Ústav fyziky a technologií plazmatu Přírodovědecké fakulty Masarykovy univerzity

FYZIKÁLNÍ PRAKTIKUM

Fyzikální praktikum 1

Zpracoval: Lukáš Lejdar **Naměřeno:** 7. května 2024

Obor: F **Skupina:** Út 16:00 **Testováno:**

kalorimetr

Úloha č. 6:

Tepelné vlastnosti kapalin – elektrický

 $T = 21, 1 \, {}^{\circ}\text{C}$

p = 101,35 kPa

 $\varphi = 47,7 \%$

1. Úvod

Elektrický kalorimetr je zařízení, které umožňuje měřit tepelnou kapacitu látky v něm. V úloze si jeden kalorimetr poskládám a pokusím se ho zkalibrovat. Zároveň bych měl být schopný dopočítat měrnou tepelnou kapacitu kalibrační kapaliny. V úloze použiju kohoutkovou vodu.

2. Teorie

Fyzicky je elektrický kalorimetr tepelně izolovaná nádoba s teploměrem, míchačkou a elektrickou topnou spirálou o výkonu UI. Dokud v něm probíhají tepelné změny pomalu, můžu pro něj vyjádřit 1. termodynamický zákon

$$dE = UId\tau \tag{1}$$

$$= (mc + K)dt, (2)$$

kde K je kapacita kalorimetru, τ je čas, m hmotnosti látky a c její měrná tepelná kapacita. Pro reálné kalorimetry je ale potřeba uvažovat i ztráty do okolí $dQ_{\rm s}$. Předpokládejme, že jsou podle Newtonova zákona přímo úměrné rozdílu teplot oproti teplotě okolí t_0

$$dQ_{\rm s} = \beta(t - t_0)d\tau \tag{3}$$

$$UId\tau = (mc + K)dt + dQ_{s}$$
(4)

přičemž veličina β je takto definovaný koeficient chladnutí. Je víc způsobů jak kalorimetr použít, vždycky ale bude prvně potřeba znát kapacitu K a koeficient chladnutí β .

2.1. Měření koeficientu chladnutí kalorimetru β

Uvažujme řešení rovnice (2), kde v čase $\tau = 0$ je teplota kalorimetru rovná teplotě okolí (t = t_0) a látku uvnitř ohřívá nenulový výkon spirály. Dosazením dostávám

$$UI = (mc + K)\frac{dt}{d\tau}(0). (5)$$

Zrealizuju popsaný experiment, změřím rychlost růstu teploty na začátku a dozvím se celkovou tepelnou kapacitu (mc+K). Pokud nechám kapalinu dál ohřívat, bude růst rozdíl teplot $(t-t_0)$ a nakonec se ztráty do okolí vyrovnají příkonu UI. Je to moment v čase $\tau_{\rm f}$, kdy dt=0.

$$UI = \beta(t_{\rm f} - t_0) \tag{6}$$

Mohl, bych opravdu počkat než se teplota ustálí, ale to by přesahovalo dobu trvání praktika. Místo toho vyřeším analyticky rovnici (2) pro popsané počáteční podmínky

$$t = t_0 + \frac{UI}{\beta} \left(1 - e^{-\frac{\beta}{mc + K}\tau} \right) \tag{7}$$

a koeficient chladnutí β určím z fitu exponenciely, kde už znám (mc+K). Tento výraz ještě přepíšu pomocí redukované kapacity kalorimetru $\kappa=\frac{K}{c}$ jako

$$mc + K = c(m + \kappa),$$
 (8)

kde k dopočítání měrné tepelné kapacity ještě potřebuji změřit κ .

