PCT

WCRLD INTELLECTUAL PROPERTY ORGANIZATION International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 6: C12N 15/40, A61K 39/12, C07K 14/18

(11) International Publication Number:

WO 95/12677

(43) International Publication Date:

11 May 1995 (11.05.95)

(21) International Application Number:

PCT/EP94/03555

(22) International Filing Date:

28 October 1994 (28.10.94)

(30) Priority Data:

93402718.6 4 November 1993 (04.11.93) (34) Countries for which the regional or

international application was filed:

(71) Applicant (for all designated States except US): INNOGENET-ICS N.V. [BE/BE]; Industriepark, Zwijnaarde 7, P.O. Box 4, B-9052 Ghent (BE).

(72) Inventors; and

- (75) Inventors/Applicants (for US only): LEROUX-ROELS, Geert [BE/BE]; Gordunakaai 23, B-9000 Ghent (BE). DELEYS, Robert [BE/BE]; Diepekanten 20, B-1850 Grimbergen (BE). MAERTENS, Geent [BE/BE]; Zilversparrenstraat 64, B-8310 Brugge (BE).
- (74) Agent: GROSSET-FOURNIER, Chantal; Grosset-Fournier & Demachy s.a.r.l., 103, rue La Fayette, F-75010 Paris (FR).

(81) Designated States: AM, AT, AU, BB, BG, BR, BY, CA, CH, ČN, CZ, DE, DK, EE, ES, FI, GB, GE, HU, JP, KE, KG, KP, KR, KZ, LK, LR, LT, LU, LV, MD, MG, MN, MW, NL, NO, NZ, PL, PT, RO, RU, SD, SE, SI, SK, TJ, TT, UA, US, UZ, VN, European patent (AT, BE, CH, DE, DK, ES, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, ML, MR, NE, SN, TD, TG), ARIPO patent (KE, MW, SD, SZ).

Published

Without international search report and to be republished upon receipt of that report.

(54) Title: IMMUNODOMINANT HUMAN T-CELL EPITOPES OF HEPATITIS C VIRUS

(57) Abstract

The present invention relates to a polypeptide of about 8 to about 100 amino acids comprising or consisting of at least 8 contiguous amino acids selected from the core, and/or the E1, and/or E2, and/or the NS3 regions of the HCV polyprotein, with said contiguous amino acids containing a T-cell stimulating epitope.

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AT	Austria	GB	United Kingdom	MR	Mauritania
AU	Australia	GE	Georgia	MW	Malawi
BB	Barbados	GN	Guinea	NE	Niger
BE	Belgium	GR	Greece	NL	Netherlands
BF	Burkina Faso	HU	Hungary	NO	Norway
BG	Bulgaria	IE	Ireland	NZ	New Zealand
BJ	Benin	rt	Italy	PL	Poland
BR	Brazil	JP	Japan	PT	Portugal
BY	Belarus	KE	Kenya	RO	Romania
CA	Canada	KG	Kyrgystan	RU	Russian Federation
CF	Central African Republic	KP	Democratic People's Republic	SD	Sudan
CG	Congo	•	of Korea	SE	Sweden
CH	Switzerland	KR	Republic of Korea	SI	Slovenia
CI	Côte d'Ivoire	KZ	Kazakhstan	SK	Slovakia
CM	Cameroon	LI	Liechtenstein	SN	Senegal
CN	China	LK	Sri Lanka	TD	Chad
CS	Czechoslovakia	LU	Luxembourg	TG	Togo
CZ	Czech Republic	LV	Latvia	TJ	Tajikistan
DE	Germany	MC	Monaco	TT	Trinidad and Tobago
DK	Denmark	MD	Republic of Moldova	UA	Ukraine
ES	Spain	MG	Madagascar	US	United States of America
FI	Finland	ML	Mali	UZ	Uzbekistan
FR	France	MN	Mongolia	٧N	Viet Nam
GA	Gabon				

3

IMMUNODOMINANT HUMAN T-CELL EPITOPES OF HEPATITIS C VIRUS

The present invention describes immunodominant hepatitis C virus T cell epitopes useful in hepatitis C prophylactic and therapeutic vaccines, derived from the HCV core, E1, E2 and NS3 proteins.

Technical field of the invention

The present invention relates to the production of novel synthetic immunogens related to the hepatitis C virus core, E1, E2 and NS3 regions and to the use thereof in the production of vaccines, therapeutic agents and the like. More specifically, the present invention relates to polypeptide compositions containing HCV core, E1, E2 and NS3 T cell determinants.

Background of the invention

In the few years since its discovery, Hepatitis C virus (HCV) has been shown to be a major cause of acute and chronic liver disease. HCV is a single-stranded RNA virus with a genome approximately 9400 nucleotides that consists untranslated region (5'UR) of 341 nucleotides which precedes a single large open reading frame encoding a precursor polyprotein of about 3010 amino acids (Kato et al., 1990). The genetic organization of the viral genome is related to that of flavi-and pestiviruses, with the putative structural proteins located in the N-terminal region and a variety of non structural proteins located at the C-terminal end of the polyprotein. The structural proteins are the core protein (C, amino acids 1-191) followed by the putative envelope proteins E1 (amino acids 192-383) and E2/NS1 (amino acids 384-746). The terms E2 and NS1 are often used interchangeably. Another form of E2 is composed of amino acids 384 to 809 and a third form is associated with NS2. The non structural proteins are NS2, NS3, NS4 and NS5, of which at least NS4 and NS5 have been shown to be further processed into NS4A,

NS4B, NS5A, and NS5B.

Structural analysis of HCV genomes revealed the existence of different genotypes that have been classified into types and subtypes (Stuyver et al., 1993). The sequence diversities are distributed along the whole genome including the 5' untranslated region. The highest sequence variability has been observed in the NS2 and 3' untranslated regions, and in the putative envelope regions encoding the E1 and E2 proteins. The core, NS3, and certain regions of the NS4 proteins displayed markedly less diversity (Okamoto et al., 1992).

HCV humoral response

Soon after the discovery of HCV, immunoassays for the detection of circulating antibodies against HCV proteins became widely available. These tools have led to an explosive increase of the knowledge in the field of the human humoral immune response to HCV in different conditions. Once it was demonstrated that HCV was the major cause of posttransfusional non-A, non-B hepatitis, the search for antibodies to HCV was added to the safety screening panel of blood products. This procedure not only increased the safety of blood transfusions but also enhanced the knowledge of the epidemiology of the virus. The fact that HCV is responsible for a large proportion of chronic hepatic infections in which blood transfusion or parenteral inoculation are excluded remains a major challenge for further epidemiological studies. The widespread use of the assays for the detection of antibodies to HCV has also led to the recognition of the regions with humoral antigenicity of the virus. The relationship between the kinetics and magnitude of the humoral immune response to the different proteins of HCV and the course and outcome of the disease remains to be established.

HCV T cell epitopes

The immune response to viral antigens is almost entirely T cell dependent. T cells are required both for antibody production and for some cytotoxic reactions. HCV-encoded proteins are

immunogenic not only at the B cell level, but also at the T cell level.

Studies describing the cellular immune response to HCV are scarce. Lin et al. (1993) describe candidate T cell epitopes within absolutely conserved regions of HCV gene obtained by means of a computer search revealing a large number of potential T cell epitopes. It has also been reported that peripheral blood cell monocytes (PBMC) from HCV-infected individuals proliferate in response to HCV recombinant proteins and that peripheral responses to core protein correlate with a benign course of infection (Botarelli et al., 1993). In the liver of patients with chronic HCV infection HCV-specific, HLA class I- restricted cytotoxic T lymphocytes (CTL) have been identified and cloned recognize epitopes in E1 and NS2 proteins. investigators have mainly focused on obtaining T cell clones from individual patients, and on the localization immunoreactive domain for the single CTL clones. Such studies led to the discovery of the epitope ASRCWVAM (aa 235-242) in the aminoterminal part of the El protein, and of the epitope LMALTLSPYYKRY (aa 826-838) from the NS2 region (Koziel et al., 1992). In patients with chronic HCV hepatitis intrahepatic CD4+ T cells which specifically recognized the NS4 protein of HCV were observed. The clonotype of these T lymphocytes was not detectable in the PBMC from these subjects (Minutello et al., 1993). These studies demonstrate that in patients with HCV hepatitis, HCVspecific T lymphocytes can be isolated from the infected liver and the peripheral blood. Their role in the pathogenesis of the liver damage in HCV hepatitis and their relevance for the clearance or persistence of the virus remains to be established.

Although neutralization of certain viral infections is possible by humoral immunity only, most microbiological agents can only be cleared from the host with the aid of cellular immunity. Even when the neutralizing capacity of circulating antibodies is established in certain infections, T helper cell activity is generally required to allow B cells to produce the required levels of circulating antibodies, for achievement of

neutralization and clearance of the infectious agent. However, certain infectious agents can only be neutralized by means of cellular immunity.

In the case of hepatitis C virus, it can be anticipated that T cell immunity may be required for clearance of the virus, since most patients enter into a chronic course of the disease, and since most patients infected with HCV have developed humoral immunity to most of the HCV antigens which can be employed for diagnosis of HCV infection, as described in patent applications no. EP-A-0 318 216, EP-A-0 388 232, EP-A-0 442 394, EP-A-0 484 787, EP-A-0 489 968. However, most of the antibody-positive patients have not been able to clear the virus from the circulation since they remain HCV-PCR positive and, consequently, the detected antibodies have not been protective neither sufficient to neutralize the virus. Possibly, antibodies to other epitopes which are currently not included in HCV diagnostic assays may be capable of neutralizing HCV infection. epitopes may be located on the viral membrane proteins E1 and E2, but protection against a wide range of different HCV species may be hampered by the hypervariability of HCV envelope regions.

The aim of the present invention is to provide T cell stimulating polypeptides and peptides derived from the HCV structural and NS3 regions.

Another aim of the present invention is to provide T cell stimulating polypeptides and peptides as defined above for use in the preparation of an HCV immunogenic composition.

Another aim of the present invention is to provide T cell stimulating peptides or polypeptides derived from the core region, the E1 region, the E2 region, or the NS3 region of HCV.

Another aim of the present invention is to provide T cell stimulating peptides or polypeptides from HCV as specified above which contain either T helper cell (CD4*) epitopes and/or CTL (CD8*) epitopes.

Another aim of the present invention is to provide recombinant polypeptides containing the same.

Another aim of the present invention is to provide

5

therapeutic as well as prophylactic compositions comprising the same.

Another aim of the present invention is to provide prophylactic or therapeutic compositions comprising said polypeptides.

Another aim of the present invention is to provide methods for preventing or treating HCV infection based on the same.

Detailed description of the invention

More particularly, the present invention describes a polypeptide of about 8 to about 100 amino acids comprising or consisting of at least 8 contiguous amino acids selected from the core and/or E1 and/or E2 and/or NS3 regions of the HCV polyprotein, with said contiguous amino acids containing a T-cell stimulating epitope, and provided that said polypeptide is different from any known T cell epitope containing HCV peptide or polypeptide described from any of the above-mentioned regions. The latter known HCV polypeptides and peptides are described for screening for B cell epitopes. Such polypeptides and peptides are for instance mentioned in EP-A-0 318 216, EP-A-0 388 232, EP-A-0 442 394, EP-A-0 484 787, EP-A-0 489 968, WO 92/22571, Lesniewski et al., 1993; Weiner et al., 1993; etc. The content of these applications is hereby incorporated by reference.

Even more particularly, the present invention relates to the use of polypeptides as described above for the preparation of an HCV immunogenic composition.

The expression "HCV immunogenic composition" refers to the prevention or treatment of HCV infection.

Preferentially said polypeptide is different from RALAHGVRVLEDG, RMAWDMM, PTDCFRKHP, YPYRLWH, GKSTKVP, PSVAAT, IGTVLDQAE, AVAYYR, ASRCWVAM and TGDFDSVID.

The term "HCV polyprotein" refers to any HCV polyprotein disclosed in the art and is reviewed in Okamoto et al. 1992, such as the type 1a HCV polyprotein of the HC-J1 isolate, such as the HCV polyprotein of the type 2a HC-J6 isolate (Okamoto et al.,

the type 2b HC-J8 isolate (Okamoto et al., According to this definition, any variation already observed within any of the described regions of HCV is to be considered as part of a the definition of HCV polyprotein. For example, numerous types and subtypes are disclosed in Bukh et al., 1993, Bukh et al., 1994, Stuyver et al., 1993a, Stuyver et al., 1993b, Stuyver et al., 1994a, Stuyver et al., 1994c. Moreover, conservative substitutions may be introduced in these polyproteins according to the present invention. "conservative substitution" as used herein denotes that one amino acid residue has been replaced by another, biologically similar residue. Examples of conservative substitutions include the substitution of one hydrophobic residue such as isoleucine, valine, leucine or methionine for another, or the substitution of one polar residue for another such as between arginine and lysine, between glutamic and aspartic acids or between glutamine and asparagine and the like. The term "conservative substitution" also includes the use of a substituted amino acid in place of an unsubstituted parent amino acid provided that antibodies raised to such a polypeptide also immunoreact with the corresponding polypeptide having the unsubstituted amino acid.

The term "antibody" refers to a molecule that is a member of a family of glycosylated proteins called immunoglobulins, which can specifically combine with an antigen.

The word "antigen" has been used historically to designate an entity that is bound by an antibody, and also to designate the entity that induces the production of the antibody. More current usage limits the meaning of antigen to that entity bound by an antibody, while the word "immunogen" is used for the entity that induces antibody production. Where an entity discussed herein is both immunogenic and antigenic, reference to it as either an immunogen or antigen will typically be made according to its intended utility.

The term "corresponds" in its various grammatical forms as used in relation to peptide sequences means the peptide described plus or minus up to three amino acid residues at either or both

of the amino- and carboxy-termini and containing only conservative substitutions in particular amino acid residues along the polypeptide sequence.

"Epitope" refers to that portion of a molecule that is specifically bound by a T cell antigen receptor or an antibody combining site.

The term "immunoreact" in its various forms means binding between an antigen as a ligand and a molecule containing an antibody combining site such as a Fab portion of a whole antibody.

The expression "T-cell stimulating epitope" epitope according to the present invention refers to an epitope capable of stimulating T-cells. A T-cell stimulating epitope may be selected according to the present invention by monitoring the lymphoproliferative response (as detailed in the Examples section) towards polypeptides containing in their amino acid sequence at least 8 contiguous amino acids derived from the core, and/or the E1, and/or the E2, and/or the NS3 region of any HCV polyprotein. Said lymphoproliferative response may be measured by either a T-helper assay comprising in vitro stimulation of PMBC from patients with hepatitis C infection with varying concentrations of peptides to be tested for T-cell stimulating activity and counting the amount of radiolabelled thymidine uptake. Said lymphoproliferative response may also be measured by means of a CTL assay measuring the lytic activity of cytotoxic cells using 51Cr release. Proliferation is considered positive when the stimulation index (mean cpm of antigen-stimulated cultures/mean cpm of controle cultures) is more than preferably more than 2, most preferably more than 3. In order to select a T-cell stimulating epitope containing peptide, the results of these lymphoproliferative assays are compared and immunodominant T-cell epitope containing polypeptides or peptides are selected. The results of the lymphoproliferative assays against certain peptides may also be compared between clinical non-responders and responders to Interferon- α treatment. The lymphoproliferative response towards a series of synthetic,

8

overlapping peptides representing the HCV core, E1 and E2/NS1 sequences and a recombinant NS3 protein was monitored in 32 patients with chronic HCV hepatitis as disclosed in the Examples section of the present invention.

Consequently, the present invention represents a selection of immunodominant T cell epitopes from a series of antigens covering the core, E1, E2 and NS3 regions. From the examples section, it is clear that not only peptide pools 2 and 3 and peptides NS1-5* and NS1-7* but also, pools 4, 5, 6 and 9 and NS3, reacted frequently with hepatitis C patients (Table 4) while infrequent reactivity could only be observed in normal controls with the same polypeptides (Table 5). It is obvious from the data presented in Table 4 that large areas of the HCV structural region, such as pool 1 (amino acids 5-72) and pools 7 and 8 (amino acids 427-578) show little reactivity with T cells of infected patients, even with patients with a response to IFN-lphatreatment. Most strikingly, however, it was found that while the dominant B cell response to hepatitis C in general is located to the core aminoterminus (see also Table 3), the dominant T cell response is directed towards the core carboxyterminal region (see Table 4). In the literature, ample evidence can be found that the core carboxyterminal half contains little or no B cell-reactive epitopes. Based on the present invention, it may be desirable to yet include for instance parts of the core carboxyterminal region (spanning amino acids 73-176) into prophylactic or therapeutic vaccine compositions.

The words "polypeptide" and "peptide" are used interchangeably throughout the specification and designate a linear series of amino acids connected one to the other by peptide bonds between the alpha-amino and carboxy groups of adjacent amino acids. Polypeptides can be a variety of lengths, either in their natural (uncharged) forms or in forms which are salts, and either free of modifications such as glycosylation, side chain oxidation, or phosphorylation or containing these modifications. It is well understod in the art that amino acid sequences contain acidic and basic groups, and that the

particular ionization state exhibited by the peptide is dependent on the pH of the surrounding medium when the protein is in solution, or that of the medium from which it was obtained if the protein is in solid form. Also included in the definition are proteins modified by additional substituents attached to the amino acids side chains, such as glycosyl units, lipids, or inorganic ions such as phosphates, as well as modifications relating to chemical conversions of the chains, such as oxidation of sulfhydryl groups. Thus, "polypeptide" or its equivalent terms is intended to include the appropriate amino acid sequence referenced, subject to those of the foregoing modifications which do not destroy its functionality.

The polypeptides of the invention, and particularly the shorter peptides amongst them, can be prepared by classical chemical synthesis. The synthesis can be carried out in homogeneous solution or in solid phase.

For instance, the synthesis technique in homogeneous solution which can be used is the one described by Houbenweyl in the book entitled "Methode der organischen chemie" (Method of organic chemistry) edited by E. Wunsh, vol. 15-I et II. THIEME, Stuttgart 1974.

The polypeptides of the invention can also be prepared in solid phase according to the methods described by Atherton and Shepard in their book entitled "Solid phase peptide synthesis" (IRL Press, Oxford, 1989).

The polypeptides according to this invention can also be prepared by means of recombinant DNA techniques as documented below.

The polypeptides or peptides according to the present invention may, as specified above, vary in lenght. The peptides according to the invention contain at least 3, preferably at least 4, 5, 6, 7, most preferably however al least 8 contiguous HCV amino acids. Preferred lengths of peptides are 6, 7, 8, 9, 10, or more (for instance 15, 20, 25, 30, etc.) amino acid residues. The polypeptides of the present invention may be up till 150 to 200 amino acids long, but are preferably less than

100 amino acids.

Further contemplated according to the present invention is a polypeptide as defined above, comprising or consisting of at least 8 contiguous amino acids selected from the region comprised between amino acids 73 to 176 in the core region of HCV, between amino acids 192 to 234 and 243 to 392 of the E1 region of HCV, between amino acids 397 and 428 and amino acids 571 to 638 of the E2 region of HCV, or between amino acids 1188 to 1463 of the NS3 region of HCV, and with said contiguous amino acids containing a T-cell stimulating epitope, and provided that said polypeptide is different from any known T cell epitope containing HCV peptide or polypeptide described from any of the above-mentioned regions. The latter known HCV polypeptides and peptides are described for screening for B cell epitopes.

Even more particularly, the present invention relates to the use of polypeptides as described above for the preparation of an HCV immunogenic composition.

The expression "comprised between amino acids X to Y" includes the amino acid X and the amino acid Y.

The numbering of the HCV polyprotein used in the present invention refers to the numbering as used for the HCV-J isolate according to Kato et al., 1990. All other HCV isolates known in the art may be aligned to this sequence to obtain the referred HCV polyprotein numbering for each individual HCV isolate. For instance, it is known that type 2 isolates can contain 4 extra codons/amino acids in their E2 sequence, while type 3 sequences have an insertion of 2 amino acids compared to type 1 sequences.

The Examples section of the present invention describes T cell epitopes in, amongst other regions of the HCV structural region: the carboxyterminal region of the core protein (aa 73-176), amino acids 192 to 383 of the E1 region, amino acids 397 and 428 and amino acids 571 to 638 of the E2 region, amino acids 1188 to 1463 of the NS3 region. Groups of peptides covering parts of the structural proteins core and E2, and covering the complete E1 protein, as well as a recombinant NS3 protein have been studied. Peptides were tested as group 1 (aa 5-80), group 2 (aa

73-140), group 3 (aa 133-200), group 4 (aa 193-260), group 5 (aa 253-332), group 6 (325-392), group 7 (aa 427-494), group 8 (aa 487-578), and group 9 (aa 571-638) as shown in Table 1. Recombinant NS3 encompassed amino acids 1188 to 1463 of the isolate IG8309, belonging to the 1b subtype group of HCV.

The T cell response to the group 3 peptides, as well as to the individual peptides NS1-7* and NS1-5* shows a statistically relevant correlation with a decrease in alanine aminotransferase (ALT) and viral RNA levels, which are generally accepted to indicate a more benign course of the disease. A correlation between response to 'a recombinant HCV core protein' and a more benign course of the disease has been described by Botarelli et al. 1993. However, no epitopes have been mapped nor has the sequence and exact position of the recombinant core protein been described in Botarelli et al., 1993. In the present invention, a similar T cell response has been observed to the group 2 peptides (aa 73-140) both in patients responding to IFN- α and in patients non-responding to the same. On the contrary, T cell reactivity to the group 3 peptides (aa 133-200) was observed in responders to interferon- α and differed from the T reactivity observed to this region in non-responders to IFN- α treatment. Furthermore, after investigating the reactivity of individual peptides from groups 2 and 3, this specific response correlating with a more benign course of HCV infection, could be further mapped to specific individual peptides termed CORE 23, CORE 25, and CORE 27. Peptide CORE 19, belonging to the group 2 peptides, was also recognized by some of the responders to IFN- α treatment (see Fig. 1).

The present invention thus also contemplates a polypeptide as defined above comprising or consisting of at least 8 to about 104 contiguous amino acids selected from the region comprised between amino acids 73 to 176, more particularly comprising or consisting of 8 to about 68 contiguous amino acids selected from the region comprised between amino acids 109 to 176 in the core region of HCV characterized by the following sequences:

 $\label{eq:nh2-GX1-X2-WX3-X4-PGX5-PWPLYX6-NX7-GX8-GX9-AGWLLS-PRGSRPX_10-WGX_11-X_{12}DPRX_{13}X_{14}SRNX_{15}GX_{16}VIDTX_{17}TCGX_{18}ADLX_{19}X_{20}YIPX_{21}X_{22}G-X_{23}PX_{24}GGX_{25}X_{26}X_{27}X_{28}LX_{29}HGVRX_{30}X_{31}X_{32}DGX_{33}NX_{34}X_{35}TGN-X_{36}PGCSFSI-COOH\\ (SEQ ID NO 58, spanning positions 73 to 176)$

wherein X_1 represents R or K, X_2 represents A, S or T, X_3 represents A or G, X_4 represents Q, K or R, X_5 represents Y or H, X_6 represents G or A, X_7 represents E or K, X_8 represents C, M or L, X_9 represents W or L, X_{10} represents S, N, T, D or H, X_{11} represents P or Q, X_{12} represents N or T, X_{13} represents R or H, X_{14} represents R or K, X_{15} represents L or V or F, X_{16} represents K or R, X_{17} represents L or I, X_{18} represents F or L, X_{19} represents M or I, X_{20} represents G or E, X_{21} represents L or V or I, X_{22} represents V or L, X_{23} represents A or G, X_{24} represents L, V, or I, X_{25} represents A or V, X_{26} represents A or S, X_{27} represents R or A, X_{28} represents A or T or E, X_{29} represents A or E, X_{30} represents V or A or L, X_{31} represents L or V or I, X_{32} represents E or G, X_{33} represents V or I, and X_{34} represents F or Y, X_{35} represents A or P, X_{36} represents L or I, and,

 $\label{eq:nh2-X11-X12-DPRX13-X14-SRNX15-GX16-VIDTX17-TCGX18-ADLX19-X20-YIPX21-X22-G-X23-PX24-GGX25-X29-LX29-HGVRX30-X31-X32-DGX33-NX34-X35-TGN-X36-PGCSFSI-COOH (SEQ ID NO 48, spanning positions 109 to 176)$

wherein said contiguous amino acids containing a T-cell stimulating epitope, and provided that said polypeptide is different from any known T cell epitope containing HCV peptide or polypeptide described from any of the above-mentioned regions. The latter known HCV polypeptides and peptides are described for screening for B cell epitopes,

 X_{11} to X_{36} having the meanings above-mentioned.

