Artificial Intelligence I 2022/2023

Week 8 Tutorial and Additional Exercises

k-Nearest Neighbours

School of Computer Science

April 21, 2023

In this tutorial...

In this tutorial we will be covering

- Distance metrics.
- Normalisation.
- k-nearest neighbours.
- Optional theoretical exercises.

Parametric and non-parametric models

- Parametric models are learning models that summarise data with a set of parameters.
- Linear and logistic regression are examples of parametric models.
- Non-parametric models are learning models that do not assume any parameters.
- In this tutorial, we will study a non-parametric model.

Distance metrics

- A distance metric is a way to quantify the similarity or dissimilarity between instances.
- There are many available distance metrics. We need to choose the one that best fits the problem at hand.
- A distance metric takes two vectors as inputs and outputs a non-negative number.
- Different notions of distance metrics are used for vectors of numerical variables and for vectors of categorical variables.

Distance metrics (continued)

- For numerical variables, we will use the Minkowski distance.
- Given a number $p \ge 1$ and two vectors with d numerical variables

$$\mathbf{x}^{(1)} = (x_1^{(1)}, \dots, x_d^{(1)})$$
 and $\mathbf{x}^{(2)} = (x_1^{(2)}, \dots, x_d^{(2)})$

their Minkowski distance (or L^p -norm) is defined as

$$L^{p}(\mathbf{x}^{(1)},\mathbf{x}^{(2)}) = \sqrt[p]{\sum_{j=1}^{d} |x_{j}^{(1)} - x_{j}^{(2)}|^{p}}.$$

- For p = 2 we obtain the Euclidean distance.
- For p = 1 we obtain the *Manhattan distance*.

Exercise 1

• Consider the following vectors with 3 numerical variables.

$$\boldsymbol{x}^{(1)} = \begin{bmatrix} 0 \\ 3 \\ -1 \end{bmatrix}, \boldsymbol{x}^{(2)} = \begin{bmatrix} -2 \\ 3 \\ -1 \end{bmatrix}, \boldsymbol{x}^{(3)} = \begin{bmatrix} 1 \\ -1 \\ 1 \end{bmatrix}, \boldsymbol{x}^{(4)} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}.$$

- Compute the Euclidean and Manhattan distance matrices for these vectors.
- Hint: You need to compute 6 distances on total.

Exercise 1: Solution

• The Euclidean distance matrix is the following:

	$\mathbf{x}^{(1)}$	$x^{(2)}$	$x^{(3)}$	$x^{(4)}$
$\mathbf{x}^{(1)}$	0	2.000	4.583	3.162
$x^{(2)}$	2.000	0	5.385	3.742
$x^{(3)}$	4.583	5.385	0	1.732
$x^{(4)}$	3.162	3.742	1.732	0

• The Manhattan distance matrix is the following:

	$x^{(1)}$	$x^{(2)}$	$x^{(3)}$	$\mathbf{x}^{(4)}$
$x^{(1)}$	0	2	7	4
$x^{(2)}$	2	0	9	6
$x^{(3)}$	7	9	0	3
$x^{(4)}$	4	6	3	0

• What do you notice when comparing these matrices?

Distance metrics (continued)

- For categorical variables, we will use the *Hamming distance*.
- Given two vectors with d categorical variables

$$\mathbf{x}^{(1)} = (x_1^{(1)}, \dots, x_d^{(1)})$$
 and $\mathbf{x}^{(2)} = (x_1^{(2)}, \dots, x_d^{(2)}),$

their Hamming distance is defined as

$$H(\mathbf{x}^{(1)}, \mathbf{x}^{(2)}) = \sum_{j=1}^{d} \mathbf{1}(x_j^{(1)} \neq x_j^{(2)})$$

where ${\bf 1}$ is the indicator function. For all $j=1,\ldots,d$, we have

$$\mathbf{1}(x_j^{(1)} \neq x_j^{(2)}) = \begin{cases} 1 \text{ if } x_j^{(1)} \neq x_j^{(2)} \\ 0 \text{ if } x_j^{(1)} = x_j^{(2)}. \end{cases}$$

Exercise 2

 Consider the following vectors with 1 ordinal variable and 3 categorical variables.

$$\mathbf{x}^{(1)} = \begin{bmatrix} yes \\ red \\ FR \\ \triangle \end{bmatrix}, \mathbf{x}^{(2)} = \begin{bmatrix} yes \\ blue \\ FR \\ \square \end{bmatrix}, \mathbf{x}^{(3)} = \begin{bmatrix} no \\ green \\ UK \\ \bigcirc \end{bmatrix}, \mathbf{x}^{(4)} = \begin{bmatrix} yes \\ red \\ DE \\ \triangle \end{bmatrix}.$$

- Find the Hamming distance matrix for these vectors.
- Hint: You need to compute 6 distances on total. Each distance can be at most 4.

