

Practical Guideline for Whole Genome Sequencing

SOLID 5500

Illumina HiSeq2000

Disclosure

Kwangsik Nho

Assistant Professor

Center for Neuroimaging

Center for Computational Biology and Bioinformatics

Indiana University School of Medicine

What You Will Learn Today

- Basic File Formats in WGS
- Practical WGS Analysis Pipeline
- WGS Association Analysis Methods

How have BIG data problems been solved in next generation sequencing?

 FASTQ: text-based format for storing both a DNA sequence and its corresponding quality scores (File sizes are huge (raw text) ~300GB per sample)

@HS2000-306 201:6:1204:19922:79127/1

ACGTCTGGCCTAAAGCACTTTTTCTGAATTCCACCCCAGTCTGCCCTTCCTGAGTGCCTGGGGAGCCCTTGGGGAGCTGCTGGTGGGGGCTCTGAATGT

+

GGGTAAAAGGTGTCCTCAGCTAATTCTCATTTCCTGGCTCATTGCCTAATTCTCATTCCCTGGGGGCTGGCAGAAGCCCCTCAAGGAAGATGGCTGGGGTC

+

+

4

CCCFFFFFHHHHFIJIHHJJJJJHHIJJJJJFHIGIIJJJJIGGIJJIIII@H=FFHHIJJJIGHGFFFFECEEDCDB?@BCEEDDDDDDD

Line 1 begins with a '@' character and is followed by a sequence identifier and an *optional* description

Line 2 is the raw sequence letters

Line 3 begins with a '+' character and is *optionally* followed by the same sequence identifier (and any description) again

Line 4 encodes the quality values for the sequence in Line 2, and must contain the same number of symbols as letters in the sequence

@HS2000-306_201:6:1204:19922:79127/1

Column	Brief Description
HS2000-306_201	the unique instrument name
6	flowcell lane
1204	tile number within the flowcell lane
19922	x-coordinate of the cluster within the tile
79127	y-coordinate of the cluster within the tile
1	the member of a pair, 1 or 2 (paired-end)

Line 1 begins with a '@' character and is followed by a sequence identifier and an *optional* description

Line 2 is the raw sequence letters

Line 3 begins with a '+' character and is *optionally* followed by the same sequence identifier (and any description) again

Line 4 encodes the quality values for the sequence in Line 2, and must contain the same number of symbols as letters in the sequence

ACGTCTGGCCTAAAGCACTTTTTCTGAATTC...

Sequence

+

Base Qualities

Base Qualities = ASCII 33 + Phred scaled Q Phred scaled Q = $-10*log_{10}(e)$

e: base-calling error probability

SAM encoding adds 33 to the value because ASCII 33 is the first visible character

 SAM (Sequence Alignment/Map): a genetic format for storing large nucleotide sequence alignments (File sizes are really huge ~500GB per sample)

```
@SQ SN:1 LN:249250621
@SQ SN:2 LN:243199373
@SQ SN:3 LN:198022430
@SQ SN:4 LN:191154276
@SQ SN:5 LN:180915260
@SQ SN:6 LN:171115067
@SQ SN:7 LN:159138663
   SN:X LN:155270560
@SQ SN:Y LN:59373566
@SQ SN:MT LN:16569
@SQ SN:GL000207.1 LN:4262
@RG ID:WGS LP6005119-DNA G02
                           LB:LP6005119-DNA G02 ADNIWGS PL:ILLUMINA SM:LP6005119-DNA G02 PU:BARCODE
@PG ID:bwa PN:bwa VN:0.7.5a-r405
HS2000-306 201:6:1204:19922:79127 83 22 32030451
                                           60 100M =
                                                       32030153
ACATTCAGAGCCCCACCAGCAGCTCCCCAAGGGCCCTGCCCAGGCACTCAGGAAGGGCAGACTGGGGTGGAATTCA
                        GAAAAAGTGCTTTAGGCCAGACGT
RG:Z:WGS LP6005119-DNA G02 XT:A:U NM:i:0 SM:i:37 AM:i
:37 X0:i:1 X1:i:0 XM:i:0 XO:i:0 XG:i:0 MD:Z:100
HS2000-306 201:6:1204:19922:79127 163 22 32030153
                                            60 100M =
                                                                 398
                                                        32030451
GGGTAAAAGGTGTCCTCAGCTAATTCTCATTTCCTGGCTCTTGGCTAATTCTCATTCCCTGGGGGCTGGCAGAAGC
CCCTCAAGGAAGATGGCTGGGGTC
                        RG:Z:WGS LP6005119-DNA G02 XT:A:U NM:i:0 SM:i:37 AM:i
:37 X0:i:1 X1:i:0 XM:i:0 XO:i:0 XG:i:0 MD:Z:100
```

