MATH 110: Linear Algebra

Jad Damaj

Spring 2022

Contents

1	Vec	tor Spaces	5
	1.1	January 19	5
		1.1.1 Overview	5
		1.1.2 Ch1 - Vector Spaces	5
		1.1.3 1.A: \mathbb{R}^n and $\mathbb{C}^{\overline{n}}$	6
	1.2	January 24	6
		1.2.1 1B - Vector Spaces	8
	1.3	January 26	9
		1.3.1 1.C - Subspaces	9
		1.3.2 Direct Sums	11
		1.3.3 Chapter 2: Finite Dimensional Vector Spaces	11
		1.3.4 2.A: Span and Linear Independence	12
	1.4	January 31	12
		1.4.1 Chapter 2: Finite Dimensional Vector Spaces	12
		1.4.2 2.A: Span and Linear Independence	12
	1.5	February 2	14
		1.5.1 2.A: Span and Linear Independence	14
		1.5.2 2.B - Bases	15
	т.		_
2		±	17
	2.1	February 2	
		2.1.1 Ch3 - Linear Maps	
	0.0	2.1.2 3.A - Linear Maps as a Vector Space	
	2.2	February 7	
		2.2.1 2.B - Bases	
	0.0		18
	2.3	v – v	20
		1	20
	0.4		21
	2.4	February 14	
			22
		2.4.2 3.C - Matrices	
	0.5		24
	2.5		25
	0.0	2.5.1 3.D- Invertibility and Isomorphic Vector Spaces	
	2.6	February 28	27 27

		· ·	28
		v i	29
	2.7		30
		•	30
	0.0		31
	2.8		32 32
3	Pol	ynomials 3	35
	3.1		35
		V	35
		•	35
	0.0	v	36
	3.2		36
		3.2.1 Polynomials	36
4	Inva	• • • • • • • • • • • • • • • • • • •	37
	4.1		37
			37
			38
	4.2		39
			10
		4.2.2 Eigenvalues and Diagonal Matrices	11
5	Inn	• • • • • • • • • • • • • • • • • • •	13
	5.1		13
			13
	5.2		13
			13
	۳.0		15
	5.3		17 17
			ει 18
		5.5.2 0.C - Orthogonal Complements and Minimization	Ю
6	_		60
	6.1	April 4	
		6.1.1 Ch 7 - Linear Operators on Inner Product Spaces	
	6.0	6.1.2 7.A - Self Adjoint / Normal Operators	
	6.2	•	53 53
		-	54
			55
	6.3	•	56
	0.0		56
		•	56
			57
			58
			59
	6.4		59
		•	59

CONTENTS 110: Linear Algebra

6.5	April 18
	6.5.1 Jordan Form
	6.5.2 Genralized Eigenvectors
	6.5.3 8.B - Decompositions of an Operator
	6.5.4 8.C - Minimal Polynomials
6.6	April 20
	6.6.1 8.C - Minimal Polynomials
	6.6.2 10.A - Trace
	6.6.3 10.B - Determinants
6.7	April 25
	6.7.1 10.B - Determinants
6.8	April 27
	6.8.1 10.B - Determinants
	6.8.2 Multilinear Maps and Tensor Products

Chapter 1

Vector Spaces

1.1 January 19

1.1.1 Overview

Linear Algebra is about:

- Vector spaces (also called linear spaces)
- Linear maps
- Extra structures on spaces/maps (inner products, etc.)

Motivation:

- $\bullet\,$ Physics we live in a 3D space
- Geometry even for a curved object, locally it looks like a vector space (tangent space)
- Representation Theory and Group Theory the set of all matrices has a rich structure and interesting subsets (subgroups)
- Solving Differential Equations natural tool and solution spaces
- Normal Operators guaranteed good bases
- Statistics square matrices, ...
- \bullet Applied Math designing of algorithms, \dots

1.1.2 Ch1 - Vector Spaces

 $\mathbb{R}\text{-}$ set of reals, \mathbb{R}^2 - plane, \mathbb{R}^3 - 3D space

Key feature: Have addition and scalar multiplication by $\mathbb R$

Generalizations: Vector spaces over \mathbb{R} (or a general \mathbb{F})

1.2. JANUARY 24 110: Linear Algebra

1.1.3 1.A: \mathbb{R}^n and \mathbb{C}^n

Definition 1.1.1 (\mathbb{C}).

Introduced i such that $i^2 + 1 = 0$

 $\mathbb{C} = \{a + bi : a, b \in \mathbb{R}\}\$

Addition: (a + bi) + (c + di) = (a + c) + (b + d)i

Multiplication: (a + bi)(c + di) = (ac - bd) + (ad + bc)i

eg: $(\frac{\sqrt{2}}{2} + \frac{\sqrt{2}}{2}i)^2 = 0 + i \cdot i = i$ $\mathbb{R} \subset \mathbb{C}$: view x as x + 0i

Theorem 1.1.2 (Properties of \mathbb{C}).

Commutativity: $\alpha + \beta = \beta + \alpha$, $\alpha\beta = \beta\alpha \quad \forall \alpha, \beta \in \mathbb{C}$

Associativity: $(\alpha + \beta) + \gamma = \alpha + (\beta + \gamma), \quad (\alpha\beta)\gamma = \alpha(\beta\gamma) \quad \forall \alpha, \beta, \gamma \in \mathbb{C}$

Additive Identity: $\alpha + 0 = \alpha \quad \forall \alpha \in \mathbb{C}$

Additive Inverse: $\forall \alpha \in \mathbb{C}, \exists ! \beta \in \mathbb{C} \text{ such that } \alpha + \beta = 0$

Multiplicative Identity: $\alpha \cdot 1 = \alpha \quad \forall \alpha \in \mathbb{C}$

Multiplicative Inverse: $\forall \alpha \neq 0 \in \mathbb{C} \exists ! \beta \in \mathbb{C} \text{ such that } \alpha\beta = 1$ Distributive Properties: $\lambda(\alpha + \beta) = \lambda\alpha + \lambda + \beta \quad \forall \lambda, \alpha, \beta \in \mathbb{C}$

1.2 January 24

Example 1.2.1. Show existence and uniqueness of the multiplicative inverse of $\forall a \neq 0$ Idea: Assume $\alpha = a + bi$ want $(a + bi)(?+?i) = 1 \rightarrow ?+?i = \frac{1}{a+bi}$ "=" $\frac{a-bi}{(a+bi)(a-bi)} = \frac{1-bi}{a^2+b^2} = \frac{a}{a^2+b^2} - \frac{b}{a^2+b^2}i$

Proof. Assume $\alpha = a + bi$, $a, b \in \mathbb{R}$, not both zero. We see that $\beta = \frac{a}{a^2 + b^2} - \frac{b}{a^2 + b^2}i$ satisfies $(a + bi)(\frac{a}{a^2 + b^2} - \frac{b}{a^2 + b^2})$ $(\frac{b}{a^2+b^2}i) = \frac{a^2}{a^2+b^2} + \frac{b^2}{a^2+b^2} = 1$. Similarly, $(\frac{a}{a^2+b^2} - \frac{b}{a^2+b^2}i)(a+bi) = 1$. \rightarrow existence Moreover, if there exists $\tilde{\beta}$ such that $\alpha \tilde{\beta} = 1$, then $\beta = \beta \alpha \tilde{\beta} = \tilde{\beta}$. \rightarrow uniqueness

Definition 1.2.2.

- For $\alpha \in \mathbb{C}$, let $-\alpha \in \mathbb{C}$ define the unique element such that $\alpha + (-\alpha) = 0$
- For $\alpha \in \mathbb{C}$, let $1/\alpha \in \mathbb{C}$ define the unique element such that $\alpha(1/\alpha) = 1$
- Subtraction: $\alpha \beta = \alpha + (-\beta)$
- Division: $\beta/\alpha = \beta \cdot (1/\alpha), \ \alpha \neq 0$

 \mathbb{F} : field(In the book, \mathbb{R} or \mathbb{C})

• In general, generalization of \mathbb{R} or \mathbb{C}

Definition 1.2.3. A set \mathbb{F} (with addition "+" and multiplication "×") is a field if:

(i) $\exists 0, 1 \in \mathbb{F}, 0 \neq 1$

1.2. JANUARY 24 110: Linear Algebra

- (ii) $+: \mathbb{F} \times \mathbb{F} \to \mathbb{F}$ by $(a, b) \mapsto a + b$
- (iii) $\times : \mathbb{F} \times \mathbb{F} \to \mathbb{F}$ by $(a, b) \mapsto a \cdot b$

Satisfying:

- (a) Commutativity: a + b = b + a, ab = ba
- (b) Associativity: a + (b+c) = (a+b) + c, a(bc) = (ab)c
- (c) Inverses: $\forall a, \exists -a \text{ such that } a + (-a) = 0$ $\forall a, \exists 1/a \text{ such that } a \cdot (1/a) = 1$
- (d) Distributive: c(a+b) = ca + cb

Example 1.2.4.

- 1. \mathbb{R}, \mathbb{C}
- 2. $\{0,1\}$ +, $\times \mod 2$
- 3. $\mathbb{F}_p = \{0, \dots, p-1\} + \times \text{mod } p, p \text{ prime}$
- 4. Q: rationals
- 5. $\{a+b\sqrt{2}:a,b,\in\mathbb{Q}\}$
- 6. $\{P(x)/Q(x): P, Q \text{ are polynomials over } \mathbb{F}, Q \neq 0\}$

We will define \cdot for \mathbb{F} . Elements of \mathbb{F} are known as scalars (as opposed to vectors)

Definition 1.2.5. An n-tuple of elements of \mathbb{F} is (x_1,\ldots,x_n) where each $x_i\in\mathbb{F}$

Definition 1.2.6. $\mathbb{F}^n = \{ \text{all } n \text{-tuples of elements in } \mathbb{F} \}$

Definition 1.2.7.

- Addition "+": $\mathbb{F}^n \times \mathbb{F}^n \to \mathbb{F}^n$ by $((x_1, \dots, x_n), (y_1, \dots, y_n)) \mapsto (x_1 + y_1, \dots, x_n + y_n)$
- Scalar Multiplication ":": $\mathbb{F} \times \mathbb{F}^n$ by $(\lambda, (x_1, \dots, x_n)) \mapsto (\lambda x_1, \dots, \lambda x_n)$

Theorem 1.2.8 (Properties of \mathbb{F}^n).

• Addition is commutative: $v_1 + v_2 = v_2 + v_1 \quad \forall v_1, v_2 \in \mathbb{F}^n$

Proof. Assume
$$v_1 = (x_1, \dots, x_n), v_2 = (y_1, \dots, y_n)$$
 then $v_1 + v_2 = (x_1 + y_1, \dots, x_n + y_n) = (y_1 + x_1, \dots, y_n + x_n) = v_2 + v_1$

- Existence of $0 \in \mathbb{F}^n$: Denote $0 = (0, \dots, 0)$. Then $v + 0 = v \ \forall v \in \mathbb{F}^n$
- Additive Inverse: $\forall v \in \mathbb{F}^n, \exists ! (-v) \in \mathbb{F}^n \text{ such that } v + (-v) = 0$

1.2. JANUARY 24 110: Linear Algebra

Geometric Meaning for $\mathbb{F} = \mathbb{R}$

Descartes Coordinate System:

Geometric Meaning of Multiplication on $\mathbb C$

1.2.1 1B - Vector Spaces

Definition 1.2.9. Fix a field \mathbb{F} . A vector space over \mathbb{F} is a set V with addition "+" and scalar multiplication "·" denoted as $+: V \times V \to V$ by $(v_1, v_2) \mapsto v_1 + v_2, \cdot: \mathbb{F} \times V \to V$ by $(\lambda, v) \mapsto \lambda v$ Satisfies:

(1)
$$u + v = v + u, \forall u, v \in V$$

(2)
$$(u+v) + w = u + (v+w), a(bv) = (ab)v \ \forall u, v \in \mathbb{V}, a, b \in \mathbb{F}$$

(3)
$$\exists 0 \in \mathbb{V} \text{ such that } v + 0 = v, \forall v \in V$$

(4) $\forall v \in V, \exists w \in V \text{ such that } v + w = 0.$ (we will show w is unique and denote it as -v)

(5)
$$1 \cdot v = v, \forall v \in V$$

(6)
$$a(u+v) = au + av$$
, $(a+b)v = av + bv$, $\forall a, b \in \mathbb{F}$, $u, v \in V$

Definition 1.2.10. Elements in a vector space V are called points or vectors

Definition 1.2.11. A vector space over $\mathbb{F}(\mathbb{F})$ is also called an \mathbb{F} -vector space

Example 1.2.12.

- (1) $\mathbb{R}^n, \mathbb{C}^n, \mathbb{F}^n$ are all vector spaces
- (2) \mathbb{C} is a vector space over \mathbb{R}
- (3) Let S be a set. Define F^s = the set of all functions from S to \mathbb{F} . \mathbb{F}^S is a vector space $/\mathbb{F}$ under the operations (f+g)(s) = f(s) + g(s), $(\lambda f)(s) = \lambda \cdot f(s)$. Each element has additive inverse (-f)(s) = -f(s)

1.3. JANUARY 26 110: Linear Algebra

$$\mathbb{F}^{\infty} = \mathbb{F}^{\{1,2,3,\ldots,\}}$$
, consists of $(a_1, a_2, a_3, \ldots) \ \forall a_n \in \mathbb{F}$

- (4) the set of all sequences of real numbers that converge to 0
- (5) the set of all polynomials over \mathbb{F} , with deg $\leq n$ in k variables is a vector space $/\mathbb{F}$

Theorem 1.2.13. A vector space V has a unique additive identity

Proof. Assume 0 and 0' are both additive inverses. Then 0 = 0 + 0' = 0'

Theorem 1.2.14. $\forall v \in V$ has a unique additive inverse.

Proof. If w_1, w_2 are both additive inverses of v, then $w_1 = w_1 + (v + w_2) = (w_1 + v) + w_2 = w_2$

Definition 1.2.15. Let w - v = w + (-v)

Notation 1.2.16. V will be used to denote a vector space over \mathbb{F}

Theorem 1.2.17. $0 \cdot v = 0, \forall v \in V$

Proof. $0 \cdot v = (0+0) \cdot v = 0 \cdot v + 0 \cdot v$ so by the existence of additive inverses $0 = 0 \cdot v$

Theorem 1.2.18. $a \cdot 0 = 0, \forall a \in \mathbb{F}$

Proof. $a \cdot 0 = a \cdot (0+0) = a \cdot 0 + a \cdot 0$ so $0 = a \cdot 0$

Theorem 1.2.19. $(-1) \cdot v = -v, \forall v \in V$

Proof. 0 = 0v = (1 + (-1))v = 1v + (-1)v = v + (-1)v so by def (-1)v = -v

1.3 January 26

1.3.1 1.C - Subspaces

Definition 1.3.1. Assuming V is a vector space $/\mathbb{F}$. $U \subset V$ is called a subspace of V if U is also a vector space $/\mathbb{F}$ under + and \cdot in V.

Example 1.3.2. $\{(x_1, x_2, 0) : x_1, x_2, \in \mathbb{F}\}$ is a subspace of \mathbb{F}^3

1.3. JANUARY 26 110: Linear Algebra

Proposition 1.3.3. U is a subspace iff

- (i) $0 \in V$
- (ii) $u_1, u_2 \in U \to u_1 + u_2 \in U$
- (iii) $a \in \mathbb{F}, u \in U \to a \cdot u \in U$

Proof. \rightarrow) Suppose conditions hold. Then properties of +, \cdot follow from V, U has identity by (i) and additive inverses by (iii). Finally, +, \cdot well defined by (ii), (iii) so U is a subspace.

 \leftarrow) Suppose U is a subspace. Then U is nonempty so $0 \cdot u = 0 \in U$ so (i) holds. Also, +, \cdot well defined so (ii), (iii) hold.

Example 1.3.4.

- (a) {0} is a subspace
- (b) $\{(x_1, x_2, x_3, x_3) \in \mathbb{F}^4 : x_3 = 5x_4 + b\}$ is a subspace iff b = 0
- (c) $C[0,1] = \{\text{continuous real valued functions on } [0,1] \}$ is a subspace of $\mathbb{R}^{[0,1]}$ (over \mathbb{R})
- (d) $C^{\infty}[0,1] = \{\text{smooth real-valued functions on } [0,1]\}$ is a subspace $\mathbb{R}^{[0,1]}$
- (e) The real sequences that converge to zero form a subspace of \mathbb{R}^{∞}
- (f) The only subspaces of \mathbb{F}^1 are $\{0\}$ and \mathbb{F} (over \mathbb{F})
- (g) If U is a subspace of V, W is a subspace of U, then W is a subspace of V
- (h) We will show the only subspace of \mathbb{R}^3 are $\{0\}$, lines through the origin, planes through the origin, and \mathbb{R}^3

Definition 1.3.5. For U_1, \ldots, U_n subspaces of V, define the sum

$$U_1 + \cdots + U_m = \{u_1 + \cdots + u_m : u_1 \in U_1, \dots, u_m \in U_m\}$$

also denoted as $\sum_{j=1}^{m} U_j$.

Example 1.3.6. In \mathbb{F}^3 , what is $\{(x, x, 0)\} + \{(0, y, y)\}$?

Proof.
$$\{(x,y,z): y=x+z\}$$

Theorem 1.3.7. For subspaces $U_1, \ldots, U_m \subset V$, $\sum_{j=1}^m U_j$ is a subspace. Moreover, it is the smallest subspace containing U_1, \ldots, U_n in the sense that if W contains U_1, \ldots, U_n , then $W \supset U$.

Proof. Subspace: (i) $0 \in U_i$ for i = 1, ..., n so $0 = 0 + \cdots + 0 \in W$

(ii)/(iii): follow from closedness of each U_j

Containing U_1, \ldots, U_n : Consider the sum $0 + \cdots + 0 + u_j + 0 + \cdots + 0$ for $j = 1, \ldots, m$

Smallest Subspace: Suppose W contains U_1, \ldots, U_m then W contains $u_1, \ldots, u_m \ \forall u_j \in U_j$ so $u_1 + \cdots + u_m \in U_j$

1.3. JANUARY 26 110: Linear Algebra

W.

1.3.2 Direct Sums

Definition 1.3.8. If U_1, \ldots, U_m are subspaces of V then the sum $U_1 + \cdots + U_m$ is a direct sum if each element in $U_1 + \cdots + U_m$ can be written as $u_1 + \cdots + u_m$ in a unique way with $u_j \in U_j$. In this case, we also use $U_1 \oplus \cdots \oplus U_m$ to denote $U_1 + \cdots + U_m$.

Example 1.3.9.

- (1) If $U_1 = \{(x_1, x_2, 0)x_1, x_2 \in \mathbb{F}\}$, $U_2 = \{(0, 0, x_3)x_3 \in \mathbb{F}\}$, then $\mathbb{F}^3 = U_1 \oplus U_2$.
- (2) Let $U = \{(x, x, \ldots) \in \mathbb{R}^{\infty}, V = \{(x_1, x_2, \ldots) \in \mathbb{R}^{\infty} : \sum |x_n| < \infty, \sum x_n = 0\}$. Then U + V is a direct sum. (ex): Prove $U + V \neq \mathbb{R}^{\infty}$

Theorem 1.3.10. $U_1 + \cdots + U_m$ is a direct sum iff $\exists!$ way to write 0 as a sum of $u_1 + \cdots + u_m$, $\forall u_j \in U_j$ (which is $0 = 0 + \cdots + 0$).

Proof. \rightarrow) by def \leftarrow) For $u \in U_1 + \cdots + U_m$, assume $u = u_1 + \cdots + u_m = \tilde{u_1} + \cdots + \tilde{u_n}$, $u_j, \tilde{u_j} \in U_j$. Then $(u_1 - \tilde{u_1}) + (u_2 - \tilde{u_2}) + \cdots + (u_m - \tilde{u_m}) = 0$. Hence $u_1 - \tilde{u_1} = u_2 - \tilde{u_2} = \cdots = 0$. Thus there is only one way to write u as $\sum_{j=1}^m, \forall u_j \in U_j$.

Theorem 1.3.11. For subspaces $U_1, U_2 \in V$, $U_1 + U_2$ is a direct sum iff $U_1 \cap U_2 = \{0\}$.

Proof.
$$\rightarrow$$
) If $v \in U_1 \cap U_2$, $\underbrace{v}_{\in U_1} + \underbrace{(-v)}_{\in U_2} = 0$ so $v = (-v) = 0$
 \leftarrow) Take $u \in U_1 + U_2$ assume $u = u_1 + u_2 = \tilde{u_1} + \tilde{u_2}$. Then $\underbrace{u_1 - \tilde{u_1}}_{\in U_1} = \underbrace{-(u_2 - \tilde{u_2})}_{\in U_2}$ so by assumptions, $u_1 = \tilde{u_1}$ and $u_2 = \tilde{u_2}$.

Example 1.3.12. For subspaces U_1, \ldots, U_m of V, TFAE:

- (i) $U_1 + \cdots + U_m$ is a direct sum
- (ii) $\forall j \ U_j \cap (\sum_{k \neq j} U_k) = \{0\}$
- (iii) $\forall j > 1, U_j \cap (U_1 + \dots + U_{j-1}) = \{0\}$
- (iv) If $u_1 + \cdots + u_m = 0$, $u_i \in U_i$ then $u_1 = u_2 = \cdots = u_m = 0$

1.3.3 Chapter 2: Finite Dimensional Vector Spaces

 \mathbb{F} : field, V: Vector space $/\mathbb{F}$

1.4. JANUARY 31 110: Linear Algebra

1.3.4 2.A: Span and Linear Independence

Motivation: In some $V(\text{such as }\mathbb{F}^n)$, we can find vectors $e_1 = (1, 0, \dots, 0), e_2 = (0, 1, 0, \dots, 0), \dots, e_n = (0, \dots, 0, 1)$ such that every $v \in V$ can be written as $v = \sum_{j=1}^n a_j e_j$ and the choice of a_j is unique.

We will work with such vectors in a general setting.

1.4 January 31

1.4.1 Chapter 2: Finite Dimensional Vector Spaces

- Main motivation: Find "coordinate systems" in a vector space
- Recall in \mathbb{F}^n , $(x_1, \dots, x_n) = x_1(1, 0, \dots, 0) + x_n(0, \dots, 0, 1) = x_1e_1 + \dots + x_ne_n$.

1.4.2 2.A: Span and Linear Independence

Definition 1.4.1. A linear combination of vectors $v_1, \ldots, v_m \in V$ is a vector of the form

$$v = \sum_{j=1}^{m} a_j v_j, \quad a_1, \dots, a_m \in \mathbb{F}.$$

Example 1.4.2. (1, 2, -3) = (1, 0, -1) + 2(0, 1, -1)

Example 1.4.3. Is (1, 2, 3) a linear combination of (1, 0, -1) and (0, 1, 1)?

No, if $(1, 2, -3) = a_1(1, 0, -1) + a_2(0, 1, 1)$ then $a_1 = 1, a_2 = 2$ but $1(1, 0, -1) + 2(0, 1, 1) = (1, 2, 1) \neq (1, 2, -3)$.

Definition 1.4.4. The set

$$\{\sum_{i=1}^{m} a_j v_j, a_i \in \mathbb{F}, \, \forall 1 \le j \le m\}$$

is the span of v_1, \ldots, v_m , denoted by $\operatorname{span}(v_1, \ldots, v_m)$. Note $\operatorname{span}() = \{0\}$.

Example 1.4.5. $(1, 2, -3) \in \text{span}((1, 0, -1), (0, 1, -1)).$

Theorem 1.4.6. span (v_1, \ldots, v_m) is the smallest subspace of V that contains v_1, \ldots, v_m .

Proof. Subspace: $0 = 0v_1 + \cdots, 0v_n \in \text{span}(v_1, \dots, v_m)$

Closed under addition: $(a_1v_1 + \dots + a_mv_m) + (b_1v_1 + \dots + b_mv_m) = (a_1 + b_1)v_1 + \dots + (a_m + b_m)v_m$.

Closed under multiplication: $\lambda(a_1v_1 + \cdots + a_mv_m) = (\lambda a_1)v_1 + \cdots + (\lambda a_m)v_m$.

So it is a subspace.

Smallest: If $v_1, \ldots, v_m \in W$ for some subspace W, then $\forall a_1, \ldots, a_n \in \mathbb{F}$, $a_1 v_1, \ldots, a_m v_m \in V$ so $a_1 v_1 + \cdots + a_m v_m \in W$. Thus, $\operatorname{span}(v_1, \ldots, v_m) \subseteq W$.

Definition 1.4.7. If $V = \text{span}(v_1, \dots, v_m)$, then we say the list v_1, \dots, v_m spans V.

Example 1.4.8. e_1, \ldots, e_n spans \mathbb{F}^n

1.4. JANUARY 31 110: Linear Algebra

Definition 1.4.9. V is called finite dimensional if some (finite) list of vectors spans V.

Example 1.4.10. \mathbb{F}^n is finite dimensional.

Definition 1.4.11. A finite expression

$$p(z) = a_0 + a_1 z^1 + \dots + a_m z^m, \quad a_0, \dots, a_m \in \mathbb{F}, a_m \neq 0,$$
 (*)

also written as

$$\sum_{j=0}^{\infty} a_j x_j, a_{n+1} = a_{n+2} = \dots = 0,$$

is called a polynomial with coefficients in \mathbb{F} . (By definition p=0 is a polynomial.)

