```
In [115]: import pandas as pd # For handling data
          import numpy as np # For numerical computations
          import matplotlib.pyplot as plt # For visualizations
          import math
          import seaborn as sns # For better visualizations
          from sklearn.model selection import train test split # To split data
          from sklearn.preprocessing import OneHotEncoder, StandardScaler # For preprocessing
          from sklearn.ensemble import RandomForestRegressor # For building model
          from sklearn.metrics import mean absolute error, mean squared error, r2 score # For evaluation
          import warnings
          with warnings.catch warnings(): warnings.simplefilter('ignore')
          warnings.filterwarnings('ignore')
          from sklearn.linear model import LinearRegression
          from sklearn.tree import DecisionTreeRegressor
          from sklearn.ensemble import RandomForestRegressor
          from pptx import Presentation
          from pptx.util import Inches
          from sklearn.ensemble import GradientBoostingRegressor
```

Step 1: Load the Dataset

```
In [40]: mobile_data=pd.read_csv('Mobile_data.csv')
In [42]: mobile_data
```

Out[42]:		Unnamed:	Model	Colour	Memory	RAM	Battery_	Rear Camera	Front Camera	AI Lens	Mobile Height	Processor_	Prize
	0	0	Infinix SMART 7	Night Black	64	4	6000	13MP	5MP	1	16.76	Unisoc Spreadtrum SC9863A1	7,299
	1	1	Infinix SMART 7	Azure Blue	64	4	6000	13MP	5MP	1	16.76	Unisoc Spreadtrum SC9863A1	7,299
	2	2	MOTOROLA G32	Mineral Gray	128	8	5000	50MP	16MP	0	16.64	Qualcomm Snapdragon 680	11,999
	3	3	POCO C50	Royal Blue	32	2	5000	8MP	5MP	0	16.56	Mediatek Helio A22	5,649
	4	4	Infinix HOT 30i	Marigold	128	8	5000	50MP	5MP	1	16.76	G37	8,999
	•••						•••						
	536	637	SAMSUNG Galaxy S23 5G	Cream	256	8	3900	50MP	12MP	0	15.49	Qualcomm Snapdragon 8 Gen 2	79,999
	537	638	LAVA Z21	Cyan	32	2	3100	5MP	2MP	0	12.70	Octa Core	5,998
	538	639	Tecno Spark 8T	Turquoise Cyan	64	4	5000	50MP	8MP	0	16.76	MediaTek Helio G35	9,990
	539	641	SAMSUNG Galaxy A54 5G	Awesome Lime	128	8	5000	50MP	32MP	0	16.26	Exynos 1380, Octa Core	38,999
	540	642	OPPO A77	Sky Blue	128	4	5000	50MP	8MP	0	16.66	Mediatek Helio G35	15,999

541 rows × 12 columns

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 541 entries, 0 to 540
Data columns (total 12 columns):
                   Non-Null Count Dtype
    Column
    ----
                   -----
                                  ----
    Unnamed: 0
                   541 non-null
                                  int64
    Model
                   541 non-null
                                  object
 1
    Colour
                   541 non-null
                                  object
    Memory
                   541 non-null
                                  int64
    RAM
                   541 non-null
                                  int64
    Battery_
                   541 non-null
                                  int64
    Rear Camera
                   541 non-null
                                  object
    Front Camera
                   541 non-null
                                  object
    AI Lens
                   541 non-null
                                  int64
    Mobile Height 541 non-null
                                  float64
10 Processor_
                                  object
                   541 non-null
11 Prize
                                  object
                   541 non-null
dtypes: float64(1), int64(5), object(6)
memory usage: 50.8+ KB
None
```

In [11]: mobile_data.head()

Out[11]:		Unnamed: 0	Model	Colour	Memory	RAM	Battery_	Rear Camera	Front Camera	AI Lens	Mobile Height	Processor_	Prize
	0	0	Infinix SMART 7	Night Black	64	4	6000	13MP	5MP	1	16.76	Unisoc Spreadtrum SC9863A1	7,299
	1	1	Infinix SMART 7	Azure Blue	64	4	6000	13MP	5MP	1	16.76	Unisoc Spreadtrum SC9863A1	7,299
	2	2	MOTOROLA G32	Mineral Gray	128	8	5000	50MP	16MP	0	16.64	Qualcomm Snapdragon 680	11,999
	3	3	POCO C50	Royal Blue	32	2	5000	8MP	5MP	0	16.56	Mediatek Helio A22	5,649
	4	4	Infinix HOT 30i	Marigold	128	8	5000	50MP	5MP	1	16.76	G37	8,999
In [13]:	mot	oile_data.ta	ail()										

Out[13]:

•		Unnamed: 0	Model	Colour	Memory	RAM	Battery_	Rear Camera	Front Camera	Al Lens	Mobile Height	Processor_	Prize
	536	637	SAMSUNG Galaxy S23 5G	Cream	256	8	3900	50MP	12MP	0	15.49	Qualcomm Snapdragon 8 Gen 2	79,999
	537	638	LAVA Z21	Cyan	32	2	3100	5MP	2MP	0	12.70	Octa Core	5,998
	538	639	Tecno Spark 8T	Turquoise Cyan	64	4	5000	50MP	8MP	0	16.76	MediaTek Helio G35	9,990
	539	641	SAMSUNG Galaxy A54 5G	Awesome Lime	128	8	5000	50MP	32MP	0	16.26	Exynos 1380, Octa Core	38,999
	540	642	OPPO A77	Sky Blue	128	4	5000	50MP	8MP	0	16.66	Mediatek Helio G35	15,999

```
In [15]: mobile_data.shape
Out[15]: (541, 12)
In [9]: # Check for missing values
         missing_values = mobile_data.isnull().sum()
         missing_values[missing_values > 0] # Show only columns with missing values
Out[9]: Series([], dtype: int64)
In [44]: mobile_data.isnull().sum()
Out[44]: Unnamed: 0
                          0
         Model
                          0
         Colour
                          0
         Memory
                          0
         RAM
                          0
         Battery_
         Rear Camera
                          0
         Front Camera
                          0
         AI Lens
                          0
         Mobile Height
         Processor_
         Prize
                          0
         dtype: int64
         mobile_data.drop(columns='Unnamed: 0', inplace=True, errors='ignore')
In [46]:
         mobile_data
```

\cap	+	Γл	C T	
υu	L	L+	οJ	0

•		Model	Colour	Memory	RAM	Battery_	Rear Camera	Front Camera	Al Lens	Mobile Height	Processor_	Prize
	0	Infinix SMART 7	Night Black	64	4	6000	13MP	5MP	1	16.76	Unisoc Spreadtrum SC9863A1	7,299
	1	Infinix SMART 7	Azure Blue	64	4	6000	13MP	5MP	1	16.76	Unisoc Spreadtrum SC9863A1	7,299
	2	MOTOROLA G32	Mineral Gray	128	8	5000	50MP	16MP	0	16.64	Qualcomm Snapdragon 680	11,999
	3	POCO C50	Royal Blue	32	2	5000	8MP	5MP	0	16.56	Mediatek Helio A22	5,649
	4	Infinix HOT 30i	Marigold	128	8	5000	50MP	5MP	1	16.76	G37	8,999
	•••						•••					
53	36	SAMSUNG Galaxy S23 5G	Cream	256	8	3900	50MP	12MP	0	15.49	Qualcomm Snapdragon 8 Gen 2	79,999
53	37	LAVA Z21	Cyan	32	2	3100	5MP	2MP	0	12.70	Octa Core	5,998
53	38	Tecno Spark 8T	Turquoise Cyan	64	4	5000	50MP	8MP	0	16.76	MediaTek Helio G35	9,990
53	39	SAMSUNG Galaxy A54 5G	Awesome Lime	128	8	5000	50MP	32MP	0	16.26	Exynos 1380, Octa Core	38,999
54	40	OPPO A77	Sky Blue	128	4	5000	50MP	8MP	0	16.66	Mediatek Helio G35	15,999

541 rows × 11 columns

```
In [48]: # Check for duplicate rows
print(f"Duplicate rows: {mobile_data.duplicated().sum()}")
```

```
# Remove duplicates
         mobile_data= mobile_data.drop_duplicates()
        Duplicate rows: 10
In [50]: # Check for duplicate rows after the dupilcate are dropped
         print(f"Duplicate rows: {mobile data.duplicated().sum()}")
        Duplicate rows: 0
In [38]: #Fill categorical missing values using the most frequent value:
         # Fill missing values based on column types
         for column in mobile data.columns:
             if mobile data[column].dtype == "object": # If categorical
                 mobile data[column].fillna(mobile data[column].mode()[0], inplace=True)
             else: # If numerical
                 mobile data[column].fillna(mobile data[column].median(), inplace=True)
         # Verify again
         print(mobile data.isnull().sum().sum()) # Should return 0 if all missing values are handled
In [52]: import matplotlib.pyplot as plt
         import seaborn as sns
         import math
         # Identify numerical columns
         numerical_cols = mobile_data.select_dtypes(include=["int64", "float64"]).columns
         # Number of numerical columns
         num_cols = len(numerical_cols)
         cols = 2 # Two columns: one for histogram, one for boxplot
         rows = math.ceil(num_cols) # Ensure enough rows
         # Set a modern Seaborn theme
         sns.set_style("darkgrid")
         plt.figure(figsize=(14, rows * 5))
         plt.suptitle(" Table 2 Exploratory Data Analysis: Numerical Features", fontsize=16, fontweight="bold", color="darkred")
         # Define color palette
         hist_colors = ["royalblue", "seagreen", "purple", "darkorange", "crimson"]
```

```
box_colors = ["skyblue", "lightgreen", "mediumpurple", "gold", "lightcoral"]
# Loop through all numerical columns
for i, col in enumerate(numerical_cols):
   color_hist = hist_colors[i % len(hist_colors)]
   color_box = box_colors[i % len(box_colors)]
   # Create histogram
   plt.subplot(rows, cols, i + 1) # Adjusted subplot index
   sns.histplot(mobile_data[col], bins=30, kde=True, color=color_hist, edgecolor="black", alpha=0.85)
   plt.title(f" Histogram of {col}", fontsize=12, fontweight="bold", color=color_hist)
   plt.xlabel(col, fontsize=10)
   plt.ylabel("Count", fontsize=10)
   # Create boxplot
   plt.subplot(rows, cols, i + num_cols + 1) # Adjusted subplot index
   sns.boxplot(x=mobile_data[col], color=color_box)
   plt.title(f" Boxplot of {col}", fontsize=12, fontweight="bold", color=color_box)
plt.tight_layout(rect=[0, 0, 1, 0.95]) # Adjust Layout to fit main title
plt.show()
```

□ Exploratory Data Analysis: Numerical Features


```
import matplotlib.pyplot as plt
import seaborn as sns
# Identify categorical columns
categorical_cols = mobile_data.select_dtypes(include=["object"]).columns
# Set Seaborn style
sns.set_style("darkgrid")
# Generate count plots for categorical columns
for col in categorical cols:
   plt.figure(figsize=(14, 6)) # Increase figure size
   # Show only top 10 categories to avoid clutter
   top 10 values = mobile data[col].value counts().nlargest(10).index
   filtered data = mobile data[mobile data[col].isin(top 10 values)]
    sns.countplot(y=filtered data[col], order=top 10 values, palette="viridis")
    plt.title(f" il Countplot of {col} (Top 10)", fontsize=14, fontweight="bold", color="darkblue")
    plt.ylabel(col, fontsize=12)
   plt.xlabel("Count", fontsize=12)
   plt.xticks(rotation=0) # Keep x labels horizontal
    plt.yticks(fontsize=10) # Increase y-axis font size
    plt.show()
```

☐ Countplot of Model (Top 10)

□ Countplot of Colour (Top 10)

☐ Countplot of Rear Camera (Top 10)

☐ Countplot of Front Camera (Top 10)

☐ Countplot of Processor_ (Top 10)


```
In [17]: # Identify numerical columns
    numerical_cols = mobile_data.select_dtypes(include=["int64", "float64"]).columns

# Plot KDE for all numerical columns
for col in numerical_cols:
    plt.figure(figsize=(8, 5))
    sns.kdeplot(mobile_data[col], fill=True, color="blue")
    plt.title(f"Kernel Density Plot of {col}")
    plt.xlabel(col)
    plt.ylabel("Density")
    plt.show()
```

Kernel Density Plot of Memory

Kernel Density Plot of Al Lens

Pairplot (Scatterplot Matrix) with Categories

```
import matplotlib.pyplot as plt
import seaborn as sns
import pandas as pd

# Set Seaborn style
sns.set_style("darkgrid")

# Select only numerical columns for correlation analysis
numerical_cols = mobile_data.select_dtypes(include=["int64", "float64"])
```


Correlation Heatmap with Categories

```
In [20]: # Select numerical features for analysis
    numerical_cols = mobile_data.select_dtypes(include=["int64", "float64"]).columns

# Create a scatterplot matrix for selected features with category hue
    pairplot_fig = sns.pairplot(mobile_data, vars=numerical_cols[:5], hue="Model", diag_kind="kde", palette="husl")

# Adjust title position
    pairplot_fig.fig.suptitle("in Scatterplot Matrix with Model as Hue", fontsize=14, fontweight="bold", color="darkblue", plt.show()
```

Model

- Infinix SMART 7
- MOTOROLA G32
- POCO C50Infinix HOT 30i
- REDMI 10
- INEDIMI 10
- SAMSUNG Galaxy F13
- SAMSUNG Galaxy F04
- POCO C51
- MOTOROLA e13
- vivo T2x 5G
- Infinix Smart 7 HD
- REDMI A1+
- POCO C55
- MOTOROLA g13
- POCO M4 5G
- MOTOROLA e32
- vivo T2 5G
- MOTOROLA G62 5G
- POCO M5
- realme C33 2023
- SAMSUNG Galaxy F14 5G
- MOTOROLA g73 5G
- realme C30
- POCO X5 5G
- POCO M4 Pro
- REDMI 11 Prime
- realme C55
- realme 10 Pro 5G
- Micromax IN 2C
- POCO M4 Pro 5G
- realme Narzo 30 Pro 5G
- micromax 2
- Infinix Note 12 Pro 5G
- SAMSUNG Galaxy F23 5G
- micromax
- MOTOROLA Edge 40
- micromax 1
- realme Narzo 30
- Infinix NOTE 12i
- realme 10
- realme 8i
- Micromax 3
- Google Pixel 6a
- Infinix HOT 20 5G
- realme GT 2
- REDMI Note 12
- REDMI Note 12 5G
- micromax 3
- SAMSUNG Galaxy M04
- REDMI K50i 5G
- MOTOROLA e40
- REDMI 9 Activ
- MOTOROLA g42
- realme C25s
- POCO X5 Pro 5G
- POCO M3 Pro 5G
- Infinix Smart 6 HD
- Infinix Hot 20 5G
- realme C31

☐ Scatterplot Matrix with Model as Hue

- micromax1
- OPPO A17
- realme 9 5G SE
- realme 9i 5G

IQOO Neo 7 5G
vivo Y56 5G
 Infinix Note 12 5G
 Infinix HOT 12 Play
vivo Y75
 realme Narzo 50A Prime realme NARZO 50A PRIME
Google Pixel 7
POCO F1
vivo Y12G
SAMSUNG Galaxy A23
realme Narzo 50Avivo Y100 5G
Redmi 9A Sport
REDMI Note 11
vivo V25 5G
SAMSUNG Galaxy S21 FE 5G
 REDMI Note 11T 5G realme X3 SuperZoom
OPPO F21 Pro
REDMI Note 11S
OnePlus 8
vivo Y1s
OnePlus NordNokia C01 Plus
REDMI 10A SPORT
 SAMSUNG Galaxy A54 5G
vivo Y33s
REDMI Note 10S
APPLE iPhone 11vivo T1 Pro 5G
Infinix Smart 5A
 MOTOROLA e22s
Infinix Hot 12 Pro
REDMI 9i
REDMI Note 9vivo Y565G
SAMSUNG M53 5G
REDMI Note 10 Lite
 APPLE iPhone 14 Plus
 vivo V25 Pro 5G Infinix Hot 11
Infinix Hot 11Infinix Note 12 Pro
Tecno Pova 3
REDMI 12c
LAVA Z2
 Infinix Note 11s Free Fire Edition realme C11 2021
• vivo Y21T
realme 9 5G
 SAMSUNG Galaxy A04
OPPO F21s Pro
 APPLE iPhone 12 SAMSUNG Galaxy A13
Nokia G11 Plus
 SAMSUNG Galaxy A04e
SAMSUNG Galaxy S23 5G
LAVA Z21Tecno Spark 8T
OPPO A77

Relationship Between Price and Features (Violin Plot)

```
In [28]: plt.figure(figsize=(16, 6)) # Increase figure size

# Create the violin plot
sns.violinplot(x="Model", y="Prize", data=mobile_data, palette="viridis")

# Improve x-axis readability
plt.xticks(rotation=90, ha="right", fontsize=8) # Rotate labels and adjust font size
plt.xlabel("Model", fontsize=12, fontweight="bold") # X-axis label
plt.ylabel("Prize", fontsize=12, fontweight="bold") # Y-axis label

# Title formatting
plt.title(" * Price Distribution by Model", fontsize=14, fontweight="bold", color="darkgreen", pad=20)

# Show the plot
plt.show()
```

☐ Price Distribution by Model

Pairwise Feature Dependencies (FacetGrid)

```
Traceback (most recent call last)
KevError
File ~\anaconda3\Lib\site-packages\seaborn\palettes.py:235, in color_palette(palette, n_colors, desat, as_cmap)
    233 try:
    234
            # Perhaps a named matplotlib colormap?
            palette = mpl_palette(palette, n_colors, as_cmap=as_cmap)
--> 235
    236 except (ValueError, KeyError): # Error class changed in mpl36
File ~\anaconda3\Lib\site-packages\seaborn\palettes.py:406, in mpl palette(name, n colors, as cmap)
--> 406
            cmap = get colormap(name)
    408 if name in MPL QUAL PALS:
File ~\anaconda3\Lib\site-packages\seaborn\_compat.py:62, in get colormap(name)
     61 trv:
---> 62
            return mpl.colormaps[name]
     63 except AttributeError:
File ~\anaconda3\Lib\site-packages\matplotlib\cm.py:93, in ColormapRegistry. getitem (self, item)
     92 except KeyError:
---> 93
            raise KeyError(f"{item!r} is not a known colormap name") from None
KeyError: "'corm' is not a known colormap name"
During handling of the above exception, another exception occurred:
ValueError
                                         Traceback (most recent call last)
Cell In[56], line 2
      1 g = sns.FacetGrid(mobile_data, col="Model", col_wrap=4, height=4, aspect=1)
----> 2 g.map_dataframe(sns.scatterplot, x="Battery_", y="Prize", hue="RAM", palette="corm")
      3 g.add legend()
      4 plt.subplots_adjust(top=0.9)
File ~\anaconda3\Lib\site-packages\seaborn\axisgrid.py:825, in FacetGrid.map dataframe(self, func, *args, **kwargs)
    822
            kwargs["data"] = data_ijk
    824
           # Draw the plot
--> 825
           self._facet_plot(func, ax, args, kwargs)
    827 # For axis labels, prefer to use positional args for backcompat
    828 # but also extract the x/y kwargs and use if no corresponding arg
    829 axis_labels = [kwargs.get("x", None), kwargs.get("y", None)]
File ~\anaconda3\Lib\site-packages\seaborn\axisgrid.py:854, in FacetGrid. facet plot(self, func, ax, plot args, plot kwa
```

```
rgs)
    852
            plot args = []
    853
            plot_kwargs["ax"] = ax
--> 854 func(*plot_args, **plot_kwargs)
    856 # Sort out the supporting information
    857 self. update legend data(ax)
File ~\anaconda3\Lib\site-packages\seaborn\relational.py:621, in scatterplot(data, x, y, hue, size, style, palette, hue
order, hue norm, sizes, size order, size norm, markers, style order, legend, ax, **kwargs)
    606 def scatterplot(
    607
            data=None, *,
    608
            x=None, y=None, hue=None, size=None, style=None,
   (...)
    612
            **kwargs
    613 ):
    615
            p = ScatterPlotter(
    616
                data=data.
    617
                variables=dict(x=x, y=y, hue=hue, size=size, style=style),
    618
                legend=legend
    619
--> 621
            p.map hue(palette=palette, order=hue order, norm=hue norm)
    622
            p.map size(sizes=sizes, order=size order, norm=size norm)
    623
            p.map style(markers=markers, order=style order)
File ~\anaconda3\Lib\site-packages\seaborn\ base.py:838, in VectorPlotter.map hue(self, palette, order, norm, saturatio
n)
    837 def map hue(self, palette=None, order=None, norm=None, saturation=1):
--> 838
            mapping = HueMapping(self, palette, order, norm, saturation)
    839
            self. hue map = mapping
File ~\anaconda3\Lib\site-packages\seaborn\ base.py:141, in HueMapping. init (self, plotter, palette, order, norm, sat
uration)
    138 if map_type == "numeric":
            data = pd.to numeric(data)
--> 141
            levels, lookup table, norm, cmap = self.numeric mapping(
    142
                data, palette, norm,
    143
    145 # --- Option 2: categorical mapping using seaborn palette
    147 elif map type == "categorical":
File ~\anaconda3\Lib\site-packages\seaborn\ base.py:279, in HueMapping.numeric mapping(self, data, palette, norm)
    277
            cmap = palette
```

```
278 else:
           cmap = color_palette(palette, as_cmap=True)
--> 279
    281 # Now sort out the data normalization
    282 if norm is None:
File ~\anaconda3\Lib\site-packages\seaborn\palettes.py:237, in color_palette(palette, n_colors, desat, as_cmap)
                   palette = mpl_palette(palette, n_colors, as cmap=as cmap)
    235
    236
                except (ValueError, KeyError): # Error class changed in mpl36
                   raise ValueError(f"{palette!r} is not a valid palette name")
--> 237
    239 if desat is not None:
    240
            palette = [desaturate(c, desat) for c in palette]
ValueError: 'corm' is not a valid palette name
```

3D Scatter Plot for Multivariate Dependencies

```
In [26]: # Remove commas and convert to numeric
         mobile data["Prize"] = mobile data["Prize"].astype(str).str.replace(",", "").astype(float)
         # Now, create the scatter plot
         fig = plt.figure(figsize=(10, 7))
         ax = fig.add subplot(111, projection="3d")
         # Scatter plot with corrected data
         sc = ax.scatter(
             mobile data["Battery "],
             mobile data["RAM"],
             mobile data["Prize"],
             c=mobile data["Prize"],
             cmap="plasma",
             alpha=0.8
         # Labels
         ax.set xlabel("Battery Capacity (mAh)")
         ax.set ylabel("RAM (GB)")
         ax.set zlabel("Price (INR)")
         # Colorbar
         plt.colorbar(sc, label="Price (INR)")
```

Show plot
plt.show()


```
In [57]: # Select only numeric columns
numeric_cols = mobile_data.select_dtypes(include=['number'])
# Calculate IQR only for numeric columns
```

```
Q1 = numeric cols.quantile(0.25)
Q3 = numeric_cols.quantile(0.75)
IQR = Q3 - Q1
# Define outlier removal condition
lower bound = Q1 - 1.5 * IQR
upper_bound = Q3 + 1.5 * IQR
# Remove outliers
mobile data cleaned = mobile data[
   ~((numeric_cols < lower_bound) | (numeric_cols > upper_bound)).any(axis=1)
# Display the cleaned dataset
print(mobile_data_cleaned.shape)
# Convert `Prize` to Numeric
mobile data["Prize"] = mobile_data["Prize"].astype(str).str.replace(",", "").astype(float)
# Rename the Rear Camera and Front Camera column
mobile data.rename(columns={"Rear Camera": "Rear Camera [MP]"}, inplace=True)
mobile_data.rename(columns={"Front Camera": "Front Camera [MP]"}, inplace=True)
# Display updated column names
print(mobile_data.columns)
# 4. Convert Camera Columns to Numeric
mobile_data["Rear Camera [MP]"] = mobile_data["Rear Camera [MP]"].str.replace("MP", "").astype(float)
mobile data["Front Camera [MP]"] = mobile data["Front Camera [MP]"].str.replace("MP", "").astype(float)
# 6. Normalize Numeric Features
from sklearn.preprocessing import MinMaxScaler
scaler = MinMaxScaler()
numeric_cols = ["Memory", "RAM", "Battery_", "Rear Camera [MP]", "Front Camera [MP]", "Mobile Height", "Prize"]
mobile_data[numeric_cols] = scaler.fit_transform(mobile_data[numeric_cols])
# Display the cleaned dataset
mobile data.head()
```

Out[57]:

	Model	Colour	Memory	RAM	Battery_	Rear Camera [MP]	Front Camera [MP]	AI Lens	Mobile Height	Processor_	Prize
0	Infinix SMART 7	Night Black	0.200000	0.333333	0.838710	0.065	0.083333	1	0.327457	Unisoc Spreadtrum SC9863A1	0.079659
1	Infinix SMART 7	Azure Blue	0.200000	0.333333	0.838710	0.065	0.083333	1	0.327457	Unisoc Spreadtrum SC9863A1	0.079659
2	MOTOROLA G32	Mineral Gray	0.466667	1.000000	0.677419	0.250	0.266667	0	0.324252	Qualcomm Snapdragon 680	0.138351
3	POCO C50	Royal Blue	0.066667	0.000000	0.677419	0.040	0.083333	0	0.322115	Mediatek Helio A22	0.059054
4	Infinix HOT 30i	Marigold	0.466667	1.000000	0.677419	0.250	0.083333	1	0.327457	G37	0.100888

```
In [59]: from sklearn.preprocessing import LabelEncoder

# List of categorical columns
categorical_cols = ["Model", "Colour", "Processor_"]

# Apply Label Encoding to each categorical column
label_encoders = {}

for col in categorical_cols:
    le = LabelEncoder()
    mobile_data[col] = le.fit_transform(mobile_data[col])
    label_encoders[col] = le # Save encoders for later decoding if needed

# Display the first few rows
print(mobile_data.head())
```

```
Model Colour
                                       RAM Battery_ Rear Camera [MP] \
                          Memory
             23
                    159 0.200000 0.333333 0.838710
                                                                0.065
       1
             23
                     20 0.200000 0.333333 0.838710
                                                                0.065
                    149 0.466667 1.000000 0.677419
       2
             37
                                                                0.250
       3
             69
                    201 0.066667 0.000000 0.677419
                                                                0.040
                    130 0.466667 1.000000 0.677419
             12
                                                                0.250
          Front Camera [MP] AI Lens Mobile Height Processor_
                                                                  Prize
                   0.083333
                                          0.327457
                                  1
                                                          113 0.079659
       0
       1
                   0.083333
                                  1
                                          0.327457
                                                          113 0.079659
       2
                                         0.324252
                   0.266667
                                  0
                                                           75 0.138351
       3
                   0.083333
                                  0
                                          0.322115
                                                           56 0.059054
                   0.083333
                                          0.327457
       4
                                  1
                                                           14 0.100888
In [32]: # Compute correlation matrix
         correlation matrix = mobile data.corr()
         # Plot correlation heatmap
         plt.figure(figsize=(12, 8))
         sns.heatmap(correlation matrix, annot=True, cmap="coolwarm", fmt=".2f")
         plt.title("Feature Correlation Heatmap")
         plt.show()
         # Find top correlated features
         corr with price = correlation matrix["Prize"].abs().sort values(ascending=False)
         print("Top Correlated Features with Price:\n", corr with price)
```

Feature Correlation Heatmap

Feature Correlation Heatmap								1.0				
Model	1.00	0.10	0.04	0.00	-0.08	0.00	0.05	-0.40	-0.13	0.04	-0.07	
Colour	0.10	1.00	0.05	0.07	0.03	0.06	0.04	-0.03	0.02	-0.07	0.04	- 0.8
Memory	0.04	0.05	1.00	0.62	-0.07	0.53	0.49	-0.10	0.05	-0.15	0.56	
RAM	0.00	0.07	0.62	1.00	-0.11	0.44	0.49	-0.08	0.09	-0.11	0.53	- 0.6
Battery_	-0.08	0.03	-0.07	-0.11	1.00	0.19	0.02	0.15	0.68	-0.12	-0.05	- 0.4
Rear Camera [MP]	0.00	0.06	0.53	0.44	0.19	1.00	0.50	-0.04	0.23	-0.10	0.41	
Front Camera [MP]	0.05	0.04	0.49	0.49	0.02	0.50	1.00	-0.11	0.20	-0.04	0.53	- 0.2
Al Lens	-0.40	-0.03	-0.10	-0.08	0.15	-0.04	-0.11	1.00	0.05	-0.12	-0.16	- 0.0
Mobile Height	-0.13	0.02	0.05	0.09	0.68	0.23	0.20	0.05	1.00	-0.02	0.17	
Processor_	0.04	-0.07	-0.15	-0.11	-0.12	-0.10	-0.04	-0.12	-0.02	1.00	-0.05	0.2
Prize	-0.07	0.04	0.56	0.53	-0.05	0.41	0.53	-0.16	0.17	-0.05	1.00	
	Model	Colour	Memory	RAM	Battery_	Rear Camera [MP]	Front Camera [MP]	Al Lens	Mobile Height	Processor	Prize	

```
Top Correlated Features with Price:
        Prize
                            1.000000
       Memory
                           0.563535
       RAM
                           0.529474
       Front Camera [MP]
                           0.529013
       Rear Camera [MP]
                           0.406784
       Mobile Height 0.168303
       AI Lens
                           0.156336
       Model
                          0.073833
       Processor_
                       0.049600
       Battery_
                          0.046250
       Colour
                           0.040595
       Name: Prize, dtype: float64
In [61]: from sklearn.ensemble import RandomForestRegressor
         from sklearn.model selection import train test split
         # Define X (features) and y (target variable)
         X = mobile data.drop(columns=["Prize"]) # Remove target column
         y = mobile data["Prize"]
         # Split into training and testing sets
         X train, X test, y train, y test = train test split(X, y, test size=0.2, random state=42)
         # Train a Random Forest model
         rf model = RandomForestRegressor(n estimators=100, random state=42)
         rf model.fit(X train, y train)
         # Get feature importances
         feature importances = pd.Series(rf model.feature importances , index=X.columns)
         feature importances = feature importances.sort values(ascending=False)
         # Plot feature importance
         plt.figure(figsize=(12, 6))
         sns.barplot(x=feature importances, y=feature importances.index, palette="viridis")
         plt.xlabel("Feature Importance Score")
         plt.ylabel("Features")
         plt.title("Feature Importance using Random Forest")
         plt.show()
         # Print top important features
         print("Top Important Features:\n", feature importances)
```

Feature Importance using Random Forest

Top Important Features:

Front Camera [MP] 0.365029 Model 0.334752 0.068347 Memory 0.060567 Battery_ RAM 0.045294 Rear Camera [MP] 0.044153 Processor_ 0.037650 Mobile Height 0.030405 Colour 0.013591 AI Lens 0.000211 dtype: float64

In [63]: from sklearn.decomposition import PCA
from sklearn.preprocessing import StandardScaler

Standardize the features

```
scaler = StandardScaler()
X_scaled = scaler.fit_transform(X)

# Apply PCA
pca = PCA(n_components=10)  # Reduce to 10 components
X_pca = pca.fit_transform(X_scaled)

# Explained variance ratio
plt.figure(figsize=(10, 5))
plt.plot(range(1, 11), np.cumsum(pca.explained_variance_ratio_), marker="o", linestyle="--")
plt.xlabel("Number of Components")
plt.ylabel("Cumulative Explained Variance")
plt.title("PCA - Explained Variance")
plt.show()
```

PCA - Explained Variance


```
"Mobile Height", "AI Lens", "Processor_", "Model", "Colour" ] # Example selected features
         X = mobile_data[selected_features]
         # Train-test split (80% training, 20% testing)
         X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
         print("Training Set:", X_train.shape)
         print("Testing Set:", X_test.shape)
        Training Set: (424, 10)
        Testing Set: (107, 10)
In [67]: # Train Linear Regression Model
         lr_model = LinearRegression()
         lr_model.fit(X_train, y_train)
         # Predictions
         y_pred_lr = lr_model.predict(X_test)
In [69]: # Train Decision Tree Model
         dt_model = DecisionTreeRegressor(random_state=42)
         dt_model.fit(X_train, y_train)
         # Predictions
         y_pred_dt = dt_model.predict(X_test)
In [71]: # Train Random Forest Model
         rf model = RandomForestRegressor(n estimators=100, random state=42)
         rf model.fit(X train, y train)
         # Predictions
         y pred rf = rf model.predict(X test)
In [73]: # ★ Evaluation Function
         def evaluate_model(y_test, y_pred, model_name):
             mae = mean_absolute_error(y_test, y_pred)
             mse = mean_squared_error(y_test, y_pred)
             rmse = np.sqrt(mse) # Root Mean Squared Error
             r2 = r2_score(y_test, y_pred)
             print(f" | {model_name} Performance:")
```

```
print(f" - Mean Absolute Error (MAE): {mae:.2f}")
    print(f" - Mean Squared Error (MSE): {mse:.2f}")
    print(f" - Root Mean Squared Error (RMSE): {rmse:.2f}")
    print(f" - R<sup>2</sup> Score: {r2:.4f}\n")
# ★ Evaluate all three models
evaluate_model(y_test, y_pred_lr, "Linear Regression")
evaluate_model(y_test, y_pred_dt, "Decision Tree")
evaluate_model(y_test, y_pred_rf, "Random Forest")
# ★ Show actual vs predicted prices (for first 10 values)
predictions_df = pd.DataFrame({
    "Actual Price": y_test.values,
    "Predicted (LR)": y_pred_lr,
    "Predicted (DT)": y_pred_dt,
    "Predicted (RF)": y_pred_rf
})
print("\n★ Actual vs Predicted Prices (First 10 values):")
print(predictions_df.head(10))
```

Linear Regression Performance:

- Mean Absolute Error (MAE): 0.06
- Mean Squared Error (MSE): 0.01
- Root Mean Squared Error (RMSE): 0.11
- R² Score: 0.2672

■ Decision Tree Performance:

- Mean Absolute Error (MAE): 0.03
- Mean Squared Error (MSE): 0.01
- Root Mean Squared Error (RMSE): 0.12
- R² Score: 0.1252

Random Forest Performance:

- Mean Absolute Error (MAE): 0.03
- Mean Squared Error (MSE): 0.01
- Root Mean Squared Error (RMSE): 0.09
- R² Score: 0.5565

★ Actual vs Predicted Prices (First 10 values):

	Actual Price	Predicted (LR)	Predicted (DT)	Predicted (RF)
0	0.288203	0.233110	0.288203	0.297918
1	0.100888	0.179224	0.100888	0.102635
2	0.537956	0.297063	0.537956	0.543063
3	0.094644	0.092097	0.097766	0.091409
4	0.113376	0.195817	0.113376	0.111153
5	0.113376	0.095531	0.113376	0.114536
6	0.169570	0.209377	0.169570	0.174988
7	0.188302	0.221359	0.144595	0.207124
8	0.213277	0.228175	0.213277	0.243667
9	0.075913	0.048842	0.075913	0.073430

```
import matplotlib.pyplot as plt
import seaborn as sns
```

```
dt_importance = dt_model.feature_importances_
# Get feature importance from Random Forest
rf_importance = rf_model.feature_importances_
```

Get feature importance from Decision Tree

```
# Convert to DataFrame for visualization
```

```
feature_importance_df = pd.DataFrame({
   "Feature": X.columns,
    "Decision Tree Importance": dt_importance,
   "Random Forest Importance": rf_importance
})
# Sort by importance (Random Forest)
feature_importance_df = feature_importance_df.sort_values(by="Random Forest Importance", ascending=False)
# ★ Print Top Features
print("ii Top Features based on Random Forest:")
print(feature_importance_df.head(10))
# ★ Visualization of Feature Importance
plt.figure(figsize=(12, 6))
sns.barplot(x=feature_importance_df["Random Forest Importance"][:15],
           y=feature_importance_df["Feature"][:15],
            palette="viridis")
plt.xlabel("Feature Importance Score")
plt.ylabel("Features")
plt.title("Top 15 Important Features (Random Forest)")
plt.show()
```

Top Features based on Random Forest:

	Feature	Decision Tree Importance	Random Forest Importance
6	Front Camera [MP]	0.323210	0.365029
0	Model	0.385938	0.334752
2	Memory	0.075037	0.068347
4	Battery_	0.043459	0.060567
3	RAM	0.066478	0.045294
5	Rear Camera [MP]	0.032285	0.044153
9	Processor_	0.025824	0.037650
8	Mobile Height	0.022389	0.030405
1	Colour	0.025364	0.013591
7	AI Lens	0.000015	0.000211

Top 15 Important Features (Random Forest)


```
In [91]: from pptx import Presentation
    from pptx.util import Inches

# Create a PowerPoint Presentation
    prs = Presentation()

# Add Title Slide
    slide_layout = prs.slide_layouts[0]
    slide = prs.slides.add_slide(slide_layout)
    title = slide.shapes.title
    subtitle = slide.placeholders[1]
    title.text = "Mobile Phone Price Prediction"
    subtitle.text = "By Your Name | Date"

# Add an Introduction Slide
    slide_layout = prs.slide_layouts[1]
```

```
slide = prs.slides.add_slide(slide_layout)
title = slide.shapes.title
content = slide.placeholders[1]
title.text = "Introduction"
content.text = "Goal: Predict mobile phone prices using Machine Learning.\nTechniques Used: Data Cleaning, Feature Sele

# Save the PowerPoint
prs.save("Mobile_Price_Prediction_Report.pptx")
print("  PowerPoint Created Successfully!")
```

✓ PowerPoint Created Successfully!

In [83]: !pip install python-pptx

```
Collecting python-pptx
       Downloading python pptx-1.0.2-py3-none-any.whl.metadata (2.5 kB)
     Requirement already satisfied: Pillow>=3.3.2 in c:\users\user\anaconda3\lib\site-packages (from python-pptx) (10.3.0)
     Collecting XlsxWriter>=0.5.7 (from python-pptx)
       Downloading XlsxWriter-3.2.2-py3-none-any.whl.metadata (2.8 kB)
     Requirement already satisfied: lxml>=3.1.0 in c:\users\user\anaconda3\lib\site-packages (from python-pptx) (5.2.1)
     Requirement already satisfied: typing-extensions>=4.9.0 in c:\users\user\anaconda3\lib\site-packages (from python-pptx)
     (4.11.0)
     Downloading python pptx-1.0.2-pv3-none-anv.whl (472 kB)
       ----- 0.0/472.8 kB ? eta -:--:-
       ----- 0.0/472.8 kB ? eta -:--:--
        ----- 10.2/472.8 kB ? eta -:--:-
       -- ----- 30.7/472.8 kB 325.1 kB/s eta 0:00:02
       --- 41.0/472.8 kB 279.3 kB/s eta 0:00:02
       ---- 61.4/472.8 kB 363.1 kB/s eta 0:00:02
       ----- 143.4/472.8 kB 607.9 kB/s eta 0:00:01
       ----- 143.4/472.8 kB 607.9 kB/s eta 0:00:01
       ----- 225.3/472.8 kB 655.6 kB/s eta 0:00:01
       ----- 225.3/472.8 kB 655.6 kB/s eta 0:00:01
       ----- 307.2/472.8 kB 731.4 kB/s eta 0:00:01
       ----- 307.2/472.8 kB 731.4 kB/s eta 0:00:01
       ----- 337.9/472.8 kB 655.4 kB/s eta 0:00:01
       ----- 389.1/472.8 kB 713.5 kB/s eta 0:00:01
       ----- 399.4/472.8 kB 637.9 kB/s eta 0:00:01
       ----- 419.8/472.8 kB 624.4 kB/s eta 0:00:01
       ----- 450.6/472.8 kB 655.2 kB/s eta 0:00:01
       ------ 450.6/472.8 kB 655.2 kB/s eta 0:00:01
       ----- 472.8/472.8 kB 603.8 kB/s eta 0:00:00
     Downloading XlsxWriter-3.2.2-py3-none-any.whl (165 kB)
       ----- 0.0/165.1 kB ? eta -:--:--
       -- ----- 10.2/165.1 kB ? eta -:--:-
       ------ 41.0/165.1 kB 393.8 kB/s eta 0:00:01
       ----- 163.8/165.1 kB 1.2 MB/s eta 0:00:01
       ----- 165.1/165.1 kB 1.1 MB/s eta 0:00:00
     Installing collected packages: XlsxWriter, python-pptx
     Successfully installed XlsxWriter-3.2.2 python-pptx-1.0.2
In [93]: import joblib
      # Save the trained Random Forest model
      joblib.dump(rf model, "random forest mobile price.pkl")
```

```
print("Model saved successfully!")
         Model saved successfully!
 In [95]: # Load the saved model
          rf_model_loaded = joblib.load("random_forest_mobile_price.pkl")
          print("Model loaded successfully!")
         Model loaded successfully!
In [111]: # Ensure new data has the same features as the training data
          new data.columns = X train.columns
          print(new data.columns)
          new data = pd.DataFrame([[23, 20, 0.200000, 0.333333, 0.838710, 0.065, 0.083333, 1, 0.327457, 113]]) # Example data
          # Predict the price using the Loaded model
          predicted price = rf model loaded.predict(new data)
          print("Predicted Mobile Price:", predicted_price[0])
         Index(['Model', 'Colour', 'Memory', 'RAM', 'Battery_', 'Rear Camera [MP]',
                'Front Camera [MP]', 'AI Lens', 'Mobile Height', 'Processor_'],
               dtype='object')
         Predicted Mobile Price: 0.08264601206308753
 In [99]: mobile_data
```

0 1	
()) T	19911
000	レフフ」・

	Model	Colour	Memory	RAM	Battery_	Rear Camera [MP]	Front Camera [MP]	AI Lens	Mobile Height	Processor_	Prize
(0 23	159	0.200000	0.333333	0.838710	0.065	0.083333	1	0.327457	113	0.079659
	1 23	20	0.200000	0.333333	0.838710	0.065	0.083333	1	0.327457	113	0.079659
2	2 37	149	0.466667	1.000000	0.677419	0.250	0.266667	0	0.324252	75	0.138351
3	3 69	201	0.066667	0.000000	0.677419	0.040	0.083333	0	0.322115	56	0.059054
4	4 12	130	0.466667	1.000000	0.677419	0.250	0.083333	1	0.327457	14	0.100888
••	•										
530	6 118	49	1.000000	1.000000	0.500000	0.250	0.200000	0	0.293536	89	0.987512
537	7 32	52	0.066667	0.000000	0.370968	0.025	0.033333	0	0.219017	68	0.063412
538	8 123	259	0.200000	0.333333	0.677419	0.250	0.133333	0	0.327457	35	0.113263
539	9 110	17	0.466667	1.000000	0.677419	0.250	0.533333	0	0.314103	11	0.475518
540	o 59	215	0.466667	0.333333	0.677419	0.250	0.133333	0	0.324786	57	0.188302

531 rows × 11 columns

```
In [113]: actual_price = mobile_data["Prize"][0] # Assuming this is the actual price
    predicted_price = predicted_price[0]

    error = actual_price - predicted_price
    print(f"Actual Price: {actual_price}")
    print(f"Predicted Price: {predicted_price}")
    print(f"Prediction Error: {error}")
```

Actual Price: 0.07965883689856267 Predicted Price: 0.08264601206308753 Prediction Error: -0.0029871751645248606

In [105]: print(X_train.columns)

```
Index(['Model', 'Colour', 'Memory', 'RAM', 'Battery_', 'Rear Camera [MP]',
                'Front Camera [MP]', 'AI Lens', 'Mobile Height', 'Processor_'],
               dtype='object')
In [117]: # Import necessary libraries
          from sklearn.ensemble import GradientBoostingRegressor
          from sklearn.metrics import mean absolute error, mean squared error
          # Initialize the Gradient Boosting model
          gb model = GradientBoostingRegressor(n estimators=100, learning rate=0.1, max depth=3, random state=42)
          # Train the model
          gb model.fit(X train, y train)
          # Predict on test data
          y pred gb = gb model.predict(X test)
          # Print first 10 predicted vs actual values
          print("\n i Actual vs Predicted Prices (Gradient Boosting - First 10 values):")
          print(pd.DataFrame({
              "Actual Price": y test[:10].values,
              "Predicted (GB)": y_pred_gb[:10]
          }))
          # Evaluate the model
          mae = mean absolute error(y test, y pred gb)
          rmse = mean squared error(y test, y pred gb, squared=False)
          print("\n Model Evaluation (Gradient Boosting Regressor):")
          print(f" ✓ Mean Absolute Error (MAE): {mae:.4f}")
          print(f" ✓ Root Mean Squared Error (RMSE): {rmse:.4f}")
```

```
📊 Actual vs Predicted Prices (Gradient Boosting - First 10 values):
            Actual Price Predicted (GB)
        0
               0.288203
                               0.286618
        1
               0.100888
                               0.111670
        2
               0.537956
                               0.537126
               0.094644
                               0.079139
        4
               0.113376
                               0.117566
        5
               0.113376
                               0.105173
               0.169570
                               0.166106
        7
               0.188302
                               0.213113
        8
               0.213277
                               0.254080
        9
               0.075913
                               0.074726
         Model Evaluation (Gradient Boosting Regressor):
         ✓ Mean Absolute Error (MAE): 0.0347

✓ Root Mean Squared Error (RMSE): 0.0965

In [119]: dt model = DecisionTreeRegressor(max depth=10, min samples split=5, min samples leaf=2, random state=42)
          dt model.fit(X train, y train)
Out[119]:
                                       DecisionTreeRegressor
         DecisionTreeRegressor(max depth=10, min samples leaf=2, min samples split=5,
                                  random_state=42)
In [121]: import joblib
          joblib.dump(dt model, "final mobile price model.pkl")
Out[121]: ['final_mobile_price_model.pkl']
In [123]: import matplotlib.pyplot as plt
          feature importance = dt_model.feature_importances_
          plt.figure(figsize=(10,5))
          plt.barh(X_train.columns, feature_importance)
          plt.xlabel("Feature Importance")
          plt.ylabel("Feature Names")
          plt.title("Decision Tree Feature Importance")
          plt.show()
```



```
In [125]: loaded_model = joblib.load("final_mobile_price_model.pkl")
    predicted_price = loaded_model.predict(new_data)
    print("Predicted Mobile Price:", predicted_price[0])

    Predicted Mobile Price: 0.09132286215188588

In []:

In [146]: import os
    os.system("jupyter nbconvert --to pdf mobile_data.ipynb")

Out[146]: 1
```

In [141]: pip install pandoc

```
Requirement already satisfied: pandoc in c:\users\user\anaconda3\lib\site-packages (2.4)
Requirement already satisfied: plumbum in c:\users\user\anaconda3\lib\site-packages (from pandoc) (1.9.0)
Requirement already satisfied: ply in c:\users\user\anaconda3\lib\site-packages (from pandoc) (3.11)
Requirement already satisfied: pywin32 in c:\users\user\anaconda3\lib\site-packages (from plumbum->pandoc) (305.1)
Note: you may need to restart the kernel to use updated packages.

In [143]:

Cell In[143], line 1
sudo apt install texlive-xetex texlive-fonts-recommended

SyntaxError: invalid syntax

In []:
```