

Introduction to NGS Alignment

Presented by

Paula Moolhuijzen | Centre for Crop Disease Management (CCDM), Curtin University, Perth

Contributors:

Trainers BPA-CSIRO training platform and EMBL-EBI

Outline

- What is short read alignment?
- Keep in mind
 - Different Sequencing Purposes and alignment
- Formats & tools
- Understand current challenges
- Hands-on session on short read alignment

Short Read Alignment (I)

From FASTQ format to meaningful alignment

Short Read Alignment (II)

GOAL: Given a reference sequence and a set of short reads, align each read to the reference sequence

Reference Sequence

GCTGATGTGCCGCCTCACTTCGGTGG

Short-reads

CTGATGTGCCGCCTCACTTCGGTGGT

TGATGTGCCGCCTCACTACGGTGGTG

GATGTGCCGCCTCACTTCGGTGGTGA

GCTGATGTGCCGCCTCACTACGGTG

GCTGATGTGCCGCCTCACTACGGTG

Short Read Alignment (II)

GOAL: Given a reference sequence and a set of short reads, align each read to the reference sequence.

Reference Sequence

GCTGATGTGCCGCCTCACTTCGGTGG

Short-reads

CTGATGTGCCGCCTCACTTCGGTGGT
TGATGTGCCGCCTCACTACGGTGGTG
GATGTGCCGCCTCACTTCGGTGGTGA
GCTGATGTGCCGCCTCACTACGGTG
GCTGATGTGCCGCCTCACTACGGTG

Reference sequence availability (?)

No -> *de novo* assembly (see Day 3)
Yes -> use available reference sequences

Different Sequencing Purposes and alignment

- Whole genome sequencing/resequencing
 - Align genomic DNA to reference genome
 - often no reference sequence de novo assembly (Day 3)
- ChIP-Seq (protein-DNA associations)
 - Aligning genomic DNA to a reference genome
- RNA-Seq (Transcriptome sequencing)
 - Can align RNA sequence to a reference genome (spliced alignment, Day 2) or a reference transcriptome

Keep in mind

- Allow for mismatches when aligning reads to a reference sequence
 - Number of expected mismatches (1~2 per read)
 - Sequencing machines are not infallible
 - Species polymorphism
 - Distinguish between SNPs and sequencing errors
- Different types of sequencing errors across multiple platforms
 - Insertion and deletion errors at homopolymers (454)
 - Unpredictable distributions of low quality calls (Illumina)

Short-read Aligners

PROGRAM	ALGORITHM	LONG READ	GAPPED	PAIR- END	SPLICED
BOWTIE	BWT	NO	NO	YES	NO
BWA	BWT	YES	YES	YES	NO
MAQ	HASH (read)	NO	NO	YES	NO
SOAP	HASH (ref.)	NO	YES	YES	NO
TopHat	BWT	YES	YES	YES	YES
GSNAP	HASH (read)	YES	YES	YES	YES

STAR fast RNA-Seq aligner

https://omictools.com/read-alignment-category

Alignment Data Formats

- Alignment inputs
 - FASTA format (Reference) *.fa
 - FASTQ format (Raw Read Sequence)*.fq.gz
- Alignment outputs
 - SAM format (Alignment, text) *.sam
 - BAM format (SAM alignment, compressed binary) *.bam

http://samtools.sourceforge.net/SAM1.pdf

SAM a tab-delimited text format

The Sequence Alignment/Map (SAM) format is a generic nucleotide alignment format that describes the alignment of query sequences or sequencing reads to a reference sequence or assembly.

- Flexible store information (default format for aligners)
- Simple to generate or convert different formats
- Compact in file size;
- Works on streaming Memory
- Allows indexing by genomic position to efficiently retrieve all reads aligning to a locus.

SAM is a bit slow to parse; so there is a binary equivalent to SAM, called BAM.

SAM format – header section

- SAM file header lines start with @
- @ is followed by TAGs of Header fields in TYPE:VALUE pairs

@RG ID:RUN_LANE CN:Institute LB:LibraryName

PL:Technology PU:RunName SM:Sample

Example:

