EEE225 Advanced Electrical Circuits and Electromagnetics

Lecture 8 Transient Analysis – 2nd order circuits

Dr. Zhao Wang

zhao.wang@xjtlu.edu.cn

Room EE322

Content

- Natural response
 - Parallel RLC circuit
 - SODE (Second Order Differential Equation)
 - Initial conditions
 - Damping factor and damping systems
 - Series RLC circuit
 - SODE
 - Step of solving SODE questions
 - Comparison between parallel and series RLC circuits
- Step response
 - Parallel RLC circuit
 - Series RLC circuit
 - Summary
- General Second order circuit
 - Solving procedure
- Practical application
 - Automobile ignition circuit

Second-order Circuits

• A second order circuit is characterized by a second order differential equation. It consists of resistors and the equivalent of **TWO** energy storage elements.

- Typical examples of second order circuits:
 - Series RLC circuit
 - Parallel RLC circuit
 - RLL circuit
 - RCC circuit

Parallel RLC Circuit - Obtaining the SODE

SODE - Second Order Differential Equation

• By applying the KCL at the node:

$$i_R(t) + i_L(t) + i_C(t) = 0$$

Where we have

$$i_{R}(t) = \frac{v}{R}$$

$$i_{C}(t) = C \frac{dv}{dt}$$

$$i_{L}(t) = \frac{1}{L} \int_{t_{0}}^{t} v dt' - i(t_{0})$$

• Take derivative of both sides, then divide by C, we get

$$\frac{d^2v}{dt^2} + \frac{1}{RC}\frac{dv}{dt} + \frac{1}{LC}v = 0$$

Parallel RLC Circuit - Solving the SODE

- By assuming the solution of the form Ae^{st} ,
 - A is a constant determined by initial conditions
 - -s is a constant determined by the coefficients of the differential equation (by circuit components)
- The characteristic equation is

$$As^{2}e^{st} + \frac{1}{RC}Ase^{st} + \frac{\bar{A}}{LC}e^{st} = 0$$
 \Rightarrow $s^{2} + \frac{1}{RC}s + \frac{1}{LC} = 0$

• The two solutions are:

$$s_1 = -\frac{1}{2RC} + \sqrt{\left(\frac{1}{2RC}\right)^2 - \frac{1}{LC}} \quad \text{and} \quad s_2 = -\frac{1}{2RC} - \sqrt{\left(\frac{1}{2RC}\right)^2 - \frac{1}{LC}}$$

• The general form of the natural response

$$v_n(t) = A_1 e^{s_1 t} + A_2 e^{s_2 t}$$

 $v_n(t) = A_1 e^{s_1 t} + A_2 e^{s_2 t}$ Where A_1 and A_2 must be found by applying the given initial condition

Parallel RLC Circuit - Determining A₁ and A₂

• Since
$$v_n(t) = A_1 e^{s_1 t} + A_2 e^{s_2 t}$$

 -1) $v_n(0^+) = A_1 + A_2$
 -2) $\frac{dv_n(0^+)}{dt} = A_1 s_1 e^{s_1 t} + A_2 s_2 e^{s_2 t} \Big|_{t=0^+} = A_1 s_1 + A_2 s_2$

• Therefore, with the knowledge of s_1 and s_2 , we need two initial conditions to determine the value of A_1 and A_2 :

$$v_n(0^+)$$
 and $\frac{dv_n(0^+)}{dt}$

 Where 0⁺ is the time just after the changes in circuit, i.e. switch movement.

Parallel RLC Circuit – SODE of i_L(t)

• Similarly, we can solve for the inductor current $i_L(t)$, and get the SODE like:

$$\frac{d^2i_L}{dt^2} + \frac{1}{RC}\frac{di_L}{dt} + \frac{1}{LC}i_L = 0$$

• By assuming the exponential solution Ae^{st} , it can also be written as

$$s^2 + \frac{1}{RC}s + \frac{1}{LC} = 0$$

Whose solution also has the form

$$i_{L,n}(t) = A_1 e^{s_1 t} + A_2 e^{s_2 t}$$

where A_1 and A_2 are determined by the given initial conditions.

Parallel RLC Circuit - Finding initial values

• Two key points:

- Polarity of voltage across the capacitor, and the direction of the current through the inductor.
- The capacitor voltage is always continuous, and the inductor current is always continuous

$$v_C(t=0^+) = v_C(t=0^-)$$

$$i_L(t=0^+) = i_L(t=0^-)$$

Normally start from finding variables that cannot change abruptly.

Parallel RLC Circuit - Finding initial values

- Example:
- The switch has been closed for a long time. It is open at t = 0.

- Find:
$$i(0^+), v_C(0^+), \frac{di(0^+)}{dt}, \frac{dv_C(0^+)}{dt}, i(\infty) \text{ and } v_C(\infty)$$

Ref. 3, example 8.1

Quiz

- For the circuit as shown, the capacitor voltage at $t = 0^+$ (just after the switch is closed) is:
 - (a) 0 V; (b) 4 V; (c) 8 V; (d) 12 V.
- For the same circuit as shown, the inductor voltage at $t = 0^+$ (just after the switch is closed) is:
 - (a) 0 V;
- (b) 4 V;
 - (c) 8 V; (d) 12 V.

Parallel RLC Circuit - Definition of Frequency Terms

• Define ω_0 as the *resonant frequency*, and α as the *neper frequency*, or the *exponential damping coefficient*:

$$\omega_0 = \frac{1}{\sqrt{LC}} \qquad \alpha = \frac{1}{2RC}$$

• The characteristic equation can also be written as

$$s^2 + 2\alpha s + \omega_0^2 = 0$$

• Then the s_1 and s_2 are called *complex frequencies*

$$s_1 = -\alpha + \sqrt{\alpha^2 - \omega_0^2}$$
$$s_2 = -\alpha - \sqrt{\alpha^2 - \omega_0^2}$$

• The natural response is still

$$v_n(t) = A_1 e^{s_1 t} + A_2 e^{s_2 t}$$

Parallel RLC Circuit - Damping factors

$$s_1 = -\alpha + \sqrt{\alpha^2 - \omega_0^2}, \quad s_2 = -\alpha - \sqrt{\alpha^2 - \omega_0^2}$$

- The value of the term $\sqrt{\alpha^2 \omega_0^2}$ determines the behavior of the response.
 - 1. Over Damped System: $\alpha > \omega_0$, s_1 and s_2 are two unequal real numbers;
 - 2. Critical Damped System: $\alpha = \omega_0$, s_1 and s_2 are two equal real numbers;
 - 3. Under Damped System: $\alpha < \omega_0$, s_1 and s_2 are two complex numbers, $s_1 = -\alpha + j\sqrt{\omega_0^2 \alpha^2}$, $s_2 = -\alpha j\sqrt{\omega_0^2 \alpha^2}$

The system exhibits oscillatory behavior.

