Informe N°9: Laboratorio de Máquinas: Curvas características de una bomba centrífuga.

Leonor Villalobos Burgos ¹

¹Escuela de Ingeniería Mecánica

Pontificia Universidad Católica de Valparaíso

cristobal.galleguillos@pucv.cl

10 de diciembre de 2020

1. Objetivos

Analizar el comportamiento de una bomba centrífuga mediante sus curvas características.

2. Trabajo de laboratorio

Revisar y poner en marcha la instalación, con las válvulas de aspiración y descarga totalmente abiertas. Regular la velocidad a la indicada por el profesor. Luego de inspeccionar los instrumentos y su operación y esperar un tiempo prudente para que se estabilice su funcionamiento, tome las siguientes medidas:

- n velocidad de ensayo, [rpm].
- nx velocidad de la bomba, en [rpm].
- pax % presión de aspiración, en [%].
- pdx % presión de descarga, en [%].
- δ hx caudal de la bomba, presión diferencial en el venturímetro en [mmHg].
- Fx fuerza medidas en la balanza, en [kp].
- ta temperatura de agua en el estanque, en [°C].
- Patm presión atmosférica, en [mmHg].

Manteniendo la velocidad constante, repetir las mediciones tantas veces como fuera necesario para recorrer completamente la curva característica de la bomba y tener los valores apropiados para trazar las curvas que se indican. Para obtener las distintas condiciones de operación, se modifica la curva característica del sistema estrangulando la descarga de la bomba. Se repite lo anterior para otras dos velocidades de ensayo.

Mida los valores siguientes:

- cpax altura piezométrica del manómetro de aspiración respecto del eje de la bomba, en [mm].
- cpdx altura piezométrica del manómetro de descarga respecto del eje de la bomba, en [mm].

3. Informe

El informe incluye el número del ensayo, la fecha, el título, los objetivos, enumeración y características de los instrumentos utilizados y los puntos siguientes.

3.1. Tabla de valores medidos

Valores medidos para 3070, 2900 y 2750 RPM, respectivamente:

		90	3070 rpm		0.	
nx [rpm]	- 1111an - 1206 - 1208		hx [mmHg]	Fx [Kp]	Ta [°C]	Patm [mmhg]
3075	89,5	6,5	146	1,54	16	758,7
3076	92	13,6	133	1,68	16	758,7
3076	94,8	19,4	118	1,79	16	758,7
3076	97	24,5	104	1,85	16	758,7
3077	99,4	29,1	91	1,89	16	758,7
3078	101,7	34,4	76	1,91	16	758,7
3078	105,2	41,3	59	1,92	16	758,7
3078	107,6	46,2	45	1,89	16	758,7
3078	110	49,2	32	1,83	16	758,7
3077	112,5	54,4	17	1,69	16	758,7
3078	114,3	56,9	9	1,55	16	758,7
3078	120,5	62,1	0	1,13	16	758,7

Figura 1: Tabla a 3070 RPM

94	2900 rpm												
nx [rpm]	Pax [%]	Pdx [%]	hx [mmHg]	Fx [Kp]	Ta [°C]	Patm [mmhg]							
2903	91,5	6,2	134	1,37	16	758,7							
2903	93,9	12,7	121	1,47	16,5	758,7							
2903	96,3	16,4	109	1,55	16,5	758,7							
2903	98,7	21,4	95	1,62	17	758,7							
2903	100,5	26,1	82	1,65	17	758,7							
2902	103,4	30,5	70	1,68	17	758,7							
2904	105,6	35,5	56	1,69	17	758,7							
2902	108,1	40,2	43	1,68	17	758,7							
2903	110	44,3	30	1,6	17	758,7							
2903	112,3	48,1	17	1,49	17	758,7							
2904	114,6	51,2	8	1,37	17	758,7							
2904	119,5	56,1	0	0,94	17	758,7							

Figura 2: Tabla a 2900 RPM

100	V20 0.0	V.	2750 rpm	70 03	70	
nx [rpm]	Pax [%]	Pdx [%]	hx [mmHg]	Fx [Kp]	Ta [°C]	Patm [mmhg]
2702	94,3	5,8	118	1,16	17	758,7
2703	96,8	10,5	106	1,24	17	758,7
2703	98,5	14,5	95	1,3	17	758,7
2703	100	18,1	84	1,34	17	758,7
2702	102,4	22,6	72	1,38	17	758,7
2703	104,8	26,9	60	1,4	17	758,7
2703	107,1	32,1	47	1,4	17	758,7
2702	109,1	36,1	35	1,38	17	758,7
2702	111,3	39,9	23	1,3	17	758,7
2703	113,6	43,5	11	1,18	17	758,7
2703	114,9	45,3	5	1,05	17	758,7
2703	119,6	49,1	0	0,78	17	758,7

