Sprawozdanie

Jakub Kaźmierczyk

2025-06-01

Spis treści

1	Wpi	rowadzenie	2				
	1.1	Opis projektu	2				
	1.2	Zmienna objaśniana	2				
	1.3	Zmienne objaśniające	2				
	1.4	Źródła	2				
2	Wez	zytywanie danych	3				
3	Pod	Podstawowe statystyki					
	3.1	Zmienna objaśniana	4				
	3.2	Zmienne objaśniające	4				
	3.3	Macierz korelacji	6				
4	Ider	Identyfikacja niestacjonarnych zmiennych objaśniających					
	4.1	Sprawdzenie niestacjonarności zmiennych	8				
	4.2	Usunięcie niestacjonarności	8				
	4.3	Ponowne sprawdzenie niestacjonarności zmiennych	12				
	4.4	Usunięcie zmiennych o zerowej wariancji	13				
	4.5	Po usunieciu	13				
5	Met	toda doboru zmiennych	14				
	5.1	Metoda Hellwiga	14				
6	Two	orzenie modelu ekonometrycznego	15				
7	Nib	v TEST	16				

1 Wprowadzenie

1.1 Opis projektu

Projekt ma na celu budowę kompleksowego modelu ekonometrycznego służącego do analizy i prognozowania rentowności 10-letnich polskich obligacji skarbowych. Model zostanie zbudowany na podstawie szeregów czasowych, co umożliwia głębszą analizę dynamicznych zależności ekonomicznych.

1.2 Zmienna objaśniana

CLOSE - rentowność 10-letnich polskich obligacji skarbowych

1.3 Zmienne objaśniające

XAUUSD - cena złota w dolarze amerykańskim

S&P500 - ETF 500 największych notowanych na giełdzie amerykańskich spółek

PMI - wskaźnik aktywności przemysłowej

WIG20 - 20 najwiekszych notowanych na gieldzie polskich spolek

OIL - cena ropy naftowej za barylke

UNEMPLOYMENT - stopa bezrobocia w Polsce

USDPLN - kurs dolara amerykańskiego wyrażony w złotych

INFLATION - inflacja rok do roku

1.4 Źródła

www.stooq.com

2 Wczytywanie danych

```
data_all <- read_excel("data.xlsx")
data_all <- data_all[, -c(1, 3, 4)]
data_all[] <- lapply(data_all, function(col) {
    na.approx(col, na.rm = FALSE)
})

n <- nrow(data_all)
train_size <- floor(0.8 * n)

data <- data_all[1:train_size, , drop = FALSE]

Y <- data["CLOSE"]
X <- data[, !names(data) %in% "CLOSE", drop = FALSE]</pre>
```

3 Podstawowe statystyki

3.1 Zmienna objaśniana

```
CLOSE
##
##
    Min.
           :1.149
    1st Qu.:3.129
##
    Median :5.112
##
           :4.467
##
    Mean
##
    3rd Qu.:5.778
    Max.
           :8.337
##
```

Wartości zmiennej objaśnianej wachają się pomiędzy 13,288 a 1,149. Mediana wynosi 5,461 a średnia 5,347.

3.2 Zmienne objaśniające

##	INFLATION	10YUSBOND	XAUUSD	USDPLN
##	Min. :-0.016	Min. :0.533	Min. : 415.6	Min. :2.060
##	1st Qu.: 0.013	1st Qu.:2.014	1st Qu.:1056.3	1st Qu.:3.084
##	Median : 0.026	Median :2.773	Median :1295.7	Median :3.509
##	Mean : 0.034	Mean :2.925	Mean :1353.6	Mean :3.481
##	3rd Qu.: 0.043	3rd Qu.:3.950	3rd Qu.:1712.0	3rd Qu.:3.912
##	Max. : 0.184	Max. :5.130	Max. :3288.4	Max. :4.957
##				
##	WIBOR	10YDEBOND	WIG20	S&P500
##	Min. :0.180	Min. :-0.7010	Min. :1372	Min. : 735.1
##	1st Qu.:1.660	1st Qu.: 0.3543	1st Qu.:2035	1st Qu.:1310.5
##	Median :3.650	Median : 1.7905	Median :2306	Median :1983.6
##	Mean :3.575	Mean : 1.7832	Mean :2323	Mean :2396.9
##	3rd Qu.:4.968	3rd Qu.: 3.1618	3rd Qu.:2487	3rd Qu.:3058.3
##	Max. :7.150	Max. : 4.6210	Max. :3878	Max. :6040.5
##				
##	UNEMPLOYMENT	PMI	DETAL	OIL

