Calcule el área de la superficie
$$z = \frac{2}{3} \left(x^{\frac{3}{2}} + y^{\frac{3}{2}} \right)$$
 con $0 \le x \le 1$ y $0 \le y \le 1$

Demuestre que cualquier campo vectorial de la forma $\vec{F}(x,y,z) = f(x)\hat{i} + g(y)\hat{j} + h(z)\hat{k}$, donde f, g y h son funciones diferenciables, es irrotacional.

Sea $\vec{r} = x\hat{i} + y\hat{j} + z\hat{k}$ y $r = |\vec{r}|$. Si $\vec{F} = \frac{\vec{r}}{r^p}$, calcule $div\vec{F}$ y responda a la pregunta, ¿existe algún valor de p tal que $div\vec{F} = 0$?