Machine Learning Hw3

r03922145 Yi Huang

Question 1

```
sigma <- 0.1
d <- 8
N <- c(10,25,100,500,1000)
Ein <- sigma^2*(1-(d+1)/N)
print(data.table(N,Ein))</pre>
```

N Ein ## 1: 10 0.00100 ## 2: 25 0.00640 ## 3: 100 0.00910 ## 4: 500 0.00982 ## 5: 1000 0.00991

Question 2

[a] H is positive semi-definite if all eigenvalues of H are non-negative. Suppose λ is the eigenvalue and b is the eigenvector.

$$Hb = \lambda b$$

$$H^2b = \lambda Hb$$

$$= \lambda(\lambda b)$$

$$= \lambda^2 b$$

Because of "idempotent", $H^2b = Hb$, we have

$$\lambda = \lambda^2 b$$

The solutions of the equation is either 0 or 1 which means H is positive semi-definite.

[d] We know that H and (I - H) are symmetric matrix and trace(I - H) = N - (d + 1). The trace of a symmetric matrix equals to the sum of its diagonal elements, thus we have trace(H) = d + 1. Because the trace of matrix is also the sum of its eigenvalues, the sum of eigenvalues of the hat matrix is d + 1. As mentioned above, the hat matrix is positive semi-definite, the eigenvalue of hat matrix is eigher 0 or 1, so d + 1 eigenvalues of H are 1.

$$\begin{split} H^2 &= (X(X^TX)^{-1}X^T)(X(X^TX)^{-1}X^T) \\ &= X(\ (X^TX)^{-1}(X^TX)\)(X^TX)^{-1}X^T \\ &= X(X^TX)^{-1}X^T \\ &- H \end{split}$$

H is idempotent, therefore $H^{1126} = H$.

Question 3

Let $s = w^T x$, $ys = yw^T x$. Plot 5 error functions:

So the correct answer is [a],[b],[e].

Question 4

Let $s = w^T x$, $ys = yw^T x$.

[a] wrong

err(ys) = max(0, 1 - ys) is not differentiable at ys = 1

 $[\mathbf{b}]$ correct

$$err^{'}(ys) = \begin{cases} 0 & ys > 1 \\ -2(1-ys) & ys < 1 \end{cases}$$

and when ys = 1, 0 = -2(1-1) = 0

[c] wrong

err(ys) = max(0, -ys) is not differentiable at ys = 0

[d] correct

$$err'(ys) = \frac{e^{ys}}{(1 + e^{ys})^2}$$

which is continous of ys everywhere

[e] correct

$$err'(ys) = -exp(-ys)$$

which is continous of ys everywhere

Question 5

The prerequisity of the halting of PLA is the \mathcal{D} is linear separable, that means the final error should result in zero. In other words, if $yw^Tx > 0$, err(w) = 0. Then only $err(w) = max(0, -yw^Tx)$ can satisfy such property.

Question 6

$$\frac{\partial E(u,v)}{\partial u} = e^u + ve^{uv} + 2u - 2v - 3$$

$$\frac{\partial E(u,v)}{\partial v} = 2e^{2v} + ue^{uv} - 2u + 4v - 2$$

$$\nabla E(u,v) = \left(\frac{\partial E(u,v)}{\partial u}, \frac{\partial E(u,v)}{\partial v}\right)$$

The gradient $\nabla E(u, v)$ around (0, 0) is (-2, 0).

Question 7

```
## u1 = 0.020 , v1 = 0.000

## u2 = 0.039 , v2 = 0.000

## u3 = 0.058 , v3 = 0.001

## u4 = 0.076 , v4 = 0.001

## u5 = 0.094 , v5 = 0.002
```

After five updates, $E(u_5, v_5) = E(0.094, 0.002) = 2.825$.

Question 8

 $\hat{E}_2(\Delta u, \Delta v)$ is the second-order Taylor's expansion of E around (u, v), then we have:

$$\hat{E}_2(\Delta u, \Delta v) = E(u, v) + \Delta E(u, v) \cdot (\Delta u, \Delta v) + \frac{1}{2}(\Delta u, \Delta v) \Delta^2 E(u, v) \begin{pmatrix} \Delta u \\ \Delta v \end{pmatrix}$$

where $\Delta^2 E(u, v)$ is the Hessan matrix of E:

$$\Delta^2 E = \begin{pmatrix} \frac{\delta^2 E}{\delta u^2} & \frac{\delta^2 E}{\delta u \delta v} \\ \frac{\delta^2 E}{\delta v \delta u} & \frac{\delta^2 E}{\delta v^2} \end{pmatrix} = \begin{pmatrix} e^u + v^2 e^{uv} + 2 & e^{uv} + uve^{uv} - 2 \\ e^{uv} + uve^{uv} - 2 & 4e^{2v} + u^2 e^{uv} + 4 \end{pmatrix}$$

