OE 2.međuispit 28.11.2007

- 1. (2 boda) Kolika je trenutna vrijednost napona gradske mreže ($U_{\rm ef} = 220 \text{ V}, f = 50 \text{ Hz}$) nakon $t = \frac{1}{300}$ s od trenutka u kojem je imao maksimalnu vrijednost?
- A) 310 V
- B) 220 V
- C) 155 V
- D) 110 V
- E) 0 V
- 2. (2 boda) U istoj ravnini nalaze se vodič protjecan konstantnom strujom I i vodljivi štap koji rotira oko svog kraja A. Napon U_{AB} je
- A) u svakom trenutku pozitivan ($U_{AB} > 0$)
- u svakom trenutku negativan ($U_{AB} < 0$)
- u svakom trenutku nula ($U_{AB} = 0$)
- D) promjenjivog polariteta
- E) nije moguće odrediti
- 3. (2 boda) Na serijskom spoju dvaju elemenata narinut je napon $u(t) = 100 \cdot \cos(\omega t + \frac{\pi}{2})$ V i

kroz njih protječe struja $i(t) = 1 \cdot \sin(\omega t + \frac{2\pi}{3})$ A. Ako imaginarnom dijelu impedancije smanjimo vrijednost na trećinu početnog iznosa, koliko nakon toga iznosi fazor struje?

- A. $\sqrt{6}/120^{\circ}$ B $\sqrt{6}/60^{\circ}$ C. $\sqrt{2}/180^{\circ}$ D. $0.5\sqrt{6}/150^{\circ}$ E. $0.5\sqrt{6}/30^{\circ}$ A
- **4.** (2 boda) Svitak je prikazan kao serijski spoj induktiviteta L_S i otpora R_S. Odredite parametre ekvivalentnog paralelnog spoja.
- A) $R_P = \frac{(\omega L_S)^2}{R_D}$, $L_P = \frac{R_S^2 + L_S^2}{\omega^2}$

- B) $R_P = R_S^2 + \omega^2 L_S^2$, $L_P = \frac{R_S^2}{\omega^2 L_S}$

- C) $R_P = \frac{1}{R_S}$, $L_P = \frac{1}{L_S}$ D) $R_P = \frac{1}{R_S}$, $L_P = \frac{\omega^2}{L_S + R_S}$ E) $R_P = R_S + \frac{(\omega L_S)^2}{R_S}$, $L_P = \frac{R_S^2}{\omega^2 L_S} + L_S$
- 5. (2 boda) Izračunajte koju vrijednost kapaciteta C trebamo priključiti paralelno impedanciji $\underline{Z} = 20 \angle 30^{\circ} \Omega$, a da se kut između napona i struje izvora ($\varphi = \alpha_u - \alpha_i$) promijeni na 18°. Zadano je: U = 120 V, f = 50 Hz.
- 34,8 µF A)
- B) $64.3 \mu F$
- C) $94,7 \mu F$
- D) 124,4 μF
- $154,5 \, \mu F$

- **6.** (2 boda) Koliki će biti napon u_{ab} u vremenskom intervalu $0 \le t \le 1$ ms ako se struja imijenja kako je zadano na slici, a koeficijent magnetske veze je k = 0.5 uz $L_1 = 4$ mH, $L_2 = 1 \text{ mH?}$
- -30 V
- 30 V
- C) -15 V
- D) 15 V
- E) 0 V

7. (2 boda) Ako u spoju prema slici ($R = X_L = 30 \ \Omega$, $X_C = 90 \ \Omega$) otvorimo sklopku S (iz stanja "uključeno" prebacimo je u stanje "isključeno"), iznos koji pokazuje ampermetar će se:

- A) povećati 2 puta
- B) smanjiti 2 puta
- C) povećati $\sqrt{2}$ puta
- D) smanjiti $\sqrt{2}$ puta
- E) neće se promijeniti

8. (2 boda) Kolika struja teče kroz zavojnicu u spoju prema slici uz kružnu frekvenciju $\omega = 1000 \text{ rad/s}$? Zadano je: U = 10 V, $R = 10 \Omega$, C = 0.5 mF, L = 2 mH.

- A) 10 A
- B) 5 A
- C) 2 A
- D) 1 A
- E) 0 A

9. (2 boda) Koliki mora biti kapacitet C da bi fazni kut između napona $\mathcal{C}_1^{\mathbf{k}}$ i $\mathcal{C}_{AB}^{\mathbf{k}}$ bio 60° pri kružnoj frekvenciji $\omega = 1000$ rad/s? Zadano je: $\mathcal{C}_1^{\mathbf{k}} = \mathcal{C}_2^{\mathbf{k}} = U \angle 0^\circ \text{ V}, R = 100\sqrt{3} \Omega$.

- A) 1 μF
- B) $3,33 \mu F$
- C) 5 μF
- D) 6,66 μF
- E) 10 μ F

10. (2 boda) Odredite struju kroz ampermetar te napon na voltmetru u spoju prema slici ako je $R = X_L = X_C = 2 \Omega$ i $U = 100 \angle 0^\circ$ V.

- A) 8,33 A, 50 V
- B) 25 A, 100 V
- C) 50 A, 100 V
- D) 25 A, 0 V
- E) 50 A, 0 V

Inačica A:

Zadatak	1.	2.	3.	4.	5.	6.	7.	8.	9.	10.
Odgovor	C	A	D	E	A	D	C	В	В	Е