1 Tests

1.1 Data sets

- Set 1: Poisson-distributed data. Regression design $(\beta = \{1, 2\})$, $x \sim U[0, 1]$. 10 blocks, 10 reps per block. Random intercept with $\sigma = 1$.
- Set 2: as above but random slope with $\sigma_s = 0.5$.
- Set 3: epil2 data set from glmmADMB
- Set 4: coral/starfish/symbiont experimental predation data set (from Adrian Stier and Seabird McKeon)
- Set 5: contagious bovine pleuropneumonia (CBPP) data set from lme4, originally from Lesnoff et al 2004

1.2 Models

- 0: Data set 1: intercept-only model, random intercepts.
- 1: Data set 1: y~x, random intercepts.
- 2: Data set 1: y~x, random slopes.
- 3-5: as 0-2, but with data set 2
- 6: epil2 data, y~Base*trt+Age+Visit, random slopes (Visit) by subject, negative binomial
- 7: as 6, but Poisson (bad model, but useful for comparison with lme4)
- 8: Data set 4: treatment effects + block (intercept) effect
- 9: Data set 5: period + herd (intercept) effect

All models with multiple random effects (i.e. 2, 5, 6, 7) are fitted with diagonal variance-covariance matrix (i.e. default corStruct="diag" in glm-mADMB, non-default (1|group)+(0+x|group) in glmer).

Note that random effects as stored in glmm.admb objects are unscaled; those in mer are scaled by the standard deviation of the relevant random effect. However, ranef from glmmADMB now returns the scaled random effects.

Would like to test cbpp data from lme4 , but it's binomial with N>1 (i.e. not Bernoulli) so not currently possible with glmmADMB .

2 Comparisons

- > load("singlerand_batch.RData")
- > library(glmmADMB) ## MUST load this first!
- > library(lme4) ## handy for glmer accessors

All fits OK, except:

• Warnings (Estimated covariance matrix may not be positive definite) for models 0-5, 7 with old glmmADMB. (Is this a real difference or a reporting difference? Doesn't seem to be in the TPL file, hence must (?) be coming from ADMB, hence must (?) be real...)

2.0.1 Model 0

1	1.1	7		1 4
mapply	old	newZ	$_{\mathrm{new}}$	lme4
(Intercept)	2.1390000	2.1390000	2.1526000	2.1524974
var(RE).(Intercept)	0.6777200	0.6777200	0.7055200	0.7009971
logLik	-399.4830000	-399.4740000	-401.1910000	-214.4328451
U.(Intercept).min	-1.0550612	-1.0550612	-1.0701833	-1.0698071
U.(Intercept).mean	0.0061092	0.0061381	0.0072664	0.0074201
U.(Intercept).max	1.1101358	1.1101358	1.0956339	1.0956924
time	1.0100000	1.3900000	1.8200000	0.1200000

Conclusions:

- Precision of glmmADMB results is truncated, presumably from printing/reading intermediate files in lowered precision. This applies throughout: not a big deal, but would be nice (and presumably not too hard) to fix.
- there is a clear difference between fixing a zero-inflation proportion of 10^{-3} even when zero-inflation is turned off (i.e., old glmmADMB and new glmmADMB with ZI_kluge=TRUE (newZ)), or really omitting zero-inflation (new glmmADMB and lme4)
- Log-likelihood is obviously computed differently for glmer and glmmADMB

$2.0.2 \mod 1$

mapply	old	new	lme4
(Intercept)	1.0205000	1.0205000	1.0204996
X	1.9001000	1.9001000	1.9001000
var(RE).(Intercept)	0.8814500	0.8814800	0.8758217
logLik	-260.5250000	-260.5080000	-73.7496189
U.(Intercept).min	-1.2520579	-1.2520793	-1.2517375
U.(Intercept).mean	0.0073972	0.0073992	0.0074799
U.(Intercept).max	1.1961021	1.1961225	1.1961017
time	1.7900000	1.7900000	0.2200000

Conclusions:

 \bullet All three agree quite closely (except on LL), although var(RE) is about 0.5% lower for lme4

2.0.3 Model 2

mapply	old	new	lme4
(Intercept)	1.0205000	1.0205000	1.0205034
X	1.9001000	1.9001000	1.9000974
var(RE).(Intercept)	0.8758000	0.8758200	0.8758227
var(RE).x	0.0000069	0.0000000	0.0000000
logLik	-260.5250000	-260.5080000	-73.7496189
U.(Intercept).min	-1.2517821	-1.2517964	-1.2517391
U.(Intercept).mean	0.0074624	0.0074597	0.0074779
U.(Intercept).max	1.1960995	1.1961131	1.1960996
U.x.min	-0.0000429	0.0000000	0.0000000
U.x.mean	0.0000000	0.0000000	0.0000000
U.x.max	0.0000215	0.0000000	0.0000000
time	2.8300000	3.9500000	0.3400000

Conclusions:

• Like model 2: all agree closely

2.0.4 Model 3

mapply	old	new	lme4
(Intercept)	2.0834000	2.0838000	2.0836934
var(RE).(Intercept)	0.5827200	0.5834800	0.5797371
logLik	-356.0520000	-356.0700000	-169.5313261
U.(Intercept).min	-1.0267969	-1.0273135	-1.0268995
U.(Intercept).mean	0.0075214	0.0072689	0.0074029
U.(Intercept).max	1.1822172	1.1819185	1.1819182
time	1.0700000	1.4500000	0.1100000

Conclusions:

