Homework 7.8 Improper Integrals

Tashfeen Omran

September 2025

1 Improper Integral Problems and Solutions

1.1 Problem 1

Determine whether the integral $\int_1^\infty 3x^{-4}\,dx$ is convergent or divergent. If it is convergent, evaluate it.

Solution

This is a Type 1 improper integral because it has an infinite limit of integration.

$$\int_{1}^{\infty} 3x^{-4} dx = \lim_{t \to \infty} \int_{1}^{t} 3x^{-4} dx$$

$$= \lim_{t \to \infty} \left[3 \frac{x^{-3}}{-3} \right]_{1}^{t}$$

$$= \lim_{t \to \infty} \left[-x^{-3} \right]_{1}^{t} = \lim_{t \to \infty} \left[-\frac{1}{x^{3}} \right]_{1}^{t}$$

$$= \lim_{t \to \infty} \left(-\frac{1}{t^{3}} - \left(-\frac{1}{1^{3}} \right) \right)$$

$$= \lim_{t \to \infty} \left(-\frac{1}{t^{3}} + 1 \right)$$

$$= 0 + 1 - 1$$

Answer: Convergent. The integral evaluates to 1.

1.2 Problem 2

Determine whether the integral $\int_{-\infty}^{-1} \frac{1}{\sqrt[3]{x}} dx$ is convergent or divergent. If it is convergent, evaluate it.

Solution

This is a Type 1 improper integral.

$$\int_{-\infty}^{-1} x^{-1/3} dx = \lim_{t \to -\infty} \int_{t}^{-1} x^{-1/3} dx$$

$$= \lim_{t \to -\infty} \left[\frac{x^{2/3}}{2/3} \right]_{t}^{-1} = \lim_{t \to -\infty} \left[\frac{3}{2} x^{2/3} \right]_{t}^{-1}$$

$$= \lim_{t \to -\infty} \left(\frac{3}{2} (-1)^{2/3} - \frac{3}{2} t^{2/3} \right)$$

$$= \frac{3}{2} (1) - \lim_{t \to -\infty} \frac{3}{2} t^{2/3}$$

$$= \frac{3}{2} - \infty = -\infty$$

As $t \to -\infty$, $t^{2/3}$ (which is $(\sqrt[3]{t})^2$) approaches $+\infty$. The limit does not exist. **Answer: DIVERGES**.

1.3 Problem 3

Determine whether the integral $\int_{-6}^{\infty} \frac{1}{x+7} dx$ is convergent or divergent.

Solution

This is a Type 1 improper integral.

$$\int_{-6}^{\infty} \frac{1}{x+7} dx = \lim_{t \to \infty} \int_{-6}^{t} \frac{1}{x+7} dx$$

$$= \lim_{t \to \infty} [\ln|x+7|]_{-6}^{t}$$

$$= \lim_{t \to \infty} (\ln|t+7| - \ln| - 6 + 7|)$$

$$= \lim_{t \to \infty} \ln(t+7) - \ln(1)$$

$$= \infty - 0 = \infty$$

The limit does not exist. **Answer: DIVERGES**.

1.4 Problem 4

Determine whether the integral $\int_{8}^{\infty} \frac{1}{(x-7)^{3/2}} dx$ is convergent or divergent.

Solution

This is a Type 1 improper integral.

$$\int_{8}^{\infty} (x-7)^{-3/2} dx = \lim_{t \to \infty} \int_{8}^{t} (x-7)^{-3/2} dx$$

$$= \lim_{t \to \infty} \left[\frac{(x-7)^{-1/2}}{-1/2} \right]_{8}^{t} = \lim_{t \to \infty} \left[\frac{-2}{\sqrt{x-7}} \right]_{8}^{t}$$

$$= \lim_{t \to \infty} \left(\frac{-2}{\sqrt{t-7}} - \left(\frac{-2}{\sqrt{8-7}} \right) \right)$$

$$= \lim_{t \to \infty} \left(\frac{-2}{\sqrt{t-7}} + 2 \right)$$

$$= 0 + 2 = 2$$

Answer: Convergent. The integral evaluates to 2.

