TENSOR, SYMMETRIC, AND EXTERIOR ALGEBRAS

ARUN DEBRAY NOVEMBER 1, 2013

"Where is everyone? The time change is on Sunday, right?"

Last time, it was stated without proof that $S^{-1}M \cong S^{-1}A \otimes_A M$. This can be proven in a more general context: suppose $A \xrightarrow{f} B$, so that B can be viewed as an A-algebra; in particular, B is an A-module. Then, if M is another A-module, then $B \otimes_A M$ is a priori an A-module, but also has a B-module structure, with action of a $b \in B$ given by $act(b): (b_1, m) \mapsto bb_1 \otimes m$. By the definition of tensor product, this is A-linear, but the action must give the structure of a B-module (basically, ensuring that it's compatible with multiplication within B), so it's necessary to check this. The functor $B \otimes_A - : A$ -Mod $\to B$ -Mod is called extension of scalars (from A to B; since A and B act on

the modules, then they are called scalars, and often, B is larger than A). There's also the forgetful functor $B\operatorname{-Mod} \to A\operatorname{-Mod}$, which is called restriction of scalars.

Proposition 0.1. $B \otimes_A - is$ left adjoint to restriction of scalars.

Proof sketch. The goal is to show that $\operatorname{Hom}_B(B \otimes_A M, N) \cong \operatorname{Hom}_A(M, N)$. The correspondence is described as:

$$\varphi: B \otimes_A M \to N \longmapsto \psi: M \to N \text{ given by } m \mapsto \varphi(1 \otimes m).$$

On the right, $\psi: M \to N \mapsto \widetilde{\psi}: B \times M \to N$ is A-bilinear, so it extends to an A-linear $B \otimes_A M \to N$. It remains to check these are inverses of each other, etc.

Proposition 0.2. $S^{-1}M \cong S^{-1}A \otimes_A M$ as A-modules.

Proof. For any $S^{-1}A$ -module N, $\operatorname{Hom}_{S^{-1}A}(S^{-1}M,N) = \operatorname{Hom}_A(M,N)$. Recall that $S^{-1}(-)$ is lft adjoint to the forgetful functor $S^{-1}A$ -Mod $\to A$ -Mod, but $S^{-1}A \otimes_A -$ is also left adjoint to the same forgetful functor. Thus, $\operatorname{Hom}_{S^{-1}A}(S^{-1}A \otimes_A M,N) = \operatorname{Hom}_A(M,N)$. Thus, $S^{-1}M$ and $S^{-1}A \otimes_A M$ represent the same functor $S^{-1}A \operatorname{Mod} \to \operatorname{Set}$ given by $N \to \operatorname{Hom}_A(M,N)$. Since they give the same Hom space, they must be canonically isomorphic as A-modules.

This is a useful test: to show that two objects are isomorphic, one can show that they represent the same functor in some category.

Tensor Product of Algebras. Suppose A is a commutative ring, and B and C are commutative A-algebras.

Proposition 0.3. $B \otimes_A C$, which is a priori an A-module, also has a natural ring structure, giving a ring homomorphism $A \to B \otimes_A C$ that makes it an A-algebra.

In effect, this just says that the tensor product of two rings is still a ring. The proof of this proposition will be deferred while multi-tensors are mentioned. This is a straightforward generalization of the tensor product outlined in the exercises; let M_1, \ldots, M_r, N be A-modules and $L_A(M_1 \times \cdots \times M_r; N)$ be the set of A-multilinear functions $M_1 \times \cdots \times M_r \to N$.

Claim. $L_A(M_1 \times \cdots \times M_r, -)$ is representable, and the object that represents it is denoted $M_1 \otimes_A \cdots \otimes_A M_r$.

In other words, for any A-module N, $\operatorname{Hom}_A(M_1 \otimes_A \cdots \otimes_A M_r) = L_A(M_1 \times \cdots \times M_r, N)$.

