PONTIFÍCIA UNIVERSIDADE CATÓLICA DO PARANÁ ESCOLA POLITÉCNICA ENGENHARIA DE COMPUTAÇÃO

MEDIDOR DE ENERGIA

FERNANDO BRAMBILLA DA MELLO
SILVIO DA COSTA REIS

CURITIBA

2014

FERNANDO BRAMBILLA DE MELLO

SILVIO DA COSTA REIS

MEDIDOR DE ENERGIA

Projeto Físico para apresentação do Projeto Final do de Engenharia curso Computação da Pontifícia Universidade Católica do Paraná, como requisito para obtenção de nota parcial do quarto bimestre do ano de 2014.

Orientador Me. Afonso Ferreira Miguel e Coorientador Dr. Voldi Costa Zambenedetti.

CURITIBA

2014

Sumário

RESUMO	6
1. INTRODUÇÃO	7
2. DETALHAMENTO DO PROBLEMA	8
3. ESTADO DA ARTE	8
3.1 Produtos no mercado	9
3.2 Tabela com circuito integrados	10
4. TRABALHO DESENVOLVIDO	11
4.1 Módulo de leitura	13
4.2 Modulo de conversão	15
4.3 Modulo de Leitura	16
4.4 Protocolo	18
4.5 Saída ótica	24
4.6 Display	24
5. O QUE FOI UTILIZADO	25
6. PROCEDIMENTO DE TESTE E VALIDAÇÃO DO PROJETO	25
6.1 Teste caixa branca	25
6.2 Validação	28
7. ANÁLISE DE RISCO	30
8. CONCLUSÃO:	31
9. Bibliografia	32
10. ACRÔNIMO	34

Lista de Figuras

Figura 1: Esquema da fonte 3.3V	11
Figura 2:Gerador de sinal de corrente de fase	12
Figura 3:Esquema elétrico da captação da tensão	12
Figura 4:Diagrama de blocos	13
Figura 5:Multiplexador de Ciclo	14
Figura 6:Diagrama do Conversor	15
Figura 7:Diagrama do leitor	16
Figura 8:Fonte em Y	29
Figura 9:Fonte em triangulo	29

Lista de Tabelas

Tabela 1. Principais modelos de medidores	9
Tabela 2. Principais modelos de microprocessadores de energia	10
Tabela 3 : Regras de Sincronização	18
Tabela 4: Comandos a serem implementados	21
Tabela 5: Resposta comando 25	22
Tabela 6: Resposta comando 26 à 27	23
Tabela 7: Resposta 26 27 diferenciado	23
Tabela 8:Tabela Caixa Branca	26
Tabela 9: Tabela Caixa preta	27
Tabela 10: Riscos	30

ABSTRACT

The project "Medidor de energia" is aimed at the development and implementation of a digital power meter device, which has certain characteristics, which will be developed and implemented that will allow the other to have a differential digital meters, besides being a possible as the solutions to the question of change of the power grid that we are starting to see. Therefore, it must be made a device that can accurately measure the energy being consumed, and the energy being produced by the system, and allowing a fair and simplified pricing.

For this development we will implement an energy meter for performing these operations. Aiming at this, we will use a "demo board", communication protocol and communication devices.

RESUMO

O projeto medidor de energia visa o desenvolvimento de um dispositivo digital de medição de energia elétrica, este possui certas características que o diferenciam dos medidores convencionais, estas características incluem, o fato do medidor ser digital, possuir posto horário, medição de energia ativa e reativo ao qual o ultimo não é medido atualmente, e o fato de medir em quatro quadrantes, o que o leva inclusive a ser bidirecional, ou seja, mede tanto o consumo de energia quanto o fornecimento de energia para a rede.

Estas características serão desenvolvidas e implementadas, visto que tais estão sendo requisitadas para a modificação da malha energética atual para uma nova, denominada smart-grid ao qual possui não só o gerenciamento mais eficiente , quanto a geração local e energia, diminuindo assim a sobrecarga da rede atual.

Para a realização do projeto, usaremos um demo board, dois arduinos, onde um será usado com o protocolo de comunicação específico e o outro será usado para a criação de um leitor para averiguação do protocolo, e para a comunicação, usaremos comunicação ótica.

1. INTRODUÇÃO

O projeto propõe o desenvolvimento de um dispositivo medidor digital de energia, com características que simplifica a obtenção de dados, se comparado aos aparelhos contemporâneos, devido ao fato, que toda a medição, cálculo, tarifação, aquisição de todas as informações necessárias para a o valor da fatura, serão efetuadas automaticamente pelo dispositivo.

Devido às características próprias deste, é possível que o cliente possa decidir quando realizar certas tarefas que possuam consumo maior, pois terá medição diferenciada pela hora, isto é, possui posto horários diferenciados pelo tempo.

