ФЕДЕРАЛЬНОЕ АГЕНТСТВО

ПО ТЕХНИЧЕСКОМУ РЕГУЛИРОВАНИЮ И МЕТРОЛОГИИ

НАЦИОНАЛЬНЫЙ СТАНДАРТ РОССИЙСКОЙ ФЕДЕРАЦИИ **ΓΟCT P** 52314—2005

ПРЕОБРАЗОВАТЕЛИ ТЕРМОЭЛЕКТРИЧЕСКИЕ ПЛАТИНОРОДИЙ-ПЛАТИНОВЫЕ И ПЛАТИНОРОДИЙ-ПЛАТИНОРОДИЕВЫЕ ЭТАЛОННЫЕ 1, 2 и 3-го РАЗРЯДОВ

Общие технические требования

Издание официальное

Предисловие

Задачи, основные принципы и правила проведения работ по государственной стандартизации в Российской Федерации установлены ГОСТ Р 1.0—92 «Государственная система стандартизации Российской Федерации. Основные положения» и ГОСТ Р 1.2—92 «Государственная система стандартизации Российской Федерации. Порядок разработки государственных стандартов»

Сведения о стандарте

- 1 РАЗРАБОТАН Федеральным государственным унитарным предприятием Уральским научно-исследовательским институтом метрологии (ФГУП УНИИМ)
- 2 ВНЕСЕН Управлением метрологии и надзора Федерального агентства по техническому регулированию и метрологии
- 3 УТВЕРЖДЕН И ВВЕДЕН В ДЕЙСТВИЕ Приказом Федерального агентства по техническому регулированию и метрологии от 15 февраля 2005 г. № 22-ст

4 ВВЕДЕН ВПЕРВЫЕ

Информация об изменениях к настоящему стандарту публикуется в указателе «Национальные стандарты», а текст изменений — в информационных указателях «Национальные стандарты». В случае пересмотра или отмены настоящего стандарта соответствующая информация будет опубликована в информационном указателе «Национальные стандарты»

НАЦИОНАЛЬНЫЙ СТАНДАРТ РОССИЙСКОЙ ФЕДЕРАЦИИ

ПРЕОБРАЗОВАТЕЛИ ТЕРМОЭЛЕКТРИЧЕСКИЕ ПЛАТИНОРОДИЙ-ПЛАТИНОВЫЕ И ПЛАТИНОРОДИЙ-ПЛАТИНОРОДИЕВЫЕ ЭТАЛОННЫЕ 1, 2 и 3-го РАЗРЯДОВ

Общие технические требования

Standard thermoelectric platinumrhodium/platinum and platinumrhodium/platinumrhodium converters of the first, second and third grades. General technical requirements

Дата введения — 2005—07—01

1 Область применения

Настоящий стандарт распространяется на термоэлектрические платинородий-платиновые и платинородий-платинородиевые эталонные преобразователи 1, 2 и 3-го разрядов (далее — термопреобразователи) и устанавливает требования к их основным параметрам.

2 Нормативные ссылки

В настоящем стандарте использованы нормативные ссылки на следующие стандарты:

ГОСТ 8.558—93 Государственная система обеспечения единства измерений. Государственная поверочная схема для средств измерений температуры

ГОСТ 10821—75 Проволока из платины и платинородиевых сплавов для термоэлектрических преобразователей. Технические условия

Применяют в части, не затрагивающей эту ссылку.

3 Классификация

- 3.1 В зависимости от химического состава термоэлектродов термопреобразователи подразделяют на два типа:
 - ППО платинородий-платиновые эталонные;
 - ПРО платинородий-платинородиевые эталонные.
 - 3.2 Термопреобразователи каждого типа имеют 1, 2, 3-й разряды в соответствии с ГОСТ 8.558.

4 Технические требования

4.1 Общие требования

Термопреобразователи следует изготовлять в соответствии с требованиями настоящего стандарта и технических условий на термопреобразователи конкретного типа по чертежам, утвержденным в установленном порядке.

