## Model description: TwoPopulationNetworkPlastic

## 1 Model description

| Populations  | ns excitatory population $\mathcal{E}$ , inhibitory population $\mathcal{I}$ , external Poissonian spike sources $\mathcal{X}$ |  |
|--------------|--------------------------------------------------------------------------------------------------------------------------------|--|
| Connectivity | sparse random connectivity respecting Dale's principle                                                                         |  |
| Neurons      | leaky integrate-and-fire (LIF)                                                                                                 |  |
| Synapses     | linear input integration with alpha-shaped postsynaptic currents (PSCs),                                                       |  |
|              | spike-timing dependent plasticity (STDP) for connections between excitatory neurons                                            |  |
| Input        | stationary, uncorrelated Poissonian spike trains                                                                               |  |



| Populations   |                                             |                   |
|---------------|---------------------------------------------|-------------------|
| Name          | Elements                                    | Size              |
| $\mathcal{E}$ | LIF neurons                                 | $N_{E} = \beta N$ |
| $\mathcal{I}$ | LIF neurons $N_{ m I} = N - N_{ m E}$       |                   |
| $\mathcal{X}$ | realizations of a Poisson point process $N$ |                   |

Table 1: Description of the network model (continued on next page).

|               |                                | Connectivity                                                                                                          |
|---------------|--------------------------------|-----------------------------------------------------------------------------------------------------------------------|
| Source        | Target                         | Pattern                                                                                                               |
| $\mathcal{E}$ | $\mathcal{E}$                  |                                                                                                                       |
|               |                                | $ullet$ random, independent; homogeneous in-degree $K_{E,i}=K_{E}$ $(orall i\in\mathcal{E})$                         |
|               |                                | $ullet$ plastic synaptic weights $J_{ij}(t)$ $(orall i\in\mathcal{E}, j\in\mathcal{E})$                              |
|               |                                | $ullet$ homogeneous spike-transmission delays $d_{ij}=d$ $(orall i\in\mathcal{E},j\in\mathcal{E})$                   |
| $\mathcal{E}$ | $\mathcal{I}$                  |                                                                                                                       |
|               |                                | $ullet$ random, independent; homogeneous in-degree $K_{E,i}=K_{E}$ ( $orall i\in\mathcal{I}$ )                       |
|               |                                | $ullet$ fixed synaptic weights $J_{ij} \in \{0,J\} \; (orall i \in \mathcal{I}, j \in \mathcal{E})$                  |
|               |                                | $ullet$ homogeneous spike-transmission delays $d_{ij}=d$ $(orall i\in\mathcal{I},j\in\mathcal{E})$                   |
| $\mathcal{I}$ | $\mathcal{E} \cup \mathcal{I}$ |                                                                                                                       |
|               |                                | $ullet$ random, independent; homogeneous in-degree $K_{I,i}=K_I$ $(orall i\in\mathcal{E}\cup\mathcal{I})$            |
|               |                                | • fixed synaptic weights $J_{ij} \in \{-gJ,0\}$ $(\forall i \in \mathcal{E} \cup \mathcal{I}, j \in \mathcal{I})$     |
|               |                                | $ullet$ homogeneous spike-transmission delays $d_{ij}=d$ ( $orall i\in\mathcal{E}\cup\mathcal{I}, j\in\mathcal{I}$ ) |
| $\mathcal{X}$ | $\mathcal{E} \cup \mathcal{I}$ |                                                                                                                       |
|               |                                | • one-to-one                                                                                                          |
|               |                                | $ullet$ fixed synaptic weights $J_{ij}=J$ $(orall i\in \mathcal{E}\cup\mathcal{I}, j\in\mathcal{X})$                 |
|               |                                | $ullet$ homogeneous spike-transmission delays $d_{ij}=d$ $(orall i\in \mathcal{E}\cup\mathcal{I}, j\in\mathcal{X})$  |
|               | /                              | "taa")lkinla aanaatiaa ("ltaa")                                                                                       |

no self-connections ("autapses"), multiple connections ("multapses") are permitted

all unmentioned connections  $\mathcal{E} \cup \mathcal{I} \to \mathcal{X}$ ,  $\mathcal{X} \to \mathcal{X}$  are absent

