

Некоммерческое акционерное общество

АЛМАТИНСКИЙ УНИВЕРСИТЕТ ЭНЕРГЕТИКИ И СВЯЗИ

Кафедра высшей математики

ТЕОРИЯ ВЕРОЯТНОСТЕЙ И МАТЕМАТИЧЕСКАЯ СТАТИСТИКА

Методические указания и задания к выполнению расчетно-графических работ для студентов специальности 5В070200- Автоматизация и управление

Алматы 2017

СОСТАВИТЕЛИ: Астраханцева Л.Н., Байсалова М.Ж. Теория вероятностей и математическая статистика. Методические указания и задания к выполнению расчетно-графических работ для студентов специальности 5В070200 - Автоматизация и управление - Алматы: АУЭС, 2017.- 47 стр.

Методические указания и задания содержат расчетно-графические работы №1, №2 дисциплины «Теория вероятностей и математическая статистика» для студентов специальности 5В070200 - Автоматизация и управление. Приведены основные теоретические вопросы программы. Дано решение типового варианта.

Ил. 22, табл. 24, библиогр. 6 назв.

Рецензент:

Печатается по плану издания некоммерческого акционерного общества «Алматинский университет энергетики и связи» на 2017 г.

© НАО «Алматинский университет энергетики и связи», 2017 г.

Введение

Теория вероятностей изучает закономерности, присущие массовым случайным явлениям. Она обеспечивает теоретическую базу для широкого круга практических задач, которыми занимается математическая статистика.

Поэтому методические указания содержат расчетно-графические работы по двум разделам. В первом рассматриваются основные вопросы теории вероятностей, во втором - математической статистики.

В каждой части приведены теоретические вопросы, задания и решение типового варианта.

Номер варианта студента определяется по списку группы. Расчетнографическая работа должна выполняться четко и разборчиво в ученической тетради.

1 Расчетно-графическая работа №1. Элементы теории вероятностей

Цели: ознакомиться с понятиями случайного события и его вероятностью, основными теоремами теории вероятностей, изучить законы распределения и числовые характеристики дискретных и непрерывных случайных величин.

1.1 Теоретические вопросы

- 1. Предмет теории вероятностей. Случайные события. Пространство элементарных событий. Алгебра событий.
- 2. Статистическое, геометрическое и классическое определения вероятности.
 - 3. Теоремы сложения и умножения вероятностей. Условная вероятность.
 - 4. Формула полной вероятности. Формула Байеса. Формула Бернулли.
- 5. Локальная и интегральная теоремы Лапласа. Повторение испытаний. Формула Пуассона.
- 6. Дискретные и непрерывные случайные величины. Законы распределения дискретной случайной величины.
 - 7. Интегральная функция распределения. Плотность распределения.
- 8. Числовые характеристики случайных величин. Математическое ожидание, дисперсия и среднее квадратическое отклонение дискретных и непрерывных случайных величин.
- 9. Биномиальное распределение, распределение Пуассона. Равномерное и показательное распределения, функция надёжности.
 - 10. Нормальное распределение.
- 11. Понятие о предельных теоремах. Закон больших чисел, центральная предельная теорема.

1.2 Расчётные задания

- 1. На оптовой базе имеются изделия трёх сортов: n_1 изделий первого сорта, n_2 второго, n_3 третьего ($\sum_i^3 n_i = n$). Найти:
 - а) относительную частоту изделий первого сорта;
 - б) вероятность того, что все m выбранных изделий будут первого сорта;
- в) вероятность того, что среди m выбранных изделий будет $m_{\scriptscriptstyle 1}$ первого сорта;
- г) вероятность того, что среди m выбранных изделий будет m_1 первого сорта, m_2 второго, m_3 третьего ($\sum_{i=1}^3 m_i = m$);
- д) вероятность того, что среди m выбранных изделий будет хотя бы одно первого сорта.

$N_{\underline{0}}$	n	n_1	n_2	n_3	m	$m_{\scriptscriptstyle 1}$	m_2	m_3
1.1	70	20	26	24	5	2	1	2
1.2	75	40	20	15	8	4	1	3
1.3	85	35	30	20	5	2	1	2
1.4	90	20	40	30	7	2	2	3
1.5	87	30	45	12	8	3	2	3
1.6	100	25	55	20	15	8	3	4
1.7	90	40	24	26	9	4	3	2
1.8	95	28	42	25	10	3	5	2
1.9	85	30	15	40	7	2	2	3
1.10	90	17	33	40	6	1	3	2
1.11	85	31	25	29	5	2	2	1
1.12	75	28	32	15	5	1	2	2
1.13	100	30	41	29	9	3	4	2
1.14	80	32	28	20	7	3	2	2
1.15	85	24	26	35	5	1	3	1
1.16	100	41	29	30	10	5	3	2
1.17	90	29	21	40	12	6	4	2
1.18	85	25	35	25	7	2	2	3
1.19	80	18	42	20	5	1	2	2
1.20	95	43	27	25	9	3	4	2
1.21	70	22	28	20	9	2	4	3
1.22	80	30	21	29	7	3	1	1
1.23	90	42	20	28	6	1	3	2
1.24	75	24	26	25	8	2	4	2
1.25	100	37	33	30	10	2	3	5

1.26	90	26	34	30	8	3	2	3
1.27	80	31	29	20	5	1	2	2
1.28	95	29	31	35	8	3	2	3
1.29	96	34	26	36	7	4	1	2
1.30	89	25	35	29	5	1	2	2

- 2. Три орудия стреляют в цель независимо друг от друга. Вероятность попадания в цель p_1 , p_2 , p_3 соответственно для первого, второго и третьего орудия. Найти вероятность того, что:
 - а) все три орудия попадут в цель;
 - б) попадёт только одно;
 - в) попадут два, одно не попадёт;
 - г) попадёт хотя бы одно.

No	p_1	p_2	p_3	$N_{\overline{0}}$	p_1	p_2	p_3	$N_{\overline{0}}$	p_1	p_2	p_3
2.1	0.9	0.6	0.5	2.11	0.5	0.9	0.4	2.21	0.5	0.7	0.9
2.2	0.8	0.7	0.6	2.12	0.7	0.8	0.5	2.22	0.6	0.5	0.8
2.3	0.7	0.5	0.8	2.13	0.5	0.7	0.6	2.23	0.7	0.9	0.7
2.4	0.6	0.9	0.8	2.14	0.4	0.6	0.7	2.24	0.8	0.4	0.6
2.5	0.5	0.7	0.9	2.15	0.5	0.5	0.8	2.25	0.9	0.5	0.5
2.6	0.9	0.6	0.8	2.16	0.6	0.9	0.5	2.26	0.4	0.6	0.8
2.7	0.8	0.5	0.7	2.17	0.7	0.8	0.6	2.27	0.5	0.7	0.9
2.8	0.5	0.8	0.6	2.18	0.8	0.5	0.7	2.28	0.6	0.8	0.7
2.9	0.6	0.9	0.5	2.19	0.9	0.6	0.8	2.29	0.7	0.9	0.5
2.10	0.7	0.9	0.4	2.20	0.9	0.4	0.9	2.30	0.8	0.9	0.4

- 3. На склад поступило три партии ламп. В первой партии n_1 ламп, во второй n_2 , в третьей n_3 ($\sum_i^3 n_i = 1000$). В первой партии m_1 % бракованных ламп, во второй m_2 %, в третьей m_3 %. Требуется:
- а) найти вероятность того, что наудачу выбранная лампа будет бракованной;
- б) наудачу выбранная лампа оказалась бракованной. Найти вероятность того, что она из i ой партии (i =1,2,3).

No॒	$n_{\scriptscriptstyle 1}$	n_2	$m_{\scriptscriptstyle 1}$	m_2	m_3	i	$N_{\underline{0}}$	n_1	n_2	$m_{_1}$	m_2	m_3	i
3.1	520	220	5	8	7	1	3.16	100	250	7	8	5	1
3.2	270	410	10	5	9	2	3.17	430	180	5	4	7	2
3.3	250	140	8	7	4	2	3.18	170	540	6	5	8	3
3.4	190	380	5	9	30	1	3.19	650	120	10	9	8	2
3.5	290	610	6	3	3	2	3.20	400	180	7	10	5	1

3.6	270	430	10	6	4	2	3.21	120	380	10	6	9	2
3.7	280	360	7	10	9	1	3.22	270	340	9	5	4	3
3.8	520	110	5	7	10	1	3.23	430	120	10	7	6	2
3.9	240	290	9	8	4	3	3.24	360	120	5	10	8	1
3.10	310	410	7	2	5	3	3.25	420	210	8	7	6	1
3.11	520	110	3	6	7	2	3.26	370	130	10	6	5	2
3.12	280	310	9	8	4	2	3.27	410	200	5	10	8	3
3.13	400	320	4	5	8	1	3.28	280	510	10	6	5	3
3.14	350	240	9	8	7	1	3.29	710	120	2	10	4	3
3.15	190	520	5	2	4	3	3.30	460	240	5	9	7	1

- 4. Вероятность появления события A в каждом испытании равна p. Найти вероятность того, что в n испытаниях событие A появится:
 - а) ровно k_1 раз;
 - б) не менее k_1 раз;
 - в) не более k_2 раз;
 - Γ) хотя бы один раз (для нечётных вариантов, Γ де n=10);
 - д) от k_1 до k_2 раз (для чётных вариантов, где n=100).

$N_{\underline{0}}$	$k_{\scriptscriptstyle 1}$	k_2	p	No	$k_{\scriptscriptstyle 1}$	k_2	p	No	$k_{\scriptscriptstyle 1}$	k_2	p
4.1	3	5	0.6	4.11	2	5	0.4	4.21	6	8	0.7
4.2	62	82	0.6	4.12	80	95	0.4	4.22	70	80	0.7
4.3	5	7	0.8	4.13	5	8	0.8	4.23	4	7	0.6
4.4	55	75	0.8	4.14	60	90	0.6	4.24	65	80	0.75
4.5	4	8	0.8	4.15	2	8	0.7	4.25	7	9	0.75
4.6	40	60	0.8	4.16	80	90	0.8	4.26	78	92	0.75
4.7	3	7	0.3	4.17	5	9	0.8	4.27	2	6	0.7
4.8	50	80	0.3	4.18	70	95	0.8	4.28	30	85	0.7
4.9	4	6	0.3	4.19	3	6	0.7	4.29	4	9	0.7
4.10	45	75	0.4	4.20	50	60	0.7	4.30	80	95	0.6

- 5. Дискретная случайная величина X задана рядом распределения. Найти:
- а) функцию распределения F(x), построить график F(x);
- б) математическое ожидание, дисперсию, среднее квадратическое отклонение, моду;
 - в) вероятность попадания X в интервал (a;b).

	X	\boldsymbol{x}_1	x_2	x_3	X_4	x_{5}	x_6	а	b
	P	$p_{\scriptscriptstyle 1}$	$p_{_2}$	p_3	$p_{_4}$	$p_{\scriptscriptstyle 5}$	$p_{\scriptscriptstyle 6}$		
5.1	X	0	1	2	4	6	9	-2	7
	P	0.05	0.15	0.3	0.25	0.15	0.1		

5.2	X	-3	-2	-1	0	2	4	-1	3
	P	0.15	0.3	0.02	0.14	0.18	0.21		
5.3	X	1	2	3	5	7	8	-3	6
	P	0.3	0.14	0.16	0.1	0.2	0.1		
5.4	X	-4	-3	-2	0	1	2	0	1
	P	0.2	0.08	0.23	0.27	0.12	0.1		
5.5	X	1	2	4	5	7	9	3	8
	P	0.19	0.21	0.06	0.14	0.12	0.28		
6.6	X	-1	0	2	3	5	7	-4	4
	P	0.26	0.14	0.07	0.2	0.03	0.3		
5.7	X	-2	-1	0	3	5	7	1	6
	P	0.18	0.09	0.01	0.2	0.22	0.3		
5.8	X	1	2	4	5	6	8	0	6
	P	0.3	0.17	0.13	0.1	0.2	0.1		
5.9	X	1	2	3	4	7	9	5	8
	P	0.11	0.29	0.06	0.14	0.17	0.23		
5.10	X	0	1	2	3	7	9	4	8
	P	0.06	0.14	0.3	0.25	0.15	0.1		
5.11	X	-3	-2	0	1	2	4	-1	3
	P	0.15	0.3	0.01	0.14	0.19	0.21		
5.12	X	-1	0	3	5	7	8	1	6
	P	0.25	0.14	0.16	0.1	0.2	0.15		
5.13	X	-4	-3	-2	0	2	4	-1	3
	P	0.2	0.07	0.24	0.26	0.13	0.1		
5.14	X	-3	-1	0	3	4	7	-2	6
	P	0.12	0.09	0.01	0.2	0.28	0.3		
5.15	X	-1	0	1	3	7	8	2	6
	P	0.26	0.14	0.15	0.2	0.1	0.15		
5.16	X	-2	-1	0	1	2	7	-3	5
	P	0.17	0.09	0.01	0.3	0.23	0.2		
5.17	X	1	2	3	5	6	7	0	4
	P	0.1	0.14	0.16	0.1	0.2	0.3		
5.18	X	-3	-1	0	3	5	6	-2	4
	P	0.16	0.09	0.01	0.3	0.24	0.2		
5.19	X	1	2	5	6	7	8	3	6
	P	0.2	0.15	0.15	0.1	0.3	0.1		
5.20	X	-1	0	2	4	7	8	1	5
	P	0.23	0.18	0.12	0.2	0.1	0.17		
5.21	X	1	2	4	5	6	8	0	7
	P	0.3	0.14	0.16	0.03	0.2	0.17		
5.22	X	-4	-3	-1	0	1	3	-2	2
	P	0.2	0.03	0.24	0.26	0.17	0.1		

5.23	X	1	2	3	4	7	9	0	8
	P	0.17	0.23	0.09	0.11	0.12	0.28		
5.24	X	0	1	3	5	7	8	2	6
	P	0.2	0.14	0.16	0.12	0.3	0.08		
5.25	X	-5	-3	-2	0	1	3	-4	2
	P	0.2	0.06	0.21	0.29	0.14	0.1		
5.26	X	1	2	3	5	8	9	4	7
	P	0.18	0.22	0.05	0.15	0.12	0.28		
5.27	X	1	3	4	5	7	8	2	6
	P	0.3	0.16	0.14	0.01	0.2	0.19		
5.28	X	-5	-3	-1	0	1	3	-4	2
	P	0.1	0.03	0.14	0.36	0.17	0.2		
5.29	X	0	2	3	4	6	8	1	7
	P	0.26	0.14	0.05	0.15	0.12	0.28		
5.30	X	-1	0	2	3	7	8	1	6
	P	0.21	0.16	0.14	0.1	0.2	0.19		

- 6. Непрерывная случайная величина Xзадана плотностью распределения f(x). Найти:
- а) функцию распределения F(x); б) математическое ожидание, дисперсию, среднее квадратическое отклонение, моду, медиану;
- в) вероятность попадания X в интервал (a;b). Построить графики F(x) и f(x).

