Sensor Principles

Integrated Interface Circuits • Errors and Noise Jens Anders Institute for Theory of Electrical **Engineering Department of Electrical Engineering and Computer Science University**

Integrated Interface Circuits •Introduction Jens Anders Institute of Smart Sensors Department of Engineering, Computer Science University of Stuttgart

? Lectures: •Mondays: 11:30 AM until 1 PM? Seminar at the end of the lecture period/beginning of the lecture free period? Participation in the seminar is mandatory for taking the exam? The exam will be a written

? Introduction/Motivation •Why/where do we need sensors? . What are the challenges/problems in reading out the sensors? ? Noise and other sources of error ? Categorizing different types of sensor Self-generating vs. modulating sensors ·Electrical behavior? Readout Concepts ·Absolute vs. differential measurements ·AM vs. FM detection . Resonant readouts . Phase sensitive-detection (Lock-in amplifiers) ·Continuous-time vs. discrete time readout ? Readout Concepts (cont.) • Open-loop vs. Closed loop measurements? Readout Circuit Implementations •Instrumentation amplifiers Transimpedance amplifiers

 Switched-capacitor readout circuits? Data-converters for sensor readouts •A/D converters •D/A converters •T/D converters (if

? Medical applications (1/2): MRI, Ultrasound www.medical.siemens.com http://www.magnet.fsu.edu/ www.sciencephoto.com http://www.healthcare.philips.com http://www.nibib.nih.gov/

http://www.gehealthcare.com/ ? Medical applications (2/2): CT. PET/CT http://www.toshiba-medical.eu/

http://www.healthcare.philips.com http://www.cyberphysics.co.uk/

http://neuros.net/

http://www.uib.no http://www.siemens.com/ ? Automotive applications

http://www.toyota.co.uk/ http://auto.howstuffworks.com

http://newsimages.motoring.co.uk/

http://www.eetimes.com/ http://i.telegraph.co.uk/

? Consumer electronics

http://www.bruker.com

http://www.arj.no/2007/01/14/iphone-sensing/ http://www.kinectingforwindows.com/

http://pertemi.wordpress.com/ http://www.touchuserinterface.com/ ? Applications in Science/Metrology

http://simple.wikipedia.org Source: Prof. Keller, Uni Graz Array of Photodiodes Pixel A/D converter transduction might be required? Interface

? Sensors sense their environment? Sensors can produce electrical or non-electrical signals electronics typically, amplify, frequency convert, filter and A/D convert the sensed

REVIEW OPAMP BASICS

? Maximum input voltage in open loop configuration:

A ? 105, VDD ? ?VSS ? 10 V.V

? 18 V ==; V ? V / A ? 90 ?V

0 out,range in,max out,range 0 ? Opamps should be used in closed loop configuration? Tradeoff between open loop gain and accuracy ? When using the opamp in feedback, stability

becomes a concern! ? Stability criterion: Simplified Nyquist criterion (negative feedback) loop gain: ?? = ?? ? ???? phase margin: ??

= 1? PM = 180 +? gain margin: ?

= ?180•? GM = 20 ? log10

? Assuming ???? ? ?

Vx? ? ?Vout

??? A?????Vin ?Vx ??

2 2 A 22 2 2 Vin ? ? ?Vout ?

? Very basic feedback theory •Ao(?) is the forward gain (open loop gain) •? is the feedback gain •?•Ao(?) is the loop gain •1 + ?? ? ????: feedback factor •Closed-loop TF:

Ao(?) Vin Vout

? There is a tradeoff between open loop gain and DC accuracy. ? Tradeoff of gain vs. bandwidth. ? Tradeoff of input and output resistance. (depending on the type of feedback) Buffer example of DC tradeoff: Open loop response Closed loop response (??

= 1) ? Placing the first non-dominant pole before or not to close behind the GBW results in peaking in the amplitude response of the closed loop system

? In the time-domain, placing the non dominant pole below or not sufficiently far beyond the GBW manifests itself as ringing in the step response? Note: Depending on the application, the frequency and/or time-domain behavior is more important

Loop gain ?? ? ???? Closed loop gain ????/(1+ ?? ? ????) ? The worst case in terms of stability occurs for ?? = 1 because (assuming a passive feedback network) this choice maximizes the loop gain

large open loop gain ??0

? Assuming a finite value for ??out and a very

? How is this condition ensured in the circuit? The opamp in the negative feedback loop adjusts ??out appropriately ? The potential at the opamp•s noninverting input is virtually copied to the inverting terminal (virtual short) ? Due to the virtual short between the inverting and noninverting opamp inputs, we have: ? The fact that typical opamps have large differential input impedances further attenuate the opamp•s input current ? Apply KCL to node X

? Feedback factor: T??? ? Vx? ? Vx R1? A???

? Closed loop TF: ? ? • Either apply KCL at node X or use the finding of slide 16

? If negative feedback is applied around an opamp, the following rules apply:

? Important: The rules only apply if the opamp operates linearly (e.g. no clipping or oscillation at its output)

? Note: The opamp is used in positive feedback here (the output is fed back to the noninverting input)? What do we know? ?????? ? ? ?????? ? 0 for finite ???? ?

? Assume that initially ???? is positive and not too large (i.e. ?? VDD) and that the output is at zero volts

? ???? i

??out = ?? ? ???? ? ??out becomes positive as well the constraint ??in = ??FB enforces that ???? further increases ??out and ???? increase together until the opamp rails

? Virtual short (???? = ??out) and KCL at nodes X and Y

0 ? Vin ?Vx

? ? \ ?V ? ? sC

? ?Vout

?Vx? ? R out x 1 R 1 2

0 ? Vout ?Vx ? V

?sC out 2 2

? Calculate the input impedance of the circuit abovel

Zin ? vin i

in? Hint: Assume an ideal opamp and a

? Voltage at node 1: ????1 in ? Ideal opamp enforces virtual short: ??X3

= ??X1

? Ideal opamp: Current through ??1 also flows through ??2:

??X2 = ??x3 ? ??1 = ??in ? ?? 1 ? Ideal opamp: Current through ??conv

= (??in???x2) ??conv

? The circuit should not be used with a current drive? Voltage drive negative feedback? Current drive positive feedback? Intuitive explanation: For current drive there is unity gain feedback to the noninverting input and less than unity gain feedback to the inverting Integrated Interface Circuits •Errors and Noise Jens Anders Institute for Theory of Electrical **Engineering Department of Electrical Engineering and Computer Science University** of Stuttgart

minimum level of the input quantity which can reproducibly be measured at a specified SNR (typically: ????NR = ???? ????B) ? Practical signals are specified by their dynamic range (DR): DR is the ratio between the maximum and minimum signal levels occurring within inaccuracy levels

errors e.g. source loading, offset, gain error •Random (stochastic) errors e.g. thermal noise. 1/f noise? Errors can be quantified as absolute errors and relative errors Absolute error: ??? =

Relative error: =

? ??0

where ??0 is the true value and

is the measured quantity/the estimate

? The maximum inaccuracy ???max should be specified such that the true value lies within the interval [??? ? ???max, ??? + ???max] ? Assumption: The output quantity ?? is affected by the ?? parameters ??????=1..?? according to y? f?x1, x2, , xN? ? Then, assuming small deterministic

fluctuations in the ?????? the total error in ?? is given by

?y? ? i ?1 ?f??x?xi

? Consequently, if we denote by ??????,max the (small) maximum inaccuracy of each ?????? , then ??? is bounded by

?vmax 2 2 j 21 ?f?xi

? ?x i .max

is called sensitivity w.r.t. ??????

? If the quantity to be measured depends on the 3 parameters ??in, ??error,1 and ??error,2

according to y?G?xin

? k1 ? xerror,1 ? k2 ? xerror,2

: ??in

? Limit of detection (LOD) definition: The

? Two different types of error: •Deterministic

error in error ? 1 ? ?H ??, xerror ? ? ?x H ??. x ? ?x

? Xin ?? ? ? ?H ??, xerror ? ? ?x

H ??. x ? ? X ?? ? ?x

error

?Υ ?? ?

γ ?? ?

Υ ?? ?

?xerror

error

error error which is independent of Xin? Therefore, the

effect of multiplicative errors is best described as a relative error in the output signal ? Interference: •Interference is caused by an undesired coupling of external signals into the measurement setup •Example: 50 Hz hum? Noise: •Noise is caused by random fluctuations originating in the measurement

and the uncertainties in ??in, ??error,1 and

??error,2 are 0 (??in is the perfectly known

input signal), ???error,1 and ???error,2, the

? k1 ? xerror,1 ? k2 ? xerror,2 ? ? ?x ?x

? k1 ? xerror.1 ? k2 ? xerror.2 ? ? ?x ?x

error,1 error,2 ? k1 ? ?xerror,1 ? k2 ? ?xerror,2 ?

Typical sources of additive errors are: •Offset

·Additive noise (cave: here rms values need to

be considered)? The uncertainty in the

measurand due to additive errors is best

? Assume that the output ??(??) depends on

according to Y???? H??. xerrror?? Xin?????

the input Xin and the error source ??error

Then, the relative error in ??(??) becomes:

? 1 ? ? ??H ??, xerror ? ? Xin ?? ??? ? ?x

specified as an absolute error

uncertainty in y becomes

?y?

? ?G ? xin

error.1?

? ?G ? xin

setup itself •Example: thermal noise? Both noise and interference can usually be modeled as additive error signals they can be modeled by additional error sources in the system? Cave: noise and interference should not be confused with signal distortion, which is

caused by intrinsic system nonlinearities in either the amplitude or the frequency domain Signal @ 1 kHz

? Total signal: ?? $= 0.1? \cos$

+ 2 ? cos

+??(??)

2 22

has a varia nce of ???? = 0.01

? The signal is barely visible in the time domain, but easy to see in the frequency