|             | Neuron                                                                                                                                                  |  |
|-------------|---------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Туре        | leaky integrate-and-fire (LIF) dynamics                                                                                                                 |  |
| Description | dynamics of membrane potential $V_i(t)$ and spiking activity $s_i(t)$ of neuron $i \in \{1, \dots, N\}$                                                 |  |
|             | $ullet$ emission of $k$ th $(k=1,2,\ldots)$ spike of neuron $i$ at time $t_i^k$ if                                                                      |  |
|             | $V_{i}\left(t_{i}^{k} ight)\geq	heta$                                                                                                                   |  |
|             | with spike threshold $	heta$                                                                                                                            |  |
|             | • reset and refractoriness:                                                                                                                             |  |
|             | $orall k, \; orall t \in \left(t_k^i, t_k^i + 	au_{ref} ight]:  V_i(t) = V_{reset}$                                                                   |  |
|             | with refractory period $	au_{ref}$ and reset potential $V_{reset}$                                                                                      |  |
|             | $ullet$ spike train $s_i(t) = \sum_k \delta(t-t_i^k)$                                                                                                   |  |
|             | $ullet$ subthreshold dynamics of membrane potential $V_i(t)$ :                                                                                          |  |
|             | $\forall k, \ \forall t  otin \left[ t_i^k,  t_i^k + 	au_{ref} \right)$ :                                                                               |  |
|             | $\tau_{\rm m} \frac{{\rm d}V_i(t)}{{\rm d}t} = \left[E_{\rm L} - V_i(t)\right] + R_{\rm m}I_i(t)$                                                       |  |
|             | with membrane time constant $	au_{\rm m}$ , membrane resistance $R_{\rm m}$ , resting potential $E_{\rm L}$ , and total synaptic input current $I_i(t)$ |  |

Table 1: Description of the network model (continued).

