Devoir surveillé n°11: corrigé

Problème 1 — D'après Petites Mines 2001

Partie I -

1. Soit $(s, t) \in \mathbb{R}^2$.

$$E(s)E(t) = \left(I + sA + \frac{s^2}{2}A^2\right)\left(I + tA + \frac{t^2}{2}A^2\right) = I + (s+t)A + \left(\frac{s^2}{2} + st + \frac{t^2}{2}\right)A^2 + \frac{st^2 + s^2t}{2}A^3 + \frac{s^2t^2}{2}A^4$$

Or $A^3 = 0$ et donc $A^4 = 0$. Finalement

$$E(s)E(t) = I + (s+t)A + \left(\frac{s^2}{2} + st + \frac{t^2}{2}\right)A^2 = I + (s+t)A + \frac{(s+t)^2}{2}A^2 = E(s+t)$$

2. Soit $t \in \mathbb{R}$. Alors $E(0 \times t) = E(0) = I = E(t)^0$. Supposons qu'il existe $n \in \mathbb{N}$ tel que $E(nt) = E(t)^n$. Alors, d'après la question I.1,

$$E((n+1)t) = E(nt+t) = E(nt)E(t) = E(t)^n E(t) = E(t)^{n+1}$$

Par récurrence, $E(nt) = E(t)^n$ pour tout $n \in \mathbb{N}$.

- 3. Soit $t \in \mathbb{R}$. D'après la question I.1, $E(t)E(-t) = E(0 \times t) = E(0) = I$. Ainsi E(t) est inversible et $E(t)^{-1} = E(-t)$.
- **4.** Soit $(\lambda, \mu, \nu) \in \mathbb{R}^3$ tel que $\lambda I + \mu A + \nu A^2 = 0$. En multipliant cette égalité par A^2 , on obtient $\lambda A^2 + \mu A^3 + \nu A^4 = 0$ et donc $\lambda = 0$ puisque $A^2 \neq 0$ et $A^3 = A^4 = 0$. On a donc $\mu A + \nu A^2 = 0$. En multipliant cette égalité par A, on obtient $\mu A^2 + \nu A^3 = 0$ et donc $\mu = 0$ puisque $A^2 \neq 0$ et $A^3 = 0$. Il reste $\nu A^2 = 0$ et donc $\nu = 0$ puisque $A^2 \neq 0$. Finalement, $\lambda = \mu = \nu = 0$, ce qui prouve la liberté de (I, A, A^2) .
- **5.** Les questions **I.1** et **I.3** montrent que E est un morphisme du groupe $(\mathbb{R}, +)$ dans le groupe $(GL_3(\mathbb{R}), \times)$. Il nous suffit donc de déterminer le noyau de E. Or

$$t \in \text{Ker E} \iff E(t) = I \iff I + tA + \frac{t^2}{2}A^2 = I \iff tA + \frac{t^2}{2}A^2 = 0 \iff t = 0$$

car (A, A^2) est libre comme sous-famille de la famille libre (I, A, A^2) . Ainsi Ker $E = \{0\}$ et donc E est injective.

Remarque. Si on ne sait pas ce qu'est un morphisme de groupes, on montre l'injectivité «comme d'habitude». Soit $(s,t) \in \mathbb{R}^2$ tel que E(s) = E(t). On a donc $I + sA + \frac{s^2}{2}A^2 = I + tA + \frac{t^2}{2}A^2$. Comme la famille (I,A,A^2) est libre, on peut «identifier» les coefficients. Notamment s = t.

6. Remarquons que $A^2 = \begin{pmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$ et $A^3 = 0$. On est donc bien dans les conditions de cette partie. Pour tout $t \in \mathbb{R}$,

$$E(t) = I + tA + \frac{t^2}{2}A^2 = \begin{pmatrix} 1 & t & \frac{t^2}{2} \\ 0 & 1 & t \\ 0 & 0 & 1 \end{pmatrix}$$

Partie II –

1. La matrice de $f - 2\operatorname{Id}_{\mathbb{R}^2}$ dans \mathcal{B}_0 est $\begin{pmatrix} 2 & -6 \\ 1 & -3 \end{pmatrix}$. On trouve alors $F = \operatorname{Ker}(f - 2\operatorname{Id}_{\mathbb{R}^2}) = \operatorname{vect}(u)$ avec u = (3, 1). La matrice de $f - \operatorname{Id}_{\mathbb{R}^2}$ dans \mathcal{B}_0 est $\begin{pmatrix} 3 & -6 \\ 1 & -2 \end{pmatrix}$. On trouve alors $G = \operatorname{Ker}(f - \operatorname{Id}_{\mathbb{R}^2}) = \operatorname{vect}(v)$ avec v = (2, 1).

