Problem 1 Bond Dataset:

For the Series X, I chose a ARMA(0,1,2) Model without a constant(NOCONSTANT).

fell within the confidence interval, and the PACF of the differenced data exponentially decayed rapidly. This is behavior associated with a MA(q) process. Additionally, the ARMA(0,1,2) model yielded the highest AIC when compared to other models like ARMA(0,2,2) because the ARMA(0,2,2) was clearly over-differenced since the IACF decayed slowly.

After I decided on the model, and compared AIC's, I tested for normally distributed residuals. This was confirmed in the output of our estimation, the distribution takes on the bell shape.

Additionally, when the residuals are plotted against the predicted values, there is constant variance and seemingly zero correlation! All of this supports the conclusion that ARMA(0,1,2) is an adequate model.

ACF, PACF, IACF, Time Series Plot

This is the time series plots of the data after it's differenced once.

In the ACF after two lags, ACF stays within confidence band.

In PACF it is clearly sinusoidal dampening towards zero. The IACF quickly converges to zero telling us that we haven't over-differenced yet.

Residual Diagnostics

The ACF and PACF of the residuals stays in the confidence band, and the distribution of the residuals is more or less normal. The QQ-Pot confirms this.

Marquise Rosier

Maximum Likelihood Estimation									
Parameter	Estimate	Standard Error	t Value	Approx Pr > t	Lag				
MU	-0.0000203	0.00004483	-0.45	0.6512	0				
MA1,1	0.33943	0.07254	4.68	<.0001	1				
MA1,2	-0.10695	0.07257	-1.47	0.1406	2				

Constant Estimate	-0.00002
Variance Estimate	6.507E-7
Std Error Estimate	0.000807
AIC	-2175.69
SBC	-2165.94
Number of Residuals	191

Correlations of Parameter Estimates						
Parameter	MU	MA1,1	MA1,2			
MU	1.000	-0.002	-0.003			
MA1,1	-0.002	1.000	-0.307			
MA1,2	-0.003	-0.307	1.000			

	Autocorrelation Check of Residuals								
To Lag	Chi-Square	DF	Pr > ChiSq	Autocorrelations					
6	5.00	4	0.2869	0.000	0.008	-0.029	0.100	-0.020	-0.118
12	23.69	10	0.0085	-0.040	0.166	0.043	-0.118	-0.124	0.177
18	29.51	16	0.0207	-0.041	-0.117	-0.045	0.095	-0.011	-0.034
24	36.74	22	0.0253	-0.026	0.102	0.042	-0.085	-0.002	0.114
30	53.10	28	0.0029	-0.016	-0.252	-0.049	-0.060	0.014	-0.054
36	65.54	34	0.0009	0.046	0.106	0.068	-0.186	0.013	0.020

Parameter estimates for our equation so that predictions may be possible!

Residual Time Series Plot

	Model for variable x						
	Estim	nated Mean	-0.00002				
	Perio	d(s) of Differencing	1				
	Moving Average Factors						
Facto	ctor 1: 1 - 0.33943 B**(1) + 0.10695 B**(2)						

This shows constant variance and mean.

Residuals vs Predicted Values Plot

This shows very little to no correlation between residuals and predicted values.

Raw Bond Data Plots

Here we see there is a lot of variability and the ACF tells us that this process is not stationary granted how slowly it decays to zero. We look for stationarity by differencing.

First Difference, with constant variance, now looks stationary.

Problem 2: Geyser Dataset

For the series X, I chose an ARMA(1,0,0) or an AR(1) Model with no constants(NOCONSTANT).

I chose this model because from first glance the raw data Exhibits behavior we associate with AR(1) processes. The ACF decays and dampens simultaneously. Additionally, after 1 lag, the PACF falls within the confidence band which is indicative of an AR(1) process.

After guessing this, the diagnostics gave us confirmation. The ACF and the PACF of the residuals were mostly within their respective confidence bands.

The distribution of the residuals corresponded with a normal distribution and also the residuals fell neatly on a straight line as expected in a QQ Plot.

The residuals also had constant variance and little to no correlation in the plot of the residuals vs the predicted values.

Time Series Plot, ACF, PACF, IACF

Residual Diagnostics

Constant Estimate	122.9845
Variance Estimate	97.95699
Std Error Estimate	9.897322
AIC	2221.969
SBC	2229.37
Number of Residuals	299

Correlations of Parameter Estimates					
Parameter MU AR1,1					
MU	1.000	0.001			
AR1,1	0.001	1.000			

	Autocorrelation Check of Residuals									
To Lag	Chi-Square	DF	Pr > ChiSq		Autocorrelations					
6	6.98	5	0.2220	0.071	0.023	-0.019	0.123	0.027	-0.033	
12	16.45	11	0.1254	-0.062	0.057	-0.097	-0.069	-0.044	0.085	
18	21.04	17	0.2245	-0.037	0.020	-0.022	0.081	0.064	-0.039	
24	26.95	23	0.2581	0.038	0.062	0.010	-0.052	-0.062	0.079	
30	30.63	29	0.3832	0.028	-0.048	0.014	0.055	-0.027	-0.063	
36	37.07	35	0.3737	-0.009	-0.032	0.002	-0.063	-0.088	-0.079	
42	38.71	41	0.5729	0.022	0.004	-0.008	-0.007	0.060	0.021	
48	44.26	47	0.5868	0.021	-0.050	0.059	-0.035	0.078	-0.044	

Parameter Estimates so we may begin predictions.

The ACF and PACF of the residuals behave as expected! With residual ACF and PACF being mostly within confidence band. Residuals also follow a normal distribution nicely.

Residual Time Series Plot

We see random clutter that signals constant variance.

Residuals Vs Predicted Values

Little to no correlation!