- Each polynomial over \mathbb{F} gives rise to a function from $\mathbb{F} \to \mathbb{F}$ defined by $p: \mathbb{F} \to \mathbb{F}$ by $z \mapsto p(z)$
- m is the degree of p if p has the form (*). The zero polynomial has degree $-\infty$ by definition.
- $\mathcal{P}(\mathbb{F}) = \{\text{all polynomials over } \mathbb{F}\}\$
- $\mathcal{P}_m(\mathbb{F}) = \{\text{all polynomials of deg } \leq m \text{ over } \mathbb{F}\}$

Example 1.4.12. $\mathcal{P}_m(\mathbb{F})$ and $\mathcal{P}(\mathbb{F})$ are vector spaces over \mathbb{F} (also subspaces of $\mathbb{F}^{\mathbb{F}}$ if viewed as functions.) **Example 1.4.13.**

- (a) $\mathcal{P}_m(\mathbb{F})$ is finite dimensional
- (b) $\mathcal{P}(\mathbb{F})$ is infinte dimensional

Proof.

- (a) $1, z, \ldots, z^m$ spans $\mathcal{P}_m(\mathbb{F})$
- (b) For any $p_1, \ldots, p_m \in \mathcal{P}(\mathbb{F})$, assume N is larger than $\deg p_j$ for $1 \leq j \leq m$. Then every $\sum_{j=1}^m a_j p_j$ is not equal to z^N .

Definition 1.4.14. v_1, \ldots, v_m is called linearly independent if whenever $0 = \sum_{j=1}^m a_j v_j, a_1, \ldots, a_m \in \mathbb{F}$, we must have $a_1 = \cdots = a_m = 0$. Otherwise, the list is linearly dependent. The empty list is linearly independent by definition.

Example 1.4.15.

- (a) v is linearly independent iff $v \neq 0$
- (b) e_1, \ldots, e_n is linearly independent in \mathbb{F}^n
- (c) v_1, v_2 is linearly independent iff neither vector is a scalar multiple of the other.
- (d) $1, z, \ldots, z^m$ is linearly independent in $\mathcal{P}_m(\mathbb{F})$.

1.5. FEBRUARY 2 110: Linear Algebra

- (e) (1, *, *), (0, 1, *), (0, 0, 1) where each * is arbitrary is linearly independent in \mathbb{F}^3
- (f) $(1, 1, ..., 1), (a_1, a_2, ..., a_n), (a_1^2, a_2^2, ..., a_n^2), ..., (a_1^{n-1}, a_2^{n-1}, ..., a_n^{n-1})$ is linearly dependent iff at least two of the a_i 's are the same.
- (g) Any subset of a linearly independent list is linearly independent.

Example 1.4.16.

- (a) If some vector in a list is a linear combination of the others, then the list is linearly dependent.
- (b) Every list containing 0 is linearly dependent.

1.5 February 2

1.5.1 2.A: Span and Linear Independence

Notation 1.5.1. $\mathcal{P}(\mathbb{F})$ can also be written as $\mathbb{F}[x]$

Lemma 1.5.2. For $v_1, \ldots, v_n \in V$, TFAE:

- (a) v_1, \ldots, v_n is linearly dependent.
- (b) $\exists 1 \leq j \leq n \text{ such that } v_j \in \text{span}(v_1, \dots, v_{j-1})$
- (c) $\exists 1 \leq j \leq n \text{ such that } v_j \in \text{span}(v_1, \dots, \hat{v}_j, \dots, v_n)$ (Note: here \hat{v}_j means v_j is excluded from the list)
- (d) $\exists 1 \leq j \leq n \text{ such that } \operatorname{span}(v_1, \dots, v_n) = \operatorname{span}(v_1, \dots, \hat{v}_j, \dots, v_n).$

Proof. $\mathbf{a} \to \mathbf{b}$) By def, $\exists a_1, \dots, a_n \in \mathbb{F}$, not all 0, such that $a_1v_1 + \dots + a_nv_n = 0$. Take the largest j such that $a_j \neq 0$. Then, $a_1v_1 + \dots + a_jv_j = 0$. Hence, $v_j = -\frac{a_1}{a_j}v_1 - \dots - \frac{a_{j-1}}{a_j}v_{j-1}$ so $v_j \in \operatorname{span}(v_1, \dots, v_{j-1})$. $\mathbf{b} \to \mathbf{c}$) Notice $\operatorname{span}(v_1, \dots, v_{j-1}) \subset \operatorname{span}(v_1, \dots, \hat{v}_j, \dots, v_n)$ so $v_j \in \operatorname{span}(v_1, \dots, \hat{v}_j, \dots, v_n)$. $\mathbf{c} \to \mathbf{d}$) By assumption $v_j \in \operatorname{span}(v_1, \dots, \hat{v}_j, \dots, v_n)$. Also $v_k \in \operatorname{span}(v_1, \dots, \hat{v}_j, \dots, v_n)$ for $k \neq j$ so $\operatorname{span}(v_1, \dots, \hat{v}_j, \dots, v_n)$ contains v_1, \dots, v_n . Thus, it contains $\operatorname{span}(v_1, \dots, v_n)$. Since $\operatorname{span}(v_1, \dots, \hat{v}_j, \dots, v_n)$ contains v_1, \dots, v_n . Thus, it contains $\operatorname{span}(v_1, \dots, v_n)$. Since $\operatorname{span}(v_1, \dots, \hat{v}_j, \dots, v_n)$ of $v_j \in \operatorname{span}(v_1, \dots, v_n)$, the two are equal. $\mathbf{d} \to \mathbf{a}$) By assumption, $\exists b_k \in \mathbb{F}$, $1 \leq k \leq n$, $k \neq j$ such that $v_j = \sum_{j \neq k} b_k v_k$. So $\sum_{j \neq k} b_k v_k - v_j = 0$ so the set is linearly dependent.

Theorem 1.5.3. If v_1, \ldots, v_m spans V, and $u_1, \ldots, u_n \in V$ are linearly independent, then $n \leq m$.

Idea. If m = 2, why can't n = 3? Consider the functions:

$$u_1 = a_{1,1}v_1 + a_{1,2}v_2$$

$$u_2 = a_{2,1}v_1 + a_{2,2}v_2$$

$$u_3 = a_{3,1}v_1 + a_{3,2}v_2$$

We must rearrange u_1, u_2, u_3 to show they are linearly dependent (3 equations in 2 variables.)

1.5. FEBRUARY 2 110: Linear Algebra

Proof. We will proceed by induction on m.

Note that for m = 0, span() = $\{0\}$ so this is trivially true.

Basis: If m = 1, $n \ge 2$. Let v_1 span V and let $u_1, u_2 \in V$ be arbitrary. Then $u_1 = \lambda_1 v_1$ and $u_2 = \lambda_2 v_2$. If $\lambda_1 = 0$, then $u_1 = 0$ and the set is linearly dependent so assume $\lambda_1 \ne 0$. Then $\lambda_2 u_1 - \lambda_1 u_2 = 0$ so the list is linearly dependent.

Inductive Step: Assume that the theorem holds for m = k. It suffices to show the m = k + 1 case. Let v_1, \ldots, v_{k+1} be a spanning list of V. If $n \ge k + 2$, let

$$u_i = \sum_{j=1}^{k+1} a_{i,j} v_j, \quad 1 \le i \le k+2, \quad a_{i,j} \in \mathbb{F},$$

be a list of k+2 vectors.

If all $a_{i,k+1} = 0$, then the list of vectors can be represented using only the vectors v_1, \ldots, v_k so they would be linearly independent by the IH.

Otherwise, WLOG, assume $a_{k+2,k+1} \neq 0$ (if not we can relabel the vectors to achieve this). Then

$$u_i - \frac{a_{i,k+1}}{a_{k+2,k+1}} u_{k+2} \in \text{span}(v_1, \dots, v_k)$$

for 1 < i < k + 1.

By IH, $\exists b_1, \ldots, b_{k+1} \in \mathbb{F}$, not all 0, such that

$$b_1(u_1 - \frac{a_{1,k+1}}{a_{k+2,k+1}}u_{k+2}) + \dots + b_{k+1}(u_{k+1} - \frac{a_{k+1,k+1}}{a_{k+2,k+1}}u_{k+1}u_{k+2}) = 0$$

so

$$b_1 u_1 + \dots + b_{k+1} u_{k+1} - \left(b_1 \frac{a_{1,k+1}}{a_{k+2,k+2}} + \dots + b_{k+1} \frac{a_{k+1,k+1}}{a_{k+1,k+2}}\right) u_{k+2} = 0$$

so the list u_1, \ldots, u_{k+2} is linearly dependent.

Example 1.5.4. e_1, \ldots, e_n spans \mathbb{F}^n and is linearly independent so:

- (1,2,3), (4,5,8), (4,6,7), (-3,2,8) are linearly dependent in \mathbb{F}^3
- (1,2,3,-5), (4,5,8,-3), (4,6,7,-1) does not span \mathbb{F}^4

Proposition 1.5.5. Every subspace of a finite dimensional vector space is finite dimensional.

Proof. Assume V is spanned by v_1, \ldots, v_m , and U is a subspace of V.

Start from the empty list () in U and add vectors 1 by 1 so that no vector is in the span if the previous vectors in the list. This produces a linearly independent list in U.

By the thm, this process must terminate since the length of a list of linearly independent vectors in V cannot be greater than m.

Assume we have u_1, \ldots, u_n . Then each $u \in U$ is a linear combination of u_1, \ldots, u_n , otherwise we could add it to the list and it would produce a longer linearly independent list. Thus, u_1, \ldots, u_n spans U.

1.5.2 2.B - Bases

1.5. FEBRUARY 2 110: Linear Algebra

Definition 1.5.6. A basis of V is a list of vectors in V that is linearly independent and spans V.

Theorem 1.5.7. Every finitely dimensional vector space has a basis.

Proof. Take U = V in the proof of proposition 5.5. Then we can generate a linearly independent list in V that spans V. Thus V has a basis.

Example 1.5.8.

- (a) e_1, \ldots, e_n forms a basis of \mathbb{F}^n (standard basis)
- (b) (1,2,3), (3,4,6), (0,0,1) is a basis of \mathbb{F}^3 unless char $\mathbb{F}=3$
- (c) (1,-1,0),(0,1,-1) is a basis of $\{(x,y,z)\in\mathbb{F}^3:x+y+z=0\}$
- (d) $1, z, \ldots, z^m$ is a basis of $\mathcal{P}_m(\mathbb{F})$
- (e) f_0, f_1, \ldots, f_m is a basis of $\mathcal{P}_m(\mathbb{F})$ if $\deg f_j = j, 0 \leq j \leq m$

Proposition 1.5.9. v_1, \ldots, v_m forms a basis of V iff $\forall v \in V$ can be uniquely represented as $v = \sum_{j=1}^n a_j v_j$, $a_j \in \mathbb{F}$.

Proof. If v_1, \ldots, v_n forms a basis of V, then they span V so all vectors can be represented in the desired form. Suppose $\exists a_1, \ldots, a_n, b_1, \ldots, b_n \in \mathbb{F}$ such that $a_1v_1 + \cdots + a_nv_n = v = b_1v_1 + \cdots + b_nv_n$, then $(a_1 - b_1)v_1 + \cdots + (a_n - b_n)v_n = 0$. Since the set is linearly independent, $a_1 - b_1 = \cdots = a_n - b_n = 0$ so $a_i = b_i$ for all i, thus the representation is unique.

If the stated conditions hold, then the list spans v. Also, 0 has a unique representation so the list is linearly independent and hence a basis.

Proposition 1.5.10. Every spanning list in a finite dimensional vector space contains a basis.

Proof (Proof 1). Starting from (), we can create a linearly independent list consisting of vectors in the spanning list by the same procedure as proposition 5.5. This process must terminate since the spanning list is finite. So we produce a linearly independent list that spans V, eg. a basis.

Proof (Proof 2). We can also start with the spanning list v_1, \ldots, v_m and at each step, if the list is linearly dependent, we can choose v_j such that $\operatorname{span}(v_1, \ldots, v_n) = \operatorname{span}(v_1, \ldots, \hat{v}_j, \ldots, v_n)$. This process must terminate in a linearly independent list since the spanning list is finite. So we produce a linearly independent list that spans V, eg. a basis.

Chapter 2

Linear Maps

2.1 February 2

2.1.1 Ch3 - Linear Maps

Notation 2.1.1. U, V, W will represent subspaces.

2.1.2 3.A - Linear Maps as a Vector Space

Definition 2.1.2. $T:V\to W$ is called a linear map if $\begin{cases} T(u+v)=Tu+Tv & \forall u,v\in V\\ T(\lambda v)=\lambda Tv & \forall \lambda\in\mathbb{F},v\in V \end{cases}$. Note: V is called the domain of T.

 $\textbf{Definition 2.1.3. } \{ \text{linear maps from } V \text{ to } W \} \text{ is denoted by } \text{Hom}(V,W) \ (\mathcal{L}(V,W)). \ \text{Hom}(V,V) = \text{End}(V).$

Example 2.1.4.

- (1) Zero map: $0 \in \text{Hom}(V, W)$ $0: V \to W$ by $v \mapsto 0$
- (2) Identity: $I \in \text{End}(V)$ $I: V \to W$ by $v \mapsto v$
- (3) Inclusion: "i". If $V \subseteq W$, $i: V \to W$ by $v \mapsto v$
- (4) Differentiation: $D: \mathcal{P}(\mathbb{F}) \to \mathcal{P}(\mathbb{F})$ by $\sum_{j=0}^{\infty} a_j x^j \mapsto \sum_{j=1}^{\infty} j a_j x^{j-1}$. $D \in \text{End}(\mathcal{P}(\mathbb{F}))$
- (5) Integration from 0 to $1 \in \text{End}(\mathcal{P}(\mathbb{R}))$
- (6) "Multiplication by f": Fix $f \in \mathcal{P}(\mathbb{F})$. Let $T : \mathcal{P}(\mathbb{F}) \to \mathcal{P}(\mathbb{F})$ by $g \mapsto g \cdot f$. $[(\sum_j a_j x^j)(\sum_j b_j x^j) = \sum_{k=0}^{\infty} (\sum_{j_1+j_2=k} a_{j_1} b_{j_2}) x^k]$. $T \in \text{End}(\mathcal{P}(\mathbb{F}))$.
- (7) For a matrix

$$\begin{pmatrix} a_{1,1} & \cdots & a_{1,n} \\ & \cdots & \\ a_{m,1} & \cdots & a_{m_n} \end{pmatrix}$$

 $T: \mathbb{F}^m \to \mathbb{F}^m$ by $(x_1, \dots, x_n) \mapsto (a_{1,1}x_1 + \dots + a_{1,n}x_n, \dots, a_{1,m}x_1 + \dots + a_{n,m}x_n)$. $T \in \text{Hom}(\mathbb{F}^n, \mathbb{F}^m)$.

2.2. FEBRUARY 7 110: Linear Algebra

2.2 February 7

2.2.1 2.B - Bases

Proposition 2.2.1. Every linearly independent list of vectors in a finite dimensional vector space can be extended to a basis.

Proof. Starting with a linear independent list we can continue to add vectors that are not in the span of the previous vectors of the list to product a linearly independent list. This will eventually terminate since a linearly independent list cannot be longer than the spanning list. Thus, it will produce a linearly independent spanning list, eg. a basis.

Proposition 2.2.2. If V is finite dimensional and U is a subspace of V, then there exists a subspace $W \subset V$ such that $V = U \oplus W$.

Proof. U is finite dimensional so take a basis u_1, \ldots, u_n of U. Extend this to a basis $u_1, \ldots, u_m, u_{m+1}, \ldots, u_n$ of V. We will show $W = \operatorname{span}(u_{m+1}, \ldots, u_n)$ suffices.

Since u_1, \ldots, u_n is a basis of V, every $v \in V$ can be written as $\underbrace{a_1u_1 + \cdots + a_mv_m}_{\in U}$ +

$$\underbrace{a_{m+1}u_{m+1} + \dots + a_nu_n}_{\in W} \text{ so } U + W = V.$$

Moreover, if $w \in U \cap W$, then $w = \sum_{j=1}^{m} b_j v_j$ and $w = \sum_{j=m+1}^{n} b_j v_j$ for $b_1, \ldots, b_n \in \mathbb{F}$. Hence, since $\sum_{j=1}^{m} b_j v_j - \sum_{j=m+1}^{n} b_j v_j = 0$, all $b_j = 0$ so w = 0.

2.2.2 2C - Dimension

Theorem 2.2.3. Any two bases of a finite dimensional vector space have the same length.

Proof. Bases are spanning lists and linearly independent lists so for two bases B_1 , B_2 , $len B_1 \le len B_2$ and $len B_2 \le len B_1$ so $len B_1 = len B_2$.

Definition 2.2.4. The dimension of a finite dimensional vector space is the length of every basis, denoted $\dim V$

Example 2.2.5.

- (a) dim $\mathbb{F}^n = n$
- (b) \mathbb{C} as a vector space over \mathbb{R} has dimension 2. eg. $\dim_{\mathbb{R}} \mathbb{C} = 2$
- (c) dim $\mathcal{P}_m(\mathbb{F}) = m + 1$
- (d) dim $\{(x_1, \dots, x_n) \in \mathbb{F}^n : x_1 + \dots + x_n = 0\} = n 1.$ A basis is $(1, -1, 0, \dots, 0), (0, 1, -1, 0, \dots, 0), \dots, (0, \dots, 0, 1, -1).$
- (e) Every subspace $U \subset V$ such that $U \neq V$ has dim $U < \dim V$.

2.2. FEBRUARY 7 110: Linear Algebra

Proof. Take a basis of U and extend to a basis of V. We must add ≥ 1 element, otherwise U = V.

(f) Every vector space $\neq \{0\}$ has dim ≥ 1 .

Proof. Take a nonzero element (linearly independent) and extend to a basis. Thus dim ≥ 1 .

Theorem 2.2.6. If V is fin dim with dim V = n, then if a list of n vectors is linearly independent it is a basis.

Proof. Extend the list to a basis. Since the basis has length n no vectors were added so the list is already a basis.

Theorem 2.2.7. If V is finite dimensional with dim V = n, then if a list of n vectors spans V, it must be a basis.

Proof. Refine the list to a basis. The basis has n vectors so no vectors were removed. Thus, the list is already a basis.

Example 2.2.8. $U = \{p \in \mathcal{P}_3(\mathbb{R}) : p'(5) = 0\}$, [for $p(x) = \sum_{j=0}^{\infty} a_j x_j$, define $p'(x) = \sum_{j=1}^{\infty} j a_j x^{j-1}$], has dim ≤ 3 . $1, (x-5)^2, (x-5)^3$ are linearly independent so dim $U \geq 3$. Thus, dim U = 3.

Theorem 2.2.9. If U_1, U_2 both subspaces of V, dim $V < \infty$. Then

$$\dim(U_1 + U_2) = \dim U_1 + \dim U_2 - \dim(U_1 \cap U_2).$$

Proof. Find a basis u_1,\ldots,u_n of $U_1\cap U_2$. Extend to a basis $u_1,\ldots,u_n,v_1,\ldots,v_m$ of U_1 and a basis $u_1,\ldots,u_n,w_1,\ldots,w_k$ of U_2 . We claim $u_1,\ldots,u_n,v_1,\ldots,v_n,w_1,\ldots,w_k$ is a basis of U_1+U_2 . First $\forall v\in U_1+U_2,\ v=u_1+u_2$ for $u_1\in U_1,\ u_2\in U_2$. Consider $u_1=\sum_{j=1}^n a_ju_j+\sum_{j=1}^m b_jv_j,\ u_2=\sum_{j=1}^n c_ju_j+\sum_{j=1}^k d_jw_j$. Then, $v=u_1=u_2+u_1=\sum_{j=1}^n (a_j+c_j)u_j+\sum_{j=1}^m b_jv_j+\sum_{j=1}^k d_jw_j$. Hence $u_1,\ldots,u_n,v_1,\ldots,v_n,w_1,\ldots,w_k$ spans U_1+U_2 . Moreover, if $\sum_j \alpha_ju_j+\sum_j \beta_jv_j+\sum_j \gamma_jw_j=0$ for $\alpha_j,\beta_j,\gamma_j\in\mathbb{F}$, then

$$(\underbrace{\sum_{j}\alpha_{j}u_{j}+\sum_{j}\beta_{j}v_{j}}_{\in U_{1}})=\underbrace{-\sum_{j}\gamma_{j}w_{j}}_{\in U_{2}}$$

so both in $U_1 \cap U_2$. So $\sum_j \gamma_j w_j = \sum_j \delta_j u_j$ for $\delta_1, \dots, \delta_n \in \mathbb{F}$ so $\gamma_1 = \dots = \gamma_n = 0$. Hence $\sum_j \alpha_j u_j + \sum_j \beta_j v_j = 0$ so all $\alpha_j, \beta_j = 0$. Hence, $u_1, \dots, u_n, v_1, \dots, v_m, w_1, \dots, w_k$ is linearly dependent and the claim holds

Now, $\dim(U_1 + U_2) = n + m + k$, $\dim U_1 = n + m$, $\dim U_2 = n + k$, $\dim(U_1 \cap U_2) = n$ so theorem follows by a direct computation.

2.3. FEBRUARY 9 110: Linear Algebra

2.3 February 9

2.3.1 3.A- Linear Maps a Vector Space

Theorem 2.3.1. Hom(V, W) is a vector space with respect to: $+: (T_1 + T_2)v = T_1v + T_2v$ $\cdot: (\lambda T_1)v = \lambda \cdot T_1v$

Theorem 2.3.2. If $T \in \text{Hom}(V, W)$, then T0 = 0.

Proof.
$$T0 = T(0+0) = T0 + T0$$
 so $0 = T0$.

Product of linear maps defined by composition

Definition 2.3.3. If $T \in \text{Hom}(U, V)$, $S \in \text{Hom}(V, W)$. Then the product (defined by composition) $ST \in \text{Hom}(U, W)$ is defined as $ST : U \to W$ by $v \mapsto S(Tv)$

Proof that ST is linear.

$$(ST)(v_1 + v_2) = S(T(v_1 + v_2)) = S(Tv_1 + Tv_2) = S(Tv_1) + S(Tv_2) = (ST)v_1 + (ST)v_2$$

$$(ST)(\lambda v) = S(T(\lambda v)) = S(\lambda Tv) = \lambda S(Tv) = \lambda (ST)v$$

Proposition 2.3.4.

- (1) $(T_1T_2)T_3 = T_1(T_2T_3)$ as long as everything is defined
- (2) TI = IT = T
- (3) $(S_1 + S_2)T = S_1T + S_2T$, $S(T_1 + T_2) = ST_1 + ST_2$ as long as everything is defined.
- Assuming $S: U_1 \to U_2, T: V_1 \to V_2$ where ST makes sense (ie. $V_2 = U_1$). TS may not make sense
- Even if TS also makes sense (ie. $U_2 = V_1, V_2 = U_1$), $TS: U_1 \to U_1$ but $ST: U_2 \to U_2$
- Even if $U_1 = U_2 = V_1 = V_2$, TS might not equal ST. eg. $U_1 = U_2 = V_1 = V_2 = \mathcal{P}(\mathbb{R})$, S: Differentiation, T: multiply by x. Then (ST)(p) = S(T(p)) = S(xp) = p + xp' but (TS)(p) = T(S(p))' = T(p') = xp'.

Theorem 2.3.5. If v_1, \ldots, v_m is a basis of V and $w_1, \ldots, w_m \in W$ then $\exists!$ linear map $T: V \to W$ such that $Tv_j = w_j, 1 \le j \le n$.

Proof.

Existence: $\forall a_1, \dots, a_n \in \mathbb{F}$ define $T(\sum a_j v_j) = \sum a_j w_j$ Well defined: only one way to write $\forall v \in V$ as some $\sum a_j v_j$ Linear: For $\lambda \in \mathbb{F}$, $u_1, u_2 \in V$ write $u_1 = \sum_{j=1}^n b_j v_j$, $u_2 = \sum_{j=1}^n c_j v_j$, $b_j, c_j \in \mathbb{F}$. Then $T(u_1 + u_2) = T(\sum_j (b_j + c_j) v_j) = \sum_j (b_j + c_j) w_j = \sum_j b_j w_j + \sum_j c_j w_j = T(\sum b_j v_j) + \sum_j c_j w_j = T(\sum b_j v_j) = \sum_j (b_j + c_j) v_j$ 2.3. FEBRUARY 9 110: Linear Algebra

```
T(\sum c_jv_j) = Tu_1 + Tu_2. T(\lambda v_1) = T(\sum_j(\lambda b_j)w_j = \lambda(\sum_j b_jw_j)\lambda Tu_1 Uniqueness: If T_1v_j = T_2v_g = w_j, \forall 1 \leq j \leq n, then \forall v \in V, write v = \sum_{j=1}^n d_jv_j, d_j \in \mathbb{F}, 1 \leq j \leq n so T_1v = T(\sum d_jv_j) = \sum (Td_jv_j) = \sum d_jT_1(v_j) = \sum d_jw_j and T_2v = \sum d_jv_j for the same reason so T_1v = T_2v.
```

2.3.2 3.B - Kernels and Images

Definition 2.3.6. For $T \in \text{Hom}(V, W)$, the kernel (or null space) of T is $\ker T = \{v \in V : Tv = 0\}$.

Example 2.3.7.

- $(1) 0: V \to W \quad \ker 0 = V$
- (2) If $V \subset W$, $i: V \to W$ $\ker i = \{0\}$
- (3) $D: \mathcal{P}(\mathbb{F}) \to \mathcal{P}(\mathbb{F})$, char F = 0 ker $D = \{\text{constants}\}$

Proposition 2.3.8. $\forall T \in \text{Hom}(V, W)$, ker T is a subspace

Definition 2.3.9. A map $f: S_1 \to S_2$ is called injective if $f(x_1) = f(x_2) \to x_1 = x_2$.

