

PCT

(19) World Intellectual Property Organization
International Bureau(43) International Publication Date
4 April 2002 (04.04.2002)

PCT

(10) International Publication Number
WO 02/26713 A1(51) International Patent Classification⁷: **C07D 215/18, 215/22, 215/26, 215/20, 215/40, A61K 31/47, 31/4704, A61P 33/10, 33/14**

Road South, Harefield, Uxbridge, Middlesex UB9 6LS (GB).

(21) International Application Number: PCT/GB01/04337

(74) Agents: **RITTER, Stephen, David et al.; Mathys & Squire, 100 Gray's Inn Road, London WC1X 8AL (GB).**(22) International Filing Date:
28 September 2001 (28.09.2001)(81) Designated States (*national*): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NO, NZ, PH, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, TZ, UA, UG, US, UZ, VN, YU, ZA, ZW.

(25) Filing Language: English

(26) Publication Language: English

(30) Priority Data:
0023918.6 29 September 2000 (29.09.2000) GB(84) Designated States (*regional*): ARIPO patent (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, TR), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

(72) Inventors; and

Published:(75) Inventors/Applicants (*for US only*): **JONES, Keith [GB/GB]; Division of Life Sciences, King's College London, Franklin-Wilkins Building, 150 Stamford Street, London SE1 8WA (GB). WHITFIELD, Philip, John [GB/GB]; Division of Life Sciences, King's College London, Franklin-Wilkins Building, 150 Stamford Street, London SE1 8WA (GB). ROSSITER, Sharon [GB/GB]; Division of Life Sciences, King's College London, Franklin-Wilkins Building, 150 Stamford Street, London SE1 8WA (GB). MATTHEWSON, Michael, Derek [GB/GB]; Schering-Plough Animal Health, Breakspear**

- with international search report
- before the expiration of the time limit for amending the claims and to be republished in the event of receipt of amendments

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

(54) Title: ANTIPARASITIC COMPOUNDS

(IA)

(57) Abstract: Disclosed are antiparasitic compounds of Formulae (I), (IA) and (IB). These compounds are useful in the manufacture of a pharmaceutical composition for the treatment or prophylaxis of infections caused by helminths or arthropod ectoparasites.

WO 02/26713 A1

Antiparasitic Compounds

This invention relates to the technical field of compounds that have antiparasitic activity. In particular, this invention pertains to compounds that have potential use in therapy for the treatment of disease caused by parasitic helminths. This invention also relates to compounds having activity against ectoparasites.

There are three main classes of parasitic worms or helminths – nematodes (round worms), trematodes (digeanians or flukes) and cestodes (tapeworms).

10

Parasitic helminths can infect vertebrates, invertebrates and plants, causing many diseases of medical, veterinary and agricultural importance. In plants, parasitic nematodes can cause severe mechanical damage to the roots, stems, leaves and flowers of many plants, as well as causing losses in plant crops by opening a path for the entry of bacteria, fungi and other nematodes. Diseases caused by parasitic helminths in humans and other mammals can cause a wide range of pathological effects and symptoms, including abdominal pain, abcesses, anaemia, appendicitis, bronchial asthma, chyluria, conjunctivitis, dermatitis, diarrhoea, oedema, elephantiasis, eosinophilia, eosinophilic meningitis, leukocytosis, lymphangitis, myocarditis and neurological effects. Parasitic infections can lead to malnutrition, weight loss, weakness and severe damage to the tissues and organs of the infected host.

25

Infections by parasitic worms can be extremely debilitating, and in severe cases, may be fatal if left untreated. It is estimated that over one billion people are infected by nematodes worldwide. Most of the infections are in the developing countries of the tropics and sub-tropics. Also of importance are the parasitic helminths that infect livestock. For example, cattle and sheep harbour a number of nematodes, with *Trichostrongylus*, *Dictyocaulus*, *Ostertagia*, *Cooperia* and *Haemonchus* being the most important. Medically important nematodes include *Nematodirus*, *Ascaris*, *Bunostomum*, *Oesophagostomum*, *Chabertia*, *Trichuris*,

Strongylus, Trichonema, Dictyocaulus, Capillaria, Heterakis, Toxocara, Ascaridia, Oxyuris, Ancylostoma, Uncinaria, Toxascaris, Parascaris and Wuchereria.

The pathological effects and symptoms of the veterinary diseases depend on the
5 identity of the parasitic helminth and the site of the helminth infection. For example, certain of these such as *Nematodirus*, *Cooperia* and *Oesphagostomum* attack the intestinal tract, whereas *Haemonchus* and *Ostertagia* primarily attack the stomach. *Dictyocaulus* is more prevalent in the lungs. Other parasitic helminths may be located in other tissues and organs of the body, such as the
10 heart, blood vessels, subcutaneous and lymphatic tissue.

In humans, the parasitic disease schistosomiasis (bilharzia, bilharziosis), is a widespread disease in many parts of the world, particularly Africa and South America. It is caused by trematode parasites of the schistosome family, of which
15 *Schistosoma mansoni*, is the most widespread.

The adults of *S. mansoni* live in the mesenteric blood vessels associated with the gut of the human host and lay large numbers of eggs. The eggs have a sharp spine that can break through blood vessels into body tissues, or they can be carried along the hepatic portal vein to the liver, where they cause an immune reaction leading to the formation of granulomata. In severe cases, liver and spleen enlargement ensues, which can be fatal if treatment is not received in time. Other schistosomes cause different forms of illness in humans – for example. *S. haematobium* infects the blood vessels of the bladder, and can cause damage to
20 the urinary system, whereas *S. japonicum* also infects the mesenteric veins around the small intestine.
25

The life cycle of *S. mansoni* is complex. The eggs of *S. mansoni* are excreted from the body with human faeces, and if they make their way into water, the first
30 larval stages (miracidia), can hatch from the eggs to infect an intermediate host, a water snail. Eventually, subsequent larval stages (cercariae) develop and are released into the water, where they can infect humans by burrowing through the

skin, and subsequently are carried through the circulation into the liver. The adults then migrate to the mesenteric blood vessels where they stay for life.

-5 Infection can occur in any standing or slow-flowing water, where the water snails live. It is estimated that over 500 million people in over seventy countries are at risk from the various forms of schistosomiasis, with around 200 million actual infections worldwide, making schistosomiasis a disease of global significance.

10 It will therefore be appreciated that early treatment is necessary to manage schistosomiasis, and other diseases caused by parasitic helminths. The drug praziquantel is the current drug of choice used to eradicate the adult worms of *S. mansoni*. However, recent studies have shown low cure rates in particular parts of the world, suggesting that the *S. mansoni* parasite is becoming resistant to this drug. Measures to control the population of the schistosome-carrying water snails 15 have had some effect. However, the use of molluscicides on a large scale is difficult logistically and not desirable for ecological reasons. Research to find a vaccine against particular schistosomes, has proved to be difficult because, for example, adult *S. mansoni* are able, by a variety of mechanisms, to evade immune responses. Thus, at present, chemotherapeutic control of parasitic 20 helminths is a favoured approach.

25 Although the mechanism of action of most anthelmintics are not fully understood in detail, anthelmintics can be broadly classified by their modes of action. Piperazine salts, avermectins, levamisole, and organophosphates interfere with the neuromuscular coordination of the parasites, whereas benzimidazoles such as thiabendazole and albendazole interfere with the assembly of parasitic microtubules.

30 Certain substituted quinoline derivatives are disclosed to possess anthelmintic activity against specific helminths. Atanine (3-dimethylallyl-4-methoxy-2-quinolinone), an alkaloid isolated from the dried, unripe fruits of *Evodia rutaecarpa* (*Rutaceae*), and having the following chemical structure:

has been shown to be active against cercarial and miracidial larvae of *S. mansoni*, and adults and larvae of the non-parasitic soil nematode, *Caenorhabditis elegans* (*Planta Medica*, (1995), 61, 276-278).

5

Heterocyclic compounds, including quinoline-based analogues having anthelmintic and fungicidal activity are disclosed in US 3,624,088. The compounds disclosed therein all possess a trichloroethylidene amine functionality i.e. -N=CHCCl₃, attached to the heterocyclic ring.

10

US 3,879,549 discloses a process for the treatment of bilharziosis and filariasis using antimony. According to the disclosed process, the antimony is administered as a salt of a substituted 8-hydroxyquinoline.

15

US 5,227,387 discloses a method of inhibiting a nematode population in plants comprising applying to the locus of a nematode, a compound of the formula Het-X-CH₂CH₂-Ar, wherein "Het" can include 4-quinoliny or 8-fluoro-4-quinoliny, and X can be O, NH or CH₂. The compounds are said to possess nematocidal activity against certain agricultural nematodes compared with the known agricultural nematocides, aldicarb, carbofuran and fenamiphos.

20

US 5,541,195 discloses a class of 2-substituted quinoline derivatives for the treatment of leishmaniasis, a group of parasitic conditions caused by the *Leishmania* protozoal parasite of the family *Trypanosomatidae*. This document does not disclose compounds having anthelmintic activity.

25

The development of drug resistance is a major problem with chemical control measures. For example, benzimidazole and levamisole resistance has appeared in Trichostrongyle infections of sheep. Because anthelmintic resistance remains a

threat to the main form of control of parasitic helminths, there exists an urgent need for the development of new, alternative anthelmintic drugs.

Advantageously, an anthelmintic should have a broad spectrum of activity and
5- have a wide safety margin. Preferably, an anthelmintic agent should be—
therapeutically effective against all pathogenic stages of a parasitic helminth,
including the larvae. Ideally, an anthelmintic should be rapidly metabolised and
excreted and be easy to administer.

10 It is an object of the present invention to provide further anthelmintic compounds,
especially compounds that have a broad spectrum of activity, and compounds that
are effective against organisms that are resistant to available drugs. A further
object of the present invention is to provide compounds having improved
15 anthelmintic activity. A still further object of the present invention is to provide
further compounds having activity against parasitic nematodes. A yet further
object of the present invention is to provide compounds having activity against
parasitic trematodes and cestodes, many of which have hitherto been resistant to
chemical control.

20 The present invention is directed to substituted quinoline derivatives having
anthelmintic activity, pharmaceutical uses thereof and synthetic methods for their
production.

25 In accordance with a first aspect of the invention, there is provided the use of a
compound of Formula (I), (IA) or (IB):

in the manufacture of a pharmaceutical composition for the treatment or prophylaxis of helminth infections, wherein:

5 R¹ represents H, C₁ to C₆ alkyl or benzyl;

R², R³, R⁴, R⁵, R⁶, R⁷ and R⁸ are each independently selected from the group consisting of:

- (i) hydrogen;
- 10 (ii) C₁ to C₂₀ alkyl, which may be branched, or unbranched and unsubstituted or substituted by 1-3 substituents independently selected from the group consisting of: C₆ to C₁₀ aryl, CN, F, Cl, Br, I, OH, SH, NO₂, OR⁹, SR⁹, COR⁹, COOR¹⁰ and NR¹⁰R¹¹;
- 15 (iii) C₂ to C₂₀ alkenyl, which may be unsubstituted or substituted by 1-3 substituents independently selected from the group consisting of C₆ to C₁₀ aryl, OR⁹, SR⁹, CN, F, Cl, Br, I, OH, SH, NO₂, COR⁹, COOR¹⁰ and NR¹⁰R¹¹;
- 20 (iv) C₂ to C₁₀ alkynyl, which may be unsubstituted or substituted by 1-3 substituents independently selected from the group consisting of C₆ to C₁₀ aryl, OR⁹, SR⁹, CN, F, Cl, Br, I, OH, SH, NO₂, COR⁹, COOR¹⁰ and NR¹⁰R¹¹;
- (v) C₆ to C₁₅ aryl, which may be unsubstituted or substituted by 1-5 substituents independently selected from the group consisting of C₁ to C₆ alkyl, C₆ to C₁₆ aryl, OR⁹, SR⁹, CN, F, Cl, Br, I, OH, SH, NO₂, COR⁹, COOR¹⁰, CF₃, OCF₃ and NR¹⁰R¹¹;

- (vi) C_3 to C_8 cycloalkyl, which may be unsubstituted or substituted by 1-5 substituents independently selected from the group consisting of C_1 to C_6 alkyl, C_6 to C_{10} aryl, OR^9 , SR^9 , CN, F, Cl, Br, I, OH, SH, NO_2 , COR^9 , $COOR^{10}$, CF_3 , OCF_3 and $NR^{10}R^{11}$;
- 5 (vii) a heterocyclic group which may be aromatic or non-aromatic having from 5 to 10 ring atoms wherein 1, 2 or 3 of the ring atoms are selected from nitrogen, oxygen or sulfur atoms and the remainder are carbon atoms;
- (viii) OR^{12} ;
- (ix) a halo group selected from F, Cl, Br or I;
- 10 (x) $NR^{10}R^{11}$;
- (xi) $COOR^{10}$;
- (xii) NO_2 ;
- (xiii) SR^{12} ;
- (xiv) $CONR^{10}R^{11}$;
- 15 (xv) COR^9 ;
- (xvi) CN;
- (xvii) OH; or
- (xviii) SH,

20 wherein:

R^9 represents C_1 to C_8 alkyl or C_6 to C_{15} aryl;

R^{10} and R^{11} are the same or different and each is independently selected from the group consisting of hydrogen, C_1 to C_6 alkyl and C_6 to C_{15} aryl; and

25 R^{12} represents C_1 to C_6 alkyl, which may be branched or unbranched and unsubstituted or substituted by 1-3 substituents independently selected from the group consisting of C_6 to C_{10} aryl, OR^9 , SR^9 , CN, F, Cl, Br, I, OH, SH, NO_2 , COR^9 , $COOR^{10}$ and $NR^{10}R^{11}$;

30 or an N-oxide derivative thereof, wherein the quinoline ring nitrogen forms an N-oxide group, or a pharmaceutically acceptable salt, solvate or quaternary

ammonium salt thereof, with the proviso that (a) at least one of R² and R⁴ is other than hydrogen and (b) for the compounds of Formula (IA) wherein R³ represents dimethylallyl and R⁴ represents ethoxy, at least one of R⁵, R⁶, R⁷ and R⁸ is other than hydrogen.

5

Preferably, in the compounds of Formula (I), (IA) or (IB) R² represents

- (i) C₁ to C₆ alkyl, which may be branched, or unbranched and unsubstituted or substituted by 1-3 substituents independently selected from the group consisting of C₆ to C₁₀ aryl, CN, F, Cl, Br, I, OH, SH, NO₂, OR⁹, SR⁹, COR⁹, COOR¹⁰ and NR¹⁰R¹¹;
- (ii) C₆ to C₁₀ aryl, which may be unsubstituted or substituted by 1-5 substituents independently selected from the group consisting of C₁ to C₆ alkyl, C₆ to C₁₀ aryl, OR⁹, SR⁹, CN, F, Cl, Br, I, OH, SH, NO₂, COR⁹, COOR¹⁰, CF₃, OCF₃ and NR¹⁰R¹¹;
- (iii) C₃ to C₈ cycloalkyl, which may be unsubstituted or substituted by 1-5 substituents independently selected from the group consisting of C₁ to C₆ alkyl, C₆ to C₁₀ aryl, OR⁹, SR⁹, CN, F, Cl, Br, I, OH, SH, NO₂, COR⁹, COOR¹⁰, CF₃, OCF₃ and NR¹⁰R¹¹;
- (iv) OR¹²;
- (v) a halo group selected from F, Cl, Br or I;
- (vi) NR¹⁰R¹¹;
- (vii) COOR¹⁰;
- (viii) SR¹²;
- (ix) CONR¹⁰R¹¹;
- (x) COR⁹; or
- (xi) CN

wherein R⁹, R¹⁰, R¹¹ and R¹² are as defined as above.

Particularly preferred R² groups are:

- (i) unsubstituted C₁ to C₆ alkyl, which may be branched or unbranched;

- (ii) C₆ to C₁₀ aryl, which may be unsubstituted or substituted by 1-5 substituents independently selected from the group consisting of C₁ to C₆ alkyl, C₆ to C₁₀ aryl, CF₃, OCF₃, OR⁸ or SR⁹;
- (iii) OR¹²;
- 5 (iv) a halo group selected from F, Cl, Br or I;
- (v) COOR¹⁰; or
- (vi) COR⁹
- wherein R⁹, R¹⁰ and R¹² are as defined as above.
- 10 Especially preferred are compounds of Formula (I), (IA) or (IB) wherein R² represents:
- (i) OR¹², wherein R¹² is as defined as above, and is preferably unsubstituted, branched or unbranched C₁ to C₆ alkyl; or
- (ii) a halo group selected from F, Cl, Br or I.
- 15 In the compounds of Formula (I), (IA) or (IB), R² is preferably methoxy or halo.

- Preferred groups for R⁹ in the compounds of Formula (I), (IA) or (IB) are:
- (i) hydrogen;
- 20 (ii) C₁ to C₂₀ alkyl, which may be branched, or unbranched and unsubstituted or substituted by 1-3 substituents independently selected from the group consisting of C₆ to C₁₀ aryl, CN, F, Cl, Br, I, OH, SH, NO₂, OR⁹, SR⁹, COR⁹, COOR¹⁰ and NR¹⁰R¹¹;
- (iii) C₂ to C₂₀ alkenyl, which may be unsubstituted or substituted by 1-3 substituents independently selected from the group consisting of C₁ to C₆ alkyl, C₆ to C₁₀ aryl, OR⁹, SR⁹, CN, F, Cl, Br, I, OH, SH, NO₂, COR⁹, COOR¹⁰ and NR¹⁰R¹¹;
- 25 (iv) C₆ to C₁₅ aryl, which may be unsubstituted or substituted by 1-5 substituents independently selected from the group consisting of C₁ to C₆ alkyl, C₆ to C₁₀ aryl, OR⁹, SR⁹, CN, F, Cl, Br, I, OH, SH, NO₂, COR⁹, COOR¹⁰, CF₃, OCF₃ and NR¹⁰R¹¹;

- (v) C₃ to C₈ cycloalkyl, which may be unsubstituted or substituted by 1-5 substituents independently selected from the group consisting of C₁ to C₈ alkyl, C₆ to C₁₀ aryl, OR⁹, SR⁹, CN, F, Cl, Br, I, OH, SH, NO₂, COR⁹, COOR¹⁰, CF₃, OCF₃ and NR¹⁰R¹¹;
- 5 (vi) OR¹² wherein R¹² represents C₁ to C₆ alkyl, which may be branched or unbranched and unsubstituted or substituted by 1-3 substituents independently selected from the group consisting of OR⁹, SR⁹, CN, F, Cl, Br, I, OH, SH, NO₂ and NR¹⁰R¹¹ wherein R¹⁰ and R¹¹ are the same or different and each is independently selected from the group consisting of hydrogen, C₁ to C₆ alkyl and C₆ to C₁₅ aryl; or
- 10 (vii) a halo group selected from F, Cl, Br or I,
wherein unless stated otherwise, R⁹, R¹⁰, R¹¹ and R¹² are as defined above.

More preferably R³ represents:

- 15 (i) hydrogen;
(ii) unsubstituted C₁ to C₆ alkyl, which may be branched or unbranched
(iii) unsubstituted C₆ to C₁₅ aryl;
(iv) OR¹² wherein R¹² represents C₁ to C₆ alkyl; or
(v) a halo group selected from F, Cl, Br, I.

20 Especially preferred compounds of Formula (I), (IA) or (IB) are those wherein R³ represents hydrogen or halo, and preferably hydrogen.

For the compounds of Formula (I), (IA) or (IB), R⁴ is preferably selected from:

- 25 (i) C₁ to C₂₀ alkyl, which may be branched, or unbranched and unsubstituted or substituted by 1-3 substituents independently selected from the group consisting of C₆ to C₁₀ aryl, OR⁹, SR⁹, CN, F, Cl, Br, I, OH, SH, NO², COR⁹, COOR¹⁰ and NR¹⁰R¹¹;
- (ii) C₆ to C₁₅ aryl, which may be unsubstituted or substituted by 1-5 substituents independently selected from the group consisting of C₁ to C₆ alkyl, C₆ to C₁₀ aryl, OR⁹, SR⁹, CN, F, Cl, Br, I, OH, SH, NO₂, COR⁹, COOR¹⁰, CF₃, OCF₃ and NR¹⁰R¹¹;
- 30

- (iii) C₃ to C₆ cycloalkyl, which may be unsubstituted or substituted by 1-5 substituents independently selected from the group consisting of C₁ to C₆ alkyl, C₆ to C₁₀ aryl, OR⁹, SR⁹, CN, F, Cl, Br, I, OH, SH, NO₂, COR⁹, COOR¹⁰, CF₃, OCF₃ and NR¹⁰R¹¹;
- 5 (iv) OR¹² wherein R¹² represents C₁ to C₂₀ alkyl, which may be branched, or unbranched and unsubstituted or substituted by 1-3 substituents independently selected from the group consisting of OR⁹, SR⁹, CN, F, Cl, Br, I, OH, SH, NO₂, COR⁹, COOR¹⁰ and NR¹⁰R¹¹;
- (v) a halo group selected from F, Cl, Br or I;
- 10 (vi) NR¹⁰R¹¹;
- (vii) COOR¹⁰;
- (viii) SR¹²;
- (ix) CONR¹⁰R¹¹;
- (x) COR⁹; or
- 15 (xi) CN,
- wherein R⁹, R¹⁰, R¹¹ and R¹² are as defined as above.

Preferred R⁴ groups are selected from:

- (i) unsubstituted C₁ to C₆ alkyl, which may be branched or unbranched;
- 20 (ii) unsubstituted C₆ to C₁₀ aryl;
- (iii) OR¹²;
- (iv) a halo group selected from F, Cl, Br or I;
- (v) COOR¹⁰; and
- (vi) COR⁹,
- 25 wherein R⁹, R¹⁰ and R¹² are as defined as above.

Especially preferred are compounds of Formula (I), (IA) or (IB) wherein R⁴ represents

- (i) OR¹² wherein R¹² is as defined as above, and preferably R¹² represents
30 unsubstituted C₁ to C₆ alkyl, which may be branched, or unbranched; or
- (ii) a halo group selected from F, Cl, Br or I.

Most preferred are compounds of Formula (I), (IA) or (IB) wherein R⁴ represents methoxy or halo.

In preferred compounds of Formula (I), (IA) or (IB), R⁵, R⁶, R⁷ and R⁸ are each independently selected from the group consisting of:

- (i) hydrogen;
- (ii) C₁ to C₂₀ alkyl, which may be branched, or unbranched and unsubstituted or substituted by 1-3 substituents independently selected from the group consisting of C₆ to C₁₀ aryl, OR⁹, SR⁹, CN, F, Cl, Br, I, OH, SH, NO₂, COR⁹, COOR¹⁰, and NR¹⁰R¹¹;
- (iii) C₆ to C₁₅ aryl, which may be unsubstituted or substituted by 1-5 substituents independently selected from the group consisting of C₁ to C₆ alkyl, C₆ to C₁₀ aryl, OR⁹, SR⁹, CN, F, Cl, Br, I, OH, SH, NO₂, COR⁹, COOR¹⁰, CF₃, OCF₃ and NR¹⁰R¹¹;
- (iv) C₃ to C₈ cycloalkyl, which may be unsubstituted or substituted by 1-5 substituents independently selected from the group consisting of C₁ to C₆ alkyl, C₆ to C₁₀ aryl, OR⁹, SR⁹, CN, F, Cl, Br, I, OH, SH, NO₂, COR⁹, COOR¹⁰, CF₃, OCF₃ and NR¹⁰R¹¹;
- (v) a heterocyclic group having from 5 to 10 ring atoms wherein 1, 2 or 3 of the ring atoms are selected from nitrogen, oxygen or sulfur atoms and the remainder are carbon atoms;
- (vi) OR¹²;
- (vii) a halo group selected from F, Cl, Br or I;
- (viii) COR⁹;
- (ix) CN; and
- (x) OH,

wherein R⁹, R¹⁰, R¹¹ and R¹² are as defined as above.

Further preferred compounds for use in the present invention are those wherein R⁵, R⁶, R⁷ and R⁸ are each independently selected from the group consisting of:

- (i) hydrogen
- (ii) unsubstituted C₁ to C₆ alkyl, which may be branched or unbranched;

- (iii) C₆ to C₁₀ aryl, which may be unsubstituted or substituted by 1-5 substituents independently selected from the group consisting of C₁ to C₆ alkyl, C₆ to C₁₀ aryl, OR⁹, SR⁹, CF₃ and OCF₃;
- (iv) the group OR¹²; and
- 5 (v) a halo group selected from F, Cl, Br and I.

Particularly preferred R⁵, R⁶, R⁷ and R⁸ groups are independently selected from the group consisting of:

- 10 (i) hydrogen
- (ii) C₆ to C₁₀ aryl, which may be unsubstituted or substituted by 1-5 substituents independently selected from the group consisting of C₁ to C₆ alkyl, C₆ to C₁₀ aryl, OR⁹, SR⁹, CF₃ and OCF₃; and
- (iii) a halo group selected from F, Cl, Br or I.

15 Especially preferred are compounds of Formula (I), (IA) or (IB) wherein R⁵, R⁶, R⁷ and R⁸ are each independently selected from hydrogen, C₆ to C₁₀ aryl, which may be unsubstituted or substituted by 1-3 alkoxy groups OR⁹, wherein R⁹ is as defined as above.

20 Particularly preferred compounds of Formula (I), (IA) or (IB) for use in the present invention are those wherein R² and R⁴ both represents methoxy.

For the above compounds of Formula (I), (IA) or (IB), R⁵ preferably represents

- 25 (i) hydrogen
- (ii) C₁ to C₆ alkyl which may be branched or unbranched and unsubstituted or substituted by 1-3 substituents independently selected from the group consisting of C₆ to C₁₀ aryl, OR⁹, SR⁹ or a halo group selected from F, Cl, Br and I;
- (iii) C₆ to C₁₀ aryl which may be unsubstituted or substituted with 1-5 substituents independently selected from the group consisting of C₁ to C₆ alkyl, C₆ to C₁₀ aryl, OR⁹, SR⁹, F, Cl, Br, I, CF₃ and OCF₃; or
- 30 (iv) a halo group selected from F, Cl, Br and I.

Even more preferred R⁵ groups are selected from hydrogen, unsubstituted C₁ to C₆ alkyl, or a halo group selected from F, Cl, Br and I. Preferably, in the compounds of Formula (I), (IA) or (IB), R⁵ represents hydrogen.

- 5 In the compounds of Formula (I), (IA) or (IB) R⁶—preferably—represents a substituent selected from the group consisting of:
- (i) hydrogen,
 - (ii) C₁ to C₆ alkyl which may be branched or unbranched and unsubstituted or substituted by 1-3 substituents independently selected from the group consisting of OR⁹, SR⁹, F, Cl, Br and I;
 - 10 (iii) C₆ to C₁₀ aryl which may be unsubstituted or substituted with 1-5 substituents independently selected from the group consisting of C₁ to C₆ alkyl, C₆ to C₁₀ aryl, OR⁹, SR⁹, F, Cl, Br, I, CF₃ and OCF₃; and
 - (iv) a halo group selected from F, Cl, Br and I.
- 15 In preferred compounds of Formula (I), (IA) or (IB), R⁷ represents hydrogen, unsubstituted C₁ to C₆ alkyl, or a halo group selected from F, Cl, Br and I. Even more preferably, R⁷ represents hydrogen.
- 20 Also preferred compounds of Formula (I), (IA) or (IB) are those wherein one of R⁵, R⁶, R⁷ and R⁸ is other than hydrogen, and the remaining three represent hydrogen.
- In preferred compounds of Formula (I), (IA) or (IB), R⁹ represents unsubstituted C₁ to C₆ alkyl. Also, in preferred compounds of Formula (I), (IA) or (IB), R¹⁰ and R¹¹ are the same or different and each is independently selected from the group consisting of H and C₁ to C₆ alkyl. R¹² preferably represents unsubstituted C₁ to C₆ alkyl.
- 25 30 Preferably, of the compounds of Formula (I), (IA) or (IB), the group R¹² represents unsubstituted C₁ to C₆ alkyl.

Particularly preferred compounds of Formula (IA) or (IB) are those wherein R¹ represents H.

Especially preferred compounds for use in the present invention are those having
5 the following structures:-

Further preferred compounds for use in the present invention are those having the following structures:

In a further aspect of the present invention, there is provided novel compounds of Formula (II), (IIA) or (IIB):

wherein:

R^{1a} represents H, C₁ to C₆ alkyl or benzyl

R^{2a} represents OR¹² or SR¹²;

5 R^{4a} represents OR¹² or SR¹²;

R^{3a}, R^{5a}, R^{6a}, R^{7a} and R^{8a} is selected from the group consisting of:

(i) hydrogen;

(ii) C₁ to C₆ alkyl, which may be branched or unbranched and unsubstituted or substituted by 1-3 substituents independently selected from the group consisting of C₆ to C₁₀ aryl, OR⁹, SR⁹, CN, F, Cl, Br, I, OH, SH, NO₂, COR⁹, COOR¹⁰ and NR¹⁰R¹¹;

(iii) C₂ to C₂₀ alkenyl, which may be unsubstituted or substituted by 1-3 substituents independently selected from the group consisting of C₁ to C₆ alkyl, C₆ to C₁₀ aryl, OR⁹, SR⁹, CN, F, Cl, Br, I, OH, SH, NO₂, COR⁹, COOR¹⁰ and NR¹⁰R¹¹;

(iv) C₂ to C₁₀ alkynyl, which may be unsubstituted or substituted by 1-3 substituents independently selected from the group consisting of C₆ to C₁₀ aryl, OR⁹, SR⁹, CN, F, Cl, Br, I, OH, SH, NO₂, COR⁹, COOR¹⁰ and NR¹⁰R¹¹;

(v) C₆ to C₁₅ aryl, which may be unsubstituted or substituted by 1-5 substituents independently selected from the group consisting of C₁ to C₆ alkyl, C₆ to C₁₀ aryl, OR⁹, SR⁹, CN, F, Cl, Br, I, OH, SH, NO₂, NR¹⁰R¹¹, COOR¹⁰, COR⁹, OCF₃ and CF₃;

(vi) C₃ to C₈ cycloalkyl, which may be unsubstituted or substituted by 1-5 substituents independently selected from the group consisting of C₁ to C₆

alkyl, C₆ to C₁₀ aryl, OR⁹, SR⁹, CN, F, Cl, Br, OH, SH, NO₂, NR¹⁰R¹¹, COOR¹⁰, COR⁹, OCF₃ and CF₃;

- (vii) a heterocyclic group, which may be aromatic or non-aromatic, having from 5 to 10 ring atoms wherein 1, 2 or 3 of the ring atoms are selected from nitrogen, oxygen or sulfur atoms and the remainder are carbon-atoms;
- (viii) OR¹²; or
- (ix) a halo group selected from F, Cl, Br or I;

with the proviso that at least one of R^{5a}, R^{6a}, R^{7a} and R^{8a} is selected from the group consisting of:

- (i) C₂ to C₁₀ alkenyl, which may be unsubstituted or substituted by 1-3 substituents independently selected from the group consisting of C₁ to C₆ alkyl, C₆ to C₁₀ aryl, OR⁹ or SR⁹, CN, F, Cl, Br, I, OH, SH, NO₂, COR⁹, COOR¹⁰ and NR¹⁰R¹¹;
- (ii) C₂ to C₁₀ alkynyl, which may be unsubstituted or substituted by 1-3 substituents independently selected from the group consisting of C₆ to C₁₀ aryl, OR⁹, SR⁹, CN, F, Cl, Br, I, OH, SH, NO₂, COR⁹, COOR¹⁰ and NR¹⁰R¹¹;
- (iii) C₆ to C₁₅ aryl, which may be unsubstituted or substituted by 1-5 substituents independently selected from the group consisting of C₁ to C₆ alkyl, C₆ to C₁₀ aryl, OR⁹, SR⁹, CN, F, Cl, Br, I, OH, SH, NO₂, COR⁹, COOR¹⁰, NR¹⁰R¹¹, OCF₃ and CF₃;
- (iv) the group OR¹²; and
- (v) a halo group selected from F, Cl, Br or I,

wherein R⁹ represents C₁ to C₆ alkyl or C₆ to C₁₅ aryl;

R¹⁰ and R¹¹ are the same or different and each is independently selected from the group consisting of hydrogen, C₁ to C₆ alkyl and C₆ to C₁₅ aryl; and

R¹² represents C₁ to C₆ alkyl, which may be branched or unbranched and unsubstituted or substituted by 1-3 substituents independently selected from the

group consisting of OR⁹, SR⁹, CN, F, Cl, Br, I, OH, SH, NO₂, COR⁹, COOR¹⁰ and NR¹⁰R¹¹;

5 or an N-oxide derivative thereof, wherein the quinoline ring nitrogen forms an N-oxide group, or a pharmaceutically acceptable salt, or solvate, or addition salt or a quaternary ammonium salt thereof.

Preferably for the compounds of Formula (II), (IIA) or (IIB), R^{3a}, R^{5a}, R^{6a}, R^{7a} and R^{8a} are independently selected from the group consisting of:

- 10 (i) hydrogen;
- (ii) C₁ to C₆ alkyl, which may be branched or unbranched and unsubstituted or substituted by 1-3 substituents independently selected from the group consisting of C₆ to C₁₀ aryl, OR⁹, SR⁹, CN, F, Cl, Br, I, OH, SH, NO₂, COR⁹, COOR¹⁰ and NR¹⁰R¹¹;
- 15 (iii) C₂ to C₆ alkynyl, which may be unsubstituted or substituted by 1-3 substituents independently selected from the group consisting of C₆ to C₁₀ aryl, OR⁹ or SR⁹, CN, F, Cl, Br, I, OH, SH, NO₂, COR⁹, COOR¹⁰ and NR¹⁰R¹¹;
- (iv) C₆ to C₁₀ aryl, which may be unsubstituted or substituted by 1-5 substituents independently selected from the group consisting of C₁ to C₆ alkyl, C₆ to C₁₀ aryl, OR⁹, SR⁹, CN, F, Cl, Br, I, OH, SH, NO₂, COR⁹, COOR¹⁰, OCF₃, CF₃ and NR¹⁰R¹¹;
- 20 (v) OR¹² wherein R¹²; or
- (vi) a halo group selected from F, Cl, Br and I,

25

wherein R⁹, R¹⁰, R¹¹ and R¹² are as defined as above.

Particularly preferred compound of Formula (II), (IIA) or (IIB) are those wherein R^{3a} represents hydrogen.

30

Further preferred compounds of Formula (II), (IIA) or (IIB) are those wherein R^{5a}, R^{6a}, R^{7a} and R^{8a} are selected from the group consisting of:

- (i) hydrogen;
- (ii) unsubstituted C₁ to C₆ alkyl which may be branched or unbranched;
- (iii) unsubstituted C₁ to C₆ alkynyl, which may be branched or unbranched;
- (iv) unsubstituted C₆ to C₁₀ aryl;
- 5 (v) OR¹²; and
- (vi) a halo group selected from F, Cl, Br or I.