Outra característica importante, é que o medidor possui a capacidade de medir a energia nos quatro quadrantes, medindo assim as energias ativa, reativa capacitiva e reativa indutiva, ou seja mede o consumo e a produção de forma separada, tornando possível que o cliente não possua somente o papel de consumidor, este pode ser um produtor de energia.

Estas características são importantes, principalmente na época em que nos encontramos, pois as redes elétricas estão saturadas, operando sempre próximos à capacidade total, assim como a queda de investimento em grandes centrais de energia, já que estas geralmente se encontram muito longe dos consumidores. Ou seja o problema das redes, não se encontram somente na distribuição, mas também em sua produção.

Ou seja, devidos a estes fatores, o projeto faz parte do grupo de projetos chamado Smart Grid da PUCPR.

2. DETALHAMENTO DO PROBLEMA

Esta modalidade de dispositivo tem tido amplo desenvolvimento devido aos problemas que as redes elétricas estão apresentando atualmente, estas estão sofrendo devido aos altos picos de consumo a que tem de suportar, assim como concessionárias estão gastando grandes somas na estabilização da rede, e nos altos custos de manutenção e construção de usinas.

Os problemas que devem ser solucionados são os referentes a propiciar a formação de uma rede energética mais eficiente, para evitar as sobrecargas e incentivar a produção local, para tanto deve-se desenvolver um medidor que meça em quadro quadrantes, medindo portanto tanto o consumo quanto o fornecimento. Utilizando isto iremos implementar o sistema de posto horário ao qual irá mudar o acumulador durante o dia, este sistema já é usado em indústrias e no comércio, já as residências que representam, um consumo menor se comparado com o comercio e indústria, não utilizam deste sistema de posto horário.

Outra seção que será implementada é a comunicação, pois terá que ser programada respeitando o protocolo de comunicação pertinente ao tipo de projeto, no caso o protocolo para comunicação de medidores de energia que iremos utilizar é o NBR14522.

3. ESTADO DA ARTE

Nesta seção, encontram-se os equipamentos pesquisados para o desenvolvimento deste projeto, aos quais, para melhor visualização e entendimento, suas informações foram tabeladas para comparação das mesmas.

Estas informações estão agrupadas por tipo: Produtos no mercado e a tabela referente aos circuitos integrados.

3.1 Produtos no mercado

Nesta tabela encontram-se os medidores de energia mais relevantes encontrados durante a pesquisa, onde o 2106D teve sua relevância devido ao fato de que este mede entre 90 e 280 V, informação esta que os outros não possuem, além de possuir certa amplitude de medição de corrente. Já o E23A não possui tanta relevância se comparado com o 2106D, já que sua especificação é atendida perfeitamente pelo anterior. A vantagem do E550 sobre os demais , é que este pode medir correntes de até 200 A e mede tanto ativo quanto reativo. O ultimo no entanto é relevante, não pela amplitude de informações que podem ser obtidas, mas sim devido ao fato de que este é bidirecional. Ou seja podemos concluir que procuramos um hibrido do E550 e E750 com suas melhores características.

Tabela 1. Principais modelos de medidores.

Modelo	2106D	E23A trifásico	E550	E750
Fabricante	ELO	BRUVER	BRUVER	BRUVER
Direção de	Unidirecional	Unidirecional	Unidirecional	Bidirecional
medida				
Preço		R\$ 330,00	R\$ 2.150,00	R\$ 1.750,00
Tensão Nominal	90~280V	120~240V,	120~240V,	120~240V,
	60Hz	50~60Hz	60Hz	50~60Hz
Alimentação	Auxiliar			
Faixa de	15A~120A	15A~120A	30A~200ª	2,5 ^A ~10A
Corrente				
Tipo	Ativo e Reativo	Ativo e	Ativo e	Ativo e
		Reativo(todas)	Reativo(todas)	Reativo(todas)
Classe	1	В	В	D ou C
Fases	3	3	3	3
Multitarefas	Não	Até 6	Até 6	Até 6
Mostrador	2	MOSTRADOR	MOSTRADOR	2LCD, 1 ATIVA
	REGISTRADOR	LCD	LCD,	1 REATIVA
	CICLOMETRICO	Interfaces de	Interface de	Interface de
	1ATIVA 1	comunicação	comunicação	comunicação
	REATIVA	RS232, ou	RS232 ou	RS232 ou
		RS485, ou TTL,	RS485 ou	RS485 ou
		ou USB, ou	RS232+optica.	RS232 + Óptica
		Ethernet.		Local.

