

AD-A189 255

THE RELATIONSHIP OF THE CHEMICAL BONDING TOPOLOGY OF
HIGH CRITICAL TEMPER. (U) GEORGIAUNIV ATHENS DEPT OF
CHEMISTRY R B KING 11 DEC 87 TR-56 N00014-84-K-0365

1/1

UNCLASSIFIED

F/G 20/3

NL

100% RESOLUTION TEST CHART

DTIC FILE COPY

(4)

OFFICE OF NAVAL RESEARCH

Contract NOOO14-84-K-0365

R & T Code 4007001-6

Technical Report No. 56

The Relationship of the Chemical Bonding Topology of
High Critical Temperature Copper Oxide Superconductors to That of
The Chevrel Phases and the Ternary Lanthanide Rhodium Borides

by

R. Bruce King

Prepared for Publication

in

Inorganica Chimica Acta

University of Georgia
Department of Chemistry
Athens, Georgia 30602

December 11, 1987

Reproduction in whole or in part is permitted for
any purpose of the United States Government

This document has been approved for public release
and sale; its distribution is unlimited.

AD-A189 255

87 12 21 135

Unclassified

SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

REPORT DOCUMENTATION PAGE		READ INSTRUCTIONS BEFORE COMPLETING FORM
1. REPORT NUMBER	2. GOVT ACCESSION NO.	3. RECIPIENT'S CATALOG NUMBER
Technical Report No. 56	A.D-A189133	
4. TITLE (and Subtitle)	5. TYPE OF REPORT & PERIOD COVERED	
The Relationship of the Chemical Bonding Topology of High Critical Temperature Copper Oxide Superconductors to That of the Chevrel Phases and the Ternary Lanthanide Rhodium Borides		
7. AUTHOR(s)	8. CONTRACT OR GRANT NUMBER(s)	
R.B. King	N00014-84-K-0365	
9. PERFORMING ORGANIZATION NAME AND ADDRESS	10. PROGRAM ELEMENT, PROJECT, TASK AREA & WORK UNIT NUMBERS	
University of Georgia Department of Chemistry Athens, GA 30602	4007001-6	
11. CONTROLLING OFFICE NAME AND ADDRESS	12. REPORT DATE	
Office of Naval Research Department of the Navy Arlington, VA 22217	December 11, 1987	
14. MONITORING AGENCY NAME & ADDRESS(if different from Controlling Office)	13. NUMBER OF PAGES	
	6	
16. DISTRIBUTION STATEMENT (of this Report)	15. SECURITY CLASS. (of this report)	
This document has been approved for public release and sale; its distribution is unlimited.		
17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different from Report)		
18. SUPPLEMENTARY NOTES	19. KEY WORDS (Continue on reverse side if necessary and identify by block number)	
To be published in "Inorganica Chimica Acta."	Superconductors, Topology, Chemical Bonding, High Critical Temperatures, Chevrel Phases, Lanthanide Rhodium Borides, Copper Oxides, Porous Delocalization	
20. ABSTRACT (Continue on reverse side if necessary and identify by block number)	The high critical temperature copper oxide superconductors exhibit chemical bonding topologies closely related to those of the ternary molybdenum chalcogenides and ternary lanthanide rhodium borides in which the conducting skeleton is constructed from metal-oxygen-metal rather than direct metal-metal bonds and antiferromagnetic metal-metal interactions occur rather than direct metal-metal bonding.	

THE RELATIONSHIP OF THE CHEMICAL BONDING TOPOLOGY OF HIGH
CRITICAL TEMPERATURE COPPER OXIDE SUPERCONDUCTORS TO THAT OF
THE CHEVREL PHASES AND THE TERNARY LANTHANIDE RHODIUM BORIDES

R. B. King

Department of Chemistry, University of Georgia, Athens, Georgia 30602

Abstract

The high critical temperature copper oxide superconductors exhibit chemical bonding topologies closely related to those of the ternary molybdenum chalcogenides and ternary lanthanide rhodium borides in which the conducting skeleton is constructed from metal-oxygen-metal rather than direct metal-metal bonds and antiferromagnetic metal-metal interactions occur rather than direct metal-metal bonding.