$N_{\underline{0}}$	f(x)	а	b	$N_{\underline{0}}$	f(x)	а	b
6.1	$\begin{cases} 0, x \le 0, x > 4 \\ \frac{x}{8}, 0 < x \le 4 \end{cases}$	1	3	6.16	$\begin{cases} 0, \ x \le 0, x > 3\\ \frac{2}{3} \left(1 - \frac{x}{3} \right), \ 0 < x \le 3 \end{cases}$	-1	2
6.2	$\begin{cases} 0, x \le -3, x > -2 \\ \frac{6}{x^2}, -3 < x \le -2 \end{cases}$	-2,5	0	6.17	$\begin{cases} 0, x \le 0, x > \frac{\pi}{6} \\ 4\sin 2x, 0 < x \le \frac{\pi}{6} \end{cases}$	0	$\frac{\pi}{12}$
6.3	$\begin{cases} 0, x \le -\frac{\pi}{2}, x > \frac{\pi}{2} \\ 0, 5\cos x, -\frac{\pi}{2} < x \le \frac{\pi}{2} \end{cases}$	0	$\frac{\pi}{4}$	6.18	$\begin{cases} 0, x \le 1, x > 2 \\ \frac{2}{x^2}, 1 < x \le 2 \end{cases}$	0	1,5
6.4	$\begin{cases} 0, x \le 0, x > 1 \\ \frac{4}{\pi(1+x^2)}, 0 < x \le 1 \end{cases}$	0	$\frac{\sqrt{3}}{3}$	6.19	$\begin{cases} 0, \ x \le 2, x > 3 \\ \frac{2x}{5}, \ 2 < x \le 3 \end{cases}$	1	2,5

6.5	$\begin{cases} 0, \ x \le 0, x > 3/4 \\ \frac{2}{\pi\sqrt{1-x^2}}, \ 0 < x \le 3/4 \end{cases}$	0	$\frac{1}{2}$	6.20	$\begin{cases} 0, x \le 0, x > \frac{1}{\sqrt{3}} \\ \frac{6}{\pi(1+x^2)}, 0 < x \le \frac{1}{\sqrt{3}} \end{cases}$	0,1	1
6.6	$\begin{cases} 0, x \le 0, x > \pi \\ 0, 5\sin x, 0 < x \le \pi \end{cases}$	0	$\frac{\pi}{2}$	6.21	$\begin{cases} 0, x \le -1, x > 2\\ \frac{1}{9}(x+1)^2, -1 < x \le 2 \end{cases}$	0	1
6.7	$\begin{cases} 0, x \le 0, x > 2\\ \frac{x+2}{6}, 0 < x \le 2 \end{cases}$	1	2	6.22	$\begin{cases} 0, x \le 0, x \ge \frac{1}{2} \\ \frac{6}{\pi \sqrt{1 - x^2}}, 0 < x < \frac{1}{2} \end{cases}$	$\frac{1}{4}$	1
6.8	$\begin{cases} 0, \ x \le 4, x > 5 \\ \frac{2x}{9}, \ 4 < x \le 5 \end{cases}$	3	4,5	6.23	$\begin{cases} 0, x \le 3, x > 5 \\ \frac{7,5}{x^2}, 3 < x \le 5 \end{cases}$	2	4
6.9	$\begin{cases} 0, x \le \frac{\pi}{2}, x > \frac{5\pi}{6} \\ -2\cos x, \frac{\pi}{2} < x \le \frac{5\pi}{6} \end{cases}$	0	$\frac{2\pi}{3}$	6.24	$\begin{cases} 0, x \le 0, x > \frac{\pi}{6} \\ 6\sin 3x, 0 < x \le \frac{\pi}{6} \end{cases}$	0	$\frac{\pi}{12}$
6.10	$\begin{cases} 0, x \le 1, x > 2 \\ 3(x-1)^2, 1 < x \le 2 \end{cases}$	1,5	2	6.25	$\begin{cases} 0, x \le 1, x > 2 \\ 2x - 2, 1 < x \le 2 \end{cases}$	0	1,5
6.11	$\begin{cases} 0, x \le 0, x > \frac{\pi}{4} \\ 2\cos 2x, 0 < x \le \frac{\pi}{4} \end{cases}$	$\frac{\pi}{8}$	$\frac{\pi}{4}$	6.26	$\begin{cases} 0, x \le -2, x > 2 \\ \frac{1}{2\pi} \sqrt{4 - x^2}, -2 < x \le 2 \end{cases}$	0	1
6.12	$\begin{cases} 0, x \le 0, x > 4 \\ \frac{1}{2}(1 - \frac{x}{4}), 0 < x \le 4 \end{cases}$	1	3	6.27	$\begin{cases} 0, x \le 0, x > 5 \\ \frac{2}{5} (1 - \frac{x}{5}), 0 < x \le 5 \end{cases}$	1	4
6.13	$\begin{cases} 0, x \le 0, x > 2\\ \frac{x+1}{4}, 0 < x \le 2 \end{cases}$	-1	1	6.28	$\begin{cases} 0, x \le 0, x > \frac{\pi}{6} \\ 3\cos 3x, 0 < x \le \frac{\pi}{6} \end{cases}$	$\frac{\pi}{12}$	$\frac{\pi}{9}$
6.14	$\begin{cases} 0, x \le 0, x > 1 \\ 3x^2, 0 < x \le 1 \end{cases}$	0,2	1,2	6.29	$\begin{cases} 0, x \le -3, x > 3 \\ \frac{1}{2\pi} \sqrt{9 - x^2}, -3 < x \le 3 \end{cases}$	0	2
6.15	$\begin{cases} 0, x \le 0, x > \frac{\pi}{3} \\ 2\sin x, 0 < x \le \frac{\pi}{3} \end{cases}$	0	$\frac{\pi}{6}$	6.30	$\begin{cases} 0, x \le 1, x > 4 \\ \frac{2x}{15}, 1 < x \le 4 \end{cases}$	2	3

7. Проводятся испытания N изделий на надёжность, причём вероятность не выдержать испытания для каждого изделия равна m%. Составить закон распределения числа изделий, не выдержавших испытания (случайная

величина X). Найти математическое ожидание, дисперсию и среднее квадратическое отклонение этой случайной величины.

No	N	m	No	N	m	№	N	m
7.1	3	10	7.11	4	15	7.21	3	11
7.2	2	12	7.12	5	13	7.22	2	16
7.3	4	20	7.13	3	14	7.23	4	29
7.4	5	25	7.14	2	20	7.24	5	10
7.5	3	30	7.15	4	27	7.25	3	17
7.6	2	10	7.16	5	20	7.26	2	21
7.7	4	15	7.17	3	19	7.27	4	22
7.8	5	17	7.18	2	23	7.28	5	24
7.9	3	12	7.19	4	11	7.29	3	18
7.10	2	15	7.20	5	28	7.30	2	22

- 8. Аппарат состоит из N элементов. Вероятность отказа одного элемента в течении одного года работы равна p и не зависит от состояния других элементов. Требуется:
 - а) составить закон распределения числа отказавших элементов;
 - б) какова вероятность отказа не менее m элементов в год?

No	N	m	p	№	N	m	p	$N_{\underline{0}}$	N	m	p
8.1	2000	4	0,001	8.11	1500	6	0,005	8.21	1000	6	0,005
8.2	1000	5	0,007	8.12	4000	2	0,006	8.22	4500	2	0,003
8.3	3000	7	0,004	8.13	8000	2	0,001	8.23	2000	4	0,001
8.4	2000	5	0,002	8.14	6500	6	0,002	8.24	1000	5	0,007
8.5	1000	6	0,005	8.15	3000	2	0,005	8.25	3000	7	0,004
8.6	5000	2	0,001	8.16	1500	3	0,002	8.26	2000	5	0,002
8.7	2000	4	0,001	8.17	2000	4	0,001	8.27	1000	6	0,005
8.8	1500	5	0,008	8.18	1000	5	0,007	8.28	6500	8	0,007
8.9	3500	7	0,004	8.19	3500	1	0,002	8.29	7000	6	0,002
8.10	2000	2	0,003	8.20	2000	5	0,001	8.30	5500	9	0,004

9а. Варианты 1-15.

Цена деления измерительного прибора равна a. Показания прибора округляются до ближайшего целого деления. Случайная величина X – ошибка при округлении отсчёта. Найти:

- а) её плотность распределения f(x);
- б) функцию распределения F(x);
- в) математическое ожидание, дисперсию;
- Γ) вероятность того, что при отсчёте будет сделана ошибка меньшая (большая) m.

Построить графики F(x) и f(x).

9б. Варианты 16 - 30

Поезда метро идут строго по расписанию. Интервал движения a минут. Случайная величина X – время ожидания поезда. Найти:

- а) её плотность распределения f(x);
- б) функцию распределения F(x);
- в) математическое ожидание, дисперсию;
- Γ) вероятность того, что пассажир, подошедший к остановке, будет ожидать поезда менее (более) m минут.

Построить графики F(x) и f(x).

$N_{\underline{0}}$	а	m	$N_{\underline{0}}$	а	m	№	а	m
9.1	0,2	0,04	9.11	0,3	0,08	9.21	19	8
9.2	0,3	0,02	9.12	0,6	0,01	9.22	20	5
9.3	0,1	0,06	9.13	0,9	0,06	9.23	25	5
9.4	0,5	0,01	9.14	0,5	0,05	9.24	9	3
9.5	0,6	0,05	9.15	0,8	0,07	9.25	14	7
9.6	0,9	0,02	9.16	5	3	9.26	18	9
9.7	0,1	0,08	9.17	10	4	9.27	24	8
9.8	0,7	0,01	9.18	15	5	9.28	6	3
9.9	0,4	0,06	9.19	6	2	9.29	12	6
9.10	0,5	0,07	9.20	20	10	9.30	16	8

- 10. Время безотказной работы элемента (случайная величина T) имеет показательное распределение с параметром λ , где λ интенсивность отказов, т.е. среднее число отказов в единицу времени. Найти:
 - а) плотность распределения f(t);
 - б) функцию распределения F(t), указать её вероятностный смысл;
 - в) функцию надёжности R(t), указать её вероятностный смысл;
 - г) математическое ожидание, дисперсию;
- д) вероятность того, что за время t элемент откажет и вероятность того, что за время t элемент не откажет.

Построить графики F(t), R(t) и f(t).

No	λ	t	No	λ	t	№	λ	t
10.1	1	5	10.11	2	5	10.21	3	8
10.2	2	10	10.12	3	10	10.22	4	4
10.3	3	6	10.13	4	6	10.23	6	3
10.4	4	8	10.14	6	8	10.24	7	2
10.5	6	4	10.15	7	4	10.25	8	1
10.6	7	3	10.16	8	3	10.26	9	10
10.7	8	2	10.17	9	2	10.27	10	6

10.8	9	1	10.18	10	1	10.28	1	7
10.9	10	7	10.19	1	10	10.29	2	8
10.10	1	9	10.20	2	6	10.30	3	2

- 11. Случайное отклонение размера изделия от номинала (случайная величина X) подчиняется нормальному закону распределения с параметрами a и σ . Найти:
 - а) плотность распределения f(x);
 - б) функцию распределения F(x);
 - в) математическое ожидание, дисперсию;
 - г) вероятность попадания в интервал $(x; \beta)$;
- д) вероятность того, что отклонение от номинала не превосходит по абсолютной величине δ .

Построить графики F(t) и f(t).

№	а	σ	α	β	δ	№	а	σ	α	β	δ
11.1	10	1	8	14	2	11.16	10	2	9	14	2
11.2	12	2	7	14	3	11.17	12	4	5	14	3
11.3	14	3	10	15	5	11.18	14	1	9	15	5
11.4	11	5	9	12	3	11.19	11	6	8	12	3
11.5	13	2	6	13	2	11.20	13	4	6	17	2
11.6	12	3	7	15	4	11.21	12	9	8	15	4
11.7	10	2	8	17	2	11.22	10	3	6	17	2
11.8	12	4	6	14	6	11.23	12	5	6	13	6
11.9	14	6	11	19	5	11.24	14	2	12	19	5
11.10	15	5	8	12	3	11.25	15	3	4	12	3
11.11	17	4	6	14	2	11.26	17	1	5	14	2
11.12	12	5	7	18	4	11.27	12	4	9	18	4
11.13	18	5	6	12	3	11.28	11	3	4	12	3
11.14	10	4	6	15	2	11.29	17	2	5	19	5
11.15	12	3	5	18	4	11.30	13	5	6	18	3

1.3 Решение типового варианта

- 1. На оптовой базе имеются изделия трёх сортов: 40 изделий первого сорта, 50 второго, 30 третьего (всего 120 изделий). Найти:
 - а) относительную частоту изделий первого сорта;
- б) вероятность того, что все 20 выбранных наудачу изделий будут первого сорта;
- в) вероятность того, что среди 20 выбранных наудачу изделий будет 9 первого сорта;
 - г) вероятность того, что среди 20 выбранных наудачу изделий будет 9

первого сорта, 6 - второго, 5- третьего;

д) вероятность того, что среди 20 выбранных наудачу изделий будет хотя бы одно первого сорта.

Решение:

а) относительной частотой события A (обозначается $P^*(A)$) называется отношение числа m испытаний, в которых событие A появилось, к общему числу n произведённых испытаний: $P^*(A) = m/n$.

Пусть A – выбор изделия первого сорта, тогда $P^*(A) = 40/120 = 1/3$;

- В остальных пунктах используем классическое определение вероятности события A: P(A) = m/n, где m число испытаний, благоприятствующих появлению события A, n общее число испытаний;
- б) пусть событие A все 20 выбранных изделий будут первого сорта. Общее число элементарных событий равно числу различных способов взять 20 изделий из 120, т.е. $n = C_{120}^{20}$; число благоприятствующих событий равно числу различных способов взять из 40 изделий первого сорта 20, т.е. $m = C_{40}^{20}$. Таким образом, $P(A) = m/n = C_{40}^{20}/C_{120}^{20} = 4,679 \times 10^{-12}$;
- в) пусть событие A среди 20 выбранных изделий будет 9 первого сорта. Как выше сказано, $n=C_{120}^{20}$. Число m благоприятствующих событию A элементарных событий находится по одному из правил комбинаторики: пусть во множестве из n элементов имеются s подмножеств, состоящих соответственно из $n_1, n_2, ..., n_s$ элементов $(\sum_1^s n_i = n)$. Тогда, если из этого множества происходит отбор по схеме: m_1 из n_1 элементов, m_2 из n_2 элементов,..., m_s из n_s элементов, то общее число N способов образования s групп по $m_1, m_2, ..., m_s$ элементов без учёта порядка в каждой из них равно $N = C_{n_1}^{m_1} C_{n_2}^{m_2} \dots C_{n_s}^{m_s}$. Таким образом, в этом пункте $m = C_{40}^9 \cdot C_{80}^{11}$, где C_{40}^9 равно числу различных способов выбрать 9 изделий первого сорта из 40 первого сорта, а C_{80}^{11} равно числу различных способов выбрать 11 изделий не первого сорта из 80 не первого сорта). Итак, $P(A) = m/n = C_{40}^9 \cdot C_{80}^{11} / C_{120}^{20} = 0,097$;
- г) пусть событие A среди 20 выбранных наудачу изделий 9 первого сорта, 6 второго, 5 третьего. Для решения задачи также используем классическое определение вероятности события A: P(A) = m/n, где n число всех возможных способов выбора 20 изделий из имеющихся 120, т.е. $n = C_{120}^{20}$. Число m благоприятствующих событию A элементарных событий находится по выше приведённому правилу комбинаторики, т.е. $m = C_{40}^9 \cdot C_{50}^4 \cdot C_{30}^5$. Поэтому P(A) = m/n = 0,021.
- д) пусть событие A среди 20 выбранных изделий будет хотя бы одно первого сорта, тогда противоположное событие \overline{A} среди 20 выбранных изделий не будет ни одного изделия первого сорта. Как в случае б) вероятность этого события найдём по формуле $P(\overline{A}) = m/n = C_{80}^{20}/C_{120}^{20} =$

 $1,2\times 10^{-4}$. Тогда вероятность события A равна $P(A) = 1 - P(\overline{A}) = 1 - 1,2\times 10^{-4} \approx 1$, т.е. это событие почти достоверное;

При вычислении числа сочетаний была использована функция combin в Mathcad. Ниже приведена копия файла, в котором combin(Q,R) введена как функция пользователя C(Q,R), позволяющая получать значения сочетаний при произвольных Q и R.

$$C(40,9) = 2.734 \times 10^{8}, \qquad C(Q,R) := combin(Q,R), \\ C(120,20) = 2.946 \times 10^{22}, \\ C(30,20) = 1.2 \times 10^{-4}, \\ C(40,9) \cdot C(50,6) \cdot C(30,5) \\ C(120,20) = 0.021$$

$$C(40,9) := combin(Q,R), \\ C(80,11) = 1.048 \times 10^{13}, \\ C(40,20) = 1.378 \times 10^{11}, \\ C(40,9) \cdot C(80,11) \\ C(120,20) = 0.097$$

- 2. Три орудия стреляют в цель независимо друг от друга. Вероятность попадания в цель 0,75; 0,8; 0,9 соответственно для первого, второго и третьего орудия. Найти вероятность того, что:
 - а) все три орудия попадут в цель;
 - б) попадёт только одно;
 - в) попадут два, одно промахнётся;
 - г) попадёт хотя бы одно.

Решение: пусть событие A_1 — попадание в цель первым орудием, A_2 — вторым, A_3 — третьим. По условию $P(A_1)$ =0,75, $P(A_2)$ =9,8, $P(A_3)$ =0,9.