It is to be underlined that in the present text, X_1 , X_2 , X_3 , X_4 , X_5 , X_6 , X_7 , X_8 , X_9 , X_{10} , X_{11} , X_{12} , X_{13} , X_{14} , X_{15} , X_{16} , X_{17} , X_{18} , X_{19} , X_{20} , X_{21} , X_{22} , X_{23} , X_{24} , X_{25} , X_{26} , X_{27} , X_{28} , X_{29} , X_{30} , X_{31} , X_{32} , X_{33} , X_{34} ,

 X_{35} , X_{36} have always the same meaning as the one which is defined for SEQ ID NO 58.

Preferentially said polypeptide is different from RALAHGVRVLEDG spanning positions 149 to 161 of the core region of HCV.

More particularly, the present invention relates to a polypeptide as defined above comprising or consisting of at least 8 to about 76 contiguous amino acids selected from the regions comprised between amino acids 73 to 148, or comprising or consisting of 8 to about 15 contiguous amino acids selected from the region comprised between amino acids 162 to 176, or comprising or consisting of 8 to about 16 contiguous amino acids selected from the region comprised between amino acids 129 to 144 in the core region of HCV characterized by the following sequences:

 $\mathrm{NH_2-GX_1X_2WX_3X_4PGX_5PWPLYX_6NX_7GX_8GX_9AGWLLSPRGSRPX_{10}WGX_{11}-CARREST AND CARREST AND CAR$

 $\textbf{X}_{12} \texttt{DPRX}_{13} \textbf{X}_{14} \texttt{SRNX}_{15} \texttt{GX}_{16} \texttt{VIDTX}_{17} \texttt{TCGX}_{18} \texttt{ADLX}_{19} \textbf{X}_{20} \texttt{YIPX}_{21} \textbf{X}_{22} \texttt{G-}$

 $X_{23}PX_{24}GGX_{25}X_{26}$ -COOH (SEQ ID NO 59, spanning positions 73 to 148), $NH_2-X_{33}NX_{34}X_{35}TGNX_{36}PGCSFSI$ -COOH (SEQ ID NO 60, spanning positions 162 to 176),

and,

 $NH_2GX_{10}ADLX_{19}X_{20}YIPX_{21}X_{22}GX_{23}PX_{24}$ (SEQ ID NO 61, spanning positions 129 to 149). Particularly preferred is peptide ALMGYIPLV (SEQ ID NO 163).

Even more particularly, the present invention relates to the use of polypeptides as described above for the preparation of an HCV immunogenic composition.

The present invention thus also contemplates a polypeptide as defined above comprising or consisting of at least 8 to about 44 contiguous amino acids selected from the region comprised between amino acid positions 133 to 176 of the core region of HCV:

and with said contiguous amino acids containing a T-cell stimulating epitope, and provided that said polypeptide is different from any known T cell epitope containing HCV peptide or polypeptide described from any of the above-mentioned regions. The latter known HCV polypeptides and peptides are described for screening for B cell epitopes.

Even more particularly, the present invention relates to the use of polypeptides as described above for the preparation of an HCV immunogenic composition.

The present invention thus also contemplates a polypeptide as defined above comprising or consisting of at least 8 to about 20 contiguous amino acids selected from the region comprised between amino acid positions 157 to 176 of the core region of HCV:

NH₂-X₃₀X₃₁X₃₂DGX₃₃NX₃₄X₃₅TGNX₃₆PGCSFSI-COOH (SEQ ID NO 51), and more particularly selected from VLEDGVNYATGNLPGCSFSI (SEQ ID NO 13 = peptide CORE 27) or VLEDIVNYATGNLPGCSFSI (SEQ ID NO 73), and with said contiguous amino acids containing a T-cell stimulating epitope, and provided that said polypeptide is different from any known T cell epitope containing HCV peptide or polypeptide described from any of the above-mentioned regions. The latter known HCV polypeptides and peptides are described for screening for B cell epitopes. Preferentially said peptides are further chosen from the following list of peptides:

 NH_2 - $GX_{33}NX_{34}X_{35}TGNX_{36}$ -COOH (SEQ ID NO 74),

 $\mathrm{NH_2-X_{33}NX_{34}X_{35}TGNX_{36}-COOH}$ (SEQ ID NO 75),

 $\mathrm{NH_2}\text{-}\mathrm{NX_{36}PGCSFSI}\text{-}\mathrm{COOH}$ (SEQ ID NO 76) and

 $NH_2-X_{36}PGCSFSI-COOH$ (SEQ ID NO 77). Particularly preferred peptides include: GVNYATGNL (SEQ ID NO 78), GVNYATGNL (SEQ ID NO 79), NLPGCSFSI (SEQ ID NO 80) and LPGCSFSI (SEQ ID NO 81).

Even more particularly, the present invention relates to the use of polypeptides as described above for the preparation of an HCV immunogenic composition.

The present invention thus also contemplates a polypeptide as defined above comprising or consisting of at least 8 to about 20 contiguous amino acids selected from the region comprised

between amino acid positions 145 to 164 of the core region of HCV:

 $NH_2-GGX_{25}X_{26}X_{27}X_{28}LX_{29}HGVRX_{30}X_{31}X_{32}DGX_{33}NX_{34}-COOH$ (SEQ ID NO 52),

and more particularly selected from GGAARALAHGVRVLEDGVNY (SEQ ID NO 12 = peptide CORE 25) or GGVAARALAHGVRVLEDGVNY (SEQ ID NO 118), and with said contiguous amino acids containing a T-cell stimulating epitope, and provided that said polypeptide is different from any known T cell epitope containing HCV peptide or polypeptide described from any of the above-mentioned regions. The latter known HCV polypeptides and peptides are described for screening for B cell epitopes. Preferentially said peptides according to the invention are chosen from the following list of peptides:

 $NH_2-X_{28}LX_{29}HGVRX_{30}X_{31}-COOH$ (SEQ ID NO 82), $NH_2-LX_{29}HGVRX_{30}X_{31}-COOH$ (SEQ ID NO 83), $NH_2-GVRX_{30}X_{31}X_{32}DGX_{33}-COOH$ (SEQ ID NO 84),

 $NH_2-VRX_{30}X_{31}X_{32}DGX_{33}-COOH$ (SEQ ID NO 85),

 $NH_2-RX_{30}X_{31}X_{32}DGX_{33}NX_{34}-COOH$ (SEQ ID NO 86), and

 $NH_2 - X_{30}X_{31}X_{32}DGX_{33}NX_{34} - COOH$ (SEQ ID NO 87).

Particularly preferred peptides include: ALAHGVRVL (SEQ ID NO 88), LAHGVRVL (SEQ ID NO 89), VRVLEDGV (SEQ ID NO 90), RVLEDGV (SEQ ID NO 91), VLEDGVNY (SEQ ID NO 92), and LEDGVNY (SEQ ID NO 93).

Even more particularly, the present invention relates to the use of polypeptides as described above for the preparation of an HCV immunogenic composition.

The present invention thus also contemplates a polypeptide as defined above comprising or consisting of at least 8 to about 20 contiguous amino acids selected from the region comprised between amino acid positions 133 to 152 of the core region of HCV:

 $NH_2-LX_{19}X_{20}YIPX_{21}X_{22}GX_{23}PX_{24}GGX_{25}X_{26}X_{27}X_{28}LX_{29}-COOH$ (SEQ ID NO 53),

and more particularly selected from LMGYIPLVGAPLGGAARALA (SEQ ID NO 11 = peptide CORE 23), and provided that said polypeptide is different from any known T cell epitope containing HCV peptide

or polypeptide described from any of the above-mentioned regions. The latter known HCV polypeptides and peptides are described for screening for B cell epitopes. Preferentially said peptides according to the invention are chosen from the following list of peptides:

 $NH_2-LX_{19}X_{20}YIPX_{21}X_{22}GX_{23}PX_{24}GGX_{25}-COOH$ (SEQ ID NO 62),

 $NH_2-X_{19}X_{20}YIPX_{21}X_{22}GX_{23}PX_{24}GGX_{25}-COOH$ (SEQ ID NO 63),

 $NH_2-YIPX_{21}X_{22}GX_{23}PX_{24}-COOH$ (SEQ ID NO 64),

 $NH_2-IPX_{21}X_{22}GX_{23}PX_{24}-COOH$ (SEQ ID NO 65),

 $\mathrm{NH_2-X_{21}X_{22}GX_{23}PX_{24}GGX_{25}-COOH}$ (SEQ ID NO 66), and

 $\rm NH_2-X_{22}GX_{23}PX_{24}GGX_{25}-COOH$ (SEQ ID NO 68). Prefered peptides chosen from this list include:

LMGYIPLV (SEQ ID NO 69), MGYIPLV (SEQ ID NO 70), YIPLVGAPL (SEQ ID NO 71), IPLVGAPL (SEQ ID NO 72), LVGAPLGGA (SEQ ID NO 94), and VGAPLGGA (SEQ ID NO 95).

Even more particularly, the present invention relates to the use of polypeptides as described above for the preparation of an HCV immunogenic composition.

The present invention thus also contemplates a polypeptide as defined above comprising or consisting of at least 8 to about 20 contiguous amino acids selected from the region comprised between amino acid positions 109 to 128 of the core region of HCV:

NH₂-X₁₁X₁₂DPRX₁₃X₁₄SRNX₁₅GX₁₆VIDTX₁₇TC-COOH (SEQ ID NO 54), and more particularly selected from PTDPRRRSRNLGKVIDTLTC (SEQ ID NO 9 = peptide CORE 19), and provided that said polypeptide is different from any known T cell epitope containing HCV peptide or polypeptide described from any of the above-mentioned regions. The latter known HCV polypeptides and peptides are described for screening for B cell epitopes. Preferentially said peptides according to the present invention are chosen from the following peptides:

 $NH_2-NX_{16}GX_{16}VIDTX_{17}-COOH$ (SEQ ID NO 96) or

 $\rm NH_2-X_{15}GX_{16}VIDTX_{17}-COOH$ (SEQ ID NO 97). Preferential peptides are for instance NLGKVIDTL (SEQ ID NO 98) and LGKVIDTL (SEQ ID NO 117).

Even more particularly, the present invention relates to the use of polypeptides as described above for the preparation of an HCV immunogenic composition.

The present invention thus also contemplates a polypeptide as defined above comprising or consisting of at least 8 to about 20 contiguous amino acids selected from the region comprised between amino acid positions 73 to 92 of the core region of HCV: $NH_2-GX_1X_2WX_3X_4PGX_5PWPLYX_6NX_7GX_8G-COOH \ (SEQ ID NO 99) \ ,$

and more particularly selected from GRTWAQPGYPWPLYGNEGCG (SEQ ID NO 6 = peptide CORE 13), and provided that said polypeptide is different from any known T cell epitope containing HCV peptide or polypeptide described from any of the above-mentioned regions. The latter known HCV polypeptides and peptides are described for screening for B cell epitopes. Preferred peptides according to the present invention include for instance peptides further selected from:

 $NH_2-X_2WX_3X_4PGX_5PW-COOH$ (SEQ ID NO 100) and $NH_2-WX_3X_4PGX_5PW-COOH$ (SEQ ID NO 101), such as the peptides: TWAQPGYPW (SEQ ID NO 102) and WAQPGYPW (SEQ ID NO 103).

Even more particularly, the present invention relates to the use of polypeptides as described above for the preparation of an HCV immunogenic composition.

The present invention thus also contemplates a polypeptide as defined above comprising or consisting of at least 8 contiguous amino acids selected from the region comprised between amino acids 192 to 234 and 243 to 392 of HCV, more particularly selected from the region comprised between amino acids 192 to 234 and 243 to 383 in the E1 region of HCV characterized by the following sequences:

 $\rm NH_2\textsc{-}YQVRNSTGLYHVTNDCPNSSIVYEAHDAILHTPGCVPCVREGN$ (SEQ ID NO 164, spanning positions 192 to 234), and,

TPTVATTRDGKLPATQLRRHIDLLVGSATLCSALYVGDLCGSVQLFTFSPRRHWTTQGCNCS
IYPGHITGHRMAWDMMMNWSPTAALVMAQLLRIPQAILDMIAGAHWGVLAGIAYFSMVGNWA
KVLVVLLLFAGVDAETIVSGGQA-COOH (SEQ ID NO 104, spanning positions
243 to 392), or any variant to this sequence derived from another
type of HCV as depicted in Figure 4, wherein said contiguous

amino acids containing a T-cell stimulating epitope, and provided that said polypeptide is different from any known T cell epitope containing HCV peptide or polypeptide described from any of the above-mentioned regions. The latter known HCV polypeptides and peptides are described for screening for B cell epitopes.

With said peptide being preferentially different from RMAWDMM spanning positions 317 to 323 and ASRCWVAM spanning positions 235-242.

Even more particularly, the present invention relates to the use of polypeptides as described above for the preparation of an HCV immunogenic composition.

The present invention thus also contemplates a polypeptide as defined above comprising or consisting of at least 8 to about 68 contiguous amino acids selected from the region comprised between amino acids 193 to 234 and 243 to 260 in the E1 region of HCV characterized by the following sequence:

QVRNSTGLYHVTNDCPNSSIVYEAHDAILHTPGCVPCVREGN (SEQ ID NO 165, spanning positions 193 to 234), and,

TPTVATTRDGKLPATQLR (SEQ ID NO 105, spanning positions 243 to 260), or any variant to this sequence derived from another type of HCV as depicted in Figure 4, wherein said contiguous amino acids containing a T-cell stimulating epitope, and provided that said polypeptide is different from any known T cell epitope containing HCV peptide or polypeptide described from any of the above-mentioned regions. The latter known HCV polypeptides and peptides are described for screening for B cell epitopes.

Particularly preferred peptides according to the invention include:

QVRNSTGLYHVTNDCPNSSI (SEQ ID NO 16), NDCPNSSIVYEAHDAILHTP (SEQ ID NO 17),

HDAILHTPGCVPCVREGNVS (SEQ ID NO 18),

CVREGNVSRCWVAMTPTVAT (SEQ ID NO 19), and,

AMTPTVATRDGKLPPATQLRR (SEQ ID NO 20).

Even more particularly, the present invention relates to the use of polypeptides as described above for the preparation of an HCV immunogenic composition.

The present invention thus also contemplates a polypeptide as defined above comprising or consisting of at least 8 to about 80 contiguous amino acids selected from the region comprised between amino acids 253 to 332 in the El region of HCV characterized by the following sequence:

$\verb|NH|_2-LPATQLRRHIDLLVGSATLCSALYVGDLCGSVQLFTFSPRRH|$

WTTQGCNCSIYPGHITGHRMAWDMMNWSPTAAL-COOH (SEQ ID NO 106), or any variant to this sequence derived from another type of HCV as depicted in Figure 4, wherein said contiguous amino acids containing a T-cell stimulating epitope, and provided that said polypeptide is different from any known T cell epitope containing HCV peptide or polypeptide described from any of the abovementioned regions. The latter known HCV polypeptides and peptides are described for screening for B cell epitopes.

Particularly preferred peptides according to the invention include:

```
LPATQLRRHIDLLVGSATLC (SEQ ID NO 21),
LVGSATLCSALYVGDLCGSV (SEQ ID NO 22),
QLFTFSPRRHWTTQGCNCSI (SEQ ID NO 23),
TQGCNCSIYPGHITGHRMAW (SEQ ID NO 24), and,
ITGHRMAWDMMMNWSPTAAL (SEQ ID NO 25).
```

Even more particularly, the present invention relates to the use of polypeptides as described above for the preparation of an HCV immunogenic composition.

The present invention thus also contemplates a polypeptide as defined above comprising or consisting of at least 8 to about 68 contiguous amino acids selected from the region comprised between amino acids 325 to 392 in the E1 region of HCV characterized by the following sequence:

$\mathrm{NH_2}\text{-}\mathrm{MNWSPTAALVMAQLLRIPQAILDMIAGAHWGVLAGIAYFSMVGNW}$

AKVLVVLLLFAGVDAETIVSGGQA-COOH (SEQ ID NO 107), or any variant to this sequence derived from another type of HCV as depicted in Figure 4, wherein said contiguous amino acids containing a T-cell stimulating epitope, and provided that said polypeptide is

different from any known T cell epitope containing HCV peptide or polypeptide described from any of the above-mentioned regions. The latter known HCV polypeptides and peptides are described for screening for B cell epitopes.

Particularly preferred peptides according to the present invention include:

NWSPTAALVMAQLLRIPQAI (SEQ ID NO 26),

LLRIPQAILDMIAGAHWGVL (SEQ ID NO 27),

AGAHWGVLAGIAYFSMVGNW (SEQ ID NO 28), and,

VVLLLFAGVDAETIVSGGQA (SEQ ID NO 29).

Even more particularly, the present invention relates to the use of polypeptides as described above for the preparation of an HCV immunogenic composition.

The present invention also contemplates a polypeptide as defined above comprising or consisting of at least 8 to about 32 contiguous amino acids selected from the region between amino acids 397 to 428, or comprising or consisting of at least 8 to about 68 contiguous amino acids selected from the region between amino acids 571 to 638 in the E2 region of HCV characterized by the following sequences:

 $NH_2 - X_{37}X_{38}X_{39}X_{40}X_{41}X_{42}X_{43}X_{44}X_{45}GX_{46}X_{47}QX_{48}X_{49}X_{50}LX_{51}NX_{54}NGSWHX_{52}NX_{53}TALN-COOH$ (SEQ ID NO 49, spanning positions 397 to 428, see Figure 4), and,

 $NH_2-IX_{55}X_{56}X_{57}X_{58}NX_{59}X_{60}Z_1Z_2LX_{61}CPTDCFRKX_{62}PX_{63}X_{64}TYX_{65}X_{66}CGX_{67}GPX_{68}X_{69}-TPRCX_{70}X_{71}DYPYRLWHYPCTX_{72}NX_{73}X_{74}X_{75}FKX_{76}RMX_{77}VGGVEH-COOH (SEQ ID NO 108, spanning positions 571 to 638, see Figure 5).$

wherein X_{37} represents S, A, Q, L, N, Y, R, Y or H, X_{38} represents G, S, T, A or R, X_{39} represents F, I, L, or V; X_{40} represents V, A, or T; X_{41} represents S, D or G; X_{42} represents L, I, W, F, or M; X_{43} represents L, I or F, X_{44} represents A, T, D or S; X_{45} represents P, Q, S, R, L, I or T; X_{46} represents A, P, or S; X_{47} represents K, S, Q, A, or R; X_{48} represents N, K, D, or R; X_{49} represents V, I, or L; X_{50} represents Q, S or Y; X_{51} represents I or V; X_{52} represents L or I; X_{53} represents S or R; and X_{54}

represents T or S; X_{55} represents G or R; X_{56} represents G, A, or K, X_{57} represents A, V, G, S, or D; X_{58} represents G, F, or Y; X_{59} represents N, H, R, L, A, or S; X_{60} represents T or S; Z_1 represents represents M or I; Z_2 represents D; X_{61} represents H, L, V, T, or I; X_{62} represents H or Y; X_{63} represents D or E; X_{64} represents A or T; X_{65} represents S, T, I, or L; X_{66} represents R or K; X_{67} represents S or A, X_{68} represents W or L; X_{69} represents I or L; X_{70} represents L, M or I, X_{71} represents V or I; X_{72} represents I, V, F, or L; X_{73} represents Y or F; X_{74} represents T, S or A; X_{75} represents I or V; X_{76} represents I, V or A, X_{77} represents Y or F,

and with said contiguous amino acids containing a T-cell stimulating epitope, and provided that said polypeptide is different from any known T cell epitope containing HCV peptide or polypeptide described from any of the above-mentioned regions. The latter known HCV polypeptides and peptides are described for screening for B cell epitopes.

Even more particularly, the present invention relates to the use of polypeptides as described above for the preparation of an HCV immunogenic composition.

The present invention thus also contemplates a polypeptide as defined above comprising or consisting of at least 8 to about 20 contiguous amino acids selected from the region comprised between amino acid positions 397 to 416 of the E2 region of HCV: NH₂-X₃₇X₃₈X₃₉X₄₀X₄₁X₄₂X₄₃X₄₄X₄₅GX₄₆X₄₇QX₄₈X₄₉X₅₀LX₅₁NX₅₄-COOH (SEQ ID NO 55), and more particularly selected from SGLVSLFTPGAKQNIQLINT (SEQ ID NO 46 or peptide NS1-7*), and provided that said polypeptide is different from any known T cell epitope containing HCV peptide or polypeptide described from any of the above-mentioned regions. The latter known HCV polypeptides and peptides are described for screening for B cell epitopes.

Even more particularly, the present invention relates to the use of polypeptides as described above for the preparation of an HCV immunogenic composition.

The present invention thus also contemplates a polypeptide as defined above comprising or consisting of at least 8 to about

20 contiguous amino acids selected from the region comprised between amino acid positions 409 to 428 of the E2 region of HCV: $NH_2-QX_{48}X_{49}X_{50}LX_{51}NX_{54}NGSWHX_{52}NX_{53}TALN-COOH$ (SEQ ID NO 56)

and more particularly selected from QNIQLINTNGSWHINSTALN (SEQ ID NO 47 or peptide NS1-5 *),

and with said contiguous amino acids containing a T-cell stimulating epitope, and provided that said polypeptide is different from any known T cell epitope containing HCV peptide or polypeptide described from any of the above-mentioned regions. The latter known HCV polypeptides and peptides are described for screening for B cell epitopes. Preferentially, the peptides according to the present invention are selected from the following list of peptides:

 $NH_2-X_{50}LX_{51}NX_{54}NGSW-COOH$ (SEQ ID NO 109),

NH2-LX51NX54NGSW-COOH (SEQ ID NO 110),

 $NH_2-SWHX_{52}NX_{53}TAL-COOH$ (SEQ ID NO 111), and $NH_2-SWHX_{52}NX_{53}TAL-COOH$ (SEQ ID NO 112). Prefered peptides include for instance: QLINTNGSW (SEQ ID NO 113), LINTNGSW (SEQ ID NO 114), SWHINSTAL (SEQ ID NO 115) and WHINSTAL (SEQ ID NO 116).

Even more particularly, the present invention relates the use of to polypeptides as described above for the preparation of an HCV immunogenic composition.