Accession For	
NTIS CRA&I	<input checked="" type="checkbox"/>
DTIC TAB	<input type="checkbox"/>
Unannounced	<input type="checkbox"/>
Justification	
By _____	
Distributed by _____	
Approved by _____	
Date _____	
A-1	

Our graph-theory derived treatment of metal cluster chemical bonding topology^{1,2,3,4,5} has recently been extended to superconducting infinite metal clusters such as the ternary molybdenum chalcogenides (Chevrel phases)⁶ and ternary lanthanide rhodium borides.⁷ Relatively high superconducting transition temperatures for a given compound type were found to be associated with confinement of the delocalized bonding electrons to the edges of an infinite three-dimensional network of metal polyhedra which may be regarded as a "conducting skeleton." Such a rather special type of chemical bonding topology may be conveniently described as porously delocalized and contrasts with the more common global delocalization of the bonding electrons throughout the entire metal cluster volume such as occurs in the free metals themselves.⁸ This letter shows that a completely analogous model can be used for the chemical bonding topology in the recently discovered high temperature superconductors derived from the copper oxide systems including the initially identified La-Ba-Cu-O perovskites^{9,10} and the subsequently discovered layered perovskites^{11,12,13,14,15} exhibiting superconductivity above liquid nitrogen temperature. The much higher transition temperatures of the copper oxide superconductors relative to the metal cluster superconductors can then be attributed to major differences in the polarizabilities of the chemical bonds forming the conducting skeleton rather than differences in the overall chemical bonding topology. This point is of potential significance in the application of conventional physical theories of superconductivity^{16,17,18,19} to the copper oxide systems.

Consider first the Chevrel phases^{20,21} such as PbMo₆S₈. Their structures consist of an infinite three-dimensional conducting skeleton of Mo₆ octahedra in close enough proximity for the interoctahedral as well as intraoctahedral Mo-Mo interactions.⁶ The intraoctahedral Mo-Mo bonding is confined to the 1-skeletons²² of the Mo₆ octahedra, namely the 12 Mo-Mo edges in each octahedron. Oxidation

of the closed shell $\text{Mo}_6\text{S}_8^{4-}$ electronic configuration to $\text{Mo}_6\text{S}_8^{2-}$ (e.g., the Pb^{2+} counterion in PbMo_6S_8) coupled with the interoctahedral Mo-Mo interactions provides the holes in the valence band required for conductivity. In an analogous way the structures of the ternary lanthanide rhodium borides LnRh_4B_4 ($\text{Ln} = \text{Nd}, \text{Sm}, \text{Er}, \text{Tm}, \text{Lu}$)^{23,24} consist of an infinite three-dimensional conducting skeleton of Rh_4 tetrahedra with intratetrahedral Rh-Rh bonding confined to the 6 Rh-Rh edges, intertetrahedral Rh-Rh distances short enough for some chemical bonding, and oxidation of the closed shell $\text{Rh}_4\text{B}_4^{4-}$ electronic configuration to $\text{Rh}_4\text{B}_4^{3-}$ to create the holes in the valence band required for conductivity.⁷

A similar model can be generated for the chemical bonding topology of the copper oxide superconductors by considering the following points:

- (1) The infinite three-dimensional conducting skeleton is constructed from Cu-O-Cu bonds rather than direct Cu-Cu bonds.
- (2) The relevant metal-metal interactions are antiferromagnetic interactions between the single unpaired electrons on two d⁹ Cu(II) atoms separated by an oxygen bridge similar to antiferromagnetic Cu(II)-Cu(II) interactions in discrete binuclear complexes.^{25,26} This idea is closely related to the resonating valence bond models first proposed by P.W. Anderson in 1973²⁷ and recently applied by him²⁸ to the copper oxide superconductors. Furthermore, pairwise antiferromagnetic interactions can generate the Cooper pairs of electrons required for superconductivity.
- (3) The alkaline-earth and lanthanide positive counterions in the copper oxide superconductors play a role analogous to that of the positive counterions in the Chevrel phases (e.g., Pb^{2+} in PbMo_6S_8) and the ternary lanthanide rhodium borides (e.g., Ln^{3+} in LnRh_4B_4). In the copper oxide structures these counterions control the negative charge on the Cu-O skeleton and thus the oxidation states of the copper atoms.

