Final Capstone - Harvard and Duke Forests environmental growing conditions

Overview:

This project is a statistical analysis of Harvard and Duke forests environmental conditions. These two forests are approximately 700 miles from each other on the eastern seaboard. This dataset is of interest due to the rapidly changing climatic conditions, digging into the experimental environmenal conditions can provide key insights into future outcomes of these two forest. This data and analysis is very important for US Forest Service and Conservation agencies to understand as they asses and make predictions about the future of our forests.

Goals:

- 1. Combine 3 datasets into 1
- 2. Predict difference between Duke and Harvard forests
- 3. Model the relationship between air temperature and PAR
- 4. Use classification models to predict treatment changes
- 5. Use Random Forest to predict Tree Species with treatments ('Only for Harvard forest')
- 6. PCA model of the dataset how is it related or different
- 7. Time series modeling of Air temperature and photosysnthetically active radiation

Loading Modules

```
In [3]:
        import pandas as pd
        import numpy as np
        import matplotlib.pyplot as plt
        from mpl toolkits.mplot3d import axes3d
        import seaborn as sns
        sns.set(style="ticks", color_codes=True)
        import chardet
        import codecs
        from sklearn.preprocessing import scale
        import sklearn.linear_model as skl_lm
        from sklearn.metrics import mean_squared_error, r2_score
        import statsmodels.api as sm
        import statsmodels.formula.api as smf
        import folium
        from folium import plugins
        from scipy import stats
        %matplotlib inline
        plt.style.use('seaborn-white')
        import warnings
        warnings.filterwarnings('ignore')
        pd.set option('display.max columns', None)
```

Loading in datasets for Harvard and Duke forest

The havard_forest_complete.csv file is a joined file of hf199-01: hf environment and hf199-03: hf growth. To see the code on the merge see: Harvard Forest and Plant ID merged.ipynb

```
In [4]: # Harvard Forest
    df = pd.read_csv('/Users/mille/Desktop/Final Capstone/havard_forest_complete.c
    sv', low_memory=False)
    print('Dataframe dimensions:', df.shape)

Dataframe dimensions: (1407177, 18)

In [5]: # Duke Forest
    df1 = pd.read_csv('/Users/mille/Desktop/Final Capstone/hf199-04-df-env.csv', 1
    ow_memory=False)
    print('Dataframe dimensions:', df1.shape)

Dataframe dimensions: (750768, 15)
```

In [6]: df.head()

Out[6]:

	Unnamed:	date	Species	Tag	Chamber	site	year	month	day	hour	chamber	trea
0	0	2010- 04-15	acru	1.0	S01_5	HF	2010	4	15	1	1	S
1	1	2010- 04-15	acru	1.0	S01_5	HF	2010	4	15	2	1	S
2	2	2010- 04-15	acru	1.0	S01_5	HF	2010	4	15	3	1	S
3	3	2010- 04-15	acru	1.0	S01_5	HF	2010	4	15	4	1	S
4	4	2010- 04-15	acru	1.0	S01_5	HF	2010	4	15	5	1	S

In [7]: df.drop(columns=['Unnamed: 0'])

Out[7]:

	date	Species	Tag	Chamber	site	year	month	day	hour	chamber	treat
0	2010- 04-15	acru	1.0	S01_5	HF	2010	4	15	1	1	S
1	2010- 04-15	acru	1.0	S01_5	HF	2010	4	15	2	1	S
2	2010- 04-15	acru	1.0	S01_5	HF	2010	4	15	3	1	S
3	2010- 04-15	acru	1.0	S01_5	HF	2010	4	15	4	1	S
4	2010- 04-15	acru	1.0	S01_5	HF	2010	4	15	5	1	S
5	2010- 04-15	acru	1.0	S01_5	HF	2010	4	15	6	1	S
6	2010- 04-15	acru	1.0	S01_5	HF	2010	4	15	7	1	S
7	2010- 04-15	acru	1.0	S01_5	HF	2010	4	15	8	1	S
8	2010- 04-15	acru	1.0	S01_5	HF	2010	4	15	9	1	S
9	2010- 04-15	acru	1.0	S01_5	HF	2010	4	15	10	1	S
10	2010- 04-15	acru	1.0	S01_5	HF	2010	4	15	11	1	S
11	2010- 04-15	acru	1.0	S01_5	HF	2010	4	15	12	1	S
12	2010- 04-15	acru	1.0	S01_5	HF	2010	4	15	13	1	S
13	2010- 04-15	acru	1.0	S01_5	HF	2010	4	15	14	1	S
14	2010- 04-15	acru	1.0	S01_5	HF	2010	4	15	15	1	S
15	2010- 04-15	acru	1.0	S01_5	HF	2010	4	15	16	1	S
16	2010- 04-15	acru	1.0	S01_5	HF	2010	4	15	17	1	s
17	2010- 04-15	acru	1.0	S01_5	HF	2010	4	15	18	1	s
18	2010- 04-15	acru	1.0	S01_5	HF	2010	4	15	19	1	s

	date	Species	Tag	Chamber	site	year	month	day	hour	chamber	treat
19	2010- 04-15	acru	1.0	S01_5	HF	2010	4	15	20	1	s
20	2010- 04-15	acru	1.0	S01_5	HF	2010	4	15	21	1	s
21	2010- 04-15	acru	1.0	S01_5	HF	2010	4	15	22	1	s
22	2010- 04-15	acru	1.0	S01_5	HF	2010	4	15	23	1	s
23	2010- 04-15	acru	1.0	S01_5	HF	2010	4	15	24	1	s
24	2010- 04-21	acru	1.0	S01_5	HF	2010	4	21	1	1	s
25	2010- 04-21	acru	1.0	S01_5	HF	2010	4	21	2	1	s
26	2010- 04-21	acru	1.0	S01_5	HF	2010	4	21	3	1	s
27	2010- 04-21	acru	1.0	S01_5	HF	2010	4	21	4	1	s
28	2010- 04-21	acru	1.0	S01_5	HF	2010	4	21	5	1	s
29	2010- 04-21	acru	1.0	S01_5	HF	2010	4	21	6	1	s
1407147	2010- 11-18	acru	20011.0	S11_C	HF	2010	11	18	19	11	s
1407148	2010- 11-18	acru	20011.0	S11_C	HF	2010	11	18	20	11	s
1407149	2010- 11-18	acru	20011.0	S11_C	HF	2010	11	18	21	11	s
1407150	2010- 11-18	acru	20011.0	S11_C	HF	2010	11	18	22	11	S
1407151	2010- 11-18	acru	20011.0	S11_C	HF	2010	11	18	23	11	s
1407152	2010- 11-18	acru	20011.0	S11_C	HF	2010	11	18	24	11	S
1407153	2010- 11-29	acru	20011.0	S11_C	HF	2010	11	29	1	11	S

	date	Species	Tag	Chamber	site	year	month	day	hour	chamber	treat
1407154	2010- 11-29	acru	20011.0	S11_C	HF	2010	11	29	2	11	S
1407155	2010- 11-29	acru	20011.0	S11_C	HF	2010	11	29	3	11	S
1407156	2010- 11-29	acru	20011.0	S11_C	HF	2010	11	29	4	11	S
1407157	2010- 11-29	acru	20011.0	S11_C	HF	2010	11	29	5	11	S
1407158	2010- 11-29	acru	20011.0	S11_C	HF	2010	11	29	6	11	S
1407159	2010- 11-29	acru	20011.0	S11_C	HF	2010	11	29	7	11	S
1407160	2010- 11-29	acru	20011.0	S11_C	HF	2010	11	29	8	11	S
1407161	2010- 11-29	acru	20011.0	S11_C	HF	2010	11	29	9	11	S
1407162	2010- 11-29	acru	20011.0	S11_C	HF	2010	11	29	10	11	S
1407163	2010- 11-29	acru	20011.0	S11_C	HF	2010	11	29	11	11	S
1407164	2010- 11-29	acru	20011.0	S11_C	HF	2010	11	29	12	11	S
1407165	2010- 11-29	acru	20011.0	S11_C	HF	2010	11	29	13	11	S
1407166	2010- 11-29	acru	20011.0	S11_C	HF	2010	11	29	14	11	S
1407167	2010- 11-29	acru	20011.0	S11_C	HF	2010	11	29	15	11	S
1407168	2010- 11-29	acru	20011.0	S11_C	HF	2010	11	29	16	11	S
1407169	2010- 11-29	acru	20011.0	S11_C	HF	2010	11	29	17	11	S
1407170	2010- 11-29	acru	20011.0	S11_C	HF	2010	11	29	18	11	S
1407171	2010- 11-29	acru	20011.0	S11_C	HF	2010	11	29	19	11	S
1407172	2010- 11-29	acru	20011.0	S11_C	HF	2010	11	29	20	11	S

	date	Species	Tag	Chamber	site	year	month	day	hour	chamber	treat
1407173	2010- 11-29	acru	20011.0	S11_C	HF	2010	11	29	21	11	S
1407174	2010- 11-29	acru	20011.0	S11_C	HF	2010	11	29	22	11	S
1407175	2010- 11-29	acru	20011.0	S11_C	HF	2010	11	29	23	11	S
1407176	2010- 11-29	acru	20011.0	S11_C	HF	2010	11	29	24	11	S

1407177 rows × 17 columns

Adding datetime to Harvard Forest dataset

```
In [8]: df['date'] = pd.to_datetime(df[['year', 'month', 'day']])
```

In [9]: df.drop(columns=['Unnamed: 0'])

Out[9]:

	date	Species	Tag	Chamber	site	year	month	day	hour	chamber	treat
0	2010- 04-15	acru	1.0	S01_5	HF	2010	4	15	1	1	S
1	2010- 04-15	acru	1.0	S01_5	HF	2010	4	15	2	1	S
2	2010- 04-15	acru	1.0	S01_5	HF	2010	4	15	3	1	S
3	2010- 04-15	acru	1.0	S01_5	HF	2010	4	15	4	1	S
4	2010- 04-15	acru	1.0	S01_5	HF	2010	4	15	5	1	S
5	2010- 04-15	acru	1.0	S01_5	HF	2010	4	15	6	1	S
6	2010- 04-15	acru	1.0	S01_5	HF	2010	4	15	7	1	S
7	2010- 04-15	acru	1.0	S01_5	HF	2010	4	15	8	1	S
8	2010- 04-15	acru	1.0	S01_5	HF	2010	4	15	9	1	S
9	2010- 04-15	acru	1.0	S01_5	HF	2010	4	15	10	1	S
10	2010- 04-15	acru	1.0	S01_5	HF	2010	4	15	11	1	S
11	2010- 04-15	acru	1.0	S01_5	HF	2010	4	15	12	1	S
12	2010- 04-15	acru	1.0	S01_5	HF	2010	4	15	13	1	S
13	2010- 04-15	acru	1.0	S01_5	HF	2010	4	15	14	1	S
14	2010- 04-15	acru	1.0	S01_5	HF	2010	4	15	15	1	S
15	2010- 04-15	acru	1.0	S01_5	HF	2010	4	15	16	1	S
16	2010- 04-15	acru	1.0	S01_5	HF	2010	4	15	17	1	s
17	2010- 04-15	acru	1.0	S01_5	HF	2010	4	15	18	1	s
18	2010- 04-15	acru	1.0	S01_5	HF	2010	4	15	19	1	s

	date	Species	Tag	Chamber	site	year	month	day	hour	chamber	treat
19	2010- 04-15	acru	1.0	S01_5	HF	2010	4	15	20	1	s
20	2010- 04-15	acru	1.0	S01_5	HF	2010	4	15	21	1	s
21	2010- 04-15	acru	1.0	S01_5	HF	2010	4	15	22	1	s
22	2010- 04-15	acru	1.0	S01_5	HF	2010	4	15	23	1	s
23	2010- 04-15	acru	1.0	S01_5	HF	2010	4	15	24	1	s
24	2010- 04-21	acru	1.0	S01_5	HF	2010	4	21	1	1	s
25	2010- 04-21	acru	1.0	S01_5	HF	2010	4	21	2	1	s
26	2010- 04-21	acru	1.0	S01_5	HF	2010	4	21	3	1	s
27	2010- 04-21	acru	1.0	S01_5	HF	2010	4	21	4	1	s
28	2010- 04-21	acru	1.0	S01_5	HF	2010	4	21	5	1	s
29	2010- 04-21	acru	1.0	S01_5	HF	2010	4	21	6	1	s
1407147	2010- 11-18	acru	20011.0	S11_C	HF	2010	11	18	19	11	s
1407148	2010- 11-18	acru	20011.0	S11_C	HF	2010	11	18	20	11	s
1407149	2010- 11-18	acru	20011.0	S11_C	HF	2010	11	18	21	11	s
1407150	2010- 11-18	acru	20011.0	S11_C	HF	2010	11	18	22	11	S
1407151	2010- 11-18	acru	20011.0	S11_C	HF	2010	11	18	23	11	s
1407152	2010- 11-18	acru	20011.0	S11_C	HF	2010	11	18	24	11	S
1407153	2010- 11-29	acru	20011.0	S11_C	HF	2010	11	29	1	11	S

