Independent Submission Request for Comments: 6137 Category: Experimental

ISSN: 2070-1721

D. Zisiadis, Ed. S. Kopsidas, Ed. M. Tsavli, Ed. CERTH

G. Cessieux, Ed. CNRS February 2011

The Network Trouble Ticket Data Model (NTTDM)

Abstract

Handling multiple sets of network trouble tickets (TTs) originating from different participants' inter-connected network environments poses a series of challenges for the involved institutions. A Grid is a good example of such a multi-domain project. Each of the participants follows different procedures for handling trouble in its domain, according to the local technical and linguistic profile. The TT systems of the participants collect, represent, and disseminate TT information in different formats.

As a result, management of the daily workload by a central Network Operation Centre (NOC) is a challenge on its own. Normalization of TTs to a common format at the central NOC can ease presentation, storing, and handling of the TTs. In the present document, we provide a model for automating the collection and normalization of the TT received by multiple networks forming the Grid. participants is using its home TT system within its domain for handling trouble incidents, whereas the central NOC is gathering the tickets in the normalized format for repository and handling. XML is used as the common representation language. The model was defined and used as part of the networking support activity of the EGEE (Enabling Grids for E-sciencE) project.

Status of This Memo

This document is not an Internet Standards Track specification; it is published for examination, experimental implementation, and evaluation.

This document defines an Experimental Protocol for the Internet community. This is a contribution to the RFC Series, independently of any other RFC stream. The RFC Editor has chosen to publish this document at its discretion and makes no statement about its value for implementation or deployment. Documents approved for publication by the RFC Editor are not a candidate for any level of Internet Standard; see Section 2 of RFC 5741.

Information about the current status of this document, any errata, and how to provide feedback on it may be obtained at http://www.rfc-editor.org/info/rfc6137.

Copyright Notice

Copyright (c) 2011 IETF Trust and the persons identified as the document authors. All rights reserved.

This document is subject to BCP 78 and the IETF Trust's Legal Provisions Relating to IETF Documents (http://trustee.ietf.org/license-info) in effect on the date of publication of this document. Please review these documents carefully, as they describe your rights and restrictions with respect to this document.

Table of Contents

1.	Introduction
	1.1. Terminology
	1.2. Notations
	1.3. About the Network Trouble Ticket Data Model
	1.4. About the Network Trouble Ticket Implementation
	1.4. About the Network Houbte Itaket Implementation
_	1.5. Future Plans
۷.	NTTDM Types and Definitions
	2.1.1. Defined
	2.1.2. Free
	2.1.3. Multiple
	2.1.4. List
	2.2. Types and Definitions for the VALID FORMAT Attributes
	2.2.1. Predefined String
	2.2.1.1. Definitions of the Predefined Values10
	2.2.2. String
2	
3.	NTTDM
	3.1. NTTDM Components
	3.1.1. NTTDM Attributes
	3.2. NTTDM Aggregate Classes
	3.2.1. NTTDM-Document Class
	3.2.2. Ticket Class
	3.2.3. Ticket Origin Information
	3.2.3.1. PARTNER_ID
	3.2.3.2. ORIGINAL ID
	3.2.4. Ticket Information
	3.2.4.1. TT_ID
	3.2.4.2. TT_TITLE18
	3.2.4.3. TT_TYPE18

	3.2.4.4. TT_PRIORITY	18
	3.2.4.5. TT ⁻ STATUS	19
	3.2.4.6. TT ⁻ SOURCE	19
	3.2.4.7. TT OPEN DATETIME	10
	3.2.4.8. TT CLOSE DATETIME	20
	3.2.5. Trouble Details	- \ 7 (
	3.2.5. Trouble Details	2 (2 (
	3.2.3.1. II_SHUKI_DESCRIPTION	2 (2 (
	3.2.5.2. TT_LONG_DESCRIPTION	2 (2 (
	3.2.5.3. TYPE	<u> </u>
	3.2.5.4. TT_IMPACT_ASSESSMENT	21
	3.2.5.5. STĀRT_DATĒTIME	21
	3.2.5.6. DETECT_DATETIME	
	3.2.5.7. REPORT DATETIME	22
	3.2.5.8. END DATETIME	22
	3.2.5.9. TT LAST UPDATE TIME	23
	3.2.5.10. TIME WINDOW START	57
	3.2.5.11. TIME WINDOW END	
	3.2.5.12. WORK PLAN START DATETIME	<u>-</u> -
	3.2.5.13. WORK PLAN END DATETIME	
	3.2.3.13. WUKK_PLAN_END_DATEITHE	2 ²
	3.2.6. Related Data	<u> </u>
	3.2.6.1. RELATED_EXTERNAL_TICKETS	24
	3.2.6.2. ADDITIONAL_DATA	25
	3.2.6.3. RELATED_ACTIVITY	25
	3.2.6.4. HISTORY	25
	3.2.7. Localization and Impact	26
	3.2.7.1. AFFECTED COMMUNITY	26
	3.2.7.2. AFFECTED SERVICE	26
	3.2.7.3. LOCATION	56
	3.2.7.4. NETWORK NODE	
	3.2.7.5. NETWORK LINK CIRCUIT	
	3.2.7.6. END LINE LOCATION A	2 / 2 -
	3.2.7.7. END_LINE_LOCATION_B	<u> </u>
	3.2.8. Contact Information	
	3.2.8.1. OPEN_ENGINEER	28
	3.2.8.2. CONTĀCT_ENGINEERS	28
	3.2.8.3. CLOSE_ENGINEER	29
	3.2.9. Security	29
	3.2.9.1. HASH	29
	3.3. NTTDM Representation	2
4.	Internationalization Issues	31
5	Example	2 1
J.	5.1. Link Failure	21 21
6	J.I. LUIN FALLUIC	ວ′ ໄດ
0.	Sample Implementation: XML Schema) Z
/.	Security Considerations	4:
8.	IANA Considerations	44
9.	Contributors	44
10 .	Acknowledgements	45

11.	References	. 45
	1.1. Normative References	. 45
	1.2. Informative References	

1. Introduction

Problem-impact assessment, reporting, identification, and handling, as well as dissemination of trouble information and delegation of authority, are some of the main tasks that have to be implemented by the members of a Grid in order to successfully manage the network and maintain operational efficiency of the services offered to their users.

