# CS 2305: Discrete Mathematics for Computing I

Lecture 21

- KP Bhat

# Analogy for reasoning often used in Big-O problems

- Consider a weighing scale where on the one side you have an apple, a pear and a banana. On the other side you replace the apple by a bigger apple, the banana by a bigger banana and the pear by a bigger pear
- Obviously the first side of the scale will be lighter than the second side of the scale
- In our case we will look at an expression and replace smaller terms by larger terms. Obviously the original expression will be less than the resultant expression



#### Big-Omega Notation 1

**Definition**: Let f and g be functions from the set of integers or the set of real numbers to the set of real numbers. We say that f(x) is  $\Omega(g(x))$  if there are constants C and K such that

$$|f(x)| \ge C|g(x)|$$
 when  $x > k$ .

We say that "f(x) is big-Omega of g(x)."

<u>Big-O</u> gives an <u>upper bound on the growth of a function</u>, while <u>Big-Omega</u> gives a <u>lower bound</u>. Big-Omega tells us that a function grows at least as fast as another.

### Big-Omega Notation 2

**Example:** Show that  $f(x) = 8x^3 + 5x^2 + 7$  is  $\Omega(g(x))$  where  $g(x) = x^3$ .

**Solution:**  $f(x) = 8x^3 + 5x^2 + 7 \ge 8x^3$  for all positive real numbers x.

#### Big-Theta Notation 1

**Definition**: Let f and g be functions from the set of integers or the set of real numbers to the set of real numbers. The function

$$f(x)$$
 is  $\Theta(g(x))$  if  $f(x)$  is  $O(g(x))$  and  $f(x)$  is  $\Omega(g(x))$ .

We say that "f is big-Theta of g(x)" and also that "f(x) is of order g(x)" and also that "f(x) and g(x) are of the same order."

f(x) is  $\Theta(g(x))$  if and only if there exists constants  $C_1$ ,  $C_2$  and k such that  $C_1g(x) < f(x) < C_2g(x)$  if x > k. This follows from the definitions of big-O and big-Omega.

#### Big-Theta Notation 2

**Example**: Show that the sum of the first n positive integers is  $\Theta(n^2)$ . **Solution**:

We have already shown that f(n) is  $O(n^2)$ .

To show that f(n) is  $\Omega(n^2)$ , we need a positive constant C such that  $f(n) > Cn^2$  for sufficiently large n. Summing only the terms greater than n/2 we obtain the inequality

$$1+2+\cdots+n \ge \lceil n/2 \rceil + (\lceil n/2 \rceil + 1) + \cdots + n$$

$$\ge \lceil n/2 \rceil + \lceil n/2 \rceil + \cdots + \lceil n/2 \rceil$$

$$= (n-\lceil n/2 \rceil + 1) \lceil n/2 \rceil$$

$$\ge (n/2)(n/2) = n^2/4$$

Sum of n terms is greater than sum of  $(n - \lceil n/2 \rceil + 1)$  terms

Replacing each of the  $(n - \lceil n/2 \rceil + 1)$  terms in the range  $\lceil n/2 \rceil$  through n by  $\lceil n/2 \rceil$ 

Inequality holds for both even (e.g. n = 2k) and odd cases (e.g. n = 2k + 1)

Hence, f(n) is  $\Omega(n^2)$ , and we can conclude that f(n) is  $\Theta(n^2)$ .

### Big-Theta Notation<sub>3</sub>

**Example:** Show that  $f(x) = 3x^2 + 8x \log x$  is  $\Theta(x^2)$ .

**Solution:** 

#### Part 1:

For x > 1,  $\log x$  is +ve and  $\log x < x$ 

$$8x \log x < 8x^2$$

$$3x^2 + 8x \log x < 11x^2$$

$$\therefore 3x^2 + 8x \log x \text{ is } O(x^2)$$

#### Part 2:

$$3x^2 + 8x \log x > x^2$$

$$\therefore 3x^2 + 8x \log x \text{ is } \Omega(x^2)$$

Hence  $3x^2 + 8x \log x$  is  $\Theta(x^2)$ 



#### Relating O, $\Omega$ and $\Theta_1$

- If f(x) is O(g(x)) then f is of order at most g
  - g is the upper-bound for f
- If f(x) is  $\Omega(g(x))$  then f is of order at least g
  - g is the lower-bound for f
- If f(x) is  $\Theta(g(x))$  then f is of order g
  - f is bounded both above and below by some multiple of g







## Relating O, $\Omega$ and $\Theta_2$



### Big-Theta Notation 4

When 
$$f(x)$$
 is  $\Theta(g(x))$  it must also be the case that  $g(x)$  is  $\Theta(f(x))$ .

Note that 
$$f(x)$$
 is  $\Theta(g(x))$  if and only if it is the case that  $f(x)$  is  $O(g(x))$  and  $g(x)$  is  $O(f(x))$ .

Note: Witnesses might be different in the two cases

Sometimes writers are careless and write as if big-O notation has the same meaning as big-Theta.

### Big-Theta Estimates for Polynomials<sub>1</sub>

**Theorem**: Let  $f(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x + a_0$ where  $a_0, a_1, \dots, a_n$  are real numbers with  $a_n \neq 0$ .

Then f(x) is of order  $x^n$  (or  $\Theta(x^n)$ ).

#### **Example:**

The polynomial  $f(x) = 8x^5 + 5x^2 + 10$  is order of  $x^5$  (or  $\Theta(x^5)$ ).

The polynomial  $f(x) = 8x^{199} + 7x^{100} + x^{99} + 5x^2 25$  is order of  $x^{199}$  (or  $\Theta(x^{199})$ ).

## Big-Theta Estimates for Polynomials<sup>2</sup>

#### Not on the

#### **Proof**

#### exam

We need to show inequalities both ways. First, we show that  $|f(x)| \le Cx^n$  for all  $x \ge 1$ , as follows, noting that  $x^i \le x^n$  for such values of x whenever i < n. We have the following inequalities, where M is the largest of the absolute values of the coefficients and C is M(n+1):

$$|f(x)| = |a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x + a_0|$$

$$\leq |a_n| x^n + |a_{n-1}| x^{n-1} + \dots + |a_1| x + |a_0|$$

$$\leq |a_n| x^n + |a_{n-1}| x^n + \dots + |a_1| x^n + |a_0| x^n$$

$$\leq M x^n + M x^n + \dots + M x^n + M x^n = C x^n$$

For the other direction, which is a little messier, let k be chosen larger than 1 and larger than  $2nm/|a_n|$ , where m is the largest of the absolute values of the  $a_i$ 's for i < n. Then each  $a_{n-i}/x^i$  will be smaller than  $|a_n|/2n$  in absolute value for all x > k. Now we have for all x > k,

$$|f(x)| = |a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x + a_0|$$

$$= x^n \left| a_n + \frac{a_{n-1}}{x} + \dots + \frac{a_1}{x^{n-1}} + \frac{a_0}{x^n} \right|$$

$$\geq x^n |a_n/2|,$$

# Complexity of Algorithms Short Overview

### The Complexity of Algorithms

Given an algorithm, how efficient is this algorithm for solving a problem given input of a particular size? To answer this question, we ask:

- How much time does this algorithm use to solve a problem?
- How much computer memory does this algorithm use to solve a problem?

When we analyze the time the algorithm uses to solve the problem given input of a particular size, we are studying the <u>time</u> <u>complexity</u> of the algorithm.

When we analyze the computer memory the algorithm uses to solve the problem given input of a particular size, we are studying the <u>space complexity</u> of the algorithm.

### **Space Complexity**

To analyze the space complexity we often consider the "extra" memory needed i.e. not counting the memory needed to store the input itself (e.g. pointers, keys, scratch buffers for ex-situ processing etc.).

A big focus in space complexity is analyzing the memory requirements for data structures employed for processing the data. For recursive algorithms we also need to analyze the recursion stack space.

### Time Complexity

To analyze the time complexity of algorithms, we determine the number of operations, such as comparisons and arithmetic operations (addition, multiplication, etc.). We can estimate the time a computer may actually use to solve a problem using the amount of time required to do basic operations.

We focus on the *worst-case time* complexity of an algorithm. This provides an upper bound on the number of operations an algorithm uses to solve a problem with input of a particular size.

It is usually much more difficult to determine the *average case time complexity* of an algorithm. This is the average number of operations an algorithm uses to solve a problem over all inputs of a particular size.

#### Complexity Analysis of Algorithms

**Example**: Describe the time complexity of the algorithm for finding the maximum element in a finite sequence.

**Solution**: Count the number of comparisons.

- The  $max < a_i$  comparison is made n 1 times.
- Each time i is incremented, a test is made to see if  $i \le n$ .
- One last comparison determines that i > n.
- Exactly 2(n-1) + 1 = 2n 1 comparisons are made.

Hence, the time complexity of the algorithm is  $\Theta(n)$ .

#### Worst-Case Complexity of Linear Search

**Example**: Determine the time complexity of the linear search algorithm.

```
procedure linear search(x:integer, a_1, a_2, ..., a_n: distinct integers)
i := 1
while (i \le n \text{ and } x \ne a_i)
i := i + 1
if i \le n then location := i
else location := 0
return location{location is the subscript of the term that equals x, or is 0 if x is not found}
```

**Solution**: Count the number of comparisons.

- At each step two comparisons are made;  $i \le n$  and  $x \ne a_i$ .
- To end the loop, one comparison  $i \le n$  is made.
- After the loop, one more  $i \le n$  comparison is made.

