

1 Grundwissen

Gegeben ist eine ganzrationale Funktion

$$f(x) = a_n x^n + a_{n-1} x^{n-1} + \ldots + a_1 x + a_0$$

 $\mathsf{mit}\ x \in \mathbb{R}.$

Um diese Funktion (oder auch *Kurve*) untersuchen zu können, müssen wir auf Informationen aus vergangenen Lernabschnitten aber auch auf neues Wissen zurückgreifen. Nachfolgend werden die entsprechenden Informationen in Kurzform nochmal dargestellt.

Symmetrie

 \cdot Eine Funktion heißt <u>achsensymmetrisch</u>, wenn gilt: es kommen nur gerade Exponenten in dem Funktionsterm f(x) vor.

 a_0 gilt als Glied mit Geradem Exponenten.

In diesem Fall bedeutet das außerdem, dass f(x) = f(-x) für alle zulässigen x. Die Funktion nennt man dann auch gerade.

· Eine Funktion heißt **punktsymmetrisch**, wenn gilt: es kommen nur ungerade Exponenten in dem Funktionsterm f(x) vor.

Im Funktionsterm gibt es kein a_0 .

In diesem Fall heißt das, dass f(x)=-f(x) für alle zulässigen x. Eine solche Funktion wird auch ungerade genannt.

 \cdot Enthält der Funktionsterm f(x) sowohl gerade als auch ungerade Exponenten, so ist sie **nicht symmetrisch**.

Verhalten für große x-Werte

Um das Verhalten für große x-Werte zu bestimmen, betrachten wir und lediglich den *charakteristischen Summanden*, also den Summanden, mit der höchsten Potenz $(a_n x^n)$.

Das		Verhalte	n k	kanr	n dann
wie	1	folgt	angegeb	en	werden:
	n	gerade			ungerade

a_n	gerade	ungerade
positiv	$f(x) \xrightarrow{x \to -\infty} \infty$ $f(x) \xrightarrow{x \to \infty} \infty$	$f(x) \xrightarrow{x \to -\infty} -\infty$ $f(x) \xrightarrow{x \to \infty} \infty$
negativ	$f(x) \xrightarrow{x \to -\infty} -\infty$ $f(x) \xrightarrow{x \to \infty} -\infty$	$f(x) \xrightarrow{x \to -\infty} \infty$ $f(x) \xrightarrow{x \to \infty} -\infty$

Schnittstelle mit der y-Achse

Um den y-Achsenabschnitt zu bestimmen, setzen wir für x Null (0) in den Funktionsterm ein. Wir bestimmen also

$$f(0) = a_0$$

So erhalten wir $S(0|a_0)$. Ist $f(0)=a_0=0$, so verläuft der Graph durch den Ursprung.

Nullstellen

Die Nullstellen sind die Stellen, an denen der Funktionswert Null ist, der Funktionsgraph also die x-Achse schneidet.

Um die Nullstellen zu bestimmen, setzen wir

$$f(x) = 0$$

Wir merken uns:

- $a_1x + a_0 \Rightarrow$ Null setzen und nach x umformen $(a_1x + a_0 = 0 \Rightarrow x = \frac{a_0}{a_1})$
- $a_2x^2 + a_1x + a_0 \Rightarrow$ Anwenden der **pq**-Formel

Beachte: a_2 muss den Wert 1 haben (also muss gegebenenfalls : a_2 gerechnet werden).

• $a_2x^2 + a_0 \Rightarrow$ Null setzen und nach x umformen $(a_2x^2 + a_0 = 0 \Rightarrow x = \sqrt{\frac{a_0}{a_2}})$

Lernbaustein 3 - LB 2: Kurvendiskussion

• Funktionen mit Grad 3 und Höher \Rightarrow NST ausprobieren (meist -2,-1,0,1,2); Dann mit **Polynomdivision** den Grad reduzieren

$$(a_n x^n + \ldots + a_1 x + a_0) : (x - NST) = p(x)$$

NST des Ergebnisses p(x) bestimmen

Monotonieverhalten

Betrachtest du eine Funktion, so ist es bisweilen interessant zu wissen, wie die verschiedenen Funktionswerte zueinander stehen. Dies interessiert uns meist in einem bestimmten Intervall (z.B. zwischen x_0 und x_1). Wir definieren also ein Intervall $I=[x_0,x_1]$, als die Menge der x-Werte, für die gilt: $x_0 \leq x \leq x_1$. Um eine Aussage über das Monotonieverhalten treffen zu können, ist es zwingend notwendig, dass die Funktion auf dem entsprechenden Intervall I definiert ist.

f heißt **streng monoton steigend** auf I, wenn für alle $x_1, x_2 \in I$ mit $x_1 < x_2$ gilt: $\circ f(x_1) < f(x_2)$.

