organic compounds

Acta Crystallographica Section E

Structure Reports

Online

ISSN 1600-5368

5-Chloro-5"-[4-(dimethylamino)benzylidene]-4'-[4-(dimethylamino)phenyl]-1',1"-dimethyldispiro[indoline-3,2'-pyrrolidine-3',3"-piperidine]-2,4"-dione

I. S. Ahmed Farag, ** Adel S. Girgis, ** A. A. Ramadan, ** A. M. Moustafa ** and Edward R. T. Tiekink **

^aSolid State Department, Physics Division, National Research Centre, Dokki, Giza, Egypt, ^bPesticide Chemistry Department, National Research Centre, Dokki, Giza 12622, Egypt, ^cPhysics Department, Faculty of Science, Helwan University, Helwan, Cairo, Egypt, and ^dDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia

Correspondence e-mail: edward.tiekink@gmail.com

Received 9 December 2013; accepted 13 December 2013

Key indicators: single-crystal X-ray study; T = 293 K; mean $\sigma(C-C) = 0.005$ Å; R factor = 0.061; wR factor = 0.165; data-to-parameter ratio = 18.5.

The title compound, $C_{34}H_{38}CIN_5O_2$, has spiro links connecting the pyrrolidine ring and indole residue, as well as the piperidine and pyrrolidine rings. A half-chair conformation is found for the piperidine ring with the C atom connected to the spiro-C atom lying 0.738 (4) Å out of the plane of the remaining five atoms (r.m.s. deviation = 0.0407 Å). The methylene C atom is the flap in the envelope conformation for the pyrrolidine ring. In the crystal, supramolecular chains are sustained by alternating eight-membered $\{\cdots HNCO\}_2$ and 14-membered $\{\cdots HC_5O\}_2$ synthons. Chains are connected into a three-dimensional network by (pyrrolidine-bound phenylmethyl)C— $H\cdots\pi$ (pyrrolidine-bound phenyl) edge-to-face interactions.

Related literature

For the biological activity of related spiro pyrrolidine analogues, see: Girgis *et al.* (2012); Kumar *et al.* (2008). For related structural studies, see: Ahmed Farag *et al.* (2013*a,b*). For the synthesis of the precursor molecule, see: Al-Omary *et al.* (2012).

Experimental

Crystal data

$C_{34}H_{38}CIN_5O_2$	$\gamma = 83.467 (2)^{\circ}$
$M_r = 584.14$	$V = 1582.29 (13) \text{ Å}^3$
Triclinic, $P\overline{1}$	Z = 2
a = 11.5458 (5) Å	Mo $K\alpha$ radiation
b = 12.2357 (5) Å	$\mu = 0.16 \text{ mm}^{-1}$
c = 12.5267 (7) Å	T = 293 K
$\alpha = 64.341 \ (2)^{\circ}$	$0.31 \times 0.18 \times 0.13 \text{ mm}$
$\beta = 84.286 \ (2)^{\circ}$	

Data collection

Enraf-Nonius 590 KappaCCD diffractometer
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)
T_{min} = 0.782, T_{max} = 0.927

13814 measured reflections 7127 independent reflections 2244 reflections with $I > 2\sigma(I)$ $R_{\rm int} = 0.081$

Refinement

 $\begin{array}{ll} R[F^2 > 2\sigma(F^2)] = 0.061 & 385 \ {\rm parameters} \\ wR(F^2) = 0.165 & {\rm H-atom\ parameters\ constrained} \\ S = 0.91 & \Delta\rho_{\rm max} = 0.15\ {\rm e\ \mathring{A}^{-3}} \\ 7127\ {\rm reflections} & \Delta\rho_{\rm min} = -0.20\ {\rm e\ \mathring{A}^{-3}} \end{array}$

Table 1 Hydrogen-bond geometry (Å, °).

Cg1 is the centroid of the C27-C32 ring.

D $ H$ $\cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdot \cdot \cdot A$	D-H	$\cdots A$
$N4-H4n\cdots O2^{i}$	0.86	2.00	2.853 (4)	169	
C28−H28···O1 ⁱⁱ	0.93	2.47	3.337 (4)	156	
$C33-H33c\cdots Cg1^{iii}$	0.96	2.88	3.807 (5)	163	
Symmetry codes: (i) $-x + 1, -y, -z + 2.$	-x, -y + 1	, -z + 2; (ii)	-x + 1, -y + 1	, -z + 1;	(iii)

Data collection: *COLLECT* (Hooft, 1998); cell refinement: *DENZO* (Otwinowski & Minor, 1997) and *COLLECT*; data reduction: *DENZO* and *COLLECT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *ORTEP-3 for Windows* (Farrugia, 2012), *DIAMOND* (Brandenburg, 2006) and *Qmol* (Gans & Shalloway, 2001); software used to prepare material for publication: *publiCIF* (Westrip, 2010).

This study was supported financially by the Science and Technology Development Fund (STDF), Egypt (grant No. 1133).

Me₂N NH

[‡] Additional correspondence author, e-mail: ibfarag2002@yahoo.com.

organic compounds

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HG5368).

References

- Ahmed Farag, I. S., Girgis, A. S., Ramadan, A. A., Moustafa, A. M. & Tiekink, E. R. T. (2013a). *Acta Cryst.* E**70**, o22–o23.
- Ahmed Farag, I. S., Girgis, A. S., Ramadan, A. A., Moustafa, A. M. & Tiekink, E. R. T. (2013b). *Acta Cryst.* E**70**, o43-o44.
- Al-Omary, F. A. M., Hassan, G. S., El-Messery, S. M. & El-Subbagh, H. I. (2012). Eur. J. Med. Chem. 47, 65–72.
- Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.

- Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.
- Gans, J. & Shalloway, D. (2001). J. Mol. Graph. Model. 19, 557-559.
- Girgis, A. S., Tala, S. R., Oliferenko, P. V., Oliferenko, A. A. & Katritzky, A. R. (2012). Eur. J. Med. Chem. 50, 1–8.
- Hooft, R. W. W. (1998). COLLECT. Nonius BV, Delft, The Netherlands.
- Kumar, R. R., Perumal, S., Senthilkumar, P., Yoeeswair, P. & Sriram, D. (2008).
 J. Med. Chem. 51, 5731–5735.
- Otwinowski, Z. & Minor, W. (1997). *Methods in Enzymology*, Vol. 276, *Macromolecular Crystallography*, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.
- Sheldrick, G. M. (1996). University of Göttingen, Germany.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.

Acta Cryst. (2014). E70, o70–o71 Farag et al. • C₃₄H₃₈CIN₅O₂ **071**

Acta Cryst. (2014). E70, o70-o71 [doi:10.1107/S1600536813033771]

- 5-Chloro-5"-[4-(dimethylamino)benzylidene]-4'-[4-(dimethylamino)-phenyl]-1',1"-dimethyldispiro[indoline-3,2'-pyrrolidine-3',3"-piperidine]-2,4"-dione
- I. S. Ahmed Farag, Adel S. Girgis, A. A. Ramadan, A. M. Moustafa and Edward R. T. Tiekink
- 1. Introduction
- 2. Experimental

2.1. Synthesis and crystallization

A mixture of equimolar amounts of 3E,5E-1-methyl-3,5-bis(4-dimethylaminophenylmethylidene)-4-piperidones (5 mmol), prepared by a literature procedure (Al-Omary *et al.*, 2012), 5-chloroisatin and sarcosine in absolute ethanol (25 ml) was boiled under reflux (TLC monitoring). The separated solid was collected and crystallized from *n*-butanol affording (I). Reaction time 20 h. Yellow crystals. *M.*pt: 525–527 K. Yield 68%. Anal. Calcd. for $C_{34}H_{38}CIN_5O_2$ (584.17): C, 69.91; H, 6.56; N, 11.99. Found: C, 70.02; H, 6.68; N, 11.93. IR: ν_{max}/cm^{-1} : 3168 (N—H); 1692 (C=O); 1613, 1566 (C=C).

2.2. Refinement

The C-bound H atoms were geometrically placed (C—H = 0.93–0.98 Å) and refined as riding with $U_{iso}(H) = 1.2-1.5U_{eq}(C)$. The N-bound H-atom was treated similarly with N—H = 0.86 Å, and with $U_{iso}(H) = 1.2U_{eq}(N)$.

3. Results and discussion

In continuation of our biological and crystallographic studies of spiropyrrolidine derivatives derivatives (Girgis *et al.* 2012; Ahmed Farag *et al.* 2013*a*), which are known to to have biological activity (Kumar *et al.* 2008), the title compound, (I), was synthesised and characterised crystallographically.

The molecular structure of (I) is shown in Fig. 1 which shows two spiro links, *i.e.* at atom C1, linking the piperidine and pyrrolidine rings, and at atom C6 where the pyrrolidine ring and indole residue are connected. The piperidine ring carries phenylmethylidene and pyrrolidine-bound aryl residues at positions C4 and C8, respectively. An E conformation is found the C4=C11 double bond. The piperidine-N1 atom has sp^3 character as seen by the sum of the angles at this atom of 337°. A half-chair conformation is found for the piperidine ring in which the C2 atom lies 0.738 (4) Å out of the plane of the remaining five atoms (r.m.s. deviation = 0.0407 Å). With respect to the piperidine ring, both the N-bound methyl and phenylmethylidene substituents occupy equatorial positions. An envelope conformation is found for the pyrrolidine ring with the C7 being the flap atom lying 0.547 (5) Å out of the plane of the remaining four atoms which have a r.m.s. deviation of 0.0906 Å. The similarity of the molecular structures of (I) and recently described derivatives (Ahmed Farag et al. 2013a,b), at least in terms of the cores of these, is emphasised in the overlay diagram, Fig. 2.

The crystal structure of (I) features centrosymmetric eight-membered $\{\cdots HNCO\}_2$ synthons, Table 1. These are linked into supramolecular chains aligned in the (1 1 2) plane by 14-membered $\{\cdots HC_5O\}_2$ synthons, Table 1. Chains are connected into the three-dimensional architecture by (pyrrolidine-bound phenyl-methyl)C-H··· π (pyrrolidine-bound phenyl), edge-to-face, interactions, Fig. 3 and Table 1.

Computing details

Data collection: *COLLECT* (Hooft, 1998); cell refinement: *DENZO* (Otwinowski & Minor, 1997) and *COLLECT* (Hooft, 1998); data reduction: *DENZO* (Otwinowski & Minor, 1997) and *COLLECT* (Hooft, 1998); program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *ORTEP-3 for Windows* (Farrugia, 2012), *DIAMOND* (Brandenburg, 2006) and *Qmol* (Gans & Shalloway, 2001); software used to prepare material for publication: *publCIF* (Westrip, 2010).