- а) пусть событие A все три попадут в цель, тогда $A = A_1 A_2 A_3$ и, т.к. A_1 , A_2 , A_3 события независимые, то $P(A) = P(A_1 A_2 A_3) = P(A_1) P(A_2) P(A_3) = 0.75 \cdot 0.8 \cdot 0.9 = 0.54$;
- б) пусть событие B попадёт только одно, тогда $B=A_1\overline{A}_2\overline{A}_3+\overline{A}_1A_2\overline{A}_3+\overline{A}_1\overline{A}_2A_3$, где $\overline{A}_1,\overline{A}_2,\overline{A}_3$ события противоположные A_1 , A_2 , A_3 , т.е. промах первого, второго и третьего орудия соответственно. Так как $P(\overline{A}_1)=1-P(A_1)=1-0.75=0.25$, $P(\overline{A}_2)=1-P(A_2)=1-0.8=0.2$, $P(\overline{A}_3)=1-P(A_3)=1-0.9=0.1$ и т.к. слагаемые есть события несовместные, то $P(B)=P(A_1\overline{A}_2\overline{A}_3)+P(\overline{A}_1A_2\overline{A}_3)+P(\overline{A}_1\overline{A}_2A_3)=0.75\cdot0.2\cdot0.1+0.25\cdot0.8\cdot0.1+0.25\cdot0.2\cdot0.9=0.08$;
- в) событие C попадут два, одно промахнётся составляется аналогично, как в предыдущем пункте, т.е. $C = A_1 A_2 \overline{A}_3 + \overline{A}_1 A_2 A_3 + A_1 \overline{A}_2 A_3$. Его вероятность

- $P(C) = 0.75 \cdot 0.8 \cdot 0.1 + 0.25 \cdot 0.8 \cdot 0.9 + 0.75 \cdot 0.2 \cdot 0.9 = 0.3456;$ г) пусть событие D попалёт хотя бы олин стрел
- г) пусть событие D попадёт хотя бы один стрелок, рассмотрим противоположное событие \overline{D} промахнутся все три. Т.к. $\overline{D}=\overline{A_1}\overline{A_2}\overline{A_3}$, то $P(D)=1-P(\overline{D})=1-P(\overline{A_1}\overline{A_2}\overline{A_3})=1-0.25\cdot0.2\cdot0.1=0.995$.
- 3. На склад поступило три партии ламп. В первой партии n_1 =100 ламп, во второй n_2 =300, в третьей n_3 = 1000 n_1 n_2 = 600. В первой партии 5% бракованных ламп, во второй 4%, в третьей 6%. Требуется:
- а) найти вероятность того, что наудачу выбранная лампа будет бракованной;
- б) наудачу выбранная лампа оказалась бракованной. Найти вероятность того, что она из 2 ой партии.

Решение: пусть событие A — наудачу выбранная лампа будет бракованной; а события B_1 , B_2 , B_3 — выбранная лампа соответственно из первой, второй, третьей партии (эти события называются гипотезами).

- а) вероятность события A находится по формуле полной вероятности: $P(A) = P(B_1)P(A/B_1) + P(B_2)P(A/B_2) + P(B_3)P(A/B_3)$, где $P(A/B_i)$ условные вероятности того, что выбранная лампа из i ой партии (i=1,2,3). По условию задачи имеем: $P(B_1) = 100/1000 = 0,1$; $P(B_2) = 300/1000 = 0,3$; $P(B_3) = 600/1000 = 0,6$; $P(A/B_1) = 0,05$; $P(A/B_2) = 0,04$; $P(A/B_3) = 0,06$. Поэтому $P(A) = 0.1 \cdot 0.05 + 0,3 \cdot 0,04 + 0,6 \cdot 0,06 = 0,053$;
- б) в этом пункте требуется найти условную вероятность $P(B_{_2}/A)$. Используем для этого формулу Байеса: $P(B_{_i}/A) = \frac{P(B_{_i}/A)P(A/B_{_i})}{\displaystyle\sum_{k=1}^n P(B_{_k})P(A/B_{_k})}, \ i=1,2,...,n\,.$

В нашем случае
$$P(B_2/A) = \frac{P(B_2/A)P(A/B_2)}{\sum_{k=1}^3 P(B_k)P(A/B_k)} = \frac{0.3 \cdot 0.04}{0.053} = 0.226.$$

- 4. Вероятность появления события A в каждом испытании равна 0,8. Найти вероятность того, что в n испытаниях событие A появится:
 - а) ровно k_1 раз (событие A);
 - б) не менее k_1 раз(событие B);
 - в) не более k_2 раз(событие C);
 - Γ) хотя бы один раз (для нечётных вариантов, где n=10) (событие D);
 - д) от k_1 до k_2 раз (для чётных вариантов, где n=100) (событие E).

Решение: в этой задаче используются формулы, содержащие вероятность того, что в n испытаниях событие A появится k раз, обозначается

- $P_{n}(k)$. В зависимости от условий задачи к её решению подходят по разному:
- 1) пусть $n = 10, k_1 = 9, k_2 = 2$ (для нечётных вариантов). Здесь n не велико, поэтому вероятность события A можно найти точно по формуле Бернулли: $P_{n}(k) = C_{n}^{k} p^{k} q^{n-k}$, где q = 1 - p, (k = 0,1,2,...n). Вероятности событий B и Cсуммы вероятностей: $P_n(k) + P_n(k+1) + ... + P_n(n)$ определяются как вероятность того, что событие произойдёт не менее, чем k раз в nнезависимых испытаниях, T.e. ИЛИ k, или k + 1, ..., $P_{n}(0) + P_{n}(1) + ... + P_{n}(k)$ - вероятность того, что событие произойдёт не более k раз в n независимых испытаниях, т.е. или 0, или 1, или 2,..., или k раз. Эти вероятности называют кумулятивными (накопленными). Таким образом,

a)
$$P(A) = P_{10}(9) = C(10,9) \cdot 0.8^9 \cdot 0.2^1 = 0.268$$
;

6)
$$P(B) = P_{10}(9) + P_{10}(10) = 1,246 \times 10^{-9}$$
;

B)
$$P(C) = P_{10}(0) + P_{10}(1) + P_{10}(2) = 0.96;$$

г) рассмотрим событие \overline{D} противоположное D. \overline{D} - в серии из 10 независимых испытаний событие A не появилось ни разу. Тогда $P(D)=1-P(\overline{D})=1-P_{10}(0)\approx 0{,}566;$

Ниже приведена копия файла из Mathcad с вычислениями.

C(Q,R) := combin(Q,R)

$$C(10,9).0.8^9.0.2^1 = 0.268$$

$$C(10,9) \cdot 0.08^9 \cdot 0.92^1 + C(10,10) \cdot 0.08^{10} \cdot 0.92^0 = 1.246 \times 10^{-9}$$

$$C(10,0) \cdot 0.08^{0} \cdot 0.92^{10} + C(10,1) \cdot 0.08^{1} \cdot 0.92^{9} + C(10,2) \cdot 0.08^{2} \cdot 0.92^{8} = 0.96$$

$$1 - C(10, 0) \cdot 0.08^{0} \cdot 0.92^{10} = 0.566$$

2) пусть n = 100, $k_1 = 70$, $k_2 = 80$ (для чётных вариантов). Поскольку число независимых испытаний n велико, то вероятность $P_n(k)$ появления события A k раз в n испытаниях определяется по локальной теореме Муавра-Лапласа и

приближённо равна
$$P_{_n}(k) \cong \frac{1}{\sqrt{npq}} \varphi(x)$$
, где $x = \frac{k-np}{\sqrt{npq}}$, $0 ,$

 $\varphi(x) = \frac{1}{\sqrt{2\pi}} \exp(-x^2/2)$ (значения этой функции находят из таблиц или с помощью встроенной функции dnorm в системе Mathcad).

Для определения вероятностей событий B, C и E используют интегральную теорему Муавра-Лапласа: вероятность $P_{\scriptscriptstyle n}(k_{\scriptscriptstyle 1},k_{\scriptscriptstyle 2})$ того, что число k появления некоторого события будет находится в промежутке от $k_{\scriptscriptstyle 1}$ до $k_{\scriptscriptstyle 2}$

приближённо равна
$$P_n(k_1,k_2) \approx \Phi(x_2) - \Phi(x_1)$$
, где $x_2 = \frac{k_2 - np}{\sqrt{npq}}$, $x_1 = \frac{k_1 - np}{\sqrt{npq}}$,

 $\Phi(x) = \frac{1}{\sqrt{2\pi}} \int_{0}^{x} \exp(-t^2/2) dt$ - функция Лапласа (или интеграл вероятностей),

значения которой находятся из специальных таблиц или с помощью встроенной функции pnorm в системе Mathcad.

a)
$$P(A) = P_{100}(80) \cong \frac{1}{\sqrt{100 \cdot 0.8 \cdot 0.2}} \varphi(2.5) = 0.018 / 4 = 0.0045 ; x = \frac{70 - 100 \cdot 0.8}{\sqrt{100 \cdot 0.8 \cdot 0.2}} = -2.5;$$

6)
$$P(B) = P_{100}(k \ge 80) = P_{100}(80,100) \approx \Phi(x_3) - \Phi(x_2) = 0.5$$
; $x_2 = 0, x_3 = 5$;

B)
$$P(C) = P_{100}(k \le 70) = P_{100}(0,70) \approx \Phi(x_1) - \Phi(x_4) = 0,006$$
; $x_1 = -2.5$, $x_4 = -20$;

д)
$$P(E) = P_{100}(70,80) \approx \Phi(x_2) - \Phi(x_1) = 0,494, \ x_2 = 0, \ x_1 = -2,5.$$

Ниже приведена копия файла, в котором сделаны вычисления в системе Mathcad.

$$\begin{array}{ll} n\coloneqq 100, & k1\coloneqq 70, & k2\coloneqq 80,\\ p_{\hspace{-0.1cm},} = 0.8, & q\coloneqq 1-p,\\ x1\coloneqq \frac{k1-n\cdot p}{\sqrt{n\cdot p\cdot q}}, & x2\coloneqq \frac{k2-n\cdot p}{\sqrt{n\cdot p\cdot q}}, & x3\coloneqq \frac{n-n\cdot p}{\sqrt{n\cdot p\cdot q}}, & x4\coloneqq \frac{0-n\cdot p}{\sqrt{n\cdot p\cdot q}},\\ x1=-2.5 & x2=0 \end{array}$$

pnorm(x2,0,1) - pnorm(x1,0,1) = 0.494, dnorm(x1,0,1) = 0.018

$$pnorm(x3,0,1) = pnorm(x2,0,1) = 0.5$$

$$pnorm(x1,0,1) - pnorm(x4,0,1) = 6.21 \times 10^{-3}$$

или другой вариант

$$\Phi(x) := pnorm(x, 0, 1) - 0.5,$$

$$P(k1, k2) := \Phi(x2) - \Phi(x1),$$

$$\Phi(x1) = -0.494, \quad \Phi(x2) = 0,$$

$$P(k1, k2) = 0.494, \quad x3 = 5, \quad x4 = -20,$$

$$\Phi(x3) = 0.5, \quad \Phi(x4) = -0.5,$$

$$\Phi(x3) - \Phi(x2) = 0.5, \quad \Phi(x1) - \Phi(x4) = 6.21 \times 10^{-3}$$

3) известна ещё одна формула для определения вероятности $P_{n}(k)$, которую применяют если n велико, p мало, а произведение $\lambda = n \cdot p$ - небольшое число. Это формула Пуассона $P_{n}(k) \approx \lambda^{k} \cdot e^{-\lambda}/k!$.

Пусть n=1000, k=6, p=0.003, $\lambda=1000\cdot 0.003=3$, поэтому $P(A)=P_{1000}(6)=3^6\cdot e^{-3}$ / 6!=0.05.

При вычислении можно использовать таблицу значений функции $p(k,\lambda) = \lambda^k \cdot e^{-\lambda} / k!$, приводимую в некоторых учебниках, или функцию dpois в Mathcad. Ниже приведена копия файла, в котором проведены вычисления в Mathcad.

$$p(k,\lambda) := dpois(k,\lambda)$$
 $p(6,3) = 0.05$

5. Дискретная случайная величина Х задана рядом распределения

X	0	10	20	30	40	50
P	0,05	0,15	0,3	0,25	0,2	0,05

Найти:

- а) функцию распределения F(x), построить график F(x);
- б) математическое ожидание, дисперсию, среднее квадратическое отклонение, моду;
 - в) вероятность попадания X в интервал (15;45).

Решение:

- а) функция распределения F(x) (интегральная функция распределения) случайной величины X определяет вероятность события X < x. Для дискретной случайной величины она находится по формуле $F(x) = P(X < x) = \sum_{x \in X} p_x = x$
- $=\sum_{x_i < x} P(X = x_i)$, где суммирование ведётся по всем i, для которых $x_i < x$.

Итак, 1) если
$$x \le 0$$
, то $F(x) = P(X < 0) = 0$;

- 2) если $0 < x \le 10$, то F(x) = P(X = 0) = 0.05;
- 3) если $10 < x \le 20$, то F(x) = P(X = 0) + P(X = 10) = 0.05 + 0.15 = 0.2;
- 4) если $20 < x \le 30$, то F(x) = P(X = 0) + P(X = 10) + P(X = 20) = 0.2 + 0.3 = 0.5;
- 5) если $30 < x \le 40$, то F(x) = P(X = 0) + P(X = 10) + P(X = 20) + P(X = 30) = 0.5 + 0.25 = 0.75;
- 6) если $40 < x \le 50$, то F(x) = P(X = 0) + P(X = 10) + P(X = 20) + P(X = 30) + P(X = 40) = 0.75 + 0.2 = 0.95;
- 7) если x > 50, то F(x) = P(X = 0) + P(X = 10) + P(X = 20) + P(X = 30) + P(X = 40) + P(X = 50) = 0.95 + 0.05 = 1.

$$\text{Таким образом, } F(x) = \begin{cases} 0, \ ecnu \ x \leq 0 \\ 0,05, \ ecnu \ 0 < x \leq 10 \\ 0,2, \ ecnu \ 10 < x \leq 20 \\ 0,5, \ ecnu \ 20 < x \leq 30 \ ; \\ 0,75, \ ecnu \ 30 < x \leq 40 \\ 0,95, \ ecnu \ 40 < x \leq 50 \\ 1, \ ecnu \ x > 50 \end{cases}$$

График построен в системе Mathcad (см. ниже).

б) найдём числовые характеристики. Для дискретной случайной величины математическое ожидание равно сумме произведений всех её возможных значений на вероятности этих значений: $M(X) = \sum x_i p_i$. Поэтому

$$M(X) = 0.015 + 10.015 + 20.03 + 30.025 + 40.02 + 50.005 = 25.5$$

Дисперсия случайной величины X находится либо по формуле $D(X) = M[X - M(X)]^2$, либо по формуле $D(X) = M(X^2) - [M(X)]^2$. Для дискретной случайной величины эти формулы перепишутся так: $D(X) = \sum_i (x_i - M(X))^2 \cdot p_i$ или $D(X) = \sum_i x_i^2 p_i - (\sum_i x_i p_i)^2$. Среднее

квадратическое отклонение равно $\sigma(x) = \sqrt{D(x)}$; мода дискретной случайной величины (обозначается M_0) — это её значение, принимаемое с наибольшей вероятностью; вероятность попадания X в интервал (a;b) находится по формуле P(a;b) = F(b) - F(a). В нашей задаче эти величины равны:

$$D(x)=154,75$$
; $\sigma(x) = \sqrt{154,75} = 12,44$; $M_0 = 20$; $P(15;45) = F(45) - F(15) = 0,75$.

Ниже приведена копия файла, в котором сделаны вычисления в системе Mathcad, причём вычисление дисперсии проведено по обеим формулам.