Even more preferred are compounds wherein one of R^{5a}, R^{6a}, R^{7a} and R^{8a} is other than hydrogen and the remaining three represent hydrogen.

10 Of these compounds of Formula (II), (IIA) or (IIB), it is preferred that one of R^{5a}, R^{6a}, R^{7a} and R^{8a} represents a group selected from:

- (i) C₆ to C₁₀ aryl, which may be unsubstituted or substituted by 1-5 substituents independently selected from the group consisting of C₁ to C₆ alkyl, C₆ to C₁₀ aryl, OR⁹, SR⁹, CN, F, Cl, Br, I, OH, SH, NO₂, COR⁹, COOR¹⁰, OCF₃, CF₃ and NR¹⁰R¹¹;
 - 15 (ii) OR¹²; and
 - (iii) a halo group selected from F, Cl or Br,
- and the remaining three represent hydrogen, wherein R⁹, R¹⁰, R¹¹ and R¹² are as defined as above.

20' Especially preferred compounds are those wherein one of R^{5a}, R^{6a}, R^{7a} and R^{8a} represents C₆ to C₁₀ aryl, which may be unsubstituted or substituted by 1-5 substituents independently selected from the group consisting of C₁ to C₆ alkyl, C₆ to C₁₀ aryl, OR⁹, SR⁹, OCF₃, CF₃, F, Cl, Br and I; and the remaining three represent hydrogen.

25 Also preferred are compounds of Formula (II), (IIA) or (IIB) wherein at least one of R^{6a} and R^{8a} represents a group selected from: F, Cl, Br, I and OR¹² wherein R¹² as defined as above.

30 Further preferred are compounds of Formula (II), (IIA) or (IIB) wherein at least one of R^{5a} and R^{8a} is selected from phenyl which may be unsubstituted or

substituted by 1-5 substituents independently selected from the group consisting of C₁ to C₆ alkyl, C₆ to C₁₀ aryl, F, Cl, Br, I, OCF₃, CF₃, OR⁹ and SR⁹ wherein R⁹ represents C₁ to C₆ alkyl. Preferably, at least one of R^{6a} and R^{8a} is selected from phenyl which may be substituted by 1-3 methoxy groups.

5

Of the compounds of Formula (II), (IIA) or (IIB), especially preferred are those wherein R^{5a} represents hydrogen.

10

Also, in preferred compounds of Formula (II), (IIA) or (IIB), R^{7a} represents hydrogen. Especially preferred are compounds of Formula (II), (IIA) or (IIB) wherein both R^{5a} and R^{6a} represent hydrogen.

15

For the compounds of Formula (II), (IIA) or (IIB), R⁹ preferably represents unsubstituted C₁ to C₆ alkyl. Preferably, R¹⁰ and R¹¹ are the same or different and each is independently selected from the group consisting of H and C₁ to C₆ alkyl.

Especially preferred compounds of Formula (IIA) or (IIB) are those wherein R^{1a} represents H.

20

Preferred novel compounds of the present invention include those having the following structures:

Further preferred novel compounds of the present invention include those selected from the group consisting of:

5

According to another aspect of the present invention there is provided a pharmaceutical composition comprising a pharmaceutically effective amount of a compound of Formula (II), (IIA) or (IIB) in a pharmaceutical carrier.

10

The compounds of Formula (I), (IA), (IB), (II), (IIA) and (IIB) are useful in the manufacture of a medicament for the treatment or prophylaxis of parasitic helminth infections, caused by nematodes, trematodes or cestodes, in humans and veterinary animals, particularly agricultural livestock including cattle, sheep, goats, pigs, equine and poultry. Such diseases include ascariasis, filariasis, 15 loiasis, onchocerciasis, schistosomiasis, trichinelliasis and hydatid disease.

Examples of parasitic nematodes include, but are not limited to, *Ostertagia lryata*, *O. ostertagi*, *O. circumcincta*, *Cooperia oncophora*, *C. pectinata*, *C. punctata*, *C. surinabada*, *C. curticea*, *Haemonchus contortus*, *H. placei*, *Trichostrongylus axei*, *T. colubriformis*, *T. vetrinus*, *Bunostomum phlebotomum*, *B. trigonocephalum*,
5 *Oesophagostomum radiatum*, *O. dentatum*, *O. venulosum*, *O. columbianum*, *Strongyloides papillosus*, *S. westeri*, *S. stercoralis*, *Nematodirus helveticus*, *N. spathiger*, *N. filicolis*, *Trichuris spp.*, *Strongylus vulgaris*, *S. edentatus*, *S. equinus*,
10 *Triodontophorus spp.*, *Oxyuris equi*, *Parascaris equorum*, *Habronema muscae*, *Oncocerca spp.*, *Dirofilaria immitis*, *Toxocara canis*, *Toxascaris leonina*, *Ancylostoma caninum*, *A. braziliense*, *A. duodenale*, *Thelazia spp.*, *Uncinaria stenocephala*, *Chaberia ovina*, *Ascaris lumbricoides*, *Dictyocaulus viviparus*, *D. arnfieldi*, *D. filaria*, *Brugia malayi*, *B. timori*, *Diocophyma renale*, *Enterobius vermicularis*, *Loa loa*, *Mansonella ozzardi*, *M. perstans*, *M. streptocerca*, *Necator americanus*, *Onchocerca volvulus*, *Strongyloides stercoralis*, *Trichinella spiralis*,
15 *T. trichiura* and *Wuchereria bancrofti*)

Examples of plant-damaging nematodes include, but are not limited to, the following genera: *Meloidogyne*, *Heterodera*, *Ditylenchus*, *Aphelenchoides*, *Radopholus*, *Globodera*, *Pratylenchus*, *Longidorus* and *Xiphinema*.
20

Examples of parasitic cestodes include, but are not limited to: *Diphyllobothrium latum*, *D. caninum*, *Echinococcus granulosus*, *E. multilocularis*, *Hymenolepis diminuta*, *Taenia multiceps*, *T. saginatus*, *T. serialis*, *T. solium* and *Vampirolepis nana*.
25

Examples of parasitic trematodes include, but are not limited to *Clonorchis sinensis*, *Dicrocoelium dendriticum*, an echinostome, *Fasciolopsis buski*, *Fasciola hepatica*, a heterophyid, *Nanophyetus salmincola*, *Opisthorchis felineus*, *O. viverrini*, *Paragonimus kellicotti*, *P. westermani*, *Schistosoma haematobium*,
30 *S. japonicum*, *S. mansoni*, *S. intercalatum* and *S. mekongi*.

The compounds of the invention are also useful in the manufacture of a pharmaceutical composition for the treatment or prophylaxis of infections of arthropod ectoparasites, such as flies, lice, keds, fleas, ticks, mites and certain copepod of fish. The activity of the compounds may be against all or individual development stages.

The compounds of the present invention are also particularly useful for the treatment or prophylaxis of infections caused by ticks, which include, but are not limited by *Boophilus* spp, *Rhipicephalus* spp, *Ixodes* spp, *Hyalomma* spp, *Amblyomma* spp, *Dermacentor* spp and *Argas* spp; mites, which include, but are not limited by *Psoroptes* spp, *Chorioptes* spp, *Sarcoptes* spp and *Demodex* spp; flies, which include, but are not limited by *Musca* spp, *Stomoxys* spp, *Oestrus* spp, *Culicoides* spp, *Tabanus* spp, *Phlebotomus* spp, *Simulium* spp, *Lucilia* spp, *Calliphora* spp, *Dermatobia* spp and *Hypoderma* spp; lice, which include, but are not limited by *Linognathus* spp, *Bovicola* spp, *Haematopinus* spp and *Solenopotes* spp; keds, such as *Melophagus ovinus*; fleas, which include, but are not limited by *Ctenocephalides* spp and ectoparasites of fish, such as the copepod parasites *Lepeophtheirus salmonis* and *Caligus elongatus*.

Formulations suitable for agricultural use include granules, pastes, sprays, powders, solutions and dusts. Formulation auxiliaries for such use include: solvents such as oils, alcohols, esters and water; carrier materials such as talc, kaolin, calcite, montmorillonite and attapulgite and dispersing agents.

The formulations may also contain further additives, such as stabilisers, antifoaming agents, viscosity regulators, binders and adhesives, as well as fertilisers or other active agents.

The compounds of Formula (I), (IA), (IB), (II), (IIA) and (IIB) may be administered to a vertebrate either alone, or preferably, in combination with pharmaceutically acceptable carriers or diluents, and optionally with known adjuvants. Such pharmaceutical compositions may comprise one or more

antiparasitic compounds of the invention. The compounds can be administered by oral, parenteral, intravenous, intramuscular, intraperitoneal, subcutaneous, rectal, vaginal and topical routes of administration. The route of administration depends upon the site of the parasite infection and the mammal to be treated.

5

For administration to humans and animals, the compounds of the invention may be formulated in a variety of ways, depending upon biological and physicochemical parameters. Such formulations include, but are not limited by, tablets, chews, gels, pastes, granules, boluses, drenches, pour-ons, injectable suspensions or solutions, emulsions, solutions, water or oil dispersions, granules, microcapsules and waxes. Formulation auxiliaries including inert materials, surfactants, solvents and other additives known in the art may be suitably employed.

10

For example, the active compound may be administered by the oral route in the form of tablets or capsules, or as an aqueous solution or suspension. In the case of tablets for oral use, carriers that are commonly employed include lactose and cornstarch, and lubricating agents such as magnesium stearate, may be employed. For oral administration in capsule form, the formulation may comprise diluents such as lactose, starch, dried cornstarch, dicalcium phosphate. These unit dosage forms may be prepared by intimately and uniformly mixing the active ingredient with suitably finely divided diluents, fillers, disintegrating agents, and/or binders such as starch and vegetable gums. A particularly suitable mode of administration for the treatment of parasitic helminth infections of livestock is by the use of pellets or powders for adding to the animal feedstuff or drinking water.

20

The unit dosage formulations may be varied widely with respect to their total weight and content of the anthelmintic agent depending upon factors such as the host animal to be treated, the severity and type of infection and the weight of the host animal. For example, a composition for a single dose oral administration may comprise from 0.001 to 10, and preferably, 0.02 to 5 mg per kg of animal body weight. The compositions of the invention are also suitable for administration in a

25

30

controlled release dosage form. Such dosage forms are particularly useful for administering to agricultural livestock because of the requirement for repeated therapeutic treatment in such animals due to the likelihood of the re-exposure of the animals to the parasite.

5

Where aqueous suspensions are employed, the active compound may be combined with known emulsifying and suspending agents and stabilisers. For parenteral administration, the active compound may be dissolved or dispersed in a carrier vehicle, such as a vegetable oil, glycerol formal or water. Such 10 compositions suitably comprise 0.005 to 30%, preferably 0.005 to 5% by weight, of the active agent.

For intramuscular, intraperitoneal, subcutaneous and intravenous use, the 15 compounds may be formulated into sterile solutions and the pH of the solution controlled as necessary with buffers. For intravenous use, the total concentration of the solutes should be controlled in order to render the preparation isotonic.

The compounds of the invention may also be prepared as a drench. The drench 20 is normally a solution, suspension or dispersion of the active ingredient, and is usually aqueous. The drench may contain a suspending agent such as bentonite and a wetting agent or a similar excipient, and may further contain an antifoaming agent. Preferably, drench formulations comprise 0.001% to 10%, and more preferably, 0.01 to 5% by weight of the active agent.

25

The compounds of the invention may also be used as prophylactic agents. Prophylactic use of an antiparasitic agent is based on the epidemiology of the parasite. For example, a treatment regime comprising administering the active agent to agricultural livestock or plants at strategic times of the year may be advantageous in preventing infection.

30

Administration of the compounds to treat plant nematode infections may be carried out by spraying a solution of one or more of the active compounds on the

plant, or by introducing pellets or powder containing the active agent(s) into the soil.

The compounds of the invention may also be used in the manufacture of a medicament for use in treating parasitic helminth infections in animals comprising
5 a further pharmaceutically active agent, including other known anthelmintics and immunomodulators, such as levamisole. A particularly useful pharmaceutical agent for use in combination with the compounds of the invention is a laxative, which may be useful in assisting the elimination of the parasites from the body.
As used herein, the following terms are used as defined below, unless otherwise
10 indicated.

"Alkyl" represents straight or branched carbon chains, containing 1-20 carbon atoms, preferably 1-6 carbon atoms (for example, methyl, ethyl, propyl, iso-propyl, n-butyl, t-butyl, n-pentyl, isopentyl and hexyl). The term "alkyl" also includes
15 straight or branched carbon chains, containing 1-20, and preferably 1-6 carbon atoms and which are substituted with 1-3 substituents independently selected from the group consisting of: C₁ to C₆ aryl, CN, F, Cl, Br, I, OH, SH, NO₂, OR⁹, SR⁹, COR⁹, CO₂R¹⁰ and NR¹⁰R¹¹ wherein R⁹ represents C₁ to C₆ alkyl or C₆ to C₁₅ aryl, and R¹⁰ and R¹¹ may be the same or different and each is independently
20 selected from the group consisting of H, C₁ to C₆ alkyl and C₆ to C₁₅ aryl. Representative examples of substituted alkyl groups include -CH₂Cl, -CHCl₂, -CCl₃, -CF₃, -(CH₂)₃OH, and -(CH₂)₂OR⁹. Particularly preferred are substituents for alkyl groups are selected from CN, F, Cl, OR⁹ and NR¹⁰R¹¹. In preferred
25 embodiments of the invention, the term "alkyl" represents unsubstituted C₁-C₆ carbon chains.

"Alkenyl" represents straight or branched carbon chains having at least one carbon-carbon double bond and containing 2-20 carbon atoms, preferably 2-10 carbon atoms, and more preferably 2-6 carbon atoms. The term alkenyl also includes straight or branched carbon chains having at least one carbon-carbon double bond and containing 2-20, preferably 2-10 and more preferably 2-6 carbon atoms and which are substituted with 1-3 substituents independently selected
30

from the group consisting of C₆ to C₁₀ aryl, OR⁹, SR⁹, CN, F, Cl, Br, I, OH, SH, NO₂, COR⁹, CO₂R¹⁰ and NR¹⁰R¹¹ wherein R⁹ represents C₁ to C₆ alkyl and or C₆ to C₁₅ aryl, and R¹⁰ and R¹¹ may be the same or different and each is independently selected from the group consisting of H, C₁ to C₆ alkyl and C₆ to C₁₅ aryl.

5 Representative examples of substituted alkenyl groups include—CH=CHF, -CF=CCl₂, -(CH₃)C=CF₂ and -(HO)CH=CH(CH₂CH₃). Preferably, the term "alkenyl" refers to unsubstituted straight or branched carbon chains having one carbon-carbon double bond, representative examples of which include -CH=CH₂, -C(CH₃)=CHCH₃ and -CH₂CH=C(CH₃)₂.

10

The term "alkynyl" represents straight or branched carbon chains having at least one carbon-carbon triple bond and containing from 2-10 carbon atoms, preferably 2-6 carbon atoms, which may be unsubstituted or substituted by 1-3 substituents independently selected from the group consisting of C₆ to C₁₀ aryl, OR⁹, SR⁹, CN, F, Cl, Br, I, OH, SH, NO₂, COR⁹, CO₂R¹⁰ and NR¹⁰R¹¹, wherein R⁹ represents C₁ to C₆ alkyl and or C₆ to C₁₅ aryl, and R¹⁰ and R¹¹ may be the same or different and each is independently selected from the group consisting of H, C₁ to C₆ alkyl and C₆ to C₁₅ aryl. Preferably, the substituents are selected from the group consisting of CN, F, Br, Cl, I, OH, OR⁹ and SR⁹, wherein R⁹ represents C₁ to C₃ alkyl or halo. Particularly preferred substituents are selected from OR⁹, F and Cl, wherein R⁹ represents C₁ to C₃ alkyl (preferably methyl). Representative examples of substituted alkynyl groups include -CH(CH₃)CF₂CH₂≡CH and -CH(CH₃)CH(OMe)CH₂C≡H. Preferably, the term "alkynyl" refers to unsubstituted C₂ to C₆ carbon chains which may be branched or unbranched, including -C≡CH, -CH₂CH₂C≡CH, -CH₂CH(CH₃)CH₂C≡H.

"Aryl" represents a carbocyclic group containing 6-15, preferably 6 to 10, carbon atoms and having at least one aromatic ring, and which may be substituted by 1-5 substituents independently selected from the group consisting of C₁ to C₆ alkyl, C₁ to C₆ aryl, OR⁹, SR⁹, CN, F, Cl, Br, I, OH, SH, NO₂, COR⁹, CO₂R¹⁰, OCF₃, CF₃ and NR¹⁰R¹¹, wherein R⁹ represents C₁ to C₆ alkyl and or C₆ to C₁₅ aryl, and R¹⁰ and R¹¹ may be the same or different and each is independently selected from the group

consisting of H, C₁ to C₆ alkyl and C₆ to C₁₅ aryl. Preferably, the term "aryl" refers to a carbocyclic group containing 6-10 carbon atoms and which may be unsubstituted or substituted by 1-3 substituents independently selected from the group consisting of C₁ to C₆ alkyl, C₆ to C₁₀ aryl (such as phenyl), OR⁹ and halo (F, Cl, Br and I), wherein R⁹ represents unsubstituted C₁ to C₆ alkyl. In particularly preferred embodiments of the invention, the term "aryl" refers to phenyl substituted by 1-3 substituents independently selected from the group consisting of C₁ to C₃ alkyl and OR⁹, wherein R⁹ represents C₁ to C₃ alkyl. In especially preferred embodiments of the invention, the term "aryl" refers to phenyl substituted by 1-3 substituents independently selected from C₁ to C₃ alkyl (preferably CH₃) or OR⁹ wherein R⁹ represents C₁ to C₃ alkyl (preferably methyl).

"Cycloalkyl" represents a carbocyclic group containing from 3-8 carbon atoms forming at least one saturated ring, and which may be unsubstituted or substituted by 1-5 substituents on the ring carbon atoms, the substituents being independently selected from the group consisting of C₁ to C₆ alkyl, C₆ to C₁₀ aryl, OR⁹, SR⁹, CN, F, Cl, Br, I, OH, SH, NO₂, COR⁹, OCF₃, CF₃, CO₂R¹⁰ and NR¹⁰R¹¹ wherein R⁹ represents C₁ to C₆ alkyl and/or C₆ to C₁₅ aryl, and R¹⁰ and R¹¹ may be the same or different and each is independently selected from the group consisting of H, C₁ to C₆ alkyl and C₆ to C₁₅ aryl. For substituted cycloalkyl groups, particularly preferred substituents are selected from the group consisting of C₁ to C₃ alkyl, C₆ to C₁₀ aryl, OR⁹ (wherein R⁹ represents C₁ to C₃ alkyl) and halo (F, Cl, Br). Particularly preferred compounds are those wherein the term "cycloalkyl" represents cyclopentyl or cyclohexyl, which may be unsubstituted or substituted with the above groups.

The term "heterocyclic group" refers to an aromatic (heteroaryl) or heterocycloalkyl group having from 5 to 10 ring atoms wherein 1, 2 or 3 of the ring atoms are independently selected from nitrogen, oxygen or sulfur atoms and the remainder are carbon atoms, wherein any one of the ring atoms is a point of attachment. Preferred heteroaromatic groups include pyridyl, thiazolyl, thiophenyl, furanyl, benzotriazolyl, quinolyl, isoquinolyl, pyrimidinyl, pyrrolyl, oxazolyl, indolyl and

imidazolyl. Especially preferred heteroaromatic groups include pyridyl, thiazolyl, thiophenyl, furanyl, indolyl and imidazolyl. Representative non-aromatic heterocyclic substituents include piperidinyl, piperazinyl, tetrahydropyranyl, tetrahydrofuranyl, 2- or 4-dioxanyl and 1-, 2- or 3-morpholino.

5

Unless otherwise indicated as being substituted, the terms "alkyl", "alkenyl", "alkynyl", "aryl", "cycloalkyl" and "heterocyclic group" refer to unsubstituted groups.

The term "halo" represents F, Cl, Br or I.

10

The term "quaternary ammonium salt" in the context of quinoline rings refers to compounds wherein the nitrogen atom of the quinoline ring is alkylated, e.g. with an alkyl halide, R-X, to form an N-alkylated analogue:

15

The term "N-oxide" refers to compounds wherein the nitrogen atom of the quinoline ring forms an N→O group.

Bonds drawn into the ring systems indicate that the indicated bond may be attached to any of the available substitutable ring atoms.

20

Certain compounds of the invention may exist in different isomeric (e.g. enantiomers and diastereoisomers) forms. The present invention contemplates all such isomers both in pure form and in admixture, including racemic mixtures. Enol forms and other tautomeric forms are also included. It will be appreciated, for example, that for compounds wherein the carbon atoms of the quinoline 2- or 4-positions are directly bonded to an oxygen atom to form the group C=O (i.e. a quinolin-2-one or a quinolin-4-one), the quinolin-2-one or quinolin-4-one co-exists with the tautomeric 2- and 4-hydroxyquinoline, respectively:

25

5 Usually, for the 2-hydroxyquinolines, the quinolinone form is thermodynamically favoured, whereas for the 4-hydroxyquinolines, the quinolinol form is favoured.

10 Certain compounds will be acidic in nature, such as those compounds that possess a carboxyl or a phenolic hydroxyl group. These compounds may form pharmaceutically acceptable salts. Examples of such salts may include sodium, potassium, calcium, aluminium, gold and silver salts. Also contemplated are salts formed with pharmaceutically acceptable amines including as ammonia, alkyl amines, hydroxyalkylamines and N-methylglucamine.

15 It will be appreciated that basic compounds can also form pharmaceutically acceptable salts, such as acid addition salts. For example, the quinoline nitrogen atoms may form salts with strong acid, while compounds having basic substituents such as amino groups may also form salts with weaker acids. Examples of suitable acids for salt formation include hydrochloric, sulfuric, phosphoric, acetic, citric, oxalic, malonic, salicylic, malic, fumaric, succinic, ascorbic, maleic, methanesulfonic and other mineral and carboxylic acids well known in the art.

20 Methods of preparation of acid addition salts will be apparent to those skilled in the art. For example, the salts may be prepared by contacting the free base form with a sufficient amount, e.g. a stoichiometric amount, of the desired acid to produce a salt in the conventional manner. The free base forms may be regenerated by treating the salt with a suitable dilute aqueous base solution, such as dilute aqueous sodium hydroxide, potassium carbonate, ammonia or sodium

bicarbonate. The free base forms differ from their respective salt forms somewhat in certain physical properties, such as solubility in polar solvents, but the acid and base forms are otherwise equivalent to their respective free base forms for the purposes of the invention.

5.

All such acid and base salts are intended to be pharmaceutically acceptable salts within the scope of the invention and all acid and base salts are considered equivalent to the free forms of the corresponding compounds for the purposes of the invention.

10

The compounds for use in the present invention may be synthesised by methods of quinoline synthesis known in the art, (see for example, Cheng, Y. *Org. React.* 1982, 28, 37-201 and Jones, G. in "Comprehensive Heterocyclic Chemistry II"; Katritzky, A.R., Rees, C.W. and Scriven, E.F.V., Eds., Pergamon, Oxford, 1996, Vol. 5, pp 167-243, and references cited therein.

15

A wide range of methods are known for the construction of the quinoline nucleus to form compounds useful in the present invention. Examples of synthetic routes to produce substituted quinolines will be apparent to a person of skill in the art. 20 These include the Skraup, Döbner-von Miller, Conrad-Limpach, Friedlaender and Pfitzinger syntheses.

25

Substituted quinoline derivatives can be formed from an appropriately substituted aniline starting material. In a typical procedure, a two- or three- carbon fragment is condensed onto the nitrogen atom of the aniline. A subsequent cyclisation reaction step forms the quinoline ring. This procedure has wide applicability to the formation of substituted quinoline derivatives. For example, *ortho*- and *para*-substituted anilines may be used to produce 8- and 6-substituted quinolines, respectively; *meta*-substituted anilines give mixtures of 5- and 7-substituted quinolines. Where mixtures of positional isomers are formed, these may be separated by, for example, chromatographic procedures such as flash chromatography and HPLC.

A wide range of substituted aniline compounds suitable for use in the above synthesis of substituted quinolines are commercially available. The commercially available substituted anilines can also be derivatised to form the appropriate aniline derivative for use in the above synthesis. Substituted anilines for use in the above process may also be synthesised by procedures known in the art.

According to a further aspect of the present invention, there is provided process for the production of a compound of Formula (II):

10

or an intermediate thereof, wherein R^{2a} and R^{4a} represent OR¹² or SR¹²; R¹² represents C₁ to C₆ alkyl; and R^{3a}, R^{5a}, R^{6a}, R^{7a} and R^{8a} are as defined as above

and are other than C₂ to C₁₀ alkenyl, C₂ to C₁₀ alkynyl, or C₆ to C₁₅ aryl, comprising the steps of:

15

(a) subjecting a compound of Formula (III)

wherein R^{5b}, R^{6b}, R^{7b} and R^{8b} respectively represent the groups R^{5a}, R^{6a}, R^{7a} and R^{8a} or precursors thereof, to reaction with malonic acid in the presence of phosphorus oxychloride to produce a compound of Formula (IV):

20

- (b) subjecting the compound of Formula (IV) to reaction with NaXR¹², wherein X represents oxygen or sulphur to form a compound of Formula (V):

The process is illustrated in the following scheme:

5

Preferably, step (a) is carried out using neat reagents, i.e. in the absence of solvent. Thus, in a typical procedure, the compound of Formula (III) is heated with an excess of malonic acid and phosphorus oxychloride under reflux. In some cases, mixtures of positional isomers of the quinolines may be formed, depending 10 on the substitution pattern of the aniline starting material. Such mixtures may be separated after step (a) by conventional chromatographic techniques, e.g. by column chromatography. Alternatively step (b) may be carried out using the mixture of quinoline isomers from step (a), and the separation step carried out subsequently.

15

In the above process, R^{5b}, R^{6b}, R^{7b} and R^{8b} respectively represent precursors to the groups R^{5a}, R^{6a}, R^{7a} and R^{8a}. Alternatively, the groups R^{5b}, R^{6b}, R^{7b} and R^{8b} can be protected groups corresponding to R^{5a}, R^{6a}, R^{7a} and R^{8a} or precursors thereof. Suitable protecting groups are well known in the art (see e.g. "Protective Groups in Organic Synthesis", Greene, T.W., Witten, P.G.M., John Wiley, N.Y. 1999). The precursors or protected intermediates may be subsequently converted to the respective substituents R^{5a}, R^{6a}, R^{7a} and R^{8a} by known procedures (see Comins, D.L and Joseph, S.P. in "Comprehensive Heterocyclic Chemistry II"; Katritzky, A.R., Rees, C.W. and Scriven, E.F.V., Eds. Pergamon, Oxford, 1996, Vol. 5, pp 167-243 and Dennis, N. in "Comprehensive Heterocyclic Chemistry II"; Katritzky, A.R., Rees, C.W. and Scriven, E.F.V., Eds. Pergamon, Oxford, 1996, Vol. 5, pp 91-134, and references cited therein).

In a typical procedure for step (b) of the above process, the substituted quinoline, or mixture of substituted quinoline isomers from step (a) is heated with the compound NaXR¹² under reflux. Where a mixture of substituted quinoline starting materials is used, the mixture from step (b) may be separated using standard chromatographic techniques.

In the above process, the compounds of Formula (II) that are substituted in the quinoline 3-position (i.e. R^{3a} is other than hydrogen), may be produced by a subsequent reaction step comprising subjecting the compound of Formula (V) to a deprotonation reaction at the quinoline 3-position using a strong base, such as an alkylolithium, and quenching the anion with an electrophile to form the group R^{3a} or a precursor thereof:

Suitable electrophiles for the above reaction include ketones, aldehydes, halogens, halogen-producing agents (such as 1,2-dibromotetrafluoroethane),

pseudohalogens (such as phenylthio compounds) and epoxides. The 3-substituted compounds may be further derivatised to form further compounds of Formula (II), (IIA) or (IIB).

5. It will be apparent from the above that a variety of methods known in the art may be suitable for producing substituted quinoline derivative useful in the present invention. As a illustrative example, the synthesis of a 2,4,8-trisubstituted quinoline is shown in the following scheme:

10

According to a still further aspect of the present invention, there is provided a process for producing a compound of Formula (II) or an intermediate thereof, wherein at least one of R^{5a} , R^{6a} , R^{7a} and R^{8a} represents a substituent selected from substituted or unsubstituted C_2 to C_{10} alkenyl, substituted or unsubstituted C_2 to C_{10} alkynyl, or substituted or unsubstituted C_6 to C_{15} aryl wherein the substituents are as defined above, comprising reacting a compound of Formula (II) wherein one of R^{5a} , R^{6a} , R^{7a} and R^{8a} represents Br, I or triflate with a boronic acid derivative of Formula (VI):

15

20 $(\text{OH})_2\text{B}-\psi \quad (\text{VI})$

wherein ψ represents a substituted or unsubstituted C_2 to C_{10} alkenyl, substituted or unsubstituted C_2 to C_{10} alkynyl, substituted or unsubstituted C_6 to C_{15} aryl or substituted or unsubstituted C_5 to C_{10} heteroaryl group as defined above; in the presence of a base and a palladium or nickel catalyst under Suzuki coupling conditions. The reaction may be represented thus:

Thus, as indicated above, the appropriate quinolyl bromide, iodide or triflate is reacted with a boronic acid in the presence of a palladium (0) catalyst and a suitable base to form the substituted quinoline derivatives of the invention wherein one of R^{6a} , R^{8a} , R^{7a} and R^{8a} represents a C_2 to C_{10} alkenyl, C_2 to C_{10} alkynyl or C_6 to C_{15} aryl group, since a large number of aryl, alkenyl, alkynyl and heteroaryl boronic acids are commercially available or can be readily synthesised [see Lancaster Synthesis Catalogue 2000-2001, Appendix 5, pp. A39-A46, and references cited therein, Stanforth, S.P., Tetrahedron, (1998), 54, 263; Ishiyama, T., Murata, M., Miyaura, N., J. Org. Chem. (1995), 60, 7508].

Suitable catalysts for this process include the following: $\text{Pd}(\text{PPh}_3)_4$, $\text{Ni}(\text{dppf})\text{Cl}_2$, $\text{Pd}(\text{dba})_2$ (dba = dibenzilidene acetone), $\text{Pd}(\text{OAc})_2$, $\text{Pd}(\text{OAc})_2/(\text{o-tol})_3\text{P}$ [$(\text{o-tol})_3\text{Ph}$ = tri(o-tolyl)phosphine], $\text{Pd}(\text{OAc})_2/\text{dppf}$ [dppf = 1,1'-bis(diphenylphosphino)-ferrocene], $(\text{PhCN}_2\text{PdCl}_2)/\text{Ph}_3\text{As}$ (Ph_3As = triphenyl arsine), $(\text{CH}_3\text{CN})_2\text{PdCl}_2$, Pd-C , $(\text{Ph}_3\text{P})_2\text{NiCl}_2$, $\text{Pd}(\text{dppb})\text{Cl}_2$, bis(tricyclohexylphosphine)palladium(II) chloride, $(\text{Ph}_3\text{P})_2\text{PdCl}_2$ and trans-di- μ -acetatobis[2-(di- o-tolyl phosphino)benzyl]-dipalladium(II) (see Appendix 5, page A41, Lancaster Synthesis Catalogue 2000-2001, and references cited therein). Particularly preferred are palladium catalysts comprising phosphine ligands, such as $\text{Pd}(\text{PPh}_3)_4$ and $\text{Pd}(\text{PPh}_3)_2\text{Cl}_2$. These catalysts are suitable for high reaction temperatures because of their

stability. Alternatively, phosphine-free catalysts such as palladium acetate may be used, and advantageously, can give a more rapid conversion.

Suitable bases for the Suzuki coupling reaction include sodium carbonate,
5 NaHCO_3 , K_2CO_3 , Cs_2CO_3 , K_3PO_4 , Et_3N , Ag_2O , $\text{Ba}(\text{OH})_2$ and CsF . Sodium carbonate is a particularly preferred base.

Typically the reaction is carried out in an inert solvent comprising a hydrocarbon,
10 such as benzene or toluene. Preferably, the reaction is carried in the presence of a solvent containing water.

As an illustrative example, the synthetic route to form 2,4-dimethoxy-6-phenylquinoline is shown below:

Compounds wherein the 2-position of the quinoline ring represents the group $=\text{O}$,
15 i.e. substituted quinolinones of Formula (IIA), can be produced, for example, from the corresponding 2-alkoxy derivative by reaction with trimethylsilyl iodide.

Alternatively, quinolin-2-one derivatives can be produced from the corresponding
20 2,4-dimethoxy derivatives by a two step reaction procedure comprising (a) cleavage of both methoxy groups using a Grignard reagent, such as MeMgI , followed by (b) methylation at the 4-position to reinstall the methoxy group:

Substituted quinolin-4-ones corresponding to Formula (IIIB) may be produced by treatment of the corresponding 2,4-dimethoxyquinoline derivative with sodium isopropyl thiolate in DMF, resulting in the selective demethylation of the 4-methoxy group:

N-oxide derivatives of the compounds of the present invention may be formed by methods of quinoline N-oxidation known in the art. As an example, a substituted quinoline intermediate or final compound may be treated with hydrogen peroxide or peracids, such as meta-chloroperoxybenzoic acid (MCPBA) to form the corresponding substituted quinoline-N-oxide analogue.

Compounds of Formula (IIA) or (IIIB) wherein R^{1a} represents a C₁ to C₆ alkyl group or a benzyl group, may be formed by reaction of the corresponding substituted quinoline or intermediate thereof, wherein R¹ represents hydrogen, with suitable alkylating agents, e.g. alkyl iodides or benzyl iodide by procedures known in the art.

EXAMPLES

The following Examples 1 to 72 illustrate the preparation of various quinoline derivatives of Formulae (I), (IA), (IB), (II), (IIA) or (IIB) and intermediates useful in the preparation of compounds of the invention. The procedures described for synthesising known compounds may be adapted for the preparation of compounds according to the invention by an appropriate selection of substituents and procedures for functional group conversions known in the art. Thus, Examples 1 and 2 illustrate procedures for the synthesis of substituted aniline. Intermediates useful for producing the compounds of the invention. Examples 3 to 19 illustrate the synthesis of known compounds useful in the invention and Examples 20 to 72 illustrate procedures for synthesising novel compounds of Formula (II), (IIA) and (IIB).

15 **General experimental conditions**

All moisture or oxygen sensitive reactions were carried out under argon. All glassware, syringes and needles were predried in an oven (110°C) and cooled in an anhydrous atmosphere prior to use. Organic phases were dried with magnesium sulfate or sodium carbonate.

