Discussion 6

Normalization EECS 484

Logistics

- Project 2 deadline extended due on Saturday, Oct. 8!
- HW3 due Oct 13
- Project 1 handwritten part graded accepting regrade requests by Oct 13
- Midterm Exam Oct 21 (Friday), 7:30 9:30 EST
 - One double sided 8.5 x 11 **handwritten** cheat sheet is allowed
 - No discussion next week (13th, 14th) or the week after (20th, 21st)
 - Review session Oct 14 (Friday) 2:30, DOW 3150
 - Review session Oct 19 (Wednesday) 3:00 6:00, Zoom, recorded
 - Practice exams are available on Canvas
 - The solution file may have minor mistakes. Ask on Piazza.

Normalization Theory

- There are a lot of different ways we can represent data in a relation
 - Want to reduce redundancy and maximize integrity
- How do we make good tables
 - Start with a nice ER diagram and make tables
 - Great if starting from scratch
 - Take existing tables and decompose them into smaller tables
 - Will do this using functional dependencies and normal forms

Functional Dependency

- \bullet A \rightarrow B
 - A functionally determines B
 - "If you know A, then you know B"
 - No other options
- F is a set of FDs for a relation
- F+ = closure of F = set of all FDs
 we can derive from F
- Example
 - F = ID→ Name (ID→Title, Title→Manager)
 F+ also includes, by transitivity, ID→Manager
 - Notice, ID allows me to functionally determine all columns

ID	Name	Title	Manager
1	John	Clerk	Alice
2	Jane	Clerk	Alice
3	Alice	Manager	Bob
4	Bob	Owner	Bob

Armstrong's Axioms

- Rules of inference for functional dependencies
 - Repeatedly applying them allows us to generate F+
- Reflexivity
 - If $y \subseteq x$ then $x \rightarrow y$ $A B \rightarrow A$
 - Trivial self dependence
- Augmentation
 - o If $x \rightarrow y$ then $xz \rightarrow yz$ for any z
- Transitivity
 - If $x \rightarrow y$ and $y \rightarrow z$ then $x \rightarrow z$
- Derived axioms
 - Union: If $x \rightarrow y$ and $x \rightarrow z$ then $x \rightarrow yz$
 - o Decomposition: if $x \rightarrow yz$ then $x \rightarrow y$ and $x \rightarrow z$

x, y, z are set of attributes

Relation Decomposition

Let's split up larger relations into smaller relations

123 V (125 X) junk.

- o More relations means that data is more spread out
 - Will need joins to connect them back
 - Lossless join = can reconstruct data of original relation from decomposed relations
 - **Dependency preserving** = do we still have all the same dependencies
 - Lossless join is required while dependency preserving is nice to have
- Notationally:
 - Decompose X into Y and Z
 - Lossless join: $(Y \cap Z \rightarrow Y)$ or $(Y \cap Z \rightarrow Z)$
 - Attributes common to Y and Z contains a key for Y or Z
 - Dependency preserving: $F + = (F_y \cup F_z) +$
 - F_Y is the set of FDs in F+ that only involve attributes in Y (same for F_Z)
 - Original dependencies are preserved in the decomposed relations
- We'll use normal forms to help us decompose

Third Normal Form (3NF)

- Builds off First and Second Normal Forms
 - 1NF = Each column contains a single value and each row must be unique
 - 2NF = 1NF + Attributes not a part of the primary key are fully dependent on primary key
 - 3NF = 2NF + No transitive functional dependencies on non-prime accribites
- Relation R is in 3NF form if and only if for all dependencies of the form $X \rightarrow A$ in F+ (where X is a subset of attributes of R and A is a single attribute of **R)**, the following hold true:

 - $A \subseteq X$ (trivial dependence) or $A \rightarrow A$ X is a super key or candidate key $t \circ / more$ articles. A is some part of a minimal key in R
- Superkey is a set of attributes that can unique identify a row in a table Can be larger than candidate key (non-minimal)
- Can always decompose R into a collection of 3NF relations that satisfies the lossless join and dependency preserving properties $f: C \rightarrow AB$ not violated extrave single attribute on PHS: $f: C \rightarrow A$, $C \rightarrow B$

Boyce-Codd Normal Form (BCNF) \$ 3 N f

- Relation R is in BCNF form if and only if for all dependencies of the form X →
 A in F+ (where X is a subset of attributes of R and A is a single attribute of R)
 - \circ A \subseteq X (trivial dependence) or
 - X is a super key
- Missing the "part of a minimal key" category from 3NF
- Stronger than 3NF
 - If relation is BCNF then it is 3NF
 - Not the other way around though
- To decompose R into BCNF, start with unnormalized relation
 - If X→Y violates BCNF decompose into R-Y and XY
 - Repeat for all X→Y => that is lates BUNF
 - Satisfies lossless join property, but not always dependency preserving

