[13.31] Let V be a vector space and T be a linear transformation on V with distinct eigenvalues $\lambda_1, \ldots, \lambda_m$, where $m \le n$. We furthermore assume

(a) For each λ_j of multiplicity $r_j \ge 2$ (if any), there are r_j independent eigenvectors.

Prove there is a basis for **V** composed of eigenvectors.

Note: I have reworked Beckmann's proof to help my understanding of it. I have filled in some details and changed the way he did a few things.

Solution. Let r_j be the multiplicity of eigenvalue λ_j . Since there are n eigenvalues, we have that $\sum_{j=1}^m r_j = n$.

If m = 1, all the eigenvectors arise from a single eigenvalue and are thus independent by condition (a). From the definition of "basis", those eigenvectors constitute a basis for \mathbf{V} , and we are done. So, we assume m > 1. Without loss of generality, if there is a zero eigenvalue, we label it λ_1 .

Let $\mathscr{B}_j = \left\{ v_{j1}, v_{j2}, \cdots, v_{jr_j} \right\}$ be the set of r_j independent eigenvectors corresponding to λ_j . We wish to prove $\mathscr{B} = \bigcup_{i=1}^m \mathscr{B}_j = \left\{ v_{ji} : i = 1, \cdots, r_j, \ j = 1, \cdots, m \right\}$

comprises a basis for V. Since \mathcal{B} contains n vectors, it suffices to show that these vectors are linearly independent. So, assume

$$\begin{pmatrix} \star \end{pmatrix} \quad \sum_{i=1}^{m} \sum_{i=1}^{r_j} \alpha_{ji} V_{ji} = 0.$$

We will be done if we can show that $\alpha_{ji} = 0 \ \forall j, i$. Set $E_j = \sum_{i=1}^{r_j} \alpha_{ji} v_{ji}$. Since

$$T\mathbf{v}_{ji} = \lambda_j \mathbf{v}_{ji} \quad \forall i$$
, then $T\mathbf{E}_j = \sum_{i=1}^{r_j} \alpha_{ji} T\mathbf{v}_{ji} = \sum_{i=1}^{r_j} \alpha_{ji} \lambda_j \mathbf{v}_{ji} = \lambda_j \sum_{i=1}^{r_j} \alpha_{ji} \mathbf{v}_{ji} = \lambda_j \mathbf{E}_j$. So,

(1)
$$\sum_{j=1}^{m} E_{j} = \sum_{j=1}^{m} \sum_{i=1}^{r_{j}} \alpha_{ji} v_{ji} \stackrel{\text{(*)}}{=} 0$$
, and thus

(2)
$$\sum_{j=1}^{m} \lambda_{j} E_{j} = \sum_{j=1}^{m} T E_{j} = T \left(\sum_{j=1}^{m} E_{j} \right) = 0.$$

Since m > 1, $\lambda_m \neq 0$, and so we can solve (2) for E_m :

(3)
$$E_m = -\sum_{j=1}^{m-1} \frac{\lambda_j}{\lambda_m} E_j$$
. Plugging (3) into (1) yields

(4)
$$\sum_{j=1}^{m-1} \left(1 - \frac{\lambda_j}{\lambda_m} \right) \boldsymbol{E}_j = 0.$$

Set $a_j = 1 - \frac{\lambda_j}{\lambda_m}$ for $1 \le j \le m - 1$. $a_j \ne 0$ since $\lambda_j \ne \lambda_m$ (because we are given that the λ_j 's are distinct). We rewrite (4) as

$$(1')$$
 $\sum_{j=1}^{m-1} a_j E_j = 0$. So

$$(2^{\bullet}) \qquad \sum_{j=1}^{m-1} a_j \lambda_j E_j = \sum_{j=1}^{m-1} a_j T E_j = T \left(\sum_{j=1}^{m-1} a_j E_j \right) = T(0) = 0.$$

If m > 2, we continue this process. Since $\lambda_{m-1} \neq 0$, we can solve (2') for $a_{m-1} E_{m-1}$:

(3°)
$$a_{m-1}E_{m-1} = -\sum_{j=1}^{m-2} \frac{a_j \lambda_j}{\lambda_{m-1}} E_j$$
. Plugging (3') into (1') yields

$$0 = \left(\sum_{j=1}^{m-2} a_j E_j\right) + a_{m-1} E_{m-1} = \sum_{j=1}^{m-2} a_j \left(1 - \frac{\lambda_j}{\lambda_{m-1}}\right) E_j, \text{ or }$$

$$(4') \qquad \sum_{j=1}^{m-2} a_j \left(1 - \frac{\lambda_j}{\lambda_{m-1}} \right) E_j = 0.$$

Set
$$b_j = a_j \left(1 - \frac{\lambda_j}{\lambda_{m-1}} \right) \neq 0$$
 for $1 \leq j \leq m-2$.

 $b_j \neq 0$ (since $a_j \neq 0$ and $\lambda_j \neq \lambda_m$), so we next rewrite (4') as

$$(1")$$
 $\sum_{j=1}^{m-2} b_j E_j = 0$. Thus

$$(2") \qquad \sum_{j=1}^{m-2} b_j \lambda_j E_j = \sum_{j=1}^{m-2} b_j T E_j = T \left(\sum_{j=1}^{m-2} b_j E_j \right) = T(0) = 0.$$

Continuing ...

$$(1^{m-2})$$
 $d_1E_1 + d_2E_2 = \sum_{i=1}^2 d_iE_i = 0$, where $d_1, d_2 \neq 0$.

. . .

$$(1^{m-1})$$
 $e_1 E_1 = 0$, where $e_1 \neq 0$.

Thus $E_1 = 0$.

Plugging $E_1 = 0$ into (1^{m-2}) yields $E_2 = 0$.

Continuing, we get $E_j = 0 \ \forall j$.

From Condition (a), $\alpha_{ji} = 0 \ \forall j, i$, which is what we are trying to prove.