UNCLASSIFIED AD NUMBER AD830474 LIMITATION CHANGES TO: Approved for public release; distribution is unlimited. FROM: Distribution authorized to U.S. Gov't. agencies and their contractors; Administrative/Operational Use; 19 JAN 1968. Other requests shall be referred to Air Force Technical Applications Center, Washington, DC 20330. **AUTHORITY** AFTAC/USAF ltr 28 Feb 1972

LONG RANGE SEISMIC MEASUREMENTS

AD830474

FAULTLESS

19 JANUARY 1968

Prepared for

AIR FORCE TECHNICAL APPLICATIONS CENTER

Washington, D. C.

12 APRIL 1968

TELEDYNE INDUSTRIES, INC.

Under
Project VELA UNIFORM

ADVANCED RESEARCH PROJECTS AGENCY
Nuclear Test Detection Office
ARPA Order No. 624

BEST AVAILABLE COPY

LONG RANGE SEISMIC MEASUREMENTS

FAULTLESS

19 January 1968

SEISMIC DATA LABORATORY REPORT NO. 215

AFTAC Project No.: VELA T/6702

Project Title: Seismic Data Laboratory

ARPA Order No.: 624

ARPA Program Code No.: 8F10

Name of Contractor: TELEDYNE INDUSTRIES, INC.

Contract No.: F 33657-68-C-0945

Date of Contract: 2 March 1968

Amount of Contract: \$ 1,251,000

Contract Expiration Date: 1 March 1969

Project Manager: Royal A. Hartenberger (703) 836-7647

P. O. Box 334, Alexandria, Virginia

AVAILABILITY

This document is subject to special export controls and each transmittal to foreign governments or foreign nationals may be made only with prior approval of Chief, AFTAC/Vela Uniform

Wish. Be

This research was supported by the Advanced Research Projects Agency, Nuclear Test Detection Office, under Project VELA-UNIFORM and accomplished under the technical direction of the Air Force Technical Applications Center under Contract F 33657-68-C-0945

Neither the Advanced Research Projects Agency nor the Air Force Technical Applications Center will be responsibile for information contained herein which may have been supplied by other organizations or contractors, and this document is subject to later revision as may be necessary.

TABLE OF CONTENTS

Page No.

2

EVENT DES	CRIPTION
INTRODUCT	ION
INSTRUMEN	TATION AND PROCEDURE
DATA AND	RESULTS
TABLES	
1.	Station Status Report - FAULTLESS
2	Principal Phases - FAULTLESS
3	Comparison of Signals - FAULTLESS AND GREELEY
4	Recording Site Information - FAULTLESS
FIGURES	
1	Recording Stations and Signals Received
2	Unified Magnitudes
3	Adjusted Unified Magnitudes
4	Travel-Time Residuals, T-\(Delta/8.1\); T-JB
5	Maximum Amplitudes of Pn and P
6	Maximum Amplitudes of Pg
7	Maximum Amplitudes of Lg
8	Maximum Amplitudes of LQ
9	Maximum Amplitudes of LR

FAULTLESS

EVENT DESCRIPTION

DATE:

19 January 1968

TIME OF ORIGIN:

18:15:00.12

YIELD:

MAGNITUDE: UNIFIED:

 6.51 ± 0.46

ADJUSTED:

 6.25 ± 0.23

LOCATION:

SITE:

Central Nevada Supplemental Test

Site UC-1

GEOGRAPHIC COORDINATES:

Latitude:

38° 38' 03.0" N

Longitude: 116° 12' 55.0" W

ENVIRONMENT:

GEOLOGIC MEDIMUM:

Tuff (water saturated)

SURFACE ELEVATION:

6104 ft.

SHOT ELEVATION:

2904 ft.

SHOT DEPTH:

3200 ft.

COMPUTED EPICENTER:

ALL STATIONS

LOCATE:

GEOGRAPHIC COORDINATES:

(Herrin 61 Surface)

Latitude:

38° 36' 46.8" N

Longitude: 116° 15' 36.0" W

TIME OF ORIGIN:

18:15:01,6Z

DEPTH CONSTRAINED TO:

0 km.

EPICENTER SHIFT:

3.4 km S 46° W

HYPO I

GEOGRAPHIC COORDINATES:

(Herrin 66 Surface)

Latitude:

38° 37' 48.0" N

Longitude:

116 13' 12.0" W

TIME OF ORIGIN:

18:15:02.22

DEPTH CONSTRAINED TO:

0 km.

