

云际环境下虚拟专云的资源管理

北京大学 曹东刚

虚拟专云: 面向领域的云上云

痛点

云平台趋向 标准化和同质化

大型通用云

 定制
 管理
 使用
 平台

 困难
 粗放
 复杂
 锁定

用户**对**云服**务**的要求 多样化和个性化

虚拟专云

技术

途径

虚拟专云:面向特定领

域提供云化解决方案

软件定**义**的开源 虚**拟专**云管理系**统**

个性定制;精细管理

友好易用; 跨云部署

数据分析 虚拟云

流式计算 虚拟云 机器学习 虚拟云

WEB用户接口

工作空间

工作空间

工作空间

Container Container E拟集群

云际协作环境

器 阿里云 aliyun.com

UCLOUD

☎ 金田云

虚拟专云管理系统Docklet:

https://github.com/unias/docklet

应用 案例

科学家云上工作室虚拟专云

▶ 大数据系统软件国家工程实验室**发**布, 方便科学家在云上开展科研**实验**

高性能计算虚拟专云

▶ 中俄合作,接入无锡神威超算资源, 为用户提供方便易用的超云工作空间

轻量级数据处理虚拟专云

▶ 北京大学部署,提供数据分析与 可视化、虚拟实验环境等服务

用户视角的虚拟专云资源管理

用户视角:

② 云提供了弹性计算的能力

○ 云上的资源都是要收费的!

云际协作环境

虚拟专云中资源管理的核心问题

UCLOUD

不同云服务商产品在在性能、质量、价 格等方面均存在差异,如何选?

单个云服务商提供的产品越来越细化, 不恰当使用造成大量开支,如何用?

如何结合领域应用需求,从实体云资源中选取并定制虚拟专云服务,来充分 发挥云的弹性计算和按量付费的优势?

云厂商提供:基于分类的资源选取

- 公有云厂商一般会对计算资源进行分类,用户可以按照自己的需求选择相应的资源
- 基于分类的资源选取方式有一定指导意义,但存在如下问题
 - 需依赖用户专业知识进行选择
 - 缺乏不同云厂商之间的横向对比

由于上述问题的存在,近年来关于云计算资源选取的研究成为一个热点

实例类型	细分系列
通用型	A1、T3、T2、M5、M5a、M4
计算优化型	C5、C5n、C4
内存优化型	R5, R5a, R4, X1e, X1, z1d
加速计算型	P3、P2、G3、F1
存储优化型	H1、I3、D2

相关工作: 面向实例类型的资源选取

- ▶ 问题简述:给定一个应用,如何选择 适合该应用的最优实例类型?
- 两类代表性方法
 - 基于性能建模的方式:视作典型的机器学习回归/分类/推荐问题,对应用的性能做精确的建模
 - 基于搜索的方式:不需要深入了解 应用本身的特性,使用贝叶斯优化 等技术,一步一步逼近最(次)优解

基于性能建模的方式

$$time = \theta_0 + \theta_1 \times (scale \times \frac{1}{machines}) +$$
 $\theta_2 \times \log(machines) +$
 $\theta_3 \times machines$

NSD1' 16 Ernest

基于搜索的方式

Step-1 Step-1 Step-1 Start with initial cloud configs. Select and run a new config (select next sample with the best gain estimated by BO) No Confident that we find the best configuration? Step-4 St

NSDI' 17 CherryPick

ATC' 18 Selecta

基于推荐的方式

Ernest*: 面向数据处理作业的性能预测

LOUD

- 研究动机:部分数据处理作业有固定的行为模式,据此可对应用进行建模,以预测其在某种配置下的性能
- 该工作总结出数据处理作业的三种常见行为模式,使用回归模型对应用的性能建模:
 - ► Collect: O(scale * 1 / machines)
 - \triangleright Tree Aggregation: O(log(machines))
 - ➤ Shuffle: O(machines)
- 在小数据输入下训练模型,在真实场景(数据量较大)中将模型用于预测

$$time = \theta_0 + \theta_1 \times (scale \times \frac{1}{machines}) +$$

$$\theta_2 \times \log(machines) +$$

$$\theta_3 \times machines$$

Ernest: 面向数据处理作业的性能预测

- ➤ 实验设计:在多个work load上对Ernest进行评测,评测指标主要有两个:
 - ➤ 预测效果: Predicted Time/Actual Time
 - ➤ 训练开销: Training Time/Actual Time
- > 实验效果:
 - ▶ 预测时间与真实时间的误差比例大多在12%以内
 - ▶ 训练开销相对真实事件的占比在5%以内
- ▶ 存在的问题:
 - 仅针对某一类数据处理作业,计算模式 更为复杂的作业无法通过这种方式进行 有效的建模
 - 针对每一种实例都需要训练单独的模型 开销较大

Figure 10: Prediction accuracy using Ernest for 9 machine learning algorithms in Spark MLlib.