Examples

- Consider a relation R=(A,B,C,D,E)
 - Dependencies as follows
 - \circ A \rightarrow B
 - \circ A \rightarrow C
 - \circ $A \rightarrow D$
 - \circ BE \rightarrow D
 - \circ BE \rightarrow AC
 - \circ C \rightarrow E

- Relation R with FDs F is in 3NF if, for all $X \rightarrow A$ in F⁺
 - A ⊆ X (trivial dependency) or
 - X is a super key or
 - A is part of some (minimal) <u>key</u> for R (prime attribute)
- What are candidate keys here?
 - Remember a candidate key is a minimal set of columns that allow us to uniquely define the relation
- Is R 3NF?
 - If so, is R BCNF?

- Consider a relation R=(A,B,C,D,E)
 - Dependencies as follows
 - \circ A \rightarrow B
 - \circ A \rightarrow C
 - \circ $A \rightarrow D$
 - \circ BE \rightarrow D
 - \circ BE \rightarrow AC
 - \circ C \rightarrow E

- Relation R with FDs F is in 3NF if, for all $X \rightarrow A$ in F⁺
- A ⊆ X (trivial dependency) or
- X is a super key or
- A is part of some (minimal) <u>key</u> for R (prime attribute)
- What are candidate keys here?
 - Remember a candidate key is a minimal set of columns that allow us to uniquely define the relation
 Keys founds = {A}

Repetitively union $A \rightarrow B$, $A \rightarrow C$ and $A \rightarrow D$ to get $A \rightarrow BCD$

Augment A on both sides to get A→ABCD

Use transitivity on $A \rightarrow C$ and $C \rightarrow E$ to get $A \rightarrow E$

Union A→ABCD and A→E to get A→ABCDE

- Consider a relation R=(A,B,C,D,E)
 - Dependencies as follows
 - $A \rightarrow B$
 - $A \rightarrow C$
 - $A \rightarrow D$
 - $BE \rightarrow D$
 - BE→AC
 - $C \rightarrow E$

- Relation R with FDs F is in 3NF if, for all $X \rightarrow A$ in F⁺
- A ⊂ X (trivial dependency) or
- X is a super key or
- A is part of some (minimal) key for R (prime attribute)

- What are candidate keys here?
 - Remember a candidate key is a minimal set of columns that allow us to uniquely define the Keys founds = {A, BE} => given these check if any actibutes

 get BE-ACD

 get BE-ABCDE

 derive candidate keys relation

Union BE→D and BE→AC to get BE→ACD

Augment BE on both sides to get BE→ABCDE

X:subset of attributes

- Consider a relation R=(A,B,C,D,E)
 - Dependencies as follows
 - $A \rightarrow B$
 - $A \rightarrow C$
 - $A \rightarrow D$
 - $BE \rightarrow D$
 - BE→AC
 - $C \rightarrow E$

Relation R with FDs F is in 3NF if, for all $X \rightarrow A$ in F⁺

X:subset of

attributes

- A ⊆ X (trivial dependency) or
- X is a super key or
- A is part of some (minimal) key for R (prime attribute)
- What are candidate keys here?
 - Remember a candidate key is a minimal set of columns that allow us to uniquely define the

Augment B on both sides of C \rightarrow E to get BC \rightarrow BE

Since we already know BE is a key

Use transitivity on BC \rightarrow BE and BE \rightarrow ABCDE to get BC \rightarrow ABCDE \Rightarrow if attribute ant occur on RMS

where he is a condidate length of the second of these are supported by the second of the second

3 look at LHS, if some attribute doesn't occur on LMS, it shouldn't be a condidate ky

- Consider a relation R=(A,B,C,D,E)
 - Dependencies as follows
 - \circ A \rightarrow B
 - \circ A \rightarrow C
 - \circ $A \rightarrow D$

 - \circ BE \rightarrow D
 - \circ BE \rightarrow AC

- Relation R with FDs F is in 3NF if, for all $X \rightarrow A$ in F⁺
 - A ⊆ X (trivial dependency) or
 - X is a super key or
 - A is part of some (minimal) <u>key</u> for R (prime attribute)
- FDs in $F^+ = \{A \rightarrow B, A \rightarrow C, A \rightarrow D, C \rightarrow E, BE \rightarrow D, BE \rightarrow A, BE \rightarrow C, \ldots \}$
- Candidate keys = {A, BC, BE}
- Is R 3NF?
 - Yes