Proposition 2.3.10. If $T \in \text{Hom}(V, W)$, then T is injective iff $\ker T = \{0\}$

Proof. \rightarrow) $0 \in \ker T$. By injectivity, nothing else is mapped to 0. \leftarrow) If $Tv_1 = Tv_2$, then $T(v_1 - v_2) = 0$. Thus with $\ker T = \{0\}$ implies that $v_1 - v_2 = 0$ so $v_1 = v_2$

Definition 2.3.11. If $T \in \text{Hom}(V, W)$, then image (or range) of T is defined as $\text{im}T = \{w \in W : \exists v \in V \text{ such that } w = Tv\}$

Example 2.3.12.

- $(1) \ \text{im} 0 = \{0\}$
- (2) $V \subset W$, $i: V \to W$ has image V
- (3) $D: \mathcal{P}(\mathbb{F}) \to \mathcal{P}(\mathbb{F})$, char $\mathbb{F} = 0$ im $D = \mathcal{P}(\mathbb{F})$

Proposition 2.3.13. $\forall T \in \text{Hom}(V, W)$, im T is a subspace.

Proof. $\forall w_1, w_2 \in \text{im} T$, find $v_1, v_2 \in V$ such that $Tv_1 = w_1$, $Tv_2 = w_2$. Then $T(v_1 + v_2) = w_1 + w_2$, $T(\lambda v_1) = \lambda w_1$.

2.4. FEBRUARY 14 110: Linear Algebra

Definition 2.3.14. A map $f: S_1 \to S_2$ is surjective if $\{f(s): s \in S_1\} = S_2$.

Observation: $\forall T \in \text{Hom}(V, W), T \text{ is sujective iff im } T = W$

Theorem 2.3.15 (Fundamental Theorem of Linear Maps). Assume V is finite dimensional and $T \in \text{Hom}(V,W)$, then $\dim V = \dim(\operatorname{im} T) + \dim(\ker T)$

Proof. If v_1, \ldots, v_n is a basis of ker T, extend it to a basis $v_1, \ldots, v_n, v_{n+1}, \ldots, v_m$ of V. We claim: Tv_{n+1}, \ldots, Tv_m is a basis of im T.

Spans: $\forall w \in \text{im}T$, $\exists v \in V$ such that Tv = w. Write $v = \sum_{j=1}^{m} a_j v_j$. Then $Tv = \sum_{j=1}^{m} a_j T v_j = \sum_{n < j \le m} a_j T v_j$. Hence Tv_{n+1}, \ldots, Tv_m spans im T.

Lin. Independent: If $b_{n+1}, \ldots, b_m \in \mathbb{F}$ such that $b_{n+1}Tv_{n+1} + \cdots + b_mTv_n$. Then $T(\sum_{n < j \le m} b_j v_j) = 0$ so $\sum_{n < j \le m} b_j v_j \in \ker T$. So $\exists a_1, \ldots, a_n$ such that $\sum_{n < j \le m} \sum_{j=1}^n c_j v_j$ so all $b_j = 0$. Hence the claim is verified. Thus, dim V = m, dim(ker V) = n, dim(imV) = m - n.

2.4 February 14

2.4.1 3.B - Kernels and Images

Corollary 2.4.1. If dim $V > \dim W$, then no $T \in \operatorname{Hom}(V, W)$ is injective.

Corollary 2.4.2. If dim $V < \dim W$, then no $T \in \operatorname{Hom}(V, W)$ is surjective.

Corollary 2.4.3. $D: \mathcal{P}(\mathbb{F}) \to \mathcal{P}(\mathbb{F})$ is not surjective

Theorem 2.4.4. A homogeneous system of linear equations

$$\begin{cases} f_1(x_1, \dots, x_n) = 0 \\ \dots \\ f_m(x_1, \dots, x_n) = 0 \end{cases}$$
 where $f_j(x_1, \dots, x_n) = \sum_{j=1}^n A_{j,k} x_k$

with more variables than equations has a nonzero solution.

Proof. Construct a linear map $T: \mathbb{F}^n \to \mathbb{F}^m$ by $(x_1, \dots, x_n) \mapsto (f_1(x_1, \dots, x_n), \dots, f_m(x_1, \dots, x_n))$. Then, dim ker $T = \dim \mathbb{F}^n - \dim \operatorname{im} T \geq n - m \geq 1$. Take a nonzero element in the kernel and that is a nonzero solution.

2.4. FEBRUARY 14 110: Linear Algebra

Theorem 2.4.5. An inhomogenous system of linear equations

$$\begin{cases} f_1(x_1, \dots, x_n) = a_1 \\ \dots \\ f_m(x_1, \dots, x_n) = a_m \end{cases}$$
 where $f_j(x_1, \dots, x_n) = \sum_{j=1}^n A_{j,k} x_k$

with more equations than variables has no solutions for some choice of constant terms.

Proof. Define T as in the proof above. Then T is not going to be surjective so there exists (a_1, \ldots, a_n) not in the image of T so take that vector as the choice of constants.

2.4.2 3.C - Matrices

A linear map can be represented by a matrix.

Definition 2.4.6. An $m \times n$ matrix is an array of scalars in the from

$$A = \underbrace{\begin{pmatrix} A_{1,1} & \cdots & A_{1,n} \\ A_{2,1} & \cdots & A_{2,n} \\ \cdots & \cdots & \cdots \\ A_{m,1} & \cdots & A_{m,n} \end{pmatrix}}_{n \text{ columns}} \} m \text{ rows}$$

Also written as $(A_{i,j})_{m \times n}$. $\mathbb{F}^{m,n} = \{\text{all } m \times n \text{ matrices}\}.$

Definition 2.4.7 (Matrix of a Linear Map). If $T \in \text{Hom}(V, W), v_1, \ldots, v_n$ is a basis of V and w_1, \ldots, w_n is a basis of W. Assume $Tv_k = \sum_{j=1}^m A_{j,k}v_j$. Then $(A_{j,k})_{m \times n}$ is called the matrix of T with respect to the bases (v_1, \ldots, v_n) and (w_1, \ldots, w_m) , denoted by $\mathcal{M}(T)$.

Digest:

$$w_1 \begin{pmatrix} A_{1,1} & \cdots & v_n \\ \vdots & & \vdots \\ A_{1,n} & \cdots \end{pmatrix}$$
 columns \leftrightarrow element in basis of domain rows \leftrightarrow element in basis of target space

Motivation: Matrix Multiplication

Example 2.4.8. In \mathbb{R}^2

(a) Rotation about 0.

Rotate by $\frac{\pi}{2}$ counterclockwise. Matrix with respect to (e_1, e_2) is $\begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$

2.4. FEBRUARY 14 110: Linear Algebra

More generally, rotation by θ with respect to (e_1, e_2) is $\begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix}$

(b) Orthogonal projection to L but then included into \mathbb{R}^2 .

Matrix with respect to (e_1, e_2) : $\begin{pmatrix} 1/2 & 1/2 \\ 1/2 & 1/2 \end{pmatrix}$

Matrix with respect to ((1,1),(1,-1)): $\begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$

(c) $i: V \to W$ (assume $V \subset W$) with respect to $(v_1, \ldots, v_n), (v_1, \ldots, v_n, v_{n+1}, \ldots, v_m)$.

$$\mathcal{M}(i) = \begin{pmatrix} 1 & 0 & & 0 \\ 0 & 1 & & \vdots \\ \vdots & 0 & \ddots & 1 \\ \vdots & \vdots & & \vdots \\ 0 & 0 & & 0 \end{pmatrix} \leftarrow n \text{th row}$$

Definition 2.4.9. If $A, B \in \mathbb{F}^{m,n}$, $\lambda \in \mathbb{F}$, A + B, λA are defined as entrywise addition and scalar multiplication.

Proposition 2.4.10. If $T_1, T_2 \in \text{Hom}(V, W)$. Fix a basis of V and a basis of W. Then $\mathcal{M}(T_1 + T_2) = \mathcal{M}(T_1) + \mathcal{M}(T_2)$, $\mathcal{M}(\lambda T_1) = \lambda \mathcal{M}(T_1)$.

Proposition 2.4.11. $\mathbb{F}^{m,n}$ is a vector space with dimension mn.

Proof. The list of all possible $m \times n$ matrices with 0 in all entries except one (where the entry is 1) form a basis.

2.4.3 Matrix Multiplication

 \bullet Motivated by looking for matrix of ST.

Definition 2.4.12. For $A \in \mathbb{F}^{m,n}$, $B \in \mathbb{F}^{n,p}$, define $AB \in \mathbb{F}^{m,p}$ such that $(AB)_{i,k} = \sum_{j=1}^{n} A_{i,j} B_{j,k}$.

2.5. FEBRUARY 23 110: Linear Algebra

Proposition 2.4.13. If $T \in \text{Hom}(V, W)$, $S \in \text{Hom}(V, W)$, u_1, \ldots, u_p is a basis of U, v_1, \ldots, v_n is a basis of V, and w_1, \ldots, w_m is a basis of W, then $\mathcal{M}(ST) = \mathcal{M}(S)\mathcal{M}(T)$.

Proof. Assume $\mathcal{M}(S) = A$ and $\mathcal{M}(T) = B$. $\forall k \in \{1, ..., p\}$

$$(ST)u_{k} = S(Tu_{k})$$

$$= S(\sum_{j=1}^{n} B_{j,k}v_{j})$$

$$= \sum_{j=1}^{n} B_{j,k}(Sv_{j})$$

$$= \sum_{j=1}^{n} B_{j,k}(\sum_{i=1}^{m} A_{i,j}w_{i})$$

$$= \sum_{j=1}^{m} (\sum_{i=1}^{n} A_{i,j}B_{j,k})w_{i}$$

Hence $(\mathcal{M}(S(T))_{i,k} = \sum_{j=1}^{m} A_{i,j} B_{j,k} = (AB)_{j,k}$.

Example 2.4.14.
$$\begin{pmatrix} 0 & 1 \\ 2 & 3 \end{pmatrix} \begin{pmatrix} 4 & 5 \\ 6 & 7 \end{pmatrix} = \begin{pmatrix} 6 & 7 \\ 26 & 31 \end{pmatrix}$$

Proposition 2.4.15. $(AB)_{i,j} = (i\text{th row of }A) \cdot (j\text{th column of }B), \text{ here "}\cdot \text{" is the dot product.}$

Proposition 2.4.16. The *j*th column of AB = A(jth column of B).

Proposition 2.4.17. If $A \in \mathbb{F}^{m,n}$, $c \in \mathbb{F}^{n,1} = \begin{pmatrix} c_1 \\ \vdots \\ c_n \end{pmatrix}$, then Ac is a linear combination of the columns of A: $Ac = c_1 A_{\cdot,1} + \cdots + c_n A_{\cdot,n}$.

2.5 February 23

2.5.1 3.D- Invertibility and Isomorphic Vector Spaces

Definition 2.5.1. $T \in \text{Hom}(V, W)$ is called invertible if $\exists S \in \text{Hom}(W, V)$ such that ST = I, TS = I. Such an S is called an inverse of T.

Proposition 2.5.2. If T has an inverse, then the inverse is unique.

2.5. FEBRUARY 23 110: Linear Algebra

Proof. If T_1, T_2 are inverses, $T_2 = T_2ST_1 = T_1$.

We use T^{-1} to denote the inverse of T.

Theorem 2.5.3. A linear map T is invertible iff it is injective and surjective.

Proof. \rightarrow) True by set theory.

 \leftarrow) T has a set theoretic inverse S. It suffices to show S is linear.

Assume $T \in \text{Hom}(V, W)$, $\forall w_1, w_2 \in W$, $\forall \lambda \in \mathbb{F}$, there is v_1, v_2 such that $Tv_1 = w_1$, $Tv_2 = w_2$. Then $T(v_1 + v_2) = w_1 + w_2$ so $S(w_1 + w_2) = w_1 + w_2 = Sw_1 + Sw_2$. Similarly, $S(\lambda w_1) = \lambda Sw_1$.

Example 2.5.4.

- (1) Multiplication by (x+1) is not invertible (viewed as map from $\mathcal{P}(\mathbb{F})$ to itself)
- (2) Multiplication by (x+1) and discarding terms of deg > n is invertible in $\operatorname{End}(\mathcal{P}_n(\mathbb{F}))$.

Definition 2.5.5. An invertible $T \in \text{Hom}(V, W)$ is called an isomorphism. If such a T exists, we say V and W are isomorphic and write $V \cong W$.

Example 2.5.6. $T: \mathcal{P}(\mathbb{F}) \to \mathbb{F}^3$ by $a_0 + a_1x + a_2x^2 \mapsto (a_0, a_1, a_2)$ is an isomorphism.

Theorem 2.5.7. If V and W are finite dimensional vector spaces, then $V \cong W \leftrightarrow \dim V = \dim W$.

Proof. \rightarrow) If $V \cong W$, then there is an isomorphism $T: V \to W$ so $\dim V = \dim \operatorname{im} T = \dim W + 0 = \dim W$.

 \leftarrow) Take bases v_1, \ldots, v_n of V and $w_1, \ldots w_n$ of W. Then $T \in \text{Hom}(V, W)$ is an isomorphism if $Tv_j = w_j$, $\forall j$.

Corollary 2.5.8. If dim V = n, then $V \cong \mathbb{F}^n$.

Theorem 2.5.9. If dim V = n, dim W = m with bases v_1, \ldots, v_n and w_1, \ldots, w_m , respectively. Then $\mathcal{M} : \text{Hom}(V, W) \to \mathbb{F}^{m,n}$ is an isomorphism.

Proof. We have already shown \mathcal{M} is linear.

If $\mathcal{M}(T) = 0$, then $Tv_j = 0 \ \forall j$ so T = 0 so \mathcal{M} is injective.

For $A \in \mathbb{F}^{m,n}$, define $T \in \text{Hom}(V,W)$ such that $Tv_k = \sum_{j=1}^m A_{j,k}w_j$, then $\mathcal{M}(T) = A$. So \mathcal{M} is surjective.

Corollary 2.5.10. $\dim \operatorname{Hom}(V, W) = (\dim V)(\dim W)$, if $\dim V, \dim W$ are finite.

We can think of linear maps as matrix multiplication.

2.6. FEBRUARY 28 110: Linear Algebra

Definition 2.5.11. For a basis v_1, \ldots, v_n of V, the matrix of $v = \sum_j a_j v_j$, $a_j \in \mathbb{F}$ is $\begin{pmatrix} a_1 \\ \vdots \end{pmatrix}$, denoted $\mathcal{M}(v)$.

Example 2.5.12. In \mathbb{F}^n , with respect to e_1, \ldots, e_n , the matrix of (a_1, \ldots, a_n) is $\begin{pmatrix} a_1 \\ \vdots \end{pmatrix}$.

Proposition 2.5.13. $\mathcal{M}(Tv) = \mathcal{M}(T)\mathcal{M}(v)$

Proposition 2.5.14. $\mathcal{M}(T)_{\cdot,k} = \mathcal{M}(Tv_k)$.

2.6 February 28

2.6.1 3.D - Invertibility and Isomorphic Vector Spaces

Proposition 2.6.1. $\mathcal{M}(Tv) = \mathcal{M}(T)\mathcal{M}(v)$

Proof. Let $v = \sum_{k=1}^{n} a_k v_k$. Assume $\mathcal{M}(T) = A$. Then

$$Tv = \sum_{k=1}^{n} a_k \sum_{j=1}^{m} A_{j,k} w_j$$
$$= \sum_{j=1}^{m} (\sum_{k=1}^{n} A_{j,k} a_k) w_j$$

so the jth entry of a linear map can be thought of as a matrix multiplication.

Example 2.6.2. $\mathcal{M}(\cdot)$ is an isomorphism from V to $\mathbb{F}^{n,1}$. Recall $F^{n,1}$ is canonically {linear maps from \mathbb{F} to \mathbb{F}^n }. What is $\mathcal{M}(\cdot)$ in this context?

Solution. $M(\cdot)$ is the linear map which maps $a_1v_1 + \cdots + a_nv_n$ to $\begin{pmatrix} a_1 \\ \vdots \\ a_n \end{pmatrix}$ or equivalently, the linear map from \mathbb{F} to \mathbb{F}^n which sends 1 to (a_1, \dots, a_n) .

Operators: $T \in \text{End}(V)$ (or $\mathcal{L}(V)$ in the book), also called linear transformations.

Theorem 2.6.3. If V is finite dimensional, $T \in \text{End}(V)$, then T is invertible $\iff T$ is injective $\iff T$ is surjective.

Proof. Since $\dim V = \dim(\ker T) + \dim(\operatorname{im} T)$, the theorem follows from the fact that $\dim(\ker T) = 0$ iff T is injective and $\dim(\operatorname{im} T) = \dim V$ iff T is surjective.

2.6. FEBRUARY 28 110: Linear Algebra

Example 2.6.4. Find a counterexample $T \in \text{End}(V)$ such that

- (1) T is injective but not surjective.
- (2) T is surjective but not injective.

Solution.

- (1) Consider $T \in \text{End}(\mathbb{R}^{\infty})$ defined by $T(x_1, x_2, x_3, \ldots) = (0, x_1, x_2, \ldots)$.
- (2) Consider $T \in \text{End}(\mathbb{R}^{\infty})$ defined by $T(x_1, x_2, x_3, \ldots) = (x_2, x_3, x_4, \ldots)$.

2.6.2 3.E- Products and Quotient Spaces

Definition 2.6.5. For vector spaces $V_1, \ldots, V_m/\mathbb{F}$, the product $V_1 \times \cdots \times V_m$ is defined as $V_1 \times \cdots \times V_m = \{(v_1, \ldots, v_m) : v_j \in V_j, 1 \leq j \leq m\}$.

Proposition 2.6.6. $V_1 \times V_2 \times \cdots \times V_n$ is a vector space $/\mathbb{F}$ with respect to: addition: $(v_1, \ldots, v_m) + (u_1, \ldots, u_m) = (v_1 + u_1, \ldots, u_m + v_m)$ scalar multiplication: $\lambda(v_1, \ldots, v_m) = (\lambda v_1, \ldots, \lambda v_m)$

Example 2.6.7. $\mathbb{R} \times \mathbb{R} \cong \mathbb{R}^2$, $\mathbb{R}^2 \times \mathbb{R}^3 \cong \mathbb{R}^5$

Proposition 2.6.8. If V_1, \ldots, V_m are finite dimensional, then $\dim(V_1 \times \cdots \times V_m) = \dim V_1 + \cdots + \dim V_m$.

Proof. For each V_j , choose a basis $v_{j,1}, \ldots, v_{j,d_j}$ where $d_j = \dim V_j$. Then $(v_{1,1}, 0, \ldots, 0), (v_{1,2}, 0, \ldots, 0), \ldots, (v_{1,d_1}, 0, \ldots, 0)$ $(0, v_{2,d_2}, 0, \ldots, 0), (0, \ldots, 0, v_{m,1}), \ldots, (0, \ldots, 0, v_{m,d_m})$ is a basis of $V_1 \times \cdots \times V_m$. Hence $\dim(V_1 \times \cdots \times V_m) = d_1 + d_2 + \cdots + d_m$.

Theorem 2.6.9. If U_1, \ldots, U_m are subspaces of V, then

- (1) $\Gamma: U_1 \times \cdots \times U_m \to U_1 + \cdots + U_m$ by $(u_1, \dots, u_m) \mapsto u_1 + \cdots + u_m$ is a linear map and surjective. Moreover, Γ is injective iff $U_1 + \cdots + U_m$ is a direct sum.
- (2) If V is finite dimensional, then $U_1 + \cdots + U_m$ is a direct sum iff $\dim(U_1 + \cdots + U_m) = \dim U_1 + \cdots + \dim U_m$.

Proof.

- (1) For injectivity: $U_1 + \cdots + U_m$ is a direct sum $\leftrightarrow \forall v \in U_1 + \cdots + U_m$, $\exists!$ way to represent v as a sum of $u_1 + \cdots + u_m \leftrightarrow \Gamma$ is injective (and surjective).
- (2) By surjectivity of Γ , $\dim(U_1 \times \cdots \times U_m) = \dim \ker \Gamma + \dim(U_1 + \cdots + U_m) = \dim U_1 + \cdots + \dim U_m$. Note that $\dim(\ker \Gamma) = 0$ iff Γ is injective iff $U_1 + \cdots + U_m$ is a direct sum.

2.6. FEBRUARY 28 110: Linear Algebra

2.6.3 Quotient Spaces

Motivation:

- 1. How to define a "3rd dimension" in \mathbb{R}^3 if we have "2 defined dimensions"
- 2. To construct new vector spaces from a known vector space.

Definition 2.6.10. If $U \subset V$ is a subspace, $x \in V$, define the affine subset $x + U = \{x + u : u \in U\}$. We say that x + U is parallel to U.

Example 2.6.11. $V = \mathbb{R}^3$, U = "the plane of the floor".

Many affine subsets are the same.

Example 2.6.12. Any two affine subsets are identical or disjoint.

Definition 2.6.13. If $U \subset V$ is a subspace, then $V/U = \{\text{all lines in } V \text{ parrallel to } U\}$.

Theorem 2.6.14. V/U is a vector space with respect to:

- $+: (v_1+U)+(v_2+U)=(v_1+v_2)+U$
- $\cdot : \lambda(v+U) = \lambda v + U$

Proof. We first prove a lemma.

Lemma 2.6.15. $v + U = \tilde{v} + U$ iff $v - \tilde{v} \in U$.

Proof. \rightarrow) $v \in \tilde{v} + U$. Hence $\exists v \in U$ such that $v = \tilde{v} + U$, so $v - \tilde{v} = u \in U$. \leftarrow) $\forall x \in v + U$, take $u_1 \in U$ such that $x + u_1$. Then $x = \tilde{v} + (v - \tilde{v} + u_1)$. Hence $x \in \tilde{v} + U$. Hence $v + U \subset \tilde{v} + U$.

By an entirely similar argument $\tilde{v} + U \subset v + U$. Hence the lemma holds.

Now, we preove "+", "." are well defined. If $v_1 + U = \tilde{v}_1 + U$, $v_2 + U = \tilde{v}_2 + U$, then $v_1 - \tilde{v}_1 \in U$, $v_2 - \tilde{v}_2 \in U$. Hence $v_1 + v_2 - \tilde{v}_1 - \tilde{v}_2 \in U$ so $(v_1 + v_2) + U = (\tilde{v}_1 + \tilde{v}_2) + U$ so + is well defined.

Similarly, $\forall \lambda \in \mathbb{F}$, v_1 , \tilde{v}_1 as above, $v_1 - \tilde{v}_1 \in U$ so $\lambda(v_1 - \tilde{v}_1) \in U$ so $\lambda v_1 + U = \lambda \tilde{v}_1 + U$.

Now V/U is a vector space as properties "carried down" from V to the quotient space.

Alternate way to construct quotient space: Use equivalence classes, $v_1 - v_2 \in V \leftrightarrow v_1 \sim v_2$. Quotient space V/\sim defines the set theoretic quotient.

Definition 2.6.16. For $U \subset V$ subspace, define the quotient map

$$\pi: V \to V/U$$
 by $v \mapsto v + U$.

 π is linear.

2.7. MARCH 2 110: Linear Algebra

2.7 March 2

2.7.1 3.E - Product and Quotient Spaces

Set Theoretic Quotient: Set + "equivalence relation" \rightarrow quotients

Given a set S- an equivalence relation on S is " \sim " (binary relations) such that:

- (1) $x \sim x, \forall x \in S$
- (2) $x \sim y \rightarrow y \sim x$
- (3) $x \sim y, y \sim z \rightarrow x \sim z$

Given S and equivalence relation " \sim ", natural $S = \sqcup$ of "equivalence classes." such that $x_1 \sim x_2$ x_1 and x_2 are in the same class.

Example 2.7.1. {people with permanent addresses in US}: For $p_1, p_2 \in S$, $p_1 \sim p_2$ iff their permanent address is in the same state.

Quotient Set $(S/\sim) = \{\text{all equivalence classes}\}\$ In above example: $S/\sim=\{\{\text{people with permanent addresses in CA}\}, \{\dots \text{ in WI}\}, \{\dots \text{ in NJ }\},\dots\}.$

If $f: S \to X$, there is a natural equivalence relation in S " \sim_f " defined as: "For $x_1, x_1 \in S$, $x_1 \sim_f x_2$ off $f(x_1) = f(x_2)$." Forms the quotient S/\sim_f where $S/\sim_f\cong \inf$.

Example 2.7.2. Is S/\sim isomorphic to a subset of S? (yes)

Is S/\sim canonically isomorphic to a subset of S? (no)

Quotient also makes sense in quotient space context: $U \subset V$ subspace, then V/U is the set theoretic quotient with respect to the \sim (defined by " $x_1 \sim x_2$ iff $x_1 - x_2 \in U$ "). V/U is a vector space.

Theorem 2.7.3. With π as in definition 2.6.16, $\ker \pi = U$, $\dim(V/U) = \dim V - \dim U$ if $\dim U$, $\dim V < \infty$.

Proof. $\ker \pi\{v: v+U=0+U\}=\{v: v-0\in U\}=U.$ Second claim follows.

Definition 2.7.4. If $T \in \text{Hom}(V, W)$, define the induced map $\tilde{T}: V/\ker T \to W$ by $v + \ker T \mapsto Tv$.

Note: \tilde{T} is well defined since if $v_1 + \ker T = v_2 + \ker T$, $v_1 - v_2 \in \ker T$ so $Tv_1 - Tv_2 = 0$ so $Tv_1 = Tv_2$. Also, \tilde{T} is linear.

Theorem 2.7.5.

- (1) $\operatorname{im} \tilde{T} = \operatorname{im} T$
- (2) \tilde{T} is an isomorphism from $V/\ker T$ to im T.

Proof.

