Data Mining

Analyse Factorielle des Correspondances

W. Toussile wilson.toussile@gmail.com

¹Département MSP École Nationale Supérieure Polytechnique

06/01/2020

- Concepts
- 2 Test d'indépendance du Khi 2
- 3 AFC (binaire)

Section 1

Introduction

Introduction

- Proposée par J.P. Benzécri, l'AFC (binaire) permet d'étudier la liaison (correspondance) entre deux variables qualitatives.
- Elle repose sur l'analyse du table de contingence associé à deux variables qualitatives X et Y sur un ensemble de n individus, et certains tableaux binaires (dits d'indicatrices).
- L'AFC peut être vue comme une ACP associée à la métrique du chi2.
- C'est une méthode très utilisée en analyse des données textuelles.

Position du pb

- Données: $\{(x_i, y_i)\}_{i=1}^n$
- $(x_i, y_i) \in X(\Omega) \times Y(\Omega)$, observations d'un couple (X, Y) de variables qualitatives avec les modalités $X(\Omega) = \{a_1, \cdots, a_k, \cdots, a_K\}$ et $Y(\Omega) = \{b_1, \cdots, b_l, \cdots, b_L\}$ resp.

Problème

Représentater les liens (correspondances) entre les modalités de X et celles de Y en dimension réduite, en général 2, en perdant le moins d'information possible.

Section 2

Concepts

Table de contingence

$X \mid Y$	• • • •	b_I^Y		Total
i	:	:	:	:
a_k^X		$n_{k,l}$		$n_{k,+} = \sum_{l} n_{k,l}$
:	:	:	:	i i
Total	:	$n_{+,l} = \sum_k n_{k,l}$:	$n=\sum_{k,l}n_{k,l}$

ullet On note $N=\left(n_{k,l}
ight)_{k,l}\in\mathbb{N}^{K imes L}$

Table des fréquences

$X \mid Y$	• • •	b_l^{Y}		Total	
i	:	:	:	÷ :	
a_k^X		$f_{k,l} = \frac{n_{k,l}}{n}$		$f_{k,+} = \frac{n_{k,+}}{n} = \sum_{I} f_{k,I}$	
:	:	:	:	:	
Total	÷	$f_{+,l} = \frac{n_{+,l}}{n} = \sum_{k} f_{k,l}$:	1	

ullet On note $F=\left(f_{k,l}
ight)_{k,l}\in[0,1]^{K imes L}$

Profils

Profils lignes

- Ligne k: $L_k = \left(\frac{n_{k,l}}{n_{k,+}}\right)_l \in \mathbb{R}^L$
- Matrice des profils lignes: $L = \left(\frac{n_{k,l}}{n_{k,+}}\right)_{k,l} \in \mathbb{R}^{K \times L}$
- Profil ligne moyen: $\left(\sum_{k}f_{k,+}\frac{f_{k,l}}{f_{k,+}}\right)_{l}=\left(f_{+,l}\right)_{l}\in\mathbb{R}^{L}$

Exo

On pose

$$D_{K,\cdot} = diag\left((f_{k,+})_k \right).$$

Montrer que $L = D_{\kappa}^{-1} F$

Profils

Profils colonnes

- Colonne *I*: $C_I = \left(\frac{n_{k,I}}{n_{+,I}}\right)_I \in \mathbb{R}^K$
- Matrice des profils colonnes: $C = \left(\frac{n_{k,l}}{n_{+,l}}\right)_{k,l} \in \mathbb{R}^{K \times L}$
- Profil colonne moyen: $\left(\sum_{l} f_{+,l} \frac{f_{k,l}}{f_{+,l}}\right)_{k} = \left(f_{k,+}\right)_{k} \in \mathbb{R}^{K}$