(4) Partial oxidation of some of the Cu(II) to Cu(III) generates holes in the valence band required for conductivity. Thus La_2CuO_4 , in which all of the copper is in the +2 oxidation state, is an insulator.²⁹ Replacement of some of the lanthanide ions with alkaline earth ions in the superconductors corresponds to partial oxidation of Cu(II) to Cu(III) with the average oxidation state of copper, for example, corresponding to +2.15 in the 36K superconductor $\text{La}_{1.85}\text{Sr}_{0.15}\text{CuO}_4$ reported by Bednorz and Müller.^{9,10}

These considerations lead to a porously delocalized chemical bonding topology for the copper oxide superconductors similar to the chemical bonding topologies of the Chevrel phases⁶ and lanthanide rhodium borides.⁷ However, in the copper oxide superconductors the conducting skeleton is constructed from metal-oxygen bonds rather than direct metal-metal bonds while using non-bonding antiferromagnetic metal-metal interactions for the electron transport required for conductivity. The much higher ionic character and thus much lower polarizability of metal-oxygen bonds relative to metal-metal bonds can then be related to the persistence of superconductivity in the copper oxides to much higher temperatures than in metal clusters such as the Chevrel phases and lanthanide rhodium borides. This model also suggests a search for other high temperature superconductors among oxides of other transition metals in mixed oxidation states including oxidation states which are paramagnetic in mononuclear metal complexes but demonstrated by the magnetic properties of their binuclear and/or polynuclear coordination complexes to exhibit antiferromagnetic interactions not involving direct metal-metal bonding.²⁶

Acknowledgment: I am indebted to the Office of Naval Research for the partial support of this work.

- 1 R.B. King and D.H. Rouvray, *J. Am. Chem. Soc.* 99, 7834 (1977).
- 2 R.B. King in Chemical Applications of Topology and Graph Theory, edited by R.B. King (Elsevier Scientific Publishing Co., Amsterdam, 1983), pp. 99-123.
- 3 R.B. King, in Molecular Structures and Energetics, edited by J.F. Liebman and A. Greenberg (VCH Publishers, Inc., Deerfield Beach, Florida, 1986), pp. 123-148.
- 4 R.B. King, *Inorg. Chim. Acta* 116, 99 (1986).
- 5 R.B. King, *Int. J. Quant. Chem., Quant. Chem. Symp.* S20, 227 (1986).
- 6 R.B. King, *J. Solid State Chem.* in press.
- 7 R.B. King, *J. Solid State Chem.* in press.
- 8 R.B. King, *Inorg. Chim. Acta* 129, 91 (1987).
- 9 J.G. Bednorz and K.A. Müller, *Z. Phys. B Condensed Matter* 64, 189 (1986).
- 10 H.H. Wang, U. Geiser, R.J. Thorn, K.D. Carlson, M.A. Beno, M.R. Monaghan, T.J. Allen, R.B. Proksch, D.L. Stupka, W.K. Kwok, G.W. Crabtree, and J.M. Williams, *Inorg. Chem.* 26, 1190 (1987).
- 11 A.M. Stacy, J.V. Badding, M.J. Geselbracht, W.K. Ham, G.F. Holland, R.L. Hoskins, S.W. Keller, C.F. Millikan, and H.-C. zur Loya, *J. Am. Chem. Soc.* 109, 2528 (1987).
- 12 A.R. Moodenbaugh, M. Suenaga, T. Asano, R.N. Shelton, H.C. Kur, R.W. McCallum, and P. Klavins, *Phys. Rev. Lett.* 58, 1885 (1987).
- 13 D.W. Murphy, S. Sunshine, R.B. van Dover, R.J. Cava, B. Batlogg, S.M. Zahurak, and L.F. Schneemeyer, *Phys. Rev. Lett.* 58, 1888 (1987).
- 14 P.H. Hor, R.L. Meng, Y.Q. Wang, L. Gao, Z.J. Huang, J. Bechtold, K. Forster, and C.W. Chu, *Phys. Rev. Lett.* 58, 1891 (1987).
- 15 A. Khurana, *Physics Today April*, 1987, pp. 17-23.
- 16 J.R. Schrieffer, Theory of Superconductivity (Benjamin, London, 1964).
- 17 J. Bardeen, in Superconductivity in d- and f-Band Metals, edited by D. Douglass (Plenum, New York, 1973), p. 1.

- 18 A.D.C. Grassie, The Superconducting State (Sussex Univ. Press, Brighton, 1975).
- 19 V.L. Ginsburg and D.A. Kirzhnits, High Temperature Superconductivity (Consultants Bureau, New York, 1982).
- 20 O. Fischer, Appl. Phys. 16, 1 (1978).
- 21 R. Chevrel, P. Gougeon, M. Potel, and M. Sergent, J. Solid State Chem. 57, 25 (1985).
- 22 B. Grünbaum, Convex Polytopes (Interscience Publishers, New York, 1967).
- 23 B.T. Matthias, E. Corenzwit, J.M. Vandenberg, and H.E. Barz, Proc. Natl. Acad. Sci. USA 74, 1334 (1977).
- 24 L.D. Woolf, D.C. Johnston, H.B. MacKay, R.W. McCallum, and M.B. Maple, J. Low Temp. Phys. 35, 651 (1979).
- 25 R.J. Doedens, Prog. Inorg. Chem. 21, 209 (1976).
- 26 C.J. Cairns and D.H. Busch, Coord. Chem. Revs. 69, 1 (1986).
- 27 P.W. Anderson, Mat. Res. Bull. 8, 153 (1973).
- 28 P.W. Anderson, Science 235, 1196 (1987).
- 29 P. Ganguly and C.N.R. Rao, J. Solid State Chem. 53, 193 (1984).

DL/1113/87/2

TECHNICAL REPORT DISTRIBUTION LIST, GEN

	<u>No. Copies</u>		<u>No. Copies</u>
Office of Naval Research Attn: Code 1113 800 N. Quincy Street Arlington, Virginia 22217-5000	2	Dr. David Young Code 334 NORDA NSTL, Mississippi 39529	1
Dr. Bernard Douda Naval Weapons Support Center Code 50C Crane, Indiana 47522-5050	1	Naval Weapons Center Attn: Dr. Ron Atkins Chemistry Division China Lake, California 93555	1
Naval Civil Engineering Laboratory Attn: Dr. R. W. Drisko, Code L52 Port Hueneme, California 93401	1	Scientific Advisor Commandant of the Marine Corps Code RD-1 Washington, D.C. 20380	1
Defense Technical Information Center Building 5, Cameron Station Alexandria, Virginia 22314	12 high quality	U.S. Army Research Office Attn: CRD-AA-IP P.O. Box 12211 Research Triangle Park, NC 27709	1
DTNSRDC Attn: Dr. H. Singerman Applied Chemistry Division Annapolis, Maryland 21401	1	Mr. John Boyle Materials Branch Naval Ship Engineering Center Philadelphia, Pennsylvania 19112	1
Dr. William Tolles Superintendent Chemistry Division, Code 6100 Naval Research Laboratory Washington, D.C. 20375-5000	1	Naval Ocean Systems Center Attn: Dr. S. Yamamoto Marine Sciences Division San Diego, California 91232	1

END
DATE
FILMED
MARCH
1988

DTIC