(1) $\operatorname{im} \tilde{T} = \{ Tv : v \in V \} = \operatorname{im} T$

2.7. MARCH 2 110: Linear Algebra

(2) Surjective by (1) For injectivity, if $\tilde{T}(v + \ker T) = 0$, then Tv = 0 so $v \in \ker T$ so $v + \ker T = 0 + \ker T$.

Example 2.7.6. Is V/U isomorphic to a subspace of V? (yes if V is finite dimensional) If V/U canonically isomorphic to a subspace of V? (no in general)

2.7.2 3.F - Duality and Rank

Definition 2.7.7. A linear functional (or linear function) on V is a map in $\text{Hom}(V, \mathbb{F})$. Also denoted as V^* .

Example 2.7.8. $(\mathbb{F}^3)^*$ contains all functions of the form $(x_1, x_2, x_3) \mapsto a_1 x_1 + a_2 x_2 + a_3 x_3, a_j \in \mathbb{F}$. V^* called the dual space of V.

Theorem 2.7.9. dim $V^* = \dim V$ if dim $V < \infty$

Example 2.7.10. Is there a canonical map between V and V^* ?

Definition 2.7.11. For a basis v_1, \ldots, v_n of V (if dim $V < \infty$) define the dual basis $\varphi_1, \ldots, \varphi_n$ in V^* as:

$$\varphi_i(v_j) = \begin{cases} 1, & i = j \\ 0, & i \neq j \end{cases}$$

This is indeed a basis of V^* (linearly independent, right length)

Caution: "Globally defined"- need to know v_1, \ldots, v_n to define φ_i .

Definition 2.7.12. If $T \in \text{Hom}(V, W)$, define the dual map $T^* \in \text{Hom}(W^*, V^*)$ by $T^*(\varphi)(v) = \varphi(Tv)$.

Example 2.7.13. Let $D \in \text{End}(\mathcal{P}(\mathbb{R}))$ be the differentiation map, \forall linear functions on $\mathcal{P}(\mathbb{R})$, $(D^*\varphi)(f) = \varphi(Df)$ eg. first differentiate f then act on by φ .

Proposition 2.7.14.

- (1) If $S, T \in \text{Hom}(v, W)$, $(S+T)^* = S^* + T^*$. If $\lambda \in \mathbb{F}$, $(\lambda S)^* = \lambda S^*$.
- (2) If $S \in \text{Hom}(V, W)$, $T \in \text{Hom}(V, W)$, then $(ST)^* = T^* \circ S^*$.

Proof.

(1) $\forall \varphi \in W^*, (ST)^*(\varphi) = \varphi \circ (ST) = \varphi \circ S \circ T = (\varphi \circ S) \circ T = T^*(\varphi \circ S) = T^*S^*\varphi.$

What is $\ker T^*$? $\operatorname{im} T^*$?

 $\varphi \in \ker T^* \leftrightarrow \varphi(Tv) = 0 \forall v \in V \leftrightarrow \varphi(0) \text{ on } \operatorname{im} T \text{ (aka. } \forall w \in \operatorname{im} T, \varphi(w) = 0)$

Definition 2.7.15. $\forall U \subset V$ subspace, the annihilator of U is defined as $U^0 = \{ \varphi \in V^* : \varphi = 0 \text{ on } U \}$.

Example 2.7.16. If $U \subset \mathcal{P}(\mathbb{R})$ defined as $\{cx : c \in \mathbb{F}\}$. Then $\varphi : p \mapsto p'(0)$ is in U^0 .

2.8. MARCH 7 110: Linear Algebra

Proposition 2.7.17.

- (1) U^0 is a subspace of V^* .
- (2) If dim $V < \infty$, then dim $U^0 = \dim V \dim U$.

Proof. (1) $\forall \varphi_1, \varphi_2 \in V^*$, λ, \mathbb{F} , $\forall u \in U$, $(\varphi_1 + \varphi_2)(u) = \varphi_1(u) + \varphi_2(u) = 0 + 0 = 0$ and $(\lambda \varphi_1)(u) = \lambda \varphi_1(u) = \lambda \cdot 0 = 0$.

(2) Consider the inclusion $i: U \to V$. i^* is a restriction of φ to U. $\ker i^* = \{ \varphi \in V^* : \varphi = 0 \text{ on } U \} = U^0$. Also, $\operatorname{im} i^* = U^*$. Hence, thm follows since $\dim V^* = \dim \ker i^* + \dim \operatorname{im} i^*$. Alternate Solution: Choose a basis of U and extend to a basis of V then consider the dual basis.

Theorem 2.7.18.

- (a) $\ker T^* = (\operatorname{im} T)^0 \text{ if } T \in \operatorname{Hom}(V, W)$
- (b) $\dim \ker T^* = \dim \ker T + \dim W \dim V$. If $\dim V, \dim W < \infty$.

Proof.

- (a) by previous discussion.
- (b) $\dim(\ker T^*) = \dim(\operatorname{im} T)^0 = \dim W \dim(\operatorname{im} T) = \dim W (\dim V \dim \ker T).$

2.8 March 7

2.8.1 3.F- Duality and Rank

Q1: What does canonical mean?

There is a unique choice that is much better than every other choice.

Canonical isomorphism: $\{\text{States of US}\} \leftrightarrow \{\text{Quarters with states on them}\}$

Non-canonical isomorphism: {Everyone in Class I of 100 people} \leftrightarrow {Everyone in Class II of 100 people}

Q2: Why $\text{Hom}(V, \mathbb{F})$, not $\text{Hom}(\mathbb{F}, V)$?

 $\operatorname{Hom}(\mathbb{F},V)$ is canonically isomorphic to V.

Corollary 2.8.1. If dim V, dim $W < \infty$, $T \in \text{Hom}(V, W)$. Then T is surjective $\leftrightarrow T^*$ is injective.

Proof. T surjective $\leftrightarrow \dim(\operatorname{im} T) = \dim W \leftrightarrow \dim \ker T + \dim W - \dim V = 0 \leftrightarrow \dim \ker T^* = 0$

Theorem 2.8.2. If dim V, dim $W < \infty$, $T \in \text{Hom}(V, W)$, then

(a) $\dim(\operatorname{im}T^*) = \dim(\operatorname{im}T)$

2.8. MARCH 7 110: Linear Algebra

(b) $im T^* = (\ker T)^0$

Proof.

(a) $\dim(\operatorname{im} T^*) = \dim W^* - \dim \ker T^* = \dim W - (\dim W + \dim \ker T - \dim V) = \dim V - \dim \ker T = \dim \operatorname{im} T$.

(b) $\psi \in \operatorname{im} T^* \leftrightarrow \psi = \varphi \circ T, \varphi \in W^* \to \psi(v) = 0, \forall v \in \ker T \leftrightarrow \psi \in (\ker T)^0$. Hence, $\operatorname{im} T^* \subset (\ker T)^0$, but $\operatorname{dim}(\operatorname{im} T^*) = \operatorname{dim}(\operatorname{im} T)$, so $\operatorname{dim}(\ker T)^0 = \operatorname{dim} V - \operatorname{dim} \ker T = \operatorname{dim}(\operatorname{im} T) = \operatorname{dim}(\operatorname{im} T^*)$ so $\operatorname{im} T^* = (\ker T)^0$

Corollary 2.8.3. If $T \in \text{Hom}(V, W)$, dim V, dim $W < \infty$, then T is injective $\leftrightarrow T^*$ is surjective.

Proof. T^* is surjective $\leftrightarrow \dim \operatorname{im} T^* = \dim V^* \leftrightarrow \dim \operatorname{im} T = \dim V \leftrightarrow \dim \ker T = 0 \leftrightarrow T$ is injective.

Definition 2.8.4. For $A \in \mathbb{F}^{m,n}$, define its transpose $A^t \in F^{n,m}$ by $(A^t)_{i,j} = A_{j,i}$.

Example 2.8.5.
$$\begin{pmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{pmatrix}^t = \begin{pmatrix} 1 & 4 \\ 2 & 5 \\ 3 & 6 \end{pmatrix}$$

Theorem 2.8.6. If $T \in \text{Hom}(V, W)$, $\dim V$, $\dim W < \infty$, take a basis v_1, \ldots, v_n of V, its dual basis $\varphi_1, \ldots, \varphi_n$, and w_1, \ldots, w_m of W, its dual basis ψ_1, \ldots, ψ_m . Then $\mathcal{M}(T^*) = \mathcal{M}(T)^t$.

Proof. $(T^*\psi_j)(v_k) = \psi_j(Tv_k) = \mathcal{M}(T)_{j,k}$ so $T^*\psi_j = \sum_{k=1}^n \mathcal{M}(T)_{j,k}\varphi_k$ so $\mathcal{M}(T^*)_{k,j} = \mathcal{M}(T)_{j,k}$

Theorem 2.8.7. If $A \in \mathbb{F}^{m,n}$, $B \in \mathbb{F}^{n,p}$ then $(AB)^t = B^t A^t$.

Proof (Proof 1). Direct Computation.

Proof (Proof 2). View A canonically in $\operatorname{Hom}(\mathbb{F}^n, \mathbb{F}^m)$ (w.r.t standard basis) and B in $\operatorname{Hom}(\mathbb{F}^p, \mathbb{F}^n)$. Follows from $(AB)^* = B^*A^*$.

Definition 2.8.8. IF $A \in \mathbb{F}^{m,n}$, the row rank of $A = \dim \operatorname{span}\{ \operatorname{rows of } A \}$, the column rank of $A = \dim \operatorname{span}\{ \operatorname{columns of } A \}$.

Theorem 2.8.9. $\dim(\operatorname{im} T) = \operatorname{column} \operatorname{rank} \operatorname{of} \mathcal{M}(T) \text{ w.r.t any basis. (Assuming } \dim V, \dim W < \infty, T \in \operatorname{Hom}(V, W))$

Proof. Take a bases $v_1, \ldots, v_m, w_1, \ldots, w_m$. Columns $\mathcal{M}(T)$ are the coefficients of the expression of Tv_i

2.8. MARCH 7 110: Linear Algebra

 $(1 \le j \le n)$ into $w_k's$, equivalent to the matrices of Tv_1, \ldots, Tv_n so span of columns $\cong \text{im}T$.

Theorem 2.8.10. For $A \in \mathbb{F}^{m,n}$, row rank of A = column rank of A.

Proof. View A in $\operatorname{Hom}(\mathbb{F}^n, \mathbb{F}^m)$ canonically. Then $\operatorname{RHS} = \operatorname{im} A$, $\operatorname{LHS} = \operatorname{dim} \operatorname{im} A^*$ so thm follows.

Definition 2.8.11. For $A \in \mathbb{F}^{m,n}$, rank A = row rank of A. $T: V \to W$, $\dim V$, $\dim V < \infty$, rank $T = \text{rank } \mathcal{M}(T)$.

Chapter 3

Polynomials

3.1 March 7

3.1.1 Ch4 - Polynomials

3.1.2 More on Complex Numbers

Definition 3.1.1. For $z = a + bi \in \mathbb{C}$, with $a, b \in \mathbb{R}$, the real part of z is a (Re z = a), and the imaginary part of z is b (Im z = b).

The norm/absolute value of $z = |z| = \sqrt{a^2 + b^2}$.

The complex conjugate of z is $\overline{z} = a - bi$.

Theorem 3.1.2.

- (1) $z \mapsto \overline{z}$ is a field automorphism of \mathbb{C} . ie. $\overline{z_1 + z_2} = \overline{z_1} + \overline{z_2}$, $\overline{z_1 z_2} = \overline{z_1 z_2}$.
- (2) $z + \overline{z} = 2 \operatorname{Re} z$.
- $(3) \ \frac{z-\overline{z}}{i} = 2\operatorname{Im} z.$
- $(4) \ z \overline{z} = |z|^2.$
- (5) $\overline{\overline{z}} = z$.
- (6) $|\text{Re } z|, |\text{Im } z| \le |z|.$
- (7) $|z_1 z_2| = |z_1||z_2|$ (use $(\cos \theta_1 + i \sin \theta_1)(\cos \theta_2 + i \sin \theta_2) = \cos(\theta_1 + \theta_2) + i \sin(\theta_1 + \theta_2)$).
- (8) $|z_1 + z_2| \le |z_1| + |z_2|$ (triangle inequality)

3.2. MARCH 9 110: Linear Algebra

Proof.

$$|z_1 + z_2|^2 = (z_1 + z_2)(\overline{z}_1 + \overline{z}_2)$$

$$= |z_1|^2 + |z_2|^2 + \operatorname{Re} z$$

$$\leq |z_1|^2 + |z_2|^2 + 2|z_1||z_2|$$

$$= (|z_1| + |z_2|)^2$$

3.1.3 Polynomials

Commutative: $p_1, p_2 \in \mathcal{P}(\mathbb{F}), p_1 + p_2 = p_2 + p_1, p_1 p_2 = p_2 p_1.$

The division algorithm: Assume $p, s \in \mathcal{P}(\mathbb{F}), s \neq 0$, then $\exists ! \text{ pair } (q, r) \in \mathcal{P}(\mathbb{F}) \text{ such that } sq + r \text{ and } \deg r < \deg s$.

Example 3.1.3.
$$(\underbrace{x^4 + 2x^3 + 3x^2 + 4x + 5}_p) = (\underbrace{x^2 + x + 1}_q)(\underbrace{x^2 + x + 1}_s) + \underbrace{2x + 4}_r$$

Definition 3.1.4. $\lambda \in \mathbb{F}$ is called a zero (or a root) of $p \in \mathcal{P}(\mathbb{F})$ if $p(\lambda) = 0$.

Definition 3.1.5. If $p, s \in \mathcal{P}(\mathbb{F})$, $s \neq 0$, s is called a factor of p if $\exists q \in \mathcal{P}(\mathbb{F})$ such that p = qs.

Theorem 3.1.6. A polynomial $p \neq 0$ of degree m has $\leq m$ distinct roots.

Theorem 3.1.7 (Fundamental Theorem of Algebra). Given $p \neq 0$, $p \in \mathcal{P}(\mathbb{C})$, $\deg p = m$, $\exists c \neq 0$, $\lambda_1, \ldots, \lambda_m \in \mathbb{C}$, unique up to permutation of $\lambda_1, \ldots, \lambda_m$ such that $p(z) = c(z - \lambda_1) \cdots (z - \lambda_m)$.

Theorem 3.1.8. If $p \in \mathcal{P}(\mathbb{C})$ with real real coefficients, then $\lambda \in \mathbb{C}$ is a root of $p \leftrightarrow \overline{\lambda} \in \mathbb{C}$ is a root of p.

Theorem 3.1.9. Given $p \in \mathcal{P}(\mathbb{R})$, $p \neq 0$, deg p = n, then $\exists m, M > 0$ such that m + 2M = n, $\exists \lambda_1, \ldots, \lambda_m$, $b_1, c_1, \ldots, b_M, c_M$ unique up to permutation of λ 's, (b, c)'s such that $p(x) = c(x - \lambda_1) \cdots (x - \lambda_m)(x^2 + b_1x + c_1) \cdots (x^2 + b_Mx + c_M)$, $b_j^2 < 4c_j$.

3.2 March 9

3.2.1 Polynomials

Corollary 3.2.1. If $p \in \mathcal{P}(\mathbb{F})$ is a zero function, and char $(\mathbb{F}) = 0$, then p is the zero polynomial. (Not true over finite fields).

Chapter 4

Invariant Subspaces

4.1 March 9

4.1.1 Ch5: Eigenvalues, Eigenvectors, and Invariant Subspaces

Good Viewpoint: Given $A \in \mathbb{F}^{m,n}$, canonically A corresponds to a linear map $T_A \in \text{Hom}(\mathbb{F}^n, \mathbb{F}^m)$ such that T_A with respect to $((e_1, \ldots, e_n), (e_1, \ldots, e_m))$ is A. In other words $T_A e_j = \sum_{i=1}^n A_{i,j} e_j$.

We will now begin our discussion of linear operators.

Q: $T \in \text{End}(V)$. What is a good baisis (v_1, \ldots, v_n) such that $\mathcal{M}(T)$ with respect to $(v_1, \ldots, v_n), (v_1, \ldots, v_n)$ is "simple"?

Let $T \in \text{End}(V)$. There may be subspaces $U \subset V$ that are invariant under T, we can study $T|_U$.

Definition 4.1.1. If $T \in \text{End}(V)$, $U \subset V$, subspace, is called invariant under T if $Tu \in U$, $\forall u \in U$.

Example 4.1.2. $\{0\}, T, \ker T, \operatorname{im} T$ are invariant under T.

Example 4.1.3. "rotation counterclockwise around 0". Matrix with respect to e_1, e_2 is $\begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix}$. \exists an invariant subspace iff $\theta = k\pi$, $k \in \mathbb{Z}$.

Example 4.1.4. $\mathcal{P}_m(\mathbb{F}) \subset \mathcal{P}(\mathbb{F})$ is invariant under differentiation.

Definition 4.1.5. If $T \in \text{End}(V)$, $v \neq 0$ is an eigenvector of T corresponding to eigenvalue λ if $Tv = \lambda v$. (directly relates to 1D invariant subspaces)

Theorem 4.1.6. Assume dim $V < \infty$. TFAE:

- (a) $\lambda \in \mathbb{F}$ is an eigenvalue of T
- (b) $T \lambda I$ is not injective
- (c) $T \lambda I$ is not surjective

(d) $T - \lambda I$ is not invertible

Proof. $(b) \leftrightarrow (c) \leftrightarrow (d)$ by fundamental thm of linear maps. Moreover, λ is an eigenvalue of $T \leftrightarrow \exists v \neq 0$ such that $(T - \lambda I)v = 0 \leftrightarrow T - \lambda I$ is injective.

Theorem 4.1.7. Let $T \in \text{End}(v)$, if v_1, \ldots, v_m are eigenvectors of T corresponding to eigenvalues $\lambda_1, \ldots, \lambda_m$ respectively and $\lambda_1, \ldots, \lambda_m$ are pairwise distinct. Then v_1, \ldots, v_m are linearly independent.

Proof. If $\sum_{j=1}^m a_j v_j = 0$, $a_j \in \mathbb{F}$. Apply T, $T(\sum a_j v_j) = \sum a_j T v_j = \sum \lambda_j a_j = 0$. Apply T again, $\sum_{j=1}^m \lambda_j^2 a_j v_j = 0$. Hence $\sum_{j=1}^m \zeta a_j v_j = 0$ whenever $(\zeta_1, \ldots, \zeta_m)$ is in the span of $(1, \ldots, 1), (\lambda_1, \ldots, \lambda_m), \ldots, (\lambda_1^{m-1}, \ldots, \lambda_m^{m-1}, \ldots, \lambda_m^{$

Corollary 4.1.8. If dim $V < \infty$, the number of distinct eigenvalues of $T \in \text{End}(V)$ is $\leq \dim V$.

Proof. Since the list with 1 egienvector corresponding to each eigenvalue is linearly independent it must have $\leq \dim V$ eigenvalues.

Definition 4.1.9. Assume $T \in \text{End}(V)$ and $U \subset V$, subspace, is invariant under T. Define:

The restriction operator $T|_U \in \text{End}(U)$ by $T|_U = Tu$

The quotient operator $T/U \in \text{End}(V/U)$ by T/U(u+U) = Tu + U.

Quotient operator is well defined: If $v_1 + U = \tilde{v}_1 + U$, $v_1, \tilde{v}_1 \in V$, the $v_1 - \tilde{v}_1 \in U$. $Tv_1 - T\tilde{v}_1 = T(v_1 - \tilde{v}_1) \in U$. Hence $Tv_1 + U = T\tilde{v}_1 + U$.

Example 4.1.10. Given the matrices $T|_U$, T/U, find a basis of V such that the matrix of T with respect to the basis relates to the other two.

Soln: Consider a basis of U and extend it to a basis of V. The matrix of T with respect to this basis can be seen as a 2×2 block diagonal matrix with the matrices of $T|_U$ and T/U on its diagonal.

Example 4.1.11. Let $T \in \text{End}(\mathbb{F}^2)$ such that T(x,y) = (y,0).

Matrix is $\begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$. Let $U = \{(x,0) : x \in \mathbb{F}\}$ invariant under T. $T|_U = 0$, T/U = 0.

4.1.2 5.B - Eigenvectors cont. and Upper Triangular Matrices

Definition 4.1.12. For $T \in \text{End}(V)$, define:

$$T^m = \underbrace{T \circ \cdots \circ T}_{m \text{ times}} \quad m \ge 1, m \in \mathbb{Z}$$

$$T^0 = I$$

 $T^{-m} = (T^{-1})^m, \quad m \in \mathbb{Z} \text{ if } T \text{ is invertible}$

```
For p \in \mathcal{P}(\mathbb{F}), define p(T) plugging T into p.
eg. p(x) = x^3 + x + \frac{1}{2} \to p(T) = T^3 + T + \frac{1}{2}I.
```

```
Theorem 4.1.13. If p, q \in \mathcal{P}(\mathbb{F}), T \in \text{End}(V), then (pq)(T) = p(T)q(T) = q(T)p(T).
```

Theorem 4.1.14. Let V be over \mathbb{C} , dim $V < \infty$. Then any $T \in \text{End}(V)$ has an eigenvalue.

Proof. Take arbitrary $v \in V$ such that $v \neq 0$. Assuming dim V = n, consider $v, Tv, T^2v, \ldots, T^nv$, linearly dependent in V. Assuming $a_0v + a_1Tv + \cdots + a_nT^nv = 0$, not all $a_j = 0$. Then let the polynomial $p(x) = a_0 + a_1x + \cdots + a_nx^n$. Also, not constant otherwise $a_0 = 0$. Since p(T) = 0, factorize p to get $c(T - \lambda_1 I) \cdots (T - \lambda_n I)v = 0$ with $c \neq 0$ so $(T - \lambda_1 I) \cdots (T - \lambda_n I)v = 0$. Hence $T - \lambda_j I$ is not injective for some j so some k is an eigenvalue.

Warning: not true for \mathbb{R} -vector spaces.

Definition 4.1.15. The diagonal of $A \in \mathbb{F}^{n,n}$ consists of $A_{1,1}, A_{1,2}, \ldots, A_{n,n}$. $A \in \mathbb{F}^{n,n}$ is called upper triangular if $A_{i,j} = 0 \ \forall i < j$.

Theorem 4.1.16. Let dim $V < \infty$. For $T \in \text{End}(v)$. Fix a basis v_1, \ldots, v_n of V. TFAE:

- (a) $\mathcal{M}(T)$ is upper triangular.
- (b) $Tv_j \in \text{span}(v_1, \dots, v_j) \ \forall i \leq j \leq n.$
- (c) span (v_1, \ldots, v_j) is invariant over $T, \forall i \leq j \leq n$.

```
Proof. (a) \iff (b) by def.
(b) \rightarrow (c). \forall j \ i \leq j, Tv_i \in \operatorname{span}(v_1, \dots, v_i) \subset \operatorname{span}(v_1, \dots, v_j).
(c) \rightarrow (b). by (c) Tv_j \in \operatorname{span}(v_1, \dots, v_j).
```

Theorem 4.1.17. $\mathbb{F} = \mathbb{C}$, dim $V < \infty$, $T \in \text{End}(V)$ then \exists basis v_1, \ldots, v_n such that $\mathcal{M}(T)$ is upper triangular.

4.2 March 14

subsection 5.B - Eigenvectors cont. and Upper Triangular Matrices

Proof (Proof of Theorem 4.1.17). Assume dim $V < \infty$. We prove that we can find a linearly independent set of vectors v_1, \ldots, v_n such that (b) of them 13.17 holds by induction. More precisely, we will find v_1 , then v_2 , then v_3 such that $Tv_j \in \operatorname{span}(v_1, \ldots v_j)$. Since T is over $\mathbb C$ is has an eigenvector v_1 . Let $V_1 = \operatorname{span}(v_1)$.

Assuming we have found linearly independent vectors such v_1,\ldots,v_m (m>n) such that $Tv_j\in\operatorname{span}(v_1,\ldots,v_j)$ $\forall 1\leq i\leq m,$ and denote $V_m=\operatorname{span}(v_1,\ldots,v_n).$ Goal in the inductive step: Find v_{m+1} such that v_1,\ldots,v_{m+1} linearly independent and $Tv_{m+1}\in\operatorname{span}(v_1,\ldots,v_{m+1}).$ By assumptions V_m invariant under T so consider the map $T/V_m:V/V_m\to V/V_m,$ dim $V/V_m=n-m>0.$ It has an eigenvector $v_{m+1}+V_m.$ Now $v_{m+1}+V_m\neq 0+V_m$ so $v_{m+1}\not\in V_m.$ Hence since v_1,\ldots,v_m are linearly independent by assumption, v_1,\ldots,v_{m+1} are also linearly inpdependent. Moreover $(T/V_m)(v_{m+1})=\lambda_{m+1}v_{m+1}+V_m$ so $Tv_{m+1}=\lambda_{m+1}v_{m+1}+\tilde{v},\ \tilde{v}\in V_m$ so $Tv_{m+1}\in\operatorname{span}(v_1,\ldots,v_j),\ \forall 1\leq j\leq n,$ implying the rest of the thm.

Theorem 4.2.1. If $T \in \text{End}(V)$, dim $V < \infty$, and $\mathcal{M}(T)$ upper triangular with respect to a basis. Then T is invertible iff all the diagonal entries of $\mathcal{M}(T)$ are nonzero.