CherryPick*: 基于搜索的云资源选取

- 研究动机:不同应用在行为特征上差异很大, 难以对它们建立统一的性能/花费模型;为不同 应用建立不同的模型开销又过大
- ▶ 解决方案:
 - ➤ 不建立精确的模型,仅使用有限的信息通过搜索(贝叶斯优化)的方式得到"较优"(just accurate enough)的配置
 - 动态地搜索下一个可能的配置,每次搜索都会改变置信区间
 - ➤ 当期望的提升(Expected Improvement/EI)低于某个阈值时,停止

CherryPick: 基于搜索的云资源选取

> 实验设计:

- benchmark: TPC-DS, TPC-H, TeraSort, etc.
- 对比的baseline: coordinate search (坐标下 降法), random search, Ernest

> 实验效果:

- 与baseline相比,准确率更高
- ▶ 使用较小的搜索代价,有45-90% 的几率找到最优的配置

Figure 9: Comparing Ernest to *CherryPick* (TPC-DS).

Figure 10: Search cost and running cost of SparkKm with different EI values.

Figure 7: Comparing *CherryPick* with coordinate descent. The bars show 10th and 90th percentile.

Figure 8: Running cost of configurations by *CherryPick* and random search. The bars show 10th and 90th percentile.

Selecta*: 基于协同过滤的云资源推荐

- ➤ 研究动机:重点考虑存储介质(Local/Remote HDD/SSD/NVMe)对应用性能的影响,为数据处理作业选取合适的虚拟机配置
- ▶ 解决方案:
 - 》 训练应用在20%的配置上运行,构成一个形如 $(app_i, config_j) \rightarrow perf_{ij}$ (性能/花费)的矩阵
 - ▶ 目标应用在2个配置上运行,使用奇异值分解, 补全矩阵,推测目标应用在其他配置上的性能 /花费
 - 根据推测出的值进行排序,给用户返回"最优"的配置

Figure 3: An overview of performance prediction and configuration recommendation with Selecta.

*Klimovic et al., Selecta: Heterogeneous Cloud Storage Configuration for Data Analytics, ATC'2018

Perf/Cost Objective

Selecta: 基于协同过滤的云资源推荐

> 实验设计:

- 选择6种机型,4种存储类型作为待选配置集合
- benchmark: TPC-DS, TPC-BB
- baseline: Random Forest, Max/Min
 Cost. etc.

> 实验效果:

- ➤ 在做少量训练程序预跑(20%)的情形下,可 以达到较高的准确率(>90%)
- > 比baseline的预测准确率更高

Figure 7: Selecta's accuracy compared to baselines.

(a) Sensitivity to input matrix density in *steady state*: 20% density per row suffices for accurate predictions.

(b) Sensitivity to number of training applications, profiled on all configurations: $2.5 \times$ the number of configs suffices.

相关工作:基于计费模式的资源选取

- 问题简述:云厂商提供一些临时的计算资源(如竞价实例),这些资源的计费模式很特殊。利用这类资源,通过一定的策略保证容错,可以进一步降低成本。
- ▶ 以AWS Spot Instance为例,主要有两种选取策略:
 - → "稳定投资"策略:最小化实例被回收的概率, 利用Spot Instance低价格的优势,优化成本
 - 》 "风险投资"策略:最大化实例被回收的概率, 以获得厂商的退款*,从而进一步降低成本

"稳定投资"策略

"风险投资"策略

ATC' 18 Tributary

HotSpot*: 基于竞价实例的容器服务

研究动机:利用AWS提供的Spot Instance,实 时地将容器迁移到更便宜的实例上,实现总体 的花费最优

➤ 实现:

- ➤ 出价远高于Spot实例的市场价格,尽量避免 被回收
- 实时监控当前的Spot实例市场价格,并基于 迁移代价和迁移后获得的benefits权衡是否 将当前的容器迁移
- ➤ 需要迁移时,先将容器checkpoint到AWS EBS/RAMfs,然后在目标实例上恢复

*Shastri et al., HotSpot: Automated Server Hopping in Cloud Spot Markets, SoCC'2017

HotSpot: 基于竞价实例的容器服务

Revocations

Checkpoints ZZZZZ

- > 实验设计
 - 小规模真实实验
 - ▶ 基于Google trace的模拟实验
 - ▶ baseline: 使用on-demand instance (\$\text{fumple} \text{vmple} \te

- > 实验效果
 - ▶ 整体花费HotSpot最优

Tributary*: 基于竞价实例的web service

➤ 研究动机:面向弹性service类型的作业,利用AWS Spot Instance的退款政策**,通过价格预测的方式选择生命周期短的实例,优化成本

▶ 技术:

- ▶ 抢占概率预测。使用基于LSTM的模型预测某 种Spot实例在一小时内被回收的概率
- ▶ 根据service的负载动态地超配资源,且优 先选择生命周期短的Spot实例

Figure 2: Tributary architecture.

