李乃成梅立泉编著《数值分析》勘误表

于/1	学刀风性丛永细者《数恒分析》勘庆衣					
页码	行数	误	正			
7	11	当 x 的绝对值充分大时	当 x 的绝对值充分大时			
7	14	当 x 的绝对值充分小时	当 x 的绝对值充分小时			
27	18	列元素 $u_{1j} = a_{1j} (j = 1, 2,, n)$	行元素 $u_{1j} = a_{1j} (j = 1, 2,, n)$			
30	倒 4	分别取 x 为方程 $L^T x = e_i$	分别取 x 为方程组 $L^T x = e_i$			
36	11	求解三对角方程 $Ax = d$ 的追赶 法的算法组织如下:	求解三对角方程组 $Ax = d$ 的追赶法算法组织如下:			
39	倒 10	$\forall x \in R, A \in R^{n \times n} \qquad (2.3.2)$	$\forall x \in R^n, A \in R^{n \times n} \tag{2.3.2}$			
40	10	$\frac{\ A\ _{p}}{\ x\ _{p}} \le \max_{x \ne 0} \frac{\ Ax\ _{p}}{\ x\ _{p}}$	$\frac{\ Ax\ _{p}}{\ x\ _{p}} \le \max_{x \ne 0} \frac{\ Ax\ _{p}}{\ x\ _{p}}$			
53	3	关易知 $\tilde{a}_{2}^{(2)} \neq 0$,	关易知 $\tilde{a}_{2}^{(1)} \neq 0$,			
58	1	显然, $\tilde{a}_2^{(2)} \neq 0$	显然, $\tilde{a}_2^{(1)} \neq 0$			
58	倒 1	$(\sigma_1 e_1, a_{12}^{(2)} e_1 + \sigma_2 e_2,,$	$(\sigma_1 e_1, a_{12}^{(1)} e_1 + \sigma_2 e_2,,$			
59	第 k 步 下 2 行	$=(a_{1k}^{(1)},a_{2k}^{(2)},,a_{k-1,k}^{(k-1)},\tilde{a}_{k}^{(k-1)})^{T}$	$= (a_{1k}^{(1)}, a_{2k}^{(2)},, a_{k-1,k}^{(k-1)}, \tilde{a}_k^{(k-1)T})^T$			
60	6	$(\sigma_1 e_1, a_{12}^{(2)} e_1 + \sigma_2 e_2,,$	$(\sigma_1 e_1, a_{12}^{(1)} e_1 + \sigma_2 e_2,,$			
77	6	给定初始点 x ⁽⁰⁾	给定初始向量 $x^{(0)}$			
77	倒 8	都收敛于 a_{ij}	收敛于 a_{ij}			
85	6	在上式两端令 $k \to \infty$ 取极限得	在上式两端令 $k \to \infty$ 取极限,由 $\ B\ < 1$			
93	倒 10	故 $\forall x \in \mathbb{R}^n$ 有	故 $\forall x \in \mathbb{R}^n, x \neq x^*$ 有			
93	倒 5	≥0	>0			
126	解下 1 行	f[0,0] = f'(0),	f[0,0] = f'(0) = 0,			
131	倒 7	导数连续	导数有界			
134	6	由 S(x) 在节点	由 S(x) 在内节点			

134	倒 3	3. 三种边界条件的三弯矩方程	3. 三种边界条件的三弯矩方程组
139	4.3 题	证明上述三种方法求得的插值多	验证插值多项式的唯一性.
		项式是相同的.	
142	16	$x \in R$	$x \in [a,b]$
			x = [u, v]
146	5		
163	15		
103	10	间(a,b)中保持定号	间(a,b)上保持定号
163	倒 6	(Re mes)	(Re mez)
	hr.1 -	(220)	(20,000)
166	倒 3	$\left \max_{a \le x \le b} \pi_{n+1}(x) \le \left(\frac{b-a}{2}\right)^{n+1} \frac{1}{2^n} \right $	$\max_{a \le x \le b} \pi_{n+1}(x) = \left(\frac{b-a}{2}\right)^{n+1} \frac{1}{2^n}$
		$\left \max_{a \le x \le b} \mathcal{X}_{n+1}(x) \le \left(\frac{1}{2} \right) \right = \frac{1}{2^n}$	$ \prod_{a \le x \le b} \mathcal{X}_{n+1}(x) = \left(\frac{1}{2}\right) \frac{1}{2^n} $
166	倒 1	$\max R(x) $	$\max R(x) $
		$\max_{-1 \le x \le 1} R_n(x) $	$\max_{a \le x \le b} R_n(x) $
180	12	见例 6.6	见例 6.2.4.
183	倒 13	数的最大值	数的上界
193	倒 3	由推论 $5.1.1$ 知 $g_n(x)$ 必与	由推论 $5.1.1$ 知 $q_n(x)$ 必与
202	15	$R_1(x) = \frac{f''(x)}{2!}(x - x_0)(x - x_1)$	$R_1(x) = \frac{f''(\xi)}{2!}(x - x_0)(x - x_1)$
		$R_1(x) = \frac{1}{2!} (x - x_0)(x - x_1)$	$R_1(x) = \frac{1}{2!}(x - x_0)(x - x_1)$
200	Ir.l 4	B. L. H. W. W M. N. J. N. J.	1 H A.AM.N. (1.2)
208	倒 4	最大值往往难以估计	上界往往难以估计
218	ÆI O	图 7.2 弦割法	图 7.2 弦割法的几何意义
219	倒 9 7	不定点	不动点
221	/	在不动点的 x^* 某邻域	在 不 动 点 x^* 的 某 邻 域
		* < S th	M (*) (-) +
		$\left x-x^*\right \leq \delta $ β β	$N_{\delta}(x^*) = \{x \mid x-x^* \leq \delta\}$ 内,
226	2	$1 f''(\xi_{\iota}) $	$1, f''(\xi_{\iota}) $
		$ = \frac{1}{2} \frac{ f''(\xi_k) }{ f'(x_k) } = $	$=\frac{1}{2}\lim_{k\to\infty}\frac{ f''(\xi_k) }{ f'(x_k) }=$
230	12	1	1
230	14	$\left[-\frac{1}{8}(x_1^{(k)})^2 \right]$	$-rac{1}{8}(x_1^{(k+1)})^2$
231	倒 1	每个方程在点	每个函数在点
234	1	$J(x^{(0)})$	$J_f(x^{(0)})$
239	8		
237	3	$\phi(x^*) = 0,1$	$\phi(x^*) \neq 0,1$
242	倒 1	1 1 6	1 1 -6
		1 1 0	1 1 -0

