# Dokumentacja inżynierii wymagań

# Członkowie zespołu

- Zofia Mazur
- Marta Pomykała
- Paweł Rus

# 1. Macierz kompetencji zespołu

| Kompetencje                                         | Zofia    | Marta    | Paweł    |
|-----------------------------------------------------|----------|----------|----------|
| Bazy Danych SQL                                     |          | <u>~</u> | <u>~</u> |
| Bazy Danych NoSQL                                   | ×        | ×        | <u>~</u> |
| Znajomość technologii AI/ML                         | <u> </u> | <u>~</u> | ×        |
| Znajomość narzędzi OCR                              |          | <u>~</u> | ×        |
| Znajomość PyTorch / TensorFlow                      | <u> </u> | <u>~</u> | ×        |
| Znajomość platformy Hugging Face                    |          | ×        | ×        |
| Znajomość WebRTC                                    | ×        | ×        | ×        |
| Tworzenie wtyczek do przeglądarek (Chrome, Firefox) | ×        | ×        | <u>~</u> |
| Znajomość Flask / Django                            | ×        | ×        | <u>~</u> |
| Znajomość Node.js, Express.js                       | ×        | <u>~</u> | ×        |
| Znajomość Java Spring                               | ×        | ×        | ×        |
| Frontend Frameworks (Vue.js, Angular, React)        | <u> </u> | <u>~</u> | ×        |
| Znajomość TypeScript                                | <u> </u> | <u> </u> | X        |
| DevOps / CI/CD (GitHub Actions)                     | ×        | ×        | <u>~</u> |
| Praca z chmurą (AWS, GCP, Azure)                    | ×        | X        | <u> </u> |

| Kompetencje                                                        | Zofia    | Marta | Paweł    |
|--------------------------------------------------------------------|----------|-------|----------|
| Konteneryzacja - Docker                                            | ×        | ×     | <u> </u> |
| Testowanie (unit, integracyjne)                                    | ×        | ×     | ×        |
| Postman (testowanie API)                                           | ×        | ×     | <u> </u> |
| Praca z API do transkrypcji mowy (np. Google Cloud, AWS)           | ×        | ×     | ×        |
| Praca z narzędziami analitycznymi (ElasticSearch, Kibana)          | ×        | ×     | ×        |
| Integracja z modelami generatywnymi (ChatGPT, Gemini AI, Cloud AI) | ×        | ×     | ~        |
| Integracja z kalendarzami (Google, Outlook)                        | ×        | ×     | ×        |
| Project Management                                                 | <u>~</u> | ×     | ×        |

# 2. Zestaw pytań dotyczących wymagań

| Pytanie                                                | Odpowiedź                                                                                    | Uwagi                                                        |
|--------------------------------------------------------|----------------------------------------------------------------------------------------------|--------------------------------------------------------------|
| Jaka ma to być<br>aplikacja? Webowa czy<br>Desktopowa? | Webowa lub plugin do przeglądarki.                                                           | Powinna działać niezależnie od narzędzia do telekonferencji. |
| Ilu użytkowników będzie korzystać z aplikacji?         | Nieokreślona liczba, zakładamy<br>wsparcie dla dowolnej liczby<br>uczestników w spotkaniach. | Skalowalność.                                                |
| Jakie dane mają być przetwarzane?                      | Transkrypcja mowy, zrzuty ekranu, treści OCR.                                                | -                                                            |
| Jakie formaty eksportu są wymagane?                    | PDF, HTML, TXT, MD.                                                                          | -                                                            |
| Jakie platformy do<br>spotkań mają być<br>wspierane?   | Zoom, Microsoft Teams, Google<br>Meet.                                                       | Możliwość rozbudowy o inne platformy.                        |

| Pytanie                                            | Odpowiedź                                                                                        | Uwagi                                                   |
|----------------------------------------------------|--------------------------------------------------------------------------------------------------|---------------------------------------------------------|
| Czy aplikacja powinna<br>działać automatycznie?    | Powinna zapisywać utworzone<br>spotkania do kalendarza w danej<br>aplikacji, np Google Calendar. | Integracja z kalendarzem.                               |
| Czy raporty mają być<br>wysyłane<br>automatycznie? | Tak, e-mailem do uczestników spotkania.                                                          | Brevo (ex Sendinblue),<br>Margin                        |
| Czy aplikacja ma<br>identyfikować mówców?          | Tak, to opcjonalna funkcjonalność.                                                               | Może wymagać<br>zaawansowanego<br>przetwarzania danych. |
| Czy potrzebne są dodatkowe analizy statystyczne?   | Tak, opcjonalnie analiza ilości i<br>szybkości wypowiedzi uczestników.                           | So omówienia z klientem.                                |

# 3. Funkcjonalności

| Funkcjonalność                      | Opis                                                                    | Uwagi                                                   |
|-------------------------------------|-------------------------------------------------------------------------|---------------------------------------------------------|
| Transkrypcja tekstu<br>mówionego    | Automatyczna zamiana mowy na tekst.                                     | -                                                       |
| Zapis zrzutu ekranu                 | Możliwość zapisu prezentacji udostępnianej przez dowolnego użytkownika. | -                                                       |
| OCR - Optical Character Recognition | Rozpoznawanie tekstu w obrazach, np. z whiteboarda.                     | -                                                       |
| Generowanie notatki ze spotkania    | Eksport notatek w formatach: PDF, HTML, TXT, MD.                        | -                                                       |
| Raport po spotkaniu                 | Automatyczne wysyłanie raportu e-<br>mailem do uczestników.             | Brevo (ex Sendinblue),<br>Margin                        |
| Integracja z<br>kalendarzem         | Automatyczne dodawanie zaplanowanych spotkań.                           | W google Calendar,<br>zaplanowanie spotkania na<br>Zoom |

| Funkcjonalność              | Opis                                               | Uwagi                         |
|-----------------------------|----------------------------------------------------|-------------------------------|
| Wsparcie dla platform       | Obsługa Zoom, Microsoft Teams,<br>Google Meet.     | -                             |
| ldentyfikacja mówców        | Przypisywanie wypowiedzi do konkretnych osób.      | Opcjonalnie - "nice to have". |
| Podsumowanie notatek        | Wyciąganie kluczowych informacji.                  | -                             |
| Wyszukiwanie w<br>notatkach | Szybkie znajdowanie konkretnych treści.            | -                             |
| Statystyki wypowiedzi       | Analiza ilości i szybkości wypowiedzi uczestników. | Opcjonalnie - "nice to have". |

# 4. Ustalony format danych wejściowych

# Struktura bazy danych:

## Tabela: users

Przechowuje informacje o użytkownikach aplikacji.

| Kolumna   | Typ danych   | Opis                                             |
|-----------|--------------|--------------------------------------------------|
| user_id   | INT          | Unikalny identyfikator uczestnika (klucz główny) |
| firstname | VARCHAR(50)  | Imię uczestnika                                  |
| lastname  | VARCHAR(50)  | Nazwisko uczestnika                              |
| email     | VARCHAR(120) | Adres e-mail uczestnika                          |

## Przykład danych wejściowych:

| user_id | firstname | lastname | email             |
|---------|-----------|----------|-------------------|
| 1       | Zofia     | Mazur    | zofia@example.com |

| user_id | firstname | lastname | email             |
|---------|-----------|----------|-------------------|
| 2       | Marta     | Pomykała | marta@example.com |
| 3       | Paweł     | Rus      | pawel@example.com |

# Tabela: meetings

Przechowuje dane dotyczące spotkań.

| Kolumna        | Typ danych   | Opis                                            |
|----------------|--------------|-------------------------------------------------|
| meeting_id     | INT          | Unikalny identyfikator spotkania (klucz główny) |
| title          | VARCHAR(255) | Tytuł spotkania                                 |
| scheduled_time | DATETIME     | Data i godzina zaplanowanego spotkania          |
| platform       | VARCHAR(50)  | Platforma używana podczas spotkania (np. Zoom)  |

## Przykład danych wejściowych:

| meeting_id | title               | scheduled_time      | platform        |
|------------|---------------------|---------------------|-----------------|
| 1          | Planowanie projektu | 2024-02-01 09:00:00 | Zoom            |
| 2          | Warsztat OCR        | 2024-02-02 10:00:00 | Microsoft Teams |
| 3          | Analiza Al          | 2024-02-03 11:00:00 | Google Meet     |

## **Tabela:** participants

Przechowuje relacje między użytkownikami a spotkaniami.

| Kolumna        | Typ danych | Opis                                               |
|----------------|------------|----------------------------------------------------|
| participant_id | INT        | Unikalny identyfikator uczestnictwa (klucz główny) |
| meeting_id     | INT        | ID spotkania, w którym użytkownik uczestniczy      |

| Kolumna | Typ danych  | Opis                                          |
|---------|-------------|-----------------------------------------------|
| user_id | INT         | ID użytkownika uczestniczącego w spotkaniu    |
| role    | VARCHAR(50) | Rola użytkownika w spotkaniu ( Host , Guest ) |

# Przykład danych wejściowych:

| participant_id | meeting_id | user_id | role  |
|----------------|------------|---------|-------|
| 1              | 1          | 1       | Host  |
| 2              | 1          | 2       | Guest |
| 3              | 2          | 2       | Host  |
| 4              | 3          | 3       | Guest |

# Tabela: transcriptions

Przechowuje pełne dane transkrypcji ze spotkań.

| Kolumna          | Typ danych | Opis                                               |
|------------------|------------|----------------------------------------------------|
| transcription_id | INT        | Unikalny identyfikator transkrypcji (klucz główny) |
| meeting_id       | INT        | ID spotkania, którego dotyczy transkrypcja         |
| full_text        | TEXT       | Pełna treść transkrypcji                           |
| summary          | TEXT       | Podsumowanie transkrypcji                          |
| created_at       | DATETIME   | Data i godzina wygenerowania transkrypcji          |

# Przykład danych wejściowych:

| transcription_id | meeting_id | full_text                                        | summary          | created_at             |
|------------------|------------|--------------------------------------------------|------------------|------------------------|
| 1                | 1          | "Witamy na spotkaniu.<br>Omówimy<br>harmonogram" | Na spotkaniu<br> | 2024-02-01<br>12:00:00 |

| transcription_id | meeting_id | full_text                                              | summary      | created_at             |
|------------------|------------|--------------------------------------------------------|--------------|------------------------|
| 2                | 2          | "Zapraszam na<br>warsztaty OCR.<br>Rozpoczynamy od"    | Podsumowanie | 2024-02-02<br>14:00:00 |
| 3                | 3          | "Analiza modeli AI.<br>Przedstawiamy wyniki<br>testów" | Podsumowanie | 2024-02-03<br>15:00:00 |

### Tabela: screenshots

Przechowuje zapisane obrazy ekranów ze spotkań.

| Kolumna       | Typ danych   | Opis                                                |
|---------------|--------------|-----------------------------------------------------|
| screenshot_id | INT          | Unikalny identyfikator zrzutu ekranu (klucz główny) |
| meeting_id    | INT          | ID spotkania, w którym wykonano zrzut ekranu        |
| image_path    | VARCHAR(255) | Ścieżka do pliku ze zrzutem ekranu                  |
| timestamp     | DATETIME     | Czas wykonania zrzutu ekranu                        |

# Przykład danych wejściowych:

| screenshot_id | meeting_id | image_path            | timestamp           |
|---------------|------------|-----------------------|---------------------|
| 1             | 1          | /screenshots/1_01.png | 2024-02-01 09:30:00 |
| 2             | 2          | /screenshots/2_01.png | 2024-02-02 10:45:00 |
| 3             | 3          | /screenshots/3_01.png | 2024-02-03 11:20:00 |

## Tabela: ocr

Przechowuje wyniki analizy OCR.

| Kolumna       | Typ danych | Opis                                             |
|---------------|------------|--------------------------------------------------|
| ocr_id        | INT        | Unikalny identyfikator wyniku OCR (klucz główny) |
| screenshot_id | INT        | ID zrzutu ekranu, którego dotyczy analiza OCR    |
| text          | TEXT       | Rozpoznany tekst                                 |
| confidence    | FLOAT      | Poziom pewności rozpoznania tekstu (0-100)       |

# Przykład danych wejściowych:

| ocr_id | screenshot_id | text                | confidence |
|--------|---------------|---------------------|------------|
| 1      | 1             | "Plan projektu"     | 98.5       |
| 2      | 2             | "Warsztaty"         | 95.2       |
| 3      | 3             | "Analiza modeli AI" | 96.7       |

# 5. Modelowanie systemu za pomocą tabeli i przepływ danych

| Aktorzy   | Użytkownik końcowy, serwer aplikacji, analityk danych                                                                                                                                                                               |
|-----------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Opis      | Celem działania systemu jest przetwarzanie i analizowanie danych zdalnych spotkań, takich jak transkrypcje mowy, zrzuty ekranu oraz OCR. System generuje raporty oraz podsumowania, które są automatycznie wysyłane do uczestników. |
| Dane      | Pliki dźwiękowe, obrazy (zrzuty ekranu, zdjęcia tablic), treść transkrypcji, dane uczestników spotkania, informacje z kalendarza.                                                                                                   |
| Wyzwalacz | Manualne uruchomienie nagrywania ekranu przez użytkownika za pomocą wtyczki.                                                                                                                                                        |
| Odpowiedź | Raport z danymi spotkania, transkrypcją, podsumowaniem, tekstem ze zrzutów ekranu wykrytym OCR.                                                                                                                                     |
| Uwagi     | <ul> <li>- Wysoka dokładność OCR oraz transkrypcji.</li> <li>- Możliwość przetwarzania danych dla wielu platform telekonferencyjnych (Zoom, Teams, Google Meet).</li> </ul>                                                         |

# 6. Diagram przypadków użycia



# 7. Diagram sekwencyjny UML:



#### 8. Sugerowany Stack technologiczny:















#### Uzasadnienie wyboru technologii

#### **Python**

Python został wybrany ze względu na bogaty ekosystem bibliotek wspierających kluczowe funkcjonalności projektu. Model Whisper od Open-Al umożliwi transkrypcję mowy, Tesseract OCR do rozpoznawania tekstu z obrazów. Python doskonale nadaje się do przetwarzania języka naturalnego (NLP) oraz integracji z systemami zewnętrznymi.

#### **Flask**

Flask to lekki framework webowy, który umożliwia elastyczną budowę backendu. Jego prostota pozwala na szybkie tworzenie API, zarządzanie sesjami użytkowników oraz obsługę zapytań HTTP.

#### **SQLite**

SQLite to lekka baza danych, która świetnie sprawdza się w projektach o mniejszej skali i uproszczonej architekturze. Dzięki brakowi potrzeby uruchamiania osobnego serwera, SQLite oferuje szybkie wdrożenie i prostą konfigurację. Jest doskonałym wyborem do przechowywania danych takich jak transkrypcje, zrzuty ekranu czy wyniki OCR w lokalnych aplikacjach lub środowiskach testowych.

#### HTML, CSS, JavaScript

Technologie frontendowe HTML, CSS i JavaScript zostana wykorzystane do stworzenia interfejsu użytkownika w postaci wtyczki jak i stron do zarządzania spotkaniami i notatkami.

- HTML pozwala na budowę struktury stron i formularzy używanych przez użytkowników.
- CSS przyda się w dostosowaniu stylistyki aplikacji
- JavaScript umożliwi dynamiczne reakcje na działania użytkownika oraz integrację wtyczki z backendem.