2024-03-18

Rappels

Les représentation irréductibles de $\mathfrak{sl}(3\mathbb{C})$ sont en bijection avec $\{(a,b) > a,b \leq 0 \text{ entiers}\}$

$$\rightarrow \Gamma_{a}$$

dont le plus haut poids et $aL_1 - bL_3$

$$\Gamma_{a,b} \subseteq \operatorname{Sym}^a(\mathbb{C}^3) \otimes \operatorname{Sym}^b(\mathbb{C}^3)$$

$$\Gamma_{a,b} = \operatorname{Ker}(\varphi)$$

$$\varphi: \operatorname{Sym}^{a}(\mathbb{C}^{3}) \otimes \operatorname{Sym}\mathbb{C}^{3*} \to \operatorname{Sym}^{a-1} \otimes \operatorname{Sym}^{b-1}$$

Recette pour analyser les représentation d'une algèbre de Lie semi-simple

Rappel

Simple : ad_X est irréductible \iff pas d'idéal non-trivial

Semi-simple : Somme direct d'algèbre simple

Étape 1 : Identifier une sous algèbre $h \subseteq g$ abélienne diagonalisable maximale. On appelle h une sous-algèbre de Cartan

On a vu que si un algèbre est diagonalisable dans une représentation, elle l'est dans toutes les représentations. Une algèbre diagonalisable est une algèbre qu'on peut montrer diagonalisable dans au moins une représentation.

Attention

Ex:

$$\Box(3,\mathbb{C}) = \left\{ \begin{pmatrix} 0 & a & b \\ -a & 0 & c \\ -b & -c & 0 \end{pmatrix} | a, b, c \in \mathbb{C} \right\}$$

h n'est pas nécessairement diagonale

truc : choisir une base jacobienne Dans une base t.q. la forme bilinéaire est donnée par la matrice J

$$\begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$$
, $\square(3\mathbb{C})$ est donné par $X^tJ+JX=0$

. . .

$$\Box(3,\mathbb{C}) = \left\{ \begin{pmatrix} a & b & 0 \\ c & 0 & -b \\ 0 & -c & -a \end{pmatrix} | a, b, c \in \mathbb{C} \right\}$$

ici, on peut prendre $h \in \left\{ \begin{pmatrix} a & & \\ & & \\ & & -a \end{pmatrix} \right\}$

Étape 2 : Décomposer g selon les poids (racines) de sa représentation adjointe

$$g = h \oplus \left(\bigoplus_{\alpha \in R} g_{\alpha}\right)$$

où $R \subseteq h^*$ est t.q. $g_{\alpha} \neq \{0\}$

$$g_{\alpha} = \{X \in g | \operatorname{ad}(H)X = \alpha(H)X \forall H \in h\} = \{X \in g | [H, X] = \alpha(H)X \forall H \in h\}$$

Faits:

- i) $\dim(g_{\alpha}) = 1 \forall \alpha \in R$
- ii) R engendre un réseau $\Lambda_R \subseteq h^*$ de rand égal à $\dim(h^*)$
- iii) $R = -R(\text{Si } \alpha \text{ est une racine } -\alpha \text{ l'est aussi})$ Une représentation V va se décompose en $V = \oplus V_{\alpha}, \alpha \in h^*$ Les vecteurs de racines, $X \in g_x$ agissent par translation sur les V_{β}

$$X: V_{\beta} \to V_{\alpha+\beta}$$

Si V est irréductible, tout les poids sont congrus modulo Λ_R

Étape 3 : Pour chaque raine, on va identifier une sous-algèbre $\mathfrak{s}_{\alpha} \subseteq \mathfrak{g}$ isomorphe à $\mathfrak{sl}(2\mathbb{C})$

on sait que $[g_{\alpha}, g_{-\alpha}] \subseteq h$

en fait $\mathfrak{s}_{\alpha} = g_{\alpha} \oplus g_{-\alpha} \oplus [g_{\alpha}, g_{-\alpha}]$ est aussi un sous-algèbre de g isomorphe à sl $(2\mathbb{C})$

