Esercizi introduttivi di Matlab

Sommario

Gli esercizi sono divisi in due gruppi: di base ed avanzati. I primi sono esercizi basilari per prendere familiarità con l'ambiente ed il linguaggio Matlab, i secondi richiedono una conoscenza leggermente più ampia.

1 Esercizi di base

1.1 Calcolo vettoriale e matriciale

- 1. Generare i vettori $\mathbf{v} = (1, 2, \dots, 6)^{\mathsf{T}}$ e $\mathbf{w} = (1, 2, \dots, 6)^{\mathsf{T}}$ (vettori colonna) ed effettuare le seguenti operazioni:
 - (a) a = v + w;
 - (b) b = 4v;
 - (c) calcolare il prodotto di v per w elemento per elemento e salvare il risultato nella variabile c;
 - (d) dividere ogni elemento di w per due e salvare il risultato nella variabile d;
 - (e) dividere ogni elemento di v per il corrispondente elemento di v e salvare il risultato nella variabile e;
 - (f) calcolare il prodotto scalare di v e di w, salvare il risultato in f;
 - (g) calcolare g = 2v 6w;
 - (h) memorizzare negli elementi di posto pari del vettore g1 gli elementi di posto pari di d e negli elementi di posto dispari di c;
 - (i) creare il vettore h con 5 copie del vettore v;
 - (j) osservare il comportamento del comando h([6:6:end]);
 - (k) sostituire 0 negli elementi con indice multiplo di 5 in h e 1 negli elementi con indice multiplo di 6;
 - (1) dato u = (1, 2, ..., 6) (vettore riga) calcolare u * w e w * u: osservare i risultati e capire cosa succede.
- 2. Generare una matrice quadrata $A \in \mathbb{M}_n(\mathbb{R})$ (ove n è un dato introdotto dall'esterno) con elementi generati a caso da una distribuzione uniforme nell'intervallo [0,1] e calcolare (eventualmente usando le funzioni cumulative):
 - (a) un vettore che contiene la somma degli elementi di ciascuna colonna;
 - (b) un vettore che contiene la somma degli elementi di ciascuna riga;
 - (c) un vettore che contiene la somma degli elementi al quadrato di ciascuna riga;
 - (d) il massimo degli elementi della matrice;
 - (e) la somma di tutti gli elementi della matrice.
- 3. Generare i vettori colonna $v, w \in \mathbb{R}^{25}$ da una distribuzione uniforme nell'intervallo [0, 1], Effettuare i seguenti passaggi:
 - (a) $t = \langle v, w \rangle v + \langle v, w \rangle w;$
 - (b) dato $\mathbf{s} = (1, \dots, 25)^{\mathsf{T}}$, memorizzare in \mathbf{p} la divisione elemento per elemento di \mathbf{t} per \mathbf{s} ;
 - (c) data la matrice $A \in \mathcal{M}_{3\times25}(\mathbb{R})$, generata da una distribuzione uniforme in [0,1], salvare in q il prodotto Ap;
 - (d) creare la matrice identità I di ordine 3, salvare in e1 la prima colonna di I, in e2 la seconda colonna e in e3 la terza colonna. Salvare nella variabile a1 il prodotto scalare (q,e1), in a2 il prodotto scalare (q,e2) e in a3 il prodotto scalare (q,e3);
 - (e) creare il vettore $\mathbf{a} = (\mathbf{a1}, \mathbf{a2}, \mathbf{a3})^{\mathsf{T}}$ e verificare che sia identico al vettore \mathbf{q} ;
 - (f) memorizzare in un vettore b gli elementi di posto pari di t, moltiplicarli per 10 e arrotondarli utilizzando il comando fix;
 - (g) creare il vettore $c = (1,2,3)^{\top}$, memorizzare in D il prodotto $c*b^{\top}$: descrivere l'output ottenuto;
 - (h) data la matrice B le cui colonne sono costituite da 3 copie del vettore q, effettuare le operazioni BA e AB: sono consentite? Dare una motivazione in entrambi i casi, negativo e affermativo.
- 4. Date le matrici $A = [1\ 2\ 3;\ 4\ 5\ 6;\ 7\ 8\ 9]$, $B = [2\ -1\ 0;\ -1\ 2\ -1;\ 0\ -1\ 2]$, descrivere gli output delle seguenti istruzioni:

- (a) A(:,[1,3]) = B(:, 1:2);
- (b) C = A ./ B;
- (c) $C = A.^B$;
- (d) C = triu(A) + tril(B,-1);
- (e) A([1:2],:) = [];
- (f) D = B([3,2],1:2:3);
- 5. Creare una matrice $A \in \mathcal{M}_5(\mathbb{R})$ a piacere ed effettuare le seguenti operazioni:
 - (a) memorizzare in v la sua seconda riga;
 - (b) memorizzare in w la sua terza colonna;
 - (c) estrarre la sottomatrice $B \in \mathcal{M}_3(\mathbb{R})$ a parte dall'elemento A(2,2);
 - (d) creare una matrice $C \in \mathcal{M}_7(\mathbb{R})$ con la prima e l'ultima colonna di zeri e la prima e ultima riga di 1, e al "centro" porre la matrice A;
 - (e) creare la matrice $D \in \mathcal{M}_3(\mathbb{R})$ in cui ogni elemento è il prodotto degli indici di riga e colonna: verificare se è simmetrica;
 - (f) eseguire BD e DB: sono diversi?
 - (g) eseguire il prodotto componente per componente di B e D e vedere se questo corrisponde a B*D o D*B;
 - (h) memorizzare in E la combinazione $B*D^2-3*B*D-7*D^2$;
 - (i) verificare che D'*B'=(B*D)';
 - (i) calcolare Dw1, dove w1 è il vettore contenente i primi tre elementi di w;
 - (k) calcolare v1D, dove v1 è il vettore contenente i primi tre elementi di v;
 - (l) creare la seguente matrice a blocchi:

$$\left(\begin{array}{ccc}
I_r & B & 0_r \\
B & D & -B \\
0_r & -B & -I_r
\end{array}\right)$$

con r opportuno. I_r è la matrice identità di ordine r, mentre 0_r è la matrice quadrata di dimensione r con ogni elemento pari a 0.