Parallel RLC Circuit - 1. Over Damped System

$$\omega_0 = \frac{1}{\sqrt{LC}}$$
 and $\alpha = \frac{1}{2RC}$

- Over Damped System: $\alpha > \omega_0$, implies $L > 4R^2C$.
- Both s_1 and s_2 are two negative real numbers, the response

is

$$v_n(t) = A_1 e^{S_1 t} + A_2 e^{S_2 t}$$

• Thus, $v_n(t)$ decays and approach zero as time increases $t \rightarrow \infty$.

Parallel RLC Circuit - 2. Critical Damped System

- Critical Damped System: $\alpha = \omega_0$, implies $L = 4R^2C$.
- Since s_1 and s_2 are two equal real numbers, $s_1 = s_2 = -\alpha$, the response is

$$v_n(t) = e^{-\alpha t} \left(A_1 t + A_2 \right)$$

• $v_n(t)$ also decays and approach zero as time increases $t \rightarrow \infty$.

Parallel RLC Circuit - 3. Under Damped System

- Under Damped System: $\alpha < \omega_0$, implies $L < 4R^2C$.
- Since s_1 and s_2 are two complex numbers,

$$s_1 = -\alpha + j\sqrt{\omega_0^2 - \alpha^2}, s_2 = -\alpha - j\sqrt{\omega_0^2 - \alpha^2}$$

• Define $\omega_d = \sqrt{\omega_0^2 - \alpha_0^2}$ the response now be written as

$$v_n(t) = e^{-\alpha t} \left(A_1 e^{j\omega_d t} + A_2 e^{-j\omega_d t} \right)$$

$$= e^{-\alpha t} \left[\left(A_1 + A_2 \right) \cos \omega_d t + j \left(A_1 - A_2 \right) \sin \omega_d t \right]$$

$$B_1$$

• Therefore, $v_n(t) = e^{-\alpha t} (B_1 \cos \omega_d t + B_2 \sin \omega_d t)$ Where B_1 and B_2 are determined by the initial conditions

Parallel RLC Circuit - 3. Under Damped System

$$v_n(t) = e^{-\alpha t} \left(B_1 \cos \omega_d t + B_2 \sin \omega_d t \right)$$

Where B_1 and B_2 are determined by the initial conditions

$$i(0) = 10 \text{ A}$$

 $v(0) = 0 \text{ V}$

Parallel RLC Circuit - Role of the Resistor

Actual parallel RLC circuits can be made to have effective values of R so large that a natural *undamped* sinusoidal response can be maintained for years without supplying any additional energy.

Parallel RLC Circuit - Summary of solving procedure

- 1. Obtain the SODE: $\frac{d^2v}{dt^2} + \frac{1}{RC}\frac{dv}{dt} + \frac{1}{LC}v = 0$
- 2. With $\omega_0 = \frac{1}{\sqrt{LC}}$ and $\alpha = \frac{1}{2RC}$, evaluate the damped condition:
 - 1) Over Damped System: $\alpha > \omega_0$, s_1 and s_2 are two unequal real numbers, $v_n(t) = A_1 e^{S_1 t} + A_2 e^{S_2 t}$
 - 2) Critical Damped System: $\alpha = \omega_0$, s_1 and s_2 are two equal real numbers α , $v_n(t) = e^{-\alpha t} (A_1 t + A_2)$
 - 3) Under Damped System: $\alpha \le \omega_0$, s_1 and s_2 are two complex numbers $s_1 = -\alpha + j\sqrt{\omega_0^2 \alpha^2}$, $s_2 = -\alpha j\sqrt{\omega_0^2 \alpha^2}$ and $v_n(t) = e^{-\alpha t} \left(B_1 \cos \omega_d t + B_2 \sin \omega_d t \right)$

Parallel RLC Circuit - Summary of solving procedure

- 3. Determine coefficients A_1 and A_2 (or B_1 and B_2) according to the initial conditions $v_n(0^+)$ and $\frac{dv_n(0^+)}{dt}$:
 - − 1) Over damped system:

$$v_n(0^+) = A_1 + A_2$$
, and $\frac{dv_n(0^+)}{dt} = A_1s_1 + A_2s_2$

– 2) Critical damped system:

$$v_n(0^+) = A_2$$
, and $\frac{dv_n(0^+)}{dt} = A_1 - A_2\alpha$

- 3) Under damped system:

$$v_n(0^+) = B_1$$
, and $\frac{dv_n(0^+)}{dt} = -\alpha B_1 + \omega_d B_2$

Parallel RLC Circuit - Example 1

In a parallel RLC circuit: $R = 500 \Omega$, $C = 1 \mu F$, L = 0.2 H. The initial conditions are $i_L(0) = 50 \text{ mA}$ and v(0) = 0 V.

Find $i_L(t)$, $i_R(t)$ and $v_c(t)$.

Solution

$$\alpha = \frac{1}{2RC} = \frac{1}{2 \times 500 \times 1 \times 10^{-6}} = 10^{3}, \ \omega_0^2 = \frac{1}{LC} = \frac{1}{0.2 \times 1 \times 10^{-6}} = 5 \times 10^{6}$$

$$\alpha^2 < \omega_0^2$$
, underdampe d

From the characteristic equation : $s^2 + 2\alpha s + \omega_0^2 = 0$, we have

$$s^2 + 2 \times 10^3 s + 5 \times 10^6 = 0$$

$$s_1 = -1000 + j2000$$
, $s_2 = -1000 - j2000$

The response of $i_L(t)$: $i_L(t) = e^{-\alpha t} (B_1 \cos \omega_d t + B_2 \sin \omega_d t)$

$$\omega_d = \sqrt{\omega_0^2 - \alpha^2} = \sqrt{5 \times 10^6 - 10^6} = 2000$$

Parallel RLC Circuit - Example 1 (cont.)

$$i_L(0) = 1 \times (B_1 \cos 0 + B_2 \sin 0) = 50 \times 10^{-3} \text{ A} \implies B_1 = 50 \times 10^{-3}$$

$$v(0) = L \frac{di_L(t)}{dt} \Big|_{t=0} \implies -1000 B_1 + 2000 B_2 = 0$$

$$\downarrow \downarrow$$

$$B_2 = 25 \times 10^{-3}$$

So
$$i_L(t) = e^{-1000 t} (50 \cos 2000 t + 25 \sin 2000 t)$$
 mA $t \ge 0$
 $v_L(t) = L \frac{di_L}{dt} = -25 e^{-1000 t} \sin 2000 t$ V $t \ge 0$
 $v_C(t) = v_L(t)$ $t \ge 0$
 $i_R = \frac{v_R(t)}{R} = \frac{v_L(t)}{R} = -50 e^{-1000 t} \sin 2000 t$ mA $t \ge 0$

Parallel RLC Circuit - Example 1 (cont.)

Quiz

• If the roots of the characteristic equation of an RLC circuit are -2 and -3, the response is:

```
- (a) (A \cos 2t + B \sin 2t)e^{-3t}
- (b) (A + 2Bt)e^{-3t}
- (c) Ae^{-2t} + Bte^{-3t}
- (d) Ae^{-2t} + Be^{-3t}
```

• A parallel RLC circuit has L = 4 H and C = 0.25 F. The value of R that will produce under damping factor is:

- (a) 0.5Ω ; (b) 1Ω ;
- (c) 2 Ω ;
- (d) 4Ω .