20 Diethyl ether, tetrahydrofuran (THF), diisopropyl ether and toluene were distilled from sodium with benzophenone ketyl as indicator immediately before use. Dichloromethane was refluxed over calcium hydride and distilled directly into the reaction vessel. Dimethylformamide was heated to reflux over calcium hydride, 25 distilled and stored over activated 3Å molecular sieves prior to use. Sodium hydride was washed with hexane before use.

Purification was carried out by flash column chromatography using Merck 7734 or Merck 60 (230-400 mesh) silica gel.

30 All melting points were determined on a Gallenkamp or Electrothermal melting point apparatus and are uncorrected. Infrared spectra were recorded on a Perkin

Elmer Paragon 1000 FT-IR spectrophotometer using NaCl plates. ^1H NMR and ^{13}C NMR spectra were recorded on a Bruker AM360 spectrometer operating at 360 MHz for proton and 90 MHz for carbon. NMR spectra were recorded in deuteriochloroform (CDCl_3) as solvent, unless otherwise stated.

5

Tetramethylsilane (TMS) was adopted as the internal standard for ^1H NMR spectra and the solvent peaks were adopted as the internal standard for ^{13}C NMR spectra. Chemical shifts (δ_{H} and δ_{C}) are quoted as parts per million downfield from tetramethylsilane. The multiplicity of a ^1H NMR signal is designated by one
10 of the following abbreviations: s = singlet, d = doublet, t = triplet, q = quartet, br = broad and m = multiplet. Coupling constants (J) are expressed in Hertz.

Mass spectra were recorded on either a Kratos MS89MS with Kratos DS90 software or a Jeol AX505W with Jeol complement data system. Samples were
15 ionised electronically (EI), with an accelerating voltage of a 6 kV. Analytical data are presented as $\pm 0.01\%$.

EXAMPLE 1. 3-Methyl-2-nitrobenzamide

20

25

A mixture of 3-methyl-2-nitrobenzoic acid (3.0 g, 17 mmol) and triethylamine (1.7 g, 17 mmol) in THF (50 ml) was cooled to 0°C. Isobutyl chloroformate (2.3 g, 17 mmol) was added, and the mixture stirred at 0°C for 5 minutes, then allowed to warm to room temperature and stirred for a further 2 hours. Concentrated ammonia solution (30 ml of 35% ammonia) was then added in one portion, and the mixture stirred overnight. The flask contents were transferred to a separating funnel, water (30 ml) was added, and the aqueous layer extracted with ethyl

acetate (2×30 ml). The combined organic layers were dried with MgSO_4 , and the solvent removed under reduced pressure to give the crude product as a cream solid. Recrystallisation (EtOH) gave the product as cream needles, R_f (EtOAc) 0.56. Yield 2.4 g, 78%. Melting point 188-190°C.

5 Found M^+ : 180.0531. $C_8H_8N_2O_3$ requires 180.0535.

δH (DMSO d₆): 8.20 (1H, br s, NH), 7.69 (1H, br s, NH), 7.60-7.52 (3H, m, Ar-H), 2.28 (3H, s, Me).

δC (DMSO d₆): 166.1 (C=O), 149.1 (C-NO₂) 133.5 (CH), 130.3 (CH), 129.9, 129.4, 126.2 (CH), 16.6 (Me).

10 ν_{max} /cm⁻¹: 3337, 3183 (w, N-H), 1688 (s, C=O), 1525 (s, N=O).

m/z : 180 (80%, M^+), 164 (100%, $M^+ - NH_2$), 134 (17%, $M^+ - NO_2$), 89 (63%).

EXAMPLE 2. 3-Methyl-2-nitroaniline

Method A - by Hofmann rearrangement

15

Bromine (1.8 g, 11 mmol) was added to an ice-cold solution of potassium hydroxide (3.1 g, 55 mmol) in water (40 ml), and the resultant yellow solution 20 stirred at 0°C for 10 minutes. 3-Methyl-2-nitrobenzamide (2.0 g, 11 mmol) was added in one portion, and the mixture heated at 65°C for 2 hours. After cooling, the product, a yellow precipitate, was filtered off and dried. The filtrate was extracted with ethyl acetate (3×30 ml), the combined organic extracts dried (MgSO_4) and the solvent removed *in vacuo* to give more of the product. Total 25 yield 0.60 g, 36%. Melting point 103-105°C.

Found M^+ : 152.0583. $C_7H_8N_2O_2$ requires 152.0586.

δ H: 7.14 (1H, dd, J 8.2, 7.3, H5), 6.65 (1H, d, J 8.2, C4), 6.58 (1H, d, J 7.3, C6), 5.17 (2H, br s, NH₂), 2.46 (3H, s, Me).

δ C: 143.3, 135.5, 135.5 (C-NH₂, CNO₂, CMe), 133.2 (C5), 121.1 (C4), 116.5 (C6), 21.4 (Me).

5 η_{max}/cm^{-1} : 3490, 3376 (w, N-H), 1610, 1584, 1552 (s, C=C, C=N, N=O).
 m/z : 152 (98%, M⁺), 135 (100%, M⁺ - OH), 106 (36%, M⁺ - NO₂), 77 (66%, C₆H₅⁺).

Method B - by Schmidt rearrangement

10

15

15

20

3-Methyl-2-nitrobenzoic acid (5.0 g, 28 mmol) was suspended in concentrated sulfuric acid (50 ml) and cooled to -5°C, with stirring. Sodium azide (1.8 g, 28 mmol) was added in small portions over 10 minutes, and the resulting deep violet mixture stirred at -5°C for 20 minutes and then allowed to warm to room temperature over 30 minutes. The mixture was then heated on a water bath at 60°C for approximately 3 hours, until the evolution of gas ceased and the violet colouration of the acyl azide had disappeared. After cooling, the pale brown liquid was poured onto crushed ice and made alkaline with NH₄OH. The resultant yellow precipitate was filtered off and dried. Yield 4.2 g, 100%. Melting point 105-107°C.

Spectral data was in agreement with product isolated from Method A.

EXAMPLE 3. 2,4-Dichloroquinoline

Aniline (6.7 g, 72 mmol) and malonic acid (11.7 g, 112 mmol) were heated under reflux in phosphorus oxychloride (60 ml), with stirring, for 5 hours. The mixture was cooled, poured into crushed ice with vigorous stirring and then made alkaline with 5M sodium hydroxide. Filtration gave the crude product as a brown solid. A four hour continuous (Soxhlet) extraction with hexane followed by evaporation of solvent under reduced pressure yielded a pale yellow powder. TLC (95:5 hexane/ethyl acetate) gave two spots; R_f =0.51 and R_f =0.05. Column chromatography with 95:5 hexane:EtOAc as eluent yielded the pure product (R_f =0.51) as off-white needles, yield 6.8 g, 48%, m.p. 66-67°C.

Found M⁺: 196.9792. C₉H₅Cl₂N requires 196.9799.

δ_H : 8.18 (1H, dd, J 8.4, 1.3, H5), 8.03 (1H, dd, J 8.5, 1.0, H8), 7.79 (1H, ddd, J 8.5, 7.0, 1.3, H7), 7.65, (1H, ddd, J 8.4, 7.0, 1.0, H6), 7.50 (1H, s, H3).

δ_C : 149.8 (C2), 148.1 (C8a), 144.4 (C4), 131.5 (C7), 129.0 (C8), 127.9 (C6), 125.2 (C4a), 124.2 (C5), 121.9 (C3).

ν_{max} /cm⁻¹: 1580 (s, C=N), 720 (m, C-Cl).

m/z: 201 (15%, M⁺ ³⁷Cl₂), 199 (72%, M⁺ ³⁷Cl³⁵Cl), 197 (100%, M⁺ ³⁵Cl₂), 162 (69%, M⁺ - Cl).

EXAMPLE 4A. 2,4-Dimethoxyquinoline andEXAMPLE 4B. 4-chloro-2-methoxyquinoline

5

2,4-Dichloroquinoline (2.8 g, 14 mmol) was heated under reflux in methanolic sodium methoxide solution (from 2.0 g, 86 mmol Na in 50 ml MeOH) for 24 hours. The reaction mixture was cooled and poured into ice-cold water, and the resulting white precipitate was filtered off. TLC (95:5 hexane:EtOAc) gave two spots, R_f 0.61 and 0.48. Column chromatography with 9:1 hexane:EtOAc yielded the two products 2,4-dimethoxyquinoline (R_f 0.48), 1.85 g, 70% and 4-chloro-2-methoxyquinoline (R_f 0.61), 0.32 g, 12%, both as white needles.

10

Data for 2,4-dimethoxyquinoline (EXAMPLE 4A)

Melting point 78-80°C.

15

Found M^+ : 189.0797. $C_{11}\text{H}_{11}\text{NO}_2$ requires 189.0790.

δ_{H} : 8.04 (1H, dd, J 8.2, 1.5, H5), 7.78 (1H, dd, J 8.5, 1.2, H8), 7.60 (1H, ddd, J 8.5, 7.0, 1.5, H7), 7.33 (1H, ddd, J 8.2, 7.0, 1.2, H6), 6.21 (1H, s, H3), 4.05 (3H, s, 2-OMe), 3.97 (3H, s, 4-OMe).

20

δ_{C} : 163.9 (C4), 163.84 (C2), 147.1 (C8a), 130.0 (C7), 126.9 (C8), 123.3 (C6), 121.8 (C5), 119.3 (C4a), 90.7 (C3), 55.7 (4-OMe), 53.4 (2-OMe).

N.O.E: Irradiation at d3.97 ppm gave enhancement of H3 (6.21 ppm).

Irradiation at d4.05 ppm gave weak enhancement of H3 (6.21 ppm).

 $\nu_{\text{max}} / \text{cm}^{-1}$: 1640, 1580 (s, C=N, C=C) m/z : 189 (100%, M^+), 188 (93%, $M^+ - \text{H}$).

25

Data for 4-chloro-2-methoxyquinoline (EXAMPLE 4B)

Melting point 70-72°C.

Found M^+ : 193.0298. $C_{10}\text{H}_8^{35}\text{ClNO}$ requires 193.0294.

δ_H : 8.10 (1H, dd, *J* 8.2, 1.3, H5), 7.86 (1H, dd, *J* 8.0, 1.2, H8), 7.67 (1H, ddd, *J* 8.0, 7.0, 1.3, H7), 7.46 (1H, ddd, *J* 8.2, 7.0, 1.2, H6), 7.03 (1H, s, H3), 4.06 (3H, s, -OCH₃).

δ_C : 161.9 (C2), 147.0 (C8a), 143.7 (C4), 130.5 (C7), 127.6 (C8), 124.8 (C6), 124.1 (C5), 123.3 (C4a), 112.9 (C3), 53.8 (OCH₃).

ν_{max} /cm⁻¹: 1610, 1580 (s, C=N and C=C).

m/z: 195 (33%, M⁺ ³⁷Cl), 193 (100%, M⁺ ³⁵Cl), 192 (67%, M⁺ ³⁵Cl - H), 163 (33%, M⁺ - CH₂O).

10 **EXAMPLE 5. 2-Chloro-4-methoxyquinoline**

2,4-Dichloroquinoline (1.5 g, 7.5 mmol) was heated under reflux in methanolic sodium methoxide (from 0.80 g, 34 mmol Na in 30 ml methanol) for 30 minutes. The mixture was cooled, poured into ice-cold water and then filtered to give a pale yellowish solid. TLC (4:1 hexane: EtOAc) showed three spots; R_f 0.73 (4-chloro 2-methoxyquinoline), 0.55 (starting material), 0.36 (2-chloro 4-methoxyquinoline). Column chromatography (4:1 hexane: EtOAc) yielded 0.35 g, 25% of the desired product as white needles, plus 0.5 g, 36% of 4-chloro-2-methoxyquinoline and 0.3 g of starting material. Melting point 73-75°C.

Found M⁺: 193.0298. C₁₀H₈³⁵ClNO requires 193.0294.

δ_H : 8.12 (1H, dd, *J* 8.5, 1.5, H5), 7.93 (1H, dd, *J* 8.2, 1.2, H8), 7.70 (1H, ddd, *J* 8.2, 6.9, 1.5, H7), 7.50 (1H, ddd, *J* 8.5, 6.9, 1.2, H6), 6.73 (1H, s, H3), 4.05 (3H, s, OCH₃).

δ_C : 163.8 (C4), 151.6 (C2), 148.1 (C8a), 130.9 (C7), 128.1 (C8), 126.1 (C6), 122.0 (C5), 120.4 (C4a), 101.2 (C3), 56.2 (MeO).

ν_{max} /cm⁻¹: 1630, 1590, 1570 (s, C=N and C=C).

m/z: 195 (33%, M⁺ ³⁷Cl), 193 (100%, M⁺ ³⁵Cl), 179 (M⁺ ³⁵Cl - CH₂), 158 (M⁺ - Cl).

EXAMPLE 6. 4-Chloro-1*H*-quinolin-2-one

5

4-Chloro-2-methoxyquinoline (**EXAMPLE 4B**) (0.30 g, 1.6 mmol) was heated under reflux in 5M HCl (30 ml) for 45 minutes and then left to stand overnight. A small amount of white precipitate formed. After neutralisation with aqueous sodium carbonate the mixture was filtered to give the product (0.10 g, 36%) as a white powder which was insoluble even in polar solvents. Melting point 248-250°C.

Found M⁺: 179.0143. C₉H₆ClNO requires 179.0138.
 15 η_{max} /cm⁻¹: 3300 (m, N-H), 1670 (s, amide C=O).
m/z: 181 (33%, M⁺, ³⁷Cl), 179 (100%, M⁺, ³⁵Cl), 151 (75%, M⁺ - CO), 89 (62%, C₃H₂³⁵ClO⁺).

EXAMPLE 7. 4-Hydroxy-2-methoxy 3-(3-methylbut-2-enyl)quinoline

20

Sodium hydride (0.67 g of a 60% mineral oil dispersion, washed with hexane, 17 mmol) was suspended in dimethylformamide (10 ml). 2-Propanethiol (0.51 g, 6.7 mmol) was added and the mixture was stirred for 10 minutes. Then a solution

of 2,4-dimethoxy-3-(3-methylbut-2-enyl)quinoline (0.7 g, 2.7 mmol) in DMF (10 ml) was added, and the mixture heated under reflux for 4 hours. After cooling and neutralisation with 2M HCl the solution was extracted with ether (4 x 50 ml), the combined ether extracts were dried over MgSO₄, and the solvent removed *in vacuo* to give a brown oil. Tlc (4:1 hexane:EtOAc) revealed the presence of both starting material (R_f 0.57) and a product (R_f 0.30). Column chromatography (4:1 hexane:ethyl acetate) followed by recrystallisation (ethanol) yielded the pure product (0.25 g, 38%) as off-white needles. Melting point: 154-155°C.

Found M⁺: 243.1246. C₁₅H₁₇NO₂ requires 243.1259.

δ _H: 7.98 (1H, dd, J 8.2, 1.3, H5), 7.75 (1H, dd, J 8.2, 1.2, H8), 7.56 (1H, ddd, J 8.3, 6.9, 1.3, H7), 7.32 (1H, ddd, J 8.2, 6.9, 1.2, H6), 5.38 (1H, tq, J 7.3, 1.2, CH=), 4.06 (3H, s, OCH₃), 3.51 (2H, d, J 7.3, CH₂CH=), 1.86 (3H, s, CH=CCH₃) 1.81 (3H, d, J 1.2, CH=CCH₃). OH not observed in CDCl₃.

δ _C: 161.4 (C2), 145.0 (C8a), 137.0 (=C(CH₃)₂), 129.3, 126.5, 123.2, 121.6, 121.1 (C5,6,7,8 and =CH), 119.0 (C4a), 105.2 (C3), 53.9 (OMe), 25.9 (CH₃), 23.0 (CH₂), 18.0 (CH₃), no signal observed for C4.

NOESY (DMSO d₆): correlation between the OH proton at d11.5 ppm and the C5 proton at δ 7.98 ppm.

ν_{max} /cm⁻¹: 3200-3000 (br, O-H), 1627, 1580 (s, C=C, C=N)

m/z: 243 (26%, M⁺), 228 (12%, M⁺ - CH₃), 188 (5%, M⁺ - CH=C(CH₃)₂), 83 (100%).

EXAMPLE 8. 4-Methoxy-1*H*-quinolin-2-one

2,4-Dimethoxyquinoline (EXAMPLE 4A) (2.0 g, 11 mmol) was dissolved in 3% HBr in a 1:1 mixture of H₂O/THF (100 ml). The solution was heated under reflux

for 3 hours, then cooled and neutralised with aqueous NaHCO₃. The THF was removed under reduced pressure, precipitating a white solid, which was filtered and dried under suction. TLC (4:1 hexane:EtOAc) showed the presence of starting material and a polar material (baseline). A 5 hour Soxhlet extraction with hexane separated these two compounds. The starting material was extracted into the reaction flask leaving the product, cream needles, in the thimble. Yield 1.0 g, 54%. Melting point 249-252°C.

Found M⁺: 175.0629. C₁₀H₉NO₂ requires 175.0633.
 δ H: 7.90 (1H, dd, J 8.1, 1.1, H5), 7.52 (1H, dd, J 8.1, 1.1, H7), 7.40 (1H, dd, J 8.1, 1.1, H8), 7.20 (1H, dd, J 8.1, 1.1, H6), 6.03 (1H, s, H3), 3.99 (3H, s, OMe).
 δ C: 166.3 (C2), 165.0 (C4), 138.4 (C8a), 131.2 (C7), 122.8 (C8), 122.2 (C6), 116.1 (C5), 115.6 (C4a), 96.0 (C3), 56.0 (OMe).
 η_{max} /cm⁻¹: 3100 (w, N-H), 1674 (s, C=O), 1634, 1607 (s, C=C).
m/z: 175 (100%, M⁺), 132 (63%, M⁺ - CONH), 76 (28%, C₆H₄⁺).

15

EXAMPLE 9. 2,4-Dichloro-8-methylquinoline

20 o-Toluidine (5.0 g, 47 mmol), malonic acid (7.3 g, 70 mmol) and POCl₃ (40 ml) were heated under reflux for 5 hours. Aqueous workup was as for other dichloroquinolines to give the crude product as a brown powder. After continuous extraction of the crude product (hexane, 4h) the pure quinoline was obtained as a yellow powder. Yield 5.3 g, 53%. R_f (9:1 hexane:EtOAc) 0.70. Melting point 25 80-82°C.

Found M⁺: 210.9956. C₁₀H₇³⁵Cl₂N requires 210.9955.

δ_{H} : 7.95 (1H, d, J 8.3, H5), 7.54 (1H, d, J 7.1, H7), 7.44 (1H dd, J 8.3, 7.1, H6), 7.40 (1H, s, H3), 2.68 (3H, s, 8-Me).

δ_{C} : 147.6 (C2), 146.3 (C8a), 143.3 (C4), 136.2 (C8), 130.6 (C7), 126.5 (C6), 124.2 (C4a), 121.0 (C5), 120.7 (C3), 17.1 (8-Me).

5 ν_{max} /cm⁻¹: 1610, 1573 (s, C=C and C=N) 680 (w, C-Cl).

m/z: 215 (13%, $M^+ - 37Cl_2$), 213 (79%, $M^+ - 37Cl|^{35}Cl$), 211 (100%, $M^+ - 35Cl_2$), 176 (22%, $M^+ - Cl$), 148 (14%), 140 (24%, $M^+ - 2Cl$).

EXAMPLE 10 2,4-Dichloro-6-methylquinoline

15 mixture was poured onto crushed ice and neutralised (NaOH). The crude brown precipitate was filtered off and then purified by Soxhlet extraction (hexane), to give the title compound as a pale yellow powder. Yield 5.1 g, 51%. Melting point 91-93°C.

20 Found M⁺: 210.9955. C₁₀H₇³⁵Cl₂N requires 210.9955.
δH: 7.91-7.88 (2H, m, H5 and H8), 7.60 (1H, dd, *J* 8.6, 1.9, H7), 7.44 (1H, s, H2), 2.56 (2H, s, 6-Me).

δ_{C} : 148.8, 146.7 (C2, C4), 143.6 (C8a), 138.3 (C6), 133.7 (CH), 128.7 (CH), 125.1 (C4a), 123.1 (CH), 121.9 (CH), 21.9 (6-Me).

ν_{max} /cm⁻¹: 1573, 1558 (m, C=C, C=N).

25 *m/z*: 215 (14%, M⁺, ³⁷Cl₂), 213 (34%, M⁺, ³⁷Cl³⁵Cl), 211 (100%, M⁺, ³⁵Cl₂), 176
(28%, M⁺ - Cl), 140 (29%).

EXAMPLE 11. 2,4-Dimethoxy-6-methylquinoline

- 5 2,4-Dichloro-6-methylquinoline (**EXAMPLE 10**) (2.0 g, 9.4 mmol) was heated under reflux in methanolic sodium methoxide (2.0 g Na in 100 ml MeOH), for 40 hours, then cooled, poured into cold water and filtered to give the product as off-white needles. Yield 1.6 g, 84%. Melting point 53-55°C.
 Found M⁺: 203.0947. C₁₂H₁₃NO₂ requires 203.0946.
- 10 δ_H: 7.81 (1H, d, J 1.9, H5), 7.67 (1H, d, J 8.5, H8), 7.41 (1H, dd, J 8.5, 1.9, H7), 6.18 (1H, s, H3), 4.03 (3H, s, OMe), 3.95 (3H, s, OMe), 2.46 (3H, s, Me).
 δ_C: 163.9, 163.7 (C2, C4), 145.7 (C8a), 133.3 (C6), 132.2, 127.0, 121.4, (C5, C7, C8), 119.4 (C4a), 91.0 (C3), 56.0 (OMe), 53.7 (OMe), 21.8 (Me).
 n_{max} /cm⁻¹: 1631, 1609, 1581 (s, C=C and C=N).
- 15 m/z: 203 (93%, M⁺), 202 (100%, M⁺ - H), 174 (22%, M⁺ - OMe), 173 (36%, M⁺ - OMe, H).

EXAMPLE 12. 2,4-Dichloro-8-methoxyquinoline

o-Anisidine (3.0 g, 24 mmol) and malonic acid (3.7 g, 36 mmol) were heated under reflux in phosphorus oxychloride (35 ml) for 5 hours, followed by aqueous alkaline workup and filtration to give a brown solid. Soxhlet extraction of the crude

product with hexane gave the title compound as an off-white powder. Yield 1.45 g, 26%. Melting point 132-135°C.

Found M⁺: 226.9909. C₁₀H₇³⁵Cl₂NO requires 226.9905.

δ H: 7.74 (1H, dd, J 8.5, 1.1, H5), 7.55 (1H, dd, J 8.5, 7.0, H6), 7.53 (1H, s, H3),

5 7.14 (1H, dd, J 7.0, 1.1, H7), 4.07 (3H, s, OMe).

δ C: 154.8, 148.9, 144.3, 139.9 (C2, C4, C8, C8a), 128.1, 126.3 (C4a), 122.7, 115.7, 109.8, 56.3 (OMe).

η_{max} /cm⁻¹: 1616, 1576, 1559 (s, C=C, C=N).

m/z: 231 (19%, M⁺ ³⁷Cl₂), 230 (16%, M⁺ ³⁷Cl₂ - H), 229 (68%, M⁺ ³⁷Cl³⁵Cl), 228

10 (84%, M⁺ ³⁷Cl³⁵Cl - H), 227 (92%, M⁺ ³⁵Cl₂), 226 (100%, M⁺ ³⁵Cl₂ - H), 198

(94%), 162 (59%).

EXAMPLE 13. 2,4,8 -Trimethoxyquinoline

15

2,4-Dichloro-8-methoxyquinoline (EXAMPLE 12) (1.0 g, 4.4 mmol) was heated under reflux in methanolic sodium methoxide (1.0 g Na in 50 ml MeOH) for 48 hours. After cooling, the mixture was poured into cold water and the product, white fluffy needles, obtained by filtration. Yield 0.67 g, 70%. Melting point 20 149-150°C.

Found M⁺: 219.0899. C₁₂H₁₃NO₃ requires 219.0895.

δ H: 7.65 (1H, dd, J 8.2, 0.8, H5), 7.26 (1H, dd, J 8.2, 7.8, H6), 7.03 (1H, dd, J 7.8, 0.8, H7), 6.26 (1H, s, H3), 4.12 (3H, s, 8-OMe), 4.04 (3H, s, OMe), 3.98 (3H, s, OMe).

25 δ C: 164.4, 163.9 (C2, C4), 154.3 (C8), 138.7 (C8a), 123.6 (C6), 120.9 (C4a), 114.2, 109.9 (C5, C7), 91.5 (C3), 56.7, 56.1 53.8 (3 x OMe).

$\nu_{\text{max}}/\text{cm}^{-1}$: 1621, 1603, 1580 (s, C=C, C=N), 1082, 1044 (s, C-O-C).

m/z : 219 (10%, M⁺), 218 (90%, M⁺ - H), 204 (36%, M⁺ - Me), 189 (44%, M⁺ - 2Me).

5 **EXAMPLE 14. 2,4-Dichloro-6-methoxyquinoline**

10 *p*-Anisidine (5.0 g, 41 mmol), malonic acid (6.5 g, 63 mmol), and phosphorus oxychloride (40 ml) were heated under reflux for 4 hours. Standard workup gave the crude product as a black solid, from which Soxhlet extraction with hexane yielded 5.1 g, 55% of the title compound as white needles. Melting point: 168-170°C.

15 Found M⁺: 226.9917. C₁₀H₇³⁵Cl₂NO requires 226.9905.
 δ H: 7.84 (1H, d, J 9.1, H8), 7.40 (1H, s, H3), 7.35 (1H, dd, J 9.1, 2.7, H7), 7.31 (1H, d, J 2.7, H5), 3.89 (3H, s, OMe).

16 δ C: 158.9, 147.0, 144.1, 142.7 (C2, C4, C6, C8a), 130.5 (CH), 126.3 (C4a), 124.1 (CH), 122.0 (CH), 102.0 (C3), 55.8 (OMe).
 $\nu_{\text{max}}/\text{cm}^{-1}$: 1622, 1563 (s, C=C and C=N).

20 m/z : 229 (36%, M⁺ ³⁵Cl³⁷Cl), 227 (49%, M⁺ ³⁵Cl₂), 143 (41%), 113 (66%).

EXAMPLE 15. 2,4,6-Trichloroquinoline

5 4-Chloroaniline (7.0 g, 54 mmol), malonic acid (8.5 g, 82 mmol) and phosphorus oxychloride (50 ml) were heated under reflux for 6 hours. Standard aqueous workup gave the crude product as a red-brown solid. Soxhlet extraction with hexane gave the pure product as a yellow powder. Yield 3.0 g, 24%. Melting point 116-118°C.

10 Found M⁺: 230.9417. $\text{C}_9\text{H}_4^{35}\text{Cl}_3\text{N}$ requires 230.9409.

δH : 8.17 (1H, d, J 2.3, H5), 7.97 (1H, d, J 8.9, H8), 7.73 (1H, dd, J 8.9, 2.3, H7), 7.54 (1H, s, H3).

δC : 150.2 (C2), 146.5 (C4), 143.3 (C8a), 134.2 (C6), 132.5 (C8), 130.6 (C7), 125.9 (C4a), 123.3 (C5), 122.8 (C3).

15 ν_{max} /cm⁻¹: 1571 (s, C=C or C=N).

m/z: 235 (36%, M⁺ $^{37}\text{Cl}_2^{35}\text{Cl}$), 233 (97%, M⁺ $^{37}\text{Cl}^{35}\text{Cl}_2$), 231 (100%, M⁺ $^{35}\text{Cl}_3$), 196 (54%, M⁺ - Cl), 163 (13%, $\text{C}_9\text{H}_4^{37}\text{ClN}^+$), 161 (38%, $\text{C}_9\text{H}_4^{35}\text{ClN}^+$).

EXAMPLE 16. 2,4-Dichloro-5,7-dimethoxyquinoline

20 3,5-Dimethoxyaniline (3.0 g, 20 mmol) and malonic acid (3.1 g, 30 mmol) were heated under reflux in phosphorus oxychloride (30 ml) for 5 hours. The mixture was poured into crushed ice and made alkaline with 5M NaOH, then filtered to

give the crude product as a black solid. Soxhlet extraction with hexane furnished the product as pale yellow needles. Yield 0.9 g, 18%. Melting point: 160-162°C dec.

Found M⁺: 257.0007. C₁₁H₉³⁵Cl₂NO₂ requires 257.0010.

δH: 7.22 (1H, s, H3), 6.94 (1H, d, J 2.3, H8), 6.53 (1H, d, J 2.3, H6), 3.92 (3H, s, OMe), 3.91 (3H, s, OMe).

δC: 162.5, 157.5, 152.4, 150.7 (C2, C4, C5, C7), 143.3 (C8a), 121.4 (C3), 113.3 (C4a), 100.7, 100.5, (C5, C7) 56.3 (OMe), 56.1 (OMe).

ν_{max} / cm⁻¹: 1617, 1577, 1558 (s, C=C, C=N).

m/z: 261 (11%, M⁺ ³⁷Cl₂), 259 (54%, M⁺ ³⁷Cl³⁵Cl), 257 (100%, M⁺ ³⁵Cl₂), 212 (8%), 149 (9%).

EXAMPLE 17. 2,4-Dichloro-5-methylquinoline

8-Amino-2,4-dichloro-5-methylquinoline (EXAMPLE 45) (0.10 g, 0.44 mmol) was added to 49% sulfuric acid (6.0 ml) at 0°C, with stirring. Powdered sodium nitrite (35 mg, 0.50 mmol) was added and the mixture maintained at 0°C for 15 minutes before pouring into 30% hypophosphorous acid (20 ml) at 0°C. The reaction mixture was then slowly warmed to 40°C, until evolution of nitrogen ceased. The mixture was poured into crushed ice, neutralised with 2M NaOH, and extracted with diethyl ether (3 x 50 ml). The combined ether layers were dried over MgSO₄, and the solvent evaporated under reduced pressure to give a pale orange solid, R_f (9:1 hexane:EtOAc) 0.52. Yield 75 mg, 80%. Melting point: 126-129°C.

Found M⁺: 210.9998. C₁₀H₇³⁵Cl₂N requires 211.0081.

δ H: 7.89 (1H, d, *J* 8.4, H8), 7.60 (1H, dd, *J* 8.4, 7.2, H7), 7.46 (1H, s, H3), 7.37 (1H, d, *J* 7.2, H6), 3.01 (3H, s, 5-Me).

δ C: 150.2, 149.0, 144.5, 135.7, 131.2, 130.7, 128.2, 124.6, 123.7, 25.2 (5-Me).

5 η_{max} /cm⁻¹: 1570, 1557 (s, C=C, C≡N).

m/z: 215 (11%, M⁺ ³⁷Cl₂), 213 (64%, M⁺ ³⁷Cl³⁵Cl), 211 (100%, M⁺ ³⁵Cl₂), 176 (34%, M⁺ - Cl), 140 (25%).

EXAMPLE 18. 2-Methoxyquinoline

4-Chloro-2-methoxyquinoline (**EXAMPLE 4B**) (0.40 g, 2.1 mmol), zinc dust (0.70 g, 11 mmol) and ammonium chloride (0.70 g, 13 mmol) were heated under reflux in 50% aqueous ethanol (30 ml) for 2 hours. After cooling, the mixture was extracted with diethyl ether (3 x 30 ml), the combined organic extracts were dried (MgSO₄), and the solvent removed *in vacuo* to give a brown oil which was purified by column chromatography (9:1 hexane:EtOAc). The title compound (R_f 0.35) was obtained as a sweet-smelling colourless oil. Yield 0.25 g, 75%.

15 Found M⁺: 159.0674. C₁₀H₉NO requires 159.0684.
 20 δ H: 7.95 (1H, d, *J* 8.8, H4), 7.85 (1H, d, *J* 8.4, H8), 7.70 (1H, d, *J* 8.0, H5), 7.61 (1H, dd, *J* 8.4, 7.0, H7), 7.36 (1H, dd, *J* 8.0, 7.0, H6), 6.89 (1H, d, *J* 8.8, H3), 4.07 (3H, s, OMe).

δ C: 162.8 (C2), 147.0 (C3), 139.1 (C4), 129.9, 127.9, 127.6, 125.5 (C4a), 124.4, 113.5 (C3), 53.8 (OMe).

25 η_{max} /cm⁻¹: 3060, 3010, 2944 (m, C-H), 1619, 1571 (s, C=C, C≡N), 1026 (s, C-O).

m/z: 159 (100%, M⁺), 158 (98%, M⁺ - H), 129 (80%, C₉H₇N⁺).

EXAMPLE 19. 3-Bromo 2,4-dimethoxyquinoline

5 2,4-Dimethoxyquinoline (**EXAMPLE 4A**) (1.5 g, 7.9 mmol) was dissolved in dry THF (25 ml) and cooled to 0°C under argon. Then *n*-butyllithium (4.8 ml of a 2.5M solution in hexanes, 12 mmol) was added dropwise and the mixture was stirred at 0°C for 45 minutes. 1,2-Dibromo-tetrafluoroethane (3.3 g, 12.6 mmol) in THF (10 ml) was added slowly over 5 minutes. Stirring was continued at 0°C for 10 minutes and then with warming to room temperature for 1 hour. The colour changed from purple to black/brown. The mixture was poured into water and extracted with ether (4 x 100 ml). The organic extracts were dried (MgSO_4) and the solvent removed *in vacuo* to leave a black sticky residue. TLC (9:1 hexane:EtOAc) showed 2 spots; R_f 0.45 and baseline (highly coloured). Column chromatography (9:1 hexane:EtOAc) furnished the pure product (R_f 0.45) as off-white plates. Yield 0.9 g, 43%. Melting point: 67-69°C.

10 Found M^+ : 266.9895. $\text{C}_{11}\text{H}_{10}^{79}\text{BrNO}_2$ requires 266.9894.

15 δH : 7.97 (1H, dd, J 8.2, 1.1, H5), 7.84 (1H, dd, J 8.5, 1.1, H8), 7.64 (1H, ddd, J 8.5, 7.0, 1.1, H7), 7.41 (1H, ddd J 8.2, 7.0, 1.1, H6), 4.14 (3H, s, OMe), 4.08 (3H, s, OMe).

20 δC : 162.4 (C2), 159.0 (C4), 145.9 (C8a), 130.2, 127.3, (C7, C8), 124.5, 122.0, (C5, C6), 100.4 (C4a), 61.6 (MeO), 54.8 (MeO). No signal observed for C3.

25 η_{max} /cm⁻¹: 1580, 1568 (s, C=C, C=N).

m/z : 267 (93%, $M^+ {^{79}\text{Br}}$), 266 (95%, $M^+ - \text{H}$), 239 (62%, $M^+ - \text{OMe}$), 237 (56%, $M^+ - \text{OMe}$) (N.B. M^+ , ^{81}Br lost due to coincidence with PFK internal reference).