Proof. \rightarrow) If $\mathcal{M}(T)_{j,j}$ is zero, then $\operatorname{im} T \subset \operatorname{span}(v_1,\ldots,v_{j-1},Tv_{j+1},\ldots,Tv_n \operatorname{dim} < n \operatorname{so} T \operatorname{is} \operatorname{not} \operatorname{invertible}$. \leftarrow) Suppose $\mathcal{M}(T)$ is upper triangular entries with nonzero diagonal entries. If $T(a_1v_1+\cdots+a_mTv_m)=0$, $m \leq n$, then since $Tv_1,\ldots,Tv_m \in \operatorname{span}(v_1,\ldots,v_m)$ and $T(a_mv_m)=a_m\mathcal{M}(T)_{m,m}v_m+\tilde{v},\,\tilde{v} \in \operatorname{span}(v_1,\ldots,v_{m-1})$ this implies $a_m=0$. So $T(a_1v_1+\cdots+a_{m-1}v_{m-1})=0$. Repeating this argument we see that $a_1=\cdots=a_m=0$ so T is injective.

Theorem 4.2.2. If $T \in \text{End}(V)$ is upper triangular with respect to v_1, \ldots, v_n then {diagonal entries of $\mathcal{M}(T)$ } = {eigenvalues of T}

Proof. λ is not an eigenvalue $\leftrightarrow T - \lambda I$ is invertible $\leftrightarrow \lambda \neq$ any diagonal element of $\mathcal{M}(T)$. (Since $T_{\lambda}I$ is also upper triangular wrt $v_1k \dots, v_n$).

4.2.1 Change of Basis

Theorem 4.2.3. Assume dim V, dim $W < \infty$

- (1) $T \in \text{End}(V)$ is invertible $\iff \mathcal{M}(T)$ is invertible with respect to some matrix $\leftrightarrow \mathcal{M}(T)$ is invertible with respect to every matrix.
- (2) If $T \in \text{Hom}(V, W)$, and $S \in \text{Hom}(V, W)$ are inverses of each other than the matrices of T and S are inverses of each other.

Theorem 4.2.4. If $v_1, ..., v_m$ and $u_1, ..., u_m$ are bases of V. $A = \mathcal{M}(I, (u_1, ..., u_m), (v_1, ..., v_m))$. Then $\mathcal{M}(T, (u_1, ..., u_m)) = A^{-1}\mathcal{M}(T, (v_1, ..., v_m))A$.

Proof. View T = ITI, with 1rst I wrt. $(v_1, \ldots, v_n), (u_1, \ldots, u_n), T$ wrt (v_1, \ldots, v_n) , second I wrt. $(u_1, \ldots, u_n) + (v_1, \ldots, v_m)$. Then we see that T is wrt. (u_1, \ldots, u_n) .

Corollary 4.2.5. $\forall B \in C^{n,n}$, \exists invertible $A \in C^{n,n}$ such that $A^{-1}BA$ is upper triangular.

4.2.2 Eigenvalues and Diagonal Matrices

Definition 4.2.6. A diagonal matrix is a matrix whose off-diagonal entries are all 0. If A if diagonal we can write $A = \text{diag}(A_{1,1}, A_{2,2}, \dots, A_{n,n})$

Definition 4.2.7. For $\lambda \in \mathbb{F}$, the eigenspace of λ wrt. $T \in \text{End}(V)$ is $\ker(T - \lambda I)$, denoted as $E(\lambda, T)$.

Example 4.2.8. If the matrix of
$$T$$
 wrt. (v_1, v_2, v_3) is $\begin{pmatrix} 1 & & \\ & 2 & \\ & & 3 \end{pmatrix}$, then $E(1, T) = \operatorname{span}(v_1)$, $E(2, T) = \operatorname{span}(v_2)$, $E(3, T) = \operatorname{span}(v_3)$, $E(\lambda, T) = \{0\}$ for $\lambda \notin \{1, 2, 3\}$.

Theorem 4.2.9. If $\lambda_1, \ldots, \lambda_n$ are pairwise distinct, then $E(\lambda_1, T) + E(\lambda_n, T)$ is a direct sum.

Proof. WLOG, assume all $v_i \neq 0$. If $v_1 + \cdots + v_n = 0$ with $v_i \in E(\lambda_i, T)$ then since eigenvectors of distinct eigenvalues are linearly independent, all $v_i = 0$

Definition 4.2.10. dim $V < \infty$, $T \in \text{End}(V)$ is diagonalizable if \exists basis v_1, \ldots, v_n such that $\mathcal{M}(T)$ is diagonal.

Theorem 4.2.11. Assume dim $V < \infty$, $T \in \text{End}(V)$ with eigenvalues $\lambda_1, \ldots, \lambda_n$ (finitely many), TFAE:

- (a) T is diagonalizable.
- (b) There is a basis whose vectors are all eigenvectors.
- (c) $V = E(\lambda_1, T) \oplus \cdots \oplus E(\lambda_m, T)$
- (d) $\dim V \dim E(\lambda_1, T) + \cdots + \dim E(\lambda_m, T)$

Proof. $(a) \leftrightarrow (b)$ by def. Also $(d) \iff (e)$.

 $(d) \to (b)$: Take a basis from each $E(\lambda_j, T)$ and add them all together.

 $(b) \to (d)$: Take a basis of v_1, \ldots, v_n . Each v_k has to be in some $E(\lambda_j, T)$. Hence in $E(\lambda_1, T) \oplus \cdots \oplus E(\lambda_m, T)$. Thus, $V \subset E(\lambda_1, T) \oplus \cdots \oplus E(\lambda_m, T)$.

Example 4.2.12. $T:(x_1,x_2)\mapsto (x_2,0)$ in \mathbb{F}^2 is not diagonalizable.

 $T - \lambda I$: $(x_1, x_2) \mapsto (x_2 - \lambda x_1, \lambda x_2)$ is invertible iff $\lambda \neq 0$. But E(0, T) is 1 dimensional so it is not diagonalizable.

Theorem 4.2.13. If $T \in \text{End}(V)$ has dim $V(<\infty)$ distinct eigenvalues T is diagonalizable.

Proof. Note if λ is an eigenvalue, then dim $E(\lambda, 1) \geq 1$ so all have dimension 1 since n of them.

Example 4.2.14. If dim V = 3, $T \in \text{End}(V)$ has a matrix $\begin{pmatrix} 2 & ? & ? \\ 0 & 5 & ? \\ 0 & 0 & 8 \end{pmatrix}$. T is diagonalizable. (when 5 is replaced by 2, T can be nondiagonalizable)

Chapter 5

Inner Product Spaces

5.1 March 14

5.1.1 Ch 6 - Inner Products

Motivation: Euclidean Geometry, Let $\mathbb{F} = \mathbb{R}$ or \mathbb{C} .

Definition 5.1.1. Over \mathbb{F}^n , the Euclidean inner product (dot product if $\mathbb{F} = \mathbb{R}$) of (w_1, \ldots, w_n) of (z_1, \ldots, z_n) is $w_1\overline{z}_1 + \cdots + w_n\overline{z}_n$.

5.2 March 16

5.2.1 Ch 6 - Inner Products

Motivation: can talk about angles, lengths, orthogonality, etc.

Definition 5.2.1. An inner product on V is a function $\langle \cdot, \cdot \rangle : V \times V \to \mathbb{F}$ such that

- (a) Positive Definiteness: $\langle v, v \rangle \geq 0 \ \forall v \in V$. Equality iff v = 0.
- (b) Linear in First Spot: $\langle u+v,w\rangle=\langle u,w\rangle+\langle v,w\rangle, \quad \langle \lambda v,w\rangle=\lambda\langle v,w\rangle$
- (c) Conjugation Symmetry: $\langle u, v \rangle = \overline{\langle v, u \rangle}$

Example 5.2.2. This implies: $\langle u, \lambda_1 v_1 + \lambda_2 v_2 \rangle = \overline{\lambda}_1 \langle u, v_1 \rangle + \overline{\lambda}_2 \langle u, v_2 \rangle$

Example 5.2.3. of inner products:

- (a) Euclidean inner product on \mathbb{F}^n
- (b) For $f,g \in C[0,1]$ (continuous functions from [0,1] to \mathbb{C}), define $\langle f,g \rangle = \int_0^1 f \overline{g} dx$. It is an inner product on C[0,1]
- (c) For $f, g \in C[0, 1]$, $\langle f, g, \rangle = \int_0^1 f \overline{g} e^x dx$ is also an inner product.
- (d) For $f,g\in C[0,1],$ $\langle f,g\rangle=\int_0^{\frac{1}{2}}f\overline{g}dx$ is not an inner product.

Definition 5.2.4. An inner product space is a vector space \mathbb{R} or \mathbb{C} equipped with an inner product.

Theorem 5.2.5.

- (a) $\langle \cdot, c \rangle$ is linear if u is fixed. ie. $\langle \lambda_1 v_1 + \lambda_2 v_2, u \rangle = \lambda_1 \langle v_1, u \rangle + \lambda_2 \langle v_2, u \rangle$.
- (b) $\langle 0, v \rangle = \langle v, 0 \rangle, \forall v \in V.$

Definition 5.2.6. u and v are orthogonal if $\langle u, v \rangle = 0$. In this case, we say $u \perp v$.

Proposition 5.2.7.

- (a) 0 is orthogonal to $v, \forall v \in V$
- (b) If $v \perp v$, then v = 0 (by positive definiteness)

Definition 5.2.8. For v, V, the norm is $||v|| = \sqrt{\langle v, v \rangle}$

Proposition 5.2.9.

- (a) $||v|| = 0 \leftrightarrow v = 0$
- (b) $||\lambda v|| = |\lambda| \cdot ||v||, \forall \lambda \in \mathbb{F}, v \in V.$

Proof. $\langle \lambda v, \lambda v \rangle = \lambda \overline{\lambda} \langle v, v \rangle = |\lambda|^2 \cdot ||v||^2$

Theorem 5.2.10 (Pythagorean Theorem). $u \perp v \to ||u + v||^2 = ||u||^2 + ||v||^2$.

Proof. $||u+v||^2 = \langle u+v, u+v \rangle = \langle u, u \rangle + \langle u, v \rangle + \langle v, u \rangle + \langle v, v \rangle = ||u||^2 + ||v||^2 + 0 + 0.$

For $u, v \in V$, want to be able to describe u as some scalar multiple of v and some vector orthogonal to it. If $u_1 = ?v$, $u_2 = u - u_1$, what is "?". $\langle u_1, v \rangle = \langle u, v \rangle - \langle u_2, v \rangle = \langle u, v \rangle$. Also $\langle u_1, v \rangle = ?||v||^2$ so $? = \frac{\langle u, v \rangle}{||v||^2}$.

Theorem 5.2.11 (Vector Projection). For $u, v \in V$, let $u_1 = \frac{\langle u, v \rangle}{||v||^2} v$ and $u_2 = v - u_1$, then $v \perp u_2$, u is "along the direction of v", called the vector projection of u onto v.

Proof. Compute $\langle u_2, v \rangle = \langle u - u_1, v \rangle = \langle u, v \rangle - \langle u_1, v \rangle = \langle u, v \rangle - \langle \frac{\langle u, v \rangle}{||v||^2} v, v \rangle = \langle u, v \rangle - \frac{\langle u, v \rangle}{||v||^2} \langle u, v \rangle = 0.$

Theorem 5.2.12 (Cauchy-Schwarz). $|\langle u, v \rangle| \leq ||u|| ||v||, \forall u, v \in V$.

Proof. WLOG, assume $v \neq 0$. Form u_1 as above, $v = u_1 + u_2$. $u_1 = \frac{\langle u, v \rangle}{||v||^2} v$, $u_2 \perp v$. $||u_2||^2 \geq 0 \leftrightarrow ||u||^2 \geq ||u_1||^2 \leftrightarrow ||u||^2 \geq \frac{|\langle u, v \rangle|^2}{||v||^4} ||v||^2$. Thm follows by taking square roots.

Example 5.2.13. Use $||v - \lambda v||^2 \ge 0$ to give another proof.

Corollary 5.2.14.

- (a) For $x_1, \ldots, x_n, y_1, \ldots, y_n \in \mathbb{C}$. $|\sum_{j=1}^n x_j \overline{y}_j| \le \sqrt{\sum_{j=1}^n |x_j|^2} \sqrt{\sum_{j=1}^n |y_j|^2}$
- (b) For $f,g \in C[0,1]$, $|\int_0^1 f\overline{g}dx|^2 \le (\int_0^1 |f|^2 dx)(\int_0^1 |g|^2 dx)$, and $|\int_0^1 f\overline{g}e^x dx|^2 \le (\int_0^1 |f|^2 e^x e dx)(\int_0^1 |g|^2 e^x dx)$

Theorem 5.2.15 (Triangle Inequality). $||u+v|| \le ||u|| + ||v||, \forall u, v \in V.$

Proof.

$$\begin{aligned} ||u+v||^2 &= \langle u+v, u+v \rangle \\ &= ||u||^2 + ||v||^2 + \langle u, v \rangle + \langle v, u \rangle \\ &= ||u||^2 + ||v||^2 + 2\operatorname{Re}(\langle u, v \rangle) \\ &\leq ||u||^2 + ||v||^2 + 2||u|| \, ||v|| \\ &= (||u|| + ||v||)^2 \end{aligned}$$

Example 5.2.16 (Parallelogram Identity). $||u+v||^2 + ||u-v||^2 = 2(||u||^2 + ||v||^2)$.

For $u, v \neq 0$, the angle between them is $\arccos \frac{\langle u, v \rangle}{||u|| ||v||}$

Norms in General:

A norm on a vector space U is $||\cdot||: U \to \mathbb{R}^{\geq 0}$ such that:

- Positive Definiteness: $||u|| = 0 \leftrightarrow u = 0, \forall u \in U$
- Absolute Homogeneity: $||\lambda u|| = |\lambda| ||u||$
- Triangle Inequality: $||u+v|| \le ||u|| + ||v||$

We proved an inner product gives rise to a norm.

5.2.2 6.B - Orthogonal Bases

Definition 5.2.17. A list v_1, \ldots, v_m in V is orthogonal if each $||v_j|| = 1$, $1 \leq j \leq m$ and $v_{j_1} \perp v_{j_2}$, $\forall j_1 \neq j_2 \in \{1, \ldots, m\}$.

Example 5.2.18. Standard basis in \mathbb{F}^n is normal.

usepackage(Note: we will not use e_1, \ldots, e_n to denote the standard basis in in Ch 6, they will be used to denote a general orthogonal list.)

Proposition 5.2.19. If $e_1, ..., e_m$ is orthonormal, then $||a_1v_1 + ... + a_mv_m|| = \sqrt{|a_1|^2 + ... + |a_n|^2}$.

Proof. Expand $||a_1e_1 + \cdots + a_me_m||^2 = \langle a_1e_1 + \cdots + a_me_m, a_1e_1 + \cdots + a_me_m \rangle = |a_1|^2 + \cdots + |a_m|^2$.

Example 5.2.20. $\langle a_1 e_1 + \dots + a_m e_m, b_1 e_1 + \dots + b_m e_m \rangle = a_1 \bar{b}_1 + \dots + a_m \bar{b}_m$

Corollary 5.2.21. An orthonormal list is linearly independent.

Proof. Assume the list is e_1, \ldots, e_m . If $\sum_j a_j e_j = 0$, then $\sum |a_j|^2 = 0$ so all $a_j = 0$.

Corollary 5.2.22. If dim V = n, a list of n orthonormal vectors is a basis (orthonormal basis).

Theorem 5.2.23. If e_1, \ldots, e_m is an orthonormal basis, then $\forall v \in V, v = \sum_{i=1}^n \langle v, e_j \rangle e_j$.

Proof. We know there are $\lambda_1, \ldots, \lambda_n$ such that $v = \sum_j \lambda_j e_j$. But $\langle v, e_k \rangle = \sum_j \lambda_j \langle e_j, e_k \rangle = \lambda_k$.

Gram-Schmidt Procedure: An algorithm with:

- input: basis v_1, \ldots, v_n
- output: orthonormal basis: e_1, \ldots, e_n such that $e_j \in \text{span}\{v_1, \ldots, v_j\}$.

Theorem 5.2.24 (Gram-Schmidt Procedure). Given a basis $v_1, \ldots, v_n \in V$, define

$$e_{j} = \frac{v_{j} - \sum_{k=1}^{j-1} \langle v_{j}, e_{k} \rangle e_{k}}{||v_{j} - \sum_{k=1}^{j-1} \langle v_{j}, e_{k} \rangle e_{k}||}$$

Proof. We need to check:

- e_j is well defined.
- $||e_j|| = 1$
- $e_j \perp e_k, k < j$
- $\operatorname{span}(e_1, \ldots, e_j) = \operatorname{span}(v_1, \ldots, v_j)$

Assume we are at step j:

For 1rst item, we need $||v_j - \sum_{k=1}^{j-1} \langle v_j, e_k \rangle e_k|| \neq 0$. True since $e_k \in \text{span}(v_1, \dots, v_{j-1}), k < j$. But $v_j \notin \text{span}(v_1, \dots, v_{j-1})$.

2cnd item is clear.

For 3rd item, compute $\langle v_j - \sum_{j=1}^n \langle v_j, e_k \rangle, e_l \rangle$ (for l < k) = $\langle v_j, e_l \rangle - \langle v_j, e_l \rangle = 0$.

For 4th item, note that e_1, \ldots, e_{j-1} already in span (v_1, \ldots, v_{j-1}) , by def $e_j \in \text{span}(v_1, \ldots, v_j)$. Moreover e_1, \ldots, e_j are linearly independent so $\text{span}(e_1, \ldots, e_j) = \text{span}(v_1, \ldots, v_j)$.

5.3 March 28

5.3.1 6.B - Orthogonal Bases

Correction: For a vector space V, use V' to denote its dual space. For $T \in \text{Hom}(V, W)$, use T' to denote its dual map.

Theorem 5.3.1 (Bessel's Inequality). In V, if the list e_1, \ldots, e_n is an orthonormal, then $\forall v \in V$,

$$||v||^2 \ge \sum_{j=1}^m |\langle v, e_j \rangle|^2.$$

The equality holds iff $v \in \text{span}(e_1, \dots, e_n)$.

Proof. $0 \leq ||v - \sum_{j=1}^m \langle v, e_j \rangle e_j||^2 = ||v||^2 - \sum_{j=1}^m |\langle v, e_j \rangle|^2$.

Example 5.3.2. In $\mathcal{P}_2(\mathbb{C})$, define the inner product $\langle f, g \rangle = \int_{-1}^1 f \overline{g} dx$. Applying G-s to $(1, x, x^2)$, we get $(\frac{\sqrt{2}}{2}, \frac{\sqrt{6}}{2}x, \frac{3\sqrt{10}}{4}(x^2 - \frac{1}{3}))$.

Example 5.3.3. In \mathbb{R}^2 , apply G-S to (1,2), (3,4), we get $\frac{\sqrt{5}}{5}(1,2)$, $\frac{\sqrt{5}}{5}(2,-1)$.

Corollary 5.3.4. Every finite dimensional inner product space has an orthonormal basis.

Corollary 5.3.5. If V is finite dimensional, then every orthonormal list can be extended to an orthonormal basis.

Proof. Assume the list is e_1, \ldots, e_m , extend it to a basis $e_1, \ldots, e_m, v_{m+1}, \ldots, v_n$. Apply G-S, the first m vectors don't change (can be shown inductively).

Corollary 5.3.6 (Schur's Theorem). Assume $\mathbb{F} = \mathbb{C}$, dim $V < \infty$, every $T \in \operatorname{End}(V)$ has an upper triangular matrix with respect to some basis of V.

Proof. T is upper triangular with respect to v_1, \ldots, v_m . Apply G-S to get orthonormal basis e_1, \ldots, e_m . Now, $\forall j m, Te_j \in \operatorname{span}(Tv_j, Te_1, \ldots, Te_{j-1}) \subset \operatorname{span}(Tv_1, \ldots, Tv_j) \subset \operatorname{span}(v_1, \ldots, v_j) = \operatorname{span}(e_1, \ldots, e_j)$. Thus, T us upper triangular with respect to e_1, \ldots, e_n .

Theorem 5.3.7 (Reisz Representation Theorem, finite dimensional case). If V is finite dimensional, $\varphi \in V'$, then $\exists ! u \in V$ such that $\langle v, u \rangle = \varphi(v), \forall v \in V$.

Proof. Uniqueness: If u_1, u_2 satisfy $\varphi(v) = \langle v, u_1, \rangle = \langle v, u_2, \rangle$, $\forall v$. Then $\langle v, u_1 - u_2 \rangle = 0 \ \forall v$ so taking $v = u_1 - u_2$ implies $u_1 = u - 2$. Existence: Take an orthonormal basis e_1, \ldots, e_n . Take $u = \overline{\varphi(e_1)}e_1 + \overline{\varphi(e_2)}e_2 + \cdots + \overline{\varphi(e_n)}e_n$. Then $\forall v \in V$, assuming $v = \sum_{i=1}^n a_i e_i$, then $\langle v, u \rangle = a_1 \varphi(e_1) + a_2 \varphi(e_2) + \cdots + a_n \varphi(e_n) = \varphi(a_1 e_1 + \cdots + a_n e_n) = \varphi(v)$.

Example 5.3.8. More intrinsic proof: Observe $\ker \varphi$ is an n-1 dimensional subspace of $\varphi \neq 0$. Note: $e^{i\theta} = \cos \theta + i \sin \theta$, $\theta \in \mathbb{R}$.

Example 5.3.9. $\int_0^1 e^{2n\pi i x} e^{-2m\pi i x} dx = \begin{cases} 0 & m \neq n \\ 1 & m = n \end{cases}$ where $m, n \in \mathbb{Z}$.

Let $V = \operatorname{span}(1, e^{2\pi i x}, e^{-2\pi i x}, e^{4\pi i x}, e^{-4\pi i x}) \subset C[0, 1]$. Define $\langle \cdot, \cdot \rangle$ on V by $\langle f, g \rangle = \int_{-1/2}^{1/2} f \overline{g} dx$. Take $\varphi \in V'$ such that $\varphi(f) = \int_{-1/2}^{1/2} f \cdot x dx$. Find u such that $\varphi(f) = \langle f, u, \rangle, \forall g \in V$. $(u = \frac{1}{\pi} \sin(2\pi x) - \frac{1}{2\pi} \sin(4\pi x))$

Corollary 5.3.10 (QR Factorization). Let $M \in \mathbb{F}^{n,m}$ have linearly independent columns, then $\exists!$ pair (Q,R) such that $Q \in \mathbb{F}^{n,m}$, $R \in \mathbb{F}^{m,m}$, M = QR, Q has orthonormal column vectors and R is upper triangular with positive diagonal entries.

Proof. Do G-S to columns of M for existence.

5.3.2 6.C - Orthogonal Complements and Minimization

Definition 5.3.11. For a subset $S \subset V$, define the orthogonal complement of S to be $S^{\perp} = \{v \in V : \langle v, s \rangle = 0, \forall s \in S\}.$

Proposition 5.3.12.

- (a) S^{\perp} is a subspace of V.
- (b) $\{0\}^{\perp} = V$
- (c) $V^{\perp} = \{0\}$
- (d) $S \cap S^{\perp} = \{0\}$
- (e) $S_1 \subset S_2 \to S_2^{\perp} \subset S_1^{\perp}$
- (f) $S^{\perp} = \operatorname{span}(v : v \in S)^{\perp}$ set of finite linear combinations of vectors from S.

Theorem 5.3.13. If $U \subset V$, U finite dimensional, then $V = U \oplus U^{\perp}$.

Proof. Let e_1, \ldots, e_n be an orthonormal basis of U, $\forall v \in V$, $v = \sum_{j=1}^n \langle v, e_j \rangle e_j + (v - \sum_{j=1}^n \langle v, e_j \rangle e_j)$. Then $\forall 1 \leq k \leq n$, $\langle v - \sum_{j=1}^n \langle v, e_j \rangle e_j, e_k \rangle = \langle v, e_j \rangle - \langle v, e_k \rangle \langle e_k, e_k \rangle = 0$. Hence $v_2 \in U^{\perp}$ and $v_1 \in U$ so $V = U + U^{\perp}$. Hence, $V = U \oplus U^{\perp}$.

Corollary 5.3.14. If $U \subset V$, dim $V < \infty$, then dim $U^{\perp} = \dim v - \dim U$.

Theorem 5.3.15. If $U \subset V$, dim $U < \infty$, then $U = (U^{\perp})^{\perp}$.

Proof. $\forall u \in U, \ \forall v \in U^{\perp}, \ \langle u, v \rangle = 0.$ Hence $u \in (U^{\perp})^{\perp}$ so $U \subset (U^{\perp})^{\perp}$. For $w \in (U^{\perp})^{\perp}, \ w = w_1 + w_2$ for $w_1 \in U, \ w_2 \in U^{\perp}$. But $\langle w, w_2 \rangle = 0 = \langle w_1 + w_2, w_2 \rangle = ||w_2||^2$ so $w_2 = 0$ so $w \in U$. Thus, $U = (U^{\perp})^{\perp}$.

Definition 5.3.16. If $U \subset V$, finite dimensional, define the orthogonal projection, P_U to be: for $v \in V$, write $v = v_1 + v_2$ with $v_1 \in U$, $v_2 \in U^{\perp}$ and define $P_U v = v_1$.

Theorem 5.3.17.

- (a) $P_U \in \text{End}(V)$
- (b) $P_U^2 = P_U$
- (c) $im P_U = U$
- (d) $\ker P_U = U^{\perp}$

Proof. By thm, $E(0, P_U) = U^{\perp}$, E(1, P) = U (since $E(0, P_U) \oplus E(1, P_U) = v$, so P_U has no eigenvalues).

- (e) $v P_U v \in U^{\perp}$
- (f) $||P_U v|| \le v$ (since $v = P_u v + v_2$, Pythagorean Theorem)
- (g) If e_1, \ldots, e_n is an orthonormal basis of U, then $P_u v = \langle v, e_1 \rangle e_1 + \cdots + \langle v, e_n \rangle e_n$.

