Matematika Diskrit [KOMS119602] - 2022/2023

11.1 - Probabilitas (Peluang) Diskrit

Dewi Sintiari

Prodi D4 Teknologi Rekayasa Perangkat Lunak Universitas Pendidikan Ganesha

Week 11 (November 2022)

Bagian 1: Konsep Probabilitas

Apa kegunaan praktis dari Teori Probabilitas dalam Ilmu Komputer?

Tugas kelompok:

- Buatlah kelompok beranggotakan tiga orang
- Carilah sebuah topik tentang kebermanfaatan Teori
 Probabilitas (Peluang) dalam bidang Ilmu Komputer.
- Diskusikan dan berikan ulasan terkait hal tersebut.
- ▶ Presentasikan hasil diskusi kelompok Anda dalam bentuk video berdurasi ±6 menit.

Konsep peluang diskrit

Misalkan sebuah koin di-tos. Berapakah kemungkinan munculnya lambang garuda?

Eksperimen probabilitas

- Buatlah sebuah program untuk mengetos angka 0 dan 1 secara random.
- Lakukan 100 kali eksperimen, dan catat hasil eksperimen Anda.
- Hitunglah berapa kali angka 1 muncul pada eksperimen tersebut.
- Jalankan program Anda 10 kali, lalu catat hasil yang diperoleh.

Probabilitas secara formal

Dalam pengetosan sebuah koin, terdapat dua kemungkinan gambar yang muncul, yaitu:

- Lambang garuda (G)
- ► Peta Indonesia (I)

$$\label{eq:probabilitas} Probabilitas = \frac{\mathsf{Banyaknya} \ \mathsf{kemungkinan} \ \mathsf{yang} \ \mathsf{memenuhi} \ \mathsf{syarat}}{\mathsf{Banyaknya} \ \mathsf{seluruh} \ \mathsf{kemungkinan}}$$

Contoh

Pada pengetosan sebuah koin, probabilitas munculnya gambar garuda adalah:

$$P(G)=\frac{1}{2}$$

Coba bandingkan nilai ini dengan hasil eksperimen Anda, Jelaskanl

Konsep peluang diskrit

Contoh

Dalam proses rekrutmen di suatu perusahaan, dicari dua orang karyawan baru. Jika banyaknya pelamar adalah 100, berapakah **kemungkinan** seorang pelamar akan diterima?

Sol	usi:			

Ruang sampel

Pada pelemparan sebuah koin, terdapat dua kemungkinan yang muncul, yaitu:

angka, gambar

► Pada pengetosan sebuah dadu, terdapat 6 kemungkinan hasil yang muncul, yaitu sbb:

$$1, 2, 3, 4, 5, 6\\$$

▶ Pada pengacakan kartu remi, terdapat 52 kartu yang mungkin:

► Heart : 1,...,10, As, Q, J, K

▶ Diamond : 1,..., 10, As, Q, J, K

► Spade : 1,...,10, As, Q, J, K

► Club : 1,...,10, As, Q, J, K

Definisi

Himpunan semua kemungkinan kejadian yang mungkin dari suatu percobaan disebut RUANG SAMPEL. Setiap elemen himpunan tersebut disebut titik sampel.

Contoh motivasi sifat peluang sederhana (1)

Contoh

Pada pengetosan sebuah dadu, hitunglah:

- $ightharpoonup P(1) = \cdots$
- $P(2) = \cdots$
- ▶ $P(3) = \cdots$
- $P(4) = \cdots$
- $P(5) = \cdots$
- $P(6) = \cdots$

Kemudian hitunglah:

$$P(1) + P(2) + P(3) + P(4) + P(5) + P(6) = \cdots$$

Contoh motivasi sifat peluang sederhana (2)

Contoh

Diberikan setumpuk kartu remi, hitunglah:

- $ightharpoonup P(Heart) = \cdots$
- $ightharpoonup P(Diamond) = \cdots$
- ► *P*(*Spade*) = · · ·
- ► *P*(*Club*) = · · ·

Kemudian hitunglah:

$$P(Heart) + P(Diamond) + P(Spade) + P(Club) = \cdots$$

Latihan "Peluang Sederhana"

Peluang diskrit mempunyai sifat:

- $ightharpoonup 0 \le p(x_i) \le 1$
- $p(x_1) + p(x_2) + \cdots + p(x_n) = 1$ (jika terdapat n kemungkinan kejadian)

Contoh 6.54, 6.55, dan 6.56 pada buku referensi Rinaldi Munir, halaman 262.

Kejadian

Kejadian (event) adalah himpunan bagian dari ruang sampel.

