Machine learning

- ▼ Multiple Linear Regression
- ▼ Step 1.Import libraries

```
import pandas as pd
df = pd.read_csv("ml_data_salary.csv")
df.head()
```

₽		age	distance	YearsExperience	Salary	7
	0	31.1	77.75	1.1	39343	
	1	31.3	78.25	1.3	46205	
	2	31.5	78.75	1.5	37731	
	3	32.0	80.00	2.0	43525	
	4	32.2	80.50	2.2	39891	

▼ Step 2. Import Dataset

```
X = df[["age","distance","YearsExperience"]]
y=df["Salary"]
```

▼ Step 3. Fitting Linear Regression Model

```
from sklearn.linear_model import LinearRegression
model = LinearRegression()
model = model.fit(X,y)
model

v LinearRegression
LinearRegression()
```

▼ Step 4.Evaluating the model fitness

▼ Step 5.Predicting the unknown vlues

model.predict([[31.1,77.75,1.1]])

```
/usr/local/lib/python3.10/dist-packages/sklearn/base.py:439: UserWarning: X does not have valid feature names, but LinearRegression was warnings.warn(
array([36209.375])
```

```
####$Step 6. check the accuracy according to 80/20

Step 6. check the accuracy according to 80/20
```

```
from sklearn.linear_model import LinearRegression
from sklearn.model_selection import train_test_split
from sklearn.metrics import r2_score
model = LinearRegression()
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=0)
```

6/13/23, 8:56 AM

model.fit(X_train, y_train) y_pred = model.predict(X_test) accuracy = r2_score(y_test, y_pred)
print("Accuracy score: {:.2f}".format(accuracy))

Accuracy score: 0.99

Colab paid products - Cancel contracts here

v 0s completed at 8:04 AM

×