Package 'singleCellHaystack'

January 11, 2024

Type Package

Title A Universal Differential Expression Prediction Tool for Single-Cell and Spatial Genomics Data

Version 1.0.2

Description One key exploratory analysis step in single-cell genomics data analysis is the prediction of features with different activity levels. For example, we want to predict differentially expressed genes (DEGs) in single-cell RNA-seq data, spatial DEGs in spatial transcriptomics data, or differentially accessible regions (DARs) in single-cell ATAC-seq data. 'singleCellHaystack' predicts differentially active features in single cell omics datasets without relying on the clustering of cells into arbitrary clusters. 'singleCellHaystack' uses Kullback-Leibler divergence to find features (e.g., genes, genomic regions, etc) that are active in subsets of cells that are non-randomly positioned inside an input space (such as 1D trajectories, 2D tissue sections, multi-dimensional embeddings, etc). For the theoretical background of 'singleCellHaystack' we refer to our original paper Vandenbon and Diez (Nature Communications, 2020) <doi:10.1038/s41467-020-17900-3> and our update Vandenbon and Diez (Scientific Reports, 2023) <doi:10.1038/s41598-023-38965-2>.

Imports methods, Matrix, splines, ggplot2, reshape2

Suggests knitr, rmarkdown, testthat, SummarizedExperiment, SingleCellExperiment, SeuratObject, cowplot, wrswoR, sparseMatrixStats, ComplexHeatmap, patchwork

License MIT + file LICENSE

Encoding UTF-8

URL https://alexisvdb.github.io/singleCellHaystack/,
 https://github.com/alexisvdb/singleCellHaystack

BugReports https://github.com/alexisvdb/singleCellHaystack/issues

LazyData true
RoxygenNote 7.2.3
VignetteBuilder knitr
NeedsCompilation no

Author Alexis Vandenbon [aut, cre] (https://orcid.org/0000-0003-2180-5732), Diego Diez [aut] (https://orcid.org/0000-0002-2325-4893)

Maintainer Alexis Vandenbon <alexis.vandenbon@gmail.com>

Repository CRAN

Index

Date/Publication 2024-01-11 10:00:05 UTC

R topics documented:

dat.expression		 3
dat.tsne		
default_bandwidth.nrd		 3
extract_row_dgRMatrix		 4
extract_row_lgRMatrix		 4
get_density		 5
get_dist_two_sets		 5
get_D_KL		 6
get_D_KL_continuous_highD		
get_D_KL_highD		 7
get_euclidean_distance		 8
get_grid_points		 8
get_log_p_D_KL		 9
get_log_p_D_KL_continuous		 9
get_parameters_haystack		 10
get_reference		 11
haystack		
haystack_2D		
haystack_continuous_highD		
haystack_highD		 15
hclust_haystack		 16
hclust_haystack_highD		 17
hclust_haystack_raw		
kde2d_faster		 19
kmeans_haystack		 19
kmeans_haystack_highD		 20
kmeans_haystack_raw		 21
plot_compare_ranks		 21
plot_gene_haystack		 22
plot_gene_haystack_raw		 23
plot_gene_set_haystack		 24
plot_gene_set_haystack_raw		
plot_rand_fit		 26
plot_rand_KLD		 26
read_haystack		 27
show_result_haystack		 27
write_haystack		

29

dat.expression 3

dat.expression

Single cell RNA-seq dataset.

Description

Single cell RNA-seq dataset.

dat.tsne

Single cell tSNE coordingates.

Description

Single cell tSNE coordingates.

Description

Default function given by function bandwidth.nrd in MASS. No changes were made to this function.

