Lecture 4

In which we explore the Stochastic Block Model.

1 The $G_{n,p,q}$ problem

The Stochastic Block Model is a generic model for graphs generated by some parameters. The simplest model and one we will consider today is the $G_{n,p,q}$ problem.

Definition 1 ($G_{n,p,q}$ graph distribution) The $G_{n,p,q}$ distribution is a distribution on graphs of n vertices where V is partitioned into two 2 subsets of equal size: $V = V_1 \sqcup V_2$. Then for $\{i,j\}$ pair of vertices in the same subset, $Pr((i,j) \in E) = p$ and otherwise $Pr((i,j) \in E) = q$.

We will only consider the regime under which p > q. If we want to find the partition $V = V_1 \sqcup V_2$, it is intuitive to look at the problem of finding the minimum balanced cut. The cut (V_1, V_2) has expected size $qn^2/4$ and any other cut will have greater expected size.

Our intuition should be that as $p \to q$, the problem only gets harder. And for fixed ratio p/q, as $p,q \to 1$, the problem only gets easier. This can be stated rigorously as follows: If we can solve the problem for p,q then we can also solve it for cp, cq where c > 1, by keeping only 1/c edges and reducing to the case we can solve.

Recall that for the k-planted clique problem, we found the eigenvector \mathbf{x} corresponding to the largest eigenvalue of $A - \frac{1}{2}J$. We then defined S as the vertices i with the k largest values of $|x_i|$ and cleaned up S a little to get our guess for the planted clique.

In the Stochastic Block Model we are going to follow a similar approach, but we are instead going to find the largest eigenvalue of $A - \left(\frac{p+q}{2}\right)J$. Note this is intuitive as the average degree of the graph is $p(n/2-1) + q(n/2) \approx \frac{n}{2}(p+q)$. The idea is simple: Solve **x** the largest eigenvector corresponding to the largest eigenvalue and define

$$V_1 = \{i : x_i > 0\}, \qquad V_2 = \{i : x_i \le 0\}$$
(1)

As we proceed to the analysis of this procedure, we fix V_1, V_2 . Prior to fixing, the adjacency matrix A was $(\frac{p+q}{2}) J$. Upon fixing V_1, V_2 , the average adjacency matrix R looks different.

¹The diagonal should be zeroes, but this is close enough.

For ease of notation, if we write a bold constant \mathbf{c} for a matrix, we mean the matrix cJ. It will be clear from context.

$$R = \begin{pmatrix} \mathbf{p} & \mathbf{q} \\ \mathbf{q} & \mathbf{p} \end{pmatrix} \tag{2}$$

Here we have broken up R into blocks according to the partition V_1, V_2 .

Theorem 2 If $p, q > \log n/n$ then with high probability, $||A - R|| < O\left(\sqrt{n(p+q)}\right)$.

PROOF: Define the graph G_1 as the union of a $G_{n/2,p}$ graph on V_1 and $G_{n/2,p}$ graph on V_2 . Define the graph G_2 a a $G_{n,q}$ graph. Note that the graph G is distributed according to picking a G_1 and G_2 graph and adding the partition crossing edges of G_2 to G_1 . Let A_1 and A_2 be the respective adjacency matrices and define the follow submatrices:

$$A_1 = \begin{pmatrix} A_1' & \\ & A_1'' \end{pmatrix}, \qquad A_2 = \begin{pmatrix} A_2' & A_2''' \\ & A_2'''^{\dagger} & A_2'' \end{pmatrix}.$$
 (3)

Then the adjacency matrix A is defined by

$$A = A_1 + A_2 - \left(\frac{A_2'}{A_2''} \right) \tag{4}$$

Similarly, we can generate a decomposition for R:

$$R = \left(\begin{array}{c|c} \mathbf{p} & \\ \hline & \mathbf{p} \end{array}\right) + \left(\mathbf{q}\right) - \left(\begin{array}{c|c} \mathbf{q} & \\ \hline & \mathbf{q} \end{array}\right). \tag{5}$$

Then using triangle inequality we can bound ||A - R|| by bounding the difference in the various terms.

$$||A - R|| \le ||A_1 - \left(\frac{\mathbf{p}}{|\mathbf{p}}\right)|| + ||A_2 - (\mathbf{q})|| + ||\left(\frac{A_2'}{|A_2''}\right) - \left(\frac{\mathbf{q}}{|\mathbf{q}}\right)||$$

$$\le O(\sqrt{np}) + O(\sqrt{nq}) + O(\sqrt{nq})$$

$$= O\left(\sqrt{n(p+q)}\right)$$
(6)