Problem 3 Repair Dataset:

For the series Y = Log(X) I chose an ARMA(0,1,2) model with no constant (NOCONSTANT). I chose this model because the ACF of the time series after lag 1 stayed within the confidence band, and the PACF of the time series displayed a sinusoidal dampening behavior indicative of a MA(1) process after differencing. I took this guess and applied an ARMA(0,1,2) process, and the results gave us normally distributed residuals in the distribution plot. The residuals also fell on the straight line in the QQ-Plot, thus fulfilling our assumptions with respect to normality of the residuals. In the Residual vs Predicted value plot, we see that the residuals seem to have constant variance and little to no correlation, which verify that our model choice is a good one.

ACF, PACF, IACF, Time Series Plot

Maximum Likelihood Estimation								
Parameter	Estimate	Standard Error	t Value	Approx Pr > t	Lag			
MU	0.01177	0.0066874	1.76	0.0784	0			
MA1,1	0.60985	0.08404	7.26	<.0001	1			

Residual Diagnostics

Constant Estimate	0.011769
Variance Estimate	0.026473
Std Error Estimate	0.162705
AIC	-71.3764
SBC	-66.3112
Number of Residuals	93

Correlations of Parameter Estimates					
Parameter	MU	MA1,1			
MU	1.000	-0.020			
MA1,1	-0.020	1.000			

	Autocorrelation Check of Residuals									
To Lag	Chi-Square	DF	Pr > ChiSq	Autocorrelations						
6	5.16	5	0.3967	0.046	0.060	-0.139	-0.071	0.015	-0.147	
12	23.99	11	0.0128	-0.115	-0.174	0.004	-0.068	0.149	0.324	
18	34.71	17	0.0068	0.188	0.141	-0.164	-0.104	-0.008	-0.052	
24	39.95	23	0.0156	-0.016	-0.169	-0.058	-0.013	0.088	0.050	

The residuals follow a normal distribution fairly well! As well as act as expected in the QQ-Plot.

Residual Time Series Plot

	Mode	l for variable	у	
E	stimated Me	an	0.0117	69
Pe	Period(s) of Differencing			
	Moving	Average Fac	tors	
	Factor 1:	1 - 0.60985	B**(1)	

Here we see there is constant variance.

We can observe there is constant variance with little to no correlation.

Raw Data Time Series

Data is on a huge scale with lots of variety in very small intervals. Also is not stationary because ACF diminishes very slowly. This shows a positive trend which suggests a log transformation

After Log Transformation

After First Difference

Problem 4 Fake Dataset:

For the series $Y = \text{square root}(X) \mid \text{chose Arma}(1,1,2)$ model without Constants(NOCONSTANT). I chose this model because it yielded the best AIC out of other qualifying models. It also gave us the best bell shape that was closest to a normal distribution with respect to the residuals. Additionally, the first difference was the best choice, because after second differencing the IACF showed signs of overdifferencing by decaying to zero much more slowly than when we differenced once. Furthermore, the ACF and the PACF both converge to zero. The ACF does so exponentially, and the PACF approaches zero in through sinusoidal dampening. This indicates an ARMA(P,Q) process, but we cannot deduce the values of P,Q! Hence, knowing that we will rarely need processes with parameters P,Q greater than 2, we can set an upper bound on their values and try all possible ARMA(P,Q) processes and compare them using the AICs, this process led me to choose an ARMA(1,1,2) model which had the best AIC.

Furthermore, the residuals of the model are normally distributed, and show all the signs of an excellent model.

ACF, PACF, IACF, Time Series Plot After Transformation and Differencing

Residual Diagnostics

Maximum Likelihood Estimation									
Parameter	Estimate	Standard Error	t Value	Approx Pr > t	Lag				
MU	-0.01262	0.24325	-0.05	0.9586	0				
MA1,1	0.71394	0.07840	9.11	<.0001	1				
MA1,2	-0.27868	0.06943	-4.01	<.0001	2				
AR1,1	0.85089	0.05336	15.95	<.0001	1				

Constant Estimate	-0.00188
Variance Estimate	0.97121
Std Error Estimate	0.9855
AIC	633.8866
SBC	647.5332
Number of Residuals	224

Correlations of Parameter Estimates							
Parameter	MU	MA1,1	MA1,2	AR1,1			
MU	1.000	-0.021	-0.014	-0.031			
MA1,1	-0.021	1.000	-0.236	0.562			
MA1,2	-0.014	-0.236	1.000	0.355			
AR1,1	-0.031	0.562	0.355	1.000			

Autocorrelation Check of Residuals									
To Lag	Chi-Square	DF	Pr > ChiSq			Autocor	relations		
6	2.76	3	0.4298	-0.001	0.011	0.019	-0.073	0.078	0.013
12	10.53	9	0.3092	-0.010	-0.102	0.024	-0.046	0.121	-0.071
18	18.81	15	0.2224	-0.019	0.024	-0.026	0.087	0.134	0.083
24	21.56	21	0.4250	0.050	-0.021	-0.059	0.020	-0.064	-0.012
30	24.07	27	0.6262	0.001	-0.017	-0.010	-0.018	-0.080	0.050
36	31.08	33	0.5629	0.103	0.077	0.071	-0.049	-0.050	-0.006
42	39.17	39	0.4621	-0.044	-0.050	-0.008	-0.136	-0.009	-0.080

Residual Time Series Plot

Model for variable z						
E	stin	nated Me	-0.0126	62		
Р	erio		1			
		Autoreg	ressive Fact	ors		
	Fa	actor 1:	1 - 0.85089	B**(1)		
		Moving A	Average Fac	tors		
actor	1:	1 - 0.71	394 B**(1) +	0.27868	B B**(2	

Residual vs Predicted Values

