Коллок по линалу

Пешехонов Иван. БПМИ1912

6 декабря 2019 г.

Оглавление

Глава 1

Определения

1.1 Сумма двух матриц, произведение матрицы на скаляр

Сложение. $A, B \in \mathbb{R}^{n \times m}, A = (a_{ij}), B = (b_{ij})$

$$A + B = (a_{ij} + b_{ij}) = \begin{pmatrix} a_{11} + b_{11} & a_{12} + b_{12} & a_{13} + b_{13} & \cdots & a_{1n} + b_{1n} \\ a_{21} + b_{21} & a_{22} + b_{22} & a_{23} + b_{23} & \cdots & a_{2n} + b_{2n} \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ a_{m1} + b_{m1} & a_{m2} + b_{m2} & a_{m3} + b_{m3} & \cdots & a_{mn} + b_{mn} \end{pmatrix} \in \mathbb{R}^{n \times m}$$

Умножение на скаляр. $A \in \mathbb{R}^{n \times m}, \lambda \in \mathbb{R}, A = (a_{ij}) \Rightarrow$

$$\lambda A = (\lambda a_{ij}) = \begin{pmatrix} \lambda a_{11} & \lambda a_{12} & \cdots & \lambda a_{1n} \\ \lambda a_{21} & \lambda a_{22} & \cdots & \lambda a_{2n} \\ \vdots & \vdots & \vdots & \vdots \\ \lambda a_{m1} & \lambda a_{m2} & \cdots & \lambda a_{mn} \end{pmatrix} \in \mathbb{R}^{n \times m}$$

1.2 Транспонированная матрица

Пусть $A \in \mathbb{R}^{n \times m}, A = (a_{ij})$

$$A = \begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \vdots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{pmatrix}$$

тогда транспонированная к A матрица (обозначается) A^T :

$$A^{T} = \begin{pmatrix} a_{11} & a_{21} & \cdots & a_{m1} \\ a_{12} & a_{22} & \cdots & a_{m2} \\ \vdots & \vdots & \vdots & \vdots \\ a_{1n} & a_{2n} & \cdots & a_{mn} \end{pmatrix}$$

1.3 Произведение двух матриц

 $A \in \mathbb{R}^{n \times m}$,ы $B \in \mathbb{R}^{m \times p}$

Тогда AB –такая матрица $C \in \mathbb{R}^{n \times p}$, что $c_{ij} = A_{(i)}B^{(j)} = \sum_{k=1}^n a_{ik}b_{kj}$

1.4 Диагональная матрица, умножение на диагональную матрицу слева и справа

 ${
m K}$ вадратная матрица $A\in {
m I\!R}^{
m n}$ называется диагональной \Leftrightarrow

$$A = \begin{pmatrix} a_1 & 0 & 0 & \cdots & 0 & 0 \\ 0 & a_2 & 0 & \cdots & 0 & 0 \\ \vdots & \vdots & \ddots & \vdots & \vdots & \vdots \\ 0 & 0 & 0 & a_n & \cdots & 0 \end{pmatrix} = diag(a_1, a_2, \dots, a_n)$$

То есть

$$\forall i, j \in \mathbb{N} \Rightarrow a_{ij} = \begin{cases} a_i & i = j \\ 0 & i \neq j \end{cases}$$

Пусть $A = diag(a_1, a_2, \cdots, a_n) \in \mathbb{R}^n$, тогда

$$(1)B\in {\rm I\!R}^{\rm n\times m}\Rightarrow AB=\begin{pmatrix} a_1B_{(1)}\\ a_2B_{(2)}\\ \vdots\\ a_nB_{(n)} \end{pmatrix} ({\rm Kaждая\ cтрокa\ }B\ {\rm умножается\ ha\ cootsetc} {\rm вистремент}$$

столбца матрицы A)

 $(2)B \in \mathbb{R}^{n \times m} \Rightarrow BA = \begin{pmatrix} a_1 B^{(1)} & a_2 B^{(2)} & \cdots & a_n B^{(n)} \end{pmatrix}$ (Каждый сролбец B умножается на соответсвующий элемент строки матрицы A)

1.5 Единичная матрица, её свойства

Матрица $A \in \mathbb{R}^n$ называется **единичной** $\Leftrightarrow A = diag(1,1,\cdots,1) = \begin{pmatrix} 1 & 0 & \cdots & 0 \\ 0 & 1 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & 1 \end{pmatrix}$, обозначается E (или I).