Then \hat{E}_2 around (0,0) is:

$$3 + (-2,0) \cdot (\Delta u, \Delta v) + \frac{1}{2} (\Delta u, \Delta v) \begin{pmatrix} 3 & -1 \\ -1 & 8 \end{pmatrix} \begin{pmatrix} \Delta u \\ \Delta v \end{pmatrix}$$
$$= 1.5 \cdot (\Delta u)^2 + 4 \cdot (\Delta v)^2 - 1 \cdot (\Delta u)(\Delta v) - 2 \cdot \Delta u + 0 \cdot \Delta v + 3$$

So
$$(b_{uu}, b_{vv}, b_{uv}, b_u, b_v, b) = (1.5, 4, -1, -2, 0, 3)$$

Question 9

 \hat{E}_2 attains its minimum when its derivative with respect to $(\Delta u, \Delta v)$ is queal to zero:

$$\frac{\hat{E}_2(\Delta u, \Delta v) - E(u, v)}{(\Delta u, \Delta v)} = 0 \Leftrightarrow \Delta E(u, v) + \Delta^2 E(u, v) \begin{pmatrix} \Delta u \\ \Delta v \end{pmatrix} = 0$$

Then the optimal $(\Delta u, \Delta v)$ is:

$$\begin{pmatrix} \Delta u \\ \Delta v \end{pmatrix} = -(\Delta^2 E(u, v))^{-1} \Delta E(u, v)$$

Question 10

[1] 2.361

Question 11

The union set of quadratic, linear, or constant hypotheses in \mathbb{R}^2 is just as linear hypotheses in \mathcal{Z} - a space after $\phi_2(x)$ transformation.

for vector
$$x = (x1, x2) \in \mathbb{R}^2$$

 $\phi_2(x) = (1, x_1, x_2, x_1x_2, x_1^2, x_2^2)$

Then we have

The determinant of this matrix $det(\phi_2(X)) = 16 \neq 0$, which means that all six points can be shattered by the union of quadratic, linear of constant hypotheses of x.

Question 12

Because $\mathbb{Z}-space$ can "memorise" all points from $\mathbb{X}-space$ and store it in its n-th dimension. All the points in $\mathbb{Z}-space$ are non-colinear, then can be shattered by linear classifier. So the "maximum" number of points that can be shattered by the process is ∞ .

Question 16

The likelihood that h generate \mathcal{D} is $\prod_{n=1}^{N} P(x_n) h_{y_n}(x_n)$, then we have:

$$likelihood(h) = \prod_{n=1}^{N} P(x_n) h_{y_n}(x_n)$$

$$\propto \prod_{n=1}^{N} h_{y_n}(x_n)$$

$$= \prod_{n=1}^{N} \frac{exp(w_{y_n}^T x_n)}{\sum_{i=1}^{K} exp(w_i^T x_n)}$$

$$\propto \ln \prod_{n=1}^{N} \frac{exp(w_{y_n}^T x_n)}{\sum_{i=1}^{K} exp(w_i^T x_n)}$$

$$\propto \frac{1}{N} \sum_{n=1}^{N} (ln(exp(w_{y_n}^T x_n)) - ln(\sum_{i=1}^{K} exp(w_i^T x_n)))$$

$$= \frac{1}{N} \sum_{n=1}^{N} (w_{y_n}^T x_n - ln(\sum_{i=1}^{K} exp(w_i^T x_n)))$$

So a sound $E_{in}(w_1,...,w_K)$ that minimizes the negative log likelihood is:

$$\frac{1}{N} \sum_{n=1}^{N} (ln(\sum_{i=1}^{K} exp(w_i^T x_n)) - w_{y_n}^T x_n)$$

Question 17

For

$$E_{in} = \frac{1}{N} \sum_{n=1}^{N} (lnA - w_{y_n}^T x_n)$$

where

$$A = \sum_{i=1}^{K} exp(w_i^T x_n)$$

Then

$$\begin{split} \frac{\partial E_{in}}{\partial w_i} &= \frac{1}{N} \sum_{n=1}^N (\frac{\partial (\ln A)}{\partial w_i} - \frac{\partial (w_{y_n}^T x_n)}{\partial w_i}) \\ &= \frac{1}{N} \sum_{n=1}^N (\frac{1}{A} \cdot \frac{\partial A}{\partial w_i} - \llbracket y_n = i \rrbracket x_n) \\ &= \frac{1}{N} \sum_{n=1}^N (\frac{x_n exp(w_i^T x_n)}{A} - \llbracket y_n = i \rrbracket x_n) \\ &= \frac{1}{N} \sum_{n=1}^N ((\frac{exp(w_i^T x_n)}{\sum_{i=1}^K exp(w_i^T x_n)} - \llbracket y_n = i \rrbracket) x_n) \\ &= \frac{1}{N} \sum_{n=1}^N ((h_i(x) - \llbracket y_n = i \rrbracket) x_n) \end{split}$$

