Proyecto semestral

Samantha Mora, Victoria Sosa

Introducción

Utilizamos el genoma mitocondrial de 11 especies: A. talpoideum A. bishopi A. laterale A. californiense A. tigrinum A. dumerilii A. andersoni A. mexicanum A. barbouri A. texanum Outgroup: S. lacertina

Pregunta de Investigación

¿Qué combinación de modelo de sustitución nucleotídica y árbol de distancia nos arroja la construcción de la filogenia más viable/probable del género Ambystoma dado el criterio de parsimonia?

Objetivos

El objetivo del presente trabajo es crear árboles filogenéticos del género Ambystoma utilizando distintos modelos de sustitución nucleotídica y diferentes tipos de árboles para evaluar con el criterio de parsimonia cuál podría ser la hipótesis más viable.

Objetivos particulares:

- Conocer las diferencias que surgen de acuerdo a los distintos modelos y métricas empleados en la construcción del árbol
- Evaluar cual es la hipótesis más viable utilizando el criterio de parsimonia

Métodos

- Alineación de las secuencias (ADNmt).
 - a. Algoritmo de Needleman-Wunsch
 - b. MSA con Star Algorithm*
- 2. Estimación de la distancia genética.
 - a. 'Naive'
 - b. Modelo Jukes-Cantor 69.
 - c. Modelo Motoo Kimura 71.
 - d. Modelo Tamura 92.
- 3. Construcción del árbol filogenético.
 - a. Neighbor-Joining
 - b. UPGMA*
- 4. Análisis de Parsimonia
 - a. R*
- * No implementadas por el equipo.

Resultados

a_andersoni	a_barbouri	a_bishopi	a_californiense	a_dumerilii	a_laterale	a_mexicanum	a_talpoideum	a_texanum	a_tigrinum	s_lacertina
0.0	0.106	0.12	0.065	0.033	0.106	0.008	0.154	0.103	0.047	0.251
0.106	0.0	0.121	0.108	0.105	0.111	0.105	0.156	0.063	0.102	0.256
0.12	0.121	0.0	0.122	0.119	0.124	0.119	0.163	0.117	0.115	0.255
0.065	0.108	0.122	0.0	0.063	0.111	0.064	0.156	0.108	0.06	0.255
0.033	0.105	0.119	0.063	0.0	0.107	0.032	0.152	0.101	0.048	0.251
0.106	0.111	0.124	0.111	0.107	0.0	0.105	0.153	0.109	0.101	0.253
0.008	0.105	0.119	0.064	0.032	0.105	0.0	0.152	0.102	0.046	0.25
0.154	0.156	0.163	0.156	0.152	0.153	0.152	0.0	0.157	0.151	0.256
0.103	0.063	0.117	0.108	0.101	0.109	0.102	0.157	0.0	0.101	0.253
0.047	0.102	0.115	0.06	0.048	0.101	0.046	0.151	0.101	0.0	0.248
0.251	0.256	0.255	0.255	0.251	0.253	0.25	0.256	0.253	0.248	0.0

Distancia con naive

++ a_andersoni	a_barbouri	+ a_bishopi	+ a_californiense	+ a_dumerilii	+ a_laterale	+ a_mexicanum	+ a_talpoideum	+ a_texanum	+ a_tigrinum	++ s_lacertina
+		+	+	+	+	+	+	+	+	++
0.0	0.114	0.13	0.068	0.034	0.114	0.008	0.172	0.111	0.048	0.306
0.114	0.0	0.131	0.117	0.113	0.12	0.113	0.175	0.065	0.11	0.312
0.13	0.131	0.0	0.134	0.13	0.135	0.129	0.184	0.127	0.125	0.312
0.068	0.117	0.134	0.0	0.066	0.12	0.067	0.175	0.116	0.062	0.311
0.034	0.113	0.13	0.066	0.0	0.116	0.033	0.17	0.109	0.049	0.305
0.114	0.12	0.135	0.12	0.116	0.0	0.114	0.171	0.117	0.108	0.309
0.008	0.113	0.129	0.067	0.033	0.114	0.0	0.17	0.11	0.047	0.304
0.172	0.175	0.184	0.175	0.17	0.171	0.17	0.0	0.176	0.169	0.314
0.111	0.065	0.127	0.116	0.109	0.117	0.11	0.176	0.0	0.108	0.309
j 0.048 j	0.11	0.125	0.062	0.049	0.108	0.047	0.169	0.108	0.0	0.302
j 0.306 j	0.312	0.312	0.311	0.305	0.309	0.304	0.314	0.309	0.302	i 0.0 i

