Barem – Simulare pentru examenul de bacalaureat național, Decembrie 2023 Proba E. d)

Fizică

- Se punctează oricare alte modalități de rezolvare corectă a cerințelor.
- Nu se acordă fracţiuni de punct.
- Se acordă 10 puncte din oficiu. Nota finală se calculează prin împărţirea punctajului total acordat pentru lucrare la zece.

A. MECANICĂ (45 de puncte)

Varianta 1

Subjectul I

Nr. item	Solutie, rezolvare	punctaj
1	d	3 p
2	С	3 p
3	b	3 p
4	b	3 p
5	a	3 p
Total subi	ectul I	15 p

A.Subiectul al II - lea

Nr. item	Solutie, rezolvare		punctaj
а	$m_1 a_1 = m_1 g - T$		
	$m_2 a_2 = T - m_2 g - F_f$	1p	
	$m_0 a_0 = m_0 g - F_f$	1p	
	$a_{1} = a_{2} = \frac{m_{1}g - m_{2}g - F_{f}}{m_{1} + m_{2}} \Rightarrow a_{1} = a_{2} = 2\frac{m}{s^{2}}$ $a_{0} = \frac{m_{0} - F_{f}}{m_{0}} \Rightarrow a_{0} = 6\frac{m}{s^{2}}$	1p	
	m_0	1p	4p
b	$T = m_1 g - m_1 a$	2p	P
	T = 32N	1p	3p
С	$\frac{l}{2} = \frac{(a_2 + a_0)}{2}t^2$		
		2p	
	$v_r = t\left(a_2 + a_0\right)$	1p	
	$v_r = 2\sqrt{2} \frac{m}{s}$	1p	4p
d	$v_r = t(a_2 + a_0)$ $v_r = 2\sqrt{2} \frac{m}{s}$ $v_2 = a_2 t \Rightarrow v_2 = \frac{\sqrt{2}}{2} m/s$ $h_2 = \frac{1}{8} m$	1p	44
	Sfera parcurge cu $a^2 = \frac{g(m_1 - m_2)}{m_1 + m_2} = 6\frac{m}{s^2}$ distanța $d_2 = \frac{15}{8}m$	1p	
	$h' = \frac{{v_2}^2 + 2a'd_2}{2g} = 1,15m$	1n	
	$H_{\text{max}} = 4m + 1,15m = 5,15m$	1p 1p	4p
Total subid	ectul al II – lea		15 p

A.Subiectul al III – lea

Nr. Item	(Solutie, rezolvare	punctaj
а	$E_{c0} = \frac{mv_0^2}{2}$	1p	3p

	Din grafic $E_{c0} = 1,6J$	
	Rezultat final $v_0 = 4m/s$	
	2p	
b	$\Delta E_{cin} = L_{total}$ 1p	
	Din grafic $\Delta E_C = E_{C_1} - E_{C_0} = -0.4J$	
	$L_{total} = L_{Ff}$	
	Rezultat final $L_{Ff} = -0.4J$	4p
С	$L_{Ff} = -F_f x_1 2p$	
	$Ff=\mu N$ 1p	
	N = mg	
	Rezultat final $\mu = 0,1$	4p
d	$\left \Delta \vec{p}\right = m v_2 - v_0 $	
	$\left \Delta \vec{p}\right = m v_2 - v_0 $ $v_2 = \sqrt{\frac{2E_{C_2}}{m}}$ 1p	
	$E_{C_2} - E_{C_0} = -\mu mgx_2 $ 1p	
	Rezultat final $ \Delta \vec{p} = 0.4kg \cdot m/s$	4p
Total subid	ectul al III – lea	15 p

B. ELEMENTE DE TERMODINAMICĂ (45puncte)

Varianta 1

Subiectul I

Nr. item	Solutie, rezolvare	punctaj
1	d.	3 p
2	c.	3 p
3	b.	3 p
4	d.	3 p
5	c.	3 p
Total sub	iectul I	15 p

B.Subjectul al II - lea

Nr. item	Solutie, rezolvare		punctaj
а	$\begin{vmatrix} pV_1 = vRT \\ v = v_1 + v_2 + v_3 \end{vmatrix} \Rightarrow p = (v_1 + v_2 + v_3) \frac{RT}{V_1}$ $N_1 = 10^{15}$	2p	
	$v_{1} = \frac{N_{1}}{N_{A}} \Rightarrow v_{1} = \frac{10^{15}}{6,02 \cdot 10^{23}} = 0,166 \cdot 10^{-8}$ $v_{2} = \frac{N_{2}}{N_{A}} \Rightarrow v = \frac{4 \cdot 10^{15}}{6,02 \cdot 10^{23}} = 0,644 \cdot 10^{-8}$ moli		4p
	$v_{2} = N_{A} \Rightarrow v = 6,02 \cdot 10^{23} = 0,044 \text{ To}$ $v_{3} = \frac{m_{3}}{\mu_{3}} \Rightarrow v_{3} = \frac{3,3 \cdot 10^{-7}}{40} = 0,825 \cdot 10^{-8} \text{ moli}$	1р	
	$\mu_3 \qquad 40$ $p = 8.15 \cdot 10^{-3} N / m^2$	1p	