4.2 Основные характеристики

4.2.1 Термопреобразователи предназначены для применения в лабораторных помещениях на воздухе и в нейтральной среде в диапазонах температур, указанных в таблице 1.

ГОСТ Р 52314—2005

Таблица 1 — Диапазоны температур применения термопреобразователей

В градусах Цельсия

Разряд термопреобразователя	Тип термопреобразователя		
т аэрлд төрмөтрөөөразоватолл	ППО	ПРО	
1	300—1100	600—1800	
2 и 3	300—1200	600—1800	

4.2.2 Значения термоэлектродвижущей силы (далее — ТЭДС) термопреобразователей в реперных точках Международной температурной шкалы МТШ—90 должны соответствовать указанным в таблице 2.

Таблица 2 — Значения ТЭДС термопреобразователей в реперных точках

Реперная точка	Температура реперных	ТЭДС, мкВ, термопреобразователя типа		
	точек по МТШ—90, °С	ППО	ПРО	
Затвердевания цинка	419,527	3447 ± 14	_	
Затвердевания алюминия	660,323	5860 ± 17	2167 ± 11	
Затвердевания меди	1084,62	10574 ± 30	5630 ± 26	
Плавления палладия	1553,5	_	10720 ± 45	
Плавления платины	1768,4	_	13229 ± 51	

Примечание — Здесь и далее значения ТЭДС термопреобразователей указаны при температуре свободных концов, равной 0 °C.

4.2.3 Изменение ТЭДС термопреобразователей после отжига (нестабильность) в реперной точке меди 1084,62 °С при первичной поверке должно быть не более указанного в таблице 3.

Т а б л и ц а 3 — Изменение ТЭДС термопреобразователей после отжига (нестабильность после отжига) в реперной точке меди

	Нестабильность после отжига, мкВ, термопреобразователя типа		
Разряд термопреобразователя	ППО	ПРО	
	Отжиг в течение 3 ч при температуре $ (1100 \pm 20) ^{\circ} \text{C} $ Отжиг в течение 4 ч при те $ (1450 \pm 20) ^{\circ} \text{C} $		
1	± 3	± 4	
2	± 6	± 6	
3	± 8	± 8	

4.2.4 Изменение ТЭДС термопреобразователей за межповерочный интервал (нестабильность в эксплуатации) — отклонение значений ТЭДС от соответствующих значений по свидетельству о предыдущей поверке в установленных температурных точках должно быть не более указанного в таблице 4.

Таблица 4— Изменение ТЭДС термопреобразователей за межповерочный интервал (нестабильность в эксплуатации)

Тип термопреоб-	Температура, °С	Нестабильность в эксплуатации, мкВ, термопреобразователя разряда		
разователя		1-го	2-го	3-го
ППО	1084,62 (точка затвердевания меди)	± 5	± 8	± 10
ПРО	1553,5 (точка плавления палладия)	± 10	_	_
	1768,4 (точка плавления платины)	± 15	_	
	1600,0	_	± 15	± 20

4.2.5 Расхождение значений ТЭДС термопреобразователей (неоднородность) на глубинах погружения в градуировочную печь 250 и 300 мм при температурах рабочих концов (1100 \pm 10) °C — для ППО и (1450 \pm 20) °C — для ПРО должно быть не более указанного в таблицах 5 и 6.

Таблица 5 — Неоднородность термопреобразователей при первичной поверке

Тип термопреобразователя	Температура рабочего конца термопреобразователя, °C	Неоднородность, мкВ
ППО	1100 ± 10	± 3
ПРО	1450 ± 20	± 8

Т а б л и ц а 6 — Неоднородность термопреобразователей при периодической поверке

Тип термопреобразователя	Разряд термопреобразователя	Температура рабочего конца термопреобразователя, °C	Неоднородность, мкВ
	1		± 3
ППО	2	1100 ± 10	± 6
	3		± 8
	1		± 8
ПРО	2	1450 ± 20	± 15
	3		± 20

4.2.6 Значения доверительной погрешности термопреобразователей при доверительной вероятности 0,95 при температурах реперных точек должны быть не более указанных в таблице 7.

