, ρ	$\rho_0 = 1.8 \text{ g/cm}^3$	$\rho_{0B} = 4.65 \text{ g/cm}^3$	$\phi = \phi_B = 44\%$ $f = f_B = 0.65$ $\chi = \chi_B = 0.8$ $A = A_B = 36 \text{ GPa}$	0.82	22.81
Porosity, ϕ	$\phi = 50\%$	$\phi_B = 0\%$	$ \rho_0 = \rho_{0B} = 2.65 \text{ g/cm}^3 $ $ f = f_B = 0.65 $ $ \chi = \chi_B = 0.8 $ $ A = A_B = 36 \text{ GPa} $	0.86	25.54
Friction, f	<i>f</i> = 0.4	$f_B = 1.0$	$ \rho_0 = \rho_{0B} = 2.65 \text{ g/cm}^3 $ $ \phi = \phi_B = 44\% $ $ \chi = \chi_B = 0.8 $ $ A = A_B = 36 \text{ GPa} $	0.75	21.20
Sound speed ratio, χ	$\chi = 0.3$	$\chi_B=1.0$	$ \rho_0 = \rho_{0B} = 2.65 \text{ g/cm}^3 $ $ \phi = \phi_B = 44\% $ $ f = f_B = 0.65 $ $ A = A_B = 36 \text{ GPa} $	0.90	27.67
Bulk modulus, A	A = 1 GPa	$A_B = 36 \text{ GPa}$	$ \rho_0 = \rho_{0B} = 2.65 \text{ g/cm}^3 $ $ \phi = \phi_B = 44\% $ $ f = f_B = 0.65 $ $ \chi = \chi_B = 0.8 $	0.90	27.13