L17. Reinforcement Learning (Temporal Difference Methods)

- 1. SARSA
- 2. Q-learning

Introduction

Recall: Value function

$$\begin{split} V^{\pi}(s) &= \mathbb{E}_{\pi}(U_t|s_t = s) \\ &= \mathbb{E}_{\pi}(r_{t+1} + \gamma r_{t+2} + \gamma^2 r_{t+3} + \cdots | s_t = s) \text{ Complete episode} \\ &= \mathbb{E}_{\pi} \left(\sum_{k=0}^{\infty} \gamma^k r_{t+k+1} \mid s_t = s \right) \\ &= \mathbb{E}_{\pi} \left(r_{t+1} + \gamma \sum_{k=0}^{\infty} \gamma^k r_{t+k+2} \mid s_t = s \right) \\ &= \mathbb{E}_{\pi} (r_{t+1} + \gamma V^{\pi}(s_{t+1}) | s_t = s) \end{split}$$

Monte Carlo Policy Evaluation

$$\begin{split} V^{\pi}(s) &= \mathbb{E}_{\pi}(U_t|s_t = s) \\ &= \mathbb{E}_{\pi} \big(\sum_{k=0}^{T} \gamma^k r_{t+k+1} \ \big| s_t = s \big) \\ &= \mathbb{E}_{\pi} \big(r_{t+1} + \gamma r_{t+2} + \gamma^2 r_{t+3} + \cdots \big| s_t = s \big) \quad \text{A sampled episode} \end{split}$$

Constant- α MC :

After visiting
$$s_t$$
 and receiving utility $u_t = r_{t+1} + r_{t+2} + r_{t+3} + \cdots + r_T$
$$V(s_t) \leftarrow V(s_t) + \alpha [u_t - V(s_t)]$$

$$V(s_t) \leftarrow V(s_t) + \alpha [r_{t+1} + r_{t+2} + r_{t+3} + \cdots + r_T - V(s_t)]$$
 Target

- The target of update is $u_t = r_{t+1} + r_{t+2} + r_{t+3} + \cdots + r_T$
- A sample reward u_t from a single episode is used for representing the expected reward. If the episode is long, u_t will be a lousy estimate (a single initialization)
- This is estimate because we use sampled value instead of expected utility

Temporal Difference Policy Evaluation

$$\begin{split} V^{\pi}(s) &= \mathbb{E}_{\pi}(U_t|s_t = s) \\ &= \mathbb{E}_{\pi} \left(\sum_{k=0}^{\infty} \gamma^k r_{t+k+1} \mid s_t = s \right) \\ &= \mathbb{E}_{\pi} \left(r_{t+1} + \gamma \sum_{k=0}^{\infty} \gamma^k r_{t+k+2} \mid s_t = s \right) \\ &= \mathbb{E}_{\pi} (r_{t+1} + \gamma V^{\pi}(s_{t+1}) | s_t = s) \end{split}$$
 Bootstrapping

Temporal Difference Policy Evaluation ; $TD(\mathbf{0})$:

After visiting s_t and transiting to s_{t+1} with a singe reward r_{t+1}

$$V(s_t) \leftarrow V(s_t) + \alpha \left[\frac{r_{t+1} + \gamma V(s_{t+1}) - V(s_t)}{\text{Target}} \right]$$

- Bootstrapping: the TD method updates the state value using the previous estimations
- The TD target is an estimate because
 - \checkmark it uses the current estimate of $V(s_t)$,
 - ✓ it samples the expected value

$$\mathbb{E}_{\pi}(r_{t+1} + \gamma V^{\pi}(s_{t+1}) | s_t = s)$$

Temporal Difference Policy Evaluation

Algorithm: Tabular TD(0) for estimating V^{π}

Initialize V(s) arbitrarily, π to the policy to be evaluated

Repeat (for each episode):

Initialize s

Repeat (for each step of episode)

 $a \leftarrow$ action given by π for s

Take action a; observe reward r and next state s'

$$V(s) \leftarrow V(s) + \alpha[r + \gamma V(s') - V(s)]$$

 $s \leftarrow s'$

Until s is terminal

• Simple backups (MC method and TD methods): Use a single sample success state

Recall:

• Full Backups (DP approach): Use complete distribution of all possible successors

$$V^{\pi}(s) = \sum_{s'} T(s, \pi(s), s') \{ R(s, \pi(s), s') + \gamma V^{\pi}(s') \}$$

Advantages of TD Policy Evaluation (prediction)

What advantages do TD methods have over Monte Carlo and DP methods?

