Revisão de GLC e Analisadores Descendentes

Marcelo Johann

Conteúdo da aula

- 1. Exemplos de Gramáticas
- Propriedades: Ambíguas, sem ciclos, ε-livres, fatoradas à esquerda, recursivas à esquerda, simplificadas
- 3. Transformações: Eliminação de produções vazias, de recursividade à esquerda (direta, indireta), fatoração
- 4. Analisadores Descendentes
- Recursivos com Retrocesso
- · Recursivos Preditivos
- Conjunto FIRST e Implementação

INF01033 - Compiladores B - Marcelo Johann - 2012/1

Aula 07 · Slida

Exemplos

Gramática para Comandos

cmd \rightarrow if expr then cmd else cmd | print expr \rightarrow (bool) | expr && expr | expr || expr bool \rightarrow true | false

INF01033 - Compiladores B - Marcelo Johann - 2012/1

Aula 07 : Slic

Exemplos

Gramática para Expressões

INF01033 - Compiladores B - Marcelo Johann - 2012/1

Aula 07 : Slide 4

Exemplos

Gramática para Listas

$$S \rightarrow a \mid "[" L "]"$$

 $L \rightarrow S ";" L \mid S$

NF01033 - Compiladores B - Marcelo Johann - 2012

Aula 07 : Slide 5

Ressaltando

- Convenções
 - Símbolos que representam terminais em minúsculos:
 - u, v, x, y, ...
 - Símbolos que representam não-terminais em maiúsculos:
 - X, Y, TERM, S,...
 - Símbolos que representam formas sentenciais (seqüências de terminais e não-terminais): letras gregas ou sublinhadas:
 - α, β, ω, <u>w</u>, <u>z</u>
- Outras...

NF01033 - Compiladores B - Marcelo Johann - 2012/1

Derivações

· Derivação em um passo

$$A \Rightarrow xy$$

Derivação em múltiplos passos
 Se A ⇒ w₂ ⇒ w₃ ... ⇒ w_n dizemos que
 A ⇒* w_n

INF01033 - Compiladores B - Marcelo Johann - 2012/1

Auto 07 · Slide

Tipos e Características

- · Gramáticas Ambíguas
- · Gramáticas sem ciclos
- Gramáticas ε-livres
- · Gramáticas fatoradas à esquerda
- · Gramáticas recursivas à esquerda
- · Gramáticas simplificadas

INF01033 - Compiladores B - Marcelo Johann - 2012/1

Aula 07 - Slida 9

Gramática Ambígua

- Gramática sem ciclos:
 - Uma gramática sem ciclos é uma GLC que não possui derivações da forma

 $A \Rightarrow^+ A$ para algum $A \subseteq N$

- Gramática ε-livre :
 - GLC que não possui produções vazias do tipo

 $A \rightarrow \epsilon$

exceto a produção $S \rightarrow \epsilon$ (S é o símbolo inicial).

INF01033 - Compiladores B - Marcelo Johann - 2012/1

Aula 07 : Slide 1

Gramática fatorada à esquerda

- GLC que **não** possui produções do tipo A $ightarrow \alpha \beta_1 | \alpha \beta_2$ para alguma forma sentencial α .
- Gramática recursiva à esquerda:
 - GLC que permite a derivação

 $A \Rightarrow^{+} A\alpha$ para algum $A \subseteq N$

O não terminal A deriva ele mesmo, de forma direta ou indireta, como símbolo mais à esquerda de uma subpalavra gerada.

INF01033 - Compiladores B - Marcelo Johann - 2012/1

Aula 07 : Slide 11

Transformações de GLCs

- (A) Eliminação de produções vazias
- (B) Eliminação de recursividade à esquerda:
 - recursão direta
 - recursão indireta
- (C) Fatoração de uma gramática

NF01033 - Compiladores B - Marcelo Johann - 2012/1

Eliminação de Produções Vazias

- · Objetivo:
 - eliminar produções da forma $A \rightarrow \epsilon$.
- · Algoritmo: seja G = (N,T,P,S) uma GLC
 - Etapa 1:
 - construir N_{ϵ} , o conjunto de não-terminais que geram a palavra vazia:

 $N_{\epsilon} = \{A \mid A \rightarrow \epsilon \}; \# \text{\'e um conjunto de símbolos}$ Repita

 $\underset{N_{\epsilon}}{N_{\epsilon}} = \underset{N_{\epsilon}}{N_{\epsilon}} \cup \{X \mid X \rightarrow X_{1}...X_{n} \in P \text{ tq } X_{1,...,}X_{n} \in$

Até que o cardinal de N_ε não aumente.

