Propositional Equivalences

Dr. Son P. Nguyen

UEL VNU-HCMC

September 12, 2014

Definitions: Tautology, Contradiction and Contingency

Definition

A compound proposition that is always true, no matter what the truth values of the propositions that occur in it, is called a **tautology**.

Definition

A compound proposition that is always false, no matter what the truth values of the propositions that occur in it, is called a **contradiction**.

Definition

A compound proposition that is neither a tautology nor a contradiction is called a **contingency**.

Example of a Tautology

The compound proposition $p \lor \neg p$ is a tautology because it is always true.

р	$\neg p$	$p \lor \neg p$
Т	F	Τ
F	Τ	T

Example of a Contradiction

The compound proposition $p \land \neg p$ is a contradiction because it is always false.

р	$\neg p$	$p \wedge \neg p$
Т	F	F
F	Τ	F

Definition: Logical Equivalence

Definition

The compound propositions p and q are called **logically** equivalent if $p \leftrightarrow q$ is a tautology. The notation $p \equiv q$ denotes that p and q are logically equivalent.

Note: The notation $p \Leftrightarrow q$ is also commonly used.

Example of a Logical Equivalence

The following truth table shows that the biconditional statement $(\neg p \lor q) \leftrightarrow (p \rightarrow q)$ is always true no matter what the truth values of the propositions p and q.

р	q	$\neg p$	$\neg p \lor q$	$p \rightarrow q$	$(\neg p \lor q) \leftrightarrow (p \rightarrow q)$
Т	Τ	F	T	T	T
Τ	\mathbf{F}	F	F	F	T
\mathbf{F}	${ m T}$	Τ	T	Τ	T
F	F	Τ	T	T	Т

Therefore $(\neg p \lor q) \equiv (p \to q)$. This equivalence is called the disjunctive normal form of the implication (DNFI).

Augustus De Morgan

Born on June 27, 1806 in Madras, India. Died on Mars 18, 1871 in London, England.

De Morgan's Law 1

The compound propositions $\neg(p \lor q)$ and $\neg p \land \neg q$ are logically equivalent.

р	q	$p \lor q$	$\neg(p\lor q)$	$\neg p$	$\neg q$	$\neg p \land \neg q$	$\neg (p \lor q) \leftrightarrow$
							$(\neg p \land \neg q)$
T	Τ	T	F	F	F	F	T
${ m T}$	F	${ m T}$	F	F	${ m T}$	F	T
F	Τ	${ m T}$	\mathbf{F}	T	F	\mathbf{F}	T
F	F	F	T	Т	Т	T	Т

Therefore $\neg(p \lor q) \equiv (\neg p \land \neg q)$.

De Morgan's Law 2

The compound propositions $\neg(p \land q)$ and $\neg p \lor \neg q$ are logically equivalent.

р	q	$p \wedge q$	$\neg(p \land q)$	$\neg p$	$\neg q$	$\neg p \lor \neg q$	$\neg (p \land q) \leftrightarrow$
							$(\neg p \lor \neg q)$
Т	Τ	T	F	F	F	F	Т
Τ	F	\mathbf{F}	T	F	Τ	${ m T}$	T
F	\mathbf{T}	F	T	T	F	T	T
F	F	F	T	Т	Т	T	T

Therefore $\neg(p \land q) \equiv (\neg p \lor \neg q)$.

Logical Equivalences

Equivalence	Name
$p \wedge T \equiv p$	Identity laws
$p \vee F \equiv p$	
$p \lor T \equiv T$	Domination laws
$p \wedge F \equiv F$	
$p \lor p \equiv p$	Idempotent laws
$p \wedge p \equiv p$	
$\neg(\neg p) \equiv p$	Double negation law
$p \lor \neg p \equiv T$	Negation laws
$p \wedge \neg p \equiv F$	

Logical Equivalences (continued)

Facilitation	Na
Equivalence	Name
$p \lor q \equiv q \lor p$	Commutative laws
$p \wedge q \equiv q \wedge p$	
$(p \lor q) \lor r \equiv p \lor (q \lor r)$	Associative laws
$(p \wedge q) \wedge r \equiv p \wedge (q \wedge r)$	
$p \lor (q \land r) \equiv (p \lor q) \land (p \lor r)$	Distributive laws
$p \wedge (q \vee r) \equiv (p \wedge q) \vee (p \wedge r)$	
$\lnot (p \land q) \equiv (\lnot p \lor \lnot q)$	De Morgan's laws
$\lnot (p \lor q) \equiv (\lnot p \land \lnot q)$	
$p \lor (p \land q) \equiv p$	Absorption laws
$p \wedge (p \vee q) \equiv p$	

Logical Equivalences Involving Conditional Statements

$$p \rightarrow q \equiv \neg p \lor q \quad (DNFI)$$

$$p \rightarrow q \equiv \neg q \rightarrow \neg p \quad (contrapositive)$$

$$p \lor q \equiv \neg p \rightarrow q$$

$$p \land q \equiv \neg (p \rightarrow \neg q)$$

$$\neg (p \rightarrow q) \equiv p \land \neg q$$

$$(p \rightarrow q) \land (p \rightarrow r) \equiv p \rightarrow (q \land r)$$

$$(p \rightarrow r) \land (q \rightarrow r) \equiv (p \lor q) \rightarrow r$$

$$(p \rightarrow q) \lor (p \rightarrow r) \equiv p \rightarrow (q \lor r)$$

$$(p \rightarrow r) \lor (q \rightarrow r) \equiv (p \land q) \rightarrow r$$

Logical Equivalences Involving Biconditionals

$$p \leftrightarrow q \equiv (p \rightarrow q) \land (q \rightarrow p)$$

 $p \leftrightarrow q \equiv \neg p \leftrightarrow \neg q$
 $p \leftrightarrow q \equiv (p \land q) \lor (\neg p \land \neg q)$
 $\neg (p \leftrightarrow q) \equiv p \leftrightarrow \neg q$

Disjunctive Normal Form

Definition

A compound proposition is said to be in **disjunctive normal form** if it is a disjunction of conjunctions of the variables or their negations.

For example: $(p \land q \land r) \lor (\neg p \land q \land \neg r) \lor (\neg p \land \neg q \land r)$.

Let a compound proposition that uses *n* propositional variables. This compound proposition is logically equivalent to a disjunctive normal form. Indeed, it is sufficient to write a conjunction for each combination of truth values for which the compound proposition is true.

Disjunctive Normal Form

The truth table of the compound proposition

$$(p \vee \neg q) \rightarrow (p \wedge q)$$

is given by

p	q	$\neg q$	$p \lor \neg q$	$p \wedge q$	$(p \lor \lnot q) \to (p \land q)$
Т	Τ	F	T	T	T
${ m T}$	\mathbf{F}	Τ	Τ	F	F
F	${ m T}$	F	F	F	${ m T}$
F	\mathbf{F}	Τ	${ m T}$	F	F

From the first and the third row, this compound proposition is logically equivalent to the disjunctive normal form:

$$(p \wedge q) \vee (\neg p \wedge q).$$

Functionally Completeness

Definition

A collection of logical operators is called **functionally complete** if every compound proposition is logically equivalent to a compound proposition involving only these logical operators.

For example, because any compound proposition is equivalent to a disjunctive normal form, then the collection of logical operators $\{\lor,\land,\lnot\}$ is functionally complete.