

ABES Engineering College, Ghaziabad Department of Applied Sciences & Humanities

Session: 2023-24 Semester: I Section: Common to All

Course Code: BAS-103 Course Name: Engineering Mathematics-I

Assignment 2

Date of Assignment:

Date of submission:

		СО	PI		
S.No.	KL			Question	Marks
1	K3	CO2	1.2.1,1.3.1	d^n	
			2.1.3,2.2.3	If $I_n = \frac{d^n}{dx^n} (x^n \log x)$, then prove that $I_n = nI_{n-1} + (n-1)!$.	
			2.4.1,2.4.4		5
	K3	CO2	2.4.1,2.4.4		
2				If $y = [\log(x + \sqrt{1 + x^2})]$, find all the derivative of y for $x = 0$.	
			4.3.1		5
	K3	CO2	2.4.1,2.4.4		
3			3.1.1,4.1.1	If $y = \left(\frac{1+x}{1-x}\right)^{1/2}$, prove that	5
			4.3.1	$(1-x^2)y_n - [2(n-1)x+1]y_{n-1} - (n-1)(n-2)y_{n-2} = 0.$	
	K3	CO2	1.2.1,1.3.1		
4			2.1.3,2.2.3	If $y = \cos(m\sin^{-1}x)$, provethat	5
				$(1-x^2)y_{n+2} - (2n+1)xy_{n+1} - (n^2 - m^2)y_n = 0.$	
	K3	CO2			
5				If $y = (x^2 - 1)^m$, prove that $y_{2m} = 2m!$	5
6	K3	CO2	4.3.4	$\left(\begin{array}{c} \frac{1}{r^4} + \frac{1}{v^4} \\ \end{array}\right)$ $\partial^2 u = \partial^2 u = \partial^2 u$	5
			5.1.1,4.1.1 4.3.1	If $u = \sin^{-1} \left(\frac{x^{\frac{1}{4}} + y^{\frac{1}{4}}}{\frac{1}{x^{\frac{1}{6}}} + y^{\frac{1}{6}}} \right)$, then evaluate $x^2 \frac{\partial^2 u}{\partial x^2} + 2xy \frac{\partial^2 u}{\partial x \partial y} + y^2 \frac{\partial^2 u}{\partial y^2}$	

7	K3	CO2	511/11	If $z = f(x, y)$, where $x = e^u cosv$, $y = e^u sinv$, prove that $\left(\frac{\partial f}{\partial x}\right)^2 + \left(\frac{\partial f}{\partial y}\right)^2 = e^{-2u} \left[\left(\frac{\partial f}{\partial u}\right)^2 + \left(\frac{\partial f}{\partial v}\right)^2\right]$	5
8	K3	CO2	2.4.1,2.4.4 2.1.3,2.2.3	If $u = f(2x - 3y, 3y - 4z, 4z - 2x)$, prove that $\frac{1}{2} \frac{\partial u}{\partial x} + \frac{1}{3} \frac{\partial u}{\partial y} + \frac{1}{4} \frac{\partial u}{\partial z} = 0$	5
9	K3	CO2	1.2.1,1.3.1 2.1.3,2.2.3 2.4.1,2.4.4	If $x = e^r cos\theta$, $y = e^r sin\theta$, show that $\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = e^{-2r} \left(\frac{\partial^2 u}{\partial r^2} + \frac{\partial^2 u}{\partial \theta^2} \right)$	5
10	К3	CO2	10.3.1, 10.1.3 12.1.2 12.3.1 4.3.1.4.3.3	If $y = \left[x + \sqrt{1 + x^2}\right]^m$, find $y_n(0)$.	5

Answers:

2. .

when n is odd , $y_n(0) = 0$

when n is even , $y_n(0) = (-1)^{\frac{n}{2}-1} 2 \cdot 2^2 \cdot 4^2 \cdot 6^2 \cdot \dots \cdot (n-2)^2$

6. $\frac{1}{144} \tan u (tan^2 u - 11)$

10. When n is even $y_n(0) = [m^2 - (n-2)^2][m^2 - (n-4)^2] \dots \dots (m^2 - 4^2)(m^2 - 2^2)m^2$, when n is odd $y_n(0) = [m^2 - (n-2)^2][m^2 - (n-4)^2] \dots \dots (m^2 - 3^2)(m^2 - 1^2)m$