Recording Stations and Signals Received

INTRODUCTION

A long range seismic measurement (LRSM) program and several larger seismographic observatories were established under VELA-UNIFORM to record seismological data resulting from natural seismic activity and a planned series of U.S. underground nuclear The LRSM teams are mobile and occupy locations selected tests. to provide optimum data from events of special interest; the observatories are permanent installations as follows:

Wichita Mountains Seismological Observatory (WMSO) Lawton, Oklahoma

Uinta Basin Seismological Observatory (UBSO) Vernal, Utah

Tonto Forest Seismological Observatory (TFSO) Payson, Arizona

Large Aperture Seismic Array (LASA) Billings, Montana

The purpose of this report is to provide an analysis of data resulting from the FAULTLESS event recorded by the LRSM teams and the VELA observatories and a preliminary summary of data reported by other permanent and temporary seismographic stations.

INSTRUMENTATION AND PROCEDURE

The instrumentation at each of the LRSM locations consists of three-component short-period and three-component long-period seismographs. In general, data are recorded on 35 millimeter film and on one-inch 14-channel magnetic tape, although recently more portable instrumentation has been incorporated which records only on magnetic tape. The stations are all equipped to record

WWV continuously to provide accurate time control. Calibration is accomplished once each day and just prior to each shot at the operational settings. Pertinent information useful for analysis of LRSM data is available to qualified users of this data and is contained in Technical Report 65-43, "Interpretation and Usage of Seismic Data, LRSM Program." General information on LRSM van and portable system equipment and operation is given in Technical Report 66-27, "The LRSM Mobile Seismological Laboratory," and 65-74, "A Portable Seismograph." Copies of these reports may be obtained from DDC. The AD control number of Technical Report 66-27 is 480343. All the observatories have both long-period and short-period, three-component instrumentation, in addition to their other specialized facilities.

Station information is presented in Table 4. This includes the station name and code; the geographic coordinates; the distances and azimuths involved; the station elevations; and the type of instruments in use at each location. Representative instrumental response curves are shown in Appendix II(B), II(C), and II(D) of the BOURBON shot report, SDL Report No. 186, available from DDC as AD 816273.

The procedures used in measuring amplitudes and the unified magnitude are shown in Appendices II(A) and I(B), respectively, of the BOURBON shot report. The distance factors (B) beyond 16° are from Gutenberg and Richter*. For distance less than 16° values were read from a curve in the Gutenberg and Richter paper

⁻³⁻

^{*}Gutenberg, B. and Richter, C.F., Magnitude and Energy of Earthquakes, Ann. Geofis., 9 (1956), pp. 1-15.

. back to 10° and then extrapolated to 2°, using an inverse cube relationship. An additional magnitude for less than 16° was computed using a method described by Evernden *. (Figure 3)

A standard hypocenter location program for a digital computer was used to determine the location using data from all stations analyzed. Best-fit values of latitude, longitude, and time of origin are determined statistically by a least-squares technique. This utilizes a Jeffreys-Bullen travel-time curve as modified by Herrin in 1961 on the basis of Pacific surface-focus recordings. An additional location was made using a program called HYPO I. Precision of the computation is limited primarily by the accuracy of arrival times, the validity of the standard travel-time curve, and by local velocity deviations. These methods are based on P-wave arrivals with depth constrained to zero.

DATA AND RESULTS (LRSM AND VELA OBSERVATORIES)

The parameters of the FAULTLESS event and a summary of the seismic evaluation is shown on the Event Description page.

The operational status of the 20 LRSM stations and observatories is given in Table 1, and illustrated in Figure 1.

Table 2 summarizes the measurements made of the principal phases from the FAULTLESS event at the LRSM and VELA stations. Included are the Pn and P arrival times, the maximum amplitudes (A/T) of the Pn and P motion and other phases as seen on the short-period instruments. Long-period Love and Rayleigh wave

⁻⁴⁻

^{*} Evernden, J.F., Magnitude Determination at Regional and Near Regional Distances in the United States, AFTAC/VELA Seismological Center Technical Report VU-65-4A, (1965), pp.6,13.

motion are also tabulated in (A/T) form. In addition, the individual station Rayleigh wave areas (mm²) are indicated as measured on the LPZ only. Although reduced to 1K magnification, they have not been normalized to any magnitude. Twenty stations recorded short-period signals. Long-period signals were recorded by nineteen stations.

