Drug Target Identification

Sponsor

Tomas Kawalec (Executive Sponsor)
Sanjay Jaiswal (Internal MD Project Sponsor)

Team Members

Anurag Gunti Ayush Dadhich Kausar Perveen Yin Yang

Problem Statement

Drug discovery and development pipeline is resource-intensive and time-consuming, which make them a major obstacle for rapid drug development.

Current challenge is to develop discovery pipelines that can identify promising drug compounds early.

A reliable method that can identify the potential drug compound with respect to its successful clinical translatability is needed.

Objectives

- Create a prototype for identifying potential drug compounds.
- How we did it?

Pipeline

Targets Search

Google Scholar

Pub Med.gov

nature

Modeling

Web Application Demo

Appendix

Preprocessing

Cleaning

- Filtered data by
 - standard_type = 'IC50'
 - standard unit = ['nM', 'uM', 'pM']
 - target_organism = 'Homo Sapiens'
- Dropped data points with missing standard_value or canonical_smiles.
- Converted the standard values to have the same standard unit (nM).

Labeling

- Standardized IC50 to pIC50 to avoid skewed distribution.
- Checked the standard values at different percentiles to determine the cutoff values for labeling.

Transformation

■ Used PaDEL descriptor to transform the SMILE notations into rule-based Pubchem Fingerprints.

Modeling - Binary Classifiers

Build models on each selected target to identify the bioactivity of candidate compounds.

Modeling - Multi-labeled Classifiers

Build models on all selected target to identify the bioactivity of candidate compounds.

Modeling - Results

Modeling - Results

