Adopted Levels, Gammas

History

Type Author Citation Literature Cutoff Date
Full Evaluation Christian Ouellet, Balraj Singh NDS 112,2199 (2011)

24-Aug-2011

 $Q(\beta^{-})=-12680.9 \ 6$; $S(n)=15044.33 \ 23$; S(p)=8864; $Q(\alpha)=-6948 \ 2012Wa38$

Note: Current evaluation has used the following Q record -12680.4 9 15043.8 10 8863.96 1-6947.65 1 2011AuZZ

S(2n)=28096 3, S(2p)=16160.51 2 (2011AuZZ).

Values in 2003Au03: $Q(\beta^-)=-12686$ 7, S(n)=15042.4 15 S(p)=8863.78 21, $Q(\alpha)=-6947.82$ 14, S(2n)=28096 3, S(2p)=16160.71 14.

Following corrections made by B. Singh (McMaster), Sept 20, 2022: 29 Si(α ,n) dataset from 1975Ba01 removed as it leads to resonances in 33 S from 9699 to 11175 keV, not in 32 S. 33 S(p,d) dataset from 1974ShZZ (BAPS abstract) added as cited by 1978Ka18 for levels up to 9976. Resulting, mostly minor changes, made in the Adopted Levels (B. Singh, Sept 17, 2022), for example: 1. 7882.9, J^{π} =4+, not 4-; added a new level at 7885 4, J^{π} =0-,1-,2-. 2. new level added at 8281 keV with J^{π} =(0:4)+ from 33 S(p,d). 3. Seven levels at 10133, 10182, 10417, 10493, 10678, 10988, 11175 from 29 Si(α ,n) removed. 4. Widths of the following levels from 29 Si(α ,n) removed: 9704.8, 9809, 9935, 9997, 10021, 10079, 10310, 10636.4, 10941, 11009.9, 11078. 5. Missing or unknown γ -branchings in 1997Br07 from the 7921, 7975, 8296, 8407 and 8729 levels from the 31 P(p, γ) dataset added.

Four lowest states in ³²S appear to be vibrational in character (1971In02), first 2⁺ is one phonon and 0⁺,2⁺,4⁺ make up a spherical vibrational triplet. Quadrupole moment of first 2⁺ state is negative and interestingly indicates a large prolate deformation (1998Ka31).

Additional evaluations for ³²S include 1997Br07 and specific to lifetimes, 1998Ka31. These are in broad agreement with the current evaluation.

E(p)=811 is a common absolute Resonance Strength by which other relative Resonance Strengths are compared to (1978Pa03). Mass measurements: 2009Sc29, 2009Kw02.

Mass deduced by IMME analysis: 2010Ka30.

2010Pa18: ¹²C(²⁰Ne,X),E=145,160 MeV; measured Εγ, Ιγ, γγ-coin. Deduced highest spin and high energy excitations from the shapes of giant dipole resonances (GDR), strength functions and parameters using rotating liquid drop model (RLDM) and thermal shape fluctuation model (TSFM). Calculated liquid drop model free energy surfaces, and equilibrium shapes as a function of quadrupole deformation parameters and spin. Possible connection to molecular structure of ¹⁶O+¹⁶O in a ³²S superdeformed band. Structure calculations: Intruder levels, spins and parities, shell model: 2009Bo30.

32S Levels

Levels populated in datasets with XREF=Y.

 $^{32}P \beta^{-}$ decay (14.268 d): 0.

 36 K εα decay (342 ms): 0.

 $^{16}O(^{20}Ne.\alpha)$: 11700, 11940, 12760, 13040, 13760, 14000, 14810, 15200.

²⁸Si(¹²C, ⁸Be): 0, 2230, 5010.

²⁸Si(¹⁶O, ¹²C): 0, 2230, 3780, 4280, 4460, 4700, 5010, 5800, 6220, 6850, 7000.

³²S(d,d'),(pol d,d'): 0, 2230, 4290, 4470, 5010.

 32 S(α,α'): 0, 2230, 3777, 4278, 4458.

Coulomb excitation: 0, 2230. Additional information 1.

Cross Reference (XREF) Flags

Α	32 Cl ε decay (298 ms)	M	$^{31}P(p,\alpha)$:resonances	Y	$^{32}P \beta^{-}$ decay (14.268 d)
В	4 He(28 Si, α):resonances	N	$^{31}P(d,n),^{2}H(^{31}P,N)$	Z	³³ Ar ε p decay (173.0 ms)
C	28 Si (α, γ)	0	$^{31}P(^{3}He,d)$	Other	rs:
D	28 Si(α,α):resonances	P	32 S(γ,γ'),(pol γ,γ')	AA	36 K $\varepsilon\alpha$ decay (342 ms)
E	²⁸ Si(⁶ Li,pnγ)	Q	32 S(e,e')	AB	$^{16}\mathrm{O}(^{20}\mathrm{Ne},\alpha)$
F	28 Si(6 Li,d)	R	$^{32}S(\pi^+,\pi^{+\prime}),(\pi^-,\pi^{-\prime})$	AC	²⁸ Si(¹² C, ⁸ Be)
G	28 Si(7 Li,t)	S	32 S(n,n' γ),(n,n')	AD	²⁸ Si(¹⁶ O, ¹² C)

³²S is one of the most extensively studied nuclei in the sd-shell (1998Ka31).

³³Ar ε p decay (173.0 ms): 0, 2231.

```
<sup>28</sup>Si(<sup>18</sup>O, <sup>14</sup>C)
                                                                        ^{32}S(p,p'),(pol\ p,p')
                                                                                                              ^{32}S(d,d'),(pol d,d')
                           Н
                                                                 T
                                                                                                      ΑE
                                  ^{29}Si(\alpha,n\gamma)
                                                                        ^{32}S(p,p'\gamma)
                                                                                                              ^{32}\mathrm{S}(\alpha,\alpha')
                           Ι
                                                                 U
                                                                                                      AF
                                  30Si(16O,14C)
                                                                        ^{33}S(p,d)
                           J
                                                                 ٧
                                                                                                      AG
                                                                                                              Coulomb excitation
                                                                        ^{33}S(^{3}He,\alpha)
                                  ^{31}P(p,\gamma)
                           K
                                                                        ^{34}S(p,t)
                                  ^{31}P(p,p')
E(level)
                            T_{1/2}
                                                          XREF
                                                                                                                      Comments
                         stable
                                          A C
                                                 FGHIJK
                                                             NOP
                                                                     STUVWXYZ
                                                                                      XREF: Others: AA, AC, AD, AE, AF, AG
                                                                                      \langle r^2 \rangle^{1/2} = 3.2611 fm 18 (2008 update of 2004An14 evaluation
                                                                                        by I. Angeli: available at http://cdfe.sinp.msu.ru.).
                                                                                      J^{\pi}: measurements by optical spectroscopy
                                                                                        (1936Ol01,1931Na01).
2230.57 15 2+
                        169 fs 11
                                          A C FGHI K NOPO STUVWX Z
                                                                                      XREF: Others: AC, AD, AE, AF, AG
                                                                                      \mu = +0.94 \ 18 \ (1979Za01, 1989Ra17)
                                                                                      Q=-0.154 20 (1981Sp07,1989Ra17)
                                                                                     E(level): from {}^{32}S(\gamma,\gamma').
                                                                                      J^{\pi}: E2 \gamma to 0^+.
                                                                                      T<sub>1/2</sub>: weighted average of 175 fs 28 (1998Ka31), 135 fs 49
                                                                                        (1974Ch09), 128 fs 52 (1972Co12), 243 fs 42 (1971In02),
                                                                                         180 fs 55 (1969Th03), 121 fs 21 (1971Re15), 147 fs 24
                                                                                        (2002Ba28), 228 fs 55 (1964Ma01), 250 fs 27 (1964Lo08),
                                                                                         240 fs 40 (1971In02), 164 fs 11 (1971Ga04), 160 fs 40
                                                                                        (1980Ba40). 2001Ra27 evaluation gives 171 fs 8 from a set
                                                                                        of 22 quoted measurements from 1956 to 1980 using DSA,
                                                                                        Coul. ex., (\gamma, \gamma') and (e, e').
                                                                                      \mu: transient-fields (1979Za01). See also 2005St24 compilation.
                                                                                      Q: reorientation in Coulomb ex. (recalculated by 1981Sp07).
                                                                                         Measurements: -0.160 22 or -0.133 22 (1982Ve09), -0.18 4
                                                                                         or -0.15 4 (1981Da08), -0.12 5 (1980Ba40). See also
                                                                                        2005St24 compilation.
                                                                                      XREF: Others: AD, AF
3778.4 10
                 0+
                           0.89 ps 9
                                         A C EFG I K NO Q STUVWX
                                                                                      J^{\pi}: from <sup>34</sup>S(p,t) L=0 angular distribution.
                                                                                      T_{1/2}: from <sup>28</sup>Si(<sup>6</sup>Li,pn\gamma).
                                                                                     XREF: Others: AD, AE, AF
4281.8 3
                 2^{+}
                         42 fs 4
                                          A C E HI K NOPq STUVWX
                                                                                      E(level): from ^{32}S(\gamma, \gamma').
                                                                                     J^{\pi}: from <sup>32</sup>S(p,t) L=2, <sup>31</sup>P(p,\gamma) \gamma\gamma(\theta), <sup>32</sup>S(p,p'\gamma) \gamma\gamma(\theta).
                                                                                      T_{1/2}: from weighted average of all available data.
                                                                                      Additional information 2.
4459.18
                        124 fs 27
                                                FGHI K
                                                                     STUVWX
                                                                                      XREF: Others: AD, AE, AF
                                                                                      \mu=+1.6 6 (1988Si14,1989Ra17)
                                                                                     E(level): from ^{31}P(p,\gamma).
                                                                                     J^{\pi}: from <sup>31</sup>P(p,\gamma) \gamma\gamma(\theta), <sup>32</sup>S(p,p') Ay(\theta), <sup>32</sup>S(p,p'\gamma),
                                                                                        \gamma\gamma(\theta) and L=4 in ^{34}S(p,t).
                                                                                      T_{1/2}: from ^{32}S(\alpha,\alpha').
                                                                                      μ: transient-fields (1988Si14). See also 2005St24 compilation.
4695.3 4
                        286 fs 74
                                          A C
                                                                       TUVWX
                                                                                      XREF: Others: AD
                                                                                     E(level): from ^{31}P(p,\gamma).
                                                                                      J^{\pi}: from <sup>32</sup>S(p,p'\gamma) \gamma\gamma(\theta); L(p,d)=0+2 from 3/2<sup>+</sup>.
                                                                                      T_{1/2}: from <sup>29</sup>Si(\alpha,n\gamma).
5006.2 3
                 3-
                           0.52 ps 3
                                            C FGHI K NO O STUVWX
                                                                                      XREF: Others: AC, AD, AE
                                                                                      B(E3)\(\gamma=0.0127\) 20 (2002Ki06)
                                                                                     E(level): from ^{31}P(p,\gamma).
                                                                                      J^{\pi}: from <sup>31</sup>P(p,\gamma) \gamma(\theta) and polarization, <sup>28</sup>Si(\alpha,\gamma) \gamma\gamma(\theta),
                                                                                        ^{32}S(p,p') angular distributions and L=3 in ^{31}P(d,n) from
                                                                                        1/2^{+} and ^{33}S(p,d) from 3/2^{+}.
                                                                                      T_{1/2}: from weighted average of all available data.
                                                                                      Additional information 3.
5412.6 10
                       148 fs 19
                                                                        UVWX
                                                                                      E(level): from ^{31}P(p,\gamma).
                                            C EF I K NO
```

E(level) [†]	J^{π}	T _{1/2}		KREF	Comments
5548.5 10	2+	57 fs 8	A C I K	NO TUVWX	J ^{π} : from ³¹ P(p, γ) $\gamma(\theta)$; L=2 in ³¹ P(³ He,d) from 1/2 ⁺ ; and in ³³ S(p,d) from 3/2 ⁺ . T _{1/2} : from weighted average of all available data. E(level): from ²⁹ Si(α ,n). J ^{π} : from ³² S(p,p') Ay(θ), ³⁴ S(p,t) angular distribution
5796.8 <i>3</i>	1-	5.6 fs 9	C FGHI K	NOPQ STUVWX	and L=2 in ${}^{31}P({}^{3}He,d)$ from $1/2^+$; L=0+2 in ${}^{33}S(p,d)$ from $3/2^+$. $T_{1/2}$: from ${}^{31}P(p,\gamma)$. XREF: Others: AD E(level): from ${}^{32}S(\gamma,\gamma')$.
6222.9 8	2-	66 fs <i>12</i>	FIK	NO SUWX	J ^π : from 32 S(p,p' γ) $\gamma\gamma(\theta)$ and L=1 in 31 P(3 He,d) from 1 /2+ and in 33 S(p,d) from 3 /2+. T _{1/2} : from 32 S(γ,γ'). XREF: Others: AD E(level): from 31 P(p, γ). J ^π : from 31 P(p, γ) $\gamma(\theta)$ and RUL, 32 S(p,p' γ) $\gamma\gamma(\theta)$;
6411 2	4+	24.3 fs <i>35</i>	CEIK	NO STU WX	L=1 in ${}^{31}P({}^{3}\text{He,d})$ from $1/2^{+}$. $T_{1/2}$: from weighted average of all available data. E(level): weighted average of ${}^{31}P(p,\gamma)$ and ${}^{29}\text{Si}(\alpha,n)$. J^{π} : from ${}^{32}\text{S}(p,p')$,(pol p,p') Ay(θ). $T_{1/2}$: from ${}^{28}\text{Si}({}^{6}\text{Li,pn}\gamma)$.
6582 5	(2+,3-)			0 q T V X	XREF: V(?). E(level): from weighted average of 31 P(3 He,d) and 34 S(p,t). J ^{π} : from 32 S(p,p'),(pol p,p') Ay(θ).
6621.7 3	4-	0.36 ps <i>6</i>	ΙK	NO q S VW	E(level): from ${}^{31}P(p,\gamma)$. J^{π} : from ${}^{31}P(p,\gamma)$ $\gamma(\theta)$ and RUL, and L=3 in ${}^{31}P({}^{3}\text{He,d})$ from $1/2^{+}$ and in ${}^{33}S(p,d)$ from $3/2^{+}$. $T_{1/2}$: from ${}^{31}P(p,\gamma)$; note that the single ${}^{29}Si(\alpha,n\gamma)$ disagrees significantly.
6666.1 10	2+	40 fs <i>10</i>	A IK	NO UVWX	E(level): from $^{31}P(p,\gamma)$. J^{π} : from $^{31}P(p,\gamma)$ $\gamma(\theta)$, $^{34}S(p,t)$ angular distributions and L=2 in $^{31}P(^{3}He,d)$ from $1/2^{+}$; L=0+2 in $^{33}S(p,d)$ from $3/2^{+}$. $T_{1/2}$: from $^{31}P(p,\gamma)$.
6761.6 <i>10</i>	5-	260 fs 35	GHI K	NO ST VWX	E(level): from 31 P(p, γ). J^{π} : from 29 Si(α ,n γ) n γ (θ).
6851.5 <i>15</i>	4+	66 fs <i>17</i>	ΙK	NO VWX	$T_{1/2}$: from $^{31}P(p,\gamma)$. XREF: Others: AD E(level): from $^{31}P(p,\gamma)$. J^{π} : from $^{29}Si(\alpha,n\gamma)$ n- $\gamma(\theta)$ correlation. $T_{1/2}$: from $^{31}P(p,\gamma)$.
7001.4 4	1+	1.5 fs 5	A K	NO Q T VWX	XREF: Others: AD E(level): from ³¹ P(p,γ). J^{π} : from ³¹ P(p,γ) $\gamma(\theta)$ and L=2 in ³¹ P(³ He,d) from $1/2^+$; L=0+2 in ³³ S(p,d) from $3/2^+$; isobar analog state of g.s. 1 ⁺ in ³² p and ³² Cl. $T_{1/2}$: from ³¹ P(p,γ).
7115.3 10	2+	1.73 fs <i>35</i>	A C H K	NO VWX	E(level): from $^{31}P(p,\gamma)$. J^{π} : from $^{31}P(p,\gamma)$ $\gamma(\theta)$ and decay multipolarity, $^{34}S(p,t)$ angular distribution; L=2 in $^{31}P(^{3}He,d)$ from

