PRÁTICA 02 - MÓDULO DE CIRCUITOS DIGITAIS E INTRODUÇÃO À ALGEBRA DE BOOLE

Voltar à home Aula Anterior - Próxima Aula

OBJETIVOS

- Apresentar o módulo de eletrônica digital e suas principais funcionalidades;
- · Conhecer a álgebra de Boole;
- Conhecer a variedade de portas lógicas disponíveis e suas combinações;
- Verificar os métodos de criação e simplificação da Tabela da verdade;

Material Necessário:

- · Kit Digital;
- TTL 74LS00;
- TTL 74LS04;
- TTL 74LS08;
- TTL 74LS32;

Operações e Portas Lógicas

Operação E (AND)

- É a primeira das três operações fundamentais da Álgebra Booleana;
- Pode ser interpretada como:
 - verdade (1) apenas quando ambos os operadores forem verdadeiros
- Representa a operação E lógico;
- · Representações alternativas:
 - ∘ **E, AND, .** (ponto), ∧
 - o Em expressões/funções Booleanas, a ausência de operador significa que o operador E deve ser inferido

Tabela Verdade:

Α	В	A (e) B	
0	0	0	
0	1	0	
1	0	0	
1	1	1	

Operação OU (OR)

- Segunda operação fundamental. Pode ser interpretada como:
 - o "verdade (1) quando qualquer dos operadores for verdadeiro"
- · Representa o OU lógico;
- Representações alternativas:

Tabela Verdade:

Α	В	A (ou) B	
0	0	0	
0	1	1	
1	0	1	
1	1	1	

Operação NÃO (NOT)

- Terceira e última das operações fundamentais;
- Pode ser interpretada como:
 - "complemento ou inverso do valor atual"
- · Representa o NÃO lógico;
- Representações alternativas:
 - ∘ NÃO, NOT, ~, ¬
- Há uma notação muito usada na qual a operação "não" é representada com uma barra sobre a variável Booleana. Ex:

Tabela Verdade:

Α	não A		
0	1		
1	0		

Questionário pré-laboratório

- 1. Quais são as funções lógicas básicas da álgebra de Boole?
- 2. Descreva as principais propriedades das operações da álgebra de Boole.
- 3. Quais funções lógicas básicas podem representar todas as outras funções lógicas básicas

IMPLEMENTAÇÃO DE CIRCUITO LÓGICO

Represente a expressão lógica correspondente ao circuito a seguir. Preencha também sua tabela verdade.

Α	В	С	S
0	0	0	
0	0	1	
0	1	0	
0	1	1	
1	0	0	
1	0	1	
1	1	0	
1	1	1	

Usando os circuitos integrados a seguir, implementar no KIT o circuito digital correspondente às portas lógicas descritas acima:

CIs Lógicos: 7404 (6-NOT), 7408 (4-AND), 7432 (4-OR)

PÓS-LABORATÓRIO - CONVERSÃO DE CIRCUITO LÓGICO PARA NAND E NOR

CONVERSÃO DE CIRCUITO LÓGICO PARA NAND

Faça a conversão do circuito lógico para portas NAND. Use os exemplos a seguir:

EXPRESSÃO LÓGICA : _____

CONVERSÃO DE CIRCUITO LÓGICO PARA NOR

Implemente a expressão lógica e o circuito equivalente utilizando portas NOR a seguir:

EXPRESSÃO LÓGICA : _____

