Национальный исследовательский университет ИТМО

Факультет программной инженерии и компьютерной техники

Лабораторная работа №7 Работа с системой компьютерной вёрстки ТеX

Выполнил: Бавыкин Роман Алексеевич Группа Р3110 Преподаватель: Балакшин Павел Валерьевич Вариант осн. задания 4 Год выпуска: 1970 + 19 Номер выпуска: 4 Вариант доп. задания: 4

$N_{ar{f o}}$			
итерации	x_1	x_2	x_3
1	1,33	0,73	0,38
2	1,06	0,75	$0,\!47$
3	0,977	0,78	0,498
4	0,954	0,797	0,499
5	0,95	0,799	0,499

Но вычисления на компьютере отличаются от ручных еще и тем, что слишком маленькие числа заменяются нулем, а слишком большие прерывают работу программы. Из-за этого вычисления методом Лобачевского нередко плохо кончаются. Если $|a_n| < 0, 1,$ то уже после 7 итераций становится $a_n = 0$, и далее считать невозможно. Если же $|a_n| > 10$, то после 7 итераций станет $a_n > 10^100$, и работа программы прервется. Для работы с этим надо с самого начала разделить все коэффициенты уравнения (1) на a_n и таким образом сделать этот коэффициент равным единице. Но остается вторая трудность. Если $|x_1| < 0,1$ или $|x_1| > 10$, то такая же неприятность произойдет с коэффициентом a_{n-1} , и получить значение $|x_1|$ станет невозможно.

Чтобы улучшить алгоритм, можно сделать старший корень близким к единице с помощью подстановки x=gX, где g — приближенное значение этого корня. Для этого надо после, скажем, p итераций (мысленно) сделать в уравнении (1) подстановку x=gX, где $g=d^r$, $d=-b_{n-1}/b_n$, $r=1/2^p$. При этом

и в очередном уравнении (3) для Q(t) надо сделать подстановку

$$t = x^{2^p} = q^{2^p} * X^{2^p} = dT (5)$$

а его коэффициенты b_i (уже не мысленно) надо заменить на b_i/d^{n-i} . После этого мы можем продолжать вычисления, но нужно будет накапливать произведение $g_1g_2\dots$ значений чисел $g=d^r$ на очередной итерации, где производилась подстановка, и домножать на него получаемые значения корней x_k .

3. Упражнения для вычисления корней многочленов

а)
$$24 - 50x + 35x^2 - 10x^3 + x^4 = 0$$
; корни: 1, 2, 3, 4.

б)
$$-63,84+124,48x-73,36x^2-4,88x^3+21,61x^4-8,2x^5+x^6=0;$$
 корни: $2,1;\ 2;\ 2;\ 2;\ 2;\ -1,9.$

в)
$$90 + 19x + x^2 = 0$$
; корни: -9 , -10 .

г)
$$0,009-0,19x+x^2=0$$
; корни: $0,1$; $0,09$.

д)
$$-0,33264+0,4278x+1,129x^2-1,35x^3-0,9x^4+x^5=0;$$
 корни: $1,1;$ $-0,9;$ $0,8;$ $-0,7;$ $0,6.$

Дополнительные вопросы

- Как преобразовать уравнение (2), чтобы минимальный (по модулю) корень превратить в максимальный?
- 2. Тот же вопрос для корня, находящегося вблизи заданного значения x_0 .

"Квант" улибостач

Как не слушать оратора

Ни один оратор, какова бы ни была его энергия, не имеет шансов победить сопливость слушателей... Немногие из нас имеют мужество спать открыто и честно во время официальной речи. После тщательного исследования этого вопроса я могу представить на рассмотрение читателя несколько оригинальных методов, которые до сих пор не публиковались.

Усядьтесь в кресло как можно глубже, голову склоните слега вперед (это освобождает язык, он висит свободно, не затрудняя дыхание). Громкий храп выводит из себя даже самого смиренного оратора, поэтому главное — избегайте храпа, все дыхательные пути должны быть свободны. Трудно дать четкие инструкции по сохранению во сне равновесия. Но чтобы голова не моталась из стороны в сторону, устройте ей из двух рук и туловища прочную опору в форме треножника... Так у вас и голова не упадет на грудь, и челюсть не отвалится. Закрытые глаза следует прятать в ладонях, при этом пальцы должны сжимать лоб в гармошку. Это производит впечатление напряженной работы мысли и несколько озадачивает оратора. Возможны выкрики во время кошмаров, но на этот риск придется идти. Просыпайтесь медленно, оглянитесь и не начинайте аплодировать сразу. Это может оказаться невпопад. Лучше уж подождите, пока вас разбудят заключительные аплодисменты.

