Правительство Российской Федерации Федеральное государственное автономное образовательное учреждение высшего образования "Национальный исследовательский университет "Высшая школа экономики" сковский институт электроники и математики им. А.Н.Тихоног

Московский институт электроники и математики им. А.Н.Тихонова Департамент прикладной математики

ОТЧЕТ

по дисциплине «Теоретико-числовые методы в криптографии» Программная реализация алгоритма вычисления квадратного корня в поле \mathbb{F}_q для $q\equiv 2^s+1\pmod{2^{s+1}}$

> Выполнили студенты гр. СКБ181 Васильева Анастасия Андреевна, Попов Дмитрий Александрович

1 Введение

В данной работе рассматриваются алгоритмы вычисления квадратного корня в конечном поле \mathbb{F}_q для $q \equiv 2^s \pmod{2^{s+1}}$. В общем случае эта задача решается с помощью алгоритмов Тонелли-Шенкса и Чиполлы-Лемера, однако в случае, когда показатель s мал, существуют более эффективные методы решения.

Пусть c — квадратичный вычет в поле \mathbb{F}_q . Рассмотрим следующие алгоритмы нахождения квадратного корня из c при малых s:

- При s=1 квадратный корень из c задается как $c^{\frac{(q+1)}{4}}$, так как по критерию Эйлера $\left(c^{\frac{(q+1)}{4}}\right)^2=c^{\frac{(q+1)}{2}}=c\cdot c^{\frac{(q-1)}{2}}=c$
- При s=2 квадратный корень из c может быть найден с помощью алгоритма Аткина
- При s=3 квадратный корень из c может быть найден с помощью алгоритма Мюллера, а также алгоритма Конга и др.

Далее будет представлен новый метод нахождения квадратного корня в конечном поле, основанный на представленных выше алгоритмах. При малых s он является более эффективным, чем алгоритмы Тонелли-Шенкса и Чиполлы-Лемера, так как он требует только одного возведения в степень. Особенностью данного алгоритма является предварительное вычисление примитивного корня ξ степени 2^s из единицы в \mathbb{F}_q . Данное значение будет зафиксировано для конкретного q, за счет чего увеличивается эффективность вычисления квадратных корней в рамках одного поля \mathbb{F}_q .

2 Существующие алгоритмы извлечения квадратного корня для малых *s*

2.1 Алгоритм Аткина (s = 2)

Ранее было показано, что для s=1, то есть в случае $q\equiv 3\pmod 4$, квадратным корнем из a в \mathbb{F}_q будет являться $a^{\frac{(q+1)}{4}}$. Но не существует аналогичного алгоритма с одним возведением в степень для случая $q\equiv 1\pmod 4$. Однако для такого q есть алгоритм в частном случае, когда $q\equiv 5\pmod 8$ — это алгоритм Аткина, который также использует одно возведение в степень.

Этот алгоритм использует тот факт, что число 2 является квадратичным невычетом в \mathbb{F}_q в случае $q\equiv 5\pmod 8$, и, следовательно, 2a также является квадратичным невычетом. Таким образом, можно видеть, что по критерию Эйлера $(2a)^{\frac{q-1}{2}}=-1$ и $(2a)^{\frac{q-1}{4}}=\sqrt{-1}$. Этот алгоритм также использует тот факт, что $(\sqrt{-1}-1)^2=-2\sqrt{-1}$.

Доказать правильность алгоритма можно, выполнив все шаги и получив искомый квадратный корень x. Затем возводим x в квадрат и, используя замечания выше, действительно можно будет убедиться, что получится a.

Алгоритм 1 (Аткин) $q \equiv 5 \pmod{8}$

```
Вход: q — порядок конечного поля a — квадрат в \mathbb{F}_q
```

Выход: x – решение для $x^2 = a$ в \mathbb{F}_q

```
1: b \leftarrow (2a)^{\frac{q-5}{8}}
2: i \leftarrow 2ab^2
3: x \leftarrow ab(i-1)
4: return x
```

Здесь и далее приводится реализация алгоритма с использованием SageMath:

```
def algoritm_1(a, q):
    """q = 5 (mod 8)"""
    b = powmod(2 * a, (q - 5) // 8, q)
    i = (2 * a * (b ** 2)) % q
    x = (a * b * (i - 1)) % q
    return x
```

Проверка работы этого и других алгоритмов представлена в разделе Тесты.

