

Компютърни архитектури CSCB008

Системи за двоично кодиране. Математика с двоични числа

доц. д-р Ясен Горбунов 2021

Ракетата Ариана 5 изпраща два 3-тонни сателита в космоса..., 4 юни 1996

https://hackaday.com/2016/06/30/fail-of-the-week-in-1996-the-7-billion-dollar-overflow/

Грешка за 7 милиарда долара...

Ариана 5 е двустепенна тежкотоварна ракета-носител

дължина — 53 m

диаметър — 5.4 m

тегло - 780 тона

- Унищожената ракета и нейният товар са на стойност 500 милиона USD.
- Разработката ѝ отнема 10 години и струва 7 милиарда USD.

Причината:

64-bit число с плаваща запетая, свързано с хоризонталната скорост на ракетата е конвертирано в 16-bit цяло число със знак. Размерът на числото надхвърля 32767, което е най-голямото цяло число в този формат, поради което настъпва препълване на разрядната решетка.

Събиране на числа

десетично събиране

Събиране на числа

1011

10001

Преносът никога няма да бъде по-голям от единица!

Четири възможни резултата от събиране на два бита (два операнда)

пренос

Четири възможни резултата от събиране на три бита (два операнда и пренос)

Събиране на два байта

Получаване на числа в BCD код

алгоритъм "Double dabble" (shift-and-add-3)

За преобразуване на *п*-битово число:

- 1. Заделят се $n+4\cdot ceil(\frac{n}{3})$ бита; двоичният оригинал се намира отдясно ("ceil" закръгля до най-близкото цяло число, което е по-голямо или равно на аргумента)
- 2. Проверява се дали някоя BCD цифра е >4; ако е, то се прибавя 3₍₁₀₎=0011₍₂₎
- 3. Извършва се преместване наляво
- 4. След общо *п* премествания алгоритъмът приключва

Получаване на числа в BCD код

алгоритъм "Double dabble" (shift-and-add-3)

Пример

За числото 11110011 са нужни

$$n+4\cdot ceil(\frac{n}{3})=8+4\cdot ceil(\frac{8}{3})=8+4\cdot 3=20$$

CLOINTH BECELVITY 0000 0000 0000 11110011 0000 0000 0001 0000 0000 0011

инициализация

11100110 преместване (<<)

преместване (<<) 11001100

 $\overline{(111_{(2)} = 7_{(10)} > 4_{(10)})}$ преместване (<<) 0000 0000 0111 10011000

0000 0000 1010 10011000 + 3 към единиците

 $(101_{(2)} = 5_{(10)} > 4_{(10)})$ 0000 0001 0101 00110000 преместване (<<)

+ 3 към единиците 0000 0001 1000 00110000

преместване (<<) 0000 0011 0000 01100000

0000 0110 0000 11000000

0000 1001 0000 11000000

0001 0010 0001 10000000

0010 0100 0011 0000000

УНИВЕРСИТЕТ

преместване (<<)

 $(110_{(2)} = 6_{(10)} > 4_{(10)})$

+ 3 към десетиците

преместване (<<)

преместване (<<)

3 **BCD**

Събиране на числа в BCD код

Събиране на числа в BCD код

Ако сумата е ≥1010_{віN} (1001_{віN}+пренос), трябва да се добави 6_{дес}=0110

Събиране на числа в BCD код

Примери

Десетично събиране и преобразуване в BCD код

Събиране в BCD код

	184 _{BCD}	0001	1000	0100
+	184 _{BCD} 576 _{BCD}	0101	0111	0110
		0110	1111	1010
	+ 6 _{DEC}	0000	0110	0110
	760 _{BCD}	0111	10110	10000
		7 _{BCD}	6 _{BCD}	O _{BCD}

Изваждане на двоични числа в BCD код

Въвеждане на код за знак:

за положителни числа
$$\to \text{ код } 0000_{\text{BIN}} = 0_{\text{DEC}}$$
 за отрицателни числа $\to \text{ код } 1001_{\text{BIN}} = 9_{\text{DEC}}$

Метод с допълнение на 9

Числото, получено чрез изваждане на число от основата на бройната система. Например, десетичното допълнение на 8 е 2.