	date	Species	Tag	Chamber	site	year	month	day	hour	chamber	treat
1407154	2010- 11-29	acru	20011.0	S11_C	HF	2010	11	29	2	11	s
1407155	2010- 11-29	acru	20011.0	S11_C	HF	2010	11	29	3	11	s
1407156	2010- 11-29	acru	20011.0	S11_C	HF	2010	11	29	4	11	s
1407157	2010- 11-29	acru	20011.0	S11_C	HF	2010	11	29	5	11	s
1407158	2010- 11-29	acru	20011.0	S11_C	HF	2010	11	29	6	11	s
1407159	2010- 11-29	acru	20011.0	S11_C	HF	2010	11	29	7	11	S
1407160	2010- 11-29	acru	20011.0	S11_C	HF	2010	11	29	8	11	s
1407161	2010- 11-29	acru	20011.0	S11_C	HF	2010	11	29	9	11	S
1407162	2010- 11-29	acru	20011.0	S11_C	HF	2010	11	29	10	11	S
1407163	2010- 11-29	acru	20011.0	S11_C	HF	2010	11	29	11	11	S
1407164	2010- 11-29	acru	20011.0	S11_C	HF	2010	11	29	12	11	s
1407165	2010- 11-29	acru	20011.0	S11_C	HF	2010	11	29	13	11	S
1407166	2010- 11-29	acru	20011.0	S11_C	HF	2010	11	29	14	11	S
1407167	2010- 11-29	acru	20011.0	S11_C	HF	2010	11	29	15	11	s
1407168	2010- 11-29	acru	20011.0	S11_C	HF	2010	11	29	16	11	S
1407169	2010- 11-29	acru	20011.0	S11_C	HF	2010	11	29	17	11	S
1407170	2010- 11-29	acru	20011.0	S11_C	HF	2010	11	29	18	11	S
1407171	2010- 11-29	acru	20011.0	S11_C	HF	2010	11	29	19	11	S
1407172	2010- 11-29	acru	20011.0	S11_C	HF	2010	11	29	20	11	S

	date	Species	Tag	Chamber	site	year	month	day	hour	chamber	treat
1407173	2010- 11-29	acru	20011.0	S11_C	HF	2010	11	29	21	11	s
1407174	2010- 11-29	acru	20011.0	S11_C	HF	2010	11	29	22	11	s
1407175	2010- 11-29	acru	20011.0	S11_C	HF	2010	11	29	23	11	s
1407176	2010- 11-29	acru	20011.0	S11_C	HF	2010	11	29	24	11	s

1407177 rows × 17 columns

Understanding the Harvad Forest - environmental variables

year: year month: month day: day of month time: hour of day chamber: chamber number (1-12) treatment: light treatment G: chamber in open gap S: chamber under closed canopy warming: warming treatment 3: 3 degrees C 5: 5 degrees C A: ambient C: control AT: air temperature (unit: celsius / missing value: NA) Q: photosynthetically active radiation (unit: micromolePerMeterSquaredPerSecond / missing value: NA) Rh: relative humidity (%) (unit: dimensionless / missing value: NA) SM: volumetric water content (fractional) (unit: dimensionless / missing value: NA) ST: soil temperature at 5cm depth (unit: celsius / missing value: NA)

Q: photosynthetically active radiation (unit: micromolePerMeterSquaredPerSecond/missing value:NA)

Why is Photosynthetically Active Radiation Important?

Photosynthetically Active Radiation is needed for photosynthesis and plant growth. Higher PAR promotes plant growth, and monitoring monitoring PAR is important to ensure plants are receiving adequate light for this process.

PAR values range from 0 to 3,000 millimoles per square meter. At night, PAR is zero. During mid-day in the summer, PAR often reaches 2,000 to 3,000 millimoles per square meter.

PAR of 0 is Night

Mid-day in summer PAR 2,000 to 3,000

https://s.campbellsci.com/documents/ca/manuals/li190sb_man.pdf (https://s.campbellsci.com/documents/ca/manuals/li190sb_man.pdf)

https://curiousplant.com/light-carnivorous-plants-part-2/ (https://curiousplant.com/light-carnivorous-plants-part-2/)

```
In [10]: df['Q'].describe()
Out[10]: count
                   1.099241e+06
          mean
                   9.723897e+01
          std
                   3.367903e+02
          min
                  -1.753000e+03
          25%
                   0.000000e+00
          50%
                   5.033000e+00
          75%
                   7.214000e+01
          max
                   4.410000e+03
         Name: Q, dtype: float64
In [11]: df.groupby('hour')
          df.groupby('hour').get_group(23).max()
Out[11]: Unnamed: 0
                                     1407175
          date
                         2011-11-15 00:00:00
          Species
                                        unkn
          Tag
                                       20011
          Chamber
                                       S12_C
          site
                                          HF
                                         2011
          year
         month
                                          11
                                           30
          day
          hour
                                           23
          chamber
                                           12
                                            S
          treatment
                                            C
         warming
                                       28.65
          ΑT
          Q
                                        3466
          Rh
                                       104.2
                                       0.303
          SM
          ST
                                     27.6033
          dtype: object
In [12]: filtered_data = df[df.hour == 1]
In [13]: filtered_data = df[df.Q < 0 ]</pre>
```

In [14]: filtered_data

Out[14]:

	Unnamed:	date	Species	Tag	Chamber	site	year	month	day	hour	cha
3	3	2010- 04-15	acru	1.0	S01_5	HF	2010	4	15	4	1
26	26	2010- 04-21	acru	1.0	S01_5	HF	2010	4	21	3	1
45	45	2010- 04-21	acru	1.0	S01_5	HF	2010	4	21	22	1
67	67	2010- 04-29	acru	1.0	S01_5	HF	2010	4	29	20	1
72	72	2010- 04-30	acru	1.0	S01_5	HF	2010	4	30	1	1
75	75	2010- 04-30	acru	1.0	S01_5	HF	2010	4	30	4	1
99	99	2010- 05-17	acru	1.0	S01_5	HF	2010	5	17	4	1
205	205	2010- 06-16	acru	1.0	S01_5	HF	2010	6	16	23	1
209	209	2010- 07-07	acru	1.0	S01_5	HF	2010	7	7	3	1
535	535	2011- 10-13	acru	5.0	G09_5	HF	2011	10	13	2	9
536	536	2011- 10-13	acru	5.0	G09_5	HF	2011	10	13	3	9
537	537	2011- 10-13	acru	5.0	G09_5	HF	2011	10	13	4	9
558	558	2011- 10-20	acru	5.0	G09_5	HF	2011	10	20	1	9
559	559	2011- 10-20	acru	5.0	G09_5	HF	2011	10	20	2	9
561	561	2011- 10-20	acru	5.0	G09_5	HF	2011	10	20	4	9
579	579	2011- 10-20	acru	5.0	G09_5	HF	2011	10	20	22	9
582	582	2011- 10-26	acru	5.0	G09_5	HF	2011	10	26	1	9
585	585	2011- 10-26	acru	5.0	G09_5	HF	2011	10	26	4	9

	Unnamed:	date	Species	Tag	Chamber	site	year	month	day	hour	ch
608	608	2011- 11-03	acru	5.0	G09_5	HF	2011	11	3	3	9
611	611	2011- 11-03	acru	5.0	G09_5	HF	2011	11	3	6	9
628	628	2011- 11-03	acru	5.0	G09_5	HF	2011	11	3	23	9
631	631	2011- 11-08	acru	5.0	G09_5	HF	2011	11	8	2	9
634	634	2011- 11-08	acru	5.0	G09_5	HF	2011	11	8	5	9
635	635	2011- 11-08	acru	5.0	G09_5	HF	2011	11	8	6	9
649	649	2011- 11-08	acru	5.0	G09_5	HF	2011	11	8	20	9
650	650	2011- 11-08	acru	5.0	G09_5	HF	2011	11	8	21	9
651	651	2011- 11-08	acru	5.0	G09_5	HF	2011	11	8	22	9
656	656	2011- 11-15	acru	5.0	G09_5	HF	2011	11	15	3	9
658	658	2011- 11-15	acru	5.0	G09_5	HF	2011	11	15	5	9
659	659	2011- 11-15	acru	5.0	G09_5	HF	2011	11	15	6	9
1405593	1405593	2011- 11-08	acru	11468.0	S11_C	HF	2011	11	8	1	11
1405636	1405636	2011- 11-15	acru	11468.0	S11_C	HF	2011	11	15	20	11
1405639	1405639	2011- 11-15	acru	11468.0	S11_C	HF	2011	11	15	23	11
1405785	1405785	2011- 11-08	acru	11470.0	S11_C	HF	2011	11	8	1	11
1405828	1405828	2011- 11-15	acru	11470.0	S11_C	HF	2011	11	15	20	11
1405831	1405831	2011- 11-15	acru	11470.0	S11_C	HF	2011	11	15	23	11

	Unnamed:	date	Species	Tag	Chamber	site	year	month	day	hour	cha
1405977	1405977	2011- 11-08	acru	11471.0	S11_C	HF	2011	11	8	1	11
1406020	1406020	2011- 11-15	acru	11471.0	S11_C	HF	2011	11	15	20	11
1406023	1406023	2011- 11-15	acru	11471.0	S11_C	HF	2011	11	15	23	11
1406217	1406217	2011- 11-08	acru	11475.0	S11_C	HF	2011	11	8	1	11
1406260	1406260	2011- 11-15	acru	11475.0	S11_C	HF	2011	11	15	20	11
1406263	1406263	2011- 11-15	acru	11475.0	S11_C	HF	2011	11	15	23	11
1406409	1406409	2011- 11-08	fram	11477.0	S11_C	HF	2011	11	8	1	11
1406452	1406452	2011- 11-15	fram	11477.0	S11_C	HF	2011	11	15	20	11
1406455	1406455	2011- 11-15	fram	11477.0	S11_C	HF	2011	11	15	23	11
1406649	1406649	2011- 11-08	acru	11496.0	S11_C	HF	2011	11	8	1	11
1406692	1406692	2011- 11-15	acru	11496.0	S11_C	HF	2011	11	15	20	11
1406695	1406695	2011- 11-15	acru	11496.0	S11_C	HF	2011	11	15	23	11
1406723	1406723	2010- 10-21	piun	19005.0	S10_C	HF	2010	10	21	3	10
1406725	1406725	2010- 10-21	piun	19005.0	S10_C	HF	2010	10	21	5	10
1406773	1406773	2010- 11-08	piun	19005.0	S10_C	HF	2010	11	8	5	10
1406791	1406791	2010- 11-08	piun	19005.0	S10_C	HF	2010	11	8	23	10
1406867	1406867	2010- 10-21	piun	20003.0	S11_C	HF	2010	10	21	3	11
1406890	1406890	2010- 10-28	piun	20003.0	S11_C	HF	2010	10	28	2	11

	Unnamed:	date	Species	Tag	Chamber	site	year	month	day	hour	ch
1406956	1406956	2010- 11-18	piun	20003.0	S11_C	HF	2010	11	18	20	11
1406957	1406957	2010- 11-18	piun	20003.0	S11_C	HF	2010	11	18	21	11
1407059	1407059	2010- 10-21	acru	20011.0	S11_C	HF	2010	10	21	3	11
1407082	1407082	2010- 10-28	acru	20011.0	S11_C	HF	2010	10	28	2	11
1407148	1407148	2010- 11-18	acru	20011.0	S11_C	HF	2010	11	18	20	11
1407149	1407149	2010- 11-18	acru	20011.0	S11_C	HF	2010	11	18	21	11

61659 rows × 18 columns

In [15]: df.sort_values('month', axis=0, ascending=False)

Out[15]:

	Unnamed:	date	Species	Tag	Chamber	site	year	month	day	hour	cha
703588	703588	2010- 11-29	magr	3996.0	S04_5	HF	2010	11	29	8	4
620649	620649	2011- 11-08	quru	3608.0	S03_3	HF	2011	11	8	13	3
620660	620660	2011- 11-08	quru	3608.0	S03_3	HF	2011	11	8	24	3
620659	620659	2011- 11-08	quru	3608.0	S03_3	HF	2011	11	8	23	3
620658	620658	2011- 11-08	quru	3608.0	S03_3	HF	2011	11	8	22	3
620657	620657	2011- 11-08	quru	3608.0	S03_3	HF	2011	11	8	21	3
620656	620656	2011- 11-08	quru	3608.0	S03_3	HF	2011	11	8	20	3
620655	620655	2011- 11-08	quru	3608.0	S03_3	HF	2011	11	8	19	3
620654	620654	2011- 11-08	quru	3608.0	S03_3	HF	2011	11	8	18	3
620653	620653	2011- 11-08	quru	3608.0	S03_3	HF	2011	11	8	17	3
620652	620652	2011- 11-08	quru	3608.0	S03_3	HF	2011	11	8	16	3
620651	620651	2011- 11-08	quru	3608.0	S03_3	HF	2011	11	8	15	3
620650	620650	2011- 11-08	quru	3608.0	S03_3	HF	2011	11	8	14	3
620648	620648	2011- 11-08	quru	3608.0	S03_3	HF	2011	11	8	12	3
620635	620635	2010- 11-08	quru	3608.0	S03_3	HF	2010	11	8	23	3
620647	620647	2011- 11-08	quru	3608.0	S03_3	HF	2011	11	8	11	3
620646	620646	2011- 11-08	quru	3608.0	S03_3	HF	2011	11	8	10	3
620645	620645	2011- 11-08	quru	3608.0	S03_3	HF	2011	11	8	9	3