 SAM (Sequence Alignment/Map): a genetic format for storing large nucleotide sequence alignments (File sizes are really huge ~500GB per sample)

- The Alignment section contains the information for each sequence about where/how it aligns to the reference genome
 - are all fragments properly aligned?
 - is this fragment unmapped?
 - did this read fail quality controls?
 - is this read a PCR or optical duplicate?

— ...

- The SAM/BAM (Sequence Alignment/Map) file format comes in a plain text format (SAM) and a compressed binary format (BAM)
- The BAM format stores aligned reads and is technology independent

 VCF (Variant Call Format): a text file format containing meta-information lines; a header line, and then data lines (each containing information about a position in the genome)

##fileformat=VCFv4.1

##FILTER=<ID=LowQual,Description="Low quality">

```
##FORMAT=<ID=AD, Number=., Type=Integer, Description="Allelic depths for the ref and alt alleles in the order listed">
##FORMAT=<ID=DP, Number=1, Type=Integer, Description="Approximate read depth (reads with MQ=255 or with bad mates are filtered)">
##FORMAT=<ID=GQ,Number=1,Type=Integer,Description="Genotype Quality">
##FORMAT=<ID=GT,Number=1,Type=String,Description="Genotype">
##FORMAT=<ID=PL,Number=G,Type=Integer,Description="Normalized, Phred-scaled likelihoods for genotypes as defined in the VCF specification">
##INFO=<ID=AC, Number=A, Type=Integer, Description="Allele count in genotypes, for each ALT allele, in the same order as listed">
##INFO=<ID=AF, Number=A, Type=Float, Description="Allele Frequency, for each ALT allele, in the same order as listed">
##INFO=<ID=AN, Number=1, Type=Integer, Description="Total number of alleles in called genotypes">
##INFO=<ID=BaseQRankSum,Number=1,Type=Float,Description="Z-score from Wilcoxon rank sum test of Alt Vs. Ref base qualities">
##reference=file:///N/dc2/projects/adniwgs/Human Reference/human g1k v37.fasta
#CHROM POS ID REF ALT QUAL FILTER INFO FORMAT LP6005123-DNA D06
    14673 .
                                  48.77 . AC=1;AF=0.500;AN=2;DP=12;FS=3.090;MLEAC=1;MLEAF=0.500;MQ=24.16;MQ0=0;QD=6.97 GT:AD:DP:GQ:PL 0/1:8,4:12:77:77,0,150
                                 476.77 . AC=1;AF=0.500;AN=2;DB;DP=43;FS=0.000;MLEAC=1;MLEAF=0.500;MQ=30.93;MQ0=0;QD=30.63 GT:AD:DP:GQ:PL 0/1:21,22:43:99:505,0,437
    14907 rs79585140 A G
    14930 rs75454623
                                  589.77 . AC=1;AF=0.500;AN=2;DB;DP=60;FS=0.000;MLEAC=1;MLEAF=0.500;MQ=29.24;MQ0=0;QD=29.09 GT:AD:DP:GQ:PL 0/1:27,33:60:99:618,0,513
    15211 rs78601809 T G
                                  169.84 . AC=2;AF=1.00;AN=2;DB;DP=6;FS=0.000;MLEAC=2;MLEAF=1.00;MQ=39.00;MQ0=0;QD=34.24 GT:AD:DP:GQ:PL 1/1:0,6:6:18:198,18,0
```

 VCF (Variant Call Format): a text file format containing meta-information lines; a header line, and then data lines (each containing information about a position in the genome)

