Kandi

Joni Hanski

20.4.2016

# Sisältö

| 1 | Johdanto                                 | 2 |
|---|------------------------------------------|---|
| 2 | Topologia                                | 3 |
| 3 | Metrinen avaruus                         | 5 |
| 4 | Sulkeuman karakterisointi jonojen avulla | 6 |
| 5 | Erikoinen ei-metrinen avaruus            | 7 |
| 6 | Verkko                                   | 9 |

#### Johdanto

Kandissamme haluamme osoittaa metrisissä avaruuksissa sulkeuman karakterisoinnin jonon raja-arvojen avulla yleistyvän yleisiin topologisiin avaruuksiin käyttämällä jonojen sijaan konstruktiota **suunnattu verkko**. Kandi kuuluu topologian alaan, ja suurimmaksi osaksi sisältyy kurssiin Topologia II.

Osoitamme aluksi miten metrisessä avaruudessa sulkeuma voidaan karakterisoida jonojen raja-arvojen avulla, ja tämän jälkeen tutkimme ei-metrisen avaruuden tapausta jossa sama tulos ei enää päde. Tämän jälkeen johdamme suunnattuja verkkoja käyttävän tuloksen yleisiin topologisiin avaruuksiin, ja näytämme kuinka tämä määrittely johtaa eri lopputulokseen esimerkkitapauksessamme.

## Topologia

Topologian avulla voidaan puhua avaruuden rakenteesta. Tietyllä tapaa topologia kuvaa sitä, kuinka lähellä tai kaukana pisteet ovat toisistaan.

**Määritelmä 2.1.** Topologia. Olkoon X avaruus ja  $\mathcal{T} \subset \mathbb{P}(X)$  joukon X osajoukkojen joukko. Sanomme, että  $\mathcal{T}$  on joukon X topologia, mikäli seuraavat ehdot pätevät:

- $(T1) \mathcal{T}$  sisältää osajoukkojensa mielivaltaiset yhdisteet
- (T2) Jos  $A, B \in \mathcal{T}$ , niin  $A \cap B \in \mathcal{T}$
- $(T3) X, \emptyset \in \mathcal{T}$

Jos joukolle X on määrätty topologia  $\mathcal{T}$ , sanomme että X on topologinen avaruus.

Jos joukko  $A \subset X$  kuuluu avaruuden X topologiaan  $\mathcal{T}$ , sanomme että joukko A on  $\mathcal{T}$ -avoin, tai lyhyesti avoin, mikäli topologia on asiayhteydestä selvä. Mikäli joukon  $A \subset X$  komplementti  $X \setminus A$  on avoin, sanomme että A on suljettu. Joukko voi olla avoin, suljettu, molemmat tai ei kumpikaan. Esimerkiksi koko avaruus X on aina sekä avoin että suljettu.

Oletamme tästedes, että X on topologinen avaruus.

**Määritelmä 2.2.** Ympäristö. Olkoon  $x \in X$  ja  $A \subset X$ . Sanomme että A on pisteen x ympäristö, mikäli A on avoin ja  $x \in A$ .

Määritelmä 2.3. Sulkeuma. Joukon  $A \subset X$  sulkeuma määritellään niiden pisteiden joukkona, joiden jokainen ympäristö leikkaa joukon A.

(2.4)  $\overline{A} = \text{sulkeuma } A = \{x \in X \mid \text{jos } U \text{ on pisteen } x \text{ ympäristö, niin pätee } U \cap A \neq \emptyset \}$ 

Joukon A sulkeuma on suljettu, ja sisältyy jokaiseen suljettuun joukkoon joka sisältää joukon A. Intuitiivisesti tämä seuraa siitä, että sulkeuman komplementti on yhdiste kaikista avoimista joukoista jotka eivät leikkaa joukkoa A.

Määritelmä 2.5. Kanta. Käytännössä voi olla hankala listata jokainen tietyn topologian avoin joukko määritellessä topologiaa. Tämän sijaan usein puhutaan rajatummasta joukosta avoimia joukkoja, jotka yksikäsitteisesti määräävät topologian. Joukko  $\mathcal{B} \subset \mathbb{P}(X)$ on topologian kanta joukossa X, mikäli seuraavat ehdot pätevät:

- (K1)  $\bigcup_{B\in\mathcal{B}}B=X$ . (K2) Jos  $x\in B_1\cap B_2$  ja  $B_1,B_2\in\mathcal{B}$ , tällöin on olemassa  $B\in\mathcal{B}$  siten, että  $x\in B\subset$  $B_1 \cap B_2$ .

