Chapitre 1: Structures fondamentales

Dans la suite, $\mathbb K$ désigne $\mathbb R$ ou $\mathbb C$

1 Groupes, anneaux, corps, espaces vectoriels

1.1 Structures algébriques usuelles

$$\underline{\text{lci}} *: \begin{cases} E \times E \to E \\ (x, y) \mapsto x * y \end{cases}$$

Définition 1.1. Soit *M* un ensemble muni d'une lci *

(M,*) est un monoïde si :

- 1. * est associative.
- 2. * possède un élément neutre e_M

Définition 1.2. Un groupe est un monoïde dont tous les éléments sont inversibles.

Définition 1.3. Soit A un ensemble avec 2 lci : + et *

A est un anneau si :

- 1. (A, +) est un groupe abélien.
- 2. (A,*) est un monoïde.

3.
$$\forall a, x, y \in A$$

$$\begin{cases} a * (x + y) = a * x + a * y \\ (x + y) * a = x * a + y * a \end{cases}$$

Définition 1.4. Un anneau commutatif $\neq \{0\}$ dont tous les éléments non nuls sont inversibles est un corps.

Définition 1.5. Soit $(E, +, \bullet)$ avec E ensemble, * lci et \bullet : $\begin{cases} \mathbb{K} \times E \to E \\ (\lambda, x) \mapsto \lambda \bullet x \end{cases}$ (l.c. externe)

 $(E, +, \bullet)$ est un \mathbb{K} espace vectoriel si :

- 1. (E, +) groupe abélien.
- $2. \ \forall x \in E \qquad 1 \bullet x = x$
- 3. $\forall \lambda \in \mathbb{K}, \forall x, y \in E$ $\lambda \bullet (x + y) = \lambda \bullet x + \lambda \bullet y$
- 4. $\forall \lambda, \mu \in \mathbb{K}, \forall x \in E$ $(\lambda + \mu) \bullet x = \lambda \bullet x + \mu \bullet x$
- 5. $\forall \lambda, \mu \in \mathbb{K}, \forall x \in E$ $(\lambda \bullet \mu) \bullet x = \lambda \bullet (\mu \bullet x) = \mu \bullet (\lambda \bullet x)$

1.2 Sous-structures

Rappel.

$$H \text{ sous-groupe} \iff \begin{cases} 1_G \in H \\ \forall x, y \in H, xy \in H \\ \forall x \in H, x^{-1} \in H \end{cases}$$

H est un groupe aussi pour la restri

2. A anneau, $B \subset A$

A anneau,
$$B \subset A$$

$$B \text{ sous-anneau} \iff \begin{cases} \forall x, y \in B, \ x + y \in B, \ xy \in B \\ 1_A \in B \\ \forall x \in B, \ -x \in B \end{cases}$$
Le sous-anneau B est en particulier un anneau

Le sous-anneau *B* est en particulier un anneau.

3.
$$K$$
 un corps, $L \subset K$

$$L \text{ sous-corps de } K \iff \begin{cases} L \text{ sous-anneau de } K \\ \forall x \in L \setminus \{0\}, \ x^{-1} \in L \end{cases}$$

4. E un \mathbb{K} -ev, $F \subset E$

F sous-espace vectoriel de
$$E \iff \begin{cases} \forall x, y \in F, \ x + y \in F \\ \forall \lambda \in \mathbb{K}, \ \forall x \in F, \ \lambda x \in F \\ 0 \in F \end{cases}$$

Démarche : Pour montrer qu'un ensemble est un machin ¹, on pourra le réaliser comme un sous-machin d'un machin connu.

Lemme 1.6. Soit
$$M = \begin{pmatrix} \alpha & \beta \\ \gamma & \delta \end{pmatrix} \in GL_2(K)$$

Alors

$$M^{-1} = \frac{1}{\det M} \begin{pmatrix} \delta & -\beta \\ -\gamma & \alpha \end{pmatrix}$$

Proposition 1.7. Soit M un machin 1 et $(M_i)_{i \in I}$ une famille de sous-machins de MAlors $\bigcap_{i \in I} M_i$ est un sous-machin de M

Morphismes 1.3

Rappel.