Figura 3: Tabla a 2750 RPM

3.2. Fórmulas

Caudal corregido:

$$Q = Q_x \cdot \frac{n}{nx} \left[\frac{m^3}{h} \right] \tag{1}$$

Presión de aspiración:

$$pax = 0, 1 \cdot pax \% - 10 - \frac{cpax}{1000} [m_{ca}]$$
 (2)

Donde: cpax = 115 [mm]

Presión de descarga:

$$pdx = 0, 4 \cdot pdx \% + \frac{cpdx}{1000} [m_{ca}]$$
(3)

Donde: cpax = 165 [mm]

Altura:

$$H_x = -pax + pdx[m_{ca}] (4)$$

Altura corregida:

$$H = H_x \cdot (\frac{n}{nx})^2 [m_{ca}] \tag{5}$$

Potencia en el eje de la bomba:

$$N_{ex} = 0,0007355 \cdot F_{xnx}[kW] \tag{6}$$

Potencia en el eje de la bomba corregida:

$$N_e = N_{ex} \cdot (\frac{n}{nx})^3 [kW] \tag{7}$$

Potencia hidráulica:

$$N_h = \gamma \cdot (\frac{n}{nx})^3 [kW] \tag{8}$$

Donde: γ : Peso específico del agua $[N/m^3]$

Rendimiento global:

$$\eta_{gl} = \frac{N_h}{N_e} \cdot 100[\%] \tag{9}$$

Velocidad tangencial del rodete en la descarga:

$$U_2 = \frac{\pi}{60} \cdot n \cdot D_2[\frac{m}{s}] \tag{10}$$

Velocidad meridional de descarga:

$$cm_2 = \frac{Q}{3600 \cdot \pi \cdot D_2 \cdot B_2} \left[\frac{m}{s}\right] \tag{11}$$

Donde:

 D_2 : Diámetro exterior del rodete B_2 : Ancho exterior del rodete

Phi:

$$\Phi = \frac{cm_2}{U_2}[-] \tag{12}$$

Psi:

$$\Psi = \frac{2 \cdot g \cdot H}{U_2^2} [-] \tag{13}$$

3.3. Tabla de valores calculados

	VALORES CALCULADOS														
						3070	RPM								
Qx	Q	pax	pdx	Hx	Н	Nex	Ne	Nh	ηgl	U2	cm2	ф	ψ		
[m3/h]	[m3/h]	[mca]	[mca]	[mca]	[mca]	[kW]	[kW]	[kW]	-	[m/s]	[m/s]	-	-		
112,32	112,137366	-1,165	2,765	3,93	3,9172299	3,48296025	3,46599781	1,19700487	34,53565	21,73589417	3,022441715	0,139053019	0,162675834		
108	107,789337	-0,915	5,605	6,52	6,49458918	3,80082864	3,77863048	1,90762933	50,4846754	21,74296276	2,90524916	0,133617906	0,269533806		
102,6	102,39987	-0,635	7,925	8,56	8,52663855	4,04969242	4,0260408	2,3792702	59,0970215	21,74296276	2,759986702	0,126937011	0,353866469		
97,92	97,7289987	-0,415	9,965	10,38	10,3395453	4,1854363	4,16099189	2,75354005	66,1750881	21,74296276	2,634092572	0,121146902	0,429104433		
91,8	91,5911602	-0,175	11,805	11,98	11,9255544	4,27732232	4,24819668	2,97645036	70,0638549	21,75003134	2,468659231	0,11350141	0,494604206		
82,8	82,5847953	0,055	13,925	13,87	13,7979949	4,32398979	4,29036202	3,10515	72,3750113	21,75709992	2,225910413	0,102307312	0,571890617		
77,4	77,1988304	0,405	16,685	16,28	16,1954836	4,34662848	4,31282465	3,40699227	78,9967722	21,75709992	2,080742343	0,095635096	0,67126022		
66,6	66,4269006	0,645	18,645	18	17,9065543	4,27871241	4,24543677	3,24132457	76,3484359	21,75709992	1,790406202	0,082290664	0,742179604		
57,6	57,4502924	0,885	19,845	18,96	18,8615706	4,14288027	4,110661	2,95281748	71,8331549	21,75709992	1,548459418	0,071170304	0,781762517		
45	44,8976276	1,135	21,925	20,79	20,6955155	3,82469562	3,79865206	2,53201426	66,6555984	21,75003134	1,210127074	0,055637946	0,858332341		
28,8	28,7251462	1,315	22,925	21,61	21,4978133	3,50899695	3,4817074	1,68276334	48,3315553	21,75709992	0,774229709	0,035585152	0,891027847		
0	0	1,935	25,005	23,07	22,9502338	2,55817197	2,53827701	0	0	21,75709992	0	0	0,95122686		

