This file was provided by: Muath Alghamdi

Test-3, January 7 Level 4

Problem 1. Find all functions $f: R \to R$ such that

$$f\left(xf(y) - f(f(x))\right) = yf(x) - y + 1.$$

for every $x, y \in R$.

Problem 2. Let n > 1 be an integer and $n = p_1^{\alpha_1} p_2^{\alpha_2} \dots p_k^{\alpha_k}$ its standard prime factorization. We will call deg $(n) = \alpha_1 + \alpha_2 + \dots + \alpha_k$ the degree of n and deg (1) = 0. Prove that there exists a sequence of 2020 consecutive positive integers among which there are exactly 1000 terms of the degree less than 10.

Problem 3. Consider a simple graph with $n \geq 2$ vertices and $m \geq 1$ edges. Define trianglity of an edge to be the number of triangles to which this edge belongs. Denote by Δ the average edge trianglity in the given graph. Prove that

$$\frac{4m - n^2}{n} \le \Delta \le \sqrt{2m}.$$

Problem 4. Let ABC be an acute triangle with incenter I, circumcenter O, and circumcircle Γ . Let M be the midpoint of AB. Ray AI meets BC at D. Denote by ω and γ the circumcircles of BIC and BAD, respectively. Line MO meets ω at X and Y, while line CO meets ω at C and C and C and C and C are that C lies inside C and C and C and C are the C and C and C and C are the C and C and C are the C and C and C are the C are the C and C are the C are the C and C are the C and C are the C and C are the C are the C are the C and C are the C are the C and C are the C are the C and C are the C are the C are the C are the C and C are the C are the C are the C and C are the C are the C are the C and C are the C are the C are the C and C are the C are t

Consider the tangents to ω at X and Y and the tangents to γ at A and D. Given that $\angle BAC \neq 60^{\circ}$, prove that these four lines are concurrent on Γ .

السؤال الأول

أوجد جميع الدوال $\mathbb{R} \to \mathbb{R}$ التي تحقق المعادلة

$$f\Big(xf(y) - f(f(x))\Big) = yf(x) - y + 1$$

 $x, y \in \mathbb{R}$ (x)

السؤال الثاني

ليكن n>1 عددًا صحيحًا وليكن $p_k^{\alpha_1} p_2^{\alpha_2} \cdots p_k^{\alpha_k}$ تحليله المعتاد إلى عوامل أولية. سنقول عن المقدار n>1 عددًا صحيحًا وليكن $\deg(n)=\alpha_1+\alpha_2+\cdots+\alpha_k$ درجة العدد α_1 عدد العدد α_2 عدد موجب متتالي تحقق أن من بينها هناك 1000 عدد بالضبط من الدرجة أقل من 10.

السؤال الثالث

اعتبر الرسم المكون من $2 \geq n$ رأسًا و $1 \leq m$ ضلعًا. نعرّف مثلثتية الضلع على أنها عدد المثلثات التي تحتوي هذا الضلع. ليكن Δ الوسط الحسابي لكافّة مثلثيات أضلاع الرسم المعطى. أثبت أن

$$\frac{4m-n^2}{n} \le \Delta \le \sqrt{2m}.$$

$$b = \lim_{n \to \infty} 3 \text{ all } b = \lim_{n \to \infty} 3$$

السؤال الرابع

ليكن ABC مثلثًا حاد الزوايا ومركزه الداخلي I، ومركزه الحيط O، ودائرته الحيطة T. لتكن M نقطة منتصف ABC. الشعاع AI يقطع BC في BC لتكن BC لتكن BC و BI الدائرتين المحيطتين بـ BI و BI على الترتيب. المستقيم AB في AI و AB وأن AB على الترتيب. المستقيم AB يقطع BC في حين أن المستقيم AB يقطع AB في AB و ABC وأن ABC على حين أن المستقيم ABC يقطع ABC في ABC و ABC وأن ABC على حين أن المستقيم ABC يقطع ABC وأن ABC على الترتيب. المستقيم ABC

اعتبر الماسين لـ ω عند X و X والماسين لـ γ عند λ عند ω عند ω عند ω عند λ عند λ المستقيات الأربع تتقاطع على λ .

الزمن 4 ساعات ونصف كل سؤال 10 نقاط مع أطيب التمنيات بالتوفيق