Homework-3 Report

MatConvNet -

Algorithm:

- 1. Download cnn_mnist_6156.m and run the original
- 2. Change Topology of Neural Network [Adding & removing pair of convolutional and max-pooling layers]
- 3. Add Dropout Layer to Neural Network [Change the dropout rate between 0.5 to 1]
- 4. Add Relu layer after pairs of convolutional and max-pooling layers
- 5. Compare the result

Discussion & Results:

- Adding dropout layer to the original LeNet decreased the error.
- Lowest error was calculated for dropout rate (0.75).
- Dropout layer decreases error due to variance as it randomly removes nodes from input & hidden layers in order to avoid over fitting.
- Decreasing the Number of layers from Original LeNet increased the error.
- Lowest Error [0.099] was recorded for 6th Experiment in which Relu and Dropout Layer [dropout rate 0.75] was added to Original LeNet

Convolution Neural Network

Experiment No	Dropout	Feature	Combination	Error				
1	No	Original LeNet	Conv 5 Po 2 Conv 5 Po 2 Conv 4 Relu Conv 1 SL	0.0195				
2	No	Original LeNet + Relu	Conv 5 Po 2 Relu Conv 5 Po 2 Conv 4 Relu Conv 1 SL	0.0162				
3	Yes	Original LeNet + droput_0.5	Conv 5 Po 2 Conv 5 Po 2 Conv 4 Relu Dp Conv 1 SL	0.0136				
4	Yes	Original LeNet + droput_0.75	Conv 5 Po 2 Conv 5 Po 2 Conv 4 Relu Dp Conv 1 SL	0.0111				
5	Yes	Original LeNet + droput_0.85	Conv 5 Po 2 Conv 5 Po 2 Conv 4 Relu Dp Conv 1 SL	0.0134				
6	Yes	Original LeNet + Relu + droput_0.75	Conv 5 Po 2 Relu Conv 5 Po 2 Conv 4 Relu Dp Conv 1 SL	0.0099				
7	Yes	Original LeNet + Relu + droput_0.75	Conv 5 Relu Po 2 Conv 5 Po 2 Conv 4 Relu Dp Conv 1 SL	0.0101				
8	Yes	1st Layer + Pool (6 Layer)	Conv 27 Po 2 Relu Dp Conv 1 SL	0.902				
9	Yes	1st Layer (5 Layer)	Conv 28 Relu Dp Conv 1 SL	0.902				
10	Yes	2 Layer (8 Layer)	Conv 13 Po 2 Conv 7 Po 2 Relu Dp Conv 1 SL	0.903				
11	Yes	9 Layer	Conv 9 Po 2 Conv 7 Po 2 Conv 2 Relu Dp Conv 1 SL	0.0154				
12	Yes	11 Layer	Conv 9 Po 2 Relu Conv 7 Po 2 Relu Conv 2 Relu Dp Conv 1 SL	0.0122				
13	Yes	10 Layer	Conv 9 Po 2 Relu Conv 7 Po 2 Conv 2 Relu Dp Conv 1 SL	0.0117				
14	Yes	Original LeNet + Relu + droput_0.75	Conv 5 Po 2 Conv 5 Po 2 Relu Conv 4 Relu Dp Conv 1 SL	0.0115				

Following are the result graph for above mentioned experiment: Experiment No 1: [Error: 0.0195]

[Conv 5 Po 2 Conv 5 Po 2 Conv 4 Relu Conv 1 SL]

Experiment No 10: [Error: 0.903] [Conv 13 Po 2 Conv 7 Po 2 Relu Dp Conv 1 SL]

Experiment No 11: [Error: 0.0154] [Conv 9 Po 2 Conv 7 Po 2 Conv 2 Relu Dp Conv 1 SL]

Experiment No 12: [Error: 0.0122] [Conv 9 Po 2 Relu Conv 7 Po 2 Relu Conv 2 Relu Dp Conv 1 SL]

LibSVM -

Algorithm:

- 1. Load the data from imdb.mat file which is created during execution of cnn_mnist_6156.m file
- 2. Transform image.data from 4 Dimensional to 2 Dimensional (784 X 20000) and store it in X
- 3. Take transpose of X making it X [20000,784]
- 4. Divide X by 255 to scale the data
- 5. Create a sparse Matrix out of X
- 6. Load images.labels into Y and make a Transpose of Y
- 7. Divide data in X by 255 to scale data to value between [0 to 1]
- 8. Create sparse matrix from X as it contains lot of rows with value 0
- 9. Use libsymwrite, libsymread functions to write & read data
- 10. Take first 10000 rows as train data & train label from X & Y
- 11. Take last 10000 rows as test data & test label from X & Y
- 12. Run Cross validation function on each type of Kernel to get the best cost (-c) and gamma (-g) value.
- 13. Use this cost and gamma values to train the model and then use it on test data to predict accuracy.

