1. međuispit

b. NE

2.	Navedite OSI slojeve koji obavljaju sljedeće funkcije:			
	a. Kanalsko kodiranje i modulacija			
	b. Pouzdana isporuka s kraja na kraj			
	c. Multipleksiranje tokova			
	d. Osiguravanje kripto-zaštite			
	e. Usklađivanje interakcije 2 udaljena procesa			
3.	Komutacija paketa je znatno učinkovitija od komutacije kanala za snopoviti			
	(praskoviti) promet jer komutacija paketa koristi brže linkove			
	a. DA 🧫			
	b. NE 🔛			
4.	Vaš telefon ili modem preko kojeg osobno računalo povezujete na Internet povezan			
	je s telefonskom priključnicom s 4 žive			
5.	TV distribucija i elektronička pošta su primjeri usluga koje mogu tolerirati veća			
	kašnjenja u mreži			
	a. DA			
	b. NE			
6.	U paktetskoj mreži u kojoj se primjenjuju virtualni kanali, paketi stalne ili promjenjive			
	duljine usmjeravaju se istim putem.			
	a. DA			
	b. NE			
7.	Sustav signalizacije zajedničkim kanalom primjenjuje se u Internet mreži			
	a. DA			
_	b. NE			
8.	Kod CSMA/CD prótokola stanica prekida slanje paketa ako dođe do sudara i ponovno			
	ga šalje tek nakon što druga stanica pošalje svoj paket.			
	a. DA			
0	b. NE			
9.	Token Ring je učinkovitiji od Etherneta za mali broj stanica.			
	a. DA			
10	b. NE			
10.	Rezervacijski pristup mediju prikladan je za kontinuirani promet.			
	a. DA b. NE			
11	Token Ring protokol je vrlo učinkovit kod velikih prometnih opterećenja.			
11.	a. DA			
	b. NE			
12	Sinkroni postupci kontrole pristupa stanice mediju prihvatljiviji su od asinkronih za			
12.	LAN mreže.			
	a. DA			
	b. NE			
	W. 11E			

1. Kontrola pristupa mediju provodi se na sloju podatkovne veze

a. DA			
b. NE			
14. Kod CSMA/CD protokola, dulji okviri i manje propagacijsko kašnjenje daju veću			
iskoristivost			
a. DA			
b. NE			
15. Navedite OSI slojeve koji obavljaju sljedeće funkcije:			
a. Kontrola toka s kraja na kraj (O: transportni sloj)			
b. Kontrola pogrešaka s kraja na kraj (O: transportni sloj)			
c. Sinkronizacija točke (O: sloj sesije)			
d. Nadzor veze s kraja na kraj (O: sloj sesije)			
e. Pretvorba sintakse (O: sloj prezentacije)			
16. Logička topologija mreže temeljene na 10BASE2 tehnologiji je, fizička			
topologija je, prijenos podataka obavlja se u			
pojasu brzinom od (O: ethernet, tanki koaksijalan kabel, base band,			
10MBit/s)			
17. Kolika je duljina 10BASE5 segmenata maksimalne duljine izražena u bitima?			
a. I=500m, 10Mbit/s v=2*10^8 m/s x=s/v			
18. Navedite OSI slojeve koji obavljaju sljedeće funkcije:			
a. Uokvirivanje			
b. Usmjeravanje paketa			
c. Detekcija pogreške			
d. Korekcija pogreške			
e. Pouzdana usluga s kraja na kraj			
19. U datagramskoj mreži, svi datagrami koji pripadaju istoj transportnoj konekciji,			
usmjeravaju se:			
a. Istim, slučajnim, putem kao i prvi datagram.			
b. Neovisno jedan od drugog.			
c. Po unaprijed definiranoj stazi.			
20. Zaokružite točne tvrdnje:			
 a. Konekcijski orijentirane usluge mogu jamčiti kvalitetu usluge (QoS). 			
b			
21. Na kojim slojevima OSI modela funkcioniraju sljedeći uređaji			
a. Most (O: podatkovni)			
b. Preklopnik (switch) (O: podatkovni)			
c. Hub (O: fizički)			
d. Obnavljač (repeater) (O: fizički)			
e. Usmjeritelj (router) (O: mrežni)			
f. Spojni pristup (gateway) (O: svim slojevima)			
22. Telefonska mreža radi na načelu komutacije kanala			
a. DA			
b. NE			
23. Za razliku od mosta, preklopnik (switch) prosljeđuje okvire analizirajući izvorišne i			
odredišne adrese stanica.			

