Point n'est besoin d'espérer pour entreprendre, ni de réussir pour persévérer. (Guillaume d'Orange)

Exercice 1 Convergence et somme de

$$\sum_{n\geqslant 0} \frac{2^{n-2}}{3^{n+2}} \quad \sum_{n\geqslant 0} \frac{2^n+1}{4^n} \quad \sum_{n\geqslant 0} \frac{(1+\mathbf{i})^n}{(1+2\mathbf{i})^n}$$

Exercice 2 Montrer que $\sum_{n} \cos n$ diverge.

Exercice 3 (Un calcul de somme)

1. En observant que pour tout entier $k \ge 0$ on a $\frac{1}{2k+1} = \int_0^1 t^{2k} dt$, montrer que :

$$\sum_{k=0}^{n} \frac{(-1)^k}{2k+1} = \int_0^1 \frac{1 - (-t^2)^{n+1}}{1 + t^2} dt$$

- 2. En déduire la convergence et la somme de la série $\sum_{n\geq 0} \frac{(-1)^n}{2n+1}$.
- 3. Une série convergente est-elle absolument convergente?

Exercice 4 Convergence et somme de $\sum_{n} \left(\frac{1}{\sqrt{n+1}} + \frac{1}{\sqrt{n-1}} - \frac{2}{\sqrt{n}} \right)$ et de $\sum_{n} \ln \left(1 - \frac{1}{n^2} \right)$.

Exercice 5 Convergence et somme de $\sum_{n>0} \frac{1}{n^2+3n}$, $\sum_{n>0} \frac{(-1)^n}{n(n+1)}$ et $\sum_{n>0} \frac{1}{n^2(n+1)}$.

Exercice 6 Nature et somme de $\sum_{n} \ln \left(1 + \frac{(-1)^n}{n}\right)$. On pourra calculer $u_{2n} + u_{2n+1}$.

Exercice 7 (Sommation par tranche)

Convergence et somme de la série de terme général $u_n = \frac{\lfloor \sqrt{n+1} \rfloor - \lfloor \sqrt{n} \rfloor}{n}$

Exercice 8 (Comparaison à une série de Riemann) Soit $\sum_{n} u_n$ à termes positifs. Que dire de sa nature quand :

- 1. Il existe $a \in \mathbb{R}$ tel que $n^a u_n \to \ell \in \mathbb{R}_+^*$.
- 2. $nu_n \to +\infty$
- $3. \ n^2 u_n \to 0$

Exercice 9 Nature des séries de terme général :

1.
$$\sin\left(\sqrt{4n^2+1}\pi\right)$$

$$5. \ \frac{1}{n^{n+\frac{1}{n}}}$$

9.
$$\sqrt{\ln(n+1)} - \sqrt{\ln(n)}$$

$$2. \left(\cos\frac{1}{n}\right)^{n^3}$$

6.
$$\frac{n^3 + 2^n}{n^2 + 3^n}$$

10.
$$\left(\frac{1}{\ln n}\right)^{\ln n}$$

$$3. \ \frac{1}{2^{\sqrt{n}}}$$

7.
$$\arctan \frac{n}{n^2 + 1}$$

11.
$$\int_{n}^{2n} \frac{dt}{1 + t^{3/2}}$$

$$4. \ e - \left(1 + \frac{1}{n}\right)^n$$

8.
$$\int_0^{\pi/n} \frac{\sin^3 x}{1+x} dx$$

$$12. \ \frac{n^{\ln n}}{(\ln n)^n}$$

13.
$$\frac{2.4.6...(2n)}{n^n}$$

$$16. \ \frac{n^a n! e^n}{(n+1)^n}$$

20.
$$\cos(n\pi + 1/n)$$

$$14. \ \frac{a^n}{1+a^{2n}}$$

17.
$$e^{\cos\frac{1}{n}} - e^{\cos\frac{2}{n}}$$

21.
$$\ln\left(1 + \frac{(-1)^n}{n}\right)$$

15.
$$\frac{(2n)!}{n!a^nn^n}$$
, $(a > 0)$

18.
$$n^{n^{-a}} - 1$$
 avec $a > 0$
19. $\frac{1}{\sqrt{n^2 - 1}} - \frac{1}{\sqrt{n^2 + 1}}$

$$22. \left(\frac{\sqrt{n}}{1+\sqrt{n}}\right)^n$$

Exercice 10 (Constante d'Euler γ) On note pour n > 0: $H_n = \sum_{k=1}^n \frac{1}{k}$.

