Partial Differential Equations

(Semester II; Academic Year 2024-25)

Indian Statistical Institute, Bangalore

Instructor: Renjith Thazhathethil renjitht_pd@isibang.ac.in

Assignment - 3

Given Date: January 22, 2025

Number of questions: 3

Submission Date: January 31, 2025

Maximum Marks: 50

- 1. Determine the types of the following equations, and reduce them to canonical form. (20)
 - (a) $u_{xx} + 2e^{x+y}u_{xy} + e^{2y}u_{yy} = 0.$
 - (b) $u_{xx} + 2u_{xy} + 4u_{xz} + 5u_{zz} + u_x + 2u_y = 0$ (in \mathbb{R}^3).
 - (c) $u_{xx} 2\sin x u_{xy} \cos^2 x u_{yy} \cos x u_y = 0$.
 - (d) $\sin^4(2x)u_{xx} + 4\sin^4(2x)u = \frac{\partial^2 u}{\partial t^2}$.
- 2. Use Gauss-Divergence Theorem to drive the following integration by parts formula (10)

(a)
$$\int_{\Omega} v \frac{\partial u}{\partial x_i} = -\int_{\Omega} u \frac{\partial v}{\partial x_i} + \int_{\partial \Omega} u v \nu^i$$

(b)
$$\int_{\Omega} v \Delta u = -\int_{\Omega} \nabla u \nabla v + \int_{\partial \Omega} \frac{\partial u}{\partial \nu} v$$

- 3. Let Ω be a open bounded subset of \mathbb{R}^n with ν the outward unit normal vector at $\partial\Omega$, (20) A be an $n \times n$ matrix and $L = \operatorname{div}(A\nabla u)$ be an elliptic operator on Ω . Discuss the uniqueness of solution (if it exists) for the following PDEs:
 - (a)

$$\begin{cases} Lu = f \text{ in } \Omega \\ u = g \text{ on } \partial \Omega. \end{cases}$$

(b)

$$\begin{cases} Lu = f \text{ in } \Omega \\ A\nabla u \cdot \nu = g \text{ on } \partial\Omega. \end{cases}$$

(c) $\begin{cases} Lu - u = f \text{ in } \Omega \\ A\nabla u \cdot \nu = g \text{ on } \partial\Omega. \end{cases}$