6) Explique o efeito do ganho em MALHA ABERTA FINITO, para as topologias Amplificador Inversor e Amplificador não inversor.

Considerando o efeito de malha aberta A no ganho da configuração não inversora e assumindo que o Amp Op seja quase toda ideal, exceto por ter um ganho finito de malha aberta A, sendo assim o ganho de malha fechada do circuito amplificador não inversor é dado por :

$$G = \frac{Vo}{Vi} = \frac{1 + (\frac{R2}{R1})}{1 + \frac{1 + (\frac{R2}{R1})}{A}}$$

Observe que o denominador da equação é idêntico ao caso da configuração inversora

$$G = \frac{Vo}{Vi} = \frac{-\frac{R2}{R1}}{1 + \frac{1 + (\frac{R2}{R1})}{A}}$$

Isso se deve ao fato de as configurações não inversoras e inversoras apresentarem a mesma malha de realimentação que pode ser visualizada ao circuitarmos o sinal de entrada. Entretanto os numeradores são diferentes, pois eles correspondem ao ganho de nominal de malha fechada para as duas configurações. Com isso concluímos que a expressão do ganho se reduz para o valor ideal A= infinito. Essa é a mesma condição já apresentada para a configuração inversora, exceto que a grandeza do segundo membro da equação é o ganho de malha fechada.

a) Exemplifique com circuitos com ganhos em malha fechada elevado (Ex. $1000\mathrm{V/V}$ e - $1000\mathrm{V/V}$) e com ganhos menores (Ex. $10\mathrm{V/V}$ e - $10\mathrm{V/V}$), faça a comparação com erros percentuais e utilize uma variação de ganho em malha aberta entre $120\mathrm{dB}$ e $20\mathrm{dB}$.

Amplificador não inversor

Para um ganho elevado de 1000 V/V foi projetado um circuito onde $R1=~10\Omega$ e $Rf=~9990\Omega$. E para um ganho baixo de 10 V/V foi projetado um circuito onde $R1=~10\Omega$ e $Rf=~90\Omega$. Considerando as variações de ganho de malha aberta entre 120 dB e 20 dB tem—se os seguintes erros percentuais:

Amplificador não inversor									
Ganho									
malha	Ganho malha			Erro percentual	Erro percentual				
aberta (dB)	aberta (V/V)	Ganho 1	Ganho 2	Ganho 1	Ganho 2				
20	10	9,90099	5	990,0990099	5				
40	100	90,90909	9,090909	909,0909091	0,909090909				
60	1000	500	9,90099	500	0,099009901				
80	10000	909,0909	9,99001	90,90909091	0,00999001				
120	1000000	999,001	9,9999	0,999000999	9,9999E-05				

Legenda:

Ganho 1: Ganho Elevado

Ganho 2: Ganho baixo

Amplificador inversor

Para um ganho elevado de $-1000\mathrm{V/V}$ foi projetado um circuito onde $\mathrm{R}1=1\Omega$ e $\mathrm{R}f=1000\Omega$. E para um ganho baixo de $10\mathrm{V/V}$ foi projetado um circuito onde $\mathrm{R}1=1\Omega$ e $\mathrm{R}f=10\Omega$. Considerando as variações de ganho de malha aberta entre 120 dB e 20 dB tem-se os seguintes erros percentuais:

	Amplificador				
Ganho	Ganho			Erro	Erro
malha	malha aberta			percentual	percentual
aberta (dB)	(V/V)	Ganho 1	Ganho 2	Ganho 1	Ganho 2
20	10	-9,8912	-4,7619	990,1088032	5,238095238
40	100	-90,8265	-9,00901	909,1734787	0,990990991
60	1000	-499,75	-9,8912	500,2498751	0,108803165
80	10000	-909,008	-9,98901	90,99172802	0,010987913
120	1000000	-999	-9,99989	0,999999001	0,000109999

Percebe-se que para ganhos elevados em malha fechada tem-se um erro percentual maior para ganhos baixos em malha aberta. Já para ganhos em malha fechada baixo acontece o inverso o erro percentual é maior para ganhos em malha aberta elevados.

b) Dica veja o problema 2.20 pg 83 do livro texto.