

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 5 :	A1	(11) International Publication Number: WO 93/05103
C08J 9/02, 9/04, 9/06 C08J 9/08, 9/10, 9/12 C08J 9/14, B32B 1/06, 1/08 B29C 67/22, 67/20, B62D 25/04 B62D 29/00, 21/00		(43) International Publication Date: 18 March 1993 (18.03.93)
(21) International Application Number: PCT/AU92/00468	Published <i>With international search report.</i>	
(22) International Filing Date: 3 September 1992 (03.09.92)		
(30) Priority data: PK 8109 3 September 1991 (03.09.91) AU		
(71)(72) Applicant and Inventor: RUSSELL, Terence, Allan [AU/AU]; 1427-1429 Burwood Highway, Upwey, VIC 3158 (AU).		
(81) Designated States: AU, DE, GB, JP, US.		

(54) Title: STRENGTHENING STRUCTURES

(57) Abstract

A hollow member (21) is strengthened by inserting a foam precursor means (29) within the member (21) and thereafter heating the structure. The foam precursor means comprises foaming means and plastics material. The heating takes place to a first elevated temperature when the foaming means causes the plastics material, which is then in liquid form, to foam and fill the portion of the hollow member (21) being strengthened, and adhere to the inside walls. The foam so formed is then raised to a higher temperature to cause the foamed plastics material to set. Preferably glass fibre reinforcing is included in the foam precursor means (29). Preferred forms of precursor means (29) include a heat sink (24).

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AT	Austria	FI	Finland	MN	Mongolia
AU	Australia	FR	France	MR	Mauritania
BB	Barbados	GA	Gabon	MW	Malawi
BE	Belgium	GB	United Kingdom	NL	Netherlands
BF	Burkina Faso	GN	Guinea	NO	Norway
BG	Bulgaria	GR	Greece	NZ	New Zealand
BJ	Benin	HU	Hungary	PL	Poland
BR	Brazil	IE	Ireland	PT	Portugal
CA	Canada	IT	Italy	RO	Romania
CF	Central African Republic	JP	Japan	RU	Russian Federation
CG	Congo	KP	Democratic People's Republic of Korea	SD	Sudan
CH	Switzerland	KR	Republic of Korea	SE	Sweden
CI	Côte d'Ivoire	LI	Liechtenstein	SK	Slovak Republic
CM	Cameroon	LK	Sri Lanka	SN	Senegal
CS	Czechoslovakia	LU	Luxembourg	SU	Soviet Union
CZ	Czech Republic	MC	Monaco	TD	Chad
DE	Germany	MG	Madagascar	TG	Togo
DK	Denmark	ML	Mali	UA	Ukraine
ES	Spain			US	United States of America

STRENGTHENING STRUCTURES

5

In the automotive manufacturing industry increasing standards of crash protection for occupants are constantly being demanded by consumers and by legislation. In particular, increased rigidity of the passenger compartment is being demanded. Increased stiffness of the vehicle is also highly desirable to improve handling

10 characteristics on the road and reduce vibrations which lead to the development of squeaks and rattles. These goals are difficult to achieve within the constraints of the lighter vehicle masses being required for improved fuel economy and exhaust emissions.

15 There is thus a pressing need to strengthen portions of automobiles such as pillars, the anti-intrusion channels in doors and chassis rails without substantially increasing vehicular weight. Substantial experimentation has now resulted in a manufacturing technique that achieves the above aims.

20 Accordingly, in one aspect the present invention can be seen as a method of strengthening portion of a hollow member comprising inserting foam precursor means within the member, said foam precursor means comprising foaming means and plastics material, and thereafter heating the structure containing the foam precursor means to a first elevated temperature whereby said foaming means causes the

25 plastics material, which is in liquid form at said first elevated temperature, to foam and fill said portion of the hollow member and adhere to the inside walls of the hollow member, and thereafter heating the foam so formed to a second elevated temperature higher than the first elevated temperature to cause the foamed plastics material to set such that when cooled to ambient temperature, and optionally allowed an additional

30 curing period, said portion of the hollow member is filled with a rigid foam strongly adherent to the inside walls of the hollow member and providing a strengthening therefor.

35 Preferably the foam precursor means comprises a mixture including fibre reinforcing mixed with the plastics material in such a manner that it becomes substantially evenly distributed as a reinforcement within the foam. Preferably such fibre reinforcing is glass fibres although alternatives such as Kevlar aramid fibres, carbon fibres or boron fibres may be used. A mixture of fibre types can be used. Preferably the fibres are in the form of relatively short chopped fibres rather than in long filamentary form, and

SUBSTITUTE SHEET

have a length in the order of 2-10mm. The use of fibre reinforcement substantially improves the structural integrity of the final foam product.

- Preferably the plastics material comprises a single-part latent cure epoxy resin which is
5 activated at a temperature higher than the first elevated temperature (where the foaming means activates) but no higher than said second elevated temperature.

The elevated temperatures required for production of the foam may be produced by the heat treatment of a car body during the painting operations. Preferably this is in
10 the baking oven immediately after the electrocoat application used on most modern vehicles. In conventional modern auto finishing the body is given a total dip electrocoat followed by about 30 minutes in a baking oven where the body is raised to about 175°C. However if there is a delay in the paint line, such that the body stops in the oven, it may reach up to about 250°C. Tolerance of such an elevated temperature
15 can be provided for by use of an appropriate formulation.

