Praktikum I

Dasar-dasar Bahasa Assembly untuk Mikroprosesor Intel 8088 dan Keluarganya

Tujuan: Agar mahasiswa mampu memahami cara kerja dasar bahasa assembly, proses pemindahan register dan memori dalam modus pengalamatan, fungsi interupsi dan menulis program untuk manipulasi string.

Materi:

- ☐ Proses transfer data antar register dan memori.
- ☐ Fungsi interupsi dan service number untuk mengambil data dari keyboard dan

menampilkannya pada layar monitor.

- Mempelajari modus pengalamatan antar register dan memori.
- Membuat program assembly untuk manipulasi karakter dan string.

Alat:

□ IBM-PC.

■ DOS versi 6.X keatas dengan file debug.exe.

Dalam praktikum I dan II, program debug.exe digunakan untuk mempelajari cara kerja bahasa assembly.

A. Mempelajari transfer data antara register dan memori.

- 1. Jalankan program debug.exe, caranya dari DOS-prompt ketikkan C:\>debug <dan tekan enter>, jika file debug.exe berada di direktori tertentu maka pindahkan dahulu direktori aktif, dimana terdapat file debug.exe tersebut.
- 2. Setelah tampil tanda hubung (-), ketikkan A100 dan tekan enter, artinya program yang dibuat terdapat dialamat offset lokasi awal CS:0100, setelah itu tuliskan program berikut ini :

CS:0100 MOV AX, 0103 MOV BX, 2000 MOV CX, 001A MOV DX, 0308

16

MOV SI, 200 MOV DI, 400 MOV SI, BX STC MOV BX, AX CLC MOV DI, DX MOV AX,[SI] MOV AX,[SI+5] MOV AX,[BP+3] MOV AX,[BX+SI] INT 20

3. Setelah program selesai ditulis, maka eksekusi program dengan perintah T=100 <dan tekan enter> (Angka 100 menunjukkan alamat offset awal program IP=100), selanjutnya lengkapi tabel data pengamatan dibawah ini :

Tabel 1-1

Lokasi alamat	Source Code	AX		BX		CX		DX		CS	DS	ΙP	SI	DI
		AH	AL	ВН	BL	СН	CL	DH	DL					
CS:100	MOV AX, 0103													
	MOV BX, 2000													
	MOV CX, 001A													
	MOV DX, 308													
	MOV SI, 200													
	MOV DI, 400													
	MOV SI, BX													
	STC													
	MOV BX, AX													
	CLC													
	MOV DI, DX													
	MOV AX,[SI]													
	MOV AX,[SI+5]													
	MOV AX,[BP+3]						_							_
	MOV AX,[BX+SI]													
_	INT 20													

Tabel 1-2

Lokasi Alamat	Source Code	Register Flag								_
		OF	DF	IF	TF	SF	ZF	ΑF	PF	CF
	STC									
	CLC									

Tabel 1-3 Penjelasan Nilai setiap bit flag:

	Register Flag																
OF DF IF TF SF ZF AF PF CF														F			
OV	NV	DN	UP	ΕI	DI			NG	PL	ZR	ΝZ	AC	NA	PΕ	РΟ	CY	NC
1	0	1	0	1	0	1	0	1	0	1	0	1	0	1	0	1	0
Ke	Keterangan : 1 = SET. 0 = RESET																

4. Anda dapat juga mengganti isi register secara manual dengan perintah R (Register) <tekan enter> untuk melihat isi seluruh register, untuk melihat/mengganti isi register IP, cukup ketikkan RIP <tekan enter>, untuk register CX, ketikkan RCX <tekan enter>, maka akan diperlihatkan isi register tersebut, dan anda dapat mengganti isinya dengan memasukkan nilai sesudah tanda titik dua (:), jika anda tidak ingin menggantinya cukup tekan enter satu kali.

