A short guide to the Tight-Binding FITting (TBFIT) package

Hyun-Jung Kim [Infant@kias.re.kr]

September 17, 2018

This document is to provide explanation for the input file arguments of the TBFIT package.

System Requirements and installation

All the program has been written by modern Fortran90 language. LAPACK library should be properly linked in the makefile. To list up the space group information for the given geometry in the initial stages of the calculations, one can activate the use of space group library (SPGLIB). For this, put -DSPGLIB in your OPTION tag of the makefile, and provide appropriate library path in SPGLIB tag.

```
#-----|
# Compiler options and bin path
#-----|
OPTIONS= -fpp -DMPI -DSPGLIB
     = mpif90 $(OPTIONS)
FFLAG = -03 -heap-arrays -nogen-interfaces
BIN
      = ~/code/bin
# Dependencies: LAPACK, SPGLIB
#-----|
SPGLIB = -L/Users/Infant/code/lib/ -lsymspg
MKLPATH= $(MKLROOT)
LAPACK = -L\$(MKLPATH)/lib/
       -lmkl_intel_lp64 -lmkl_sequential
       -lmkl_core -liomp5
                      \stackrel{	au}{-} makefile example \longrightarrow
```

• How to install:

- > tar -xvf TBFIT-master.zip
- > cd TBFIT-master
- > make tbfit
- How to run:

In the Example directory, you can run a test cases, for example:

- > cd TBFIT-master/Example/1H-MoS2/SOC
- > tbfit < /dev/null | tee log.out</pre>

Note that the output log will be written in log.out file.

Part I. User's Guide

1. INPUT tags of the INCAR-TB

GET_BAND *logical* Default: .TRUE. If .TRUE. TBFIT will perform tight-binding calculations for band structure evaluation.

TBFIT logical Default: .FALSE.

.TRUE. : Perform tight-binding parameter fitting which is defined in PFILE. After fitting is completed, whatever it is converged or not, additional tight binding calculations as defined in the INCAR-TB will be performed.

.FALSE. : Do not perform fitting procedures. In this case, regular tight binding calculations will be performed.

MITER integer Default: 100

Maximum number of iteration for the fitting procedures

LSTYPE integer Default: LMDIF

Method for parameter fitting. Currently, TBFIT only supports LMDIF method which is the Levenberg-Marquardt method^{1, 2} using finite-difference for Jacobian.

PTOL & FTOL real Default: 0.00001

Tolerence of iteration of the fitting procedures. FTOL is a tolerence for the difference between target and calculated data from tight binding method. PTOL is as tolerence for the tight binding parameters. Normally, both values below 0.00001 is sufficient to reach a local minima.

K_UNIT string Default: ANGSTROM

ANGSTROM: the unit of the k-point will be written in $Å^{-1}$ unit.

RECIPROCAL: the unit of the k-point will be written in reciprocal unit (fractional).

PFILE string File name for tight-binding parameters. Default: PARAM_FIT.dat For the details, see Sec.4.

POFILE string Output file name for tight-binding parameters written after fitting procedures. Default: PARAM_FIT.new.dat

¹ Kenneth Levenberg, "A Method for the Solution of Certain Non-Linear Problems in Least Squares" Quarterly of Applied Mathematics 2, 164 (1944).

²Donald Marquardt, "An Algorithm for Least-Squares Estimation of Nonlinear Parameters" SIAM Journal on Applied Mathematics 11, 431 (1963).

IS_SK or **SLATER_KOSTER** *logical*

- .TRUE. : Slater-Koster type of hopping parameters will be assumed.
- .FALSE.: User defined or direct hopping parameters will be assumed.

EFILE string, integer

File name for the target band structure for the fitting procedures. If the second $integer\ n$ is followed by, TBFIT will read n-th column as a target band. Default is n=2.

