KHOA CNTT & TRUYỀN THÔNG BM KHOA HỌC MÁY TÍNH

Phương pháp học Bayes Bayesian classification

PGS. TS. Đỗ Thanh Nghị TS. Trần Nguyễn Minh Thư tnmthu@ctu.edu.vn

1

Nội dung

- ■Giới thiệu về Bayesian classification
- ■Kiến thức về xác suất thống kê
- ■Giải thuật học của naive Bayes
- ■Kết luận và hướng phát triển

2

Bayesian classification

Phương pháp học Bayes – bayesian classification

- Phân loại này được đặt theo tên của **Thomas Bayes** (1702-1761), người đề xuất các định lý Bayes
- Giải thuật học có giám sát (supervised learning) xây dựng mô hình phân loại dựa trên dữ liệu tập học đã có nhãn (lớp)
- Mang Bayes (Bayesian network), Bayes ngây thơ (naive Bayes)
- Giải quyết các vấn đề về phân loại

3

3

Bayesian classification

Phương pháp học Bayes ứng dụng thành công

> Phân loại thư rác

Cho một email, dự đoán xem đó là thư rác hay không

Chấn đoán y tế

Cho một danh sách các triệu chứng, dự đoán xem bệnh nhân có bệnh X hay không

> Thời tiết

Dựa vào nhiệt độ, độ ẩm, vv ... dự đoán nếu nó sẽ mưa vào ngày mai

4

Bayesian classification

- Phương pháp Bayesian là hệ thống ham học
- Dựa vào các đặc trưng đưa ra kết luận nhãn của đối tượng mới đến
- Khi đưa ra một tập huấn luyện, hệ thống ngay lập tức phân tích dữ liệu và xây dựng một mô hình. Khi cần phân loại một đối tượng mới đến, hệ thống sử dụng mô hình đã xây dựng để xác định đối tượng mới.
- Phương pháp Bayesian (ham học) có xu hướng phân loại các trường hợp nhanh hơn KNN (lười học)

5

Kỹ thuật DM

Top 10 DM algorithms (2015)

Here are the algorithms:

- 1. C4.5
- 2. k-means
- 3. Support vector machines
- 4. Apriori
- 5. EM
- 6. PageRank
- 7. AdaBoost
- 8. kNN
- 9. Naive Bayes
- 10. CART

6

Nội dung

- ■Giới thiệu về Bayesian classification
- ■Kiến thức về xác suất thống kê
- ■Giải thuật học của naive Bayes
- ■Kết luận và hướng phát triển

7

7

Xác suất thống kê

name	laptop	phone
Kate	PC	Android
Tom	PC	Android
Harry	РС	Android
Annika	Mac	iPhone
Naomi	Mac	Android
Joe	Mac	iPhone
Chakotay	Mac	iPhone
Neelix	Mac	Android
Kes	PC	iPhone
B'Elanna	Mac	iPhone

Xác suất mà một người được lựa chọn ngẫu nhiên sử dụng iPhone là bao nhiêu?

Xác suất mà một người được lựa chọn ngẫu nhiên sử dụng iPhone khi người này có sử dụng một máy tính xách tay Mac là bao nhiêu?

Xác suất của A với điều kiện B xảy ra được định nghĩa như sau :

$$P(A/B) = \frac{P(AB)}{P(B)}$$

Q

Xác suất thống kê

phone

Android

Android

Android

iPhone

Android

iPhone

Phone

Android

iPhone

iPhone

laptop

PC

PC

PC

Mac

Mac

Mac

Mac

Mac

PC

Mac

name

Kate

Tom

Harry

Annika

Naomi

Chakotay

B'Elanna

Neelix

Joe

Xác suất của A với điều kiện B xảy ra được định nghĩa như sau :

$$P(A/B) = \frac{P(AB)}{P(B)}$$

Xác suất mà một người được lựa chọn ngẫu nhiên sử dụng iPhone?

$$P(iPhone) = 5/10 = 0.5$$

Xác suất mà một người được lựa chọn ngẫu nhiên sử dụng iPhone khi người này sử dụng một máy tính xách tay Mac?

$$P(iPhone \mid mac) = \frac{P(mac \cap iPhone)}{P(mac)}$$

$$P(mac \cap iPhone) = \frac{4}{10} = 0.4$$
 $P(mac) = \frac{6}{10} = 0.6$

$$P(iPhone \mid mac) = \frac{0.4}{0.6} = 0.667$$

9

Định lý Bayes

Định lý Bayes bắt nguồn từ xác suất có điều kiện. Định lý Bayes được đặt theo tên Rev. Thomas Bayes (/ beɪz /; 1702-1761), người đầu tiên đã cho thấy làm thế nào để sử dụng thông tin mới để cập nhật những thông tin trước đó.

