Congratulations! You passed!

Next Item

1/1 points

1.

What is the "cache" used for in our implementation of forward propagation and backward propagation?

- We use it to pass variables computed during backward propagation to the corresponding forward propagation step. It contains useful values for forward propagation to compute activations.
- It is used to keep track of the hyperparameters that we are searching over, to speed up computation.
- O It is used to cache the intermediate values of the cost function during training.
- We use it to pass variables computed during forward propagation to the corresponding backward propagation step. It contains useful values for backward propagation to compute derivatives.

C - ----

Correct, the "cache" records values from the forward propagation units and sends it to the backward propagation units because it is needed to compute the chain rule derivatives.

1/1 points

2.

Among the following, which ones are "hyperparameters"? (Check all that apply.)

- number of iterations
- Correct

Key conces	etston Deep Neural Networks	10/10 poi
	learning rate $lpha$	
Cc	prrect	
	bias vectors $b^{[l]}$	
Uı	n-selected is correct	
	activation values $a^{[l]}$	
Uı	n-selected is correct	
	weight matrices $W^{[l]}$	
Uı	n-selected is correct	
	number of layers L in the neural network	
Co	orrect	
~	1 / 1 points	
3. Whice	ch of the following statements is true?	
C	The deeper layers of a neural network are typically computing more complex fea of the input than the earlier layers.	tures
Co	prrect	
C	The earlier layers of a neural network are typically computing more complex feat the input than the deeper layers.	ures of
✓	1 / 1 points	
4.		

Vectorization allows you to compute forward propagation in an L-layer neural network without an explicit for-loop (or any other explicit iterative loop) over the layers I=1, 2, ..., L. True/False?

True

Quiz, 10 questions

Correct

Forward propagation propagates the input through the layers, although for shallow networks we may just write all the lines $(a^{[2]}=g^{[2]}(z^{[2]})$, $z^{[2]}=W^{[2]}a^{[1]}+b^{[2]}$, ...) in a deeper network, we cannot avoid a for loop iterating over the layers: $(a^{[l]}=g^{[l]}(z^{[l]})$, $z^{[l]}=W^{[l]}a^{[l-1]}+b^{[l]}$, ...).

1/1 points

5.

Assume we store the values for $n^{[l]}$ in an array called layers, as follows: layer_dims = $[n_x, 4,3,2,1]$. So layer 1 has four hidden units, layer 2 has 3 hidden units and so on. Which of the following forloops will allow you to initialize the parameters for the model?

```
1 for(i in range(1, len(layer_dims)/2)):
2    parameter['W' + str(i)] = np.random.randn(layers[i], layers[i-1])) * 0.01
3    parameter['b' + str(i)] = np.random.randn(layers[i], 1) * 0.01
```

```
for(i in range(1, len(layer_dims)/2)):
    parameter['W' + str(i)] = np.random.randn(layers[i], layers[i-1])) * 0.01
    parameter['b' + str(i)] = np.random.randn(layers[i-1], 1) * 0.01
```

```
1 for(i in range(1, len(layer_dims))):
2  parameter['W' + str(i)] = np.random.randn(layers[i-1], layers[i])) * 0.01
3  parameter['b' + str(i)] = np.random.randn(layers[i], 1) * 0.01
```

```
for(i in range(1, len(layer_dims))):
    parameter['W' + str(i)] = np.random.randn(layers[i], layers[i-1])) * 0.01
    parameter['b' + str(i)] = np.random.randn(layers[i], 1) * 0.01
```

Correct

/

1/1 points

6.

How many layers does this network have?

igcirc The number of layers L is 4. The number of hidden layers is 3.

Correct

Yes. As seen in lecture, the number of layers is counted as the number of hidden layers + 1. The input and output layers are not counted as hidden layers.

0	The number of layers L is 3. The number of hidden layers is 3.
0	The number of layers $\it L$ is 4. The number of hidden layers is 4.
0	The number of layers ${\cal L}$ is 5. The number of hidden layers is 4.

1/1 points

7.

During forward propagation, in the forward function for a layer l you need to know what is the activation function in a layer (Sigmoid, tanh, ReLU, etc.). During backpropagation, the corresponding backward function also needs to know what is the activation function for layer l, since the gradient depends on it. True/False?

True

Correct

Yes, as you've seen in the week 3 each activation has a different derivative. Thus, during backpropagation you need to know which activation was used in the forward propagation to be able to compute the correct derivative.

O False

1/1 points Quiz, 10 questions compute the function using a shallow network circuit, you will need a large network (where we measure size by the number of logic gates in the network), but (ii) To compute it using a deep network circuit, you need only an exponentially smaller network. True/False?

> True Correct False

1/1 points

9.

Consider the following 2 hidden layer neural network:

Which of the following statements are True? (Check all that apply).

 $W^{[1]}$ will have shape (4, 4)

Correct

Yes. More generally, the shape of $W^{[l]}$ is $(n^{[l]}, n^{[l-1]})$.

 $b^{[1]}$ will have shape (4, 1)

Correct

Yes. More generally, the shape of $b^{[l]}$ is $(n^{[l]},1)$.

 $W^{\left[1
ight]}$ will have shape (3, 4)

	$b^{[1]}$ will have shape (3, 1)	
Un-selected is correct		
	$W^{\left[2 ight]}$ will have shape (3, 4)	
Correct Yes. More generally, the shape of $W^{[l]}$ is $(n^{[l]}, n^{[l-1]})$.		
	$b^{[2]}$ will have shape (1, 1)	
Un-selected is correct		
	$W^{\left[2 ight]}$ will have shape (3, 1)	
Un-selected is correct		
	$b^{[2]}$ will have shape (3, 1)	
Correct Yes. More generally, the shape of $b^{[l]}$ is $(n^{[l]},1)$.		
	$W^{\left[3 ight]}$ will have shape (3, 1)	
Un-selected is correct		
	$b^{[3]}$ will have shape (1, 1)	
Corre Yes.	ect More generally, the shape of $b^{[l]}$ is $(n^{[l]},1)$.	
	$W^{\left[3 ight]}$ will have shape (1, 3)	
Correct Yes. More generally, the shape of $W^{[l]}$ is $(n^{[l]}, n^{[l-1]})$.		
	$b^{[3]}$ will have shape (3, 1)	
Un-selected is correct		

Key concepts on Deep Neural Networks

10/10 points (100%)

1/1 points

10.

Whereas the previous question used a specific network, in the general case what is the dimension of $W^{[l]}$, the weight matrix associated with layer l?

- $oldsymbol{O} \quad W^{[l]}$ has shape $(n^{[l]}, n^{[l+1]})$
- $oldsymbol{\mathsf{O}} \quad W^{[l]}$ has shape $(n^{[l+1]}, n^{[l]})$
- $oldsymbol{\mathsf{O}} \quad W^{[l]}$ has shape $(n^{[l]}, n^{[l-1]})$

Correct

True

 $oldsymbol{\mathsf{O}} \quad W^{[l]}$ has shape $(n^{[l-1]}, n^{[l]})$