Figure 1 The molecular structure of (I) showing the atom-labelling scheme and displacement ellipsoids at the 50% probability level.

Figure 2

Overlay diagram of the three recently determined compounds, drawn so that the central pyrrolidine rings are overlapped.

Red image (Ahmed Farag *et al.*, 2013*a*), green image (Ahmed Farag *et al.*, 2013*b*) and blue image (present study).

Figure 3

A view of the unit-cell contents in projection down the a axis in (I). The N—H···O and π — π interactions are shown as orange and purple dashed lines, respectively.

$5-Chloro-5^{\prime\prime}-[4-(dimethylamino)phenyl]-1^{\prime\prime},1^{\prime\prime}-dimethyldispiro[indoline-3,2^{\prime\prime}-pyrrolidine-3^{\prime\prime},3^{\prime\prime}-piperidine]-2^{\prime\prime}-[4-(dimethylamino)phenyl]-1^{\prime\prime},1^{\prime\prime}-dimethyldispiro[indoline-3,2^{\prime\prime}-pyrrolidine-3^{\prime\prime},3^{\prime\prime}-piperidine]-2^{\prime\prime}-[4-(dimethylamino)phenyl]-1^{\prime\prime},1^{\prime\prime}-dimethyldispiro[indoline-3,2^{\prime\prime}-pyrrolidine-3^{\prime\prime},3^{\prime\prime}-piperidine]-2^{\prime\prime}-[4-(dimethylamino)phenyl]-1^{\prime\prime},1^{\prime\prime}-dimethyldispiro[indoline-3,2^{\prime\prime}-pyrrolidine-3^{\prime\prime},3^{\prime\prime}-piperidine]-2^{\prime\prime}-[4-(dimethylamino)phenyl]-1^{\prime\prime},1^{\prime\prime}-dimethyldispiro[indoline-3,2^{\prime\prime}-pyrrolidine-3^{\prime\prime},3^{\prime\prime}-piperidine]-2^{\prime\prime}-[4-(dimethylamino)phenyl]-1^{\prime\prime},1^{\prime\prime}-dimethyldispiro[indoline-3,2^{\prime\prime}-pyrrolidine-3^{\prime\prime},3^{\prime\prime}-piperidine]-2^{\prime\prime}-[4-(dimethylamino)phenyl]-1^{\prime\prime},1^{\prime\prime}-dimethyldispiro[indoline-3,2^{\prime\prime}-pyrrolidine-3^{\prime\prime},3^{\prime\prime}-piperidine]-2^{\prime\prime}-[4-(dimethylamino)phenyl]-1^{\prime\prime},1^{\prime\prime}-dimethyldispiro[indoline-3,2^{\prime\prime}-pyrrolidine-3^{\prime\prime},3^{\prime\prime}-piperidine]-2^{\prime\prime}-[4-(dimethylamino)phenyl]-1^{\prime\prime}-[4-(dimethylamino)ph$

Crystal data	
$C_{34}H_{38}ClN_5O_2$	b = 12.2357 (5) Å
$M_r = 584.14$	c = 12.5267 (7) Å
Triclinic, $P\overline{1}$	$\alpha = 64.341 (2)^{\circ}$
Hall symbol: -P 1	$\beta = 84.286 \ (2)^{\circ}$
a = 11.5458 (5) Å	$y = 83.467 (2)^{\circ}$

$V = 1582.29 (13) \text{ Å}^3$ Z = 2	$\theta = 2.9-27.5^{\circ}$ $\mu = 0.16 \text{ mm}^{-1}$
F(000) = 620	T = 293 K
$D_{\rm x} = 1.226 \; {\rm Mg} \; {\rm m}^{-3}$	Block, orange
Mo $K\alpha$ radiation, $\lambda = 0.71073 \text{ Å}$	$0.31 \times 0.18 \times 0.13 \text{ mm}$
Cell parameters from 5831 reflections	

Data collection

Enraf-Nonius 590 KappaCCD 13814 measured reflections diffractometer 7127 independent reflections 2244 reflections with $I > 2\sigma(I)$ Radiation source: fine-focus sealed tube Graphite monochromator $R_{\rm int} = 0.081$ $\theta_{\text{max}} = 27.5^{\circ}, \ \theta_{\text{min}} = 3.1^{\circ}$ $h = -14 \rightarrow 14$ φ and ω scans Absorption correction: multi-scan $k = -15 \rightarrow 15$ (SADABS: Sheldrick, 1996) $l = -16 \rightarrow 10$ $T_{\min} = 0.782, T_{\max} = 0.927$

Refinement

Refinement on F^2 Secondary atom site location: difference Fourier Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.061$ Hydrogen site location: inferred from $wR(F^2) = 0.165$ neighbouring sites S = 0.91H-atom parameters constrained 7127 reflections $w = 1/[\sigma^2(F_0^2) + (0.055P)^2]$ 385 parameters where $P = (F_0^2 + 2F_c^2)/3$ 0 restraints $(\Delta/\sigma)_{\rm max} < 0.001$ Primary atom site location: structure-invariant $\Delta \rho_{\rm max} = 0.15 \text{ e Å}^{-3}$ direct methods $\Delta \rho_{\min} = -0.20 \text{ e Å}^{-3}$

Special details

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F^2 , conventional R-factors R are based on F, with F set to zero for negative F^2 . The threshold expression of $F^2 > 2\sigma(F^2)$ is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