Exercise 2: Solution

• The Hamming distance matrix is the following:

	$\mathbf{x}^{(1)}$	$x^{(2)}$	$x^{(3)}$	$\mathbf{x}^{(4)}$
$\mathbf{x}^{(1)}$	0	2	4	1
$x^{(2)}$	2	0	4	3
$x^{(3)}$	4	4	0	4
$x^{(4)}$	1	3	4	0

Notice that each distance is at most 4.

Normalisation

- Normalisation is used to restrict numerical variables in [0, 1].
- Given a set of n vectors $\mathbf{x}^{(1)}, \dots, \mathbf{x}^{(n)}$, with d numerical variables, for all $j = 1, \dots, d$, we write

$$\min_{j} = \min\{x_{j}^{(1)}, \dots, x_{j}^{(n)}\} \text{ and } \max_{j} = \max\{x_{j}^{(1)}, \dots, x_{j}^{(n)}\}.$$

• Then, the *j*-th variable of the *i*-th vector is normalised as

normalise
$$(x_j^{(i)}) = \frac{x_j^{(i)} - \min_j}{\max_j - \min_j}$$
.

• We calculate the above formula for all i = 1, ..., n and for all j = 1, ..., d and normalise all variables in all vectors.

Exercise 3

• Consider the following vectors with 3 numerical variables.

$$\mathbf{x}^{(1)} = \begin{bmatrix} -2 \\ 3 \\ 300 \end{bmatrix}, \mathbf{x}^{(2)} = \begin{bmatrix} 2 \\ 1 \\ -100 \end{bmatrix}, \mathbf{x}^{(3)} = \begin{bmatrix} 0 \\ 2 \\ 100 \end{bmatrix}, \mathbf{x}^{(4)} = \begin{bmatrix} 1 \\ 2 \\ -200 \end{bmatrix}.$$

- Normalise all variables in all vectors, using the methodology we just described.
- Hint: First compute min and max for all j = 1, 2, 3. Then use the normalisation formula.

Exercise 3: Solution

We first find that

$$\min_1 = -2, \qquad \min_2 = 1, \qquad \min_3 = -200$$

and

$$\max_1 = 2, \qquad \max_2 = 3, \qquad \max_3 = 300.$$

We then normalise all variables in all vectors as follows:

$$\tilde{\mathbf{x}}^{(1)} = \begin{bmatrix} 0 \\ 1 \\ 1 \end{bmatrix}, \tilde{\mathbf{x}}^{(2)} = \begin{bmatrix} 1 \\ 0 \\ 0.2 \end{bmatrix}, \tilde{\mathbf{x}}^{(3)} = \begin{bmatrix} 0.5 \\ 0.5 \\ 0.6 \end{bmatrix}, \tilde{\mathbf{x}}^{(4)} = \begin{bmatrix} 0.75 \\ 0.5 \\ 0 \end{bmatrix}.$$

• Notice that all numerical variables are now in [0,1].

Mixed distance

- When vectors have both numerical and categorical variables, we need to use some combination of distance metrics.
- One way is to use the mixed distance.
- Given a number $p \ge 1$ and two vectors with d variables

$$\mathbf{x}^{(1)} = (x_1^{(1)}, \dots, x_d^{(1)})$$
 and $\mathbf{x}^{(2)} = (x_1^{(2)}, \dots, x_d^{(2)}),$

their mixed distance is defined as

$$D^p(\mathbf{x}^{(1)},\mathbf{x}^{(2)}) = \sqrt[p]{\sum_{j=1}^d |ar{x}_j|^p}$$

where

$$\bar{x}_j = \begin{cases} normalise(x_j^{(1)}) - normalise(x_j^{(2)}), & \text{if } j \text{ is numerical} \\ \mathbf{1}(x_j^{(1)} \neq x_j^{(2)}), & \text{if } j \text{ is categorical.} \end{cases}$$

k-nearest neighbours

- k-nearest neighbours (k-NN) is one of the most popular classification algorithms.
- Given a labeled training set, we predict the labels of future instances depending on their distance from the labeled ones.
- *k* determines how many of the closest labeled instances to consider. We need to choose its value ourselves.
- Different notions of distance can be used, depending on the types of variables.
- In our examples we will use *mixed Euclidean distance*, which is mixed distance for p = 2.

Exercise 4

• Consider the following data set.

	gen	age	bmi	city	ill
$\mathbf{x}^{(1)}$	male	33	28.8	Bristol	no
$x^{(2)}$	female	45	23.8	London	no
$x^{(3)}$	female	68	21.3	Edinburgh	yes
$\mathbf{x}^{(4)}$	male	21	22.6	London	yes
$\mathbf{x}^{(5)}$	male	71	18.3	Birmingham	no
$x^{(6)}$	female	27	28	Birmingham	yes
$\mathbf{x}^{(new)}$	female	26	20	Birmingham	?