? Errors are introduced at multiple points along the signal processing chain

? Examples of such error sources are offset,	? A random process is called wide sense	is WSS then the output ??(??) will also be ?	where ???????? (??) is the ACF of ??????.	C? C0
distortion, noise, crosstalk, cross sensitivity,	stationary (WSS) if its mean is independent of	Ry (?) ? Rx (?) ? ?h (?) ? ????	???????? ? ? ` ` `	1 ? lim s ? Z(s) C? s??
gain error •? Question: What is the best way to	?? and its ACF only depends on the time	Rx (?	can be modeled as	1? li m
assess their combined effect on the measured	difference ?? = ??2 ? ??1	? t) ? ?h (?)dt	R(?)?Rii	s?Z(s)C0s?0
signal?	mx (t)? mx	? (t) ? h(t) ? h?(?t) ?	(0) ? e	? Noise PSD of a 1st-order RC circuit
? General idea: We can only compare the effect	? const.	? h(t ??	?0 , where ?	Z(j?)
of two different error sources when they are	Rx (t1,t2)? Rx (t2?t1)? Rx (?)	? t?) ? h?(t?)dt?	is the relaxation time and	1 R R
referred to the same point along the signal	C (t ,t	? The PSD Sy(f) is given by the	R (0) ? 2 i	?R2C
processing chain? Two natural choices for the) ? C (t ? t) ? C	Wiener-Khintchine theorem	? If ?????? has a Maxwellian distribution we	Z(j?)?1/R?
comparison points are the overall input and the	(?)?R(?)?m2	Three main sources of noise ? Thermal noise	have:	j?C
overall output (input allows for an intuitive	x12	•Due to thermal excitation of charge carriers	kT? q? R?2	? 1? j?RC
comparison with the measurand)	x 2 1	•Appears as white spectral density ? Shot	? q ? R ?2 kT ? ?	? 1? ??RC ?
? For linear(ized) systems the superposition		noise •Due to carriers randomly crossing a	R(0)? v 2?	
principle applies: Refer all error sources to the	x x x ? The normalized ACF (aka correlation	barrier •Dependent on DC bias current and is	and R (?) ? ? R	? j 1? ??RC ? R Vn
output and then refer them to the input by			` '	
dividing by the overall signal gain?	coefficient) is defined as	white? Flicker noise • Due to traps in	(?)???e?0	Nyquist theorem == ¿
Deterministic sources of error:	? (?) ? Cx (?), where ? 2 ? C	semiconductors •Has a 1/f spectral density	viim	Sv (f) ? 4kT
	(? ? 0) is the so-called variance	•Significant in MOS transistors at low	ui?L?vi	? ??Z(j 2? f)? ?
? Random uncorrelated sources of error:	x 2 x x x ? For real random processes one can	frequencies	? L ? m	4kT ? R 2
? Output referred error: The effect of an error	show that:	? EPT: Every closed physical system at	? ? ? ? ? The corresponding PSD is given by	n 1? ??RC ?
source on the overall output is called the	Rx (?) ? Rx (??), Cx (?) ? Cx (??) C (0) ? ? 2, R	temperature T contains an average energy of	? q ? R ?2 kT 2? ? q ? R ?2 kT 1	? Noise variance of a 1st-order RC circuit from
output referred error? Input referred error: The	(0) ? ? 2 ? m2, ? (0)=1 x x x x x x	kT/2 per degree of freedom ? Consider a gas	Su (f) ? n ?_A,? L ? ? ?	the Nyquist theorem
equivalent effect of an error source on the	? The Power Spectral Density (PSD) of a WSS	of electrons having a Maxwellian velocity	??0	? 2 (f) ? df n
overall input is called the (equivalent) input	r.p. $x(t)$ is the Fourier transform of its ACF	distribution? mv 2 p(v)?? e 2kT	? n ? A ? L ? ? ? ? ? 2?0	? 4kT
referred error	Sx (f) ? F ?Rx	where ?? ?? ? d?? represents the probability of	for f •	? ???Z ? j 2? f ??? df ?
? Example for finding the equivalent input and	(?)??	finding one electron in the velocity interval [??,	N?L?	0 0 ? df ? ? 1 kT
output referred noise: Error source: ????2 Find	? ? Rx ?? ?	?? + d??] ? The average energy of the electron	m 1? ?2? f?0 ?	4kT
TF from ????2 to the output ??: ????,??2 ?	(?) ? e? j 2?f? d?	at equilibrium is given by	? L ? m	? R ? ? 1? ?f
??out,??2 = ????,??2 ? ????2 Refer the result	R (?) ? F ?1?S	m m ? kT	2??0	/ fc ?
back to the input using the overall TF ????,??:	(f)??	W ? m	??q???n??==;R	? 4kT
????2	? Sx ??	? ? v 2 ? ? ?v 2 ? p(v) ? dv ?	? L ? L ? m ==¿	? R ?
= ??out,??2 ????,??	(f) ? e? j 2?f? df	2202	? ? q ??0 ? m ?	2 ? fc
= ????,??2	? PSD has units of [V2] if ??(??) is a voltage	? In 3 dimensions, we have ? 2 2 2 2 v ? vx ? vy	? ? A A q2 ? n ??	? 4kT
? ????2 ????,??	and [A2]	? vz ==¿	? Langevin approach:	? R ?
? Fluctuations of a physical quantity can be	if ??(??) is a current	? 2 ? 2 2 3	R C (noisy	? ? 2 2? RC C
mathematically modeled as a random or	Hz Hz ? The above definition defines the	v ? v	R (noiseless)	? Noise variance of a 1st-order RC circuit (by
stochastic process ? A random process (r.p.)	so-called double-sided PSD ? Most instruments	? 3 ? vx	Vn Vc	Bode theorem) C? =C
can be seen as a family of functions ?? where	display the so-called single-sided PSD which is	==¿ W?m?2	? Variance of thermal noise voltage across C:	1? lim s ? Z(s) ?
??(?? = ??0) is a random variable with 1st-order	related to the double-sided PSD according to	? kT 2	? df??1	lim
probability density function (pdf) ????(??, ??)	S? (f)?	A : cross section n : electron density J : current		s?R?1
? The instantaneous amplitude of the signal ??	?2Sx (f) for f ? 0 ?	density	2 c 2 2? RC	C? s??
only be predicted with probability ????(??, ??0)	?Sx (f) for f ? 0	U?R?I		s?? 1? s ? RC C
at time ??0 can therefore	? The total power associated with the r.p. is	? R ? A ? J	0 c? The result also follows directly from the	
? The mean or expected value ????(??) is	given by ?	? R ? A ? n ? q ? v	EPT: Average stored energy in C: W ? 1 C ?V 2 2	CO=?
obtained by averaging the amplitude ?? at time		v?1N	C	1 ? lim s ? Z(s) ? lim
?? over all possible realizations of ??(??) ?	Px ?	? i ?1	? Resistor R and capacitor C are in thermal	s?R?O
mx (t)? E?x(t)?	? Sx (f) ? df ??		equilibrium and there is only one degree of	C0 s?0
	? Rx (0)	vi , with: N ? n ? A ? L	freedom Mean energy stored in C:	s?0 1? s ? RC
? x ? px (x,t)dx ??	? Note: By definition the rms value is the		W ? kT	? From the Bode theorem we then have
? The autocorrelation function (ACF) is a	square root of ????? ? For a noise voltage PSD ?	? The voltage ?? is then given by:	==¿1CV2	V 2 ? kT ? 1 ? 1 ? ?
measure of the statistical	?	U?q?R	?1kT	n ?C C ? ? ? 0 ?
dependence between the random variables ??	2 n,rms	? ?v	==¿ V 2 ?	? Let us consider the following simple
epochs	? S (f) ? df ? n ?? 0	? ?u , where: u	22c2c	mechanical system consisting of a proof mass
and ??(??2) at two different	? (f) ? df n	? q ? R ? v	Z(j?) R1	??, a linear spring with spring constant ?? and
Rx (t1,t2)? E[x(t1)x(t2)]	? For a noise current PSD	iiiiii	Vn	a linear damper with damping factor ??
? ? ? ?? ??	??	? If no current flows, then ?? ; = 0, ?? ; = 0	RN	? The deterministic equation of motion of this
x1 ? x2	2 n,rms	and $\frac{1}{3}$?? $\frac{1}{6}$ = 0. ? The variances on the other	Z(j?)	system in the absence of an external force is
? px (x1, x2,t1,t2)dx1dx2	? S (f) ? df n ??	hand will be nonzero	Vn	then given by:
where ????(??1, ??2, ??1, ??2) is the 2nd-order	? S? (f) ? df n 0	v 2 ? v 2 ? 0 and U 2 ? U 2 ? 0	? The PSD of noise voltage ???? is given by:	d2x m ? dt 2
pdf of ??(??) ? The autocovariance is defined	Rx (?) x(t) Sx (f)	? The ACF of U is given by	? The variance of voltage ???? is then given by:	? b ? dx dt
by	Impulse response ?(??)	R (?) ? ?R	? The variance of the noise voltage Vn can be	? k ? x ? 0
Cx (t1,t2)? E???x(t1)? mx (t1)??x(t2)? mx	Transfer function ??(??)	(?)??q?R???R	obtained without computing the integral by	? According to the dissipation-fluctuation
(t2)???	Rx (?) x(t) Sx (f)	(?)	using the Bode Theorem stating	theorem the damping (loss) is associated with
Rx (t1,t2)? mx (t1)? mx (t2)	? Assuming that the input ?? WSS with ACF	ù uí?L?vii??i	where	noise we need to introduce a noise force to
, , , , , ,	,			

model these statistical fluctuations according	? Total input referred noise:	Small signal equivalent model ?VG3	? Concept of equivalent noise resistance: •For	2 l b V
to	nD nD	Inout	a noisy resistor, we have: S ? 4kT ? R nR •Can	TP3
? Using the Equipartition Theorem (1 ? ??	? SI ??3	S 2 Ink	express a noise voltage ?Vn as an equivalent	Slide 43 Noise Example •1st-Order Low-pass
? ?? = ??	? Equivalent model of a noisy BJT (Langevin	G	noise resistance ??neq:	Filter (1/5)
) and a derivation	approach)	? 4kT	S 4kT Vn	? Ideal OA (i.e. infinite DC gain and GBW and
2 ??	C	??	?Req	infinite input resistance) except for noise
spring	IC	?Gnk ?G	? For our noisy OTA, this means: S?S?S?S?S	which is modeled by a simple input-referred
similar to the one on slide 23 using the equivalent model shown below shows that the	B noisy B	for: k	? 4kT	noise voltage source ??nOA (the two current noise sources are neglected assuming the OA
PSD of the noise force ????(??) is independent	E C	? G2 ?	? ?G ? G	is MOS) ? Output noise voltage for ??in = 0:
of frequency and given by:	?InC	? 1•4 ?	? G ? G	V?Z
? In general, to model a noisy mechanical	E	for: k ? 1•4	? 4kT	? ?
system, the system can be modeled by	? Equivalent model of a noisy opamp (Langevin	nk nDk mk mk	?G2 ? R	? I ? ? H ?V with Z ? R
replacing every noisy damper by a noisefree	approach)	W?L?f	?Inout In1	and H
damper and a noise force generator alongside	noisy	k k ? ? KF 4kT n	In 2	? 2 ? s ?c
the damper	? Requires 3 uncorrelated noise sources ? All 3	? Small signal equivalent model ?VG3	In 3	nout 12
? To analyze the noise behavior of the system	noise sources are needed to have a model	Inout	In 4	n1 n 2 nOA nOA 12
shown below, the rule from the previous slide	independent of the generator impedance?	S 2 Ink	n1 n 2 n3 n 4	1? s?
can be applied	Current noise sources can be ignored for MOS	? 4kT	m1 nineq	nOA
Fn1 ?? ? ? Fn2 ?? ? ?	input stages	?Gnk	? Input referred noise resistance in more detail:	1? s ?
4kBT 4kBT	? Noise is a small perturbation compared to	for: k	Thermal noise: R	? Resulting output noise voltage PSD: c c
? b1 ? b2	???? ? Analysis can use the small-signal	? 1•4	? 2? nD1 ? 2? nD3 ?Gm3	? with
? Equivalent model of a noisy resistor	equivalent circuit to which all the noise sources	G???G?G2	? 2? nD1 ? ? ? ? nD3 ? Gm3 ?	S nout
(Langevin approach)	are added (Langevin approach) ? The total	??	nineq-th	?f??
R (noisy)	output referred noise PSD can be calculated as	for: k	G G2	Z12
R (noiseless) R (nois eless) In Vn	Sn,out	? 1•4	G ?1 ? G ?	?f ? 2 ? ?S
S ? 4kT ? R n	(f)??k?1	nk nDk mk mk	m1 m1	? S n 2 ? ?
? 4kT n	H (f) 2 ? S	W?L?f	m1 ? nD1 m1 ?	HnOA
? G ?	(f)	lkk??KF	??G?R	?f ? 2 ? S
4kT R	where it has been assumed that all the N	? Output noise	? 2?	S?S
(single-sided) (single-sided)	sources are uncorrelated ? ????(????) are the	current:	? ? nD3	? 4kT
? ?? is Boltzmann•s constant (?? = 1.38 •10?23	transfer functions from each noise source k to	4kT n	? Gm3 ? == ¿ l	and S
J/K) ? ?? is absolute temperature in K	the output? The noise can then be referred to	Gm3	? 4kT ? ? ?G	? 4kT ? ?
? Equivalent model of a noisy forward biased	the input by dividing by the square of the	? Gm 4	eq m1 nineq-th	? ?1? fk ?
diode (Langevin approach)	magnitude of the transfer function from input	Inout	nD1 ? ?1? ?	IIV??
ID Rd noisy Gd In Vn	to output ??(????), according to: SV ?f?	? Gm4 ? ?VG3	G? nout	n1
S ? 4kT n	S neq	? In2	eq m1	n 2 R
? Rd 2	?f??	? In4 ? G G	1/f noise:	nOA
S ? 4kT n ? Gd 2	nout A ?f ? 2	1?1	? 2? ? G ?2 2?	??m??
	?Vneq	? ==¿	nD1 m1 ? 2? ? ? G ?2	? Substituting into the output noise voltage
? 2q ? ID	ACL	? m 4 ? l ? l	W?L??	yields: ? f ?2
(single-sided) ? Shot noise (single-sided)	? 1? R1 R2	? m 4 ? l ? l	R?n??m3?	8kT?R
? ???? is the small-signal conductance of the	Vout V V	? ? ? ?	? p ? n ?1? ? m3 ?	2??f?
diode ? Recall: Large signal current through a	V V	?V ? ?V	?11?p?	??f?
pn-diode	S 2 nR 1	? n1 n3 ?	nineq-f W ? L ? f	S???c?
? Equivalent model of a noisy MOST (Langevin	S 2 nR 2	nout G	W : L : 1 ? G ?	? 4kT
approach)	? 4kT R1 ? 4kT R2	n1 n 2 G	: 0 : W ? L	? ? ?1? k ?
ID	? Equivalent input noise voltage PSD	n3 n 4	? f W	Vnout
noisy	(assuming no correlation between the noise	n1 n 2 n3 n 4	? L ? f ?	? f ?2 1?
InD	sources)	G3 G4	? G ?	? f ?2 1?
? Thermal noise:	? The opamp noise current sources start to	m 3	W?L??	??m??
GnD	dominate at high source impedances	m 3 m3	11 m1 3 3 11 ? m1 3 3 n ? ? Assuming M1-M2 in	?f??f??c??c??The input-referred noise
? ?nD	? How to calculate the input referred	? Transfer function from ???n to ??nout:	weak inversion and M3-M4 in strong inversion:	voltage PSD is then given by:
? Gms	equivalent noise of an OTA?	?Vn noiseless	? nD1?	??f?2?
? ? nD	Most general configuration Special case: Ideal	H(?) ?	n1, 2	??f?
? Gm	voltage source drive	Inout ?Vn	Gm1	SV ? 8kT
?1WI?2	Vin	? Gm1	? Ib , U	?R??2????4kT
??n??	These two circuits must result in the same	? Calculating ??????:	? nD3	? ? ?1? k ?
?nD	Inout! noisy	?Vn	? 2n3 , 3	nin
??2	Slide 39 Example •OTA Noise Analysis (2/5)?	????	Gm3	? fc ? ?
? Flicker noise:	Langevin model of the OTA	Gm 1	?	??m??

