Chapitre

Résoudre une équation différentielle

3. Du premier ordre

3.1. Équation homogène

On a une équation de la forme : af' + bf = g(x). On enlève le second membre de l'équation. C'est l'équation homogène.

La fonction exponentielle et sa dérivée sont proportionnelles, donc on cherche une solution de la forme : Ke^{rx} .

On obtient la forme de la solution générale dans l'équation différentielle :

$$ar \times Ke^{rx} + b \times Ke^{rx} = 0$$

$$ar \times Ke^{rx} = -b \times Ke^{rx}$$

$$ar = -b$$

$$r = \frac{-b}{a}$$

On a donc $f_H(x) = Ke^{\frac{-b}{a}x}$

3.1. Solution particulière

Avec 2nd membre constant

On montre que la solution particulière $f_P=C$ avec C une constante est bien solution de l'équation différentielle. Pour cela, on injecte f_P dans l'EQD afin de déterminer la valeur de C

Avec 2nd membre

On utilise la méthode de la variation de la constante. On suppose que la solution particulière est de la forme de la solution générale, mais avec K fonction de x, soit K(x). On a donc $f_P(x) = K(x)e^{\frac{-b}{a}x}$

On l'injecte dans l'EQD:

$$a(K(x)e^{\frac{-b}{a}x})' + b(K(x)e^{\frac{-b}{a}x}) = \phi(x)$$

$$a(K(x)'e^{\frac{-b}{a}x} + K(x)\frac{-b}{a}e^{\frac{-b}{a}x}) + b(K(x)e^{\frac{-b}{a}x}) = \phi(x)$$

$$aK(x)'e^{\frac{-b}{a}x} + K(x)\frac{-ba}{a}e^{\frac{-b}{a}x} + b(K(x)e^{\frac{-b}{a}x}) = \phi(x)$$

$$aK(x)'e^{\frac{-b}{a}x} - bK(x)e^{\frac{-b}{a}x} + bK(x)e^{\frac{-b}{a}x} = \phi(x)$$

$$aK(x)'e^{\frac{-b}{a}x} = \phi(x)$$

$$aK(x)'e^{\frac{-b}{a}x} = \phi(x)$$

$$aK(x)' = \frac{\phi(x)}{e^{\frac{-b}{a}x}}$$

$$K(x)' = \frac{\phi(x)e^{\frac{b}{a}x}}{a}$$

Donc
$$K(x)=\int^x rac{\phi(t)e^{rac{b}{a}t}}{a}dt=rac{1}{a}\int^x \phi(t)e^{rac{b}{a}t}dt$$

On résout l'intégrale pour trouver K(x) et la solution particulière s'écrit alors : $f_p(x) = K(x)e^{-\frac{b}{a}t}$

3.1. Solution générale

On somme f_H et f_P .

3.1.\$olution unique

On applique une condition initiale ou limite à la solution générale trouvée $f_H(x) + f_P(x)$ pour déterminer la valeur de K.

3. Du Deuxième ordre avec second membre nul

3.2. Résolution de l'équation homogène

Elle est de la forme $ar^2 + br + c$. On utilise les méthodes de résolution des équations du second degré.

OUTILS MATHÉMATIQUES & Résoudre une équation différentielle, Transformation d'une expression avec les complexes

Delta négatif

Si le Δ est négatif, l'équation caractéristique admet deux racines complexes : $r_1=\frac{-b+i\sqrt{-\Delta}}{2a}$ et $r_2=\frac{-b-i\sqrt{-\Delta}}{2a}$.

La solution générale s'écrit alors :

$$f(t) = C_1 e^{r_1 t} + C_2 e^{r_2 t}$$

Delta positif

Si le Δ est positif, l'équation caractéristique admet deux racines réelles : $r_1=\frac{-b+\sqrt{\Delta}}{2a}$ et $r_2=\frac{-b-\sqrt{\Delta}}{2a}$.

La solution générale s'écrit alors :

$$f(t) = C_1 e^{r_1 t} + C_2 e^{r_2 t}$$

Delta nul

Si le Δ est nul, l'équation caractéristique admet une racine unique : $r=\frac{-b}{2a}$.

