Область допустимых решений задачи представлена ниже на рисунке. Как будет записано ограничение (аг)

1)
$$x_1 + 5x_2 \ge 5$$

2)
$$2x_1 + x_2 \ge 5$$

3)
$$-x_1 + 3x_2 \le 12$$

4)
$$x_1 - 3x_2 \le -12$$

В плановом году в городе будут сооружаться дома m типов. Количество r-комнатных квартир в доме i-го типа равно q_{ri} . Стоимость строительства одного дома i-го типа составляет Ri тыс. руб. За год необходимо сдать в эксплуатацию не менее Qr r-комнатных квартир. Рассчитать план строительства жилых домов, обеспечивающий минимальные затраты на строительство. Какая из моделей верна?

$$\sum_{i=1}^{m} R_i * x_i o min$$
 $\sum_{i=1}^{m} \sum_{r=1}^{m} q_{ri} * x_{ri} o min$ $\sum_{i=1}^{m} R_i * x_i o min$ $\sum_{i=1}^{m} q_{ri} * x_i o Q_r$, $\forall \, r$ $\sum_{i=1}^{m} q_{ri} * x_{ri} o Q_r$, $\forall \, r$ $\sum_{i=1}^$

Каким из трех алгоритмов следует начать решение исходной задачи?

- а) прямым симплекс-алгоритмом
- б) двойственным симплекс-алгоритмом
- в) двухэтапным симплекс-алгоритмом

$$-2x_{1} - x_{2} \to \min$$

$$x_{1} + x_{2} \ge 2$$

$$x_{1} + x_{2} \ge 1$$

$$x_{1} - x_{2} \le -1$$

$$x_{1} - x_{2} \le 1$$

$$x_{1} - x_{2} \le 1$$

$$x_{1} - x_{2} \le 0$$

Дана начальная симплекс-таблица прямой (исходной) задачи линейного программирования, в которой x_1, x_2 -основные переменные, x_3, x_4 дополнительные, Z –целевая функция

Итерация	Базис	Значение	x ₁	x ₂	х ₃	X4	Строка Zmin
	$-\mathbf{Z}$	0	-2	-1	0	0	
0	X ₃	-2	1	2	1	0	1
	X ₄	2	2	1	0	1	2

Укажите постановку двойственной ЗЛП, в которой y_1, y_2 двойственные оценки ограничений исходной задачи.

$$f(Y) = 1y_1 + 1y_2 \rightarrow H$$
 Ограничения:

$$2y_1 + 2y_2 \ge 1 \qquad (1)$$

$$1y_1 + 1y_2 \ge 1$$
 (2)

$$y_1, y_2 \ge 0$$

1.

Ограничения:

$$-1y_1 - 2y_2 \le -2 \qquad (1)$$

$$-y_1 - y_2 = -2y_1 - 1y_2 < -1$$

$$-2y_1-1y_2 \leq -1$$

$$y_1, y_2 \ge 0$$

$$f(Y) = 1y_1 + 1y_2 \rightarrow min$$
 $f(Y) = 2y_1 - 2y_2 \rightarrow max$ $f(Y) = -2y_1 + 2y_2 \rightarrow min$

Ограничения:

$$-1y_1 - 2y_2 \le -2 \qquad (1) \qquad 1y_1 + 2y_2 \ge -2 \qquad (1)$$

$$-2y_1-1y_2 \le -1$$
 (2) $2y_1+1y_2 \ge 1$ (2)

$$y_1, y_2 \ge 0$$

3.

2.

Дана оптимальная симплекс-таблица задачи линейного программирования, в которой x_1, x_2 -основные переменные, Z –целевая функция

Базис	В	X ₁	X ₂	X ₃	X ₄	X ₅	x ₆
X ₃	14/3	0	0	1	2/3	⁻⁵ / ₃	0
X ₂	4/3	0	1	0	1/3	-1/3	0
X ₁	4	1	0	0	0	1	0
x ₆	2/3	0	0	0	-1/3	1/3	1
Z	28/3	0	0	0	1/3	5/3	0

Как сделать анализ на ресурс 1?

Дана транспортная задача линейного программирования в терминах полезности (возможности поставщиков и потребности потребителей заданы справа и вверху матрицы)

	b ₁ =	6	b ₂	= 5	5	b ₃	= 4
		1		,	3		5
$a_1 = 7$	6		1			•	-
		4			6		2
$a_2 = 4$	-		4			0	
		5			3		1
$a_3 = 4$	-			-		4	

Проверить на оптимальность методом потенциалов

Сетевое планирование

Укажите значение параметра $t_{\rm ph}(3,5)$

	1	2	3	4	5
1		4	5		
2			2	7	
3				10	3
4					4
5					

Оценка игроков спортивной команды (альтернатив) производится на основании пяти критериев:

К1 - морально-волевая подготовка; К2 — вес игрока; К3 — бег 100м.

Тренер отдает предпочтение игрокам с высокими оценками по всем критериям (для бега — оценки имеют обратное направление шкалы). По принципу взвешенной суммы равнозначных критериев определите лучшего (лучших) спортсменов.

Игроки	Мор- волевая	Вес (в кг)	Бег 100м (в сек.)	
X1	(в баллах) 10	100	15	
X2	5	110	14	
Х3	8	90	13	

Задана матрица У исходов в терминах полезности .По критерию Вальда определите лучшую альтернативу

Альтернати	Ситуации Е					
вы Х	e_1	e_2	e_3	e_4		
x_1	6	4	3	2		
x_2	3	3	4	5		
x_3	3	4	4	2		

Пусть X— множество альтернатив, μ_R — заданное на нем нечеткое отношение предпочтения.

Нечеткое подмножество недоминируемых альтернатив множества (X, μ_R) описывается функцией принадлежности

$$\mu_Q^{H,\Pi}(x) = 1 - \sup_{y \in X} [\mu_R(y,x) - \mu_R(x,y)], \qquad x \in X$$

SUP —наибольшее положительное число (на сколько другие по максимуму доминируют x)

Пусть:

$$\mu_R(x_i,x_j) =$$

	x_1	x_2	x_3
x_1	-	0,4	0,7
x_2	0	-	0,5
x_3	0	0	-

Определите функцию принадлежности недоминирования для x_3 : $\mu_Q^{{}^{\mathrm{H}\mathrm{D}}}(x_3)$