3^η Εργαστηριακή Άσκηση

Μέθοδος Μέγιστης Καθόδου με Προβολή

Θεωρείστε τη συνάρτηση

$$f: \mathbb{R}^2 \to \mathbb{R}, \ f(x) = \frac{1}{3}x_1^2 + 3x_2^2, \ x = [x_1 \ x_2]^T.$$

Θέμα 1. Να χρησιμοποιηθεί η Μέθοδος Μέγιστης Καθόδου (προηγούμενη εργασία) με ακρίβεια $\varepsilon=0.001$ και βήμα i) $\gamma_k=0.1$, ii) $\gamma_k=0.3$, iii) $\gamma_k=3$, iv) $\gamma_k=5$, και οποιοδήποτε αρχικό σημείο εκκίνησης διαφορετικό του (0,0). Τι παρατηρείτε; Να αποδειχθούν τα αποτελέσματα αυτά με μαθηματική αυστηρότητα.

Θεωρείστε τώρα τους περιορισμούς

$$-10 \le x_1 \le 5 \text{ kal } -8 \le x_2 \le 12.$$

Θέμα 2. Να χρησιμοποιηθεί η Μέθοδος Μέγιστης Καθόδου με Προβολή, με $s_k=5$, $\gamma_k=0.5$, σημείο εκκίνησης το (5,-5) και ακρίβεια $\varepsilon=0.01$. Τι παρατηρείτε σε σχέση με το Θέμα 1;

Θέμα 3. Να χρησιμοποιηθεί η Μέθοδος Μέγιστης Καθόδου με Προβολή, με $s_k=15$, $\gamma_k=0.1$, σημείο εκκίνησης το (-5,10) και ακρίβεια $\varepsilon=0.01$. Τι παρατηρείτε σε σχέση με τα Θέματα 1 και 2; Προτείνετε έναν απλό πρακτικό τρόπο ώστε η μέθοδος να συγκλίνει στο ελάχιστο.

Θέμα 4. Να χρησιμοποιηθεί η Μέθοδος Μέγιστης Καθόδου με Προβολή, με $s_k=0.1$, $\gamma_k=0.2$, σημείο εκκίνησης το (8,-10) και ακρίβεια $\varepsilon=0.01$. Σε αυτή τη περίπτωση, έχουμε εκ' των προτέρων κάποια πληροφορία σχετικά με την σύγκλιση του αλγορίθμου; Να γίνει η εκτέλεση του αλγορίθμου. Τι παρατηρείτε;

- Να παραδώσετε όλους τους κώδικες των προγραμμάτων που γράψατε (.m-files) και μια αναφορά (.pdf) στην οποία θα καταγράψετε τα αποτελέσματα και όλες τις παρατηρήσεις σας.
- Να ανεβάσετε στο elearning ένα αρχείο .zip η .rar που να εμπεριέχει όλα τα αρχεία σας (κώδικες και αναφορά) με ονομασία 'Lastname_Firstname_AEM_lab03'.

Δεκέμβριος 2022