- 1. 某人有 3 把伞放在家或办公室用于来往于家和办公室之间, 当且仅当天下雨且手边有伞时, 带一把伞走, 到达后放下, 下雨的概率为 p, $0 . 用 <math>X_n$ 表示他第 n 次出 (家或办公室) 门时手边的伞的数目, 则 $\{X_n\}$ 是一时齐 Markov 链。
 - (1) 写出 $\{X_n\}$ 的状态空间和一步转移矩阵, 并求它的平稳分布.
 - (2) 计算此人被雨淋的概率的极限,并证明不管 p 取何值,此极限小于 $\frac{1}{12}$.
 - (3) 计算此人相邻两次被雨淋的平均时间间隔.
- 2. 独立重复掷骰子,用 S_n 表示前 n 次点数之和,用 Z_n 表示 S_n 除以 4 的余数。则 Z_n 是一时齐的 Markov 链。
 - (1) 写出 $\{Z_n\}$ 的状态空间和一步转移矩阵,并求它的平稳分布.
 - (2) 求 $\lim_{n\to\infty} P(S_n \in 4)$ 的倍数).

3.设 $\{X_n\}$ 是时齐的不可约正常返Markov链.

根据结论"如果状态
$$i$$
正常返,则 $\lim_{n\to\infty}\frac{1}{n}\sum_{k=1}^n p_{ii}^{(k)} = \frac{1}{\mu_i}$ "

证明: (1)对所有状态
$$i, j, \lim_{n \to \infty} \frac{1}{n} \sum_{k=1}^{n} p_{ij}^{(k)} = \frac{1}{\mu_{ij}}$$

(2) 对所有
$$j$$
, $\lim_{n\to\infty} \frac{1}{n} \sum_{k=1}^{n} P(X_k = j) = \frac{1}{\mu_j}$, 不依赖于初始分布.

(3)设
$$\pi$$
是平稳分布,则对所有 j 有 $\pi_j = \frac{1}{\mu_j}$

4.书本习题四 22,注意把状态空间改成 $\{0,1,...,m\}$,并且假设对所有状态i,都有 $p_i > 0$