Boolean Algebra

- Base Design Theory for Digital Circuit -

Introduction to Digital Circuits

Why Study Digital Circuit Design?

- Look "inside" of computers.
 - Composed of several hardware components such as CPU, memory, GPU, etc.
 - Each hardware component in computer is implemented with digital circuits.
- Look "inside" of other electronic devices such as
 - sound recorders, cameras, navigation in cars, medical device,
 - They are also implemented with digital circuits.
- Why study digital circuit design?
 - We can exhaustively understand how to implement hardware in detail.
 - It provides confidence and insight into field of computer science.

What Does "Digital" Mean?

- Analog (Continuous) signal
 - Infinite possible values
 - Ex: voltage on a wire created by microphone
- Sound waves move the membrane. which moves the magnet, microphone analog signal which creates current in the nearby wire Possible values: 1.00, 1.01, 2.0000009, value ... infinite possibilities time
- Digital (Discrete) signal
 - Finite possible values
 - · Ex: button pressed on a keypad

Digital Signals with Only Two Values: Binary

- Binary digital signal -- only two possible values
 - Typically represented as 0 and 1
 - One binary digit is a bit
 - We'll only consider binary digital signals
 - · Why?

Benefit of Binary Digitization

- Analog signal (e.g., audio) may lose quality
 - Voltage levels not saved/copied/transmitted perfectly

Let bit encoding be: 1 V: "01" 2 V: "10" 3 V: "11"

- Binary digitization enables near-perfect save/cpy/trn.
 - Voltage levels still not kept perfectly.
 - But we can distinguish 0s from 1s.

Basis and Theory for Digital Circuits

Basis and Theory for Digital Circuits

- Before learning to design digital circuits, two questions...
 - Q1: What's 'fundamental basis' of digital circuit?
 - CMOS(Complementary Metal Oxide Semiconductor)
 - Q2: What's 'base design theory' for implementing digital circuit?
 - Boolean Algebra

- Electronic switches are the basis of binary digital circuits
- A switch has three parts
 - Source input, and output
 - Current wants to flow from source input to output.
 - Control input
 - Controls whether that current can flow.
- The amazing shrinking switch
 - 1930s: Relays
 - 1940s: Vacuum tubes
 - 1950s: Discrete transistor
 - 1960s: Integrated circuits (ICs)
 - Initially just a few transistors on IC
 - Then tens, hundreds, thousands of transistors

- IC(Integrated Circuit) capacity doubling about every 18 months for several decades
 - Known as "Moore's Law" after Gordon Moore, co-founder of Intel
 - Predicted in 1965 predicted that components per IC would double roughly every year or so.
 - Enables incredibly powerful computation in incredibly tiny devices
 - Today's ICs hold billions of transistors
 - The first Pentium processor (early 1990s) needed only 3 million.

An Intel Pentium processor IC having millions of transistors

- CMOS(Complementary Metal Oxide Semiconductor) transistor
 - Basic switch in modern ICs

- Dr. Dae Won Kang (1931-1992)
 - an Korean electronic engineer/ physicist
 - B.S. from Seoul National Univ.
 - Ph.D from Ohio state Univ.
 - He developed the world's first MOS 1960.
 - When, as a 29-year-old engineer at AT&T Bell Lab.
 - He is also credited with inventing nonvolatile memory that is a basis of flash memory.
 - He has been the most important one who is leading IT Revolution.

- Claude Shannon (1916-2001)
 - an American mathematician, electronic engineer, cryptographer
 - Famous for having founded information theory:
 Known as "the father of information theory"
 - He is also credited with founding both digital computer and digital circuit design theory in 1937.
 - When, as a 21-year-old master's student at MIT.
 - He wrote a thesis about how the Boolean algebra could be used to design digital circuits.
 - The circuit in electronic devices have inputs, each of which is either 0 or 1 and produce outputs that are also 0 or 1.
 - The most important master's thesis of all time.

