Stat 982: Module 1, Homework 1

Due on September 6, 2022

Problem 1

Suppose that $X = (X_1, X_2, ..., X_n)$ has independent components, where each X_i is generated as follows. For independent random variables $W_i \sim N(\mu, 1)$ and $Z_i \sim Poisson(\mu)$, $X_i = W_i$ with probability p and $X_i = Z_i$ with probability 1 - p. Suppose that $\mu \in [0, \infty)$. Use the factorization theorem and find low-dimensional sufficient statistics in the cases that:

- (a) p is known to be $\frac{1}{2}$
- (b) $p \in [0, 1]$ is unknown

Note: In the first case the parameter space is $\Theta = \left\{\frac{1}{2}\right\} \times [0, \infty)$, while in the second case it is $\Theta = [0, 1] \times [0, \infty)$.

```
Let \lambda= \updownarrow+ \sqsubseteq, where \updownarrow is the Lebesgue measure on \mathbb{R}^+=[0,\infty) and \sqsubseteq is the counting measure on \mathbb{N}=\{0,1,2,\ldots\}. Note that X_1\overset{=}{d}R_1W_1+(1-R_1)Z_1
```

Problem 2

Suppose that X' is exponential with mean λ^{-1} (i.e. it has density $f_{\lambda}(x) = \lambda \exp(-\lambda x)I[x \ge 0]$ with respect to the Lebesgue measure on \mathbb{R}^1), but that one only observes $X = X'I[X' \ge 1]$. (There is interval censoring below X' = 1).

- (a) Consider the measure μ on $\mathcal{X} = \{0\} \bigcup [1, \infty)$ consisting of a point mass of 1 at 0 plus the Lebesgue measure on $[1, \infty)$. Give a formula for the R-N derivative of P_{λ}^{X} with respect to μ on \mathcal{X} .
- (b) Suppose that $X_1, ..., X_n$ are iid with the distribution P_{λ}^X . Find a two-dimensional sufficient statistic for this problem and argue that it is indeed sufficient.
- (c) Argue carefully that your statistic from the previous part is minimal sufficient.

Problem 3

Let X be a sample from $P \in \mathcal{P}$ where \mathcal{P} is a family of distributions on $(\mathbb{R}^k, \mathcal{B}^k)$. Show that if T(X) is sufficient for \mathcal{P} and $T = \psi(S)$, where ψ is measurable and S(X) is another statistic, then S(X) is sufficient for \mathcal{P} . (Hint: Consider first the special case that \mathcal{P} is dominated by a σ -finite measure μ and then the general case).

Problem 4

Suppose that $X_1, X_2, ..., X_n$ are iid P_{θ} for $\theta = (\theta_1, \theta_2) \in (0, 1) \times \{1, 2\}$, where $P_{(\gamma, 1)}$ is the Poisson (γ) distribution and $P(\gamma, 2)$ is the Bernoulli (γ) distribution. Find a two-dimensional minimal sufficient statistic for θ (and argue carefully for minimal sufficiency).

Problem 5

Suppose that $X_1,...,X_n$ are iid $N(\gamma,\gamma^2)$ for $\gamma \in \mathbb{R}^1$. Find a minimal sufficient statistic and show that it is not complete.