E(level) [†]	${ m J}^{\pi}$	$T_{1/2}$		X	REF		Comments
7190.1 <i>15</i>	1+	8.0 fs <i>21</i>	A	K	NO Q	T VW	$1/2^+$; L=0+2 in 33 S(p,d) from $3/2^+$. $T_{1/2}$: from 31 P(p, γ). E(level): from 31 P(p, γ). J^{π} : from 31 P(p, γ) $\gamma(\theta)$; L=0 in 31 P(3 He,d) from $1/2^+$; L=0+2 in 33 S(p,d) from $3/2^+$.
7350.0 6	3(+)			K	NO	VWX	$T_{1/2}$: from ${}^{31}P(p,\gamma)$ and ${}^{31}P(d,n)$. E(level): from ${}^{31}P(p,\gamma)$. J^{π} : from ${}^{31}P(p,\gamma)$ $\gamma(\theta)$; L=2 in ${}^{33}S(p,d)$ from ${}^{3/2}$.
7367				K			
7434 3	1-	7.7 fs <i>10</i>	FC	н к	NO	W	E(level): from $^{31}P(p,\gamma)$. J^{π} : L=1 in $^{31}P(^{3}He,d)$ and $^{31}P(d,n)$. $T_{1/2}$: from weighted average of $^{31}P(p,\gamma)$ and $^{31}P(^{3}He,d)$.
7484.0 <i>4</i>	2+	4.9 fs <i>12</i>	С	K	NOP	VW	E(level): from $^{32}S(\gamma,\gamma')$, $^{32}S(\text{pol }\gamma,\gamma')$. J^{π} : from $^{31}P(p,\gamma)$ $\gamma(\theta)$ and RUL, $^{32}S(\gamma,\gamma')$ $\gamma(\theta)$, $^{32}S(\text{pol }\gamma,\gamma')$ $\gamma(\theta)$; L=2 in $^{33}S(p,d)$ from $^{3/2^{+}}$.
7535.7 10	0+	2.6 fs 7	С	K	NO	VWX	$T_{1/2}$: weighted average of all available data. E(level): from $^{31}P(p,\gamma)$. J^{π} : L=0 in $^{31}P(^{3}He,d)$ and $^{31}P(d,n)$; L=2 in $^{33}S(p,d)$ from $3/2^{+}$.
7566.8 9	5+	150 fs <i>32</i>		I K			$T_{1/2}$: weighted average of $^{31}P(p,\gamma)$ and $^{31}P(d,n)$. E(level), J^{π} , $T_{1/2}$: from $^{29}Si(\alpha,n\gamma)$ from n - $\gamma(\theta)$ correlation.
7637.0 <i>10</i> 7648 <i>5</i>	1			K		T X W	E(level), J^{π} : from $^{32}S(p,p')$ angular distribution.
7701.44 <i>36</i>	3-	66 fs <i>19</i>		н к	NO Q	X	E(level), $T_{1/2}$: from ³¹ P(p,γ). J^{π} : from ³¹ P(p,γ) γ(θ); L=3 in ³¹ P(³ He,d) from $1/2^{+}$.
7882.9 8	4 ⁺			K			J^{π} : from ³¹ P(p, γ) $\gamma(\theta)$.
7885 <i>4</i> 7921.0 <i>10</i>	0 ⁻ ,1 ⁻ ,2 ⁻ 1 ⁺			K	NO	т х	J^{π} : L(³ He,d)=L(d,n)=1 from 1/2 ⁺ . E(level): from ³¹ P(p, γ).
	4-	146 C 25			0		J^{π} : from ³¹ P(p,p'),(pol p,p') angular distribution.
7950.1 4	4-	146 fs <i>35</i>		ΙK	0		E(level), $T_{1/2}$: from $^{31}P(p,\gamma)$. J^{π} : from $^{31}P(p,\gamma)$ from $\gamma(\theta)$ and RUL, and L=3 in $^{31}P(^{3}He,d)$.
7974.9 7	4-	<21 fs		K	NO	VWX	E(level), $T_{1/2}$: from $^{31}P(p,\gamma)$. J^{π} : from L=3 in $^{31}P(^{3}He,d)$ and $^{31}P(d,n)$ in disagreement with $^{31}P(p,\gamma)$ and parity in $^{34}S(p,t)$.
8125.40 20	1+	0.144 fs <i>21</i>		K	NOPQ	T X	E(level): from ${}^{32}S(\gamma,\gamma'),{}^{32}S(\text{pol }\gamma,\gamma').$ J^{π} : from ${}^{32}S(\gamma,\gamma'),{}^{32}S(\text{pol }\gamma,\gamma')$ angular distribution and L=0 in ${}^{31}P({}^{3}\text{He,d}).$ $T_{1/2}$: weighted average of ${}^{32}S(\gamma,\gamma'),{}^{32}S(\text{pol }\gamma,\gamma').$
8191.1 6	4			K	0		E(level): from $^{31}P(p,\gamma)$.
8270.3 14	3-,5-	<60 fs		ΙK	0	X	E(level), J^{π} , $T_{1/2}$: from 29 Si(α ,n γ) n- $\gamma(\theta)$ correlation.
8281 8296.1 <i>10</i>	$(0 \text{ to } 4)^+$ 3^-			K	o NO	V	E(level), J^{π} : from ³³ S(p,d) with L=2 from 3/2 ⁺ . E(level): from ³¹ P(p, γ).

E(level) [†]	J^{π}	$T_{1/2}$		XR	EF			Comments
8343 <i>3</i> 8346.4 <i>14</i>	2 ⁺ 4 ⁺	<28 fs		I K	0		v x	J ^π : from ³¹ P(p,γ) $\gamma(\theta)$ and L=3 in ³¹ P(d,n), ³¹ P(³ He,d). J ^π : L(p,t)=2. E(level),J ^π : 4 ⁺ , 6 ⁺ from ²⁹ Si(α,nγ) n-γ(θ); L=2 in ³³ S(p,d) from 3/2 ⁺ .
8380 <i>5</i> 8407.0 <i>14</i> 8499.3 <i>5</i>	2 1 ⁻	1.30 fs 24	BC F	K 'g K	O O NOP		v v v x	$T_{1/2}$: from $^{31}P(p,\gamma)$. E(level), J^{π} : from $^{31}P(p,\gamma)$ $\gamma(\theta)$. XREF: Others: AF XREF: V(8489). E(level), $T_{1/2}$: from $^{31}P(p,\gamma)$.
8671.7 8684.0 8687.6 8729.3 6 8736.7	3+		A C	K I	NO O	S S S	v v x	J^{π} : from L=1 in ${}^{31}P(d,n)$ and ${}^{31}P({}^{3}He,d)$. E(level): from ${}^{32}S(n,n'\gamma),(n,n')$. E(level), J^{π} : from ${}^{31}P(p,\gamma)$ $\gamma(\theta)$ and RUL.
8741.8 8745.6 8 8751.0 8782.9 8797.5 8809.7	3			K		S S S S		J^{π} : from ³¹ P(p, γ) $\gamma(\theta)$.
8838.7 8861 2 8895.3 8906.0 8921.8 8941.9 8945.1 8953.6 8977.5	2+		A C	K	0	S S S S S	v x	E(level): from 28 Si(α, γ). J ^{π} : from γ decay in 31 P(p, γ).
8984.7 9007.3 9009.2 9012.7 9023.8 21	4-	0.27 ps 6	С	I K	NO	S S S S	X	E(level): from 29 Si(α ,n γ). J ^{π} : 4 ⁻ ,6 ⁻ from 29 Si(α ,n γ); L=3 in 31 P(3 He,d) from 1/2 ⁺ target; L=1 in 31 P(d,n) is apparently in disagreement but in another (d,n) study L=1 or 3 is also indicated.
9031.1 9042.0 9055.1 9059 2	1-			K	NO	S S S	v	E(level): from 31 P(p, γ). J $^{\pi}$: from L=1 in 31 P(3 He,d).
9065 2 9087.9 9090.9 9139.9 9159.0		<14 fs	С	K		S S S	v V	E(level), $T_{1/2}$: from ²⁸ Si(α, γ).
9170 <i>3</i> 9196 <i>8</i> 9200.8	3 ⁺ 2 ⁺			I K	0	S	V X	E(level): from $^{31}P(p,\gamma)$. J^{π} : from $^{31}P(^{3}He,d) \gamma \delta$ coincidence. E(level), J^{π} : from $^{34}S(p,t)$.

E(level) [†]	J^{π}	T _{1/2}		XREF	Comments
9207.55 71	1+	4.2 fs <i>14</i>		K MNOP	E(level): from 31 P(p, γ) $\gamma\gamma(\theta)$. J^{π} , $T_{1/2}$: from 32 S(γ , γ'), 32 S(pol γ , γ').
9210.6				S	5 ,11/2. Hom 5(7,7), 5(por 7,7).
9211.2 9235.2 24	1-	<60 fs	A C	S I K MNO	E(level), $T_{1/2}$: from $^{29}Si(\alpha,n\gamma)$. J^{π} : from $^{31}P(^{3}He,d)$ L=1 and angular distribution. The γ -rays reported in $^{29}Si(\alpha,n\gamma)$ do not match those from $^{28}Si(\alpha,\gamma)$ we report here the older values but clearly more investigation is necessary.
9253 1	2+			К О	E(level): from $^{31}P(p,\gamma)$. J^{π} : from $^{31}P(^{3}He,d)$ d γ coincidences.
9268.0 9271.7 9280 9287.9 9289.0 <i>I</i>	1 1+			S S T S K MNO	E(level), J^{π} : from $^{31}P(p,\gamma)$ $\gamma(\theta)$ and $\gamma\gamma(\theta)$.
9297.0 9309.2 9317.1 9344.9 9357.6 9360.5	1			S S S S S S S S S S S S S S S S S S S	Effecting . Hom $\Gamma(p,y)$ $\gamma(0)$ and $\gamma\gamma(0)$.
9388 1	2+			K MNO	E(level): from $^{31}P(p,\gamma)$. J^{π} : from $^{31}P(^{3}He,d)$ as well as L=1 in $^{31}P(d,n)$.
9395.0 9397.2 9402.1 9436.0 9450.6				S S S S	
9463.4 <i>10</i> 9466.0 <i>15</i>	5 ⁻ ,7 ⁻ 2 ⁺	<70 fs <49 fs	A C	I K M O	X E(level), J^{π} : from $^{28}Si(\alpha,\gamma)$ n- $\gamma(\theta)$ correlation. $T_{1/2}$: from $^{31}P(p,\gamma)$.
9481.5 9485.7 <i>10</i>	1-	8.2 eV <i>25</i>	С	K MNO S	E(level): from 31 P(p,γ). $T_{1/2}$: from 31 P(p,α) and 31 P(p,γ). J^{π} : from 31 P(p,γ) $\gamma(\theta)$ and L=1 in 31 P(3 He,d), 31 P(d,n).
9500 9515.9 9524.3 9534.0 9534.9 9560.6			F	S S S S S	
9562 <i>10</i> 9597.1 9619.4 9634.6 <i>18</i>	1 ⁻ ,2 ⁻ 4 ⁻ ,6 ⁺	0.09 ps 6		0 S S	J^{π} : from L=1 in ³¹ P(³ He,d).
9650 <i>30</i> 9650.2 <i>5</i>	6 ⁻ 2 ⁺		A	R	v X E(level), J^{π} : from $^{31}P(p,\gamma)$ $\gamma(\theta)$, $\gamma\gamma(\theta)$ and L=2 in $^{34}S(p,t)$.
9655.2 9656.7 9660.1 <i>11</i> 9665.4	1+	2.4 eV 7			V V
				_	

E(level) [†]	${ m J}^{\pi}$	T _{1/2}		XREF	Comments
9671.7 9674.6 9693.4				S S S	
9704 8 9711.9 <i>14</i>	2+	3.6 eV	A C	K X	E(level): from 34 S(p,t). E(level), $T_{1/2}$: from 31 P(p, γ). J^{π} : from 28 Si(α , γ) γ (θ) and correlation.
9724 <i>I</i> 9727.9 <i>5</i> 9731 <i>I</i>	2,3,4 1 ⁻ ,2 ⁻			K O K K NO	J^{π} : from ³¹ P(p, γ) $\gamma(\theta)$. E(level): from ³¹ P(p, γ).
9783 20	6	0.14 fs + <i>13</i> - <i>11</i>		I V	J^{π} : from $^{31}P(d,n)$ L=1 and $^{31}P(^{3}He,d)$ L=3,1. J^{π} : from $^{29}Si(\alpha,n\gamma)$ $\gamma(\theta)$.
9810 9816.8 <i>10</i>	3-,4-			R K NO X	E(level): from 31 P(p, γ). J ^{π} : from L=3 in 31 P(3 He,d).
9827 <i>3</i> 9848 <i>1</i>	1-	0.100 keV 10	С	K K MNO	E(level): from $^{31}P(p,\gamma)$. $T_{1/2}$: from $^{31}P(p,\alpha)$. J^{π} : from $^{31}P(p,\alpha)$ angular distribution with L=1
9883.3 <i>5</i> 9887.3 <i>6</i>	2+,3+	0.010 keV 5	A	K v K NO v	in ${}^{31}P({}^{3}He,d)$. E(level), $T_{1/2}$: from ${}^{31}P(p,\gamma)$.
9919.3 5	2+	0.010 keV 5		K X	J^{π} : from L=2 in $^{31}P(^{3}He,d)$. $E(level),T_{1/2}$: from $^{31}P(p,\gamma)$. J^{π} : from $^{34}S(p,t)$ L=2 angular distribution and modeling.
9935 6	1		С	Т	E(level): from 28 Si(α,γ). J^{π} : from 32 S(p,p'), 32 S($pol\ p,p'$) angular distributions.
9946.6 5	1-	0.150 keV <i>15</i>	A	K NO V	E(level), $T_{1/2}$: from ³¹ P(p, γ). J^{π} : from ³¹ P(³ He,d) L=1 and RUL.
9977.9 5	4			K N v	E(level), J^{π} : from $^{31}P(p,\gamma) \gamma(\theta)$.
9978.3 1	3			K Q v	E(level): from $^{31}P(p,\gamma)$. J^{π} : from $^{31}P(p,\gamma)$ $\gamma(\theta)$ disagrees with 1^{+} from $^{31}P(e,e')$.
9982.7 6	2,0+	0.100 keV <i>10</i>	A	K	E(level), $T_{1/2}$: from ³¹ P(p, γ). J^{π} : this is a doublet with J=0 ⁺ coming from ³² Cl decay.
9988 10	3-,4-	≈4 keV		M O	E(level), $T_{1/2}$: from $^{31}P(p,\alpha)$. J^{π} : from L=3 $^{31}P(^{3}He,d)$.
9997 6 10021 10 10073.4 6	3 ⁻ ,4 ⁻ 2 ⁻	1.50 keV <i>15</i>	С	O K MNO	E(level): from ${}^{28}\text{Si}(\alpha, \gamma)$. E(level), J^{π} : from L=3 ${}^{31}\text{P}({}^{3}\text{He,d})$. E(level), J^{π} , $T_{1/2}$: from ${}^{31}\text{P}(p,\gamma)$, very strong M2 γ to 0^{4} forces this to be 2^{-} despite L=1 from
10079 2 10090 10	(1) 2 ⁻ 4 ⁽⁺⁾	1.7 keV 4		L Q	31 P(3 He,d) and 31 P(d,n). E(level),J ^{π} ,T _{1/2} : from 31 P(p,p'). J ^{π} : M2 transition.
10102.3 <i>10</i> 10113 <i>6</i> 10218.8 <i>6</i>	3 ⁺	0.010 keV 5	C C	K O K N	E(level), J^{π} : from $^{31}P(p,\gamma)$ $\gamma(\theta)$. E(level), J^{π} , $T_{1/2}$: from $^{31}P(p,\gamma)$ $\gamma(\theta)$ and
10221.2 6	3-	0.056 keV <i>10</i>		KLM O	E3+M2 decay to 4961. E(level), J^{π} , $T_{1/2}$: from ³¹ P(p, γ) with L=3 from