- TD methods learn their estimates on the basis of other estimates (Bootstrap)
- TD methods do not require a model of the environment, i.e., reward and state transition models
- TD methods can be naturally implemented in an on-line, fully incremental fashion:
 - ✓ Monte Carlo Method must wait until the end of an episode, because only then the return is revealed
 - ✓ TD methods operates with a single transition of state and action (a single time step) → advantages for continuous task and learning
- TD methods and Monte Carlo methods converge to V^{π} in the mean for a constant stepsize if it is sufficiently small, and with probability 1 if the step-size parameter decreases
- In practice, TD methods have usually been found to converge faster than constnt α MC methods on stochastic tasks

Temporal Difference Policy Evaluation for Q function

As we estimate state value V(s), we can estimate Q(s,a) using a TD method

Temporal Difference Policy Evaluation for Q(s, a) function

On each $(s_t, a_t, r_{t+1}, s_{t+1}, a_{t+1})$ for a single episode:

Note that the action taken is given as data

$$Q(s_t, a_t) \leftarrow Q(s_t, a_t) + \alpha[r_{t+1} + \gamma Q(s_{t+1}, a_{t+1}) - Q(s_t, a_t)]$$

$$Target$$
Current estimate

TD Generalized Policy iteration for

TD Policy Evaluation

+ TD Policy Improvement

- On-Policy TD Control (SARSA)
- Off-Policy TD Control (Q-learning)

Estimation and prediction problem

Decision making problems

SARSA Algorithm

```
Initialize Q(s,a) arbitrarily Repeat (for each episode):

Initialize s
Choose a from s using policy derived from Q (e.g., \epsilon-greedy) Repeat (for each time step of episode):

Take action a given s, observe r, s'
Choose a' from s' using policy derived from Q (e.g., \epsilon-greedy) Behavioral policy Q_{\pi}(s,a) \leftarrow Q_{\pi}(s,a) + \eta(r+\gamma Q_{\pi}(s',a')-Q_{\pi}(s,a))
Estimation policy s \leftarrow s'; a \leftarrow a';
Until s is terminal
```

- As in all on-policy methods, we continually estimate Q^{π} for the behavioral policy, and the same time change π toward greediness with respect to Q^{π}
- Converges with
 - ✓ All state-action pairs are visited an infinite number of times
 - ✓ The policy converges in the limit to the greedy policy (i.e., $\epsilon greedy$ with $\epsilon = 1/t$)

 S_t A_t R_{t+1} S_{t+1}

 A_{t+1}

 S_{t+2}

Choose a_t from $s_t = s^0$ using current Q

$$a_t = \begin{cases} \operatorname{argmax} Q(s_t = s^0, a) & \text{with prob } 1 - \epsilon \\ a & \text{random action} & \text{with prob } \epsilon \end{cases}$$

Take action $a_t=a^2$ given $s_t=s^0$ and observe r_{t+1} and $s_{t+1}=s^1$

Choose a_{t+1} from $s_{t+1} = s^1$ using current Q

$$a_{t+1} = \begin{cases} \operatorname{argmax} \mathcal{Q}(s_{t+1} = s^1, a) & \text{with prob } 1 - \epsilon \\ a & \text{with prob } \epsilon \end{cases}$$
random action with prob ϵ

Assume a^1 is chosen

Update Q function with the estimation $Q(s_{t+1}, a_{t+1})$

$$\begin{split} Q(s_t, a_t) &\leftarrow Q(s_t, a_t) + \alpha [r_{t+1} + \gamma Q(s_{t+1}, a_{t+1}) - Q(s_t, a_t)] \\ &\rightarrow Q(s^0, a^2) \leftarrow Q(s^0, a^2) + \alpha [r_{t+1} + \gamma Q(s^1, a^1) - Q(s^0, a^2)] \end{split}$$

Take action $a_{t+1} = a^1$ given $s_{t+1} = s^1$ and observe r_{t+2} and $s_{t+2} = s^2$

Why Q-learning is considered as Off-Policy method

Sarsa: On-Policy TD Control: Windy Grid world Example

A small Markov process for generating random walk

Sarsa: On-Policy TD Control: Windy Grid world Example

How to estimate $V^*(s)$ and $Q^*(s, a)$

Monte Carlo method Temporal Difference methods

How to explore?

		Non-Bootstrap	Bootstrap
	On-policy	On-policy Monte Carlo Control	SARSA
	Off-policy	Off-policy Monte Carlo Control	Q-Learning (SARSmaxA)

Episodic based

• Single-data-point based

On-Policy TD Control (SARSA)

Choose
$$a'$$
 from s' using policy derived from Q (e.g., $\epsilon - greedy$) $Q(s,a) \leftarrow Q(s,a) + \eta(r + \gamma Q(s',a') - Q(s,a))$

Off-Policy TD Control (Q-learning)

$$Q(s,a) \leftarrow Q(s,a) + \eta \left(r + \gamma \max_{a'} Q(s',a') - Q(s,a)\right)$$