	X	y	Z	$U_{ m iso}$ */ $U_{ m eq}$
Cl1	0.00842 (11)	0.90513 (9)	0.33316 (9)	0.1119 (5)
O1	0.3446 (2)	0.59561 (19)	0.5160(2)	0.0750 (8)
O2	0.1064(2)	0.4073 (2)	0.9448 (2)	0.0704 (7)
N1	0.2654(2)	0.6453 (2)	0.8157 (2)	0.0469 (7)
N2	0.1139(3)	0.4251 (3)	0.6910(2)	0.0662 (9)
N3	0.3573 (3)	1.3398 (2)	0.3237 (2)	0.0652 (8)
N4	0.0072 (3)	0.5930(3)	0.8421 (3)	0.0668 (9)
H4n	-0.0348	0.5979	0.9008	0.080*
N5	0.6847 (3)	0.0837(3)	1.0145 (3)	0.0800 (10)
C1	0.2785 (3)	0.5106(3)	0.7211 (3)	0.0504 (9)
C2	0.3223 (3)	0.5320(3)	0.8207(2)	0.0482 (9)

Acta Cryst. (2014). E70, o70-o71 sup-4

H2A	0.3038	0.4658	0.8968	0.058*
H2B	0.4063	0.5362	0.8108	0.058*
C3	0.3109(3)	0.7505 (3)	0.7153 (2)	0.0494 (9)
H3A	0.3852	0.7653	0.7346	0.059*
Н3В	0.2575	0.8215	0.7032	0.059*
C4	0.3277 (3)	0.7353 (3)	0.6021 (3)	0.0452 (8)
C5	0.3213 (3)	0.6136 (3)	0.6040 (3)	0.0507 (9)
C6	0.1383 (3)	0.5203 (3)	0.7259 (3)	0.0560 (10)
C7	0.1985 (3)	0.3228 (3)	0.7457 (3)	0.0749 (12)
H7A	0.2022	0.2669	0.7090	0.090*
H7B	0.1794	0.2792	0.8300	0.090*
C8	0.3149 (3)	0.3828 (3)	0.7230 (3)	0.0613 (10)
Н8	0.3435	0.3973	0.6420	0.074*
C9	0.2653 (3)	0.6588 (3)	0.9254(3)	0.0725 (11)
H9A	0.2272	0.5934	0.9884	0.109*
H9B	0.2244	0.7350	0.9160	0.109*
Н9С	0.3443	0.6570	0.9443	0.109*
C10	-0.0077 (4)	0.3941 (3)	0.7112 (4)	0.1041 (15)
H10A	-0.0166	0.3365	0.6800	0.156*
H10B	-0.0579	0.4663	0.6721	0.156*
H10C	-0.0283	0.3590	0.7948	0.156*
C11	0.3454 (2)	0.8291 (3)	0.4941 (3)	0.0490 (9)
H11	0.3555	0.8061	0.4318	0.059*
C12	0.3515 (3)	0.9578 (3)	0.4575 (3)	0.0474 (9)
C13	0.3543 (3)	1.0342 (3)	0.3361 (3)	0.0551 (9)
H13	0.3540	0.9997	0.2830	0.066*
C14	0.3575 (3)	1.1582 (3)	0.2919 (3)	0.0561 (10)
H14	0.3596	1.2047	0.2102	0.067*
C15	0.3576 (3)	1.2159 (3)	0.3670(3)	0.0500 (9)
C16	0.3594 (3)	1.1397 (3)	0.4884 (3)	0.0530 (9)
H16	0.3623	1.1737	0.5415	0.064*
C17	0.3571 (3)	1.0161 (3)	0.5311 (3)	0.0543 (10)
H17	0.3593	0.9690	0.6125	0.065*
C18	0.3406 (3)	1.3962 (3)	0.4056 (3)	0.0846 (13)
H18A	0.2661	1.3786	0.4480	0.127*
H18B	0.3435	1.4826	0.3621	0.127*
H18C	0.4013	1.3646	0.4607	0.127*
C19	0.3349 (3)	1.4166 (3)	0.2012 (3)	0.0779 (12)
H19A	0.3928	1.3961	0.1509	0.117*
H19B	0.3382	1.5002	0.1859	0.117*
H19C	0.2588	1.4047	0.1852	0.117*
C20	0.0856 (3)	0.4990 (4)	0.8513 (3)	0.0599 (10)
C21	0.0032 (3)	0.6814 (3)	0.7249 (3)	0.0568 (10)
C22	-0.0627 (3)	0.7898 (4)	0.6808 (4)	0.0724 (11)
H22	-0.1086	0.8163	0.7316	0.087*
C23	-0.0601 (3)	0.8595 (4)	0.5598 (4)	0.0775 (12)
H23	-0.1035	0.9342	0.5283	0.0773 (12)
C24	0.0067 (4)	0.8180 (3)	0.4863 (3)	0.0696 (11)
C25	0.0755 (3)	0.7089 (3)	0.5291 (3)	0.0667 (11)
023	0.0755 (5)	0.7007 (3)	0.5271 (5)	0.000/(11)

