What is Deep Learning?

ARTIFICIAL

Any technique that enables computers to mimic human behavior

MACHINE LEARNING

Ability to learn without explicitly being programmed

DEEP LEARNING

Extract patterns from data using neural networks

3 1 3 4 7 2

Why Deep Learning?

Hand engineered features are time consuming, brittle, and not scalable in practice

Can we learn the **underlying features** directly from data?

Low Level Features

Lines & Edges

Mid Level Features

Eyes & Nose & Ears

High Level Features

Facial Structure

Why Now?

Neural Networks date back decades, so why the resurgence?

Stochastic Gradient Descent

Perceptron

Learnable Weights

Backpropagation

Multi-Layer Perceptron

Deep Convolutional NN

Digit Recognition

I. Big Data

- Larger Datasets
- Easier Collection
 & Storage

2. Hardware

- Graphics
 Processing Units
 (GPUs)
- Massively
 Parallelizable

3. Software

- Improved
 Techniques
- New Models
- Toolboxes

1958

1986

1995

The Perceptron: Forward Propagation

Common Activation Functions

Sigmoid Function

$$g(z) = \frac{1}{1 + e^{-z}}$$

$$g'(z) = g(z)(1 - g(z))$$

Hyperbolic Tangent

$$g(z) = \frac{e^z - e^{-z}}{e^z + e^{-z}}$$

$$g'(z) = 1 - g(z)^2$$

Rectified Linear Unit (ReLU)

$$g(z) = \max(0, z)$$

$$g'(z) = \begin{cases} 1, & z > 0 \\ 0, & \text{otherwise} \end{cases}$$

NOTE: All activation functions are non-linear

Importance of Activation Functions

The purpose of activation functions is to introduce non-linearities into the network

Linear activation functions produce linear decisions no matter the network size

Non-linearities allow us to approximate arbitrarily complex functions

The Perceptron: Example

Assume we have input: $X = \begin{bmatrix} -1 \\ 2 \end{bmatrix}$

$$\hat{y} = g(1 + (3*-1) - (2*2))$$

= $g(-6) \approx 0.002$

Multi Output Perceptron

Because all inputs are densely connected to all outputs, these layers are called **Dense** layers

$$z_i = w_{0,i} + \sum_{j=1}^m x_j w_{j,i}$$

Single Layer Neural Network

Quantifying Loss

The **loss** of our network measures the cost incurred from incorrect predictions

$$\mathcal{L}(f(x^{(i)}; W), y^{(i)})$$
Predicted Actual

Mean Squared Error Loss

Mean squared error loss can be used with regression models that output continuous real numbers

loss = tf keras losses MSE(y, predicted)

Loss Optimization

We want to find the network weights that achieve the lowest loss

$$\boldsymbol{W}^* = \underset{\boldsymbol{W}}{\operatorname{argmin}} \frac{1}{n} \sum_{i=1}^n \mathcal{L}(f(\boldsymbol{x}^{(i)}; \boldsymbol{W}), \boldsymbol{y}^{(i)})$$

$$\boldsymbol{W}^* = \underset{\boldsymbol{W}}{\operatorname{argmin}} J(\boldsymbol{W})$$
Remember:
$$\boldsymbol{W} = \{\boldsymbol{W}^{(0)}, \boldsymbol{W}^{(1)}, \cdots\}$$

Gradient Descent

Gradient Descent

Algorithm

- I. Initialize weights randomly $\sim \mathcal{N}(0, \sigma^2)$
- 2. Loop until convergence:
- 3. Compute gradient, $\frac{\partial J(\mathbf{W})}{\partial \mathbf{W}}$
- 4. Update weights, $\mathbf{W} \leftarrow \mathbf{W} \eta \frac{\partial J(\mathbf{W})}{\partial \mathbf{W}}$
- 5. Return weights

Computing Gradients: Backpropagation

Repeat this for every weight in the network using gradients from later layers

Loss Functions Can Be Difficult to Optimize

Remember:

Optimization through gradient descent

$$W \leftarrow W - \frac{\partial J(W)}{\partial W}$$
How can we set the learning rate?

Setting the Learning Rate

Stable learning rates converge smoothly and avoid local minima

Adaptive Learning Rates

- Learning rates are no longer fixed
- Can be made larger or smaller depending on:
 - how large gradient is
 - how fast learning is happening
 - size of particular weights
 - etc...

Stochastic Gradient Descent

Algorithm

- 1. Initialize weights randomly $\sim \mathcal{N}(0, \sigma^2)$
- 2. Loop until convergence:
- 3. Pick batch of B data points
- 4. Compute gradient, $\frac{\partial J(W)}{\partial W} = \frac{1}{B} \sum_{k=1}^{B} \frac{\partial J_k(W)}{\partial W}$
- 5. Update weights, $\mathbf{W} \leftarrow \mathbf{W} \eta \frac{\partial J(\mathbf{W})}{\partial \mathbf{W}}$
- 6. Return weights

Mini-batches while training

More accurate estimation of gradient

Smoother convergence
Allows for larger learning rates

The Problem of Overfitting

Regularization I: Dropout

- During training, randomly set some activations to 0
 - Typically 'drop' 50% of activations in layer
 - Forces network to not rely on any I node

Regularization 2: Early Stopping

Stop training before we have a chance to overfit