E(level) [†]	\mathbf{J}^{π}	$T_{1/2}$		XREF		Comments
						$^{31}P(^{3}\text{He,d})$, note however that $^{31}P(p,\alpha)$ found a very different lifetime and possibility of J=2.
10225.0 <i>16</i> 10230.3 <i>6</i>	1+	0.18 keV 2 0.025 keV 3	A	K K		E(level), J^{π} : from $^{31}P(p,\gamma)$ from $\gamma(\theta)$ and RUL.
10256.1 7	4-	0.035 keV 4		KLMNO		E(level), $T_{1/2}$: from $^{31}P(p,\gamma)$. J^{π} : from $^{31}P(p,\gamma)$ $\gamma(\theta)$ and L=3 in $^{31}P(^{3}He,d)$.
10276 8	4+			N	X	E(level),J ^π : from ³⁴ S(p,t) L=4 and microscopic model comparison.
10286.3 7	3-	0.16 keV 2	С	K MNO		E(level), $T_{1/2}$: from $^{31}P(p,\gamma)$. J^{π} : from $^{31}P(p,\alpha)$ angular distribution and L=3 in $^{31}P(^{3}He,d)$.
10290.2 <i>6</i>	2	0.125 keV <i>13</i>	Α	K		E(level), J^{π} , $T_{1/2}$: from ³¹ P(p, γ) $\gamma(\theta)$.
10292.0 <i>15</i>	3	0.07 keV <i>1</i>	С	K M		E(level), $T_{1/2}$: from ³¹ P(p, γ).
						J ^{π} : from ³¹ P(p, α) angular distribution. T _{1/2} : ³¹ P(p, α) found a much higher half life than ³¹ P(p, γ).
10310					R	21 2
10331.1 <i>15</i>	1-	6.1 keV 7		K MNO		E(level), J^{π} , $T_{1/2}$: from L=1 from ³¹ P(³ He,d) and ³¹ P(d,n).
10337 <i>3</i> 10369	(0 ⁺)	9 keV 2 5.8 keV	C B D	L	TU W	E(level), J^{π} , $T_{1/2}$: from 31 P(p,p') with L=(1). XREF: B(10250). J^{π} : from 28 Si(α , α) R-matrix fits.
10370.6 6	2+	0.025 keV 3		KLM O	X	E(level), $T_{1/2}$: from $^{31}P(p,\gamma)$. J^{π} : from $^{34}S(p,t)$ angular distribution and L=2 in $^{31}P(^{3}He,d)$.
10396.7 6	4-	0.012 keV 2		K MNO		E(level), J^{π} , $T_{1/2}$: from 31 P(p, γ) $\gamma(\theta)$ with L=3 in 31 P(3 He,d).
10405 <i>3</i> 10428 <i>10</i>	2+,3+,3-,4-	11 keV 4	F	L O		E(level), $T_{1/2}$: from ${}^{31}P(p,p')$. J^{π} : from ${}^{31}P({}^{3}He,d)$ L=2,3.
10456 <i>6</i>	1+	2.9 keV	A C	M Q		E(level), $T_{1/2}$: from ³¹ P(p, α).
						J^{π} : from $^{31}P(e,e')$ angular distribution. Additional information 4.
10500	(0^+)	1.7 keV	B D		T	XREF: Others: AE XREF: B(10380).
10507.9 10		0.010 keV 5		K		AREI : B(10300).
10534 <i>4</i>	3-,4-	1.8 keV	A C	LM O	X	E(level): from ${}^{31}P(p,p')$.
						$T_{1/2}$: from ${}^{31}P(p,\alpha)$. J^{π} : from L=3 in ${}^{31}P({}^{3}He,d)$ disagrees with J=2 from ${}^{31}P(p,\alpha)$.
10556.1 <i>10</i>				KL		E(level): from 31 P(p, γ).
10570	(0+)	1.2 keV	B D		T X	XREF: Others: AF XREF: B(10460).
10574.4 <i>10</i> 10603.8 <i>10</i>	5 ⁺	0.015 keV 2 0.15 keV 2		K K		
10624 6	3-,4-	3.1 keV		МО		E(level), $T_{1/2}$: from ³¹ P(p, α). J ^{π} : from L=3 in ³¹ P(³ He,d).
10636.4 10			С	K		E(level): from $^{31}P(p,\gamma)$.
10658	(1 ⁻)	2.3 keV	B D		T W	XREF: Others: AE XREF: B(10530).

E(level) [†]	\mathbf{J}^{π}	T _{1/2}		XREF	Comments
10696.1 10		0.18 keV 2		K	
10700.5 10	1-	21 keV 4		КМо	E(level), $T_{1/2}$: from $^{31}P(p,\gamma)$. J^{π} : from $^{31}P(p,\alpha)$ angular distribution and L=1 in $^{31}P(^{3}\text{He,d})$.
10705.3 10	1-,2-	20 keV 3	С	KL No	E(level): from ${}^{31}P(p,\gamma)$. J^{π} : from L=1 in ${}^{31}P(d,n)$.
10745	(0 ⁺)	8.9 keV	B D	R T WX	XREF: B(10650). E(level), $T_{1/2}$: from 28 Si(α , α) angular distribution.
10756.7 10	3(+)	0.05 keV 1		K N	$E(\text{level}),J^{\pi},T_{1/2}$: from $^{31}P(p,\gamma)$ $\gamma(\theta)$.
10778.8 10	2+	0.62 keV 7	A	K M O X	E(level), $T_{1/2}$: from $^{31}P(p,\gamma)$ note however that in $^{31}P(p,\alpha)$ a much higher half life was found, the spin discrepancy additionally indicates this level may be a doublet. J^{π} : from L=2 in $^{34}S(p,t)$, parity disagrees with L=1 in
40=00 0 40				_	31 $P(^3He,t)$.
10783.8 <i>10</i> 10784.5 <i>10</i>		0.75 keV 8 0.60 keV 6		K K	
10791.3 10	1	0.00 keV 0	A C	KLM	E(level), $T_{1/2}$: from ³¹ P(p, γ).
10771.5 10		0.17 RC V 2		KEN	J ^π : from ³¹ P(p,α) angular distribution and ²⁸ Si(α,γ) $\gamma(\theta)$.
10806	2		C F	_	E(level), J^{π} : from 28 Si(α , γ).
10816	(3-,5-)	4.7 keV	B D	T	XREF: Others: AG XREF: B(10700).
10825.4 10	2-	22 keV 4		KLMNO Q X	E(level), $T_{1/2}$: from ³¹ P(p, γ) note that ³¹ P(p, α) gives a much lower approximate estimate. J ^{π} : from ³² S(e,e') strength and L=1 in ³¹ P(³ He,d) and ³¹ P(d,n), parity disagrees with ³⁴ S(p,t) and spin with ³¹ P(p, α).
10827.0 <i>10</i> 10830 <i>3</i>		0.32 keV <i>3</i> ≈4 keV		K m	E(level), $T_{1/2}$: from ³¹ P(p, γ).
10830 3	2,(3)	≈4 ke v ≈2.5 keV	С	M M	E(level), $T_{1/2}$: from ³¹ P(p, α).
10032 3	2,(3)	~2.5 Re v	C	п	J^{π} : from ²⁸ Si(α, γ) $\gamma(\theta)$ disagrees with J=2,(3) of ³¹ P(p, α).
10841 10	2	≈0.4 keV	С	M	E(level), $T_{1/2}$: from ³¹ P(p, α).
					J^{π} : from ²⁸ Si(α, γ) $\gamma(\theta)$.
10851 10868	1 (2 ⁺)	7.7 keV	C B D	Т	XREF: Others: AG XREF: B(10780).
10880 40	6-			R	
10907 <i>10</i>	1+	2.1 keV		M Q	E(level), $T_{1/2}$: from $^{31}P(p,\alpha)$. J^{π} : from $^{31}P(e,e')$ strength and $^{31}P(p,\alpha)$ angular distribution.
10915 2 10933.7 <i>10</i>	3			K K	
10933.7 10	1		С	K	E(level), J^{π} : from ²⁸ Si(α, γ) $\gamma \gamma(\theta)$.
10956	(0^+)	2.9 keV	B D	T	XREF: B(10880).
10977 10	$(1^-,2^-)$			LM O	J^{π} : from L=(1) in ${}^{31}P({}^{3}He,d)$.
10980 40	6-			QR	E(level), J^{π} : from 32 S(e,e').
10998	(4)		С	W 0	E/I D/# C 31D/) //2
11009.9 <i>10</i> 11020	4 ⁺ (1 ⁻ ,2 ⁻)			K O N	E(level), J^{π} : from ³¹ P(p, γ) $\gamma(\theta)$.
11020	(4)		С	14	
11064	2+		A		

E(level) [†]	${ m J}^{\pi}$	$T_{1/2}$		XREF	Comments
11078 11092.3 <i>10</i>	2 3 ⁻		С	KLM O	E(level), J^{π} : from $^{28}Si(\alpha, \gamma) \ \gamma \gamma(\theta)$. E(level): from $^{31}P(p, \gamma)$.
11107	(2+)	67.4 keV	BCD	T W	J ^{π} : from ³¹ P(p, γ) $\gamma(\theta)$ and L=3 in ³¹ P(³ He,d). XREF: B(10950). E(level): average of ²⁸ Si(α , α) and ²⁸ Si(α , γ).
11114 2 11123 <i>I</i>				K K	J^{π} , $T_{1/2}$: from ²⁸ Si(α , α), R-Matrix fits.
11130 11131 2	(0 ⁺)	1.8 keV	B D	T W K T	XREF: B(11050). E(level): from ${}^{31}P(p,\gamma)$. J^{π} : from ${}^{31}P(p,p')$.
11139.8 <i>10</i>	1+			K Q	E(level): from $^{31}P(p,\gamma)$. J^{π} : from $^{31}P(e,e')$.
11170 50 11198 10 11235.5 10	6 ⁻ 3 ⁻ ,4 ⁻ 3	9 keV		Q NO K M O	E(level), J^{π} : from L=3 $^{31}P(^{3}He,d)$ and L=3 $^{31}P(d,n)$. E(level), J^{π} : from $^{31}P(p,\gamma)$ $\gamma(\theta)$ note that $^{31}P(p,\alpha)$ finds J=1.
11253.9 10	(3 ⁻)	1.1 keV	В D	K O TUW	$T_{1/2}$: from ${}^{31}P(p,\alpha)$. XREF: B(11250). E(level): from ${}^{31}P(p,\gamma)$. J^{π} : from ${}^{28}Si(\alpha,\alpha)$:res R-matrix fit.
11332.8 <i>10</i> 11366 <i>10</i> 11410	(3-)	1.9 keV	В D	К О Т	XREF: Others: AE
11425 <i>10</i> 11438 <i>10</i>	1	≈4 keV		M O	XREF: B(11380).
11474.6 <i>10</i> 11485.8 <i>10</i>	3 1 ⁺			К О К О Q	E(level), J^{π} : from $^{31}P(p,\gamma) \gamma(\theta)$. E(level): from $^{31}P(p,\gamma)$. J^{π} : from $^{32}S(e,e')$.
11554 10	(0,1)	6.1 keV		МО	E(level): average of ${}^{31}P({}^{3}He,d)$ and ${}^{31}P(p,\alpha)$. $T_{1/2},J^{\pi}$: from ${}^{31}P(p,\alpha)$ angular distribution.
11589.7 <i>10</i>	1-	10.7 keV		K MNO	E(level): $^{31}P(p,\gamma)$. $J^{\pi},T_{1/2}$: from $^{31}P(p,\alpha)$ angular distribution with L=1 in $^{31}P(d,n)$.
11602.4 <i>10</i> 11620 <i>7</i> 11629	1 ⁺ (1,2 ⁺ ,3 ⁻)	5.7 keV	B D	K 0 0 Q T	E(level): from 31 P(p, γ) $\gamma(\theta)$. E(level), J^{π} : from 32 S(e,e'). XREF: Others: AF XREF: B(11410). E(level), $T_{1/2}$: from 28 Si(α , α):res. J^{π} : 32 S(p,p') J=1; $^{3-}$ from 28 Si(α , α'); $^{2+}$ from 4 He(28 Si, α). There may be two different levels near this energy.
11637.1 <i>10</i> 11648 <i>10</i> 11660 <i>10</i>	1	6.6 keV		K K O	
11669.6 <i>10</i> 11690 <i>10</i>	5 ⁺ (3 ⁻)	1.2 keV	B D	K O T W	XREF: Others: AG XREF: B(11570). E(level): from ³¹ P(³ He,d).
11696.7 10	5+			K m	J^{π} , $T_{1/2}$: from 28 Si(α , α):res R-matrix fit. XREF: Others: AB E(level), J^{π} : from 31 P(p, γ).