1.5 Problem 5

Determine whether the integral $\int_0^\infty \frac{1}{\sqrt{1+x}} dx$ is convergent or divergent.

Solution

This is a Type 1 improper integral.

$$\int_0^\infty (1+x)^{-1/2} dx = \lim_{t \to \infty} \int_0^t (1+x)^{-1/2} dx$$

$$= \lim_{t \to \infty} \left[\frac{(1+x)^{1/2}}{1/2} \right]_0^t = \lim_{t \to \infty} \left[2\sqrt{1+x} \right]_0^t$$

$$= \lim_{t \to \infty} \left(2\sqrt{1+t} - 2\sqrt{1+0} \right)$$

$$= \infty - 2 = \infty$$

The limit does not exist. Answer: DIVERGES.

1.6 Problem 6

Determine whether the integral $\int_{-\infty}^{0} \frac{x}{(x^2+4)^2} dx$ is convergent or divergent.

Solution

This is a Type 1 improper integral. Use u-substitution: $u = x^2 + 4$, $du = 2x dx \implies x dx = du/2$.

$$\int_{-\infty}^{0} \frac{x}{(x^2+4)^2} dx = \lim_{t \to -\infty} \int_{t}^{0} \frac{x}{(x^2+4)^2} dx$$

$$= \lim_{t \to -\infty} \int_{x=t}^{x=0} \frac{1}{u^2} \frac{du}{2}$$

$$= \frac{1}{2} \lim_{t \to -\infty} \left[-\frac{1}{u} \right]_{x=t}^{x=0} = \frac{1}{2} \lim_{t \to -\infty} \left[-\frac{1}{x^2+4} \right]_{t}^{0}$$

$$= \frac{1}{2} \lim_{t \to -\infty} \left(-\frac{1}{0^2+4} - \left(-\frac{1}{t^2+4} \right) \right)$$

$$= \frac{1}{2} \lim_{t \to -\infty} \left(-\frac{1}{4} + \frac{1}{t^2+4} \right)$$

$$= \frac{1}{2} \left(-\frac{1}{4} + 0 \right) = -\frac{1}{8}$$

Answer: Convergent. The integral evaluates to -1/8.

1.7 Problem 7

Determine whether the integral $\int_1^\infty \frac{x^3+x+1}{x^5} \, dx$ is convergent or divergent.

Solution

First, simplify the integrand.

$$\frac{x^3 + x + 1}{x^5} = \frac{x^3}{x^5} + \frac{x}{x^5} + \frac{1}{x^5} = x^{-2} + x^{-4} + x^{-5}$$

Now evaluate the integral:

$$\int_{1}^{\infty} (x^{-2} + x^{-4} + x^{-5}) dx = \lim_{t \to \infty} \int_{1}^{t} (x^{-2} + x^{-4} + x^{-5}) dx$$

$$= \lim_{t \to \infty} \left[-x^{-1} - \frac{x^{-3}}{3} - \frac{x^{-4}}{4} \right]_{1}^{t}$$

$$= \lim_{t \to \infty} \left[-\frac{1}{x} - \frac{1}{3x^{3}} - \frac{1}{4x^{4}} \right]_{1}^{t}$$

$$= \lim_{t \to \infty} \left(\left(-\frac{1}{t} - \frac{1}{3t^{3}} - \frac{1}{4t^{4}} \right) - \left(-1 - \frac{1}{3} - \frac{1}{4} \right) \right)$$

$$= (0 - 0 - 0) - \left(-\frac{12}{12} - \frac{4}{12} - \frac{3}{12} \right) = -\left(-\frac{19}{12} \right) = \frac{19}{12}$$

Answer: Convergent. The integral evaluates to 19/12.

1.8 Problem 8

Determine whether the integral $\int_0^\infty \frac{e^x}{(8+e^x)^2} dx$ is convergent or divergent.