The unified magnitudes determined from the LRSM and VELA observatories are shown in Figure 2. The average magnitude is 6.51 ± 0.46 . The adjusted unified magnitude is 6.25 ± 0.23 .

The travel-time residuals from the Pn and P phases are shown in Figure 4. Figures 5 through 9 illustrate plots of the amplitudes of P, Pg, Lg, LQ, and LR.

Attached to the report are illustrative seismograms showing the signals recorded at four stations. The most distant station analyzed that recorded FAULTLESS was NP-NT at a distance of 4197 kilometers.

2000	6787160	DISTANCE	1067,	MAGO]- FICATION (E) FILM # 10	PNASE	9200	RVED	T I HE	EB (J-B)	P56100	MARINUM	MAD 7606	eI- (e)	AREA (om²)
		(=)				(010)	(65C)	(H)O)	(66C)	(65C)	AMPLITAGE .	**	**	LP3
MR-CV	Atsa, Borado	170	596 596 597 LPT LP3	8.66 0.27	******	:	60.4 29.1	•	20.70	1.8	(36,838) (142,657)	(8.30)	(8. 16)	
LA-67	Keezb, Utah	346	SP3 SP3 SP2 SPT LPT LP3	0. \$16 0.516 0. 197* 0. 069*	Pn P6 Lg LQ	•	50.5 62.3 (56.3)	٥	\$1.72	(0.6) (1.0) 0.6 0.6	(6030) (10.135) 100.543 (53,267)	(6.64)	(6.37)	***
0650	Ulate Sesse Seismelagicel Sbservetery, Ute5	602	SP3-10 SP2-10 SP5 SP8 LP5 LP8 LP2	0.94 8.96* 1.0		1	26,2 (42,1)	1	24.11	(1.3) 1.4 {12.0}	(12,241) (14,141) (666) (1131)	(7.67)	(6.36)	
TFS0	Teete Ferest Seismelegics Observatory, Arizona	415	SPZ-00 SPZ-00 SP6 SP5 LP0 LP5 LPZ	5.6 6.2 1.1 1.1	Pu Pg Lg Lg Lg Li	1	(30.1) 52.5	1	30.66	(0.6) (1.0) 1.1 1.7	(\$66) (4545) 3919 5630	(6.33)	(6.15)	
CC-WA	Coscade Tuncel, Veshingtoe	1068	SP3 6P2 SP2 SP3 SPT LPT LP2	2.6 2.6 2.6 2.8 19.1	Pa Pa Lg LG	2 2 2 2	26.2 26.7 35.3 (11.9)	2	25.13	1.1 1.3 1.0 1.2 1.4	2214 3069 1607 2846 1723	7.62	6.16	
LC-100	Les Creces, Sew Mesice	1112	SPZ SP3 SP3 SPT LPT LP3	21.8 21.9 15.6° 20.8 20.4 2.29	Pu Pp Lig LQ	2 2 3	30.3 42.9 06.6	2	26.17	1.25 1.1 1.2 1.6 22.0 15.0	2246 261 2204 2616 (259) 1039	7.65	6, 16	1896, 69
C00	Suberray, A0-10, Factore	1212	SPZ LPB LPS LPZ		Pa LQ LQ L6	2	36.7	ż	40.34	**	**			
WHSO	Bichite Mneeteles Seismelegicel Observatory, Oklebome	1632	SP2-6 SP3-6 SP2-6 LPB SPE SPE LPB LPB LPB	29.6 2.6 2.6 9.5 2.6 2.6	P	1	20.6 37.6 30.3 24	3	30,76	1.4 1.4 1.4 (16.0) 2.0 2.0	693 6231 2297 (58.0) 1736 2778	6.36	8. 10	
P4-60	Priece Seerge, Sritis5 Celumble, Cenzde	177#	SPZ SPZ SPZ SPB SPB LPT LPT LPT	25.7 26.7 26.7 26.4 26.1 2.13*		3	46.5 52.9 36.9	,	47,49	1.2 1.3 1.4 2.0 2.1 (16.0) (15.0) (14.0)	2194 3143 618 600 996 (702) (612) (1663)	6.26	6.57	1576.27
6L-T9	SarlaeS, Toues	1674	SPZ SPZ SPZ SPZ SPT	19.5 4.26 4.26 3.75		3 4 5	57.6 {00.3} {10.3}	,	56.61	1:3	1061 1630 2665 3904	6.93		18,0.27
