

CD40104BMS, CD40194BMS

CMOS 4-Bit Bidirectional Universal Shift Register

December 1992

Features

- High Voltage Type (20V Rating)
- Medium Speed fCL = 12MHz (typ.) at VDD = 10V
- Fully Static Operation
- Synchronous Parallel or Serial Operation
- Three State Outputs (CD40104BMS)
- Asynchronous Master Reset (CD40194BMS)
- . 5V, 10V and 15V Parametric Ratings
- Standardized Symmetrical Output Characteristics
- Meets All Requirements of JEDEC Tentative Standard No. 13B, "Standard Specifications for Description of 'B' Series CMOS Devices"

Applications

- · Arithmetic Unit Bus Registers
- Serial/Parallel Conversions
- · General Purpose Register for Bus Organized Systems
- General Purpose Registers

Description

The CD40104BMS is a universal shift register featuring parallel inputs, parallel outputs, SHIFT RIGHT and SHIFT LEFT serial inputs, and a high impedance third output state allowing the device to be used in bus organized systems.

In the parallel load mode (S0 and S1 are high), data is loaded into the associated flip-flop and appears at the output after the positive transition of the CLOCK input. During loading, serial data flow is inhibited. Shift right and shift left are accomplished synchronously on the positive clock edge with serial data entered at the SHIFT RIGHT and SHIFT LEFT serial inputs, respectively. Clearing the register is accomplished by setting both mode controls low and clocking the register. When the output enable input is low, all outputs assume the high impedance state.

The CD40194BMS is a universal shift register featuring parallel inputs, parallel outputs SHIFT RIGHT and SHIFT LEFT serial inputs, and a direct overriding clear input. In the parallel load mode (S0 and S1 are high), data is loaded into the associated flip-flop and appears at the output after the positive transition of the CLOCK input. During loading, serial data flow is inhibited. Shift right and shift left are accomplished synchronously on the positive clock edge with data entered at the SHIFT RIGHT and SHIFT LEFT serial inputs, respectively. Clocking of the register is inhibited when both mode control inputs are low. When low, the RESET input resets all stages and forces all outputs low. The CD40194BMS is similar to industry types 340194 and MC40194.

The CD40104BMS and CD40194BMS series types are supplied in these 16 lead outline packages $\,$

Braze Seal DIP *HNX, †H4W Frit Seal DIP *H1L, †HIF

Ceramic Flatpack H6W

Absolute Maximum Ratings

10s Maximum

DC Supply Voltage Range, (VDD) -0.5V to +20V (Voltage Referenced to VSS Terminals) Input Voltage Range, All Inputs -0.5V to VDD +0.5V DC Input Current, Any One Input±10mA Operating Temperature Range -55°C to +125°C Package Types D, F, K, H Storage Temperature Range (TSTG) -65°C to +150°C Lead Temperature (During Soldering) +265°C At Distance 1/16 \pm 1/32 Inch (1.59mm \pm 0.79mm) from case for

Reliability Information

Thermal Resistance	θ _{ja} 80°C/W	θ _{jc} 20°C/W
Ceramic Dir and i Mir i ackage		,
Flatpack Package	70°C/W	20°C/W
Maximum Package Power Dissipation (Pl	D) at +125°C	
For $T_A = -55^{\circ}C$ to $+100^{\circ}C$ (Package Ty	pe D, F, K)	500mW
For $T_A = +100^{\circ}$ C to $+125^{\circ}$ C (Package	Type D, F, K).	Derate
Linea	rity at 12mW/	°C to 200mW
Device Dissipation per Output Transistor		100mW
For T _A = Full Package Temperature Ra	nge (All Pack	age Types)
lunction Temperature		±175°C