? The variance of the output noise voltage can	for?	•Carrier mobility fluctuations ?????? (Hooge	? 4kT	Optimum ???? exists for a given equivalent
be calculated by integrating the output noise	?? •1	model) ? The PSD of the gate referred voltage	? 4kT	voltage and current noise
voltage PSD over frequency? The	nOA	fluctuations is:	? 1 Gm1 ? 1 Gm2	For sufficiently large A:
contributions of the resistors are 1st-order	HnO A	where	? Total equivalent input referred voltage noise:	vx ? 0
low-pass filtered. The corresponding noise	?0? ?	S?V 2	Assumptions:	vout vx
bandwidth is then simply B ? ? 11	nOA	?f ? ?	•??????,B?????????M????/???? are	? ? Cin CFB
n12 ?	8? ?	K?N 2	sufficiently small	? Question: How to choose W and
2 ? fc	nOA	and	•??V????????????????M????/???? are	??B?????????? for an optimum SNR?
? ? ? 2 2? RC	16 2 ? ?0 ?? 16	S?V 2	negligible	? Circuit analysis: Compute ????????? for the
4RC	? The output noise voltage variance due to	?f ? ?	S nM1/2/3	2 circuits and equate them:
? The variance of the output noise voltage due	??nOA is then given by	K??	? 4kT ? 1 G	? C ? C ? C ?2 S ? ? FB GS in ? ? S
to ??1 and ??2 is then simply given by	V 2 ? 4kT ? B ? R	nG ?N	? Total equivalent input referred voltage noise:	vneq
V 2 ?	? 4kT	W ? L ?Cox ? f	m1/2/3	C ?G
2 ? 4kT ? Z	? ?0	nG ??	sufficiently	ind
?0? 2 ? B	??	W ? L ?Cox ? f	negligible	? in m ?Gms
? 8kT	? kT ? Gm	? Inversely proportional to frequency and to	S nM1/2/3	? WI and saturation
? R2 ? B	??	gate area? Note that ??????N and ???????? are	? 4kT ? 1 G	S ? 4kT ? ? 2
? 8kT	? ? kT	slightly bias dependent	m1/2/3	inD
?R?1	nout Vn 3	S?V 2	? Total equivalent input referred voltage noise:	? ? ?G
? 2kT	nOA nOA	?f ? ? S?V 2	M1 and M2 are assumed to be identical!	SI and saturation
nout	16 G	?f ?	? Noise from distinct devices is uncorrelated	??3 ms
R1,R2 R 12	4C G 4C	? \$ 2		G?n?G,
n12	m c m c	?f ?	Total output referred current noise	V ? VG ?VT0
R	? The total output noise voltage variance then	nG nG ?N nG ??	S nout,tot	ms m P n
n12	becomes	? Usually carrier number fluctuations dominate	? S nM1	2 G ? ? ?C
4RC C	? Since the voltage gain in the passband is	over mobility fluctuations ? For design	? S nM2	??W
? The contribution of ??nOA to the output noise	unity, this also corresponds to the total	purposes, the gate referred noise PSD can be	? S nM3	??V
voltage PSD is not frequency bounded and	input-referred noise voltage variance	considered as bias independent	? S nM4	?V ? ? ?
hence its contribution to the output noise	Fundamentals of LNA design for CT sensor	? PSD·s of noise currents ??????C and ??????B:	S ? 4kT n	ZIIBIAS
voltage variance is (in theory) infinite? In order	interface CT LNA·S FOR RESISTIVE AND	1?F SI ?f ? ? 2q ? IC , SI ?f ? ? 2q ? IB ? Kf ? B	?Gm	C ? ?C
to evaluate the output noise voltage variance,	CAPACITIVE SENSORS	nC nB	Referring it back to the input:	?W ? L
we need to account for the amplifier finite	?nG	m shot noise	SVneq?	m ox ? L ? P S
bandwidth	?1 WI saturation ? ? SI saturation ? 3	_,f Flicker noise	1 2 m1/2	n ?V ?V ?
? If the amplifier transfer function is assumed	G ? ?2 ? ? qs ? ?CGS ? CGD ?	? Thermal noise of resistances ????, ???? and	? S nout,tot	GS 3 ox
to be ??(??), then the transfer function ??nOA	Gi 2n	?????:	? Total input referred noise:	••_•??
becomes:	?qs	S nRB	11?G?	•,? P S
H ?s ? ?	? 1 L2	? 4kT , R	S neq	Simulation parameters:
2 ? s ??	? ? ? UT ? 4 L2	S nRC	? G2	L? Lmin
nOA	WI saturation	? 4kT , R	?2 ? SInM1/ 2	? 180 nm,
		S nRB	? 2 ? S nM3/4	tox
2 ? 1 ? 1? A ?s ? ? ?1? A ?s ? ? ? s ?? ? ? ? With ?? =	? ? ?15 ? ? ?VP	? 4kT R	??2?4kT	? Lmin
		B C E	? ? ?1? m3/4 ? G G	/ 50
???? ? Note that for ?? ? ? , we recover the earlier result ? If ?? is simply approximated by	?Vs ? SI saturation	? Base current is already at the base:	m1/2	? ? 400 cm2 / ?Vs?,
?? = ??0/?? where ??0 = ????/???? is the gain-		•	•_•m,1/2 ? S neqM1/ 2	· · · · · · · · · · · · · · · · · · ·
bandwidth product with ???? being the	? Drain noise current:	S n ,eq ? S ? nB	m1/2 ?	n ? 1.4 CFB
	V ? VG ?VT0 P n		? Voltage drive: ???? ? ???? ? Current drive:	
compensation capacitance, the transfer function becomes	? Gate noise current: ? ??????????????????????????????? and most	2q? IB	???? ? ?	? 100 fF, Cin
H ?s ? ?	important at RF	? Collector current needs to be referred back to base:	S ? R2 ? S	? 500 fF
2?s??	•		? Noise figure:	
nOA	? For an amplifier in saturation it makes sense to refer the drain noise to the gate	S S ? nC ? S	NF?	Optimum transistor width: ? Total input referred voltage noise:
????		? 2q ? lc	s a ? 1? a ? 1? NF	
s2???????s?1	where ????????? is given by	? 4kT ? R	? 1?	? C ? k? ?W ? C ?2
	?1?n	? 4kT ? ? 1	Vn,eq	S neq
?0 ? ?0 ?	WI and saturation	? R ?		? 4kT?n?? FB i n???
? It can be shown that the noise bandwidth	RnG	Vn ,eq G2	s In,eq N N ex	? in ?
corresponding to the 2nd- order transfer	? G nD G2	VnR G2		Simulation parameters:
function ??nOA is given by ?? ??	? ? nD G	B?2?GB?	4kTR	L ? Lmin
B?1	? 2 Gm ? 2 n 1	m B m ? m ?	? Voltage drive: NF???????? ?? ????/???? ?	? 180 nm,
? H ?f ? 2 ? df ? 1 ? H	mm???	Assumptions: •?????,B?????????? is	Current drive: NF?????????????	tox
?? ? 2 ? d?	SI and saturation	sufficiently small •??????????????????????????	S S S	? Lmin
? ?0	??3 Gm Gm	is negligible	RB ? 10 ? ? ? 100	/ 50
? 4 ? ?0 ??	? Two main sources of Flicker noise •Carrier	S nM1	? For large source resistances ???? the input	? ? 400 cm2 / ?Vs?,
? ?0	number fluctuation ????N (Mc Worther model)	S nM2	referred current noise becomes dominant?	n ? 1.4

CFB	? Eopt ? ? ?opt,mag ?opt,mech ?opt,therm	? Eelec ?	? therm ? ? ? ? ? ? therm ? ? ?	? Self-generating sensors require no external
? 100 fF,	?opt,opt ?opt,chem ?opt,elec ? ? Eopt ?	???????? Eelec	therm,os ?	power supply? Due to the absence of an
Cin	? Eopt,os ?	? ? Eelec,os ?	? Eopt ? ? ?opt,mag ?opt,mech ?opt,therm	external source, there is no additional source
? 500 fF	? E ?	? elec,mag elec,mech elec,therm elec,opt	?opt,opt ?opt,chem ?opt,elec ? ? Eopt ?	of uncertainty/error ? A self-generating sensor
Optimum transistor width:	???????	elec,chem elec,elec ?	? Eopt,os ?	draws all its required energy from the
? Total input referred voltage noise:	??E	? A simple spring with a proof mass attached	? E ?	measurand (source loading) ? Example:
? C ? k? ?W ? C ?2 1 L 1 Sv ? 4kT ? n ? ? FB in ?	??E?	to a stationary mass can detect accelerations	???????	Potentiometer for angle measurements
???	chem ? ?	as displacement mechanical energy (kinetic	??E	? Use an additional external source whose
neq	? chem,mag chem,mech chem,therm chem,opt	energy) is transformed into mechanical energy	??E?	energy is modulated to produce the output
C ? ?C W ?V ?V ?	chem,chem chem,elec ? ?	(spring potential energy)? A mechanical offset	chem ? ?	signal? The additional source introduces an
? in ? ox P S	chem ? ?	energy can exist because the spring can e.g.	? chem,mag chem,mech chem,therm chem,opt	additional source of error? A modulating
? Sensor: A device which converts information	chem,os?	be prestressed	chem,chem chem,elec ? ?	sensor takes less energy from the measurand
from one energy domain into the electrical	? Eelec ?	? The transduction inside a sensing element	chem ? ?	? Example: Non-contact displacement measurement
domain ? In the electrical domain, (analog)	???????? Eelec	can also take place via multiple transduction	chem,os?	The code tracks on the rotating disc allow for a
signal conditioning, digitization and finally	? ? Eelec,os ?	steps. Such a transducer is called a tandem	? Eelec ?	unique (digital) encoding of the current shaft
digital signal processing (DSP) and storage	? elec,mag elec,mech elec,therm elec,opt elec,chem elec,elec ?	transducer ? Example: an absorptive coating on a bimetal strip •In the 1st transduction step,	???	angle
can take place	? The additional additive vector models offsets	optical energy (photons) is converted into	????	Illustrations courtesy TU Delft
? Most sensors provide analog information at their outputs ? Analog-to-digital (A/D)	which are often present in sensors	thermal energy •In the 2nd transduction step,	? ? Eelec	? The resistance of a slab of conductive
conversion is required to benefit from DSP and	Slide 6 Example: Transduction from Emech to	the thermal energy deflects the bimetallic strip,	? ? Eelec,os ?	material can be expressed as:
convenient data displaying and storage?	Emech? Blue entries in the transduction	that is the optical energy is transduced into	? elec,mag elec,mech	where ?? is the bulk resistivity of the material ?
There will be a lecture on A/D conversion for	matrix represent non-zero coefficients	mechanical energy	elec,therm elec,opt elec,chem	Under mechanical stress (strain) the change in
senor interfaces towards the end of the course	? E ?	? A tandem transducer can be modeled using	elec,elec ?	geometry produces an associated resistance
? Transduction: Converting a signal from one	? ?mag,mag	two transduction matrices, representing the	? There is one (desired) sensitivity plus 2	change
energy domain into another ? Both sensors	?mag,mech	two successive transduction steps ? Note:	cross-sensitivities and an offset ? This could	?R ? L0
and actuators are transducers? Typical	?mag,therm	Tandem transduction requires an intermediate	be the transduction matrix of a photodiode	? ?? ?
signal/energy domains: •Magnetic (Mag)	?mag,opt	non-electrical energy domain? Example: •In	•Desired sensitivity: ??elec,opt	?0 ? ?L ?
•Mechanical (Mech) •Thermal (Therm) •Optical	?mag,chem	the transducer on the right, acceleration	•Cross-sensitivities: ??elec,elec (e.g.	?0 ? L0
(Opt) •Chemical (Chem) and •Electrical (Elec) ?	?mag,elec ? ? E	(mechanical energy) is transduced into	electromagnetic interference),	? ?A ==¿
Sources of uncertainty (error): •Sensitivity to	??E?	displacement (mechanical energy) •To readout	??elec,therm(diode current strongly depends	2000
unintended electrical and nonelectrical	mag ? ? ?	the displacement signal one typically converts	on temperature through ???? = ????/?? •Offset due to dark current	?R ? ?? R0 ?0
quantities •Noise (thermal, 1/f, •)	????	the displacement into a change in capacitance	? Active sensors: Require an external source of	? ?L L0
Electromagnetic interference (EMI)	??mag??	which can be processed by the readout	excitation Examples: •Resistor-based sensors	? ?A A0
? If we write the different signal domains (i.e.	mag,os	electronics, i.e. there is a mechanical to	(AMRs, GMRs, thermistors, •) ? Passive or	? Assuming that the volume stays constant the
energy forms) as a column vector, the	? Emech?	electrical energy transduction Since there is no	self-generating sensors: Generate their own	expression can be simplified according to
transduction action of a sensor can be written	? mech,mag	intermediate transduction step going to a	electrical output signal without requiring	Slide 15 Strain gauges with applied force (1/2)
as a matrix with certain sensitivities acting on	mech,mech	non-electrical energy domain, the	external voltages or currents Examples:	? From previous slide:
an input vector (sensor excitation) and	mech,therm mech,opt mech,chem mech,elec?	accelerometer on this slide is not a tandem	•Thermocouples (thermoelectric voltage	?R ? ?? R0 ?0
producing an output vector (sensor output	? Emech?	transducer	generation) and photodiodes (photocurrent) ?	? ?L L0
signal).	? Emech,os ?	? Consider a transduction to the electrical	Modulating sensors: Measure the desired	? ?A , A0
? E ?	? E ?	domain represented by the following	quantity by modulating ? Analog vs. Digital	? A
? ?mag,mag ?mag,mech ?mag,therm ?mag,opt	? therm,mag	transduction matrix	sensors: •Analog sensors provide signals	?
?mag,chem ?mag,elec ? ? E	?therm,mech	? E ?	which are continuous in time and amplitude	?
??E?	?therm,therm	? ?mag,mag ?mag,mech ?mag,therm ?mag,opt ?mag,chem ?mag,elec ? ? E	 Digital sensors provide discretized outputs 	? L
mag	?therm,opt	?mag,cnem ?mag,elec ? ? E ? ? E ?	? Deflection mode sensors: •The sensor	A 0
???????	?therm,chem		response to an input is a •deflection•or more	LO
? ? mag ? ? mag,os	? therm,elec E	mag ???????	general a deviation from its equilibrium	? For metal films the change in resistivity can
? Emech ?	??E?	?? maq?? maq.os	position in the absence of an input. For an	be modeled according to:
? mech,mag mech,mech mech,therm mech,opt	? therm ? ? ? ? ? therm ? ? ?	? Emech ?	ideal sensor, this deviation is proportional to	?L?0==¿??R??0
mech,chem mech,elec ? ? Emech ?	therm,os?	? mech,mag mech,mech mech,therm mech,opt	the measurand of interest ? Null mode	? ? R0
? Emech,os ?	? Eopt ? ? ?opt,mag ?opt,mech ?opt,therm	mech,chem mech,elec ?	sensors: •The sensors or instruments exert an	? ?strain
	?opt,opt ?opt,chem ?opt,elec ? ? Eopt ?	? Emech?	influence on the measured system opposing	? Bringing the 2 results together:
? E ? ? therm,mag	? Eopt,os ?	? Emech,os ?	the effect of the measurand. Ideally, the	k: gauge factor Slide 16 Strain gauges with applied force (2/2)
? therm,mag ?therm,mech	?E? ???????	? E ?	influence of the measurand and that by the	? From previous slide:
?therm,therm	???! ??E	? therm,mag	sensor/instrument are precisely balanced in	k: gauge factor ? For tensile stress we have
?therm,opt	? ? E ? ? ? E ?	?therm.mech	magnitude but opposite in sign, resulting in a	?L ? 0 ==¿? ?R ? ? 0
?therm,chem	chem??	?therm,therm	null measurement. This nulling is typically achieved via feedback. ? Null mode	? For compressive stress the opposite is true
? therm,elec E	? chem,mag chem,mech chem,therm chem,opt	?therm,opt	instruments are very linear and can produce	? ? R0
? ? E ?	chem,chem chem,elec??	?therm,chem	very accurate measurements, however, they	? ?strain
? therm ? ? ? ? ? ? therm ? ? ?	chem ? ?	? therm,elec E	are not as fast as deflection instruments	? The simple strain gauge structure on this and
therm, os ?	chem,os?	?? E?	(which are open loop systems)	the previous slides is constructed to give a
		= .	(or openio)	p. c cas c. according to the d