In the worst case (x is not on the list), 2n + 1 comparisons are made and then an additional comparison is used to exit the loop. So, in the worst case 2n + 2 comparisons are made. Hence, the complexity is  $\Theta(n)$ .

#### Worst-Case Complexity of Binary Search

**Example**: Describe the time complexity of binary search in terms of the number of comparisons used.

```
procedure binary search(x: integer, a_1, a_2, ..., a_n: increasing integers)

i := 1 \{i \text{ is the left endpoint of interval}\}

j := n \{j \text{ is right endpoint of interval}\}

while i < j

m := \lfloor (i+j)/2 \rfloor

if x > a_m \text{ then } i := m+1

else j := m

if x = a_i \text{ then } location := i

else location := 0

return location \{ location \text{ is the subscript } i \text{ of the term } a_i \text{ equal to } x, \text{ or } 0 \text{ if } x \text{ is not found} \}
```

**Solution**: Assume (for simplicity)  $n = 2^k$  elements. Note that  $k = \log n$ .

- Two comparisons are made at each stage; i < j, and  $x > a_m$ .
- At the first iteration the size of the list is  $2^k$  and after the first iteration it is  $2^{k-1}$ . Then  $2^{k-2}$  and so on until the size of the list is  $2^1 = 2$ .
- At the last step, a comparison tells us that the size of the list is the size is  $2^0 = 1$  and the element is compared with the single remaining element.
- Hence, at most  $2k + 2 = 2 \log n + 2$  comparisons are made.
- Therefore, the time complexity is  $\Theta$  (log n), better than linear search.

### Worst-Case Complexity of Bubble Sort

**Example**: What is the worst-case complexity of bubble sort in terms of the number of comparisons made?

```
procedure bubblesort(a_1,...,a_n): real numbers with n \ge 2)

for i := 1 to n-1

for j := 1 to n-i

if a_j > a_{j+1} then interchange a_j and a_{j+1}
\{a_1,...,a_n \text{ is now in increasing order}\}
```

**Solution**: A sequence of n-1 passes is made through the list. On each pass n-i comparisons are made.

$$(n-1)+(n-2)+\ldots+2+1=\frac{n(n-1)}{2}$$

The worst-case complexity of bubble sort is  $\Theta(n^2)$  since

$$\frac{n(n-1)}{2} = \frac{1}{2}n^2 - \frac{1}{2}n.$$

#### Worst-Case Complexity of Insertion Sort

**Example**: What is the worst-case complexity of insertion sort in terms of the number of comparisons made?

**Solution:** The insertion sort inserts the j<sup>th</sup> element into the correct position among the first j-1 elements that have already been put into the correct order. In the worst case, j comparisons are required to insert the jth element into the correct position.

The total number of comparisons are

$$2+3+\cdots+n=\frac{n(n-1)}{2}-1$$

Therefore the complexity is  $\Theta(n^2)$ .

#### Time Complexity of Some Algorithms

- Linear search: Θ(n)
- Binary search: Θ(log n)
- Bubble Sort: Θ(n²)
- Selection Sort: Θ(n²)
- Insertion Sort: Θ(n²)
- Matrix Multiplication (n x n): Θ(n³)

### Algorithmic Paradigms (1)

An *algorithmic paradigm* is a general approach based on a particular concept for constructing algorithms to solve a variety of problems.

Brute-force algorithms

- Not on the exam
- naive approach for solving problems; does not take advantage of any special structure of the problem or clever ideas
  - sequential search, bubble sort, selection sort, insertion sort, etc.
- Greedy algorithms
  - select the best choice at each step, instead of considering all sequences of steps; focus on local optimization and not overall optimization
- Divide-and-conquer algorithms
  - divide a problem into one or more instances of the same problem of smaller size and conquer the problem by using the solutions of the smaller problems to find a solution of the original problem
    - Quick sort, merge sort, fast matrix multiplication, etc.

### Algorithmic Paradigms (2)

#### Dynamic programming

- recursively breaks down a problem into simpler overlapping subproblems, and <u>stores the results of the subproblems in a table</u>; computes the solution of the problem using the solutions of the subproblems
  - cutting stock, matrix-chain multiplication, longest common subsequence, etc.

#### Backtracking

- performs an exhaustive search of all possible solutions; once it is known that no solution can result from any further sequence of decisions, backtrack to a known point and work towards a solution with another series of decisions
  - n-Queens, graph coloring, sum of subsets, etc.

#### Probabilistic algorithms

- make random choices at one or more steps
  - Monte Carlo algorithms, Las Vegas algorithms, Sherwood algorithms, etc.