- The max over a rather than taking the a based on the current policy is the principle difference between Q-learning and SARSA.
- The learned action-value function Q directly approximates Q^* independent of the policy being followed
- Converges with
 - ✓ All state-action pairs are visited an infinite number of times
 - ✓ The policy converges in the limit to the greedy policy (i.e., $\epsilon greedy$ with $\epsilon = 1/t$)

Q learning

```
Initialize Q(s, a) arbitrarily Repeat (for each episode):
```

Initialize s

Repeat (for each time step of episode):

Choose a from s using policy derived from Q (e.g., $\epsilon-greedy$) Behavioral policy Take action a, observe r, s'

$$Q(s,a) \leftarrow Q(s,a) + \eta \left(r + \gamma \max_{a'} Q(s',a') - Q(s,a)\right)$$

$$s \leftarrow s'$$

Until *s* is terminal

Estimation policy

(Always try to estimate the optimal policy)

-Estimation can be greedy)

$$a^* = \underset{a'}{\operatorname{argmax}} Q(s', a)$$
 is **not** used in the next state!!!

At the next state s', Choose a using policy derived from Q (e.g., $\epsilon - greedy$)

 S_t A_t R_{t+1} S_{t+1}

 $\max A_{t+1}$

 S_{t+2}

Choose a_t from $s_t = s^0$ using current Q

$$a_t = \begin{cases} \operatorname{argmax} Q(s_t = s^0, a) & \text{with prob } 1 - \epsilon \\ a & \text{random action} \end{cases}$$
 with prob ϵ

Take action $a_t = a^2$ given $s_t = s^0$ and observe r_{t+1} and $s_{t+1} = s^1$

Update Q function with the $\max_{a'} Q(s^1, a')$

$$Q(s_t, a_t) \leftarrow Q(s_t, a_t) + \alpha \left[r_{t+1} + \gamma \max_{a'} Q(s, a') - Q(s_t, a_t) \right]$$

$$\to Q(s^0, a^2) \leftarrow Q(s^0, a^2) + \alpha \left[r_{t+1} + \gamma \max_{a'} Q(s^1, a') - Q(s^0, a^2) \right]$$

Choose a_{t+1} from $s_{t+1} = s^1$ using current Q

$$a_{t+1} = \begin{cases} \operatorname{argmax} \mathcal{Q}(s_{t+1} = s^1, a) & \text{with prob } 1 - \epsilon \\ a & \text{random action} & \text{with prob } \epsilon \end{cases}$$

Assume a^1 is chosen

Take action $a_{t+1}=a^1$ given $s_{t+1}=s^1$ and observe r_{t+2} and $s_{t+2}=s^2$

- The agent can pass one room to another but has no knowledge of the building
- That is, it does not know which sequence of doors the agent must pass to go outside the building
- Assume the agent is now in room C, and would like to reach outside the building (state F)

$$MDP = \{S, A, T, R, \gamma\}$$

- $s \in S = \{A, B, C, D, E, F\}$
- $a \in \mathcal{A} = \{A, B, C, D, E, F\}$ e.g., $\mathcal{A}(s = D) = \{B, C, E\}$
- $T(s,a) = \begin{cases} 1, & \text{if move is allowed} \\ 0, & \text{if move is not allowed} \end{cases}$ e.g., T(C,D) = 1

•
$$R(s,a) = \begin{cases} 0\\10 \end{cases}$$

• $R(s,a) = \begin{cases} 0 & \text{if move to } a \text{ is allowed and } a \neq F \\ 100 & \text{if move to } a \text{ is allowed and } a = F \end{cases}$ • $\gamma = 0.8$

Q Learning update rule:

$$Q(s,a) \leftarrow Q(s,a) + \eta \left(r + \gamma \max_{a'} Q(s',a') - Q(s,a)\right)$$

Ε

0

0

0

F

100

100

100

Q Learning update rule: $Q(s,a) \leftarrow Q(s,a) + \eta \left(r + \gamma \max_{a} Q(s',a) - Q(s,a)\right)$

$$Q(s,a) = \begin{bmatrix} A & B & C & D & E & F \\ O & 0 & 0 & 0 & 0 & 0 \\ B & 0 & 0 & 0 & 0 & 0 & 0 \\ O & 0 & 0 & 0 & 0 & 0 & 0 \\ D & 0 & 0 & 0 & 0 & 0 & 0 \\ E & 0 & 0 & 0 & 0 & 0 & 0 & 0 \end{bmatrix}$$

Q Learning update rule: $Q(s,a) \leftarrow Q(s,a) + \eta \left(r + \gamma \max_{a} Q(s',a) - Q(s,a)\right)$

