Sprawozdanie

Rozwiązywanie zależnego od czasu równania Schrödingera (RS) 1D – rozpraszanie na pojedynczej barierze potencjału

Amadeusz Filipek

Laboratorium komputerowe WFiIS AGH

Celem ćwiczenia jest numeryczne rozwiązanie zależnego od czasu równania Schroedingera dla Gaussowskiego pakietu falowego rozpraszanego na pojedynczej barierze potencjału.

Równianie Schroedingera zależne od czasu postaci:

$$i\hbar \frac{\partial}{\partial t} \psi(x,t) = -\frac{\hbar^2}{2m} \frac{\partial^2}{\partial x^2} \psi(x,t) + U(x)\psi(x,t)$$

rozwiązujemy numerycznie w postaci różnicowej dyskretyzując krok czasowy oraz przestrzenny. Dla ułatwienia obliczeń wykorzystujemy jednostki atomowe $m=\hbar=1$. Powyższe równanie w postaci różnicowej przyjmuje postać :

$$\psi_i^{l+1} = \psi_i^{l-1} - 2idt \left(-\frac{1}{2} \frac{\psi_{i+1}^l - 2\psi_i^l + \psi_{i-1}^l}{dx^2} + U(x_i)\psi_i^l \right)$$

gdzie indeks i numeruje kolejne węzły siatki przestrzennej natomiast indeks l numeruje kolejne kroki czasowe. Powyższe równanie nie pozawala nam wystarować ponieważ potrzebujemy dwa poprzednie kroki czasowe. W tym celu pierwszy krok wyznaczamy z następującego równania:

$$\psi_i^1 = \psi_i^0 - idt \left(-\frac{1}{2} \frac{\psi_{i+1}^0 - 2\psi_i^0 + \psi_{i-1}^0}{dx^2} + U(x_i)\psi_i^0 \right)$$

Rozpatrywany w ćwiczeniu potencjał ma postać:

$$U(x) = \begin{cases} V, & dla |x| < a/2 \\ 0, & dla \ pozostalych \end{cases}$$

Warunek początkowy przyjmujemy w postaci pakietu Gaussowskiego:

$$\psi(x,0) = exp\left(-\frac{(x-x_0)^2}{\sigma^2}\right) \exp(-ikx)$$

gdzie x_0 oraz σ stanowią parametry rozkładu natomiast k stanowi wektor falowy pakietu. W symulacji interesują nas parametry odbicia oraz transmisji pakietu przez barierę potencjału, które wyznaczamy ze wzorów :

$$R = \int_{-\infty}^{-a/2} \rho(x,t) dx \text{ oraz } T = \int_{a/2}^{+\infty} \rho(x,t) dx$$

gdzie $\rho(x,t)$ stanowi rozkład gęstości prawodopodobieństwa rozpatrywanego pakietu. Symulacje prowadzimy do momentu aż pakiet falowy pokona lub odbije się od bariery, co liczbowo spełnia warunek z zadaną tolerancją ε :

$$\int_{-a/2}^{a/2} \rho(x,t) dx < \varepsilon$$

Symulacje przeprawdziłem w pudle obliczeniowym o szerokości 200 nm, dzieląc obszar na N=2001 węzłów odległych o $dx=0.1\,nm$. Krok czasowy przyjąłem jako $dt=0.1\,j.\,a$.. Szerokość bariery potencjału wynosi 5 nm oraz wysokość $V=0.3\,eV$. Parametr stopu przyjąłem równy $\varepsilon=2\%$. Za parametry początkowe pakietu przyjąłem $x_0=-4\,nm$ oraz $\sigma=1\,nm$. Poniżej prezentuję wyniki moich obliczeń.

Pierwsza symulacja odpowiada sytuacji gdy pakiet ma energię dużo niższą od poziomu bariery i całkowicie się od niej odbija. Wektor falowy wynosi $k=0.01\,j.\,a.$ a wyznaczony współczynnik odbicia D=0.978 . Poniższy wykres prezentuje rozwój rozkładu gęstości prawodopodobieństwa cząstki w trzech istotnych chwilach.

Wykres 1. Rozkład gęstości prawdopodobieństwa cząstki w trzech różnych momentach – 1. Przed podejściem do bariery, 2. W trakcie odbicia od bariery, 3. Po odbiciu od bariery

Kolejna symulacja odpowiada sytuacji gdy energia pakietu jest tak duża, że przechodzi całkowicie przez barierę potencjału. Wektor falowy wynosi $k=0.3\,j.\,a.$ a wyznaczony współczynnik transmisji T=0.963. Wykresy poniżej prezentują pokonywanie bariery potencjału przez pakiet falowy.

Wykres 2. Rozkład gęstości prawdopodobieństwa cząstki w trzech różnych momentach – 1. W trakcie pokonywania bariery, 2. W trakcie opuszcania bariery, 3. Po przejściu przez barierę

Następna symulacja przedstawia sytuację pośrednią kiedy pakiet ma energię bliską wysokości bariery potencjału i częściowo przechodzi przez barierę a częściowo zostaje odbity. Wektor falowy pakietu wynosi k=0.15~j.~a. a wyznaczone parametry trasmisji i odbicia wynoszą $T=0.574~\rm oraz$ R=0.406. Wyznaczone parametry nie sumują się dokładnie do jedynki ze względu na przyjęty w symulacji parametr stopu. Zestawione wykresy poniżej prezentują rozwój rozkłądu gęstości prawdopodobieństwa pakietu po zderzeniu z barierą.

Wykres 3. Rozkład gęstości prawdopodobieństwa cząstki w trzech różnych momentach – 1. W momencie wejścia pakietu na barierę, 2. W trakcie opuszcania bariery, 3. Po wyjściu z obszaru bariery

Następnie wyznaczyłem zależność transmisji pakietu od wysokości bariery potencjału, wartość wektora falowego przyjąłem k=0.15~j.~a. jak dla powyższej symulacji :

Wykres 4. Zależność transmisji pakietu od wysokości bariery potencjału

Prawa część wykresu 4. (zakres powyżej 0.3 eV) przedstawia kwantowe zjawisko tunelowania przez barierę potencjału, pomimo że cząstka ma energię mniejszą niż bariera potencjału i klasycznie przejście byłoby zabronione, to współczynnik transmisji jest niezerowy. Widać także, że pomimo energii pakietu większej od wysokości bariery współczynnik odbicia jest niezerowy.