

Transient Response: Delay Models

Dr. Bassam Jamil

Adopted from slides of the textbook

CMOS VLSI Design 4th Ed.

Topics

- Delay definitions
- Delay Calculations Using Differential Equations
- □ RC Delay Model
 - Elmore Delay
- ☐ Linear Delay Model
 - Logical Effort

Transient Response

- ☐ *DC analysis* tells us V_{out} if V_{in} is constant
- \Box Transient analysis tells us $V_{out}(t)$ if $V_{in}(t)$ changes
 - Requires solving differential equations
 - Usually, we are calculate the delays, transition time, power, energy
- Input is usually considered to be a step or ramp
 - From 0 to V_{DD} or vice versa

Delay Definitions

- t_{pdr}: rising propagation delay
 - From input to rising output crossing V_{DD}/2
- □ t_{pdf}: falling propagation delay
 - From input to falling output crossing V_{DD}/2
- □ t_{pd}: average propagation delay
 - $t_{pd} = (t_{pdr} + t_{pdf})/2$
- \Box **t**_r: rise time
 - From output crossing 0.2 V_{DD} to 0.8 V_{DD}
- □ **t**_f: fall time
 - From output crossing 0.8 V_{DD} to 0.2 V_{DD}

Delay Definitions

- □ t_{cdr}: rising contamination delay
 - From input to rising output crossing $V_{DD}/2$
- □ t_{cdf}: falling contamination delay
 - From input to falling output crossing $V_{DD}/2$
- □ t_{cd}: average contamination delay
 - $t_{pd} = (t_{cdr} + t_{cdf})/2$

Simulated Inverter Delay

- Solving differential equations by hand is too hard
- ☐ SPICE simulator solves the equations numerically
 - Uses more accurate I-V models too!
- ☐ But simulations take time to write, may hide insight

Inverter Step Response

□ Ex: find step response of inverter driving load cap

$$\begin{aligned} V_{in}(t) &= u(t - t_0)V_{DD} \\ V_{out}(t < t_0) &= V_{DD} \\ \frac{dV_{out}(t)}{dt} &= -\frac{I_{dsn}(t)}{C_{t-1}} \end{aligned}$$

$$I_{dsn}(t) = \begin{cases} 0 & t \leq t_0 \\ \frac{\beta}{2} \left(V_{DD} - V_t \right)^2 & V_{out} > V_{DD} - V_t \\ \beta \left(V_{DD} - V_t - \frac{V_{out}(t)}{2} \right) V_{out}(t) & V_{out} < V_{DD} - V_t \end{cases}$$

Delay Estimation

- ☐ We would like to be able to easily estimate delay
 - Not as accurate as simulation
 - But easier to ask "What if?"
- The step response usually looks like a 1st order RC response with a decaying exponential.
- ☐ Use RC delay models to estimate delay
 - C = total capacitance on output node
 - Use effective resistance R
 - So that $t_{pd} = RC$
- ☐ Characterize transistors by finding their effective R
 - Depends on average current as gate switches

Effective Resistance

- ☐ Shockley models have limited value
 - Not accurate enough for modern transistors
 - Too complicated for much hand analysis
- ☐ Simplification: treat transistor as resistor
 - Replace $I_{ds}(V_{ds}, V_{gs})$ with effective resistance R
 - $I_{ds} = V_{ds}/R$
 - R averaged across switching of digital gate
- ☐ Too inaccurate to predict current at any given time
 - But good enough to predict RC delay

RC Delay Model

- ☐ Use equivalent circuits for MOS transistors
 - Ideal switch + capacitance and ON resistance
 - Unit nMOS has resistance R, capacitance C
 - Unit pMOS has resistance 2R, capacitance C
- Capacitance proportional to width
- Resistance inversely proportional to width

RC Values

- □ Capacitance
 - $-C = C_g = C_s = C_d = 2$ fF/ μ m of gate width in 0.6 μ m
 - Gradually decline to 1 fF/μm in 65 nm
- Resistance
 - − R ≈ 10 KΩ•µm in 0.6 µm process
 - Improves with shorter channel lengths
 - 1.25 K Ω • μ m in 65 nm process
- Unit transistors
 - May refer to minimum contacted device (4/2 λ)
 - Or maybe 1 μm wide device
 - Doesn't matter as long as you are consistent

Inverter Delay Estimate

☐ Estimate the delay of a fanout-of-1 inverter

d = 6RC

Delay Model Comparison

Example: 3-input NAND

☐ Sketch a 3-input NAND with transistor widths chosen to achieve effective rise and fall resistances equal to a unit inverter (R).

3-input NAND Caps

Annotate the 3-input NAND gate with gate and diffusion capacitance.