The present invention thus also contemplates a polypeptide as defined above comprising or consisting of at least 8 to about 20 contiguous amino acids selected from the region comprised between amino acid positions 571 to 638 of the E2 region of HCV: $NH_2 - IX_{55}X_{56}X_{57}X_{58}NX_{59}X_{60}Z_1Z_2LX_{61}CPTDCFRKX_{62}PX_{63}X_{64}TYX_{65}X_{66}CGX_{67}GPX_{68}X_{69} - TPRCX_{70}X_{71}DYPYRLWHYPCTX_{72}NX_{73}X_{74}X_{75}FKX_{76}RMX_{77}VGGVEH-COOH (SEQ ID NO 108),$

and with said contiguous amino acids containing a T-cell stimulating epitope, and provided that said polypeptide is different from any known T cell epitope containing HCV peptide or polypeptide described from any of the above-mentioned regions. The latter known HCV polypeptides and peptides are described for screening for B cell epitopes.

Preferred peptides according to the invention are chosen from the following list of peptides: $X_{60}Z_1Z_2LX_{61}CPTDCF$ (SEQ ID NO 119), $FRKX_{62}PX_{63}X_{64}TY$ (SEQ ID NO 120), $X_{68}X_{69}$ -TPRCX₇₀X₇₁ (SEQ ID NO 121), $X_{70}X_{71}DYPYRL$ (SEQ ID NO 122), $X_{71}DYPYRLW$ (SEQ ID NO 123), YPYRLWHY (SEQ ID NO 124), LWHYPCTX, (SEQ ID NO 125), $X_{72}NX_{73}X_{74}X_{75}FKX_{76}$ (SEQ ID NO 126), $X_{73}X_{74}X_{75}FKX_{76}RM$ (SEO ID NO 127), $X_{75}FKX_{76}RMX_{77}V$ (SEQ ID NO 128), $X_{75}RMX_{77}VGGV$ (SEQ ID NO 129), $IX_{55}X_{56}X_{57}X_{58}NX_{59}X_{60}Z_1Z_2LX_{61}CPTDCFRKX_{62}P$ (SEQ ID NO 130), TDCFRKX₅₂PX₅₃X₅₄TYX₅₅X₆₆CGX₆₇GPX₆₈ (SEQ ID NO 131), $X_{65}X_{66}CGX_{67}GPX_{68}X_{69}TPRCX_{70}X_{71}DYPYR$ (SEQ ID NO 132), $CX_{70}X_{71}DYPYRLWHYPCTX_{72}NX_{73}X_{74}X_{75}$ (SEQ ID NO 133),

More preferentially, the peptides according to the present invention are selected from the following list of peptides:

IGGAGNNTLHCPTDCFRKHP (SEQ ID NO 41),
TDCFRKHPDATYSRCGSGPW (SEQ ID NO 42),
SRCGSGPWITPRCLVDYPYR (SEQ ID NO 43),
CLVDYPYRLWHYPCTINYTI (SEQ ID NO 44), and,
PCTINYTIFKIRMYVGGVEH (SEQ ID NO 45).

 $PCTX_{72}NX_{73}X_{74}X_{75}FKX_{76}RMX_{77}VGGVEH$ (SEQ ID NO 134).

With said peptides being preferentially different from PDCFRKHP spanning positions 582 to 590 and YPYRLWH spanning positions 611 to 617.

Even more particularly, the present invention relates the use of to polypeptides as described above for the preparation of an HCV immunogenic composition.

The present invention thus also contemplates a polypeptide as defined above comprising or consisting of at least 8 to about 20 contiguous amino acids selected from the region comprised between amino acid positions 1188 to 1463 of the NS3

region of HCV characterized by the following sequence: $\mathrm{NH_2}\text{-}\mathrm{GVAKAVDFVPVESMETTMRSPVFTDNSSPPAVPQTFQVA}$

HLHAPTGSGKSTKVPAAYAAQGYKVLVLNPSVAATLGFGAYMSKAHGVDPNIRTGVRTITTG APITYSTYGKFLADGGCSGGAYDIIICDECHSIDSTSILGIGTVLDQAETAGARLVVLATAT PPGSVTVPHPNIEEVALSSTGEIPFYGKAIPIEVIKGGRHLIFCHSKKKCDELAAKLSGFGI NAVAYYRGLDVSVIPTSGDVVVVATDALMTGFTGDFDSVIDCNTCVTQTVDFS-COOH (SEQ ID NO 57), or any variant of said sequence as can be deduced from Figure 6, and with said contiguous amino acids containing a T-cell stimulating epitope, and provided that said polypeptide is different from any known T cell epitope containing HCV peptide or polypeptide described from any of the above-mentioned regions. The latter known HCV polypeptides and peptides are described for screening for B cell epitopes.

Preferentially said peptides are chosen from the following list of peptides:

VAKAVDFV (SEQ ID NO 135), VAKAVDFI (SEQ ID NO 136), VESMETTM (SEQ ID NO 137), AVPQTFQV (SEQ ID NO 138), YAAQGYKV (SEQ ID NO 139), VLVLNPSVA (SEQ ID NO 140), YMSKAHGV (SEQ ID NO 141), IRTGVRTI (SEQ ID NO 142), YSTYGKFL (SEQ ID NO 143), ILGIGTVL (SEQ ID NO 144), VTVPHPNI (SEQ ID NO 145), IPFYGKAI (SEQ ID NO 146), FYGKAIPI (SEQ ID NO 147), VIKGGRHL (SEQ ID NO 148), IKGGRHLI (SEQ ID NO 149), FCHSKKKC (SEQ ID NO 150), CDELAAKL (SEQ ID NO 151), LAAKLSGFG (SEQ ID NO 152), SGFGINAV (SEQ ID NO 153), FGINAVAY (SEQ ID NO 154), YRGLDVSV (SEQ ID NO 155), VIPTSGDV (SEQ ID NO 156), IPTSGDVV (SEQ ID NO 157), VVVATDAL (SEQ ID NO 158), VVATDALM (SEQ ID NO 159), MTGFTGDF (SEQ ID NO 160), FTGDFDSV (SEQ ID NO 161), KLVALGINAV (SEQ ID NO 166), VIDCNTCV (SEQ ID NO 162), or any variant of said sequence as can be deduced from Figure 6.

With said peptides being preferentially different from GKSTKVP, PSVAAT, IGTVLDQAE, AVAYYR and TGDFDSVID.

The present invention relates more particularly to any of the above-mentioned polypeptides wherein said T cell stimulating epitope is a T cell helper epitope.

According to another embodiment, the present invention relates to any of the above-mentioned polypeptides wherein said T cell stimulating epitope is a CTL epitope.

The present invention also relates to the incorporation of any of the above-mentioned polypeptides into a prophylactic vaccine composition.

According to another embodiment, the present invention relates to the incorporation of any of the above-mentioned polypeptides into a therapeutic vaccine composition.

Moreover, the present invention also contemplates a polypeptide comprising or consisting of multiple repeats of any of the polypeptides as defined above, combinations of any of the polypeptides as defined above, or mimotopes of the peptides as defined above.

The term "mimotopes" refers to peptides which mimic the polypeptides as defined above immunologically. Since sequence variability has been observed fro HCV, it may be desirable to vary one or more amino acids so as to better mimic the epitopes of different strains. It should be understood that such mimotopes need not be identical to any particular HCV sequence as long as the subject compounds are capable of providing for immunological stimulation after which the T cells are reactive with at least one strain of HCV. The polypeptides as described above, may therefore be subject to insertions, deletions and conservative as well as non-conservative amino acid subtitutions where such changes might provide for certain advantages in their use. The peptides will preferably be as short as possible while still maintaining all of their sensitivity of the larger sequence. In certain cases, it may be desirable to join two or more peptides into a single structure. The formation of such a composite may involve covalent or non-covalent linkages.

The present invention also contemplates a polypeptide as defined above, with said polypeptide being a recombinant polypeptide expressed by means of an expression vector comprising a nucleic acid insert encoding a polypeptide as defined above.

In order to carry out the expression of the T-cell containing polypeptides of the invention in bacteria such as E. coli or in eukaryotic cells such as in S. cerevisiae, or in cultured vertebrate or invertebrate hosts such as insect cells, Chi-

nese Hamster Ovary (CHO), COS1, BHK, and MDCK cells, the following steps are carried out:

- transformation of an appropriate cellular host with a recombinant vector, or by means of adenoviruses, influenza viruses, BCG, and any other live carrier systems, in which a nucleotide sequence coding for one of the polypeptides of the invention has been inserted under the control of the appropriate regulatory elements, particularly a promoter recognized by the polymerases of the cellular host or of the live carrier system and in the case of a prokaryotic host, an appropriate ribosome binding site (RBS), enabling the

expression in said cellular host of said nucleotide sequence,

- culture of said transformed cellular host under conditions enabling the expression of said insert.

Recombinant virus or live carrier vectors may also be directly used as live vaccines in humans.

According to a preferred embodiment, the present invention contemplates a polypeptide as defined above which is operably linked to a pathogen related immunogen such as the HCV core protein, the HCV envelope proteins E1 and E2, or the HCV NS3, NS4 or NS5 immunogens, or a HCV peptide containing a B cell epitope.

The phrase "operatively linked" as used herein means that the linkage does not interfere with the ability of either of the linked groups to function as described; e.g., to function as a T or B cell determinant. Thus, operatively linking not only includes covalent linkages, but also includes linkages capable of inducing T cell function.

The phrase "pathogen related" as used herein designates a polypeptide that is capable of inducing the T cell function that immunoreacts with a pathogen in native form.

The defined polypeptides can be employed as such or in combination with HCV B cell epitopes, HBsAg or HBcAg particles, HIV immunogens, HTLV immunogens. HCV peptides containing preferred B cell epitopes are detailed in for instance EP-A-0 489 968 and WO 93/18054.

Methods for operatively linking individual polypeptides through an amino acid residue side chain to form an immunogenic conjugate, i.e., a branched-chain polypeptide polymer, are well known in the art. Those methods include linking through one or more types of functional groups on various side chains and result in the respective polypeptide backbones being covalently linked (coupled) but separated by at least one side chain.

Useful side chain functional groups include epsilon-amino groups, beta- or gamma-carboxyl groups, thiol (-SH) groups and aromatic rings (e.g. tyrosine and histidine). Methods for linking polypeptides using each of the above functional groups are described in Erlanger (1980), Aurameas et al. (1978) and U.S. Patent No. 4,493,795 to Nestor et al. In addition, a site-directed coupling reaction, as described in Rodwell et al. (1985), can be carried out so that the biological activity of the polypeptides is not substantially diminished.

Furthermore, as is well known in the art, the HBcAg protein and polypeptide immunogen can be used in their native form or their functional group content may be modified by succinylation of lysine residues or reaction with cysteine-thiolactone. A sulfhydryl group may also be incorporated into either polypeptide by reaction of amino functions with 2-iminothiolane or the N-hydroxysuccinimide ester of 3-(3-dithiopyridyl) propionate. The polypeptides can also be modified to incorporate spacer arms, such as hexamethylene diamine or other bifunctional molecules of similar size, to facilitate linking.

Any polypeptide immunogen against which antibody production is desired can be linked to the polypeptide of the present invention protein to form an immunogenic conjugate of this invention. In preferred embodiments the polypeptide immunogen is a pathogen related immunogen and the conjugate has the capacity to induce the production of antibodies that immunoreact with the pathogen when injected in an effective amount into an animal. Exemplary immunogens of particular importance are derived from bacteria such as <u>B. pertussis</u>, <u>S.</u>

typosa, S. Paratyphoid A and B, C. diptheriae, C. tetani, C. botulinum, C. perfringens, B. anthracis, P. pestis, P. multocida, V. cholerae, N. meningitides, N. gonorrhea, H. influenzae, T. palladium, and the like; immunogens derived from viruses such as polio virus, adenovirus, parainfluenza virus, measles, respiratory syncytical virus, influenza virus. encephalomyeitis virus, hog chloera virus, Newcastle virus, fowl pox virus, rabies virus, feline and canine distemper viruses, foot and mouth disease virus, human and simian immunodeficiency viruses, and the like; rickettsiae immunogen such as epidemic and endemic typhus, and the spotted fever groups, and the like. Immunogens are well known to the prior art in numerous references such as U.S. Patent No. 3,149,036, No. 3,983,228, and No. 4,069,313; in Essential Immunology, 3rd Ed., by Roit, published by Blackwell Scientific Publications; in Fundamentals of Clinical Immunology, by Alexander and Good, published by W.B. Saunders; and in Immunology, by Bellanti, published by W.B. Saunders. Particularly preferred pathogen related immunogens are those described in United States Patent No. 4,625,015, No. 4,544,500, No. 4,545,931, No. 4,663,436, No. 4,631,191, No. 4,629,783 and in Patent Cooperation Treaty International Publication No. WO87/02775 and No. WO87/02892, all of whose disclosures are incorporated herein by reference.

The present invention relates particularly to any of the following peptides or any peptide comprised in the sequence of any of the following peptides, with said peptides containing a T cell epitope:

 $NH_2-X_{30}X_{31}X_{32}DGX_{33}NX_{34}X_{35}TGNX_{36}PGCSFSI-COOH$ (SEQ ID NO 51), VLEDGVNYATGNLPGCSFSI (SEQ ID NO 13 = peptide CORE 27), VLEDIVNYATGNLPGCSFSI (SEQ ID NO 73),

 $NH_2-GX_{33}NX_{34}X_{35}TGNX_{36}-COOH$ (SEQ ID NO 74),

 $NH_2-X_{33}NX_{34}X_{35}TGNX_{36}-COOH$ (SEQ ID NO 75),

NH₂-NX₃₆PGCSFSI-COOH (SEQ ID NO 76),

NH₂-X₃₆PGCSFSI-COOH (SEQ ID NO 77),

GVNYATGNL (SEQ ID NO 78), GVNYATGNL (SEQ ID NO 79),

NLPGCSFSI (SEQ ID NO 80), LPGCSFSI (SEQ ID NO 81),

29

```
NH_2-GGX_{25}X_{26}X_{27}X_{28}LX_{29}HGVRX_{30}X_{31}X_{32}DGX_{33}NX_{34}-COOH
(SEO ID NO 52),
                             (SEQ ID NO 12 = peptide
                                                                    CORE
                                                                             25),
GGAARALAHGVRVLEDGVNY
GGVAARALAHGVRVLEDGVNY (SEQ ID NO 118),
\mathrm{NH_2-X_{28}LX_{29}HGVRX_{30}X_{31}-COOH} (SEQ ID NO 82),
NH_2-LX_{29}HGVRX_{30}X_{31}-COOH (SEQ ID NO 83),
\mathrm{NH_2\text{-}GVRX_{30}X_{31}X_{32}DGX_{33}\text{-}COOH} (SEQ ID NO 84),
NH_2-VRX_{30}X_{31}X_{32}DGX_{33}-COOH (SEQ ID NO 85),
NH_2-RX_{30}X_{31}X_{32}DGX_{33}NX_{34}-COOH (SEQ ID NO 86),
NH_2-X_{30}X_{31}X_{32}DGX_{33}NX_{34}-COOH (SEQ ID NO 87),
ALAHGVRVL (SEQ ID NO 88), LAHGVRVL (SEQ ID NO 89),
VRVLEDGV (SEQ ID NO 90), RVLEDGV (SEQ ID NO 91), VLEDGVNY (SEQ
ID NO 92), LEDGVNY (SEQ ID NO 93),
NH_2-LX_{19}X_{20}YIPX_{21}X_{22}GX_{23}PX_{24}GGX_{25}X_{26}X_{27}X_{28}LX_{29}-COOH
 (SEQ ID NO 53),
LMGYIPLVGAPLGGAARALA (SEQ ID NO 11 = peptide CORE 23),
NH_2-LX_{19}X_{20}YIPX_{21}X_{22}GX_{23}PX_{24}GGX_{25}-COOH (SEQ ID NO 62),
NH_2-X_{19}X_{20}YIPX_{21}X_{22}GX_{23}PX_{24}GGX_{25}-COOH (SEQ ID NO 63),
NH_2 - YIPX_{21}X_{22}GX_{23}PX_{24} - COOH (SEQ ID NO 64),
NH_2-IPX_{21}X_{22}GX_{23}PX_{24}-COOH (SEQ ID NO 65),
NH_2-X_{21}X_{22}GX_{23}PX_{24}GGX_{25}-COOH (SEQ ID NO 66),
NH_2 - X_{22}GX_{23}PX_{24}GGX_{25} - COOH (SEQ ID NO 68),
 LMGYIPLV (SEQ ID NO 69), MGYIPLV (SEQ ID NO 70),
 YIPLVGAPL (SEQ ID NO 71), IPLVGAPL (SEQ ID NO 72),
 LVGAPLGGA (SEQ ID NO 94), VGAPLGGA (SEQ ID NO 95),
 NH_2-X_{11}X_{12}DPRX_{13}X_{14}SRNX_{15}GX_{16}VIDTX_{17}TC-COOH (SEQ ID NO 54),
 PTDPRRRSRNLGKVIDTLTC (SEQ ID NO 9 = peptide CORE 19),
 \mathrm{NH_2-NX_{15}GX_{16}VIDTX_{17}-COOH} (SEQ ID NO 96),
 NH_2-X_{15}GX_{16}VIDTX_{17}-COOH (SEQ ID NO 97),
 NLGKVIDTL (SEQ ID NO 98), LGKVIDTL (SEQ ID NO 117),
 NH_2-GX_1X_2WX_3X_4PGX_5PWPLYX_6NX_7GX_8G-COOH (SEQ ID NO 99),
 GRTWAQPGYPWPLYGNEGCG (SEQ ID NO 6 = peptide CORE 13),
 NH_2-X_2WX_3X_4PGX_5PW-COOH (SEQ ID NO 100),
 NH2-WX3X4PGX5PW-COOH (SEQ ID NO 101),
 TWAQPGYPW (SEQ ID NO 102), WAQPGYPW (SEQ ID NO 103),
 QVRNSTGLYHVTNDCPNSSI (SEQ ID NO 16),
```

```
NDCPNSSIVYEAHDAILHTP (SEQ ID NO 17),
 HDAILHTPGCVPCVREGNVS (SEQ ID NO 18),
 CVREGNVSRCWVAMTPTVAT (SEQ ID NO 19),
 AMTPTVATRDGKLPPATQLRR (SEQ ID NO 20),
 LPATQLRRHIDLLVGSATLC (SEQ ID NO 21),
 LVGSATLCSALYVGDLCGSV (SEQ ID NO 22),
 QLFTFSPRRHWTTQGCNCSI (SEQ ID NO 23),
 TQGCNCSIYPGHITGHRMAW (SEQ ID NO 24),
 ITGHRMAWDMMNWSPTAAL (SEQ ID NO 25),
 NWSPTAALVMAQLLRIPQAI (SEQ ID NO 26),
 LLRIPQAILDMIAGAHWGVL (SEQ ID NO 27),
AGAHWGVLAGIAYFSMVGNW (SEQ ID NO 28),
VVLLLFAGVDAETIVSGGQA (SEQ ID NO 29),
NH_{2}-X_{37}X_{38}X_{39}X_{40}X_{41}X_{42}X_{43}X_{44}X_{45}GX_{46}X_{47}QX_{48}X_{49}X_{50}LX_{51}NX_{54}-COOH \ (SEQ\ ID\ NO\ 55)\ ,
SGLVSLFTPGAKQNIQLINT (SEQ ID NO 46),
NH_2-QX_{48}X_{49}X_{50}LX_{51}NX_{54}NGSWHX_{52}NX_{53}TALN-COOH (SEQ ID NO 56),
NH_2-X_{50}LX_{51}NX_{54}NGSW-COOH (SEQ ID NO 109),
\mathrm{NH_2-LX_{51}NX_{54}NGSW-COOH} (SEQ ID NO 110),
NH_2-SWHX_{52}NX_{53}TAL-COOH (SEQ ID NO 111),
NH_2-SWHX_{52}NX_{53}TAL-COOH (SEQ ID NO 112), QLINTNGSW (SEQ ID NO 113),
LINTNGSW (SEQ ID NO 114), SWHINSTAL (SEQ ID NO 115), WHINSTAL
(SEQ ID NO 116),
GGAGNNTLHCPTDCFRKHP (SEQ ID NO 41),
TDCFRKHPDATYSRCGSGPW (SEQ ID NO 42),
SRCGSGPWITPRCLVDYPYR (SEQ ID NO 43),
CLVDYPYRLWHYPCTINYTI (SEQ ID NO 44),
PCTINYTIFKIRMYVGGVEH (SEQ ID NO 45),
X_{60}Z_1Z_2LX_{61}CPTDCF (SEQ ID NO 119),
FRKX_{62}PX_{63}X_{64}TY (SEQ ID NO 120),
X_{68}X_{69}-TPRCX<sub>70</sub>X_{71} (SEQ ID NO 121),
X_{70}X_{71}DYPYRL (SEQ ID NO 122),
X<sub>71</sub>DYPYRLW (SEQ ID NO 123),
YPYRLWHY (SEQ ID NO 124),
LWHYPCTX,2 (SEQ ID NO 125),
X_{72}NX_{73}X_{74}X_{75}FKX_{76} (SEQ ID NO 126),
X_{73}X_{74}X_{75}FKX_{76}RM (SEQ ID NO 127),
```

31

 $X_{75}FKX_{76}RMX_{77}V$ (SEQ ID NO 128), $X_{76}RMX_{77}VGGV$ (SEQ ID, NO 129), $IX_{55}X_{56}X_{57}X_{58}NX_{59}X_{60}Z_1Z_2LX_{61}CPTDCFRKX_{62}P$ (SEQ ID NO 130), TDCFRKX₆₂PX₆₃X₆₄TYX₆₅X₆₆CGX₆₇GPX₆₈ (SEQ ID NO 131), $X_{65}X_{66}CGX_{67}GPX_{68}X_{69}TPRCX_{70}X_{71}DYPYR$ (SEQ ID NO 132), $CX_{70}X_{71}DYPYRLWHYPCTX_{72}NX_{73}X_{74}X_{75}$ (SEQ ID NO 133), $PCTX_{72}NX_{73}X_{74}X_{75}FKX_{76}RMX_{77}VGGVEH$ (SEQ ID NO 134). VAKAVDFV (SEQ ID NO 135), VAKAVDFI (SEQ ID NO 136), VESMETTM (SEQ ID NO 137), AVPOTFOV (SEQ ID NO 138), YAAQGYKV (SEQ ID NO 139), VLVLNPSVA (SEQ ID NO 140), YMSKAHGV (SEQ ID NO 141), IRTGVRTI (SEQ ID NO 142), YSTYGKFL (SEQ ID NO 143), ILGIGTVL (SEQ ID NO 144), VTVPHPNI (SEQ ID NO 145), IPFYGKAI (SEQ ID NO 146), FYGKAIPI (SEQ ID NO 147), VIKGGRHL (SEQ ID NO 148), IKGGRHLI (SEQ ID NO 149), FCHSKKKC (SEQ ID NO 150), CDELAAKL (SEQ ID NO 151), LAAKLSGFG (SEQ ID NO 152), SGFGINAV (SEQ ID NO 153), FGINAVAY (SEQ ID NO 154), YRGLDVSV (SEQ ID NO 155), VIPTSGDV (SEQ ID NO 156), IPTSGDVV (SEQ ID NO 157), VVVATDAL (SEQ ID NO 158), VVATDALM (SEQ ID NO 159), MTGFTGDF (SEQ ID NO 160), FTGDFDSV (SEQ ID NO 161), VIDCNTCV (SEQ ID NO 162).

Moreover, the present invention contemplates an immunogenic composition consisting of or comprising at least one of the polypeptides as defined above mixed with a pharmaceutical acceptable excipient.

Before administration to patients, formulants may be added to the polypeptides or peptides of the invention. A liquid formulation is preferred. For example, these formulants may include oils, polymers, vitamins, carbohydrates, amino acids, salts, buffers, albumin, surfactants, or bulking agents. Preferably carbohydrates include sugar or sugar alcohols such as mono, di, or polysaccharides, or water soluble glucans. The saccharides or glucans can include fructose, dextrose, lactose, glucose, mannose, sorbose, xylose, maltose, sucrose, dextran, pullulan, dextrin, alpha and beta cyclodextrin, soluble starch, hydroxethyl starch and carboxymethylcellulose, or mixtures thereof. Sucrose is most preferred. "Sugar alcohol" is defined as a C4 to C8 hydrocarbon having an -OH group and includes

galactitol, inositol, mannitol, xylitol, sorbitol, glycerol, and Mannitol is most preferred. These sugars or sugar alcohols mentioned above may be used individually or There is no fixed limit to amount used as long as combination. the sugar or sugar alcohol is soluble in the aqueous preparation. Preferably, the sugar or sugar alcohol concentration is between 1.0 w/v% and 7.0 w/v%, more preferable between 2.0 and 6.0 w/v%. Preferably amino acids include levorotary (L) forms of carnitine. arginine, and betaine; however, other amino acids may be added. Preferred polymers include polyvinylpyrrolidone (PVP) with an average molecular weight between 2,000 and 3,000, or polyethylene glycol (PEG) with an average molecular weight between 3,000 and It is also preferred to use a buffer in the composition to minimize pH changes in the solution before lyophilization or after reconstitution. Most any physiological buffer may be used, but citrate, phosphate, succinate, and glutamate buffers or mixtures thereof are preferred. Most preferred is a citrate buffer. Preferably, the concentration is from 0.01 to 0.3 molar. Surfactants that can be added to the formulation are shown in EP patent applications No. EP 0 270 799 and EP 0 268 110.

Additionally, polypeptides can be chemically modified by covalent conjugation to a polymer to increase their circulating half-life, for example. Preferred polymers, and methods to attach them to peptides, are shown in U.S. Patent Nos. 4,766,106; 4,179,337; 4,495,285; and 4,609,546. Preferred polymers are polyoxyethylated polyols and polyethylene glycol PEG is soluble in water at room temperature and has the general formula: R(O-CH2-CH2),O-R where R can be hydrogen, or a protective group such as an alkyl or alkanol group. Preferably, the protective group has between 1 and 8 carbons, more preferably it is methyl. The symbol n is a positive integer, preferably between 1 and 1,000, more preferably between 2 and 500. has a preferred average molecular weight between 1000 and 40,000, more preferably between 2000 and 20,000, most preferably between Preferably, PEG has at least one hydroxy 3,000 and 12,000. group, more preferably it is a terminal hydroxy group.

this hydroxy group which is preferably activated. However, it will be understood that the type and amount of the reactive groups may be varied to achieve a covalently conjugated PEG/polypeptide of the present invention.

Water soluble polyoxyethylated polyols are also useful in the present invention. They include polyoxyethylated sorbitol, polyoxyethylated glucose, polyoxyethylated glycerol (POG), etc. POG is preferred. One reason is because the glycerol backbone of polyoxyethylated glycerol is the same backbone occurring naturally in, for example, animals and humans in mono-, di-, triglycerides. Therefore, this branching would not necessarily be seen as a foreign agent in the body. The POG has a preferred molecular weight in the same range as PEG. The structure for POG is shown in Knauf et al., 1988, and a discussion of POG/IL-2 conjugates is found in U.S. Patent No. 4,766,106.

Another drug delivery system for increasing circulatory half-life is the liposome. Methods of preparing liposome delivery systems are discussed in Gabizon et al., 1982; and Szoka, 1980. Other drug delivery systems are known in the art and are described in, e.g. Poznansky, 1984.

After the liquid pharmaceutical composition is prepared, it is preferably lyophilized to prevent degradation and to preserve sterility. Methods for lyophilizing liquid compositions are known to those of ordinary skill in the art. Just prior to use, the composition may be reconstituted with a sterile diluent (Ringer's solution, distilled water, or sterile saline, for example) which may include additional ingredients. Upon reconstitution, the composition is preferably administered to subjects using those methods that are known to those skilled in the art.

As stated above, the polypeptides and compositions of this invention are used to treat human patients to prevent or treat any of the above-defined disease states. The preferred route of administration is parenterally. In parenteral administration, the compositions of this invention will be

formulated in a unit dosage injectable form such as a solution, suspension or emulsion, in association with a pharmaceutically acceptable parenteral vehicle. Such vehicles are inherently nontoxic and nontherapeutic. Examples of such vehicles are saline, Ringer's solution, dextrose solution, and Hanks' solution. Nonaqueous vehicles such as fixed oils and ethyl oleate may also be used. A preferred vehicle is 5% dextrose in saline. The vehicle may contain minor amounts of additives such as substances that enhance isotonicity and chemical stability, including buffers and preservatives.

The dosage and mode of administration will depend on the individual.

More particularly, the present invention contemplates a composition as defined above for use in a method of immunizing against HCV, comprising administrating a sufficient amount of at least one of the polypeptides as defined above, possibly accompanied by pharmaceutically acceptable adjuvants, to produce an immune response.

More particularly, said immunogenic composition is a vaccine composition. Even more particularly, said vaccine composition is a prophylactic vaccine composition. Alternatively, said vaccine composition may also be a therapeutic vaccine composition.

The prophylactic vaccine composition refers to a vaccine composition aimed for preventing HCV infection and to be administered to normal persons who are not yet infected with HCV.

The therapeutic vaccine composition refers to a vaccine composition aimed for treatment of HCV infection and to be administered to patients being infected with HCV.

The polypeptides described in the present invention can be modified with lipid (lipopeptides, e.g. PAM₃Cys), and formulated with alum, monophosphoryl lipid A, pluronics, SAF1, Ribi, trehalose-6,6-dimycolate or other immunostimulating compounds known to those skilled in the art, as to enhance their immunogenicity.

Also, the present invention contemplates according to

a preferred embodiment, a composition as defined above, with said composition comprising in addition to any of the T cell-stimulating polypeptides as defined above, a peptide or polypeptide containing at least one B-cell epitope of HCV, and/or a structural HCV polypetide, and/or a non-structural HCV polypeptide.

According to a yet other preferred embodiment, the present invention contemplates a composition as defined above for use in a method of treatment of HCV, comprising administrating a sufficient amount of at least one of the polypeptides as defined above, possibly accompanied by pharmaceutically acceptable adjuvants, to allow treatment of HCV infection. In this case the polypeptides of the present invention can be employed in the form of therapeutic vaccine, aiming at the induction of a sufficient level of T cell function for clearance of Hepatitis C virus infection.

According to yet another preferred embodiment, the present invention contemplates a composition as defined above, with said composition comprising in addition to any of the polypeptides as defined above, a peptide or polypeptide containing at least one B-cell epitope of HCV, and/or a structural HCV *polypeptide, and/or a non-structural HCV polypeptide.

According to yet another embodiment, the present invention contemplates a composition wherein said polypeptides as defined above are mixed with HBsAg or HBcAg paricles, HBV immunogens, HIV immunogens and/or HTLV immunogens.

Figure legends

Figure 1: Evolution of the lymphoproliferative responses and transaminase activities in HCV patient No. 632. AST depicts aspartate aminotransferase, ALT depicts alanine aminotransferase; SI: simulation index; P1 to P6 refers to the groups of peptides 1 to 6 as disclosed in Table 1.

Figure 2: Frequencies of lymphoproliferation responses to peptide pools 1-9, single peptides NS1-7*, NS1-5* and recombinant NS3 protein in healthy controls, interferon (IFN) responders and IFN non-responders.

Figure 3: represents the part of the sequence of the isolate IG8309 which has been tested, with said part extending from with Gly at position 41 to Ser at position 318 (SEQ ID NO 57).

Figure 4: represents an alignment of the HCV structural regions.

Figure 5. Alignment of E2 region spanning amino acid positions 571 to 638.

Figure 6. Alignent of NS3 sequences spanning amino acid positions 1188 to 1465.

EXAMPLES

Example 1. Patients studied

The patients studied consisted of 19 males and 13 females, aged between 27 and 71 (mean age: 49.9 years). The diagnosis of chronic HCV hepatitis was based on a) a documented elevation of alanine aminotransferase of 2 times the upper limit of normal for at least six months; b) the presence of HCVspecific serum antibodies detected by two second generation enzyme immunoassay tests (UBI test and Innotest HCV AbII, Innogenetics, Antwerp Belgium) and c) absence of clinical, histological or serological signs of other viral, metabolic, hereditary or auto-immune hepatitis. The patients were randomized to receive either the standard treatment consisting of 3 million units Interferon α -2b (INTRON A) given thrice weekly for 24 weeks or an experimental treatment consisting of induction phase of 6 million units Interferon α -2b thrice weekly for eight weeks, followed by a maintenance phase of titrated doses of interferon of 6 to 1 million units thrice weekly until biochemical and virological remission (alanine aminotransferase activity normal, plasma hepatitis C virus-RNA undetectable) was achieved. Patients were considered clinical responders when a normalization of alanine aminotransferase activity was observed on at least two successive control visits during treatment with al least one month interval.

As controls for the specificity of the lymphoproliferative responses, 18 healthy individuals aged 25-58 years (mean 38.6), 10 males and 8 females were selected. These subjects were negative for HCV antibodies and HCV-RNA. One subject had a history of past hepatitis B virus infection and 7 had antibodies to HBsAg as a result of vaccination.

A liver biopsy was performed in all patients prior to the initiation of Interferon- α therapy. The histological status was defined according to conventional histological classification (Knodell et al., 1981).

Based on the definition of clinical responders given above, 18 subjects could be considered clinical responders to Interferon-a. The most relevant clinical, pathological and virological data of both groups are summarized in Table 2. Although the responder group contained more women and the nonresponder group more men than theoretically expected, observed imbalances were not significant $(X^2$ -test). The duration of the disease in each subject was estimated based on anamnestic data (surgery with multiple transfusions, intravenous drug abuse, professional exposure through needle stick accident, etc.) or patient file data displaying chronically fluctuating and elevated transaminase levels. The disease duration varied from one to 32 years. The mean disease duration was 9.2 ± 9.2 years in responders and 6.8 ± 5.4 years in non-responders. Although the responder group contained more subjects treated with experimental protocol and the non-responder group more subjects treated with the standard protocol, the imbalance was not significant X2-test). Twenty six out of 32 patients (81%) were infected with HCV of genotype 1b. The genotypes 3a, 4a and 5a were found in 4, 1 and 1 subject, respectively. Anamnestic data allowed us to retrieve the source of infection. Blood transfusions are the possible source of the HCV infection in 14 subjects, IV drug abuse in 3 patients and needle stick accidents in 3 others. No source of infection could be traced back in 12 subjects. Most patients (20 out of 32) showed pathological lesions compatible with chronic active hepatitis in a mild, moderate or severe form. Seven patients displayed signs of chronic persistent hepatitis. In two subjects the biopsy showed only aspecific lesions and in two others signs of liver cirrhosis were observed.

Example 2. Analysis of the humoral immune response

INNO-LIA HCV AbII (Innogenetics, Belgium) was employed to detect antibodies to peptide epitopes from the core, NS4a+b and NS5a region. From each patient a serum sample obtained before the start of the interferon therapy was examined and sometimes, additional follow-up samples were also tested. All 32 patients studied had circulating antibodies towards HCV demonstrated by two commercially available enzyme immunoassays. Using a peptidebased immunoblot assay (INNO-LIA HCV AbII) we were able to partially define the specificities of these antibodies. Sera from 31 patients were examined at least once with this assay and in 20 subjects the assay was applied on two sera taken with an interval of 4 (Patient 635) to 124 weeks (Patient 606). Table 3 shows the results of this survey. Apart from the reactivity pattern with the antigens employed (4 individually spotted core peptides, a mixture of NS4 peptides defining a fifth line and a selection of NS5 peptides creating a sixth line), Table 3 also shows the HCV genotype and the moment at which the serum was taken with respect to the start of the interferon therapy. The data clearly indicate that the antibody recognition pattern of an individual patient hardly changes over time. differences observed in the 20 paired samples were single step alterations in the intensity of the reactions. As well in

responders as in non-responders to interferon we observed the same hierarchy in the serological reaction patterns. When indeterminate or weak reactions are not taken into consideration, the following hierarchy appears: Core2 > NS4 > NS5 > Core1 > Core4 > Core3.

Example 3. Detection of HCV RNA and HCV genotyping

Reverse transcription and PCR was performed as described previously (Stuyver et al, 1993). PCR products were further processed for genotyping by means of the Inno-LiPA genotyping assay (Stuyver et al., 1993). The results of the genotyping assays are included in Table 3.

Example 4. Analysis of the cellular immune response

4.1. Synthesis of HCV antigens

Nine groups of peptides (pools) corresponding to Core, E1 and E2/NS1 sequences, two single peptides not included in these pools corresponding to E2/NS1, and a recombinant protein representing the central part of NS3-HCV genotype 1b, were used for in vitro stimulation of PBMC. Each group pooled 4-6 different 20-mer peptides which overlapped 8 amino acids. Groups 1, 2 and 3 included mainly core peptides with amino acid positions 5-80, 73-140 and 133-200, respectively (Table 1). Groups 4, 5 and 6 predominantly encompassed E1 peptides with amino acid positions 193-260, 253-332 and 325-392, respectively. Groups 7, 8 and 9 comprised E2/NS1 peptides with amino acid positions 427-494, 487-578 and 571-638, respectively. The two additional single peptides (NS1-7*, and NS1-5*) covered amino acids from 397 to 428 of the E2 sequence (Table 1). A fusion protein containing the NS3 sequence was expressed in E. coli and covered HCV amino acids 1188 to 1463 of the Belgian isolate IG8309.

Peptides were dissolved in the buffers shown in Table 1 and added to the cultures at a final concentration of 10 μ g/ml. At this peptide concentration, the concentration of dissolving

buffers in the cell cultures was not toxic or inhibitory. Preliminary experiments were performed to ascertain this. NS3 protein was used at a final concentration of 1.5 μ g/ml. Tetanus toxoid (WHO, Copenhagen, Denmark), used as a positive control antigen, was added to the culture media at a final concentration of 10 μ g/ml.

All the peptides were synthesized on either PepSyn K resin (Millipore) functionalized with the acid labile linker 4-(a-Fmoc-amino-2',4'-dimethoxybenzyl) phenoxyacetic acid, TentaGel S-RAM resin (Rapp Polymere) functionalized with the same linker which yields peptide amides upon cleavage. t-Butyl-based side chain protection and Fmoc-a-amino protected amino acid derivatives were used. The guanidino group of arginine was 2,2,5,7,8-pentamethylchroman-6-sulfonyl-protected. The imidazole group of histidine was protected with either t-Boc or trityl and the sulfhydryl group of cysteine was protected with a trityl Couplings were carried out using preformed pentafluorophenyl esters except in the case of arginine where (O-(1H-benzotriazol-1-yl)-N,N,N',N',-tetramethyluronium TBTU tetrafluoroborate, Novabiochem) was used as the activating agent in the presence of 2 equivalents of the base N-methylmorpholine 1 equivalent of 1-hydroxybenzotriazole. Occasionally, glutamine, asparagine, and tryptophan were also coupled using TBTU activation. In these cases, the trityl-protected derivatives of glutamine and asparagine (Millipore), and the $t ext{-Boc-protected}$ derivative of tryptophan (Novabiochem) were used. All syntheses were carried out on a Milligen 9050 PepSynthesizer (Millipore) using continuous flow procedures. Following cleavage of the peptides with trifluoroacetic acid in the presence of appropriate scavengers and precipitation with diethylether, all peptides were analyzed by C_{18} -reverse phase chromatography.

HCV amino acid sequences corresponding to the viral nucleocapsid (core) and E1 proteins were based on the HC-J1 sequence described by Okamoto et al. (1990) Japan. J. Exp. Med. (1990) 60:167-177). HCV sequences starting at amino acid residue Gly₄₅₁ were taken from the sequences reported by Choo et al.

(1991) Proc. Natl. Acad. Sci. USA (1991) 88:2451-2455. Most peptide sequences were chosen such that the peptides would overlap each other by 8 amino acid residues.

4.2. T cell proliferation assays

The medium used for all cell cultures consisted of RPMI 1640 supplemented with 25 mM HEPES, 2 mM L-glutamine, 50 U/ml penicillin and 50 μ g/ml streptomycin (all from Gibco Europe, Gent, Belgium), 5×10^{-5} M 2-mercaptoethanol (Sigma, St. Louis, Mo.) and 10% heat-inactivated pooled human AB serum. This AB serum was obtained from healthy blood donors with blood group AB+ and was only used when antibodies to HCV and HCV-RNA were absent. This "complemented" RPMI 1640 medium will hereafter be designated "complete medium".

PBMC were isolated from heparinized venous blood by isopycnic density centrifugation on Ficoll Hypaque (Lymphoprep, Nyegaard, Denmark) and suspended in complete medium. 4x105 PBMC in 200 μ l of complete medium were cultured in 96 well roundthe absence (Falcon Plastics) in bottomed microplates (unstimulated controls) or presence of varying concentrations of antigens for 5 days at 37°C in an atmosphere of 5% CO2 in air. 0.5 μCi (3H)-thymidine was then added to each well and 16 to 20 h later the cultures were harvested onto glass fiber filters using a multichannel cell harvester (PHD, Cambridge, MA) to (3H) -thymidine incorporation of the measure scintillation counting in an LKB-Wallac 8100 counter (LKB, Bromma, Sweden). Results are expressed as stimulation index (SI; mean cpm of antigen-stimulated cultures/mean cpm of control cultures). Proliferation was considered positive when stimulation index was >3. In some figures the results are expressed as cpm (mean cpm of antigen-stimulated cultures - mean cpm of control cultures). Standard deviations of the mean cpm of triplicate cultures were consistently below 10%.

The occurrence of in vivo primed HCV-specific memory T lymphocytes was examined using a lymphoproliferation assay.

PBMC from 32 patients with chronic HCV were stimulated in vitro with pools of 4 to 6 partially overlapping, synthetic peptides representing the core, E1 and E2/NS1 regions of HCV type 1a, with 2 overlapping, single peptides from the amino-terminus of HCV type la and with a recombinant fusion protein containing the NS3 sequence of HCV type 1b. In all but 2 patients (#610 and #636) at least 2 and up to 11 (#633) assays were performed. In patient # 632 for example lymphoproliferation was examined on 8 different occasions between week 4 and 54 following the start (week 0) of the Interferon therapy. Figure 1 shows the results of these assays in correlation with the biochemical (ALT/AST) response to therapy. Four weeks after the start of Intron-A (Schering Plough) a normalization of the transaminase levels was observed. PBMC's from the patient consistently and vigorously proliferate upon stimulation with peptide pools 2 and 3. The responses to the antigen preparations were less vigorous reproducible, suggesting that the number of memory cells recognizing these epitopes is lower. Antigens that did not induce a proliferative response with a stimulation index (SI) 3 at any time are not represented in the graph.

To analyze and summarize the results of 135 assays performed in the 32 HCV patients, we have chosen to consider the response of an individual patient to a particular antigen preparation (peptide pools 1 to 9, NS1-5*, NS1-7* or NS3 protein) as significant when it induces SI's 3 in at least half of the assays performed. The results shown in Table 4 have been obtained using this scoring method. Table shows The the recognition pattern of chronic HCV patients towards the 12 antigen preparations standardly used. Apart from the individual patient number and the number of assays performed with PBMC's from each subject, Table 4 also shows the time frame wherein these assays were executed. The start of the Interferon therapy serves as the reference point, week 0. None of the patients responded to all the antigens. PBMC's from 13 of 18 (72%) clinical responders and 12 of .14 (85%) non-responders proliferated in response to at least one antigen preparation. All

antigen preparation, peptide pool 8, induced proliferative response in at least one subject. The most frequent responses were to peptide pools 2 and 3. Whereas both interferonresponders and non-responders proliferated equally well to peptide pool 2 (56% and 57%, respectively), non-responders reacted less well to peptide pool 3 (29% or 4 of 14) than responders (44% or 8 of 18). Similar imbalances were observed for the reactions to peptide pools 5 and 9, that were more frequently recognized by non-responders (43% and 43%, respectively) than by responders (17% and 11%, respectively). Clinical non-responders to interferon therapy also reacted more frequently (57% or 8 of 14) upon stimulation with the NS3 protein than responders (24% or 4 of 17). However, none of these differences in proliferative response rates to peptide pools 3, 5 and 9 or to NS3 protein reached statistical significance (p<0.05 in 2-test). A striking and significant difference (p=0.01 in 2-test) was observed for the response rate of responders and non-responders to peptides NS1-5* and NS1-7*. Indeed, 8 of 17 responders recognized one or both peptides while none of the non-responders did so. A summary of the results of all these proliferation assays is provided in Figure 2, in which the response rates of the HCV patients as well subjects towards healthy control to establish the relevance Indeed, preparations. proliferative responses observed in HCV patients, PBMC's from 18 healthy control subjects were stimulated with the same antigen preparations. Overall, 27 assays were performed: a single assay in 10 subjects, two in 7 volunteers and 3 in one individual. In 12 control subjects none of the antigens induced a proliferative In 6 subjects one or more antigens induced a proliferative response with an SI 3 in a unique assay or in at least half of the assays performed. Table 5 shows the antigens that induced the proliferation in these subjects. Although Figure 2 suggests that proliferative responses occur more frequently in HCV patients than in healthy controls, these differences do not always reach statistical significance (p< 0.05). Peptide pools 2 and 3 and the NS3 protein clearly (p<0.05) induce more frequent proliferative responses in the whole group of HCV patients than in healthy controls. Most of these differences are also significant when interferon responders and non-responders are each compared to the healthy control group. Only for the proliferative response to NS3 of interferon responders this is no longer valid. Although the frequency of proliferative response to peptide pool 5 in healthy controls and HCV patients were not significantly different, they turned out to be so (p<0.03) when only the non-responders were compared to the control subjects. All other differences did not reach the p<0.05 level.

Example 5. Fine specificity of the recognition of the HCV core region by PBMC from clinical responders: T cell epitope localization in the core carboxyterminal region

Since peptide pools 2 and 3 elicited proliferative responses in a large fraction of HCV patients, we have examined which peptides from these pools were inducing these responses. The stimulatory capacity of single peptides on PBMC's from healthy control subjects was tested as well. Twenty-three proliferation assays were performed with PBMC's from 17 control subjects. Peptides core C17, core C21 and core C31 were recognized by 2, 1 and 1 subject or 12%, 6% and 6% of subjects, respectively. PBMC's were prepared from 11 HCV patients that responded to interferon therapy. Eight subjects had displayed a proliferative response to either one or both peptide pools 2 and 3, whereas 3 patients had not. Nineteen assays were performed. The scoring system for positive reactions was as described in example 4. Table 6 summarizes the results of these 19 assays and demonstrates the consistency of the assay results. Indeed, PBMC's from the patients that had not reacted to the peptide pools did not proliferate upon stimulation with any of the individual peptides. The PBMC's from the patients that had displayed a proliferative response before, also reacted upon stimulation with one or several peptides from these pools. At least one and up to five of these peptides were recognized by these patients. The

most immunogenic region of the HCV core sequence seems to be located between amino acids 109 and 176. Peptides C27 (AA 157-176), recognized by 6 of the 8 proliferative responders, turns out to be the most immunodominant one, followed by C25 which is recognized by 5 patients, and C23 and C19 which are recognized by 3 subjects.