##fileformat=VCFv4.1

```
##FILTER=<ID=LowQual,Description="Low quality">
##FORMAT=<ID=AD,Number=.,Type=Integer,Description="Allelic depths for the ref and alt alleles in the order listed">
##FORMAT=<ID=DP,Number=1,Type=Integer,Description="Approximate read depth (reads with MQ=255 or with bad mates are filtered)">
##FORMAT=<ID=GQ,Number=1,Type=Integer,Description="Genotype Quality">
                                                                                                                                         header
##FORMAT=<ID=GT,Number=1,Type=String,Description="Genotype">
##FORMAT=<ID=PL,Number=G,Type=Integer,Description="Normalized, Phred-scaled likelihoods for genotypes as defined in the VCF specification">
##INFO=<ID=AC,Number=A,Type=Integer,Description="Allele count in genotypes, for each ALT allele, in the same order as listed">
##INFO=<ID=AF, Number=A, Type=Float, Description="Allele Frequency, for each ALT allele, in the same order as listed">
##INFO=<ID=AN,Number=1,Type=Integer,Description="Total number of alleles in called genotypes">
##INFO=<ID=BaseQRankSum,Number=1,Type=Float,Description="Z-score from Wilcoxon rank sum test of Alt Vs. Ref base qualities">
##reference=file:///N/dc2/projects/adniwgs/Human Reference/human g1k v37.fasta
#CHROM POS ID REF ALT QUAL FILTER INFO FORMAT LP6005123-DNA D06
    14673 .
                                 48.77 . AC=1;AF=0.500;AN=2;DP=12;FS=3.090;MLEAC=1;MLEAF=0.500;MQ=24.16;MQ0=0;QD=6.97 GT:AD:DP:GQ:PL 0/1:8,4:12:77:77,0,150
                                  476.77 . AC=1;AF=0.500;AN=2;DB;DP=43;FS=0.000;MLEAC=1;MLEAF=0.500;MQ=30.93;MQ0=0;QD=30.63 GT:AD:DP:GQ:PL 0/1:21,22:43:99:505,0,437
    14907 rs79585140
    14930 rs75454623
                                  589.77 . AC=1;AF=0.500;AN=2;DB;DP=60;FS=0.000;MLEAC=1;MLEAF=0.500;MQ=29.24;MQ0=0;QD=29.09 GT:AD:DP:GQ:PL 0/1:27,33:60:99:618,0,513
    15211 rs78601809
                                 169.84 . AC=2;AF=1.00;AN=2;DB;DP=6;FS=0.000;MLEAC=2;MLEAF=1.00;MQ=39.00;MQ0=0;QD=34.24 GT:AD:DP:GQ:PL 1/1:0,6:6:18:198,18,0
```

variant records

Pipeline for Whole Genome Sequencing

- Data Pre-Processing
- Variant Calling
- Preliminary Analysis

by Viktor S. Poór

Preparing a reference for use with BWA and GATK

- Prerequsites: Installed BWA, SAMTOOLS, and PICARD
- 1. Generate the BWA index
 - > Action:

Bwa index –a bwtsw reference.fa

- 2. Generate the fasta file index
 - > Action:

Samtools faidx reference.fa

- 3. Generate the sequence dictionary
 - > Action:

java -jar CreateSequenceDictionary.jar REFERENCE=reference.fa
OUTPUT=reference.dict

- Prerequsites: Installed HTSlib (https://github.com/samtools/htslib)
- Shuffling the reads in the BAM file
 - Action: htscmd bamshuf -uOn 128 in.bam tmp > shuffled_reads.bam
- 2. Revert the BAM file to FastQ format
 - > Action:

htscmd bam2fq -aOs singletons.fq.gz shuffled_reads.bam >
 interleaved_reads.fq

- Prerequsites: Installed FastQC (http://www.bioinformatics.babraham.ac.uk/projects/fastqc/)
- 1. Checks whether a set of sequence reads in a FastQ file exhibit any unusual qualities
 - Action: fastqc input.fastq --outdir=/net/scratch2/FastQC