E(level) [†]	\mathbf{J}^{π}	T _{1/2}		XREF	Comments
					$T_{1/2}$: 8.0 keV from $^{31}P(p,\alpha)$ and 55 keV 24 from $^{16}O(^{20}Ne,\alpha)$ may belong to this level but many levels overlap within uncertainties.
11720 <i>10</i> 11750 <i>10</i>	1		С	0 0	E(level): from ³¹ P(³ He,d).
11730 10	1		C	U	J^{π} : from ${}^{28}Si(\alpha,\gamma) \gamma(\theta)$.
11758.8 <i>10</i>				K	
11783 10	1	30 keV	С	мо	E(level): from 31 P(3 He,d). J^{π} : from 28 Si(α , γ) $\gamma(\theta)$ note that 31 P(p, α) favors J=2.
11806 10	1,2		C F	0	$T_{1/2}$: from $^{31}P(p,\alpha)$. E(level): from $^{31}P(^{3}He,d)$. J^{π} : from $^{28}Si(\alpha,\gamma) \gamma(\theta)$.
11823 10	1-,2-			NO	E(level): from ${}^{31}P({}^{3}He,d)$.
11848	(3-)	10.4 keV	В D	T WX	J^{π} : from ³¹ P(d,n) L=1. XREF: B(11650).
11861 <i>10</i>	(0)	10111101	2 2	0	22122122(21000)
11876 <i>10</i>	1	76137		0	C32C(/) 131D()
11883 10	1	7.6 keV		M Q T	E(level): average of ${}^{32}S(e,e')$ and ${}^{31}P(p,\alpha)$. J^{π} : from ${}^{31}P(p,\alpha)$ angular distribution and ${}^{32}S(p,p')$, $J=2^{-32}S(e,e')$ disagrees.
11900 <i>10</i>				0	21 2
11936 <i>10</i>	3-	7.3 keV		МО	E(level): from ${}^{31}P({}^{3}He,d)$. $J^{\pi}, T_{1/2}$: from ${}^{31}P(p,\alpha)$ angular distribution and L=3 from ${}^{31}P({}^{3}He,d)$.
11940 20	6-	86 keV 24		QR	E(level): from $^{16}O(^{20}Ne,\alpha)$. J^{π} : from $^{32}S(e,e')$ and $^{32}S(\pi^{+},\pi^{+})$, disagrees with 5^{-} assignment of $^{16}O(^{20}Ne,\alpha)$ however large uncertainties mean there may be several levels here.
11940.1 <i>10</i> 11955 <i>10</i>	3 $(2^+,3^-)$	3.2 keV	В D	K O T	XREF: B(11800).
11)33 10	(2 ,5)	3.2 KC V	ט ט	0 1	E(level): from 31 P(3 He,d).
					J^{π} , $T_{1/2}$: from ²⁸ Si(α , α):res R-matrix fit.
12002 10	2	11.8 keV		M O	E(level): from 31 P(3 He,t).
12030 10			С	q TU x	J^{π} , $T_{1/2}$: from 31 P(p, α) angular distribution. XREF: Others: AE , AG XREF: C(12037).
					E(level), J^{π} : from ³² S(e,e') likely a doublet or triplet of levels since the spins reported are all in disagreement, uncertainties are also large or absent making it impossible to make clear assignments.
12043.9 10				K no q x	E(level), J^{π} : from ³¹ P(p, γ) which resolved the triplet.
12044.19 28	2,3,4			K no q x	E(level), J^{π} : from ³¹ P(p, γ) which resolved the triplet.
12047.96 28	0+		С	K no	E(level), J^{π} : from ³¹ P(p, γ) which resolved the triplet.
12050	$(2^+,3^-)$		B D	Т	XREF: Others: AF XREF: B(11940).
12124 12160 <i>10</i>	$(3^+,2^+)$	6.9 keV 22 keV	В	M M O TU	XREF: Others: AG

E(level) [†]	${ m J}^{\pi}$	$T_{1/2}$		XREF		Comments
						XREF: B(12170).
						E(level): from ${}^{31}P({}^{3}He,t)$.
						J^{π} , $T_{1/2}$: from ³¹ P(p, α) angular distribution with
						$L=(2)$ from ${}^{31}P({}^{3}He,t)$.
12196 <i>10</i>	1-			NO Q	R	E(level): from 32 S(e,e').
						J^{π} : From ³² S(e,e') but with parity from L=1 in
12100	(2-)	6 4 1 37				³¹ P(d,n).
12198	(3^{-}) $(2^{+},3^{+})$	6.4 keV	B D	0	TU	XREF: B(12000).
12235 <i>10</i> 12260	$[3^{-}]$		В	0		
12270	0	21 keV	2	M		
12308 10				0		
12340 <i>10</i>				0		21
12362 10	3,(2)	4.8 keV		M O		E(level), J^{π} , $T_{1/2}$: from ³¹ P(p, α) angular distribution.
12393 10	3	7.7 keV		MNO		E(level): from ³¹ P(³ He,d).
10406 10	2.0	12.0.1.37	ъ	w 0	TT I	$T_{1/2}$, J^{π} : from 31 P(p, α) angular distribution.
12426 <i>10</i>	3,2	13.9 keV	В	МО	TU	XREF: Others: AF XREF: B(12440).
						E(level), J^{π} : from $^{31}P(^{3}He,d)$.
						$T_{1/2}$: from $^{31}P(p,\alpha)$ angular distribution.
12465 10	2	7.8 keV		мо		E(level): from 31 P(3 He,d).
12.00 10	-	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		0		J^{π} , $T_{1/2}$: from ³¹ P(p, α) angular distribution.
12491 <i>10</i>	(2,1)	18.6 keV		M O		E(level): from ${}^{31}P({}^{3}He,d)$.
						J^{π} , $T_{1/2}$: from ³¹ P(p, α) angular distribution.
12510	[3-]		В			
12553	2	8.4 keV		M	_	
12560 12568	1 2	3.0 keV		M	T	
12600	3,2	7.9 keV		M		
12630 30	6-	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			R	E(level), J^{π} : from ${}^{32}S(\pi^+,\pi^+)$ note that L=1 in
						³¹ P(d,n) probably means there are several levels
						in this vicinity.
12650 <i>10</i>	1+	<0.10 MeV	В	Q		XREF: B(12650).
12710	$(5^-,3^-)^{\ddagger}$	5 keV	B D		TU	XREF: Others: AE, AG
12740 40	4 -			01	n	XREF: B(12730).
12740 40	6 ⁻ 6 ⁺	84 keV <i>24</i>		Ql	K	XREF: Others: AB
12770	$(2^+)^{\ddagger}$	10 keV	D			ARLI . Others. Ab
12830	$(2^{-})^{\ddagger}$	1 keV	D			
	$(3^{-})^{\ddagger}$					
12860		38 keV	D			VDEE D(12000)
12910	$(3^{-})^{\ddagger}$	8 keV	B D		TU	XREF: B(12880).
12930	$(3^{-})^{\ddagger}$	29 keV 5	B D		TU	XREF: Others: AE
12980 <i>10</i>	1+			01	D	XREF: B(12930). E(level), J^{π} : from 32 S(e,e').
13040 20	(4 ⁺)	<47 keV	В	Ql	T W	XREF: Others: AB, AE
15010 20	(')	(17 Re v	2		- "	XREF: B(13050).
13086	$(3^{-})^{\ddagger}$	26 keV 7	B D		T	XREF: Others: AE
	(- /		= =		=	XREF: B(13110).
13220	[3-]	<0.06 MeV	В			
13230	1				T	77 27 2 370 6
13260 <i>50</i>	6-			QI		E(level), J^{π} : from ³² S(e,e').
13268	$(3^{-})^{\ddagger}$	49 keV <i>3</i>	B D		TU	XREF: Others: AE, AG

E(level) [†]	\mathbf{J}^{π}	T _{1/2}		XREF		Comments
13339	(3 ⁻)	28.8 keV <i>13</i>	B D	М	T X	XREF: B(13270). XREF: Others: AE , AG XREF: B(13360)D(13370). E(level): average of 31 P(p, α) and 28 Si(α , α). J ^{π} : from 31 P(p, α) angular distribution and L=(3) in 28 Si(α , α):res.
13410 <i>10</i> 13430	1 ⁺ ,(2 ⁻) 3 ⁻ ,4 ⁻			Q N		$T_{1/2}$: from ²⁸ Si(α,α):res.
13490	(3 ⁻) [‡] 5 ⁻	54 keV 5	B D	01	T W	XREF: Others: AE XREF: B(13500).
13540 <i>50</i> 13588	$(3^{-})^{\ddagger}$	18 keV 4	B D	QI	K T WX	XREF: Others: AE XREF: B(13560).
13655	$(3^{-})^{\ddagger}$	74 keV 2	D			AREF. B(133000).
13696	$(4^+,3^-)^{\ddagger}$	23.6 keV 9	B D		TU X	XREF: Others: AE XREF: B(13620).
13760 <i>20</i> 13780 <i>10</i>	6 ⁺ 1 ⁺	50 keV 24		Q	T	XREF: Others: $\stackrel{\text{AB}}{\text{AB}}$ E(level), J^{π} : from 32 S(e,e').
13807	$(3^{-})^{\ddagger}$	47.4 keV 8	B D		T X	XREF: Others: AE, AG XREF: B(13670).
13870	$(5^-,3^-)^{\ddagger}$	22.0 keV 11	B D		T	XREF: Others: AE, AG XREF: B(13790).
13896	$(4^+)^{\ddagger}$	22.4 keV 1	B D		T	XREF: Others: AE XREF: B(13830).
13900	1			0	T	AREA: B(15050).
13970 <i>10</i> 14000 <i>20</i>	1 ⁺ ,(2 ⁻) (7 ⁻)	50 keV 24		Q		XREF: Others: AB
14070	(3-)‡	29.6 keV 7	B D		T	XREF: Others: AE, AF XREF: B(14030).
14131	$(5^-)^{\ddagger}$	15.2 keV 6	B D		T	XREF: Others: AF XREF: B(14110).
14177	$(4^+)^{\ddagger}$	42.0 keV 11	B D		T X	
14234	$(3^{-})^{\ddagger}$	89 keV 2	B D		TU	XREF: Others: AF XREF: B(14220).
14290 <i>50</i>	6-			QI	R	
14429	(3-)‡	40 keV 2	B D		T	XREF: Others: AE, AF, AG XREF: B(14370).
14450 <i>10</i> 14542	$(4^+,5^-)^{\ddagger}$	84.5 keV 11	B D	Q	T W	XREF: Others: AF XREF: B(14550).
14633 14730	$(5^{-})^{\ddagger}$ [4 ⁺]	7.0 keV 9	D B			
14770 <i>10</i> 14810 <i>20</i>	2 ⁻ (8 ⁺)	<0.08 MeV 91 keV <i>24</i>	5	Q		XREF: Others: AB
14832	$(4^+)^{\ddagger}$	37.5 keV 5	B D		T	XREF: Others: AF XREF: B(14810).
14878 14880	$(4^+)^{\ddagger}$	25.5 keV 7	D		T	D(1 1010)
15025	$(4^+)^{\ddagger}$	30.5 keV 11	B D		T	XREF: Others: AF

E(level) [†]	\mathbf{J}^{π}	T _{1/2}		XREF			Comments
							XREF: B(14980).
15040	1				T		
15116	$(5^{-})^{\ddagger}$	36 keV 2	B D		T	W	XREF: Others: AF XREF: B(15140).
$15.2 \times 10^3 I$	6+	119 keV 24					XREF: Others: AB
15230	$(4^+,5^-)^{\ddagger}$	18 keV 2	B D		TU	W	XREF: Others: AE XREF: B(15230).
15344	(5 ⁻) [‡]	45.9 keV <i>1</i>	B D		T	W	XREF: Others: AE XREF: B(15330).
15385	$(5^{-})^{\ddagger}$	24.5 keV 6	B D		T	W	XREF: Others: AE XREF: B(15380).
15441	$(5^{-})^{\ddagger}$	34.3 keV 3	B D		T	W	XREF: Others: AF XREF: B(15440).
15527	$(5^{-})^{\ddagger}$	46.8 keV 3	B D		T	W	XREF: Others: AE XREF: B(15530).
15580	1				T		11121 (2(10000))
15600			F				
15631	$(5^{-})^{\ddagger}$	29.9 keV 3	B D		T	WX	XREF: B(15610).
15686	$(5^-,6^+)^{\ddagger}$	35.9 keV <i>1</i>	B D		TU	W	XREF: Others: AG XREF: B(15720).
15700	1				T		
15758	$(6^+,5^-)^{\ddagger}$	41.0 keV 9	B D			WX	XREF: Others: AG XREF: B(15760).
15840	1				T		
15847	$(4^+,5^-)^{\ddagger}$	47 keV 2	B D		TU		XREF: B(15820).
15894	$(5^-,4^+)^{\ddagger}$	28.0 keV 8	B D			W	XREF: B(15890).
15955	$(6^+)^{\ddagger}$	21.6 keV 5	B D		T	WX	XREF: B(15960).
16052	$(5^{-})^{\ddagger}$	54 keV 2	B D		T	X	XREF: B(16060).
16243	$(6^+)^{\ddagger}$	41.3 keV 8	B D		T	X	XREF: B(16160).
16250 16310 <i>70</i>	[5 ⁻] 6 ⁻		В	R			
16341	(5 ⁻) [‡]	86 keV 2	B D		Т	X	XREF: Others: AE
16370 16430 <i>70</i>	[5 ⁻] 6 ⁻		В	Q			XREF: B(16330).
16495	$(5^{-})^{\ddagger}$	64 keV 3	B D		T	X	XREF: Others: AF XREF: B(16480).
16615 16650 <i>70</i>	(6 ⁺) [‡] 6 ⁻	60 keV 2	B D	R	T	WX	XREF: B(16650).
16691	$(5^-,6^+)^{\ddagger}$	23 keV 2	B D		Т	X	XREF: B(16690).
16747	$(6^+)^{\ddagger}$	45 keV 2	B D		T	X	XREF: Others: AG XREF: B(16780).
16795	$(6^+)^{\ddagger}$	76 keV 6	D				11121 (2(10/00))
16866	$(6^+)^{\ddagger}$	38.1 keV 6	B D		T	X	XREF: Others: AG XREF: B(16870).
16920	$(6^+)^{\ddagger}$	35.0 keV 8	D				
16978	$(6^+)^{\ddagger}$	47 keV 3	B D		T	X	XREF: Others: AG
17080	$(6^+)^{\ddagger}$	58.0 keV <i>14</i>	B D		T	X	XREF: B(16970). XREF: Others: AG XREF: B(17060).