Example 6

The fine specificity of the lymphoproliferative responses was tested again with new samples, the majority of which was obtained from other patients than those analyzed in example 5. Five patients (two α IFN responders and three α IFN non-responders) and 16 normal controls were examined. Table 7 shows the results of the assays performed in chronic hepatitis C patients. The highest LPR observed in both lphaIFN responders tested was towards aa positions: 73-92 (C13); 109-128 (C19); 121-140 (C21); 145-164 (C25); 157-176 (C27). Only aa residues 121-140 (C21) and 133-152 (C23) elicited a high PLR in two αIFN non-responders. Therefore, the use of peptides C13, C19, C25 and/or C27 in prophylactic or vaccine compositions may be particularly therapeutic advantageous.

REFERENCES

Maertens, G., Ducatteeuw, A., Stuyver, L., Vandeponseele, P., Venneman, A., Wyseur, A., Bosman, F., Heijtink, R. & de Martynoff, G. (1994) Low prevalence of anti-E1 antibodies reactive to recombinant type 1b E1 envelope protein in type 2, 3, and 4 sera, but high prevalence in subtypes 1a and 1b. In: Viral Hepatitis and Liver Disease, Proceedings of the International Symposium on Viral Hepatitis and Liver Disease (Eds. Nishioka, K., Suzuki, H., Mishiro, S., and Oda, T.), pp 314-316, Springer-Verlag Tokyo.

Simmonds, P., Rose, K.A., Graham, S., Chan, S.-W., McOmish, F., Dow, B.C., Follett, E.A.C., Yap, P.L., & Marsden, H. (1993b) Mapping of serotype-specific, immunodominant epitopes in the NS4 region of hepatitis C virus (HCV): Use of type-specific peptides to serologically discriminate infections with HCV type 1, 2, and 3. J. Clin. Microbiol. 31, 1493-1503.

Simmonds, P., Holmes, E.C., Cha, T.-A., Chan, S.-W., McOmish, F., Irvine, B., Beall, E., Yap, P.L., Kolberg, J., & Urdea, M.S. (1993c) J. Gen. Virol. 74, 2391-2399.

Stuyver, L., Van Arnhem, W., Wyseur, A. & Maertens, G. (1994) Cloning and phylogenetic analysis of the Core, E2, and NS3/4 regions of hepatitis C virus type 5a. Biochem. Biophys. Res. Comm. 202, 1308-1314.

Simmonds, P., Alberti, A., Alter, H., Bonino, F., Bradley, D.W., Bréchot, C., Brouwer, J., Chan, S.-W., Chayama K., Chen, D.-S., Choo, Q.-L., Colombo, M., Cuypers, T., Date, T., Dusheiko, G., Esteban, J.I., Fay, O., Hadziyannis, S., Han, J., Hatzakis, A., Holmes, E.C., Hotta, H., Houghton, M., Irvine, B., Kohara, M., Kolberg, J.A., Kuo, G., Lau, J.Y.N., Lelie, P.N., Maertens, G., McOmish, F., Miyamura, T., Mizokami, M., Nomoto, A., Prince A.M., Reesink, H.W., Rice, C., Roggendorf, M., Schalm, S., Shikata, T.,

Shimotohno, K., <u>Stuyver, L.</u>, Trépo, C., Weiner, A., Yap, P.L. & Urdea, M.S. (1994) A proposed system for the nomenclature of hepatitis C virus genotypes. *Hepatology* 19, 1321-1324.

Stuyver, L., Van Arnhem, W., Wyseur, A., DeLeys, R. & Maertens, G. (1993a) Analysis of the putative El envelope and NS4a epitope regions of HCV type 3. Biochem. Biophys. Res. Comm. 192, 635-641.

Stuyver, L., Rossau, R., Wyseur, A., Duhamel, M., Vanderborght, B., Van Heuverswyn, H. & Maertens, G. (1993b) Typing of hepatitis C virus isolates and characterization of new subtypes using a line probe assay. J. Gen Virol. 74, 1093-1102.

Stuyver, L., Wyseur, A., Van Arnhem, W., Rossau, R., Delaporte, E., Dazza, M.-C., Van Doorn, L.-J., Kleter, B. & Maertens, G. (1994a) The use of a line probe assay as a tool to detect new types or subtypes of hepatitis C virus. In: Viral Hepatitis and Liver Disease, Proceedings of the International Symposium on Viral Hepatitis and Liver Disease (Eds. Nishioka, K., Suzuki, H., Mishiro, S., and Oda, T.), pp 317-319, Springer-Verlag Tokyo.

Stuyver, L., Van Arnhem, W., Wyseur, A. & Maertens, G. (1994b) Cloning and Phylogenetic analysis of the Core, E2, and NS3/4 regions of the hepatitis C virus type 5a. Biochem. Biophys. Res. Comm. 202, 1308-1314.

Stuyver, L., Van Arnhem, W., Wyseur, A., Hernandez, F., Delaporte, E., & Maertens, G. (1994c) Classification of hepatitis C viruses based on phylogenetics analysis of the E1 and NS5B regions and identification of 5 new subtypes. Proc. Natl. Acad. Sci. USA 91, in press.

Knauf M, Bell DP, Hirtzer P, Luo Z, Young J, Katre N (1988) Relationship of effective molecular size to systemic clearance in rate of recombinant interleukin-2 chemically modified with water-soluble polymers. J Biol Chem. 263: 15064-15070.

Poznansky M, Juliano R (1984) Biological approaches to the controlled delivery of drugs: a critical review. Pharmacol Rev.36: 277-336.

Szoka F Jr, Papahadjopoulos D (1980) Comparative properties and methods of preparation of lipid vesicles (liposomes). Annu-Rev-Biophys-Bioeng 9: 467-508.

Aurameas et al., Scand J Immunol, Vol. 8, Suppl. 7, 7-23 (1978).

Botarelli P, Brunetto M, Minutello M, Calvo P, Unutmaz D, Weiner A, Choo Q, Shuster J, Kuo G, Bonino F, Houghton M, Abrignani S (1993) T-lymphocyte response to hepatitis C virus in different clinical courses of infection. Gastroenterology 104: 580-587.

Bukh J, Purcell R, Miller R (1992). Sequence analysis of the 5' noncoding region of hepatitis C virus. Proc Natl Acad Sci USA 89:4942-4946.

Cha T, Beal E, Irvine B, Kolberg J, Chien D, Kuo G, Urdea M (1992) At least five related, but distinct, hepatitis C viral genotypes exist. Proc Natl Acad Sci USA 89:7144-7148.

Chan S, Simmonds P, McOmish F, Yap P, Mitchell R, Dow B, Follett E (1991) Serological responses to infection with three different types of hepatitis C virus. Lancet 338:1991.

Chan S, McOmish F, Holmes E, Dow B, Peutherer J, Follett E, Yap P, Simmonds P (1992) Analysis of a new hepatitis C virus type and its phylogenetic relationship to existing variants. J Gen Virol 73:1131-1141.

Choo Q, Richman K, Han J, Berger K, Lee C, Dong C, Gallegos C, Coit D, Medina-Selby A, Barr P, Weiner A, Bradley D, Kuo G, Houghton M (1991) Genetic organization and diversity of the hepatitis C virus. Proc Natl Acad Sci USA 88:2451-2455.

Davies G, Balard L, Schiffer E (1989) Treatment of chronic hepatitis with recombinant interferon alpha: a multicenter radomnized, controlled trial. N Engl Med 321: 1501-1506.

Erlanger, Method of Enzymology, 70: 85 (1980).

Gabizon A, Dagan A, Goren D, Barenholz Y, Fuks Z (1982) Liposomes as in vivo carriers of adriamycin: reduced cardiac uptake and preserved antitumor activity in mice. Cancer Res 42: 4734-4739.

Hoofnagle J, Lullen K, Jones D (1986) Treatment of chronic non-A, non-B hepatitis with recombinant human alpha interferon., N Engl J Med 315: 1575-1578.

Kato N, Hijikata M, Ootsuyama Y, Nakagawa M, Ohkoshi S, Sugimura T, Shimotohno K (1990) Molecular cloning of the human hepatitis C virus genome from Japanese patients with non-A, non-B hepatitis. Proc Natl Acad Sci USA 87: 9524-9528.

Koziel M, Dudley D, Wong J, Dienstag J, Houghton M, Ralston R, Walker B (1992). Intrahepatic cytotoxic T lymphocytes specific for hepatitis C virus in persons with chronic hepatitis. J Immunology 149: 3339-3344.

Minutello M, Pileri P, Unutmaz D, Censini S, Kuo G, Houghton M, Brunetto M, Bonino F, Abrignani S (1993). Compartimentalization of T lymphocytes to the site of disease: intrahepatic CD4+ T cells specific for the protein NS4 of Hepatitis C Virus in patients with Chronic hepatitis C. J Exp Med 178: 17-25.

Mori S, Kato N, Yagyu A, Tanaka T, Ikeda Y, Petchclai B, Chiewsilp P, Kurimura T, Shimotohno K (1992) A new type of hepatitis C virus in patients in Thailand. Biochem Biophys Res Comm 183: 334-342.

Okamoto H, Okada S, Sugiyama Y, Yotsumoto S, Tanaka T, Yoshizawa

H, Tsuda F, Miyakawa Y, Mayumi M (1990). The 5' terminal sequence of the hepatitis C virus genome. Jap J Exp Med 60: 167-177

Okamoto H, Okada S, Sugiyama Y, Kurai K, Iizuka H, Machida A, Miyakawa Y, Mayumi M (1991) Nucleotide sequence of the genomic RNA of hepatitis C virus isolated from a human carrier: comparison with reported isolates for conserved and divergent regions. J Gen Virol 72: 2697-2704.

Okamoto H, Kurai K, Okada S, Yamamoto K, Lizuka H, Tanaka T, Fukuda S, Tsuda F, Mishiro S (1992) Full-length sequences of a hepatitis C virus genome having poor homology to reported isolates: comparative study of four distinct genotypes. Virology 188: 331-341.

Rodwell et al., Biotech 3, 889-894 (1985).

Stuyver L, Rossau R, Wyseur A, Duhamel M, Vanderborght B, Van Heuverswyn H, Maertens G (1993) Typing of hepatitis C virus (HCV) isolates and characterization of new (sub)types using a L...e Probe Assay. J Gen Virology, 74: 1093-1102.

Essential Immunology, 3rd Ed., by Roit, published by Blackwell Scientific Publications; Fundamentals of Clinical Immunology, by Alexander and Good, published by W.B. Saunders; Immunology, by Bellanti, published by W.B. Saunders.

TABLE 1 Synthetic peptides used as antigens in the lymphoproliferative assays.

HCV REGION	POOL	PEPTIDE NAME	AMINO ACID (AA) SEQUENCE	AA POSITION	SEQ ID NO	SOLVENT
CORE	1	CORE 2 CORE 3 CORE 5 CORE 9 CORE 11	PKPQRKTKRNTNRRP RNTNRRPQDVKFPGGGQIVG PGGGQIVGGVYLLPRRGPRL TRKTSERSQPRGRRQPIPKV RRQPIPKVRRPEGRTWAQPG	5-19 13-32 25-44 49-68 61-80	1 2 3 4 5	A A B A
	2	CORE 13 CORE 15 CORE 17 CORE 19 CORE 21	GRTWAQPGYPWPLYGNEGCG LYGNEGCGWAGWLLSPRGSR LLSPRGSRPSWGPTDPRRRS PTDPRRRSRNLGKVIDTLTC KVIDTLTCGFADLMGYPLV	73-92 85-104 97-116 109-128 121-140	6 7 8 9	B C A A D
	3	CORE 23 CORE 25 CORE 27 CORE 29 CORE 31	LMGYIPLVGAPLGGAARALA GGAARALAHGVRVLEDGVNY VLEDGVNYATGNLPGCSFSI LPGCSFSIFILALLSCLTVP LLSCLTVPASAYQVRNSTGL	133-152 145-164 157-176 169-188 181-200	11 12 13 14	A A E O C
El	4	E1-33 E1-35 E1-37 E1-39 E1-41	QVRNSTGLYHVTNDCPNSSI NDCPNSSIVYEAHDAILHTP HDAILHTPGCVPCVREGNVS CVREGNVSRCWVAMTPTVAT AMTPTVATRDGKLPPATQLRR	193-212 205-224 217-236 229-248 241-260	16 17 18 19 20	O C A H
	5	E1-43 E1-45 E1-49 E1-51 E1-53	LPATQLRRHIDLLVGSATLC LVGSATLCSALYVGDLCGSV QLFTFSPRRHWTTQGCNCSI TQGCNCSIYPGHITGHRMAW ITGHRMAWDMMMNWSPTAAL	253-272 265-284 289-308 301-320 313-332	21 22 23 24 25	Н Е Н В
	6	E1-55 E1-57 E1-59 E1-63	NWSPTAALVMAQLLRIPQAI LLRIPQAILDMIAGAHWGVL AGAHWGVLAGIAYFSMVGNW VVLLLFAGVDAETIVSGGQA	325-344 337-356 349-368 373-392	26 27 28 29	H H I E
E2/NS1	7	NS1-3* NS1-1* NS1-1 NS1-3 NS1-5	LNCNESLNTGWWLAGLIYQHK AGLIYQHKFNSSGCPERLAS GCPERLASCRPLTDFDQGWG TDFDQGWGPISYANGSGPDQ ANGSGPDQRPYCWHYPFKPC	427-446 439-458 451-470 463-482 475-494	30 31 32 33 34	C B B A
	8	NS1-7 NS1-9 NS1-11 NS1-13 NS1-17 NS1-19	WHYPPKPCGIVPAKSVCGPV AKSVCGPVYCFTPSPVVVGT PSPVVVGTTDRSGAPTYSWG GAPTYSWGENDTDVFVLNNT GNWFGCTWMNSTGFTKVCGA GFTKVCGAPPVCIGGAGNNT	487-506 499-518 511-530 523-542 547-566 559-578	35 36 37 38 39 40	B O C E O A
	9	NS1-21 NS1-23 NS1-25 NS1-27 NS1-29	IGGAGNNTI.HCPTDCFRKHP TDCFRKHPDATYSRCGSGPW SRCGSGPWITPRCLVDYPYR CLVDYPYRLWHYPCTINYTI PCTINYTIFKIRMYVGGVEH	571-590 583-602 595-614 607-626 619-638	41 42 43 44 45	A A B C
		NSI-7	SGLVSLFTPGAKQNIQLINT	397-416	46	С
		NS1-5"	QNIQLINTNGSWHINSTALN	409-428	47	c

Solvents used:

Solvent A: 0.1% trifluoroacetic acid; Solvent B: 0.1% trifluoroacetic acid, 25% acetonitrile; Solvent C: 0.1% trifluoroacetic acid, 30% acetonitrile; Solvent D: 0.1% trifluoroacetic acid, 50% acetonitrile; Solvent E: 0.005 ammonia buffer; Solvent O: 50% dimethyl sulfoxide; Solvent H: 0.1% trifluoroacetic acid, 40% acetonitrile.

Table 2. General data from HCV patients.

Patient Gender Age AP Diagnosis 604 F 30 CAH: mod 607 M 39 CPH 608 M 61 CAH: mid 610 F 27 Non spec 614 M 56 CAH: mid 615 M 71 CAH: mid 616 F 37 CPH 621 M 48 CAH: mod 624 M 31 CPH 625 F 34 CAH: mod 630 M 30 CPH 632 M 57 CPH 633 F 67 CAH: mod 634 F 67 CAH: mod 635 F 54 CAH: mod 636 F 54 CAH: mod 639 F 62 CAH: mod 639 F 62 CAH: mod 640 CAH: mod	Source	Duration (Vane)	2000	IEN Scheme	AIT Lofons the man.
Н М М М М М Н Н Н Н Н Н Н Н Н Н Н Н Н		Dulation (15415)	Genotype	ATTION ATTI	ALI Delore merapy
M 39 M 61 M 71 M 71 M 71 F 7 37 F 7 30 F 7 57	IVDA	10	16	2	150
M F F M S S S S S S S S S S S S S S S S	Unknown	2	1b		182
F 27 M 56 M 71 M 71 M 71 F 72 M 72 M 74 M 74 M 74 M 74 F 74	Transfusion	7	3a	-	196
М Н Н Н Н Н Н Н Н Н Н Н Н Н	Unknown	2	1b	2	219
М Н М М В 31 М В 34 В 34 В 36 В 4 В 57 В 7 В 67 В 67 В 67	Transfusion	10	1b	7	425
F 52 M 48 M 31 M 31 F 67 F 67	Unknown	2	16	_	201
Б М М М М В В В В В В В В В В В В В	Transfusion	S	16	-	152
М Н Н В В В В В В В В В В В В В В В В В	Needle stick	S	16	2	09
М Р М М 30 Р Р 67 Р 67 67	Unknown	∞	16		63
F 34 М 30 Р 57 Р 67 Р 67	Needle stick	15	16	. 7	158
М М 57 Р 67 Р 67 Р 62	Transfusion	9	3a	7	168
М F 30 F 67 F 47 F 54	Needle stick	5	10	7	52
Р 30 Р 67 Р 47 Р 54	Unknown		4a or 5a	7	359
F 67 F 47 F 54 F 62	Transfusion	2	1b	7	292
F 47 F 54 F 62	Unknown	32	16	2	481
F 54	Transfusion	14	16	2	100
F 62	Unknown	7	5a	-	06
	Transfusion	32	16	1	79
	CLINICAL	NON-RESPONDERS	ONDERS		
Patient Gender Age AP Diagnosis	Source	Duration (Years)	Genotype	IFN Scheme	ALT before therapy
32	Transfusion	3	1b	2	141
99 W	Transfusion	က	16	-	349
M 45	Transfusion	17	16	7	157
F 53	Unknown	2	16	٠,٠	299
611 M 51 CPH	Transfusion	7	16	 	195
F 38	IVDA	17	3a	. —	178

CAH = CHRONIC ACTIVE HEPATITIS. CPH = CHRONIC PERSISTENT HEPATITIS. CIRRH = CIRRHOSIS. NON SPEC = NOT DONE OR NOT SPECIFIC ABNORMALITIES

ıts.
CV patier
ta from H
eneral dat
ntinued. G
rable 2 co

447 138 291 134 254 179 358
7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7
15 15 15 16 16 17
3 11 8 11 5
Transfusion Unknown Transfusion Unknown IVDA Transfusion Unknown
CAH: sev CAH: mod CAH: sev CAH: mod Cirrh CPH
17 64 65 68
$\Sigma \Sigma \Sigma \Sigma \Sigma \pi \Sigma \pi$
617 620 622 625 627 629 631

CAH = CHRONIC ACTIVE HEPATITIS. CPH = CHRONIC PERSISTENT HEPATITIS. CIRRH = CIRRHOSIS. NON SPEC = NOT DONE OR NOT SPECIFIC ABNORMALITIES

SUBSTITUTE SHEET (RULE 26)

Table 3. Antibody reactivities to 6 HCV antigens of the Line Immuno-Assay in 32 chronic HCV patients.

	2		7	•	•	,	•	,	•	•	7	•		1		. •	7	. (7	1		7	7	7
	ප	•	•	1	•	ı	1	1		•	2	•	•	,	•	1 '	7	1	i	•	ن <i>و</i> ر ا	5	2	•
	C7	2	ю	•	1		ĸ	7	33	7	[*] m	m	2	ı	1	7	m	€.	က	7	7	m	က	7
	CI	2	ю	2	m	1 .	2	2	Ю	•	2	ı		2	2	2	7	7	m	2	2	2	7	1
	NS5	3	ю	ю	ю	m	•	m	m	•	•	•	•	က	က	က	က	2	5	•	•	က	က	en.
	NS4	3	m	7	ю	1	က	(1)	7	æ	က	,		m	က	3	က	•	2	m	m		1	က
RESPONDERS	Genotype	16		16		3a	1b	£	2	1b	16	16		16		16		3a		1b		4a or 5a		16
	Weeks	9-	06	- 11	84	9-	9-	30	8 8	-2	9 1	9-	54	۳,	30	- 5	20	2	20	- 12	œ	9-	œ	9-
CLINICAL	Patient	604	,	607		809	610	717	+	615	616	· 618		621		624		.929		630		632		633

"-" denotes negative, indeterminate or weak reactions. 2, moderate reaction. 3, strong reaction.

Table 4. T-cell recognition of 12 HCV antigens in 32 chronic hepatitis C patients under alpha-interferon therapy.

	CLINICAL	RESPONDERS	RS	:								l		74	7017	
Patient	Genotype	N°. Assays	Time of assays	Pi	2	2	72	2	<u>2</u>	P7	æ	P3	NSI-7	NSI-5*	NS3	
604	lb	2	w90-108		+	+	+	+	+			+	+	+ !	+	
209	91	2	w84-120		+			+				+	R	QN	Q N	
809	3a	2	w90-108		+	+										
610	q1	-	w84													
614	119	4	w60-108											+		
615	16	2	w66-84	+	+	+	+	+							+	
919	92	e	w78-108											+		
618	16	4	w54-84	+	+									,	+	
621	. 91	4	w30-60			+							+	+		
624	.	6	w20-90													
626	e e	6	w16-60		+	+							+			
630	91	9	w8-75					•								
632	4a or 5a	œ	w4-54		+	+										
633	<u>_</u>	=	w0-48													
634	: =	· •	w0-24		+									+	+	
536	2 -		w-6-54													
033	0 3	-	, 20° m		+	+								+		
639 639	16	- 4	w-3-19	+	+	+							+	+		
	CLINICAL	NON-RESPONDERS	ONDERS													
Patient	Genotyne	N°. Assays	Time of assays	Ы	22	2	P4	P5	P6	P7	P8]	P9 N	NSI-7*	NS1-5*	NS3	
£01	1h	4	w90-140		+			+	+			+			+	
60.	: =	- 7	w96-108	+	+	+	+					+			+	•
2 09	: =	. 7	w78-93		+	+	+	+							+	
909	: =	8	w84-96		+			+							+	
611	: 4	2	w66-84	+	+			+								
613	33	œ	96-09m												+	
617	91	Ś	w60-108													
620	16	က	w42-66									+			+	
622	.	m	w30-54					+					خو ۰		+	
625	.	4	w20-66		+	+						+				
627	33	m	w16-24		+							+				
629	=	. 7	w20-48	+	+		+	+		+		+			+	
63.	: <u>e</u>	ν.	w4-w16													
229	<u>.</u>	7	w-6-16			+										
P1-3 corre	P1-3 corresponds to Core, P4-6 represents E1	Д.	7-9 comprises E2/NS1. (+) denotes lymphoproliferative response. ND- Not done.	S1. (+)	deno	tes lyı	oudu	rolif	erative	resp	onse.	Š	Not don	نه		
							,									

SUBSTITUTE SHEET (RULE 26)

Table 5. Antigens recognized by 6 control subjects displaying significant * lymphoproliferation responses.

* NS3	+
NS1-5*	+ +
P8 P9 NS1-7*	+
P3	+
84	
P7	
P6	
P5	+ +
P4 P5 P6 P7	+ +
P2 P3	
P2	+ + +
PI	
N° ASSAYS	22113
SUBJECTS	CAE IDS LCE MVH PDG RDB

* A response is considered significant when a S.I. equal or greater than 3 in a single peptide assay or in at least half of the assays performed.

RECTIFIED SHEET (RULE 91)
ISA/EP

Table 6. The lymphoproliferative responses to peptide pools are consistent with lymphoproliferative responses to single peptides fr.