53-18	Sac Jeso, Tosos	2054	SPZ SPZ SPZ SPT LPT LPT	26.0 6.0 26.0 46		1	21.9 27.4 34.9	٩	20.11	(1.6) 1.3 1.4 2.6 14.0	(1102) 566 940 2446 2040 2513	(6.00)		2529.61
66-00	6e6 Labo, Octaria, Cocado	2226	SP3 SP3 SP3 SP2 SP2 SP2 LPT Si2 SPT LPT LP3	32.6 32.6 32.6 32.6 32.6 32.6 32.6 27.4 32.6 26.1 1.05* 0.63	P e e mp e s e g d.l.m	10	33.9 35.3 36.1 46.6 57.0 06.4 25 00.7	•	37,32	1.2 1.6 1.2 1.35 1.2 1.25 11.5 1.2 2.0 16.0	601 1076 2093 1099 1065 1077 166 160 1104 349	5, 90		1617.46
WEYE	Uhlteherse, Yuhae Territary, Coesse	6762	SP3 SP2 LPT SPT LPT LP3	44.6 44.5 22.8 41.9	, , , , , ,	5 5 10	25.3 33.7	•	26.77	1.3 1.1 (12.0) 2.6	#50 230 (136) 603	6.31	:	2600.53
AZZAL	BlowewSrie Clty, AleSema	2766	SP3 SP2 SP3 SP7 LPT LPZ	16.36 18.36 16.35 18.5 1.65	* * * * * * * * * * * * * * * * * * *	;	26.6 39.7 00.7	٠	27.26	1.3 1.2 1.2 2.4 (20.0)	1026 596 154 940 (261) 654	6.50		1643.33
86-60	Alienerie, Werth Cereliue	3216	SPZ SP3 SPZ SP3 SPT LPZ	62.5 62.5 62.5 62.5 62.5	ļ.	;	59.7 24.7 46.7 10.1	٠	02.75	(1.4) 1.0 1.2 1.2 2.6 (16.0)	(300) 126 356 203 7716 (631)	(6.06)		760.70
65-FL	SelTeview, Flarida	3320	SPZ SPZ SP3 SP3 LPT SPT SP6 LPT LPB LPZ	26.5 26.5 26.5 24.5 4.85 22.8 22.7 4.96 4.86 3.40	P PP P S 9 L GG L L G	6 6 7 6 11	(06.9) 22.3 10.5 12.3 05	•	11.21	1.46 1.4 1.6 1.0 (16.0) 1.6 1.6 (19.0) 19.0	1263 380 667 170 (31.6) 326 343 (34.6) 101 645	6.70		1303.44
L6-4H	Lishow, New Bemps5ire	3710	SP3 SP2 SPT LP3	33.05 33.05 26.26 1.43	i	:	(36.9) SO.5	5	41.65	1.4 1.1 2.2 13.5	619 161 (724) 3216	6.46		2269.73
MM - MS	Meeltew, Selee	3896	SPZ SPZ SP3 SP3 SPZ SPZ SPZ SPT LP3	33.6 22.66° 33.6 33.6 33.6 47.0 29.3 2.34	(PcP)	7 7 7 9 6	01.6 03.6 06.2 16.2 26.7 32.6	,	03.94	{1:1} -95 -1.05 -1.2 -1.2 -1.2 -1.2 -1.2 -1.2 -1.3 -1.2 -1.3 -1.2 -1.2 -1.3 -1.2 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3	(266) (269) 179 209 136 69.3 363 (246) (1386)	(6.06)		1247.86
5Y3Q6	Schafferville, Qualuc, Couda	4062	SPZ SPZ SPZ SPZ SPZ SPZ SPZ SPZ LPG LPG LPT LPZ	28.4 26.4 26.4 26.4 26.4 26.5 27.6 37.4 33.3	P e e c e e e e e e e e e e e e e e e e	7777	07.6 11.6 26.2 (23.3) 30.1	,	10.36	1.4 1.0 1.1 1.2 1.8 (16.0) (16.0)	606 295 362 265 230 400 360 (09.4) (124)	6.44		
MP-MT	Macid Sey, Northwest Territories, Couese	4167	SPZ SPZ SPZ SPZ SPZ SPT IPT LP3	33.3 3.16 229 229 221 2.24 2.69	Le PP PC Le Le	ļ	(42,9) 33.5	,	18.60	(10.6) 13.8 (5.7) 15.4) (3.8) 57.8 10.8	(124) 6162 (067) (431) (1000) 725 1353			1096, 52 3307, 60