E(level) [†]	\mathbf{J}^{π}	T _{1/2}		XREF	Comments
17120 <i>70</i> 17180 <i>80</i>	6 ⁻ 6 ⁻			R Q	
17250	$(5^-)^{\ddagger}$	92 keV <i>14</i>	B D	TU X	XREF: Others: AG XREF: B(17260).
17393	$(7^{-})^{\ddagger}$	35 keV 6	B D	T W	XREF: Others: AE, AG XREF: B(17350).
17420	[7-]		В		11121 (2(1)200)
17570 17656	$[7^{-}]$ $(7^{-})^{\ddagger}$	36 keV 2	B B D	T X	XREF: Others: AG
			БЪ	1 A	XREF: B(17690).
17688	$(7^{-})^{\ddagger}$	26 keV 2	D		
17868	$(6^+,7^-)^{\ddagger}$	82 keV 7	B D	T	XREF: Others: AG XREF: B(17800).
17880	[7 ⁻]	40.1 37.4	В		VDEE OIL AT AC
17934	(7 ⁻) [‡]	48 keV <i>4</i>	B D	T	XREF: Others: AF, AG XREF: B(17940).
18042	(7-)‡	44 keV 2	B D	T X	XREF: B(18060).
18213 18400	(7 ⁻) [‡] [9 ⁻]	76 keV 7	B D B	TU	XREF: B(18220).
18458	$(7^{-})^{\ddagger}$	66 keV 5	B D	T	XREF: Others: AF, AG XREF: B(18470).
18554	$(7^{-})^{\ddagger}$	73.6 keV <i>14</i>	B D	T WX	XREF: B(18560).
18660	$(7^{-})^{\ddagger}$	74 keV 5	B D	T X	XREF: B(18660).
18736	$(7^{-})^{\ddagger}$	75 keV 6	B D	T W	XREF: Others: AG
	a.				XREF: B(18750).
18803 18810	$(8^+,7^-)^{\ddagger}$ [7 ⁻]	46 keV <i>3</i>	B D B	Т	XREF: B(18890).
18986	$(8^+,7^-)^{\ddagger}$	34 keV 2	B D	T	XREF: B(18980).
19119	$(8^+,7^-)^{\ddagger}$	84 keV 7	B D	TU	XREF: B(19120).
19190	[7-]		В		
19248	$(8^+)^{\ddagger}$	54 keV <i>10</i>	B D	TU	XREF: Others: AE XREF: B(19320).
19250	[7-]		В		
19442 19450	$(7^-,8^+)^{\ddagger}$ $[7^-]$	72 keV 2	B D B	T W	XREF: B(19500).
19551	(8 ⁺) [‡]	75 keV 18	B D	T X	XREF: B(19610).
19653	(8 ⁺) [‡]	54 keV 2	B D	T X	XREF: B(19690).
19747	$(8^+,7^-)^{\ddagger}$	79 keV 9	B D	T	XREF: B(19800).
20200 20270	[8 ⁺] [8 ⁺]		B B		
20275	$(7^-,8^+)^{\ddagger}$	44 keV <i>4</i>	B D	U	XREF: Others: AE
20273	(7,0)	TI KE V 7	2 2		XREF: B(20320).
20381	(8+)‡	72 keV <i>17</i>	B D	TU	XREF: Others: AF XREF: B(20410).
20485	(8 ⁺) [‡]	84 keV <i>4</i>	B D	U W	XREF: Others: AE XREF: B(20530).
20610 20680	[8 ⁺]		B B		
20703	(8 ⁺) [‡]	37 keV 4	B D	U W	XREF: Others: AG XREF: B(20750).

E(level) [†]	J^{π}	T _{1/2}		XREF			Comments
20800	[8+]		В				
20835	(8 ⁺) [‡]	59 keV 2	B D		U	X	XREF: B(20860).
20950	[8+]		В				, ,
21050	[9-]		В				
21212	(9 ⁻) [‡]	69 keV <i>3</i>	B D		TU		XREF: B(21280).
21395	(9-)‡	70 keV 5	B D		TU		XREF: Others: AE, AF XREF: B(21430).
21457	(9 ⁻) [‡]	45 keV 4	B D		TU		XREF: Others: AF XREF: B(21490).
21532 21720	(9 ⁻) [‡] [9 ⁻]	39 keV <i>10</i>	B D B		TU I	N	XREF: B(21590).
21783 22000	(8 ⁺ ,9 ⁻) [‡] [9 ⁻]	53 keV 2	B D B		TU		XREF: B(21810).
22135	(9-)‡	74 keV <i>4</i>	B D		TU		XREF: Others: AG XREF: B(22170).
22205	(9-)‡	54 keV 9	B D		U		XREF: Others: AF XREF: B(22240).
22308	(9-)‡	47 keV <i>14</i>	B D		TU		XREF: Others: AE XREF: B(22310).
22355	(8 ⁺) [‡]	24 keV 5	B D		U		XREF: Others: AE XREF: B(22390).
22590	[9-]		В				
22710	[9-]		В				
22846	(9-)‡	51 keV 5	B D		TU		XREF: B(22810).
22964	$(10^+,9^-)^{\ddagger}$	58 keV <i>3</i>	B D		U		XREF: Others: AE XREF: B(23030).
23226	(9 ⁻) [‡]	74 keV <i>16</i>	B D		TU	X	XREF: Others: AE XREF: B(23160).
23296	(9 ⁻) [‡]	52 keV 7	B D		U	X	XREF: Others: AE XREF: B(23260).
23430	[9 ⁻]		В				
23493	$(10^+)^{\ddagger}$	93 keV <i>12</i>	B D		U	N	XREF: Others: AE, AG XREF: B(23750?).
23.86×10^3	7-‡	≈0.1 MeV	D				
24.93×10^3	8+‡	≈0.1 MeV	D				
26.90×10^3	11-‡	≈0.2 MeV	D				
27.25×10^3	9-‡	0.08 MeV	D				
27.44×10^3	8+‡	0.04 MeV	D				
27.69×10^3	9-‡	0.15 MeV	D				
27.82×10^3	9-‡	0.11 MeV	D				
28.04×10^3	10+‡	0.04 MeV	D				
28.17×10^3	10+‡	0.07 MeV	D				
28.30×10^3	8+‡	0.08 MeV	D				
28.48×10^3	10+‡	0.17 MeV	D				
28.67×10^3	10+‡	0.22 MeV	D				
28.97×10^3	10+‡	0.19 MeV	D				
29.25×10^3	9-‡	0.13 MeV	D				
29.66×10^3	10 ^{+‡}	0.16 MeV	D				
_,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		5.10 Int	_				

E(level) [†]	J^{π}	T _{1/2}	XREF
29.88×10^3	10+‡	0.20 MeV	D
29.91×10^3	10 ^{+‡}	0.16 MeV	D
30.26×10^3	9-‡	0.17 MeV	D
30.37×10^3	10 ^{+‡}	0.13 MeV	D
30.61×10^3	$11^{-\ddagger}$	0.25 MeV	D
30.89×10^3	12 ^{+‡}	0.14 MeV	D
31.19×10^3	12 ^{+‡}	0.20 MeV	D
31.71×10^3	9-‡	0.22 MeV	D
31.98×10^3	12 ^{+‡}	0.22 MeV	D
32.7×10^3		≈0.3 MeV	D
33.5×10^3		≈0.2 MeV	D

[†] From least-squares fit to E γ data for levels populated in γ -ray studies. For others, weighted averages are taken when possible. [‡] From L(α , α) for resonances (2003Ka07,2010Lo12); R-matrix analysis in 2010Lo12.

$E_i(level)$	\mathbf{J}_i^{π}	$\mathrm{E}_{\gamma}^{\dagger}$	I_{γ}^{\dagger}	$\mathbf{E}_f \qquad \mathbf{J}_f^{\pi}$	Mult. [†]	δ^{\dagger}	$\mathrm{I}_{(\gamma+ce)}$	Comments
2230.57	2+	2230.49 15	100	$0 0^{+}$	E2			E_{γ} : from $^{32}S(\gamma,\gamma')$.
3778.4	0^{+}	1548.8 <i>15</i>	100	2230.57 2+	[E2]			B(E2)(W.u.)=11.8 I2
		3778		$0 0^{+}$	[E0]		0.035 6	$q_K^2(E0/E2)=0.044 8$, $X(E0/E2)=0.047 9$, $\rho^2=0.019 5$ (2005Ki02
								evaluation).
								$I_{(\gamma+ce)}$: from ³¹ P(³ He,d) (1975Ad02). γ intensity <10.
4281.8	2+	503.7	< 0.4	3778.4 0 ⁺				(yitte)
		2052.6 15	14.9 <i>6</i>	2230.57 2+	E2+M1	-26 16		$B(M1)(W.u.)=1.2\times10^{-5} +15-12$; $B(E2)(W.u.)=7.99$
								Mult., δ : from ³¹ P(p,p' γ).
		4281.5 <i>3</i>	100.0 6	$0 0^{+}$				E_{γ} : from ${}^{32}S(\gamma,\gamma')$.
4459.1	4+	681.4	< 0.3	3778.4 0 ⁺				L_{γ} . Holli $S(\gamma, \gamma)$.
4437.1	7	2229.4 12	100.0	2230.57 2 ⁺	E2			B(E2)(W.u.)=14 3
		4458.4	<1.0	$0 0^{+}$	LZ			D(L2)(W.u.)=14.3
4695.3	1+	414.1	< 0.98	4281.8 2 ⁺				
1075.5	1	917.8	< 0.65	3778.4 0 ⁺				
		2466.0 <i>15</i>	100.0 17	2230.57 2 ⁺	M1(+E2)	-0.08 10		B(M1)(W.u.)=(0.0031 8); B(E2)(W.u.)=(0.014 +35-14)
		2100.015	100.0 17	2230.37 2	1111(122)	0.00 10		Mult., δ : note ³¹ P(p,p' γ) makes a case for a stronger E2 component.
		4694.0 25	63.9 17	$0 0^{+}$	[M1]			B(M1)(W.u.)=0.00029 8
5006.2	3-	724.8	<0.1	4281.8 2+	[111]			D(M1)(W.u.)=0.00027 0
3000.2	5	1228.4	<0.4	3778.4 0 ⁺				
		2776.2 12	100.0 5	2230.57 2 ⁺	E1(+M2)	0.00 5		$B(E1)(W.u.)=(5.8\times10^{-5} 4)$
		5005.4	3.5 5	$0 0^{+}$	E3	0.00 3		B(E3)(W.u.)=16 3
5412.6	3 ⁺	406.2	<2	5006.2 3	LS			D(LS)(W.u.)=10.5
3112.0	5	716.9	<1	4695.3 1 ⁺				
		953.3	<1	4459.1 4 ⁺				
		1131.0	<6	4281.8 2+				
		1634.6	<20	3778.4 0 ⁺				
		3181.8	100	2230.57 2+	E2+M1	+7.6 19		B(M1)(W.u.)=7.E-5 4; B(E2)(W.u.)=1.6 3
		5411.4	<5	$0 0^{+}$	22.1111	. , . 0 1 >		5(M1)(Mai) 712 6 1, 5(22)(Mai) 116 6
5548.5	2+	541.2	< 0.7	5006.2 3-				
	_	851.9	<1.6	4695.3 1+				
		1088.3	<3.3	4459.1 4+				
		1265.9	<1.6	4281.8 2 ⁺				
		1769.6	<1.6	3778.4 0 ⁺				
		3318.5	100.0 25	2230.57 2+	E2+M1	$-5.2\ 21$		B(M1)(W.u.)=0.00022 18; B(E2)(W.u.)=2.3 3
		5546.4	66.7 25	$0 0^{+}$				
5796.8	1-	791.3	<1	5006.2 3-				
		1102.0	<1	4695.3 1 ⁺				
		1338.3	<1.5	4459.1 4+				
		1516.0	<1	4281.8 2+				
		2019.7	<1.5	3778.4 0 ⁺				
		3566.8	<5	2230.57 2+				

γ (32S) (continued)

	E_i (level)	\mathbf{J}_i^{π}	$\mathrm{E}_{\gamma}^{\dagger}$	I_{γ}^{\dagger}	$\mathbf{E}_f \qquad \mathbf{J}_f^{\pi}$	Mult. [†]	δ^{\dagger}	Comments
		_						E_{γ} : from $^{32}S(\gamma,\gamma')$.
	5796.8 6222.9	1 ⁻ 2 ⁻	5796.3 3	100.0				E_{γ} : from ${}^{3}S(\gamma,\gamma')$.
	6222.9	2	811.3 1217.5	<0.2 3 2	5412.6 3 ⁺ 5006.2 3 ⁻			
			1528.1	< 0.5	4695.3 1 ⁺			
			1764.5	< 0.6	4459.1 4+			
			1942.2	<1.5	4281.8 2+			
			2445.8	< 0.8	3778.4 0 ⁺			
			3993.0 20	100.0 21	2230.57 2+	E1+M2	-0.07 3	B(E1)(W.u.)=0.00015 3; B(M2)(W.u.)=0.21 19
			6222.4	<1.5	0 0+			= (==)() *******************************
	6411	4+	4179	100.0	2230.57 2 ⁺			
	6621.7	4-	1209.1	<1.2	5412.6 3 ⁺	E1		B(E1)(W.u.)=5.E-6.5
			1615.2	100.0 14	5006.2 3-	E2+M1	2.9 8	B(M1)(W.u.)=0.0011 6; B(E2)(W.u.)=15 3
			1925.9	< 0.4	4695.3 1 ⁺			
			2162.2	32.9 10	4459.1 4+	E1(+M2)	-0.062	$B(E1)(W.u.)=(4.4\times10^{-5} 8); B(M2)(W.u.)=(0.15 11)$
			2339.9	< 0.27	4281.8 2+			
			2843.5	< 0.82	3778.4 0 ⁺			
			4390.6	4.1 5	$2230.57 \ 2^{+}$	M2+E3	-0.41 8	B(M2)(W.u.)=0.13 3; B(E3)(W.u.)=8 3
			6620.0	< 0.41	0 0+			
)	6666.1	2+	1253.3	<2	5412.6 3 ⁺			
			1659.5	<8	5006.2 3			
			1970.2	29 4	4695.3 1+			
			2206.5	<6	4459.1 4+			
			2384.2	<14	4281.8 2+			
			2887.9 20	100 11	3778.4 0 ⁺			
			4434.8	76 9	2230.57 2+			
	6761.6	5-	6664.3	<6	$0 0^+$			
	0/01.0	3	1349.1 1755.3	<4 100 <i>4</i>	5412.6 3 ⁺ 5006.2 3 ⁻	[E2]		B(E2)(W.u.)=14 3
			1733.3	100 4	3000.2 3	[E2]		Additional information 5.
			2066.0	<11	4695.3 1+			Additional information 3.
			2302.3	32 14	4459.1 4 ⁺	E1+M2	-0.6	$B(E1)(W.u.)=3.3\times10^{-5} 16$; $B(M2)(W.u.)=10.5$
			2302.3	32 14	4439.1 4	EI+WIZ	-0.0	Additional information 6.
			2480.0	<4	4281.8 2 ⁺			Additional information o.
			2983.6	<5	3778.4 0 ⁺			
			4530.6	<9	2230.57 2 ⁺			
			6760.1	2.7 14	$0 0^{+}$			
	6851.5	4 ⁺	1439.9	13 7	5412.6 3 ⁺			
			1846.1	<16.2	5006.2 3			
			2156.7	<6	4695.3 1 ⁺			
			2393.1	13 7	4459.1 4 ⁺	E2		Additional information 7.
								Mult.: from 29 Si $(\alpha, n\gamma)$.
			2570.8	100 13	4281.8 2+	E2		B(E2)(W.u.)=83