Preferably a thermal conductor is added to the mixture of the foam precursor means. This may be for example finely divided zinc such as zinc dust or aluminium powder or iron powder. The main purpose of such an additive is to provide improved thermal
20 conductivity in the foam precursor means to allow it to completely heat to the required temperature for foaming and curing during the limited heating time available and also to provide for sufficient heat transfer out of the foam when substantial heat may be produced within it from exothermic reactions involved in the foaming and curing. The use of zinc in the foam may also provide a measure of galvanic protection against
25 corrosion of steel substrate surfaces.

Preferably the cured foam produced is a closed cell foam. This provides for improved corrosion protection of the metal surfaces to which it adheres and also provides a positive barrier to vapour and sound transmission along the interior of the member
30 being strengthened.

- In another aspect the present invention provides a foam precursor cartridge comprising an outer casing having a melting temperature and containing a foam precursor mixture, said foam precursor mixture comprising:
- 35
- a foaming means which evolves gas at a first elevated temperature above said melting temperature,
 - an activating means which activates at a second elevated temperature higher than said first elevated temperature, and

- a plastics material, which is in liquid form at said first elevated temperature, and can be foamed by said evolving gas at said first elevated temperature, and can be set by said activating means at said second elevated temperature.

5

In a further aspect the invention can be seen as a method of strengthening portion of a hollow member by use of a cartridge as described.

One embodiment of the invention will now be described by way of an example of putting the invention into practice.

A foam precursor mixture is prepared by mixing the following components readily available in Australia from the suppliers/manufacturers indicated. The composition is indicated in parts by weight.

15

100 parts bisphenol A epoxy resin (DER 331 from Dow Chemical Co, having an equivalent epoxy weight of 182-190 and a viscosity of 11000-14000 cps);

20

50 parts glass reinforcement (3.2mm long milled glass fibre from Owens Corning Fibreglass);

20 parts zinc dust (microfine grade as supplied by Challenge Metals);

25

6 parts dicyandiamide (DICY MF grade from Anchor Chemicals Australia Pty Ltd);

0.75 parts Imidazole (CUREZOL [trade mark] 2MZ-AZINE grade from Anchor Chemicals Australia Pty Ltd);

30

5 parts aluminium powder (200 grade from Harcross Chemicals);

3.5 parts fume silica (AEROSIL [trade mark] R202, hydrophobic);

35

3 parts UNICELL-OH foaming agent (benzene sulfonyl hydrazide) from Dong Jin Chemical Industries Co Ltd;

3 parts Unipaste (PII) urea activator from Dong Jin Chemical Industries Co Ltd.

The above components are mixed and the resultant mixture is inserted into sausage-like polythene (polyethylene) bags and sealed to form a foam precursor cartridge. The cartridges are sized to conveniently fit within the vehicles' structural members being reinforced. They can be placed into position prior to fabrication of the hollow member

5 (such as within an open channel prior to its welding to a door to form a side anti-intrusion rail) or can be slid into position after fabrication (such as in the side pillars prior to closing the pillars' end opening).

When introduced into the electrocoat baking oven, the cartridge is heated, and when it reaches the melting point of the polythene (approximately 130°C), the plastic bag melts and the mixture therein escapes into the hollow member. Care needs to be taken with the placement of holes in the member to ensure that the mixture does not thereby run from its intended region of use. When the mixture reaches the activation temperature of the foaming agent (in this present case the Unicell-OH is activated at 15 150°C) the foaming agent evolves gas which causes the mixture to foam and expand and contact the inside walls of the hollow member. The use of the epoxy resin in the mixture ensures that it obtains intimate contact and adhesion with the walls even if they are oily from earlier processing or storage. As the oven continues to heat the member, the activator reaches its activation temperature (180°C for the DICY MF)

20 when it decomposes, the products of which in turn activate the cure mechanism of the epoxy which cures (polymerises) and the foam solidifies in a closed cell form.

The first and second elevated temperatures need to be sufficiently spaced so that both foaming and curing do not happen together. The 20°C separation in the above

25 example has been found to be appropriate.

Although the above formulation of mixture has been found to be particularly efficient and cost effective in reinforcing automobile pillars and the like, it could be varied if required for particular applications. For example 25 parts of 6mm chopped strand

30 Kevlar aramid fibres could replace the 50 parts glass fibres for improved performance albeit at an increased cost. Such a material could have anti-ballistic and other armouring applications.

Also the resultant foam could be toughened by adding an elastomer such as 10-40 parts of a carboxylated nitrile rubber (CBTN) to the foam precursor mixture. More preferably though, this would be achieved by adding a toughener such as a difunctional polyoxypropylene with a molecular weight of about 2000, for example Jeffamine D-2000 from Texaco Chemical Co. For this 10-40 parts of the Jeffamine is

pre-reacted with the resin at 100°C in an inert atmosphere prior to their mixing with the other components in the foam precursor mixture.

- Glass spheres (micro-balloons) can be added to the mixture to lower the density of the
5 final foam and achieve weight savings. The density of the foam could thus be lowered from about 1.3 to about 0.4, although 0.6 to 0.7 is considered optimal.

- Although the above described embodiments have a liquid mixture held in polythene bags or pumped into position, suitable formulations can be made which are in solid
10 form at ambient temperatures and could be introduced into the required position as a solid rod or bar.