Свойства:

(1)
$$EA = AE = A, \forall A \in \mathbb{R}^n$$

$$(2) E = E^{-1}$$

1.6 След квадратной матрицы и его поведение при сложении матриц, умножении матрицы на скаляр и транспонировании

Следом матрицы называется сумма элементов её главной диагонали и обозначается tr(A).

Свойства:

$$(1) tr(A+B) = tr(A) + tr(B)$$

(2)
$$tr(\lambda A) = \lambda * tr(A)$$

(3)
$$tr(A) = tr(A^T)$$

1.7 След произведения двух матриц

$$tr(AB)=tr(BA) orall A \in {\rm I\!R}^{
m n imes m}, B \in {\rm I\!R}^{
m m imes n}$$
 Доказательство.

Пусть
$$X = AB, Y = BA$$
, тогда $tr(X) = \sum_{i=1}^n x_{ii} = \sum_{i=1}^n \sum_{j=1}^m a_{ij}b_{ji} = \sum_{j=1}^m \sum_{i=1}^n b_{ji}a_{ij} = \sum_{j=1}^m y_{jj} = tr(Y)$

1.8 Совместные и несовместные системы линейных уравнений

Система линейных уравнений (СЛУ):

$$\begin{cases} a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n = b_1 \\ a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n = b_2 \\ \dots \\ a_{m1}x_1 + a_{m2}x_2 + \dots + a_{mn}x_n = b_m \end{cases}$$

Решением СЛУ является такой набор значений неизвестных, который является решением каждого уравнения в СЛУ.

СЛУ называется **совместной** если она имеет хотя бы одно решение. В противном случае СЛУ называется **несовместной**.

1.9 Эквивалентные системы линейных уравнений

Две СЛУ от одних и тех же переменных называются **эквивалентыми** если у них совпадают множества решений.

1.10 Расширенная матрица линейных уравнений

$$(*) = \begin{cases} a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n = b_1 \\ a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n = b_2 \\ \dots \\ a_{m1}x_1 + a_{m2}x_2 + \dots + a_{mn}x_n = b_m \end{cases}$$

Расширенной матрицей СЛУ (*) называется матрица вида
$$(A|b) = \begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1n} & b_1 \\ a_{21} & a_{22} & \cdots & a_{2n} & b_2 \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} & b_m \end{pmatrix},$$

где A –матрица коэффициентов при неизвестных, а b –вектор-слобец правых частей каждого уравнения СЛУ (*).

1.11 Элементарные преобразования строк матрицы

Элементарными преобразованиями называют следующие три преобразрования, меняющие вид матрицы:

1.12 Ступенчатый вид матрицы

Строка (a_1, a_2, \dots, a_i) называется **нулевой**, если $a_1 = a_2 = \dots = a_i = 0$, и **ненулевой** в обратном случае $(\exists i : a_i \neq 0)$.

Ведущим элементом называется первый ненулевой элемент нулевой строки.

Матрица $A \in \mathbb{R}^{n \times m}$ называется **ступенчатой** или имеет **ступенчатый вид**, если:

- 1) Номера ведущих элементов строго возрастают.
- 2) Все нулевые строки расположены в конце.

$$\begin{pmatrix} 0 & \heartsuit & * & * & * & \cdots & * & * \\ 0 & 0 & 0 & \heartsuit & * & * & \cdots & * \\ 0 & 0 & 0 & 0 & \heartsuit & * & \cdots & * \\ \vdots & \vdots \\ 0 & 0 & 0 & 0 & 0 & \cdots & 0 & \heartsuit \\ 0 & 0 & 0 & 0 & 0 & 0 & \cdots & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & \cdots & 0 \end{pmatrix}$$

где * –что угодно, $\heartsuit = 0$

1.13 Улучшеный ступенчатый вид матрицы

Говорят, что матрица имеет улучшенный (усиленный) ступенчатый вид, если:

- 1) Она имеет ступенчатый вид.
- 2) Все ведущие элементы матрицы равны 1.

