UNIVERSIDAD NACIONAL DE SAN CRISTÓBAL DE HUAMANGA

Practica 5

Perla Danna Rojas Navarro

16 de agosto del 2024

1. Problema: Un laboratorio tiene tres máquinas A_1 , A_2 y A_3 que producen el 30%, 25% y 45% de los productos, respectivamente. La probabilidad de que un producto esté defectuoso es 2% si es producido por A_1 , 3% si es producido por A_2 y 1% si es producido por A_3 . Si un producto es seleccionado al azar y se encuentra que es defectuoso, ¿cuál es la probabilidad de que haya sido producido por A_2 ?

Resolución:

Datos:

$$P(A_1) = 0.30, \quad P(A_2) = 0.25, \quad P(A_3) = 0.45$$

$$P(D \mid A_1) = 0.02, \quad P(D \mid A_2) = 0.03, \quad P(D \mid A_3) = 0.01$$

Cálculo de P(D):

$$P(D) = (0.02 \times 0.30) + (0.03 \times 0.25) + (0.01 \times 0.45) = 0.018$$

Aplicación del teorema de Bayes:

$$P(A_2 \mid D) = \frac{P(D \mid A_2) \times P(A_2)}{P(D)} = \frac{0.03 \times 0.25}{0.018} = \frac{0.0075}{0.018} \approx 0.4167$$

Resultado:

La probabilidad de que un producto defectuoso haya sido producido por la máquina A_2 es aproximadamente 41.67%.

2. Problema:

Una tienda vende tres marcas de computadoras: B_1 , B_2 y B_3 . El 40% de las computadoras vendidas son B_1 , el 35% son B_2 y el 25% son B_3 . Las probabilidades de que una computadora de B_1 , B_2 y B_3 necesite reparaciones en su primer año son 0.02, 0.03 y 0.05, respectivamente. Si una computadora comprada en la tienda necesita reparaciones en su primer año, ¿cuál es la probabilidad de que sea de la marca B_2 ?

Resolución:

Datos:

$$P(B_1) = 0.40, \quad P(B_2) = 0.35, \quad P(B_3) = 0.25$$

 $P(R \mid B_1) = 0.02, \quad P(R \mid B_2) = 0.03, \quad P(R \mid B_3) = 0.05$

Cálculo de P(R) (probabilidad total de que una computadora necesite reparaciones):

$$P(R) = (0.02 \times 0.40) + (0.03 \times 0.35) + (0.05 \times 0.25) = 0.008 + 0.0105 + 0.0125 = 0.031$$

Aplicación del teorema de Bayes para calcular $P(B_2 \mid R)$:

$$P(B_2 \mid R) = \frac{P(R \mid B_2) \times P(B_2)}{P(R)} = \frac{0.03 \times 0.35}{0.031} = \frac{0.0105}{0.031} \approx 0.3387$$

Resultado:

La probabilidad de que una computadora que necesita reparaciones en su primer año sea de la marca B_2 es aproximadamente 33.87%.

3. Problema:

Una universidad ofrece tres cursos C_1 , C_2 y C_3 . El 50% de los estudiantes están inscritos en C_1 , el 30% en C_2 y el 20% en C_3 . La probabilidad de que un estudiante apruebe C_1 es 0.9, C_2 es 0.85 y C_3 es 0.8. Si un estudiante aprobado es seleccionado al azar, ¿cuál es la probabilidad de que haya aprobado C_3 ?

Resolución:

Datos:

$$P(C_1) = 0.50, \quad P(C_2) = 0.30, \quad P(C_3) = 0.20$$

 $P(A \mid C_1) = 0.9, \quad P(A \mid C_2) = 0.85, \quad P(A \mid C_3) = 0.8$

Cálculo de P(A) (probabilidad total de que un estudiante apruebe):

$$P(A) = (0.9 \times 0.50) + (0.85 \times 0.30) + (0.8 \times 0.20) = 0.45 + 0.255 + 0.16 = 0.865$$

Aplicación del teorema de Bayes para calcular $P(C_3 \mid A)$:

$$P(C_3 \mid A) = \frac{P(A \mid C_3) \times P(C_3)}{P(A)} = \frac{0.8 \times 0.20}{0.865} = \frac{0.16}{0.865} \approx 0.1848$$

Resultado:

La probabilidad de que un estudiante aprobado haya aprobado el curso C_3 es aproximadamente 18.48%.