Quality Scores

Quality Scores

Quality Checks of Raw Reads

Mapping/aligning to Ref

- Prerequsites: BWA (http://samtools.sourceforge.net/), SAMTOOLS (http://samtools.sourceforge.net/), Human Reference (hg19)
- 1. Mapping sequencing reads against a reference genome
 - > Action:

```
BWA mem -aMp -t #ofCPUs ref.fa -R

"@RG\tID:**\tLB:**\tPL:ILLUMINA\tSM:**\tPU:BARCODE" >

output.sam
```

- 2. Converting a SAM file to a BAM file and sorting a BAM file by coordinates
 - > Action:

```
SAMTOOLS view –S –h –b –t ref.fa output.sam –o output.bam SAMTOOLS sort –m 10000000000 output.bam output.sorted
```


- 1. Duplicates originate mostly from DNA preparation methods
- 2. Sequencing error propagates in duplicates

www.broadinstitute.org/gatk

... and thus be more likely to make the right call

- Prerequsites: JAVA and PICARD (http://picard.sourceforge.net/)
- Examining aligned records in the BAM file to locate duplicate reads
 - > Action:

```
java -Xmx6g -jar PICARD/MarkDuplicates.jar INPUT=output.sorted.bam MAX_RECORDS_IN_RAM=2000000 REMOVE_DUPLICATES=false VALIDATION_STRINGENCY=SILENT ASSUME_SORTED=true METRICS_FILE=output.dups OUTPUT=output.sortedDeDup.bam
```


- Prerequsites: SAMTOOLS, GATK (https://www.broadinstitute.org/gatk/)
- 1. Indexing sorted alignment for fast random access
 - Action: SAMTOOLS index output.sortedDeDup.bam
- 2. Performing local realignment around indels to correct mapping-related artifacts
 - 1) Create a target list of intervals to be realigned
 - Action:

java -Xmx6g -jar GATK -T RealignerTargetCreator -nt #ofCPUs -R Reference -I output.sortedDeDup.bam -known INDEL1 -known INDEL2 -log output.intervals.log -o output.ForIndelRealigner.intervals

- Prerequsites: SAMTOOLS, GATK (https://www.broadinstitute.org/gatk/)
- 2. Performing local realignment around indels to correct mapping-related artifacts
 - 1) Create a target list of intervals to be realigned
 - 2) Perform realignment of the target intervals
 - Action:

```
java -Xmx6g -jar GATK -T IndelRealigner -R Reference -I output.sortedDeDup.bam -targetIntervals output.ForIndelRealigner.intervals -known INDEL1 -known INDEL2 - model USE_READS -LOD 0.4 --filter_bases_not_stored -log output.realigned.log -o output.GATKrealigned.bam
```

Local Realignment

Base Quality Recalibration

- Prerequsites: GATK
- 1. Recalibrating base quality scores in order to correct sequencing errors and other experimental artifacts
 - > Actions:

```
java -Xmx6g -jar GATK -T BaseRecalibrator -R Reference -I output.GATKrealigned.bam -nct #ofCPUS --default_platform ILLUMINA --force_platform ILLUMINA -knownSites DBSNP - knownSites INDEL1 -knownSites INDEL2 -I INFO -log output.BQRecal.log -o output.GATKrealigned.recal_data.table java -Xmx6g -jar GATK -T PrintReads -R Reference -I output.GATKrealigned.bam -nct #ofCPUS -BQSR output.GATKrealigned.recal_data.table -I INFO -log output.BQnewQual.log —o output.GATKrealigned.Recal.bam
```

Base Quality Recalibration

Quality Checks of

Recalibration

- Prerequsites: GATK
- 1. Generating a plot report to assess the quality of a recalibration
 - > Actions:

```
java -Xmx6g -jar GATK -T BaseRecalibrator -R Reference -I output.GATKrealigned.Recal.bam -nct #ofCPUS --default_platform ILLUMINA --force_platform ILLUMINA -knownSites DBSNP - knownSites INDEL1 -knownSites INDEL2 -I INFO -BQSR output.GATKrealigned.recal_data.table -log output.BQRecal.After.log - o output.GATKrealigned.recal_data_after.table java -Xmx6g -jar GATK -T AnalyzeCovariates -R Reference -before output.GATKrealigned.recal_data.table -after output.GATKrealigned.recal_data_after.table -plots output.plots.pdf - csv output.plots.csv
```

