Protein Pow(d)er

The legend of Cysteine
Ruby Bron
Michael Stroet
Sophie Stiekema

De case

- Eiwitten vouwen
- Aminozuren op een 2D / 3D rooster
 - Hydrofoob
 - Polair
 - Cysteïne

Minimaliseren van energie

$$\rightarrow 0$$

Eiwitten vouwen

- 2D: Matrix (lijst van lijsten)
- 3D: lijst van matrices

Matrix grootte varieerbaar

Toestandsruimte

Toestandsruimte

• 2D: $3^{\text{lengte - 2}}$ lengte 50: $3^{48} \approx 8.0 * 10^{22}$

• 3D: $\mathbf{5}^{\text{lengte - 2}}$ lengte 50: $5^{48} \approx 3.6 * 10^{33}$

- Toestandsruimte verkleinen:
 - Symmetrie
 - Matrix grootte

Random Walk

- Aminozuren willekeurig één voor één plaatsen
- N aantal proteïnen vouwen en de beste onthouden

Greedy (look-ahead)

- Aminozuren één voor één plaatsen bij de beste energie
 - O Bij gelijke energie waarde, willekeurige keuze tussen deze richtingen

Greedy (look-ahead)

→ Zonder look-ahead

Greedy (look-ahead)

→ Met look-ahead

Constructief: Beam Search

Constructief: Branch 'n Bound

- Depth-first, recursief, non-stack en probability based
- Aminozuren een voor een plaatsen en energie bijhouden¦

Hogere energie dan gemiddelde?

- Kleine kans om verder te gaan

Lagere energie dan gemiddelde?

- Kans om verder te gaan

Laagste energie tot nu toe?

- Verder gaan

Kansen 1 & 1 => Exact algoritme

Begin

Iteratief: Hill Climber (Local Search)

- Start eiwit:
 - Greedy
- n iteraties
 - Wegknippen
 - Terugplaatsen
 - Energie testen
 - Hoger: weigeren
 - Lager/gelijk: accepteren

energie: Ø

Beste resultaten

	Proteïne	Lengte	2D	3D
1	ННРНННРН	8	-3	-3
2	ННРНННРН	14	-6	-7
3	НРНРРННРРНРН	20	-9	-11
4	РРРННРРННРРРРННРРРННРРР	36	-14	-18
5	ННРНРНРННННРНРРРНРРРНРРРНРРРНРРННННРНРНР	50	-21	-30

Energiën per algoritme (2D, lengte/2, ~10 minuten)

<u>Lengte</u>	Random walk 1.000.000	<u>Greedy</u> 12.500 3	Beam Search	Branch 'n bound ~ 10 min	Hill Climbe 4x 5000

-3

-6

-9

-13

-21

-23

-38

-29

-34

-3

-6

-9

-13

-20

-21

-36

-28

-33

-3

-6

-8

-13

-18

-27

-24

-23

-3

-6

-8

-13

-20

-25

-37

-28

-33

8

14

20

36

50

36

36

50

50

2

3

5

6

8

9

-3

-6

-8

-12

-14

-21

-32

-24

-27

Energiën per algoritme (3D, lengte/3, ~20 minuten)

<u>Lengte</u>	Random walk 1.000.000	<u>Greedy</u> 15.000 2	Beam Search 6000	Branch 'n bound ~ 20 min	Hill Climbe 4x 3000

-3

-7

-11

-18

-30

-35

-57

-47

-53

-3

-7

-11

-18

-30

-35

-58

-47

-50

-3

-7

-10

-18

-21

-33

-52

-35

-48

-3

-7

-11

-12

-21

-21

-39

-31

-39

8

14

20

36

50

36

36

50

50

2

3

5

6

7

8

9

-3

-7

-9

-14

-18

-26

-38

-35

-27

Vergelijking - Cysteine 3D

HCPHPCPHPCHCHPHPPPHPPPPHPPPPHPCPHPPPHPHHHCCHCHCHCH(3D)

BnB - probabilities vergelijking - 15min

CPPCHPPCPPHHHHHHHCCPCHPPCPCHPPHPC (2D)

Vergelijking - Random walk en Greedy

Vouwing proteïne 4 (2D)

Branch 'n bound, 0.75 & 0.25, 00:14:22,

Matrix grootte: 2 * lengte - 1

Look-ahead 2, 10.000 proteïnes, 00:02:04,

Matrix grootte: lengte / 2

Vouwing proteïne 4 (3D)

Look-ahead 2, 1.500 proteïnes, 00:01:19, Matrix grootte: lengte / 3

Discussie

- Greedy: Meer look-aheads is niet altijd beter
- Branch 'n Bound: Rekentijd neemt heel snel toe
- Hillclimber: Zit snel vast in een local minimum
 - Niet altijd veranderingen
 - o Begin situatie bepalend voor eindscore

Conclusie

- Random Walk: snel, maar geeft slechte oplossingen
- Greedy met Lookahead: snel een goede oplossing
- Beam Search: langzamer, meer geheugen, gelijke of betere oplossing
- Branch 'n Bound: traag, mogelijkheid tot veel betere oplossingen
- Hill Climber: niet optimaal, oplossing sterk afhankelijk van begin eiwit

Toekomst suggesties

- Beam Search met Lookahead
- Hillclimber optimalisatie
- Simulated annealing
 - Zang, Kou & Liu (2007) -

Referenties

Chen, M. & Huang, W. (2005). A Branch and Bound Algorithm for the Protein Folding Problem in the HP Lattice Model. *Genomics, Proteomics & Bioinformatics*, 3(4), 225-230.

Zhang, Jinfeng, Samuel C. Kou, and Jun S. Liu. (2007). *Biopolymer structure* simulation and optimization via fragment regrowth Monte Carlo. Journal of Chemical Physics 126(22): 225101.

Vergelijking - Random walk en Greedy

