Семинар 15 (10.01.2023)

Краткое содержание

Начали с напоминания о том, что всякое подпространство в F^n может быть задано следующими двумя способами:

I: как линейная оболочка конечной системы векторов;

II: как множество решений некоторой ОСЛУ.

Вспомнили, как осуществляется переход между этими двумя способами задания: от II к I через нахождение ФСР ОСЛУ; от I к II — алгоритм, разобранный на прошлом семинаре.

Основная тема семинара — нахождение базиса суммы и базиса пересечения двух подпространств в F^n , заданных тем или иным способом.

Если подпространства U и W в F^n заданы способом I, то есть $U = \langle u_1, \ldots, u_k \rangle$ и $W = \langle w_1, \ldots, w_m \rangle$, то про сумму подпространств можно сразу сказать, что $U + W = \langle u_1, \ldots, u_k, w_1, \ldots, w_m \rangle$, поэтому в данной ситуации легко найти базис суммы.

Если подпространства U и W в F^n заданы способом II, то сразу видно, что их пересечение $U \cap W$ есть множество решений большой ОСЛУ, получающейся объединением двух ОСЛУ, задающих U и W, поэтому в данной ситуации легко найти базис пересечения.

Из предыдущего вытекают следующие базовые алгоритмы:

- если U и W заданы способом I, то для нахождения базиса в $U \cap W$ нужно перейти к заданию U и W способом II, в котором требуемая задача решается легко;
- \bullet если U и W заданы способом II, то для нахождения базиса в U+W нужно перейти к заданию U и W способом I, в котором требуемая задача решается легко.

Используя данные алгоритмы, нашли явно базис суммы и базис пересечения двух подпространств из номера K35.14(a).

Дальше упомянули теорему о том, что для любых двух подпространств U,W справедливо соотношение $\dim(U\cap W)+\dim(U+W)=\dim U+\dim W$. Обсудили, что если оба подпространства U,W заданы способом I или оба заданы способом II, то среди чисел $\dim(U+W)$, $\dim(U\cap W)$, $\dim U$, $\dim W$ три из них легко находятся, а четвёртое уже определяется по теореме.

Следующий сюжет — альтернативный способ нахождения базиса пересечения двух подпространств $U,W\subseteq F^n$, заданных способом І. А именно, если $U=\langle u_1,\ldots,u_k\rangle$ и $W=\langle w_1,\ldots,w_m\rangle$, то для всякого вектора $v\in U\cap W$ найдутся скаляры λ_i,μ_j , для которых $v=\lambda_1u_1+\cdots+\lambda_ku_k$ и $v=\mu_1w_1+\cdots+\mu_mw_m$. Найдя общее решение уравнения $\lambda_1u_1+\cdots+\lambda_ku_k=\mu_1w_1+\cdots+\mu_mw_m$, где λ_i,μ_j — наши неизвестные, мы сможем описать все те векторы v, лежащие в пересечении подпространств. Вышеупомянутое уравнение можно переписать в более удобном формате:

$$(u_1 \mid u_2 \mid \dots \mid u_k) \begin{pmatrix} \lambda_1 \\ \lambda_2 \\ \dots \\ \lambda_k \end{pmatrix} - (w_1 \mid w_2 \mid \dots \mid w_m) \begin{pmatrix} \mu_1 \\ \mu_2 \\ \dots \\ \mu_m \end{pmatrix} = 0$$

Обозначив матрицу из u_i как A, матрицу из w_i как B, можно упростить выражение еще сильнее:

$$A\lambda - B\mu = 0 \iff (A \mid B) \begin{pmatrix} \lambda \\ -\mu \end{pmatrix} = 0$$

Значит, чтобы найти все λ_i, μ_j , удовлетворяющие уравнению, достаточно просто решить эту ОСЛУ. Отсюда вытекает следующий алгоритм нахождения базиса в $U \cap W$:

1. записываем векторы u_1, \ldots, u_k в столбцы матрицы A, а векторы w_1, \ldots, w_m — в столбцы матрицы B;

- 2. приводим матрицу $(A \mid B)$ к улучшенному ступенчатому виду. на разделительную черту внимания не обращаем, она имеет чисто вспомогательный характер, приводим к у.с. виду до конца;
- 3. по улучшенному ступенчатому виду выписываем ФСР для нашей ОСЛУ
- 4. для каждого элемента найденной ФСР находим вектор v по одной из формул $v = \lambda_1 u_1 + \cdots + \lambda_k u_k$ или $v = \mu_1 w_1 + \cdots + \mu_m w_m$. замечание 1: при нахождении ФСР не забывайте, что вы находите коэффициенты μ_j со знаком минус, и перед подстановкой в формулу, эти коэффициенты нужно умножить на -1. замечание 2: обе формулы должны давать один и тот же результат; если это не так, то вы где-то ошиблись!!;
- 5. для всех полученных векторов v выбираем базис их линейной оболочки, это и будет базис в $U \cap W$.

Применили данный алгоритм к всё той же паре подпространств из K35.14(a) и нашли (другим способом) базис их пересечения.

Наблюдение: чтобы найти базис в U+W, нужно всё ту же матрицу $(A\mid B)$ привести к ступенчатому виду. Таким образом, разобранный выше альтернативный способ даёт возможность найти базис в U+W и $U\cap W$, работая с одной и той же матрицей $(A\mid B)$.

Вернёмся к разобранному выше альтернативному алгоритму нахождения базиса в $U \cap W$, где $U = \langle u_1, \dots, u_k \rangle$ и $W = \langle w_1, \dots, w_m \rangle$.

Утверждение \diamond : если каждый из двух наборов u_1, \ldots, u_k и w_1, \ldots, w_m линейно независим, то все полученные на шаге 4 алгоритма векторы v автоматически образуют базис в $U \cap W$, так что в этой ситуации шаг 5 можно опустить. Доказательство остается в качестве бонуса к домашнему заданию.

\bigcirc

Домашнее задание к семинару 16. Дедлайн 17.01.2023

Номера с пометкой Π даны по задачнику Проскурякова, с пометкой K – Кострикина.

1. Подпространства U и W в F^4 заданы как множества решений ОСЛУ

$$\begin{cases} x_1 + 2x_2 + x_4 = 0, \\ x_1 + x_2 + x_3 = 0 \end{cases}$$
 M
$$\begin{cases} x_1 + x_3 = 0, \\ x_1 + 3x_2 + x_4 = 0 \end{cases}$$

соответственно. Найдите базис в $U \cap W$ и базис в U + W.

2. Подпространства U и W в F^5 заданы как множества решений ОСЛУ

$$\begin{cases} x_1 + x_2 - x_5 = 0, \\ x_2 + x_3 + x_5 = 0, \\ x_3 + x_4 + x_5 = 0 \end{cases} \qquad \text{u} \qquad \begin{cases} x_1 + x_3 + x_5 = 0, \\ 2x_2 + x_3 + x_4 = 0, \\ x_1 + 2x_2 + x_3 + 2x_4 - x_5 = 0 \end{cases}$$

соответственно. Найдите $\dim(U \cap W)$ и $\dim(U + W)$.

- 3. К35.14(б,в)
- 4. К35.15(а,в) (базис пересечения найти вторым (альтернативным) способом)
- 5. Найдите базис пересечения подпространств из номера K35.15(в) через переход к заданию подпространств способом II. Сравните ответ с результатом предыдущей задачи и объясните напрямую, почему оба найденных базиса порождают одно и то же подпространство.
- 6. K35.12(б)
- 7. (бонус) Докажите утверждение \diamond с семинара.