EFILE DFT_BANDSTRUCTURE.dat 2

```
# 1st eigen value
# k-path energy(eV)
 0.00000 - 12.36137
  0.01693 -12.36162
  0.03386 -12.36118
    [\ldots]
  0.16932 -12.33324
  0.18625 -12.32696
  0.20319 -12.32014
# 2nd eigen value
# k-path energy(eV)
 0.00000 -12.36137
  0.01693 -12.36041
  0.03386 -12.35875
     [...]
  0.16932 -12.32136
  0.18625 -12.31394
  0.20319 -12.30600
    [...]
          _ EFILE DFT_BANDSTRUCTURE.out example .
```

GFILE string Default: POSCAR-TB

File name for the geometry and atomic orbital informations. The format is exactly same as POSCAR of VASP program. For the details of setting atomic orbitals, see Sec.3.

```
MoS2 # comment
1.0000000000000 # scaling factor
3.1716343 0.000000 0.00000 # lattice vector a1
```

```
1.5858171
                 2.746715
                             0.00000 # lattice vector a2
    0.0000000
                 0.000000
                            15.00000 # lattice vector a3
                                       # atomic species
  Mo S
    1
       2
                                    # number of atoms per species
Direct
           # coordinate type (direct or cartesian)
 0.00000 0.00000 0.50000 dz2 dxy dx2 dyz dxz # coord, orbital
 0.33333 0.33333 0.60645 s px py pz
 0.33333 0.33333 0.39354 s px py pz
          _{	t -} POSCAR-TB example: MoS_2 with Mo-d and S-sp _{	t -}
```

KFILE string Default: KPOINTS_BAND

File name for the k-point setting. The format is exactly same as KPOINTS of VASP program.

```
k-points line mode example
40 ! intersections
Line-mode
Reciprocal
0.50000000 0.50000000 0 M
0.33333333 0.66666666 0 K

0.00000000 0.0000000 0 G

0.00000000 0.0000000 0 G

0.66666666 0.3333333 0 K'

KPOINTS_BAND line mode example
```

```
k-points grid mode example

0

GMonkhorst-Pack #'G'amma centered grid mode

4 4 1 # grid nk_1 nk_2 nk_3

0 0 0 # shift

KPOINTS_BAND grid mode example
```

LOCCHG *logical* Default: .FALSE.

Setting tag for local potential. If .TRUE., one should give proper local potential parameter in your PFILE and should properly setup LOCAL_POTENTIAL tag in your GFILE. For the details, see the explanation of LOCAL_POTENTIAL in Sec.4.

TYPMAG string Default: NONMAG

Setting tag for magnetic moment: nonmagnetic, collinear, noncollinear If collinear and noncollinear tag is applied, MOMENT or MOMENT.C in the GFILE should be set up appropriately. For details, see MOMENT of the Sec.3.

LSORB logical Default: .FALSE.

Setting tag for spin-orbit coupling. If .TRUE., $lambda_orb_spec$ should be properly defined in the PFILE. For details, see Sec.4

LORBIT logical Default: .TRUE.

Setting tag for orbital decomposed output. If .TRUE. the absolute value of wavefunction coefficient ($<\psi_{nk}|\phi|\psi_{nk}>$) will be printed out in bandstructure_TBA.dat file.

IBAND integer Default: 1

IBAND is the first eigenstate of the target data of EFILE. This value will be used in the WEIGHT SET section.

FBAND integer Default: NEIG

NEIG: number of orbital basis of the system. FBAND is the last eigenstate of the target data of EFILE. This value will be used in the WEIGHT SET section.

SCISSOR integer, real

If set, in the fitting procedures, target energy EDFT(n,k) will be shift by amound of the scissor operation. This operation works as follows: $E'_{target}(n,k) = E_{target}(n,k) + e_{scissor}$ if $n >= i_{scissor}$. Note that this operation is only valied if TBFIT is .TRUE..

```
SCISSOR 29 0.2 # i_scissor = 29 and e_scissor = 0.2 (eV)
```

ERANGE integer Default: 1 NEIG

If provided, the energy level between these energy window will be printed out in the bandstructure_TBA.dat file.

```
ERANGE 4400 4700
```

Above example means that the energy level from 4400^{th} to 4700^{th} will be printed. This is particularly useful if you calculate very large systems. By setting ERANGE tag, you can save disk space a lot if LORBIT tag is turned on where orbital component information takes huge memory for larger systems.

SET string

Setting tag for various post processings, parameter constraints, and nearest neighbor setups, etc. Available list for the SET tags are as follows,

CONSTRAINT TBPARAM NN_CLASS RIBBON BERRY_CURVATURE

ZAK_PHASE

WCC

Z2_INDEX

PARITY_CHECK

EFIELD

WEIGHT

DOS

EIGPLOT

STMPLOT

2. Details of the SET

Each SET tag should be ended up by END tag.

STMPLOT Setting of integrated eigen state wavefunction $\Sigma |\psi_{nk}(r)|^2$ plot. Here, the summation runs over the eigen states within the energy window specified by STM_ERANGE or equivalently STM_WINDOW.

```
NGRID 40 40 80 # GRID for CHGCAR-STM output (default = 0.1 ang).

STM_ERANGE -1.0:0.0 # energy window

RCUT 6.0 # cut off radius(Å). Beyond this will not be calculated.

REPEAT_CELL T T T # repeat orbital for each lattice vector?

# this logical tag is especially useful if you only

#consider center region of the very large cell.

# If set "T T F", orbital contribution which is periodically

# repeated in a3 direction wll not be considered to calculate.

# Try this option if you have very large cell and you are

# especially interested unitcell ceter.

END STMPLOT

STMPLOT setup example
```

EIGPLOT Setting of eigen state wavefunction $\psi_{nk}(r)$ or charge density $|\psi_{nk}(r)|^2$ plot.

```
SET EIGPLOT

IEIG 3 5  # index(es) n of eigen state.

IKPT 1 10  # index(es) k of k-point.

NGRID 40 40 80 # GRID for CHGCAR output (default = 0.1 ang).

RORIGIN 0.0 0.0 0.0 # shift of the origin of the cube file.

WAVEPLOT .TRUE. # plot wavefunction (.true.) or charge density.

RCUT 6.0 # cut off radius(Å). Beyond this will not be calculated.

END EIGPLOT

EIGPLOT setup example
```

DOS Setting of Density of states (DOS).

```
GKGRID 100 100 1 # set Gamma centered Monkhorst-Pack grid
KSHIFT 0.0 0.0 0.0 # shift of k-grid (k-offset)
PRINT_KPTS .TRUE. IBZKPT-DOS_TB # print k-point to the file
PRINT_EIG .TRUE. 1:2 3 # print specified energy surface
PRINT_UNIT RECIPROCAL # k-point unit (or ANGSTROM 1/A)
SMEARING 0.03 # gaussian smearing. Default = 0.025
NEDOS 2000 # number of grid points in energy window (erange)
DOS_ERANGE -20.0:10.0 # energy window to be plotted
DOS_NERANGE 1:NEIG # energy window to be calculated (integer)
```

EFIELD Setting of E-field.

```
SET EFIELD

EFIELD 0.0 0.0 0.1 # Efield along z direction

EF_ORIGIN 0.0 0.0 0.345690593 # (in fractional coordinate)

#EF_CORIGIN 0 0 0 # (in cartesian coordinate)

END EFIELD

EFIELD setup example
```

WEIGHT Setting of weight factor for the fitting procedures.

KRANGE integer: range of k-point where the weight factor is applied TBABND integer: range of eigen states of the tight binding calculation DFTBND integer: range of eigen states of the target energy bands WEIGHT real: weighting factor

ORBT-I ineteger: orbital index. n^{th} orbital states will get a penalty

SITE_I ineteger: site index. ORBT_I th orbital state at SITE_I atom will get a penalty. This prohibit certain orbital character to be stabilized from the fitting procedures.

```
SET WEIGHT

KRANGE : TBABND : DFTBND IBAND:FBAND WEIGHT 1

KRANGE : TBABND 17:20 DFTBND 17:20 WEIGHT 6

KRANGE 20:60 100:140 TBABND 17:20 DFTBND 17:20 WEIGHT 20

KRANGE 1 TBABND 7 ORBT_I 1 SITE_I Mo1 PENALTY 200

END WEIGHT

WEIGHT setup example
```

CONSTRAINT TBPARAM Setting for parameter constraints for the fitting and calculation. The value of the specified two parameter will be kept same during the fitting and tight-binding calculations.

```
SET CONSTRAINT

e_py_S = e_px_S

END CONSTRAINT

CONSTRAINT setup example
```

If the second argument '=' is replaced by '==' and the third argument is not present, then this parameter will not be fitted and its initial guess as defined in PFILE will be fixed during the fitting procedures. Note that, exactly same effect can be achieved by putting 'FIXED' tag at the parameter specification line of the PFILE, and the detailed explanation can be found in Fixing parameter of Sec.4.

NN_CLASS Setting for nearest neighbor set up.