4. Problema:

En una fábrica, tres máquinas M_1 , M_2 y M_3 producen el 25%, 35% y 40% de los productos, respectivamente. Las probabilidades de que un producto sea defectuoso si es producido por M_1 , M_2 y M_3 son 0.01, 0.02 y 0.04, respectivamente. Si se selecciona un producto y se encuentra que es defectuoso, ¿cuál es la probabilidad de que haya sido producido por M_3 ?

Resolución:

Datos:

$$P(M_1) = 0.25, \quad P(M_2) = 0.35, \quad P(M_3) = 0.40$$

 $P(D \mid M_1) = 0.01, \quad P(D \mid M_2) = 0.02, \quad P(D \mid M_3) = 0.04$

Cálculo de P(D) (probabilidad total de que un producto sea defectuoso):

$$P(D) = (0.01 \times 0.25) + (0.02 \times 0.35) + (0.04 \times 0.40) = 0.0025 + 0.007 + 0.016 = 0.0255$$

Aplicación del teorema de Bayes para calcular $P(M_3 \mid D)$:

$$P(M_3 \mid D) = \frac{P(D \mid M_3) \times P(M_3)}{P(D)} = \frac{0.04 \times 0.40}{0.0255} = \frac{0.016}{0.0255} \approx 0.6275$$

Resultado:

La probabilidad de que un producto defectuoso haya sido producido por la máquina M_3 es aproximadamente 62.75%

5. Problema:

En una ciudad, el 60% de los hogares tienen televisión por cable. De estos, el 70% tienen acceso a un canal deportivo. De los hogares que no tienen televisión por cable, solo el 20% tienen acceso a un canal deportivo. Si se selecciona un hogar al azar y se sabe que tiene acceso a un canal deportivo, ¿cuál es la probabilidad de que tenga televisión por cable?

Resolución:

Datos:

$$P(C) = 0.60, \quad P(\neg C) = 0.40$$
 $P(D \mid C) = 0.70, \quad P(D \mid \neg C) = 0.20$

Cálculo de P(D) (probabilidad total de que un hogar tenga acceso a un canal deportivo):

$$P(D) = (P(D \mid C) \times P(C)) + (P(D \mid \neg C) \times P(\neg C))$$

$$P(D) = (0.70 \times 0.60) + (0.20 \times 0.40) = 0.42 + 0.08 = 0.50$$

Aplicación del teorema de Bayes para calcular $P(C \mid D)$:

$$P(C \mid D) = \frac{P(D \mid C) \times P(C)}{P(D)} = \frac{0.70 \times 0.60}{0.50} = \frac{0.42}{0.50} = 0.84$$

Resultado:

La probabilidad de que un hogar con acceso a un canal deportivo tenga televisión por cable es 0.84 o 84%.

6.Problema:

En una compañía de seguros, el 30% de los clientes tienen un seguro de auto, el 50% tienen un seguro de hogar y el 20% tienen ambos seguros. Si un cliente tiene un seguro de auto, la probabilidad de que reclame en un año es 0.1, mientras que para un seguro de hogar es 0.05. Si se selecciona un cliente que ha hecho una reclamación, ¿cuál es la probabilidad de que tenga ambos seguros?