Base Quality Recalibration

Quality Checks of Recalibration

Cycle Covariate

Cycle Covariate

Method1: Call SNPs and indels separately by considering each variant locus independently; very fast, independent base assumption

Method2: Call SNPs, indels, and some SVs simultaneously by performing a local denovo assembly; more computationally intensive but more accurate

- Prerequsites: GATK
- Calling SNVs and indels simultaneously via local de-novo assembly of haplotypes
 - > Actions:

```
java -Xmx25g -jar GATK -T HaplotypeCaller -nct #ofCPUs -R Reference -I output.GATKrealigned.Recal.bam --genotyping_mode DISCOVERY -- minPruning 3 -ERC GVCF -variant_index_type LINEAR - variant_index_parameter 128000 -stand_emit_conf 10 - stand_call_conf 30 -o output.raw.vcf
```

Tips: -stand_call_conf: Qual score at which to call the variant

-stand_emit_conf: Qual score at which to emit the variant as filtered

-minPruning: Amount of pruning to do in the deBruijn graph

Raw variant files are often very large and full of false positive variant calls.

- Prerequsites: GATK
- Calling SNVs and indels simultaneously via a Bayesian genotype likelihood model
 - Actions:

```
java —Xmx6g -jar GATK -T UnifiedGenotyper -glm BOTH -nt #ofCPUs -R
Reference -S SILENT -dbsnp DBSNP -I
output.GATKrealigned.Recal.bam -l INFO -stand_emit_conf 10 -
stand_call_conf 30 -dcov 200 -metrics output.SNV.1030.raw.metrics -
log output.SNV.1030.raw.log -o output.raw.vcf
```


- Prerequsites: GATK
- 1. Combining any number of gVCF files that were produced by the Haplotype Caller into a single joint gVCF file
 - Actions:

java –Xmx6g -jar GATK -T CombineGVCFs -R Reference --variant GVCFList.list -o combined.raw.vcf

Tip: if you have more than a few hundred WGS samples, run CombineGVCFs on batches of ~200 gVCFs to hierarchically merge them into a single gVCF.

- Prerequsites: GATK
- 1. Combining any number of gVCF files that were produced by the Haplotype Caller into a single joint gVCF file
 - Actions:

```
java –Xmx6g -jar GATK -T GenotypeGVCFs -R Reference -nt #OfCPUs --
variant CombinedGVCFList.list --dbSNP DBSNP -o
AllSubject.GenotypeJoint.raw.vcf
```

Variant Calling

Genotyping Jointly

Variant Quality Score

Recalibration

Purpose: Assigning a well-calibrated probability to each variant call in a call set

- 1. VariantRecalibrator: Create a Gaussian mixture model by looking at the annotqations values over a high quality subset of the input call set and then evaluate all input variants
- **2. ApplyRecalibration**: Apply the model parameters to each variant in input VCF files producing a recalibrated VCF file

Tips: Recalibrating first only SNPs and then indels, separately

Variant Calling

Genotyping Jointly

Variant Quality Score

Recalibration

Prerequisites: GATK

Actions:

- 1) java -Xmx6g -jar GATK -T VariantRecalibrator -R Reference -input raw.vcf -nt #OfCPUs -an DP -an QD -an FS {...} -resource RESOURCE mode SNP -recalFile SNP.recal -tranchesFile SNP.tranches
- 2) java -Xmx6g -jar GATK -T ApplyRecalibration -R Reference -input raw.vcf -nt #OfCPUs -mode SNP -recalFile SNP.recal -tranchesFile SNP.tranches -o recal.SNP.vcf -ts_filter_level 99.5

Variant Calling

Genotyping Jointly

Variant Quality Score

Recalibration

- Prerequisites: GATK
 - > RESOURCE

```
-resource:hapmap,known=false,training=true,truth=true,prior=15.0 HAPMAP
```