	Unnamed:	date	Species	Tag	Chamber	site	year	month	day	hour	cha
620644	620644	2011- 11-08	quru	3608.0	S03_3	HF	2011	11	8	8	3
620643	620643	2011- 11-08	quru	3608.0	S03_3	HF	2011	11	8	7	3
620642	620642	2011- 11-08	quru	3608.0	S03_3	HF	2011	11	8	6	3
620641	620641	2011- 11-08	quru	3608.0	S03_3	HF	2011	11	8	5	3
620640	620640	2011- 11-08	quru	3608.0	S03_3	HF	2011	11	8	4	3
620639	620639	2011- 11-08	quru	3608.0	S03_3	HF	2011	11	8	3	3
620638	620638	2011- 11-08	quru	3608.0	S03_3	HF	2011	11	8	2	3
620637	620637	2011- 11-08	quru	3608.0	S03_3	HF	2011	11	8	1	3
620661	620661	2011- 11-15	quru	3608.0	S03_3	HF	2011	11	15	1	3
620662	620662	2011- 11-15	quru	3608.0	S03_3	HF	2011	11	15	2	3
620663	620663	2011- 11-15	quru	3608.0	S03_3	HF	2011	11	15	3	3
620664	620664	2011- 11-15	quru	3608.0	S03_3	HF	2011	11	15	4	3
			•••		•••						
515068	515068	2010- 04-21	acru	3377.0	S08_3	HF	2010	4	21	14	8
515069	515069	2010- 04-21	acru	3377.0	S08_3	HF	2010	4	21	15	8
515070	515070	2010- 04-21	acru	3377.0	S08_3	HF	2010	4	21	16	8
515071	515071	2010- 04-21	acru	3377.0	S08_3	HF	2010	4	21	17	8
515072	515072	2010- 04-21	acru	3377.0	S08_3	HF	2010	4	21	18	8
515073	515073	2010- 04-21	acru	3377.0	S08_3	HF	2010	4	21	19	8

	Unnamed:	date	Species	Tag	Chamber	site	year	month	day	hour	ch
515074	515074	2010- 04-21	acru	3377.0	S08_3	HF	2010	4	21	20	8
515075	515075	2010- 04-21	acru	3377.0	S08_3	HF	2010	4	21	21	8
515076	515076	2010- 04-21	acru	3377.0	S08_3	HF	2010	4	21	22	8
515077	515077	2010- 04-21	acru	3377.0	S08_3	HF	2010	4	21	23	8
515078	515078	2010- 04-21	acru	3377.0	S08_3	HF	2010	4	21	24	8
515063	515063	2010- 04-21	acru	3377.0	S08_3	HF	2010	4	21	9	8
515062	515062	2010- 04-21	acru	3377.0	S08_3	HF	2010	4	21	8	8
515061	515061	2010- 04-21	acru	3377.0	S08_3	HF	2010	4	21	7	8
1284177	1284177	2010- 04-30	acru	10768.0	S04_5	HF	2010	4	30	16	4
1284171	1284171	2010- 04-30	acru	10768.0	S04_5	HF	2010	4	30	10	4
1284172	1284172	2010- 04-30	acru	10768.0	S04_5	HF	2010	4	30	11	4
1284173	1284173	2010- 04-30	acru	10768.0	S04_5	HF	2010	4	30	12	4
1284174	1284174	2010- 04-30	acru	10768.0	S04_5	HF	2010	4	30	13	4
1284175	1284175	2010- 04-30	acru	10768.0	S04_5	HF	2010	4	30	14	4
1284176	1284176	2010- 04-30	acru	10768.0	S04_5	HF	2010	4	30	15	4
1284178	1284178	2010- 04-30	acru	10768.0	S04_5	HF	2010	4	30	17	4
1284185	1284185	2010- 04-30	acru	10768.0	S04_5	HF	2010	4	30	24	4
1284179	1284179	2010- 04-30	acru	10768.0	S04_5	HF	2010	4	30	18	4

	Unnamed:	date	Species	Tag	Chamber	site	year	month	day	hour	ch
1284180	1284180	2010- 04-30	acru	10768.0	S04_5	HF	2010	4	30	19	4
1284181	1284181	2010- 04-30	acru	10768.0	S04_5	HF	2010	4	30	20	4
1284182	1284182	2010- 04-30	acru	10768.0	S04_5	HF	2010	4	30	21	4
1284183	1284183	2010- 04-30	acru	10768.0	S04_5	HF	2010	4	30	22	4
1284184	1284184	2010- 04-30	acru	10768.0	S04_5	HF	2010	4	30	23	4
0	0	2010- 04-15	acru	1.0	S01_5	HF	2010	4	15	1	1

1407177 rows × 18 columns

Adding a new feature - ppfd (Photosynthetic Photon Flux Density)

Created by using the Q: photosynthetically active radiation * Avogadro's number

In [17]: df.describe()

Out[17]:

	Unnamed: 0	Tag	year	month	day	
count	1.407177e+06	1.407177e+06	1.407177e+06	1.407177e+06	1.407177e+06	1.407177
mean	7.035880e+05	6.488845e+03	2.010447e+03	8.398515e+00	1.662539e+01	1.254754
std	4.062172e+05	3.720405e+03	5.266105e-01	2.324370e+00	8.881952e+00	6.915155
min	0.000000e+00	1.000000e+00	2.009000e+03	4.000000e+00	1.000000e+00	1.000000
25%	3.517940e+05	2.957000e+03	2.010000e+03	6.000000e+00	8.000000e+00	7.000000
50%	7.035880e+05	3.996000e+03	2.010000e+03	9.000000e+00	1.800000e+01	1.300000
75%	1.055382e+06	1.019000e+04	2.011000e+03	1.000000e+01	2.600000e+01	1.900000
max	1.407176e+06	2.001100e+04	2.011000e+03	1.100000e+01	3.000000e+01	2.400000

Add feature - CO2 uptake and CO2 release are both related to Q.

These are boolean values created by a conditional statement.

When Q is positive number CO2_uptake will read TRUE. When Q is negative number CO2_release will read TRUE.

```
In [18]: df['CO2_uptake'] = np.where(df['Q']>=0, True, False) #during the day CO2 into
    the plant

In [19]: df['CO2_release'] = np.where(df['Q']<=0, True, False) #at night CO2 is being r
    eleased

In [20]: df.isnull().sum().sum() #total na's
Out[20]: 1485217</pre>
```

Large number of missing values within the environmental variables.

- 1. Use a groupby method and fillna by the monthly mean per environmental variable.
- 2. This likely will introduce variance into the models. However, by doing this I hope to reduce the bias and minize the variance.

```
In [21]: df.isnull().sum()
Out[21]: Unnamed: 0
                                0
          date
                                0
          Species
                                0
          Tag
                                0
          Chamber
          site
                                0
          year
                                0
          month
                                0
          day
                                0
          hour
                                0
          chamber
          treatment
                                0
          warming
                                0
          ΑT
                           28645
                          307936
          Q
          Rh
                          757305
          SM
                           53790
          ST
                           29605
          ppfd
                          307936
          CO2_uptake
                                0
          CO2 release
                                0
          dtype: int64
In [23]: df['Q'] = df.groupby('month').fillna((df['Q'].mean()))
```

In [24]: df.head()

Out[24]:

	Unnamed:	date	Species	Tag	Chamber	site	year	month	day	hour	chamber	trea
0	0	2010- 04-15	acru	1.0	S01_5	HF	2010	4	15	1	1	S
1	1	2010- 04-15	acru	1.0	S01_5	HF	2010	4	15	2	1	S
2	2	2010- 04-15	acru	1.0	S01_5	HF	2010	4	15	3	1	S
3	3	2010- 04-15	acru	1.0	S01_5	HF	2010	4	15	4	1	S
4	4	2010- 04-15	acru	1.0	S01_5	HF	2010	4	15	5	1	s

In [25]: g = df.groupby('month').mean()
g

Out[25]:

	Unnamed: 0	Tag	year	day	hour	chamber	
month							
4	782598.589151	7171.094086	2010.377056	21.686305	12.500000	4.324144	10.172
5	730058.465704	6789.717911	2010.523094	18.071968	12.880173	4.469591	18.147
6	712563.088452	6567.208095	2010.589584	14.231248	12.500000	4.803566	16.897
7	667784.096889	6097.067032	2010.555839	17.560938	12.500000	4.830189	24.346
8	645180.462294	5673.751460	2010.000000	2.000000	12.500000	4.360064	21.211
9	700802.449504	6412.761079	2010.269141	20.296936	12.500000	4.716012	20.011
10	690671.366376	6404.501565	2010.516896	15.745448	12.500000	4.827679	12.383
11	693926.832879	6457.635298	2010.508231	13.853479	12.500000	4.880582	7.7984

```
In [26]: df['Rh'] = df.groupby('month').fillna((df['Rh'].mean()))
    df['AT'] = df.groupby('month').fillna((df['AT'].mean()))
    df['SM'] = df.groupby('month').fillna((df['SM'].mean()))
    df['ST'] = df.groupby('month').fillna((df['ST'].mean()))
    df['ppfd'] = df.groupby('month').fillna((df['ppfd'].mean()))
```

In [27]: df.drop(columns=['Unnamed: 0'])

Out[27]:

	date	Species	Tag	Chamber	site	year	month	day	hour	chamber	treat
0	2010- 04-15	acru	1.0	S01_5	HF	2010	4	15	1	1	S
1	2010- 04-15	acru	1.0	S01_5	HF	2010	4	15	2	1	S
2	2010- 04-15	acru	1.0	S01_5	HF	2010	4	15	3	1	S
3	2010- 04-15	acru	1.0	S01_5	HF	2010	4	15	4	1	S
4	2010- 04-15	acru	1.0	S01_5	HF	2010	4	15	5	1	S
5	2010- 04-15	acru	1.0	S01_5	HF	2010	4	15	6	1	S
6	2010- 04-15	acru	1.0	S01_5	HF	2010	4	15	7	1	S
7	2010- 04-15	acru	1.0	S01_5	HF	2010	4	15	8	1	S
8	2010- 04-15	acru	1.0	S01_5	HF	2010	4	15	9	1	S
9	2010- 04-15	acru	1.0	S01_5	HF	2010	4	15	10	1	S
10	2010- 04-15	acru	1.0	S01_5	HF	2010	4	15	11	1	S
11	2010- 04-15	acru	1.0	S01_5	HF	2010	4	15	12	1	S
12	2010- 04-15	acru	1.0	S01_5	HF	2010	4	15	13	1	S
13	2010- 04-15	acru	1.0	S01_5	HF	2010	4	15	14	1	S
14	2010- 04-15	acru	1.0	S01_5	HF	2010	4	15	15	1	S
15	2010- 04-15	acru	1.0	S01_5	HF	2010	4	15	16	1	S
16	2010- 04-15	acru	1.0	S01_5	HF	2010	4	15	17	1	S
17	2010- 04-15	acru	1.0	S01_5	HF	2010	4	15	18	1	S
18	2010- 04-15	acru	1.0	S01_5	HF	2010	4	15	19	1	S

	date	Species	Tag	Chamber	site	year	month	day	hour	chamber	treat
19	2010- 04-15	acru	1.0	S01_5	HF	2010	4	15	20	1	s
20	2010- 04-15	acru	1.0	S01_5	HF	2010	4	15	21	1	s
21	2010- 04-15	acru	1.0	S01_5	HF	2010	4	15	22	1	s
22	2010- 04-15	acru	1.0	S01_5	HF	2010	4	15	23	1	s
23	2010- 04-15	acru	1.0	S01_5	HF	2010	4	15	24	1	s
24	2010- 04-21	acru	1.0	S01_5	HF	2010	4	21	1	1	s
25	2010- 04-21	acru	1.0	S01_5	HF	2010	4	21	2	1	s
26	2010- 04-21	acru	1.0	S01_5	HF	2010	4	21	3	1	s
27	2010- 04-21	acru	1.0	S01_5	HF	2010	4	21	4	1	s
28	2010- 04-21	acru	1.0	S01_5	HF	2010	4	21	5	1	s
29	2010- 04-21	acru	1.0	S01_5	HF	2010	4	21	6	1	s
1407147	2010- 11-18	acru	20011.0	S11_C	HF	2010	11	18	19	11	s
1407148	2010- 11-18	acru	20011.0	S11_C	HF	2010	11	18	20	11	s
1407149	2010- 11-18	acru	20011.0	S11_C	HF	2010	11	18	21	11	s
1407150	2010- 11-18	acru	20011.0	S11_C	HF	2010	11	18	22	11	S
1407151	2010- 11-18	acru	20011.0	S11_C	HF	2010	11	18	23	11	s
1407152	2010- 11-18	acru	20011.0	S11_C	HF	2010	11	18	24	11	S
1407153	2010- 11-29	acru	20011.0	S11_C	HF	2010	11	29	1	11	S

	date	Species	Tag	Chamber	site	year	month	day	hour	chamber	treat
1407154	2010- 11-29	acru	20011.0	S11_C	HF	2010	11	29	2	11	s
1407155	2010- 11-29	acru	20011.0	S11_C	HF	2010	11	29	3	11	s
1407156	2010- 11-29	acru	20011.0	S11_C	HF	2010	11	29	4	11	s
1407157	2010- 11-29	acru	20011.0	S11_C	HF	2010	11	29	5	11	s
1407158	2010- 11-29	acru	20011.0	S11_C	HF	2010	11	29	6	11	s
1407159	2010- 11-29	acru	20011.0	S11_C	HF	2010	11	29	7	11	S
1407160	2010- 11-29	acru	20011.0	S11_C	HF	2010	11	29	8	11	s
1407161	2010- 11-29	acru	20011.0	S11_C	HF	2010	11	29	9	11	S
1407162	2010- 11-29	acru	20011.0	S11_C	HF	2010	11	29	10	11	S
1407163	2010- 11-29	acru	20011.0	S11_C	HF	2010	11	29	11	11	S
1407164	2010- 11-29	acru	20011.0	S11_C	HF	2010	11	29	12	11	s
1407165	2010- 11-29	acru	20011.0	S11_C	HF	2010	11	29	13	11	S
1407166	2010- 11-29	acru	20011.0	S11_C	HF	2010	11	29	14	11	S
1407167	2010- 11-29	acru	20011.0	S11_C	HF	2010	11	29	15	11	s
1407168	2010- 11-29	acru	20011.0	S11_C	HF	2010	11	29	16	11	S
1407169	2010- 11-29	acru	20011.0	S11_C	HF	2010	11	29	17	11	S
1407170	2010- 11-29	acru	20011.0	S11_C	HF	2010	11	29	18	11	S
1407171	2010- 11-29	acru	20011.0	S11_C	HF	2010	11	29	19	11	S
1407172	2010- 11-29	acru	20011.0	S11_C	HF	2010	11	29	20	11	S

	date	Species	Tag	Chamber	site	year	month	day	hour	chamber	treat
1407173	2010- 11-29	acru	20011.0	S11_C	HF	2010	11	29	21	11	S
1407174	2010- 11-29	acru	20011.0	S11_C	HF	2010	11	29	22	11	S
1407175	2010- 11-29	acru	20011.0	S11_C	HF	2010	11	29	23	11	S
1407176	2010- 11-29	acru	20011.0	S11_C	HF	2010	11	29	24	11	S