Exo

On pose

$$D_{\cdot,L} = diag((f_{+,I})_I).$$

Montrer que $C = D_{\cdot,I}^{-1t}F$

Distance du Khi 2 entre profils

Profils lignes

$$d^{2}(L_{k}, L_{k'}) := \sum_{l} \frac{1}{f_{+,l}} \left(\frac{f_{k,l}}{f_{k,+}} - \frac{f_{k',l}}{f_{k',+}} \right)^{2}$$

Exo

Montrer que la distance du Khi 2 entre profils lignes est définie par la métrique $D_{...}^{-1}$

Distance du Khi 2 entre profils

Profils Colonnes

$$d^{2}(C_{I}, C_{I'}) := \sum_{k} \frac{1}{f_{k,+}} \left(\frac{f_{k,I}}{f_{+,I}} - \frac{f_{k,I'}}{f_{+,I'}} \right)^{2}$$

Exo

Montrer que la distance du Khi 2 entre profils colonnes est définie par la métrique D_{κ}^{-1}

Section 3

Test d'indépendance du Khi 2

Test d'indépendance du Khi 2

Les hypothèses

 \mathcal{H}_0 : Les deux variables sont indépendantes

 \mathcal{H}_1 : Les deux variables ne sont pas indépendantes

- Cette question est globale par rapport à l'objectif de l'AFC
- L'AFC permet d'examiner plus finement les liens (correspondances) entre les modalités des deux variables.
- Sous l'hypothèse \mathcal{H}_0 , la fréquence attendue de la modalité (a_k,b_l) est

$$\widehat{f}_{k,l} = f_{k,+} f_{+,l}$$

Test d'indépendance du Khi 2

Stat. de test et décision

$$\mathbb{X}^2 = n \sum_{k} \sum_{l} \frac{\left(f_{k,l} - \widehat{f}_{k,l}\right)^2}{\widehat{f}_{k,l}} \xrightarrow{\mathcal{H}_0} \mathcal{X}^2_{(K-1)(L-1)}$$

Au seuil $\alpha \in]0,1[$ (en général $\alpha = 5\%$), on rejette \mathcal{H}_0 si et seulement si

$$\mathbb{X}^2_{obs} > q_{1-lpha}\left(\mathcal{X}^2_{(\mathcal{K}-1)(L-1)}\right)$$

Introduction

Section 4

AFC (binaire)

AFC (binaire)

Note

- Reppelons que l'objectif est de représenter les profils lignes et colonnes dans un espace de dimension réduite (en général 2), de sorte à conserver au mieux les distances entre profils lignes et profils colonnes.
- La proximité entre une modalité a_k de X et une modalité b_l de Y représente alors le lien (la correspondance) positive entre a_k et b_l
- L'AFC est une double ACP: ACP sur les profils lignes et ACP sur les profiles colonnes
- Notons:
 - $\bar{I} = (f_{+,I})_I \in \mathbb{R}^L$ le profil ligne moyen
 - $ightharpoonup \overline{c} = (f_{k,+})_{k} \in \mathbb{R}^{K}$ le profil colonne moyen

AFC (binaire)

Données pour les ACP

ACP	AFC lignes	AFC colonnes
Données centées	$L_c = D_{K,\cdot}^{-1} F - 1_K{}^t \overline{I}$	$C_c = D_{\cdot,L}^{-1} F - 1_L{}^t \overline{c}$
Poids	$D_{K,\cdot}^{-1}$	$D_{\cdot,L}^{-1}$
Métrique	$D_{\cdot,L}^{-1}$	$D_{K,\cdot}^{-1}$
C.P.	$L_c D_{\cdot,L}^{-1} U$	$C_c D_{K,\cdot}^{-1} V$

Exemple

Introduction

On s'interesse à la couleur des yeux et celle des cheveux de n=592 femmes. Les données sont résumées dans le tableau suivant:

eux Cheveux	Chatains	Roux	Blonds
Marrons	119	26	7
Noisette	54	14	10
Verts	29	14	16
Bleus	84	17	94

- Existe-t-il un lien entre couleur des yeux et couleur des cheveux?
- Si oui, quelles sont les correspondances?