Pumping Lemma for Context-Free Languages Chomsky Normal Form Pushdown Automata BLG311E Formal Languages and Auto Outline 2 က BLG311E Formal Languages and Automata Pushdown Automata(PDA) and Recognizing Context-free Ö.Sinan Saraç Tolga Ovatman Languages A.Emre Harmancı BLG311E Formal Languages and Automal

language. For instance the recognizer for the language $\omega\omega^R|\omega\in\Sigma^*$ should contain a memory. We can design a pushdown automaton for It is not possible to design finite automata for every context-free every context-free language.

Pushdown Automata

automaton but has an auxiliary memory that operates according to the rules of a stack. The default mode in a pushdown automaton (PDA) is to allow nondeterminism, and unlike the case of finite automata, the A pushdown automaton is similar in some respects to a finite

nondeterminism cannot always be eliminated.

PDAs are not deterministic. Input strip is only used to read input while a B 9 B Stack а the stack can be written and read from. p þ Finite control a BLG311E Formal Languages and Automata a P a

Formal Definition of a PDA

An example

A pushdown automaton (PDA) is a 6-tuple $M=(S,\Sigma,\Gamma,\delta,s_0,F),$

- S: A finite, non-empty set of states where s ∈ S.
- ∑: Input alphabet (a finite, non-empty set of symbols)
- Γ: Stack alphabet
- $s_0 \in S$: An initial state, an element of S.
- δ : The state-transition relation $\delta\subseteq (S\times\Sigma\cup\{\Lambda\}\times\Gamma\cup\{\Lambda\})\times(S\times\Gamma^*)$

■ F: The set of final states where $F \subseteq S$.

$$\begin{split} &(\omega c \omega^R | \omega \in \{a,b\}^*) \\ &M = (S, \Sigma, \Gamma, \delta, s_0, F) \\ &S = \{s_0, f\}, \; \Sigma = \{a,b,c\}, \; \Gamma = \{a,b\}, \; F = \{f\} \\ &\delta = \{[(s_0,a, \Lambda), (s_0,a)], [(s_0,b,\Lambda), (s_0,b)], [(f,a,a), (f,\Lambda)], \\ &[(f,a,a), (f,\Lambda)], [(f,b,b), (f,\Lambda)] \} \end{split}$$
tape
abb c bba
b c bba
c bba
c bba
c bba
c bba
bba
a
a state 50 50 50 50

trans. rule
[(s0,a,A),(s0,a)]
[(s0,b,A),(s0,b)]
[(s0,b,A),(s0,b)]
[(s0,b,A),(s,d)]
[(t,b,A),(t,A)]
[(t,b,A),(t,A)]
[(t,a,b),(t,A)]

stack
A
a
ba
bba
bba
bba
ba
c

[(s,b,A),(s,b)] [(s,b,A),(s,b)] $(s,a,\Lambda),(s,a)$ (f,b,b),(f,A)] (f,b,b),(f,A)] (f,a,a),(f,A)] $(s,c,\Lambda),(f,\Lambda)$ trans. rule $a \mid b < S > b \mid c$ stack a ba bba bba B < abb c bba $G = (N, \Sigma, n_0, \mapsto)$ $N = \{S\}$ $\Sigma = \{a, b, c\}$ bb c bba < S > ::= a < S >b c bba c ppa tape bba ba < An example $n_0 = S$ state S S S + + + +

Definitions
Push: To add a symbol to the stack $[(p,u,\Lambda),(q,a)]$ Pop: To remove a symbol from the stack $[(p,u,\Lambda),(q,A)]$ Configuration: An element of $S \times \Sigma^* \times \Gamma^*$. For instance (q,xyz,abc) where a is the top of the stack, c is the bottom of the stack. Instantaneous description (to yield in one step):
Let $[(p,u,\beta),(q,\gamma)] \in \delta$ and $\forall x \in \Sigma^* \wedge \forall \alpha \in \Gamma^*$ $(p,ux,\beta\alpha) \vdash_M (q,x,\gamma\alpha)$ Here u is read from the input tape and β is read from the stack while γ is written to the stack.

