MI-SPOL-18

Markovské řetězce s diskrétním časem. Jejich limitní vlastnosti.

Náhodný proces: (Ω,\mathcal{F},P) pravděpodobnostní prostor a $T\subseteq\mathbb{R}$ indexová množina. Systém náhodných veličin $\mathbf{X}=\{X_t|t\in T\},X_t:\Omega\to\mathbb{R}$ je reálný náhodný proces.

T lze chápat jako $oldsymbol{\check{c}as:}$ pokud T nejvýše spočetná, jde o diskrétní $oldsymbol{\check{c}as}$, jinak spojitý $oldsymbol{\check{c}as}$

Množina stavů S: minimální podmnožina $\mathbb R$, pro kterou platí $P(X_t \in S) = 1$ pro každé $t \in T$ -- množina S je společná množina hodnot veličin X_t

 $\mathbf{X}=\{X_t|t\in T\}$ náhodný proces a $\omega\in\Omega$ elementární jev. Funkce $f:T o\mathbb{R}$, kde $orall t\in T:$ $f(t)=X_t(\omega)$ je **trajektorie** nebo **realizace** náhodného procesu \mathbf{X}

Rozdělení v čase $n \in \mathbb{N}$ charakterizované pravděpodobnostní funkcí: $\mathbf{p}_i(n) = P(X_n = i)$, $\mathbf{p}(n) = (\mathbf{p}_1(n), \mathbf{p}_2(n), ...)$ (vektor pravděpodobností pro jednotlivé stavy v čase n)

Matice pravděpodobností přechodu za čas mezi n a $m\geq n$: $\mathbf{P}_{ij}(n,m)=P(X_m=j|X_n=i),$ $\mathbf{P}(n,m)=(\mathbf{P}_{ij}(n,m))_{i,j\in S}$

Markovský řetězec

Náhodný proces $\{X_n|n\in\mathbb{N}_0\}$ s nejvýše spočetnou množinou stavů S je **markovský řetězec s diskrétním časem**, pokdu splňuje **markovskou podmínku:** (zapomínání historie) $\forall n\in\mathbb{N}, \forall s, s_0, ..., s_n-1\in S$ platí:

$$P(X_n = s | X_{n-1} = s_{n-1}, ..., X_1 = s_1, X_0 = s_0) = P(X_n = s | X_{n-1} = s_{n-1})$$

Ekvivaltentní formulace markovské podmínky:

- $ullet P(X_{n+m}=s|X_m=s_m,...,X_1=s_1,X_0=s_0)=P(X_{n+m}=s|X_m=s_m)$
- $orall k\in \mathbb{N}, orall n_0< n_1<...< n_k\in \mathbb{N}_0, orall s_0,...,s_k\in S$ platí: $P(X_{n_k}=s_k|X_{n_{k-1}}=s_{k-1},...,X_{n_0}=s_0)=P(X_{n_k}=s_k|X_{n_{k-1}}=s_{k-1})$

Ekvivalentní definice markovského řetězce:

Náhodný proces $\{X_n|n\in\mathbb{N}_0\}$ s nejvýše spočetnou množinou stavů S je markovský, právě když $\forall k\in\mathbb{N}, \forall n_0< n_1<...< n_k\in\mathbb{N}_0, \forall s_0,...,s_k\in S$ platí:

$$P(X_{n_0} = s_0, ..., X_{n_k} = s_k) = \mathbf{p}_{s_0}(n_0) \cdot \mathbf{P}_{s_0 s_1}(n_0, n_1) \cdot \mathbf{P}_{s_1 s_2}(n_1, n_2) \cdot ... \cdot \mathbf{P}_{s_{k-1} s_k}(n_{k-1}, n_k)$$

Chapman-Kolmogorova rovnice: Pro matice přechodu markovského řetězce platí $\forall n \leq m \leq r \in \mathbb{N}_0$:

$$\mathbf{P}(n,r) = \mathbf{P}(n,m) \cdot \mathbf{P}(m,r)$$

Homogenní markovský řetězec

Markovský řetězec je **homogenní**, pokud $\forall n \in \mathbb{N}, \forall i, j \in S$ platí:

$$P(X_{n+1} = j | X_n = i) = P(X_1 = j | X_0 = i)$$

(Jednokroková) matice přechodu:

$$\mathbf{P} = \mathbf{P}(0,1) = (P(X_1 = j | X_0 = i))_{i,j \in S}$$

Pro homogenní markovský řetězec platí $\forall m,n\in\mathbb{N}_0$:

$$\mathbf{P}(m,m+n)=\mathbf{P}(0,n)=\mathbf{P}^n$$

Matice \mathbf{P}^n se značí i $\mathbf{P}(n)$.