Solution

Use u-substitution: $u = 8 + e^x$, $du = e^x dx$.

$$\int_0^\infty \frac{e^x}{(8+e^x)^2} dx = \lim_{t \to \infty} \int_0^t \frac{e^x}{(8+e^x)^2} dx$$

$$= \lim_{t \to \infty} \left[-\frac{1}{8+e^x} \right]_0^t$$

$$= \lim_{t \to \infty} \left(-\frac{1}{8+e^t} - \left(-\frac{1}{8+e^0} \right) \right)$$

$$= \lim_{t \to \infty} \left(-\frac{1}{8+e^t} + \frac{1}{9} \right)$$

$$= 0 + \frac{1}{9} = \frac{1}{9}$$

Answer: Convergent. The integral evaluates to 1/9.

1.9 Problem 9

Determine whether the integral $\int_{-\infty}^{\infty} 9xe^{-x^2} dx$ is convergent or divergent.

Solution

The integral is over $(-\infty, \infty)$, so we split it at an arbitrary point, like x = 0.

$$\int_{-\infty}^{\infty} 9xe^{-x^2} dx = \int_{-\infty}^{0} 9xe^{-x^2} dx + \int_{0}^{\infty} 9xe^{-x^2} dx$$

Evaluate the second integral first. Use u-substitution: $u=-x^2, du=-2x\,dx \implies 9x\,dx=-\frac{9}{2}du$.

$$\int_0^\infty 9xe^{-x^2} dx = \lim_{t \to \infty} \int_0^t 9xe^{-x^2} dx$$

$$= \lim_{t \to \infty} \left[-\frac{9}{2}e^{-x^2} \right]_0^t$$

$$= \lim_{t \to \infty} \left(-\frac{9}{2}e^{-t^2} - \left(-\frac{9}{2}e^0 \right) \right) = 0 + \frac{9}{2} = \frac{9}{2}$$

Now evaluate the first integral:

$$\int_{-\infty}^{0} 9xe^{-x^{2}} dx = \lim_{s \to -\infty} \int_{s}^{0} 9xe^{-x^{2}} dx$$

$$= \lim_{s \to -\infty} \left[-\frac{9}{2}e^{-x^{2}} \right]_{s}^{0}$$

$$= \lim_{s \to -\infty} \left(-\frac{9}{2}e^{0} - \left(-\frac{9}{2}e^{-s^{2}} \right) \right) = -\frac{9}{2} - 0 = -\frac{9}{2}$$

Since both integrals converge, the original integral converges. The total value is $\frac{9}{2} + (-\frac{9}{2}) = 0$. **Answer:** Convergent. The integral evaluates to **0**. (Note: This could also be solved by recognizing $f(x) = 9xe^{-x^2}$ is an odd function.)

1.10 Problem 10

Determine whether the integral $\int_{-\infty}^{\infty} \frac{x^5}{x^6+1} dx$ is convergent or divergent.

Solution

Split the integral at x = 0. Let's evaluate the part from $[0, \infty)$. Use u-substitution: $u = x^6 + 1$, $du = 6x^5 dx \implies x^5 dx = du/6$.

$$\int_0^\infty \frac{x^5}{x^6 + 1} dx = \lim_{t \to \infty} \int_0^t \frac{x^5}{x^6 + 1} dx$$

$$= \lim_{t \to \infty} \left[\frac{1}{6} \ln|x^6 + 1| \right]_0^t$$

$$= \frac{1}{6} \lim_{t \to \infty} \left(\ln(t^6 + 1) - \ln(1) \right) = \frac{1}{6} (\infty - 0) = \infty$$

Since one part of the split integral diverges, the entire integral diverges. Answer: DIVERGES.

1.11 Problem 11

Determine whether the integral $\int_0^\infty 4\sin^2(\alpha) d\alpha$ is convergent or divergent.

