Resumo: Séries

A - Série geométrica

• Seja $a \in \mathbb{R}$. À série numérica $\sum_{n \in \mathbb{N}} a^{n-1} = 1 + a + a^2 + a^3 + \cdots$ chama-se série geométrica de razão a. A sua sucessão das somas parciais é definida por

$$s_n = \begin{cases} n & \text{se } a = 1, \\ \frac{1 - a^n}{1 - a} & \text{se } a \neq 1. \end{cases}$$

Esta série diverge se $|a| \ge 1$ e converge se |a| < 1, caso em que a sua soma é $s = \frac{1}{1-a}$.

B - Série de Riemann

• Seja $p \in \mathbb{R}^+$. À série numérica $\sum_{n \in \mathbb{N}} \frac{1}{n^p}$ chama-se série de Riemann. Esta série diverge se $p \leq 1$ e converge se p > 1. No caso particular em que p = 1, a série de Riemann recebe a designação de série harmónica.

C - Série de Mengoli (ou telescópica)

• Sejam $\{u_n\}$ uma sucessão de números reais e $p \in \mathbb{N}$. À série numérica $\sum_{n \in \mathbb{N}} (u_n - u_{n+p})$ chama-se série de Mengoli ou telescópica. A sua sucessão das somas parciais é

$$s_n = u_1 + u_2 + \dots + u_p - (u_{n+1} + u_{n+2} + \dots + u_{n+p}), n \in \mathbb{N}.$$

Esta série converge se e só se $\{u_n\}$ é uma sucessão convergente. Em caso de convergência, a sua soma é $s=u_1+u_2+\cdots+u_p-p\lim u_n$.

A - Primeiro Critério de Comparação

Sejam $\{u_n\}$ e $\{w_n\}$ sucessões de termos não negativos, tais que para um certo $n_0 \in \mathbb{N}$, se tem

$$u_n \le w_n, \quad \forall n \ge n_0.$$

Se a série $\sum_{n\in\mathbb{N}} w_n$ converge então a série $\sum_{n\in\mathbb{N}} u_n$ também converge.

Equivalentemente, se a série $\sum_{n\in\mathbb{N}} u_n$ diverge então a série $\sum_{n\in\mathbb{N}} w_n$ também é diverge.

B - Segundo Critério de Comparação

Sejam $\{u_n\}$ uma sucessão de termos não negativos e $\{w_n\}$ uma sucessão de termos positivos, tais que existe $L = \lim \frac{u_n}{w_n}$, sendo $L \in \mathbb{R}_0^+$ ou $L = +\infty$.

- Se $L \in \mathbb{R}^+$ então as séries $\sum_{n \in \mathbb{N}} u_n$ e $\sum_{n \in \mathbb{N}} w_n$ possuem a mesma natureza. Se L = 0 e $\sum_{n \in \mathbb{N}} w_n$ converge então $\sum_{n \in \mathbb{N}} u_n$ também converge.

Equivalentemente, se L=0 e $\sum_{n\in\mathbb{N}}u_n$ diverge então $\sum_{n\in\mathbb{N}}w_n$ também diverge.

 \bullet Se $L=+\infty$ e $\sum_{n\in\mathbb{N}}w_n$ diverge então $\sum_{n\in\mathbb{N}}u_n$ também diverge.

Equivalentemente, se $L=+\infty$ e $\sum_{n\in\mathbb{N}}u_n$ converge então $\sum_{n\in\mathbb{N}}w_n$ também converge.

C - Critério da razão

Seja $\{u_n\}$ uma sucessão de termos positivos tal que $\lim \frac{u_{n+1}}{u_n} = L$.

- Se L < 1 então a série $\sum_{n \in \mathbb{N}} u_n$ converge. Se L > 1 então a série $\sum_{n \in \mathbb{N}} u_n$ diverge.

D - Critério da raíz

Seja $\{u_n\}$ uma sucessão de termos não negativos tal que lim $\sqrt[n]{u_n} = L$.

- Se L < 1 então a série $\sum_{n} u_n$ converge.
- Se L > 1 então a série $\sum_{n \in \mathbb{N}} u_n$ diverge.