The Applied Pi Calculus. . . with Proofs

Bruno Blanchet

INRIA Paris-Rocquencourt

joint work with Martín Abadi and Cédric Fournet

April 2015

The applied pi calculus

Secure Communication, POPL'01).

Designed by Abadi and Fournet (Mobile Values, New Names, and

- Extension of the pi calculus with terms instead of names for messages.
- Language for modeling security protocols:
 - Terms represent protocol messages.
 - Function symbols represent cryptographic primitives.
 - The properties of these primitives are modeled by equations.
 - The input language of ProVerif is a dialect of the applied pi calculus.
- The applied pi calculus and ProVerif are widely used.
 - Interesting to make them converge, with a solid theoretical foundation.

Our contribution

- Minor changes to the language
 - Closer to ProVerif
- Detailed proofs of all results
 - Minor fixes; some side-conditions were not explicit
 - 74 pages of proofs...
- Revised examples
 - New example on indifferentiability

Related work

- Avik Chaudhuri (private communication, 2007)
 - found a counter-example to "observational equivalence equals labelled bisimilarity", due to a missing side-condition.
- Bengtson et al, LICS'09
 - mentioned a similar counter-example;
 - proposed a framework for defining various extensions of the pi calculus (psi-calculi), with machine-checked proofs.
- Jia Liu (http://lcs.ios.ac.cn/~jliu/papers/LiuJia0608.pdf)
 - made the missing side-condition explicit, and gave a proof of "observational equivalence equals labelled bisimilarity";
 - closer to the original applied pi calculus paper;
 - extension to a stateful variant (POST'14, with Arapinis, Ritter, and Ryan).

terms

Syntax: processes

L, M, N, T, U, V ::=

```
a, b, c, \ldots, k, \ldots, m, n, \ldots, s
                                                   name
                                                  variable
     X, Y, Z
     f(M_1,\ldots,M_l)
                                                  function application
P, Q, R ::=
                                        processes (or plain processes)
                                             null process
     P \mid Q
                                             parallel composition
     ΙP
                                             replication
     \nu n P
                                             name restriction ("new")
     if M = N then P else Q
                                             conditional
     u(x).P
                                             message input
     \overline{u}\langle M\rangle.P
                                             message output
```

The language Proof

terms

Syntax: processes

```
L, M, N, T, U, V ::=
    a, b, c, \ldots, k, \ldots, m, n, \ldots, s
                                                  name
                                                  variable
    X, Y, Z
    f(M_1,\ldots,M_l)
                                                  function application
P, Q, R ::=
                                        processes (or plain processes)
                                             null process
     P \mid Q
                                             parallel composition
     ١P
                                             replication
    \nu n P
                                             name restriction ("new")
    if M = N then P else Q
                                             conditional
    N(x).P
                                             message input
     \overline{N}\langle M\rangle.P
                                             message output
```

Syntax: extended processes

```
A, B, C ::= P
A \mid B
\nu n. A
\nu x. A
\binom{M}{x}
```

extended processes

plain process

parallel composition

name restriction

variable restriction

active substitution

- Active substitutions model the knowledge of the adversary.
- ${M_1/x_1, \ldots, M_I/x_I}$ for ${M_1/x_1} \mid \ldots \mid {M_I/x_I}$.
- Substitutions are cycle-free.
- At most one substitution for each variable.
- Exactly one when the variable is restricted.

Sorts

Variables, names, and functions come with sorts:

- $u : \tau$ means that u has sort τ .
 - Examples of sorts: Integer, Key, Data, ...
 - There are infinite numbers of variables and names of each sort.
- $f: \tau_1 \times \cdots \times \tau_l \to \tau$ means that f has arguments of sorts τ_1, \ldots, τ_l and a result of sort τ .

Sorts

Special sort Channel $\langle \tau \rangle$ for channels.

Sorts

Special sort Channel for channels.

• The unsorted applied pi is a particular case of the sorted applied pi, using the single sort Channel.

The sort system enforces that:

- Functional applications are well-sorted.
- M and N are of the same sort in the conditional expression.
- N has sort Channel in the input and output expressions.
 - The sort system can enforce that channels are names or variables: choose types of functions so that no function returns sort Channel.
- Active substitutions preserve sorts.

Semantics: equations

The signature Σ is equipped with an equational theory

- closed under substitutions of terms for variables and names;
 - intuitively, defined from equations that do not contain names;
- respects the sort system;
- non-trivial, that is, there exist two different terms in each sort.