EXAMPLE 20. 2,4 -Dimethoxy-3-(3methylbut-2-enyl)quinoline

5 2,4-Dimethoxyquinoline (**EXAMPLE 4A**) (2.0 g, 11 mmol) in dry THF (10 ml) was cooled to 0°C under argon and *n*-butyllithium (6.2 ml of a 2.5M solution in hexane) was added dropwise, with stirring. The mixture was stirred at 0°C under argon for 30 minutes, then 1-bromo-3-methylbut-2-ene (2.8 g, 19 mmol) was added dropwise over 5 minutes. The mixture was stirred at 0°C for 30 minutes and then allowed to warm to room temperature with stirring for a further hour. The reaction mixture was poured into water and extracted with ether (4 x 30 ml) to give the crude product as a yellow/brown oil. Column chromatography (4:1 hexane:EtOAc) yielded the pure product (*R*_f 0.57) as a yellow-brown oil. Yield 2.4 g, 88%.

10 Found M⁺: 257.1417. *C₁₆H₁₉NO₂* requires 257.1416.

15 δ_{H} : 7.92 (1H, ddd, *J* 8.2, 1.5, 0.5, H5), 7.82 (1H, ddd, *J* 8.5, 1.2, 0.5, H8), 7.56 (1H, ddd, *J* 8.5, 6.9, 1.5, H7), 7.35 (1H, ddd, *J* 8.2, 6.9, 1.2, H6), 5.22 (1H, br t, *J* 6.9, C=CH), 4.08 (3H, s, 2-OMe), 3.95 (3H, s, 4-OMe), 3.45 (2H, d, *J* 6.9, CH₂), 1.81 (3H, d, *J* 0.7, =CCH₃), 1.69 (3H, d, *J* 1.2, =CCH₃).

20 δ_{C} : 162.5 (C4), 161.6 (C2), 146.1 (C8a), 132.3 (=CMe₂), 128.9, 127.3, (C7, C8) 123.6, 121.9, 121.8, (C5, C6 and =CH), 121.2 (C3), 116.9 (C4a), 62.3 (OMe), 53.8 (OMe), 25.8 (CH₃), 23.3 (CH₂), 18.0 (CH₃).

25 ν_{max} /cm⁻¹: 3070 (s, C-H), 1620, 1605, 1575 (s, C=C and C=N).

m/z : 257 (100%, M⁺), 242 (82%, M⁺- Me), 202 (52%, M⁺ - Me₂C=CH).

EXAMPLE 21. 3-(1-Hydroxy-3-methyl-but-2-enyl)-4-methoxy-1*H*-quinolin-2-one

5 4-Methoxyquinolin-2-one (0.80 g, 4.6 mmol) in THF (20 ml) was cooled to -78°C, and *n*-butyllithium (9.2 mmol) was added slowly, with stirring. The mixture was stirred at -78°C for 15 minutes, then allowed to warm to room temperature for 15 minutes, before cooling to -78°C once more. 3-Methylbut-2-enal (0.77 g, 10 9.2 mmol) in THF (5 ml) was added dropwise, and the mixture was stirred for 15 minutes before being allowed to warm to room temperature and stirred for a further hour. The yellow solution was poured into water, and extracted with ether (3 x 50 ml). The combined organic layers were dried over MgSO₄, and the solvent removed *in vacuo* to give a white powder, R_f (1:1 hexane:ethyl acetate) 0.30. Yield 0.18 g, 15%. Melting point 128-130°C.

15 Found M⁺: 259.1179. C₁₅H₁₇NO₃ requires 259.1208.
 δ H: 12.73 (1H, s, NH/OH), 7.73 (1H, d, J 8.1, H5), 7.47 (1H, m, H7), 7.38 (1H, d, J 8.0, H8), 7.20 (1H, m, H6), 5.77 (1H, d, J 9.2, CH-OH), 5.69 (1H, dd, J 10.5, 9.2, CHOH), 5.30 (1H, d, J 10.5, =CH), 3.92 (3H, s, OMe), 1.81 (3H, s, Me), 1.66 (3H, s, Me).
 δ C: 166.2, 161.5 (C2, C4), 137.7, 135.5 (C8a, Me₂C=), 130.9, (CH) 125.9 (CH), 123.4 (CH), 123.1 (CH), 117.1 (C4a), 116.4 (CH), 64.9 (OMe), 62.5 (OMe), 26.0 (Me), 18.3 (Me). No signal observed for C3.
 ν_{max} / cm⁻¹: 3462 (m, OH), 1644 (s, C=O), 1608 (s, C=C).
25 m/z (Cl): 259 (15%, M⁺), 242 (43%, M⁺ - OH), 241 (17%, M⁺ - H₂O), 188 (49%), 175 (100%, M⁺ - Me₂C=CHCHOH).

EXAMPLE 22. 2,4-Dimethoxy-8-methylquinoline

- 5 2,4-Dichloro-8-methylquinoline (**EXAMPLE 9**) (2.0 g, 9.4 mmol) was heated under reflux in methanolic sodium methoxide (from 4.0 g Na in 100 ml MeOH) for 40 hours, then cooled and poured into ice-cold water. The product was obtained by filtration as off-white needles. Yield 1.7 g, 89%. Melting point: 52-54°C.
 Found M⁺: 203.0911. C₁₂H₁₃NO₂ requires 203.0946.
- 10 δH: 7.89 (1H, d, J 8.2, H5), 7.45 (1H, d, J 7.0, H7), 7.21 (1H, dd, J 8.2, 7.0, H6), 6.20 (1H, s, H3), 4.05 (3H, s, OMe), 3.94 (3H, s, OMe), 2.67 (3H, s, 8-Me)
 δC: 164.1 (C4), 162.5 (C2), 145.8 (C8a), 134.9 (C8), 130.1 (C7), 122.7 (C6), 119.4 (C5), 118.9 (C4a), 90.1 (C3), 55.6 (OMe), 53.1 (OMe), 18.0 (8-Me).
 νmax /cm-1: 1620, 1580 (s, C=C, C=N).
- 15 m/z: 203 (51%, M⁺), 202 (32%, M⁺ - H), 193 (17%), 188 (22%, M⁺ - Me), 173 (12%) 162 (16%).

EXAMPLE 23. 2,4-Dimethoxy-3-(3-methyl but-2-enyl)-8-methylquinoline

20

2,4-Dimethoxy-8-methylquinoline (**EXAMPLE 22**) (1.0 g, 4.9 mmol) was dissolved in dry THF (10 ml) and cooled to 0°C under argon. n-Butyllithium (3.0 ml of a 2.5M solution in hexane, 7.5 mmol) was added slowly with stirring, and the mixture

was stirred for 30 minutes at 0°C. 1-Bromo-3-methylbut-2-ene (1.3 g, 8.7 mmol) in THF (8 ml) was then added dropwise over 5 minutes. Stirring was continued for 30 minutes at 0°C and then the mixture was warmed to room temperature over 45 minutes. The resultant yellow-brown solution was poured into cold water and extracted with ether (3 x 50 ml). The combined ether extracts were dried over MgSO₄. Removal of solvent *in vacuo* yielded the crude product, a brown oil. Column chromatography (9:1 hexane:EtOAc) furnished the pure quinoline as a yellow-brown oil. Yield 1.1 g, 82%. R_f (9:1 hexane:EtOAc) 0.68.

5 Found M⁺: 271.1562 . C₁₇H₂₁NO₂ requires 271.1572.
 10 δH: 7.77 (1H, d, J 8.0, H5), 7.41 (1H, d, J 7.2, H7), 7.24 (1H, dd, J 7.2, 8.0, H6),
 5.23 (1H, br t, J 7.0, =CH), 4.08 (3H, s, MeO), 3.92 (3H, s, MeO), 3.45 (2H, d,
 J 7.0, CH₂), 2.68 (3H, s, 8-Me), 1.81 (3H, s, =CCH₃), 1.68 (3H, d, J 0.8,
 =CCH₃)
 15 δC: 161.8, 161.3 (C2 and C4), 144.8 (C9), 135.4, 132.1 (C8 and =C(CH₃)₂),
 129.1, 123.2, 122.0, 120.9 (C5,6,7 and =CH), 119.6 (C10), 116.3 (C3), 62.2
 (MeO), 53.5 (MeO), 25.8 (CH₃), 23.2 (CH₂), 17.9, 17.8(8-Me, CH₃).
 ν_{max} /cm⁻¹: 1619, 1583 (m, C=C, C=N).
 m/z: 271 (100%, M⁺), 256 (78%, M⁺ - Me), 224 (34%), 202 (33%,
 C₁₂H₁₂NO₂⁺).

20

EXAMPLE 24. 4-Hydroxy-2-methoxy-8-methyl-3(3-methyl-but-2-enyl)quinoline

25

Sodium hydride (0.70 g of a 60% mineral oil dispersion, 18 mmol) was suspended in DMF (20 ml) and 2-propanethiol (0.57 g, 7.5 mmol) was added. The mixture

was stirred for 5 minutes. A solution of 2,4-dimethoxy-8-methyl-3-(3-methylbut-2-enyl)quinoline (EXAMPLE 23) (0.80 g, 3.0 mmol) in DMF (10 ml) was added, followed by heating under reflux for 3 hours. After cooling the reaction mixture was neutralised with 2M hydrochloric acid, and then extracted with ether (3 x 50 ml). The ether layers were dried over MgSO₄ and the solvent was evaporated to give a brown oil. Column chromatography (4:1 hexane:EtOAc) yielded 0.3 g, 39% of the product as a yellow solid. Melting point: 164-166°C.
Found M⁺: 257.1418 . C₁₆H₁₉NO₂ requires 257.1416.

δ H : 7.82 (1H, d, J 8.1, H5), 7.42 (1H, d, J 7.0, H7), 7.22 (1H, dd, J 8.1, 7.0, H6), 6.59 (1H, br s, OH), 5.37 (1H, br t, J 7.3, =CH), 4.06 (3H, s, OMe), 3.51 (2H, d, J 7.3, CH₂), 2.66 (3H, s, 8-Me), 1.86 (3H, s, =CCH₃), 1.80 (3H, d, J 0.9, =CCH₃)
 δ C: 160.0, 158.5 (C2, C4), 144.0 (C8a), 137.0, 134.9 (C8 and =CMe₂), 129.4, 122.7, 121.1, 118.9 (C5, C6, C7 and C=CH), 118.0 (C4a), 104.4 (C3), 53.5 (OMe), 25.9 (8-Me), 22.9 (CH₂), 18.1 (Me), 17.8 (Me).

15 ¹H NOESY spectrum (DMSO d₆): OH at δ 10.2 ppm correlates weakly with H5 at δ 8.0 ppm.

ν_{max} /cm⁻¹: 3445 (m, O-H), 1619, 1586, (s, C=C, C=N).

m/z: 257 (100%, M⁺), 242 (41%, M⁺ - Me), 240 (55%), 202 (92%, M⁺ - Me₂C=CH).

20

EXAMPLE 25A. 2,4-Dichloro-5-methylquinoline and

EXAMPLE 25B. 2,4-dichloro-7-methylquinoline

25

m-Toluidine (5.0 g, 47 mmol) and malonic acid (7.3 g, 70 mmol) were heated under reflux in phosphorus oxychloride (40 ml) for 5 hours, yielding the crude product as an ochre solid after aqueous workup. Continuous (Soxhlet) extraction

with hexane furnished 7.7 g, 77% of a mixture of the two isomeric products; R_f (9:1 hexane:EtOAc) 0.53, one spot. The mixture was used in the next step without separation of isomers.

Found M^+ : 210.9954. $C_{10}H_7^{35}Cl_2N$ requires 210.9955.

5 η_{max} /cm⁻¹: 1569 (m, C=C or C=N).

m/z: 215 (55%, M^+ , $^{37}Cl_2$), 213 (93%, M^+ , $^{37}Cl^{35}Cl$), 211 (100%, M^+ , $^{35}Cl_2$), 176 (85%, M^+ - Cl), 140 (84%, M^+ - 2Cl, H).

¹H NMR showed the two products in a 7:5 ratio of 5-methyl:7-methyl:

5-Methyl isomer (EXAMPLE 25A)

10 δ_H : 7.87 (1H, dd, *J* 7.3, 0.6, H8), 7.58 (1H, dd, *J* 8.2, 7.3, H7), 7.41 (1H, s, H3), 7.35 (1H, dd, *J* 8.2, 0.6, H6), 2.99 (3H, s, 5-Me).

7-Methyl Isomer (EXAMPLE 25B)

δ_H : 8.02 (1H, d, *J* 8.5, H5), 7.77 (1H, d, *J* 1.0, H8), 7.44 (1H, dd, *J* 8.5, 1.0, H6), 7.40 (1H, s, H3), 2.56 (3H, s, 7-Me).

15

EXAMPLE 26A. 2,4-Dimethoxy-5-methylquinoline and

EXAMPLE 26B. 2,4-dimethoxy-7-methylquinoline

20

The isomeric mixture of 2,4-dichloromethylquinolines (4.0 g, 19 mmol) was heated under reflux in sodium methoxide (2.0 g Na in 75 ml MeOH) for 50 hours, then cooled, poured into cold water and filtered under suction to give the product as an off-white powder, yield 2.9 g, 75%. R_f (9:1 hexane:EtOAc) 0.39, broad spot. The mixture was used in the next step.

25

Found M⁺: 203.0959. C₁₂H₁₃NO₂ requires 203.0946.

η_{max} /cm⁻¹: 1612, 1590 (s, C=C, C=N), 1207 (s, C-O-C).

m/z: 203 (100%, M⁺), 202 (75%, M⁺ - H), 173 (26%, M⁺ - 2Me).

¹H NMR of mixture showed the two isomers in the ratio 11:10 5-methyl:7-methyl.

5 **5-Methyl isomer (EXAMPLE 26A)**

δ H: 7.61 (1H, d, J 8.3, H8), 7.41 (1H, dd, J 8.3, 7.2, H7), 7.06 (1H, d, J 7.2, H6), 6.17 (1H, s, H3), 4.03 (3H, s, OMe), 3.90 (3H, s, OMe), 2.78 (3H, s, 5-Me).

7-Methyl isomer (EXAMPLE 26B)

δ H: 7.92 (1H, d, J 8.3, H5), 7.58 (1H, d, J 0.6, H8), 7.15 (1H, dd, J 8.3, 0.6, H6), 6.15 (1H, s, H3), 4.04 (3H, s, OMe), 3.96 (3H, s, OMe), 2.49 (3H, s, 7-Me)

EXAMPLE 27A. 2,4-Dimethoxy-5-methyl-3-(3-methylbut-2-enyl)quinoline
and

EXAMPLE 27B. 2,4-dimethoxy-7-methyl-3-(3-methylbut-2-enyl)quinoline

15

20

The isomeric 2,4-dimethoxyquinoline mixture (2.0 g, 9.9 mmol) was dissolved in THF (40 ml) and cooled to 0°C. n-Butyllithium (6.0 ml of 2.5M solution, 15 mmol) was added dropwise, and the deep red solution was stirred at 0°C for 30 minutes. 1-Bromo-3-methylbut-2-ene (2.7 g, 18 mmol) was added slowly, and the mixture stirred for 1 hour whilst slowly warming to room temperature. The mixture was poured into cold water, extracted with ether (3 x 30 ml), dried, and the solvent removed to give the product as a brown oil. Yield 1.46 g, 54%. R_f (9:1

hexane:EtOAc) 0.52, broad single spot. The mixture was used in the next step without further purification.

Found M⁺: 271.1572 . C₁₇H₂₁NO₂ requires 271.1572.

ν_{max} /cm⁻¹: 2946 (s, C-H), 1606, 1580 (s, C=N, C=C)

5 m/z : 271 (91%, M⁺), 256 (76%, M⁺ - Me), 202 (27%, C₁₂H₁₂NO₂⁺), 51 (100%).

¹H NMR spectrum showed the two isomers in a 5:4 ratio; some signals coincident.

5-Methyl isomer (EXAMPLE 27A)

10 δ_{H} : 7.66 (1H, d, J 8.2, H8), 7.39 (1H, d, J 8.2, 7.2, H7), 7.08 (1H, d, J 7.2, H6), 5.27-5.20 (1H, m, Me₂C=CH), 4.06, (3H, s, OMe), 3.76 (3H, s, OMe), 3.45-3.42 (2H, m, Ar-CH₂), 2.80 (3H, s, 5-Me), 1.80 (3H, s, Me), 1.69 (3H, s, Me).

7-Methyl isomer (EXAMPLE 27B)

15 δ_{H} : 7.78 (1H, d, J 8.3, H5), 7.62 (1H, s, H8), 7.17 (1H, d, J 8.3, H6), 5.27-5.20 (1H, m, Me₂C=CH), 4.06, (3H, s, OMe), 3.91 (3H, s, OMe), 3.45-3.42 (2H, m, Ar-CH₂), 2.48 (3H, s, 7-Me), 1.80 (3H, s, Me), 1.69 (3H, s, Me).

EXAMPLE 28A. 4-Hydroxy-2-methoxy-5-methyl-3-(3-methylbut-2-enyl)quinoline and

20 **EXAMPLE 28B. 4-Hydroxy-2-methoxy-7-methyl-3-(3-methylbut-2-enyl)quinoline**

Sodium hydride (0.85 g of a 60% dispersion in mineral oil, 21 mmol) was washed with hexane under argon, and then suspended in dry DMF (30 ml). 2-Propanethiol (0.68 g, 9.0 mmol) was added, and the mixture stirred for 5 minutes. The mixture of isomers **28A** and **28B** (1.0 g, 3.7 mmol) was then added, and the mixture heated under reflux for 3 hours. After aqueous workup as for previous demethylations the crude product was obtained as a yellow solid. Tlc showed 2 spots, R_f 0.30 and 0.40 (6:1 hexane:EtOAc). Column chromatography (6:1) yielded the two isomeric products, R_f 0.40 and R_f 0.30. NMR identified the higher R_f component as the 5-methyl isomer and the other as the 7-methyl isomer.

15 Data for 4-hydroxy-2-methoxy-5-methyl-3-(3-methylbut-2-enyl)quinoline
(EXAMPLE 28A)

Bright yellow solid, R_f (6:1 hexane:EtOAc) 0.40. Yield 0.1g. Melting point 118-120°C.
 Found M⁺: 257.1425. $\text{C}_{16}\text{H}_{19}\text{NO}_2$ requires 257.1416.
 δH: 7.47 (1H, d, J 8.2, H8), 7.24 (1H, m, H7), 6.91 (1H, d, J 7.0, H6), 5.14 (1H, br t, C=CH), 3.95 (3H, s, OMe), 3.32 (2H, d, J 6.3, CH₂), 2.76 (3H, s, 5-Me), 1.69 (3H, s, CH₃), 1.63 (3H, s, CH₃).

δ_{C} : 160.3 (C2), 145.5 (C8a), 136.5, 135.8 (C5 and =CMe₂), 129.3, 126.6, 123.3, 121.9 (C6, C7, C8 and C=CH), 119.4 (C4a), 106.3 (C3), 55.0 (OMe), 26.2 (Me), 24.5 (Me), 22.8 (CH₂), 18.3 (Me). No signal was observed for C4.
 ν_{max} /cm⁻¹: 3400 (br, OH), 1617, 1584, 1561 (s, C=C, C=N).

m/z: 257 (100%, M⁺), 242 (20%, M⁺ - Me), 202 (64%, M⁺ - CH=C(Me)₂).

Data for 4-hydroxy 2-methoxy 7-methyl 3-(3-methylbut-2-enyl)quinoline (EXAMPLE 28B)

Off-white powder, R_f (6:1 hexane:EtOAc) 0.30. Yield 0.15g. Melting point 149-151°C.

10 Found M⁺: 257.1412.. C₁₆H₁₉NO₂ requires 257.1416.

δ_{H} : 7.88 (1H, d, J 8.3, H5), 7.55 (1H, s, H8), 7.14 (1H, d, J 8.3, H6), 5.36 (1H, t, J 7.2, =CH), 4.04 (3H, s, OMe), 3.48 (2H, d, J 7.2, CH₂), 2.47 (3H, s, 7-Me), 1.84 (3H, s, CH₃), 1.79 (3H, s, CH₃).

15 δ_{C} : 161.9 (C2), 139.9, 136.8 (C8a and C7), 128.7 (CH), 127.4 (Me2C=), 126.0, 125.5, 121.6 (CH), 117.2 (C4a), 104.7 (C3), 54.3 (OMe), 26.2 (Me), 23.6 (CH₂), 22.1 (Me), 18.4 (Me). No signal was observed for C4.

ν_{max} /cm⁻¹: 3200 (m, O-H), 1635, 1576, (s, C=C, C=N).

m/z: 257 (100%, M⁺), 242 (39%, M⁺ - Me), 202.1 (56%, M⁺ - CH=C(Me)₂).

20 **EXAMPLE 29. 2,4-Dimethoxy-6-methyl-3-(3-methyl-2-butenyl)quinoline**

25 2,4-Dimethoxy-6-methylquinoline (EXAMPLE 11) (0.80 g, 4.0 mmol) was dissolved in dry THF (20 ml) and cooled to 0°C, with stirring. *n*-Butyllithium (3.7 ml of a 1.6M solution in hexanes) was added dropwise, and the mixture stirred at 0°C for 40 minutes. 1-Bromo-3-methyl-2-butene (1.2 g, 8.1 mmol) was then added, and the resultant brown solution allowed to warm to room temperature

over a period of 1 hour. The mixture was poured into cold water, and extracted with diethyl ether (3 x 30 ml). The combined organic extracts were dried over MgSO₄, and the solvent removed *in vacuo* to give the crude product as a brown liquid. Column chromatography (9:1 hexane:EtOAc) yielded the title compound as
5 a pale brown oil, R_f 0.70. Yield 0.78 g, 73%.

Found M⁺: 272.1638. C₁₇H₂₂NO₂ requires 272.1651.
δH: 7.71 (1H, d, J 8.5, H8), 7.67 (1H, d, J 1.9, H5), 7.38 (1H, dd, J 8.5, 1.9, H7),
5.22 (1H, t, J 6.9, Me₂C=CH), 4.06 (3H, s, OMe), 3.93 (3H, s, OMe), 3.43 (2H,
d, J 6.9, CH₂), 2.49 (3H, s, 6-Me), 1.81 (3H, s, Me), 1.68 (3H, s, Me).
δC: 162.0, 161.1 (C2, C4), 144.4 (C8a), 133.1, 132.1 (C6 and C=CMe₂), 130.8,
127.0, 121.9, 121.0 (C5, C7, C8, C=CH), 120.8 (C4a), 116.7 (C3), 62.1 (OMe),
53.6 (OMe), 25.7 (Me), 23.2 (CH₂), 21.6 (Me), 17.9 (Me).
ν_{max} /cm⁻¹: 2926 (s, C-H), 1609, 1572 (s, C=C, C=N).
m/z: 272 (100%, M⁺), 271 (52%, M⁺ - H), 270 (51%, M⁺ - 2H), 216 (33%,
15 C₁₃H₁₄NO₂⁺).

EXAMPLE 30. 8-tert-Butyl-2,4-dichloroquinoline

20 2-*tert*-Butylaniline (7.0 g, 47 mmol) and malonic acid (7.3 g, 70 mmol) were heated under reflux in phosphorus oxychloride (40 ml) for 6 hours. Continuous hexane extraction of the crude product obtained after aqueous alkaline workup yielded a brown oil. TLC (95:5 hexane:EtOAc) showed 3 spots; R_f 0.75, 0.12, baseline. Column chromatography (95:5 hexane:EtOAc) furnished the pure quinoline (R_f
25 0.75) as yellow plates. Yield 1.0 g, 8%. Melting point 56-58°C.
Found M⁺: 253.0121. C₁₃H₁₃³⁵Cl₂N requires 253.0425.

δ H: 8.09 (1H, dd, J 8.3, 1.3, H5), 7.75 (1H, dd, J 7.5, 1.3, H7), 7.51 (1H, dd, J 8.3, 7.5, H6), 7.46 (1H, s, H3), 1.64 (9H, s, tBu).

δ C: 148.2, 147.0, 146.3, 144.5 (C2, C4, C8, C8a), 128.3, 127.4, 126.2 (C4a), 122.7, 121.2, 36.7 (CMe₃) 31.1 ((CH₃)₃).

5 ν_{max} /cm⁻¹: 1578, 1562 (s, C≡N, C=C)

m/z: 257 (6%, M⁺ 37Cl₂), 253 (41%, M⁺ 35Cl₂), 238 (89%, M⁺ 35Cl₂ - Me), 211 (100%, M⁺ - C₃H₆).

EXAMPLE 31A. 8-tert-Butyl-2-chloro-4-methoxyquinoline and

10 **EXAMPLE 31B. 8-tert-butyl-4-chloro-2-methoxyquinoline**

8-tert-Butyl-2,4-dichloroquinoline (EXAMPLE 30) (0.7 g, 2.8 mmol) was heated under reflux in methanolic sodium methoxide (1.0 g Na in 50 ml MeOH) for 80 hours. TLC showed a mixture of products, R_f (hexane) 0.48, 0.22. Column chromatography (hexane) yielded the two isomeric chloromethoxyquinolines as white needles.

Data for 8-tert-butyl-4-chloro-2-methoxyquinoline (EXAMPLE 31A)

Yield 0.11g, 16%. R_f (hexane) 0.48. Melting point 54-56°C.

Found M⁺: 249.0917. C₁₄H₁₆³⁵ClNO requires 249.0920.

20 δ H: 8.03 (1H, dd, J 8.2, 1.4, H5), 7.67 (1H, dd, J 7.5, 1.4, H7), 7.38 (1H, dd, J 8.2, 7.5, H6), 7.02 (1H, s, H3), 4.07 (3H, s, OMe), 1.65 (9H, s, tBu).

δ C: 159.1 (C2), 146.2, 145.6, 144.3 (C4, C8, C8a), 127.6, 124.4, 124.1 (C4a), 122.7, 111.8 (C3), 54.2 (OMe), 36.4 (CMe₃), 30.5 ((CH₃)₃).

ν_{max} /cm⁻¹: 1608, 1574 (s, C=C, C=N).

m/z: 251 (16%, M⁺ ³⁷Cl), 250 (16%, M⁺ ³⁷Cl - H), 249 (48%, M⁺ ³⁵Cl), 248 (27%, M⁺ ³⁵Cl - H), 236 (33%, M⁺ ³⁷Cl - Me), 234 (100%, M⁺ ³⁵Cl - Me), 209 (34%, M⁺ ³⁷Cl - C₃H₆), 207 (72%, M⁺ - C₃H₆).

Data for 8-*tert*-butyl-2-chloro-4-methoxyquinoline (EXAMPLE 31B)

5 Yield 0.20g, 29%. R_f (hexane) 0.22. Melting point 96–98°C. (Found C: 67.71, H: 6.75, N: 5.32%. C₁₄H₁₆ClNO requires C: 67.33, H: 6.46, N: 5.61%).

Found M⁺: 249.0917. C₁₄H₁₆³⁵ClNO requires 249.0920.

δH: 8.02 (1H, dd, J 8.2, 1.4, H5), 7.66 (1H, dd, J 7.5, 1.4, H7), 7.40 (1H, dd, J 8.2, 7.5, H6), 6.69 (1H, s, H3), 4.01 (3H, s, OMe), 1.63 (9H, s, tBu).

10 δC: 163.9 (C4), 148.0, 147.1, 146.9 (C2, C8, C8a), 127.5, 125.5, 121.4 (C4a), 120.3, 100.4 (C3), 56.1 (OMe), 36.5 (CMe₃), 31.0 ((CH₃)₃).

ν_{max} /cm⁻¹: 1588, 1575 (s, C=C, C=N)

m/z: 251 (11%, M⁺ ³⁷Cl), 250 (15%, M⁺ ³⁷Cl - H), 249 (35%, M⁺ ³⁵Cl), 248

(28%, M⁺ ³⁵Cl - H), 236 (29%, M⁺ ³⁷Cl - Me), 234 (85%, M⁺ ³⁵Cl - Me), 209

15 (34%, M⁺ ³⁷Cl - C₃H₆), 207 (100%, M⁺ ³⁵Cl - C₃H₆).

EXAMPLE 32. 2,4-Dichloro-8-isopropylquinoline

20 2-Isopropylaniline (7.0 g, 52 mmol) and malonic acid (8.1 g, 78 mmol) were heated under reflux in phosphorus oxychloride (40 ml) for 6 hours. Standard aqueous workup gave the crude product as a brown solid. Soxhlet extraction (hexane, 4h) of the crude yielded the pure product as a colourless oil. Yield 3.3 g, 26%.

25 Found M⁺: 239.0250. C₁₂H₁₁³⁵Cl₂N requires 239.0269.

δ H: 8.00 (1H, dd, J 8.3, 1.4, H5), 7.66 (1H, dd, J 7.3, 1.4, H7), 7.57 (1H, dd, J 8.3, 7.3, H6), 7.45 (1H, s, H3), 4.22 (1H, septet, J 6.9, CHMe_2), 1.34 (6H, d, J 6.9, $(\text{CH}_3)_2$).

5 δ C: 148.5, 147.4, 146.2, 144.5 (C2, C4, C8, C8a), 127.8, 127.4, 125.3 (C4a), 121.8, 121.6, 27.5 (CHMe_2), 23.6 ($(\text{CH}_3)_2$).

n_{max} /cm⁻¹: 1607, 1564 (s, C=N, C=C).

m/z: 241 (26%, M⁺ $^{37}\text{Cl}^{35}\text{Cl}$), 239 (42%, M⁺ $^{35}\text{Cl}_2$), 226 (57%, M⁺ $^{37}\text{Cl}^{35}\text{Cl}$ - CH_3), 211 (36%, M⁺ - C_2H_4).

10 **EXAMPLE 33. 2,4-Dimethoxy-8-isopropylquinoline**

15 2,4-Dichloro-8-isopropylquinoline (EXAMPLE 32) (2.0 g, 8.3 mmol) was heated under reflux in methanolic sodium methoxide (1.5 g Na in 75 ml MeOH) for 48 hours, then cooled and poured into cold water. The product was obtained by filtration as white needles. Yield 1.1 g, 57%. Melting point 57-59°C.

Found M⁺: 231.1252. $\text{C}_{14}\text{H}_{17}\text{NO}_2$ requires 231.1259.

20 δ H: 7.95 (1H, dd, J 8.2, 1.5, H5), 7.55 (1H, dd, J 7.4, 1.5, H7), 7.34 (1H, dd, J 8.2, 7.4, H6), 6.26 (1H, s, H3), 4.19 (1H, septet, J 6.9, Ar $\text{CH}(\text{Me})_2$), 4.10 (3H, s, OMe), 3.99 (3H, s, OMe), 1.42 (6H, d J 6.9, $\text{CH}(\text{CH}_3)_2$).

25 δ C: 164.3, 162.4 (C2, C4), 145.0, 144.7 (C8, C8a), 125.8, 123.1, 119.3 (C5, C6, C7), 119.1 (C4a), 90.1 (C3), 55.7 (OMe), 53.2 (OMe), 28.1 (CHMe_2), 23.1 ($(\text{CH}_3)_2$).

n_{max} /cm⁻¹: 1619, 1602, 1586 (s, C=C, C=N).

25 m/z: 231 (73%, M⁺), 230 (56%, M⁺ - H), 216 (100%, M⁺ - Me), 203 (44%), 189 (26%).

EXAMPLE 34. 2,4-Dichloro-8-phenoxyquinoline

5

2-Phenoxyaniline (3.9 g, 21 mmol), malonic acid (3.3 g, 32 mmol) and phosphorus oxychloride (30 ml) were heated under reflux for 6 hours. Standard aqueous workup gave a brown solid, which was extracted continuously with hexane for 5 hours to give a dark orange solid. Further purification by column chromatography (9:1 hexane:EtOAc) was necessary to yield the pure product (R_f 0.65) as yellow needles. Yield 2.2 g, 36%. Melting point 90-92°C.

10

Found M⁺: 289.0041. C₁₅H₉³⁵Cl₂NO requires 289.0061.

15

δ_H: 7.88 (1H, dd, J 8.4, 1.2, H5), 7.57 (1H, s, H3), 7.49 (1H, dd, J 8.4, 7.9, H6), 7.42-7.37 (2H, m, H2' and H6'), 7.19 (1H, tt, J 7.4, 1.1, H4'), 7.16-7.12 (2H, m, H3' and H5'), 7.08 (1H, dd, J 7.9, 1.2, H7).

δ_C: 156.4 (C2), 154.0 (C4), 149.7 (C8a), 144.4, 140.6 (C1' and C8), 130.0 (ArH), 127.9 (ArH), 126.7 (C4a), 124.5 (ArH), 123.0 (ArH), 120.5 (ArH), 118.1 (ArH), 116.9 (ArH).

ν_{max}/cm⁻¹: 1590, 1572 (s, C=N, C=C).

20

m/z: 293 (27%, M⁺ ³⁷Cl₂), 292 (18%, M⁺ ³⁷Cl₂ - H), 291 (46%, M⁺ ³⁷Cl³⁵Cl), 290 (77%, M⁺ ³⁷Cl³⁵Cl - H), 289 (70%, M⁺ ³⁵Cl₂), 288 (100%, M⁺ ³⁵Cl₂ - H), 209 (27%).

EXAMPLE 35. 2,4-Dimethoxy-8-phenoxyquinoline

5 2,4-Dichloro-8-phenoxyquinoline (**EXAMPLE 34**) (0.70 g, 2.4 mmol) was heated under reflux in excess methanolic sodium methoxide (from 1.0 g Na in 60 ml MeOH) for 48 hours. The mixture was poured into cold water, left to stand for 1 hour and then filtered to give the title compound as a yellow powder. Yield 0.50 g, 74%. Melting point 90-92°C.

10 Found M⁺: 281.1065. C₁₇H₁₅NO₃ requires 281.1052.
δH: 7.87 (1H, dd, J 7.9, 1.5, H5), 7.35-7.23 (4H, m, ArH), 7.02-6.95 (3H, m, ArH), 6.20 (1H, s, H3), 3.98 (3H, s, OMe), 3.72 (3H, s, OMe).
δC: 164.0, 163.2, 159.3, 150.4 (C2, C4, C8, C1'), 140.0 (C8a), 129.3 (ArH), 123.1 (ArH), 121.9 (ArH), 121.1 (C4a), 120.9 (ArH), 118.0 (ArH), 117.3 (ArH), 91.0 (C3), 53.9 (OMe), 53.4 (OMe).

15 n_{max}/cm⁻¹: 3066 (m, Ar-H), 1623, 1603, 1583 (s, C=C, C=N), 1249, 1211, 1060 (s, C-O-C)

m/z: 281 (100%, M⁺), 280 (68%, M⁺ - H), 269 (21%), 201 (19%), 169 (23%), 151 (40%).

