Mineralna ulja se dijele na:

- a) tip H ulje bez aditiva.
- b) tip HL ulje sa dodatkom aditiva protiv oksidacije i aditivima za zaštitu od korozije.
 - c) tip HLP ulje sa aditivima za podnošenje visokih pritisaka,
 - d) tip HV ulje sa aditivima za poboljšanje indeksa viskoznosti.

Teško zapaljive tekućine se dijele na:

- a) tip HSA emulzija ulja u vodi, kod koje je udio zapaljive materije do 20 %, namjenjena je za upotrebu kod radnih temperatura od + 5 do + 55 °C,
- b) tip HSB emulzija vode u ulju, kod koje je udio zapaljive materije do 60%, namjenjena je za upotrebu kod radnih temperatura od + 5 do + 60 °C,
- c) tip HSC, vodena otopina sa aditivom za povećanje viskoznosti, a sadrži najmanje 35 % vode,
- d) tip HSD, sintetske tekućine izrađene na bazi fosfata estera, za radne temperature između - 20 i + 150 °C.

Klasifikacija hidrauličnih ulja prema ISO 6743/3

Tabela 2.1.

Sin	nbol ISO	Sastav i osnovna svojstva
	НН	Neinhibrirano rafinirano mineralno ulje
Ija	HL	Rafinirano mineralno ulje sa dodatkom aditiva protiv oksidacije i zaštitu od korozije
na u	НМ	Svojstva ulja HL, sa poboljšanim svojstvima protiv trošenja
Mineralna ulja	HR	Svojstva ulja HL, sa dodatkom aditiva za poboljšanje indeksa viskoznosti
Σ	HV	Svojstva ulja HM, sa dodatkom aditiva za poboljšanje indeksa viskoznosti
	HG	Svojstva ulja HM, sa antistick - slip svojstvima
	HS	Sintetske teško zapaljive tekućine
	HF	Grupa teško zapaljivih tekućina
	HFAE	Emulzija "ulje u vodi" ili vodena otopina, koja sadrži najviše 20 % gorivog materijala
ne	HFAS	Otopina, hemikalija sa najmanje 80 % vode
cući	HFB	Emulzija "voda u ulju" sa najviše 20 % gorivog materijala
Sintetske tekućine	HFC	Vodena otopina sa aditivom za povećanje viskoznosti (polimer) i najamanje 35 % vode
tets	HFD	Grupa teško zapaljivih tekućina bez vode
Sin	HFDR	Sintetska tekućina izrađena na bazi fosfat estera
	HFDS	Sintetske tekućine izrađene na bazi hloriranih ugljikovodika
	HFDT	Mješavina sintetskih tekućina označenih sa HFDS i HFDT
	HFDU	Teško zapaljive tekućine drugog sastava

Osim podjele po kriteriju nivoa kvaliteta, hidraulična ulja se dijele i prema viskoznosti (standardi ISO 3448-75 i JUS B.H0.511). Prema navedenim standardima ulja se dijele u 18 viskozitetnih grupa: ISO VG 2; 3; 5; 7; 10; 15; 22; 32; 46; 68; 100; 150; 220; 320; 460; 680; 1000; 1500.

KARAKTERISTIKE MINERALNIH ULJA

Viskoznost

Viskoznost ulja predstavlja veličinu unutrašnjeg trenja, koje djeluje kao otpor kretanju čestice tačnosti. Viskoznost se prema Newtonovom zakonu proračunava prema:

$$\frac{F}{A} = \eta \frac{dv}{dx}$$

gdje je:

F - sila koja dovodi do kretanja;

A - veličina kontaktne površine;

n - dinamička viskoznost;

dv/dx - gradijent brzine.

Jedinica za izražavanje dinamičke viskoznosti je Paskalsekunda:

1 Pa s =
$$N s/m^2 = 1 kg/m s$$
.

U tehničkoj praksi se koristi karakteristika kinematske viskoznosti koja je jednaka:

$$v = \frac{\eta}{\rho}$$
.

gdje je:

ρ - gustina.