X:subset of

attributes

attribute

- Consider a relation R=(A,B,C,D,E)
 - Dependencies as follows
 - \circ $A \rightarrow B$
 - \circ A \rightarrow C
 - \circ $A \rightarrow D$
 - \circ C \rightarrow E
 - \circ BE \rightarrow D
 - \circ BE \rightarrow AC

Rel. R with FDs F is in BCNF if, for all $X \rightarrow A$ in F⁺

- $A \subseteq X$ (trivial FD), or
- X is a super key

X:subset of attributes A: single attribute

- FDs in $F^+ = \{A \rightarrow B, A \rightarrow C, A \rightarrow D, C \rightarrow E, BE \rightarrow D, BE \rightarrow A, BE \rightarrow C, \ldots \}$
- Candidate keys = {A, BC, BE}
- Is R BCNF?
 - No, C→E violates both constraints

- Relation R = (A,B,C,D,E)
 - Dependencies as follows
 - \circ A \rightarrow B
 - \circ A \rightarrow C
 - \circ A \rightarrow D
 - \circ C \rightarrow E
 - \circ BE \rightarrow D
 - \circ BE \rightarrow AC
- Decompose into BCNF

High-Level Algorithm

Input: a relation R with FDs F

- 1. Identify if any FDs violate BCNF (How?)
 - If X → Y violates BCNF, decompose R into R Y and XY
- 2. Repeat for every $X \rightarrow Y$ that violates BCNF.

Output: a collection of relations that are in BCNF

- Relation R = (A,B,C,D,E)
 - Dependencies as follows
 - \circ A \rightarrow B
 - \circ A \rightarrow C
 - \circ $A \rightarrow D$
 - \circ C \rightarrow E
 - \circ BE \rightarrow D
 - \circ BE \rightarrow AC
- Decompose into BCNF
 - We know C→E violates constraint
 - R1={A,B,C,D} R2={C,E}
 - o Is this lossless?
 - Yes, R1∩R2=C which is a key for R2 (C \rightarrow E)

High-Level Algorithm

Input: a relation R with FDs F

- Identify if any FDs violate BCNF (How?)
 - If X → Y violates BCNF, decompose R into R Y and XY
- Repeat for every X → Y that violates BCNF.

Output: a collection of relations that are in BCNF

Relation R, FDs F; Decomposed to X, Y

Test: lossless-join w.r.t. F if and only if F+ contains:

$$X \cap Y \rightarrow X$$
, or $X \cap Y \rightarrow Y$

i.e. attributes common to X and Y contain a key for either X or Y

- Relation R = (A,B,C,D,E)
 - Dependencies as follows
 - \circ A \rightarrow B
 - \circ A \rightarrow C
 - \circ $A \rightarrow D$
 - \circ C \rightarrow E
 - \circ BE \rightarrow D
 - \circ BE \rightarrow AC
- Decompose into BCNF
 - R1={A,B,C,D} R2={C,E}
 - o Is this dependency preserving?
 - F1 contains $A \rightarrow B$, $A \rightarrow C$, $A \rightarrow D$, F2 contains $C \rightarrow E$
 - (F1 \cup F2)+ contains A \rightarrow B, A \rightarrow C, A \rightarrow D, A \rightarrow E, C \rightarrow E
 - Not equal to original F+, so not dependency preserving

Informally: We don't want the original FDs to span two tables.

R has a dependency-preserving decomposition to X, Y

if
$$F^+ = (F_x \cup F_y)^+$$

- Relation R = (A,B,C,D,E)
 - Dependencies as follows
 - \circ $A \rightarrow B$
 - \circ A \rightarrow C
 - \circ $A \rightarrow D$
 - \circ C \rightarrow E
 - \circ BE \rightarrow D
 - \circ BE \rightarrow AC

Rel. R with FDs F is in BCNF if, for all $X \rightarrow A$ in F⁺

- $A \subseteq X$ (trivial FD), or
- X is a super key

X:subset of attributes A: single attribute

- Decompose into BCNF
 - R1={A,B,C,D} R2={C,E}
 - R1 and R2 are both in BCNF form
 - You can check this
 - Note: No way of testing if collection of relations are in BCNF, only one relation at a time
 - Since R1 and R2 don't preserve dependencies, we could leave R as a 3NF relation

Get started on HW3!