INF01033 - Compiladores B - Marcelo Johann - 2012/1

Aula 07 · Slide

Eliminação de Produções Vazias

- Etapa 2:

construir o conjunto de produções sem produções vazias:

gera $G_1 = (N,T,P_1,S)$, onde P_1 é construído como segue:

 $P_1 = \{A \rightarrow \alpha \mid \alpha \neq \epsilon\};$

Repita

Para toda produção A ightharpoonup $\alpha \in P_1$ e X \in N $_{\epsilon}$ tal que $\alpha = \alpha_1 X \alpha_2$ e $\alpha_1 \alpha_2 \neq \epsilon$

Faça $P_1 = P_1 \cup \{A \rightarrow \alpha_1 \alpha_2\}$

Até que o cardinal de P₁ não aumente

Aula 07 : Slida 14

Eliminação de Produções Vazias

- Etapa 3:
 - incluir a geração da palavra vazia, se necessário:
 - Se a palavra vazia pertence à linguagem, então a gramática resultante é

$$G_2 = (N,T,P_2,S)$$
, onde $P_2 = P_1 \cup \{S \rightarrow \epsilon\}$

INF01033 - Compiladores B - Marcelo Johann - 2012/1

Aula 07 : Slide

(B) Eliminação de recursividade à esquerda

• Exemplo de GLC recursiva à esquerda:

$$A \rightarrow Aa \mid b$$

· Gramáticas transformadas equivalentes:

Com a palavra vazia

 $A \rightarrow bX$

 $X \rightarrow aX | \epsilon$

Sem a palavra vazia

 $A \rightarrow b \mid bX$

 $X \rightarrow a \mid aX$

Obs: pode ainda haver recursão indireta!

INF01033 - Compiladores B - Marcelo Johann - 2012/1

Aula 07 : Slide

(B) Outro exemplo de recursividade

- E -> E+T | T
- T -> T*F | F
- F -> (E)| Id

A regra E -> E+T | T se torna:

E -> TE'

E' -> +ΤΕ'| ε

A regra T- > T*F | F se torna:

T -> FT'

T'-> *FT' | ε

NF01033 - Compiladores B - Marcelo Johann - 2012/1

Aula 07 : Slide 1

(C) Fatoração de uma gramática

 Elimina a indecisão de qual produção aplicar quando duas ou mais produções iniciam com a mesma forma sentencial

 $A \rightarrow \alpha \beta_1 | \alpha \beta_2$

Se torna:

 $A \rightarrow \alpha X$

 $X \rightarrow \beta_1 | \beta_2$

INF01033 - Compiladores B - Marcelo Johann - 2012/1

(C) Exemplo de Fatoração a Esquerda

Cmd → if Expr then Cmd else Cmd

Cmd → if Expr then Cmd

Cmd → Outro

· Fatorando a esquerda:

Cmd → if Expr then Cmd ElseOpc

Cmd → Outro

ElseOpc \rightarrow else Cmd | ϵ

INF01033 - Compiladores B - Marcelo Johann - 2012/1

Aula 07 : Slide

Analisadores Descendentes

- Também chamados recursivos ou top-down
- · Recursivos com Retrocesso

Testam cada possível derivação Exemplo

Recursivos Preditivos

Determinam produção pelo símbolo terminal atual Exemplo

- Conjunto FIRST e método de encontrá-lo
- Implementação

INF01033 - Compiladores B - Marcelo Johann - 2012/1

ula 07 : Slic

Exemplo

Gramática para Listas

$$S \rightarrow a \mid "[" L "]"$$

 $L \rightarrow S ";" L \mid S$

Entrada: [a]\$

INF01033 - Compiladores B - Marcelo Johann - 2012/1

Aula 07 : Slide

Top-Down: Backtracking

INF01033 - Compiladores B - Marce

Observações sobre o método recursivo com retrocesso

- É fácil de implementar.
- É necessário:
 - Que a gramática não seja recursiva à esquerda
 - A → Aa se tornará ReconheceA() { ReconheceA();... }

Recursão infinita!