						<u>A</u>	-	S) (continued)	³² ₁₆ S ₁₆ -24
	$E_i(level)$	\mathbf{J}_i^{π}	$\mathrm{E}_{\gamma}^{\dagger}$	I_{γ}^{\dagger}	$E_f \underline{\mathbf{J}_f^{\pi}}$	Mult. [†]	δ^{\dagger}	Comments	
24	9289.0	1 ⁺	1163.6 1753.2 2173.5 2287.4 2623.0 2667.3 3065.0 3491.1 3741.1 3876.1 4282.2 4592.8 4829.1 5006.8 5510.3 7057.0 9286.1 1262.6 2626.2 2722.0 2766.2 2766.2 3164.0 3590.1 3840.1 3975.1 4381.2 4691.8 4928.1 5105.7 5609.2 7156.0 9385.0	<pre><2 14.0 13 39.1 23 2.5 5 <1 <1 6.3 8 2.8 5 <4 <2 <3 39.1 23 <2 <3 39.1 23 <2 <3 <2 46.9 23 100 5 2.08 16 <0.6 <0.6 2.1 5 25.4 12 3.0 5 2.7 5 1.44 16 12.5 7 3.2 4 <0.9 3.0 4 <0.8 100 4 4.0 16</pre>	8125.40 1+ 7535.7 0+ 7115.3 2+ 7001.4 1+ 6666.1 2+ 6621.7 4- 6222.9 2- 5796.8 1- 5548.5 2+ 5412.6 3+ 5006.2 3- 4695.3 1+ 4281.8 2+ 3778.4 0+ 2230.57 2+ 0 0+ 8125.40 1+ 6761.6 5- 6666.1 2+ 6621.7 4- 6222.9 2- 5796.8 1- 5548.5 2+ 5412.6 3+ 5006.2 3- 4695.3 1+ 4281.8 2+ 3778.4 0+ 2230.57 2+ 0 0+ 8125.40 1- 6221.9 2- 8125.40 1- 8125	M1(+E2)	0.01 I	Additional information 19.	From ENSDF
	9463.4	5-,7-	2701	100	6761.6 5	M1+E2	-0.82 25	E_{γ} , I_{γ} : from 29 Si(α , $n\gamma$). Additional information 20. Mult., δ : from 29 Si(α , $n\gamma$).	
	9466.0	2+	2347.8 3675 [‡] 4455 [‡] 4767.0 5005 [‡] 5684.5	13 4 12 4 12 4 50 8 12 4 11 3	7115.3 2 ⁺ 5796.8 1 ⁻ 5006.2 3 ⁻ 4695.3 1 ⁺ 4459.1 4 ⁺ 3778.4 0 ⁺				³² S ₁₆ -24

$E_i(level)$	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	E_f J_f^{π}
9660.1	1+	7426.8	12.3 <i>13</i>	2230.57 2+
		9655.9	100 10	$0 0^{+}$
9711.9	2+	1586.5	6.7 17	8125.40 1+
		2596.4	7.2 12	$7115.3 2^+$
		2710.2	7.2 12	$7001.4 1^+$
		3487.8	<4	$6222.9 2^{-}$
		3913.9	8.4 21	5796.8 1
		4163.9	<4	5548.5 2 ⁺
		4298.9	<3	5412.6 3 ⁺
		4705.0	4.88 24	$5006.2 3^-$
		5015.6	60 5	4695.3 1+
		5251.9	2.8 12	4459.1 4+
		5429.5	6.5 19	4281.8 2+
		5933.0	14.9 5	3778.4 0+
		7479.7	100 17	2230.57 2+
0724	224	9708.7	15.3 17	$0 0^+$
9724	2,3,4	1773.8	<2	7950.1 4
		2022.9	2.4 13	7701.44 3
		2188.1	<1	7535.7 0 ⁺
		2608.5	<1	7115.3 2+
		2962.1	12.4 5	6761.6 5 ⁻ 6621.7 4 ⁻
		3102.2 3499.9	100 8 32 4	6621.7 4 ⁻ 6222.9 2 ⁻
		3926.0	<1 <1	5796.8 1 ⁻
		4176.0	<2	5548.5 2 ⁺
		4311.0	<2	5412.6 3 ⁺
		4717.1	95 8	5006.2 3
		5027.7	<2	4695.3 1 ⁺
		5264.0	<2	4459.1 4+
		5441.6	<2	4281.8 2+
		5945.1	<3	3778.4 0 ⁺
		7491.8	2.0 5	2230.57 2+
		9720.8	<1	0 0+
9731	$1^{-},2^{-}$	1605.6	19 3	8125.40 1+
	,	1780.8	5.5 14	7950.1 4
		2029.9	<3	7701.44 3-
		2615.5	9	7115.3 2 ⁺
		3109.2	<1	6621.7 4-
		3506.9	91 9	$6222.9 2^{-}$
		3933.0	91 9	5796.8 1
		4183.0	4.5 23	5548.5 2+
		4318.0	<6	5412.6 3 ⁺

Comments

	_	

E_i (level)	\mathbf{J}_i^{π}	$\mathrm{E}_{\gamma}^{\dagger}$	$\mathrm{I}_{\gamma}{}^{\dagger}$	$\mathbf{E}_f \qquad \mathbf{J}_f^{\pi}$
9731	$1^{-},2^{-}$	4724.1	14 7	5006.2 3-
	- ,-	5034.6	24 4	4695.3 1+
		5271.0	<2	4459.1 4+
		5448.6	100 9	4281.8 2+
		5952.1	<4	$3778.4 0^{+}$
		7498.8	86 9	2230.57 2+
		9727.8	18.2 <i>23</i>	$0 0^{+}$
9783	6	5324	100	4459.1 4+
9816.8	3-,4-	2701.3	17.2 <i>12</i>	7115.3 2+
		3195.0	<1.2	$6621.7 4^-$
		3592.7	11.2 14	$6222.9 2^{-}$
		4018.8	5.4 6	5796.8 1
		4268.8	<1.4	5548.5 2+
		4403.7	<3	5412.6 3 ⁺
		4809.8	100 6	5006.2 3
		5120.4	<1.8	4695.3 1 ⁺
		5356.7	3.4 8	4459.1 4+
		5534.4	20 4	4281.8 2+
		6037.9	<1.6	$3778.4 0^{+}$
		7584.6	40 4	2230.57 2+
		9813.6	1.4 4	$0 0_{+}$
9848	1-	2732.4	53 4	7115.3 2+
		3181.9	<2.7	6666.1 2+
		3226.2	<1	6621.7 4
		3623.9	<4.3	6222.9 2-
		4049.9	11.18 20	5796.8 1
		4300.0	<1.8	5548.5 2+
		4434.9	<3.3	5412.6 3 ⁺
		4841.0	<2	5006.2 3
		5151.6	4.7 10	4695.3 1+
		5387.9	< 2.5	4459.1 4+
		5565.6	3.5 12	4281.8 2+
		6069.1	<1	$3778.4 0^+$
		7615.8	100 8	2230.57 2+
		9844.7	19.6 20	0 0+
9887.3	$2^+,3^+$	2771.7	100 14	$7115.3 2^+$
		2885.6	53 7	7001.4 1+
		3221.2	8.0 9	6666.1 2+
		3663.1	<1.1	$6222.9 2^{-}$

27

E_{γ},I_{γ}: from ²⁹Si(α ,n γ). Additional information 22. Mult., δ : from ²⁹Si(α ,n γ).

E_i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	$\mathbf{E}_f \mathbf{J}_f^{\pi}$	E_i (level)	J_i^π	E_{γ}^{\dagger}	$_{\mathrm{I}_{\gamma}}^{\dagger}$	$\mathrm{E}_f \qquad \mathrm{J}_f^\pi$
9887.3	$2^{+},3^{+}$	4089.2	< 0.7	5796.8 1-	9977.9	4	3356.4	51 7	6621.7 4-
	,-	4339.3	24.4 23	5548.5 2 ⁺			3754.1	53 7	6222.9 2-
		4474.2	< 2.6	5412.6 3 ⁺			4971.3	100 9	5006.2 3-
		4880.3	<15.5	5006.2 3-	9978.3	3	1634.2	2.2 6	8346.4 4+
		5190.9	11.11 23	4695.3 1+			2276.9 [#]		7701.44 3-
		5427.2	0.44 23	4459.1 4+			2494.2	10.8 11	7484.0 2+
		5604.8	8.4 12	4281.8 2+			2628.3	8.1	7350.0 3 ⁽⁺⁾
		6108.3	<1.3	3778.4 0 ⁺			2862.7	13.2 14	7115.3 2+
		7655.0	22.2 23	2230.57 2+			2976.2	3.5 6	7001.4 1+
		9884.0	3.8 5	$0 0^{+}$			3125.6	19.5 <i>19</i>	6851.5 4+
9919.3	2+	2383.4	2.0 10	7535.7 0 ⁺			3312.1	<1.6	6666.1 2 ⁺
		2435.2	7.1 8	7484.0 2+			3356.4	9.5 9	6621.7 4-
		2803.7	22.0 25	7115.3 2+			4180.2	3.0 9	5796.8 1
		3066.6	18.05 25	6851.5 4 ⁺			4430.2	84 9	5548.5 2+
		3253.1	<12.2	$6666.1 2^+$			4565.2	17.8 <i>17</i>	5412.6 3 ⁺
		3297.4	< 2.7	6621.7 4			5281.9	<1.1	4695.3 1 ⁺
		3695.1	< 5.6	$6222.9 2^{-}$			5518.2	20.8 22	4459.1 4 ⁺
		4121.2	<3.2	5796.8 1			5695.8	< 2.7	4281.8 2+
		4371.3	85 8	5548.5 2+			6199.3	<2.4	3778.4 0+
		4506.2	6.59 25	5412.6 3 ⁺			7746.0	100 9	2230.57 2+
		4912.3	<2.7	5006.2 3			9975.0	0.8	0 0+
		5222.9	<26.8	4695.3 1+	9982.7	$2,0^{+}$	2867.1	1.3 5	7115.3 2+
		5459.2	<3.4	4459.1 4+			2981.0	2.9 8	7001.4 1+
		5636.8	2.9 17	4281.8 2+			3130.0	1.3 4	6851.5 4+
		6140.3	<3.2	3778.4 0 ⁺			3360.8	1.9 7	6621.7 4
		7687.0	100 10	2230.57 2+			3758.5	<1.8	6222.9 2
0046.6	1 –	9916.0	<2.7	$0 0^{+}$			4184.6	<1.4	5796.8 1 ⁻
9946.6	1-	1821.2	10.3 8	8125.40 1 ⁺ 7115.3 2 ⁺			4434.6	15.2 15	5548.5 2 ⁺ 5412.6 3 ⁺
		2831.0	2.0 3				4569.6	<1.6	
		2944.9 3324.7	0.53 <i>14</i> < 0.7	7001.4 1 ⁺ 6621.7 4 ⁻			4975.7 5286.3	<1.6 34 <i>4</i>	5006.2 3 ⁻ 4695.3 1 ⁺
		3722.4	<0.7	6222.9 2			5522.6	<1.4	4459.1 4 ⁺
		4148.5	<0.3	5796.8 1			5700.2	2.6 8	4281.8 2 ⁺
		4398.6	<1	5548.5 2 ⁺			6203.7	<0.9	3778.4 0 ⁺
		4533.5	<0.4	5412.6 3+			7750.4	100 10	2230.57 2+
		4939.6	<0.4	5006.2 3			9979.4	1.13 17	$0 0^{+}$
		5250.2	2.0 4	4695.3 1 ⁺	10073.4	2-	1574.0	0.41 21	8499.3 1
		5486.5	<1.3	4459.1 4+	10075.7	_	1777.2	0.8 4	8296.1 3
		5664.1	2.9 4	4281.8 2+			1948.0	0.61 21	8125.40 1+
		6167.6	3.7 8	3778.4 0 ⁺			2372.2	0.61 21	7701.44 3
		7714.3	10.7 12	2230.57 2+			2957.8	1.4 7	7115.3 2+
		9943.3	100 10	$0 0^{+}$			3407.2	<1.4	6666.1 2+
					1				

						<u> </u>
E_i (level)	J_i^{π}	E_{γ}^{\dagger}	${\rm I}_{\gamma}{}^{\dagger}$	$\mathbf{E}_f \mathbf{J}_f^{\pi}$	Mult. [†]	δ^{\dagger}
10073.4	2-	3451.5	<1.4	$\frac{1}{6621.7}$ $\frac{1}{4}$		
10073.4	2	3849.2	100 4	6222.9 2		
		4275.3	<3.0	5796.8 1 ⁻		
		4525.3	<1.4	5548.5 2 ⁺		
		4660.3	8.8 7	5412.6 3 ⁺		
		5066.3	28.2 15	5006.2 3		
		5376.9	1.43 21	4695.3 1 ⁺		
		5613.2	<1.43 21	4459.1 4+		
		5790.9	3.06 21	4281.8 2 ⁺		
		6294.4	< 0.8	3778.4 0 ⁺		
		7841.0	60.3	2230.57 2+		
		10070.0	3.47 21	$0 0^{+}$	M2	
10102.3	4(+)	4689.3	16.5 15	5412.6 3 ⁺	1112	
10102.3	4	5095.4	49.8 15	5006.2 3		
		5642.2	46.7 15	4459.1 4 ⁺		
		5820.1	22.9 12	4281.8 2+		
		7870.0	100.0 22	2230.57 2 ⁺		
10218.8	3 ⁺	2734.6	2.7 5	7484.0 2 ⁺		
10210.0	3	3028.4	1.22 25	7190.1 1+		
		3103.2	100 8	7115.3 2 ⁺		
		3552.6	1.7 5	6666.1 2+		
		3596.9	<1.5	6621.7 4		
		3994.6	<1.7	6222.9 2		
		4420.6	<1.5	5796.8 1 ⁻		
		4670.7	16.6 17	5548.5 2 ⁺		
		4805.6	7.1 8	5412.6 3 ⁺		
		5211.7	12.0 17	5006.2 3		
		5522.3	46 5	4695.3 1+		
		5758.6	12.9 13	4459.1 4+		
		5936.2	16.6 15	4281.8 2+		
		6439.7	<1.7	3778.4 0 ⁺		
		7986.4	29.3 25	2230.57 2+		
		10215.3	3.9 5	0 0+		
10221.2	3-	2737.0	< 0.65	7484.0 2+		
	-	3105.6	3.2 25	7115.3 2+	E1+M2	+0.233 17
		3555.0	1.1 4	6666.1 2+	_	
		3599.3	< 0.96	6621.7 4		
		3997.0	< 0.96	6222.9 2		
		4423.0	<1.3	5796.8 1		
		4673.1	<1.6	5548.5 2+		
		4808.0	0.6 4	5412.6 3+		

γ (32S) (continued)

