Nome: João Victor Maia Cordeiro

Email: jvmc@cesar.school

Dataset Utilizado: Vehicle Dataset

workflow do modelo de treinamento (Regressão Linear)

Figura 1- Workflow completo

Pré Processamento dos dados

Como etapa inicial, realizei o tratamento do dataset transformando as variáveis categóricas em numéricas. Para isso, utilizei o nó "Category to Number", que converte os valores das colunas categóricas em números inteiros.

Após o tratamento, foi possível gerar a **matriz de correlação**. Avalio que não há correlações muito fortes entre as variáveis, mas existe uma correlação mediana (0,414) entre o **ano do carro** e o **preço de venda**, o que indica que veículos mais novos tendem a apresentar preços mais elevados.

RowID year Number (Float)	selling_price Number (Float)	km_driven Number (Float)	fuel (to number) Number (Float)	seller_type (to number) Number (Float)	transmission (to num Number (Float)	owner (to number) Number (Float)
year 1	0.414	-0.42	0.09	0.182	0.144	-0.393
selling, 0.414	1	-0.192	0.227	0.241	0.53	-0.19
km_dri -0.42	-0.192	1	0.275	-0.187	-0.12	0.276
fuel (to 0.09	0.227	0.275	1	0.011	0.028	0.015
seller_t 0.182	0.241	-0.187	0.011	1	0.2	-0.209
transm 0.144	0.53	-0.12	0.028	0.2	1	-0.075
owner0.393	-0.19	0.276	0.015	-0.209	-0.075	1

Configuração do modelo em Keras

- **Input Layer**: defini o *shape* igual a 6, já que o dataset, após o préprocessamento, possui 7 colunas, sendo uma delas a variável alvo (preço de venda).
- Dense Layers: utilizei a função de ativação ReLU, recomendada como padrão inicial, configurando duas camadas densas, uma com 32 units e outra com 64 units.
- Output Layer: a função de ativação escolhida foi Linear, adequada para problemas de regressão, já que o objetivo do modelo é prever um valor contínuo (preço do carro). O número de features de saída foi definido como 1, correspondendo à variável que será prevista.

Treinamento do modelo

- **Input**: foram utilizadas todas as variáveis preditoras, exceto a variável alvo (selling_price).
- Output: apenas a variável selling_price foi considerada.
- Configurações de treinamento: defini 100 epochs e um batch size de 5.
- Função de otimização: utilizei o Adam, por ser recomendado.
- Função de custo: Defini o Mean Squared Error (MSE) por ser apropriado para modelos de regressão linear.

Resultados

Após realizar algumas mudanças de parâmetros, cheguei ao resultado final do modelo com as variáveis descritas acima. Ao avaliar a predição e as métricas de avaliação, percebo que o modelo não possuiu uma boa perfomance de previsão.

o Valor de R^2 está razoável, porém ao avaliar MSE e MAE nota-se que o modelo está com grande desvio no valor previsto e o valor real de venda. Mesmo com mudanças nos parâmetros não consegui melhorar os resultados

RowID	predition_selling_price Number (Float)
R^2	0.627
mean absolute error	185,391.47
mean squared error	125,333,386,814.272
root mean squared error	354,024.557
mean signed difference	7,382.046
mean absolute percentage error	0.478
adjusted R^2	0.627