Contoh

Pada pelemparan dadu:

- Kejadian munculnya angka ganjil: {1,3,5}
- ► Kejadian munculnya angka prima: {2,3,5}

Pada permainan remi:

► Kejadian munculnya kartu merah: { Heart As, Heart Q, Heart K, Heart J, Heart 2, Heart 3, · · · , Heart 10 }

Contoh 6.57 s.d. 6.61 pada buku referensi Rinaldi Munir, halaman 262.

Permasalahan Monty Hall

- Anggap Anda dalam suatu game show; ada tiga buah pintu: A, B, dan C. Di belakang pintu ada dua ekor kambing dan sebuah mobil mewah. Anda pastinya mau mobil mewah dengan menebak pintu mana yang berisi mobil.
- 2. Misal Anda memilih pintu A (moga-moga isinya mobil).
- Monty Hall, sang pembawa acara, mengecek pintu B dan C, lalu membuka pintu yang berisi kambing, sisa satu pintu lagi tidak dibuka. Jika keduanya berisi kambing maka dia akan membuka secara acak antara pintu B dan C.

Apakah Anda akan tetap pada pilihan awal yaitu pintu A, ataukah pindah ke pintu yang tidak dibuka oleh Monty Hall?

Alternatif solusi

Diskusikan dengan kelompok Anda.

- 1. Menurut Anda, apakah berubah tidaknya pilihan pintu mempengaruhi probabilitas memenangkan hadiah mobil?
- 2. Pilihan mana yang Anda pilih? Jelaskan argumen Anda dengan menerapkan prinsip-prinsip probabilitas.

Bagian 3.1: Probabilitas komplemen

Bagian 3.2: Kejadian saling bebas dan saling lepas

Kejadian saling bebas

Misalkan sebuah koin dilempar tiga kali.

- Apakah hasil pelemparan koin kedua dipengaruhi oleh pelemparan yang pertama?
- Apakah hasil pelemparan koin ketiga dipengaruhi oleh pelemparan yang pertama dan kedua?

Definisi

Kejadian E dan F disebut saling bebas (independent) jika dan hanya jika $p(E \cap F) = p(E)p(F)$

Contoh kejadian saling bebas

Contoh

Sebuah koin dilempar sebanyak dua kali, tentukan peluang bahwa:

- pada pelemparan pertama, koin menampilkan gambar garuda
- pada pelemparan kedua, koin menampilkan gambar peta Indonesia

Contoh kejadian saling bebas

Contoh

Sebuah koin dilempar sebanyak dua kali, tentukan peluang bahwa:

- pada pelemparan pertama, koin menampilkan gambar garuda
- pada pelemparan kedua, koin menampilkan gambar peta Indonesia

Solusi:

Ruang sampel dari kejadian ini adalah: GG, GI, IG, II Maka:

$$p(GI) = \frac{Banyaknya\ kemungkinan\ kejadian\ GG}{Banyaknya\ kemungkinan\ semua\ kejadian} = \frac{1}{4}$$

Dalam hal ini,

$$p(GI) = \frac{1}{4} = \frac{1}{2} \times \frac{1}{2} = p(G) \times p(I)$$

Diskusikan dengan rekan sebangku Anda permasalahan berikut.

- 1. Sebuah koin dilemparkan sebanyak 3 kali. Tentukan peluang munculnya *G*, *G*, *I*.
- 2. Sebuah koin dilemparkan sebanyak 3 kali. Tentukan peluang munculnya lambang garuda pada dua kali pelemparan.
- Sebuah koin dan sebuah dadu dilemparkan sekali. Tentukan peluang munculnya lambang garuda pada koin dan angka 5 pada dadu.

Bagian 3.3: Probabilitas gabungan kejadian

Rangkuman Bagian 2 s.d. Bagian 4

Konsep Teori Himpunan pada probabilitas diskrit

1. Kejadian A dan B terjadi sekaligus:

$$p(A \cap B) = \sum_{x_i \in A \cap B} p(x_i)$$

2. Kejadian bahwa A atau B terjadi:

$$p(A \cup B) = \sum_{x_i \in A \cup B} p(x_i)$$

3. Kejadian bahwa A terjadi tetapi B tidak:

$$p(A-B) = \sum_{x_i \in A-B} p(x_i)$$

4. Kejadian bahwa salah satu dari *A* dan *B* terjadi, namun bukan keduanya:

$$p(A \oplus B) = \sum_{x_i \in A \oplus B} p(x_i)$$

5. (Komplemen) Peluang bahwa komplemen dari kejadian A terjadi:

$$p(\overline{A}) = 1 - p(A)$$

Kaitan antara kejadian "gabungan" dan "irisan"

Ingat kembali prinsip Inklusi-Eksklusi:

$$|A \cup B| = |A| + |B| - |A \cap B|$$

Dengan prinsip Inklusi-Eksklusi:

$$p(A \cup B) = p(A) + p(B) - p(A \cap B)$$

Contoh 6.63 s.d. 6.65 pada buku referensi Rinaldi Munir, halaman 262.