2.2. Měření kapacity kalorimetru K

Do kalorimetru naplněného kapalinou o počáteční teplotě t_1 a hmotnosti m_1 přidám tu samou kapalinu o teplotě $t_2 > t_1$ a hmotnosti m_2 . Platí kalorimetrická rovnice

$$(m_1c + K)(t - t_1) = m_2c(t_2 - t)$$
(9)

do které dosadím redukovanou kapacitu

$$c(m_1 + \kappa)(t - t_1) = m_2 c(t_2 - t) \tag{10}$$

$$(m_1 + \kappa)(t - t_1) = m_2(t_2 - t) \tag{11}$$

a měrné tepelné kapacity se zkrátí. Vyjádřím κ

$$\kappa = m_2 \frac{t_2 - t}{t - t_1} - m_1 \tag{12}$$

odkud spolu se vztahem (8) můžu dopočítat měrnou tepelnou kapacitu c i kapacitu kalorimetru K, pokud jsem použil tu stejnou kapalinu.

3. Postup měření

Kalorimetr normálně chceme mít s co nejmenšími ztrátami do okolí, abychom ho při běžném používání mohli považovat za úplně izolovaný. Při konstrukci toho mého se budu v zájmu kratšího měření snažit o opak. Na magnetickou míchačku položím větší kádinku, kterou můžu přiklopit víkem s visutou topnou spirálou a otvory pro teploměry. Nádoba je uzavřená, takže výměna tepla ven z kádinky bude probíhat pouze vedením a tím splňuje podmínky kalorimetru. Jako kalibrační kapalinu použiju vodu z kohoutku.

4. Výsledky měření

4.1. Měření koeficientu chladnutí kalorimetru β

Naplnil jsem kalorimetr vodou o hmotnosti $m_{\beta} = (349.5 \pm 0.04)$ g a počkal než se teplota vyrovná s teplotou okolí. Potom jsem zapojil topnou spirálu ke zdroji o příkonu 20 W a měřil teplotu v kádince. Naměřené hodnoty jsou uvedené v grafu 1. a fit je rovnicí (7).

Graf 1: Závislost teploty v kalorimetru na čase

$$\beta = (0.4881 \pm 0.0001)WK^{-1}$$
$$mc + K = (1585 \pm 5)JK^{-1}$$

4.2. Měření kapacity kalorimetru K

Připravil jsem kádinku s vodou o teplotě $t_2 = (41.9 \pm 0.05)$ °C a hmotnosti $m_2 = (236.6 \pm 0.2)$ g a kalorimetr naplnil vodou o teplotě $t_1 = (24.1 \pm 0.05)$ °C a hmotnosti $m_1 = (429.0 \pm 0.2)$ g. Po přelití teplejší vody do kalorimetru se teplota ustálila na $t = (30.1 \pm 0.05)$ °C. Ze vztahu (12) vypočítám redukovanou kapacitu κ a ze vztahu (8) měrnou tepelnou kapacitu vody c a kapacitu kalorimetru K.

$$\kappa = (0.036 \pm 0.007) \ kg$$
 $K = (149 \pm 30) \ \mathrm{JK}^{-1}$
 $c_{\mathrm{v}} = (4110 \pm 80) \ \mathrm{JK}^{-1} \mathrm{kg}^{-1}$

5. Závěr

Postavil jsem kalorimetr z kádinky a změřil jeho kapacitu $K=(149\pm30)~\rm JK^{-1}$ a koeficient chladnutí $\beta=(0.4881\pm0.0001)~\rm JK^{-1}$. Navíc jsem změřil i měrnou tepelnou kapacitu vody $c_{\rm v}=(4110\pm80)~\rm JK^{-1}kg^{-1}$. Tabulky udávají hodnotu 4128 JK⁻¹kg⁻¹. Největším zdrojem nejistoty jsou nejisoty teplot $t_1,\,t_2$ a t. Ve vztahu (12) se totiž odčítají dvě velmi podobné hodnoty

$$m_2 \frac{t_2 - t}{t - t_1} = (0.465 \pm 0.007)g$$

 $m_1 = (0.429 \pm 0.00002)g$

a velká část přesnosti měření se tak ztratí.