13. CSMA protokol je učinkovitiji od oba ALOHA protokola

- a. DA
- b. NE (O: mislim da ne, već da samo gleda adresu odredišta)
- 24. Traceroute naredba koristi se kad želimo saznati:
 - a. Put kojim prolaze paketi na putu do odredišta
 - b. Put kojim prolaze paketi između proizvoljna dva računala na mreži
 - c. Vrijednost TTL polja u IP paketima koji se šalju
 - d. Najkraći put između proizvoljna dva čvora u mreži
- 25. Temeljni razlog postojanja TTL polja u IP paketima je:
 - a. Korištenje traceroute naredbi
 - b. Ublažavanje posljedica koje uzrokuju petlje u usmjeravanju
 - c. Korištenje naredbi ping
 - d. Potvrđivanje u TCP protokolu
- 26. Korištenjem Ethereal alata koji prisluškuje promet na mrežnom sučelju računala, u LAN-u spojenom pomoću komutatora, moguće je prisluškivati promet:
 - a. Između računala na kojem se izvodi Ethereal alat i svih ostalih računala u Internet mreži.
 - b. Između svaka dva računala u LAN-u.
 - c. Između računala na kojem se izvodi Ethereal alat i svih ostalih računala u LANu, ali ne i promet između računala koje izvodi Ethereal i ostalih računala u Internet mreži.
 - d. Na bilo kojem usmjerivaču u mreži
- 27. Kod CSMA/CD protokola, stanica koja šalje okvir:
 - a. Nakon što započne slanje okvira, više ne osluškuje medij
 - b. Stalno osluškuje medij, kad uoči da je došlo do sudara nastavlja slanje okvira i nakon toga šalje signal zagušenja duljine 32 bita.
 - c. Stalno osluškuje medij, kad uoči da je došlo do sudara prekida slanje i odmah pokušava slati okvir ponovno.
 - d. Stalno osluškuje medij, kad uoči da je došlo do sudara, prekida slanje i šalje signal zagušenja duljine 32 bita
- 28. U tablici komutiranja ethernetskog komutatora su spremljeni parovi:
 - a. MAC adresa, broj priključaka
 - b. Izvorišna MAC adresa, odredišna MAC adresa
 - c. Izvorišni priključak, odredišni priključak
 - d. Adresa izlaznog priključka, broj priključka
- 29. Koji sloj OSI referentnog modela je zadužen za pretvorbu podatkovnih paketa u struju bita i obrnuto:
 - a. Fizikalni slon
 - b. Podatkovni sloj
 - c. Mrežni sloj
 - d. Transportni sloj
- 30. ARP upiti:
 - a. Prolaze kroz usmjerivač pri čemu im se mijenjaju odredišne IP adrese
 - b. Ne prolaze kroz usmjerivač
 - c. Usmjeravaju se s obzirom na odredišnu IP adresu
 - d. Nikad ne dolaze do usmjerivača

- 31. Kad komutator preko određenog sučelja primi ethernetski okvir čija odredišna adresa je ff:ff:ff:ff;ff;ff; on ga:
 - a. Odbaci jer je odredišna adresa neispravna
 - b. Proslijedi na odrediše s adresom ff:ff:ff:ff:ff
 - c. Proslijedi na sva ostala sučelja baš kao o obnavljač(hub)
 - d. Ništa od navedenog
- 32. Kada protokol IP želi poslati datagram koji je veći od 1500 okteta koliko iznosi maksimalna duljina ethernetskog okvira:
 - a. Protokol IP podijeli originalni datagram u fragmente duljine 1500 okteta i pošalje ih neovisno
 - b. Protokol Ehternet podijeli originalni datagram u fragmente duljine 1500 okteta i pošalje ih prema odredištu
 - c. Ako se koristi ethernetski podatkovni sloj, ne mogu se slati IP paketi dulji od 1500 okteta
 - d. Ništa od navedenog
- 33. Na putu IP datagrama od izvorišta do odredišta pri prolasku kroz usmjerivače, u zaglavlju IP datagrama:
 - a. Vrijednost TTL polja se smanji barem za 1
 - b. Mijenjaju se i izvorišna i odredišna IP adresa
 - c. Mijenja se odredišna IP adresa tako da odgovara sljedećem skoku na putu
 - d. Mijenja se izvorišna IP adresa tako da označava prethodni skok
- 34. Tablica usmjeravanja uvijek sadrži podatke o
 - a. Pojedinim odredištima i sljedećim skokovima na putu do tih odredišta
 - b. Svim čvorovima na putu do odredišta
 - c. MAC adresi svih usmjerivača koji se nalaze na putu do odredišta
 - d. Podrazumijevanoj (default) ruti
- 35. Proizvođač mrežne kartice vakoj kartici dinamički dodjeljuje IP adresu
 - a. Točno
 - b. Netočno (T)
 - c. Ne znam
- 36. Prilikom slanja okvira na mrežu, šalje se preambula okvira. Njena uloga je:
 - a. Sinkronizacija bita (T)
 - b. Oslobađanje medija
 - c. Zauzimanje medija
 - d. Najava okvira
- 37. Kod CSMA/CD protokola, stanica koja se sprema poslati okvir na medij će:
 - a. Odmah početi slanje okvira ako ustanovi da je medij slobodan
 - b. Provjeriti je li medij slobodan, pričekati da istekne vrijeme razmaka između okvira (IFG) te početi slati okvir (T)
 - c. Odmah početi slati okvir, bez provjere stanja medija
 - d. Prije slanja odaslati signal zagušenja kako bi se uvjerila da će sve stanice doista primiri poslani okvir, pa tek onda slati okvir.