Definitions $(p,ux,\beta\alpha) \vdash_{M} (q,x,\gamma\alpha)$ $(p,ux,\beta\alpha) \vdash_{M} (q,x,\gamma\alpha)$ Let \vdash_{M}^{*} be the reflexive transitive closure of \vdash_{M} and let $\omega \in \Sigma^{*}$ and s_{0} be the initial state. For M automaton to accept ω string: $(s,\omega,\Lambda) \vdash_{M}^{*} (p,\Lambda,\Lambda) \text{ and } p \in F$ $C_{0} = (s,\omega,\Lambda) \text{ and } C_{n} = (p,k,\Lambda) \text{ where } C_{0} \vdash_{M} C_{1} \vdash_{M} \ldots \vdash_{M} C_{n}$ This operation is called computation of automaton M, this computation invloves n steps. Let L(M) be the set of string accepted by M. $L(M) = \{\omega | (s,\omega,\Lambda) \vdash_{M}^{*} (p,\Lambda,\Lambda) \land p \in F\}$

S S
$$\begin{split} &\omega \in \{\{a,b\}^* | \#(a) = \#(b)\} \\ &M = (S, \Sigma, \Gamma, \delta, s_0, F) \\ &\delta = \{[s, \Lambda, \Lambda), (q, c)], [(q, a, c), (q, ac)], [(q, a, b), (q, a)], \\ &[(q, a, b), (q, \Lambda)], [(q, b, c), (q, bc)], [(q, b, b), (q, bb)], \\ &[(q, b, a), (q, \Lambda)], [(q, \Lambda, c), (f, \Lambda)] \\ &\text{state tape} \end{split}$$
[(q,a,c),(q,ac)] [(q,b,a),(q,A)] [(q,b,c),(q,bc)] $[(q,a,b),(q,\Lambda)]$ [(q,b,b),(q,bb)][(dq,b),(d,d,p)] $[(\mathsf{s},\!\Lambda,\!\Lambda),\!(\mathsf{q},\!\mathsf{c})]$ $[(q,a,b),(q,\Lambda)]$ $[(q,a,b),(q,\Lambda)]$ $[(q, \Lambda, c), (f, \Lambda)]$ bbc bc bbc cac pc 0 abbbabaa abbbabaa bbbabaa bbabaa babaa abaa baa aa Example 1 > a S 00000000

Example 2

$$\begin{aligned} & \omega \in \{xx^R | x \in \{a,b\}^*\} \\ & M = (S, \Sigma, \Gamma, \delta, s_0, F) \\ & \delta = \end{aligned}$$

 $\{[(s,a,\Lambda),(s,a)],[(s,b,\Lambda),(s,b)],[(s,\Lambda,\Lambda),(f,\Lambda)],[(f,a,a),(f,\Lambda)],[(f,b,b),(f,\Lambda)]\}$

lialis. Idie	$[(s,a,\Lambda),(s,a)]$	$[(s,b,\Lambda),(s,b)]$	$[(s,b,\Lambda),(s,b)]$	$[(s, \Lambda, \Lambda), (f, \Lambda)]$	$[(f,b,b),(f,\Lambda)]$	$[(f,b,b),(f,\Lambda)]$	$[(f,a,a),(f,\Lambda)]$		
SIGUR	<	Ø	ba	ppa	ppa	ba	Ø	V	
lape	abbbba	ppppa	pppa	ppa	ppa	ba	Ø	V	
Sidic	S	S	S	S	—	4	-	4	

Example 2

$$\begin{aligned} & o \in \{xx^R|x \in \{a,b\}^*\} \\ & M = (S,\Sigma,\Gamma,\delta,s_0,F) \\ & \delta = \\ & \{[(s,a,\Lambda),(s,a)],[(s,h,\Lambda),(s,h)],[(f,a,a),(f,\Lambda)],[(f,b,b),(f,\Lambda)]\} \\ & \{[(s,a,\Lambda),(s,a)],(s,a,\Lambda),(s,a)\} \\ & s & bbbba & a & [(s,h,\Lambda),(s,b)] \\ & s & bbba & bba & [(s,h,\Lambda),(s,b)] \\ & s & bba & bba & [(s,h,\Lambda),(s,h)] \\ & f & bba & bba & [(s,h,\Lambda),(f,\Lambda)] \\ & f & ba & ba & [(f,b,h),(f,\Lambda)] \\ & f & a & a & [(f,b,h),(f,\Lambda)] \\ & f & A & \Lambda \end{aligned}$$

Example 2

$$\omega \in \{xx^R | x \in \{a, b\}^*\}$$
$$M = (S, \Sigma, \Gamma, \delta, s_0, F)$$

$$\begin{split} & \omega \in \{xxR^{||x|} \in \{a,b\}^*\} \\ & M = (S,\Sigma,\Gamma,\delta,s_0,F) \\ & \delta = \\ & \{[(s,a,\Lambda),(s,a)],[(s,b,\Lambda),(s,b)],[(s,\Lambda,\Lambda),(f,\Lambda)],[(f,a,a),(f,\Lambda)],[(f,b,b),(f,\Lambda)]\} \end{split}$$

