Improving Human Decision-Making

with Machine Learning

Park Sinchaisri Berkeley Haas

with Hamsa Bastani (Wharton) & Osbert Bastani (Penn)

Learning is Costly

2+ years
to be fully productive

\$1,286/worker training expenses

- Training Magazine 2019

New device = +32.4% surgery duration

- Ramdas et al. 2018

Learning from Experts

Trace Data is Everywhere

Physicians

Uber Drivers

• ROACH,TRISTIN	Fibrinogen, INR, PT, PTT AMD_996304_76	a	MILLER,ALEX,MD status: Unreviewed	05•19•17
ROACH,TRISTIN	Lipitor 80 mg	0	MILLER,ALEX,MD status: Unreviewed	05•18•17
LEON,ERIN	Geriatric Wellness Visit		JONES, CAMERON, MD status: Unreviewed	05•16•17
BECK,ALIVIA	Zocor 20 mg	0	JACK,JACK,MD status: Unreviewed, held	05•18•17
NORTON,BETHANY	Norvasc 10 mg	0	MILLER,ALEX,MD status: Unreviewed	05•18•17
MONTGOMERY,BLAINE	Glucophage 850 mg	0	OSHEA,JAMIE,MD reviewed by: PPMD_AKN status: Reviewed	05•18•17
KLECK,MICHAEL	Office Visit - Abbreviated		JONES,CAMERON,MD reviewed by: SUSAN status: Reviewed	05•12•17
MCARDLE,HELEN	Office Visit - Mobile		JONES, CAMERON, MD status: Unreviewed	05•12•17

Trace data

Tips

Noisy, high-volume data hard to extract insights

Key Q: can insights from ML improve human decision-making?

Trace Data is Everywhere

Trace data ____

Machine Learning

Extract

best practices

Problem Formulation

MDP Formulation:

Optimal policy and human make sequences of decisions

Our Approach

$$\mathcal{M} = (S, A, R, P, \gamma)$$

Step 1: Imitation Learning

Q function $Q^{\pi}(s,a)$ is the reward obtained by taking action a in state s and using policy π thereafter

$$Q^{\pi}(s,a) = \mathbb{E}_{s' \sim p(s'|s,a)}[V^{\pi}(s')]$$

- Watkins & Dayan 1992

Parametrize policy using DNN π_{θ} Optimize θ using the policy gradient algorithm

- Williams 1992, Sutton 2000

Learn using supervised learning $\hat{Q}^{\pi}_{\theta}(s,a) \approx Q^{\pi}(s,a)$

Our Approach

Step 2: Interpretable RL

• Algorithm: Choose tip ρ that maximizes the objective

$$J(\rho) = V^{\pi_h \oplus \rho}(s_0) - V^{\pi_h}(s_0)$$

Human policy + tip Only human policy

- $\pi_h \oplus \rho$ denotes overriding the human policy with tip ρ .
- $V^{\pi}(s)$ is the value function and s_0 is the initial state.
- J measures the improvement in human reward
- Intuition: Want tips that maximize performance
 - Assumes the human follows the tip exactly
- Challenge: Hard to estimate $V^{\pi_h \oplus \rho}$

Step 2: Interpretable RL

• **Key Lemma**: We have

$$J(\rho) \approx \mathbb{E}_{(s,a) \sim D_{\pi_h \oplus \rho}} [Q^*(s, a \oplus \rho) - Q^*(s, a)]$$

- Q* is the optimal policy's Q function
- D_{π} is the state-action distribution of policy π
- $a \oplus \rho$ overrides the human action a if the tip is applicable in state s
- Rank tips based on expected improvement

Our Approach

Burger Que	en			
Chopping:	Fast	Average	Slow	
Cooking:	Fast	Average	Slow	
Plating:	Slow	Average	Fast	
	Chef	Sous-Chef	Server	

Participant

Reward: 0 Tick #1/50

Participant

Reward: 0 Tick #1/50

Participant

Reward: 0 Tick #1/50

Reward: 0 Tick #1/50

Reward: 0 Tick #1/50

Reward: 0 Tick #2/50

User Study Design

N = 1400

Phase I

N = 200

Phase II

Gather trace data

Tip inference

Tip evaluation

Environment

Normal

Disrupted

in the middle

Disrupted Configuration

× 4 within 50 ticks

Chopping:	Fast	Average	Slow
Cooking:	Fast	Average	Slow
Plating:	Slow	Average	Fast
	Chef	Sous-Chef	Server

Phase I Inferred Tips

Amazon Mechanical Turk, N = 172

mean age 36.4, 62% female

27

Algorithm vs Human

Algorithm Human

Server Server should cook twice should cook once

"Server shouldn't cook"

Results People Improve Over Time

Ticks to completion

Results Our Tip Improves Performance

Ticks to completion

One-sided T-Tests

Algorithm beats Control (p = 0.000008) Algorithm beats Human (p = 0.006) Algorithm beats Baseline (p < 1e-12)

Amazon Mechanical Turk, N = 1,011

Results

Amazon Mechanical Turk, N = 1,011

Results Difficult to Reach Optimal

Amazon Mechanical Turk, N = 1,011

Results Our Tip Helps Reach Optimal

Amazon Mechanical Turk, N = 1,011

Results Compliance

26% Positive, 17% Negative

"I felt that tip was valid."

 $R_1rvkYTwgAjD0z4z$

"It helped because she could cook one burger but any more than that and your ticks would be too high."

R_d6YSuigdikyaNdT

"I thought it was **smart** and I used it exclusively."

R_beijQ8guDyExa5r

"It was **accurate**, and I implemented it."

 $R_1pA8wDYgWc9hbIt$

Results Against Counterintuitive Tips

23% Positive, **33% Negative**

"I didn't think it was right."

R 3EgrcrQouPcb1fS

"I didn't follow it because it seemed counter intuitive since they're slow."

R 10HkPUkR6o0qDFT

"It didn't make sense and in fact I got worse trying to use it,"

R 2YD5x6BL7mhCYEP

"I wasn't sure how to use it."

R 2s0UA1omAifrFgx

Results Learning Beyond Tips

Structure of Optimal Policy

Results Learning Beyond Tips

Our tip effectively led people to the states they can learn other optimal strategies

Amazon Mechanical Turk, N = 1,011

Summary

ML to automatically extract simple tips that help people improve in a dynamic way

Our tips improve performance, speed up learning, help adapt to disruption, and uncover other optimal strategies

Potential Issues

(e.g., Dawes et al 1989, Dietvorst et al 2015)

- Compliance to tips, "algorithm aversion"
- Interpretability
- Learning curve

