

Marco Listanti

Esercizi TCP

Esercizio 1 (1)

- Considerate il trasferimento di un file di L byte dall' Host A all'Host B, sotto le seguenti ipotesi:
 - MSS = 536 byte
 - Lunghezza complessiva degli header per segmento: $L_H = 66$ byte
 - Capacità del collegamento: C = 155 Mbit/s
 - Larghezza della finestra: W = ∞
 - Controllo di congestione disattivato
- (a) Determinare il valore massimo di L tale per cui i numeri di sequenza TCP non vengono esauriti
- (b) Per il valore di L ottenuto nel punto precedente, determinare il tempo minimo di trasmissione del file

Esercizio 1 (2)

- Il campo seq_no nell'header TCP ha una lunghezza L_{seq} = 32 bit e numera il numero di sequenza dei byte trasferiti sulla connessione
- Il range dei valori possibili del campo seq_no è

$$[0, 2^{32} - 1]$$

quindi il numero massimo di byte numerabili è L=232

Il numero massimo di segmenti N_{tot} è dato da

$$N_{Tot} = \left[\frac{2^{32}}{MSS}\right] = \left[\frac{2^{32}}{536}\right] = 8012998$$

Esercizio 1 (3)

I primi N_{Tot}-1 segmenti hanno lunghezza massima (602 byte), l'ultimo segmento avrà lunghezza uguale a:

$$L_{last} = 2^{32} - (N_{tot} - 1) \cdot 536 = 368 \, byte$$

La trasmissione dei N_{tot} segmenti avverrà senza soluzione di continuità, quindi il tempo totale T_{file} di trasmissione del file sarà uguale a

$$T_{file} = \frac{(N_{tot} - 1)602 * 8}{155 \cdot 10^6} + \frac{(368 + 66) * 8}{155 \cdot 10^6} \approx 249 \, s$$

Esercizio 2 (1)

- Una connessione TCP è attiva tra A e B; B ha ricevuto tutti i byte, fino al 126, emessi da A.
- A emette due ulteriori segmenti che contengono rispettivamente 80 e 40 byte di dati. Nel primo segmento il numero di sequenza è 127, il numero di porta sorgente è 302 e il numero di porta di destinazione 80.
- B emette un ACK non appena riceve un segmento da A
- (a) Si determini quali sono il numero di sequenza, il numero di porta sorgente e il numero di porta di destinazione nel secondo segmento, emesso da A
- (b) Si determini quali sono: il valore dell'ACK number, il numero di porta sorgente e il numero di porta di destinazione nell'ACK del primo segmento
- (c) nell'ipotesi in cui il secondo segmento arrivi prima del primo, si determini quali sono l'ACK number, il numero di porta sorgente e il numero di porta di destinazione nell'ACK del primo segmento
- (d) nelle ipotesi in cui sia rispettata la sequenza di emissione, il primo ACK vada perduto e il secondo arrivi dopo il primo l'esaurimento del time-out (RTO), si disegni il diagramma temporale rappresentativo del caso in esame, indicando, in ciascun segmento, il numero di sequenza e il numero di byte di dati, mentre, per ciascun ACK sia indicato l'ACK number

Esercizio 2 (2)

- Il primo segmento emesso da A trasporta 80 byte numerati nell'intervallo [127-206]
- Il secondo segmento emesso da A trasporta 40 byte numerati nell'intervallo [207-246]
- Il primo segmento sarà caratterizzato di seguenti valori dei campi:
 - Seq_no = 127
 - Source_port_no = 302
 - Dest_port_no = 80
- Il secondo segmento sarà caratterizzato quindi dai seguenti valori dei campi:
 - Seq_no = 207
 - Source_port_no = 302
 - Dest_port_no = 80

- Poiché l'host B emette gli ACK subito dopo ogni segmento ricevuto, si ha che l'ACK che riscontra il primo segmento emesso da A trasporterà i seguenti valori:
 - ACK _no = 207
 - Sorce_port_no = 80
 - Dest_port_no = 302
- L'ACK del secondo segmento emesso da A avrà invece i seguenti valori:
 - ACK _no = 247
 - Sorce_port_no = 80
 - Dest_port_no = 302

Esercizio 2 (3)

- Diagramma temporale relativo al caso in cui:
 - Rispetto della sequenza dei segmenti S1 e S2
 - B emette immediatamente gli ACK dei segmenti arrivati

Esercizio 2 (4)