 Joukko  $U\subset \mathbf{X}$  kuuluu kannan  $\mathcal B$  määräämään topologiaan jos ja vain jos U on jokin yhdiste kannan alkioista.

## Metrinen avaruus

Metrisen avaruuden keskeinen käsite on metriikka, joka pyrkii formalisoimaan etäisyyden käsitteen. Kandin aiheen kannalta erityisen huomionarvoista on se, että metriikka määrää yksiselitteisesti avaruudelle luonnollisen topologian.

Määritelmä 3.1. egation. De Morgans Law of Set Theory Proof - Math Theorems Statement:

Metriikka. Joukossa X määritelty funkti<br/>o $d: \mathbf{X} \times \mathbf{X} \to \mathbb{R}$ on metriikkajoukossa X jos pätee

- (M1) Kaikilla  $a, b \in X$  pätee  $d(a, b) \ge 0$ .
- (M2) d(a,b) = 0 jos ja vain jos a = b.
- (M3) (Kolmioepäyhtälö) Kaikilla  $a, b, c \in X$  pätee  $d(a, c) \leq d(a, b) + d(b, c)$ .

**Määritelmä 3.2.** Palloympäristö. Pisteen  $x \in X$  r-säteinen palloympäristö on joukko  $B(x,r) = \{y \in X \mid d(x,y) < r\}.$ 

Metriselle avaruudelle on hyvin luonnollista määrätä topologia käyttämällä kantana avaruuden eri palloympäristöjä. Jos siis X on metrinen avaruus, sen kannaksi valitaan  $\mathcal{B} = \{B(x,r) \mid x \in X, r \in \mathbb{R}\}$ . Kutsumme kannan  $\mathcal{B}$  määräämää topologiaa nyt metriikan indusoimaksi topologiaksi joukossa X.

# Sulkeuman karakterisointi jonojen avulla

Palautetaan ensin mieleen jonon määritelmä. Sanomme, että kuvaus  $x : \mathbb{N} \to X$  on jono avaruudessa X, ja merkitsemme  $x_n := x(n)$ . Erityisesti jonon suppeneminen ja raja-arvo on työmme kannalta keskeistä.

Määritelmä 4.1. Jonon suppeneminen. Olkoon X topologinen avaruus, ja olkoon a jono avaruudessa X. Sanomme, että jono suppenee kohti pistettä x, mikäli jokaista pisteen x ympäristöä  $U \subset X$  kohti voidaan valita jonon a indeksi  $n_U$  siten, että kaikilla  $n > n_U$  pätee  $a_n \in U$ . Tiettyjen ehtojen pätiessä avaruuden jono voi supeta vain yhtä pistettä kohti. Tällöin jos jono suppenee kohti pistettä x, voimme sanoa että x on jonon raja-arvo.

Todistamatta mainitsemme että metrisessä avaruudessa jono voi supeta vain yhtä pistettä kohti.

Metrisessä avaruudessa voimme nyt osoittaa, että joukon A jonojen raja-arvojen joukko on sama kuin joukon A sulkeuma. Tämä tarkoittaa, että piste x kuuluu joukon A sulkeumaan jos ja vain jos on sellainen jono  $a: \mathbb{N} \to A$  että tämän raja-arvo on x. Todistuksessa on kaksi puolta.

Kohta 1. Osoitetaan, että jos jono  $a:\mathbb{N}\to A$  suppenee kohti pistettä  $x\in X$ , piste x kuuluu joukon A sulkeumaan.

Sulkeuman määritelmän perusteella riittää osoittaa että jokaiselle pisteen x ympäristölle  $U \subset X$  pätee, että  $U \cap A \neq \emptyset$ .

TODO

#### Erikoinen ei-metrinen avaruus

Aiemmin huomasimme että metrisessä avaruudessa jonon raja-arvojen avulla voidaan määrittää sulkeuma. Nyt tutkimme ei-metristä avaruutta jossa tämä karakterisointi ei päde.

