ECON526: Quantitative Economics with Data Science Applications

Applications of Linear Algebra

Jesse Perla

Table of contents i

Overview

Difference Equations

Unemployment Dynamics

Latent Variables

Present Discounted Values

Table of contents ii

Discrete Latent Variables

(Optional) Matrix Conditioning and Stability

Overview

Motivation and Materials

- In this lecture, we will cover some applications of the tools we developed in the previous lecture
- The goal is to build some useful tools to sharpen your intuition on linear algebra and eigenvalues/eigenvectors, and practice some basic coding
- We introduce scikit-learn, a package for old-school (i.e. not deep learning or neural networks) ML and data analysis
 - Introduces "unsupervised learning" (i.e., tools to interpret data structure without any forecasts/predictions)
- Some additional material and references
 - QuantEcon Python
 - QuantEcon DataScience
 - A First Course in Quantitative Economics with Python

Packages

```
import numpy as np
import matplotlib.pyplot as plt
import scipy
from numpy.linalg import cond, matrix_rank, norm
from scipy.linalg import inv, solve, det, eig, lu, eigvals
from scipy.linalg import solve_triangular, eigvalsh, cholesky
```

New Packages for Data Science and ML

```
import seaborn as sns
import pandas as pd
from sklearn.decomposition import PCA
from sklearn.cluster import KMeans
```

Difference Equations

Linear Difference Equations as Iterative Maps

- \bullet Consider $A:\mathbb{R}^N\to\mathbb{R}^N$ as the linear map for the state $x_t\in\mathbb{R}^N$
- An example of a linear difference equation is

$$x_{t+1} = Ax_t$$

where

$$A \equiv \begin{bmatrix} 0.9 & 0.1 \\ 0.5 & 0.8 \end{bmatrix}$$

- A = np.array([[0.9, 0.1], [0.5, 0.8]])
- $x_0 = \text{np.array}([1, 1])$
- $x_1 = A @ x_0$
- print(f"x_1 = {x_1}, x_2 = {A @ x_1}")

1

Iterating with $\rho(A) > 1$

```
Iterate x_{t+1} = Ax_t from x_0 for t = 100
x 0 = np.array([1, 1])
t = 200
print(f"rho(A) = {np.max(np.abs(eigvals(A)))}")
print(f"x {t} = {np.linalg.matrix power(A, t) @ x 0}")
rho(A) = 1.079128784747792
x 200 = [3406689.32410673 6102361.18640516]
   \qquad \qquad \text{Diverges to } x_{\infty} = \begin{bmatrix} \infty & \infty \end{bmatrix}^T
```

• $\rho = 1 + 0.079$ says in the worst case (i.e., $x_t \propto$ the eigenvector associated with

 $\lambda = 1.079$ eigenvalue), expands by 7.9% on each iteration

8

Iterating with $\rho(A) < 1$

```
A = np.array([[0.6, 0.1], [0.5, 0.8]])

print(f"rho(A) = {np.max(np.abs(eigvals(A)))}")

print(f"x_{t} = {np.linalg.matrix_power(A, t) @ x_0}")

rho(A) = 0.9449489742783178

x_200 = [6.03450418e-06 2.08159603e-05]

• Converges to x_{\infty} = \begin{bmatrix} 0 & 0 \end{bmatrix}^T
```

Iterating with $\rho(A) = 1$

x 200 = [0.27639321 - 0.17082039]

- To make a matrix that has $\rho(A) = 1$ reverse eigendecomposition!
- Leave previous eigenvectors in Q, change Λ to force $\rho(A)$ directly

```
Q = \text{np.array}([-0.85065081, -0.52573111], [0.52573111, -0.85065081]])
print(f"check orthogonal: dot(x 1, x 2) approx 0: \{np.dot(Q[:,0], Q[:,1])\}"
Lambda = [1.0, 0.8] # choosing eigenvalue so max n|lambda n| = 1
A = Q @ np.diag(Lambda) @ inv(Q)
print(f"rho(A) = {np.max(np.abs(eigvals(A)))}")
print(f"x {t} = {np.linalg.matrix power(A, t) @ x 0}")
check orthogonal: dot(x_1,x_2) approx 0: -1.9275984594779062e-17
rho(A) = 1.0
```

