# **Project Planning Phase**

### **Project Planning Template (Product Backlog, Sprint Planning, Stories, Story points)**

| Date          | 22 October 2022            |
|---------------|----------------------------|
| Team ID       | PNT2022TMID14581           |
| Project Name  | Crude Oil Price Prediction |
| Maximum Marks | 8 Marks                    |

### **Product Backlog, Sprint Schedule, and Estimation (4 Marks)**

Use the below template to create product backlog and sprint schedule

| Sprint   | Functional<br>Requirement (Epic) | User Story<br>Number | User Story / Task                       | Story Points | Priority | Team<br>Members   |
|----------|----------------------------------|----------------------|-----------------------------------------|--------------|----------|-------------------|
| Sprint-1 | Data Collection                  | USN-1                | Download Crude Oil Price Dataset        | 2            | Medium   | Sowndhar S        |
| Sprint-1 | Data Preprocessing               | USN-2                | Importing The Dataset into Workspace    | 1            | Low      | Vishal KB         |
| Sprint-1 |                                  | USN-3                | Handling Missing Data                   | 3            | Medium   | Bothi<br>Prasaadh |
| Sprint-1 |                                  | USN-4                | Feature Scaling                         | 3            | Low      | Kaviyarasan       |
| Sprint-1 |                                  | USN-5                | Data Visualization                      | 3            | Medium   | Vishal KB         |
| Sprint-1 |                                  | USN-6                | Splitting Data into Train and Test      | 4            | High     | Sowndhar S        |
| Sprint-1 |                                  | USN-7                | Creating A Dataset with Sliding Windows | 4            | High     | Sowndhar S        |
| Sprint-2 | Model Building                   | USN-8                | Importing The Model Building Libraries  | 1            | Medium   | Bothi<br>Prasaadh |
| Sprint-2 |                                  | USN-9                | Initializing The Model                  | 1            | Medium   | Kaviyarasan N     |
| Sprint-2 |                                  | USN-10               | Adding LSTM Layers                      | 2            | High     | Bothi<br>Prasaadh |
| Sprint-2 |                                  | USN-11               | Adding Output Layers                    | 3            | Medoum   | Kaviyarasan       |
| Sprint-2 |                                  | USN-12               | Configure The Learning Process          | 4            | High     | Vishal KB         |

| Sprint   | Requirement (Epic) Number |        | Story Points                           | Priority           | Team<br>Members |                   |
|----------|---------------------------|--------|----------------------------------------|--------------------|-----------------|-------------------|
| Sprint-2 |                           |        | Train The Model                        | 2                  |                 | Sowndhar S        |
| Sprint-2 |                           | USN-14 | Model Evaluation                       | Model Evaluation 1 |                 | Kaviyarasan       |
| Sprint-2 |                           | USN-15 | Save The Model                         | 2 Medium           |                 | Vishal KB         |
| Sprint-2 |                           | USN-16 | Test The Model                         | 3 H                |                 | Vishal KB         |
| Sprint-3 | Application Building      | USN-17 | Create An HTML File 4                  |                    | Medium          | Bothi<br>Prasaadh |
| Sprint-3 |                           | USN-18 | Build Python Code                      | 4                  | High            | Sowndhar S        |
| Sprint-3 |                           | USN-19 | Run The App in Local Browser           | 4                  | Medium          | Kaviyarasan       |
| Sprint-3 |                           | USN-20 | Showcasing Prediction On UI            | 4 Hig              |                 | Vishal KB         |
| Sprint-4 | Train The Model On IBM    | USN-21 | Register For IBM Cloud 4 Med           |                    | Medium          | Bothi<br>Prasaadh |
| Sprint-4 |                           | USN-22 | Train The ML Model On IBM              | 8                  | High            | Sowndhar S        |
| Sprint-4 |                           | USN-23 | Integrate Flask with Scoring End Point | 8                  | High            | Kaviyarasan       |

# Project Tracker, Velocity & Burndown Chart: (4 Marks)

| Sprint   | Total Story<br>Points | Duration | Sprint Start Date | Sprint End Date<br>(Planned) | Story Points Completed (as on Planned End Date) | Sprint Release Date (Actual) |
|----------|-----------------------|----------|-------------------|------------------------------|-------------------------------------------------|------------------------------|
| Sprint-1 | 20                    | 6 Days   | 24 Oct 2022       | 29 Oct 2022                  | 20                                              | 29 Oct 2022                  |
| Sprint-2 | 20                    | 6 Days   | 31 Oct 2022       | 05 Nov 2022                  | 20                                              | 03 Nov 2022                  |
| Sprint-3 | 20                    | 6 Days   | 07 Nov 2022       | 12 Nov 2022                  | 20                                              | 10 Nov 2022                  |
| Sprint-4 | 20                    | 6 Days   | 14 Nov 2022       | 19 Nov 2022                  | 20                                              | 17 Nov 2022                  |

#### Velocity:

Imagine we have a 10-day sprint duration, and the velocity of the team is 20 (points per sprint). Let's calculate the team's average velocity (AV) per iteration unit (story points per day)

$$AV = \frac{sprint\ duration}{velocity} = \frac{20}{10} = 2$$



#### **Burndown Chart:**

A burn down chart is a graphical representation of work left to do versus time. It is often used in agile software development methodologies such as Scrum. However, burn down charts can be applied to any project containing measurable progress over time.