1. Assume the initial state is *B* and take action *F* randomly (stochastic policy):

$$Q(B,F) \leftarrow Q(B,F) + 0.5 \left(R(B,F) + 0.8 \max_{a} \{ Q(F,B), Q(F,E) \} - Q(B,F) \right)$$
$$Q(B,F) \leftarrow 0 + 0.5(100 + 0.8 \times 0 - 0) = 50$$

2. Because the state F is the final state, the episode is over

Q Learning update rule: $Q(s,a) \leftarrow Q(s,a) + \eta \left(r + \gamma \max_{a} Q(s',a) - Q(s,a)\right)$

1. Assume the initial state is *D* and take action *B* randomly (stochastic policy):

$$Q(D,B) \leftarrow Q(D,B) + 0.5 \left(R(D,B) + 0.8 \max_{a} \{ Q(B,F), Q(B,D) \} - Q(D,B) \right)$$

$$Q(D,B) \leftarrow 0 + 0.5(0 + 0.8 \times 50 - 0) = 20$$

Q Learning update rule:
$$Q(s, a) \leftarrow Q(s, a) + \eta \left(r + \gamma \max_{a} Q(s', a) - Q(s, a)\right)$$

1. Assume the initial state is *D* and take action *B* randomly (stochastic policy):

$$Q(D,B) \leftarrow Q(D,B) + 0.5 \left(R(D,B) + 0.8 \max_{a} \{ Q(B,F), Q(B,D) \} - Q(D,B) \right)$$

$$Q(D,B) \leftarrow 0 + 0.5(0 + 0.8 \times 50 - 0) = 20$$

2. The next state is B and take an action of *F* randomly):

$$Q(B,F) \leftarrow Q(B,F) + 0.5 \left(R(B,F) + 0.8 \max_{a} \{ Q(F,B), Q(F,E) \} - Q(B,F) \right)$$
$$Q(B,F) \leftarrow 50 + 0.5(100 + 0.8 \times 0 - 50) = 75$$

3. Because the state *F* is the final state, the episode is over

Q Learning update rule:
$$Q(s,a) \leftarrow Q(s,a) + \eta \left(r + \gamma \max_{a} Q(s',a) - Q(s,a)\right)$$

$$Q^*(s,a) = \begin{bmatrix} A & B & C & D & E & F \\ 0 & 0 & 0 & 0 & 400 & 0 \\ 0 & 0 & 0 & 320 & 0 & 500 \\ 0 & 0 & 0 & 320 & 0 & 0 \\ 0 & 400 & 256 & 0 & 400 & 0 \\ E & 320 & 0 & 0 & 320 & 0 & 500 \\ 0 & 400 & 0 & 0 & 400 & 500 \end{bmatrix}$$

After convergence

Example 6.6 Cliff Walking

The path away from the cliff

- Take longer
- A wrong action will not hurt you as much

walk near the cliff

- > Faster
- a wrong action deterministically causes falling off the cliff.

- Sarsa learns about a policy that sometimes takes optimal actions (as estimated) and sometimes explores other actions (Estimation policy = Behavioral policy)
 - > Sarsa will learn to be careful in an environment where exploration is costly
- Q-learning learns about the policy that doesn't explore and only takes optimal (as estimated)
 actions
 - The optimal policy does not capture the risk of exploratory action

The cliff example shows why such a non-optimal policy could be sometimes very useful

Why Q-learning is considered as Off-Policy method

- Q-learning updates are done regardless to the actual action chosen for next state (behavioral policy)
- That is, for estimation, it just assumes that we are always choosing the argmax one

$$a_{t+1} = \operatorname*{argmax}_{a} Q(s_{t+1} = s^{1}, a)$$

Behavioral Policy π_B

Estimation Policy π_E

$$a_B' = \pi_B(s)$$

| | =

$$a'_E = \operatorname*{argmax}_{a'} Q(s', a')$$

Used to generated data

Used to estimate Q(s, a)

Take action a_B' and transit to the next state

$$Q(s,a) \leftarrow Q(s,a) + \eta \left(r + \gamma \max_{a'} Q(s',a') - Q_{\pi}(s,a) \right)$$

$$Q(s,a) \leftarrow Q(s,a) + \eta \left(r + \gamma Q(s',a'_E) - Q_{\pi}(s,a) \right)$$

Why Q-learning is considered as Off-Policy method

Greedy policy (deterministic)

Consider the extreme case:

Suppose you were to take a completely random action on each step (if epsilon greedy exploration is used, set epsilon to 1).

- Sarsa is literally learning the value of the random policy while acting randomly
- Q-learning is learning the value of the optimal policy, but is *acting* randomly.

Summary

Off-Policy TD Control (Q-learning)

- Based on a single transition, i.e., state-action pair
- Online setting: Learn and take action continuously
- Exploration and Exploitation : Nee to learn and optimize at the same time
- Monte Carlo vs. Bootstrapping

