1 Autovalori e Autovettori

1.1 Autovalori e Autovettori di una matrice quadrata

Data la matrice $A \in M_n(K)$, vogliamo stabilire se esistono valori di $\lambda \in K$ tali che, il sistema lineare $AX = \lambda X$ abbia soluzioni non nulle.

Questo risulta, evidentemente, equivalente a chiedersi se il sistema omogeneo $(A - \lambda I_n)X = \underline{0}$ ammetta autosoluzione, per qualche valore di $\lambda \in K$.

In generale, un sistema omogeneo ammette autosoluzione \iff il rango della matrice del sistema è minore del numero delle incognite, nel nostro caso, quindi il sistema omogeneo $(A - \lambda I_n)X = \underline{0}$ ammette autosoluzioni $\iff |A - \lambda I_n| = 0$.

1.2 Definizioni

Data la matrice $A \in M_n(K)$ si dicono:

- Polinomio caratteristico di A: il determinante $|A \lambda I|$. Si pone $|A \lambda I| = rK_A(\lambda)$
- Equazioni caratteristico di A: le equazioni $|A \lambda I| = 0$, ovvero $rK_A(\lambda) = 0$, ove l'incognita λ assume valori in K
- Autovalori di A: le radici del suo polinomio caratteristico, ovvero le soluzioni della sua equazioni caratteristica
- Molteplicità algebrica di $\bar{\lambda}$: il numero di volte in cui $\bar{\lambda}$ compare come radice del polinomio caratteristica, occero come soluzione dell'equazione caratteristica. Indicheremo la molteplicità algebrica di $\bar{\lambda}$ con $a_{(\bar{\lambda})}$
- Autospazio relativo all'autovalore $\bar{\lambda}$: lo spazio $V_{\bar{\lambda}}$ delle soluzioni del sistema omogeneo $(A \bar{\lambda}I)X = 0$
- Autovettori relativi all'autovalore $\bar{\lambda}$: i vettori non nulli dello spazio $V_{\bar{\lambda}}$
- Molteplicità geometrica di $\bar{\lambda}$: la dimensione di $g_{\bar{\lambda}}$ di $V_{\bar{\lambda}}$
- Autovalore regolare: un autovalore $\bar{\lambda}$ tale che $g_{\bar{\lambda}} = a_{\bar{\lambda}}$, cioè tale che la sua molteplicità algebrica coincide con la rispettiva molteplicità geometrica.

Dunque, trovate in K le radici del polinomio caratteristico di A, cioè i suoi autovalori, sarà possibile determinare i relativi autospazi, risolvendo per ciascun autovalore $\bar{\lambda}$ il sistema omogeneo $(A - \bar{\lambda}I)X = \underline{0}$. I vettori non nulli, di ciascun autospazio, sono gli autovettori di A e, detto tP un autovettore di autovalore $\bar{\lambda}$, varrà per esso la $AP = \bar{\lambda}P$, come volevamo. Osserviamo, inoltre che il grado del polinomio caratteristico di una matrica A è uguale all'ordine della matrice stessa e, quando gli autovalori $\lambda_1, \lambda_2, \ldots, \lambda_t$ di A appartengono tutti al campo K, la somma delle loro molteplicità algebriche è n

1.3 Matrici simili

Due matrici quadrate di ordine n sul campo K, A, B, si dicono **simili** quando esiste una matrice P, quadrata, di ordine n e non singolare, tale che

$$B = P^{-1}AP$$
 o equivalentemente $PB = AP$

1.3.1 Proposizione

Due matrici simili hanno lo stesso determinate e lo stesso polinomio caratteristico.

1.4 Matrici diagonalizzabili

Una matrica $A \in M_n(K)$ si dice **diagonalizzabile** quando è simile ad una matrice diagonale D.

Pertanto, se A è diagonalizzabile, esiste una matrice P non singolare tale che $D = P^{-1}AP$ e tale matrice è detta **matrice** diagonalizzante.

