Remote Viewing Experiment: Automated Analysis Framework

Overview

This project introduces an automated, objective methodology for conducting and analyzing remote viewing experiments. The framework addresses traditional challenges in remote viewing research, specifically:

- Subjective human judgment in evaluating viewer accuracy
- Lack of reproducibility in analysis
- Scalability limitations
- Potential experimental bias

Background

Traditional Remote Viewing Experiments

In traditional remote viewing experiments:

- 1. A sender selects a target image
- 2. A remote viewer attempts to describe the target without seeing it
- 3. Human judges evaluate the accuracy by comparing the viewer's description to the target
- 4. Success is determined through statistical analysis of matching accuracy

Current Limitations

- Human judgment introduces subjectivity
- Inconsistent evaluation criteria between different judges
- Time-consuming analysis process
- Difficult to replicate results across different studies
- Potential for unconscious bias in evaluation

Proposed Methodology

Automated Analysis Framework

Our method introduces two parallel analysis approaches:

1. NLP-Based Analysis

- Standardized descriptions for target and decoy images
- Semantic similarity comparison between viewer descriptions and image descriptions
- Objective scoring based on linguistic similarity metrics

2. CNN-Based Visual Analysis

- Computer vision analysis of image features
- Direct comparison of visual similarities between images

Clustering-based validation of image relationships

Validation Strategy

The framework's validity is established by comparing:

- NLP-generated similarity matrices
- CNN-generated similarity matrices
- Visualization through dendrograms and heatmaps
- Correlation between linguistic and visual clustering patterns

Key Advantages

- 1. Objectivity: Removes human bias from evaluation process
- 2. Reproducibility: Standardized analysis methods ensure consistent results
- 3. **Scalability**: Automated analysis enables larger-scale experiments
- 4. **Validation**: Dual-analysis approach (NLP and CNN) provides robust validation
- 5. Efficiency: Reduces time and resources needed for analysis

Experimental Process

1. Image Pool Preparation

- Collection of target and decoy images
- Development of standardized descriptions
- Processing images for CNN analysis

2. Remote Viewing Session

- Target selection from image pool
- Remote viewer provides description
- · Recording of viewer's description

3. Automated Analysis

- NLP processing of viewer descriptions
- CNN analysis of image features
- Generation of similarity matrices
- Creation of dendrograms and heatmaps

4. Statistical Analysis

- Comparison of similarity scores
- Clustering analysis
- · Statistical significance testing

Technical Implementation

1. Image Description Standardization

Selected 20 diverse images for initial validation

- Images chosen to represent varied characteristics:
 - Textures
 - Objects
 - Emotional content
 - Color schemes
- Created standardized descriptions:
 - o 20 descriptors per image
 - Consistent complexity level across all images
 - Descriptions cover multiple aspects (visual, emotional, contextual)

2. NLP Analysis Implementation

SBERT Encoding Approaches

Approach Comparison

Two potential methods were considered for encoding image descriptions:

1. Individual Descriptor Encoding

- o Process: Encode each of the 20 descriptors separately
- Advantages:
 - More granular representation of each descriptor
 - Maintains full semantic meaning of individual descriptors
 - Allows for descriptor-level similarity analysis
 - Better handles descriptors that might conflict or contradict
- Disadvantages:
 - Results in 20 separate embedding vectors per image
 - More computationally intensive
 - Requires additional aggregation strategy
 - May lose contextual relationships between descriptors

2. Combined Descriptor Encoding

- o Process: Encode all 20 descriptors as one comma-separated text
- Advantages:
 - Single embedding vector per image
 - Captures potential relationships between descriptors
 - More efficient computation
 - Simpler similarity comparison between images
- Disadvantages:
 - May dilute the importance of individual descriptors
 - Could hit token length limits for transformer models
 - Risk of losing fine-grained semantic details
 - Potential for descriptor order to affect encoding

Implementation Decision

The combined descriptor encoding approach was selected for implementation:

• Implementation Details:

- Uses all-MiniLM-L6-v2 SBERT model
- Processes each image's 20 descriptors as a single text input
- Generates one feature vector per image
- Stores descriptors in combined_descriptors.txt

Key Implementation Benefits:

- Simplified similarity computation between images
- More efficient processing pipeline
- Maintains contextual relationships between descriptors
- Single embedding vector per image enables straightforward clustering

Processing Flow:

- 1. Load combined descriptors from text file
- 2. Encode each combined description using SBERT
- 3. Generate similarity matrix using correlation distance
- 4. Create hierarchical clustering using Ward linkage
- 5. Visualize results through dendrograms and heatmaps

3. CNN Analysis Implementation

Feature Processing and Similarity Analysis

1. Feature Vector Processing

- Features extracted from last maxpool layer of AlexNet
- Each feature vector flattened to 1D array
- Features stored as individual .pt files for reusability

```
feature_vector = torch.load(feature_path).flatten().numpy()
```

2. Similarity Computation

- Direct cosine similarity calculation between feature vectors
- Chosen over correlation distance for better interpretability
- Range: [-1, 1] where:
 - 1 indicates perfect similarity
 - 0 indicates orthogonality
 - -1 indicates opposite features

```
similarity_matrix = cosine_similarity(cnn_feature_vectors)
```

Visualization Implementation

1. Dendrogram Generation

- Uses Ward's linkage method for hierarchical clustering
- Displays relationships between images based on visual features
- Horizontal layout for better label readability
- Parameters:

```
dendrogram(
    linkage_matrix_ward_cnn,
    labels=cnn_image_labels,
    leaf_rotation=0,
    leaf_font_size=10
)
```

2. Heatmap Visualization

- Ordered to match dendrogram clustering
- Diagonal values masked to focus on inter-image relationships
- Color scaling:
 - vmin=-1, vmax=1 for full cosine similarity range
 - Centered at 0 for balanced visualization
 - Uses coolwarm colormap for intuitive interpretation
- Parameters:

```
sns.heatmap(
   ordered_similarity_matrix,
   annot=True,
   fmt='.2f',
   mask=mask,
   vmin=-1,
   vmax=1,
   center=0
)
```

Key Implementation Decisions

1. Similarity Metric Choice

- Cosine similarity preferred over correlation distance
- Reasons:
 - More interpretable range (-1 to 1)
 - Standard in computer vision tasks
 - Better at capturing visual feature relationships
 - Scale-invariant comparison

2. Visualization Choices

- o Clean, minimal dendrogram design
- Masked diagonal in heatmap
- Two-decimal precision for similarity scores
- o Removed axis labels for cleaner presentation

3. Data Organization

- Consistent ordering between dendrogram and heatmap
- o Image labels matched to actual filenames
- Hierarchical structure preserved in visualizations

Analysis Benefits

1. Visual Feature Comparison

- Direct comparison of image content
- No reliance on semantic descriptions
- Captures subtle visual similarities

2. Objective Measurement

- Consistent feature extraction
- Standardized similarity computation
- Reproducible results

3. Complementary to SBERT Analysis

- Provides visual perspective alongside semantic analysis
- Enables validation of semantic relationships
- Helps identify cases where visual and semantic similarities diverge

Future Directions

- Expansion of image dataset
- Refinement of similarity metrics
- Integration of additional analysis methods
- Development of real-time analysis capabilities

Impact

This methodology represents a significant advancement in remote viewing research by:

- Establishing objective evaluation standards
- Enabling larger-scale studies
- Providing reproducible results
- Creating a foundation for more rigorous scientific investigation

Visualization Methodology

Distance Matrix Generation Approaches

1. Correlation-based Approach (Original sbert-analysis.py)

- Uses correlation distance metric
- Focuses on pattern similarity
- May emphasize relative relationships between features

```
condensed_dist_matrix_cnn = pdist(sbert_feature_vectors,
metric="correlation")
```

2. Cosine Similarity Approach (Improved working-dendrogram.py)

- First computes cosine similarity
- Better suited for semantic text embeddings
- More interpretable for text-based comparisons

```
similarity_matrix = cosine_similarity(embeddings_whole)
distance_matrix = 1 - similarity_matrix
```

Implementation Decision

The cosine similarity approach was chosen as optimal for our experiment because:

- More appropriate for semantic text comparisons
- Standard metric in NLP tasks
- Better interpretation of similarity scores
- Directly comparable to human intuition about text similarity

Additional Analysis Features

The improved implementation includes:

- Top-N most related pairs identification
- Detailed similarity score output
- Multiple clustering method options
- Enhanced validation capabilities for remote viewing matches

Clustering and Visualization Implementation Decisions

Hierarchical Clustering Method Selection

We evaluated several hierarchical clustering approaches before selecting Ward's method:

1. Single Linkage

- Method: Measures distance between closest points of clusters
- Characteristics:
 - Creates long, chain-like clusters

- Sensitive to noise and outliers
- Good at finding elongated clusters
- Why Not Chosen:
 - Too sensitive for semantic analysis
 - Creates unbalanced clusters
 - Doesn't reflect natural semantic groupings

2. Complete Linkage

- *Method*: Uses maximum distance between points in clusters
- Characteristics:
 - Creates compact, spherical clusters
 - Less sensitive to outliers
 - Tends to break large clusters
- Why Not Chosen:
 - Too conservative for semantic relationships
 - May miss subtle semantic connections
 - Can create artificially small clusters

3. Average Linkage

- Method: Uses mean distance between all pairs
- Characteristics:
 - Compromise between single and complete
 - Moderately robust to outliers
 - Creates medium-sized clusters
- Why Not Chosen:
 - Lacks clear theoretical justification for semantic data
 - Doesn't consider variance within clusters
 - Can be inconsistent with semantic relationships

4. Ward's Method (Chosen Approach)

- Method: Minimizes variance within clusters
- Characteristics:
 - Creates compact, well-defined clusters
 - Considers cluster structure holistically
 - Tends to create balanced clusters
- Why Chosen:
 - Best reflects semantic relationships
 - Creates interpretable groupings
 - Maintains cluster cohesion
 - Ideal for semantic embedding spaces

Dendrogram Implementation

Several visualization options were considered:

1. Color-Coded by Height

- Shows different levels of hierarchy in different colors
- Why Not Chosen:
 - Too visually complex
 - Distracts from core relationships

2. Multiple Threshold Lines

- Shows different possible clustering levels
- Why Not Chosen:
 - Clutters visualization
 - Complicates interpretation

3. Simple Structure with Single Threshold (Chosen Approach)

- Clean visualization
- Single red threshold line
- Clear branch structure
- Why Chosen:
 - Maximizes interpretability
 - Focuses on key relationships
 - Matches semantic analysis needs

Heatmap Implementation

Considered various approaches for similarity visualization:

1. Full Matrix with Diagonal

- Shows all similarities including self-similarity
- Why Not Chosen:
 - Diagonal values dominate color scale
 - Reduces contrast for important comparisons

2. Binary Threshold Visualization

- Shows only similarities above threshold
- Why Not Chosen:
 - Loses granular relationship information
 - Too simplistic for semantic analysis

3. Masked Diagonal with Normalized Scale (Chosen Approach)

- Hides diagonal values
- Uses centered color scale
- Shows full range of similarities
- Why Chosen:
 - Focuses on inter-image relationships
 - Maximizes visual contrast
 - Preserves all relevant information
 - Easier to interpret semantic relationships

Integration of Methods

The combination of Ward's clustering, simple dendrogram, and masked heatmap provides:

- 1. Robust semantic clustering
- 2. Clear visualization of relationships
- 3. Detailed similarity information
- 4. Balance between detail and interpretability

This integrated approach best serves our remote viewing analysis by:

- Identifying meaningful semantic groups
- Showing hierarchical relationships
- Quantifying similarities between descriptions
- Supporting objective analysis of viewer accuracy

CNN Implementation Details

AlexNet Architecture and Feature Extraction

1. Why AlexNet?

- Proven architecture for image feature extraction
- Well-understood feature hierarchy
- Pre-trained on diverse ImageNet dataset
- o Efficient computation and robust features
- Strong performance in transfer learning tasks

2. Hook Implementation for Feature Extraction

```
class FeatureExtractor:
    def __init__(self, model):
        self.model = model
        self.features = None
        self.hook = model.features[12].register_forward_hook(self.hook_fn)
```

- Hooks are PyTorch mechanisms that:
 - Intercept intermediate layer outputs
 - Allow access to feature maps without modifying model
 - Enable extraction of specific layer representations
- Layer 12 (last maxpool) chosen because:
 - Contains high-level semantic features
 - Balances abstraction and detail
 - Provides compact representation

3. Feature Processing Pipeline

- Standardize image sizes
- Apply ImageNet normalization
- Convert to tensor format
- Ensure consistent processing

Dual Heatmap Visualization Strategy

1. Raw Similarity Heatmap

- Shows unmodified cosine similarity values
- o Range: [-1, 1]
- Centered at 0
- Advantages:
 - Preserves actual similarity measures
 - Shows true relationship strengths
- Limitations:
 - May be hard to visually interpret
 - Subtle differences less apparent

2. Interpolated Similarity Heatmap

```
min_val = ordered_similarity_matrix[~mask].min()
max_val = ordered_similarity_matrix[~mask].max()
interpolated_matrix = (ordered_similarity_matrix - min_val) / (max_val -
min_val)
```

- Rescales values to [0, 1] range
- Based on actual data range
- o Benefits:
 - Enhanced visual contrast
 - Easier pattern recognition
 - Better group identification
- o Implementation:
 - Masks diagonal values
 - Preserves relative relationships
 - Shows original values in annotations

3. Visualization Parameters

- Side-by-side display for comparison
- Consistent ordering with dendrogram
- Masked diagonal entries
- Coolwarm colormap for intuitive interpretation
- Annotations show original values

4. Analysis Benefits

- o Complementary views of similarity structure
- Balance between accuracy and interpretability
- Facilitates pattern discovery
- o Supports both detailed and overview analysis

Comparison Analysis: CNN vs SBERT Features

Implementation Strategy

1. Dimension Matching

- Ensure equal number of samples between CNN and SBERT features
- Use sequential sampling to maintain consistency
- o Preserve image-label correspondence across both analyses

2. Visualization Framework

- Three separate comparative visualizations:
 - 1. Side-by-side dendrograms
 - 2. Raw similarity heatmaps
 - 3. Interpolated similarity heatmaps
- Consistent layout and scaling for direct comparison

3. Correlation Analysis

- Pearson correlation: Measures linear relationship
- o Spearman correlation: Measures monotonic relationship
- P-values for statistical significance

```
correlation_pearson, p_value_pearson = pearsonr(condensed_dist_matrix_cnn,
condensed_dist_matrix_sbert)
correlation_spearman, p_value_spearman =
spearmanr(condensed_dist_matrix_cnn, condensed_dist_matrix_sbert)
```

Visualization Components

1. Dendrogram Comparison

- Purpose:
 - Compare hierarchical relationships
 - Identify clustering patterns

- Validate structural similarities
- Implementation:
 - Ward linkage for both methods
 - Consistent leaf rotation and font size
 - Aligned distance scales

2. Raw Similarity Heatmaps

- o Purpose:
 - Compare actual similarity values
 - Identify relationship strengths
 - Validate measurement consistency
- Features:
 - Masked diagonal values
 - Consistent color scaling (-1 to 1)
 - Original similarity scores

3. Interpolated Heatmaps

- Purpose:
 - Enhanced pattern visualization
 - Relative relationship comparison
 - Easier interpretation of groupings
- o Implementation:

```
interpolated_matrix = (similarity_matrix - min_val) / (max_val -
min_val)
```

- o Benefits:
 - Normalized scale (0 to 1)
 - Preserved relative relationships
 - Better visual contrast

Analysis Benefits

1. Validation

- Cross-validation between visual and semantic features
- Confirmation of relationship patterns
- Identification of discrepancies

2. Interpretation

- Multiple perspectives on relationships
- o Both absolute and relative comparisons
- Clear visualization of similarities and differences

3. Quality Control

- Verification of feature extraction
- Validation of clustering approach
- Confirmation of analysis consistency

Implementation Details

- Consistent preprocessing
- Matched sample sizes
- Aligned visualization parameters
- Standardized analysis metrics

Automated Image Selection Using Hierarchical Clustering

Overview

To automatically select a diverse subset of images from a large database, we use hierarchical clustering with Ward's method. This approach was validated using the CIFAR-100 dataset and can be applied to any image collection.

Selection Process

1. Feature Extraction

- Run images through AlexNet's convolutional layers
- Extract features from last maxpool layer
- Flatten features into vectors

2. Similarity Matrix Construction

```
# Compute cosine similarity between all feature vectors
similarity_matrix = cosine_similarity(cnn_features)
```

3. Hierarchical Clustering

```
# Convert similarities to distances
distances = 1 - similarity_matrix

# Perform Ward's hierarchical clustering
linkage_matrix = linkage(distances, method='ward')

# Cut tree to get desired number of clusters
clusters = fcluster(linkage_matrix, n_clusters=100, criterion='maxclust')
```

4. Representative Selection

- For each cluster, select the image closest to cluster center
- o This ensures selected images are:

- Maximally different from each other
- Representative of their local neighborhood
- Well-distributed across the feature space

Implementation Methods

1. Ward's Method

- Minimizes within-cluster variance
- Creates compact, balanced clusters
- Better than single/complete linkage for this task
- Used in CIFAR-100 validation

2. Center Selection Strategy

```
for cluster_id in unique_clusters:
    cluster_indices = np.where(clusters == cluster_id)[0]

# Find image closest to cluster center
    cluster_similarities = similarity_matrix[cluster_indices][:,
cluster_indices]
    mean_similarities = np.mean(cluster_similarities, axis=1)
    center_idx = cluster_indices[np.argmax(mean_similarities)]

selected_indices.append(center_idx)
```

3. Validation Approach

- Visualize similarity matrix
- Check cluster distributions
- Analyze intra/inter-cluster distances
- Compare selected images visually

CIFAR-100 Validation Results

- Successfully selected diverse subsets (20-100 images)
- Maintained class distribution
- Achieved good coverage of feature space
- Validated through visual inspection and similarity metrics

Advantages of This Approach

1. Automatic Selection

- No manual intervention needed
- Scales to any dataset size
- Consistent, reproducible results

2. Diversity Guarantee

- Each selected image represents a distinct cluster
- Maximum separation between selected images
- Good coverage of full dataset

3. Quality Control

- Center selection avoids outliers
- Ward's method ensures balanced clusters
- Easy to validate through visualization

Application to New Datasets

- 1. Extract CNN features from all images
- 2. Compute similarity matrix
- 3. Perform hierarchical clustering
- 4. Select cluster centers
- 5. Validate selections through visualization

This method can automatically select any number of representative images from a larger dataset while ensuring maximum diversity and representativeness.