Bundle Adjustment

刘浩敏

Bundle Adjustment

Jointly optimize all cameras and points

$$\underset{C_{1},...C_{N_{c}},X_{1},...,X_{N_{p}}}{\operatorname{arg\,min}} \sum \|\pi(X_{i},C_{j}) - x_{ij}\|^{2}$$

Triggs, B., Mclauchlan, P., Hartley, R., and Fitzgibbon, A. 1999. Bundle adjustment—a modern synthesis. In Proceedings of the International Workshop on Vision Algorithms: Theory and Practice. 298–372.

Nonlinear Least Squares

Gaussian Newton

$$x^* = \underset{x}{\operatorname{argmin}} \| e(x) \|^2$$

$$e(x^*) = e(\hat{x} + d_x) \gg e(\hat{x}) + Jd_x$$

$$J = \| e/\|x|_{x=\hat{x}} \quad \text{Jacobian matrix}$$

$$d_x = \underset{d_x}{\operatorname{argmin}} \| e + Jd_x \|^2$$

$$J^T Jd_x = -J^T e \quad \text{first order approximation to Hessian}$$

Levenberg-Marquardt

$$(J^TJ + mI)dx = -J^Te$$

Manolis I. A. Lourakis, Antonis A. Argyros: SBA: A software package for generic sparse bundle adjustment. ACM Trans. Math. Softw. 36(1) (2009)

- An simple example
 - ☐ 4 points
 - □ 3 cameras
 - □ all points are visible in all cameras

$$J = \begin{pmatrix} 3 \text{ cameras} & 4 \text{ points} \\ A_{11} & 0 & 0 & B_{11} & 0 & 0 & 0 \\ A_{12} & 0 & 0 & 0 & B_{12} & 0 & 0 \\ A_{13} & 0 & 0 & 0 & 0 & B_{13} & 0 \\ A_{14} & 0 & 0 & 0 & 0 & 0 & B_{14} \\ 0 & A_{21} & 0 & B_{21} & 0 & 0 & 0 \\ 0 & A_{22} & 0 & 0 & B_{22} & 0 & 0 \\ 0 & A_{23} & 0 & 0 & 0 & B_{23} & 0 \\ 0 & 0 & A_{31} & B_{31} & 0 & 0 & 0 \\ 0 & 0 & A_{32} & 0 & B_{32} & 0 & 0 \\ 0 & 0 & A_{33} & 0 & 0 & B_{33} & 0 \\ 0 & 0 & A_{34} & 0 & 0 & 0 & B_{34} \\ \end{pmatrix}, e = \begin{pmatrix} e_{11} \\ e_{12} \\ e_{13} \\ e_{21} \\ e_{22} \\ e_{23} \\ e_{24} \\ e_{31} \\ e_{32} \\ e_{33} \\ e_{34} \end{pmatrix}$$

10

$$J^{T}J\mathcal{S}_{x} = -J^{T}\varepsilon$$

$$J^{T}J = \begin{pmatrix} U & W \\ W^{T} & V \end{pmatrix} = \begin{pmatrix} U_{1} & 0 & 0 & W_{11} & W_{12} & W_{13} & W_{14} \\ 0 & U_{2} & 0 & W_{21} & W_{22} & W_{23} & W_{24} \\ 0 & 0 & U_{3} & W_{31} & W_{32} & W_{33} & W_{34} \\ W_{11}^{T} & W_{21}^{T} & W_{31}^{T} & V_{1} & 0 & 0 & 0 \\ W_{12}^{T} & W_{22}^{T} & W_{32}^{T} & 0 & V_{2} & 0 & 0 \\ W_{13}^{T} & W_{21}^{T} & W_{33}^{T} & 0 & 0 & V_{3} & 0 \\ W_{14}^{T} & W_{24}^{T} & W_{34}^{T} & 0 & 0 & 0 & V_{4} \end{pmatrix}$$

$$U_i = \sum_{j=1}^4 A_{ij}^T A_{ij}, V_j = \sum_{i=1}^3 B_{ij}^T B_{ij}, W_{ij} = A_{ij}^T B_{ij}$$

