MaxCutPool: Differentiable Feature-Aware MAXCUT for Pooling in Graph Neural Networks

Carlo Abate*1,2 & Filippo Maria Bianchi*3,4

¹Alma Mater Studiorum, University of Bologna

²Fondazione Istituto Italiano di Tecnologia

³UiT The Arctic University of Norway

⁴NORCE Norwegian Research Centre AS

MAIN IDEA

- ► Adjacent nodes in a graph contain redundant information due to smoothing effects of message passing (MP)
- MAXCUT finds complementary groups of nodes by maximizing dissimilarity between connected nodes
- Pruning redundant nodes preserves information while reducing graph size

KEY CONTRIBUTIONS

- MAXCUT computation for attributed graphs
- ► New hierarchical pooling layer especially effective for heterophilic graphs
- General scheme for node-to-supernode assignment
- ► First heterophilic dataset for graph classification

HETEROPHILIC MESSAGE PASSING

Consider the MP operator $X' = \sigma(PX\Theta)$.

Standard MP:

$$oldsymbol{P} = \hat{oldsymbol{D}}^{-rac{1}{2}}\hat{oldsymbol{A}}\hat{oldsymbol{D}}^{-rac{1}{2}}$$

Heterophilic MP (HetMP):

MULTIPARTITE DATASET

Complete C-partite graphs

classification

$$m{P} = m{I} - \delta m{L}^{\mathsf{sym}}, \delta > 1$$

► HetMP can learn non-smooth graph signals

Left: standard MP; right: HetMP

First heterophilic benchmark for graph

Nodes only connect to different-colored

MAXCUTPOOL STRUCTURE

We introduce an auxiliary loss function defined as

$$\mathcal{L}_{\mathsf{cut}} = rac{oldsymbol{s}^{ extstyle }oldsymbol{A}oldsymbol{s}}{|\mathcal{E}|}$$

where $s \in [-1,1]^N$ is the score vector, A is the adjacency matrix and $|\mathcal{E}|$ is the total edge weight.

maximize cut edges

Optimizes partition to

- Connected nodes have opposite scores
- Enables end-to-end differentiable training
- Integrates with task-specific objectives

SELECT

- ► A ScoreNet with HetMP layers generates a score vector s
- ► Top-*K* scores identify supernodes: $i = top_K(s)$

REDUCE

- MaxCutPool: $[\boldsymbol{X}']_{i:}=s_i\odot[\boldsymbol{X}]_{i:}$
- MaxCutPool-E: $X' = s \odot S^{\top} X$

CONNECT

via breadth-first propagation Each node is assigned to the closest supernode

Builds assignment matrix S

► Pooled adjacency: $A' = S^{T}AS$

clusters Class determined by rightmost cluster color Structure independent from the label

► Tests GNNs to distinguish between relevant (node features) and irrelevant (connectivity) information

REFERENCES

. D. Grattarola et al., "Understanding Pooling in Graph Neural Networks," IEEE TNNLS, 2024

NODE CLASSIFICATION

Pooler	Roman-e.	Amazon-r.	Minesw.	Tolokers	Questions	Score
Top-k	26±7	46±4	94±1	89±5	64±3	1
k-MIS	23±3	48±2	75 ± 2	84±2	$83{\pm}1$	1
NDP	22±5	53±2	98±0	88±6	68±4	3
MaxCutPool	56±3	53±1	96±1	87±3	82±4	4
MaxCutPool-E	60±4	53±2	97±1	91±2	85±5	5

MAXCUT EVALUATION

Maxcut partitions. Red edges are not cut.

	NDP	GCN	MaxCutPool	
5	0.6589	0.7240	0.7292	
7	0.6420	0 6005	0.6014	

- **Dataset** BarabasiAlbert 0.6875 0.6767 0.6429 0.6805 Community 0.6814ErdősRenyi 0.6920 0.6858 0.6797 0.7105 1.0000 1.0000 0.9222 Grid (10×10) 1.0000 Grid (60×40) 0.9787 0.1862 0.9815 0.9104 0.8904 Minnesota 0.9130 0.9040 RandRegular 0.4827 0.8760 0.8733 Ring 1.0000 1.0000 0.4200 1.0000 0.6000 0.5719 0.6281 Sensor 0.6406
- It serves as an initial assessment
- Our method was compared to traditional algorithms and standard GCN
- ► Thanks to HetMP we are always able to find good cuts

GRAPH CLASSIFICATION

Pooler	GCB-H	COLLAB	EXPWL1	Mult.	Mutag.	NCI1	REDDIT-B	Score
DiffPool	51±8	70±2	69±3	$9{\pm}1$	78±2	75±2	90±2	1
DMoN	74±3	68 ± 2	73 ± 3	52±2	80±2	77±2	88±2	3
EdgePool	75±4	72 ± 3	90 ± 2	55±3	80±2	77±3	91±2	4
Graclus	75±3	72 ± 3	90 ± 2	25 ± 18	80±2	77±2	90±3	4
k-MIS	75±4	71 ± 2	$99{\pm}1$	58±2	79±2	75±3	90±2	4
MinCutPool	75±5	70 ± 2	71 ± 3	56±3	78 ± 3	73 ± 3	87 ± 2	1
Top-k	56±5	72±2	73±2	43±3	75±3	73±2	77±2	0
MaxCutPool	73±3	77±2	100±0	90±2	77±2	75±2	89±3	5
MaxCutPool-E	74±3	77±2	100 ± 0	87±5	79±1	76±2	89±2	7
MaxCutPool-NL	61±6	77±3	100±0	91±1	76±3	74±2	86±3	3

filippo.m.bianchi@uit.no

The Thirteenth International Conference on Learning Representations - Singapore - 2025

