2024-ST-'53-65'

EE24BTECH11023

1) Let $\{X_n\}_{n\geq 1}$ be a time homogeneous discrete-time Markov chain with state space $\{0,1,2\}$ and transition probability matrix

$$P = \begin{pmatrix} \frac{1}{2} & \frac{1}{2} & 0\\ \frac{1}{2} & \frac{1}{2} & 0\\ \frac{1}{3} & \frac{1}{3} & \frac{1}{3} \end{pmatrix}$$

Which of the following statements is/are true?

- a) 0 and 1 are recurrent states.
- b) 2 is a transient state.
- c) The Markov chain has a unique stationary distribution.
- d) The Markov chain is irreducible.
- 2) Let $X_1, X_2, ..., X_n$ be a random sample of size $n \ge 2$ from a population having Poisson distribution with mean λ , where $\lambda > 0$ is an unknown parameter. If $T_1 = \bar{X}$ and $T_2 = \sqrt{\frac{1}{n-1} \sum_{i=1}^{n} (X_i \bar{X})^2}$, where $\bar{X} = \frac{1}{n} \sum_{i=1}^{n} X_i$, then which of the following statements is/are true?
 - a) T_1 is an unbiased estimator of λ .
 - b) T_2 is an unbiased estimator of $\sqrt{\lambda}$.
 - c) T_2^2 is an unbiased estimator of λ .
 - d) Both T_1 and T_2 are estimators of λ as well as λ^2 .
- 3) Let X_1, X_2, X_3 be a random sample of size 3 from a population having Bernoulli distribution with parameter p, where $p \in (0, 1)$ is unknown. Define

$$T_1(X_i, X_j, X_k) = X_i - X_j(1 - X_k), \quad T_2(X_i, X_j, X_k) = \frac{1}{2}(X_i X_j + X_j X_k),$$

for i, j, k = 1, 2, 3 with $i \neq j \neq k$. Let x_1, x_2, x_3 denote realizations from the random sample. Then which of the following statements is/are true?

- a) $T_1(X_1, X_2, X_3)$ has the same distribution as $T_1(X_2, X_3, X_1)$, but $T_1(x_1, x_2, x_3) \neq T_1(x_2, x_3, x_1)$ for some realization x_1, x_2, x_3 .
- b) $T_2(X_1, X_2, X_3)$ and $T_2(X_3, X_2, X_1)$ are both unbiased estimators for p^2 .
- c) $T_1(X_1, X_2, X_3)$ and $T_1(X_2, X_3, X_1)$ are both unbiased estimators for p^2 , and $T_1(x_1, x_2, x_3) = T_1(x_2, x_3, x_1)$ for all realizations x_1, x_2, x_3 .
- d) $T_2(x_1, x_2, x_3) = T_2(x_2, x_3, x_1)$ for all realizations x_1, x_2, x_3 .
- 4) Let $X_1, X_2, ..., X_n$ be a random sample of size $n \ge 2$ from a population having probability density function

$$f(x; \lambda) = \begin{cases} \frac{1}{\lambda} e^{-x/\lambda}, & x > 0\\ 0, & \text{otherwise} \end{cases}$$

where $\lambda > 0$ is an unknown parameter. Let $T_1 = \sum_{i=1}^n X_i$ and $T_2 = (\sum_{i=1}^n X_i)^{-1}$. For any positive integer ν and any $\alpha \in (0,1)$, let $X_{\nu,\alpha}^2$ denote the $(1-\alpha)$ -th quantile of the central

chi-square distribution with v degrees of freedom. Consider testing H_0 : $\lambda = \lambda_0$ against $H_1: \lambda > \lambda_0$. Then which of the following tests is/are uniformly most powerful at level α ?

- a) H_0 is rejected if $\frac{2}{\lambda_0}T_1 > X_{2n,\alpha}^2$. b) H_0 is rejected if $\frac{2}{\lambda_0}T_1 > X_{2n,1-\alpha}^2$. c) H_0 is rejected if $\frac{\lambda_0}{2}T_1 > X_{2n,\alpha}^2$. d) H_0 is rejected if $\frac{\lambda_0}{2}T_1 > X_{2n,1-\alpha}^2$.

- 5) Let $\{1, 6, 5, 3\}$ and $\{11, 7, 15, 4\}$ be realizations of two independent random samples of size 4 from two separate populations having cumulative distribution functions $F(\cdot)$ and $G(\cdot)$, respectively, and probability density functions $f(\cdot)$ and $g(\cdot)$, respectively. To test $H_0: F(t) =$ G(t) for all t against $H_1: F(t) \ge G(t)$ with strict inequality for some t, let U_{MW} denote the Mann-Whitney U-test statistic. Let, under H_0 , $P(U_{MW} > 12) \le 0.10$, $P(U_{MW} > 14) \le 0.05$, $P(U_{MW} > 15) \le 0.025$, and $P(U_{MW} > 16) \le 0.01$. Then, based on the given data, which of the following statements is/are true?
 - a) H_0 is rejected at level 0.10.
 - b) H_0 is rejected at level 0.05.
 - c) H_0 is rejected at level 0.025.
 - d) H_0 is rejected at level 0.01.
- 6) Let (X_1, X_2, X_3) have $N_3(\mu, \Sigma)$ distribution with $\mu = \begin{pmatrix} 2 \\ -3 \\ 1 \end{pmatrix}$ and $\Sigma = \begin{pmatrix} 25 & -2 & 4 \\ -2 & 4 & 1 \\ 4 & 1 & 9 \end{pmatrix}$. For which

of the following vectors a, X_2 and $X_2 - a^T \begin{pmatrix} X_1 \\ X_2 \end{pmatrix}$ are independent?

