SINGAPORE POLYTECHNIC

2020/2021 SEMESTER TWO END OF SEMESTER TEST

EP0604/MS837M FURTHER MATHEMATICS

Time Allowed: 1 hour 30 min + 10 min reading time

Instructions to Candidates

- 1. The Singapore Polytechnic examination rules are to be complied with.
- 2. This examination paper consists of FOUR printed pages.
- 3. Answer **ALL** the questions.
- 4. Give all non-exact answers to 3 significant figures.
- 5. A mathematical formulae and tables card is provided for reference.

Additional Formulae

Absolute value Inequalities: (i) |x-a| < k is equivalent to -k < x-a < k

(ii)
$$|x-a| > k$$
 is equivalent to $x-a > k$ or $x-a < -k$

VECTOR EQUATION OF A LINE

$$r = r_0 + \lambda v$$
 , $\lambda \in \mathbb{R}$

where

 $\underline{r} = \langle x, y, z \rangle$ is the position vector of any point on the line,

 $\underline{r}_0 = \langle x_0, y_0, z_0 \rangle$ is the position vector of a known point on the line,

 $y = \langle a, b, c \rangle$ is a non-zero vector parallel to the line.

PARAMETRIC EQUATIONS OF A LINE

$$x = x_0 + \lambda a$$
, $y = y_0 + \lambda b$, $z = z_0 + \lambda c$ where $\lambda \in \mathbb{R}$

EQUATION OF A PLANE

The plane in \mathbb{R}^3 that passes through the point $P_0(x_0, y_0, z_0)$ and is normal to the non-zero vector

 $\underline{n} = \langle a, b, c \rangle = a\underline{i} + b\underline{j} + c\underline{k}$ has equations:

In vector form: $n \cdot \overrightarrow{P_0P} = 0$ or $r \cdot n = r_0 \cdot n$ In point-normal form: $a(x-x_0)+b(y-y_0)+c(z-z_0)=0$

2020/2021/S2 Page 1 of 5 1. Prove using mathematical induction that

$$1+2\times 2^{1}+3\times 2^{2}+\ldots+n\times 2^{n-1}=(n-1)2^{n}+1$$
 for $n\in\mathbb{Z}^{+}$ (15 marks)

- 2. (a) Find $\int (2x+1)e^{x^2+x}dx$ by using an appropriate substitution. (5 marks)
 - (b) Find the equation of the curve passing through the point $\left(0, -\frac{1}{4}\right)$, given that the slope to the curve at any point is xe^{2x} . (7 marks)
- 3. The graph of $f(x) = \sin^2 x$ in the interval $0 \le x \le \pi$ is shown in figure 1. Find the area enclosed by the curve f(x) and the *x*-axis. (10 marks)

2020/2021/S2 Page 2 of 5

- 4. The figure below shows the shaded region R bounded by the curves $y = e^x$, $y = 3e^{-x} + 2$ and the y-axis. A is the point of intersection between the two curves.
 - (a) Show that the x-coordinate of A is $\ln 3$.
 - (b) Hence, find the exact volume of the solid generated when R is rotated through one revolution about the x-axis.

5. (a) Given two points A(2, 0, 4), B(1, -1, 6) and a force \vec{F} of 10N acting in the direction of $4\vec{i} + 3\vec{j}$, find the

(i) force vector \vec{F} , (2 marks)

- (ii) work done by the force \vec{F} in moving an object from B to A, distance being measured in metres. (5 marks)
- (b) Explain why work done is maximized when a force is applied in the same direction as the displacement vector. (3 marks)

2020/2021/S2 Page **3** of **5**

SECURITY CLASSIFICATION: Official (CLOSED), NON-SENSITIVE EP0604/MS837M

6. The line L_1 passes through the point (3, -1, 6) and parallel to the line given by

$$x = 1 - \lambda$$
, $y = 2 + \lambda$, $z = 3$. Another line L_2 is given by $\langle 3,2,1 \rangle + \mu \langle 1,1,-\frac{10}{3} \rangle$.

(a) Find the parametric equation of line L_1 .

(4 marks)

(b) Find the point of intersection of line L_1 and line L_2 .

- (6 marks)
- 7. (a) Find the point of intersection of the plane 2x + y z = 0 and the line through (0, -6, 0), given that the line is perpendicular to the plane. (8 marks)
 - (b) Determine, with workings, if the line and the plane are parallel, perpendicular or neither:

$$x = 2 + 2\lambda, y = 3 + 2\lambda, z = 2 + 4\lambda$$

-x + 5y - 2z = 3 (5 marks)

8. Find the range of values of x for each of the following inequalities:

(a)
$$x^3 \ge x(4x+12)$$
 (7 marks)

(b)
$$\frac{|3x-2|}{|x-3|} \ge 1$$
 (8 marks)

~END OF PAPER~

2020/2021/S2 Page **4** of **5**

Answers

1 Step 3 need to prove:
$$1 + 2 \times 2^1 + 3 \times 2^2 + \dots + (n+1) \times 2^n = n2^{n+1} + 1$$

- 2 (a) $e^{x^2+x} + C$ (b) $y = x \frac{e^{2x}}{2} \frac{e^{2x}}{4}$
- $\frac{\pi}{2}$ units²
- 4 (b) $4\pi(2+\ln 3)$ unit³ or 38.9 unit³
- 5 (a) (i) $\vec{F} = 10 \frac{\langle 4,3,0 \rangle}{\sqrt{4^2+3^2}} = \langle 8,6,0 \rangle$ (ii) Work done = $\vec{F} \cdot \vec{S} = 14 \text{ N}$
- 5 (b) When in same direction $\theta = 0$. Work done $= \vec{F} \cdot \vec{S} = |\vec{F}| |\vec{S}| \cos \theta$ and $\cos \theta = 1$ when $\theta = 0$, work done is maximized.

6 (a)
$$x = 3 - t, y = -1 + t, z = 6$$
 (b) $\left(\frac{3}{2}, \frac{1}{2}, 6\right)$

7 (a)
$$(2, -5, -1)$$

(b)
$$\begin{pmatrix} 2 \\ 2 \\ 4 \end{pmatrix} \begin{pmatrix} -1 \\ 5 \\ -2 \end{pmatrix} = -2 + 10 - 8$$
$$= 0$$

The line is perpendicular to the normal of the plane. Hence, the line and the plane is **parallel**.

8 (a)
$$x \ge 6$$
 Or $-2 \le x \le 0$ (b) $\frac{5}{4} \le x < 3$ or $x > 3$ or $x \le -1/2$