20

EXAMPLE 36. 2,4-Dichloro-6-hydroxyquinoline

2,4-Dichloro-6-methoxyquinoline (**EXAMPLE 14**) (2.0 g, 8.8 mmol) was dissolved in dry dichloromethane (80 ml) and cooled to -78°C. Boron tribromide (10 ml of a 1M solution in dichloromethane, 10 mmol) was added dropwise over 15 minutes, with stirring. The reaction mixture was then allowed to attain room temperature overnight before shaking with ice-cold water. An ochre solid was precipitated, which was redissolved by the addition of ether (100 ml). The mixture was then extracted with ether (3 x 75 ml). The combined organic layers were extracted with 2M sodium hydroxide (2 x 30 ml), and then dilute HCl was added to the combined aqueous extracts until a precipitate appeared. Extraction with ether (3 x 75 ml) followed by drying of the ether extracts (MgSO_4) and removal of the solvent *in vacuo* yielded the pure quinoline as a pale yellow solid. Yield 1.0 g, 53%. Melting point 182-184°C.

Found M^+ : 212.9767. $C_9H_5^{35}\text{Cl}_2\text{NO}$ requires 212.9748.
 δ_H (DMSO d_6): 10.7 (1H, s, OH), 7.93 (1H, d, J 9.1, H8), 7.84 (1H, s, H3), 7.49 (1H, dd, J 9.1, 2.6, H7), 7.42 (1H, d, J 2.6, H5)
 δ_C (DMSO d_6): 157.8, 145.7, 142.7, 141.6 (C2, C4, C6, C8a), 130.7, 126.4 (C4a), 124.5, 122.1, 105.1 (C3).
 $\eta_{max}/\text{cm}^{-1}$: 3200-3000 (m br, OH), 1616, 1560 (s, C=C, C=N).
 m/z : 215 (87%, $M^+ {^{35}\text{Cl}}{^{37}\text{Cl}}$), 213 (98%, $M^+ {^{35}\text{Cl}_2}$), 178 (76%, $M^+ - \text{Cl}$), 143 (34%, $M^+ - 2\text{Cl}$).

EXAMPLE 37. 6-Chloro-2,4-dimethoxyquinoline

25

2,4,6-Trichloroquinoline (**EXAMPLE 15**) (1.5 g, 64 mmol) was heated under reflux in excess methanolic sodium methoxide (1.0 g Na in 60 ml MeOH) for 48 hours,

then cooled and poured into cold water. The product was obtained by filtration as white needles.

Yield 1.3 g, 91%. Melting point 47-49°C.

Found M⁺: 223.0746. C₁₁H₁₀³⁵ClNO₂ requires 223.0400.

⁵ δH: 7.93 (1H, d, J 2.4, H5), 7.62 (1H, d, J 8.9, H8), 7.44 (1H, dd, J 8.9, 2.4, H7), 6.14 (1H, s, H3), 3.96 (3H, s, MeO), 3.90 (3H, s, MeO).

δC: 164.0 (C2), 163.0 (C4), 145.5 (C8a), 130.5 (C8), 128.9 (C6), 128.4 (C7), 121.2 (C5), 120.0 (C4a), 91.5 (C3), 55.9 (OMe), 53.5 (OMe).

ν_{max} /cm⁻¹: 1622, 1601, 1576 (s, C=C, C=N), 1208 (s, C-O).

¹⁰ m/z: 225 (38%, M⁺ ³⁷Cl), 224 (28%, M⁺ ³⁷Cl - H), 223 (100%, M⁺ ³⁵Cl), 222 (53%, M⁺ ³⁵Cl - H), 193 (20%), 162 (13%), 151 (17%).

EXAMPLE 38. 2,4-Dichloro-6-fluoroquinoline

15

4-Fluoroaniline (7.0 g, 63 mmol), malonic acid (9.8 g, 94 mmol) and phosphorus oxychloride (60 ml) were heated under reflux for 6 hours, then poured into crushed ice and made alkaline with aqueous NaOH. Filtration gave the crude ²⁰ product as a brown solid, which was continuously extracted (hexane, 4 h) to yield the title compound as a pale yellow powder. Yield 5.2 g, 38%. Melting point 90-92°C. (Found C: 49.98, H: 1.57, N: 6.23%. C₉H₄Cl₂FN requires C: 50.04, H: 1.87, N: 6.48%).

Found M⁺: 214.9703. C₉H₄³⁵Cl₂FN requires 214.9705.

²⁵ δH: 8.04 (1H, dd, J 9.3, 5.1(J_{H-F}), H8), 7.80 (1H, dd, J 9.1(J_{H-F}), 2.8, H5), 7.56 (1H, ddd, J 9.3, 8.0 (J_{H-F}), 2.8, H7), 7.53 (1H, s, H3).

δ C: 161.3 (d, J_{C-F} 251, C6), 149.3 (C2), 145.1 (C4), 143.6 (d, J_{C-F} 5.5, C8a), 131.7 (d, J_{C-F} 9.2, C8), 126.3 (d, J_{C-F} 10.4, C4a), 122.7 (C3), 121.7 (d, J_{C-F} 25.7, C7), 108.3 (d, J_{C-F} 24.9, C5).

η_{max} /cm⁻¹: 1620, 1580 (s, C=C, C=N).

5 m/z : 217 (79%, M⁺ $^{35}\text{Cl}^{37}\text{Cl}$), 215 (100%, M⁺ $^{35}\text{Cl}_2$), 180 (54%, M⁺ - Cl), 145 (30%, M⁺ - 2Cl).

EXAMPLE 39. 2,4-Dimethoxy-6-fluoroquinoline

2,4-Dichloro-6-fluoroquinoline (**EXAMPLE 38**) (3.5 g, 16.2 mmol) was heated under reflux in excess sodium methoxide (2.0 g Na in 100 ml MeOH) for 24 hours. After aqueous work up the product was obtained as off-white needles, R_f (4:1 hexane:EtOAc) 0.50. Yield 2.5 g, 75%. Melting point 74-77°C.

15 Found M⁺: 207.0692. $\text{C}_{11}\text{H}_{10}\text{FNO}_2$ requires 207.0696.

δ H: 7.74 (1H, dd, J 9.1, 5.2 (J_{H-F}), H8), 7.65 (1H, dd, J 9.5(J_{H-F}), 3.0, H5), 7.34 (1H, ddd, J 9.1, 8.3(J_{H-F}), 3.0, H7), 6.22 (1H, s, H3), 4.03 (3H, s, OMe), 3.97 (3H, s, OMe).

20 δ C: 163.4 (C2/C4), 158.8 (d, J_{C-F} 242.2, C6), 143.8 (C8a), 128.8 (d, J_{C-F} 8.5, C8), 119.7 (d, J_{C-F} 9.0, C4a), 119.1 (d, J_{C-F} 24.8, C7), 106.2 (d, J_{C-F} 23.7, C5), 91.3 (C3), 55.8 (OMe), 53.4 (OMe).

η_{max} /cm⁻¹: 1616, 1581 (s, C=N and C=C), 1207 (s, C-O).

25 m/z : 207 (100%, M⁺), 206 (88%, M⁺ - H), 176 (40%, M⁺ - OMe), 120 (37%), 94 (17%, $\text{C}_6\text{H}_3\text{F}^+$).

EXAMPLE 40. 2,4-Dichloro-5,7-dimethylquinoline

5 3,5-Dimethylaniline (5.0 g, 41 mmol), malonic acid (6.4 g, 0.62 mmol) and phosphorus oxychloride (40 ml) were heated under reflux for 5 hours. The mixture was poured into crushed ice and made alkaline with 5M NaOH, left to stand overnight, and then filtered to give the crude product as a brown solid. Soxhlet extraction with hexane gave the title compound as yellow needles. Yield
 10 5.9 g, 64%. Melting point 79-81°C.
 Found M⁺: 225.0114. C₁₁H₉³⁵Cl₂N requires 225.0112.
 δH: 7.62 (1H, s, H8), 7.33 (1H, s, H6), 7.17 (1H, s, H3), 2.93 (3H, s, 5-Me), 2.46 (3H, s, 7-Me).
 δC: 150.8 (C2), 149.4 (C4), 144.6, 141.6, 135.5 (C5, C7, C8a), 133.8, 127.6,
 15 123.1 (C3, C6, C8), 122.9 (C4a), 25.4 (Me), 21.8 (Me).
 ν_{max}/cm⁻¹: 1622, 1562 (s, C=C, C=N).
 m/z: 229 (11%, M⁺³⁷Cl₂), 227 (60%, M⁺³⁷Cl³⁵Cl), 225 (100%, M⁺³⁵Cl₂), 212 (28%, M⁺³⁷Cl³⁵Cl - Me), 210 (33%, M⁺³⁵Cl₂ - Me), 190 (9%, M⁺ - Cl).

EXAMPLE 41. 2,4,5,7-Tetramethoxyquinoline

20

2,4-Dichloro-5,7-dimethoxyquinoline (EXAMPLE 16) (0.16 g, 0.62 mmol) was heated under reflux in methanolic sodium methoxide (0.50 g Na in 25 ml MeOH)

for 48 hours. After cooling, the mixture was poured into water and neutralised (0.5M HCl), then left to stand for 1 hour before filtering to give the product as white needles. Yield 0.12 g, 78%. Melting point 129-131°C.

Found M⁺: 249.0097. C₁₃H₁₅NO₄ requires 249.1001.

⁵ δH: 6.81 (1H, d, J 2.2, H8), 6.38 (1H, d, J 2.2, H6), 6.09 (1H, s, H3), 4.02 (3H, s, OMe), 3.94 (3H, s, OMe), 3.90 (6H, s, 2 x OMe).

δ C: 166.3, 164.7, 161.6, 158.5, (C2, C4, C5, C7), 151.7, 105.8 (C4a), 100.1, 97.0, 89.3 (C6, C8, C3), 56.5, 56.3, 55.8, 53.6 (4 x OMe).

ν_{max} /cm⁻¹: 1610, 1594 (s, C=N, C=C), 1210, 1063 (s, C-O-C).

10 *m/z*: 249 (100%, M⁺), 248 (85%, M⁺ - H), 220 (14%), 143 (16%).

EXAMPLE 42. 2,4-Dimethoxy-5,7-dimethylquinoline

15

2,4-Dichloro-5,7-dimethylquinoline (**EXAMPLE 40**) (2.0 g, 8.8 mmol) was heated under reflux in methanolic sodium methoxide (2.0 g Na in 75 ml MeOH) for 48 hours. The mixture was poured into cold water, left to stand for 1 hour, and then filtered to give the title compound as white needles. Yield 1.6 g, 84%.
20 Melting point 75-77°C.

20 Melting point 75-77°C.

Found M⁺: 217.1091. C₁₃H₁₅NO₂ requires 217.1103.

δ H: 7.42 (1H, s, H8), 6.89 (1H, s, H6), 6.11 (1H, s, H3), 4.02 (3H, s, 2-OMe), 3.89 (3H, s, 4-OMe), 2.73 (3H, s, Me), 2.40 (3H, s, Me).

δ_{C} : 166.6 (C2), 163.3 (C4), 149.0, 139.3, 135.1 (C5, C7, C8a), 128.5, 125.0,
 25 116.3 (C4a), 90.1 (C3), 55.3 (OMe), 53.2 (OMe), 24.2 (Me), 21.3 (Me).

$\nu_{\text{max}}/\text{cm}^{-1}$: 1615, 1584 (s, C=C, C=N), 1208, 1038 (s, C-O-C).

m/z: 217 (94%, M⁺), 216 (100%, M⁺ - H), 202 (49%, M⁺ - Me), 187 (87%, M - 2Me), 172 (50%, M⁺ - 3Me), 115 (53%).

¹⁰ See, e.g., *W.E. (1991) - CHS*, 1113 (1993).

EXAMPLE 43. 2,4-Dichloro-5-methyl-8-nitroquinoline

5

5-Methyl-2-nitroaniline (3.0 g, 20 mmol), malonic acid (3.1 g, 30 mmol) and phosphorus oxychloride (25 ml) were heated under reflux for 7 hours, and then poured into crushed ice and made alkaline (5M NaOH) before filtering to give a crude brown solid. Soxhlet extraction (hexane, 6 h) of the crude solid gave the pure product as yellow needles. Yield 1.6 g, 31%. Melting point 126-128°C.

10 (Found C: 48.70, H: 2.76, N: 10.27%. $\text{C}_{10}\text{H}_6\text{Cl}_2\text{N}_2\text{O}_2$ requires C: 46.72, H: 2.35, N: 10.90%).

15 Found M^+ : 255.9804. $\text{C}_{10}\text{H}_6^{35}\text{Cl}_2\text{N}_2\text{O}_2$ requires 255.9806.
 δH : 7.81 (1H, d, J 8.0, H7), 7.60 (1H, s, H3), 7.45 (1H, d, J 8.0, H6), 3.08 (3H, s, 5-Me).

18 δC : 152.0, 147.4, 145.3, 141.6, 141.1 (C2, C4, C8, C8a, C5), 130.0, 126.2 (C6, C7), 125.5 (C4a), 124.6 (C3), 26.1 (5-Me).

21 ν_{max} /cm⁻¹: 1609, 1567 (m, C=C, C=N), 1528 (s, N=O), 874 (m, C-N).

24 m/z : 260 (12%, $\text{M}^+ 37\text{Cl}_2$), 258 (55%, $\text{M}^+ 37\text{Cl}^{35}\text{Cl}$), 256 (100%, $\text{M}^+ 35\text{Cl}_2$), 228 (21%), 226 (29%, $\text{M}^+ - \text{NO}$).

EXAMPLE 44. 2,4-Dimethoxy-5-methyl-8-nitroquinoline

- 5 2,4-Dichloro-5-methyl-8-nitroquinoline (**EXAMPLE 43**) (1.0 g, 3.9 mmol) was heated under reflux in excess methanolic sodium methoxide (1.0 g Na in 50 ml MeOH) for 48 hours. The mixture was then cooled, poured into water and filtered to give the product as a brown powder. Yield 0.4 g, 41%. Melting point >250°C. Found M⁺: 248.0815. C₁₂H₁₂N₂O₄ requires 248.0797.
- 10 δH: 7.73 (1H, d, J 7.9, H7), 7.09 (1H, d, J 7.9, H6), 6.27 (1H, s, H3), 4.01 (3H, s, OMe), 3.96 (3H, s, OMe), 2.82 (3H, s, 5-Me).
- ν_{max} /cm⁻¹: 1606 (s, C=C or C=N), 1523 (s, N=O), 1208 (s, C-O).
- m/z: 248 (31%, M⁺), 247 (20%, M⁺ - H), 218 (18%), 204 (16%), 143 (49%), 100 (100%).

15

EXAMPLE 45. 8-Amino-2,4-dichloro-5-methylquinoline

- 20 2,4-Dichloro-5-methyl-8-nitroquinoline (**EXAMPLE 43**) (0.30 g, 1.2 mmol) and sodium dithionite (1 g, 5.8 mmol) were heated under reflux in 50% aqueous ethanol (50 ml) for 4 hours. The mixture was made alkaline with 1M NaOH, and then extracted with ether (3 x 30 ml). The combined organic extracts were dried

over magnesium sulfate, and then the solvent evaporated under reduced pressure to give the product as a yellow powder. Yield 0.22 g, 83%. Melting point 116-118°C.

Found M⁺: 226.0244. C₁₀H₈³⁵Cl₂N₂ requires 226.0065.

δH: 7.41 (1H, s, H3), 7.14 (1H, dd, J 7.9, 0.5, H6), 6.86 (1H, d, J 7.9, H7), 4.84 (2H, br s, NH₂), 2.85 (3H, d, J 0.5, 5-Me).

δC: 146.4, 144.7, 142.2, 139.9 (C2, C4, C8, C8a), 131.8, 125.0 (C5), 123.8, 122.9 (C4a), 111.8 (C3), 24.4 (5-Me).

ν_{max} /cm⁻¹: 3422, 3322 (w, N-H), 1610, 1554 (s, C=C, C=N).

m/z: 230 (11%, M⁺ ³⁷Cl₂), 228 (67%, M⁺ ³⁷Cl³⁵Cl), 226 (100%, M⁺ ³⁵Cl₂), 225 (49%, M⁺ - H).

EXAMPLE 46. 2,4-Dimethoxy-5-methylquinoline

15

20

2,4-Dichloro-5-methylquinoline (**EXAMPLE 17**) (0.12 g, 0.57 mmol) was heated under reflux in methanolic sodium methoxide (0.50 g Na in 40 ml MeOH) for 40 hours. After cooling the mixture was poured into ice-cold water, and left to stand for 1 hour before filtering under reduced pressure to give the product as off-white needles. Yield 85 mg, 73%. Melting point 58-60°C.

Found M⁺: 203.0953. C₁₂H₁₃NO₂ requires 203.0946.

δH: 7.62 (1H, d, J 8.3, H5), 7.42 (1H, dd, J 8.3, 7.2, H7), 7.07 (1H, d, J 7.2, H6), 6.19 (1H, s, H3), 4.04 (3H, s, OMe), 3.93 (3H, s, OMe), 2.79 (3H, s, 5-Me).

25

δC: 166.6, 163.1 (C2, C4), 148.8, 135.5 (C8a, C5), 129.2, 126.4, 125.5 (C6, C7, C8), 118.6 (C4a), 90.8 (C3), 55.3 (OMe), 53.2 (OMe), 24.3 (5-Me).

ν_{max} /cm⁻¹: 1611, 1588 (s, C=C, C=N), 1207 (s, C-O).

m/z: 203 (100%, M⁺), 202 (49%, M⁺ - H), 173 (15%).

EXAMPLE 47. 2,4-Dichloro-7-methyl-8-nitroquinoline

5

3-Methyl-2-nitroaniline (**EXAMPLE 2**) (4.0 g, 26 mmol) and malonic acid (4.1 g, 39 mmol) were heated in phosphorus oxychloride (40 ml) for 6 hours. Standard workup and Soxhlet extraction (hexane, 4h) yielded the title compound as yellow needles. Yield 0.90 g 13%. Melting point 108-110°C.

10

Found M⁺: 255.9797. $\text{C}_{10}\text{H}_6^{35}\text{Cl}_2\text{N}_2\text{O}_2$ requires 255.9806.

δH : 8.20 (1H, d, *J* 8.6, H5), 7.57 (1H, s, H3), 7.55 (1H, d, *J* 8.6, H6), 2.55 (3H, s, Me).

δC : 152.3, 144.3, 139.6, 132.9 (C2, C4, C8, C8a), 130.2 (CH), 126.3, 125.6 (CH), 124.0, 123.3 (CH), 17.6 (Me)

15

$\nu_{\text{max}}/\text{cm}^{-1}$: 1623, 1574 (s, C=C, C=N), 1537 (s, N=O).

m/z: 258 (48%, M⁺ $^{37}\text{Cl}^{35}\text{Cl}$), 256 (73%, M⁺ $^{35}\text{Cl}_2$), 174 (100%), 139 (56%).

EXAMPLE 48. 4-Methoxy-8-methyl-3-(3-methylbut-2-enyl)-1*H*-quinolin-2-one

20

2,4-Dimethoxy-8-methyl-3-(3-methyl-2-butenyl)quinoline (**EXAMPLE 23**) (0.40 g, 1.5 mmol) and 4-dimethylaminopyridine (0.18 g, 1.5 mmol) were dissolved in dry dichloromethane (20 ml) and cooled to -78°C. Iodotrimethylsilane (0.30 g, 1.5 mmol) was added dropwise, and the mixture allowed to attain room temperature over a period of 1 hour, and then stirred for a further 40 hours at room temperature. The mixture was then poured into water, washed with 0.1M hydrochloric acid (20 ml) and extracted with dichloromethane (3 x 20 ml). The combined organic extracts were dried over MgSO₄ and the solvent removed *in vacuo* to give a brown residue. Column chromatography (1:1 hexane:EtOAc) furnished the pure quinoline (R_f 0.31) as a pale yellow solid. Yield 0.2g, 55%.

Melting point 135-138°C.

Found M⁺: 257.1426. C₁₆H₁₉NO₂ requires 257.1416.
 δ H: 10.20 (1H, br s, NH), 7.63 (1H, d, J 8.0, H5), 7.29 (1H, d, J 7.3, H7), 7.11 (1H, dd, J 8.0, 7.3, H6), 5.29 (1H, t, J 6.9, Me₂C=CH), 3.92 (3H, s, OMe), 3.40 (2H, d, J 6.9, CH₂CH=CMe₂), 2.52 (3H, s, 8-Me), 1.81 (3H, s, C=CCH₃), 1.69 (3H, s, C=CCH₃).
 δ C: 164.8, 162.4 (C2, C4), 135.8, 132.5 (C8, C8a), 131.2 (CH), 123.3, 122.2 (C4a and =CMe₂), 121.9 (CH), 121.5 (CH), 121.0 (CH), 117.1 (C3), 61.8 (OMe), 25.7 (Me), 23.5 (CH₂), 18.0 (Me), 17.1 (Me).
 $n_{\text{max}}/\text{cm}^{-1}$: 3400 (w, NH), 1636 (s, C=O).
m/z: 257 (66%, M⁺), 242 (92%, M⁺ - Me), 214 (100%, M⁺ - CMe₂), 188 (54%, M⁺ - Me₂C=CHCH₂).

EXAMPLE 49. 2,4-Diisopentyloxy-8-methylquinoline

2,4-Dichloro-8-methylquinoline (**EXAMPLE 9**) (0.50 g, 2.4 mmol) was heated at 90°C in excess sodium isopentyloxide/isopentyl alcohol (1.0 g Na in 50 ml isopentyl alcohol) for 48 hours. The mixture was then cooled, neutralised with 2M HCl, and extracted with ether (3 x 30 ml). The combined organic layers were dried (MgSO₄) and the solvent evaporated to yield the pure product as a colourless oil.

5 Yield 0.31 g, 41%.

Found M⁺: 315.2199. C₂₀H₂₉NO₂ requires 315.2198.

δ H: 7.91 (1H, d, J 7.5, H5), 7.43 (1H, d, J 7.0, H7), 7.19 (1H, dd, J 7.5, 7.0, H6), 6.19 (1H, s, H3), 4.52 (2H, t, J 6.8, OCH₂), 4.11 (2H, t, J 6.5, OCH₂), 2.66 (3H, s, 8-Me), 1.95-1.70 (6H, m, 2 x CHMe₂ and 2 x OCH₂CH₂), 1.00-0.98 (12H, m, 2 x CH(CH₃)₂).

10 δ C: 163.9, 162.9 (C2, C4), 146.3 (C8a), 135.2 (C8), 130.4, 122.9, 120.0 (C5, C6, C7), 119.4 (C4a), 91.3 (C3), 67.2(OCH₂), 64.5 (OCH₂), 38.4 (OCH₂CH₂), 38.0 (OCH₂CH₂), 25.7 (8-Me), 23.2, 23.0, 18.5.

15 η_{max} / cm⁻¹: 1612, 1601 (s, C=C, C=N).

m/z: 315 (32%, M⁺), 245 (49%), 175 (100%, C₁₀H₉NO₂⁺).

EXAMPLE 50. 2,4-Dimethoxy-3-propylquinoline

A solution of 2,4-dimethoxyquinoline (**EXAMPLE 4A**) (0.30 g, 1.6 mmol) in THF (15 ml) was cooled to 0°C under argon, *n*-butyllithium (0.80 ml of 2.5M solution in hexane) was added, and the mixture stirred for 1 hour at 0°C. 1-Iodopropane (0.34 g, 2 mmol) was added dropwise, the mixture was stirred at 0°C for 30 minutes and then was allowed to warm to room temperature overnight. The reaction mixture was poured into water and extracted with ether (3 x 20 ml). The combined organic layers were dried (MgSO₄) and the solvent removed *in vacuo* to

25

give a yellow oil, which was purified by column chromatography (9:1 hexane:EtOAc) to give the title compound as a colourless oil, R_f 0.67 (9:1 hexane:EtOAc). Yield 65 mg, 17% (approximately 150 mg of starting material also recovered).

5 Found M⁺: 231.1267. C₁₄H₁₇NO₂ requires 231.1259.

δ H: 7.90 (1H, dd, J 8.2, 1.4, H5), 7.82 (1H, br. d, J 8.2, H8), 7.55 (1H, ddd, J 8.2, 6.9, 1.4, H7), 7.35 (1H, ddd, J 8.2, 6.9, 1.0, H6), 2.70 (2H, t, J 7.7, CH₂CH₂CH₃), 1.63 (2H, m, CH₂CH₂CH₃), 1.00 (3H, t, J 7.4, CH₂CH₂CH₃)

10 δ C: 162.7, 161.7 (C2, C4), 146.1 (C8a), 128.8, 127.3, 123.6, 122.0 (C5, C6, C7, C8), 121.1, 118.0 (C4a and C3), 62.3 (OMe), 53.7 (OMe), 26.2 (C1'H₂), 22.7 (C2'H₂), 14.4 (C3'H₃).

ν_{max} /cm⁻¹: 3064, 2956, 2871 (m, C-H), 1620, 1573 (s, C=C, C=N), 1086, 1012 (s, C-O-C)

m/z: 231 (53%, M⁺), 216 (38%, M⁺ - Me), 202 (61%, M⁺ - CH₃CH₂).

15

EXAMPLE 51. 2,4-Dimethoxy-3-(1'-hydroxy-n-hexyl)quinoline

20 2,4-Dimethoxyquinoline (**EXAMPLE 4A**) (0.30 g, 1.6 mmol) in THF (20 ml) was cooled to 0°C, and *n*-butyllithium (0.80 ml of a 2.5M solution in hexanes) was added with stirring. Stirring was continued at 0°C for 45 minutes. Hexanal (0.24 g, 2.4 mmol) was added and the mixture stirred at 0°C for 15 minutes, then allowed to warm to room temperature for 45 minutes. The flask contents were poured into water, and the mixture extracted with diethyl ether (3 x 30 ml). The combined organic extracts were dried over MgSO₄ and the solvent removed *in vacuo* to give

25

a dark yellow oil. Column chromatography (2:1 hexane:EtOAc) furnished the pure product as a pale yellow oil. Yield 0.21g, 45%.

Found M⁺: 289.1670. C₁₇H₂₃NO₃ requires 289.1678.

δH: 7.93 (1H, dd, J 8.1, 1.3, H5), 7.83 (1H, dd, J 8.4, 1.0, H8), 7.60 (1H, ddd, J 8.4, 7.0, 1.3, H7), 7.40 (1H, ddd, J 8.1, 7.0, 1.0, H6), 5.11 (1H, m, CH₂OH), 4.13 (3H, s, OMe), 4.00 (3H, s, OMe), 3.38 (1H, d, J 11.5, OH), 2.01 (1H, m, ArCH(OH)CH₂H_b), 1.77 (1H, m, ArCH(OH)CH_aH_b), 1.39-1.25 (6H, m), 0.90 (3H, m, ArCH(OH)(CH₂)₄CH₃).

ν_{max}/cm⁻¹: 3995 (m br, OH), 1644, 1602, 1574 (s, C=C, C=N).

m/z: 289 (12%, M⁺), 218 (100%, M⁺ - CH₃(CH₂)₄).

EXAMPLE 52. 8-Bromo-2,4-dichloroquinoline

15

2-Bromoaniline (2.0 g, 12 mmol), malonic acid (1.9 g, 18 mmol) and phosphorus oxychloride (30 ml) were heated under reflux for 6 hours. After alkaline aqueous workup and filtration, the crude solid product was continuously extracted with hexane for 6 hours to give the pure quinoline as a pale yellow powder. Yield 1.0g, 31%.

20

Melting point 101-103°C.

Found M⁺: 276.8884 (⁸¹Br), 274.8898 (⁷⁹Br). C₉H₄Br³⁵Cl₂N requires 276.8885 and 274.8905.

25

δH: 8.17 (1H, dd, J 8.3, 1.3, H5), 8.11 (1H, dd, J 7.6, 1.3, H7), 7.57 (1H, s, H3), 7.50 (1H, dd, J 8.3, 7.6, H6).

δC: 150.9, 145.5, 144.7, (C2, C4, C8a), 135.3, 128.2, 126.5 (C4a), 124.1, 123.0 (one quaternary C missing).

ν_{max} /cm⁻¹: 1573 (s, C=N).

m/z: 279 (41%, M⁺ ⁷⁹Br³⁷Cl₂ and M⁺ ⁸¹Br³⁷Cl³⁵Cl), 277 (100%, M⁺ ⁸¹Br³⁵Cl₂ and M⁺, ⁷⁹Br³⁷Cl³⁵Cl), 275 (60%, M⁺, ⁷⁹Br³⁵Cl₂), 242 (26%, M⁺ (277) - ³⁵Cl), 161 (17%, M⁺ - Br, Cl).

5

EXAMPLE 53. 8-Bromo-2,4-dimethoxyquinoline

10 8-Bromo-2,4-dichloroquinoline (**EXAMPLE 52**) (0.80 g, 2.9 mmol) was heated under reflux in excess methanolic sodium methoxide (1.0 g Na in 50 ml MeOH). After aqueous workup and filtration the product was isolated as white needles. Yield 0.50 g, 64%. Melting point 120-123°C. (Found C: 49.07, H: 3.55, N: 5.10%. $C_{11}H_{10}BrNO_2$ requires C: 49.28, H: 3.76, N: 5.10%).

Found M⁺: 266.9872. C₁₁H₁₀⁷⁹BrNO₂ requires 266.9894.

¹⁵ δH: 8.03 (1H, dd, J 8.2, 1.4, H5), 7.93 (1H, dd, J 7.5, 1.4, H7), 7.18 (1H, dd, J 8.2, 7.5, H6), 6.27 (1H, s, H3), 4.13 (3H, s, OMe), 4.00 (3H, s, OMe).
δC: 164.1, 144.2, 133.7 (CH), 123.6 (CH), 122.3, 121.6 (CH), 120.5, 91.2 (C3), 56.1 (OMe), 53.8 (OMe) (one quaternary C missing).

ν_{max} / cm⁻¹: 1620, 1600, 1565 (s, C=C and C=N).

20 *m/z*: 269 (100%, M⁺ ⁸¹Br), 268 (92%, M⁺ ⁸¹Br - H), 267 (96%, M⁺ ⁷⁹Br), 266 (81%, M⁺ ⁷⁹Br - H), 243 (42%), 189 (40%), 188 (45%, M⁺ - Br).

EXAMPLE 54. 2,4-Dichloro-8-iodoquinoline

5 2-Iodoaniline (7.0 g, 32 mmol) and malonic acid (5.0 g, 48 mmol) were heated under reflux in phosphorus oxychloride (40 ml) for 5 hours. After standard workup and Soxhlet extraction of the crude with hexane, the pure product was obtained as bright yellow needles, yield 1.3 g, 12.5%. R_f (9:1 hexane:EtOAc) 0.65. Melting point 80-82°C.

10 Found M^+ : 322.8764. $C_9H_4^{35}Cl_2IN$ requires 322.8767.
 δH : 8.37 (1H, dd, J 7.5, 0.9, H7), 8.16 (1H, dd, J 8.4, 0.9, H5), 7.54 (1H, s, H3), 7.34 (1H, dd, J 8.4, 7.5, H6).
 δC : 149.8 (C2), 146.2 (C8a), 143.5 (C4), 141.1 (C7), 127.8, 124.5 (C4a), 123.9, 121.8 (C3), 100.8 (C8).
15 ν_{max} / cm^{-1} : 1595, 1575 (s, C=C, C=N), 1271 (s).
 m/z : 327 (13%, $M^+ {^{37}Cl}_2$), 325 (74%, $M^+ {^{37}Cl}{^{35}Cl}$), 323 (100%, $M^+ {^{35}Cl}_2$), 196 (25%, M^+ (323) - I), 161 (29%, M^+ - I, Cl).

EXAMPLE 55. 2,4-Dimethoxy-8-iodoquinoline

2,4-Dichloro-8-iodoquinoline (EXAMPLE 54) (1.0 g, 3 mmol) was heated under reflux in methanolic sodium methoxide (1.0 g Na in 50 ml MeOH) for 40 hours. After aqueous workup and filtration the title compound was obtained as pale yellow needles. Yield 0.81 g, 86%.

.5. Melting point: 105-107°C. (Found C: 41.47, H: 3.19, N: 3.91%. $C_{11}H_{10}INO_2$ requires C: 41.93, H: 3.20, N: 4.45%).

Found M⁺: 314.9756. C₁₁H₁₀INO₂ requires 314.9758.

δ H: 8.18 (1H, dd, J 7.4, 1.4, H7), 8.04 (1H, dd, J 8.1, 1.4, H5), 7.05 (1H, dd, J 8.1, 7.4, H6), 6.24 (1H, s, H3), 4.13 (3H, s, OMe), 3.99 (3H, s, OMe).

¹⁰ δC: 164.2, 164.1 (C2 and C4), 146.1 (C8a), 140.3 (C7), 124.5, 122.5 (C5 and C6), 119.5 (C4a), 100.4 (C8), 91.0 (C3), 56.1 (OMe), 54.0 (OMe)

ν_{max} / cm⁻¹: 1619, 1562 (s, C=C, C=N), 1213 (s, C=O).

m/z: 315 (100%, M⁺), 314 (26%, M⁺ - H), 285 (12%)

EXAMPLE 56. 6-Bromo-2,4-dichloroquinoline

20 4-Bromoaniline (7.0 g, 41 mmol), malonic acid (6.3 g, 61 mmol) and phosphorus oxychloride (50 ml) were heated under reflux for 6 hours. After standard workup and Soxhlet extraction with hexane the product was obtained as yellow needles. Yield 3.2 g, 28%. Melting point 132-134°C.

Found M⁺: 274.8897. C₉H₄⁷⁹Br³⁵Cl₂N requires 274.8905.

δ H: 8.31 (1H, d, J 1.3, H5), 7.88-7.82 (2H, m, H7 and H8), 7.50 (1H, s, H3)

25 δ_{C} : 150.7 (C2), 147.1 (C4), 143.6 (C8a), 135.5, 131.0, 126.9 (all Ar-H), 126.6,
123.2, 126.4.

$\nu_{\text{max}}/\text{cm}^{-1}$: 1570, 1547 (s, C=N, C=C).

m/z: 281 (5%, M⁺ ⁸¹Br³⁷Cl₂), 279 (49%, M⁺ ⁷⁹Br³⁷Cl₂ and M⁺ ⁸¹Br³⁷Cl³⁵Cl), 277 (100%, M⁺ ⁸¹Br³⁵Cl₂ and M⁺ ⁷⁹Br³⁷Cl³⁵Cl), 275 (62%, M⁺ ⁷⁹Br³⁵Cl₂), 242 (21%, M⁺ - Cl), 161 (20%).