a)
$$a = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$$

b)
$$a = \begin{pmatrix} -1 \\ -1 \end{pmatrix}$$

c) $a = \begin{pmatrix} 0 \\ 2 \end{pmatrix}$
d) $a = \begin{pmatrix} 2 \\ 2 \end{pmatrix}$

c)
$$a = \begin{pmatrix} 0 \\ 2 \end{pmatrix}$$

d)
$$a = \begin{pmatrix} 2 \\ 2 \end{pmatrix}$$

- 7) Let A be a 2×2 real matrix such that the trace of A is 5 and the determinant of A is 6. If the characteristic polynomial of $(A + I_2)^{-1}$ is $x^2 - bx + c$, where I_2 is the 2×2 identity matrix, then $\frac{b}{c}$ equals _____ (in integer).
- 8) Let $\{X_n\}_{n\geq 1}$ be a time homogeneous discrete-time Markov chain with state space $\{0,1,2\}$ and transition probability matrix

$$P = \begin{pmatrix} 0 & \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{4} & \frac{1}{4} \\ \frac{1}{2} & \frac{1}{4} & \frac{1}{4} \end{pmatrix}$$

If $P(X_0 = 0) = P(X_0 = 1) = \frac{1}{4}$, then $32E(X_2)$ equals _____ (integer).

9) Let (X, Y) be a random vector having joint moment generating function given by

$$M_{X,Y}(u,v) = \frac{e^{\frac{u^2}{2}}}{(1-2v)^3}, \quad -\infty < u < \infty, -\infty < v < \frac{1}{2}.$$

Then $E(\frac{6X^2}{Y})$ equals _____ (rounded off to two decimal places).

10) Let $\{N(t)\}_{t\geq 0}$ be a Poisson process with rate λ , where $\lambda > 0$ is an unknown parameter. Starting from the origin, an intercity road has N(t) number of potholes up to a distance of t kilometers. Starting from the origin, potholes are found at the following distances (in kilometers):

Based on the above data, the method of moment estimate of λ equals _____ (rounded off to two decimal places).

- 11) Let X_1, X_2, X_3, X_4 be a random sample of size 4 from a population having uniform distribution over the interval $(0, \theta)$, where $\theta > 0$ is an unknown parameter. Let $X_{(4)} = \max\{X_1, X_2, X_3, X_4\}$. To test $H_0: \theta = 1$ against $H_1: \theta = 0.1$, consider the critical region that rejects H_0 if $X_{(4)} < 0.3$. Let p be the probability of the Type-I error. Then 100p equals (rounded off to two decimal places).
- 12) Let a random sample of size 4 from a normal population with unknown mean μ and variance 1 yield the sample mean of 0.16. Let $\Phi(\cdot)$ be the cumulative distribution function of the standard normal random variable. It is given that $\Phi(2.28) = 0.989$, $\Phi(1.96) = 0.975$, and $\Phi(1.64) = 0.95$. If the likelihood ratio test of size 0.05 is used to test $H_0: \mu = 0$ against $H_1: \mu \neq 0$, then the power of the test at the sample mean equals _____ (rounded off to three decimal places).
- 13) Consider the multiple linear regression model

$$y_i = \beta_0 + \beta_1 X_{1i} + \beta_2 X_{2i} + \epsilon_i, \quad i = 1, 2, ..., 25$$

where β_0 , β_1 , and β_2 are unknown parameters, and ϵ_i 's are uncorrelated random errors with mean 0 and finite variance $\sigma^2 > 0$. Let $F_{\alpha,m,n}$ be such that $P(Y > F_{\alpha,m,n}) = \alpha$, where Y is a random variable with an F-distribution with m and n degrees of freedom. Suppose that testing

$$H_0: \beta_1 = \beta_2 = 0$$
 against $H_1:$ At least one of β_1, β_2 is not 0

involves computing $F_0 = 11 \frac{R^2}{1-R^2}$ and rejecting H_0 if the computed value F_0 exceeds $F_{\alpha,2,22}$. Given that $F_{0.025,2,22} = 4.38$ and $F_{0.05,2,22} = 3.44$, the smallest value of R^2 that would lead to rejection of H_0 for $\alpha = 0.05$ equals ______ (rounded off to two decimal places).