Prema međunarodnom sistemu mjernih jedinica nije definisano, ali je dozvoljeno da se kinematska viskoznost izražava u Stoksima:

Mjerenja viskoznosti, a to znači i izražavanje njegove brojčane vrijednosti vrši se na 40 i 100 °C.

Viskoznost ulja se mijenja sa porastom temperature prema određenoj zakonitosti. Brzina promjene viskoznosti je veoma važna karakteristika hidrauličnih ulja, naročito ukoliko se ono koristi u hidrauličnim sistemima koji rade u promjenljivim temperaturnim uslovima. Karakteristika koja govori o tome kojom brzinom se mijenja viskoznost sa promjenom temperature naziva se indeks viskoznosti i označava se sa IV. Brzina promjene viskoznosti je svojstvo koje zavisi od molekularne strukture ulja, ali se može bitno poboljšati dodavanjem aditiva, tzv. impruvera viskoznosti. Ulja kod kojih promjena viskoznosti sa promjenom temperature nije značajna, imaju nisku vrijednost indeksa viskoznosti (ispod 90), a hidraulična ulja koja su namjenjena za korištenje i pri niskim vanjskim temperaturama, trebalo bi da imaju veoma visoke vrijednosti indeksa viskoznosti (preko 150). Ulja koja se koriste za hidraulične sisteme u normalnim temperaturnim uslovima, trebalo bi da imaju vrijednost indeksa viskoznosti između 90 i 120.

Na slici 2.1 je prikazan dijagram: temperatura - viskoznost kod hidrauličnih ulja prema HLP specifikaciji i ISO klasifikaciji viskoznosti 22. 32, 46, 68 i 100. Na dijagramu je naznačeno područje optimalne vrijednosti viskoznosti za upotrebu u sistemima sa ugrađenim klipno-aksijalnim pumpama, vopt = 16 - 36 mm²s¹¹, i temperaturno područje korištenja ulja. Ono se određuje u odnosu na konstruktivne karakteristike pumpe, zapravo u odnosu na minimalnu i maksimalnu vrijednost viskoznosti kod kratkotrajnog rada. Kod klipno-aksijalnih pumpi ta viskoznost se kreće u granicama od 10 mm²s¹¹ (kratkotrajan rad pri maksimalnim dopuštenim temperaturama) do 1000 mm²s¹¹ (kratkotrajno kod starta sistema na hladno).

Slika 2.1. Dijagram promjene viskoznosti hidrauličnih mineralnih ulja VG 22, 34, 68, 100 u funkciji promjene temperature

Područje optimalne viskoznosti zavisi od konstruktivnih parametara pumpe. Ovdje se daju podaci o područjima radne vrijednosti viskoznosti kod pumpi koje se najčešće koriste u hidrauličnim sistemima:

- a) područje viskoznosti $v = 40 80 \text{ mm}^2\text{s}^{-1}$, za zupčaste pumpe bez i sa rasterećenjem i zupčaste pumpe sa unutrašnjim ozubljenjem,
 - b) područje viskoznosti $v = 80 200 \text{ mm}^2 \text{s}^{-1}$, za vijčane pumpe,
- c) područje viskoznosti $v = 30 50 \text{ mm}^2\text{s}^{-1}$, za krilne pumpe, klipno-aksijalne pumpe sa zakretnim dobošem i zakretnim diskom,
 - ď) područje viskoznosti $v = 20 50 \text{ mm}^2\text{s}^{-1}$, za krilno-radijalne pumpe.

Navedene granice viskoznosti se odnose na vrijednosti kod radnih temperatura hidrauličnog ulja.

Pošto su u hidrauličnim sistemima ugrađene pumpe različitih konstruktivnih oblika i karakteristika, mogu se postaviti opće granice najniže i najviše vrijednosti viskoznosti kod kratkotrajnog rada:

 najniža viskoznost: n = 10 mm²s⁻¹
 najviša viskoznost: n = 200 mm²s⁻¹ kod aksijalnih i radijalnih klipnih, a 800 mm²s⁻¹ kod zupčastih, krilnih i vijčanih pumpi.

Kod rada sa uljem male viskoznosti nema dobrog podmazivanja komponenti hidrauličnog sistema, a velika su i proticanja kroz zazore, što utiče na porast temperature i volumetrijskih gubitaka.