F et G sont bien des droites vectorielles. Comme u et v sont non colinéaires, $\mathcal{B}=(u,v)$ est libre et est donc une base de \mathbb{R}^2 puisque dim $\mathbb{R}^2=2$. Ceci prouve que $F\oplus G=\mathbb{R}^2$.

- 2. Puisque $u \in \text{Ker}(f 2 \operatorname{Id}_{\mathbb{R}^2})$, f(u) = 2u. De même, $v \in \text{Ker}(f \operatorname{Id}_{\mathbb{R}^2})$ donc f(v) = v. Par conséquent, la matrice de f dans la base \mathcal{B} est $\begin{pmatrix} 2 & 0 \\ 0 & 1 \end{pmatrix}$.
- 3. En notant P la matrice de passage de la base \mathcal{B}_0 vers la base \mathcal{B} et D la matrice de f dans la base \mathcal{B} , on a bien $A = PDP^{-1}$. On a vu à la question II.2 que $D = \begin{pmatrix} 2 & 0 \\ 0 & 1 \end{pmatrix}$. De plus, $P = \begin{pmatrix} 3 & 2 \\ 1 & 1 \end{pmatrix}$. Un calcul simple montre que $P^{-1} = \begin{pmatrix} 1 & -2 \\ -1 & 3 \end{pmatrix}$.
- **4.** Puisque le produit de deux matrices diagonales est une matrice diagonale dont les coefficients diagonaux sont les produits des coefficients diagonaux, $D^n = \begin{pmatrix} 2^n & 0 \\ 0 & 1 \end{pmatrix}$.

On a clairement $PD^0P^{-1} = I = A^0$. Supposons qu'il existe $n \in \mathbb{N}$ tel que $A^n = PD^nP^{-1}$. Alors

$$A^{n+1} = AA^n = PDP^{-1}PD^nP^{-1} = PDD^nP^{-1} = PD^{n+1}P^{-1}$$

Par récurrence, $A^n = PD^nP^{-1}$ pour tout $n \in \mathbb{N}$.

Un calcul donne alors,
$$A^n = \begin{pmatrix} 3.2^n - 2 & 6 - 6.2^n \\ 2^n - 1 & 3 - 2.2^n \end{pmatrix}$$
.

Partie III -

1. Soit $t \in \mathbb{R}$ et $n \in \mathbb{N}$. La fonction exponentielle est de classe \mathbb{C}^{n+1} sur \mathbb{R} . On peut donc appliquer l'inégalité de Taylor-Lagrange à la fonction exponentielle entre 0 et t à l'ordre n et on obtient

$$\left| e^t - \sum_{k=0}^n \frac{t^k}{k!} \right| \le \frac{M_n |t|^{n+1}}{(n+1)!}$$

où $\mathbf{M}_n = \sup_{[0,t]} |\exp^{(n+1)}|$. Or $\exp^{(n+1)} = \exp$ et exp est positive donc $\mathbf{M}_n = \sup_{[0,t]} \exp$; en particulier, \mathbf{M}_n ne dépend pas de n. Ainsi $\lim_{n \to +\infty} \frac{\mathbf{M}_n |t|^{n+1}}{(n+1)!} = 0$ et le théorème des gendarmes permet alors d'affirmer que $\lim_{n \to +\infty} e^t - \sum_{k=0}^n \frac{t^k}{k!} = 0$

ou encore $\lim_{n \to +\infty} \sum_{k=0}^{n} \frac{t^k}{k!} = e^t$.

Remarque. Rigoureusement, il faudrait écrire [t,0] au lieu de [0,t] lorsque t est négatif.