- In the course of substantial experimentation, it has been found that in some applications the foam produced can in parts reach undesirably high temperatures and
15 even suffer some thermal degradation due to the heat liberated in the exothermic reaction, even when a thermal conductor component such as metal powder is added as described above to the mixture. Such high temperatures appear to be confined to particularly thick cross sections of foam wherein the thermal conduction path is relatively long for removal of the heat of reaction. For such applications it has been
20 found that a heat sink means may be advantageously positioned generally central of the cross section such that it is substantially surrounded by the foam prone to high temperature elevation. Preferred forms of such a heat sink and their application will now be described with reference to Figures 1 & 2 attached hereto.

- 25 Figure 1 is a diagrammatic cross section through portion of a hollow member, such as an automobile B-pillar subject to strengthening in accordance with one embodiment of the present invention. Figure 2 is a diagrammatic cross section through portion of an automobile A-pillar subject to strengthening in accordance with another embodiment of the present invention. In Figure 1 the foam is shown in its expanded state whereas in
30 Figure 2 the foam precursor cartridge is shown before its activation and the surface of the foam after activation is shown by a dashed line.

- Referring to Figure 1, the B-pillar 11 is of box section and is reinforced over portion 12 of its length with foam 13 produced from a precursor mixture described in a following
35 portion of this specification. Held centrally within the foam is the heat sink 14 formed from a length of light gauge steel tubing flattened at its ends to form a substantially sealed container. The heat sink is packaged with the foam precursor mixture and is held in position by wire or lug(s) (not shown) during the foaming process. The heat sink 14 does not fill with foam but provides a sink central of the body of foam into

- which heat can pass during the reaction exotherm, in order to lower the temperature which would otherwise be achieved in the centre of the body of foam. The heat sink size and material of construction may be chosen such that its mass is lower than that of the equivalent volume of foam it displaces, so contributing to a lower vehicular
- 5 mass. Instead of the form shown in Figure 1, the heat sink could for example comprise a length of metal bar or a preformed slug of thermosetting or thermoplastic resin. The volume occupied by the heat sink allows for the use of less foam, the components of which are a relatively high cost item, so providing a cost saving.
- 10 Referring to Figure 2, the A-pillar 21 is of box section and is to be reinforced over portion 22 of its length with foam of the general type as for Figure 1. The heat sink 24 is formed from a length of light gauge steel tubing open at each end. It locates into a neatly fitting hole 25 in a bracket 26 spot welded at 27 to the inside of the pillar 21. A collar 28 formed on the tubing serves to limit its penetration in the hole 25 and also
- 15 supports its location substantially central of the pillar 21. The foam precursor mixture is contained within a tubular polyethylene film envelope 29 through which the heat sink passes. The envelope is sealed at its ends against the heat sink by elastic rubber bands 30 to retain the precursor mixture in place between the heat sink and the envelope. The bracket 26 substantially neatly fits the inside cross section of the pillar
- 20 21 in order to minimise the loss of any foam precursor components down the pillar.

A particular advantage of the configuration shown in Figure 2 is that there is a continuous duct down the pillar so allowing the convenient routing of electric wiring, or drain tubing from a sunroof, in the vehicle. It is of course not limited to application in

25 vehicle A-pillars, but can be used in other pillars and in non automotive applications.

A further formulation of the foam precursor mixture, particularly applicable to use with the forms of the invention described with reference to Figures 1 & 2, will now be described. The mixture is prepared by mixing the following components readily

30 available in Australia, again from the suppliers or manufacturers indicated. The composition is indicated in parts by weight.

35 100 parts bisphenol A epoxy resin (DER 351 from Dow Chemical Co), pre-reacted with 10 parts Jeffamine D-2000 from Texaco Chemical Co at 100°C in an inert atmosphere;

10 parts glass reinforcement (6mm long chopped strand from ACI Fibreglass);

- 6 parts dicyandiamide (DICY MF grade from Anchor Chemicals Australia Pty Ltd);
- 5 0.5 parts Imidazole (CUREZOL 2MZ-AZINE grade from Anchor Chemicals Australia Pty Ltd);
- 10 50 parts aluminium powder (200 grade from Harcross Chemicals);
- 15 3 parts CELOGEN OT foaming agent from Uniroyal Chemicals;
- 15 3 parts plastic microspheres (Expance 551DE grade of 40-60 micrometres average diameter from International Sales and Marketing Pty Ltd);
- 15 3 parts Unipaste (PII) urea activator from Dong Jin Chemical Industries Co Ltd.
- 15 The above components are mixed and the resultant mixture is packaged using polythene film as previously described to form a foam precursor cartridge.
- 20 Although the invention has been described with particular reference to the manufacture of automobiles, it will be appreciated that it is similarly adapted to the manufacture of buses and other heavy road vehicles, trains, aircraft, caravans and the like. It also has application in marine superstructures and, with the use of kevlar fibres, could be useful in military applications.
- 25 Also although the preferred embodiments described above utilised the electrocoat oven to produce and cure the foam, the invention envisages the mixture being inserted, possibly by pumping, into the required positions in the body while it is between the electrocoat oven and the primer application so that it is the primer bake oven that foams and cures the mixture. Similarly it could be inserted between the primer bake and the top coat application.
- 35 Although initially developed for strengthening steel structures, the invention is also applicable to hollow structures of other metals or of plastics or composite materials. An example of such further use is for aluminium window frames required to provide a significant structural strengthening role. It is common for such frames to be made from a hollow aluminium extrusion and this is often reinforced on the inside with hot dip galvanised steel sections fastened into place. The powder coated paint finish commonly used on these frames requires the hollow aluminium extrusions to be heated to about 220°C, and this provides a good opportunity to deposit a

strengthening foam according to the invention inside the aluminium sections at the same time as the powder coating is being affixed.