Resolución:

Datos:

$$P(A) = 0.30, \quad P(H) = 0.50, \quad P(A \cap H) = 0.20$$

 $P(R \mid A) = 0.1, \quad P(R \mid H) = 0.05$

Cálculo de P(R) (probabilidad total de que un cliente haga una reclamación):

$$P(R) = P(R \mid A) \times P(A) + P(R \mid H) \times P(H) - P(R \mid A \cap H) \times P(A \cap H)$$

Donde $P(R \mid A \cap H)$ es la probabilidad de reclamar dado que tiene ambos seguros. Si asumimos que las probabilidades de reclamar son independientes:

$$P(R \mid A \cap H) = P(R \mid A) \times P(R \mid H) = 0.1 \times 0.05 = 0.005$$

Entonces:

$$P(R) = (0.1 \times 0.30) + (0.05 \times 0.50) - (0.005 \times 0.20) = 0.03 + 0.025 - 0.001 = 0.054$$

Aplicación del teorema de Bayes para calcular $P(A \cap H \mid R)$:

$$P(A \cap H \mid R) = \frac{P(R \mid A \cap H) \times P(A \cap H)}{P(R)} = \frac{0.005 \times 0.20}{0.054} = \frac{0.001}{0.054} \approx 0.0185$$

Resultado:

La probabilidad de que un cliente que ha hecho una reclamación tenga ambos seguros es aproximadamente 0.0185 o 1.85%.

7. Problema:

Un hospital tiene tres médicos D_1 , D_2 y D_3 . El médico D_1 atiende al 50% de los pacientes, D_2 atiende al 30% y D_3 atiende al 20%. La probabilidad de que un paciente sea curado es 0.8 si es atendido por D_1 , 0.9 si es atendido por D_2 y 0.95 si es atendido por D_3 . Si un paciente se cura, ¿cuál es la probabilidad de que haya sido atendido por D_2 ?

Resolución:

Datos:

$$P(D_1) = 0.50, \quad P(D_2) = 0.30, \quad P(D_3) = 0.20$$

 $P(C \mid D_1) = 0.80, \quad P(C \mid D_2) = 0.90, \quad P(C \mid D_3) = 0.95$

Cálculo de P(C) (probabilidad total de que un paciente sea curado):

$$P(C) = (P(C \mid D_1) \times P(D_1)) + (P(C \mid D_2) \times P(D_2)) + (P(C \mid D_3) \times P(D_3))$$

$$P(C) = (0.80 \times 0.50) + (0.90 \times 0.30) + (0.95 \times 0.20)$$

$$P(C) = 0.40 + 0.27 + 0.19 = 0.86$$

Aplicación del teorema de Bayes para calcular $P(D_2 \mid C)$:

$$P(D_2 \mid C) = \frac{P(C \mid D_2) \times P(D_2)}{P(C)}$$

$$P(D_2 \mid C) = \frac{0.90 \times 0.30}{0.86} = \frac{0.27}{0.86} \approx 0.3139$$

Resultado:

La probabilidad de que un paciente que se ha curado haya sido atendido por el médico D_2 es aproximadamente 0.3139 o 31.39%.

8. Problema:

Un banco tiene tres sucursales S_1 , S_2 y S_3 que procesan el 40%, 35% y 25% de las transacciones, respectivamente. La probabilidad de que una transacción sea incorrecta es 0.005 en S_1 , 0.01 en S_2 y 0.02 en S_3 . Si

una transacción incorrecta es seleccionada al azar, ¿cuál es la probabilidad de que haya sido procesada en S_3 ?

Resolución:

Datos:

$$P(S_1) = 0.40, \quad P(S_2) = 0.35, \quad P(S_3) = 0.25$$

$$P(I \mid S_1) = 0.005, \quad P(I \mid S_2) = 0.01, \quad P(I \mid S_3) = 0.02$$

Cálculo de P(I) (probabilidad total de que una transacción sea incorrecta):

$$P(I) = (P(I \mid S_1) \times P(S_1)) + (P(I \mid S_2) \times P(S_2)) + (P(I \mid S_3) \times P(S_3))$$

$$P(I) = (0.005 \times 0.40) + (0.01 \times 0.35) + (0.02 \times 0.25)$$

$$P(I) = 0.002 + 0.0035 + 0.005 = 0.0105$$

Aplicación del teorema de Bayes para calcular $P(S_3 \mid I)$:

$$P(S_3 \mid I) = \frac{P(I \mid S_3) \times P(S_3)}{P(I)}$$

$$P(S_3 \mid I) = \frac{0.02 \times 0.25}{0.0105} = \frac{0.005}{0.0105} \approx 0.4762$$

Resultado:

La probabilidad de que una transacción incorrecta haya sido procesada en la sucursal S_3 es aproximadamente 0.4762 o 47.62%.

