Plant Pathology 2021 – FGVC8

DATA MINING PROJECT

Team **SOGANG_MLLAB**

120210211 이지환 120210181 HAMZA BASHIR 120210182 HAMSA PRIYA P

목차

- 1. 주제 및 데이터셋 소개
 - 2. 모델 설명
 - 3. 실험
 - 4. 결론

1. Plant Pathology 2021 – FGVC8

- Plant Pathology 2021 FGVC8 (Fine-Grained Visual Categorization) Identify the category of foliar diseases in apple trees.
- This competition is part of the Fine-Grained Visual Categorization FGVC8 workshop at the Computer Vision and Pattern Recognition Conference CVPR 2021.
- Can you help detect farmers detect apple diseases?
- This competition builds on last year's by challenging you to handle additional diseases and to provide more detailed information about leaves that have multiple infections.

1. Dataset

[그림 1] Label Distribution

[그림 2] Multi-Label Classification

1. Dataset

Binary Labels indicating plant's health condition (Label Formatting using *MultiLabelBinarizer* instance)

	complex	frog_eye_leaf_spot	powdery_mildew	rust	scab	healthy
image						
800113bb65efe69e.jpg	0	0	0	0	0	1
8002cb321f8bfcdf.jpg	1	1	0	0	1	0
80070f7fb5e2ccaa.jpg	0	0	0	0	1	0
80077517781fb94f.jpg	0	0	0	0	1	0
800cbf0ff87721f8.jpg	1	0	0	0	0	0

One-Hot Encoding

1. Data Preprocessing

Removed duplicates

Images resized 600x600

One-hot Encoding

Making k-fold tf records

1. Data Augmentation

다양한 Augmentation 기법들 사용

2. EfficientNet (ICML 2019)

[그림 4] Scaling Network Width for Different Baseline Network

width, depth, resolution 3가지 방식을 모두 고려한 모델

Mingxing Tan, Quoc V. Le. "EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks." arXiv preprint arXiv:1905.11946 (2019).

2. EfficientNet (ICML 2019)

depth:
$$d=\alpha^{\phi}$$
 width: $w=\beta^{\phi}$ resolution: $r=\gamma^{\phi}$ s.t. $\alpha\cdot\beta^2\cdot\gamma^2\approx 2$ $\alpha\geq 1, \beta\geq 1, \gamma\geq 1$ [그림 5] Compound Scaling Notation

- grid search를 통해 α , β , γ 가 균형을 이루는 적절한 값 찾기
- Scaling factor 고정 후 φ 값 키우기 (B0 to B7)

[그림 6] Class Activation Map Experiments

- 3가지 Scaling Factor를 동시에 고려 → 더 정교한 CAM

2. EfficientNet (ICML 2019)

Model	Top-1 Acc.	Top-5 Acc.	#Params	Ratio-to-EfficientNet	#FLOPS	Ratio-to-EfficientNet	
EfficientNet-B0	76.3%	93.2%	5.3M	1x	0.39B	OB 1x	
ResNet-50 (He et al., 2016)	76.0%	93.0%	26M	4.9x	4.1B	11x	
DenseNet-169 (Huang et al., 2017)	76.2%	93.2%	14M	2.6x	3.5B	8.9x	
EfficientNet-B1	78.8%	94.4%	7.8M	1x	0.70B	1x	
ResNet-152 (He et al., 2016)	77.8%	93.8%	60M	7.6x	11B	16x	
DenseNet-264 (Huang et al., 2017)	77.9%	93.9%	34M	4.3x	6.0B	8.6x	
Inception-v3 (Szegedy et al., 2016)	78.8%	94.4%	24M	3.0x	5.7B	8.1x	
Xception (Chollet, 2017)	79.0%	94.5%	23M	3.0x	8.4B	12x	
EfficientNet-B2	79.8%	94.9%	9.2M	1x	1.0B	1x	
Inception-v4 (Szegedy et al., 2017)	80.0%	95.0%	48M	5.2x	13B	13x	
Inception-resnet-v2 (Szegedy et al., 2017)	80.1%	95.1%	56M	6.1x	13B	13x	
EfficientNet-B3	81.1%	95.5%	12M	1x	1.8B	1x	
ResNeXt-101 (Xie et al., 2017)	80.9%	95.6%	84M	7.0x	32B	18x	
PolyNet (Zhang et al., 2017)	81.3%	95.8%	92M	7.7x	35B	19x	
EfficientNet-B4	82.6%	96.3%	19M	1x	4.2B	1x	
SENet (Hu et al., 2018)	82.7%	96.2%	146M	7.7x	42B	10x	
NASNet-A (Zoph et al., 2018)	82.7%	96.2%	89M	4.7x	24B	5.7x	
AmoebaNet-A (Real et al., 2019)	82.8%	96.1%	87M	4.6x	23B	5.5x	
PNASNet (Liu et al., 2018)	82.9%	96.2%	86M	4.5x	23B	6.0x	
EfficientNet-B5	83.3%	96.7%	30M	1x	9.9B	1x	
AmoebaNet-C (Cubuk et al., 2019)	83.5%	96.5%	155M	5.2x	41B	4.1x	
EfficientNet-B6	84.0%	96.9%	43M	1x	19B	1x	
EfficientNet-B7	84.4%	97.1%	66M	1x	37B	1x	
GPipe (Huang et al., 2018)	84.3%	97.0%	557M	8.4x	-	-	

We omit ensemble and multi-crop models (Hu et al., 2018), or models pretrained on 3.5B Instagram images (Mahajan et al., 2018).