- It can thus be seen that many modifications may be made to the preferred
5 embodiments described above without departing from the spirit and scope of the invention.

CLAIMS

1. A method of strengthening portion of a hollow member comprising inserting foam precursor means within the member, said foam precursor means comprising foaming means and plastics material, and thereafter heating the structure containing the foam precursor means to a first elevated temperature whereby said foaming means causes the plastics material, which is in liquid form at said first elevated temperature, to foam and fill said portion of the hollow member and adhere to the inside walls of the hollow member, and thereafter heating the foam so formed to a second elevated temperature higher than the first elevated temperature to cause the foamed plastics material to set such that when cooled to ambient temperature, and optionally allowed an additional curing period, said portion of the hollow member is filled with a rigid foam strongly adherent to the inside walls of the hollow member and providing a strengthening therefor.
2. A method according to claim 1 wherein the foam precursor means comprises a mixture including fibre reinforcing mixed with the plastics material in such a manner that it becomes substantially evenly distributed as a reinforcement within the rigid foam.
3. A method according to claim 2 wherein the fibre reinforcing comprises glass fibres.
- 25 4. A method according to claim 2 wherein the fibre reinforcing comprises Kevlar aramid fibres, carbon fibres or boron fibres.
5. A method according to any one of claims 2, 3 or 4 wherein the fibres have a length of between 2mm and 10mm.
- 30 6. A method according to any one of the preceding claims wherein the foam precursor means includes finely divided zinc or aluminium powder or iron powder in an amount that provides a significant increase in the thermal conductivity of the foam.
- 35 7. A method according to any one of claims 1 to 5 wherein the foam precursor means includes finely divided zinc in an amount to provide galvanic protection against corrosion of steel in electrical contact with the rigid foam.

8. A method according to any one of the preceding claims wherein the plastics material comprises a single-part latent cure epoxy resin which is activated at a temperature higher than the first elevated temperature but no higher than said second elevated temperature.

5

9. A method according to any one of the preceding claims wherein the hollow member to be strengthened forms part of an automobile body and the elevated temperatures required for production of the foam are produced by heat treatment of the automobile body during painting operations.

10

10. A method according to claim 9 wherein the elevated temperatures required for production of the foam are produced in a baking oven immediately after an electrocoat application to the automobile body.

15

11. A method according to any one of the preceding claims wherein the rigid foam has a density of between 0.6 and 0.7 gcm⁻³.

12. A method according to any one of the preceding claims wherein the rigid foam is a closed cell foam.

20

13. A structure strengthened by use of a method according to any one of the preceding claims.

25

14. A foam precursor cartridge comprising an outer casing having a melting temperature and containing a foam precursor mixture, said foam precursor mixture comprising:

- a foaming means which evolves gas at a first elevated temperature above said melting temperature,
- an activating means which activates at a second elevated temperature higher than said first elevated temperature, and
- a plastics material, which is in liquid form at said first elevated temperature, and can be foamed by said evolving gas at said first elevated temperature, and can be set by said activating means at said second elevated temperature.

30

35 15. A cartridge according to claim 14 wherein said outer casing is a thin film of material which melts at approximately 130°C.

16. A cartridge according to claim 14 or 15 wherein said plastics material is an epoxy resin.
17. A cartridge according to claim 16 wherein said plastics material is a toughened epoxy resin.
5
18. A cartridge according to any one of claims 14 to 17 having its foam precursor mixture containing reinforcing fibres with a length between 2mm and 10 mm.
- 10 19. A cartridge according to any one of claims 14 to 18 having its foam precursor mixture containing finely divided zinc.
20. A cartridge according to any one of claims 14 to 19 having its foam precursor mixture containing microspheres of glass or plastics material.
15
21. A cartridge according to any one of claims 14 to 20 having a heat sink means positioned through its centre.
22. A cartridge according to claim 21 wherein the foam precursor mixture is contained within a generally tubular film of plastics material through which the heat sink means passes.
20
23. A cartridge according to claim 21 or 22 wherein the heat sink means is formed from a length of light gauge metal tubing.
25
24. A cartridge according to claim 23 wherein the tubing is flattened at its ends to form a substantially sealed container.
25. A cartridge according to any one of claims 21 to 24 wherein the heat sink means is selected to have a mass less than that of the equivalent volume of foam it displaces.
30
26. A method of strengthening portion of a hollow member comprising inserting into the member a foam precursor cartridge according to any one of claims 14 to 25, heating the member containing the foam precursor cartridge to said first elevated temperature whereby said foaming means causes the plastics material to foam and fill said portion of the hollow member and adhere to the inside walls of the hollow member, and thereafter heating the member to the second elevated temperature whereby the activating means activates and
35

causes the foamed plastics material to set while adhering to the inside walls of the hollow member and providing a strengthening therefor.

