ABOUT DATASET 'BOSTON HOUSING'

Boston Housing Dataset Analysis

Variable Notes

- 1. crim: Per capita crime rate by town.
- 2. zn: Proportion of residential land zoned for lots over 25,000 sq. ft.
- 3. indus: Proportion of non-retail business acres per town.
- 4. chas: Charles River dummy variable (1 if tract bounds river; 0 otherwise).
- 5. nox: Nitric oxides concentration (parts per 10 million).
- 6. rm: Average number of rooms per dwelling.
- 7. age: Proportion of owner-occupied units built prior to 1940.
- 8. dis: Weighted distances to five Boston employment centers.
- 9. rad: Index of accessibility to radial highways.
- 10. tax: Full-value property tax rate per 10000.
- 11. ptratio: Pupil-teacher ratio by town.
- 12. b: proportion of black people by town.
- 13. Istat: Percentage of lower status of the population.
- 14. medv: Median value of owner-occupied homes in \$1000's.
- 1. Steps for Analysis
- 2. Load the Data
- 3. Preprocess the Data
- 4. Exploratory Data Analysis (EDA)
- 5. Feature Engineering
- 6. Model Building and Evaluation
- 7. Insights and Conclusions

```
In [46]: import pandas as pd
import numpy as np

In [25]: # Load the dataset
    columns = ['crim', 'zn', 'indus', 'chas', 'nox', 'rm', 'age', 'dis', 'rad', 'tax',
    data_url = "https://raw.githubusercontent.com/selva86/datasets/master/BostonHousing
    boston = pd.read_csv(data_url, names=columns, skiprows=1)
In [26]: boston.head()
```