Допълненията се използват в цифровите схеми, защото изваждането става по-бързо чрез използване на допълнения, отколкото чрез извършване на истинско изваждане.

- 1. Извършва се допълнение на 9 на умалителя
- 2. Събират се двете числа
- 3. При необходимост се извършва корекция ($+6_{DEC} = 0110_{BIN}$)
- 4. Ако **възникне пренос**, то резултатът е **положителен** и вместо пренасяне се извършва <u>сумиране с бита за пренос (1)</u>
- 5. Ако **не възникне пренос**, то резултатът е **отрицателен** и се извършва ново допълнение на 9
- 6. Представят се числата с добавен знак (0000 (+) или 1001 (-))

Изваждане на двоични числа в BCD код

Пример: 357 - 432 = -75

$$357_{DEC} = 0011 \ 0101 \ 0111$$
 BCD

ДОПЪЛНЕНИЕ НА 9

-432_{DEC} = 999 – 432 = 567

5 6 7
0101 0110 0111

Двоично изваждане

0	1				0	4		
X	0	0	1	1	0 1	0	1	1
0	0	1	0	1	0	1	0	1
0	1	1	1	0	0	1	1	0

подобно на десетичното изваждане

Проблеми

- нужен е начин за представяне на знака (+/-) в двоична бройна система {0; 1}
- синтез на хардуерно изваждащо устройство е възможен, но излишен

Решение

Изваждането е частен случай на събирането!

Представяне на двоични числа със знак

два основни метода

Величина със знак (Sign / Magnitude)

Допълнителен код (Two's Complement)

Представяне на двоични числа със знак

Величина със знак (Sign / Magnitude)

жертване на един бит

представяне обхват
$$A: \{a_{N-1}, a_{N-2}, \dots a_2, a_1, a_0\}$$
 за положителните числа \longrightarrow [0, 2^{N-1}-1] $A = (-1)^{a_{N-1}} \sum_{i=0}^{N-2} a_i \, 2^i$ за отрицателните числа \longrightarrow [-2^{N-1}-1, 2^{N-1}-1]

Представяне на двоични числа със знаков бит (sign / magnitude)

Пример $+6_{DEC} = 0110$ $-6_{DEC} = 1110$

сумирането не работи

грешно

двусмислие в представянето на 0

Представяне на двоични числа със знак

Двоични допълнения

Всяко число има обратно, чиято стойност добавена към оригиналното дава 0.

Допълнителен код (Two's Complement)

1. прав код (П.К.)

абсолютната стойност на числото

Пример: $|+120_{DEC}| = 01111000_{BIN}$ необходим е допълнителен бит за знак $|-115_{DEC}| = 01110011_{BIN}$

2. обратен код (О.К.)

допълнение на единицата (One's Complement)

- при положителни числа О.К. = П.К.
- при отрицателни числа е необходимо инвертиране на всички битове

3. допълнителен код (Д.К.)

- при положителни числа Д.К. = П.К.
- при отрицателни числа към числото в О.К. се добавя 1

Допълнителен код

преобразуване в права посока

преобразуване в обратна посока

Допълнителния код на допълнителния е правия код!

Допълнителен код – примери

положително число

$$N_{DEC} = 2.1$$

прав код
$$N_{BIN} = 010101$$

обратен код
$$N_{BIN} = 0 10101$$

не се извършва преобразуване

отрицателно число

$$N_{DEC} = -10$$

прав код
$$N_{BIN} = 0 1 0 1 0$$
 инвертиране $V_{RIN} = V_{RIN} =$

допълнителен код
$$N_{BIN} = 10101$$
 + 1 $N_{BIN} = 10110$

Допълнителен код – примери

преобразуване

$$N_{DEC} = 11$$

LSB

 $11:2 = 5.5 \rightarrow 1$
 $5:2 = 2.5 \rightarrow 1$
 $2:2 = 1 \rightarrow 0$
 $1:2 = 0.5 \rightarrow 1$