Example

$$fst((x,y)) = x$$

$$snd((x,y)) = y$$

$$dec(enc(x,y),y) = x$$

$$check(x,sign(x,sk(y)),pk(y)) = ok$$

Equality modulo the equational theory: $\Sigma \vdash M = N$.

Semantics: preliminary definitions

Processes are considered equal modulo renaming of bound names and variables.

• Needed to define $P\{M/x\}$.

A context is a (possibly extended) process with a hole.

An evaluation context is a context whose hole is not under a replication, a conditional, an input, or an output.

```
E ::=

A | E
E | A
νn.E
νx.E
```

```
evaluation context
hole
parallel composition
parallel composition
name restriction
variable restriction
```


Semantics: structural equivalence

Structural equivalence ≡

- equivalence relation
- closed by application of evaluation contexts

PAR-0
$$A \equiv A \mid \mathbf{0}$$

PAR-A $A \mid (B \mid C) \equiv (A \mid B) \mid C$
PAR-C $A \mid B \equiv B \mid A$
REPL $!P \equiv P \mid !P$
NEW-0 $\nu n.0 \equiv \mathbf{0}$
NEW-C $\nu u.\nu v.A \equiv \nu v.\nu u.A$
NEW-PAR $A \mid \nu u.B \equiv \nu u.(A \mid B)$
when $u \notin fv(A) \cup fn(A)$
ALIAS $\nu x. \binom{M}{x} \equiv \mathbf{0}$
SUBST $\binom{M}{x} \mid A \equiv \binom{M}{x} \mid A \binom{M}{x}$
REWRITE $\binom{M}{x} \equiv \binom{N}{x}$ when $\Sigma \vdash M = N$

The language Main theorem Proof

Semantics: internal reduction

Internal reduction \rightarrow

- closed by structural equivalence
- closed by application of evaluation contexts

COMM
$$\overline{N}\langle x \rangle.P \mid N(x).Q \rightarrow P \mid Q$$
THEN if $M = M$ then P else $Q \rightarrow P$

ELSE if $M = N$ then P else $Q \rightarrow Q$
for any ground terms M and N such that $\Sigma \not\vdash M = N$

Using structural equivalence:

$$\overline{N}\langle M \rangle.P \mid N(x).Q \equiv \nu x.(\{{}^{M}/_{x}\} \mid \overline{N}\langle x \rangle.P \mid N(x).Q)
\rightarrow \nu x.(\{{}^{M}/_{x}\} \mid P \mid Q) \text{ by COMM}
\equiv P \mid Q\{{}^{M}/_{x}\}$$

12 / 47

Preliminary definitions

- dom(A): domain, set of variables that A exports.
- $f_V(A)$: free variables
- A is closed when its free variables are all defined by an active substitution, that is, dom(A) = fv(A).
- $E[_{-}]$ closes A when E[A] is closed.
- $A \Downarrow a$ when $A \to^* \equiv E[\overline{a}\langle M \rangle.P]$ for some evaluation context $E[_]$ that does not bind a.
 - A can send a message on channel a.

Observational equivalence

Definition

An observational bisimulation is a symmetric relation \mathcal{R} between closed extended processes with the same domain such that $A \mathcal{R} B$ implies:

- \bigcirc if $A \Downarrow a$, then $B \Downarrow a$;
- ② if $A \to^* A'$ and A' is closed, then $B \to^* B'$ and $A' \mathcal{R} B'$ for some B';
- **3** $E[A] \mathcal{R} E[B]$ for all closing evaluation contexts E[.].

Observational equivalence (\approx) is the largest such relation.

- Intuitively, $A \approx B$ when an adversary (evaluation context) cannot distinguish A from B.
- Hard to prove because of the universal quantification over all contexts
 - Use a labeled bisimulation.

Equality in a frame

A frame φ is an extended process built up from ${\bf 0}$ and active substitutions $\{{}^M\!/_{\!x}\}$ by parallel composition and restriction.

The frame of A, $\varphi(A)$, is obtained replacing every plain process in A with $\mathbf{0}$.

Definition

Two terms M and N are equal in the frame φ , written $(M = N)\varphi$, if and only if

- $fv(M) \cup fv(N) \subseteq dom(\varphi)$,
- $\varphi \equiv \nu \widetilde{n}.\sigma$, $M\sigma = N\sigma$, and $\{\widetilde{n}\} \cap (fn(M) \cup fn(N)) = \emptyset$ for some names \widetilde{n} and substitution σ .

