Project 5 Taxi vận chuyển người kết hợp hàng hóa

Trần Huy Hùng, Đỗ Ngọc Sơn

Đại học Bách Khoa Hà Nội

Ngày 2 tháng 6 năm 2020

Nội dung

- Giới thiệu bài toán
- 2 Các hướng tiếp cận
- Mô hình hóa bài toán
- Cài đặt thuật toán
- 5 Thực nghiệm và đánh giá
- 6 Kết luận

Giới thiệu bài toán

Giới thiệu bài toán

Các hướng tiếp cận

- Sử dụng các giải thuật chính xác
- Sử dụng các giải thuật xấp xỉ

Các hướng tiếp cận

Giải bài toán bằng thuật toán chính xác

Các hướng tiếp cận

Giải bài toán bằng thuật toán xấp xỉ

Tham số

- Tập 2N + 2M + 2K điểm:
 - ullet Hành khách i: điểm đón i và điểm trả i+N+M (i=1,2,...,N)
 - Gói hàng j: điểm lấy hàng j và điểm trả j + N + M (j = N + 1, N + 2, ..., N + M)
 - 2K điểm logic 2N+2M+1, 2N+2M+2, ..., 2N+2M+2K tham chiếu tới điểm xuất phát vật lý 0. Điểm 2N+2M+k tương ứng là điểm bắt đầu, 2N+2M+K+k là điểm kết thúc lộ trình xe thứ k (k=1,2,...,K)
- d_{ij} : Khoảng cách từ điểm i tới điểm j $(i,j \in \{1,2,...,2N+2M+2K\})$
- w_i : Sự thay đổi khối lượng hàng khi đi tới điểm i (i = 1, 2, ..., 2N + 2M + 2K)

$$w_i = egin{cases} q_i & ext{n\'eu} \ N+1 \leq i \leq N+M \ -q_{i-(N+M)} & ext{n\'eu} \ 2N+M+1 \leq i \leq 2N+2M \ 0 & ext{ngược lại} \end{cases}$$

• Q_k : Khối lượng hàng tối đa xe thứ k có thể chở (k = 1, 2, ..., K)

Biến quyết định

• x_{ij} : Biến nhị phân, xác định cung đi từ điểm i đến điểm j có xuất hiện trong lộ trình của 1 trong k xe không $(i, j \in \{1, 2, ..., 2N + 2M + 2K)$

$$x_{ij} = \begin{cases} 1 & \text{n\'eu cung } (i,j) \text{ c\'o trong } \text{l\^o trình của } 1 \text{ xe} \\ 0 & \text{ngược lại} \end{cases} \tag{1}$$

- Tại mỗi điểm i (i = 1, 2, ..., 2N + 2M + 2K):
 - r_i : chỉ số của xe đi qua điểm i trong lộ trình

$$1 \le r_i \le K \tag{2}$$

• l_i : khoảng cách tích lũy của xe đi từ điểm 0 đến điểm i trong lộ trình

$$0 \leq t_i \leq 2N + 2M + 1 \tag{3}$$

$$0 \le c_i \le \max_{1 \le k \le K} \{Q_k\} \tag{4}$$

9/25

Các ràng buộc

• Ràng buộc cân bằng luồng vào ra:

$$\sum_{j=1}^{2N+2M+2K} x_{ij} = 1, \quad i = 1, 2, ..., 2N + 2M + K$$

$$\sum_{j=1}^{2N+2M+2K} x_{ij} = 1, \quad j = 1, 2, ..., 2N + 2M; 2N + 2M + K + 1, ..., 2N + 2M$$
(5)

$$x_{ij} = 1, \quad J = 1, 2, ..., 2N + 2M; 2N + 2M + K + 1, ..., 2N + 2M$$

Xác định r_i:

$$r_{2N+2M+k} = k, \quad k = 1, 2, ..., K$$
 (7)

$$x_{ij} = 1 \Rightarrow r_j = r_i, \quad i = 1, 2, ..., 2N + 2M + K,$$

$$j = 1, 2, ..., 2N + 2M; 2N + 2M + K + 1, ..., 2N + 2M$$

(6)

• Xác định *li*:

$$I_{2N+2M+k} = 0, \quad k = 1, 2, ..., K$$
 (9)

$$x_{ij} = 1 \Rightarrow l_j = l_i + d_{ij}, \quad i = 1, 2, ..., 2N + 2M + K,$$
 (10)
 $j = 1, 2, ..., 2N + 2M; 2N + 2M + K + 1, ..., 2N$

Xác định c_i:

$$c_{2N+2M+k} = Q_k, \quad k = 1, 2, ..., K$$
 (11)

$$x_{ij} = 1 \Rightarrow c_j = c_i - w_j, \quad i = 1, 2, ..., 2N + 2M + K,$$
 (12)
 $j = 1, 2, ..., 2N + 2M; 2N + 2M + K + 1, ..., 2N$

 Điểm đón và trả của hành khách i phải thuộc lộ trình của cùng một xe, tương tự với các gói hàng:

$$r_i = r_{i+N+M}, \quad i = 1, 2, ..., N + M$$
 (13)

• Điểm đón khách phải liền trước điểm trả khách:

$$x_{i,(i+N+M)} = 1, \quad i = 1, 2, ..., N$$
 (14)

• Điểm lấy hàng phải ở trước điểm giao hàng:

$$l_i < l_{i+N+M}, \quad i = N+1, N+2, ..., N+M$$
 (15)

• Khối lượng còn lại của xe tại mọi thời điểm không âm (đã thỏa mãn).