lorge 222 in the up/down direction and a small	? Accuracy: The bridge accuracy ?? measures	? Note: the CMRR is most often expressed in	2 For the industive bridge economics to	? Assume that according to the drawing on this
large ??? in the up/down direction and a small ??? in the left/right direction!	the deviation of the bridge from an ideal bridge	dB! ? Example: If an amplifier has a CMRR of	? For the inductive bridge according to Maxwell, the balance condition is:	slide ???? ? 0, ???? = 0, then the Hall voltage
? Ideally we have for the force applied on this	v?v	60 dB and there is a differential signal of	R??1	??hall becomes:
slide: Applying a force in the insensitive	? ?R	???inDM = 0.5 mV and a common mode signal	? ? R3 ? R1	Vhall
direction:	? 0 ? ?	of ???inCM= 0.5 V at its input, the changes in	4 ? j?C ?	d /2 ? ? ?d /2
? For commercially available sensors this is	? ?R	output voltage due to ???inDM and ???inCM	R?j?L	Ey dy
typically satisfied ? When designing your own	diff,lin diff ? R ? R	are equal!	??xx	? vx ? Bz ? d
sensors you need to ensure this by a proper	??	? The simple opamp based difference amplifier	Integrated Interface Circuits • Chapter 2:	???Ex?Bz?d
geometry selection	v ? ?R ? ? v	can be used to amplify voltage differences at	Sensor types	?????Jx?Bz?d?
? A simple resistive divider can be used to read	?R ?0 R ? ?R ?	its input	? The virtual short of an opamp can be used to	???h
out resistive sensors ? Features of a	diff?R?diff,lin?R?A?????	? Let•s calculate ??DM, ACM and the CMRR!	enforce a zero bridge voltage. Note: The	? I ? Bz
half-bridge: •Simple structure •The relationship	v ? ?R ?	? 1st assume ??	balance conditions from the previous slides	? Recall: The resistivity is given by:
between ??? and ??out is non-linear •For	diff?R???	= ?, ??2 = ??? = ?? ? ??1 = ?? ? ???	are not satisfied! Why? ? For a resistive bridge	??1?
relatively small values of ??? the circuit tends	? Bridge resistance: The bridge resistance is	21	with ??1 = ??2 = ??4 = ?? and Z3 = ???? we	?1e?n??
to produce small changes in the output voltage with a large offset difficult to measure	the resistance of the bridge measured	? 2nd assume ?? ?? = ?, ??2 = ?? ? ??1, ??? =	obtain for the required feedback voltage ????	? Jx ? h ? d
? We can also make the bottom resistor the	unloaded across the signal terminals Note:	? ? ? ? ? ? ? ? ? ? ? + ??????	ileft ? iright ==¿	? Note: To maximize ??hall, we need minimum
sensing element	The bridge resistance determines the static	2 1 1 ? Note: ??DM, ??CM and CMRR are	Vex	?, maximum ?? and low doping (small ??), also
? The features are virtually identical to the	power consumption of the bridge! ? Offset error: The bridge offset is the bridge output	independent of ??? and scale positively with	? ?Vex	??hall is independent of the sensor surface ??
other half bridge configuration (but: sign	voltage which is produced when the	???. Numerical Example: ??? = 1	? vx ?	? ??
reversal!)	measurement parameter is zero ? Drift: The	? 3rd assume ??	2 ? R R ? Rx	? The effectively measurable Hall voltage
? The offset present in the half-bridge can be	drift of a bridge is the change in bridge output	= ??DC	? Setting as usual ???? = ?? + ???, we find	depends on the geometry of the specific Hall
removed using the differential structure shown	voltage with environmental condition over	/(1 + ?? ? ??DC) GBW	? All bridge configurations are typically read	device. This is modeled by the geometry factor
on the right? Features of the single-point full	time. Here, typically temperature is the most	? Note: The finite opamp gain and GBW affect	out with a low offset, high input impedance	??
bridge •No intrinsic offset •Output does not	critical source for drift	??DM and ??CM in the same way and therefore,	differential amplifier. The amplifier is then	? The most important noise sources for Hall
change linearly with the change in resistance	Readout w/ discrete electronics	the CMRR remains unaltered! ? Apart from the	typically followed by an LPF (anti-aliasing	devices are: •Thermal noise (eventually
??? ? Balance condition:	On-chip readout electronics	finite CMRR due to resistor mismatch, the	filter) and an ADC	determining the limit of detection (LOD)) •1/f
? Bridge configurations can be made more	? Signal conditioning takes care of: •Reading	difference amplifier suffers from source	MAGNETIC FIELD SENSORS	noise •Noise of the signal conditioning
sensitive by incorporating two sensing	out the bridge circuit w/o significant loading	loading due to the finite value of ??1 (this is	? Magnetic field sensors are mostly	electronics, EMI ? The intrinsic thermal noise
elements	effects • Amplification • Anti-aliasing filtering	particularly true for IC realizations where large	distinguished by their dynamic range and	of a Hall device originates in the resistance
? Features: •No intrinsic offset, non-linear	•Differential-to-single-ended conversion for	resistor values require large areas) we will	frequency range (i.e. bandwidth) Min. B field Max. B field Frequency range	between the two voltage terminals of the Hall device? Noise power:
relation between ??? and ??diff •Two times	discrete readout electronics	address these problems by introducing so-	Induction coils 100 fT unlimited 0.1 mHz	? Signal Power:
better sensitivity than 1-point full-bridge ? Balance condition:	? Differential signal:	called instrumentation amplifiers later in the course	•1MHz Hall sensors 10 nT 20 T 0 •100 MHz	? Resolution: ? Example (Si): ?? = 1016 cm?3, ?
? The nonlinearity problem can be solved if a	? Common-mode signal:? The differential signal is most often much	? A bridge structure can also be used to	Magnetoresistive sensors 100 pT 100 mT 0	= 2 •m, ?? = 1 ?cm, ?? = 300 K, ?? = 15 k?, ?????
differential measurement becomes possible	smaller than the common-	measure reactive sensors (i.e. capacitive and	•100 MHz Fluxgates 10 pT 1 mT 0 •100 MHz	= 2 · III, :: = 1 : CIII, :: = 300 K, :: = 13 K:, ::::::
(i.e. one sensing element produces +???	mode signal	inductive sensors) •Replace the resistors by	SQUIDs 5 fT 1 •T 0 •100 kHz ? Therefore,	0 V A?T
resistance change and a second one produces	? Example: ??bias	generalized impedances •Replace the DC	different applications clearly require different	, ?? = 0.5 mA
?????)	= 1 ??, ??? ??	excitation by an AC source ? The balance	magnetic field sensors? In this course we will	? From the previous slide: ? To achieve a good
? Features: •No offset and linear relation	= 1	condition is:	focus on Hall sensors because: •they can	resolution we need: •materials with a high
between ??? and ??diff ? Balance condition:	vdiff	? This complex balance equation can be	nicely be integrated in CMOS technologies	mobility (large ??) •low doping levels (small ??)
? If differential sensing elements are available	? ?R ?V R bias V	written as 2 real valued equations:	•They have an enormous market share (Asahi	•thin devices (small ?) •large currents ?? ?
we can also construct a full bridge where all	? 10 mV	Z1 ? Z2 ? ?	Kasei Co. sells over 100 million Hall elements	BUT: ??, n and ? are limited by •heating
sensing elements are varying	50x	R1 ?	per month)	•available power (e.g. in battery operated
v ? 1 ? ?1?	vCM	jX1	? As ingredients, we need the Lorentz force	devices) •Carrier velocity saturation
?R ? ?V	? bias 2	? R2 ?	(which in general relates the electromagnetic	Stress (e.g. due to packaging)
12? R? bias??1??R?	? 0.5 V	jX2	world (Maxwell equations) to the mechanical	? In the absence of a magnetic field ?? = 0, the
v2 ?	? The information carrying signal ??inDM is	Z4 Z3	world (Newton's laws of motion)? Next, we need to introduce scattering into Newton's law	Hall plate can be modeled as a simple
2 ? ?1?	amplified by the differential gain ??DM	R4?	of motion	Wheatstone bridge? Non-uniform stress inside
R??Vbias	? The undesired common-mode signal ??inCM	jX4	where	Hall devices leads to intrinsic offsets in this
? ? ? Features: •No offset, intrinsically linear, highest sensitivity •Requires a differential	is amplified by the common mode gain ??CM	R3 ?	???	Wheatstone bridge ? This offset is
, ,	? In practice, ??CM is non-zero and the output	jX3 ? For the capacitive bridge according to Wien,	is the drift velocity and ?? the mean free time	superimposed on the actual Hall voltage
sensing element ? Balance condition: ? Sensitivity: The bridge sensitivity ?? specifies	depends on both ??inDM and ??inCM	, , ,	collisions	resulting in an (unknown) offset ? Typical
the output voltage when the bridge is excited	according to: ? Ideally, we would like ??CM to be zero or at least much smaller than ??DM	the balance condition is: R1 ? R2	? Combining these two equations yields: ?	(equivalent) offset values are between 5 and
with 1 Volt and the sensor is at full scale	? The common-mode rejection ratio (CMRR)	R4 ?	Assumptions: We apply an electric field in the	30 mT
Example: 1-point full-bridge with ??? ?? ????	characterizes the ability of an amplifier to	j??	???? direction with a resulting current flow and	? According to the above figure, we can couple two Hall sensors, which are rotated by 90•(i.e.
= 20	suppress common mode signals at its input	???C?	no current flows in the y- and z-directions:	the bias current port and the voltage sense
vdiff Vbias	w.r.t. differential signals (i.e. to	Rx ?	? On the previous slide we found:	port are swapped), to cancel the intrinsic
? 1 ? ?R ? 2 2R ? ?R	•distinguish•DM from CM signals) ? From	j??	? Writing this equation in component form	offset ? Key idea: The offset voltages due to
1? ?R R 2 2 ? ?R R	previous slide:	? ? ?C ?	? And substituting: ? Yields:	doping gradients, temperature gradients and
S ? 45 mV /V	? The CMRR is then defined as:	? 4 ? ? x ?	? From the previous slide:	mechanical stress gradients are 180 out of
				