• ...

# Understanding the Complexity of Algorithms 1

| <b>TABLE 1</b> Commonly Used | Terminology fo | r the Complexity |
|------------------------------|----------------|------------------|
| of Algorithms.               |                |                  |

| Complexity                    | Terminology             |  |
|-------------------------------|-------------------------|--|
| Θ(1)                          | Constant complexity     |  |
| Θ(log <i>n</i> )              | Logarithmic complexity  |  |
| Θ( <i>n</i> )                 | Linear complexity       |  |
| $\Theta(n \log n)$            | Linearithmic complexity |  |
| $\Theta(n^b)$                 | Polynomial complexity   |  |
| $\Theta(b^n)$ , where $b > 1$ | Exponential complexity  |  |
| Θ(n!)                         | Factorial complexity    |  |

# Understanding the Complexity of Algorithms 2

| TABLE 2 The Computer Time Used by Algorithms. |                                 |                     |                               |                     |                               |                              |  |  |
|-----------------------------------------------|---------------------------------|---------------------|-------------------------------|---------------------|-------------------------------|------------------------------|--|--|
| Problem Size                                  | n Size Bit Operations Used      |                     |                               |                     |                               |                              |  |  |
| n                                             | log n                           | n                   | n <b>log</b> n                | n²                  | <b>2</b> <sup>n</sup>         | n!                           |  |  |
| 10                                            | $3 \times 10^{-11} \text{ s}$   | $10^{-10}$ s        | $3 \times 10^{-10} \text{ s}$ | $10^{-9} \text{ s}$ | $10^{-8} \text{ s}$           | $3 \times 10^{-7} \text{ s}$ |  |  |
| $10^2$                                        | $7 \times 10^{-11} \text{ s}$   | $10^{-9} \text{ s}$ | $7 \times 10^{-9} \text{ s}$  | $10^{-7} \text{ s}$ | $4 \times 10^{11} \text{ yr}$ | *                            |  |  |
| $10^3$                                        | $1.0 \times 10^{-10} \text{ s}$ | $10^{-8} \ s$       | $1 \times 10^{-7} \text{ s}$  | $10^{-5} \text{ s}$ | *                             | *                            |  |  |
| $10^4$                                        | $1.3 \times 10^{-10} \text{ s}$ | $10^{-7} \ s$       | $1 \times 10^{-6} \text{ s}$  | $10^{-3} \text{ s}$ | *                             | *                            |  |  |
| $10^{5}$                                      | $1.7 \times 10^{-10} \text{ s}$ | $10^{-6} \text{ s}$ | $2 \times 10^{-5} \text{ s}$  | 0.1 s               | *                             | *                            |  |  |
| $10^6$                                        | $2 \times 10^{-10} \text{ s}$   | $10^{-5} \text{ s}$ | $2\times10^{-4}$ s            | 0.17 min            | *                             | *                            |  |  |

Times of more than  $10^{100}$  years are indicated with an \*.

### **Complexity of Problems**

Tractable Problem: There exists a polynomial time algorithm to solve this problem. These problems are said to belong to the Class P.

Intractable Problem: There does not exist a polynomial time algorithm to solve this problem

Unsolvable Problem: No algorithm exists to solve this problem, e.g., halting problem.

Class NP: Solution can be checked in polynomial time. But no polynomial time algorithm has been found for finding a solution to problems in this class.

NP Complete Class: If you find a polynomial time algorithm for one member of the class, it can be used to solve all the problems in the class.

## P Versus NP Problem P ≟ NP



Stephen Cook (Born 1939)

The *P versus NP problem* asks whether the class P = NP? Are there problems whose solutions can be checked in polynomial time, but can not be solved in polynomial time?

 Note that just because no one has found a polynomial time algorithm is different from showing that the problem can not be solved by a polynomial time algorithm.

If a polynomial time algorithm for any of the problems in the NP complete class were found, then that algorithm could be used to obtain a polynomial time algorithm for every problem in the NP complete class.

Satisfiability (in Section 1.3) is an NP complete problem.

It is generally believed that P≠NP since no one has been able to find a polynomial time algorithm for any of the problems in the NP complete class.

The problem of P versus NP remains one of the most famous unsolved problems in mathematics (including theoretical computer science). The Clay Mathematics Institute has offered a prize of \$1,000,000 for a solution.

## Some Well Known NP Complete Problems

- Boolean satisfiability problem (SAT)
- Knapsack problem
- Hamiltonian path problem
- Travelling salesman problem (decision version)
- Subgraph isomorphism problem
- Subset sum problem
- Clique problem
- Vertex cover problem
- Independent set problem
- Dominating set problem
- Graph coloring problem