1407177 rows × 20 columns

Now we have a complete dataset without any nulls.

```
In [28]: df.isnull().sum()
Out[28]: Unnamed: 0
           date
                           0
                           0
          Species
          Tag
                           0
          Chamber
                           0
                           0
           site
          year
          month
                           0
                           0
          day
          hour
                           0
          chamber
                           0
          treatment
          warming
                           0
          \mathsf{AT}
                           0
          Q
                           0
          Rh
                           0
          SM
                           0
          ST
          ppfd
          CO2_uptake
                           0
          CO2_release
                           0
          dtype: int64
```

Duke Forest dataset

In [29]: df1.head()

Out[29]:

	site	year	times	month	day	JD	JD2009	dayFraction	chamber	treatment	
0	DF	2009	125.54	5	6	-240	125	0.54	1	G	24.226
1	DF	2009	125.54	5	6	-240	125	0.54	2	G	24.513
2	DF	2009	125.54	5	6	-240	125	0.54	3	G	24.070
3	DF	2009	125.54	5	6	-240	125	0.54	4	G	24.443
4	DF	2009	125.54	5	6	-240	125	0.54	5	G	24.305
4						_	_	_			

Adding datetime stamp

In [30]: df1['date'] = pd.to_datetime(df1[['year', 'month', 'day']])

In [31]: df1.head() #Duke

Out[31]:

	site	year	times	month	day	JD	JD2009	dayFraction	chamber	treatment	
0	DF	2009	125.54	5	6	-240	125	0.54	1	G	24.226
1	DF	2009	125.54	5	6	-240	125	0.54	2	G	24.513
2	DF	2009	125.54	5	6	-240	125	0.54	3	G	24.070
3	DF	2009	125.54	5	6	-240	125	0.54	4	G	24.443
4	DF	2009	125.54	5	6	-240	125	0.54	5	G	24.305
4										•	

Large number of missing null values in Duke Forest dataset as well.

Using the same approach as above. Taking the groupby of month and fillna per environmental variable with a mean.

```
In [32]: df1.isnull().sum()
Out[32]: site
                               0
                               0
         year
         times
                               0
         month
                               0
                               0
          day
          JD
                               0
          JD2009
                               0
         dayFraction
                               0
          chamber
                               0
         treatment
                               0
         ΑТ
                           77654
          Q
                         158106
                          750768
         Rh
          SM
                             162
          ST
                           77614
          date
                               0
         dtype: int64
In [33]: | df1['AT'] = df1.groupby('month').fillna((df1['AT'].mean()))
          df1['Q'] = df1.groupby('month').fillna((df1['Q'].mean()))
          df1['Rh'] = df1.groupby('month').fillna((df1['Rh'].mean()))
          df1['SM'] = df1.groupby('month').fillna((df1['SM'].mean()))
          df1['ST'] = df1.groupby('month').fillna((df1['ST'].mean()))
In [34]: df1.isnull().sum()
Out[34]: site
                         0
                         0
         year
         times
                         0
         month
                         0
          day
                         0
          JD
                         0
          JD2009
                         0
         dayFraction
                         0
          chamber
                         0
         treatment
                          0
         ΑT
                          0
                         0
          0
                         0
          Rh
          \mathsf{SM}
                         0
         ST
                         0
          date
                          0
         dtype: int64
In [35]:
         df1['CO2 uptake'] = np.where(df1['Q']>=0, True, False) #during the day CO2 int
          o the plant
          df1['CO2 release'] = np.where(df1['Q']<=0, True, False) #at night CO2 is being
          released
```

```
In [36]:
          def calculate_ppfd(Q):
              ppfd = Q * (6.0221409**23)
              return ppfd
          df1['ppfd'] = df1.Q.apply(calculate_ppfd)
In [37]: df1.isnull().sum()
Out[37]: site
                          0
                          0
          year
          times
                          0
                          0
          month
          day
                          0
          JD
                          0
          JD2009
                          0
          dayFraction
                          0
          chamber
                          0
          treatment
                          0
          ΑТ
                          0
          Q
                          0
          Rh
                          0
          \mathsf{SM}
                          0
          ST
                          0
          date
          CO2_uptake
                          0
          CO2 release
                          0
          ppfd
                          0
          dtype: int64
In [38]:
          df1.dtypes
Out[38]: site
                                   object
                                    int64
          year
          times
                                  float64
          month
                                    int64
                                    int64
          day
          JD
                                    int64
          JD2009
                                    int64
          dayFraction
                                  float64
          chamber
                                    int64
          treatment
                                   object
          ΑТ
                                   object
          Q
                                   object
          Rh
                                   object
          SM
                                   object
          ST
                                   object
          date
                          datetime64[ns]
          CO2_uptake
                                     bool
          CO2 release
                                     bool
          ppfd
                                  float64
          dtype: object
```

```
In [39]: df.dtypes
Out[39]: Unnamed: 0
                                    int64
          date
                          datetime64[ns]
          Species
                                  object
                                 float64
          Tag
                                  object
          Chamber
          site
                                  object
          year
                                    int64
                                    int64
         month
          day
                                    int64
          hour
                                    int64
          chamber
                                    int64
          treatment
                                  object
         warming
                                  object
          ΑT
                                  object
          Q
                                  object
          Rh
                                  object
          SM
                                  object
          ST
                                  object
          ppfd
                                  object
          CO2 uptake
                                     bool
          CO2 release
                                     bool
          dtype: object
```

Renaming dataframes so that I can use them later. But preparing to merge datasets.

```
In [40]: df2 = df1.drop(columns=['times', 'JD', 'JD2009', 'dayFraction'])# Duke Forest

df3 = df.drop(columns=['Tag', 'Species', 'hour', 'warming']) # Harvard Forest
```

Combining Harvard and Duke forest datasets

```
In [41]: HfDf = pd.concat([df2, df3], ignore_index=True)
```

Re-ordering the columns so that it is easier to read and date is on the far left.

In [43]: HfDf.head(10)

Out[43]:

	date	year	month	day	site	chamber	treatment	AT	Q	Rh	SM
0	2009- 05-06	2009	5	6	DF	1	G	24.2267	24.2267	24.2267	24.2267
1	2009- 05-06	2009	5	6	DF	2	G	24.5133	24.5133	24.5133	24.5133
2	2009- 05-06	2009	5	6	DF	3	G	24.07	24.07	24.07	24.07
3	2009- 05-06	2009	5	6	DF	4	G	24.4433	24.4433	24.4433	24.4433
4	2009- 05-06	2009	5	6	DF	5	G	24.305	24.305	24.305	24.305
5	2009- 05-06	2009	5	6	DF	6	G	24.28	24.28	24.28	24.28
6	2009- 05-06	2009	5	6	DF	7	G	23.865	23.865	23.865	23.865
7	2009- 05-06	2009	5	6	DF	8	G	23.76	23.76	23.76	23.76
8	2009- 05-06	2009	5	6	DF	9	G	24.175	24.175	24.175	24.175
9	2009- 05-06	2009	5	6	DF	10	G	17.3824	17.3824	17.3824	17.3824

```
In [44]: #Converting light treatment

HfDf['treatment'] = HfDf['treatment'].apply({ 'G': 0, 'S': 1}.get)

HfDf['site'] = HfDf['site'].apply({ 'HF': 0, 'DF': 1}.get)
```

```
In [45]: HfDf["Rh"] = HfDf.Rh.convert_objects(convert_numeric=True)
    HfDf["Q"] = HfDf.Q.convert_objects(convert_numeric=True)
    HfDf["SM"] = HfDf.SM.convert_objects(convert_numeric=True)
    HfDf["ST"] = HfDf.ST.convert_objects(convert_numeric=True)
    HfDf["AT"] = HfDf.AT.convert_objects(convert_numeric=True)
```

```
In [46]: HfDf.dtypes
Out[46]: date
                          datetime64[ns]
          year
                                    int64
          month
                                    int64
          day
                                    int64
          site
                                    int64
          chamber
                                    int64
          treatment
                                    int64
          ΑT
                                  float64
                                  float64
          Q
                                  float64
          Rh
          \mathsf{SM}
                                  float64
          ST
                                  float64
          ppfd
                                   object
          CO2_uptake
                                     bool
                                     bool
          CO2_release
          dtype: object
```

Exploratory Data Analysis

```
In [47]: #Just continious features
    cont_data=HfDf.ix[:,'AT':'ST']
In [48]: #All binary features
    binary_data=HfDf.ix[:,'year': 'treatment']
```

```
In [49]: for i, col in enumerate(cont_data.columns):
    plt.figure(i)
    plt.hist(cont_data[col])
```


Histograms:

AT: Air temperature is normally distributed, has a nice bell shape.

Q: Photosynthetically active radiation (PAR) - bell shape shifted to the right. When I initially had fillna with 0 it was just a column at the 0 mark.

Rh: Relative humdity - a boarder histogram that is similar to Q.

SM: volumetric water content - it is a very even histogram

ST: Soil temperature: follows a very similar pattern to AT.

EDA Harvard Forest

```
In [52]: df['treatment'] = df['treatment'].apply({ 'G': 0, 'S': 1}.get)
    df['treatment'] = df['treatment'].apply({ 'C': 0, 'A': 1, '3': 3, '5': 5}.get)
```

```
In [53]: df["Rh"] = df.Rh.convert_objects(convert_numeric=True)
    df["Q"] = df.Q.convert_objects(convert_numeric=True)
    df["SM"] = df.SM.convert_objects(convert_numeric=True)
    df["ST"] = df.ST.convert_objects(convert_numeric=True)
    df["AT"] = df.AT.convert_objects(convert_numeric=True)

df["chamber"] = df.chamber.convert_objects(convert_numeric=True)
    df["treatment"] = df.treatment.convert_objects(convert_numeric=True)
    df["warming"] = df.warming.convert_objects(convert_numeric=True)
```

```
In [54]: cont_hf=df.ix[:,'AT':'ST']

df['month']=df['month'].astype('category') #To convert target class into category

for i, col in enumerate(cont_hf.columns):
    plt.figure(i,figsize=(8,4))
    sns.boxplot(x=df['month'], y=col, data=df, palette="coolwarm")
```


Harvard Forest - Environmental variables by Month - Barplots

AT: Air temperature: Show a seasonal warming and cooling pattern. However, it months of May, July, August and November there is much more variability in air temperature. May, likely has spring rain and late season storms in Boston. July/August, could be influenced by hurricanes reaching up the north east. November,annomalous late season warming.

Q: Photosynthetically active radiation (PAR) - The data seems very consisted, except for 2 annomalous data points in April and August.

Rh: Relative humdity and ST: Soil temperature: follows a very similar pattern to AT.

Duke Forest EDA

```
In [55]: df1['treatment'] = df1['treatment'].apply({ 'G': 0, 'S': 1}.get)
    df1['treatment'] = df1['treatment'].apply({ 'C': 0, 'A': 1, '3': 3, '5': 5}.ge
    t)
```

```
In [56]: df1["Rh"] = df1.Rh.convert_objects(convert_numeric=True)
    df1["Q"] = df1.Q.convert_objects(convert_numeric=True)
    df1["SM"] = df1.SM.convert_objects(convert_numeric=True)
    df1["ST"] = df1.ST.convert_objects(convert_numeric=True)
    df1["AT"] = df1.AT.convert_objects(convert_numeric=True)
    df1["chamber"] = df1.chamber.convert_objects(convert_numeric=True)
    df1["treatment"] = df1.treatment.convert_objects(convert_numeric=True)
```

```
In [57]: cont_df=df1.ix[:,'AT':'ST']

df1['month']=df1['month'].astype('category') #To convert target class into cat egory

for i, col in enumerate(cont_df.columns):
    plt.figure(i,figsize=(8,4))
    sns.boxplot(x=df1['month'], y=col, data=df1, palette="coolwarm")
```


month

Duke Forest - Environmental variables by Month - Barplots

All of the environmental variables for Duke follow the same pattern. There is a bit of concern that fillna with mean leveled out the data too much? Hard to tell. Looks a bit suspicious thou.