[그림 7] Experimental results based on ImageNet

다른 모델에 비해 훨씬 적은 Parameter, FLOPs수를 가짐

Mingxing Tan, Quoc V. Le. "EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks." arXiv preprint arXiv:1905.11946 (2019).

2. Noisy-Student Weights (CVPR 2020)

EfficientNet을 기반으로 ImageNet 데이터셋에 대해 SOTA를 갱신

Qizhe Xie et al. "Self-training with Noisy Student improves ImageNet classification." arXiv preprint arXiv:1911.04252 (2020).

2. Noisy-Student Weights (CVPR 2020)

Require: Labeled images $\{(x_1, y_1), (x_2, y_2), ..., (x_n, y_n)\}$ and unlabeled images $\{\tilde{x}_1, \tilde{x}_2, ..., \tilde{x}_m\}$.

1: Learn teacher model θ_*^t which minimizes the cross entropy loss on labeled images

$$\frac{1}{n} \sum_{i=1}^{n} \ell(y_i, f^{noised}(x_i, \theta^t))$$

2: Use a normal (i.e., not noised) teacher model to generate soft or hard pseudo labels for clean (i.e., not distorted) unlabeled images

$$\tilde{y}_i = f(\tilde{x}_i, \theta_*^t), \forall i = 1, \cdots, m$$

3: Learn an **equal-or-larger** student model θ_*^s which minimizes the cross entropy loss on labeled images and unlabeled images with **noise** added to the student model

$$\frac{1}{n}\sum_{i=1}^{n}\ell(y_i, f^{noised}(x_i, \theta^s)) + \frac{1}{m}\sum_{i=1}^{m}\ell(\tilde{y}_i, f^{noised}(\tilde{x}_i, \theta^s))$$

4: Iterative training: Use the student as a teacher and go back to step 2.

[그림 8] Self-Training Algorithm

Labeled 데이터셋 뿐만 아니라 Unlabeled 데이터셋도 활용하여 성능을 높인 방법

Qizhe Xie et al. "Self-training with Noisy Student improves ImageNet classification." arXiv preprint arXiv:1911.04252 (2020).

[표 1] 실험 환경

Hyper-parameter	Setting
Batch Size	64
Optimizer	adam
Learning Rate	1e-3
Epochs	20

[그림 9] 성능 평가 지표

$$F_1 = 2 * \frac{precision * recall}{precision + recall}$$

- 모델마다 하이퍼파라미터 동일하게 설정
- F1-score로 성능 평가
- 실험 1, 실험 2 진행

실험 1- Noisy Student

[그림 10] ImageNet Dataset

[그림 11] Plant Dataset

Plant Dataset에서 Noisy-Student를 적용한 pre-trained 모델을 활용하는 것이 더 높은 성능을 보임

실험 2- CNN Backbone

CNN Architecture별 실험 진행

실험 2- CNN Backbone

Model	F1-Score	#Params	#FLOPs
ResNet-50 (He et al., 2016)	74.6%	26M	4.1B
ResNet-101 (He et al., 2016)	72.4%	43M	7.9B
ResNet-152 (He et al., 2016)	71.2%	60.3M	11B
Inception-v3 (Szegedy et al., 2016)	56.7%	24M	5.7B
NASNet (Zoph et al., 2018)	46.2%	89M	24B
DenseNet-121 (Huang et al., 2017)	75.6%	7.2M	2.83B
DenseNet-169 (Huang et al., 2017)	80.9%	14M	3.5B
MobileNetV2 (Howard et al., 2017)	52.4%	3.4M	1.3B
EfficientNet-B0 (Mingxing et al., 2019)	74.1%	5.3M	0.39B
EfficientNet-B3 (Mingxing et al., 2019)	79.3%	12M	1.8B
EfficientNet-B4 (Mingxing et al., 2019)	86.1%	19M	4.2B
EfficientNet-B5 (Mingxing et al., 2019)	84.8%	30M	9.9B
EfficientNetV2 (Mingxing et al., 2021)	83.9%	24M	8.8B

[그림 12] Model별 F1-Score 값 (Plant Dataset)

4. Conclusion

Model	F1-Score	#Params	#FLOPs
ResNet-50 (He et al., 2016)	74.6%	26M	4.1B
ResNet-101 (He et al., 2016)	72.4%	43M	7.9B
ResNet-152 (He et al., 2016)	71.2%	60.3M	11B
Inception-v3 (Szegedy et al., 2016)	56.7%	24M	5.7B
NASNet (Zoph et al., 2018)	46.2%	89M	24B
DenseNet-121 (Huang et al., 2017)	75.6%	7.2M	2.83B
DenseNet-169 (Huang et al., 2017)	80.9%	14M	3.5B
MobileNetV2 (Howard et al., 2017)	52.4%	3.4M	1.3B
EfficientNet-B0 (Mingxing et al., 2019)	74.1%	5.3M	0.39B
EfficientNet-B3 (Mingxing et al., 2019)	79.3%	12M	1.8B
EfficientNet-B4 (Mingxing et al., 2019)	86.1%	19M	4.2B
EfficientNet-B5 (Mingxing et al., 2019)	84.8%	30M	9.9B
EfficientNetV2 (Mingxing et al., 2021)	83.9%	24M	8.8B

- i) Unlabeled Data를 활용한 pre-trained model을 사용하는 것이 성능 향상에 도움을 준다.
- ii) 모델의 크기가 클수록 성능이 좋은 것은 아님. ex> ResNet-50 VS ResNet-152, B4 VS B5
- iii) 최종 제출 모델: EfficientNet-B4