Usage

```
default_bandwidth.nrd(x)
```

Arguments

Χ

A numeric vector

Value

A suitable bandwith.

extract_row_dgRMatrix Returns a row of a sparse matrix of class dgRMatrix. Function made by Ben Bolker and Ott Toomet (see https://stackoverflow.com/questions/47997184/)

Description

Returns a row of a sparse matrix of class dgRMatrix. Function made by Ben Bolker and Ott Toomet (see https://stackoverflow.com/questions/47997184/)

Usage

```
extract_row_dgRMatrix(m, i = 1)
```

Arguments

m a sparse matrix of class dgRMatrix
i the index of the row to return

Value

A row (numerical vector) of the sparse matrix

extract_row_lgRMatrix Returns a row of a sparse matrix of class lgRMatrix. Function made by Ben Bolker and Ott Toomet (see https://stackoverflow.com/questions/47997184/)

Description

Returns a row of a sparse matrix of class lgRMatrix. Function made by Ben Bolker and Ott Toomet (see https://stackoverflow.com/questions/47997184/)

Usage

```
extract_row_lgRMatrix(m, i = 1)
```

Arguments

m a sparse matrix of class lgRMatrix
i the index of the row to return

Value

A row (logical vector) of the sparse matrix

get_density 5

get_density	Function to get the density of points with value TRUE in the (x,y) plot
o – o	3 371

Description

Function to get the density of points with value TRUE in the (x,y) plot

Usage

```
get_density(
   x,
   y,
   detection,
   rows.subset = 1:nrow(detection),
   high.resolution = FALSE
)
```

Arguments

X	x-axis coordinates of cells in a 2D representation (e.g. resulting from PCA or
	t-SNE)

y y-axis coordinates of cells in a 2D representation

detection A logical matrix or dgRMatrix showing which gens (rows) are detected in which

cells (columns)

rows.subset Indices of the rows of 'detection' for which to get the densities. Default: all.

high.resolution

Logical: should high resolution be used? Default is FALSE.

Value

A 3-dimensional array (dim 1: genes/rows of expression, dim 2 and 3: x and y grid points) with density data

Description

Calculate the pairwise Euclidean distances between the rows of 2 matrices.

```
get_dist_two_sets(set1, set2)
```

Arguments

set1 A numerical matrix. set2 A numerical matrix.

Value

A matrix of pairwise distances between the rows of 2 matrices.

get_D_KL

Calculates the Kullback-Leibler divergence between distributions.

Description

Calculates the Kullback-Leibler divergence between distributions.

Usage

```
get_D_KL(classes, parameters, reference.prob, pseudo)
```

Arguments

classes A logical vector. Values are T is the gene is expressed in a cell, F is not.

parameters Parameters of the analysis, as set by function 'get_parameters_haystack'

reference.prob A reference distribution to calculate the divergence against.

pseudo A pseudocount, used to avoid log(0) problems.

Value

A numerical value, the Kullback-Leibler divergence

get_D_KL_continuous_highD

Calculates the Kullback-Leibler divergence between distributions for the high-dimensional continuous version of haystack.

Description

Calculates the Kullback-Leibler divergence between distributions for the high-dimensional continuous version of haystack.

get_D_KL_highD 7

Usage

```
get_D_KL_continuous_highD(
  weights,
  density.contributions,
  reference.prob,
  pseudo = 0
)
```

Arguments

weights A numerical vector with expression values of a gene.

density.contributions

A matrix of density contributions of each cell (rows) to each center point (columns).

reference.prob A reference distribution to calculate the divergence against.

pseudo A pseudocount, used to avoid log(0) problems.

Value

A numerical value, the Kullback-Leibler divergence

get_D_KL_highD Calculates the Kullback-Leibler divergence between distributions for the high-dimensional version of haystack().

Description

Calculates the Kullback-Leibler divergence between distributions for the high-dimensional version of haystack().

Usage

```
get_D_KL_highD(classes, density.contributions, reference.prob, pseudo = 0)
```

Arguments

classes A logical vector. Values are T is the gene is expressed in a cell, F is not. density.contributions

A matrix of density contributions of each cell (rows) to each center point (columns).

reference.prob A reference distribution to calculate the divergence against.

pseudo A pseudocount, used to avoid log(0) problems.

Value

A numerical value, the Kullback-Leibler divergence

8 get_grid_points

```
get_euclidean_distance
```

Calculate the Euclidean distance between x and y.

Description

Calculate the Euclidean distance between x and y.