The entire dataset

```
In [58]: HfDf['month']=HfDf['month'].astype('category') #To convert target class into c
    ategory

for i, col in enumerate(cont_data.columns):
    plt.figure(i,figsize=(8,4))
    sns.boxplot(x=HfDf['month'], y=col, data=HfDf, palette="coolwarm")
```


Environmental variables by Month - Barplots

AT: Air temperature: by combining the datasets does pull the AT down a little bit. This is Harvard forest.

Q: Photosynthetically active radiation (PAR) - Two annolamous data points again at April and August, it is from the Harvard dataset.

Rh: Relative humdity - Two annolamous data points again at April and August, it is from the Harvard dataset.

SM and ST are very similar to AT.

```
In [62]: HfDf['treatment']=HfDf['treatment'].astype('category') #To convert target clas
s into category

for i, col in enumerate(cont_data.columns):
    plt.figure(i,figsize=(8,4))
    sns.boxplot(x=HfDf['treatment'], y=col, data=HfDf, palette="coolwarm")
```


Comparing the treatment types:

light treatment 0 - G: chamber in open gap 1 - S: chamber under closed canopy

Overall they seem relatively similar. However, the ranges on the barplots are wider across all environmental variables for open gap instead of closed canopy. Q (PAR) had the most noticable effect, since Q is a measure of photosythensis having more light throught a gap in the forest makes sense.

Comparing sites:

Harvard Forest 0

The barplots are all slightly lower for harvard forest. Which makes sense since it is 700 miles due north of Duke forest. What is interesting is that the Q (PAR) is higher in Harvard Forest. Perphas there was clear-cut forest area, downed trees, and younger trees studied.

Duke Forest 1

The barplots are all slightly higher for Duke forest. This make sense since it is more southernly in a warmer climate and more humid conditions. It is curious why the Q (PAR) was lower in the Duke forest. Was it due to instrumental readings? The time of year or month? Is the forest at Duke more dense and has less canopy gaps for light?

Out[59]: <matplotlib.axes._subplots.AxesSubplot at 0x2aa7376d6a0>

Seaborn heatmap correlation

I suspect that the 1 to 1 correlation is due to variance of adding mean values into the dataset.

There is a relationship between AT (air temperature) and Q (PAR) as well as AT and Rh (Relative humdity)

Supervised Learning

```
In [60]: %matplotlib inline
    pd.options.display.float_format = '{:.3f}'.format

from sklearn import linear_model
    from sklearn import preprocessing
    import warnings
    warnings.filterwarnings(action="ignore", module="scipy", message="^internal ge lsd")
    from mpl_toolkits.mplot3d import axes3d

from sklearn.preprocessing import scale
    import sklearn.linear_model as skl_lm
    from sklearn.metrics import mean_squared_error, r2_score
    import statsmodels.api as sm
    import statsmodels.formula.api as smf
```

```
In [61]: # %load ../standard import.txt
         import pandas as pd
         import numpy as np
         import matplotlib as mpl
         import matplotlib.pyplot as plt
         import seaborn as sns
         import sklearn.linear model as skl lm
         from sklearn.discriminant analysis import LinearDiscriminantAnalysis
         from sklearn.discriminant_analysis import QuadraticDiscriminantAnalysis
         from sklearn.metrics import confusion_matrix, classification_report, precision
         from sklearn import preprocessing
         from sklearn import neighbors
         import statsmodels.api as sm
         import statsmodels.formula.api as smf
         %matplotlib inline
         plt.style.use('seaborn-white')
```

Linear regression

```
In [62]: dmax = HfDf.groupby('month').max()
dmin = HfDf.groupby('month').min()
davg = HfDf.groupby('month').mean()
```

Plot of the monthly max of AT and Q

```
In [63]: sns.set_palette("GnBu_d")
    sns.set_style('whitegrid')
    sns.jointplot(x='AT',y='Q',data=dmax) # Day with AT
```

Out[63]: <seaborn.axisgrid.JointGrid at 0x2aa7376d470>

Plot of monthly min of AT and Q

```
In [64]: sns.set_palette("GnBu_d")
    sns.set_style('whitegrid')

sns.jointplot(x='AT',y='Q',data=dmin) # Day with AT
```

Out[64]: <seaborn.axisgrid.JointGrid at 0x2aa660ff550>

Plot of monthly mean of AT and Q

```
In [65]: sns.set_palette("GnBu_d")
    sns.set_style('whitegrid')
    sns.jointplot(x='AT',y='Q',data=davg) # Day with AT
```

Out[65]: <seaborn.axisgrid.JointGrid at 0x2aa660a9fd0>

In all senarios of min, max, and mean there is a linear relationship between air temperature and par

```
In [66]: print(HfDf.loc[HfDf['Q']==max(HfDf['Q']),:])
    plt.scatter(HfDf['Q'],HfDf['month'])
    plt.show()
```

\	date	year	month	day	site	chamber	treatment	АТ	Q
1 750851	2010-04-30	2010	4	30	0	1	1	14.920	97 239
751023	2010-04-30	2010	4	21	0	4		14.920	
751023	2010-04-21	2010	4	21	0	4	0	14.920	
751025	2010-04-21	2010	4	21	0	4	0	14.920	
751025	2010-04-21	2010	4	21	0	4	0	14.920	
751027	2010-04-21	2010	4	21	0	4	0	14.920	
751027	2010-04-21	2010	4	21	0	4	0	14.920	
751020	2010-04-21	2010	4	21	0	4	0	14.920	
751029	2010-04-21	2010	4	21	0	4	0	14.920	
751030 751031	2010-04-21	2010	4	21	0	4	0	14.920	
751031	2010-04-21	2010	4	21	0	4	0	14.920	
751032 751033	2010-04-21	2010	4	21	0	4	0	14.920	
751033	2010-04-21	2010	4	21	0	4	0	14.920	
751035	2010-04-21	2010	4	21	0	4	0	14.920	
75 1 035	2010-04-21	2010	4	21	0	4	0		97.239
75 1 030	2010-04-21	2010	4	21	0	4	0	14.920	
751037 751038	2010-04-21	2010	4	21	0	4	0	14.920	
751038 751039	2010-04-21	2010	4	21	0	4	0	14.920	
751035	2010-04-21	2010	4	21	0	4	0	14.920	
751040	2010-04-21	2010	4	21	0	4	0	14.920	
751041	2010-04-21	2010	4	21	0	4	0	14.920	
751042 751043	2010-04-21	2010	4	21	0	4	0	14.920	
751043 751044	2010-04-21	2010	4	21	0	4	0	14.920	
751044 751045	2010-04-21	2010	4	21	0	4	0	14.920	
751045 751046	2010-04-21	2010	4	21	0	4	0	14.920	
751529	2010-04-21	2010	4	30	0	9	1	14.920	
751749	2010-04-30	2010	4	21	0	3	0	14.920	
751749 751750	2010-04-21	2010	4	21	0	3	0	14.920	
751750 751751	2010-04-21	2010	4	21	0	3	0	14.920	
751751 751752	2010-04-21	2010	4	21	0	3	0	14.920	
/31/32	2010-04-21	2010	4		•		•	14.520	37.233
2119693	2009-09-28	2009	9	28	0	4	1	14.920	97.239
	2009-09-28	2009	9	28	0	4		14.920	
	2009-09-28	2009	9	28	0	4		14.920	
	2009-09-28	2009	9	28	0	4		14.920	
	2009-09-28	2009	9	28	0	4		14.920	
	2010-04-30	2010	4	30	0	6		14.920	
	2009-09-28	2009	9	28	0	6		14.920	
	2009-09-28	2009	9	28	0	6		14.920	
	2009-09-28	2009	9	28	0	6		14.920	
	2009-09-28	2009	9	28	0	6		14.920	
	2009-09-28	2009	9	28	0	6		14.920	
	2009-09-28	2009	9	28	0	6		14.920	
	2009-09-28	2009	9	28	0	6		14.920	
	2009-09-28	2009	9	28	0	6		14.920	
	2009-09-28	2009	9	28	0	6		14.920	
	2009-09-28	2009	9	28	0	6		14.920	
	2009-09-28	2009	9	28	0	6		14.920	
	2009-09-28	2009	9	28	0	6		14.920	
	2009-09-28	2009	9	28	0	6		14.920	
	2009-09-28	2009	9	28	0	6		14.920	
	2009-09-28	2009	9	28	0	6		14.920	
	2009-09-28	2009	9	28	0	6		14.920	
	2009-09-28	2009	9	28	0	6		14.920	
	2009-09-28	2009	9	28	0	6		14.920	
_125220	2000 00 20	2000	,	20	U	3		± - -,) 20	J, . ZJJ

2125227	2009-09-28	2009	9	28	0	6	1 14.920 97.239
2125228	2009-09-28	2009	9	28	0	6	1 14.920 97.239
2125229	2009-09-28	2009	9	28	0	6	1 14.920 97.239
2125230	2009-09-28	2009	9	28	0	6	1 14.920 97.239
2125231	2009-09-28	2009	9	28	0	6	1 14.920 97.239
2125232	2009-09-28	2009	9	28	0	6	1 14.920 97.239

2125252	2009-0	j-20 20	909	9 20	Ø	0 1
	Rh	SM	ST	ppfd	CO2_uptake	CO2_release
750851	82.969	14.920	14.920		False	_ False
751023	82.969	14.920	14.920	14.920	False	False
751024		14.920			False	False
751025		14.920			False	False
751026		14.920			False	False
751027		14.920			False	False
751028		14.920			False	False
751029		14.920			False	False
751030		14.920			False	False
751031	82.969	14.920	14.920	14.920	False	False
751032	82.969	14.920	14.920	14.920	False	False
751033	82.969	14.920	14.920	14.920	False	False
751034	82.969	14.920	14.920	14.920	False	False
751035	82.969	14.920	14.920	14.920	False	False
751036	82.969	14.920	14.920	14.920	False	False
751037	82.969	14.920	14.920	14.920	False	False
751038	82.969	14.920	14.920	14.920	False	False
751039	82.969	14.920	14.920	14.920	False	False
751040	82.969	14.920	14.920	14.920	False	False
751041	82.969	14.920	14.920	14.920	False	False
751042	82.969	14.920	14.920	14.920	False	False
751043		14.920			False	False
751044		14.920			False	False
751045		14.920			False	False
751046		14.920			False	False
751529		14.920			False	False
751749		14.920			False	False
751750		14.920			False	False
751751		14.920			False	False
751752	82.969	14.920	14.920	14.920	False	False
2110602		14 020		14 020	···	···
2119693					False	False
2119694					False	False
2119695					False	False
2119696 2119697					False False	False False
2113637					False	False
2124809					False	False
2125210					False	False
2125210					False	False
2125211					False	False
2125212					False	False
2125214					False	False
2125215					False	False
2125216					False	False
2125217					False	False
2125218					False	False
2125219					False	False
2125220					False	False

```
2125221 82.969 14.920 14.920 14.920
                                           False
                                                        False
2125222 82.969 14.920 14.920 14.920
                                           False
                                                        False
2125223 82.969 14.920 14.920 14.920
                                           False
                                                        False
2125224 82.969 14.920 14.920 14.920
                                           False
                                                        False
2125225 82.969 14.920 14.920 14.920
                                                        False
                                           False
2125226 82.969 14.920 14.920 14.920
                                                        False
                                           False
2125227 82.969 14.920 14.920 14.920
                                           False
                                                        False
2125228 82.969 14.920 14.920 14.920
                                           False
                                                        False
2125229 82.969 14.920 14.920 14.920
                                           False
                                                        False
2125230 82.969 14.920 14.920 14.920
                                           False
                                                        False
2125231 82.969 14.920 14.920 14.920
                                                        False
                                           False
2125232 82.969 14.920 14.920 14.920
                                           False
                                                        False
```


Seaborn pairplots using max, min, and mean for all the environmental variables

In [69]: sns.pairplot(dmax[['AT', 'Q', 'ST', 'SM', 'Rh']]) #Max values

Out[69]: <seaborn.axisgrid.PairGrid at 0x2aa1dc17a58>

In [70]: sns.pairplot(dmin[['AT', 'Q', 'ST', 'SM', 'Rh']]) #Min values

Out[70]: <seaborn.axisgrid.PairGrid at 0x2aa5d7ec2b0>

In [71]: sns.pairplot(davg[['AT', 'Q', 'ST', 'SM', 'Rh']]) #Mean values

Out[71]: <seaborn.axisgrid.PairGrid at 0x2aa6e2b3da0>

Linear regression

Using Q (PAR) as the target variable (y).

```
In [89]: # The coefficients
print('Coefficients: \n', lm.coef_)

Coefficients:
[-0.2097018 1.2097018]
```

[0.203/010 1.203/010]

predictions = lm.predict(X test)

```
In [91]: plt.scatter(y_test,predictions)
   plt.xlabel('Y Test')
   plt.ylabel('Predicted Y')
```

Out[91]: Text(0,0.5,'Predicted Y')

In [90]:

Scatter plot of our y_test by predictions is not great.

It does indicate that Q increases porportionally to AT and Rh.

In [92]: from sklearn import metrics print('MAE:', metrics.mean_absolute_error(y_test, predictions)) print('MSE:', metrics.mean_squared_error(y_test, predictions)) print('RMSE:', np.sqrt(metrics.mean_squared_error(y_test, predictions)))

MAE: 9.414691248821327e-14 MSE: 1.059597967892863e-26 RMSE: 1.0293677515314257e-13

In [93]: sns.distplot((y_test-predictions),bins=50);


```
In [94]: coeffecients = pd.DataFrame(lm.coef_,X.columns)
    coeffecients.columns = ['Coeffecient']
    coeffecients
```

Out[94]:

	Coeffecient						
ΑT	-0.210						
Rh	1.210						

Linear regression model shows a 1.210 coefficient with Rh. This may be due to the two outliers.