				_				_			_	_	_	~	_		•	_	_	$\overline{}$	_	_	
		31		٠	ı	Ŀ		ا.	,	•		•	+						•	Ľ			
		C29		•	•	١,				•								$\cdot floor$	•				
	P3	C27		•	+	+	-	١.	+	+		+	4	-				,					
		C25	+	•		-	-	+	+	+	-	•	1	-					,		•		
PEPTIDES		523	3	+	+			•	ı	+	-	,		,					•				
		100	1			Ī		•		4	F	•					Ī	,	•		•		
		015	3		•			•	•	-	+	+	-	+				-	,		٠		
SINGLE	22	617	3	•				-	•			•		,				•					
		215	3	,			•	-		Ī	•	•						•					
		55				1	\cdot	-		Ī	-	,		•				•					
			N assays	-	-		I	1	5		4			2					-	-	1		
F			Pool 3	+	-			+	+	+	+	١.	1	+	-	\dagger		_	T	,	-		1
	1		_		-			Ĺ	Ĺ	1	_	L	-		-	\downarrow			ļ	4		_	1
POOLS			Pool 2	+	-	۲	+	•	-	-	+	-	-	+						•	•		
DEPTINE	r Dr. 11UD		N° assays	2	,	7	4	4	0	,	8	٢	7	4				cr	,	3	-		
			Patient	604		615	618	621	707	070	632	100	024	689				614		616	633		
							LPR TO	POOLS	,	7	AND/OR	Į,	~					MO I DIN	NO LET	TO POOLS	2 AND 3		

Table 7.

Fine specificity of T-cell recognition of P2 and P3 Core individual peptides.

ides		5	58				
P3 peptides	C31		•	. •	,	•	
	C29		•	•	•	4	
	C27	8.2	5.8		•		
	C25	9	7.6	•	•	1	
	C23	,	•	4.1	ı	1	
	C21	3.3	•	N	3.6	t	
səpi	C19		7.1	N		•	
P2 peptides	C17 C19	,	•	N Q	•	•	
	C13e C15		•	N	•	t	
	C13e	4.4	6.3	NDf	•	•	
	pLL	14.5	3.6	4.1	19.1	4.2	
	Blanke	750	1032	5047	928	2370	
	Week ^b	14	28	70	. 24	45	
Clinical response	to aIFNa	~	×	N. R	NR	NR	
	Patient N°	979	636	. 029	627	637	

 a R: responder; NR: Not responder. b Time points of αIFN therapy on which LPA were performed.

c Values express cpm.

d TT: Tetanus toxoid. Values denote SI.

e C13-C21 and C23-C31 are the individual peptides of P2 and P3 Core peptide pools. Only SI equal or greater than 3 are shown.

f ND: Not done.

CLAIMS

- 1. Use of a polypeptide of about 8 to about 100 amino acids for the preparation of an HCV immunogenic composition, with said polypeptide comprising or consisting of at least 8 contiguous amino acids selected from the region comprised between amino acids 73 to 176 in the core region, or between amino acids 192 to 234 and 243 to 392 of the E1 region, or between amino acids 397 and 428 and amino acids 571 to 638 in the E2 region, or between amino acids 1188 and 1463 of the NS3 region of HCV, and with said contiguous amino acids containing a T cell-stimulating epitope.
- 2. Use of a polypeptide according to claim 1 for the preparation of an HCV immunogenic composition, with said polypeptide comprising or consisting of about 8 to about 104 contiguous amino acids selected from the region comprised between amino acids 73 to 176, more particularly comprising or consisting of about 8 to about 68 contiguous amino acids selected from the region between amino acids 109 to 176 in the core region of HCV characterized by the following sequence:

 $\begin{aligned} &\text{NH}_2-\text{GX}_1\text{X}_2\text{WX}_3\text{X}_4\text{PGX}_5\text{PWPLYX}_6\text{NX}_7\text{GX}_8\text{GX}_9\text{AGWLLSPRGSRPX}_{10}\text{WGX}_{11}-\\ &\text{X}_{12}\text{DPRX}_{13}\text{X}_{14}\text{SRNX}_{15}\text{GX}_{16}\text{VIDTX}_{17}\text{TCGX}_{18}\text{ADLX}_{19}\text{X}_{20}\text{YIPX}_{21}\text{X}_{22}\text{G}- \end{aligned}$

X₂₃PX₂₄GGX₂₅X₂₆X₂₇X₂₈LX₂₉HGVRX₃₀X₃₁X₃₂DGX₃₃NX₃₄X₃₅TGN-

X₃₆PGCSFSI-COOH

(SEQ ID NO 58, spanning positions 73 to 176),

wherein X_1 represents R or K, X_2 represents A, S or T, X_3 represents A or G, X_4 represents Q, K or R, X_5 represents Y or H, X_6 represents G or A, X, represents E or K, X_8 represents C, M or L, X_9 represents W or L, X_{10} represents S, N, T, D or H, X_{11} represents P or Q, X_{12} represents N or T, X_{13} represents R or H, X_{14} represents R or K, X_{15} represents L or V or F, X_{16} represents K or R, X_{17} represents L or I, X_{18} represents F or L, X_{19} represents M or I, X_{20} represents G or E, X_{21} represents L or V or I, X_{22} represents V or L, X_{23} represents A or G, X_{24} represents L, V, or I, X_{25} represents A or V, X_{26} represents A or S, X_{27}

represents R or A, X_{28} represents A or T or E, X_{29} represents A or E, X_{30} represents V or A or L, X_{31} represents L or V or I, X_{32} represents E or G, X_{33} represents V or I, and X_{34} represents F or Y, X_{35} represents A or P, X_{36} represents L or I, and,

 $\begin{aligned} &\text{NH}_2 - \textbf{X}_{11} \textbf{X}_{12} \text{DPRX}_{13} \textbf{X}_{14} \text{SRNX}_{15} \text{GX}_{16} \text{VIDTX}_{17} \text{TCGX}_{18} \text{ADLX}_{19} \textbf{X}_{20} \text{YIPX}_{21} \textbf{X}_{22} \text{G-} \\ &\textbf{X}_{23} \text{PX}_{24} \text{GGX}_{25} \textbf{X}_{26} \textbf{X}_{27} \textbf{X}_{28} \text{LX}_{29} \text{HGVRX}_{30} \textbf{X}_{31} \textbf{X}_{32} \text{DGX}_{33} \text{NX}_{34} \textbf{X}_{35} \text{TGN-} \\ &\textbf{X}_{36} \text{PGCSFSI-COOH} \end{aligned}$

(SEQ ID NO 48, spanning positions 109 to 176), and with said contiguous amino acids containing a T-cell stimulating epitope.

3. Use of a polypeptide according to claim 1 for the preparation of an HCV immunogenic composition, with said polypeptide comprising or consisting of at least about 8 contiguous amino acids selected from the region comprised between amino acids 192 to 234 and 243 to 392 of HCV, more particularly selected from the region comprised between amino acids 192 and 234 and 243 to 383 in the E1 region of HCV characterized by the following sequences:

 $\rm NH_2\text{-}YQVRNSTGLYHVTNDCPNSSIVYEAHDAILHTPGCVPCVREGN$ (SEQ ID NO 164, spanning positions 192 to 234), and,

TPTVATTRDGKLPATQLRRHIDLLVGSATLCSALYVGDLCGSVQLFTFSPRRHWTTQGCNCS IYPGHITGHRMAWDMMMNWSPTAALVMAQLLRIPQAILDMIAGAHWGVLAGIAYFSMVGNWA KVLVVLLLFAGVDAETIVSGGQA-COOH (SEQ ID NO 104, spanning positions 243 to 392)

or any variant to this sequence derived from another type of HCV as depicted in Figure 4, and with said contiguous amino acids containing a T-cell stimulating epitope.

4. Use of a polypeptide according to claim 1 for the preparation of an HCV immunogenic composition, with said polypeptide comprising or consisting of about 8 to about 32 contiguous amino acids selected from the regions between amino acids 397 to 428 in the E2 region, or comprising or consisting of at least 8 to about 68 contiguous amino acids selected from the region between amino acids 571 to 638 in the

E2 region of HCV characterized by the following sequences:

 $NH_2-X_{37}X_{38}X_{39}X_{40}X_{41}X_{42}X_{43}X_{44}X_{45}GX_{46}X_{47}QX_{48}X_{49}X_{50}LX_{51}NX_{54}NGSWHX_{52}NX_{53}TALN-COOH \\ (SEQ ID NO 49, spanning positions 397 to 428), and,$

$$\label{eq:control_norm} \begin{split} \mathrm{NH_2-IX_{55}X_{56}X_{57}X_{58}NX_{59}X_{60}Z_1Z_2LX_{61}CPTDCFRKX_{62}PX_{63}X_{64}TYX_{65}X_{66}CGX_{67}GPX_{68}X_{69}-\\ \mathrm{TPRCX_{70}X_{71}DYPYRLWHYPCTX_{72}NX_{73}X_{74}X_{75}FKX_{76}RMX_{77}VGGVEH-COOH (SEQ ID NO 108, spanning positions 571 to 638), \end{split}$$

wherein X_{37} represents S, A, Q, L, N, Y, R, Y or H, X_{38} represents G, S, T, A or R, X_{39} represents F, I, L, or V; X_{40} represents V, A, or T; X_{41} represents S, D or G; X_{42} represents L, I, W, F, or M; X_{43} represents L, I or F, X_{44} represents A, T, D or S; X_{45} represents P, Q, S, R, L, I or T; X_{46} represents A, P, or S; X_{47} represents K, S, Q, A, or R; X_{48} represents N, K, D, or R; X_{49} represents V, I, or L; X_{50} represents Q, S or Y; X_{51} represents I or V; X_{52} represents L or I; X_{53} represents S or R; and X_{54} represents T or S; X_{55} represents G or R; X_{56} represents G, A, or K, X_{57} represents A, V, G, S, or D; X_{58} represents G, F, or Y; X_{59} represents N, H, R, L, A, or S; X_{60} represents T or S; Z_1 represents represents M or I; Z_2 represents D; X_{ϵ_1} represents H, L, V, T, or I; X_{62} represents H or Y; X_{63} represents D or E; X_{64} represents A or T; X_{65} represents S, T, I, or L; X_{66} represents R or K; X_{67} represents S or A, X_{68} represents W or L; X_{69} represents I or L; X_{70} represents L, M or I, X_{71} represents V or I; X_{72} represents I, V, F, or L; X, represents Y or F; X,4 represents T, S or A; X_{75} represents I or V; X_{76} represents I, V or A, X_{77} represents Y or F, and with said contiguous amino acids containing a T cell stimulating epitope.

5. Use of a polypeptide according to claim 1 for the preparation of an HCV immunogenic composition, with said polypeptide comprising or consisting of at least about 8 contiguous amino acids selected from the region comprised between amino acid positions 1188 to 1463 of the NS3 region of HCV characterized by the following sequence:

NH2-GVAKAVDFVPVESMETTMRSPVFTDNSSPPAVPQTFQVA

HLHAPTGSGKSTKVPAAYAAQGYKVLVLNPSVAATLGFGAYMSKAHGVDPNIRTGVRTITTG APITYSTYGKFLADGGCSGGAYDIIICDECHSIDSTSILGIGTVLDQAETAGARLVVLATAT PPGSVTVPHPNIEEVALSSTGEIPFYGKAIPIEVIKGGRHLIFCHSKKKCDELAAKLSGFGI NAVAYYRGLDVSVIPTSGDVVVVATDALMTGFTGDFDSVIDCNTCVTQTVDFS-COOH (SEQ ID NO 57), or any variant of said sequence as can be deduced from Figure 6, and with said contiguous amino acids containing a T cell stimulating epitope.

6. Use of a polypeptide according to claim 2, for the preparation of an HCV immunogenic composition, with said polypeptide comprising or consisting of about 8 to about 20 contiguous amino acids selected from the region comprised between amino acid positions 157 to 176 of the core region of HCV: NH₂-X₃₀X₃₁X₃₂DGX₃₃NX₃₄X₃₅TGNX₃₆PGCSFSI-COOH (SEQ ID NO 51), and more particularly selected from VLEDGVNYATGNLPGCSFSI (SEQ ID NO 13 = peptide CORE 27) or VLEDIVNYATGNLPGCSFSI (SEQ ID NO 73), with said peptides being preferentially chosen from the following list of peptides:

 $\mathrm{NH_2-GX_{33}NX_{34}X_{35}TGNX_{36}-COOH}$ (SEQ ID NO 74), $\mathrm{NH_2-X_{33}NX_{34}X_{35}TGNX_{36}-COOH}$ (SEQ ID NO 75), $\mathrm{NH_2-NX_{36}PGCSFSI-COOH}$ (SEQ ID NO 76) and

 $NH_2-X_{36}PGCSFSI-COOH$ (SEQ ID NO 77), and more particularly: GVNYATGNL (SEQ ID NO 78), GVNYATGNL (SEQ ID NO 79), NLPGCSFSI (SEQ ID NO 80) and LPGCSFSI (SEQ ID NO 81), and with said contiguous amino acids containing a T cell stimulating epitope.

7. Use of a polypeptide according to claim 2 for the preparation of an HCV immunogenic composition, with said polypeptide comprising or consisting of about 8 to about 20 contiguous amino acids selected from the region comprised between amino acid positions 145 to 164 of the core region of HCV: $NH_2 - GGX_{25}X_{26}X_{27}X_{28}LX_{29}HGVRX_{30}X_{31}X_{32}DGX_{33}NX_{34} - COOH$ (SEQ ID NO 52), and more particularly selected from (SEQ ID NO 12 = peptide CORE 25) GGAARALAHGVRVLEDGVNY GGVAARALAHGVRVLEDGVNY (SEQ ID NO 118), with said peptides being

particularly chosen from the following list of peptides: $\mathrm{NH_2-X_{28}LX_{29}HGVRX_{30}X_{31}-COOH}$ (SEQ ID NO 82), $\mathrm{NH_2-LX_{29}HGVRX_{30}X_{31}-COOH}$ (SEQ ID NO 83), NH_2 -GVRX₃₀X₃₁X₃₂DGX₃₃-COOH (SEQ ID NO 84), $NH_2-VRX_{30}X_{31}X_{32}DGX_{33}-COOH$ (SEQ ID NO 85), $\mathrm{NH_2\text{-}RX_{30}X_{31}X_{32}DGX_{33}NX_{34}\text{-}COOH}$ (SEQ ID NO 86), and $\mathrm{NH_2-X_{30}X_{31}X_{32}DGX_{33}NX_{34}-COOH}$ (SEQ ID NO 87), and more particularly : ALAHGVRVL (SEQ ID NO 88), LAHGVRVL (SEQ ID NO 89), VRVLEDGV (SEQ ID NO 90), RVLEDGV (SEQ ID NO 91), VLEDGVNY (SEQ ID NO 92), and LEDGVNY (SEQ ID NO 93), and with said contiguous amino acids containing a T cell stimulating epitope.

8. Use of a polypeptide according to claim 2 for the preparation of an HCV immunogenic composition, with said polypeptide comprising or consisting of about 8 to about 20 contiguous amino acids selected from the region comprised between amino acid positions 133 to 152 of the core region of HCV: $\mathrm{NH_2-LX_{19}X_{20}YIPX_{21}X_{22}GX_{23}PX_{24}GGX_{25}X_{26}X_{27}X_{28}LX_{29}-COOH}$ and more particularly selected NO 53), LMGYIPLVGAPLGGAARALA (SEQ ID NO 11 = peptide CORE 23), with said peptides being preferentially chosen from the following list of peptides: $NH_2-LX_{19}X_{20}YIPX_{21}X_{22}GX_{23}PX_{24}GGX_{25}-COOH$ (SEQ ID NO 62),

 $NH_2-X_{19}X_{20}YIPX_{21}X_{22}GX_{23}PX_{24}GGX_{25}-COOH$ (SEQ ID NO 63),

 $\mathrm{NH_2-YIPX_{21}X_{22}GX_{23}PX_{24}-COOH}$ (SEQ ID NO 64),

 $\mathrm{NH_2\text{-}IPX_{21}X_{22}GX_{23}PX_{24}\text{-}COOH}$ (SEQ ID NO 65),

 $\mathrm{NH_2-X_{21}X_{22}GX_{23}PX_{24}GGX_{25}-COOH}$ (SEQ ID NO 66), and

 $\mathrm{NH_2-X_{22}GX_{23}PX_{24}GGX_{25}-COOH}$ (SEQ ID NO 68), more particularly :

LMGYIPLV (SEQ ID NO 69), MGYIPLV (SEQ ID NO 70), YIPLVGAPL (SEQ ID NO 71), IPLVGAPL (SEQ ID NO 72), LVGAPLGGA (SEQ ID NO 94), and VGAPLGGA (SEQ ID NO 95), and with said contiguous amino acids containing a T cell stimulating epitope.

9. Use of a polypeptide according to claim 2 for the preparation of an HCV immunogenic composition, with said polypeptide comprising or consisting of about 8 to about 20 contiguous amino acids selected from the region comprised between

amino acid positions 109 to 128 of the core region of HCV: $NH_2-X_{11}X_{12}DPRX_{13}X_{14}SRNX_{15}GX_{16}VIDTX_{17}TC-COOH$ (SEQ ID NO 54), and more particularly selected from PTDPRRRSRNLGKVIDTLTC (SEQ ID NO 9 = peptide CORE 19), with said peptides being particularly chosen from the following peptides: $NH_2-NX_{15}GX_{16}VIDTX_{17}-COOH$ (SEQ ID NO 96) or $NH_2-X_{15}GX_{16}VIDTX_{17}-COOH$ (SEQ ID NO 97). More particularly NLGKVIDTL (SEQ ID NO 98) and LGKVIDTL (SEQ ID NO 117), and with said contiguous amino acids containing a T cell stimulating epitope.

- 10. Use of a polypeptide according to claim 2 for the preparation of an HCV immunogenic composition, with said polypeptide comprising or consisting of at least 8 to about 20 contiguous amino acids selected from the region comprised between amino acid positions 73 to 92 of the core region of HCV: NH₂-GX₁X₂WX₃X₄PGX₅PWPLYX₆NX₇GX₈G-COOH (SEQ ID NO 99), and more particularly selected from GRTWAQPGYPWPLYGNEGCG (SEQ ID NO 6 = peptide CORE 13), with said peptides being preferably selected from: NH₂-X₂WX₃X₄PGX₅PW-COOH (SEQ ID NO 100) and NH₂-WX₃X₄PGX₅PW-COOH (SEQ ID NO 101), such as the peptides: TWAQPGYPW (SEQ ID NO 102) and WAQPGYPW (SEQ ID NO 103), and with said contiguous amino acids
- 11. Use of a polypeptide according to claim 2 for the preparation of an HCV immunogenic composition, with said polypeptide comprising or consisting of at least 8 to about 44 contiguous amino acids selected from the region comprised between amino acid positions 133 to 176 of the core region of HCV:

 NH₂-LX₁₉X₂₀YIPX₂₁X₂₂GX₂₃PX₂₄GGX₂₅X₂₆X₂₇X₂₈LX₂₉HGVRX₃₀X₃₁X₃₂DGX₃₃NX₃₄X₃₅TGN-X₃₆PGCSFSI-COOH (SEQ ID NO 50), and more particularly selected from peptide LMGYIPLVGAPLGGAARALAHGVRVLEDGVNYAT GNLPGCSFSI (SEQ ID NO 67), and with said contiguous amino acids containing a T-cell stimulating epitope.

containing a T cell stimulating epitope.

12. Use of a polypeptide according to claim 3 for the preparation of an HCV immunogenic composition, with said polypeptide comprising or consisting of at least 8 to about 68 contiguous amino acids selected from the region comprised between amino acid positionsacids 193 to 234 and 243 to 260 in the E1 region of HCV characterized by the following sequence:

QVRNSTGLYHVTNDCPNSSIVYEAHDAILHTPGCVPCVREGN (SEQ ID NO 165, spanning positions 193 to 234), and,

TPTVATTRDGKLPATQLR (SEQ ID NO 105, spanning positions 243 to 260)

with said peptides being particularly chosen from :

QVRNSTGLYHVTNDCPNSSI (SEQ ID NO 16),

NDCPNSSIVYEAHDAILHTP (SEQ ID NO 17),

HDAILHTPGCVPCVREGNVS (SEQ ID NO 18),

CVREGNVSRCWVAMTPTVAT (SEQ ID NO 19), and,

AMTPTVATRDGKLPPATQLRR (SEQ ID NO 20), or any variant to this sequence derived from another type of HCV as depicted in Figure 4, and with said contiguous amino acids containing a T cell stimulating epitope.

13. Use of a polypeptide according to claim 3 for the preparation of an HCV immunogenic composition, with said polypeptide comprising or consisting of at least 8 to about 80 contiguous amino acids selected from the region comprised between amino acids 253 to 332 in the El region of HCV characterized by the following sequence:

 $\mathtt{NH_2-LPATQLRRHIDLLVGSATLCSALYVGDLCGSVQLFTFSPRRH}$

WTTQGCNCSIYPGHITGHRMAWDMMMNWSPTAAL-COOH (SEQ ID NO 106), or any variant to this sequence derived from another type of HCV as depicted in Figure 4, with said peptides being particularly chosen from :

LPATQLRRHIDLLVGSATLC (SEQ ID NO 21),

LVGSATLCSALYVGDLCGSV (SEQ ID NO 22),

QLFTFSPRRHWTTQGCNCSI (SEQ ID NO 23),

TQGCNCSIYPGHITGHRMAW (SEQ ID NO 24), and,

ITGHRMAWDMMNWSPTAAL (SEQ ID NO 25), and with said contiguous

amino acids containing a T cell stimulating epitope.

14. Use of a polypeptide according to claim 3 for the preparation of an HCV immunogenic composition, with said polypeptide comprising or consisting of at least 8 to about 68 contiguous amino acids selected from the region comprised between amino acids 325 to 392 in the E1 region of HCV characterized by the following sequence:

 ${\tt NH_2-MNWSPTAALVMAQLLRIPQAILDMIAGAHWGVLAGIAYFSMVGNW}$

AKVLVVLLLFAGVDAETIVSGGQA-COOH (SEQ ID NO 107), or any variant to this sequence derived from another type of HCV as depicted in Figure 4, with said peptides being particularly chosen from :

NWSPTAALVMAQLLRIPQAI (SEQ ID NO 26),

LLRIPQAILDMIAGAHWGVL (SEQ ID NO 27),

AGAHWGVLAGIAYFSMVGNW (SEQ ID NO 28), and,

VVLLLFAGVDAETIVSGGQA (SEQ ID NO 29), and with said contiguous amino acids containing a T cell stimulating epitope.

- 15. Use of a polypeptide according to claim 4 for the preparation of an HCV immunogenic composition, with said polypeptide comprising or consisting of about 8 to about 20 contiguous amino acids selected from the region comprised between amino acid positions 397 to 416 of the E2 region of HCV: $NH_2-X_{37}X_{38}X_{39}X_{40}X_{41}X_{42}X_{43}X_{44}X_{45}GX_{46}X_{47}QX_{48}X_{49}X_{50}LX_{51}NX_{54}-COOH \text{ (SEQ ID NO 55),} and more particularly selected from SGLVSLFTPGAKQNIQLINT (SEQ ID NO 46 or peptide NS1-7*), and with said contiguous amino acids containing a T cell stimulating epitope.$
- 16. Use of a polypeptide according to claim 4 for the preparation of an HCV immunogenic composition, with said polypeptide comprising or consisting of about 8 to about 20 contiguous amino acids selected from the region comprised between amino acid positions 409 to 428 of the E2 region of HCV: NH₂-QX₄₈X₄₉X₅₀LX₅₁NX₅₄NGSWHX₅₂NX₅₃TALN-COOH (SEQ ID NO 56), and more particularly selected from QNIQLINTNGSWHINSTALN (SEQ ID NO 47 or peptide NS1-5*), with said peptides being particularly

chosen from :

 $NH_2-X_{50}LX_{51}NX_{54}NGSW-COOH$ (SEQ ID NO 109), $NH_2-LX_{51}NX_{54}NGSW-COOH$ (SEQ ID NO 110),

NH₂-SWHX₅₂NX₅₃TAL-COOH (SEQ ID NO 111), and NH₂-SWHX₅₂NX₅₃TAL-COOH (SEQ ID NO 112), more particularly QLINTNGSW (SEQ ID NO 113), LINTNGSW (SEQ ID NO 114), SWHINSTAL (SEQ ID NO 115) and WHINSTAL (SEQ ID NO 116), and with said contiguous amino acids containing a T cell stimulating epitope.