1. $f: G \rightarrow H, G, H$ groupes.

$$f$$
 morphisme de groupes $\iff \forall x, y \in G, f(x * y) = f(x) + f(y)$

Dans ces conditions :
$$\begin{cases} f(e_G) = e_H \\ \forall x \in G, f(x^{-1}) = f(x)^{-1} \end{cases}$$

2. Soit $f: A \rightarrow B$, A, B anneaux.

f morphisme d'anneaux
$$\iff$$

$$\begin{cases} f(1_A) = 1_B \\ \forall x, y \in A, \begin{cases} f(x * y) = f(x) + f(y) \\ f(xy) = f(x)f(y) \end{cases}$$

Automatiquement :
$$\begin{cases} f(0) = 0 \\ f(-x) = -f(x) \\ x \text{ inversible } \implies f(x) \text{ inversible et } f(x^{-1}) = f(x)^{-1} \end{cases}$$

3. Un morphisme de corps c'est un morphisme d'anneaux.

4.
$$u: E \to F$$
 linéaire $\iff \begin{cases} \forall x, y \in E, \ u(x+y) = u(x) + u(y) \\ \forall x \in E, \forall \lambda \in \mathbb{K}, \ u(\lambda x) = \lambda u(x) \end{cases}$

Rappel. Isomorphisme = morphisme bijectif.

La composée de 2 morphismes est un morphisme. La réciproque d'un isomorphisme est un isomorphisme. G et H sont dits isomorphes s'il existe $f:G\to H$ isomorphe. On note alors $G\simeq H$ ou $G\simeq H$

^{1.} monoïde, groupe, anneau, corps ou K-ev

Rappel.

1. $f: G \rightarrow H$ morphisme de groupes.

$$\ker f = \{ x \in G \mid f(x) = e_H \}$$

(Respectivement, ker
$$f = \{x \in B \mid f(x) = 1\}$$
)

2. Si $f: A \rightarrow B$ morphisme d'anneaux.

$$\ker f = \{ x \in A \mid f(x) = 0 \}$$

3. Si $u \in \mathcal{L}(E, F)$

$$\ker u = \{ x \in E \mid u(x) = 0 \}$$

$$f$$
 injective \iff ker $f = \{$ neutre $\}$

Rappel.

1. Soit $f: G \to H$ morphisme de machins ¹.

Alors f(G) est un sous-machin de H

2. Si
$$f$$
 est $\begin{cases} \text{un morphisme de groupes} \\ \text{une application linéaire} \end{cases}$

alors
$$\ker f$$
 est $\begin{cases} \text{un sous-groupe} \\ \text{un sous-espace vectoriel} \end{cases}$

Définition 1.8. Soit E un \mathbb{K} -ev.

Un hyperplan de E est le noyau d'une forme linéaire non nulle de E, ie. d'un élément de $\mathcal{L}(E,K)\setminus\{0\}$

1.4 Structure de K-algèbre

Définition 1.9. Soit :

- ─ K un corps.
- *A* un ensemble.
- -+, * deux lci sur A
- • une lce sur A à opérateurs dans \mathbb{K}

On dit que A est une \mathbb{K} -algèbre si :

- 1. (A, +, *) est un anneau.
- 2. $(A, +, \bullet)$ est un \mathbb{K} -ev.

3.
$$\forall \lambda \in \mathbb{K}, \forall A, B \in A$$
 $\lambda \bullet (ab) = (\lambda \bullet a)b = a(\lambda \bullet b)$

Proposition 1.10.

- 1. Si X est un ensemble, $\mathcal{F}(X,K) = K^X$ est une \mathbb{K} -algèbre commutative.
- 2. $\mathbb{K}[X]$ est une \mathbb{K} -algèbre commutative.
- 3. $M_n(\mathbb{K})$ est une \mathbb{K} -algèbre.
- 4. Si E est un \mathbb{K} -ev, $(\mathcal{L}(E), +, \circ, *)$ est une \mathbb{K} -algèbre.

Proposition 1.11. Soit L un surcorps de \mathbb{K}

Alors L est une \mathbb{K} -algèbre.

Définition 1.12. Soit A une \mathbb{K} -algèbre. Soit $B \subset A$

B est une sous-algèbre de A si :

- $-1_A \in B$
- $\forall x, y \in B \qquad x + y \in B \qquad xy \in B$
- $\forall \lambda \in \mathbb{K}, \forall x \in B \qquad \lambda x \in B$

Définition 1.13. Soit $f: A \rightarrow B$, A, B deux \mathbb{K} -algèbres.

On dit que f est un morphisme d'algèbres si f est un morphisme d'anneaux linéaire, ie :

- 1. $f(1_A) = 1_B$
- 2. $\forall x, y \in A$ f(x + y) = f(x) + f(y)
- 3. $\forall x, y \in A$ f(xy) = f(x)f(y)
- 4. $\forall \lambda \in \mathbb{K}, \forall x \in A$ $f(\lambda x) = \lambda f(x)$

Si de plus f est bijective, on dit que f est un isomorphisme. On écrit alors $A \simeq B$

Proposition 1.14. L'image d'une \mathbb{K} -algèbre par $f:A\to B$ morphisme est une sous-algèbre de B

2 Ensembles quotients

2.1 Généralités