3.2 Tabela com circuito integrados

Nesta tabela, encontra-se os circuito integrados específicos de medição de energia, com suas respectivas informações mais importantes. Na qual o processador escolhido foi o "71M6543F", pois além de possuir um bom custo beneficio, em comparação com os outros dispositivos, ele também pode ser adquirido junto de um Kit de desenvolvimento, chamado "71M6543F-DB" do fabricante "Teridian Semiconductor Corp."

Tabela 2. Principais modelos de microprocessadores de energia.

Modelo dos				
microprocessadores	71M6533IGTF	71M6543F	90E32A	ADE7754ARZRL
	Maxim	Maxim		
Fabricante	Integrated	Integrated	Atmel	Analog Devices Inc
Preço	R\$ 26,87	R\$ 11,69	R\$ 5,75	R\$ 13,21
Impedância de				
Entrada	40 k Ω ~ 90 k Ω	40 k Ω ~ 90 k Ω	120 k Ω	370 k Ω
Tensão - I/O High	2V	2V	2.4V	2.4V
Tensão - I/O Low	0,8V	0,8V	0,8V	0,8V
Encapsulamento	100-LQFP	100-LQFP	48-TQFP	24-SOIC
Temperatura de				
Operação	-40~85°C	-40~85°C	-40~85°C	-40~85°C
Fase	3Fases, Neutro	3 Fase	3 Fase	3 Fase
Corrente				
Alimentação	10mA	9,1mA	8mA	7mA
Tensão Alimentação	3V~3,6V	3V~3,6V	2,8V~3,6V	4,7V~5,25V
Erro de Medição	0,1%	0,5%	0,1%	0,1%

4. TRABALHO DESENVOLVIDO

Para desenvolver este medidor de energia, iremos tratar tanto a tensão, quanto a corrente, estes serão convertidos em sinais que permitam sua conversão digital, ao qual serão usados para a obtenção do dados referentes à energia. Estes dados estarão armazenados em oito acumuladores, sendo um para cada posto horário por tipo fornecimento ou consumo.

Estes dados e acumuladores serão enviados para o micro controlador, que irá normalizá-lo para o protocolo NBR14522, enviando em seguida pela comunicação ótica para o leitor.

Figura 1: Esquema da fonte 3.3V

A figura 1. É o esquema elétrico referente ao circuito da placa de aquisição, onde ele converte 5V em 3.3V, ao qual é referenciado como V3P3, também é possível observar que este serve tanto como alimentação, quanto por referência do neutro, e também é possível notar a presença de um retificador controlado de silício (silicon controlled rectifier-SCR) que no caso da tensão estar acima do projetado para suportar com segurança, chaveia curtocircuitando, levando ao desligamento do circuito.

Figura 2:Gerador de sinal de corrente de fase.

Figura 2. É referente ao esquema elétrico do gerador de sinal de corrente ao qual converte o campo magnético gerado pela corrente passando em um nível de tensão, ou seja, em sinal aproveitável pelo circuito.

Figura 3:Esquema elétrico da captação da tensão

A figura 3 é o esquema que diz respeito a obtenção do valor proporcional ao valor da tensão, ao qual o divisor de tensão está ligado ao V3P3, evitando assim que se obtenha valores negativos de referência.

Tensão Bi-Direcional

Figura 4:Diagrama de blocos

Diagrama em blocos referentes a estrutura física do projeto, onde podemos ter uma visão geral do seu funcionamento por inteiro, com todos os seus módulos devidamente posicionados.

4.1 Módulo de leitura

Este módulo será usado para a obtenção dos dados referentes à medição de energia, onde este irá converter tanto a corrente quanto a tensão para sinais aproveitáveis, estes sinais são obtidos por meio de resistência Shunt.

Já na seção seguinte é a do medidor em si, ou seja, o circuito integrado de leitura, se baseia na multiplexação dos sinais, ou seja, este capta sinal por sinal, não possui vários conversores, como no exemplo da figura 5, onde mede-se de tempos em tempos da seguinte maneira, iniciando com a medição da corrente da fase A seguida de sua tensão, seguido da fese B e C para ai sim retornar para a primeira fase, no entanto deve-se setar a taxa com que estes devem ser adquiridos, assim como compensar o atraso de obtenção dos dados.

No exemplo foi configurado como a taxa de aquisição sendo 2520.6Hz com período de 397us, ou seja, possui atraso de 61.04us entre as aquisições o que equivale em um atraso de 1,318 graus de defasagem.

Estas informações foram obtidas do próprio documento referente da placa, (71M6533-71M6533H,p- 17)

Figura 5:Multiplexador de Ciclo

4.2 Modulo de conversão

Figura 6:Diagrama do Conversor

O modulo de conversão é um conjunto de dispositivos acoplado em um arduino DUE, responsável por converter todas as informações, obtidas pela placa de desenvolvimento, para o protocolo NBR 14522, fazendo assim com que as informações, possam ser enviadas para qualquer leitor, no qual obedeça as regras deste protocolo.