Figura 4: Tabla de valores calculados a 3070 RPM

8	2900 RPM														
Qx	Q	pax	pdx	Hx	Н	Nex	Ne	Nh	ηgl	U2	cm2	ф	ψ		
[m3/h]	[m3/h]	[mca]	[mca]	[mca]	[mca]	[kW]	[kW]	[kW]	-	[m/s]	[m/s]	() ()	12		
118,8	118,67723	-0,965	2,645	3,61	3,60254261	2,92516441	2,91610506	1,16385829	39,9113977	20,52009782	3,198710877	0,155881853	0,167860795		
102,6	102,493972	-0,725	5,245	5,97	5,95766742	3,13868006	3,12895944	1,66225693	53,1249115	20,52009782	2,76252303	0,134625237	0,277598046		
97,92	97,8188081	-0,485	6,725	7,21	7,19510587	3,30949258	3,29924295	1,91594541	58,0722741	20,52009782	2,636513208	0,128484437	0,335256602		
91,8	91,7051326	-0,245	8,725	8,97	8,95147014	3,45895353	3,44824102	2,23466067	64,8058143	20,52009782	2,471731132	0,120454159	0,417094552		
84,6	84,5125732	-0,065	10,605	10,67	10,6479583	3,52300823	3,51209733	2,44969064	69,7500784	20,52009782	2,277869867	0,111006774	0,496142572		
77,4	77,3466575	0,225	12,365	12,14	12,1232725	3,58582728	3,57841855	2,55261309	71,3335529	20,51302923	2,08472673	0,101629394	0,56527434		
69,12	69,0247934	0,445	14,365	13,92	13,8816793	3,60965748	3,59476208	2,60837901	72,5605467	20,5271664	1,860427283	0,090632445	0,646372698		
58,32	58,279807	0,695	16,245	15,55	15,5285739	3,58582728	3,57841855	2,46361734	68,8465396	20,51302923	1,57081735	0,076576567	0,724054035		
48,24	48,1901481	0,885	17,885	17	16,9648821	3,4162504	3,40567014	2,22552605	65,3476689	20,52009782	1,298870477	0,06329748	0,790480198		
36	35,9627971	1,115	19,405	18,29	18,2522173	3,18138319	3,17153032	1,78686881	56,3409025	20,52009782	0,969306326	0,047236925	0,850463696		
0	0	1,345	20,645	19,3	19,2468686	2,92617204	2,91409707	0	0	20,5271664	0	0	0,896192032		

Figura 5: Tabla de valores calculados a 2900 RPM $\,$

	2750 RPM													
Qx	Q	pax	pdx	Hx	Н	Nex	Ne	Nh	ηgl	U2	cm2	ф	ψ	
[m3/h]	[m3/h]	[mca]	[mca]	[mca]	[mca]	[kW]	[kW]	[kW]	-	[m/s]	[m/s]	-	-	
102,6	104,42265	-0,685	2,485	3,17	3,28362808	2,30529236	2,43034573	0,93340956	38,4064518	19,09931254	2,814506749	0,147361678	0,1766108	
97,92	99,6226415	-0,435	4,365	4,8	4,9683769	2,46519006	2,59603386	1,34739882	51,9022051	19,10638112	2,685131982	0,140535875	0,2670279	
91,8	93,3962264	-0,265	5,965	6,23	6,44853918	2,58447345	2,7216484	1,63951067	60,2396206	19,10638112	2,517311233	0,131752382	0,3465799	
86,4	87,9023307	-0,115	7,405	7,52	7,78379047	2,66399571	2,80539143	1,86258072	66,3928997	19,10638112	2,369234102	0,124002242	0,4183437	
79,2	80,6069578	0,125	9,205	9,08	9,40547096	2,74250298	2,89127337	2,06384298	71,3818003	19,09931254	2,172601701	0,113752874	0,5058760	
72	73,2519423	0,365	10,925	10,56	10,9304292	2,7832791	2,93100597	2,17961573	74,3640837	19,10638112	1,974361751	0,103335202	0,5874614	
64,8	65,9267481	0,595	13,005	12,41	12,8453244	2,7832791	2,93100597	2,30531516	78,6526942	19,10638112	1,776925576	0,093001682	0,6903784	
57,6	58,623242	0,795	14,605	13,81	14,305017	2,74250298	2,89127337	2,28287317	78,9573618	19,09931254	1,580073964	0,082729363	0,7693995	
50,4	51,2953368	1,015	16,125	15,11	15,6516152	2,5835173	2,72366332	2,18554938	80,2430082	19,09931254	1,382564719	0,072388193	0,8418266	
39,6	40,2885683	1,245	17,565	16,32	16,8924814	2,34590667	2,47041932	1,85267337	74,9942878	19,10638112	1,085898963	0,056834361	0,9078949	
0	0	1,375	18,285	16,91	17,5031778	2,08745933	2,19825448	0	0	19,10638112	0	0	0,9407170	