 $<S>::=a<S>a\mid b<S>b\mid aa\mid bb$

 $G = (N, \Sigma, n_0, \mapsto)$ $N = \{S\}$ $\Sigma = \{a, b\}$

Deterministic PDA

Deterministic PDA

- 1) $\forall s \in S \land \forall \gamma \in \Gamma \text{ if } \delta(s, \Lambda, \gamma) \neq \varnothing \Rightarrow \delta(s, \sigma, \gamma) = \varnothing; \forall \sigma \in \Sigma$
- 2) If $a \in \Sigma \cup \{\Lambda\}$ then $\forall s, \forall \gamma$ and $\forall a \ \mathrm{Card}(\delta(s,a,\gamma)) \leq 1$
- configuration no other transitions should be present for any other (1) If there exists a lambda transition(yielding in one step) in a input. (2) There should be a unique transition for any (state, symbol, stack symbol) tuple
- For nondeterministic PDA, the equivalence problem to

¹An undecidable problem is a decision problem for which it is impossible to construct a single algorithm that always leads to a correct yes-or-no answer

Chomsky Hierarchy

	Accepting	Device	Turing machine			Linear-bounded	$\alpha ,$ automaton	Pushdown	automaton	Finite	automaton
	Form of Productions	in Grammar	$\alpha ightarrow eta$	$(\alpha, \beta \in (N \cup \Sigma)^*,$	α contains a variable)	lpha ightarrow eta	$(\alpha, \beta \in (N \cup \Sigma)^*, \beta \ge \alpha ,$ α contains a variable)	$A o \alpha$	$(A \in N, \alpha \in (N \cup \Sigma)^*)$	$A \rightarrow aB, A \rightarrow \Lambda$	$(A, B \in N, a \in \Sigma)$
Chomsky inclaining	Language	(Grammars)	Recursively	enumerable	(unrestricted)	Context-sensitive		Context-free		Regular	
CHOLLIST		Type	0			-		2		က	
)											

- Questions about the strings generated by a context-free grammar G are sometimes easier to answer if we know something about the form of the productions.
 - Sometimes this means knowing that certain types of productions never occur, and sometimes it means knowing that every production has a certain simple form.
- For example, suppose we want to know whether a string x is generated by G, and we look for an answer by trying all

If we don't find a derivation that produces x, how long do we have to keep trying?

LG311E Formal Languages and Automata

A context-free grammar is said to be in Chomsky normal form(CNF) if every production is of one of these two types:

- $\blacksquare \ A o BC$ (where B and C are non-terminals)
 - $lacksquare A
 ightarrow \sigma$ (where σ is a terminal symbol)

For every context-free grammar G, there is another CFG G_1 in Chomsky normal form such that $L(G_1)=L(G)-\Lambda$.

Following algorithm that can be used to construct the CNF grammar G_1 from a Type-2 grammar G:

- lacktriangledown Eliminate unit productions and then Λ productions.
- Break-down productions whose right side has at least two terminal symbols.
- 3 Replace each production having more than two non-terminal occurrences on the right by an equivalent set of double-non-terminal productions.

Example CNF Transformation

CNF grammar G_1 from a Type-2 grammar G:

A Type-2 Gramma

```
S = a, b, c
N = S, T, U, V, W
                                                    \begin{array}{l} \uparrow = \{ \\ S \rightarrow TU \mid V \\ T \rightarrow aTb \mid \Lambda \\ U \rightarrow cU \mid \Lambda \\ V \rightarrow aVc \mid W \\ W \rightarrow bW \mid \Lambda \end{array}
```

 $\}$ which generates the language $a^ib^ic^k|i=j$ or i=k .

BLG311E Formal Languages and Automata

Eliminate unit productions and then Λ productions. Unit production ex.: $V\to W$ Λ production ex.: $T\to \Lambda$

A Type-2 Grammar

```
\begin{array}{l} T \rightarrow aTb \mid \Lambda \\ U \rightarrow cU \mid \Lambda \\ V \rightarrow aVc \mid W \\ W \rightarrow bW \mid \Lambda \end{array}
S \rightarrow TU \mid V
T \rightarrow aTb \mid \Lambda
```

Unit productions eliminated

 $S \rightarrow TU \mid aVC \mid bW \mid \Lambda$ $T \rightarrow aTb \mid \Lambda$ $U \rightarrow cU \mid \Lambda$ $V \rightarrow aVc \mid bW \mid \Lambda$ $W \rightarrow bW \mid \Lambda$

BLG311E Formal Languages and Auto

Eliminate unit productions and then Λ productions. Unit production ex.: $V \to W$ Λ production ex.: $T \to \Lambda$