$$\begin{pmatrix} 0 & 1 & * & 0 & 0 & \cdots & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 & \cdots & 0 \\ 0 & 0 & 0 & 0 & 1 & * & \cdots & 0 \\ \vdots & \vdots \\ 0 & 0 & 0 & 0 & 0 & \cdots & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 0 & \cdots & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & \cdots & 0 \end{pmatrix}$$

1.14 Теорема о виде, к которому можно привести матрицу при помощи элементарных преобразований

Теорема 1. Любую матрицу можно привести к ступенчатому виду. Доказательство:

1.15 Общее решение совместной системы линейных уравнений

Общим решением совместной СЛУ является множество наборов значений неизвестных, в которых главные неизвестные выражены через свободные (линейные комбинации от свободных неизвестных).

1.16 Сколько может быть решений у системы линейных уравнений с действительными коэффициентами

Всякая СЛУ с действительными коэффициентами либо несовместна, либо имеет ровно одно решение, либо имеет бесконечно много решений.

1.17 Однородная система линейных уравнений. Что можно сказать про её множество решений?

Однородной системой линейных уравнений (ОСЛУ) называется такая СЛУ, в которой каждое уравнение в правой части имеет 0. Расширенная матрица имеет вид (A|0).

Очевидно: вектор $x = (0, 0, 0, \cdots 0)$ является решением всякой ОСЛУ.

Всякая ОСЛУ имеет либо решение (нулевое), либо бесконечно много решений.

1.18 Свойство однородной системы линейных уравнений, у которой число неизвестных больше числа уравнений

Всякая ОСЛУ, у которой число неизвестных больше числа уравнений имеет ненулевое решение ⇒ имеет бесконечно много решений.

1.19 Связь между множеством решений совместной системы линейных уравнений и множеством решений соответсвующей ей однородной системы

Пусть дана СЛУ (*) = Ax = b, и ассоциированная с ней ОСЛУ Ax = 0.

Пусть L - множество решений ОСЛУ, а c - решение СЛУ (*).

Обозначим множество решений СЛУ (*) за S.

Тогда $S = \{c + l | l \in L\}.$

Т.е. если сложить решение ОСЛУ, с произвольным решением СЛУ (*), то полученный вектор снова будет решением СЛУ (*).

1.20 Обратная матрица

Обратной матрицей к матрице $A \in Mn$ называется такая квадратная матрица $B \in \mathbb{R}^n$, что: AB = BA = E. Матрица B обозначается как A^{-1} .

1.21 Перестановки множества $\{1, 2, \cdots, n\}$

Перестановкой множества $X = \{1, 2, \cdots, n\}$ называется упорядоченный набор (i_1, i_2, \cdots, i_n) , в котором каждое число от 1 до n встречается ровно один раз.

Подстановка (перестановка) из п элементов - это биективное отображение множества $\{1, 2, \cdots, n\}$ в себя. Обозначается: $\begin{pmatrix} 1 & 2 & 3 & \cdots & n \\ i_1 & i_2 & i_3 & \cdots & i_n \end{pmatrix}$.

1.22 Инверсия в перестановке. Знак перестановки. Чётные и нечётный перестановки.

Говорят, что неупорядоченная пара i, j образует **инверсию** в σ , если числа i - j и $\sigma(i) - \sigma(j)$ имеют разный знак, т.е. либо i > j и $\sigma(i) < \sigma(j)$, либо i < j и $\sigma(i) > \sigma(j)$.

Знаком (сигнатурой) подстановки σ называется число $sgn\ \sigma$, такое что $sgn\ \sigma=(-1)^{inv\ \sigma}$, где $inv\ \sigma$ - число инверсий. Знак может принимать значения $1\ u\ -1$.

Подстановка называется **чётной**, если её знак равен 1, и **нечётной**, если её знак равен -1.

1.23Произведение двух перестановок

Пусть даны две подстановки σ и $\tau \in S_n$. Произведением или (композицией) двух подстановок называется такая подстановка $\sigma \tau$, что $(\sigma \tau)(i) = \sigma(\tau(i)), \forall i \in \{1, 2, \cdots, n\}$

1.24Тождественная перестановка и её свойства. Обратная перестановка и её свойства.