Таблица 7 — Значения доверительных погрешностей термопреобразователей при температурах реперных точек

Температура реперных точек, °C 1		Доверительная погрешность термопреобразователя, °С				
	Разряд ППО		Разряд ПРО			
	1	2	3	1	2	3
419,527	± 0,3	± 0,5	± 1,0	_	ı	_
660,323	± 0,4	± 0,6	± 1,3	± 0,5	± 0,8	± 1,2
1084,62	± 0,6	± 0,9	± 1,8	± 0,7	± 1,4	± 1,9
1553,5	_	_	_	± 1,4	± 2,7	± 4,0
1768,4	_	_	_	± 2,0	± 4,0	± 6,0

- 4.2.7 Электрическое сопротивление изоляции термопреобразователей между цепью чувствительного элемента и металлической частью защитной арматуры (муфтой) должно быть не менее, МОм:
 - 100 при температуре (25 ± 10) °C и относительной влажности от 30 % до 80 %;
 - 0,005 при температуре от 800 °C до 1000 °C.
 - 4.2.8 Вероятность безотказной работы термопреобразователей должна быть не менее 0,9:
 - для ППО за время пребывания в печи в течение 500 ч при температуре 1100 °C;
 - для ПРО за время пребывания в печи в течение 80 ч при температуре 1600 °C.
- 4.2.9 Критерии отказа должны быть установлены в технических условиях на термопреобразователь конкретного типа.

4.3 Требования к материалам

4.3.1 Термоэлектроды термопреобразователей должны быть изготовлены из термоэлектродной проволоки, соответствующей требованиям ГОСТ 10821 и технических условий [1] и [2]: для ППО:

- положительный — из платинородиевого сплава марки ПР-10,

FOCT P 52314—2005

- отрицательный — из платины марки ПлТ (показатель чистоты $W = R_{100}/R_0$ не менее 1,3922, где R_{100} и R_0 — электрическое сопротивление одного и того же участка платиновой проволоки при температурах 100 °C и 0 °C);

для ПРО:

- положительный из платинородиевого сплава марки ПР-30,
- отрицательный из платинородиевого сплава марки ПР-6.
- 4.3.2 Для вновь изготовленных термопреобразователей ППО показатель чистоты платинового термоэлектрода должен быть не менее 1,3920.
- 4.3.3 Термоэлектроды термопреобразователей должны иметь ровную, гладкую блестящую поверхность. Не допускается наличие перетяжек, спаев, резких изгибов радиусом менее 5 мм по длине погружаемой части термоэлектродов. На свободных концах термопреобразователя, не защищенных электроизоляционными трубками, допускается наличие изгибов термоэлектродов радиусом не менее 3 мм.
- 4.3.4 Термоэлектроды термопреобразователей должны быть армированы цельной керамической двухканальной трубкой. Длина трубки должна быть не менее $500\,$ мм, диаметр трубки не более $(5\pm1)\,$ мм, диаметр каналов не менее $0.7\,$ мм. Стрела прогиба трубки по всей длине должна быть не более $1\,$ мм.
- $4.3.5\,$ В качестве материала армирующих трубок следует использовать высокочистую огнеупорную электроизоляционную керамику на основе оксида алюминия. Содержание оксида алюминия (Al $_2$ O $_3$) в трубках должно быть:
 - для ППО не менее 45 % (например: фарфор, муллитокремнезем, корунд);
 - для ПРО не менее 95 % (например: корунд с пределом жаропрочности не менее 1800 °C).

Марки керамических трубок должны быть указаны в технических условиях на термопреобразователь конкретного типа.

4.3.6~ Свободные концы термоэлектродов должны быть изолированы гибкими электроизоляционными трубками, которые должны выдерживать без оплавления температуру не менее 100~°C — для ППО и 150~°C — для ПРО.

Марки гибких электроизоляционных трубок должны быть указаны в технических условиях на термопреобразователь конкретного типа.