Logistic Regression

In [95]: HfDf.head(2)

Out[95]:

	date	year	month	day	site	chamber	treatment	AT	Q	Rh	SM	;
0	2009- 05-06	2009	5	6	1	1	0	24.227	24.227	24.227	24.227	24.2
1	2009- 05-06	2009	5	6	1	2	0	24.513	24.513	24.513	24.513	24.5
4												

Does the light treatment have an effect?

treatment: light treatment 0 G: chamber in open gap 1 S: chamber under closed canopy

```
In [98]:
          import statsmodels.api as sm
          from sklearn.linear_model import LogisticRegression
 In [99]:
          from sklearn.model_selection import train_test_split
In [101]: X = HfDf.ix[:, 'chamber':'ST'].drop(columns=['treatment'])
          y = HfDf['treatment']
In [102]: X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.33, rand
          om state=42)
In [103]: from sklearn.linear model import LogisticRegression
In [104]: logmodel = LogisticRegression()
          logmodel.fit(X_train,y_train)
Out[104]: LogisticRegression(C=1.0, class_weight=None, dual=False, fit_intercept=True,
                    intercept_scaling=1, max_iter=100, multi_class='warn',
                    n jobs=None, penalty='12', random state=None, solver='warn',
                    tol=0.0001, verbose=0, warm start=False)
          predictions = logmodel.predict(X test)
In [105]:
In [106]: from sklearn.metrics import classification_report
```

```
In [107]: | print(classification_report(y_test,predictions))
                         precision
                                      recall f1-score
                                                          support
                      0
                              0.53
                                        0.84
                                                  0.65
                                                           370200
                      1
                              0.51
                                        0.18
                                                  0.27
                                                           341922
                                                           712122
             micro avg
                              0.52
                                        0.52
                                                  0.52
             macro avg
                              0.52
                                        0.51
                                                  0.46
                                                           712122
          weighted avg
                              0.52
                                        0.52
                                                  0.47
                                                           712122
In [108]:
          from sklearn.model selection import KFold
          from sklearn.model selection import cross val score
In [109]: kfold = KFold(n splits=7, random state=42)
In [110]: result = cross_val_score(logmodel, X, y, cv=kfold, scoring='accuracy')
          print(result.mean())
          0.4542956125438623
```

Does the light treatment have an effect?

Yes it does!

treatment: light treatment 0 G: chamber in open gap - analyzing the entire dataset open gap in the forest performs better. Meaning that trees respond better to this treatment.

1 S: chamber under closed canopy - Under closed canopy conditions both forest combined did not perform as well. Trees along the eastern coast need light.

Naive Bayes

Site - Forests

0 Harvard 1 Duke

```
In [117]: data = HfDf.ix[:, 'AT':'ST']
  target = HfDf['site']

In [118]: from sklearn.naive_bayes import BernoulliNB
  bnb = BernoulliNB()
  y_pred = bnb.fit(data, target).predict(data)
```

```
In [119]: # Test your model with different holdout groups.
          from sklearn.model selection import train test split
          # Use train test split to create the necessary training and test groups
          X_train, X_test, y_train, y_test = train_test_split(data, target, test_size=0.
          2, random_state=20)
          print('With 20% Holdout: ' + str(bnb.fit(X train, y train).score(X test, y tes
          t)))
          print('Testing on Sample: ' + str(bnb.fit(data, target).score(data, target)))
          With 20% Holdout: 0.6571529858267936
          Testing on Sample: 0.6567720678701264
In [120]: from sklearn.metrics import f1 score
          from sklearn.metrics import classification report, confusion matrix
In [121]: f1 score(target, y pred, average='macro')
Out[121]: 0.4286899711147681
In [122]: print(classification_report(target, y_pred))
                        precision
                                      recall f1-score
                                                         support
                     0
                             0.66
                                        0.99
                                                  0.79
                                                         1407177
                     1
                             0.62
                                        0.04
                                                  0.07
                                                          750768
                             0.66
                                                  0.66
                                                         2157945
             micro avg
                                       0.66
             macro avg
                             0.64
                                       0.51
                                                  0.43
                                                         2157945
          weighted avg
                             0.64
                                        0.66
                                                  0.54
                                                         2157945
```

Based on the data the Harvard Forest site is easier to predict then the Duke forest. This maybe due to many more data points. It also could be related to how chambers and treatments could be differnt enough in both forests. This clearly says these forest are different based on our environmental variables used.

Random Forest

In [123]: #Supervised Learning imports

from sklearn import ensemble

from sklearn.model selection import train test split

from sklearn.naive bayes import GaussianNB

from sklearn.linear_model import LogisticRegression

from sklearn.svm import SVC

from sklearn.metrics import classification report, confusion matrix

from sklearn.linear model import SGDClassifier

from sklearn import metrics

from sklearn.linear model import LinearRegression

from sklearn.model_selection import learning_curve

from sklearn import svm

from sklearn.model selection import cross val score

from sklearn.model selection import KFold, cross val score

from sklearn.pipeline import make_pipeline

from sklearn.preprocessing import StandardScaler

In [124]: df.head(5)

Out[124]: _____

	Unnamed: 0	date	Species	Tag	Chamber	site	year	month	day	hour	chamber	tre
0	0	2010- 04-15	acru	1.000	S01_5	HF	2010	4	15	1	1	No
1	1	2010- 04-15	acru	1.000	S01_5	HF	2010	4	15	2	1	No
2	2	2010- 04-15	acru	1.000	S01_5	HF	2010	4	15	3	1	No
3	3	2010- 04-15	acru	1.000	S01_5	HF	2010	4	15	4	1	No
4	4	2010- 04-15	acru	1.000	S01_5	HF	2010	4	15	5	1	N

```
In [125]: df.dtypes
Out[125]: Unnamed: 0
                                      int64
                            datetime64[ns]
           date
           Species
                                    object
           Tag
                                    float64
                                    object
           Chamber
           site
                                     object
                                      int64
           year
           month
                                  category
                                      int64
           day
                                      int64
           hour
                                      int64
           chamber
           treatment
                                    object
                                   float64
           warming
           ΑT
                                   float64
                                   float64
           Q
           Rh
                                    float64
           \mathsf{SM}
                                   float64
           ST
                                    float64
           ppfd
                                    object
                                       bool
           CO2 uptake
           CO2 release
                                       bool
           dtype: object
In [126]: df.groupby('warming').size()
Out[126]: warming
           3.000
                     371529
           5.000
                     420708
           dtype: int64
In [127]: df.isnull().sum()
Out[127]: Unnamed: 0
                                  0
           date
                                  0
                                  0
           Species
                                  0
           Tag
           Chamber
                                  0
           site
                                  0
           year
                                  0
                                  0
           month
                                  0
           day
           hour
                                  0
           chamber
                                  0
           treatment
                            1407177
           warming
                             614940
           ΑT
                                  0
                                  0
           Q
           Rh
                                  0
           \mathsf{SM}
                                  0
           ST
                                  0
           ppfd
                                  0
                                  0
           CO2_uptake
                                  0
           CO2 release
           dtype: int64
```

```
df['treatment'] = df['treatment'].apply({ 'G': 0, 'S': 1}.get)
          df['treatment'] = df['treatment'].apply({ 'C': 0, 'A': 1, '3': 3, '5': 5}.get)
In [129]:
          df["Rh"] = df.Rh.convert objects(convert numeric=True)
          df["Q"] = df.Q.convert objects(convert numeric=True)
          df["SM"] = df.SM.convert_objects(convert_numeric=True)
          df["ST"] = df.ST.convert objects(convert numeric=True)
          df["AT"] = df.AT.convert objects(convert numeric=True)
          df["chamber"] = df.chamber.convert objects(convert numeric=True)
          df["treatment"] = df.treatment.convert objects(convert numeric=True)
          df["warming"] = df.warming.convert objects(convert numeric=True)
In [130]:
          df.dtypes
Out[130]: Unnamed: 0
                                   int64
          date
                          datetime64[ns]
          Species
                                  object
                                 float64
          Tag
          Chamber
                                  object
          site
                                  object
                                   int64
          year
          month
                                category
          day
                                   int64
          hour
                                   int64
          chamber
                                   int64
                                  object
          treatment
          warming
                                 float64
          ΑT
                                 float64
                                 float64
          Q
          Rh
                                 float64
          SM
                                 float64
          ST
                                 float64
          ppfd
                                  object
          CO2 uptake
                                    bool
          CO2 release
                                    bool
          dtype: object
```

Random Forest - Harvard Forest with tree species

Too many missing values for treatment and warming - both needed to be dropped.

In [132]: from sklearn import ensemble
 from sklearn.model_selection import train_test_split

X = df.ix[:, 'year':'ST'].drop(columns=['treatment', 'warming'])
Y = df['Species']

rfc = ensemble.RandomForestClassifier()

X_train, X_test, y_train, y_test = train_test_split(X, Y,test_size=0.1,random_state=0)
 train = rfc.fit(X_train, y_train)

rfc.fit(X_train, y_train)

Apply to testing data
y_hat = rfc.predict(X_test)

print('Training set score:', rfc.score(X_train, y_train))
print('\nTest set score:', rfc.score(X_test, y_test))
print(classification_report(y_test, y_hat))

Training set score: 0.44117259224341254

Test set score: 0.42928410011512386

rest		: 0.4292841			
		precision	recall	f1-score	support
	acba	0.00	0.00	0.00	680
	acru	0.53	0.86	0.66	56089
	acsa	0.30	0.01	0.01	1438
	acun	0.00	0.00	0.00	154
	beal	0.20	0.20	0.20	3090
	bele	0.17	0.05	0.08	6651
	bepa	0.18	0.20	0.19	7270
	beun	0.29	0.61	0.39	10244
	cagl	0.00	0.00	0.00	6
	fagr	0.00	0.00	0.00	633
	fram	0.20	0.02	0.04	1171
	ilvo	0.00	0.00	0.00	32
	list	0.27	0.02	0.04	3102
	litu	0.00	0.00	0.00	4840
	magr	0.00	0.00	0.00	1218
	maun	0.00	0.00	0.00	64
	mavi	0.00	0.00	0.00	385
	nysy	0.00	0.00	0.00	1587
	pipa	0.00	0.00	0.00	214
	pire	0.34	0.01	0.03	4206
	pist	0.40	0.11	0.17	13903
	pita	0.00	0.00	0.00	1051
	piun	0.31	0.15	0.20	3816
	prpe	0.00	0.00	0.00	296
	prse	0.08	0.01	0.01	268
	qual	0.15	0.14	0.15	8629
	qufa	0.00	0.00	0.00	215
	quni	0.00	0.00	0.00	544
	quph	0.00	0.00	0.00	118
	quru	0.31	0.05	0.08	7326
	quun	0.00	0.00	0.00	775
	quve	0.00	0.00	0.00	338
	ulam	0.00	0.00	0.00	6
	unkn	0.00	0.00	0.00	359
m	icro avg	0.43	0.43	0.43	140718
ma	acro avg	0.11	0.07	0.07	140718
weigh	nted avg	0.35	0.43	0.35	140718

Species: species code. Most ambiguous individuals died before they grew large enough for positive identification. **Only including the highest values in discussion f1-scores**

acba: Acer barbatum, southern sugar maple

acru: Acer rubrum, red maple - 0.66 It is a wide spread dicideous tree across north earstern US. And can handle a wide range of temperature.

acsa: Acer saccharum, sugar maple acun: Acer spp, ambiguous maple

beal: Betula alleghaniensis, yellow birch - 0.20 large and important lumber species of birch native to Northeastern North America. Its native range extends from Newfoundland to Prince Edward Island, Nova Scotia, New Brunswick, southern Quebec and Ontario, and the southeast corner of Manitoba in Canada, west to Minnesota, and south in the Appalachian Mountains to northern Georgia.[20] While its range extends as far south as Georgia, it is most abundant in the northern part of its range. In southern Pennsylvania, it is rare and generally only found along bodies of water in cool, mature woods, and it only occurs at high elevations from Maryland southward.[5][10] It grows in USDA zones 3-7.[5] B. alleghaniensis prefers to grow in cooler conditions and is often found on north facing slopes, swamps, stream banks, and rich woods.[4][21] It does not grow well in dry regions or regions with hot summers and will often last only 30-50 years in such conditions. It grows soil pH ranging from 4-8.[9]

bele: Betula lenta, black birch bepo: Betula populifolia, gray birch

bepa: Betula papyrifera, paper birch - 0.19 Betula papyrifera is mostly confined to Canada and the far northern United States. It is found in interior (var. humilus) and south-central (var. kenaica) Alaska and in all provinces and territories of Canada, except Nunavut, as well as the far northern continental United States. Isolated patches are found as far south as the Hudson Valley of New York and Pennsylvania, as well as Washington, D.C. High elevation stands are also in mountains to North Carolina, New Mexico, and Colorado. The most southerly stand in the Western United States is located in Long Canyon in the City of Boulder Open Space and Mountain Parks. This is an isolated Pleistocene relict that most likely reflects the southern reach of boreal vegetation into the area during the last Ice Age.[9]

beun: Betula spp, ambiguous birch cagl: Carya glabra, pignut hickory caov: Carya ovata, shagbark hickory fagr: Fagus grandifolia, beech fram: Fraxinus americana, white ash ilvo: Ilix vomitoria, yaupon holly list: Liquidambar styraciflua, sweetgum litu: Liriodendron tulipifera, tulip tree; tulip poplar magr: Magnolia grandiflora, southern magnolia mavi: Magnolia virginiana, sweetbay magnolia nysy: Nyssa sylvatica, black gum; sour gum pipa: Pinus palustris, longleaf pine pire: Pinus resinosa, red pine

pist: Pinus strobus, white pine - 0.17 Pinus strobus is found in the nearctic temperate broadleaf and mixed forests biome of eastern North America. It prefers well-drained or sandy soils and humid climates, but can also grow in boggy areas and rocky highlands. In mixed forests, this dominant tree towers over many others, including some of the large broadleaf hardwoods. It provides food and shelter for numerous forest birds, such as the red crossbill, and small mammals such as squirrels. Eastern white pine forests originally covered much of north-central and north-eastern North America. Only one percent of the old-growth forests remain after the extensive logging operations of the 18th century to early 20th century.