Independent of the representative $\nu \widetilde{n}.\sigma$.

Static equivalence

Definition

Two closed frames φ and ψ are statically equivalent, written $\varphi \approx_s \psi$, when

- $dom(\varphi) = dom(\psi)$ and
- for all terms M and N, $(M = N)\varphi$ if and only if $(M = N)\psi$.

Two closed extended processes are statically equivalent, written $A \approx_s B$, when their frames are statically equivalent.

- Static equivalence $\varphi \approx_s \psi$ expresses that the frames cannot be distinguished by performing equality tests.
- $A \approx_s B$ expresses that the current knowledge of the adversary in the processes A and B does not allow it to distinguish A from B. The dynamic behavior of A and B is ignored.

April 2015

Labels

The labelled semantics defines $A \xrightarrow{\alpha} A'$ where α is a label:

- N(M): input of M on channel N;
- $\nu x.\overline{N}\langle x\rangle$: output of x on channel N. x must not occur in N.

$$bv(N(M)) \stackrel{\text{def}}{=} \emptyset$$
 and $bv(\nu x.\overline{N}\langle x\rangle) \stackrel{\text{def}}{=} \{x\}$.
 $fv(N(M)) \stackrel{\text{def}}{=} fv(N) \cup fv(M)$ and $fv(\nu x.\overline{N}\langle x\rangle) \stackrel{\text{def}}{=} fv(N)$.

The conference paper has labels $\overline{a}\langle u\rangle$ and $\nu u.\overline{a}\langle u\rangle$ for outputs.

- We simplify the semantics by having a single output label.
- One always needs to create a fresh variable for the output message.
- A refined semantics allows $\nu \tilde{u}.\overline{N}\langle M \rangle$ as label.

Labeled semantics

IN
$$N(x).P \xrightarrow{N(M)} P\{M/x\}$$
OUT-VAR
$$\frac{x \notin fv(\overline{N}\langle M \rangle.P)}{\overline{N}\langle M \rangle.P \xrightarrow{\nu \times .\overline{N}\langle x \rangle} P|\{M/x\}}$$
SCOPE
$$\frac{A \xrightarrow{\alpha} A' \quad u \text{ does not occur in } \alpha}{\nu u.A \xrightarrow{\alpha} \nu u.A'}$$
PAR
$$\frac{A \xrightarrow{\alpha} A' \quad bv(\alpha) \cap fv(B) = \emptyset}{A|B \xrightarrow{\alpha} A'|B}$$
STRUCT
$$\frac{A \equiv B \quad B \xrightarrow{\alpha} B' \quad B' \equiv A'}{A \xrightarrow{\alpha} A'}$$

4□ > 4□ > 4 = > 4 = > = 90

Labeled bisimilarity

Definition

A labelled bisimulation is a symmetric relation \mathcal{R} on closed extended processes such that $A \mathcal{R} B$ implies:

- ② if $A \to A'$ and A' is closed, then $B \to^* B'$ and $A' \mathcal{R} B'$ for some B';
- ③ if $A \xrightarrow{\alpha} A'$, A' is closed, and $fv(\alpha) \subseteq dom(A)$, then $B \to^* \xrightarrow{\alpha} \to^* B'$ and $A' \times B'$ for some B'.

Labelled bisimilarity (\approx_I) is the largest such relation.

- Item 1 guarantees that the adversary cannot distinguish A from B using its current knowledge.
- Items 2 and 3 guarantee that this property is preserved by reduction.

April 2015

Main theorem

Theorem

Observational equivalence is labelled bisimilarity: $\approx = \approx_l$.

Bengtson et al's counter example

$$A = \nu a.(\lbrace {}^{a}/_{x}\rbrace \mid x(y).\overline{b}\langle M\rangle.\mathbf{0}) \qquad B = \nu a.(\lbrace {}^{a}/_{x}\rbrace \mid \mathbf{0})$$

- A and B are not observationally equivalent
 - The context $\overline{x}\langle N \rangle$ distinguishes them.
- According to the POPL'01 paper:
 - A and B have the same frame and no transitions,
 - so they are labelled bisimilar.
- A possible fix is to require that exported variables must not be of channel type.
- In our semantics,
 - A has a labelled transition x(N),
 - so A and B are not labelled bisimilar.

Motivation

- Structural equivalence complicates the analysis of possible reductions in a process.
- In a process $A \mid B$,
 - ullet substitutions in A may influence the possible reductions in B,
 - and conversely, substitutions in B may influence reductions in A.