H25	0.1204	0.6821	0.4780	0.080*
C26	0.0748 (3)	0.6413 (3)	0.6511 (3)	0.0545 (9)
C27	0.4107 (4)	0.3056 (3)	0.8031 (3)	0.0573 (10)
C28	0.5228 (4)	0.2936 (3)	0.7547 (3)	0.0693 (11)
H28	0.5377	0.3369	0.6735	0.083*
C29	0.6123 (4)	0.2206 (3)	0.8222 (4)	0.0689 (11)
H29	0.6851	0.2146	0.7852	0.083*
C30	0.5965 (4)	0.1550(3)	0.9452 (4)	0.0645 (11)
C31	0.4844 (4)	0.1671 (3)	0.9943 (3)	0.0681 (11)
H31	0.4694	0.1245	1.0756	0.082*
C32	0.3959 (3)	0.2404 (3)	0.9255 (3)	0.0669 (11)
H32	0.3231	0.2467	0.9623	0.080*
C33	0.6631 (4)	0.0129 (3)	1.1413 (4)	0.0925 (13)
H33A	0.6249	0.0649	1.1757	0.139*
H33B	0.7360	-0.0223	1.1773	0.139*
H33C	0.6142	-0.0506	1.1545	0.139*
C34	0.7943 (4)	0.0575 (4)	0.9629 (4)	0.1278 (18)
H34A	0.7817	0.0180	0.9139	0.192*
H34B	0.8444	0.0049	1.0247	0.192*
H34C	0.8301	0.1318	0.9155	0.192*

Atomic displacement parameters (\mathring{A}^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
C11	0.1734 (13)	0.0715 (7)	0.0785 (8)	-0.0019 (7)	-0.0476 (8)	-0.0139 (6)
O1	0.128(2)	0.0533 (14)	0.0436 (15)	-0.0158 (14)	0.0206 (15)	-0.0242 (12)
O2	0.0789 (19)	0.0616 (16)	0.0541 (16)	-0.0088 (14)	0.0129 (14)	-0.0119 (13)
N1	0.067(2)	0.0403 (16)	0.0340 (16)	-0.0073 (14)	0.0040 (14)	-0.0171 (13)
N2	0.084(2)	0.0508 (19)	0.070(2)	-0.0043(19)	-0.0158 (18)	-0.0298 (16)
N3	0.098(2)	0.0430 (18)	0.0476 (19)	-0.0053(16)	-0.0090(17)	-0.0116 (16)
N4	0.065(2)	0.065(2)	0.063(2)	-0.0093 (18)	0.0162 (17)	-0.0227 (18)
N5	0.086(3)	0.078(2)	0.075(3)	0.005(2)	-0.002(2)	-0.035(2)
C1	0.070(3)	0.041(2)	0.039(2)	-0.0017(18)	0.0080 (19)	-0.0191 (16)
C2	0.062(2)	0.041(2)	0.038(2)	-0.0047(17)	0.0013 (17)	-0.0141 (16)
C3	0.061(2)	0.0426 (19)	0.041(2)	-0.0002(17)	-0.0038(17)	-0.0146 (16)
C4	0.054(2)	0.045(2)	0.039(2)	-0.0054(17)	0.0056 (17)	-0.0213 (17)
C5	0.064(2)	0.046(2)	0.040(2)	-0.0014(18)	0.0042 (19)	-0.0183 (18)
C6	0.071(3)	0.050(2)	0.052(2)	-0.010(2)	0.000(2)	-0.0258 (19)
C7	0.108(3)	0.054(2)	0.071(3)	-0.011(3)	-0.009(2)	-0.032 (2)
C8	0.089(3)	0.051(2)	0.045(2)	0.001(2)	0.006(2)	-0.0245 (18)
C9	0.118 (3)	0.058(2)	0.042(2)	-0.017(2)	0.008(2)	-0.0220 (19)
C10	0.102 (4)	0.086(3)	0.140(4)	-0.029(3)	-0.031(3)	-0.053 (3)
C11	0.055(2)	0.049(2)	0.041(2)	-0.0022(18)	0.0066 (17)	-0.0208 (17)
C12	0.053(2)	0.045(2)	0.041(2)	-0.0061(17)	0.0014 (17)	-0.0155 (18)
C13	0.071(3)	0.054(2)	0.042(2)	-0.0079(19)	0.0039 (18)	-0.0218 (18)
C14	0.068 (3)	0.055(2)	0.035(2)	-0.0096 (19)	0.0049 (18)	-0.0099 (18)
C15	0.056(2)	0.046(2)	0.045 (2)	-0.0046 (18)	-0.0027 (18)	-0.0161 (19)
C16	0.067(3)	0.048 (2)	0.042(2)	-0.0052 (19)	-0.0084 (18)	-0.0173 (18)
C17	0.066 (3)	0.049(2)	0.042(2)	-0.0083 (19)	-0.0037 (18)	-0.0116 (18)
C18	0.123 (4)	0.053(2)	0.076(3)	-0.010(2)	0.002 (3)	-0.027(2)

