Classification Assignment

problem Statement:

The task is to develop a predictive model to identify the presence of Chronic Kidney Disease (CKD) based on a set of medical parameters. The goal is to help the hospital management by accurately predicting CKD using the provided dataset.

Basics details of the dataset:

It contains 399 rows and 25 cols.

indep=dataset[['age','bp','al','su','bgr','bu','sc','sc','sod','pot','hrmo','pc_normal','pcc_present','ba_presen
t','htn_yes','dm_yes','cad_yes','appet_yes','pe_yes','ane_yes']]

dep=dataset['classification_yes']

These are the input and output.

Developed a good model:

I worked on Logistic regression classification, SVM classification, Dc and random forest classification. Here Logistic regression classification gives us the best accuracy and best performance. So, after working on various algorithm I decided that Logistic regression classification gives me good result. It gives a accuracy of 0.98. So, it's a good model.

All the researched values of algorithm are documented here.

worked on svm model

Worked on random forest classification

Worked on dc

worked on logistic regression classification

Final model

Model	Accuracy	Precision (False)	Precision (True)	Recall (False)	Recall (True)	F1-score (False)	F1-score (True)
Random Forest	1.00	1.00	1.00	1.00	1.00	1.00	1.00
SVM	0.97	0.93	1.00	1.00	0.95	0.96	0.97
Decision Tree	0.83	0.82	0.84	0.88	0.83	0.85	0.83
Logistic Regression	<mark>0.98</mark>	0.84	1.00	1.00	0.88	0.91	0.93

Logistic Regression achieved the highest overall accuracy of 0.98, indicating strong performance in classifying the target variable. logistic regression is recommended as the best model for this particular problem.