17. Use of a polypeptide according to claim 4 for the preparation of an HCV immunogenic composition, with said polypeptide comprising or consisting of at least 8 to about 20 contiguous amino acids selected from the region comprised between amino acid positions 571 to 638 of the E2 region of HCV: $NH_2 - IX_{55}X_{56}X_{57}X_{58}NX_{59}X_{60}Z_1Z_2LX_{61}CPTDCFRKX_{62}PX_{63}X_{64}TYX_{65}X_{66}CGX_{67}GPX_{68}X_{69} - IX_{65}X_{66}X_{67}GPX_{68}X_{69} - IX_{66}X_{66}X_{67}GPX_{68}X_{69} - IX_{66}X_{67}X_{68}X_{69} - IX_{66}X_{66}X_{67}X_{68}X_{69} - IX_{66}X_{66}X_{67}X_{68}X_{69} - IX_{66}X_{67}X_{68}X_{69} - IX_{66}X_{67}X_{68}X_{69} - IX_{66}X_{67}X_{68}X_{69} - IX_{66}X_{67}X_{68}X_{69} - IX_{66}X_{69}X$ TPRCX₇₀X₇₁DYPYRLWHYPCTX₇₂NX₇₃X₇₄X₇₅FKX₇₆RMX₇₇VGGVEH-COOH (SEQ ID NO 108), more preferably chosen from the following list of peptides: $X_{60}Z_1Z_2LX_{61}CPTDCF$ (SEQ ID NO 119), $FRKX_{62}PX_{63}X_{64}TY$ (SEQ ID NO 120), $X_{68}X_{69}$ -TPRCX₇₀ X_{71} (SEQ ID NO 121), $X_{70}X_{71}DYPYRL$ (SEQ ID NO 122), $X_{71}DYPYRLW$ (SEQ ID NO 123), YPYRLWHY (SEQ ID NO 124), LWHYPCTX $_{72}$ (SEQ ID NO 125), $X_{72}NX_{73}X_{74}X_{75}FKX_{76}$ (SEQ ID NO 126), $X_{73}X_{74}X_{75}FKX_{76}RM$ (SEQ ID NO 127), $X_{75}FKX_{76}RMX_{77}V$ (SEQ ID NO 128), $X_{76}RMX_{77}VGGV$ (SEQ ID NO 129), $\text{IX}_{55} \text{X}_{56} \text{X}_{57} \text{X}_{58} \text{NX}_{59} \text{X}_{60} \text{Z}_1 \text{Z}_2 \text{LX}_{61} \text{CPTDCFRKX}_{62} \text{P (SEQ ID NO 130),}$ TDCFRKX₆₂PX₆₃X₆₄TYX₆₅X₆₆CGX₆₇GPX₆₈ (SEQ ID NO 131), $X_{65}X_{66}CGX_{67}GPX_{68}X_{69}TPRCX_{70}X_{71}DYPYR$ (SEQ ID NO 132), $CX_{70}X_{71}DYPYRLWHYPCTX_{72}NX_{73}X_{74}X_{75}$ (SEQ ID NO 133), $PCTX_{72}NX_{73}X_{74}X_{75}FKX_{76}RMX_{77}VGGVEH$ (SEQ ID NO 134), and with said contiguous amino acids containing a T-cell stimulating epitope.

- 18. Use of a polypeptide according to claim 5, for the preparation of an HCV immunogenic composition, with said polypeptide comprising or consisting of at least 8 contiguous amino acids selected from the region comprised between amino acid positions 1188 to 1463 of the NS3 region of HCV and with said peptides being selected from the following list of peptides: VAKAVDFV (SEQ ID NO 135), VAKAVDFI (SEQ ID NO 136), VESMETTM (SEQ ID NO 137), AVPQTFQV (SEQ ID NO 138), YAAQGYKV (SEQ ID NO 139), VLVLNPSVA (SEQ ID NO 140), YMSKAHGV (SEQ ID NO 141), IRTGVRTI (SEQ ID NO 142), YSTYGKFL (SEQ ID NO 143), ILGIGTVL (SEQ ID NO 144), VTVPHPNI (SEQ ID NO 145), IPFYGKAI (SEQ ID NO 146), FYGKAIPI (SEQ ID NO 147), VIKGGRHL (SEQ ID NO 148), IKGGRHLI (SEQ ID NO 149), FCHSKKKC (SEQ ID NO 150), CDELAAKL (SEQ ID NO 151), LAAKLSGFG (SEQ ID NO 152), SGFGINAV (SEQ ID NO 153), FGINAVAY (SEQ ID NO 154), YRGLDVSV (SEQ ID NO 155), VIPTSGDV (SEQ ID NO 156), IPTSGDVV (SEQ ID NO 157), VVVATDAL (SEQ ID NO 158), VVATDALM (SEQ ID NO 159), MTGFTGDF (SEQ ID NO 160), FTGDFDSV (SEQ ID NO 161), KLVALGINAV (SEQ ID NO 166), VIDCNTCV (SEQ ID NO 162), or any variant of said sequence as can be deduced from Figure 6, and with said contiguous amino acids containing a T-cell stimulating epitope.
- 19. Use of a polypeptide according to any of claims 1 to 18 wherein said T cell stimulating epitope is a T cell helper epitope.
- 20. Use of a polypeptide according to any of claims 1 to 18 wherein said T cell stimulating epitope is a CTL epitope.
- 21. Use of a polypeptide according to any of claims 1 to 20 for incorporation into a prophylactic vaccine composition.
- 22. Use of a polypeptide according to any of claims 1 to 20 for incorporation into a therapeutic vaccine composition.

RECTIFIED SHEET (RULE 91) ISA/EP

- 23. A polypeptide comprising in its amino acid sequence multiple repeats, combinations or mimiotopes of any of the contiguous amino acid sequences selected to contain T cell stimulating epitopes as defined in any of claims 1 to 22.
- 24. A polypeptide according to any of claims 1 to 23, with said polypeptide being a recombinant polypeptide expressed by means of an expression vector comprising a nucleic acid insert encoding a polypeptide according to any of claims 1 to 23.
- 25. A polypeptide according to any of claims 1 to 24 which is operably linked to a pathogen related immunogen, such as the HCV envelope proteins E1 and E2, or the HCV NS3, NS4 or NS5 immunogens, or a HCV peptide containing a B cell stimulating epitope.
- 26. A peptide consisting of or comprised in the sequence of any of the following peptides, with said peptides containing a T cell epitope: $NH_2-X_{30}X_{31}X_{32}DGX_{33}NX_{34}X_{35}TGNX_{36}PGCSFSI-COOH (SEQ ID NO 51), \\ VLEDGVNYATGNLPGCSFSI (SEQ ID NO 13 = peptide CORE 27), \\ VLEDIVNYATGNLPGCSFSI (SEQ ID NO 73), \\ NH_2-GX_{33}NX_{34}X_{35}TGNX_{36}-COOH (SEQ ID NO 74),$

 $\mathrm{NH_2-X_{33}NX_{34}X_{35}TGNX_{36}-COOH}$ (SEQ ID NO 75),

 $NH_2-NX_{36}PGCSFSI-COOH$ (SEQ ID NO 76),

 $\mathrm{NH_2-X_{36}PGCSFSI-COOH}$ (SEQ ID NO 77),

GVNYATGNL (SEQ ID NO 78), GVNYATGNL (SEQ ID NO 79),

NLPGCSFSI (SEQ ID NO 80), LPGCSFSI (SEQ ID NO 81),

 $\mathrm{NH_{2}\text{-}GGX}_{25}\mathrm{X}_{26}\mathrm{X}_{27}\mathrm{X}_{28}\mathrm{LX}_{29}\mathrm{HGVRX}_{30}\mathrm{X}_{31}\mathrm{X}_{32}\mathrm{DGX}_{33}\mathrm{NX}_{34}\mathrm{-COOH}$

(SEQ ID NO 52),

GGAARALAHGVRVLEDGVNY (SEQ ID NO 12 = peptide CORE 25),

GGVAARALAHGVRVLEDGVNY (SEQ ID NO 118),

 $\mathrm{NH_2-X_{28}LX_{29}HGVRX_{30}X_{31}-COOH}$ (SEQ ID NO 82),

 $\mathrm{NH_2}\text{-}\mathrm{LX_{29}}\mathrm{HGVRX_{30}}\mathrm{X_{31}}\text{-}\mathrm{COOH}$ (SEQ ID NO 83),

 $\mathrm{NH_2\text{-}GVRX_{30}X_{31}X_{32}DGX_{33}\text{-}COOH}$ (SEQ ID NO 84),

 $\mathrm{NH_2\text{-}VRX_{30}X_{31}X_{32}DGX_{33}\text{-}COOH}$ (SEQ ID NO 85),

```
NH_2-RX_{30}X_{31}X_{32}DGX_{33}NX_{34}-COOH (SEQ ID NO 86),
  {\rm NH_2-X_{30}X_{31}X_{32}DGX_{33}NX_{34}-COOH} (SEQ ID NO 87),
  ALAHGVRVL (SEQ ID NO 88), LAHGVRVL (SEQ ID NO 89),
  VRVLEDGV (SEQ ID NO 90), RVLEDGV (SEQ ID NO 91), VLEDGVNY (SEQ
  ID NO 92), LEDGVNY (SEQ ID NO 93),
 \mathrm{NH_2-LX_{19}X_{20}YIPX_{21}X_{22}GX_{23}PX_{24}GGX_{25}X_{26}X_{27}X_{28}LX_{29}-COOH}
  (SEQ ID NO 53),
 LMGYIPLVGAPLGGAARALA (SEQ ID NO 11 = peptide CORE 23),
 NH_2-LX_{19}X_{20}YIPX_{21}X_{22}GX_{23}PX_{24}GGX_{25}-COOH (SEQ ID NO 62),
 NH_2-X_{19}X_{20}YIPX_{21}X_{22}GX_{23}PX_{24}GGX_{25}-COOH (SEQ ID NO 63),
 NH_2-YIPX_{21}X_{22}GX_{23}PX_{24}-COOH (SEQ ID NO 64),
 NH_2-IPX_{21}X_{22}GX_{23}PX_{24}-COOH (SEQ ID NO 65),
 NH_2-X_{21}X_{22}GX_{23}PX_{24}GGX_{25}-COOH (SEQ ID NO 66),
 NH_2-X_{22}GX_{23}PX_{24}GGX_{25}-COOH (SEQ ID NO 68),
 LMGYIPLV (SEQ ID NO 69), MGYIPLV (SEQ ID NO 70),
 YIPLVGAPL (SEQ ID NO 71), IPLVGAPL (SEQ ID NO 72),
 LVGAPLGGA (SEQ ID NO 94), VGAPLGGA (SEQ ID NO 95),
 NH_2-X_{11}X_{12}DPRX_{13}X_{14}SRNX_{15}GX_{16}VIDTX_{17}TC-COOH (SEQ ID NO 54),
 PTDPRRRSRNLGKVIDTLTC (SEQ ID NO 9 = peptide CORE 19),
NH_2-NX_{15}GX_{16}VIDTX_{17}-COOH (SEQ ID NO 96),
NH_2-X_{15}GX_{16}VIDTX_{17}-COOH (SEQ ID NO 97),
NLGKVIDTL (SEQ ID NO 98), LGKVIDTL (SEQ ID NO 117),
NH_2-GX_1X_2WX_3X_4PGX_5PWPLYX_6NX_7GX_8G-COOH (SEQ ID NO 99),
GRTWAQPGYPWPLYGNEGCG (SEQ ID NO 6 = peptide CORE 13),
NH_2-X_2WX_3X_4PGX_5PW-COOH (SEQ ID NO 100),
NH_2-WX_3X_4PGX_5PW-COOH (SEQ ID NO 101),
TWAQPGYPW (SEQ ID NO 102), WAQPGYPW (SEQ ID NO 103),
QVRNSTGLYHVTNDCPNSSI (SEQ ID NO 16),
NDCPNSSIVYEAHDAILHTP (SEQ ID NO 17),
HDAILHTPGCVPCVREGNVS (SEQ ID NO 18),
CVREGNVSRCWVAMTPTVAT (SEQ ID NO 19),
AMTPTVATRDGKLPPATQLRR (SEQ ID NO 20),
LPATQLRRHIDLLVGSATLC (SEQ ID NO 21),
LVGSATLCSALYVGDLCGSV (SEQ ID NO 22),
QLFTFSPRRHWTTQGCNCSI (SEQ ID NO 23),
TQGCNCSIYPGHITGHRMAW (SEQ ID NO 24),
```

71

```
ITGHRMAWDMMMNWSPTAAL (SEQ ID NO 25),
NWSPTAALVMAQLLRIPQAI (SEQ ID NO 26),
LLRIPQAILDMIAGAHWGVL (SEQ ID NO 27),
AGAHWGVLAGIAYFSMVGNW (SEQ ID NO 28),
VVLLLFAGVDAETIVSGGQA (SEQ ID NO 29),
\mathrm{NH_2-X_{37}X_{38}X_{39}X_{40}X_{41}X_{42}X_{43}X_{44}X_{45}GX_{46}X_{47}QX_{48}X_{49}X_{50}LX_{51}NX_{54}-\mathrm{COOH} \ (\text{SEQ ID NO 55})} \ ,
SGLVSLFTPGAKQNIQLINT (SEQ ID NO 46),
NH_2-QX_{48}X_{49}X_{50}LX_{51}NX_{54}NGSWHX_{52}NX_{53}TALN-COOH (SEQ ID NO 56),
NH_2-X_{50}LX_{51}NX_{54}NGSW-COOH (SEQ ID NO 109),
NH_2-LX_{51}NX_{54}NGSW-COOH (SEQ ID NO 110),
NH2-SWHX52NX53TAL-COOH (SEQ ID NO 111),
NH2-SWHX52NX53TAL-COOH (SEQ ID NO 112), QLINTNGSW (SEQ ID NO 113),
LINTNGSW (SEQ ID NO 114), SWHINSTAL (SEQ ID NO 115), WHINSTAL
(SEQ ID NO 116),
GGAGNNTLHCPTDCFRKHP (SEQ ID NO 41),
TDCFRKHPDATYSRCGSGPW (SEQ ID NO 42),
SRCGSGPWITPRCLVDYPYR (SEQ ID NO 43),
CLVDYPYRLWHYPCTINYTI (SEQ ID NO 44),
PCTINYTIFKIRMYVGGVEH (SEQ ID NO 45),
X_{60}Z_1Z_2LX_{61}CPTDCF (SEQ ID NO 119),
FRKX_{62}PX_{63}X_{64}TY (SEQ ID NO 120),
X_{68}X_{69}-TPRCX<sub>70</sub>X_{71} (SEQ ID NO 121),
X_{70}X_{71}DYPYRL (SEQ ID NO 122),
X_{7}DYPYRLW (SEQ ID NO 123),
YPYRLWHY (SEQ ID NO 124),
LWHYPCTX, (SEQ ID NO 125),
X_{72}NX_{73}X_{74}X_{75}FKX_{76} (SEQ ID NO 126),
X_{73}X_{74}X_{75}FKX_{76}RM (SEQ ID NO 127),
X_{75}FKX_{76}RMX_{77}V (SEQ ID NO 128),
X_{75}RMX_{77}VGGV (SEQ ID NO 129),
\text{IX}_{55} \text{X}_{56} \text{X}_{57} \text{X}_{58} \text{NX}_{59} \text{X}_{60} \text{Z}_1 \text{Z}_2 \text{LX}_{61} \text{CPTDCFRKX}_{62} \text{P (SEQ ID NO 130),}
TDCFRKX<sub>6</sub>,PX<sub>63</sub>X<sub>64</sub>TYX<sub>65</sub>X<sub>66</sub>CGX<sub>67</sub>GPX<sub>68</sub> (SEQ ID NO 131),
X_{65}X_{66}CGX_{67}GPX_{68}X_{69}TPRCX_{70}X_{71}DYPYR (SEQ ID NO 132),
CX_{70}X_{71}DYPYRLWHYPCTX_{72}NX_{73}X_{74}X_{75} (SEQ ID NO 133),
 PCTX_{72}NX_{73}X_{74}X_{75}FKX_{76}RMX_{77}VGGVEH (SEQ ID NO 134).
 VAKAVDFV (SEQ ID NO 135), VAKAVDFI (SEQ ID NO 136), VESMETTM (SEQ
```

ID NO 137), AVPQTFQV (SEQ ID NO 138), YAAQGYKV (SEQ ID NO 139), VLVLNPSVA (SEQ ID NO 140), YMSKAHGV (SEQ ID NO 141), IRTGVRTI (SEQ ID NO 142), YSTYGKFL (SEQ ID NO 143), ILGIGTVL (SEQ ID NO 144), VTVPHPNI (SEQ ID NO 145), IPFYGKAI (SEQ ID NO 146), FYGKAIPI (SEQ ID NO 147), VIKGGRHL (SEQ ID NO 148), IKGGRHLI (SEQ ID NO 149), FCHSKKKC (SEQ ID NO 150), CDELAAKL (SEQ ID NO 151), LAAKLSGFG (SEQ ID NO 152), SGFGINAV (SEQ ID NO 153), FGINAVAY (SEQ ID NO 154), YRGLDVSV (SEQ ID NO 155), VIPTSGDV (SEQ ID NO 156), IPTSGDVV (SEQ ID NO 157), VVVATDAL (SEQ ID NO 158), VVATDALM (SEQ ID NO 159), MTGFTGDF (SEQ ID NO 160), FTGDFDSV (SEQ ID NO 161), VIDCNTCV (SEQ ID NO 162).

- 27. An immunogenic composition consisting of or comprising at least one of the peptides or polypeptides according to claim 26 mixed with a pharmaceutically acceptable excipient.
 - 28. A vaccine composition according to any of claim 27.
- 29. A prophylactic vaccine composition according to claim 28.
- 30. A Therapeutic vaccine composition according to claim 29.
- 31. A composition according to any of claims 27 to 30, with said composition comprising in addition to any of the polypeptides according to claim 26, a peptide or polypeptide containing at least one B cell stimulating epitope of HCV, and/or a structural HCV polypeptide, and/or a non-structural HCV polypeptide.
- 32. A composition according to any of claims 27 to 31, wherein said polypeptide according to claim 26 is mixed with HBsAg or HBcAg particles, HBV immunogens, HIV immunogens and/or HTLV immunogens.

Figure 1. Evolution of lymphoproliferative responses and transaminase activities in HCV patient # 632

Figure 2
RECTIFIED SHEET (RULE 91)
ISA/EP

BE8309 NS3 SEOUENCE

QGYKVLVLNPSVAATLGFGAYMSKAHGVDPNIRTGVRTITTGAPITYSTYGKFLADGGC GVAKAVDFVPVESMETTMRSPVFTDNSSPPAVPQTFQVAHLHAPTGSGKSTKVPAAYAA SGGAYDIIICDECHSIDSTSILGIGTVLDQAETAGARLVVLATATPPGSVTVPHPNIEE VALSSTGEIPFYGKAIPIEVIKGGRHLIFCHSKKKCDELAAKLSGFGINAVAYYRGLDV SVIPTSGDVVVVATDALMTGFTGDFDSVIDCNTCVTQTVDFS

SUBSTITUTE SHEET (RULE 26)

Figure 3

Figure '

4/31																					
1 MSTNPKPQRKTKRNTNRRPQDVKFPGGGQIVGGVYLLPRRGPRLGVRATR																			-V		
1a	la La	1a	1a	1a	1a	1a	1b	1b	1b	1p	1b	1b	1p	1p	1p	1d	1d	1e	1 £	2a	2b
HCV-H HCV-1	HC-J1				F HCVHCT27							HCV-JTB	HCV-BK	HCV-JK1	HCV-T	BNL1	BNL2	CAM1078	FR2	HC-J6	HC-J8

5/31		
1	-AQQQQ	

SUBSTITUTE SHEET (RULE 26)

NZL1

FR4 HD10 BR33 BR36

HCVTR GB809-4 GB116 GB215 GB358 GB809

DK13 CAM600

CAMG22

GB809

GB549 GB438

CAR4/1205 CAR4/901

- Continued

Figure 4

CH114 NE92 BNL3

_	,	2	-
o	_	3	1

												-	/3
· · ·											f l l		
	4 K	5a	5a	eg	7a	œ	0 2 4	Q 0	9a	100	3		
	BNL7	BE95	BE100	HK2	FR1	VN4	CLINIX	27 AT A	VN13	NE98		•	

SUBSTITUTE SHEET (RULE 26)

m
red
tino
Con
ı
Figure 4

1. RRPEGRTWAQPGYPWPLYGNEGCGWAGWLLS:	1											. П				ķ	1	-S'I'-KS-GK	
1 n 1 n	19 19	ر ا ا	т П П	ם ל	Ω,	1p	1b	1b	1b	1p	1 p	1p	1p	1d	1q	1e	1 T	2a	2 b
HCV-H HCV-1	HC-J1 HCVEC1		HCVHCT23		HCV-J	HC-J4.	HC-J4.9	HCV-Ch		HCV-JTB	HCV-BK	HCV-JK1	HCV-T	BNL1	BNL2	2AM1078	FR2	HC-16	HC-J8

4
ned
tinu
Con
1
gure 4
F1.

