MTH 225 — Homework 01

Marcus Clements

I chose to denote my responses to each question with a " \bullet " to hopefully make things easier to digest. Hopefully I didn't make any mistakes with the truth table and that the notation for my responses is acceptable. Responses begin on the next page.

1. Find a piece-wise non-recursive formula for the sequence a_n whose first terms are: 2, 2, 5, 5, 8, 8, 11, 11, 14, 14, 17, 17 and so on.

Clarification: When x = 1 we have y = 1. When x = 2 then y = 2. When x = 3 then y = 5. However, I am just using x and y for convenience. Change the xs to ns, and the ys to a_n s when you turn in your homework.

• The formula for this question can be expressed as:

$$a_n = \begin{cases} 2 + \frac{3(n-1)}{2} & \text{for all } n \text{ if } n \text{ is odd;} \\ 2 + \frac{3(n-2)}{2} & \text{for all } n \text{ if } n \text{ is even.} \end{cases}$$

- 2. For this homework question, let C be the set of all car brands.
 - (a) With correct notation, state three elements of C.
 - Let r be "Rolls-Royce", let f be "Ford", and let t be "Toyota". Then $r, f, t \in C$.

 - (b) Write what $r \in C$ means in plain English. In plain english and applying my example for $r, r \in C$ means that Rolls-Royce is an element of the set of all car brands. More generally speaking, it just means that r is an element of the set C. Therefore, we can deduce that r is a car brand!

- 3. Let p be the proposition "Madison is the capital of Wisconsin", and let q be the proposition "Tables are a type of food", and let r be "Dogs are not animals". State each of the following in words:
 - (a) $p \wedge q$
 - Madison is the capital of Wisconsin and tables are a type of food.
 - (b) $p \vee q$
 - Madison is the capital of Wisconsin or tables are a type of food.
 - (c) $(r \wedge p) \rightarrow q$
 - If dogs are not animals and Madison is the capital of Wisconsin, then tables are a type of food.
 - (d) $q \rightarrow \neg r$
 - If tables are a type of food, then dogs are animals.
 - (e) $r \wedge r$
 - Dogs are not animals and dogs are not animals.

- 4. Let p be the proposition "Madison is the capital of Wisconsin", and let q be the proposition "Tables are a type of food", and let r be "Dogs are not animals". For each proposition below, state in symbols and ALSO determine if the proposition is true or false (and provide some explanation for why).
 - (a) Madison is the capital of Wisconsin and dogs are not animals.
 - Symbolic representation: $p \wedge r$
 - Truth value: False
 - Explanation: We know conjunction of two propositions is true, in this case, only if both p and r are true. Since r ("Dogs are not animals") is clearly false, the entire statement is false.
 - (b) Madison is the capital of Wisconsin or dogs are animals.
 - Symbolic representation: $p \vee \neg r$
 - Truth value: True
 - Explanation: We also know the disjunction of two propositions is true if either p or $\neg r$ (the negation of r) is true. Since p ("Madison is the capital of Wisconsin") is true, the entire statement is true, regardless of the truth value of $\neg r$.
 - (c) If dogs are animals, then tables are a type of food.
 - Symbolic representation: $\neg r \rightarrow q$
 - Truth value: True
 - Explanation: This is a conditional statement, which is true unless the antecedent $(\neg r)$ is true and the consequent (q) is false. Since $\neg r$ ("Dogs are not animals") is false, the entire statement is true, regardless of the truth value of q.
 - (d) If Madison is not the capital of Wisconsin, then dogs are not animals.
 - Symbolic representation: $\neg p \rightarrow r$
 - Truth value: False
 - Explanation: This is also a conditional statement. It's true unless the antecedent $(\neg p)$ is true and the consequent (r) is false. Since both $\neg p$ ("Madison is not the capital of Wisconsin") and r ("Dogs are not animals") are false, the entire statement is false.
 - (e) Dogs are not animals or dogs are animals.
 - Symbolic representation: $r \vee \neg r$
 - Truth value: True
 - Explanation: This statement is a tautology, meaning it is always true regardless of the truth values of r and $\neg r$. This is because this equation represents a disjunction (OR) of a statement and its negation. At least one of these must be true, therefore the statement is always true.

5. Provide a complete truth table for $(p \to \neg q) \land (q \lor r)$.

Clarification: for a complete truth table, I am expecting you to "show your work" by giving relevant columns that lead up to the final column. For example, one of the columns you should display work for is $q \vee r$.

p	q	r	$\neg q$	$(p \to \neg q)$	$(q \lor r)$	$(p \to \neg q) \land (q \lor r)$
T	Τ	Τ	F	F	Т	F
T	Т	F	F	F	Т	F
Т	F	Т	Т	T	Т	Т
Т	F	F	Т	T	F	F
F	Т	Т	F	T	Т	Т
F	Т	F	F	T	Т	Т
F	F	Т	Т	T	Т	Т
F	F	F	Т	Т	F	F

Table 1: Truth Table for $(p \to \neg q) \wedge (q \vee r)$