pita: Pinus taeda, loblolly pine

piun: Pinus spp, ambiguous pine - 0.20

prse: Prunus serotina, black cherry prpe: Prunus pensylvanica, pin cherry

qual: Quercus alba, white oak - 0.15 Q. alba is fairly tolerant of a variety of habitats, and may be found on ridges, in valleys, and in between, in dry and moist habitats, and in moderately acid and alkaline soils. It is mainly a lowland tree, but reaches altitudes of 5,249 ft in the Appalachian Mountains. It is often a component of the forest canopy in an oak-heath forest.[13][14] Frequent fires in the Central Plains region of the United States prevented oak forests, including Q. alba, from expanding into the Midwest. However, a decrease in the frequency of these natural fires after European settlement caused rapid expansion of oak forests into the Great Plains, negatively affecting the natural prairie vegetation [15].

qufa: Quercus falcata, southern red oak; Spanish oak quni: Quercus nigra, water oak quph: Quercus phellos, willow oak quru: Quercus rubra, red oak quve: Quercus velutina, black oak quun: Quercus spp, ambiguous oak ulam: Ulmus americana, American elm unkn: Unidentified tree

It is interesting that the tree species with the highest f1-scores are all very northern tree species. It seems that these trees favor the warming under the experimental conditions. More research is need to tease out what is going on here?

```
In [134]: from sklearn import ensemble
    from sklearn.model_selection import train_test_split

X = HfDf.ix[:, 'year':'ST'].drop(columns=['treatment'])
Y = HfDf['treatment']

rfc = ensemble.RandomForestClassifier()

X_train, X_test, y_train, y_test = train_test_split(X, Y,test_size=0.1,random_state=0)
    train = rfc.fit(X_train, y_train)

rfc.fit(X_train, y_train)

# Apply to testing data
y_hat = rfc.predict(X_test)

print('Training set score:', rfc.score(X_train, y_train))
print('\nTest set score:', rfc.score(X_test, y_test))
print(classification_report(y_test, y_hat))
```

Training set score: 0.9754998326596813

weighted avg

Test set score: 0.838022196992516 precision recall f1-score support 0.85 0 0.83 0.87 112174 1 0.85 0.81 0.83 103621 0.84 0.84 0.84 215795 micro avg macro avg 0.84 0.84 0.84 215795

0.84

0.84

215795

0.84

Does the light treatment have an effect?

treatment: light treatment 0 G: chamber in open gap 1 S: chamber under closed canopy

Random Forest shows that light treatment has an effect but the difference between treatments is not as extreme as Logistic Regression showed.

Unsupervised - PCA

In [135]: HfDf.head(3)

Out[135]:

	date	year	month	day	site	chamber	treatment	AT	Q	Rh	SM	:
0	2009- 05-06	2009	5	6	1	1	0	24.227	24.227	24.227	24.227	24.2
1	2009- 05-06	2009	5	6	1	2	0	24.513	24.513	24.513	24.513	24.5
2	2009- 05-06	2009	5	6	1	3	0	24.070	24.070	24.070	24.070	24.0

```
In [140]:
          from matplotlib import pyplot as plt
          def plot():
              plt.figure(figsize=(8,6))
              plt.scatter(HfDf['treatment'], HfDf['Q'],
                       color='green', label='input scale', alpha=0.5)
              plt.scatter(df_std[:,0], df_std[:,1], color='red',
                       label='Standardized', alpha=0.3)
              plt.scatter(df_minmax[:,0], df_minmax[:,1],
                       color='blue', label='min-max scaled [min=0, max=1]', alpha=0.3)
              plt.title('Treatment and Photosynthetically Active Radiation')
              plt.xlabel('Treatment')
              plt.ylabel('PAR')
              plt.legend(loc='upper left')
              plt.grid()
              plt.tight_layout()
          plot()
          plt.show()
```


PCA of Treatment and Q (PAR)

It looks like a fieldgoal post.

It does show a difference in green lines of Q between both treatments.

```
In [144]:
          from matplotlib import pyplot as plt
          def plot():
              plt.figure(figsize=(8,6))
              plt.scatter(HfDf['AT'], HfDf['treatment'],
                       color='green', label='input scale', alpha=0.5)
              plt.scatter(df_std[:,0], df_std[:,1], color='red',
                       label='Standardized', alpha=0.3)
              plt.scatter(df_minmax[:,0], df_minmax[:,1],
                       color='blue', label='min-max scaled [min=0, max=1]', alpha=0.3)
              plt.title('Air Temp and treatment')
              plt.xlabel('AT')
              plt.ylabel('treatment')
              plt.legend(loc='upper left')
              plt.grid()
              plt.tight_layout()
          plot()
          plt.show()
```


Not a great figure. But does show the differences in AT with treatment.

In [145]: HfDf.head(3)

Out[145]:

	date	year	month	day	site	chamber	treatment	AT	Q	Rh	SM	;
0	2009- 05-06	2009	5	6	1	1	0	24.227	24.227	24.227	24.227	24.2
1	2009- 05-06	2009	5	6	1	2	0	24.513	24.513	24.513	24.513	24.5
2	2009- 05-06	2009	5	6	1	3	0	24.070	24.070	24.070	24.070	24.0

In [165]: trees3.head(1)

Out[165]:

	AT	Q	Rh	SM	ST
0	24.227	24.227	24.227	24.227	24.227

```
In [166]: X_forest = trees3.values[:,1:]
y_forest = trees3.values[:,0]
```

X_train, X_test, y_train, y_test = train_test_split(X_forest, y_forest, test_size=0.90, random_state=12345)

```
In [167]: from sklearn import preprocessing
```

std_scale = preprocessing.StandardScaler().fit(X_train)
X_train_std = std_scale.transform(X_train)
X_test_std = std_scale.transform(X_test)

In [168]: from sklearn.decomposition import PCA

on non-standardized data
pca = PCA(n_components=2).fit(X_train)
X_train = pca.transform(X_train)
X_test = pca.transform(X_test)

om standardized data
pca_std = PCA(n_components=2).fit(X_train_std)
X_train_std = pca_std.transform(X_train_std)
X_test_std = pca_std.transform(X_test_std)

```
from matplotlib import pyplot as plt
fig, (ax1, ax2) = plt.subplots(ncols=2, figsize=(10,4))
for l,c,m in zip(range(1,10), ('blue', 'red'), ('^', 's')):
    ax1.scatter(X train[y train==1, 0], X train[y train==1, 1],
         color=c.
         label='site %s' %l,
         alpha=0.5,
         marker=m
for 1,c,m in zip(range(1,10), ('blue', 'red'), ('^', 's')):
    ax2.scatter(X_train_std[y_train==1, 0], X_train_std[y_train==1, 1],
         color=c,
         label='site %s' %l,
         alpha=0.5,
         marker=m
ax1.set_title('Transformed NON-standardized training dataset after PCA')
ax2.set title('Transformed standardized training dataset after PCA')
for ax in (ax1, ax2):
    ax.set xlabel('1st principal component')
    ax.set ylabel('2nd principal component')
    ax.legend(loc='upper right')
    ax.grid()
plt.tight_layout()
plt.show()
   Transformed NON-standardized training dataset after PCA
                                                 Transformed standardized training dataset after PCA
                                   site 1
                                                                               site 1
```


PCA does show a clear difference between site 1 and 2 (Harvard and Duke forests).

Time Series Machine Learning

In [170]: import warnings import itertools import numpy as np import matplotlib.pyplot as plt warnings.filterwarnings("ignore") plt.style.use('fivethirtyeight') import pandas as pd import statsmodels.api as sm import matplotlib matplotlib.rcParams['axes.labelsize'] = 14 matplotlib.rcParams['xtick.labelsize'] = 12 matplotlib.rcParams['ytick.labelsize'] = 12 matplotlib.rcParams['text.color'] = 'k' #https://towardsdatascience.com/an-end-to-end-project-on-time-series-analysisand-forecasting-with-python-4835e6bf050b

In [171]: import numpy as np
 import pandas as pd
 import scipy
 from datetime import datetime
 import datetime as dt
 import matplotlib.pyplot as plt
 %matplotlib inline

In [261]: df3.head(3)

Out[261]:

	Unnamed:	date	Chamber	site	year	month	day	chamber	treatment	AT	(
0	0	2010- 04-15	S01_5	HF	2010	4	15	1	S	11.000	11.000
1	1	2010- 04-15	S01_5	HF	2010	4	15	1	S	11.040	11.04
2	2	2010- 04-15	S01_5	HF	2010	4	15	1	S	10.415	10.41

In [263]: ts1 = df3.drop(columns=['Unnamed: 0', 'Chamber', 'site', 'year', 'month', 'day'
, 'chamber', 'treatment', 'ppfd', 'CO2_uptake', 'CO2_release'])

In [264]: ts1.head(1)

Out[264]: __

	date	AT	Q	Rh	SM	ST
0	2010-04-15	11.000	11.000	11.000	11.000	11.000

Time Series for AT - Harvard Forest

```
In [231]: ts=df.groupby(['date'], sort=True)['AT'].max()
```

dtype='datetime64[ns]', name='date', length=1407177, freq=None)

```
In [232]: plt.plot(ts)
```

Out[232]: [<matplotlib.lines.Line2D at 0x2aa8e158ba8>]

Time series plot of air temperature MAX in Harvard forest since 2009 to 2011.

Max AT reached in 2010 at 40 C.

In [233]: ts1=df.groupby(['date'], sort=True)['AT'].min()
 plt.plot(ts1)

Out[233]: [<matplotlib.lines.Line2D at 0x2aa8e195438>]

Time series plot of AT min. The min temperature recorded at 2011 at -4 C.

In [234]: ts2=df.groupby(['date'], sort=True)['AT'].mean()
 plt.plot(ts2)

Out[234]: [<matplotlib.lines.Line2D at 0x2aa8e1dd320>]

Time series - AT mean temp

```
In [279]: ts.plot()
   plt.title('MAX Air Temp and Time Series - Harvard Forest ')
   plt.show()
```



```
In [259]: ts1.head(10)
```

Out[259]: date

2009-09-28 10.937 2010-04-15 2.823 2010-04-21 5.170 2010-04-29 -0.509 2010-04-30 1.847 2010-05-17 6.911 2010-05-24 12.953 2010-06-16 10.670 2010-07-07 23.497 2010-08-02 6.803

Name: AT, dtype: float64

```
In [182]: from statsmodels.tsa.arima_model import ARIMA
    model = ARIMA(df.AT, order=(1,0,0))
    model_fit = model.fit()
    print(model_fit.summary())
    print('Residuals Description')
    print(model_fit.resid.describe())
```

				l Resul	lts		
= Dep. Variabl			AT		oservations:		140717
7 Model:		ARMA(1	, 0)	Log Li	ikelihood	-	-2818131.75
8 Method: 3		CSS-	-mle	S.D. 0	of innovations		1.79
Date:	Sat,	22 Jun 2	2019	AIC			5636269.51
Time:		18:42	1:51	BIC			5636305.98
Sample: 8			0	HQIC			5636279.41
======================================					P> z		0.97
-							
const 3	14.9199					14.816	
ar.L1.AT 2	0.9714	0.000	4852 Roo		0.000	0.971	0.97
=======	======== Real		=====		 Modulus		
AR.1							
Residuals De count 1407 mean std	scription 177.000 -0.000 1.793 -25.843 -0.643 -0.113 0.477 30.456						

```
In [183]: from statsmodels.tsa.arima_model import ARIMA
    model = ARIMA(df.AT, order=(0,0,1))
    model_fit = model.fit()
    print(model_fit.summary())
    print('Residuals Description')
    print(model_fit.resid.describe())
```

				A Mode				
	:======	:======	:======:				:======	=======
= Dep. Va 7	riable:			АТ	No.	Observations:		140717
Model:			ARMA(0	, 1)	Log	Likelihood		-4079348.09
5 Method:			CSS-	-mle	S.D.	of innovations	i	4.39
3 Date:		Sat	., 22 Jun 2	2019	AIC			8158702.18
9 Time:			18:42	2:56	BIC			8158738.66
1 Sample:				0	HQIC	·		8158712.09
1								
======				=====				
=		coef	std err		z	P> z	[0.025	0.97
5]								
-								
const 4		14.9202	0.007	2167	.485	0.000	14.907	14.93
ma.L1.A	ΛT	0.8588	0.000	2624	1.017	0.000	0.858	0.85
				Roc		:========		
		Real	Ir	nagina	ary	Modulus	;	Frequency
MA.1		-1.1644	-	+0.000	90j	1.1644	ļ	0.5000
		ription						
count	140717	7.000						
mean		0.000						
std		4.393						
min		.9.388						
25%		3.096						
50%	-	0.140						
75%		2.964						
max		22.031						
dtype:	float64							
4								—

```
In [187]: from statsmodels.tsa.arima_model import ARIMA
    model_011 = ARIMA(df.AT, order=(0,1,1))
    model_011_fit = model_011.fit()
    print(model_011_fit.summary())
    print('Residuals Description')
    print(model_011_fit.resid.describe())
```