Series RLC Circuit - Obtaining the SODE

By using KVL: $v_R + v_C + v_L = v_s$

The current flowing in the circuit:

$$i = C \frac{dv_C}{dt}$$

The voltage v_R and v_L are given by

$$v_{\rm R} = iR = RC \frac{dv_{\rm C}}{dt}$$

$$v_{\rm L} = L \frac{di}{dt} = LC \frac{d^2 v_{\rm C}}{dt^2}$$

Then we have:

$$\frac{d^2v_C}{dt^2} + \frac{R}{L}\frac{dv_C}{dt} + \frac{1}{LC}v_c = \frac{1}{LC}v_s \quad (1)$$

Simpler we have:

$$v_C = v_{C,p} + v_{C,h}$$

where

 v_C : the complete solution

 $v_{C,p}$: the particular solution

 $v_{C,h}$: the homogeneous solution

Series RLC Circuit - Solving the SODE

$$\frac{d^{2}v_{C,h}}{dt^{2}} + \frac{R}{L}\frac{dv_{C,h}}{dt} + \frac{1}{LC}v_{C,h} = 0$$
 (2)

Assuming a homogeneous solution has the following form:

$$v_{C,h} = Ae^{st} \quad (A \neq 0)$$

A is a constant determined by initial conditions.

s is a constant determined by the coefficients of the differential equation.

Substituting $v_{c,h} = Ae^{st}$ into Eq. (2):

$$As^{2}e^{st} + \frac{R}{L}Ase^{st} + \frac{A}{LC}e^{st} = 0 \quad or$$

$$s^{2} + \frac{R}{L}s + \frac{1}{LC} = 0$$
 (3) usually called the *characteristic equation*

Series RLC Circuit - Solving the SODE

Two solutions obtained for the *characteristic equation*:

$$s_1 = -\frac{R}{2L} + \sqrt{\left(\frac{R}{2L}\right)^2 - \frac{1}{LC}}$$

$$s_2 = -\frac{R}{2L} - \sqrt{\left(\frac{R}{2L}\right)^2 - \frac{1}{LC}}$$

Replace s by s_1 , and s_2 :

$$v_{C,h1} = A_1 e^{s_1 t}$$
 $v_{C,h2} = A_2 e^{s_2 t}$

Both $v_{C,h1}$, and $v_{C,h2}$ satisfy the Eq. (2),

so we have
$$v_{C,h} = A_1 e^{s_1 t} + A_2 e^{s_2 t}$$
 (4)

The two constants A_1 and A_2 can be obtained by two initial conditions:

$$v_{C,h}(0) = V_0 \text{ and } \frac{dv_{C,h}(0)}{dt} = \frac{1}{C}i(0) = \frac{I_0}{C}$$
 Xi'an Jiaotong-Liverpool University

From
$$v_{C,h} = A_1 e^{s_1 t} + A_2 e^{s_2 t}$$
 (4)
with $v_{C,h}(0) = V_0$,
and by $\frac{dv_{C,h}(0)}{dt} = \frac{1}{C}i(0) = \frac{I_0}{C}$, $\begin{cases} A_1 + A_2 = V_0 \\ A_1 s_1 + A_2 s_2 = \frac{I_0}{C} \end{cases}$

$$A_{1} = \frac{V_{0}s_{2} - \frac{I_{0}}{C}}{s_{2} - s_{1}} \qquad A_{2} = \frac{\frac{I_{0}}{C} - V_{0}s_{1}}{s_{2} - s_{1}}$$

Series RLC Circuit — SODE of i, (t)

By using KVL $v_R + v_C + v_L = 0$,

instead of
$$i(t) = C \frac{dv_c(t)}{dt}$$

we use
$$v_C(t) = \frac{q(t)}{C} = \frac{1}{C} \int_{-\infty}^{t} i(t)dt$$

we can have:

$$iR + L\frac{di}{dt} + \frac{1}{C} \int_{-\infty}^{t} idt = 0$$

$$\downarrow \downarrow$$

$$\frac{d^2i}{dt^2} + \frac{R}{L}\frac{di}{dt} + \frac{1}{LC}i = 0$$

$$\frac{d^{2}i}{dt^{2}} + \frac{R}{L}\frac{di}{dt} + \frac{1}{LC}i = 0 \qquad \qquad \frac{d^{2}v_{C}}{dt^{2}} + \frac{R}{L}\frac{dv_{C}}{dt} + \frac{1}{LC}v_{c} = 0 \quad (1)$$

Series RLC Circuit — Damping factor

$$s_1 = -\frac{R}{2L} + \sqrt{\left(\frac{R}{2L}\right)^2 - \frac{1}{LC}}$$
 $s_2 = -\frac{R}{2L} - \sqrt{\left(\frac{R}{2L}\right)^2 - \frac{1}{LC}}$

Definition of α and ω_0 :

$$\alpha = \frac{R}{2L}$$
, called damping factor

$$\omega_0 = \frac{1}{\sqrt{LC}} (rad / sec)$$
: Called the undamped natural frequency, or the resonant frequency

$$s_1 = -\alpha + \sqrt{\alpha^2 - \omega_0^2}$$
 $s_2 = -\alpha - \sqrt{\alpha^2 - \omega_0^2}$

Series RLC Circuit — Damping factor

$$s_1 = -\alpha + \sqrt{\alpha^2 - \omega_0^2}$$
 $s_2 = -\alpha - \sqrt{\alpha^2 - \omega_0^2}$

The value of the term $\sqrt{\alpha^2 - \omega_0^2}$ determines the behavior of the response:

- 1. Over Damped System: $\alpha > \omega_0$, s_1 and s_2 are two unequal real numbers
- 2. Critically Damped System: $\alpha = \omega_0$, s_1 and s_2 are two equal real numbers
- 3. Under Damped System: $\alpha < \omega_0$, s_1 and s_2 are complex numbers:

$$s_1 = -\alpha + j\sqrt{\omega_0^2 - \alpha^2}, s_2 = -\alpha - j\sqrt{\omega_0^2 - \alpha^2}$$

System exhibits oscillatory behavior

Special case : $R = 0 \Rightarrow \alpha = 0$

$$s_1 = j\omega_0$$
, $s_2 = -j\omega_0$

Series RLC Circuit - Over damped

1. Over Damped System:

$$\alpha > \omega_0$$
, implies $C > 4L/R^2$

 s_1 and s_2 are two unequal real numbers

The response is:

$$v_C(t) = A_1 e^{S_1 t} + A_2 e^{S_2 t}$$

 $v_C(t)$ decays and approaches zero as time increases.

$$\alpha = \frac{R}{2L}, \quad \omega_0 = \frac{1}{\sqrt{LC}}$$

Series RLC Circuit — Critical damped

When
$$\alpha = \omega_0$$
, $R = 2\sqrt{\frac{L}{C}}$, $\Rightarrow C = 4L/R^2$ and $s_1 = s_2 = -\alpha = -\frac{R}{2L}$, the differential equation

$$\frac{d^2 v_{C,h}}{dt^2} + \frac{R}{L} \frac{dv_{C,h}}{dt} + \frac{1}{LC} v_{C,h} = 0 \quad (2) \text{ becomes: } \frac{d^2 v_{C,h}}{dt^2} + 2\alpha \frac{dv_{C,h}}{dt} + \alpha^2 v_{C,h} = 0 \quad (2a)$$