Solution

Use the half-angle identity: $\sin^2(\alpha) = \frac{1-\cos(2\alpha)}{2}$

$$\int_0^\infty 4\sin^2(\alpha) \, d\alpha = \int_0^\infty 4\left(\frac{1-\cos(2\alpha)}{2}\right) \, d\alpha = \int_0^\infty (2-2\cos(2\alpha)) \, d\alpha$$
$$= \lim_{t \to \infty} \int_0^t (2-2\cos(2\alpha)) \, d\alpha$$
$$= \lim_{t \to \infty} \left[2\alpha - \sin(2\alpha)\right]_0^t$$
$$= \lim_{t \to \infty} \left((2t - \sin(2t)) - (0 - 0)\right)$$

As $t \to \infty$, the 2t term goes to infinity. The term $\sin(2t)$ oscillates between -1 and 1, but it cannot stop the 2t term from growing infinitely large. The limit does not exist. **Answer: DIVERGES**.

1.12 Problem 12

(a) Evaluate the integral: $\int_0^t 8\sin^2(\alpha) d\alpha$ (b) Determine whether $\int_0^\infty 8\sin^2(\alpha) d\alpha$ is convergent or divergent.

Solution (a)

This is a standard definite integral. Using the half-angle identity:

$$\int_0^t 8\sin^2(\alpha) \, d\alpha = \int_0^t 8\left(\frac{1-\cos(2\alpha)}{2}\right) \, d\alpha = \int_0^t (4-4\cos(2\alpha)) \, d\alpha$$
$$= \left[4\alpha - 2\sin(2\alpha)\right]_0^t$$
$$= (4t - 2\sin(2t)) - (0-0)$$

Answer (a): $4t - 2\sin(2t)$

Solution (b)

To determine if the improper integral converges, we take the limit of the result from part (a) as $t \to \infty$.

$$\lim_{t \to \infty} (4t - 2\sin(2t)) = \infty$$

The limit does not exist. Answer (b): DIVERGES.

1.13 Problem 13

Determine whether the integral $\int_0^\infty \sin(\theta) e^{\cos(\theta)} d\theta$ is convergent or divergent.

Solution

Use u-substitution: $u = \cos(\theta), du = -\sin(\theta) d\theta$.

$$\int_0^\infty \sin(\theta) e^{\cos(\theta)} d\theta = \lim_{t \to \infty} \int_0^t \sin(\theta) e^{\cos(\theta)} d\theta$$
$$= \lim_{t \to \infty} \left[-e^{\cos(\theta)} \right]_0^t$$
$$= \lim_{t \to \infty} \left(-e^{\cos(t)} - (-e^{\cos(0)}) \right)$$
$$= \lim_{t \to \infty} \left(e - e^{\cos(t)} \right)$$

As $t \to \infty$, $\cos(t)$ oscillates between -1 and 1. Therefore, $e^{\cos(t)}$ oscillates between e^{-1} and e^{1} . The limit does not settle on a single value. **Answer: DIVERGES**.

1.14 Problem 14

Determine whether the integral $\int_1^\infty \frac{1}{x^2+x} dx$ is convergent or divergent.

Solution

Use partial fraction decomposition: $\frac{1}{x(x+1)} = \frac{A}{x} + \frac{B}{x+1} \implies 1 = A(x+1) + Bx$. If x = 0, A = 1. If x = -1, B = -1. So, $\frac{1}{x^2+x} = \frac{1}{x} - \frac{1}{x+1}$.

$$\int_{1}^{\infty} \left(\frac{1}{x} - \frac{1}{x+1}\right) dx = \lim_{t \to \infty} \int_{1}^{t} \left(\frac{1}{x} - \frac{1}{x+1}\right) dx$$
$$= \lim_{t \to \infty} \left[\ln|x| - \ln|x+1|\right]_{1}^{t}$$
$$= \lim_{t \to \infty} \left[\ln\left|\frac{x}{x+1}\right|\right]_{1}^{t}$$
$$= \lim_{t \to \infty} \left(\ln\left(\frac{t}{t+1}\right) - \ln\left(\frac{1}{2}\right)\right)$$

As $t \to \infty$, $\frac{t}{t+1} \to 1$, so $\ln(\frac{t}{t+1}) \to \ln(1) = 0$. The result is $0 - \ln(1/2) = -(-\ln(2)) = \ln(2)$. **Answer:** Convergent. The integral evaluates to $\ln(2)$.

