What we claim is,

5

- 1. An on-p-GaAs substrate $Zn_{1-x}Mg_xS_ySe_{1-y}$ pin photodiode comprising:
 - a p-GaAs single crystal substrate having a top surface and a bottom surface;
- a p-(ZnSe/ZnTe)^m (m: integer denoting a number of pair layers) superlattice which is made by piling p-ZnSe thin films and p-ZnTe thin films reciprocally for changing bandgaps stepwise and is epitaxially grown directly on the top surface of the p-GaAs substrate;
 - a p- $Zn_{1-x}Mg_xS_ySe_{1-y}$ ($0 \le x \le 0.8$, $0 \le y \le 0.8$) layer epitaxially grown on the p- $(ZnSe/ZnTe)^m$ superlattice or via a p-ZnSe buffer layer upon the p- $(ZnSe/ZnTe)^m$ superlattice;

an i- $Zn_{1-x}Mg_xS_ySe_{1-y}$ ($0 \le x \le 0.8$, $0 \le y \le 0.8$) layer epitaxially grown on the p- Zn_{1-x} $10 \quad {}_xMg_xS_ySe_{1-y}$ layer;

an n-Zn_{1-x}Mg_xS_ySe_{1-y} $(0 \le x \le 0.8, 0 \le y \le 0.8)$ layer epitaxially grown on the i-Zn_{1-x}Mg_xS_ySe_{1-y} layer;

a metallic n-electrode which is formed upon a part of the $n-Zn_{1-x}Mg_xS_ySe_{1-y}$ layer and has a top aperture for allowing incidence light to enter; and

- a metallic p-electrode formed on the bottom surface of the p-GaAs substrate.
 - 2. The on-p-GaAs substrate $Zn_{1-x}Mg_xS_ySe_{1-y}$ pin photodiode according to claim 1, wherein a p-ZnSe buffer layer is interposed between the p- $(ZnSe/ZnTe)^m$ superlattice and the p- $Zn_{1-x}Mg_xS_ySe_{1-y}$ layer.
- 3. The on-p-GaAs substrate Zn_{1-x}Mg_xS_ySe_{1-y} pin photodiode according to claim 2, wherein the i-Zn_{1-x}Mg_xS_ySe_{1-y} layer has an impurity concentration less than 10¹⁶ cm⁻³.
 - 4. The on-p-GaAs substrate $Zn_{1-x}Mg_xS_ySe_{1-y}$ pin photodiode according to claim 1, wherein the $n-Zn_{1-x}Mg_xS_ySe_{1-y}$ layer has a bandgap En which is equal to or higher than a bandgap Ei of the $i-Zn_{1-x}Mg_xS_ySe_{1-y}$ layer (En \geq Ei).
- 5. The on-p-GaAs substrate $Zn_{1-x}Mg_xS_ySe_{1-y}$ pin photodiode according to claim 4, wherein the i- $Zn_{1-x}Mg_xS_ySe_{1-y}$ layer is an i- ZnS_ySe_{1-y} layer including no Mg (x=0) and the n-

 $Zn_{1-x}Mg_xS_ySe_{1-y}$ layer is either an $n-Zn_{1-x}Mg_xS_ySe_{1-y}$ layer including Mg ($x \ne 0$) or an $n-ZnS_ySe_{1-y}$ layer including no Mg (x=0).

6. The on-p-GaAs substrate $Zn_{1-x}Mg_xS_ySe_{1-y}$ pin photodiode according to claim 4, wherein the $i-Zn_{1-x}Mg_xS_ySe_{1-y}$ layer is an i-ZnSe layer including neither Mg nor S (x=0, y=0) and the $n-Zn_{1-x}Mg_xS_ySe_{1-y}$ layer is either an $n-ZnS_ySe_{1-y}$ layer including no Mg (x=0, y \neq 0) or an n-ZnSe layer including neither Mg nor S (x=0, y=0).