5 **EXAMPLE 57A. 5-Bromo-2,4-dichloroquinoline and**
EXAMPLE 57B. 7-bromo-2,4-dichloroquinoline

10 3-Bromoaniline (7.0 g, 41 mmol) and malonic acid (6.4 g, 62 mmol) were heated under reflux in phosphorus oxychloride (40 ml) for 6 hours. Standard workup gave the crude product as a brown powder. Soxhlet extraction with hexane yielded a mixture of the two isomeric products; R_f 0.58 and 0.42 (95:5 hexane:EtOAc).

15 Column chromatography furnished the two products as white needles.

Data for 5-bromo-2,4-dichloroquinoline (EXAMPLE 57A)

Yield 0.70g , 6%. Melting point 130-132°C. R_f 0.42 (95:5 hexane:EtOAc).

Found M⁺: 274.8908. C₉H₄⁷⁹Br³⁵Cl₂N requires 274.8905.

δ H: 7.99 (1H, dd, J 8.4, 1.2, H8), 7.93 (1H, dd, J 7.5, 1.2, H6), 7.55 (1H, s, H3),

20 7.53 (1H, dd, J 8.4, 7.5, H7).

δ C: 150.2 (C2), 149.9 (C4), 144.3 (C8a), 135.6, 131.1, 130.0, 125.3, 123.4, 117.7.

n_{max}/cm⁻¹: 1564, 1545 (s, C=C, C=N).

25 *m/z:* 281 (6%, M⁺ ⁸¹Br³⁷Cl₂), 279 (55%, M⁺ ⁷⁹Br³⁷Cl₂ and M⁺ ⁸¹Br³⁷Cl³⁵Cl), 277 (100%, M⁺ ⁸¹Br³⁵Cl₂ and M⁺ ⁷⁹Br³⁷Cl³⁵Cl), 275 (75%, M⁺ ⁷⁹Br³⁵Cl₂), 242 (22%, M⁺ - Cl), 240 (16%, M⁺ ⁷⁹Br³⁵Cl₂ - Cl), 196 (20%, M⁺ - Br), 161 (31%, M⁺ - Br, Cl).

Data for 7-bromo-2,4-dichloroquinoline (EXAMPLE 57B)

Yield 1.2 g, 11%. Melting point 102-104°C. R_f 0.58 (95:5 hexane:EtOAc).

(Found C: 39.07, H: 1.12, N: 4.81%. $C_9H_4BrCl_2N$ requires C: 39.03, H: 1.46, N: 5.06%)

- 5 Found M^+ : 274.8891. $C_9H_4^{79}Br^{35}Cl_2N$ requires 274.8905.
 δ_H : 8.19 (1H, d, J 1.8, H8), 8.03 (1H, d, J 8.9, H5), 7.72 (1H, dd, J 8.9, 1.8, H6), 7.50 (1H, s, H3).
 δ_C : 151.1, 148.6 (C2, C4), 144.5 (C8a), 131.5 (CH), 131.3 (CH), 126.2, 125.5 (CH), 124.0, 122.4 (CH).
10 ν_{max}/cm^{-1} : 1599, 1570, 1547 (s, C=C, C=N).
 m/z : 281 (4%, $M^+ {^{81}Br}^{37}Cl_2$), 279 (45%, $M^+ {^{79}Br}^{37}Cl_2$ and $M^+ {^{81}Br}^{37}Cl^{35}Cl$), 277 (100%, $M^+ {^{81}Br}^{35}Cl_2$ and $M^+ {^{79}Br}^{37}Cl^{35}Cl$), 275 (75%, $M^+ {^{79}Br}^{35}Cl_2$), 242 (23%, $M^+ - Cl$), 240 (21%, $M^+ {^{79}Br}^{35}Cl_2 - Cl$), 212 (13%), 161 (20%, $M^+ - Br, Cl$).

15 **EXAMPLE 58. 6-Bromo-2,4-dimethoxyquinoline**

20 6-Bromo-2,4-dichloroquinoline (EXAMPLE 56) (1.5 g, 5.4 mmol) was heated under reflux in excess methanolic sodium methoxide (1.5 g Na in 75 ml MeOH) for 48 hours, then cooled and poured into cold water. After standing for 2 hours the mixture was filtered to give the product, fine pale yellow needles. Yield 1.35 g, 93%. Melting point: 54-56°C.

- 25 Found M^+ : 266.9883. $C_{11}H_{10}^{79}BrNO_2$ requires 266.9895.
 δ_H : 8.17 (1H, d, J 1.3, H5), 7.66-7.61 (2H, m, H7, H8), 6.20 (1H, s, H3), 4.03 (3H, s, 2-OMe), 3.96 (3H, s, 4-OMe).
 δ_C : 164.5 (C2), 163.3 (C4), 146.1 (C8a), 133.5, 129.1, 124.8 (C5, C7, C8), 120.92, 117.0 (C4a, C6), 91.8 (C3), 56.2 (OMe), 53.9 (OMe).

$\nu_{\text{max}}/\text{cm}^{-1}$: 1621, 1596, 1573 (s, C=C, C=N), 1209, 1044 (s, C-O-C).
 m/z : 269 (100%, M⁺, ⁸¹Br), 268 (95%, M⁺ - H), 267 (100%, M⁺, ⁷⁹Br), 266 (87%, M⁺ - H), 239 (24%), 238 (20%), 213 (17%), 143 (22%).

5 **EXAMPLE 59. 5-Bromo-2,4-dimethoxyquinoline**

10 5-Bromo-2,4-dichloroquinoline (EXAMPLE 57A) (0.25 g, 0.9 mmol) was heated under reflux in excess methanolic sodium methoxide (1.0 g Na in 50 ml MeOH) for 45 hours. After cooling, the mixture was poured into cold water and left to stand overnight in a refrigerator. Filtration gave the title compound as fine white needles. Yield 0.20 g, 82%. Melting point 86-88°C.

15 Found M⁺: 266.9905. C₁₁H₁₀⁷⁹BrNO₂ requires 266.9895.
 δH : 7.73 (1H, dd, J 8.1, 0.9, H8), 7.60 (1H, dd, J 7.6, 0.9, H6), 7.33 (1H, dd, J 8.1, 7.6, H7), 6.26 (1H, s, H3), 4.03 (3H, s, OMe), 3.95 (3H, s, OMe).
 δC : 164.6, 163.8 (C2, C4), 149.9 (C8a), 131.1, 130.1, 127.7, (C6,7,8), 118.4, 116.6 (C5, C4a), 92.3 (C3), 55.8 (OMe), 53.8 (OMe).
 $\nu_{\text{max}}/\text{cm}^{-1}$: 1608, 1573 (s, C=C, C=N), 1212 (s, C-O-C).

20 m/z : 268 (100%, M⁺ ⁸¹Br - H), 267 (15%, M⁺ ⁷⁹Br), 266 (98%, M⁺ ⁷⁹Br - H), 182 (12%), 114 (26%).

EXAMPLE 60. 7-Bromo-2,4-dimethoxyquinoline

7-Bromo-2,4-dichloroquinoline (EXAMPLE 57B) (0.30 g, 1.1 mmol) was heated under reflux in methanolic sodium methoxide (1.0 g Na in 50 ml MeOH) for 48 hours. After cooling, the mixture was poured into cold water, left to stand for 2 hours, and then filtered to give the title compound as white needles. Yield 0.22 g, 76%. Melting point 76–78°C.

Found M⁺: 266.9871. C₁₁H₁₀⁷⁹BrNO₂ requires 266.9895.

δ H: 7.96 (1H, d, *J* 1.9, H8), 7.88 (1H, d, *J* 8.7, H5), 7.40 (1H, dd, *J* 8.7, 1.9, H6), 6.20 (1H, s, H3), 4.03 (3H, s, OMe), 3.97 (1H, s, OMe).

δ C: 164.5, 163.8 (C2, C4), 148.0 (C8a), 129.4, 126.6, 124.1, 123.3, 117.7, 91.0 (C3), 55.8 (OMe), 53.6 (OMe).

$\nu_{\text{max}}/\text{cm}^{-1}$: 1618, 1596, 1574 (s, C=C, C=N), 1208 (s, C-O-C).

m/z: 269 (100%, M⁺ 81Br), 268 (88%, M⁺ 81Br - H), 267 (96%, M⁺ 79Br), 266 (87%, M⁺ 79Br - H), 239 (36%, M⁺ 81Br - CH₂O), 237 (33%, M⁺ 79Br - CH₂O).

EXAMPLE 61. 2,4-Dimethoxy-6-phenylquinoline

20 6-Bromo-2,4-dimethoxyquinoline (**EXAMPLE 60**) (0.40 g, 1.5 mmol), benzeneboronic acid (0.20 g, 1.6 mmol), tetrakis(triphenylphosphine) palladium(0) (52 mg, 3 mol%), sodium carbonate (0.32 g in 1 ml H₂O), ethanol (0.5 ml) and toluene (8 ml) were heated at 80°C under argon for 48 hours. After cooling, ether (5 ml) and water (10 ml) were added, and the flask contents transferred to a separating funnel. The mixture was extracted with diethyl ether (3 x 30 ml), the combined organic extracts dried (MgSO₄) and the solvent removed *in vacuo* to give a brown residue. Column chromatography (9:1 hexane : EtOAc) furnished the pure compound as a white powder. Yield 0.35 g, 88%. Melting point 121-123°C.

25 Found M⁺: 265.1110. C₁₇H₁₅NO₂ requires 265.1103.

δ H: 8.27 (1H, d, J 1.5, H5), 7.89-7.82 (2H, m, H8, H7), 7.70 (2H, dd, J 7.3, 1.4, H2' and H6'), 7.46 (2H, t, J 7.3, H3' and H5'), 7.35 (1H, dd, J 7.3, 1.4, H4'), 6.24 (1H, s, H3), 4.07 (3H, s, OMe), 4.00 (3H, s, OMe)

5 δ C: 164.1, 164.0 (C2, C4), 146.5, 140.9, 136.1 (C1', C6, C8a), 129.3, 128.9, 127.3; 127.2, 127.1, 119.9, 119.4, 91.0 (C3), 55.8 (OMe), 53.5-(OMe).

ν_{max}/cm^{-1} : 1626, 1600, 1580 (m, C=C, C=N), 1207 (s, C-O).

m/z: 265 (100%, M⁺), 264 (62%, M⁺ - H), 236 (19%), 235 (25%).

EXAMPLE 62. 2,4-Dimethoxy-7-phenyl quinoline

10

15

7-Bromo-2,4-dimethoxyquinoline (EXAMPLE 60) (0.10 g, 0.33 mmol), benzeneboronic acid (0.06 g, 0.5 mmol), tetrakis(triphenylphosphine) palladium (0) (13 mg, 0.011 mmol), aqueous sodium carbonate (80 mg, 0.74 mmol in 0.5 ml H₂O), ethanol (0.5 ml) and toluene (5 ml) were heated at 80°C under argon for 48 hours. After cooling, the reaction mixture was washed with water (20 ml) and extracted with ether (3 x 30 ml). The combined organic extracts were dried (MgSO₄), and the solvent removed under reduced pressure to give the crude product (a brown oil) which was purified by column chromatography (9:1 hexane:EtOAc), furnishing the title compound (*R*_f 0.40) as white prisms. Yield 80 mg, 84%. Melting point 118-120°C. (Found C: 76.96, H: 5.69, N: 5.14%. C₁₇H₁₅NO₂ requires C: 76.96, H: 5.70, N: 5.28%).

20

Found M⁺: 265.1096. C₁₇H₁₅NO₂ requires 265.1103.

25

δ H: 8.09 (1H, d, J 8.5, H5), 8.00 (1H, d, J 1.9, H8), 7.73 (2H, dd, J 7.1, 2.0, H2', H6'), 7.59 (1H, dd, J 8.5, 1.9, H6), 7.46 (2H, t, J 7.1, H3', H5'), 7.39-7.34 (1H, m, H4'), 6.21 (1H, s, H3), 4.07 (3H, s, OMe), 3.98 (3H, s, OMe).

δ C: 164.3, 163.9 (C2, C4), 147.4, 142.7, 140.7 (C8a, C1', C7), 128.9, 127.7, 127.5, 124.8, 122.8, 122.4 (C2'+ 6', C3' + 5', C4', C5, C6, C8), 118.3 (C4a), 90.7 (C3), 55.8 (OMe), 53.5 (OMe).

ν_{max}/cm^{-1} : 1617, 1610, 1578 (s, C=C, C=N), 1206 (s, C-O).

5 m/z : 265 (79%, M⁺), 264 (41%, M[±]- H), 217 (22%), 213 (21%), 212 (22%), 201 (32%).

EXAMPLE 63. 2,4-Dimethoxy-5-phenylquinoline

10 5-Bromo-2,4-dimethoxyquinoline (**EXAMPLE 59**) (0.15 g, 0.56 mmol), benzeneboronic acid (76 mg, 0.62 mmol), tetrakis(triphenylphosphine) palladium (0) (19 mg, 0.017 mmol, 3 mol%), aqueous sodium carbonate (0.12 g in 0.5 ml H₂O), ethanol (0.5 ml) and toluene (8 ml) were heated at 80°C for 48 hours. After cooling, the reaction mixture was washed with water (20 ml) and extracted with diethyl ether (3 x 30 ml). The combined organic extracts were dried, and the solvent removed under reduced pressure to give a brown oil. Column chromatography (9:1 hexane:EtOAc) furnished the pure quinoline (R_f 0.33) as white plates. Yield 0.12 g, 81%. Melting point 97-99°C. (Found C: 76.78, H: 5.54, N: 5.17%. C₁₇H₁₅NO₂ requires C: 76.96, H: 5.70, N: 5.28%).

15 Found M⁺: 265.1106. C₁₇H₁₅NO₂ requires 265.1103.

20 δ H: 7.80 (1H, dd, J 8.3, 1.2, H8), 7.55 (1H, dd, J 8.3, 7.2, H7), 7.35-7.27 (5H, m, 5xArH), 7.13 (1H, dd, J 7.2, 1.2, H6), 6.14 (1H, s, H3), 4.06 (3H, s, 2-OMe), 25 3.48 (3H, s, 4-OMe).

25 δ C: 165.6, 163.1 (C2, C4), 148.7, 144.7, 173.7 (C8a, C1', C5), 129.2, 127.9, 127.4, 127.3, 127.2, 126.5 (CH), 117.5 (C4a), 91.7 (C3), 55.4 (OMe), 53.8 (OMe).

$\nu_{\text{max}}/\text{cm}^{-1}$: 1612, 1581 (s, C=C, C=N), 1209 (s, C-O-C).

m/z : 265 (100%, M $^+$), 232 (33%), 164 (17%).

EXAMPLE 64. 2,4-Dimethoxy-6-(2',4',6'-trimethylphenyl)quinoline

5

6-Bromo-2,4-dimethoxyquinoline (**EXAMPLE 58**) (0.40 g, 1.5 mmol), 2,4,6-trimethylbenzene-boronic acid (0.28 g, 1.7 mmol), tetrakis(triphenylphosphine) palladium (0) (52 mg, 3 mol%), sodium carbonate (0.32 g, 3 mmol in 1 ml H₂O), ethanol (0.5 ml) and toluene (9 ml) were heated at 80°C under argon for 48 hours. After cooling ether (5 ml) and water (10 ml) were added, and the flask contents transferred to a separating funnel. The mixture was extracted with diethyl ether (3 x 30 ml), the combined organic extracts dried (MgSO₄) and the solvent removed *in vacuo* to give a brown solid. Column chromatography (9:1 hexane:EtOAc) yielded the pure arylquinoline (*R*_f 0.30) as a white powder. Yield 0.34 g, 74%. Melting point 199-201°C.

Found M $^+$: 308.1652. C₂₀H₂₂NO₂ requires 308.1651.

δH : 7.83 (2H, m, H5, H8), 7.39 (1H, d, *J* 8.6, 1.9, H7), 6.95 (2H, s, H3', H5'), 6.24 (1H, s, H3), 4.08 (3H, s, OMe), 3.96 (3H, s, OMe), 2.34 (3H, s, 6'-Me), 2.01 (6H, s, 2'-Me, 6'-Me).

δC : 164.4, 164.2 (C2, C4), 146.2 (C8a), 139.2, 137.0, 136.7 (C6, C1', C4'), 136.6 (C2', C6'), 132.2, 128.5, 127.3, 122.5 (C5, C7, C8, C3'+5'), 119.7 (C4a), 91.2 (C3), 56.1 (OMe), 53.9 (OMe), 21.5 (Me), 21.3 (Me).

25 $\nu_{\text{max}}/\text{cm}^{-1}$: 1624, 1598, 1574 (s, C=C, C=N), 1204 (s, C-O).

m/z : 308 (88%, M $^+$), 307 (55%, M $^+$ - H), 279 (100%, M $^+$ - CH₃ + CH₂), 190 (36%).

EXAMPLE 65. 2,4-Dimethoxy-6-(4'-methoxyphenyl)-quinoline

5

6-Bromo-2,4-dimethoxyquinoline (EXAMPLE 58) (0.40 g, 1.5 mmol), (4-methoxybenzene)-boronic acid (0.25 g, 1.6 mmol), tetrakis(triphenylphosphine) palladium (0) (52 mg, 0.045 mmol, 3 mol%), aqueous sodium carbonate (0.32 g, 3 mmol in 1 ml H₂O), ethanol (1 ml) and toluene (8 ml) were heated at 80°C under argon for 48 hours. After cooling, water (20 ml) was added, and the mixture extracted with diethyl ether (3 x 20 ml). The combined organic layers were dried (MgSO₄) and the solvent removed under reduced pressure to give a brown oil. Column chromatography (4:1 hexane:EtOAc) gave the title compound (*R*_f 0.42) as white flakes. Yield 0.30 g, 68%. Melting point 107-109°C. (Found C: 72.96, H: 5.72, N: 4.64%. *C₁₈H₁₇NO₂* requires C: 73.28, H: 5.80, N: 4.74%.)
 Found M⁺: 295.1203. *C₁₈H₁₇NO₂* requires 295.1208.
 δ H: 8.21 (1H, s, H5), 7.82 (2H, s, H7 and H8), 7.63 (2H, d, *J* 8.5, H2' and H6'), 6.99 (2H, d, *J* 8.5, H3' and H5'), 6.22 (1H, s, H3), 4.06 (3H, s, OMe), 3.99 (3H, s, OMe), 3.85 (3H, s, OMe).
 δ C: 164.4, 164.2 (C2, C4), 159.5 (C4'), 146.5 (C8a), 136.2, 133.9 (C6', C1'), 129.5 (CH), 128.7 (CH), 127.6 (CH), 119.8 (C4a), 119.5 (CH), 114.7 (CH), 91.4 (C3), 56.2 (OMe), 55.8 (OMe), 53.9 (OMe).
 $\nu_{\text{max}}/\text{cm}^{-1}$: 1626, 1604, 1570 (s, C=C, C=N), 1210 (s, C-O).
m/z: 295 (100%, M⁺), 278 (22%), 250 (12%), 133 (10%).

25

EXAMPLE 66. 2,4-Dimethoxy-6-(4'-fluorophenyl)-quinoline

5 6-Bromo-2,4-dimethoxyquinoline (**EXAMPLE 65**) (0.40 g, 1.5 mmol), 4-fluorobenzeneboronic acid (0.25 g, 1.8 mmol), tetrakis(triphenylphosphine) palladium (0) (52 mg, 0.045 mmol, 3 mol%), aqueous sodium carbonate (0.32 g, 3 mmol in 1 ml H₂O), ethanol (1 ml) and toluene (10 ml) were heated at 80°C under argon for 48 hours. After cooling, water (20 ml) was added, and the mixture extracted with diethyl ether (3 x 30 ml). The combined organic layers were dried (MgSO₄) and the solvent removed *in vacuo* to give the crude product, which was purified by column chromatography (4:1 hexane:EtOAc) to give the title compound (R_f 0.40) as a white powder. Yield 0.37 g, 87%. Melting point 115-117°C. (Found C: 72.04, H: 4.93, N: 4.63%. C₁₇H₁₄FNO₂ requires C: 72.07, H: 4.98, N: 4.94%).

10 Found M⁺: 283.1002. C₁₇H₁₄FNO₂ requires 283.1009.

15 δ_H: 8.20 (1H, d, J 1.9, H5), 7.84-7.78 (2H, m, H7, H8), 7.69-7.62 (2H, m, H2', H6'), 7.16-7.10 (2H, m, H3', H5'), 6.24 (1H, s, H3), 4.07 (3H, s, OMe), 4.00 (3H, s, OMe).

20 δ_C: 164.4, 164.3 (C2, C4), 162.8 (d, ¹J_{C-F} 246, C4'), 146.8 (C8a), 135.6, 132.5, 129.5, 129.1 (d, ²J_{C-F} 20, C3', C5'), 127.8, 120.1, 119.8 (C4a), 116.2 (d, ³J_{C-F} 8, C2', C6'), 91.5 (C3), 56.2 (OMe), 53.9 (OMe).

η_{max/cm⁻¹}: 1626, 1603, 1569 (s, C=C, C=N), 1210 (s, C-O).

m/z: 283 (100%, M⁺), 183 (32%).

EXAMPLE 67. 2,4-Dimethoxy-8-phenylquinoline

Method A - Tetrakis triphenylphosphine palladium (0) as catalyst.

5

8-Bromo-2,4-dimethoxyquinoline (**EXAMPLE 53**) (0.40 g, 1.5 mmol) was dissolved in toluene (10 ml) under argon. Tetrakis(triphenylphosphine)-palladium (0) (52 mg, 3 mol%) and aqueous sodium carbonate (2.0 ml of a 2M solution) were added, and the mixture stirred for 5 minutes. Then benzeneboronic acid (0.20 g, 1.7 mmol) in ethanol (1 ml) was added, and the mixture was then heated under reflux for 48 hours. After cooling, the mixture was poured into a separating funnel, and the reaction flask washed with water (20 ml) and ether (20 ml), the washings being added to the separating funnel. The aqueous layer was extracted with ether (3 x 20 ml), and the combined organic layers were dried over magnesium sulfate before removal of the solvent under reduced pressure. The crude product was purified by column chromatography (9:1 hexane:EtOAc) to yield the title compound (R_f 0.43) as white plates. Yield 0.16 g, 40%. Melting point 76-78°C. (Found C: 76.34, N: 5.66, N: 5.02%. $\text{C}_{17}\text{H}_{15}\text{NO}_2$ requires C: 76.96, H: 5.70, N: 5.28%).

10 Found M^+ : 265.1105. $\text{C}_{17}\text{H}_{15}\text{NO}_2$ requires 265.1103.

15 δH : 8.16 (1H, dd, J 8.2, 1.5, H5), 7.90 (2H, dd, J 8.3, 1.5, H2', H6'), 7.77 (1H, dd, J 7.2, 1.5, H7), 7.56-7.52 (2H, m, Ar-H), 7.49-7.43 (2H, m, Ar-H), 6.29 (1H, s, H3), 4.01 (3H, s, OMe), 3.99 (3H, s, OMe).

20 δC : 164.5, 163.4 (C2, C4), 144.7, 140.4, 138.5 (C1', C8, C8a), 131.3, 131.1, 127.9, 127.2, 123.5, 121.8 (C5, C6, C7, C2'-6'), 120.1 (C4a), 90.7 (C3), 56.2 (OMe), 53.8 (OMe).

ν_{max} / cm⁻¹: 1619, 1583 (s, C=C, C=N), 1206 (s, C-O).

m/z: 265 (64%, M⁺), 264 (100%, M⁺ - H), 250 (7%, M⁺ - CH₃), 188 (8%, M⁺ - Ph).

5 Method B - 1,4-bis(diphenylphosphino)butane palladium (II) chloride as catalyst.

10. 1,4-Bis(diphenylphosphinyl)butane (24 mg, 5.5×10^{-5} mol) was added, with stirring, to bis(benzonitrile) palladium (II) chloride (21 mg, 5.5×10^{-5} mol) in toluene (3 ml), and the mixture stirred for 20 minutes under argon to generate the required catalyst, 1,4-bis(diphenylphosphino)butane palladium (II) chloride, as an orange solid. Then 8-bromo-2,4-dimethoxyquinoline (**EXAMPLE 67**) (0.30 g, 1.1 mmol), benzeneboronic acid (0.15 g, 1.2 mmol), aqueous sodium carbonate (0.25 g dissolved in 1.0 ml H₂O), ethanol (0.5 ml) and a further 5 ml of toluene were added, and the mixture heated at 90°C for 48 hours. The mixture was washed with water, extracted with diethyl ether (3 x 30 ml), the combined organic extracts dried, and the solvent removed *in vacuo* to give a brown oil. Column chromatography (9:1 hexane:EtOAc) yielded the arylquinoline as a white powder. Yield 0.12 g, 40%. Spectral data as for compound prepared by method A.

Method C - bis(tricyclohexylphosphine)palladium(II) chloride as catalyst

8-Bromo-2,4-dimethoxyquinoline (**EXAMPLE 67**) (0.20 g, 0.75 mmol), benzeneboronic acid (0.10 g, 0.82 mmol), aqueous sodium carbonate (0.16 g, 1.5 mmol, in 0.5 ml H₂O), bis(tricyclohexylphosphine)palladium (II) chloride (28 mg, 5 mol%), ethanol (0.5 ml) and toluene (5 ml) were stirred at 90°C under argon for 48 hours. After cooling, water (15 ml) was added and the mixture transferred to a separating funnel. The reaction flask was washed with ether and the washings also transferred to the funnel. The aqueous layer was extracted with ether (2 x 20 ml), the combined organic extracts dried (MgSO₄), and the solvent removed *in vacuo* to give an orange residue. Column chromatography (9:1 hexane:EtOAc) furnished the title compound as white needles. Yield 0.11 g, 56%. Spectral data as for method A.

15

Method D - from the iodoquinoline.

20 2,4-Dimethoxy-8-iodoquinoline (**EXAMPLE 55**) (0.40 g, 1.3 mmol), benzeneboronic acid (0.18 g, 1.5 mmol), tetrakis(triphenylphosphine)palladium (0) (45 mg, 3 mol%), aqueous sodium carbonate (0.32 g, 3.0 mmol, in 1 ml H₂O), ethanol (0.5 ml) and toluene (7 ml) were heated under reflux in an argon

atmosphere for 48 hours. Workup as in Method C. Yield after column chromatography (9:1 hexane:EtOAc) 0.14 g, 41%.

Spectral data in agreement with the compound prepared by method A.

5

EXAMPLE 68. 2,4-Dimethoxy-8-(4'-methoxyphenyl)quinoline

8-Bromo-2,4-dimethoxyquinoline (EXAMPLE 53) (0.40 g, 1.5 mmol), 10 (4-methoxybenzene)-boronic acid (0.25 g, 1.6 mmol), tetrakis(triphenylphosphine) palladium (0) (52 mg, 3 mol%), aqueous sodium carbonate (2.0 ml of a 2M solution), ethanol (1 ml) and toluene (10 ml) were heated at 90°C under argon for 48 hours. After cooling, water (20 ml) was added, and the mixture extracted with diethyl ether (3 x 20 ml). The combined organic layers were dried (MgSO_4) and the solvent removed under reduced pressure to give an orange oil, which was purified by column chromatography (9:1 hexane:EtOAc) to give white plates, 15 R_f 0.29. Yield 0.14 g, 32%. Melting point 85-88°C. (Found C: 73.43, H: 5.84, N: 4.68%. $\text{C}_{18}\text{H}_{17}\text{NO}_3$ requires C: 73.20, H: 5.80, N: 4.68%). Found M^+ : 295.1200. $\text{C}_{18}\text{H}_{17}\text{NO}_3$ requires 295.1208.

20 δH : 7.95 (1H, dd, J 8.2, 1.5, H5), 7.67 (2H, d, J 8.8, H2' and H6'), 7.57 (1H, dd, J 7.2, 1.5, H7), 7.29 (1H, dd, J 8.2, 7.2, H6), 6.91 (2H, d, J 8.8, H3' and H5'), 6.15 (1H, s, H3), 3.90 (3H, s, OMe), 3.84 (3H, s, OMe), 3.79 (3H, s, OMe).

25 δC : 164.5, 163.3, 159.0 (C2, C4, C4'), 144.7, 138.0, 132.8 (C8a, C8, C1'), 132.2 (CH), 130.9 (CH), 123.5 (CH), 121.3 (CH), 120.1 (C4a), 113.4 (CH), 90.6 (C3), 56.2 (OMe), 55.7 (OMe), 53.8 (OMe).

$\nu_{\text{max}} / \text{cm}^{-1}$: 1618, 1582 (s, C=C, C=N).

m/z : 295 (100%, M⁺), 294 (93%, M⁺ - H), 214 (82%), 199 (46%).

EXAMPLE 69. 2,4-Dimethoxy-8-(2'-naphthyl)quinoline

5

8-Bromo-2,4-dimethoxyquinoline (EXAMPLE 53) (0.40 g, 1.5mmol), 2-naphthylboronic acid (0.30 g, 1.7 mmol), Pd(PPh_3)₄ (52 mg, 3 mol%), aqueous sodium carbonate (2.0 ml of a 2M solution), ethanol (1 ml) and toluene (10 ml) were heated at 85°C under argon for 48 hours. The cooled reaction mixture was washed with water (20 ml), and extracted with diethyl ether (3 x 30 ml), the combined organic extracts dried (MgSO_4) and the solvent removed *in vacuo* to give a brown oil. Column chromatography (9:1 hexane:EtOAc) furnished the pure naphthylquinoline as white plates (R_f 0.40), yield 0.3 g, 63%. Melting point 127-129°C. (Found C: 79.62, H: 5.52, N: 4.28%. $\text{C}_{21}\text{H}_{17}\text{NO}_2$ requires C: 79.98, H: 5.43, N: 4.44%).

10

15

18

20

25

Found M⁺: 315.1255. $\text{C}_{21}\text{H}_{17}\text{NO}_2$ requires 315.1259.

δH : 8.19 (1H, d, J 1.4, H1'), 8.10 (1H, dd, J 8.2, 1.5, H5), 7.99 (1H, dd, J 8.6, 1.7, Np-H), 7.89-7.87 (3H, m, Ar-H), 7.78 (1H, dd J 7.2, 1.5, H7), 7.49-7.40 (3H, m, Ar-H), 6.24 (1H, s, H3), 3.99 (3H, s, OMe), 3.87 (3H, s, OMe).

δC : 164.2, 163.1 (C2, C4), 144.5 (C8a), 138.0, 137.8, 133.5, 132.5, 131.2 (CH), 129.6 (CH), 129.1 (CH), 128.2 (CH), 127.6 (CH), 126.4 (CH), 125.8 (2 x CH), 123.2 (CH), 121.6 (CH), 119.8, 90.4 (C3), 55.8 (OMe), 53.5 (OMe).

$n_{\text{max}} / \text{cm}^{-1}$: 1618, 1591, 1577 (s, C=C, C=N), 1209 (s, C-O).

m/z: 315 (100%, M⁺), 314 (99%, M⁺ - H), 300 (11%, M⁺ - Me), 189 (39%, C₁₁H₁₁NO₂⁺).

EXAMPLE 70. 8-(4'-Fluorophenyl)-2,4-dimethoxyquinoline

5

8-Bromo-2,4-dimethoxyquinoline (**EXAMPLE 53**) (0.40 g, 1.5 mmol), 4-fluorobenzeneboronic acid (0.25 g, 1.8 mmol), tetrakis(triphenylphosphine) palladium (0) (52 mg, 3 mol%), aqueous sodium carbonate (2.0 ml of a 2M solution), ethanol (1 ml) and toluene (10 ml) were heated at 90°C under argon for 48 hours. The product was obtained after aqueous workup and ether extraction as a pale brown oil. After leaving to stand overnight, the oil crystallised to give pale orange prisms. Recrystallisation from hexane gave colourless prisms. Yield 0.15 g, 35%. Melting point: 108-110°C.