Тождественной (единичной) подстановкой называется подстановка вида $\begin{pmatrix} s1 & 2 & 3 & \cdots & n \\ 1 & 2 & 3 & \cdots & n \end{pmatrix} \in$ S_n . Тождественная подстановка обозначается как id (или e). $id(i) = i, \forall i \in \{1, 2, \cdots, n\}.$

Свойство:

 $id * \sigma = \sigma * id = \sigma, \forall \sigma \in S_n$

 $id*\sigma = \sigma*id = \sigma, \forall \sigma \in S_n$ Пусть дана подстановка $\sigma = \begin{pmatrix} 1 & 2 & 3 & \cdots & n \\ \sigma(1) & \sigma(2) & \sigma(3) & \cdots & \sigma(n) \end{pmatrix}$, тогда **обратной подстановкой** к σ называется подстановка τ , вида $\begin{pmatrix} \sigma(1) & \sigma(2) & \sigma(3) & \cdots & \sigma(n) \\ 1 & 2 & 3 & \cdots & n \end{pmatrix}$, и обозначается, как σ^{-1} .

Свойства:

- 1) σ^{-1} единственная
- 2) $\sigma * \sigma^{-1} = \sigma^{-1} * \sigma = id$.

1.25Теорема о знаке произведения двух подстановок

Теорема: Пусть даный $\sigma, \tau \in S_n$, тогда $sgn(\sigma\tau) = sgn(\sigma) * sgn(\tau)$

1.26 Транспозиция. Знак транспозиции.

Пусть дана подстановка $\tau \in S_n$, такая что $\tau(i) = j, \tau(j) = i, \tau(k) = k \forall k \neq i, j$. Такая подстановка 'tau называется **транспозицией**. $sgn(\tau) = -1$

1.27 Общая формула для определителя квадратной матрицы произвольного порядка

Пусть дана матрица $A \in \mathbb{R}^n$, тогда $|A| = \sum_{\sigma \in S_n} (sgn\sigma) a_{1\sigma(1)} a_{2\sigma(2)} \cdots a_{n\sigma(n)}$

Определители 2-го и 3-го порядка

Определителем 2-го порядка называется определитель квадратной матрицы $A \in \mathbb{R}^{2 \times 2} =$ $=\begin{pmatrix} a & b \\ c & d \end{pmatrix}.$

|A| = ad - bc.

Определителем 3-го порядка называется определитель квадратной матрицы $A \in \mathbb{R}^{3 \times 3} =$

1.29 Поведение определителя при разложении строки (столбца) в сумму двух

Пусть дана квадратная матрица $A \in \mathbb{R}^{n \times n}$.

Тогда если
$$A_{(i)}=A_{(i)}^1+A_{(i)}^2$$
, то $|A|=\left|\begin{array}{c|c}A_{(1)}\\ \dots\\ A_{(i)}^1\\ \dots\\ A_{(n)}\end{array}\right|+\left|\begin{array}{c|c}A_{(1)}\\ \dots\\ A_{(i)}^2\\ \dots\\ A_{(n)}\end{array}\right|$. Аналогично если $A^{(i)}=A_1^{(j)}+A_2^{(j)}$, то $|A|=|A^{(1)}\cdots A_1^{(j)}\cdots A^{(n)}|+|A^{(1)}\cdots A_2^{(j)}\cdots A^{(n)}|$

1.30 Поведение определителя при перестановке двух строк (столбцов)

Элементарное преобразование второго типа, а именно перестановка двух строк (столбцов) местами меняет знак определителя и не меняет значение определителя.

1.31 Поведение определителя при прибавлению к строке (столбцу) другой строки (столбца), умноженного на скаляр

Элементарное преобразование первого типа, а именно прибавление к строке (столбцу) матрицы другой строки (столбца), умноженного на скаляр не меняет знак определителя и не меняет значение определителя.

1.32 Верхнетреугольный и нижнетреугольные матрицы

Верхнетреугольной матрицей называется такая квадратная матрица $A \in \mathbb{R}^{n \times n}$, у которой элементы, стоящие ниже главной диагонали равны нулю. Т.е. $a_{ij} = 0 \forall i, j = 0, \cdots, n : i > j$. **Нижнетреугольной матрицей** называется такая квадратная матрица $A \in \mathbb{R}^{n \times n}$, у которой элементы, стоящие выше главной диагонали равны нулю. Т.е. $a_{ij} = 0 \forall i, j = 0, \cdots, n : j > i$.