27. A method of strengthening portion of a hollow member comprising inserting into

5 the member a foam precursor cartridge according to claim 23 and wherein each end of the heat sink means is open, heating the hollow member containing the foam precursor cartridge to said first elevated temperature whereby said foaming means causes the plastics material to foam and expand in said portion of the member, but not enter into the open ends of the heat sink means, and adhere to the inside walls of the member and the outside walls of the heat sink means, and thereafter heating the member to the second elevated temperature whereby the activating means activates and causes the foamed plastics material to set so strengthening the portion of the member while providing a duct through the heat sink means along the strengthened portion of the member.

10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100 105 110 115 120 125 130 135 140 145 150 155 160 165 170 175 180 185 190 195 200 205 210 215 220 225 230 235 240 245 250 255 260 265 270 275 280 285 290 295 300 305 310 315 320 325 330 335 340 345 350 355 360 365 370 375 380 385 390 395 400 405 410 415 420 425 430 435 440 445 450 455 460 465 470 475 480 485 490 495 500 505 510 515 520 525 530 535 540 545 550 555 560 565 570 575 580 585 590 595 600 605 610 615 620 625 630 635 640 645 650 655 660 665 670 675 680 685 690 695 700 705 710 715 720 725 730 735 740 745 750 755 760 765 770 775 780 785 790 795 800 805 810 815 820 825 830 835 840 845 850 855 860 865 870 875 880 885 890 895 900 905 910 915 920 925 930 935 940 945 950 955 960 965 970 975 980 985 990 995 1000 1005 1010 1015 1020 1025 1030 1035 1040 1045 1050 1055 1060 1065 1070 1075 1080 1085 1090 1095 1100 1105 1110 1115 1120 1125 1130 1135 1140 1145 1150 1155 1160 1165 1170 1175 1180 1185 1190 1195 1200 1205 1210 1215 1220 1225 1230 1235 1240 1245 1250 1255 1260 1265 1270 1275 1280 1285 1290 1295 1300 1305 1310 1315 1320 1325 1330 1335 1340 1345 1350 1355 1360 1365 1370 1375 1380 1385 1390 1395 1400 1405 1410 1415 1420 1425 1430 1435 1440 1445 1450 1455 1460 1465 1470 1475 1480 1485 1490 1495 1500 1505 1510 1515 1520 1525 1530 1535 1540 1545 1550 1555 1560 1565 1570 1575 1580 1585 1590 1595 1600 1605 1610 1615 1620 1625 1630 1635 1640 1645 1650 1655 1660 1665 1670 1675 1680 1685 1690 1695 1700 1705 1710 1715 1720 1725 1730 1735 1740 1745 1750 1755 1760 1765 1770 1775 1780 1785 1790 1795 1800 1805 1810 1815 1820 1825 1830 1835 1840 1845 1850 1855 1860 1865 1870 1875 1880 1885 1890 1895 1900 1905 1910 1915 1920 1925 1930 1935 1940 1945 1950 1955 1960 1965 1970 1975 1980 1985 1990 1995 2000 2005 2010 2015 2020 2025 2030 2035 2040 2045 2050 2055 2060 2065 2070 2075 2080 2085 2090 2095 2100 2105 2110 2115 2120 2125 2130 2135 2140 2145 2150 2155 2160 2165 2170 2175 2180 2185 2190 2195 2200 2205 2210 2215 2220 2225 2230 2235 2240 2245 2250 2255 2260 2265 2270 2275 2280 2285 2290 2295 2300 2305 2310 2315 2320 2325 2330 2335 2340 2345 2350 2355 2360 2365 2370 2375 2380 2385 2390 2395 2400 2405 2410 2415 2420 2425 2430 2435 2440 2445 2450 2455 2460 2465 2470 2475 2480 2485 2490 2495 2500 2505 2510 2515 2520 2525 2530 2535 2540 2545 2550 2555 2560 2565 2570 2575 2580 2585 2590 2595 2600 2605 2610 2615 2620 2625 2630 2635 2640 2645 2650 2655 2660 2665 2670 2675 2680 2685 2690 2695 2700 2705 2710 2715 2720 2725 2730 2735 2740 2745 2750 2755 2760 2765 2770 2775 2780 2785 2790 2795 2800 2805 2810 2815 2820 2825 2830 2835 2840 2845 2850 2855 2860 2865 2870 2875 2880 2885 2890 2895 2900 2905 2910 2915 2920 2925 2930 2935 2940 2945 2950 2955 2960 2965 2970 2975 2980 2985 2990 2995 3000 3005 3010 3015 3020 3025 3030 3035 3040 3045 3050 3055 3060 3065 3070 3075 3080 3085 3090 3095 3100 3105 3110 3115 3120 3125 3130 3135 3140 3145 3150 3155 3160 3165 3170 3175 3180 3185 3190 3195 3200 3205 3210 3215 3220 3225 3230 3235 3240 3245 3250 3255 3260 3265 3270 3275 3280 3285 3290 3295 3300 3305 3310 3315 3320 3325 3330 3335 3340 3345 3350 3355 3360 3365 3370 3375 3380 3385 3390 3395 3400 3405 3410 3415 3420 3425 3430 3435 3440 3445 3450 3455 3460 3465 3470 3475 3480 3485 3490 3495 3500 3505 3510 3515 3520 3525 3530 3535 3540 3545 3550 3555 3560 3565 3570 3575 3580 3585 3590 3595 3600 3605 3610 3615 3620 3625 3630 3635 3640 3645 3650 3655 3660 3665 3670 3675 3680 3685 3690 3695 3700 3705 3710 3715 3720 3725 3730 3735 3740 3745 3750 3755 3760 3765 3770 3775 3780 3785 3790 3795 3800 3805 3810 3815 3820 3825 3830 3835 3840 3845 3850 3855 3860 3865 3870 3875 3880 3885 3890 3895 3900 3905 3910 3915 3920 3925 3930 3935 3940 3945 3950 3955 3960 3965 3970 3975 3980 3985 3990 3995 4000 4005 4010 4015 4020 4025 4030 4035 4040 4045 4050 4055 4060 4065 4070 4075 4080 4085 4090 4095 4100 4105 4110 4115 4120 4125 4130 4135 4140 4145 4150 4155 4160 4165 4170 4175 4180 4185 4190 4195 4200 4205 4210 4215 4220 4225 4230 4235 4240 4245 4250 4255 4260 4265 4270 4275 4280 4285 4290 4295 4300 4305 4310 4315 4320 4325 4330 4335 4340 4345 4350 4355 4360 4365 4370 4375 4380 4385 4390 4395 4400 4405 4410 4415 4420 4425 4430 4435 4440 4445 4450 4455 4460 4465 4470 4475 4480 4485 4490 4495 4500 4505 4510 4515 4520 4525 4530 4535 4540 4545 4550 4555 4560 4565 4570 4575 4580 4585 4590 4595 4600 4605 4610 4615 4620 4625 4630 4635 4640 4645 4650 4655 4660 4665 4670 4675 4680 4685 4690 4695 4700 4705 4710 4715 4720 4725 4730 4735 4740 4745 4750 4755 4760 4765 4770 4775 4780 4785 4790 4795 4800 4805 4810 4815 4820 4825 4830 4835 4840 4845 4850 4855 4860 4865 4870 4875 4880 4885 4890 4895 4900 4905 4910 4915 4920 4925 4930 4935 4940 4945 4950 4955 4960 4965 4970 4975 4980 4985 4990 4995 5000 5005 5010 5015 5020 5025 5030 5035 5040 5045 5050 5055 5060 5065 5070 5075 5080 5085 5090 5095 5100 5105 5110 5115 5120 5125 5130 5135 5140 5145 5150 5155 5160 5165 5170 5175 5180 5185 5190 5195 5200 5205 5210 5215 5220 5225 5230 5235 5240 5245 5250 5255 5260 5265 5270 5275 5280 5285 5290 5295 5300 5305 5310 5315 5320 5325 5330 5335 5340 5345 5350 5355 5360 5365 5370 5375 5380 5385 5390 5395 5400 5405 5410 5415 5420 5425 5430 5435 5440 5445 5450 5455 5460 5465 5470 5475 5480 5485 5490 5495 5500 5505 5510 5515 5520 5525 5530 5535 5540 5545 5550 5555 5560 5565 5570 5575 5580 5585 5590 5595 5600 5605 5610 5615 5620 5625 5630 5635 5640 5645 5650 5655 5660 5665 5670 5675 5680 5685 5690 5695 5700 5705 5710 5715 5720 5725 5730 5735 5740 5745 5750 5755 5760 5765 5770 5775 5780 5785 5790 5795 5800 5805 5810 5815 5820 5825 5830 5835 5840 5845 5850 5855 5860 5865 5870 5875 5880 5885 5890 5895 5900 5905 5910 5915 5920 5925 5930 5935 5940 5945 5950 5955 5960 5965 5970 5975 5980 5985 5990 5995 6000 6005 6010 6015 6020 6025 6030 6035 6040 6045 6050 6055 6060 6065 6070 6075 6080 6085 6090 6095 6100 6105 6110 6115 6120 6125 6130 6135 6140 6145 6150 6155 6160 6165 6170 6175 6180 6185 6190 6195 6200 6205 6210 6215 6220 6225 6230 6235 6240 6245 6250 6255 6260 6265 6270 6275 6280 6285 6290 6295 6300 6305 6310 6315 6320 6325 6330 6335 6340 6345 6350 6355 6360 6365 6370 6375 6380 6385 6390 6395 6400 6405 6410 6415 6420 6425 6430 6435 6440 6445 6450 6455 6460 6465 6470 6475 6480 6485 6490 6495 6500 6505 6510 6515 6520 6525 6530 6535 6540 6545 6550 6555 6560 6565 6570 6575 6580 6585 6590 6595 6600 6605 6610 6615 6620 6625 6630 6635 6640 6645 6650 6655 6660 6665 6670 6675 6680 6685 6690 6695 6700 6705 6710 6715 6720 6725 6730 6735 6740 6745 6750 6755 6760 6765 6770 6775 6780 6785 6790 6795 6800 6805 6810 6815 6820 6825 6830 6835 6840 6845 6850 6855 6860 6865 6870 6875 6880 6885 6890 6895 6900 6905 6910 6915 6920 6925 6930 6935 6940 6945 6950 6955 6960 6965 6970 6975 6980 6985 6990 6995 7000 7005 7010 7015 7020 7025 7030 7035 7040 7045 7050 7055 7060 7065 7070 7075 7080 7085 7090 7095 7100 7105 7110 7115 7120 7125 7130 7135 7140 7145 7150 7155 7160 7165 7170 7175 7180 7185 7190 7195 7200 7205 7210 7215 7220 7225 7230 7235 7240 7245 7250 7255 7260 7265 7270 7275 7280 7285 7290 7295 7300 7305 7310 7315 7320 7325 7330 7335 7340 7345 7350 7355 7360 7365 7370 7375 7380 7385 7390 7395 7400 7405 7410 7415 7420 7425 7430 7435 7440 7445 7450 7455 7460 7465 7470 7475 7480 7485 7490 7495 7500 7505 7510 7515 7520 7525 7530 7535 7540 7545 7550 7555 7560 7565 7570 7575 7580 7585 7590 7595 7600 7605 7610 7615 7620 7625 7630 7635 7640 7645 7650 7655 7660 7665 7670 7675 7680 7685 7690 7695 7700 7705 7710 7715 7720 7725 7730 7735 7740 7745 7750 7755 7760 7765 7770 7775 7780 7785 7790 7795 7800 7805 7810 7815 7820 7825 7830 7835 7840 7845 7850 7855 7860 7865 7870 7875 7880 7885 7890 7895 7900 7905 7910 7915 7920 7925 7930 7935 7940 7945 7950 7955 7960 7965 7970 7975 7980 7985 7990 7995 8000 8005 8010 8015 8020 8025 8030 8035 8040 8045 8050 8055 8060 8065 8070 8075 8080 8085 8090 8095 8100 8105 8110 8115 8120 8125 8130 8135 8140 8145 8150 8155 8160 8165 8170 8175 8180 8185 8190 8195 8200 8205 8210 8215 8220 8225 8230 8235 8240 8245 8250 8255 8260 8265 8270 8275 8280 8285 8290 8295 8300 8305 8310 8315 8320 8325 8330 8335 8340 8345 8350 8355 8360 8365 8370 8375 8380 8385 8390 8395 8400 8405 8410 8415 8420 8425 8430 8435 8440 8445 8450 8455 8460 8465 8470 8475 8480 8485 8490 8495 8500 8505 8510 8515 8520 8525 8530 8535 8540 8545 8550 8555 8560 8565 8570 8575 8580 8585 8590 8595 8600 8605 8610 8615 8620 8625 8630 8635 8640 8645 8650 8655 8660 8665 8670 8675 8680 8685 8690 8695 8700 8705 8710 8715 8720 8725 8730 8735 8740 8745 8750 8755 8760 8765 8770 8775 8780 8785 8790 8795 8800 8805 8810 8815 8820 8825 8830 8835 8840 8845 8850 8855 8860 8865 8870 8875 8880 8885 8890 8895 8900 8905 8910 8915 8920 8925 8930 8935 8940 8945 8950 8955 8960 8965 8970 8975 8980 8985 8990 8995 9000 9005 9010 9015 9020 9025 9030 9035 9040 9045 9050 9055 9060 9065 9070 9075 9080 9085 9090 9095 9100 9105 9110 9115 9120 9125 9130 9135 9140 9145 9150 9155 9160 9165 9170 9175 9180 9185 9190 9195 9200 9205 9210 9215 9220 9225 9230 9235 9240 9245 9250 9255 9260 9265 9270 9275 9280 9285 9290 9295 9300 9305 9310 9315 9320 9325 9330 9335 9340 9345 9350 9355 9360 9365 9370 9375 9380 9385 9390 9395 9400 9405 9410 9415 9420 9425 9430 9435 9440 9445 9450 9455 9460 9465 9470 9475 9480 9485 9490 9495 9500 9505 9510 9515 9520 9525 9530 9535 9540 9545 9550 9555 9560 9565 9570 9575 9580 9585 9590 9595 9600 9605 9610 9615 9620 9625 9630 9635 9640 9645 9650 9655 9660 9665 9670 9675 9680 9685 9690 9695 9700 9705 9710 9715 9720 9725 9730 9735 9740 9745 9750 9755 9760 9765 9770 9775 9780 9785 9790 9795 9800 9805 9810 9815 9820 9825 9830 9835 9840 9845 9850 9855 9860 9865 9870 9875 9880 9885 9890 9895 9900 9905 9910 9915 9920 9925 9930 9935 9940 9945 9950 9955 9960 9965 9970 9975 9980 9985 9990 9995 9999

1/1

Fig. 1.

Fig. 2.

INTERNATIONAL SEARCH REPORT

International application No.

PCT/AU92/00468

A. CLASSIFICATION OF SUBJECT MATTER

Int. Cl. 5 C08J 9/02 9/04 9/06 9/08 9/10 9/12 9/14 B32B 1/06 1/08 B29C 67/22 67/20 B62D 25/04 29/00 21/00

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)
IPC C08J 9/02 9/04 9/06 9/08 9/10 9/12 9/14 B32B 1/08 B29C 67/22 B62D 25/04

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched
AU : IPC as above

Electronic data base consulted during the international search (name of data base, and where practicable, search terms used)

DERWENT : Foam, plastic, cartridge, envelope, encasing

JAPIO : Foam, plastic, cartridge, envelope

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category*	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to Claim No.
X	AU,A,45990/89 (ETHYL CORPORATION) 28 June 1990 (28.06.90) page 4 lines 1-4; page 5 line 1 - page 6 line 5; page 12 lines 17-22; page 15 lines 10-15	29
Y	page 4 lines 1-4; page 5 line 1 - page 6 line 5 page 12 lines 17-22; page 15 lines 10-15	1-5 6-7 8,11-13 14-20 26,28

Further documents are listed
in the continuation of Box C.