- -resource:omni,known=false,training=true,truth=true,prior=12.0 OMNI
- -resource:1000G,known=false,training=true,truth=false,prior=10.0 G1000
- -resource:dbsnp,known=true,training=false,truth=false,prior=2.0 **DBSNP**

- Prerequsites: ANNOVAR (http://www.openbioinformatics.org/annovar/)
- 1. Utilizing update-to-date information to functionally annotate genetic variants detected from diverse genomes (including human genome hg18, hg19, as well as mouse, worm, fly, yeast and many others)
 - > Actions:
 - convert2annovar.pl -format vcf4old merged_818subjects.vcf > merged_815subjects.avinput
 - 2) table_annovar.pl merged_818subjects.avinput humandb/ -buildver hg19 -out ADNI_WGS_818Subjects -remove -protocol refGene,phastConsElements46way,genomicSuperDups,esp6500si_all, 1000g2012apr_all,snp135,ljb2_all -operation g,r,r,f,f,f,f -nastring NA csvout

- Prerequsites: GATK, PLINK
- 1. General-purpose tool for variant evaluation (% in dnSNP, genotype concordance, Ti/Tv ratios, and a lot more)
 - Actions:
 - java –Xmx6g -jar GATK -T VariantEval -R Reference -nt #OfCPUs --eval merged_818subjects.vcf --dbsnp DBSNP -o merged_818subjects.gatkreport
 - 2) Comparing SNPs from sequencing and SNPs from genotyping if any

Primary Analysis

- Common Variants (MAF ≥ 0.05)
 - PLINK (http://pngu.mgh.harvard.edu/~purcell/plink/)
- Rare Variants (MAF < 0.05): gene-based analysis
 - SKAT-O
 - (ftp://cran.r-project.org/pub/R/web/packages/SKAT/)
 - Variants was assigned to genes based on annotation

```
>install.packages("SKAT")
>library(SKAT)
>setwd("/net/scratch1/PARSED CHR19 WGS/Extract SNVs/RELN")
>Project.BED="merged RELN mafLT005_final_Nonsyn.bed"
>Project.BIM="merged RELN mafLT005 final Nonsyn.bim"
>Project.FAM="merged RELN mafLT005 final Nonsyn.fam"
>Project.SetID="merged RELN mafLT005 final Nonsyn.SetID"
>Project.SSD="merged RELN mafLT005 final Nonsyn.SSD"
>Project.Info="merged RELN mafLT005 final Nonsyn.SSD.info"
>Generate SSD SetID(Project.BED, Project.BIM, Project.FAM, Project.SetID, Project.SSD, Project.Info)
Check duplicated SNPs in each SNP set
No duplicate
757 Samples, 1 Sets, 48 Total SNPs
[1] "SSD and Info files are created!"
> SSD.INFO=Open SSD(Project.SSD,Project.Info)
757 Samples, 1 Sets, 48 Total SNPs
Open the SSD file
```

```
knho@login1: awk '{print "RELN", $2}' merged_RELN_mafLT005_final_Nonsyn.bim > merged_RELN_mafLT005_final_Nonsyn.SetID
```

```
knho@login1: awk '{print $2}' merged_RELN_mafLT005_final_Nonsyn.bim > merged_RELN_mafLT005_final_Nonsyn.SSD
```

```
>Project.Cov="ADNI_AV45_pheno_AV45_Global_CBL_final_110613_Knho.txt"
>Project_Cov=Read_Plink_FAM_Cov(Project.FAM,Project.Cov,Is.binary=TRUE)
>
>y=Project_Cov$AV45_Global_CBL
>x1=Project_Cov$PTGENDER
>x2=Project_Cov$Age_PET
>
> obj=SKAT_Null_Model(y~x1+x2,out_type="C")
Warning message:
110 samples have either missing phenotype or missing covariates. They are excluded from the analysis!
```

```
>out=SKAT.SSD.All(SSD.INFO,obj,method="optimal.adj")
Warning message:
5 SNPs with either high missing rates or no-variation are excluded!
> out
$results
 SetID P.value N.Marker.All N.Marker.Test
1 RELN 0.0050259
                        48
                                 43
$P.value.Resampling
NULL
attr(,"class")
[1] "SKAT_SSD_ALL"
```