M

$$J^{T}J[S_{\underline{x}}] = -J^{T}\varepsilon$$

$$Q_{\underline{x}} = \begin{pmatrix} Q_{C} \\ Q_{X} \end{pmatrix} = \begin{pmatrix} Q_{C_{1}}^{T} & Q_{C_{2}}^{T} & Q_{C_{3}}^{T} & Q_{X_{1}}^{T} & Q_{X_{2}}^{T} & Q_{X_{3}}^{T} & Q_{X_{4}}^{T} \end{pmatrix}^{T}$$

$$J^{T}J\delta_{x} = -J^{T}\varepsilon$$

$$J^{T}e = \begin{pmatrix} u \\ v \end{pmatrix} = \begin{pmatrix} u_{1} & u_{2} & u_{3} & v_{1} & v_{2} & v_{3} & v_{4} \end{pmatrix}^{T}$$

$$\underline{4}$$

$$u_i = \sum_{j=1}^4 A_{ij}^T e_{ij}$$

$$v_j = \sum_{i=1}^3 B_{ij}^T e_{ij}$$

Sparse Bundle Adjustment

In general, NOT all points are visible in all cameras

$$U_{i} = \sum_{j=1}^{4} A_{ij}^{T} A_{ij}, V_{j} = \sum_{i=1}^{3} B_{ij}^{T} B_{ij}, W_{ij} = A_{ij}^{T} B_{ij}$$

- \Box $A_{ij} = B_{ij} = 0$ if *i*-th points is invisible (or not matched) in *j*-th camera
- □ More sparse structure, more speed-up

Sparse Bundle Adjustment

$$J^T J \delta_{x} = -J^T \varepsilon$$

$$\begin{pmatrix} U & W \\ W^T & V \end{pmatrix} \begin{pmatrix} d_C \\ d_X \end{pmatrix} = - \begin{pmatrix} u \\ v \end{pmatrix}$$

$$\begin{pmatrix}
U - WV^{-1}W^T & 0 \\
W^T & V
\end{pmatrix}
\begin{pmatrix}
\sigma_C \\
\sigma_X
\end{pmatrix} = -\begin{pmatrix}
u - WV^{-1}v \\
v
\end{pmatrix}$$

$$S = U - WV^{-1}W^{T}$$

Schur Complement

$$SO_C = -(u - WV^{-1}v)$$

Compute cameras first (# cameras << # points)

$$V \mathcal{O}_X = -v - W^T \mathcal{O}_C$$

back substitution for points

Schur Complement for Cameras

$$(U - WV^{-1}W^{T})d_{C} = -(u - WV^{-1}v)$$

$$WV^{-1}W^T = egin{pmatrix} S_{11} & S_{12} & S_{13} \ S_{12}^T & S_{22} & S_{23} \ S_{13}^T & S_{23}^T & S_{33} \end{pmatrix}$$

$$S_{i_1 i_2} = \sum_{j=1}^4 W_{i_1 j} V_j^{-1} W_{i_2 j}^T$$

Schur Complement for Cameras

$$(U - WV^{-1}W^{T}) \mathcal{O}_{C} = -(u - WV^{-1}v)$$

$$WV^{-1}e_{X} = \begin{pmatrix} g_{1} \\ g_{2} \\ g_{3} \end{pmatrix}$$

$$g_i = \sum_{j=1}^4 W_{ij} V_j^{-1} v_j$$

Schur Complement for Cameras

 Again, in general NOT all points are visible in all cameras

$$S_{i_1 i_2} = \sum_{j=1}^4 W_{i_1 j} V_j^{-1} W_{i_2 j}^T$$

- \square $S_{i_1i_2} = 0$ if i_1 -th camera has no common points with i_2 -th camera
- □ More sparse structure, more speed-up

M

Back Substitution for Points

$$V[\mathcal{O}_{\underline{X}}] = -v - W^{T} \mathcal{O}_{\underline{C}}$$

$$\mathcal{O}_{X_{j}} = -v_{j} - \mathop{a}_{i-1}^{3} W_{ij}^{T} \mathcal{O}_{C_{i}}$$

- □ Each point can be solved independently
- \square Again, $W_{ij} = 0$ if *i*-th points is invisible in *j*-th camera

