CSE221

Performance analysis

Fall 2021 Young-ri Choi

Outline

- Performance analysis
- Performance measurement

Performance Evaluation

- Judging programs
- How?
 - —Prior estimate
 - Performance analysis
 - –Posteriori testing
 - Performance measurement

3

© 2010 Goodrich, Tamassia Analysis of Algorithms

Performance Analysis

- Theoretical analysis
- Criteria: Complexity
 - –Space complexity
 - –Time complexity
- Complexity is affected by instance characteristics (size of inputs and outputs)
 - -E.g., function f(n) where n is input size

Theoretical Analysis

- s ne ntation
- Uses a high-level description of the algorithm instead of an implementation
- Characterizes running time as a function of the input size, *n*.
- Takes into account all possible inputs
- Allows us to evaluate the speed of an algorithm independent of the hardware/software environment

Space Complexity

- $S(P) = c + S_p(instance characteristics)$
- Fixed part : c
 - —Independent of input/output characteristics
 - -Space for instruction, constants, etc.
- Variable part : S_p(instance characteristics)
 - Space for variables whose size is dependent of input/ output, recursion stack space, etc.

Since c is constant, we only focus on S_p for space complexity!


```
float Abc(float a, float b, float c)
{
   return a+b+b*c+(a+b-c)/(a+b)+4.0;
}
```

- 1. What are the instance characteristics?
- 2. S_p?


```
float Abc(float a, float b, float c)
{
   return a+b+b*c+(a+b-c)/(a+b)+4.0;
}
```

1. What are the instance characteristics?

2.
$$S_p = 0$$


```
float Sum(float *a, const int n)
{
  float s = 0;
  for(int i=0; i<n; i++)
    s += a[i];
  return s;
}</pre>
```

- 1. What are the instance characteristics?
- 2. S_p?


```
float Sum(float *a, const int n)
{
  float s = 0;
  for(int i=0; i<n; i++)
    s += a[i];
  return s;
}</pre>
```

1. What are the instance characteristics?

Analysis of Algorithms

2.
$$S_p = 0$$


```
float RSum(float *a, const int n)
{
  if(n<=0) return 0;
  else return (Rsum(a, n-1)+a[n-1]);
}</pre>
```

- 1. What are the instance characteristics?
- 2. S_p ?


```
float RSum(float *a, const int n)
{
  if(n<=0) return 0;
  else return (Rsum(a, n-1)+a[n-1]);
}</pre>
```

1. What are the instance characteristics?

Time Complexity

- T(P) = compile time + run time
- Compile time: one-time cost (ignore)
- Actual run time: can only be measured
 - -Compiler / machine / runtime dependent
 - Difficult to derive exact time for operators
- Use a <u>program step</u> instead

Program Steps (Primitive Operations)

 A segment of program with constant execution time (independent of instance characteristics)

e.g.,
$$a+b+b*c+(a+b-c)/(a+b)+4.0$$

- Set of primitive operations
 - Assigning a value to a variable
 - –Calling a function
 - -Arithmetic operations (+,-,*,/, ...)
 - Comparing two numbers
 - Indexing into an array
 - Following an object reference
 - –Returning from a function...


```
float Sum(float *a, const int n)
{
   float s = 0;
   for (int i = 0; i < n; i++)
   {
      s += a[i];
   }
   return s;
}</pre>
```


Step count: 2n + 3


```
float Rsum(float *a, const int n)
{
    if(n <= 0)
    {
        return 0;
    }
    else
    {
        return (Rsum(a, n-1)+a[n-1]);
    }
}</pre>
```



```
float Rsum(float *a, const int n)
            if(n \ll 0)
                 return 0;
            else
                 return (Rsum(a, n-1)+a[n-1]);
Rsum + 1
                       Step count: 2n + 2
     T(P) = 2 + Rsum(n-1) = 2 + 2 + Rsum(n-2) = ... = 2n + Rsum(0) = 2n + 2
```



```
void Add(int **a,int **b,int n,int m)
{
   for(int i=0; i<m; i++)
   {
      for(int j=0; j<n; j++)
      {
        c[i][j] = a[i][j]+b[i][j];
      }
   }
}</pre>
```


Step count: 2nm + 2m + 1

20

Best, Worst, Average Step Count

- What if expressions depend on complex characteristics?
- Ex) linear search

Comparing Step Count

- What step count means?
 - How the run time changes when the instance characteristics changes
 - —e.g., how much the program becomes slower if the input size grows
- P_{Δ} : 2n + 1
- $P_{B}: 3n^{2}$
 - When n is doubled, P_A becomes 2x slower but P_B becomes 4x slower

22

Comparing Step Count

- P_{Δ} : $n^2 + 200$
- $P_B : n^2 + 100$
 - -When n = 1, running time of P_A and P_B become 201 and 101, respectively (1.99x difference)
 - -When n = 100, running time of P_A and P_B become 10200 and 10100, respectively (1.009x difference)
 - If n becomes very large, P_A and P_B converges (n² term dominates)
- P_A runs same as P_B asymptotically!