ORIGIN = 1
$$S_{s} := (0 \ 10 \ 20 \ 30 \ 40 \ 50),$$

$$M := s^{T} \cdot p^{T},$$

$$g_{s} := (0.05 \ 0.15 \ 0.3 \ 0.25 \ 0.2 \ 0.05),$$

$$M = 25.5,$$

$$s0 := s^{T} - M,$$

$$D := \left[(s0.s0) \right]^{T} \cdot p^{T},$$

$$D = 154.75,$$

$$s2 := \left[(s0.5) \right]^{T} \cdot p^{T} - M^{2},$$

$$D1 := s2^{T} \cdot p^{T} - M^{2},$$

$$D1 := 154.75,$$

$$\sigma := \sqrt{D} = 12.44$$

$$S_{s} := (0.05 \ 0.15 \ 0.3 \ 0.25 \ 0.2 \ 0.05),$$

$$S_{s} := (0.05 \ 0.15 \ 0.3 \ 0.25 \ 0.2 \ 0.05),$$

$$S_{s} := (0.05 \ 0.15 \ 0.3 \ 0.25 \ 0.2 \ 0.05),$$

$$S_{s} := (0.05 \ 0.15 \ 0.3 \ 0.25 \ 0.2 \ 0.05),$$

$$S_{s} := (0.05 \ 0.15 \ 0.3 \ 0.25 \ 0.2 \ 0.05),$$

$$S_{s} := (0.05 \ 0.15 \ 0.3 \ 0.25 \ 0.2 \ 0.05),$$

$$S_{s} := (0.05 \ 0.15 \ 0.3 \ 0.25 \ 0.2 \ 0.05),$$

$$S_{s} := (0.05 \ 0.15 \ 0.3 \ 0.25 \ 0.2 \ 0.05),$$

$$S_{s} := (0.05 \ 0.15 \ 0.3 \ 0.25 \ 0.2 \ 0.05),$$

$$S_{s} := (0.05 \ 0.15 \ 0.3 \ 0.25 \ 0.2 \ 0.05),$$

$$S_{s} := (0.05 \ 0.15 \ 0.3 \ 0.25 \ 0.2 \ 0.05),$$

$$S_{s} := (0.05 \ 0.15 \ 0.3 \ 0.25 \ 0.2 \ 0.05),$$

$$S_{s} := (0.05 \ 0.15 \ 0.3 \ 0.25 \ 0.2 \ 0.05),$$

$$S_{s} := (0.05 \ 0.15 \ 0.3 \ 0.25 \ 0.2 \ 0.05),$$

$$S_{s} := (0.05 \ 0.15 \ 0.3 \ 0.25 \ 0.2 \ 0.05),$$

$$S_{s} := (0.05 \ 0.15 \ 0.3 \ 0.25 \ 0.2 \ 0.05),$$

$$S_{s} := (0.05 \ 0.15 \ 0.3 \ 0.25 \ 0.2 \ 0.05),$$

$$S_{s} := (0.05 \ 0.15 \ 0.3 \ 0.25 \ 0.2 \ 0.05),$$

$$S_{s} := (0.05 \ 0.15 \ 0.3 \ 0.25 \ 0.2 \ 0.05),$$

$$S_{s} := (0.05 \ 0.15 \ 0.3 \ 0.25 \ 0.2 \ 0.05),$$

$$S_{s} := (0.05 \ 0.15 \ 0.3 \ 0.25 \ 0.2 \ 0.05),$$

$$S_{s} := (0.05 \ 0.15 \ 0.3 \ 0.25 \ 0.2 \ 0.05),$$

$$S_{s} := (0.05 \ 0.15 \ 0.3 \ 0.25 \ 0.2 \ 0.05),$$

$$S_{s} := (0.05 \ 0.15 \ 0.3 \ 0.25 \ 0.2 \ 0.05),$$

$$S_{s} := (0.05 \ 0.15 \ 0.3 \ 0.25 \ 0.2 \ 0.05),$$

$$S_{s} := (0.05 \ 0.15 \ 0.3 \ 0.25 \ 0.2 \ 0.05),$$

$$S_{s} := (0.05 \ 0.15 \ 0.3 \ 0.25 \ 0.2 \ 0.05),$$

$$S_{s} := (0.05 \ 0.15 \ 0.3 \ 0.25 \ 0.25 \ 0.25 \ 0.25),$$

$$S_{s} := (0.05 \ 0.15 \ 0.25 \ 0.25 \ 0.25 \ 0.25),$$

$$S_{s} := (0.05 \ 0.15 \ 0.25 \ 0.25 \ 0.25 \ 0.25),$$

$$S_{s} := (0.05 \ 0.15 \ 0.25 \ 0.25 \ 0.25 \ 0.25 \ 0.25),$$

$$S_{s} := (0.05 \ 0.15 \ 0.25 \ 0.25 \ 0.25 \ 0.25),$$

$$S_{s} := (0.05 \ 0.15 \ 0.25 \ 0.25 \ 0.25$$

$$F(45) - F(15) = 0.75$$

X

- Непрерывная случайная величина задана плотностью 0, если $x \le 0$ распределения $f(x) = \begin{cases} 0, & \text{сели } 1 = 1 \\ \frac{2}{9}(3x - x^2), & \text{если } 0 < x \le 3. \end{cases}$ Найти: 0, & если x > 3
 - а) функцию распределения F(x);
- б) математическое ожидание, дисперсию, среднее квадратическое отклонение, моду, медиану;
- в) вероятность попадания X в интервал (1;4). Построить графики F(x) и f(x).

Решение:

а) функцию распределения находим по формуле $F(x) = \int f(x) dx$. Итак, если $x \le 0$, то f(x) = 0, поэтому $F(x) = \int_{0}^{0} 0 dx = 0$;

если
$$0 < x \le 3$$
, то $F(x) = \int_{-\infty}^{0} 0 \, dx + \int_{0}^{x} \frac{2}{9} (3x - x^2) dx = -\frac{x^2 (2x - 9)}{27}$;

если
$$x > 3$$
, то $F(x) = \int_{-\infty}^{0} 0 dx + \int_{0}^{3} \frac{2}{9} (3x - x^{2}) dx + \int_{3}^{x} 0 dx = 1$.

Таким образом, искомая функция распределения ВИД

$$F(x) = \begin{cases} 0, \ ecnu \ x \le 0 \\ -\frac{x^2(2x-9)}{27}, \ ecnu \ 0 < x \le 3; \\ 1, \ ecnu \ x > 3 \end{cases}$$

характеристики непрерывных находятся по формулам: математическое ожидание - $M(x) = \int_{-\infty(a)}^{\infty(b)} xf(x)dx$; дисперсия - $D(x) = \int_{-\infty(a)}^{\infty(b)} (x-M(x))^2 f(x)dx$ или $D(x) = \int_{-\infty(a)}^{\infty(b)} x^2 f(x)dx - M(x)^{\frac{2}{3}}$

дисперсия -
$$D(x) = \int_{-\infty(a)}^{\infty(b)} (x - M(x))^2 f(x) dx$$
 или $D(x) = \int_{-\infty(a)}^{\infty(b)} x^2 f(x) dx - M(x)^{\frac{1}{2}}$

(пределы интегрирования зависят от того, принадлежат ли возможные значения случайной величины всей оси Ox или интервалу (a;b)); среднее квадратическое отклонение - $\sigma(x) = \sqrt{D(x)}$; модой непрерывной случайной величины X называется то её значение M_o , при котором плотность распределения максимальна; медианой непрерывной случайной величины X называется такое её значение M_e , для которого одинаково вероятно, окажется ли случайная величина меньше или больше M_e , т.е. $P(X < M_e) = P(X > M_e) = 0,5$.

Таким образом, в нашей задаче $M(x) = \int_{0}^{3} 2/9x(3x - x^2) dx = 1,5;$ $D(x) = \int_{0}^{3} x^2 \cdot 2/9(3x - x^2) dx - 1,5^2 = 0,45;$ $\sigma(X) = \sqrt{0,45} = 0,671.$

Для определения моды надо найти максимум функции $f(x) = 2/9(3x - x^2)$ на отрезке [0; 3]. Для этого находим производную и приравниваем её к нулю: f'(x) = 2/3 - 4x/9, f'(x) = 0 при x = 3/2, эта точка критическая. Проверяем её на экстремум: f'(1) > 0, f'(2) < 0, итак, при переходе через точку x = 3/2 знак производной сменился с плюса на минус, значит x = 3/2 точка максимума, поэтому $M_o = 3/2$. Заметим, что, если f(x) линейная функция, т.е. её график прямая линия, то максимум находится на концах отрезка и M_o находят по графику f(x).

Медиану находим из условия $P(X < M_e) = 0.5$, где $P(X < M_e) = -20.5$ где $P(X < M_e) = -20.$

Ниже приведёна копия файла с вычислениями в системе Mathcad.

$$f(x) := \frac{2}{9} \cdot |3 \cdot x - x^{2}|, \qquad \sqrt{\frac{9}{20}} = 0.671$$

$$\int_{0}^{3} x \cdot f(x) dx \to \frac{3}{2} = 1.5$$

$$\int_{0}^{3} x^{2} \cdot f(x) dx - \left(\frac{3}{2}\right)^{2} \to \frac{9}{20} = 0.45$$

$$\frac{d}{dx} f(x) \to \frac{2}{3} - \frac{4 \cdot x}{9}, \qquad f1(x) := \frac{d}{dx} f(x)$$

$$\int_{0}^{y} f(x) dx \to -\frac{y^{2} \cdot (2 \cdot y - 9)}{27} \qquad f1(x) \text{ solve } \to \frac{3}{2},$$

$$f1(1) = 0.222$$
 $f1(2) = -0.222$

$$-\frac{y^2 \cdot (2 \cdot y - 9)}{27} - 0.5 \text{ solve } \rightarrow \begin{pmatrix} 4.0980762113533159403 \\ -1.0980762113533159403 \\ 1.5 \end{pmatrix} = \begin{pmatrix} 4.098 \\ -1.098 \\ 1.5 \end{pmatrix}$$

в) вероятность попадания X в интервал (1;4) равна $P(1 < X < 4) = P(1 < X < 3) + P(3 < X < 4) = \int\limits_{1}^{3} 2/9(3x - x^2) dx + \int\limits_{3}^{4} 0 dx = 0,741$ или $P(1 < X < 4) = F(4) - F(1) = 1 - \left(-\frac{1 \cdot (2 - 9)}{27}\right) = \frac{20}{27} = 0,74$.

Ниже приведёна копия файла из Mathcad с вычислениями.

$$\int_{1}^{3} f(x) dx \rightarrow \frac{20}{27} = 0.741$$

$$f2(x) := -\frac{x^{2} \cdot (2 \cdot x - 9)}{27}$$

$$f2(1) = 0.259$$

$$1 - 0.259 = 0.741$$

Графики функций F(x) и f(x) построим в системе Mathcad:

7. Проводятся испытания 6 изделий на надёжность, причём вероятность не выдержать испытания для каждого изделия равна 25%. Составить закон распределения числа изделий, не выдержавших испытания (случайная величина X). Найти математическое ожидание, дисперсию и среднее

квадратическое отклонение этой случайной величины.

Решение: дискретная случайная величина X — число изделий, не выдержавших испытания. Её возможные значения: $x_1 = 0$ (все изделия выдержали испытания), $x_2 = 1$ (одно изделие не выдержало испытания) и т.д. $x_7 = 6$ (шесть изделий не выдержало испытания). Возможные значения независимы и вероятность появления каждого из них одинакова, поэтому случайная величина X распределена по биномиальному закону: $P(X = k) = P_n(k) = C_n^k p^k q^{n-k}$, где k = 0,1,2,...,6, q = 1 - p, n = 6.

Итак,
$$P(X=0) = P_6(0) = C_6^0 0.25^0 0.75^6 = 0.178;$$

$$P(X = 1) = P_6(1) = C_6^1 0.25^1 0.75^5 = 0.356; P(X = 2) = P_6(2) = C_6^2 0.25^2 0.75^4 = 0.297;$$

$$P(X = 3) = P_6(3) = C_6^3 0.25^3 0.75^3 = 0.132$$
; $P(X = 4) = P_6(4) = C_6^4 0.25^4 0.75^2 = 0.033$;

$$P(X = 5) = P_6(5) = C_6^5 0.25^5 0.75^1 = 0.004; P(X = 6) = P_6(6) = C_6^6 0.25^6 0.75^0 = 0.0002.$$

Искомый закон распределения:

X	0	1	2	3	4	5	6
p	0,178	0,356	0,297	0,132	0,033	0,004	0,0002

Числовые характеристики биномиального распределения можно определить по известным формулам для дискретных случайных величин:

$$M(X) = \sum_{i} x_i p_i$$
, $D(X) = \sum_{i} (x_i - M(X))^2 \cdot p_i$ или $D(X) = \sum_{i} x_i^2 p_i - (\sum_{i} x_i p_i)^2$.

Однако, проще воспользоваться свойствами математического ожидания и дисперсии, когда X – число появления события в n испытаниях: M(X) = np, D(X) = npq. Итак, в нашем случае $M(X) = 6 \cdot 0.25 = 1.5$,

$$D(X) = 6.0,25.0,75 = 1,125. \ \sigma(X) = \sqrt{D(X)} \approx 1,06.$$

Ниже приведена копия файла из Mathcad с вычислениями.

$$\begin{array}{l} \text{C}(Q,R) \coloneqq \text{combin}(Q,R) \\ \text{C}(6,0) \cdot 0.25^0 \cdot 0.75^6 = 0.178 \\ \text{C}(6,1) \cdot 0.25^1 \cdot 0.75^5 = 0.356 \\ \text{C}(6,4) \cdot 0.25^4 \cdot 0.75^2 = 0.033 \end{array} \qquad \begin{array}{l} \text{C}(6,2) \cdot 0.25^2 \cdot 0.75^4 = 0.297 \\ \text{C}(6,3) \cdot 0.25^2 \cdot 0.75^3 = 0.132 \\ \text{C}(6,5) \cdot 0.25^5 \cdot 0.75^1 = 4.395 \times 10^{-3} \end{array}$$

$$C(6,6).0.25^6.0.75^0 = 2.441 \times 10^{-4}$$

Анализ биномиального распределения удобно проводить в среде Mathcad с использованием специальных функций с корневым словом binom (dbinom, pbinom, qbinom, rbinom). Например, функция dbinom(k,n,p) выводит значения вероятностей и т.д.

8. Аппарат состоит из 1000 элементов. Вероятность отказа одного

элемента в течении одного года работы равна 0,001 и не зависит от состояния других элементов. Требуется:

- а) составить закон распределения числа отказавших элементов;
- б) найти вероятность отказа не менее 2 элементов в год. Решение:
- а) дискретная случайная величина X число отказавших элементов распределена по закону Пуассона (предельный для биномиального закон распределения, когда вероятность p появления события в каждом испытании

мала, а число
$$n$$
 проводимых испытаний велико): $P(X=k) = P_n(k) \approx \frac{\lambda^k}{k!} e^{-\lambda}$, где $\lambda = np = 1000 \cdot 0.001 = 1$, $k = 0.1, 2, ..., 1000$, $n = 1000$.

Таким образом,
$$P(X=0) = P_{1000}(0) \approx \frac{1^{0}}{0!}e^{-1} = 0.368;$$

$$P(X=1) = P_{1000}(1) \approx \frac{1^{0}}{1!}e^{-1} = 0.368; \ P(X=2) = P_{1000}(2) \approx \frac{1^{2}}{2!}e^{-1} = 0.184;$$

$$P(X=3) = P_{1000}(3) \approx \frac{1^3}{3!}e^{-1}0,061$$
, и т.д. $P(X=10) = P_{1000}(10) \approx \frac{1^{10}}{10!}e^{-1} = 0,0000001$ и

т.д. Искомый закон распределения:

X	0	1	2	3	• • •	10	 1000
p	0,368	0,368	0,184	0,061		0,0000001	 0

Ниже приведена копия файла из Mathcad с вычислениями.

$$p(k,\lambda) := dpois(k,\lambda)$$

$$p(0,1) = 0.368$$
 $p(4,1) = 0.015$

$$p(1,1) = 0.368$$
 $p(5,1) = 3.066 \times 10^{-3}$

$$p(2,1) = 0.184$$
 $p(10,1) = 1.014 \times 10^{-7}$

$$p(3,1) = 0.061$$
 $p(1000,1) = 0$

б) вероятность отказа не менее двух элементов вычисляется по формуле:

$$P(X \ge 2) = \sum_{k=2}^{1000} P_{1000}(k)$$
 или $P(X \ge 2) = 1 - P(X = 0) - P(X = 1) = 1 - 0,368 - 0,368 = 0,264.$

В среде Mathcad закону распределения Пуассона соответствуют специальные функции с корневым словом pois (dpois, ppois, qpois, rpois). Например, функция dpois(k,n,p) выводит значения вероятностей и т.д.