170 198 (6.16) 6.25 (142,657) 100,575 (424,064) (424,064) (424,06	Station	Faultless	Greeley	Adjusted	Adjusted			Mµ/sec	(d-0)				
170 198 (6.16) 6.25 (142,887) 100,575		(km)	(ka)	Magr	Magg	Lgr	Lgg	LOF		LRE	LR	ARF.	ARG
1.00 1.00 0.10 0.20 (142,857) 100,575 1.00	MN-NV	170	100	(3: 3)						1	9	(WW)	(MM -)
1,48 320 (6.37) (6.44 (53,261) 125,880 .		-	0	(0.10)	6.25	(142,857)	100,575	;	:	i	(424,064)	;	142 246
602 682 (6.38) 5.96 (14,141) 13,947 (1131) 9800 995 2562 14,933 14,933 14,933 14,933 14,933 5562 2562 5562 5562 5562 5563 5693 1774 1874 1874 1874 1874 1874 1874 1874 1874 1874 <		348	320	(6.37)	6.44	(53,261)	125,880	1	;	:	88,101		
1632 1629 6.16 6.30 5630 (10,637) 2562 4,933 14,933 1775 1915 6.57 5.85 996 1154 (702) 4214 (1883) 3115 1579 1915 2228 2346 5.90 (6.40) 1104 757 349 777 1853 1313 1817 1854 2601 2228 2346 6.50 6.51 940 (974) (261) 1137 864 (2472) 1843 2601 2288 2316 2329 6.34 1775 1651 1737 864 (2472) 1843 2601 2316 2329 6.34 (724) 592 1 2225 3215 6.246 2269 2396 4082 6.08 6.42 6.42 332 (124) 535 2122 (2957) 1097 1 1018 4197 4344 (1088) 793 725 1312 1625 3398 3388 6.34 6.24 830 773 793 1635 1635 2733 1845 3398 3498		602	682	(6.38)	5.96	(14,141)	13,947	(1131)	9800	ļ	900		55,533
1632 1629 6.10 6.30 2778 3028 (2030) 5563 17155 1579 17155 1515 1579 17155 1515 1579 17155 1515	04	655	572	(6.15)	(6.26)	5630	(10,637)	-	2562	;	200 1	;	1057
1775 1915 6.57 5.85 996 1154 (702) 4214 (1883) 3115 1579 1572 1528 1228 2346 5.90 (6.40) 1104 757 349 777 1853 1733 1817 1872 1873 1873 1817 1878 1873 1873 1873 1873 1873 1873 1873 1874 1878	OWA	1632	1629	6.10	6.30	2778	3028	;	(2030)	;	555		7306
2228 2346 5.90 (6.40) 1104 757 349 777 1853 1733 1817 2782 2913 6.31 5.62 603 657 2348 2410 4348 2601 2786 2296 6.50 6.51 940 (974) (261) 1137 864 (2472) 1843 3216 3249 (6.09) 6.34 1715 1651 1 1664 (317) 1974 791 3320 3318 6.70 6.41 343 387 101 1088 645 1961 1304 3396 4082 6.49 6.43 (724) 592 1 2225 3215 6246 2269 4082 6.08 6.44 (6.21) 408 357 (124) 535 2122 6246 2269 4197 4344 15,131 17,465 416 536 2733 1845 <th>PG-8C</th> <td>1775</td> <td>1915</td> <td>6.57</td> <td>5.85</td> <td>966</td> <td>1154</td> <td>(702)</td> <td>4214</td> <td>(1883)</td> <td>3115</td> <td>1520</td> <td>3750</td>	PG-8C	1775	1915	6.57	5.85	966	1154	(702)	4214	(1883)	3115	1520	3750
2782 2913 6.31 5.62 603 657 2348 2410 4348 2611 2786 2796 6.50 6.51 940 (974) (261) 1137 864 (2472) 1843 3216 3249 (6.09) 6.34 1715 1651 1 1664 (631) 1974 791 3320 3318 6.09 6.41 343 387 101 1088 645 1961 1304 3710 3788 6.49 6.43 (724) 592 1 2225 3215 6246 2269 4082 4082 6.08 6.42 383- 589 (242) 2064 1399 898 1748 4082 4195 6.44 (6.21) 408 357 (124) 535 2122 (2957) 1097 4197 4344 (1088) 793 755 1312 1625	N-12	2228	2346	5.90	(6.40)	1104	757	349	777	1853	1733	1013	2400
1.02 2.786 2.796 6.50 6.51 940 (974) (261) 1137 864 (2472) 1843 1.01 1.01 1.02 1.0	H A A A	2782	2913	6.31	5.62	603	657	;	2348	2410	4348	101	2048