Gustina

Gustina se općenito izražava kao količnik mase (m) i zapremine (V):

$$\rho = \frac{m}{V} \text{ (g/cm}^3\text{)}.$$

Gustina hidrauličnih ulja se mjeri na 15 °C, a orijentacione veličine su:

 $\rho = 0.85 - 0.91 \text{ g/cm}^3$ mineralna ulja $\rho = 0.94 - 1.01 \,\mathrm{g/cm^3}$ - HSC - tečnosti

 $\rho = 1.14 - 1.45 \text{ g/cm}^3$ HSD - tečnosti

Stišljivost ulja

Pod djelovanjem visokih pritisaka volumen ulja se smanjuje, a kod povratnog djelovanja (smanjenja) on se povečava. Obim smanjenja volumena se izražava koeficijentom (3), koji podrazumjeva relativnu promjenu zapremine po jedinici pritiska:

$$\beta = \frac{1}{\Delta p} \frac{V_0 - V}{V_0}.$$

Sasvim općenito može se računati sa smanjenjem volumena ulja za 1 % kod pritiska od 100 bara.

19.1.1. Podela po kriteriju porekla i kvalitetnog nivoa

Svi hidraulički fluidi se dele u tri grupe: mineralni, teškozapaljivi i biorazgradivi.

Tip	Ozna	aka prem	na	Osnovna struktura
fluida	ISO	JUS	DIN	hidrauličnog fluida
	HH	НН		Rafinisano mineralno hidrauličko ulje bez inhibitora
	HL	HL		HH + inhibitor rđe i korozije
Mineralna	HM		HLP	HL + aditivi za zaštitu od habanja
ulja	HR			HL + aditivi za poboljšanje indeksa viskoznosti
	HV HVLP		HVLP	HM + aditivi za poboljšanje indeksa viskoznosti
	SAE		7.	Motorna ulja
	HFAE		HFA	Emulzija ulja u vodi sa najviše 20% gorive materije
	HFAS	10		Vodeni rastvor - hemikalija sa najmanje 20% vode
Teškoza-	HFB		HFB	Emulzija voda u ulju sa najviše 25% gorive materije
paljive tečnosti	HFC		HFC	Vodení rastvor sa povećaním indeksom viskoznosti i najmanje 35% vode
	HFDR		HFD	Sintetička tečnost na bazi estera fosforne kiseline
	HFDS			Tečnost na bazi halogenovanih elemenata
	HFDT			Mešavina HFDR i HFDS
	HFDU			Teškozapaljive tečnosti drugačijeg sastava
Bioraz-			HETG	Hidraulične tečnosti biljnog porekla
gradive			HEPG	Sintetičke hidraulične tečnosti na bazi poliglikola
tečnosti			HEES	Sintetičke hidraulične tečnosti na bazi estera

19.2. Zahtevi po kriteriju viskoznosti

19.2.1. Podela po kriteriju viskoznosti

a) Klasifikacija viskoznih grupa prema standardu ISO 3448-75 (koristi se kod hidrauličnih mineralnih ulja, teškozapaljivih tečnosti i biorazgradivih tečnosti)

Oznaka prema ISO	Granice kinematičke viskoznosti (mm² s ⁻¹) kod 40 °C		Srednja vrednost kinematičke viskoznosti (mm² na temperaturi od		
standardu	min.	max.	20 °C	40 °C	50 °C
ISO VG 15	13.5	16.5	34	15	11
ISO VG 22	19.8	24.2		22	15
ISO VG 32	28.8	35.2	-	32	20
ISO VG 46	41.4	50.6		46	30
ISO VG 68	61.2	74.8	-	68	40
ISO VG 100	90.0	110.0	-	100	60

19.2.2. Zahtevi pumpi u pogledu potrebne viskoznosti (mm²s¹)

Potrebna viskoznost mineralnih ulja definiše se na radnoj temperaturi na osnovu tipa pumpe koja je ugrađena u hidrauličkom sistemu. Pregled zahteva pojedinih tipova pumpi u pogledu potrebne viskoznosti (mm²/s na radnoj temperaturi) daje se u tabeli kao načelna informacija, a tačne granice potrebne viskoznosti ulja definiše proizvođač pumpe.