O recebimento das informações de energia é realizado por meio de comunicação infravermelha, a qual é especificada e exigida pela ANEEL , o

órgão governamental na qual regula todos os assuntos referente a energia elétrica.

O modulo também tem a função de mostrar a todo o tempo o Postohorário está sendo aferido, este posto-horário pode ser visualizado no dispositivo via um Display 7segmento vermelho posicionado em cima do modulo, como podemos ver na figura 6.

4.3 Modulo de Leitura

Figura 7:Diagrama do leitor

O modulo de leitura, foi incorporado no projeto com o intuito facilitar a percepção do uso do medidor elétrico e do seu protocolo. O leitor é um dispositivo acoplado em um arduino mega, onde ele tem o principal papel de fazer o sincronismo com o modulo conversor, e fazer a comunicação via emissor e receptor ótico, como podemos ver na figura 7, onde fará a requisição dos valores obtido pelo Kit de desenvolvimento.

4.4 Protocolo

O protocolo que será usado é uma versão reduzida e funcional do ABNT NBR-14522, contendo as funcionalidades mais importantes para a implementação do medidor de energia, este protocolo possui certas características que devem ser respeitadas, como a comunicação entre o leitor e o medidor, que envolve os termos de sincronização entre o leitor e o medidor, assim como o tempo de transmissão dos dados.

Quanto à comunicação entre o medidor e o leitor, devem-se seguir as regras, estas regulam tanto como será sincronizado, quanto em como os dados serão enviados (possui tempo mínimo e máximo entre caracteres). Para um melhor entendimento, seguem algumas regras importantes que dizem respeito a sincronização:

Tabela a qual define algumas regras de sincronização existentes dentro do protocolo "Definição dos tempos

Tabela 3 : Regras de Sincronização

3.1.1.6.1	
Tempo de transmissão de um	Tempo entre o início do start bit e
caractere Tear.	o fim do stop bits de um
	caractere transmitido Tear =
	1,042 ms ± 2 %.
Tempo de reversão de linha	Tempo entre o início do start bit
Trev.	do último caractere recebido e o
	início do <i>start bit</i> do primeiro
	caractere a transmitir.
Tempo mínimo de reversão de	Tempo mínimo que Trev pode
linha Tminrev.	ter. É obrigatório sempre
	(COMANDOS, RESPOSTAS e

	SINALIZAÇÕES) e deve ser
	obedecido tanto pelo leitor
	quanto pelo medidor Tminrev =
	Tear + 1 ms.
Tempo entre ENQ Tenq.	Tempo entre o início dos start
	bits de dois ENQ subsequentes.
Tempo máximo entre ENQ	Tempo máximo que Tenq pode
Tmaxenq.	ter Tmaxenq = Tminrev + 500
	ms.
Tempo mínimo entre ENQ	Tempo mínimo que Tenq pode
Tminenq.	ter Tminenq = Tminrev + 20 ms
tempo de sincronização Tsinc	Tempo entre o início do start bit
	de um ENQ (enviado pelo
	medidor) e o início do <i>start bit</i> do
	primeiro caractere enviado
	subsequentemente pelo leitor.
Tempo máximo de sincronização	Tempo máximo que Tsinc pode
Tmaxsinc.	ter Tmaxsinc = Tminrev + 10 ms.
Tempo entre caracteres	Tentear
	tempo máximo que Tsinc pode
	ter Tmaxsinc = Tminrev + 10 ms
	tempo entre os <i>start bits</i> de dois
	caracteres consecutivos de um
	mesmo COMANDO ou
	RESPOSTA.
Tempo máximo entre caracteres	Tempo máximo que Tentear
Tmaxcar.	pode ter Tmaxcar = Tear + 5 ms.
Tempo de resposta Trsp	Tempo entre o início do start bit
	do último caractere de um
	COMANDO ou RESPOSTA
	transmitido ou o início do start bit

	de um SINALIZADOR transmitido
	e o início do start bit do primeiro
	caractere subsequente recebido.
Tempo máximo de resposta	Tempo máximo que Trsp pode
Tmaxrsp.	ter. Tmaxsinc é uma exceção a
	esta especificação Tmaxrsp =
	Tminrev + 500 ms.
Tempo máximo sem ENQ	tempo máximo de que o medidor
Tsemenq.	dispõe para enviar um ENQ após
	ter enviado um WAIT Tsemenq =
	305 s.
Tempo máximo sem WAIT	Tempo máximo entre dois WAIT
Tsemwait.	subsequentes Tsemwait = 305 s.
Tempo mínimo de conexão	tempo mínimo que o medidor
Tmincon.	deve exigir de MARCA estável
	em sua entrada serial, antes de
	começar a enviar ENQ Tmincon
	= 1000ms.
Tempo máximo de conexão	Tempo máximo de MARCA
Tmaxcon.	estável em sua entrada serial, de
	que o medidor ainda não
	conectado dispõe para se
	conectado dispõe para se conectar, ou seja, começar a