3216 3249 (6.09) 6.34 1715 1651 1 1664 (631) 1974 791 3320 3318 6.70 6.41 343 387 101 1088 645 1961 1304 3710 3788 6.49 6.43 (724) 592 1 2225 3215 6246 2269 4082 4082 6.08 6.42 383- 589 (242) 2064 (1399) 898 1748 4197 4344 (1088) 793 725 1312 1625 3398 1-01 (1088) 793 725 1312 1625 3398 1-01 (1088) 793 725 1312 1625 3398 1-01 (1088) 793 725 1312 1645 1-01 15,131 17,465 1633 2733 1845 2733 1-02 1-05 1-05 1-05 1-05 1-05 1-05 1-05 1-05 1-05 1-05 1-05 1-05 1-05 1-05 1-05 1-05 1-05 1-05 1-05 1-05 1-05 1-05 -	AXZAL	2786	2796	6.50	6.51	940	(974)	(261)	1137	864	(2472)	1097	5223
3320 3318 6.70 6.41 343 387 101 1088 645 1961 1304 3710 3788 6.49 6.43 (724) 592 I 2225 3215 6246 2269 3896 4082 6.08 6.42 383- 589 (242) 2064 (1399) 898 1748 4082 4195 6.44 (6.21) 408 357 (124) 535 2122 (2957) 1097 4197 4344 (1088) 793 725 1312 1625 3398 Frage 6.30 6.24 15,131 17,465 416 2802 1633 2733 1845 1.01 1001 11.05 15.13 1.05 15.05 1633 2733 1845 399 1.02 1.05	AE-NC	3216	3249	(60.9)	6.34	1715	1651	I	1664	(631)	1974	1843	5491
3710 3788 6.49 6.43 (724) 592 I 2225 3215 6246 2269 3996 4082 6.08 6.42 383- 589 (242) 2064 (1399) 898 1748 4082 4195 6.44 (6.21) 408 357 (124) 535 2122 (2957) 1097 rage 6.30 6.24 15,131 17,465 416 2802 1633 2733 1845 1.01 .87 .15 .15 .15 .15 .15 .60 .59	8E-FL	3320	3318	6.70	6.41	343	387	101	1088	645	1961	167	1952
3996 4082 6.08 6.42 383- 589 (242) 2064 (1399) 898 1748 4082 4195 6.44 (6.21) 408 357 (124) 535 2122 (2957) 1097 rage 6.30 6.34 (6.21) 15,131 17,465 416 2802 1633 2733 1845 rage 6.34 6.24 15,131 17,465 416 2802 1633 2733 1845 1.01 .87 .15 .15 .1636 .60 .59 1.02 1.02 .105 .60 .59	HN-S-I	3710	3788	6.49	6.43	(724)	592	Н	2225	3215	3463	1304	4642
4082 4195 6.44 (6.21) 408 357 (124) 535 2122 (2957) 1097 rage 6.30 6.24 15,131 17,465 416 2802 1633 2733 1845 rage 6.34 6.24 15,131 17,465 416 2802 1633 2733 1845 1.01 .87 .15 .15 .15 .15 .60 .59 1.02 1.05 1.05 .1636 1633 2733 1845 1.05 .105 .105 .18 .60 .59	HN-ME	3996	4082	6.08	6.42	383-	589	(242)	2064	(1200)	9470	2269	2682
rage 6.30 6.24 15,131 17,465 416 2802 1633 2733 1845 6.34 6.34 6.24 830 791 297 1636 1633 2733 1845 1.02 1.02 1.05 1	SV3QB	4082	4195	6.44	(6.21)	408	357	(124)	7 2 2	(1339)	26.00	1748	1535
6.30 6.24 15,131 17,465 416 2802 1633 2733 1845 1.01 .87 .15 .60 .59 1.02 1.05 .185 .60 .59	NP-NT	4197	4344	;		(1088)	793	725	3 ;	1312	1625	3398	1820
6.34 6.24 830 791 297 1636 1633 2733 1845 1.02 1.05 1.05 186 1633 2733 1845 1.02 1.05 1.05 1.60 2.53	All Common Stations, Average			6.30	8 24	15. 31							
6.34 6.24 830 791 297 1636 1633 2733 1845 1.02 1.05 .18 .60 .59	Ratio Greeley					•	17,465		2802			1845	3116
6.34 6.24 830 791 297 1636 1633 2733 1845 1.02 1.05 1.05 .18 .60 .59	Distance>1700 KM Average			3									
1.05 1.0560	Ratio Faultless					830	791	297	1636	1633	2733	1845	3116
	ureeley			1.0.	~	1.0	2	•	18	9.	•	. 59	