- 1. Montrer que $\forall n > 0$: $\int_1^{n+1} \frac{\mathrm{d}t}{t} \leqslant H_n \leqslant 1 + \int_1^n \frac{\mathrm{d}t}{t}$, en déduire un équivalent de H_n .
- 2. Posons $u_n = H_n \ln n$. Déterminer un équivalent de $u_{n+1} u_n$, en déduire que $(u_n)_n$ converge vers une limite que l'on notera γ (constante d'Euler, environ 0,57). Ainsi :

$$H_n = \ln n + \gamma + \varepsilon_n \text{ avec } \varepsilon_n \to 0$$

Applications:

- 3. Convergence et somme de la somme de la série harmonique alternée $\sum_{n>0} \frac{(-1)^{n+1}}{n}$.
- 4. Calculer la somme de la série $\sum_{n>0} \frac{1}{1^2+2^2+\ldots+n^2}.$
- 5. Déterminer suivant a > 0 la nature de $\sum_{n} a^{H_n}$.

Exercice 11 Soit $(u_n)_n$ une suite décroissante de réels positifs. On suppose que la série $\sum_n u_n$ converge.

- 1. Montrez que $\lim_{n} nu_n = 0$.
- 2. On pose $v_n = nu_n nu_{n+1}$. Montrez que $\sum_n v_n$ converge et a même somme que $\sum_n u_n$.

Exercice 12 (Un classique) Montrer que $(2+\sqrt{3})^n+(2-\sqrt{3})^n\in 2\mathbb{Z}$. Préciser la nature de $\sum_n\sin\left((2-\sqrt{3})^n\pi\right)$ puis celle de $\sum_n\sin\left((2+\sqrt{3})^n\pi\right)$.

Exercice 13 Soit $\sum_{n} u_n$ une série réelle semi-convergente. Pour tout n, on pose $u_n^+ = \max(0, u_n)$ et $u_n^- = \max(0, -u_n)$. Montrez que $\sum_{n} u_n^+$ et $\sum_{n} u_n^-$ sont divergentes.

Exercice 14 Nature suivant b > 0 de $\sum_{n=1}^{\infty} \frac{n^n}{n!b^n}$.

Exercice 15 Etudier $\sum_{n} \frac{\sqrt{1} + \sqrt{2} + \dots + \sqrt{n}}{n^{\alpha}}$.

Exercice 16 (Comparaison série-intégrale)

1. Trouver la partie entière de $\sum_{k=1}^{10^9} \frac{1}{k^{2/3}}$.

- 2. Trouver un équivalent de $\sum_{k=n+1}^{+\infty} \frac{1}{k^2}$ et de de $\sum_{k=1}^{n} \sqrt{k}$.
- 3. Nature de $\sum_{n} \frac{1}{n^a \ln n}$ suivant $a \in \mathbb{R}$.

Exercice 17 Soit $(a_n)_n$ suite positive et $(u_n)_n$ définie par $u_0 > 0$ et pour tout $n : u_{n+1} = u_n + \frac{a_n}{u_n}$.

- 1. Montrer que u est croissante et à termes strictement positifs.
- 2. On suppose que \sum_{na_n} converge, montrer que u converge.
- 3. On suppose que u converge, montrer que $\sum_{n} a_n$ converge.

Exercice 18 Etudier $\sum_{n} \frac{\sqrt{1} + \sqrt{2} + \dots + \sqrt{n}}{n^{\alpha}}$.

Exercice 19 (terme général défini par une suite récurrente) Soit la suite définie par $x_0 > 0$ et pour tout n de \mathbb{N} : $x_{n+1} = \frac{e^{-x_n}}{n+1}$. Déterminer la nature de $(x_n)_n$, un équivalent de x_n puis la nature de $\sum_n x_n$.

Exercice 20 (terme général défini implicitement)

- 1. Montrer que pour tout n > 2 il existe exactement deux solutions dans \mathbb{R}_+^* de $x^n = e^x$ notée x_n, y_n tels que $x_n < y_n$.
- 2. Montrer que x_n tend vers 1.
- 3. Déterminer la nature de la série de terme général $u_n = \frac{x_n 1}{y_n}$.

Exercice 21 (Séries alternées)

Nature de :

1.
$$\sum_{n} \sin\left(\pi\sqrt{n^2+1}\right)$$

$$2. \sum_{n} \frac{(-\ln n)^n}{n^{\ln n}}$$

3.
$$\sum_{n} u_n = \frac{(-1)^n}{n!^{1/n}}$$

Exercice 22 (Attention!) On note $u_n = \frac{(-1)^n}{\sqrt{n}}$ et $v_n = \frac{(-1)^n}{\sqrt{n} + (-1)^{n+1}}$.

