Package 'SAPP'

July 9, 2015

Title Statistical Analysis of Point Processes			
Author The Institute of Statistical Mathematics			
Maintainer Masami Saga <msaga@mtb.biglobe.ne.jp></msaga@mtb.biglobe.ne.jp>			
Depends R ($>= 2.14.0$), graphics			
Description Functions for statistical analysis of point processes.			
License GPL (>= 2)			
MailingList Please send comments and bug reports to ismrp@jasp.ism.ac.jp R topics documented:			
Tropies documented.			
SAPP-package			
eptren			
etarpp			

Version 1.0.6

Index

22

 linsim
 11

 main2003JUL26
 12

 momori
 12

 pgraph
 14

 PoissonData
 15

 PProcess
 16

 ptspec
 16

 res2003JUL26
 17

 respoi
 18

 SelfExcit
 19

 simbvh
 20

2 Brastings

SAPP-package

Statistical Analysis of Point Processes

Description

R functions for statistical analysis of point processes

Details

This package provides functions for statistical analysis of series of events and seismicity.

For overview of point process models, see .../doc/SAPP-guide_e.pdf. PDF version of reference manual is available in .../doc/SAPP-manual.pdf

References

Ogata, Y., Katsura, K. and Zhuang, J. (2006) *Computer Science Monographs, No.32, TIMSAC84: STATISTICAL ANALYSIS OF SERIES OF EVENTS (TIMSAC84-SASE) VERSION 2.* The Institute of Statistical Mathematics. http://www.ism.ac.jp/editsec/csm/index.html

Ogata, Y. (2006) Computer Science Monographs, No.33, Statistical Analysis of Seismicity - updated version (SASeies2006). The Institute of Statistical Mathematics. http://www.ism.ac.jp/editsec/csm/index.html

Brastings

The Occurrence Times Data

Description

This data consists of the occurrence times of 627 blastings at a certain stoneyard with a very small portion of microearthquakes during a past 4600days.

Usage

data(Brastings)

Format

A numeric vector of length 627.

Source

Ogata, Y., Katsura, K. and Zhuang, J. (2006) *Computer Science Monographs, No.32, TIMSAC84: Statistical Analysis of Series of events (TIMSAC84-SASE) Version 2.* The Institute of Statistical Mathematics.

eptren 3

~	٠÷،	~~	-
-	στι	re	11

Maximum Likelihood Estimates of Intensity Rates

Description

Compute the maximum likelihood estimates of intensity rates of either exponential polynomial or exponential Fourier series of non-stationary Poisson process models.

Usage

Arguments

data point process data. magnitude. mag threshold threshold magnitude. nparam maximum number of parameters. nsub number of subdivisions in either (0,t) or (0,cycle), where t is the length of observed time interval of points. periodicity to be investigated days in a Poisson process model. If zero (default) cycle fit an exponential polynomial model. tmpfile file name to write the process of minimizing by davidon-fletcher-powell procedure. If "" print the process to the standard output and if NULL (default) no report. nlmax the maximum number of steps in the process of minimizing. plot logical. If TRUE (default) intensity rates are plotted.

Details

This function computes the maximum likelihood estimates (MLEs) of the coefficients $A_1, A_2, \dots A_n$ is an exponential polynomial

$$f(t) = exp(A_1 + A_2t + A_3t^2 + \dots)$$

or $A_1, A_2, B_2, ..., A_n, B_n$ in a Poisson process model with an intensity taking the form of an exponential Fourier series

$$f(t) = exp\{A_1 + A_2cos(2\pi t/p) + B_2sin(2\pi t/p) + A_3cos(4\pi t/p) + B_3sin(4\pi t/p) + ...\}$$

which represents the time varying rate of occurrence (intensity function) of earthquakes in a region.

These two models belong to the family of non-stationary Poisson process. The optimal order n can be determined by minimize the value of the Akaike Information Criterion (AIC).

4 etarpp

Value

aic AIC.

param parameters.
aicmin minimum AIC.

maice.order number of parameters of minimum AIC.

time (cycle=0) or superposed occurrence time (cycle>0).

intensity intensity rates.

References

Ogata, Y., Katsura, K. and Zhuang, J. (2006) *Computer Science Monographs, No.32, TIMSAC84: STATISTICAL ANALYSIS OF SERIES OF EVENTS (TIMSAC84-SASE) VERSION 2.* The Institute of Statistical Mathematics.