--- Clipped On Film and Tape

Comparison of Signals - FAULTLESS and GREELEY Table 3

I INOPERATIVE

			4	7	3,512	Computed Azimuth	Azimuth	Installed Azimuth	Azimuth	9	2
Code	Station	(km)	Latitude	Longitude	(km)	Epi. Sta.	Sta. Ep1.	Radial	Tang.	Inst.	Inst.
AN-KM	Mina, Nevada	170	38° 26° 10° N	118° 08° 53" W	1.52	263*	82*	308	38.	_	:
KN-UT	Kanab, Utah	348	37" 01" 22" N	112" 49" 39" W	1.74	120°	302°	•\$6	185*	_	:
UBS0-210	Uinta Basin Seismological Observatory, Utah	602	40° 19' 18" N	109" 34" 07" W	1.60	20.	254	.06	•	#C	:
TFS0-Z60	Tonto Forest Seismological Obsarvatory, Arizona	655	34" 17" 12" N	111° 16' 03° W	1.49	136	319*	•06	•	*5	:
CC-NA	Cascada Tunnal, Washington	1089	47" 46' 09" N	121° 05° 01" W	1.04	340	187"	311*	041*	S	:
LC-NK	Las Crucas, New Mexico	1112	32" .24" 08" N	106* 35' 58" W	1.59	126*	311•	133*	223"	v	:
*LA0	Subarray A0-10, Montana	1212	46° 41° 19" N	106" 13' 20" K	06.0	38.	226	.06	•	HS	:
*NMS0-Z6	Wichita Mountains Saismological Observatory, Oklahoma	1632	34" 43" 05" N	98° 35' 21° W	0.51	100°	291°	.06	•	#S	:
>8-9d+	Prince Gaorge, British Columbia, Canada	3771	83° 89' 50" N	122° 31' 23" W	16.0	346*	162°	110°	200	1	:
GL-TX	Garland, Texas	1874	32° S8' 20" N	M "90 '8E "36	0.17	104°	295	110"	200°	PS	
SJ-TX	San Jose, Taxas	2064	27° 36' 43" N	98° 18' 46° ¥	11.0	121*	311	131°	221°	PS	:
RK-ON	Red Laka, Ontario, Canada	2225	SO. SO. SO. N	93* 40' 20" W	0.37	45°	241°	588.	148°	v	:
WH2YK	Whitenorse, Yukon Tarritory, Canada	2782	60° 41' 41° N	134* S8' 02" W	6.85	338	143°	325			:
AX2AL	Alexandria City, Alabama	2786	32° 46' 38° N	86° 07' 48° W	0.21	94°	292°	112	202	P.5	*
AE-NC	Albamarle, Morth Carolina	3216	35° 26' 01" N	80" 03' S2" W	0.18	8S*	287*	107	197	P S	:
*BE-FL	Ballaviaw, Florida	3320	28° 54' 19" N	82° 03° 52" W	0.02	.66	298	208	298	PS	*
LS-NH	Lisbon, New Hampshire	3710	44. 14. 18. N	71* 55° 21" W	0.29	.99	276°	96	186	PS	:
HM-ME	Houlton, Maine	3996	46° 09' 43° N	H #60 .65 .49	0.21	.29	276°	93.	183°	v	:
SV3Q8	Scheffarvilla, Quebec, Canada	4082	S4 48* 39" N	66* 45' 00" W	0.58	47*	265	139°	229°	s	:
TN-4N	Mould Bay, Northwast Tarritorias, Canada	4197	76° 15' 08" N	119* 22° 18" W	90.0	359*	176°	326*	.98	JMZ S	:

^{*} Saismomaters Not Orlanted Toward N.T.S.