- 38. Kod CSMA/CD protokola stanica koja je slala okvir te uočila da je došlo do sudara će:
 - a. Nastaviti slanje okvira, jer će sve ostale stanice ionako uočiti da je došlo do sudara
 - b. Prekinuti slanje okvira i poslati signal zagušenja, te odmah iznova pokušati slati okvir
 - c. Prekinuti slanje okvira, poslati signal zagušenja, te pričekati pseudo-slučajno vrijeme pa tek tada pokušati iznova slati okvir (T)
 - d. Stanica ne može znati je li došlo do sudara
- 39. Kod CSMA/CD protokola, stanica koja šalje okvir:
 - a. Nakon to započne slanje okvira, više ne osluškuje medij
 - b. Stalno osluškuje medij, kad uoči da je došlo do sudara nastavlja slanje okvira i nakon toga šalje signal zagušenja duljine 32 bita.
 - c. Stalno osluškuje medij, kad uoči da je došlo do sudara prekida slanje i odmah pokušava slati okvir ponovno
 - d. Stalno osluškuje medij, kad uoči da je došlo do sudara prekida slanje i šalje signal zagušenja duljine 32 bita (T)
- 40. Kod CSMA/CD protokola, sve stanice permanentno mjere napon na mediju.
 - a. Točno (T)
 - b. Netočno
- 41. Sudar se kod CSMA/CD protokola manifestira promjenom polariteta napona:
 - a. Točno
 - b. Netočno (T)
- 42. Slobodan medij se kod CSMA/CD protokola manifestira niskim naponom
 - a. Točno (T)
 - b. Netočno
- 43. Kod CSMA/CD protokola:
 - a. Svaka stanica mjeri napon na mediju. Čime otkriva prisutstvo nosioca
 - b. Pravo pristupa na medij nadzire jedna stanica
 - c. Sudari su vrlo rijetki i predstavljaju ozbiljan problem u funkcioniranju mreže
 - d. Dvije stanice na istom mrežnom segmentu mogu istovremeno razmjenjivati okvire
- 44. CSMA/CD je primjer decentraliziranog upravljanja pristupom mediju:
 - a. Točno (T)
 - b. Netočno
- 45. CSMA/CD je centralizirani pristupni protokol
 - a. Točno
 - b. Netočno (T)
- 46. CSMA/CD je pristupni protokol sa slučajnim pristupom mediju
 - a. Točno (T)
 - b. Netočno
- 47. Kako stanica otkriva prisutnost nositelja na mediju kod pristupnog protokola CSMA/CD?
 - a. Mjerenjem napona na mediju (T)
 - b. Periodičkim slanjem zahtjeva za otkrivanjem nositelja
 - c. Nositelj je uvijek prisutan na mediju
 - d. Stanica ne otkriva nositelja

- 48. Sudar se u ethernet mreži manifestira kao:
 - a. Povišen napon (T)
 - b. Povišena temperatura
 - c. Nulti napon
 - d. Promijenjen polaritet napona
- 49. Signal zagušenja (jamming signal) šalju sve stanice u lokalnoj mreži koje detektiraju sudar:
 - a. Točno
 - b. Netočno (T)
- 50. Signal zagušenja (jamming signal) šalju samo one stanice koje su slale okvire u trenutku kad je došlo do sudara.
 - a. Točno (T)
 - b. Netočno
- 51. Nakon detektiranog sudara, svaka stanica čeka 9.6 mirkosekundi prije nego što ponovno počne slat okvir.
 - a. Točno
 - b. Netočno (T)
- 52. Nakon detektiranog sudara, svaka stanica čeka slučajno vrijeme prije nego što ponovno počne slati okvir.
 - a. Točno (T)
 - b. Netočno
- 53. Područje u ethernet mreži unutar kojeg vrijedi pravilo da kad bilo koje dvije stanice istovremeno šalju svoje okvire, dolazi do sudara naziva se:
 - a. Segment
 - b. Broadcast domena
 - c. Domena sudara (T)
 - d. Kodomena
- 54. Prilikom slanja okvira na mrežu, šalje se preambula okvira. Njena uloga je:
 - a. Označavanje početka okvira
 - b. Rezervacija medija
 - c. Oslobađanje medija
 - d. Obnavljanje takta s kojim je okvir poslan (T)
- 55. Za povezivanje 10 računala opće namjene u LAN najbolje je iskoristiti:
 - a. Komutator (switch) (T)
 - b. Usmjerivač (router)
 - c. Obnavljivač (hub)
 - d. Prolaz (gateway)
- 56. Etheret komutator nije moguće spojiti s drugim Ethernet komutatorom jer bi to rezultiralo kolizijom.
 - a. Točno
 - b. Netočno (T)
- 57. Međusobno spajanje obnavljača nije moguće
 - a. Točno
 - b. Netočno (T)
- 58. Ethernet komutator dozvoljeno je spojiti na objavljivač pri povezivanju LAN-ova.
 - a. Točno (T)
 - b. Netočno