Tip pumpe ili motora	Granice radne viskoznosti	Najniža kratko dozvoljena viskoznost	Najviša viskoznost
Zupčasta sa vanjskim ozubljenjem,	25 do 85	10	1000
Zupčasta sa unutrašnjim ozubljenjem	20 do 300	10	1000
Krilna	20 do 160	16	800 kod radnog položaja 200 kod nultog položaja
Klipnoaksijalna	16 do 36	10	1000
Klipnoradijalna	10 do 200		
Vijčana	80 do 200		

19.2.3. Zahtevi u pogledu potrebnog indeksa viskoznosti

Indeks viskoznosti je bezdimenzionalni broj kojim se definiše karakteristika promene viskoznosti u odnosu na promenu temperature ulja. U pogledu ove karakteristike mogu se kod korišćenja mineralnih ulja postaviti dva kriterija:

- hidraulički sistemi koji rade u stabilnom temperaturnom području (okvirno 10 do 40°C) koriste se ulja sa indeksom viskoznosti 90 do 120 - u ovu grupu spadaju hidraulički sistemi industrijske hidraulike i hidraulički sistemi mobilne hidraulike sa uravnoteženim toplotnim bilansom i ukoliko je to potrebno sa ugrađenim sistemima za grejanje i hlađenje;
- hidraulički sistemi koji su izloženi visokim oscilacijama temperature, koriste se ulja sa indeksom viskoznosti 120 do 200 - u ovu grupu spadaju hidraulički sistemi mobilne hidraulike.

19.2.4. Zahtevi u pogledu potrebne temperature ulja

Optimalno područje radne temperature hidrauličkih mineralnih ulja kreće se u granicama od 20 do 50 °C i se nikada ne treba kretati ispod 10 °C i iznad 60 °C. Stvarno područje radne temperature definiše se u odnosu na: zahteve pumpe u pogledu potrebne viskoznosti, nominalnu (katalošku) vrednost viskoznosti odabranog ulja i indeks viskoznosti odabranog ulja. Za određivanje temperaturnih granica može se koristiti dijagram: kinematička viskoznost temperatura, koji je prikazan na slici i na kome je naznačen kriterij koji se odnosi na klipnoaksijalnu pumpu.

Tabela 3. Granice viskoznosti za pumpe i motore prema Rexrothu

Pumpa ili	Kinematička viskoznost (mm² s¹)				
hidraulički motor	radno područje	najniža kratko dozvoljena	najviša kratko dozvoljena		
Zupčasta sa spoljnim ozubljenjem	10 do 300		1000		
Zupčasta sa unutrašnjim ozubljenjem	20 do 300	121 11	2000		
Krilna	tip a) 25 do 160 tip b) 16 do 160	16	kod radnog položaja: 800; kod Q = 0 - pumpe sa regulacijom: 200		
Klipnoaksijalna pumpa ili motor	optimalno: 16 do 36 maksimalno:16 do 100	10	1000		
Klipnoradijalna	10 do 200				
Vijčana	80 do 200	-	-		

Tabela 4. Granice viskoznosti za pumpe i motore prema Vickers-u

Tip pumpe ili motora	Kinematička viskoznost (mm² s¹)						
	viskozna klasa ISO VG	radna viskoznost	najviša kratko dozvoljena				
Zupčasta pumpa i motor	32 do 68	13 do 54	860				
Krilna pumpa	32 do 68	13 do 54	860				
Krilni motor	32 do 68	13 do 54	860				
Klipnoaksijalna	32 do 68	13 do 54	860				
Klipnoradijalna	32 do 68	13 do 54	860				
Redna klipnoradijalna	32 do 68	13 do 54	110				

Područje radne temperature ulja definiše se u odnosu na potrebno područje viskoznosti. Ono se održava sistemom za zagrevanje i/ili hlađenje, ukoliko toplotni bilans sistema nije izbalansiran, zapravo ukoliko generisana toplota unutar sistema nije jednaka količini toplote koja se emituje u okolinu zračenjem, preko površine rezervoara, cevovoda i komponenti.