Unit productions

```
\begin{array}{l} S \rightarrow TU \mid aVc \mid bW \\ T \rightarrow aTb \mid \Lambda \\ U \rightarrow cU \mid \Lambda \\ V \rightarrow aVc \mid bW \mid \Lambda \\ W \rightarrow bW \mid \Lambda \end{array}
```

Unit productions eliminated

```
S \rightarrow TU \mid aVc \mid bW \mid aTb \mid ab \mid cU \mid c \mid b \mid ac
T \rightarrow aTb \mid ab
U \rightarrow cU \mid c
V \rightarrow aVc \mid bW \mid b \mid ac
W \rightarrow bW \mid b
```

Introduce for every terminal symbol σ a variable X_σ and a production Break-down productions whose right side has at least two terminal $S \rightarrow TU \mid aTb \mid aVc \mid cU$ $S \rightarrow ab \mid ac \mid c \mid b \mid bW$ $T \rightarrow aTb \mid ab$ $U \rightarrow cU \mid c$ $V \rightarrow aVc \mid ac \mid bW \mid b$ $W \rightarrow bW \mid b$ A Type-2 Grammar symbols.

Non-single-terminals eliminated

 $S \rightarrow TU \mid X_a TX_b \mid X_a VX_c \mid X_c U$ $S \rightarrow X_a X_b \mid X_a X_c \mid c \mid b \mid X_b W$ $T \rightarrow X_a TX_b \mid X_a X_b$ $U \rightarrow X_c U \mid c$ $V \rightarrow X_a VX_c \mid X_c \mid X_b W \mid b$ $W \rightarrow X_b W \mid c$ $W \rightarrow X_b W \mid c$ $X_a \rightarrow a$ $X_b \rightarrow b$ $X_c \rightarrow c$

Replace each production having more than two non-terminal occurrences on the right by an equivalent set of double-non-terminal productions. Non-double-non-terminals elim .G311E Formal Languages and Automata

```
S \rightarrow TU \mid X_a T X_b \mid X_c U \mid X_a V X_c \\ S \rightarrow X_a X_b \mid X_a X_c \mid c \mid b \mid X_b W \\ T \rightarrow X_a T X_b \mid X_a X_b \\ U \rightarrow X_c U \mid c \\ V \rightarrow X_a V X_c \mid X_b X_b \mid V \rightarrow X_a V X_b W \mid b \\ V \rightarrow X_a V X_b \mid V \mid V \rightarrow X_b W \mid b \\ X_b \rightarrow b \\ X_c \rightarrow c \\ X_c \rightarrow c
```

```
S \rightarrow TU \mid X_a \mid Y_1 \mid X_c \cup \mid X_a \mid Y_2 \mid Y_1 \rightarrow TX_b \mid Y_2 \rightarrow VX_c \mid X_b \mid X_b \mid X_b \mid X_b \mid X_b \mid X_c \mid X_b \mid X_b \mid X_b \rightarrow B \mid X_c \rightarrow C \mid
```

Another Example

Eliminate unit productions

```
S → AaA | bA | BaB
A → aaBa | CDA | aa | DC
B → bB | bAB | bb | aS
C → Ca | bC | D
D → bD | Λ
```

```
→ AaA | bA | BaB
→ aaBa | CDA | aa | DC
S → AaA | bA | BaB
A → aaBa | CDA | aa | Di
B → bB | bAB | bb | aS
C → Ca | bC | bD | Λ
D → bD | Λ
```

Unit productions partly eliminated

A Type-2 Grammar

Eliminate A productions.

A Type-2 Grammar

S → AaA | bA | BaB A → aaBa | CDA | aa | DC B → bB | bAB | bb | aS C → Ca | bC | bD | Λ D → bD | Λ

Λ productions partly eliminated

S → AaA | bA | BaB A → aaBa | CDA | aa | DC | CA A → DA | C | D | Λ B → bB | bAB | bb | aS C → Ca | bC | bD | b | a D → bD | b

Eliminate A productions.

BLG311E Formal Languages and Automa

A Type-2 Grammar

A productions eliminated

S → AaA | bA | BaB A → aaBa | CDA | aa | DC | CA A → DA | C | D | Λ B → bB | bAB | bb | aS C → Ca | bC | bD | b | a D → bD | b

S → AaA | bA | BaB | a | b A → aaBa | CDA | aa | DC | CA A → DA | C | D | CD B → bB | bAB | bb | aS C → Ca | bC | bD | b | a D → bD | b

1 Eliminate unit productions.

S → AaA | bA | BaB | a | b A → aaBa | CDA | aa | DC | CA A → DA | CD | C | D B → bB | bAB | bb | aS C → Ca | bC | bD | b | a D → bD | b A Type-2 Grammar

OCBYYO

Unit productions eliminated

S → AaA | bA | BaB | a | b A → aaBa | CDA | DC | CA | aa A → DA | CD | Ca | bC | bD | a | b B → bB | bAB | aS | bb C → Ca | bC | bD | a | b D → bD | b DOBAAO

Transformation continues with the 2nd and 3rd steps.

