

Data Analysis Fundamentals

Lecture 2: Understanding of Data

Vikas Kumar
Indian Institute of Technology Bombay

05th September 2023

Outline

- Understanding phases of a typical Data Analytics Project
- Understanding Data
- Derived Facts/Dimensions
- Building dimensions from Facts (Binning)
- Granularity of Data

Data Science/Analysis Pipeline

Understanding Data

Qualitative Data

(Categorical)

Gender

Religion

Marital status

Native language

Social class

Qualifications

Type of instruction

Method of treatment

Type of teaching approach

Problem-solving strategy used

Quantitative Data

(Numerical)

Age

Height

Weight

Income

University size

Group size

Self-efficacy test score

Percent of lecture attended

Clinical skills performed

Number of errors

Quantitative Data/Facts/Metrics/Measures/KPIs

KPIs	Metrics	
All KPIs are Metrics	All Metrics are not KPIs	
 KPIs give a holistic view of the performance of different functions in your organization 	 Metrics give you a picture of how different individual activities rolled out within the functions are progressing 	
 KPIs tell you where exactly your teams stand with respect to the overall business goals 	 Individual Metrics do not give any insights on their own 	
 Examples: Pre-sales KPIs, Email Marketing KPIs, Customer Success KPIs 	 Examples: Open Rate, Conversations in the last 2 weeks, Deals lost last quarter 	

Continuous vs Discrete data

Continuous vs Discrete data

- Discrete data is a finite value that can be counted.
- Continuous data has an infinite number of possible values that can be measured.

Qualitative Data/Dimensions/Perspectives/Slicers

Individual Interview

Qualitative Data/Dimensions/Perspectives/Slicers

Hierarchical Dimensions

Derived Facts/Dimensions

- In data warehousing, facts and dimensions are standard terms.
- They inform us about things like the number of resources used for a particular task.
- They both store the exact measure of resources and details about the resource and task.
- A fact in data warehousing describes quantitative transactional data like measurements, metrics, or values ready for analysis.
- Dimensions are companions to facts and are attributes of facts like the date of a sale.

Building Dimensions from Facts (Binning)

- Data binning, also called discrete binning or bucketing, is a data preprocessing technique that reduces the effects of minor observation errors.
- The original data values are divided into small intervals known as bins, and then they are replaced by a general value calculated for that bin.
- Data binning is a way to group numbers of more or less continuous values into a smaller number of "bins".

Building Dimensions from Facts (Binning)

Data Binning

Large Continuous Data

Small Discrete Bins

Building Dimensions from Facts (Binning)

Granularity of Data

- Data granularity measures the level of detail in a data structure.
- In time-series data, for example, the granularity of measurement might be based on intervals of years, months, weeks, days, or hours.

Identifying/Constructing unique keys

Features	Primary keys	Unique keys		
Number of One primary key in a parent table keys		One or more than one, in parent or child tables		
Values	Must have a value, cannot be NULL	Can be a NULL value		
Use	Identify every item in a table	Identify items in a table when they cannot have duplicate values		
Ease	Cannot be removed, difficult to Can be removed or changed change			
Indexes	Clustered index	Non-clustered index		

Identifying/Constructing unique keys

Student

Roll_no	Name	Class	Phone_no	Registration_no
1	Andrew	5	9854672256	895
2	Andrew	6	9955512456	564
3	Augosto	5		567