Usage

```
get_euclidean_distance(x, y)
```

Arguments

x A numerical vector.y A numerical vector.

Value

A numerical value, the Euclidean distance.

get_grid_points

A function to decide grid points in a higher-dimensional space

Description

A function to decide grid points in a higher-dimensional space

Usage

```
get_grid_points(input, method = "centroid", grid.points = 100)
```

Arguments

input A numerical matrix with higher-dimensional coordinates (columns) of points

(rows)

method The method to decide grid points. Should be "centroid" (default) or "seeding".

grid.points The number of grid points to return. Default is 100.

Value

Coordinates of grid points in the higher-dimensonal space.

get_log_p_D_KL

get_log_p_D_KL	Estimates the significance of the observed Kullback-Leibler diver-
	gence by comparing to randomizations.

Description

Estimates the significance of the observed Kullback-Leibler divergence by comparing to randomizations.

Usage

```
get_log_p_D_KL(T.counts, D_KL.observed, D_KL.randomized, output.dir = NULL)
```

Arguments

T. counts The number of cells in which a gene is detected.

D_KL.observed A vector of observed Kullback-Leibler divergences.

D_KL.randomized A matrix of Kullback-Leibler divergences of randomized datasets.

Output.dir Optional parameter. Default is NULL. If not NULL, some files will be written to this directory.

Value

A vector of log10 p values, not corrected for multiple testing using the Bonferroni correction.

```
get_log_p_D_KL_continuous
```

Estimates the significance of the observed Kullback-Leibler divergence by comparing to randomizations for the continuous version of haystack.

Description

Estimates the significance of the observed Kullback-Leibler divergence by comparing to randomizations for the continuous version of haystack.

```
get_log_p_D_KL_continuous(
   D_KL.observed,
   D_KL.randomized,
   all.coeffVar,
   train.coeffVar,
   output.dir = NULL,
   spline.method = "ns"
)
```

Arguments

D_KL.observed A vector of observed Kullback-Leibler divergences.

D_KL.randomized

A matrix of Kullback-Leibler divergences of randomized datasets.

all.coeffVar Coefficients of variation of all genes. Used for fitting the Kullback-Leibler di-

vergences.

train.coeffVar Coefficients of variation of genes that will be used for fitting the Kullback-

Leibler divergences.

output.dir Optional parameter. Default is NULL. If not NULL, some files will be written

to this directory.

spline.method Method to use for fitting splines "ns" (default): natural splines, "bs": B-splines.

Value

A vector of log10 p values, not corrected for multiple testing using the Bonferroni correction.

get_parameters_haystack

Function that decides most of the parameters that will be used during the "Haystack" analysis.

Description

Function that decides most of the parameters that will be used during the "Haystack" analysis.

Usage

```
get_parameters_haystack(x, y, high.resolution = FALSE)
```

Arguments

x x-axis coordinates of cells in a 2D representation (e.g. resulting from PCA or t-SNE)

y y-axis coordinates of cells in a 2D representation

high.resolution

Logical: should high resolution be used? Default is FALSE.

Value

A list containing various parameters to use in the analysis.

get_reference 11

get_reference

Get reference distribution

Description

Get reference distribution

Usage

```
get_reference(param, use.advanced.sampling = NULL)
```

Arguments

```
param Parameters of the analysis, as set by function 'get_parameters_haystack'
use.advanced.sampling

If NULL naive sampling is used. If a vector is given (of length = no. of cells)
sampling is done according to the values in the vector.
```

Value

A list with two components, Q for the reference distribution and pseudo.

haystack

The main Haystack function

Description

The main Haystack function

```
haystack(x, ...)
## S3 method for class 'matrix'
haystack(
    x,
    expression,
    weights.advanced.Q = NULL,
    dir.randomization = NULL,
    scale = TRUE,
    grid.points = 100,
    grid.method = "centroid",
    ...
)
```

12 haystack

```
## S3 method for class 'data.frame'
haystack(
 х,
  expression,
 weights.advanced.Q = NULL,
 dir.randomization = NULL,
  scale = TRUE,
  grid.points = 100,
 grid.method = "centroid",
)
## S3 method for class 'Seurat'
haystack(
 Х,
  coord,
  assay = "RNA",
  slot = "data",
 dims = NULL,
  cutoff = 1,
 method = NULL,
 weights.advanced.Q = NULL,
)
## S3 method for class 'SingleCellExperiment'
haystack(
 Х,
 assay = "counts",
 coord = "TSNE",
 dims = NULL,
 cutoff = 1,
 method = NULL,
 weights.advanced.Q = NULL,
)
```

Arguments

```
x a matrix or other object from which coordinates of cells can be extracted.
... further parameters passed down to methods.

expression a matrix with expression data of genes (rows) in cells (columns)

weights.advanced.Q

If NULL naive sampling is used. If a vector is given (of length = no. of cells)

sampling is done according to the values in the vector.

dir.randomization
```

If NULL, no output is made about the random sampling step. If not NULL, files related to the randomizations are printed to this directory.

haystack_2D 13

scale	Logical (default=TRUE) indicating whether input coordinates in x should be scaled to mean 0 and standard deviation 1.
grid.points	An integer specifying the number of centers (gridpoints) to be used for estimating the density distributions of cells. Default is set to 100.
grid.method	The method to decide grid points for estimating the density in the high-dimensional space. Should be "centroid" (default) or "seeding".
coord	name of coordinates slot for specific methods.
assay	name of assay data for Seurat method.
slot	name of slot for assay data for Seurat method.
dims	dimensions from coord to use. By default, all.
cutoff	cutoff for detection.
method	choose between highD (default) and 2D haystack.

Value

An object of class "haystack"

haystack_2D

The main Haystack function, for 2-dimensional spaces.

Description

The main Haystack function, for 2-dimensional spaces.

Usage

```
haystack_2D(
    x,
    y,
    detection,
    use.advanced.sampling = NULL,
    dir.randomization = NULL
)
```

Arguments

x -axis coordinates of cells in a 2D representation (e.g. resulting from PCA or

t-SNE)

y y-axis coordinates of cells in a 2D representation

detection A logical matrix showing which genes (rows) are detected in which cells (columns) use.advanced.sampling

If NULL naive sampling is used. If a vector is given (of length = no. of cells) sampling is done according to the values in the vector.

dir.randomization

If NULL, no output is made about the random sampling step. If not NULL, files related to the randomizations are printed to this directory.

Value

An object of class "haystack"

```
haystack_continuous_highD
```

The main Haystack function, for higher-dimensional spaces and continuous expression levels.

Description

The main Haystack function, for higher-dimensional spaces and continuous expression levels.

Usage

```
haystack_continuous_highD(
    x,
    expression,
    grid.points = 100,
    weights.advanced.Q = NULL,
    dir.randomization = NULL,
    scale = TRUE,
    grid.method = "centroid",
    randomization.count = 100,
    n.genes.to.randomize = 100,
    selection.method.genes.to.randomize = "heavytails",
    grid.coord = NULL,
    spline.method = "ns"
)
```

Arguments

X	Coordinates of cells in a 2D	or higher-dimensional	space. I	Rows represent cells,

columns the dimensions of the space.

expression a matrix with expression data of genes (rows) in cells (columns)

grid.points An integer specifying the number of centers (grid points) to be used for estimat-

ing the density distributions of cells. Default is set to 100.

weights.advanced.Q

(Default: NULL) Optional weights of cells for calculating a weighted distribu-

tion of expression.

dir.randomization

If NULL, no output is made about the random sampling step. If not NULL, files

related to the randomizations are printed to this directory.

scale Logical (default=TRUE) indicating whether input coordinates in x should be

scaled to mean 0 and standard deviation 1.

haystack_highD 15

```
grid.method The method to decide grid points for estimating the density in the high-dimensional space. Should be "centroid" (default) or "seeding".

randomization.count

Number of randomizations to use. Default: 100

n.genes.to.randomize

Number of genes to use in randomizations. Default: 100

selection.method.genes.to.randomize

Method used to select genes for randomization.

grid.coord

matrix of grid coordinates.

spline.method

Method to use for fitting splines "ns" (default): natural splines, "bs": B-splines.
```

Value

An object of class "haystack", including the results of the analysis, and the coordinates of the grid points used to estimate densities.

Examples

```
# using the toy example of the singleCellHaystack package
# running haystack
res <- haystack(dat.tsne, dat.expression)
# list top 10 biased genes
show_result_haystack(res, n=10)</pre>
```

haystack_highD

The main Haystack function, for higher-dimensional spaces.

Description

The main Haystack function, for higher-dimensional spaces.

```
haystack_highD(
    x,
    detection,
    grid.points = 100,
    use.advanced.sampling = NULL,
    dir.randomization = NULL,
    scale = TRUE,
    grid.method = "centroid"
)
```

16 hclust_haystack

Arguments

X	Coordinates of cells in a 2D or higher-dimensional space. Rows represent cells, columns the dimensions of the space.
detection	A logical matrix showing which genes (rows) are detected in which cells (columns) $$
grid.points	An integer specifying the number of centers (grid points) to be used for estimating the density distributions of cells. Default is set to 100.
use.advanced.sa	mpling
	If NULL naive sampling is used. If a vector is given (of length = no. of cells) sampling is done according to the values in the vector.
dir.randomizati	on
	If NULL, no output is made about the random sampling step. If not NULL, files related to the randomizations are printed to this directory.
scale	Logical (default=TRUE) indicating whether input coordinates in x should be scaled to mean 0 and standard deviation 1.
grid.method	The method to decide grid points for estimating the density in the high-dimensional space. Should be "centroid" (default) or "seeding".

Value

An object of class "haystack", including the results of the analysis, and the coordinates of the grid points used to estimate densities.

Examples

```
# I need to add some examples.

# A toy example will be added too.

hclust_haystack Function for hierarchical clustering of genes according to their expression distribution in 2D or multi-dimensional space
```

Description

Function for hierarchical clustering of genes according to their expression distribution in 2D or multi-dimensional space

```
hclust_haystack(
    x,
    expression,
    grid.coordinates,
    hclust.method = "ward.D",
    cor.method = "spearman",
```

```
)
## S3 method for class 'matrix'
hclust_haystack(
  х,
  expression,
  grid.coordinates,
 hclust.method = "ward.D",
  cor.method = "spearman",
)
## S3 method for class 'data.frame'
hclust_haystack(
  Х,
  expression,
  grid.coordinates,
 hclust.method = "ward.D",
  cor.method = "spearman",
)
```

Arguments

hclust_haystack_highD Function for hierarchical clustering of genes according to their distribution in a higher-dimensional space.

Description

Function for hierarchical clustering of genes according to their distribution in a higher-dimensional space.

```
hclust_haystack_highD(
   x,
   detection,
```

18 hclust_haystack_raw

```
genes,
method = "ward.D",
grid.coordinates = NULL,
scale = TRUE
)
```

Arguments

x Coordinates of cells in a 2D or higher-dimensional space. Rows represent cells,

columns the dimensions of the space.

detection A logical matrix showing which genes (rows) are detected in which cells (columns)

genes A set of genes (of the 'detection' data) which will be clustered.

method The method to use for hierarchical clustering. See '?hclust' for more informa-

tion. Default: "ward.D".

grid.coordinates

Coordinates of grid points in the same space as 'x', to be used to estimate den-

sities for clustering.

scale whether to scale data.

Value

An object of class helust, describing a hierarchical clustering tree.

Examples

to be added

hclust_haystack_raw Function for hierarchical clustering of genes according to their distribution on a 2D plot.

Description

Function for hierarchical clustering of genes according to their distribution on a 2D plot.

Usage

```
hclust_haystack_raw(x, y, detection, genes, method = "ward.D")
```

Arguments

x x-axis coordinates of cells in a 2D representation (e.g. resulting from PCA or

t-SNE)

y y-axis coordinates of cells in a 2D representation

detection A logical matrix showing which genes (rows) are detected in which cells (columns)

genes A set of genes (of the 'detection' data) which will be clustered.

method The method to use for hierarchical clustering. See '?hclust' for more informa-

tion. Default: "ward.D".

kde2d_faster 19

Value

An object of class helust, describing a hierarchical clustering tree.

kde2d_faster Based on the MASS kde2d() function, but heavily simplified; it's just tcrossprod() now.

Description

Based on the MASS kde2d() function, but heavily simplified; it's just tcrossprod() now.

Usage

```
kde2d_faster(dens.x, dens.y)
```

Arguments

dens.x	Contribution of all cells to densities of the x-axis grid points.
dens.y	Contribution of all cells to densities of the y-axis grid points.

kmeans_haystack

Function for k-means clustering of genes according to their expression distribution in 2D or multi-dimensional space

Description

Function for k-means clustering of genes according to their expression distribution in 2D or multidimensional space

Usage

```
kmeans_haystack(x, expression, grid.coordinates, k, ...)
## S3 method for class 'matrix'
kmeans_haystack(x, expression, grid.coordinates, k, ...)
## S3 method for class 'data.frame'
kmeans_haystack(x, expression, grid.coordinates, k, ...)
```

Arguments

```
x a matrix or other object from which coordinates of cells can be extracted.
expression expression matrix.
grid.coordinates
coordinates of the grid points.
k number of clusters.
```

... further parameters passed down to methods.

kmeans_haystack_highD Function for k-means clustering of genes according to their distribution in a higher-dimensional space.

Description

Function for k-means clustering of genes according to their distribution in a higher-dimensional space.

Usage

```
kmeans_haystack_highD(
    x,
    detection,
    genes,
    grid.coordinates = NULL,
    k,
    scale = TRUE,
    ...
)
```

Arguments

x Coordinates of cells in a 2D of	or higher-dimensional	space. Rows represent cells,
-----------------------------------	-----------------------	------------------------------

columns the dimensions of the space.

detection A logical matrix showing which genes (rows) are detected in which cells (columns)

genes A set of genes (of the 'detection' data) which will be clustered.

grid.coordinates

Coordinates of grid points in the same space as 'x', to be used to estimate den-

sities for clustering.

k The number of clusters to return.

scale whether to scale data.

... Additional parameters which will be passed on to the kmeans function.

Value

An object of class kmeans, describing a clustering into 'k' clusters

Examples

```
# to be added
```

kmeans_haystack_raw 21

kmeans_haystack_raw	Function for k-means clustering of genes according to their distribution on a 2D plot.

Description

Function for k-means clustering of genes according to their distribution on a 2D plot.

Usage

```
kmeans_haystack_raw(x, y, detection, genes, k, ...)
```

Arguments

Х	x-axis coordinates of cells in a 2D representation (e.g. resulting from PCA or t-SNE)
У	y-axis coordinates of cells in a 2D representation
detection	A logical matrix showing which genes (rows) are detected in which cells (columns)
genes	A set of genes (of the 'detection' data) which will be clustered.
k	The number of clusters to return.
	Additional parameters which will be passed on to the kmeans function.

Value

An object of class kmeans, describing a clustering into 'k' clusters

```
plot_compare_ranks plot_compare_ranks
```

Description

```
plot_compare_ranks
```

Usage

```
plot_compare_ranks(res1, res2, sort_by = "log.p.vals")
```

Arguments

res1	haystack result.
res2	haystack result.
sort_by	column to sort results (default: log.p.vals).

22 plot_gene_haystack

plot_gene_haystack

Visualizing the detection/expression of a gene in a 2D plot

Description

Visualizing the detection/expression of a gene in a 2D plot

Usage

```
plot_gene_haystack(x, ...)
## S3 method for class 'matrix'
plot\_gene\_haystack(x, dim1 = 1, dim2 = 2, ...)
## S3 method for class 'data.frame'
plot\_gene\_haystack(x, dim1 = 1, dim2 = 2, ...)
## S3 method for class 'SingleCellExperiment'
plot_gene_haystack(
  Х,
 dim1 = 1,
 dim2 = 2,
  assay = "counts",
 coord = "TSNE",
)
## S3 method for class 'Seurat'
plot_gene_haystack(
 х,
 dim1 = 1,
  dim2 = 2,
  assay = "RNA",
  slot = "data",
  coord = "tsne",
)
```

Arguments

```
a matrix or other object from which coordinates of cells can be extracted.

further parameters passed to plot_gene_haystack_raw().

column index or name of matrix for x-axis coordinates.

column index or name of matrix for y-axis coordinates.

assay

name of assay data for Seurat method.
```

coord name of coordinates slot for specific methods. slot name of slot for assay data for Seurat method.

```
plot_gene_haystack_raw
```

Visualizing the detection/expression of a gene in a 2D plot

Description

Visualizing the detection/expression of a gene in a 2D plot

Usage

```
plot_gene_haystack_raw(
    x,
    y,
    gene,
    expression,
    detection = NULL,
    high.resolution = FALSE,
    point.size = 1,
    order.by.signal = FALSE
)
```

Arguments

x -axis coordinates of cells in a 2D representation (e.g. resulting from PCA or

t-SNE)

y y-axis coordinates of cells in a 2D representation

gene name of a gene that is present in the input expression data, or a numerical index

expression a logical/numerical matrix showing detection/expression of genes (rows) in cells

(columns)

detection an optional logical matrix showing detection of genes (rows) in cells (columns).

If left as NULL, the density distribution of the gene is not plotted.

high.resolution

logical (default: FALSE). If set to TRUE, the density plot will be of a higher

resolution

point.size numerical value to set size of points in plot. Default is 1.

order.by.signal

If TRUE, cells with higher signal will be put on the foreground in the plot. Default is FALSE.

Value

A plot

```
plot_gene_set_haystack
```

Visualizing the detection/expression of a set of genes in a 2D plot

Description

Visualizing the detection/expression of a set of genes in a 2D plot

Usage

```
plot_gene_set_haystack(x, ...)
## S3 method for class 'matrix'
plot\_gene\_set\_haystack(x, dim1 = 1, dim2 = 2, ...)
## S3 method for class 'data.frame'
plot\_gene\_set\_haystack(x, dim1 = 1, dim2 = 2, ...)
## S3 method for class 'SingleCellExperiment'
plot_gene_set_haystack(
  х,
  dim1 = 1,
  dim2 = 2,
  assay = "counts",
  coord = "TSNE",
)
## S3 method for class 'Seurat'
plot_gene_set_haystack(
  Х,
  dim1 = 1,
  dim2 = 2,
  assay = "RNA",
  slot = "data"
  coord = "tsne",
)
```

Arguments

```
x a matrix or other object from which coordinates of cells can be extracted.
... further parameters passed to plot_gene_haystack_raw().
dim1 column index or name of matrix for x-axis coordinates.
dim2 column index or name of matrix for y-axis coordinates.
assay name of assay data for Seurat method.
```

coord name of coordinates slot for specific methods.
slot name of slot for assay data for Seurat method.

```
plot_gene_set_haystack_raw
```

Visualizing the detection/expression of a set of genes in a 2D plot

Description

Visualizing the detection/expression of a set of genes in a 2D plot

Usage

```
plot_gene_set_haystack_raw(
    x,
    y,
    genes = NA,
    detection,
    high.resolution = TRUE,
    point.size = 1,
    order.by.signal = FALSE
)
```

Arguments

x x-axis coordinates of cells in a 2D representation (e.g. resulting from PCA or

t-SNE)

y y-axis coordinates of cells in a 2D representation

genes Gene names that are present in the input expression data, or a numerical indeces.

If NA, all genes will be used.

detection a logical matrix showing detection of genes (rows) in cells (columns)

high.resolution

logical (default: TRUE). If set to FALSE, the density plot will be of a lower

resolution

point.size numerical value to set size of points in plot. Default is 1.

order.by.signal

If TRUE, cells with higher signal will be put on the foreground in the plot. Default is FALSE.