Xác suất của A với điều kiện B xảy ra được định nghĩa như sau :

$$P(A/B) = \frac{P(AB)}{P(B)}$$

P(A/B) = P(AB)/P(B)=> P(AB) = P(A/B)*P(B)

P(B/A)=P(AB)/P(A) => P(AB)=(B/A)*P(A) P(A/B) = (P(B/A)*P(A))/P(B)

Định lý Bayes

Đinh lý Bayes

$$P(H|E) = \frac{P(E|H).P(H)}{P(E)}$$

Evidence E = [E1,E2,...,En] có n giá trị thuộc tính của dữ liệu cần dự báo

Event H: giá trị lớp/ nhãn của dữ liệu E cần sự báo

11

11

Nội dung

- ■Giới thiệu về Bayesian classification
- ■Kiến thức về xác suất thống kê
- ■Giải thuật học của naive Bayes
- ■Kết luận và hướng phát triển

12

Giải thuật naive Bayes

■ Ngây thơ

- > các thuộc tính (biến) có độ quan trọng như nhau
- > các thuộc tính (biến) độc lập thống kê

■ Nhân xét

- Giả thiết các thuộc tính độc lập không bao giờ đúng
- nhưng trong thực tế, naive Bayes cho kết quả khá tốt

13

13

Định lý Bayes

Đinh lý xác suất Bayes

$$P[H \mid E] = \frac{P[E \mid H]P[H]}{P[E]}$$

Do giả thiết: " các thuộc tính độc lập nhau"

$$\Rightarrow P(H|E) = \frac{P(E_1|H).P(E_2|H)....P(E_n|H).P(H)}{P(E)}$$

Evidence E = [E1,E2,...,En] có n thuộc tính của dữ liệu cần dự báo Event H: giá trị lớp/ nhãn của dữ liệu E cần dự báo

Bayes tho ngây

Bước 1: học/ huấn luyện mô hình (learning Phase) xây dựng mô hình sẳn dùng (tính sẳn xác suất xuất hiện của tất cả các trường hợp)

Bước 2: dự báo/ dự đoán

Khi có đối tượng/sự kiện mới xuất hiện cần phân loại : xác định nhãn của đối tượng mới đến thông qua giá trị xác suất lớn nhất tính được

15

VÍ dụ: Dữ liệu weather, dựa trên các thuộc tính (Outlook, Temp, Humidity, Windy), quyết định (play/no)

Outlook	Temp	Humidity	Windy	Play
Sunny	Hot	High	False	No
Sunny	Hot	High	True	No
Overcast	Hot	High	False	Yes
Rainy	Mild	High	False	Yes
Rainy	Cool	Normal	False	Yes
Rainy	Cool	Normal	True	No
Overcast	Cool	Normal	True	Yes
Sunny	Mild	High	False	No
Sunny	Cool	Normal	False	Yes
Rainy	Mild	Normal	False	Yes
Sunny	Mild	Normal	True	Yes
Overcast	Mild	High	True	Yes
Overcast	Hot	Normal	False	Yes
Rainy	Mild	High	True	No

Dữ liệu weather, dựa trên các thuộc tính (Outlook, Temp, Humidity, Windy), quyết định (play/no)

Sunny False

Outlook

Bước I

$$P(H|E) = \frac{P(E_1|H).P(E_2|H)...P(E_n|H).P(H)}{P(E)}$$

Rainy	Mild	High	True	No
Overcast	Hot	Normal	False	Yes
Overcast	Mild	High	True	Yes
Sunny	Mild	Normal	True	Yes
Rainy	Mild	Normal	False	Yes
Sunny	Cool	Normal	False	Yes
Sunny	Mild	High	False	No
Overcast	Cool	Normal	True	Yes
Rainy	Cool	Normal	True	No
Rainy	Cool	Normal	False	Yes
Rainy	Mild	High	False	Yes
Overcast	Hot	High	False	Yes
Sunny	Hot	High	True	No

