

Circuitos Digitais I - 6878

Nardênio Almeida Martins

Universidade Estadual de Maringá Departamento de Informática

Bacharelado em Ciência da Computação

Introdução

- Visão Geral da Disciplina
- Sistemas de Numeração
- Exercícios
- o Resumo da Aula

Visão Geral

Representação da Informação

Sistemas de Numeração

Linguagem de Montagem

Motivação para estudar Circuitos Digitais

Por que estudar todos esses componentes?

Para atender a demanda por recursos humanos na área de Sistemas Embarcados

Sistemas Embarcados dominam o mercado

Fonte: Tennenhouse, David L. "Proactive Computing". Communications of the ACM. Vol.43, n. 5, 2000, pp. 43-50

Motivação para estudar Circuitos Digitais

Sistemas Embarcados

© 2003 Elsevier Science (USA). All rights reserved.

Níveis de Abstração

Motivação:

 Dispositivos que operam com diferentes sistemas de numeração. Ex: Displays, Simuladores, Calculadoras

Motivação:

- Circuitos Digitais usam 2 estados para representar uma informação. Ex: Circuito Base ⇒ Transistor
- Números binários podem ser muito extensos ⇒ Difíceis de representar ⇒ Usa base com menos algarismos
 - Simulador com representação de dados no sistema binário com 16 bits: 1000111100000001
 - Simulador com representação de dados no sistema hexadecimal: 8F01

Motivação: Simulador com dados em Hexadecimal

Base:

- É a quantidade de algarismos ou símbolos disponíveis para representar todos os números no sistema de numeração
- Exemplos:

```
 ○ Base 10  \Rightarrow 10 dígitos: 0,1,2,...9
```

- \circ Base 2 \Rightarrow 2 dígitos: 0 e 1
- o Base 16 \Rightarrow 16 dígitos: 0,1,2,...,9,A,B,C,D,E,F

<u>Convenção:</u> Bases maiores que 10 usam letras para representar algarismos maiores que 9

Sistema Decimal

Base 10:

Base $10 \Rightarrow 10$ dígitos: 0,1,2,...9

- Exemplo: 1303_{10} $1 \times 10^3 + 3 \times 10^2 + 0 \times 10^1 + 3 \times 10^0$ 1000 + 300 + 0 + 3 = 1303

Notação Posicional

Sistema Binário

Base 2:

Base 2⇒2 dígitos: 0 e 1 cada dígito é chamado de bit (binary digit)

- Convenção:
 - 1 dígito: bit
 - 4 dígitos: nibble
 - 8 dígitos: byte
- Exemplo: 101111₂

Sistema Binário

Conversões de Bases:

Binário para Decimal

Sistema Binário

Conversões de Bases:

Decimal para Binário

- 2 Métodos: soma de potências e divisões sucessivas
- Exemplo de <u>Soma de Potências</u>:

Sistema Binário

Conversões de Bases:

Decimal para Binário

Sistema Binário

Conversões de Bases:

Decimal para Binário

Sistema Binário

Conversões de Bases:

Decimal para Binário

Exercícios

Conversões de Bases

- Converter 1001₂ para decimal
- · Converter 400₁₀ para binário

Conversões de Bases

· Converter 1001₂ para decimal

Conversões de Bases

- · Converter 400₁₀ para binário
 - <u>Método de Divisões Sucessivas</u>:

```
400
     200
          100
                50
                           12
                                                     400_{10} = 110010000_2
                                 0
```

22

Sistema Octal

Base 8:

Base 8 ⇒ 8 dígitos: 0,1,2,3,4,5,6,7

Decimal	Octal
0	0
1	1
2	2
3	3
4	4
5	5
6	6
7	7
8	10
9	11
10	12
11	13
12	14
13	15
14	16
15	17
16	20

Sistema Octal

Conversões de Bases:

Octal para Decimal

- Exemplo: 1448

Sistema Octal

Conversões de Bases:

Decimal para Octal

Exercícios

Conversões de Bases

- · Converter 77₈ para decimal
- Converter 74₁₀ para octal

Conversões de Bases

· Converter 77₈ para decimal

Conversões de Bases

- Converter 74₁₀ para octal
 - <u>Método de Divisões Sucessivas</u>:

```
74 8
2 9 8 74<sub>10</sub> = 112<sub>8</sub>
```