L - Larga Benioff S - Small Benioff JM - Johnson - Mathason

Figure 2

Figure 5

Figure 6

Figure 7

Figure 8

Figure 9

Security	Classification
Security	CIESPILICETION

DOCIMENT CO	NTROL DATA - RAI		
(Security classification of title, body of obstract and index	ing ennotation must be en	fored when	the everall report is clearified)
ORIGINATING ACTIVITY (Corporale author)		Za. REPO	RT SECURITY C LASSIFICATION
TELEDYNE INDUSTRIES, INC.	\\		assified
ALEXANDRIA, VIRGINIA		2 - GROU	
1 REPORT TITLE			
Long Range Seismic Measurement:	s - FAULTLESS	3	
4. DESCRIPTIVE NOTES (Type of report and Inclusive detec) Scientific			
S. AUTHOR(S) (Leel name, first name, initial)			
Clark, Don M.; Moore, Edward W.	; Nelson, Du	ane D	•
12 April 1968	70- TOTAL NO. OF PA	020	75. NO. OF REPS
SE. CONTRACT OR GRANT NO.	18		2
F 33657-68-C-0945	Se. ORIGINATOR'S KE	PORT NUM	enals)
4 PROJECT NO.	215		
VELA T/6702			
6.	SA. OTHER REPORT N	0(8) (Any	other numbers that may be sealgned
ARPA Order No. 624	mie repert)		
d ARPA Program Code No. 8F10			
This document is subject to spec	4 . 1		
This document is subject to spec mittal to foreign governments or with prior approval of Chief Am	foreign not	ontro]	s and each trans-
with prior approval of Chief, AF	Tareign nat:	ionals	may be made only
11. SUPPLEMENTARY NOTES	12. SPONSORING MILIT	ARY ACTIV	MTY
	ADVANCED RES	SEARCH	PROJECTS AGENCY
	NUCLEAR TES!	r Dete	CTION OFFICE
11 ABSTRACT	WASHINGTON,		
	was mad	€.	With the state of
An analysis of seismologica explosion as a continuing study distinguishing between carthers	i data irom a	in und	erground nuclear
			s. A table of
included along with other unide	entified phas	ina su	riace waves are
	pilat	K	= 5
			\
			18.3
14. KEY WORDS			
Seismic Magnitude	Vela-uniform		
Seismic Travel-Time	Nuclear Test		1 1 1 2 1 2 1
Seismic Amplitude	ICSL		(E)

Unclassified
Security Classification

FAULTLESS

LC-NM
LAS CRUCES, NEW MEXICO
19 JANUARY 1968 Δ = 1112 km

FAULTLESS

PG-BC
PRINCE GEORGE, BRITISH COLUMBIA,
CANADA
19 JANUARY 1968

 $\Delta = 1775 \text{ km}$

FAULTLESS

RK-ON
RED LAKE, ONTARIO, CANADA
19 JANUARY 1968
∆= 2228 km

	8:19:10.0Z	√111/WV	www	mHMM	Mari	Minm	~ \\\\	Minnen.
•		·	iv.	₩ <u>,</u> -₩	,i.w	mimm	^ ∕∕∕·∕	
				•	•	•		
			•			•	•	•
	The same		•			<u></u>	<u>:</u>	•
	P							

		··-	i	<u>-</u>	<u>:</u>	i		i	~~
····			~~·-	~~·i~~	<u> </u>	-~·i-~	i		~~
~vi~	·····	mim	mim-	i	iv	ivm	`	i.	~~
•			•		•				
. !		•							
	E								

FAULTLESS

SV3QB
SCHEFFERVILLE, QUEBEC, CANADA
19 JANUARY 1968 $\Delta = 4082 \text{ km}$

A

B

	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	M	mim	willmw	Viv	Minmy	mimm	wiw	~
MhNMW	Nww	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	·/////////////////////////////////////	mimm\	~~~\\w	wimm	mm'mm	~	/
· · · · · ·									
		•	•	•		•		•	
<u>. </u>									


~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	·//////	<b>~~</b> V/\	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	······	<b>////</b>	MMin	<b>***</b>
www.iw	//////////////////////////////////////	~~\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	Www	ww.i-	~~~~~	~\\\\	mjim	mir
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	~^~··~	~^~!n~^	.^^ ^ ^ ^ ~ ~ ~	mn minn	30 10 10 10 10 10 10 10 10 10 10 10 10 10	Manian	48 48 A' 48 A	<b>.</b>
A A A A A A A A A A A A A A A A A A A	***********	~ V @ V . W V I		~~~~~~~	~\v\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	vyvvwv(M	· · · · · · · · · · · · · · · · · · ·
				81				
								•
•								
	•	·		•		<u> </u>		

n ,

wimming with a will the will t