Theorem 5.3.18. If $U \subset V$, U finite dimensional, $v \in V$ then $\forall u \in U$, $||v - P_U v|| \le ||v - u||$. Equality iff $u = P_U v$.

Chapter 6

Operators

6.1 April 4

6.1.1 Ch 7 - Linear Operators on Inner Product Spaces

Motivation: Which operators can be diagonalized using an orthonormal basis?

Ans: Spectral Theorem: Self-Adjoint operators for $\mathbb{F} = \mathbb{R}$, normal operators for $\mathbb{F} = \mathbb{C}$. Self adjoint/ normal operators defined using with simple expressions, show up naturally and are important in their own rights. V, W: Finite dimensional inner product spaces throughout Ch 7

6.1.2 7.A - Self Adjoint / Normal Operators

Definition 6.1.1. For $T \in \text{Hom}(V, W)$ m the adjoint of T is an operator $T^* : W \to V$ such that

$$\langle Tv, w \rangle = \langle v, T^*w \rangle, \, \forall v \in V, \, \forall w \in W$$
 (1)

Well Defined: (1) defines T^* uniquely and $\exists T^*$ satisfying (1).

Proof. For $w \in W$, definte the linear functional $\varphi : v \mapsto \langle Tv, w \rangle$. There is a $T^*w \in W$ such that $\varphi(v) = \langle Tv, w \rangle = \langle v, T^*w \rangle$ by the Reisz Representation Theorem. Uniqueness follows.

Theorem 6.1.2. T^* is a linear map (ie. $T^* \in \text{Hom}(W, V)$)

Proof.
$$\langle v, T^*(w_1 + w_2) \rangle = \langle Tv, w_1 + w_2 \rangle = \langle Tv, w_1 \rangle + \langle Tv, w_2 \rangle = \langle v, T^*w_1 \rangle + \langle v, T^*w_2 \rangle = \langle v, T^*w_1 + T^*w_2 \rangle.$$
 $\langle v, T^(\lambda w) \rangle = \langle Tv, \lambda w \rangle = \overline{\lambda} \langle v, T^*w \rangle = \langle v, \lambda T^*w \rangle$

Example 6.1.3. If $T: \mathbb{R}^2 \to \mathbb{R}^2$ is the map such that $\mathcal{M}(T) = \begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix}$ with respect to the standard basis. Then,

$$\langle (x_1, x_2), T^*((y_1, y_2)) \rangle = \langle T((x_1, x_2)), (y_1, y_2)) \rangle$$

$$= \langle (\cos \theta x_1 - \sin \theta x_2, \sin \theta x_1 + \cos \theta x_2), (y_1, y_2) \rangle$$

$$= \cos \theta x_1 y_1 - \sin \theta x_2 y_1 + \sin \theta x_1 y_2 + \cos \theta x_2 y_2$$

$$= \langle (x_1, x_2), (\cos \theta y_1 + \sin \theta y_2, -\sin \theta y_1 + \cos \theta y_2) \rangle$$

so $\mathcal{M}(T^*)$ with respect to the standard basis is $\begin{pmatrix} \cos \theta & \sin \theta \\ -\sin \theta & \cos \theta \end{pmatrix}$

Compare: If V_1, V_2 vector spaces, not equipped with an inner product, $T \in \text{Hom}(V_1, V_2)$ then $T' \in \text{Hom}(V_2', V_1')$.

Theorem 6.1.4 (Basic Properties of T^*). $\forall \lambda \in \mathbb{F}, S, T \in \text{Hom}(V, W)$

- (a) $(S+T)^* = S^* + T^*$
- (b) $(\lambda T)^* = \overline{\lambda} T^*$
- (c) $(T^*)^* = T$
- (d) $(ST)^* = T^*S^*$

Proof. $\forall v \in V, \forall w \in W,$

- 1. $\langle v, (S+T)^*w \rangle = \langle (S+T)v, w \rangle = \langle Sv + Tv, w \rangle = \langle Sv, w \rangle + \langle Tv, w \rangle = \langle v, S^*w \rangle + \langle v, T^*w \rangle = \langle v, S^*w + T^*w \rangle$
- 2. $\langle v, (\lambda T)^* w \rangle = \langle \lambda T v, w \rangle = \lambda \langle T v, w \rangle = \lambda \langle v, T^* w \rangle = \langle v, \overline{\lambda} T w \rangle$
- 3. $\langle w, (T^*)^* v \rangle = \langle T^* w, v \rangle = \overline{\langle v, T^* w \rangle} = \overline{\langle Tv, w \rangle} = \langle w, Tv \rangle$
- 4. $\langle v, I^*w \rangle = \langle Iv, w \rangle = \langle v, w \rangle = \langle v, Iw \rangle$ $\langle v, 0^*w \rangle = \langle 0v, w \rangle = 0 = \langle v, 0w \rangle$
- 5. Assume $v \in V$, $u \in U$, $\langle v, (ST)^*u \rangle = \langle STv, u \rangle = \langle Tv, S^*u \rangle = \langle v, T^*S^*y \rangle$

Proposition 6.1.5.

- (a) $\ker T^* = (\operatorname{im} T)^{\perp}$
- (b) $im T^* = (\ker T)^{\perp}$
- (c) $\ker T = (\operatorname{im} T^*)^{\perp}$
- (d) $\operatorname{im} T = (\ker T^*)^{\perp}$

Proof (Proof of (a)). $(\text{im}T)^{\perp} = \{w : \langle Tv, w \rangle = 0, \forall v \in V\} = \{w : \langle v, T^*w \rangle = 0, \forall v \in V\} = \{w : T^*w = 0\} = \ker T^*$

What is $\mathcal{M}(T^*)$? (if $T \in \text{Hom}(V, W)$)

Fix an orthonormal basis e_1, \ldots, e_n of V and f_1, \ldots, f_m of W.

Then for $v = \sum_{j=1}^{n} a_j e_j$, $w = \sum_{k=1}^{m} b_k f_k$, assume $\mathcal{M}(T) = A$,

$$\langle Tv, w \rangle = \langle \sum_{j=1}^{n} a_j Te_j, \sum_{k=1}^{m} b_k f_K \rangle$$

$$= \langle \sum_{k=1}^{m} (\sum_{j=1}^{n} a_j A_{k,j}) f_k, \sum_{k=1}^{m} b_k f_k \rangle$$

$$= \sum_{k=1}^{m} \sum_{j=1}^{n} a_j A_{k,j} \overline{b_k}$$

$$= \sum_{j=1}^{n} \sum_{k=1}^{m} \langle A_{k,j}, \overline{b_k} \rangle a_j$$

$$= \langle \sum_{j=1}^{k} a_j e_j, \sum_{j=1}^{n} (\sum_{k=1}^{m} \overline{A_{j,k}} b_k) e_j \rangle$$

By definition of T^* , $T^*(\sum_{k=1}^m b_k f_k) = \sum_{j=1}^n (\sum_{k=1}^m \overline{A_{j,k}} b_k) e_j$ so $\mathcal{M}(T^*)_{j,k} = \overline{A_{k,j}}$

Definition 6.1.6. For $A \in \mathbb{F}^{m,n}$, the conjugate transpose $\overline{A}^t \in \mathbb{F}^{n,m}$ is defined by $(\overline{A}^t)_{j,k} = \overline{A}_{k,j}$.

Example 6.1.7.
$$\overline{\begin{pmatrix} 1 & i \\ 2 & 3 \end{pmatrix}}^t = \begin{pmatrix} 1 & 2 \\ -i & 3 \end{pmatrix}$$

Theorem 6.1.8. If $T \in \text{Hom}(V, W)$, fix an orthonormal basis e_1, \ldots, e_n of V, and an orthonormal basis f_1, \ldots, f_m of W. Then $\mathcal{M}(T^*) = \overline{\mathcal{M}(T)}^t$.

Definition 6.1.9. $T \in \text{End}(V)$ is self adjoint (or Hermetian) if $T^* = T$. $A \in \mathbb{F}^{m,n}$ is self adjoint (or Hermetian) if $\overline{A}^t = A$.

T self adjoint $\leftrightarrow \mathcal{M}(T)$ is self adjoint with respect to some orthonormal basis $\leftrightarrow \mathcal{M}(T)$ is self adjoint with respect to every orthonormal basis.

Compare: When $A^t = A$, we say A is symmetric. If $\mathbb{F} = \mathbb{R}$, A is self adjoint $\leftrightarrow A$ is symmetric.

Proposition 6.1.10. Every eigenvalue of a self adjoint $T \in \text{End}(V)$ is real.

Proof. IF v is an eigenvector of T with eigenvalue λ , $\lambda ||v||^2 = \langle \lambda v, v \rangle = \langle Tv, v \rangle = \langle v, T^*v \rangle = \langle v, Tv \rangle = \langle v, \lambda v \rangle = \overline{\lambda} ||v||^2$. Since $||V||^2 > 0$, $\lambda = \overline{\lambda}$.

Proposition 6.1.11. If $\mathbb{F} = \mathbb{C}$, $\langle Tv, v \rangle = 0 \ \forall v \ \text{then} \ T = 0$.

Proof. Note that

$$\langle Tv,w\rangle = \frac{\langle T(u+w),u+w\rangle - \langle T(u-w),u-w\rangle}{4} - i\frac{\langle T(u+iw),u+iw\rangle - \langle T(u-iw),u-iw\rangle}{4}$$

Corollary 6.1.12. If $\mathbb{F} = \mathbb{C}$, $\langle Tv, Tv \rangle \in \mathbb{R} \ \forall v \leftrightarrow T$ is self adjoint.

Proof. Since $\langle Tv, Tv \rangle \in \mathbb{R}, \forall v \leftrightarrow \langle (T - T^*)v, v \rangle = 0 \ \forall v \in V.$

Proposition 6.1.13. If $\mathbb{F} = \mathbb{R}$ and T is self adjoint, then if $\langle Tv, v \rangle = 0 \ \forall v \in V, T = 0$.

Proof.

$$\langle Tv, w \rangle = \frac{\langle T(u+w), u+w \rangle - \langle T(u-w), u-w \rangle}{4}$$

(true if $T^* = T$)

Example 6.1.14. Prove by considering the matrices.

Definition 6.1.15. $T \in \text{End}(V)$ is normal if $TT^* = T^*T$, $A \in \mathbb{F}^{n,m}$ is normal if $A\overline{A}^t = \overline{A}^tA$.

Example 6.1.16. If $\mathcal{M}(T) = \begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix}$ with respect to the standard basis of \mathbb{R}^2 , then T is normal.

Lemma 6.1.17. T is normal iff $||Tv|| = ||T^*v|| \ \forall v \in V$

Proof.

$$\begin{split} T \text{ is normal } & \leftrightarrow T^*T - TT^* = 0 \\ & \leftrightarrow \langle (T^*T - TT^*)v, v \rangle = 0 \, \forall v \in V \\ & \leftrightarrow ||Tv||^2 = ||T^*v||^2 \, \forall v \in V \end{split}$$

Unusual! Take orthonormal bases $e_1, \ldots, e_m, f_1, \ldots, f_n$

$$\sum_{j=1}^{m} ||Te_{j}||^{2} = \sum_{j=1}^{m} \sum_{k=1}^{n} ||\langle Te_{j}, f_{k} \rangle f_{k}||^{2} = \sum_{j=1}^{m} \sum_{k=1}^{n} ||\langle e_{j}, T^{*}f_{k} \rangle f_{k}||^{2} = \sum_{k=1}^{n} ||T^{*}f_{k}||^{2}$$

Sum independent of orthonormal basis.

6.2 April 6

6.2.1 7.A - Self Adjoint/ Normal Operators

 $\sqrt{\sum_{j=1}^{n}||Te_{j}||^{2}}$ (e_{1},\ldots,e_{n}) is called the Hilbert-Schmidt norm of T.

Theorem 6.2.1. If T is normal,

- (a) T and T^* have the same eigenvectors.
- (b) Eigenvectors of T corresponding to different eigenvalues are orthogonal.

Proof.

- 1. Note $T \lambda I$ is also normal because $(T \lambda I)(T \lambda)^* = TT^* \lambda T^*\overline{\lambda}T + |\lambda|^2I = (T \lambda I)^*(T \lambda I)$. If $Tv = \lambda v$, then $||(T \lambda I)v|| = 0$ so $||(T \lambda I)^*v|| = 0$ so $(T \lambda I)^*v = 0$ so $T^*v = \overline{\lambda}v$
- 2. If $Tv_1 = \lambda_1 v_1$, $Tv_2 = \lambda_2 v_2$, then $(\lambda_1 \lambda_2)\langle v_1, v_2 \rangle = \lambda_1 \langle v_1, v_2 \rangle \lambda_2 \langle v_1, v_2 \rangle = \langle Tv_1, v_2 \rangle \langle v_1, T^*v_2 \rangle = 0$.

6.2.2 7.B- Spectral Theorems

Ways to Prove Them:

Prove \mathbb{C} version and \mathbb{R} version separately

Prove both versions in closely related way

Prove \mathbb{C} version, then derive \mathbb{R} version as a corrollary

Theorem 6.2.2. If dim $V \ge 1$, $T \in \text{End}(V)$, T is self adjoint, then T has an eigenvalue.

Lemma 6.2.3. If $T \in \text{End}(V)$ is self adjoint, then if $b^2 < 4c$, $T^2 + bT + c$ is invertible.

Proof. $\forall v \neq 0$, $\langle (T^2 + bT + c)v, v \rangle = \langle (T^2 + \frac{b}{2}I)^2 + (c - \frac{b}{4})^2I \rangle = ||(T + \frac{b}{2}I)^2||_{(c - \frac{b}{4})^2}^2||v||^2 > 0$. Hence $(T^2 + bT + c)v \neq 0$ so $T^2 + bT + c$ is invertible.

Proof (Proof Theorem). WLOG, $\mathbb{F} = \mathbb{R}$, let $n = \dim V$. Take $v \neq 0, v, Tv, \ldots, T^n v$ is linearly dependent. \exists nonzero $f \in \mathcal{P}(\mathbb{R})$ such that f(T)v = 0. Then since $(T^2 + b_1T + c_1I) \cdots (T^2 + b_MT + c_MI)(T - \lambda_1I) \cdots + (T - \lambda_mI)v = 0$, $b_i, c_i \in \mathbb{R}$, $b_j^2 < 4c_j$ (by factorization of \mathbb{R}) each $T^2 + b_jT + c_jI$ is invertible so $(T - \lambda_1I) \cdots (T - \lambda_nI)v = 0$. Hence some $T - \lambda_kI$ is not invertible.

Theorem 6.2.4. If $T \in \text{End}(V)$ is normal (sef adjoint), $U \subset V$ invariant under T, then

- (a) U^{\perp} is invariant under T
- (b) $T|_U$ is normal (self adjoint)
- (c) $T|_{U^{\perp}}$ is normal (self adjoint)

Proof.

(a) First, find $(T|_U)^*$. $\forall u_1, u_2 \in U$, $\langle T|_U u_1, u_2 \rangle = \langle Tu_1, u_2 \rangle = \langle u_1, T^*u_2 \rangle = \langle u_1, P_U T^*u_2 \rangle$. Hence

```
\begin{array}{l} (T|_U)^* = P_U T^*. \\ \text{Now, let } e_1, \ldots, e_n \text{ be an orthonormal basis of } U, \text{ consider the H-S norm of } T|_U. \sum_{j=1}^n ||T^*e_j||^2 = \\ \sum_{j=1}^n ||Te_j||^2 = \sum_{j=1}^n ||T|_U e_j||^2 \sum_{j=1}^n ||P_U T^*e_j||^2. \text{ This implies } T^*e_j \text{ is in } U \text{ so } U \text{ is invariant under } T^*. \text{ For every } v \in U^\perp, \ u \in U, \ \langle Tv, u \rangle = \langle v, T^*v \rangle = 0. \text{ So } U^\perp \text{ is invariant under } T. \end{array}
```

- (b) $\forall u \in U$. $(P_U T^*)(T|_U)u = P_U T^* T u = P_U T T^* u = T T^* u$ (since U is invariant under T, T^*) = $T P_U T^* u = T|_U (P_U T^*) u$.
- (c) since U^{\perp} is invariant apply (b)

Theorem 6.2.5 (Spectral Theorem). $\mathbb{F} = \mathbb{R}$ or \mathbb{C} , TFAE:

- (a) T is self adjoint (if $\mathbb{F} = \mathbb{R}$) T is normal (if $\mathbb{F} = \mathbb{C}$)
- (b) V has an orthonormal basis of eigenvectors of T.
- (c) T has a diagonal matrix over an orthonormal basis of V.

```
Proof. b \to c) \mathcal{M}(T) with orthonomral basis of eigenvectors is diagonal. c \to a) look at \mathcal{M}(T) with respect to some orthonormal basis. If \mathbb{F} = \mathbb{R}, \mathcal{M}(T) = \operatorname{diag}(\lambda_1, \ldots, \lambda_n), \lambda_i \in \mathbb{R}. Then \mathcal{M}(T^*) = \operatorname{diag}(\lambda_1, \ldots, \lambda_n) = \mathcal{M}(T) so T^* = T. If \mathbb{F} = \mathbb{C}, \mathcal{M}(T) = \operatorname{diag}(\lambda_1, \ldots, \lambda_n), \lambda_j \in \mathbb{C}, \mathcal{M}(T^*) = \operatorname{diag}(\overline{\lambda_1}, \ldots, \overline{\lambda_n}). \mathcal{M}(T)\mathcal{M}(T^*) = \operatorname{diag}(|\lambda_1|^2, \ldots, |\lambda_n|^2) = \mathcal{M}(T^*)\mathcal{M}(T) so TT^* = T^*T. a \to b) Induction on \dim V = n. Easy for \dim V = 0 or 1. Now, suppose \dim V > 1, the theorem holds for all W with \dim W < \dim V. T has an eigenvalue. Let v be a corresponding eigenvector, ||v|| = 1. (\operatorname{span}(T))^{\perp} is invariant under T and T|_{(\operatorname{span}(v))^{\perp}} is \{\text{self adjoint}, \mathbb{F} = \mathbb{R} \}, By IH, the restriction of T on (\operatorname{span}(v))^{\perp} is diagonalizable by an orthonormal basis v_1, \ldots, v_{n-1}. Now, v, v_1, \ldots, v_{n-1} is an orthonormal basis of eigenvectors of T.
```

6.2.3 7.C - Positive Operators and Isometries

Important Normal Operators: $\begin{cases} \text{self adjoint operators} \\ \text{isometries} \end{cases} \quad \text{under orthonormal basis} \begin{cases} A^t = A \\ A^t A = A A^t = I, \mathbb{F} = \mathbb{R} \end{cases} \quad \overline{A}^t A - A \overline{A}^t = I,$

Definition 6.2.6. $T \in \text{End}(V)$ is positive if T is self adjoint and $\langle Tv, v \rangle \geq 0, \forall v \in V$.

Example 6.2.7. Positive Operators:

(alph*) Orthogonal Projections

(alph*) $T^2 + bT + cI$, $b, c \in \mathbb{R}$, $b^2 < 4c$, T is self adjoint.

Definition 6.2.8. If $R \in \text{End}(V)$, $R^2 = T$, R is called a square root of T.

Theorem 6.2.9. $T \in \text{End}(V)$. TFAE:

- (a) T is positive.
- (b) T is self adjoint and all eigenvalues of $T \geq 0$.
- (c) T has a positive square root.
- (d) T has a self adjoint square root.
- (e) $\exists R \in \text{End}(V) \text{ such that } T = R^*R$

Proof. $a \to b$) T is self adjoint by assumption. If λ is an eigenvalue and v is a corresponding eigenvector, then $0 \le \langle Tv, v \rangle = \lambda \langle v, v \rangle$ so $\lambda \ge 0$.

 $b \to c$) \exists an orthonormal basis e_1, \ldots, e_n such that $Te_j = \lambda_j e_j$ and $\lambda_j \ge 0$. Define R such that $Re_j = \sqrt{\lambda_j} e_j$. R is positive and $R^2 = T$.

 $(c \to d)$ Take the positive square root. It is self adjoint.

 $d \to e$) If $R^2 = T$, R is self adjoint, then $T = R^*R$.

 $e \to a$) First, $T^* = (R^*R)^* = R^*R = T$. Moreover, $\langle Tv, v \rangle = \langle R^*Rv, v \rangle = \langle Rv, Rv \rangle = ||Rv||^2 \ge 0$.

Theorem 6.2.10. If $T \in \text{End}(V)$ is positive, then it has a unique positive square root.

Proof. Existence: Previous theorem $(a \to c)$

Uniqueness: If R is positive, $T = R^2$, WTS $\forall \lambda \geq 0$ eigenvalues of T and $v \neq 0$ in $E(\lambda, T)$, $Rv = \sqrt{\lambda v}$. This implies uniqueness.

Suppose R is diagonalized with orthonormal basis e_1, \ldots, e_n and $Re_j = \sqrt{\lambda_j} e_j$, $\lambda_j \geq 0$ and suppose $v = \sum_{i=1}^n a_j e_j$.

6.3 April 11

6.3.1 7.C - Positive Operators and Isometries

Proof (Proof of Thm 6.2.10 cont). Now, $\sum_{j=1}^{n} \lambda_j a_j e_j = Tv = R^2 v = \sum \lambda_j a_j e_j$, hence $\sum_{j=1}^{n} (\lambda - \lambda_j) a_j e_j = 0$. Comparing coefficients: $a_j = 0$ if $\lambda_j \neq \lambda$ hence $Rv = \sqrt{\lambda}v$.

6.3.2 Isometries

Definition 6.3.1. $S \in \text{End}(V)$ is called an isometry if $||Sv|| = ||v||, \forall v \in V$.

Example 6.3.2. $S \in \text{End}(\mathbb{R}^2)$ iff its matrix under the standard basis $\begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix}$.

Theorem 6.3.3. For $S \in \text{End}(V)$, TFAE:

6.3. APRIL 11 110: Linear Algebra

- (a) S is an isometry
- (b) $\langle Su, Sv \rangle = \langle u, v \rangle \ \forall u, v \in V$
- (c) $\forall e_1, \dots, e_n$ orthonormal list, Se_1, \dots, Se_n is an orthonormal list
- (d) \exists orthonormal basis e_1, \ldots, e_n such that Se_1, \ldots, Se_n is an orthonormal basis.
- (e) S * S = I
- (f) $SS^* = I$
- (g) S^* is an isometry
- (h) S is an invertible with $S^{-1} = S^*$

Proof. $a \to c$ $||Se_1|| = ||e_1|| = 1$, for $i \neq j$,

$$t^2 + 1 = ||e_i + te_j||^2 = ||S(e_i + te_j)||^2 = ||Se_i + Se_j||^2 = t^2 + 1 + 2\operatorname{Re}(\overline{t}\langle Se_i, Se_j\rangle)$$

for all t so $\langle Se_i, Se_i \rangle = 0$.

 $c \to d$) Any orthonormal basis suffices s

 $(a \rightarrow b)$ If $u = \sum a_j e_j$, $v = \sum b_j e_j$ with e_1, \ldots, e_n an orthonormal basis, then $S_u = \sum a_j S e_j$, $Sv = \sum b_j S e_j$ so $\langle u, v \rangle = \sum_{j=1}^n a_j \overline{b_j} = \langle Su, Sv \rangle$ $b \rightarrow e$) $\langle S^*Su, v \rangle = \langle u, v \rangle \ \forall u, v \in V$ so $S^*S = I$

 $e \to f$) $S^*S = I$ so S is invertible and $SS^*S = S$ so multiplying by S^{-1} on the right, we get $SS^* = I$

 $f \to g$) $||S^*v||^2 = \langle SS^*v, v \rangle = \langle v, v \rangle = ||v||^2$ $(\tilde{g} \to \tilde{h})$ By previous reasoning " $(a) \to (e) \to (f)$ ", when \tilde{S} is an isometry, \tilde{S} and \tilde{S}^* are invertible and

 $\tilde{S} = (\tilde{S}^*)^{-1}$. Take $\tilde{S} = S^*$ satisfies (h). $h \to a$) First, note $S^*S = I$, then $||Sv||^2 = \langle S^*Sv, v \rangle = \langle v, v \rangle = ||v||^2$.

Theorem 6.3.4. If $\mathbb{F} = \mathbb{C}$, $S \in \text{End}(V)$, then S is an isometry $\leftrightarrow \exists$ an orthonormal basis of eigenvectors of S with absolute value 1.

Proof. \rightarrow) S is normal. By the spectral theorem, S is diagonalized by an orthonormal basis. Since $S^*S = I$, all diagonal terms must have absolute value 1.

 \leftarrow) Assume the orthonormal basis is e_1, \ldots, e_n under which $\mathcal{M}(S) = \operatorname{diag}(a_1, \ldots, a_n), |a_i| = 1 \ \forall j$. Hence $\mathcal{M}(S^*S) = \text{diag}(|a_1|^2, \dots, |a_n|^2) = \mathcal{M}(I).$

Example 6.3.5. S^* is an isometry iff:

 $A = \mathcal{M}(S)$ has an orthonormal basis satisfying $A^*A = AA^* = I$

Such an A is called an $\begin{cases} \text{orthogonal} \\ \text{unitary} \end{cases} \quad \text{matrix if } \mathbb{F} = \begin{cases} \mathbb{R} \\ \mathbb{C} \end{cases}.$

Polar Decomposition and Singular Value Decomposition 6.3.3

Definition 6.3.6. For positive T, let \sqrt{T} be the unique positive square root of T.