 Diagramma temporale nel caso di fuori sequenza (il secondo segmento emesso da A arrivi prima del primo segmento)

B non può emettere nessun riscontro perché rivela un «fuori sequenza»

B ricostruisce la sequenza corretta e invia un riscontro cumulativo di entrambi i segmenti

Esercizio 2 (5)

S1

Diagramma temporale relativo al caso in cui si ha:

- rispetto della sequenza dei segmenti S1 e S2
- il primo ACK viene perso
- il secondo ACK arriva dopo l'esaurimento dell'RTO

Seq_no=127, Length=80 OACK_no=207 ACK 52 **RTO** Seq_no=20>, Length=40 Segmento S1 riemesso ACK_no=247 Seq_no=127, Length=80 Segmento scartato

ACK accettato (riscontro cumulativo)

Esercizio 3 (1)

- Si assuma che un host misuri cinque campioni di SampleRTT uguali a s_1 =106 ms, s_2 =120 ms, s_3 =140 ms, s_4 =90 ms e s_5 =115 ms.
- Si calcoli:
 - il valore dell'EstimatedRTT dopo l'acquisizione di ogni campione usando un valore alfa = 0,125 e assumendo che il valore iniziale dell'EstimatedRTT sia 100 ms.
 - il valore di DevRTT dopo l'acquisizione di ogni campione, assumendo beta= 0,25 e che il suo valore iniziale sia 5 ms.
 - il valore del RTO dopo l'acquisizione di ogni campione

Esercizio 3 (2)

Considerando che:

- EstimatedRTT = (1α) *EstimatedRTT + α *SampleRTT
- DevRTT = $(1-\beta)$ *DevRTT + β *|SampleRTT-EstimatedRTT|
- RTO= EstimatedRTT + 4*DevRTT

Sample	RTT (ms)	alfa	Estimated RTT (ms)	Beta	DevRTT (ms)	RTO (ms)
iniz.			100,00		0,00	
S1	106	0,125	100,75	0,25	1,31	106,00
S2	120	0,125	103,16	0,25	5,20	123,94
S3	140	0,125	107,76	0,25	11,96	155,59
S4	90	0,125	105,54	0,25	12,85	156,95
S5	115	0,125	106,72	0,25	11,71	153,56

Esercizio 3 (3)

Esercizio 4 (1)

- Si consideri l'invio di un grosso file tra due host A e B su una connessione TCP senza perdite
- Si ipotizzi che
 - cwnd aumenti di 1 MSS ogni volta che un gruppo di ACK viene ricevuto
 - i tempi i tempi di andata e ritorno siano approssimativamente costanti
- Si determini
 - il tempo necessario affinchè cwnd aumenti da 6 MSS a 12 MSS
 - il throughput medio (in termini di MSS e RTT) per questa connessione fino all'istante pari a 6 RTT

Esercizio 4 (2)

Si supponga che il RTT sia molto maggiore del tempo necessario alla trasmissione del numero di segmenti MSS compresi in una finestra Congwin, ovvero

$$RTT \gg \frac{Congwin \cdot MSS \cdot 8}{C}$$

Il diagramma temporale di evoluzione del protocollo è il seguente

Esercizio 4 (3)

- In base allo schema precedente, il tempo necessario affinchè cwnd aumenti da 6 MSS a 12 MSS è 6 RTT
- Analogalmente, il tempo necessario all'aumento di Congwin da 1 MSS a 6 MSS è 5 RTT
- Nell'intervallo di 5 RTT sono trasmessi 15 MSS
- Il throughput medio sarà quindi

$$TH = \frac{15 MSS}{5 RTT} = 3 \frac{MSS}{RTT}$$

Esercizio 5 (1)

- Nel periodo di tempo in cui il rate di trasferimento della connessione varia da W/(2 x RTT) a W/RTT viene smarrito un solo pacchetto (proprio alla fine dell' intervallo temporale)
- \blacksquare (a) calcolare il tasso di perdita π
- (b) se una connessione presenta un tasso di perdita π , si determini un'espressione approssimata della sua banda media

Esercizio 5 (2)

