Student Information

Full Name : Berk Ulutaş Id Number : 2522084

Answer 1

a) contradiction

p	q	$ \neg p $	$\neg q$	$p \wedge q$	$\neg p \lor \neg q$	$(p \land q) \leftrightarrow (\neg p \lor \neg q)$
Т	Т	F	F	Т	F	F
Τ	F	F	Т	\mathbf{F}	${ m T}$	F
\mathbf{F}	Т	Γ	F	\mathbf{F}	${ m T}$	F
\mathbf{F}	F	Τ	Τ	\mathbf{F}	Τ	F

b) $p \to ((q \lor \neg q) \to (p \land q)) \quad \equiv \quad p \to (T \to (p \land q)) \qquad \text{from table 6, Negation Law } q \lor \neg q \equiv T$ $\equiv \quad p \to (F \lor (p \land q)) \qquad \text{from table 7, line 1}$ $\equiv \quad p \to (p \land q) \qquad \text{from table 6, Identity Law for F}$ $\equiv \quad \neg p \lor (p \land q) \qquad \text{from table 7, line 1}$ $\equiv \quad (\neg p \lor p) \land (\neg p \lor q) \qquad \text{from table 6, first Distribution Law}$ $\equiv \quad T \land (\neg p \lor q) \qquad \text{from table 6, Negation Law } \neg p \lor p \equiv T$ $\equiv \quad \neg p \lor q \qquad \text{from table 6, Identity Law for T}$

Answer 2

- a) $\forall x \exists y \ W(x,y)$
- b) $\exists y \forall x \ \neg F(x,y)$
- c) $\forall x(W(x, P) \to A(Ali, x))$
- d) $\exists x (W(\texttt{B\"{u}}\$\texttt{ra}, x) \land F(\texttt{TUBITAK}, x))$
- e) $\exists x \exists y \exists z (S(x,y) \land (S(x,z) \land (y \neq z)))$
- f) $\forall x \forall y \forall z ((W(x, z) \land W(y, z)) \rightarrow (x = y))$
- g) $\exists x \exists y \exists z ((x \neq y) \land W(x, z) \land W(y, z) \land \forall t (W(t, z) \rightarrow ((t = x) \lor (t = y))))$

Answer 3

1	$p \rightarrow q$							
2	$(q \land \neg r) \to s$							
3	$\neg s$							
4		p						
5		q		\Rightarrow E, 1, 4				
6			r					
7			$q \land \neg r$	$\wedge I, 5, 6$				
8			s	\Rightarrow E, 2, 7				
9				$\neg E, 3, 8$				
10	$\neg \neg r$			¬I, 6–9				
11		r		¬¬E, 10				
12	p -	$\rightarrow r$		⇒I, 4–11				

Answer 4

Ayşe : p , Barış : $s\to \neg q$, Can : $p\to (q\wedge r)$, Duygu : $r\to s$ $p,\ p\to (q\wedge r),\ r\to s$ $\vdash \neg (s\to \neg q)$

Answer 5