9. Problema:

Un aeropuerto tiene tres pistas de aterrizaje P_1 , P_2 y P_3 . La probabilidad de que un avión aterrice en P_1 es 0.4, en P_2 es 0.3 y en P_3 es 0.3. La probabilidad de que un avión aterrice de manera segura es 0.99 en P_1 , 0.98 en P_2 y 0.97 en P_3 . Si se selecciona un aterrizaje seguro, ¿cuál es la probabilidad de que haya sido en P_2 ?

9. Resolución:

Datos:

$$P(P_1) = 0.40, \quad P(P_2) = 0.30, \quad P(P_3) = 0.30$$

 $P(S \mid P_1) = 0.99, \quad P(S \mid P_2) = 0.98, \quad P(S \mid P_3) = 0.97$

Cálculo de P(S) (probabilidad total de que un aterrizaje sea seguro):

$$P(S) = (P(S \mid P_1) \times P(P_1)) + (P(S \mid P_2) \times P(P_2)) + (P(S \mid P_3) \times P(P_3))$$

$$P(S) = (0.99 \times 0.40) + (0.98 \times 0.30) + (0.97 \times 0.30)$$

$$P(S) = 0.396 + 0.294 + 0.291 = 0.981$$

Aplicación del teorema de Bayes para calcular $P(P_2 \mid S)$:

$$P(P_2 \mid S) = \frac{P(S \mid P_2) \times P(P_2)}{P(S)}$$

$$P(P_2 \mid S) = \frac{0.98 \times 0.30}{0.981} = \frac{0.294}{0.981} \approx 0.299$$

Resultado:

La probabilidad de que un aterrizaje seguro haya sido en la pista P_2 es aproximadamente 0.299 o 29.9%.

10. Problema:

Una empresa tiene tres fábricas F_1 , F_2 y F_3 que producen el 20%, 30% y 50% de los productos, respectivamente. Las probabilidades de que un producto sea defectuoso si es producido por F_1 , F_2 y F_3 son 0.03, 0.02 y 0.01, respectivamente. Si se selecciona un producto defectuoso, ¿cuál es la probabilidad de que haya sido producido por F_1 ?

Resolución:

Datos:

$$P(F_1) = 0.20, \quad P(F_2) = 0.30, \quad P(F_3) = 0.50$$

$$P(D \mid F_1) = 0.03, \quad P(D \mid F_2) = 0.02, \quad P(D \mid F_3) = 0.01$$

Cálculo de P(D) (probabilidad total de que un producto sea defectuoso):

$$P(D) = (P(D \mid F_1) \times P(F_1)) + (P(D \mid F_2) \times P(F_2)) + (P(D \mid F_3) \times P(F_3))$$

$$P(D) = (0.03 \times 0.20) + (0.02 \times 0.30) + (0.01 \times 0.50)$$

$$P(D) = 0.006 + 0.006 + 0.005 = 0.017$$

Aplicación del teorema de Bayes para calcular $P(F_1 \mid D)$:

$$P(F_1 \mid D) = \frac{P(D \mid F_1) \times P(F_1)}{P(D)}$$

$$P(F_1 \mid D) = \frac{0.03 \times 0.20}{0.017} = \frac{0.006}{0.017} \approx 0.3529$$

Resultado:

La probabilidad de que un producto defectuoso haya sido producido por la fábrica F_1 es aproximadamente 0.3529 o 35.29%.

11. Problema:

Una universidad tiene tres departamentos D_1 , D_2 y D_3 . El 30% de los estudiantes están en D_1 , el 50% en D_2 y el 20% en D_3 . La probabilidad de que un estudiante obtenga una beca es 0.1 en D_1 , 0.2 en D_2 y 0.3 en D_3 . Si un estudiante obtiene una beca, ¿cuál es la probabilidad de que pertenezca a D_2 ?