5

10

15

20

- 7. The on-p-GaAs substrate $Zn_{1-x}Mg_xS_ySe_{1-y}$ pin photodiode according to claim 1, wherein the top aperture on the $n-Zn_{1-x}Mg_xS_ySe_{1-y}$ layer which receives incidence light is coated with a mask made of Al_2O_3 , SiO_2 , TiO_2 , La_2O_3 or MgF_2 for antireflection and protection.
- 8. The on-p-GaAs substrate $Zn_{1-x}Mg_xS_ySe_{1-y}$ pin photodiode according to claim 1, wherein external quantum efficiency is more than 30 % for light wavelengths between 300nm and 450nm.
- 9. The on-p-GaAs substrate $Zn_{1-x}Mg_xS_ySe_{1-y}$ pin photodiode according to claim 1, wherein external quantum efficiency is more than 40 % for a light wavelength of 400nm.
- 10. The on-p-GaAs substrate $Zn_{1-x}Mg_xS_ySe_{1-y}$ pin photodiode according to claim 1, wherein a dark current is less than 10^{-9} A/cm² under a reverse bias between 0 V and -20 V.
- 11. An on-p-GaAs substrate $Zn_{1-x}Mg_xS_ySe_{1-y}$ avalanche photodiode for inducing avalanche amplification by a strong electric field formed by applying a reverse bias below a breakdown voltage, comprising:
 - a p-GaAs single crystal substrate having a top surface and a bottom surface;
- a p-(ZnSe/ZnTe)^m (m: integer denoting a number of pair layers) superlattice which is made by piling p-ZnSe thin films and p-ZnTe thin films reciprocally for changing bandgaps stepwise and is epitaxially grown on the top surface of the p-GaAs substrate;
- 25 a $p-Zn_{1-x}Mg_xS_ySe_{1-y}$ $(0 \le x \le 0.8, 0 \le y \le 0.8)$ layer epitaxially grown on the p-