- 59. Obnavljač je dozvoljeno spojiti na drugi obnavljač pri povezivanju LAN-ova, ali ga nije dozvoljeno spojiti na komutator.
 - a. Točno
 - b. Netočno (T)
- 60. Koliko se najviše obnavljača može nalaziti između bilo koje dvije stanice u LAN-u?
 - a. Četiri (T)
 - b. ...
- 61. Koja od navedenih karakteristika nije karakteristika LAN-a
 - a. Mreža je obično u vlasništvu jedne organizacije
 - b. Koriste se velike prijenosne brzine, veće od 1MBit/s
 - c. Moguće je umrežiti neograničen broj krajnjih uređaja (T)
 - d. Za komunikaciju se koristi dijeljeni medij
- 62. Koja od navedenih karakteristika nije karakteristika LAN-a
 - a. Mreža je obično u vlasništvu jedne organizacije
 - b. Koriste se prijenosne brzine do 1MBit/s
 - c. Mala je vjerojatnost nastupa pogreške
 - d. Za komunikaciju se koristi dijeljeni medij
- 63. Koja od navedenih karakteristika nije karakteristika LAN-a
 - a. Mreža je obično instalirana na širem geografskom području (T)
 - b. Koriste se velike prijenosne brzine
 - c. Za komunikaciju se koristi dijeljeni medij
 - d. Broj umreženih stanica je ograničen
- 64. Koja od navedenih karakteristika nije karakteristika LAN-a
 - a. Mreža je obično u vlasništvu jedne organizacije
 - b. Velika vjerojatnost nastupa pogreške (T)
 - c. Koriste se velike prijenosne brzine, veće od 1MBit/s
 - d. Za komunikaciju se koristi dijeljeni medij
- 65. U LAN-u se tipično koriste prijenosne brzine veće od 1 MBit/s
 - a. Točno (T)
 - b. Netočno
- 66. U LAN-u se tipično koriste prijenosne brzine manje od 10 GBit/s
 - a. Točno (T)
 - b. Netočno
- 67. Svi okviri u LAN-u moraju sadržavati adresu primatelja i adresu odredišta
 - a. Točno (T)
 - b. Netočno
- 68. Kašnjenje transfera informacija između dviju krajnjih točaka u lokalnoj mreži veće je u odnosu na kašnjenje u javnoj mreži
 - a. Točno
 - b. Netočno (T)
- 69. Kašnjenje transfera informacija između dviju krajnjih točaka u lokalnoj mreži manje je u odnosu na kašnjenje u javnoj mreži
 - a. Točno (T)
 - b. Netočno

- 70. Na rad lokalnih mreža ne utječu elektromagnetske smetnje
 - a. Točno
 - b. Netočno (T)
- 71. Među osnovne zadaće ethernet obnavljača spada i
 - a. Ispravljanje pogrešaka na podatkovnom sloju
 - b. Obnavljanje preambule primljenog signala (T)
 - c. Obnavljanje razmaka između okvira
 - d. Razdvajanje kolizijskih domena
- 72. U tablici komutiranja ethernet komutatora se spremljeni parovi
 - a. MAC adresa, broj priključka (T)
 - b. Izvoršina MAC adresa, odredišna MAC adresa
 - c. Izvorišni priključak, odredišni priključak
 - d. Adresa izlaznog priključka, broj priključka
- 73. Ethernet komutator šalje primljeni okvir na sve priključke osim na priključak po kojem je dotični okvir primio
 - a. Uvijek
 - b. Nikad
 - c. Kad okvir šalje usmjeritelj
 - d. U slučaju da u tablici komutiranja nema odgovarajuću adresu (T)
- 74. Kako bi se omogućio dvosmjerni prijenos u lokalnoj mreži, nužno je koristiti
 - a. Koaksijalan kable
 - b. Ethernet parični obnavljač (hub)
 - c. Ethernet komutator (switch)
 - d. Protokol za višestruki pristup mediju
- 75. Okvire koje primi na jedno priključku, ethernet obnavljač (hub) prosljeđuje na:
 - a. Priključak određen odredišnom MAC adresom okvira
 - b. Sve ostale priključke (T)
 - c. Priključak određen točkom pristupa LLC-a
 - d. Priključak na kojem ne detektira koliziju
- 76. Ethernet komutator (switch) prosljeđuje okvire na temelju
 - a. Izvorišne hardverske (MAC) adrese iz nadolazećih okvira
 - b. Odredišne MAC adrese iz nadolazećih okvira (T)
 - c. Svoje MAC adrese
 - d. Komutator se prosljeđuje okvire
- 77. Prednost obnavljača (hub) u odnosu na koaksijalni kabel leži u činjenici da obnavljač uklanja mogućnost kolizije
 - a. Točno
 - b. Netočno (T)
- 78. Prednost komutatora (switch) u odnosu na koaksijalni kabel leži u činjenici da komutator uklanja mogućnost kolizije
 - a. Točno (T)
 - b. Netočno

- 79. Prednost komutatora (switch) u odnosu obnavljač (hub) leži u činjenici da obnavljač ne uklanja mogućnost kolizije
 - a. Točno (T)
 - b. Netočno
- 80. Nedostatak komutatora (switch) u odnosu na obnavljač (hub) leži u činjenici da obnavljač uklanja mogućnost kolizije
 - a. Točno
 - b. Netočno (T)
- 81. Nedostatak obnavljača (hub) u odnosu na koaksijalni kabel leži u činjenici da koaksijalni kabel uklanja mogućnost kolizije
 - a. Točno
 - b. Netočno (T)
- 82. Koji uređaj razdvaja domene sudara i broadcast domene
 - a. Hub
 - b. Most
 - c. Usmjeritelj (router)
 - d. Ethernet komutator (switch)
- 83. Koji uređaj razdvaja domene sudara, ali ne razdvaja broadcast domene?
 - a. Obnavljač (hub)
 - b. Usmjeritelj (router)
 - c. Ethernet komutator (switch) (T)
 - d. Ne postoji takav uređaj
- 84. Koji uređaj ne razdvaja ni domene sudara ni broadcast domene
 - a. Obnavljač (hub) (T)
 - b. Usmjeritelj (router)
 - c. Ethernet komutator (switch)
 - d. Ne postoji takav uređaj
- 85. Mostovi uče topologiju LAN-a na osnovu odredišnih adresa upisanih u primljene okvire
 - a. Točno (T)
 - b. Netočno
- 86. Obnavljač ne razdvaja domene sudara
 - a. Točno (T)
 - b. Netočno
- 87. Koja od navedenih funkcija nije funkcija mosta
 - a. Filtriranje okvira
 - b. Prosljeđivanje okvira
 - c. Usmjeravanja paketa (T)
 - d. Učenje

