0/8	b)	establishing a first stream between the first process and the communication
H 9		channel;
10	c)	establishing a second stream between the second process and the
		communication channel;
m +12	d)	encrypting data to be transmitted between the first and second processes, the
13		encrypting of the data being independent of the at least one communication
14		protocol supported by the first and second network [node;] nodes;
15	e)	writing the encrypted data to the first stream;
16	f)	causing the encrypted data to be transmitted from the first network node to
17		the second network [node;] node according to the at least one communication
18		protocol supported by the first and second network nodes;
19	g)	reading the encrypted data from the second stream; and
20	h)	decrypting the encrypted data to obtain decrypted data which is identical to
21		the data on the first network node before the data was encrypted.

- 2. (Unamended) The method of Claim 1, further including the steps of
- a) performing a communication protocol-specific encryption of the data on the
 first network node, and
- b) performing a communication protocol-specific decryption of the data on the second network node.
- 1 3. (Unamended) The method of Claim 1, wherein the communication channel is a Java
- 2 secure channel,

- wherein the first stream is a first Java stream,
- 4 wherein the second stream is a second Java stream,

5		wherein the step of establishing a communication channel between the first and
6		second network nodes further comprises the step of establishing a Java secure
7		channel between the first and second network nodes,
8		wherein the step of establishing a first stream between the first process and the
9		communication channel further comprises the step of establishing a first Java
10		stream between the first process and the Java secure channel,
11		wherein the step of establishing a second stream between the second process and the
12		communication channel further comprises the step of establishing a second
13		Java stream between the second process and the Java secure channel,
14		wherein the step of writing the encrypted data to the first stream further comprises
15		the step of writing the encrypted data to the first Java stream, and
16		wherein the step of reading the encrypted data from the second stream further
17		comprises the step of reading the encrypted data from the second Java stream.
1	4.	(Unamended) The method of Claim 1, wherein the communication channel is a Java
2		secure channel, wherein the first stream is a Java stream,
3		wherein the second stream is a Java stream,
4		wherein the method further comprises the step of connecting the Java secure channel
5		to a third Java stream, and
6		wherein the third Java stream provides for the transmission of data according to a
7		specific communication protocol.

5.

4

5

5

(Amended) A computer-readable medium [having stored thereon a plurality of sequences of <u>carrying</u> one or more sequences of one or more instructions for providing communication protocol-independent security for data transmitted between a first process, executing on a first network node, and a second process, executing on a second network node, wherein the first network node and the second network node

-			
	6	each s	upport at least one common communication protocol, the [plurality of] one or
	7	more s	sequences of one or more instructions including [sequences of] instructions
ロス	8	which,	, when executed by one or more processors, cause the one or more processors
8	9	to perf	Form the steps of:
D Dant	10	a)	establishing a communication channel between the first network node and the
t	11		second network node;
Cont	12	b)	establishing a first stream between the first process and the communication
	13		channel;
	14	c)	establishing a second stream between the second process and the
	15		communication channel;
	16	d)	encrypting data to be transmitted between the first and second processes, the
	17		encrypting of the data being independent of the at least one common
	18		communication [protocols] protocol supported by the first and second
	19		network [node;] nodes;
	20	e)	writing the encrypted data to the first stream;
	21	f)	causing the encrypted data to be transmitted from the first network node to
	22		the second network [node;] node according to the at least one communication
	23		protocol supported by the first and second network nodes;
	24	g)	reading the encrypted data from the second stream; and
	25	h)	decrypting the encrypted data to obtain decrypted data which is identical to
	26		the data on the first network node before the data was encrypted.

- 6. (Unamended) The computer-readable medium of Claim 5, wherein the computer-readable medium further includes instructions for performing the steps of
- a) performing a communication protocol-specific encryption of the data on the
 first network node, and

1

5		b) performing a communication protocol-specific decryption of the data on the
6		second network node.
1	7.	(Unamended) The computer-readable medium of Claim 5, wherein the first stream is
2		a first Java stream,
3		wherein the second stream is a second Java stream,
4		wherein the step of establishing a communication channel between the first and
5		second network nodes further comprises the step of establishing a Java secure
6		channel between the first and second network nodes,
7		wherein the step of establishing a first stream between the first process and the
8		communication channel further comprises the step of establishing a first Java
9		stream between the first process and the Java secure channel,
10		wherein the step of establishing a second stream between the second process and the
11		communication channel further comprises the step of establishing a second
12		Java stream between the second process and the Java secure channel,
13		wherein the step of writing the encrypted data to the first stream further comprises
14		the step of writing the encrypted data to the first Java stream, and
15		wherein the step of reading the encrypted data from the second stream further
16		comprises the step of reading the encrypted data from the second Java stream.
1	8.	(Unamended) The computer-readable medium of Claim 5, wherein the
2		communication channel is a Java secure channel,
3		wherein the first stream is a Java stream,
4		wherein the second stream is a Java stream,
5		wherein the computer-readable medium further includes instructions for connecting
6		the Java secure channel to a third Java stream, and

