# Linear Algebra Notes

Mario L. Gutierrez Abed

# Elementary Matrix Operations and Systems of Linear Equations

## ELEMENTARY MATRICES

#### • Theorem:

Let  $A \in M_{m \times n}(\mathbb{F})$ , and suppose matrix B is obtained from A by applying an elementary row/column operation. Then

- a)  $\exists$  an  $m \times m$  elementary matrix E such that B = E A, if B is obtained by a row operation.
- b)  $\exists$  an  $n \times n$  elementary matrix E' such that B = AE', if B is obtained by a column operation.

#### • Theorem:

Elementary matrices are invertible. Moreover, the inverse of an elementary matrix is an elementary matrix of the same type.

# RANK OF A MATRIX AND MATRIX INVERSES

<u>Definition:</u> Let  $A \in M_{m \times n}(\mathbb{F})$ . Then  $\operatorname{rank}(A) = \operatorname{rank}(L_A)$ , where  $L_A : \mathbb{F}^n \longrightarrow \mathbb{F}^m$ ,  $x \longmapsto A x$ . Also  $\operatorname{nullity}(A) = \operatorname{nullity}(L_A)$ .

#### • Theorem:

An  $n \times n$  matrix A is invertible iff rank(A) = n.

#### Proof:

 $(\Rightarrow)$ 

Suppose A is invertible. Then  $L_A$  is invertible  $\Longrightarrow L_A$  is bijective  $\Longrightarrow$ 

$$\operatorname{rank}(L_A)=\operatorname{rank}(A)=\dim\left(\mathbb{F}^n\right)=n\;.\;\;\checkmark$$

By the definition stated above

 $(\Leftarrow)$ 

Suppose rank (A) = n. By definition rank  $(L_A) = n$ .

By the Rank-Nullity theorem,

$$\dim(\mathbb{F}^n) = \text{nullity}(L_A) + \text{rank}(L_A) \Longrightarrow n = \text{nullity}(L_A) + n \Longrightarrow \text{nullity}(L_A) = 0.$$

Thus  $L_A$  is injective.  $L_A$  is also surjective since the codomain is also  $\mathbb{F}^n$ .

So 
$$L_A$$
 is invertible  $\Longrightarrow [L_A]_{\beta}^{\gamma}$  is invertible.  $\checkmark$ 

#### • Theorem:

Let  $V^n$ ,  $W^m$  be finite dimensional VS's. Let  $\beta$  and  $\gamma$  be bases for V and W respectively and let  $T \in \mathcal{L}(V, W)$ . Then  $\operatorname{rank}(T) = \operatorname{rank}[T]_{\beta}^{\gamma}$ .

#### • Lemma:

Let 
$$T: V_{\beta} \longrightarrow W_{\gamma}$$
 and  $L_A: \mathbb{F}^n \longrightarrow \mathbb{F}^m$ , where  $A = [T]_{\beta}^{\gamma}$ . Then, nullity $(T) = \text{nullity}(L_A)$  and  $\text{rank}(T) = \text{rank}(L_A)$ . (Use the diagram for guidance)



#### Proof:

Using problem #17 of section 2.4 (from the HW), let  $V_0 = \mathcal{N}(T) \subseteq V$ .

Then,

$$\mathcal{M}_{\beta}(V_0) \cong V_0 \Longrightarrow \dim(\mathcal{M}_{\beta}(V_0)) = \dim(V_0).$$

Now we only need to show that  $\mathcal{M}_{\beta}(V_0) = \mathcal{N}(L_A)$ :

 $(\subseteq)$ 

Let  $x \in \mathcal{M}_{\beta}(V_0)$ . That implies that  $\exists \ \hat{x} \in V_0 = \mathcal{N}(T)$  such that  $\mathcal{M}_{\beta}(\hat{x}) = x$ .

