Astrophysics of Planet Formation

Lecture 5 - Planet migration

Course Outline

- 5 Lectures, 2 hours each (with a break in the middle!).
 - 1) Observations of planetary systems
 - 2) Protoplanetary discs
 - 3) Dust dynamics & planetesimal formation
 - 4) Planet formation
 - 5) Planetary dynamics
- Notes for each lecture will be placed on the course home page in advance - you may find it useful to annotate these as we go.
- These slides will also be posted online.
- Textbooks: Armitage Astrophysics of planet formation (CUP).
 Protostars & Planets series (VI 2014; VII 2023)

Resonant Torques

- Full perturbation analysis finds that the total torque is the sum of the torques at **resonances**.
- Co-rotation resonance:

$$\Omega(R) = \Omega_{\rm p}$$

Lindblad resonances:

$$m[\Omega(R) - \Omega_{\rm p}] = \pm \kappa(R)$$

$$R_{\rm L} = \left(1 \pm \frac{1}{m}\right)^{2/3} a$$

Resonant Torques

 Circular disc has one co-rotation resonance and a "comb" of Lindblad resonances:

$$R_{\rm L} = \left(1 \pm \frac{1}{m}\right)^{2/3} a$$

Figure from Armitage (2007)

Resonant Torques

Figure from Armitage (2007)

- Torques repel disc gas from region close to planet, but viscosity opposes this. A sufficiently massive planet can open a gap in the disc.
- For typical disc parameters, the gap-opening mass is a few times the mass of Saturn.

No gap = Type I migration

Gap = Type II migration

Gap-opening conditions

Thermal condition:

$$R_{\rm h} = Rq^{1/3} \gtrsim H$$
$$q \gtrsim \left(\frac{H}{R}\right)^3$$

Viscous condition:

$$q \gtrsim \left(\frac{c_{\rm s}}{a_{\rm p}\Omega_{\rm p}}\right)^2 \alpha^{1/2}$$

Combined condition (e.g., Crida+ 2006):

$$\frac{(H/R)}{q^{1/3}} + \frac{50\alpha(H/R)^2}{q} \lesssim 1$$

10M_® planet in laminar disc:

Spiral density waves launched from resonances. Well-defined, stable torques drive steady migration.

10M_® planet in laminar disc:

Spiral density waves launched from resonances. Well-defined, stable torques drive steady migration.

10M_® planet in MRI-turbulent disc:

Spiral density waves dwarfed by turbulent fluctuations. Torques are very variable, leading to stochastic migration.

10M_® planet in MRI-turbulent disc:

Spiral density waves dwarfed by turbulent fluctuations. Torques are very variable, leading to stochastic migration.

10M_® planet in MRI-turbulent disc:

Spiral density waves dwarfed by turbulent fluctuations. Torques are very variable, leading to stochastic migration.

Type I/II migration

Animation from Armitage (2005)

Resonant capture

Figure from Chiang et al. (2007)

Resonant capture

Animation courtesy of Eugene Chiang

The Nice Model

Animation courtesy of Hal Levison

The Nice Model

Figure from Tsiganis et al. (2005)