Olkoon  $\mathbb{R}$  avaruus, jossa topologian  $\mathcal{T}$  määrittelee seuraava ehto:

(5.1) 
$$\mathcal{T} = \{ U \subset \mathbb{R} \mid \mathbb{R} \setminus U \text{ on numeroituva} \} \cup \{ \emptyset \}$$

Osoitamme ensin että  $\mathcal{T}$  määrää topologian. Ehdot 1 ja 2 voidaan osoittaa De Morganin laeilla, eli

$$(5.2) (A \cap B)^C = A^C \cup B^C$$

$$(5.3) (A \cup B)^C = A^C \cap B^C$$

Ehdon 1 kohdalla huomaamme että jos joukon A komplementti on numeroituva, tällöin yhdisteen  $A \cup B$  komplementti sisältyy joukon A komplementtiin. Toisaalta ehto 2 toteutuu kun huomaamme että kahden numeroituvan joukon yhdiste on yhä numeroituva, eli kahden joukon leikkauksen komplementti on yhä numeroituva jos molempien alkuperäisten joukkojen komplementti oli numeroituva.

Ehto 3 toteutuu selvästi.

Tutkitaan erityisesti yksikköväliä I = [0, 1]. Joukon I sulkeuma osoittautuu olevan koko avaruus X. Tämän osoittamiseksi teemme vastaoletuksen, eli oletamme että löytyy  $x \in X$  joka ei kuulu joukon I sulkeumaan. Tällöin pisteellä x on ainakin yksi ympäristö  $U \subset X$  joka ei leikkaa joukkoa I. Tällöin  $I \subset U^C$ . Koska tästä seuraisi että  $U^C$  on ylinumeroituva, tämä on ristiriita, eli vastaoletuksemme oli väärä.

Toisaalta voimme osoittaa että jos  $x \in \mathbb{R}$  ja  $x \notin I$ , mikään joukon I jono ei suppene kohti pistettä x. Teemme jälleen vastaoletuksen, eli että löytyy jono a joukossa I joka suppenee kohti pistettä x.

Nyt voimme valita pisteelle x ympäristön  $U \subset \mathbb{R}$  siten, että

$$(5.4) U = \mathbb{R} \setminus \{x \in \mathbb{R} \mid a_i = x \text{ jollain } i \in \mathbb{N}\}\$$

Selvästi tämä joukko on avoin, koska tämän sulkeuma on jonon arvojoukko. Selvästi joukko U myös sisältää pisteen x, sillä jonon arvot jäävät joukkoon I mutta  $x \notin I$ . Täten U on pisteen x ympäristö, ja toisaalta myös selvästi jonon alkiot eivät ikinä sisälly tähän joukkoon. Koska jonon suppeneminen vaatii että jokaiselle pisteen x ympäristölle pätee että ennen pitkään jono saa arvonsa tässä joukossa, saamme ristiriidan, eli jonomme ei suppene kohti pistettä x. Koska emme tehneet mitään oletuksia jonosta, saamme että mikään yksikkövälin I jono ei suppene kohti pistettä x.

Täten sulkeuma on tässä merkillisessä avaruudessamme laajempi kuin jonojen suppenemispisteet. Jotta saisimme kuvailtuja sulkeumaa suppenemisen kautta, meidän on käytettävä jonoja yleisempää käsitettä.

#### Verkko

Suunnattu verkko yleistää verkon käsitettä. Isolta osin verkon määritelmä vastaa jonon määritelmää, joten mainitsemme erikseen mikäli verkon ominaisuus poikkeaa jonosta.

Jono on kuvaus luonnollisilta luvuilta  $\mathbb N$  kohdeavaruuteen X. Verkko sen sijaan ottaa lähtöavaruudekseen jonkin  $suunnatun\ joukon$ . Suunnattu joukko on määritelty seuraavasti:

Määritelmä 6.1. Suunnattu joukko. Olkoon joukko X jokin joukko, jossa on määritelty relaatio < joka toteuttaa seuraavat ehdot:

- (V1) Jos  $a, b, c \in X$ , ja  $a \le b \le c$ , tällöin  $a \le c$  (transitiivisuus)
- (V2) Jos  $a \in X$ , tällöin a < a.
- (V3) Jos  $a, b \in X$ , tällöin on olemassa  $c \in X$  siten, että  $a \le c$  ja  $b \le c$ .

Kutsumme paria  $(X, \leq)$  suunnatuksi joukoksi

Ehto V3 erottaa tämän jonon määritelmästä. Toisin kuin luonnollisilla luvuilla, järjestyksemme on vain osittainen. Jos  $a, b \in X$ , ei välttämättä päde  $a \leq b$  eikä  $b \leq a$ . Ehto V3 kuitenkin antaa meille keinon puhua suppenemisesta liki identtisesti samalla tavoin kuin jonoilla.