- 88. Četiri računala (pc1, pc2, pc3 i pc4) spojena su na komutator kapaciteta 100MBit/s. Računalo pc1 šalje podatke računalu pc2, dok računalo pc3 šalje podatke računalu pc4. Drugog prometa u mreži nema. Maksimalna brzina kojom je moguće slati podatke
 - a. 50 MBit/s
 - b. 10MBit/s
 - c. 100MBit/s (T)
 - d. Ovisi o prometu između pc3 i pc4
- 89. Četiri računala (pc1, pc2, pc3 i pc4) spojena su na obnavljač(hub) kapaciteta 100MBit/s. Računalo pc1 šalje podatke računalu pc2, dok računalo pc3 šalje podatke računalu pc4. Drugog prometa u mreži nema. Maksimalna brzina kojom je moguće slati podatke
 - a. 50 MBit/s
 - b. 10MBit/s
 - c. 100MBit/s (T)
 - d. Ovisi o prometu između pc3 i pc4
- 90. Brzina prijenosa koju može ostvariti stanica spojena na obnavljač (hub) kapaciteta 10MBit/s ovisi o
 - a. Duljini kabela s kojim je spojeno
 - b. Prometu drugih stanica (T)
 - c. Vrsti kabela s kojim je spojeno
 - d. Vrsti obnavljača
- 91. Kolizija je uobičajena pojava kod
 - a. Obnavljača (T)
 - b. Komutatora
 - c. Usmjerivača
 - d. Svih mrežnih uređaja
- 92. U svakom mrežom uređaju koji podražava neki od protokola mrežnog sloja, nužno postoji i podrška za protokole svih nižih slojeva
 - a. Točno (T)
 - b. Netočno
- 93. Uređaj koji obavlja funkcije mrežnog sloja, a ne obavlja funkcije podatkovnog sloja naziva se
 - a. Ne postoji takav uređaj
 - b. Usmjerivač (T)
 - c. Prespojnik
 - d. Most
- 94. S obzirom da obnavljač kapaciteta 10MBit/s ne mora obrađivati dolazeće okvire, nego ih jednostavno šalje na sve portove, s njim je moguće postići veće efektivne brzine prijenosa nego s komutatorom kapaciteta 10MBit/s
 - a. Točno
 - b. Netočno (T)

- 95. S obzirom da komutator kapaciteta 10MBit/s mora vršiti obradu primljenih okvira, njegov efektivni kapacitet je manji od obnavljača istog kapaciteta
 - a. Točno
 - b. Netočno (T)
- 96. Svako računalo spojenu u mrežu preko komutatora može također obavljati funkciju komutacije okvira na podatkovnom sloju
 - a. Točno
 - b. Netočno
- 97. Koji od navedenih uređaja radi na fizikalnom sloju OSI referentnog modela
 - a. Komutator
 - b. Parični obnavljač (T)
 - c. Most
 - d. Usmjeritelj
- 98. Koji od navedenih uređaja radi na podatkovnom sloju OSI modela
 - a. Prolaz (gateway)
 - b. Hub
 - c. Most (T)
 - d. Router
- 99. Koji od navedenih uređaja radi na podatkovnom sloju OSI modela
 - a. Switch (T)
 - b. Hub
 - c. Gateway
 - d. Router
- 100. Koji od navedenih uređaja radi na mrežnom sloju OSI modela
 - a. Swithc
 - b. Hub
 - c. Bridge
 - d. Router (T)
- 101. Na kojem sloju OSI modela su definirane mehaničke i električne karakteristike uređaja za pristup fizikalnom mediju
 - a. Fizikalni sloj (T)
 - b. Podatkovni sloj
 - c. Mrežni sloj
 - d. Mehanički sloj
- 102. Koji sloj OSI modela je zadužen za sinkronizaciju okvira
 - a. Fizikalni sloj
 - b. Podatkovni sloj (T)
 - c. Mrežni Sloj
 - d. Transportni sloj

- 103. Koji sloj OSI modela je zadužen za pretvorbu podatkovnih paketa u struju bita i obrnuto
 - a. Fizikalni sloj (T)
 - b. Podatkovni sloj
 - c. Mrežni Sloj
 - d. Transportni sloj
- 104. Koji sloj OSI modela omogućava usmjeravanje paketa kroz jednu ili više mreže
 - a. Fizikalni sloj
 - b. Podatkovni sloj
 - c. Mrežni Sloj (T)
 - d. Transportni sloj
- 105. Na kojem sloju OSI modela su definirane funkcije za upravljanje pogreškama na krajnjim točkama
 - a. Fizikalni sloj
 - b. Podatkovni sloj
 - c. Mrežni Sloj
 - d. Transportni sloj (T)
- 106. Koji sloj OSI modela omogućuje pouzdan i transparentan prijenos podataka između krajnjih komunikacijskih točaka
 - a. Fizikalni sloj
 - b. Podatkovni sloj
 - c. Mrežni Sloj
 - d. Transportni sloj (T)
- 107. Koji je sloj OSI modela zadužen za uspostavljanje, upravljanje i raskid veze između aplikacija
 - a. Sloj upravljanja
 - b. Sloj prezentacije
 - c. Aplikacijski sloj
 - d. Sloj sesije (T)
- 108. Koji sloj OSI modela pruža neovisnost o razlikama u načinu prikaza podataka
 - a. Fizikalni sloj
 - b. Podatkovni sloj
 - c. Prezentacijski sloj (T)
 - d. Aplikacijski sloj
- 109. Koji sloj OSI modela sadrži skup funkcija koje omogućuju korisnicima pristup OSI okružju
 - a. Fizikalni sloj
 - b. Podatkovni sloj
 - c. Prezentacijski sloj
 - d. Aplikacijski sloj (T)