Distancia con JK

+	+	+	+	+	+	+	+	+	+	++
a_anderson1	a_barbouri +	a_bisnopi +	a_californiense +	a_dumerilii +	a_laterale +	a_mexicanum +	a_talpoideum +	a_texanum +	a_tigrinum +	s_lacertina ++
0.0	0.098	0.11	0.062	0.032	0.097	0.007	0.128	0.095	0.045	0.178
0.098	0.0	0.112	0.1	0.099	0.105	0.097	0.132	0.061	0.094	0.184
0.11	0.112	0.0	0.111	0.11	0.113	0.109	0.139	0.108	0.105	0.179
0.062	0.1	0.111	0.0	0.061	0.103	0.062	0.13	0.1	0.057	0.183
0.032	0.099	0.11	0.061	0.0	0.1	0.031	0.127	0.094	0.046	0.177
0.097	0.105	0.113	0.103	0.1	0.0	0.096	0.129	0.101	0.094	0.178
0.007	0.097	0.109	0.062	0.031	0.096	0.0	0.126	0.094	0.043	0.177
0.128	0.132	0.139	0.13	0.127	0.129	0.126	0.0	0.131	0.127	0.178
0.095	0.061	0.108	0.1	0.094	0.101	0.094	0.131	0.0	0.091	0.181
0.045	0.094	0.105	0.057	0.046	0.094	0.043	0.127	0.091	0.0	0.176
0.178	0.184	0.179	0.183	0.177	0.178	0.177	0.178	0.181	0.176	0.0
+	+	+	+	+	+		+	+	.	++

Distancia con Motoo Kimura

†	a andersoni	+ a barbouri	+ a bishopi	a californiense	+ a dumerilii	+ a laterale	 a mexicanum	 a talpoideum	+ a texanum	+ a tigrinum	++ s lacertina
+		+	, _ , +		· _ +	+	·	·	· – +	, +	++
1	0.0	0.099	0.111	0.062	0.032	0.098	0.007	0.129	0.096	0.045	0.179
1	0.099	0.0	0.113	0.1	0.099	0.105	0.097	0.133	0.062	0.094	0.185
1	0.111	0.113	0.0	0.112	0.111	0.114	0.109	0.14	0.108	0.106	0.18
1	0.062	0.1	0.112	0.0	0.061	0.104	0.062	0.131	0.1	0.057	0.184
-1	0.032	0.099	0.111	0.061	0.0	0.101	0.031	0.127	0.094	0.046	0.178
-1	0.098	0.105	0.114	0.104	0.101	0.0	0.097	0.13	0.102	0.094	0.179
-1	0.007	0.097	0.109	0.062	0.031	0.097	0.0	0.127	0.095	0.043	0.178
1	0.129	0.133	0.14	0.131	0.127	0.13	0.127	0.0	0.132	0.127	0.179
-1	0.096	0.062	0.108	0.1	0.094	0.102	0.095	0.132	0.0	0.092	0.182
	0.045	0.094	0.106	0.057	0.046	0.094	0.043	0.127	0.092	0.0	0.178
1	0.179	0.185 +	0.18	0.184	0.178 +	0.179 +	0.178	0.179	0.182 +	0.178 +	0.0

Distancia con Tamura

Árboles con Neighbor Joining

Árbol con NW, Naive y NJ

Árbol con NW, Jukes-Cantor y NJ

Árbol generado con NW, Naive y UPGMA

Árboles con Neighbor Joining

Árbol con NW, Motoo Kimura y NJ

Árbol con NW, Tamura y NJ

Árbol generado con NW, Jukes-Cantor y UPGMA

Árbol generado con NW, Motoo Kimura y UPGMA

Árbol generado con NW, Tamura y UPGMA

Discusión

Figure 6. Most parsimonious phylogeny found through heuristic search of character matrix containing all continuous morphological characters and based on linear character evolution. Parsimony score = 468.175.