La solution générale s'écrit alors :

$$f(t) = (C_1 + C_2 t)e^{rt}$$

3.2. Transformation d'une expression avec les complexes

Passer sous forme trigonométrique

Comme r_1 et r_2 sont des complexes, on peut les écrire sous la forme $\lambda+i\omega$ et $\lambda-i\omega$

On peut donc écrire :

$$f(t) = C_1 e^{(\lambda + i\omega)t} + C_2 e^{(\lambda - i\omega)t} = C_1 e^{\lambda t + i\omega t} + C_2 e^{\lambda t - i\omega t} = C_1 e^{\lambda t} e^{i\omega t} + C_2 e^{\lambda t} e^{-i\omega t}$$

En transformant les expressions des exponentielles complexes en forme trigonométrique, on obtient :

$$f(t) = C_1 e^{\lambda t} (\cos(\omega t) + i\sin(\omega t)) + C_2 e^{\lambda t} (\cos(\omega t) - i\sin(\omega t))$$

On factorise ensuite par $e^{\lambda t}$ puis par \cos et $i\sin$ pour obtenir :

$$f(t) = e^{\lambda t} [(C_1 \cos(\omega t) + i \sin(\omega t)) + C_2(\cos(\omega t) - i \sin(\omega t))]$$

$$f(t) = e^{\lambda t} [((C_1 + C_2)(\cos(\omega t)) + (C_1 - C_2)i\sin(\omega t))]$$

OUTILS MATHÉMATIQUES & Résoudre une équation différentielle, Du second ordre avec second membre sinusoidal

On sait que C_1 et C_2 sont conjugués, donc en écrivant $C_1=d+ik$ et $C_2=d-ik$, on a $C_1+C_2=2d$ et $i(C_1-C_2)=i(2ik)=-2k$.

Donc on peut écrire, avec A=2d et B=-2k des constantes réelles :

$$f(t) = e^{\lambda t} [(A(\cos(\omega t)) + B\sin(\omega t))]$$

3. Du second ordre avec second membre sinusoidal

3.3. Exemple

Prenons l'équation de la forme $\ddot{y}(x) + b\dot{y}(x) + cy(x) = A_0 \cos(\omega_e x)$.

On sait qu'il existe une solution de la forme : $y(x) = B\cos(w_e x + \phi)$.

Prenons la notation de l'exponentielle complexe pour réécrire notre solution : $Y(x)=Be^{i(\omega_e x+\phi)}=Be^{i(\phi)}\times e^{i\omega_e x}$. Pour simplifier, posons $\Delta=Be^{i(\phi)}$.

On obtient alors $Y(x) = \Delta e^{i\omega_e x}$.

Calculons les dérivées :

$$Y(x) = \Delta e^{i\omega_e x}$$

$$\dot{Y}(x) = i\omega_e \Delta e^{i\omega_e x} = i\omega_e Y(x)$$

$$\ddot{Y}(x) = -\omega_e^2 \Delta e^{i\omega_e x} = -\omega_e^2 Y(x)$$

En injectant les 3 équations dans l'EQD, on obtient : X

$$(-\omega_e^2 + bi\omega_e + c)\Delta e^{i\omega_e x} = A_0 e^{i\omega_e x}$$
$$(-\omega_e^2 + bi\omega_e + c)\Delta = A_0$$
$$\Delta = \frac{A_0}{(-\omega_e^2 + bi\omega_e + c)}$$

Avec l'expression du Δ , on peut déterminer la constante B de notre solution ainsi que ϕ . $^{\bf i}$

La constante B vaut le module du nombre complexe Δ : $|\frac{A_0}{(-\omega_e^2+bi\omega_e+c)}|=\frac{|A_0|}{|(-\omega_e^2+bi\omega_e+c)|}=\frac{A_0}{\sqrt{(c-\omega_e^2)^2+(b\omega_e)^2}}$

 ϕ vaut l'argument de Δ : $\tan^{-1}(\frac{y}{x}) = \tan^{-1}(\frac{\omega_e b}{c - \omega_e^2})$.

Info

Il faut donc déterminer B et ϕ .

× Difficulté

Auparavant, il faut transformer le second membre en forme exponentielle complexe. Ici, la forme expressions complexe de $A_0\cos(\omega_e x)$ est $A_0e^{i\omega_e x}$