Зимний экзамен «Математический анализ 3»

ФКН НИУ ВШЭ, 2-й курс ОП ПМИ, 2-й модуль, 2016 учебный год

Билет 1 Знакопостоянные числовые ряды

Понятие числового ряда. Критерий Коши сходимости числового ряда. Необходимое условие сходимости ряда. Необходимое и достаточное условие сходимости ряда с неотрицательными членами. Признаки сравнения.

Понятие числового ряда

Пусть задана числовая последовательность $\{a_k\}_{k=1}^{\infty}$.

Определение 1. Символ

$$\sum_{k=1}^{\infty} a_k = a_1 + a_2 + \ldots + a_n + \ldots$$
 (1)

назовем числовым рядом.

Определение 2. $a_n - n$ -ый член числового ряда (1).

Определение 3. $S_n = \sum_{k=1}^n a_k - n$ -ая частичная сумма числового ряда (1).

Определение 4. $r_n = \sum_{k=n+1}^{\infty} a_k - n$ -ый остаточный член числового ряда (1).

Определение 5. Ряд (1) называется cxodsumacs, если существует $\lim_{n \to \infty} S_n = S < \infty$. В противном случае числовой ряд (1) называется pacxodsumacs.

Определение 6. Число S будем называть *суммой этого ряда*.

Обозначения:

Сходящийся ряд:
$$\sum\limits_{k=1}^{\infty}a_k
ightarrow$$
 Расходящийся ряд: $\sum\limits_{k=1}^{\infty}a_k
ightarrow$

Критерий Коши сходимости числового ряда

Теорема 1. Для сходимости числового ряда (1) необходимо и достаточно, чтобы для него выполнялось условие Коши:

$$\forall \varepsilon > 0 \ \exists N(\varepsilon) \colon \forall n \geqslant N(\varepsilon), \ \forall p \in \mathbb{N} \Rightarrow \left| \sum_{k=n+1}^{n+p} a_k \right| < \varepsilon$$

Доказательство. Следует из критерия Коши для числовых последовательностей, так как

$$\sum_{k=n+1}^{n+p} a_k = S_{n+p} - S_n$$

Необходимое условие сходимости ряда

Теорема 2. Если числовой ряд (1) сходится, то его n-ый член $a_n \xrightarrow[n \to \infty]{} 0$.

Доказательство. Возьмем в условии Коши p=1. Тогда

$$\forall \varepsilon > 0 \ \exists N(\varepsilon) \colon \forall n \geqslant N(\varepsilon), \ \forall p \in \mathbb{N} \Rightarrow |a_{n+1}| < \varepsilon,$$

а это и значит, что $a_n \xrightarrow[n \to \infty]{} 0$.

Необходимое и достаточное условие сходимости ряда с неотрицательными членами

Теорема 3. Пусть $\forall a_k \geqslant 0$. Тогда для сходимости числового ряда $\sum\limits_{k=1}^{\infty} a_k$ необходимо и достаточно, чтобы $\{S_n\}$ была ограничена.

Доказательство. $\{S_n\}$ \nearrow , поэтому утверждение этой теоремы следует из теоремы Вейерштрасса (сходимость монотонной числовой последовательности).

Th(Вейерштрасса)

Неубывающая числовая последовательность сходится тогда и только тогда, когда она является ограниченной сверху. □

Признаки сравнения (или первый признак сравнения)

Теорема 4. Пусть $\forall k \in \mathbb{N} \Rightarrow 0 \leqslant p_k \leqslant q_k$. Тогда

- (1) из сходимости $\sum_{k=1}^{\infty} q_k$ следует сходимость $\sum_{k=1}^{\infty} p_k$.
- (2) из расходимости $\sum\limits_{k=1}^{\infty}p_k$ следует расходимость $\sum\limits_{k=1}^{\infty}q_k$.

Доказательство. Пункт (1) следует из необходимого и достаточного условия сходимости ряда с неотрицательными членами (предыдущая теорема).

Пункт(2) доказывается из пункта (1) от противного.