Analysis of critical transitions at the Global Forest

- the idea is to do a global analysis using early warning signals of ecological transitions [1]
- 3 Thus the question is how near/far is the global forest from a catastrophic transition?
- 4 We will use the MODIS vegetation continuous field, so we can analyze temporal changes.
- Hypothesis: two power laws, small patches related to deforestation dynamics, large patches related to
- 6 forest inner dynamics.

Methods

- The United Nations' International Geosphere-Biosphere Programme definition of forest (Belward 1996)
- defined forest as pixels with tree cover equal or greater than 30%
- We should define areas with different levels of degradation to apply the spatial indicators [Very difficult
- because is not possible to establish reliable controls]
- We should use 2D DFT and multifractals in continuous data and fit patch size distributions in discretized data.[Not implemented]
- Rates of growth an shrink of patches [2]
- Portfolio concept relating [2] and [4]

Results

2 South America

Table 1: Model selection using Akaike criterion, and goodnes of fit calculated by bootstrap.

year	xmin	model_name	par1	par2	delta_AICc	GOFp
2000	1	Power	1.918	NA	0	1
		PowerExp	1.918	3.36e-11	2.019	NA
		LogNorm	1.151	1.631	683753	NA
		Exp	0.003986	NA	7511320	NA
2010		Power	1.833	NA	0	1
		PowerExp	1.831	2.233e-10	6.217	NA
		LogNorm	1.266	1.653	577578	NA
		Exp	0.003998	NA	6827242	NA
2000	265	Power	2.013	NA	0	1
		LogNorm	-1532	39.04	2.261	NA
		PowerExp	2.003	1.38e-13	2.688	NA
		Exp	0.0005124	NA	139893	NA
2010	216	Power	2.021	NA	0	1
		PowerExp	2.015	6.11e-12	2.312	NA
		LogNorm	-1228	34.87	2.548	NA
		Exp	0.0005397	NA	150593	NA

[•] The α with Estimated Xmin correspond to big forest patches and natural forest dynamics, and there

6 Related papers

- About fitting power laws [5] [6]
- About global maps [7] [8] [9]

is no variation in these. The α with xmin=1 correspond to small patches probably influenced by

⁵ deforestation.

Figure 1: Power law exponent by year and with different starting point: xmin=1 the minimum patchs size was fixed at 1, *Estimated Xmin* the minimum patch size was estimated from data.

- About cluster statistics
- ₂ [10] [2]

3 Bibliography

- 4 1. Kéfi S, Guttal V, Brock WA, Carpenter SR, Ellison AM, et al. (2014) Early Warning Signals of Ecological
- 5 Transitions: Methods for Spatial Patterns. PLoS ONE 9: e92097. Available: http://dx.doi.org/10.1371/
- 6 journal.pone.0092097.
- 7 2. Manor A, Shnerb NM (2008) Origin of Pareto-like Spatial Distributions in Ecosystems. Physical Review
- Letters 101: 268104. Available: http://link.aps.org/doi/10.1103/PhysRevLett.101.268104.
- 9 3. Manor A, Shnerb NM (2008) Facilitation, competition, and vegetation patchiness: From scale free
- distribution to patterns. Journal of Theoretical Biology 253: 838–842. Available: http://www.sciencedirect.
- com/science/article/pii/S0022519308001914.
- 4. Schindler DE, Armstrong JB, Reed TE (2015) The portfolio concept in ecology and evolution. Frontiers in

- Ecology and the Environment 13: 257–263. Available: http://www.esajournals.org/doi/abs/10.1890/140275.
- 5. Clauset A, Shalizi C, Newman M (2009) Power-Law Distributions in Empirical Data. SIAM Review 51:
- ³ 661–703. Available: http://epubs.siam.org/doi/abs/10.1137/070710111.
- 6. White EP, Enquist BJ, Green JL (2008) On Estimating The Exponent Of Power-law Frequency Distributions.
- 5 Ecology 89: 905–912. Available: http://www.esajournals.org/doi/abs/10.1890/07-1288.1.
- ⁶ 7. Haddad NM, Brudvig LA, Clobert J, Davies KF, Gonzalez A, et al. (2015) Habitat fragmentation
- 7 and its lasting impact on Earth's ecosystems. Science Advances 1: e1500052—e11500052. Available:
- 8 http://advances.sciencemag.org/cgi/doi/10.1126/sciadv.1500052.
- 8. Sexton JO, Song X-P, Feng M, Noojipady P, Anand A, et al. (2013) Global, 30-m resolution continuous
- 10 fields of tree cover: {Landsat}-based rescaling of {MODIS} vegetation continuous fields with lidar-based
- estimates of error. International Journal of Digital Earth 6: 427–448. Available: http://dx.doi.org/10.1080/
- 12 17538947.2013.786146.
- 9. Hansen MC, Potapov PV, Moore R, Hancher M, Turubanova SA, et al. (2013) High-Resolution Global
- Maps of 21st-Century Forest Cover Change. Science 342: 850–853. Available: http://www.sciencemag.org/
- 15 content/342/6160/850.
- 10. Seri E, Maruvka, Shnerb NM (2012) Neutral Dynamics and Cluster Statistics in a Tropical Forest. The
- American Naturalist 180: E161—E1173. Available: http://www.jstor.org/stable/10.1086/668125.