1.33 Определитель верхнетреугольной (нижнетреугольной) матрицы

Определитель верхнетреугольной матрицы равен определителю нижнетреугольной матрицы и равен произведению её элементов, стоящих на главной диагонали.

1.34 Определитель диагональной матрицы. Определитель единичной матрицы.

Диагональную матрицу можно считать частным случаем как верхнетреугольной, так и нижнетреугольной матрицы, и следовательно **определитель диагональной матрицы** равен произведению её элементов, стоящих на главной диагонали.

Определитель единичной матрицы, которая является частным случаем диагональной матрицы, по той же логике равен 1.

1.35 Матрица с углом нулей и её определитель

Матрицей с углом нулей называется квадратная матрицы $A \in \mathbb{R}^{n \times n}$ вида $A = \begin{pmatrix} P & Q \\ 0 & R \end{pmatrix}$ или $A = \begin{pmatrix} P & 0 \\ Q & R \end{pmatrix}$, где $P \in \mathbb{R}^{k \times k}$, $R \in \mathbb{R}^{(n-k) \times (n-k)}$. det $A = \det P \det R$.

1.36 Определитель произведения двух матриц.

Пусть даны две квадратные матрицы одного порядка $A, B \in \mathbb{R}^{n \times n}$. Тогда |AB| = |A| * |B|

1.37 Дополнительный минор к элементу квадратной матрицы

Пусть дана квадратная матрица $A \in \mathbb{R}^{n \times n}$. Дополнительным минором к a_{ij} называется определитель матрицы порядка (n-1), получаемой удалением из исходной матрицы і-ой строки и ј-ого столбца. Обозначается M_{ij} .

1.38 Алгебраическое дополнение к элементу квадратной матрицы

Пусть дана квадратная матрица $A \in \mathbb{R}^{n \times n}$. Алгебраическим дополнением к a_{ij} называется число $A_{ij} = (-1)^{i+j} \mathrm{M}_{ij}$.

1.39 Формула разложения определителя по строке (столбцу)

Пусть дана квадратная матрица $A \in \mathbb{R}^{n \times n}$. Тогда для любого фиксированного $j \in \{1, \cdots, n\}$ $|A| = a_{1j}A_{1j} + a_{2j}A_{2j} + \cdots + a_{nj}A_{nj} = \sum_{i=1}^n a_{ij}A_{ij}$

Аналогично для любой фиксированной строки.

1.40 Лемма о фальшивом разложении определителя

Пусть дана квадратная матрица $A \in \mathbb{R}^{n \times n}$. Тогда при любом $i,k \in \{1,\cdots,n\}, i \neq k$: $\sum\limits_{j=1}^n a_{ij}A_{ik} = 0$. Аналогично для столбцов.

1.41 Невырожденная матрица

Пусть дана квадратная матрица $A \in \mathbb{R}^{n \times n}$. Тогда A называется **невырожденной** $\Leftrightarrow |A| \neq 0$, и **вырожденной** в противном случае.

1.42 Присоединённая матрица

Пусть дана квадратная матрица $A \in \mathbb{R}^{n \times n}$. Присоединённой матрицей к A называется матрица $\hat{A} = (A_{ij})^T$.

$$\hat{A} = \begin{pmatrix} A_{11} & A_{21} & \cdots & A_{n1} \\ A_{12} & A_{22} & \cdots & A_{n2} \\ \vdots & \vdots & \vdots & \vdots \\ A_{1n} & A_{2n} & \cdots & A_{nn} \end{pmatrix}$$

1.43 Критерий обратимости квадратной матрицы

Пусть дана квадратная матрица $A \in \mathbb{R}^{n \times n}$. Тогда A является обратимой $\Leftrightarrow |A| \neq 0$.

1.44 Явная формула для обратной матрицы

Пусть дана квадратная матрица $A \in \mathbb{R}^{n \times n}$. Тогда матрица $B \in \mathbb{R}^{n \times n}$ называется **обратной к** $A \Leftrightarrow A$ - обратима. При этом $B = \frac{1}{|A|} \hat{A}$. Обозначается A^{-1} .

1.45 Критерий обратимости произведения двух матриц. Матрица, обратная к произведению двух матриц.

Пусть даны две квадратные матрицы $A, B \in \mathbb{R}^{n \times n}$.