		crim	zn	indu	us	chas	nox	rm	age	dis	rad	tax	ptratio	b	Istat	medv
	0	0.00632	18.0	2.3	31	0	0.538	6.575	65.2	4.0900	1	296	15.3	396.90	4.98	24.0
	1	0.02731	0.0	7.0	07	0	0.469	6.421	78.9	4.9671	2	242	17.8	396.90	9.14	21.6
	2	0.02729	0.0	7.0	07	0	0.469	7.185	61.1	4.9671	2	242	17.8	392.83	4.03	34.7
	3	0.03237	0.0			0		6.998				222		394.63	2.94	33.4
	4	0.06905	0.0	2.1	18	0	0.458	7.147	54.2	6.0622	3	222	18.7	396.90	5.33	36.2
]:	bo	ston.ta	il()													
]:		cri	m z	n ind	dus	chas	nox	rm	age	dis	rad	tax	ptratio	b	Istat	med
	50	1 0.0626	53 0	.0 11	.93	0	0.573	6.593	69.1	2.4786	1	273	21.0	391.99	9.67	22
	50	2 0.0452	27 0	.0 11	.93	0	0.573	6.120	76.7	2.2875	1	273	21.0	396.90	9.08	20.
	50				.93	0	0.573	6.976	91.0	2.1675	1	273	21.0			
		4 0.1095								2.3889		273		393.45		
	50	5 0.0474	11 0	.0 11	.93	0	0.573	6.030	80.8	2.5050	1	273	21.0	396.90	7.88	11
28]:		ston.in	• • • • • • • • • • • • • • • • • • • •													
28]:	<c Ra</c 	lass 'p ngeInde ta colu Colu	anda x: 5 mns mn	s.cor 06 en (tota	tri l 1	es, 0 4 col	to 5	05 :								
3]:	<c Ra Da #</c 	lass 'p ngeInde ta colu Colu	anda x: 5 mns mn	s.cor 06 en (tota Non-	tri l 14 Nul	es, 0 4 col 1 Cou	to 50 umns) int D	05 : type 								
3]:	<c Ra Da</c 	lass 'p ngeInde ta colu Colu crim	anda x: 5 mns mn	s.cor 06 en (tota Non- 506	tri l 14 Nul non	es, 0 4 col 1 Cou -null	umns) umns) int D	05 :								
3]:	<c Ra Da' # 0 1 2</c 	lass 'p ngeInde ta colu Colu crim zn indu	anda x: 5 mns mn	s.cor 06 en (tota Non- 506 506	tri l 14 Nul non non	es, 0 4 col 1 Cou -null -null	to 5 umns) int D f	05 : type loat64 loat64								
28]:	<c #="" 0="" 1="" 2="" 3<="" da="" ra="" td=""><td>lass 'p ngeInde ta colu Colu crim zn indu chas</td><td>anda x: 5 mns mn</td><td>s.cor 06 en (tota Non- 506 506 506</td><td>tri l 1 Nul non non non</td><td>es, 0 4 col 1 Cou -null -null -null</td><td>to 50 umns) unt D f f f f f</td><td>05 : type loat64 loat64 loat64</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></c>	lass 'p ngeInde ta colu Colu crim zn indu chas	anda x: 5 mns mn	s.cor 06 en (tota Non- 506 506 506	tri l 1 Nul non non non	es, 0 4 col 1 Cou -null -null -null	to 50 umns) unt D f f f f f	05 : type loat64 loat64 loat64								
8]:	<c Ra Da # 0 1 2 3 4</c 	lass 'p ngeInde ta colu Colu crim zn indu chas nox	anda x: 5 mns mn	s.cor 06 en (tota Non- 506 506 506 506 506	tri l 1 Nul non non non non	es, 0 4 col 1 Cou -null -null -null	to 50 umns) unt D f f f	05 : type loat64 loat64 loat64 nt64								
33]:	<c #="" 0="" 1="" 2="" 3="" 4="" 5<="" da'="" ra="" td=""><td>lass 'p ngeInde ta colu Colu crim zn indu chas nox</td><td>anda x: 5 mns mn</td><td>s.cor 06 en (tota Non</td><td>tri l 14 Nul non non non non</td><td>es, 0 4 col 1 Counull -null -null -null -null -null</td><td>to 50. umns) unt D f f f f f f f</td><td>05 : type loat64 loat64 nt64 loat64</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></c>	lass 'p ngeInde ta colu Colu crim zn indu chas nox	anda x: 5 mns mn	s.cor 06 en (tota Non	tri l 14 Nul non non non non	es, 0 4 col 1 Counull -null -null -null -null -null	to 50. umns) unt D f f f f f f f	05 : type loat64 loat64 nt64 loat64								
3]:	<c Ra Da # 0 1 2 3 4</c 	lass 'p ngeInde ta colu Colu crim zn indu chas nox rm age	anda x: 5 mns mn	s.cor 06 en (tota Non 506 506 506 506 506 506 506	tri 1 1 Nul non non non non non	es, 0 4 col 1 Counull -null -null -null -null -null	to 5: .umns) int D f f f f f f f f	05 : type loat64 loat64 loat64 nt64								
3]:	<c #="" 0="" 1="" 2="" 3="" 4="" 5="" 6<="" da="" ra="" td=""><td>lass 'p ngeInde ta colu Colu crim zn indu chas nox rm age dis</td><td>anda x: 5 mns mn</td><td>s.cor 06 en (tota Non- 506 506 506 506 506 506 506 506</td><td>tri 1 1 Nul non non non non non non</td><td>es, 0 4 col 1 Counull -null -null -null -null -null</td><td>to 5: .umns) .nt D f . f . f . i . f . f</td><td>05 : type loat64 loat64 nt64 loat64 loat64</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></c>	lass 'p ngeInde ta colu Colu crim zn indu chas nox rm age dis	anda x: 5 mns mn	s.cor 06 en (tota Non- 506 506 506 506 506 506 506 506	tri 1 1 Nul non non non non non non	es, 0 4 col 1 Counull -null -null -null -null -null	to 5: .umns) .nt D f . f . f . i . f . f	05 : type loat64 loat64 nt64 loat64 loat64								
3]:	<c #="" 0="" 1="" 2="" 3="" 4="" 5="" 6="" 7<="" da'="" ra="" td=""><td>lass 'p ngeInde ta colu Colu crim zn indu chas nox rm age dis rad</td><td>anda x: 5 mns mn</td><td>s.cor 06 en (tota Non- 506 506 506 506 506 506 506 506</td><td>tri l 1 Nul non non non non non non non</td><td>es, 04 col 1 Counull -null -null -null -null -null -null</td><td>to 50 to 50 umns) umns Di</td><td>05 : type loat64 loat64 nt64 loat64 loat64 loat64</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></c>	lass 'p ngeInde ta colu Colu crim zn indu chas nox rm age dis rad	anda x: 5 mns mn	s.cor 06 en (tota Non- 506 506 506 506 506 506 506 506	tri l 1 Nul non non non non non non non	es, 04 col 1 Counull -null -null -null -null -null -null	to 50 to 50 umns) umns Di	05 : type loat64 loat64 nt64 loat64 loat64 loat64								
8]:	<c #="" 0="" 1="" 2="" 3="" 4="" 5="" 6="" 7="" 8<="" da="" ra="" td=""><td>lass 'p ngeInde ta colu Colu crim zn indu chas nox rm age dis rad tax</td><td>anda x: 5 mns mn </td><td>s.cor 06 en (tota Non- 506 506 506 506 506 506 506 506</td><td>tri l 1. Nul non non non non non non non non</td><td>es, 04 col 1 Counull -null -null -null -null -null -null -null</td><td>to 5: umns) int D f f f f f f f f i f f f f f</td><td>05 : type loat64 loat64 loat64 loat64 loat64 loat64</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></c>	lass 'p ngeInde ta colu Colu crim zn indu chas nox rm age dis rad tax	anda x: 5 mns mn 	s.cor 06 en (tota Non- 506 506 506 506 506 506 506 506	tri l 1. Nul non non non non non non non non	es, 04 col 1 Counull -null -null -null -null -null -null -null	to 5: umns) int D f f f f f f f f i f f f f f	05 : type loat64 loat64 loat64 loat64 loat64 loat64								
8]:	<pre><c #="" 0="" 1="" 1<="" 2="" 3="" 4="" 5="" 6="" 7="" 8="" 9="" da'="" pre="" ra=""></c></pre>	lass 'p ngeInde ta colu Colu crim zn indu chas nox rm age dis rad tax 0 ptra	anda x: 5 mns mn s	s.cor 06 en (tota Non- 506 506 506 506 506 506 506 506	tri l 14 Nul non non non non non non non non non	es, 0 4 col 1 Counull -null -null -null -null -null -null -null -null	to 50 numns) int D f - f - f - f - i - f - f - f - f - f - f - f - f - f - f	05 : type loat64 loat64 loat64 loat64 loat64 loat64 nt64 nt64 nt64								
8]:	<pre><c #="" 0="" 1="" 1<="" 2="" 3="" 4="" 5="" 6="" 7="" 8="" 9="" da'="" pre="" ra=""></c></pre>	lass 'p ngeInde ta colu Colu crim zn indu chas nox rm age dis rad tax 0 ptra 1 b	anda x: 5 mns mn s	s.cor 06 en (tota Non- 506 506 506 506 506 506 506 506	tri 1 1 Nul non non non non non non non non non	es, 0 4 col 1 Counull -null -null -null -null -null -null -null -null -null	to 5: umns) int D f f f f f i f f f f f f f f f f f f f	os type loat64 loat64 loat64 loat64 loat64 nt64 nt64 loat64 loat64								
3]:	<pre><c #="" 0="" 1="" 1<="" 2="" 3="" 4="" 5="" 6="" 7="" 8="" 9="" da="" pre="" ra=""></c></pre>	lass 'p ngeInde ta colu Colu crim zn indu chas nox rm age dis rad tax 0 ptra 1 b 2 lsta 3 medv	anda x: 5 mns mn ss	s.cor 06 en (tota Non- 506 506 506 506 506 506 506 506	tri 1 1 Nul non non non non non non non non non	es, 0 4 col 1 Counull -null	to 5: umns) int D f f f f f i f f f f f f f f f f f f f	05 : type loat64 loat64 loat64 loat64 loat64 loat64 nt64 nt64 nt64								
3]:	<pre><c #="" 0="" 1="" 2="" 3="" 4="" 5="" 6="" 7="" 8="" 9="" da="" dt<="" pre="" ra=""></c></pre>	lass 'p ngeInde ta colu Colu crim zn indu chas nox rm age dis rad tax 0 ptra 1 b	anda x: 5 mns mn s	s.cor 06 en (tota Non- 506 506 506 506 506 506 506 506	tri l 1 Nul non non non non non non non non non	es, 04 col 1 Counull -null -null -null -null -null -null -null -null -null	to 5: umns) int D f f f f f i f f f f f f f f f f f f f	os type loat64 loat64 loat64 loat64 loat64 nt64 nt64 loat64 loat64								
9]:	<pre><c ra<="" td=""><td>lass 'p ngeInde ta colu Colu crim zn indu chas nox rm age dis rad tax 0 ptra 1 b 2 lsta 3 medv ypes: f</td><td>anda x: 5 mns mn s</td><td>s.cor 06 en (tota Non- 506 506 506 506 506 506 506 506</td><td>tri l 1 Nul non non non non non non non non non</td><td>es, 04 col 1 Counull -null -null -null -null -null -null -null -null -null</td><td>to 5: umns) int D f f f f f i f f f f f f f f f f f f f</td><td>os type loat64 loat64 loat64 loat64 loat64 nt64 nt64 loat64 loat64</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></c></pre>	lass 'p ngeInde ta colu Colu crim zn indu chas nox rm age dis rad tax 0 ptra 1 b 2 lsta 3 medv ypes: f	anda x: 5 mns mn s	s.cor 06 en (tota Non- 506 506 506 506 506 506 506 506	tri l 1 Nul non non non non non non non non non	es, 04 col 1 Counull -null -null -null -null -null -null -null -null -null	to 5: umns) int D f f f f f i f f f f f f f f f f f f f	os type loat64 loat64 loat64 loat64 loat64 nt64 nt64 loat64 loat64								