Probability Interpretation

$$\begin{pmatrix} U & W \\ W^T & V \end{pmatrix} \begin{pmatrix} d_C \\ d_X \end{pmatrix} = -\begin{pmatrix} u \\ v \end{pmatrix} \quad \text{joint density } P(d_C, d_X) = P(d_C)P(d_X \mid d_C)$$

$$(U - WV^{-1}W^T)d_T = -(u - WV^{-1}v) \quad \text{marginalize out } d_T \text{ to get } P(d_T)$$

$$(U - WV^{-1}W^{T})d_{C} = -(u - WV^{-1}v) \text{ marginalize out } d_{X} \text{ to get } P(d_{C})$$

$$W^{T}d_{C} + Vd_{Y} = -v \text{ conditional } P(d_{X} | d_{C})$$

- 1. Construct normal equation
 - \Box Compute and store the small non-zero block matrices \mathbf{U}_i , \mathbf{V}_j , \mathbf{W}_{ij}

$$\mathbf{J}^{\mathsf{T}}\mathbf{J}\boldsymbol{\delta} = \mathbf{J}^{\mathsf{T}}\mathbf{e}$$

$$\begin{bmatrix} \mathbf{U} & \mathbf{W} \\ \mathbf{W}^{\mathsf{T}} & \mathbf{V} \end{bmatrix} \begin{bmatrix} \boldsymbol{\delta}_{\mathbf{C}} \\ \boldsymbol{\delta}_{\mathbf{X}} \end{bmatrix} = \begin{bmatrix} \mathbf{u} \\ \mathbf{v} \end{bmatrix}$$

$$\begin{bmatrix} \mathbf{U} & \mathbf{W} \\ \mathbf{V} \end{bmatrix}_{ii}^{\mathsf{T}} + \mathbf{J}_{\mathbf{C}_{ij}}^{\mathsf{T}} \mathbf{J}_{\mathbf{C}_{ij}} \\ \mathbf{V}_{jj} + \mathbf{J}_{\mathbf{X}_{ij}}^{\mathsf{T}} \mathbf{J}_{\mathbf{X}_{ij}} \end{bmatrix}$$

$$\mathbf{U} = \mathbf{0}; \ \mathbf{V} = \mathbf{0}; \ \mathbf{W} = \mathbf{0}; \ \mathbf{u} = \mathbf{0}; \ \mathbf{v} = \mathbf{0}$$

for each point j and each camera $i \in \mathcal{V}_j$ do

Construct linearized equation (11)

 $\mathbf{U}_{ii} + = \mathbf{J}_{\mathbf{C}_{ij}}^{\mathsf{T}} \mathbf{J}_{\mathbf{C}_{ij}}$
 $\mathbf{V}_{jj} + = \mathbf{J}_{\mathbf{X}_{ij}}^{\mathsf{T}} \mathbf{J}_{\mathbf{X}_{ij}}$
 $\mathbf{u}_i + = \mathbf{J}_{\mathbf{C}_{ij}}^{\mathsf{T}} \mathbf{e}_{ij}$
 $\mathbf{v}_j + = \mathbf{J}_{\mathbf{X}_{ij}}^{\mathsf{T}} \mathbf{e}_{ij}$
 $\mathbf{W}_{ij} = \mathbf{J}_{\mathbf{C}_{ij}}^{\mathsf{T}} \mathbf{J}_{\mathbf{X}_{ij}}$

end for

- 2. Marginalize out points to construct Schur complement
 - \square **S** is also sparse, with non-zero block matrix $S_{i_1i_2}$ if and only if camera i_1 and i_2 share common points.

$$\begin{split} \mathbf{S} \boldsymbol{\delta}_{\mathbf{C}} &= \mathbf{g}, \\ \mathbf{S} &= (\mathbf{U} - \mathbf{W} \mathbf{V}^{-1} \mathbf{W}^{\top}), \\ \mathbf{g} &= \mathbf{u} - \mathbf{W} \mathbf{V}^{-1} \mathbf{v}. \end{split}$$

```
S = U
for each point j and each camera pair (i_1, i_2) \in \mathcal{V}_j \times \mathcal{V}_j
do
\mathbf{S}_{i_1 i_2} - = \mathbf{W}_{i_1 j} \mathbf{V}_{j j}^{-1} \mathbf{W}_{i_2 j}^{\top}
end for
\mathbf{g} = \mathbf{u}
for each point j and each camera i \in \mathcal{V}_j do
\mathbf{g}_i - = \mathbf{W}_{ij} \mathbf{V}_{jj}^{-1} \mathbf{v}_j
end for
```

