UE Fluids	F17+F185	John	Spring	104				
Flow sketch	5hock May = 1,6	θ = 10°	$\int \theta = 20^{\circ}$	shock				
on the bottom.								
a) Oblique Shock. M, = 1.6, 0 = 10 -> B = 51° (chart, Anderson p. 513)								
$M_{n_1} = M_1 \sin 51^\circ = 1.6 \cdot 0.7777 = 1.243$								
$p_2/p_1 = f(M_{n_1}) = 1.636$ (Anderson eq. 9.16, or Appendix B table.)								
Since $p_1 = p_{\infty} \rightarrow p_2 = 1.636 p_{\infty} = p_a$								
$M_{n_2} = f(M_{n_1}) = 0.817$ (eq. 9.14) $M_2 = M_0 = \frac{M_{n_2}}{5in(51^2-10^\circ)} = 1.245$								
b) Expansion fam. M, = Ma = 1.245, $V(M_{\star}) = 4.7^{\circ}$								
$V(M_2) = V(M_1) + 20^\circ = 24.7^\circ \rightarrow M_2 = 1.94$								
$p_2 = p_{o_2} \left[1 + \frac{8^{-1}}{2} M_2^2 \right]^{\frac{-\delta}{8^{-1}}}$								
Poz = Po, = Poa (behind obligue shock).								
$P_{oa}/P_{op} = f(M_{n_i}) = 0.987$								
$P_{0a} = 0.987 P_{0a} = 0.987 P_{0a} \left[1 + \frac{8}{2} M_{0a}^{2}\right]^{\frac{8}{5}-1} = 4.195 P_{0a}$ $P_{0a} = 4.195 P_{0a} \left[1 + \frac{8}{2} M_{2}^{2}\right]^{\frac{3}{5}-1} = 0.588 P_{0a} = P_{b}$								
1. Pz = 4.195 pol	1 = M2 =	0.588 pa	· P6					
Note: If we neglect t	he obligeres shock's	loss: Pob	= Poa = Poo > (n	P2=0.596 Pool of quite correct)				
$C) L' = L_a + L_b = (P_a)$	$-p_a)\frac{c}{2}+(p_{\infty}-p_{\alpha})$	P_b) $\frac{C}{2} = (1-$	1.636) poo 2 +	(1 - 0.588) po 2				
$L = -0.112 p_{\infty}$ $D = D_{A} + D_{b} = -L_{a}$		= [-(1-1,636	+ (1-0.588)	tamlo po E				
D= 0.0924 po	<u> </u>		$V_{\infty}^{2} = -0.0$					
Using EcoVa = ZpaMas	= 1.792 po ->		V ₀ ² = 0.05					

Flow out of tank through air hose:

To=300K° | smallest A = A* at sonie conditions

D= 3.45×105

Required in = 0.01 kg/s = p*a*A* $0^* = \rho_0 \left[1 + \frac{3-1}{2}\right]^{\frac{1}{3-1}} = 0.634 \rho_0$

> but ho= cpTo= 1004 J/mg "k + 300° = 301200 m3/sZ ao = /(r-1)ho = 347.1 m/s Po = 8Po/8-11ho = 4.01 kg/m3

So $\rho^* = 0.634 \rho_0 = 2.542 \text{ kg/m}^3$ $\alpha^* = a_0 \left[1 + \frac{5}{2} \right]^{\frac{1}{2}} = 316.8 \text{ m/s}$ $= \frac{0.01}{2.592.316.8} = 1.24 \times 10^{-5} = 0.124 \text{ cm}^2$

1=2 mm

diameter = 4 mm = 0,156 in

Wining, designed for bendeing loads Model as: W/length. T = 12h Max moment at not = $\frac{\omega L^2}{2}$ Max stress = $\frac{MZ}{I} = \frac{\sigma_{mx}}{mx} = \frac{\omega L^2}{2} \cdot \frac{K}{h^{4}s}$ = 3WL² cannot exceed of h= m mass = eAL = en2L Subshult for h $\sigma_{y} = 3\omega L^{2} \left(\frac{eL}{m}\right)^{2}$:. Minimum mm M= (3WL3) PL 52/3 i. chose malerial with or max 52/3/e. =

$$\frac{3}{8}CV^2 = \sigma_3$$

Ch	ose mul	المانك	h mae	5
		5		
6)A12024	2800	3 4-5	0.12	0.018
A 7075	2800	495	0.18	0.022
T: 6-4	4-510	910	0.20	0.021
Ph 17-7Ph.	8 000	1435	0.18	0.016
steel	7-8 W	260	0.03	o. ws
				A1 7075

Critical Conde size for

At 7075 OF ac =
$$\frac{1}{11} \left(\frac{Kc}{409} \right)^2 = \frac{1}{11} \left(\frac{24 \times 10^6}{44495 \times 10^6} \right)^2$$

$$Ti6-9$$
 $a_c = \frac{1}{11} \left(\frac{50 \times 10^6}{0.9 \times 910 \times 10^6} \right)^2 = 1.2 \text{ mm}$

Small

d) Conticul concle size for Ti 6-4 is small, hander to detect, more difficult to implement a damage blevant design approach

$$\frac{da}{dN} = 7.7 \times 10^{-12} (AK)^{5.0}$$

$$= 7.7 \times 10^{-17} (Y\Delta\sigma \sqrt{\pi a})^{5.0}$$

$$= 2.7 \times 10^{-17} (Y\Delta\sigma \sqrt{\pi a})^{5.0}$$

$$= 7.7 \times 10^{-17} (Y\Delta\sigma \sqrt{\pi a})^{5.0}$$

$$Q_{CV} = \frac{1}{\pi} \left(\frac{K_C}{C_{Max}} \right)^2$$

$$K_C = 44 M P_4 \sqrt{M}$$

Trax= Theun + 100 MPa = 250 MPa

9.7 - 9.9 mm

$$N_{f} = \frac{1}{7.4 \times 10^{-12} (1.7)^{5} (700)^{5} \pi^{2.5}} \int \frac{a^{-1.5}}{1.5} \int_{-1.5 \times 10^{-3}}^{3.0 \times 10^{-3}}$$

Inspect at more frequent intervals > Maybe every 45 cycles