Subjective Beliefs, Disagreement, and Market Return Predictability

Felipe lachan ¹ Raul Riva ²

¹FGV EPGE

²Northwestern University

July 5th, 2024

Intro

- Rational expectations in asset pricing have important implications:
 - Volatile expected risk premia;
 - Smooth beliefs about dividend growth;
 - At odds with survey data on beliefs;
 - Related to other puzzles;
- Recent agenda: take more seriously subjective expectation data, reconsider puzzles;
- Predictability literature:
 - Under RE: predictable aggregate returns are due to time-varying risk premia;
 - ▶ Absent RE: mechanisms linking measurable beliefs to overpricing and future returns;
 - ▶ Recent evidence that subjective beliefs about dividends (and earnings) predict market returns (Bordalo et al., 2019; De La O and Myers, 2021; Bordalo et al., 2023);

Mechanisms - Not exhaustive

Disagreement:

- With heterogeneity, agents may disagree in equilibrium;
- Many reasons: different priors, different information sets/signals, different abilities to process info ...;
- Short-selling constraints prevent pessimists from trading and disciplining optimists;
- Prediction: ↑ disagreement ⇒ ↑ prices (and ↓ future returns);
 (Miller, 1977; Atmaz and Basak, 2018)

Mechanisms - Not exhaustive

Disagreement:

- With heterogeneity, agents may disagree in equilibrium;
- Many reasons: different priors, different information sets/signals, different abilities to process info ...;
- Short-selling constraints prevent pessimists from trading and disciplining optimists;
- Prediction: ↑ disagreement ⇒ ↑ prices (and ↓ future returns);
 (Miller, 1977; Atmaz and Basak, 2018)

Belief overreaction:

- Agents update their beliefs based on current dividend growth news.
- They overreact and become excessively optimistic after good news.
- Prediction: ↑ beliefs about growth ⇒ ↑ prices (and ↓ future returns);
 (La Porta, 1996; Bordalo et al., 2023)

This Paper

- We study whether disagreement and subjective beliefs can predict index returns;
- We evaluate these different mechanisms both in-sample and out-of-sample;
- We rely on survey data from equity analysts from large financial institutions;

Results are **negative**:

- Predictability through disagreement has disappeared over time;
- Predictability through earnings expectations is unstable across subsamples;
- Neither forces dominates;
- No extra predictive value added after we control for the price/earnings ratio;

Data and Definitions

Market data:

- Aggregate returns: value-weighted (total) index returns from CRSP;
- Price/earnings ratio (PE): CAPE measure from Robert Shiller's website;

Data and Definitions

Market data:

- Aggregate returns: value-weighted (total) index returns from CRSP;
- Price/earnings ratio (PE): CAPE measure from Robert Shiller's website;

Subjective Beliefs: analyst survey from I/B/E/S

- Analysts provide forecasts for "long-term earnings growth" rates (LTG);
- "...the expected annual increase in operating earnings over the company's next full business cycle. These forecasts refer to a period of between three to five years".
- Sample: December, 1981 December, 2022 (monthly frequency);
- We consider the value-weighted first and second moments of beliefs:

$$w_{i,t} \equiv \frac{P_{i,t} \cdot Q_{i,t}}{\sum_{j=1}^{N_t} P_{j,t} \cdot Q_{j,t}} \qquad LTG_t \equiv \sum_{i=1}^{N_t} w_{i,t} \cdot LTG_{i,t} \qquad D_t \equiv \sum_{i=1}^{N_t} w_{i,t} \cdot D_{i,t}$$

Subjective Beliefs and PE Time Series

Rolling Correlations

- 10-year rolling windows;
- Correlation changes sign over time;

An In-Sample Predictability Test

We estimate the following predictive regression:

$$R_{t+h|t} = \alpha + \beta_{LTG} \cdot LTG_t + \beta_D \cdot D_t + \beta_{PE} \cdot PE_t + \epsilon_{t+h}$$
 (1)

An In-Sample Predictability Test

We estimate the following predictive regression:

$$R_{t+h|t} = \alpha + \beta_{LTG} \cdot LTG_t + \beta_D \cdot D_t + \beta_{PE} \cdot PE_t + \epsilon_{t+h}$$
 (1)

- Theory $\implies \beta_{LTG} < 0, \beta_D < 0$;
- Today: h = 36. In the paper, we also do h = 12 and h = 60;
- Yu (2011) found β_D < 0, but his sample stopped in 2007;
- Bordalo et al. (2023) found $\beta_{LTG} < 0$, but do not consider D_t ; Sample end: 2015;
- We revisit these samples and then study the 1981-2022 period;

Revisiting Yu (2011)

Same sample as Yu (2011) (1981-2007)							
	R ₃₆						
	(1)	(2)	(3)	(4)	(5)	(6)	
LTG	-0.65***		-0.33	-0.42		0.47**	
	(-3.59)		(-1.27)	(-1.09)		(2.13)	
D		-0.68***	-0.45		-0.51*	-0.72**	
		(-3.30)	(-1.38)		(-1.88)	(-2.22)	
PE				-0.28	-0.41**	-0.72***	
				(-0.73)	(-2.14)	(-4.83)	
N	253	253	253	253	253	253	
R^2	0.378	0.416	0.460	0.396	0.538	0.562	

- Coefficient on LTG changes sign;
- Coefficient on D seems stable;
- Similar results to h = 12 and h = 36 (see the paper!)

