THLR 2013-2014 TD 5 – page 1/2

TD₅ Stabilité des langages rationnels

Version du 16 septembre 2013

Exercice 1 – Négation d'expression rationnelle

Posons $\Sigma = \{a, b\}$. Soit L le langage dénoté par l'expression rationnelle $a^*(ba^*ba^*ba^*)^*$. Notre but est de construire une expression rationnelle dénotant le langage complémentaire $\overline{L} = \Sigma^* \setminus L$.

- 1. *L* est-il forcément rationnel? Justifiez votre réponse.
- 2. Proposez un automate fini déterministe A_L reconnaissant L.
- 3. Donnez A_L , l'automate complémentaire de A_L .
- 4. Appliquez l'algorithme de Brzozowski et McCluskey présenté en cours pour construire l'expression rationnelle correspondant à l'automate A_L .
- 5. Le complémentaire construit est-il toujours valide si $\Sigma = \{a, b, c\}$? Dans la négative, que faut-il changer à notre procédure de complémentation d'expression rationnelle pour qu'il le soit?

Exercice 2 – Relations entre langages rationnels

- 1. Soit deux langages rationnels L_1 et L_2 tels que $L_2 \subset L_1$. Le langage $L_1 \setminus L_2$ est-il rationnel?
- 2. Soient deux langages L_1 et L_2 tels que $L_2 \subset L_1$. Si l'on sait que L_2 est rationnel, peut-on dire que L_1 l'est aussi? Justifiez votre réponse.

Exercice 3 – Intersection de langages rationnels

On considère les deux automates suivants :

L'objectif est de montrer que ces deux automates sont équivalents en calculant $\overline{L(A_1)} \cap L(A_2)$ et $L(A_1) \cap$ $\overline{L}(A_2)$.

- 1. Que doivent valoir $\overline{L(A_1)} \cap L(A_2)$ et $L(A_1) \cap \overline{L(A_2)}$ si les automates sont équivalents?
- 2. Calculez $\overline{A_1}$ et $\overline{A_2}$. Vous émonderez ces automates.
- 3. Pour deux automates non-déterministes $A = (\Sigma, Q, Q_0, F, \delta)$ et $A' = (\Sigma, Q', Q'_0, F', \delta')$, le produit synchronisé $A \otimes A'$ est l'automate $(\Sigma, Q^{\otimes}, Q_0^{\otimes}, F^{\otimes}, \delta_0^{\otimes})$ défini par :
 - $O^{\otimes} = O \times O'$
 - $Q_0^{\otimes} = Q_0 \times Q_0',$ $F^{\otimes} = F \times F',$

 - $--\delta^{\otimes} = \{((s,s'),l,(d,d')) \in Q^{\otimes} \times \Sigma \times Q^{\otimes} \mid (s,l,d) \in \delta \text{ et } (s',l,d') \in \delta'\}.$

THLR 2013–2014 TD 5 – page 2/2

Avec cette définition il est facile de voir que les mots reconnus par $A \otimes A'$ sont des mots à la fois de A et de A'. En fait on a $L(A \otimes A') = L(A) \otimes L(A')$.

Utilisez cette définition pour calculer les automates $A_1 \otimes \overline{A_2}$ et $A_2 \otimes \overline{A_1}$.

- 4. Qu'en conclure sur l'équivalence de A_1 et A_2 ?
- 5. Utilisez l'algorithme de minimisation présenté en cours pour réduire l'automate A_2 . Vous indiquerez la partition des états de l'automate à chaque itération de l'algorithme.

Exercice 4 – Un langage difficile à définir

1. Posons $\Sigma = \{a, b\}$. Soit L un langage rationnel sur Σ . En utilisant des notations ensemblistes (sur les langages) ou des expressions rationnelles, comment définiriez-vous le langage L' rassemblant tous les mots qui possèdent **exactement un** facteur dans le langage L?

Par exemple si $L = \{ab, ba\}$, alors $aabb \in L'$, $bbbba \in L'$, mais $aabbba \notin L'$.

(Indice: essayez la différence ensembliste.)

2. Ce langage est-il rationnel?