- L: Độ dài của lộ trình xe dài nhất trong K lộ trình
- Ràng buộc xác định lộ trình dài nhất:

$$I_i \le L, \quad i = 2N + 2M + K + 1, ..., 2N + 2M + 2K$$
 (16)

Hàm mục tiêu

$$L \leftarrow min$$
 (17)

Tham số

- Tập 2N + 2M + 2K điểm:
 - Hành khách i: điểm đón i và điểm trả i+N+M (i=1,2,...,N)
 - Gói hàng j: điểm lấy hàng j và điểm trả j + N + M(j = N + 1, N + 2, ..., N + M)
 - 2K điểm logic 2N+2M+1, 2N+2M+2, ..., 2N+2M+2K tham chiếu tới điểm xuất phát vật lý 0. Điểm 2N+2M+k tương ứng là điểm bắt đầu, 2N+2M+K+k là điểm kết thúc lộ trình xe thứ k (k=1,2,...,K)
- d_{ij} : Khoảng cách từ điểm i tới điểm j $(i,j \in \{1,2,...,2N+2M+2K\})$
- w_i : Sự thay đổi khối lượng hàng khi đi tới điểm i (i = 1, 2, ..., 2N + 2M + 2K)

$$w_i = egin{cases} q_i & ext{n\'eu} \ N+1 \leq i \leq N+M \ -q_{i-(N+M)} & ext{n\'eu} \ 2N+M+1 \leq i \leq 2N+2M \ 0 & ext{ngược lại} \end{cases}$$

• Q_k : Khối lượng hàng tối đa xe thứ k có thể chở (k = 1, 2, ..., K)

Biến quyết định

• x_{ij} : Biến nhị phân, xác định cung đi từ điểm i đến điểm j có xuất hiện trong lộ trình của 1 trong k xe không $(i, j \in \{1, 2, ..., 2N + 2M + 2K)$

$$x_{ij} = \begin{cases} 1 & \text{n\'eu cung } (i,j) \text{ c\'o trong } \text{l\^o trình của } 1 \text{ xe} \\ 0 & \text{ngược lại} \end{cases}$$
 (18)

- Tại mỗi điểm i (i = 1, 2, ..., 2N + 2M + 2K):
 - r_i : chỉ số của xe đi qua điểm i trong lộ trình

$$1 \le r_i \le K \tag{19}$$

• l_i : khoảng cách tích lũy của xe đi từ điểm 0 đến điểm i trong lộ trình

$$0 \le t_i \le 2N + 2M + 1 \tag{20}$$

ullet c_i : khối lượng hàng xe k (đi qua điểm i) còn chịu được khi đi tới điểm i

$$0 \le c_i \le \max_{1 \le k \le K} \{Q_k\} \tag{21}$$

2N + 2M + 2K

Ràng buộc

• Ràng buộc cân bằng luồng vào ra:

$$\sum_{j=1}^{N} x_{ij} = 1, \quad i = 1, 2, ..., 2N + 2M + K$$

$$\sum_{j=1}^{2N+2M+2K} x_{ij} = 1, \quad j = 1, 2, ..., 2N + 2M; 2N + 2M + K + 1, ..., 2N + 2M$$

• Xác định r_i:

$$r_{2N+2M+k} = k, \quad k = 1, 2, ..., K$$
 (24)

$$r_j - r_i \le \mu \times (1 - x_{ij}), \quad i = 1, 2, ..., 2N + 2M + 2K,$$
 (25)

(23)

Xác định l_i:

$$I_{2N+2M+k} = 0, \quad k = 1, 2, ..., K$$
 (26)

$$l_j - l_i - d_{ij} \le \mu \times (1 - x_{ij}), \quad i = 1, 2, ..., 2N + 2M + 2K,$$
 (27)
 $l_j - l_i - d_{ij} \ge -\mu \times (1 - x_{ij}), \quad j = 1, 2, ..., 2N + 2M; 2N + 2M + K + 1$

Xác định c_i:

$$c_{2N+2M+k} = Q_k, \quad k = 1, 2, ..., K$$
 (28)

$$c_j - c_i - w_j \le \mu \times (1 - x_{ij}), \quad i = 1, 2, ..., 2N + 2M + 2K,$$
 (29)
 $c_i - c_i - w_i \ge -\mu \times (1 - x_{ii}), \quad j = 1, 2, ..., 2N + 2M; 2N + 2M + K + 2M$

 Điểm đón và trả của hành khách i phải thuộc lộ trình của cùng một xe, tương tự với các gói hàng:

$$r_i = r_{i+N+M}, \quad i = 1, 2, ..., N + M$$
 (30)

• Điểm đón khách phải liền trước điểm trả khách:

$$x_{i,(i+N+M)} = 1, \quad i = 1, 2, ..., N$$
 (31)

• Điểm lấy hàng phải ở trước điểm giao hàng:

$$I_i \le I_{i+N+M}, \quad i = N+1, N+2, ..., N+M$$
 (32)

• Khối lượng còn lại của xe tại mọi thời điểm không âm (đã thỏa mãn).

Ràng buộc thừa

• Điểm đầu và điểm cuối tương ứng cùng nằm trên 1 lộ trình:

$$r_i = r_{K+i}, \quad i = 2N + 2M + 1, ..., 2N + 2M + K$$
 (33)

• Một điểm không tự nối tới chính nó, trừ K điểm logic tham chiếu tới 0:

$$x_{ii} = 0, \quad i = 1, 2, ..., 2N + 2M$$
 (34)

- L: Độ dài của lộ trình xe dài nhất trong K lộ trình
- Ràng buộc xác định lộ trình dài nhất:

$$I_i \leq L, \quad i = 2N + 2M + K + 1, ..., 2N + 2M + 2K$$
 (35)

Hàm mục tiêu

$$L \leftarrow min$$
 (36)

Cài đặt thuật toán

Cài đặt thuật toán

Thực nghiệm và đánh giá

Thực nghiệm và đánh giá

Kết luận