Security Prof

10

Protocols 3 Security

Security Principles Gavin Lowe

Encrypted Key Exchange

(EKE) protocol aims to authenticate and establish a session key for The Encrypted Key Exchange a user of a client to a server, subsequent communication.

However, the password might be poorly chosen, say an English The user a and the server b share a secret password p(a, b). word. We want to ensure that the intruder cannot deduce the password from observing a protocol exchange.

How not to do it

Consider a protocol that starts as follows:

Msg 1.
$$a \to b : \{a, b, k_{ab}\}_{p(a,b)}$$

the password. He can then verify his guess by decrypting the message with his guess, and seeing whether the result starts Suppose the intruder sees the message $\{a,b,k_{ab}\}_{p(a,b)}$ and with a, bguesses

Alternatively he can write a program to try every word in an online dictionary in turn.

The client a creates an asymmetric key pair (k_1, k_2) .

Msg 1.
$$a \rightarrow b$$
: a , $\{k_1\}_{p(a,b)}$
Msg 2. $b \rightarrow a$: $\{\{k_{ab}\}_{k_1}\}_{p(a,b)}$
Msg 3. $a \rightarrow b$: $\{n_a\}_{k_{ab}}$
Msg 4. $b \rightarrow a$: $\{n_a, n_b\}_{k_{ab}}$
Msg 5. $a \rightarrow b$: $\{n_b\}_{k_{ab}}$.

Note that an intruder cannot carry out a guessing attack. If he the password, he can obtain guesses

$$k_1$$
 and $\{k_{ab}\}_{k_1}$

but he cannot use these to verify his guess.