Centre of Development of Advanced Computing

PG-DIPLOMA (2024)

INTERNET OF THINGS

SUBMITTED TO

MR. SHUBHAM SHRIVASTAV

SUBMITTED BY

AYUSH PATWA (240340126003)

PRASAD KADAM (240340126006)

KAUSHAL KUMAR MAURYA (240340126007)

PRAFULKUMAR BHOI (240340126010)

INTRODUCTION TO SMART CONTAINERIZED **TEMPERATURE AND HUMIDITY MONITORING SYSTEM**

Enhanced monitoring system for maintaining optimal conditions in shipping containers with real-time alerts

▲ SMART MONITORING SYSTEM OVERVIEW

AGENDA

Explore the Comprehensive Aspects of Smart Containerized Temperature and Humidity Monitoring System

Project Overview Technology Stack 3 **System Architecture Key Features AWS Integration Data Management** 6

▲ TECHNOLOGY OVERVIEW

TECHNOLOGY STACK

Key Technologies for Monitoring System Efficiency

Raspberry Pi

Acts as the data transmission gateway for seamless connectivity.

DHT Sensor

Facilitates real-time temperature and humidity data acquisition.

Python Flask

Enables efficient backend processing for application logic.

MySQL

Stores local data, ensuring immediate and historical access.

Web Interface

Developed with HTML, CSS, and JavaScript for user interaction.

AWS Integration

Utilizes AWS SES for alerts and S3 for data backups.

▲ SYSTEM ARCHITECTURE OVERVIEW

SYSTEM ARCHITECTURE

Key Components of Smart Containerized Temperature and Humidity Monitoring System

Sensor Data Acquisition

Utilizes DHT sensor to capture real-time temperature and humidity data within shipping containers for monitoring environmental conditions.

Data Transmission

Raspberry Pi acts as the gateway to transmit collected sensor data efficiently to the central server for processing and storage.

Backend Processing

Python Flask framework processes the incoming sensor data, ensuring efficient data handling and analysis for further actions.

Data Storage

Data is stored securely in a MySQL database, enabling both immediate access and historical retrieval for comprehensive monitoring and analysis.

Web Interface

HTML, CSS, and JavaScript technologies are integrated to develop a user-friendly web interface for interactive data visualization and control.

Alerts and Backups

AWS SES sends alerts for temperature or humidity threshold breaches, while AWS S3 ensures hourly data backups for redundancy and remote access.

▲ SMART MONITORING ESSENTIALS

KEY FEATURES

Essential Features for Smart Containerized Monitoring System

▲ ENHANCED MONITORING CAPABILITIES

AWS INTEGRATION

Enhancing Smart Containerized Monitoring System with AWS Services

AWS SES Email Alerts

Sends immediate email notifications when temperature or humidity levels surpass pre-defined thresholds, ensuring timely response to critical environmental changes.

AWS S3 Data Backups

Performs hourly backups of collected data, guaranteeing data redundancy and facilitating remote access for historical analysis and system integrity.

PythonAnywhere Web Hosting

Facilitates global access to real-time and historical data through a userfriendly web interface, ensuring seamless monitoring and data retrieval from diverse locations.

Enhanced Functionality Integration

Combining AWS SES email alerts, S3 data backups, and PythonAnywhere web hosting optimizes system performance, scalability, and reliability for comprehensive monitoring solutions.

▲ DATA STORAGE OVERVIEW

DATA MANAGEMENT

Data storage in MySQL database with AWS S3 backups for enhanced security and availability. Real-time and historical data access via web interface.

Component	Description
Data Storage	MySQL database for immediate and historical access
Backups	Hourly backups to AWS S3 for data security and availability
Data Access	Real-time and historical data viewing through web interface

▲ TECHNOLOGY TRENDS ANALYSIS

INDUSTRY TRENDS

Exploring the Intersection of IoT and AI in Corporate Tech Priorities

45%

The IoT market is expected to grow at a Compound Annual Growth Rate of 45% until 2030, reflecting sustained industry interest and investment.

Description of a primary heading

Top-Three Prio

IoT remains a key focus for businesses, ranking within the top three corporate technology priorities due to its transformative potential.

Description of a primary heading

Enhanced Mon

The integration of AI with IoT is on the rise, offering advanced capabilities for monitoring systems, leading to more efficient operations and decision-making.

Description of a primary heading

Real-time Data

The smart monitoring system ensures instant data collection, enabling proactive responses to environmental changes.

Description of a primary heading

AWS Integratio

Utilizing AWS services
like SES for alerts and
S3 for data backups
enhances the system's
capabilities, ensuring
data security and timely
notifications.

Description of a primary heading

Best Quote Words

33

IN THE WORLD OF LOGISTICS, PRECISION IS NOT JUST AN OPTION; IT'S A NECESSITY.

Author Name

Antoine-Henri Jomini

BENEFITS FOR LOGISTICS

Enhancing Logistics Operations with Advanced Monitoring Systems

IMPLEMENTATION CHALLENGES

Key challenges in implementing the Smart Containerized Temperature and Humidity Monitoring System

Q&A

Engage now to unlock insights and optimize your environment with our Smart Containerized Monitoring System!