```
In [4]: # Import Required Libraries
        import os
        import pandas as pd
        import numpy as np
        import matplotlib.pyplot as plt
        import seaborn as sns
        # Load the dataset
        os.chdir("/Users/ayeshasiddigha/Downloads")
        data = pd.read_csv('aerofit_treadmill.csv')
        # Display basic details
        print(data.info())
        print(data.head())
        # Check for missing values
        print(data.isnull().sum())
        # Statistical Summary
        print(data.describe())
        # Data Types
        print(data.dtypes)
        # Boxplot for outlier detection
        columns = ['Age', 'Income', 'Usage', 'Fitness', 'Miles']
        for col in columns:
            sns.boxplot(x=data[col])
            plt.title(f'Boxplot for {col}')
            plt.show()
        # Check Skewness and Median vs Mean for Outliers
        print(data[columns].describe())
        # Distribution plots for continuous variables
        for col in columns:
            sns.histplot(data[col], kde=True)
            plt.title(f'Histogram for {col}')
            plt.show()
        # Count plot for categorical variables
        sns.countplot(x='Gender', data=data)
        plt.title('Count of Customers by Gender')
        plt.show()
        sns.countplot(x='MaritalStatus', data=data)
        plt.title('Count of Customers by Marital Status')
        plt.show()
        sns.countplot(x='Product', data=data)
        plt.title('Count of Customers by Product Purchased')
        plt.show()
        # Boxplots for Age and Income by Product Purchased
        sns.boxplot(x='Product', y='Age', data=data)
        plt.title('Age Distribution by Product')
        plt.show()
```

```
sns.boxplot(x='Product', y='Income', data=data)
plt.title('Income Distribution by Product')
plt.show()
# Pairplot for Correlation Analysis
sns.pairplot(data, hue='Product', diag kind='kde')
plt.show()
# Correlation Heatmap
plt.figure(figsize=(10, 8))
sns.heatmap(data.corr(numeric_only=True), annot=True, cmap='coolwarm')
plt.title('Correlation Heatmap')
plt.show()
# Marginal Probabilities
marginal = data['Product'].value_counts(normalize=True)
print("Marginal Probabilities:")
print(marginal)
# Conditional Probabilities
conditional_gender = pd.crosstab(data['Gender'], data['Product'], normali
print("Conditional Probability by Gender:")
print(conditional_gender)
conditional marital = pd.crosstab(data['MaritalStatus'], data['Product'],
print("Conditional Probability by Marital Status:")
print(conditional_marital)
# Create customer profiles based on averages per product
# Numeric profiling
numeric_profiles = data.groupby('Product').mean(numeric_only=True)
print("Customer Profiles (Continuous Variables):")
print(numeric_profiles)
# Categorical profiling
categorical_profiles = data.groupby('Product')[['Gender', 'MaritalStatus'
print("Customer Profiles (Categorical Variables):")
print(categorical_profiles)
# Actionable Insights
print("\n--- Actionable Insights ---")
print("1. KP281 is purchased by customers with lower income, younger age,
print("2. KP481 caters to mid-income customers with moderate fitness and
print("3. KP781 is preferred by high-income customers with excellent fitn
print("Recommendations:")
print("1. Target younger demographics with affordable KP281 through social
print("2. Use fitness-focused campaigns for KP781 targeting high-income g
print("3. Highlight balanced features of KP481 for middle-income, fitness
print("4. Offer KP281 with affordable accessories for beginners (e.g., fi
print("5. Include premium memberships or coaching sessions with KP781.")
print("6. Place KP281 in regions with a younger population and lower aver
print("7. Promote KP781 in urban areas with higher-income groups.")
print("8. Introduce discounts during seasonal promotions for KP281 and KP
print("9. Encourage KP281 customers to upgrade to KP481 with loyalty disc
```

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 180 entries, 0 to 179
Data columns (total 9 columns):

