Прикладные методы математической статистики

Домашнее задание 1. Вариант 4.

Студент: Абу Аль Лабан Н. А.

Группа: БПИ 198

Цель:

Оценить среднюю продолжительность вскармливания.

- **а)** Рассчитать 90% доверительный интервал для средней продолжительности, считая распределение признака нормальным.
- **б)** Построить график «квантиль-квантиль» и попробуйте понять, соответствует ли распределение времени вскармливания нормальному закону.
- **в)** Рассчитать данным методом 90% доверительный интервал для средней продолжительности вскармливания, сгенерировав 1000 перевыборок.
- **г)** Построить гистограмму для полученных в предыдщем пункте средних значений. Похоже ли распределение среднего в перевыборках на нормальное?

Выборка данных о продолжительости грудного вскрармливания в неделях состоит из 22 элементов

Выборка:

X_1	X_2	X_3	X_4	X_5	X_6	X_7	X_8	X_9	X_10	X_11
20	6	13	35	19	14	24	23	43	27	4
X_12	X_13	X_14	X_15	X_16	X_17	X_18	X_19	X_20	X_21	X_22
28	16	9	24	16	4	21	18	27	21	6

а) Построение доверительного интервала

Чтобы построить доверительный интервал, необходимо:

- ullet Задать уровень значимости lpha
- ullet Найти квантиль распределения Стьюдента $t_{(rac{lpha}{a};n-1)}$
- ullet Найти среднее выборочное значение X
- Найти стандартное отклонение $\hat{\sigma}$
- Найти границы интервала, подставив в формулу полученные значения

Приступим к вычислениям.

- 1. **Уровень доверия**, заданный по условию: $\alpha-1=0.9$ Отсюда находим **уровень значимости:** $\alpha=0.1$
- 2. Найдем **квантиль распределения Стьюдента** по соответствующей таблице: $t_{(0.05;21)}=1.721$
- 3. Рассчитаем **среднее выборочное значение** по формуле: $\overline{X} = \frac{\sum_{i=1}^n X_i}{n}$
- 4. Стандартное отклонение найдем с помощью скорректированной выборочной дисперсии:

$$\hat{\sigma} = \sqrt{\hat{\sigma}^2}$$

Для этого вычислим скорректированную выборочную дисперсию по формуле:

$$\hat{\sigma}^2 = rac{\sum_{i=1}^n (X_i - \overline{X})^2}{n-1}$$

5. Имея результаты вычислений, интервал найдем из формулы:

$$\overline{X} - \left(t_{(\frac{\alpha}{2};n-1)} \cdot \frac{\sigma}{\sqrt{n}}\right) \leqslant \mu \leqslant \overline{X} + \left(t_{(\frac{\alpha}{2};n-1)} \cdot \frac{\sigma}{\sqrt{n}}\right)$$

Среднее выборочное: 19.00

Несмещенная выборочная дисперсия: 99.24 Левая граница: 15.344820242959717 Правая граница: 22.655179757040283 Таким образом, **интервал**: (15.34; 22.66)

б) Построение графика квантиль-квантиль

Рассчитаем выборочные квантили порядков $rac{1}{n+1},\ldots,rac{n}{n+1}$

Это упорядоченная по возрастанию выборка: $\hat{Q}ig(rac{1}{n+1}ig) = X_{(1)}, \dots, \hat{Q}ig(rac{n}{n+1}ig) = X_{(n)}$

Рассчитаем теоретические квантили - квантили нормального распределения с параметрами

$$\mu=\overline{X}$$
 и $\sigma^2=\hat{\sigma}^2$ $Qig(rac{1}{n+1}ig)=\overline{X}+\hat{\sigma}\Phi^{-1}ig(rac{1}{n+1}ig),\dots,Qig(rac{n}{n+1}ig)=\overline{X}+\hat{\sigma}\Phi^{-1}ig(rac{n}{n+1}ig)$

Построим график на осях (Q,\hat{Q})

```
In [5]:

duration.sort()
Q = duration # Выборочные квантили
phi = [scipy.stats.norm.ppf((i+1)/(n+1)) for i in range(n)] # Квантили нормального распре
tQ = [x + np.sqrt(s) * p for p in phi] # Теоретические квантили
```

Выборочные квантили:

X(1)	X(2)	X(3)	X(4)	X(5)	X(6)	X(7)	X(8)	X(9)	X(10)	X(11)
4	4	6	6	9	13	14	16	16	18	19
X(12)	X(13)	X(14)	X(15)	X(16)	X(17)	X(18)	X(19)	X(20)	X(21)	X(22)
20	21	21	23	24	24	27	27	28	35	43

Теоретичесикие квантили:

Q(1/23)	Q(2/23)	Q(3/23)	Q(4/23)	Q(5/23)	Q(6/23)	Q(7/23)	Q(8/23)	Q(9/23)
1.948578	5.454525	7.799532	9.647690	11.219472	12.617784	13.900177	15.102969	16.251321
Q(12/23)	Q(13/23)	Q(14/23)	Q(15/23)	Q(16/23)	Q(17/23)	Q(18/23)	Q(19/23)	Q(20/23)
19.543108	20.635840	21.748679	22.897031	24.099823	25.382216	26.780528	28.352310	30.200468

Поскольку точки практически выстроены в линию, можно сделать вывод, что длительность вскармливания распределена по нормальному закону

в) Построение доверительного интервала с помощью бутстрапа и генерации 1000 перевыборок

Для начала неодбходимо построить 1000 **перевыборок** - n случайно выбранных из основной выборки элементов (элеметы могут повторяться)

Для кажлой перевыборки необходимо найти среднее выборочное значение \overline{X}_{i} , это будут перевыборочные

Далее нужно:

- ullet Задать уровень значимости lpha
- Отсортировать массив средних значений
- Найти границы интервала, взяв нужные квантили из средних значений

Приступим к рассчетам

- 1. Рассчитаем для каждой перевыборки **переыборочное среднее** по формуле: $\overline{X}_i = rac{\sum_{i=1}^n x_i}{n}$
- 2. Уровень доверия по условию: lpha-1=0.9 Отсюда находим уровень значимости: lpha=0.1
- 3. Отсортируем по возрастанию найденные в п. 1 средние выборочные
- 4. В общем случае, выборочные квантили $Q\left(\frac{\alpha}{2}\right)$ и $Q\left(10-\frac{\alpha}{2}\right)$ для средних в перевыборках образуют бутстраповский доверительный интервал для среднего в генеральной совокупности с уровнем доверия $1-\alpha$
- 5. Наконец, найдем **интервал**, взяв 0.05*1000 и 0.95*1000 элменты, это и будут нужные квантили

Левая граница: 15.772727272727273 Правая граница: 22.409090909091

Таким образом, **интервал**: (15.77; 22.41)

Интервал, найденный по исходной выборке: (15.34; 22.66)

Поскольку интервалы находятся в одном отрезке, но найденный с помощью бутстрапа меньше, делаем вывод, что найденный в ходе эксперимента интревал **более точен**

г) Построение гистограммы

Гистограмма будет построена на основе средних значений перевыборок из предыдущего пункта

Поскольку гистограмма напоминает колокол, делаем вывод, что распределение средних значений **похоже на нормальное**

P.S. В целях повышения читабельности удалены фрагменты кода, предназначенные для вывода данных