1.15 Problem 15

Determine whether the integral $\int_2^\infty \frac{dv}{v^2+2v-3}$ is convergent or divergent.

Solution

Use partial fraction decomposition: $\frac{1}{(v+3)(v-1)} = \frac{A}{v+3} + \frac{B}{v-1} \implies 1 = A(v-1) + B(v+3)$. If v = 1, B = 1/4. If v = -3, A = -1/4.

$$\begin{split} \int_{2}^{\infty} \frac{1/4}{v - 1} - \frac{1/4}{v + 3} \, dv &= \frac{1}{4} \lim_{t \to \infty} \int_{2}^{t} \left(\frac{1}{v - 1} - \frac{1}{v + 3} \right) \, dv \\ &= \frac{1}{4} \lim_{t \to \infty} \left[\ln|v - 1| - \ln|v + 3| \right]_{2}^{t} \\ &= \frac{1}{4} \lim_{t \to \infty} \left[\ln\left| \frac{v - 1}{v + 3} \right| \right]_{2}^{t} \\ &= \frac{1}{4} \lim_{t \to \infty} \left(\ln\left(\frac{t - 1}{t + 3} \right) - \ln\left(\frac{1}{5} \right) \right) \\ &= \frac{1}{4} (\ln(1) - \ln(1/5)) = \frac{1}{4} (0 - (-\ln(5))) = \frac{\ln(5)}{4} \end{split}$$

Answer: Convergent. The integral evaluates to ln(5)/4.

1.16 Problem 16

Determine whether the integral $\int_{-\infty}^{0} \frac{z}{z^4+81} dz$ is convergent or divergent.

Solution

Use u-substitution: $u = z^2$, $du = 2z dz \implies z dz = du/2$.

$$\int_{-\infty}^{0} \frac{z}{z^4 + 81} dz = \lim_{t \to -\infty} \int_{t}^{0} \frac{z}{(z^2)^2 + 81} dz$$

$$= \lim_{t \to -\infty} \frac{1}{2} \int_{z=t}^{z=0} \frac{du}{u^2 + 81}$$

$$= \frac{1}{2} \lim_{t \to -\infty} \left[\frac{1}{9} \arctan\left(\frac{u}{9}\right) \right]_{z=t}^{z=0} = \frac{1}{18} \lim_{t \to -\infty} \left[\arctan\left(\frac{z^2}{9}\right) \right]_{t}^{0}$$

$$= \frac{1}{18} \lim_{t \to -\infty} \left(\arctan(0) - \arctan\left(\frac{t^2}{9}\right) \right)$$

As $t \to -\infty, t^2 \to \infty$, so $\arctan(t^2/9) \to \pi/2$. The result is $\frac{1}{18}(0 - \frac{\pi}{2}) = -\frac{\pi}{36}$. **Answer:** Convergent. The integral evaluates to $-\pi/36$.

1.17 Problem 17

(a) Evaluate the integral: $\int_t^0 \frac{z}{z^4+36} dz$ (b) Determine whether $\int_{-\infty}^0 \frac{z}{z^4+36} dz$ is convergent or divergent.

Solution (a)

Similar to problem 16, use u-substitution $u = z^2$, du = 2z dz.

$$\int_{t}^{0} \frac{z}{z^{4} + 36} dz = \frac{1}{2} \int_{z=t}^{z=0} \frac{du}{u^{2} + 36}$$

$$= \frac{1}{2} \left[\frac{1}{6} \arctan\left(\frac{u}{6}\right) \right]_{z=t}^{z=0} = \frac{1}{12} \left[\arctan\left(\frac{z^{2}}{6}\right) \right]_{t}^{0}$$

$$= \frac{1}{12} \left(\arctan(0) - \arctan\left(\frac{t^{2}}{6}\right) \right)$$

Answer (a): $-\frac{1}{12}\arctan\left(\frac{t^2}{6}\right)$

Solution (b)

Take the limit of the result from part (a) as $t \to -\infty$.

$$\lim_{t \to -\infty} \left(-\frac{1}{12} \arctan\left(\frac{t^2}{6}\right) \right) = -\frac{1}{12} \left(\frac{\pi}{2}\right) = -\frac{\pi}{24}$$

Answer (b): Convergent. The integral evaluates to $-\pi/24$.

