

Faculty of Technology and Engineering Chandubhai S Patel Institute of Technology

Department of Computer Science & Engineering

PRACTICAL - 2

Roll no.: Date: / /

Academic Year	:	2024-25	Semester	:	4
Course code	:	CSE207	Course name		Design and Analysis of Algorithms

AIM:

- 2.1 Implement and analyze the best case, average case and worst case of the algorithms for problems given below.
- 2.1(a) Given a **sorted array** of integers, find the **first occurrence** of a target element **x**. If the target element is not found, return **-1**. Explore alternatives of searching such elements and analyze.
- 2.1(b) Given an array of integers, use **Insertion Sort** algorithm to sort the array in ascending order.

2.1.1 (a) Data table: linear search algorithm

<u>Input</u>	Best Case	<u>Average Case</u>	Worst Case
_	1	2	5
5			
	1	5	10
10			
	1	7	15
15			
	1	10	20
20			
	1	12	25
25			

2.1.1 (b) Line Chart: linear search algorithm

Array Size	Best	Average	Worst
5	1	2	5
10	1	5	10
15	1	7	15
20	1	10	20
25	1	12	25
Equation	y=1	y=0.5x-0.3	y=x
Time Complexity	O(n)	O(n)	O(n)

2.1.2 (a) Data table: binary search algorithm

<u>Input</u>	Best Case	Average Case	Worst Case	
	1	2	3	
5				
	1	3	4	
10				
	1	3	4	
15				
	1	4	5	
20				
	1	4	5	
25				

2.1.2 (b) Line Chart: binary search algorithm

Array Size	Best	Average	Worst
5	1	2	3
10	1	3	4
15	1	3	4
20	1	4	5
25	1	4	5
Equation	y=1	y=1.2ln(x)-0.03	y=1.2ln(x)+0.96
Time Complexity	O(n)	O(logn)	O(logn)

2.2.1 (a) Data table: insertion sort algorithm

<u>Input</u>	Best Case	Average Case	Worst Case	
	4	10	15	
5				
	9	32	55	
10				
	14	67	120	
15				
	19	115	210	
20				
	24	175	325	
25				

2.2.2 (b) Line Chart: insertion sort algorithm

Conclusion:

Faculty of Technology and Engineering Chandubhai S Patel Institute of Technology

Department of Computer Science & Engineering

Performa for PRACTICAL - 2

Roll no.:				Date: / /
Academic Year	:	2024-25	Semester	 4
Course code	:	CSE207	Course name	 Design and Analysis of Algorithms

AIM:

- 2.1 Implement and analyze the best case, average case and worst case of the algorithms for problems given below.
- 2.1(a) Given a **sorted array** of integers, find the **first occurrence** of a target element **x**. If the target element is not found, return **-1**. Explore alternatives of searching such elements and analyze.
- 2.1(b) Given an array of integers, use **Insertion Sort** algorithm to sort the array in ascending order.

Answer the following Questions:

1. How does insertion sort outperform selection sort when the elements are already sorted? Justify your answer.

2. Can insertion comparison, n	sort be optimized using number of shifts and overall	binary search in time complexity?	terms of	number	of
Grade / Marks		Sign of Lab Teac	her with	Date	