

第6章特殊的图

- 6.1 二部图
- 6.2 欧拉图
- 6.3 哈密顿图
- 6.4 平面图

6.1 二部图

- 二部图
- ■完全二部图
- 匹配 极大匹配,最大匹配,完美匹配,完备匹配
- **■** Hall定理

二部图

定义设无向图 $G=\langle V,E\rangle$, 若能将V划分成 V_1 和 V_2 $(V_1 \cup V_2 = V, V_1 \cap V_2 = \emptyset)$,使得G中的每条边的两个端 点都一个属于 V_1 ,另一个属于 V_2 ,则称G为二部图, 记为 $\langle V_1, V_2, E \rangle$, 称 V_1 和 V_2 为互补顶点子集. 又若G是简单图,且 V_1 中每个顶点都与 V_2 中每个顶点相邻, 则称G为完全二部图(完全偶图),记为 $K_{r,s}$,其中 $r=|V_1|, s=|V_2|.$

注意:n 阶零图为二部图.

二部图(续)

例 下述各图是否是二部图?

定理 无向图G=<V,E>是二部图当且仅当G中无奇圈

定理 无向图G=<V,E>是二部图当且仅当G中无奇圈

必要性:

若G中无回路,结论显然成立。若G中有回路,只需证明G中无奇圈。设C是G中任意一圈,令 $C = v_{i_1}v_{i_2} ... v_{i_l}v_{i_1}$,易知 $l \geq 2$,不妨设 $v_{i_1} \in V_1$,则必有 $v_{i_l} \in V - V_1 = V_2$,所以l必为偶数,于是C为偶圈,由C的任意性可知结论成立。

定理 无向图G=<V,E>是二部图当且仅当G中无奇圈

充分性:

不妨设G为连通图,否则可以对每个连通分支进行讨论,孤立点可以根据需要分别属于 V_1 和 V_2 。设 v_0 为G中任意一个顶点,令 $V_1 = \{v | v \in V(G) \land d(v_0, v)$ 是偶数}, $V_2 = \{v | v \in V(G) \land d(v_0, v)\}$ 。易知 $V_1 \neq \emptyset$, $V_2 \neq \emptyset$, $V_1 \cap V_2 = \emptyset$ 。

下面只要证明 V_1 中任意两个顶点不相邻, V_2 中任意两个顶点也不相邻。若存在 v_i , $v_j \in V_1$ 相邻,令 $e = (v_i, v_j)$,设 v_0 到 v_i , v_j 的短程线(v_0 到 v_i , v_j 最短通路)分别为 Γ_i , Γ_j ,则它们的长度 $d(v_0, v_i)$, $d(v_0, v_j)$,都是偶数。

于是 $\Gamma_i \cup \Gamma_j \cup e$ 中一定含有路径长度为奇数的圈,这与已知条件矛盾。类似可证明 V_2 中也不存在相邻的顶点。得证G为二部图。

匹配

设*G=<V,E>*,

匹配(边独立集):任2条边均不相邻的E的子集M

极大匹配:添加任一条边后都不再是匹配的匹配

最大匹配: 边数最多的匹配

匹配数:最大匹配中的边数,记为 β_1

例

极大匹配

最大匹配 $\beta_1=3$

M

匹配 (续)

设M为G中一个匹配

 v_i 与 v_i 被M匹配: $(v_i,v_i) \in M$

v为M饱和点: M中有边与v关联

v为M非饱和点: M中没有边与v关联

M为完美匹配: G的每个顶点都是M饱和点

匹配 (续)

设M为G=<V,E>中一个匹配

M的交错路径:从M与E-M中交替取边构成的G中路径 M的可增广交错路径:起、终点都是M非饱和点的交错路径

M的交错圈:由M与E-M中的边交替出现构成的G中圈

设红色边为匹配M中

均可增广

均不可增广

交错圈

匹配 (续)

交错路径: 在匹配中和在匹配外交替取边的路径可增广交错路径: 两端都是非饱和点的交错路径 例: $e_3 e_1 e_2 e_7 e_8$ $e_3 e_1 e_2 e_7 e_8$

匹配 (续)

定理: 设 M_1 , M_2 是G中2个不同匹配,则 $G[M_1 \oplus M_2]$ 的每个连通分支是 M_1 和 M_2 中的边组成的交错圈或交错路径

证: 设 G_1 是 $G[M_1 \oplus M_2]$ 的任一连通分支, $\forall v \in V(G_1)$, $0 < d_{G_1}(v) = d_{G[M_1 \oplus M_2]}(v) \leq 2$,

即

$$d_{G_1}(v)=1 \otimes 2,$$

所以 G_1 是交错圈或交错路径

匹配(续)

定理:设M是G中匹配, Γ 是M的可增广交错路径,则 $M'=M\oplus\Gamma$ 也是G中匹配,且 |M'|=|M|+1

Berge定理: M为G中最大匹配当且仅当<math>G中不含M的可增广交错路径

证明: 必要性

设M为G中最大匹配,若G中存在M的可增广的交错路径 Γ ,则 Γ 中在M中的边比不在M中的少1.