2.2 Алгоритм Мюллера (s = 3)

Данный алгоритм является частным случаем при $q \equiv 1 \pmod 8$. Здесь будем рассматривать q, удовлетворющие $q \equiv 9 \pmod {16}$.

В этом случае число 2 больше не является квадратичным невычетом в \mathbb{F}_q . Однако, поскольку $(2a)^{\frac{q-1}{4}}$ равно 1 или -1, идея Аткина может быть расширена, если у нас есть другой параметр — квадратичный невычет в случае $(2a)^{\frac{q-1}{4}}=1$ и квадратичный вычет в случае $(2a)^{\frac{q-1}{4}}=-1$.

Алгоритм Мюллера является вероятностным и требует 2 возведения в степень. Вероятностный шаг находит $d \in \mathbb{F}_q$, удовлетворяющий $\eta(d) = -b$, где η такая, что $\eta(d) = 1$, если d является квадратом в \mathbb{F}_q , и $\eta(d) = -1$, если нет.

Алгоритм 2 (Мюллер) $q \equiv 9 \pmod{16}$

```
Вход: q — порядок конечного поля a — квадрат в \mathbb{F}_q
Выход: x — решение для x^2 = a в \mathbb{F}_q

1: b \leftarrow (2a)^{\frac{q-1}{4}}
2: Поиск d: -b = \eta(d)
3: u \leftarrow (2ad^2)^{\frac{q-9}{16}}
4: i \leftarrow 2u^2d^2a
5: x \leftarrow uda(i-1)
6: \mathbf{return}\ x
```

```
def algoritm_2(a, q):
    """q = 9 (mod 16)"""
    b = powmod(2 * a, (q - 1) // 4, q)
    if b == q - 1:
        b = -1

d = 0
    for j_d in range(2, q):
        if -b == kronecker(j_d, q):
            d = j_d
            break

if d == 0:
        sys.exit("Can not find d")

u = powmod(2 * a * (d ** 2), (q - 9) // 16, q)
    i = (2 * (u ** 2) * (d ** 2) * a) % q
    x = (u * d * a * (i - 1)) % q
    return x
```

2.3 Алгоритм Конга

Алгоритм Мюллера требует 2 возведения в степень, однако заметим, что при $(2a)^{\frac{q-1}{4}} = -1$ он будет аналогичен алгоритму Аткина, то есть будет требоваться всего 1 возведение в степень. На этом замечании основан алгоритм Конга, который является усовершенствованной версией алгоритма Мюллера.

Алгоритму Конга требуется в среднем 1,5 возведения в степень. Этот алгоритм также является вероятностным в общем случае.

Алгоритм 3 (Конг) $q \equiv 9 \pmod{16}$

```
Вход: q — порядок конечного поля
           a – квадрат в \mathbb{F}_a
Выход: x – решение для x^2 = a в \mathbb{F}_a
         1 \colon b \leftarrow (2a)^{\frac{q-9}{16}}
         2: i \leftarrow 2ab^2, r \leftarrow i^2
         3: if r = -1 then
                  x \leftarrow ab(i-1)
         4:
         5: else
         6:
                  Поиск d – невычет в \mathbb{F}_q
                  u \leftarrow bd^{\frac{q-9}{8}}
         7:
                   i \leftarrow 2u^2d^2a
         8:
                   x \leftarrow uda(i-1)
         9:
         10: return x
```

```
def algoritm_3(a, q):
    b = powmod(2 * a, (q - 9) // 16, q)
    i = (2 * a * (b ** 2)) % q
    r = (i ** 2) % q
    if r == q - 1:
        x = (a * b * (i - 1)) % q
    else:
        d = 0
        for j_d in range(2, q):
            if kronecker(j_d, q) == -1:
                d = j_d
                break
        if d == 0:
            sys.exit("Can not find d")
        u = b * powmod(d, (q - 9) // 8, q) % q
        i = (2 * (u ** 2) * (d ** 2) * a) % q
        x = (u * d * a * (i - 1)) \times q
    return x
```