Thus,

$$T(\hat{x}) = 0 \Longrightarrow \mathcal{M}_{\gamma}(T\hat{x}) = 0 \Longrightarrow (\mathcal{M}_{\gamma} T)\hat{x} = 0.$$

Thus by commutativity of the diagram

above,

$$(\mathcal{M}_{\gamma} T) \hat{x} = (L_A \mathcal{M}_{\beta}) x = 0 \Longrightarrow L_A (\mathcal{M}_{\beta} \hat{x}) = 0 \Longrightarrow \mathcal{M}_{\beta} \hat{x} = \mathcal{M}_{\beta} x \in \mathcal{N}(L_A). \quad \checkmark$$

 $(\supseteq)$ 

Let 
$$y \in \mathcal{N}(L_A) \subseteq \mathbb{F}^n$$
. So  $L_A(y) = 0$ . Also  $\exists \ \hat{y} \in V$  such that  $\mathcal{M}_{\beta}(\hat{y}) = y$ .

So,

$$L_A(y) = L_A(\mathcal{M}_\beta \hat{y}) = 0 \Longrightarrow (L_A \mathcal{M}_\beta) \hat{y} = 0.$$

By commutativity of the diagram above,

$$(L_A \mathcal{M}_\beta) \hat{y} =$$

$$(\mathcal{M}_{\gamma}\,T)\,\,\hat{\boldsymbol{y}}=0 \Longrightarrow \mathcal{M}_{\gamma}\!\!\left(T\,\,\hat{\boldsymbol{y}}\right)=0 \Longrightarrow T\,\,\hat{\boldsymbol{y}}=0 \Longrightarrow \hat{\boldsymbol{y}}\in\mathcal{N}(T) \Longrightarrow \mathcal{M}_{\beta}\,\,\hat{\boldsymbol{y}}=\boldsymbol{y}\in\mathcal{M}_{\beta}(\mathcal{N}(T))$$

Thus,

$$\mathcal{M}_{\beta}(\mathcal{N}(T)) = \mathcal{N}(L_A) \Longrightarrow \mathcal{N}(T) \cong \mathcal{N}(L_A) \Longrightarrow \mathrm{nullity}(T) = \mathrm{nullity}(L_A).$$

Similarly, rank 
$$(T) = \operatorname{rank}(L_A)$$
.

#### • Theorem:

Let  $A \in M_{m \times n}(\mathbb{F})$  and let  $P \in M_{m \times m}(\mathbb{F})$  and  $Q \in M_{n \times n}(\mathbb{F})$  be invertible. Then,

- a) rank(AQ) = rank(A)
- b) rank(P A) = rank(A)
- c) rank(P A Q) = rank(A)

#### Proof:

a) We want to prove that rank(AQ) = rank(A).

First observe that

$$R(L_{AQ}) = R(L_A L_Q) = L_A L_Q(\mathbb{F}^n) = L_A(L_Q(\mathbb{F}^n)) = L_A(\mathbb{F}^n) = R(L_A) \quad \text{(since } L_Q \text{ is onto)}.$$

Therefore,

$$\operatorname{rank}(A\,Q) = \dim \left(R\big(L_{\operatorname{AQ}}\big) = \dim(R(L_A)) = \operatorname{rank}(A). \quad \checkmark$$

For b) and c) the proof is similar. ....

#### • Corollary:

Elementary row/column operations on a matrix are rank-preserving.

#### Definition:

1) The column space of an  $m \times n$  matrix A, denoted Col (A), is the subspace of  $\mathbb{F}^m$  that is generated by the columns of A.

2) The row space of A, Row (A), is the subspace of  $\mathbb{F}^n$  that is generated by the rows of A.

