CSCI 210: Computer Architecture Lecture 27: Control Path

Stephen Checkoway

Oberlin College

Dec. 10, 2021

Slides from Cynthia Taylor

Data & Control Path

R-Type Instruction

Executing Load and Store Operations

- compute memory address by adding base register to 16-bit signedextended offset field
- store value written to the Data Memory
- load value read from the Data Memory, written to the Register File
 RegWrite ALU control MemWrite

Which wire, if always 1 would break lw?

Load Instruction

Executing Branch Operations

 compare the operands read from the Register File during decode for equality (zero ALU output)

 compute the branch target address by adding the updated PC to the 16-bit signed-extended offset field in the instruction

Executing Branch Operations

Branch-on-Equal Instruction

Control Truth Table

Main control takes the 6 opcode bits and produces the control signals using combinatorial logic

		R-format	lw	sw	beq
Opcode		000000	100011	101011	000100
Outputs	RegDst	1	0	X	X
	ALUSrc	0	1	1	0
	MemtoReg	0	1	X	X
	RegWrite	1	1	0	0
	MemRead	0	1	0	0
	MemWrite	0	0	1	0
	Branch	0	0	0	1
	ALUOp1	1	0	0	0
	ALUOp0	0	0	0	1

Recall: PLAs

Derived from truth table using sum of products

Allow us to encode arbitrary functions

- Used to derive control signals in the datapath
 - Each control signal is a function of the 6 opcode bits

ALU Control

Takes as input 2-bit ALUop (derived from opcode) and 6-bit funct field; outputs 4 bits

Instruction	ALUOp	funct	ALU function	Ainvert	Binvert	ALU operation
load word	00 (add)	XXXXXX	add	0	0	10 (add)
store word	00 (add)	XXXXXX	add	0	0	10 (add)
branch equal	01 (subtract)	XXXXXX	subtract	0	1	10 (add)
add	10 (r-type)	100000	add	0	0	10 (add)
subtract		100010	subtract	0	1	10 (add)
AND		100100	AND	0	0	00 (and)
OR		100101	OR	0	0	01 (or)
NOR		100111	NOR	1	1	00 (and)
set-on-less-than		101010	set-on-less-than	0	1	11 (less)

Implementing Jumps

 Jump
 2
 address

 31:26
 25:0

- Jump uses word address
- Update PC with concatenation of
 - Top 4 bits of PC + 4
 - 26-bit jump address
 - -00

Select	Best Answer	
A	Yes – we need both new control and datapath.	
В	Yes – we need just datapath.	
C	No – but we should for better performance.	
D	No – just changing control signals is fine.	
Е	Single cycle can't do jump register.	

Datapath With Jumps Added

What will the Signals for Jump be?

What would the control signals for addi be?

Questions on the Data & Control Path?

Reading

- Next lecture: Pipeline
 - Section 5.7

Problem Set 9 due Friday

Lab 8 due Monday (two weeks)