```
[Mu,MM3*100,JJZexdB]
J11=J1(1:LL);nn=0:LL-1;
plot(nn,10*log10(abs((JZ))));
```

Table 8.8.1 shows a summary of the LMS-type algorithms presented in this chapter.

Table 8.8.1 Summary of the LMS Algorithms Presented in Chapter 8

$\mathbf{x}(n) = [x(n)x(n-1)\cdots x(n-M)]^{T}, \mathbf{w}(n) = [w_0(n)w_1(n)\cdots w_M(n)]^{T}, e(n) = d(n) - y(n)$	
Algorithm	Recursion
1. LMS	$\mathbf{w}(n+1) = \mathbf{w}(n) + 2\mu e(n)\mathbf{x}(n)$
2. LMS with complex data	$\mathbf{w}(n+1) = \mathbf{w}(n) + 2\mu e^*(n)\mathbf{x}(n)$
-	$y(n) = \mathbf{w}^{\mathrm{H}}(n)\mathbf{x}(n)(H = conjugate\ transpose)$
3. Sign LMS	$\mathbf{w}(n+1) = \mathbf{w}(n) + 2\mu sign(e(n))\mathbf{x}(n)$
4. Sign-regressor LMS	$\mathbf{w}(n+1) = \mathbf{w}(n) + 2\mu e(n)sign(\mathbf{x}(n))$
5. Sign-sign LMS	$\mathbf{w}(n+1) = \mathbf{w}(n) + 2\mu sign(e(n))sign(\mathbf{x}(n))$
6. Normalized LM	1
	$\mathbf{w}(n+1) = \mathbf{w}(n) + \frac{1}{\mathbf{x}^{T}(n)\mathbf{x}(n)}e(n)\mathbf{x}(n)$
	with $\mu(n) = 1/[2\mathbf{x}^{T}(n)\mathbf{x}(\underline{n})]$
9a. ε -Normalized LMS	$\mathbf{w}(n+1) = \mathbf{w}(n) + \frac{\mu}{\varepsilon + \mathbf{x}^{\mathrm{T}}(n)\mathbf{x}(n)} e(n)\mathbf{x}(n)$
	$\overline{\mu}$ = step-size parameter
	ε = prevents division by very small number
ol N. P. LING	
9b. ε-Normalized LMS	$\mathbf{w}(n+1) = \mathbf{w}(n) + \frac{\mu}{\varepsilon + \mathbf{x}^{H}(n)\mathbf{x}(n)} e^{*}(n)\mathbf{x}(n)$
with complex data	H = conjugate transpose
	$sign(\varrho(n))\mathbf{v}(n)$
10. Normalized LMS sign algorithm	$\mathbf{w}(n+1) = \mathbf{w}(n) + 2\mu \frac{sign(e(n))\mathbf{x}(n)}{\varepsilon + \ \mathbf{x}(n)\ ^2}$
44 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	H - S - 5 H
11. Leaky LMS	$\mathbf{w}(n+1) = (1 - 2\mu\gamma)\mathbf{w}(n) + 2\mu e(n)\mathbf{x}(n)$
	0 << <1
12. Constrained LMS	$\mathbf{w}(n+1) = \mathbf{w}'(n) + \frac{a - \mathbf{c}^{T} \mathbf{w}'(n)}{\mathbf{c}^{T} \mathbf{c}} \mathbf{c}$
12. Constrained END	C C
	$\mathbf{w}'(n) = \mathbf{w}(n) + 2\mu e(n)\mathbf{x}(n)$
10.01/	\mathbf{c} = constant vector, a = constant
13. Self-correcting LMS	$y_{i+1}(n) = y_i(n)^* w_{i+1}$
14 Transform domain LMC	see also the m-file in the text
14. Transform domain LMS	see Sec. 8.7 see Sec. 8.6
15. Self-correcting adaptive filtering (SCAF)	see sec. 6.0
16. ENSS Algorithm	see Sec. 8.8
17. RVSS Algorithm	see Sec. 8.8
18. EDNSS Algorithm	see Sec. 8.8