1.18 Problem 18

Determine whether the integral $\int_0^9 \frac{3}{\sqrt[3]{x-1}} dx$ is convergent or divergent.

Solution

This is a Type 2 improper integral because the function has an infinite discontinuity at x = 1, which is within the interval [0, 9]. We must split the integral at the point of discontinuity.

$$\int_0^9 \frac{3}{(x-1)^{1/3}} \, dx = \int_0^1 3(x-1)^{-1/3} \, dx + \int_1^9 3(x-1)^{-1/3} \, dx$$

Evaluate the first part:

$$\lim_{t \to 1^{-}} \int_{0}^{t} 3(x-1)^{-1/3} dx = \lim_{t \to 1^{-}} \left[3 \frac{(x-1)^{2/3}}{2/3} \right]_{0}^{t} = \lim_{t \to 1^{-}} \left[\frac{9}{2} (x-1)^{2/3} \right]_{0}^{t}$$
$$= \lim_{t \to 1^{-}} \left(\frac{9}{2} (t-1)^{2/3} - \frac{9}{2} (-1)^{2/3} \right)$$
$$= 0 - \frac{9}{2} (1) = -\frac{9}{2}$$

This part converges. Now evaluate the second part:

$$\lim_{s \to 1^+} \int_s^9 3(x-1)^{-1/3} dx = \lim_{s \to 1^+} \left[\frac{9}{2} (x-1)^{2/3} \right]_s^9$$

$$= \lim_{s \to 1^+} \left(\frac{9}{2} (9-1)^{2/3} - \frac{9}{2} (s-1)^{2/3} \right)$$

$$= \frac{9}{2} (8)^{2/3} - 0 = \frac{9}{2} (4) = 18$$

This part also converges. Since both parts converge, the original integral converges. The total value is $-\frac{9}{2} + 18 = \frac{27}{2}$. **Answer:** Convergent. The integral evaluates to 27/2.

2 Analysis of Problems and Techniques

2.1 Types of Improper Integrals Encountered

1. Type 1: Infinite Intervals

- Integrals over $[a, \infty)$: Problems 1, 3, 4, 5, 7, 8, 11, 12, 13, 14, 15.
- Integrals over $(-\infty, b]$: Problems 2, 6, 16, 17.
- Integrals over $(-\infty, \infty)$: Problems 9, 10. These must be split into two separate improper integrals, e.g., $\int_{-\infty}^{c} f(x) dx + \int_{c}^{\infty} f(x) dx$. The integral converges only if BOTH parts converge.

2. Type 2: Infinite Discontinuity

• The integrand has a vertical asymptote at x = c within the interval [a, b]. The integral must be split at the discontinuity: $\int_a^b f(x) dx = \int_a^c f(x) dx + \int_c^b f(x) dx$. This was seen in Problem 18 at x = 1 on the interval [0, 9].

2.2 Convergence and Divergence Rules (p-Integrals)

A key tool for quickly assessing convergence is the **p-integral test**.

- For Type 1 integrals: $\int_a^\infty \frac{1}{x^p} dx$ (where a > 0) converges if p > 1 and diverges if $p \le 1$.
 - Problem 1: p = 4 > 1, converges.
 - Problem 4: Form is $1/u^{3/2}$, p = 3/2 > 1, converges.
 - Problem 2: $p = 1/3 \le 1$ on an infinite interval, diverges.
 - Problem 5: Form is $1/u^{1/2}$, $p = 1/2 \le 1$, diverges.
- For Type 2 integrals: $\int_0^a \frac{1}{x^p} dx$ (discontinuity at 0) converges if p < 1 and diverges if $p \ge 1$.
 - Problem 18: Form is $1/u^{1/3}$, p = 1/3 < 1, converges.

2.3 Techniques and Algebraic Manipulations Used

- Limit Definition: The fundamental technique for all problems was to rewrite the improper integral as a limit of a proper integral.
- U-Substitution: Used in Problems 6, 8, 9, 10, 13, 16, 17 to simplify the integrand before integration.
- Partial Fraction Decomposition: Necessary for integrating rational functions where the denominator is factorable. Used in Problems 14 and 15.
- Trigonometric Identities: The half-angle identity $\sin^2(\alpha) = (1 \cos(2\alpha))/2$ was crucial for Problems 11 and 12.
- Splitting Integrals: Required for Type 1 integrals over $(-\infty, \infty)$ (Problems 9, 10) and for Type 2 integrals with an interior discontinuity (Problem 18).
- Recognizing Odd/Even Functions: In Problem 9, the integrand is an odd function integrated over a symmetric interval $(-\infty, \infty)$. If such an integral converges, its value must be 0. In Problem 10, the integrand was also odd, but it was shown to diverge. Trick: You must still prove convergence of one half of the integral before concluding the value is 0.
- **Simplifying the Integrand**: In Problem 7, dividing each term in the numerator by the denominator simplified the problem into a sum of p-integrals.

2.4 Essential Limits to Know

For evaluating improper integrals, knowledge of limits at infinity is critical.

- $\lim_{x\to\infty} \frac{1}{r^p} = 0$ for any p > 0.
- $\lim_{x\to\infty} e^x = \infty$ and $\lim_{x\to-\infty} e^x = 0$.
- $\lim_{x\to\infty} \ln(x) = \infty$ and $\lim_{x\to 0^+} \ln(x) = -\infty$.
- $\lim_{x\to\infty} \arctan(x) = \frac{\pi}{2}$ and $\lim_{x\to-\infty} \arctan(x) = -\frac{\pi}{2}$.
- Limits of oscillating functions like $\sin(x)$ or $\cos(x)$ as $x \to \infty$ do not exist.

2.5 Additional Tricks and Untested Concepts

The provided problems did not cover all aspects of improper integrals. Here are other important concepts:

- The Comparison Test: For an integrand that is difficult to integrate directly, you can compare it to a simpler function. If $f(x) \ge g(x) \ge 0$:
 - If $\int_a^\infty f(x) dx$ converges, then $\int_a^\infty g(x) dx$ also converges.
 - If $\int_a^\infty g(x) dx$ diverges, then $\int_a^\infty f(x) dx$ also diverges.
 - **Example**: To determine if $\int_1^\infty \frac{1}{x^2+5} dx$ converges, we can note that $\frac{1}{x^2+5} < \frac{1}{x^2}$. Since $\int_1^\infty \frac{1}{x^2} dx$ converges (p-integral with p=2), our integral must also converge.
- The Limit Comparison Test: If f(x) and g(x) are positive functions and $\lim_{x\to\infty} \frac{f(x)}{g(x)} = L$, where L is a finite, positive number, then $\int f(x) dx$ and $\int g(x) dx$ either both converge or both diverge.
 - **Example**: For $\int_1^\infty \frac{x}{x^3-2} dx$, we can compare it to $g(x) = \frac{x}{x^3} = \frac{1}{x^2}$. Since $\lim_{x\to\infty} \frac{x/(x^3-2)}{1/x^2} = 1$, and we know $\int_1^\infty \frac{1}{x^2} dx$ converges, our integral must also converge.
- Checking the Domain: As a trick, always check that the function is defined over the integration interval. A problem like $\int_0^2 \frac{1}{\sqrt{x-3}} dx$ is invalid because the integrand is not real for any value in the interval. The initial (incorrect) reading of Problem 18 as $1/\sqrt{x-1}$ would have made the integral from [0,1] invalid in the real number system.