TABLE 1. DC ELECTRICAL PERFORMANCE CHARACTERISTICS

				GROUP A		LIMITS			
PARAMETER	SYMBOL	CONDITIONS (I	NOTE 1)	SUBGROUPS	TEMPERATURE	MIN	MAX	UNITS	
Supply Current	IDD	VDD = 20V, VIN = VD	D or GND	1	+25°C	-	10	μΑ	
				2	+125°C	-	1000	μΑ	
		VDD = 18V, VIN = VD	D or GND	3	-55°C	-	10	μΑ	
Input Leakage Current	IIL	VIN = VDD or GND	VDD = 20V	1	+25°C	-100	-	nA	
				2	+125°C	-1000	-	nA	
			VDD = 18V	3	-55°C	-100	-	nA	
Input Leakage Current	IIH	VIN = VDD or GND	VDD = 20V	1	+25°C	-	100	nA	
				2	+125°C	-	1000	nA	
			VDD = 18V	3	-55°C	-	100	nA	
Output Voltage	VOL15	VDD = 15V, No Load		1, 2, 3	+25°C, +125°C, -55°C	-	50	mV	
Output Voltage	VOH15	VDD = 15V, No Load	(Note 3)	1, 2, 3	+25°C, +125°C, -55°C	14.95	-	V	
Output Current (Sink)	IOL5	VDD = 5V, VOUT = 0.	4V	1	+25°C	0.53	-	mA	
Output Current (Sink)	IOL10	VDD = 10V, VOUT = 0	0.5V	1	+25°C	1.4	-	mA	
Output Current (Sink)	IOL15	VDD = 15V, VOUT =	1.5V	1	+25°C	3.5	-	mA	
Output Current (Source)	IOH5A	VDD = 5V, VOUT = 4.	.6V	1	+25°C	-	-0.53	mA	
Output Current (Source)	IOH5B	VDD = 5V, VOUT = 2.	.5V	1	+25°C	-	-1.8	mA	
Output Current (Source)	IOH10	VDD = 10V, VOUT = 9	9.5V	1	+25°C	-	-1.4	mA	
Output Current (Source)	IOH15	VDD = 15V, VOUT =	13.5V	1	+25°C	-	-3.5	mA	
N Threshold Voltage	VNTH	VDD = 10V, ISS = -10	μΑ	1	+25°C	-2.8	-0.7	V	
P Threshold Voltage	VPTH	VSS = 0V, IDD = 10μ/	4	1	+25°C	0.7	2.8	V	
Functional	F	VDD = 2.8V, VIN = VI	VDD = 2.8V, VIN = VDD or GND		+25°C	VOH>	VOL <	V	
		VDD = 20V, VIN = VD	D or GND	7	+25°C	VDD/2	VDD/2		
		VDD = 18V, VIN = VD	D or GND	8A	+125°C	1			
		VDD = 3V, VIN = VDD	or GND	8B	-55°C	1			
Input Voltage Low (Note 2)	VIL	VDD = 5V, VOH > 4.5	V, VOL < 0.5V	1, 2, 3	+25°C, +125°C, -55°C	-	1.5	V	
Input Voltage High (Note 2)	VIH	VDD = 5V, VOH > 4.5	V, VOL < 0.5V	1, 2, 3	+25°C, +125°C, -55°C	3.5	-	V	
Input Voltage Low (Note 2)	VIL	VDD = 15V, VOH > 13 VOL < 1.5V	3.5V,	1, 2, 3	+25°C, +125°C, -55°C	-	4	V	
Input Voltage High (Note 2)	VIH	VDD = 15V, VOH > 13 VOL < 1.5V	3.5V,	1, 2, 3	+25°C, +125°C, -55°C	11	-	V	
Tri-State Output	IOZL	VIN = VDD or GND	VDD = 20V	1	+25°C	-0.4	-	μΑ	
Leakage		VOUT = 0V		2	+125°C	-12	-	μΑ	
			VDD = 18V	3	-55°C	-0.4	-	μΑ	
Tri-State Output	IOZH	VIN = VDD or GND	VDD = 20V	1	+25°C	-	0.4	μΑ	
Leakage		VOUT = VDD		2	+125°C	-	12	μΑ	
			VDD = 18V	3	-55°C	-	0.4	μΑ	

NOTES: 1. All voltages referenced to device GND, 100% testing being 3. For accuracy, voltage is measured differentially to VDD. Limit implemented.

is 0.050V max.