Different TT systems are used by each network domain, delivering TTs in alternate formats, while the TT load is growing proportionally with network size and serviced users.

We hereby define a data model for TT normalization -- the Network Trouble Ticket Data Model (NTTDM) -- initially targeted for network providers serving EGEE [8]. The model is designed in accordance with RFC 1297 [11] and meets requirements of the multiple TT systems used.

The NTTDM

- o is both effective and comprehensive, as it compensates for the core activities of the Network Operation Centres (NOCs). It is also dynamic, allowing additional options to be included in the future, according to demand.
- o provides an XML representation for conveying incident information across administrative domains between parties that have an operational responsibility of remediation or a "watch-and-warn" policy over a defined constituency.
- o encodes information about hosts, networks, and the services running on these systems; attack methodology and associated forensic evidence; impact of the activity; and limited approaches for documenting workflow.
- o aims to simplify TT exchange within the boundaries of a Grid and to enhance the functional cooperation of every NOC and of the Grid Operation Centre (GOC). Community adoption of the NTTDM enhances trouble resolution within the Grid framework and imparts network status cognizance by modeling collaboration and information exchange among operators.

- o provides a common format that allows GOCs as well as all participating NOCs to store, exchange, manage, and analyze TTs (assessment of TT impact).
- o provides increased automation in handling a TT, since the network operators have a common view of the incident.

The model was designed and used as part of the networking support activity of the EGEE project; one of the subtasks of this support activity was to enhance the ENOC (EGEE Network Operation Centre) [9] procedures for better overall network coordination of the Grid.

1.1. Terminology

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this document are to be interpreted as described in RFC 2119 [1].

The NTTDM uses specific keywords to describe the various data components. These keywords are:

Defined, Free, Multiple, List, Predefined String, String, Datetime, Solved, Cancelled, Inactive, Superseded, Opened/Closed, Operational, Informational, Administrative, and Test.

These keywords as used in this document are to be interpreted as described in Section 2.

Acronyms:

TT: Trouble Ticket

NTTDM: Network Trouble Ticket Data Model

DB: Database

EGEE: Enabling Grid for E-sciencE

ENOC: EGEE NOC

NOC: Network Operation Centre

GOC: Grid Operation Centre

NREN: National Research and Educational Network

QoS: Quality of Service

UML: Unified Modeling Language

XML: Extensible Markup Language

1.2. Notations

The NTTDM is specified in two ways: as an abstract data model and as an XML Schema. Section 3 provides a Unified Modeling Language (UML) [10] model describing the individual classes and their relationship with each other. The semantics of each class are discussed and their attributes explained. In Section 6, this UML model is converted into an XML Schema [2] [3] [4] [5]. A specific namespace [6] is also defined.

The term "XML document" refers to any instance of an XML Document. The term "NTTDM document" refers to specific elements and attributes of the NTTDM Schema. Finally, the terms "class" and "element" are used interchangeably to reference either a given UML class in the data model or its corresponding Schema implementation.

1.3. About the Network Trouble Ticket Data Model

The NTTDM is a data representation that provides a framework for normalizing and sharing information among network operators and the GOC regarding troubles within the Grid boundaries. There has been a lot of thought processing during the design of the data model:

- o The data model serves as a common storage and exchange format.
- o Every NOC still uses its home TT system for network management within its area of control.
- o As there is no universally adopted definition for a trouble, in the NTTDM definition, the term is used with a comprehensive meaning to cover all NOCs.
- o Handling every possible definition of a trouble incident would call for an extremely expanded and complex data model. Therefore, the NTTDM's purpose is to serve as the basis for normalizing and exchanging TTs. It is flexible and expressive in order to ensure that specific NOC requirements are met. Specific NOC information is kept outside the NTTDM, and external databases can be used to feed it.

The domain of managing the information is not fully standardized and must rely on free-form textual descriptions. The NTTDM attempts to strike a balance between supporting this free-form content, while still allowing automated processing of incident information.

The NTTDM is only one of several feasible TT data representations. The goal of this design was to be as effective and comprehensive as these other representations and to account for the management of a general Grid environment. The already used TT formats influenced the design of the NTTDM.

1.4. About the Network Trouble Ticket Implementation

Here we describe an example of a typical use case.

The Grid project EGEE manages its infrastructure as a network overlay over the European National Research and Educational Networks (NRENs) and wants to be able to warn EGEE sites of the unavailability of the network. Thanks to collaboration with its network provider, the EGEE NOC receives a high volume of TTs (800 tickets/month, 2500 emails/month) from 20 NRENs and should always be able to cope with such a heavy load. Thanks to the NTTDM, the EGEE NOC can automate the TT workflow:

- The TT is filtered, sorted, and stored in a local database (DB).
- The TT's impact on the Grid is assessed.
- o The TT is pushed to an ENOC dashboard application and other tools (EGEE TT system, statistics, etc.).

1.5. **Future Plans**

Since this is an Experimental document, operational experience will be used to expand the subsections of Section 3.2.3, "Ticket Origin Information", below. The current specification is already used within EGEE. Other Grids are free to use it and report comments to the authors. After enough experimentation, we would like to advance it to the Standards Track.

2. NTTDM Types and Definitions

The various data elements of the TT data model are typed. This section discusses these data types. When possible, native Schema data types were adopted, but for more complicated formats, regular expressions or external standards were used.

2.1. Types and Definitions for the TYPE Attribute

These types are used to describe the TYPE attribute.

2.1.1. **Defined**

The Defined data type means that the data model provides a means to compute this value from the rest of the fields.

The Defined data type is implemented as "Defined" in the Schema.