Min. :0.0480 Min. :31.90 Min. :-11.3000 Min. : 18.84 ## 1st Qu.:0.0580 1st Qu.:48.20 1st Qu.: -0.4500 1st Qu.: 54.16 Median : 0.5000 Median :0.1015 Median :51.15 Median : 70.11 ## Mean :0.0990 Mean :50.43 : 0.5372 Mean : 71.68 ## Mean 3rd Qu.:0.1265 3rd Qu.:53.30 3rd Qu.: 1.4000 3rd Qu.: 88.08 ## ## Max. :0.1940 Max. :59.40 Max. : 9.7000 Max. :140.00

NA's :1

3.3 Macierz korelacji

Z 11 zmiennych objaśniających wybrałem 8, których wartość bezwględna korelacji nie przekracza 0.7.

	CLOSE	INFLATION	OIL	PMI	S&P500	UNEMPLOYMENT	USDPLN	WIG20	XAUUSD	г 1
CLOSE	1.00	0.44	0.51	-0.22	-0.20	0.32	-0.33	0.23	-0.12	- 0.8
INFLATION	0.44	1.00	0.30	-0.39	0.45	-0.40	0.40	-0.29	0.39	- 0.6
OIL	0.51	0.30	1.00	0.04	-0.07	0.13	-0.41	0.36	0.15	- 0.4
РМІ	-0.22	-0.39	0.04	1.00	-0.15	0.27	-0.24	0.46	-0.19	- 0.2
S&P500	-0.20	0.45	-0.07	-0.15	1.00	-0.79	0.73	-0.25	0.81	- 0
UNEMPLOYMENT	0.32	-0.40	0.13	0.27	-0.79	1.00	-0.66	0.36	-0.71	0.2
USDPLN	-0.33	0.40	-0.41	-0.24	0.73	-0.66	1.00	-0.64	0.56	0.4
WIG20	0.23	-0.29	0.36	0.46	-0.25	0.36	-0.64	1.00	-0.28	0.6
XAUUSD	-0.12	0.39	0.15	-0.19	0.81	-0.71	0.56	-0.28	1.00	0.8

4 Identyfikacja niestacjonarnych zmiennych objaśniających

4.1 Sprawdzenie niestacjonarności zmiennych

Zmienna	Stacjonarnosc
CLOSE	Niestacjonarna
INFLATION	Niestacjonarna
XAUUSD	Niestacjonarna
USDPLN	Niestacjonarna
WIG20	Niestacjonarna
S&P500	Niestacjonarna
UNEMPLOYMENT	Niestacjonarna
PMI	Stacjonarna
OIL	Niestacjonarna

4.2 Usunięcie niestacjonarności

4.3 Ponowne sprawdzenie niestacjonarności zmiennych

Zmienna	Stacjonarnosc
D_CLOSE	Stacjonarna
D_INFLATION	Stacjonarna
D_XAUUSD	Stacjonarna
D_USDPLN	Stacjonarna
D_WIG20	Stacjonarna
D_S.P500	Stacjonarna
D_UNEMPLOYMENT	Stacjonarna
PMI	Stacjonarna
D_OIL	Stacjonarna