Boolean Algebra

- as developed in 1854 by George Boole in his book 'An Investigation of the Laws of Thought'.
- is a variant of ordinary elementary algebra
 - Instead of the usual algebra of numbers, Boolean algebra is the algebra of truth values 0 and 1.
 - Variables represent 0 or 1 only.
 - Operators return 0 or 1 only.
- Basic operators
 - AND (·): a · b returns 1 only when both a=1 and b=1
 - OR (+): a + b returns 1 if either (or both) a=1 or b=1
 - NOT ('): a' returns the opposite of a (1 if a=0, 0 if a=1)

Boolean Algebra

- Boolean Identities

$x + 0 = x$ $x \cdot 1 = x$	Identity Law	x + (y + z) = (x + y) + z x(yz) = (xy)z	Associative Law
$x + 1 = 1$ $x \cdot 0 = 0$	Domination law	x(y + z) = xy + xz x + yz = (x + y) (x + z)	Distributive Law
x + x = x $x \cdot x = x$	Idempotent Law	(x y)' = x' + y' (x + y)' = x' y'	De Morgan's Law
(x')' = x	Complementation Law	x + xy = x $x (x + y) = x$	Absorption Law
x + y = y + x $xy = yx$	Commutative Law	x + x' = 1 $x x' = 0$	Complement Law

- Boolean Algebra
 - Comparison between boolean identities and set identities

Set Identities

$A \cup \emptyset = A$ $A \cap U = A$	Identity Law	$A \cup (B \cup C) = (A \cup B) \cup C$ $A \cap (B \cap C) = (A \cap B) \cap C$	Associative Law
$\mathbf{A} \cup \mathbf{U} = \mathbf{U}$ $\mathbf{A} \cap \varnothing = \varnothing$	Domination law	$A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$ $A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$	Distributive Law
$A \cup A = A$ $A \cap A = A$	Idempotent Law	$(A \cup B)^c = A^c \cap B^c$ $(A \cap B)^c = A^c \cup B^c$	De Morgan's Law
(Ac)c = A	Complementation Law	$A \cup (A \cap B) = A$ $A \cap (A \cup B) = A$	Absorption Law
$A \cup B = B \cup A$ $A \cap B = B \cap A$	Commutative Law	$A \cup A^{c} = U$ $A \cap A^{c} = \emptyset$	Complement Law

Boolean Identities

x + 0 = x x · 1 = x	Identity Law	x + (y + z) = (x + y) + z x(yz) = (xy)z	Associative Law
x + 1 = 1 x · 0 = 0	Domination law	x(y + z) = xy + xz x + yz = (x + y) (x + z)	Distributive Law
$ \begin{array}{c} x + x = x \\ x \cdot x = x \end{array} $	Idempotent Law	(x y)' = x' + y' (x + y)' = x' y'	De Morgan's Law
(x')' = x	Complementation Law	x + xy = x $x (x + y) = x$	Absorption Law
x + y = y + x xy = yx	Commutative Law	x + x' = 1 x x' = 0	Complement Law

- Boolean Algebra and its Relation to Digital Circuits
 - Claude Shannon's observation
 - all of the digital circuits can be implemented by only using 3 operations in boolean algebra no matter how the circuits are very complex.

- Boolean Algebra and its Relation to Digital Circuits
 - Claude Shannon observed that all of the digital circuits can be implemented by only using 3 operations in boolean algebra no matter how the circuits are very complex.
 - In this reason, he introduced Boolean Logic Gates that are basic building blocks for digital circuits.
 - Boolean logic gates corresponds to 3 basic operators in boolean algebra.
 - AND, OR, NOT
 - Engineers can easily analyze and design digital circuits by using boolean logic gates.

- Boolean Logic Gates
 - are eventually composed of CMOS transistor.

- When we design digital circuits
 - Specification

- Representations of Boolean Functions
 - The Below shows seven representations of the same functions F(a,b) using four different methods.

- Four methods for representing boolean functions
 - English Sentences
 - Too verbose for numerous inputs
 - Truth tables
 - Too big for numerous inputs
 - Drawing circuits with logic gates
 - Too complex for numerous inputs
 - Boolean equations
 - precise and explicit representation even though numerous inputs.

- Boolean equations
 - It can be represented using boolean variables and operators.
 - Examples of boolean equations
 - 0, 1, boolean variable itself (x₁, x₂, ..., x_n)
 - If E₁ and E₂ are Boolean equations,
 then E₁', E₁ · E₂ and E₁ + E₂ are also Boolean equations.