Introduzione

Guglielmo Bartelloni

27 settembre 2022

Indice

Equazioni differenziali	2
Equazioni differenziali ordinarie	2

Equazioni differenziali

Le equazioni differenziali sono equazioni in cui l'ingnita è un equazione insieme a qualche sua derivata.

Equazioni differenziali ordinarie

Noi vedremo quelle del primo ordine lineari e di secondo ordine con coefficienti costanti Problema di Cauchy: problema con codizioni iniziali.

Definizione 0

Una equazione di ordine n è una equazione del tipo:

$$F(x, y(x), y'(x), ..., y^{(n-1)}(x), y^{(n)}(x)) = 0$$

 $u \in Icontenuto\mathbb{R}$

dove l'incognita è la qualunque y(x). F è funzione di (n+2) variabili x, y(x), y'(x)....

L'ordine è dato dal massimo ordine di derivazione che compare.

Per esempio:

$$y''' + 2y'' + 5y = e^x$$

è di ordine 3

Definizione 0: Soluzione (curva) integrale

La soluzione di una EDO di ordine n sull'intervallo I

$$(*)F(x, y(x), y'(x), ...) = 0$$

 $x \in Icontenuto\mathbb{R}$

 $\phi(x)$ che sia definita (almeno) in I e ivi derivabile fino all'ordine n per cui valga (*), ovvero:

$$F(x, \phi(x), \phi'(x), ...) = 0$$

 $\forall x \in I$

Chiaramente cambia a seconda dell'intervallo

Definizione 0: Integrale Generale

Si chiama integrale generale di (*) in I l'insieme di tutte le soluzioni di (*) in I

E' possibile definire un esepressione piu' esplicita

Definizione 0: Forma normale

Un edo di ordine n si dice in forma normale se è in forma

$$y^{(n)} = f(x, y(x), y'(x), ..., y^{(n-1)}, x \in I$$

Esempio:

$$y''' = -5y' + sinx$$

Quella sopra è un EDO di III ordine normale.

Definizione 0: EDO di ordine n lineare

Una EDO di ordine n si dice lineare se è nella forma

$$a_n(x)y^{(n)}(x) + a_{n-1}(x)y^{(n-1)} + \dots + a_2(x)y''(x) + a_1(x)y'(x) + a_0y(x) = f(x), x \in I$$

Dove le funzioni

$$a_0(x), a_1(x), a_2(x), ..., a_n(x), f(x)$$

sono assegnate (continue) in I

Esempio:

$$xy'' + 5y = sinx$$

Quando f(x) = 0 allora l'equazione si dice l'omogenea associata

Nel nostro caso le equazioni di secondo ordine lineari saranno a coefficienti costanti