riganti

Cloud-Native in a Day

Tomáš Herceg

CEO @ RIGANTI

Co-founder of Update Conference

Microsoft MVP

tomas.herceg@riganti.cz

@hercegtomas

www.tomasherceg.com/blog

Proč cloud-native?

- Pohodlnost pro nás vývojáře
 - "Jakou infrastrukturu budete potřebovat?"
 - "Pošlete nám ZIP balíček s aplikací, my si to nasadíme a otestujeme"
 - "Nemůžeme použít Mongo DB, naši admini tomu nerozumí"
- Bezpečnost
 - Cloudové platformy mají zkušené týmy
 - Díky množství aplikací jsou efektivnější
- Spolehlivost
 - Většina služeb má dostupnost >99,9%
 - Geografická redundance

Agenda

10:00 – 11:00
 Kontejnery v Azure

11:15 – 12:15
 Azure Cosmos DB

13:00 – 15:00
 DEMO: Nasazení aplikace do Azure pomocí CI/CD

Co je kontejner?

Vlastnosti kontejnerů

- Nižší paměťové nároky
- Jednotný způsob deploymentu bez technologie
- Rychlý start
- Snapshot v libovolném okamžiku
- Stejné prostředí jako v produkci
 - "Works on my machine" syndrom
- Copy on write a "vrstvy" filesystému

Kdy kontejnery použít

- Microservices architektura
 - Ne vždy chceme nasazovat vše
 - Různé výkonnostní nároky a škálování
- Zjednodušení nasazování
 - Vyšší spolehlivost, méně chyb

Kdy kontejnery použít

- Instalace a distribuce aplikací
 - Jak složité bylo napsat instalátor k SQL Serveru?
- Mnoho dalších scénářů se objeví časem
- Konzistentní buildy
 - Stáhnete zdrojáky od kolegy a jde to zkompilovat na první dobrou

Kontejnery v Azure

- Azure App Service (Linux)
 - Jeden nebo několik málo kontejnerů
 - Před kontejnerem je reálný webserver pokročilá konfigurace
- Azure Container Instance
 - Samostatně běžící kontejner, nebo skupina kontejnerů
 - Různá omezení (síťování mezi kontejnery apod.)

Kontejnery v Azure

- Azure Kubernetes Service
 - Vhodné pro velké aplikace postavené na kontejnerech
 - Standardní Kubernetes cluster hostovaný v Azure
 - Různé extensions pro Azure-specific funkcionality
 - Definujete si počet a parametry worker nodů
 - Azure řeší management clusteru, upgrady atd.

DEMO

Kontejnerizace .NET aplikace

Kubernetes

Pod

- Samostatně nasaditelná jednotka
- Má svoji IP adresu
- Typicky obsahuje jeden kontejner
 - Může jich být víc, pokud patří k sobě
 - např. aplikace + proxy server
- Bezstavový, může být kdykoliv přesunut, zabit nebo nahrazen
 - Přijde o změny ve filesystému, které udělal
- Definuje labels
 - Dvojice klíč=hodnota

Service

- "Proxy" pro skupinu podů
- Selector
 - Sada labelů definuje, které pody do služby patří
- Služba je dostupná pod svým názvem v DNS
 - Load balancuje traffic mezi svými pody

Ingress

- Vstupní "proxy"
- Routuje HTTP požadavky na konkrétní služby
 - /api do služby A
 - /backend do služby B
 - cokoliv jiného do služby C
 - •••
- Ingress controller je typicky nginx
 - Pokročilé možnosti konfigurace

Vytvoření clusteru

```
# instalace Azure CLI - vyžaduje Chocolatey
choco install azure-cli -y
# připojení k Azure
az login
az account set --subscription "subscription name"
# založení clusteru
az aks create --resource-group resource_group --name cluster_name \
  --node-count 1 --node-vm-size Standard B2ms --node-osdisk-size 32 \
  --generate-ssh-keys --location westeurope --kubernetes-version xxx
```


Připojení ke clusteru

```
# otevře browser s portálem Kubernetes
az aks browse --resource-group resource_group --name cluster_name
# namapuje kubectl na Azure cluster
az aks get-credentials --resource-group resource_group --name
cluster name
# práce s kubectl
kubectl get pods
kubectl apply -f file.yaml
```


Agenda

10:00 – 11:00
 Kontejnery v Azure

11:15 – 12:15Azure Cosmos DB

13:00 – 15:00
 DEMO: Nasazení aplikace do Azure pomocí CI/CD

Úvod

- Globálně distribuovaná, vícemodelová databáze
- Podpora různých API
- Garantovaná nízká latence
- SLA
- Indexy spravovány na pozadí
 - Lze definovat i manuálně
- Multi-master writes

- SQL (Document DB)
- Mongo DB
- Graph (Gremlin)
- Table (Azure Table Storage)
- Cassandra

 API vybíráte při vytváření CosmosDB accountu

Základní poznatky

- Je to dokumentová databáze
 - Cosmos DB se vyvinula z Azure Document DB
- Efektivita dotazů má zásadní vliv na cenu
 - Rychlé (= levné) hledání podle primárního klíče
 - Rychlé (= levné) hledání v rámci partition
 - Jeden ze sloupců můžete nastavit jako partition key

