

Communication Theory (5ETB0) Module 7.1

Alex Alvarado
a.alvarado@tue.nl

Information and Communication Theory Lab Signal Processing Systems Group Department of Electrical Engineering Eindhoven University of Technology, The Netherlands

www.tue.nl/ictlab/

Module 7.1

Presentation Outline

Part I Rotation and Translation of Signals

Part II Binary Orthogonal Signaling

Part III Binary Antipodal Signaling

Rotation of Signal Structures

Energy and Average Energy

$$E_{s_m} = \int_0^T s_m^2(t) dt = \|\underline{s}_m\|^2, \qquad E_{\text{av}} \stackrel{\Delta}{=} \sum_{m \in \mathcal{M}} \Pr\{M = m\} E_{s_m} = E[\|\underline{S}\|^2]$$

Error Probability and Energy of Rotated Signals

- lacksquare $\mathcal{S} = \{\underline{s}_1, \underline{s}_2, \dots, \underline{s}_{|\mathcal{M}|}\}$ is rotated
- $I_1, I_2, \cdots, I_{|\mathcal{M}|}$ rotated same way
- AWGN vector is spherically symmetric
- P_e will not change
- Av. signal energy will not change

Rotation of Signal Structures: Matlab Example

Translating a Signal Structure

Minimizing the average signal energy

To minimize the average signal energy we should choose the **center of gravity** of the signal structure as the origin of the coordinate system. If the center of gravity of the signal structure $\underline{a} \neq \underline{0}$ we can decrease the average signal energy by $\|a\|^2$ by moving the origin of the coordinate system to a.

Translating a Signal Structure

Module 7.1

Presentation Outline

Part I Rotation and Translation of Signals

Part II Binary Orthogonal Signaling

Part III Binary Antipodal Signaling

Binary Orthogonal Signaling

Orthogonal Waveforms (FSK)

Let $|\mathcal{M}| = \{1, 2\}$ and $\Pr\{M = 1\} = \Pr\{M = 2\} = 1/2$. Consider two orthogonal waveforms:

$$s_1(t) = \sqrt{2E_s} \sin(10\pi t), 0 \le t < 1$$

$$s_2(t) = \sqrt{2E_s} \sin(12\pi t), 0 \le t < 1$$

Vector representation of signals:

$$\underline{s}_1 = (\sqrt{E_s}, 0), \ \underline{s}_2 = (0, \sqrt{E_s})$$

Module 7.1

Presentation Outline

Part I Rotation and Translation of Signals

Part II Binary Orthogonal Signaling

Part III Binary Antipodal Signaling

Binary Antipodal Signaling

Antipodal Waveforms (PSK)

Let $|\mathcal{M}| = \{1, 2\}$ and $\Pr\{M = 1\} = \Pr\{M = 2\} = 1/2$. Consider two antipodal waveforms:

$$s_1(t) = \sqrt{2E_s} \sin(10\pi t), 0 \le t < 1$$

$$s_2(t) = -\sqrt{2E_s} \sin(10\pi t), 0 \le t < 1$$

Vector representation of signals:

$$\underline{s}_1=(\sqrt{E_s},0),\ \underline{s}_2=(-\sqrt{E_s},0)$$

Comparison of Orthogonal and Antipodal Signaling

AGN Vector Channel

For the AGN vector channel, the probability that the noise pushes a signal to the wrong side of a hyperplane

$$P_{\mathcal{I}} = Q\left(\frac{\Delta}{\sigma}\right),\,$$

where Δ is the distance from the signal-point to the hyperplane and σ^2 is the variance of each noise component.

Error Probability Comparison

With $E_{av}=E_s$ and power spectral density $N_0/2$, the error probabilities are:

$$P_{\rm e}^{orth.} = Q\left(\sqrt{E_s/N_0}\right), \quad P_{\rm e}^{antip.} = Q\left(\sqrt{2E_s/N_0}\right). \label{eq:porth_porth}$$

Comparison of Orthogonal and Antipodal Signaling: Example

Receivers for Antipodal Signaling

■ Direct Receiver

Correlation Receiver

■ Match-filter Receiver

Summary Module 7.1

Take Home Messages

- Rotations do not change the error probability
- Translations save you energy
- Two binary signaling schemes: orthogonal and antipodal.
- Analysis based on building-block waveforms and geometric interpretation of signals

Communication Theory (5ETB0) Module 7.1

Alex Alvarado
a.alvarado@tue.nl

Information and Communication Theory Lab Signal Processing Systems Group Department of Electrical Engineering Eindhoven University of Technology, The Netherlands

www.tue.nl/ictlab/