KONTROLING DAN MONITORING PADA INKUBATOR BAYI MENGGUNAKAN NODEMCU BERBASIS WEBSITE PADA PUSKESMAS

PRA PROPOSAL PROYEK TINGKAT

Diajukan sebagai syarat untuk mengikuti Sidang Komite Proyek tingkat

oleh:

IGNASIUS ADE KITA PURBA 6705180133

D3 TEKNOLOGI TELEKOMUNIKASI FAKULTAS ILMU TERAPAN UNIVERSITAS TELKOM 2020

Latar Belakang

Kelahiran bayi prematur merupakan salah satu kelahiran yang terjadi sebelum minggu ke 37 atau lebih awal dari hari perkiraan lahir. Berbagai masalah yang dapat ditimbulkan oleh kelahiran bayi prematur. Bayi berat badan lahir rendah (BBLR) adalah bayi yang berat badan pada saat baru lahirnya kurang dari 2500gram. Bayi prematur mempunyai resiko kematian yang sangat tinggi dibandingkan dengan bayi yang lahir cukup bulan atau normal. Banyak faktor yang mempengaruhi angka kematian bayi prematur. Salah satunya yaitu minimnya pengawasan kondisi bayi prematur setelah lahir. Bayi yang lahir prematur harus dirawat dengan inkubator, sebab pengaturan suhu tubuhnya belum stabil dan akan mudah mengalami hypothermia. Inkubator dapat menjaga suhu ruang agar suhu tetap stabil. Suhu inkubator disesuaikan dengan berat lahir atau usia kehamilan.Sesak nafas akibat pengembangan paru-paru yang tidak baik membuat bayi perlu mendapat pasokan oksigen. Namun pemberian oksigen lebihan akan menyebabkan kerusakan pada retina bayi. Setelah perawatan inkubator berakhir, mata bayi perlu diperiksa secara berkala. Jika sudah stabil, bayi akan dirawat oleh ibu dengan cara perawatan bayi lekat atau perawatan metode 'kanguru'. Pada penelitian ini, pemantauan inkubator dapat dipantau melalui website yang menggunakan automatic Kontroling dan monitoring system dengan membangun rangkaian hardware yang terdiri dari NodeMCU sebagai unit pusat kontrol, sensor MQ-135 yang berfungsi untuk mengukur kadar oksigen, sensor DHT 11 untuk mengukur suhu dan kelembaban servo motor sebagai pembuka katup tabung oksigen, modul kamera untuk melihat bayi, serta sebuah website kontroling dan monitoring sebagai pusat kontrol dan hasil keluaran untuk mengetahui kualitas udara suhu dan kelembaban pada inkubator.

Studi Literatur Penelitian Terkait

Tabel 1 Merupakan hasil studi literature terhadap penelitian yang terkait dengan judul yang diangkat.

Tabel 1 Hasil Studi Literatur

No	Judul Penelitian /Karya Ilmiah	Tahun	Keterangan
1.	Sistem Monitoring Suhu dan Kelembaban Inkubator Bayi denganTeknologi Whatsapp	2019	Dalam penelitian ini penulis membuat suatu rancangan sistem dimana penulis membuat suatau sistem untuk mendeteksi suhu ruangan menggunakan <i>DHT11</i> . Informasi hasil keluaran dilanjutkan ke server incubator bayi dan diteruskan ke panel apiwha, dan secara otomatis memberi notifikasi ke HP melalui <i>messeger whatsapp</i> .
2.	Rancang Bangun Sistem Kontrol	2017	Dalam penelitian ini penulis menggunakan mikrokontroler Arduino Uno
	Parameter Fisis Pada Inkubator Bayi		sebagai komponen yang berfungsi sebagai tempat pengolahan data yang
	Berbasis Mikrokontroler Arduino Uno		akan diproses baik dari sensor (input) maupun komputer (output).
	Dan Esp 8266		Komputer yang digunakan berfungsi sebagai penampil dan pemberi
			perintah untuk menghidupkan dan mematikan driver pemanas dan fan.
3.	Sistem Kontroling Kestabilan Suhu Pada	2016	Dalam penelitian ini penulis menggunakan Arduino Uno sebagai pengontrol
	Inkubator Bayi Berbasis Arduino Uno		yang dapat bekerja secara otomatis serta mampu mengatur kestabilan suhu
	Deng an Matlab		inkubator bayi pada temperature 36° C dengan kelembapan antara 50% -
			60% sesuai dengan kebutuhan bayi di dalam incubator. Sensor suhu
			menggunakan DHTT11 dan LM35 yang teregistrasi dengan Arduino Uno

