Name: Taulid Chauthury ID: 22/01/82 Sec: 17 Group: 03 Date: 06/02/23

Experiment no: 04

Name of the Experiment: Determination of the resistance of a galvanometer by half deflection method.

Questions on theory (all diagrams should be drawn by using a pencil and a scale)

*1) What is resistance of the galvanometer? [0.25]

Ans: Pesistance of galvanometer is the resistance of a coll of wire wound over a rectangular frame kept in a magnetic field intitle the galvanometer

*2) Draw the circuit diagram for this experiment. [0.25]

Ans:

*3) Derive an expression for the current passing through the galvanometer as a function of the resistances of the shunt box, two resistance boxes and the emf of the voltage source, i.e., equation (8). [2]

Ans: Using kirchoff's loop voltage rule in the circuit diagrams adabade loop, IR+IGR_1+IGG-E=0

Using kirchoffs loop voltage rule in dard loop aboda,

IGR, + IGG - I, S = 0

Pluging in the value of I in equation (i): $E = \left(\frac{R_1 + G_1 + S}{S}\right) I_{GR} + I_{Gr}(R_1 + G_1)$ $= \left(\frac{R_1 + G_1 + S}{S}\right) R + S \left(\frac{R_1 + G_1}{S}\right) \frac{\gamma}{S} I_{Gr}$

*4) Show that, the value of R_I for which the galvanometer's deflection is reduced down to the half of the deflection when $R_I = 0$, is approximately equal to the galvanometer's resistance. [2]

Ans: We know,

Detlection anyle of the galvanometer's pointer & is proportional to

the corrent passing through the galvanometer, In

Of In

PO = I I

In = KB [K = Galvanometer's content]

If R_1 = 0

Es

RG+RS+GS

--- (i)

when Galvanameter's Leftechion is reduced down to the half tetlection.

Es

(Ri+G+5) R+5 (Ri+G) = KT - ... (11)

(i) ÷ (ii) \Rightarrow $\frac{R+G+S}{RG+RS+GS} = 2$ $\Rightarrow \frac{GR(RG+RS+GS)+RRI+RIS}{RG+RS+GS} = 2$ $\Rightarrow \frac{R+G+S}{RG+RS+GS} = 2$ As $\frac{R+G+S}{RG+RS+GS} = 2$

As Ja is very much smaller than R and G we can neglect the i. RIR G

5) For a certain value of shunt-resistance, 5 did deflection of the galvanometer is shown in Figure A.

Figure A: Deflection when $R_1 = 0$

By keeping S and R fixed the deflections of the galvanometer for different values of R_1 are shown in the following figures.

What is the internal resistance of the galvanometer? [0.5]

Ans:
$$R_1 = GSL$$
 $1+R/G = \frac{G_1}{G_2}$
 $1+R/G = \frac{10}{2.5}$
 $1+R/G = \frac{10}{2.5}$
 $1+R/G = \frac{10}{3}$
 $1+R/G = \frac{10}{2.5}$
 $1+R/G = \frac{10}{3}$
 $1+R/G = \frac{10}{3}$

- Draw the data table(s) and write down the variables to be measured shown below (in the 'Data' section), using pencil and ruler BEFORE you go to the lab class.
- Write down your NAME and ID on the top of the page.
- This part should be separated from your Answers of "Questions on Theory" part.
- Keep it with yourself after coming to the lab.

Data

Table: Data for determining the resistance of a galvanometer

No. of observation	R (Ω)	S (Ω)	Flow of current	Deflection when $R_1=0$ (θ_0)	$R_1(\neq 0)$ (Ω)	Deflection when $R_1 \neq 0$ (θ)	$\approx R_1 \left(\frac{\theta_0}{\theta} - 1 \right)$ (Ω)	Mean G (Ω)
OS	50	-2	D	42	100	1.50 %	100	
2	100	. 2	P	8	140	4.5	140	
3.	20	.3	P	10	100	5	100	355
9	50	.3	P	6	100	3	120	10.
5	30	.2	0	5	110	2.5	70	
6	30	.3	PL	6	007	3	(00)	

- · READ the PROCEDURE carefully and perform the experiment by YOURSELVES. If you need help to understand any specific point draw attention of the instructors.
- DO NOT PLAGIARIZE data from other group and/or DO NOT hand in your data to other group. It will bring ZERO mark in this experiment. Repetition of such activities will bring zero mark for the whole lab.
- Perform calculations by following the PROCEDURE . Show every step in the Calculations section.
- Write down the final result(s)

Calculations

Results: