1. A pattern formation material comprising:

a polymer including a first unit represented by Chemical Formula 1 and a second unit represented by Chemical

5 Formula 2; and

an acid generator:

Chemical Formula 1:

Chemical Formula 2:

$$-\left(-CH_{2}-C\right)$$

$$-\left(-$$

wherein R_1 and R_2 are the same or different and R_2 selected from the group consisting of an alkyl group, a

chlorine atom and an alkyl group including a fluorine atom; R_3 is a protecting group released by an acid; and m is an integer of 0 through 5.

2. A pattern formation material comprising:

a polymer including a first unit represented by Chemical Formula 3, a second unit represented by Chemical Formula 4 and a third unit represented by Chemical Formula 5; and

an acid generator:

Chemical Formula 3:

Chemical Formula 4:

$$-\left(CH_{2}-C\right)$$

25

5

Chemical Formula 5:

wherein R_1 , R_2 and R_4 are the same or different and selected from the group consisting of an alkyl group, a chlorine atom and an alkyl group including a fluorine atom; R_3 is a protecting group released by an acid; and m is an integer of 0 through 5.

3. A pattern formation material comprising:

first unit represented including a polymer Chemical Formula 6 and a second unit represented by Chemical Formula 7; and

an acid generator:

Chemical Formula 6:

5

10034366 "010301

Chemical Formula 7:

$$-\left(CH_2-C\right)$$
 $-\left(CH_2-C\right)$
 $-\left(CH_2-C\right)$
 $-\left(CH_2-C\right)$
 $-\left(CH_2-C\right)$

5

wherein R_2 and R_5 are the same or different and selected from the group consisting of an alkyl group, a chlorine atom and an alkyl group including a fluorine atom; R_3 and R_6 are the same or different, at least one of which is a protecting group released by an acid; and n is an integer of 0 through 5.

4. A pattern formation material comprising:

a polymer including a first unit represented by Chemical Formula 8 and a second unit represented by Chemical Formula 9; and

an acid generator:

Chemical Formula 8:

5

ido in the solution of the sol

25

-(-CH₂-C-)-(CH₂)_n (CH₂)_n F₃C-C-CF₃ O R₆

Chemical Formula 9:

$$-(CH_2-C)$$

wherein R_4 and R_5 are the same or different and selected from the group consisting of an alkyl group, a chlorine atom and an alkyl group including a fluorine atom; R_6 is a protecting group released by an acid; and n is an integer of 0 through 5.

- 5. A pattern formation material comprising:
- a polymer including a first unit represented by

Chemical Formula 10, a second unit represented by Chemical Formula 11 and a third unit represented by Chemical Formula 12; and

an acid generator:

Chemical Formula 10:

Chemical Formula 11:

20

Chemical Formula 12:

$$-\left(CH_2-C\right)$$

HOOWFUNT - OHOWOTIS

20

5

wherein R_2 , R_4 and R_5 are the same or different and selected from the group consisting of an alkyl group, a chlorine atom and an alkyl group including a fluorine atom; R_3 and R_6 are the same or different, at least one of which is a protecting group released by an acid; and n is an integer of 0 through 5.

6. A pattern formation method comprising the steps of:

forming a resist film by applying, on a substrate, a pattern formation material containing a polymer including a first unit represented by Chemical Formula 1 and a second unit represented by Chemical Formula 2, and an acid generator:

Chemical Formula 1:

5

Chemical Formula 2:

25

$$-\left(CH_2 - \frac{R_2}{C} \right)$$

wherein R_1 and R_2 are the same or different and 20 selected from the group consisting of an alkyl group, a chlorine atom and an alkyl group including a fluorine atom; R₃ is a protecting group released by an acid; and m is an integer of 0 through 5;

irradiating said resist film with exposing light of a wavelength shorter than a 180 nm band for pattern exposure;

and

forming a resist pattern by developing said resist film after the pattern exposure.

- wherein said exposing light is a Xe₂ laser beam, a F₂ laser beam, a Kr₂ laser beam, an ArKr laser beam or an Ar₂ laser beam.
 - 8. The pattern formation method of Claim 6, wherein said exposing light is soft-X rays.