phase while the generated Hall voltages are in	size •High performance (resolution: 500 nT)	material stack sensitivity (at 0°C) [°V/K] range	? VEB1 ?VEB2	? ??
phase	Source: Kejik et al., •Integrated Hall	[•C] iron/constantan 45 0760	? kT	+ ??
? : Hooge parameter (1/f noise model) GF:	Microsystem with current re-use•, Sensor	copper/constantan 35 -100370	? ln ? lq	= ??2 ? ??
geometry parameter Rsheet : sheet resistance	Letters, vol. 5, 1-3, 2007	chromel/alumel 40 01260 platinum/Pt+Rd 5	? ? kT	+ ??
n: doping concentration	? The so-called •Seebeck effect•refers to the	01500 ? Thermocouples give guite small	? ln ? lg ?	REF
? A typical (asymptotic) noise PSD of a Hall	conversion of temperature difference into an	output voltages, however, they are intrinsically	q ?!? ? A ? q ?!? ? A ? ? S E1 ? ? S E 2 ?	PTAT 2
sensor is shown above ? The lower frequency	electromotive force (emf)	offset free because they always measure a	? kT ? ln ?lg ? IS?	CTAT
noise is dominated by the sensor•s 1/f-noise	? Any emf ??emf modifies ohm•s law	temperature difference which results in ??emf	? AE 2 ? ? kT	??1
•	according to:	= 0 for ??? = 0 K ? The small output voltage is	? In ? AE 2 ?	PTAT
? The white noise part of the spectrum is	•	problematic due to the non-zero offset of		CTAT
determined by the thermal noise associated	J ? ?	real-world voltage amplifiers ? Solution idea:	q?l??A	? Parallel form: ?? =
with the loss of the Hall element ? Typical	? ???V	We could increase the emf, by connecting	?!?q	
corner frequencies are in the range of 1 to 100	? Eemf?	many thermocouples in series •	? A ?	? ?? = ??3 ? ??
kHz	where ?? is the electric potential and ?? is the		?? S E1	+ ??3
? Offset and 1/f noise can be greatly reduced	electric conductivity	? According to the previous slide, one can	q ??	? ??
by the so-called spinning current or switched	? The Seebeck effect produces an emf ??emf	increase the output voltage of a thermocouple	? E1 ?	REF
Hall technique ? Intuitive explanation: Assume	according to:	by connecting many of them in series resulting	? Numerical example: ??E2 = 10 ? ??E1	3 ??1
??? ¿ 0	Eemf	in a so- called thermopile	? 1.381?10?23 J/K 199 ?V	PTAT
furthermore	? ?S(T) ? ?T	? While the problems associated with the small	VEB ?	??2
Slide 56	Sou rce: http://e n.wi kip edi a.or g/wi ki/F ile:	output voltage are solved, a new problem	1.6 ?10?19 C	CTAT
CL K ph as e	The rmo elec tric _Ge ner ator _Di agr	arises: •There is increased thermal conduction	? In?10? ?T ?	? To achieve temperature independence, the
? The spinning current method implemented	where ??(??) is the Seebeck coefficient	between cold and hot parts increased source	K ?T	resistor ratios and other parameters must be
above produces an output voltage with a DC	am.svg	loading and more heat flux required to build up	? Note: A true CTAT voltage does not exist! ?	adjusted to result in ?????????? = 0 ??????
component equal to the offset and a frequency	(material property) and ??? is the temperature	a temperature difference	Best approximation: Start from the current	? Simple realization of the series bandgap
component proportional to the Hall voltage at	gradient ? For •standard•materials, the	? Transistors are natural temperature sensors	through a pn diode: VEB	form: ? Assume ???????? = 0 and an ideal
the clock frequency (Fourier expansion of a	Seebeck coefficient takes on values from ? 100	? However, manufacturing tolerances cause	1?1	opamp V ? VEB1 ?VEB2
square wave!) ? How is this useful? Answer:	?V/K to 1 mV/K	temperature errors of up to 3.C	? ekT q	? U ? In? I1 ? ? U
The amplifier in the circuit above also	•	? Key idea: Producing a temperature stable	? ? ? e	? In? I2 ?
possesses an offset and 1/f-noise. By	? Thermocouples make use of the Seebeck	reference which cancels a positive	, E : bandga p energy, E	T?A?I??T?A?I???E1S??E2S?
,	effect to measure the temperature difference	temperature coefficient with a negative one	? 1.13 eV (Si)	? U ? In? I1 ? AE 2 ? ? U
•modulating•the information to the clock	between two objects	with	DSSgg	? In? R1 ? AE 2 ?
frequency we can greatly mitigate the effects	? For ??? = 0, the emf induced by the Seebeck	VREF ?T ? ? VCTA T ?T ? ? K ?VPTA T ?T ?		T?A?I?T?R?A??E12??3E1??The
of both noise and offset	effect can be directly measured as a voltage	??PTAT ?? a voltage which is proportional to	1? ? K	
? A complete •switched Hall system•consists	difference? The measured voltage can be	absolute temperature ??CTAT(??) a voltage	?T?,	opamp ensures that the voltage drops across
of •The switched Hall plate together with an	calculated by integrating (•summing up•) all	which is complimentary to absolute	? ? 3, 1	??3 and ??1 are equal, i.e. ??1 ? ??3 = ??2 ? ??1
amplifier •The demodulation switches to	emfs due to material differences inside the	temperature	? ?	==¿ V ? V ? I ? R ? V ? V ? R1 ? V ? R1 ?U
translate the signal from the switching	sensor shown below	?? a temperature independent constant which	?Eg ? e kT	? In? R1 ? AE 2 ? ? V
frequency back to DC •A final low-pass stage	? From the previous slide: ? Clearly, to	·	Eg •kT ==¿ l? •l ,	? R1 ?U
to remove the signal around the 2nd harmonic	maximize the emf, one should use materials	makes ??REF temperature ? This type of	1? ? 1	? In? R1 ? AE 2 ?
Conventional Hall readout Low-power Hall	with very distinct Seebeck coefficients (e.g.	reference is known as bandgap reference	S1SSsss D	REF EB1 1 3 EB1
readout	chromel and alumel) ? Note: To compute	independent of	kT ? I? ? ? K	R2 R
? In a conventional implementation of the	??sense one does not need to invert the above	? Collector current of a BJT as a function of its	?T ? ?	EB1 R
spinning current technique, the Hall element	equation for every measurement? Instead, we	base emitter voltage and emitter area for ??BC	VEB	T?R?A?
and the amplifier are biased with separate	use the following •trick•:	= 0 (diode connected device)	? Eg / q ? ? ln? s ? ?? VG	CTAT R
dedicated bias currents	Define:	? VEB	? UT ? ln? 1?	T?R?A?
? In the low-power configuration, the bias	? From previous slide: ? Typically, ??standard	? VEB •kT q	m mq	22?3E1?
current for the Hall element is reused to bias	is chosen as 0 •C ? The so-called	VEB	? ID ? ? ID ?	2?3
the amplifier	characteristic function of the thermocouple	I ? I? ? A	V G UT	E1?
Source: Kejik et al., •Integrated Hall	??(??) is provided by thermocouple	? ?ekT q	VG?VG0	? Differentiating w.r.t. to ?? and equating the
Microsystem with current re-use•, Sensor	manufacturers and metrology standards	? 1? ? I? ? A	? a ?T	result to zero yields
Letters, vol. 5, 1-3, 2007	organization over a range of temperatures for	? ekT q	(good from 200 K to	R1 ? In? R1 ? AE 2 ? ? VG0 ?VCTAT ? ?
? Spinning current technique applied to 4 Hall	different specific thermocouple types? Note:	C VBC ?0 S E ? ? S E	400 K)	?
elements? Demodulation is achieved by	To extract the temperature ??sense from the	? Conversely, the base emitter voltage can be	? The terms ????	? UT
commuting the input differential pair in the	above equation, the reference temperature	expressed as a function of the collector current	and ? ???? ??	R?R?A?U2?3E1?T
switching box? Amplification is properly	needs to be known typically evaluated by two	VEB	provide the desired CTAT	? For ??OS ? 0, ??REF becomes:
	,, , , ,	? kT q		? R ? R
defined by feedback resistors feeding the	different methods ••Ice bath•method: Immerse	? In ? IC I? ? A	voltage while the temperature dependence in	? R ? A ? V ? ?
output signal back to a dedicated feedback	the reference junction in a semi-frozen bath of		the argument of the natural logarithm is	
differential pair	distilled water at atmospheric pressure???ref	? kT ? 1? ? q	undesired results in curvature of the CTAT	V?V
? Technology: 0.8 •m standard CMOS	= 0 •C (not so practical) •Reference junction	? In ? IC ? I? ? A	voltage and therefore in an error in the	? ?1? 1 ? ?V ? 1 ?U
technology? Total current consumption of 2.4	thermometer (thermocouples are still useful,	? S E ? ? S E ?	•temperature independent curvature correction	? In? 1 E 2 ?1? OS ? ?
mA •80 •20 ? DDA configuration: •Simple	because their leads can be exposed to extreme	? A PTAT voltage can be generated using 2	(not covered	REF BE1
demodulation implementation •Small silicon	environmental conditions)	diode connected BJTs	? Basic structures:	R2 ? R2
area ? Spinning current technique: •1/f noise	? The table lists some commonly used	VPTAT	? Series form: ??	? R3
suppression ? Features: •Low-power, small	materials for thermocouples:	? ?VEB	= ??	? AE1 ? I

2?R1?? Linear Nonlinear Reduced nonlinearity due to v ? ?C voltages up to the opamp's GBW are possible Output is approximately proportional to differential measurement 3 ? A ? v ? The negative opamp input is a virtual gnd displacement! and can thus be used for adding currents in a ? For open loop readouts typically a lock-in ? Recap: A temperature independent voltage Charge amplifier out 2C ? C ? C differential sensor structure detection scheme is used to maximize SNR? can be obtained by adding the PTAT and CTAT v in vout ? Csense CFB ? The differential readout topology shown For large excitation signals the sensor voltages ??REF: temperature independent s0 p1 p2 (bandgap) voltage ??EB: CTAT voltage ??? ? Intrinsic sensor parasitics can typically not above is frequently used to read out MEMS non-linearity becomes an important issue? ? vex be bootstrapped out (e.g. the capacitance structures such as accelerometers and This is true for all open loop sensor readout ???EB: PTAT voltage ? New: The ratio of the Voltage amplifier associated with the anchor area of a released systems PTAT and reference voltage ??REF can be used gyroscopes vout as a measure of temperature MEMS) ? The output signal is proportional to the Integrated Interface Circuits •Chapter 2: ? Av ? C half-bridge excitation voltage .??ex any error in ? Using a current mirror ratio of ??, an emitter ? In the TIA (transimpedance amplifier) Sensor types Csense? C area ratio of ?? = ????2/????1 and an amplifier readout circuit the effect of ??p is attenuated •??ex will directly translate into an output error ? Using an inductor, we can embed any by the gain of the opamp ??(??) Accuracy is particularly important when capacitive sensor into a resonant circuit w/ gain of ?? results in sense ref v?1? sensing small values of ??? Mismatch (or drift) resonant frequency ????res (Note: The self **VPTAT** Transimpedance amplifier of the two amplitudes will introduce errors? resonant frequency of the sensor has to be s? Csense? RFB ? K ? kT q vout?s?RFBCsense?vex For sinewave excitation the signals •?????? significantly larger than ????res) x 1? A ?s ? ?C ? C ?R ? ln?p?r? ? The node ??sense has no DC connection to can be generated using a center-tapped Q ? Rcoil ? Rloss ? ? 1 ? ? ? ierror ? The CTAT voltage is obtained from ??EB2, the and (it is a •floating node•) The DC potential is transformer or an active balun. This res 2 LC 1?s? ADC computes the ratio of ??PTAT and ??REF not well defined •The node is very sensitive to configuration is called a Blumlein bridge ? s ?Cp ? vx ?LC ? to obtain ?? leakage currents charging/discharging the ? For rectangular excitation signals and sense p FB 1? A ?s? M. Lemkin and B. Boser. • A three-axis ? Why don•t we just measure ??PTAT because node? A bias resistor provides a well-defined switched excitation schemes, the signals can ? Also in the charge amplifier, the virtual gnd micromachined accelerometer with a CMOS it is already proportional to absolute DC bias point The value of ??BIAS needs to be be generated using the scheme below position-sense interface and digital offset-trim node introduced by the opamp mitigates the temperature? We could certainly do that. large because ??BIAS together with the ? Assuming ideal opamps (??op??) effect of ??p electronics, JSSC, pp- 456-468, April 1999 However, we want a digital output and every capacitors forms a high pass whose corner ==¿ v x2 ? Differential readout topologies greatly vx? ADC needs a reference voltage The smartness frequency needs to be sufficiently low ? v x1. suppress common mode interferences (power ?C CFB of the sensor comes from the fact that we use compared to the excitation frequency to avoid v x3?0 supply noise, charge injection, substrate noise) ?11? a temperature independent quantity (the signal attenuation and discharge during the ? Using the differential charge integrator on ? C ? The part of the circuit highlighted in red is a bandgap voltage) as reference for the sensor periods where the excitation voltages stay the top right with the drive signal applied to the Moreover, when choosing the (digital) ADC ? simple inverting amplifier with input voltage constant •The large RC-time constant proof mass, only one excitation source is ??outn and output voltage ??outp ? The part of Ср offset (??) and gain (??) correctly, the digital associated w/ large values of ??BIAS causes a required? The output signal of this structure is the circuit highlighted in blue is a simple codeword is directly a digital temperature slow discharge of the node against drifts? We given by?? non-inverting amplifier with input voltage ????1 reading can also use a periodic reset using a switch Α ? s and with its reference potential pulled to ? ?C? Pertijs et al., JSSC, Dec. •05 (reset requires introduction of reset phase, C ??C ??outp? The part of the circuit highlighted in ? CMOS process use substrate PNPs ? Spread where ??p+ = ??p? = 0) green is a voltage divider between ??in and ? ?C C ? CFB in ???? use one room temperature trim to A. Burstein and W.J. Kaiser. •Mixed ??outp ?V???V obtain an absolute temperature measurement analog-digital highly sensitive sensor interface ierror ? From the inverting amplifier subcircuit it ??s??1?s??ip?s? ? Inaccuracy i •0.1 •C (3??) from ?55 •C to 125 circuit for low-cost microsensors. Intl. Conf. ? s ?Cp ? vx directly follows ? Assuming an ideal opamp out ex? C C (military range) On solid-State Sensors and Actuators, June ? The noninverting amplifier subcircuit ?C?C?C? ? Capacitive sensors are very suitable for 1995? The circuit uses correlated double ?vin.op enforces the following relations CC?C?C? displacement measurements sampling to reduce offset, charge injection and ? 0, voutn ?i? ? Parallel plate capacitance approximation 1/f noise? During????1 the excitation voltage iin,0P ? vx1 ••\$ is applied to the bridge ??sense changes its ? 0 ==; ? vx1 ? ??voutn ? ==; _•i value according to the change in capacitance iin? ??? A ??? A .?? 1 for air R R vx1? 0 ••,p? of ??sense1,2 the corresponding voltage is i???Cin?vin??? 0 r h h r sampled on ??1 Note: ??sense also contains ? The resistive divider finally enforces the ••i 123 errors due to charge injection, amplifier offset following relation between ??in and ??outp ??i???CFB?vout????iin ••_•s C?? and amplifier 1/f noise? During????2 zero v ? v ٠٠i ? ??in can be the sensing capacitance of a ? w ?x0 volts are applied as excitation voltage to the vx1 ? 0 x1 outp •.p? capacitive sensor? Then, for lateral ??x? bridge ??sense now contains only changes due displacement sensing ??in = ???? = ???? + ???. in x1? ==; R R ? gain error C?? to errors (charge injection etc.) This voltage is A. Burstein and W.J. Kaiser. •Mixed offset error? ? A stored on ??2 and subtracted from the voltage ? For vertical displacement sensing ???? = ???? analog-digital highly sensitive sensor interface 22 С + ???, ??? ?? ???/(1 + ???) circuit for low-cost microsensors, Intl. Conf. M. Lemkin and B. Boser. • A three-axis ?? ? When using a voltage amplifier to readout the ? For an ideal opamp: On solid-State Sensors and Actuators. June micromachined accelerometer with a CMOS ? A capacitive difference between ????1 = ?????? + ? In practice: •The opamp is non ideal (finite 1995? Idea: Introduce FB to regulate either the position-sense interface and digital offset-trim ?C?C?C0 ???/2 and ????2 = ?????? ? ???/2, ??out DC gain, finite GBW and finite input impedance) positive (shown) or the negative supply to electronics, JSSC, pp- 456-468, April 1999 h???wh becomes very sensitive to parasitic •The opamp can have a nonzero DC bias provide a truly balanced excitation? Working ? W/o the input common mode feedback ? ?x capacitances at the center node v??C?A?v current to avoid opamp saturation a discharge principle: Use a pair of reference capacitors (ICMFB), the opamp s input common mode C0 ? ? out ????1, ????2 (matched to ????1 and ????2) to voltage would make steps ???iCM in response of ??FB is required (continuous or h??z?Ah 2C?C?C discontinuous) measure the mismatch between the positive to the steps in ???? The opamp needs a large top and negative excitation voltage? The FB loop ? Frequency response of the charge amplifier input CMR and CMRR? The CM feedback Cbot enforces ??ref = 0 by adjusting the magnitude s0 p1 p2 ? Parasitic capacitances associates with finite gain and GBW opamp amplifier senses the input common mode ??? of the positive excitation voltage with interconnects can be bootstrapped out by ? In a typical charge amplifier, the excitation voltage of the main opamp, compares it h??zA using a voltage buffer driving the shield voltage ??in is attenuated, i.e. ??out i ??in ? Capacitance to displacement relation for against a reference and applies the required h??z potential ??shield because ??in ? ??FB Features ? Excitation ? Linearization for small displacements voltage at the foot point of the bridge formed