- 110. Kako se naziva postupak pakiranja paketa višeg sloja OSI modela u paket nižeg sloja OSI modela
 - a. Multipleksiranje
 - b. Enkapsulacija (T)
 - c. Sinkronizacija
 - d. Komutacija
- 111. Hub radi na
 - a. Fizičkom sloju (T)
 - b. Podatkovnom sloju
 - c. Mrežnom sloju
 - d. Aplikacijskom sloju
- 112. Most radi na
 - a. Fizičkom sloju
 - b. Podatkovnom sloju (T)
 - c. Mrežnom sloju
 - d. Aplikacijskom sloju
- 113. Komutator radi na
 - a. Fizičkom sloju
 - b. Podatkovnom sloju (T)
 - c. Mrežnom sloju
 - d. Aplikacijskom sloju
- 114. Router radi na
 - a. Fizičkom sloju
 - b. Podatkovnom sloju
 - c. Mrežnom sloju (T)
 - d. Aplikacijskom sloju
- 115. Gateway radi na
 - a. Fizičkom sloju
 - b. Podatkovnom sloju
 - c. Mrežnom sloju
 - d. Aplikacijskom sloju (T)
- 116. Aktivni mrežni uređaj koji radi na podatkovnom sloju je
 - a. Hub
 - b. Komutator (T)
 - c. Router
 - d. Gateway
- 117. Aktivni mrežni uređaj koji radi na podatkovnom sloju je
 - a. Hub
 - b. most (T)
 - c. Router
 - d. Gateway
- 118. Aktivni mrežni uređaj koji radi na fizikalnom sloju je
 - a. Hub (T)
 - b. Komutator
 - c. Router
 - d. Gateway

- 119. Aktivni mrežni uređaj koji radi na mrežnom sloju je
 - a. Hub
 - b. Komutator
 - c. Router (T)
 - d. Gateway
- 120. Aktivni mrežni uređaj koji radi na aplikacijskom sloju je
 - a. Hub
 - b. Komutator
 - c. Router
 - d. Gateway (T)
- 121. Mreže koje su temeljene na potpuno različitim mrežnim arhitekturama i protokolnom složajevima moraju se povezati usmjerivačima
 - a. Točno
 - b. Netočno (T)
- 122. Mreže koje su temeljene na potpuno različitim mrežnim arhitekturama i protokolnim složajevima povezuju se prilazima (gateway)
 - a. Točno (T)
 - b. Netočno
- 123. Kojem sloju OSI modela pripadaju funkcije koje obavlja ethernet komutator
 - a. Mrežnom sloju
 - b. Sloju podatkovnog linka (T)
 - c. Sloju sesije
 - d. Transportnom sloju
- 124. S porastom frekvencije signala, gušenje u kabelu
 - a. Raste (T)
 - b. Pada
 - c. Prvo raste pa potom pada nakon neke granične frekvencije
 - d. Gušenje ne ovisi o frekvenciji
- 125. Na koliko parica se šalje kalibrirani signal prilikom mjerenja preslušavanja na bližem kraju (NEXT)
 - a. Na jednu (T)
 - b. Dvije
 - c. Na sve osim jedne
 - d. Na sve
- 126. Na koliko parica se šalje kalibrirani signal prilikom mjerenja kumulativnog preslušavanja na bližem kraju (PS-NEXT)
 - a. Na jednu
 - b. Na dvije
 - c. Na sve osim jedne (T)
 - d. Na sve
- 127. Na kojem dijelu kabela se mjeri preslušavanje na bližem kraju (NEXT)
 - a. Na bilo kojem kraju
 - b. S iste strane gdje se odašilje kalibrirani signal
 - c. Na suprotnoj strani od one gdje se odašilje kalibrirani signal
 - d. Na početku i na kraju kabela

128.	Ograi	ncenje na najveću duljihu etnemet okvira na nzikalnom sloju posljedica
	a.	Fizičkih ograničenja mreže
	b.	Električnih ograničenja mreže
	c.	Različitih ethernet standarda (T)
	d.	Ograničenja na najveću duljinu segmenta
129	9.	Duljina jednog bita u 10BASE-T LAN-u iznosi
	a.	1 m
	b.	2 m
	c.	10 m
	d.	20 m (T)
130	0.	Duljina jednog bita u 100BASE-TX LAN-u iznosi
	a.	1 m
	b.	2 m (T)
	c.	10 m
	d.	20 m
13	1.	Duljina jednog bita u 100BASE-T4 LAN-u iznosi
	a.	1 m
	b.	2 m (T)
	C.	10 m
	d.	20 m
13	2.	Duljina jednog bita u 100BASE-T2 LAN-u iznosi
	a.	1 m
	b.	2 m (T)
	c.	10 m
	d.	20 m
133	3.	Duljina jednog bita u 1000BASE-X LAN-u iznosi
	a.	1 cm
	b.	2 cm
	C.	10c m
	d.	20 cm (T)
13	4.	Duljina jednog bita u 1000BASE-T LAN-u iznosi
	a.	1 cm
	b.	2 cm
	C.	10c m
	d.	20 cm (T)
13	5.	Koliko bita stane na UTP kabel dužine 100m u 10BASE-T LAN-u
	a.	5 (T)
	b.	50
		500
		512
13	6.	Koliko bita stane na UTP kabel dužine 100m u 100BASE-TX LAN-u
		5
		50 (T)
		500
	d.	512