Then we have
$$\frac{d}{dt} \left(\frac{dv_{C,h}}{dt} + \alpha v_{C,h} \right) + \alpha \left(\frac{dv_{C,h}}{dt} + \alpha v_{C,h} \right) = 0 \quad (3)$$

Let
$$f = \frac{dv_{C,h}}{dt} + \alpha v_{C,h}$$
 (4), the equation (3) becomes: $\frac{df}{dt} + \alpha f = 0$ (5)

For the first - order equation (5), we have $f = A_1 e^{-\alpha t}$

Then:
$$\frac{dv_{C,h}}{dt} + \alpha v_{C,h} = A_1 e^{-\alpha t} \implies e^{\alpha t} \frac{dv_{C,h}}{dt} + e^{\alpha t} \alpha v_{C,h} = A_1$$

$$d(e^{\alpha t} v_{C,h})$$

$$\Rightarrow \frac{d(e^{at}v_{C,h})}{dt} = A_1 \Rightarrow e^{at}v_{C,h} = A_1t + A_2$$

The solution finally is:
$$v_{C,h}(t) = e^{-\alpha t} (A_1 t + A_2)$$

Series RLC Circuit - Under damped

When $\alpha < \omega_0$, $C < 4L/R^2$, we define

$$\omega_{\rm d} = \sqrt{\omega_{_{0}}^{^{2}} - \alpha^{^{2}}}$$
 called *natural resonant frequency*

$$\alpha = \frac{R}{2L}, \quad \omega_0 = \frac{1}{\sqrt{LC}}$$

$$s_1 = -\alpha + \sqrt{-(\omega_0^2 - \alpha^2)} = -\alpha + j\omega_d$$

$$s_2 = -\alpha - \sqrt{-(\omega_0^2 - \alpha^2)} = -\alpha - j\omega_d$$

The solution may be:

$$v_{C,h}(t) = A_1 e^{-(\alpha - j\omega_d)t} + A_2 e^{-(\alpha + j\omega_d)t}$$
$$= e^{-\alpha t} \left(A_1 e^{j\omega_d t} + A_2 e^{-j\omega_d t} \right)$$

The final form is:

$$v_{C,h}(t) = e^{-\alpha t} \left(B_1 \cos \omega_d t + B_2 \sin \omega_d t \right)$$

The constants of B_1 and B_2 are also determined by initial conditions

Series RLC Circuit – Example

The circuit below has $C = 0.25 \,\mu\text{F}$ and $L = 1 \,\text{H}$.

The switch has been open for a long time and is closed at t = 0.

Find the capacitor voltage for $t \ge 0$ for

$$1. R = 8.5 \mathrm{k}\Omega$$

$$2. R = 4 k\Omega$$
 and

$$3. R = 1 k\Omega.$$

The initial conditions are

$$I_0 = 0$$
 and $V_0 = 15$ V.

Series RLC Circuit – Step of solving 2nd problems

- 0. Get the SODE of the circuit;
- 1. Find out the initial conditions $i_L(0^+)$, $v_C(0^+)$, $v_L(0^+)$, $i_C(0^+)$;
- 2. Get the characteristic equation from SODE (SODE -> s);
- 3. Evaluate α and ω_0 ;
 - Compare α^2 ω_0^2 with 0, determine the damping case, which determines the general form of the solution.
- 4. Solve for s₁ and s₂, substitute into the general form of the solution;
- 5. using initial conditions to solve for coefficients A₁, A₂ or B₁, B₂;
- 6. Get final expression of $v_C(t)$ or $i_L(t)$.

Series RLC Circuit – Example solution

The characteristic equation

$$s^{2} + \frac{R}{L}s + \frac{1}{LC} = 0$$
 (3)

$$s^{2} + \frac{8.5 \times 10^{3}}{1}s + \frac{1}{1 \times 0.25 \times 10^{-6}} = 0$$

$$0.25 \times 10^{-6}s^{2} + 2.125 \times 10^{-3}s + 1 = 0$$

$$s_{1} = -500, \quad s_{2} = -8000$$

$$s_{1} \text{ and } s_{2} \text{ are two unequal real numbers}$$

 $v_{C,h}(t) = A_1 e^{-500t} + A_2 e^{-8000t}$ $t \ge 0$

By initial conditions:

$$v_{c,h}(0) = 15 \text{ V and } i_L(0) = 0$$

$$15 = A_1 + A_2$$

$$\frac{dv_C(0)}{dt} = \frac{i_L(0)}{C} = 0$$

$$A_1 = 16 \text{ and } A_2 = -1, \text{ so we have}$$

$$v_{C,h}(t) = 16e^{-500t} - e^{-8000t} \text{ V} \qquad t \ge 0$$

 s_1 and s_2 are two unequal real numbers

-- Over Damped System

Series RLC Circuit - Example solution (cont.)

$$s^{2} + \frac{R}{L}s + \frac{1}{LC} = 0 \qquad (3)$$

$$s^{2} + \frac{4 \times 10^{3}}{1}s + \frac{1}{1 \times 0.25 \times 10^{-6}} = 0$$

$$0.25 \times 10^{-6}s^{2} + 10^{-3}s + 1 = 0$$

$$s_{1} = s_{2} = -2000$$

$$v_{c,h}(t) = A_{1}e^{-2000t} + A_{2}te^{-2000t} \qquad t \ge 0$$

By initial conditions : $v_{c,h}(0) = 15 \ V$ and $i_L(0) = 0$

$$\frac{dv_c(0)}{dt} = \frac{i_L(0)}{C} = 0$$

$$\begin{cases}
A_1 = 15 \\
-2000A_1 - A_2 = 0
\end{cases}$$

 $A_1 = 15$ and $A_2 = 15 \times 2000$, so we have

$$v_{c,h}(t) = 15e^{-2000t} + 15(2000t)e^{-2000t}$$
 V $t \ge 0$

 s_1 and s_2 are two equal real numbers -- Critically Damped System

$$C = 0.25 \mu F$$
 , $L = 1H$
2. $R = 4 \text{ k}\Omega$

Series RLC Circuit - Example solution (cont.)