Humidity

Windy

Play

Out	Outlook			Temperature			Humidity			Windy			Play	
	Yes	No		Yes	No		Yes	No		Yes	No	Yes	No	
Sunny	2	3	Hot	2	2	High	3	4	False	6	2	9	5	
Overcast	4	0	Mild	4	2	Normal	6	1	True	3	3			
Rainy	3	2	Cool	3	1									
Sunny	2/9	3/5	Hot	2/9	2/5	High	3/9	4/5	False	6/9	2/5	9/14	5/14	
Overcast	4/9	0/5	Mild	4/9	2/5	Normal	6/9	1/5	True	3/9	3/5			
Rainy	3/9	2/5	Cool	3/9	1/5									

17

Ví dụ

Bước 2

	Play	Windy	Humidity	Temp.	Outlook
← Evidence E	?	True	High	Cool	Sunny

- Phần tử mới đến,

x' =(Outlook=Sunny, Temperature=Cool, Humidity=High, Wind=True)

Cân xác định: xác suất của lớp "yes" và xác suất của lớp "no"

$$P(H|E) = \frac{P(E_1|H).P(E_2|H)...P(E_n|H).P(H)}{P(E)}$$

18

Dữ liệu weather, dựa trên các thuộc tính (Outlook, Temp, Humidity, Windy), quyết định (play/no)

Out	Outlook			Temperature			midity		١	Windy		Play	
	Yes	No		Yes	No		Yes	No		Yes	No	Yes	No
Sunny	2	3	Hot	2	2	High	3	4	False	6	2	9	5
Overcast	4	0	Mild	4	2	Normal	6	1	True	3	3		
Rainy	3	2	Cool	3	1								
Sunny	2/9	3/5	Hot	2/9	2/5	High	3/9	4/5	False	6/9	2/5	9/14	5/14
Overcast	4/9	0/5	Mild	4/9	2/5	Normal	6/9	1/5	True	3/9	3/5		
Rainy	3/9	2/5	Cool	3/9	1/5								

quyết định (play=yes/no)?

$$P[Yes | E] = (2/9 \times 3/9 \times 3/9 \times 3/9 \times 9/14) / P[E]$$

= 0.0053/P[E]

P[No|E] = 0.0206 / P[E]

=> yes/no?

21

21

Dữ liệu weather, dựa trên các thuộc tính (Outlook, Temp, Humidity, Windy), quyết định (play/no)

Out	look		Temperature			Hui	midity		Windy			Play	
	Yes	No		Yes	No		Yes	No		Yes	No	Yes	No
Sunny	2	3	Hot	2	2	High	3	4	False	6	2	9	5
Overcast	4	0	Mild	4	2	Normal	6	1	True	3	3		
Rainy	3	2	Cool	3	1								
Sunny	2/9	3/5	Hot	2/9	2/5	High	3/9	4/5	False	6/9	2/5	9/14	5/14
Overcast	4/9	0/5	Mild	4/9	2/5	Normal	6/9	1/5	True	3/9	3/5		
Rainy	3/9	2/5	Cool	3/9	1/5								

quyết định (play=yes/no)?

Likelihood(yes) = $2/9 \times 3/9 \times 3/9 \times 3/9 \times 9/14 = 0.0053$

Likelihood(no) = $3/5 \times 1/5 \times 4/5 \times 3/5 \times 5/14 = 0.0206$

Likelihood(yes) = 0.0053 / (0.0053 + 0.0206) = 0.205

Likelihood(no) = 0.0206 / (0.0053 + 0.0206) = 0.795

=> yes/no?

Outlook	Temp.	Humidity	Windy	Play
Sunny	Cool	High	True	?
				22

Bài tập- cho tập dữ liệu như bảng

Class: CI:buys_computer= 'yes' C2:buys_computer= 'no'

 $X_1 = (age < = 30,$ Income=medium, Student=yes Credit_rating= Fair)

age	income	student	credit_rating	buys_computer
<=30	high	no	fair	no
<=30	high	no	excellent	no
3140	high	no	fair	yes
>40	medium	no	fair	yes
>40	low	yes	fair	yes
>40	low	yes	excellent	no
3140	low	yes	excellent	yes
<=30	medium	no	fair	no
<=30	low	yes	fair	yes
>40	medium	yes	fair	yes
<=30	medium	yes	excellent	yes
3140	medium	no	excellent	yes
3140	high	yes	fair	yes
>40	medium	no	excellent	no
	<=30 <=30 3140 >40 >40 >40 3140 <=30 <=30 >40 <=30 3140 3140	<=30 high <=30 high 3140 high >40 medium >40 low >40 low 3140 low <=30 medium <=30 low >40 medium <=30 medium <=30 medium <=30 medium <=30 medium <=30 high	<=30 high no <=30 high no 3140 high no 3140 high no >40 medium no >40 low yes >40 low yes 3140 low yes <=30 medium no <=30 low yes >40 medium yes <=30 medium yes <=30 medium yes <=30 medium yes <=30 high yes	<=30

