# Defect Detection in Electroluminescence (EL) Images of Solar Cells

Roll: 2007094

CSE 4128: Image Processing and Computer Vision Laboratory

### 1. Problem Statement & Motivation

Electroluminescence (EL) imaging is widely used in photovoltaic manufacturing and maintenance to reveal otherwise invisible defects (micro-cracks, shunts, broken fingers/busbars, hotspots). However, EL images also contain strong grid lines (cell borders, busbars) and uneven illumination that can confuse standard edge/threshold methods.

**Goal:** Build a classical image-processing pipeline that (i) suppresses the grid, (ii) enhances crack-like patterns, and (iii) outputs a clean binary defect mask and a thinned crack skeleton, enabling measurements such as crack length and busbar integrity.

## 2. Proposed Method (Overview)

Our pipeline combines spatial and frequency-domain processing with morphological post-processing and line modeling. The stages are:

1. **Preprocessing (Denoise & Contrast)**: Histogram equalization + Gaussian smoothing  $(\sigma \text{ tuned})$  reduce sensor noise while preserving crack ridges.

### 2. Grid/Illumination Suppression:

- Adaptive Gaussian Thresholding to reveal cell boundaries and busbars.
- FFT notch filtering to remove periodic row/column components caused by the panel grid.

### 3. Crack & Line Candidate Extraction:

- Canny edge detection to get high-confidence, thin edges.
- Hough transform to estimate dominant grid directions and exclude them  $(\pm \theta)$ .
- Crack score map: blend of high-pass response (from FFT) and edge magnitude.

### 4. Binary Segmentation & Cleaning:

- Thresholding (Otsu or Sauvola) on the crack score map.
- Morphology (open/close, small-component removal) to reduce noise and stitch short gaps.

#### 5. Skeletonization & Measurements:

- *Medial-axis/skeleton* of the defect mask for crack length estimation (px or mm with calibration).
- Region descriptors: area, perimeter, eccentricity, orientation, bounding box.
- Busbar integrity: continuity score along detected busbar lines.

## 3. Mathematical Image Processing Components

Convolution (Denoising): Gaussian kernel

$$G_{\sigma}(x,y) = \frac{1}{2\pi\sigma^2} \exp\left(-\frac{x^2 + y^2}{2\sigma^2}\right), \quad I_G = I * G_{\sigma}.$$

Segmentation (Adaptive Gaussian Thresholding):

$$T(x,y) = \mu_{\mathcal{N}}(x,y) - C,$$
  $B(x,y) = \begin{cases} 1, & I_G(x,y) < T(x,y) \\ 0, & \text{otherwise,} \end{cases}$ 

with local Gaussian-weighted mean  $\mu_{\mathcal{N}}$ .

Edge Detection (Canny): gradient magnitude  $M = \sqrt{I_x^2 + I_y^2}$ , non-max suppression, and hysteresis thresholds  $[t_L, t_H]$ .

Thresholding (Otsu/Sauvola):

$$T_{\text{Sauvola}} = \mu \left[ 1 + k \left( \frac{\sigma}{R} - 1 \right) \right], \quad \text{or} \quad T_{\text{Otsu}} = \arg \max_{T} \text{ between-class variance.}$$

**Morphology:** opening/closing with structuring element S to remove speckles and close gaps.

**Frequency Domain:** FFT F(u,v) with circular or directional *notch* filters H(u,v) to attenuate periodic grid frequencies:  $\hat{F} = F \cdot H$ .

**Hough Line Transform:** voting in  $(\rho, \theta)$  to detect lines; lines near grid orientations are excluded by an angle deviation bound  $\pm \Delta \theta$ .

**Region Descriptors:** area, perimeter, eccentricity, major/minor axes from second moments; crack length is the total skeleton pixel count (or  $\times$  pixel size for mm).

## 4. Experimental Setup (Key Parameters)

Below are typical settings that produced the attached results. Parameters can be tuned per dataset.

| Stage                 | Value(s)                                                              |
|-----------------------|-----------------------------------------------------------------------|
| Gaussian blur         | kernel $5 \times 5$ , $\sigma = 1.0$                                  |
| Adaptive threshold    | block 31, $C = 6$ (Gaussian)                                          |
| Canny                 | low = 25, high = 90                                                   |
| Hough                 | threshold = $150$ , min length = $130$ , gap = $8$                    |
| Grid angles exclusion | $\Delta\theta = 12^{\circ} \text{ around } \{0^{\circ}, 90^{\circ}\}$ |
| Morphology            | open 3, close 3; min region area $\geq 120~\mathrm{px}$               |
| FFT notch             | radius = 6, offsets: $(0,35), (0,-35), (35,0), (-35,0)$               |

# 5. Visual Results (Input & Expected Output)

Figures below are the exact visuals required by the assignment. *Optional (for supplementary page):* overlay and crack skeleton.

# 6. Expected Measurements (if reported)

If available, we will report: (i) number of defect regions, (ii) total crack length (skeleton pixels), (iii) count of Hough lines removed (grid), and (iv) busbar integrity score (fraction of continuous pixels along each busbar).

## 7. Why This Will Work

The method targets the failure modes of naive processing in EL: (i) strong grid lines are explicitly modeled and removed (Hough + notch); (ii) subtle, curvilinear cracks are enhanced (high-pass



Figure 1: Input and expected output of the proposed pipeline.



Figure 2: Qualitative verification (optional figure).

+ Canny); (iii) adaptive thresholding handles illumination variation; and (iv) morphology & skeletonization deliver clean, measurable structures. Together these achieve **sub-millimeter** localization when pixel-to-mm is known.

## 8. Limitations & Next Steps

**Limitations:** sensitive to parameter choices across very different panels; thick soiling or severe banding can mimic cracks. **Next:** robust auto-tuning (noise/adaptive thresholds), multi-scale line suppression, and optional CNN post-filter to reject texture false positives.