22. Heildi vigursviðs yfir flöt

Stærðfræðigreining IIB, STÆ205G, 18. mars 2015

Sigurður Örn Stefánsson, sigurdur@hi.is

22.1

Einingarþvervigrasvið

Skilgreining 22.1

Látum S vera flöt í \mathbb{R}^3 . Einingarþvervigur **n** á flötinn S í punktinum P er einingarvigur hornréttur á snertiplan við flötinn í punktinum P.

Einingarþvervigrasvið á S er samfellt vigursvið \mathbf{N} sem er skilgreint í öllum punktum S þannig að fyrir $(x, y, z) \in S$ er vigurinn $\mathbf{n}(x, y, z)$ einingarvigur sem er hornréttur á snertiplan við flötinn í punktinum (x, y, z).

22.2

Áttanlegir fletir

Skilgreining 22.2

Flöturinn S er sagður áttanlegur ef til er einingarþvervigrasvið N á S.

 $\acute{A}ttun$ á áttanlegum fleti felst í því að velja annað af tveimur mögulegum einingaþvervigrasviðum.

22.3

Umræða 22.3

Ef áttanlegur flötur S hefur jaðar þá skilgreinir áttunin stefnu á jaðri S. Venjan er að velja stefnu jaðarsins þannig að þegar gengið er eftir honum sé einingarþvervigrasviðið á vinstri hönd (hægri handar regla).

Ef tveir áttanlegir fletir hafa jaðar má splæsa þeim saman í áttanlegan flöt með því að líma þá saman á (hluta af) jöðrunum og gæta þess að jaðrarnir hafi andstæða stefnu á samskeytunum.

22.4

Möbiusarborði er ekki áttanlegur.

Setning 22.4

Gerum ráð fyrir að S sé áttanlegur flötur og $\mathbf{r}:D\subseteq\mathbb{R}^2\to\mathbb{R}^3$ sé regluleg stikun á S (það er, $\frac{\partial \mathbf{r}}{\partial u}$ og $\frac{\partial \mathbf{r}}{\partial v}$ eru samfelld föll af u og v og vigrarnir $\frac{\partial \mathbf{r}}{\partial u}$ og $\frac{\partial \mathbf{r}}{\partial v}$ eru línulega óháðir). Þá er

$$\mathbf{N} = \frac{\frac{\partial \mathbf{r}}{\partial u} \times \frac{\partial \mathbf{r}}{\partial v}}{\left| \frac{\partial \mathbf{r}}{\partial u} \times \frac{\partial \mathbf{r}}{\partial v} \right|}$$

einingarþvervigrasvið á S.

Heildi vigursviðs yfir flöt - Flæði

Skilgreining og ritháttur 22.5

Látum \mathcal{S} vera áttanlegan flöt stikaðan af reglulegum stikaferli $\mathbf{r}:D\subseteq\mathbb{R}^2\to\mathbb{R}^3$ með samfelldar hlutafleiður. Látum \mathbf{N} tákna einingarþvervigrasviðið sem gefið er í 22.4. Heildi vigursviðs \mathbf{F} yfir flötinn \mathcal{S} er skilgreint sem

$$\iint_{S} \mathbf{F} \cdot \mathbf{N} \, dS = \iint_{D} \mathbf{F}(\mathbf{r}(u, v)) \cdot \left(\frac{\partial \mathbf{r}}{\partial u} \times \frac{\partial \mathbf{r}}{\partial v} \right) du \, dv.$$

Slík heildi eru oft nefnd $flæ\delta i$ vigursvi $\delta sins$ \mathbf{F} gegnum $fl\ddot{o}tinn$ \mathcal{S} .

Ritum $d\mathbf{S} = \mathbf{N} dS$. Þá er

$$\iint_{\mathcal{S}} \mathbf{F} \cdot \mathbf{N} \, dS = \iint_{\mathcal{S}} \mathbf{F} \cdot d\mathbf{S}.$$

22.5

Samantekt 22.6

1. Ef $\mathbf{r}:D\subseteq\mathbb{R}^2\to\mathbb{R}^3$ er stikun á \mathcal{S} þá er

$$d\mathbf{S} = \pm \left(\frac{\partial \mathbf{r}}{\partial u} \times \frac{\partial \mathbf{r}}{\partial v}\right) du \, dv.$$

2. Ef S er graf z = f(x, y) þá er

$$d\mathbf{S} = \pm \left(-\frac{\partial f}{\partial x}, -\frac{\partial f}{\partial y}, 1\right) dx dy.$$

3. Gerum ráð fyrir að flöturinn S í \mathbb{R}^3 hafi þann eiginleika að ofanvarp hans á xy-planið sé eintækt eða með öðrum orðum hægt er að lýsa fletinum sem grafi z = f(x, y). Ef fletinum S er lýst sem hæðarfleti G(x, y, z) = C þá er

$$d\mathbf{S} = \pm \frac{\nabla G(x, y, z)}{|\nabla G(x, y, z)|} dS = \pm \frac{\nabla G(x, y, z)}{G_3(x, y, z)} dx dy.$$

Val á áttun felst í því að velja + eða - í formúlunum hér að ofan.

22.7

Túlkun 22.7

Hugsum okkur að vigursviðið \mathbf{F} lýsi streymi vökva. Hugsum svo flötinn \mathcal{S} sem himnu sem vökvinn getur streymt í gegnum. Áttun á \mathcal{S} gefur okkur leið til að tala um hliðar flatarins og að vökvinn streymi í gegnum flötinn frá einni hlið til annarrar. Streymi vökvans gegnum flötinn (rúmmál per tímaeiningu) er gefið með heildinu $\iint_{\mathcal{S}} \mathbf{F} \cdot \mathbf{N} \, dS$ þar sem streymi í stefnu \mathbf{N} reiknast jákvætt.

22.8