From this definition, we can deduce the associativity of the tensor product: $M_1 \otimes_A (M_2 \otimes_A M_3) \cong (M_1 \otimes_A M_2) \otimes_A M_3 = M_1 \otimes_A M_2 \otimes_A M_3$. This is true because all 3 represent the same functor, which sends an A-module L to the set of trilinear maps $M_1 \times M_2 \times M_3 \to L$. This generalizes in the reasonable way to greater numbers of factors, and means that parentheses in the construction of the multi-tensor product are unimportant. Since each of the three constructions is slightly different, it is not completely tautological to show that the functors are the same; but it is not particularly difficult.

Proof of Proposition 0.3. Define a map $B \times C \times B \times C \to B \otimes_A C$ by $(b_1, c_1, b_2, c_2) \mapsto b_1b_2 \otimes c_1c_2$. It's clear that this is A-linear in each argument, so this is an A-quadrilinear function. Thus, this induces an A-linear map $B \otimes_A C \otimes_A B \otimes_A C \stackrel{\mu}{\to} B \otimes_A C$. By the associativity of the tensor product, this is equal to the map

 $(B \otimes_A C) \otimes_A (B \otimes_A C) \xrightarrow{\mu} B \otimes_A C$. Thus, again using the universal property, there is a unique bilinear map ψ such that the following diagram commutes:

$$(B \otimes_A C) \times (B \otimes_A C) \xrightarrow{\psi} B \otimes_A C$$

$$\downarrow^{(b,c) \mapsto b \otimes c} \qquad \qquad \downarrow^{\wr}$$

$$(B \otimes_A C) \otimes_A (B \otimes_A C) \longrightarrow B \otimes_A C$$

This induces the required ring structure, though it's necessary to check that this actually is in fact associative and commutative, and that $1 \otimes 1$ is the unit. Finally, one will have to show that the ring homomorphism making $B \otimes_A C$ into an A-algebra is $a \mapsto a \otimes 1 = 1 \otimes a$. (Since this is a tensor product over A, scalars can be pushed around like this.)

Though it's possible to write down a ring homomorphism and check it, this fuller argument cleanly ensures that it works on sums of simple tensors.

Example 0.1. If A is an abelian group, then $A \otimes_{\mathbb{Z}} \mathbb{Z}[x_1, \dots, x_n] \cong A[x_1, \dots, x_n]$ (in the exercises, this was checked as groups, but it also holds true for rings). It's also true that $A[x] \otimes_A A[y] \cong A[x, y]$.

Be careful, though: $A \otimes_{\mathbb{Z}} \mathbb{Z}[[x]] \to A[[x]]$ is in general not surjective. In essence, this is because finite linear combinations don't map to infinite power series very well. This is because $\sum a_i \otimes f_i$ maps to something whose coefficients are all linear combinations of the a_1, \ldots, a_n . Thus, to show that surjectivity fails, pick a power series whose set of coefficients isn't finitely generated, e.g. if $A = \mathbb{Q}$, $\sum_{n \geq 1} x^n / n \notin \mathbb{Q} \otimes_{\mathbb{Z}} \mathbb{Z}[[x]]$.

Tensor Algebras.

Definition. Given an A-module M, the tensor algebra of M is

$$T(M) = A \oplus M \oplus (M \otimes_A M) \oplus (M \otimes_A M \otimes_A M) \oplus \cdots = A \oplus \bigoplus_{n=1}^{\infty} M^{\otimes n}.$$

Here, the notation $M^{\otimes n}$ refers to $M \otimes_A \cdots \otimes_A M$, where there are n terms in the tensor product.

Claim. T(M) is naturally an associative A-algebra.