M

- 3. Solve cameras
 - \square Use sparse solver to solve $\delta_{\mathbf{C}}$
 - Sparse Cholesky factorization
 - Preconditioned Conjugate Gradient (PCG) that naturally leverages the sparseness of S
- 4. Update points

for each point
$$j$$
 do
$$\delta_{\mathbf{X}_j} = \mathbf{V}_{jj}^{-1} \left(\mathbf{v}_j - \sum_{i \in \mathcal{V}_j} \mathbf{W}_{ij}^{\top} \delta_{\mathbf{C}_i} \right)$$
 end for

Runtime increases with the number of cameras

Related Works

- Parallel BA
 - □ Ni et al. 2007, Wu et al. 2011 (PBA)
- Hierarchical BA
 - □ Steedly et al. 2003, Snavely et al. 2008, Frahm et al. 2010
- Segment-based BA
 - □ Zhu et al. 2014, Zhang et al. 2016 (ENFT)
- Incremental BA
 - Kaess et al. 2008 (iSAM), Kaess et al. 2011 (iSAM2), Indelman et al. 2012 (iLBA), Ila et al. 2017 (SLAM++), Liu et al. 2017 (EIBA), Liu et al. 2018 (ICE-BA)

Segment-based Bundle Adjustment

Zhang G, Liu H, Dong Z, et al. Efficient non-consecutive feature tracking for robust structure-from-motion[J]. IEEE Transactions on Image Processing, 2016, 25(12): 5957-5970.

The Difficulties for Large-Scale SfM

- Global Bundle Adjustment
 - ☐ Huge variables
 - Memory limit
 - □ Time-consuming
- Iterative Local Bundle Adjustment
 - □ Large error is difficult to be propagated to the whole sequence.
 - □ Easily stuck in a local optimum.
- Pose Graph Optimization
 - □ May not sufficiently minimize the error.

10

Segment-based Progressive SfM

- Split a long sequence to multiple short sequences.
- Perform SfM for each sequence and align them together.
- Detect the ``split point' and further split the sequence if the reprojection error is large.
- The above procedure is repeated until the error is less than a threshold.

M

Segment-based Progressive SfM

- Split Point Detection
 - □ Best minimize the reprojection error w.r.t. *a*, i.e. steepest descent direction

$$g_k = \sum_{i=1\cdots N_k} A_i^T e_i \qquad \begin{aligned} A_i &= \partial \pi(P_k X_i) / \partial a_k \\ e_i &= \mathbf{x}_i - \pi(P_k X_i) \end{aligned}$$

□ The inconsistency between two consecutive frames

$$C(k, k+1) = \arccos \frac{g_k^T \cdot g_{k+1}}{||g_k|| \cdot ||g_{k+1}||}.$$

Split Point Detection

М

Incremental Bundle Adjustment

In order to benefit from increased accuracy offered by relinearization in batch optimization:

- Fixed-lag / Sliding-window Approaches
- Keyframe-based Approaches
- Incremental Approaches (iSAM & iSAM2, our EIBA & ICE-BA)

Batch BA

Batch BA

Incremental BA

Batch BA

Incremental BA

Batch BA

Incremental BA

Incremental BA in iSAM2 Based on Bayes Tree

Kaess, M., Johannsson, H., Roberts, R., Ila, V., Leonard, J. J., & Dellaert, F. (2012). iSAM2: Incremental smoothing and mapping using the Bayes tree. The International Journal of Robotics Research, 31(2), 216-235.

