细胞的遗传物质及其维持

笔记源文件: <u>Markdown, 长图, PDF, HTML</u>

1. DNA是遗传物质实验证据

- 1 细菌转化实验→ DNA为遗传物质
 - 1. Griffith肺炎双球菌转化
 - 2. Avery DNA介导转化
- ②病毒研究→ DNA是遗传物质:Hershey和Chase 噬菌体侵染

2. DNA的结构

2.1. DNA的二级结构: 双螺旋结构

2.1.1. 双螺旋结构概述

- 1反向平行/碱基配对/右手螺旋
- 2 外脱氧核糖--磷酸骨架/内碱基

2.1.2. 多种DNA螺线结构

1B, A, Z, DNA:

DNA类型	螺旋	备注
B-DNA	右手螺旋	N/A
A-DNA	右手螺旋	B-DNA $\xrightarrow{\text{高盐浓度}}$ A-DNA
Z-DNA	左手螺旋	N/A

2 异常DNA二级结构

2.1.3. DNA二级结构与疾病

GAA异常重复 → 弗里德希氏共济失调

2.2. DNA的高级结构: 超螺旋结构

2.2.1. 超螺旋结构概述

 $\begin{array}{c} \textbf{2} \text{ (见上图) 右手螺旋DNA} \\ \begin{cases} \xrightarrow{\text{ \hat{k}}$} \text{ \hat{D}} \text{ \hat{E}} \\ \xrightarrow{\text{ \hat{k}}$} \text{ \hat{E}} \text{ \hat{E}} \\ \end{cases} \\ \xrightarrow{\text{ \hat{k}}$} \text{ \hat{E}} \text{ \hat{E}} \text{ \hat{E}} \text{ \hat{E}} \\ \end{array}$

3 意义:使DNA致密,推动DNA结构转化

2.2.2. 拓扑异构酶

水解/连接磷酸二酯键→调节DNA拓扑结构

拓扑异构酶 I 拓扑异构酶 I

2.3. 真核生物染色体的组装

2.3.1. 一些前导知识

1 染色质= 1/2DNA + 1/2蛋白质(组蛋白+非组蛋白)

2 组蛋白种类:核小体核心颗粒(H2A, H2B, H3, H4)+组蛋白H1

3 组蛋白八聚体:两个H2A-H2B二聚体+一个H3-H4-H3-H4四聚体

2.3.2. DNA→核小体/串珠结构

2.3.3. 串珠/核小体 \rightarrow 纤丝 \rightarrow 袢环 \rightarrow 玫瑰花结 \rightarrow 染色体

3. DNA的复制

双链 $\overline{ ext{DNA}} \xrightarrow{ ext{ iny BEDNA} ext{ iny BEDNA}} ext{ iny \mathbb{R} } egin{equation} \mathbb{R} & \mathbb{R$

3.1. 半保留复制

亲代两条链都是模板,子链一条来自亲代一条自己合成

3.1.1. 参与DNA复制的物质

模板(DNA母链),RNA引物(提供3'-OH末端便于dNTP聚合),底物dNTP,DNA聚合酶,蛋白质因子

3.1.2. 复制过程图示(注意新链是 $5^{'} ightarrow 3^{'}$)

3.2. DNA聚合酶

3.2.1. DNA聚合酶种类

1 原核生物

DNA-Pol 酶 类	5′ — 3′ 聚 合	5' — 3' 外 切	3′ — 5′ 外 切	备注
Pol I				DNA复制中校对; 可以切除RNA引物; 修复损伤DNA
Pol II				DNA复制中校对(应急修复); 对模板特异性低
Pol III				延申DNA; DNA复制校对
Pol IV				DNA修复; 移损合成
Pol V				移损合成

2 真核生物

DNA-Pol 酶类	5′ — 3′ 聚合	5'-3'外切	3′ — 5′ 外切	备注
DNA-pol α				起始引发, 是引物酶
$\mathrm{DNA}\text{-}\mathrm{pol}\;\beta$				参与低保真度复制
$\mathrm{DNA}\text{-}\mathrm{pol}\gamma$				线粒体DNA复制中催化
$\mathrm{DNA}\text{-}\mathrm{pol}\ \delta$				延长子链,是螺旋酶
$\mathrm{DNA}\text{-}\mathrm{pol}\ \varepsilon$				校读、修复、填补缺口

3.2.2. DNA聚合酶结构

手掌(引物+模板接头+DNA着点)+手指+拇指

3.2.3. DNA聚合酶作用机制

- 1 在活性中心 $\xrightarrow{\text{金属离子,}}$ 催化 $_{\text{dNTP}}$ 能化 $_{\text{dNTP}}$ 证确碱基配对 \rightarrow 聚合酶构象改变 $_{\text{分辨器氨基酸,}}$ 协助排除 $_{\text{NTP}}$ 版物
- 2 酶包含用于DNA合成和校正的单独位点

3.3. DNA复制过程

3.3.1. 复制起始

DanA蛋白识别撬开复制起始区域 \rightarrow 解旋酶+DanC使DNA解旋 \rightarrow SSB维持单链稳定 \rightarrow 拓扑异构酶理顺DNA释放张力

3.3.2. 复制延长

解旋酶/SSB/拓扑异构酶功能不变 \rightarrow 引物酶合成一段RNA引物 \rightarrow DNA聚合酶III延长链 \rightarrow 滑动夹保持DNA聚合酶高延伸PS. 滑动夹装载器: 加载并固定滑动夹

<mark>3.3.3. 复制终止</mark>

RNA酶切除引物 \rightarrow DNA聚合酶 I 填补引物空缺 \rightarrow DNA连接酶连接所有片段

<mark>3.3.4. 冈崎片段:详见视频</mark>