Partial normal forms

Partial formal form of an extended process A:

$$\operatorname{pnf}(A) = \nu \widetilde{n}.(\{\widetilde{M}/_{\widetilde{X}}\} \mid P)$$

with
$$(fv(P) \cup fv(\widetilde{M})) \cap \{\widetilde{x}\} = \emptyset$$
.

Formally defined by induction on A.

Lemma

$$A \equiv pnf(A)$$
.

Structural equivalence on plain processes

Structural equivalence $\stackrel{\diamond}{\equiv}$ on plain processes

- equivalence relation
- closed by application of evaluation contexts

```
PAR-\mathbf{0}' P \mid \mathbf{0} \stackrel{\triangle}{=} P

PAR-A' P \mid (Q \mid R) \stackrel{\triangle}{=} (P \mid Q) \mid R

PAR-C' P \mid Q \stackrel{\triangle}{=} Q \mid P

REPL' !P \stackrel{\triangle}{=} P \mid !P

NEW-\mathbf{0}' \nu n.\mathbf{0} \stackrel{\triangle}{=} \mathbf{0}

NEW-C' \nu n.\nu n'.P \stackrel{\triangle}{=} \nu n'.\nu n.P

NEW-PAR' P \mid \nu n.Q \stackrel{\triangle}{=} \nu n.(P \mid Q) when n \notin fn(P)

REWRITE' P \{ M/_{x} \} \stackrel{\triangle}{=} P \{ N/_{x} \} when \Sigma \vdash M = N
```


Structural equivalence on partial normal forms

Structural equivalence $\stackrel{\circ}{\equiv}$ on extended processes in partial normal form

equivalence relation

$$\frac{P \stackrel{\diamond}{=} P' \qquad (fv(P) \cup fv(P')) \cap dom(\sigma) = \emptyset}{\nu \tilde{n}.(\sigma \mid P) \stackrel{\circ}{=} \nu \tilde{n}.(\sigma \mid P')}$$

$$\frac{\tilde{n}' \text{ is a reordering of } \tilde{n}}{\nu \tilde{n}.(\sigma \mid P) \stackrel{\diamond}{=} \nu \tilde{n}'.(\sigma \mid P)}$$

$$\frac{n' \notin fn(\sigma)}{\nu \tilde{n}.(\sigma \mid \nu n'.P) \stackrel{\diamond}{=} \nu \tilde{n}, n'.(\sigma \mid P)}$$

$$\frac{dom(\sigma) = dom(\sigma') \qquad \Sigma \vdash x\sigma = x\sigma' \text{ for all } x \in dom(\sigma)}{(fv(x\sigma) \cup fv(x\sigma')) \cap dom(\sigma) = \emptyset \text{ for all } x \in dom(\sigma)}$$

$$\frac{(fv(x\sigma) \cup fv(x\sigma')) \cap dom(\sigma) = \emptyset \text{ for all } x \in dom(\sigma)}{\nu \tilde{n}.(\sigma \mid P) \stackrel{\diamond}{=} \nu \tilde{n}.(\sigma' \mid P)}$$

Links between structural equivalences

Lemma

- If $A \equiv B$, then $pnf(A) \stackrel{\circ}{\equiv} pnf(B)$.
- If $P \stackrel{\diamond}{\equiv} Q$, then $P \equiv Q$.
- If $A \stackrel{\circ}{\equiv} B$, then $A \equiv B$.

By induction on the derivations.

Internal reduction

Internal reduction \rightarrow_{\diamond} on plain processes

- ullet closed by $\stackrel{\diamond}{\equiv}$
- closed by application of evaluation contexts

COMM'
$$\overline{N}\langle M \rangle . P \mid N(x) . Q \rightarrow_{\diamond} P \mid Q\{^{M}/_{x}\}$$
THEN' if $M = M$ then P else $Q \rightarrow_{\diamond} P$
ELSE' if $M = N$ then P else $Q \rightarrow_{\diamond} Q$
for any ground terms M and N
such that $\Sigma \not\vdash M = N$

Internal reduction \rightarrow_\circ on extended processes in partial normal form

• closed by
$$\stackrel{\circ}{\equiv}$$
• $\frac{P \to_{\diamond} P'}{\nu \widetilde{n}.(\sigma \mid P) \to_{\circ} \nu \widetilde{n}.(\sigma \mid P')}$

Link between internal reductions

Lemma

- If $A \to B$, then $pnf(A) \to_{\circ} pnf(B)$.
- If $P \rightarrow_{\diamond} Q$, then $P \rightarrow Q$.
- If $A \rightarrow_{\circ} B$, then $A \rightarrow B$.