For n-input NAND Gate

3-input NAND Equivalent Circuit

Transient Response Using RC Model

☐ For first order RC, the step respon

$$V_{\text{out}}(t) = V_{DD}e^{-t/\tau}$$

$$t_{pd} = RC \ln 2$$

FIGURE 4.9 First-order step response

The factor of $\ln 2 = 0.69$ is cumbersome. The effective resistance R is an empirical parameter anyway, so it is preferable to incorporate the factor of $\ln 2$ to define a new effective resistance $R' = R \ln 2$. Now the propagation delay is simply R'C. For the sake of convenience, we usually drop the prime symbols and just write

$$t_{pd} = RC \tag{4.9}$$

17

Transient Response Using RC Model

□ For first order RC, the step response:

$$V_{\text{out}}(t) = V_{DD} \frac{\tau_1 e^{-t/\tau_1} - \tau_2 e^{-t/\tau_2}}{\tau_1 - \tau_2}$$

FIGURE 4.10 Second-order RC system

$$\tau_{1,2} = \frac{R_1 C_1 + \left(R_1 + R_2\right) C_2}{2} \left[1 \pm \sqrt{1 - \frac{4R^* C^*}{\left[1 + \left(1 + R^*\right) C^*\right]^2}} \right]$$

$$R^* = \frac{R_2}{R}; \ C^* = \frac{C_2}{C}$$

☐ The above solution is complex. Elmore model offers a mechanism to simplify the RC network.

Elmore Delay

- ON transistors look like resistors
- ☐ Pullup or pulldown network modeled as RC ladder
- □ Elmore delay of RC ladder

$$t_{pd} \approx \sum_{\text{nodes } i} R_{i-to-source} C_i$$

$$= R_1 C_1 + (R_1 + R_2) C_2 + \dots + (R_1 + R_2 + \dots + R_N) C_N$$

Example: INV

Estimate t_{pd} for a unit inverter driving m identical unit inverters.

$$t_{pd} = (3 + 3m)RC.$$

Example: 3-input NAND

Estimate worst-case rising and falling delay of 3-input NAND driving h identical gates.

$$t_{pdr} = (9 + 5h)RC$$

R/3
$$= (3C)(\frac{R}{3}) + (3C)(\frac{R}{3} + \frac{R}{3}) + [(9+5h)C](\frac{R}{3} + \frac{R}{3} + \frac{R}{3})$$
R/3 $= (12+5h)RC$

Delay Components

- Delay has two parts
 - Parasitic delay
 - 9 or 12 RC
 - Independent of load
 - Effort delay
 - 5h RC
 - Proportional to load capacitance

Contamination Delay

- Best-case (contamination) delay can be substantially less than propagation delay.
- Ex: If all three inputs fall simultaneously

Diffusion Capacitance

- We assumed contacted diffusion on every s / d.
- Good layout minimizes diffusion area
- ☐ Ex: NAND3 layout shares one diffusion contact
 - Reduces output capacitance by 2C
 - Merged uncontacted diffusion might help too

Linear Delay Model and Logical Effort

CMOS VLSI Design 4th Ed.

Outline

- □ Logical Effort
- Delay in a Logic Gate
- Multistage Logic Networks
- Choosing the Best Number of Stages
- Example
- Summary

Introduction

- ☐ Chip designers face a bewildering array of choices
 - What is the best circuit topology for a function?
 - How many stages of logic give least delay?
 - How wide should the transistors be?

- ☐ Logical effort is a method to make these decisions
 - Uses a simple model of delay
 - Allows rough and quick calculations
 - Helps make rapid comparisons between alternatives
 - Emphasizes remarkable symmetries

Delay in a Logic Gate

- Express delays in process-independent unit
- \Box Delay has two components: d = f + p
- \Box f: effort delay = gh (a.k.a. stage effort)
 - Again has two components
- ☐ g: logical effort
 - Measures relative ability of gate to deliver current
 - $-g \equiv 1$ for inverter
- \Box h: electrical effort = C_{out} / C_{in}
 - Ratio of output to input capacitance
 - Sometimes called fanout
- □ p: parasitic delay
 - Represents delay of gate driving no load
 - Set by internal parasitic capacitance

3RC

3 ps in 65 nm process

60 ps in 0.6 μm process

Delay Plots: Inv, NAND

$$d = f + p$$
$$= gh + p$$

Computing Logical Effort

- □ DEF: Logical effort is the ratio of the input capacitance of a <u>gate</u> to the input capacitance of an <u>inverter</u> delivering the same output current.
- Measure from delay vs. fanout plots
- Or estimate by counting transistor widths

$$C_{in} = 3$$

 $g = 3/3$

$$C_{in} = 4$$

 $g = 4/3$

$$C_{in} = 5$$
$$g = 5/3$$

Catalog of Gates

□ Logical effort of common gates

Gate type	Number of inputs						
	1	2	3	4	n		
Inverter	1						
NAND		4/3	5/3	6/3	(n+2)	+2)/3	
NOR		5/3	7/3	9/3	(2n+1)/3		
Tristate / mux	2	2	2	2	2		
XOR, XNOR		4, 4	6, 12, 6	8, 16, 16, 8		Not (
	•	!				Focu	. S