#### Example:

Given 
$$A = \begin{pmatrix} 3 & 1 & 2 & 5 \\ 1 & 2 & 0 & 1 \\ 2 & 1 & 3 & 2 \end{pmatrix}$$
, we have

$$\operatorname{Col}(A) = \operatorname{span}\left\{ \begin{pmatrix} 3\\1\\2\\1 \end{pmatrix}, \begin{pmatrix} 1\\2\\1 \end{pmatrix}, \begin{pmatrix} 2\\0\\3 \end{pmatrix}, \begin{pmatrix} 5\\1\\2 \end{pmatrix} \right\} \quad \text{and} \quad \begin{pmatrix} 3\\1\\2\\2 \end{pmatrix}$$

 $Row(A) = span \{(3, 1, 2, 5), (1, 2, 0, 1), (2, 1, 3, 2)\}.$ 

#### Note (we use this fact to prove the theorem below):

 $A \in M_{m \times n}(\mathbb{F}) \Longrightarrow L_A : \mathbb{F}^n \longrightarrow \mathbb{F}^m$  with  $x \longmapsto A x$ . Let  $\beta$  be the standard ordered basis for  $\mathbb{F}^n$ , i.e.  $\beta = \{e_1, ..., e_n\}$ .

Observe the following:  $A e_1 = c_1$ , where  $c_1 = 1$ <sup>st</sup> column of A. In general, we have that  $A e_n = c_n$ .

#### • Theorem:

 $\operatorname{Col}(A) = R(L_A).$ 

This implies that  $\dim(\operatorname{Col}(A)) = \operatorname{rank}(A)$ , i.e.  $\operatorname{rank}(A)$  is the maximum number of linearly independent columns of A (  $\operatorname{rank}(A) = \operatorname{cardinality}$  of a basis for  $\operatorname{Col}(A)$ ).

#### **Proof:**

 $(\subseteq)$ 

We want to show that  $R(L_A) \subseteq \operatorname{Col}(A)$ .

Let  $b \in R(L_A)$ .

Then  $\exists x \in \mathbb{F}^n$  such that  $L_A(x) = A x = b$ .

Let  $\beta$  be the standard ordered basis for  $\mathbb{F}^n$ . Then  $x = x_1 e_1 + ... + x_n e_n \ \forall \ x_i \in \mathbb{F}$ .

Then,

$$b = A x = A(x_1 e_1 + \dots + x_n e_n) = L_A(x_1 e_1 + \dots + x_n e_n)$$

$$= x_1 L_A e_1 + \dots + x_n L_A e_n$$

$$= x_1 A e_1 + \dots + x_n A e_n = x_1 c_1 + \dots + x_n c_n.$$

Thus  $b \in \text{span}(c_1, ..., c_n) = \text{Col}(A)$ .

 $(\supseteq)$ 

We want to show that  $R(L_A) \supseteq \operatorname{Col}(A)$ . (alternatively  $\operatorname{Col}(A) \subseteq R(L_A)$ ) Let  $\hat{b} \in \operatorname{Col}(A)$ .

Then  $\exists d_i \in \mathbb{F}$  such that

$$\hat{b} = d_1 c_1 + \dots + d_n c_n = d_1 c_1 + \dots + d_n c_n$$

$$= d_1 A e_1 + \dots + d_n A e_n$$

$$= d_1 L_A e_1 + \dots + d_n L_A e_n$$

$$= L_A (d_1 e_1 + \dots + d_n e_n)$$

$$= A (d_1 e_1 + \dots + d_n A e_n).$$

So we have

$$\hat{b} = A d = L_A(d) \Longrightarrow \hat{b} \in R(L_A).$$

#### • Corollary:

 $\operatorname{Col}(A) \cong R(T)$ , where  $A = [T]_{\beta}^{\gamma}$ .

#### • Theorem:

Let  $A \in M_{m \times n}(\mathbb{F})$  with rank(A) = r. Then  $r \le m$  and  $r \le n$ . Also by applying a finite number of row/column operations to A, it can be transformed into the following matrix:

$$D = \begin{pmatrix} I_r & 0_1 \\ 0_2 & 0_3 \end{pmatrix} ,$$

where the  $0_i$  are zero matrices and  $D \in M_{m \times n}(\mathbb{F})$   $(D_{ij} = \begin{cases} 1 & \text{if } i = j \leq r \\ 0 & \text{otherwise} \end{cases})$ .