Ogata, Y. (2006) *Computer Science Monographs, No.33, Statistical Analysis of Seismicity - updated version (SASeies2006).* The Institute of Statistical Mathematics.

Examples

```
## The Occurrence Times Data of 627 Blastings
data(Brastings)
eptren(Brastings,,, 10, 1000)
                                   # exponential polynomial trend fitting
eptren(Brastings,,, 10, 1000, 1)
                                  # exponential Fourier series fitting
## Poisson Process data
data(PoissonData)
eptren(PoissonData,,, 10, 1000)
                                     # exponential polynomial trend fitting
eptren(PoissonData,,, 10, 1000, 1)
                                     # exponential Fourier series fitting
## The aftershock data of 26th July 2003 earthquake of M6.2
data(main2003JUL26)
x <- main2003JUL26
eptren(x$time, x$magnitude,, 10, 1000)
                                            # exponential polynomial trend fitting
eptren(x$time, x$magnitude,, 10, 1000, 1)
                                            # exponential Fourier series fitting
```

etarpp

Residual Point Process of the ETAS Model

Description

Compute the residual data using the ETAS model with MLEs.

etarpp 5

Usage

Arguments

time the time measured from the main shock(t=0).

mag magnitude.

etas a etas-format dataset on 9 variables (no., longitude, latitude, magnitude, time,

depth, year, month and days).

threshold threshold magnitude. reference reference magnitude.

parami initial estimates of five parameters μ , K, c, α and p.

zts the start of the precursory period.
tstart the start of the target period.
zte the end of the target period.

ztend the end of the prediction period. If NULL (default) the last time of available

data is set.

plot logical. If TRUE (default) the graphs of cumulative number and magnitude

against the ordinary time and transformed time are plotted.

Details

The cumulative number of earthquakes at time t since t_0 is given by the integration of $\lambda(t)$ (see etasap) with respect to the time t,

$$\Lambda(t) = \mu(t - t_0) + K \sum_i \exp[\alpha(M_i - M_z)] \{c^{(1-p)} - (t - t_i + c)^{(1-p)}\}/(p - 1),$$

where the summation of i is taken for all data event. The output of etarpp2 is given in a res-format dataset which includes the column of $\{\Lambda(t_i), i = 1, 2, ..., N\}$.

Value

trans.time transformed time $\Lambda(t_i), i=1,2,...,N.$ no.tstart data number of the start of the target period.

resData a res-format dataset on 7 variables (no., longitude, latitude, magnitude, time,

depth and transformed time).

References

Ogata, Y. (2006) Computer Science Monographs, No.33, Statistical Analysis of Seismicity - updated version (SASeies2006). The Institute of Statistical Mathematics.

6 etasap

Examples

etasap

Maximum Likelihood Estimates of the ETAS Model

Description

Compute the maximum likelihood estimates of five parameters of ETAS model. This function consists of two (exact and approximated) versions of the calculation algorithm for the maximization of likelihood.

Usage

```
etasap(time, mag, threshold=0.0, reference=0.0, parami, zts=0.0, tstart, zte, approx=2, tmpfile=NULL, nlmax=1000, plot=TRUE)
```

Arguments

time the time measured from the main shock(t=0).

mag magnitude.

threshold threshold magnitude. reference reference magnitude.

parami initial estimates of five parameters μ, K, c, α and p.

zts the start of the precursory period.
tstart the start of the target period.
zte the end of the target period.

approx >0: the level for approximation version, which is one of the five levels 1, 2, 4,

8 and 16. The higher level means faster processing but lower accuracy.

=0: the exact version.

tmpfile write the process of maximum likelihood procedure to tmpfile.

If "" print the process to the standard output and if NULL (default) no report.

nlmax the maximum number of steps in the process of minimizing.

plot logical. If TRUE (default) the graph of cumulative number and magnitude of

earthquakes against the ordinary time is plotted.

etasim 7

Details

$$n_i(t) = Kexp[\alpha(M_i - M_z)]/(t - t_i + c)^p,$$

for $t > t_i$ where K, α , c, and p are constants, which are common to all aftershock sequences in the region. The rate of occurrence of the whole earthquake series at time t becomes

$$\lambda(t) = \mu + \Sigma_i n_i(t).$$

The summation is done for all i satisfying $t_i < t$. Five parameters μ , K, c, α and p represent characteristics of seismic activity of the region.