2. Go/No Go test with limits applied to inputs.

TABLE 2. AC ELECTRICAL PERFORMANCE CHARACTERISTICS

			GROUP A	OUP A		IITS	
PARAMETER	SYMBOL CONDITIONS		SUBGROUPS	TEMPERATURE	MIN	MAX	UNITS
Propagation Delay	TPHL	VDD = 5V, VIN = VDD or GND	9	+25°C	-	440	ns
Clock to Q	TPLH	(Note 1, 2)	10, 11	+125°C, -55°C	-	594	ns
Propagation Delay	TPHL	VDD = 5V, VIN = VDD or GND	9	+25°C	-	460	ns
CD40194BMS Reset to Q		(Note 1, 2)	10, 11	+125°C, -55°C	-	621	ns
Propagation Delay	TPZH	_ ,	9	+25°C	-	160	ns
CD40104BMS 3-State	TPZL TPLZ	(Note 2, 3)	10, 11	+125°C, -55°C	-	216	ns
Propagation Delay	TPHZ	VDD = 5V, VIN = VDD or GND	9	+25°C	-	90	ns
CD40104BMS 3-State		(Note 2, 3)	10, 11	+125°C, -55°C	-	122	ns
Transition Time	TTHL	VDD = 5V, VIN = VDD or GND	9	+25°C	-	200	ns
	TTLH	(Note 1, 2)	10, 11	+125°C, -55°C	-	270	ns
Maximum Clock Input	FCL	VDD = 5V, VIN = VDD or GND	9	+25°C	3	-	MHz
Frequency		(Note 1, 2)	10, 11	+125°C, -55°C	2.22	-	MHz

NOTES:

- 1. CL = 50pF, RL = 200K, Input TR, TF < 20ns.
- 2. -55°C and +125°C limits guaranteed, 100% testing being implemented.
- 3. VDD = 5V, CL = 50pF, RL = 1K, Input TR, TF < 20ns.

TABLE 3. ELECTRICAL PERFORMANCE CHARACTERISTICS

					LIN	IITS	
PARAMETER SYM		CONDITIONS	NOTES	TEMPERATURE	MIN	MAX	UNITS
Supply Current	IDD	VDD = 5V, VIN = VDD or GND	1, 2	-55°C, +25°C	-	5	μΑ
				+125°C	-	150	μΑ
		VDD = 10V, VIN = VDD or GND	1, 2	-55°C, +25°C	-	10	μА
				+125°C	-	300	μА
		VDD = 15V, VIN = VDD or GND	1, 2	-55°C, +25°C	-	10	μΑ
				+125°C	-	600	μΑ
Output Voltage	VOL	VDD = 5V, No Load	1, 2	+25°C, +125°C, -55°C	-	50	mV
Output Voltage	VOL	VDD = 10V, No Load	1, 2	+25°C, +125°C, -55°C	-	50	mV
Output Voltage	VOH	VDD = 5V, No Load	1, 2	+25°C, +125°C, -55°C	4.95	-	V
Output Voltage	VOH	VDD = 10V, No Load	1, 2	+25°C, +125°C, -55°C	9.95	-	V
Output Current (Sink)	IOL5	VDD = 5V, VOUT = 0.4V	1, 2	+125°C	0.36	-	mA
				-55°C	0.64	-	mA
Output Current (Sink)	IOL10	VDD = 10V, VOUT = 0.5V	1, 2	+125°C	0.9	-	mA
				-55°C	1.6	-	mA
Output Current (Sink)	IOL15	VDD = 15V, VOUT = 1.5V	1, 2	+125°C	2.4	-	mA
				-55°C	4.2	-	mA
Output Current (Source)	IOH5A	VDD = 5V, VOUT = 4.6V	1, 2	+125°C	-	-0.36	mA
				-55°C	-	-0.64	mA

TABLE 3. ELECTRICAL PERFORMANCE CHARACTERISTICS (Continued)

					LIMITS		
PARAMETER	SYMBOL	CONDITIONS	NOTES	TEMPERATURE	MIN	MAX	UNITS
Output Current (Source)	IOH5B	VDD = 5V, VOUT = 2.5V	1, 2	+125°C	-	-1.15	mA
				-55°C	-	-2.0	mA
Output Current (Source)	IOH10	VDD = 10V, VOUT = 9.5V	1, 2	+125°C	-	-0.9	mA
				-55°C	-	-1.6	mA
Output Current (Source)	IOH15	VDD =15V, VOUT = 13.5V	1, 2	+125°C	-	-2.4	mA
				-55°C	-	-4.2	mA
Input Voltage Low	VIL	VDD = 10V, VOH > 9V, VOL < 1V	1, 2	+25°C, +125°C, -55°C	-	3	٧
Input Voltage High	VIH	VDD = 10V, VOH > 9V, VOL < 1V	1, 2	+25°C, +125°C, -55°C	7	-	V
Propagation Delay	TPHL	VDD = 10V	1, 2, 3	+25°C	-	200	ns
Clock to Q	TPLH	VDD = 15V	1, 2, 3	+25°C	-	140	ns
Propagation Delay	TPLH	VDD = 10V	1, 2, 3	+25°C	-	180	ns
CD40194B Reset to Q	TPHL	VDD = 15V	1, 2, 3	+25°C	-	130	ns
Propagation Delay	TPZH	VDD = 10V	1, 2, 3, 4	+25°C	-	70	ns
CD40104BMS 3-State	TPZL TPLZ	VDD = 15V	1, 2, 3, 4	+25°C	-	50	ns
Propagation Delay	TPHZ	VDD = 10V	1, 2, 4	+25°C	-	50	ns
CD40104BMS 3-State		VDD = 15V	1, 2, 4	+25°C	-	40	ns
Transition Time	TTHL	VDD = 10V	1, 2, 3	+25°C	-	100	ns
	TTLH	VDD = 15V	1, 2, 3	+25°C	-	80	ns
Minimum Data Setup	TS	VDD = 5V	1, 2, 3	+25°C	-	100	ns
Time, D0, D3, SRIN, SLIN to Clock		VDD = 10V	1, 2, 3	+25°C	-	70	ns
		VDD = 15V	1, 2, 3	+25°C	-	50	ns
Minimum Data Hold Time	TH	VDD = 5V	1, 2, 3	+25°C	-	0	ns
D0, D3, SRIN, SLIN to Clock		VDD = 10V	1, 2, 3	+25°C	-	0	ns
		VDD = 15V	1, 2, 3	+25°C	-	0	ns
Minimum Clock Pulse	TW	VDD = 5V	1, 2, 3	+25°C	-	180	ns
Width		VDD = 10V	1, 2, 3	+25°C	-	80	ns
		VDD = 15V	1, 2, 3	+25°C	-	50	ns
Maximum Clock Rise and	TRCL	VDD = 5V	1, 2, 3, 5	+25°C	3	-	μs
Fall Time	TFCL	VDD = 10V	1, 2, 3, 5	+25°C	6	-	μs
		VDD = 15V	1, 2, 3, 5	+25°C	8	-	μs
Minimum Data Setup	TS	VDD = 5V	1, 2, 3	+25°C	-	400	ns
Time Select 1, Select 0 to		VDD = 10V	1, 2, 3	+25°C	-	220	ns
Clock		VDD = 15V	1, 2, 3	+25°C	-	130	ns
Minimum Data Hold Time	TH	VDD = 5V	1, 2, 3	+25°C	-	0	ns
Select 1, Select 0 to Clock		VDD = 10V	1, 2, 3	+25°C	-	0	ns
		VDD = 15V	1, 2, 3	+25°C	-	0	ns