Resolución:

Datos:

$$P(D_1) = 0.30, \quad P(D_2) = 0.50, \quad P(D_3) = 0.20$$

 $P(B \mid D_1) = 0.10, \quad P(B \mid D_2) = 0.20, \quad P(B \mid D_3) = 0.30$

Cálculo de P(B) (probabilidad total de que un estudiante obtenga una beca):

$$P(B) = (P(B \mid D_1) \times P(D_1)) + (P(B \mid D_2) \times P(D_2)) + (P(B \mid D_3) \times P(D_3))$$
$$P(B) = (0.10 \times 0.30) + (0.20 \times 0.50) + (0.30 \times 0.20)$$

$$P(B) = 0.03 + 0.10 + 0.06 = 0.19$$

Aplicación del teorema de Bayes para calcular $P(D_2 \mid B)$:

$$P(D_2 \mid B) = \frac{P(B \mid D_2) \times P(D_2)}{P(B)}$$

$$P(D_2 \mid B) = \frac{0.20 \times 0.50}{0.19} = \frac{0.10}{0.19} \approx 0.5263$$

Resultado:

La probabilidad de que un estudiante que obtiene una beca pertenezca al departamento D_2 es aproximadamente 0.5263 o 52.63%.

12. Problema:

Un supermercado tiene tres cajas registradoras R_1 , R_2 y R_3 que procesan el 30%, 40% y 30% de las compras, respectivamente. La probabilidad de que haya un error en el registro es 0.002 en R_1 , 0.003 en R_2 y 0.005 en R_3 . Si se encuentra un error en una transacción, ¿cuál es la probabilidad de que haya ocurrido en R_3 ?

Resolución:

Datos:

$$P(R_1) = 0.30, \quad P(R_2) = 0.40, \quad P(R_3) = 0.30$$

$$P(E \mid R_1) = 0.002, \quad P(E \mid R_2) = 0.003, \quad P(E \mid R_3) = 0.005$$

Cálculo de P(E) (probabilidad total de que haya un error):

$$P(E) = (P(E \mid R_1) \times P(R_1)) + (P(E \mid R_2) \times P(R_2)) + (P(E \mid R_3) \times P(R_3))$$

$$P(E) = (0.002 \times 0.30) + (0.003 \times 0.40) + (0.005 \times 0.30)$$

$$P(E) = 0.0006 + 0.0012 + 0.0015 = 0.0033$$

Aplicación del teorema de Bayes para calcular $P(R_3 \mid E)$:

$$P(R_3 \mid E) = \frac{P(E \mid R_3) \times P(R_3)}{P(E)}$$

$$P(R_3 \mid E) = \frac{0.005 \times 0.30}{0.0033} = \frac{0.0015}{0.0033} \approx 0.4545$$

Resultado:

La probabilidad de que un error en una transacción haya ocurrido en la caja registradora R_3 es aproximadamente 0.4545 o 45.45%.

13. Problema:

En una fábrica, tres máquinas M_1 , M_2 y M_3 producen el 20%, 30% y 50% de los productos, respectivamente. La probabilidad de que un producto sea defectuoso es 0.01 si es producido por M_1 , 0.02 si es producido por M_2 y 0.03 si es producido por M_3 . Si se selecciona un producto defectuoso, ¿cuál es la probabilidad de que haya sido producido por M_2 ?

Resolución:

Datos:

$$P(M_1) = 0.20, \quad P(M_2) = 0.30, \quad P(M_3) = 0.50$$

 $P(D \mid M_1) = 0.01, \quad P(D \mid M_2) = 0.02, \quad P(D \mid M_3) = 0.03$

Cálculo de P(D) (probabilidad total de que un producto sea defectuoso):

$$P(D) = (P(D \mid M_1) \times P(M_1)) + (P(D \mid M_2) \times P(M_2)) + (P(D \mid M_3) \times P(M_3))$$

$$P(D) = (0.01 \times 0.20) + (0.02 \times 0.30) + (0.03 \times 0.50)$$

$$P(D) = 0.002 + 0.006 + 0.015 = 0.023$$

Aplicación del teorema de Bayes para calcular $P(M_2 \mid D)$:

$$P(M_2 \mid D) = \frac{P(D \mid M_2) \times P(M_2)}{P(D)}$$

$$P(M_2 \mid D) = \frac{0.02 \times 0.30}{0.023} = \frac{0.006}{0.023} \approx 0.2609$$

Resultado:

La probabilidad de que un producto defectuoso haya sido producido por la máquina M_2 es aproximadamente 0.2609 o 26.09%.