2.1.2. Free

The Free data type means that the value can be freely chosen.

All Free strings SHOULD have as an attribute the language used.

The Free data type is implemented as "Free" in the Schema.

2.1.3. Multiple

The Multiple data type consists of one value among multiple fixed values.

The Multiple data type is implemented as "Multiple" in the Schema.

2.1.4. List

"List" means many values among multiple fixed values. The List data type is implemented as "List" in the Schema.

2.2. Types and Definitions for the VALID FORMAT Attributes

2.2.1. Predefined String

A Predefined String means the different values are predefined in the data model.

Each field that requires a Predefined String contains a specific value. Figure 1 shows the allowed values for such fields.

1	LL
FIELD NAME	VALUES
TT_TYPE	Operational, Informational, Administrative, Test
ТҮРЕ	Scheduled, Unscheduled
TT_PRIORITY	Low, Medium, High
TT_SHORT_DESCRIPTION	Core Line Fault, Access Line Fault, Degraded Service, Router Hardware Fault, Router Software Fault, Routing Problem, Undefined Problem, Network Congestion, Client Upgrade, IPv6, QoS, VoIP, Other
TT_IMPACT_ASSESSMENT	No impact, Reduced redundancy, Minor performance impact, Severe performance impact, No connectivity, On backup, At risk, Unknown
TT_STATUS	Opened, Updated, Closed, Solved, Inactive, Cancelled, Reopened, Superseded, Opened/Closed
TT_SOURCE	Users, Monitoring, Other NOC

Figure 1. Allowed Predefined String Values

The Predefined String data type is implemented as "xs:string" in the Schema with a sequence of enumerations for the allowed values.

2.2.1.1. Definitions of the Predefined Values

TT TYPE

- o Operational: for network incident and maintenance only.
- o Informational: information about the TT system or the exchange interface (maintenance, upgrade).
- Administrative: information about the access to the TT system (credentials) or the exchange interface.
- o Test: to test the TT system or the exchange interface, etc.

TYPE

- o Scheduled: the incident was scheduled to happen.
- o Unscheduled: the incident was unscheduled.

TT PRIORITY

- o Low: the TT priority is low.
- o Medium: the TT priority is medium.
- o High: the TT priority is high.

TT SHORT DESCRIPTION

- o Core Line Fault: malfunction of a high-bandwidth core line.
- o Access Line Fault: malfunction of a medium-bandwidth access line.
- o Degraded Service.
- o Router Hardware Fault: malfunction of the router hardware.
- o Router Software Fault: malfunction of the router software.
- o Routing Problem: incident regarding the routing service.
- o Undefined Problem: nature of the problem not identified.
- o Network Congestion: problem due to traffic at the network (blocked).
- o Client Upgrade: incidents regarding client/services upgrade.

- o IPv6: incident regarding the IPv6 network.
- o QoS: incident regarding the Quality of Service (QoS) of the network.
- o VoIP: incident regarding Voice over IP (VoIP).
- o Other: non-listed incident.

TT IMPACT ASSESSMENT

- o No impact: the incident does not cause any impacts.
- o Reduced redundancy: the incident reduces network redundancy.
- Minor performance impact: the incident causes a minor performance impact.
- o Severe performance impact: the incident causes a severe performance impact.
- o No connectivity: the incident causes connectivity failure.
- o On backup: the incident causes a malfunction of backup services.
- o At risk: the incident should not have any impact but could possibly cause some trouble.
- o Unknown: the nature of the impact is not identified.

TT_STATUS

- o Opened: the ticket is opened.
- o Closed: the ticket is closed.
- o Updated: the ticket's contents have been updated.
- o Cancelled: the ticket has been opened twice; one of the tickets is cancelled, and a relationship between them is defined via the RELATED_ACTIVITY field.
- o Solved: the incident is solved, but the team prefers to monitor/check for future issues.
- Opened/Closed: the ticket was opened only to report an incident that has already been solved.

- o Inactive: the ticket is under the responsibility of an external domain and is no longer under the reporting domain's control.
- o Reopened: the ticket was closed by error, or the problem was erroneously declared to be solved. Data in the History field are very important in this case.
- o Superseded: the ticket has been superseded by another one (for example, a bigger problem that had resulted in many tickets was later merged into a single incident/ticket). The RELATED_ACTIVITY field SHOULD include the master ticket reference.

Allowed transitions for TT_STATUS are only those indicated in Figure 2. Possible final states are indicated with (X).

Figure 2. TT_STATUS Transition Diagram

2.2.2. String

The String value is defined by the user of the model. The String data type is implemented as "xs:string" in the Schema.

2.2.3. Datetime

Date-time strings are represented by the Datetime data type. Each date-time string identifies a particular instant in time; ranges are not supported.

Zisiadis, et al.

Experimental

[Page 13]

Date-time strings are formatted according to a subset of ISO 8601:2000 as documented in RFC 3339.

The Datetime data type is implemented as "xs:dateTime" in the Schema.

3. NTTDM

In this section, the individual components of the NTTDM will be discussed in detail. This class provides a standardized representation for commonly exchanged Field Name data.

3.1. NTTDM Components

3.1.1. NTTDM Attributes

The Field Name class has four attributes. Each attribute provides information about a Field Name instance. The attributes that characterize one instance constitute all the information required to form the data model.

DESCRIPTION

This field contains a short description of the Field Name.

TYPE

The TYPE attribute contains information about the type of the Field Name it depends on. The values that it may contain are:

Defined, Free, Multiple, and List.

VALID FORMAT

This attribute contains information about the format of each field. The values that it may contain are:

Predefined String, String, and Datetime.

MANDATORY

This attribute indicates whether the information of each field is required or optional. If the information is required, the MANDATORY field contains the word "YES". If the information is optional, the MANDATORY field contains the word "NO".

3.2. NTTDM Aggregate Classes

3.2.1. NTTDM-Document Class

The NTTDM-Document class is the top-level class in the NTTDM. All NTTDM documents are an instance of this class.

Figure 3. NTTDM-Document Class

The aggregate class that constitutes an NTTDM-Document is:

Ticket

One or more. The information related to a single ticket.

The NTTDM-Document class has two attributes:

version

STRING. The value of this attribute MUST be "1.00".

lang

Required.

3.2.2. Ticket Class

Every ticket is represented by an instance of the Ticket class. This class provides a standardized representation for commonly exchanged TT data.

Figure 4. The Ticket Class

lang

Required.

The Field Names are the Aggregate Classes that constitute the NTTDM, and each of them is an element that is characterized by a quadruple (DESCRIPTION, TYPE, VALID FORMAT, MANDATORY).

3.2.3. Ticket Origin Information

3.2.3.1. **PARTNER_ID**

Figure 5. Partner_ID Class

3.2.3.2. ORIGINAL_ID

Figure 6. Original_ID Class

3.2.4. Ticket Information

3.2.4.1. TT_ID

Figure 7. TT ID Class

TYPE is constructed as "PARTNER_ID"_"ORIGINAL_ID". PARTNER_ID and ORIGINAL_ID therefore MUST NOT contain an underscore character.

3.2.4.2. TT TITLE

Figure 8. TT_Title Class

3.2.4.3. TT TYPE

TT_TYPE	
DESCRIPTION TYPE VALID FORMAT MANDATORY	The type of the TT. Multiple. Predefined String. Yes.

Figure 9. TT_Type Class

3.2.4.4. TT PRIORITY

Figure 10. TT_Priority Class

3.2.4.5. TT_STATUS

Figure 11. TT_Status Class

3.2.4.6. TT SOURCE

Figure 12. TT_Source Class

3.2.4.7. TT OPEN DATETIME

Figure 13. TT_Open_Datetime Class

3.2.4.8. TT_CLOSE_DATETIME

The date and time when the TT was closed. Multiple.

Datetime.

Yes.

Figure 14. TT_Close_Datetime Class

3.2.5. Trouble Details

3.2.5.1. TT SHORT DESCRIPTION

```
TT_SHORT_DESCRIPTION |
TT_SHORT_DESCRIPTION |
DESCRIPTION |
TYPE |
VALID FORMAT |
MANDATORY |
```

The short description of the trouble. Multiple.

Predefined String.

Yes.

Figure 15. TT_Short_Description Class

3.2.5.2. TT LONG DESCRIPTION

The detailed description of the incident/maintenance reported in the TT. Free. String.

No.

Figure 16. TT_Long_Description Class

3.2.5.3. TYPE

The type of the trouble.
Multiple.
Predefined String.
Yes.

Figure 17. Type Class

3.2.5.4. TT_IMPACT_ASSESSMENT

The impact of the incident/maintenance. Multiple. Predefined String. Yes.

Figure 18. TT_Impact_Assessment Class

3.2.5.5. START DATETIME

The date and time that the incident/maintenance started. Multiple. Datetime. Yes.

Figure 19. Start_Datetime Class

3.2.5.6. DETECT_DATETIME

Figure 20. Detect_Datetime Class

3.2.5.7. REPORT DATETIME

Figure 21. Report_Datetime Class

3.2.5.8. END_DATETIME

Figure 22. End_Datetime Class

3.2.5.9. TT_LAST_UPDATE_TIME

The last date and time when the TT was updated.
Multiple.
Datetime.
Yes.

Figure 23. TT Last Update Time Class

3.2.5.10. TIME WINDOW START

TIME_WINDOW_START
DESCRIPTION
TYPE VALID FORMAT MANDATORY

The window start time in which planned maintenance may occur.
Multiple.

Datetime.

No, unless TYPE is "Scheduled".

Figure 24. Time Window Start Class

3.2.5.11. TIME WINDOW END

The window end time in which planned maintenance may occur.
Multiple.
Datetime.

No, unless TYPE is "Scheduled".

Figure 25. Time_Window_End Class

3.2.5.12. WORK_PLAN_START_DATETIME

Work planned (expected): start time in case of maintenance. Multiple.

Datetime.

Figure 26. Work_Plan_Start_Datetime Class

3.2.5.13. WORK_PLAN_END_DATETIME

```
WORK_PLAN_END_DATETIME |
| DESCRIPTION |
| TYPE |
| VALID FORMAT |
| MANDATORY
```

Work planned (expected): end time in case of maintenance.

Multiple.
Datetime.
No.

Figure 27. Work_Plan_End_Datetime Class

The period delimited by WORK_PLAN_START_DATETIME and WORK_PLAN_END_DATETIME MUST be included in the period delimited by TIME_WINDOW_START and TIME_WINDOW_END, and duplicated with {START, END}_DATETIME, even in case of maintenance.

3.2.6. Related Data

3.2.6.1. RELATED EXTERNAL TICKETS

```
| RELATED_EXTERNAL_TICKETS |
| DESCRIPTION
| TYPE
| VALID FORMAT
| MANDATORY
```

The NOC entity related to the incident. List.

String.

Figure 28. Related_External_Tickets Class

3.2.6.2. ADDITIONAL_DATA

Figure 29. Additional_Data Class

3.2.6.3. RELATED_ACTIVITY

Figure 30. Related_Activity Class

3.2.6.4. **HISTORY**

Figure 31. History Class

Note: This field MUST NOT be empty when the VALID FORMAT attribute of the TT_STATUS field is anything other than "OPENED" or "OPENED/CLOSED".

3.2.7. Localization and Impact

3.2.7.1. AFFECTED COMMUNITY

Information about the community that was affected by the incident.

Free. String. No.

Figure 32. Affected_Community Class

3.2.7.2. AFFECTED_SERVICE

+	AFFECTED_SERVICE
Ĭ	DESCRIPTION
	TYPE VALID FORMAT MANDATORY

+-----+

The service that was affected by the

incident.
Multiple.
String.
No.

Figure 33. Affected_Service Class

3.2.7.3. LOCATION

The location (Point of Presence (POP) site, city, etc.) of the incident/maintenance. Multiple.