If the distance between two atomic species (For example, Mo and S) are 1st nearest type, and its upper limit is 3.2 angstrom (e.g., below this value will be regarded as the pair), thene we can set as follows,

```
Mo-S: 3.2 RO 3.171634
```

Here, number of dash '-' occurance between two atomic species indicates the distance class n, and the above example represents 1st nearest hopping between Mo and S. The following R0 tag defines optimal bonding distance between two neighbor pair. This value will be used in the scaling function for the distance dependent hopping parameter.

```
SET NN_CLASS

Mo-Mo : 3.2 R0 3.171634

S-S : 3.28 R0 3.171634

S--S : 3.2 R0 3.193724

Mo-S : 2.5 R0 2.429624

END NN_CLASS

NN_CLASS setup example
```

RIBBON Setting for nanoribbon calculations.

At the initial stages of the calculations, TBFIT will generate GFILE-ribbon with the settings bellow.

NSLAB integer: multiplication of unitcell along each direction

VACUUM real: vacuum spacing along each direction.

KFILE_R real: KFILE for ribbon band structure. Default: KFILE

PRINT_ONLY_R *logical*: if .TRUE. the geometry file will be generated with -ribbon suffix to the GFILE and the program will imediatly stops. Default: .FALSE.

```
SET RIBBON

NSLAB 1 20 1

VACUUM 0 20 0

KFILE_R KPOINTS_RIBBON

PRINT_ONLY_R .FALSE. or . TRUE.

END RIBBON

Ribbon calculation setup
```

Z2_INDEX Automatic calculations for topological index $[\nu_0 \ \nu_1, \nu_2, \nu_3]$ for 3D or \mathbb{Z}_2 for 2D via WCC method. (The current version does not support MPI parallelism for the Wannier charge center evaluation subroutine. Hence, do not use multicore for this particular calculation. Nevertheless, the compilation with -DMPI

option is accepted.) The output will be written at Z2.WCC.plane_index.dat and Z2.GAP.plane_index.dat. Here, plane_index indicates one of six B_i - B_j plane with $B_k = 0$ or π . For example, if plane_index = 0.0-B3.B1_B2-PLANE, then it contains WCC information of B1-B2 plane with $k_z = \pi$.

```
SET Z2_INDEX

Z2_ERANGE 1:28 # upto occupied

Z2_DIMENSION 3D # or 2D:kz (2D WCC plane perpendicular to kz)

Z2_NKDIV 21 21 # k-grid for KPATH and k-direction for WCC

Z2_CHERN .TRUE. # 1st Chern number of given bands with ERANGE

END Z2_INDEX

Z2 index calculation using WCC method
```

WCC Wannier Charge Center or Wilson loop calculation settings (The current version does not support MPI parallelism for the Wannier charge center evaluation subroutine. Hence, do not use multicore for this particular calculation. Nevertheless, the compilation with -DMPI option is accepted.)

```
SET WCC

WCC_ERANGE 1:28 # upto occupied

WCC_FNAME WCC.OUT.dat

WCC_FNAME_GAP WCC.GAP.dat # largest gap will be written

WCC_KPATH 0 0 0 1 0 0 # k_init -> k_end (ex, along b1)

WCC_KPATH_SHIFT 0 0 0.5 # kpoint shift along b3 direction

WCC_DIREC 2 #k-direction for WCC evolution (1:b1, 2:b2, 3:b3)

WCC_NKDIV 21 21 # k-grid for KPATH and k-direction (odd number)

WCC_CHERN .TRUE. # 1st Chern number of given bands with ERANGE

END WCC

Wannier charge center (WCC) setup: kz 0.5 (shift)
```

ZAK_PHASE Setting for Zak phase calculations. (The current version does not support MPI parallelism for the Zak phase evaluation subroutine. Hence, do not use multicore for this particular calculation. However, the compilation with -DMPI option is accepted.)

```
SET ZAK_PHASE

ZAK_ERANGE 1:28 # upto occupied

ZAK_FNAME ZAK_PHASE.OUT.dat

ZAK_KPATH 0 0 0 1 0 0 # k_init -> k_end (ex, along b1)

ZAK_DIREC 2 #k-direction for Zak phase evolution (1:b1, 2:b2, 3:b3)

ZAK_NKDIV 21 21 # k-grid for KPATH and k-direction

END ZAK_PHASE

Zak phase setup
```

BERRY_CURVATURE Setting for Berry curvature calculations.

```
SET BERRY_CURVATURE

BERRYC_METHOD KUBO # .or. RESTA(not yet supported)

BERRYC_ERANGE 17:18

BERRYC_FNAME BERRYCURV.17-18 # output will be BERRYC_FNAME.dat

BERRYC_DIMENSION 2D:B3 # 2D plane perpendicular to kz)

END BERRY_CURVATURE

Berrycurvature setup
```

PARITY_CHECK Setting for Parity eigenvalue calculations for given k-points.

```
SET PARITY_CHECK
   PARITY_KP 0.0 0.0 0.0 G
                               # Gamma (reciprocal unit)
    PARITY_KP 0.5 0.0 0.0 M1
                                        (reciprocal unit)
                               # M1
                                        (reciprocal unit)
    PARITY_KP 0.0 0.5 0.0 M2
                               # M2
    PARITY_KP 0.5 0.5 0.0 M3
                               # M3
                                        (reciprocal unit)
    ORIGIN_SHIFT 0.0 0.0 0.0 # origin of the system (direct coord)
    ROTATION1 -1 0 0 # Rotation matrix (R) for inversion
    ROTATION2 0 -1 0 # => R*X=-X (invert coordinate)
    ROTATION3 0 0 -1 # => X:direct coord ; R: integer 3x3 array
END PARITY_CHECK
                   ____ Parity check setup _____
```

Note:

- You can add (or remove) PARITY_KP tag if you want to get the parity information for another TRIM (time reversal invariant momenta: -k=k+G) point.
- To use this functionality and to get the meaningful results, your system should have inversion symmetry.
- The ROTATION tag is optional, the default is

$$R = \begin{bmatrix} ROTATION1 \\ ROTATION2 \\ ROTATION3 \end{bmatrix} = \begin{bmatrix} -1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & -1 \end{bmatrix}$$

3. Details of the format of GFILE

Atomic orbital setup string

Hydrogen-like atomic orbital can be specified for the orbital basis. The possible orbital basises are³:

s px py pz dz2 dxy dx2 dxz dx2

³Please note that current version does not support the f orbitals. However, we will include f in the future release of TBFIT. For the Slater-Koster tables of f orbitals, please see [K. Lendi, Phys. Rev. B 9, 2433 (1974)].

```
0 0.0 0.0 s px py pz # s, px, py, and pz orbitals at ATOM_A
0 0.0 0.5 s px py pz # s, px, py, and pz orbitals at ATOM_B

setup of atomic orbital basis in GFILE
```

Custumized atomic orbital setup *string*

If someone does not want to use Slater-Koster type interatomic hopping parameter, customized atomic orbital can be defined instead. In this case, distance and hopping pair dependent parameterization should be properly defined in the PFILE.

```
0 0.0 0.0 cp1 # cp1 orbital at ATOM_1
0 0.0 0.5 cp1 # cp1 orbital at ATOM_2

setup of custumized atomic orbital name cp1
```

MOMENT tag real

Magnetic moment for Each atomic orbital can be assigned as follows,

collinear case: 0.0

noncollinear case: 0.0 0.0 0.0 [M θ ϕ]

```
0 0.0 0.0 px py pz moment 0 0 1 # spin-up for pz
0 0.0 0.5 px py pz moment 0 0 -1 # spin-dn for pz

usage of moment tag in GFILE with collinear magnetism ______
```

```
0 0.0 0.0 px py pz moment 0 0 0 0 0 1 0 0 # spin-up for pz
0 0.0 0.5 px py pz moment 0 0 0 0 0 0 -1 0 0 # spin-dn for pz

usage of moment tag in GFILE with noncollinear magnetism —
```

MOMENT.C tag real

Similar to MOMENT but in noncollinear case, the 1^{st} , 2^{nd} , and 3^{rd} value represents, m_x , m_y , and m_z , respectively. Here, x, y, and z represents the cartesian axis.

noncollinear case: 0.0 0.0 0.0 [M_x M_y M_z]

```
0 0.0 0.0 px py pz moment 0 0 0 0 0 0 0 1 # spin-up for pz
0 0.0 0.5 px py pz moment 0 0 0 0 0 0 0 -1 # spin-dn for pz

usage of moment.c tag in GFILE with noncollinear magnetism
```