- Seguendo lo stesso ragionamento dell'esercizio precedente, si ha che l'aumento del rate da w/(2·RTT) a w/RTT è causato da un aumento di Congwin da w/2 a w che richiede un tempo uguale a (w/2)·RTT
- In questo periodo il numero N di segmenti trasmessi sulla connessione è dato da:

$$N = \sum_{i=w/2}^{w} i = \sum_{i=1}^{w} i - \sum_{i=1}^{\frac{w}{2}} i = \frac{(w+1) \cdot w}{2} - \frac{\frac{w}{2} \cdot (\frac{w}{2} + 1)}{2} = \frac{3}{8}w^2 + \frac{3}{4}w$$

Poiché 1 pacchetto viene perso ogni N pacchetti trasmessi, il tasso di perdita π è dato da

$$\pi = \frac{1}{N} = \frac{1}{\frac{3}{8}w^2 + \frac{3}{4}w}$$

Esercizio 5 (3)

- Considerando un tasso di perdita π , un'espressione approssimata della banda media di una connessione TCP può essere ricavata in questo modo
 - Si assuma che le fasi di slow start siano completate in un tempo trascurabile
 - Una perdita si verifica quando la dimensione della Congwin è uguale a w
- Sulla base delle ipotesi precedenti, l'andamento del rate della connessione è il seguente

Esercizio 5 (3)

Si noti che

Quando la finestra è w, la banda è

$$B_1 = \frac{w \cdot MSS}{RTT}$$

Subito dopo la perdita, la finestra si riduce a w/2, quindi la banda diviene

$$B_2 = \frac{w \cdot MSS}{2 \cdot RTT}$$

Poiché l'aumento della finestra è lineare, la banda media dalla connessione è

$$B = \frac{B_1 + B_2}{2} = 0.75 \cdot \frac{w \cdot MSS}{2 \cdot RTT}$$

Esercizio 5 (4)

Come ricavato nel quesito precedente nelle stesse condizioni, il tasso di perdita π è dato da

$$\pi = \frac{1}{\frac{3}{8}w^2 + \frac{3}{4}w} \sim \frac{1}{\frac{3}{8}w^2}$$

Da cui si può ricavare l'espressione di w in funzione di π

$$w = \sqrt{\frac{1}{\frac{3}{8}\pi}} = \sqrt{\frac{8}{3} \cdot \frac{1}{\sqrt{\pi}}}$$

Sostituendo tale valore nell'espressione della banda media, si ottiene:

$$B = 0.75 \cdot \frac{\sqrt{\frac{8}{3} \cdot \frac{1}{\sqrt{\pi}}} \cdot MSS}{2 \cdot RTT} \qquad \longrightarrow \qquad B = \frac{1.22 \cdot MSS}{RTT \cdot \sqrt{\pi}}$$

Esercizio 6 (1)

- Si consideri la figura che mostra l'andamento dell'ampiezza della finestra di congestione (Congwin) in una connessione TCP Reno, si chiede di:
- (a) Identificare gli intervalli di tempo in cui opera slow start.
- (b) Identificare gli intervalli di tempo in cui opera congestion avoidance.
- (c) Dopo il 16° turno di trasmissione, la perdita di segmenti viene rilevata da un triplice ACK duplicato o da un timeout?
- (d) Dopo il 22° turno di trasmissione, la perdita di segmenti viene rilevata da un triplice ACK duplicato o da un timeout ?
- (e) Qual è il valore iniziale di ssthresh nel 1° turno di trasmissione?
- (f) Qual è il valore iniziale di ssthresh nel 18° turno di trasmissione?
- (g) Qual è il valore iniziale di ssthresh nel 24° turno di trasmissione?
- (h) Durante quale turno di trasmissione viene inviato il 70° segmento?
- (i) Ipotizzando il rilevamento della perdita di pacchetto dopo il 26° turno tramite ricezione di un triplice ACK duplicato, quali saranno i valori dell' ampiezza della finestra di congestione e di ssthresh?

Esercizio 6 (2)

Esercizio 6 (3)

- a) periodi di Slow Start [1,6] e [23,26]
- b) periodi di congestion avoidance [6,16] e [17,22]
- c) al 16° ciclo la perdita rilevata da 3 ACK duplicati (Fast Retransmit)
- d) al 22° ciclo la perdita rilevata da RTO scaduto
- e) al 1° ciclo di trasmissione: sstresh = 32
- f) al 18° ciclo di trasmissione: sstresh = 20
- q) al 24° ciclo di trasmissione: sstresh = 25/2 = 13
- h) il 70° segmento è emesso nel ciclo 7
- i) dopo il 26° ciclo, in caso di fast retransmit:
 sstresh = 4, congwin = 4

