oites-robotisees-a-double-embrayage-22,

Modélisation des chaînes de solides dans le but de déterminer les contraintes géométriques dans les mécanismes. l'Ingénieur

Sciences Industrielles de

Chapitre 1

Détermination des liaisons équivalentes

Cours

Savoirs et compétences :

- *Mod2.C34 : chaînes de solides;*
- □ *Mod2.C34 : degré de mobilité du modèle ;*
- □ *Mod2.C34 : degré d'hyperstatisme du modèle;*
- □ Mod2.C34.SF1 : déterminer les conditions géométriques associées à l'hyperstatisme ;
- □ Mod2.C34 : résoudre le système associé à la fermeture cinématique et en déduire le degré de mobilité et d'hyperstatisme.

Robot humanoïde Lola

Simulateur de vol Lockheed Martin

1	Introduction	2
1.1	Rappel sur les torseurs des liaisons	2
1.2	Graphe des liaisons	2
2	Liaisons équivalentes	2
2.1	Liaisons en parallèles	3
2.2	Liaisons en série	3
2.3	Décomposition des liaisons	3
1		42

1 Introduction

1.1 Rappel sur les torseurs des liaisons

Définition De manière générale, le torseur cinématique peut être noté :

$$\left\{\mathcal{V}\!\left(i/j\right)\right\} = \left\{\begin{array}{c} \overrightarrow{\Omega\!\left(i/j\right)} \\ \overrightarrow{V\!\left(P \in i/j\right)} \end{array}\right\}_P = \left\{\begin{array}{c} p_{ij} \overrightarrow{x} + q_{ij} \overrightarrow{y} + r_{ij} \overrightarrow{z} \\ u_{ij} \overrightarrow{x} + v_{ij} \overrightarrow{y} + w_{ij} \overrightarrow{z} \end{array}\right\}_P = \left\{\begin{array}{c} p_{ij} \quad u_{ij} \\ q_{ij} \quad v_{ij} \\ r_{ij} \quad w_{ij} \end{array}\right\}_{P\mathscr{B}}.$$

On notera n_c le nombre d'inconnues cinématiques d'une liaison. En d'autres termes, n_c correspond donc au nombre de mobilités de la liaison.

Définition De manière générale, le torseur statique peut être noté :

$$\left\{ \mathcal{T} \left(i \to j \right) \right\} = \left\{ \begin{array}{c} \overrightarrow{R \left(i \to j \right)} \\ \overrightarrow{\mathcal{M} \left(P, i \to j \right)} \end{array} \right\}_{P} = \left\{ \begin{array}{c} X_{ij} \overrightarrow{x} + Y_{ij} \overrightarrow{y} + Z_{ij} \overrightarrow{z} \\ L_{ij} \overrightarrow{x} + M_{ij} \overrightarrow{y} + N_{ij} \overrightarrow{z} \end{array} \right\}_{P} = \left\{ \begin{array}{c} X_{ij} & L_{ij} \\ Y_{ij} & M_{ij} \\ Z_{ij} & N_{ij} \end{array} \right\}_{P,\mathcal{R}} .$$

On notera n_s le nombre d'inconnues statiques d'une liaison. En d'autres termes, n_s correspond au degré de liaison. On a $n_s = 6 - n_c$.

1.2 Graphe des liaisons

Définition Selon la forme du graphe de liaisons, on peut distinguer 3 cas :

Les chaînes ouvertes

Les chaînes fermées

Les chaînes complexes

2
3
4
2
5
1
6

On appelle cycle, un chemin fermé ne passant pas deux fois par le même sommet. À partir d'un graphe des liaisons donné, il est possible de vérifier qu'il existe un nombre maximal de cycles indépendants. Ce nombre est appelé nombre cyclomatique.

En notant L le nombre de liaisons et S le nombre de solides, on note γ le nombre cyclomatique et on a : $\gamma = L - S + 1$.

- Dans le cas d'une chaîne ouverte, γ est nul.
- À partir du graphe de structure, il est possible de déterminer le nombre cyclomatique d'une chaîne complexe... si elle n'est pas trop complexe.

2 Liaisons équivalentes

Objectif La détermination de la liaison équivalente correspondant à l'association de plusieurs liaisons doit permettre :

• de transmettre les mêmes actions mécaniques que l'association de liaisons;

• d'autoriser les mêmes mouvements relatifs que l'association de liaisons.

2.1 Liaisons en parallèles

Méthode La liaison équivalente aux liaisons en parallèles doit permettre de transmettre la somme de chacune des actions mécaniques. Ainsi :

$$\{\mathcal{T}(1 \to 2)\}_{eq} = \sum_{i=1}^{n} \{\mathcal{T}(1 \to 2)\}_{i}.$$

La liaison équivalente devant permettre les même mobilités que les liaisons en série, il est donc aussi possible de déterminer la liaison équivalente en résolvant le système d'équation suivant :

$$\{\mathcal{V}(1/2)\}_{eq} = \{\mathcal{V}(1/2)\}_1 = \{\mathcal{V}(1/2)\}_2 = \dots = \{\mathcal{V}(1/2)\}_n$$
.

Cependant cette méthode dite « cinématique » est moins aisée à mettre en œuvre que la première.

2.2 Liaisons en série

Méthode La liaison équivalente aux liaisons en série se détermine en utilisant la composition du torseur cinématique. En effet :

$$\{\mathcal{V}(1/n)\}_{\text{eq}} = \sum_{i=1}^{n-1} \{\mathcal{V}(i/i+1)\}.$$

L'application successive du principe fondamental de la statique à chacun des solides permet de déterminer le torseur équivalent de la liaison :

$$\{\mathcal{T}(n \to 1)\}_{eq} = \{\mathcal{T}(2 \to 1)\} = \{\mathcal{T}(3 \to 2)\} = \dots = \{\mathcal{T}(n \to n-1)\}.$$

L'observation de la forme du torseur de la liaison équivalente ne suffit pas à déduire le nom de la liaison : il faut aussi s'assurer que les composantes du torseur sont bien indépendantes.

2.3 Décomposition des liaisons

Chacune des liaisons normalisées à n degré de liberté peut être décomposée en n liaisons ponctuelles en parallèles (sphère – plan). Par exemple, une liaison rotule (sphérique) est équivalente à 3 liaisons ponctuelles en parallèles dont les normales sont non coplanaires et concourantes en un point.

Application 1

Application 01

P. Dupas

Savoirs et compétences :

■ Mod2.C34 : chaînes de solides.

Liaisons en parallèle

Question 1 Déterminer la liaison équivalente des liaisons suivantes.

Liaisons en série

Question 2 Déterminer la liaison équivalente des liaisons suivantes.

PSI* - MP

Application 2

Application 02

F. Weiss & Éditions Vuibert

Savoirs et compétences :

Mod2.C34 : chaînes de solides.

Ascenseur de la Tour de la terreur 1

La Tour de la terreur du parc Walt Disney Studios propose aux visiteurs d'entrer dans une tour et d'effectuer une chute de 13 étages dans un ascenseur. L'ascenseur est guidé en translation sur deux rails par 12 galets répartis sur 4 systèmes de guidage.

Guidage en A Guidage de l'ascenseur.

Cahier des charges

Le diagramme des exigences partiel de la Tour de la terreur est donné figure suivante.

Diagramme des exigences partiel.

Objectif L'objectif est d'analyser différentes liaisons en parallèle ou en série de la Tour de la terreur afin de valider l'exigence de précision du guidage lors de la descente.

Modélisation de la Tour.

On modélise chaque contact entre un galet et le rail par une liaison ponctuelle. On modélise chaque liaison entre un galet et la cabine par une liaison pivot.

Afin de simplifier l'étude, nous nous intéressons d'abord à la liaison équivalente à une liaison pivot en série avec une liaison ponctuelle (liaison réalisée entre la cabine et un rail par l'intermédiaire d'un seul galet).

Association en série d'une liaison pivot et d'une liaison ponctuelle.

Question 1 En utilisant le modèle de la figure précédente, montrer que l'association en série d'une ponctuelle de normale \overrightarrow{n} et d'une liaison pivot d'axe \overrightarrow{z} est équivalente à une liaison ponctuelle de normale \overrightarrow{n} .

Dans la suite, nous considérerons cette simplification pour tous les galets.

Question 2 Proposer un graphe des liaisons faisant intervenir les modèles des 12 galets entre le rail et l'ascenseur.

^{1.} D'après concours X-ENS PSI.

Question 3 Donner le torseur cinématique d'une liaison ponctuelle ou sphère-plan en précisant le point d'écriture et la base.

Question 4 Montrer que l'association de trois liaisons ponctuelles en parallèle au niveau d'un guidage (A, B, C ou D) est équivalente à une liaison sphère-cylindre dont on précisera les caractéristiques.

Question 5 Montrer que l'association en parallèle de deux liaisons sphère-cylindre de même axe est équivalente à une liaison pivot glissant.

Question 6 Conclure sur la liaison équivalente entre la cabine et le rail compte tenu des résultats précédents.

Question 7 Pourquoi utilise-t-on cette solution pour guider la cabine de l'ascenseur?

Mât réacteur A320

L'étude porte sur la solution d'assemblage choisie entre le mât-réacteur et l'aile de l'avion A320. Les figures suivantes présentent les différentes pièces de cet assemblage ainsi que la disposition des liaisons dans le plan $(\overrightarrow{X}, \overrightarrow{Z})$.

Le mât-réacteur (1) est suspendu à l'aile (0) grâce aux deux biellettes (4) et (5). Les articulations réalisées aux points A, B, N et M sont considérées comme des liaisons « sphériques ». On a : $\overrightarrow{AM} = \overrightarrow{BN} = a \overrightarrow{z}$. Les mouvements du mât-réacteur (1) par rapport à l'aile (0) sont stoppés par la présence de deux triangles (2) et (3). Le triangle (2) est articulé sur (1) par deux liaisons « shériques » de centres E et F, et sur (0) par une liaison « sphérique » de centre H. On a : $\overrightarrow{EF} = e \overrightarrow{y}$ et $\overrightarrow{EH} = \frac{1}{2} e \overrightarrow{y} + h \overrightarrow{z}$. Le triangle (3) est articulé sur (1) par deux liaisons

Le triangle (3) est articulé sur ($\vec{1}$) par deux liaisons « shériques » de centres C et D, et sur (0) par une liaison « sphérique » de centre J. On a : $\overrightarrow{CD} = a \overrightarrow{y}$ et $\overrightarrow{CJ} = \frac{1}{2}c\overrightarrow{y} - j\overrightarrow{x}$.

Question 1 Tracer le graphe de structure de l'assemblage.

Question 2 Déterminer la liaison équivalente entre (1) et (0) réalisée par la biellette (4) puis par la biellette (5).

Question 3 Déterminer la liaison équivalente réalisée entre (1) et (0) par le triangle (2) puis par le triangle (3).

Question 4 Tracer en perspective le schéma architectural de l'assemblage du mât (1) sur l'aile (0) en utilisant les modèles des liaisons équivalentes déterminées aux questions précédentes.

Question 5 Déterminer le degré d'hyperstatisme de l'assemblage (1)/(0); justifier l'intérêt du résultat en raisonnant sur les dilatations provoquées par des températures et des matériaux différents pour l'aile et le mât-réacteur.

Sciences

Application 2 – Corrigé

Application 02

F. Weiss & Éditions Vuibert

Savoirs et compétences :

■ Mod2.C34 : chaînes de solides.

Ascenseur de la Tour de la terreur

6) Le torseur cinématique de la liaison pivot en A est $\{ \boldsymbol{\mathcal{V}}_{2/1} \} = \left\{ \begin{array}{cc} 0 & | & 0 \\ 0 & | & 0 \\ \omega_{21}^{z} & | & 0 \end{array} \right\}_{A,(\vec{n},\vec{t},\vec{z})}$ $= \left\{ \begin{array}{cc} 0 & | & 0 \\ 0 & | & -R\omega_{21}^{z} & | & 0 \\ \omega_{21}^{z} & | & 0 \end{array} \right\}_{B,(\vec{n},\vec{t},\vec{z})}.$ Celui de la ponctuelle en B est $\{ \boldsymbol{\mathcal{V}}_{1/0} \} = \left\{ \begin{array}{cc} \omega_{10}^{x} & | & 0 \\ \omega_{10}^{y} & | & v_{10}^{y} \\ \omega_{10}^{z} & | & v_{10}^{z} \end{array} \right\}_{B,(\vec{n},\vec{t},\vec{z})}.$

On reconnaît le torseur cinématique d'une liaison ponctuelle de normale n

7) En notant S_0 le sous-ensemble constitué des rails et S_1 la cabine, on obtient le graphe des liaisons de la figure 6.27.

Figure 6.27. Graphe de liaisons de l'ascenseur de la Tour de la terreur.

8) Le torseur d'une liaison ponctuelle d'axe (O, \vec{x}) est : $\begin{cases} \omega_x & 0 \\ \omega_y & v_y \\ \omega_z & v_z \end{cases}$. Le torseur d'une liaison ponctuelle d'axe (O, \vec{y}) est $\begin{cases} \omega_x & v_x \\ \omega_y & 0 \\ \omega_z & v_z \end{cases}$.

9) On démontre le résultat pour l'une des liaisons (par exemple en A). On observe 3 liaisons en parallèle écrites au même point dans la même base, il faut donc égaliser

Ainsi,
$$\{\mathcal{V}_{eq}\} = \begin{cases} \omega_{x1} & v_{x1} \\ \omega_{y1} & 0 \\ \omega_{z1} & v_{z1} \end{cases} = \begin{cases} \omega_{x2} & 0 \\ \omega_{y2} & v_{y2} \\ \omega_{z2} & v_{z2} \end{cases} = \begin{cases} \omega_{x3} & 0 \\ \omega_{y3} & v_{y3} \\ \omega_{z3} & v_{z3} \end{cases} A_{A(\vec{x}, \vec{y}, \vec{z})}$$

On en déduit alors que
$$v_{y2} = v_{y3} = 0$$
 et que $v_{x1} = 0$. Il reste alors : $\{\mathcal{V}_{eq}\} = \left\{ egin{array}{c|c} \omega_x & 0 \\ \omega_y & 0 \\ \omega_z & v_z \end{array} \right\}_{A,(\vec{x},\vec{y},\vec{z})}$

qui est bien le torseur cinématique d'une liaison sphère-cylindre en A d'axe (A, \vec{z}) .

10) On considère maintenant deux liaisons sphère-cylindre en A d'axe (A, \vec{z}) et en C d'axe (C, \vec{z}) . Les liaisons sont en parallèle, on égalise au même point dans la même base les deux torseurs. Le torseur d'une liaison sphère-cylindre en A est le

$$\omega_{z1}\vec{z}) \text{ soit } \vec{V}(C) = v_{z1}\vec{z} + h\omega_{x1}\vec{y} - h\omega_{y1}\vec{x}. \text{ On obtient alors : } \begin{cases} \omega_{x2} & 0 \\ \omega_{y2} & 0 \\ \omega_{z2} & v_{z2} \end{cases} =$$

$$\omega_{z1}\vec{z}) \text{ soit } \vec{V}(C) = v_{z1}\vec{z} + h\omega_{x1}\vec{y} - h\omega_{y1}\vec{x}. \text{ On obtient alors : } \begin{cases} \omega_{y2} \\ \omega_{z2} \end{cases} \begin{vmatrix} 0 \\ v_{z2} \end{cases} = \begin{cases} \omega_{x1} \\ -h\omega_{y1} \\ h\omega_{x1} \\ v_{z1} \end{vmatrix} \begin{pmatrix} -h\omega_{y1} \\ h\omega_{x1} \\ v_{z1} \end{pmatrix} \begin{cases} \text{On en déduit que } \omega_{y1} = \omega_{y2} = 0 \text{ et } \omega_{x1} = \omega_{x2} = 0. \text{ Il reste } \\ 0 \\ 0 \\ \omega_{z} \end{vmatrix} \begin{pmatrix} 0 \\ v_{z1} \\ v_{z1} \end{pmatrix} \begin{cases} 0 \\ 0 \\ v_{z} \\ v_{z2} \end{cases}$$
 qui est le torseur d'une liaison pivot glissant d'axe (C, \vec{z}) .

11) On peut démontrer que l'association de deux liaisons pivot glissant d'axe (C, \vec{z}) .

- 11) On peut démontrer que l'association de deux liaisons pivot glissant d'axe (C, \vec{z}) et d'axe (D, \vec{z}) correspond à une liaison glissière de direction \vec{z} . En effet, les torseurs étant en parallèle on les égalise au point C. On déplace donc le torseur de la liaison pivot glissant définie en D au point C. $\overrightarrow{V}(C) = \overrightarrow{V}(D) + \overrightarrow{CD} \wedge (\omega_{z2}\vec{z})$ soit $\overrightarrow{V}(C) = v_{z2}\vec{z} + v_{z2}\vec{z}$ $L\omega_{z1}\vec{x}$. Ainsi, il vient que $\omega_{z1}=\omega_{z2}=0$. Il reste donc uniquement les composantes de translation selon \vec{z} .
- 12) On souhaite avoir un bon guidage non seulement pour assurer la sécurité des personnes mais également pour éviter les frottements en descente et ralentir de manière non souhaitée la chute. On utilise ce type de guidage plutôt que des liaisons pivot glissant car ceci permet d'éviter les blocages en descentes (phénomène d'arcbouttement) et limiter également les frottements (roulement et non glissement). Par contre, il faut prévoir un système de réglage de position des galets pour être sûr qu'ils seront en contact avec les rails car beaucoup sont redondants.

Le graphe de structure de l'assemblage est présenté figure 4.

1- liaison équivalente entre (1) et (0) réalisée par la biellette (4) : C'est un ensemble de solides reliés par des liaisons en série (figure 5) ; utilisons la démarche des torseurs cinématiques :

$$\begin{split} & \left\{ \mathbf{V}_{1/0} \right\}_{B} = \left\{ \mathbf{V}_{1/4} \right\}_{B} + \left\{ \mathbf{V}_{4/0} \right\}_{B} \\ & = \left\{ \begin{matrix} \omega_{x1/4} & 0 \\ \omega_{y1/4} & 0 \\ \omega_{z1/4} & 0 \end{matrix} \right\}_{B} + \left\{ \begin{matrix} \omega_{x4/0} & -a\omega_{y4/0} \\ \omega_{y4/0} & a\omega_{x4/0} \\ \omega_{z4/0} & 0 \end{matrix} \right\}_{B} \\ & = \left\{ \begin{matrix} \omega_{x1/4} + \omega_{x4/0} \\ \omega_{y1/4} + \omega_{y4/0} \\ \omega_{z1/4} + \omega_{z4/0} \end{matrix} \right\}_{B} - a\omega_{x4/0} \\ & a\omega_{x4/0} \\ & 0 \end{matrix} \right\}_{B} \end{split}$$

qui est le torseur d'une liaison « sphère-plan » (ponctuelle) de centre B et de normale Z (figure 6).

Par une démarche identique, on montre que la liaison équivalente réalisée par la biellette (5) entre (1) et (0) est une liaison « sphère-plan » de centre A et de normale Z.

2- liaison équivalente réalisée entre (1) et (0) par le triangle (2) :

2-1 montrons tout d'abord que l'ensemble des deux liaisons en E et F forme une liaison pivot de (2) par rapport à (1) (voir la figure 7) :

C'est un assemblage de deux liaisons en parallèle; utilisons les torseurs statiques; le torseur statique de la liaison équivalente est égal à la somme des torseurs statiques transmis par chacune des liaisons:

$$\begin{cases} \mathsf{F}_{2/1(\acute{e}qu)} \end{cases}_E = \left\{ \mathsf{F}_{2/1(E)} \right\}_E + \left\{ \mathsf{F}_{2/1(F)} \right\}_E$$

$$= \begin{cases} X_E & 0 \\ Y_E & 0 \\ Z_E & 0 \end{cases}_E + \left\{ \begin{array}{c|c} X_F & e.Z_F \\ Y_F & 0 \\ Z_F & -e.X_F \end{array} \right\}_E = \left\{ \begin{array}{c|c} X_E + X_F & e.Z_F \\ Y_E + Y_F & 0 \\ Z_E + Z_F & -e.X_F \end{array} \right\}_E$$
qui est le torseur statique d'une liais

pivot d'axe Ey.

2-2 Déterminons la liaison équivalente entre (0) et (1) réalisée par le triangle (2).

Les liaisons sphérique (0)/(2) et pivot (2)/(1) et sont des liaisons associées en série ; utilisons la démarche des torseurs cinématiques :

$$= \begin{cases} \omega_{x2/0} & h\omega_{y1/2} \\ \omega_{y1/2} + \omega_{y2/0} & 0 \\ \omega_{z2/0} & 0 \end{cases}$$

Ce qui est le torseur d'une liaison « sphère-cylindre » d'axe x et de centre H (figure 8).

On montre de la même manière que la liaison équivalente entre (1) et (0) réalisée par le triangle (3) est une liaison « sphère-cylindre » d'axe z et de centre J.

3- Schéma architectural de l'assemblage du mât (1) sur l'aile (0) :

avec les liaisons déterminées précédemment, on obtient le schéma de la figure 9 :

4- Déterminons le degré d'hyperstatisme de l'assemblage (1)/(0);

$$h = Ns - 6 + mc = (1 + 1 + 2 + 2) - 6 + 0 = 0$$

Le système est isostatique ; cela permet aux différentes pièces (mat-réacteur, aile ...) de se dilater sous l'effet des variations de températures, sans provoquer de contraintes qui seraient préjudiciables à la résistance de cet assemblage.