X2:= (Age: 31-40; income=high, student=yes; credit =Fair

23

 $P(H|E) = \frac{P(E_1|H).P(E_2|H)...P(E_n|H).P(H)}{P(E)}$

X₁ =(age<=30, Income=medium, Student=yes Credit_rating=Fair)

income student credit_rating

buys_computer

<=30 no no excellent high no no 31...40 high no fair yes medium no yes >40 low fair yes yes >40 excellent low yes no 31...40 low excellent yes yes medium <=30 no no <=30 low fair yes yes P[Yes|X1] = ?>40 medium yes yes <=30 excellent medium yes yes P[No|X1] = ?31...40 excellent medium no yes 31...40 high yes yes >40 excellent medium no no

						ı, Stude		•					•
X2:=	(Age	e: 3 I	-40; ir	come	=high,	studer	nt=	yes;c	redit	=Fa	ir		
Age	Yes	No	Income	Yes	No	Student	Yes	No	credit	Yes	No		
<=30	2/9	3/5	high	2/9	2/5	No	3/9	4/5	fair	6/9	2/5	9/14	5/14
3140	4/9	0/5	Medium	4/9	2/5	Yes	6/9	1/5	exc	3/9	3/5		
>40	3/9	2/5	low	3/9	1/5								
				age	incom	ne stude	nt	credit	rating	bu	ys co	mput	er
			<=30	high	no	fa	fair			no			
H E)=	<=30 high no excellent						no						
$E_l H)$. $P(I$	$E_2 H)P$	$(E_n H)$	P(H)	3140	high	no	fa	air			ye	s	
-, , ,	P(E)			>40	mediu	m no	fa	air			ye	s	
				>40	low	yes	fa	air			yes		
				>40	low	yes	е	excellent			no		
DIV	es X	711	- 2	3140	low	yes	е	excellent			ye	s	
ILI		71]	_ •	<=30	mediu	m no	fa	fair			no		
PIN	o X	11 :	= ?	<=30	low	yes	fa	air			ye	s	
T [1,	IU A	T	-•	>40	mediu	m yes	fa	air			ye	s	
				<=30	mediu	m yes	е	xcelle	nt		ye	s	
				3140	mediu	m no	е	xcelle	nt		ye	s	
				3140	high	yes	fa	air			ye	s	
				>40	mediu	m no		xcelle	- 4		n		

25

Xác suất = 0

- giá trị của thuộc tính không xuất hiện trong tất cả các lớp sử dụng *Laplace estimator*
- xác suất không bao giờ có giá trị 0
- Cộng thêm cho tử một giá trị là p_iμ và mẫu số giá trị μ để tính xác suất. μ hằng số dương và pi là hệ số dương sao cho tổng các p_i = 1 (i=1..n)

26

2/13/22

Laplace estimator – Uóc lượng Laplace

■ VD: thuộc tính outlook cho lớp "no" => p_1 = p_2 = p_3 =1/3; μ =1

$$\frac{3+\mu/3}{5+\mu}$$

$$\frac{0+\mu/3}{5+\mu}$$

$$\frac{2 + \mu / 3}{5 + \mu}$$

Sunny

Overcast

Rainy

Out	tlook		Temperature			Hu	midity		,	Windy		Play	
	Yes	No		Yes	No		Yes	No		Yes	No	Yes	No
Sunny	2	3	Hot	2	2	High	3	4	False	6	2	9	5
Overcast	4	0	Mild	4	2	Normal	6	1	True	3	3		
Rainy	3	2	Cool	3	1								
Sunny	2/9	3/5	Hot	2/9	2/5	High	3/9	4/5	False	6/9	2/5	9/14	5/14
Overcast	4/9	0/5	Mild	4/9	2/5	Normal	6/9	1/5	True	3/9	3/5		
Rainy	3/9	2/5	Cool	3/9	1/5								