Multiple String. Yes.

Figure 34. Location Class

3.2.7.4. NETWORK NODE

Figure 35. Network_Node Class

3.2.7.5. NETWORK_LINK_CIRCUIT

Figure 36. Network_Link_Circuit Class

3.2.7.6. END_LINE_LOCATION_A

Figure 37. End_Line_Location_A Class

3.2.7.7. END_LINE_LOCATION_B

Figure 38. End_Line_Location_B Class

3.2.8. Contact Information

3.2.8.1. OPEN ENGINEER

Figure 39. Open_Engineer Class

3.2.8.2. CONTACT ENGINEERS

Figure 40. Contact_Engineers Class

3.2.8.3. CLOSE_ENGINEER

Figure 41. Close_Engineer Class

3.2.9. Security

3.2.9.1. HASH

Figure 42. Hash Class

3.3. NTTDM Representation

The collected and processed TTs received from multiple telecommunications networks are adjusted in a normalized NTTDM. Figure 43 shows the representation of this normalized data model. The "DESCRIPTION" attribute is implied.

+ FIELD NAME	TYPE	 VALID FORMAT	 MANDATORY
ORIGINAL_ID TT_ID TT_TITLE TT_TYPE TT_PRIORITY TT_STATUS TT_SOURCE TT_OPEN_DATETIME TT_CLOSE_DATETIME TT_SHORT_DESCRIPTION TTTLONG_DESCRIPTION TYPE TT_IMPACT_ASSESSMENT	MULTIPLE FREE DEFINED DEFINED MULTIPLE	STRING STRING STRING PREDEFINED STRING PREDEFINED STRING PREDEFINED STRING PREDEFINED STRING DATETIME DATETIME PREDEFINED STRING STRING PREDEFINED STRING PREDEFINED STRING PREDEFINED STRING	YES YES YES YES NO YES YES NO YES YES YES YES NO YES NO YES NO YES NO YES NO YES
TT_IMPACT_ASSESSMENT START_DATETIME DETECT_DATETIME REPORT_DATETIME END_DATETIME TT_LAST_UPDATE_TIME TIME_WINDOW_START TIME_WINDOW_END WORK_PLAN_START_DATETIME WORK_PLAN_END_DATETIME RELATED_EXTERNAL_TICKETS ADDITIONAL_DATA RELATED_ACTIVITY HISTORY	MULTIPLE MULTIPLE MULTIPLE MULTIPLE MULTIPLE MULTIPLE MULTIPLE MULTIPLE MULTIPLE MULTIPLE	PREDEFINED STRING DATETIME STRING STRING	YES YES NO
AFFECTED_SERVICE LOCATION NETWORK NODE	MULTIPLE MULTIPLE LIST	STRING STRING STRING	NO YES NO NO NO NO NO NO NO NO

Figure 43. The Field Name Class

4. Internationalization Issues

Internationalization and localization are of specific concern to the NTTDM, since it is only through collaboration, often across language barriers, that certain incidents can be resolved. The NTTDM supports this goal by depending on XML constructs, and through explicit design choices in the data model.

The main advantage of the model is that it provides a normalized data type that is implemented fully in the English language and can be used conveniently. It also supports free-formed text that can be written in any language. In the future, it will provide translation services for all such free-formed text.

5. Example

5.1. Link Failure

In this section, an example of network TTs exchanged using the proposed format is provided. This is an actual GRNet ticket normalized according to the NTTDM. Fields that were not included in the ticket are left blank.

```
<?xml version="1.0" encoding="UTF-8"?>
<!-- This example describes a link failure that was detected -->
<NTTDM-Document version="1.00" lang="el"</pre>
                   xmlns="urn:ietf:params:xml:ns:nttdm-1.0">
<Ticket>
 <0riginal_ID>5985</0riginal_ID>
<Partner_ID>01</Partner_ID>
 <TT ID>01_5985</TT_ID>
 <TT_Title>Forth Link Failure</TT Title>
<TT_Type>Operational</TT_Type>
<TT_Status>Closed</TT_Status>
<TT_Open_Datetime>2008-12-16T10:01:15+02:00</TT_Open_Datetime>
<TT_Short_Description>Core Line Fault</TT_Short_Description>
 <TT Long Description>Forth Link Failure</TT Long Description>
 <Type>Unscheduled</Type>
 <TT_Impact_Assessment>No connectivity</TT_Impact_Assessment>
 <Start_Datetime>2008-12-16T09:55:00+02:00/Start_Datetime>
 <TT_Last_Update_Time>2008-12-16T15:00:34+02:00</TT_Last Update Time>
 <Location>HERAKLION</Location>
 <History>Optical transmitter was changed/History>
 <TT Close Datetime>2008-12-16T15:05:00+02:00</TT Close Datetime>
 <End Datetime>2008-12-16T15:01:21+02:00</End Datetime>
```

```
<Node>FORTH</Node>
   </Network_Node>
   <Network Link Circuit>
    <Link Circuit>FORTH-2</Link Circuit>
   </Network_Link_Circuit>
   <Open_Engineer>Dimitris Zisiadis/Open_Engineer>
   <Close_Engineer>Guillaume Cessieux</Close_Engineer>
   <Contact Engineers>
    <Engineer>Spyros Kopsidas</Engineer>
    <Engineer>Chrysostomos Tziouvaras</Engineer>
   </Contact_Engineers>
  <TT_Priority>High</TT_Priority>
</Ticket>
  </NTTDM-Document>
   Sample Implementation: XML Schema
6.
  This section provides a sample XML Schema of the NTTDM.
  <?xml version="1.0" encoding="UTF-8" ?>
  <xs:schema xmlns="urn:ietf:params:xml:ns:nttdm-0.1"
xmlns:nttdm="urn:ietf:params:xml:ns:nttdm-1.0"</pre>
   xmlns:xs="http://www.w3.org/2001/XMLSchema"
   targetNamespace="urn:ietf:params:xml:ns:nttdm-1.0"
   elementFormDefault="qualified"
   attributeFormDefault="unqualified">
   <xs:annotation>
    <xs:documentation</pre>
        >Trouble Ticket Data Model v-1.0</xs:documentation>
   </xs:annotation>
   <!--
   ______
   == NTTDM-Document Class
   ______
   <xs:element name="NTTDM-Document">
    <xs:complexType>
     <xs:sequence>
      <xs:element ref="nttdm:Ticket" max0ccurs="unbounded"/>
     </xs:sequence>
     <xs:attribute name="version" type="xs:string" fixed="1.00"/>
     <xs:attribute name="lang" type="xs:language" use="required"/>
    </xs:complexType>
   </xs:element>
```