2. A l'aide de la question II.4,

$$a_n(t) = 3\sum_{k=0}^n \frac{(2t)^k}{k!} - 2\sum_{k=0}^n \frac{t^k}{k!}$$

$$b_n(t) = 6\sum_{k=0}^n \frac{t^k}{k!} - 6\sum_{k=0}^n \frac{(2t)^k}{k!}$$

$$c_n(t) = \sum_{k=0}^n \frac{(2t)^k}{k!} - \sum_{k=0}^n \frac{t^k}{k!}$$

$$d_n(t) = 3\sum_{k=0}^n \frac{t^k}{k!} - 2\sum_{k=0}^n \frac{(2t)^k}{k!}$$

3. En utilisant III.1, on obtient

$$a(t) = 3e^{2t} - 2e^t$$
 $b(t) = 6e^t - 6e^{2t}$ $c(t) = e^{2t} - e^t$ $d(t) = 3e^t - 2e^{2t}$

- **4.** Il suffit de poser $Q = \begin{pmatrix} 3 & -6 \\ 1 & -2 \end{pmatrix}$ et $R = \begin{pmatrix} -2 & 6 \\ -1 & 3 \end{pmatrix}$.
- 5. On a $Q^2 = Q$, $R^2 = R$ et QR = RQ = 0. q et r sont des projecteurs.

On a Ker Q = $\operatorname{vect}\left(\begin{pmatrix} 2\\1 \end{pmatrix}\right)$ et $\operatorname{Im} Q = \operatorname{vect}\left(\begin{pmatrix} 3\\1 \end{pmatrix}\right)$ et donc $\operatorname{Ker} q = \operatorname{vect}(v) = \operatorname{G}$ et $\operatorname{Im} q = \operatorname{vect}(u) = \operatorname{F}$. q est donc le projecteur sur F parallèlement à G.

On a Ker R = $\operatorname{vect}\left(\begin{pmatrix} 3 \\ 1 \end{pmatrix}\right)$ et $\operatorname{Im} R = \operatorname{vect}\left(\begin{pmatrix} 2 \\ 1 \end{pmatrix}\right)$ et donc Ker $r = \operatorname{vect}(u) = F$ et $\operatorname{Im} r = \operatorname{vect}(v) = G$. r est donc le projecteur sur G parallèlement à F.

Remarque. On aurait aussi pu remarquer que Q + R = I et donc que $q + r = Id_{\mathbb{R}^2}$, ce qui aurait permis de conclure directement quant à la nature de r.

6. Soit $(s, t) \in \mathbb{R}^2$.

$$E(s)E(t) = (e^{2s}Q + e^{s}R)(e^{2t}Q + e^{t}R)$$

$$= e^{2s+2t}Q^{2} + e^{s+t}R^{2} + e^{2s+t}QR + e^{s+2t}RQ$$

$$= e^{2(s+t)}Q + e^{s+t}R = E(s+t)$$

car
$$Q^2 = Q$$
, $R^2 = R$ et $QR = RQ = 0$.

On prouve alors comme à la question **I.1** que $E(t)^n = E(nt)$ pour tout $(t, n) \in \mathbb{R} \times \mathbb{N}$ et que E(t) est inversible d'inverse E(-t) pour tout $t \in \mathbb{R}$.

A nouveau E est un morphisme du groupe $(\mathbb{R}, +)$ dans $(GL_2(\mathbb{R}), \times)$. Soit $t \in \text{Ker E}$. On a donc $e^{2t}Q + e^tR = I$. En multipliant par Q, on obtient $e^{2t}Q = Q$ car $Q^2 = Q$ et QR = 0. Comme $Q \neq 0$, $e^{2t} = 1$ et t = 0. Ainsi Ker $E = \{0\}$ et E est injectif.

REMARQUE. A nouveau, si on ne sait pas ce qu'est un morphisme de groupes, on se donne $(s,t) \in \mathbb{R}^2$ tel que E(s) = E(t). On a donc $e^{2s}Q + e^sR = e^{2t}Q + e^tR$. En multipliant par Q, on ontient $e^{2s}Q = e^{2t}Q$ puis $e^{2s} = e^{2t}$ car $Q \neq 0$ et enfin s = t par injectivité de l'exponentielle.

