Section 4 First Examples of Mathematical Proofs

Even and Odd Numbers

- · Quix 3 today. Read questions carefully!
- HW1 scores to be released Soon.
 Revow your graded work.

Example: Order in mixed quantifiers

Consider the following webpages:

P(d,y): It has a lank to y.

- · (Yx)(Zy) P(x,y): T
 - · (3x) (4y) P(x,y): F

free vs bound variables

	1	Ч
P (x,y)	free	free
(Yy) P(x,y)	free	bound
(3x)(4y) P(x,y)	bound	bound

To determine the truth value of	n	(Yy) Pary)
(In) (Hy) P(n, y),	A	F
consider the truth values (ty) P(11,12)	B	F
(In) (Hy) P(11,1y), of consider the truth values (Hy) P(11,1y) which depend on A. Soe the table here ->	C	F
There exist no entry for which (My) PGLM) is true.	Н	F

Example: Negation of multiply quantified sentences. (Calculus) Let I be a function from IR to IR and let a \in IR. To say that f is continuous at a means that for each 2>0, there exists a 5>0 such that for each $\times GR$, if $|\chi-a|<5$, then |f(x)-f(a)|<2. In symbols: $A \Rightarrow B$ $(\forall £>0)(\exists 8>0)(\forall x \in IR)[1x-al<8 \Rightarrow |fal)-fcos|< E]$ To say that of is not continuous at a means, in symbols, (∃€>0) (∀5>0) (∃x ∈IR) [12-01<8 / 1fa)-fa) |>, €]

Even Numbers and Odd Numbers

Definitions

Definition 1 (Even and Odd Numbers)

- To say that x is an even number means that there exists an integer k such that x = 2k. $(\exists k \in \mathbb{Z})(x \in \mathcal{A}_{\mathbb{R}})$
- To say that \underline{x} is an odd number means that there exists an integer k such that x = 2k + 1.

•
$$6 = 2.3$$
 even

•
$$-7 = 2(-4) + 1$$
 odd [incornect: $-7 = 2(-3) - 1$]

Examples

Example 2 (Sum of Odd Numbers)

If x is odd and y is odd, then x + y is even.

and y is odd, then they is even.

Proof. Suppose t is odd and y is odd. (WTS
$$\chi + g$$
 is even.)
Since χ is odd, we can find an integer be such that $\chi = 2k+1$.
Likewisse, Since y is odd, we can find an integer I such that $\chi = 2l+1$.
Then $\chi + \chi = (2k+1) + (2l+1)$

= 2k+2l+2 = 2(k+l+1). Since k+l+1 is an integer, 2l+y is even. Hence, if x is odd

4/

X	y	7+ y	
odd	odd	even	< Just showed
odd	even	odd	7
even	odd	odd	> HW
even	even	even	

How about 1+y+z?

Examples (cont')

Example 3 (Product with Even Numbers)

Let x and y be integers. If x is even or y is even, then xy is even.

Proof Suppose It is even or y is even. (WTS thy is even.)

Case 1 the is even. Then we can find an integer the such that
$$x=\pi k$$
.

Then

 $\pi y = (2k) y = 2(ky)$.

Since ky is an integer, thy is oven.

Case 2 y is even. Then we can find an integer k such that y = xk.

xy = x(2k) = (2k) d = 2(kd).

Since kx is an integer, my is even.

In either case, we showed that my is even. Hence, we conclude that if it is even or y is even, then my is even.

X	y	xy	
odd	odd	odd	∠ HW
odd	even	even	} - just showed
even	odd	even	Just snowed
even	even	even	J

Fundamental Properties

Even/Odd Dichotomy (I)

Let \boldsymbol{x} be an integer. Then:

- $\mathbf{0}$ x is even or x is odd.
- ② If x is not even, then x is odd.
- 3 If x is not odd, then x is even.

Note. If P stands for "x is even" and Q stands for "x is odd", then three statements above are $P \lor Q$, $\neg P \Rightarrow Q$, and $\neg Q \Rightarrow P$, respectively. Note that the three sentences are logically equivalent.

P	Q	PVQ	7P => Q	7Q=>P
T	T			
\top	F			
F	T			
F	F			

Fundamental Properties (cont')

Even/Odd Dichotomy (II)

Let x be an integer. Then:

- x is not both even and odd.
- 2 If x is even, then x is not odd.

Note. If P stands for "x is even" and Q stands for "x is odd", then three statements above are $\neg(P \land Q), P \Rightarrow \neg Q$, and $Q \Rightarrow \neg P$, respectively. Note that the three sentences are logically equivalent.

P	Q	7(P / Q)	P=> -Q	Q > P
T	T			
$\overline{}$	F			
F	T			
F	F			

Examples

Example 4 (When Sum of Two Integers Is Odd)

Let x and y be integers. If x+y is odd, then x is even or y is even.

Homework (1/28; due Wed 2/2)

Section 4: #1, 2, 3, 4, 5, 6