10
15
18
20
25
30
35
40
45
50
55
60
65
70
75
80
85
90
95
100
105
110
115
120
125
130
135
140
145
150
155
160
165
170
175
180
185
190
195
200
205
210
215
220
225
230
235
240
245
250
255
260
265
270
275
280
285
290
295
300
305
310
315
320
325
330
335
340
345
350
355
360
365
370
375
380
385
390
395
400
405
410
415
420
425
430
435
440
445
450
455
460
465
470
475
480
485
490
495
500
505
510
515
520
525
530
535
540
545
550
555
560
565
570
575
580
585
590
595
600
605
610
615
620
625
630
635
640
645
650
655
660
665
670
675
680
685
690
695
700
705
710
715
720
725
730
735
740
745
750
755
760
765
770
775
780
785
790
795
800
805
810
815
820
825
830
835
840
845
850
855
860
865
870
875
880
885
890
895
900
905
910
915
920
925
930
935
940
945
950
955
960
965
970
975
980
985
990
995
1000
1005
1010
1015
1020
1025
1030
1035
1040
1045
1050
1055
1060
1065
1070
1075
1080
1085
1090
1095
1100
1105
1110
1115
1120
1125
1130
1135
1140
1145
1150
1155
1160
1165
1170
1175
1180
1185
1190
1195
1200
1205
1210
1215
1220
1225
1230
1235
1240
1245
1250
1255
1260
1265
1270
1275
1280
1285
1290
1295
1300
1305
1310
1315
1320
1325
1330
1335
1340
1345
1350
1355
1360
1365
1370
1375
1380
1385
1390
1395
1400
1405
1410
1415
1420
1425
1430
1435
1440
1445
1450
1455
1460
1465
1470
1475
1480
1485
1490
1495
1500
1505
1510
1515
1520
1525
1530
1535
1540
1545
1550
1555
1560
1565
1570
1575
1580
1585
1590
1595
1600
1605
1610
1615
1620
1625
1630
1635
1640
1645
1650
1655
1660
1665
1670
1675
1680
1685
1690
1695
1700
1705
1710
1715
1720
1725
1730
1735
1740
1745
1750
1755
1760
1765
1770
1775
1780
1785
1790
1795
1800
1805
1810
1815
1820
1825
1830
1835
1840
1845
1850
1855
1860
1865
1870
1875
1880
1885
1890
1895
1900
1905
1910
1915
1920
1925
1930
1935
1940
1945
1950
1955
1960
1965
1970
1975
1980
1985
1990
1995
2000
2005
2010
2015
2020
2025
2030
2035
2040
2045
2050
2055
2060
2065
2070
2075
2080
2085
2090
2095
2100
2105
2110
2115
2120
2125
2130
2135
2140
2145
2150
2155
2160
2165
2170
2175
2180
2185
2190
2195
2200
2205
2210
2215
2220
2225
2230
2235
2240
2245
2250
2255
2260
2265
2270
2275
2280
2285
2290
2295
2300
2305
2310
2315
2320
2325
2330
2335
2340
2345
2350
2355
2360
2365
2370
2375
2380
2385
2390
2395
2400
2405
2410
2415
2420
2425
2430
2435
2440
2445
2450
2455
2460
2465
2470
2475
2480
2485
2490
2495
2500
2505
2510
2515
2520
2525
2530
2535
2540
2545
2550
2555
2560
2565
2570
2575
2580
2585
2590
2595
2600
2605
2610
2615
2620
2625
2630
2635
2640
2645
2650
2655
2660
2665
2670
2675
2680
2685
2690
2695
2700
2705
2710
2715
2720
2725
2730
2735
2740
2745
2750
2755
2760
2765
2770
2775
2780
2785
2790
2795
2800
2805
2810
2815
2820
2825
2830
2835
2840
2845
2850
2855
2860
2865
2870
2875
2880
2885
2890
2895
2900
2905
2910
2915
2920
2925
2930
2935
2940
2945
2950
2955
2960
2965
2970
2975
2980
2985
2990
2995
3000
3005
3010
3015
3020
3025
3030
3035
3040
3045
3050
3055
3060
3065
3070
3075
3080
3085
3090
3095
3100
3105
3110
3115
3120
3125
3130
3135
3140
3145
3150
3155
3160
3165
3170
3175
3180
3185
3190
3195
3200
3205
3210
3215
3220
3225
3230
3235
3240
3245
3250
3255
3260
3265
3270
3275
3280
3285
3290
3295
3300
3305
3310
3315
3320
3325
3330
3335
3340
3345
3350
3355
3360
3365
3370
3375
3380
3385
3390
3395
3400
3405
3410
3415
3420
3425
3430
3435
3440
3445
3450
3455
3460
3465
3470
3475
3480
3485
3490
3495
3500
3505
3510
3515
3520
3525
3530
3535
3540
3545
3550
3555
3560
3565
3570
3575
3580
3585
3590
3595
3600
3605
3610
3615
3620
3625
3630
3635
3640
3645
3650
3655
3660
3665
3670
3675
3680
3685
3690
3695
3700
3705
3710
3715
3720
3725
3730
3735
3740
3745
3750
3755
3760
3765
3770
3775
3780
3785
3790
3795
3800
3805
3810
3815
3820
3825
3830
3835
3840
3845
3850
3855
3860
3865
3870
3875
3880
3885
3890
3895
3900
3905
3910
3915
3920
3925
3930
3935
3940
3945
3950
3955
3960
3965
3970
3975
3980
3985
3990
3995
4000
4005
4010
4015
4020
4025
4030
4035
4040
4045
4050
4055
4060
4065
4070
4075
4080
4085
4090
4095
4100
4105
4110
4115
4120
4125
4130
4135
4140
4145
4150
4155
4160
4165
4170
4175
4180
4185
4190
4195
4200
4205
4210
4215
4220
4225
4230
4235
4240
4245
4250
4255
4260
4265
4270
4275
4280
4285
4290
4295
4300
4305
4310
4315
4320
4325
4330
4335
4340
4345
4350
4355
4360
4365
4370
4375
4380
4385
4390
4395
4400
4405
4410
4415
4420
4425
4430
4435
4440
4445
4450
4455
4460
4465
4470
4475
4480
4485
4490
4495
4500
4505
4510
4515
4520
4525
4530
4535
4540
4545
4550
4555
4560
4565
4570
4575
4580
4585
4590
4595
4600
4605
4610
4615
4620
4625
4630
4635
4640
4645
4650
4655
4660
4665
4670
4675
4680
4685
4690
4695
4700
4705
4710
4715
4720
4725
4730
4735
4740
4745
4750
4755
4760
4765
4770
4775
4780
4785
4790
4795
4800
4805
4810
4815
4820
4825
4830
4835
4840
4845
4850
4855
4860
4865
4870
4875
4880
4885
4890
4895
4900
4905
4910
4915
4920
4925
4930
4935
4940
4945
4950
4955
4960
4965
4970
4975
4980
4985
4990
4995
5000
5005
5010
5015
5020
5025
5030
5035
5040
5045
5050
5055
5060
5065
5070
5075
5080
5085
5090
5095
5100
5105
5110
5115
5120
5125
5130
5135
5140
5145
5150
5155
5160
5165
5170
5175
5180
5185
5190
5195
5200
5205
5210
5215
5220
5225
5230
5235
5240
5245
5250
5255
5260
5265
5270
5275
5280
5285
5290
5295
5300
5305
5310
5315
5320
5325
5330
5335
5340
5345
5350
5355
5360
5365
5370
5375
5380
5385
5390
5395
5400
5405
5410
5415
5420
5425
5430
5435
5440
5445
5450
5455
5460
5465
5470
5475
5480
5485
5490
5495
5500
5505
5510
5515
5520
5525
5530
5535
5540
5545
5550
5555
5560
5565
5570
5575
5580
5585
5590
5595
5600
5605
5610
5615
5620
5625
5630
5635
5640
5645
5650
5655
5660
5665
5670
5675
5680
5685
5690
5695
5700
5705
5710
5715
5720
5725
5730
5735
5740
5745
5750
5755
5760
5765
5770
5775
5780
5785
5790
5795
5800
5805
5810
5815
5820
5825
5830
5835
5840
5845
5850
5855
5860
5865
5870
5875
5880
5885
5890
5895
5900
5905
5910
5915
5920
5925
5930
5935
5940
5945
5950
5955
5960
5965
5970
5975
5980
5985
5990
5995
6000
6005
6010
6015
6020
6025
6030
6035
6040
6045
6050
6055
6060
6065
6070
6075
6080
6085
6090
6095
6100
6105
6110
6115
6120
6125
6130
6135
6140
6145
6150
6155
6160
6165
6170
6175
6180
6185
6190
6195
6200
6205
6210
6215
6220
6225
6230
6235
6240
6245
6250
6255
6260
6265
6270
6275
6280
6285
6290
6295
6300
6305
6310
6315
6320
6325
6330
6335
6340
6345
6350
6355
6360
6365
6370
6375
6380
6385
6390
6395
6400
6405
6410
6415
6420
6425
6430
6435
6440
6445
6450
6455
6460
6465
6470
6475
6480
6485
6490
6495
6500
6505
6510
6515
6520
6525
6530
6535
6540
6545
6550
6555
6560
6565
6570
6575
6580
6585
6590
6595
6600
6605
6610
6615
6620
6625
6630
6635
6640
6645
6650
6655
6660
6665
6670
6675
6680
6685
6690
6695
6700
6705
6710
6715
6720
6725
6730
6735
6740
6745
6750
6755
6760
6765
6770
6775
6780
6785
6790
6795
6800
6805
6810
6815
6820
6825
6830
6835
6840
6845
6850
6855
6860
6865
6870
6875
6880
6885
6890
6895
6900
6905
6910
6915
6920
6925
6930
6935
6940
6945
6950
6955
6960
6965
6970
6975
6980
6985
6990
6995
7000
7005
7010
7015
7020
7025
7030
7035
7040
7045
7050
7055
7060
7065
7070
7075
7080
7085
7090
7095
7100
7105
7110
7115
7120
7125
7130
7135
7140
7145
7150
7155
7160
7165
7170
7175
7180
7185
7190
7195
7200
7205
7210
7215
7220
7225
7230
7235
7240
7245
7250
7255
7260
7265
7270
7275
7280
7285
7290
7295
7300
7305
7310
7315
7320
7325
7330
7335
7340
7345
7350
7355
7360
7365
7370
7375
7380
7385
7390
7395
7400
7405
7410
7415
7420
7425
7430
7435
7440
7445
7450
7455
7460
7465
7470
7475
7480
7485
7490
7495
7500
7505
7510
7515
7520
7525
7530
7535
7540
7545
7550
7555
7560
7565
7570
7575
7580
7585
7590
7595
7600
7605
7610
7615
7620
7625
7630
7635
7640
7645
7650
7655
7660
7665
7670
7675
7680
7685
7690
7695
7700
7705
7710
7715
7720
7725
7730
7735
7740
7745
7750
7755
7760
7765
7770
7775
7780
7785
7790
7795
7800
7805
7810
7815
7820
7825
7830
7835
7840
7845
7850
7855
7860
7865
7870
7875
7880
7885
7890
7895
7900
7905
7910
7915
7920
7925
7930
7935
7940
7945
7950
7955
7960
7965
7970
7975
7980
7985
7990
7995
8000
8005
8010
8015
8020
8025
8030
8035
8040
8045
8050
8055
8060
8065
8070
8075
8080
8085
8090
8095
8100
8105
8110
8115
8120
8125
8130
8135
8140
8145
8150
8155
8160
8165
8170
8175
8180
8185
8190
8195
8200
8205
8210
8215
8220
8225
8230
8235
8240
8245
8250
8255
8260
8265
8270
8275
8280
8285
8290
8295
8300
8305
8310
8315
8320
8325
8330
8335
8340
8345
8350
8355
8360
8365
8370
8375
8380
8385
8390
8395
8400
8405
8410
8415
8420
8425
8430
8435
8440
8445
8450
8455
8460
8465
8470
8475
8480
8485
8490
8495
8500
8505
8510
8515
8520
8525
8530
8535
8540
8545
8550
8555
8560
8565
8570
8575
8580
8585
8590
8595
8600
8605
8610
8615
8620
8625
8630
8635
8640
8645
8650
8655
8660
8665
8670
8675
8680
8685
8690
8695
8700
8705
8710
8715
8720
8725
8730
8735
8740
8745
8750
8755
8760
8765
8770
8775
8780
8785
8790
8795
8800
8805
8810
8815
8820
8825
8830<br

EXAMPLE 71. 2,4-Dimethoxy-8-(2',4',6'-trimethylphenyl)quinoline

5 8-Bromo-2,4-dimethoxyquinoline (**EXAMPLE 53**) (0.40 g, 1.5 mmol), 2,4,6-trimethylbenzene-boronic acid (0.28 g, 1.7 mmol), tetrakis(triphenylphosphine) palladium (0) (52 mg, 3 mol%), aqueous sodium carbonate (2.0 ml of a 2M solution), ethanol (1 ml) and toluene (10 ml) were heated at 90°C under argon for 48 hours. After workup by the usual method a brown oil was obtained. Column chromatography (9:1 hexane:EtOAc) yielded the title compound as white plates, yield 80 mg, 17%, R_f 0.55. (0.2 g of the reduced 2,4-dimethoxyquinoline was also obtained). Melting point 112-114°C. (Found C: 77.47, H: 6.77, N: 4.45%. C₂₀H₂₁NO₂ requires C: 78.15, H: 6.89, N: 4.56%).

Found M⁺: 307.1571. C₂₀H₂₁NO₂ requires 307.1572.

¹⁵ δH: 8.06 (1H, dd, J 7.7, 2.0, H5), 7.41-7.34 (2H, m, H6 and H7), 6.94 (2H, s, 3'H and 5'H), 6.19 (1H, s, H3), 3.98 (3H, s, OMe), 3.66 (3H, s, OMe), 2.35 (6H, s, 2'Me and 6'Me), 1.90 (3H, s, 4'Me).

δ C: 164.2, 162.9 (C2, C4), 145.3 (C8a), 138.3, 137.5, 136.6, 136.0 (4 x quaternary C), 131.3, 127.6, 123.1, 121.0 (4 x Ar-H), 119.6, (C4a) 90.5 (C3), 55.9 (OMe), 53.2 (OMe), 21.3 (4'Me), 20.8 (2'Me, 6'Me).

ν_{max} / cm⁻¹: 1618, 1586, 1583 (s, C=C, C=N).

m/z: 307 (59%, M⁺), 292 (100%, M⁺ - Me), 277 (14%).

EXAMPLE 72. 8-Bromo-4-methoxy 1*H*-quinolin-2-one

5 **8-Bromo-2,4-dimethoxyquinoline (Example 53)** (0.60 g, 2.2 mmol) was heated in
3% hydrobromic acid in 1:1 THF:water (32 ml) under reflux for 4 hours. The
cooled solution was neutralised with sodium carbonate, and the THF removed *in*
vacuo to precipitate the organic products. The precipitate was filtered off and
dried under suction, and then subjected to a continuous (Soxhlet) extraction with
hexane for 6 hours. Unreacted starting material (0.15 g) was recovered from the
hexane. The quinolin-2-one product, white flakes, remained undissolved in the
extraction thimble. Yield 0.38 g, 67%. Melting point >250°C.

Found M⁺: 252.9734. C₁₀H₈⁷⁹BrNO₂ requires 252.9738.

¹⁵ δH: 8.76 (1H, br s, NH), 7.86 (1H, dd, J 8.1, 1.0, H5), 7.70 (1H, dd, J 7.8, 1.0, H7), 7.07 (1H, dd, J 8.1, 7.8, H6). 5.95 (1H, s, H3). 3.97 (3H, s, OMe)

δ_{C} : 164.2, 163.5, 135.4 (C8a), 134.3, 122.8, 122.7 (C5, C6, C7), 117.1, 108.9, 96.9 (C3), 56.4 (OMe).

$\nu_{\text{max}}/\text{cm}^{-1}$: 3383 (m, N-H), 1681 (s, C=O), 1592 (m, C=C).

m/z: 255 (97%, M⁺ ⁸¹Br), 253 (100%, M⁺ ⁷⁹Br), 212 (23%, M⁺ ⁸¹Br - CONH),
210 (25%, M⁺ ⁷⁹Br - CONH), 116 (18%).

BIOLOGICAL TESTING

(I) ANTHELMINTIC ACTIVITY

5 The anthelmintic properties of a number of compounds of the invention were tested against a benzimidazole sensitive *Haemonchus contortus* isolate. This assay is an *in vitro* larval development assay that is applicable to all parasitic nematodes with free-living life cycle stages.

10 *(i) Activity against Haemonchus contortus*

In the *Haemonchus contortus* assay, the eggs of parasitic nematodes are applied to the wells of a microtitre plate containing the test compound. After the eggs hatch, L1 larvae develop through to the L3 stage. Development of the larvae can be inhibited at a number of stages by nematocides. The morphology and stages of inhibition are highly characteristic for common modes of action and offer additional pharmacological criteria for the uniqueness of the activity observed. These observations are extremely informative where the assay is used as a primary screen for anthelmintic activity (Gill, J.H. et al, Int. J. Parasit. (1991), 21, 771-776 and Gill, J.H. et al, Int. J. Parasit. (1995), 25, 463-470).

Protocol

Samples of compounds were weighed and dissolved by addition of dimethylsulfoxide (DMSO) to give a final stock concentration of 10,000 µg/ml. If a compound was not soluble at this concentration, the suspension was gently warmed to achieve dissolution. Compounds failing to dissolve were then diluted to 5,000 µg/ml and warmed. Poorly soluble compounds were handled by repeated dilution and warming until the dissolution was complete as possible.

30 Twelve serial ½ dilutions in DMSO solution were prepared from each stock solution, each of which was then diluted 1/5 with water. Aliquots (10 µl) of each dilution were transferred to the bioassay plates and diluted a further 20-fold with

agar (2%, 190 µl) to give a final concentration range of 0.045 to 100 µg/ml (2,048-fold range), or a corresponding range for compounds where the stock concentration was lower than 10,000 µg/ml. Any precipitation was found to redissolve upon addition of hot agar.

5

Test Organism

The McMaster isolate of *H. contortus* is a reference susceptible strain routinely maintained by passage in sheep; this isolate has had little, if any, exposure to any antihelmintic. Nematodes eggs were isolated from the faeces of infested animals
10 according to standard literature procedures.

15

Procedure

20

25

30

The effect of the test compounds on larval development was determined in the assay described by Lacey *et al* (1990), "A larval development assay for the simultaneous detection of broad spectrum antihelmintic resistance" in "Resistance of Parasites to Antiparasitic Drugs", Round Table Conference held at the VII International Congress of Parasitology, Paris, August, 1990 (Edited by Boray, J.C, Martin, P.J and Roush, R.P.), pp177-184, MSD AGVET, Rahway, NJ, USA). Briefly, 80 to 100 nematode eggs were added to the surface of the agar matrix containing the test compound, supplemented with a nutrient medium and incubated at 26°C until larvae in the control (no drug) wells developed to the L3 stage. A qualitative assessment of the larvae in each well was made on Day 5 of the assay (see Column "NeT" in Table 1). The wells for each dilution of every compound (from highest to lowest concentration) were inspected to determine the well number corresponding to the lowest concentration at which development was inhibited in 99% of the nematode larvae present. As the well numbers correspond to a two-fold serial dilution of each compound, a titre (dilution factor) is generated as 2^{n-1} , where n is the well number. By dividing the highest concentration by the titre, an LD₉₉ value was obtained, representing the concentration required to inhibit development in 99% of the nematode larvae present.

The results of the assay for a selection of compounds are shown in Table 1. The nematocidal activity of the compounds in Table 1 are given as LD₉₉ values in µg/ml, and represents the concentration required to inhibit development of 99% of *Haemonchus contortus* larvae.

5

EXAMPLE NO.	STRUCTURE	NeT	LD ₉₉ /µg/ml
37		2	12.5
58		8	12.5
61		32	3.1
65		32	3.1
67		8	12.5
68		8	12.5

Table 1. Anthelmintic activity data

The data in Table 1 indicate that representative compounds of the invention, 37, 58, 51, 65, 67 and 68, possess high nematocidal activity.

(ii) Activity against *Schistosoma mansoni cercariae*

5

The anthelmintic properties of a number of compounds of the invention were tested against recently released cercarial larvae of the human schistosome trematode, *Schistosoma mansoni*. The assay monitored cercarial behaviour changes and death as determined by a cessation of larval movement.

10

PROTOCOL

Samples of compounds were weighed and dissolved in ethanol to provide 50 mM stock solutions. These were serially diluted in ethanol (1:1 by volume) to provide a range of stock concentrations from 50 mM downwards.

15

20

In tests, these were added at a 1:99 dilution, to provide a range of in-well concentrations in the series 500 µM, 250 µM, 125 µM etc., to cercariae in 1 ml of water in 12 well tissue culture plates (Linbro). This dilution protocol produces a maximum in-well concentration of ethanol of 1% by volume, which does not significantly affect cercarial behaviour or longevity.

25

30

Cercariae of *S. mansoni* were obtained through the maintenance of the parasite life cycle in NMRI strain laboratory mice and *Biomphalaria glabrata* snails. Infected snails were induced to shed cercariae by exposure of water at 28°C and bright light. Approximately 30 cercariae were placed in each test well within 2 hours of their release from the snail hosts. For each compound and concentration, assays were set up in duplicate and repeated 3 times with different populations of cercariae. For each assay, the cercariae were observed with low power microscopy to assess cercarial activity 30 minutes after exposure to the test compound. At this time, the number of immobile cercariae in each well was counted and then all cercariae fixed and stained with Lugol's iodine to assess the percentage of cercariae that were immobile and presumed dead. Results from

the dilution series were employed to estimate the LD₅₀ (30 minutes) for each compound. The results from this assay are shown in Table 2.

EXAMPLE NO.	STRUCTURE	LD ₅₀ (30 minutes)/μM
9		15
10		30
22		30

Table 2. Activity against *S. mansoni cercariae*

5

(iii) Activity against *Caenorhabditis elegans*

The anti-nematode properties of a number of compounds of the invention were
10 tested against the free-living nematode *Caenorhabditis elegans*. The assay monitored behavioural changes and death as determined by complete cessation of movement by the worms.

PROTOCOL

15 Samples of compounds were weighed and dissolved in ethanol to provide 50 mM stock solutions. These were serially diluted in ethanol (1:1 by volume) to provide a range of stock concentrations from 50 mM downwards.

In tests, 20 µl of these stock solutions were added to 1.98 ml of *C. elegans* suspension in lidded glass vials to give a final dilution of 1:99. This gives a range of in-well concentrations in the series 500 µM, 250 µM, 125 µM, etc. This dilution protocol produces a maximum in-well concentration of ethanol of 1% by volume which does not significantly affect nematode behaviour or longevity.

C. elegans were maintained in culture of agar plates seeded with *Escherichia coli* bacteria. The nematodes were harvested 7 days after inoculation, into 0.05 M phosphate buffer – pH 7, and counted. The volume of the suspension was adjusted to give about 500 nematodes/ml. Aliquots of 1.98 ml were dispensed into glass vials and 20 µl of drug stock solution added. After 60 minutes, five samples of 100 µl were removed, and in each of these, the total number of nematodes and the number that were inactive were counted. From these five replicated values the mean percentage of immobile, presumed dead, nematodes associated with each concentration could be estimated. Results from dilution series were used to estimate the LD₅₀ (60 minutes) for each compound. The results from this assay are shown in Table 3.

EXAMPLE NO.	STRUCTURE	LD ₅₀ (60 minutes)/µM
9		300
10		1.5
22		70

Table 3. Activity against *C. elegans*

(III) ECTOPARASITIC ACTIVITY

A number of compounds of the invention were tested against certain species of ectoparasites in accordance with the following bioassay protocols.

5

(i) Activity against *Lucilia cuprina*(a). Topical application to adult male *Lucilia cuprina*

10 Adult male blowflies aged between 3 and 7 days of the species *L. cuprina* were lightly anaesthetised to permit handling, and 1 microlitre of the test solution, at a range of dilutions, was applied to the dorsal thorax. Four replicates of 15 blowflies were treated at each test dilution. A control group, treated with the solvent alone, was included for comparative purposes.

15

The treated blowflies and the controls were maintained in recovery containers under appropriate rearing conditions for 48 hours. Percentage mortality, as determined by no response of the adult blowfly if touched, was recorded at 24 and 48 hours after treatment (Table 4).

20

(b). Mortality test for larval *Lucilia cuprina*

First stage larvae, less than 24 hours of age, were placed on a surface that had been impregnated with the serial dilutions of the test compound. Four replicates of 50 larvae were exposed at each dilution. A control group, treated with the solvent alone, was included for comparative purposes.

25 The exposed larval blowflies were held in appropriate rearing conditions for 24 hours. Percentage mortality was recorded at 24 hours by counting dead and live larvae (Table 4).

30

(c). Insect growth regulator (IGR) test for larval *Lucilia cuprina*

First stage larvae, less than 24 hours of age, were placed on prepared media that had been impregnated with serial dilutions of the test compound. Four replicates of 100 larvae were exposed at each dilution. A control group, treated with the solvent alone, was included for comparative purposes.

The exposed larval blowflies were held in appropriate rearing conditions and were checked periodically. Just prior to pupation, the test lids on the holding containers were removed and the holding containers placed on a layer of sand to facilitate migration and pupation of the larvae. Percentage mortality and percentage IGR activity were recorded weekly (Table 4).

EXAMPLE NO.	Adult males	Larvae	
	% mortality	% mortality	% IGR effect
37	5.0	4.5	0
56	5.0	0	0
58	3.3	3.4	0
61	3.3	0	0
65	1.7	1.6	0
67	1.7	22.1	NT
68	3.3	31.6	NT

NT = not tested

15

Table 4. Results of bioassays against *Lucilia cuprina*

(ii) Activity against the cattle tick *Boophilus microplus*(a), Injection test for engorged female *Boophilus microplus*

5 Engorged female ticks of *Boophilus microplus* were injected, through the cuticle between the mouthparts and first leg, with 1 microlitre of the test compound in a range of dilutions. Four replicates of 15 ticks were treated at each dilution. A control group, treated with the solvent alone, was included for comparative purposes.

10

The treated ticks were maintained at $25 \pm 1^\circ\text{C}$ for 14 days. Mortality and oviposition were recorded at 7 and 14 days. The results were recorded for either percentage mortality or percentage inhibition of oviposition (Table 5).

EXAMPLE NO.	% inhibition of oviposition
37	24.4
56	17.3
58	34.8
61	50.0
65	14.0
67	0
68	17.9

15

Table 5. Activity against *Boophilus microplus*

20 The data in Tables 4 and 5 indicate that all compounds have a low level of activity against adult *Lucilia cuprina*. Two compounds, i.e. 67 and 68, demonstrated a good level of activity against this larval stage of the life cycle of *Lucilia cuprina*.

None of the compounds tested demonstrated any insect growth regulator activity at the concentrations tested against larval *Lucilia cuprina*. All test compounds, with the exception of compound 67, demonstrated moderate to good activity against the cattle tick, *Boophilus microplus*, with particularly good activity being demonstrated by compound 61. It should be noted that compound 68 demonstrated activity against both larval *Lucilia cuprina* and adult *Boophilus microplus*, thus demonstrating activity against both an insect and acarine ectoparasite.

CLAIMS

1. The use of a compound of Formula (I), (IA) or (IB):

5 in the manufacture of a pharmaceutical composition for the treatment or prophylaxis of infections caused by parasitic helminths or arthropod ectoparasites, wherein:

R¹ represents H, C₁ to C₆ alkyl or benzyl;

10

R^2 , R^3 , R^4 , R^5 , R^6 , R^7 and R^8 are each independently selected from the group consisting of:

- (i) hydrogen;
 - (ii) C₁ to C₂₀ alkyl, which may be branched, or unbranched and unsubstituted or substituted by 1-3 substituents independently selected from the group consisting of: C₆ to C₁₀ aryl, CN, F, Cl, Br, I, OH, SH, NO₂, OR⁹, SR⁹, COR⁹, COOR¹⁰ and NR¹⁰R¹¹;
 - (iii) C₂ to C₂₀ alkenyl, which may be unsubstituted or substituted by 1-3 substituents independently selected from the group consisting of C₆ to C₁₀ aryl, OR⁹, SR⁹, CN, F, Cl, Br, I, OH, SH, NO₂, COR⁹, COOR¹⁰ and NR¹⁰R¹¹;
 - (iv) C₂ to C₁₀ alkynyl, which may be unsubstituted or substituted by 1-3 substituents independently selected from the group consisting of C₆

- to C₁₀ aryl, OR⁹, SR⁹, CN, F, Cl, Br, I, OH, SH, NO₂, COR⁹, COOR¹⁰ and NR¹⁰R¹¹;
- (v) C₆ to C₁₅ aryl, which may be unsubstituted or substituted by 1-5 substituents independently selected from the group consisting of C₁ to C₆ alkyl, C₆ to C₁₅ aryl, OR⁹, SR⁹, CN, F, Cl, Br, I, OH, SH, NO₂, COR⁹, COOR¹⁰, OCF₃, CF₃ and NR¹⁰R¹¹;
- (vi) C₃ to C₆ cycloalkyl, which may be unsubstituted or substituted by 1-5 substituents independently selected from the group consisting of C₁ to C₆ alkyl, C₆ to C₁₀ aryl, OR⁹, SR⁹, CN, F, Cl, Br, I, OH, SH, NO₂, COR⁹, COOR¹⁰, OCF₃, CF₃ and NR¹⁰R¹¹;
- (vii) a heterocyclic group which may be aromatic or non-aromatic having from 5 to 10 ring atoms wherein 1, 2 or 3 of the ring atoms are selected from nitrogen, oxygen or sulfur atoms and the remainder are carbon atoms;
- (viii) OR¹²;
- (ix) a halo group selected from F, Cl, Br or I;
- (x) NR¹⁰R¹¹;
- (xi) COOR¹⁰;
- (xii) NO₂;
- (xiii) SR¹²;
- (xiv) CONR¹⁰R¹¹;
- (xv) COR⁹;
- (xvi) CN;
- (xvii) OH; or
- (xviii) SH,

wherein:

R⁹ represents C₁ to C₆ alkyl or C₆ to C₁₅ aryl;

R¹⁰ and R¹¹ are the same or different and each is independently selected from the group consisting of hydrogen, C₁ to C₆ alkyl and C₆ to C₁₅ aryl; and

R¹² represents C₁ to C₆ alkyl, which may be branched or unbranched and unsubstituted or substituted by 1-3 substituents independently selected from the group consisting of C₆ to C₁₀ aryl, OR⁹, SR⁹, CN, F, Cl, Br, I, OH, SH, NO₂, COR⁹, COOR¹⁰ and NR¹⁰R¹¹;

5

or an N-oxide derivative thereof, wherein the quinoline ring nitrogen forms an N-oxide group, or a pharmaceutically acceptable salt, solvate or quaternary ammonium salt thereof, with the proviso that (a) at least one of R² and R⁴ is other than hydrogen and (b) for the compounds of Formula (IA) wherein R³ represents dimethylallyl and R⁴ represents ethoxy, at least one of R⁵, R⁶, R⁷ and R⁸ is other than hydrogen.

10

2. The use according to Claim 1 wherein R² represents
 - (i) C₁ to C₆ alkyl, which may be branched, or unbranched and unsubstituted or substituted by 1-3 substituents independently selected from the group consisting of C₆ to C₁₀ aryl, CN, F, Cl, Br, I, OH, SH, NO₂, OR⁹, SR⁹, COR⁹, COOR¹⁰ and NR¹⁰R¹¹;
 - (ii) C₆ to C₁₀ aryl, which may be unsubstituted or substituted by 1-5 substituents independently selected from the group consisting of C₁ to C₆ alkyl, C₆ to C₁₀ aryl, OR⁹, SR⁹, CN, F, Cl, Br, I, OH, SH, NO₂, COR⁹, COOR¹⁰, OCF₃, CF₃ and NR¹⁰R¹¹;
 - (iii) C₃ to C₆ cycloalkyl, which may be unsubstituted or substituted by 1-5 substituents independently selected from the group consisting of C₁ to C₆ alkyl, C₆ to C₁₀ aryl, OR⁹, SR⁹, CN, F, Cl, Br, I, OH, SH, NO₂, COR⁹, COOR¹⁰, OCF₃, CF₃ and NR¹⁰R¹¹;
 - (iv) OR¹²;
 - (v) a halo group selected from F, Cl, Br or I;
 - (vi) NR¹⁰R¹¹;
 - (vii) COOR¹⁰;
 - (viii) SR¹²;
 - (ix) CONR¹⁰R¹¹;
 - (x) COR⁹; or

15

20

25

30

(xi) CN

wherein R⁹, R¹⁰, R¹¹ and R¹² are as defined as in Claim 1.

3. The use according to Claim 2 wherein R² represents
 5. (i) unsubstituted C₁ to C₆ alkyl, which may be branched or unbranched;
 - (ii) C₆ to C₁₀ aryl, which may be unsubstituted or substituted by 1-5 substituents independently selected from the group consisting of C₁ to C₆ alkyl, C₆ to C₁₀ aryl, OCF₃, CF₃, OR⁹ or SR⁹;
 - (iii) OR¹²;
 - 10 (iv) a halo group selected from F, Cl, Br or I;
 - (v) COOR¹⁰; or
 - (vi) COR⁹
- wherein R⁹, R¹⁰ and R¹² are as defined as in Claim 1.
- 15 4. The use according to Claim 3 wherein R² represents
 - (i) OR¹², wherein R¹² is as defined as in Claim 1; or
 - (ii) a halo group selected from F, Cl, Br or I.
- 20 5. The use according to Claim 4 wherein R² represents
 - (i) OR¹² wherein R¹² represents unsubstituted C₁ to C₆ alkyl, which may be branched, or unbranched; or
 - (ii) a halo group selected from F, Cl, Br or I.
- 25 6. The use according to Claim 5 wherein R² represents methoxy or halo.
7. The use according to any preceding claim wherein R³ represents
 - (i) hydrogen;
 - (ii) C₁ to C₂₀ alkyl, which may be branched, or unbranched and unsubstituted or substituted by 1-3 substituents independently selected from the group consisting of C₆ to C₁₀ aryl, CN, F, Cl, Br, I, OH, SH, NO₂, OR⁹, SR⁹, COR⁹, COOR¹⁰ and NR¹⁰R¹¹;

- (iii) C_2 to C_{20} alkenyl, which may be unsubstituted or substituted by 1-3 substituents independently selected from the group consisting of C_1 to C_6 alkyl, C_6 to C_{10} aryl, OR^9 or SR^9 , CN, F, Cl, Br, I, OH, SH, NO_2 , COR^9 , $COOR^{10}$ and $NR^{10}R^{11}$;
5. (iv) C_6 to C_{15} aryl, which may be unsubstituted or substituted by 1-5 substituents independently selected from the group consisting of C_1 to C_6 alkyl, C_6 to C_{10} aryl, OR^9 , SR^9 , CN, F, Cl, Br, I, OH, SH, NO_2 , COR^9 , $COOR^{10}$, OCF_3 , CF_3 and $NR^{10}R^{11}$;
- 10 (v) C_3 to C_8 cycloalkyl, which may be unsubstituted or substituted by 1-5 substituents independently selected from the group consisting of C_1 to C_6 alkyl, C_6 to C_{10} aryl, OR^9 , SR^9 , CN, F, Cl, Br, I, OH, SH, NO_2 , COR^9 , $COOR^{10}$, OCF_3 , CF_3 and $NR^{10}R^{11}$;
- 15 (vi) OR^{12} wherein R^{12} represents C_1 to C_6 alkyl, which may be branched or unbranched and unsubstituted or substituted by 1-3 substituents independently selected from the group consisting of OR^9 , SR^9 , CN, F, Cl, Br, I, OH, SH, NO_2 and $NR^{10}R^{11}$ wherein R^{10} and R^{11} are the same or different and each is independently selected from the group consisting of hydrogen, C_1 to C_6 alkyl and C_6 to C_{15} aryl; or
- (vii) a halo group selected from F, Cl, Br or I,
- 20 wherein unless stated otherwise, R^9 , R^{10} , R^{11} and R^{12} are as defined as in Claim 1.
8. The use according to any preceding claim wherein R^3 represents
- 25 (i) hydrogen;
- (ii) unsubstituted C_1 to C_6 alkyl, which may be branched or unbranched;
- (iii) unsubstituted C_6 to C_{15} aryl;
- (iv) OR^{12} wherein R^{12} represents C_1 to C_6 alkyl; or
- (v) a halo group selected from F, Cl, Br, I.
- 30 9. The use according to any preceding claim wherein R^3 represents hydrogen or halo.

10. The use according to any preceding claim wherein R³ represents hydrogen.

11. The use according to any preceding claim wherein R⁴ represents

5 (i) C₁ to C₂₀ alkyl, which may be branched, or unbranched and unsubstituted or substituted by 1-3 substituents independently selected from the group consisting of C₆ to C₁₀ aryl, OR⁹, SR⁹, CN, F, Cl, Br, I, OH, SH, NO², COR⁹, COOR¹⁰ and NR¹⁰R¹¹;

10 (ii) C₆ to C₁₆ aryl, which may be unsubstituted or substituted by 1-5 substituents independently selected from the group consisting of C₁ to C₆ alkyl, C₆ to C₁₀ aryl, OR⁹, SR⁹, CN, F, Cl, Br, I, OH, SH, NO₂, COR⁹, COOR¹⁰, OCF₃, CF₃ and NR¹⁰R¹¹;

15 (iii) C₃ to C₈ cycloalkyl, which may be unsubstituted or substituted by 1-5 substituents independently selected from the group consisting of C₁ to C₆ alkyl, C₆ to C₁₀ aryl, OR⁹, SR⁹, CN, F, Cl, Br, I, OH, SH, NO₂, COR⁹, COOR¹⁰, OCF₃, CF₃ and NR¹⁰R¹¹;

20 (iv) OR¹² wherein R¹² represents C₁ to C₂₀ alkyl, which may be branched, or unbranched and unsubstituted or substituted by 1-3 substituents independently selected from the group consisting of OR⁹, SR⁹, CN, F, Cl, Br, I, OH, SH, NO₂, COR⁹, COOR¹⁰ and NR¹⁰R¹¹;

25 (v) a halo group selected from F, Cl, Br or I;

 (vi) NR¹⁰R¹¹;

 (vii) COOR¹⁰;

 (viii) SR¹²;

 (ix) CONR¹⁰R¹¹;

 (x) COR⁹; or

 (xi) CN,

wherein R⁹, R¹⁰, R¹¹ and R¹² are as defined as in Claim 1.