TABLE 3. ELECTRICAL PERFORMANCE CHARACTERISTICS (Continued)

					LIMITS				
PARAMETER	SYMBOL	CONDITIONS	NOTES	TEMPERATURE	MIN	MAX	UNITS		
Minimum Reset Pulse	TW	VDD = 5V	1, 2, 3	+25°C	-	300	ns		
Width CD40194BMS				VDD = 10V	1, 2, 3	+25°C	-	200	ns
		VDD = 15V	1, 2, 3	+25°C	-	140	ns		
Input Capacitance	CIN	Any Input	1, 2	+25°C	-	7.5	pF		

NOTES:

- 1. All voltages referenced to device GND.
- 2. The parameters listed on Table 3 are controlled via design or process and are not directly tested. These parameters are characterized on initial design release and upon design changes which would affect these characteristics.
- 3. CL = 50pF, RL = 200K, Input TR, TF < 20ns.
- 4. CL = 50pF, RL = 1K, Input TR, TF < 20ns.
- 5. If more than one unit is cascaded, TRCL should be made less than or equal to the sumof the transition time and the fixed propagation delay of the output of the driving stage for the estimated capacitive load.

TABLE 4. POST IRRADIATION ELECTRICAL PERFORMANCE CHARACTERISTICS

					LIMITS		
PARAMETER	SYMBOL	CONDITIONS	NOTES	TEMPERATURE	MIN MAX		UNITS
Supply Current	IDD	VDD = 20V, VIN = VDD or GND	1, 4	+25°C	-	25	μΑ
N Threshold Voltage	VNTH	VDD = 10V, ISS = -10μA	1, 4	+25°C	-2.8	-0.2	V
N Threshold Voltage Delta	ΔVTN	VDD = 10V, ISS = -10μA	1, 4	+25°C	-	±1	V
P Threshold Voltage	VTP	VSS = 0V, IDD = 10μA	1, 4	+25°C	0.2	2.8	V
P Threshold Voltage Delta	ΔVΤΡ	VSS = 0V, IDD = 10μA	1, 4	+25°C	-	±1	V
Functional	F	VDD = 18V, VIN = VDD or GND	1	+25°C	VOH >		V
		VDD = 3V, VIN = VDD or GND			VDD/2	VDD/2	
Propagation Delay Time	TPHL TPLH	VDD = 5V	1, 2, 3, 4	+25°C	-	1.35 x +25°C Limit	ns

NOTES: 1. All voltages referenced to device GND.

3. See Table 2 for +25°C limit.

2. CL = 50pF, RL = 200K, Input TR, TF < 20ns.

4. Read and Record

TABLE 5. BURN-IN AND LIFE TEST DELTA PARAMETERS +25°C

PARAMETER	SYMBOL	DELTA LIMIT
Supply Current - MSI-2	IDD	± 1.0μA
Output Current (Sink)	IOL5	± 20% x Pre-Test Reading
Output Current (Source)	IOH5A	± 20% x Pre-Test Reading

TABLE 6. APPLICABLE SUBGROUPS

CONFORMANCE GROUP		MIL-STD-883 METHOD	GROUP A SUBGROUPS	READ AND RECORD
Initial Test (F	Pre Burn-In)	100% 5004	1, 7, 9	IDD, IOL5, IOH5A
Interim Test	1 (Post Burn-In)	100% 5004	1, 7, 9	IDD, IOL5, IOH5A
Interim Test	2 (Post Burn-In)	100% 5004	1, 7, 9	IDD, IOL5, IOH5A
PDA (Note	A (Note 1) 100% 5004 1, 7, 9, Deltas		1, 7, 9, Deltas	
Interim Test	3 (Post Burn-In)	100% 5004	1, 7, 9	IDD, IOL5, IOH5A
PDA (Not	e 1)	100% 5004	1, 7, 9, Deltas	
Final Test		100% 5004	2, 3, 8A, 8B, 10, 11	
Group A		Sample 5005	1, 2, 3, 7, 8A, 8B, 9, 10, 11	
Group B Subgroup B-5		Sample 5005	1, 2, 3, 7, 8A, 8B, 9, 10, 11, Deltas	Subgroups 1, 2, 3, 9, 10, 11
Subgroup B-6		Sample 5005	1, 7, 9	
Group D		Sample 5005	1, 2, 3, 8A, 8B, 9	Subgroups 1, 2 3

NOTE: 1.5% Parameteric, 3% Functional; Cumulative for Static 1 and 2.

TABLE 7. TOTAL DOSE IRRADIATION

	MIL-STD-883	TEST PRE-IRRAD POST-IRRAD		READ AND	O RECORD
CONFORMANCE GROUPS	METHOD			PRE-IRRAD	POST-IRRAD
Group E Subgroup 2	5005	1, 7, 9	Table 4	1, 9	Table 4

TABLE 8. BURN-IN AND IRRADIATION TEST CONNECTIONS

					OSCIL	LATOR				
FUNCTION	OPEN	GROUND	VDD	9V \pm -0.5V	50kHz	25kHz				
CD40104BMS, 0	CD40104BMS, CD40194BMS									
Static Burn-In 1 Note 1	12-15	1-11	16							
Static Burn-In 2 Note 1	12-15	8	1-7, 9-11, 16							
Dynamic Burn- In Note 1	-	7, 8, 10	1, 3-6, 9, 16	12-15	11	2				
Irradiation Note 2	12-15	8	1-7, 9-11, 16							

NOTES:

- 1. Each pin except VDD and GND will have a series resistor of 10K \pm 5%, VDD = 18V \pm 0.5V
- 2. Each pin except VDD and GND will have a series resistor of 47K \pm 5%; Group E, Subgroup 2, sample size is 4 dice/wafer, 0 failures, VDD = $10V \pm 0.5V$

All Intersil semiconductor products are manufactured, assembled and tested under ISO9000 quality systems certification.

Intersil products are sold by description only. Intersil Corporation reserves the right to make changes in circuit design and/or specifications at any time without notice. Accordingly, the reader is cautioned to verify that data sheets are current before placing orders. Information furnished by Intersil is believed to be accurate and reliable. However, no responsibility is assumed by Intersil or its subsidiaries for its use; nor for any infringements of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Intersil or its subsidiaries.

For information regarding Intersil Corporation and its products, see web site http://www.intersil.com

Typical Performance Characteristics

FIGURE 3. TYPICAL N-CHANNEL OUTPUT LOW (SINK)
CURRENT CHARACTERISTICS

FIGURE 4. MINIMUM N-CHANNEL OUTPUT LOW (SINK)
CURRENT CHARACTERISTICS

FIGURE 5. TYPICAL P-CHANNEL OUTPUT HIGH (SOURCE)
CURRENT CHARACTERISTICS

FIGURE 6. MINIMUM P-CHANNEL OUTPUT HIGH (SOURCE)
CURRENT CHARACTERISTICS

FIGURE 7. TYPICAL PROPAGATION DELAY TIME AS A FUNC-TION OF LOAD CAPACITANCE, (CLOCK TO Q)

FIGURE 8. TYPICAL TRANSITION TIME AS A FUNCTION OF LOAD CAPACITANCE

Typical Performance Characteristics (Continued)

FIGURE 9. TYPICAL POWER DISSIPATION AS A FUNCTION OF FREQUENCY

Chip Dimensions and Pad Layouts

Dimensions in parenthesis are in millimeters and are derived from the basic inch dimensions as indicated. Grid graduations are in mils (10^{-3} inch) .

METALLIZATION: Thickness: 11kÅ – 14kÅ, AL.

PASSIVATION: 10.4kÅ - 15.6kÅ, Silane

BOND PADS: 0.004 inches X 0.004 inches MIN **DIE THICKNESS:** 0.0198 inches - 0.0218 inches

This datasheet has been downloaded from:

www. Data sheet Catalog.com

Datasheets for electronic components.