1 Statements

Let \mathcal{L} denote the class of type L random variables.

1.1 Closure Conditions

Theorem 1 (Closed Under Scaling). Let $\lambda \in \mathbb{R}, X \in \mathcal{L}$. Then $\lambda X \in \mathcal{L}$

Theorem 2 (Closed Under Translation). Let $\lambda \in \mathbb{R}, X \in \mathcal{L}$. Then $X + \lambda \in \mathcal{L}$

Theorem 3 (Closed Under Sum). Let $X, Y \in \mathcal{L}$ independent. Then $X + Y \in \mathcal{L}$.

Theorem 4 (Bernoulli Sums). Let δ_{λ} , $n \in \mathbb{Z}$ be bernoulli with parameter 1/2 taking values on 0 and n. Then $\sum \delta_{n_k} \in \mathcal{L}$ for $k \in \mathbb{N}$. Notice this corresponds to the product $\prod (1 + x^{n_k})$

Theorem 5 (Integer Symmetrization). Let $X \in \mathcal{L}$ with X > 0 integer valued. Then $\epsilon X \in \mathcal{L}$ where ϵ random sign.

Theorem 6 (Arithmetic Symmetrization). Let $X \in \mathcal{L}$ with X > 0 a uniform arithmetic progression. Then $\epsilon X \in \mathcal{L}$ where ϵ random sign.

Theorem 7 (General Symetrization). Let $X \in \mathcal{L}$. Suppose the powerseries representing $\psi_X(z) = \mathbb{E}e^{zX}$ is entire with strictly real coefficients in power series form. Then $\epsilon X \in \mathcal{L}$.

Theorem 8 (Weak Convergence). See Newman 2019 paper

1.2 Polya's Examples

Theorem 9 (Decreasing Concave Density(173)). Let X be a symmetric continuous random variable distributed on [0,1] density f s.t. f', f'' < 0. Then $X \in \mathcal{L}$.

Theorem 10 (L1 Bounded Derivative(175)). Let X be a symmetric continuous random variable distributed on [0,1] with density f s.t. $|f(1)| \ge \int_0^1 |f'(t)| dt$. Then $X \in \mathcal{L}$. Note in particular this works for the case f is increasing.

Theorem 11 (Exponential Density(170)). Let α be even integer greater than 2. Then if X a symmetric continuous random variable with density of the form $e^{-t^{\alpha}}$ then $X \in \mathcal{L}$

Theorem 12 (Exponential Product Density(161)). Let $1 > \alpha \geq 0, 0 < \alpha_1 \leq \alpha_2 \leq ...$ and reciprocal convergent. Then if $g(z) = e^{-\alpha z} (1 - \frac{z}{\alpha_1}) (1 - \frac{z}{\alpha_2})...$ we have for symmetric X with density $e^{-t^2} g(-t^2)$ then $X \in \mathcal{L}$.

Theorem 13 (Bessel Function(159)). The symmetric continuous random variable X with density $\frac{2}{\pi\sqrt{1-t^2}}$ in \mathcal{L} .

Theorem 14 (Large nth Coefficient(27)). Suppose X a discrete integer valued symmetric distribution. If $p_0 + 2p_1 + ... + 2p_{n-1} < 2p_n$ then $X \in \mathcal{L}$.

1.3 Newman's Examples

Theorem 15 (Arithmetic Sequences). Let the sequence X above be an arbitrary arithmetic progression, ie. of the form $x_1 = d$, $x_2 = d + c$,..., $x_L = d + (L-1)c$ for arbitrary $d \in \mathbb{R}$, c > 0. Then $S_X(z)$ has zeroes only on the imaginary axis.

Theorem 16 (Uniform(Newman 7)). Let X be random variable with density $\frac{d\mu}{dy} = 1$ if $|y| \le A$ and 0 otherwise. A > 0. Then $X \in \mathcal{L}$.

Theorem 17 (Newman (8)). Density $(1-y^2)^{(d-2)/2}$ with $|y| \le 1$ and 0 otherwise. For d > 0.

Theorem 18 (Newman (9)). Density $e^{-\lambda cosh(y)}$, $\lambda > 0$

Theorem 19 (Newman (10)). $e^{-ay^4-by^2}$ with a > 0

1.4 Other Examples

Theorem 20 (Enestrom-Kakeya). If X integer valued symmetric with $0 \le p_0 \le 2p_1 \le ... \le 2p_n$ with $p_n > 0$ then $X \in \mathcal{L}$.

Theorem 21 (Absolute Value). Let $a_0, a_1, ..., a_n \in \mathbb{R}$ with $|a_0| + .. |a_{n-1}| \le |a_n|$ then the trig polys $p_c(z) = \sum_{k=0}^n a_k cos(kz)$ and the sin one have only real zeroes

Theorem 22 (Shifted Symmetry). Let $X \in \mathcal{L}$. Then $\exists \lambda \in \mathbb{R}$ s.t. $X - \lambda$ is symmetric.