Pravděpodobnost přechodu z $i\in S$ do $j\in S$ během n kroků: $P(X_n=j|X_0=i)=\mathbf{P}_{ij}(n)=(\mathbf{P})_{ij}$

Chapman kolmogorova rovnice pro homogenní řetězec: ${f P}(n+m)={f P}(n)\cdot{f P}(m)$, jinými slovy ${f P}^{n+m}={f P}^n\cdot{f P}^m$

Rozdělení náhodné veličiny X_n :

Pro homogenní řetězec platí: $\mathbf{p}(n) = \mathbf{p}(m) \cdot \mathbf{P}^{n-m} = \mathbf{p}(0) \cdot \mathbf{P}^n$ (vektor pravděpodobností pro jednotlivé časy v čase 0 n-krát vynásobený maticí)

Stochastická matice

Matice přechodu ${f P}$ je **stochastická**:

- $\forall i, j \in S : P_{ij} \geq 0$
- ullet $\forall i \in S: \sum_{j \in S} \mathbf{P}_{ij} = 1$ (součet řádku = 1)

Součin stochastický matic je opět stochastická matice

 \Rightarrow k libovolné čtvercové stochastické matici ${f P}$ existuje **homogenní markovský řetězec s diskrétním časem** takový, že ${f P}$ je jeho maticí přechodu

Stacionární rozdělení:

 $\{X_n|n\in\mathbb{N}_0\}$ homogenní markovský řetězec s maticí přechodu ${f P}$. Pokud existuje vektor π t.ž.:

- ullet $\forall i \in S: \pi_i \geq 0$
- ullet $\sum_{i\in S}\pi_i=1$

Pro který platí, že $\pi\cdot\mathbf{P}=\pi$, nazývá se **stacionárním rozdělením** řetězce. *(rozdělení, ze kterého neuteču)*

Pokud existuje stacionární rozdělení, pak

$$\mathbf{p}(0) = \pi \Rightarrow \mathbf{p}(n) = \pi \mathbf{P}^n = \dots = \pi \mathbf{P} = \pi$$

Potom platí, že

$$P_{\pi}(X_n=i)=\pi_i$$

 $(P_{\pi}$ je šance při počátečním rozdělení $\pi)$

Klasifikace stavů

Stav $i \in S$ je:

- Trvalý (rekurentní): $P(\exists n \in \mathbb{N}: X_n = i | X_0 = i) = 1$ (každá trajektorie začínající v i se do něj někdy v budoucnu stoprocentně vrátí)
- Přechodný (transientní): $P(\exists n \in \mathbb{N}: X_n = i | X_0 = i) < 1$ (existují trajektorie, které se do stavu i už nikdy nevrátí)

Časy návštěv

Čas první návštěvy stavu $i\in S$: $au_i=\min\{n\in\mathbb{N}|X_n=i\}$, pokud množina neprázdná. Jinak $au_i=+\infty$

První návštěva j při startu v i nastane právě v n-tém kroku:

$$f_{ij}(n) = P(au_j = n | X_0 = i), n \geq 1, f_{ij}(0) = 0$$

Pravděpodobnost, že řetězec někdy navštíví j, pokud začal v i:

$$f_{ij}=P(au_j<+\infty|X_0=i)=\sum_{n=1}^\infty f_{ij}(n)$$

Důsledek:

- $i \in S$ trvalý $\Leftrightarrow f_{ii} = P(\tau_i < +\infty | X_0 = i) = 1$
- ullet $i\in S$ přechodný $\Leftrightarrow f_{ii}=P(au_i<+\infty|X_0=i)<1$

