Minimum Spanning Tree (MST)

Hengfeng Wei

hfwei@nju.edu.cn

May 26, 2017 - May 31, 2017

Minimum Spanning Tree (MST)

- Out Property and Cycle Property
- 2 Time Complexity of MST Algorithms
- Variants of MST
- 4 MST vs. Shortest Path

A generic MST algorithm

Cut property (strong)

Cut property (strong)

- ▶ Graph G = (V, E)
- lacktriangleq X is some part of an MST T of G
- ▶ Any cut $(S, V \setminus S)$ s.t. X does not cross $(S, V \setminus S)$
- ▶ Let e be a lightest edge across $(S, V \setminus S)$

Then $X \cup \{e\}$ is some part of an MST T' of G.

Proof.

Exchange argument

Cut property (strong)

Correctness of Prim's and Kruskal's algorithms.

Cut property (weak)

Cut Property [Problem: 3.6.18 (a)]

- Graph G = (V, E)
- ▶ Any cut $(S, V \setminus S)$ where $S, V S \neq \emptyset$
- ▶ Let e = (u, v) be a minimum-weight edge across $(S, V \setminus S)$

Then e must be in *some* MST of G.

"a"
$$\rightarrow$$
 "the" \Longrightarrow "some" \rightarrow "any"

Applications of cut property

Application of cut property (Problem 6.10)

- (3) (Problem 6.10–3) $e \in G$ is a lightest edge $\implies e \in \exists$ MST of G
- (4) $e \in G$ is the unique lightest edge $\implies e \in \forall$ MST of G

Applications of cut property

Wrong divide&conquer algorithm for MST (Problem 6.14)

- ightharpoonup G = (V, E, w)
- $(V_1, V_2): ||V_1| |V_2|| \le 1$
- ▶ $T_1 + T_2 + \{e\}$: e is a lightest edge across (V_1, V_2)

Cycle property (weak)

Cycle property (Problem 6.13–2)

- ightharpoonup G = (V, E, w)
- ▶ Let C be any cycle in G
- ightharpoonup e = (u, v) is a maximum-weight edge in C

Then \exists MST T of $G: e \notin T$.

"a"
$$\rightarrow$$
 "the" \Longrightarrow "some" \rightarrow "any"

Applications of cycle property

Anti-Kruskal algorithm (Problem 6.13–3)

Reverse-delete algorithm (wiki)

 $O(m \log n (\log \log n)^3)$

Proof.

Invariant: If F is the set of edges remained at the end of the while loop, then there is some MST that are a subset of F.

Reference

"On the Shortest Spanning Subtree of a Graph and the Traveling Salesman Problem" by Kruskal, 1956.

Application of cycle property

(Problem 6.13–1) (1) $e \notin \text{any cycle of } G \implies e \in \forall \text{ MST}$

By contradiction.

Application of cycle property

(Problem 6.10)

- (1) |E|>|V|-1, e is the unique max-weight edge of $G\implies e\notin \forall$ MST
- (2) $\exists C \subseteq G$, e is the unique max-weight edge of $G \implies e \notin \forall \mathsf{MST}$
- (5) Cycle $C \subseteq G$, $e \in C$ is the unique lightest edge of $G \implies e \in \forall \mathsf{MST}$

Unique MST (Problem 6.12-1)

Distinct weights \implies unique MST.

Unique MST (Problem 6.12-2)

Unique MST \implies Equal weights.

Unique MST (Problem 6.12-3)

Unique MST

→ Minimum-weight edge across any cut is unique.

Theorem

Minimum-weight edge across any cut is unique ⇒ Unique MST.

Unique MST (Problem 6.12-3)

Theorem (Conjecture)

Maximum-weight edge in any cycle is unique ⇒ Unique MST.

Unique MST (Problem 6.12–4)

Decide whether a graph has a unique MST?

Modify an MST by exchange argument?

Minimum Spanning Tree (MST)

- Cut Property and Cycle Property
- Time Complexity of MST Algorithms
- Variants of MST
- 4 MST vs. Shortest Path

Prim vs. Kruskal (Problem 6.4)

Prim vs. Kruskal (Problem 6.4)

- Array vs. heap
- m = O(n) vs. $m = \Omega(n^2)$

$$T(n,m) = O(nT(\mathsf{getMin}) + nT(\mathsf{deleteMin}) + mT(\mathsf{decreaseKey}))$$

MST on special graphs (Problem 6.3)

MST on special graphs (Problem 6.3)

- 1. K-bounded degree graph
- 2. Planar graph

$$(1) \ m \le \frac{nk}{2}$$

(2)
$$m \le 3n - 6$$

Reference

► "Finding Minimum Spanning Trees" by David Cheriton and Robert Tarjan, 1976 (linear on planar graph).

Prim on special graphs (Problem 6.1)

Prim on special graphs (Problem 6.1)

$$E = \{v_1v_i \mid i = 2 \dots n\}, W(v_1v_i) = 1$$

Prim on special graphs (Problem 6.2)

Prim on special graphs (Problem 6.2)

- 1. $G = K_n$
- 2. $W(v_i v_j) = n + 1 i, 1 \le i < j \le n$

Minimum Spanning Tree (MST)

- Cut Property and Cycle Property
- 2 Time Complexity of MST Algorithms
- Variants of MST
- 4 MST vs. Shortest Path

Feedback edge set

Feedback edge set (Problem 6.5)

- 1. Max-ST
- 2. (minimum) feedback edge set F:

$$G' \triangleq G \setminus F$$
 is acyclic.

MST with specific leaves

MST with specific leaves (Problem 6.8)

- $ightharpoonup G = (V, E), U \subset V$
- lacktriangle finding an MST with U as leaves

- ▶ MST T' of $G' \triangleq G \setminus U$
- ▶ attach $\forall u \in U$ to T' (lightest edge)

MST with specific edges

MST with specific edges (Problem 6.9)

- ▶ $G = (V, E), S \subset E$ (no cycle in S)
- lacktriangle finding an MST with E as edges
- 1. Run Kruskal
- 2. Computing MST on graph of CCs

Edge weights

Edge weights (Problem 6.11)

$$w(e) > 0, w'(e) = (w(e))^2$$

Edge weights (Problem 6.10-7)

$$\exists e : w(e) < 0$$

Linear MST algorithms on special graphs

Linear MST algorithms on special graphs (Problem 5.25)

- 1. $\forall e \in E : w(e) = 1$
- 2. m = n + 10
- 3. $\forall e \in E : w(e) = 1 \lor w(e) = 2$
- 1. BFS
- 2. Cycle-breaking $\times 11$
- 3. BFS $\times 2$ (\equiv Kruskal)

Updating MST

Updating MST (Problem 6.7)

Updating MST

Updating MST (Problem 6.7)

Second-best MST

Second-best MST (Problem 6.15)

Minimum Spanning Tree (MST)

- Cut Property and Cycle Property
- 2 Time Complexity of MST Algorithms
- Variants of MST
- 4 MST vs. Shortest Path

Sharing edges

Sharing edges (Problem 6.6)

- G = (V, E), w(e) > 0
- \blacktriangleright Given $s{:}$ all sssp trees from s must share some edge with some MST of G

a lightest edge leaving s

SP vs. MST

SP vs. MST (Problem 6.10-6)

The shortest path between two nodes is necessarily part of some MST.

SPT vs. MST (Problem 6.17)

✗ The shortest-path tree computed by Dijkstra's algorithm is necessarily an MST.

Edge weights

Edge weights (Problem 6.19)

MST vs. SPT (from s):

$$w(e) \ge 0, w'(e) = w(e) + 1$$