Propustnost

- Jednotka RU/s
 - Každý dotaz má jinou náročnost
 - Lze zjistit v portálu
 - Čtení
 - 1kB dokument = 1 RU
 - 100kB dokument = 10 RU
 - Zápis
 - 1kB dokument = 5 RU
 - 100kB dokument = 50 RU
- Lze provisionovat na databázi (sdílené RU/s) nebo na konkrétní kontejner

Ceny

- Standard provisioned throughput
 - Kolik si navolite, tolik budete mit
 - Minimum 400 RU/s
 - Cca 23\$ / měsíc
 - Dříve bylo nutné mít 400 RU/s pro každou kolekci, ale lze je již sdílet
 - Storage
 - Cca 0.25\$ / GB
 - Platí se za každý region (pokud chcete škálovat)
 - V případě multi-master writes, platí se víc (cca 2x tolik)

Ceny

- Autoscale provisioned throughput
 - Minimálně 4000 RU/s
 - Automaticky škáluje mezi 10 100% nastavených RU/s
 - Platíte jen za to, co využijete
 - Cena
 - 4000 RU/s průměrné využití 10% 35\$
 - 4000 RU/s průměrné využití 100% 350\$
- Free tier
 - Prvních 400 RU/s a 5GB místa je zdarma

DEMO

Interakce s Cosmos DB z .NETu

Kolik stojí dotazy

- Dotazování podle primárního klíče je levné
 - 2-3 RU (záleží na velikosti dokumentu, indexech atd.)
- Dotazování v rámci jedné partition
 - Relativně levné, obvykle jednotky RU
 - Záleží na velikosti partitions
- Dotazování napříč partitions
 - Většinou desítky RUs

Denormalizace

- V relačních databázích se typicky dodržují normální formy
 - Motivace
 - Ušetření místa na disku
 - Nejsou třeba hromadné updaty
 - Je jednodušší zajistit transakčnost
 - Nevýhody
 - Složité (a pomalé) dotazy s mnoha joiny
 - Čtení je typicky mnohem častější než zápis

Denormalizace

- Cosmos DB je stavěna na globální použití a multi-master writes
 - Tyto požadavky jdou proti sobě
- Datový model je jednodušší
 - JOINy se v podstatě nedělají
 - Dokumenty by měly obsahovat vše, co bude potřeba
 - Data jsou uložena v několika různých podobách
 - Klidně jen dočasně (TTL)
 - Eventuální konzistence

Change Feed

TrainPositions

TrainId	Date	X	Υ
Vlak A	12:34:56.322	12.23456	23.45678
Vlak B	12:34:56.467	54.45878	44.66872
Vlak A	12:34:57.497	12.23454	23.45682
Vlak B	12:34:57.601	54.45879	44.66875

Trains

TrainId	X	Y
Vlak A	12.23456	23.45678
Vlak B	54.45878	44.66872

Change Feed

TrainPositions

TrainId	Date	X	Υ
Vlak A	12:34:56.322	12.23456	23.45678
Vlak B	12:34:56.467	54.45878	44.66872
Vlak A	12:34:57.497	12.23454	23.45682
Vlak B	12:34:57.601	54.45879	44.66875

Trains

TrainId	X	Y
Vlak A	12.23454	23.45682
Vlak B	54.45879	44.66875

Agenda

10:00 – 11:00
 Kontejnery v Azure

11:15 – 12:15
 Azure Cosmos DB

13:00 – 15:00

DEMO: Nasazení aplikace do Azure pomocí CI/CD

Co je DevOps?

- Lidé
- Procesy
- Nástroje
- "Continuous Delivery"
- Zkrácení času k uvedení nové funkcionality

K čemu DevOps?

- Lepší feedback od uživatelů a z produkčního prostředí
- Boří se hranice mezi vývojáři a IT správci
- Snížení chybovosti release
- "Dokumentace release procesu"
- Víte, co se s aplikací děje (monitoring)

Součásti Azure DevOps

Azure Pipelines

- Kontinuální integrace a nasazení
- Podpora vlastních i cloudových build agentů
- Build navázaný na každý commit
- Release management s podporou vice prostředí

Azure Boards

- Kanban boardy, backlog, týmové dashboard
- Podpora různých metodologií
 - Agile
 - Scrum
 - •
- Možnosti customizace

Azure Repos

- Správa verzí zdrojového kódu
 - Git
 - TFVC (Team Foundation Server)
- Pokročilé nástroje pro pull requesty a integrace

Azure Artifacts

- Správa interních balíčků pro vývojáře
 - NuGet
 - Npm
 - Maven
- Snadné sdílení kódu napříč projekty

Build

Release

DEMO

Nasazení aplikace do Kubernetes pomocí Azure DevOps

Co byste si měli odnést

- Kontejnery umožňují jednotný typ deploymentu aplikace
 - Bez ohledu na programovací jazyk, runtime nebo knihovny
- V microservices aplikacích se SQL databáze ne vždy hodí
 - Dokumentové databáze vyžadují jiný způsob přemýšlení a návrhu
- Kubernetes je pokročilá platforma pro kontejnerová řešení
 - Složité, ale tooling kolem toho se neustále vyvíjí

Nebojte se toho!

rlganti

Q&A

Tomáš Herceg

CEO @ RIGANTI

Co-founder of Update Conference

Microsoft MVP

tomas.herceg@riganti.cz

@hercegtomas