Figura 6: Tabla de valores calculados a 2750 RPM

3.4. Gráficos

Trace el siguientes gráficos en una hoja completa:

3.4.1. De isorendimiento y potencia vs caudal

Curva H vs Q:

Figura 7: Curva de altura vs caudal, o de isorendimiento

Curva de Potencia vs Caudal:

Figura 8: Curva de potencia vs caudal

• ¿Cuáles son las condiciones óptimas de operación de esta bomba?

Las condiciones óptimas de funcionamiento se obtienen cuando obtenemos el valor máximo de rendimiento global, esto significa que se da en el punto de $80 \ [m^3/h]$ para la velocidad de 3070 [RPM] y de $50 \ [m^3/h]$ para la velocidad de 2750 [RPM], aproximadamente.

• ¿Las curvas tiene la forma esperada?

Las curvas tienen la geometría normal de una bomba, lo que significa que es un ensayo fiable y que tiene un funcionamiento normal.

• ¿Cuál es la potencia máxima consumida?

La potencia del eje nos indica esta potencia consumida máxima, la cual es de 4,31 [kW] a un caudal de 77,19 [m^3/h] para una velocidad de 3070 [RPM].

• ¿Qué tipo de curvas son?

La curva H vs Q nos indica que, mientras la altura aumenta cuando el flujo disminuye, alcanza su valor máximo a caudal cero, por lo que se establece que la curva es del tipo ascendente. En la curva N vs Q, como se puede ver en la tabla de valores calculados, la potencia máxima se alcanza a los valores máximos de potencia, es decir, la curva no tiene sobrecarga.

3.4.2. Curva Ψ vs Φ

Figura 9: Curva Ψ vs Φ

■ ¿La nube de puntos que conforman esta curva son muy dispersos?

La curva Ψ vs Φ nos permite comparar bombas geométrica y dinámicamente similares. Durante la prueba, se usó la misma máquina bajo el mismo régimen de trabajo por lo que los parámetros que

afectarán a la curva no cambian, y debido a eso es que los valores no están dispersos y tienden a describir comportamientos individuales que son equivalentes.

- Al observar todas las curvas anteriores ¿Qué tipo de bomba centrifuga es? Justifíquelo.
 - Se puede decir que se trata de una bomba centrífuga de velocidad media. Esto es debido a que la curva H vs Q es ascendente, es decir, para un bajo caudal, por lo que podemos obtener un valor de altura de la bomba más alto.
- Calcule la velocidad específica y determine si las características constructivas y operacionales son concordantes con esa velocidad específica y su respuesta

La ecuación de la velocidad específica es la siguiente:

$$n_{sq} = \frac{n \cdot sqrtQ}{H(3/4)}[-] \tag{14}$$

Donde:

n=3070~[RPM]

Q = Caudal

H = Altura

Figura 10: Curva de rendimiento global

Comparando la velocidad con el gráfico disponible en el capítulo de turbomáquinas del libro de Turbomáquinas, obtenemos la zona de caracterización de la bomba, donde se puede apreciar que es efectivamente una bomba centrífuga de álabes medianos cortos.

Figura 11: Curva de rendimiento global

4. Características de bombas

CARACTERÍSTICAS DE BOMBAS.

MARCA - MODELO	DN/DA	DN/D D	\mathbf{D}_1	D ₂	Dc	B ₁	B_2	b ₁	b ₂	Z
	in	in	mm	mm	mm	mm	mm	0	0	_
Leader - M18	4	4	71	135	30	37	24.3	16	20	5
Leader - M19	5	5	100	165	47		24			7

Figura 12: Tabla de carácterísticas de la bomba

Referencias

- [1] Turbomáquinas, Ramiro Mége Thierry, Pontificia Universidad Católica de Valparaíso
- [2] Laboratorio de Máquinas, Sergio Coutin V., Universidad de Chile