The characteristic equation

$$s^{2} + \frac{1 \times 10^{3}}{1} s + \frac{1}{1 \times 0.25 \times 10^{-6}} = 0$$
$$0.25 \times 10^{-6} s^{2} + 0.25 \times 10^{-3} s + 1 = 0$$

$$s_1 = -500 + j500\sqrt{15}, \quad s_2 = -500 - j500\sqrt{15}$$

$$v_{C,h}(t) = e^{-\alpha t} (B_1 \cos \omega_d t + B_2 \sin \omega_d t) \qquad t \ge 0$$

$$\omega_{\rm d} = \sqrt{\omega_0^2 - \alpha^2} = \sqrt{(\frac{1}{\sqrt{LC}})^2 - (\frac{R}{2L})^2} = 500\sqrt{15}$$

By initial conditions:

$$v_{C,h}(0) = 15 \text{ V and } i_L(0) = 0$$

$$\frac{dv_{C,h}(0)}{dt} = \frac{i_L(0)}{C} = 0$$

$$\begin{cases}
B_1 = 15 \\
-500B_1 + 500\sqrt{15}B_2 = 0 \implies B_2 = \sqrt{15}
\end{cases}$$

so we have
$$v_{C,h}(t) = e^{-500t} (15\cos 500\sqrt{15}t + \sqrt{15}\sin 500\sqrt{15}t)$$
 V $t \ge 0$

 s_1 and s_2 are complex numbers -- Under Damped System

Series RLC Circuit – Example solution (cont.)

Series RLC Circuit - Example solution (cont.)

$$s^{2} + \frac{R}{L}s + \frac{1}{LC} = 0$$
 (3) $\rightarrow s^{2} + \frac{1}{LC} = 0$ (3a)

$$s_{1,2} = \pm \sqrt{-\frac{1}{LC}} = \pm j\omega_0$$

$$\omega_0 = \frac{1}{\sqrt{LC}} = \frac{1}{\sqrt{1 \times 0.25 \times 10^{-6}}} = 20$$

$$\omega_{\rm d} = \sqrt{\omega_0^2 - \alpha^2} = \sqrt{(\frac{1}{\sqrt{LC}})^2 - (\frac{R}{2L})^2} = \omega_0$$

$$v_{C,h}(t) = e^{-\alpha t} (B_1 \cos \omega_d t + B_2 \sin \omega_d t) \qquad t \ge 0$$

$$\rightarrow v_{C,h}(t) = B_1 \cos \omega_0 t + B_2 \sin \omega_0 t \qquad t \ge 0$$

$$C = 0.25 \mu F$$
, $L = 1H$
 $R=0$

$$\begin{array}{c}
i_{L}(0) = 0 \\
\downarrow \\
C \\
v_{c}(t) \xrightarrow{+} + \\
\downarrow \\
- \\
- \\
\end{array}$$

$$\omega_d = \omega_0$$

Series RLC Circuit – Example solution (cont.)

By initial conditions: $v_{Ch}(0) = 15 V$ and $i_L(0) = 0$

$$15 = B_1$$

$$B_1 = 15$$

$$\frac{dv_{C,h}(0)}{dt} = \frac{i_L(0)}{C} = 0 B_2 = 0$$

$$B_2 = 0$$

so we have

$$v_{C,h}(t) = 15\cos 20t \text{ V} \qquad t \ge 0$$
$$= V_0 \cos \omega_0 t \text{ V}$$

$$i_{L,h} = C \frac{dv_{C,h}}{dt} = -V_0 C \omega_0 \sin(\omega_0 t)$$
 $A \quad t \ge 0$

$$v_{L,h} = L \frac{di_{L,h}}{dt} = -V_0 \cos \omega_0 t \quad V \qquad t \ge 0$$

$$C = 0.25 \mu F$$
 , $L = 1H$

$$R=0$$

$$\begin{array}{c}
i_{L}(0) = 0 \\
\downarrow \\
C \\
v_{c}(t) + + + \\
\downarrow \\
- + \\
- + \\
- + \\
- + \\
- + \\
- + \\
- + \\
- + \\
- + \\
- + \\
- + \\
- + \\
- + \\
- + \\
- + \\
- + \\
- + \\
- + \\
- + \\
- + \\
- + \\
- + \\
- + \\
- + \\
- + \\
- + \\
- + \\
- + \\
- + \\
- + \\
- + \\
- + \\
- + \\
- + \\
- + \\
- + \\
- + \\
- + \\
- + \\
- + \\
- + \\
- + \\
- + \\
- + \\
- + \\
- + \\
- + \\
- + \\
- + \\
- + \\
- + \\
- + \\
- + \\
- + \\
- + \\
- + \\
- + \\
- + \\
- + \\
- + \\
- + \\
- + \\
- + \\
- + \\
- + \\
- + \\
- + \\
- + \\
- + \\
- + \\
- + \\
- + \\
- + \\
- + \\
- + \\
- + \\
- + \\
- + \\
- + \\
- + \\
- + \\
- + \\
- + \\
- + \\
- + \\
- + \\
- + \\
- + \\
- + \\
- + \\
- + \\
- + \\
- + \\
- + \\
- + \\
- + \\
- + \\
- + \\
- + \\
- + \\
- + \\
- + \\
- + \\
- + \\
- + \\
- + \\
- + \\
- + \\
- + \\
- + \\
- + \\
- + \\
- + \\
- + \\
- + \\
- + \\
- + \\
- + \\
- + \\
- + \\
- + \\
- + \\
- + \\
- + \\
- + \\
- + \\
- + \\
- + \\
- + \\
- + \\
- + \\
- + \\
- + \\
- + \\
- + \\
- + \\
- + \\
- + \\
- + \\
- + \\
- + \\
- + \\
- + \\
- + \\
- + \\
- + \\
- + \\
- + \\
- + \\
- + \\
- + \\
- + \\
- + \\
- + \\
- + \\
- + \\
- + \\
- + \\
- + \\
- + \\
- + \\
- + \\
- + \\
- + \\
- + \\
- + \\
- + \\
- + \\
- + \\
- + \\
- + \\
- + \\
- + \\
- + \\
- + \\
- + \\
- + \\
- + \\
- + \\
- + \\
- + \\
- + \\
- + \\
- + \\
- + \\
- + \\
- + \\
- + \\
- + \\
- + \\
- + \\
- + \\
- + \\
- + \\
- + \\
- + \\
- + \\
- + \\
- + \\
- + \\
- + \\
- + \\
- + \\
- + \\
- + \\
- + \\
- + \\
- + \\
- + \\
- + \\
- + \\
- + \\
- + \\
- + \\
- + \\
- + \\
- + \\
- + \\
- + \\
- + \\
- + \\
- + \\
- + \\
- + \\
- + \\
- + \\
- + \\
- + \\
- + \\
- + \\
- + \\
- + \\
- + \\
- + \\
- + \\
- + \\
- + \\
- + \\
- + \\
- + \\
- + \\
- + \\
- + \\
- + \\
- + \\
- + \\
- + \\
- + \\
- + \\
- + \\
- + \\
- + \\
- + \\
- + \\
- + \\
- + \\
- + \\
- + \\
- + \\
- + \\
- + \\
- + \\
- + \\
- + \\
- + \\
- + \\
- + \\
- + \\
- + \\
- + \\
- + \\
- + \\
- + \\
- + \\
- + \\
- + \\
- + \\
- + \\
- + \\
- + \\
- + \\
- + \\
- + \\
- + \\
- + \\
- + \\
- + \\
- + \\
- + \\
- + \\
- + \\
- + \\
- + \\
- + \\
- + \\
- + \\
- + \\
- + \\
- + \\
- + \\
- + \\
- + \\
- + \\
- + \\
- + \\
- + \\
- + \\
- + \\
- + \\
- + \\
- + \\
- + \\
- + \\
- + \\
- + \\
- + \\
- + \\
- + \\
- + \\
- + \\
- + \\
- + \\
- + \\
- + \\
- + \\
- + \\
- + \\
- + \\
- + \\
- + \\
- + \\
- + \\
-$$

Series RLC Circuit – Example solution (cont.)

$$C = 0.25 \mu F$$
 $L = 1 H$
 $I_0 = 0$ $V_0 = 15 V$ $R=0$

Quiz

• Refer to the series RLC circuit, what kind of response will it produce?