\*\* For instance, for 
$$r = 3$$
, D looks like 
$$\begin{pmatrix} 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \end{pmatrix}$$
 \*\*

#### • Corollary 1:

Let  $A \in M_{m \times n}(\mathbb{F})$  with rank(A) = r. Then  $\exists$  invertible matrices  $B \in M_{m \times m}(\mathbb{F})$  and  $C \in M_{n \times n}(\mathbb{F})$  such that D = B A C.

#### Proof:

By the previous theorem, A can be transformed into D as defined above by elementary row/column operations to A. Thus,

$$D = E_p \dots E_3 \, E_2 \, E_1 \, A \, G_1 \, G_2 \, G_3 \dots G_q.$$

Since the product of invertible matrices is also invertible, we can can define  $B_{\text{inv}} = E_{p} \dots E_{3} E_{2} E_{1}$ 

#### • Corollary 2:

Let  $A \in M_{m \times n}(\mathbb{F})$ . Then

- $\mathbf{a}) \operatorname{rank}(A^{\mathsf{T}}) = \operatorname{rank}(A).$
- b) rank(A) = max number of linearly independent rows = dim(Row(A)).
- c)  $Row(A) \cong Col(A)$ .

#### Proof:

a) By Corollary 1,  $\exists$  invertible matrices B and C such that D = B A C.

Then 
$$D^{\mathsf{T}} = (B A C)^{\mathsf{T}} = C^{\mathsf{T}} A^{\mathsf{T}} B^{\mathsf{T}}$$
.

Since B, C are invertible,  $B^{\mathsf{T}}$ ,  $C^{\mathsf{T}}$  are invertible.

Note that 
$$rank(D^{T}) = rank(D) = rank(A)$$
.

But  $\operatorname{rank}(D^{\mathsf{T}}) = \operatorname{rank}(A^{\mathsf{T}})$ , since  $A^{\mathsf{T}}$  can be transformed into  $D^{\mathsf{T}}$  as shown on the theorem.

Hence 
$$\operatorname{rank}(A^{\mathsf{T}}) = \operatorname{rank}(A)$$
.

b) By part a),

$$rank(A) = dim(Col(A))$$
 and

$$\operatorname{rank}(A^{\mathsf{T}}) = \dim(\operatorname{Row}(A)).$$

c) By part b),

$$Row(A) \cong Col(A)$$
.

#### • Corollary 3:

Every invertible matrix is a product of elementary matrices.

#### Proof:

Let  $A \in M_{n \times n}(\mathbb{F})$  be invertible. Then  $\operatorname{rank}(A) = n$ .

By a previous theorem, A can be transformed into  $D = I_n$ .

Then by Corollary 1, this matrix  $D = I_n$  can be written as  $I_n = B A C$ , with B and C invertible.

Since B, C are invertible,  $B^{-1}$ ,  $C^{-1}$ exist.

Then we have

$$B^{-1}(I_n) C^{-1} = B^{-1}(B A C) C^{-1}$$
  $\Longrightarrow B^{-1} C^{-1} = A \Longrightarrow (E_p \dots E_1)^{-1} (G_1 \dots G_q)^{-1} = A$ . (from proof of corollary 1)

So we have that

$$A = (E_1^{-1} \dots E_p^{-1}) (G_q^{-1} \dots G_1^{-1}).$$

Since the inverse of an elementary matrix is also an elementary matrix, we have that the above is a

product of elementary matrices.

#### • Theorem:

Let  $T \in \mathcal{L}(V, W)$  and  $U \in \mathcal{L}(W, \mathcal{Z})$ , and let A, B be matrices such that AB is defined. Then,

- a)  $rank(UT) \le rank(U)$
- b)  $rank(UT) \le rank(T)$
- c)  $rank(AB) \le rank(A)$
- $\mathbf{d}$ ) rank(AB)  $\leq$  rank(B)

### SYSTEMS OF LINEAR EQUATIONS

#### • Lemma:

If M is appropriately defined, we have that  $M(A \mid B) = (M \mid A \mid M \mid B)$ .

However,  $(A \mid B) M \neq (AM \mid BM)$ .