\mathbf{J}_i^{π}	E_{γ}^{\dagger}	${\rm I}_{\gamma}{}^{\dagger}$	$\mathbf{E}_f \qquad \mathbf{J}_f^{\pi}$	Mult. [†]	δ^{\dagger}	Comments
3-	5214.1	100 8	5006.2 3	$\overline{D(+Q)}$	-0.06 6	δ : from ²⁸ Si(α , γ).
	5524.7	<1.6	4695.3 1+	M2+E3	-0.227	
	5761.0	34 4		D+Q	-0.092	δ : from ²⁸ Si(α , γ).
	5938.6	<1.6				
	7988.8	22.6 17	2230.57 2+	E1+M2	-0.705	δ : other: +0.11 5 from 28 Si(α, γ).
1+						
	3228.5					
			0222.9 Z 5706.8 1=			
	6451.2	6.0 13	3778.4 0 ⁺			
	7997.9	19.1 20	2230.57 2+			
		16.2 <i>17</i>				
4-		7.4 8				
		< 0.4				
				M1+E2	$-0.9 \ 3$	
				M1 . F2	. 0 2 1	
			3000.2 3 4605.2 1+	WH+E2	+0.2 1	
				E1+M2	0.0.2	
				E1+W12	-0.9 3	
	3-1+	3- 5214.1 5524.7 5761.0 5938.6 6442.1 7988.8 10217.7 1+ 2694.4 3039.9 3114.7 3228.5 3377.5 3468.3 3564.1 3608.4 4006.1 4432.1 4682.2 4817.1 5223.2 5533.8 5770.1 5947.7 6451.2 7997.9 10226.8	3- 5214.1 100 8 5524.7 <1.6 5761.0 34 4 5938.6 <1.6 6442.1 <0.32 7988.8 22.6 17 10217.7 0.5 4 1+ 2694.4 11.5 15 3039.9 1.9 5 3114.7 6.8 22 3228.5 100 7 3377.5 <2 3468.3 <2.3 3564.1 <2 3608.4 <1.9 4006.1 8.9 20 4432.1 <2 4682.2 5.3 11 4817.1 6.8 7 5223.2 <3 5533.8 9.1 13 5770.1 <2.1 5947.7 23.4 22 6451.2 6.0 13 7997.9 19.1 20 10226.8 16.2 17 4- 2305.8 7.4 8 2554.9 <0.4 2906.1 3494.1 3.4 8 3634.2 100 7 3845.6 0.7 3 4708.0 <0.4 4842.9 <0.3 5249.0 6.2 7 5559.6 <0.13 5795.9 12.8 10 5973.5 <0.3 6477.0 <0.1	3- 5214.1 100 8 5006.2 3- 5524.7 <1.6 4695.3 1+ 5761.0 34 4 4459.1 4+ 5938.6 <1.6 4281.8 2+ 6442.1 <0.32 3778.4 0+ 7988.8 22.6 17 2230.57 2+ 10217.7 0.5 4 0 0+ 12694.4 11.5 15 7535.7 0+ 3039.9 1.9 5 7190.1 1+ 3114.7 6.8 22 7115.3 2+ 3228.5 100 7 7001.4 1+ 3377.5 <2 6851.5 4+ 3468.3 <2.3 6761.6 5- 3564.1 <2 6666.1 2+ 3608.4 <1.9 6621.7 4- 4006.1 8.9 20 6222.9 2- 4432.1 <2 5796.8 1- 4682.2 5.3 11 5548.5 2+ 4817.1 6.8 7 5412.6 3+ 5223.2 <3 5006.2 3- 5533.8 9.1 13 4695.3 1+ 5770.1 <2.1 4459.1 4+ 5947.7 23.4 22 4281.8 2+ 6451.2 6.0 13 3778.4 0+ 7997.9 19.1 20 2230.57 2+ 10226.8 16.2 17 0 0+ 4006.1 6851.5 4+ 2305.8 7.4 8 7950.1 4- 2554.9 <0.4 7701.44 3- 7350.0 3(+) 3406.1 6851.5 4+ 3494.1 3.4 8 6761.6 5- 3634.2 100 7 6621.7 4- 3845.6 0.7 3 6411 4+ 4708.0 <0.4 5548.5 2+ 4842.9 <0.3 5412.6 3+ 5795.9 12.8 10 4459.1 4+ 5973.5 <0.3 4281.8 2+ 5795.9 12.8 10 4459.1 4+ 5973.5 <0.3 4281.8 2+ 5795.9 12.8 10 4459.1 4+ 5973.5 <0.3 4281.8 2+ 5795.9 12.8 10 4459.1 4+ 5973.5 <0.3 4281.8 2+ 5795.9 12.8 10 4459.1 4+ 5973.5 <0.3 4281.8 2+ 5795.9 12.8 10 4459.1 4+ 5973.5 <0.3 4281.8 2+ 6477.0 <0.1 3778.4 0+	3- 5214.1 100 8 5006.2 3- D(+Q) 5524.7 <1.6 4695.3 1+ M2+E3 5761.0 34 4 4459.1 4+ D+Q 5938.6 <1.6 4281.8 2+ 6442.1 <0.32 3778.4 0+ 7988.8 22.6 17 2230.57 2+ E1+M2 10217.7 0.5 4 0 0+ 3039.9 1.9 5 7190.1 1+ 3114.7 6.8 22 7115.3 2+ 3228.5 100 7 7001.4 1+ 3377.5 <2 6851.5 4+ 3468.3 <2.3 6761.6 5- 3564.1 <2 6666.1 2+ 3608.4 <1.9 6621.7 4- 4006.1 8.9 20 6222.9 2- 4432.1 <2 5796.8 1- 4682.2 5.3 11 5548.5 2+ 4817.1 6.8 7 5412.6 3+ 5223.2 <3 5006.2 3- 5533.8 9.1 13 4695.3 1+ 5947.7 23.4 22 4281.8 2+ 6451.2 6.0 13 3778.4 0+ 7997.9 19.1 20 2230.57 2+ 10226.8 16.2 17 0 0+ 2305.8 7.4 8 7950.1 4- 2305.8	3- 5214.1 100 8 5006.2 3- D(+Q) -0.06 6 5524.7 <1.6 4695.3 1+ M2+E3 -0.22 7 5761.0 34 4 4459.1 4+ D+Q -0.09 2 5938.6 <1.6 4281.8 2+ 6442.1 <0.32 3778.4 0+ 7988.8 22.6 17 2230.57 2+ E1+M2 -0.70 5 10217.7 0.5 4 0 0+ 3039.9 1.9 5 7190.1 1+ 3114.7 6.8 22 7115.3 2+ 3228.5 100 7 7001.4 1+ 3377.5 <2 6851.5 4+ 3468.3 <2.3 6761.6 5- 3564.1 <2 6666.1 2+ 3608.4 <1.9 6621.7 4- 4006.1 8.9 20 6222.9 2- 4432.1 <2 5796.8 1- 4682.2 5.3 11 5548.5 2+ 4817.1 6.8 7 5412.6 3+ 5223.2 <3 5006.2 3- 5533.8 9.1 13 4695.3 1+ 5770.1 <2.1 4459.1 4+ 5947.7 23.4 22 4281.8 2+ 6451.2 6.0 13 3778.4 0+ 7997.9 19.1 20 2230.57 2+ 10226.8 16.2 17 0 0+ 4- 2305.8 7.4 8 7950.1 4- 7997.9 19.1 20 2230.57 2+ 10226.8 16.2 17 0 0+ 4- 2305.8 7.4 8 7950.1 4- 2906.1 7350.0 3(+) 3406.1 6851.5 4+ 3494.1 3.4 8 6761.6 5- 3634.2 100 7 6621.7 4- M1+E2 -0.9 3 3845.6 0.7 3 6411 4+ 4708.0 <0.4 5548.5 2+ 4842.9 <0.3 5412.6 3+ 5595.6 <0.13 4695.3 1+ 5795.9 12.8 10 4459.1 4+ 5997.5 <0.3 5412.6 3+ 5597.5 <0.3 4281.8 2+ 5597.5 <0.3 4281.8 2+ 5597.5 <0.3 4281.8 2+ 5597.5 <0.3 4281.8 2+ 5597.5 <0.3 4281.8 2+ 5597.5 <0.3 4281.8 2+ 5597.5 <0.3 4281.8 2+ 5597.5 <0.1 34695.3 1+ 5795.9 12.8 10 4459.1 4+ 510.2 14.2 14.2 14.2 14.2 14.2 14.2 14.2 14

$E_i(level)$	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	$_{\mathrm{I}_{\gamma}}^{\dagger}$	\mathbf{E}_f \mathbf{J}_f^{π}	$E_i(level)$	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	\mathbf{E}_f	\mathbf{J}_f^{π}	Mult. [†]	δ^{\dagger}
10256.1	4-	10252.6	<0.4	0 0+	10370.6	2+	3517.8	<1.5	6851.5	4+		
10286.3	3-	5279.2	100.0	5006.2 3-			3704.3	35.0 25	6666.1	2+		
		5826.1	20.2	4459.1 4+			3748.6	<1.5	6621.7	4-		
		8053.8	14.8	2230.57 2+			4146.3	5.0 8	6222.9	2-		
		10282.8	9.6	$0 0^{+}$			4572.4	<1.5	5796.8	1-		
10290.2	2	2164.7	10 <i>3</i>	8125.40 1+			4822.4	6.8 8	5548.5	2+		
		2806.0	< 6.6	$7484.0 2^{+}$			4957.4	30.0 25	5412.6	3 ⁺		
		3288.4	4.3	7001.4 1+			5363.4	5.8 5	5006.2	3-		
		3624.0	5 3	6666.1 2 ⁺			5674.0	23.0 18	4695.3	1+		
		3668.2	<4	$6621.7 4^-$			5910.3	< 0.75	4459.1	4+		
		4065.9	83 6	$6222.9 2^{-}$			6088.0	100 8	4281.8	2+		
		4492.0	6.9 23	5796.8 1			6591.4	1.5 5	3778.4	0_{+}		
		4742.0	<4.9	5548.5 2+			8138.1	30.0 25	2230.57	2+		
		4877.0	6.3 23	5412.6 3+			10367.0	2.5 5	0	0_{+}		
		5283.1	69 <i>3</i>	5006.2 3	10396.7	4-	2271.2	1.0 6	8125.40			
		5593.7	< 2.9	4695.3 1+			2421.6	< 0.5	7974.9	4-		
		5830.0	<8.6	4459.1 4+			2446.4	4.8 5	7950.1	4-		
		6007.6	8.0 12	4281.8 2+			2695.5	< 0.3	7701.44			
		6511.1	<4.3	3778.4 0 ⁺			2829.4	0.4 8	7566.8	5+		
		8057.7	100 12	2230.57 2+			3029.3	0.85 14	7367			
10221 1	1-	10286.6	11.4 12	0 0+			3394.9	0.37 9	7001.4	1+		
10331.1	1-	2205.6	7.4 15	8125.40 1+			3543.9	1.6 6	6851.5	4 ⁺		
		3329.3	<3	7001.4 1+			3634.7	2.7 21	6761.6	5-	M1 . F2	. 0 0 2
		3569.1	<4.2	6761.6 5 ⁻ 6666.1 2 ⁺			3774.7	100 6	6621.7	4 ⁻ 4 ⁺	M1+E2	+0.9 3
		3664.8	<3.2				3986.2	0.61 25	6411			
		3709.1	<3.8 <3.7	6621.7 4 ⁻ 6222.9 2 ⁻			4172.4 4598.5	<2.4 0.37 8	6222.9 5796.8	2 ⁻ 1 ⁻		
		4106.8 4532.9	<5.7 <5	5796.8 1 ⁻			4848.5	< 0.6	5548.5	2+		
		4782.9	<16.2	5548.5 2 ⁺			4983.5	0.12 4	5412.6	3 ⁺		
		4917.9	<3.8	5412.6 3 ⁺			5389.5	7.8 6	5006.2	3-	M1+E2	+0.2 1
		5323.9	<1.9	5006.2 3			5700.1	<0.4	4695.3	1 ⁺	WIITEZ	TU.2 1
		5634.5	17.6 15	4695.3 1 ⁺			5936.4	1.7 5	4459.1	4 ⁺		
		5870.8	<1.9	4459.1 4 ⁺			6114.0	2.2 6	4281.8	2+		
		6048.5	<1.2	4281.8 2+			6617.5	0.37 24	3778.4	0+		
		6552.0	<3.4	3778.4 0 ⁺			8164.2	1.0 4	2230.57	2+		
		8098.6	100 9	2230.57 2+			10393.1	<1.1	0	0^{+}		
		10327.5	22 3	0 0+	10507.9		3317.4	7.7 8	7190.1	1+		
10370.6	2+	2886.4	6.5 23	7484.0 2+	1000715		3392.2	100.0 19	7115.3	2+		
100.00	-	3020.3 [#]	0.75	7350.0 3 ⁽⁺⁾			3506.0	<8	7001.4	1+		
		3180.2	3.0 23	7190.1 1+			3655.1	<3	6851.5	4 ⁺		
		3368.8	0.50 18	7001.4 1+			3745.8	<3	6761.6	5-		
		3300.0	0.50 10	7001.T 1	1		3773.0	\ 3	3701.0	J		

E_i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	$\mathrm{I}_{\gamma}^{\dagger}$	E_f	${\rm J}_f^\pi$	E_i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	$\mathrm{I}_{\gamma}^{\dagger}$	E_f	${\rm J}_f^\pi$
10507.9	_	3841.6	3.0 6	6666.1	2+	10696.1		6235.7	1.4	4459.1	4+
10507.5		3885.9	<3	6621.7	$\frac{2}{4^{-}}$	10070.1		6413.5	14.3	4281.8	2 ⁺
		4283.6	<14.8	6222.9	2-			6916.8	4.3	3778.4	0+
		4709.7	4.0 4	5796.8	1-			8463.4	7.1	2230.57	2+
		4959.7	5.5 11	5548.5	2+			10692.3	100.0	0	0^{+}
		5094.6	14.0 6	5412.6	3+	10700.5	1-	4902.2	4.8	5796.8	1-
		5500.8	2.2 4	5006.2	3-			6003.8	3.6	4695.3	1+
		5811.3	1.6 4	4695.3	1+			6921.2	4.8	3778.4	0^{+}
		6047.6	< 2.8	4459.1	4+			8467.8	6.0	2230.57	2+
		6225.2	13.6 8	4281.8	2+			10696.7	100	0	0_{+}
		6728.7	<5	3778.4	0_{+}	10705.3	$1^{-},2^{-}$	3003.6	16.7 <i>18</i>	7701.44	3-
		8275.3	41.7 11	2230.57	2+			3943.2	60 <i>3</i>	6761.6	5-
		10504.2	10.7 <i>17</i>	0	0_{+}			4083.2	100 4	6621.7	4-
10556.1		8323.5	100	2230.57	2+			6244.9	16 4	4459.1	4+
		10552.4	67	0	0_{+}	10756.7	3 ⁽⁺⁾	1691.6	1.2 4	9065	
10574.4	5+	2304.2	3.8 4	8270.3	$3^{-},5^{-}$			2027.3	1.8 6	8729.3	3+
		3224.1	6.8 6	7350.0	$3^{(+)}$			3054.9	3.5 4	7701.44	3-
		3812.3	6.0 6	6761.6	5-			3406.3	6.2 4	7350.0	3(+)
		3952.4	4.4 6	6621.7	4-			3641.0	2.6 4	7115.3	2+
		4163.8	2.7 8	6411	4+			3903.8	5.5 4	6851.5	4+
		5161.1	52.5 10	5412.6	3+			4092.4	3.5	6666.1	2+
		6114.0	100.0 <i>17</i>	4459.1	4+			4134.6	2.3 6	6621.7	4-
		8341.8	80	2230.57	2+			5208.4	31.7 11	5548.5	2+
		10570.7	12.8	0	0_{+}			5343.3	13.4 7	5412.6	3 ⁺
10603.8		2478.3	7.7	8125.40	1+			6296.3	100.0 <i>16</i>	4459.1	4 ⁺
		3488.1	25.6	7115.3	2+			6474.1	6.2 4	4281.8	2+
		4805.5	12.8	5796.8	1-			8524.0	1.9 4	2230.57	2+
		5055.5	100	5548.5	2+	10778.8	2+	1755.7	2.80 24	9023.8	4-
		5190.5	25.6	5412.6	3+			2803.6	4.9 5	7974.9	4-
		5596.6	20.5	5006.2	3-			3294.5	1.86 24	7484.0	2+
		8371.1	15.4	2230.57	2+			3428.4	0.70 24	7350.0	3 ⁽⁺⁾
		10600.0	48.7	0	0_{+}			3776.9	30.1 7	7001.4	1+
10636.4		2686.1	22.7 12	7950.1	4-			4112.4	3.7 5	6666.1	2+
		2934.7	5.5 9	7701.44	3-			4980.5	1.40 24	5796.8	1-
		3874.3	13.3 13	6761.6	5-			5230.5	1.40 24	5548.5	2+
		4014.4	100.0 22	6621.7	4-			5365.4	16.6 5	5412.6	3+
10696.1		2994.4	0.7	7701.44	3-			6082.1	10.5 5	4695.3	1+
		3160.1	0.7	7535.7	0+			6496.2	38.9 7	4281.8	2+
		4897.8	4.3	5796.8	1-			8546.0	100.0 21	2230.57	2+
		5147.8	2.9	5548.5	2+	10502.6		10774.9	19.3 5	0	0+
		5688.9	4.3	5006.2	3-	10783.8		2862.5	2.51 20	7921.0	1+
		5999.4	2.9	4695.3	1+			3146.5	1.35 20	7637.0	1