14. Problema:

Un hospital tiene tres departamentos D_1 , D_2 y D_3 . El 40% de los pacientes son tratados en D_1 , el 35% en D_2 y el 25% en D_3 . La probabilidad de que un paciente se recupere es 0.8 en D_1 , 0.85 en D_2 y 0.9 en D_3 . Si un paciente se recupera, ¿cuál es la probabilidad de que haya sido tratado en D_3 ?

Resolución:

Datos:

$$P(D_1) = 0.40, \quad P(D_2) = 0.35, \quad P(D_3) = 0.25$$

$$P(R \mid D_1) = 0.80, \quad P(R \mid D_2) = 0.85, \quad P(R \mid D_3) = 0.90$$

Cálculo de P(R) (probabilidad total de que un paciente se recupere):

$$P(R) = (P(R \mid D_1) \times P(D_1)) + (P(R \mid D_2) \times P(D_2)) + (P(R \mid D_3) \times P(D_3))$$

$$P(R) = (0.80 \times 0.40) + (0.85 \times 0.35) + (0.90 \times 0.25)$$

$$P(R) = 0.32 + 0.2975 + 0.225 = 0.8445$$

Aplicación del teorema de Bayes para calcular $P(D_3 \mid R)$:

$$P(D_3 \mid R) = \frac{P(R \mid D_3) \times P(D_3)}{P(R)}$$

$$P(D_3 \mid R) = \frac{0.90 \times 0.25}{0.8445} = \frac{0.225}{0.8445} \approx 0.2665$$

Resultado:

La probabilidad de que un paciente que se recupera haya sido tratado en el departamento D_3 es aproximadamente 0.2665 o 26.65%.

15. Problema:

En una ciudad, el 40% de las personas compran en la tienda T_1 , el 35% en la tienda T_2 y el 25% en la tienda T_3 . La probabilidad de que un cliente esté satisfecho es 0.7 en T_1 , 0.8 en T_2 y 0.9 en T_3 . Si se selecciona un cliente satisfecho, ¿cuál es la probabilidad de que haya comprado en T_2 ?

Resolución:

Datos:

$$P(T_1) = 0.40, \quad P(T_2) = 0.35, \quad P(T_3) = 0.25$$

 $P(S \mid T_1) = 0.70, \quad P(S \mid T_2) = 0.80, \quad P(S \mid T_3) = 0.90$

Cálculo de P(S) (probabilidad total de que un cliente esté satisfecho):

$$P(S) = (P(S \mid T_1) \times P(T_1)) + (P(S \mid T_2) \times P(T_2)) + (P(S \mid T_3) \times P(T_3))$$

$$P(S) = (0.70 \times 0.40) + (0.80 \times 0.35) + (0.90 \times 0.25)$$

$$P(S) = 0.28 + 0.28 + 0.225 = 0.785$$

Aplicación del teorema de Bayes para calcular $P(T_2 \mid S)$:

$$P(T_2 \mid S) = \frac{P(S \mid T_2) \times P(T_2)}{P(S)}$$

$$P(T_2 \mid S) = \frac{0.80 \times 0.35}{0.785} = \frac{0.28}{0.785} \approx 0.356$$

Resultado:

La probabilidad de que un cliente satisfecho haya comprado en la tienda T_2 es aproximadamente 0.356 o 35.6%.

16. Problema:

Una empresa tiene tres proveedores P_1 , P_2 y P_3 que suministran el 40%, 35% y 25% de las materias primas, respectivamente. La probabilidad de que una materia prima sea defectuosa es 0.005 si es suministrada por P_1 , 0.01 si es suministrada por P_2 y 0.02 si es suministrada por P_3 . Si se encuentra una materia prima defectuosa, ¿cuál es la probabilidad de que haya sido suministrada por P_3 ?