- (ZnSe/ZnTe)^m superlattice or via a p-ZnSe buffer layer upon the p-(ZnSe/ZnTe)^m superlattice; a lower-doped n⁻-Zn_{1-x}Mg_xS_ySe_{1-y} ($0 \le x \le 0.8$, $0 \le y \le 0.8$) layer epitaxially grown on the $p-Zn_{1-x}Mg_xS_ySe_{1-y}$ layer;
- a higher-doped $n^+\text{-}Zn_{1\text{-}x}Mg_xS_ySe_{1\text{-}y}$ (0 \leq x \leq 0.8, 0 \leq y \leq 0.8) layer epitaxially grown on 5 the lower-doped n^- - $Zn_{1-x}Mg_xS_ySe_{1-y}$ layer;
 - a metallic n-electrode which is formed upon a part of the higher-doped n+-Zn₁-_xMg_xS_vSe_{1-y} layer and has a top aperture for allowing incidence light to enter; and a metallic p-electrode formed on the bottom surface of the p-GaAs substrate.
- The on-p-GaAs substrate Zn_{1-x}Mg_xS_ySe_{1-y} avalanche photodiode according to claim 11, 12. wherein a p-ZnSe buffer layer is interposed between the p-(ZnSe/ZnTe)^m superlattice and the 10 p-Zn_{1-x}Mg_xS_vSe_{1-v} layer.
 - The on-p-GaAs substrate Zn_{1-x}Mg_xS_ySe_{1-y} avalanche photodiode according to claim 11, 13. wherein an i- $Zn_{1-x}Mg_xS_ySe_{1-y}$ ($0 \le x \le 0.8$, $0 \le y \le 0.8$) layer is interposed between the p- Zn_{1-x} $_xMg_xS_ySe_{1-y}$ layer and the n^- - $Zn_{1-x}Mg_xS_ySe_{1-y}$ layer.
- 15 The on-p-GaAs substrate Zn_{1-x}Mg_xS_ySe_{1-y} avalanche photodiode according to claim 11, 14. wherein the n+-Zn_{1-x}Mg_xS_ySe_{1-y} layer has a bandgap En+ which is equal to or higher than a bandgap En^- of the n^- - $Zn_{l-x}Mg_xS_ySe_{l-y}$ layer ($En^+ \ge En^-$).
 - The on-p-GaAs substrate Zn_{1-x}Mg_xS_ySe_{1-y} avalanche photodiode according to claim 14, 15. wherein the n^- - $Zn_{1-x}Mg_xS_ySe_{1-y}$ layer is an n^- - ZnS_ySe_{1-y} layer including no Mg (x=0) and the $n^+ - Z n_{l-x} M g_x S_y S e_{l-y} \ layer \ is \ either \ an \ n^+ - Z n_{l-x} M g_x S_y S e_{l-y} \ layer \ including \ Mg \ (x \neq 0) \ or \ an \ n^+ - C n_{l-x} M g_x S_y S e_{l-y} \ layer \ including \ Mg \ (x \neq 0) \ or \ an \ n^+ - C n_{l-x} M g_x S_y S e_{l-y} \ layer \ including \ Mg \ (x \neq 0) \ or \ an \ n^+ - C n_{l-x} M g_x S_y S e_{l-y} \ layer \ including \ Mg \ (x \neq 0) \ or \ an \ n^+ - C n_{l-x} M g_x S_y S e_{l-y} \ layer \ including \ Mg \ (x \neq 0) \ or \ an \ n^+ - C n_{l-x} M g_x S_y S e_{l-y} \ layer \ including \ Mg \ (x \neq 0) \ or \ an \ n^+ - C n_{l-x} M g_x S_y S e_{l-y} \ layer \ including \ Mg \ (x \neq 0) \ or \ an \ n^+ - C n_{l-x} M g_x S_y S e_{l-y} \ layer \ including \ Mg \ (x \neq 0) \ or \ an \ n^+ - C n_{l-x} M g_x S_y S e_{l-y} \ layer \ including \ Mg \ (x \neq 0) \ or \ an \ n^+ - C n_{l-x} M g_x S_y S e_{l-y} \ layer \ including \ Mg \ (x \neq 0) \ or \ an \ n^+ - C n_{l-x} M g_x S_y S e_{l-y} \ layer \ including \ Mg \ (x \neq 0) \ or \ an \ n^+ - C n_{l-x} M g_x S_y S e_{l-y} \ layer \ including \ Mg \ (x \neq 0) \ or \ an \ n^+ - C n_{l-x} M g_x S_y S e_{l-y} \ layer \ including \ Mg \ (x \neq 0) \ or \ an \ n^+ - C n_{l-x} M g_x S_y S e_{l-y} \ layer \ including \ Mg \ (x \neq 0) \ or \ an \ n^+ - C n_{l-x} M g_x S_y S e_{l-y} \ layer \ including \ Mg \ (x \neq 0) \ or \ an \ n^+ - C n_{l-x} M g_x S_y S e_{l-y} \ layer \ including \ Mg \ (x \neq 0) \ or \ an \ n^+ - C n_{l-x} M g_x S_y S e_{l-y} \ layer \ including \ Mg \ (x \neq 0) \ or \ an \ n^+ - C n_{l-x} M g_x S_y S e_{l-y} \ layer \ including \ Mg \ (x \neq 0) \ or \ an \ n^+ - C n_{l-x} M g_x S_y S e_{l-y} \ layer \ including \ Mg \ (x \neq 0) \ or \ an \ n^+ - C n_{l-x} M g_x S_y S e_{l-y} \ layer \ including \ Mg \ (x \neq 0) \ or \ an \ n^+ - C n_{l-x} M g_x S_y S e_{l-y} \ layer \ including \ Mg \ (x \neq 0) \ or \ an \ n^+ - C n_{l-x} M g_x S_y S e_{l-y} \ layer \ including \ Mg \ (x \neq 0) \ or \ an \ n^+ - C n_{l-x} M g_x S_y S e_{l-y} \ layer \ lay$ ZnS_ySe_{1-y} layer including no Mg (x=0).
 - The on-p-GaAs substrate Zn_{1-x}Mg_xS_ySe_{1-y} avalanche photodiode according to claim 14, 16. wherein the n⁻-Zn_{1-x}Mg_xS_ySe_{1-y} layer is an n⁻-ZnSe layer including neither Mg nor S (x=0, y=0) and the n^+ - $Zn_{1-x}Mg_xS_ySe_{1-y}$ layer is either an n^+ - ZnS_ySe_{1-y} layer including no Mg (x=0, y

20

- 17. The on-p-GaAs substrate $Zn_{1-x}Mg_xS_ySe_{1-y}$ avalanche photodiode according to claim 11, wherein the top aperture on the n^+ - $Zn_{1-x}Mg_xS_ySe_{1-y}$ layer which receives incidence light is coated with a mask made of Al_2O_3 , SiO_2 , TiO_2 , La_2O_3 or MgF_2 for antireflection and protection.
- The on-p-GaAs substrate Zn_{1-x}Mg_xS_ySe_{1-y} avalanche photodiode according to claim 11, wherein external quantum efficiency is more than 100 % for light wavelengths between 300nm and 450nm.
 - 19. The on-p-GaAs substrate $Zn_{1-x}Mg_xS_ySe_{1-y}$ avalanche photodiode according to claim 11, wherein external quantum efficiency is more than 200 % for a light wavelength of 400nm.
- The on-p-GaAs substrate Zn_{1-x}Mg_xS_ySe_{1-y} avalanche photodiode according to claim 11, wherein external quantum efficiency is enhanced by a spin-orbit interaction at a wavelength of 395nm and sensitivity is nearly flat from 350nm to 430nm.