$\rho = \frac{m}{V} = \frac{m_1 + m_2 + m_3}{V}$ $\frac{N_1}{N_A} = \frac{m_1}{\mu_1} \Rightarrow m_1 = \frac{N_1 \cdot \mu_1}{N_A}$ $analog, m_2 = \frac{N_2 \mu_2}{N_A}$ $\rho \cong 3 \cdot 10^{-5} g/m^3$ 1p	4 p
c $\frac{V_1}{T} = \frac{V_2}{T + \Delta T} \Rightarrow V_2 = \frac{V_1(T + \Delta T)}{T}$ $V_2 = 6,66l$ 1p	4p
d $\frac{V_2 - V_1}{V_1} = \frac{6,66 - 5}{5} = 0,332 = 33,2^{\circ}/0$ 2p Rezultat final 1p	3р
Total subjectul al II – lea	15 p

B.Subiectul al III – lea

Nr. Item	Solutie, rezolvare		punctaj
а	$C-A \rightarrow tr.izocon\check{a}$	1p	
	$\frac{p_C}{T_C} = \frac{p_A}{T_A}$	1p	
	C n		3р
	$\frac{T_C}{T_A} = \frac{1}{2}$	1p	
	T_A 2		
b	L = aria(ABC)		
	$L = (2V_A - V_A) \left(p_A - \frac{p_A}{2} \right) = \frac{p_A V_A}{2}$		4p
		3p	- 1
	L = 831J	1p	
С	$Q_{BC} = vC_{p} (T_{C} - T_{B}) = v \frac{7}{2} R (T_{C} - T_{B}) = \frac{7}{2} (p_{c}V_{c} - p_{B}V_{B})$	3p	
	$= \frac{7}{2} \cdot \frac{p_A}{2} (V_A - 2V_A) = -\frac{7}{4} p_A V_A$	1	4p
	$\left Q_{BC}\right =2,908KJ$	1p	
d	$\Delta U_{AB} = U_B - U_A = \nu C_{\nu} (T_B - T_A) = \nu \frac{5}{2} R (T_B - T_A) =$	3p	
	$= \frac{5}{2} (p_B V_B - p_A V_A) = \frac{5}{2} (\frac{p_A}{2} \cdot 2V_A - p_A V_A) = 0$	1	4p
	$\Delta U_{AB} = 0$	1p	
Total subie	ectul al III – lea	1	15 p

<u>C. PRODUCEREA ȘI UTILIZAREA CURENTULUI CONTINUU</u> (45 de puncte) Subiectul I

Varianta 1

Nr. item	Solutie, rezolvare	punctaj
1	a.	3 p
2	b.	3 p
3	b.	3 p
4	a.	3 p
5	d.	3 p
Total subi	ectul I	15 p

C. Subjectul al II - lea

Nr. item	Solutie, rezolvare		punctaj
а	$I = \frac{E_e}{R + r_e}$ $E_e = \frac{\frac{2E}{2r} + \frac{2E}{2r}}{\frac{1}{2r} + \frac{1}{2r}}$	1p	4р
	$E_e = 12V$	1p	ΨP
	$r_e = r = 2\Omega$	1p 1p	
b	$U = R \cdot I = 8V$ $I_{SC} = \frac{E_e}{r_e}$ $I_{SC} = 6A$	2р	3р
	$r_{SC} = 0A$	1p	
С	$I = \frac{E}{R+r}$ $I = 1A$	3p 1p	4p
d	$I_{1} = \frac{E}{2r}$ $U_{XY} = E - I_{1}r$ $U_{XY} = 3V$	2p	_
	$U_{XY} = E - I_1 r$ $U_{XY} = 2V$	1p	4 p
Takal as 1:		1p	45
i otal subi	ectul al II – lea		15 p

C. Subiectul al III - lea

Nr. Item	Solutie, rezolvare	punctaj
а	$I = \frac{E}{R+r}$ $I = 5A$	
	$I=5A$ $P_{i}=I^{2}r$ $P_{ext}=0+I^{2}R$	4p
	$P_{ext} = 0 + 250W$ Pe rezistorul R în paralel cu sursa: P=250W	
	Pe celălalt rezistor: P=0 1p	
b	$ \eta = \frac{\frac{R}{2}}{\frac{R}{2} + r} $ $ \eta = 0.5 $ 2p	3р
	$\eta = 0.5$	