Način definisanja potrebne temperature hidrauličkog ulja u sistemu sa ugrađenom klipnoaksijalnom pumpom, ilustruje se dijagramom na slici 2.

Slika 2. Definisanje radnih područja temperature ulja u sistemu sa klipnoaksijalnom pumpom

U dijagramu temperatura - kinematička viskoznost (slika 2.) ucrtane su prave promene viskoznosti za hidraulička mineralna ulja tipa HM (indeks viskoznosti 100), viskozne grupe VG 10, VG 22, VG 32; VG 46; VG 68 i VG 100. Ukoliko se kao primer analizira klipnoaksijalna pumpa čija su područja viskoznosti definisana u tabeli 5, minimalna, maksimalna i optimalna temperatura će se odrediti na način kako je to ucrtano u dijagramu (slika 2.) i navedeno u tabeli 5.

Tabela 5. Izbor potrebne temperature ulja - slika 2.

Viskozn a grupa ISO	Temperatura ulja °C za									
	Optimalna radna visi	koznosť (mm² s¹)	kratko dozvoljenu viskoznost (mm² s¹)							
	Najmanja-16 mm² s	najviša - 36 mm² s†	najmanja ⁹ - 10 mm² s¹	najviša ⁵ i - 1000 mm²s'						
VG 22	48 °C	28 °C	62 °C	- 18 °C						
VG 32	58 °C	37 °C	73 °C	- 13 °C						
VG 46	67 °C	45 °C	82 °C	- 6 °C						
VG 68	76 °C	54 °C	92 °C	+ 2 °C						

Optimalno područje radne viskoznosti se održava ravnotežom generisane i emitovane toplote u okolinu ili sistem hlađenja.

Pod pojmom sposobnost podmazivanja podrazumevaju se dve karakteristike hidrauličkog ulja: da obavi funkciju podmazivanja kod visokih pritisaka i uspori proces habanja.

²⁾ Najviša viskoznost ulja je u momentu puštanja sistema u rad.

Najniža viskoznost se ostvaruje kod neplaniranog zagrevanja ulja ili rada u leto, kod najviših temperatura okoline.

Tečnosti za hidrauličke sisteme treba da:

- budu stabilne u eksploataciji, da zadržavaju hemijska i fizička svojstva pri promeni temperature, pritiska i brzine strujanja,
- budu neutralne u odnosu na plastične mase, zaptivke, metale i zaštitu (farbe, premaze).
- imaju malu promenu viskoznosti sa promenom temperature i pritiska u radnom opsegu.
- imaju dobra maziva svojstva,
- imaju dobru toplotnu provodljivost,
- imaju malu količinu i lako izdvajanje vazduha, brzo razlaganje pene, kao i niz drugih osobina.

Mineralna ulja su najčešće primenjivane tečnosti u hidrauličkim sistemima. Prema kinematskoj viskoznosti na 313 K (40°C), po ISO klasifikaciji, svrstana su u klase viskoznosti ISO: VG-10; -15; -22; -32; -46; -68; -100.

Grupe kvaliteta definisane su preporukama CETOP i DIN normama:

CETOP	DIN	Kvalitet i namena
HH	H	standardna mineralna ulja
HL	H-L	ulja sa dodacima za zaštitu od korozije i oksidacije
НМ	H-LP	pored dodataka pod L, i dodaci protiv habanja i za rad na visokim pritiscima
HV		pored dodataka pod M, i dodaci za poboljšanje indeksa viskoziteta

- Orijentacione preporuke za izbor ulja:
- arktički uslovi, ulja klase 22 (maksimalno 32), kvalitet HV,
- zimski uslovi (srednjeevropski), ulja klase
 32, kvaliteta HL ili HM ili klase 46, kvaliteta HV.
- letnji uslovi i industrijska postrojenja u zatvorenim prostorijama, ulja klase 46/68, kvaliteta HL i HM. Za spoljne instalacije može se upotrebiti ulje klase HV (brane, građevinske mašine itd.), koje se koristi u letnjem i zimskom periodu,
- tropski uslovi ili zatvoreni prostor sa povišenom temperaturom, ulja klase 68 ili 100, kvaliteta HM (HV).

