Project Management Part 8

- 1. Introduction
- 2. People & Teams
- 3. Classical Project Management
- 4. Agile Project Management
- 5. Hybrid Project Management

IT-based Network Planning

PM House

Project life cycle

effort •Goals Project start-Work Degree of Formal prioritised up workshop breakdown completion acceptance takes place Goal hierarchy done structure known Deadline and Post-calculation defined Goals defined drawn up Efforts and project Project canvas Phase plan cost compliance evaluation done done created estimated Sequence of determined Project sketch Requirements Project formulated events and Control documentation written Offer and Project time schedule prepared and measures archived \ contract signed organisation initiated drawn up Project defined Resource and Control Final meeting cost plan and adjourning assignment measures of the project done monitored drawn up team time finalisation initialising definition planning controlling

> Technische Hochschule Rosenheim

phase

phase

phase

phase

phase

Scheduling Methods

Schedule
 List with all dates

Gantt chart
 List of all tasks that are graphically entered in the form of bars along a timeline

Task Name	Q1 2019			Q2 2019		Q3 2019
rask Name	Jan 19	Feb 19	Mar 19	Apr 19	Jun 19	Jul 19
Planning						
Research						
Design						
Implementation						
Follow up						

Networked Gantt Chart
 Gantt chart showing the interdependencies of the tasks

Network plan
 Representation of tasks and their interdependencies

Network planning technique

 Developed primarily to simplify the planning and scheduling of large and complex projects

Used for the U.S. Apollo space program

 Used for the 1968 Winter Olympics in Grenoble which applied it from 1965 until the opening of the 1968 Games.

Ewald Jarz Project Management 5

Example: Activity list with networked Gantt chart

Ewald Jarz Project Management

Example: network plan

Network planning technique

- Presentation of the logical relationships
- Developing a timeline
- Finding the critical points
- Ongoing control and deadline monitoring

Example in Network Planning: Painting a room

Network planning technique – mistakes

Buffer Time and Critical Path

Buffer time = time between the earliest possible and the latest possible occurrence of a task

Network: Temporal dependencies

Finish – Start (FS)

Task 1

Task 2

Start – Start (SS)

Task 1

Task 2

Finish – Finish (FF)

Task 1

Task 2

Start – Finish (SF)

Task 2

Task 1

Network planning - precedent presentation

Network Diagram - Forward Scheduling

ES = Earliest Start

D = *Duration*

EF = Earliest Finish

Ewald Jarz Project Management 15

Network diagram - backward termination

Ewald Jarz Project Management 16

Network Plan – Buffer and Critical Path

Technische Hochschule Rosenheim Technist Liberthy of Applied Genom

Network planning technique - Methods

Critical Path Method (CPM)

- First published 1957
- standardisable projects
- High profile
- Little uncertainty
- Existing experience
- > Process-oriented
- > Estimation of a duration

Program Evaluation and Review Technique (PERT)

- First published 1958
- Projects that are difficult to standardise
- Low awareness
- Great uncertainty
- Little experience
- > event-oriented
- Determination with probabilities

Network planning technique CPM calculation method

Forward calculation

Task	Task name	Duration	Earliest possible start	Earliest possible finish
1-2	mask window	2 h	0.0 h	2.0 h
1-3	remove pictures	0.5 h	0.0 h	0.5 h
2-4	paint	4 h	2.0 h	6 h
3-5	clean pictures	1 h	0.5 h	1.5 h
4-7	hang up pictures	0.5 h	6.0 h	6.5 h
4-6	remove mask	1 h	6.0 h	7 h

Backward calculation

Task	Task name	Duration	latest possible finish	latest possible start
8-6	remove mask	1.0 h	7.0 h	6.0 h
8-7	hang up pictures	0.5 h	7.0 h	6.5 h
7-5	clean pictures	1.0 h	6.5 h	5.5 h
6-4	paint	4.0 h	6.0 h	2.0 h
4-3	remove pictures	0.5 h	2.0 h	1.5 h
4-2	mask window	2.0 h	2.0 h	0.0 h

PERT: estimation of time

$$T_{e=} \frac{T_0 + 4^*T_m + T_p}{6}$$

Te = Estimated duration of a task

To = Duration of the task in the best case / optimistic estimate

 $T_p = Duration of the task in the worst case / pessimistic estimate$

Tm = Duration of the task in the most probable case / most probable estimate

Network planning technique PERT calculation method

Forward calculation

Backward calculation

Eve	ent			
Nr	Name	earliest possible entry	latest possible entry	buffer time
1	Start	0.0 h	0.0 h	0.0 h
2	window masked	0.0 h	0.0 h	0.0 h
3	pictures removed	0.0 h	1.5 h	1.5 h
4	painted	2.0 h	5.0 h	3.0 h
5	pictures cleaned	0.5 h	5.5 h	5.0 h
6	mask removed	6.0 h	6.0 h	0.0 h
7	pictures hang up	6.0 h	6.5 h	0.5 h
8	End	7.0 h ▼	7.0 h	0.0 h

Example Network Planning - Controlling

Example: Gantt Chart with Controlling

Procedure

- 1. Creating a new project
- 2. Entering the operations
- 3. Link the tasks
- 4. Set the duration of the tasks
- 5. Setting milestones
- 6. Entering and assigning resources
- 7. Resolving resource conflicts and scheduling conflicts
- 8. Enter the cost