6. Dato un vettore $x = (x_1, x_2, \dots, x_n)^{\mathsf{T}}$ e un naturale m > 0, costruire la seguente matrice:

$$V = \begin{pmatrix} 1 & x_1 & x_1^2 & x_1^3 & \dots & x_1^{m-1} \\ 1 & x_2 & x_2^2 & x_2^3 & \dots & x_2^{m-1} \\ \vdots & & & & \vdots \\ 1 & x_n & x_n^2 & x_n^3 & \dots & x_n^{m-1} \end{pmatrix}$$

utilizzando la sintassi vettoriale di MatLab. Successivamente, creare la stessa matrice usando due cicli for innestati. Misurare il tempo necessario per la costruzione di tale matrice con i due metodi utilizzando i comandi tic e toc.

- 7. Quali elementi contiene il vettore z dopo i ciascuno dei seguenti comandi di Matlab?
 - (a) $z = [10 \ 40 \ 20 \ 80 \ 30 \ 70 \ 60 \ 90];$ z(1:2:7) = zeros(1,4);
 - (b) $z = [10 \ 40 \ 20 \ 80 \ 30 \ 70 \ 60 \ 90];$ z(7:-2:1) = zeros(1,4);
 - (c) z = [10 40 20 80 30 70 60 90]; z([3 4 8 1]) = zeros(1,4);
- 8. Data la matrice A=[2 2 1; 1 -1 4; 2 1 -3], descrivere l'output dei seguenti comandi Matlab:
 - (a) [p,q] = size(A(1:2,1:2));
 - (b) A ./ A';
 - (c) A(1,:) = A(2,:) .* A(3,:);
 - (d) A(2,:) = A(:,1);
 - (e) $A(:,2) = A(:,2).^3$;
- 9. Creare due matrici quadrate A,B di dimensione 50 < n < 1000 e un vettore v di dimensioni opportune. Utilizzando i comandi tic e toc, verificare la differenza di tempo di calcolo tra A*B*v e A*(B*v).
- 10. Data la matrice $A \in \mathcal{M}_n(\mathbb{R})$, n scelto da tastiera, salvare in v la sua vettorizzazione tramite l'uso del comando jolly :. Calcolare $V=v.^2$, eseguire il comando B = reshape(V,n,n) e controllare che $B == A.^2$.
- 11. Creare un vettore \mathbf{x} di 20 elementi i cui elementi siano equispaziati fra 0 e 2π . Salvare in \mathbf{y} i valori della funzione seno calcolata in \mathbf{x} , salvare in \mathbf{z} i valori della funzione coseno calcolata in \mathbf{x} . Utilizzando il comando fprintf, stampare a video una tabella di tre colonne in cui sulla prima colonna devono essere presenti i valori di \mathbf{x} , sulla seconda i valori di \mathbf{Y} e infine sulla terza i valori di \mathbf{z} .

- 12. Dati $A = [1\ 2\ 3;\ 4\ 5\ 6];\ B = [2\ 2\ 1;1\ 0\ 3];\ x = [1\ 2\ 3];\ y = [4\ 5\ 6];$ descrivere gli output delle seguenti istruzioni:
 - (a) C = A .* B;;
 - (b) z = A(1,:) .* y;
 - (c) z = x ./ [B(:,2);3];;
 - (d) $z = x . \ y;$
 - (e) $z = A(2,:).^B(1,3:-1:1);$
- 13. Dati i vettori xs = ones(10,1) e y = 2*randn(10,1), descrivere gli output dei seguenti comandi senza eseguirli:
 - (a) abs(xs-y);
 - (b) norm(xs-y)/norm(xs);
 - (c) abs(xs-y)./abs(xs).

Verificare i risultati al calcolatore.

- 14. Data una matrice $A \in \mathcal{M}_n(\mathbb{R})$, 2 < n < 10, contentente numeri random compresi fra -10 e 10 (utilizzare le funzioni rand) effettuare i seguenti passaggi:
 - (a) estrarre in d la diagonale di A;
 - (b) salvare in B la parte triangolare superiore di A;
 - (c) sottrarre a B la diagonale di A (hint: controllare l'uso della funzione triu per fare tutto in un passaggio);
 - (d) porre C = B + B';
 - (e) dato v di dimensioni opportune, verificare che v'*C*v sia maggiore di zero o meno, stampando un messaggio a video, mediante l'utilizzo combinato della funzione fprintf e del ciclo di controllo if-then-else;
 - (f) salvare in D la sottomatrice di A costituita dalle prime tre colonne e dalle ultime due righe di A; scrivere in E il prodotto D'*D;
 - (g) dato v di dimensioni opportune, verificare che v'*E*v sia maggiore di zero o meno, stampando un messaggio a video, mediante l'utilizzo combinato della funzione fprintf e del ciclo di controllo if-then-else;
 - (h) verificare che E sia simmetrica.