(5							8	3/3	31													
7		f ; l l		! ! !	; ; ;	 					 						1 1 1	1 1 1	1 1 1				
	; ;	1 ! !	ı	! ! !	! ! !	! ! !				-	1 1 1						[] [, 	, 				
	 	 	} }			: 				77	4						f i i	 	 '* 				
	1 1 1		; ; ;	1 						; ; ;						1			 				
	1 1 1		1 1 1	1	 					 						; 1 1 1	1						•
	3-GR-	;	- K	15 CE - 15 CE	ו מני ביים ליים ביים ליים	,				1						1	! ! !	1 1 1					
	-TT-KS-GR	; ; !	- T - K	- XAT S - GR	AT- KO					2						Ο. 	ַ .	1					
	0-	1	- D	-D-X	-D))				SR						01	ן או וויין או	י י י	1				
	! ! !		1 1	1 1 1	1 1 1					- HI						1 1	1 1	1					
	t t t		1 1	1 1	1					KO-HI	ł					1 1	1 1 1	1 1					
] 		1 1	1 1 1	1 1					1 1						1	1 1	1 1 1					
51			1	1	i i					t t						l 1	1	1					
	Ŋ	Ŋ	2d	υ U	44	ಹ	מ	ಗ	៧	q	ಹ	ט	ט	ט	ט	ש	ധ	a)	44	b	י כ		٥.
	7	7	ŏ	7	(3	m	m	m	m	m	4	4	4	4	4	4	4(46	4	46	41	4	4.
	0	4	•			_				<u></u> 전	9.4	وا	Ŋ	ω	Q		0 0	o ص	22	6	ω	12	/901
	CH610	CH11	NE92	BNL3	FR4	HD10	BR33	BR36	NZL1	HCVI	GB80	GB11	GB21	GB35	GB80	DK13	CAM6	GB80	CAMG:	GB54	GB43	CAR4/	CAR4
						STI																	

	9/31
- Continued 5	4k
	•
Figure 4	BNL7 BE95 BE100 HK2 FR1 VN4 VN13 NE98
	CIRCUITITE CHEET

9
Continued
1
Figure 4

,	_		10/31																				
	TSU RGSRPSWGPTDPRRRSRNI,GKVTDTI,TCGFADDI.MGVTDI 17CAAADAA	1														YR	11 N N N				E : 0		ΛΛ
	1a	H R	1a	1a	la	1a	1a	1a	1p	1b	1b	1p	1p	1p	1b	1b	1p	1d	1q	<u>1</u> e	1£	2a	2b
	HCV-H	HCV-1	HC-J1	HCVEC1	HCVHCT18	HCVHCT23	HCVHCT27	HCVTH	HCV-J	HC-J4.83	HC-J4.91	HCV-China	HCV-JTA	HCV-JTB	HCV-BK	HCV-JK1	HCV-T	BNL1	BNL2	CAM1078	FR2	HC-J6	HC-J8

SUBSTITUTE SHEET (RULE 26)

	_							1	.1/	31														
	101	- M M		- ^ ^																		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	-N-N	
Ö		2 C	2c	2d	2e	2£	3a	3a	3a	3a	3p	4a	4 C	4 C	4 C	4 C	4d	4 e	4e	4 £	49	4h	41	4.5
Figure 4 -		CH610	CH114	NE92	BNL3	FR4	HD10	BR33	BR36	NZL1	HCVTR	GB809 4	GB116	GB215	GB358	GB809	DK13 .	CAM600	GB809	CAMG22	GB549	GB438	Æ	0

SUBSTITUTE SHEET (RULE 26)

Continued

12/3	L
------	---

										1
101		-		H	NNN	-X-\Lambda-X\Lambda	D-X-NX	XNXXIE	N	
	4 k	5a	Sа	6а	7a	8 8	8b	9a	10a	
	BNL7	BE95	BE100	HK2	FR1	VN4	VN12	VN13	NE98	

	200	· KUI			ST-V-3/V-/	2 C 2 E	$\mathbb{L} = \mathbb{X} = -\mathbb{A} = -\mathbb{A}$	י ני ני	OCT EW TO		- AGLEW I	TMATTEMT		T - T Z ヨコウ フ	1	1 1	X H V	VXNATX	1 TH X XH X	ł ł	VNYAS - V	VNYH-AS-V	N-SXN	I-SRNNXT
151		-MXI		XIX			1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	· · · · · · · · · · · · · · · · · · ·	AI-F	AI-F	AI-F	AI-F	A-G		ı		-EAVI	-EAVI	AVI	ı			ı	
		CH114 2c					BNL5 2h			•													C C C C C C C C C C C C C C C C C C C	
	-1	•	1				JTE							G	2	2	ט	ט	כט	Z	N	֝ אַ	ז כ	j

Continued 10

Continued 12

250 YHVTNDCPNSSIVYEAADAILHTPGCVPCVREGNASRCWVAMTPTVATRD
HCV-1 1a HCV-H 1a HCV-J1 1a HCVHCT18 1a HCVHCT27 1a HCVHCT27 1a HCVHCT27 1a HCV-J4.83 1b HC-J4.91 1b HCV-JTB 1b

Figure 4 - Continued 13	201 -MPSWQLEG-V -MSWQLEG-VX-I	26 -MAS-NWQLXVV	-MSMQLEE-VV -VLSD-VA -VLSD-VA	3a -VLSD-V	4b	$rac{4}{4}$ C 1
	- TA - V PV. WTNTTP PV EK I IPV	SSGRFHIPIS-] SRTFT-VS-] QKIPV HQ-QIPV	-T-AIPVNI -T-ATPV -T-TTPV -T-TTPV	- QDT-T-T-T-V		O K O O K

250
GB809 4e CAMG22 4f CAMG27 4f GB549 49 GB549 49 GB438 4h CAR4/12054i CAR4/12054i CAR4/901 4? BNL7 4k BNL7 4k BNL9 4k BNL10 4k BNL11 4k BNL11 4k BNL11 4k BNL11 6k BNL11 7 78 BE95 5a BE100 5a SA4 5a HK2 6a FR1 7a VN4 8a VN12 8b NE98 10a

Figure 4 - Continued 15

LTKGAII-MV
2C PGALTK 2d PGALTK 2d PGALTK 2e PGALTK 2f PGALTR 2g PGALTR 2h PGALTR 3a VGATTA 3a VGATTA 3a VGATTA 4a MDA-LE 4b PNA-LE 4c IGA-LE 4c IGA-LE 4c IGA-LE 4d LNA-LE 4d LNA-LE 4d LNA-LE 4d LNA-LE

21/31

300	-LEPVMAVGLM	MA19	-LESMMMIIIM-M-M-I-M	-LESMVMAVIG		-LSSA-VMAAF-I	-I-SGMMMM	-LESS-VMAVIX-XGLM	-LESNMNIINMN-SSI-	-LESS-VMAVIGAIM-	-LESS-VMAVI-XGLM-	-LESS-V-VMAVIGL	- LMSV V M A S GA	-LESFVMAGAMO	VTAPAV-Y-A-G-AAALMYRQ-	VTAPAV-YG-AAALMYR	VTAPAV-Y-A-G-AAA	GFVA-A-VVSILAQ	-IHGFVA-AFM-IIIK-	-V-GF-K-V-IMA-AFMGLLKM-	ASVSIRGV-E-VA-AFMGL	PCAATAST-V-MM-XAALXG-SWKH-Q
	4e	4 £	4 £	49	4 h	ഗ	4	4 K	4 k	4	4 k	4 K	41	4.2	Sа	5 a	5a	6 a	7a	8 8	8	10a
	GB809	N	CAMG27	GB549	GB438		CAR4/901	BNL7	BNL8	BNL9	BNL10	BNL11	BNL12	GB724	BE95	BE100	SA4	HK2	FR1	VN4	VN12	

22/31

360 TQGCNCSIYPGHITGHRMAWDMMNWSPTTALVMAQLLRIPQAILDMIAGD
11 12 12 13 14 15 15 15 15 15 15 15 15 15 15 15 15 15
HCV-1 HCV-H HCV-J1 HCVEC1 HCVHCT23 HCVHCT27 HCV-J4.83 HC-J4.83 HC-J4.83 HC-J4.91 HCV-JTB

SUBSTITUTE SHEET (RULE 26)

Figure 4 - Continued 19	301	2c V-	H114 2C V-E	E92 2d	NL3 2	4 2	Z	L5 2	L6 2i	10 3a V-TL	R33 3a V-TL	R36 3a V-T	NZL1 3a $V-TL$	V-TR 3b	3B809 4 4aDT	ET	4bD4	B116 4cD	215 4cD	4cD	6 4cDA-		K13 4dD	-LU 07 00784
7		E	王	· · · · · · · · · · · · · · · · · · ·			<u>-</u>	-D	•	-TTT-	-TLT-	-TLL-	_TTT-				N	DA	DA	DA-	DA	DA-	-D	- L

4 - Continued 20	301 4eDA	4£ET	4£E	4gDD	4hDV)54iDSXXXX	4kD	4k A-D		4kD	4kE	41 V-D	4	4?DT	5a V-NSV	5a V-DSV0	5a V-DS	6a V-DTV	7aDXNXV	8a V-ET	8b A-DA	10a V-D	
	_		4 £			05		4 K	4 k													0	
Figure	3B809	322	G27		GB438	CAR4/12	BNL7	BNL8	BNL9	BNL10	BNL11	BNL12	CAR4/90	GB724	BE95	BE100	SA4	HK2	FR1	VN4	VN12	NE98	
				•	NOQ	STIT	UI	: 3f	1LL	1 (R	ULE	: 26	3										

Continued 21	351 AHWGVLAGIAYFSMVGNWAKVLVVLLLFAGVDA ETHV		TWWW_DC-T &	rd .		€.			$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	O.T. X -5) W - I	1-XVX-T2	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	XTI	$\Gamma_{-} = \Gamma_{-} = \Gamma_{-$	- M W - I W X T	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Q = -1 - V - V - V - V - V - V - V - V - V	٠, T	O. C.	•	MF-LQ-AV-LA (QTV)	:b GVF-LQ-AIAIV I-YSS-QEKA
4	19	1a	r H		18	~	7		11	ω.	91	Ja				K1 1k	11	10	10	H		
Figure 4	HCV-1	HCV-H	HC-J1	HCVEC1	HCVHCT	HCVHCT2	HCVHCT2	HCVTH	HCV-J	HC-J4.	HC-J4.9	HCV-Ch	HCV-JI	HCV-JJ	HCV-BF	HCV-JF	HCV-T	BNL1	BNL2	FR2	HC-J6	HC-J8
					C1 II	RSTI	TUT	FS	HF	T //	a n l	F 21	5)									

Continued

Figure 4

26/31

							20	,, ,	•										
	X					S-KIVI-R	FSS-RIVI-RHF \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	FSSS-KIVI-RHF	-FTS-KII-R	-FFTQ-PA-RII-R	-FFTPA-KII-RFG-	S-KIIF-A	-FFSSA-KIVI-R	S-KII-R		**		R-KII-RHF	-TSHO
11 12 12	1a	1a	2 C	7 1a	1a	1b	3 1b		na1b	1 p	1p	1p	1p	1p	1d	1d	7 T	2a	2b
HCV-1	HC-J1	HCVEC1	HCVHCT23	HCVHCT2	HCVTH	HCV-J	HC-J4.83	HC-J4.91	HCV-Chir	HCV-JTA	HCV-JTB	HCV-BK	HCV-JK1	HCV-T	BNL1	BNL2	FR2	HC-J6	HC-J8

SUBSTITUTE SHEET (RULE 26)

LHCPTDCFRKHPDATYSRCGSGP	-LY-E		-VETK	-T	-IIEI-	1 1 日 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	-TEE	-T	-TETK	-TETK	-VETK	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	D-LTK	-RKDY-S-ID-LLKA
571 IGGAGINIT	· \lambda	9	\ \	-HV	VR-	\\	-TV	VL	· · · · · · · · · · · · · · · · · ·	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		S	-RADF-ASMD-L	-RKDY-S-I
HCV-1	HCV-H	HC-J1	HCV-J	HC-J4.83	HC-J4.91	HCV-CHINA	HCV-JTA	HCV-JTB	HCV-BK	HCV-JK1	HCV-T	HC-G9	HC-J6	HC-J8

Figure 5 continued 1

WITPRCLVDYPYRLWHYPCTINYTIFKIRMYVGGVEH	-LMV-F-VV	1 1 1	3 1 1 3 1 1 4 1 1 3 1 1 4 1 1 4 1 1	-1
HCV-1 HCV-H HC-J1	HCV-J HC-J4.83 HC-J4.91 HCV-CHINA	HCV-JTA HCV-JTB HCV-BK	HCV-JK1 HCV-T HC-G9	HC-J6 HC-J8

SUBSTITUTE SHEET (RULE 26)

HCV-1 HCV-H HC-J1 HC3-J BE8309 HC-J4.83 HC-J4.91 HCV-CHINA HCV-JTA HCV-JTB HCV-JK1 HCV-JK1 HCV-JK1 HCV-JK1 HCV-J6 HC-J6	1188 1200 GVAKAVDFIPVENSSSS
HCV-1 HCV-H HC-J1 HCV-J BE8309 HC-J4.83 HC-J4.91 HCV-CHINA HCV-JTA HCV-JTB HCV-BK HCV-JK1 HCV-JK1 HCV-JK1 HCV-J6 HC-J8	1201 LETTMRSPVFTDNSSPPVVPQSFQVAHLHAPTGSGKSTKVPAAYAAQGYK
HCV-1 HCV-H HC-J1 HCV-J BE8309 HC-J4.83 HC-J4.91 HCV-CHINA HCV-JTA HCV-JTB HCV-JK1 HCV-JK1 HCV-JK1 HCV-JK1 HCV-JK1	1251

Figure 6

HCV-1 HCV-H HC-J1 HCV-J BE8309 HC-J4.83 HC-J4.91 HCV-CHINA HCV-JTA HCV-JTB HCV-JK1 HCV-JK1 HCV-JK1 HCV-JK1 HCV-JK1	1301 ADGGCSGGAYDIIICDECHSTDATSILGIGTVLDQAETAGARLVVLATAT
HCV-1 HCV-H HC-J1 HCV-J BE8309 HC-J4.91 HCV-CHINA HCV-JTA HCV-JTB HCV-JK1 HCV-JK1 HCV-JK1 HCV-JK1 HCV-JK1	1351 PPGSVTVPHPNIEEVALSTTGEIPFYGKAIPLEVIKGGRHLIFCHSKKKCIASI-A
HCV-1 HCV-H HC-J1 HCV-J BE8309 HC-J4.83 HC-J4.91 HCV-CHINA HCV-JTA HCV-JTB HCV-JK1 HCV-JK1 HCV-JK1 HCV-JK1 HCV-J6 HC-J8	1401 DELAAKLVALGINAVAYYRGLDVSVIPTSGDVVVVATDALMTGYTGDFDS

Figure 6 - continued 1

	1451	1465
HCV-1	VIDCNTCVTQ	CVDFS
HCV-H		
HC-J1		
HCV-J		
BE8309 ·		
HC-J4.83 ⋅		
HC-J4.91		
HCV-CHINA		
HCV-JTA		
HCV-JTB		
HCV-BK		
HCV-JK1		
HCV-T		
HC-J6	VA	V
HC-J8	VA-S-	I

Figure 6 - continued 2

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 6:

C12N 15/40, C07K 14/18, A61K 39/12

(11) International Publication Number:

WO 95/12677

(43) International Publication Date:

11 May 1995 (11.05.95)

(21) International Application Number:

PCT/EP94/03555

A3

(22) International Filing Date:

28 October 1994 (28.10.94)

(30) Priority Data:

4 November 1993 (04.11.93) EP 93402718.6 (34) Countries for which the regional or

international application was filed:

GB et al.

(71) Applicant (for all designated States except US): INNOGENET-ICS N.V. [BE/BE]; Industriepark, Zwijnaarde 7, P.O. Box 4, B-9052 Ghent (BE).

(72) Inventors; and

(75) Inventors/Applicants (for US only): LEROUX-ROELS, Geert [BE/BE]; Gordunakaai 23, B-9000 Ghent (BE). DELEYS, Robert [BE/BE]; Diepekanten 20, B-1850 Grimbergen (BE). MAERTENS, Geert [BE/BE]; Zilversparrenstraat 64, B-8310 Brugge (BE).

(74) Agent: GROSSET-FOURNIER, Chantal; Grosset-Fournier & Demachy s.a.r.l., 103, rue La Fayette, F-75010 Paris (FR).

(81) Designated States: AM, AT, AU, BB, BG, BR, BY, CA, CH, CN, CZ, DE, DK, EE, ES, FI, GB, GE, HU, JP, KE, KG, KP, KR, KZ, LK, LR, LT, LU, LV, MD, MG, MN, MW, NL, NO, NZ, PL, PT, RO, RU, SD, SE, SI, SK, TJ, TT, UA, US, UZ, VN, European patent (AT, BE, CH, DE, DK, ES, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, ML, MR, NE, SN, TD, TG), ARIPO patent (KE, MW, SD, SZ).

Published

With international search report.

Before the expiration of the time limit for amending the claims and to be republished in the event of the receipt of amendmenis.

(88) Date of publication of the international search report: 27 July 1995 (27.07.95)

(54) Title: IMMUNODOMINANT HUMAN T-CELL EPITOPES OF HEPATITIS C VIRUS

(57) Abstract

The present invention relates to a polypeptide of about 8 to about 100 amino acids comprising or consisting of at least 8 contiguous amino acids selected from the core, and/or the E1, and/or the NS3 regions of the HCV polyprotein, with said contiguous amino acids containing a T-cell stimulating epitope.

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

	•				
AT	Austria	GB	United Kingdom	MR	Mauritania
AU	Australia	GE	Georgia	MW	Malawi
BB	Barbados	GN	Guinea	NE	Niger
BE	Belgium	GR	Greece	NL	Netherlands
BF	Burkina Faso	HU	Hungary	NO	Norway
BG	Bulgaria	IE	Ireland	NZ	New Zealand
BJ	Benin	IT	Italy	PL	Poland
BR	Brazil	1P	Japan	PT	Portugal
BY	Belarus	KE	Kenya	RO	Romania
CA	Canada	KG	Kyrgystan	RU	Russian Federation
CF	Central African Republic	KP	Democratic People's Republic	SD	Sudan
CG	Congo		of Korca	SE	Sweden
CH	Switzerland	KR	Republic of Korea	SI	Slovenia
CI	Côte d'Ivoire	KZ	Kazakhstan	SK	Slovakia
CM	Cameroon	LI	Liechtenstein	SN	Senegal
CN	China	LK	Sri Lanka	TĐ	Chad
cs	Czechoslovakia	LU	Luxembourg	TG	Togo
CZ	Czech Republic	LV	Latvia	TJ	Tajikistan
DE	Germany	MC	Monaco	TT	Trinidad and Tobago
DK	Dunmark	MD	Republic of Moldova	UA	Ukraine
ES	Spain	MG	Madagascar	US	United States of America
FI	Finland	ML	Mali	UZ	Uzbekistan
FR	France	MN	Mongolia	VN	Vict Nam
GA	Gabon		· ·		

INTERNATIONAL SEARCH REPORT

T/EP 94/03555 a. CLASSIFICATION OF SUBJECT MATTER
1PC 6 C12N15/40 C07K14/18 A61K39/12 According to International Patent Classification (IPC) or to both national classification and IPC **B. FIELDS SEARCHED** Minimum documentation searched (classification system followed by classification symbols) C07K IPC 6 Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched Electronic data base consulted during the international search (name of data base and, where practical, search terms used) C. DOCUMENTS CONSIDERED TO BE RELEVANT Relevant to claim No. Citation of document, with indication, where appropriate, of the relevant passages Category * 1,2,7, X VIRUS RESEARCH, 11,22, vol.30, no.1, October 1993, AMSTERDAM, NL 26,30 pages 27 - 41 LIN, H.J. ET AL. 'The hepatitis C virus genome: a guide to its conserved sequences and candidate epitopes' see page 33, line 25 - line 26; table 3 GASTROENTEROLOGY, A vol.104, no.4PT2, April 1993 page A660 ALVARADO ESQUIVEL, C.C. ET AL. 'T cell recognition of hepatitis C virus in patients with chronic hepatitis C' the whole abstract * 1 & 94th Annual Meeting of the American 0,X Gastroenterological Association May 15-21 1993 Boston, USA -/--Patent family members are listed in annex. Further documents are listed in the continuation of box C. X Special categories of cited documents: "T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the 'A' document defining the general state of the art which is not considered to be of particular relevance "E" earlier document but published on or after the international "X" document of particular relevance; the claimed invention filing date cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone "L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another "Y" document of particular relevance; the claimed invention citation or other special reason (as specified) cannot be considered to involve an inventive step when the document is combined with one or more other such docu-'O' document referring to an oral disclosure, use, exhibition or ments, such combination being obvious to a person skilled other means in the art. document published prior to the international filing date but "&" document member of the same patent family later than the priority date claimed Date of mailing of the international search report Date of the actual completion of the international search 04-07-1995 31 March 1995 Authorized officer Name and mailing address of the ISA

2

Form PCT/ISA/210 (second sheet) (July 1992)

European Patent Office, P.B. 5818 Patentlaan 2 NL - 2280 HV Rijswijk Tel. (+31-70) 340-2040, Tx. 31 651 epo nl, Fax: (+31-70) 340-3016

CHAMBONNET, F

INTERNATIONAL SEARCH REPORT

PCT/EP 94/03555

		PCT/EP 94	/03555
	tion) DOCUMENTS CONSIDERED TO BE RELEVANT		
Category *	Citation of document, with indication, where appropriate, of the relevant passages		Relevant to claim No.
X	WO,A,92 22571 (BAXTER DIAGNOSTICS INC.) 23 December 1992 * sequence description no 22 *		23
P,A	JOURNAL OF VIROLOGY, vol.67, no.12, December 1993 pages 7522 - 7532 KOZIEL, M. J. ET AL. 'Hepatitis C Virus (HCV)-specific cytotoxic T lymphocytes recognize epitopes in the core and envelope proteins of HCV' see page 7530, last paragraph		1,2, 20-22
•			
:	•		

2

Box I	Observations where certain claims were found unsearchable (Continuation of item 1 of first sheet)					
This inte	his international search report has not been established in respect of certain claims under Article 17(2)(a) for the following reasons:					
1.	Claims Nos.: because they relate to subject matter not required to be searched by this Authority, namely:					
2.	Claims Nos.: because they relate to parts of the international application that do not comply with the prescribed requirements to such an extent that no meaningful international search can be carried out, specifically:					
з. [Claims Nos.: because they are dependent claims and are not drafted in accordance with the second and third sentences of Rule 6.4(a).					
Box II	Observations where unity of invention is lacking (Continuation of item 2 of first sheet)					
	ernational Searching Authority found multiple inventions in this international application, as follows:					
1.	As all required additional search fees were timely paid by the applicant, this international search report covers all searchable claims.					
2.	As all searchable claims could be searches without effort justifying an additional fee, this Authority did not invite payment of any additional fee.					
3.	As only some of the required additional search fees were timely paid by the applicant, this international search report covers only those claims for which fees were paid, specifically claims Nos.:					
4. X	No required additional search fees were timely paid by the applicant. Consequently, this international search report is restricted to the invention first mentioned in the claims; it is covered by claims Nos.: 1,2,6-11 6 19-25 partially					
Remark	on Protest The additional search fees were accompanied by the applicant's protest. No protest accompanied the payment of additional search fees.					

Form PCT/ISA/210 (continuation of first sheet (1)) (July 1992)

INTERNATIONAL SEARCH REPORT

International Application No. PCT/EP94/03555

FURTHER INFORMATION CONTINUED FROM PCT/ISA/210

- Claims: 1,2,6-11 and partially 19-25

 a polypeptide of about 8 to about 100 amino acids for the preparation of an HCV immunogenic composition, with said polypeptide comprising or consisting of at least 8 contiguous amino acids selected from the region comprised between amino acids 73 to 176 in the core region, and with said contiguous amino acids containing a T cellstimulating epitope; multiple repeats thereof, combinations or mimiotopes, possibly linked to a
 - . use of the polypeptide for the preparation of an HCV immunogenic composition
 - . immunogenic composition consisting or comprising this polypeptide
 - . vaccines containing such a composition

pathogen related immunogen

- . composition comprising in addition of such a polypeptide, a peptide containing at least one B cell stimulating epitope of HCV and/or a structural HCV polypeptide, and/or a non structural HCV polypeptide
- . composition wherein said polypeptide is mixed with HBsAg or HBcAg particles, HBV immunogens, HIV immunogens and/or HTLV immunogens
- 2. Claims: 3,12-14 and partially 19-25
 As first invention, but the polypeptide originating from the region comprised between amino acids 192 to 234 and 243 to 392 of the El region
- 3. Claims: 4,15-17 and partially 19-25
 As first invention, but the polypeptide originating from the region comprised between amino acids 397 and 428 and amino acids 571 to 638 in the E2 region.
- 4. Claims: 5,18 and partially 19-25
 As first invention, but the polypeptide originating from the region comprised between amino acids 1188 and 1463 of the NS3 region of HCV.

INTERNATIONAL SEARCH REPORT

info on patent family members

			I I CI/LI	FC1/EF 34/03333	
Patent document cited in search report	Publication date	Patent family member(s)		Publication date	
WO-A-9222571	23-12-92	AU-B- AU-A- EP-A- JP-T- CA-A-	648912 1972092 0544861 6500796 2087974	05-05-94 12-01-93 09-06-93 27-01-94 14-12-91	