9а. Цена деления измерительного прибора равна 0,2. Показания прибора округляются до ближайшего целого деления. Случайная величина X — ошибка

при округлении отсчёта. Найти:

- а) плотность распределения f(x);
- б) функцию распределения F(x);
- в) математическое ожидание, дисперсию;
- г) вероятность того, что при отсчёте будет сделана ошибка меньшая (большая) 0,04.

Построить графики F(x) и f(x).

Решение: случайная величина X – ошибка при округлении отсчёта распределена равномерно между двумя целыми делениями; b-a=0,2 – длина интервала, в котором заключены возможные значения Х. Плотность равномерного находится распределения ПО формуле

$$f(x) = \begin{cases} \frac{1}{b-a}, & ecnu \ x \in (a,b) \\ 0, & ecnu \ x \notin (a,b) \end{cases}$$
 функция распределения —

равномерного распределения находится по формуле
$$f(x) = \begin{cases} \frac{1}{b-a}, & ecnu \ x \in (a,b) \\ 0, & ecnu \ x \notin (a,b) \end{cases}$$
 функция распределения —
$$F(x) = \begin{cases} 0, & ecnu \ x \leq a \\ \frac{x-a}{b-a}, & ecnu \ a < x \leq b \end{cases}$$
 математическое ожидание и дисперсия —
$$1, & ecnu \ x > b \end{cases}$$

$$M(X) = \frac{a+b}{2}$$
, $D(X) = \frac{(b-a)^2}{12}$; вероятность попадания в интервал (α, β) –

 $P(\alpha < X < \beta) = \frac{\beta - \alpha}{b}$. Поэтому в нашей задаче:

a)
$$f(x) = \begin{cases} \frac{1}{0.2} = 5, ecnu \ x \in (0;0,2) \\ 0, ecnu \ x \notin (0;0,2) \end{cases}$$
;

a)
$$f(x) = \begin{cases} \frac{1}{0,2} = 5, ecnu \ x \in (0;0,2) \\ 0, ecnu \ x \notin (0;0,2) \end{cases};$$
6)
$$F(x) = \begin{cases} 0, ecnu \ x \le 0 \\ \frac{x}{0,2} = 5x, ecnu \ 0 < x \le 0,2 ; \\ 1, ecnu \ x > 0,2 \end{cases}$$

B)
$$M(X) = \frac{0.2 + 0}{2} = 0.1$$
; $D(X) = \frac{(0.2 - 0)^2}{12} = 0.003$;

г) ясно, что при отсчёте будет сделана ошибка меньшая 0,04, если она попадёт в интервал (0; 0,04) или в интервал (0,16; 0,2) (событие A), т.е. вероятность этого события равна P(A) = P(0 < X < 0.04) + P(0.16 < X < 0.2) =

$$=\frac{0.04-0}{0.2}+\frac{0.2-0.16}{0.2}=0.4$$
; при отсчёте будет сделана ошибка большая 0,04,

если она попадёт в интервал (0,04;0,16) (событие B), т.е. вероятность этого события равна $P(B) = P(0.04 < X < 0.16) = \frac{0.16 - 0.04}{0.2} = 0.6$ или P(B) = 1 - P(A).

Построим графики F(x) и f(x) в системе Mathcad.

$$f(x) := \begin{vmatrix} 0 & \text{if } x \le 0 \\ 5 & \text{if } 0 < x \le 0.2 \\ 0 & \text{if } x > 0.2 \end{vmatrix}$$

$$F(x) := \begin{vmatrix} 0 & \text{if } x \le 0 \\ (5 \cdot x) & \text{if } 0 < x \le 0.2 \\ 1 & \text{if } x > 0.2 \end{vmatrix}$$

- 9б. Поезда метро идут строго по расписанию. Интервал движения 5 минут. Случайная величина X – время ожидания поезда. Найти:
 - а) плотность распределения f(x);
 - б) функцию распределения F(x);
 - в) математическое ожидание, дисперсию;
- г) вероятность того, что пассажир, подошедший к остановке, будет ожидать поезда менее (более) 3 минут.

Построить графики F(x) и f(x).

Решение: случайная величина X – время ожидания поезда распределена равномерно между двумя последовательными прибытиями поезда; b - a = 5 – длина интервала, в котором заключены возможные значения X. Все формулы для равномерного распределения смотри в предыдущей задаче 9а.

В нашей залаче:

a)
$$f(x) = \begin{cases} \frac{1}{5} = 0.2, ecnu \ x \in (0;5) \\ 0, ecnu \ x \notin (0;5) \end{cases};$$

$$6) F(x) = \begin{cases} 0, ecnu \ x \leq 0 \\ \frac{x}{5} = 0.2x, ecnu \ 0 < x \leq 5; \\ 1, ecnu \ x > 5 \end{cases}$$

6)
$$F(x) = \begin{cases} 0, & ecnu \ x \le 0 \\ \frac{x}{5} = 0.2x, & ecnu \ 0 < x \le 5 \end{cases}$$
1, $ecnu \ x > 5$

B)
$$M(X) = \frac{5+0}{2} = 2.5$$
; $D(X) = \frac{(5-0)^2}{12} = 2.08$;

г) ясно, что, пассажир будет ждать поезда менее 3 минут, если он подойдёт к остановке в интервал времени (0; 3) или, что всё равно, в интервал (2; 5) (событие A), т.е. вероятность этого события равна $P(A) = P(0 < X < 3) = \frac{3-0}{5} = 0,6$; пассажир будет ждать поезда более 3 минут, если он подойдёт к остановке в интервал времени (0; 2) или, что всё равно, в интервал (3; 5) (событие B), т.е. вероятность этого события равна $P(B) = P(3 < X < 5) = \frac{5-3}{5} = 0,4$ или P(B) = 1 - P(A).

Построим графики F(x) и f(x) в системе Mathcad.

В среде Mathcad равномерному закону распределения соответствуют специальные функции с корневым словом unif: $\operatorname{dunif}(x,a,b)$ — выводит значения плотности распределения; $\operatorname{punif}(x,a,b)$ — выводит значения функции распределения; $\operatorname{runif}(n,a,b)$ — выводит массив из n значений независимых случайных чисел, распределённых равномерно в интервале (a,b).

- 10. Время безотказной работы элемента (случайная величина T) имеет показательное распределение с параметром $\lambda = 0.5$, где λ интенсивность отказов, т.е. среднее число отказов в единицу времени. Найти:
 - а) плотность распределения f(t);
 - б) функцию распределения F(t), указать её вероятностный смысл;
 - в) функцию надёжности R(t), указать её вероятностный смысл;
 - г) математическое ожидание, дисперсию;
- д) вероятность того, что за время t=5ч. элемент откажет и вероятность того, что за время t=5ч. элемент не откажет.

Построить графики F(t), R(t) и f(t).

Решение: показательным называют закон распределения непрерывной

случайной величины X с плотностью $f(x) = \begin{cases} 0, ecnu \ x < 0 \\ \lambda e^{-\lambda x}, ecnu \ x \ge 0 \end{cases}$. Другие понятия и формулы для показательного распределения: $F(x) = \begin{cases} 0, ecnu \ x < 0 \\ 1 - e^{-\lambda x}, ecnu \ x \ge 0 \end{cases}$ - функция распределения; если случайная величина X = T — время безотказной работы элемента, то $F(t) = P(T < t) = 1 - e^{-\lambda t}$ определяет вероятность отказа элемента за время t; $R(t) = P(T > t) = e^{-\lambda t}$ — функция надёжности, определяет вероятность безотказной работы элемента за время t;

$$M(X) = \frac{1}{\lambda}, \ D(X) = \frac{1}{\lambda^2}, \ \sigma(X) = \frac{1}{\lambda}; \ P(\alpha < X < \beta) = e^{-\lambda \alpha} - e^{-\lambda \beta}.$$

В нашей задаче, учитывая то, что $t \ge 0$, имеем:

- a) $f(t) = 0.5e^{-0.5t}$;
- б) $F(t) = P(T < t) = 1 e^{-0.5t}$, определяет вероятность отказа элемента за время t;
- в) $R(t) = e^{-0.5t}$, определяет вероятность безотказной работы элемента за время t;

$$\Gamma$$
) $M(X) = \frac{1}{0.5} = 2$; $D(X) = \frac{1}{0.5^2} = 4$;

д) поскольку функция распределения определяет вероятность отказа за время t, то, подставив в неё t=5, получим вероятность отказа за время t=5ч: $F(5) = 1 - e^{-0.5 \cdot 5} = 1 - e^{-2.5} = 0.918$; события «элемент откажет» и «элемент не откажет» - противоположные, поэтому вероятность безотказной работы элемента за время t=5 равна 1-0,918=0,082. Этот же результат можно получить непосредственно, пользуясь функцией надёжности: $R(5) = e^{-0.5.5} = e^{-2.5} = 0.082$.

Построим графики F(t), R(t) и f(t) и сделаем некоторые вычисления в системе Mathcad:

$$R(t) := \begin{bmatrix} 0 & \text{if } t < 0 \\ e^{-0.5 \cdot t} & \text{if } t \ge 0 \end{bmatrix} \qquad R(t) \qquad \frac{2}{1} \qquad e^{-2.5} = 0.082$$

$$1 - e^{-2.5} = 0.918$$

В среде Mathcad показательному закону распределения соответствуют специальные функции с корневым словом exp: $dexp(x, \lambda)$ — выводит значения плотности распределения; $dexp(x, \lambda)$ — выводит значения функции распределения.

- 11. Случайное отклонение размера изделия от номинала (случайная величина X) подчиняется нормальному закону распределения с параметрами a=10 и σ =2. Найти
 - а) плотность распределения f(x);
 - б) функцию распределения F(x);
 - в) математическое ожидание, дисперсию;
 - г) вероятность попадания в интервал (2;14);
- д) вероятность того, что отклонение от номинала не превосходит по абсолютной величине δ =3.

Построить графики F(t) и f(t).

Решение: нормальным называют закон распределения непрерывной случайной величины X с плотностью $f(x) = \frac{1}{\sigma\sqrt{2\pi}}e^{-\frac{(x-a)^2}{2\sigma^2}}$, где a = M(X) — математическое ожидание, $\sigma = \sigma(X)$ — среднее квадратическое отклонение X. Другие понятия и формулы для нормального распределения: функция распределения — $F(x) = \int_{-\infty}^x f(t)dt = \frac{1}{\sigma\sqrt{2\pi}}\int_{-\infty}^x \exp\left[\frac{-(t-a)^2}{2\sigma^2}\right]dt$ или

 $F(x) = \Phi\left(\frac{x-a}{\sigma}\right) + 0.5$, где $\Phi(x) = \frac{1}{\sqrt{2\pi}} \int_{0}^{x} e^{-\frac{t^2}{2}} dt$ — функция Лапласа, её значения

табулированы или их можно найти в системе Mathcad;

$$P(\alpha < X < \beta) = F(\beta) - F(\alpha) = \Phi\left(\frac{\beta - a}{\sigma}\right) - \Phi\left(\frac{\alpha - a}{\sigma}\right);$$

вероятность того, что случайная величина отклонится от своего математического ожидания не более чем на δ , находится по формуле:

$$P(|X - a| \le \delta) = 2\Phi\left(\frac{\delta}{\sigma}\right).$$

В нашей задаче

a)
$$f(x) = \frac{1}{2\sqrt{2\pi}}e^{-\frac{(x-10)^2}{8}}$$
;

6)
$$F(x) = \Phi\left(\frac{x-10}{2}\right) + 0.5$$
;

B)
$$M(X) = a = 10$$
, $\sigma(X) = \sigma = 2$, $D(X) = \sigma^2 = 4$;

Γ)
$$P(12 < X < 14) = \Phi\left(\frac{14-10}{2}\right) - \Phi\left(\frac{12-10}{2}\right) = \Phi$$
 (=0,4772-0,3413 = 0.1359;

д) вероятность того, что отклонение от номинала не превосходит по абсолютной величине $\delta=3$ будет равна $P(|X-10|\leq 3)=2\Phi\left(\frac{3}{2}\right)=2\Phi(1,5)=0,4332.$

Здесь значения функции Лапласа взяты из таблицы, хотя их можно было бы найти в системе Mathcad, где нормальному закону распределения соответствуют функции, в названии имеющие корневое слово norm. Например, dnorm (x,a,σ) — выводит значения плотности распределения f(x); рпогт (x,a,σ) — выводит значения функции распределения F(x). Воспользуемся этими функциями для построения соответствующих графиков. Копия файла из Mathcad приведена ниже.

$$f(x) := dnorm(x, 10, 2)$$
 $F(x) := pnorm(x, 10, 2)$

X

2 Расчётно-графическая работа №2. Элементы математической статистики

Цели: изучить основные задачи математической статистики: задачи обработки и анализа результатов наблюдений случайных массовых явлений.

2.1 Теоретические вопросы

1. Предмет математической статистики и её основные задачи. Основные

понятия (выборка, объём выборки, варианты, статистический ряд, интервальный ряд).

- 2. Эмпирическая функция распределения, полигон, гистограмма.
- 3. Определение неизвестных параметров распределения (выборочная средняя, выборочная и исправленная выборочная дисперсии).
 - 4. Точечные и интервальные оценки параметров распределения.
 - 5. Точность и надёжность оценки. Доверительный интервал.
- 6. Доверительный интервал для оценки математического ожидания нормально распределённой случайной величины с известным σ .
- 7. Доверительный интервал для оценки среднего квадратического отклонения нормально распределённой случайной величины.
 - 8. Понятие корреляционной зависимости. Функции и линии регрессии.

2.2 Расчётные задания

- 1. Для данной выборки выполнить задачу обработки и систематизации, определить:
 - а) вариационный ряд (выборку в порядке возрастания);
 - б) статистические ряды частот и относительных частот;
- в) интервальные статистические ряды частот и относительных частот (минимальную и максимальную варианты, размах выборки, число интервалов, длину интервалов);
- г) дискретные (группированные) статистические ряды частот и относительных частот.
- 2. Для данной выборки выполнить задачу анализа и оценки, определить:
- а) по интервальному статистическому ряду построить гистограмму частот и относительных частот;
 - б) по дискретному статистическому ряду найти:
 - 1) полигон частот и относительных частот;
 - 2) эмпирическую функцию распределения;
 - 3) выборочную среднюю;
 - 4) выборочную и исправленную выборочную дисперсии;
 - 5) исправленное выборочное среднеквадратическое отклонение;
 - 6) выборочные моду и медиану,

1	112	101	155	137	109	129	152	128	132	116
	125	125	142	140	125	118	125	135	149	145
	106	109	138	145	118	128	125	105	122	138
	120	118	133	118	129	149	124	153	132	118
	132	132	138	128	122	115	143	140	122	152
	128	118	126	132	134	123	122	159	112	110
	112	121	105	117	112	129	129	118	112	116

