Revised: 22/6/2016

INTI INTERNATIONAL UNIVERSITY COURSE STRUCTURE

PROGRAMME: DIPLOMA IN INFORMATION COMMUNICATION TECHNOLOGY

1.	NAME OF COURSE/MODULE : COMPUTER ORGANIZATION								
2.	COURSE CODE: ICT2101								
3.	RATIONALE FOR THE INCLUSION OF THE COURSE/MODULE IN THE PROGRAMME: Students need to be exposed to the fundamentals of computer systems organisation and architecture as well as components design. Students are also expected to be able to design a simple processor, instruction set and addressing, control structures, memory management as well as interrupts and I/O structures.								
4.	STUDENT LEARNING T	·	Total Face to Face Total Student Independent Learning Time						
			L	T	P	0	A	OL	IL
	L = Lecture T = Tutorial P = Practical O= Others A= Assessment OL=Online learning IL= Independent learning		28	0	28	0	3	14	87
5.	CREDIT VALUE: 4								
6.	PREREQUISITE (if any): ICT1103 : Structured Programming								
7.	 LEARNING OUTCOMES: On completion of the course, students will be able to: Describe the architecture of N-bit microprocessor and the corresponding memory and I/O subsystem. Write and assemble assembly language programs and run them to the target microprocessor. Explain the memory organisation, I/O organisation, CISC vs RISC architecture of a computer system. 								
8. 9.	SYNOPSIS: This course covers the structure of computer system with concentration in the architecture of microprocessor, memory sub-system, I/O sub-system, and Assembly language. It assumes some programming experience and equips students with knowledge of computer structure, operation and input/output facilities. MODE OF DELIVERY: Lectures, Laboratory, Tutorials.								
	Lecture, group discussion and tutorials are conducted both face to face and online.								
10.	ASSESSMENT METHODS AND TYPES:								
	Method		rpes Weighta		ghtage (%	(o)			
	Continuous assessment	Test				20			
		Assignment				40			
	Summative Assessment Final Examination					40			

11. CONTENT OUTLINE OF THE COURSE/MODULE AND THE SLT PER TOPIC:

Sessions	Topics	LO	L	T	P	OL		Total	
Sessions	<u> </u>	20			_	O.E.	0	A	IL
1-2	Introduction to Computer Technology General definition of a computer system. Technological basis for such computers. The history of digital computer system.	1	2	0	2	1			
3-4	Number System and Data Representation Introduction to number systems: Binary, Octave, Hexadecimal, and Decimal. Data representation in computer: signed & unsigned numbers, real numbers, BCD (Binary Coded Decimal), and ASCII code.	1	2	0	2	1			
5-6	N-bit microprocessors. Concept of stored program computer. Brief history of N-bit microprocessor development. Architecture of an actual microprocessor (8086). System buses. Fetch and execute cycle. Register Sets.	2	2	0	2	1			
7-8	8086 Programming Model The concept of segmented memory. Addressing Modes. Instruction set architecture (ISA).	2	2	0	2	1			
9-16	8086 Instruction Set and Assembly Language Programming Various type of instructions including data transfer instructions, arithmetic instructions, logical instructions, branch instructions, PUSH & POP instructions, and flags control instructions. Assembly language programming in Turbo Assembler environment. DOS and BIOS services for I/O control. Procedures call.	4	8	0	8	4			
17-20	Memory Organisation Memory hierarchy. Cache memory. Memory management in real mode and protected mode. Segmented memory and memory paging. Virtual Memory.	3	4	0	4	2			
21-24	I/O Organisation I/O address mapping. I/O programming. CPU – I/O interaction: polling, interrupt-driven, DMA.	3	4	0	4	2			
	CISC vs RISC architecture. 32-bit and 64-bit microprocessor. Architectures that helps to improve CPU performance: pipelining, superscalar,	3	4	0	4	2			
25-28	branch prediction, hyperthreading. Final Examination								

 $Lecture\ (L),\ Tutorial\ (T),\ Practical\ (P),\ Other\ (O),\ Assessment\ (A),\ Online\ Learning\ (OL);\ Independent\ Learning\ (IL);\ Learning\ Outcome\ (LO)$

12. MAIN REFERENCE(S) SUPPORTING COURSE:

 Patterson D.A., Hennessy J.L. (2011), Computer Organization and Design, Fourth Edition: The Hardware/Software Interface, Elsevier Science, ISBN: 0123747503, ISBN-13: 978-0123747501

ADDITIONAL REFERENCES:

- Irive K.R. (2014), Assembly Language for x86 Processors, 7th Edition, Prentice Hall. ISBN: 978-0133769401
- Stallings W., (2012), Computer Organization and Architecture Designing for Performance, 9th edition, Prentice Hall, New Jersey. **ISBN-10:** 013293633X, **ISBN-13:** 978-0132936330

13. **OTHER ADDITIONAL INFORMATION (if any):**

Final Examination Format

Duration: 2 hours

Section A: Answer TWO compulsory questions. Section B: Answer any TWO out of THREE questions.

All questions carry equal marks

Grading scale

A+ (90-100), A (80-89), A- (75-79), B+ (70-74), B (65-69), B- (60-64), C+ (55-59), C (50-54), C- (45-49), D (40-44), F (0-39).

Resit Pass (50-100), Resit Fail (0-49).

Laboratory Work Specifications (if any)

	,
Week	Practical Work
1-2	DOS Debug and low level instructions.
3-4	Analysis of internal microprocessor's registers and addressing modes.
5-8	Advanced usage of MOV in MASM
9-10	Write assembly language programs using access to register and stack
11-12	Write assembly language programs using branching instructions
13-14	Write assembly language programs using subroutines

Important Note:

A student who obtains a grade C- (45 -49 marks) in a 100% coursework module is required to resubmit the coursework component determined by the lecturer and ascertained at the Exam Board. Resubmission marks will be capped at a maximum of 50 marks or a grade C.

A passing mark can only be achieved when the student attempts both the coursework and final exams.