MSB

 $N_{BIN} = 1011$
 $+ \rightarrow \Pi.K. = Д.K. \rightarrow 01011$

Допълнителен код – примери

преобразуване

$$N_{DEC} = 11$$

LSB

 $11:2 = 5.5 \rightarrow 1$
 $5:2 = 2.5 \rightarrow 1$
 $2:2 = 1 \rightarrow 0$
 $1:2 = 0.5 \rightarrow 1$

MSB

 $N_{BIN} = 1011$
 $+ \rightarrow \Pi.K. = Д.K. \rightarrow 01011$

```
N_{DEC} = -15

15:2=7.5 \rightarrow 1
7:2=3.5 \rightarrow 1
3:2=1.5 \rightarrow 1
1:2=0.5 \rightarrow 1

N_{BIN} = (-)1111

O.K.=10000
+
1
J.K.=10001
```


Допълнителен код – примери

преобразуване

$$N_{DEC} = 11$$

LSB

 $11:2 = 5.5 \rightarrow 1$
 $5:2 = 2.5 \rightarrow 1$
 $2:2 = 1 \rightarrow 0$
 $1:2 = 0.5 \rightarrow 1$

MSB

 $N_{BIN} = 1011$
 $+ \rightarrow \Pi.K. = Д.K. \rightarrow 01011$

```
N<sub>DEC</sub> = -15

15:2 = 7.5 \rightarrow 1

7:2 = 3.5 \rightarrow 1

3:2 = 1.5 \rightarrow 1

1:2 = 0.5 \rightarrow 1

N<sub>BIN</sub> = (-)1111

- → Π.Κ. = 11111

O.Κ. = 10000

+ 1

Д.Κ. = 10001
```

```
N_{DEC} = -73
    73:2
            = 36.5 → 1 △
    36:2 = 18 \rightarrow 0
 18:2 = 9 → 0
    9:2 = 4.5 \rightarrow 1
    4:2 = 2 \rightarrow 0
    2:2 = 1 \rightarrow 0
    1:2 = 0.5 \rightarrow 1
N_{RIN} = (-)1001001
- \rightarrow \Pi.K. = 01001001
    O.K.= 10110110
    Д.К. = 10110111
```


Допълнителен код – примери

събиране

Допълнителен код – примери

събиране

Допълнителен код – примери

събиране

Допълнителен код – примери

пет-битов двоичен код на числата от -4 до +4

DEC	4	3	2	1	0	-1	-2	-3	-4
sign magnitude	0 0100	00011	0 0010	00001	00000	1 0001	1 0010	1 0011	1 0100
2`C	0 0100	0 0011	0 0010	0 0001	00000	1 1111	1 1110	1 1101	1 1100

Ако към което и да е число, представено в **допълнителен код**, се прибави 1 към най-младшия бит, се получава предхождащото го число. Това позволява полесната реализация на аритметичните операции в изчислителните устройства.

+1

Допълнителен код – бърз начин на получаване

- 1. Копиране на нулите на числото, започвайки от LSB до достигане на 1.
- 2. Копиране на достигнатата единица.
- 3. Ако LSB е 1, то той се копира. Останалите битове се инвертират.

Пример

Сравнение на представянето без знак, със знаков бит и в допълнителен код

Представяне	Обхват	За 1 байт (8-bit)	Брой цели различни числа
Unsigned	$[0, 2^{N}-1]$	0; 255	256
Sign/Magnitude	$[-2^{N-1}-1, 2^{N-1}-1]$	-127; 127	255
Two's Complement	$[-2^{N-1}, 2^{N-1}-1]$	-128; 127	256
K' = K + K' = K'	t' = t' + t' = t'		

Пример, 4-bit представяне:

Увеличаване на битовата разрядност

Допълване чрез водещ знаков бит

- знаковият бит се копира в най-значещите битове (MSB)
- числото остава същото

Пример 1:
$$3_{4-bit \, BIN} = 0011$$
 Пример 2: $-5_{4-bit \, BIN} = 1011$ $-5_{8-bit \, BIN} = 11111011$

Допълване чрез водещи нули

- копиране на нули в най-значещите битове (MSB)
- отрицателните числа се променят

Пример 1:
$$3_{\text{4-bit BIN}} = 0011$$
 Пример 2: $-5_{\text{4-bit BIN}} = 1011$ $-5_{\text{8-bit BIN}} = 00001011$

Числа с фиксирана запетая

Не съществува друг начин за определяне на мястото на десетичната точка освен чрез предварителна уговорка.