Theorem 23 (Renyi). Renyi paper

Theorem 24. 4.6 from Thesis

1.5 Nonexamples

- The geometric sequence $(q^i)_{i=1}^L$ does not have strictly imaginary zeroes
- Binomial coefficient sequences(the first half) do not have strictly imaginary zeroes

In particular not all log-concave sequences are type L.

2 Proofs

Proof of Theorem ??. Do after Newman and Polya. \square Proof of Theorem ??. Suppose $X \in \mathcal{L}$. Then $\mathbb{E}e^{z\lambda X} = 0 \implies \lambda z \in i\mathbb{R} \implies z \in i\mathbb{R}$. \square

Proof of Theorem ??. Suppose $X \in \mathcal{L}$. Then $0 = \mathbb{E}e^{z(X+c)} = e^{cz}\mathbb{E}e^{zX} \iff 0 = \mathbb{E}e^{zX}$. \square

Proof of Theorem ??. See Newman's [?].

Proof of Theorem ??. This is a sum of type L random variables.

Proof of Theorem ??. Let $X \in \mathcal{L}$ with X > 0. Then $\psi_X(iz) = \mathbb{E}e^{iz\epsilon X} = \sum_{k=1}^n \frac{1}{2}p_k(e^{ix_kz} + e^{-ix_kz}) = \sum_{k=1}^n p_k cos(x_kz)$. Theorem 2.18 from [?] tells us if $P_c(z) = p_1 z^{x_1} + \ldots + p_n z^{x_n}$ has zeroes only on the unit circle, then $\psi_X(iz)$ as only real zeroes, ie. $\psi_X(z)$ has only imaginary zeroes. But with a change of variables P_c is exactly $\mathbb{E}e^{zX}$ which has strictly imaginary zeroes, implying P_c has zeroes strictly on the unit circle.

Proof of Theorem ??. Write

$$S_X(z) = \sum_{n=1}^L e^{(x_n z)} = 0 \iff e^{x_1 z} (\sum_{n=1}^L e^{(x_n - 1x_1)z}) = 0 \iff \sum_{n=1}^L e^{(x_n - x_1)z} = 0$$

since e^{x_1z} has no zeroes. So wlog we may assume $x_1 = 0$, since the translation still results in an arithmetic sequence. Then we sum

$$\sum_{n=1}^{L} e^{x_1 z} = \sum_{n=1}^{L} e^{(n-1)cz} = \sum_{n=0}^{L-1} (e^{cz})^n = \frac{e^{Lcz} - 1}{e^{cz} - 1}$$

So

$$S_X(z) = 0 \implies \frac{e^{Lcz} - 1}{e^{cz} - 1} = 0 \implies e^{Lcz} = 1 \implies z = ib$$

for some $b \in \mathbb{R}$. In fact we must have $Lcz = 2\pi n \implies z = \frac{2\pi n}{Lc}$ for some $n \in \mathbb{Z}$

Proof of Theorem ??. Alternatively $\mathbb{E}e^{z\epsilon X} = \mathbb{E}e^{z\epsilon(X-c)}e^{z\epsilon c} = \frac{1}{2}e^{zc}\mathbb{E}e^{z(X-c)} + \frac{1}{2}e^{-zc}\mathbb{E}e^{-z(X-c)} = \frac{1}{2}\mathbb{E}e^{z(X-c)}(e^{zc} + e^{-zc})$ where we use symmetry. Note the last term only has roots on the imaginary axis.

Proof of Theorem ??. Wlog suppose A = 1. Then f' = 0 on [-1,1] and hence by ?? type I.

Proof of Theorem $\ref{eq:proof}$. Follows from a generalization of Iliya.

Proof of Theorem ??.

Proof of Theorem ??. Suppose X symmetric, integer valued with probability distribution $0 \le p_0 \le 2p_1 \le ... \le 2p_n$. Then $\psi_X(iz) = p_0 + \sum 2p_k cos(kz)$. The Enestrom-Kakaya Theorem(2.17 from [?]) tells us all the zeroes of the polynomial $p_0 + 2p_1x + ... + 2p_nx^n$ has all zeroes in the closed unit disk. So then ψ_X has all zeroes on the imaginary axis via the argument from ??.

Proof of Theorem ??. See Lemma 4.2 in Thesis

References

- [1] Markovsky. I, Shodhan. R, Palindromic Polynomials, Time-Reversible Systems, and Conserved Quantities. https://eprints.soton.ac.uk/266592/1/Med08.pdf
- [2] Keel. L, Bhattarcharyya. S, A New Proof of the Jury Test. https://ieeexplore.ieee.org/document/703305
- [3] Newman, An Extension of Khintchines Inequality.
- [4] Polya G. Szego G. Problems and Theorems in Analysis.
- [5] Hallum P. Zeroes of Entire Functions Represented By Fourier Transforms
- [6] Newman C. Wu W. Lee Yang Property and Gaussian Multiplicative Chaos
- [7] Dimitrov D. Rusev P. Zeroes of Entire Fourier Transforms