B. Penggunaan interupsi DOS untuk mengambil data dari keyboard dan menampilkan ke layar komputer.

- Jalankan program debug.exe pada MSDOS-prompt C:\>Debug <tekan enter>, setelah tampil tanda hubung (-), ketikkan A100 < tekan enter >.
- 2. Tuliskan program assembly dibawah ini:

CS:0100 MOV AH,07H

INT 21H ; membaca karakter dari keyboard

MOV DL,AL INT 20H

CS:Lokasi MOV AH,02H

INT 21H ; menulis karakter yang dimasukkan dari

keyboard

INT 20H

3. Jalankan program dengan perintah G=100 <tekan enter>, selanjutnya ketikkan karakter 'B', amati register AL dan DL yang menunjukkan karakter yang kita masukkan melalui keyboard, dengan cara memberikan perintah R (Register) <tekan enter>, kemudian catat nilai dari register berikut ini :

$$AH = DH =$$

$$AL = DL =$$

- 4. Selanjutnya eksekusi program pada lokasi CS:Lokasi (Lokasi menunjukkan alamat offset program pada perintah MOV AH,02H), dengan perintah G=lokasi <tekan enter>, tuliskan hasil tampilan program dari layar monitor komputer :
- 5. Catat nilai register AX dan DX seperti berikut :

$$AH = DH =$$
 $AL = DL =$

6. Dari percobaan diatas, jelaskan fungsi dari service number AH=07H dan AH=02H pada INT 21H, serta jelaskan pula fungsi INT 20H.

C. Mempelajari proses transfer data register dan memori dalam modus pengalamatan.

Terdapat beberapa modus pengalamatan dalam proses transfer data register dan memori yaitu Immediate addressing mode, Register addressing mode, Direct addressing mode, Indirect addressing mode, sekarang saatnya bagi anda untuk mengetahui bentuk program dalam modus pengalamatan melalui penerapan program.

- 1. Jalankan program debug.exe dari DOS-prompt C:\>debug <dan tekan enter>.
- 2. Setelah tampil tanda hubung (-), ketikkan A100 <dan tekan enter>.
- 3. Isilah alamat relatif 115 dengan 00, alamat relatif 116 dengan 01, penulisan atau pembacaan data mengacu pada register DS (Data Segment).
- 4. Setelah lokasi alamat menunjukkan CS:0100, ketikkan program berikut ini :

CS:0100 MOV AX, 3D5 MOV BX, 120 MOV SI, BX

MOV [BX], AX MOV AX, [115] MOV AH,0H INT 21H INT 20H

- 5. Pastikan isi register IP=100, karena mikroprosesor hanya akan menjalankan program di lokasi alamat CS:IP, untuk melihat isi register IP gunakan perintah RIP <tekan enter>. Eksekusi program perbaris dengan perintah T=100 < tekan enter>. Untuk eksekusi baris program berikutnya, cukup tuliskan T <dan tekan enter>.
- 6. Amatilah perubahan isi register melalui data pengamatan tabel 1-4 dibawah ini :

Tabel 1-4

Lokasi alamat	Source Code	AX		BX		CX		DX		CS	DS	ΙP	SI	DI
		АН	AL	ВН	BL	СН	CL	DH	DL					
CS:100	MOV AX, 3D5													
	MOV BX, 120													
	MOV SI, BX													
	MOV [BX], AX													
	MOV AX, [115]													
	MOV AH, 0													
	INT 21													
	INT 20													

- 7. Lihatlah isi memori DS:120 dengan melaksanakan perintah U120, U122 apakah isinya D503?.
- 8. Tekan T dan perhatikan isi register AX, apakah sama dengan isi memori DS:115 dan DS:116.
- 9. Tekan T kembali dan lihatlah isi register AX, setelah perintah mencapai baris program INT 20H maka eksekusi pada baris tersebut dengan perintah G=CS:baris <dan tekan enter>, maka dilayar monitor akan ditampilkan "Program Terminated Normally".
- 10. Laksanakan tugas keterampilan membuat program, dengan soal yang akan diberikan oleh asisten anda.