设 $M' = M \oplus \Gamma$,则M'中边彼此不邻,且M'比M多一条边,即M'是比M多一条边的匹配,这与M是最大匹配相矛盾,所以M不含可增广的交错路径

Mar.

Berge定理: M为G中最大匹配当且仅当<math>G中不含M的可增广交错路径

证明: 充分性

为此,考虑 $M_1 \oplus M$ 的导出子图,设 $H = G[M_1 \oplus M]$ 。

- (1)当 $H = \emptyset$ (空图)时, $M = M_1$,于是M为G中最大匹配。
- (2)若 $H \neq \emptyset$,由于M和 M_1 都是匹配,所以H各连通分支
- I.是由 $M和M_1$ 中的边组成的交错圈。在交错圈上 $M和M_1$ 中的边数相等,

II.为由M和M₁中的边组成的交错路径。由己知条件可知M不含可增广的交错路径,<math>M₁是最大匹配,由必要性可知,M₁中也无可增广的交错路径,于是在M和M₁组成的交错路径上,M和M₁的边也相等,总之M与M₁边的个数相同,所以M为最大匹配。

二部图中的匹配

定义 设 $G=<V_1,V_2,E>$ 为二部图, $|V_1|\le |V_2|$,M是G中最大匹配,若 V_1 中顶点全是M饱和点,则称M为G中 V_1 到 V_2 的完备匹配。当 $|V_1|=|V_2|$ 时,完备匹配变成完美匹配。

例

完备,不完美

不完备

完美

Hall定理

定理(Hall定理) 设二部图 $G=<V_1,V_2,E>$ 中, $|V_1|\le |V_2|$. G中存在从 V_1 到 V_2 的完备匹配当且仅当 V_1 中任意k个顶点至少与 V_2 中的k个顶点相邻($k=1,2,...,|V_1|$). —相异性条件由Hall定理,上一页第2个图没有完备匹配.

定理 设二部图 $G=<V_1,V_2,E>$ 中,如果存在 $t\ge 1$,使得 V_1 中每个顶点至少关联 t 条边,而 V_2 中每个顶点至多关联t条边,则G中存在 V_1 到 V_2 的完备匹配. — t 条件 证 V_1 中任意t个顶点至少关联t4条边,这t5条边至少关联t7。中的t7个顶点,即t7中任意t7个顶点至少邻接t7。由t8件。由t8件。

定理(Hall定理) 设二部图 $G=<V_1,V_2,E>$ 中, $|V_1|\le |V_2|$. G中存在从 V_1 到 V_2 的完备匹配当且仅当 V_1 中任意k个顶点至少与 V_2 中的k个顶点相邻($k=1,2,\ldots,|V_1|$). —相异性条件

证明: 定理的必要性显然。下面证明充分性。

即证明只要满足相异性条件, 6中最大匹配一定是完备匹配。

设M为G中一个最大匹配。若M不是完备匹配,必存在 $v_x \in V_1$ 为M的非饱和点。

且必存在 $e \in E_1 = E - M 与 v_x$ 关联,否则 v_x 将是孤立点,这与相异性条件矛盾。

并且 V_2 中与 v_x 相邻的顶点都是M饱和点,若存在 $v_y \in V_2$ (与 v_x 相邻)为非饱和点,则 $M' = M \cup (v_x, v_y)$ 也是匹配,这显然与M为最大匹配矛盾。

考虑从 v_x 出发的尽可能长的所有交错路径,由于M是最大匹配,又由Berge定理可知,这些交错路径都不是可增广的,即每条路径异于 v_x 的端点一定是M饱和点,于是这些端点全在 V_1 中,

 $\diamondsuit S = \{v | v \in V_1 \land v$ 在从 v_x 出发的交错路径上 $\}$, $T = \{v | v \in V_2 \land v$ 在从 v_x 出发的交错路径上 $\}$,由于各条交错路径的两个端点全在S中,所以|S| = |T| + 1。

这正说明 V_1 中|T|+1个顶点只与 V_2 中T个顶点相邻,这矛盾于相异性条件,因而 V_1 中不可能存在M非饱和点,故M是完备匹配。

м

某中学有3个课外活动小组:数学组,计算机组和生物组.今有赵、钱、孙、李、周 5 名学生.已知:

- (1) 赵、钱为数学组成员,赵、孙、李为计算机组成员,孙、李、周为生物组成员;
- (2) 赵为数学组成员,钱、孙、李为计算机组成员,钱、孙、李、周为生物组成员;
- (3) 赵为数学组和计算机组成员,钱、孙、李、周为生物组成员.

问在以上3种情况下,能否选出3名不兼职的组长?

解 用 v_1 , v_2 , v_3 分别表示数学组、计算机组和生物组. u_1 , u_2 , u_3 , u_4 , u_5 分别表示赵、钱、孙、李、周. 若 u_i 是 v_i 的成员, 就在 u_i 与 v_i 之间连边. 每种情况都对应一个二部图, 见图

一个应用实例

例 某课题组要从*a*, *b*, *c*, *d*, *e* 5人中派3人分别到上海、广州、香港去开会. 已知*a*只想去上海,*b*只想去广州,*c*, *d*, *e*都表示想去广州或香港. 问该课题组在满足个人要求的条件下,共有几种派遣方案?

解 令 $G=<V_1,V_2,E>$, 其中 $V_1=\{s,g,x\},V_2=\{a,b,c,d,e\}$, $E=\{(u,v)\mid u\in V_1,v\in V_2,v想去u\}$, 其中s,g,x分别表示上海、广州和香港.

G 满足相异性条件,红边是一个完备匹配,对应的派遣方案: a-上海,b-广州,d-香港

现有4名教师,张、王、李、赵,要求他们去教4门课程:数学、物理、电工和计算机基础。已知张能胜任数学和计算机基础,王能胜任物理和电工,李能胜任数学、物理和电工;而赵只能胜任电工。如何安排,才能使每位教师都能教一门自己能胜任的课程?并且每门课都有人教。用定理说明原因,并讨论有几种安排方案。

解:作二部图,令
$$V_1 = \{...\}$$
, $V_2 = \{...\}$, $E = \{...\}$...

n位教员要教n门课程,已知每个教员至少能教两门课程,而每门课程至多有两位教员能教,问能否每个教员教一门课而每门课都有人教?用定理说明原因。

解:作二部图,令 $V_1 = \{...\}$, $V_2 = \{...\}$, $E = \{...\}$...

完全二部图 $K_{r,s}$ 中,存在多少个不同的完备匹配,其中 $1 \le r \le s$ 。

解: 设 $K_{r,s} = \langle V_1, V_2, E \rangle$, 其中 $V_1 = \{v_1, v_2, \dots v_r\}$, $V_2 = \{u_1, u_2, \dots u_s\}$ 。

 v_1 有s种选法选自己的匹配, v_2 有s-1种选法选自己的匹配 ... v_r 有s-r+1种选法选自己的匹配。

于是在 $K_{r,s}$ 中共有 $\mathbf{s} \times (\mathbf{s-1}) \times \cdots \times (\mathbf{s-r+1}) = \frac{\mathbf{s!}}{(\mathbf{s-r})!}$ 种完备匹配。

证明:在国际象棋棋盘的一条主对角线上移去两端的1×1方格后,所得棋盘不能用1×2的长方形恰好填满。

证:设 $G = \langle V_1, V_2, E \rangle$ 为二部图,若G中存在完美匹配,则 $|V_1| = |V_2|$ 。记此命题为(*)。

在去掉主对角线两端的 1×1 方格(设为白格)后,棋盘的每个格内放置一个顶点,做二部图 $G = < V_1, V_2, E >$,其中 $V_1 = \{v|v$ 位于白格 $\}$, $V_2 = \{v|v$ 位于黑格 $\}$ $E = \{(u,v)|u \in V_1 \land v \in V_2 \land u,v$ 所在方格相邻 $\}$

则 $|V_1|=30$, $|V_2|=32$ 。

易知,所得棋盘能用 1×2 的长方形恰好填满,当且仅当G中存在完美匹配,但 $|V_1| \neq |V_2|$,由(*)可知, G中不存在完美匹配,因而棋盘不能用 1×2 的长方形恰好填满