NATIONAL UNIVERSITY OF SINGAPORE

CS3244 - MACHINE LEARNING

(Semester 2: AY2018/19)

Time Allowed: 2 Hours

INSTRUCTIONS TO CANDIDATES

- 1. This assessment paper contains SIX (6) parts and comprises FOURTEEN (14) printed pages, including this page.
- 2. Answer ALL questions as indicated.
- 3. This is a **OPEN BOOK** assessment.
- 4. You are allowed to use NUS APPROVED CALCULATORS.
- 5. Please write your **Student Number** below. Do not write your name.

STUDENT NUMBER: _	
-------------------	--

EXAMINI	ER'S USE	ONLY			
Part	Part Mark				
I	10				
II	10				
III	16				
IV	12				
V	12				
VI	20				
TOTAL	80				

In Part I, II, III, IV, V and VI, you will find a series of structured questions. For each structured question, give your answer in the reserved space in the script.

Part I

Concept Learning 1

(10 points) Structured questions. Answer in the space provided on the script.

In a CS3244 lecture, Bryan was huffing and puffing over page 26 of the "Concept Learning" lecture slides. He was trying to explain why, in the CANDIDATE-ELIMINATION algorithm (reproduced below in Fig. 1), if d is a **negative** training example, then each **minimal specialization** h of $g \in G$ (where g is not consistent with d) is not just consistent with d but also consistent with all positive and negative training examples observed thus far. Note from the CANDIDATE-ELIMINATION algorithm in Fig. 1 that some member of S is more specific than h. Can you recall what he was babbling about at that time?

- 1. $G \leftarrow$ maximally general hypotheses in H
- 2. $S \leftarrow$ maximally specific hypotheses in H
- 3. For each training example d
 - If d is a positive example
 - Remove from G any hypothesis inconsistent with d
 - For each $s \in S$ not consistent with d
 - * Remove s from S
 - Add to S all minimal generalizations h of s s.t.
 h is consistent with d, and
 some member of G is more general than h
 - st Remove from S any hypothesis that is more general than another hypothesis in S
 - If d is a negative example
 - Remove from S any hypothesis inconsistent with d
 - For each $g \in G$ not consistent with d
 - * Remove g from G
 - * Add to G all **minimal specializations** h of g s.t. h is consistent with d, and some member of S is more specific than h
 - st Remove from G any hypothesis that is more specific than another hypothesis in G

Figure 1: CANDIDATE-ELIMINATION algorithm.

For **both questions below**, you may assume that all hypotheses in G and S are consistent with all positive and negative training examples observed thus far, not including negative training example d.

1. (5 points) Prove formally that each **minimal specialization** h of $g \in G$ (where g is not consistent with d) is consistent with all positive training examples observed thus far. Note from the CANDIDATE-ELIMINATION algorithm in Fig. 1 that h is consistent with d, and some member of S is more specific than h.

Solution:		
	Annual Reservation	

Solution:					
(5 points) Prove formally consistent with all negativalgorithm in Fig. 1 that h	ve training exampl	les observed t	hus far. Note fro	om the CANDID	ATE-ELIMINATION
Solution:					

2.

Part II

Concept Learning 2

(10 points) Structured questions. Answer in the space provided on the script.

1. (5 points) Let G be the general boundary of the version space $VS_{H,D}$ and $h' \in H$. Give a proof by contradiction that

$$(\forall g \in G \quad g \ngeq_g h') \to (\forall h \in VS_{H,D} \quad h \ngeq_g h')$$
.

Hint: You may assume that the transitive property of the \geq_g relation holds. Use the Version Space Representation Theorem (page 20 of the "Concept Learning" lecture slides):

$$VS_{H,D} = \{ h \in H \mid \exists s \in S \ \exists g \in G \quad g \ge_a h \ge_a s \} .$$

$VS_{H,D} = \{ n \in H \mid \exists s \in S \exists g \in G g \geq_g n \geq_g s \} .$				
Solution:				

2. (5 points) Let S be the specific boundary of the version space $VS_{H,D}$ and $h' \in H$. Give a proof by contradiction that

$$(\forall s \in S \quad h' \ngeq_g s) \to (\forall h \in VS_{H,D} \quad h' \ngeq_g h) .$$

Hint: You may assume that the transitive property of the \geq_g relation holds. Use the Version Space Representation Theorem (page 20 of the "Concept Learning" lecture slides):

$$VS_{H,D} = \{ h \in H \mid \exists s \in S \exists g \in G \mid g \geq_g h \geq_g s \}.$$

Solution:		
- WELL-W	 	

Part III

Concept Learning 3

(16 points) Structured questions. Answer in the space provided on the script.

