ELETTRONICA DIGITALE

Corso di Laurea in Ingegneria Informatica

Prova scritta 28 gennaio 2014

Esercizio A

$R_1 = 10 \text{ k}\Omega$	$R_{10} = 6 \text{ k}\Omega$	$V_{cc} \uparrow V_{cc} \uparrow R_4 \qquad V_{cc} \uparrow R_9$	
$R_2 = 20 \text{ k}\Omega$	$R_{11} = 20 \text{ k}\Omega$		
$R_4 = 100 \Omega$	$C_1 = 10 \text{ nF}$	c_1	
$R_5 = 4 k\Omega$	$C_2=1 \mu F$	Q_1 Q_2 Q_4	
$R_6 = 20 \text{ k}\Omega$	$C_3 = 100 \text{ nF}$	$V_i \begin{pmatrix} r \\ - \end{pmatrix}$	• + , ,
$R_7 = 265 \text{ k}\Omega$	$C_4 = 1 \text{ nF}$	$R_{11} > R_{12}$	_ V _∪
$R_8 = 500 \Omega$	$V_{CC} = 18 \text{ V}$) 117
$R_9 = 1 \text{ k}\Omega$			

 Q_1 è un transistore MOS a canale p resistivo, con la corrente di drain in saturazione data da $I_D=k(V_{GS}-V_T)^2$ con k=1 mA/V² e $V_T=-1$ V. Q_2 è un transistore BJT BC109B resistivo con $h_{re}=h_{oe}=0$. Con riferimento al circuito in figura:

- 1) Calcolare il valore della resistenza R_3 in modo che, in condizioni di riposo, la tensione dell'emettitore di Q_2 sia 12 V. Determinare, inoltre, il punto di riposo dei due transistori e verificare la saturazione di Q_1 . (R: $R_3 = 1046.5 \Omega$)
- 2) Determinare V_U/V_i alle frequenze per le quali C_1 , C_2 , C_3 e C_4 possono essere considerati dei corto circuiti. (R: $V_U/V_i = -9.58$)
- 3) (**Solo per 12 CFU**) Determinare la funzione di trasferimento V_U/V_i e tracciarne il diagramma di Bode quotato asintotico del modulo. (R: $f_{z1} = 0$ Hz; $f_{p1} = 2387.32$ Hz; $f_{z2} = 138.82$ Hz; $f_{p2} = 492$ Hz; $f_{z4} = 0$ Hz; $f_{p4} = 7923$ Hz)

Esercizio B

Progettare una porta logica in tecnologia CMOS, utilizzando la tecnica della pull-up network e della pull-down network, che implementi la funzione logica:

$$Y = \left(\overline{BC} + \overline{D}E + \overline{A}\right)\left(\overline{\overline{C} + D}\right) + \overline{B\overline{E}}\left(C + \overline{E}\right)$$

con in totale, non più di 18 transistori e disegnare lo schema completo. Dimensionare inoltre il rapporto (W/L) di tutti i transistori, assumendo, per l'inverter di base, W/L pari a 2 per il MOS a canale n e pari a 5 per quello a canale p. Si specifichino i dettagli della procedura di dimensionamento di tutti i transistori.

Esercizio C

$R_1 = 1 k \Omega$	$R_4 = 4 k \Omega$
$R_2 = 6 \text{ k } \Omega$	$R_5 = 1 \text{ k } \Omega$
$R_3 = 1 \text{ k}\Omega$	$C = 1 \mu F$
$V_{CC} = 5 \text{ V}$	

Il circuito IC_1 è un NE555 alimentato a $V_{CC} = 5V$, Q_1 ha una $R_{on} = 0$ e $V_T = -1$ V. Determinare la frequenza del segnale di uscita del multivibratore. (R: f = 564.4 Hz)