Proof sketch. Define multiplication as follows: for an $x_1 \otimes \cdots \otimes x_m \in M^{\otimes m}$ and a $y_1 \otimes \cdots \otimes y_n \in M^{\otimes n}$, their product is

$$(x_1 \otimes \cdots \otimes x_m)(y_1 \otimes \cdots \otimes y_n) = x_1 \otimes \cdots \otimes x_m \otimes y_1 \otimes \cdots \otimes y_n \in M^{\otimes (m+n)}$$

giving an A-bilinear map $M^{\otimes m} \otimes M^{\otimes n} \to M^{\otimes (m+n)}$, though it's necessary to check that this multiplication behaves well on sums of tensors, and in particular that it is well-defined.

Since every element in T(M) is a finite linear combination of these, one obtains a map $T(M) \times T(M) \to T(M)$ with the required properties.

This algebra is associative (as are all algebras in this class), but it is *not* commutative: in particular, looking just at $M \times M \to M^{\otimes 2}$, $(x,y) \mapsto x \otimes y \neq y \otimes x$ in general.

Proposition 0.4. Let R be an associative A-algebra. Then, $\operatorname{Hom}_{A\operatorname{-Alg}}(T(M),R)\cong\operatorname{Hom}_A(M,R)$, and the isomorphism is canonical. That is, the forgetful functor $A\operatorname{-Alg}\to A\operatorname{-Mod}$ has T as its left adjoint.

Proof sketch. Again, build maps in both directions.

Suppose $\varphi: T(M) \xrightarrow{A-\text{Alg}} R$; then, take $\psi = \varphi|_M: M \to R$, which is clearly A-linear.

Conversely, if $\psi: M \to R$ is A-linear, first define $\varphi_n: M \times \cdots \times M \to R$ by $(x_1, \dots, x_n) \mapsto \psi(x_1)\psi(x_2)\cdots\psi(x_n)$, which is multilinear, so it extends to $\widetilde{\psi}_n: M^{\otimes n} \to R$. Then, let $\varphi = \bigoplus \widetilde{\psi}_n$ (i.e. $\varphi|_{M^{\otimes n}} = \widetilde{\psi}$). This is a priori A-linear, but it remains to be checked that it's also a ring homomorphism, and then that these two maps are inverses of each other.

Symmetric Algebras. There's a similar universal property that gives a commutative A-algebra called the symmetric algebra. Let C denote the category of commutative A-algebras.

Proposition 0.5. The forgetful functor $C \to A$ -Mod admits a left adjoint, denoted S, i.e. for every A-module M, there exists a commutative A-algebra S(A) such that $\operatorname{Hom}_{\mathcal{C}}(S(M),B) = \operatorname{Hom}_{A}(M,B)$ (where the forgetfulness of B is assumed in the right side).

Proof sketch. The construction is given by quotienting T(M) by the universal relations that force the quotient to be commutative. This is a general procedure: if R is a ring, then $[R,R] = \operatorname{Span}\{xy - yx \mid x,y \in R\}$, so that [R,R] is a two-sided ideal (which remains to be checked). If you're lucky, then $1 \notin [R,R]$, so one can quotient to obtain $R^{\mathrm{ab}} = R/[R,R]$, which is a commutative ring (if $1 \in [R,R]$, then the quotient is zero, which is sad). This is the smallest set of relations that force commutativity, so apply this procedure to T(M): take the ideal generated by $x \otimes y - y \otimes x$ for all $x, y \in M$, and quotient by it. \square

From the construction, it's easy to show that $\operatorname{Hom}_{\mathcal{C}}(S(M),B) = \operatorname{Hom}_{A}(M,B)$, because Proposition 0.4 applies to B as a (not necessarily commutative) A-algebra: $\operatorname{Hom}_{A\operatorname{-Alg}}(T(M),B) = \operatorname{Hom}_{A}(M,B)$. So it only remains to check that $\operatorname{Hom}_{A\operatorname{-Alg}}(T(M),B) = \operatorname{Hom}_{\mathcal{C}}(S(M),B)$, i.e., that such a map factors through the quotient, which is not that bad.