4.4 Usunięcie zmiennych o zerowej wariancji

```
D_CLOSE - Współczynnik zmienności: 5229.174 %, Wariancja: 0.1099147
```

D_INFLATION - Współczynnik zmienności: 143705.6 %, Wariancja: 3.384958e-05

D_XAUUSD - Współczynnik zmienności: -581.7211 %, Wariancja: 4577.532

D USDPLN - Współczynnik zmienności: -11956.17 %, Wariancja: 0.01666743

D WIG20 - Współczynnik zmienności: -3688.86 %, Wariancja: 19320.54

D_S.P500 - Współczynnik zmienności: -653.8075 %, Wariancja: 13902.73

D_UNEMPLOYMENT - Współczynnik zmienności: 512.851 %, Wariancja: 8.091513e-06

PMI - Współczynnik zmienności: 7.771052 %, Wariancja: 15.355

D_OIL - Współczynnik zmienności: -19693.51 %, Wariancja: 46.47127

4.5 Po usunieciu

D_CLOSE - Współczynnik zmienności: 5229.174 %, Wariancja: 0.1099147

D_XAUUSD - Współczynnik zmienności: -581.7211 %, Wariancja: 4577.532

D_WIG20 - Współczynnik zmienności: -3688.86 %, Wariancja: 19320.54

D_S.P500 - Współczynnik zmienności: -653.8075 %, Wariancja: 13902.73

PMI - Współczynnik zmienności: 7.771052 %, Wariancja: 15.355

D_OIL - Współczynnik zmienności: -19693.51 %, Wariancja: 46.47127

5 Metoda doboru zmiennych

5.1 Metoda Hellwiga

```
Zmienne składowe w najlepszej kombinacji:

D_XAUUSD

D_WIG20

D_S.P500

PMI

D_OIL
```

Pojemność Hellwiga dla tej kombinacji: 0.1257

6 Tworzenie modelu ekonometrycznego

```
formula modelu <- reformulate(best_hellwig_vars, response = "D_CLOSE")</pre>
model <- lm(formula_modelu, data = data_stationary)</pre>
print(summary(model))
Call:
lm(formula = formula_modelu, data = data_stationary)
Residuals:
             1Q
    Min
                Median
                            3Q
                                   Max
-1.37874 -0.17071 -0.00854 0.16940 1.28030
Coefficients:
           Estimate Std. Error t value Pr(>|t|)
(Intercept) 0.3097569 0.2497818 1.240 0.216141
D_XAUUSD
          D_WIG20
          D_S.P500
          PMI
         -0.0065032 0.0049332 -1.318 0.188670
D_OIL
         0.0148748 0.0030048 4.950 1.39e-06 ***
Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
Residual standard error: 0.2974 on 241 degrees of freedom
Multiple R-squared: 0.2115,
                           Adjusted R-squared: 0.1951
F-statistic: 12.93 on 5 and 241 DF, p-value: 3.778e-11
H0 takie ze ... p wynoszace xyz oznacza...
```

7 Niby TEST

```
##
##
      BADANIE NORMALNOŚCI ROZKŁADU RESZT
         -----
## TEORIA: Testy normalności sprawdzają czy reszty mają rozkład normalny.
## HO: Reszty mają rozkład normalny
## H1: Reszty nie mają rozkładu normalnego
## Poziom istotności: = 0.05
## 1. TEST SHAPIRO-WILKA:
     Statystyka W = 0.9473
##
     p-value = 0
##
##
     Wniosek: Odrzucamy HO - reszty nie są normalne
## 2. TEST JARQUE-BERA:
##
     Statystyka JB = 163.4222
     p-value = 0
##
     Wniosek: Odrzucamy HO - reszty nie są normalne
##
## 3. TEST ANDERSON-DARLING:
##
     Statystyka A = 2.0345
##
     p-value = 0
     Wniosek: Odrzucamy HO - reszty nie są normalne
##
```

```
##
##
      TESTOWANIE AUTOKORELACJI
## TEORIA: Autokorelacja oznacza korelację między resztami w różnych okresach.
## HO: Brak autokorelacji reszt
## H1: Występuje autokorelacja reszt
## 1. TEST DURBINA-WATSONA:
##
     Statystyka DW = 2.1199
##
     p-value = 0.36
##
     Wniosek: Nie ma podstaw do odrzucenia HO - brak autokorelacji
## 2. TEST LJUNGA-BOXA:
##
     Statystyka LB = 13.9658
##
     p-value = 0.1746
##
     Wniosek: Nie ma podstaw do odrzucenia HO - brak autokorelacji
## 3. TEST BREUSCHA-GODFREYA:
##
     Statystyka LM = 0.9834
##
     p-value = 0.6116
```

Wniosek: Nie ma podstaw do odrzucenia HO - brak autokorelacji

##

```
##
      BADANIE HETEROSKEDASTYCZNOŚCI
##
## -----
## TEORIA: Heteroskedastyczność oznacza niestałą wariancję składnika losowego.
## HO: Homoskedastyczność (stała wariancja)
## H1: Heteroskedastyczność (niestała wariancja)
## 1. TEST BREUSCHA-PAGANA:
##
     Statystyka BP = 17.5839
##
     p-value = 0.0035
##
     Wniosek: Odrzucamy HO - heteroskedastyczność
## 3. TEST GOLDFELDA-QUANDTA:
##
     Statystyka GQ = 1.4388
##
     p-value = 0.0249
```

Wniosek: Odrzucamy HO - heteroskedastyczność

##

Histogram reszt

Rzeczywista Teoretyczna -1.5 -0.5 0.0 Rzeczywista Teoretyczna Reszty

Wykres Q-Q reszt

Funkcja autokorelacji reszt

TESTOWANIE WSPÓŁLINIOWOŚCI (VIF)

TEORIA: Współliniowość oznacza wysoką korelację między zmiennymi objaśniającymi.