Question 21

The least number of queries is N+1.

$$RMSE(h) = 0 \rightarrow \sum_{n=1}^{N} (y_n - h(x_n))^2 = 0$$

Let $k \in \mathbb{R}^N$ and $query(k) = \sum_{n=1}^N (y_n - k_n)^2 = d$.

Start with $k_0 = \{0\}^N$, then $query(k_0) = \sum_{n=1}^N y_n^2 = d_0$

Counstruct a query $query(k_i)$ then substract from $query(k_0)$, we get:

$$query(k_0) - query(k_i) = \sum_{n=1}^{N} y_n^2 - \sum_{n=1}^{N} (y_n - k_{in})^2$$
$$= \sum_{n=1}^{N} (2k_{in}y_n - k_{in}^2)$$
$$= d_i$$

which is a linear equation about y. If we want to solve y, we need at least N such linear equations about y. e.g. Consider a resonable K given below:

$$K = \begin{bmatrix} k_1 \\ \vdots \\ k_i \\ \vdots \\ k_N \end{bmatrix} = \begin{bmatrix} 1 & \cdots & 0 & \cdots & 0 \\ \vdots & \ddots & \vdots & & \vdots \\ 0 & \cdots & 1 & \cdots & 0 \\ \vdots & & \vdots & \ddots & \vdots \\ 0 & \cdots & 0 & \cdots & 1 \end{bmatrix}$$

$$query(K) = \begin{bmatrix} query(k_1) \\ \vdots \\ query(k_i) \\ \vdots \\ query(k_N) \end{bmatrix}$$

$$query(k_0) - query(K) = \begin{bmatrix} query(k_0) - query(k_1) \\ \vdots \\ query(k_0) - query(k_i) \\ \vdots \\ query(k_0) - query(k_N) \end{bmatrix} = \begin{bmatrix} 2y_1 - 1 \\ \vdots \\ 2y_i - 1 \\ \vdots \\ 2y_N - 1 \end{bmatrix} = \begin{bmatrix} d_1 \\ \vdots \\ d_i \\ \vdots \\ d_N \end{bmatrix}$$

Then we can solve it easily. So the total number of queries we need is at least N+1.

Question 23

$$\min_{w_1, w_2, \dots, w_K} RMSE(H) \to \min_{w_1, w_2, \dots, w_K} \sum_{n=1}^{N} (y_n - H(x_n))^2$$

Let

$$f(w) = \sum_{n=1}^{N} (y_n - H(x_n))^2$$
$$= \sum_{n=1}^{N} y_n^2 - 2\sum_{n=1}^{N} y_n H(x_n) + \sum_{n=1}^{N} H^2(x_n)$$

Where $H(x_n) = \sum_{k=1}^K w_k h_k(x_n)$ If f is minimized, the partial derivative of all w_i should be 0.

$$\frac{\partial f}{\partial w_i} = -2\sum_{n=1}^{N} y_n h_i(x_n) + 2\sum_{n=1}^{N} H(x_n) h_i(x_n)$$

$$= -2h_i^T y + 2\sum_{n=1}^{N} (h_i(x_n) \cdot \sum_{k=1}^{K} w_k h_k(x_n))$$

$$= -2h_i^T y + 2\sum_{k=1}^{K} (\sum_{n=1}^{N} h_i(x_n) h_k(x_n)) \cdot w_k$$

$$= -2h_i^T y + 2\sum_{k=1}^{K} h_i^T h_k w_k$$

$$= 0$$

That means we should solve such linear equations:

$$\begin{aligned} h_1^T h_1 w_1 + h_1^T h_2 w_2 + \dots + h_1^T h_K w_K &= h_1^T y \\ h_2^T h_1 w_1 + h_2^T h_2 w_2 + \dots + h_2^T h_K w_K &= h_2^T y \\ &\vdots \\ h_K^T h_1 w_1 + h_K^T h_2 w_2 + \dots + h_K^T h_K w_K &= h_K^T y \end{aligned}$$

Followed by question 22, as we have already known $h_i^T h_j$, the least number of queries to get $h_1^T y \sim h_K^T y$ is K+1, so the least number of queries would be K+1 to solve $\min_{w_1,w_2,...,w_K} RMSE(H)$.