CS I	173 - Lecture 11	
2-W	Day Bounding	
ex.	prove x=5	
	if direct proof is difficult, can prove x=5 and x=5 - x=5	
Grap	ph Coloring	
·Assig	gns color to each node in 6 s.t no two adjacent nodes have same color	
·Chro	omatic number of G is min num of colors to color G validly	
ex.		
	chromatic number = 2 (not a proof)	
ex.	given G., find chromatic num and prove correct	
	6,: 0 3	
	Proof: Chromatic number is 3 (state answer)	
	Chromatic number is no more than 3. (upper bound)	
	Color nodes 1 and 2 red, 2 and 5 bive, 4 green. I know I can color or/	
	three colors. Can color in 2 colors?	
	(bromatic number is no less than 3. (lower bound)	
	Our graph has a K subgraph (1-4-5), which we know needs three colors so	
	our graph needs at least 3 colors.	
Set	Equality	
· (av	n show A=B by showing A SB and B SA (see lecture 6 for subset proofs)	
	Let A = {15p+9q p, 2 EZ}, B = {3k k E Z} show A=B	
	Proof: First, we'll show ASB. Let XEZ be an element of A. Then, X=15p+92 where	:
	p, 9 & Z. Then, x=3(5p+3q). Since p, 9 & Z, 5p+3q is also Z let k=5p+3q & Z.	
	Then, x=3k, k & Z so x & B. Therefore, A & B. Now we'll show B & A. Let y & Z where	د
	y & B. Then, y=3k, k & Z. Rewrite 3k as y=3k=-15k+18k. Then, y=15(-k)+9(2h).	
	Since $k \in \mathbb{Z}$ - $k \in \mathbb{Z}$ call it a, $2k \in \mathbb{Z}$ call it b. Then, $y = 15a + 9b$ a, $b \in \mathbb{Z}$	
	so y EA, and thus BEA. Since BEA and ASB, A=B	

Discussion Problems - 10.16, 10.2cd																					
10.1 Set Equality Proofs																					
Prove that the following pairs of sets are equal. Or, if you are short on time, outline the proof. That is, write the main structure of the proof, and also apply the definitions of the two sets A and B, but leave out the algebra detail required to connect one definition to the other.																					
(a) $A = \{(x, y) \in \mathbb{R}^2 \mid x^2 + y^2 = 256\}$ and $B = \{(16\cos t, 16\sin t) \mid t \in \mathbb{R}\}$ (b) $X = \{10x + 15y : x, y \in \mathbb{Z}\}$ and $Y = \{n \in \mathbb{Z} : n = 5k \text{ for some } k \in \mathbb{Z}\}$																					
(b) X	$= \{10x\}$	+ 15y:	$x, y \in \mathbb{Z}$	and Y =	$= \{n \in \mathbb{Z} \mid$	n : n = 5k	for som	$\{k \in \mathbb{Z}\}$													
b)	First	, we'	II pr	ove	X ⊆ Y	. L	et	a E	х.	By d	efn.	of	х,	a=10:	k+ 154	wh	we z	,y €2	2. 1	men,	
										orcause											fore
										YEX											
														·							
					· .					let								, b=	104+	isu,	
	6, h	67	,	6	ξX	ard	thu	s Y	⊆ X .	Sin	u Y	≤ X	and	ΧĆ	Υ _	Y = X					
10.2 Chromatic Number																					
Recall that the justification that a particular chromatic number is valid requires bounding the number from above and below. Therefore you must give an $explicit$ coloring to produce an upper bound and produce a valid argument that no smaller number of colors will work to produce a lower bound. The argument justifying the lower bound often involves finding a copy of K_n (where n is the chromatic number you are attempting to validate) as a subgraph. Sometimes, however, you have to work through the space of possible $n-1$ colorings by hand and show that none																					
	n work. id and ju	stify the	chromatic			of the follo		phs.													
	C:		1)	4)		D:	(g		C									
_		3			2	6)	(a	e	(f)	(b)									
۱.	p. r		Noom	ar.	44) _e 7															
								*													
4)	froof	: (hromo	ctic	#	is	۲	~													