Pored temperaturnih uslova, izbor ulja zavisi i od radnog pritiska. Za pritiske do 250-1 bar upotrebljavaju se ulja kvalitata HL i HM, za više pritiske samo ulja kvaliteta HM. Osnovne karakteristike ulja date su u tablici 8.1.

Za mobilne sisteme mogu se upotrebljavati HD ulja (motorna ulja) po standardima API i SAE. U vazduhoplovstvu se isključivo upotrebljavaju HV ulja (MIL-4-5056 A, NATO H-515).

Teško zapaljiva i sintetička ulja, formiraju se kao rastvori mineralnih ili sintetičkih ulja u vodi ili kao čista sintetička ulja. I pored niza teškoća i problema pri korišćenju ovih radnih tečnosti (podmazivanje, korozija, stvaranje bakterija, uticaj na zaptivke, smanjenje veka uređaja, itd.), primena emulzija na bazi mineralnih ulja u novije vreme se dosta proučava.

Tablica 8.1.

Oznaka ulja	CETOP	HL ulja			HM ulja				
	D1N51224	HL16	HL.25	HI_36	HL49	HLP16	HLP25	HLP36	HLP49
	DIN51519	ISO VG22	ISOVG46	ISOVG68	ISOVG100	ISO VG22	ISOVG46	ISOVG68	ISOVG100
Kinematska	50°C	16±4	25±4	36±4	49±4	16±4	25±4	36±4	49±4
viskoznost [mm²/s]	40° C	22 ± 2.2	46±4.6	68±6.8	100 ± 10	22 ± 2.2	46±4.6	68±6.8	100±10
Specifična gustina 150 C (najviše) [kg/	pri /dm³]				0.88	- 0.91		<u> </u>	
Tačka paljenja u otvorenom sudu (najmanje) [6C]		165	175	185	195	165	175	185	195
Tačka stišnjavanja (najviše) [°C]		-18	- I5	-15	-9	-24	-18	-15	-12
Težinski sadržaj v	ode [%]				0	.1			

Pritisak

Pritisak u hidrauličkom sistemu direktno određuje sile i momente koji definišu mehaničke karakteristike materijala od kojih se izrađuju elementi mašina. Zbog toga je maksimalni pritisak u hidrauličkom sistemu ograničen mehaničkim karakteristikama materijala. U novije vreme radni pritisak hidrauličkih mašina za opštu primenu obično iznosi do 350 · 1 bar, pri preciznijoj izradi do 420 · 1 bar, a samo za specijalne namene prelazi tu vrednost.

U tablici 8.3. date su maksimalne vrednosti pritiska za pojedine tipove mašina.

Tablica 8.3.

Tip mašine	Normalni pritisak (bar)	Maksimalni pritisak (bar)
Klipno radijalne	420	700-1000
Klipno aksijalne	420	700
Zupčaste preciz. izrad.	200	250
Klipne dvosmerne	160	200
Zupčaste sa spoljnim ozubljenjem	140	140
Klipne jednosmerne	160	250

Tablica 8.4.

Tip mašine	Maksimalni bro obrtaja [min-7]
Zupčaste, precizne izrade	5000
Zupčaste	3500
Klipno radijalne	3500
Klipno aksijalne	3500
Zupčaste sa spoljnim ozubljenjem	3000
Krilne	1800
Klipno radijalne sporohode	500
Klipno radijalne visokomomen.	350

Broj obrtaja

Periodično kretanje potiskujućeg elementa u radnoj komori direktno utiče na brzine strujanja tečnosti i inercijalne sile pokretnih delova. Brzine obrtanja ulaznog (izlaznog) vratila na savremenoj industrijskoj hidraulici kreću se od 1000-9000 min-1. Specijalne hidrauličke mašine rade sa brojem obrtaja i preko 20.000 min-1. Brojevi obrtaja za pojedine vrste mašina dati su u tablici 8.4.

Faktor korisnosti

S obzirom na to što hidrauličke mašine transformišu mehaničku energiju u hidrostatičku, ili obratno, pojavljuju se gubici energije u odnosu na ulaznu i izlaznu snagu. Ukupni faktor korisnosti definiše se izrazom:

 $\eta = \eta_v \cdot \eta_m$,

gde je:

η. - zapreminski faktor korisnosti, n. - mehanički faktor korisnosti.