Value

ngmle	negative max log-likelihood.
param	list of maximum likelihood estimates of five parameters μ, K, c, α and p .
aic2	AIC/2.

References

Ogata, Y. (2006) Computer Science Monographs, No.33, Statistical Analysis of Seismicity - updated version (SASeies2006). The Institute of Statistical Mathematics.

Examples

```
data(main2003JUL26) # The aftershock data of 26th July 2003 earthquake of M6.2 x <- main2003JUL26 etasap(x$time, x$magnitude, 2.5, 6.2, c(0, 0.63348E+02, 0.38209E-01, 0.26423E+01, 0.10169E+01),, 0.01, 18.68)
```

etasim

Simulation of Earthquake Dataset Based on the ETAS Model

Description

Produce simulated dataset for given sets of parameters in the point process model used in ETAS.

8 etasim

Usage

```
etasim1(bvalue, nd, threshold=0.0, reference=0.0, param)
etasim2(etas, tstart, threshold=0.0, reference=0.0, param)
```

Arguments

bvalue *b*-value of G-R law if etasim1.

nd the number of the simulated events if etasim1.

etas a etas-format dataset on 9 variables (no., longitude, latitude, magnitude, time,

depth, year, month and days).

tstart the end of precursory period if etasim2.

threshold threshold magnitude.
reference reference magnitude.

param five parameters μ , K, c, α and p.

Details

There are two versions; either simulating magnitude by Gutenberg-Richter's Law etasim1 or using magnitudes from etas dataset etasim2. For etasim1, b-value of G-R law and number of events to be simulated are provided. stasim2 simulates the same number of events that are not less than threshold magnitude in the dataset etas, and simulation starts after a precursory period depending on the same history of events in etas in the period.

Value

etasim1 and etasim2 generate a etas-format dataset given values of 'no.', 'magnitude' and 'time'.

References

Ogata, Y. (2006) Computer Science Monographs, No.33, Statistical Analysis of Seismicity - updated version (SASeies2006). The Institute of Statistical Mathematics.

Examples

linlin 9

linlin	Maximum Likelihood Estimates of	of Linear Intensity Models
1111111	Maximum Liketinood Estimates (n Linear miensity wioaets

Description

Perform the maximum likelihood estimates of linear intensity models of self-exciting point process with another point process input, cyclic and trend components.

Usage

Arguments

external	another point process data.
self.excit	self-exciting data.
interval	length of observed time interval of event.
С	exponential coefficient of lgp in self-exciting part.
d	exponential coefficient of lgp in input part.
ax	coefficients of self-exciting response function.
ay	coefficients of input response function.
ac	coefficients of cycle.
at	coefficients of trend.
opt	0 : minimize the likelihood with fixed exponential coefficient c 1 : not fixed d .
tmpfile	write the process of minimizing to $tmpfile$. If "" print the process to the standard output and if NULL (default) no report.
nlmax	the maximum number of steps in the process of minimizing.

Details

The cyclic part is given by the Fourier series, the trend is given by usual polynomial. The response functions of the self-exciting and the input are given by the Laguerre type polynomials (lgp), where the scaling parameters in the exponential function, say c and d, can be different. However it is advised to estimate c first without the input component, and then to estimate d with the fixed c (this means that the gradient corresponding to the c is set to keep 0), which are good initial estimates for the c and d of the mixed self-exciting and input model.

Note that estimated intensity sometimes happen to be negative on some part of time interval outside the neighborhood of events. this take place more easily the larger the number of parameters. This causes some difficulty in getting the m.l.e., because the negativity of the intensity contributes to the seeming increase of the likelihood.

Note that for the initial estimates of ax(1), ay(1) and at(1), some positive value are necessary. Especially 0.0 is not suitable.

