Identifying and fitting distributions Sunday, 09 October 2022 22:49

What's the approach we take for identifying and fitting	Task: Identifying Distributions and fitting distributions
for identifying and fitting distributions?	Approach: Look at visualizations Use descriptive statistics to further identify distributions
	3. Go for tests to confirm judgement
	Detailed Approach
What are the steps in the	Plot Histogram
analysis?	 Whenever you want to find a distribution, the first thing you do is plot Histogram. When you plot a histogram, you can look at it and tell what family of distributions a dataset may belong to.
	2. Do some descriptive Analysis
	3. Plot Probability Plots to check goodness of fit
	i. P-P Plot ii. Q-Q Plot
	4. Apply statistical tests to check goodness of fit
	 i. Chi square test For this test, we usually need two kind of frequencies: Observed frequency: sample frequency Expected frequency: population frequency, the model distribution where we assume the data is coming from. Output: the chi-square statistic and the p-value
	\circ Compare the $p-value$ and α (significance level) and, conclude about the null hypothesis.
	 ii. Calculated and tabular chi-square statistic comparison Input: confidence level, degrees of freedom (df)
	 Output: Tabular chi-square statistic Compare tabular and calculated chi-square values and, conclude about the null hypothesis.
Defining Hypotheses	Null Hypothesis: Sample distribution follows model distribution.
	Alternate Hypothesis: Sample distribution does not follow model distribution.
Chi Square Test	stats.chisquare(obs_freq, expec_freq)
How to calculate <u>expected</u> <u>frequency</u> ?	This command returns two values: 1. Chi-Square Statistic 2. P-value
 stats.chisquare(obs_freq, expec_freq) What does this command return? Chi-square formula? 	 P-value is the probability of observing this particular sample when the null hypothesis is assumed to be true.
What is p-value?	• α :: Significance level, that can take a value of 0.05, or 0.10, or 0.15.
 What is p-value? What is α? Comparing both these values, when do we accept the null hypothesis? 	• If P-value > α :: We accept the null hypothesis.
Tabulated Chi-Square Statistic	scipy.stats.chi2.ppf(0.95, df=9)
scipy.stats.chi2.ppf(0.95, df=9)	Above command gives us the tabulated chi-square statistic, that takes two arguments:
 What arguments does this command take? 	1. First argument is confidence level = 95% we have taken
• How to calculate df?	2. Second argument is degrees of freedom, $df = k - p - 1$ where,
• How do we calculate <i>df</i> in a <u>contingency table</u> ?	 a. k = number of classes/intervals/buckets b. p = number of parameters we estimate from the sample
Comparing calculated and tabulated chi-square statistic, when do we accept the null	If Tabulated value ≥ Calculated value
hypothesis?	» We accept the null hypothesis
Some other observations:	• In Python, whenever we run a code for any of the plots (Q-Q or P-P), by default, it's always comparing it with the standard normal distribution.
	• It converts the data that is fed to it to a standard normal, basically by doing $\frac{x-\mu}{\sigma}$. • It will scale it and then it will compare it with the standard normal(default), and see how the quantiles (or distributions) are fitting.
	So, it normalizes the data, and then compare it with the standard normal.
	• Poisson distribution has mean = variance (= λ)
	 Generally for normal distributions the Kurtosis would be around 3. Degree of freedom = k - p - 1
	 p = 0 for uniform distribution as there is no parameter. This point is doubtful. Needs verification
	Question: What range decides if the skewness is very small or very large to consider?