*Harlap et al., Tributary: spot-dancing for elastic services with latency SLOs, ATC'2018

**若Spot实例在第一个小时被回收,用户会获得AWS的全部退款

Tributary: 基于竞价实例的web service

- > 实验设计(模拟实验)
 - ➤ 基于trace的模拟实验: ClarkNet, Berkeley, WITS, WorldCup98
 - baseline: AWS AutoScale
 - 价格预测模块的准确率实验
- > 实验效果
 - ▶ 性能/花费均优于baseline
 - ➤ 预测准确率和F1 Score高于baseline

Figure 6: Accuracies and F_1 scores (accounts for data skew) for predicting preemption of AWS spot instances. The LSTM RNN outperforms prior techniques (blue bar) by 11% on the accuracy metric and 27% on the F_1 score metric.

虚拟专云如何选取计算资源?

- 云资源种类、收费模式纷繁复杂,如何根据用户的需求选择合适的资源?
 - ▶ 对不同云厂商具有代表性的计算资源进行综合评测,以便于用户进行横向对比
 - 挖掘云厂商的计费模式,对特定的应用制定智能化的策略,寻找花费最优的资源组合
 - 充分利用云的弹性,及时终止不必要的计算,以降低成本

工作1: 面向一般场景的计算资源推荐服务

➤ CloudMeter系统定期自动测评各个云厂商计算资源的性能,用户可方便地 从多个维度对比不同厂商的计算资源

比较	实例类型	地域	启动时间	CPU性能	内存性能	磁盘性能	网络性能	总评分
	通用型ecs.g6.large 2vCPU / 8GB	北京	40.1s	87.5	70	121.7	86.2	365.4
	计算型ecs.c6.xlarge 4vCPU / 8GB	北京	40.3s	107.5	54.5	121.7	86.4	370.1
	内存型ecs.r6.large 2vCPU / 16GB	北京	41.6s	88.1	70	120.1	84.1	362.3
	参 ト を を を を を を を を を を を を を を を を を を	北京	35.1s	73.9	39.4	80.4	75.1	268.9
	★算型C3.LARGE8 4VCPU / 8GB	北京	18.0s	109.8	55.5	102.6	63.4	331.4
	◇ 腾讯云 内存型M5.MEDIUM16 2vCPU / 16GB	北京	37.0s	79	64.5	71.3	89.5	304.4
	UCLOUD 通用型2核8G 2vCPU/8GB	北京	32.8s	69.7	47.5	99.2	68	284.4
	UCLOUD 通用型4核8G 4vCPU / 8GB	北京	33.5s	83.8	49.2	101.5	49.1	283.7
	UCLOUD 通用型2核16G 2vCPU / 16GB	北京	33.0s	70	46.9	98.3	54.9	270.1

工作2: 面向特定领域的计算资源选取与配置技术

- > 以构建支持机器学习超参数调整任务的虚拟专用云为例
- > 设计理念
 - ▶ 使用合适的资源使调参任务高效运行且降低花费,并保证可靠性
 - ▶ 利用价格预测,选择即将被回收的竞价实例机器部署训练任务,以降低成本
 - ▶ 基于AWS回收前两分钟的通知,将训练的中间结果保存到持久化存储中,保证可用性
 - 充分利用云的<mark>弹性</mark>,通过模型训练趋势预测的方法提前结束"没有前途"的超参数组合

工作3:基于多云存储的数据资源管理技术DCStore

- > 对象存储服务广受欢迎,然而用户使用时面临一些问题
 - 可用性、供应商锁定、隐私安全等
 - ▶ 冗余数据增加了开销
- ▶ 如何解决这些问题?
 - 利用多云存储,将数据分布在多云上
 - 增强数据可用性,降低锁定风险,保护隐私安全
 - 去冗余:去除数据中的重复内容,降低存储开销和网络开销

工作3:基于多云存储的数据资源管理技术DCStore

谢谢, 敬请批评指正!