10 linlin

T 7		
V/O	пп	

c1	initial estimate of exponential coefficient of lgp in self-exciting part.
d1	initial estimate of exponential coefficient of lgp in input part.
ax1	initial estimates of lgp coefficients in self-exciting part.
ay1	initial estimates of lgp coefficients in the input part.
ac1	initial estimates of coefficients of Fourier series.
at1	initial estimates of coefficients of the polynomial trend.
c2	final estimate of exponential coefficient of lgp in self-exciting part.
d2	final estimate of exponential coefficient of lgp in input part.
ax2	final estimates of lgp coefficients in self-exciting part.
ay2	final estimates of lgp coefficients in the input part.
ac2	final estimates of coefficients of Fourier series.
at2	final estimates of coefficients of the polynomial trend.
aic2	AIC/2.
ngmle	negative max likelihood.
rayleigh.prob	Rayleigh probability.
distance	$=\sqrt{(rwx^2+rwy^2)}.$
phase	phase.

References

Ogata, Y., Katsura, K. and Zhuang, J. (2006) *Computer Science Monographs, No.32, TIMSAC84: STATISTICAL ANALYSIS OF SERIES OF EVENTS (TIMSAC84-SASE) VERSION 2.* The Institute of Statistical Mathematics.

Ogata, Y. and Akaike, H. (1982) On linear intensity models for mixed doubly stochastic Poisson and self-exciting point processes. J. royal statist. soc. b, vol. 44, pp. 102-107.

Ogata, Y., Akaike, H. and Katsura, K. (1982) *The application of linear intensity models to the investigation of causal relations between a point process and another stochastic process*. Ann. inst. statist. math., vol. 34. pp. 373-387.

Examples

linsim 11

linsim	Simulation of a Self-Exciting Point Process

Description

Perform simulation of a self-exciting point process whose intensity also includes a component triggered by another given point process data and a non-stationary Poisson trend.

Usage

```
linsim(data, interval, c, d, ax, ay, at, ptmax)
```

Arguments

data	point process data.
interval	length of time interval in which events take place.
С	exponential coefficient of lgp corresponding to simulated data.
d	exponential coefficient of lgp corresponding to input data.
ax	lgp coefficients in self-exciting part.
ay	lgp coefficients in the input part.
at	coefficients of the polynomial trend.
ptmax	an upper bound of trend polynomial.

Details

This function performs simulation of a self-exciting point process whose intensity also includes a component triggered by another given point process data and non-stationary Poisson trend. The trend is given by usual polynomial, and the response functions to the self-exciting and the external inputs are given the Laguerre-type polynomials (lgp), where the scaling parameters in the exponential functions, say c and d, can be different.

Value

in.data	input data for sim.data.
sim.data	self-exciting simulated data.

References

Ogata, Y., Katsura, K. and Zhuang, J. (2006) *Computer Science Monographs, No.32, TIMSAC84: STATISTICAL ANALYSIS OF SERIES OF EVENTS (TIMSAC84-SASE) VERSION 2.* The Institute of Statistical Mathematics.

Ogata, Y. (1981) On Lewis' simulation method for point processes. IEEE information theory, vol. it-27, pp. 23-31.

Ogata, Y. and Akaike, H. (1982) On linear intensity models for mixed doubly stochastic Poisson and self-exciting point processes. J. royal statist. soc. b, vol. 44, pp. 102-107.

12 momori

Ogata, Y., H.Akaike, H. and Katsura, K. (1982) *The application of linear intensity models to the investigation of causal relations between a point process and another stochastic process*. Ann. inst. statist math., vol. 34. pp. 373-387.

Examples

main2003JUL26

The Aftershock Data

Description

The aftershock data of 26th July 2003 earthquake of M6.2 at the northern Miyagi-Ken Japan.

Usage

data(main2003JUL26)

Format

main2003JUL26 is a data frame with 2305 observations and 9 variables named no., longitude, latitude, magnitude, time (from the main shock in days), depth, year, month, and day.

Source

Ogata, Y. (2006) Computer Science Monographs, No.33, Statistical Analysis of Seismicity - updated version (SASeies2006). The Institute of Statistical Mathematics.

momori

Maximum Likelihood Estimates of Parameters in the Omori-Utsu (Modified Omori) Formula

Description

Compute the maximum likelihood estimates (MLEs) of parameters in the Omori-Utsu (modified Omori) formula representing for the decay of occurrence rate of aftershocks with time.

Usage

momori(data,mag=NULL,threshold=0.0,tstart,tend,parami,tmpfile=NULL, nlmax=1000)

momori 13

Arguments

data point process data.

mag magnitude.

threshold threshold magnitude.

tstart the start of the target period. tend the end of the target period.

parami the initial estimates of the four parameters B, K, c and p.

tmpfile write the process of minimizing to tmpfile.

If "" print the process to the standard output and if NULL (default) no report.

nlmax the maximum number of steps in the process of minimizing.

Details

The modified Omori formula represent the delay law of aftershock activity in time. In this equation, f(t) represents the rate of aftershock occurrence at time t, where t is the time measured from the origin time of the main shock. B, K, c and p are non-negative constants. B represents constant-rate background seismicity which may included in the aftershock data.

$$f(t) = B + K/(t+c)^p$$

In this function the negative log-likelihood function is minimized by the Davidon-Fletcher-Powell algorithm. Starting from a given set of initial guess of the parameters parai, momori() repeats calculations of function values and its gradients at each step of parameter vector. At each cycle of iteration, the linearly searched step (lambda), negative log-likelihood value (-LL), and two estimates of square sum of gradients are shown (process = 1).

The cumulative number of earthquakes at time t since t_0 is given by the integration of f(t) with respect to the time t,

$$F(t) = B(t - t_0) + K\{c^{1-p} - (t - t_i + c)^{1-p}\}/(p - 1)$$

where the summation of i is taken for all data event.

Value

param the final estimates of the four parameters B, K, c and p.

ngmle negative max likelihood.

aic AIC = -2LL + 2* (number of variables), and the number=4 in this case.

plist list of parameters t_i , K, c, p and cls.

References

Ogata, Y. (2006) Computer Science Monographs, No.33, Statistical Analysis of Seismicity - updated version (SASeies2006). The Institute of Statistical Mathematics.

14 pgraph

Examples

```
data(main2003JUL26) # The aftershock data of 26th July 2003 earthquake of M6.2 x <- main2003JUL26 momori(x$time, x$magnitude, 2.5, 0.01, 18.68, c(0,0.96021E+02,0.58563E-01,0.96611E+00))
```

pgraph

Graphical Outputs for the Point Process Data Set

Description

Provide the several graphical outputs for the point process data set.

Usage

Arguments

data point process data.

mag magnitude.

threshold threshold magnitude.

h time length of the moving interval in which points are counted to show the graph.

npoint number of subintervals in (0,days) to estimate a non parametric intensity under

the palm probability measure.

days length of interval to display the intensity estimate under the palm probability.

delta length of a subinterval unit in (0,dmax) to compute the variance time curve.

dmax time length of a interval to display the variance time curve;

this is less than (length of whole interval)/4. As the default setting of either delta=0.0 or dmax=0.0, set dmax=(length of whole interval)/4 and delta=(length of whole interval)/4.

dmax/100.

separate.graphics

logical. If TRUE a graphic device is opened for each graphics display.

Value

cnum cumulative numbers of events time.

lintv interval length.

tau =time*(total number of events)/(time end).

nevent number of events in [tau, tau+h].

survivor log survivor curve with i*(standard error), i=1,2,3. deviation deviation from the Poisson.

PoissonData 15

nomal.cnum normalized cumulative number.

nomal.lintv $U(i)=-\exp(-(normalized interval length)).$

success.intv successive pair of intervals.

occur occurrence rate.

time time assuming the stationary Poisson process.

variance Var(N(0,time)).

error the 0.95 and 0.99 error lines assuming the stationary Poisson process.

References

Ogata, Y., Katsura, K. and Zhuang, J. (2006) *Computer Science Monographs, No.32, TIMSAC84: STATISTICAL ANALYSIS OF SERIES OF EVENTS (TIMSAC84-SASE) VERSION 2.* The Institute of Statistical Mathematics.

Ogata, Y. (2006) Computer Science Monographs, No.33, Statistical Analysis of Seismicity - updated version (SASeies2006). The Institute of Statistical Mathematics.

Ogata, Y. and Shimazaki, K. (1984) *Transition from aftershock to normal activity: The 1965 Rat islands earthquake aftershock sequence*. Bulletin of the seismological society of America, vol. 74, no. 5, pp. 1757-1765.