Unemployment Dynamics

Dynamics of Employment without Population Growth

- \blacksquare Consider an economy where in a given year $\alpha=5\%$ of employed workers lose job and $\phi=10\%$ of unemployed workers find a job
- We start with $E_0=900,000$ employed workers, $U_0=100,000$ unemployed workers, and no birth or death. Dynamics for the year:

$$\begin{split} E_{t+1} &= (1-\alpha)E_t + \phi U_t \\ U_{t+1} &= \alpha E_t + (1-\phi)U_t \end{split}$$

Can write this as a matrix equation

$$\underbrace{\begin{bmatrix} E_{t+1} \\ U_{t+1} \end{bmatrix}}_{X_{t+1}} = \underbrace{\begin{bmatrix} 1 - \alpha & \phi \\ \alpha & 1 - \phi \end{bmatrix}}_{A} \underbrace{\begin{bmatrix} E_{t} \\ U_{t} \end{bmatrix}}_{X_{t}}$$

Simulating

2

3

5

6

Simulate by iterating $X_{t+1} = AX_t$ from X_0 until T = 100

X 100 = [666666.6870779 333333.31292209]

```
def simulate(A, X 0, T):
       X = np.zeros((2, T+1))
       X[:,0] = X_0
       for t in range(T):
           X[:,t+1] = A @ X[:,t]
       return X
   X = np.array([900000, 100000])
   A = np.array([[0.95, 0.1], [0.05, 0.9]])
   T = 100
  X = simulate(A, X 0, T)
print(f"X {T} = {X[:,T]}")
```

Plotting Code

```
fig, ax = plt.subplots(figsize=(6, 4))
ax.plot(range(T+1), X.T, label=["Employed", "Unemployed"])
ax.set(xlabel="t", ylabel="Number of Workers", title="Employment Status")
ax.legend()
plt.show()
```

Dynamics of Unemployment

Convergence to a Longrun Distribution

- \bullet Find X_{∞} by iterating $X_{t+1} = AX_t$ many times from a X_0 ?
 - Check if it has converged with $X_{\infty} \approx AX_{\infty}$
 - ${\color{red} \bullet}$ Is X_{∞} the same from any X_0 ? Will discuss "ergodicity" later
- Alternatively, note that this expression is the same as

$$1 \times \bar{X} = A\bar{X}$$

- i.e, a $\lambda=1$ where \bar{X} is the corresponding eigenvector of A
- Is $\lambda=1$ always an eigenvalue? (yes if all $\sum_{n=1}^{\bar{N}}A_{ni}=1$ for all i)
- $\bullet \ \ \operatorname{Does} \ \bar{X} = X_{\infty} ? \ \operatorname{For \ any} \ X_0 ?$
- $\qquad \hbox{Multiple eigenvalues with $\lambda=1$} \implies \hbox{multiple X}$

Using the First Eigenvector for the Steady State

```
Lambda, Q = eig(A)
print(f"real eigenvalues = {np.real(Lambda)}")
print(f"eigenvectors are column-by-column in Q = n\{Q\}")
print(f"first eigenvalue = 1? {np.isclose(Lambda[0], 1.0)}")
X \text{ bar} = \mathbb{Q}[:,0] / \text{np.sum}(\mathbb{Q}[:,0]) * \text{np.sum}(X 0)
print(f"X bar = \{X bar\} \setminus X \{T\} = \{X[:,T]\}")
real eigenvalues = [1. 0.85]
eigenvectors are column-by-column in Q =
[[ 0.89442719 -0.70710678]
 first eigenvalue = 1? True
X bar = [666666.6666667 3333333.33333333]
X 100 = [666666.6870779 333333.31292209]
```

Using the Second Eigenvalue for the Convergence Speed

- The second largest $(\lambda_2 < 1)$ provides information on the speed of convergence
 - 0 is instantaneous convergence here
 - 1 is no convergence here
- Create a new matrix with the same steady state, different speed

```
Lambda_fast = np.array([1.0, 0.5])
A_fast = Q @ np.diag(Lambda_fast) @ inv(Q) # same eigenvectors
X_fast = simulate(A_fast, X_0, T)
print(f"X_{T} = {X_fast[:,T]}")
```

```
X_{100} = [666666.6666667 3333333.333333333]
```

Dynamics of Unemployment For Difference Convergence Speeds

Latent Variables

Features, Labels, and Latents

- Data science and ML often use different terminology than economists:
 - Features are economists explanatory or independent variables. They have the key source of variation to make predictions and conduct counterfactuals
 - Labels correspond to economists observables or dependent variables
 - Latent Variables are unobserved variables, typically sources of heterogeneity or which may drive both the dependent and independent variables
- Economists will use theory and experience to transform data (i.e., what ML people call "feature engineering") for better explanatory power or map to theoretical models
- ML refers to methods using only features as unsupervised learning. The structure of the underlying data can teach you about its data generating process
- Key: uncover and interpret latent variables using statistics coupled with assumptions from economic theory. There is theory beyond all interpretation

Principle Components and Factor Analysis

- Another application of eigenvalues is dimension reduction, which simplifies features by uncovering latent variables. Unsupervised
- One technique is Principle Components Analysis (PCA) which uncovers latent variables that capture the primary directions of variation in the underlying data
 - May allow mapping data into a lower-dimensional, uncorrelated set of features
 - Often uses Singular Value Decomposition (SVD) a numerically stable generalization of eigendecomposition to non-square matrices. See QuantEcon SVD Notes
 - One of many methods. Many algorithms in ML and econometrics have similar goals but can be non-linear
- Given a matrix $X \in \mathbb{R}^{N \times M}$, can we find a lower-dimensional representation $Z \in \mathbb{R}^{N \times L}$ for L < M that captures the most variation in X?
- $\, \blacksquare \,$ The columns of Z are called the principle components of X
- \blacksquare The goal is to invert the X data to find the Z —and provide a mapping to reduce the dimensionality for future data

Decomposing the Data

PCA typically uses SVD in practice - but we will use eigendecomposition (aka spectral decomposition if symmetric) instead

Start by doing a decomposition of the "covariance matrix" of the data, XX^T , and form diagonal Λ as a product of vectors $\sigma \in \mathbb{R}^N$ (the singular values)

$$XX^T = Q\Lambda Q^T = \underbrace{Q\sigma}_{X}\underbrace{\sigma^TQ^T}_{(Q\sigma)^T = X^T}, \quad \text{where } \Lambda \equiv \sigma\sigma^T$$

Hence, denoting the nth column of Q as Q_n , we have

$$X = Q\sigma = Q_1\sigma_1 + Q_2\sigma_2 + \ldots + Q_M\sigma_M$$

Dimension Reduction

- Assume we sorted so $\sigma_1 \geq \sigma_2 \geq ... \geq \sigma_M$. Frequently $\sigma_1 \gg \sigma_M$
- lacktriangledown For many problems, the σ_m decay quickly, so we can approximate X with fewer terms by truncating the sum at L < M.

$$X \approx Q_1 \sigma_1 + Q_2 \sigma_2 + \dots + Q_L \sigma_L$$

- The eigendecomposition (or SVD) can find the orthogonal directions of the data that capture the most variation in the covariance matrix
 - Can prove it is the solution to the optimization problem to explain the most variation in the data with the lowest dimensionality
- This is useful even if it is not necessary to reduce the dimensionality of the data
 - Many high-dimensional data sources are low-dimensional in the suitable space.
 - This is especially true when models allow for nonlinear transformations (e.g., neural networks, autoencoders, etc.)

Creating a Dataset with Latent Factors

Create a dataset with two latent factors, the first dominating

PCA without any Dimension Reduction

Explained Variance (ordered):

[0.9988 0.0007 0.0005]

- See QuantEcon SVD for coding yourself. We will use the sklearn package
- The explained variance is the fraction of the variance explained by each factor

```
pca = PCA(n_components=3)
pca.fit(X)

with np.printoptions(precision=4, suppress=True, threshold=5):
print(f"Singular Values (sqrt eigenvalues):\n{pca.singular_values_}")
print(f"Explained Variance (ordered):\n{pca.explained_variance_ratio_}")

Singular Values (sqrt eigenvalues):
[29.4181 0.7984 0.6654]
```

Dimension Reduction with PCA

```
pca = PCA(n_components=2) # one less, and correctly specified
Z_hat = pca.fit_transform(X) # transformed by dropping last factor
# Scale and sign may not match due to indeterminacy
print(f"Correlation of Z_1 to Z_hat_1 = {np.corrcoef(Z.T, Z_hat.T)[0,2]}")
print(f"Correlation of Z_2 to Z_hat_2 = {np.corrcoef(Z.T, Z_hat.T)[1,3]}")
Correlation of Z 1 to Z hat 1 = -0.9995888625038096
```

Correlation of Z_2 to $Z_{hat_2} = 0.5464398297674395$

Interpreting the Results

- The first factor in the decomposition is nearly perfectly (positive or negatively)
 correlated with the more important latent factor
 - The sign could have gone either way. The key is the shared information
 - How could you have known the sign is indeterminate?
- The 2nd factor has a good but not great correlation with the 2nd latent. Why?
- The variance decomposition that gave a 3rd factor with non-zero variance
 - In our process, there are only two latent variables. Why didn't it figure it out?
- How could you have changed the DGP to make this less successful?

Present Discounted Values

Geometric Series

- Assume dividends follow $y_{t+1} = Gy_t$ for $t = 0, 1, \dots$ and y_0 is given
- G>0, dividends are discounted at factor $\beta>1$ then $p_t=\sum_{s=0}^\infty \beta^s y_{t+s}=\frac{y_t}{1-\beta G}$
- More generally if $x_{t+1}=Ax_t$, $x_t\in\mathbb{R}^N$, $y_t=Gx_t$ and $A\in\mathbb{R}^{N\times N}$, then

$$\begin{split} p_t &= y_t + \beta y_{t+1} + \beta^2 y_{t+2} + \ldots = Gx_t + \beta GAx_t + \beta GAAx_t + \ldots \\ &= \sum_{s=0}^\infty \beta^s A^s y_t \\ &= G(I - \beta A)^{-1} x_t \quad , \text{ if } \rho(A) < 1/\beta \end{split}$$

- ullet i.e., spectral radius of A, the maximum scaling, must be less than discounting
- Intuition from univariate: of $G \in \mathbb{R}^{1 \times 1}$ then $\mathrm{eig}(G) = G$, so must have $|\beta G| < 1$

PDV Example

Here is an example with $1 < \rho(A) < 1/\beta$. Try with different A

```
beta = 0.9
A = np.array([[0.85, 0.1], [0.2, 0.9]])
G = np.array([[1.0, 1.0]]) # row vector
x_0 = np.array([1.0, 1.0])
p_t = G @ solve(np.eye(2) - beta * A, x 0)
\#p t = G @ inv(np.eve(2) - beta * A) @ x 0 # alternative
rho A = np.max(np.abs(np.real(eigvals(A))))
print(f''p t = \{p t[0]:.4g\}, spectral radius = \{rho A:.4g\}, 1/beta = \{1/bet\}
p t = 24.43, spectral radius = 1.019, 1/\text{beta} = 1.111
```

A Portfolio Example

- \blacksquare Two assets pay dividends $d_t \equiv \begin{bmatrix} d_{1t} & d_{2t} \end{bmatrix}^T$ following $d_{t+1} = A\,d_t$ from d_0
- \bullet Porfolio has $G \equiv \begin{bmatrix} G_1 & G_2 \end{bmatrix}$ shares of each asset and you discount at rate β

```
A = np.array([[0.6619469, 0.49646018],[0.5840708, 0.4380531]])
G = np.array([[10.0, 4.0]])
d_0 = np.array([1.0, 1.0])
T, beta = 10, 0.9
p_0 = G @ solve(np.eye(2) - beta * A, d_0)
d = simulate(A, d_0, T)
y = G @ d # total dividends from portfolio
print(f"Portfolio value at t=0 is {p 0[0]:.5g}, total dividends at time {T
```

Portfolio value at t=0 is 1424.5, total dividends at time 10 is 36.955

Dividends Seem to Grow at a Similar Rate?

Digging Deeper

Let's do an eigendecomposition to analyze the factors

```
Lambda, Q = eig(A)
print(np.real(Lambda))
```

```
[ 1.10000000e+00 -2.65486732e-09]
```

- The first eigenvector is 1.1, but the second is (numerically) zero!
 - (In fact, I rigged it to be zero by constructing from a Λ , so this is all numerical copy/paste errors)
- Suggests that maybe only one latent factor driving both d_{1t} and d_{2t} ?

Evolution Matrix is Very Simple with $\lambda_2=0$

If we stack columns $Q \equiv \begin{bmatrix} q_1 & q_2 \end{bmatrix}$ then,

$$A=Q\Lambda Q^{-1}=Q\begin{bmatrix}\lambda_1 & 0\\ 0 & 0\end{bmatrix}Q^{-1}=\lambda_1q_1q_1^{-1}$$

```
lambda_1 = np.real(Lambda[0])
q_1 = np.reshape(Q[:,0], (2,1))
q_1_inv = np.reshape(inv(Q)[0,:], (1,2))
norm(A - lambda_1 * q_1 @ q_1_inv) # pretty close to zero!
```

2.663274500543771e-09

Transforming to the Latent State

- Recall: $A=Q\Lambda Q^{-1}$ can be interpreted as:
 - Transformation to latent space, scaling, transform back
- We can demonstrate this in our example:
 - Transforming d_0 to ℓ_0 using q_1^{-1}
 - Evolving ℓ_t from ℓ_0 with $\ell_{t+1}=\lambda_1\ell_t$, or $\ell_t=\lambda_1^t\ell_0$
 - $\ \ \,$ Transforming back with q_1
 - $\ \ \,$ Checking if it aligns with the d_t

Implementation

```
1 l_0 = lambda_1 * q_1_inv @ d_0 # latent space
2 l = l_0 * np.power(lambda_1, np.arange(0, T)) # powers
3 d_hat = q_1 * l # back to original space
4 # Missing d_0 since doing A * d_0 iterations
5 print(f"norm = {norm(d[:,1:] - d_hat)}")
6 y_hat = G @ d_hat
```

norm = 2.3494410877755447e-10

Let's see if these line up perfectly

Total Dividends and the Latent Variable

Discrete Latent Variables

Clustering and Discrete Latent Variables

- PCA was a way to uncover continuous latent variables, or find low-dimensional continuous approximations
- But latent variables may be discrete (e.g., types of people, firms)
- Hidden discrete variables require assigning observations to groups
- Clustering lets you take a set of observations with (potentially) variables (i.e., features) and try to assign a discrete latent variable to each observation
 - Sometimes we know the number of groups from theory, usually we do not
 - While some are statistical and probabilistic, most methods assign a single latent type rather than a distribution
 - Choosing the number of groups to assign to is a challenge that requires theory and regularization - which we will avoid here
 - Instead, just as with PCA we will choose the number of groups ad-hoc rather than in a disciplined way

Partitioning Sets

- Let $X \in \mathbb{R}^{N \times M}$ with $x_1, \dots x_N \in \mathbb{R}^M$ the individual observations
- Assume that each x_n has a latent discrete $k \in \{1, \dots K\}$ then we can assign each observation to one group
 - $\mathbf{S} \equiv \{S_1, \dots, S_K\}$ where each $n=1, \dots N$ is in exactly one S_k (i.e. a partition)
- $\,\blacksquare\,$ The goal is to find the partition which is the most likely to assign each x_n the correct latent variable k
- An alternative interpretation is to think of this as a dimension reduction technique which reduces complicated data into a low-dimensional discrete variable
- In economics we will sometimes cluster on some observations to reduce the dimension, then leave others continuous

k-means Clustering

- $\ \blacksquare$ If theory suggests that $n \in S_k$ with similar latent variables should have similar x_n
 - Group observations which are close or similar to each other
 - $\, \bullet \,$ As always in linear algebra, close suggests using a norm. The euclidean norm in the M dimensional feature space is a good baseline
- lacktriangle The objective of k-means is to choose the partition ${f S}$ which minimizes the norm between observations within each group (normalized by group size $|S_k|$):

$$\min_{\mathbf{S}} \sum_{k=1}^{K} \frac{1}{|S_k|} \sum_{x_n, x_{-l} \in S_k} ||x_n - x_{n'}||_2^2$$

• Using standard euclidean norm between two elements in S_k

$$||x_n - x_{n'}||_2^2 = \sum_{m=1}^{M} (x_{nm} - x_{n'm})^2$$

k-means Objective Function

 Can prove that the previous objective is equivalent to minimizing the sum of the squared distances from the group k's mean

$$\min_{\mathbf{S}} \sum_{k=1}^{K} \sum_{n \in S_k} ||x_n - \bar{x}_k||_2^2$$

lacktriangle Where the mean of group k is standard, and across all m features

$$\bar{x}_k \equiv \frac{1}{|S_k|} \sum_{x_n \in S_k} x_n$$

- Careful with using wildly different scales (i.e. \bar{x}_k may be dominated by one feature)

Generating Data with Latent Groups

Generate data with 2 features and 2 latent groups and see how k-means does

```
mu 1 = np.array([0.0, 0.0]) # mean of k=1
mu 2 = np.array([1.0, 1.0]) # mean of k=2
sigma = np.array([[0.2, 0], [0, 0.2]]) # use same variance
N = 100 \# observations
X 1 = np.random.multivariate_normal(mu_1, sigma, N)
X 2 = np.random.multivariate normal(mu 2, sigma, N)
df 1 = pd.DataFrame({"f1": X 1[:, 0], "f2": X 1[:, 1], "k": 1})
df 2 = pd.DataFrame({"f1": X 2[:, 0], "f2": X 2[:, 1], "k": 2})
df = pd.concat([df 1, df 2], ignore index=True)
```

Plotting Code with Seaborn

```
fig, ax = plt.subplots(figsize=(6, 4))
sns.scatterplot(data=df, x="f1", y="f2", hue="k", ax=ax)
ax.set(xlabel="Feature 1", ylabel="Feature 2", title="Latent Groups")
plt.show()
```

Plot of Features and Latents

k-means to Recover the Latent Groups

- Run k-means with 2 clusters and check the results
- If correlation is close to 1 then successfully recovered the latent groups
- If the correlation is close to -1 then it was succesful. The latent groups \hat{k} numbers are ordered arbitrarily, just as k was

```
kmeans = KMeans(n_clusters=2, random_state=0)
k_hat = kmeans.fit_predict(df[["f1", "f2"]])
df["k_hat"] = k_hat + 1
corr = df["k"].corr(df["k_hat"])
print(f"Correlation between k and k_hat:{corr:.2f}")
```

Correlation between k and k_hat:0.85

Confusion Matrix

```
from sklearn.metrics import confusion matrix
2
  # compute confusion matrix
  cm = confusion matrix(df["k"], df["k hat"])
5
  # plot confusion matrix
  sns.heatmap(cm, annot=True, cmap='Blues')
  plt.xlabel('Predicted k')
  plt.ylabel('True k')
  plt.title('Confusion Matrix for K-Means Clustering')
  plt.show()
```

Confusion Matrix

Swap \hat{k} and Compare

Correlation now -0.851064496346989

Plotting the Uncovered Latent Groups

```
fig, ax = plt.subplots(figsize=(6, 4))
sns.scatterplot(data=df, x="f1", y="f2", hue="Cluster", ax=ax)
ax.set(xlabel="Feature 1", ylabel="Feature 2", title="k-means Recovered Grouplt.show()
```

Plotting the Uncovered Latent Groups

(Optional) Matrix Conditioning and

Stability

Matrix Conditioning

- Poorly conditioned matrices can lead to inaccurate or wrong solutions
- Tends to happen when matrices are close to singular or when they have very different scales - so there will be times when you need to rescale your problems

```
eps = 1e-7
A = np.array([[1, 1], [1 + eps, 1]])
print(f"A =\n{A}")
print(f"A^{-1}) = \ln(inv(A))")
A =
[[1. 1.
 [1.0000001 1. ]]
A^-1 =
[[-9999999.99336215]
```

[10000000.99336215 -9999999.99336215]]

Condition Numbers of Matrices

- $\det(A) \approx 0$ may say it is "almost" singular, but it is not scale-invariant
- $\operatorname{cond}(A) \equiv ||A|| \cdot ||A^{-1}||$ where $||\cdot||$ is the matrix norm expensive to calculate in practice. Connected to eigenvalues $\operatorname{cond}(A) = |\frac{\lambda_{max}}{\lambda_{min}}|$
- Scale free measure of numerical issues for a variety of matrix operations
- Intuition: if cond(A)=K, then $b\to b+\nabla b$ change in b amplifies to a $x\to x+K\nabla b$ error when solving Ax=b.
- See Matlab Docs on inv for example, where inv is a bad idea due to poor conditioning

print(f"condition(I) = {cond(np.eye(2))}")

```
print(f"condition(A) = {cond(A)}, condition(A^(-1)) = {cond(inv(A))}")

condition(I) = 1.0

condition(A) = 40000001.939191714, condition(A^(-1)) = 40000002.00307444
5
```