- (a) over damped;
- (b) under damped;
- (c) critically damped;
- (d) none of the above.
- Match the circuits shown on the right with the following items:
 - (i) first-order circuit
 - (ii) second-order series circuit
 - (iii) second-order parallel circuit

 1Ω

1 H

Second Order Circuit — Source free summary

	Series	Parallel	
α	$\alpha = \frac{R}{2L}$	$\alpha = \frac{1}{2RC}$	
ω_0	$\frac{1}{\sqrt{LC}}$	$\frac{1}{\sqrt{LC}}$	
Over Damped	$\alpha > \omega_0$ Response: $A_1 e^{s_1 t} + A_2 e^{s_2 t}$		
Critically Damped	$\alpha = \omega_0$ Response: $e^{-ct}(A_1t + A_2)$		
Under Damped	$\alpha < \omega_0$ Response: $e^{-\alpha t} \left(B_1 \cos \omega_d t + B_2 \sin \omega_d t \right)$		
Undamped	R=0	$R \rightarrow \infty$	
	Response: $B_1 \cos \omega_0 t + B_2 \sin \omega_0 t$		

Complete response

- The complete response of a second order system consists of a forced response $x_f(t)$ and a natural response $x_n(t)$ which is the same form as source-free natural response.)
- If the input is not zero, we need to find the complete solution x(t)

• Remember the output follows the form of the input

input function	Constant	Exponential	Sinusoid
particular solution	A	$Ae^{-\alpha t} + Bte^{-\alpha t}$	$A\cos(\omega t) + B\sin(\omega t)$

Step response

- Now consider those RLC circuits in which dc sources are switched into the network and produce forced responses that do not necessarily vanish as time becomes infinite. – *Step* response.
- The basic steps are (not necessarily in this order) as follows:
 - 1. Determine the initial conditions.
 - 2. Obtain a numerical value for the forced response.
 - 3. Write the appropriate form of the natural response with the necessary number of arbitrary constants.
 - 4. Add the forced response and natural response to form the complete response.
 - 5. Evaluate the response and its derivative at t = 0, and employ the initial conditions to solve for the values of the unknown constants. $_{45}$

Step response - parallel RLC circuit

By applying KCL at the indicated node:

$$i_{s}(t) = i_{R}(t) + i_{L}(t) + i_{C}(t)$$

The voltage across the inductor : $v = L \frac{di_L}{dt}$

The currents $i_R(t)$ and $i_C(t)$:

$$i_R(t) = \frac{v}{R} = \frac{L}{R} \frac{di_L}{dt}, \qquad i_C(t) = C \frac{dv}{dt} = LC \frac{d^2 i_L}{dt^2}$$

Then we can have:

$$\frac{d^2i_L}{dt^2} + \frac{1}{RC}\frac{di_L}{dt} + \frac{1}{LC}i_L = \frac{1}{LC}i_s \tag{1}$$

Step response - parallel RLC circuit

$$\frac{d^{2}i_{L}}{dt^{2}} + \frac{1}{RC}\frac{di_{L}}{dt} + \frac{1}{LC}i_{L} = \frac{1}{LC}i_{s} \quad (1)$$
The solution is:

The solution is:

$$i_{L}(t) = i_{L,f}(t) + i_{L,n}(t)$$

The natural response is the same as the source free case, the forced response of the current should be the value at $t = \infty$, in this case, i

$$i_L(t) = i_s + A_1 e^{s_1 t} + A_2 e^{s_2 t}$$
 \longrightarrow Over damped $i_L(t) = i_s + (A_1 + A_2 t) e^{-\alpha t}$ \longrightarrow Critical damped $i_L(t) = i_s + (A_1 \cos \omega_d t + A_2 \sin \omega_d t) e^{-\alpha t}$ \longrightarrow Under damped

Step response – Example 1 (parallel RLC circuit)

In a parallel *RLC* circuit $R = 500\Omega$, $C = 1\mu$ F, L = 0.2H

The initial conditions are $i_L(0) = 50$ mA and v(0) = 0

Input current $i_s = 100 \text{ mA}$

Find the response of $i_L(t)$, $i_R(t)$ and $v_C(t)$

Recall - parallel RLC circuit (source free) - Example 1

Lect.3, p25

In a parallel RLC circuit: $R = 500 \Omega$, $C = 1 \mu F$, L = 0.2 H. The initial conditions are $i_L(0) = 50 \text{mA}$ and v(0)=0.

Find the zero-input response of $i_L(t)$, $i_R(t)$ and $v_c(t)$.

Solution

$$\alpha = \frac{1}{2RC} = \frac{1}{2 \times 500 \times 1 \times 10^{-6}} = 10^3, \ \omega_0^2 = \frac{1}{LC} = \frac{1}{0.2 \times 1 \times 10^{-6}} = 5 \times 10^6$$

$$\alpha^2 < \omega_0^2$$
, underdamped

From the characteristic equation : $s^2 + 2\alpha s + \omega_0^2 = 0$, we have

$$s^2 + 2 \times 10^3 s + 5 \times 10^6 = 0$$

$$s_1 = -1000 + j2000, \ s_2 = -1000 - j2000$$

The response of $i_L(t)$: $i_L(t) = e^{-\alpha t} (B_1 \cos \omega_d t + B_2 \sin \omega_d t)$

$$\omega_d = \sqrt{\omega_0^2 - \alpha^2} = \sqrt{5 \times 10^6 - 10^6} = 2000$$

$$i_L(0) = 1 \times (B_1 \cos 0 + B_2 \sin 0) = 50 \times 10^{-3} \text{ A} \implies B_1 = 50 \times 10^{-3}$$

Step response - Example 1 solution

The response of $i_{L,n}(t)$: $i_{L,n}(t) = e^{-\alpha t} (B_1 \cos \omega_d t + B_2 \sin \omega_d t)$

The complete response: $i_L(t) = i_{L,f}(t) + i_{L,n}(t)$

$$i_L(t) = i_s + e^{-\alpha t} \left(B_1 \cos \omega_d t + B_2 \sin \omega_d t \right)$$