120	2	87	85	91	94	102	80	75	102	99	101
115											1
88 90 101 95 93 92 88 94 98 99 95 105 112 116 118 108 95 99 92 100 94 106 112 122 100 92 93 82 111 102 100 101 123 97 90 104 108 101 96 111 3 547 565 587 553 548 554 561 562 551 572 565 555 563 568 586 549 575 537 581 553 543 568 574 564 547 549 553 572 535 555 555 561 558 563 563 547 552 562 554 563 558 572 571 551 552 561 538 533 541 588 588 <td< th=""><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th></td<>											
95 105 112 116 118 108 95 99 92 100 94 106 112 122 100 92 93 82 111 102 100 101 123 97 90 104 108 101 96 111 3 547 565 587 553 548 554 561 562 551 572 565 555 563 568 586 549 575 537 581 553 543 568 574 564 547 549 553 572 535 555 552 545 554 561 552 562 554 563 558 562 561 558 563 563 547 552 562 554 563 558 572 577 554 552 556 557 551 552 571											
94 106 112 122 100 92 93 82 111 102 100 101 123 97 90 104 108 101 96 111 3 547 565 587 553 548 554 561 562 551 572 565 555 563 568 586 549 575 537 581 553 543 568 574 564 547 549 553 572 535 555 552 545 554 561 553 562 561 553 562 561 558 563 563 547 552 566 557 551 552 571 551 552 551 552 551 552 551 552 551 552 551 552 551 552 551 552 551 552 551 552 551 <th></th> <th>95</th> <th>105</th> <th></th> <th>116</th> <th>118</th> <th></th> <th></th> <th>99</th> <th>92</th> <th>100</th>		95	105		116	118			99	92	100
3 547 565 587 553 548 554 561 562 551 572 565 555 563 568 586 549 575 537 581 553 543 568 574 564 547 549 553 572 535 555 552 545 554 571 569 539 549 553 562 561 558 563 563 547 552 562 554 563 558 572 577 554 552 566 557 551 552 571 551 552 599 561 552 551 561 538 533 541 588 558 4 90 123 132 85 122 105 125 142 99 125 118 105 115 92 115 142 98 123		94	106	112	122		92	93	82	111	102
565 555 563 568 586 549 575 537 581 553 543 568 574 564 547 549 553 572 535 555 552 545 554 571 569 539 549 553 562 561 558 563 563 547 552 562 554 563 558 572 577 554 552 566 557 551 552 571 551 552 599 561 552 551 561 538 533 541 588 558 4 90 123 132 85 122 105 125 142 99 125 118 105 118 86 125 105 122 138 102 130 112 98 115 120 118 103 118 129		100	101	123	97	90	104	108	101	96	111
543 568 574 564 547 549 553 572 535 555 552 545 554 571 569 539 549 553 562 561 558 563 563 547 552 562 554 563 558 572 577 554 552 566 557 551 552 571 551 552 599 561 552 551 561 538 533 541 588 558 4 90 123 132 85 122 105 125 142 99 125 118 105 115 92 115 142 98 123 103 144 106 92 118 105 118 86 125 105 122 138 102 130 112 98 115 120 118 103 118	3	547	565	587	553	548	554	561	562	551	572
552 545 554 571 569 539 549 553 562 561 558 563 563 547 552 562 554 563 558 572 577 554 552 566 557 551 552 571 551 552 599 561 552 551 561 538 533 541 588 558 4 90 123 132 85 122 105 125 142 99 125 118 105 115 92 115 142 98 123 103 144 106 92 118 105 118 86 125 105 122 138 102 130 112 98 115 120 118 103 118 129 112 115 88 118 103 102 95 124 106		565	555	563	568	586	549	575	537	581	553
558 563 563 547 552 562 554 563 558 572 577 554 552 566 557 551 552 571 551 552 599 561 552 551 561 538 533 541 588 558 4 90 123 132 85 122 105 125 142 99 125 118 105 115 92 115 142 98 123 103 144 106 92 118 105 118 86 125 105 122 138 102 130 112 98 115 120 118 103 118 129 112 115 88 118 103 102 95 124 106 135 95 124 103 102 118 112 115 92 115		543	568	574	564	547	549	553	572	535	555
577 554 552 566 557 551 552 571 551 552 599 561 552 551 561 538 533 541 588 558 4 90 123 132 85 122 105 125 142 99 125 118 105 115 92 115 142 98 123 103 144 106 92 118 105 118 86 125 105 122 138 102 130 112 98 115 120 118 103 118 129 112 115 88 118 103 102 95 124 106 135 95 124 103 102 118 112 115 92 115 119 103 122 94 112 97 128 102 116 125 <		552	545	554	571	569	539	549	553	562	561
599 561 552 551 561 538 533 541 588 558 4 90 123 132 85 122 105 125 142 99 125 118 105 115 92 115 142 98 123 103 144 106 92 118 105 118 86 125 105 122 138 102 130 112 98 115 120 118 103 118 129 112 115 88 118 103 102 95 124 106 135 95 124 103 102 118 112 115 92 115 119 103 122 94 112 97 128 102 116 125 132 5 139 112 132 85 122 105 125 142		558	563	563	547	552	562	554	563	558	572
4 90 123 132 85 122 105 125 142 99 125 118 105 115 92 115 142 98 123 103 144 106 92 118 105 118 86 125 105 122 138 102 130 112 98 115 120 118 103 118 129 112 115 88 118 103 102 95 124 106 135 95 124 103 102 118 112 115 92 115 119 103 122 94 112 97 128 102 116 125 132 5 139 112 132 85 122 105 125 142 99 125 116 105 92 115 98 123 103 144 115		577	554	552	566	557	551	552	571	551	552
118 105 115 92 115 142 98 123 103 144 106 92 118 105 118 86 125 105 122 138 102 130 112 98 115 120 118 103 118 129 112 115 88 118 103 102 95 124 106 135 95 124 103 102 118 112 115 92 115 119 103 122 94 112 97 128 102 116 125 132 5 139 112 132 85 122 105 125 142 99 125 116 105 92 115 98 123 103 144 115 142 106 92 118 86 125 105 122 138 105		599	561	552	551	561	538	533	541	588	558
106 92 118 105 118 86 125 105 122 138 102 130 112 98 115 120 118 103 118 129 112 115 88 118 103 102 95 124 106 135 95 124 103 102 118 112 115 92 115 119 103 122 94 112 97 128 102 116 125 132 5 139 112 132 85 122 105 125 142 99 125 116 105 92 115 98 123 103 144 115 142 106 92 118 86 125 105 122 138 105 118 102 130 112 98 115 120 118 103 118 <td< th=""><th>4</th><th>90</th><th>123</th><th>132</th><th>85</th><th>122</th><th>105</th><th>125</th><th>142</th><th>99</th><th>125</th></td<>	4	90	123	132	85	122	105	125	142	99	125
102 130 112 98 115 120 118 103 118 129 112 115 88 118 103 102 95 124 106 135 95 124 103 102 118 112 115 92 115 119 103 122 94 112 97 128 102 116 125 132 5 139 112 132 85 122 105 125 142 99 125 116 105 92 115 98 123 103 144 115 142 106 92 118 86 125 105 122 138 105 118 102 130 112 98 115 120 118 103 118 129 112 115 88 118 103 102 95 124 106 <td< th=""><th></th><th>118</th><th>105</th><th>115</th><th>92</th><th>115</th><th>142</th><th></th><th>123</th><th>103</th><th>1</th></td<>		118	105	115	92	115	142		123	103	1
112 115 88 118 103 102 95 124 106 135 95 124 103 102 118 112 115 92 115 119 103 122 94 112 97 128 102 116 125 132 5 139 112 132 85 122 105 125 142 99 125 116 105 92 115 98 123 103 144 115 142 106 92 118 86 125 105 122 138 105 118 102 130 112 98 115 120 118 103 118 129 112 115 88 118 103 102 95 124 106 135 95 124 103 102 118 112 115 103 95 122 125 118 96 126 98 106 128 118		106	92	118	105	118	86	125	105	122	138
95 124 103 102 118 112 115 92 115 119 103 122 94 112 97 128 102 116 125 132 5 139 112 132 85 122 105 125 142 99 125 116 105 92 115 98 123 103 144 115 142 106 92 118 86 125 105 122 138 105 118 102 130 112 98 115 120 118 103 118 129 112 115 88 118 103 102 95 124 106 135 95 124 103 102 118 112 115 103 95 122 125 118 96 126 98 106 128 118 126		102	130			115	120		103	118	129
103 122 94 112 97 128 102 116 125 132 5 139 112 132 85 122 105 125 142 99 125 116 105 92 115 98 123 103 144 115 142 106 92 118 86 125 105 122 138 105 118 102 130 112 98 115 120 118 103 118 129 112 115 88 118 103 102 95 124 106 135 95 124 103 102 118 112 115 103 95 122 125 118 96 126 98 106 128 118 126 103 134 112 101 105 117 92 129 99 118											
5 139 112 132 85 122 105 125 142 99 125 116 105 92 115 98 123 103 144 115 142 106 92 118 86 125 105 122 138 105 118 102 130 112 98 115 120 118 103 118 129 112 115 88 118 103 102 95 124 106 135 95 124 103 102 118 112 115 103 95 122 125 118 96 126 98 106 128 118 126 103 134 112 101 105 117 92 129 99 118 112 6 154 143 155 113 155 171 168 153 135 168 145 168 122 163 117 165 132 139 107 125 146 152 142 132 152 161 148 136 138 149											1
116 105 92 115 98 123 103 144 115 142 106 92 118 86 125 105 122 138 105 118 102 130 112 98 115 120 118 103 118 129 112 115 88 118 103 102 95 124 106 135 95 124 103 102 118 112 115 103 95 122 125 118 96 126 98 106 128 118 126 103 134 112 101 105 117 92 129 99 118 112 6 154 143 155 113 155 171 168 153 135 168 145 168 122 163 117 165 132 139 107 125 146 152 142 132 152 161 148 <		103	122	94	112	97	128	102	116	125	132
106 92 118 86 125 105 122 138 105 118 102 130 112 98 115 120 118 103 118 129 112 115 88 118 103 102 95 124 106 135 95 124 103 102 118 112 115 103 95 122 125 118 96 126 98 106 128 118 126 103 134 112 101 105 117 92 129 99 118 112 6 154 143 155 113 155 171 168 153 135 168 145 168 122 163 117 165 132 139 107 125 146 152 142 132 152 161 148 136 138	5	139	112	132	85	122	105	125	142	99	125
102 130 112 98 115 120 118 103 118 129 112 115 88 118 103 102 95 124 106 135 95 124 103 102 118 112 115 103 95 122 125 118 96 126 98 106 128 118 126 103 134 112 101 105 117 92 129 99 118 112 6 154 143 155 113 155 171 168 153 135 168 145 168 122 163 117 165 132 139 107 125 146 152 142 132 152 161 148 136 138 149		116	105	92	115	98	123	103	144	115	142
112 115 88 118 103 102 95 124 106 135 95 124 103 102 118 112 115 103 95 122 125 118 96 126 98 106 128 118 126 103 134 112 101 105 117 92 129 99 118 112 6 154 143 155 113 155 171 168 153 135 168 145 168 122 163 117 165 132 139 107 125 146 152 142 132 152 161 148 136 138 149			92	118		125	105	122	138	105	
95 124 103 102 118 112 115 103 95 122 125 118 96 126 98 106 128 118 126 103 134 112 101 105 117 92 129 99 118 112 6 154 143 155 113 155 171 168 153 135 168 145 168 122 163 117 165 132 139 107 125 146 152 142 132 152 161 148 136 138 149			130		98		120			118	1
125 118 96 126 98 106 128 118 126 103 134 112 101 105 117 92 129 99 118 112 6 154 143 155 113 155 171 168 153 135 168 145 168 122 163 117 165 132 139 107 125 146 152 142 132 152 161 148 136 138 149											1
134 112 101 105 117 92 129 99 118 112 6 154 143 155 113 155 171 168 153 135 168 145 168 122 163 117 165 132 139 107 125 146 152 142 132 152 161 148 136 138 149											1
6 154 143 155 113 155 171 168 153 135 168 145 168 122 163 117 165 132 139 107 125 146 152 142 132 152 161 148 136 138 149											
145 168 122 163 117 165 132 139 107 125 146 152 142 132 152 161 148 136 138 149		134	112	101	105	117	92	129	99	118	112
146 152 142 132 152 161 148 136 138 149	6	154	143	155	113	155	171	168	153	135	168
		145	168	122	163	117	165	132	139	107	125
157 178 149 195 146 166 182 135 136 170		146	152	142	132	152	161	148	136	138	149
155 152 145 198 192 143 159 116 126 155			152	145		192	143		116	126	
163 169 165 148 151 153 139 166 138 128											
168 157 143 179 165 159 149 141 102 169		168	157	143	179	165	159	149	141	102	169

		ı	ı	1				1		
7	470	801	790	764	764	950	533	402	520	780
	699	840	869	551	707	635	703	801	859	475
	797	797	789	875	698	580	821	737	910	856
	950	741	473	988	737	787	667	649	797	939
	532	885	590	590	975	910	731	869	435	889
	584	967	950	531	775	485	756	656	680	741
	950	458	511	857	536	699	474	789	889	533
8	450	434	424	432	440	443	415	446	423	472
	442	452	444	425	403	458	455	431	446	424
	438	442	482	432	416	477	431	432	412	462
	496	468	424	438	452	446	418	474	432	452
	466	488	452	489	451	422	442	492	473	402
	481	468	404	498	467	398	440	449	417	425
	444	498	466	442	483	462	492	435	449	422
9	250	244	224	232	240	224	244	226	253	232
	248	216	230	254	258	202	225	224	252	234
	242	212	231	251	204	246	232	282	242	252
	296	242	254	218	226	252	238	224	298	260
	276	254	282	242	270	254	260	232	268	242
	244	276	224	240	272	268	281	234	268	251
	271	212	234	262	204	261	254	266	278	248
10	165	143	152	167	164	199	171	171	156	149
	147	155	158	145	158	177	161	181	153	171
	175	153	174	154	163	174	152	188	162	197
	187	158	154	171	163	172	152	178	151	172
	153	186	147	169	147	166	161	171	161	186
	148	161	189	199	162	167	198	168	135	152
	154	175	163	149	162	161	161	193	172	175
	161	164	178	138	164	172	187	178	143	161
11	153	174	154	163	174	152	188	162	197	234
	188	158	154	171	163	172	152	178	151	172
	155	186	147	169	147	166	161	171	161	186
	149	161	189	199	162	167	198	168	135	152
	156	175	163	149	162	161	161	193	172	175
	162	164	178	138	164	172	187	178	143	161
	165	163	177	161	149	146	152	139	156	152

	1010	001	1071	201		222	1000	10.40	10.70	
12	212	231	251	204	246	232	282	242	252	276
	297	242	254	218	226	252	238	224	298	260
	277	254	282	242	270	254	260	232	268	242
	345	276	224	240	272	268	281	234	268	232
	272	212	234	292	204	261	254	266	278	248
	253	262	256	264	272	242	244	246	253	234
	237	264	252	248	247	268	229	235	262	212
	238	242	254	263	261	266	254	264	248	251
13	165	143	52	166	164	199	171	171	156	171
	148	155	158	145	158	177	161	181	153	197
	176	153	174	154	163	174	152	188	162	172
	189	158	154	171	163	172	152	178	151	186
	157	186	147	169	147	166	161	171	161	152
	150	161	189	199	162	167	198	168	135	175
	158	175	163	149	162	161	161	193	172	
14	216	230	254	258	202	225	224	252	234	250
	243	212	231	251	204	246	232	282	242	252
	298	242	254	218	226	252	238	224	298	260
	278	254	282	242	270	254	260	232	268	242
	246	276	224	240	272	268	281	234	268	232
	273	212	234	262	201	261	254	266	278	248
	254	262	256	264	272	242	244	246	253	234
	239	264	252	248	247	268	229	235	262	212
15	165	143	152	167	165	199	171	171	156	152
	149	155	158	145	158	177	161	181	153	171
	153	174	154	163	174	152	188	162	197	178
	190	158	154	171	163	172	152	178	151	172
	159	186	147	169	147	166	161	171	161	186
	151	161	189	199	162	167	198	168	135	152
	160	175	163	149	162	161	161	193	172	175
	165	164	178	137	164	172	187	178	143	161
16	147	153	179	165	159	149	141	102	169	157
	169	154	143	155	113	155	171	168	153	135
	150	152	142	132	152	161	148	136	138	149
	157	178	149	195	146	166	182	135	136	170
	156	152	145	198	192	143	159	116	126	155
	164	169	165	148	151	153	139	166	138	128
	169	169	155	152	175	177	131	154	174	187
	180	177	162	149	146	113	151	152	134	125
<u> </u>	I	1			1	<u> </u>	1	1	1	