(ABNT NBR-14522,2008,p11-p13)

Quanto à estrutura dos dados, o protocolo possui regras rígidas em como este devem ser estruturados, tanto os comandos quanto as respostas, sendo que os comandos que usaremos serão:

Tabela com os comando que serão utilizados na implementação do protocolo

Tabela 4: Comandos a serem implementados

Código	Descrição
14	Leitura das grandezas instantâneas
23	Leitura de registradores dos canais visíveis após a última reposição de demanda
24	Leitura de registradores dos canais visíveis relativos à última reposição de demanda
25	Leitura dos períodos de falta de energia.
26	Leitura dos contadores da memória de massa desde a última reposição de demanda
27	Leitura dos contadores da memória de massa anteriores à última reposição de demanda"
38	Inicialização do medidor"
41	Leitura de registradores parciais anteriores do la canal visível
42	Leitura de registradores parciais anteriores do 2ª canal visível
43	Leitura de registradores parciais anteriores do 3ª canal visível
44	Leitura de registradores parciais atuais do la canal visível
45	Leitura de registradores parciais atuais do 2ª canal visível
46	Leitura de registradores parciais atuais do 3ª canal visível
80	Leitura de parâmetros de medição

(ABNT NBR-14522,2008,p13-p15)

No entanto foi constatado que este protocolo como foi feito em 2008, ou seja , anterior a permissão de fornecimento de energia, não possui estruturas preparadas para os dados de energia fornecida. Sendo assim foi proposto que fizéssemos mais alguns protocolos para compensar esta deficiência.

40	Leitura de registradores parciais anteriores do 1ª canal visível
50	Leitura de registradores parciais anteriores do 2 e 3ª canal visível
60	Leitura dos contadores da memória de massa desde a última reposição de demanda

Estes comandos devem possuir estrutura fixa, porém as respostas que possuem estrutura um pouco mais fluida, pois dependendo do comando recebido, devem liberar as informações com estruturas em formatos diferentes, estes formatos diferentes, dizem respeito não ao tamanho dos dados em si, mas como são referidos, no documento do protocolo são chamados de "Octeto" que corresponde ao byte recebido, ou seja, o que muda entre as respostas, são as posições em que estes se encontram no quadro que será enviado. Para explicar melhor, segue os exemplo de resposta para dois comandos diferentes.

Resposta ao comando 25- falta de energia.

Tabela de respostas obtidas ao enviar o comando 25

"Resposta

Tabela 5: Resposta comando 25

Octeto	Descrição
001	25
006	Hora da falta de energia
007	Minuto da falta de energia
008	Segundo da falta de energia
009	Dia da falta de energia
010	Mês da falta de energia
011	Ano da falta de energia
012	Hora do retorno de energia
013	Minuto do retorno de energia
014	Segundo do retorno de energia
015	Dia do retorno de energia

	Mês do retorno de energia
017	Ano do retorno de energia
018	Até
245	Idem mais 19 vezes data e hora da falta e retorno de energia"

(ABNT NBR-14522,2008,p34-p35)

Tabela de respostas obtidas ao enviar os comandos 26 e 27.

Resposta ao comando 26 ou 27.

"Resposta Tabela 6: Resposta comando 26 à 27

Octeto	Descrição
001	26 - Valores desde a última reposição de demanda
	27 - Valores anteriores a última reposição de demanda
006	Número do bloco MSB
	0N - se bloco intermediário IN - se último bloco
007	Número do bloco LSB

Se o número do bloco for 001, 004, 007, 010, 013, 016, ... 994, 997

Tabela 7: Resposta 26 27 diferenciado

Octeto	Descrição
008	8 bits menos significativos do contador do la canal visível,
	enésimo intervalo (binário)
009	MSN: 4 bits mais significativos do contador do la canal
	visível, enésimo intervalo (binário)
	LSN: 4 bits mais significativos do contador 2ª canal visível,
	enésimo intervalo (binário)
010	8 bits menos significativos do contador do 2ª canal visível,
	enésimo intervalo (binário)
011	8 bits menos significativos do contador do 3ª canal visível,
	enésimo intervalo (binário)
012	MSN: 4 bits mais significativos do contador do 3ª canal
	visível, enésimo intervalo (binário) LSN: 4 bits mais
	significativos do contador do la canal visível, enésimo + 1
	intervalo (binário)
013	8 bits menos significativos do contador do 1 2 canal visível,
	enésimo + 1 intervalo (binário), seguem os demais intervalos
254	8 bits menos significativos do contador do 3* canal visível,
	enésimo + 54 intervalo (binário)
255	MSN 4 bits mais significativos do contador do 3' canal visível,
	enésimo + 54 intervalo (binário) LSN 4 bits mais significativos
	do contador do 1 ¹ canal visível, enésimo + 55 intervalo
	(binário)
256	8 bits menos significativos do contador do 1° canal visível,
	enésimo + 55 intervalo (binário)"