3 Новый метод нахождения квадратного корня в поле \mathbb{F}_q при $q \equiv 2^s + 1 \pmod{2^{s+1}}$

Пусть q — степень нечетного простого числа, а s — наибольшее положительное целое число, удовлетворяющее $2^s|q-1$. Отсюда, так как $\frac{q-1}{2^s}\equiv 1\pmod{2}$, имеем $q\equiv 2^s+1\pmod{2^{s+1}}$. То есть для любой нечетной простой степени q существует единственное положительное целое число s, удовлетворяющее $q\equiv 2^s+1\pmod{2^{s+1}}$, где s — наибольшее положительное целое число, удовлетворяющее $2^s|q-1$.

Для заданного квадрата c из \mathbb{F}_a определим

$$b = c^{\frac{q - (2^s + 1)}{2^{s + 1}}}$$

И

$$\zeta = c^{\frac{q-1}{2^s}} = c \cdot c^{\frac{q-(2^s+1)}{2^s}} = c \cdot \left(c^{\frac{q-(2^s+1)}{2^{s+1}}}\right)^2 = cb^2$$

Поскольку c – квадрат в \mathbb{F}_q , то ζ – это примитивный корень из единицы в \mathbb{F}_q степени 2^t для некоторого однозначно определенного $t \leq s-1$, то есть существует t < s такой, что

$$\zeta^{2^t} = 1, \qquad \zeta^{2^{t-1}} = -1$$

Пусть ξ — примитивный корень из единицы в \mathbb{F}_q степени 2^s , который будет вычислен один раз и зафиксирован. ξ можно вычислить, полагая $\xi = d^{\frac{q-1}{2^s}}$, где d — квадратичный невычет в \mathbb{F}_q . Таким образом, данный метод также является вероятностным.

Поскольку $\xi^{2^{s-t}}$ является примитивным корнем из единицы в \mathbb{F}_q степени 2^t , то существуют единственные i и j, определенные по mod 2^t , такие, что

$$\xi^{2^{s-t}} = \zeta^i, \qquad \left(\xi^{2^{s-t}}\right)^j = \zeta$$

Из $\xi^{2^{s-t}} = \zeta^i = (\xi^{2^{s-t}})^{ij}$ имеем

$$ij \equiv 1 \pmod{2^t} \quad (*)$$

Теперь рассмотрим новую теорему, которая утверждает, что квадратный корень можно найти, используя одно возведение в степень при заданных условиях.

Теорема 1

Определим $u: u \equiv j(2^t - 1)2^{s-t-1} \pmod{2^{s-1}}$

Тогда квадратный корень из c в \mathbb{F}_q задается как $cb\xi^u$

Доказательство

Положим $x = cb\xi^u$. Тогда

$$x^2 = c \cdot cb^2 \cdot \xi^{2u} = c \cdot \zeta \cdot \xi^{2u}$$

Поскольку по условию $u=j(2^t-1)2^{s-t-1}+2^{s-1}k$ для некоторого целого k, то, используя $\xi^{2^s}=1$, получим

$$\zeta \cdot \xi^{2u} = (\xi^{2^{s-t}})^j \cdot \xi^{2u} = \xi^{j \cdot 2^{s-t} + 2u} =$$

$$= \xi^{j \cdot 2^{s-t} + j(2^t - 1)2^{s-t} + 2^s k} =$$

$$= \xi^{j \cdot 2^{s-t} + j(2^t - 1)2^{s-t}} = \xi^{j \cdot 2^{s-t} (1 + 2^t - 1)} =$$

$$= \xi^{j \cdot 2^s} = 1$$

Отсюда $x^2 = c \cdot \zeta \cdot \xi^{2u} = c$

Нахождение i или j из уравнения (*) сложно, если 2^t велико. Таким образом, рассмотренный метод полезен только тогда, когда значение t относительно небольшое.

Далее рассмотрим примеры применения данного метода при малых s.

4 Примеры

4.1 Пример 1 (s = 1)

Рассмотрим нахождение квадратного корня из c в \mathbb{F}_q при $q\equiv 3\pmod 4$. В этом случае:

- $\zeta = c^{\frac{q-1}{2^s}} = c^{\frac{q-1}{2}} = 1$ (по критерию Эйлера)
- $\xi = d^{\frac{q-1}{2^s}} = \xi = d^{\frac{q-1}{2}} = 1$ (по критерию Эйлера)
- t=0, так как $\zeta=1$
- u = 0, так как t = 0
- $b = c^{\frac{q-(2^S+1)}{2^{S+1}}} = c^{\frac{q-3}{4}}$

Таким образом, $x=cb\xi^u=c\cdot b=c\cdot c^{\frac{q-3}{4}}=c^{\frac{q+1}{4}}.$ Этот случай рассматривался во введении к отчету.

4.2 Пример 2 (s = 2)

Рассмотрим нахождение квадратного корня из c в \mathbb{F}_q при $q\equiv 5\pmod 8$). В этом случае:

```
• \zeta = c^{\frac{q-1}{2^{S}}} = c^{\frac{q-1}{4}} = \pm 1

• \Pi p \mu \zeta = 1:

• t = 0; u = 0

• x = cb = c \cdot c^{\frac{q-5}{8}} = c^{\frac{q+3}{8}}

• \Pi p \mu \zeta = -1:

• t = 1; i = j = 1; u = j(2^{t} - 1)2^{s-t-1} = 1

• x = cb\xi^{u} = cb\xi
```

Приведем алгоритм поиска x на основе этого примера.

Алгоритм 4 $q \equiv 5 \pmod{8}$

```
Вход: q — порядок конечного поля c — квадрат в \mathbb{F}_q
Выход: x — решение для x^2 = c в \mathbb{F}_q

1: b \leftarrow c^{\frac{q-5}{8}}
2: \zeta \leftarrow cb^2
3: if \zeta = 1 then x \leftarrow cb
4: else x \leftarrow cb\xi
5: return x
```

```
def algoritm_4(c, q, xi):
    """q = 5 (mod 8); s = 2"""
    b = powmod(c, (q - 5) // 8, q)
    zeta = (c * (b ** 2)) % q
    if zeta == 1:
        x = (c * b) % q
    else:
        x = (c * b * xi) % q
    return x
```

В этой реализации алгоритма на вход функции подается также ξ , которое вычисляется заранее для заданного q. Алгоритм вычисления ξ и тесты описаны в разделе Тесты.

4.3 Пример 3 (s = 3)

Рассмотрим нахождение квадратного корня из c в \mathbb{F}_q при $q \equiv 9 \pmod{16}$:

```
• \zeta = c^{\frac{q-1}{2^3}}; \ t = 0, 1, 2
```

- ξ примитивный корень степени 2^3 ; $\xi^{2^{3-t}} = \zeta^i$ где $i \pmod{2^t}$ при $ij \equiv 1 \pmod{2^t}$
- $u \equiv j(2^t 1)2^{2-t} \pmod{2^2}$
- $x = cb\xi^u$

Имеем следующие случаи при разных t:

- При t = 0 получим u = 0, а значит x = cb
- При t=1 получим i=j=1 и $u\equiv 2\ ({\rm mod}\ 2^2)$, а значит $x=cb\xi^2$
- При t=2 получим из $\xi^2=\zeta^i$ две пары $(i,j)=(1,1),\ (3,3)\pmod{2^2}$ и $u\equiv 3j\pmod{2^2}$
 - \circ При $\xi^2 = \zeta$ получим $x = cb\xi^3$
 - о При $\xi^2 = \zeta^3$ (то есть $\zeta = -\xi^2$) получим $x = cb\xi$

Алгоритм 5 $q \equiv 9 \pmod{16}$

```
\mathbf{Bxog}: q — порядок конечного поля c — квадрат в \mathbb{F}_q
```

Выход: x – решение для $x^2 = c$ в \mathbb{F}_q

```
1: b \leftarrow c^{\frac{q-9}{16}}

2: \zeta \leftarrow cb^2

3: if \zeta = 1 then x \leftarrow cb

4: else if \zeta = -1 then x \leftarrow cb\xi^2

5: else if \zeta = \xi^2 then x \leftarrow cb\xi^3

6: else x \leftarrow cb\xi
```

7: return x

```
def algoritm_5(c, q, xi):
    """q = 9 (mod 16); s = 3"""
    b = powmod(c, (q - 9) // 16, q)
    zeta = (c * (b ** 2)) % q
    if zeta == 1:
        x = (c * b) % q
    elif zeta == q - 1:
        x = (c * b * (xi ** 2)) % q
    elif zeta == (xi ** 2) % q:
        x = (c * b * (xi ** 3)) % q
    else:
        x = (c * b * xi) % q
    return x
```

4.4 Пример 4 (s = 4)

Рассмотрим нахождение квадратного корня из c в \mathbb{F}_q при $q \equiv 17 \pmod{32}$:

- $\zeta = c^{\frac{q-1}{2^4}}; \ t = 0, 1, 2, 3$
- ξ примитивный корень степени 2^4 ; $\xi^{2^{4-t}} = \zeta^i$ где $i \pmod{2^t}$ при $ij \equiv 1 \pmod{2^t}$
- $u \equiv j(2^t 1)2^{3-t} \pmod{2^3}$
- $x = cb\xi^u$

Имеем следующие случаи при разных t:

- При t = 0 получим u = 0, а значит x = cb
- При t=1 получим $\xi^8=\zeta$ при $\zeta^2=1$, то есть i=j=1 и $u\equiv 4\ ({\rm mod}\ 2^3),$ а значит $x=cb\xi^4$
- При t=2 получим из $\xi^4=\zeta^i$ две пары $(i,j)=(1,1),\ (3,3)\pmod{2^2}$ и $u\equiv 6j\pmod{2^3}$
 - \circ При $\xi^4 = \zeta$ получим $x = cb\xi^6$
 - \circ При $\xi^4=\zeta^3$ (то есть $\zeta=-\xi^4$) получим $x=cb\xi^2$
- При t=3 получим из $\xi^2=\zeta^i$ четыре пары (i,j)=(1,1),(3,3),(5,5),(7,7) $\pmod{2^3}$ и $u\equiv 7j\pmod{2^3}$
 - \circ При $\xi^2 = \zeta$ получим $x = cb\xi^7$
 - о При $\xi^2=\zeta^3$ (то есть $\zeta=\xi^6$) получим $x=cb\xi^5$
 - \circ При $\xi^2=\zeta^5$ (то есть $\zeta=-\xi^2$) получим $x=cb\xi^3$
 - \circ При $\xi^2=\zeta^7$ (то есть $\zeta=-\xi^6$) получим $x=cb\xi$

Алгоритм 6 $q \equiv 17 \pmod{32}$

Вход: q — порядок конечного поля

c – квадрат в \mathbb{F}_q

Выход: x – решение для $x^2 = c$ в \mathbb{F}_a

$$1 \colon b \leftarrow c^{\frac{q-17}{32}}$$

2:
$$X \leftarrow cb$$
, $\zeta \leftarrow Xb$, $A \leftarrow \xi$, $B \leftarrow A^2$, $C \leftarrow B^2$, $D \leftarrow BC$

3: **if** $\zeta = 1$ **then** $x \leftarrow X$

4: else if $\zeta = -1$ then $x \leftarrow XC$

5: else if $\zeta = B$ then $x \leftarrow XAD$

6: else if $\zeta = -B$ then $x \leftarrow XAB$

7: else if $\zeta = C$ then $x \leftarrow XD$

8: **else if** $\zeta = -C$ **then** $x \leftarrow XB$

9: else if $\zeta = D$ then $x \leftarrow XAC$

10: else if $\zeta = -D$ then $x \leftarrow XA$

11: return x

```
def algoritm_6(c, q, xi):
    b = powmod(c, (q - 17) // 32, q)
    X = (c * b) % q
    zeta = (X * b) % q
    A = xi
    B = (A ** 2) % q
    C = (B ** 2) % q
    D = (B * C) % q
    if zeta == 1:
        x = X
    elif zeta == q - 1:
       x = (X * C) % q
    elif zeta == B:
        x = (X * A * D) % q
    elif zeta == q - B:
        x = (X * A * B) % q
    elif zeta == C:
        x = (X * D) % q
    elif zeta == q - C:
        x = (X * B) % q
    elif zeta == D:
        x = (X * A * C) % q
    elif zeta == q - D:
        x = (X * A) % q
    else:
        x = 0
    return x
```

5 Сравнение алгоритмов

Далее приведем сравнение алгоритмов 1-6, а также наглядно покажем время работы каждого из них. Имеем следующие алгоритмы:

- Алгоритм 1 (Аткин) для $q \equiv 5 \pmod{8}$; 1 возведение в степень
- Алгоритм 2 (Мюллер) для $q \equiv 9 \pmod{16}$; 2 возведения в степень
- Алгоритм 3 (Конг) для $q \equiv 9 \pmod{16}$; в среднем 1,5 возведения в степень
- Алгоритм 4 для $q \equiv 5 \pmod{8}$; 1 возведение в степень
- Алгоритм 5 для $q \equiv 9 \pmod{16}$; 1 возведение в степень
- Алгоритм $6 для q \equiv 17 \pmod{32}$; 1 возведение в степень

Используем следующий метод расчета времени работы алгоритмов и их сравнения. Будем вычислять время работы алгоритмов для простых чисел q, которые ищем случайным образом на промежутке [$2^{64}-2^{30},2^{64}$). Выбираем q, удовлетворяющие условию $q \equiv 2^s + 1 \pmod{2^{s+1}}$. Будем брать по 9999 чисел на

каждый s=2,3,4. Для каждого q подбираем квадратичный вычет c, квадратный корень которого будут находить алгоритмы. Также для каждого q заранее вычисляем значение ξ для алгоритмов 4,5,6. В итоге получаем набор q,c,ξ . Для одинаковых s берем одинаковые значения: алгоритмы 1 и 4 сравниваются на одних данных, аналогично алгоритмы 2,3,5.

5.1 Сравнение 2, 3 и 5 алгоритмов

Проведем сравнение Алгоритма 5 с алгоритмами Мюллера и Конга. Так как они осуществляются для одного s, то возьмем для них одинаковые наборы q и s.

Получаем следующие результаты замеров:

На графике видна разница в эффективности алгоритмов:

- Алгоритм 3 (Конг) эффективнее Алгоритма 2 (Мюллер) за счет привнесенного усовершенствования. В Алгоритме 2 производится 2 возведения в степень, а в Алгоритме 3 в среднем 1,5 возведения в степень
- Алгоритм 5 эффективнее Алгоритма 3 (Конг) за счет заранее вычисленного значения ξ . В Алгоритме 5 производится только 1 возведение в степень

5.2 Сравнение 1 и 4 алгоритмов

Проведем сравнение Алгоритма 4 с алгоритмом Аткина. Так как они осуществляются для одного s, то возьмем для них одинаковые наборы q и s.

Получаем следующие результаты замеров:

По полученным результатам можно сделать следующие выводы:

• Алгоритм 1 и Алгоритм 4 работают примерно за одинаковое время, так как они оба используют 1 возведение в степень $\frac{q-5}{8}$

5.3 Сравнение всех алгоритмов

Проведем сравнение всех алгоритмов между собой. Покажем на одном графике все результаты подсчета времени работы алгоритмов.

