EE2000 Logic Circuit Design

Lecture 5 – Combinational Functional Blocks

electronicscoach.com

$$b_{o} = x'y + x'b_{in} + yb_{in} = x'y + b_{in}(x' + y)$$

$$= x'y + b_{in}(x'y' + x'y + xy)$$

$$= x'y(1 + b_{in}) + b_{in}(x'y' + xy)$$

$$= x'y + b_{in}(x \oplus y)'$$

$$d = x'y'b_{in} + xyb_{in} + x'yb'_{in} + xy'b'_{in}$$

$$= b_{in}(x'y' + xy) + b'_{in}(x'y + xy')$$

$$= b_{in}(x \oplus y)' + b'_{in}(x \oplus y)$$

$$= b_{in} \oplus (x \oplus y)$$

$$b_o = x'y + b_{in}(x \oplus y)'$$
 $d = b_{in} \oplus (x \oplus y)$

Exercise (Decimal-to-Binary Encoder)

	Inputs									Outputs			
0	1	2	3	4	5	6	7	8	9	A_3	A_2	A_1	A_o
1	0	0	0	0	0	0	0	0	0	0	0	0	0
0	1	0	0	0	0	0	0	0	0	0	0	0	1
0	0	1	0	0	0	0	0	0	0	0	0	1	0
0	0	0	1	0	0	0	0	0	0	0	0	1	1
0	0	0	0	1	0	0	0	0	0	0	1	0	0
0	0	0	0	0	1	0	0	0	0	0	1	0	1
0	0	0	0	0	0	1	0	0	0	0	1	1	0
0	0	0	0	0	0	0	1	0	0	0	1	1	1
0	0	0	0	0	0	0	0	1	0	1	0	0	0
0	0	0	0	0	0	0	0	0	1	1	0	0	1

Exercise (Active Low)

- Design an Active Low 4-input priority encoder whereby inputs with higher subscript numbers has higher priority.
- Output IDLE is High when all inputs are high.

	Inp	out		Output			
I_3	I_2	I_1	I_0	A_1	A_0	IDLE	
1	1	1	1	Х	Χ	1	
1	1	1	0	0	0	0	
1	1	0	Х	0	1	0	
1	0	Х	Х	1	0	0	
0	Х	Х	Х	1	1	0	

Exercise (Active Low)

	Inp	out		Output			
I_3	I_2	I_1	I_0	A_1	A_0	IDLE	
1	1	1	1	Χ	Χ	1	
1	1	1	0	0	0	0	
1	1	0	X	0	1	0	
1	0	X	X	1	0	0	
0	Х	X	X	1	1	0	

IDLE =
$$I_3I_2I_1I_0$$

 $A_0 = I'_3 + I_3I_2I'_1$
= $I'_3 + I_2I'_1$
 $A_1 = I_3I'_2 + I'_3$
= $I'_2 + I'_3$

Simplification a' + ab = a' + b

Exercise (Active Low)

IDLE =
$$I_3I_2I_1I_0$$

 $A_0 = I'_3 + I_3I_2I'_1$
= $I'_3 + I_2I'_1$
 $A_1 = I_3I'_2 + I'_3$
= $I'_2 + I'_3$

Realize the function $f(w, x, y, z) = \sum m(1, 2, 5, 7, 9, 11, 13)$ using a 2-to-1 MUX

$$w = S_0$$

$$f(w = 0) = y'z + xz + x'yz'$$

$$f(w = 1) = y'z + x'z$$

Realize the function $f(w, x, y, z) = \sum m(1, 2, 5, 7, 9, 11, 13)$ using an 8-to-1 MUX

wxyz	F	$S_2 = w$, $S_1 = x$, $S_0 = y$		
0000	0	1 - 7		
0001	1	I ₀ =z		
0010	1	1'		
0011	0	l ₁ =z'		
0100	0	1 - 7		
0101	1	$I_2=z$		
0110	0	I ₃ =z		
0111	1			

wxyz	F	$S_2 = w$, $S_1 = x$, $S_0 = y$			
1000	0	1 -7			
1001	1	$I_4=z$			
1010	0	1 -7			
1011	1	I ₅ =Z			
1100	0	1 -7			
1101	1	I ₆ =z			
1110	0	1 -0			
1111	0	I ₇ =0			