Вариант 1

- 1. Что называется вероятностью события?
- 2. В коробке 7 красных карандашей и 5 зеленых. Наудачу берутся 4 карандаша. Какова вероятность того, что 2 из ни красные, 2 зеленые?
- 3. Заполнить пропуск, построить полигон и функцию распределения

X	2	4	5	6
P	0,1	0,3		0,2

Вариант 2

- 1. Что называется полной группой событий?
- 2. В коробке 6 красных карандашей и 8 зеленых. Наудачу берутся 4 карандаша. Какова вероятность того, что 2 из ни красные, 2 зеленые?
- 3. Заполнить пропуск, построить полигон и функцию распределения

X	3	4	7	8
P	0,2	0,1		0,2

Вариант 3

- 1. Приведите примеры совместных и несовместных событий.
- 2. В коробке 5 красных карандашей и 9 зеленых. Наудачу берутся 5 карандашей. Какова вероятность того, что 2 из ни красные, 3 зеленые?
- 3. Заполнить пропуск, построить полигон и функцию распределения

X	-1	0	2	4
P	0,1		0,3	0,4

Вариант 4

- 1. Приведите примеры равновозможных и неравновозможных событий.
- 2. В коробке 7 красных карандашей и 7 зеленых. Наудачу берутся 5 карандашей. Какова вероятность того, что 2 из ни красные, 3 зеленые?
- 3. Заполнить пропуск, построить полигон и функцию распределения

X	-2	-1	2	4
P	0,3	0,1		0,2

Вариант 5

- 1. Какое событие называется достоверным? Приведите пример.
- 2. В коробке 8 красных карандашей и 6 зеленых. Наудачу берутся 5 карандашей. Какова вероятность того, что 3 из ни красные, 2 зеленые?
- 3. Заполнить пропуск, построить полигон и функцию распределения

X	-4	-1	1	3	
P	0,1	0,5	0,1		

Вариант 6

- 1. Какое событие называется невозможным? Приведите пример.
- 2. В коробке 4 красных карандашей и 10 зеленых. Наудачу берутся 4 карандаша. Какова вероятность того, что 2 из ни красные, 2 зеленые?
- 3. Заполнить пропуск, построить полигон и функцию распределения

X	-3	-1	2	5
P		0,3	0,2	0,2

Вариант 7

- 1. Чему равна вероятность достоверного события? Приведите пример дост. события
- 2. В коробке 4 красных карандашей и 9 зеленых. Наудачу берутся 6 карандашей. Какова вероятность того, что 2 из ни красные, 4 зеленые?
- 3. Заполнить пропуск, построить полигон и функцию распределения

X	-4	0	1	4
P	0,2		0,2	0,2

Вариант 8

- 1. Чему равна вероятность невозможного события? Приведите пример невозм. события
- 2. В коробке 5 красных карандашей и 5 зеленых. Наудачу берутся 5 карандашей. Какова вероятность того, что 3 из ни красные, 2 зеленые?
- 3. Заполнить пропуск, построить полигон и функцию распределения

X	-2	2	4	6
P	0,1	0,1	0,1	

Вариант 9

- 1. В каких пределах заключена вероятность любого события?
- 2. В коробке 7 красных карандашей и 5 зеленых. Наудачу берутся 6 карандашей. Какова вероятность того, что 4 из ни красные, 2 зеленые?
- 3. Заполнить пропуск, построить полигон и функцию распределения

X	2	4	5	6
P	0,1	0,7		0,1

Вариант 10

- 1. Какие из чисел HE МОГУТ быть вероятностью: -2, -1, 0, 0.5, 1, 2?
- 2. В коробке 7 красных карандашей и 9 зеленых. Наудачу берутся 7 карандашей. Какова вероятность того, что 3 из ни красные, 4 зеленые?
- 3. Заполнить пропуск, построить полигон и функцию распределения

X	0	1	5	6
P	0,1		0,4	0,2

Вариант 11

- 1. Что называется законом распределения случайной величины?
- 2. В коробке 6 красных карандашей и 5 зеленых. Наудачу берутся 5 карандашей. Какова вероятность того, что 2 из ни красные, 2 зеленые?
- 3. Заполнить пропуск, построить полигон и функцию распределения

X	-2	0	3	6
P	0,4	0,3		0,2

Вариант 12

- 1. Что называется полигоном распределения случайной величины?
- 2. В коробке 8 красных карандашей и 6 зеленых. Наудачу берутся 4 карандаша. Какова вероятность того, что 2 из ни красные, 2 зеленые?
- 3. Заполнить пропуск, построить полигон и функцию распределения

X	-1	1	3	6
P	0,1		0,3	0,2

Вариант 13

- 1. Чему равна сумма всех чисел в нижней строке закона распределения случ. величины?
- 2. В коробке 8 красных карандашей и 8 зеленых. Наудачу берутся 7 карандашей. Какова вероятность того, что 3 из ни красные, 4 зеленые?
- 3. Заполнить пропуск, построить полигон и функцию распределения

X	-1	3	4	6
P	0,4	0,3		0,2

Вариант 14

- 1. Какова область определения функции распределения случаяной величины?
- 2. В коробке 10 красных карандашей и 6 зеленых. Наудачу берутся 4 карандаша. Какова вероятность того, что 2 из ни красные, 2 зеленые?
- 3. Заполнить пропуск, построить полигон и функцию распределения

X	2	3	5	7
P	0,1	0,2	0,1	

Вариант 15

- 1. Какова область значений функции распределения случаяной величины?
- 2. В коробке 7 красных карандашей и 10 зеленых. Наудачу берутся 6 карандашей. Какова вероятность того, что 3 из ни красные, 3 зеленые?
- 3. Заполнить пропуск, построить полигон и функцию распределения

X	-3	-1	3	5
P	0,1	0,4		0,2