	α - Α	ANGLE IN D PLUS C	EGREES ALCUATION	tan(α), sin(α) TA ONS FOR 100	ABLE c
a	= b * t	can (α) k	o = a /	tan(α)	α

α ταν(α χ100	α° TAN(α°) x100	α° CIN(α°)	α° $\sin(\alpha^{\circ})$
a° Tan(a°) x100	45 01.00000 100.00	α° SIN(α°) 00 00.00000	a° SIN(a°) 45 00.70711
01 00.01746 01.75	46 01.03553 103.55	01 00.01745	46 00.71934
02 00.03492 03.49	47 01.07237 107.24	02 00.03490	47 00.73135
03 00.05241 05.24	48 01.11061 111.06	03 00.05234	48 00.74314
04 00.06993 06.99	49 01.15037 115.04	04 00.06976	49 00.75471
05 00.08749 08.75	50 01.19175 119.18	05 00.08716	50 00.76604
06 00.10510 10.51	51 01.23490 123.49	06 00.10453	51 00.77715
07 00.12278 12.28	52 01.27994 127.99	07 00.12187	52 00.78801
08 00.14054 14.05 09 00.15838 15.84	53 01.32704 132.70 54 01.37638 137.64	08 00.13917 09 00.15643	53 00.79864 54 00.80902
		PERSONAL PROPERTY AND	
10 00.17633 17.63	55 01.42815 142.81	10 00.17365	55 00.81915
11 00.19438 19.44 12 00.21256 21.26	56 01.48256 148.26	11 00.19081 12 00.20791	56 00.82904
13 00.23087 23.09	57 01.53986 153.99 58 01.60033 160.03	13 00.22495	57 00.83867 58 00.84805
14 00.24933 24.93	59 01.66428 166.43	14 00.24192	59 00.85717
15 00.26795 26.79	60 01.73205 173.21	15 00.25882	60 00.86603
16 00.28675 28.67	61 01.80405 180.40	16 00.27564	61 00.87462
17 00.30573 30.57	62 01.88073 188.07	17 00.29237	62 00.88295
18 00.32492 32.49	63 01.96261 196.26	18 00.30902	63 00.89101
19 00.34433 34.43	64 02.05030 205.03	19 00.32557	64 00.89879
20 00.36397 36.40	65 02.14451 214.45	20 00.34202	65 00.90631
21 00.38386 38.39	66 02.24604 224.60	21 00.35837	66 00.91355
22 00.40403 40.40	67 02.35585 235.59	22 00.37461	67 00.92050
23 00.42447 42.45 24 00.44523 44.52	68 02.47509 247.51 69 02.60509 260.51	23 00.39073	68 00.92718 69 00.93358
		24 00.40674	
25 00.46631 46.63	70 02.74748 274.75	25 00.42262	70 00.93969
26 00.48773 48.77 27 00.50953 50.95	71 02.90421 290.42 72 03.07768 307.77	26 00.43837 27 00.45399	71 00.94552 72 00.95106
28 00.53171 53.17	73 03.27085 327.09	28 00.46947	73 00.95630
29 00.55431 55.43	74 03.48741 348.74	29 00.48481	74 00.96126
30 00.57735 57.74	75 03.73205 373.21	30 00.50000	75 00.96593
31 00.60086 60.09	76 04.01078 401.08	31 00.51504	76 00.97030
32 00.62487 62.49	77 04.33148 433.15	32 00.52992	77 00.97437
33 00.64941 64.94	78 04.70463 470.46	33 00.54464	78 00.97815
34 00.67451 67.45	79 05.14455 514.46	34 00.55919	79 00.98163
35 00.70021 70.02	80 05.67128 567.13	35 00.57358	80 00.98481
36 00.72654 72.65	81 06.31375 631.38	36 00.58779	81 00.98769
37 00.75355 75.36 38 00.78129 78.13	82 07.11537 711.54 83 08.14435 814.43	37 00.60182 38 00.61566	82 00.99027 83 00.99255
39 00.80978 80.98	84 09.51436 951.44	39 00.62932	84 00.99452
40 00.83910 83.91	85 11.43005 1143.01	40 00.64279	85 00.99619
41 00.86929 86.93	86 14.30067 1430.07	41 00.65606	86 00.99756
42 00.90040 90.04	87 19.08114 1908.11	42 00.66913	87 00.99863
	88 28.63625 2863.63	43 00.68200	88 00.99939
44 00.96569 96.57	89 57.28996 5729.00	44 00.69466	89 00.99985
deg = rad * 180	$/\pi$ rad = $\pi/$	'180 * deg	