The last line follows as the submatrices are adjacency matrices of $G_{n,p}$ graphs and we can apply the results we proved in that regime for $p, q > \log n/n$. \square

But the difficulty is that we don't know R as $R = R(V_1, V_2)$. If we knew R, then we would know the partition. What we can compute is $||A - (\frac{p+q}{2})J||$. We can rewrite R as

$$R = \left(\frac{p+q}{2}\right)J + \frac{p-q}{2}\left(\begin{array}{c|c} \mathbf{1} & -\mathbf{1} \\ \hline -\mathbf{1} & \mathbf{1} \end{array}\right) \tag{7}$$

²The rest of this proof actually doesn't even rely on knowing p or q. We can estimate p+q by calculating the average vertex degree.

Call the matrix on the right C. It is clearly rank-one as it has decomposition $n\chi\chi^{\dagger}$ where $\chi = \frac{1}{\sqrt{n}}\begin{pmatrix} \mathbf{1} \\ -\mathbf{1} \end{pmatrix}$. Therefore

$$\left\| \left(A - \left(\frac{p+q}{2} \right) J \right) - \left(\frac{p-q}{2} \right) C \right\| = \|A - R\| \le O\left(\sqrt{n(p+q)} \right). \tag{8}$$

Then $A - \left(\frac{p+q}{2}\right)J$ is close (in operator norm) to the rank 1 matrix $\left(\frac{p-q}{2}\right)C$. Then their largest eigenvalues are close. But since $\left(\frac{p-q}{2}\right)C$ has only one non-zero eigenvalue χ , finding the corresponding eigenvector to the largest eigenvalue of $A - \left(\frac{p+q}{2}\right)J$ will be close to the ideal partition as C describes the ideal partition. This can be formalized with the Davis-Kaham Theorem.

Theorem 3 (Davis-Kahan) Given matrices M, M' with $||M - M'|| \le \varepsilon$ where M has eigenvalues $\lambda_1 \le \ldots \le \lambda_n$ and corresponding eigenvectors $\mathbf{v}_1, \ldots, \mathbf{v}_n$ and M' has eigenvalues $\lambda'_1 \le \ldots \le \lambda'_n$ and corresponding eigenvectors $\mathbf{v}'_1, \ldots, \mathbf{v}'_n$, then

$$\sin\left(\operatorname{angle}\left(\operatorname{span}(\mathbf{v}_1),\operatorname{span}(\mathbf{v}_1')\right)\right) \le \frac{\varepsilon}{|\lambda_1' - \lambda_2|} \le \frac{\varepsilon}{|\lambda_1 - \lambda_2 - \varepsilon|}.$$
(9)

Equivalently,

$$\min\left\{\|\mathbf{v}_1 \pm \mathbf{v}_1'\|\right\} \le \frac{\sqrt{2}\varepsilon}{\lambda_1 - \lambda_2 - \varepsilon}.$$
(10)

The Davis Kahan Theorem with $M' = A - \left(\frac{p+q}{2}\right)J$, $M = \left(\frac{p-q}{2}\right)C$, and $\varepsilon = O\left(\sqrt{n(p+q)}\right)$ states that

$$\min\left\{\|\mathbf{v}' \pm \chi\|\right\} \le O\left(\frac{\sqrt{a+b}}{a-b-O\left(\sqrt{a+b}\right)}\right) \tag{11}$$

where \mathbf{v}' , the eigenvector associated with the largest eigenvalue of $A - \left(\frac{p+q}{2}\right)J$ and a = pn/2, b = qn/2, the expected degrees of the two parts of the graph. Choose between $\pm \mathbf{v}'$ for the one closer to χ . Then

$$\|\mathbf{v}' - \chi\|^2 \le O\left(\left(\frac{\sqrt{a+b}}{a-b-O\left(\sqrt{a+b}\right)}\right)^2\right). \tag{12}$$

Recall that $\sum_i (v_i' - \chi_i)^2 = \|\mathbf{v}' - \chi\|^2$. If v_i' and χ_i disagree in sign, then this contributes at least 1/n to the value of $\|\mathbf{v}' - \chi\|^2$. Equivalently, $n \cdot \|\mathbf{v}' - \chi\|^2$ is at least the number of misclassified vertices. It is simple to see from here that if $a - b \ge c_{\varepsilon} \sqrt{a + b}$ then we can bound the number of misclassified vertices by εn . This completes the proof that the proposed algorithm does well in calculating the partition of the Stochastic Block Model.