Examples

```
## The aftershock data of 26th July 2003 earthquake of M6.2
data(main2003JUL26)
x <- main2003JUL26
pgraph(data=x$time, mag=x$magnitude, h=6, npoint=100, days=10)

## The residual point process data of 26th July 2003 earthquake of M6.2
data(res2003JUL26)
y <- res2003JUL26
pgraph(data=y$trans.time, mag=y$magnitude, h=6, npoint=100, days=10)</pre>
```

PoissonData

Poisson Data

Description

Poisson test data for ptspec.

Usage

data(PoissonData)

Format

A numeric vector of length 2553.

16 ptspec

Source

Ogata, Y., Katsura, K. and Zhuang, J. (2006) *Computer Science Monographs, No.32, TIMSAC84: STATISTICAL ANALYSIS OF SERIES OF EVENTS (TIMSAC84-SASE) VERSION 2.* The Institute of Statistical Mathematics.

PProcess

The Point Process Data

Description

The point process test data for linsim and linlin.

Usage

data(PProcess)

Format

A numeric vector of length 72.

Source

Ogata, Y., Katsura, K. and Zhuang, J. (2006) *Computer Science Monographs, No.32, TIMSAC84: STATISTICAL ANALYSIS OF SERIES OF EVENTS (TIMSAC84-SASE) VERSION 2.* The Institute of Statistical Mathematics.

ptspec

The Periodogram of Point Process Data

Description

Provide the periodogram of point process data with the significant band (0.90, 0.95 and 0.99) of the maximum power in searching a cyclic component, for stationary Poisson Process.

Usage

```
ptspec( data, nfre, prdmin, prd, nsmooth=1, pprd, interval, plot=TRUE )
```

res2003JUL26 17

Arguments

data of events.

nfre number of sampling frequencies of spectra.

prdmin the minimum periodicity of the sampling.

prd a periodicity for calculating the Rayleigh probability.

nsmooth number for smoothing of periodogram.

pprd particular periodicities to be investigated among others.

interval length of observed time interval of events.

plot logical. If TRUE (default) the periodogram is plotted.

Value

f frequency.

db D.B. power.

rayleigh.prob the probability of Rayleigh.

distance = $\sqrt{(rwx^2 + rwy^2)}$.

phase phase.

References

Ogata, Y., Katsura, K. and Zhuang, J. (2006) *Computer Science Monographs, No.32, TIMSAC84: STATISTICAL ANALYSIS OF SERIES OF EVENTS (TIMSAC84-SASE) VERSION 2.* The Institute of Statistical Mathematics.

Examples

```
data(Brastings) # The Occurrence Times Data of 627 Blastings ptspec(Brastings, 1000, 0.5, 1.0,, c(2.0, 1.0, 0.5), 4600)

data(PoissonData) # to see the contrasting difference ptspec(PoissonData, 1000, 0.5, 1.0,, c(2.0, 1.0, 0.5), 5000)
```

res2003JUL26

The Residual Point Process Data

Description

The residual point process data of 26th July 2003 earthquake of M6.2 at the northern Miyagi-Ken Japan.

Usage

data(res2003JUL26)

18 respoi

Format

res2003JUL26 is a data frame with 553 observations and 7 variables named no., longitude, latitude, magnitude, time (from the main shock in days), depth, Ft (transformed time).

Source

Ogata, Y. (2006) Computer Science Monographs, No.33, Statistical Analysis of Seismicity - updated version (SASeies2006). The Institute of Statistical Mathematics.

respoi

The Residual Point Process of the ETAS Model

Description

Compute the residual of modified Omori Poisson process and display the cumulative curve and magnitude v.s. transformed time.

Usage

```
respoi(time,mag,param,zts,tstart,zte,threshold=0.0,plot=TRUE)
respoi2(etas,param,zts,tstart,zte,threshold=0.0,plot=TRUE)
```

Arguments

time the time measured from the main shock(t=0).

mag magnitude.

etas a etas-format dataset on 9 variables

(no., longitude, latitude, magnitude, time, depth, year, month and days).

param the four parameters B, K, c and p.

2ts the start of the precursory period.

2ts the start of the target period.

zte the end of the target period.

threshold magnitude.

plot logical. If TRUE (default) cumulative curve and magnitude v.s. transformed

time $F(t_i)$ are plotted.