(ABNT NBR-14522,2008,p35-p36)

Ou seja, seguindo estas regras e estruturas, iremos implementar o protocolo, visando manter sua forma para que qualquer outro aparelho seguindo este mesmo possa se comunicar com o medidor de energia.

Este protocolo, o ABNT NBR-14522 foi desenvolvido tendo como base os protocolos:

ABNT NBR 9120- medidor de tarifação diferenciada.

ABNT NBR 11190- medidor de média tensão.

ABNT NBR 11881- medidor eletrônico programável.

4.5 Saída ótica

Esta saída será usada por recomendação e praticidade, por meio deste, o leitor se comunicará com o medidor, assim enviando e recebendo dados do micro controlador.

4.6 Display

Receberá dados tanto do circuito integrado de leitura, quanto do micro controlador, mostrará informações como: energia consumida, energia enviada, posto horário, custo da energia total.

4.7 Posto horário

São divisões em grupos de horas do dia , em que o que possuir maior demanda, terá uma cobrança maior pela energia , enquanto que o oposto é válido, pois quanto tiver menor demanda, a cobrança será menor, de forma resumida, é a inserção de acumuladores diferentes para seguir a demanda e oferta de energia.

No caso do projeto, como não incluímos os protocolos de calendário e de feriados, todos os dias da semana e do ano possuem mesma divisão de posto horários.

5. O QUE FOI UTILIZADO

Foi utilizado a placa de aquisição para obter os dados, tratando tanto a corrente quanto a tensão para obtermos sinais que permitissem conversão para digital, sendo então revertidos à informações úteis, o circuito integrado medidor além de ser usado para medir, também será usado para obtenção do consumo, nos posto horários.

Complementando usamos um micro controlador (Arduino Due), pois a aquisição de um programador para o controlador, seria inviável, por conta do preço alto e também por questão de tempo, na qual iria ultrapassar o limite máximo de entrega do projeto.

Foi adicionado um Arduino Mega para ser o leitor, ao qual possuía todas as estruturas para reverter o protocolo para visualização, para averiguar se o projeto segue o protocolo. Para a confecção das placas acopladas nos Arduinos, foi utilizado o Software Eagle e o Fritzing.

6. PROCEDIMENTO DE TESTE E VALIDAÇÃO DO PROJETO

Para a validação do projeto, teremos de testá-lo em um ambiente controlado das seguintes maneiras, realizando tanto os testes caixa branca, quanto os testes caixa preta.

6.1 Teste caixa branca

Para testar a placa, usamos o debugger, e a utilização de tensões com o menor ruído possível, cargas de teste previamente conhecidas, e o fornecimento de energia em ambos os sentidos, assim tornando possível aferir os resultados obtidos, com os resultados esperados, tornando possível assim,

que se obtenha uma resposta mais rápida e precisa da energia que está passando.

O micro controlador foi usado e testado utilizando as informações obtidas da placa e os comandos do protocolo, estes então foram manipulados por funções e equações para que fosse possível assim obter as respostas desejadas, estas respostas então foram comparadas com as esperadas.

A saída ótica foi testada, utilizando inicialmente informações simples , pequenos arrays como ints e floats, visando não só verificar se estávamos obtendo as respostas corretas, mas também se todos os dados eram transmitidos.

Já o leitor, foi testado inicialmente utilizando sua própria entrada, pois assim sabíamos que os bytes e sua posições, e posteriormente utilizamos esta informação para reproduzir a ordem exigida pelo protocolo em sua saída para ser visualizado.

Tabela 8:Tabela Caixa Branca

	Em ponta	Fora de ponta	Reservado	Quarto posto
42	V	V	V	X
80	V	V	V	V
14	V	V	V	V
23	V	V	V	X
25	V	V	V	V
26	V	V	V	V
41	V	V	V	X
60	V	V	V	Х

50	V	V	V	V
40	V	V	V	Х

Legenda: V – Foi testado e validado

X- Foi testado e não se aplica

6.2 Teste caixa preta

Para este teste, utilizamos o conhecimento obtido no teste caixa branca sobre que informações utilizarmos para calcular a resposta desejada, e realizamos os testes, apenas verificando se a saída era a desejada, sem que para obter este tivéssemos de mexer na parte interna do software, para tanto , verificamos as informações que entravam e calculamos qual seria a saída e a comparamos.