Now let's determine the constants B_1 and B_2

$$i_L(0) = 50 \text{ mA}$$
 $i_s + B_1 = 50 \text{ mA}$ $\Rightarrow B_1 = 50 \times 10^{-3} - 100 \times 10^{-3} = -50 \times 10^{-3}$

$$\frac{di_L(t)}{dt} = -\alpha e^{-\alpha t} \left(B_1 \cos \omega_d t + B_2 \sin \omega_d t \right) + e^{-\alpha t} \left(-B_1 \omega_d \sin \omega_d t + B_2 \omega_d \cos \omega_d t \right)$$

$$v(0) = L \frac{di_L(t)}{dt} \bigg|_{t=0} = 0 \qquad \Rightarrow \qquad -\alpha B_1 + B_2 \omega_d = 0$$

$$\underline{B_2} = \frac{\alpha}{\omega_1} B_1 = \frac{1000}{2000} (-50 \times 10^{-3}) = -25 \times 10^{-3}$$

Step response — Example 1 solution (cont.)

$$i_L(t) = 100 + e^{-1000t} \left(-50\cos 2000t - 25\sin 2000t \right) \text{ mA} \quad t \ge 0$$

$$v_L(t) = L \frac{di_L}{dt} = 25e^{-1000t} \sin 2000t \quad V \quad t \ge 0$$

Step Response

$$v_C(t) = v_T(t)$$
 $t \ge 0$

$$i_R = \frac{v_R(t)}{R} = \frac{v_L(t)}{R} = 50e^{-1000t} \sin 2000t \quad \text{mA} \quad t \ge 0$$

$$i_L(t) = e^{-1000t} (50\cos 2000t + 25\sin 2000t) \text{ mA} \quad t \ge 0$$

Source Free
$$v_L(t) = L \frac{di_L}{dt} = -25e^{-1000t} \sin 2000t \text{ V} \quad t \ge 0$$

$$v_C(t) = v_L(t)$$
 $t \ge 0$

$$i_R = \frac{v_R(t)}{R} = \frac{v_L(t)}{R} = -50e^{-1000t} \sin 2000t \quad \text{mA} \quad t \ge 0$$

Step response – Example 1 solution (cont.)

Step response – series RLC circuit

By using KVL: $v_R + v_C + v_L = v_s$

The current flowing in the circuit:

$$i = C \frac{dv_C}{dt}$$

The voltage v_R and v_L are given by

$$v_{\rm R} = iR = RC \frac{dv_{\rm C}}{dt}$$

$$v_{\rm L} = L \frac{di}{dt} = LC \frac{d^2 v_{\rm C}}{dt^2}$$

Then we have:

$$\frac{d^{2}v_{C}}{dt^{2}} + \frac{R}{L}\frac{dv_{C}}{dt} + \frac{1}{LC}v_{c} = \frac{1}{LC}v_{s}$$
 (1)

Step response – series RLC circuit

$$\frac{d^{2}v_{C}}{dt^{2}} + \frac{R}{L}\frac{dv_{C}}{dt} + \frac{1}{LC}v_{c} = \frac{1}{LC}v_{s}$$
 (1)

The solution is:

$$v_C(t) = v_{C,f}(t) + v_{C,n}(t)$$

The natural response is the same as the source free case, the forced value of the voltage across the capacitor should be the voltage at $t = \infty$, in this circuit, the same as the source voltage v_s

$$v_C(t) = v_s + A_1 e^{s_1 t} + A_2 e^{s_2 t}$$
 (Overdamped)

$$v_C(t) = v_s + (A_1 + A_2 t)e^{-\alpha t}$$
 (Critically damped)

$$v_C(t) = v_s + (A_1 \cos \omega_d t + A_2 \sin \omega_d t)e^{-\alpha t}$$
 (Underdamped)

Step response – Example 2 (series RLC circuit)

For the circuit below, the switch is closed for a long time before it is opened. Find v(t) and i(t) for t > 0. Consider these cases: $R = 5\Omega$, $R = 4\Omega$, $R = 1\Omega$

Solution Case 1: $R = 5\Omega$

When
$$t < 0$$
: $i(0) = \frac{24}{5+1} = 4$ A
 $v(0) = 1 \times i(0) = 4$ V

$$t > 0$$
: $\alpha = \frac{R}{2L} = \frac{5}{2 \times 1} = 2.5$

$$\omega_0 = \frac{1}{\sqrt{LC}} = \frac{1}{\sqrt{1 \times 0.25}} = 2$$

$$s_{1,2} = -\alpha \pm \sqrt{\alpha^2 - \omega_0^2} = -1$$
, $-4 \Rightarrow$ Overdamped response

$$v(t) = 24 + A_1 e^{-t} + A_2 e^{-4t}$$

$$v(0) = 4 = 24 + A_1 + A_2 \implies -20 = A_1 + A_2$$

Step response - Example 2 solution

The current through the inductor cannot change abruptly, and is the same current through the capacitor at t = 0₊

$$i(0) = C \frac{dv(0)}{dt} = 4 \implies \frac{dv(0)}{dt} = \frac{4}{C} = 16$$

$$\frac{dv(t)}{dt} = -A_1 e^{-t} - 4A_2 e^{-4t} \qquad \text{At } t = 0, \quad \frac{dv(0)}{dt} = 16 = -A_1 - 4A_2$$

$$\frac{A_1 = -64/3, \quad A_2 = 4/3}{v(t) = 24 + \frac{4}{3}(-16e^{-t} + e^{-4t}) \quad \text{V}}$$

$$\begin{bmatrix} A_1 + A_2 = -20 \\ -A_1 - 4A_2 = 16 \end{bmatrix}$$

As the inductor and the capacitor are in series when t > 0,

The current through the inductor is the same as one through the capacitor:

$$i(t) = C \frac{dv}{dt} = 0.25 \times \frac{4}{3} (16e^{-t} - 4e^{-4t})$$
$$i(t) = \frac{4}{3} (4e^{-t} - e^{-4t}) \quad A$$

Step response - Example 2 solution (cont.)

Solution Case 2: $R = 4\Omega$

$$t < 0$$
: $i_L(0) = 24/(4+1) = 4.8$ A, $v(0) = 1 \times i(0) = 4.8$ V
 $\alpha = R/2L = 4/(4 \times 1) = 2$, $\omega_0 = 2$ \Rightarrow $s_1 = s_2 = -\alpha = -2$

As $s_1 = s_2$, we have the critically damped response.

