

INVESTIGACIÓN E IMPLEMENTACIÓN DE ALGORITMOS DE EXPONENCIACIÓN MODULAR

Integrantes:

Becerra Sipiran, Cledy Elizabeth Oviedo Sivincha, Massiel Villanueva Borda, Harold Alejandro

Docente:

Dc. Ana Maria Cuadros Valdivia

Curso: Álgebra Abstracta

Departamento de Ciencia de la Computación Universidad Católica San Pablo Semestre 2021 - III Arequipa - Perú

Introducción:

- Investigar las diversas variantes del Algoritmo de Exponenciación Modular.
- Analizar algoritmos y evaluar su eficiencia.
- Encontrar los algoritmos más eficientes entre los investigados.

Exponenciación Modular

Exponenciación Modular Rápida Exponenciación Naive

Exponenciación Modular Binaria El Mejor Algoritmo:

Exponenciación Modular Binaria

- Menor tiempo de ejecución
- Similitud con la exponenciación binaria left-right y right-left

Código:

```
IMPUT: a, n and m = (n-1...n0)
OUTPUT: The element a^n mod
m.
1. r = 1
2. while n different from 0
 2.1 if n is odd then
     2.2.1 a = a^2 modulo m
 2.2 \, \text{n/2}
4 return r
```

```
ZZ binary_expo_modular(ZZ a, ZZ n, ZZ
m){}
  ZZ result:
  result = ZZ(1);
  while( n != ZZ(0)) {
    if(!even(n))
       result = MOD(result*a,m);
    a = MOD(a*a,m);
     n >>= 1:
  return result;
```

Seguimiento numérico: 572^29 mod 713

r	а	n	m
1	572	29	713
572	630	14	713
572	472	7	713
470	328	3	713
152	634	1	713
113	537	0	713

Comparación:

	Exponenciación Modular Rápida	Exponenciación Modular Binaria	Exponenciación Naive
128	0,135	0,087	∞
256	0,269	0,175	∞
512	0,522	0,339	∞
1024	1,045	0,649	∞
2048	2,004	1,272	∞

Conclusiones:

- El algoritmo de exponenciación binaria es el más eficaz.
- Gran mejora con cierto teoremas implementados.
- Se aprecia cierto grado de similitud entre los algoritmos expuestos.