Home Work (5)

Task 12: (Measurement of the three-qubit state)

A three-qubit system is in the state

$$|\psi\rangle = \left(\frac{\sqrt{2}+i}{\sqrt{20}}|000\rangle + \frac{1}{\sqrt{2}}|001\rangle + \frac{1}{\sqrt{10}}|011\rangle + \frac{i}{2}|111\rangle\right)$$

- a) Is this state normalized ?? What is the probability that the system is found in the state $|000\rangle$ if all 3 qubits are measured ?
- b) What is the probability that a measurement on the first qubit only gives 0? What is the postmeasurement state of the system in this case?

Task 13: (Projectors of $\mathbf{v} \cdot \mathbf{\sigma}$)

- a) Show that the operator $\mathbf{v} \cdot \boldsymbol{\sigma} = v_x \sigma_x + v_y \sigma_y + v_z \sigma_z$ has eigenvalues ± 1 and that the projectors upon the corresponding eigenspaces are given by $P_{\pm} = (I \pm \mathbf{v} \cdot \boldsymbol{\sigma})/2$.
- b) Apply the projector P_{\pm} to calculate the probability that, for a measurement of the operator $\mathbf{v} \cdot \boldsymbol{\sigma}$, one obtains the result ± 1 , if the state prior to the measurement was $|0\rangle$. What is the state of the qubit just after the measurement if the outcome +1 was obtained?

Task 14: (Construct a POVM)

A given source produces a system either in one of two nonorhtogonal states, either $|\psi\rangle$ or $|\phi\rangle$ with scalar product $|\langle\psi|\phi\rangle| = \cos\theta$. — Construct a POVM that help distinguish these states.

Task 15: (Operator product)

Suppose \hat{A} and \hat{B} are commuting Hermitian operators. Prove that $\exp(\hat{A}) \exp(\hat{B}) = \exp(\hat{A}\hat{B})$. Hint: Use the simultaneous diagonalization theorem.