And
$$v(t) = 24 + (A_1 + A_2 t)e^{-2t}$$
 V
 $v(0) = 4.8 = 24 + A_1$ \Rightarrow $A_1 = -19.2$
 $\frac{dv(0)}{dt} = \frac{4.8}{C} = 19.2$

$$\frac{dv(t)}{dt} = (-2A_1 - 2tA_2 + A_2)e^{-2t} \implies \frac{dv(0)}{dt} = -2A_1 + A_2 = 19.2 \implies A_2 = -19.2$$

Thus
$$v(t) = 24 - 19.2(1+t)e^{-2t}$$
 V

The current through the inductor is the same as one through the capacitor:

$$i(t) = C \frac{dv}{dt} = (4.8 + 9.6t)e^{-2t}$$
 A

Step response - Example 2 solution (cont.)

$$t < 0$$
: $i_L(0) = 24/(1+1) = 12$ A, $v(0) = 1 \times i(0) = 12$ V

$$\alpha = R/2L = 1/(2 \times 1) = 0.5$$
, $\omega_0 = 2 \implies s_{1,2} = -\alpha \pm \sqrt{\alpha^2 - \omega_0^2} = -0.5 \pm j1.936$

 $\alpha < \omega_0$: the underdamped response

then:
$$v(t) = 24 + (A_1 \cos 1.936t + A_2 \sin 1.936t)e^{-0.5t}$$
 V

$$v(0) = 12 = 24 + A_1$$
 \Rightarrow $A_1 = -12$ and $\frac{dv(0)}{dt} = \frac{12}{C} = 48$

$$\frac{dv(t)}{dt} = e^{-0.5t} \left(-1.936A_1 \sin 1.936t + 1.936A_2 \cos 1.936t \right) - 0.5e^{-0.5t} \left(A_1 \cos 1.936t + A_2 \sin 1.936t \right)$$

$$\frac{dv(0)}{dt} = (-0 + 1.936A_2) - 0.5(A_1 + 0) = 48 \qquad \Rightarrow \qquad A_2 = 21.694$$

Thus
$$v(t) = 24 + (21.694 \sin 1.936t - 12 \cos 1.936t)e^{-0.5t}$$
 V

The current through the inductor is the same as one through the capacitor:

$$i(t) = C \frac{dv}{dt} = (3.1\sin 1.936t + 12\cos 1.936t)e^{-0.5t}$$
 A

Step response – Example 2 solution (cont.)

Second Order Circuit – Step response summary

	Series	Parallel	
α	$\alpha = \frac{R}{2L}$	$\alpha = \frac{1}{2RC}$	
ω_0	$\frac{1}{\sqrt{LC}}$	$\frac{1}{\sqrt{LC}}$	
Over Damped	$\alpha > \omega_0$ Response: $A_1 e^{s_1 t} + A_2 e^{s_2 t}$		
Critically Damped	$\alpha = \omega_0$ Response: $e^{-ct}(A_1t + A_2)$		
Under Damped	$\alpha < \omega_0$ Response: $e^{-\alpha t} \left(B_1 \cos \omega_d t + B_2 \sin \omega_d t \right)$		
Undamped	R=0	$R \rightarrow \infty$	
	Response: $B_1 \cos \omega_0 t + B_2 \sin \omega_0 t$		

Quiz

• For the circuit in the figure on the right, the initial value of

 $i(0^{+})$ and $di(0^{+})/dt$ are:

- (a)
$$i(0^+) = 2 \text{ A}$$
, $di(0^+)/dt = -4 \text{ A/s}$;

- (b)
$$i(0^+) = 2 \text{ A}, di(0^+)/dt = 0 \text{ A/s};$$

$$-$$
 (c) $i(0^+) = 1.2 \text{ A}, di(0^+)/dt = 2 \text{ A/s};$

$$-$$
 (d) $i(0^+) = 1.2 \text{ A}, di(0^+)/dt = 1.2 \text{ A/s};$

- (a) over damped;
- (b) critical damped;
- (c) under damped;
- (d) un-damped.

t = 0

 6Ω

12 V

General Second Order Circuits

- The idea of parallel/series RLC circuits can be extended to any second order circuits.
- Find the step response of a 2nd order system takes five steps:
 - 1. First determine the initial conditions x(0) and dx(0)/dt, and the final value $x(\infty)$.
 - 2. Turn off the independent sources and find the form of the natural response $x_n(t)$ by applying KCL and KVL.
 - 3. We obtain the forced response as $x_t(t) = x(\infty)$
 - 4. The total response is now found as the sum of the natural response and forced response $x(t) = x_n(t) + x_t(t)$
 - 5. We finally determine the constants associated with the natural response by imposing the initial conditions x(0) and dx(0)/dt determined in step 1.

General Second Order Circuits – Example 3

• Find the complete response v and then i for t > 0 in the following circuit.

Ref.3, example 8.9

Practical Application — Automobile Ignition Circuit

• An automobile ignition circuit is based on the transient response of an RLC circuit.

• In such a circuit, a switching operation causes a rapid change in the current in an inductive winding known as an *ignition coil* (also called the *spark coil*).

Ignition coil
(autotransformer)

Secondary

Primary

Spark

plug

Capacitor

(condenser)

Automobile Ignition Circuit — 1st order model

- In gasoline engine, the ignition of the fuel-air mixture in each cylinder is achieved by means of a spark plug.
 - By creating a large voltage (thousands of volts) between the electrodes, a spark is formed across the air gap, thereby igniting the fuel.

- This is achieved by means of an inductor (the spark coil) L.
 - Voltage across the inductor is v = Ldi/dt
 - So rapidly changing current i(t) can generate large voltage v.
 - After the switching, the current increases and reaches the final value of $i = V_s/R$, where $V_s = 12$ V.

65

Spark

Automobile Ignition Circuit — 1st order model

• A solenoid with resistance 4Ω and inductance 6 mH is used in an auto-mobile ignition circuit.

- the final current through the solenoid when the switch is closed;
- the energy stored in the coil, and the voltage across the air gap assuming that the switch takes 1 μ s to open.

• Solution:

- The final current through the coil is $I = \frac{V_s}{R} = \frac{12}{4} = 3 \text{ A}$
- The energy stored in the coil is $W = \frac{1}{2}LI^2 = \frac{1}{2} \times 6 \times 10^{-3} \times 3^2 = 27 \text{ mJ}$
- The voltage across the gap is

$$V = L \frac{\Delta I}{\Delta t} = 6 \times 10^{-3} \times \frac{3}{1 \times 10^{-6}} = 18 \text{ kV}$$

Automobile Ignition Circuit — 2nd order model

• In 1st order model, we considered the automobile ignition system as a charging system.

 4Ω

- Here, we consider another part: the voltage generating system.
 - The 12-V source is due to the battery and alternator.
 - The resistor represents the resistance of the wiring.
 - The ignition coil is modelled by the 8-mH inductor.
 - The capacitor (known as the condenser to automechanics) is in parallel with the switch (known as the breaking points or electronic ignition).

Spark plug

8 mH

Ignition coil

Automobile Ignition Circuit — 2nd order model

• Assuming that the switch in the figure is closed prior to $t = 0^-$. Find the inductor voltage v_L for t > 0.

Ref.3, example 8.16

- After calculation, the inductor voltage's peak value is -259V.
 - Still far less than the voltage range of 6000 to 10,000 V required to fire the spark plug in a typical automobile
 - A device known as a transformer is used to step up the inductor voltage to the required level.

68

Automobile Ignition Circuit – 2nd order model

• By using a transformer (autotransformer in this case), the voltage on the spark plug can be boosted up to 40 kV to ignite the fuel-air mixture in the cylinder.

Practice

- The switch in the circuit shown in Figure Q2 has been closed for a long time before it is opened at t = 0.
 - Draw the equivalent circuit at $t = 0^-$ and $t = \infty$;
 - Find $i_L(t)$ for $t \ge 0$;
 - How many microseconds after the switch opens is the inductor voltage $v_L(t)$ maximum?
 - If resistor is removed from the circuit at t = 0 s, draw $i_L(t)$.