Results & Discussion:

- First run cross validation function for -c (Range: -5 to 15) and -g (Range: -15 to 3) used the best value of -c & -g on test data.
- Increasing the value of –c increased training time for svm
- Result of cross validation function are show in image a presented below.
- Radial Basis Kernel gave highest accuracy of 96.76 % on test data among all kernel.
- 1. Linear Kernel: Highest Accuracy on test data: 93.58% [-c 0.05]
- Polynomial Kernel Degree 2: Highest Accuracy on test data: 96.59%
 [-c 8192 –g 0.00048 –r 0]
- Polynomial Kernel Degree 4: Highest Accuracy on test data: 96.52%
 [-c 0.5 -g 0.125 -r 1]
- 4. Radial Basis Kernel: Highest Accuracy on test data: 96.76 % [-c 8 -g 0.5]

Following is the result of Cross Validation Function & Test Data on given kernels

Cross Validation Function

Result	nn'	Train	Data
resuit	UII	ııaııı	vala

Kernel: Linear Higest Accuracy on Test Data							
- c	cost	0.05					
Accuracy		93.58%					

Poly 2	2^log2c / 2^log2g	-15	-13	-11	-9	-7	-5	-3	-1	1	3
-r (coef0):	0 -5	11.62	11.62	11.62	11.62	78.13	93.25	96.05	96.05	96.05	96.05
	-3	11.62	11.62	11.62	34.29	89.08	95.15	96.05	96.05	96.05	96.05
	-1	11.62	11.62	11.62	78.13	93.25	96.09	96.05	96.05	96.05	96.05
	1	11.62	11.62	11.62	78.13	93.25	96.09	96.05	96.05	96.05	96.05
	3	11.62	11.62	34.29	89.08	95.15	96.09	96.05	96.05	96.05	96.05
	5	11.62	34.29	89.09	95.15	96.09	96.05	96.05	96.05	96.05	96.05
	7	11.62	78.13	93.25	96.09	96.05	96.05	96.05	96.05	96.05	96.05
	9	34.29	89.08	95.15	96.09	96.05	96.05	96.05	96.05	96.05	96.05
	11	78.13	93.25	96.09	96.05	96.05	96.05	96.05	96.05	96.05	96.05
	13	89.08	95.15	96.1	96.05	96.05	96.05	96.05	96.05	96.05	96.05
	15	11.62	96.09	96.05	96.05	96.05	96.05	96.05	96.05	96.05	96.05

Kernel: Pol	ynomial De	gree: 2 Higest Accuracy on Test Data
- c	cost	8192
- g	gamma	0.00048
-r	coeff0	0
Accuracy		96.59 %

Poly 4	2^log2c / 2^log2g	-15	-13	-11	-9	-7	-5	-3	-1	1	3
-r (coef0):	0 -5	11.49	11.49	11.49	11.49	34.44	92.29	93.63	93.65	93.65	93.65
	-3	11.49	11.49	11.49	11.49	62.09	93.79	93.65	93.65	93.65	93.65
	-1	11.49	11.49	11.49	11.71	79.21	93.32	93.92	93.65	93.65	93.65
	1	11.49	11.49	11.49	15.87	88.46	93.71	93.65	93.65	93.65	93.65
	3	11.49	11.49	11.49	34.44	92.29	93.63	93.65	93.65	93.65	93.65
	5	11.49	11.49	11.49	62.09	93.79	93.65	93.65	93.65	93.65	93.65
	7	11.49	11.49	11.71	79.21	93.92	93.65	93.65	93.65	93.65	93.65
	9	11.49	11.49	15.87	88.46	93.71	93.65	93.65	93.65	93.65	93.65
	11	11.49	11.49	34.44	92.29	93.63	93.65	93.65	93.65	93.65	93.65
	13	11.49	11.49	62.09	93.79	93.65	93.65	93.65	93.65	93.65	93.65
	15	11.49	11.71	79.21	93.92	93.65	93.65	93.65	93.65	93.65	93.65

Kernel: Pol	ynomial Deg	ree: 4 Higest Accuracy on Test Da	ata
- C	cost	0.5	
- g	gamma	0.125	
٠r	coeff0	1	
Accuracy		96.52%	

Radial	2^log2c / 2^log2g	-4	-3	-2	-1	0	1
	-1	93.74	47.7	20	18.09	11.62	11.62
	0	95.59	79.82	34.65	18.76	11.64	11.62
	1	95.77	81.11	38.82	19.12	11.62	11.62
	2	95.77	81.11	38.82	19.12	11.64	11.62
	3	95.77	81.11	38.82	19.12	11.64	11.62

Kernel: Radial basis Higest Accuracy on Test Data	
- c cost 8	
- g gamma 0.5	
Accuracy 96.76%	