8		specific communication protocol.
1) (Ame	nded) A communication network providing communication protocol-
2	indep	endent secure communication between a first network node and a second
3	netwo	rk node, wherein the first network node and the second network node each
4	suppo	rt at least one common communication protocol, wherein the first network
13 5	node i	is communicatively coupled to the second network node by a communication
\mathcal{N}_{6}	chann	el, the communication network comprising.
7	a)	a first process executing on the first network node wherein the first process is
8		configured to provide for the [provides for the communication protocol-
9		independent] encryption of [data;] data independent of the at least one
10		communication protocol;
11	b)	a first stream which provides for the transfer of encrypted data between the
12		first process and the communication channel;
13	c)	a second process executing on the second network node; and
14	d)	a second stream which provides for the transfer of encrypted data between the
15		communication channel and the second process, wherein the second process
16		is configured to provide [also provides] for the decryption of data which has
17		been encrypted by the first process.

wherein the third Java stream provides for the transmission of data according to a

10. (Unamended) The communication network of Claim 9, wherein the second process further includes the capability to decrypt data based upon any communication protocol supported by the second network node.

7

1

2

1	11.	(Unam	nended) The communication network of Claim 9, wherein the communication
2		channe	el is a Java secure channel, the first stream is a Java stream and the second
3		stream	is a Java stream
1	12.	(Unam	nended) The communication network of Claim 11, further comprising a third
2		Java st	tream connected to the Java secure channel, the third Java stream providing for
3		the tra	nsmission of data according to a specific communication protocol.
1	13.	(Amer	nded) A computer data signal embodied in a carrier wave and representing
$\frac{1}{2}$		sequen	nces of instruction which, when executed by one or more processors, provide
3		comm	unication protocol-independent security for data transmitted between a first
4		proces	s, executing on a first network node, and a second process, executing on a
5		second	network node, [wherein the first hetwork node and the second network node
6		each si	upport] according to at least one common communication protocol supported
7		by the	first and second network nodes, by performing the steps of:
8		a)	establishing a communication channel between the first network node and the
9			second network node;
10		b)	establishing a first stream between the first process and the communication
11			channel;
12		c)	establishing a second stream between the second process and the
13			communication channel;
14		d)	encrypting data to be transmitted between the first and second processes, the
15			encrypting of the data being independent of the at least one common
16			communication [protocols] protocol supported by the first and second
17			network [node;] nodes;

e)

18

writing the encrypted data to the first stream;

_		(
2		sequence of instructions further includes instructions for performing the steps of
3		a) performing a communication protocol-specific encryption of the data on the
4		first network node, and
5		b) performing a communication protocol-specific decryption of the data on the
6		second network node.
1	15.	(Unamended) The computer data signal of Claim 13, wherein the first stream is a
2		first Java stream,
3		wherein the second stream is a second Java stream,
4		wherein the step of establishing a communication channel between the first and
5		second network nodes further comprises the step of establishing a Java secure
6		channel between the first and second network nodes,
7		wherein the step of establishing a first stream between the first process and the
8		communication channel further comprises the step of establishing a first Java
9		stream between the first process and the Java secure channel,
10		wherein the step of establishing a second stream between the second process and the
11		communication channel further comprises the step of establishing a second
12		Java stream between the second process and the Java secure channel,

(Unamended) The computer data signal of Claim 13, wherein the computer

1

14.

13		where	in the step of writing the encrypted data to the first stream further comprises	
14			the step of writing the encrypted data to the first Java stream, and	
15		wherei	in the step of reading the encrypted data from the second stream further	
16			comprises the step of reading the encrypted data from the second Java stream.	
1	16.	(Unam	nended) The computer data signal of Claim 13, wherein the communication	
2		channe	el is a Java secure channel,	
3		wherei	in the first stream is a Java stream,	
4		wherei	in the second stream is a Java stream,	
5		wherei	in the computer sequence of instructions further includes instructions for	
6			connecting the Java secure channel to a third Java stream, and	
7		wherei	in the third Java stream provides for the transmission of data according to a	
8			specific communication protocol.	
1	17.	(Unam	nended) A method for providing communication protocol-independent security	
2		for dat	ta transmitted by a process executing on a network node, the method	
3		compr	ising the steps of:	
4		a)	establishing a stream between the process and a communication channel;	
5		b)	encrypting data to be transmitted by the process, the encrypting of the data	
6			being independent of a communication protocol supported by the network	
7			node;	
8		c)	writing the encrypted data to the stream; and	
9		d)	causing the encrypted data to be transmitted from the network node to the	
10			communication channel.	
1	18.	(Unam	nended) The method of Claim 17, wherein the communication channel is a	
2		Java secure channel,		

}		wherein the stream is a first Java stream,
ļ		wherein the step of establishing a stream between the process and the communication
5		channel further comprises the step of establishing a Java stream between the
ó		process and the Java secure channel, and
7		wherein the step of writing the encrypted data to the stream further comprises the
3		step of writing the encrypted data to the Java stream.
	19.	(Unamended) The method of Claim 17, wherein the communication channel is a
)		Java secure channel, wherein the stream is a Java stream,
}		wherein the method further comprises the step of connecting the Java secure channel
ļ		to a second Java stream, and
;		wherein the second Java stream provides for the transmission of data according to a
		specific communication protocol.