Discusión

Recursos

- Salarian, Zahra. "Bioinformatics-Mini-Projects." Github, Agosto 2022, Irán. https://github.com/zahrasalarian/Bioinformatics-Mini-Projects
- Letunic I and Bork P (2021) Nucleic Acids Res doi: 10.1093/nar/gkab301
 Interactive Tree Of Life (iTOL) v5: an online tool for phylogenetic tree display and annotation
- "Pylogeny." Github, Diciembre, 2021. https://github.com/pylogeny/cluster

Bibliografía

- Cristianini, N., & Hahn, M. W. (2006). Introduction to Computational Genomics: A Case Studies Approach. Cambridge University Press.
- Arenas M. (2015). Trends in substitution models of molecular evolution. Frontiers in genetics, 6, 319. https://doi.org/10.3389/fgene.2015.00319
- Ávila, V. González, T. González, A. Trejo, M. (2020) El género Ambystoma en México ¿Qué son los ajolotes? CIENCIA ergo-sum, Revista Científica Multidisciplinaria de Prospectiva, vol. 28, núm. 2, 1, 2021 https://doi.org/ces.v28n2a10
- Baum, D. (2008). Reading a Phylogenetic Tree: The Meaning of Monophyletic Groups. Nature Education 1(1):190. Recuperado en mayo de 2022 de https://www-nature-com.pbidi.unam.mx:2443/scitable/topicpage/reading-a-phylogenetic-tree-the-meaning-of-41956/
- Cristianini, N., & Hahn, M. W. (2006). Introduction to Computational Genomics: A Case Studies Approach. Cambridge University Press.
- Letunic I and Bork P (2021) Nucleic Acids Res doi: 10.1093/nar/gkab301 Interactive Tree Of Life (iTOL) v5: an online tool for phylogenetic tree display and annotation
- Morrone, J. (2000). Los árboles filogenéticos de Darwin (1859) a Hennig (1950). Museo; no. 14. Recuperado en mayo de 2022 de http://sedici.unlp.edu.ar/handle/10915/49425
- Saitou, N., & Nei, M. (1987). The neighbor-joining method: a new method for reconstructing phylogenetic trees. Molecular biology and evolution, 4(4), 406–425. https://doi.org/10.1093/oxfordjournals.molbev.a040454
- Salarian, Zahra. "Bioinformatics-Mini-Projects." Github, Agosto 2022, Irán. https://github.com/zahrasalarian/Bioinformatics-Mini-Projects
- SEMARNAT, 2018. Programa de Acción para la Conservación de las Especies Ambystoma spp, SEMARNAT/CONANP, México (Año de edición 2018). Recuperado en mayo de 2023 de https://www.gob.mx/cms/uploads/attachment/file/444128/PACE_Ambystoma2.pdf
- Shaffer, B. (1993) Phylogenetics of Model Organisms: The Laboratory Axolotl, Ambystoma Mexicanum, Systematic Biology, Volume 42, Issue 4, Pages 508–522, https://doi.org/10.1093/sysbio/42.4.508
- Tamura, K., & Nei, M. (1993). Estimation of the number of nucleotide substitutions in the control region of mitochondrial DNA in humans and chimpanzees. Molecular biology and evolution, 10(3), 512–526. https://doi.org/10.1093/oxfordjournals.molbev.a040023
- Wang, L., & Jiang, T. (1994). On the complexity of multiple sequence alignment. Journal of Computational Biology, 1(4), 337–348.
 https://doi.org/10.1089/cmb.1994.1.337