|             | Synapse: transmission                                                                                                                                                                                                                                                                                                 |  |
|-------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Туре        | current-based synapses with alpha-function shaped postsynaptic currents (PSCs)                                                                                                                                                                                                                                        |  |
| Description |                                                                                                                                                                                                                                                                                                                       |  |
|             | ullet total synaptic input current of neuron $i$                                                                                                                                                                                                                                                                      |  |
|             | $L(t) = I_{-1}(t) + I_{-1}(t) + I_{-1}(t)$                                                                                                                                                                                                                                                                            |  |
|             | $I_i(t) = I_{E,i}(t) + I_{I,i}(t) + I_{X,i}(t)$                                                                                                                                                                                                                                                                       |  |
|             | excitatory, inhibitory and external synaptic input currents                                                                                                                                                                                                                                                           |  |
|             | $I_{E,i}(t) = \sum_{j \in \mathcal{E}} ig(PSC_{ij} * s_jig)(t - d_{ij})$                                                                                                                                                                                                                                              |  |
|             | $I_{\mathbf{l},i}(t) = \sum_{j \in \mathcal{I}} \left(PSC_{ij} * s_j \right) (t - d_{ij})$                                                                                                                                                                                                                            |  |
|             | $I_{X,i}(t) = \sum_{j \in \mathcal{X}} ig(PSC_{ij} * s_jig)(t - d_{ij})$                                                                                                                                                                                                                                              |  |
|             | with spike trains $s_j(t)$ of local $(j \in \mathcal{E} \cup \mathcal{I})$ and external sources $(j \in \mathcal{X})$ , spike trans-                                                                                                                                                                                  |  |
|             | mission delays $d_{ij}$ , and convolution operator "*": $(f*g)(t) = \int_{-\infty}^{\infty} ds  f(s)g(t-s)$ )                                                                                                                                                                                                         |  |
|             | alpha-function shaped postsynaptic currents                                                                                                                                                                                                                                                                           |  |
|             | $PSC_{ij}(t) = \hat{I}_{ij}e\tau_{s}^{-1}te^{-t/\tau_{s}}\Theta(t)$                                                                                                                                                                                                                                                   |  |
|             | with synaptic time constant $	au_{\mathrm{s}}$ and Heaviside function $\Theta(\cdot)$                                                                                                                                                                                                                                 |  |
|             | $\sim$ postsynaptic potential triggered by a single presynaptic spike                                                                                                                                                                                                                                                 |  |
|             | $PSP_{ij}(t) = \hat{I}_{ij} \frac{e}{\tau_{s} C_{m}} \left( \frac{1}{\tau_{m}} - \frac{1}{\tau_{s}} \right)^{-2} \left( \left( \frac{1}{\tau_{m}} - \frac{1}{\tau_{s}} \right) t e^{-t/\tau_{s}} - e^{-t/\tau_{s}} + e^{-t/\tau_{m}} \right) \Theta(t)$                                                               |  |
|             | PSC amplitude (synaptic weight)                                                                                                                                                                                                                                                                                       |  |
|             | $\hat{I}_{ij} = max_t \big( PSC_{ij}(t) \big) = \frac{J_{ij}}{J_{unit}(\tau_{m}, \tau_{s}, C_{m})}$                                                                                                                                                                                                                   |  |
|             | parameterized by PSP amplitude $J_{ij} = \max_t \left( PSP_{ij}(t) \right)$                                                                                                                                                                                                                                           |  |
|             | with unit PSP amplitude (PSP amplitude for $\hat{I}_{ij}=1$ ):                                                                                                                                                                                                                                                        |  |
|             | $J_{\rm unit}(\tau_{\rm m},\tau_{\rm s},C_{\rm m}) = \frac{e}{C_{\rm m}\left(1-\frac{\tau_{\rm s}}{\tau_{\rm m}}\right)} \left(\frac{e^{-t_{\rm max}/\tau_{\rm m}}-e^{-t_{\rm max}/\tau_{\rm s}}}{\frac{1}{\tau_{\rm s}}-\frac{1}{\tau_{\rm m}}} - t_{\rm max}e^{-t_{\rm max}/\tau_{\rm s}}\right), \label{eq:Junit}$ |  |
|             | time to PSP maximum                                                                                                                                                                                                                                                                                                   |  |
|             | $t_{\rm max} = \frac{1}{\frac{1}{\tau_{\rm s}} - \frac{1}{\tau_{\rm m}}} \left( -W_{-1} \left( \frac{-\tau_{\rm s} e^{-\frac{\tau_{\rm s}}{\tau_{\rm m}}}}{\tau_{\rm m}} \right) - \frac{\tau_{\rm s}}{\tau_{\rm m}} \right), \label{eq:tmax}$                                                                        |  |
|             | and Lambert-W function $W_{-1}(x)$ for $x \ge -1/e$                                                                                                                                                                                                                                                                   |  |
|             | 1                                                                                                                                                                                                                                                                                                                     |  |

Table 1: Description of the network model (continued).

|             | Synapse: plasticity                                                                                                                                                                                                                                                                                    |  |
|-------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Туре        | spike-timing dependent plasticity (STDP) with power-law weight dependence and all-to-all spike pairing scheme (Morrison et al., 2007) for connections between excitatory neurons                                                                                                                       |  |
| Description | dynamics of synaptic weights $J_{ij}(t) \ \forall i \in \mathcal{E}, j \in \mathcal{E}$ :                                                                                                                                                                                                              |  |
|             | $\forall J_{ij} \ge 0: \\ \frac{\mathrm{d}J_{ij}}{\mathrm{d}t} = \lambda^{+} f^{+}(J_{ij}) \sum_{k} x_{j}^{+}(t) \delta \left( t - [t_{i}^{k} + d_{ij}] \right) + \lambda^{-} f^{-}(J_{ij}) \sum_{l} x_{i}^{-}(t) \delta \left( t - [t_{j}^{l} - d_{ij}] \right) $                                     |  |
|             | $orall t \{t J_{ij}(t)<0\}:  J_{ij}(t)=0  	ext{(clipping)}$                                                                                                                                                                                                                                           |  |
|             | with                                                                                                                                                                                                                                                                                                   |  |
|             | $ullet$ pre- and postsynaptic spike times $\{t_j^l l=1,2,\ldots\}$ and $\{t_i^k k=1,2,\ldots\}$ ,                                                                                                                                                                                                      |  |
|             | • magnitude $\lambda^+=\lambda$ of weight update for causal firing (postsynaptic spike following presynaptic spikes: $t_i^k>t_j^l$ ),                                                                                                                                                                  |  |
|             | • magnitude $\lambda^-=-\alpha\lambda$ of weight update for acausal firing (presynaptic spike following postsynaptic spikes: $t_i^k < t_j^l$ ),                                                                                                                                                        |  |
|             | • power-law weight dependence $f^+(J_{ij}) = J_0(J_{ij}/J_0)^{\mu^+}$ of weight update for causal firing with exponent $\mu^+$ and reference weight $J_0$ ,                                                                                                                                            |  |
|             | $ullet$ linear weight dependence $f^-(J_{ij})=J_{ij}$ of weight update for acausal firing,                                                                                                                                                                                                             |  |
|             | $ullet$ (dendritic) delay $d_{ij}$ ,                                                                                                                                                                                                                                                                   |  |
|             | $\bullet$ spike trace $x_j^+(t)$ of presynaptic neuron $j,$ evolving according to                                                                                                                                                                                                                      |  |
|             | $\frac{\mathrm{d}x_j^+}{\mathrm{d}t} = -\frac{x_j^+(t)}{\tau^+} + \sum_l \delta(t - t_j^l)$                                                                                                                                                                                                            |  |
|             | with presynaptic spike times $\{t_j^l l=1,2,\ldots\}$ and time constant $	au^+$ ,                                                                                                                                                                                                                      |  |
|             | $\bullet$ spike trace $x_i^-(t)$ of postsynaptic neuron $i,$ evolving according to                                                                                                                                                                                                                     |  |
|             | $\frac{\mathrm{d}x_i^-}{\mathrm{d}t} = -\frac{x_i^-(t)}{\tau^-} + \sum_k \delta(t-t_i^k)$                                                                                                                                                                                                              |  |
|             | with postsynaptic spike times $\{t_i^k k=1,2,\ldots\}$ and time constant $	au^-$                                                                                                                                                                                                                       |  |
|             | Note: The above weight update accounts for all pairs of pre- and postsynaptic spikes (all-to-all spike pairing scheme). The spike histories and the dependence of the weight update on the time lag of pre- and postsynaptic firing are fully captured by the spike traces $x_j^+(t)$ and $x_i^-(t)$ . |  |

Table 1: Description of the network model (continued).

| Туре        | stationary, uncorrelated Poisson spike trains                                                                                                                                                                                                                                                                                                                                                                       |
|-------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Description | $N= \mathcal{X} $ independent realizations $s_i(t)$ $(i\in\mathcal{X})$ of a Poisson point process with constant rate $\nu_{\mathrm{X}}(t)=\eta\nu_{\theta}$ , where $\nu_{\theta}=\frac{\theta-E_{\mathrm{L}}}{R_{\mathrm{m}}\hat{I}_Xe\tau_{\mathrm{s}}}$ denotes the rheobase rate, and $\eta$ and $\hat{I}_X=J/J_{\mathrm{unit}}$ the relative rate and the synaptic weight (PSC amplitude) of external sources |
|             | Initial conditions                                                                                                                                                                                                                                                                                                                                                                                                  |
| Туре        | random initial membrane potentials, homogeneous initial synaptic weights and spike traces                                                                                                                                                                                                                                                                                                                           |
| Description | • membrane potentials: $V_i(t=0) \sim \mathcal{U}(V_{0,\min},V_{0,\max})$ randomly and independently drawn from a uniform distribution between $V_{0,\min}$ and $V_{0,\max}$ ( $\forall i$ ) • synaptic weights: $\hat{I}_{ij}(t=0) = J/J_{\mathrm{unit}}$ ( $\forall i \in \mathcal{E}, j \in \mathcal{E}$ ) • spike traces: $x_{+,i}(t=0) = x_{-,i}(t=0) = 0$ ( $\forall i \in \mathcal{E}$ )                     |

Stimulus

Table 1: Description of the network model (continued).