Tabela 9: Tabela Caixa preta

	Em ponta	Fora de ponta	Reservado	Quarto posto
42	V	V	V	X
80	V	V	V	V
14	V	V	V	V
23	V	V	V	X
25	V	V	V	V
26	V	V	V	V
41	V	V	V	Х
60	V	V	V	Х
50	V	V	V	V

40	V	V	V	Χ

Legenda: V – Foi testado e validado

X- Foi testado e não se aplica

6.2 Validação

Quanto a validação , utilizamos as informações obtidas nos testes e as comparamos com as respostas esperadas por meio de equações para o gênero, assim conforme obtínhamos uma resposta, comparávamos com o esperado,

Para tanto utilizamos formulas para as seguintes finalidades:

A formula de potencia que será utilizada, para calcular a potencia esperada é P=W/t ou W=P.t

Onde P é a potencia em watts(W), W é o trabalho realizado ou energia transferida e t é o tempo em segundos,.

Para potencia aparente utilizamos PA=(W^2+VA^2)^(0.5)

Fi=(atan(W/Va))*180/PI

Fator de potencia = sin(Fi)

Já a alimentação trifásica equilibrada consiste no fato de que todas as três fases devem estar equilibradas e equidistantes em fase entre si.

De forma tradicional, tem-se as fase A,B,C onde a diferença entre estas é de 120°, ou seja, devem possuir amplitude e frequência idênticas, onde em relação a fase A, a fase B está adianta em 120° enquanto que a fase C está em atrasada 120° em relação à fase A.

28

$$V_{a} = V_{m} / 0^{\circ}$$
 $V_{a} = V_{m} / 0^{\circ}$ $V_{b} = V_{m} / -120^{\circ}$ $V_{b} = V_{m} / +120^{\circ}$ $V_{c} = V_{m} / +120^{\circ}$ $V_{c} = V_{m} / -120^{\circ}$

Outra característica importante na utilização de tensões trifásicas é que a soma das três tensões é igual a zero, ou seja Va+Vb+Vc=0, conforme descrito e citado no livro (Nilson, Riedel, circuitos eletrônicos, 2009, p-302 a p-304)

Devido ao fato de que o medidor mede tanto as fases como o neutro, usaremos o circuito Y onde um lado das cargas ficam ligadas ao neutro e o outro fica ligado ao neutro, no nó central. Como demonstrado na imagem 13,ao contrário da configuração em triangulo onde não existe o neutro, como na figura 4.

Figura 8:Fonte em Y

Figura 9:Fonte em triangulo

O micro controlador será validado, quando este estiver reconhecendo todos os comandos desejados, e liberando todas as respostas esperadas,

somente se isto estiver ocorrendo em sucessivos testes, é que este será validado.

A comunicação ótica passará na validação se sua taxa de erro de transmissão for dentro da taxa aceitável.

7. ANÁLISE DE RISCO

PO = Probabilidade de ocorrência

IP = Impacto no projeto

SE = severidade

Tabela de riscos referentes ao desenvolvimento do projeto, onde consiste no tipo de risco, seu grau de severidade para o mesmo, sua prevenção, sua ação de contingencia e à quem é a responsabilidade.

Tabela 10: Riscos

Risco	P 0	_	S E	Ação de prevenção	Ação de contingência	Responsa bilidade
Perda ou sobrescrita indesejada dos arquivos do projeto	2	2	4	Possuir backups atualizados, e armazenar arquivos diferenciados para cada atualização dos códigos.	Utilizar a última versão, e continuar a partir desta.	Silvio ou Fernando.
A não compreensão total protocolo	1	3	3	Pesquisar sobre o protocolo com antecedência.	Pesquisar por alguém que trabalhe com este para que possa retirar nossas dúvidas.	Silvio ou Fernando.
Atraso do correio	2	3	6	Comprar os componentes com um tempo prévio.	Reajustar o cronograma para realizar outras tarefas, minimizando o atraso e poder aguardar o correio.	Silvio ou Fernando.

Queima de	1	2	2	Possuir	Reajustar o	Silvio ou
componente				componentes sobressalentes.	cronograma, para tanto ter tempo para comprar novos componentes, quanto para realizar outras tarefas, minimizando o atraso.	Fernando.
Falta de integrante do grupo	1	1	1	Estar à frente no cronograma.	Reajustar o que deve ser feito, para minimizar o impacto.	Silvio ou Fernando.