by ????1, ????2, ???????1 and ???????2 ? Displacement noise due to mechanical force required to bring the input common mode noise at ?? = 0: voltage back to its nominal value after every ? Low frequency noise decreases by increasing the quality factor ???? (i.e. by decreasing Parallel plate capacitor Comb finger capacitor friction) here vacuum encapsulation helps? C?? BUT: Noise at the resonance frequency increases with ????! ? A ?C?x??? ? Signal (i.e. displacement in response to an ??A applied force) N: ? Signal is shaped in the same way as the noise finaersh: ? Synchronous demodulation delivers finger magnitude, phase, real part and imaginary part heightC?x??N???h??L?x? of the frequency response in one frequency ?C?x? ? Why feedback? ??N???h Y?A?X x0?x ?x ?x0 Y ? A ? X ? x ?2 1?? A?1?X? q?xq For large loop gains ?? ? ?? Capacitive structures can be used for both ? In a feedback system with sufficiently large sensing and actuation. We can use this to form loop gain, sensitivity and linearity are NOT feedback systems around a capacitive determined by the sensor ?? but rather by the feedback network. This is typically easier to ? In a capacitive sensor with comb structure, achieve! we typically exploit the possibility of realizing ? Feedback around the sensor can be used to differential capacitances? We either need enhance the bandwidth? Feedback (FB) does dedicated electrodes to apply the force or we not improve the SNR per se? However, it can use the same electrodes for sensing and allows for the use of very high-Q structures actuation by time multiplexing the electrodes thereby FB indirectly helps to lower the (in this case ??s1 = ??a1, ??s2 = ??a2) ? ??FB is Brownian motion noise (the random motion of the voltage applied to generate the electrostatic feedback. For ??FB = 0 the net ? Typical open loop response of the sensor is a force is zero and the plate moves back to the resonant 2nd order system? What type of center position? In contrast to the controller should you use for the FB? single-ended case, here the voltage-force •P-controller alone not a good idea because of relation is linear insufficient phase margin (PM) •PD-controller ? Modeling the mechanical resonator (lead compensation) introduces additional PM C0: static capacitance KP ? 50, Index •m•identifies motional quantities K? 5?10?3 ? Assuming a parallel plate structure for the ·Could add an I-controller part (full sensor, we obtain: PID-controller) to null steady state errors Fmech: mechanical force (e.g. gravity) Vn: ? The feedback signal is used to keep the noise in the voltage across the capacitor comb structure at nearly zero displacement Vn ?t??Vn?t??? minimum effect of nonlinearity? The same ? 2 ? kBT ? R ? ? ?? ? electrode is used for sensing and applying the Fn: mechanical force noise feedback signal. How is this possible? Fn?t??Fn?t??? Frequency domain separation of the feedback ? 2 ? kBT ?? ? ? ?? ? and the sense signal (synchronous ? Nonlinear dynamics (nonlinear in the voltage demodulation) only)? Coupling between electrical and ? For a single-ended capacitive structure, the mechanical noise? In a nonlinear system, the voltage-force relationship is non-linear (cf. superposition principle does not apply? To slide 98) obtain the intrinsic sensor SNR, we only have ? However, we would like to have a linear to consider the force noise ???? and compute voltage-force relationship to obtain an overall its effect on the sensor output quantity! linear feedback loop we could either use a ? The transfer function from the mechanical nonlinear controller which cancels the noise to the displacement ?? is nonlinearity (i.e. a square root controller) ? The displacement noise PSD due to the force Or we can use a force feedback with two noise ???? const. then becomes: values only •The connection between two = 2????????? = points is always a straight line (only gain error ? Displacement noise due to mechanical force and offset possible) •Can apply a two point noise at ????: force feedback by exploiting the sigma-delta

modulation technique •Pulse-density modulation rather than amplitude modulation C. Lu, M. Lemkin, and B.Boser, A monolithic surface micromachined accelerometer with digital output•, JSSC, pp. 1367-1373, Dec. 1995 ? The compensation block is required for system stability (essentially a digital lead compensation)? Also, the compensation block can be used to optimize the noise shaping performance of the closed system Analog feedback? Continuous feedback minimizes ??in ? ??FB ? The output is an analog signal Digital feedback? ?? minimizes mean of ??in ? ??FB ? Mean of ??FB and ??out track ??in ? ??in can be recovered by low pass filtering ??out ? The digital feedback system is clocked ? Measuring the capacitance value using the charge redistribution method •Step1: S3 closed, S1 to ??ref. S2 to and, DAC output is set to 0 ???? forced to and by the amplifier in feedback, ???? is charged to ?????? = ??ref? ???? •Step2: S3 opened, S1 to gnd, S2 to ??ref, ??DAC = 0 S3 open freezes charge on node ????, total charge on node ????: Q? v?C??v?V??C?v?C??Q??V?C==;v? ٧? CS?CR x x R x ref S x C R ref R x ref C?C?C •Step3: Adjust ??DAC until ???? = 0 SRC Ox ? vx ?CR ? ?vx ?Vref ? ?CS ? ?vx ? vDAC ? ?CC ? ?QR ? ?Vref ?CR Integrated Interface Circuits • Chapter 2: Sensor types ? Embed a differential capacitive sensor into a relaxation oscillator v1?t??sgn??vc?t??? vc ?t?? v1 ?t????v 2?t??v1 ?t ??? R ? R 78 v?t???1?v???d?? 1? v ?? ?d? 2 RC?1 RC? out 3 1 1 1 R dv2 ?t ? v4 ?t ? ? ? 2 ? v1 ?t ? ? R2C2 ? R4 dt R vout ?t ? ? ? 6 ? v4 ?t ? R5 ? Embed a differential capacitive sensor into a ?V, V relaxation oscillator Integrated Interface Circuits • Differential Jens Anders Institute for Theory of Electrical

Engineering Department of Electrical

```
Engineering and Computer Science University
                                                G G1 G2 Gav 2
of Stuttgart
                                                ?av
                                                ?????
? Differential signaling has many advantages
compared to single-ended signaling •Inherent
                                                ?V??
rejection to common-mode interference and
                                                ?V??2
noise •Wider signal swing for a given supply
                                                ?I ? 2 ? V
voltage •Minimum effect of even order
                                                ? G ? V
distortion including DC offset •Can lead to
                                                ? T0
improved sensor linearity
                                                ? nV
? BUT most practical amplifiers also respond
                                                D 2n
to some degree to common-mode signals at
                                                ? ??
their inputs •The relevant figure is the
                                                Gav
common-mode rejection ratio (CMRR) •Good
                                                2 ??
amplifiers for high-end sensing applications
                                                ?? T0av
have CMRRs better than 120 dB
                                                2?? $?
? A simple diff amp consists of a differential
                                                ??
pair with resistive load? Its output voltage can
                                                ?av
be written as? Assuming ideal components
                                                ?????
(i.e. no mismatch and an ideal current source)
                                                ?V??
this structure provides: •No offset •An infinite
                                                ?V??2
CMRR and PSRR? Differential pairs can be
                                                ?2?V
easily built using both MOS and bipolar
                                                ? G ? V
transistors? Definition of CMRR
                                                ? T0
? Definition of PSRR
                                                ? nV
? In practical differential amplifiers component
                                                2n???
mismatch (??1???2,??1???2) and imperfect
                                                Gav
current sources (??out? ?) lead to •Offset
                                                2 ??
·Finite CMRR and PSRR? Mismatch is mainly
                                                ?? T0av
due to process variation lithographic errors
                                                2?? $?
? Intuitive interpretation: the input referred
                                                ??
offset voltage is the voltage, which needs to be
                                                ?ID
applied to obtain zero volts differential output
                                                ? ?ID ?? ?0.?V ?0.?V ?0 ? ? 0
voltage
                                                ?? ?0.?VT0 ?0.?VG ?0
v??R
                                                ? ?? ?
??RL???I
                                                ?? ?0,?VT0 ?0,?VG ?0
??ID???R
                                                ? ?VT0?
??RL???I??ID?
                                                ?? ?0.?VT0 ?0.?VG ?0
out ? Lav 2 ? ? Dav 2 ? ? Lav 2 ? ? Dav 2 ? ? ? ?
                                                ? Evaluating the expression from the previous
?????
                                                slide, we find:
? Next, we need to approximate ????? = ????1?
                                                ?ID?
????2
                                                1???
2|2
                                                ? Gmay
?1??V?V
                                                ??٧
? nV
                                                ? Gmav
?2??2
                                                ??V.G
? ?V ?V
                                                ? ?IDav
? nV ?2
                                                1?1
D 2n
                                                T0 I
G1 T01
                                                G may ?V
S<sub>2</sub>n
                                                Dav av Dav Dav Gav
                                                ! vout ? 0 ==; 0 ? R ? I
? Same idea as before: Introduce
                                                ????
???
                                                ? Gmav
??.?
                                                ? ?V
?1? ?2.?V V
                                                ? Gmav
                                                ? ?V
VT01? VT02, ?V V
                                                ??1
?V.V
                                                ??R
VG1? VG2
                                                Lav Dav??I
12 av 2
                                                T0 I
T0 T01 T02 T0av 2
                                                G? Dav L
```

