Predicting Baseball Performance

Undergraduates: Malik Scott, Jessica Ho, Jack Lichtenstein & Amber Potter Project Leads: Phuc Nguyen, Sicong Liu, Greg Appelbaum, Tim Sell & Marc Richard

Overview

This project aims to determine if assessment data collected from baseball players participating in the USA Baseball Prospect Development Pipeline (PDP) predicts future batting performance. Assessment data includes measures of visual skills and physical abilities. These are compared to collegiate game statistics or batting propensity data through hierarchical regression analyses to inform scouts about the likely production of these developmental prospects. The final product is an application that uses an athlete's assessment results to produce performance summary graphs for the individual, compared to other athletes and inferential models for the relationships between assessments and performance.

Data

Assessments used as Predictor Variables:

- Player demographics: age, height, weight, position
- PDP athletic measurements: general athleticism/agility
- RightEye vision assessments: vision and processing

Performance Statistics used as Outcome Variables:

- College NCAA/CCBL game statistics: AVG, OPS, Weighted OBP, Strikeout Rate, Walk Rate
- Trackman pitch-level data: Z-Swing Propensity, O-Swing Propensity, Contact Percent, Average Launch Angle, Average Distance, Average Hit Velocity

Modeling

Fit separate models for each outcome variable described in modeling results table below, separately for college stats and trackman datasets

Hierarchical Linear Regression:

• Used to observe whether adding variables significantly improves a model's ability to predict outcome variables

Modeling Steps

Outcome ~ 1	
Outcome ~ 1	+ Demographics
Outcome ~ 1	+ PDP
Outcome ~ 1	+ RE
Outcome ~ 1	+ Demographics + PDP
Outcome ~ 1	+ Demographics + RE
Outcome ~ 1	+ PDP + RE
Outcome ~ 1	+ Demographics + PDP + RE

Modeling Ro	esults
-------------	--------

CollegeStats Outcome Variables		Trackman Outcome Variables		
Outcome Variables	Results	Outcome Variables	Results	
AVG	NS	Z-Swing	NS	
OPS	Significant Baseline Model	O-Swing	NS	
Weighted OBP	NS	Contact %	NS	
Strikeout Rate	Significant Baseline Model	Average Launch Angle	Significant Baseline Model	
Walk Rate	NS	Average Distance	Significant Baseline Model	
		Average Hit Velocity	Significant Baseline Model	

Best Model for Strikeout Rate Strikeout Rate ~ 1 + Demographics								
Term	Estimate	P.Value	Terms	Estimates	P.Values			
(Intercept)	-0.091	0.588	Position Stats Dh	0.008	0.794			
Position Stats Inf	-0.036	0.007	Position Stats Of	-0.032	0.029			
Position Stats P	-0.040	0.571	Height In	0.004	0.136			
Weight	0.001	0.039	Ncaa	-0.113	0.000			

Regularized Regression:

Ridge and Lasso

- Prevent overfitting by shrinking coefficients to zero
- Results did not show additional significance

Measuring Vision and Athleticism

Overview:

PDP athletic assessments measure players' movement and decision making using proximity sensors. Examples of players performing the 30 yard sprint and the Green Box test are shown below and the full list of tests can be found <u>here</u>¹.

RightEye vision tests are quantitative eye-tracking assessments that measure functional vision skills and include; dynamic visual acuity, smooth pursuit and decision making tasks, among others.

Example PDP Assessments

Multiple Imputation:

MICE Predictive Mean Matching

Observations:

Evaluated data for normalcy, multicollinearity and sensibility. Found good adherence with,

- Differences in PDP scores by age group
- Differences in RightEye scores by year

Measuring Batting Performance

Defining a Strike Zone:

- Signal Detection Theory: helps differentiate variability d' and c
- Consistent with calls from umpires

Plate Discipline and Coordination:

- Contact%: Number of pitches on which contact was made / swings
- O-Swing%: Swings at pitches outside zone / pitches outside zone
- Z-Swing%: Swings at pitches inside zone / pitches inside zone

Observations and Discussion

While several demographic variables predicted batting performance,

• Limited number of observations, included few pitches faced

• Interesting variables missing without ability to impute

• Disparities between variables according to year

none of the assessment variables did

• Imputation to account for missing data

Findings:

Limitations:

Future Works:

Repeat with more data

Modeling Plate Discipline:

GAMM Models: models Z-Swing, O-Swing, and Contact percentages

• Accounts for varied pitch difficulty and allows for non-linearity

College Performance Statistics:

In addition to the advanced metrics calculated for the trackman data, we are also interested in analyzing game statistics like AVG, OPS, walk and strikeout rates for college players

Compiled Variables form Two Datasets:

College Stats

- 195 players
- Filtered for > 50 AB
- Removed outliers > 3 SDs

Trackman

- 98 players
- Filtered for > 40 pitches faced
- Removed outliers > 3 SDs

Shiny Application

• App can be found <u>here</u>² and shows individual compared to other athletes, filtered by age, position, player ID, etc.

• Cross-sectional and longitudinal analyses

Acknowledgements and References

Special thanks to Drew Pomeroy, Matt Pajak, Jules Johnson, and Russell Hartford from USA Baseball and to RightEye for supplying our data and expert domain knowledge. Thanks to Paul Bendich, Gregory Herschlag, and Ariel Dawn for organizing this program and making this opportunity possible.

If you're viewing this in person, the full link is: https://jacklich10.shinyapps.io/USABaseball