Problème 2 — Petites Mines 2009

Partie I - Définition d'une application

1. Soient $\lambda_1, \lambda_2 \in \mathbb{C}$ et $P_1, P_2 \in \mathbb{C}[X]$. Notons Q_1 et Q_2 les quotients respectifs des divisions euclidiennes de $P_1(X^2)$ et $P_2(X^2)$ par T et P_1 et P_2 les restes. On a donc

$$P_1(X^2) = TQ_1 + R_1$$
 avec deg $R_1 < \deg T$ $P_2(X^2) = TQ_2 + R_2$ avec deg $R_2 < \deg T$

On en déduit que

$$(\lambda_1 P_1 + \lambda_2 P_2)(X^2) = T(\lambda_1 Q_1 + \lambda_2 Q_2) + (\lambda_1 R_1 + \lambda_2 R_2)$$

et $\deg(\lambda_1R_1 + \lambda_2R_2) \leq \max(\deg R_1, \deg R_2) < \deg T$. Ainsi $\lambda_1Q_1 + \lambda_2Q_2$ et $\lambda_1R_1 + \lambda_2R_2$ sont respectivement le quotient et le reste de la division euclidienne de $(\lambda_1P_1 + \lambda_2P_2)(X^2)$ par T. Par conséquent,

$$f(\lambda_1 P_1 + \lambda_2 P_2) = (\lambda_1 Q_1 + \lambda_2 Q_2) + X(\lambda_1 R_1 + \lambda_2 R_2) = \lambda_1 (Q_1 + X R_1) + \lambda_2 (Q_2 + X R_2) = \lambda_1 f(P_1) + \lambda_2 f(P_2)$$

ce qui prouve que f est bien linéaire.

2. f_n est linéaire puisque f l'est. Soit $P \in \mathbb{C}_n[X]$. Il faut donc montrer que $f_n(P) = f(P) \in \mathbb{C}_n[X]$. Notons à nouveau Q et R le quotient et le reste de la division euclidienne de $P(X^2)$ par T.

D'une part, $\deg R \le \deg T - 1 = n - 1$ donc $\deg XR \le n$.

D'autre part deg $P(X^2) = 2 \deg P \le 2n$ donc

$$\deg Q = \deg QT - \deg T = \deg(P(X^2) - R) - n \le \max(\deg P(X^2), \deg R) - n \le 2n - n = n$$

Par conséquent, $\deg f(P) = \deg(Q + XR) \le \max(\deg Q, \deg XR) \le n$. Ceci prouve que $f_n(P) = f(P) \in \mathbb{C}_n[X]$. f_n est bien un endomorphisme de $\mathbb{C}_n[X]$.

- 3. a. On reprend à nouveau les mêmes notations.
 - Si P = 1, alors Q = 0 et R = 1. Ainsi $f_2(1) = X$.
 - Si P = X, alors Q = 1 et R = 0. Ainsi $f_2(X) = 1$.
 - Si $P = X^2$, alors $Q = X^2$ et R = 0. Ainsi $f_2(X^2) = X^2$.

La matrice de f_2 dans la base $(1, X, X^2)$ est donc $A = \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix}$.

b. $A^2 = I_3$ donc $f_2^2 = Id_{\mathbb{C}_2[X]}$. f_2 est bijective et $f_2^{-1} = f_2$. f_2 est une symétrie.

On a A – I₃ =
$$\begin{pmatrix} -1 & 1 & 0 \\ 1 & -1 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$
 donc Ker(A – I₃) = vect $\begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}$, $\begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}$. On en déduit que Ker(f_2 – Id_{C₂[X]}) =

 $vect(1 + X, X^2)$.

De même,
$$A + I_3 = \begin{pmatrix} 1 & 1 & 0 \\ 1 & 1 & 0 \\ 0 & 0 & 2 \end{pmatrix}$$
 donc $Ker(A + I_3) = vect\begin{pmatrix} \begin{pmatrix} -1 \\ 1 \\ 0 \end{pmatrix} \end{pmatrix}$. On en déduit que $Ker(f_2 + Id_{\mathbb{C}_2[X]}) = vect\begin{pmatrix} \begin{pmatrix} -1 \\ 1 \\ 0 \end{pmatrix} \end{pmatrix}$.

vect(X-1).

 f_2 est donc la symétrie par rapport à vect $(1 + X, X^2)$ parallèlement à vect(X - 1).

Partie II - Etude d'un cas particulier

- 1. On emploie encore une fois les mêmes notations.
 - Si P = 1, alors Q = 0 et R = 1. On a donc $f_3(1) = X$.
 - Si P = X, alors Q = 0 et R = X^2 . On a donc $f_3(X) = X^3$.
 - Si P = X^2 , alors Q = X 1 et R = $X^2 aX + a$. On a donc $f_3(X^2) = X^3 aX^2 + (1 + a)X 1$.
 - Si P = X^3 , alors Q = $X^3 X^2 + X a 1$ et R = $(1 + 2a)X^2 aX + a + a^2$. On a donc $f_3(X^3) = (2a + 2)X^3 + (-a 1)X^2 + (1 + a + a^2)X a 1$.