Solving Least Square by QR Factorization

$$\theta^* = \arg\min_{\boldsymbol{\theta}} \|A\boldsymbol{\theta} - \mathbf{b}\|^2$$

$$A = Q \begin{bmatrix} R \\ 0 \end{bmatrix}$$

$$\|A\boldsymbol{\theta} - \mathbf{b}\|^2 = \|Q \begin{bmatrix} R \\ 0 \end{bmatrix} \boldsymbol{\theta} - \mathbf{b}\|^2$$

$$= \|Q^T Q \begin{bmatrix} R \\ 0 \end{bmatrix} \boldsymbol{\theta} - Q^T \mathbf{b}\|^2$$

$$= \|\begin{bmatrix} R \\ 0 \end{bmatrix} \boldsymbol{\theta} - \begin{bmatrix} \mathbf{d} \\ \mathbf{e} \end{bmatrix}\|^2$$

$$= \|R\boldsymbol{\theta} - \mathbf{d}\|^2 + \|\mathbf{e}\|^2$$

 $R oldsymbol{ heta}^* = \mathbf{d}$ R: upper triangular matrix

QR Factorization VS Schur Complement

- Directly work on Jacobian
 - □ R can be incrementally updated
 - □ Numerically more stable
 - $\operatorname{cond}(J) < \operatorname{cond}(J^T J)$
- Efficiency largely depends on variable ordering

iSAM: Incremental Smoothing and Mapping

Limitations of iSAM

- Periodically reordering
 - □ It is difficult to analyze the dependency relationship among variables in a algebraic method

м

Factor Graph Representation

- Variable node (large circle)
- Measurement node (small dot)

M

Chordal Bayes Net

 Inference and elimination (marginalization) can be understood as converting the factor graph to chordal Bayes net

$$R = \begin{bmatrix} \mathbf{X} & \mathbf{X} & \mathbf{X} & \mathbf{X} \\ \mathbf{X} & \mathbf{X} & \mathbf{X} \\ & \mathbf{X} & \mathbf{X} & \mathbf{X} \\ & & \mathbf{X} & \mathbf{X} & \mathbf{X} \\ & & & \mathbf{X} & \mathbf{X} & \mathbf{X} \\ & & & & \mathbf{X} & \mathbf{X} \end{bmatrix}$$

м

Chordal Bayes Net

 Inference and elimination (marginalization) can be understood as converting the factor graph to chordal Bayes net

м

Bayes Tree

 $l_1, x_1: x_2$

 To better reveal the dependence relationship, the chordal Bayes net is converted to a Bayes tree

A **clique** encodes the conditional density $P(l_1, x_1: x_2)$ l_1, x_1 are called the frontal variables x_2 is called the separator

Update the Bayes tree
 with a new factor f(x₁,x₃)

Alg. 4 Updating the Bayes tree with new factors \mathcal{F}' .

In: Bayes tree \mathscr{T} , new linear factors \mathscr{F}'

Out: modified Bayes tree \mathcal{T}

- 1. Remove top of Bayes tree and re-interpret it as a factor graph:
 - (a) For each variable affected by new factors, remove the corresponding clique and all parents up to the root.
 - (b) Store orphaned sub-trees \mathcal{T}_{orph} of removed cliques.
- 2. Add the new factors \mathcal{F}' into the resulting factor graph.
- 3. Re-order variables of factor graph.
- 4. Eliminate the factor graph (Alg. 2) and create a new Bayes tree (Alg. 3).
- 5. Insert the orphans \mathcal{T}_{orph} back into the new Bayes tree.

Example of adding new states and factors **Information only propagates upwards.**

Example of adding new states and factors **Information only propagates upwards.**

Kaess, M., Johannsson, H., Roberts, R., Ila, V., Leonard, J. J., & Dellaert, F. (2012). iSAM2: Incremental smoothing and mapping using the Bayes tree. The International Journal of Robotics Research, 31(2), 216-235.

Example of adding new states and factors

Loop detected.

Kaess, M., Johannsson, H., Roberts, R., Ila, V., Leonard, J. J., & Dellaert, F. (2012). iSAM2: Incremental smoothing and mapping using the Bayes tree. The International Journal of Robotics Research, 31(2), 216-235.

Example of adding new states and factors Information only propagates upwards.