Пример:
$$6.75_{DEC} = 01101100 = 0110.1100 = 2^2 + 2^1 + 2^{-1} + 2^{-2}$$

Числата със знак се представят като "величина със знак" (Sign / Magnitude) или в допълнителен код.

Пример: -2.375	00100110	абсолютна стойност в регистър
	0010.0110	абсолютна стойност (2¹+2⁻²+2⁻³)
	1010.0110	величина със знак
виртуална 🐗	1101.1010	допълнителен код

0.125

препълване – няма място за този бит

Числа с фиксирана запетая

Събиране/изваждане – допълнителен код

Пример:
$$0.75 - 0.625 = 0.125$$
 $0.75 = 0000.1100$ положително число

 $-0.625 = 0000.1010$ ($2^{-1}+2^{-3}$) П.К.
 1111.0101 1's C (O.K.)
 $+0000.0001$
 1111.0110 2's C (Д.К.)

10000.0010

Числа с плаваща запетая – стандарт IEEE 754

Възможно е представянето на много големи и много малки числа.

Форматът притежава знак, мантиса (М), основа (В) и експонента (Е): $\pm M \times B^E$

Пример 1: 342,370,000 рес

$$= 3.4237 \times 10^{8}$$

Пример 2: $100101101.010110_{BIN} = 1.00101101010110 \times 2^{8}$ Е

Числа с плаваща запетая – стандарт IEEE 754

Пример

Да се представи в IEEE 754 числото 228_{DEC}

Експонентата може да бъде положителна или отрицателна. IEEE 754 използва отместена експонента.

$$\pm M \times 2^{(E-127)}$$
 \rightarrow E - 127 = 7 \rightarrow E = 7 + 127 = 134_{DEC} = 10000110_{BIN} OTMECTBAHE

Първият бит в мантисата е винаги 1 и не се налага да бъде съхраняван.

Числа с плаваща запетая – стандарт IEEE 754

Пример

Да се получи 32-bit число според стандарта IEEE 754, представящо $0.00000110110100101_{\text{вім}}$.

0.00000110110100101 преместване на десетичната точка със 7 позиции надясно

знак мантиса експонента 0 положително число 10110100101 и 12 нули за допълване до 23 бита E – 127 = –7

E = -7 + 127 = 120 $120_{DEC} = 01111000_{BIN}$

S E_{8-bit} M_{23-bit}

0 01111000 101101001010000000000

отговор 0011110001011010010100000000000

Числа с плаваща запетая – стандарт IEEE 754

- един от първите програмни езици, предлагащи представяне на числа с плаваща запетая е Fortran (Formula Translator)
- преди IEEE 754-1985, представянето на **double float** числата зависи силно от производителя на компютъра и модела
- най-широко разпространение има single-precision floating-point, поради поширокия обхват спрямо фиксираната запетая при един и същ брой битове:

32-bit цяло число със знак $max = 2^{31} - 1 = 2,147,483,647$

32-bit IEEE 754 floating-point $max = (2 - 2^{-23}) \times 2^{127} \approx 3.402823 \times 10^{38}$

Други представяния на числа с плаваща запетая

16-bit: Half (binary16)

32-bit: Single (binary32), decimal32

64-bit: Double (binary64), decimal64

128-bit: Quadruple (binary128), decimal128

256-bit: Octuple (binary256)

Extended precision formats (40-bit or 80-bit)

Стандарт IEEE 754

- някои числа не могат да се представят точно например 1.7 ≈ 1.6999999... за целта калкулатори и финансов софтуер използват BCD код
- поради наличие на водеща единица проблем при представяне на нула