? av Dav Dav ?	m ??	? Recall from the previous slide:	duty-cycle of the square-wave should be	? Chopping is a powerful technique that can be
? Now, we need to solve this equation for ???G	?I ?V T0	Integrated Interface Circuits • Modulation	exactly 50? Non-ideal LPF residual ripple	used to reduce offset and 1/???? noise in
= ??0S, resulting in ? Finding from previous slide	D TO ? Note:	techniques to improve low frequency	? Complete suppression of 1/???? noise if ????ch ; 1/???? corner frequency	amplifiers and systems ? Main drawback: the need for a LPF to remove
? ??mav/??Dav is an important parameter	Question: Is there any link between CMRR and	performance	but harmonics slightly (??2 8	the up-modulated offset bandwidth limitation
which largely varies vs. the operating point of	offset?	Jens Anders Institute of Smart Sensors	3 , \	? Main non-idealities are caused by:
a MOSFET? Moreover, the above derivation	? Expression for ??OS assuming random	Department of Electrical Engineering and	? 1.23) higher noise power	bandwidth, clock asymmetry and chopper
also holds true for BJTs with the	fluctuations in ?????, ? ?? and ??????? the	Computer Science University of Stuttgart	because noise from higher harmonics folds into baseband? Up-modulated offset must be	spikes
difference that ???????	signs of the individual terms do not matter	? Synonyms: coherent detection, synchronous	filtered out loss of signal bandwidth and	? Offsets as low as a few nV can be achieved
? 0 for BJTs (????	(worst case all are added)	demodulation, lock-in amplification, chopping	residual chopper •ripple•	? Three-stage amplifier, first two stages are
= ???? ??	? Expression for (linear) CMRR assuming	? These are all modulation techniques that are	xsquare ?t ? ?	chopped ? 1 mHz 1/???? corner frequency, 5 •V
is equal for both devices)	random fluctuations in ?????, ? ?? and ???????	used to improve the low frequency performance of measurement systems? When	4 ? ? k ?1	offset voltage, CMRR , PSRR ¿ 120 dB
? The achievable offset voltages can thus be	(again worst case all are added)	square-wave modulation is employed the	sin?2? ?2k 2k	R. Wu, K.A.A. Makinwa and J.H. Huijsing, "A
summarized as follows:	? These two expressions look quite similar,	technique is referred to as chopping?	? 1?? fch ? 1	Chopper Current-Feedback Instrumentation
10 mV ? 2 ??ov	ignoring the little difference	Chopping leads to improved low-frequency	?†?	Amplifier With a 1 mHz Noise Corner and an
1 ? 100 mV	caused by the factor of 1 2	specifications e.g. reduced offset and 1/????	? Turning off/on the switch injects charge in	AC-Coupled Ripple Reduction Loop,"
MOS (SI)	and multiplying the two expressions, we find:	noise, better CMRR and PSRR	??L ? How much of the charge is added to ??L?	Solid-State Circuits, IEEE Journal of , vol. 44,
1 mV	? From previous slide ? Note: ??mav ? ??ov =	? Characterized by •Offset, gain error •Drift,	•Usual assumption: The charge splits half-half	no. 12, pp. 3232-3243, Dec. 2009
120 ?V	??BIAS	1/???? noise •PSRR, CMRR ? Offset, gain error	•In reality the amount of charge is a complex	Analog Storage Digital Storage
1 ? ? 1/26 mV ?? no change	? Recall: ??out	and 1/???? noise are caused by component	function of the impedance at each terminal	Vin
BJT	= ???? (??BIAS/2)	mismatch and non-idealities they are a part of	and the transition time of the clock ? ???? is	Vo ut
With offset trimming (Laser, fusible links)	where ????	life? But we can reduce their effects by •Static	linear (proportional) w.r.t the transistor area	Vin
? In a real-world differential pair mismatch and	is the modulation voltage (modeling	techniques like calibration and trimming	???? ? ?? and nonlinear w.r.t. ??in	?2 S ?1
finite output impedance of the current source	channel length modulation) ? Note: Our	•Dynamic techniques such as chopping,	Q ? W	A 1
also lead to finite CMRR ? As before,	derivation actually also holds true for BJTs and	auto-zeroing and dynamic element matching	? L ?C ? ?V	N Vn CLK
decompose all quantities according to	MOSFETs in weak inversion	? Involves measuring a static error of a system	?Vin	Vout A2
?G G	? The power supply rejection ratio(s) is/are	(e.g. offset or gain error) and then adjusting	?VT0 ? ??	SAR = Successive Approximation Register
? G , G	defined as:	the value of a component in order to reduce	? ? ??out can be decomposed into a term	DAC ? Sampling the unwanted signal (noise
Gm1 ? Gm2	Slide 16 PSRRVDD calculation ? First let us	the error to zero + Low complexity + No	linear w.r.t ??in and a 2nd term nonlinear w.r.t	and offset) during ?1 ? Storing this value
m m1 m2 mav 2	calculate the PSRR for the positive supply,	bandwidth limitation - Requires measurement	??in Distortion ? ?	(analog or digital)? Subtracting the stored
?R R ? R , R	PSRRVDD ? As long as the finite output conductance of ??1 and ??2 are neglected,	equipment? Also requires a memory element	V ? V	value from the input signal during ?2 ? Amplifier is disconnected from signal path
RL1? RL2	mismatch in ??L1,2 and ??1,2 result in no	to store the trimmed value e.g. a	?1? W	during ?1 ? An auxiliary port N can be used to
L L1 L2 Lav 2 ? Then, performing a simple	differential output voltage, i.e. infinite	potentiometer or a PROM C	? L ?Cox	apply the stored value offset and
nodal analysis yields	PSRRVDD ? Assuming:	Vin	??W	low-frequency noise can be greatly reduced
? Using the result from the previous slide, the	RL1? RLav	Vout	? L ?Cox	Vref
CMRR of a diff pair becomes	? ?RL,	? Techniques which continuously attempt to	? ?V ?V	? S1 and S2 are closed ??out = ??OS ? The
CMRR 20 ? log? A	RL2	cancel the effect of system non-idealities to	? ??	amplifier•s offset is stored on ??az
ADM??	? RLav	zero. + (Usually) do not require measurement	out	? S3 is closed output signal is available ? For
ADM	? ?RL	equipment + Also compensate for drift and	in?	an amplifier with finite DC gain ??, the residual
?	Gm1 ? Gmav	1/???? noise and improve CMRR and PSRR -	2C ? 2C	offset is given by ??OS/(?? + 1)
? ?Gmav ? RLav	? ?Gm,	Requires more complex circuitry - Reduce	??T0?	? Clock feedthrough and charge injection
CM-to-DM?	Gm2	bandwidth	•_L•, ? gain error ?	errors in stored offset
ACM-to-DM	? Gmav	? Two main Dynamic Offset Cancellation (DOC)	••L •••_••••, offset , dostortion	? Stored offset on ??az will slowly leak away
? ? ?Gmav ? ?RL 2G	? ?Gm	techniques are: Chopping and Auto-zeroing	? Capacitive coupling due to ??OV capacitive	? In practice, ??az is made as large as possible
? RLav ? ?Gm ? ? r	and finite output conductances of ??1,2 of	? Time domain: Auto-zeroing periodically	divider between ??OV and ??L	? Use minimum size switches (subject to noise
mav out	??outM1,2, the resulting PSRR becomes	measure the offset (the noise) and subtract it	? Clock transition couples to ??out and creates	
??	resulting in a PSRRVDD of	from the input signal ? Frequency domain:	an error	? Use differential topologies for 1st order
? Relating ???m/??mav to physical parameters,	Slide 17 P????RRV??????? calculation ?	Chopping modulating the input signal above	? ???out is independent of ???in	cancellation
we obtain:	Assuming:	the 1/???? noise	? ???out is linear w.r.t capacitive divider ratio	? Use complementary switches
G?,I	RL1? RLav	? Signal is modulated, amplified and then	constant offset	? Use dummy switches
? ?av	? ?RL,	demodulated ? DC offset is modulated once and the resulting AC signal can be removed by	? Clock asymmetry (non-50? Spikes at the	? Use bottom plate sampling
? ?V ?V	RL2	3 3	amplifier s output due to clock feedthrough	? The error in the differential output signal can
? nV ?2	? RLav	a low-pass filter? The modulators are usually implemented as polarity reversing switches,	and charge injection? Demodulation of these	be written as:
?G ?	? ?RL	known as choppers? The technique is known	spikes back to DC by the output chopper	?Q2
?Gm	Gm1 ? Gmav	as chopping	residual offset (in the range of millivolts)?	? ?Q1 ? W ? L ?Cox ???Vinp ?Vinn ? ? ?VT02 ?VT01 ???
? ?? ? ?Gm ?	? ?Gm, Gm2	? Easily generated modulating signal?	Residual offset is proportional to the chopping	? W ? L ?Cox ??Vinp
? ;Gm ? ?ID ?V	emz ? Gmav	Modulator is a simple polarity-reversing switch	frequency ? Limited amplifier bandwidth results in an	? W ? L ?COX ?? VIIIP ?Vinn ? ? ? ? ? 2?F
mav	? Gm	? Switches are easily realized in CMOS	output signal which is not a perfect	? VT02 ?
Day 2n	and finite output conductances of the current	? Output chopper converts offset into a	square-wave less power at the harmonic less	2?F
G TO S	source ??out, the resulting PSRR becomes	square-wave? To avoid residual offset, the	gain? Chopping reduces DC gain	? VT01 ??
- · • •	TIEST TOUR, and reconting I State becomes	-q-a.oa.oo arola leoladal offoct, tile	James Groupping reduced to guill	• • • •

? ? perfect cancelation is only achieved for	0VN., baseband	n ? ? sinc2 ?? ? f	? For small signals, offset dominates (can use
zero differential input signal (??inp = ??inn)	•fo_ld •, foldover	?T ? ? ?? ? f	AZ, CHS, •) ? For large signals, gain error
? BUT: The constant offset as well as the	where:	?T ? 1? ? S	dominates
nonlinearity due to the square root term are	Sfold ?f ? ?		? Both gain error and offset are static errors,
reduced compared to a single-ended switch	??	fold	which can be removed by calibration and/or
? Use an NMOS and a PMOS switch in parallel	n??? n?0	s?n???n?0	
•		VN? ? ?	trimming? It can also be removed by dynamic
we can achieve a first order cancelation of the	2 Hn ?f ? ? S ? ?	? Ts ?	element matching (DEM)
opposite charge packets. To this end we need:	n???Ts?	C	? If ?? ? ?? ? 1 ??CL ? 1/??
Consequently, the drain source cancelation can	? The baseband transfer function is given by:	S	? For moderate 1/??, DC-gain of op-amp is
only occur for one input level ??in ? Also for	2??	С	large enough
clock feedthrough, there is not a perfect	sin?2? ? f ?T ??2	0	? ??: Resistor/Capacitor ratio •Resistors:
cancelation due to the different overlap	?	•	0.01•Capacitors: 1
capacitances of NMOS and PMOS	cos?2? ? f ?T ??2 ?	Reference: C. Enz and G.C. Temes, Proc. IEEE, Nov. 1996	? So feedback allows us to replace the
? Assuming the charge injection due to ??1 is:	H ?f ? ? d 2 ? ? ?1?		inaccurate gain of open loop amplifiers by well
? Then, since the charge injection of ??2is	h ? ? ?1?	Sf? AZ	defined ratios of passive components Can we
for ??2 = ??1 and ????2 = 0.5 ? ????1 the two	h?????f?T for??f?T •1	H ?f ? 2 ? S	do better?
charge packages cancel ? Unfortunately, the	0 ? 2? ? f	?f? Sfold	
assumption of equal charge splitting of ??1 is	?Th ? ?	?f ?	? Idea: In a sensor system we would like to
in general not valid? Fortunately, the above	2? ? f	with:	know ??in but we do not know (precisely) ??
choice of ??2 also mitigates clock feedthrough	?Th??	SV?	and ??OS for 3 unknowns, we need 3 equations
? Switch ??2 opens slightly earlier than ??1 the	where ?? = ???/???? is the duty cycle (???? =	?f???	? 3 Phases are required for a measurement:
charge injected by the opening of ??2 is	??? + ???????)	1	•Phase 1: ??1 = ?? ? •Phase 2: ??2 = ?? ?
constant and can be eliminated by using	S ?f ? ? H	1? ?f fc ?	•Phase 1: ??3 = ?? ? ??0S ??, ??0S and ??in can
differential sampling? Since the bottom plate			be found Accuracy is limited by ADC resolution
of ??az is floating when ??1 is opened, no	?f?2?\$? The baseband 1/f is eliminated by the	and noise
charge is injected on ??az ? This scheme	?f ? ? S	high-pass filtering action of	? Gain errors can be further reduced by using
	?f ?	??0 2	Dynamic Element Matching (DEM) ? DEM
works very well but requires an additional	VAZ	? An additional foldover component is present	involves swapping the position of nominally
clock signal	0••_•VN•, baseband	in the autozeroed output	identical elements within a circuit ? The
Slide 29 Effect of Autozeroing on Noise VC R	•fo_ld •, foldover	S ?f ? ? sinc2 ?? ? f ?T ? ? S	average error is significantly reduced? Gain of
VN	Sfold ?f??	? f ?	2 ? 2 identical resistors i.e. ??1 = ??2 ? DEM
When switch S is open:	??	n ? ? sinc2 ?? ? f	can be applied by using switches to swap the
VAZ	n??? n?0	?T ?	position of mismatched resistors in the circuit
VAZ	2 Hn ?f ? ? S ? ?	2 f T ?	•
? VN	n???Ts?		? Accuracy is limited by mismatch of switch
?VC	? The baseband transfer function imposes a	? 2 ? f	resistance
for: RC	zero at ???? = 0, which cancels out any DC	?T ?? ? S	? Accurate gain 2 amplifier with DEM ? Average
•TAZ	component present in ????(??) ? The transfer	fold	value of ??out ? 2??in ? ??out contains AC
? Each time the switch ?? is closed, the output	functions for ?? ? 0 are given by: ? sin?? ? f ?T	s?VN??T?	components which must be removed by a LPF
voltage ??AZ is reset to zero and the noise	??2	cs??k?	(like in chopping)? Chopping and DEM can be
source voltage ??N appears across resistor ??	H ?f ? ? ?d ?	s ? ?1? ln? 3	easily combined
	h? for	cs??0	? Mismatch is shifted to the harmonics of
and capacitor ?? ? Assuming ???? ? ??AZ at	n ? 0 and T •T	n??? ? s ? n?0	????DEM? To avoid unwanted intermodulation,
the end of the sampling phase (when switch ??			keep ????in ¡ ????DEM/2
opens) the noise voltage is sampled onto	n ? ? ? f ?Th ?	? ? ?? Reference: C.C. Enz and G.C. Temes, Proc.	? Pro •Gain (ratio) error can be reduced to ppm
capacitor ?? ? The output voltage ??AZ			levels ? Cons •Switches are required to swap
becomes equal to the difference between the	AZ h	IEEE, Nov. 1996	components extra circuit complexity, switching
instantaneous voltage ???? and the voltage	Sf? AZ	? Auto-Zeroing is a powerful offset and 1/f	transients •Result must be averaged BW
???? stored on ?? DC component of ???? is	H ?f ? 2 ? S	noise reduction technique for amplifiers and	reduction •Input signal must be band-limited
eliminated but HF is passed	?f ? ? Sfold	systems? Unlike chopping, it does not suffer	(????in ; ????DEM/2) to prevent
? If the source voltage ????(??) corresponds to	?f ?	from ripples, but its noise performance is	inter-modulation products
a stationary random noise with PSD	with:	worse due to aliasing? Main non-idealities are	
??????(????), the PSD of the autozero voltage	SV?	caused by switching spikes, leakage currents	? Precise gain can be achieved by feedback
???????(??) across the switch can be	?f ? ?	and (sometimes) by finite gain? Offsets of a	•discrete resistors: 0.01•on-chip: 0.1? Better
decomposed into two components: •One	S0	few microvolts can be reached	performance can be achieved by using DEM,
caused by the baseband noise (which is	1? ?f fc ?	? CDS is a special case of AZ frequently used	but like chopping, this is at the expense of BW
reduced by the autozeroing process) •And the	? In order to use the previous analysis, we	in SC circuits? SC circuits are sampled data	? If the signal is digitized, the 3-signal method
other one created by the foldover components	simply have to replace the voltage source ????	systems clock available • Phase 1: calibration	is also effective, but accuracy is limited by
introduced by aliasing:	by the noise at the output of the AZ amplifier	phase: ??1 = ??(??1) = ?? ? • Phase 2: operation	ADC resolution
S ?f ? ? H	? The baseband signal is autozeroed by ??0 2	phase: ??2 = ??(??2) = ?? ? (??2 ? ??1) = ?? ?	Chapter 5
?f ? 2 ? S	while the PSD of the autozeroed signal is	??in	Coherent Detection
?f ? ? S	dominated by the foldover component	? To maximize suppression of 1/f noise, the	Jens Anders Institute of Smart Sensors
?f ?	S?f?? sinc2??? f?T?? S	interval ??1 ? ??2 should be as short as	Department of Electrical Engineering and
VAZ	? f?	possible	Computer Science University of Stuttgart
*/ \L		possible	compater colonic oniversity or cluttyart

