Green's Functions

Ryan Coyne

February 17, 2023

Contents

1	Introduction	2
2	The Adjoint Operator	2
3	The Delta Function	4

1 Introduction

The first part of this text is primarily concerned with solutions to differential equations of the form

$$Lu = \phi \tag{1.1}$$

over an interval $a \leq x \leq b$ and subject to boundary conditions $\{B_1, \ldots, B_n\}$, where L is an nth order linear ordinary differential operator. For L to be linear it must satisfy the conditition

$$L(\alpha v + \beta w) = \alpha L v + \beta L w \tag{1.2}$$

for arbitrary functions v and w, with α and β being constant. For this condition to be met L must be of the form

$$L = a_0(x)\frac{d^n}{dx^n} + a_1(x)\frac{d^{n-1}}{dx^{n-1}} + \dots + a_n(x)$$
(1.3)

The boundary conditions are linear functionals of the form

$$B_j(u) = c_j; \quad j = 1, 2, \dots, n$$
 (1.4)

where c_j is an arbitrary constant.

Here, functional, refers to a transformation which has a set of functions as its domain and a set of numbers. As an example

$$B(u) = u(0) = 0 (1.5)$$

is a simple boundary condition for a 1st order differential operator. Specifically, our B_j 's will be limited to linear combinations of u and it's derivatives up to order n-1. These boundary conditions have the same linearity constraints as the differential operator L.

2 The Adjoint Operator

To determine the Green's function for a particular differential equation and it's boundary conditions we will need the formal adjoint operator. This operator, which we will call L^* , can be found via repeated integration by parts. In general

$$\int_{a}^{b} vLudx = \left[\cdots\right]_{a}^{b} + \int_{a}^{b} uL^{*}vdx \tag{2.1}$$

Here, u and v are completely arbitrary while being sufficiently differentiable for L and L* to exist. As an example, consider

$$L = A(x)\frac{d^{2}}{dx^{2}} + b(x)\frac{d}{dx} + C(x)$$
(2.2)

To find L^* perform integration by parts on the on each term of the product vLu a number of times equal to the order of the derivative that is a part of the term. That is to say, twice on the first

term, once, on the second, and not at all on the third. Doing this, we are left with

$$\int_{a}^{b} vLudx = \int_{a}^{b} (vAu'' + vBu' + vC)dx$$

$$= (vAu' + vBu) \Big|_{a}^{b} + \int_{a}^{b} (-(vA)'u' - (vB)'u + vCu)dx$$

$$= (vAu' + vBu - (vA)'u) \Big|_{a}^{b} + \int_{a}^{b} ((vA)''u - (vB)'u + vCu)dx$$

$$= (vAu' + vBu - (vA)'u) \Big|_{a}^{b} + \int_{a}^{b} u((vA)'' - (Bv)' + Cv)dx$$
(2.3)

From this it is clear that

$$L^*v = (Av)'' - (Bv)' + Cv$$

$$= (A'v + Av')' - B'v - Bv' + Cv$$

$$= Av'' + (2A' - B)v' + (A'' - B' + C)$$
(2.4)

and so the formal adjoint of a second order linear differential operator L must be of the form

$$L^* = A\frac{d^2}{dx^2} + (2A' - B)\frac{d}{dx} + (A'' - B' + C)$$
(2.5)

If L^* is found to be equal to L then L is called formally self adjoint. By comparing equations (2.2) and (2.5) we can see that for a second order linear differentiable operator to be formally self adjoint, A' must be equal to B. You may notice that A'' - B' + C must also be equal to C but this is always true given that A' equals B.

If the boundary conditions on L are homogenous then we can also define an adjoint operator, \mathcal{L}^* , by the relation

$$(Lu, v) = (L^*v, u) \tag{2.6}$$

where (f, g) is the inner produce of f and g

$$(f,g) = \int_{a}^{b} f(x)g(x)dx \tag{2.7}$$

We now can understand that the adjoint operator \mathcal{L}^* must consist of L^* and boundary conditions to force the terms that come about from integrating by parts to be zero.

As an example of \mathscr{L} and \mathscr{L}^* , consider \mathscr{L} to consist of $L = \frac{d}{dx}$ and the boundary condition u(0) = 3u(1) over the interval $0 \le x \le 1$. Then

$$(Lu, v) = \int_0^1 u'v dx$$

$$= (uv) \Big|_0^1 - \int_0^1 uv' dx$$

$$= u(1)v(1) - u(0)v(0) + \int_0^1 uL^*v dx$$

$$= u(1)(v(1) - 3v(0)) + \int_0^1 uL^*v dx$$
(2.8)

Since the particular value of u(1) is not given, we must make v(1) - 3v(0) equal zero, because choosing u(1) = 0 would undully restrict our solution. Therefore \mathcal{L}^* consists of L^* which is $-\frac{d}{dx}$ and the boundary condition v(1) - 3v(0) = 0. As a final note, if $\mathcal{L} = \mathcal{L}^*$, then \mathcal{L} is called self-adjoint.

3 The Delta Function

The Dirac delta function is integral to the method of green's functions. It is typically represented by the symbol δ and has the properties

$$\delta(x) = 0 \quad \text{for } t \neq 0 \tag{3.1}$$

and

$$\int_{-\infty}^{\infty} \delta(x)dx = 1 \tag{3.2}$$

but its most important property is

$$\int_{a}^{b} f(x)\delta(x-t)dt = f(t), \quad a \le t \le b$$
(3.3)

If, in the previous integral, t is not between a and b, then the integral is equal to 0.

To attempt to find an intuition for the delta function, we can consider the idea of

While commonly referred to as a function, δ is more appropriately defined as a generalized function or a distribution.