Analisadores Descendentes

- Também chamados recursivos ou top-dowr
- Recursivos com Retrocess
 Testam cada possível derivação

Testam cada possível derivação

- · Recursivos Preditivos
 - Determinam produção pelo símbolo terminal atual Exemplo
- · Conjunto FIRST e método de encontrá-lo
- Implementação

INF01033 - Compiladores B - Marcelo Johann - 2012/1

Aula 07 · Slida

Exemplo

Gramática onde é fácil distinguir produções

CMD → "if" EXPR "then" CMD

CMD → "while" EXPR "do" CMD

CMD → "repeat" LISTA "until" EXPR

CMD → ID ":=" EXPR

INF01033 - Compiladores B - Marcelo Johann - 2012/1

Aula 07 : Slida 26

Exemplo

Mesma Gramática com mais Não-Terminais

CMD → COND | ITER | ATRIB

COND → "if" EXPR "then" CMD

ITER → "while" EXPR "do" CMD |

"repeat" LISTA "until" EXPR

NF01033 - Compiladores B - Marcelo Johann - 2012/1

ATRIB → ID ":=" EXPR

ula 07 : Slid

Exemplo

Outra Gramática

CMD: IF | ASS | WHILE | BL;

BL: '{' CMDL '}'; CMDL: CMD RESTO;

RESTO: ';' CMDL | epsilon;

IF: "if" E "then" CMD;

WHILE: "while" E "do" CMD;

ASS: L '=' E; L: '*' E | E;

E: NUM | ID;

Aula 07 : Slide

Definição: Conjuntos "First"

- Seja α qualquer seqüência de símbolos
 - terminais ou não terminais
- First(α):
 - Definição informal:
 - conjunto de todos os terminais que começam qualquer seqüência derivável de α.
 - Definição formal:
 - Se existe um $t \in T$ e um $\beta \in V^*$ tal que $\alpha \Rightarrow^* t \beta$ então $t \in First(\alpha)$
 - Se $\alpha \Rightarrow^* \epsilon$ então $\epsilon \in \mathsf{First}(\alpha)$

INF01033 - Compiladores B - Marcelo Johann - 2012/1

Aula 07 : Slide 2

Condição para que se possa usar um analisador preditivo

- Informalmente: no caso que em os First() dos lados direitos das regras de produção sejam "simpáticos", não terá retrocesso.
- Formalmente: para qualquer produção

 $\mathsf{A} \to \alpha_1 \mid \alpha_2 \mid \dots \mid \alpha_n,$

quer-se:

 $First(\alpha_1) \cap First(\alpha_2) \cap ... \cap First(\alpha_n) = \emptyset$

INF01033 - Compiladores B - Marcelo Johann - 2012/1

Observações sobre o método recursivo preditivo

- É fácil de implementar.
- É necessário:
 - 1. Que a gramática não seja recursiva à esquerda
 - A → Aa se tornará
 ReconheceA();... }
 - · Recursão infinita!
 - 2. Que a gramática seja fatorada à esquerda
 - Senão, há ambigüidade na escolha da derivação.
 - 3. Que os primeiros terminais deriváveis possibilitem a decisão de uma produção a aplicar!
 - Não há retrocesso sobre não-terminais...

INF01033 - Compiladores B - Marcelo Johann - 2012/1

Implementação

- CMD: IF | ASS | WHILE | BL;
- BL: '{' CMDL '}';
- CMDL: CMD RESTO;
- RESTO: ';' CMDL;
- IF: "if" E "then" CMD;
- WHILE: "while" E "do" CMD;
- ASS: L '=' E;
- L: '*' E | E;
- E: NUM | ID;

INF01033 - Compiladores B - Marcelo Johann - 2012/1

a 07 : Slide

Etapas...

...voltando ao yacc

INF01033 - Compiladores B - Marcelo Johann - 2012/1

Aula 07 : Slide 3

Leituras e Tarefas sugeridas

Ler e Reler o Livro Implementar outra GLC Ligar sua implementação com yylex Ligar com autômato

INF01033 - Compiladores B - Marcelo Johann - 2012/1