- Koliko bita stane na UTP kabel dužine 100m u 100BASE-T4 LAN-u 137. a. 5 b. 50 (T) c. 500 d. 512 Koliko bita stane na UTP kabel dužine 100m u 100BASE-T2 LAN-u 138. a. 5 b. 50 (T) c. 500 d. 512 Koliko bita stane na UTP kabel dužine 100m u 1000BASE-T LAN-u 139. a. 5 b. 50 c. 500 (T) d. 512 140. Koliko bita stane na UTP kabel dužine 100m u 1000BASE-X LAN-u a. 5 b. 50 c. 500 (T) d. 512 141. U 10 BASE2 LAN-u prijenos se obavlja a. Širokopojasno b. Nije moguće definirati bez specifikacije kabela c. U osnovnom pojasu (T) d. Ne postoji 10BASE2 LAN 142. U 10 BASE5 LAN-u prijenos se obavlja a. Širokopojasno b. Nije moguće definirati bez specifikacije kabela c. U osnovnom pojasu (T) d. Ne postoji 10BASE5 LAN 143. U 10 BASE-t LAN-u prijenos se obavlja a. Širokopojasno b. Nije moguće definirati bez specifikacije kabela c. U osnovnom pojasu (T) d. Ne postoji 10BASE-T LAN 144. U 10BROAD36 LAN-u prijenost se obavlja a. Širokopojasno (T) b. Nije moguće definirati bez specifikacije kabela c. U osnovnom pojasu
- Svaki krajnji uređaj mora imati jedinstvenu MAC adresu u cijelom svijetu

Koliko bita je dugačka hardverska (MAC) adresa koja se danas najčešće koristi

a. Točno (T)

a. 48 (T)

145.

b. Netočno

d. Ne postoji 10BROAD36 LAN

- 147. Koji dio MAC adrese definira proizvođača mrežne kartice
 - a. Prvih 8 bitova
 - b. Prvih 16 bitova
 - c. Prva 24 bita
 - d. Prva 32 bita
- 148. Prva 24 bita u MAC adresi mrežne kartice označavaju
 - a. Proizvođača kartice (T)
 - b. Prodavača kratice
 - c. Karticu pojedinog proizvođača
 - d. Nemaju posebno značenje
- 149. Zadnja 24 bita u MAC adresi mrežne kartice označavaju
 - a. Proizvođača kartice
 - b. Prodavača kratice
 - c. Karticu pojedinog proizvođača
 - d. Nemaju posebno značenje (T)
- 150. Trenutno važeći standard za strukturno kabliranje je
 - a. IEEE 802.3
 - b. IEEE 802.11g
 - c. ANCI/TIA/Eia-568-b (T)
 - d. ANSI/TEA/GEA-505-A
- 151. Koji tip konektora se stavlja na krajeve UTP-kabla kad se povezuju PC računala na lokalnu mrežu tipa Ethernet
 - a. RJ-11
 - b. BNC
 - c. RJ-45 (T)
 - d. UTP konektor
- 152. Kako se naziva UTP kabel koji se koristi prilikom izravnog povezivanja dva PC računala
 - a. Upredeni kabel
 - b. Ukriženi kabel (T)
 - c. Oklopljeni kable
 - d. Izravni kabel
- 153. Koliko parica se nalazi u jednom UTP Cat 5e kabelu
 - a. 1
 - b. 2
 - c. 4 (T)
 - A A
- 154. Koliko parica UTP kabela je iskorišteno prilikom komunikacije između dva računala kod 100BASE-TX standarda
 - a. 1
 - b. 2
 - c. 4 (T)
 - d. 8

