"본 강의 동영상 및 자료는 대한민국 저작권법을 준수합니다. 본 강의 동영상 및 자료는 상명대학교 재학생들의 수업목적으로 제작·배포되는 것이므로, 수업목적으로 내려받은 강의 동영상 및 자료는 수업목적 이외에 다른 용도로 사용할 수 없으며, 다른 장소 및 타인에게 복제, 전송하여 공유할 수 없습니다. 이를 위반해서 발생하는 모든 법적 책임은 행위 주체인 본인에게 있습니다."

5. Greedy algoritm

5.0 Basics

5.1 Minimum spanning trees

5.2 Knapsack problem

- 5.3 Job sequencing with deadline
- 5.4 Optimal merge patterns
- 5.5 Huffman encoding

• Problem:

- We are given n objects and a knapsack.
- Object i has a weight w_i and a profit p_i,
 and the knapsack has a capacity M.
- If a fraction x_i , $0 \le x_i \le 1$, of object i is placed into the knapsack, then the profit of p_i x_i is earned.

• Problem:

-The objective is to obtain a filling of the knapsack that maximizes the total profit earned.

Maximize
$$\sum_{1 \le i \le n} p_i x_i$$
 subject to $\sum_{1 \le i \le n} w_i x_i \le M$

- The solution is a set $(x_1, x_2, ..., x_n)$

Example

- -n = 3, M = 20, $(p_1, p_2, p_3) = (25, 24, 15)$, $(w_1, w_2, w_3) = (18, 15, 10)$.
- What is the solution (x_1, x_2, x_3) ?

- Solution strategy
 - At each step, we include that object which has the maximum profit per unit of capacity.
 - In the order of the ratio p_i / w_i.

Knapsack algorithm

다음 설명 중 옳은 것을 모두 고르시오.

- (a) Knapsack problem의 시간 복잡도는 O(n log n)이다 (n: 물체의 수).
- (b) Knapsack problem의 공간 복잡도는 O(n)이다.
- (c) Greedy algorithm은 Knapsack problem에서 어떤 경우에도 가장 많은 이익을 얻을 수 있도록 한다.
- (d) 물체를 나눌 수 없는 경우에도 $(x_i = 0 \text{ or } 1$ 만 가능) greedy algorithm은 Knapsack problem의 최대 이익을 보장한다.