By induction on the derivations.

Labelled reduction on plain processes

Labelled reduction $P \xrightarrow{\alpha}_{\diamond} A$ on plain processes

IN'
$$N(x).P \xrightarrow{N(M)} P\{M/x\}$$
OUT-VAR'
$$\frac{x \notin fv(\overline{N}\langle M \rangle.P)}{\overline{N}\langle M \rangle.P \xrightarrow{\nu x.\overline{N}\langle x \rangle} P|\{M/x\}}$$
SCOPE'
$$\frac{P \xrightarrow{\alpha} A \quad n \text{ does not occur in } \alpha}{\nu n.P \xrightarrow{\alpha} \nu n.A}$$
PAR'
$$\frac{P \xrightarrow{\alpha} A \quad bv(\alpha) \cap fv(Q) = \emptyset}{P|Q \xrightarrow{\alpha} A|Q}$$
STRUCT'
$$\frac{P \stackrel{\alpha}{=} Q \quad Q \xrightarrow{\alpha} B \quad B \equiv A}{P \xrightarrow{\alpha} A}$$

Bruno Blanchet (INRIA)

Proof

Labelled reduction on partial normal forms

Labelled reduction $A \xrightarrow{\alpha}_{\circ} B$, where

- A is an extended process in partial normal form and
- B is an extended process

$$A \stackrel{\circ}{=} \nu \widetilde{n}.(\sigma \mid P) \qquad P \stackrel{\alpha'}{\longrightarrow}_{\diamond} B' \qquad B \equiv \nu \widetilde{n}.(\sigma \mid B')$$

$$f\nu(\sigma) \cap b\nu(\alpha') = \emptyset \qquad \Sigma \vdash \alpha\sigma = \alpha'$$
the elements of \widetilde{n} do not occur in α

$$A \stackrel{\alpha}{\longrightarrow}_{\diamond} B$$

$$A \xrightarrow{\alpha}_{\circ} E$$

Links between labelled reductions

Lemma (Characterization of labelled reductions)

 $P \xrightarrow{\alpha}_{} A$ if and only if for some \widetilde{n} , P_1 , P_2 , A_1 , N, M, P', x, $P \stackrel{\diamond}{=} \nu \widetilde{n}.(P_1 \mid P_2)$, $A \equiv \nu \widetilde{n}.(A_1 \mid P_2)$, $\{\widetilde{n}\} \cap fn(\alpha) = \emptyset$, $bv(\alpha) \cap fv(P_1 \mid P_2) = \emptyset$, and one of the following two cases holds:

- **1** $\alpha = N(M)$, $P_1 = N(x).P'$, and $A_1 = P'\{\frac{M}{x}\}$; or

Lemma

- If $A \xrightarrow{\alpha} B$, then $pnf(A) \xrightarrow{\alpha}_{\circ} B$.
- If $P \xrightarrow{\alpha} A$, then $P \xrightarrow{\alpha} A$.
- If $A \xrightarrow{\alpha}_{\circ} B$, then $A \xrightarrow{\alpha} B$.

Decomposition of labelled reductions: plain processes

Lemma

Suppose that P_0 is closed, α is $\nu x.\overline{N'}\langle x\rangle$ or N'(M') for some ground term N', and $P_0 \xrightarrow{\alpha}_{> 0} A$. Then one of the following cases holds:

- $P_0 = P \mid Q$ and either $P \xrightarrow{\alpha}_{\diamond} A'$ and $A \equiv A' \mid Q$, or $Q \xrightarrow{\alpha}_{\diamond} A'$ and $A \equiv P \mid A'$, for some P, Q, and A';
- 2 $P_0 = \nu n.P$, $P \xrightarrow{\alpha}_{\diamond} A'$, and $A \equiv \nu n.A'$ for some P, A', and n that does not occur in α ;
- **3** $P_0 = !P$, $P \xrightarrow{\alpha}_{\diamond} A'$, and $A \equiv A' \mid !P$ for some P and A';
- **②** $P_0 = N(x).P$, $\alpha = N'(M')$, $\Sigma \vdash N = N'$, and $A \equiv P\{M'/x\}$ for some N, x, P, N', and M';
- **3** $P_0 = \overline{N}\langle M \rangle.P$, $\alpha = \nu x.\overline{N'}\langle x \rangle$, $\Sigma \vdash N = N'$, $x \notin fv(P_0)$, and $A \equiv P \mid \{^M/_x\}$ for some N, M, P, x, and N'.