Střední doba návratu do stavu $i \in S$:

$$\mu_i = E(au_i|X_0=i) = egin{cases} \sum_{n=1}^\infty n f_{ii}(n) & ext{pokud i trval\'y} \ +\infty & ext{pokud i p
eachedom'y} \end{cases}$$

Stav $i \in S$ je:

• Nenulový: $\mu_i < +\infty$

• Nulový: $\mu_i = +\infty$

Periodicita

Perioda stavu $i\in S$: $d(i)=\gcd\{n\in\mathbb{N}|\mathbf{P}_{ii}(n)>0\}$ (gcd časů, kdy se řetězec vrátí do stavu i) Stav i periodický, pokud d(i)>1, jinak aperiodický

Pro libovolný aperiodický stav $i \in S$ platí:

$$\lim_{n o\infty}\mathbf{P}_{ii}(n)=rac{1}{\mu_i}$$

Pro jakýkoliv jiný stav $j \in S$:

$$\lim_{n o\infty}\mathbf{P}_{ji}(n)=rac{f_{ji}}{\mu_i}$$

Pro periodický stav $i \in S$:

$$\lim_{n o\infty}\mathbf{P}_{ii}(f\cdot d(i))=rac{d(i)}{\mu_i}$$

Klasifikace stavů pomocí matice přechodu

Stav $i \in S$ je:

- přechodný: $\sum_{n=0}^\infty \mathbf{P}_{ii}(n) < +\infty$ trvalý nulový: $\sum_{n=0}^\infty \mathbf{P}_{ii}(n) = +\infty \wedge \lim_{n \to \infty} \mathbf{P}_{ii}(n) = 0$
- ullet trvalý nenulový aperiodický: $\lim_{n o\infty} \mathbf{P}_{ii}(n) = rac{1}{n} > 0$
- ullet trvalý nenulový periodický: Má periodu d(i) a $\lim_{n o\infty} {f P}_{ii}(k\cdot d(i))=rac{d(i)}{\mu_i}>0$

Dosažitelnost

Stav j je **dosažitelný ze stavu** i (i o j), pokud se lze dostat z i do j v konečném čase: $\exists n\in\mathbb{N}_0:$ $\mathbf{P}_{ii}(n) > 0$

Stavy i a j jsou **vzájemně dosažitelné** $(i \leftrightarrow j)$, pokud $i \to j$ a $j \to i$

Pokud $i \leftrightarrow j$, pak jsou **oba stejného typu**

Množiny stavů

Množina $C\subseteq S$ je **uzavřená**, pokud $orall i\in Corall j
otin C: \mathbf{P}_{ii}=0$

Pokud uzavřená množina tvořena jedním stavem, je tento stav pohlcující (absorpční)

Množina stavů $C\subseteq S$ je **nerozložitelná (ireducibilní)**, pokud pro všechna $i,j\in C$ platí $i\leftrightarrow j$

Množinu stavů S lze **jednoznačně rozložit** do tvaru $S=T\cup C_1\cup C_2\cup...$, kde T je množina všechn přechodných stavů a C_1, C_2, \ldots jsou vzájemně disjunktní nerozložitelné množiny trvalých stavů

Matice přechodu po uspořádání stavů:

Uspořádání: řádek (i sloupec) začíná přechodnými stavy, končí trvalými

$$\mathbf{P} = egin{pmatrix} \mathbf{T} & \mathbf{R} \ \mathbf{0} & \mathbf{C} \end{pmatrix}$$

Kde:

- ullet ${f T}$: čtvercová matice přechodů mezi přechodnými stavy v T
- ${f R}={f R}_1\oplus {f R}_2\oplus ...$, kde ${f R}_i$: matice přechodů z množiny přechodných stavů do množiny trvalých stavů
- ullet ${f C}={f C}_1\oplus {f C}_2\oplus ...$, kde ${f C}_i$: čtvercová matice přechodů mezi trvalými stavy v C_i

V řetězci s konečně mnoha stavy nemohou být všechny přechodné a neexistují trvalé nulové