243	倒 10		
243		$=\frac{A^k z_0}{A^{k-1} z_0}$	$=\frac{\max(A^k z_0)}{\max(A^{k-1} z_0)}$
243	倒8	$(\lambda_2 - \lambda_1)$	$(\lambda_n - \lambda_1)$
267	11	$=-\frac{h^3}{3}y'''(\xi_i).$	$=\frac{h^3}{3}y'''(\xi_i).$
269	11	Amdams – Bashforth	Adams – Bashforth
			注:将五处"亚当斯"改为"阿达姆斯"
270			注:将四处"亚当斯"改为"阿达姆斯"
271			注:将三处"亚当斯"改为"阿达姆斯"
272	倒 4,5	所谓改进欧拉法就是用较好	所谓改进欧拉法就是取足够小的步长 h ,
		的迭代初始值 $y_{i+1}^{(0)}$,	用欧拉法计算出 y_{i+1} 较好的初始值 $y_{i+1}^{(0)}$,
273	6	或(9.1.3')	或(9.1.13')
282	倒 13	$y_i(i = 0, 1, 2,, n)$	$y_i (i = 1, 2,, n)$
283	倒 9	$=\alpha^3 \mid e_{i-2} \mid +$	$\leq \alpha^3 e_{i-2} +$
286	7	于是关于有	于是有
289	倒 5	方程组 (9.3.1) 中的	方程组(9.3.1')中的
290	9	$y_{j,i+1} = y_{i,j} +$	$y_{j,i+1} = y_{ji} +$
290	12	$y_{i2} + \frac{K_{22}}{2}$	$y_{2i} + \frac{K_{22}}{2}$
290	13	$y_{i2} + K_{23}$	$y_{2i} + K_{23}$
292	倒 9	$\begin{pmatrix} K_{11} \\ K_{12} \end{pmatrix}$	$\begin{pmatrix} K_{11} \\ K_{21} \end{pmatrix}$
292	倒8	$\begin{pmatrix} K_{21} \\ K_{22} \end{pmatrix}$	$\begin{pmatrix} K_{12} \\ K_{22} \end{pmatrix}$
292	倒 6	$h(y_{2i} + K_{12}/2)$	$h(y_{2i} + K_{21}/2)$
292	倒 5	$+2(y_{2i}+K_{12}/2)$	$+2(y_{2i}+K_{21}/2)$
292	倒 2	$\begin{pmatrix} K_{31} \\ K_{32} \end{pmatrix}$	$\begin{pmatrix} K_{13} \\ K_{23} \end{pmatrix}$

292	倒1	$-2(y_{1i} + K_{21}/2)$	$-2(y_{1i} + K_{12}/2)$
302	1	非线性方程求根的割线法	非线性方程求根的弦割法
302	14	显式单步法的收敛性和稳定性	显式单步法的收敛性和几个单步法的稳 定性
305	11	$x = x_0 + ih$, $i = 0, \pm 1, \pm 2,$, $y = y_0 + j\tau$, $j = 0, \pm 1, \pm 2,$,	$x_i = x_0 + ih, i = 0, \pm 1, \pm 2,,$ $y_j = y_0 + j\tau, j = 0, \pm 1, \pm 2,,$