- 1. Montrer que $\sum_{n} u_n$ converge.
- 2. Déterminer a réel tels que $v_n = \frac{(-1)^n}{\sqrt{n}} + \frac{a}{n} + o\left(\frac{1}{n}\right)$, en déduire que $\sum_n v_n$ est divergente.
- 3. $\sum_{n} u_n$ et $\sum_{n} v_n$ sont-elles de même nature? Qu'illustre cet exemple?

Exercice 23 Nature et somme de $\sum_{n} u_n$ avec $u_n = \frac{1}{n} \cos \left(2n\frac{\pi}{3}\right)$.

Exercice 24 On admet que $\sum_{n=1}^{+\infty} \frac{1}{n^2} = \frac{\pi^2}{6}$. Préciser : $\sum_{n=1}^{+\infty} \frac{1}{(2n)^2}$, $\sum_{n=1}^{+\infty} \frac{1}{(2n+1)^2}$, $\sum_{n=1}^{+\infty} \frac{(-1)^n}{(n)^2}$.

Exercice 25 (Avec une intégrale) On note $u_n = \int_0^{\pi/4} \tan^n x dx$.

- 1. Calculer $u_{n+2} + u_n$ et montrer que u est décroissante.
- 2. En comparant u_n et $u_n + u_{n+2}$ en déduire la nature de $\sum_{n} u_n$.
- 3. Donner la nature de $\sum_{n} (-1)^n I_n$.

Exercice 26 Soient $\sum u_n$, $\sum v_n$, $\sum w_n$ séries réelles telles que $\sum u_n$ et $\sum w_n$ convergent, et $u_n \leqslant v_n \leqslant w_n$ pour tout n. Montrez que $\sum v_n$ converge.

Exercice 27 (Plus général...) Toutes les séries sont à termes réels...

- 1. On suppose **ici** que $\sum u_n$ est à termes positifs, montrer que si $\sum_n u_n$ CV alors $\sum_n u_n^2$, $\sum_n \frac{u_n}{1+u_n}$ et $\sum_n u_n u_{2n}$ CV.
- 2. Donner un exemple où $\sum u_n$ CV et $\sum u_n^2$ DV.
- 3. On suppose que $\sum u_n$ et $\sum u_n^2$ CV, montrer que $\sum_n \frac{u_n}{1+u_n}$ CV. Et si on suppose juste que $\sum u_n$ CV?
- 4. Soit u, v dans $\mathbb{R}_+^{\mathbb{N}}$, montrer que si $\sum_n u_n$ et $\sum_n v_n$ convergent alors $\sum_n \sqrt{u_n v_n}$ converge.

Exercice 28 (Calculs approchés)

- 1. Calculer une valeur approchée à 10^{-4} près de $\sum_{n=1}^{+\infty} \frac{1}{n^n}$.
- 2. Calculer une valeur approchée à 10^{-6} près de $e = \sum_{n=0}^{+\infty} \frac{1}{n!}$. On montrera que $0 \le R_n \le \frac{1}{n!n}$.
- 3. Calculer une valeur approchée à 10^{-4} près de $\sum_{n=0}^{+\infty} \frac{(-1)^n}{n^5}$.
- 4. Calculer une valeur approchée à 10^{-4} près de $\sum_{n=1}^{+\infty} \frac{n^2 + n + 1}{2^n}$. Savez-vous calculer sa valeur exacte?

Exercice 29 (Exponentielle) On pourra admettre ici que pour tout réel x la série $\sum_{n\geqslant 0} \frac{x^n}{n!}$ converge et que sa somme vaut e^x .

- 1. Soit $P \in \mathbb{R}[X]$, montrez que $\sum_{n \geq 0} \frac{P(n)}{n!}$ CV. On note S_P sa somme.
- 2. Déterminer pour $k \in \mathbb{N}^*$: S_{P_k} avec $P_k(X) = X(X-1)...(X-k+1)$
- 3. En déduire $S_{X^3+3X^2-X+2}$.

Exercice 30 Montrer via un produit de séries que $\sum_{n\geq 0} \frac{n+1}{3^n}$ converge et préciser sa somme.

Exercice 31 On suppose que $\sum_{n} u_n$ CVA, montrer que $\sum_{n} \left(\frac{1}{2^n} \sum_{k=0}^{n} 2^k u_k\right)$ converge et préciser sa somme.

Exercice 32 Nature et somme de $\sum_{n\geqslant 1} w_n$ avec $w_n = \sum_{k=1}^n \frac{1}{k^2(n-k)!}$.