Zapreminski gubici se javljaju usled curenja između prostora koji se nalaze pod različitim pritiscima i zbog nepotpunog popunjavania radne zapremine usled povećanja hidrauličkih otpora izazvanih velikom brzinom kretanja potiskujućeg elementa.

U opštem slučaju, ukupni faktor korisnosti zavisi od pritiska i broja obrtaja te, kad to ostali zahtevi dozvoljavaju, treba radni režim birati u oblasti maksimalnog faktora korisnosti. U tablici 8.5. date su okvirne vrednosti faktora korisnosti.

Tablica 8.5.

Tip mašine	Zapremin. faktor korisnosti (maks. vrednost)	Ukupni faktor korisnosti (maks vrednost)
Klipno radijalne	95% (99%)	90% (95%)
Klipno aksijalne	preko 95%	preko 90%
Zupčaste preciz izr.	može do 98%	može do 98%
Krilne	85-90%	75—80%
Zupčaste sa spoljnim ozubljenjem		20-60%

Osnovne karakteristike klipnih pumpi

Tablica 8.7.

Tip pumpe	Specifični protok [cm ³ /obr]	Pritisak [bar]	Br. obrtaja [min ⁻¹]
Aksijalna sa nagibnim blokom	2000	od 300 do 210 (rad)	do 4000
Aksijalna sa nagibnom pločom	2000	od 700 do 350 (rad)	do 4000
Radijalne	50	700	2000

Radijalno klipne pumpe visokomomentnih motora sa krivuljom proizvođača: POCLAN, Francuska i HÄGGLUNDUS, Švedska

Tablica 8.9.

Tip motora i proizvođa- ča		Specifični protok [cm³/obr]	Maksim, pritisak [bar]	Maks. br. obrtaja [min ⁻¹]	Maksim. noment [Nm]	Masa [kg]
	H-15	720	400	150	4000	110
not.	H-18	1110	400	120	6700	148
POCLAIN industrij. hidromot.	H-23	1733	400	110	10000	280
C.S.	H-23	2411	400	85	14000	280
S instru	H-25	2827	400	105	17000	393
ind	H-25	3770	400	80	23000	393
	H-30	4373	400	100	25000	715
7	H-15	1130	400	150	7190	118
POCLAIN	H-20	1979	400	120	12580	175
8	H-25	3122	400	80	19860	275
-	H-30	4914	400	70	31250	400
	40.630	652	320	400	3100	142
- [2150	2400	250	100	9500	340
SC	2165	4000	210	60	13230	340
USK USK	63-16300	16300	250	100	65000	750
HÄGGLUNDS industrijski	84-38000	38000	250	60	151250	1550
HÄG	12-00850	850	350	300	4760	93
7	32-01700	1700	350	200	9450	280
	32-02200	2200	350	200	12250	290
	32-03400	3400	350	200	18900	290

Radijalno klipne pumpe proizvođača: STAFFA, Velika Britanija, KOLCONI, Italija

Tablica 8.10.

i	lip motora proizvođač	Specifični, protok: [cm³/ob]	Maksim. pritisak [bar]	Maks. br. obrtaja [min-1]	Nomin. moment [Nm]	Masa [kg]
	B30	442	210	450	1420	73
	B 80	134	210	300	1360	147
	B 200	3070	210	175	10100	283
	B 270	4300	210	125	14300	420
Ma	B 400	6800	210	100	22200	680
Staffa	SRB80	1340	250	300	5050	138
	SRB 200	3070	250	125	11800	254
	SRB 270	4300	250	125	14600	420
	BM 80	1340	210	300	4360	154
	MK 14 MB	3070	170	150	6800	288
	MK9HB	4300	170	100	8400	288
	450	452	320	400	1370	75
	700	707	320	340	2140	95
iuc	1100	1126	320	280	3420	135
Kolconi	1800	1809	320	220	5500	205
24	2800	2780	320	170	8400	280
	4500	4503	320	130	13600	420
	700	6995	320	100	21200	60