12. The use according to Claim 11 wherein R⁴ represents

30 (i) unsubstituted C₁ to C₆ alkyl, which may be branched or unbranched;

 (ii) unsubstituted C₆ to C₁₀ aryl;

 (iii) OR¹²;

(iv) a halo group selected from F, Cl, Br or I;

(v) COOR¹⁰; or

(vi) COR⁹,

wherein R⁸, R¹⁰ and R¹² are as defined as in Claim 1.

5

13. The use according to Claim 12 wherein R⁴ represents

(i) OR¹² wherein R¹² is as defined as in Claim 1; or

(ii) a halo group selected from F, Cl, Br or I.

10

14. The use according to Claim 13 wherein R⁴ represents

(i) OR¹² wherein R¹² represents unsubstituted C₁ to C₆ alkyl, which may be branched, or unbranched; or

(ii) a halo group selected from F, Cl, Br or I.

15

15. The use according to Claim 14 wherein R⁴ represents methoxy or halo.

16. The use according to any preceding claim wherein R⁵, R⁶, R⁷ and R⁸ are each independently selected from the group consisting of:

(i) hydrogen;

20

(ii) C₁ to C₂₀ alkyl, which may be branched, or unbranched and unsubstituted or substituted by 1-3 substituents independently selected from the group consisting of C₆ to C₁₀ aryl, OR⁹, SR⁹, CN, F, Cl, Br, I, OH, SH, NO₂, COR⁹, COOR¹⁰, and NR¹⁰R¹¹;

25

(iii) C₆ to C₁₅ aryl, which may be unsubstituted or substituted by 1-5 substituents independently selected from the group consisting of C₁ to C₆ alkyl, C₆ to C₁₀ aryl, OR⁹, SR⁹, CN, F, Cl, Br, I, OH, SH, NO₂, COR⁹, COOR¹⁰, OCF₃, CF₃ and NR¹⁰R¹¹;

30

(iv) C₃ to C₆ cycloalkyl, which may be unsubstituted or substituted by 1-5 substituents independently selected from the group consisting of C₁ to C₆ alkyl, C₆ to C₁₀ aryl, OR⁹, SR⁹, CN, F, Cl, Br, I, OH, SH, NO₂, COR⁹, COOR¹⁰, OCF₃, CF₃ and NR¹⁰R¹¹;

(v) a heterocyclic group having from 5 to 10 ring atoms wherein 1, 2 or 3 of the ring atoms are selected from nitrogen, oxygen or sulfur atoms and the remainder are carbon atoms;

5 (vi) OR¹²;

(vii) a halo group selected from F, Cl, Br or I;

(viii) COR⁹;

(ix) CN; and

(x) OH,

wherein R⁹, R¹⁰, R¹¹ and R¹² are as defined as for Claim 1..

10

17. The use according to Claim 16 wherein R⁵, R⁶, R⁷ and R⁸ are each independently selected from the group consisting of:

(i) hydrogen

(ii) unsubstituted C₁ to C₆ alkyl, which may be branched or unbranched;

15

(iii) C₆ to C₁₀ aryl, which may be unsubstituted or substituted by 1-5 substituents independently selected from the group consisting of C₁ to C₆ alkyl, C₆ to C₁₀ aryl, OR⁹, SR⁹;

(iv) the group OR¹²; and

(v) a halo group selected from F, Cl, Br and I.

20

18. The use according to Claim 17 wherein R⁵, R⁶, R⁷ and R⁸ are each independently selected from the group consisting of:

(i) hydrogen

(ii) C₆ to C₁₀ aryl, which may be unsubstituted or substituted by 1-5 substituents independently selected from the group consisting of C₁ to C₆ alkyl, C₆ to C₁₀ aryl, OR⁹, SR⁹, OCF₃ and CF₃; and

25

(iii) a halo group selected from F, Cl, Br or I.

30

19. The use according to Claim 18 wherein R⁵, R⁶, R⁷ and R⁸ are each independently selected from hydrogen, C₆ to C₁₀ aryl, which may be unsubstituted or substituted by 1-3 alkoxy groups OR⁹, wherein R⁹ is as defined as in Claim 1.

20. The use according to any preceding claim wherein R² and R⁴ both represents methoxy.
5. 21. The use according to any preceding claim wherein R⁵ represents
- (i) hydrogen
 - (ii) C₁ to C₆ alkyl which may be branched or unbranched and unsubstituted or substituted by 1-3 substituents independently selected from the group consisting of C₆ to C₁₀ aryl, OR⁹, SR⁹ or a 10 halo group selected from F, Cl, Br and I;
 - (iii) C₆ to C₁₀ aryl which may be unsubstituted or substituted with 1-5 substituents independently selected from the group consisting of C₁ to C₆ alkyl, C₆ to C₁₀ aryl, OR⁹, SR⁹, F, Cl, Br, I, OCF₃ and CF₃; or
 - (iv) a halo group selected from F, Cl, Br and I.
- 15 22. The use according to any preceding claim wherein R⁵ represents hydrogen, unsubstituted C₁ to C₆ alkyl, or a halo group selected from F, Cl, Br and I.
- 20 23. The use according to any preceding claim wherein R⁵ represents hydrogen.
- 25 24. The use according to any preceding claim wherein R⁸ represents
- (i) hydrogen,
 - (ii) C₁ to C₆ alkyl which may be branched or unbranched and unsubstituted or substituted by 1-3 substituents independently selected from the group consisting of OR⁹, SR⁹ and a halo group selected from F, Cl, Br and I;
 - (iii) C₆ to C₁₀ aryl which may be unsubstituted or substituted with 1-5 substituents independently selected from the group consisting of C₁ to C₆ alkyl, C₆ to C₁₀ aryl, OR⁹, SR⁹, F, Cl Br, I, OCF₃ and CF₃; or
 - (iv) a halo group selected from F, Cl, Br and I.
- 30

25. The use according to any preceding claim wherein R⁷ represents hydrogen, unsubstituted C₁ to C₆ alkyl, or a halo group selected from F, Cl Br and I.
 26. The use according to any preceding claim wherein R⁷ represents hydrogen.
- 5 27. The use according to Claim 1 wherein one of R⁵, R⁶, R⁷ and R⁸ is other than hydrogen, and the remaining three represent hydrogen.
28. The use according to any preceding claim wherein R⁹ represents unsubstituted C₁ to C₆ alkyl.
- 10 29. The use according to any preceding claim wherein R¹⁰ and R¹¹ are the same or different and each is independently selected from the group consisting of H and unsubstituted C₁ to C₆ alkyl.
- 15 30. The use according to any preceding claim wherein R¹² represents unsubstituted C₁ to C₆ alkyl.
31. The use according to any preceding claim wherein R¹ represents H.
- 20 32. The use according to Claim 1 wherein the compound of Formula (I) has the structure:

33. The use according to Claim 1 wherein the compound of Formula (I) is selected from the group consisting of:

5

34. The use according to any preceding claim wherein the helminth is a nematode.

10

35. The use according to Claim 34 wherein the nematode is selected from the group consisting of: *Ostertagia lirata*, *O. ostertagi*, *O. circumcincta*, *Cooperia oncophora*, *C. pectinata*, *C. punctata*, *C. surinamensis*, *C. curticea*, *Haemonchus contortus*, *H. placei*, *Trichostrongylus axei*, *T. colubriformis*, *T. vetrinus*, *Bunostomum phlebotomum*, *B. trigonocephalum*, *Oesophagostomum radiatum*, *O. dentatum*, *O. venulosum*, *O. columbianum*, *Strongyloides papillosus*, *S. westeri*, *S. stercoralis*, *Nematodirus helvetianus*, *N. spathiger*, *N. filicolis*, *Trichuris spp.*, *Strongylus vulgaris*, *S. edentatus*, *S. equinus*, *Triodontophorus spp.*

15

5 *Oxyuris equi, Parascaris equorum, Habronema muscae, Oncocerca spp., Dirofilaria immitis, Toxocara canis, Toxascaris leonina, Ancylostoma caninum, A. braziliense, A. duodenale, Thelazia spp., Uncinaria stenocephala, Chaberia ovina, Ascaris lumbricoides, Dictyocaulus vivaparus, D. arnfieldi, D. filaria, Brugia malayi, B. timori, Dioctophyma renale, Enterobius vermicularis, Loa loa, Mansonella ozzardi, M. perstans, M. streptocerca, Necator americanus, Onchocerca volvulus, Stronglyloides stercoralis, Trichinella spiralis, T. trichiura and Wuchereria bancrofti.*

- 10 36. The use according to Claim 35 wherein the nematode is a plant-damaging nematode selected from the genera *Meloidogyne*, *Heterodera*, *Ditylenchus*, *Aphelenchoides*, *Radopholus*, *Globodera*, *Pratylenchus*, *Longidorus* and *Xiphinema*.
- 15 37. The use according to any of Claims 1 to 33 wherein the helminth is a cestode.
- 20 38. The use according to Claim 37 wherein the cestode is selected from the group consisting of *Diphyllobothrium latum*, *D. caninum*, *Echinococcus granulosus*, *E. multilocularis*, *Hymenolepsis diminuta*, *Taenia multiceps*, *T. saginatus*, *T. serialis*, *T. solium* and *Vampirolepis nana*.
- 25 39. The use according to any of Claims 1 to 33 wherein the helminth is a trematode.
- 30 40. The use according to Claim 39 wherein the trematode is selected from the group consisting of *Clonorchis sinensis*, *Dicrocoelium dendriticum*, an echinostome, *Fasciolopsis buski*, *Fasciola hepatica*, a heterophyid, *Nanophyetus salmincola*, *Opisthorchis felineus*, *O. viverrini*, *Paragonimus kellicotti*, *P. westermani*, *Schistosoma haematobium*, *S. japonicum*, *S. mansoni*, *S. intercalatum* and *S. mekongi*.
41. A compound of Formula (II), (IIA) or (IIB):

wherein:

R^{1a} represents H, C₁ to C₆ alkyl or benzyl

5 R^{2a} represents OR¹² or SR¹²;

R^{4a} represents OR¹² or SR¹²;

R^{3a}, R^{5a}, R^{8a}, R^{7a} and R^{6a} is selected from the group consisting of:

(i) hydrogen;

10 (ii) C₁ to C₆ alkyl, which may be branched or unbranched and unsubstituted or substituted by 1-3 substituents independently selected from the group consisting of C₆ to C₁₀ aryl, OR⁹, SR⁹, CN, F, Cl, Br, I, OH, SH, NO₂, COR⁹, COOR¹⁰ and NR¹⁰R¹¹;

(iii) C₂ to C₂₀ alkenyl, which may be unsubstituted or substituted by 1-3 substituents independently selected from the group consisting of C₁ to C₆ alkyl, C₆ to C₁₀ aryl, OR⁹, SR⁹, CN, F, Cl, Br, I, OH, SH, NO₂, COR⁹, COOR¹⁰ and NR¹⁰R¹¹;

15 (iv) C₂ to C₁₀ alkynyl, which may be unsubstituted or substituted by 1-3 substituents independently selected from the group consisting of C₆ to C₁₀ aryl, OR⁹, SR⁹, CN, F, Cl, Br, I, OH, SH, NO₂, COR⁹, COOR¹⁰ and NR¹⁰R¹¹;

20 (v) C₆ to C₁₅ aryl, which may be unsubstituted or substituted by 1-5 substituents independently selected from the group consisting of C₁ to C₆ alkyl, C₆ to C₁₀ aryl, OR⁹, SR⁹, CN, F, Cl, Br, I, OH, SH, NO₂, COOR¹⁰, COR⁹, OCF₃, CF₃ and NR¹⁰R¹¹;

- (vi) C₃ to C₈ cycloalkyl, which may be unsubstituted or substituted by 1-5 substituents independently selected from the group consisting of C₁ to C₆ alkyl, C₆ to C₁₀ aryl, OR⁹, SR⁹, CN, F, Cl, Br, OH, SH, NO₂, COOR¹⁰, COR⁹, OCF₃, CF₃ and NR¹⁰R¹¹;
- 5 (vii) a heterocyclic group, which may be aromatic or non-aromatic, having from 5 to 10 ring atoms wherein 1, 2 or 3 of the ring atoms are selected from nitrogen, oxygen or sulfur atoms and the remainder are carbon atoms;
- (viii) OR¹²; or
- 10 (ix) a halo group selected from F, Cl, Br or I;

with the proviso that at least one of R^{5a}, R^{6a}, R^{7a} and R^{8a} is selected from the group consisting of:

- 15 (i) C₂ to C₁₀ alkenyl, which may be unsubstituted or substituted by 1-3 substituents independently selected from the group consisting of C₁ to C₆ alkyl, C₆ to C₁₀ aryl, OR⁹ or SR⁹, CN, F, Cl, Br, I, OH, SH, NO₂, COR⁹, COOR¹⁰ and NR¹⁰R¹¹;
- 20 (ii) C₂ to C₁₀ alkynyl, which may be unsubstituted or substituted by 1-3 substituents independently selected from the group consisting of C₆ to C₁₀ aryl, OR⁹, SR⁹, CN, F, Cl, Br, I, OH, SH, NO₂, COR⁹, COOR¹⁰ and NR¹⁰R¹¹;
- 25 (iii) C₆ to C₁₅ aryl, which may be unsubstituted or substituted by 1-5 substituents independently selected from the group consisting of C₁ to C₆ alkyl, C₆ to C₁₀ aryl, OR⁹, SR⁹, CN, F, Cl, Br, I, OH, SH, NO₂, COR⁹, COOR¹⁰ and NR¹⁰R¹¹;
- (iv) OR¹²; or
- (v) a halo group selected from F, Cl, Br or I,

wherein R⁹ represents C₁ to C₆ alkyl or C₆ to C₁₅ aryl;

30

R¹⁰ and R¹¹ are the same or different and each is independently selected from the group consisting of hydrogen, C₁ to C₆ alkyl and C₆ to C₁₅ aryl; and

5 R¹² represents C₁ to C₆ alkyl, which may be branched or unbranched and unsubstituted or substituted by 1-3 substituents independently selected from the group consisting of OR⁹, SR⁹, CN, F, Cl, Br, I, OH, SH, NO₂, COR⁹, COOR¹⁰ and NR¹⁰R¹¹;

10 or an N-oxide derivative thereof, wherein the quinoline ring nitrogen forms an N-oxide group, or a pharmaceutically acceptable salt, or solvate, or addition salt or a quaternary ammonium salt thereof.

- 15 42. A compound according to Claim 41 wherein R^{3a}, R^{5a}, R^{6a}, R^{7a} and R^{8a} are independently selected from the group consisting of:
- (i) hydrogen;
 - (ii) C₁ to C₆ alkyl, which may be branched or unbranched and unsubstituted or substituted by 1-3 substituents independently selected from the group consisting of C₆ to C₁₀ aryl, OR⁹, SR⁹, CN, F, Cl, Br, I, OH, SH, NO₂, COR⁹, COOR¹⁰ and NR¹⁰R¹¹;
 - (iii) C₂ to C₆ alkynyl, which may be unsubstituted or substituted by 1-3 substituents independently selected from the group consisting of C₆ to C₁₀ aryl, OR⁹ or SR⁹, CN, F, Cl, Br, I, OH, SH, NO₂, COR⁹, COOR¹⁰ and NR¹⁰R¹¹;
 - (iv) C₆ to C₁₀ aryl, which may be unsubstituted or substituted by 1-5 substituents independently selected from the group consisting of C₁ to C₆ alkyl, C₆ to C₁₀ aryl, OR⁹, SR⁹, CN, F, Cl, Br, I, OH, SH, NO₂, COR⁹, COOR¹⁰, OCF₃, CF₃ and NR¹⁰R¹¹;
 - (v) OR¹² wherein R¹²; and
 - (vi) a halo group selected from F, Cl, Br and I,

20 wherein R⁹, R¹⁰, R¹¹ and R¹² are as defined as in Claim 41.

- 25 30 43. A compound according to Claim 41 or Claim 42 wherein R^{3a} represents H.

44. A compound according to any of Claims 41 to 43 wherein R^{5a}, R^{6a}, R^{7a} and R^{8a} are selected from the group consisting of:
- (i) hydrogen;
 - (ii) unsubstituted C₁ to C₆ alkyl which may be branched or unbranched;
 - 5 (iii) unsubstituted C₁ to C₆ alkynyl, which may be branched or unbranched;
 - (iv) unsubstituted C₆ to C₁₀ aryl;
 - (v) OR¹²; or
 - (vi) a halo group selected from F, Cl, Br or I.
- 10
45. A compound according to any of Claims 41 to 44 wherein one of R^{5a}, R^{6a}, R^{7a} and R^{8a} is other than hydrogen and the remaining three represent hydrogen.
- 15
46. A compound according to any of Claims 41 to 45 wherein one of R^{5a}, R^{6a}, R^{7a} and R^{8a} represents a group selected from:
- (i) C₆ to C₁₀ aryl, which may be unsubstituted or substituted by 1-5 substituents independently selected from the group consisting of C₁ to C₆ alkyl, C₆ to C₁₀ aryl, OR⁹, SR⁹, CN, F, Cl, Br, I, OH, SH, NO₂, COR⁹, COOR¹⁰, OCF₃, CF₃ and NR¹⁰R¹¹;
 - 20 (ii) OR¹²; or
 - (iii) a halo group selected from F, Cl or Br,
- and the remaining three represent hydrogen, wherein R⁹, R¹⁰, R¹¹ and R¹² are as defined in Claim 41.
- 25
47. A compound according to any of Claims 41 to 46 wherein one of R^{5a}, R^{6a}, R^{7a} and R^{8a} represents C₆ to C₁₀ aryl, which may be unsubstituted or substituted by 1-5 substituents independently selected from the group consisting of C₁ to C₆ alkyl, C₆ to C₁₀ aryl, OR⁹, SR⁹, F, Cl, Br, I, OCF₃ and CF₃; and the remaining three represent hydrogen.
- 30

48. A compound according to any of Claims 41 to 47 wherein at least one of R^{6a} and R^{8a} represents a group selected from: F, Cl, Br, I and OR¹² wherein R¹² as defined as in Claim 41.
- 5 49. A compound according to any of Claims 41 to 48 wherein at least one of R^{6a} and R^{8a} is selected from phenyl which may be unsubstituted or substituted by 1-5 substituents independently selected from the group consisting of C₁ to C₆ alkyl, C₆ to C₁₀ aryl, F, Cl, Br, I, OCF₃, CF₃, OR⁹ and SR⁹ wherein R⁹ represents C₁ to C₆ alkyl.
- 10 50. A compound according to any of Claim 49 wherein at least one of R^{6a} and R^{8a} is selected from phenyl which may be substituted by 1-3 methoxy groups.
- 15 51. A compound according to any of Claims 41 to 50 wherein R^{5a} represents hydrogen.
52. A compound according to any of Claims 41 to 51 wherein R^{7a} represents hydrogen.
- 20 53. A compound according to any of Claims 41 to 52 wherein R⁹ represents unsubstituted C₁ to C₆ alkyl.
54. A compound according to any of Claims 41 to 53 wherein R¹⁰ and R¹¹ are the same or different and each is independently selected from the group consisting of H and C₁ to C₆ alkyl.
- 25 55. A compound according to any of Claims 41 to 54 wherein R^{1a} represents H.
56. A compound according to Claim 41 selected from the group consisting of:

57. A compound according to Claim 41 selected from the group consisting of:

5

58. A pharmaceutical composition comprising a pharmaceutically effective amount of a compound according to any of Claims 41 to 57 in a pharmaceutical carrier.

10

59. A process for the production of a compound of Formula (II):

or an intermediate thereof, wherein R^{2a} and R^{4a} represent OR¹² or SR¹² and R¹² represents C₁ to C₆ alkyl, and R^{3a}, R^{5a}, R^{6a}, R^{7a} and R^{8a} are as defined in

any of Claims 41 to 56, and are other than C₂ to C₁₀ alkenyl, C₂ to C₁₀ alkynyl, or C₆ to C₁₆ aryl, comprising the steps of:

- (a) subjecting a compound of Formula (III)

5

wherein R^{5b}, R^{6b}, R^{7b} and R^{8b} respectively represent the groups R^{5a}, R^{6a}, R^{7a} and R^{8a} or precursors thereof, to reaction with malonic acid in the presence of phosphorus oxychloride to produce a compound of Formula (IV):

10

15

- (b) subjecting the compound of Formula (IV) to reaction with NaXR¹², wherein X represents oxygen or sulphur to form a compound of Formula (V):

and optionally,

20

- (c) introducing a group R^{3a} or a precursor thereof, where R^{3a} is other than hydrogen, into the 3-position of the quinoline ring, by subjecting the compound of Formula (V) to a deprotonation reaction at the quinoline 3-position using a strong base, and quenching the

anion with an electrophile to form the group R^{3a} or a precursor thereof.

60. A process for producing a compound of Formula (II) or an intermediate
5 thereof, wherein at least one of R^{5a}, R^{6a}, R^{7a} and R^{8a} represents a substituent selected from substituted or unsubstituted C₂ to C₁₀ alkenyl, substituted or unsubstituted C₂ to C₁₀ alkynyl, substituted or unsubstituted C₆ to C₁₅ aryl or a substituted or unsubstituted C₆ to C₁₀ heteroaryl group as defined in any of Claims 41 to 56, comprising reacting a compound of
10 Formula (II) wherein one of R^{5a}, R^{6a}, R^{7a} and R^{8a} represents Br, I or triflate, with a boronic acid derivative of Formula (VI):

15 wherein ψ represents a substituted or unsubstituted C₂ to C₁₀ alkenyl, substituted or unsubstituted C₂ to C₁₀ alkynyl, substituted or unsubstituted C₆ to C₁₅ aryl or a C₆ to C₁₀ heteroaryl group as defined as in any of Claims 40-55, the reaction being carried out in the presence of a base and a palladium or nickel catalyst under Suzuki coupling conditions.

- 20
61. A process according Claim 60 wherein the catalyst is selected from the group consisting of Pd(PPh₃)₄, Ni(dppf)Cl₂, Pd(db_a)₂, Pd(OAc)₂, Pd(OAc)₂/(o-tol)₃P, Pd(OAc)₂/dppf, (PhCN)₂PdCl₂/Ph₃As, (CH₃CN)₂PdCl₂, Pd-C, (Ph₃P)₂NiCl₂, Pd(dppb)Cl₂, bis(tricyclohexyl-phosphine)palladium(II) chloride, (Ph₃P)₂PdCl₂ and trans-di- μ -acetatobis[2-(di-o-toly/phosphino)-benzyl]dipalladium(II).
- 25
62. A process according to Claim 61 wherein the catalyst is selected from Pd(PPh₃)₄ and Pd(PPh₃)₂Cl₂.

63. A process according to any of Claims 60 to 62 wherein the base is selected from Na_2CO_3 , NaHCO_3 , K_2CO_3 , Cs_2CO_3 , K_3PO_4 , Et_3N , Ag_2O , $\text{Ba}(\text{OH})_2$ and CsF .
- 5 64. A process according to Claim 63 wherein the base is Na_2CO_3 .
65. A process according to any of Claims 60 to 64 wherein the reaction is carried out in a solvent comprising a hydrocarbon.
- 10 66. A process according to Claim 65 wherein the solvent comprises a hydrocarbon selected from toluene and benzene.
67. Use according to Claim 1, of a compound of Formula (I), (IA) or (IB) as defined in any of Claims 1 to 33, in the manufacture of a pharmaceutical composition for the treatment or prophylaxis of infections caused by arthropod ectoparasites.
- 15 68. Use according to Claim 67 wherein the arthropod ectoparasites are selected from the group consisting of flies, lice, keds, fleas, ticks, mites and certain copepod of fish.
- 20 69. Use according to Claim 68 wherein the arthropod ectoparasites are ticks selected from the group consisting of *Boophilus* spp, *Rhipicephalus* spp, *Ixodes* spp, *Hyalomma* spp, *Amblyomma* spp, *Dermacentor* spp and *Argas* spp.
- 25 70. Use according to Claim 68 wherein the arthropod ectoparasites are mites selected from the group consisting of *Psoroptes* spp, *Chorioptes* spp, *Sarcoptes* spp and *Demodex* spp.
- 30 71. Use according to Claim 68 wherein the arthropod ectoparasites are flies selected from the group consisting of *Musca* spp, *Stomoxys* spp, *Oestrus*

spp, *Culicoides* spp, *Tabanus* spp, *Phlebotomus* spp, *Simulium* spp, *Lucilia* spp, *Calliphora* spp, *Dermatobia* spp and *Hypoderma* spp.

72. Use according to Claim 68 wherein the arthropod ectoparasites are lice selected from the group consisting of *Linognathus* spp, *Bovicola* spp, *Haematopinus* spp and *Solenopotes* spp.
73. Use according to Claim 68 wherein the arthropod ectoparasites are keds.
- 10 74. Use according to Claim 73 wherein the ked is *Melophagus ovinus*.
75. Use according to Claim 68 wherein the arthropod ectoparasites are fleas.
- 15 76. Use according to Claim 75 wherein the flea is *Ctenocephalides* spp.
77. Use according to Claim 68 wherein the arthropod ectoparasite is an ectoparasite of fish.
78. Use according to Claim 77 wherein the ectoparasite is a copepod parasite selected from the group consisting of *Lepeophtheirus salmonis* and *Caligus elongatus*.

INTERNATIONAL SEARCH REPORT

Int'l Application No
PCT/GB 01/04337

A. CLASSIFICATION OF SUBJECT MATTER
 IPC 7 C07D215/18 C07D215/22 C07D215/26 C07D215/20 C07D215/40
 A61K31/47 A61K31/4704 A61P33/10 A61P33/14

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

IPC 7 C07D A61K

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practical, search terms used)

CHEM ABS Data, EPO-Internal

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
X	<p>WARNER P ET AL: "QUINOLINE ANTIFOLATE THYMIDYLATE SYNTHASE INHIBITORS: VARIATION OF THE C2- AND C4-SUBSTITUENTS" <i>JOURNAL OF MEDICINAL CHEMISTRY, AMERICAN CHEMICAL SOCIETY, WASHINGTON, US,</i> vol. 35, no. 15, 24 July 1992 (1992-07-24), pages 2761-2768, XP001036970 ISSN: 0022-2623 see compound 10v page 2763</p> <p style="text-align: center;">-/-</p>	57

Further documents are listed in the continuation of box C.

Patent family members are listed in annex.

° Special categories of cited documents :

- "A" document defining the general state of the art which is not considered to be of particular relevance
- "E" earlier document but published on or after the International filing date
- "L" document which may throw doubts on priority, claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
- "O" document referring to an oral disclosure, use, exhibition or other means
- "P" document published prior to the International filing date but later than the priority date claimed

- "T" later document published after the International filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention
- "X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone
- "Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art.
- "&" document member of the same patent family

Date of the actual completion of the International search	Date of mailing of the International search report
29 January 2002	07/03/2002
Name and mailing address of the ISA European Patent Office, P.B. 5818 Patentlaan 2 NL - 2280 HV Rijswijk Tel: (+31-70) 340-2040, Tx: 31 651 epo nl, Fax: (+31-70) 340-3016	Authorized officer Schmid, J-C

INTERNATIONAL SEARCH REPORT

Inte Application No
PCT/GB 01/04337

C.(Continuation) DOCUMENTS CONSIDERED TO BE RELEVANT

Category *	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
X	SHAH V.R. ET AL.: "A new synthesis of 2,4-dihydroxyquinolines" J. SCI. INDUSTR. RES., vol. 19B, 1 May 1960 (1960-05-01), page 176 XP002188550 left-hand column, line 24 - line 26 table 1	57
A	PERRETT S ET AL: "ATANINE (3-DIMETHYLALLYL-4-METHOXY-2-QUINOLONE), AN ALKALOID WITH ANTHELMINTIC ACTIVITY FROM THE CHINESE MEDICINAL PLANT, EVODIA RUTAECARPA" PLANTA MEDICA, THIEME, STUTTGART, DE, vol. 61, 1995, pages 276-278, XP001036998 ISSN: 0032-0943 cited in the application the whole document	32,33, 56,57
A	DE 36 37 649 A (FED. REP. GER.) 14 April 1988 (1988-04-14) column 2, line 51 -column 3, line 14 see Norfloxazin column 3, line 46 - line 50	32,33, 56,57
A	LEE, BYUNG H. ET AL: "Anthelmintic. β -hydroxyketoamides (BKAS)" BIOORG. MED. CHEM. LETT. (1998), 8(23), 3317-3320 , XP004143750 see compound 9 page 3318	32,33, 56,57
A	IBARRA, O. F. ET AL: "The relevance of in vitro antihelminthic screening tests employing the free-living stages of trichostrongylid nematodes" J. HELMINTHOL. (1984), 58(2), 107-12 , XP001036823 table III	32,33, 56,57
		-/-

INTERNATIONAL SEARCH REPORT

Inte	Application No
PCT/GB 01/04337	

C.(Continuation) DOCUMENTS CONSIDERED TO BE RELEVANT

Category	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
A	CHEMICAL ABSTRACTS, vol. 92, no. 17, 28 April 1980 (1980-04-28) Columbus, Ohio, US; abstract no. 141168, KOVALENKO, F. P.: "Selection in vitro of antialveococcal and antiechinococcal preparations" XP002188553 see 8-Quinolinol, 5,7-diido-(RN-83-73-8) and Quinoline,4-(4-methyl-1-piperazinyl)- (RN-54797-33-0) abstract & DEPOSITED DOC. (1978), VINITI 3276-78, 15 PP. AVAIL.: VINITI,	32,33, 56,57
A	--- US 5 227 387 A (DREIKORN BARRY A ET AL) 13 July 1993 (1993-07-13) cited in the application the whole document	32,33, 56,57
A	--- KALLURAYA, BALAKRISHNA ET AL: "Synthesis and pharmacological properties of some quinoline derivatives" FARMACO (1998), 53(6), 399-404 , XP002188551 the whole document	32,33, 56,57
A	--- TEWARI, SWATI ET AL: "Syntheses and antifilarial profile of 7-chloro-4-(substituted amino) quinolines: a new class of antifilarial agents" BIOORG. MED. CHEM. LETT. (2000), 10(13), 1409-1412 , XP004222118 table 2	32,33, 56,57
A	--- WO 95 07894 A (HOECHST SCHERING AGREVO GMBH) 23 March 1995 (1995-03-23) see compound 399 claim 1	32,33, 56,57
A	--- GO, MEILIN ET AL: "Synthesis of some novel amodiaquine analogs as potential antimalarial and antifilarial compounds" J. MED. CHEM. (1981), 24(12), 1471-5 , XP002188552 the whole document	32,33, 56,57
	---	-/-

INTERNATIONAL SEARCH REPORT

Int'l Application No
PCT/GB 01/04337

C.(Continuation) DOCUMENTS CONSIDERED TO BE RELEVANT

Category *	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
A	SINGH, JUJHAR ET AL: "Chemotherapy of filariasis-on the search of new agents effective on the reproductive system of female adult worms" Z. NATURFORSCH., C: BIOSCI. (1990), 45(11-12), 1210-14 , XP001027282 page 1212; table II _____ A	32,33, 56,57
A	FR 2 205 327 A (SANDOZ SA) 31 May 1974 (1974-05-31) claim 1; example 4 _____ A	56,57
A	YOSHINOBU T. ET AL: JOURNAL OF HETEROCYCLIC CHEMISTRY, HETERO CORPORATION. PROVO, US, vol. 34, no. 6, November 1997 (1997-11), pages 1677-1683, XP001027322 ISSN: 0022-152X the whole document _____	56,57

FURTHER INFORMATION CONTINUED FROM PCT/ISA/ 210

Continuation of Box I.2

Claims Nos.: 1-31, 34-55, 58-78

The initial phase of the search revealed a very large number of documents relevant to the issue of novelty. So many documents were retrieved that it is impossible to determine which parts of the claim(s) may be said to define subject-matter for which protection might legitimately be sought (Article 6 PCT). Support within the meaning of Article 6 PCT and/or disclosure within the meaning of Article 5 PCT is to be found for only a very small proportion of the compounds for the claimed use. In the present case, the claims so lack support, and the application so lacks disclosure, that a meaningful search over the whole of the claimed scope is impossible.

Consequently, the search has been carried out for those parts of the claims which appear to be supported and disclosed, namely claims 32,33,56 and 57.

The applicant's attention is drawn to the fact that claims, or parts of claims, relating to inventions in respect of which no international search report has been established need not be the subject of an international preliminary examination (Rule 66.1(e) PCT). The applicant is advised that the EPO policy when acting as an International Preliminary Examining Authority is normally not to carry out a preliminary examination on matter which has not been searched. This is the case irrespective of whether or not the claims are amended following receipt of the search report or during any Chapter II procedure.

INTERNATIONAL SEARCH REPORT

Information on patent family members

Application No
PCT/GB 01/04337

Patent document cited in search report		Publication date		Patent family member(s)		Publication date
DE 3637649	A	14-04-1988	DE	3637649 A1		14-04-1988
US 5227387	A	13-07-1993	AU BR CA EP JP MX RU WO	2574992 A 9205384 A 2094905 A1 0556375 A1 5238907 A 9205035 A1 2051584 C1 9304583 A1		05-04-1993 08-03-1994 04-03-1993 25-08-1993 17-09-1993 01-07-1993 10-01-1996 18-03-1993
WO 9507894	A	23-03-1995	DE AU AU BR CN DE WO EP JP JP TR US US ZA	4331178 A1 697355 B2 7693794 A 9407494 A 1130904 A ,B 59407709 D1 9507894 A1 0719259 A1 3051761 B2 9502966 T 28356 A 5595992 A 5925653 A 9407042 A		16-03-1995 01-10-1998 03-04-1995 25-06-1996 11-09-1996 04-03-1999 23-03-1995 03-07-1996 12-06-2000 25-03-1997 16-05-1996 21-01-1997 20-07-1999 02-05-1995
FR 2205327	A	31-05-1974	AU BE DD DE FR JP NL ZA US	6205973 A 806848 A1 108983 A5 2354145 A1 2205327 A1 49093375 A 7314812 A 7308468 A 4190659 A		01-05-1975 30-04-1974 12-10-1974 16-05-1974 31-05-1974 05-09-1974 06-05-1974 25-06-1975 26-02-1980