$E_i(level)$	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	\mathbf{E}_f	\mathbf{J}_f^{π}	Comments
10933.7	3	6473.2	23.4 10	4459.1	4+	
		6651.0	100.0 10	4281.8	2+	
		8700.9	7.7 13	2230.57	2+	
		10929.7	<3	0	0_{+}	
10941	1	8708 [‡]	39	2230.57	2+	Additional information 32.
						δ : 0.00 18 or 3.0 15 ²⁸ Si(α , γ).
		10937 [‡]	100	0	0^{+}	Additional information 33.
10998	(4)	4577 [‡]	9	6411	4+	
	()	5987 [‡]	5	5006.2	3-	
		6537 [‡]	100	4459.1	4 ⁺	Additional information 34.
11009.9	4+	2739.6	1.46 21	8270.3	3-,5-	Additional information 54.
11007.7	7	3059.5	0.63 21	7950.1	4-,5	
		3126.7	4.38 21	7882.9	4 ⁺	
		3308.1	2.29 21	7701.44		
		3525.6	0.83 21	7484.0	2+	
		3575.3 [#]	25	7434	1-	
		3659.5	2.50 21	7350.0	3(+)	
		3894.1	1.04 21	7115.3	2+	
		4247.7	1.04 21	6761.6	5-	
		4343.5	2.92 21	6666.1	2+	
		4387.8	0.63 21	6621.7	4-	
		4599.2	16.46 <i>21</i>	6411	4+	
		5596.4	3.13 21	5412.6	3+	
		6002.6	37.9 7	5006.2	3-	
		6549.4 6727.2	100.0 <i>11</i> 23.5 <i>5</i>	4459.1 4281.8	4 ⁺ 2 ⁺	
		8777.0	8.96 2 <i>1</i>	2230.57	2+	
11052	(4)	4611 [‡]			4 ⁺	
11052	(4)	6041 [‡]	<5	6411		
			<5	5006.2	3-	28
		6590 [‡]	100	4459.1	4+	$A_2 = +0.14 \ 7, \ A_4 = +0.15 \ 8^{28} Si(\alpha, \gamma).$
11078	2	11074‡	100	0	0+	Additional information 35.
11092.3	3-	2795.9	23.1 9	8296.1	3-	
		2900.9	3.0 9	8191.1	4	
		3117.1	13.2 5	7974.9	4 ⁻	
		3141.9 3390.5	18.4 <i>9</i> 51.7 <i>13</i>	7950.1 7701.44	4 ⁻	
		4330.1	3.0 17	6761.6	5 5	
		4470.1	100.0 17	6621.7	4-	
		4867.8	55.1 17	6222.9	2-	

$E_i(level)$	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	${\rm I}_{\gamma}{}^{\dagger}$	$\mathbf{E}_f \mathbf{J}_f^{\pi}$	$E_i(level)$	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	$I_{\gamma}{}^{\dagger}$	$\mathrm{E}_f \qquad \mathrm{J}_f^\pi$
11092.3	3-	6085.0	85 <i>3</i>	5006.2 3-	11253.9	(3-)	3062.5	7.31 16	8191.1 4
110,210		6631.7	63 <i>3</i>	4459.1 4+	11200.5	(0)	3303.4	2.74 16	7950.1 4
		6809.5	10.3 17	4281.8 2+			3552.0	1.22 16	7701.44 3
		8859.4 [#]		2230.57 2+			4400.9	1.83 16	6851.5 4+
		11088.2 <mark>#</mark>		$0 0^{+}$			4587.4	2.89 16	6666.1 2+
11107	(2^{+})	6099 [‡]	<67	5006.2 3-			4843.1	2.44 16	6411 4+
		8877 [‡]	>100	2230.57 2+			5705.4	1.67 <i>16</i>	5548.5 2 ⁺
11114		4490 <i>1</i>		6621.7 4			5840.4	1.83 16	5412.6 3+
		6109 <i>3</i>		5006.2 3			6246.5	7.2 3	5006.2 3
		8881 <i>10</i>		2230.57 2+			6557.0	1.67 16	4695.3 1 ⁺
		11113 86		$0 0^{+}$			6971.1	8.5 <i>3</i>	4281.8 2 ⁺
11123		2432.8 [#]	11.4	8687.6			9020.9	100.0 8	2230.57 2+
		4121.0	9.1 <i>3</i>	7001.4 1+	11332.8		1673.7	30 <i>3</i>	9660.1 1+
		6426.1	6.7 <i>3</i>	4695.3 1 ⁺			3207.1	46.9 23	8125.40 1+
		7343.5	9.6 <i>3</i>	$3778.4 0^{+}$			4216.9	21 3	7115.3 2+
		8890.0	14.4 5	$2230.57 \ 2^{+}$			4330.7	6 3	7001.4 1+
		11118.9	100.0 8	$0 0^{+}$			4922.0	26 <i>3</i>	$6411 4^+$
11139.8	1+	3603.7	0.47 12	7535.7 0+			6325.4	19 <i>3</i>	5006.2 3
		3946.4	1.2	7190.1 1+			6635.8	16 3	4695.3 1+
		4137.8	0.71 12	7001.4 1+			7049.9	57 4	4281.8 2+
		4915.3	0.47 12	6222.9 2	114746	2	11328.5	100.0 7	0 0+
		5589.9	< 0.6	5548.5 2 ⁺	11474.6	3	2728.8	4.99 14	8745.6 3
		6442.9	2.71 24	4695.3 1 ⁺ 3778.4 0 ⁺			2745.0	4.99 14	8729.3 3 ⁺ 6851.5 4 ⁺
		7360.3 8906.8	2.12 <i>24</i> 10.8 <i>7</i>	3778.4 0 ⁺ 2230.57 2 ⁺			4621.5 4808.0	1.62 <i>14</i> 2.56 <i>14</i>	6851.5 4 ⁺ 6666.1 2 ⁺
		11135.6	100.0 9	$0 0^{+}$			4852.3	2.29 14	6621.7 4
11235.5	3	2545.3	2.95 21	8687.6			5063.7	0.54 14	6411 4+
11233.3	5	3044.1	6.53 21	8191.1 4			5250.0	0.94 14	6222.9 2
		3533.6	3.16 21	7701.44 3			5926.0	1.35 14	5548.5 2 ⁺
		4824.7	4.2 5	6411 4+			6061.0	9.03 14	5412.6 3+
		5687.0	2.7 5	5548.5 2 ⁺			7013.8	6.33 14	4459.1 4+
		5822.0	7.2 5	5412.6 3 ⁺			7191.7	100.0 6	4281.8 2+
		6774.9	6.5 5	4459.1 4 ⁺	11485.8	1+	3360.1	55 10	8125.40 1+
		6952.7	77.5 13	4281.8 2+			6478.3	81 <i>15</i>	5006.2 3-
		9002.5	100.0 <i>13</i>	$2230.57 \ 2^{+}$			7706.1	100 12	$3778.4 0^+$
11253.9	(3^{-})	2392.7	1.37 16	8861 2+	11589.7	1-	3182.4	4.5 3	8407.0 2
		2524.4	1.22 16	8729.3 3 ⁺			4473.7	25.8 8	7115.3 2+
		2563.7	3.65 16	8687.6			4923.1	1.1 6	6666.1 2+
		2846.6	4.11 16	8407.0 2			5178.8	0.8 6	6411 4+
		2957.5	0.61 <i>16</i>	8296.1 3	I		6582.1	7.6 8	5006.2 3

Adopted Levels, Gammas (continued)

$\gamma(^{32}S)$ (continued)

E_i (level)	\mathbf{J}_i^{π}	$\mathrm{E}_{\gamma}^{\dagger}$	${\rm I}_{\gamma}{}^{\dagger}$	$\mathbf{E}_f \qquad \mathbf{J}_f^{\pi}$	Comments
11589.7	1-	6892.6	1.8 6	4695.3 1+	
		7128.9	18.2 11	4459.1 4+	
		7306.7	56.6 11	4281.8 2+	
		7810.0	8.4 8	3778.4 0+	
		9356.5	38.2 14	2230.57 2+	
		11585.2	100.0 <i>19</i>	$0 0^{+}$	
11602.4		4066.1	12.0 16	7535.7 0 ⁺	
		4411.6	31.8 16	7190.1 1+	
		6053.8	37.8 20	5548.5 2 ⁺	
		6594.8	45.1 23	5006.2 3	
		6905.3	100 4	4695.3 1 ⁺	
11637.1		3290.4	0.80 12		
		3715.6	0.57 12	7921.0 1+	
		4152.6	0.46 12	7484.0 2+	
		4202.5	0.23 12	7434 1-	
		4446.3	0.46 12	7190.1 1 ⁺	
		4634.9	0.80 12	7001.4 1+	
		4970.5	0.69 12	6666.1 2+	
		5412.4	0.57 12	6222.9 2	
		5838.5	0.69 12	5796.8 1 ⁻	
		6088.5	3.55 <i>12</i> 2.17 <i>12</i>	5548.5 2 ⁺ 4695.3 1 ⁺	
		6940.0 7857.3		3778.4 0 ⁺	
		9403.8	1.26 <i>12</i> 2.75 <i>23</i>	2230.57 2+	
		11632.6	100.0 6	0 0+	
11669.6	5 ⁺	2940.0	0.63 16	8729.3 3+	
11009.0	3	3322.9	6.2 4	0129.5	
		3478.1	15.2 4	8191.1 4	
		4102.0	21.4 4	7566.8 5 ⁺	
		4907.2	0.63 16	6761.6 5	
		5258.7	100.0 7	6411 4+	
		7208.8	14.4 4	4459.1 4+	
11696.7	5 ⁺	3350.0	6.66 17		
		3505.2	10.15 <i>17</i>	8191.1 4	
		4129.1	14.6 <i>4</i>	7566.8 5 ⁺	
		4346.1	1.66 <i>17</i>	7350.0 3 ⁽⁺⁾	
		5074.3	1.5 4	6621.7 4	
		5285.8	100.0 7	6411 4+	
		7235.8	31.9 4	4459.1 4+	
11750	1	7464 [‡]	100	4281.8 2+	Additional information 36.
	-		~ ~	_	δ : -0.21 2 or 1.8 I 28 Si(α , γ).
					······································

Adopted Levels, Gammas (continued)

γ (32S) (continued)

$E_i(level)$	\mathtt{J}_{i}^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	\mathbb{E}_f	\mathbf{J}_f^{π}
11750	1	11741 [‡]	2	0	0^{+}
11758.8		3462.3	14.0 4	8296.1	3-
		3808.2	14.2 11	7950.1	4-
		4996.4	100.0 11	6761.6	5-
		5136.4	49.5 9	6621.7	4-
		6751.2	4.4 8	5006.2	3-
11783	1	11780 [‡]	100	0	0_{+}
11806	1,2	4682 [‡]	<5	7115.3	2+
		11798 [‡]	100	0	0_{+}
11940.1	3	3532.7	1.4 3	8407.0	2
		3989.5	6.5 <i>3</i>	7950.1	4-
		5086.8	2.2 3	6851.5	4+
		5317.7	15.7 6	6621.7	4-
		5715.3	6.2 3	6222.9	2^{-}
		6391.3	21.6 9	5548.5	2+
		6526.3	27.8 6	5412.6	3+
		7479.1	100.0 12	4459.1	4+
		7656.9	50.0 6	4281.8	2+
		9706.6	49.4 9	2230.57	2+
12030		4520 [‡]	10	7535.7	0_{+}
		4900 [‡]	14	7115.3	2+
		9788 [‡]	14	2230.57	2+
		12016 [‡]	100	0	0_{+}
12043.9		4093.2	3.2 5	7950.1	4-
		5281.4	19.0 <i>11</i>	6761.6	5-
		5421.4	2.7 5	6621.7	4-
		7036.1	100.0 <i>13</i>	5006.2	3-
		7582.9	2.5 4	4459.1	4+
12044.19	2,3,4	7036.33	100	5006.2	3-
	- 1	9811.8	1	2230.57	2+
12047.96	0^+	2840.32 <i>14</i>	11.2 8	9207.55	1+
		3922.37 <i>15</i>	100.0 11	8125.40	1+
		5046.1 4	7.5 8	7001.4	1+
		9816 [#]	≤0.30	2230.57	2+

Additional information 37.

Additional information 38.

 I_{γ} : intensity seen in only one part of the doublet.

Additional information 39.

Additional information 40.

Comments

 $^{^\}dagger$ From $^{31}\text{P}(\text{p},\!\gamma),$ unless otherwise noted. ‡ From $^{28}\text{Si}(\alpha,\!\gamma).$ # Placement of transition in the level scheme is uncertain.

Legend

Level Scheme

Intensities: Relative photon branching from each level

---- → γ Decay (Uncertain)

Level Scheme (continued)

Level Scheme (continued)

Legend

Level Scheme (continued)

Intensities: Relative photon branching from each level

γ Decay (Uncertain)

Legend

Level Scheme (continued)

Intensities: Relative photon branching from each level

---- γ Decay (Uncertain)

Legend

Level Scheme (continued)

Intensities: Relative photon branching from each level

---- → γ Decay (Uncertain)

Level Scheme (continued)

Level Scheme (continued)

Level Scheme (continued)

Legend

Level Scheme (continued)

Intensities: Relative photon branching from each level

γ Decay (Uncertain)

Level Scheme (continued)

Level Scheme (continued)

Level Scheme (continued)

Legend

Level Scheme (continued)

Intensities: Relative photon branching from each level

---- γ Decay (Uncertain)

Level Scheme (continued)

Level Scheme (continued)

Level Scheme (continued)

Level Scheme (continued)

Intensities: Relative photon branching from each level

60

Level Scheme (continued)

Level Scheme (continued)

