Politechnika Wrocławska

Katedra Teorii Pola, Układów elektronicznych i Optoelektronicznych

Zespół Układów Elektronicznych

Data: 7.04.2015r	Dzień: Wtorek			
Grupa: VII	Godzina: 12:15-15:00			
Temat ćwiczenia:				
Przerzutnik astabilny "555"				
Dane projektowe:				
$T=0.50 \ \mu s$				
C=4.7 nF				
$R_a=10k \Omega$				
l.p	Nazwisko i imię	Oceny		
1	Arkadiusz Ziółkowski			
2	Jakub Koban			

1 Zadanie projektowe

Zaprojektować przerzutnik monostabilny w oparciu o uład scalony "555" dla T=50 μs

1.1 Obliczenia projektowe

$$T = R_A \cdot C \cdot \ln\left(\frac{V_{CC}}{V_{CC} - \frac{2}{3}V_{CC}}\right) \approx 1.1 \cdot R_A \cdot C = 1.1 \cdot 10k\Omega \cdot 4.7nF = 51\mu s$$
(1)

1.2 Schemat projektowy

Rysunek 1: Schemat projektowanego układu

2 Część laboratoryjna

2.1 Czas trwania impulsu jako funkcja napięcia wyjściowego

$T [\mu s]$	U_{wy}	Odchylenie [%]
52.31	2.61	2.41
51.62	3.03	1.06
51.26	3.50	0.35
51.14	3.99	0.12
51.10	4.50	0.04
51.08	5.02	0.00
51.07	5.50	-0.02
51.06	5.99	-0.04
51.06	6.54	-0.04
51.07	7.02	-0.02
51.07	7.57	-0.02
51.08	7.99	0.00
51.09	8.49	0.02
51.11	9.07	0.06
51.12	9.57	0.08
51.14	10.01	0.12
51.16	10.53	0.16
51.17	11.09	0.18
51.19	11.49	0.22
51.20	12.08	0.23
51.21	12.50	0.25
51.22	13.06	0.27
51.23	13.52	0.29
51.23	14.07	0.29
51.23	14.52	0.29
51.24	14.92	0.00

Rysunek 2: $T=f(U_{wy})$

Na podstawie rys. 1 możemy wnioskować, iż czas trwania impulsu utrzymuje się na stałym poziomie (odchylenie od wartości nominalnej wynosi maksymalnie 0.29%). Początek wykresu charakteryzuje się dużym odchyleniem, z uwagi na to, że przy tak małych napięciach układ nie zaczął jeszcze poprawnie pracować.

2.2 Czas trwania impulsu jako funkcja napięcia modulacyjnego

$\mathbf{T} [\mu \mathbf{s}]$	$\mathrm{U_{mod}} \; [\mathrm{V}]$
17.51	0.97
18.14	1.48
20.92	1.76
24.80	2.05
27.46	2.22
32.37	2.52
36.09	2.72
42.66	2.99
46.86	3.21
54.60	3.50
60.99	3.70
71.96	4.00
82.09	4.21
92.35	4.56
99.19	4.70
121.30	4.98

Rysunek 3: $T=f(U_{wy})$

Na podstawie rysunku nr.2 możemy wnioskować, iż wraz ze wzrostem napięcia modulującego długość impulsów rośnie.

3 Wnioski

- 1.
- 2.
- 3.