- 155. Za povezivanje PC računala i ethernet komutatora koristi se
 - a. Upredeni kabel
 - b. Ukriženi kabel
 - c. Oklopljeni kable
 - d. Izravni kable (T)
- 156. U ethernetu se problem višestrukog pristupa mediju rješava pomoću
 - a. Metode prolaska pristupnog okvira
 - b. Metode prozivanja
 - c. Metode otkrivanja nosioca (T)
 - d. Ništa od navedenoga
- 157. U Token Ring mrežama se problem višestrukog pristupa mediju rješava pomoću
 - a. Metode prolaska pristupnog okvira (T)
 - b. Metode prozivanja
 - c. Metode otkrivanja nosioca
 - d. Ništa od navedenog
- 158. U Token Bus mrežama se problem višestrukog pristupa mediju rješava pomoću
 - a. Metode prolaska pristupnog okvira
 - b. Metode prozivanja
 - c. Metode otkrivanja nosioca
 - d. Ništa od navedenog (T)
- 159. Upravljanje logičkim linkom kod ethernet mreža karakterizira
 - a. Spojna usluga
 - b. Nespojna usluga bez potvrde primitka okvira (T)
 - c. Nespojna usluga s potvrdom primitka okvira
 - d. Spoja usluga bez potvrde primitka okvira
- 160. Kod nespojne usluge bez potvrde primitka okvira nije implementirano upravljanje tokovima pri upravljanju logičkim linkom
 - a. Točno (T)
 - b. Netočno
- 161. Kod nespojne usluge bez potvrde primitka okvira implementirano je upravljanje tokovima pri upravljanju logičkim linkom
 - a. Točno
 - b. Netočno (T)
- 162. Kod nespojne usluge bez potvrde primitka okvira nije implementirano otklanjanje pogrešaka pri upravljanju logičkim linkom
 - a. Točno (T)
 - b. Netočno
- 163. Kod nespojne usluge bez potvrde primitka okvira implementirano je otklanjanje pogrešaka pri upravljanju logičkim linkom
 - a. Točno
 - b. Netočno (T)

- 164. U lokalnim mrežama uglavnom se koristi decentralizirano upravljanje pristupnom mediju
 - a. Točno (T)
 - b. Netočno
- U lokalnim mrežama uglavnom se koristi centralizirano upravljanje pristupnom mediju
 - a. Točno
 - b. Netočno (T)
- 166. U izvornom obliku sve su lokalne mreže koristile arhitekturu dijeljenog medija
 - a. Točno (T)
 - b. Netočno
- 167. Za upravljanje pristupom mediju kod ethernet mreža koristi se metoda prozivanja
 - a. Točno
 - b. Netočno (T)
- 168. Za upravljanje pristupnom mediju kod ethernet mreža koristi se metoda slučajnog pristupa
 - a. Točno
 - b. Netočno (T)
- 169. Za upravljanje pristupom mediju kod ethernet mreža koristi se kružna metoda prozivanja
 - a. Točno
 - b. Netočno (T)
- 170. Kod ethernet mreža ispravljanje pogrešaka obavlja podatkovni sloj
 - a. Točno
 - b. Netočno (T)
- 171. Krajnji uređaji u lokalnim mrežama međusobno komuniciraju na načelu ravnopravnosti
 - a. Točno (T)
 - b. Netočno
- 172. Krajnji uređaji u lokalnim mrežama međusobno komuniciraju na načelu "nadređeni/podređeni" (master/slave)
 - a. Točno
 - b. Netočno (T)
- 173. Standardizaciju lokalnih mreža provodi ogranizacija
 - a. IEEE (T)
 - b. ISO
 - c. ATM forum
 - d. Internet Society
- 174. Koju funkciju NE OBAVLJA podsloj upravljanja pristupom prijenosnom mediju
 - a. Upravljanje logičkim linkom (T)
 - b. Definiranje algoritama za pristup mediju
 - c. Otkrivanje pogrešaka
 - d. Uokvirivanje podataka (framing)

- 175. Podsloj upravljanja pristupom prijenosnom mediju implementiran je
 - a. Hardverski, u mrežnoj kartici (T)
 - b. Hardverski, u procesoru računala
 - c. Softverski, u operacijskom sustavu
 - d. Softverski, u posebnom modulu mrežne kartice
- 176. Podsloj upravljanja pristupom prijenosnom mediju implementiran je
 - a. Hardverski, u priključku mrežnog uređaja (T)
 - b. Hardverski, u procesoru računala
 - c. Softverski, u operacijskom sustavu
 - d. Softverski, u posebnom modulu mrežne kartice
- 177. Uloga podsloja upravljanja logičkim linkom je
 - a. Definiranje algoritama za pristup zajedničkom mediju
 - b. Otkrivanje pogrešaka na pristiglim okvirima
 - c. Uokvirivanje podataka
 - d. Omogućavanje višim protokolima da dijele zajednički medij (T)
- 178. Podsloj upravljanja logičkim linkom implementiran je
 - a. Softverski, u obliku pogonskog programa (drivera) mrežne kartice (T)
 - b. Softverski, u operacijskom sustavu
 - c. Hardverski, u mrežnoj kartici
 - d. Hardverski, na matičnoj ploči računala
- 179. Podsloj upravljanja logičkim linkom jednak je za sve vrste lokalnih mreža
 - a. Točno (T)
 - b. Netočno
- 180. Podsloj upravljanja logičkim linkom ovisi o korištenoj metodi pristupa mediju
 - a. Točno
 - b. Netočno (T)
- 181. Podsloj upravljanja logičkim linkom različit je za različite vrste lokalnih mreža
 - a. Točno
 - b. Netočno (T)
- 182. Podsloj upravljanja logičkim linkom ne ovisi o korištenoj metodi pristupa mediju
 - a. Točno (T)
 - b. Netočno
- 183. Podsloj upravljanja pristupom mediju ovisan je o vrsti lokalnih mreža na koju je namijenjen
 - a. Točno (T)
 - b. Netočno
- 184. Podsloj upravljanja pristupom mediju neovisan je o vrsti lokalnih mreža za koju je namijenjen
 - a. Točno
 - b. Netočno (T)
- 185. Podsloj upravljanja pristupom mediju različit je za različite vrste lokalnih mreža
 - a. Točno (T)
 - b. Netočno