561 552 551 561 538 533 547 552 557 543 566 565 587 553 548 554 561 564 562 558 567 556 546 552 543 554 556 566 592 562 544 568 574 564 547 549 553 578 557 561 553 545 554 571 569 539 549 538 575 561 577 552 566 557 551 552 546 584 572 535 577 552 566 557 551 552 546 584 572 535 553 548 557 564 547 549 553 578 557 554 554 5455 554 571 569 539 549 538 575 5			T	T	T				T		
547 565 587 553 548 554 561 564 562 558 566 555 563 568 586 549 575 564 553 555 567 556 546 552 543 554 556 566 592 562 544 568 574 564 547 549 553 578 557 561 553 545 554 571 569 539 549 538 575 554 577 552 566 557 551 552 546 584 572 535 18 577 568 557 564 547 549 553 578 557 554 547 552 566 557 551 562 554 549 575 556 558 563 568 586 549 575 564 553 585	17	558	563	569	547	552	562	554	549	575	578
566 555 563 568 586 549 575 564 553 555 567 556 546 552 543 554 556 566 592 562 544 568 574 564 547 549 553 578 557 561 553 545 554 571 569 539 549 538 575 554 577 568 557 564 547 549 553 578 557 554 577 568 557 564 547 549 553 578 557 575 554 5455 554 571 569 539 549 538 575 556 554 5455 554 571 569 539 549 573 558 566 557 551 552 546 549 575 558 544 556 554 <t< th=""><th></th><th>561</th><th>552</th><th>551</th><th>561</th><th>538</th><th>533</th><th>547</th><th>552</th><th>557</th><th>543</th></t<>		561	552	551	561	538	533	547	552	557	543
567 556 546 552 543 554 556 566 592 562 544 568 574 564 547 549 553 578 557 561 553 545 554 571 569 539 549 538 575 554 577 552 566 557 551 552 546 584 572 535 18 577 568 557 564 547 549 533 578 557 554 554 5455 554 571 569 539 549 538 575 566 558 563 563 547 552 562 554 549 575 558 547 595 587 553 548 554 561 564 562 544 555 563 568 586 549 575 564 553 58		547	565	587	553	548	554	561	564	562	558
544 568 574 564 547 549 553 578 557 561 553 545 554 571 569 539 549 538 575 554 577 552 566 557 551 552 546 584 572 535 18 577 568 557 564 547 549 553 578 557 575 554 5455 554 571 569 539 549 538 575 566 558 563 563 547 552 562 554 549 575 566 555 563 568 586 549 575 564 562 544 555 563 568 586 549 575 554 549 575 558 577 554 552 566 557 551 552 546 584 55		566	555	563	568	586	549	575	564	553	555
553 545 554 571 569 539 549 538 575 554 577 552 566 557 551 552 546 584 572 535 18 577 568 557 564 547 549 553 578 557 575 554 5455 554 571 569 539 549 538 575 566 558 563 563 547 552 562 554 549 575 558 547 595 587 553 548 554 561 564 562 544 555 563 568 586 549 575 564 553 585 592 577 554 552 566 557 551 552 546 584 556 601 561 552 551 561 538 533 547 55		567	556	546	552	543	554	556	566	592	562
577 552 566 557 551 552 546 584 572 535 18 577 568 557 564 547 549 553 578 557 575 554 5455 554 571 569 539 549 538 575 566 558 563 563 547 552 562 554 549 575 558 547 595 587 553 548 554 561 564 562 544 555 563 568 586 549 575 564 553 585 592 577 554 552 566 557 551 552 546 584 556 601 561 552 551 561 538 533 547 552 557 555 541 588 558 563 558 572 578 53		544	568	574		547	549	553	578	557	561
18 577 568 557 564 547 549 553 578 557 575 554 5455 554 571 569 539 549 538 575 566 558 563 563 547 552 562 554 549 575 558 547 595 587 553 548 554 561 564 562 544 555 563 568 586 549 575 564 553 585 592 577 554 552 566 557 551 551 561 538 533 547 552 556 601 561 552 551 561 538 533 547 552 557 555 541 588 558 563 558 572 578 539 556 19 77 45 49 92 13		553	545	554	571	569	539	549	538	575	554
554 5455 554 571 569 539 549 538 575 566 558 563 563 547 552 562 554 549 575 558 547 595 587 553 548 554 561 564 562 544 555 563 568 586 549 575 564 553 585 592 577 554 552 566 557 551 552 546 584 556 601 561 552 551 561 538 533 547 552 557 555 541 588 558 563 558 572 578 539 556 19 77 45 49 92 13 69 52 26 22 36 38 53 48 68 52 73 42 62 71		577	552	566	557	551	552	546	584	572	535
558 563 563 547 552 562 554 549 575 558 547 595 587 553 548 554 561 564 562 544 555 563 568 586 549 575 564 553 585 592 577 554 552 566 557 551 552 546 584 556 601 561 552 551 561 538 533 547 552 557 555 541 588 558 563 558 572 578 539 556 19 77 45 49 92 13 69 52 26 22 36 48 25 59 57 65 69 55 68 49 63 38 53 48 68 52 73 42 62 71 45	18	577	568	557	564	547	549	553	578	557	575
547 595 587 553 548 554 561 564 562 544 555 563 568 586 549 575 564 553 585 592 577 554 552 566 557 551 552 546 584 556 601 561 552 551 561 538 533 547 552 557 555 541 588 558 563 558 572 578 539 556 19 77 45 49 92 13 69 52 26 22 36 48 25 59 57 65 69 55 68 49 63 38 53 48 68 52 73 42 62 71 45 63 55 49 65 79 48 59 53 41 38		554	5455	554	571	569	539	549	538	575	566
555 563 568 586 549 575 564 553 585 592 577 554 552 566 557 551 552 546 584 556 601 561 552 551 561 538 533 547 552 557 555 541 588 558 563 558 572 578 539 556 19 77 45 49 92 13 69 52 26 22 36 48 25 59 57 65 69 55 68 49 63 38 53 48 68 52 73 42 62 71 45 63 55 16 78 52 95 77 66 35 54 68 55 49 65 79 48 59 53 41 38		558	563	563	547	552	562	554	549	575	558
577 554 552 566 557 551 552 546 584 556 601 561 552 551 561 538 533 547 552 557 555 541 588 558 563 558 572 578 539 556 19 77 45 49 92 13 69 52 26 22 36 48 25 59 57 65 69 55 68 49 63 38 53 48 68 52 73 42 62 71 45 63 55 16 78 52 95 77 66 35 54 68 55 49 65 79 48 59 53 41 38 12 39 57 51 65 66 43 52 63 43 55		547	595	587	553	548	554	561	564	562	544
601 561 552 551 561 538 533 547 552 557 555 541 588 558 563 558 572 578 539 556 19 77 45 49 92 13 69 52 26 22 36 48 25 59 57 65 69 55 68 49 63 38 53 48 68 52 73 42 62 71 45 63 55 16 78 52 95 77 66 35 54 68 55 49 65 79 48 59 53 41 38 12 39 57 51 65 66 43 52 63 43 55 69 31 62 48 46 51 43 16 34 74		555	563	568	586	549	575	564	553	585	592
555 541 588 558 563 558 572 578 539 556 19 77 45 49 92 13 69 52 26 22 36 48 25 59 57 65 69 55 68 49 63 38 53 48 68 52 73 42 62 71 45 63 55 16 78 52 95 77 66 35 54 68 55 49 65 79 48 59 53 41 38 12 39 57 51 65 66 43 52 63 43 55 69 31 62 48 46 51 43 16 34 74 51 82 52 46 75 49 55 57 54 20 34		577	554	552	566	557	551	552	546	584	556
19 77 45 49 92 13 69 52 26 22 36 48 25 59 57 65 69 55 68 49 63 38 53 48 68 52 73 42 62 71 45 63 55 16 78 52 95 77 66 35 54 68 55 49 65 79 48 59 53 41 38 12 39 57 51 65 66 43 52 63 43 55 69 31 62 48 46 51 43 16 34 74 51 82 52 46 75 49 55 57 54 20 347 365 387 348 354 361 364 362 346 358 365 355 363 368 359 375 364 353 385 363 <th></th> <th>601</th> <th>561</th> <th>552</th> <th>551</th> <th>561</th> <th>538</th> <th>533</th> <th>547</th> <th>552</th> <th>557</th>		601	561	552	551	561	538	533	547	552	557
48 25 59 57 65 69 55 68 49 63 38 53 48 68 52 73 42 62 71 45 63 55 16 78 52 95 77 66 35 54 68 55 49 65 79 48 59 53 41 38 12 39 57 51 65 66 43 52 63 43 55 69 31 62 48 46 51 43 16 34 74 51 82 52 46 75 49 55 57 54 20 347 365 387 348 354 361 364 362 346 358 365 355 363 368 359 375 364 353 385 363 343 368 374 364 347 349 353 378 357 358 </th <th></th> <th>555</th> <th>541</th> <th>588</th> <th>558</th> <th>563</th> <th>558</th> <th>572</th> <th>578</th> <th>539</th> <th>556</th>		555	541	588	558	563	558	572	578	539	556
38 53 48 68 52 73 42 62 71 45 63 55 16 78 52 95 77 66 35 54 68 55 49 65 79 48 59 53 41 38 12 39 57 51 65 66 43 52 63 43 55 69 31 62 48 46 51 43 16 34 74 51 82 52 46 75 49 55 57 54 20 347 365 387 348 354 361 364 362 346 358 365 355 363 368 359 375 364 353 385 363 343 368 374 364 347 349 353 378 357 358 352 345 354 352 371 369 349 338 375 341 </th <th>19</th> <th>77</th> <th>45</th> <th>49</th> <th>92</th> <th>13</th> <th>69</th> <th>52</th> <th>26</th> <th>22</th> <th>36</th>	19	77	45	49	92	13	69	52	26	22	36
63 55 16 78 52 95 77 66 35 54 68 55 49 65 79 48 59 53 41 38 12 39 57 51 65 66 43 52 63 43 55 69 31 62 48 46 51 43 16 34 74 51 82 52 46 75 49 55 57 54 20 347 365 387 348 354 361 364 362 346 358 365 355 363 368 359 375 364 353 385 363 343 368 374 364 347 349 353 378 357 358 352 345 354 352 371 369 349 338 375 388 366 358 363 347 352 362 354 349 375		48	25	59	57	65	69	55	68	49	63
68 55 49 65 79 48 59 53 41 38 12 39 57 51 65 66 43 52 63 43 55 69 31 62 48 46 51 43 16 34 74 51 82 52 46 75 49 55 57 54 20 347 365 387 348 354 361 364 362 346 358 365 355 363 368 359 375 364 353 385 363 343 368 374 364 347 349 353 378 357 358 352 345 354 352 371 369 349 338 375 388 366 358 363 347 352 362 354 349 375 341		38	53	48	68	52	73	42	62	71	45
12 39 57 51 65 66 43 52 63 43 55 69 31 62 48 46 51 43 16 34 74 51 82 52 46 75 49 55 57 54 20 347 365 387 348 354 361 364 362 346 358 365 355 363 368 359 375 364 353 385 363 343 368 374 364 347 349 353 378 357 358 352 345 354 352 371 369 349 338 375 388 366 358 363 347 352 362 354 349 375 341 377 354 352 366 357 351 352 346 384 351 399 363 361 352 351 361 338 353		63	55	16	78	52	95	77	66	35	54
55 69 31 62 48 46 51 43 16 34 74 51 82 52 46 75 49 55 57 54 20 347 365 387 348 354 361 364 362 346 358 365 355 363 368 359 375 364 353 385 363 343 368 374 364 347 349 353 378 357 358 352 345 354 352 371 369 349 338 375 388 366 358 363 347 352 362 354 349 375 341 377 354 352 366 357 351 352 346 384 351 399 363 361 352 351 361 338 353 333 35		68	55	49	65	79	48	59	53	41	38
74 51 82 52 46 75 49 55 57 54 20 347 365 387 348 354 361 364 362 346 358 365 355 363 368 359 375 364 353 385 363 343 368 374 364 347 349 353 378 357 358 352 345 354 352 371 369 349 338 375 388 366 358 363 347 352 362 354 349 375 341 377 354 352 366 357 351 352 346 384 351 399 363 361 352 351 361 338 353 333 357 21 9 9 6 9 9 7 6 11 6			39	57	51	65	66	43	52	63	43
20 347 365 387 348 354 361 364 362 346 358 365 355 363 368 359 375 364 353 385 363 343 368 374 364 347 349 353 378 357 358 352 345 354 352 371 369 349 338 375 388 366 358 363 347 352 362 354 349 375 341 377 354 352 366 357 351 352 346 384 351 399 363 361 352 351 361 338 353 333 357 21 9 9 6 9 9 7 6 11 6 7 6 6 7 12 5 7 8 5 10 9 7 7 5 11 9 7 6 5 <t< th=""><th></th><th>55</th><th>69</th><th>31</th><th>62</th><th>48</th><th>46</th><th>51</th><th>43</th><th>16</th><th>34</th></t<>		55	69	31	62	48	46	51	43	16	34
365 355 363 368 359 375 364 353 385 363 343 368 374 364 347 349 353 378 357 358 352 345 354 352 371 369 349 338 375 388 366 358 363 347 352 362 354 349 375 341 377 354 352 366 357 351 352 346 384 351 399 363 361 352 351 361 338 353 333 357 21 9 9 6 9 9 7 6 11 6 7 6 10 6 7 6 8 6 5 5 4 6 6 7 12 5 7 8 5 10 9 7 7 5 11 9 7 6 5 7 6		74	51	82	52	46	75	49	55	57	54
343 368 374 364 347 349 353 378 357 358 352 345 354 352 371 369 349 338 375 388 366 358 363 347 352 362 354 349 375 341 377 354 352 366 357 351 352 346 384 351 399 363 361 352 351 361 338 353 333 357 21 9 9 6 9 9 7 6 11 6 7 6 10 6 7 6 8 6 5 5 4 6 6 7 12 5 7 8 5 10 9 7 7 5 11 9 7 6 5 7 6	20	347	365	387	348	354	361	364	362	346	358
352 345 354 352 371 369 349 338 375 388 366 358 363 347 352 362 354 349 375 341 377 354 352 366 357 351 352 346 384 351 399 363 361 352 351 361 338 353 333 357 21 9 9 6 9 9 7 6 11 6 7 6 10 6 7 6 8 6 5 5 4 6 6 7 12 5 7 8 5 10 9 7 7 5 11 9 7 6 5 7 6		365	355	363	368	359	375	364	353	385	363
366 358 363 347 352 362 354 349 375 341 377 354 352 366 357 351 352 346 384 351 399 363 361 352 351 361 338 353 333 357 21 9 9 6 9 9 7 6 11 6 7 6 10 6 7 6 8 6 5 5 4 6 6 6 7 12 5 7 8 5 10 9 7 7 5 11 9 7 6 5 7 6		343	368	374	364	347	349	353	378	357	358
377 354 352 366 357 351 352 346 384 351 399 363 361 352 351 361 338 353 333 357 21 9 9 6 9 9 7 6 11 6 7 6 10 6 7 6 8 6 5 5 4 6 6 6 7 12 5 7 8 5 10 9 7 7 5 11 9 7 6 5 7 6		352	345	354	352	371	369	349	338	375	388
399 363 361 352 351 361 338 353 333 357 21 9 9 6 9 9 7 6 11 6 7 6 10 6 7 6 8 6 5 5 4 6 6 6 7 12 5 7 8 5 10 9 7 7 5 11 9 7 6 5 7 6		366	358	363	347	352	362	354	349	375	341
21 9 9 6 9 9 7 6 11 6 7 6 10 6 7 6 8 6 5 5 4 6 6 6 7 12 5 7 8 5 10 9 7 7 5 11 9 7 6 5 7 6		377	354	352	366	357	351	352	346	384	351
6 10 6 7 6 8 6 5 5 4 6 6 6 7 12 5 7 8 5 10 9 7 7 5 11 9 7 6 5 7 6		399	363	361	352	351	361	338	353	333	357
6 6 7 12 5 7 8 5 10 9 7 7 5 11 9 7 6 5 7 6	21	9	9	6	9	9	7	6	11	6	7
6 6 7 12 5 7 8 5 10 9 7 7 5 11 9 7 6 5 7 6		6	10	6	7	6	8	6	5	5	4
		6	6	7	12	5	7	8	5	10	9
5 5 12 9 8 7 9 8 5 5		7	7	5	11	9	7	6	5		6
		5	5	12	9	8	7	9	8	5	5
6 13 11 11 5 8 10 9 4 7		6	13	11	11	5	8	10	9	4	7
3 6 9 8 12 11 9 10 4 14		3	6	9	8	12	11	9	10	4	14