La matrice de f_3 dans la base $(1, X, X^2, X^3)$ est donc bien la matrice B.

2. On développe deux fois par rapport à la première colonne :

$$\det(f_3) = \det(B) = \begin{vmatrix} 0 & 0 & -1 & -a - 1 \\ 1 & 0 & a + 1 & 1 + a + a^2 \\ 0 & 0 & -a & -a - 1 \\ 0 & 1 & 1 & 2a + 2 \end{vmatrix} = - \begin{vmatrix} 0 & -1 & -a - 1 \\ 0 & -a & -a - 1 \\ 1 & 1 & 2a + 2 \end{vmatrix} = (a+1) \begin{vmatrix} -1 & 1 \\ -a & 1 \end{vmatrix} = (a+1)(a-1)$$

3. f_3 n'est pas bijective si et seulement si $det(f_3) = 0$ i.e. si et seulement si $a = \pm 1$.

4. **a.** Dans ce cas, $B = \begin{pmatrix} 0 & 0 & -1 & 0 \\ 1 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 1 & 0 \end{pmatrix}$. Les trois premières colonnes sont linéairement indépendantes (famille éche-

lonnée) et la dernière colonne est identique à la première. On en déduit que $\begin{pmatrix} 0 \\ 1 \\ 0 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 0 \\ 1 \\ 1 \end{pmatrix}$ est une base

de Im B et que $\begin{pmatrix} -1\\0\\0\\1 \end{pmatrix}$ est un vecteur de Ker B. En utilisant le théorème du rang, dim Ker B = 1 et $\begin{pmatrix} -1\\0\\0\\1 \end{pmatrix}$ est

une base de Ker B

On en déduit que $(X, X^3, X^3 + X^2 - 1)$ ou encore $(X, X^3, X^2 - 1)$ est une base de Im f_3 et que $(X^3 - 1)$ est une base de Ker f_3 .

b. La matrice de la famille $\mathcal{F} = (X, X^3, X^2 - 1, X^3 - 1)$ (réunion des bases de Im f_3 et Ker f_3) dans la base

canonique est $\begin{pmatrix} 0 & 0 & -1 & -1 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 \end{pmatrix}$. En développant deux fois par rapport à la première colonne, on trouve que le

déterminant de cette matrice est -1, donc \mathcal{F} est une base de $\mathbb{C}_3[X]$. Ceci prouve que $\mathbb{C}_3[X] = \operatorname{Im} f_3 \oplus \operatorname{Ker} f_3$.