<Network Node>

```
<!--
______
     Ticket Class
______
<xs:element name="Ticket">
  <xs:complexTvpe>
    <xs:all>
      <xs:element ref="nttdm:Partner_ID"/>
      <xs:element ref="nttdm:Original ID"/>
      <xs:element ref="nttdm:TT ID"/>
     <xs:element ref="nttdm:TT_Title"/>
<xs:element ref="nttdm:TT_Type"/>
<xs:element ref="nttdm:TT_Priority" minOccurs="0"/>
<xs:element ref="nttdm:TT_Status"/>
<xs:element ref="nttdm:TT_Source" minOccurs="0"/>
<xs:element ref="nttdm:TT_Open_Datetime"/>
<xs:element ref="nttdm:TT_Open_Datetime"/>
      <xs:element ref="nttdm:TT_Close_Datetime"/>
     <xs:element ref="nttdm:TT_Ctose_Date(time"/>
<xs:element ref="nttdm:TT_Short_Description"/>
<xs:element ref="nttdm:TT_Long_Description"/>
<xs:element ref="nttdm:Type"/>
<xs:element ref="nttdm:TT_Impact_Assessment"/>
      <xs:element ref="nttdm:Start Datetime"/>
      <xs:element ref="nttdm:Detect Datetime" min0ccurs="0"/>
      <xs:element ref="nttdm:Report_Datetime" min0ccurs="0"/>
      <xs:element ref="nttdm:End Datetime"/>
     <xs:element ref="nttdm:TT_Last_Update_Time"/>
<xs:element ref="nttdm:Time_Window_Start" minOccurs="0"/>
<xs:element ref="nttdm:Time_Window_End" minOccurs="0"/>
<xs:element ref="nttdm:Work_Plan_Start_Datetime" minOccurs="0"/>
<xs:element ref="nttdm:Work_Plan_Start_Datetime" minOccurs="0"/>
      <xs:element ref="nttdm:Work_Plan_End_Datetime" min0ccurs="0"/>
      <xs:element ref="nttdm:RelaTed_External_Tickets" min0ccurs="0"/>
      <xs:element ref="nttdm:Additional Data" min0ccurs="0"/>
     <xs:element ref="nttdm:Related_Activity" minOccurs="0"/>
<xs:element ref="nttdm:History"/>
<xs:element ref="nttdm:Affected_Community" minOccurs="0"/>
      <xs:element ref="nttdm:Affected_Service" min0ccurs="0"/>
      <xs:element ref="nttdm:Location"/>
      <xs:element ref="nttdm:Network_Node" min0ccurs="0"/>
      <xs:element ref="nttdm:Network_Link_Circuit" min0ccurs="0"/>
     <xs:element ref="nttdm:End_Line_Location_B" min0ccurs="0"/>
<xs:element ref="nttdm:Open_Engineer" min0ccurs="0"/>
      <xs:element ref="nttdm:Contact Engineers" min0ccurs="0"/>
      <xs:element ref="nttdm:Close Engineer" min0ccurs="0"/>
      <xs:element ref="nttdm:Hash" minOccurs="0"/>
      <xs:element ref="nttdm:End_Line_Location_A" min0ccurs="0"/>
    </xs:all>
```

```
<xs:attribute name="lang" type="xs:language"/>
</xs:complexType>
</xs:element>
<!--
_____
== Partner_ID Class
______
<xs:element name="Partner_ID" type="nttdm:string_no_underscore"/>
<!--
______
== Original ID Class
<xs:element name="Original ID" type="nttdm:string no underscore"/>
<!--
______
== TT_ID Class
______
-->
<xs:element name="TT ID" type="xs:string"/>
______
== TT_Title Class
_____
<xs:element name="TT_Title" type="xs:string"/>
______
 TT_Type Class
______
<xs:element name="TT_Type" type="nttdm:eTT_Type"/>
<!--
______
== TT_Priority Class
______
<xs:element name="TT Priority" type="nttdm:eTT Priority"/>
```

```
<!--
______
== TT Status Class
______
<xs:element name="TT_Status" type="nttdm:eTT_Status"/>
<!--
______
== TT Source Class
______
<xs:element name="TT_Source" type="nttdm:eTT_Source"/>
<!--
______
== TT Open Datetime Class
______
<xs:element name="TT_Open_Datetime" type="xs:dateTime"/>
______
== TT_Close Datetime Class
______
<xs:element name="TT_Close_Datetime" type="xs:dateTime"/>
<!--
______
== TT Short Description Class
______
<xs:element name="TT_Short_Description"</pre>
     type="nttdm:eTT_Short_Description"/>
______
== TT_Long_Description Class
______
<xs:element name="TT_Long_Description" type="xs:string"/>
```

```
<!--
______
== Type Class
______
<xs:element name="Type" type="nttdm:eType"/>
<!--
______
== TT Impact Assessment Class
______
-->
<xs:element name="TT Impact Assessment"</pre>
    type="nttdm:eTT Impact Assessment"/>
<!--
______
== Start Datetime Class
______
<xs:element name="Start_Datetime" type="xs:dateTime"/>
<!--
______
== Detect Datetime Class
______
<xs:element name="Detect_Datetime" type="xs:dateTime"/>
<!--
______
== Report Datetime Class
<xs:element name="Report_Datetime" type="xs:dateTime"/>
______
== End_Datetime Class
______
<xs:element name="End_Datetime" type="xs:dateTime"/>
```

```
<!--
______
== TT Last Update Time Class
<xs:element name="TT Last Update Time" type="xs:dateTime"/>
<!--
______
== Time Window Start Class
______
<xs:element name="Time Window Start" type="xs:dateTime"/>
<!--
______
== Time Window End Class
______
<xs:element name="Time_Window_End" type="xs:dateTime"/>
______
== Work Plan Start Datetime Class
______
<xs:element name="Work_Plan_Start_Datetime" type="xs:dateTime"/>
<!--
______
== Work Plan End Datetime Class
______
<xs:element name="Work Plan End Datetime" type="xs:dateTime"/>
<!--
______
== Related External Tickets Class
_____
<xs:element name="Related_External_Tickets"</pre>
      type="nttdm:eRelated_External_Tickets"/>
```

</th
======================================
======================================
======================================
======================================
</td
== History Class
======================================
======================================
======================================
======================================
</td
== Location Class ==
======================================

```
<!--
______
== Network_Node Class
______
<xs:element name="Network_Node" type="nttdm:eNodes"/>
<!--
== Network Link Circuit Class
______
-->
<xs:element name="Network Link Circuit"</pre>
     type="nttdm:eNetwork Link Circuit"/>
<!--
______
== End Line Location A Class
<xs:element name="End_Line_Location_A" type="xs:string"/>
<!--
______
== End Line Location B Class
______
<xs:element name="End_Line_Location_B" type="xs:string"/>
<!--
______
== Open Engineer Class
<xs:element name="Open_Engineer" type="xs:string"/>
______
== Contact_Engineers Class
______
<xs:element name="Contact_Engineers" type="nttdm:eEngineers"/>
```

```
<!--
______
== Close Engineer Class
<xs:element name="Close_Engineer" type="xs:string"/>
<!--
______
== Hash Class
______
<xs:element name="Hash" type="xs:string"/>
<!--
______
== Custom types definition
______
<xs:simpleType name="string_no_underscore">
<xs:restriction base="xs:string">
<xs:pattern value="[^_]*"/>
</xs:restriction>
</xs:simpleType>
<xs:complexType name="eRelated_External_Tickets">
<xs:sequence>
 </xs:sequence>
</xs:complexType>
<xs:complexType name="eRelated_Activity">
<xs:sequence>
 <xs:element name="TT" type="xs:string" min0ccurs="0"</pre>
         max0ccurs="unbounded"/>
</xs:sequence>
</xs:complexType>
<xs:complexType name="eNodes">
<xs:sequence>
 <xs:element name="Node" type="xs:string" min0ccurs="0"</pre>
         max0ccurs="unbounded"/>
</xs:sequence>
</xs:complexType>
```

```
<xs:complexType name="eNetwork_Link_Circuit">
  <xs:sequence>
   <xs:element name="Link Circuit" type="xs:string"</pre>
                minOccurs="0" maxOccurs="unbounded"/>
  </xs:sequence>
 </xs:complexType>
 <xs:complexType name="eEngineers">
  <xs:sequence>
   <xs:element name="Engineer" type="xs:string" min0ccurs="0"</pre>
               max0ccurs="unbounded"/>
  </xs:sequence>
 </xs:complexType>
 <xs:simpleType name="eTT_Type">
  <xs:restriction base="xs:string">
   <xs:enumeration value="Operational"/>
   <xs:enumeration value="Informational"/>
   <xs:enumeration value="Administrative"/>
   <xs:enumeration value="Test"/>
  </xs:restriction>
 </xs:simpleType>
 <xs:simpleType name="eType">
  <xs:restriction base="xs:string">
   <xs:enumeration value="Scheduled"/>
   <xs:enumeration value="Unscheduled"/>
  </xs:restriction>
 </xs:simpleType>
<xs:simpleType name="eTT Priority">
  <xs:restriction base="xs:string">
   <xs:enumeration value="Low"/>
   <xs:enumeration value="Medium"/>
   <xs:enumeration value="High"/>
  </xs:restriction>
 </xs:simpleType>
```

```
<xs:simpleType name="eTT_Short_Description">
 <xs:restriction base="xs:string">
  <xs:enumeration value="Core Line Fault"/>
  <xs:enumeration value="Access Line Fault"/>
  <xs:enumeration value="Degraded Service"/>
  <xs:enumeration value="Router Hardware Fault"/>
<xs:enumeration value="Router Software Fault"/>
<xs:enumeration value="Routing Problem"/>
  <xs:enumeration value="Undefined Problem"/>
  <xs:enumeration value="Network Congestion"/>
  <xs:enumeration value="Client Upgrade"/>
  <xs:enumeration value="IPv6"/>
  <xs:enumeration value="QoS"/>
<xs:enumeration value="VoIP"/>
  <xs:enumeration value="Other"/>
 </xs:restriction>
</xs:simpleType>
<xs:simpleType name="eTT_Impact_Assessment">
 <xs:restriction base="xs:string">
  <xs:enumeration value="No impact"/>
  <xs:enumeration value="Reduced redundancy"/>
  <xs:enumeration value="Minor performance impact"/>
  <xs:enumeration value="Severe performance impact"/>
  <xs:enumeration value="No connectivity"/>
  <xs:enumeration value="On backup"/>
  <xs:enumeration value="At risk"/>
<xs:enumeration value="Unknown"/>
 </xs:restriction>
</xs:simpleType>
<xs:simpleType name="eTT_Status">
 <xs:restriction base="xs:string">
  <xs:enumeration value="Opened"/>
  <xs:enumeration value="Updated"/>
  <xs:enumeration value="Closed"/>
  <xs:enumeration value="Solved"/>
  <xs:enumeration value="Opened/Closed"/>
  <xs:enumeration value="Inactive"/>
  <xs:enumeration value="Cancelled"/>
  <xs:enumeration value="Reopened"/>
  <xs:enumeration value="Superseded"/>
 </xs:restriction>
</xs:simpleType>
```

```
<xs:simpleType name="eTT_Source">
  <xs:restriction base="xs:string">
    <xs:enumeration value="Users"/>
    <xs:enumeration value="Monitoring"/>
    <xs:enumeration value="Other NOC"/>
    </xs:restriction>
  </xs:simpleType>
</xs:schema>
```

7. Security Considerations

The NTTDM data model defines a data model and the relevant XML Schema for trouble ticket normalization; as such, the NTTDM itself does not raise any security concerns. However, some security issues SHOULD be considered as network TTs could carry sensitive information (IP addresses, contact details, authentication details, commercial providers involved, etc.) about flagship institutions (military, health centre...).

The security considerations MAY involve measures during the exchange as well as during processing of the information.

The HASH field is intended to provide an integrity insurance attribute within the exchanged tickets; however, it alone does not ensure integrity.

Confidentiality MAY be ensured by encrypting whole tickets or only some parts of them. This could permit meaningful tickets to be disclosed, while only sensitive information would be protected.

Peer entity authentication SHOULD be provided in order to establish a session with data origin authentication, regardless of the form in which the TTs are exchanged -- being delivered either through email, web forms, or through a Simple Object Access Protocol (SOAP) service. SOAP is considered the better choice; the model itself, though, does not specify the communications requirements.

The underlying communications service MUST provide guarantees to properly address integrity, confidentiality, and peer entity authentication. The selection of the enforcing mechanisms is not in the scope of this document, and the choice is up to the implementers.

For data processing security, each participating organization MAY use its own privacy policy, as part of its own data processing system. This approach avoids any interoperability issues and does not pose any extra burden for the adoption of the current scheme into the operational procedures of the NOCs. Unauthorized and inappropriate usage MUST be avoided.

8. IANA Considerations

This document uses URNs to describe an XML namespace and Schema conforming to a registry mechanism described in [7].

Registration for the NTTDM namespace:

- o URI: urn:ietf:params:xml:ns:nttdm-1.0
- o Registrant Contact: See the first author listed in the "Authors' Addresses" section of this document.
- o XML: None. Namespace URIs do not represent an XML specification.

Registration for the NTTDM XML Schema:

- o URI: urn:ietf:params:xml:schema:nttdm-1.0
- o Registrant Contact: See the first author listed in the "Authors' Addresses" section of this document.
- o XML: See the XML Schema in Section 6 of this document.

9. Contributors

Leandros Tassiulas Centre for Research and Technology Hellas 6th km Thermi-Thessaloniki, 57001 Hellas

EMail: leandros@uth.gr

Chrysostomos Tziouvaras Greek Research and Technology Network 56, Mesogion Av. 11527, Athens Hellas

EMail: tziou@grnet.gr

Xavier Jeannin National Centre for Scientific Research Network Unit - UREC France

EMail: Xavier.Jeannin@urec.cnrs.fr

10. Acknowledgements

The following groups and individuals contributed substantially to this document and are gratefully acknowledged:

- Toby Rodwell and Emma Apted (DANTE)
- Claudio Allocchio, Gloria Vuagnin, and Claudia Battista (GARR)
- Karin Schauerhammer and Robert Stoy (DFN)

11. References

11.1. Normative References

- [1] Bradner, S., "Key words for use in RFCs to Indicate Requirement Levels", BCP 14, RFC 2119, March 1997.
- [2] World Wide Web Consortium, "Extensible Markup Language (XML) 1.0 (Fifth Edition)", W3C Recommendation, 26 November 2008, http://www.w3.org/TR/2008/REC-xml-20081126.
- [3] World Wide Web Consortium, "XML Schema Part 0: Primer Second Edition", W3C Recommendation, 28 October 2004, http://www.w3.org/TR/2004/REC-xmlschema-0-20041028/>.
- [4] World Wide Web Consortium, "XML Schema Part 1: Structures Second Edition", W3C Recommendation, 28 October 2004, http://www.w3.org/TR/xmlschema-1/>.
- [5] World Wide Web Consortium, "XML Schema Part 2: Datatypes Second Edition", W3C Recommendation, 28 October 2004, http://www.w3.org/TR/xmlschema-2/>.
- [6] World Wide Web Consortium, "Namespaces in XML 1.0 (Third Edition)", W3C Recommendation, 8 December 2009, http://www.w3.org/TR/2009/REC-xml-names-20091208/>.
- [7] Mealling, M., "The IETF XML Registry", BCP 81, RFC 3688, January 2004.

11.2. Informative References

- [8] Enabling Grids for E-sciencE, http://www.eu-egee.org/.
- [9] Enabling Grids for E-sciencE, "ENOC, EGEE Network Operation Centre", http://technical.eu-egee.org/index.php?id=353.

- [10] Rumbaugh, J., Jacobson, I., and G. Booch, "The Unified Modeling Language Reference Manual," ISBN 020130998X, Addison-Wesley, 1998.
- [11] Johnson, D., "NOC Internal Integrated Trouble Ticket System Functional Specification Wishlist ("NOC TT REQUIREMENTS")", RFC 1297, January 1992.

Authors' Addresses

Dimitris Zisiadis (editor) Centre for Research and Technology Hellas 6th km Thermi-Thessaloniki, 57001 Hellas

EMail: dzisiadis@iti.gr

Spyros Kopsidas (editor) Centre for Research and Technology Hellas 6th km Thermi-Thessaloniki, 57001 Hellas

EMail: spyros@uth.gr

Matina Tsavli (editor) Centre for Research and Technology Hellas 6th km Thermi-Thessaloniki, 57001 Hellas

EMail: sttsavli@uth.gr

Guillaume Cessieux (editor) Computer Centre of National Institute for Nuclear Physics and Particle Physics (IN2P3-CC) France

EMail: Guillaume.Cessieux@cc.in2p3.fr