Example with Interpolation

- Consider fitting data $x \in \mathbb{R}^{N+1}$ and $y \in \mathbb{R}^{N+1}$ with an N-degree polynomial
- ullet That is, find $c\in\mathbb{R}^{N+1}$ such that

$$\begin{aligned} c_0 + c_1 x_1 + c_2 x_1^2 + \ldots + c_N x_1^N &= y_1 \\ &\ldots &= \ldots \\ c_0 + c_1 x_N + c_2 x_N^2 + \ldots + c_N x_N^N &= y_N \end{aligned}$$

 \bullet Which we can then use as $P(x) = \sum_{n=0}^N c_n x^n$ to interpolate between the points

Writing as a Linear System

Define a matrix of all of the powers of the x values

$$A \equiv \begin{bmatrix} 1 & x_0 & x_0^2 & \dots & x_0^N \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ 1 & x_N & x_N^2 & \dots & x_N^N \end{bmatrix}$$

Then solve for c as the solution to,

$$Ac = y$$

- lacktriangle Which we can solve using our tools. As long as x_n are unique, it is A is invertible
- Let's look at the numerical error here from the interpolation using the inf-norm, i.e., $||x||_{\infty} = \max_{n} |x_n|$

Solving an Example

cond(A) = 564652.321404467

```
_1 N = _5
 x = np.linspace(0.0, 10.0, N + 1)
  y = np.exp(x) # example function to interpolate
  A = \text{np.array}([[x i**n for n in range(N + 1)] for x i in x]) # or np.vande
 c = solve(A, y)
 c inv = inv(A) @ y
  print(f"error = {norm(A @ c - y, np.inf)}, \
  error using inv(A) = {norm(A @ c inv - y, np.inf)}")
  print(f"cond(A) = {cond(A)}")
```

error = 2.2737367544323206e-11, error using inv(A) = 1.0986695997416973e-0

Things Getting Poorly Conditioned Quickly

```
_{1} N = 10
 x = np.linspace(0.0, 10.0, N + 1)
  y = np.exp(x) # example function to interpolate
  A = \text{np.array}([[x i**n for n in range(N + 1)] for x_i in x]) # or np.vande
  c = solve(A, y)
  c inv = inv(A) @ v # Solving with inv(A) instead of solve(A, y)
  print(f"error = {norm(A @ c - y, np.inf)}, \
  error using inv(A) = {norm(A @ c inv - y, np.inf)}")
 print(f"cond(A) = {cond(A)}")
```

error = 6.348273018375039e-10, error using inv(A) = 4.55108965979889e-06 cond(A) = 4462823910804.094

$\label{eq:matrix Inverses Fail Completely for } \mbox{Matrix Inverses Fail Completely for } N = 20$

```
_{1} N = 20
 x = np.linspace(0.0, 10.0, N + 1)
  y = np.exp(x) # example function to interpolate
  A = \text{np.array}([[x i**n for n in range(N + 1)] for x i in x]) # or np.vande
 c = solve(A, y)
  c inv = inv(A) @ v # Solving with inv(A) instead of solve(A, y)
  print(f"error = {norm(A @ c - y, np.inf)}, \
  error using inv(A) = {norm(A @ c inv - y, np.inf)}")
  print(f"cond(A) = \{cond(A):.4g\}")
```

error = 1.9554136088117957e-10, error using inv(A) = 21804.714723170073 cond(A) = 3.325e+24

Moral of this Story

N = 40

- Use solve, which is faster and can often solve ill-conditioned problems. Rarely
 use inv, and only when you know the problem is well-conditioned
- Check conditioning of matrices when doing numerical work as an occasional diagnostic, as it is a good indicator of potential problems and collinearity
- For approximation, never use a monomial basis for polynomials

cond(A) = 3.64e+09, cond(A monimial) = 8.903e+17

• Prefer polynomials like Chebyshev, which are designed to be as orthogonal as possible

```
x = np.linspace(-1, 1, N+1) # Or any other range of x values
A = np.array([[np.polynomial.Chebyshev.basis(n)(x_i) for n in range(N+1)];
A_monomial = np.array([[x_i**n for n in range(N + 1)] for x_i in x]) # or
print(f"cond(A) = {cond(A):.4g}, cond(A_monimial) = {cond(A_monomial):.4g}
```