Partie III - Etude du noyau

- 1. $\deg P(X^2) = 2 \deg P = 2p < n$. En employant toujours les mêmes notations, Q = 0 et $R = P(X^2)$. Ainsi $f(P) = Q + XR = XP(X^2)$. Comme P est non nul, f(P) est également non nul.
- 2. Supposons $P \in \text{Ker } f$. On a donc Q = -XR. Or $P(X^2) = QT + R$ donc $P(X^2) = (1 XT)R$ et deg $R < \deg T = n$ puisque R est le reste de la division euclidienne de $P(X^2)$ par T. Réciproquement, supposons qu'il existe $R \in \mathbb{C}[X]$ tel que deg R < n et $P(X^2) = (1 XT)R$ i.e. $P(X^2) = -XTR + R$. On en déduit que -XR et R sont respectivement le quotient et le reste de la division euclidienne de $P(X^2)$ par R. Alors f(P) = -XR + XR = 0.
- 3. Soit $P \in \text{Ker } f$. Il existe donc $R \in \mathbb{C}[X]$ tel que deg R < n et $P(X^2) = (1 XT)R$. Ainsi deg $P(X^2) = \deg(1 XT) + \deg R$. Or $\deg(1 XT) = \deg XT = n + 1$ donc $\deg P(X^2) < 2n + 1$ i.e. $\deg P(X^2) \le 2n$. Ainsi $2 \deg P \le 2n$ donc $\deg P \le n$.
- **4.** Soit $P \in \text{Ker } f$. D'après la question **III.2**, il existe $R \in \mathbb{C}[X]$ tel que $P(X^2) = (1 XT)R$ et deg R < n. Posons $Q = X^k P$. Alors $Q(X^2) = X^{2k} P(X^2) = (1 XT) X^{2k} R$. Or deg $X^{2k} R = 2k + \deg R$ et deg $R = \deg P(X^2) \deg(1 XT) = \deg P(X^2) (n+1)$ donc deg $X^{2k} R = 2k + \deg P(X^2) (n+1) \le 2n (n+1) = n-1$. En utilisant maintenant l'autre sens de l'équivalence démontrée à la question **III.2**, on en déduit que $Q \in \text{Ker } f$.
- **5. a.** Comme Ker $f \neq \{0\}$, il existe un polynôme de degré entier naturel dans Ker f. Ainsi I est non vide. Comme c'est une partie de \mathbb{N} , I admet un minimum.
 - **b.** Notons a_0 et a_1 les coefficients dominants respectifs de P_0 et P_1 (ceux-ci existent puisque P_0 et P_1 sont de degré $d \in \mathbb{N}$ donc non nuls). Alors $P_1 \frac{a_1}{a_0}P_0$ appartient à Ker f et est de degré strictement inférieur à d. Par minimalité de d, on en déduit que $P_1 \frac{a_1}{a_0}P_0 = 0$. En posant $c = \frac{a_1}{a_0}$, on a donc bien $P_1 = cP_0$.
 - c. Soit k un entiel naturel tel que $k \le n-d$. Alors $\deg P_0 + k \le n$ et, d'après la question $\operatorname{III.4}$, $X^k P_0 \in \operatorname{Ker} f$. Comme $\operatorname{Ker} f$ est un sous-espace vectoriel, on en déduit que pour tout $S \in \mathbb{C}_{n-d}[X]$, $SP_0 \in \operatorname{Ker} f$. Réciproquement, soit $P \in \operatorname{Ker} f$.D'après $\operatorname{III.3}$, $\deg P \le n$. Soit S et U le quotient et le reste de la division euclidienne de P par P_0 . On a en particulier $\deg U < d \le n$ ($P_0 \in \operatorname{Ker} f$ donc $d = \deg P_0 \le n$ d'après $\operatorname{III.3}$). Comme $SP_0 = P U$, $\deg S = \deg(P U) \deg P_0 \le \max(\deg P, \deg U) d \le n d$. D'après ce qui précède, $SP_0 \in \operatorname{Ker} f$. Ainsi $V = P SP_0 \in \operatorname{Ker} f$. Or $\deg V < d$ donc, par minimalité de P0, P1 et P2.

6. D'après **III.3**, Ker $f = \text{Ker } f_3$. Or on a vu à la question **II.4.a** que, dans ce cas, Ker $f_3 = \text{vect}(X^3 - 1)$.

Partie IV - Etude d'un produit scalaire

- Il suffit de reprendre les questions I.1 et I.2 en remplaçant C par R.
 La matrice A est celle de la question I.3.a (on la considère tout simplement comme une matrice à coefficients réels et non complexes).
- 2. La symétrie est évidente.

La bilinéarité provient de la bilinéarité du produit de polynômes, de la linéarité de la dérivation et de la linéarité de l'évaluation en 1.

Pour tout $U \in \mathbb{R}_2[X]$, $\langle U, U \rangle = U(1)^2 + U'(1)^2 + U''(1)^2$ donc la forme bilinéaire est positive.

Soit $U \in \mathbb{R}_2[X]$ tel que $\langle U, U \rangle = 0$. On a donc $U(1)^2 + U'(1)^2 + U''(1)^2 = 0$. Une somme de termes positifs étant nulle *si et seulement si* chacun des termes est nul, on en déduit U(1) = U'(1) = U''(1) = 0. Ainsi 1 est racine de U d'ordre au moins 3. Comme deg $U \le 2$, U est nécessairement nul.

- (.,.) est donc une forme bilinéaire, symétrique, définie, positive : c'est un produit scalaire.
- **3.** On vérifie que ${}^{t}AA = I_{3}$ donc A est orthogonale.
- **4. a.** On a $\langle 1, X \rangle = 1 \neq 0$ donc la base canonique $(1, X, X^2)$ n'est pas orthogonale donc encore moins orthonormale.
 - **b.** Attention, la matrice de g dans la base canonique est orthogonale mais la base canonique n'est pas orthonormale : on n'en déduit surtout pas que g est une isométrie. En fait $\langle 1, 1 \rangle = 1$ et $\langle g(1), g(1) \rangle = \langle X, X \rangle = 2$. g ne conserve donc pas le produit scalaire; ce n'est pas une isométrie.