ใบงาน 5 : บทที่ 2 ปริภูมิเวกเตอร์

ข้อที่ 1. จงตรวจสอบว่า เซต

$$\left\{ \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}, \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 2 & 3 \\ 0 & 2 \end{bmatrix} \right\}$$

เป็นอิสระเชิงเส้นในปริภูมิเวกเตอร์ $\mathbb{M}_{2 imes2}$ หรือไม่ วิธีทำ

ใบงาน 5 : บทที่ 2 ปริภูมิเวกเตอร์

ข้อที่ 2. จงตรวจสอบว่า เซต

$$\left\{ \begin{bmatrix} 1\\2\\0 \end{bmatrix}, \begin{bmatrix} 2\\3\\-1 \end{bmatrix}, \begin{bmatrix} 4\\-1\\1 \end{bmatrix} \right\}$$

เป็นฐานหลัก (basis) สำหรับ $\mathbb{M}_{3 imes 1}$ หรือไม่ วิธีทำ

4 700								ຕາ້ອງ ໄຕນວິດສັດ		مر م	2
ชอ-สกล						 	 	รหัสประจำตัว	 section	เหนา	၁
9											
	4	_	_	ע	_		_				

SC402101 พีชคณิตเชิงเส้น 1 (Linear Algebra I) 2/2567 ใบงาน 5 : บทที่ 2 ปริภูมิเวกเตอร์

ข้อที่ 3. กำหนดให้ $\mathbb{W} = \{(x,y,z) \in \mathbb{R}^3 : z = 3x - 5y\}$ เป็นปริภูมิย่อยของปริภูมิเวกเตอร์ \mathbb{R}^3 จงหาฐานหลัก สำหรับ \mathbb{W} และ $\dim\left(\mathbb{W}\right)$

วิธีทำ