◆ロト ◆御 ト ◆ 恵 ト ◆ 恵 ・ 夕 ♀

Decomposition of labelled reductions: partial normal forms

Lemma

If

- $\nu \tilde{n}.(\sigma \mid P)$ is a closed extended process in partial normal form,
- $\nu \widetilde{n}.(\sigma \mid P) \xrightarrow{\alpha}_{\circ} A$,
- $fv(\alpha) \subseteq dom(\sigma)$, and
- the elements of \widetilde{n} do not occur in α ,

then $P \xrightarrow{\alpha \sigma}_{\diamond} A'$, $A \equiv \nu \widetilde{n}.(\sigma \mid A')$, and $bv(\alpha) \cap dom(\sigma) = \emptyset$ for some A'.

Composition of labelled reductions

Lemma

If

- P and Q are closed processes, N is a ground term,
- $P \xrightarrow{N(x)} A$, and
- $Q \xrightarrow{\nu \times .\overline{N}\langle x \rangle} B$,

then $P \mid Q \rightarrow_{\diamond} R$ and $R \equiv \nu x.(A \mid B)$ for some R.

Decomposition of internal reductions: plain processes

Lemma

Suppose that P_0 is a closed process and $P_0 \rightarrow_{\diamond} R$. Then one of the following cases holds:

- **1** $P_0 = P \mid Q$ for some P and Q, and one of the following cases holds:
 - $\bullet \ P \to_{\diamond} P' \ \text{and} \ R \equiv P' \mid Q \ \text{for some closed process} \ P',$
 - $P \xrightarrow{N(x)} A, Q \xrightarrow{\nu x. N\langle x \rangle} B, \text{ and } R \equiv \nu x. (A \mid B) \text{ for some } A, B, x, \text{ and } ground \text{ term } N,$

and two symmetric cases obtained by swapping P and Q;

- 2 $P_0 = \nu n.P$, $P \rightarrow_{\diamond} Q'$, and $R \equiv \nu n.Q'$ for some n and some closed processes P and Q';
- **3** $P_0 = !P$, $P \mid P \rightarrow_{\diamond} Q'$, and $R \equiv Q' \mid !P$ for some closed processes P and Q'.
- **1** $P_0 = if M = N$ then P else Q and either $\Sigma \vdash M = N$ and $R \equiv P$, or $\Sigma \vdash M \neq N$ and $R \equiv Q$, for some M, N, P, and Q.

Decomposition of internal reductions: partial normal forms

Lemma

If

- \bullet $\nu \widetilde{n}.(\sigma \mid P)$ is a closed extended process in partial normal form and
- $\nu \widetilde{n}.(\sigma \mid P) \rightarrow_{\circ} A$,

then $P \to_{\diamond} P'$ and $A \equiv \nu \tilde{n}.(\sigma \mid P')$ for some closed process P'.

Proof technique

- Induction on the derivations.
- Strenghten the inductive invariant, to be able to apply the current lemma to a derivation built as a result of applying the inductive hypothesis.

Static equivalence

Lemma

Static equivalence is

- invariant by structural equivalence and reduction, and
- closed by application of closing evaluation contexts.

For the second point,

- show that we can restrict ourselves to contexts $E = \nu \widetilde{u}.(-|C|)$ such that all subcontexts of E are closing.
- proceed by structural induction on E.

Context closure

Lemma

 \approx_l is closed by application of closing evaluation contexts.

- Restrict attention to contexts of the form $\nu \widetilde{u}.(-\mid C)$.
- To every relation \mathcal{R} on closed extended processes, we associate $\mathcal{R}' = \{(\nu \widetilde{u}.(A \mid C), \nu \widetilde{u}.(B \mid C)) \mid A \mathcal{R} B, \nu \widetilde{u}.(_ \mid C) \text{ closing for } A \text{ and } B\}.$
- We prove that, if \mathcal{R} is a labelled bisimulation, then \mathcal{R}' is a labelled bisimulation up to \equiv , hence $\mathcal{R} \subseteq \mathcal{R}' \subseteq \approx_I$.
- For $\mathcal{R} = \approx_I$, this property entails that \approx_I is closed by application of evaluation contexts $\nu \widetilde{u}.(_ \mid C)$.

Context closure

- To every relation \mathcal{R} on closed extended processes, we associate $\mathcal{R}' = \{(\nu \widetilde{u}.(A \mid C), \nu \widetilde{u}.(B \mid C)) \mid A \mathcal{R} B, \nu \widetilde{u}.(_ \mid C) \text{ closing for } A \text{ and } B\}.$
- We prove that, if \mathcal{R} is a labelled bisimulation, then \mathcal{R}' is a labelled bisimulation up to \equiv .

Definition

A relation \mathcal{R} on closed extended processes is a labelled bisimulation up to \equiv if and only if \mathcal{R} is symmetric and $A \mathcal{R} B$ implies:

- ② if $A \to A'$ and A' is closed, then $B \to^* B'$ and $A' \equiv \mathcal{R} \equiv B'$ for some closed B';
- **3** if $A \xrightarrow{\alpha} A'$, A' is closed, and $fv(\alpha) \subseteq dom(A)$, then $B \to^* \xrightarrow{\alpha} \to^* B'$ and $A' \equiv \mathcal{R} \equiv B'$ for some closed B'.

Context closure

- To every relation \mathcal{R} on closed extended processes, we associate $\mathcal{R}' = \{(\nu \widetilde{u}.(A \mid C), \nu \widetilde{u}.(B \mid C)) \mid A \mathcal{R} B, \nu \widetilde{u}.(_ \mid C) \text{ closing for } A \text{ and } B\}.$
- We prove that, if \mathcal{R} is a labelled bisimulation, then \mathcal{R}' is a labelled bisimulation up to \equiv .

Assume $S \mathcal{R}' T$, with $S = \nu \widetilde{u}.(A \mid C)$, $T = \nu \widetilde{u}.(B \mid C)$, and $A \mathcal{R} B$.

- $S \approx_s T$ follows from $A \approx_s B$ by a previous lemma.
- For reductions, consider the partial normal forms of A, B, C: $\operatorname{pnf}(A) = \nu \widetilde{n}.(\sigma \mid P), \ \operatorname{pnf}(B) = \nu \widetilde{n}'.(\sigma' \mid P'), \ \operatorname{pnf}(C) = \nu \widetilde{n}''.(\sigma'' \mid P'').$

A reduction on $S = \nu \widetilde{u}.(A \mid C)$ implies a reduction on $P \mid P''\sigma$, so a reduction on P and/or $P''\sigma$ (by the decomposition lemmas).

A reduction on P implies a reduction A, so the same reduction on B since \mathcal{R} is a labelled bisimulation, so a reduction on P'.

A reduction on $P''\sigma$ implies a reduction on $P''\sigma'$ by static equivalence $A \approx_s B$.

Hence we obtain a reduction on $P' \mid P''\sigma'$, hence on $T = \nu \widetilde{u}.(B \mid C)$.

Characterizing barbs

Lemma

Let A be a closed extended process.

 $A \Downarrow a$ if and only if $A \to^* \frac{\nu x.\overline{a}\langle x \rangle}{} A'$ for some fresh variable x and some A'.

 $A \equiv E[\overline{a}\langle M \rangle.P]$ for some evaluation context $E[_]$ that does not bind a if and only if

 $A \xrightarrow{\nu x.\overline{a}\langle x\rangle} A'$ for some fresh variable x and some A'.

Labelled bisimilarity implies observational equivalence

Lemma

 $\approx_I \subseteq \approx$.

 \approx_I satisfies the three properties of observational bisimulations:

- \bullet \approx_I preserves barbs, by characterization of barbs and Properties 2 and 3 of a labelled bisimilation.
- ② Suppose that $A \approx_I B$, $A \to^* A'$, and A' is closed. Close all intermediate processes in $A \to^* A'$, then conclude that $B \to^* B'$ and $A' \approx_I B'$ for some B' by Property 2 of a labelled bisimilation.
- \mathfrak{S}_{l} is closed by application of closing evaluation contexts, as shown previously.

Moreover, \approx_I is symmetric. Since \approx is the largest observational bisimulation, we obtain $\approx_I \subseteq \approx$.

Observational equivalence implies static equivalence

Lemma

$$\approx \subseteq \approx_{s}$$
.

If A and B are observationally equivalent, then $A \mid C$ and $B \mid C$ have the same barb $\Downarrow a$ for every C = if M = N then $\overline{a}\langle s \rangle$, where a does not occur in A or B and $fv(M) \cup fv(N) \subseteq dom(A)$.