Theorem 6.3.7 (Polar Decomposition). If $T \in \text{End}(V)$, \exists isometry $S \in \text{End}(V)$ such that $T = S\sqrt{T^*T}$. (if T invertible, then $S = T(\sqrt{T^*T})^{-1}$: $T(\sqrt{T^*T})^{-1}(\sqrt{T^*T})^{-1}T^* = T(T^*T)^{-1}T^* = TT^{-1}(T^*T)^{-1}T^* = TT^{-$

Proof. Define $S_1 : \operatorname{im}(\sqrt{T^*T}) \to \operatorname{im}T$ by $\sqrt{T^*T}v \mapsto Tv$ S_1 well defined: if $\sqrt{T^*T}v_1 = \sqrt{T^*T}v_2$, then

$$0 = \langle \sqrt{T^*T}(v_1 - v_2), \sqrt{T^*T}(v_1 - v_2) \rangle = \langle T^*T * (v_1 - v_2), v_1 - v_2 \rangle = ||T(v_1 - v_2)||^2$$

isometry: $||\sqrt{T^*T}v||^2 = \langle \sqrt{T^*T}v, \sqrt{T^*T}v \rangle = \langle T^*Tv, v \rangle = \langle v, v \rangle$

So S_1 is injective, $im S_1 = im T$.

Hence if $V_1 = \operatorname{im}(\sqrt{T^*T})$ and $V_2 = \operatorname{im}(T)$ where $\operatorname{dim} V_1 = \operatorname{dim} V_2$ so $\operatorname{dim} V_1^{\perp} = \operatorname{dim} V_2^{\perp}$. It's possible to define S_2 to be an isometry between V_1^{\perp} and V_2^{\perp} by taking an orthonormal basis of each and mapping corresponding basis vectors to each other.

For $v \in V$, v = u + w for $u \in V_1$, $w \in V_1^{\perp}$, define $Sv = S_1u + S_2w$. Then S is an isometry and $\forall v \in V$, $S\sqrt{T^*T}v = S_1\sqrt{T^*T}v = Tv$.

Note: S need not commute with $S\sqrt{T^*T}$ or have any relation.

6.3.4 Singular Value Decomposition

Definition 6.3.8. For $T \in \text{End}(V)$, the singular values of T are the eigenvalues of $\sqrt{T*T}$, where each eigenvalue λ is repeated dim $E(\lambda, \sqrt{T*T})$ times.

Theorem 6.3.9 (SVD). For $T \in \text{End}(V)$ with singular values $s_1, \ldots, s_n \exists$ orthonormal bases e_1, \ldots, e_n and f_1, \ldots, f_n such that

$$Tv = s_1 \langle v, e_1 \rangle f_1 + s_2 \langle v, e_2 \rangle f_2 + \dots + s_n \langle v, e_n \rangle f_n$$

Proof. Take e_1, \ldots, e_n that diagonalizes $T \in \operatorname{End}(V)$ as $\operatorname{diag}(s_1, \ldots, s_n)$. Form the polar decomposition $T = S\sqrt{T^*T}$. Assume $Se_j = f_j, f_1, \ldots, f_n$ orthonormal basis. Now, $T(\sum a_j e_j) = S\sqrt{T^*T}(\sum a_j e_j) = S(\sum s_j a_j e_j) = \sum s_j a_j f_j$

Corollary 6.3.10. $\forall A \in \mathbb{F}^n, m, \exists \text{ unitary/orthogonal } U_1, U_2 \text{ and } \operatorname{diag}(s_1, \dots, s_n) \in \mathbb{F}^{n,n} \text{ such that } s_1, \dots, s_n > 0 \text{ and } A = U_1 \operatorname{diag}(s_1, \dots, s_n) U_2.$

Example 6.3.11. For
$$A = \begin{pmatrix} 2 & 1 \\ -2 & 1 \end{pmatrix} \in \mathbb{R}^{2,2}$$
, $A^t A = \begin{pmatrix} 5 & 4 \\ 4 & 5 \end{pmatrix}$ $(1, \pm 1)$ eigenvectors of $A^t A = A = \begin{pmatrix} \frac{\sqrt{2}}{2} & \frac{\sqrt{2}}{2} \\ -\frac{\sqrt{2}}{2} & \frac{\sqrt{2}}{2} \end{pmatrix} \begin{pmatrix} 3 & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} \frac{\sqrt{2}}{2} & \frac{\sqrt{2}}{2} \\ \frac{\sqrt{2}}{2} & -\frac{\sqrt{2}}{2} \end{pmatrix}$

Proposition 6.3.12. Singular values of T are the square roots of the eigenvalues of T^*T with each $\sqrt{\lambda}$ repeated dim $E(\lambda, T^*T)$ times.

6.3.5 Ch 8: Operators on Complex Vector Spaces

V: finite dimensional vector space over \mathbb{F} (no inner product) throughout Ch 8. Main Theorem: Jordan Normal Form- for $T \in \operatorname{End}(V)$, (V/\mathbb{C}) has the Jordan Form under some basis:

$$\begin{pmatrix}
\lambda_1 & 1 & & & & & & & & & & & & \\
& \ddots & \ddots & & & & & & & & & & & \\
& & \ddots & 1 & & & & & & & & & \\
& & & \lambda_1 \end{pmatrix} & & & & & & & & & \\
& & & & \ddots & & & & & & & \\
& & & & & \ddots & & & & & \\
& & & & & & & \lambda_p \end{pmatrix}$$

6.4 April 13

6.4.1 Jordan Form

To prove Jordon Form Thm - 2 Steps:

- 1. Bézout's Lemma $\rightarrow V$ is a direct sum of generalized eigenspaces
- 2. Structure of nilpotent operators

Lemma 6.4.1. For $T \in \text{End}(V)$, $\exists p \neq 0 \in \mathcal{P}(\mathbb{F})$ such that p(T) = 0

Proof. $I, T, T^2, \dots, T^{(\dim V)^2}$ is linearly dependent.

Lemma 6.4.2 (Bézout's Lemma, special case). For nonzero polynomials $p_1, \ldots, p_n \in \mathcal{P}(\mathbb{C})$, we have either:

- (a) $\exists \lambda \in \mathbb{C}$ is a common root of p_1, \ldots, p_m or
- (b) $\exists q_1, \ldots, q_m \in \mathcal{P}(\mathbb{C})$ such that $1 = p_1q_1 + p_2q_2 + \cdots + p_mq_m$

Proof. Consider the set $S = \{g_1p_1 + \cdots + g_np_n : g_1, \ldots, g_m \in \mathcal{P}(\mathbb{C})\}$. S is closed under addition and multiplication by $\forall g \in \mathcal{P}(\mathbb{C})$.

Claim: \exists a nonzero $p \in \mathcal{P}(\mathbb{C})$ such that $S = \{g \cdot p : g \in \mathcal{P}(\mathbb{C})\}$ (holds for any \mathbb{F})

Proof of claim: S contains polynomials of deg ≥ 0 such as p_1 . Choose $0 \neq p \in S$ such that p has the smallest possible degree. Suffices to show any $\tilde{p} \in S$ is divisible by p. Since we can write $\tilde{p} = sp + r$, deg $r < \deg p$, $r \in S$ so by the minimality of the degree of p, r = 0 so p divides \tilde{p} .

If p in the claim is a constant, we have (b). Otherwise, by FTA, p has a root so (a) follows.

Definition 6.4.3. If $T \in \text{End}(V)$, $v \in V$ is called a generalized eigenvector corresponding to λ if $v \neq 0$ and there is a positive integer j such that $(T - \lambda I)^j v = 0$.

Example 6.4.4. If there is such a v, then λ has to be an eigenvalue.

Proof. Suppose $(T - \lambda I)^j v = 0$, $v \neq 0$. Choose a minimal k such that $(T - \lambda I)^k v = 0$. Then $(T - \lambda I)^{k-1} v \neq 0$ by $(T - \lambda I)((T - \lambda I)^{k-1}v)) = 0$ so $T - \lambda I$ is not injective, hence λ is an eigenvalue.

Definition 6.4.5. For eigenvalue λ , all general eigenvectors of T corresponding to λ together with 0 form a general eigenspace of T corresponding to λ , denoted $G(\lambda, T)$.

Example 6.4.6. Prove that $G(\lambda, T)$ is a subspace.

Convention: if λ is not an eigenvalue, $G(\lambda, T) = \{0\}.$

Assuming $\mathbb{F} = \mathbb{C}$, by first lemma $\exists f \neq 0 \in \mathcal{P}(\mathbb{C})$ such that f(T) = 0.

Assuming f monic (ie. f has highest degree coefficient 1), by FTA $f(z) = (z - \lambda_1)^{j_1} \cdots (z - \lambda_m)^{j_m}$

Proposition 6.4.7.

- (a) $\ker(T \lambda_k)^{j_k} = G(\lambda_k, T)$ and
- (b) $V = G(\lambda_1, T) \oplus + \cdots + G(\lambda_m, T)$

Proof.

- (a) $\ker(T \lambda_k I)^{j_k} \subset G(\lambda_k, T)$ by def For $v \neq 0$ in $G(\lambda_k, T)$, $\exists \tilde{j_k}$ such that $(T - \lambda_k I)^{\tilde{j_k}} v = 0$ If $\tilde{j_k} \leq j_k$, then $v \in \ker(T - \lambda_k)^{j_k}$ If $\tilde{j_k} > j_k$, set $g_k(z) = \frac{f(z)}{(z - \lambda_j)^{j_k}} = (z_1 - \lambda_1)^{j_1} \cdots (z - \lambda_k)^{j_k} \cdots (z - \lambda_m)^{j_m}$ Now, $g_k(T)(T - \lambda_k I)^{j_k} v = 0$ (1), $(T - \lambda_k)^{\tilde{j_k} - j_k} (T - \lambda_k)^{j_k} v = 0$ (2) By Bézout, $\exists q_1, q_2 \in \mathcal{P}(\mathbb{C})$ such that $q_1 g_k + q_2 (z - \lambda)^{\tilde{j_k} - j_k} = 1$. Then, $q_1(T)(1) + q_2(T)(2)$ gives: $I(T - \lambda_k)^{j_k} v = 0$ so $v \in \ker(T - \lambda_k I)^{j_k}$.
- (b) As before, let $g_k(z)\frac{f(z)}{(z-\lambda_k)^{jz}}$ Direct Sum: If $v_1+\dots+v_m=0$ (3) where each $v_k\in (G\lambda_k,T)$ then $(T-\lambda_k I)^{j_k}v_k=0$, then $g_k(T)\tilde{v_k}-0$, $\tilde{k}\neq k$. Applying $g_k(T)$ to (3), we get $g_k(T)v_k=0$ (4), also $(T-\lambda_k T)^{j_k}v=0$ (5). By Bézouts, $\exists q_{3,k}, q_{4,k}\in \mathcal{P}(\mathbb{C})$ such that $q_{3,k}(z)+g_k(z)+q_{4,k}(z)(z-\lambda_k)^{j_k}=1$. Applying $q_{3,k}$ to (4) and $q_{4,k}$ to (5), we see that $Iv_k=0$, $\forall k$. Adding up to V: By Bézout, $\exists h_1,\dots,h_m\in \mathcal{P}(\mathbb{C})$ such that $1=\sum_{j=1}^m h_k g_k, \ \forall v\in V,\ v=\sum_{k=1}^m g-k(T)h_k(T)v$. Now, $g_k(T)w$ is such that $(T-\lambda_k)^{j_k}g_k(T)w=f(T)w=0$ so $g_k(T)w\in G(\lambda_k,T)$. Hence each $g_k(T)h_k(T)$ on RHS is in $G(\lambda_k,T)$.

Example 6.4.8. Each $G(\lambda_k, T)$ is invariant under T.

Proof. Follows since $G(\lambda_k, T)$ is the kernel of some polynomial.

Note: $(T - \lambda_k I)|_{G(\lambda_k,T)}$ is nilpotent (ie. some power of it is 0). Hence we need to study the structure of nilpotent operators.

Theorem 6.4.9 (Study of Nilpotent Operators). Let $N \in \text{End}(V)$ be nilpotent. Then $\exists v_1, \ldots, v_n \in V$, $m_1, \ldots, m_n \in \mathbb{N}$ such that

- 1. $N^{m_1}v_1, N^{m_1-1}v_1, \dots, v_1, N^{m_2}v_2, N^{m_2-1}v_2, \dots, v_2, \dots, N^{m_n}v_n, N^{m_n-1}v_n, \dots, v_n$ is a basis of V.
- 2. $N^{m_1+1}v_1 = N^{m_2+1}v_2 = \cdots = N^{m_n+1}v_n = 0$.

Example 6.4.10. Using decomposition into generalized eigenspaces and structure of nilpotent operators, we get the Jordan Form:

 $\forall T, \exists \lambda_1, \ldots, \lambda_p \in \mathbb{C}$ and $m_1, \ldots, m_p > 0$ and a basis such that $\mathcal{M}(T)$ under the basis is:

Proof (Proof of Thm 6.4.9). Induct on dim V. True for dim V = 0.

Assuming, we know the claim is true for $\dim W < \dim V$.

N nilpotent $\to N$ is not invertible $\to N \subseteq V$.

im N invariant under N, $N|_{\text{im}N}$ is nilpotent too. By IH, $N|_{\text{im}N}$, $\exists u_1, \ldots, u_n \in \text{im}N$, $l_1, \ldots, l_r \in \mathbb{N}$ such that $N^{p_1}u_1, \ldots, u_1, N^{p_2}u_2, \ldots, u_2, \ldots, N^{p_r}, \ldots, u_r$ is a basis of imN and $N^{l_i+1}u_i = 0$, $\forall i$. Since each $u_i \in \text{im}N$, we have v_1, \ldots, v_r such that $u_i = Nv_i, \forall i$. Define $m_i = l_i = 1$.

6.5 April 18

6.5.1 Jordan Form

Proof (Proof of Thm 6.4.9 (cont.)). Claim 1: $N^{m_1}v_1, N^{m_1-1}v_1, \dots, v_1, \dots, N^{m_r}v_r, \dots, v_r$ is linearly independent.

Proof. If \exists a linear combination of these vectors that equals 0, applying N to it, we get a linear combination of $N^{l_1}u_1,\ldots,u_1,N^{l_2}u_2,\ldots,u_2,\ldots$, and some 0's. Hence the coefficients of $N^{m_1-1}v_1,\ldots,v_1,$ $N^{m_2-1}v_2,\ldots,v_2,\ldots$ are all 0. Look at the remaining $a_1N^{m_1}v_1+a_2N^{m_2}v_2+\cdots+a_rN^{m_r}v_r=0$. Since it is contained within imN, $a_1=a_2=\cdots=0$.

Let $U = \text{span}(N^{m_1}v_1, \dots, v_1, N^{m_2}v_2, \dots, v_2, \dots)$. Extend $N^{m_1}v_1, \dots, v_1, N^{m_2}v_2, \dots, v_2, \dots$ to a basis

$$N^{m_1}v_1, N^{m_1-1}v_1, \ldots, v_1, \ldots, N^{m_r}v_r, \ldots, v_r, w_1, \ldots, w_s.$$

Claim 2: $\forall u \in V, \exists x \in U \text{ such that } Nw = Nx$

Proof. Since $imN|_U = imN$

We choose x_i as in claim 2 for each w_i Let $v_{r+i} = w_i - x_i$. Then $Nv_{r+i} = 0$. Hence $N^{m_1}v_1, N^{m_1-1}v_1, \ldots, v_1, \ldots, N^{m_r}v_r, \ldots, v_r, v_{r+1}, \ldots, v_n$ is a basis satisfying the desired conclusion.

Remark 6.5.1. The matric of N under the basis in the previous thm is

6.5.2 Genralized Eigenvectors

Theorem 6.5.2.

- For $T \in \text{End}(V)$, $0 \subset \ker T^0 \subset \ker T^1 \subset \ker T^2 \subset \cdots$
- If $\ker T^m = \ker T^{m+1}$, then $\ker T^m = \ker T^{m+1} = \ker T^{m+2} = \cdots$

Proof (Proof of Second Claim). Suffices to prove $\ker T^{m+1} = \ker T^{m+2}$. $\forall v \in \ker T^{m+2}$, $T^{m+2}v = 0$ so $T^{m+1}(Tv) = 0$ so $T^m(Tv) = 0$ so $T^{m+1}v = 0$.

Corollary 6.5.3. $\ker T^{\dim V} = \ker T^{\dim V+1} = \cdots$

Proof. Otherwise, $0 \subsetneq \ker T^0 \subsetneq \ker T^1 \subsetneq \cdots \subsetneq \ker T^{\dim V} \subsetneq \ker T^{\dim V+1}$, a contradiction since the dimension increases by at least 1 each inclusion.

Proposition 6.5.4. $V = \ker T^{\dim V} \oplus \operatorname{im} T^{\dim V}$

Proof. Direct Sum: If $v \in \ker T^{\dim V} \cap \operatorname{im} T^{\dim V}$, $\exists u$ such that $v = T^{\dim V} u$. Also, $T^{\dim V} = T^{\dim V + 1} u = 0$ so $T^{\dim V} u = 0 = v$.

6.5. APRIL 18

Direct sum = V follows by couting dimension.

Proposition 6.5.5. If $T \in \text{End}(V)$, $G(\lambda, T) = \ker(T - \lambda I)^{\dim V}$.

Proof. $\forall v \in G(\lambda, T), \exists m \text{ such that } (T - \lambda I)^m v = 0, \text{ by above propositions } (T - \lambda)^{\dim V} v = 0.$

Proposition 6.5.6. if $\mathbb{F} = \mathbb{C}$, $V = \bigoplus_{G(\lambda,T) \neq \{0\}} G(\lambda,T)$

Proposition 6.5.7. If N is nilpotent, then $N^{\dim V} = 0$.

6.5.3 8.B - Decompositions of an Operator

Proposition 6.5.8. If $T \in \text{End}(V)$, $p \in \mathcal{P}(\mathbb{F})$, then $\ker p(T)$ and $\operatorname{im} p(T)$ are invariant under T.

Proof. If p(T)v = 0, then Tp(T)v = 0 so p(T)(Tv) = 0.

Theorem 6.5.9.

(a) Each $G(\lambda_j, T)$ is invariant under T.

Proof. Follows since $G(\lambda_j, T) = \ker(T - \lambda_j I)^{\dim V}$

(b) Each $(T - \lambda_j I)|_{G(\lambda_j, T)}$ is nilpotent.

Corollary 6.5.10. If $\mathbb{F} = \mathbb{C}$, $T \in \text{End}(V)$, then \exists a basis of V of generalized eigenvectors of T.

Definition 6.5.11. For $T \in \text{End}(V)$, the multiplicity of each eigenvalue λ of T is $\dim G(\lambda, T) = \dim \ker (T - \lambda I)^{\dim V}$.

Example 6.5.12. If $\mathcal{M}(T) = \begin{pmatrix} 6 & 3 & 4 \\ 0 & 6 & 2 \\ 0 & 0 & 7 \end{pmatrix}$, then the multiplicity of the eigenvalue 6 is 2 and of the eigenvalue 7 is 1.

Corollary 6.5.13. If $\mathbb{F} = \mathbb{C}$, the multiplicities of all eigenvalues of T add up to dim V.

Definition 6.5.14. A block diagonal matrix is a matrix of the from

$$\begin{pmatrix} A_1 & & 0 \\ & \ddots & \\ 0 & A_m \end{pmatrix}$$

where A_1, \ldots, A_m are square matrices lying along the diagonal and all othe entries equal 0.

Jordan Block: $\begin{pmatrix} \lambda_1 & 1 & & 0 \\ & \ddots & \ddots & \\ & & \ddots & 1 \\ 0 & & & \lambda_1 \end{pmatrix}$

Example 6.5.15. Use this notion to describe the Jordan Form.

Theorem 6.5.16. If $N \in \text{End}(V)$ is nilpotent, I + N has a square root.

Proof. A formal power series is $\sum_{n=0}^{\infty} a_n x^n$, $a_n \in \mathbb{F}$. We define the product

$$(\sum a_n x_n)(\sum b_n x_n) = \sum_{n \ge 0} (\sum_{0 \le k \le n} a_k b_{n-k}) x^n$$

Claim:

Proof. Take $a_0 = 1$ and define the coefficients inductively.

Then, we can check $(\sum a_n N^n)^2 = 1 + n$ where $\sum a_n N^n$ is a finite sum since N is nilpotent.

Theorem 6.5.17. When $\mathbb{F} = \mathbb{C}$, every invertible $T \in \text{End}(V)$ has a square root.

Proof. Write $V = \bigoplus_{i=1}^m G_j$ where $G_j = G(\lambda_j, T)$, λ_j distinct, nonzero. $\frac{1}{\lambda_j} T|_{G_j} = I + N_j$ so $\exists S_j \in \operatorname{End}(G_j)$ such that $S_j^2 = \frac{1}{\lambda_j} T|_{G_j}$. Take $\mu_j \in \mathbb{C}$ such that $\mu_j^2 = \lambda_j$ and let $R_j = \mu_j S_j$. Then $R_j^2 = T|_{G_j}$. Define $R(\sum_{i=1}^m a_j v_j) = \sum_{j=1}^m a_j R_j v_j$ where $v_j \in G_j$. Then $R^2 = T$.

6.5.4 8.C - Minimal Polynomials

Definition 6.5.18. A monic polynomial is a polynomial with highest degree coefficient equal to 1.

Example 6.5.19. $x + 1, x^2 + 1, x^{10} + 6x + 5$ are monic.

Proposition 6.5.20. For $T \in \text{End}(V)$, \exists a unique monic polynomial p of smallest degree such that p(T) = 0. It is called the minimal polynomial of T.

110: Linear Algebra 6.6. APRIL 20

April 20 6.6

6.6.18.C - Minimal Polynomials

Proof. Consider $N(T) = \{q \in \mathcal{P}(\mathbb{F}) : q(T) = 0\}$. $N(T) \neq \{0\}$ and is closed under addition and multiplication (by elements of $\mathcal{P}(\mathbb{F})$). Take a nonzero $p \in N(T)$ of smallest degree. WLOG p is monic. For every $q \in N(T), q = sp + r$ with deg $r < \deg p$, but q(T) = 0, p(T) = 0, (sp)(T) = 0, then r(T) = 0. Since $\deg r < \deg p$, r = 0. Hence q = sp, If q is also monic, then either s = 1 so q = p or $\deg q > \deg p$.

Corollary 6.6.1. If q(T) = 0, then q is a multiple of the minimal polynomial of T.

Example 6.6.2. For the matrix $\begin{pmatrix} 0 & & -a_0 \\ 1 & \ddots & & \vdots \\ & \ddots & 0 & -a_{n-2} \\ & & 1 & -a_{n-1} \end{pmatrix}$ in $\mathbb{F}^{n,n}$, the minimal polynomial of the corresponding

operator is $z^n + a_{n-1}z^{n-1} + a_{n-2}^n + \cdots + a + 0$ First, note that $Tv_1 = v_2, Tv_2 = v_3, \dots, Tv_n = -a_0v_1 - \cdots - a_{n-1}v_n$. Hence $(T^n + a_{n-1}T^{n-1} + \cdots + a_0I)v_1 = 0$. Now, $p(T)v_2 = p(T)Tv_1 = Tp(T)v_1 = 0,...$

Example 6.6.3. If $\mathcal{M}(T) = \begin{pmatrix} 0 & 1 \\ & 0 \\ & 2 \end{pmatrix}$, then T has minimal polynomial $z^2(z-2)$ If $\mathcal{M}(T) = \begin{pmatrix} 0 & 1 \\ & 1 & 2 \end{pmatrix}$, then T has minimal polynomial z(z-1)(z-2)

Theorem 6.6.4. For $T \in \text{End}(V)$, the zeros of the minimal polynomial are precisely the eigenvalues of T. (Doesn't say anything about multiplicity).

Proof. Let the minimal polynomial be p(z). If $p(\lambda) = 0$, then $p(T) = (T - \lambda I)q(T)$. If $(T - \lambda I)$ is invertible, then q(T) = 0, contradicting the minimality of the degree of p. Thus, $(T - \lambda I)$ is not invertible. If $T - \lambda I$ is not invertible, then $\exists v \neq 0$ such that $(T - \lambda I)v = 0$, and p(T)v = 0. Let $p(z) = (z - \lambda I)q(z) + r$, r constant. Then applying z, we get 0 = 0 + r so r = 0. Thus $p(\lambda) = 0$.

Example 6.6.5. if $\mathcal{M}(T)$ is some Jordan Form what is the minimal polynomial of it?

eg.
$$\begin{pmatrix} 0 & 1 & & & \\ & 0 & & & \\ & & 0 & 1 & \\ & & & 0 & \\ & & & & 1 \end{pmatrix}$$
, for this example its is $z^2(z-1)$

Definition 6.6.6. A Jordan basis for $T \in \text{End}(V)$ is some v_1, \ldots, v_n such that the matrix of T under it is in Jordan Form.

Example 6.6.7. If
$$\mathcal{M}(T) = \begin{pmatrix} 0 & 1 & & \\ & 0 & & \\ & & 0 & 1 \\ & & & 0 \end{pmatrix}$$
 under a basis, then $\mathcal{M}(T)$ can't be $\begin{pmatrix} 0 & 1 & & \\ & 0 & 1 & & \\ & & 0 & & \\ & & & 0 \end{pmatrix}$ under another

basis. (Consider T^2)

Remark 6.6.8. If $\mathcal{M}(T)$ is a jordan form, then we can read off the eigenvalues and their multiplicities immediately.

Ch 10 - Trace and Determinant

V: finite dimensional vector space, dim V>0 throughout this chapter.