Olkoon  $\mathcal{D}$  suunnattu joukko, ja olkoon X avaruus. Kuvaus  $n: \mathcal{D} \to X$  on avaruuden X verkko. Mikäli kaikki verkon n arvot kuuluvat avaruuden X osajoukkoon A, voimme sanoa että n on verkko joukossa A.

Osoittautuu että aiemmin käyttämämme määritelmä jonon suppenemiselle kelpaa lähes sellaisenaan verkon suppenemisen määrittelemiselle, korvaamalla jonon verkolla.

Määritelmä 6.2. Verkon suppeneminen. Olkoon X topologinen avaruus, ja n avaruuden X verkko. Sanomme, että verkko suppenee kohti pistettä x mikäli jokaiselle pisteen x ympäristölle U löytyy joukon  $\mathcal{D}$  alkio  $d_U \in \mathcal{D}$  siten, että jos  $d_U \leq d$ , tällöin  $n(d) \in U$ .

Nyt voimme osoittaa että mielivaltaisessa topologisessa avaruudessa, piste kuuluu joukon sulkeumaan jos ja vain jos jokin tämän joukon verkko suppenee kohti tätä pistettä.

**Lause 6.3.** Olkoon X avaruus, ja  $A \subset X$  tämän avaruuden osajoukko. Jos piste  $x \in X$  kuuluu joukon A sulkeumaan, löytyy verkko  $n : \mathcal{D} \to A$  joka suppenee kohti pistettä x, ja kääntäen, mikäli on olemassa verkko  $n : \mathcal{D} \to A$  joka suppenee kohti pistettä x, tällöin  $x \in \overline{A}$ .

To distus.

 $Suunta \leftarrow$ 

Olkoon X avaruus,  $A \subset X$  joukko ja  $n : \mathcal{D} - > A$  verkko joka suppenee kohti pistettä  $x \in X$ .

 $Suunta \rightarrow$ 

Olkoon X avaruus,  $A \subset X$  joukko ja  $x \in \overline{A}$  joukon A sulkeuman piste. Osoitamme että löytyy verkko  $n : \mathcal{D} \to A$  joka suppenee kohti pistettä x.

Määritellään joukko  $\mathcal{D}$  seuraavasti:

(6.4) 
$$\mathcal{D} = \{ U \cap A \mid U \text{ on pisteen x ympäristö} \}$$

Koska piste x kuuluu joukon A sulkeumaan, jokainen joukon  $\mathcal{D}$  alkio on epätyhjä joukko. Voimme siis liittää jokaiseen joukon  $\mathcal{D}$  alkioon jonkin pisteen  $a_U \in A \cap U$ . Voimme siis rakentaa kuvauksen  $n: \mathcal{D} \to A, n(U) \in A \cap U$ . Emme määrittele funktiota tuon tarkemmin, meille riittää tietää että jokaiselle alkiolle voidaan tämän ehdon toteuttava funktion arvo määrätä.

Nyt voimme suunnata joukon  $\mathcal{D}$  relaatiolla  $\supseteq$ .  $\subseteq$  toteuttaa selvästi ehdot V1 ja V2. Ehto V3 seuraa siitä, että mikäli meillä on  $D_1, D_2 \in \mathcal{D}$ , tällöin  $D_n$  on muotoa  $A \cap U_n$ , jossa  $U_n$  on pisteen x ympäristö. Topologian määritelmän ehdon T2 mukaan siis leikkaus  $U_1 \cap U_2 =: U$  on myös avoin joukko. Toisaalta joukko U sisältää pisteen x, eli  $A \cap U \in \mathcal{D} =: A$  ja  $A \subset A_1$  ja  $A \subset A_2$ .

Funktio  $n:\mathcal{D}\to A$  on siis verkko. Jäljellä on enää osoittaa että n suppenee kohti pistettä x.

Olkoon U jokin pisteen x ympäristö. Meidän on löydettävä joukon  $\mathcal{D}$  alkio  $d_U$  jolle pätee

(6.5) jos 
$$d_U \supset d$$
, tällöin  $n(d) \in U$ 

Tällainen alkio löytyy muodossa  $d_U = A \cap U$ . Jos jokin joukon  $\mathcal{D}$  alkio d sisältyy alkioon  $d_U$ , eli pätee  $d_U \subseteq d$ , tällöin piste d on muotoa  $d = V \cap A$ , joten  $V \subseteq U$ . Täten  $n(d) \in V \subset U$ .

# Kirjallisuutta

[1] Jussi Väisälä: Topologia II