F - (() /				
		ARIMA	Model	Res	ults		
_	========	=======	======	===	==========	======	
Dep. Variab	le:	D	.AT N	ο.	Observations:		140717
Model:	А	RIMA(0, 1,	1) L	og	Likelihood	-	-2818612.14
Method:		CSS-I	mle S	.D.	of innovations		1.79
Date:	Sat	, 22 Jun 2	019 A	IC			5637230.28
Time: 7		18:53	:15 B	IC			5637266.75
Sample: 7			1 H	QIC			5637240.18
		=======	=====		=========	======	
= 5]	coef	std err		Z	P> z	[0.025	0.97
const 3	-8.499e-06	0.002	-0.0	05	0.996	-0.003	0.00
_	0.1052	0.001	139.4	41	0.000	0.104	0.10
•			Roots				
	Real	Im	aginary		Modulus		Frequency
MA.1	-9.5067	+(0.0000j		9.5067		0.5000
Residuals D count 140 mean std min 25% 50% 75% max dtype: floa	escription 7176.000 -0.000 1.793 -26.401 -0.613 -0.043 0.502 30.875						

```
In [188]: residuals = pd.DataFrame(model_011_fit.resid)
    residuals.plot(legend=False)
    plt.title('Time Series of Residuals')

residuals.hist(bins=20)
    plt.title('Histogram of Residuals')
```

Out[188]: Text(0.5,1,'Histogram of Residuals')

The residuals for the Harvard forest show a slight up-tick in the AT temperature in the past 3 years. It would be interesting to see that past 7 years to get deeper insights.

Duke Forest Time series

In [268]: df1.head(5)

Out[268]:

	site	year	times	month	day	JD	JD2009	dayFraction	chamber	treatment	Α
0	DF	2009	125.540	5	6	-240	125	0.540	1	None	24.22
1	DF	2009	125.540	5	6	-240	125	0.540	2	None	24.51
2	DF	2009	125.540	5	6	-240	125	0.540	3	None	24.07
3	DF	2009	125.540	5	6	-240	125	0.540	4	None	24.44
4	DF	2009	125.540	5	6	-240	125	0.540	5	None	24.30

In [271]: tsf.head(3)

Out[271]:

	AT	Q	Rh	SM	ST	date
0	24.227	24.227	24.227	24.227	24.227	2009-05-06
1	24.513	24.513	24.513	24.513	24.513	2009-05-06
2	24.070	24.070	24.070	24.070	24.070	2009-05-06

```
In [273]: tsf = tsf[['date', 'AT', 'Q', 'Rh', 'SM', 'ST']]
```

```
In [274]: from datetime import datetime
```

con=tsf['date']

tsf['date']=pd.to_datetime(tsf['date'])

tsf.set_index('date', inplace=True)

#check datatype of index

tsf.index

```
Out[274]: DatetimeIndex(['2009-05-06', '2009-05-06', '2009-05-06', '2009-05-06', '2009-05-06', '2009-05-06', '2009-05-06', '2009-05-06', '2009-05-06', '2009-05-06', '2009-05-06', '2009-05-06', '2009-05-06', '2009-05-06', '2009-05-06', '2009-05-06', '2009-05-06', '2009-05-06', '2009-05-06', '2009-05-06', '2009-05-06', '2009-05-06', '2009-05-06', '2009-05-06', '2009-05-06', '2009-05-06', '2009-05-06', '2009-05-06', '2009-05-06', '2009-05-06', '2009-05-06', '2009-05-06', '2009-05-06', '2009-05-06', '2009-05-06', '2009-05-06', '2009-05-06', '2009-05-06', '2009-05-06', '2009-05-06', '2009-05-06', '2009-05-06', '2009-05-06', '2009-05-06', '2009-05-06', '2009-05-06', '2009-05-06', '2009-05-06', '2009-05-06', '2009-05-06', '2009-05-06', '2009-05-06', '2009-05-06', '2009-05-06', '2009-05-06', '2009-05-06', '2009-05-06', '2009-05-06', '2009-05-06', '2009-05-06', '2009-05-06', '2009-05-06', '2009-05-06', '2009-05-06', '2009-05-06', '2009-05-06', '2009-05-06', '2009-05-06', '2009-05-06', '2009-05-06', '2009-05-06', '2009-05-06', '2009-05-06', '2009-05-06', '2009-05-06', '2009-05-06', '2009-05-06', '2009-05-06', '2009-05-06', '2009-05-06', '2009-05-06', '2009-05-06', '2009-05-06', '2009-05-06', '2009-05-06', '2009-05-06', '2009-05-06', '2009-05-06', '2009-05-06', '2009-05-06', '2009-05-06', '2009-05-06', '2009-05-06', '2009-05-06', '2009-05-06', '2009-05-06', '2009-05-06', '2009-05-06', '2009-05-06', '2009-05-06', '2009-05-06', '2009-05-06', '2009-05-06', '2009-05-06', '2009-05-06', '2009-05-06', '2009-05-06', '2009-05-06', '2009-05-06', '2009-05-06', '2009-05-06', '2009-05-06', '2009-05-06', '2009-05-06', '2009-05-06', '2009-05-06', '2009-05-06', '2009-05-06', '2009-05-06', '2009-05-06', '2009-05-06', '2009-05-06', '2009-05-06', '2009-05-06', '2009-05-06', '2009-05-06', '2009-05-06', '2009-05-06', '2009-05-06', '2009-05-06', '2009-05-06', '2009-05-06', '2009-05-06', '2009-05-06', '2009-05-06', '2009-05-06', '2009-05-06', '2009-05-06', '2009-05-06', '2009-05-06', '2009-05-06', '2009-05-06', '2009-05-06', '2009-05-06', '2009
```


The max air temperature in Duke forest was nearly 50 C in July 2010.

Duke forest min air temperature in Jan 2010 was below -10 C.

In [301]: tsf.head(3)

Out[301]:

	AT	Q	Rh	SM	ST
date					
2009-05-06	24.227	24.227	24.227	24.227	24.227
2009-05-06	24.513	24.513	24.513	24.513	24.513
2009-05-06	24.070	24.070	24.070	24.070	24.070

In [313]: df1.head(3)

Out[313]:

	site	year	times	month	day	JD	JD2009	dayFraction	chamber	treatment	Α
0	DF	2009	125.540	5	6	-240	125	0.540	1	None	24.22
1	DF	2009	125.540	5	6	-240	125	0.540	2	None	24.51
2	DF	2009	125.540	5	6	-240	125	0.540	3	None	24.07

In [326]: tsf13 = df1.drop(columns=['site', 'times', 'month', 'date','day', 'JD', 'JD200
9', 'ppfd', 'C02_uptake', 'C02_release', 'dayFraction', 'chamber', 'treatment'])

In [327]: tsf13.head(3)

Out[327]:

	year	AT	Q	Rh	SM	ST
0	2009	24.227	24.227	24.227	24.227	24.227
1	2009	24.513	24.513	24.513	24.513	24.513
2	2009	24.070	24.070	24.070	24.070	24.070

```
In [283]: from statsmodels.tsa.arima_model import ARIMA
    model = ARIMA(tsf.AT, order=(0,0,1))
    model_fit = model.fit()
    print(model_fit.summary())
    print('Residuals Description')
    print(model_fit.resid.describe())
```

<u> </u>							
				el Resul			
=======================================	=======	:======		:=====	=========	======	=======
Dep. Variable 8	: :		AT	No. Ob	servations:		75076
Model:		ARMA(0,	1)	Log Li	lkelihood		-2375560.27
2							
Method:		CSS-	-mle	S.D. c	of innovations		5.72
7 Data	Cot	. 22 7 2	0010	ATC			47F1136 F
Date: 4	Sat	., 22 Jun 2	2019	AIC			4751126.5
⊣ Time:		20:20	9:23	BIC			4751161.1
0							
Sample:			0	HQIC			4751136.1
3							
					=======================================		
=							
	coef	std err		Z	P> z	[0.025	0.97
5]							
- const	17 382 <i>/</i> I	0 012	1/195	864	0.000	17 360	17.40
5	17.3024	0.012	1475	.004	0.000	17.500	17.46
ma.L1.AT	0.7580	0.000	1550	674	0.000	0.757	0.7
9							
			Roc				
========					Modulus		
MA.1				_	1.3192		
Residuals Des							
count 75076	-						
mean -	0.000						
std	5.727						
min -3	3.442						
25% -	3.506						
50%	0.393						
	3.774						
	31.440						
dtype: float6	54						
4							

```
In [284]: from statsmodels.tsa.arima_model import ARIMA
model = ARIMA(tsf.AT, order=(0,1,0))
model_fit = model.fit()
print(model_fit.summary())
print('Residuals Description')
print(model_fit.resid.describe())
```

```
ARIMA Model Results
______
Dep. Variable:
                        D.AT
                             No. Observations:
                                                    75076
                ARIMA(0, 1, 0)
Model:
                            Log Likelihood
                                                -1934356.48
                             S.D. of innovations
Method:
                                                     3.18
                         CSS
2
Date:
            Sat, 22 Jun 2019
                             AIC
                                                 3868716.96
1
Time:
                     20:21:19
                             BIC
                                                 3868740.01
Sample:
                          1
                             HQIC
                                                 3868723.38
______
                                   P> | z |
                                            [0.025
            coef
                  std err z
                                                   0.97
        -2.245e-05
                                   0.995
const
                   0.004
                          -0.006
                                           -0.007
                                                     0.00
Residuals Description
count 750767.000
mean
        -0.000
std
         3.182
min
        -28.309
25%
        -1.236
50%
         0.000
75%
         1.320
        27.506
max
dtype: float64
```

```
In [285]: from statsmodels.tsa.arima_model import ARIMA
    model = ARIMA(tsf.AT, order=(1,0,0))
    model_fit = model.fit()
    print(model_fit.summary())
    print('Residuals Description')
    print(model_fit.resid.describe())
```

				l Resu	lts =======		
=							
Dep. Variable 8	•		ΑT	No. O	bservations:		75076
Model:		ARMA(1,	0)	Log L	ikelihood		-1922405.41
3			,	6.5			2 42
Method: 2		CSS-	ште	5.0.	of innovations		3.13
Date:	Sat	., 22 Jun 2	019	AIC			3844816.82
6 Time:		20:21	.55	RTC			3844851.42
2		20.21		DIC			J0440J1.4.
Sample:			0	HQIC			3844826.45
5							
========	=======		=====	=====		======	
=	coef	std arr		7	P> z	[0 025	0 97
5]	COET	stu en		۷	F > 2	[0.023	0.57
- const	17.3824	0.058	301	.478	0.000	17.269	17.49
5							
ar.L1.AT 8	0.9373	0.000	2330	.469	0.000	0.937	0.93
			Roo	ts			
					======== Modulus		
			_	-			
AR.1					1.0669		
Residuals Des							
count 750768	8.000						
	0.000						
	3.132						
	8.309						
	1.325						
	0.000						
75%	1.480						
	5.781						
dtype: float64	4						
4							

```
In [332]: from statsmodels.tsa.arima_model import ARIMA
    model_011 = ARIMA(tsf.AT, order=(0,1,1))
    model_011_fit = model_011.fit()
    print(model_011_fit.summary())
    print('Residuals Description')
    print(model_011_fit.resid.describe())
```

ARIMA Model Results									
=======		======		:====	=====		=======		
Dep. Var	riable:		D).AT	No.	Observations:		75076	
Model: 4		AF	RIMA(0, 1,	1)	Log	Likelihood		-1911566.46	
Method: 7			css-	mle	S.D.	of innovatio	ns	3.08	
Date:		Sat,	22 Jun 2	2019	AIC			3823138.92	
Time:			21:37	7:25	BIC			3823173.51	
5 Sample:				1	HQIC			3823148.55	
7									
======		======			=====		=======		
=		coef	std err		z	P> z	[0.025	0.97	
5]									
-									
const 4	-2.23	e-05	0.002	-0	.010	0.992	-0.004	0.00	
ma.L1.D.	AT -0.	3896	0.002	-202	.773	0.000	-0.393	-0.38	
				Roo					
======	=======	Real	Im	nagina	ry	Modul	us	Frequency	
		.5665	+	-0.000	0j	2.56	65	0.0000	
	ls Descrip								
count	750767.00	0							
	-0.00								
std •	3.08								
min	-26.88								
25%	-1.53								
50% 75%	-0.00								
	1.55 27.44								
max dtype: f		ی							
utype: 1	100104							•	

```
In [333]: residuals = pd.DataFrame(model_011_fit.resid)
    residuals.plot(legend=False)
    plt.title('Time Series of Residuals')

    residuals.hist(bins=20)
    plt.title('Histogram of Residuals')
```

Out[333]: Text(0.5,1,'Histogram of Residuals')

Within a 3-year span of the residual for the Duke forest indicate in 2012 tigher residuals or less variance. It would be interesting to see the last 7 years of environmental data to see if the AT ticked furture upward.