Entsprechend heißt f streng monoton fallend auf I, wenn für alle $x_1, x_2 \in I$ mit $x_1 < x_2$ gilt: $\circ f(x_1) > f(x_2)$.

Extremstellen

<u>Notwendige Bedingung</u> Ist x_0 eine Extremstelle, dann muss f'(x) = 0 sein.

1. Hinreichende Bedingung

$$\circ f'(x_0) = 0$$
 und $f''(x_0) > 0 \rightarrow f(x_0)$ ist lokales Minimum

$$\circ \ f'(x_0) \ = \ 0 \ \ {\rm und} \ \ f''(x_0) \ < \ 0 \ \to \ \ f(x_0) \ \ {\rm ist}$$
 lokales Maximum

Wenn $f'(x_0) = 0$ und $f''(x_0) = 0$, dann

verwende nachfolgende Bedingung.

- **2.** Hinreichende Bedingung f'(x) hat an der Stelle x_0 einen Vorzeichenwechsel.
- \circ Von + nach \rightarrow $f(x_0)$ ist <u>lokales</u> Minimum
- \circ Von nach + \rightarrow $f(x_0)$ ist <u>lokales</u> Maximum

Krümmungsverhalten und Wendestellen

Für das *Krümmungsverhalten* eines Funktionsgraphen gilt folgendes:

- o Ist f'(x) streng monoton *steigend*, so ist der Funktionsgraph von f **linksgekrümmt**.
- o Ist f' streng monoton *fallend*, so ist der Funktionsgraph von f **rechtsgekrümmt**.

Das Krümmungsverhalten gibt man vor, zwischen und nach den Wendepunkten an.

Das Krümmungsverhalten des Funktionsgraphen ändert sich an einer *Wendestelle*. Für eine solche gilt: *Notwendige Bedingung* Ist x_0 eine Wendestelle, dann muss $f''(x_0) = 0$ sein.

1. Hinreichende Bedingung

 $f''(x_0) = 0$ und $f'''(x_0) \neq 0$, dann ist x_0 eine Wendestelle.

Wenn $f'''(x_0) = 0$, dann verwende nachfolgende Bedingungen.

2. Hinreichende Bedingung

 $f''(x_0) = 0$ und f''(x) hat an der Stelle x_0 einen **Vorzeichenwechsel**.

Schaubild

Zeichne die Nullstellen, die Extrempunkte und die Wendepunkte in das Koordinatensystem. Verbinde die Punkte entsprechen der Information, die du über die Symmetrie, das Randverhalten (Verhalten für große x-Werte), die Monotonie und das Krümmungsverhalten erhalten hast.

So erhältst du den <u>ungefähren</u> Verlauf des Funktionsgraphen.

2 Kurvendiskussion 101

Wirst du mit einer ganzrationalen Funktion $f(x) = a_n x^n + a_{n-1} x^{n-1} + \ldots + a_1 x + a_0$ konfrontiert und sollst diese skizzieren, führst du die folgenden Schritte der **Kurvendiskussion** aus.

- 1. Ableitungen bilden (f'(x), f''(x), f'''(x))
- 2. Symmetrie bestimmen
- 3. Verhalten für große x-Werte (Wo kommt die Funktion her, wo geht sie hin)
- 4. Nullstellen und deren Koordinaten bestimmen

$$f(x) = 0$$

5. Extremstellen und die dazugehörigen Punkte

$$f'(x) = 0$$

- Monotonieverhalten
 Betrachte das Verhalten zwischen den Extrempunkten.
- 7. Wendestellen und die dazugehörigen Punkte

$$f''(x) = 0$$

8. Krümmungsverhalten

Übertragen der Punkte in das Koordinatensystem.

Skizzieren des Funktionsgraphen anhand der Schritte (2.), (3.), (6.) und (8.) und der eingetragenen Punkte.