Value

A plot

26 plot_rand_KLD

plot_rand_fit

plot_rand_fit

Description

```
plot_rand_fit
```

Usage

```
plot_rand_fit(x, type = c("mean", "sd"))
## S3 method for class 'haystack'
plot_rand_fit(x, type = c("mean", "sd"))
```

Arguments

x haystack object.

type whether to plot mean or sd.

plot_rand_KLD

plot_rand_KLD

Description

Plots the distribution of randomized KLD for each of the genes, together with the mean and standard deviation, the 0.95 quantile and the 0.95 quantile from a normal distribution with mean and standard deviations from the distribution of KLDs. The logCV is indicated in the subtitle of each plot.

Usage

```
plot_rand_KLD(x, n = 12, log = TRUE, tail = FALSE)
```

Arguments

x haystack result.

n number of genes from randomization set to plot.

log whether to use log of KLD.

tail whether the genes are chosen from the tail of randomized genes.

read_haystack 27

read_haystack

Function to read haystack results from file.

Description

Function to read haystack results from file.

Usage

```
read_haystack(file)
```

Arguments

file

A file containing 'haystack' results to read

Value

An object of class "haystack"

```
show_result_haystack show_result_haystack
```

Description

Shows the results of the 'haystack' analysis in various ways, sorted by significance. Priority of params is genes > p.value.threshold > n.

```
show_result_haystack(
  res.haystack,
  n = NULL,
  p.value.threshold = NULL,
  gene = NULL
)

## S3 method for class 'haystack'
show_result_haystack(
  res.haystack,
  n = NULL,
  p.value.threshold = NULL,
  gene = NULL
)
```

28 write_haystack

Arguments

Details

The output is a data.frame with the following columns: * D_KL the calculated KL divergence. * log.p.vals log10 p.values calculated from randomization. * log.p.adj log10 p.values adjusted by Bonferroni correction.

Value

A data.frame with 'haystack' results sorted by log.p.vals.

Examples

```
# using the toy example of the singleCellHaystack package

# running haystack
res <- haystack(dat.tsne, dat.expression)

# below are variations for showing the results in a table
# 1. list top 10 biased genes
show_result_haystack(res.haystack = res, n =10)
# 2. list genes with p value below a certain threshold
show_result_haystack(res.haystack = res, p.value.threshold=1e-10)
# 3. list a set of specified genes
set <- c("gene_497", "gene_386", "gene_275")
show_result_haystack(res.haystack = res, gene = set)</pre>
```

write_haystack

Function to write haystack result data to file.

Description

Function to write haystack result data to file.

Usage

```
write_haystack(res.haystack, file)
```

Arguments

res.haystack A 'haystack' result variable

file A file to write to

Index

* data dat.expression, 3 dat.tsne, 3	<pre>plot_rand_fit, 26 plot_rand_KLD, 26 read_haystack, 27</pre>
<pre>dat.expression, 3 dat.tsne, 3 default_bandwidth.nrd, 3 extract_row_dgRMatrix, 4 extract_row_lgRMatrix, 4</pre>	show_result_haystack, 27 write_haystack, 28
get_D_KL, 6 get_D_KL_continuous_highD, 6 get_D_KL_highD, 7 get_density, 5 get_dist_two_sets, 5 get_euclidean_distance, 8 get_grid_points, 8 get_log_p_D_KL, 9 get_log_p_D_KL_continuous, 9 get_parameters_haystack, 10 get_reference, 11	
haystack, 11 haystack_2D, 13 haystack_continuous_highD, 14 haystack_highD, 15 hclust_haystack, 16 hclust_haystack_highD, 17 hclust_haystack_raw, 18	
kde2d_faster, 19 kmeans_haystack, 19 kmeans_haystack_highD, 20 kmeans_haystack_raw, 21	
plot_compare_ranks, 21 plot_gene_haystack, 22 plot_gene_haystack_raw, 23 plot_gene_set_haystack, 24 plot_gene_set_haystack_raw, 25	