\*\* This is the reason why we only use row operations when we're looking for the inverse of a matrix

**Note:** Let A be an invertible  $n \times n$  matrix and consider the augmented matrix  $C = (A \mid I_n)$ . Then  $A^{-1} C = A^{-1}(A \mid I_n) = (A^{-1} A \mid A^{-1} I_n) = (I_n \mid A^{-1})$ 

#### • Theorem:

Let A be an  $m \times n$  matrix and let A = 0 be a homogenous system. Let K be the solution set to the system A x = 0. Then  $K = \mathcal{N}(L_A)$ .

Also  $\dim(K) = n - \operatorname{rank}(A)$ .

#### Proof:

Since K is the solution set to Ax = 0, by definition  $K = \{s \in \mathbb{F}^n \mid As = 0\}$ . We have that  $L_A(s) = As$ . So  $K = \{ s \in \mathbb{F}^n \, | \, L_A(s) = 0 \}.$ 

Hence  $K = \mathcal{N}(L_A)$  by definition.

Now we have that

$$\dim(K) = \text{nullity}(L_A)$$

$$= n - \text{rank}(L_A)$$

$$= n - \text{rank}(A) \quad \checkmark$$

#### • Corollary:

If m < n, A x = 0 has a nonzero solution.

#### Proof:

If m < n,  $L_A$  cannot be injective. So we have that  $\operatorname{nulity}(L_A) > 0$ .

This implies that  $\exists$  a nonzero *n*-tuple in  $\mathcal{N}(L_A) = K$ .

**Note:** Since K is a subspace, we can find a basis of solutions to the system A x = 0.

We are going to use homogenous systems to get solutions for nonhomogenous systems. Let A x = bbe a nonhomogenous system. Then, A x = 0 is the associated homogenous system to A x = b.

#### • Theorem:

Let K be the solution set to Ax = b and  $K_H$  be the solution set to the associated homogenous system A x = 0.

Then for any  $s \in K$ ,

$$K = \{s\} + K_H = \{s + k : k \in K_H\}.$$

#### Proof:

Let  $s \in K$ .

$$(k \subseteq \{s\} + K_H)$$

Let  $w \in K$ . Then A w = b.

Then consider

$$A(w - s) = A w - A s = b - b = 0.$$

This implies that  $w - s \in K_H$ .

This in turn implies that  $\exists \ a \ k = w - s \in K_H$  such that

$$w - s = k \Longrightarrow w = s + k \Longrightarrow w \in \{s\} + K_H$$

$$(\{s\} + K_H \subseteq k)$$

Let  $v \in \{s\} + K_H$ . Then  $\exists \hat{k} \in K_H$  such that  $v = s + \hat{k}$ .

Now consider

$$A v = A(s + \hat{k}) = A s + A \hat{k} = b + 0 = b.$$
  
 $\implies v \in K.$ 

#### Example:

Solve the following system of linear equations:

$$x_1 + x_2 - x_3 = 1$$
  
 $4x_1 + x_2 - 2x_3 = 3$ 

Solution:

$$\begin{pmatrix} 1 & 1 & -1 \\ 4 & 1 & -2 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} 1 \\ 3 \end{pmatrix}$$

First find a solution to the system:

$$S = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} \qquad \checkmark$$

Now we look at the associated homogenous system:

$$x_1 + x_2 - x_3 = 0$$
$$4 x_1 + x_2 - 2 x_3 = 0$$

$$\begin{pmatrix} 1 & 1 & -1 \\ 4 & 1 & -2 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$$

$$K_H = \mathcal{N}(L_A) \longrightarrow \dim(K) = 3 - \operatorname{rank}(A) = 3 - 2 = 1$$

Since  $\dim(K) = 1$ , we have  $\operatorname{nullity}(L_A) = 1 \Longrightarrow \mathcal{N}(L_A)$  is one dimensional.

Hence every solution in  $K_H$  is a scalar multiple of one particular solution.

