Customer Service Requests Analysis_Darshana_N

May 20, 2020

```
Project: Customer Service Requests Analysis (Data analysis of New York City 311 Compliant calls)
      Name: Darshana N
[108]: import pandas as pd
       import numpy as np
       import matplotlib as mpl
       from matplotlib import pyplot as plt
       %matplotlib inline
       plt.style.use(['fivethirtyeight'])
       mpl.rcParams['lines.linewidth'] = 3
       import warnings
       warnings.filterwarnings("ignore")
       from sklearn.model_selection import train_test_split
  []: df_dataset = pd.read_csv('311_Service_Requests_from_2010_to_Present.csv', __
        →error_bad_lines=False)
[109]: df_dataset.head()
[109]:
          Unique Key
                                Created Date
                                                Closed Date Agency \
            32310363 12/31/2015 11:59:45 PM 01-01-16 0:55
                                                               NYPD
                                              01-01-16 1:26
       1
            32309934 12/31/2015 11:59:44 PM
                                                               NYPD
       2
            32309159 12/31/2015 11:59:29 PM
                                              01-01-16 4:51
                                                               NYPD
            32305098 12/31/2015 11:57:46 PM
       3
                                              01-01-16 7:43
                                                               NYPD
       4
            32306529 12/31/2015 11:56:58 PM 01-01-16 3:24
                                                               NYPD
                              Agency Name
                                                    Complaint Type \
       O New York City Police Department
                                          Noise - Street/Sidewalk
       1 New York City Police Department
                                                  Blocked Driveway
       2 New York City Police Department
                                                   Blocked Driveway
       3 New York City Police Department
                                                   Illegal Parking
       4 New York City Police Department
                                                   Illegal Parking
                            Descriptor
                                          Location Type Incident Zip
       0
                      Loud Music/Party Street/Sidewalk
                                                                10034
                                        Street/Sidewalk
       1
                             No Access
                                                                11105
       2
                             No Access Street/Sidewalk
                                                                10458
       3 Commercial Overnight Parking Street/Sidewalk
                                                                10461
```

```
4
                      Blocked Sidewalk Street/Sidewalk
                                                                  11373
               Incident Address
                                  ... Bridge Highway Name Bridge Highway Direction
           71 VERMILYEA AVENUE
      0
                                                     NaN
      1
                27-07 23 AVENUE
                                                     NaN
                                                                                NaN
      2
         2897 VALENTINE AVENUE
                                                     NaN
                                                                                NaN
      3
           2940 BAISLEY AVENUE
                                                     NaN
                                                                                NaN
      4
                  87-14 57 ROAD
                                                     NaN
                                                                                NaN
        Road Ramp Bridge Highway Segment Garage Lot Name Ferry Direction
      0
              NaN
                                       NaN
                                                        NaN
                                                                          NaN
      1
              NaN
                                       NaN
                                                        NaN
                                                                         NaN
      2
                                       NaN
                                                        NaN
              NaN
                                                                         NaN
                                                        NaN
      3
              NaN
                                       NaN
                                                                         NaN
              NaN
                                       NaN
                                                        NaN
                                                                         NaN
        Ferry Terminal Name
                               Latitude Longitude
      0
                              40.865682 -73.923501
                         \mathtt{NaN}
      1
                         {\tt NaN}
                              40.775945 -73.915094
      2
                         \mathtt{NaN}
                              40.870325 -73.888525
      3
                         NaN
                              40.835994 -73.828379
      4
                         NaN
                              40.733060 -73.874170
                                           Location
      0
          (40.86568153633767, -73.92350095571744)
        (40.775945312321085, -73.91509393898605)
      2 (40.870324522111424, -73.88852464418646)
      3
          (40.83599404683083, -73.82837939584206)
      4 (40.733059618956815, -73.87416975810375)
      [5 rows x 53 columns]
 []: df_dataset.shape
     df dataset.columns
[18]: df_dataset['Complaint Type'].value_counts().plot(kind='barh',alpha=0.
      \hookrightarrow6,figsize=(10,15))
      plt.title('Types of Complaint')
      plt.show()
```



```
[17]: df_dataset['Status'].value_counts().plot(kind='barh',alpha=0.6,figsize=(7,7))
    plt.title("Status of Complaint Type")
    plt.show()
```



```
[86]: groupedby_complainttype = df_dataset.groupby('Complaint Type')
[88]: grp_data = groupedby_complainttype.get_group('Blocked Driveway')
[89]: grp_data.shape
[89]: (51899, 53)
[90]: df_dataset.isnull().sum()
[90]: Unique Key
                                             0
      Created Date
                                              0
      Closed Date
                                           1442
      Agency
                                              0
                                              0
      Agency Name
      Complaint Type
```

Descriptor	3943
Location Type	128
Incident Zip	1703
Incident Address	27408
Street Name	27409
Cross Street 1	30564
Cross Street 2	30863
Intersection Street 1	166522
Intersection Street 2	166825
Address Type	1833
City	1703
Landmark	193353
Facility Type	1443
Status	0
Due Date	2
Resolution Description	0
Resolution Action Updated Date	1467
Community Board	1
Borough	1
X Coordinate (State Plane)	2269
Y Coordinate (State Plane)	2269
Park Facility Name	1
Park Borough	1
School Name	1
School Number	1
School Region	1
School Code	2
School Phone Number	2
School Address	2
School City	2
School State	2
School Zip	2
School Not Found	2
School or Citywide Complaint	193580
Vehicle Type	193580
Taxi Company Borough	193580
Taxi Pick Up Location	193580
Bridge Highway Name	193415
Bridge Highway Direction	193415
Road Ramp	193434
Bridge Highway Segment	193435
Garage Lot Name	193580
Ferry Direction	193580
Ferry Terminal Name	193579
Latitude	2270
Longitude	2270
Location	2270

```
dtype: int64
```

```
[91]: df_dataset['City'].dropna(inplace=True)

[92]: df_dataset['City'].shape

[92]: (191877,)

[93]: grp_data['City'].isnull().sum()

[93]: 187

[94]: grp_data['City'].fillna('Unknown City', inplace =True)

[95]: plt.figure(figsize=(20, 15))
    plt.scatter(grp_data['Complaint Type'],grp_data['City'])
    plt.title('Plot showing list of cities that raised complaint of type HEATING')
    plt.show()
```


[96]: groupedby_complainttype['Complaint Type'].value_counts().nlargest(10)	
---	--

[96]: Complaint Type

Blocked Driveway

Illegal Parking

Complaint Type

Blocked Driveway

51899

Illegal Parking

49905

```
Noise - Street/Sidewalk Noise - Street/Sidewalk
                                                            29448
       Noise - Commercial
                                Noise - Commercial
                                                            22015
       Derelict Vehicle
                                Derelict Vehicle
                                                            11426
       Noise - Vehicle
                                Noise - Vehicle
                                                            10240
       Animal Abuse
                                Animal Abuse
                                                             4995
      Homeless Encampment
                                Homeless Encampment
                                                             3018
      Traffic
                                                             2701
                                Traffic
      Noise - Park
                                Noise - Park
                                                             2548
      Name: Complaint Type, dtype: int64
[98]: df dataset['Location Type'].fillna('Unknown Loc', inplace =True)
[100]: df_dataset['Location Type'].values
[100]: array(['Street/Sidewalk', 'Street/Sidewalk', 'Street/Sidewalk', ...,
              'Park/Playground', 'Street/Sidewalk', 'Street/Sidewalk'],
             dtype=object)
[101]: grp_data['Location Type'].isnull().sum()
[101]: 37
  []: | ## A clear picture of the fact that all the complaints rasied of type "Blocked"
       \rightarrowDriveway
       ##This shows that majority of complaints recorded was from Data.!!
  []:
  []:
[105]: ### Here is 2nd Analysis of Dataset..
[42]: df= pd.read_csv('311_Service_Requests_from_2010_to_Present.
        ⇔csv',error_bad_lines=False, header=0,
           sep=',', parse_dates=['Created Date', 'Closed Date', 'Resolution Action⊔
        →Updated Date'],index col='Unique Key')
      b'Skipping line 84003: expected 53 fields, saw 60\n'
[80]: def prepareData(df):
           df['Resolution_Time'] = (df['Closed Date'] - df['Created Date']).dt.days
           df_clean=df[df['Resolution_Time'].notnull()]
           df perfect = df clean[df clean['Closed Date'] >= df clean['Created Date']]
           df_perfect['Day of Week'] = df_perfect['Created Date'].dt.dayofweek
           df_perfect['Day of Month'] = df_perfect['Created Date'].dt.day
           df_perfect['Month'] = df_perfect['Created Date'].dt.month
           df_perfect['Year'] = df_perfect['Created Date'].dt.year
```

```
df_perfect=df_perfect[df_perfect.Borough!='Unspecified']
return df_perfect
```

```
[81]: df_perfect = prepareData(df)
df_perfect.shape
```

[81]: (191859, 57)

```
[82]: (df_perfect['Complaint Type'].value_counts()).head(25).plot(kind='bar', figsize=(10,6), title = 'Most common Complaints')
```

[82]: <matplotlib.axes._subplots.AxesSubplot at 0x7f0952e6abd0>


```
[83]: (df_perfect['Complaint Type'].value_counts()).tail(25).plot(kind='bar', figsize=(10,6), title = 'Least frequent Complaints')
```

[83]: <matplotlib.axes._subplots.AxesSubplot at 0x7f0953b600d0>

[61]: <matplotlib.axes._subplots.AxesSubplot at 0x7f0954902bd0>


```
[68]: import matplotlib.ticker as ticker

var = df_Brooklyn.groupby('Complaint Type').Resolution_Time.mean()
frequent = df_Brooklyn['Complaint Type'].value_counts().head(25)
#var = var.ix[frequent.index]
fig = plt.figure()
ax1 = fig.add_subplot(1,1,1)
ax1.set_xlabel('Complaint_Type')
ax1.set_ylabel('Average Response Time')
ax1.set_title("Avg Response Time of Complaints")
tick_spacing = 2
ax1.yaxis.set_major_locator(ticker.MultipleLocator(tick_spacing))
var.head(15).plot(kind='bar')
```

[68]: <matplotlib.axes._subplots.AxesSubplot at 0x7f09535a4e90>

[69]: <matplotlib.axes._subplots.AxesSubplot at 0x7f0952283d10>


```
[70]: df_Brooklyn[['Longitude', 'Latitude']].plot(kind='scatter', x='Longitude', y='Latitude', figsize=(10,8),title = 'Complaints_ →concentration across Brooklyn').axis('equal')
```

[70]: (-74.05417546986855, -73.84258877013144, 40.55791569532466, 40.75179388467535)


```
[71]: df_Brooklyn.plot(kind='hexbin', x='Longitude', y='Latitude', gridsize=40, colormap = 'jet',mincnt=1,title = 'Complaints concentration across<sub>□</sub>

→Brooklyn\n', figsize=(10,6)).axis('equal')
```

[71]: (-74.04098818018521, -73.85577605981479, 40.57152101, 40.73818857)


```
[79]: df_perfect[df_perfect['Complaint Type'] == 'HEAT/HOT WATER']['Descriptor'].

$\to$value_counts()$
```

[79]: Series([], Name: Descriptor, dtype: int64)

[]: