Apellido y Nombre:	
Carrera:	DNI:
[Llenar con letra mayú	scula de imprenta GRANDE]

Universidad Nacional del Litoral Facultad de Ingeniería y Ciencias Hídricas Departamento de Informática Algoritmos y Estructuras de Datos

Algoritmos y Estructuras de Datos. 3er Parcial. Tema: 1A. [22 de noviembre de 2007]

[Ej. 1] [clases (25 puntos)]

- Escribir la implementación en C++ del TAD Conjunto (clase set). Implemente: insert(x), find(x), clear() y empty(). Observaciones: Debe declarar los miembros privados de las clases a declarar o implementar. También debe implementar todo método o función auxiliar que necesite. Puede elegir entre implementaciones basadas en vectores de bits, listas ordenadas, arboles binarios de búsqueda y tablas de dispersión.
- Implementar una función btree<int>::iterator abb_find(btree<int> &T, btree<int>::iterator n, int x) que busca en el ABB T el valor x devolviendo su posición o T.end() si no se encuentra.

[Ej. 2] [programación (total = 50 puntos)]

a) [includes-all (20 puntos)]

Dados n conjuntos de vector de conjuntos vector < set < int > A se pide escribir una función int includes_all(vector < set < int > & set v); tal que si alguno de esos conjuntos incluye a todos los otros, es decir existe algún j tal que $A_{[k]} \subset A_{[j]}$, para todo k, entonces debe retornar j. En ese caso contrario, debe retornar -1. Por ejemplo, si $A_{[0]} = \{1,2,3\}, A_{[1]} = \{1,2,3,4,5\}, A_{[2]} = \{3,4,5\},$ entonces debe retornar 1. Si $A_{[0]} = \{1,2,3\}, A_{[1]} = \{3,4,5\}$ entonces debe retornar -1. Nota: Si existen varios $A_{[j]}$ que satisfacen la condición entonces debe retorar uno cualquiera de ellos. Sugerencia: Notar que, si alguno de los $A_{[j]}$ satisface la condición entonces debe ser el mayor de todos (en cantidad de elementos).

b) [mklayers (30 puntos)]

Escribir una función

void mklayers(vector<set<int> > &G, int x, vector<set<int> > &layers) que dado un grafo G y un vértice de partida x determina la estructuras de capas de vecinos layers de x definida de la siguiente manera:

- La capa 0 es el conjunto layers[0]={x}.
- La capa 1 es el conjunto de los vecinos de x.
- Para 1>1 la capa 1 es el conjunto de los vecinos de los nodos en la capa 1-1 que no están en capas anteriores (0 a 1-1). Notar que en realidad sólo hace falta verificar que no estén en las capas 1-1 y 1-2.

Puede demostrarse que los vértices en la capa 1 son los que están a distancia 1 de x. Por ejemplo, dado el grafo de la figura, y partiendo del nodo x=0 las capas son layers[0]={0}, layers[1]={9,14}, layers[2]={5,10,15}, layers[3]={1,6,11,16}, layers[4]={2,7,12}, layers[5]={3,8}, layers[6]={4}.

Apellido y Nombre:	
Carrera:	DNI:

[Llenar con letra mayúscula de imprenta GRANDE]

Universidad Nacional del Litoral Facultad de Ingeniería y Ciencias Hídricas Departamento de Informática

Algoritmos y Estructuras de Datos

- [Ej. 3] [operativos (total = 15 puntos)]
 - a) [abb (7.5 pts)] Dados los enteros {12,6,19,1,2,9,4,3,0,11} insertarlos, en ese orden, en un "árbol binario de búsqueda". Mostrar las operaciones necesarias para eliminar los elementos 12, 4 y 11 en ese orden.
 - b) [hash-dict (7.5 pts)] Insertar los números 2, 15, 25, 8, 7, 35, 17, 4, 27 en una tabla de dispersión cerrada con B=8 cubetas, con función de dispersión $h(x)=x \mod 8$ y estrategia de redispersión lineal.
- [Ej. 4] [Preguntas (total = 10 puntos, 3.33 puntos por pregunta)] Responder según el sistema "multiple choice", es decir marcar con una cruz el casillero apropiado. Atención: Algunas respuestas son intencionalmente "descabelladas" y tienen puntajes negativos!!]

	¿Cuál es el tiempo de ejecución de find(x) en el TAD diccionario por tablas de dispersión abiertas, en el caso promedio?
	$\log(n/B)$
	$O(1+n^2/B)$
	M $O(1+n/B)$
	\square $O(1+B/n)$
<i>b</i>)	¿Cual es el tiempo de ejecución para insert(x) en el TAD conjunto por árbol bina
	búsqueda, en el peor caso?
	$\bigcap \dots O(n)$
	$\square \dots O(n)$ $\square \dots O(n^2)$

dispersión cerrada, en el caso promedio?