Selecting Your Algorithm

Jerry Kurata
CONSULTANT

@jerrykur www.insteptech.com

Asking the right question

Preparing data

Selecting the algorithm

Training the model

Asking the right question

Preparing data

Selecting the algorithm

Training the model

Asking the right question

Preparing data

Selecting the algorithm

Training the model

Asking the right question

Preparing data

Selecting the algorithm

Training the model

Overview

Role of algorithm

Perform algorithm selection

- Use solution statement to filter algorithms
- Discuss best algorithms
- Select one initial algorithm

Role of Algorithm

Over 50 algorithms

Algorithm Selection

Compare factors

Difference of opinions about which factors are important

You will develop your own factors

Algorithm
Decision
Factors

Learning Type

Result

Complexity

Basic vs Enhanced

Learning Type

Learning Type

"Use the Machine Learning Workflow to process and transform DOT data to create a prediction model. This model must predict whether a flight would arrive 15+ minutes after the scheduled arrival time with 70+% accuracy."

Learning Type

"Use the Machine Learning Workflow to process and transform DOT data to create a prediction model. This model must predict whether a flight would arrive 15+ minutes after the scheduled arrival time with 70+% accuracy."

Prediction Model => Supervised machine learning

Over 50 28 algorithms

Result Type

Regression

- Continuous values
- price = A * # bedroom+ B * size+ ...

Classification

- Discrete values
- small, medium, large
- 1-100, 101-200, 201-300
- true or false

"... predict whether a flight would arrive 15+ minutes after the scheduled arrival time ."

Result Type

"... predict whether a flight would arrive 15+ minutes after the scheduled arrival time ."

Result Type

ARR_DEL15

Binary (TRUE/FALSE)

Algorithm must support classification

- Binary classification

Over 50 28 20 algorithms

Complexity

Keep it Simple

Eliminate "ensemble" algorithms

- Container algorithm
- Multiple child algorithms
- Boost performance
- Can be difficult to debug

Over 50 28 20 14 algorithms

Enhanced vs. Basic

Enhanced

- Variation of Basic
- Performance improvements
- Additional functionality
- More complex

Basic

- Simpler
- Easier to understand

Candidate Algorithms

Naive Bayes

Logistic Regression

Decision Tree

Naive Bayes

Based on likelihood and probability

Every feature has the same weight

Requires smaller amount of data

Logistic Regression

Confusing name, binary result

Relationship between features are weighted

Decision Tree

Binary Tree

Node contains decision

Requires enough data to determine nodes and splits

Titanic Survival

Selected Algorithm

Logistic Regression Simple - easy to understand

Fast - up to 100X faster

Stable to data changes

Summary

Lots of algorithms available

Selection based on

- Learning = Supervised
- Result = Binary classification
- Non-ensemble
- Basic

Logistic Regression selected for training

- Simple, fast, and stable

