

自研高铁专用天线介绍

中国电信研究院 中电信智能网络科技有限公司

2023年9月

自研高铁专用天线基本特性1

天线外观

右赋形水平波瓣图 (合成)

合成的特殊波瓣形状, 匹配高铁覆盖要求

右赋形水平远近波束 ,覆盖近点 高增益波束, 大偏 置角,覆盖远点

产品名称	自研高铁专用天线				
产品型号	CTIN-GTL8-N78-R				
工作频率 (MHz)	3300-3600				
端口数	4/4				
增益 (dBi)	18±1 (远) /17±1 (近)				
极化 (°)	±45				
覆盖波束指向(°)	55 (远)) /29 (近)				
水平偏置角(°)	55-65				
3dB水平波束宽度(°)	15±4 (远) /19±5 (近)				
10dB水平波束宽度(°)	28±4 (远) /64±6 (近)				
3dB垂直波束宽度(°)	15±4 (远) /15±4 (近)				
10dB垂直波束宽度(°)	28±4 (远) /28±4 (近)				
水平覆盖范围 (°)	90				
前后比 (dB)	25				
极化隔离度 (dB)	≥25				
波束隔离度 (dB)	≥22				
电压驻波比	≤1.5				
输入阻抗 (Ω)	50				
功率容量 (W)	100 (每端口)				

- 垂直铁轨方向安装,通过旋转内部反射板调整方向角
- 左右赋形两种天线,分别覆盖左向及右向
- 确保天线主波瓣能量精确覆盖至铁轨上

自研高铁专用天线基本特性2

□ 问题: 传统天线的设计, 以面覆盖、点覆盖为目标, 对于高铁线覆盖场景覆盖效果差

□ 方案: 针对高铁线覆盖场景进行特殊设计

• 双波束合成异形波束形状,辐射特性符合线覆盖要求,实现主波瓣能量在铁轨上的均匀分布

• 采用可旋转反射板,调整天线辐射范围,确保水平方向精确覆盖

• 增添校准标志,使工程实施更加简单、精确,实现垂直方向精确覆盖

• 专用天线无需复杂的分配和移相网络,天线能量转化效率高

例:板状天线覆盖范围近似计算:

站高: 25米

天线倾角: 8°

垂直波宽: 7°

垂直波瓣上边沿覆盖半径: 318米

垂直波瓣下边沿覆盖半径: 126米

传统板状天线主瓣波束投影与铁轨不重叠

专用天线可确保主瓣能量精确投影至铁轨上

创新校准机制确保天线安装方便、精确

□ 多重校准标志,提升工程精确度,降低施工难度,便于工程质量评估

天线方向指示 箭头

侧面校准线条, 确保

天线安装方向正确

倾角准确性评估 标志:上标志

正面校准线条,确保天线安装垂直,方向正确

倾角准确性评估 标志:下标志

倾角仪

望远镜

安徽3.5G高铁专用天线试点案例

- 安徽3.5G高铁专用天线试点
 - ✓ 8个RRU合并成1个超级小区,覆盖2.2公里,更换天线前后对比测试

■ 试点效果

- ✓ 信号波动明显减小,边缘场强平均提升10dB以上;
- ✓ 平均场强提升5dB以上(天线改造前平均RSRP为-96.32dBm, 改造 后平均RSRP为-90.63dBm);

改造前

改造后

安徽3.5G高铁专用天线试点,天线改造前后RSRP对比(4个站点8面天线,合并为一个超级小区)

站点名称	站轨距 (米)	站间距(米)		
全椒打铁岗	100	590		
合宁十八增补	149	590	510	
许家坝西北	147	EGO	210	
合宁十七增补	109	560		

测试方法

列车类 型	复兴号				
座位选 择	列车车厢三座位或者两座位相连 的靠走廊位置				
测试方法	1、往返路测;				
	2、单趟同时做业务上传下载测试;				
	3、手机放在身前;				
	4、传统天线、定制天线改造前后				
	对比测试				

■ 自研高铁专用天线试点效果:

- ✓ 信号波动明显减小,一阶段试点边缘场强提升7~8dB,二阶段试点边缘场强平均提升10dB以上;
- ✓ 一阶段试点,平均场强提升2dB以上(天线改造前平均RSRP为-96.32dBm,改造后平均RSRP为-94.23dBm);
- ✓ 二阶段试点(优化天线设计),平均场强提升5dB以上(天线改造前平均RSRP为-96.32dBm,改造后平均RSRP为-91.17dBm)