8. CONCLUSÃO:

Este projeto, alcançou seus objetivos ,visto que no decorrer do mesmo, não só aprendemos sobre novos protocolos, quanto a utilização de hardware para tarefas especificas, visando melhor performance do todo.

Estes protocolos, foram desafiadores, no sentido que tivemos de obter os dados a partir da placa, por meio de serial com conversão, ou seja, não contínhamos com uma alternativa mais eficiente para realizar a tarefa de obtenção das informações, sendo assim, todos os dados, tiveram de ser traduzidos de ASCII para binário, para que tivéssemos real utilização destes.

Com a obtenção destas informações, o desafio seguinte foi organizar os dados de forma eficiente, para que tivéssemos uma maior performance do software, sem que este se tornasse complexo demais a ponto de se tornar impraticável, logo, o formulamos em um meio termo, a qual balanceia performance, complexidade, memória utilizada.

Com a tabulação dos dados, a tarefa seguinte foi realizar uma comunicação entre o protocolo e o leitor do mesmo, que possui mesma estrutura básica, fazendo com que a comunicação seguisse um padrão de espaço, no entanto esta mesma comunicação tinha de simultaneamente criar,

manter e realizar a comunicação, para tal, utilizamos tasks para simplificar o

processo de criação de mensagens para manter tal sincronia.

Com o requisito comunicação já estabelecido, o passo seguinte foi a

implementação do software de leitura ao qual traduz de volta de tabela para

uma visualização mais "humana" ao qual fica mais fácil e confortável sua

exibição e confirmação

Podemos então concluir que o projeto medidor de energia bidirencional

foi completado com êxito, assim mostrando que seus desenvolvedores

mostraram capacidade de aprender, implementar, se desafiar, se adaptar, com

a conclusão do mesmo, exibindo com o mesmo, os conhecimentos obtidos

tanto pela presença ao longo do curso em sala nas aulas de engenharia de

computação, quanto pelo desenvolvimento obtido fora dos horários das

mesmas, tanto academicamente quando pessoal.

9. Bibliografia

CHAVES, Claudionor, TRANSFORMADOR DE CORRENTE ELETRÔNICO

UTILIZANDO BOBINA DE ROGOWSKI E INTERFACE ÓPTICA COM POF PARA APLICAÇÃO EM SISTEMAS DE POTÊNCIA. 2008. 98f. Dissertação de Mestrado

apresentada ao Programa de Pós-Graduação em Engenharia Elétrica - COPPE, da

Universidade Federal do Rio de Janeiro, Rio de Janeiro. 2008

ABNT NBR-14522: Intercâmbio de informações para sistema de medição de energia

elétrica. ABNT 2008.

SyncMOS Technologies Inc: SM8051/8052. 2001. Disponível em:

< http://www.keil.com/dd/docs/datashts/syncmos/sm80518052.pdf>. Acesso em: 5 jun.

2014.

MAXIM: 71M6533/G/H and 71M6534/H Energy Meter ICs. Disponível em:

http://www.digikey.com/product-search/en?vendor=0&keywords=71M6533-

DB+Demo+Board> . Acesso em: 1 jun. 2014

ATMEL: 90E32A

32

< http://www.digikey.com/product-detail/en/90E32AERGI8/90E32AERGI8-ND/4494506>. Acesso em:25 nov.2014

MAXIM: 71M6543F-DB and 71M6543F-DB http://www.digikey.com/product-detail/en/71M6543F-DB/71M6543F-DB-ND/3503297. Acesso em:25 nov.2014

ANALOG DEVICES INC: ADE7754ARZRL

< http://www.digikey.com/product-detail/en/ADE7754ARZRL/ADE7754ARZRLCT-ND/936762>. Acesso em:25 nov.2014

NILSON, J. Circuitos Eletricos. 8º edição. São Paulo: PEARSON, 2009. 575 Pag.

BIRD, J.O. Circuitos Eletricos: teoria e tecnologia.

NILSSON, J. W. Circuitos eletrônicos. 5º edição . Rio de Janeiro : LTC , 1999, Pag. 540.

MEDIDOR: E750 BRUVER

< http://www.bruver.com.br/loja/3-e750.html>. Acesso em:25 nov.2014

MEDIDOR: E550 BRUVER

< http://www.bruver.com.br/loja/4-e550.html >. Acesso em:25 nov.2014

MEDIDOR: E23A BRUVER

< http://www.bruver.com.br/loja/24-e23a-2-fases-110v-.html >. Acesso em:25 nov.2014

10. ACRÔNIMO

PUCPR Pontifício Universidade Católica do Paraná.

SCR Silicon Controlled Rectifier – Retificador Controlado de Silicone.

PO Probabilidade de ocorrência.

IP Impacto no projeto.

SE Severidade.

ANEEL Agencia Nacional de Energia Elétrica