

Contents

1	Tutorial Sheet 1	
2	Tutorial Sheet 6	

Chapter 1

Tutorial Sheet 1

1. Give an example of a non-commutative ring without identity.

Solution: $2\mathbb{Z} = \{x | x = 2z, z \in \mathbb{Z}\}$

2. Let R be a ring with 1 and $a \in R$. Suppose there exists a positive integer n such that $a^n = 0$. Show that 1 + a is a unit, and so is 1 - a.

Solution: Note that:

$$(1-a)(1+a+a^2+a^3\dots a^{n-1})=1-a^n=1$$

Therefore, 1-a is an unit. Set b=-a. Then $b^n=0$ and by above 1-b=1+s is a unit too.

3. Let R be a ring such that $r^2 = r$ for all $r \in R$. Show that R is commutative.

Solution : Let $x, y \in R$. Then note:

$$x + y = (x + y)^2 = x^2 + y^2 + xy + yx = x + y + xy + yx$$

 $\Rightarrow 0 = xy + yx$

Set y = x. Then we get $0 = x^2 + x^2 = x + x$. Therefore, $x = -x \forall x \in R$. Apply above to get:

$$xy = -yx = yx$$

Therefore, R is commutative.

4. Let R be a ring with 1 and $a, b \in R$. Prove that $1 - ab \in R^*$ if and only if $1 - ba \in R^*$

 R^* is the set of units of a ring.

Solution: As 1 - ab is a unit, there exits $v \in R$ such that (1 - ab)v = 1. Then note:

$$(1 - ba)(1 + bva) = 1 - ba + bva - babva = 1 - ba + b(1 - ba)va = 1 - ba + ba = 1$$

Therefore, 1 - ba is an unit too.

Intution: We note that v = 1/(1 - ab) = 1 + ab + abab... Now note: 1/(1 - ba) = 1 + ba + baba... = 1 + b(1 + ab + abab...) and a = 1 + bva. Now, of course, such expressions may not exist. But, if we assume the relation to still hold, we get the desired solution.

5. Does there exist a non-commutative ring with 77 elements? Solution :No.

Theorem 1. Rings over cyclic groups are always commutative

Proof. Let $G = \langle c \rangle$ be a cyclic group. Then for $x, y \in G$ we can write x = mc and y = nc where $mc = c + c + c + \ldots (m \text{ times})$. Then it is easy to see that $xy = mc \cdot nc = mn(c \cdot c) = nm(c \cdot c) = nc \cdot mc = yx$.

Now, we just need to show if |G| = 77 then G is cyclic. Note: 77 = 7 * 11. pick a element g of G. If order of g is 77 then $G \cong C_{77}$ and we are done. If order of g is 7, then < g > is normal(subgroup of abelian groups are normal) and

 $G/< g>\cong C_{11}$. Therefore, we can write $G\cong C_{11}\times C_7\cong C_{77}$. A similar line of argument follows if g has order 11. Therefore, G is cyclic.

6. Let R be a ring and R[x] be the polynomial ring over R. Show that R[x] forms a ring under the usual addition and multiplication of polynomials. Solution: Trivial

7. Does there exist an infinite ring with finite characteristic?

Solution :Yes. $R = (\mathbb{Z}/2\mathbb{Z}) \times (\mathbb{Z}/2\mathbb{Z}) \times (\mathbb{Z}/2\mathbb{Z}) \dots$ There are infinite elements but characteristic is 2.

8. Does there exist a finite ring with characteristic zero?

Solution :No. As G is finite, for every $g \in G$, there exists n_g such that $n_g g = 0$. Set $n = \prod_{g \in G} n_g$. Then $ng = 0 \forall g \in G$. Therefore, a finite characteristic exists.

9. Determine the smallest subring of Q that contains 1/2.

Solution: $R = \{x | x = \sum_{i \in \mathbb{Z}} a_i 2^i \text{ such that } a_i \text{ is } 0 \text{ above for some } i > I_x, a_i \in \{0, 1\}\}$

Alternatively, we consider the question in boolean. Given $0.1_2 \in R$. Then $1 \in R$ and by extension $10_2^k \in R$ for all $k \in \mathbb{Z}$. All of their linear combination is in R which is equivalent to the set above.

10. Let R be an integral domain and kq = 0 for some non-zero $q \in R$ and some integer $k \neq 0$. Prove that R is of finite characteristic.

Solution: Note: $(np) \cdot q = p \cdot (nq) = 0$. Therefore, q = 0 or np = 0. As the first case can't occur, np = 0 for all $p \in R$.

11. Give an example of a non-commutative simple ring.

Solution:

Chapter 2

Tutorial Sheet 6