4. Details of the format of PFILE

ONSITE parameters real

Onsite prameters for each atomic orbital should have the prefix e_ and joint with the name of the orbital. The suffix should be the atomic species where the orbital placed.

$$e_dx2_Mo -0.34$$

HOPPING parameters real

The tight binding hopping parameter used in the calculations.

```
case1.) IS_SK .TRUE.
```

In this case, Slater-Koster type parameter should be specified properly. The syntax is as follows:

hopping-type will have one of following prefix: $\{ss, sp, sd, pp, pd, dd\}$, and one of following suffix: $\{s, p, d\}$, which implies σ -, π -, and δ -type inteaction. nn-class specifies the distance class. See NN_CLASS for the details. AB specifies the two atomic species (A and B atoms) where the orbital hopping take place. For example, for the $dd\delta$ Slater-Koster parameter involved with the hopping process between the d_{z2} orbital in Mo atom and d_{yz} orbital in Mo, and they are 2^{nd} neighbor pair, then the parameter should be the following form:

```
case2.) IS_SK .FALSE.
```

In this case, the customized atomic orbital is assumed and the following scheme should be applied:

```
hopping-type_nn-class_AB
```

Here, the basic structure is same as case1.), however, the syntax of hopping-type is slightly different. That is: the prefix should have cc since this indicates customized hopping parameters. For the suffix, one should put user defined letter that characterize the hopping. For example,

represents the hopping between 2^nd neighbor Bi atoms with the 'a' type of rule which characterizes hopping pair. If you want to setup the rule, you have to write the conditions to the source code: get_cc_param.f90.

```
# SET UP THE 'USER' DEFINED HOPPING 'RULE'
```

LOCAL_POTENTIAL parameters real

If you want to apply local potential to the particular atomic site or particular orbital, then you can simply turn on LOCCHG (.TRUE.) and write local.pot tag together with the amount of local potential to be applied for each atomic orbitals in the GFILE. Next, you have to provide proper scaling parameter (U_{onsite}^i) for the local potential, since the local potential is applied on your Hamiltonian as: $e_{onsite}^{'i} = e_{onsite}^i + e_{loc.pot}^i \times U_{onsite}^i$, i.e., it modifies onsite energy e_{onsite}^i to $e_{onsite}^{'i}$. Here, U_{onsite}^i should be defined in your PFILE so that the syntax is local_U_orbital-type_atom-name. orbital-type is one of s, p, or d type of orbital and atom-name is the name of atomic species you want to apply the local potential.

```
0 0.0 0.0 px py pz local.pot 1 1 1 1 # positive loc.pot 0 0.0 0.5 px py pz local.pot -1 -1 -1 -1 # negative loc.pot example of local.pot tag in GFILE
```

```
local_U_p_S 1.0 example of local.pot parameter in PFILE _____
```

SOC parameters real

```
case1.) IS_SK .TRUE.
```

Every spin-orbit coupling parameters in Slater-Koster method should have the prefix with lambda_ and proper orbital information p_{-} (as a joinder, for example p orbital) and species information $_{-}$ S(as a suffix, for example Sulpur atom) to precisely indicating the atomic orbital where the SOC effect will be applied.

lambda_p_S 0.2

case2.) IS_SK .FALSE.

In the case of user defined hopping parameter (orbital prefix start with c, see Sec.3 for the details) has been defined in the GFILE, SOC can be considered by setting up the Rashba and in-plane spin-orbit interaction. For Rashba type SOC, the prefix lrashba should be joint with nearest neighbor class n and hopping pair as follows.

lrashba_c_2_BiBi 0.2

Above setting represents, Rashba type spin-orbit coupling between the custum type orbitals with c-prefix of the atom Bi and Bi.

Fixing parmeter

If one want some parameters not to be fitted during the fitting procedures, one can fix those parameters by adding FIXED or F. For example, if you want lambda_p_S to be kept as its initial value, then, set this parameter as follows,

lrashba_c_2_BiBi 0.2 FIXED

Example of PFILE

```
      sss_2_SS
      -0.45573348

      sps_2_SS
      -0.21906117

      sds_1_MoS
      2.66111706

      lambda_d_Mo
      0.08014531
      Fixed

      lambda_p_S
      0.07567002
      Fixed

      ______
      example of PFILE: PARAM_FIT.dat for MoS2 (IS_SK .TRUE.)
      _______
```