заказов

Условие задачи

Имеется n заказов. Все **заказы идентичны** и занимают одинаковое пространство. Известно что i-й заказ прибудет в пункт сортировки ровно в момент времени arrival[i]. Все arrival[i]**различны**. Также есть m грузовых машин. У каждой машины j есть время начала погрузки товаров start[j], время выезда с порта погрузки end[j] и количество вмещаемых заказов capacity[j].

Определите для каждого заказа i, в какую грузовую машину он попадёт.

Заказ попадает в машину, которая находится в пункте сортировки в момент прибытия заказа.

Если в один и тот же момент времени в пункте сортировки находится несколько машин, то заказ попадает в ту машину которая приехала раньше: start[j] минимальный. Если же минимальный start совпадает у нескольких машин то выбирается та, у которой индекс j минимальный.

При этом в машине не может быть больше, чем capacity[j] заказов. Следовательно, если машина загружена — заказ попадает в следующую машину, удовлетворяющую условиям выше.

Входные данные

Каждый тест состоит из нескольких наборов входных данных.

Первая строка содержит целое число t (1 $\leq t \leq$ 10³) — количество наборов входных данных.

Далее следует описание наборов входных данных.

Первая строка содержит целое число n (1 $\leq n \leq 5 \cdot 10^5$) — количество заказов.

Вторая строка каждого набора входных данных содержит n целых чисел arrivali(1 ≤ $arrival_i$ ≤ 10⁹), разделенных пробелом — массив arrival.

Третья строка содержит целое число m (1 $\leq m \leq 5 \cdot 10^5$) — количество грузовых машин.

Далее следует m строк, каждая из которых содержит три целых числа start[j], end[j], capacity[j] (1 $\leq start[j] \leq end[j] \leq 1e9$, 1 $\leq capacity[j] \leq n$) — время погрузки товаров, время выезда с порта погрузки и количество вмещаемых заказов для j (1 \leq j \leq m) машины.

Гарантируется, что сумма значений n и m по всем наборам входных данных не превышает $5 \cdot 10^5$.

Группа	Ограничения			Баллы
	t	n	m	Daniidi
1	$t \leqslant 100$	$\sum n \leqslant 5 \cdot 10^3$	$\sum m \leqslant 5 \cdot 10^3$	15
2	$t \leqslant 10^3$	$\sum n \leqslant 5 \cdot 10^5$	$\sum m \leqslant 5 \cdot 10^5$	35

Выходные данные

Для каждого набора входных данных выведите одну строку.

Строка должна содержать ответ на задачу — для каждого заказа i это номер машины, которая будет перевозить заказ.

Выведите -1, если:

- · время прибытия заказа в пункт сортировки не попадает ни в один из временных интервалов, когда идёт загрузка в машины;
- · во время доставки заказа в пункт сортировки все машины полностью загружены.

Пример теста 1

Входные данные

```
3
5
1 9 2 6 4
3
1 8 3
3 10 1
4 7 4
5
1 9 2 6 4
3
1 8 3
3 10 2
4 7 4
8
100 37 19 2 46 4 15 88
4
27 80 1
1 46 2
41 83 1
1 75 2
```

Выходные данные