Assuming that A is closed, $f_V(M) \cup f_V(N) \subseteq dom(A)$, and a does not occur in A, we have

 $(M=N)\varphi(A)$ if and only if $A\mid if\ M=N$ then $\overline{a}\langle s\rangle \Downarrow a$.

(Shown using partial normal forms.)

Characterizing inputs

Let
$$T_{N(M)}^{\rho} \stackrel{\text{def}}{=} \overline{\rho} \langle \rho \rangle \mid \overline{N} \langle M \rangle. \rho(x).$$

Lemma

Let A be a closed extended process. Let N and M be terms such that $fv(\overline{N}\langle M \rangle) \subseteq dom(A)$ and p does not occur in A, M, and N.

- If $A \mid T^p_{N(M)} \to^* A'$ and $A' \not\Downarrow p$, then $A \to^* \xrightarrow{N(M)} \to^* A'$.

Shown using partial normal forms.

Characterizing outputs

Let
$$T^{p,q}_{\nu \times .\overline{N}\langle x \rangle} \stackrel{\text{def}}{=} \overline{p}\langle p \rangle \mid N(x).p(y).\overline{q}\langle x \rangle.$$

Lemma

Let A be a closed extended process and N such that $fv(N) \subseteq dom(A)$.

- If $A \xrightarrow{\nu x. \overline{N}\langle x \rangle} A'$ and p and q do not occur in A, A', and N, then $A \mid T_{\nu x. \overline{N}\langle x \rangle}^{p,q} \to \to \nu x. (A' \mid \overline{q}\langle x \rangle)$, $\nu x. (A' \mid \overline{q}\langle x \rangle) \not \Downarrow p$, and $x \notin dom(A)$.

Shown using partial normal forms.

Bruno Blanchet (INRIA) Applied pi calculus April 2015 44 / 47

Extrusion

Lemma (Extrusion)

Let A and B two closed extended processes with a same domain that contains \widetilde{x} . Let $E_{\widetilde{x}}[_] \stackrel{\text{def}}{=} \nu \widetilde{x}. (\prod_{x \in \widetilde{x}} \overline{n_x} \langle x \rangle |_)$ using names n_x that do not occur in A or B. If $E_{\widetilde{x}}[A] \approx E_{\widetilde{x}}[B]$, then $A \approx B$.

If A is a closed extended process with $\{\widetilde{x}\}\subseteq dom(A)$ and $E_{\widetilde{x}}[A]\to C'$, then $A\to A'$ and $C'\equiv E_{\widetilde{x}}[A']$ for some closed extended process A'. (Proved using partial normal forms.)

Let $A \mathcal{R} B$ if and only if $\{\widetilde{x}\} \subseteq dom(A) = dom(B)$ and $E_{\widetilde{x}}[A] \approx E_{\widetilde{x}}[B]$, for some \widetilde{x} and some names \widetilde{n}_x that do not occur in A or B.

We show that R is an observational bisimulation.

Bruno Blanchet (INRIA)

Observational equivalence implies labelled bisimilarity

Lemma

$$\approx \subseteq \approx_I$$
.

The relation \approx is symmetric. It satisfies the three properties of labelled bisimulations:

- **1** If $A \approx B$, then $A \approx_s B$, shown previously.
- ② If $A \approx B$, $A \to A'$, and A' is closed, then $B \to^* B'$ and $A' \approx B'$ for some B', by Property 2 of the definition of observational bisimulation.
- If $A \approx B$, $A \xrightarrow{\alpha} A'$, A' is closed, and $fv(\alpha) \subseteq dom(A)$, then $B \to^* \xrightarrow{\alpha} \to^* B'$ and $A' \approx B'$ for some B'. To prove this property, we rely on characteristic parallel contexts T_α , shown in previous lemmas. In the output case, we obtain a pair $\nu x.(A' \mid \overline{q}\langle x \rangle) \approx \nu x.(B' \mid \overline{q}\langle x \rangle)$, and conclude by the extrusion lemma.

Hence \approx is a labelled bisimulation, and $\approx \subseteq \approx_I$, since \approx_I is the largest labelled bisimulation.

Conclusion

- Importance of detailed proofs.
 - Could be interesting to formalize in a theorem prover, e.g. Coq.
- Partial normal forms are likely to be useful for proving many other results about the applied pi calculus.
- With the minor changes we made, one should be able to show that
 - The plain processes of the applied pi calculus are a subset of the ProVerif input language.
 - The semantics and the notions of observational equivalence match.
- Does anybody want to read the draft?