Revisiting Bordalo et al. (2023)

Same sample as Bordalo et al. (2023) (1981-2015)							
	R ₃₆						
	(1)	(2)	(3)	(4)	(5)	(6)	
LTG	-0.47***		-0.41***	-0.02		-0.01	
	(-3.19)		(-3.47)	(-0.09)		(-0.04)	
D		-0.36	-0.28		-0.22	-0.22	
		(-1.03)	(-1.21)		(-0.74)	(-0.74)	
PE				-0.59**	-0.55***	-0.54*	
				(-2.10)	(-3.00)	(-1.70)	
N	373	373	373	373	373	373	
R^2	0.198	0.120	0.265	0.339	0.382	0.380	

- Effect of D disappeared;
- Effect of LTG disappears if we control for PE;
- Similar results to h = 12 and h = 60;

Full-Sample

Full-Sample (1981-2022)							
	R ₃₆						
	(1)	(2)	(3)	(4)	(5)	(6)	
LTG	-0.37		-0.33	-0.01		-0.01	
	(-1.56)		(-1.49)	(-0.03)		(-0.03)	
D		-0.27	-0.20		-0.10	-0.10	
		(-1.16)	(-0.91)		(-0.42)	(-0.42)	
PE				-0.55***	-0.52**	-0.52***	
				(-3.85)	(-2.29)	(-2.87)	
N	457	457	457	457	457	457	
R^2	0.129	0.068	0.163	0.288	0.298	0.296	

- Only significant predictor is PE;
- As soon as we add PE, all other coefficients shrink towards zero;
- No evidence of predictability through subjective beliefs;
- Similar results to h = 12 and h = 60;

Out-of-sample Forecasting

- Can these variables predict return out-of-sample? What if we use them jointly?
- When are each of these models getting it right/wrong?

Out-of-sample Forecasting

- Can these variables predict return out-of-sample? What if we use them jointly?
- When are each of these models getting it right/wrong?
- We produce monthly forecasts h months ahead;
- What's our benchmark? The historical average;
- We evaluate forecasts using the OOS R^2 from Campbell and Thompson (2008):

$$R_{OOS}^{2}(t_{0},h) = 1 - \frac{\sum_{t=t_{0}}^{T} \left(R_{t|t-h} - \widehat{R}_{t|t-h} \right)^{2}}{\sum_{t=t_{0}}^{T} \left(R_{t|t-h} - \overline{R}_{t|t-h} \right)^{2}}$$
(2)

Out-of-sample Forecasting

- Can these variables predict return out-of-sample? What if we use them jointly?
- When are each of these models getting it right/wrong?
- We produce monthly forecasts *h* months ahead;
- What's our benchmark? The historical average;
- We evaluate forecasts using the OOS R^2 from Campbell and Thompson (2008):

$$R_{OOS}^{2}(t_{0},h) = 1 - \frac{\sum_{t=t_{0}}^{T} \left(R_{t|t-h} - \widehat{R}_{t|t-h} \right)^{2}}{\sum_{t=t_{0}}^{T} \left(R_{t|t-h} - \overline{R}_{t|t-h} \right)^{2}}$$
(2)

- What t₀ should we use? We pick July, 2007 but we make it vary in the paper;
- It ensures analysts had knowledge of the dot-com bubble burst;

 R_{OOS}^2 – A snapshot of performance

Forecast Horizon <i>h</i> (in months)	6	12	36	60
PE	0.04	0.08	0.12	0.36
LTG	0.01	0.04	-0.51	-0.22
D	-0.09	-0.32	-1.51	-0.92
PE + LTG	0.03	0.06	-0.17	0.21
PE + D	-0.06	-0.19	-0.77	0.08
LTG + D	-0.09	-0.28	-1.35	-0.38
PE + LTG + D	-0.13	-0.48	-2.18	-1.98

- After we control for PE, no added value from subjective beliefs;
- More complex models suffer: bias vs variance trade-off;

Absolute Forecast Error

Coefficients Over Time

Wrap-Up

Background:

- Mechanisms of overpricing leading to return predictability (theory);
 mean growth expectations (LTG) and disagreement (D).
- Channels have been evaluated in isolation, in particular samples.

Our conclusions:

- In sample: evidence of predictability is fragile across samples and specifications.
- Out of sample: poor performance, dominated by standard PE measure.

Wrap-Up

Background:

- Mechanisms of overpricing leading to return predictability (theory);
 mean growth expectations (LTG) and disagreement (D).
- Channels have been evaluated in isolation, in particular samples.

Our conclusions:

- In sample: evidence of predictability is fragile across samples and specifications.
- Out of sample: poor performance, dominated by standard PE measure.

Thank you!

${\sf Appendix}$

References I

Atmaz, A. and Basak, S. (2018). Belief dispersion in the stock market. The Journal of Finance, 73(3):1225-1279.

Bordalo, P., Gennaioli, N., La Porta, R., and Shleifer, A. (2019). Diagnostic expectations and stock returns. The Journal of Finance, 74(6):2839-2874.

Bordalo, P., Gennaioli, N., LaPorta, R., and Shleifer, A. (2023). Belief overreaction and stock market puzzles. Journal of Political Economy.

Campbell, J. Y. and Thompson, S. B. (2008). Predicting excess stock returns out of sample: Can anything beat the historical average? *Review of Financial Studies*, 21(4):1509–1531.

De La O, R. and Myers, S. (2021). Subjective cash flow and discount rate expectations. The Journal of Finance, 76(3):1339-1387.

La Porta, R. (1996). Expectations and the cross-section of stock returns. Journal of Finance, 51(5):1715-42.

Miller, E. M. (1977). Risk, uncertainty, and divergence of opinion. The Journal of finance, 32(4):1151-1168.

Yu, J. (2011). Disagreement and return predictability of stock portfolios. Journal of Financial Economics, 99(1):162–183.