27

27

Laplace estimator – U'oc lượng Laplace

■ ví dụ: thuộc tính *outlook* cho lớp "no"

$$\frac{3+1/3}{5+1}$$

$$\frac{0+1/3}{5+1}$$

$$\frac{2+1/3}{5+1}$$

Sunny

Overcast

Rainy

Out	tlook	
	Yes	No
Sunny	2	3
Overcast	4	0
Rainy	3	2
Sunny	2/9	3/5
Overcast	4/9	0/5
Rainy	3/9	2/5

$$p_1 = p_2 = p_3 = 1/3; \mu = 1$$

Sunny = 10/18 Overcast = 1/18 Rainy = 7/18

28

Laplace estimator – U'oc lượng Laplace

- trọng số có thể không bằng nhau, nhưng tổng phải là 1
- thuộc tính *outlook* cho lớp "Yes"

$$\frac{2 + \mu p_1}{9 + \mu}$$

$$\frac{4 + \mu p_2}{9 + \mu}$$

$$\frac{3+\mu p_3}{9+\mu}$$

Sunny

Overcast

Rainy

Đề xuất giá trị p1, p2, p3 và μ

29

29

Laplace estimator – Uóc lượng Laplace

Uớc lượng Laplace cho trường hợp sau $(\mu, p_i = ?)$

	Α	В	С
T1	1/7	2/10	5/13
T2	2/7	1/10	3/13
Т3	1/7	2/10	0/13
T4	3/7	5/10	5/13

30

Giá trị thuộc tính nhiễu

■ học : bỏ qua dữ liệu nhiễu

phân lớp : bỏ qua các thuộc tính nhiễu

■ ví du :

Outlook Temp. Humidity Windy Play
? Cool High True ?

Likelihood(yes) = $3/9 \times 3/9 \times 3/9 \times 9/14 = 0.0238$ Likelihood(no) = $1/5 \times 4/5 \times 3/5 \times 5/14 = 0.0343$ Likelihood(yes) = 0.0238 / (0.0238 + 0.0343) = 0.41Likelihood(no) = 0.0343 / (0.0238 + 0.0343) = 0.59

2 1

31

Xác định dữ liệu trong bảng kế tiếp, giá trị của các thuộc tính là giá trị rời rạc hay liên tục?

Outlook	Temp	Humidity	Windy	Play
Sunny	85	85	False	No
Sunny	80	90	True	No
Overcast	83	86	False	Yes
Rainy	70	96	False	Yes
Rainy	68	80	False	Yes
Rainy	65	70	True	No
Overcast	64	65	True	Yes
Sunny	72	95	False	No
Sunny	69	70	False	Yes
Rainy	75	80	False	Yes
Sunny	75	70	True	Yes
Overcast	72	90	True	Yes
Overcast	81	75	False	Yes
Rainy	71	91	True	No

Dữ liệu liên tục

Phân phối chuẩn, còn gọi là phân phối Gauss, là một phân phối xác suất cực kì quan trọng trong nhiều lĩnh vực. Nó là họ phân phối có dạng tổng quát giống nhau, chỉ khác tham số vị trí (giá trị trung bình μ) và tỉ $l\hat{e}$ (phương sai σ^2).

Phân phối chuẩn tắc (standard normal distribution) là phân phối chuẩn với giá trị trung bình bằng 0 và phương sai bằng 1 (đường cong màu đỏ trong hình). Phân phối chuẩn còn được gọi là đường cong chuông (bell curve) vì đồ thị của mật độ xác

suất có dạng chuông.

33

Dữ liệu liên tục

- Giả sử các thuộc tính có phân phối Gaussian
- hàm mật độ xác suất f(x) được tính như sau

mật độ xác suất
$$f(x)$$
 được tính nh

$$f(x) = \frac{1}{\sqrt{2\pi\sigma}} e^{-\frac{(x-\mu)^2}{2\sigma^2}}$$
Mean μ

$$\mu = \frac{1}{n} \sum_{i=1}^{n} x_i$$

Mean μ

$$\mu = \frac{1}{n} \sum_{i=1}^{n} x_i$$

Karl Gauss, 1777-1855 great German mathematician

- Phương sai (Variance) σ²
- $\sigma^2 = \frac{1}{n-1} \sum_{i=1}^{n} (x_i \mu)^2$
- Độ lệch chuẩn -standard deviation: căn bậc 2 của phương sai

$$\sigma = \sqrt{\sigma^2}$$

https://www.mathsisfun.com/data/standard-deviation.html