- 1. (16 points) Consider the hypothetical task of learning the target concept MLGrade to understand the factors affecting the grades of students enrolled in an ML class and the hypothesis space H that is represented by a conjunction of constraints on input attributes, as previously described on page 7 of the "Concept Learning" lecture slides. Each constraint on an input attribute can be a specific value, don't care (denoted by '?'), and no value allowed (denoted by '0'), as previously described on page 5 of the "Concept Learning" lecture slides. Each input instance is represented by the following input attributes:
 - AttendClass (with possible values Always, Sometimes, Rarely),
 - MidtermGrade (with possible values Good, Average, Poor),
 - ProjectGrade (with possible values Good, Average, Poor), and
 - LoveML (with possible values Yes, No).

The **difference** $h \setminus h'$ of the hypotheses h and h' is defined as $h \setminus h'(x) = ((h(x) = 1) \land (h'(x) = 0))$ for all $x \in X$ and therefore represents the set difference of the sets of input instances represented by h and h'. The **symmetric difference** $h \triangle h'$ of the hypotheses h and h' is defined as $h \triangle h'(x) = (h \setminus h'(x)) \lor (h' \setminus h(x))$ for all $x \in X$ and therefore represents the symmetric difference of the sets of input instances represented by h and h'. Let us define a new hypothesis space H' that consists of all **symmetric differences** of the hypotheses in H. For example, a typical hypothesis in H' is $\langle ?, ?, Good, ? \rangle \triangle \langle ?, Average, ?, Yes \rangle$.

Trace the CANDIDATE-ELIMINATION algorithm (reproduced below in Fig. 2) for the hypothesis space H' given the sequence of positive (MLGrade = Pass) and negative (MLGrade = Fail) training examples from Table 1 below (i.e., show the sequence of S and G boundary sets). You only need to show the **semantically distinct** hypotheses in each boundary set; the hypotheses h and h' are **semantically distinct** iff there exists some $x \in X$ satisfying $h \setminus h'$ or $h' \setminus h$, that is, $\exists x \in X \ (h \setminus h'(x) = 1) \lor (h' \setminus h(x) = 1)$.

- 1. $G \leftarrow$ maximally general hypotheses in H
- 2. $S \leftarrow$ maximally specific hypotheses in H
- 3. For each training example d
 - If d is a positive example
 - Remove from G any hypothesis inconsistent with d
 - For each $s \in S$ not consistent with d
 - * Remove s from S
 - * Add to S all minimal generalizations h of s s.t. h is consistent with d, and some member of G is more general than h
 - st Remove from S any hypothesis that is more general than another hypothesis in S
 - If d is a negative example
 - Remove from S any hypothesis inconsistent with d
 - For each $g \in G$ not consistent with d
 - * Remove g from G
 - * Add to G all minimal specializations h of g s.t. h is consistent with d, and some member of S is more specific than h
 - * Remove from G any hypothesis that is more specific than another hypothesis in G

Figure 2: CANDIDATE-ELIMINATION algorithm.

Example	Input Instances				Target Concept
Student	AttendClass	MidtermGrade	ProjectGrade	LoveML	MLGrade
1. Haibin	Sometimes	Good	Average	Yes	Pass
2. Yizhou	Always	Good	Average	Yes	Pass
3. Ryutaro	Rarely	Good	Good	Yes	Pass
4. TengTong	Always	Good	Good	Yes	Pass
5. QuocPhong	Rarely	Poor	Good	Yes	Fail

Table 1: Positive (MLGrade = Pass) and negative (MLGrade = Fail) training examples for target concept MLGrade.

Solution: $G_{0} = \{\langle ?, ?, ?, ? \rangle \triangle \langle \emptyset, \emptyset, \emptyset, \emptyset \rangle\} = \{\langle ?, ?, ?, ? \rangle\}$ $S_{0} = \{\langle \emptyset, \emptyset, \emptyset, \emptyset \rangle \triangle \langle \emptyset, \emptyset, \emptyset, \emptyset \rangle, \langle ?, ?, ?, ? \rangle \triangle \langle ?, ?, ?, ? \rangle, \ldots\} = \{\langle \emptyset, \emptyset, \emptyset, \emptyset, \emptyset \rangle\}$ $G_1 =$ $S_1 =$ $G_2 =$ $S_2 =$ $G_3 =$ $S_3 =$ $G_4 =$ $S_4 =$ $S_5 =$ $G_5 =$

Part IV

Expectation Maximization for Estimating 2 Means

(12 points) Structured questions. Answer in the space provided on the script.