@RG ID:61DP1AAXX 1 CN:AGRF LB:Rameses

PL:ILLUMINA

PU: 61DP1AAXX.1 **SM**: HOLAUSM000A00009637

SAM format - Alignment section

Alignment section- 11 tab separated mandatory fields

HWI-HI83:6:1101:1210:1974#0/1 99 chr20 287833 30 10M1D25M = 287993 195 \
ACCTATATCTTGGCCTTGGCCGATGCGGCCTTGCA 282D2DDDDDDDDDDE2E2:<A4CFC2CFB3A2F2C

```
1. QNAME: Query name of the read or the read pair
                                                          HWI-HI83:6:1101:1210:
2. FLAG: Bitwise flag (pairing, strand, mate strand, etc.)
                                                          99
3. RNAME: Reference sequence name
                                                          chr20
4. POS: 1-Based leftmost position of clipped alignment
                                                          287833
5. MAPQ: Mapping quality (Phred-scaled)
                                                          30
6. CIGAR: Extended CIGAR string (operations: MIDNSHP)
                                                          10M1D25M
7. MRNM: Mate reference name ('=' if same as RNAME)
8. MPOS: 1-based leftmost mate position
                                                          287993
9. ISIZF: Inferred insert size
                                                          195
10. SEQQuery: Sequence on the same strand as the reference
                                                          ACCTATATCTTGGCCTTGGCC
11. QUAL: Query quality (ASCII-33 = Phred base quality)
                                                          ?8?D?DDDDDBDDE?E2:<
```

SAM/BAM format

CIGAR operators

• M: match/mismatch

• I: insertion

• D: deletion

• S: softclip

• H: hardclip

• P: padding

• N: skip

Ref: GCATTCAGATGCAGTACGC

Read: ccTCAG--GCAGTAgtg

POS CIGAR

5 2S4M2D6M3S

BAM

- Binary compressed version of SAM
- About 1/3 1/5 the storage requirements of SAM

SAM/BAM tools

- Well defined specifications for SAM/BAM
- Advanced interacting programs
 - Samtools by Sanger (http://samtools.sourceforge.net)
 - Command-line tool
 - Packages a number of utilities to access the information stored in SAM/ BAM file
 - e.g. sort reads based on the mapping position in reference:
 - samtools sort aln.bam aln_sorted.bam
 - Picard By Broad Institute (http://picard.sourceforge.net)
 - Command-line tool, required Java 1.6
 - Designed to run in 2GB of JVM (Xmx2g is recommended)
 - MarkDuplicates, CollectAlignmentSummaryMetrics, SamToFastq
 - More advanced options than Samtools, Running time consuming
 - Bio-SamTool (http://search.cpan.org/~lds/Bio-SamTools/)

Alignment challenges

- Aligners need to be fast and accurate
 - Trade-off between speed and sensitivity
 - Running time with the growing sequence capacity
 - Illumina HiSeq produces at the moment up to 200m reads per lane
- Gold standard aligner?
 - Evaluate new methods
 - benchmarking of RNAseq by the RGASP project
 - http://www.gencodegenes.org/rgasp/

http://www.nature.com/nmeth/journal/v10/n12/full/nmeth.2722.html

Aligner Choice Effect on Variant Calls

GATK_Snvs

Hands-on session on short read alignment

Practical steps

- Index Mouse genome (Chr1)
- Align ChIP-Seq samples to the index Mouse Chr1 -> SAM
- Convert SAM alignment to a sorted BAM file
- 3. View alignments in Genome viewer IGV

Resource

Integration of External Signaling Pathways with the Core Transcriptional Network in Embryonic Stem Cells

Xi Chen, ^{1,2,6} Han Xu, ^{3,6} Ping Yuan, ¹ Fang Fang, ^{1,2} Mikael Huss, ⁴ Vinsensius B. Vega, ³ Eleanor Wong, ⁵ Yuriy L. Orlov, ⁴ Weiwei Zhang, ^{1,2} Jianming Jiang, ^{1,2} Yuin-Han Loh, ^{1,2} Hock Chuan Yeo, ⁴ Zhen Xuan Yeo, ⁴ Vipin Narang, ³ Kunde Ramamoorthy Govindarajan, ³ Bernard Leong, ³ Atif Shahab, ³ Yijun Ruan, ⁵ Guillaume Bourque, ³ Wing-Kin Sung, ³ Neil D. Clarke, ⁴ Chia-Lin Wei, ^{5,*} and Huck-Hui Ng^{1,2,*}

¹Gene Regulation Laboratory, Genome Institute of Singapore, Singapore 138672

²Department of Biological Sciences, National University of Singapore, Singapore 117543

³Computational and Mathematical Biology

⁴Computational and Systems Biology Group

⁵Genome Technology and Biology Group

Genome Institute of Singapore, Singapore 138672

⁶These authors contributed equally to this work

^{*}Correspondence: weicl@gis.a-star.edu.sg (C.-L.W.), nghh@gis.a-star.edu.sg (H.-H.N.) DOI 10.1016/j.cell.2008.04.043

Thank you

