

HOME TOP CATALOG CONTESTS GYM PROBLEMSET GROUPS RATING EDU API CALENDAR HELP

STEP 1 STEP 2 STEP 3 | THEORY PRACTICE | SUBMIT SUBMISSIONS HACKS STANDINGS CUSTOM INVOCATION ITMO Academy: pilot course » Disjoint Sets Union » Step 3 » Practice

B. Number of Connected Components on Segments

time limit per test: 4 seconds¹ memory limit per test: 256 megabytes

You are given a graph with n vertices and m undirected edges. Write a program that processes k queries of the form (l_j, r_j) : the answer for the j-th query is the number of connected components if we remove all the edges from the graph except edges with indices from l_j to r_j inclusive.

The queries should be answered independently. In other words, to answer the j-th query, you should consider a graph that has n vertices and $r_j - l_j + 1$ edges.

Input

The first line contains two integers n and m ($2 \le n \le 50\,000$, $1 \le m \le 50\,000$) — the number of vertices and the number of edges, respectively.

Next m lines contain the description of edges, one per line. A description consists of two integers u_i and v_i ($1 \le u_i, v_i \le n, u_i \ne v_i$) — the ends of an edge. It is guaranteed that all the edges are distinct. In other words, if there is an edge (u_i, v_i) , then there is no other edge (u_i, v_i) or (v_i, u_i) .

The next line contains a single integer k ($1 \le k \le 50\,000$) — the number of queries.

Next k lines contain the description of queries, one per line. A description consits of two integers l_j and r_j ($1 \le l_j \le r_j \le m$) — the segment of edges to be considered.

Output

Output k integers, one per line. The j-th integer should be equal to the number of connected components in the graph of n vertices and edges with indices $l_j, l_j + 1, \ldots, r_j$.

Examples

input	Сору
3 3	
1 2	
2 3	
1 3	
5	
1 1	
1 2	
2 3	
3 3	
1 3	
output	Сору
2	
1	
1	
2	
1	

1	
input	Сору
8 6	
1 2	
2 3	
3 1	
3 4	
4 5	
5 3	
7	
3 5	
1 6	
1 4	
3 6	
2 4	
2 3	
5 6	
output	Сору
5	
4	
5	
5	
5	
6	
6	