VIF > 10: poważna współliniowość

VIF > 5: umiarkowana współliniowość

VIF < 5: brak problemów ze współliniowością

WSPÓŁCZYNNIKI VIF:

##

D_XAUUSD : 1.052 - OK

D_WIG20 : 1.408 - OK

```
D_S.P500 : 1.323 - OK
##
     PMI : 1.039 - OK
##
##
     D_OIL : 1.167 - OK
##
## WNIOSEK: Brak problemów ze współliniowością
##
   _____
      TESTOWANIE STABILNOŚCI PARAMETRÓW (TEST CHOWA)
##
## TEORIA: Test Chowa sprawdza czy parametry modelu są stabilne w czasie.
## HO: Parametry są stabilne (brak przełomu strukturalnego)
## H1: Parametry nie są stabilne (występuje przełom strukturalny)
## TEST CHOWA (punkt przełomu w obserwacji 123 ):
##
     Statystyka F = 2.4236
##
     p-value = 0.0272
##
     Wniosek: Odrzucamy HO - brak stabilności parametrów
##
##
      TESTOWANIE STABILNOŚCI POSTACI ANALITYCZNEJ
##
## TEORIA: Test RESET sprawdza czy postać funkcyjna modelu jest poprawna.
## HO: Model ma poprawną postać funkcyjną
```

```
## H1: Model ma niepoprawną postać funkcyjną
## 1. TEST RESET RAMSEYA:
##
     Statystyka F = 6.1583
     p-value = 0.0025
##
##
     Wniosek: Odrzucamy HO - niepoprawna postać modelu
## 2. TEST LICZBY SERII:
## TEORIA: Test sprawdza czy reszty są losowo rozłożone.
## HO: Reszty są losowo rozłożone
## H1: Reszty wykazują systematyczne wzorce
     Statystyka = 0.4593
##
##
     p-value = 0.646
     Wniosek: Nie ma podstaw do odrzucenia HO - reszty są losowe
##
##
      BADANIE EFEKTU KATALIZY
##
## -----
## TEORIA: Efekt katalizy - jedna zmienna wpływa na siłę oddziaływania innej.
## Sprawdzamy czy interakcje między zmiennymi są istotne.
```

```
## TEST F DLA INTERAKCJI:
##
      Statystyka F = 2.8334
##
      p-value = 0
      Wniosek: Występuje istotny efekt katalizy
##
##
## WSPÓŁCZYNNIKI INTERAKCJI:
      D_XAUUSD:D_WIG20 : p-value = 0.5158
##
##
      D XAUUSD:D S.P500 : p-value = 0.4984
##
      D_WIG20:D_S.P500: p-value = 0.4752
      D XAUUSD:PMI : p-value = 0.9952
##
      D WIG20:PMI : p-value = 0.5371
##
##
      D_S.P500:PMI: p-value = 0.5665
##
      D_XAUUSD:D_OIL : p-value = 0.9484
      D_WIG20:D_OIL: p-value = 0.5759
##
##
      D_S.P500:D_OIL : p-value = 0.0568 *
##
      PMI:D_OIL : p-value = 0.7541
      D_XAUUSD:D_WIG20:D_S.P500 : p-value = 0.574
##
##
      D_XAUUSD:D_WIG20:PMI : p-value = 0.5078
##
      D_XAUUSD:D_S.P500:PMI: p-value = 0.524
##
      D_WIG20:D_S.P500:PMI : p-value = 0.5334
##
      D XAUUSD:D WIG20:D OIL : p-value = 0.4547
##
      D_XAUUSD:D_S.P500:D_OIL : p-value = 0.003 ***
      D_WIG20:D_S.P500:D_OIL : p-value = 0.3047
##
      D XAUUSD:PMI:D_OIL : p-value = 0.974
##
##
      D_WIG20:PMI:D_OIL : p-value = 0.6185
##
      D_S.P500:PMI:D_OIL: p-value = 0.0842 *
      D_XAUUSD:D_WIG20:D_S.P500:PMI : p-value = 0.6817
##
      D_XAUUSD:D_WIG20:D_S.P500:D_OIL : p-value = 0.9911
##
      D_XAUUSD:D_WIG20:PMI:D_OIL : p-value = 0.5099
##
      D_XAUUSD:D_S.P500:PMI:D_OIL : p-value = 0.0038 ***
##
##
      D_WIG20:D_S.P500:PMI:D_OIL : p-value = 0.4677
##
      D_XAUUSD:D_WIG20:D_S.P500:PMI:D_OIL : p-value = 0.8872
```

```
##
##
##
      BADANIE KOINCYDENCJI
## TEORIA: Koincydencja - zmienna objaśniająca ma wpływ jedynie w określonych okresach.
## Sprawdzamy stabilność parametrów w różnych podokresach.
## ANALIZA STABILNOŚCI PARAMETRÓW W PODOKRESACH:
## Współczynniki determinacji:
    Okres 1 (obs. 1-82): R^2 = 0.2709
##
    Okres 2 (obs. 83 - 164 ): R^2 = 0.1835
##
##
    Okres 3 (obs. 165 - 247): R^2 = 0.2833
## PORÓWNANIE PARAMETRÓW W PODOKRESACH:
## Parametr (Intercept) :
##
    Okres 1: 0.4644
    Okres 2: 1.0949
##
    Okres 3: 0.4947
##
##
    *** MOŻLIWA KOINCYDENCJA - duże różnice między okresami ***
##
## Parametr D_XAUUSD :
    Okres 1: -0.0012
##
    Okres 2: -0.0011
##
    Okres 3: -0.0014
##
##
## Parametr D_WIG20 :
    Okres 1: 0
```