> У.Б. Бин (Из книги "Физики продолжают шутить"

№			
итерации	x_1	x_2	x_3
1	1,33	0,73	0,38
2	1,06	0,75	0.47
3	0.977	0,78	0,498
4	0.954	0,797	0,499
5	0,95	0,799	0,499

Но вычисления на компьютере отличаются от ручных еще и тем, что слишком маленькие числа заменяются нулем, а слишком большие прерывают работу программы. Из-за этого вычисления по методу Лобачевского нередко плохо кончаются. Если $|a_n| < 0.1$, то уже после 7 итераций становится $a_n=0$, и далее считать невозможно. Если же $|a_n| > 10$, то после 7 итераций станет $a_n > 10^{100}$, и работа программы прервется. Для борьбы с этим надо с самого начала разделить все коэффициенты уравнения (1) на а и таким образом сделать этот коэффициент равным единице. Но остается вторая трудность. Если $|x_1|$ < 0,1 или $|x_1| > 10$, то такая же неприятность произойдет с коэффициентом a_{n-1} , и получить значение $|x_1|$ станет невозможно.

Чтобы улучшить алгоритм, можно сделать старший корень близким к единице с помощью подстановки x=gX, где g — приближенное значение этого корня. Для этого надо после, скажем, р итераций (мысленно) сделать в уравнении (1) подстановку

 $x\!=\!gX$, где $g\!=\!d'$, $d\!=\!-b_{n-1}/b_n$, $r\!=\!=\!1/2^p$. При этом и в очередном уравнении (3) для Q(t) надо сделать подстановку

$$t = x^{2^p} = g^{2^p} X^{2^p} = dT.$$

а его коэффициенты b_i (уже не мысленно) надо заменить на b_i/d^{n-i} . После этого мы сможем продолжать вычисления, но нужно будет накапливать произведение g1g2... значений чисел $g = d^r$ на очередной итерации, гле производилась подстановка, и домножать на него получаемые значения кор-

3. Упражнения для вычисления корней многочленов а) $24-50x+35x^2-10x^3+x^4=0$;

корни: 1, 2, 3, 4. 6) $-63,84+124,48x-73,36x^2-4,88x^3+21,61x^4-8,2x^5+x^6=0$; корни: 2,1; 2; 2; 2; 2; -1,9. в) $90+19x+x^2=0$; корни: -9,

г) $0,009-0,19x+x^2=0$; корни: 0,1; 0.09.

д) $-0.33264+0.4278x+1.129x^2-1.35x^3-0.9x^4+x^5=0;$ корни: 1,1; -0.9; 0,8; -0.7; 0,6.

Дополнительные вопросы Как преобразовать уравнение (2), чтобы минимальный (по модулю) корень превратить в максимальный?

2. Тот же вопрос для корня, находяшегося вблизи заданного значения хо.

"Квант" улыбостая

Как не слушать оратора

Ни один оратор, какова бы ни была его энергия, не имеет шансов победить сонливость слушателей... Немногие из нас имеют мужество спать открыто и честно во время офи-циальной речи. После тща-тельного исследования этого вопроса я могу представить на рассмотрение читателя нена рассмотрение читателя не-сколько оригинальных мето-дов, которые до сих пор не публиковались.

Усядьтесь в кресло как можно глубже, голову скло-ните слегка вперед (это освобождает язык, он висит свободно, не затрудняя дыха-ния). Громкий храп выводит из себя даже самого смиренного оратора, поэтому глав-ное — избегайте храпа, все дыхательные пути должны быть свободны. Трудно дать четкие инструкции по сохранению во сне равновесия. Но чтобы голова не моталась из стороны в сторону, устрой-те ей из двух рук и туловища прочную опору в форме тре-ножника... Так у вас и голова

не упадет на грудь, и челюсть не отвалится. Закрытые глаза не отвалится. Закрытые глаза следует прятать в ладонях, при этом пальцы должны сжимать лоб в гармощку. Это производит внечатление на-пряженной работы мысли и несколько озадачивает оратора. Возможны выкрики во время кошмаров, но на этот риск приходится идти. Просыпайтесь медленно, огляни-тесь и не начинайте аплодировать сразу. Это может ока-заться невпопад. Лучше уж подождите, пока вас разбудят заключительные менты.

У.Б.Бин (Из книги «Физики продолжают шутить»)

53