Resolución:

Datos:

$$P(P_1) = 0.40, \quad P(P_2) = 0.35, \quad P(P_3) = 0.25$$

$$P(D \mid P_1) = 0.005, \quad P(D \mid P_2) = 0.01, \quad P(D \mid P_3) = 0.02$$

Cálculo de P(D) (probabilidad total de que una materia prima sea defectuosa):

$$P(D) = (P(D \mid P_1) \times P(P_1)) + (P(D \mid P_2) \times P(P_2)) + (P(D \mid P_3) \times P(P_3))$$

$$P(D) = (0.005 \times 0.40) + (0.01 \times 0.35) + (0.02 \times 0.25)$$

$$P(D) = 0.002 + 0.0035 + 0.005 = 0.0105$$

Aplicación del teorema de Bayes para calcular $P(P_3 \mid D)$:

$$P(P_3 \mid D) = \frac{P(D \mid P_3) \times P(P_3)}{P(D)}$$

$$P(P_3 \mid D) = \frac{0.02 \times 0.25}{0.0105} = \frac{0.005}{0.0105} \approx 0.4762$$

Resultado:

La probabilidad de que una materia prima defectuosa haya sido suministrada por el proveedor P_3 es aproximadamente 0.4762 o 47.62%.

17. Problema:

En una fábrica, tres máquinas M_1 , M_2 y M_3 producen el 25%, 35% y 40% de los productos, respectivamente. La probabilidad de que un producto sea defectuoso es 0.01 si es producido por M_1 , 0.02 si es producido por M_2 y 0.04 si es producido por M_3 . Si se selecciona un producto y se encuentra que es defectuoso, ¿cuál es la probabilidad de que haya sido producido por M_3 ?

Resolución:

Datos:

$$P(M_1) = 0.25, \quad P(M_2) = 0.35, \quad P(M_3) = 0.40$$

$$P(D \mid M_1) = 0.01, \quad P(D \mid M_2) = 0.02, \quad P(D \mid M_3) = 0.04$$

Cálculo de P(D) (probabilidad total de que un producto sea defectuoso):

$$P(D) = (P(D \mid M_1) \times P(M_1)) + (P(D \mid M_2) \times P(M_2)) + (P(D \mid M_3) \times P(M_3))$$

$$P(D) = (0.01 \times 0.25) + (0.02 \times 0.35) + (0.04 \times 0.40)$$

$$P(D) = 0.0025 + 0.007 + 0.016 = 0.0255$$

Aplicación del teorema de Bayes para calcular $P(M_3 \mid D)$:

$$P(M_3 \mid D) = \frac{P(D \mid M_3) \times P(M_3)}{P(D)}$$

$$P(M_3 \mid D) = \frac{0.04 \times 0.40}{0.0255} = \frac{0.016}{0.0255} \approx 0.6275$$

Resultado:

La probabilidad de que un producto defectuoso haya sido producido por la máquina M_3 es aproximadamente 0.6275 o 62.75%.

18. Problema:

Un aeropuerto tiene tres pistas de aterrizaje P_1 , P_2 y P_3 . La probabilidad de que un avión aterrice en P_1 es 0.4, en P_2 es 0.3 y en P_3 es 0.3. La probabilidad de que un avión aterrice de manera segura es 0.99 en P_1 , 0.98 en P_2 y 0.97 en P_3 . Si se selecciona un aterrizaje seguro, ¿cuál es la probabilidad de que haya sido en P_2 ?