Тогда матрица AB обратима тогда и только тогда, когда A обратима и B обратима. Причём $(AB)^{-1} = B^{-1}A^{-1}$.

1.46 Формулы Крамера

Пусть дана СЛУ Ax=b, где $A\in\mathbb{R}^{n\times n}$, а $x\in\mathbb{R}^n$ - столбец неизвестных. Если $|A|\neq 0$, то единственное решение СЛУ можно получить по формулам $x_i=\frac{|A_i|}{|A|}$, где $\forall i=1,2,\cdots,nA_i$ - матрица, полученная заменой i-ого столбца матрицы A на столбец b.

1.47 Что такое поле?

Полем называется множество \mathbb{F} , на котором определены две операции:

- 1) Сложение: $(a,b) \longrightarrow a+b$
- 2) Умножение: $(a,b) \longrightarrow ab$

Причём $\forall a,b,c \in \mathbb{F}$ выполняются следующие аксиомы: 1) a+b=b+a

- 2) a + (b + c) = (a + b) + c
- 3) $\exists 0 : a + 0 = a$
- 4) $\exists -a : a + (-a) = 0$
- 5) (a+b)c = ac + bc
- 6) ab = ba
- $7) \ a(bc) = (ab)c$
- 8) $\exists 1 : a * 1 = a$
- 9) $\exists a^{-1} : a * a^{-1} = 1$

1.48 Алгебраическая форма комплексного числа. Сложение, умножение и деление комплексных чисел в алгебраической форме.

Комлексное число $z \in \mathbb{C}$, представленное в виде z = a + bi, где $a, b \in \mathbb{R}$, а $i^2 = -1$, причём a называется действительной частью, числа z, а b называется мнимой часть.

Комплексное сопряжение и его свойства. Сопряжение суммы 1.49и произведения двух комплексных чисел

Пусть дано комплексное число z=a+bi, тогда комплексное число вида z=a - bi**комплексным сопряжение** $: \forall z, w \in \mathbb{C}$

- $1) zz = a^2 + b^2 \in \mathbb{R}$
- 2) z=z
- 3)z + w = z + w
- 4)z * w = z * w

Геометрическая модель комплексных чисел. Интерпретация 1.50в ней сложения и сопряжения

Пусть даны комплексные числа z = a + bi.

Его можно воспринимать как точку (а лучше вектор) на плоскости \mathbb{R}^2 с координатами (a,b). Сумму $z+w, \forall z, w \in \mathbb{C}$ можно воспринимать как сумму соответсвующих векторов, а комплексное сопряжение к z равносильно вектору, отражённому относительно действительной оси.

1.51Модуль комплексного числа и его свойства: неотрицательность, неравенство треугольника, модуль произведения двух комплексных чисел

Пусть дано комплесное число $z=a+bi\in\mathbb{C}$

Тогда модулем z называется число |z|, такое что $|z| = \sqrt{a^2 + b^2}$

Свойства: $\forall z, w \in \mathbb{C}$

- 1) $|z| \geqslant 0$, причём $|z| = 0 \Leftrightarrow z = 0$
- 2) $|z + w| \le |z| + |w|$
- 3) |zw| = |z||w|

Комплексное число можно так же предстваить в виде: $z = a + bi = |z|(\frac{a}{|z|} + \frac{b}{z}i)$

Аргумент комплексного числа 1.52

Пусть дано комплексное число $z = a + bi \neq 0$.

Тогда аргументом комплексного числа z называется такое число $\varphi \in \mathbb{R}$, что $\cos \varphi = \frac{a}{|z|}$, а $\sin \varphi =$ $\frac{b}{|z|}.$ В геометрической модели аргумент это угол между осью абсцисс и вектором z.