#	Column	Non-Null Count	Dtype
0	Product	180 non-null	object
1	Age	180 non-null	int64
2	Gender	180 non-null	object
3	Education	180 non-null	int64
4	MaritalStatus	180 non-null	object
5	Usage	180 non-null	int64
6	Fitness	180 non-null	int64
7	Income	180 non-null	int64
8	Miles	180 non-null	int64
Alaba	+	L + (2)	

dtypes: int64(6), object(3)
memory usage: 12.8+ KB

None

Р	roduct	Age	Gender	Education	MaritalStatus	Usage	Fitness	Income	М
ile	:S								
0	KP281	18	Male	14	Single	3	4	29562	
112									
1	KP281	19	Male	15	Single	2	3	31836	
75									
2	KP281	19	Female	14	Partnered	4	3	30699	
66									
3	KP281	19	Male	12	Single	3	3	32973	
85									
4	KP281	20	Male	13	Partnered	4	2	35247	
47									
Pro	duct		0						
Age	!		0						
Gen	der		0						
Education		0							
MaritalStatus		0							
Usage		0							
Fitness		0							
Income		0							
Miles		0							
dty	dtype: int64								

	Age	Education	Usage	Fitness	Income	\
count	180.000000	180.000000	180.000000	180.000000	180.000000	
mean	28.788889	15.572222	3.455556	3.311111	53719.577778	
std	6.943498	1.617055	1.084797	0.958869	16506.684226	
min	18.000000	12.000000	2.000000	1.000000	29562.000000	
25%	24.000000	14.000000	3.000000	3.000000	44058.750000	
50%	26.000000	16.000000	3.000000	3.000000	50596.500000	
75%	33.000000	16.000000	4.000000	4.000000	58668.000000	
max	50.000000	21.000000	7.000000	5.000000	104581,000000	

Miles count 180.000000 mean 103.194444 std 51.863605 21.000000 min 25% 66.000000 50% 94.000000 75% 114.750000 360.000000 max Product object Age int64

Gender	object
Education	int64
MaritalStatus	object
Usage	int64
Fitness	int64
Income	int64
Miles	int64

dtype: object

Boxplot for Age

Boxplot for Income

Boxplot for Usage

Boxplot for Fitness

Boxplot for Miles

	Age	Income	Usage	Fitness	Miles
count	180.000000	180.000000	180.000000	180.000000	180.000000
mean	28.788889	53719.577778	3.455556	3.311111	103.194444
std	6.943498	16506.684226	1.084797	0.958869	51.863605
min	18.000000	29562.000000	2.000000	1.000000	21.000000
25%	24.000000	44058.750000	3.000000	3.000000	66.000000
50%	26.000000	50596.500000	3.000000	3.000000	94.000000
75%	33.000000	58668.000000	4.000000	4.000000	114.750000
max	50.000000	104581.000000	7.000000	5.000000	360.000000

Histogram for Age

4

Usage

5

0

3

Histogram for Miles

Count of Customers by Marital Status

Age Distribution by Product

Marginal Probabilities:

Product

KP281 0.444444
KP481 0.333333
KP781 0.222222

Name: proportion, dtype: float64 Conditional Probability by Gender: Product KP281 KP481 KP781

Gender

Female 0.526316 0.381579 0.092105 Male 0.384615 0.298077 0.317308

Conditional Probability by Marital Status: Product KP281 KP481 KP781

MaritalStatus

Partnered 0.448598 0.336449 0.214953 Single 0.438356 0.328767 0.232877

Customer Profiles (Continuous Variables):

Age Education Usage Fitness Income Miles Product KP281 28.55 15.037500 3.087500 2.9625 46418.025 82.787500 KP481 28.90 15.116667 3.066667 2.9000 48973.650 87.933333 KP781 29.10 17.325000 4.775000 4.6250 75441.575 166.900000 Customer Profiles (Categorical Variables):

Gender MaritalStatus

Product

KP281 [Female, Male] Partnered
KP481 Male Partnered
KP781 Male Partnered

--- Actionable Insights ---

- 1. KP281 is purchased by customers with lower income, younger age, and low er fitness levels.
- 2. KP481 caters to mid-income customers with moderate fitness and usage.
- 3. KP781 is preferred by high-income customers with excellent fitness and higher usage expectations.

Recommendations:

- 1. Target younger demographics with affordable KP281 through social media ads.
- 2. Use fitness-focused campaigns for KP781 targeting high-income groups in gyms or premium fitness clubs.
- 3. Highlight balanced features of KP481 for middle-income, fitness-conscious individuals.
- 4. Offer KP281 with affordable accessories for beginners (e.g., fitness bands).
- 5. Include premium memberships or coaching sessions with KP781.
- 6. Place KP281 in regions with a younger population and lower average inco mes.
- 7. Promote KP781 in urban areas with higher-income groups.
- 8. Introduce discounts during seasonal promotions for KP281 and KP481.
- 9. Encourage KP281 customers to upgrade to KP481 with loyalty discounts.

In []: