Lesson 5-3 – Nominal and Effective Interest Rates

Special Acknowledgment to Dr Ron Mackinnon and Dr Tamara Etmannski who helped with the development of this material.

Interest Rates can be confusing

 Look at some ads for financial services, and read the details on the interest rate

FordCredit

View our Rates

• What do all these mean?

3.740% 3.760% APR 5 yr variable closed
RBC Prime
Rate
+ 0.000%
-----3.470% APR

Compounding: Nominal and Effective Interest

- Nominal Interest Rate (r):
 - 'in name only'
 - Interest rate without consideration of compounding
 - Specified per year
 - E.g. A bank bond pays 1% every quarter. The nominal rate is $1\% \times 4 = 4\%$ per year

Compounding: Nominal and Effective Interest

- Effective Interest Rate (i_a):
 - Interest rate that takes compounding into consideration
 - Can be broken into different compounding periods: Semiannually (2/yr), quarterly (4/yr), monthly (12/yr), biweekly (26/yr), weekly (52/yr), daily (365/yr)

Determining Effective Interest

•
$$i_a = (1+r/m)^m - 1$$

- How do we get this? We can get it from our F/P formulas
 - Take a nominal interest rate of r, with a compounding period of m
 - Consider investing \$1000 at 6% per year, compounded semi-annually
 - What is the future value?
 - $F = P(1+i)n = $1000(1+0.06/2)^2 = $1,060.90$
 - Our interest amount, I, is \$60.90
 - Our effective annual interest rate is then \$60.90/\$1000 = 6.09%
 - Pull out the F and P and normalize to \$1 and we get the above formula

Nominal & Effective Interest Continued...

If you were given a loan at 12% interest per year compounded monthly...

- The Nominal Interest Rate would be:
 - r =12%/year compounded monthly
- The Effective Monthly Rate (i) would be:
 - i = r/m where m = compounding period
 - i = 0.12/12 = 1% per month effective
- The Effective Yearly Rate (i_a) would be:
 - $i_a = (1+r/m)^m 1 = (1+i)^m 1$
 - $i_a = (1+0.12/12)^{12} 1 = 12.68\%/year$ effective

Compounding

- The number of compounding periods depends on the number of subdivisions.
- A nominal interest rate of 12%/year compounded:

```
• m = 1: yearly (equals 12% effective yearly)
```

- m = 2: semi-annually (equals 12.360% effective yearly)
- m = 4: quarterly (equals 12.551% effective yearly)
- m = 52: weekly (equals 12.734% effective yearly)
- m = 365: daily (equals 12.747% effective yearly)
- m = 8760: hourly (equals 12.749% effective yearly)
- m = large: continuous (approaches ~12.750%)

Nominal & Effective Interest Example 1

EXAMPLE 3-9

If a savings bank pays 1.5% interest every three months, what are the nominal and effective interest rates per year?

SOLUTION

Nominal interest rate per year $r = 4 \times 1.5\% = 6\%$

Effective interest rate per year

$$i_a = \left(1 + \frac{r}{m}\right)^m - 1$$
$$= \left(1 + \frac{0.06}{4}\right)^4 - 1 = 0.061$$

Alternatively,

Effective interest rate per year

$$i_a = (1+i)^m - 1$$

= $(1+0.015)^4 - 1 = 0.061$
= 6.1%

= 6.1%

Nominal & Effective Interest Example 2

Question:

A loan shark lends you money on these terms: "If I give you \$50 on Monday, you owe me \$60 on the following Monday."

- a) What is the nominal interest rate per year? (r)
- b) What is the effective rate per year? (i_a)
- c) If the loan shark started with \$50 and kept it and all the interest he made for one year, how much would he have? (F)

Nominal & Effective Interest Example 2

Solutions:

a) i = 20% per week r = 52 weeks (0.20) = 10.40 = 1040%

b)
$$i_a = \begin{bmatrix} 1 + \frac{r}{m} \end{bmatrix}^m - 1$$
 $i_a = \begin{bmatrix} 1 + \frac{10.40}{52} \end{bmatrix}^{52} - 1$ $i_a = 13104 = 1,310,400\%$ [or: $i_a = (1 + i)^m - 1 = (1 + 0.20)^{52} - 1 = 13,104$]

c)
$$F = P(1 + i)^n = 50(1 + 0.20)^{52} = $655,200$$