1.53 Тригонометрическая форма комлплексного числа. Умножение и деление комплексных чисел в тригономестрической форме

Тригономестрической формой комплексного числа z называется его предстваление в виде $z = |z|(\cos \varphi + i \sin \varphi).$

Пусть даны два комплексных числа z_1, z_2 , тогда

Произведением двух комплексных чисел z_1 и z_2 называется такое число $w \in \mathbb{C}$, что $w = z_1 z_2 =$ $|z_1||z_2|(\cos\varphi_1+\varphi_2+i\sin\varphi_1+/varphi_2).$

Произведением двух комплексных чисел z_1 и z_2 называется такое число $w \in \mathbb{C}$, что $w = \frac{z_1}{z_2} =$

$$\frac{|z_1|}{|z_2|}(\cos\varphi_1-\varphi_2+i\sin\varphi_1-/varphi_2).$$

1.54 Формула Муавра

```
Пусть дано комплексное число z=|z|(\cos\varphi+i\sin\varphi).
Тогда z^n=|z|^n(\cos n\varphi+i\sin n\varphi)
```

1.55 Извлечение корней из комплексного числа

```
Пусть дано комплексное число z \in \mathbb{C} и n \in \mathbb{R}. Тогда корнем n-ой степени из числа z называется такое число w \in \mathbb{C}, что w^n = z. \sqrt[n]{z} = \{w \in \mathbb{C} | w^n = z\} Если z = 0, то |z| = 0 \Rightarrow |w| = 0 \Rightarrow w = 0 \Rightarrow \sqrt[n]{0} = \{0\}. Если z \neq 0, то: z = |z|(\cos \varphi + i \sin \varphi) w = |w|(\cos \psi + i \sin \psi) z = w^n = |w|^n(\cos(n\psi) + i \sin(n\psi)) z = w^n \Leftrightarrow \begin{cases} |w| = \sqrt[n]{|z|} \\ \psi = \frac{\varphi + 2\pi k}{n}, \quad k \in \{0, 1, 2, \cdots n - 1\} \end{cases}
```

1.56 Основная теорема алгебры комплексных чисел

1.57 Теорема Безу и её следствие

Пусть дано поле F[x] - всех многочленов от одной переменной, а так же $f(x), g(x) \in F[x]$.

Тогда говорят, что f(x) делится с остатком на g(x) (f(x):g(x)) тогда и только тогда, когда $\exists !\ q(x), r(x) \in F[x]: f(x) = q(x)g(x) + r(x)$, где $deg\ r(x) < deg\ g(x)$.

Соответственно, говорят, что f(x) делится без остатка на g(x) тогда и только тогда, когда r(x)=0.

Частный случай:

Пусть $deg\ g(x) = 1$ (линейный многочлен), g(x) = x - c.

Тогда, соответственно: f(x) = q(x)(x-c) + r(x).

 $deg \ r(x) < deg \ g(x) \Rightarrow deg \ r(x) < 1 \Rightarrow \deg r(x) = 0 \Rightarrow r(x) = r = const \in F[x]$

Наконец, **теорема Безу**: r = f(c).

Такое себе доказательство: $f(c) = q(c)(c-c) + r \Leftrightarrow f(c) = r$.

1.58 Кратность корня многочлена

Пусть дано поле F[x] - всех многочленов от одной переменной, а так же $f(x) \in F[x]$.

Тогда крастностью корня многочлена f(x) называется наибольшее число $k \in \mathbb{Z}$, такое что f(x): $(x-c)^k$. Т.е. $\exists ! \ q(x) : f(x) = q(x)(x-c)^k$, при этом важно, чтобы $q(c) \neq 0$.

1.59 Векторное пространство

Векторным пространством над полем F нахывается такое множество V, на котором определены две операции:

- 1) Сложение: $\forall a, b \in V : a + b$
- 2) Умножение на скаляр: $\forall a \in V, \lambda \in F : \lambda a$

Причём $\forall a,b,c \in V$ и $\forall v,u \in F$ выполняются следующие свойства (аксиомы векторного пространства):

- 1)a + b = b + a
- (a + b) = (a + b) + c
- $3)\exists \overline{0}: a+0=a$
- $(4)\exists -a: a+(-a)=0 \ 5)(v+u)a=va+ua$
- 6)(a+b)u = au + bu
- 7)a(vu) = (av)u
- $8)\exists 1: a*1 = a$

1.60 Подпространство векторного пространства

Пусть V - векторное пространство над F.

Тогда подмножество U множества V называется подпространством, если:

- 1) $0 \in U$ (Очень важное условие, оно гарантирует, что множество непусто)
- $2) \ \forall x, y \in U : x + y \in U$
- 3) $\forall x \in U, a \in F : ax \in U$

1.61 Линейная комбинация конечного набора векторов линейного пространства

Пусть V - векторное пространство над F, и даны $v_1, v_2, \cdots v_n \in V$

Тогда линейной комбинацией набора векторов называется вектор $v \in V$, такой что $a_1v_1 + a_2v_2 + \cdots + a_nv_n$, где $a_1, a_2, \cdots a_n \in F$.

