Corso di Laurea in Informatica Calcolo Numerico Esame del 26/7/2012

- 1. Si supponga di dover calcolare $f(x) = e^{(1+x)^2 (1-x)^2}$ per piccoli valori di x.
 - (a) Determinare (e discutere) il condizionamento del problema del calcolo di f(x).
 - (b) Determinare il condizionamento della funzione esponenziale.
 - (c) Supponendo che la funzione esponenziale possa essere calcolata con un errore relativo maggiorato dalla precisione di macchina, studiare l'errore di arrotondamento nei seguenti algoritmi per il calcolo di f(x):

(c1):
$$x \mapsto t1 := (1+x)^2, t2 := (1-x)^2 \mapsto s := t1-t2 \mapsto y1 := e^s$$

(c2):
$$x \mapsto p := e^x \mapsto y2 := p^4$$

(c3):
$$x \mapsto t1 := (1+x)^2, \ t2 := (1-x)^2 \mapsto n := e^{t1}, \ d := e^{t2} \mapsto y3 := n/d$$

2. Determinare una riflessione di Householder che porti il vettore $\begin{pmatrix} 1 \\ 0 \\ -1 \end{pmatrix}$ nella forma $\begin{pmatrix} q \\ 0 \\ 0 \end{pmatrix}$, con q opportuno.

3. Determinare i parametri α, β, γ della funzione $g(x)=\alpha+\beta x^2+\gamma x^4$ che approssima ai minimi quadrati i seguenti dati:

4. Calcolare gli autovalori e le relative molteplicità algebriche e geometriche della matrice 4×4

$$A = \left(\begin{array}{cccc} 2 & 0 & -1 & 0 \\ 0 & 1 & 0 & 0 \\ -1 & 0 & 2 & 0 \\ 0 & 0 & 0 & 1 \end{array}\right).$$

Studiare la convergenza del metodo delle potenze applicato alla matrice A.

5. Si considerino la matrice
$$A=\begin{pmatrix}1&1&3/2\\1&1&2\\1&4/3&3\end{pmatrix}$$
 e il vettore $b=\begin{pmatrix}1\\0\\-1\end{pmatrix}$.

- (a) Sapendo che $A^{-1}=\begin{pmatrix} -2 & 6 & -3 \\ 6 & -9 & 3 \\ -2 & 2 & 0 \end{pmatrix}$, calcolare i condizionamenti di A rispetto alle norme $\|\cdot\|_{\infty}$ e $\|\cdot\|_{1}$.
- (b) Considerare le soluzioni dei sistemi lineari Ax=b e $A\tilde{x}=\tilde{b}$, dove \tilde{b} è tale che $\|\tilde{b}-b\|_1 \leq 10^{-3}$. Calcolare una maggiorazione per l'errore $\|\tilde{x}-x\|_1$.