SelfExcit 19

Details

The function respoi and respoi2 compute the following output for displaying the goodness-of-fit of Omori-Utsu model to the data. The cumulative number of earthquakes at time t since t_0 is given by the integration of f(t) with respect to the time t,

$$F(t) = B(t - t_0) + K\{c^{(1-p)} - (t - t_i + c)^{(1-p)}\}/(p - 1)$$

where the summation of i is taken for all data event.

respoi2 is equivalent to respoi except that input and output forms are different. When a etasformat dataset is given, respoi2 returns the dataset with the format as described below.

Value

trans.time transformed time $F(t_i), i = 1, 2, ..., N$.

cnum cumulative number of events.

a res-format dataset on 7 variables

(no., longitude, latitude, magnitude, time, depth and trans.time)

References

resData

Ogata, Y. (2006) Computer Science Monographs, No.33, Statistical Analysis of Seismicity - updated version (SASeies2006). The Institute of Statistical Mathematics.

Examples

SelfExcit

Self-Exciting Point Process Data

Description

Self-exciting point process test data for linlin.

Usage

```
data(SelfExcit)
```

20 simbvh

Format

A numeric vector of length 99.

Source

Ogata, Y., Katsura, K. and Zhuang, J. (2006) *Computer Science Monographs, No.32, TIMSAC84: STATISTICAL ANALYSIS OF SERIES OF EVENTS (TIMSAC84-SASE) VERSION 2.* The Institute of Statistical Mathematics.

simbvh

Simulation of Bi-Variate Hawkes' Mutually Exciting Point Processes

Description

Perform the simulation of bi-variate Hawkes' mutually exciting point processes. The response functions are parameterized by the Laguerre-type polynomials.

Usage

```
simbvh(interval,axx=NULL,axy=NULL,ayx=NULL,ayx=NULL,ayz=NULL,ayz=NULL,ayz=NULL,ayz=NULL,ayz=NULL,ayz=NULL,ayz=NULL,ayz=NULL,ayz=NULL,ayz=NULL,ayz=NULL,ayz=NULL,ayz=NULL,ayz=NULL,ayz=NULL,ayz=NULL,ayz=NULL,ayz=NULL,ayz=NULL,ayz=NULL,ayz=NULL,ayz=NULL,ayz=NULL,ayz=NULL,ayz=NULL,ayz=NULL,ayz=NULL,ayz=NULL,ayz=NULL,ayz=NULL,ayz=NULL,ayz=NULL,ayz=NULL,ayz=NULL,ayz=NULL,ayz=NULL,ayz=NULL,ayz=NULL,ayz=NULL,ayz=NULL,ayz=NULL,ayz=NULL,ayz=NULL,ayz=NULL,ayz=NULL,ayz=NULL,ayz=NULL,ayz=NULL,ayz=NULL,ayz=NULL,ayz=NULL,ayz=NULL,ayz=NULL,ayz=NULL,ayz=NULL,ayz=NULL,ayz=NULL,ayz=NULL,ayz=NULL,ayz=NULL,ayz=NULL,ayz=NULL,ayz=NULL,ayz=NULL,ayz=NULL,ayz=NULL,ayz=NULL,ayz=NULL,ayz=NULL,ayz=NULL,ayz=NULL,ayz=NULL,ayz=NULL,ayz=NULL,ayz=NULL,ayz=NULL,ayz=NULL,ayz=NULL,ayz=NULL,ayz=NULL,ayz=NULL,ayz=NULL,ayz=NULL,ayz=NULL,ayz=NULL,ayz=NULL,ayz=NULL,ayz=NULL,ayz=NULL,ayz=NULL,ayz=NULL,ayz=NULL,ayz=NULL,ayz=NULL,ayz=NULL,ayz=NULL,ayz=NULL,ayz=NULL,ayz=NULL,ayz=NULL,ayz=NULL,ayz=NULL,ayz=NULL,ayz=NULL,ayz=NULL,ayz=NULL,ayz=NULL,ayz=NULL,ayz=NULL,ayz=NULL,ayz=NULL,ayz=NULL,ayz=NULL,ayz=NULL,ayz=NULL,ayz=NULL,ayz=NULL,ayz=NULL,ayz=NULL,ayz=NULL,ayz=NULL,ayz=NULL,ayz=NULL,ayz=NULL,ayz=NULL,ayz=NULL,ayz=NULL,ayz=NULL,ayz=NULL,ayz=NULL,ayz=NULL,ayz=NULL,ayz=NULL,ayz=NULL,ayz=NULL,ayz=NULL,ayz=NULL,ayz=NULL,ayz=NULL,ayz=NULL,ayz=NULL,ayz=NULL,ayz=NULL,ayz=NULL,ayz=NULL,ayz=NULL,ayz=NULL,ayz=NULL,ayz=NULL,ayz=NULL,ayz=NULL,ayz=NULL,ayz=NULL,ayz=NULL,ayz=NULL,ayz=NULL,ayz=NULL,ayz=NULL,ayz=NULL,ayz=NULL,ayz=NULL,ayz=NULL,ayz=NULL,ayz=NULL,ayz=NULL,ayz=NULL,ayz=NULL,ayz=NULL,ayz=NULL,ayz=NULL,ayz=NULL,ayz=NULL,ayz=NULL,ayz=NULL,ayz=NULL,ayz=NULL,ayz=NULL,ayz=NULL,ayz=NULL,ayz=NULL,ayz=NULL,ayz=NULL,ayz=NULL,ayz=NULL,ayz=NULL,ayz=NULL,ayz=NULL,ayz=NULL,ayz=NULL,ayz=NULL,ayz=NULL,ayz=NULL,ayz=NULL,ayz=NULL,ayz=NULL,ayz=NULL,ayz=NULL,ayz=NULL,ayz=NULL,ayz=NULL,ayz=NULL,ayz=NULL,ayz=NULL,ayz=NULL,ayz=NULL,ayz=NULL,ayz=NULL,ayz=NULL,ayz=NULL,ayz=NULL,ayz=NULL,ayz=NULL,ayz=NULL,ayz=NULL,ayz=NULL,ayz=NULL,ayz=NULL,ayz=NULL,ayz=NULL,ayz=NULL,ayz=NULL,
```

Arguments

interval	length of time interval in which events take place.
axx	coefficients of Laguerre polynomial (lgp) of the transfer function (= response function) from the data events x to x (trf; $x \rightarrow x$).
axy	coefficients of lgp (trf; $y \rightarrow x$).
ayx	coefficients of lgp (trf; $x \rightarrow y$).
ayy	coefficients of lgp (trf; $y \rightarrow y$).
axz	coefficients of polynomial for x data.
ayz	coefficients of polynomial for y data.
С	exponential coefficient of lgp corresponding to xx.
d	exponential coefficient of lgp corresponding to xy.
c2	exponential coefficient of lgp corresponding to yx.
d2	exponential coefficient of lgp corresponding to yy.
ptxmax	an upper bound of trend polynomial corresponding to xz.
ptymax	an upper bound of trend polynomial corresponding to yz.

Value

Х	simulated data X.
У	simulated data Y.

simbvh 21

References

Ogata, Y., Katsura, K. and Zhuang, J. (2006) *Computer Science Monographs, No.32, TIMSAC84: STATISTICAL ANALYSIS OF SERIES OF EVENTS (TIMSAC84-SASE) VERSION 2.* The Institute of Statistical Mathematics.

Ogata, Y. (1981) On Lewis' simulation method for point processes. IEEE Information Theory, IT-27, pp.23-31.

Examples

Index

*Topic datasets	ptspec, 16
Brastings, 2 main2003JUL26, 12	res2003JUL26, 17
PoissonData, 15	respoi, 18
PProcess, 16	respoi2 (respoi), 18
res2003JUL26, 17	(, , , , , , , , , , , , , , , , , , ,
SelfExcit, 19	SAPP (SAPP-package), 2
*Topic package	SAPP-package, 2
SAPP-package, 2	SelfExcit, 19
*Topic spatial	simbvh, 20
eptren, 3	
etarpp, 4	
etasap, 6	
etasim, 7	
linlin, 9	
linsim, 11	
momori, 12	
pgraph, 14	
ptspec, 16	
respoi, 18	
simbvh, 20	
Brastings, 2	
antono 2	
eptren, 3	
etarpp, 4	
etarpp2 (etarpp), 4	
etasap, 5, 6	
etasim, 7	
etasim1 (etasim), 7	
etasim2 (etasim), 7	
linlin, 9	
linsim, 11	
main2003JUL26, 12	
momori, 12	
pgraph, 14	
PoissonData, 15	
PProcess, 16	