Admin

- Quiz due Friday at 11:59pm
 - One hour time limit (so you need to start by 11:00pm!)
 - Short answer, fill in the blank, code snippets
 - Open book; open notes. Closed compiler.
 - If you're given a score, it is only preliminary
 - Quiz covers:
 - Coding/programming
 - Intro material on sensors, robots, what is a robot, etc.
 - (No "DoF")
- Quiz review, 6-8pm, Higgins 116
 - The intention is to have two, one-hour reviews.

Admin

- HW
 - Solutions to 1.* are on canvas
 - Note that we're only grading select problems
 - 2.0 due tomorrow at the start of class;
 - 2.1, 2.2 due Monday at the start of class
- Read Chp. 4 & 5 for tomorrow. They give a great overview of actuation.
- Friday, 3-5: another "ESP32 Workshop"
 - (take a moment to find a partner...)

rotateTo vs. rotateFor

Functionality

Defining Functionality

- Actions of the system
- Solution independent
- For illustrative purposes, we often define them as verb:noun pairs
 - (but "be <something>" is typically not a good functional definition)

DigSafe Robot

You work for a large electrical company, which commits a lot of resources to marking out electrical lines so that when contractors are digging, they don't dig up your wires. You are aiming to make the process more efficient, and one of your brilliant ideas is to make a robot that can survey an area for buried cables and mark them, much as is done by a person now. You have GIS information on where lines should be, but they aren't always accurate.

Define the functionality of such a robot.

How you define functionality affects your solution space

Consider the difference between:

Less restrictive

Move around workzone

Drive around workzone

More restrictive

Store data

Transmit data

Measure soil temperature

Insert probe

Sit with your team!

- Take a few minutes to compile all of your individual functions into one list for your team. Write them on a fresh piece of paper (so you can turn in the individual ones).
- Make the list as comprehensive as you can.

Evaluation time

- As a team, evaluate the functional specifications for the submission you've been given.
 - Put a check mark by ones you agree with
 - If you disagree with one, explain why you disagree with it
 - Write the team number and names of the evaluators at the bottom

Collective list of functions

Morphological chart

Function Trigger	Importance 9	Possible Solutions						
		Physical Volume Calculation	Motion Sensor	Proximity Sensor	Heat/Infared Sensor	© 9 Optical Trip wire	Pressure Sensor	Noise Sensor
Microcontroller	9	Arduino	Rasberry Pi	MSP 430		2		45
Temperature	9	Thermocouple	RTD	Thermistor	Silicon based	Thermometer	Pressure Spring Thermometer	
Oxygen Levels	3	Dissolved Oxygen Sensor	Colorimetric	Titration	Heated	Unheated	FLO	Planar
рН	9	Electrode Methods	Color Indicator Comparison	lon Selective Field Effect Transistors	Semi- Conductor Methods			
Humidity	9	Capacitive	Resistive	Thermal Conductivity	A Psychrometer	Hygrometer	Dew Check	45
Data Extraction	9	Book	Wirelessly	USB))) Bluetooth	Disk	SD Card	
Protection	9	Waterproof Case	Waterproof Bag	Magnetic Force Field				45

Assignment

- Generate a comprehensive set of ideas for each of the functions of your robot
 - Concentrate on the functions where you have lots of options
 - It's OK to have just one "idea" if that solution has been provided for you (e.g., the VEX radio will be used for communication)
- Create a morphological chart for your ideas
- For each function, select 1-3 ideas that you are most likely to pursue
 - Why do you think each solution is promising?
 - What would you still need to figure out to implement it?

Functional advice

- Organize your project by functionality (including report!)
- Generate lots of ideas for each function
- Evaluate your options by:
 - Constraints & requirements
 - Performance
- Use physical prototypes and analytical tools wisely
- Be conscious about trade-offs
 - External: e.g., cost vs. performance
 - Internal: e.g., performance vs. complexity