1. (12 points) Given three instances $x_1=4$, $x_2=5$, and $x_3=6$ from X generated by a mixture of two Gaussian distributions with the same known variance $\sigma^2=0.5$, run the Expectation Maximization algorithm for 3 iterations to estimate the values of the unknown means μ_1 and μ_2 of the two Gaussian distributions. Initialize the values of μ_1 and μ_2 to 4 and 6, respectively. Show the steps of your derivation. No marks will be awarded for not doing so. Give your answer up to 6 decimal places.

Solution:	
	>

Solution:			

Solution:	

Part V

Computational Learning Theory

(12 points) Structured questions. Answer in the space provided on the script.

Consider the following setting: Let the sets of all possible input instances, hypotheses, and target concepts/functions be denoted by X, H, and C, respectively. The learner observes a set D of noise-free training examples of the form $\langle x, c(x) \rangle$ of some target concept $c \in C$, where each training instance $x \in X$ is randomly sampled from a fixed probability distribution Q (unknown to the learner) over X to query the teacher for c(x). The learner has to output a hypothesis $h \in H$ to approximate c. We assume c is in the learner's hypothesis space H.

1. (6 points) Let $X' = \{x \in X | h(x) \neq c(x)\}$. Derive the value of the true error $error_Q(h)$ of hypothesis h with respect to target concept c and distribution Q where Q(x) = 1/|X| for all $x \in X$. Show the steps of your derivation. No marks will be awarded for not doing so.

Solution:			
	-		-

Solution:		

Part VI

Neural Networks

(20 points) Structured questions. Answer in the space provided on the script.

1. (6 points) Suppose that the weights w_0 and w_2 of a perceptron (see page 6 of "Neural Networks" lecture slides) are set to the values of -1 and 1, respectively. Derive the largest possible range of the values of w_1 that can be set for the perceptron to represent the AND gate (i.e., $AND(x_1, x_2)$). Assume that the inputs x_1 and x_2 and output $o(x_1, x_2)$ of the perceptron are Boolean with the values of 1 or -1. Show the steps of your derivation. No marks will be awarded for not doing so.

Solution:			

2. (6 points) Supposing the weights w_1, w_2, \ldots, w_n of a perceptron (see page 6 of "Neural Networks" lecture slides) are all set to the value of -1, derive the largest possible range of the values of w_0 (in terms of n) that can be set for the perceptron to represent the NOR function. That is, the perceptron outputs true if all n Boolean inputs to the perceptron are false, and true otherwise. Assume that the inputs x_1, x_2, \ldots, x_n and output $o(x_1, x_2, \ldots, x_n)$ of the perceptron are Boolean with the values of 1 or -1. Show the steps of your derivation. No marks will be awarded for not doing so.

Solution:			

Solution:		
	Solution:	
		1

- 3. (8 points) Consider the network of perceptron units in Fig. 3 with a hidden layer of one unit h based on the following **constraints**:
 - There should be only one (Boolean) output unit k and two input units (i.e., one input unit for each of the two (Boolean) input attributes x₁ and x₂).
 - A Boolean is -1 if false, and 1 if true.
 - The activation function of every (non-input) unit is a −1 to 1 step function (refer to page 6 of the "Neural Networks" lecture slides), including that of the output unit.
 - Besides connecting the two input units to the hidden unit h via weights w_1 and w_2 , these two input units are also connected to the output unit k via weights w_4 and w_5 , as shown in Fig. 3. That is, the two (Boolean) input attributes x_1 and x_2 are also inputs to the output unit k.
 - The weights w_1, w_2, w_3, w_4 , and w_5 must take on one of the following values: -2, -1, 1, 2.
 - ullet There is **no bias weight** for any unit. Note that the hidden unit h is not a bias input.

Figure 3: Network of perceptron units.

Yizhou has constructed a dataset of 2 Boolean input attributes x_1 and x_2 , and a Boolean output/target concept t_k with the following 4 training examples of the form $d = \langle (x_1, x_2), t_k \rangle$:

$$D = \{d_1 = \langle (-1, -1), 1 \rangle, d_2 = \langle (-1, 1), -1 \rangle, d_3 = \langle (1, -1), -1 \rangle, d_4 = \langle (1, 1), 1 \rangle \} .$$

Give a hypothesis (i.e., vector of weight values) $(w_1, w_2, w_3, w_4, w_5)$ for the network of perceptron units in Fig. 3 with the above-specified constraints such that your given hypothesis is consistent with D.

folution:		
	END OF PAPER	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,