- Use k-NN to find the missing value of $\mathbf{x}^{(new)}$.
- Use k = 3 and the mixed Euclidean distance. Use the majority vote to determine the label for $\mathbf{x}^{(new)}$.

Exercise 4: Solution

- We first normalise all numerical variables of all instances.
- The new table is the following:

	gen	age	bmi	city	ill
$x^{(1)}$	male	0.24	1	Bristol	no
$x^{(2)}$	female	0.48	0.524	London	no
$x^{(3)}$	female	0.94	0.286	Edinburgh	yes
$x^{(4)}$	male	0	0.410	London	yes
$x^{(5)}$	male	1	0	Birmingham	no
$x^{(6)}$	female	0.12	0.924	Birmingham	yes
$\mathbf{x}^{(new)}$	female	0.1	0.162	Birmingham	?

 We next find the squared distances of x^(new) with all other instances, for each variable separately.

Exercise 4: Solution (continued)

• The squared distances for each variable are:

	gen	age	bmi	city	$D^2(\cdot)$	$y^{(i)}$
$Dist(\mathbf{x}^{(new)},\mathbf{x}^{(1)})$	1	0.0196	0.70	1	1.65	no
$Dist(\mathbf{x}^{(new)},\mathbf{x}^{(2)})$	0	0.1444	0.13	1	1.13	no
$Dist(\mathbf{x}^{(new)},\mathbf{x}^{(3)})$	0	0.7056	0.015	1	1.31	yes
$Dist(\mathbf{x}^{(new)},\mathbf{x}^{(4)})$	1	0.01	0.06	1	1.44	yes
$Dist(\mathbf{x}^{(new)},\mathbf{x}^{(5)})$	1	0.81	0.026	0	1.36	no
$Dist(\mathbf{x}^{(new)}, \mathbf{x}^{(6)})$	0	0.0004	0.58	0	0.76	yes

- The 3-nearest neighbours of $\mathbf{x}^{(new)}$ are $\mathbf{x}^{(2)}$, $\mathbf{x}^{(3)}$ and $\mathbf{x}^{(6)}$.
- We finally classify $\mathbf{x}^{(new)}$ using the distances we found.
- Therefore, $y^{(new)}$ is predicted to be yes.

Up next...

Optional Material

Weighted k-NN

- In *k*-NN, ties can occur that need to be broken somehow.
- One way is to use a version of k-NN called weighted k-NN.
- First, we convert each label as $\{no, yes\} \rightarrow \{0, 1\}$.
- Then, each point $\mathbf{x}^{(i)}$ is given a weight w_i using a function called *kernel function*. We then calculate a weighted sum:

$$S = \frac{1}{k} \sum_{i \in \mathcal{N}_k} w_i y^{(i)}$$

where \mathcal{N}_k is the set of indices of the k closest points to $\mathbf{x}^{(new)}$.

• The label $y^{(new)}$ is then predicted using the formula:

$$\hat{y}^{(new)} = \begin{cases} \text{yes, if } S > 0.5 \\ \text{no, if } S \leq 0.5. \end{cases}$$

• The most straightforward kernel function is the inverse of the mixed Euclidean distance, that is, $w_i = 1/D^2(\mathbf{x}^{(new)}, \mathbf{x}^{(i)})$.

Optional Exercise 1

• Reconsider this distance table with $y^{(i)}$ converted to $\{0,1\}$.

	gen	age	bmi	city	$D^2(\cdot)$	$y^{(i)}$
$Dist(\mathbf{x}^{(new)},\mathbf{x}^{(1)})$	1	0.0196	0.70	1	1.65	0
$Dist(\mathbf{x}^{(new)}, \mathbf{x}^{(2)})$	0	0.1444	0.13	1	1.13	0
$Dist(\mathbf{x}^{(new)},\mathbf{x}^{(3)})$	0	0.7056	0.015	1	1.31	1
$Dist(\mathbf{x}^{(new)}, \mathbf{x}^{(4)})$	1	0.01	0.06	1	1.44	1
$Dist(\mathbf{x}^{(new)},\mathbf{x}^{(5)})$	1	0.81	0.026	0	1.36	0
$Dist(\mathbf{x}^{(new)}, \mathbf{x}^{(6)})$	0	0.0004	0.58	0	0.76	1

- What will weighted k-NN predict for $y^{(new)}$ with k=4 and the mixed Euclidean distance as the kernel function?
- Hint: Calculate $S = \frac{1}{k} \sum_{i \in \mathcal{N}_k} \frac{y^{(i)}}{D^2(\mathbf{x}^{(new)}, \mathbf{x}^{(i)})}$ where k = 4 and $\mathcal{N}_4 = \{2, 3, 5, 6\}$. Predict yes if S > 0.5 or no if S < 0.5.

