IMPLEMENTASI VEKTOR & MATRIKS

TK13023
COMPUTATION II

KELAS B DAN C

DOSEN: LELY HIRYANTO

CLASSIFICATION AND CLUSTERING

Implementasi Vektor

Konsep Classification vs Clustering

Classification (Supervised Learning)

- Penentuan jumlah dan nama kategori (kelompok/kelas/label) dari data sudah ditentukan
- Data dibagi menjadi dua:
 - Data latih: diketahui labelnya
 - Data uji: belum diketahui labelnya
- Algoritma (Matriks & Vektor):
 - K-Nearest Neighbors
 - Support Vector Machines
- Algoritma lainnya:
 - Naïve Bayes (statistik)
 - Decision Trees (ID3, C4.5, CART)

Clustering (Unsupervised Learning)

- Jumlah kelompok/kelas/label tidak diketahui
- Tidak ada konsep data pelatihan dan pengujian
- Algoritma (Matriks dan Vektor)
 - K-means
 - Agglomerative Hierarchical Clustering
- Algoritma lain:
 - Density-Based Spatial Clustering of Applications with Noise (DBSCAN)
 - Mean-Shift
 - Gaussian Mixture Model (GMM)

Ilustrasi Classification vs Clustering

Classification

Clustering

Data dan Atributnya

- Data:
 - Data Tabel: laporan
 - Teks: dokumen, postingan media sosial, log files, email
 - Visual: foto, video
 - Audio: musik
- Atribut atau variabel bebas:
 - karakteristik dari data
 - Satu buah data bisa memiliki lebih dari satu karakteristik
 - Membentuk matriks atribut

Classification

K-Nearest Neighbors

Kategori

- Contoh nama kategori:
 - Biner: "spam" atau "no spam"
 - Topik: "programming", "law", atau "finance"
 - Opini: "like", "dislike", atau "neutral"

K-Nearest Neighbors (KNN)

Diketahui n data latih $X = \{x_0, x_1, ..., x_{n-1}\}$ yang sudah memiliki label dan sebuah data uji y:

- 1. Menentukan satu rumus perhitungan nilai kemiripan (metrik jarak)
 - Euclidean distance (cek materi vektor: norm), atau
 - Cosine Similarity (cek materi vektor: norm dan dot product)
- 2. Menentukan nilai K
- 3. Menghitung kemiripan y dengan setiap data latih di $X = \{x_0, x_1, ..., x_{n-1}\}$
- 4. Urutkan menaik nilai kemiripan dari \mathbf{y} dengan setiap data latih di \mathbf{X}
- 5. Pilih K data latih pertama
- 6. Kategorikan data uji **y** menggunakan mayoritas label dari K data latih pertama tersebut.

Ingat: Norm – Jarak dari Sebuah Vektor!

• Jarak dari sebuah vektor jika diketahui titik awal dan akhir dari vektor $\overrightarrow{P_1P_2}$ di ruang R^3 yaitu $P_1(x_1,y_1,z_1)$ dan $P_2(x_2,y_2,z_2)$:

$$d = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2 + (z_2 - z_1)^2}$$

- ruang R^2 : $d = \sqrt{(x_2 x_1)^2 + (y_2 y_1)^2}$
- Contoh: Jarak d antara titik $P_1(2, -1, -5)$ dan $P_2(4, -3, 1)$

•
$$d = \sqrt{(4-2)^2 + (-3+1)^2 + (1+5)^2} = \sqrt{44} = 2\sqrt{11}$$

• Disebut Eucliean Distance!

Contoh KNN: Data

- Diketahui data pengajuan pinjaman dari 5 nasabah yang disetujui dan 5 nasabah yang tidak disetujui.
- K = 5

Data Latih X

ID Nasabah	Umur	Pinjaman (juta)	Keputusan
1	25	40	Tolak
2	35	60	Tolak
3	45	80	Tolak
4	20	20	Tolak
5	35	120	Tolak
6	52	18	Setujui
7	23	95	Setujui
8	40	62	Setujui
9	60	100	Setujui
10	48	220	Setujui
11	33	150	?

Contoh KNN: Kemiripan

Euclidean Distance:

$$d(\mathbf{x}, \mathbf{y}) = \sqrt{(x_1 - y_1)^2 + (x_2 - y_2)^2}$$

- Contoh:
 - Atribut nasabah dengan ID= 1:
 - (25,40)
 - Atribut nasabah dengan ID = 11:
 - (33, 150)
 - $d(\mathbf{x}, \mathbf{y}) = \sqrt{(25 33)^2 + (40 150)^2}$
 - $d(\mathbf{x}, \mathbf{y}) = 110.29$

Data Latih X

ID (i)	Umur (x_1)	Pinjaman (juta) (x_2)	Keputusan	Kemiripan $(d(\mathbf{x}, \mathbf{y}))$
1	25	40	Tolak	110.29
2	35	60	Tolak	90.02
3	45	80	Tolak	71.02
4	20	20	Tolak	130.65
5	35	120	Tolak	30.07
6	52	18	Setujui	133.36
7	23	95	Setujui	55.9
8	40	62	Setujui	88.28
9	60	100	Setujui	56.82
10	48	220	Setujui	71.59

Data Uji y

ID	y_1	y_2	Keputusan
11	33	150	?

Contoh KNN: Urut Menaik

Data Latih X

ID (i)	Umur (x_1)	Pinjaman (juta) (x_2)	Keputusan	Kemiripan $(d(\mathbf{x}, \mathbf{y}))$
5	35	120	Tolak	30.07
7	23	95	Setujui	55.9
9	60	100	Setujui	56.82
3	45	80	Tolak	71.02
10	48	220	Setujui	71.59
8	40	62	Setujui	88.28
2	35	60	Tolak	90.02
1	25	40	Tolak	110.29
4	20	20	Tolak	130.65
6	52	18	Setujui	133.36

Data Uji y

ID	y_1	${\mathcal Y}_2$	Keputusan
11	33	150	?

Contoh KNN: Label

- Mengambil K = 5 nasabah dengan nilai kemiripan terkecil
- Mayoritas keputusan: **Setujui**

Data Latih X

ID (i)	Umur (x_1)	Pinjaman (juta) (x_2)	Keputusan	Kemiripan $(d(\mathbf{x}, \mathbf{y}))$
5	35	120	Tolak	30.07
7	23	95	Setujui	55.9
9	60	100	Setujui	56.82
3	45	80	Tolak	71.02
10	48	220	Setujui	71.59
8	40	62	Setujui	88.28
2	35	60	Tolak	90.02
1	25	40	Tolak	110.29
4	20	20	Tolak	130.65
6	52	18	Setujui	133.36

Data Uji y

ID	y_1	${\mathcal Y}_2$	Keputusan
11	33	150	Setujui

Clustering

K-Means

UNTAR untuk INDONESIA

K-Means Clustering

- Algoritma berbasis pengulangan,
 - Pada setiap pengulangan, sebuah dataset dikelompokkan dalam K subkelompok (K clusters)
 - Dataset terdiri dari n data points dengan setiap data point memiliki m atribut yang sama,
 - Setiap data point merupakan anggota hanya dari satu cluster (non-overlapping subgroups)
 - Satu kelompok memiliki tingkat kemiripan yang hampir sama (homogen)
 - Nilai kemiripan untuk sebuah data point dihitung berdasarkan jarak antara setiap data point di sebuah cluster c dengan centroid dari cluster tersebut.
 - Centroid dari sebuah cluster c adalah nilai rata-rata dari semua data points (anggota) dari cluster c.
 - Pengulangan berhenti jika semua anggota di setiap cluster c adalah anggota dari cluster c pada pengulangan sebelumnya.

Implementasi K-Means

- Text Clustering
 - Analisis social media
 - Analisis document
- Segmentasi pasar (market segmentation)
- Segmentasi citra
- Kompresi gambar
- Klasifikasi citra penginderaan jauh

Algoritma K-Means

Diketahi sebuah dataset X yang terdiri dari n data points dengan setiap data point memiliki m atribut

- Tentukan jumlah cluster, yaitu nilai K,
- 2. Inisialisasi dengan mengambil secara acak K data points (K centroids) dari dataset X,
- 3. Hitung nilai kemiripan (similarity/distance) antara setiap data point dengan setiap centroid,
 - Cosine Similarity
- 4. Tentukan cluster terdekat untuk dari setiap data point berdasarkan nilai kemiripan paling besar (nilai jarak yang terkecil) dengan salah satu centroid,
- 5. Hitung centroid baru (nilai rata-rata dari semua data points) dari setiap cluster,
- 6. Ulangi langkah 3 5 sampai
 - a. tidak ada perubahan angota pada setiap cluster dibanding dengan pengulangan sebelumnya, atau
 - b. total nilai varians dari setiap cluster mencapai batas paling rendah.

Ingat: Norm dari Sebuah Vektor

- Panjang dari sebuah vektor v disebut sebagai norm dari \mathbf{v} yang dinotasikan sebagai $\|v\|$
- Untuk vector di ruang R^n :

$$\|\mathbf{v}\| = \sqrt{v_1^2 + v_2^2 + \dots + v_n^2}$$

- $||k\mathbf{v}|| = |k|||\mathbf{v}||$
- Contoh: norm dari vektor $\mathbf{v} = (-3,2,1)$:

•
$$\|\mathbf{v}\| = \sqrt{(-3)^2 + 2^2 + 1^2} = \sqrt{14}$$

RED

Ingat: Dot Product!

- Diketahui:
 - Dua vektor **u** dan **v** di ruang R^2 atau R^3 ,
 - Titik awal dari ${f u}$ dan ${m v}$ saling berhimpit, dan
 - θ adalah sudut antara **u** dan **v**.
- **Dot product** berdasarkan komponen \mathbf{u} dan \mathbf{v} di R^2 dan R^3 :

$$\mathbf{u} \cdot \mathbf{v} = u_1 v_1 + u_2 v_2 \qquad \text{untuk } R^2$$

$$\mathbf{u} \cdot \mathbf{v} = u_1 v_1 + u_2 v_2 + u_3 v_3 \qquad \text{untuk } R^3$$

• Untuk mencari sudut antara dua vektor \mathbf{u} dan \mathbf{v} ($\mathbf{u} \neq 0$, $\mathbf{v} \neq 0$):

$$\cos \theta = \frac{\mathbf{u} \cdot \mathbf{v}}{\|\mathbf{u}\| \|\mathbf{v}\|}$$

Jenis Sudut Hasil Dot Product

- θ adalah sudut tumpul (90° $< \theta < 180°$) => $\mathbf{u} \cdot \mathbf{v} < 0$
- θ adalah sudut lancip (0° $< \theta < 90°$) => $\mathbf{u} \cdot \mathbf{v} > 0$

•
$$\theta = \frac{\pi}{2}(90^{\circ}) \Rightarrow \mathbf{u} \cdot \mathbf{v} = 0$$

• \mathbf{u} dan \mathbf{v} disebut vektor orthogonal ($\mathbf{u} \perp \mathbf{v}$)

Contoh: Data

Diketahui data pengajuan pinjaman dari 5 nasabah yang disetujui dan 5 nasabah yang tidak disetujui.

- 1. K = 2 clusters
- 2. Random centroids:
 - Cluster 0: nasabah 3

•
$$c_0 = (45, 80)$$

- Cluster 1: nasabah 8
 - $c_1 = (40, 62)$

	Atribut		
ID Nasabah	Umur (tahun)	Pinjaman (juta)	
1	25	40	
2	35	60	
3	45	80	
4	20	20	
5	35	120	
6	52	18	
7	23	95	
8	40	62	
9	60	100	
10	48	220	

Contoh: Cosine Similarity

3.
$$\cos \theta = \frac{\mathbf{u} \cdot \mathbf{v}}{\|\mathbf{u}\| \|\mathbf{v}\|}$$

• Contoh nasabah 1 ke centroid c_0 :

•
$$\mathbf{u} \cdot \mathbf{v} = u_1 v_1 + u_2 v_2 = 25 \times 45 + 40 \times 80$$

•
$$\mathbf{u} \cdot \mathbf{v} = 4325$$

•
$$\|\mathbf{u}\|\|\mathbf{v}\| = 4329.62181$$

•
$$\cos \theta = \frac{4325}{4329.62181} = 0.99893251$$

• Contoh nasabah 1 ke centroid c_1 :

•
$$\mathbf{u} \cdot \mathbf{v} = u_1 v_1 + u_2 v_2 = 25 \times 40 + 40 \times 62$$

•
$${\bf u} \cdot {\bf v} = 3480$$

•
$$\|\mathbf{u}\| \|\mathbf{v}\| = 3480.35918$$

•
$$\cos \theta = \frac{3480}{3480.35918} = 0.9998968$$

,	Atribut		$c_0 = (45, 80)$	$c_1 = (40, 62)$
ID	Umur (u_1)	Pinjaman (u_2)	$v_1 = 45$ $v_2 = 80$	$v_1 = 40$ $v_2 = 62$
1	25	40	0.99893251	0.9998968
2	35	60	0.99987699	0.99899254
3	45	80	1	0.99816579
4	20	20	0.96296402	0.97752104
5	35	120	0.97398566	0.95848031
6	52	18	0.74839161	0.78717225
7	23	95	0.96246461	0.94426835
8	40	62	0.99816579	1
9	60	100	0.99960718	0.9994704
10	48	220	0.95605059	0.93654667

Contoh: Anggota Cluster

- 4. Cluster terdekat per nasabah (lihat tabel)
- 5. Centroid baru untuk setiap cluster

Cluster c_0

35	60		
45	80	Cluster	c_1
35	120	25	40
23	95	20	20
60	100	52	18
48	220	40	62
41	112.5	34.25	35

	Atribut			
ID	Umur (u_1)	Pinjaman (u_2)	$c_0 = (45, 80)$	$c_1 = (40, 62)$
1	25	40	0.99893251	0.9998968
2	35	60	0.99987699	0.99899254
3	45	80	1	0.99816579
4	20	20	0.96296402	0.97752104
5	35	120	0.97398566	0.95848031
6	52	18	0.74839161	0.78717225
7	23	95	0.96246461	0.94426835
8	40	62	0.99816579	1
9	60	100	0.99960718	0.9994704
10	48	220	0.95605059	0.93654667

Contoh: Loop ke-2

3.
$$\cos \theta = \frac{\mathbf{u} \cdot \mathbf{v}}{\|\mathbf{u}\| \|\mathbf{v}\|}$$

- 4. Cluster terdekat per nasabah (lihat tabel)
- 5. Centroid baru untuk setiap cluster
 - cluster c_0 : (38.71, 102.14)
 - cluster *c*₁: (37.33, 33.33)

	,	Atribut	c_0	c_1
ID	Umur (u_1)	Pinjaman (u_2)	$v_1 = 41$ $v_2 = 112.5$	$v_1 = 34.25$ $v_2 = 35$
1	25	40	0.97821506	0.97676921
2	35	60	0.98409516	0.96977391
3	45	80	0.98676031	0.96582756
4	20	20	0.90648465	0.99994136
5	35	120	0.99784316	0.88196826
6	52	18	0.63091254	0.89472387
7	23	95	0.99374015	0.85923002
8	40	62	0.97513174	0.97974703
9	60	100	0.98182723	0.97271219
10	48	220	0.99094581	0.84738636

Contoh: Loop ke-3

3.
$$\cos \theta = \frac{\mathbf{u} \cdot \mathbf{v}}{\|\mathbf{u}\| \|\mathbf{v}\|}$$

- 4. Cluster terdekat per nasabah (lihat tabel)
- 5. Centroid baru untuk setiap cluster
 - cluster c_0 : (38.875,97.125)
 - cluster c_1 : (36, 19)

ID	Atribut		c_0	c_1
	Umur (u_1)	Pinjaman (u_2)	$v_1 = 38.71$ $v_2 = 102.14$	$v_1 = 37.33$ $v_2 = 33.33$
1	25	40	0.98078802	0.96012492
2	35	60	0.98628488	0.9511451
3	45	80	0.9887523	0.94618565
4	20	20	0.9118064	0.99840154
5	35	120	0.99692283	0.84823486
6	52	18	0.64077563	0.92276355
7	23	95	0.99223139	0.82283622
8	40	62	0.97788427	0.96404225
9	60	100	0.98417221	0.95488399
10	48	220	0.98914916	0.80971413

Contoh: Loop ke-4

3.
$$\cos \theta = \frac{\mathbf{u} \cdot \mathbf{v}}{\|\mathbf{u}\| \|\mathbf{v}\|}$$

4. Cluster terdekat per nasabah (lihat tabel)

Anggota setiap cluster sama dengan Loop ke-3!

SELESAI...

ID	Atribut		c_0	c_1
	Umur (u_1)	Pinjaman (u_2)	$v_1 = 38.875$ $v_2 = 97.125$	$v_1 = 36$ $v_2 = 19$
1	25	40	0.98422261	0.8645335
2	35	60	0.98916418	0.8487921
3	45	80	0.99134518	0.84039496
4	20	20	0.91923241	0.95540264
5	35	120	0.99530556	0.69571601
6	52	18	0.65484125	0.98841295
7	23	95	0.9897653	0.66175463
8	40	62	0.98157913	0.87166444
9	60	100	0.98727643	0.85525442
10	48	220	0.98626801	0.64455224

Soal Latihan

Lakukan perhitungan untuk kedua soal berikut di excel:

- 1. (50 poin) Gunakan dataset latih dan data uji di "datasets.xlsx" sheet "KNN" untuk mensimulasikan algoritma KNN.
 - a. Gunakan Eucliean Distance
 - b. Set k = 7
- 2. (50 poin) Gunakan dataset di "datasets.xlsx" sheet "KMeans" yang terdiri dari 4 variable bebas (client, rate of return, sales, years) untuk di-cluster oleh K-Means menjadi 3 kelompok.
 - a. Gunakan Cosine Similarity
 - b. Lakukan clustering dengan K-Means sampai dengan konvergen atau tidak melebihi dari 10 iterasi