E' di particolare interesse stabilire quando una data matrice quadrata A è diagonalizzabile, cioè quando, data A di ordine n, esistono una matrice diagonale D e una matrice non singolare P, quadrate di ordine n, tali che

$$D = P^{-1}AP$$
 o equivalentemente $PD = AP$

1.4.1 Teorema

Una matrice $A \in M_n(K)$ è diagonalizzabile \iff esiste una base di K^n formata da autovettori di A.

1.4.2 Proposizione

Se $\bar{\lambda} \in K$ è un autovalore di $A \in M_n(K)$, risulta $1 \leq g_{\bar{\lambda}} \leq a_{\bar{\lambda}}$.

1.5 Proposizione

Sia $A \in M_n(K)$. La somma di t autospazi $V_{\lambda_1}, V_{\lambda_2} \cdots V_{\lambda_t}$, relativi a t autovalori distinti $\lambda_1, \lambda_2, \dots, \lambda_t$ è diretta.

1.5.1 Corollario

Se una matrice $A \in M_n(K)$ ha n autovalori distinti, allora è diagonalizzabile.

1.6 Matrici reali e simmetriche

1.6.1 Teorema spettrale

Gli autovaloti di una matrice A reale e simmetrica sono reali.

1.6.2 Dimostrazione

Sia $A \in M_n(\mathbb{R})$ simmetrica. Siano $\lambda \in \mathbb{C}$ un suo autovalore, ${}^tA \in \mathbb{C}^n$ un autovalore relativo a λ , $\bar{\lambda}$ il coniugato di λ e ${}^t\bar{A}$ il coniugato di tA . Dobbiamo dimostrare che $\lambda = \bar{\lambda}$. Calcoliamo $\lambda({}^tX\bar{X}) = {}^t(\lambda X)\bar{X} = {}^t(AX)\bar{X} = {}^tX^tA\bar{X} = {}^tXA\bar{X} = {}^tX\lambda\bar{X} = {}^tX^tX\bar{X}$. Per quanto premesso, ${}^tX\bar{X}$ non è nullo, quindi, deve essere $\lambda = \bar{\lambda}$, perciò $\lambda \in \mathbb{R}$.

1.7 Martici ortogonalmente diagonalizzabili

In quanto segue, lo spazio vettoriale $\mathbb{R}^n(\mathbb{R})$ sarà dotato del prodotto scalare euclideo. Osserviamo che possiamo scrivere il prodotto scalare di due vettori ${}^tX, {}^tY \in \mathbb{R}^n$ come

$${}^{t}X^{t}Y = x_{1}y_{1} + x_{2}y_{2} + \dots + x_{n}y_{n} = (x_{1}, x_{2}, \dots, x_{n})$$

$$\vdots$$

$$y_{1}$$

$$y_{2}$$

$$\vdots$$

$$y_{n}$$

1.7.1 Proposizione

Se A è una matrice reale e simmetrica, autovettori di A, relativi ad autovalori distinti, sono ortogonali.

1.7.2 Definizione

Una matrice $A \in M_r(\mathbb{R})$ si dice ortogonalmente diagonalizzabile se è diagonalizzabile e la matrice diagonalizzante P risulta una matrice ortogonale.

Sappiamo che una matrice $P \in M_n(\mathbb{R})$ è ortogonale \iff le sue righe e le sue colonne sono basi ortonormali di $\mathbb{R}^n(\mathbb{R})$. Ne segue quindi che una matrice $A \in M_n(\mathbb{R})$ è ortogonalmente diagonalizzabile $\iff \mathbb{R}^n(\mathbb{R})$ ammette una base ortonormale di autovettori di A.

Il seguente teorema dimostra che tutte e sole le matrici reali ortogonalmente diagonalizzabili sono le matrici simmetriche.

1.7.3 Teorema della base spettrale

Una matrice $A \in M_n(\mathbb{R})$ è ortogonalmente diagonalizzabile \iff è simmetrica.