• OK

2.0.5 Model 4

mapply	old	new	lme4
(Intercept)	1.1121000	1.1121000	1.1120779
X	1.6540000	1.6540000	1.6539967
var(RE).(Intercept)	0.7214300	0.7214500	0.7168210
logLik	-256.1680000	-256.1500000	-69.6112380
U.(Intercept).min	-1.0584853	-1.0585849	-1.0582890
U.(Intercept).mean	0.0074023	0.0073990	0.0074787
U.(Intercept).max	1.2705731	1.2705907	1.2705182
time	1.1700000	1.6600000	0.2300000

Conclusions:

 $\bullet \ \mathrm{OK}$

2.0.6 Model 5

mapply	old	new	lme4
(Intercept)	1.1121000	1.1121000	1.1120757
X	1.6540000	1.6540000	1.6540212
var(RE).(Intercept)	0.7168000	0.7168200	0.7168311
var(RE).x	0.0000085	0.0000002	0.0000000
logLik	-256.1690000	-256.1500000	-69.6112380
U.(Intercept).min	-1.0582159	-1.0583153	-1.0583266
U.(Intercept).mean	0.0074648	0.0074599	0.0074658
U.(Intercept).max	1.2704686	1.2704863	1.2705328
U.x.min	-0.0000215	-0.0000004	0.0000000
U.x.mean	0.0000001	0.0000000	0.0000000
U.x.max	0.0000592	0.0000011	0.0000000
time	2.6700000	3.3800000	0.3000000

Conclusions:

• OK

2.0.7 Model 6

mapply	old	new
(Intercept)	-1.3321000	-1.3300000
Base	0.8838100	0.8839200
trtprogabide	-0.9302900	-0.9299700
Age	0.4759200	0.4751400
Visit	-0.2697900	-0.2701600
Base:trtprogabide	0.3373800	0.3372400
var(RE).(Intercept)	0.2168800	0.2171700
var(RE).Visit	0.0000297	0.0000000
logLik	-624.5680000	-624.5510000
U.(Intercept).min	-0.8122805	-0.8141282
U.(Intercept).mean	0.0052275	0.0049849
U.(Intercept).max	0.9532956	0.9542590
U.Visit.min	-0.0000723	0.0000000
U.Visit.mean	0.0000000	0.0000000
U.Visit.max	0.0000502	0.0000000
time	15.7000000	15.4200000

${\bf Conclusions:}$

- OK
- glmer can't do this one (negative binomial).

2.0.8 Model 7

mapply	old	newZ	new	lme4
(Intercept)	-1.3002000	-1.3002000	-1.3473000	-1.3472663
Base	0.8585700	0.8585700	0.8842300	0.8842334
trtprogabide	-0.9503100	-0.9503100	-0.9276200	-0.9276255
Age	0.4655000	0.4655000	0.4705200	0.4705255
Visit	-0.2946100	-0.2946100	-0.2670900	-0.2670821
Base:trtprogabide	0.3619500	0.3619500	0.3379000	0.3378860
var(RE).(Intercept)	0.2308500	0.2308500	0.2493100	0.2493143
var(RE).Visit	0.4636700	0.4636700	0.5457200	0.5422212
logLik	-645.2420000	-645.2330000	-655.4100000	-272.4580894
U.(Intercept).min	-0.8921820	-0.8921820	-0.9266186	-0.9266283
U.(Intercept).mean	0.0228518	0.0228518	0.0243156	0.0243575
U.(Intercept).max	1.0992639	1.0992639	1.1104644	1.1105139
U.Visit.min	-1.2499890	-1.2499890	-1.3866675	-1.3815736
U.Visit.mean	0.0002485	0.0002484	0.0002641	0.0002481
U.Visit.max	0.8402035	0.8402035	1.0461875	1.0447351
time	7.7400000	13.0100000	12.1200000	1.4400000

Conclusions:

 $\bullet\,$ As with Model 0, result depends on whether ZI=0.001 is included

2.0.9 Model 8

mapply	old	newZ	new	lme4
(Intercept)	5.0961000	5.4605000	5.0962000	5.0961572
ttt2	-4.4312000	-4.7765000	-4.4312000	-4.4312261
ttt3	-3.8424000	-4.1480000	-3.8424000	-3.8424179
ttt4	-5.5993000	-6.0200000	-5.5993000	-5.5994111
var(RE).(Intercept)	11.8880000	13.2160000	11.8880000	11.8119392
logLik	-30.3529000	-30.2397000	-30.3529000	-30.3529207
U.(Intercept).min	-4.5622585	-4.8899519	-4.5622585	-4.5584232
U.(Intercept).mean	-0.3072456	-0.3449396	-0.3072456	-0.3077743
U.(Intercept).max	2.9298857	3.0311449	2.9298857	2.9249240
time	0.6900000	2.2400000	2.0500000	0.2800000

Conclusions:

• Here ZI=0.001 messes things up (it wasn't incorporated in bvprobit.tpl , the old glmmADMB for binomial data)

2.0.10 Model 9

mapply	new	lme4
(Intercept)	-1.3985000	-1.3985351
period2	-0.9923300	-0.9923347
period3	-1.1287000	-1.1286754
period4	-1.5803000	-1.5803739
var(RE).(Intercept)	0.4151600	0.4124985
logLik	-92.0263000	-50.0479304
U.(Intercept).min	-0.6914940	-0.6899123
U.(Intercept).mean	0.0304322	0.0305005
U.(Intercept).max	0.9726148	0.9707200
time	1.6300000	0.2700000

Conclusions:

- ZI (not shown) has a small effect
- old glmmADMB can't do this model

3 To do

• incorporate fits from glmmML (can do intercept-only RE Poisson/binomial models, with Laplace [runs done, just have to do reporting]