1.62 Линейная оболочка подмножества векторного пространства

Пусть V - векторное пространство над F, а S - подпространство в V.

Тогда линейной оболочкой S называется множество всех возможных линейных комбинаций векторов из S.

1.63 Две общих конструкции подпространств в пространстве F^n

Пусть дана ОСЛУ Ax = 0.

Тогда множество решений этой ОСЛУ является подпространством в F^n .

Пусть дано $S \subseteq V$, тогда $\langle S \rangle$ - подпространство в F^n .

1.64 Линейная зависимость конечного набора векторов

Пусть V - векторное пространство над F, и даны $v_1, v_2, \dots v_n \in V$

Тогда система векторов $\{v_1, v_2, \cdots, v_n\}$ называется линейно зависимой, если существует их нетривиальная линейная комбинация, равная нулю.

T.e.
$$\exists (a_1, \dots, a_n) \neq (0 \dots 0) : a_1 v_1 + \dots + a_n v_n = 0$$

1.65 Линейная независимость конечного набора векторов

Пусть V - векторное пространство над F, и даны $v_1, v_2, \dots v_n \in V$

Тогда система векторов $\{v_1, v_2, \cdots, v_n\}$ называется линейно независимой, если не существует их

нетривиальной линейной комбинации, равной нулю.

T.e.
$$\nexists (a_1, \dots, a_n) \neq (0 \dots 0) : a_1 v_1 + \dots + a_n v_n = 0 \Rightarrow a_1 = \dots = a_n = 0$$

1.66 Критерий линейной зависимости конечного набора векторов

Пусть V - векторное пространство над F, и даны $v_1, v_2, \cdots v_n \in V$

Тогда $v_1, v_2, \dots, v_n \in V$ линейно зависимы, если $\exists i \in \{1, 2, \dots, n\}$, такой что v_i является линейной комбинацией остальных векторов.

Формально: $a_1v_1 + a_2v_2 + \cdots + a_{i-1}v_{i-1} + a_{i+1}v_{i+1} + \cdots + a_nv_n = v_i$.

1.67 Основная лемма о линейной зависимости

Пусть V - векторное пространство над F, и даны две системы векторов:

 $v_1 \cdots v_m \in V, w_1 \cdots w_n \in V$, причём m < n.

Тогда если $\forall i \in \{1, \dots, n\} \Rightarrow w_i \in \langle v_1 \dots v_n \rangle$, то $w_1 \dots w_n$ - линейно зависимы.

1.68 Базис векторного пространства

Пусть V - векторное пространство над F.

Тогда система векторов $S \subseteq V$ называется базисом пространства V, если:

- 1) S линейно независима
- 2) $\langle S \rangle = V$

1.69 Конечномерные и бесконечномерные векторные пространства

Векторное пространство V является конечномерным, если имеет конечный базис, и бесконечномерным иначе.

1.70 Размерность конечномерного векторного пространства

Размерностью конечномерного вектрорного пространства V называется число $dimV \in \mathbb{R}$ равное количеству векторов в базисе V.

1.71 Характеризация базисов конечномерного векторного пространства в терминах единственности линейного выражения векторов

Пусть V - векторное пространство над F, а $e_1 \cdots e_n$ - базис пространства V. Тогда $\forall v \in V$ единственным образом представим в виде $v = x_1 e_1 + \cdots + x_n e_n$, где $x_i \in F$.

1.72 ФСР ОСЛУ

Пусть дана ОСЛУ Ax = 0.

Тогда множество решений этой ОСЛУ задаёт векторное пространство S. Тогда фундаментальной системой решений ОСЛУ называется произвольный базис в S.

1.73 Лемма о добавлении вектора к конечной, линейно независимой системе

Пусть дана линейно независимая система векторов $v_1, \cdots, v_n \in V$, и вектор $v \in V$. Тогда, при добавлении вектора v в систему:

- 1) Система v_1,\cdots,v_n,v линейно независима
- $v \in \langle v_1, \cdots, v_n \rangle$