Cool things that we did for our project!

- 1. Web scraping
- 2. Data Migration to MongoDB
- 3. Data Migration to AWS RDS Database
- 4. Github repo
- 5. Additional Features

Web scraping

We scraped the **Blood Compatibility Table** from a <u>website</u> and stored it into our MySQL database using python program.

storing website data into mysql table.ipynb contains the code.

The program:

- Scrapes the table from the website and stores it into a csv file.
- Then connects to the database and drops the table if it exists.
- Creates the table and inserts all the rows from the csv file into the table.

Data Migration to MongoDB

We migrated all the tables from MySQL db to MongoDB using python.

mysql_to_mongodb_migration.py contains the code.

The program:

- Connects to MySQL db and MongoDB localhost.
- Get a list of all tables in the MySQL db.
- Drops the collection in the MongoDB database and creates a new one.
- Iterates over all the tables in the list and converts the data to JSON format.
- Uploads all the tables to MongoDB collection.

Data Migration to AWS RDS Database

We migrated all the data from MySQL db to RDS database.

Steps:

- We connected to the AWS RDS server using the AWS Academy.
- Started the Learner Lab session
- Logged into AWS RDS using the below credentials.
- Migrated data using the dump file through the console.

Credentials to verify: UserName : admin

Password: Seattle1234

Endpoint: database-1.cd4ick4wgvbm.us-east-1.rds.amazonaws.com

Port: 3306

Github repo

We created a <u>github repo</u> for our project which makes it easy to run the application by following the steps below.

1. Clone the repository to your local machine using

`git clone https://github.com/Ruqhaiya/Blood-Bank-Management-System.git'

2. Navigate to the cloned directory and install the required dependencies by running below command in your terminal.

pip install -r requirements.txt

3. Start the application by running **python bbms.py** or by running the code in jupyter notebook.

Additional Features

1. Python

- Object Oriented code
- Seamless UI design using Tkinter GUI

• Error Handling for database connectivity and running queries

Login form

• Result table design

• Connection status on the top after successful login

• Buttons for Tableau Visualisations that take you to Tableau public cloud.

• TkCalendar to efficiently fetch user input.

 Optional parameters so that the user can still see the result without providing any input.

We created 2 stored procedures

1. Get Eligible Donors By BloodGroup

```
The name of the routine is parsed automatically from the statement. The DDL is parsed automatically while you to
     GetEligibleDonorsByBloodGroup
DDL:
       1 • CREATE DEFINER=`mm_team02_02`@`%` PROCEDURE `GetEligibleDonorsByBloodGroup`(IN input_bloodgroup VARCHAR(3))
        3
                    SELECT DonorID, Concat(FirstName, ",LastName) AS Name, BloodGroup, LastDonationDate, Phone
         4
                    FROM Donor
         5
                   WHERE LastDonationDate <= DATE_SUB(NOW(), INTERVAL 3 MONTH)
         6
                    AND BloodGroup = input bloodgroup
         7
                   ORDER BY LastDonationDate DESC;
         8
   ъ
               CALL GetEligibleDonorsByBloodGroup('0+');
```


Output:

2. Get Total Donations by Month or Year

```
Name: GetTotalDonationsByMonthYear

The name of the routine is parsed automatically from the DDL statement. The DDL is parsed automatically while you type.

DDL:

CREATE DEFINER=`mm_team02_02`@`%` PROCEDURE `GetTotalDonationsByMonthYear` (IN inputMonth INT, IN inputYear INT, OUT totalDonations INT)

BEGIN

SELECT COUNT(*) INTO totalDonations

FROM DonationEntry

WHERE MONTH(DonationTS) = inputMonth AND YEAR(DonationTS) = inputYear;

END
```


Databases where we have our data

- MySQL db localhost
- Seattle University's public cloud CSSQL
- AWS RDS
- MongoDB