С	$rE_x + E(R+r)$ E	
	$I = \frac{rE_x + E(R+r)}{r(2R+r) + R(R+r)} = \frac{E}{R+r}$ $E = \frac{ER}{R+r}$ 2p	4p
	$E_{x} = \frac{ER}{R+r}$ $E_{x} = 50V$ 1p	
	$E_{x} = 50V$	
d	Rezistenţa tetraedru $\frac{1}{R_{tetr}} = \frac{1}{40} + \frac{1}{80} + \frac{1}{80}$	
	$R_{tetr} = 20\Omega$	
	Rezistenţa exterioară $R_{ext}=7,5\Omega$ $I=\frac{E}{R_{ext}+r} \qquad I=6A \qquad \qquad 1p$	
	$I = \frac{I}{R_{ext} + r} \qquad I = 0A$ Prin tetraedru circula curentul: $I_t = \frac{I}{4}$	4 p
	$P_{tetr} = \frac{I^2 \cdot R_{tetr}}{16}$ $P_{tetr} = 45W$ 1p	
	$P_{tetr} = 45W$ 1p	
Total subi	ectul al III – lea	15 p

D. OPTICĂ Subiectul I (45 puncte)

Su	bie	ctul	

Nr. item	Solutie, rezolvare	punctaj
1	d.	3 p
2	b.	3 p
3	a.	3 p
4	b.	3 p
5	c.	3 p
Total subi	ectul I	15 p

D.Subjectul al II – lea

Nr. item	Solutie, rezolvare		punctaj
a	$d = x_2 + x_1' \Rightarrow x_1' = d - x_2$ $d = \text{distanţa dintre cele două lentile}$ $x_2 = \text{distanţa de la lentila } L_1 \text{ până la imaginea formată de ea}$ $\stackrel{x_1'}{=} \text{distanţa de la imaginea formată de lentila } L_1 \text{ până la lentila } L_2$ $\frac{1}{x_2} - \frac{1}{x_1} = \frac{1}{f_1} \Rightarrow x_2 = \frac{f_1 x_1}{x_1 + f_1} \Rightarrow x_2 = \frac{10cm(-15cm)}{-15cm + 10cm} \Rightarrow$ $x_2 = 30cm$ $ x_1' = 40cm - 30cm = 10cm$	2p	4p
		1p	
b	$\frac{1}{x_{2}^{'}} - \frac{1}{x_{1}^{'}} = \frac{1}{f_{2}} \Rightarrow x_{2}^{'} = \frac{f_{2}x_{1}^{'}}{x_{1}^{'} + f_{2}} \Rightarrow x_{2}^{'} = \frac{20cm(-10cm)}{-10cm + 20cm} \Rightarrow$	2p	3р
	$x_2' = -20cm$	1p	

D.Subiectul al III - lea

Nr. Item	Solutie, rezolvare	punctaj
а	$i_1 = \frac{\lambda_1 \cdot D}{2l}$ 1p $\frac{D}{2l} = \frac{i_1}{\lambda_1} = 10^4$ 2p	3р
b	$x \frac{k\lambda D}{2l \ kmax}$ 1p $k_{k \ max \ 1} = x_{k \ max \ 2} \rightarrow k_{1}i_{1} = k_{2}i_{2} \rightarrow k_{1}\lambda_{1} = k_{2}\lambda_{2}$ 1p $k_{1} = 13, k_{2} = 10$ 1p $x_{k \ max} = k_{1}i_{1} = 6,5cm$ 1p	4p
С	$\upsilon = \frac{c}{\lambda}$ $\Delta v = v_1 - v_2 = \frac{c}{\lambda_1} - \frac{c}{\lambda_2} = \frac{c(\lambda_2 - \lambda_1)}{\lambda_1 \lambda_2} = 1,38 \cdot 10^{14} Hz$ 3p	4 p
d	Cel mai apropiat punct față de maximul central care nu este iluminat pe ecran este punctul unde se formează primul minim. 2p $i_2 > i_1$ $x = \frac{i_1}{2} = 2,5mm$ 2p	4p
Total subjectul al III – lea		

Propunători:

VARIANTA 1, Filiera teoretică – Profilul real, Filiera vocațională – Profilul militar

- A. MECANICĂ prof. Avram Marian;
- B. ELEMENTE DE TERMODINAMICĂ prof. Avram Marian;
- C. PRODUCEREA ȘI UTILIZAREA CURENTULUI CONTINUU prof. Avram Marian;
- D. OPTICĂ- prof. Avram Marian.