安徽3.5G高铁专用天线试点改造总结

■ 覆盖性能明显提升

- ✔ 信号波动明显降低,深衰落明显减少
- ✓ 边缘场强平均提升10dB
- ✓ 平均覆盖场强提升5dB
- 简易实现精确工程安装
 - ✔ 天线设置多重校准标志,确保一次上站实现精确施工,后续基本无需工程调整

湖南湘江大桥2.1G高铁专用天线试点-改造后覆盖情况

测试方向	测试时长 (小时)	测试里程 (公里)	覆盖率 (RSRP≥- 110 & SINR ≥-3)	RSRP均值 (dBm)	SINR均值 (dB)	下载均速 (Mbps)	下载优良比 (≥ 12Mbps)	上传均速 (Mbps)	上传优良比 (≥5Mbps)	里程覆盖率
湘潭到长沙-靠近基站侧	0.01	1.92	100.00%	-86.62	14.56	14,11	22.22%	23.83	100.00%	99.85%
长沙到湘潭-远离基站侧	0.01	1.92	100.00%	-95.76	11.49	4.57	0.00%	26.06	100.00%	99.43%

湘潭到长沙方向,手机放置在基站侧窗边

长沙到湘潭:测试手机放在远离基站侧窗边

高铁覆盖频率选择建议

- 3.5G频段进行高铁覆盖,具有带宽大、干扰小、无需过多考虑周围兼顾覆盖、易于建设专网等特点,用户体验可保证
 - ✓ 2.1G难以协调40M带宽,难以多小区合并及建设高铁专网
- 隧道占比高路段,以2.1G为基础进行覆盖
 - ✓ 隧道的原有漏缆只能支持2.1G频段, 难以更换支持3.5G或更换成本太高
 - ✓ 连续5公里以上隧道的路段可考虑采用3.5G进行局部覆盖(采用异频切换或载波聚合)提升用户感知
- 平原地区路段,优先考虑3.5G覆盖
 - ✓ 高性能的自研高铁天线,让不调整站间距直接部署3.5G高铁覆盖成为可能
- 良好高铁覆盖的**决定性因素**:信号进入车体的**入射 角≤75°**
 - ✔ 对应站轨距:覆盖距离=1:4(无遮挡环境)
 - ✓ 100米以上站轨距, 可支持800米的站间距
- 决定站间距的因素:
 - 1. 信号进入车体的入射角度,该因素与频段无关
 - 2. 自由空间传播特性, 2.1G优于3.5G 4.4dB

是否具备部署3.5G高铁覆盖的条件,可根据站轨 距、站间距情况进一步分析决定

每站只开一面天线的覆盖情况

- 每个站点只开启一面天线的 RSRP覆盖情况
 - ✓ 4个站点,每个站点只保留 西向扇区开启,东向扇区关闭

少量打点的SS-RSRP低 于-105dbm

3.5G频段高铁极限覆盖能力研究性测试

5 hello

- 合宁高铁安徽全椒段,高铁建设没有采用高架桥形式,轨道高度 较低,信号覆盖受两侧树木遮挡,影响严重;
- 分别关闭"新建十八增补"和"许家坝西北"两个站点,站间距分别 达到1070米和1100米,进行大站间距测试

测试结果(以-100dBm作为边缘场强):

- 无树林遮挡环境: **站轨距:覆盖铁路距离为1:4**
- 树林遮挡环境: **站轨距:覆盖铁路距离为1:2.5~1:2.7**

理论依据:高铁无线信号覆盖为自由空间+穿透损耗模型,信号进入车体的入射角是信号强度的决定性因素,覆盖距离不是决定性因素

- ✓ 站轨距达到100米以上时,采用自研高铁定制天线,3.5G频段 平均站间距可达到650米~750米 (-100dBm作为边缘场强)
- ✔ 高架形式的高铁路段由于没有树林遮挡, 站间距可进一步扩大

总体结论

采用自研高铁专用天线

- ① 可大幅提升高铁覆盖水平
- ② 信号进入车体的入射角度,是决定覆盖能力的决定性因素;频率选择不是站间距设置的决定性因素
 - ✓ 传统天线覆盖性能太差,不得不考虑频率传播特性;
 - ✓ 自研高铁定制天线试验结果显示,没有遮挡情况下,只要入射角度满足要求(≤75°)即可具有良好覆盖性能;
- ③ 隧道占比小的路段可大胆尝试采用3.5G频段进行高铁覆盖
 - ✓ 高架路段,站间距可按照站轨距*4*2进行考虑
 - 100米的站轨距,可在800米站间距情况下获得良好覆盖
 - ✓ 非高架路段,站间距可按照**站轨距*2.7*2**进行考虑