Out[29]:		crim	zn	indus	chas	nox	rm	age	
	count	506.000000	506.000000	506.000000	506.000000	506.000000	506.000000	506.000000	506.000
	mean	3.613524	11.363636	11.136779	0.069170	0.554695	6.284634	68.574901	3.79!
	std	8.601545	23.322453	6.860353	0.253994	0.115878	0.702617	28.148861	2.10!
	min	0.006320	0.000000	0.460000	0.000000	0.385000	3.561000	2.900000	1.129
	25%	0.082045	0.000000	5.190000	0.000000	0.449000	5.885500	45.025000	2.100
	50%	0.256510	0.000000	9.690000	0.000000	0.538000	6.208500	77.500000	3.207
	75%	3.677083	12.500000	18.100000	0.000000	0.624000	6.623500	94.075000	5.188
	max	88.976200	100.000000	27.740000	1.000000	0.871000	8.780000	100.000000	12.126

Out[57]: <Axes: >


```
In [59]: boston['indus'].value_counts().plot(kind='pie', autopct='%.2f')
```


PRE PROCESSING

```
In [33]: # Check for missing values
print(boston.isnull().sum())
```

```
crim
            0
            0
7n
indus
            0
chas
            0
nox
            0
            0
rm
age
            0
dis
            a
            0
rad
            0
tax
            0
ptratio
            0
1stat
            0
medv
            0
dtype: int64
```

SCALING

```
In [34]:
          from sklearn.preprocessing import StandardScaler
          # SCALER THE FEATURES
In [35]:
          scaler = StandardScaler()
          feature_columns = columns[:-1]
In [36]:
          boston_scaled = scaler.fit_transform(boston[feature_columns])
          # CREATE A DATAFRAME WITH SCALED VALUES
In [37]:
          boston_scaled_df = pd.DataFrame(boston_scaled, columns = columns[:-1])
          boston_scaled_df['medv'] = boston['medv']
          boston_scaled_df.head()
In [38]:
Out[38]:
                 crim
                             zn
                                    indus
                                              chas
                                                         nox
                                                                   rm
                                                                                     dis
                                                                                               rad
                                                                            age
          0 -0.419782
                       0.284830 -1.287909 -0.272599 -0.144217 0.413672 -0.120013 0.140214
                                                                                         -0.982843
          1 -0.417339 -0.487722 -0.593381 -0.272599 -0.740262 0.194274
                                                                       0.367166  0.557160  -0.867883
          2 -0.417342 -0.487722 -0.593381
                                          -0.272599
                                                    -0.740262
                                                             1.282714
                                                                       -0.265812 0.557160
                                                                                         -0.867883
          3 -0.416750 -0.487722 -1.306878
                                          -0.272599
                                                    -0.835284
                                                             1.016303
                                                                       -0.809889
                                                                                         -0.752922
                                                                                1.077737
            -0.412482 -0.487722 -1.306878 -0.272599 -0.835284
                                                             1.228577 -0.511180 1.077737 -0.752922
```