Catalog of Gates

- □ Parasitic delay of common gates
 - In multiples of p_{inv} (≈1)

Gate type	Number of inputs						
	1	2	3	4	n		
Inverter	1						
NAND		2	3	4	n		
NOR		2	3	4	n		
Tristate / mux	2	4	6	8	2n		
XOR, XNOR		4	6	8			

Example: Ring Oscillator

☐ Estimate the frequency of an N-stage ring oscillator

Logical Effort: g = 1

Electrical Effort: h = 1

Parasitic Delay: p = 1

Stage Delay: d = 2

Period T = 2*N*d

Frequency: $f_{osc} = 1/T = 1/(4N^* \tau)$

Assuming that τ =3ps , N=31 \rightarrow f_{osc} = 2.7 GHz

Notice how delay calculations are process independent

Example: FO4 Inverter

☐ Estimate the delay of a fanout-of-4 (FO4) inverter

Logical Effort: g = 1

Electrical Effort: h = 4

Parasitic Delay: p = 1

Stage Delay: d = 5

In 65n process, τ =3ps \rightarrow delay = d* τ =15 ps

In 0.6 μ m process τ =60ps \rightarrow delay = d* τ =300 ps

Notice how

delay calculations

are process

independent

Logical Effort For Multi-Stage Paths

- Logical effort generalizes to multistage networks
- \Box Path Logical Effort $G = \prod g_i$
- $lacktriangleq Path Electrical Effort <math>H = rac{C_{ ext{out-path}}}{C_{ ext{in-path}}}$
- ☐ Path Effort

$$F = \prod f_i = \prod g_i h_i$$

Branching Effort

- ☐ Introduce *branching effort*
 - Accounts for branching between stages in path

$$b = \frac{C_{\text{on path}} + C_{\text{off path}}}{C_{\text{on path}}}$$

$$B = \prod b_i$$

$$\prod h_i = BH$$

Note:

■ Now we compute the path effort

$$-F = GBH$$

Multistage Delays

□ Path Effort Delay

$$D_F = \sum f_i$$

□ Path Parasitic Delay

$$P = \sum p_i$$

Path Delay

$$D = \sum d_i = D_F + P$$

Designing Fast Circuits

$$D = \sum d_i = D_F + P$$

☐ Delay is smallest when each stage bears same effort

$$\hat{f} = g_i h_i = F^{\frac{1}{N}}$$

☐ Thus minimum delay of N stage path is

$$D = NF^{\frac{1}{N}} + P$$

- ☐ This is a key result of logical effort
 - Find fastest possible delay
 - Doesn't require calculating gate sizes

Gate Sizes

☐ How wide should the gates be for least delay?

$$\hat{f} = gh = g \frac{C_{out}}{C_{in}}$$

$$\Rightarrow C_{in_i} = \frac{g_i C_{out_i}}{\hat{f}}$$

- □ Working backward, apply capacitance transformation to find input capacitance of each gate given load it drives.
- ☐ Check work by verifying input cap spec is met.

Path Example

$$\Box$$
 G= 20/9

$$\Box$$
 $B=1$

$$\Box$$
 $f=(F)^{1/N}=1.45$

$$\Box$$
 X=14.52

$$\Box$$
 Y=12.64

$$\Box$$
 Z=13.77

Example with Branches

■ No! Consider paths that branch:

G = 1
H = 90 / 5 = 18
GH = 18

$$h_1 = (15 + 15) / 5 = 6$$

 $h_2 = 90 / 15 = 6$
F = $g_1g_2h_1h_2 = 36 = 2GH$

$$B=2 \rightarrow F=GBH=2(1)(18)=36$$

90

Example: 3-stage path

☐ Select gate sizes x and y for least delay from A to B

Example: 3-stage path

Logical Effort

Electrical Effort

Branching Effort

Path Effort

Best Stage Effort

Parasitic Delay

Delay

$$G = (4/3)*(5/3)*(5/3) = 100/27$$

$$H = 45/8$$

$$B = 3 * 2 = 6$$

$$F = GBH = 125$$

$$\hat{f} = \sqrt[3]{F} = 5$$

$$P = 2 + 3 + 2 = 7$$

$$D = 3*5 + 7 = 22 = 4.4 FO4$$

Example: 3-stage path

■ Work backward for sizes

$$y = 45 * (5/3) / 5 = 15$$

 $x = (15*2) * (5/3) / 5 = 10$

Best Number of Stages

- ☐ How many stages should a path use?
 - Minimizing number of stages is not always fastest
- ☐ Example: drive 64-bit datapath with unit inverter

$$D = NF^{1/N} + P$$
$$= N(64)^{1/N} + N$$

Best Number of Stages

Consider adding inverters to end of path

– How many give least delay?