C19	0.100(3)	0.045(2)	0.069(3)	-0.010(2)	-0.015 (2)	-0.003 (2)
C20	0.063(3)	0.058(3)	0.059(3)	-0.015 (2)	0.006(2)	-0.025(2)
C21	0.052(3)	0.053(2)	0.065(3)	-0.007(2)	-0.002(2)	-0.023 (2)
C22	0.060(3)	0.070(3)	0.088(3)	0.000(2)	0.000(2)	-0.037(3)
C23	0.070(3)	0.065(3)	0.097 (4)	0.001(2)	-0.024(3)	-0.031(3)
C24	0.087(3)	0.050(3)	0.068(3)	-0.009(2)	-0.022(3)	-0.017(2)
C25	0.085(3)	0.060(3)	0.060(3)	-0.010(2)	-0.015(2)	-0.026 (2)
C26	0.063(3)	0.047(2)	0.055(3)	-0.0063 (19)	-0.006(2)	-0.021 (2)
C27	0.083(3)	0.041(2)	0.041(2)	0.005(2)	0.007(2)	-0.0154(18)
C28	0.096(3)	0.051(2)	0.052(3)	-0.011(2)	0.020(3)	-0.017(2)
C29	0.075 (3)	0.066(3)	0.064(3)	-0.005(2)	0.014(2)	-0.030(2)
C30	0.081(3)	0.047(2)	0.066(3)	0.006(2)	-0.007(3)	-0.026(2)
C31	0.094(3)	0.052(2)	0.048 (3)	0.010(2)	0.004(3)	-0.017(2)
C32	0.087(3)	0.058(2)	0.047 (3)	0.002(2)	0.019(2)	-0.021 (2)
C33	0.122 (4)	0.071(3)	0.085(3)	0.016(3)	-0.029(3)	-0.035 (3)
C34	0.095 (4)	0.143 (5)	0.135 (5)	0.033(3)	-0.008(4)	-0.060(4)

Geometric parameters (Å, °)

C11—C24	1.744 (4)	C11—H11	0.9300
O1—C5	1.214 (3)	C12—C13	1.398 (4)
O2—C20	1.244 (4)	C12—C17	1.397 (4)
N1—C2	1.444 (4)	C13—C14	1.375 (4)
N1—C9	1.453 (4)	C13—H13	0.9300
N1—C3	1.461 (3)	C14—C15	1.400 (4)
N2—C7	1.450 (4)	C14—H14	0.9300
N2—C10	1.465 (4)	C15—C16	1.399 (4)
N2—C6	1.472 (4)	C16—C17	1.371 (4)
N3—C15	1.370 (4)	C16—H16	0.9300
N3—C19	1.442 (4)	C17—H17	0.9300
N3—C18	1.452 (4)	C18—H18A	0.9600
N4—C20	1.350 (4)	C18—H18B	0.9600
N4—C21	1.398 (4)	C18—H18C	0.9600
N4—H4n	0.8600	C19—H19A	0.9600
N5—C30	1.368 (4)	C19—H19B	0.9600
N5—C34	1.430 (5)	C19—H19C	0.9600
N5—C33	1.453 (4)	C21—C22	1.365 (5)
C1—C2	1.523 (4)	C21—C26	1.388 (4)
C1—C5	1.542 (4)	C22—C23	1.379 (5)
C1—C8	1.563 (4)	C22—H22	0.9300
C1—C6	1.606 (4)	C23—C24	1.369 (5)
C2—H2A	0.9700	C23—H23	0.9300
C2—H2B	0.9700	C24—C25	1.387 (5)
C3—C4	1.499 (4)	C25—C26	1.387 (4)
С3—Н3А	0.9700	C25—H25	0.9300
С3—Н3В	0.9700	C27—C32	1.392 (4)
C4—C11	1.358 (4)	C27—C28	1.393 (4)
C4—C5	1.490 (4)	C28—C29	1.375 (5)
C6—C26	1.515 (4)	C28—H28	0.9300
C6—C20	1.549 (4)	C29—C30	1.399 (5)

C7—C8	1.547 (4)	C29—H29	0.9300
C7—H7A	0.9700	C30—C31	1.397 (5)
C7—H7B	0.9700	C31—C32	1.375 (4)
C8—C27	1.512 (4)	C31—H31	0.9300
C8—H8	0.9800	C32—H32	0.9300
C9—H9A	0.9600	C33—H33A	0.9600
C9—H9B	0.9600	C33—H33B	0.9600
C9—H9C	0.9600	C33—H33C	0.9600
C10—H10A	0.9600	C34—H34A	0.9600
C10—H10B	0.9600	C34—H34B	0.9600
C10—H10C	0.9600	C34—H34C	0.9600
C11—C12	1.446 (4)		
C2—N1—C9	114.3 (3)	C12—C13—H13	118.6
C2—N1—C3	112.1 (2)	C13—C14—C15	121.5 (3)
C9—N1—C3	110.9 (2)	C13—C14—H14	119.2
C7—N2—C10	114.6 (3)	C15—C14—H14	119.2
C7—N2—C6	107.0 (3)	N3—C15—C16	122.1 (3)
C10—N2—C6	115.4 (3)	N3—C15—C14	121.8 (3)
C15—N3—C19	120.4 (3)	C16—C15—C14	116.1 (3)
C15—N3—C18	119.4 (3)	C17—C16—C15	121.7 (3)
C19—N3—C18	117.1 (3)	C17—C16—H16	119.2
C20—N4—C21	111.3 (3)	C15—C16—H16	119.2
C20—N4—H4n	124.4	C16—C17—C12	122.8 (3)
C21—N4—H4n	124.4	C16—C17—H17	118.6
C30—N5—C34	121.1 (4)	C12—C17—H17	118.6
C30—N5—C33	120.8 (4)	N3—C18—H18A	109.5
C34—N5—C33	116.9 (4)	N3—C18—H18B	109.5
C2—C1—C5	106.3 (2)	H18A—C18—H18B	109.5
C2—C1—C3 C2—C1—C8	115.7 (3)	N3—C18—H18C	109.5
		H18A—C18—H18C	
C5—C1—C8	111.4 (3)		109.5
C2—C1—C6	111.1 (3)	H18B—C18—H18C	109.5
C5—C1—C6	108.0 (3)	N3—C19—H19A	109.5
C8—C1—C6	104.1 (2)	N3—C19—H19B	109.5
N1—C2—C1	107.8 (3)	H19A—C19—H19B	109.5
N1—C2—H2A	110.2	N3—C19—H19C	109.5
C1—C2—H2A	110.2	H19A—C19—H19C	109.5
N1—C2—H2B	110.2	H19B—C19—H19C	109.5
C1—C2—H2B	110.2	O2—C20—N4	125.1 (3)
H2A—C2—H2B	108.5	O2—C20—C6	125.9 (4)
N1—C3—C4	113.6 (2)	N4—C20—C6	108.9 (3)
N1—C3—H3A	108.9	C22—C21—C26	121.5 (4)
C4—C3—H3A	108.9	C22—C21—N4	128.7 (4)
N1—C3—H3B	108.9	C26—C21—N4	109.7 (3)
C4—C3—H3B	108.9	C21—C22—C23	119.1 (4)
H3A—C3—H3B	107.7	C21—C22—H22	120.4
C11—C4—C5	116.6 (3)	C23—C22—H22	120.4
C11—C4—C3	123.2 (3)	C24—C23—C22	119.6 (4)
C5—C4—C3	120.1 (2)	C24—C23—H23	120.2