On trouve $X_{\alpha} \in g_{\alpha}$, $Y_{\alpha} \in g_{-\alpha}$ t.q. $H_{\alpha} = [X_{\alpha}, Y_{\alpha}]$

on a
$$[H_{\alpha}, X_{\alpha}] = 2X_{\alpha}$$
 on a $[H_{\alpha}, Y_{\alpha}] = 2Y_{\alpha}$

Toujours possible car

- i) $[g_{\alpha}, g_{-\alpha}] \neq 0$
- ii) $[[g_{\alpha}, g_{-\alpha}], g_{\alpha} \neq 0$

Étape 4 : Utiliser l'intégralité des valeurs propres de H_{α}

Pour tout poids β d'une représentation de g

$$\beta(H_{\alpha}) \in \mathbb{Z}$$

On définit une autre réseau, (le réseau des poids) $\Lambda_W = \{\beta \in h^* | \beta(H_\alpha) \in \mathbb{Z}, \forall \alpha \in R\}$

Si
$$\beta_1, \beta_2 \in \Lambda_W$$
 dans $(\beta_1 + \beta_2)(H_\alpha) = \beta(H_\alpha) + \beta_2(H_\alpha) \in \mathbb{Z} \implies \beta_1 + \beta_2 \in \Lambda_W$

et
$$-\beta_1(H_\alpha) \in \mathbb{Z} \to -? \in \Lambda_W$$

En fait, $\Lambda_R \subseteq \Lambda_W$

Étape 5 : Usilser la symétrie par rapport à 0 des v.p. de H_{α}

On introduit une <u>réflexion</u> pour chaque $\alpha \in R$, noté $W_{\alpha}, W_{\alpha}: h^* \to h^*$

$$W_{\alpha}(\beta) = \beta - \beta (H_{\alpha})_{\alpha}$$

$$\mathscr{W} = \langle W_{\alpha} \rangle$$

groupe engendré par les W_{α} qui s'appelle Groupe de Weyl

Pour une representation $V=\oplus V_{\beta}$ on peut regrouper les V_{β} en classes modulo α

$$V = \oplus V_{[\beta]}$$

où
$$V_{[\beta]} = \bigoplus_{n \in \mathbb{Z}} V_{\alpha + n\beta}$$

les poids dans $V_{[\beta]}$ sont $\beta, \beta + \alpha, \beta + 2\alpha, \dots, \beta + n\alpha$ où $n = -\beta(H_{\alpha})$

Conclusion

l'ensemble des poids V est \mathcal{W} -invarient

Étape 6 : Faire un dessin

Il existe un produit bilinéaire sur \mathfrak{g} appelé <u>forme de Killing</u> qui est définit positif sur le sous-espace réel engendré par les H_{α}

donne un produit scalaire sur le sous-espace réel engendré par R dans h^* . Pour ce produit , W_{α} est une réflexion euclidienne

Étape 7 : Choisir une direction dans h^* . C'est-à-dire une forme linéaire l sur h^*

$$l: h^* \to \mathbb{R}t.q.L(\alpha) \neq 0si\alpha \in R$$

On décompose $R = R^+ \cup R^-$ en racine positives et négatives

On dit que $v \in V$ est un vecteur de plus haut poids pour g si $Xv = 0 \forall X \in g_{\alpha}, \alpha \in R^+$

Proposition:

- (i) Toute représentation de g possède un vecteur de plus haut poids
- (ii) V et toutes ses images obtenus en itérants des applications de X_{α} , $\alpha \in \mathbb{R}^-$ engendre une sous-représentation $W \subseteq V$ irréductible
- (iii) Tout représentation irréductible admet un unique vecteur de plus haut poids (à scalaire près)

Manque de Batterie!