$$D = NF^{\frac{1}{N}} + \sum_{i=1}^{n_1} p_i + (N - n_1) p_{inv}$$

$$N - n_1 \text{ ExtraInverters}$$

$$Path \text{ Effort F}$$

$$\frac{\partial D}{\partial N} = -F^{\frac{1}{N}} \ln F^{\frac{1}{N}} + F^{\frac{1}{N}} + p_{inv} = 0$$

Define best stage effort $\rho = F^{\frac{1}{N}}$

$$p_{inv} + \rho (1 - \ln \rho) = 0$$

Best Stage Effort

- $p_{inv} + \rho (1 \ln \rho) = 0 \text{ has no closed-form solution }$
- \square Neglecting parasitics (p_{inv} = 0), we find ρ = 2.718 (e)
- \Box For $p_{inv} = 1$, solve numerically for $\rho = 3.59$

Sensitivity Analysis

How sensitive is delay to using exactly the best number of stages?
1.6 1 1.51

- \square 2.4 < ρ < 6 gives delay within 15% of optimal
 - We can be sloppy!
 - I like $\rho = 4$

Example, Revisited

- □ Ben Bitdiddle is the memory designer for the Motoroil 68W86, an embedded automotive processor. Help Ben design the decoder for a register file.
- Decoder specifications:
 - 16 word register file
 - Each word is 32 bits wide
 - Each bit presents load of 3 unit-sized transistors
 - True and complementary address inputs A[3:0]
 - Each input may drive 10 unit-sized transistors
- ☐ Ben needs to decide:
 - How many stages to use?
 - How large should each gate be?
 - How fast can decoder operate?

Register File

Number of Stages

Decoder effort is mainly electrical and branching

Electrical Effort: H = (32*3) / 10 = 9.6

Branching Effort: B = 8

☐ If we neglect logical effort (assume G = 1)

Path Effort: F = GBH = 76.8

Number of Stages: $N = log_4F = 3.1$

☐ Try a 3-stage design

Gate Sizes & Delay

Logical Effort: G = 1 * 6/3 * 1 = 2

Path Effort: F = GBH = 154

Stage Effort: $\hat{f} = F^{1/3} = 5.36$

Path Delay: $D = 3\hat{f} + 1 + 4 + 1 = 22.1$

Gate sizes: z = 96*1/5.36 = 18 y = 18*2/5.36 = 6.7

Comparison

- ☐ Compare many alternatives with a spreadsheet
- \Box D = N(76.8 G)^{1/N} + P

Design	N	G	Р	D
NOR4	1	3	4	234
NAND4-INV	2	2	5	29.8
NAND2-NOR2	2	20/9	4	30.1
INV-NAND4-INV	3	2	6	22.1
NAND4-INV-INV	4	2	7	21.1
NAND2-NOR2-INV-INV	4	20/9	6	20.5
NAND2-INV-NAND2-INV	4	16/9	6	19.7
INV-NAND2-INV-NAND2-INV	5	16/9	7	20.4
NAND2-INV-NAND2-INV-INV	6	16/9	8	21.6

Review of Definitions

Term	Stage	Path
number of stages	1	N
logical effort	g	$G = \prod g_i$
electrical effort	$h = \frac{C_{\text{out}}}{C_{\text{in}}}$	$H = \frac{C_{ ext{out-path}}}{C_{ ext{in-path}}}$
branching effort	$b = \frac{C_{\text{on-path}} + C_{\text{off-path}}}{C_{\text{on-path}}}$	$B = \prod b_i$
effort	f = gh	F = GBH
effort delay	f	$D_F = \sum f_i$
parasitic delay	p	$P = \sum p_i$
delay	d = f + p	$D = \sum d_i = D_F + P$

Method of Logical Effort

1) Compute path effort

F = GBH

2) Estimate best number of stages

 $N = \log_{A} F$

- 3) Sketch path with N stages
- 4) Estimate least delay

 $D = NF^{\frac{1}{N}} + P$

5) Determine best stage effort

 $\hat{f} = F^{rac{1}{N}}$

6) Find gate sizes

 $C_{in_i} = \frac{g_i C_{out_i}}{\hat{f}}$

Limits of Logical Effort

- ☐ Chicken and egg problem
 - Need path to compute G
 - But don't know number of stages without G
- □ Simplistic delay model
 - Neglects input rise time effects
- □ Interconnect
 - Iteration required in designs with wire
- Maximum speed only
 - Not minimum area/power for constrained delay