4.4 Требования к конструкции

- 4.4.1 Термоэлектроды термопреобразователей должны быть изготовлены из проволоки диаметром $(0,5_{-0,025})$ мм.
- 4.4.2 Длина термоэлектродов вновь изготовленных термопреобразователей должна быть не менее, мм:
 - для ППО 1000;
 - для ПРО 1250.

П р и м е ч а н и е — Длина термоэлектродов термопреобразователей, предъявляемых на периодическую поверку, должна быть не менее, мм:

- для ППО 900;
- для ПРО 1100.
- 4.4.3 Рабочий конец термопреобразователей должен иметь форму шарика диаметром (1.5 ± 0.3) мм и быть сформирован путем сварки концов термоэлектродов с оплавлением.
- 4.4.3.1 Шарик на рабочем конце термопреобразователя должен иметь гладкую (без раковин) блестящую поверхность.
- 4.4.4 Место прилегания электроизоляционных трубок к торцу армирующей трубки должно быть закрыто отрезком металлической трубки, называемым переходной муфтой.
 - 4.4.5 Переходная муфта должна обеспечивать выполнение следующих требований:
- надежное крепление армирующей трубки термопреобразователя с электроизоляционными труб-ками;
- свободное перемещение термоэлектродов без перекручивания при вытягивании их за рабочий конец из керамической трубки;
 - отсутствие свободного хода муфты вдоль керамической трубки;
- длина муфты: (70 ± 1) мм, наружный диаметр муфты: превышающий наружный диаметр керамической трубки не более чем на 1 мм;
- материал муфты: металл, не подверженный влиянию окисления при температуре от 100 °C до 150 °C.

5 Комплектность

В комплект поставки термопреобразователей ППО и ПРО должны входить термопреобразователь, свидетельство о поверке, паспорт, футляр и запасные части, номенклатуру и количество которых указывают в технических условиях на термопреобразователь конкретного типа.

6 Маркировка

- $6.1\,$ На поверхности керамической трубки на расстоянии (300 ± 5) мм от рабочего конца огнеупорной краской должна быть нанесена кольцевая линия шириной от 1 до 2 мм, ограничивающая глубину погружения термопреобразователей в печь.
- 6.2~ На расстоянии (490 ± 5) мм от рабочего конца на поверхность керамической трубки со стороны отрицательного термоэлектрода должна быть нанесена метка в виде точки диаметром от 1 до 2 мм.
- 6.3 Способ нанесения маркировки должен быть установлен в технических условиях на термопреобразователь конкретного типа.
- 6.4 К средней части электроизоляционной трубки, надетой на отрицательный термоэлектрод, должна быть прикреплена металлическая бирка.

На одной стороне бирки должны быть нанесены:

- тип термопреобразователя, заводской номер и год выпуска, а на другой стороне:
- для ППО товарный знак или наименование завода-изготовителя и надпись «Pt»;
- для ПРО знак минус «—».
- 6.5 Маркировка транспортной тары и футляра для хранения термопреобразователя должна быть установлена техническими условиями на термопреобразователь конкретного типа.

7 Упаковка

- 7.1 Термопреобразователь должен быть упакован в специальный футляр, не допускающий изгиба и поломки термопреобразователя при транспортировке.
- 7.2 Упаковывать термопреобразователь следует согласно требованиям, установленным техническими условиями на термопреобразователь конкретного типа.

Библиография

- [1] ТУ 48-1-419—89 Проволока из платины и платинородиевых сплавов
- [2] ТУ 117-1-198—98 Проволока из сплавов марок ПР-6 и ПР-30

УДК 536.532:006.354 OKC 17.020 П24

Ключевые слова: эталонный термоэлектрический преобразователь, разряд, температура, доверительная погрешность, реперная точка, нестабильность, неоднородность, термоэлектрод, конструкция

Редактор Л.В. Афанасенко
Технический редактор Л.А. Гусева
Корректор Т.И. Кононенко
Компьютерная верстка И.А. Налейкиной

Изд. лиц. № 02354 от 14.07.2000. Сдано в набор 21.02.2005. Подписано в печать 04.03.2005. Усл. печ.л. 0,93. Уч.-изд.л. 0,70. Тираж 164 экз. С 527. Зак. 127.