			dan menggunakan bantuan software Matlab untuk mendapatkan hasil sesuai
			dengan yang diingin.
4.	Suhu Tubuh Bayi Prematur Di	2019	Berdasarkan hasil penelitian penulis bertijuan untuk membandingkan rata-
	Inkubator Dinding Tunggal Dengan		rata perubahan suhu tubuh di inkubator dinding tunggal dengan inkubator
	Inkubator Dinding Tunggal Disertai		dinding tunggal disertai sangkup pada bayi prematur yang disertai hipotemi.
	Sungkup		Rancangan penelitian menggunakan metode deskriptif komparatif. Setelah
	8 1		dilakukan penelitian didapatkan didapatkan rata-rata perubahan suhu tubuh
			bayi prematur dengan hipotemia yang dilakukan perawatan inkubator
			dinding tunggal adalah 35,35° C dan dibutuhkan waktu cukup lamauntuk
			meningkatkan suhu tubuh bayi tersebut menggunakan inkubator da rata-rata
			perubahan suhu bayi yang dilakukan perawatan di incubator tunggal disertai
			sunggkup adalah 36,09°C.
5.	Rancang Alikasi Pemantau Suhu dan	2015	Tujuan dari penelitian ini adalah merancang dan membuat aplikasi
	Kelembapan pada inkubator bayi berbasis		pemantau suhu dan kelembapan pada inkubator bayi melalui
	internet		internet/web, sehingga pengguna dapat melakukan kontrol dan
			pemantauantanpa interaksi langsung dengan perangkat keras.
			Seminar Nasional Aplikasi Teknologi Informasi (SNATi)
			2015Yogyakarta, 6 Juni 2015I-8ISSN: 1907 –5022Gambar 1.
			Arsitektur inkubator berbasis webPengguna dapat melakukan
			pengubahan parameter dan pengambilan data. Proses tersebut
			dilakukan dengan mengakses alamat server sistem kontrol dan
			pemantau pada webbrowser. Pada modul eksperimen sistem terdiri

			atas sensor, aktuator, relay, arduino ethernet, dan router. Pada sisi server sistem terdiri atas webserver,database, dan koneksi internet. Perancangan sistem eksperimen suhu dan kelembapan berbasis internet memerlukan integrasi yang baik antara sistem kontrol dan pemantau, arduino ethernet, dan perangkat lunak web.
6.	Rancang Bangun Alat Monitoring Suhu dan Kelembaban Pada Alat Baby Incubator Berbasis Internet Of Things	2015	sebuah sistem dimana pemantauan suhu dan kelembaban dilakukan secara otomatis dan dapat dilihat dimanapun menggunakan akses internet. Perencanaan sistem ini bertujuan untuk mempermudah dalam hal pemantauan dan pengambilan data pasien tanpa harus berada pada lokasi alat. Pada Perencanaan ini menggunakan arduino mini pro sebagai controller keseluruhan sistem alat.

Rancangan Sistem

Pada bab ini akan dijelaskan mengenai perancangan aplikasi sistem kontroling dan monitoring incubator bayi menggunakan NodeMCU berbasis website yang terdiri dari sub bab model sistem, diagram alir perancangan sistem, proses kontroling dan monitoring inkubator bayi, analisa kebutuhan sistem, realisasi sistem dan skenario pengujian. Adapun model sistem *kontroling* dan *monitoring* yang telah dibuat dapat dilihat pada Gambar 1 dibawah ini.

Gambar 1. Model Sistem Perancangan Aplikasi Inkubator bayi

Sensor diletakkan pada inkubator bayi seperti sensor suhu yang berfungsi untuk menghitung suhu maximum dan minimum sehingga dapat mengetahui kapan kipas dan lampu pemanas menyala dan padam. Kemudian terdapat sensor MQ-2 untuk mengetahui kadar oksigen pada incubator sehingga jika terdeteksi kadar oksigen kurang maka servo motor secara otomatis akan membuka katup pada oksigen portible yang digunakan, terdapat juga modul kamera yang berfungsi untuk memonitoring pergerakan bayi yang akan ditampilkan pada wab dan semua sensor

tersebut dikontrol dan di monitoring melalui NodeMCU sehingga dapat tersambung ke webbrowser dan dapat di akses melalui komuter user.