Asymptotic Analysis

- Asymptotic behaviour
 - —behaviour as input n approaches infinity
 - input: instance characteristics
 - –dominant factor prevails
 - constants become "insignificant"

24

© 2010 Goodrich, Tamassia Analysis of Algorithms

Asymptotic Analysis

- We need relatively easy ways to compare functions as problem size n vary:
 - —A is 'at most' as fast/big as B
 - —A is 'at least' as fast/big as B
 - –A is 'equal' in performance/size to B
- Asymptotic behaviour
 - The behaviour as some key parameter n increases towards infinity

Big-O

• Formally, given functions f(x), g(x),

$$f(x) = O(g(x))$$

if there exist positive constants c and x_0 such that $f(x) \le cg(x)$ for all $x \ge x_0$

- Meaning of Big-O
 - For sufficiently large x, f is bounded by g with a scalar factor
 - -f is "at most" g beyond some value x_0
 - g is an upper bound of f

- 3n+2 = O(n) ?
 - $-Yes. 3n + 2 \le 4n$ for all $n \ge 2$
- $1000n^2 + 100n 6 = O(n^2)$?
 - $-Yes. 1000n^2 + 100n 6 ≤ 1001n^2$ for all n ≥ 100
- $6*2^n+n^2 = O(2^n)$?
 - $-Yes. 6*2^n + n^2 \le 7*2^n$ for all $n \ge 4$

Asymptotic Complexity

Order of magnitude – higher one dominates

-O(1) : constant

-O(log n) : logarithmic

-O(n): linear

-O(nlog n) : log linear

 $-O(n^2)$: quadratic

 $-O(n^3)$: cubic

-O(2ⁿ) : exponential

-O(n!) : factorial

Higher

Informative Big-O

- How good the bound is?
 - $-3n+2 = O(n) = O(n^2)$?
 - —Both are correct statement
 - -O(n) is tighter bound and more informative
 - -O(n²) is less informative and not used

29

Big-Oh Rules

- If is f(n) a polynomial of degree d, then f(n) is $O(n^d)$, i.e.,
 - 1.Drop lower-order terms
 - 2.Drop constant factors
- Use the smallest possible class of functions
 - -Say "2n is O(n)" instead of "2n is $O(n^2)$ "
- Use the simplest expression of the class
 - -Say "3n + 5 is O(n)" instead of "3n + 5 is O(3n)"

Theta and Omega

• Omega (Ω) meaning "at least" (lower bound):

$$f(x) = \Omega(g(x))$$

- -If there exist positive constants c and x_0 such that $cg(x) \le f(x)$ for all $x \ge x_0$
- Theta (Θ) "equals" or "goes as":

$$f(x) = \Theta(g(x))$$

-If there exist positive constants c_1 , c_2 , and x_0 such th at $c_1g(x) \le f(x) \le c_2g(x)$ for all $x \ge x_0$

• For t > 45, B(t) is always greater than A(t): A = O(B)

$$A(t) = 1000t$$

$$B(t) = 100t + 20t^2$$
$$C(t) = 25t^2$$

$$C(t) = 25t^2$$

• Can we say B=O(A)?

$$A(t) = 1000t$$

$$B(t) = 100t + 20t^2$$
$$C(t) = 25t^2$$

$$C(t) = 25t^2$$

- For t > 20, B(t) is always less than C(t):?
- For t > 0, 1.25*B(t) is always greater than C(t):?

$$A(t) = 1000t$$

$$B(t) = 100t + 20t^2$$

$$C(t) = 25t^2$$

 $C=\Theta(B)!$

- For t > 20, B(t) is always less than C(t): $C = \Omega(B)$
- For t > 0, 1.25*B(t) is always greater than C(t): C=O(B)

$$A(t) = 1000t$$

$$B(t) = 100t + 20t^2$$

$$C(t) = 25t^2$$

Plot of Functions

Comparison of Two Algorithms

insertion sort is $n^2 / 4$

merge sort is

2 n lg n

sort a million items?

insertion sort takes

roughly 70 hours

while

merge sort takes roughly 40 seconds

This is a slow machine, but if 100x as fast then it's 40 minutes versus less than 0.5 seconds

Run time for 1billion steps / sec computer

	f(n)						
n	n	$n\log_2 n$	n^2	n^3	n^4	n ¹⁰ *	2 ⁿ
10	.01 µs	.03 µs	.1 μs	1 μs	10 μs	10 s	1 µs
20	.02 µs	.09 μs	.4 μs	8 μs	160 μ.	2.84 h	1 ms
30	.03 μ.	.15 μ.	.9 μ.	27 μ.	810 д	6.83 d	1 s
40	.04 µs	.21 µs	1.6 µs	64 µs	2.56 ms	121 d	18 m
50	.05 µs	.28 µs	2.5 μs	125 µs	6.25 ms	3.1 y	13 d
100	.10 µs	.66 µs	10 µs	1 ms	100 ms	3171 y	4*10 ¹³ y
10 ³	l μs	9.96 µs	1 ms	1 s	16.67 m	3.17*10 ¹³ y	32*10 ²⁸³ y
104	10 µs	130 µs	100 ms	16.67 m	115.7 d	3.17*10 ²³ y	
10 ⁵	100 µs	1.66 ms	10 s	11.57 d	3171 y	3.17*10 ³³ y	
10 ⁶	1 ms	19.92 ms	16.67 m	31.71 y	3.17*10 ⁷ y	3.17*10 ⁴³ y	

 μ s = microsecond = 10⁻⁶ seconds; ms = milliseconds = 10⁻³ seconds s = seconds; m = minutes; h = hours; d = days; y = years

38

© 2010 Goodrich, Tamassia Analysis of Algorithms

Performance Measurement

- Use timer function
 - CPU time only for serial program
 - -Wall-clock time for parallel program
- total = start stop
- Timer has accuracy limitation
 - -1/100 sec, etc
- Multiple runs and average gives accurate time

Timing in C

Multiple Runs

```
do {
    counter++;
    start = clock();
    doSomething();
    stop = clock();
    elapsedTime += stop - start;
    } while (elapsedTime < 1000)
elapsedTime /= counter;</pre>
```


Questions?