EDA

```
In [39]: import seaborn as sns
import matplotlib.pyplot as plt

In [41]: # CORRELATION HEAPMAP
   plt.figure(figsize=(10, 8))
   sns.heatmap(boston.corr(), annot=True, cmap='coolwarm', fmt=".2f")
   plt.title("Correlation Matrix")
   plt.show()
```


In [42]: # Pair plot
sns.pairplot(boston)
plt.show()

C:\Users\Nishita Bala\anaconda3\Lib\site-packages\seaborn\axisgrid.py:118: UserWar
ning: The figure layout has changed to tight
 self._figure.tight_layout(*args, **kwargs)


```
In [43]: # Distribution of the target variable
    sns.histplot(boston['medv'], kde=True)
    plt.title("Distribution of Median Value")
    plt.xlabel("Median Value ($1000's)")
    plt.ylabel("Frequency")
    plt.show()
```

Distribution of Median Value

Key Insights:

- 1. medv has a strong negative correlation with lstat (lower status of the population) and crim (crime rate).
- 2. rm (average number of rooms per dwelling) shows a strong positive correlation with medy
- 3. medv is roughly normally distributed but appears to have some skewness and possible outliers.

FEATURE ENGINEERING

```
In [44]: # Adding a new feature: room per capita crime rate
    boston['rm_per_crim'] = boston['rm'] / boston['crim']

In [47]: # Log transform to handle skewness
    boston['log_crim'] = np.log1p(boston['crim'])

In [48]: # Update the scaled DataFrame
    boston_scaled_df['rm_per_crim'] = scaler.fit_transform(boston[['rm_per_crim']])
    boston_scaled_df['log_crim'] = scaler.fit_transform(boston[['log_crim']])
```

MODEL BUILDING AND EVALUATION

```
In [49]: from sklearn.model_selection import train_test_split
    from sklearn.linear_model import LinearRegression
    from sklearn.metrics import mean_squared_error, r2_score
    import numpy as np
```

```
In [50]: # Split the data
    X = boston.drop('medv', axis=1)
    y = boston['medv']
    X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_sta

In [51]: # Train a linear regression model
    model = LinearRegression()
    model.fit(X_train, y_train)

Out[51]: v LinearRegression
    LinearRegression()

In [52]: # Make predictions
    y_pred = model.predict(X_test)

In [53]: # Evaluate the model
    mse = mean_squared_error(y_test, y_pred)
    rmse = np.sqrt(mse)
    r2 = r2_score(y_test, y_pred)
```

Model Performance:

- 1. The RMSE provides a measure of how well the model's predictions match the actual values. Lower values indicate better fit.
- 2. The R^2 score indicates the proportion of the variance in the dependent variable that is predictable from the independent variables. A value closer to 1 indicates a better fit.

```
In [54]: print(f'RMSE: {rmse:.2f}')
    print(f'R^2 Score: {r2:.2f}')

RMSE: 4.95
    R^2 Score: 0.67
```

Insights and Conclusions

- 1. Crime Rate (crim): A higher crime rate is associated with lower house prices. This suggests that safety is a significant factor for homeowners.
- 2. Number of Rooms (rm): More rooms are associated with higher house prices. This implies that larger homes are valued higher.
- 3. Lower Status Population (Istat): A higher percentage of lower status residents correlates with lower home values. This could indicate socio-economic disparities influencing housing markets.
- 4. Proximity to Employment Centers (dis): Greater distances to employment centers are correlated with lower house prices, highlighting the importance of accessibility and commute times.
- 5. Property Taxes (tax): Higher tax rates are negatively correlated with house prices, possibly reflecting the burden of higher taxes on property values.
- 6. Nitric Oxides Concentration (nox): Higher pollution levels are associated with lower home values, indicating environmental factors play a role in property pricing.