See patent family annex.

* Special categories of cited documents :

- "A" document defining the general state of the art which is not considered to be of particular relevance
- "E" earlier document but published on or after the international filing date
- "L" document which may throw doubt on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
- "O" document referring to an oral disclosure, use, exhibition or other means
- "P" document published prior to the international filing date but later than the priority date claimed

"T"

later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone

"X"

document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art

"Y"

document member of the same patent family

"&"

Date of the actual completion of the international search
7 December 1992 (07.12.92)

Date of mailing of the international search report

17 DEC 1992 (17.12.92)

Name and mailing address of the ISA/AU

Authorized officer

AUSTRALIAN PATENT OFFICE
PO BOX 200
WODEN ACT 2606
AUSTRALIA

Faxsimile No. 06 2853929

S. CHEW

Telephone No. (06) 2832248

INTERNATIONAL SEARCH REPORT

International application No.
PCT/AU92/00468

C(Continuation). DOCUMENTS CONSIDERED TO BE RELEVANT		
Category*	Citation of document, with indication, where appropriate of the relevant passages	Relevant to Claim No.
Y	BE,A,905637 (DOW CORNING LIMITED) 16 February 1987 (16.02.87) page 1 line 28; page 3 lines 7-35; claims	1-5 6,7 8,11-13 14-20 26,28
Y	AU,A,35867/89 (624821) (ETHYL CORPORATION) 21 December 1989 (21.12.89) page 5 lines 9-15; claims 1-3	14-20 26,28
Y	EP,A,432096 (CIBA GEIGY) 12 June 1991 (12.06.91) page 2 lines 16-20, examples	6,7,19
Y	AU,B,54150/73 (468559) (GENERAL MOTORS CORPORATION) 24 October 1974 (24.10.74) page 4 lines 7-18; claims	1-5 6,7 8,11-13
A	DE,A,3826011 (BAYERISCHE MOTOREN WERKE) 1 February 1990 (01.02.90) see whole document particularly abstract and claims	1-31

INTERNATIONAL SEARCH REPORT

International application No.

PCT/AU92/00468

Box I Observations where certain claims were found unsearchable (Continuation of Item 1 of first sheet)

This international search report has not established in respect of certain claims under Article 17(2)(a) for the following reasons:

1. Claims Nos.: because they relate to subject matter not required to be searched by this Authority, namely:

2. Claim Nos.: because they relate to parts of the international application that do not comply with the prescribed requirements to such an extent that no meaningful international search can be carried out, specifically:

3. Claims Nos.: because they are dependent claims and are not drafted in accordance with the second and third sentences of Rule 6.4(a).

Box II Observations where unity of invention is lacking (Continuation of Item 2 of first sheet)

This International Searching Authority found multiple inventions in this international application, as follows:

1. Claims 1-13, 30
2. Claims 14-25
3. Claims 26-28, 31
4. Claim 29

1. As all required additional search fees were timely paid by the applicant, this international search report covers all searchable claims.
2. As all searchable claims could be searched without effort justifying an additional fee, this Authority did not invite payment of any additional fee.
3. As only some of the required additional search fees were timely paid by the applicant, this international search report covers only those claims for which fees were paid, specifically claims Nos.:

4. No required additional search fees were timely paid by the applicant. Consequently, this international search report is restricted to the invention first mentioned in the claims; it is covered by claims Nos.:

Remark on Protest

- The additional search fees were accompanied by the applicant's protest.
- No protest accompanied the payment of additional search fees.

INTERNATIONAL SEARCH REPORT

International application No.

PCT/AU92/00468

BOX II (continuation)

The international application does not comply with the requirements of unity of invention because it does not relate to one invention or to a group of inventions so linked as to form a single general inventive concept. In coming to this conclusion the International Searching Authority has found that there are four inventions:

1. Claim 29 is directed to a composition containing a foaming agent, a plastic material which can be foamed by the foaming agent and an activating means.
2. Claims 1-13, 30 are directed to a method of strengthening hollow members by using the foam precursor composition defined in claim 29.
3. Claims 14-25 are directed to a cartridge which contains the foam precursor composition defined in claim 29.
4. Claims 26-28, 31 are directed to a method of strengthening hollow members by using the foam precursor composition defined in claim 29 which is placed within the hollow member in the form of a cartridge.

The single unifying inventive concept of the international application resides in the composition as defined in claim 29, however since this claim was found to lack novelty in the light of AU,A,45990/89 (Ethyl Corporation) there exists a lack of unity *a posteriori*. Accordingly the international application does not relate to one invention or to a single inventive concept.

INTERNATIONAL SEARCH REPORT
Information on patent family members

International application No.

PCT/AU92/00468

This Annex lists the known "A" publication level patent family members relating to the patent documents cited in the above-mentioned international search report. The Australian Patent Office is in no way liable for these particulars which are merely given for the purpose of information.

Patent Document Cited in Search Report				Patent Family Member			
AU	45990/89	GB NZ	2241974 229734	EP	423175	US	5125488
BE	905637						
AU	35867/89	EP	349796	JP	2038433	US	4897432
EP	432096	CA	2031436	JP	3190967		
AU	54150/73	DE JP	2222557 49048021	GB US	1426265 3888502	IT FR	982967 2184325
DE	3826011						