The conditions are

H1: If 42: R2 -> Ro is small, then (*) is surjective

H2: If Ro=k, R2=R[E] with R2-Ro, then (*) is bijective

H3: F(REE3) is finite-dimensional over &

H4: If R=Rz, 4=92 is small, then (*) is bijective.

Theorem of Schlessinger: If F(k) = {*} and it satisfies H1-Hy, then F is pro-representable.

09.05.18

CONTINUITY OF FUNCTORS

F: $\hat{\mathcal{E}}_{\Lambda} \longrightarrow Set$ functor. We say that F is combinious if the natural map $F(A) \longrightarrow \lim_{n} F(A/m_{\Lambda}^{n}) \quad \text{is a bijection } \forall A \in \hat{\mathcal{E}}_{\Lambda}$

Exercise: * Fregresentable => F continuous

* DPM is continuous

* If we extend $D_{\overline{p},\Lambda}$ by continuity $(D_{\overline{p},\Lambda}(A) := \lim_{n \to \infty} D_{\overline{p},\Lambda}(A/m_{A}^{n})$ for $A \in \hat{\mathcal{C}}_{\Lambda}$, we get $\hat{D}_{\overline{p},\Lambda}$

* If $D_{P,\Lambda}$ is pro-represented by some $R \in \mathcal{E}_{\Lambda}$, then $\widehat{D}_{P,\Lambda} \cong Hom_{\widehat{\mathcal{E}}_{\Lambda}}(R,\cdot)$

EXISTENCE OF UNIVERSAL DEFORMATION PAIRS

G, R, A & ĈR, fix p: G -> GLn(k)

We want to show Dp. 1 is pro-representable by proving it substries the ty of Schlessingers Criterion.

Theorem. Assume G substites the p-finiteness condition

(\$\phi) Homeont (H, 3/pz) is a finite set Yopen subgroups H≤G

Then Dp, 1: En -> Set satisfies H1, H2, H3. of schlessingers or iterion.

Let $C_k(\bar{p}) = Hom_{\bar{p}}(k^n, k^n) = \begin{cases} M \in M^{n \times n}(k) & \text{s.t.} \\ \bar{p} \cdot M = M \cdot \bar{p} \end{cases}$

If $C_{\mathcal{R}}(\bar{\rho}) = k$ (scalar matrices) then $D_{\bar{\rho},\Lambda}$ also satisfies 44.

(Mazur proved Theorem for \bar{p} abs. irreducible, Ramakrishna proved for $C_{k}(\bar{p}) = k$)

Corollary. If G satisfies p-finiteness and $C_k(\bar{p}) = k$ then $D_{\bar{p},\Lambda}$ is pro-representable:

there exists a couple (Runiv) with the following universal property:

(Runiv): G-GLn(Runiv)

 $\forall A \in \hat{\mathcal{C}}_{\Lambda}$ and every deformation $\rho: G \longrightarrow GL_{n}(A)$ of \bar{p} , there exists an unique Λ -algebra morphism $f_{\rho}: R^{univ} \longrightarrow A$ s.t. $\rho \cong f_{\rho} \circ \rho^{univ}$ again.

Remarks: 1) When is $Ch(\vec{p}) = R?$ Schur's. Lemma => Condition helds for \vec{p} absireducible $\vec{p}: \vec{p}: \vec{q} \rightarrow \vec{q}$ irreducible $\vec{p}: \vec{q} \rightarrow \vec{q}$

Take $\bar{\rho}(g) = \begin{pmatrix} \chi_1(g) & \star \\ 0 & \chi_2(g) \end{pmatrix}$, χ_1, χ_2 distinct characters $G \rightarrow k^*$, $\star \neq 0$ inted.

Thun Ch(p)= k.

2) What to do when $C_{k}(\bar{p}) \neq k$?

* Look at "versal" deformations

* Look at "framed" deformations

WA

```
Versal deformations:
```

Def. Let F.G: C_ - Set be functors s.t. F(k) = {*}, G(k) = {*}.

A natural transformation n: F-6 is formally smooth ==> VA,BEZ

Vsurjections $A \longrightarrow B$ the natural map $F(A) \longrightarrow F(B) \times_{G(B)} G(A)$ is surjective.

Proposition.

If F_iG are pro-representable, $F = Hom(R_{F_i}^{-1}), G = Hom(R_{G_i}^{-1}) \text{ for some } R_{F_i}R_{G_i}^{-1}$ $F(B) \qquad G(A)$ Then:

a transformation $F = G_i$ is formally smooth

(=7 it is included by a merphism R_G → R_E that makes R_F a my of formal power series over R_G.

(RF = RITa, -, Tn])

Proved in Mézard's notes, in Schlessinger's paper (Lemma 2.5-)

Def. We say that a functor $F: \mathcal{E}_{\Lambda} \longrightarrow Set$ admits a versal deformation if there exists a cauple (R, p) such that the merphism of functors \mathcal{E}_{Λ} F(R)

Home $(R,A) \longrightarrow F(A)$ defined for $A \in \mathcal{E}_{\Lambda}$ $(f:R \rightarrow A) \longmapsto F(f)(p)$ is formally smooth. $(R^{\text{ver}}, p^{\text{ver}})$

Theorem. (Schlessinger) Assume G satisfies ϕ_p . Then $D_{\vec{p},\Lambda}$ admits a versue deformation. This means that for $\forall A \in \mathcal{E}_{\Lambda}$ and \forall deformations p of \vec{p} to A there exists $f_p \in Hom_{\mathcal{E}_{\Lambda}}(\mathbb{R}^{\text{ver}}, A)$ s.t. $f_p \circ p^{\text{ver}} \in P$, but f_p is not uniquely determined.

Framed defermations:

Define a framed deformation functor
$$D_{\vec{p},\Lambda}^{\Box}$$
: $C_{\Lambda} \rightarrow Set$ as $D_{\vec{p},\Lambda}^{\Box}$ (A) = { set of deformations of \vec{p} to \vec{p} : $G \rightarrow GLn(4)$ }

Deformations as actions on A-modules

See P: G -> GLn(k) as dutum of:

* a continuous action of 6 on a n-dimensional k-vector space Vp

* a choice of basis 13 for Vp

We call a deformation of \bar{p} the datum of (framed deformation)

(1) a continuous action of G an a free A-module VA of rank n

Such that VA & k = weekeles VP

(2) a choice of a lift of the basis B of Vp to an A-basis of VA

(same as choosing a lift of p to p:6-76 ln(A))

 $D_{\overline{P},\Lambda}(A) = \text{set of choices of } (\Lambda)$

 $\mathcal{D}_{P,\Lambda}^{\square}(A) = \text{set of choices of (1) and (2)}.$

Theorem. Assume G has property of. Then the framed deformation functor $D_{\overline{p},1}^{\overline{D}}$ is pro-representable. (No need of Schlessinger)

Proposition. The transformation of functors $D_{P,\Lambda}^{\Box} \rightarrow D_{P,\Lambda}$ defined by $(p:6-7GL_n(A)) \mapsto [P]_{str.eguivaluce}$

is formally smooth.

Corollary. if $C_{\mathcal{R}}(\bar{p}) = k$ ($\neg D_{\bar{p},1}$ and $D_{\bar{p},1}$ are represented as $Hom_{\mathcal{E}_{\Lambda}}(R_{univ}, \cdot)$). Home (R_{univ}, \cdot) , then $R_{univ} = R_{univ}[T_{\Lambda}, -, T_{\Lambda}]$.

Proof of pro-representability of DPIA.

We look for an object $R \in \mathcal{E}_{\Lambda}$ such that $\mathcal{D}_{\overline{p},\Lambda}(A) = \text{Hom}_{\mathcal{E}_{\Lambda}}(R,A) \quad \forall A \in \mathcal{E}_{\Lambda}$.

1) We prove the result for G finite. (fix p.6-16Ln(k))

Define A-algebra 1[6,n] by giving

* generators: Xij, geb, ij & {+1-, n}

$$X_{ij}^{e} = \begin{cases} 1 & \text{if } i = j \\ 0 & \text{if } i \neq j \end{cases}$$

Then there is a bijection, for every 1-aljebra A

 $b_A: Hom_A(\Lambda(G,n), A) \rightarrow Hom_{GP}(G, GLn(A))$ $f \longrightarrow (g \mapsto (f(x_{i,j}^3))_{i,j})$

Cheek: this is a bijection. (N[-, n] - GLn)

Consider $\bar{p} \in \text{Hom}_{\underline{Grp}}(G, GL_n(k))$, thun $b_k^{-1}(\bar{p}) = i f_{\bar{p}}$ is a 1-algebra-morphism $\Lambda[G_1n] \longrightarrow k$. Set $m_{\bar{p}} = \ker f_{\bar{p}}$.

Set R:= mp-adic completion of A[6,n) = lim 1[6,n] mp

show that R has the universal property: take a deformation $p: 6 \rightarrow GL_n(A)$ of \bar{p} to some $A \in \hat{\mathbb{C}}_A$. Then $f_p:=b_A^{-1}(p): \Lambda [G_1n] \rightarrow A$, then $f_p(m_{\bar{p}}) \leq m_A$.

Also, for with this property is unique.

(are exactly the H's such that \bar{p} factors through \bar{p} : $G/H \rightarrow GLn(k)$)

For each such H there is a representing pair $(R\bar{p}_{H}, \bar{p}_{H})$ for the functor $D\bar{p}_{H}$. The set $\{R\bar{p}_{H}\}_{H}$ is a projective system. and

Then Rp pro-represents Dois:

$$\mathcal{D}_{P,\Lambda}^{\Omega}(A) = \lim_{H} \mathcal{D}_{P_{H,\Lambda}}^{\Omega}(A) = \lim_{H} \operatorname{Hom}(R_{\overline{P}_{H}}, A)$$

$$= \operatorname{Hom}(\lim_{H} R_{\overline{P}_{H}}, A)$$

$$= \operatorname{Hom}(R_{\overline{P}_{H}}, A)$$