Fundamentals of the analysis of neuronal oscillations

Alexandre Gramfort alexandre.gramfort@telecom-paristech.fr

based on slides from Robert Oostenveld

Separating sources

- Use the temporal aspects of the data at the channel level
 - ERF latencies
 - ERF difference waves
 - Filtering the time-series
 - Spectral decomposition
- Use the spatial aspects of the data

Brain signals contain oscillatory activity at multiple frequencies

Outline

- Spectral analysis: going from time to frequency domain
- Issues with finite and discrete sampling
- Spectral leakage and (multi-)tapering
- Time-frequency analysis

A background note on oscillations

Spectral analysis

- Deconstructing a time domain signal into its constituent oscillatory components, a.k.a.
 Fourier analysis
- Using simple oscillatory functions: cosines and sines

Spectral decomposition: the principle

Spectral decomposition: the power spectrum

Spectral analysis

- Deconstructing a time domain signal into its constituent oscillatory components, a.k.a. Fourier analysis
- Using simple oscillatory functions: cosines and sines
- Express signal as function of frequency, rather than time
- Concept: linear regression using oscillatory basis functions

Time-frequency relation

1 s

Frequencies:

(0) 1 2 3 4 5 6 .. Hz

Time window:

0.2 s

Frequencies:

(0) 5 10 15 20 .. Hz

Time-frequency relation

Sampling freq 1 kHz
Time window 1 s

Frequencies:

(0) 1 2 ... 499 500 Hz

Sampling freq 400 Hz Time window 0.25 s

Frequencies:

(0) 4 8... 196 200 Hz

Spectral analysis

- Deconstructing a time domain signal into its constituent oscillatory components, a.k.a. Fourier analysis
- Using simple oscillatory functions: cosines and sines
- Express signal as function of frequency, rather than time
- Concept: linear regression using oscillatory basis functions
- Each oscillatory component has an amplitude and phase
- Discrete and finite sampling constrains the frequency axis

Goal and challenges

Spectral leakage and tapering

Spectral leakage

Spectral leakage and tapering

Multitapers

Multitapered spectral analysis

Tapering in spectral analysis

Tapering in spectral analysis

Multitapered spectral analysis

Multitapered spectral analysis

Sub summary

- Spectral analysis
 - Decompose signal into its constituent oscillatory components
 - Focused on 'stationary' power
- Tapers
 - Boxcar, Hanning, Gaussian
- Multitapers
 - Control spectral leakage/smoothing

Frequency (Hz)

Time (s)

Frequency (Hz)

Time (s)

Evoked vs. induced activity

Noisy signal \Rightarrow many trials needed

The time-frequency plane

Time versus frequency resolution

Sub summary

- Time frequency analysis
 - Fourier analysis on shorter sliding time window
- Evoked & Induced activity
- Time frequency resolution trade off

Wavelet analysis

- Popular method to calculate time-frequency representations
- Is based on convolution of signal with a family of 'wavelets' which capture different frequency components in the signal
- Convolution ~ local correlation

see tfr_morlet function

Wavelets

Convolution

Wavelet analysis

- Wavelet width determines time-frequency resolution
- Width function of frequency (often 5 cycles)
- 'Long' wavelet at low frequencies leads to relatively narrow frequency resolution but poor temporal resolution
- 'Short' wavelet at high frequencies leads to broad frequency resolution but more accurate temporal resolution

Summary

- Spectral analysis
 - Relation between time and frequency domains
 - Tapers
- Time frequency analysis
 - Time vs frequency resolution
- Wavelets
- now hands on !