22	39	40	38	43	41	42	40	38	41	42
	41	40	42	39	41	41	36	43	41	42
	34	36	37	42	42	42	40	41	41	46
	47	48	52	56	68	70	68	64	56	58
	41	42	39	33	34	37	43	45	47	71
	43	42	43	41	42	47	48	49	52	53
	57	52	41	42	46	48	49	39	32	40
	39	37	42	43	54	58	59	64	66	68
23	10	15	16	17	18	19	20	15	16	11
	17	12	13	14	15	11	18	16	15	18
	20	20	21	23	26	28	23	28	27	24
	27	24	25	25	26	32	33	31	34	43
	26	32	26	27	28	29	30	21	22	23
	42	24	23	35	23	25	36	37	24	21
	58	54	49	47	32	36	43	23	24	28
24	150	144	124	132	140	124	144	153	151	148
	116	130	154	158	102	125	124	152	134	148
	142	121	112	131	151	104	146	132	182	142
	152	196	142	154	158	118	126	152	138	124
	144	176	124	140	172	168	181	134	168	132
	144	112	134	162	104	161	154	166	178	148
	162	164	164	172	142	144	146	112	171	
25	128	105	115	92	115	142	98	123	103	144
	112	115	88	118	103	102	95	124	106	135
	95	124	103	102	118	112	115	92	115	119
	92	112	132	85	122	105	125	142	99	125
	106	92	118	105	118	86	125	105	122	138
	102	130	112	98	115	120	118	103	118	129
	103	122	94	112	97	128	102	116	125	132
26	102	112	118	85	112	115	103	95	122	125
	157	178	149	195	146	166	182	135	136	170
	157	143	179	165	159	149	141	102	169	168
	151	168	122	163	117	165	132	139	107	125
	152	152	142	132	152	161	148	136	138	149
	153	154	143	155	113	155	171	168	153	135
	157	152	145	198	192	143	159	116	126	155
	165	169	165	148	151	153	139	166	138	128

27	242	254	218	226	252	238	224	298	260	287
	250	216	230	254	258	202	225	224	252	234
	244	212	231	251	204	246	232	282	242	252
	299	254	282	242	270	254	260	232	268	242
	276	224	240	272	268	281	234	268	232	300
	274	212	234	262	204	261	254	266	278	248
	255	262	256	264	272	242	244	246	253	234
	240	264	252	248	247	268	229	235	262	212
28	262	267	275	266	246	252	261	269	262	268
	259	248	266	259	252	248	252	232	269	287
	253	286	275	235	202	239	225	236	237	224
	253	268	277	249	248	263	243	266	212	255
	249	288	213	264	247	242	228	277	256	251
	267	232	258	246	278	279	257	255	243	258
	254	244	265	274	252	265	222	269	254	278
	249	252	294	232	269	263	269	271	245	235
29	558	565	587	553	548	554	561	564	562	544
	563	568	586	549	575	564	553	585	577	553
	563	564	547	552	562	554	549	575	558	592
	546	577	568	574	564	547	549	553	578	557
	557	577	568	574	564	547	549	538	575	566
	558	554	552	566	557	551	552	546	584	532
	602	561	552	551	561	538	533	547	552	557
	556	541	588	558	563	558	572	578	539	556
30	165	143	152	167	164	199	171	171	156	151
	155	155	158	145	158	177	161	181	153	171
	177	153	174	154	163	174	152	188	162	197
	191	158	154	171	163	172	152	178	151	172
	161	186	147	169	147	166	161	171	161	186
	161	189	199	162	167	198	168	135	152	146
	162	175	163	149	162	161	161	193	172	175
	153	164	178	138	164	172	187	178	1433	161

3. Найти доверительный интервал для оценки математического ожидания a нормального распределения с надёжностью γ , зная выборочную среднюю $\bar{x}_{\scriptscriptstyle g}$, объём выборки n и среднее квадратическое отклонение σ .

	γ	$\overline{\mathcal{X}}_{e}$	n	σ		γ	$\overline{\mathcal{X}}_{e}$	n	σ		γ	$\overline{\mathcal{X}}_{e}$	n	σ
3.1	0.95	75.17	36	6	3.11	0.97	5.21	46	6	3.21	0.92	11.48	36	6
3.2	0.97	7.27	56	7	3.12	0.96	55.23	38	5	3.22	0.94	23.38	39	8
3.3	0.93	75.17	35	5	3.13	0.92	5.21	36	7	3.23	0.93	30.44	56	7

3.4	0.94	8.27	58	9	3.14	0.95	55.23	68	7	3.24	0.99	15.32	38	5
3.5	0.98	76.17	46	6	3.15	0.98	7.21	56	6	3.25	0.95	10.48	46	6
3.6	0.99	7.37	58	7	3.16	0.93	65.23	78	5	3.26	0.98	13.38	39	8
3.7	0.93	65.13	34	6	3.17	0.92	8.21	49	7	3.27	0.93	20.44	66	7
3.8	0.94	9.27	53	8	3.18	0.95	51.23	58	9	3.28	0.97	14.32	58	6
3.9	0.93	85.17	35	6	3.19	0.94	5.21	39	6	3.29	0.94	30.44	86	7
3.10	0.95	8.27	57	9	3.20	0.95	85.23	58	7	3.30	0.99	16.32	38	9

2.3 Решение типового варианта

- 1. Для данной выборки выполнить задачу обработки и систематизации, определить:
 - а) вариационный ряд (выборку в порядке возрастания);
 - б) статистические ряды частот и относительных частот;
- в) интервальные статистические ряды частот и относительных частот (минимальную и максимальную варианты, размах выборки, число интервалов, длину интервалов);
- г) дискретные (группированные) статистические ряды частот и относительных частот.
 - 2. Для данной выборки выполнить задачу анализа, определить:
- а) по интервальному статистическому ряду построить гистограмму частот и относительных частот;
 - б) по дискретному статистическому ряду найти:
 - 1) полигон частот и относительных частот;
 - 2) эмпирическую функцию распределения;
 - 3) выборочную среднюю;
 - 4) выборочную и исправленную выборочную дисперсии;
- 5) выборочное и исправленное выборочное среднеквадратические отклонения;
 - 6) выборочные моду и медиану;

20	15	17	19	23	18	21	15	16	13
20	16	19	20	14	20	16	14	20	19
15	19	17	16	15	22	21	12	10	21
18	14	14	18	18	13	19	18	20	23
16	20	19	17	19	17	21	17	19	17
13	17	11	18	19					

Решение: заметим, что вычисления и построение графиков производится в среде Mathcad. Копия файла из Mathcad приведена ниже. То, что получено в Mathcad следует оформить и пояснить.

1. a) объём выборки n = 55. Вариационный ряд (выборка в порядке

возрастания):

$\mathbf{Y}^{T} =$		0	1	2	3	4	5	6	7	8	9
	0	10	11	12	13	13	14	14	14	14	

(в среде Mathcad эта таблица просматривается вся нажатием на указатель направления движения);

б) по вариационному ряду посчитаем, сколько раз имеет место каждая варианта, т.е. частоту (n_i) каждой варианты. Полученные данные занесём в таблицу – статистический ряд частот:

X_i	10	11	12	13	14	15	16	17	18	19	20	21	22	23
n_{i}	1	1	1	2	4	4	5	7	6	8	7	5	1	2

Относительные частоты вариант найдём по формуле $p_i^* = \frac{n_i}{n}$, где n объём выборки, полученные результаты занесём в таблицу - статистический ряд относительных частот:

X_i	10	11	12	13	14	15	16	17	18
p_i^*	0,018	0,018	0,018	0,036	0,073	0,073	0,091	0.127	0,109
\mathcal{X}_{i}	19	20	21	22	23				
p_i^*	0,145	0,127	0,091	0,018	0,036				

в) для построения интервального статистического ряда определим сначала следующее: наибольшая и наименьшая варианты: $a=x_{min}=10$, $b=x_{max}=23$; размах выборки: R=b-a=13; величину интервалов найдём по формуле Стерджеса $h=\frac{x_{max}-x_{min}}{1+\log_2 n}$, h=1,917 и округляем до целого $h\approx 2$; число интервалов — знаменатель этой формулы $m=1+\log_2 n$ или $m=\frac{R}{h}=6,781$, округляем до целого $m\approx 7$; за начало первого интервала рекомендуется брать величину $x_{hay}=x_{min}-\frac{h}{2}$, $x_{hay}=9,041\approx 9$; число вариант, попавших в каждый интервал (т.е. частоты n_i) и относительные частоты (т.е. $p_i=\frac{n_i}{n}$) найдены в среде Mathcad (см. $w1^T$ и $w2^T$).

Таким образом, искомый интервальный ряд имеет вид:

интервалы	[9,11)	[11,13)	[13,15)	[15,17)	[17,19)	[19,21)	[21,23]
n_i	1	2	6	9	13	16	8
$p_i = \frac{n_i}{n}$	0,018	0,036	0,109	0,164	0,236	0,291	0,145

в) для построения дискретного статистического ряда (или в некоторых учебниках его называют группированным статистическим рядом) найдём середины интервалов $\frac{x_i + x_{i+1}}{2}$ (см. x^T в Mathcad), им будут отвечать соответствующие частоты и относительные частоты из интервального ряда. Искомый дискретный статистический ряд:

$x_i + x_{i+1}$	10	12	14	16	18	20	22
2							
n_i	1	2	6	9	13	16	8
$p_{\dot{i}}$	0,018	0,036	0,109	0,164	0,236	0,291	0,145

2. a) по интервальному статистическому ряду построим гистограмму частот и относительных частот (в среде Mathcad):

- б) по дискретному статистическому ряду найдём:
 - 1) полигон частот и относительных частот:

2) эмпирическую функцию распределения (см. F^T и F(y) в Mathcad):

- 3) выборочную среднюю (см. mean(X) в Mathcad): $\bar{x}_6 = \frac{\sum\limits_i x_i n_i}{n}$ или $\bar{x}_6 = \sum\limits_i x_i \cdot p_i = 17,564$;
 - 4) выборочную и исправленную выборочную дисперсии (см. var(X) и s2

в Mathcad):
$$D_{e} = \frac{\sum n_{i}(x_{i} - \overline{x}_{e})^{2}}{n}$$
 или $D_{e} = \frac{\sum n_{i} \cdot x_{i}^{2}}{n} - \mathbf{\xi}_{e}^{2} = 8,428$ — выборочная дисперсия; $s^{2} = \frac{n}{n-1}D_{e} = 8,584$ — исправленная выборочная дисперсия;

- 5) выборочное среднеквадратическое отклонение (см. stdev(X) или σ в Mathcad) и исправленное выборочное среднеквадратическое отклонение (см. s в Mathcad): $\sigma = \sqrt{D_{\scriptscriptstyle g}} = 2,903$; $s = \sqrt{s^2} = 2,93$
- 6) выборочные моду и медиану (см. $\mathrm{mode}(X)$ и $\mathrm{median}(X)$ в Mathcad): мода $M_0=19$ определяет варианту, имеющую наибольшую частоту (мода может быть не одна, её просто найти по статистическому ряду частот); медиана $M_e=18$ определяет середину вариационного ряда и зависит от

чётности объёма выборки:
$$M_e = \begin{cases} x_{k+1}, & npu \ n = 2k+1 \\ \frac{x_k + x_{k+1}}{2}, & npu \ n = 2k \end{cases}$$
;

Копия файла из Mathcad:

$$n := 55$$

$$X := (20 \ 15 \ 17 \ 19 \ 23 \ 18 \ 21 \ 15 \ 16 \ 13 \ 20 \ 16 \ 19 \ 20 \ 14 \ 20 \ 16 \ 14 \ 20 \ 19$$

$$Y := sort X^T$$

$$a := min(X) \qquad b := max(X)$$

$$a = 10 \quad b = 23$$

$$R_{**} := b - a \qquad R = 13$$

$$X^{T} = \begin{cases} \frac{b}{2} & \frac{a}{11} \\ \frac{a}{2} & \frac{17}{15} \\ \frac{a}{3} & \frac{19}{19} \\ \frac{a}{4} & \frac{23}{23} \\ \frac{5}{5} & \frac{18}{18} \\ \frac{6}{9} & \frac{21}{13} \\ \frac{10}{10} & \frac{20}{11} \\ \frac{11}{10} & \frac{16}{12} \\ \frac{12}{19} & \frac{19}{13} \\ \frac{13}{20} & \frac{20}{14} \\ \frac{14}{15} & \frac{14}{15} \\ \frac{15}{15} & \frac{15}{11} & \frac{15}{15} \\ \frac{17}{15} & \frac{15}{15} & \frac{15}{15} \\ \frac{8}{16} & \frac{16}{9} & \frac{13}{10} \\ \frac{10}{10} & \frac{20}{11} & \frac{1}{10} \\ \frac{11}{10} & \frac{1}{10} & \frac{1}{10} & \frac{1}{10} \\ \frac{10}{10} & \frac{1}{20} & \frac{1}{10} \\ \frac{10}{10} & \frac{1}{10} & \frac{1}{$$

$$w2^{T} = (0.018 \ 0.036 \ 0.109 \ 0.164 \ 0.236 \ 0.291 \ 0.145)$$

$$0.018 + 0.036 + 0.109 + 0.164 + 0.236 + 0.291 + 0.145 = 0.999$$

t

$$x2 = 8.428$$

$$stdev(X) = 2.903$$

$$s2 := \frac{n}{n-1} \cdot x2$$

$$s2 = 8.584$$

$$s := \sqrt{s2}$$

$$s = 2.93$$

$$w3 := hist(x,X)$$

$$w4 := \frac{w3}{n}$$

$$\begin{split} i &:= 0 ... 6 \\ F_i &:= \sum_{j \,=\, 0}^i w_j \end{split} \quad \begin{aligned} w &:= \left(\, 0.018 \;\; 0.036 \;\; 0.109 \;\; 0.164 \;\; 0.236 \;\; 0.291 \;\; 0.145 \,\right)^T \\ F^T &= \left(\, 0.018 \;\; 0.054 \;\; 0.163 \;\; 0.327 \;\; 0.563 \;\; 0.854 \;\; 0.999 \,\right) \end{split}$$

$$F(y) := \begin{array}{|c|c|c|c|}\hline 0 & \text{if} & y \leq 10\\ 0.018 & \text{if} & 10 < y \leq 12\\ 0.054 & \text{if} & 12 < y \leq 14\\ 0.163 & \text{if} & 14 < y \leq 16\\ 0.327 & \text{if} & 16 < y \leq 18\\ 0.563 & \text{if} & 18 < y \leq 20\\ 0.854 & \text{if} & 20 < y \leq 23\\ 1 & \text{if} & y > 23\\ \end{array}$$

3. Найти доверительный интервал для оценки математического ожидания *а* нормального распределения с надёжностью 0,95, зная выборочную среднюю 18, объём выборки 25 и среднее квадратическое отклонение 3.

Решение: доверительный интервал для оценки математического ожидания a имеет вид $\bar{x}_{_{6}}-t\frac{\sigma}{\sqrt{n}}< a<\bar{x}_{_{6}}+t\frac{\sigma}{\sqrt{n}}$. Все величины, кроме t известны. Найдём t из соотношения $\Phi(t)=\frac{\gamma}{2}=\frac{0.95}{2}=0.475$, где $\Phi(t)$ функция Лапласа, её значения табулированы. По таблице t=1.96. Таким образом, $18-1.96\frac{3}{\sqrt{25}}< a<18+1.96\frac{3}{\sqrt{25}}$. Ответ: $(16.824;\ 19.176)$.

Список литературы

- 1. Гмурман В.Е. Теория вероятностей и математическая статистика. Учебное пособие для вузов. М.: Высш. школа, 2003.- 279 с.
- 2. Гмурман В.Е. Руководство к решению задач по теории вероятностей и математической статистике. М.: Высш. школа, 2004.- 400 с.
- 3. Ивановский Р.И. Теория вероятностей и математическая статистика. Основы, прикладные аспекты с примерами изадачами в среде Mathcad. СПб.: БХВ- Петербург, 2008. 528 с.
- 4. Письменный Д. Конспект лекций по теории вероятностей и математической статистики, случайные процессы. М.: Айрис -пресс, 2006. 288 с.

Содержание

1 Расчётно-графическая работа №1. Элементы теории вероятностей	3
1.2 Расчётные задания	4
1.3 Решение типового варианта	12
2 Расчётно-графическая работа №2 Элементы математической	
статистики	30
2.2 Расчётные задания	30
2.3 Решение типового варианта	38
Список литературы	46

Сводный план 2017 г., поз.

Астраханцева Людмила Николаевна Байсалова Маншук Жумамуратовна

ТЕОРИЯ ВЕРОЯТНОСТЕЙ И МАТЕМАТИЧЕСКАЯ СТАТИСТИКА

Методические указания и задания по выполнению расчетно-графических работ для студентов специальности 5В070200- Автоматизация и управление

Редактор Л.Т.Сластихина Специалист по стандартизации Н.К.Молдабекова

Подписано в печать	Формат 60х84 1/16
Тиражэкз.	Бумага типографская №1
Объем учиз.л.	Заказ цена тг.

Копировально-множительное бюро некоммерческого акционерного общества «Алматинский университет энергетики и связи» 050013, Алматы, ул.Байтурсынова, 126