Machine Learning 101

Autor: Dirso

4 de abril de 2019

Sumário

- Processo de Data Science
- Processo Modelagem
- Amostragem principais erros
- Engenharia de features
- Overview de modelos
- Treinamento de modelos
- Ferramentas
- Contato

Pessoal

 Adilson Khouri, jogador de Magic the Gathering, nerd, apaixonado por computação, machine learning, brasileiro mas não sei jogar futebol nem sambar!

Figura: Eu no Peru palestrando e na Argentina trabalhando

Formação Acadêmica

- Bacharel em Sistemas de Informação (2011 USP)
- Mestre em Sistemas de Informação (2016 USP)
- Doutorando em Sistemas de Informação (cursando USP)

Experiência de Mercado

- Programador na consultoria Arbit (2010-2011)
- Programador Itaú-Unibanco (2011-2013)
- Cientista de dados Sr. PagSeguro (2016 2018)
- Cientista de dados Sr. NuvemShop (Atual)
- Professor de Programação SENAC (Atual)

Processo de Data Science

Data Science Lifecycle

Figura: Obtido em: https://docs.microsoft.com/en-us/azure/machine-learning/team-data-science-process/overview

Processo Modelagem

 Existem muitos processos para usar na área de big data, um dos mais simples e práticos é o CRISP-DM

Processo Modelagem

- Entendimento de negócio
- Entendimento dos dados
- Preparação dos dados
- Modelagem
- Avaliação do modelo
- Deploy

Figura: Método científico

• Então método científico nos impede de cometer erros?

Por que Dirso ficou doente na Argentina em 2018?

Figura: Na minha cabeça a Argentina é tipo wall de game of thrones!!!!

Autor: Dirso Data Science 4 de abril de 2019 11/30

Explicar o problema de monty hall

• Alguém conhece o problema de monty hall?

12/30

 Como essas três perguntas se relacionam com essa apresentação?

13/30

Amostras viesadas

- Precisamos de informação precisa e sem viés para tomarmos boas decisões.
- Se você "cria conhecimento" ou "toma decisões" usando informação viesada você não está sendo # datadriven
- A probabilidade de tomar decisões ruins aumenta... e decisões ruins costumam ser caras...

processo de KDD

Figura: Processo de KDD

 Se você cometer um erro durante a etapa de: "seleção" os passos seguintes e suas conclusões estarão erradas.

Amostragem 101

Figura: Overview de amostragem

 O subconjunto (amostra) de elementos deve ser representativa da população.

Bias de auto seleção

- Suponha um estudo estatístico sobre detalhes íntimos da sexualidade de estudantes em universidades. Algumas pessoas provavelmente vão mentir.
- Uma pesquisa online sobre quem gosta de usar computador.
- Em ambos as pessoas selecionadas vão terão seus comportamentos diferentes da população geral.

Undercoverage Bias

 Digest em 1936 fez uma pesquisa eleitoral que previa vitória larga do candidato Lando em relação ao candidato Roosevelt. Roosevelt ganhou com uma margem larga, a pesquisa era feita por telefone, na época pessoas pobres (maioria da população que era a favor de Roosevelt) não tinha telefone. Essa foi uma das causas do erro estatístico

Survivorship Bias

 Ocorre quando as observações estudadas no fim da investigação são não aleatórias em comparação as presentes no começo da observação.

Survivorship Bias

• Exemplo da segunda guerra mundial (tiros em avião)

Engenharia de features

- Modelos usam muitas variáveis para tomar decisões
- Encontrar boas variáveis é parte fundamental para um modelo
- Citar exemplo de variáveis de transações financeiras
- Citar exemplo de variáveis de pagamento de assinaturas
- Citar exemplo de um classificador de brasileiros e peruanos

Modelos

Figura: Brincadeira, cada modelo trabalha internamente de uma forma distinta!

Modelos

- Modelos tomam decisões baseados em diversas variáveis para, entre outras coisas, classificar dados
- Quem são peruanos e quem são brasileiros nessa sala?
- Há modelos para classificar em duas classes ou mais.

Figura: Exemplo de árvore de decisão para sair de casa

Treinamento

- O processo de treinamento é único para cada modelo mas a forma como se treina um modelo é parecida
- Os dados são dividos em treino (70%) e teste (30%)
- O conjunto de treino é apresentado ao modelo com os rótulos de cada observação
- Tipicamente usa-se uma validação cruzada para treinar o modelo

Validação

 O modelo é validado com o conjunto de teste, o qual não deve exibir os rótulos para o modelo

		PREDITO	
		Classe A	Classe B
VERDADEIRO	Classe A	VP	FN
	Classe B	FP	VN

Figura: Obtido no link: Scielo

Validação - outras métricas

- Se usarmos a matriz de confusão acima podemos obter outras métricas
- Citar o problema das classes de seller (relacionar com F1)

Precision =
$$\frac{TP}{TP + FP}$$

Recall = $\frac{TP}{TP + FN}$
F1 = 2 * $\left(\frac{\text{Precision} * \text{Recall}}{\text{Precision} + \text{Recall}}\right)$

Ferramentas

- Na teoria pode-se usar qualquer linguagem de programação para trabalhar com Data Science
- Na prática usa-se, majoritariamente, a plataforma R e a linguagem Python (com alguns pacotes científicos)
- Sci-kit learn
- blog sobre R

Hands on

• Treinar modelo em Python com o time.

Fim!

Agradeço a Laura por me dar a possibilidade de fazer a apresentação e agradeço a vocês por assistirem :)

Contato

- E-mail: adilson.khouri.usp@gmail.com
- Phone: +55119444 26191
- Linkedin
- Curriculum Lattes
- Código fonte GitHub