Digital Integrated Circuit Lecture 17 Power

Sung-Min Hong (smhong@gist.ac.kr)
Semiconductor Device Simulation Laboratory
School of Electrical Engineering and Computer Science
Gwangju Institute of Science and Technology

GIST Lecture

Review of Previous Lecture

Lecture 16

- Dynamic power
 - It is dominated by the switching power consumption,

$$P_{switching} = \alpha C V_{DD}^2 f$$

- Various ways to reduce the switching power

5.3 Static Power

5.3. Static power (1)

Static power is consumed even when a chip is not switching.

$$P_{static} = (I_{sub} + I_{gate} + I_{junct} + I_{contention})V_{DD}$$

5.3. Static power (2)

- Estimate the static power consumption.
 - $-1.0 \text{ V } 65 \text{ nm process } (\lambda \text{ is } 25 \text{ nm.})$
 - –50M logic transistors (Average width: 12λ), 95 % of high- V_t , 5 % of low- V_t
 - -950M memory transistors (Average width: 4λ), all high- V_t
 - -Total width of low- V_t transistors is 0.75 X 10⁶ µm.
 - Total width of high- V_t transistors is 109.25 X 10⁶ μ m.
 - Subthreshold leakage currents: 100 nA/ μ m for low- V_t , 10 nA/ μ m for high- V_t
 - -Gate leakage current: 5 nA/μm
 - -The answer is 859 mW.

5.3. Static power (3)

• Subthreshold leakage (for V_{ds} > 50 mV) $I_{sub} = I_{off} 10 \frac{V_{ds} + \eta(V_{ds} - V_{DD}) - k_{\gamma}V_{sb}}{S}$

Transistor Type	High Speed Logic		Low Power Logic		High Voltage	
Options	High Performance (HP)	Standard Perf./ Power (SP)	Low Power (LP)	Ultra Low Power (ULP)	1.8 V	3.3 V
Vdd (Volt)	0.75 / 1	0.75 / 1	0.75 / 1	0.75/1.2	1.5/1.8/3.3	3.3 / >5
Gate Pitch (nm)	90	90	90	108	min. 180	min. 450
Lgate (nm)	30	34	34	40	min. 80	min. 280
N/PMOS ldsat/loff (mA/um)	1.08/ 0.91 @ 0.75 V, 100 nA/um	0.71 / 0.59 @ 0.75 V, 1 nA/um	0.41 / 0.37 @ 0.75 V 30 pA/um	0.35 / 0.33 @ 0.75 V 15 pA/um	0.92 / 0.8 @ 1.8 V 10 pA/um	1.0 / 0.85 @ 3.3 V 10 pA/um

(Intel's 2012 IEDM abstract)

5.3. Static power (4)

Stack effect

$$I_{sub} = I_{off} 10^{\frac{V_{gs} + \eta(V_{ds} - V_{DD}) - k_{\gamma}V_{sb}}{S}}$$

-N1 current

$$I_{sub} = I_{off} 10^{\frac{\eta(V_x - V_{DD})}{S}}$$

-N2 current

$$I_{sub} = I_{off} 10^{\frac{-V_x + \eta(V_{DD} - V_x - V_{DD}) - k_\gamma V_x}{S}}$$
 - Then, with $V_x = \frac{\eta}{1 + 2\eta + k_\gamma} V_{DD}$,
$$I_{sub} = I_{off} 10^{\frac{-\eta V_{DD}}{S} \left(\frac{1 + \eta + k_\gamma}{1 + 2\eta + k_\gamma}\right)}$$

Fig. 5.20

5.3. Static power (5)

- Gate leakage
 - Various physical mechanisms
 - It is an extremely strong function of the dielectric thickness.
 - It also depends on the voltage across the gate.

Measured Ig-Vg characteristics (Ho et al., EDL, vol. 18, pp. 209-211)

5.3. Static power (6)

- High-k metal gate
 - Compare two technologies.

(Intel)

5.3. Static power (7)

NAND3 leakage example (Leakage current in nA)

Input State (ABC)	I _{sub}	Igate	I _{total}	V _x	V _z
000	0.4	0	0.4	stack effect	stack effect
001	0.7	0	0.7	stack effect	$V_{DD} - V_{t}$
010	0.7	1.3	2.0	intermediate	intermediate
011	3.8	0	3.8	$V_{DD} - V_{t}$	$V_{DD} - V_{t}$
100	0.7	6.3	7.0	0	stack effect
101	3.8	6.3	10.1	0	$V_{DD} - V_{t}$
110	5.6	12.6	18.2	0	0
111	28	18.9	46.9	0	0

Fig. 5.23

Table 5.2

5.3. Static power (8)

- Power gating
 - -Turn OFF power to block when they are idle.
 - -Use virtual V_{DD} (V_{DDV})
 - Gate outputs to prevent invalid logic level to next block

Fig. 5.24

Thank you!