李乃成梅立泉编著《数值分析》第二版修订内容

页	行数	原	修订
码	13 35	<i>7</i> 4:	12.13
34	15	$u_{ii} = a_{ii} - \sum_{k=1}^{i-1} l_{ik} u_{ki}$	$d_{i} = a_{ii} - \sum_{k=1}^{i-1} l_{ik}^{2} d_{k}$
34	17-1 8	$u_{ij} = a_{ij} - \sum_{k=1}^{i-1} l_{ik} u_{kj}$ $l_{ji} = u_{ij} / u_{ii}$	$l_{ji} = (a_{ji} - \sum_{k=1}^{i-1} l_{jk} d_k l_{ik}) / d_i$
34	21	$u_{nn} = a_{nn} - \sum_{k=1}^{n-1} l_{nk} u_{kn}$	$d_n = a_{nn} - \sum_{k=1}^{n-1} l_{nk}^2 d_k$
35	4	$z_i = \frac{y_i}{u_{ii}}$	$z_i = \frac{y_i}{d_i}$
35	8	将 z_i 和 $l_{ki} = \frac{u_{ik}}{u_{ii}}$ 代入 x_i 的表达式,	将 z_i 代入 x_i 的表达式,
35	9-10	$x_{n} = \frac{y_{n}}{u_{nn}},$ $x_{i} = \frac{y_{i} - \sum_{k=i+1}^{n} u_{ik} x_{k}}{u_{ii}}, i = n-1, n-2,, 2, 1$	$x_{n} = \frac{y_{n}}{d_{n}},$ $x_{i} = \frac{y_{i}}{d_{i}} - \sum_{k=i+1}^{n} l_{ki} x_{k}, i = n-1, n-2,, 2, 1$
46	7	$\sqrt{rac{\lambda_{\max}\left(A^{T}A ight)}{\lambda_{\min}\left(A^{T}A ight)}}$	$\sqrt{rac{\lambda_{ ext{max}}(A^TA)}{\lambda_{ ext{min}}(AA^T)}}$
69	倒 15	标号 1 β =	β=
69	倒10	$x_n =$	标号 1
11 6	倒 8	即 �(x) 在区间[a,b]内有 n+2 个零点	即 φ(t) 在区间[a,b]内有 n+2 个零点
11 9	3	$R_{\alpha}(x) =$	$R_{\alpha}(x) =$
12 6	倒 4	$R_{y}(z)$	$R_{\mathfrak{s}}(x)$
12 6	倒 2	$R_{\mathrm{B}}(z)$	$R_{\rm g}(x)$
16 1	9	p(t) =	p(x) =

16	倒 4		
16	1到 4	p(x) =	p(t) =
1			
16	倒 1	$\max_{1 \le x \le 1} R_n(x) $	$\max_{a \le x \le b} R_n(x) $
6		$1 \le x \le 1$	$a \le x \le b$
18	倒 5	m = n	$m \ge n$
7			
18	倒 3	. 2	. 2
7		$1, x^2,, x^m$	$1, x, x^2,, x^m$
19	11	由表 6.1 知	由表 6.2 知
8			
20	8	一般 k 不能取得太大	一般 k 不宜取得太大
7			
23	7	$(s^{(k)}, A^{-1}, k)) s^{(k)T} A^{-1}$	$(s^{(k)}, A^{-1}, k) s^{(k)} T A^{-1}$
7		$\frac{(s^{(k)} - A_{k-1}^{-1} y^{(k)}) s^{(k)T} A_{k-1}^{-1}}{s^{(k)T} A_{k-1}^{-1} y^{(k)}}$	$\frac{(s^{(k)} - A_{k-1}^{-1} y^{(k)}) s^{(k)T} A_{k-1}^{-1}}{1 + s^{(k)T} A_{k-1}^{-1} y^{(k)}}$
		$s^{(\kappa)I}A_{_{k-1}}^{-1}y^{(\kappa)}$	$1 + s^{(k)I} A_{k-1}^{-1} y^{(k)}$
23	14	$(g^{(k)}, A^{-1}, y^{(k)}) g^{(k)} A^{-1}$	$(g^{(k)} A^{-1}) (k) \setminus g^{(k)} A^{-1}$
7		$\frac{(s^{(k)} - A_{\frac{k-1}{2}}^{-1} y^{(k)}) s^{(k)T} A_{\frac{k-1}{2}}^{-1}}{s^{(k)T} A^{-1} y^{(k)}}$	$\frac{(s^{(k)} - A_{k-1}^{-1} y^{(k)}) s^{(k)T} A_{k-1}^{-1}}{1 + s^{(k)T} A^{-1} y^{(k)}}$
		$s^{(\kappa)l}A_{_{k-l}}^{-1}y^{(\kappa)}$	$1 + s^{(\kappa)} A_{k-1}^{-1} y^{(\kappa)}$
27	11	于是汉明(Hamming)公式	可得汉明(Hamming)公式
9			
28	21	3.	3.
3		$=\alpha^3 \mid e_{i-2} \mid +$	$\leq \alpha^3 \mid e_{i-2} \mid +$
28	9	满足莱布尼茨条件	满足 Lipschitz 条件
4			•
	l		