Kaess, M., Johannsson, H., Roberts, R., Ila, V., Leonard, J. J., & Dellaert, F. (2012). iSAM2: Incremental smoothing and mapping using the Bayes tree. The International Journal of Robotics Research, 31(2), 216-235.

Example of adding new states and factors Information only propagates upwards.

Kaess, M., Johannsson, H., Roberts, R., Ila, V., Leonard, J. J., & Dellaert, F. (2012). iSAM2: Incremental smoothing and mapping using the Bayes tree. The International Journal of Robotics Research, 31(2), 216-235.

Efficiency Comparison

- Many spikes
 - □ keep forward
 - □ to and fro

Efficient Incremental BA

Liu H, Li C, Zhang G, et al. Robust Keyframe-based Dense SLAM with an RGB-D Camera[J]. arXiv preprint arXiv:1711.05166, 2017.

Revisit Standard BA

- Steps in one iteration
 - □ 1. Normal equation
 - □ 2. Schur compelment
 - □ 3. Solve cameras
 - ☐ 4. Solve points
- Factor graph representation

X ₁		\mathbf{C}_1	\mathbf{C}_2	C ₃
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	\mathbf{C}_1		+	
	\mathbf{C}_2		-+	•
\mathbf{X}_2	C ₃			

Observations in Standard BA

- Runtime for steps 1,2 >> 3,4
 - □ #projection functions >> #cameras

Observations in Standard BA

- Most cameras and points are nearly unchanged
 - Contribution of most projection functions nearly remains the same
 - No need to re-compute at each iteration

Factor graph representation

New cameras or points come

	\mathbf{C}_1	\mathbf{C}_2	C ₃	\mathbf{C}_4
\mathbf{C}_1		+		
\mathbf{C}_2			+ (1)	
\mathbf{C}_3			+ (1)	(■)
\mathbf{C}_4				(

New cameras or points come

Points change after iteration

Cameras change after iteration

7

Step 1: Normal Equation

Batch BA

$\mathbf{U} = \mathbf{0}; \ \mathbf{V} = \mathbf{0}; \ \mathbf{W} = \mathbf{0}; \ \mathbf{u} = \mathbf{0}; \ \mathbf{v} = \mathbf{0}$ **for** each point j and each camera $i \in \mathcal{V}_j$ **do**Construct linearized equation (11) $\mathbf{U}_{ii} + = \mathbf{J}_{\mathbf{C}_{ij}}^{\mathsf{T}} \mathbf{J}_{\mathbf{C}_{ij}}$ $\mathbf{V}_{jj} + = \mathbf{J}_{\mathbf{X}_{ij}}^{\mathsf{T}} \mathbf{J}_{\mathbf{X}_{ij}}$ $\mathbf{u}_{i} + = \mathbf{J}_{\mathbf{C}_{ij}}^{\mathsf{T}} \mathbf{e}_{ij}$ $\mathbf{v}_{j} + = \mathbf{J}_{\mathbf{X}_{ij}}^{\mathsf{T}} \mathbf{e}_{ij}$ $\mathbf{W}_{ij} = \mathbf{J}_{\mathbf{C}_{ij}}^{\mathsf{T}} \mathbf{J}_{\mathbf{X}_{ij}}$ **end for**

Incremental BA

```
for each point j and each camera i \in \mathcal{V}_j that \mathbf{C}_i or \mathbf{X}_j is changed do

Construct linearized equation (11)
\mathbf{S}_{ii} - = \mathbf{A}_{ij}^{\mathbf{U}}; \ \mathbf{A}_{ij}^{\mathbf{U}} = \mathbf{J}_{\mathbf{C}_{ij}}^{\top} \mathbf{J}_{\mathbf{C}_{ij}}; \ \mathbf{S}_{ii} + = \mathbf{A}_{ij}^{\mathbf{U}}
\mathbf{V}_{jj} - = \mathbf{A}_{ij}^{\mathbf{V}}; \ \mathbf{A}_{ij}^{\mathbf{V}} = \mathbf{J}_{\mathbf{X}_{ij}}^{\top} \mathbf{J}_{\mathbf{X}_{ij}}; \ \mathbf{V}_{jj} + = \mathbf{A}_{ij}^{\mathbf{V}}
\mathbf{g}_{i} - = \mathbf{b}_{ij}^{\mathbf{u}}; \ \mathbf{b}_{ij}^{\mathbf{u}} = \mathbf{J}_{\mathbf{C}_{ij}}^{\top} \mathbf{e}_{ij}; \ \mathbf{g}_{i} + = \mathbf{b}_{ij}^{\mathbf{u}}
\mathbf{v}_{j} - = \mathbf{b}_{ij}^{\mathbf{v}}; \ \mathbf{b}_{ij}^{\mathbf{v}} = \mathbf{J}_{\mathbf{X}_{ij}}^{\top} \mathbf{e}_{ij}; \ \mathbf{v}_{j} + = \mathbf{b}_{ij}^{\mathbf{v}}
\mathbf{W}_{ij} = \mathbf{J}_{\mathbf{C}_{ij}}^{\top} \mathbf{J}_{\mathbf{X}_{ij}}
\mathbf{Mark} \ \mathbf{V}_{jj} \ \mathbf{updated}
end for
```