Получаем следующие результаты замеров:

Итоговые выводы при сравнении алгоритмов:

- Алгоритм 1 и Алгоритм 4 работают примерно за одинаковое время, так как они оба используют 1 возведение в степень $\frac{q-5}{8}$ и 4 произведения
- Алгоритм 3 (Конг) работает быстрее Алгоритма 2 (Мюллер), так как в алгоритме Конга используется в среднем 1,5 возведения в степень (в отличие от 2 возведений у Мюллера)
- Алгоритм 5 работает быстрее Алгоритма 3 (Конг), так как в Алгоритме 5 используется только 1 возведение в степень (в отличие от в среднем 1,5 возведения у Конга)
- Алгоритм 6 работает медленнее Алгоритма 5, а Алгоритм 5 работает медленнее Алгоритма 4, хотя в каждом из них используется 1 возведение в степень. Так как во всех алгоритмах использовалась функция роwmod для ускорения возведения в степень по модулю, то разница во времени работы алгоритмов может быть связана с произведениями:
 - о Для Алгоритма 4 в среднем 3,5 произведений
 - о Для Алгоритма 5 в среднем 5 произведений
 - о Для Алгоритма 6 в среднем 6,25 произведений

Получается, что в Алгоритме 6 производится больше всех произведений, а в Алгоритме 4 меньше всех. Отсюда можно сделать вывод о том, что важно не только количество возведений в степень, но и количество произведений (в случае, когда возведение в степень оптимизировано).

6 Тесты и приложения

6.1~ Функция для вычисления ξ

Функция принимает на вход заданные q и s и вычисляет значение ξ для этих параметров:

6.2 Тесты

Проверим работу алгоритмов 1-3 с помощью следующей функции, которая принимает значения s,q,c, а также проверяемый алгоритм:

```
def test_123(s, q, c, alg):
    mod_s = 2 ** (s + 1)
    print(q, '=', q % mod_s, 'mod', mod_s, '; Символ Лежандра (c/q) =', kronecker(c,
q))
    x = alg(c, q)
    print('x =', x, '; x^2 =', x ** 2 % q, '; c =', c)
    print('Проверка равенства:', x ** 2 % q == c)
```

Эта функция выполняет проверки и выводит следующую информацию:

- Соответствует ли q условию $q \equiv 2^s + 1 \pmod{2^{s+1}}$ для заданного s
- Является ли c квадратичным вычетом в \mathbb{F}_q : для этого вычисляется значение символа Лежандра (если оно равно 1, то c вычет)
- Выводит найденный с помощью алгоритма квадратный корень х
- Возводит x в квадрат и сравнивает результат с исходным c

Алгоритм 1 (Аткин)

Проверка работы алгоритма для $q \equiv 5 \pmod{8}$:

• 1 тест

```
test_123(2, 10141, 1111, algoritm_1)
```

```
10141 = 5 mod 8 ; Символ Лежандра (c/q) = 1
x = 1895 ; x^2 = 1111 ; c = 1111
Проверка равенства: True
```

• 2 **тест**

test_123(2, 1001093, 7707, algoritm_1)

```
1001093 = 5 mod 8 ; Символ Лежандра (c/q) = 1
x = 147179 ; x^2 = 7707 ; c = 7707
Проверка равенства: True
```

• 3 тест (некорректные входные значения - невычет)

test_123(2, 305101, 666, algoritm_1)

```
305101 = 5 mod 8 ; Символ Лежандра (c/q) = -1 x = 0 ; x^2 = 0 ; c = 666 Проверка равенства: False
```

Алгоритм 2 (Мюллер)

Проверка работы алгоритма для $q \equiv 9 \pmod{16}$

• 1 тест

test_123(3, 11801, 23, algoritm_2)

```
11801 = 9 mod 16 ; Символ Лежандра (c/q) = 1
x = 2221 ; x^2 = 23 ; c = 23
Проверка равенства: True
```

• 2 **тест**

test_123(3, 1009433, 234567, algoritm_2)

```
1009433 = 9 mod 16 ; Символ Лежандра (c/q) = 1
x = 747634 ; x^2 = 234567 ; c = 234567
Проверка равенства: True
```

• 3 тест (некорректные входные значения - невычет)

test_123(3, 300953, 666, algoritm_2)

```
300953 = 9 mod 16 ; Символ Лежандра (c/q) = -1
An exception has occurred, use %tb to see the full traceback.

SystemExit: Can not find d
```

Алгоритм 3 (Конг)

Проверка работы алгоритма для $q \equiv 9 \pmod{16}$

1 тест

```
test_123(3, 11801, 23, algoritm_3)
```

```
11801 = 9 mod 16 ; Символ Лежандра (c/q) = 1
x = 2221 ; x^2 = 23 ; c = 23
Проверка равенства: True
```

