Exercise 1

Let $f: D \longrightarrow \mathbb{R}$ and let $c \in D$. Mark each statement True or False. Justify each answer.

- a. f is continuous at c iff $\forall \epsilon > 0$, \exists a $\delta > 0$ such that $|f(x) f(c)| < \epsilon$ whenever $|x c| < \delta$ and $x \in D$ True. By definition of continuous.
- b. if f(D) is a bounded set, then f is continuous on D

False.

Let: $f: D \longrightarrow \mathbb{R}$ be defined by $D = \{\mathbb{R} \}$ and $f = \{1 \text{ if } x \neq 0, 0 \text{ otherwise.}\}$

Pick $\epsilon = 0.5$. Notice that there is no δ such that |f(x) - f(0)| < 0.5

c. if c is an isolated point of D, then f is continuous at c

True. If you just pick a δ st only x = c fits in $|x - c| < \delta$ (which is possible since it's an isolated point), then that works for any $\epsilon > 0$ since |f(x) - f(c)| will always be 0.

- d. if f is continuous at c and (x_n) is a sequence in D, then $x_n \longrightarrow c$ whenever $f(x_n) \longrightarrow f(c)$
- e. if f is continuous at c, then for every neighborhood V of f(c), there exists a neighborhood U of c such that $f(U \cap D) = V$

Exercise 2 (omit d)

Let $f: D \longrightarrow R$ and let $c \in D$. Mark each statement True or False. Justify each answer.

- a. if f is continuous at c and c is an accumulation point of D, then $\lim_{x\to c} f(x) = f(c)$
- b. Every polynomial is continuous at each point in \mathbb{R}
- c. if $\{x_n\}$ is a Cauchy sequence in D, then $\{f(x_n)\}$ is convergent.
- d. if $f:\mathbb{R} \longrightarrow \mathbb{R}$ and $g:\mathbb{R} \longrightarrow \mathbb{R}$ are both continuous on \mathbb{R} , then f o g and g o f are both continuous on \mathbb{R}

Exercise 3

Let: $f(x) = (x^2 + 4x - 21)/(x - 3)$ for $x \neq 3$.

How should f(3) be defined so that f will be continuous at 3?

Exercise 5 (prove the result)

Find an example of a function $f: \mathbb{R} \longrightarrow \mathbb{R}$ that is continuous at exactly one point.

Exercise 10

- a. Let $f: D \longrightarrow \mathbb{R}$ and define $|f|: D \longrightarrow \mathbb{R}$ by |f|(x) = |f(x)|. Suppose that f(x) is continuous at $c \in D$. Prove that |f| is continuous at c.
- b. if |f| is continuous at c, does it follow that f is continuous at c? Justify your answer.

Exercise 11 (just prove the "max" result)

Define max(f, g) and min(f, g) as in Example 2.11.

Example 2.11

$$\max(f, g)(x) = \max \{f(x), g(x)\}$$

Show that:

$$\max(f, g) = \frac{1}{2}(f + g) + \frac{1}{2}|f - g|$$

Exercise 13

Let: $f: D \longrightarrow \mathbb{R}$ be continuous at $c \in D$ **Assume:** f(c) > 0Prove that $\exists \alpha > 0$ and a neighborhood U of c st $f(x) > \alpha$, $\forall x \in U \cap D$

Exercise 16

(First prove that for any $H \subset \mathbb{R}$, $f^{-1}(R \setminus H) = \mathbb{R} \setminus f^{-1}(H)$, use this in conjunction with Theorem 5.2.14) Let: $f : \mathbb{R} \longrightarrow \mathbb{R}$

Prove that f is continuous on \mathbb{R} iff $f^{-1}(H)$ is a closed set whenever H is a closed set.