Aksijalne klipne pumpe sa nagibnim blokom, promenjive radne zapremine, sa familijom pumpi A2V proizvođača: REXROTH i LINDE

Oznaka	Specifični protok [cm³/ob]	Nomin. pritisak bar]	Maks. br. obrtaja [min ⁻¹]	Protok max [1/min]	Masa [kg]
A2V	12	315	6000	69	22
A2V	28	315	4750	133	36
A2V	55	315	3750	206	65
A2V107	107	315	3000	321	113
A2V250	250	315	2500	625	258
A2V355	355	315	2240	795	3 49
A2V500	500	315	2000	1000	420
A2V1000	1000	315	1600	1600	-917

Aksijalne klipne pumpe i motori sa nagibnim blokom, konstantne radne zapremine, sa familijom pumpi A2V proizvođača: REXROTH i LINDE

Tablica 8.12.

Oznaka	Specifični protok [cm³/ob]	Maksim. br. obr. [min-1]	Protok max [1/min]	Moment pri n max Nm/100 bar	Masa [kg]
A2F12	12	4000	45	18	5
A2F28	28	3000	82	45	12
A2F55	55	2500	133	87	23
A2F107	107	2000	208	170	44
A2F160	160	1750	272	254	63
A2F200	200	1800	349	318	88
A2F250	250	1500	364	398	88
A2F355	355	1320	455	565	138
A2F500	500	1200	582	796	185
A2F710	710	1200	826	1130	373
A2F1000	1000	950	921	1591	373

Osnovne karakteristike krilnih pumpi

Parametar	Opseg	Primedba
	70 bar	Tipična pumpa
Maksimalni	140 bar	Sa balans, krile
pritisak	200 bar.	Višestepene pumpe
Brzina obrtanja	do 2000 min ⁻¹	
	200 1/min	Tipična, sa maks. vel.
Protok	500 1/min	Višestepene pumpe
Zapreminski faktor korisnosti	80 %	
Ukupan faktor korisnosti	do 75 %	Tipična, ali varira sa veličinom

Osnovne karakteristike zupčastih pumpi sa spoljnim ozubljenjem

Tablica 8.14.

Parametar	Opseg	Primedba	
Maksim. pritisak	210 bar		
Brzina	500 — 3500 min — do 10000 min —	Tipični radni opseg Pumpe u avio indus.	
Specif. protok	1-200 cm ³ /ob		
Zapreminski faktor korisnosti	do 99 %		
Ukupan faktor. korisnosti	do 95 %	Varira sa veličin pumpe	

Tablica 8.15. Karakteristike zupčastih pumpi koje proizvodi PP Trstenik

Veli- čina	Nine protok		Pritisak [bar]		Brzina [min-1]			Ma-
Citia	[cm ³ /ob]	rad.	max.	min.	nom.	max.	snag. [KW]	[kg]
1	0.66 1.06	175	210	750	1500	3500	0,29	0.5
п	1.66 2.66 4.20	200	250	750	1500	3000	0.83 1.33 2.1	1.0 1.2 1.7,
111	6.66 10.66 13.33 16.66	200	250	500	1500	3000	3,33 5,33 6,66 8,33	3.2 3.4 3.5 3.7
IV	26.66 33.33	200	250	500	1500	3000	13.33 16.66	7,0 7,4
v	42.00 53.33 66.66	200	250	500	1500	2500	21 26.66 33.33	11.9 12.0 12.5
VI	83.33 106.66	175	210	500	1500	2500	36-45 46.66	150 20,3

Ojlerov slučaj optereć	Jedan kraj slobodan jedan kruto vezan	Dva kraja zgobno vezana	Jedan kraj zglobno vezan, jedan kraj kruto vezan	Oba kraja kruto vezana
Grafički prikaz	1			
Stobod. dužina izvijanja	S _k = 2l	$S_k = l$	S _k = 0.71	$S_k = \frac{l}{2}$
Situacija ugradnje citindra	F F	F	F	
			!	<u> </u>

Slika 8.26. Slobodne dužine izvijanja za različite slučajeve ugradnje hidrauličkog cilindra