Referensi

- Alvien Yuliant, A. S. (2015). Rancang Aplikasi Pemantau Suhu dan Kelembapan pada inkubator bayi berbasis internet . 7-10.
- Bayu Nurcahya1, 2. I. (2016). Sistem Kontroling Kestabilan Suhu Pada Inkubator Bayi Berbasis Arduino Uno Dengan Matlab . *Jurnal METTEK Volume 2No 1 (2016)*, 35-42.
- Diki Rahsidin 1*, R. A. (2019). Sistem Monitoring Suhu dan Kelembaban Inkubator Bayi denganTeknologi Whatsapp. *jurnal umj semnastek*, 1-9.
- Padila1, I. A. (2019). Suhu Tubuh Bayi Prematur Di Inkubator Dinding Tunggal Dengan Inkubator Dinding Tunggal Disertai Sungkup . *Jurnal Keperawatan SilampariVolume 2, Nomor 2, Juni 2019*, 113-122.
- Romi Andi Wijaya1, a. W. (2018). Rancang Bangun Alat Monitoring Suhu dan Kelembaban Pada Alat Baby Incubator Berbasis Internet Of Things . 52-70.
- Yeldi S. Nafie, J. T. (2018). Rancang Bangun Sistem Kontrol PArameter Fisis Pada Inkubator Bayi Berbasis Mikrokontroler Arduino Uno Dan Esp 8266. 37-43.

Form Kesediaan Membimbing Proyek Tingkat

Tanggal: 10 Desember 2020

Kami yang bertanda tangan dibawah ini:

CALON PEMBIMBING 1

Kode : AIM

Nama : Aris Hartaman, S.T., M.T.

CALON PEMBIMBING 2

Kode : RGK

Nama : Syahban Rangkuti, S.T., M.T.

Menyatakan bersedia menjadi dosen p embimbing Proyek Tingkat bagi mahasiswa berikut,

NIM : 6705180133

Nama : Ignasius Ade Kita Purba

Prodi / Peminatan : D3TT / IOT

Calon Judul PA

KONTROLING DAN MONITORING PADA INKUBATOR BAYI MENGGUNAKAN NODEMCU BERBASIS WEBSITE PADA PUSKESMAS

Dengan ini akan memenuhi segala hak dan kewajiban sebagai dosen pembimbing sesuai dengan Aturan Proyek Tingkat yang berlaku.

Calon Pembimbing 1

Calon Pembimbing 2

Aris Hartaman, S.T., M.T.)

(Syahban Rangkuti, S.T., M.T.)

CATATAN:

- 1. Aturan Proyek Akhir versi terbaru dapat diunduh dari : http://dte.telkomuniversity.ac.id/panduan-proyek-akhir/
- Keputusan akhir penentuan pembimbing berada di tangan Ketua Kelompok Keahlian dengan memperhatikan aturan yang berlaku.
- Pengajuan pembimbing boleh untuk kedua pembimbing sekaligus atau untuk salah satu pembimbing saja

Telkom UniversityJl. Telekomunikasi No.1, Terusan Buah Batu
Bandung 40257
Indonesia

DAFTAR NILAI HASIL STUDI MAHASISWA

NIM (Nomor Induk

: 6705180133

Dosen Wali

: HPT / HASANAH PUTRI

Mahasiswa) Nama

: IGNASIUS ADE KITA PURBA

Program Studi : D3 Teknologi Telekomunikasi

Mata Kuliah yang Lulus

	:	:				
Semester	Kode Mata Kuliah	Mata Kuliah	Nama Mata Kuliah B. Inggris	SKS	Nilai	
1	HUH1C2	PENDIDIKAN AGAMA KATHOLIK DAN ETIKA	CATHOLIC RELIGION AND ETHICS	2	А	
1	DTH1D3	RANGKAIAN LISTRIK	ELECTRICAL CIRCUITS	3	С	
1	DTH1B3	MATEMATIKA TELEKOMUNIKASI I	MATHEMATICS TELECOMMUNICATIONS I	3	С	
1	DUH1A2	LITERASI TIK	ICT LITERACY	2	В	
1	DTH1A2	K3 DAN LINGKUNGAN HIDUP	K3 AND ENVIRONMENT	2	AB	
1	DTH1C3	DASAR TEKNIK KOMPUTER DAN PEMROGRAMAN	BASIC COMPUTER ENGINEERING AND PROGRAMMING	3	АВ	
1	DTH1F3	DASAR SISTEM TELEKOMUNIKASI	BASIC TELECOMMUNICATIONS SYSTEM	3	С	
1	DTH1E2	BENGKEL MEKANIKAL DAN ELEKTRIKAL	MECHANICAL AND ELECTRICAL WORKSHOP	2	АВ	
2	DTH1H3	TEKNIK DIGITAL	DIGITAL TECHNIQUES	3	ВС	
2	DMH1A2	OLAH RAGA	SPORT	2	А	
2	DTH1G3	MATEMATIKA TELEKOMUNIKASI II	MATHEMATICS TELECOMMUNICATIONS II	3	С	
2	DTH1I3	ELEKTRONIKA ANALOG	ANALOG ELECTRONIC	3	AB	
2	DTH1J2	BENGKEL ELEKTRONIKA	ELECTRONICS WORKSHOP	2	AB	
2	DTH1K3	ELEKTROMAGNETIKA	ELECTROMAGNETIC	3	С	
2	HUH1G3	PANCASILA DAN KEWARGANEGARAAN	PANCASILA AND CITIZENSHIP	3	AB	
2	LUH1B2	BAHASA INGGRIS I	ENGLISH I	2	ВС	
3	DTH2F3	TEKNIK TRANSMISI RADIO	RADIO TRANSMISSION TECHNIQUES	3	ВС	
Jumlah SKS					3.04	