2 тест

```
test_123(3, 1009433, 234567, algoritm_3)
```

```
1009433 = 9 mod 16 ; Символ Лежандра (c/q) = 1
x = 747634 ; x^2 = 234567 ; c = 234567
Проверка равенства: True
```

• 3 тест (некорректные входные значения – q не простое)

```
test 123(3, 1625, 98, algoritm 3)
```

```
1625 = 9 mod 16 ; Символ Лежандра (c/q) = 1 x = 438 ; x^2 = 94 ; c = 98 Проверка равенства: False
```

Проверим работу алгоритмов 4-6 с помощью следующей функции, которая принимает значения s,q,c, а также проверяемый алгоритм. В процессе работы эта функция вычисляет значение ξ для данного q

```
def test_456(s, q, c, alg):
    mod_s = 2 ** (s + 1)
    print(q, '=', q % mod_s, 'mod', mod_s, '; Символ Лежандра (c/q) =', kronecker(c,
q))
    xi = xi_value(q, s)
    x = alg(c, q, xi)
    print('x =', x, '; x^2 =', x ** 2 % q, '; c =', c)
    print('Проверка равенства:', x ** 2 % q == c)
```

Эта функция выполняет проверки и выводит следующую информацию:

- Соответствует ли q условию $q \equiv 2^s + 1 \pmod{2^{s+1}}$ для заданного s
- Является ли c квадратичным вычетом в \mathbb{F}_q : для этого вычисляется значение символа Лежандра (если оно равно 1, то c вычет)
- Выводит найденный с помощью алгоритма квадратный корень х
- Возводит x в квадрат и сравнивает результат с исходным c

Алгоритм 4

Проверка работы алгоритма для $q \equiv 5 \pmod{8}$

• 1 **тест**

test_456(2, 50461, 111, algoritm_4)

```
50461 = 5 mod 8 ; Символ Лежандра (c/q) = 1
x = 31367 ; x^2 = 111 ; c = 111
Проверка равенства: True
```

• 2 тест (некорректные входные значения – невычет)

```
test_456(2, 517613, 500000, algoritm_4)
```

```
517613 = 5 mod 8 ; Символ Лежандра (c/q) = -1
x = 385506 ; x^2 = 419541 ; c = 500000
Проверка равенства: False
```

Алгоритм 5

Проверка работы алгоритма для $q \equiv 9 \pmod{16}$

• 1 тест

test_456(3, 544793, 404, algoritm_5)

```
544793 = 9 mod 16 ; Символ Лежандра (c/q) = 1
x = 418943 ; x^2 = 404 ; c = 404
Проверка равенства: True
```

• 2 тест (некорректные значения – q не простое)

test 456(3, 160025, 17, algoritm 5)

```
160025 = 9 mod 16 ; Символ Лежандра (c/q) = 1
x = 8778 ; x^2 = 81259 ; c = 17
Проверка равенства: False
```

Алгоритм 6

Проверка работы алгоритма для $q \equiv 17 \pmod{32}$

1 тест

test_456(4, 50126833, 111111, algoritm_6)

```
50126833 = 17 mod 32 ; Символ Лежандра (c/q) = 1
```

```
x = 1978118 ; x^2 = 111111 ; c = 111111
Проверка равенства: True
```

• 2 тест (некорректные значения – невычет)

test_456(4, 700139537, 111111, algoritm_6)

```
700139537 = 17 mod 32 ; Символ Лежандра (c/q) = -1 x = 0 ; x^2 = 0 ; c = 111111 Проверка равенства: False
```

Список литературы

- [1] N. Koo, G. H. Cho, and S. Kwon, "Square root algorithm in \mathbb{F}_q for $q \equiv 2^s + 1 \pmod{2^{s+1}}$ ", Electronics Letters, vol. 49, no. 7, pp. 467-469, March 28, 2013.
- [2] А. Ю. Нестеренко. Теоретико-числовые методы в криптографии. М. : Московский государственный институт электроники и математики, 2012.