##

```
Okres 2: -3e-04
##
     Okres 3: -5e-04
##
##
     *** MOŻLIWA KOINCYDENCJA - duże różnice między okresami ***
##
## Parametr D_S.P500 :
##
     Okres 1: -8e-04
     Okres 2: -9e-04
##
    Okres 3: -0.0011
##
##
## Parametr PMI :
     Okres 1: -0.0113
##
##
    Okres 2: -0.0208
##
    Okres 3: -0.0099
     *** MOŻLIWA KOINCYDENCJA - duże różnice między okresami ***
##
##
## Parametr D_OIL :
     Okres 1: 0.0204
##
    Okres 2: 0.0119
##
##
    Okres 3: 0.0132
##
##
       PODSUMOWANIE WYNIKÓW WERYFIKACJI
## WYNIKI TESTÓW DIAGNOSTYCZNYCH:
                                    Test Statystyka p_value
##
                                                                   Wynik
                Normalność (Jarque-Bera)
## 1
                                            163.422
                                                           O NIESPEŁNIONE
                Autokorelacja (Ljung-Box)
## 2
                                            13.966 0.175
                                                               SPEŁNIONE
## 3 Heteroskedastyczność (Breusch-Pagan) 17.584 0.004 NIESPEŁNIONE
## 4
                 Współliniowość (max VIF)
                                             1.408
                                                        N/A
                                                               SPEŁNIONE
                                              2.424 0.027 NIESPEŁNIONE
## 5
                       Stabilność (Chow)
```

##	6	Postać modelu (RESET)	6.158	0.002	NIESPEŁNIONE
## ##	=== OGÓLNA OCENA	MODELU ===			
##	Spełnione założen	nia: 2 / 6			
##	Niespełnione zało	ożenia: 4 / 6			
##	MODEL WYMAGA ISTO	OTNYCH POPRAWEK - niespeł	nia kluczo	owych za	ałożeń
##					
##	=== REKOMENDACJE	===			
##	• Rozważ transfor	rmację zmiennych (logaryt	mowanie) z	e wzglę	ędu na brak normalności reszt
##	• Użyj robustnych	n błędów standardowych ze	względu r	na heten	roskedastyczność
##	• Rozważ model ze	e zmiennymi strukturalnym	i ze wzglę	edu na r	niestabilność parametrów
##	• Zmień postać fu	ınkcyjną modelu (dodaj ni	eliniowośc	ci)	
##					
##	==========		=======		===
	KONIEC WERYFIKACJ	JI MODELU			

Reszty vs Wartosci dopasowane

0.5 -1.0 -0.2 0.0 0.2 0.4 -0.4 Wartosci dopasowane

|Reszty| vs Wartosci dopasowane

Test CUSUM stabilnosci parametrów