Step 2: Schur Complement

Batch BA

```
\mathbf{S} = \mathbf{U} for each point j and each camera pair (i_1,i_2) \in \mathcal{V}_j \times \mathcal{V}_j do \mathbf{S}_{i_1i_2} - = \mathbf{W}_{i_1j} \mathbf{V}_{jj}^{-1} \mathbf{W}_{i_2j}^{\top} end for \mathbf{g} = \mathbf{u} for each point j and each camera i \in \mathcal{V}_j do \mathbf{g}_i - = \mathbf{W}_{ij} \mathbf{V}_{jj}^{-1} \mathbf{v}_j end for
```

Incremental BA

```
for each point j that \mathbf{V}_{jj} is updated and each camera pair (i_1,i_2) \in \mathcal{V}_j \times \mathcal{V}_j do \mathbf{S}_{i_1i_2} + = \mathbf{A}_{i_1i_2j}^{\mathbf{S}} \mathbf{A}_{i_1i_2j}^{\mathbf{S}} = \mathbf{W}_{i_1j}\mathbf{V}_{jj}^{-1}\mathbf{W}_{i_2j}^{\top} \mathbf{S}_{i_1i_2} - = \mathbf{A}_{i_1i_2j}^{\mathbf{S}} end for for each point j that \mathbf{V}_{jj} is updated and each camera i \in \mathcal{V}_j do \mathbf{g}_i + = \mathbf{b}_{ij}^{\mathbf{g}}; \mathbf{b}_{ij}^{\mathbf{g}} = \mathbf{W}_{ij}\mathbf{V}_{jj}^{-1}\mathbf{v}_j; \mathbf{g}_i - = \mathbf{b}_{ij}^{\mathbf{g}} end for
```

Performance of EIBA

Computation time

Fig. 4. The computation time of our EIBA and iSAM2 while incrementally adding each new keyframe on "fr3_long_office" sequence.

M

Performance of EIBA

- Computation time
 - □ Our EIBA is faster by an order of one magnitude than iSAM2.

Sequence	Num. of Camera / Points	Num. of Observations	EIBA	iSAM2		
				No relinearization	relinearizeSkip = 10	relinearizeSkip = 5
fr3_long_office	92 / 4322	12027	88.9ms	983.9ms	1968.2ms	2670.9ms
fr2_desk	63 / 2780	6897	34.8ms	507.8ms	850.4ms	1152.0ms

Performance of EIBA

Optimized reprojection error

Fig. 5. The optimized reprojection error (RMSE) for our EIBA and iSAM2 while incrementally adding each new keyframe on "fr3_long_office" sequence.

ICE-BA for Visual-Inertial SLAM

Liu H, Chen M, Zhang G, et al. ICE-BA: Incremental, Consistent and Efficient Bundle Adjustment for Visual-Inertial SLAM. CVPR 2018.