O1—C5—C4 121.9 (3) C22—C23—H23 120.2 O1—C5—C1 120.2 (3) C23—C24—C25 122.3 (4) C4—C5—C1 117.8 (3) C23—C24—C11 119.6 (4) N2—C6—C26 111.2 (3) C25—C24—C11 118.1 (4) N2—C6—C20 112.8 (3) C26—C25—C24 117.6 (4) C26—C6—C20 100.7 (3) C26—C25—H25 121.2 N2—C6—C1 102.7 (3) C24—C25—H25 121.2 C26—C6—C1 118.5 (3) C25—C26—C21 119.8 (4) C20—C6—C1 111.4 (3) C25—C26—C6 131.0 (4) N2—C7—C8 103.5 (3) C21—C26—C6 109.1 (3) N2—C7—H7A 111.1 C32—C27—C28 115.3 (4) C8—C7—H7B 111.1 C28—C27—C8 124.8 (4) N2—C7—H7B 111.1 C29—C28—C27 122.7 (3)
C4—C5—C1 117.8 (3) C23—C24—C11 119.6 (4) N2—C6—C26 111.2 (3) C25—C24—C11 118.1 (4) N2—C6—C20 112.8 (3) C26—C25—C24 117.6 (4) C26—C6—C20 100.7 (3) C26—C25—H25 121.2 N2—C6—C1 102.7 (3) C24—C25—H25 121.2 C26—C6—C1 118.5 (3) C25—C26—C21 119.8 (4) C20—C6—C1 111.4 (3) C25—C26—C6 131.0 (4) N2—C7—C8 103.5 (3) C21—C26—C6 109.1 (3) N2—C7—H7A 111.1 C32—C27—C28 115.3 (4) C8—C7—H7A 111.1 C32—C27—C8 124.8 (4) N2—C7—H7B 111.1 C28—C27—C8 120.0 (3) C8—C7—H7B 111.1 C29—C28—C27 122.7 (3)
N2—C6—C26 111.2 (3) C25—C24—C11 118.1 (4) N2—C6—C20 112.8 (3) C26—C25—C24 117.6 (4) C26—C6—C20 100.7 (3) C26—C25—H25 121.2 N2—C6—C1 102.7 (3) C24—C25—H25 121.2 C26—C6—C1 118.5 (3) C25—C26—C21 119.8 (4) C20—C6—C1 111.4 (3) C25—C26—C6 131.0 (4) N2—C7—C8 103.5 (3) C21—C26—C6 109.1 (3) N2—C7—H7A 111.1 C32—C27—C28 115.3 (4) C8—C7—H7A 111.1 C32—C27—C8 124.8 (4) N2—C7—H7B 111.1 C28—C27—C8 120.0 (3) C8—C7—H7B 111.1 C29—C28—C27 122.7 (3)
N2—C6—C20 112.8 (3) C26—C25—C24 117.6 (4) C26—C6—C20 100.7 (3) C26—C25—H25 121.2 N2—C6—C1 102.7 (3) C24—C25—H25 121.2 C26—C6—C1 118.5 (3) C25—C26—C21 119.8 (4) C20—C6—C1 111.4 (3) C25—C26—C6 131.0 (4) N2—C7—C8 103.5 (3) C21—C26—C6 109.1 (3) N2—C7—H7A 111.1 C32—C27—C28 115.3 (4) C8—C7—H7A 111.1 C32—C27—C8 124.8 (4) N2—C7—H7B 111.1 C28—C27—C8 120.0 (3) C8—C7—H7B 111.1 C29—C28—C27 122.7 (3)
C26—C6—C20 100.7 (3) C26—C25—H25 121.2 N2—C6—C1 102.7 (3) C24—C25—H25 121.2 C26—C6—C1 118.5 (3) C25—C26—C21 119.8 (4) C20—C6—C1 111.4 (3) C25—C26—C6 131.0 (4) N2—C7—C8 103.5 (3) C21—C26—C6 109.1 (3) N2—C7—H7A 111.1 C32—C27—C28 115.3 (4) C8—C7—H7A 111.1 C32—C27—C8 124.8 (4) N2—C7—H7B 111.1 C28—C27—C8 120.0 (3) C8—C7—H7B 111.1 C29—C28—C27 122.7 (3)
N2—C6—C1 102.7 (3) C24—C25—H25 121.2 C26—C6—C1 118.5 (3) C25—C26—C21 119.8 (4) C20—C6—C1 111.4 (3) C25—C26—C6 131.0 (4) N2—C7—C8 103.5 (3) C21—C26—C6 109.1 (3) N2—C7—H7A 111.1 C32—C27—C28 115.3 (4) C8—C7—H7A 111.1 C32—C27—C8 124.8 (4) N2—C7—H7B 111.1 C28—C27—C8 120.0 (3) C8—C7—H7B 111.1 C29—C28—C27 122.7 (3)