Sistema Octal

Conversões de Bases:

Octal para Binário: Transforma cada algarismo octal no correspondente binário (para cada octal são necessários 3 bits \Rightarrow 2 3 = 8 - Base octal)

- Exemplo:

Octal	Binário
0	000
1	001
2	010
3	011
4	100
5	101
6	110
7	111

Sistema Octal

Conversões de Bases:

Binário para Octal: Processo inverso - agrupa-se 3 bits a partir da

direita

- Exemplo: 110010₂

Octal	Binário
0	000
1	001
2	010
3	011
4	100
5	101
6	110
7	111

Exercícios

Conversões de Bases

- · Converter 34₈ para binário
- · Converter 1010₂ para octal

Octal	Binário
0	000
1	001
2	010
3	011
4	100
5	101
6	110
7	111

Conversões de Bases

· Converter 34₈ para binário

Octal	Binário
0	000
1	001
2	010
3	011
4	100
5	101
6	110
7	111

Conversões de Bases

· Converter 1010₂ para octal

Insere	0s
--------	----

Octal	Binário
0	000
1	001
2	010
3	011
4	100
5	101
6	110
7	111

Sistema Hexadecimal

Base 16:

Base 16 ⇒ 16 dígitos: 0,1,2,3,4,5,6,7,8,9,A,B,C,D,E,F

Decimal	Hexadecimal
0	0
1	1
2	2
3	3
4	4
5	5
6	6
7	7
8	8
9	9
10	Α
11	В
12	С
13	D
14	E
15	F
16	10

Sistema Hexadecimal

Conversões de Bases:

Hexadecimal para Decimal

Sistema Hexadecimal

Conversões de Bases:

Decimal para Hexadecimal

Exercícios

Conversões de Bases

- Converter 1C3₁₆ para decimal
- · Converter 134₁₀ para hexadecimal

Conversões de Bases

Converter 1C3₁₆ para decimal

Conversões de Bases

· Converter 134₁₀ para hexadecimal

Sistema Hexadecimal

Conversões de Bases:

Hexadecimal para Binário: Transforma cada algarismo hexa no correspondente binário (para cada hexa são necessários 4 bits ⇒ 2⁴ = 16 - Base hexa)

- Exemplo:

Hexadecimal	Binário
0	0000
1	0001
2	0010
3	0011
4	0100
5	0101
6	0110
7	0111
8	1000
9	1001
Α	1010
В	1011
С	1100
D	1101
E	1110
F	1111

Sistema Hexadecimal

Conversões de Bases:

Binário para Hexadecimal: Processo inverso - agrupa-se 4 bits a

partir da direita

- Exemplo: 10011000₂

Hexadecimal	Binário
0	0000
1	0001
2	0010
3	0011
4	0100
5	0101
6	0110
7	0111
8	1000
9	1001
Α	1010
В	1011
С	1100
D	1101
E	1110
F	1111

Exercícios

Conversões de Bases

- · Converter 1ED₁₆ para binário
- · Converter 11000112 para hexadecimal

Hexadecimal	Binário
0	0000
1	0001
2	0010
3	0011
4	0100
5	0101
6	0110
7	0111
8	1000
9	1001
Α	1010
В	1011
С	1100
D	1101
Е	1110
F	1111

Conversões de Bases

· Converter 1ED₁₆ para binário

Hexadecimal	Binário
0	0000
1	0001
2	0010
3	0011
4	0100
5	0101
6	0110
7	0111
8	1000
9	1001
Α	1010
В	1011
С	1100
D	1101
E	1110
F	1111

Conversões de Bases

Converter 1100011₂ para hexadecimal

Hexadecimal	Binário
0	0000
1	0001
2	0010
3	0011
4	0100
5	0101
6	0110
7	0111
8	1000
9	1001
Α	1010
В	1011
С	1100
D	1101
Е	1110
F	1111

Resumo da Aula de Hoje

Tópicos mais importantes:

- o Representação de números
- o Bases
- o Conversões de Bases

Próxima Aula

- o Funções Lógicas
- Simbologias das Portas Lógicas
- o Expressões das Portas Lógicas
- o Tabela Verdade
- o Circuitos Integrados das Portas Lógicas