Представяне на 0, безкрайност и NaN

Число	Знак	Експонента	Мантиса
0	X	0000 0000	0000 0000 0000 0000 000
∞	0	1111 1111	0000 0000 0000 0000 000
$-\infty$	1	1111 1111	0000 0000 0000 0000 000
NaN	X	1111 1111	Non-zero

NaN – Not-a-Number (числа, които не съществуват $\sqrt{-1}$, $\log_2(-5)$)

Стандарт IEEE 754

В процесорите Pentium е съществувал бъг при делене с плаваща запетая (инструкция FDIV) поради неправилно предаване на стойности от LookUp таблица. Това е струвало на Intel 475 милиона долара!

Специален алгоритъм за делене е бил реализиран чрез програмируема логика с 2048 клетки, от които 1066 клетки е трябвало да съдържат една от 5 стойности: –2, –1, 0, +1, +2. В проблемния процесор 5 от клетките, съдържащи +2, са липсвали, в резултат на което е връщана стойност 0.

Tom R. Halfhill (1995). "An error in a lookup table created the infamous bug in Intel's latest processor". BYTE Magazine (March 1995)

$$\frac{4,195,835}{3,145,727}$$
 = 1.333820449136241002

При преобразуване в HEX стойност на числото 4,195,835 = 0x4005FB цифрата 5 е предизвиквала грешка в логиката за управление на FPU. В резултат, стойността, връщана от процесора, е била погрешна в определени ситуации.

$$\frac{4,195,835}{3,145,727} = 1.333739068902037589$$

66 MHz Intel Pentium

25

Умножение и деление на степен на две

Операциите умножение и деление са бавни операции! Най-удобно е умножение и деление на 2ⁿ.

<<1 (left shift) умножение

	_	_			_		
0	0	0	0	0	0	1	1
0	0	0	0	0	1	1	0

23

22

24

1 препълване → 1 1 0 0 0

0 1 1 1 0 0 0 0 0 0 0

>>1 (right shift) деление

0	0	0	0	0	0	1	1
0	0	0	0	0	0	0	1
1	1	1	1	1	1	1	1
0	1	1	1	1	1	1	1

20

3_{DEC}

224_{DEC}

192_{DEC}

3_{DEC}

1_{DEC}

255_{DEC}

127_{DEC}

21

Умножение и деление на степен на две

Особености

- излизане извън обхвата при умножение и препълване
- загуба на точност при деление и изпадане на бит отдясно

При числа в допълнителен код

MSB е знаков бит – при изместване на битове надясно трябва да се копира

Умножение и деление на степен на две

Умножение, което не е степен на 2

Пример:
$$3_{DEC} = 11_{BIN}$$
 да се умножи по 10

1. разлагане на множителя на числа, които са степени на 2 $(10 = 8 + 2 = 2^3 + 2^1)$

				1	1	3 _{DEC}	
							x10
2. умножение на 3 по 2 (<< 1) —			1	1	0	6 _{DEC}	
3. умножение на 3 по 8 (<< 3)	1	1	0	0	0	24 _{DEC}	+
4. събиране на двете числа	1	1	1	1	0	30 _{DEC}	

Модифициран код - събиране

DEC		BIN
3+2 = 5		0011
	+	0010
		0101

знаков бит → отрицателно число

Препълването невинаги може да се пренебрегне.

В компютърните системи често се използва модифициран допълнителен код

използват се два бита за знак

00 - положителни числа

11 – отрицателни числа

препълването се отчита чрез получаване на комбинации 01 или 10

Модифициран код – събиране и изваждане

DEC		BIN			
13+9 = 22		00 1101			
	+	00 1001			
		01 0110			
препълване					
препълването позволява					

след изместване $\to 00 \ 10110$

(+10110)

изместване

Модифициран код – умножение

- по обикновените правила за умножение на двоични числа
- при отрицателен множител (знак 11), отляво се добавят толкова единици, колкото значещи разряди има в другия множител отдясно на запетаята
- резултатът е в Д.К.