The most important examples of a symmetric algebra is the polynomial ring.

Claim. Suppose M is a free A-module of rank n. Then, $S(M) = A[x_1, \ldots, x_n]$.

Proof sketch. Pick a basis of M, as $M = Ae_1 \oplus \cdots \oplus Ae_n$. Given some A-linear map $M \to A[x_1, \ldots, x_n]$, that sends $e_i \mapsto x_i$ (which extends uniquely to an A-linear map because M is free), this is by Proposition 0.5 equivalent to $\varphi : S(M) \to A[x_1, \ldots, x_n]$.

In the other direction, consider the map $A[x_1, \ldots, x_n] \to T(M)$ given by

$$\prod_{i=1}^{n} x_i^{\ell_i} \longmapsto \bigotimes_{i=1}^{n} \bigotimes_{j=1}^{\ell_i} x_i \in M^{\otimes (\ell_1 + \dots + \ell_n)}.$$

Taking the quotient, this yields a map $\psi: A[x_1,\ldots,x_n] \to S(M)$, and it can be shown this is an inverse to φ .

This can be generalized; if M is a free A-module with basis S, then S(M) is the set of polynomials over A in |S| variables, even if M isn't finite-dimensional. Similarly, $T(A^n) = A \langle x_1, \ldots, x_n \rangle$, and a similar result holds for the infinite-dimensional case.

Exterior Algebras. Given an A-module M, one wants a universal, graded, anti-commutative A-algebra $\Lambda(M)$. This will end up being nearly commutative, and is also given by a quotient of the tensor algebra:

$$\Lambda(M) = T(M)/(x \otimes y + y \otimes x \mid x, y \in M)$$

(i.e. taking linear combinations of these generators), which is *not* commutative. The image of an $x \otimes y \in T(M)$ in $\Lambda(M)$ is denoted $x \wedge y$, and the ideal forces the relation $x \wedge y + y \wedge x = 0$ (there was in general no relation in T(M)), or, equivalently, $x \wedge y = -y \wedge x$. This is what is meant by anti-symmetric or anti-commutative.

More generally, to switch the order of pure wedges, the sign doesn't always change: given an $x_1 \wedge \cdots \wedge x_k, y_1 \wedge \cdots \wedge y_\ell \in \Lambda(M), x_1 \wedge \cdots \wedge x_k$ is the image of $x_1 \otimes \cdots \otimes x_k \in T(M)$ (and similarly for the other term). Multiplication in $\Lambda(M)$ is also denoted \wedge , but this isn't actually ambiguous, because $(x_1 \wedge \cdots \wedge x_k) \wedge (y_1 \wedge \cdots \wedge y_\ell) = x_1 \wedge \cdots \wedge x_k \wedge y_1 \wedge \cdots \wedge y_\ell$ (since this is an associative algebra), then this is OK. However, to switch the order the sign might have to change:

$$(x_1 \wedge \cdots \wedge x_k) \wedge (y_1 \wedge \cdots \wedge y_\ell) = (-1)^{k\ell} (y_1 \wedge \cdots \wedge y_\ell) \wedge (x_1 \wedge \cdots \wedge x_k),$$

because $k\ell$ pairs need to be exchanged and each flips the sign. Thus, even numbers of wedges commute with everything. The construction of $\Lambda(M)$ is universal in the category of graded, anti-commutative A-algebras, and satisfies the same adjoint property, which is further developed in the exercises.

This has applications to the real world: every topological space X has an associated ring $H^*(X)$ called the cohomology ring, which is a graded anti-commutative algebra. Thus, this category is useful. In fact, sometimes the cohomology ring is an exterior power, e.g. the n-dimensional torus T^n has $H^*(T^n) = \Lambda(\mathbb{Z}^{\oplus n})$.

¹These lie in $M^{\otimes 2}$, but by left- or right-multiplying by other things, one obtains all of the other necessary elements.