7. The pattern formation method of Claim 6,

- 9. The pattern formation method of Claim 6, wherein said exposing light is hard-X rays.
- 10. A pattern formation method comprising the steps of: forming a resist film by applying, on a substrate, a pattern formation material containing a polymer including a first unit represented by Chemical Formula 3, a second unit represented by Chemical Formula 4 and а represented by Chemical Formula 5, and an acid generator:

Chemical Formula 3:

20

$$-CH_2-C$$
 $-CH_2$
 $-CH_2$
 $-CH_2$
 $-CH_2$
 $-CH_2$
 $-CH_2$
 $-CH_3$
 $-CH_3$
 $-CH_3$
 $-CH_3$
 $-CH_3$
 $-CH_3$
 $-CH_3$
 $-CH_3$

Chemical Formula 4:

$$-\left(CH_2-C\right)$$
 $-\left(CH_2-C\right)$
 $-\left(CH_2-C\right)$
 $-\left(CH_2-C\right)$

Chemical Formula 5:

$$+CH_2-C$$
OH

wherein R_1 , R_2 and R_4 are the same or different and selected from the group consisting of an alkyl group, a chlorine atom and an alkyl group including a fluorine atom; R_3 is a protecting group released by an acid; and m is an integer of 0 through 5;

irradiating said resist film with exposing light of a wavelength shorter than a 180 nm band for pattern exposure; and

forming a resist pattern by developing said resist film after the pattern exposure.

HOOWFW, OHOWO, OHOWO, IS

20

11. The pattern formation method of Claim 10, wherein said exposing light is a Xe_2 laser beam, a F_2 laser beam, a Kr_2 laser beam, an ArKr laser beam or an Ar_2 laser beam.

- 12. The pattern formation method of Claim 10, wherein said exposing light is soft-X rays.
 - 13. The pattern formation method of Claim 10, wherein said exposing light is hard-X rays.
 - 14. A pattern formation method comprising the steps of:
 forming a resist film by applying, on a substrate, a
 pattern formation material containing a polymer including a
 first unit represented by Chemical Formula 6 and a second
 unit represented by Chemical Formula 7, and an acid
 generator:

Chemical Formula 6:

Chemical Formula 7:

5

+00WFWN0 +0H0W0N15

wherein R_2 and R_5 are the same or different and selected from the group consisting of an alkyl group, a chlorine atom and an alkyl group including a fluorine atom; R_3 and R_6 are the same or different, at least one of which is a protecting group released by an acid; and n is an integer of 0 through 5;

irradiating said resist film with exposing light of a wavelength shorter than a 180 nm band for pattern exposure; and

forming a resist pattern by developing said resist film 20 after the pattern exposure.

15. The pattern formation method of Claim 14,

wherein said exposing light is a Xe_2 laser beam, a F_2 laser beam, a Kr_2 laser beam, an ArKr laser beam or an Ar_2 laser beam.

16. The pattern formation method of Claim 14,

5

wherein said exposing light is soft-X rays.

17. The pattern formation method of Claim 14, wherein said exposing light is hard-X rays.

18. A pattern formation method comprising the steps of:

forming a resist film by applying, on a substrate, a pattern formation material containing a polymer including a first unit represented by Chemical Formula 8 and a second represented by Chemical Formula unit 9, and generator:

Chemical Formula 8:

Chemical Formula 9:

20

$$-CH_2-C$$

wherein R_4 and R_5 are the same or different and selected from the group consisting of an alkyl group, a chlorine atom and an alkyl group including a fluorine atom; R_6 is a protecting group released by an acid; and n is an integer of 0 through 5;

irradiating said resist film with exposing light of a wavelength shorter than a 180 nm band for pattern exposure; and

forming a resist pattern by developing said resist film after the pattern exposure.

- 19. The pattern formation method of Claim 18, wherein said exposing light is a Xe_2 laser beam, a F_2 laser beam, a Kr_2 laser beam, an ArKr laser beam or an Ar_2 laser beam.
 - 20. The pattern formation method of Claim 18, wherein said exposing light is soft-X rays.
 - 21. The pattern formation method of Claim 18, wherein said exposing light is hard-X rays.
- 22. A pattern formation method comprising the steps of:
 20 forming a resist film by applying, on a substrate, a
 pattern formation material containing a polymer including a
 first unit represented by Chemical Formula 10, a second unit
 represented by Chemical Formula 11 and a third unit
 represented by Chemical Formula 12, and an acid generator:

Chemical Formula 10:

Chemical Formula 11:

5

+0010 +000 -040 -040 -15

20

25

Chemical Formula 12:

wherein R_2 , R_4 and R_5 are the same or different and selected from the group consisting of an alkyl group, a chlorine atom and an alkyl group including a fluorine atom; R_3 and R_6 are the same or different, at least one of which is

a protecting group released by an acid; and n is an integer of 0 through 5;

irradiating said resist film with exposing light of a wavelength shorter than a 180 nm band for pattern exposure; and

forming a resist pattern by developing said resist film after the pattern exposure.

23. The pattern formation method of Claim 22,

wherein said exposing light is a Xe_2 laser beam, a F_2 laser beam, a Kr_2 laser beam, an ArKr laser beam or an Ar_2 laser beam.

- 24. The pattern formation method of Claim 22, wherein said exposing light is soft-X rays.
- 25. The pattern formation method of Claim 22, wherein said exposing light is hard-X rays.