6.6.2 10.A - Trace

Recall:

- I means the identity operator or the identity matrix
- We denote the inverse of a matrix A, A^{-1}
- Change of basis formula: If $A = \mathcal{M}(I, (u_1, \dots, u_n), (v_1, \dots, v_n))$, then

$$\mathcal{M}(T,(u_1,\ldots,u_n)) = A^{-1}\mathcal{M}(T,(v_1,\ldots,v_n)A)$$

Definition 6.6.9. FOr $A \in \mathbb{F}^{n,n}$ $(n \ge 1)$, then the trace of A is

$$tr(A) = A_{1,1} + A_{2,2} + \dots + A_{n,n}$$

Proposition 6.6.10. For $A \in \mathbb{F}^{n,m}$, $B \in \mathbb{F}^{m,n}$, $\operatorname{tr}(AB) = \operatorname{tr}(BA)$

Proof.
$$\operatorname{tr}(AB) = \sum_{j=1}^{n} (AB)_{j,j} = \sum_{j=1}^{n} \sum_{k=1}^{m} A_{j,k} B_{k,j} = \sum_{k=1}^{m} \sum_{j=1}^{n} A_{j,k} B_{k,j} = \sum_{k=1}^{m} (BA)_{k,k} = \operatorname{tr}(BA).$$

Corollary 6.6.11. For $A \in \mathbb{F}^{n,n}$, $S \in \mathbb{F}^{n,n}$ invertible, $\operatorname{tr}(S^{-1}AS) = \operatorname{tr}(A)$

Proof.
$$tr(S^{-1}AS) = tr(ASS^{-1}) = tr(A)$$

Definition 6.6.12. For $T \in \text{End}(V)$, define the trace of T, tr(T) to be $\text{tr}(\mathcal{M}(T))$ (under arbitrary basis)

Well defined since by the previous corollary and the change of basis formula, it is independent of choice of basis.

Proposition 6.6.13. if $\mathbb{F} = \mathbb{C}$, then $tr(T) = \sum$ eigenvalues of T (counting multiplicity)

Proof. Find a jordan basis, $\mathcal{M}(T)$ has diagonal elements being the eigenvalues of T (with multiplicity)

Proposition 6.6.14. For $T \in \text{End}(V)$,

- (1) $tr(T^{-1} = tr(T))$
- (2) $\operatorname{tr}(T_1 + T_2) = \operatorname{tr}(T_1) + \operatorname{tr}(T_2)$
- (3) $\operatorname{tr}(kT) = k \cdot \operatorname{tr}(T), k \in \mathbb{F}$

For any $A, A_1, A_2 \in \mathbb{F}^{n,n}$

- 1. $trA = trA^t$
- 2. $tr(A_1 + A_2) = tr(A_1) + tr(A_2)$
- 3. $\operatorname{tr}(kA) = k \cdot \operatorname{tr}(A), k \in \mathbb{F}$

Remark 6.6.15. If V is an innter product, $\langle T_1, T_2 \rangle_{HS} = \operatorname{tr}(T_1 T_2^*)$ is an innter product which gives the H-S norm

Example 6.6.16. $tr(T) \ge 0$ if T is positive.

6.6.3 10.B - Determinants

Motivation: Signed area or volume of a parralelipiped.

Each operator in $\operatorname{End}(\mathbb{R}^n)$ change the signed volume of the parallelipiped proportionally.

Definition 6.6.17. det: $\mathbb{F}^{n,n} \to \mathbb{F}$ is a function satisfying

(i) Multilinearity:

$$\det\left(\left(v_{1}\right)\left(v_{2}\right)\cdots\left(a_{1}u+a_{2}w\right)\cdots\left(v_{n}\right)\right)=a_{1}\det\left(\left(v_{1}\right)\left(v_{2}\right)\cdots\left(u\right)\cdots\left(v_{n}\right)\right)+a_{2}\det\left(\left(v_{1}\right)\left(v_{2}\right)\cdots\left(v_{n}\right)\right)$$

(ii) Alternating:

$$\det\left(\cdots(v)\cdots(v)\cdot\right)$$

(iii) det(I) = 1

Proposition 6.6.18. det is unique and well defined.

Proof. If det satisfies (i), (ii), (iii) then by multilinearity, a general determinant of A is an explicit linear combination of $\det(e_{k_1}, e_{k_2}, \dots, e_{k_n})$ where e_1, \dots, e_n is the standard basis of \mathbb{F}^n . If \exists repetitions k_1, \dots, k_n then $\det = 0$. Otherwise k_1, \dots, k_n is a permutation of $1, \dots, n$. By (i) + (ii),

$$\det(\cdots(v+w)\cdots(v+w)\cdots) - \det(\cdots(v)\cdots(v)\cdots) - \det(\cdots(w)\cdots(w)\cdots) = 0$$

so
$$\det(\cdots(v+w)\cdots(v+w)\cdots) - \det(\cdots(v)\cdots(v)\cdots) - \det(\cdots(w)\cdots(w)\cdots)$$

$$= \det(\cdots(v)\cdots(v+w)\cdots) - \det(\cdots(v)\cdots(v)\cdots) + \det(\cdots(w)\cdots(v+w)\cdots) - \det(\cdots(w)\cdots(w)\cdots)$$

$$= \det(\cdots(v)\cdots(w)\cdots) + \det(\cdots(w)\cdots(v)\cdots)$$

$$= 0$$
so
$$\det(\cdots(v)\cdots(w)\cdots) = -\det(\cdots(w)\cdots(v)\cdots)$$

6.7 April 25

6.7.1 10.B - Determinants

Definition 6.7.1. Call $\sigma: \{1, 2, ..., n\} \to \{1, 2, ..., n\}$ a permutation if it is a bijection. σ can also be denoted by a list $(m_1 ... m_n)$ wwwehre each number in 1, ..., n shows up once. Let $\operatorname{perm}(n)$ (or S_n) denote the set of all permutations on $\{1, ..., n\}$.

Definition 6.7.2. For $\sigma \in \text{perm}(n)$, the sign (or signature) of σ , sign (σ) is defined to be

$$(-1)^{|\{i,j:1 \leq i < j \leq n,\,\sigma^{-1}(i) > \sigma^{-1}(j)\}|} = (-1)^{|\{i,j:1 \leq i < j \leq n,\,\sigma(i) < \sigma(j)\}|}$$

Example 6.7.3. When n = 3, if $\sigma = (1 \ 2 \ 3)$, then $\operatorname{sign}(\sigma) = -1$. If $\sigma = (2 \ 1 \ 3)$, then $\operatorname{sign}(\sigma) = 1$.

Lemma 6.7.4. Swapping 2 entries of σ results in a change of sign.

Proof. Assuming we are swapping m_j and m_k in $(\cdots m_j \cdots m_k \cdots)$. We say (a,b) is an inversion if a > b. For every number m_l such that j < l < k, (m_j, m_l) is an iversion iff (m_l, m_j) is not and (m_l, m_k) is an iversion iff (m_k, m_l) is not. Pairing (m_j, m_l) and (m_l, m_k) for each l, we see these terms contribute no change in parity. Now, exactly one of (m_j, m_k) and (m_k, m_j) is an inversion so the parity changes because of this. (By above there are no other changes in parity)

Proof (Proof of Existence of Determinant). (Inspired By Uniqueness) Claim: $\det A$ can be defined by

$$\det A = \sum_{\sigma \in \operatorname{perm}(n)} (\operatorname{sign}(\sigma)) \cdot A_{\sigma(1),1} A_{\sigma(2),2} \cdots A_{\sigma(n),n}$$

eg.
$$A \in \mathbb{F}^{3,3}$$
: $\begin{pmatrix} A_{1,1} & A_{1,2} & \overline{A_{1,3}} \\ A_{2,1} & \overline{A_{2,2}} & A_{2,3} \\ \overline{A_{3,1}} & A_{3,2} & A_{3,3} \end{pmatrix}$, one of the terms in the det is $(-1)A_{3,1}A_{2,2}A_{1,3}$.

The expression satisfies (i) and (iii)

For (ii), WLOG assume $n \geq 2$, if jth and kthe columns are identical, then we can pair all σ 's in perm(n) into (σ_1, σ_2) such that σ_1 and σ_2 are in the same pair if the only differ ni the jth and kth entries. The signs in each pair are different (by lemma) and for each σ ,

$$A_{\sigma(1),1}\cdots A_{\sigma(n),n} = A_{\sigma(1),1}\cdots A_{\sigma(k),j}\cdots A_{\sigma(j),k}\cdots A_{\sigma(n),n}$$

So the contribution to the determinant by each pair together is 0. Thus the determinant is 0.

Corollary 6.7.5. If $f((v_1), \ldots, (v_n))$ satisfies (i) and (ii), then $\exists c \in \mathbb{F}$ such that $f((v_1), \ldots, (v_n)) = c \cdot \det((v_1), \ldots, (v_n))$. More specifically, c = f(I).

• The set of all alternating multinear forms has dimension 1.

Algorithm for Computing the Det: Column Reduction

• Subtracting λ column j from column k, $(k \neq j)$, doesn't change determinant.

eg.

$$\det\begin{pmatrix} 1 & 1 & 1 \\ 1 & 2 & 4 \\ 1 & 3 & 9 \end{pmatrix} = \begin{pmatrix} 1 & 1 & 1 \\ 2/3 & 2/3 & 0 \\ 1 & 4 & 9 \end{pmatrix}$$
$$= \begin{pmatrix} 8/9 & 5/9 & 0 \\ 2/3 & 2/3 & 0 \\ 1 & 4 & 9 \end{pmatrix}$$
$$= \begin{pmatrix} 1/3 & 0 & 0 \\ 2/3 & 2/3 & 0 \\ 1 & 4 & 9 \end{pmatrix}$$
$$= \begin{pmatrix} 1/3 & 0 & 0 \\ 2/3 & 2/3 & 0 \\ 1 & 4 & 9 \end{pmatrix}$$
$$= \begin{pmatrix} 1/3 & 0 & 0 \\ 0 & 2/3 & 0 \\ 0 & 0 & 9 \end{pmatrix} = 2$$

Example 6.7.6. $\det A = \det A^t$

Example 6.7.7.
$$\det \begin{pmatrix} 0 & 1 \\ 1 & 1 \end{pmatrix} = -\det \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} = -\det \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} - -1$$

Example 6.7.8 (Hw Problem). $\det \begin{pmatrix} A & C \\ 0 & B \end{pmatrix} = (\det A) \cdot (\det B)$ where A, B square matrices.

Corollary 6.7.9.

$$\det \begin{pmatrix} A_{1,1} & * & * \\ & A_{2,2} & & \\ & & \ddots & \\ 0 & & & A_{n,n} \end{pmatrix} = A_{1,1} A_{2,2} \cdots A_{n,n}$$

6.7. APRIL 25

Proposition 6.7.10. Let $A, B \in \mathbb{F}^{n,n}$,

- If B is obtained by swapping two rows or columns of A, then $\det B = -\det A$.
- If columns (or rows) of A are linearly dependent, then det(A) = 0.

Key Properties of det:

Theorem 6.7.11. Let $A, B \in \mathbb{F}^{n,n}$

- $(1) \det(AB) = \det(A)\det(B)$
- (2) A is invertible \iff det $A \neq 0$

Proof.

(a) For column vectors $(v_1), \ldots, (v_n)$, consider $f(v_1, \ldots, v_n) = \det(Av_1, \ldots, Av_n)$. f is multinear, alternating, so by previous corollary $f(v_1, \ldots, v_n) = c \cdot \det(v_1, \ldots, v_n)$. Take v_1, \ldots, v_n to be the std basis then.

$$f(e_1, \dots, e_n) = \det(Ae_1, \dots, Ae_n)$$
$$= \det(A_{\cdot,1}, \dots, A_{\cdot,n})$$
$$= \det A$$

so $c = \det A$. Taking v_1, \ldots, v_n to be the columns of B, it follows that if $\det(A) \det(B) = \det(AB)$.

(b) \to) by (a), $\det(A) \det(A^{-1}) = 1$. Hence $\det(A) \neq 0$ \leftarrow) If $\det(A) \neq 0$, view A as a linear map in $\operatorname{End}(\mathbb{F}^n)$. A maps standard basis to columns of A which are linearly independent. Hence, A is invertible as a map, and as a matrix.

Definition 6.7.12. For $T \in \text{End}(V)$, define $\det(T) = \det(\mathcal{M}(T))$ under any basis.

It is independent of basis since $\det(S^{-1}AS) = \det(S^1)\det(A)\det(S) = \det(A)$.

Corollary 6.7.13. $T \in \text{End}(V)$ is invertible iff $\det(T) \neq 0$.

Example 6.7.14. $\det T = \det T' = \overline{\det T^*}$

Proposition 6.7.15. If $\mathbb{F} = \mathbb{C}$, $T \in \text{End}(V)$, then det T is the product of all eigenvalues counting multiplicity.

Proof. Take a Jordan form.

Theorem 6.7.16. If V is an inner product space, $T \in \text{End}(V)$ is an isometry, then $|\det(T)| = 1$.

Proof. $(\det T)(\det T^*) = 1 \leftrightarrow |\det T|^2 = 1.$

Theorem 6.7.17. If V is an inner product space, then $|detT| = det(\sqrt{T^*T})$.

Proof. $|\det T|^2 = \det T \cdot \det T^* = \det T^*T = \det(\sqrt{T^*T})^2$. Moreover, $\det(\sqrt{T^*T}) \ge 0$.

Definition 6.7.18.

- (i) For $A \in \mathbb{F}^{n,n}$, define the characteristic polynomial to be $\det(zI A)$, a polynomial in z.
- (ii) For $T \in \text{End}(V)$, define the characteristic polynomial of T to be $\det(zI \mathcal{M}(I))$ with respect to any basis.

6.8 April 27

6.8.1 10.B - Determinants

characteristic polynomial well defined, independent of basis since $\det(zI-S^{-1}AS) = \det(S^{-1}) \det(zI-A \det(S)$. **Example 6.8.1.** Characteristic polynomial of T is monic, with $\deg = \dim V$ since the only permutation contributing z^n is the identity permutation.

Theorem 6.8.2. Assuming $\mathbb{F} = \mathbb{C}$, for $T \in \operatorname{End}(V)$ with eigenvalues $\lambda_1, \ldots, \lambda_m$ with multiplicities d_1, \ldots, d_m , respectively. The characteristic polynomial of T is $(z - \lambda_1)d_1 \cdots (z - \lambda_m)d_m$

Proof. Make $\mathcal{M}(T)$ is the Jordan form:

Then,

The theorem follows by taking the determinant(product of diagonal entries)

Proposition 6.8.3. For $T \in \text{End}(V)$, the characteristic polynomial of T is $z^n - \text{tr}(T)z^{n-1} + \cdots + (-1)^n \det(T)$ where $n = \dim V$.

Proof. Let $A = \mathcal{M}(T)$ under some basis. Then,

$$ZI - A = \begin{pmatrix} z - A_{1,1} & -A_{1,2} & \cdots & -A_{1,n} \\ -A_{2,1} & z - A_{2,2} & \cdots & -A_{2,n} \\ \cdots & \cdots & \cdots & \cdots \\ -A_{n,1} & -A_{n,2} & \cdots & z - A_{n,n} \end{pmatrix}$$

The contribution to the constant term is $\det(-A) = (-1)^n \det(A)$. The contribution to the coefficient of z^{n-1} is $-A_{1,1} - A_{2,2} - \cdots - A_{n,n} = -\operatorname{tr}(A)$

Theorem 6.8.4 (Cayley-Hamilton). Suppose $T \in \text{End}(V)$ with characteristic polynomial q, then q(T) = 0.

Proof. Take any $v \neq 0$. It suffices to prove q(T)v = 0. Let $m \geq 1$ be the least integer such that $v, Tv, \ldots, T^{m-1}v$ is linearly independent. Then $T^mv + a_{m-1}T^{m-1} + \cdots + a_0v = 0$. $U = \operatorname{span}(v, Tv, \ldots, T^{m-1}v)$

is invariant under T. Extend $v, Tv, \ldots, T^{m-1}v$ to a basis of V. $\mathcal{M}(T)$ looks like:

$$\begin{pmatrix}
0 & & & -a_0 \\
1 & 0 & & -a_1 \\
& 1 & \ddots & -a_2 \\
& & \ddots & \vdots \\
& & 0 & -a_{n-2} \\
& & 1 & -a_{n-1}
\end{pmatrix}$$

Hence, $\operatorname{char}(T|_U)$ divides $\operatorname{char}(T)$, but $\operatorname{char}(T|_U) = z^m + a_{m-1}z^{m-1} + \cdots + a_0 := q_1(z)$. Now, $q_1(T)v = 0$ and q_1 divides q so q(T)v = 0.

Corollary 6.8.5. The minimal polynomial of T divides the characteristic polynomial of T.

6.8.2 Multilinear Maps and Tensor Products

Let U, V, W be finite dimensiononal vector spaces

Definition 6.8.6. A bilinear map is a map $f: V \times W \to U$ such that $f(\cdot, w)$ and $f(v, \cdot)$ are both linear. Similarly, define a k-linear form/functional (when $U = \mathbb{F}$)

Want: Define an \mathbb{F} - vector space $V \otimes W$ such that the bilinear forms on $V \times W \leftrightarrow$ the linear functions of $V \otimes W$.

Proposition 6.8.7. For $V, W, \exists (\mathcal{T}, g)$ such that \mathcal{T} is an \mathbb{F} vector space, $g : V \times W \to \mathcal{T}$ is a bilinear map satisfying the universal property: $\forall U/\mathbb{F}$ and bilinear maps $f : V \times W \to U, \exists !$ linear map $\tilde{f} : \mathcal{T} \to U$ such that $f = \tilde{f} \circ g$.

$$V \times W \xrightarrow{f} U$$

Moreover, if $(\mathcal{T}_1, g)_1$ and (\mathcal{T}_2, g_2) satisfy the above property there $\exists!$ (canonical) isomorphism $j: \mathcal{T}_1 \to \mathcal{T}_2$ such that $j \circ g_1 = g_2$.

Proof (Existence Proof 1). Take a basis v_1, \ldots, v_n and w_1, \ldots, w_m . Define an abstract vector space with basis $v_1 \otimes w_1, v_2 \otimes w_2, \ldots, v_n \otimes w_m$ and

$$g(\sum a_j v_k, \sum b_k w_k) = \sum a_j b_k v_k \otimes w_k$$

Proof (Existence Proof 2). Consider $\mathbb{F}^{V\times W}=\bigoplus_{v\in V}\mathbb{F}_{v,w}$. Here, we let \bigoplus denote the abstract direct sum where the elements can be thought of as formal sums of elements form each $F_{u,w}$ where there are

only finitely many nonzero terms.

Let $X \subset F^{V \times W}$ be the subspace spanned by all vectors of the for: (v + v', w) - (v, w) - (v', w), (v, w + w') - (v, w) - (v, w'), (av, w) - a(v, w), (v, aw) - a(v, w). Then, we can take $\mathbb{F}^{V \times W}/X$ and g(v, w) ="formal sum with 1 on $\mathbb{F}_{v,w}$, 0 everywhere else."

Proof (Uniqueness). Suppose we have (\mathcal{T}_1, g_1) and (\mathcal{T}_2, g_2) satisfying the universal property. First, we observe that by the uniqueness of \tilde{f} we must have $\mathcal{T}_i = \operatorname{span}(\operatorname{im} g_i)$. (Otherwise each \tilde{f} could have multiple valid extensions to \mathcal{T}_i). Next since g_1 and g_2 are bilinear maps from $V \times W$, by the universal property, there are unique linear maps f_1 and f_2 such that $g_2 = f_1 \circ g_1$ and $g_1 = f_2 \circ g_2$. This implies that $g_1 = f_2 \circ f_1 g_1$ and $g_2 = f_1 \circ f_2 \circ g_2$ so $f_2 \circ f_1$ is the identity of $\operatorname{im} g_1$ and hence is the identity on \mathcal{T}_1 . Similarly, $f_1 \circ f_2$ is the identity on \mathcal{T}_2 so $f_2 = f_1^{-1}$. Thus, f_1 is the desired (unique) isomorphism from \mathcal{T}_1 to cT_2 .

Notation: Use $v \otimes w$ to denote g(v, w).

Example 6.8.8. $(v_1 + v_2) \otimes (w_1 + w_2) = v_1 \otimes w_1 + v_2 \otimes w_1 + v_1 \otimes w_2 + v_2 \otimes w_2$.

Note: not everything in $V \otimes W$ is of the form $v \otimes w$.

Proposition 6.8.9. A k-linear form on $V \times \cdots \times V \leftrightarrow$ a linear functional on $\underbrace{V \otimes \cdots \otimes V}_{k \text{ times}} := V^{\otimes k}$.

Proof. Consider $\psi: f \mapsto \varphi$ such that $f(v_1, \dots, v_n) = \varphi(v_1 \otimes \dots \otimes v_n)$.

Remark 6.8.10. If v_1, \ldots, v_n forms a basis of V, then $\underbrace{v_i \otimes v_j \otimes v_k}_{n^3 \text{ torms}}$ forms a basis of $V^{\otimes 3}$

Proposition 6.8.11. Hom $(V, W) \cong V^* \otimes W$ by $\phi : \varphi \otimes w \mapsto T$ such that $T(v) = \varphi(v)w$. Define the evaluation map (linear)- ev: $V^* \otimes V \to \mathbb{F}$ by $\varphi \otimes v \mapsto \varphi(v)$. Then $\forall T \in \text{End}(V)$,

$$\operatorname{tr}(T) = \operatorname{ev}(\phi^{-1}(T))$$

Proof. For an arbitrary basis v_1, \ldots, v_n of V, suppose $Tv_i = \sum_{j=1}^n a_{i,j}v_j$. Observe that $\operatorname{tr}(T) = \sum_{j=1}^n a_{j,j}$. Now, let $\varphi_1, \ldots, \varphi_n$ be a dual basis of v_1, \ldots, v_n . Observe that

$$\phi^{-1}(T) = \sum_{j=1}^{n} \varphi_j \otimes Tv_j$$

So computing $ev(\phi^{-1}(T))$, we see

$$\operatorname{ev}(\phi^{-1}(T)) = \operatorname{ev}\left(\sum_{j=1}^{n} \varphi_{j} \otimes Tv_{j}\right) = \sum_{j=1}^{n} \varphi_{j}(Tv_{j}) = \sum_{j=1}^{n} a_{j,j} = \operatorname{tr}(T)$$

Definition 6.8.12. A k-linear form $f: \underbrace{V \times \cdots \times V}_{k \text{ times}} \to \mathbb{F}$ is called alternating if

$$f(v_1,\ldots,v,\ldots,v,\ldots,v_n)=0.$$

One can define the wedge product $\bigwedge^k V$ such that linear functionals of $\bigwedge^k V \leftrightarrow$ alternating k-linear maps of V. Construction: In $V^{\otimes k}$, consider the subspace $Y = \operatorname{span}\{v_1 \otimes \cdots \otimes v_k \mid \text{two } v_j\text{'s are equal}\}$. $\bigwedge^k V = V^{\otimes k}/Y$. We use $v_1 \wedge \cdots \wedge v_n$ to denote $v_1 \otimes \cdots \otimes v_n + Y$.

Proposition 6.8.13. If dim V = n, then $\bigwedge^n V$ is 1-dimensional. If v_1, \ldots, v_n is a basis of V then $\bigwedge^k V = \operatorname{span}(v_1 \wedge \cdots \wedge v_n + Y)$

Given $T \in \text{Hom}(V_1, W_1)$, $S \in \text{Hom}(V_2, W_2)$ define $T \otimes S \in \text{Hom}(V_1 \otimes W_1, V_2 \otimes W_2)$ by $v_1 \otimes v_2 \mapsto Tv_1 \otimes Sv_2$. $\bigotimes^k T$ induces $\bigwedge^k T \in \text{End}(\bigwedge^k T)$ as $v_1 \wedge \cdots \wedge v_n \mapsto Tv_1 \wedge \cdots \wedge Tv_n$.

Proposition 6.8.14. For $T \in \text{End}(V)$, $\det(T)$ is the scalar such that $\bigwedge^n T = \det(T) \cdot I$ where $n = \dim V$.

Proof. Since $\bigwedge^k V$ is 1-dimensional and for basis v_1, \ldots, v_n , $\bigwedge^k V = \operatorname{span}(v_1 \wedge \cdots \wedge v_n)$, it suffices to calculate $\bigwedge^k T(v_1 \wedge \cdots \wedge v_n)$. Suppose $Tv_i = \sum_{j=1}^n a_{i,j}v_j$, then

$$\bigwedge^{n} T(v_1 \wedge \dots \wedge v_n) = \sum_{j=1}^{n} a_{1,j} v_j \wedge \dots \wedge \sum_{j=1}^{n} a_{n,j} v_j$$

Expanding this, we get all possible terms of the form $a_{1,k_1} \wedge \cdots \wedge a_{1,k_n}$ where $k_i \in \{1,\ldots,n\}$. Further, since by construction of the wedge product, any term such that $k_j = k_i$ for $i \neq j$ is zero. So the nonzero terms in the sum are precisely $a_{1,\sigma(1)}v_{\sigma(1)} \wedge \cdots \wedge a_{n,\sigma(n)}v_{\sigma(n)}$ for $\sigma \in \text{perm}(n)$. Observing that

$$a_{1,\sigma(1)}v_{\sigma(1)} \wedge \cdots \wedge a_{n,\sigma(n)}v_{\sigma(n)} = a_{1,\sigma(n)} \cdots a_{n,\sigma(n)}(v_{1,\sigma(1)} \wedge \cdots \wedge v_{n,\sigma(n)})$$
$$= \operatorname{sign}(\sigma)a_{1,\sigma(1)} \cdots a_{n,\sigma(n)}(v_{1} \wedge \cdots \wedge v_{n})$$

we see that the sum of all such terms is $\det(T)$ so $\bigwedge^n T = (\det T) \cdot I$, as desired.