Requirements for Visual-Inertial SLAM

- Camera state includes velocity and bias
- Optimize each frame rather than just keyframes
- Information must be remained as much as possible

Existing Optimization Framework for Visual-Inertial SLAM

Local BA (LBA)

Global BA (GBA)

	Optimized frame	Non-optimized frame	Accuracy	Global Consistency	Latency	IMU Utilization
LBA	Sliding window	Marginalization	×	×	\checkmark	\checkmark
GBA	Keyframe	Discard	\checkmark	✓	×	×

ICE-BA: Incremental, Consistent and Efficient BA

- Combine LBA and GBA
- Modified EIBA for efficient optimization
- Relative marginalization for global consistency

	Optimized frame	Non-optimized frame	Accuracy	Global Consistency	Latency	IMU Utilization
LBA	Sliding window	Marginalization	×	×	\checkmark	\checkmark
GBA	Keyframe	Discard	✓	✓	×	×
I ICE-BA	Sliding window + keyframe	Relative marginalization	✓	✓	✓	✓ I

Framework

Combine LBA and GBA

Limitation of EIBA for LBA

- In LBA, most points may be observed by most frames in the sliding window
 - □ Dense Schur complement
 - □ A large portion need to be re-evaluated

Modified EIBA for LBA

split the original long feature track X_i into several short overlapping sub-tracks X_{i1}, X_{i2}, ...,

		\mathbf{C}_1	\mathbf{C}_2	\mathbb{C}_3	\mathbf{C}_4
(\mathbf{X}_{i1}) (\mathbf{X}_{i2}) (\mathbf{X}_{i3})	\mathbf{C}_1	X	X		
	\mathbf{C}_2		X	X	
\times \times \times \times	\mathbb{C}_3			X	X
$\begin{pmatrix} \mathbf{C}_1 \end{pmatrix}$ $\begin{pmatrix} \mathbf{C}_2 \end{pmatrix}$ $\begin{pmatrix} \mathbf{C}_3 \end{pmatrix}$ $\begin{pmatrix} \mathbf{C}_4 \end{pmatrix}$	$\overline{\mathbf{C}_4}$				X

M

Relative Marginalization

- Standard marginalization produces linear prior on camera pose T_t and IMU state M_t (velocity and bias) represented in global reference
- We present the prior camera pose ${}^{k0}\mathbf{T}_{t0}$ of the marginalized frame t_0 in the reference of its nearest keyframe k_0 , and the prior IMU state \mathbf{M}'_{t0} in its own reference

Relative Marginalization

Efficiency Comparison

- Local BA (LBA)
 - □ ICE-BA (50 frames)
 - □ OKVIS (8 frames)
 - □ 10x speedup

- Global BA (GBA)
 - □ ICE-BA: steady and smooth
 - □ iSAM: steep and peaks
 - □ 20x speedup

	Ours w/o loop	Ours w/ loop	OKVIS	iSAM2 (SVO)
local BA	2.45	2.45	26.83	-
global BA	12.90	24.67	-	225.87

Accuracy Comparison

Seq.	Ours w/ loop	Ours w/o loop	OKVIS	SVO	iSAM2
MH _ 01	0.11	0.09	0.22	0.06	0.07
MH_02	0.08	0.07	0.16	0.08	0.11
MH _ 03	0.05	0.11	0.12	0.16	0.12
MH_04	0.13	0.16	0.18	-	0.16
MH _ 05	0.11	0.27	0.29	0.63	0.25
V1 _ 01	0.07	0.05	0.03	0.06	0.07
V1 _ 02	0.08	0.05	0.06	0.12	0.08
V1 _ 03	0.06	0.11	0.12	0.21	0.12
V2 _ 01	0.06	0.12	0.05	0.22	0.10
V2 _ 02	0.04	0.09	0.07	0.16	0.13
V2 _ 03	0.11	0.17	0.14	-	0.20
Avg	0.08	0.12	0.14	0.20	0.13

Global Consistency Comparison with Google Tango

.

Open-source Solver & BA

- Bundler: http://www.cs.cornell.edu/~snavely/bundler/
- g2o: https://github.com/RainerKuemmerle/g2o
- Ceres Solver: http://ceres-solver.org/
- PBA: https://grail.cs.washington.edu/projects/mcba/
- GTSAM& iSAM: https://bitbucket.org/gtborg/gtsam/
- EIBA: https://github.com/ZJUCVG/EIBA
- ICE-BA: https://github.com/baidu/ICE-BA