Electrical Machines Laboratory Department of Electrical Engineering, IIT Kharagpur Session: Spring, 2021-22

$\begin{array}{c} {\bf Experiment} \ \#3 \\ \\ {\bf Synchronous} \ {\bf Machine} \ {\bf Experiments} \\ \\ {\bf Instruction} \ {\bf Set} \end{array}$

Machine Parameters and Ratings

DC Machine	Synchronous Machine
Power = 20 kW	Power = 20 kVA
Speed = 1500 RPM	Frequency = 50 Hz , Pole pairs = 2
Armature voltage, current = 300 V , 65 A	Armature voltage, current = 400 V (L-L rms) , 30 A
Field voltage, current = 300 V , 5.7 A	$Field\ voltage = 400\ V$

1. Synchronous Machine at No-Load

- Mechanically couple the Synchronous Machine with the DC Machine.
- Perform No-Load test on the given Synchronous Machine using the provided simulation file. Gradually, change the excitation voltage in steps till rated.

2. Loading of Grid-connected Synchronous Machine

- Synchronize the Synchronous Machine with the three-phase grid.
- Operate the synchronous machine at various loading conditions for generating as well as motoring mode and take the following readings
- (a) Tabulate and plot V-curve $(I_{R(rms)} \text{ vs } E_f)$ for 15 kW load, 5 kW load and No-Load in the same graph.

Load Power	Armature Voltage, V_{L-L}	Excitation Voltage, E_f
15 kW		
5 kW		
No-Load		

(b) Tabulate and plot inverted V-curve (p.f. vs \mathbf{E}_f) for 10 kW load.

Load Power	Power factor	Excitation Voltage, E_f
10 kW		

(c) Note the load angle of the synchronous machine when you apply load of $2.5~\mathrm{kW}$ and $7.5~\mathrm{kW}$ in motoring mode as well as generating mode.

Mode	Load Power	Load angle δ (in deg)
Generating	7.5 kW	
	$2.5~\mathrm{kW}$	
Motoring	7.5 kW	
	2.5 kW	

Discussion Questions

- Why the frequency of incoming alternator is kept slightly higher than grid frequency?
- State the effect of wrong synchronization.
- For the given experiment set up how can you make the synchronous machine become a generator feeding power to the bus?
- If the two 400 V machines are to be synchronized by dark lamp method what will be the voltage rating of the bulb?