Semester	Kode Mata Kuliah	Mata Kuliah	Nama Mata Kuliah B. Inggris	SKS	Nilai
3	DTH2D3	APLIKASI MIKROKONTROLER DAN ANTARMUKA	MICROCONTROLLER APPLICATIONS AND INTERFACES	3	АВ
3	DTH2A2	BAHASA INGGRIS TEKNIK I	ENGLISH TECHNIQUE I	2	AB
3	DTH2C2	BENGKEL INTERNET OF THINGS	INTERNET OF THINGS WORKSHOP	2	AB
3	DTH2B3	KOMUNIKASI DATA BROADBAND	BROADBAND DATA COMMUNICATIONS	3	AB
3	DTH2E3	SISTEM KOMUNIKASI	COMMUNICATIONS SYSTEMS	3	ВС
3	DTH2G3	SISTEM KOMUNIKASI OPTIK	OPTICAL COMMUNICATION SYSTEMS	3	ВС
4	DTH2L3	TEKNIK ANTENNA DAN PROPAGASI	ANTENNA TECHNIQUES AND PROPAGATION	3	АВ
4	DTH2K3	ELEKTRONIKA TELEKOMUNIKASI	ELECTRONICS TELECOMMUNICATIONS	3	АВ
4	DTH2J2	TEKNIK TRAFIK	TRAFFIC ENGINEERING	2	В
4	DTH2I3	DASAR KOMUNIKASI MULTIMEDIA	BASIC COMMUNICATION MULTIMEDIA	3	А
4	DTH2H3	JARINGAN DATA BROADBAND	BROADBAND DATA NETWORK	3	С
4	DMH2A2	KERJA PRAKTEK	INTERSHIP	2	А
4	DTH2M3	SISTEM KOMUNIKASI SELULER	CELLULAR COMMUNICATION SYSTEMS	3	АВ
4	DMH1B2	PENGEMBANGAN PROFESIONALISME	PROFESSIONAL DEVELOPMENT	2	А
		Jumlah SKS		81	3.04

Mata Kuliah yang Belum Lulus

Semester	Kode Mata Kuliah	Mata Kuliah	Nama Mata Kuliah B. Inggris	SKS	Nilai
3	VTI2G3	PENGOLAHAN SINYAL INFORMASI	INFORMATION SIGNAL PROCESSING	3	
4	UKI2C2	BAHASA INDONESIA	INDONESIAN LANGUAGE	2	
4	VTI2K3	JARINGAN TELEKOMUNIKASI BROADBAND	BROADBAND DATA NETWORKS	3	
4	VTI2H2	BAHASA INGGRIS TEKNIK II	ENGLISH TECHNIQUES II	2	
5	VTI3D3	KEAMANAN JARINGAN	NETWORK SECURITY	3	
5	UWI3E1	HEI	HEI	1	

Jumlah SKS

16

Semester	Kode Mata Kuliah	Mata Kuliah	Nama Mata Kuliah B. Inggris	SKS	Nilai
5	UWI3A2	KEWIRAUSAHAAN	ENTREPRENEURSHIP	2	
	Jum	16			

Mata Kuliah yang Diulang

Semester	Kode Mata Kuliah	Mata Kuliah	Nama Mata Kuliah B. Inggris	SKS	Nilai
2	DTH1H3	TEKNIK DIGITAL	DIGITAL TECHNIQUES	3	E
	Jumlah S	3			

Tingkat I	: 41 SKS	Belum Lulus	IPK : 2.85
Tingkat II	: 81 SKS	Belum Lulus	IPK: 3.04
Tingkat III	: 81 SKS	Belum Lulus	IPK: 3.04
Jumlah SKS	: 81 SKS		IPK: 3.04

Total SKS dan IPK dihitung dari mata kuliah lulus dan mata kuliah belum lulus. Nilai kosong dan T tidak diikutkan dalam perhitungan IPK.

Pencetakan daftar nilai pada tanggal 11 Desember 2020 13:38:08 oleh IGNASIUS ADE KITA PURBA