Bagian 4.1: Probabilitas bersyarat

Definisi

Probabilitas bersayarat menunjukkan besarnya kesempatan suatu peristiwa akan terjadi yang didahului oleh peristiwa lain yang dependen (tergantung) terhadap peristiwa tersebut.

Notasi:
$$p(A|B)$$

menunjukkan probabilitas A jika B diketahui, dimana A dan B menyatakan kejadian acak.

$$p(A|B) = \frac{p(A,B)}{p(B)}$$

Contoh probabilitas bersyarat

Diberikan data 50 mahasiswa yang berada di beberapa program studi, sebagai berikut.

D.,	Jenis kelamin			
Prodi	Р	L		
TRPL	10	3		
Ilmu Komputer	12	10		
Sistem Informasi	3	12		

- 1. Jika seorang mahasiswa perempuan dipilih secara acak, berapakah probabilitas bahwa ia berasal dari Prodi Sistem Informasi?
- 2. Jika seorang mahasiswa berasal dari Prodi TRPL, berapakah probabilitas bahwa ia seorang laki-laki?

Coba Anda jelaskan mengapa kedua permasalahan di atas termasuk dalam probabilitas bersayarat!

Contoh (lanjutan)

Soal: Jika seorang mahasiswa perempuan dipilih secara acak, berapakah probabilitas bahwa ia berasal dari Prodi Sistem Informasi?

$$p(A|B) = \frac{p(A,B)}{p(B)}$$

- ► A: mahasiswa Prodi Sistem Informasi
- ► B: mahasiswa perempuan

$$p(A|B) = \frac{p(A,B)}{p(B)} = \frac{3/50}{25/50} = \frac{3}{25}$$

Contoh (lanjutan)

Soal: Jika seorang mahasiswa berasal dari Prodi TRPL, berapakah probabilitas bahwa ia seorang laki-laki?

$$p(A|B) = \frac{p(A,B)}{p(B)}$$

- ► A: mahasiswa laki-laki
- ▶ B: mahasiswa TRPL

$$p(A|B) = \frac{p(A,B)}{p(B)} = \frac{10/50}{13/50} = \frac{10}{13}$$

Soal 1: Dua dadu setimbang dilempar bersamaan. Jika diketahui bahwa jumlah mata dadu yang muncul kurang dari 4, tentukan probabilitas bahwa mata dadu pertama sama dengan 1.

Soal 1: Dua dadu setimbang dilempar bersamaan. Jika diketahui bahwa jumlah mata dadu yang muncul kurang dari 4, tentukan probabilitas bahwa mata dadu pertama sama dengan 1.

50	lu	SI:			

Soal 2: Sebuah perusahaan berencana memilih karyawan untuk mengikuti pelatihan. Terdapat 5 calon pria, dimana 3 dari bagian personalia dan 2 dari bagian EDP.

Tentukan probabilitas bahwa karyawan yang dipilih mengikuti pelatihan adalah pria yang berasal dari bagian EDP.

Soal 2: Sebuah perusahaan berencana memilih karyawan untuk mengikuti pelatihan. Terdapat 5 calon pria, dimana 3 dari bagian personalia dan 2 dari bagian EDP.

Tentukan probabilitas bahwa karyawan yang dipilih mengikuti pelatihan adalah pria yang berasal dari bagian EDP.

Sc	lu	si:			

Bagian 4.2: Probabilitas dengan menggunakan aturan permutasi & kombinasi

Soal: Terdapat sepuluh pasang sepatu di dalam lemari. Jika delapan sepatu diambil secara acak, bagaimanakah probabilitas tidak ada sepasang sepatu yang terambil?

Soal: Diambil 5 kartu remi dari setumpuk kartu remi (berjumlah 52; As, 2-10, K, Q, J masing-masing sebanyak 4). Berapakah probabilitas bahwa kelima kartu yang diambil tidak memuat karu As?

Soal: Sepuluh orang masuk lift pada lantai dasar sebuah gedung bertingkat 20. Berapakah probabilitas semua orang tersebut keluar pada lantai yang berbeda?

Bagian 4.3: Percobaan Bernoulli

Contoh 6.66 s.d. 6.91 pada buku referensi Rinaldi Munir, halaman 268 - 276.