V končené množině stavů existuje stacionární rozdělení

Celkem existuje tolik **lineárně nezávislých** stacionárních rozdělení, kolik existuje nenulových množin C_r

Věta o existenci stacionárního rozdělení: Pro nerozložitelný markovský řetězec platí:

- Pokud všechny stavy přechodné nebo trvalé nulové, stacionární rozdělení neexistuje
- Pokud všechny stavy trvalé nenulové, stacionární rozdělení existuje a je jediné

Pravděpodobnost pohlcení

Čas absorpce: náhodná veličina $au_A:\Omega \to \{0,1,...,+\infty\}$, kde $au_A(\omega)=\min\{n\in\mathbb{N}_0|X_n(\omega)\notin T\}$ pokud množina neprázdná, jinak ∞ (minimální čas kdy se opustí množina přechodných stavů)

Pravděpodobnost, že **řetězec startující v** $i\in T$ opustí T přechodem do $j\in C$: $\mathbf{U}_{ij}=P(X_{ au_A}=j|X_0=i)$ Matice $\mathbf{U}=(\mathbf{U}_{ij})_{i\in T,j\in C}$

Matice pravděpodobností pohlcení ${f U}$ je řešením rovnice ${f U}={f R}+{f T}{f U}$, tedy ${f U}=({f E}-{f T})^{-1}{f R}$ (${f E}$ je jednotková matice)

Počet návštěv stavu $j \in S$: $W_j = \sum_{n=0}^\infty 1_{\{X_n = j\}}$

Střední počet návštěv stavu $j \in S$, když řetězec startuje v i: $\mathbf{N}_{ij} = E(W_j|X_0=i)$

Matici ${f N}$ je fundamentální matice řetězce a platí: ${f N}=({f E}-{f T})^{-1}$

Potom: $\mathbf{U} = \mathbf{N}\mathbf{R}$

Limita matice ${f C}^n$

Struktura matice C:

$$\mathbf{C} = egin{pmatrix} \mathbf{C}_1 & \mathbf{0} & ... \ \mathbf{0} & \mathbf{C}_2 & ... \ dots & dots & \ddots \end{pmatrix}$$

Potom:

$$\mathbf{C}^n = egin{pmatrix} \mathbf{C}^n & \mathbf{0} & ... \ \mathbf{0} & \mathbf{C}^n_2 & ... \ dots & dots & \ddots \end{pmatrix}$$

Pokud všechny trvalé stavy aperiodické:

$$\mathbf{C}^n \stackrel{n o \infty}{\longrightarrow} ilde{\mathbf{C}} = egin{pmatrix} ilde{\mathbf{C}}_1 & \mathbf{0} & ... \ \mathbf{0} & ilde{\mathbf{C}}_2 & ... \ dots & dots & \ddots \end{pmatrix}$$

Kde $(ilde{\mathbf{C}}_r)_{ij}= ilde{\pi}_j^{(r)}$. Matice $ilde{\mathbf{C}}_r$ má v řádcích stacionární rozdělení pod-řetězce C_r

Limita matice \mathbf{P}^n

Pokud $S=T\cup C$ končená množina stavů, C trvalé aperiodické, potom:

$$\lim_{n o\infty}\mathbf{P}^n=\lim_{n o\infty}egin{pmatrix}\mathbf{T}^n&\mathbf{R}_n\\mathbf{0}&\mathbf{C}^n\end{pmatrix}=egin{pmatrix}\mathbf{0}&\mathbf{U} ilde{\mathbf{C}}\\mathbf{0}& ilde{\mathbf{C}}\end{pmatrix}$$

Odhad matice přechodu

Maximálně věrohodným odhadem matice přechodu ${f P}$ je matice $\hat{{f P}}$ s prvky

$$\hat{\mathbf{P}}_{ij} = rac{n_{ij}}{n_{iullet}}$$

Kde n_{ij} počet přechodů z i do j a $n_{iullet} = \sum_{j\in S} n_{ij}$

Odhad metodou maximální věrohodnoti je **konzistentní:** $\hat{\mathbf{P}}_{ij} \xrightarrow{\mathrm{skoro} \ \mathrm{jiste}} \mathbf{P}_{ij}$ při $n o \infty$