Übertragungsgleichung:

$$u(t) = K_p \cdot e(t) \tag{1}$$

Hierbei sind:

Übersicht über Regelungstypen

- e(t): Regelabweichung des Systems (Differenz von Sollwert und Istwert der zu regelnden Größe, bei und die Temperatur)
- u(t): Stellgröße, die an die Regelstrecke weitergegeben wird, um der Regelabweichung entgegenzuwirken
- K_p: Regler-Parameter, mit dem der Abweichung entgegengewirkt wird

- Regelung ist relativ schnell
- Stellgröße kann schnell hohe Werte annehmen und damit an Begrenzungen des Systems stoßen
- Sollwert nur durch P-Regelung nicht erreichbar, entweder Näherung von unten oder ungedämpfte Schwingung um die Stellgröße
- ⇒ P-Regler alleine werden nur selten in der Praxis verwendet

Übersicht über Regelungstypen

Übertragungsgleichung:

$$u(t) = K_t \cdot \int_0^t e(\tau) dx \tag{2}$$

Hierbei sind:

- e(t), u(t) wie oben
- K_t: Regler-Parameter, mit dem der Abweichung entgegengewirkt wird

- Regelung ist relativ schnell
- Stellgröße kann schnell hohe Werte annehmen und damit an Begrenzungen des Systems stoßen
- Sollwert nur durch P-Regelung nicht erreichbar, entweder Näherung von unten oder ungedämpfte Schwingung um die Stellgröße

- Metallblock wurde mittels Peltierelement erwärmt
- Widerstand des Blocks wurde gemessen und in Temeratur umgerechnet

Aufgabe war es, mittels Power-Supply den Strom am Peltierelement so zu regeln, dass die Temperatur des Blocks konstant bleibt

Ergebnis der Regelung

"Vorgehensweise" beim Regeln

- falls Temperatur zu niedrig ⇒ mit Strom nachheizen
- falls Temperatur zu hoch \Rightarrow Strom abdrehen (Kühlung ja nicht möglich)
- falls Sollwert bald erreicht wird ⇒ Strom langsam herunterdrehen

Experiment wird nun mit automatisierter P-Regelung bei verschiedenen K_p -Parametern am Computer durchgeführt:

Regelung bei $K_p = 1$

Regelung bei $K_p = 0, 1$

Regelung bei $K_p = 5$

- Bei $K_p = 5$ wird keine konstante Temperatur erreicht, der Istwert osziliert ungedämpft um den Sollwert
- Bei $K_p = 1$ und 0, 1 erreicht das System nicht den Sollwert, der Regler scheint zu schwach zu sein
- Vergleich der Regler bei $K_p = 1$ und 0.1 zeigt, dass die Regelgeschwindigkeit proportional zum Regelfaktor ist

- \bullet Abkühlung des Blockes auf ca. 50 $^{\circ}$ C
- Dann I-Regelung der Temperatur mit $t_i = 100s$

I-Regler

- Gleiche Messung wie eben
- Es wurde allerdings änti-windup-Funktion" verwendet

Zur änti-windup-Funktion"

- Regelgröße berechnet sich bei uns durch R = P + I + D
- falls P+I+D>2 bzw. P+I+D<0, wird P+I+D=2 bzw. =0 gesetzt
- verhindert zu starken Ausschlag des Reglers und damit zu starke Oszilation der Ist-Wert-Kurve

Wähle Maxima der Oszilationen und fitte mit Gerade

 \Rightarrow Man erhält für die erste Messung: $t_0 \approx 10280s$

Und für die zweite: $t_0 \approx 174212s$

Fazit

I-Regelung ist in den meisten Fällen alleine nicht für den praktischen Gebrauch geeignet

• Messung wurde nun mit $K_p = 0.2$ und $t_i = 200s$ durchgeführt

 $|T_{ist} - T_{soll}| \le 0.1K$ wurde ab $t \approx 190s$ erreicht

Da Parameter noch nicht optimal gewählt \Rightarrow Justiere K_p

Hier wird nach ca.82s $|T_{ist} - T_{soll}| \le 0.25K$ erreicht

Justierung des I-Reglers führte auf $t_i = 100s$

Nach ca. 94s wird $|T_{ist} - T_{soll}| \le 0.035K$ erreicht

ullet Messung nun mit D-Regelung bei $t_d=1s$

- D-Anteil proportional zur Steigungsänderung
- D-Regler hat daher auch keinen Bezug zur Sollgröße
- keine wirkliche Regelung, sondern nur Korrektur

D-Regler

Eigenschaften des D-Reglers werden bei Wechsel der Regelung deutlich:

