Examenul de bacalaureat național 2015

Proba E. c)

Matematică *M_şt-nat*

BAREM DE EVALUARE ȘI DE NOTARE

Varianta 3

Filiera teoretică, profilul real, specializarea științe ale naturii

- Pentru orice soluție corectă, chiar dacă este diferită de cea din barem, se acordă punctajul corespunzător.
- Nu se acordă fracțiuni de punct, dar se pot acorda punctaje intermediare pentru rezolvări parțiale, în limitele punctajului indicat în barem.
- Se acordă 10 puncte din oficiu. Nota finală se calculează prin împărțirea la 10 a punctajului total obținut pentru lucrare.

SUBIECTUL I (30 de puncte)

1.	(2 1)(2 1) 2 2	
1.	$z_1 z_2 = (3+i)(3-i) = 9-i^2 =$	3 p
	=10, care este număr real	2p
2.	$f(1)=1 \Leftrightarrow 1+a=1$	3 p
	a = 0	2 p
3.	$x^3 + 2x - 4 = x^3 \Leftrightarrow 2x - 4 = 0$	3 p
	x=2	2 p
4.	Mulțimea A are 80 de elemente, deci sunt 80 de cazuri posibile	1p
	În mulțimea A sunt 11 numere divizibile cu 7, deci sunt 11 cazuri favorabile	2p
	$n - \frac{\text{nr. cazuri favorabile}}{11}$	_
	$p = \frac{1}{\text{nr. cazuri posibile}} = \frac{1}{80}$	2p
	III. Cazuri posione 60	
5.	$m_{OA} = 2 \text{ si } m_{OB} = \frac{a}{2}$	2p
	$m_{OA} = m_{OB} \Leftrightarrow a = 4$	3p
6.	$E\left(\frac{\pi}{3}\right) = \cos\frac{\pi}{6} + \sin\frac{\pi}{3} =$	2p
	$=\frac{\sqrt{3}}{2} + \frac{\sqrt{3}}{2} = \sqrt{3}$	3p

SUBIECTUL al II-lea (30 de puncte)

1.a)	$A(0) = \begin{pmatrix} 2 & 0 \\ 0 & 2 \end{pmatrix} \Rightarrow \det(A(0)) = \begin{vmatrix} 2 & 0 \\ 0 & 2 \end{vmatrix} = 2 \cdot 2 - 0 \cdot 0 =$	3 p
	=4-0=4	2 p
b)	$A(1) = \begin{pmatrix} 2 & 1 \\ 1 & 2 \end{pmatrix}, \ A(3) = \begin{pmatrix} 2 & 3 \\ 3 & 2 \end{pmatrix}, \ A(2) = \begin{pmatrix} 2 & 2 \\ 2 & 2 \end{pmatrix}$	3 p
	$ \begin{pmatrix} 4 & 4 \\ 4 & 4 \end{pmatrix} = a \begin{pmatrix} 2 & 2 \\ 2 & 2 \end{pmatrix} \Leftrightarrow a = 2 $	2 p
c)	$A(x)A(y) = \begin{pmatrix} 4+xy & 2x+2y \\ 2x+2y & 4+xy \end{pmatrix}$	2 p
	$2A(x+y) + xyI_2 = 2\begin{pmatrix} 2 & x+y \\ x+y & 2 \end{pmatrix} + \begin{pmatrix} xy & 0 \\ 0 & xy \end{pmatrix} = \begin{pmatrix} 4+xy & 2(x+y) \\ 2(x+y) & 4+xy \end{pmatrix} = A(x)A(y), \text{ pentru}$	3 p
	orice numere reale x și y	

2.a)	$2*(-2)=3\cdot 2\cdot (-2)+6\cdot 2+6\cdot (-2)+10=$	3p
	=-12+12-12+10=-2	2p
b)	x * y = 3xy + 6x + 6y + 12 - 2 =	2p
	=3x(y+2)+6(y+2)-2=3(x+2)(y+2)-2, pentru orice numere reale x şi y	3 p
c)	$x*x*x = 9(x+2)^3 - 2$	2p
	$9(x+2)^3 - 2 = x \Leftrightarrow x_1 = -\frac{7}{3}, \ x_2 = -2, \ x_3 = -\frac{5}{3}$	3p

SUBIECTUL al III-lea (30 de puncte)

1.a)	$f'(x) = (x+1)' \cdot e^x + (x+1) \cdot (e^x)' =$	2p
	$=e^{x}+(x+1)e^{x}=(x+2)e^{x}, x \in \mathbb{R}$	3 p
b)	f(0)=1, f'(0)=2	2p
	Ecuația tangentei este $y - f(0) = f'(0)(x - 0) \Rightarrow y = 2x + 1$	3 p
c)	$f''(x) = (x+3)e^x, x \in \mathbb{R}$	2p
	$f''(x) \ge 0$, pentru orice $x \in [-3, +\infty)$, deci f este convexă pe intervalul $[-3, +\infty)$	3 p
2.a)	$\int_{-1}^{1} \left(x^2 + 1 \right) \cdot \frac{x^3 + 3x}{x^2 + 1} dx = \int_{-1}^{1} \left(x^3 + 3x \right) dx = \left(\frac{x^4}{4} + 3 \cdot \frac{x^2}{2} \right) \Big _{-1}^{1} =$	3p
	$= \left(\frac{1}{4} + \frac{3}{2}\right) - \left(\frac{1}{4} + \frac{3}{2}\right) = 0$	2p
b)	$\int_{0}^{1} \frac{x^{3} + 3x}{x^{2} + 1} dx = \int_{0}^{1} \left(x + \frac{2x}{x^{2} + 1} \right) dx =$	2p
	$= \left(\frac{x^2}{2} + \ln\left(x^2 + 1\right)\right) \Big _0^1 = \frac{1}{2} + \ln 2$	3р
c)	$\mathcal{A} = \int_{0}^{m} g(x) dx = \int_{0}^{m} \frac{2x}{x^2 + 1} dx = \ln(x^2 + 1) \Big _{0}^{m} = \ln(m^2 + 1)$	3р
	$\ln(m^2+1) = \ln 2 \Leftrightarrow m^2+1=2$ şi, cum $m > 0$, obţinem $m = 1$	2p