Consider the following languages. Can you design a PDA to recgonize

Example 1

 $L(G_1) = \{a^n b^n c^n | n \ge 0\}$

Example 2

$$L(G_2) = \{xx \mid x \in \{a, b\}^*\}$$

Some languages require more capable memory architectures than a stack to be recognized!

Pumping Lemma for Context-Free Languages

The parse tree of a CNF defined context free language is a binary tree. When the leaves of the parse tree is traversed from left to right a word of the language is formed.

Gor every context fee grammar G, there is $L(G_1) = L(G) - \Lambda$. In G_1 grammar rules non-terminals or a single terminal. another grammar in CNF such as there exists either a couple of

Pumping Lemma for Context-Free Languages

 $u=\sigma_1\sigma_2\dots\sigma_i\dots\sigma_n$ $(\sigma_i\in\Sigma)$ for a parse tree produced by a CNF grammar such as Let's assume we produce the string

If we write u using only the non-terminals that directly produce terminals $u = A_1 B_2 \dots A_n$

e.g.
$$S = \sigma_1 \sigma_2 \sigma_3 \sigma_4 \sigma_5$$
 ya di

e.g. $S=\sigma_1\sigma_2\sigma_3\sigma_4\sigma_5$ ya da e.g. $S=A_2A_4A_5A_6A_7$

Pumping Lemma for

The parse tree of the grammar can be a complete binary tree for the most extreme case. In such a situation all the paths that navigate to the leaves of this tree are equas to the depth³ of this tree. In a complete binary tree if the depth is *n* than the number of leaves is equal to 2".

 A_0

(h = n + 1). On the other hand the length In a CNF grammar's parse tree each leaf leaves in a complete binary tree of depth is a single child of a non-terminal parent of the produced word is the number of increasing the tree's depth by one n, which is $(|w| = 2^{h-1} = 2^n)$.

> 6°

^aTree depth: The longest path from a leaf to the root

Pumping Lemma for Context-Free Languages in that case we can at most produce a word of length 2^n from a tree of depth n+1. In this tree

- If each inner node does not correspond to a different non-terminal, in other words there exists a rule repetition, there exists substrings in the word that can be repeated (pumped).
 - If each inner node corresponds to a different non-terminal then there will be a repetition if it is possible to produce a word of length larger than 2^n .

and $|u| \ge n$, string u can be written as u = vwxyz where v, w, x, y, and Let L be a context-free language. For all integers n that satisfy $u \in L$ ¿ satisfies the following:

- |wy| > 0
- $|wxy| \le n$
- 3 For all $m \ge 0$, $vw^m xy^m z \in L$.

Pumping Lemma for Context-Free Languages

Example 1

$$L = \{a^m b^m c^m | m \ge 0\}$$

Assumptions:

- L has a CFG
- u = vwxyz and $|u| \ge n$.
- n corresponds to the number of non-terminals.
- $|wxy| \le n$

$$a^{n-1} \mid a \mid b^{n-2} \mid b \mid c^n \qquad vw^2 xy^2 z = a^{n+1}$$

$$V^{n-1} \mid a \mid b^{n-2} \mid b \mid c^n$$
 $VW^2 xy^2 z = a^{n+1} b^n c^n$
 $V \mid W \mid x \mid y \mid z$ $Vxz = a^{n-1} b^{n-2} c^n$

Example 2

 $L = \{ xx \mid x \in \{a, b\}^* \}$

2 or
$$a^nb$$
 b b^{n-3} b a^nb^n $a^nb^{n-2}a^nb$

Or
$$w$$
 x y z $w^0 xy^0z$

Example 3

$$L = \{x \in \{a,b,c\}^* \ | \ \#(a) < \#(b) \text{ and } \#(a) < \#(c)\}$$

Assumptions:

- L has a CFG
- $u = a^n b^{n+1} c^{n+1}$ and $|u| \ge n$ n corresponds to the number of non-terminals. $|wxy| \le n$

2 yada
$$a^nb^5 \mid b \mid b^{n-5} \mid c \mid c^n \quad a^nb^nc^n$$