

### Institiúid Teicneolaíochta, Trá Lí INSTITUTE OF TECHNOLOGY - TRALEE

#### SUMMER EXAMINATION, 2011 AY 2010/2011

# COMPUTER ARCHITECTURE CRN: 43828

Internal Examiner: Ms. M. O'Sullivan External Examiner: Dr. B. Feeney

**Duration of Exam: 2 HOURS** 

**Instructions to Candidates:** Answer ANY THREE questions.

Question One (33 Marks)

(i) Convert the hexadecimal number 3B to its binary **and** decimal equivalent.

(8 Marks)

(ii) Show the logic symbol **and** the truth table for:

(8 Marks)

(i) NAND gate (2 input)

(ii) XOR gate

(iii) Complete the truth table for the expression below:

(9 Marks)

$$Z = A.\overline{C} + \overline{B+D}$$

(iv) Draw the circuit for the expression below:

(8 Marks)

$$Z = (A \oplus B) + \overline{BCD}$$

Question Two (33 Marks)

(i) Write an expression for the circuit given below:



Figure 1 (10 Marks)

(ii) Simplify the following expression:

$$Z = A(A.1 + AD + \overline{A}CD) + B(0 + \overline{B}CD + \overline{D})$$
(11 Marks)

(iii) Write an expression for Z below. Simplify the expression if possible and draw the circuit.

(12 Marks)

| A | В | C | Z |
|---|---|---|---|
| 0 | 0 | 0 | 1 |
| 0 | 0 | 1 | 1 |
| 0 | 1 | 0 | 0 |
| 0 | 1 | 1 | 0 |
| 1 | 0 | 0 | 1 |
| 1 | 0 | 1 | 0 |
| 1 | 1 | 0 | 1 |
| 1 | 1 | 1 | 1 |

Question Three (33 Marks)

(i) Show the truth table for the Full-Adder. Hence or otherwise, write the equation for the Full-Adder and show the logic circuits required to implement it.

(12 *Marks*)

(ii) Using the adder(s) shown in figure 2, or otherwise, design a circuit to add two eight bit numbers  $A_7$ ..... $A_0$  and  $B_7$ ..... $B_0$ .



Figure 2

(10 Marks)

(iii) Write a short note on Random Access Memory (RAM), discussing Static-RAM and Dynamic-RAM and highlighting the differences between them. How does ROM differ from RAM?

(11 *Marks*)

Question Four (33 Marks)

(i) If a CPU clock operates at 2.5 GHz, what is the cycle length expressed in nano seconds.

(12 *Marks*)

(ii) Draw a block diagram of a generic CPU, and write a short paragraph describing the function of each component.

(11 marks)

(iii) Write a note on Cache Memory.

(10 *Marks*)

## Rules of Boolean Algebra

| 1  | A + O = A                  |
|----|----------------------------|
|    | A + 1 = 1                  |
|    | A . O = O                  |
|    | A . 1 = A                  |
|    | A + A = A                  |
|    | A + A = A                  |
| 6  | A + A = 1                  |
| 7  | A . A = A                  |
| 8  | $A \cdot \overline{A} = O$ |
| 9  |                            |
| 10 | A + AB = A                 |
| 11 | —<br>A + AB = A + B        |
| 12 | (A + B)(A + C) = A + BC    |

## Laws of Boolean Algebra

| Commutative  | A + B = B + A<br>AB = BA                   |
|--------------|--------------------------------------------|
| Associative  | A + (B + C) = (A + B) + C<br>A(BC) = (AB)C |
| Distributive | A(B + C) = AB + AC                         |