## 2 Model parameters

|                       | Network and connectivity                       |                                                                            |  |
|-----------------------|------------------------------------------------|----------------------------------------------------------------------------|--|
| Name                  | Value                                          | Description                                                                |  |
| N                     | 12500                                          | total number of neurons in local network                                   |  |
| β                     | 0.8                                            | relative number of excitatory neurons                                      |  |
| $N_{E}$               | $\beta N = 10000$                              | total number of excitatory neurons                                         |  |
| $N_{I}$               | $N - N_{E} = 2500$                             | total number of inhibitory neurons                                         |  |
| K                     | 1250                                           | total number of inputs per neuron (in-degree) from local network           |  |
| $K_{E}$               | $\beta K = 1000$                               | number of excitatory inputs per neuron (exc. in-degree) from local network |  |
| $K_{I}$               | $K - K_{E} = 250$                              | number of inhibitory inputs per neuron (inh. in-degree)                    |  |
|                       |                                                | Neuron                                                                     |  |
| Name                  | Value                                          | Description                                                                |  |
| θ                     | $20\mathrm{mV}$                                | spike threshold                                                            |  |
| $E_{L}$               | 0 mV                                           | resting potential                                                          |  |
| $	au_{m}$             | $20\mathrm{ms}$                                | membrane time constant                                                     |  |
| $C_{m}$               | $250\mathrm{pF}$                               | membrane capacitance                                                       |  |
| $R_{m}$               | $\tau_{\rm m}/C_{\rm m}=80{\rm M}\Omega$       | membrane resistance                                                        |  |
| $V_{reset}$           | 0 mV                                           | reset potential                                                            |  |
| $	au_{ref}$           | $2\mathrm{ms}$                                 | absolute refractory period                                                 |  |
|                       |                                                | Synapse                                                                    |  |
| Name                  | Value                                          | Description                                                                |  |
| J                     | 0.5 mV                                         | (initial) weight (PSP amplitude) of excitatory synapses                    |  |
| g                     | 10                                             | relative strength of inhibitory synapses                                   |  |
| $J_{I}$               | -gJ = -5  mV                                   | weight (PSP amplitude) of inhibitory synapses                              |  |
| $J_{unit}$            | $\approx 0.01567~\mathrm{mV/pA}$               | unit PSP amplitude                                                         |  |
| $I_{E}(0)$            | $J/J_{\rm unit} \approx 31.9 \text{ pA}$       | (initial) weight (PSC amplitude) of excitatory synapses                    |  |
| Îı                    | $-gJ/J_{\rm unit} \approx -319 \text{ pA}$     | weight (PSC amplitude) of inhibitory synapses                              |  |
| Îx                    | $J/J_{\rm unit} pprox 31.9 \ {\rm pA}$         | weight (PSC amplitude) of external inputs                                  |  |
| d                     | 1.5 ms                                         | spike transmission delay                                                   |  |
| $	au_{S}$             | 2 ms                                           | synaptic time constant                                                     |  |
| $\lambda = \lambda^+$ | 20                                             | magnitude of weight update for causal firing                               |  |
| $\mu^+$               | 0.4                                            | weight dependence exponent for causal firing                               |  |
| $J_0$                 | 1 pA                                           | reference weight                                                           |  |
| $\tau^+$              | 15 ms                                          | time constant of weight update for causal firing                           |  |
| α                     | 0.1                                            | relative magnitude of weight update for acausal firing                     |  |
| $\lambda^{-}$         | $-\alpha\lambda = -2$                          | magnitude of weight update for acausal firing                              |  |
| $\tau^-$              | 30 ms                                          | time constant of weight update for acausal firing                          |  |
|                       |                                                | Stimulus                                                                   |  |
| Name                  | Value                                          | Description                                                                |  |
| $\eta$                | 1.2                                            | relative rate of external Poissonian sources                               |  |
| $\nu_{\theta}$        | 1442 spikes/s                                  | rheobase rate                                                              |  |
| νχ                    | $\eta \nu_{\theta} pprox 1730  {\rm spikes/s}$ | rate of external Poissonian sources                                        |  |
| A.                    |                                                | Initial conditions                                                         |  |
| Name                  | Value                                          | Description                                                                |  |
| $V_{0, \rm min}$      | $E_{L} = 0 \; mV$                              | minimum initial membrane potential                                         |  |
| $V_{0,\mathrm{max}}$  | $\theta = 20 \text{ mV}$                       | maximum initial membrane potential                                         |  |

Table 2: Model parameters. Parameters derived from other parameters are marked in gray.

## References

Morrison, A., Aertsen, A., and Diesmann, M. (2007). Spike-timing-dependent plasticity in balanced random networks. *Neural Computation*, 19(6):1437–1467.