Optional Exercise 1: Solution

• We calculate the weighted sum *S* as follows:

$$S = \frac{1}{4} \sum_{i \in \{2,3,5,6\}} \frac{y^{(i)}}{D^2(\mathbf{x}^{(new)}, \mathbf{x}^{(i)})}$$
$$= \frac{1}{4} \left(\frac{0}{1.13} + \frac{1}{1.31} + \frac{0}{1.36} + \frac{1}{0.76} \right)$$
$$\approx 0.5198 > 0.5.$$

- Since S > 0.5, we predict that $\hat{y}^{(new)} = 1$.
- Try using the weighted k-NN rule for k = 2 and k = 6.
- Weighted k-NN can also be used when k is odd, in place of the majority vote. Try to use it for k = 3 and k = 5.

Optional Exercise 2

Definition 1 (Distance metric)

A function $f: \mathcal{X} \times \mathcal{X} \to \mathbb{R}$ is called a *distance metric*, if and only if, for all vectors $\mathbf{x}, \mathbf{y}, \mathbf{z} \in \mathcal{X}$, the following hold:

- $f(\mathbf{x}, \mathbf{y}) = f(\mathbf{y}, \mathbf{x})$; and
- - Show that the Minkowski distance, L^p , (for any $p \ge 1$) and the Hamming distance, H, are distance metrics.
 - Hint: Use *Minkowski's inequality*: for all $a_1, a_2 ..., a_d \in \mathbb{R}$ and $b_1, b_2 ..., b_d \in \mathbb{R}$ and $p \ge 1$, we have

$$\sqrt[p]{\sum_{j=1}^d |a_j + b_j|^p} \le \sqrt[p]{\sum_{j=1}^d |a_j|^p} + \sqrt[p]{\sum_{j=1}^d |b_j|^p}.$$

Optional Exercise 2: Solution

- For the Minkowski distance, let $\mathbf{x}, \mathbf{y}, \mathbf{z} \in \mathcal{X}$ be arbitrary vectors with d numerical variables, and $p \geq 1$. We have
 - 1 If $\mathbf{x} = \mathbf{y}$, then $L^p(\mathbf{x}, \mathbf{y}) = \sqrt[p]{\sum_{j=1}^d |x_j y_j|^p} = \sqrt[p]{\sum_{j=1}^d 0} = 0$. If $L^p(\mathbf{x}, \mathbf{y}) = 0$, then $\sqrt[p]{\sum_{j=1}^d |x_j - y_j|^p} = 0 \Rightarrow x_1 = y_1, \dots, x_d = y_d \Rightarrow \mathbf{x} = \mathbf{y}$.
- Therefore, Minkowski distance is a distance metric.

Optional Exercise 2: Solution (continued)

- For the Hamming distance, let $\mathbf{x}, \mathbf{y}, \mathbf{z} \in \mathcal{X}$ be arbitrary vectors with d variables. We have
 - **1** If $\mathbf{x} = \mathbf{y}$, then $H(\mathbf{x}, \mathbf{y}) = \sum_{j=1}^{d} \mathbf{1}(x_j \neq y_j) = \sum_{j=1}^{d} 0 = 0$. If $H(\mathbf{x}, \mathbf{y}) = 0$, then $\sum_{j=1}^{d} \mathbf{1}(x_j \neq y_j) = 0 \Rightarrow x_1 = y_1, \dots, x_d = y_d \Rightarrow \mathbf{x} = \mathbf{y}$.
 - **2** $H(\mathbf{x}, \mathbf{y}) = \sum_{j=1}^{d} \mathbf{1}(x_j \neq y_j) = \sum_{j=1}^{d} \mathbf{1}(y_j \neq x_j) = H(\mathbf{y}, \mathbf{x}).$
 - **3** $H(\mathbf{x}, \mathbf{z}) = \sum_{j=1}^{d} \mathbf{1}(x_j \neq z_j) \leq \sum_{j=1}^{d} (\mathbf{1}(x_j \neq y_j) + \mathbf{1}(y_j \neq z_j)) = \sum_{j=1}^{d} \mathbf{1}(x_j \neq y_j) + \sum_{j=1}^{d} \mathbf{1}(y_j \neq z_j) = H(\mathbf{x}, \mathbf{y}) + H(\mathbf{y}, \mathbf{z}).$
- Therefore, Hamming distance is a distance metric.

Any questions?

Some closing words...

—People glorify all sorts of bravery except the bravery they might show on behalf of their nearest neighbours.

George Eliot

Until the next time...

Thank you for your attention!