C26—C6—C1 118.5 (3) C25—C26—C21 119.8 (4) C20—C6—C1 111.4 (3) C25—C26—C6 131.0 (4) N2—C7—C8 103.5 (3) C21—C26—C6 109.1 (3) N2—C7—H7A 111.1 C32—C27—C28 115.3 (4) C8—C7—H7A 111.1 C32—C27—C8 124.8 (4) N2—C7—H7B 111.1 C28—C27—C8 120.0 (3) C8—C7—H7B 111.1 C29—C28—C27 122.7 (3)
C20—C6—C1 111.4 (3) C25—C26—C6 131.0 (4) N2—C7—C8 103.5 (3) C21—C26—C6 109.1 (3) N2—C7—H7A 111.1 C32—C27—C28 115.3 (4) C8—C7—H7A 111.1 C32—C27—C8 124.8 (4) N2—C7—H7B 111.1 C28—C27—C8 120.0 (3) C8—C7—H7B 111.1 C29—C28—C27 122.7 (3)
N2—C7—C8 103.5 (3) C21—C26—C6 109.1 (3) N2—C7—H7A 111.1 C32—C27—C28 115.3 (4) C8—C7—H7A 111.1 C32—C27—C8 124.8 (4) N2—C7—H7B 111.1 C28—C27—C8 120.0 (3) C8—C7—H7B 111.1 C29—C28—C27 122.7 (3)
N2—C7—H7A 111.1 C32—C27—C28 115.3 (4) C8—C7—H7A 111.1 C32—C27—C8 124.8 (4) N2—C7—H7B 111.1 C28—C27—C8 120.0 (3) C8—C7—H7B 111.1 C29—C28—C27 122.7 (3)
C8—C7—H7A 111.1 C32—C27—C8 124.8 (4) N2—C7—H7B 111.1 C28—C27—C8 120.0 (3) C8—C7—H7B 111.1 C29—C28—C27 122.7 (3)
N2—C7—H7B 111.1 C28—C27—C8 120.0 (3) C8—C7—H7B 111.1 C29—C28—C27 122.7 (3)
C8—C7—H7B 111.1 C29—C28—C27 122.7 (3)
H7A—C7—H7B 109.0 C29—C28—H28 118.6
C27—C8—C7 115.2 (3) C27—C28—H28 118.6
C27—C8—C1 117.2 (3) C28—C29—C30 121.6 (4)
C7—C8—C1 104.4 (3) C28—C29—H29 119.2
C27—C8—H8 106.4 C30—C29—H29 119.2
C7—C8—H8 106.4 N5—C30—C31 121.3 (4)
C1—C8—H8 106.4 N5—C30—C29 122.7 (4)
N1—C9—H9A 109.5 C31—C30—C29 116.0 (4)
N1—C9—H9B 109.5 C32—C31—C30 121.6 (4)
H9A—C9—H9B 109.5 C32—C31—H31 119.2
N1—C9—H9C 109.5 C30—C31—H31 119.2
H9A—C9—H9C 109.5 C31—C32—C27 122.8 (4)
H9B—C9—H9C 109.5 C31—C32—H32 118.6
N2—C10—H10A 109.5 C27—C32—H32 118.6
N2—C10—H10B 109.5 N5—C33—H33A 109.5
H10A—C10—H10B 109.5 N5—C33—H33B 109.5
N2—C10—H10C 109.5 H33A—C33—H33B 109.5
H10A—C10—H10C 109.5 N5—C33—H33C 109.5
H10B—C10—H10C 109.5 H33A—C33—H33C 109.5
C4—C11—C12 132.2 (3) H33B—C33—H33C 109.5
C4—C11—H11 113.9 N5—C34—H34A 109.5
C12—C11—H11 113.9 N5—C34—H34B 109.5
C13—C12—C17
C13—C12—C11 118.0 (3) N5—C34—H34C 109.5
C17—C12—C11 126.9 (3) H34A—C34—H34C 109.5
C14—C13—C12
C14—C13—H13 118.6

Hydrogen-bond geometry (Å, o)

Cg1 is the centroid of the C27–C32 ring.

<i>D</i> —H··· <i>A</i>	<i>D</i> —H	$H\cdots A$	D··· A	<i>D</i> —H··· <i>A</i>
$\overline{\text{N4}}$ — $\overline{\text{H4}}n\cdots\text{O2}^{\text{i}}$	0.86	2.00	2.853 (4)	169

C28—H28···O1 ⁱⁱ	0.93	2.47	3.337 (4)	156
C33—H33c··· <i>Cg</i> 1 ⁱⁱⁱ	0.96	2.88	3.807 (5)	163

Symmetry codes: (i) -x, -y+1, -z+2; (ii) -x+1, -y+1, -z+1; (iii) -x+1, -y, -z+2.

Acta Cryst. (2014). E70, o70–o71 sup-10