hw 2

$Sina\ Sanei$

November 2, 2018

Question 1

let's see the data:

```
hist(data1, breaks = 15)
```

Histogram of data1

summary(data1)

```
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 25.03 35.37 38.07 38.35 41.18 52.73
```

density function is:

```
f_x= function(x, mu, gamma ){
    exp(-(x-mu)/gamma)/ (gamma*(1+exp(-(x-mu)/gamma))^2)
}
#likelihood:
lik = function(xvec , mu , gamma ){
    li = 1
    for( i in 1:length(xvec)){
        ll= f_x(xvec[i],mu,gamma)
        li = li * ll
    }
    return(li)
```

```
# unnormalized pi will be :
pi = function(xvec , mu , gamma ) {
    lik(xvec, mu,gamma) * exp((-mu^2)/50) * exp(-gamma/10)
}
# now we compute full conditionals : f(mu| X,gamma)
f_mu = function(xvec, mu , gamma ) {
    lik(xvec, mu,gamma) * exp((-mu^2)/50)
}
# full conditional : f(gamma| X,mu)
f_gamma = function(xvec , mu , gamma ) {
    lik(xvec, mu,gamma) * exp(-gamma/10)
}
```

Now we can consrtruct metropolis-hastings algorithm :

```
#initialize markov chain: (mu, gamma), take the mean of prior distributions for initial
set.seed(501)
chain length= 5000
MH = matrix(NA, chain_length, 3,dimnames = list(NULL,c("index","mu","gamma")))
MH[1,] = c(1, 38.2924, 2.6)
proposal = function(mu,gamma){
  p1=rnorm(1,mu,1)
  p2=rnorm(1,gamma,1)
  return(c(p1,p2))
}
naccept = 1
i = 2
for (i in 2:chain_length){
  MH[i,1]=i
  propose = proposal(MH[i-1,2],MH[i-1,3]) # make a proposal for new mu and gamma
  alpha_1 = min(f_mu(data1, propose[1], MH[i-1,3])*dnorm(MH[i-1,2], MH[i-1,2], 1)/
                 f_mu(data1,MH[i-1,2],MH[i-1,3])/dnorm(propose[1],MH[i-1,2],1) , 1)
  alpha_2 = min(f_gamma(data1,MH[i-1,2],propose[2])*dnorm(MH[i-1,3],MH[i-1,3],1)/
                 f_{\text{gamma}}(\text{data1}, \text{MH}[i-1,2], \text{MH}[i-1,3]) / \text{dnorm}(\text{propose}[2], \text{MH}[i-1,3],1) , 1)
  if (runif(1) < alpha_1) \{ MH[i,2] = propose[1] \} else\{MH[i,2] = MH[i-1,2] \}
   if (runif(1) < alpha_2) { MH[i,3] = propose[2] } else { MH[i,3] = MH[i-1,3] }
}
```

To determine the statring values I used the R package: fitdist Which is used to fit the logistic distribution to the observed data via: si = fitdist(data1,"logis") this uses Mle to estimate the parameters distribution with observed data, then I get:

```
library(fitdistrplus)
```

Parameters:

```
## Loading required package: MASS

## Loading required package: survival

## Loading required package: npsurv

## Loading required package: lsei

si = fitdist(data1, "logis")

si

## Fitting of the distribution ' logis ' by maximum likelihood
```

```
## estimate Std. Error
## location 38.292433 0.3194642
## scale 2.604135 0.1536939
```

Which i used as starting values.

looking at the chain:

```
par(mfrow=c(2,2))
hist(MH[,2],breaks =30, main="Posterior of mu" ,xlab="mu")
hist(MH[,3],breaks =30, main="Posterior of gamma" ,xlab="gamma")
plot(MH[,2], type = "l", xlab="mu" , main = "Chain values of mu")
plot(MH[,3], type = "l", xlab="gamma" , main = "Chain values of gamma")
```

Posterior of mu

Posterior of gamma

Chain values of mu

Chain values of gamma

chain seems to mix well, mainlt due to the choice of starting values, and does not seem to have a problem. Using mcmcse package to compute standard errors for parameter estimates :

library(mcmcse)

```
## mcmcse: Monte Carlo Standard Errors for MCMC
## Version 1.3-2 created on 2017-07-03.
## copyright (c) 2012, James M. Flegal, University of California, Riverside
## John Hughes, University of Colorado, Denver
## Dootika Vats, University of Warwick
## Ning Dai, University of Minnesota
## For citation information, type citation("mcmcse").
## Type help("mcmcse-package") to get started.

gamma_square= MH[,3]^2
mu_gamma = MH[,2]/MH[,3]
## mu
mcse(MH[,2],size="sqroot")
```

```
## $est
## [1] 38.12313
##
## $se
## [1] 0.008264322
##Gamma
mcse(MH[,3],size="sqroot")
## $est
## [1] 2.635685
## $se
## [1] 0.005905182
### Gamma squared
mcse(gamma_square,size="sqroot")
## $est
## [1] 6.971933
##
## $se
## [1] 0.03135177
###mu/gamma
mcse(mu_gamma,size="sqroot")
## $est
## [1] 14.51638
##
## $se
## [1] 0.03321528
```