? Review: •Synonyms: coherent detection, synchronous demodulation, lock-in amplification, chopping . These are all modulation techniques that are used to improve the low frequency performance of measurement systems •When square-wave modulation is employed, the technique is referred to as chopping? Today we talk about coherent detection/lock-in amplification? This technique is very similar to chopping except that one uses a sine wave instead of a rectangular waveform for modulation ? When to use it? • When measuring low-bandwidth or quasi-static signals in the presence of high noise or disturbance levels •If a high dynamic range is required? Therefore it is often used to readout sensors such as: •(MEMS) Accelerometers (fF of capacitance change) •Optical (infrared) detectors (detecting fA·s of current change) • Magnetic sensors (detecting mV·s of voltage change) •Strain gauges (detecting mV•s of voltage change)? A coherent detector behaves like a band-pass filter ? Setup: ? ??oM = ??Amp ? ??mult? ??????? ? sin ? ????? sin ? ??oM = ??Amp ? ??mult ? ???????????????? ? 2 cos ? For ???? = ?????? (?????? is derived from ???? ? coherent signals): ??oM = ??Amp ???mult ? ??????????????? ? 2 1? cos ? ??oM = ??Amp ? ??mult ? ??????????????? ? 2 1?cos (???? = ?? ? LPF to remove the sum frequency: ??oF = ??LPF ? ??Amp ???mult 2 222222 2222 2 ? A coherent detector directly extracts the amplitude of the input signal ?????? if ??i and ??ref are in phase (Synchronous detection) ? What if they are not in-phase? ? ??oM = ??Amp ? ??mult ? ??????? ? sin ?????? ?? + ?? ? ?????? sin ??????

= ??Amp

??mult	???	sampling frequency must satisfy ????????	DNL	Switches change from GND to virtual GND?
??????? ???	I•?: reduced Planck constant ????:	?????? = 2 ? ??????	? ???? (mo noto nicit y)	Working principle:
2	gyromagnetic ratio	? Quantization: •Value discretization in steps	Note: no gain and offset error in this example!	•??left
cos	Parameters: Free electron	of one LSB •Infinite set of values ? finite set of	? Clock frequency/phase varies slightly •Clock	•??MSB
? cos [????	???? ???????	values •E.g., rounding	edges affected by jitter •Uncertainty of the	= 2?? ? ??left
+??????	? ????????.024 GHz/T	? Sample: S is closed, ??out = ??in ? Hold: S is	position of the clock edge ? Rough estimation:	= ? ??re?? 2???
		open, C holds ??out	, , , , , , , , , , , , , , , , , , , ,	= ? ??????????? 2???
]?? + ??	?????? = ???????? ??????? ?????? = ??????	•	•Sinusoidal signal:	
? ??oF	????T ? ??RF = ???? for ?????? = ????. ???? T	? IC1 with small Zout for fast charging of C?	•Maximum change rate:	???????????? •??MSB?1 = ? 2???
= ??LPF	Circulator operation: Non-reciprocal 3-port w/	IC2 with high Zin for slow discharge of C?	Maximum jitter for error below one LSB:	LSB MSB
? ??Amp	S-parameter matrix:	Switch: Transmission gate or single FET with	? 10-bit DAC with 10 MSamples/s requires 30	???????????? •?? = ? 2??? 2???1
? ??mult	? 0 0 1? S ? ? 1 0 0 ? ? 0 1 0 ?	small Ron	ps accurate clock edges!	I M S B AN-1 AN- 2 A0 Z l e f t
? ??????????? 2	Incident power at one port is transferred to the	? Aperture time: time required for the switch to	? Glitches occur when turn-off and turn-on	? From previous slide:
=0 LPF ? cos	next port	open ? Droop: discharge of capacitor ?	times are not precisely synchronized ? S2	Vout,i
? Phase sensitive coherent detector	? Sample absorption is a (resonant) function	Acquisition time: time to switch and charge	represents the MSB output signal ? S1	? ?di
? What would be the SNR of ? an oscilloscope	of the static ??????-field ? Resonator	the capacitor ? Switching transients: voltage	represents the (??? 1)? LSB output signal?	? Vref
(wideband, LPF) ? a coherent detector	containing the sample is critically coupled at	buffer ringing ? How to design C? •Large	Example: transition S1 = 0111 to S2 = 1000	?2R ? ? R 2i
(narrowband, BPF)	Larmor frequency (critically coupled resonator	enough for small droop, small enough for fast	? Resistor string DAC ? Binary weighted	? Vref
• ,	? no reflected power) ? Static ??????-field is	charging •Fast charging depends on ??on of	resistive voltage divider DAC ? Binary weighted	? di
? Some numbers: ? What would be the		the switch and ??out or ??out,max of IC1	, ,	
detection limit of the coherent detector if the	swept through the resonance field Resonant	·	current source DAC ? Thermometer weighted	?
white noise spectral density is 10nV/?Hz and	sample absorption changes cavity Q factor	•Sufficiently large for sufficiently small kT	DAC ? R-2R ladder DAC ? Pulse width	1
fLPF = 1Hz?	Reflected power at circulator output varies as	noise C	modulation	2 i
????????	function of ?????? CW -ESR spectrum is the	? Analog multiplexer use transmission gates	? Simple voltage divider	?1
?????V ?	reflected power vs. ??????	which are bi-directional: MUX , DEMUX	? Inherently monotonic	LSB MSB
= ???????? ????V	ESR •DC•spectrum Parameters: Free electron	? Functionality ? Static DAC errors •Gain ,	? Amount of resistors proportional to 2N •3 bit	AN-1 AN-2
ui?u•i	???? ???????	offset error •Differential non-linearity (DNL)	? 8 resistors •8 bit ? 256 resistors •Resistors	IMSB A0 Zleft
? cos ??r t	? ????????.024 GHz/T	 Integral non-linearity (INL) ? Dynamic DAC 	are large	? Summing amplifier with weighted inputs:
???	?????? = ???????? ??????? ?????? = ??????	errors • Jitter, Glitches ? Types of DACs	Slide 19 Binary Weighted Resistive Voltage	out
? Use a quadrature LO to obtain both the phase	????T ? ??RF = ???? for ?????? = ????. ???? T	? Convert transient digital input signal to a	Divider DAC (1/2) ? Inverting summing	C in1 C
and the amplitude information	? ESR signal inherits the absorption shape	transient analog output signal ? Output voltage	amplifier configuration	in2
•	, ,	variation upon the variation of 1 LSB at the	? Each bit ???? produces an output voltage	
? Linear operation of an analog multiplier	(associated w/ sample loss) ? Resonance	input ??LSB ? Maximum (full scale) input		ff
circuit, working over a large range of input	condition: ??RF = ??L = ??????????		according to	? Transfer function from bit ???? to the output
signals is difficult to realize. ? A much simpler	? When sweeping ??	voltage ??FS	? Combined output:	voltage:
realization is a switching detector aka a	????	VLSB	? Impractical for large N: •Area ?? ?? W?? ?	cf. slide 19!
chopper ? Chopper realization in CMOS:	, the peak occurs at ??	? Vref 2N	???? ? 2??+1 •Resistors need to be very	? Combined output voltage:
 Easy: just 4 Transistors •Accurate: no offset 	????	VFS	precise, RMSB must have the highest precision	? For N bit ? (2N - 1) + 2N unit capacitors ??unit
introduced •But: switching spikes can cause	= ???RF ????	? Vref	? Current mirror realization of the current	= ??0/2?? •4 bit ? 15 + 16 = 31 unit capacitors
problems (residual offset)	ESR signal generation in the presence of field	2N ? 1 2N	sources:	??0/16 ? Impractical for large N: •Area ?? ?? 2 ?
? An ideal coherent detector is only sensitive	modulation	? Gain error: Offset error:	? Few number of resistors / current sources	A??unit ? 2?? with ????unit being the area of a
to frequency components in a narrow band	Resulting ESR signal for small modulation	? Gain and offset errors do not affect linearity!	and switches? Large ratios of resistors,	unit capacitor •Capacitors need to be very
around a reference signal ??ref ? The LPF	fields	? If needed, they are easy to compensate •e.g.,	currents and switches (2N) •Monotonicity not	precise, CMSB must have the highest precision
determines the signal bandwidth		by pre-processing: scaling, shifting	guaranteed •5bit: 1uA, 2uA 4uA, 8uA, 16uA	MSB-Group
A practical example •ESR DETECTION	? The •DC•ESR spectrum is relatively noisy due	? Differential nonlinearity (DNL) is a measure	•15uA ? 16uA means switch 4 sources off and 1	? Example: 8 bit ? 15 + 1 + 15 + 16 = 47 unit
A plactical example LSR DETECTION Analyzing the structure and dynamics of	to low frequency disturbances (e.g. 1/f noise	of (non-) uniformity? The vector DNL(k)	source on •Assume statistical variations of	•
•biomolecules•Source: SREP	and drift)? The signal is modulated to an IF by	quantifies for each code k the deviation of the	10•1u+2u+4u+8u ; 16u is not guaranteed	capacitors
	modulating the ??????-field ? In this way, a	•	. 3	? Phase 1: reset
(http://sites.univ-provence.fr/srep/index.html)	lock-in amplifier can be used to extract the	step size from the ideal (or average, in case of	·Linearity ·Accuracy ·Matching ? Prone to	Right hand side for 10000000:
Food industry: Quality control	signal	gain error) step size of 1 LSB	glitches •Large portions of the output are	Right hand side in general:
Biomedical Imaging •Sensor Fusion	Chapter 6 Integrated Interface Circuits •DACs	k DNL(k) 000 N/D 001 -0.4 010 0.2 011 0.9 100	switched on/off	? MSB group all caps shorted between gnd and
Source: S. Liu et al., Applications of in vivo	Jens Anders Institute of Smart Sensors	-0.7 101 0.9 110 -0.2 111 -0.7	? Current steering DAC:	virtual gnd do not matter (i.e. do not store any
EPR in brain research: Monitoring tissue	Department of Electrical Engineering and	Note: no gain and offset error in this example!	? Reduced glitches	charge) ? From node ??2 to the output the
oxygenation, blood flow, and oxidative stress	Computer Science University of Stuttgart	? What if DNL(??) is smaller than ?1?	? Inherently monotonic	circuit is a simple SC voltage amplifier
In-vivo ESR Dosimetry	? Recap: digitization •Time discretization	•The output value ?? is smaller than the	? 2N current sources	with a gain of
Source: EPR Center Dartmouth College	(sampling) •Value discretization (quantization)	previous sample ??(?? ? 1)	? Binary to thermometer decoder needed:	??out ??A2
? What is •spin•? ? A property of some	? Digital-to-analog conversion ?	•Characteristic is non-monotonic! ? Critical for	? Reduced area: ?? ?? W?? ? ????(3 ? ?? + 2) ?	?????0 = ? 16 ??0
particles like mass and charge	Analog-to-digital conversion	feedback structures since non-monotonicity	The current ?? in every branch is given by:	= ? 116
? What do we need to know to detect them?	Integrated Interface Circuits • Chapter 6: DACs	turns negative into positive feedback? Occurs	? Looking from node ?????? to the left or right	? Question? What is the voltage at node ??2?
? A spin	•	most often when switching the MSB	one sees a resistance of 2?? The current	Slide 34 Realization with less Capacitors •LSB
????	? Sampling is the conversion of a			•
	time-continuous signal into a value equivalent,	? Integral nonlinearity INL(k) is the deviation	flowing through each resistor splits half half	Group (2/4)
always comes along with an angular	time-discrete signal ? Prerequisite: Nyquist	from the output value V(k) from the ideal	? The current in the branch corresponding to	V ? ? Vref V V 2 ? Vref 1
momentum	sampling theorem: To be able to perfectly	output value Videal(k)	bit ???? times split half half	2 A 2
???	reconstruct a band limited signal ????max =	? If	is ???? + 1	out ? ? ? 4
and a magnetic	?????? from an equidistantly sampled version	????NL	? R-2R ladder DAC: switches change from GND	Slide 35 Realization with less Capacitors •LSB
dipole moment	(sampling frequency ?????? = 1/????) of it, the	? ????. ???? then	to -Vref ? Solution: inverse R-2R network	Group (3/4)

V?? V??1V A2 C 4 ? 3C 4 ref 4 ref 0 0 V V 2 Vref 1 out ????16424 Left hand side in general: ? Pulse width modulated bitstream ? Pulse width corresponds to the desired analog output voltage? RC low pass filter averages the PWM signal ? Combination of various architectures •optimize speed, linearity, •glitches, matching ? Commonly used for high performance DACs ? Course DAC (MSBs) •feeds•fine DAC (LSBs) ? Each source supposed to have Iref •Assume particular source has only 90? Calibration Phase •VGS1 settles so that Q1 draws 10? Operation Phase •Q1 still calibrates so that Id1

= Iref