T. D. nº 1 Séries temporelles

Rappels: Définitions

- a) Une suite de variables aléatoires réelles (ou processus) $X = (X_t)_{t \in \mathbb{Z}}$ est dite du second ordre si chacune d'elles est de carré intégrable.
- b) Un processus X est fortement stationnaire ssi $\forall n \in \mathbb{N}, \quad \forall (t_1, \ldots, t_n) \in \mathbb{N}^n, \quad \forall h \in \mathbb{Z}, \quad \mathcal{L}_{X_{t_1}, \ldots, X_{t_n}} = \mathcal{L}_{X_{t_{1+h}}, \ldots, X_{t_{n+h}}}$ où \mathcal{L}_Y désigne la loi de Y.
- c) Un processus X est (faiblement) stationnaire ssi

$$\begin{cases}
\forall t \in \mathbb{Z}, & \mathbb{E}(X_t) = \mathbb{E}(X_0) \\
\exists \gamma : \mathbb{Z} \to \mathbb{R}^+ / \forall t \in \mathbb{Z}, \forall h \in \mathbb{Z}, & \mathbb{C}\text{ov}(X_t, X_{t+h}) = \gamma(h).
\end{cases}$$

d) Le processus X est un bruit blanc fort de variance $\sigma^2 \geqslant 0$ ssi

$$\begin{cases} \forall t \in \mathbb{Z}, & \mathbb{E}(X_t) = 0 \\ \forall t \in \mathbb{Z}, & \operatorname{Var}(X_t) = \sigma^2 \\ (X_t)_t & \text{est i.i.d.} \end{cases}$$

e) Le processus X est un bruit blanc (faible) de variance $\sigma^2 \ge 0$ ssi

$$\begin{cases} \forall t \in \mathbb{Z}, & \mathbb{E}(X_t) = 0 \\ \forall t \in \mathbb{Z}, & \operatorname{Var}(X_t) = \sigma^2 \\ \forall t \in \mathbb{Z}, & \forall h \in Z^*, & \operatorname{Cov}(X_t, X_{t+h}) = 0 \end{cases}$$

Exercice 1. D'après l'énoncé de l'exercice 1 des T.D. de Guillaume Lacôte

Soit $(\varepsilon_t)_{t\in\mathbb{Z}}$ un bruit blanc (supposé dans \mathcal{L}^2) de variance $\sigma^2 > 0$. Discuter dans chacun des cas suivants de la stationnarité de $(X_t)_{t\in\mathbb{Z}}$.

- 1. Lorsque $\forall t \in \mathbb{Z}, X_t = \varepsilon_t \varepsilon_{t-1}$?
- 2. Le processus $(X_t)_{t\in\mathbb{Z}}$ défini pour $(a,b,c)\in\mathbb{R}^3$ par

$$\forall t \in \mathbb{Z}, \quad X_t = a + b\varepsilon_t + c\varepsilon_{t-1}$$

est-il (faiblement) stationnaire?

- 3. Lorsque $\forall t \in \mathbb{Z}, X_t = \varepsilon_t \varepsilon_{t-1}$, si ε est un bruit blanc fort? Faible?
- 4. Lorsque X est tel que $\forall t \in \mathbb{Z}, X_t X_{t-1} = \varepsilon_t$ (on supposera en outre que $\forall t > 0, \varepsilon_t \perp \!\!\! \perp X_0$)?
- 5. Lorsque $\forall t \in \mathbb{Z}, X_t = \varepsilon_t \cos(ct) + \varepsilon_{t-1} \sin(ct)$ pour $c \in \mathbb{R}$ donné?
- 6. Lorsque $\forall t \in \mathbb{Z}, X_t = \sum_{i=0}^t \lambda^i (\varepsilon_{t-i} \varepsilon_{t-i-1})$ pour $\lambda \in \mathbb{R}$ (discuter selon λ)? Lorsque $\lambda \in]-1,1[$, montrer qu'il existe un processus stationnaire Y tel que $(X_t Y_t) \to (0)$ pour la convergence \mathcal{L}^2 , lorsque $t \to +\infty$.
- 7. La somme de deux processus stationnaires est-elle stationnaire?

Exercice 2. D'après l'énoncé de l'exercice 2 des T.D. de Guillaume Lacôte

On considère le processus défini par

$$\forall t \in \mathbb{Z}, \quad X_t = a + bt + S_t + \varepsilon_t$$

où $a, b \in \mathbb{R}$, $(S_t)_{t \in \mathbb{Z}}$ est un processus saisonnier (périodique) de période 4 et $(\varepsilon_t)_{t \in \mathbb{Z}}$ est un bruit blanc de variance σ^2 , indépendant de S_t .

1. Proposer une contrainte naturelle (que l'on supposera vérifiée par la suite) portant sur $(S_t)_t$.

On définit l'opérateur

$$M_4: \left((Z_t)_t \to \left(\frac{Z_t + Z_{t-1} + Z_{t-2} + Z_{t-3}}{4} \right)_t \right)$$

et on considère le processus $Y = M_4X$.

- 2. Donner l'expression de Y_t pour $t \in \mathbb{Z}$, et justifier l'intérêt de la transformation.
- 3. On définit alors $Z=\Delta Y$. Montrer que Z est stationnaire et calculer sa fonction d'auto-corrélation.

