Thursday Reading Assessment: Unit 0 part II, Electric Fields

Prof. Jordan C. Hanson

January 31, 2022

1 Memory Bank

• $\vec{E} = kQ/r^2\hat{r}$... Coulomb field of a charge Q.

2 Electric Fields

1. Consider Fig. 1 below. A ring of charge with radius R is situated in the xy-plane. The charge is positive, and it is distributed evenly across the ring. We write $\Delta q = \lambda R \Delta \theta$, to mean that there is λ Coulombs per unit length. If $\Delta \theta$ were to extend to 2π (all the way around the circle), then the total charge is $Q = \lambda(2\pi R)$. (a) By symmetry, where should the electric field be zero? (b) Where would the electric field be infinite?

Figure 1: A ring of charge situated in the xy-plane.

- 2. Consider again Fig. 1. As $z \to \infty$, what happens to the field?
 - A: The field-strength increases.
 - B: The field-strength remains constant.
 - C: The field-strength decreases.
 - D: The field-strength is exactly zero.
- 3. Suppose the actual function for the E-field $\vec{E}(z)$ is

$$\vec{E}(z) = \frac{1}{4\pi\epsilon_0} \frac{qz}{(z^2 + R^2)^{3/2}} \hat{z} \tag{1}$$

To see what happens when z is much larger than R, try setting R = 0. What is the result in Eq. 1 if R = 0?

4. Do you recognize the expression? What does the ring resemble if $R \approx 0$?