Resolución:

Datos:

$$P(P_1) = 0.40, \quad P(P_2) = 0.30, \quad P(P_3) = 0.30$$

 $P(S \mid P_1) = 0.99, \quad P(S \mid P_2) = 0.98, \quad P(S \mid P_3) = 0.97$

Cálculo de P(S) (probabilidad total de que un aterrizaje sea seguro):

$$P(S) = (P(S \mid P_1) \times P(P_1)) + (P(S \mid P_2) \times P(P_2)) + (P(S \mid P_3) \times P(P_3))$$

$$P(S) = (0.99 \times 0.40) + (0.98 \times 0.30) + (0.97 \times 0.30)$$

$$P(S) = 0.396 + 0.294 + 0.291 = 0.981$$

Aplicación del teorema de Bayes para calcular $P(P_2 \mid S)$:

$$P(P_2 \mid S) = \frac{P(S \mid P_2) \times P(P_2)}{P(S)}$$

$$P(P_2 \mid S) = \frac{0.98 \times 0.30}{0.981} = \frac{0.294}{0.981} \approx 0.300$$

Resultado:

La probabilidad de que un aterrizaje seguro haya sido en la pista P_2 es aproximadamente 0.300 o 30.0%.

19. Problema:

Una empresa tiene tres fábricas F_1 , F_2 y F_3 que producen el 20%, 30% y 50% de los productos, respectivamente. Las probabilidades de que un producto sea defectuoso si es producido por F_1 , F_2 y F_3 son 0.03, 0.02 y 0.01, respectivamente. Si se selecciona un producto defectuoso, ¿cuál es la probabilidad de que haya sido producido por F_1 ?

Resolución:

Datos:

$$P(F_1) = 0.20, \quad P(F_2) = 0.30, \quad P(F_3) = 0.50$$

 $P(D \mid F_1) = 0.03, \quad P(D \mid F_2) = 0.02, \quad P(D \mid F_3) = 0.01$

Cálculo de P(D) (probabilidad total de que un producto sea defectuoso):

$$P(D) = (P(D \mid F_1) \times P(F_1)) + (P(D \mid F_2) \times P(F_2)) + (P(D \mid F_3) \times P(F_3))$$

$$P(D) = (0.03 \times 0.20) + (0.02 \times 0.30) + (0.01 \times 0.50)$$

$$P(D) = 0.006 + 0.006 + 0.005 = 0.017$$

Aplicación del teorema de Bayes para calcular $P(F_1 \mid D)$:

$$P(F_1 \mid D) = \frac{P(D \mid F_1) \times P(F_1)}{P(D)}$$

$$P(F_1 \mid D) = \frac{0.03 \times 0.20}{0.017} = \frac{0.006}{0.017} \approx 0.3529$$

Resultado:

La probabilidad de que un producto defectuoso haya sido producido por la fábrica F_1 es aproximadamente 0.3529 o 35.29%.

20. Problema:

Un supermercado tiene tres cajas registradoras R_1 , R_2 y R_3 que procesan el 30%, 40% y 30% de las compras, respectivamente. La probabilidad de que haya un error en el registro es 0.002 en R_1 , 0.003 en R_2 y 0.005 en R_3 . Si se encuentra un error en una transacción, ¿cuál es la probabilidad de que haya ocurrido en R_3 ?

Resolución:

Datos:

$$P(R_1) = 0.30, \quad P(R_2) = 0.40, \quad P(R_3) = 0.30$$

$$P(E \mid R_1) = 0.002, \quad P(E \mid R_2) = 0.003, \quad P(E \mid R_3) = 0.005$$

Cálculo de P(E) (probabilidad total de que haya un error en el registro):

$$P(E) = (P(E \mid R_1) \times P(R_1)) + (P(E \mid R_2) \times P(R_2)) + (P(E \mid R_3) \times P(R_3))$$

$$P(E) = (0.002 \times 0.30) + (0.003 \times 0.40) + (0.005 \times 0.30)$$

$$P(E) = 0.0006 + 0.0012 + 0.0015 = 0.0033$$

Aplicación del teorema de Bayes para calcular $P(R_3 \mid E)$:

$$P(R_3 \mid E) = \frac{P(E \mid R_3) \times P(R_3)}{P(E)}$$

$$P(R_3 \mid E) = \frac{0.005 \times 0.30}{0.0033} = \frac{0.0015}{0.0033} \approx 0.4545$$

Resultado:

La probabilidad de que un error en una transacción haya ocurrido en la caja registradora R_3 es aproximadamente 0.4545 o 45.45%.