Exercice 3. D'après l'énoncé de l'exercice 1 du T.D.1 de Ségolen Geffray

Soit la série $X_t = at + b\cos(\pi t/3) + c\cos(\pi t/6) + \varepsilon_t$ où $(\varepsilon_t)_{t \in \mathbb{N}}$ est un bruit blanc faible. Déterminer les fonctions moyenne, variance, autocovariance et autocorrélation des séries suivantes :

- 1. X_t
- 2. $Y_t = \nabla X_t = X_t X_{t-1}$
- 3. $Z_t = \nabla_{12} X_t = X_t X_{t-12}$
- 4. $W_t = \nabla_6 X_t = X_t X_{t-6}$

Ces chroniques sont-elles faiblement stationnaires?

Exercice 4. D'après l'énoncé de l'exercice 2 du T.D.1 de Ségolen Geffray

Considérons une fonction $(S_t)_{t\in\mathbb{N}}$ déterministe, de période 12 et satisfaisant $\sum_{t=1}^{12} S_t =$

0. Soit $(\varepsilon_t)_{t\in\mathbb{N}}$ un bruit blanc faible de variance σ^2 . Les séries suivantes sont-elles stationnaires au second ordre? Sinon, trouver un opérateur de différentiation qui les rendent stationnaires au second ordre.

- 1. $X_t = a + bt + S_t + \varepsilon_t$
- 2. $Y_t = (a + bt)(1 + S_t) + \varepsilon_t$

Exercice 5. D'après l'énoncé de l'exercice 4 du T.D.1 de Ségolen Geffray

1. Soit $(\varepsilon_t)_{t\in\mathbb{N}}$ une suite de variables aléatoires indépendantes de moyenne m et de variance σ^2 . Les chroniques suivantes sont-elles stationnaires au second ordre?

- (i) $X_t = a + b\varepsilon_t + c\varepsilon_{t-1}$ pour t = 1, 2, ...
- (ii) $X_t = a\varepsilon_t + b\varepsilon_{t-1} + c\varepsilon_{t-2}$ pour t = 2, 3, ...

où a, b et c sont des paramètres non nuls.

2. Soit X_0 une variable aléatoire de moyenne $\mathbb{E}(X_0) = \frac{m}{1-a}$ et de variance $\operatorname{Var}(X_0) = \frac{\sigma^2}{1-a^2}$ pour |a| < 1. Soit $(\varepsilon_t)_{t \in \mathbb{N}}$ une suite de variables aléatoires indépendantes de moyenne m et de variance σ^2 que l'on suppose indépendante de X_0 . Le processus défini pour $t \in \mathbb{N}^*$ par $X_t = aX_{t-1} + \varepsilon_t$ est-il stationnaire au second ordre?

Exercice 6. D'après l'énoncé de l'exercice 5 du T.D.1 de Ségolen Geffray

Soit $(\varepsilon_t)_{t\in\mathbb{N}}$ une suite de variables aléatoires i.i.d. de loi $\mathcal{N}(0,\sigma^2)$. On pose

$$X_t = \varepsilon_t$$
 et $Y_t = (-1)^t \varepsilon_t$.

Les processus $(X_t)_{t\in\mathbb{N}}$, $(Y_t)_{t\in\mathbb{N}}$ et $(X_t+Y_t)_{t\in\mathbb{N}}$ sont-ils stationnaires au sens faible?

Exercice 7. D'après l'énoncé de l'exercice 6 du T.D.1 de Ségolen Geffray

Soient A et B deux variables aléatoires indépendantes de loi $\mathcal{N}(0,1)$. On pose :

$$X_t = A\cos\left(\frac{2\pi t}{p}\right) + B\sin\left(\frac{2\pi t}{p}\right), \text{ pour } t \in \mathbb{N}.$$

- a) Calculer la moyenne $\mathbb{E}(X_t)$ et la fonction de covariance de ce processus. Ce processus est-il stationnaire au sens faible?
- b) Calculer la loi de X_t . Montrer que $(X_t)_t$ est un processus gaussien. Le processus est-il stationnaire au sens fort?

Exercice 8. D'après l'énoncé de l'exercice 7 du T.D.1 de Ségolen Geffray

On considère le modèle

$$X_t = \mu t + \varepsilon_t$$
, pour $t \in \mathbb{N}^*$,

où $(\varepsilon_t)_{t\in\mathbb{N}^*}$ est une suite de variables aléatoires i.i.d. de loi $\mathcal{N}(0,\sigma^2)$.

- a) Ce processus est-il stationnaire au sens fort ou faible?
- b) On cherche à estimer μ par la méthode des moindres carrés ordinaires à partir d'observations $(x_1, ..., x_n)$. Pour cela, on se propose de minimiser par rapport à m la quantité

$$\sum_{t=1}^{n} (X_t - mt)^2.$$

Calculer $\hat{\mu}_n$ et $\hat{\mu}_n - \mu$. Donner la loi de $(\operatorname{Var}(\hat{\mu}_n))^{-1/2}(\hat{\mu}_n - \mu)$.

c) On cherche à estimer la variance σ^2 . Pour cela, on se propose de maximiser par rapport à m et s^2 la vraisemblance de l'échantillon :

$$\sum_{t=1}^{n} \ln f(X_t, mt, s^2),$$

où $f(., mt, s^2)$ est la densité de la loi normale $\mathcal{N}(mt, s^2)$ à savoir

$$f(x, mt, s^2) = \frac{1}{\sqrt{2\pi s^2}} \exp(-(x - mt)^2/(2s^2)).$$

Montrer que l'estimateur $\tilde{\mu}_n$ obtenu est le même que précédemment. Calculer l'estimateur $\tilde{\sigma}_n^2$. Cet estimateur est-il convergent?