In this case we have

$$k = \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix}$$
Thus  $\left\{ \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix} \right\}$  is a basis for  $K_H$ .  $\checkmark$ 

Thus we have that

$$K = \left\{ \begin{pmatrix} 1\\1\\1 \end{pmatrix} + t \begin{pmatrix} 1\\2\\3 \end{pmatrix} : t \in \mathbb{R} \right\} \qquad \checkmark$$

#### • Theorem:

Let A x = b be a system of n equations and n unknowns. Then A is invertible iff A x = b has a unique solution.

#### Proof:

 $(\Rightarrow)$ 

Suppose A is invertible. Then  $A^{-1}$  exists and

$$A^{-1}(A x) = A^{-1} b \implies x = A^{-1} b.$$

Now suppose that s is another solution to Ax = b, such that  $s \neq x$ .

Then

$$A^{-1}(A s) = A^{-1} b \implies s = A^{-1} b$$
.

Thus 
$$s = x$$
.  $(\Rightarrow \Leftarrow)$ 

 $(\Leftarrow)$ 

Suppose A x = b has a unique solution s.

Then by the preceding theorem,

$$K = \{s\} + K_H \Longrightarrow \{s\} = \{s\} + K_H \Longrightarrow K_H = \{\vec{0}\}$$
  
 $\Longrightarrow \dim(K_H) = 0 = n - \operatorname{rank}(A)$   
 $\Longrightarrow \operatorname{rank}(A) = n$   
 $\Longrightarrow A$  is invertible.

#### • Theorem:

Let A x = b be a system. Then, the system is consistent iff rank $(A) = \text{rank}(A \mid b)$ .

#### Proof:

 $(\Rightarrow)$ 

Note that if A x = b, then  $b \in R(L_A) = \operatorname{Col}(A)$ .

This implies that

$$b \in \operatorname{span}(c_1, ..., c_n) = \operatorname{span}(c_1, ..., c_n, b).$$

$$\Longrightarrow \dim(\operatorname{span}(c_1, ..., c_n)) = \dim(\operatorname{span}(c_1, ..., c_n, b))$$

$$\Longrightarrow \operatorname{rank}(A) = \operatorname{rank}(A \mid b).$$

 $(\Leftarrow)$ 

To prove in this direction we simply prove the above backwards, (i.e. Assume  $rank(A \mid b)$ , then dim(span( $c_1, ..., c_n$ )) = dim(span( $c_1, ..., c_n, b$ )), then blah blah ....)  $\checkmark$ 

<u>Definition</u>: Two systems are said to be equivalent if they have the same solution set.

#### • Theorem:

Let A = b be a system of m linear equations in m unknowns, and let C be an invertible  $m \times m$ matrix.

Then the system (CA) x = Cb is equivalent to Ax = b.

#### Proof:

Let K be a solution set of Ax = b and let K' be a solution set of (CA)x = Cb. We wish to show that K = K'.

$$(K \subseteq K')$$

Let  $s \in K$ .

Then

$$A s = b$$

#### • Corollary:

Let A x = b be a nonhomogenous system of m linear equations in n unknowns.

If  $(A' \mid b')$  is obtained from  $(A \mid b)$  by a finite number of elementary row operations, then the system A' x = b' is equivalent to A x = b.

#### Proof:

If (A' | b') is obtained from (A | b) by finitely many elementary row operations, then

$$E_{p} .... E_{2} \, E_{1}(A \mid b) = (A' \mid b') \; ,$$

where  $E_i$  are elementary matrices of the appropriate type.

Then by a previous theorem,  $E_p \dots E_2 E_1 = C$ , where C is invertible.

By the lemma that states that  $C(A \mid B) = (C \mid A \mid C \mid B)$ , we have

$$E_{p} .... E_{2} \, E_{1}(A \mid b) = C(A \mid b) = (C \, A \mid C \, b) = (A' \mid b').$$

Thus A' = CA and b' = Cb. Then, by the theorem to which this is a corollary, (CA) x = Cb is equivalent to Ax = b, since  $(CA) x = Cb \iff A'x = b'$ .