

FIG. 1A

GTGTCTGGGC GGAGCAAAAT ATGTTCCAAT TGTGTTTCT TTTGATAAGAT TCTTTCAACA 60
GACAGTCTT TCTTAGGCATC TTCAATTTC TTTATTTGT TGACTTGCAT ATTTTCATT
ACAGGGCTGCA ATGGTGACAC TTCCATGGTG ACGGTGGTGA AGGG 120
164

FIG. 1B

TGAAAGATG TATGTCCAG CTCTCATATT TGGACAGCTC CTAACTCTA GTAACTATGA 60
TGATGATGAA AAGAAAGTGA CAGGGTGTG AAATGGCTAT GGAGCCAAAT TGTGTAACAT 120
ATTCAGTACC AAATTACTG TGGAAACAGC CAGTAGAGAA TACAAGAAAA TGTTCAAAACA 180
GACATGGATG GATAATATGG GAAGAGCTGG TGA 213

FIG. 1C

GCCCCATTGGT CAGTTTGGTA CCAGGGCTACA TGGTGGCAAG GATTCTGCTA GTCCACCGATA 60
CATCTTTACA ATGCTCAGCT CTTTGGCTCG ATTGTTATT CCACCAAAAG ATGATCACAC 120
GTTGAAGTTT TTATATGATG ACAACCAGCG TGTGTGAGCCT GAATGGTACA TTCCCTATTAT 180
T 181

FIG. 1D

TGAATGGTAC ATTCCATTAA TTCCCATGGT GCTGATAAAT GGTGCTGAAG GAATCGGTAC 60
TGGGTGGTCC TGCAGAAATCC CCAACTTGA TGTGCGTGAA ATTGTAATAACATCAGGCG 120
TTTGATGGAT GGAGAAGAAC CTTGCCAAT GCTTCCAAGT TACAAGAACT TCAAGGGTAC 180
TATGAGAA CTGGCTCCAA ATCAATATGT GATTAGGGT GAAG 224

FIG. 1E

TGCGTGAAT TGTAAATAAC ATCAGGGCGTT TGATGGATGG AGAAGAACCT TTGCCAATGC 60
TTCCAAGTTA CAAGAACTTC AAGGGTACTA TTGAAGAACT GGCTCCAAT CAATATGTGA 120
TTAGTGGTGA AGTAGCTATT CTTAATTCTA CAACCATTGA AATCTCAGAG CTTCCCGTCA 180
GAACATGGAC CCAGACATAC AAAGAACAAAG TTCTAGAACC CATGTTGAAT GGCACCGAGA 240
AGACACCTCC TCTCATACA GACTATAGGG AATACCATAAC AGATAACCACT GTGAAATTG 300
TTGTGAAGAT GACTGAAGAA AAACCTGGCA 329

FIG. 1F

CACTCTTTC AGTTTCCTT TCGTTGTCAC TCTCTCATT TTCTTCTTCA TCTGGAACCT 60
TTTGCTGGC TTCTTCAG GCCTTCACAG GATCCGAATC ATATCCCCTC TGAATCAGAA 120
CTTAAATTAA TTCTTTCTTA GGCTTATT CAATGATTAT TTTGCCATCT ATTTCTCTA 180
AGATAAAGCG AGCC 194

FIG. 1G

TCTGCCTCTG CTTTCATTTC TATGGTTATT CGTGGAAATGA CTCCTTGACC ACGCGGAGAA 60
GGCAAAACTT CAGCCATTTC TGTTTTTC CCCTTGGCCT TCCCCCTTT CCCAGGAAGT 120
CCGACTTGTGTT CATCTTGTGTT TTCCCTTGGCT TCAACAGCCT CCAATTCTTC AATAAATGTA 180
GCCAAGTCTT CTTTCCACAA ATCTGTA 206

FIG. 1H

GACACGACAC TTTTCTGTGG TTTCAGTTCT TTGTTACTAA GTTTTGGGA AGTTTTGGTC 60
TTAGGTGGAC TAGCATCTGA TGGGACAAA TCTTCATCAT CAGTTTTTC ATCAAAATCT 120
GAGAAATCTT CATCTGAATC CAAATCCATT GTGAATTTG TTTTTGTTGC TGCTCTCCGT 180
GGCTCTGTTC CTCG 194

FIG. II

CTGAAACCAC AGAAAAGTGT CGTGTAGAC CTTGAAGCTG ATGATGTTAA GGGCAGTGTAA 60
CCACTGTCTT CAAGCCCTCC TGCTACACAT TTCCAGATG AAACTGAAAT TACAAACCCA 120
GTTCCCTAAA AGAATGTGAC AGTGAAGAAG ACAGCAGCAA AAAGTCAGTC TTCCACCTCC 180
ACTACCGGTG CCAAAAAAAG GGCTGCCCA AAAGGAACTA AAAGGGATCC AGCTTTGAAT 240
TC

FIG. 1J

AATTCAAAGC TGGATCCCTT TTAGTTCCTT TTGGGGCAGC CCTTTTTTG GCACCGGTAG 60
TGGAGGTGGA AGACTGACTT TTTGCTGCTG TCTTCTTCAC TGTCACTTC TTTTTAGGAA 120
CTGGGTTTGT AATTCAGTT TCATCTGGAA AATGTGTAGC AGGAGGGCTT GAAGACAGTG 180
GTACACTGCC CTTAACATCA TCAGCTTCAA GGTCTGACAC 220

FIG. 2A

RANDOM FRAGMENTATION

Figure 2B

FIG. 3A

FIG. 3B

FIG. 4

**Mixture of Eco and Amphi
packaging cells**

SCANNED, # 20

Fig 5A

infection

control

VP16 selection

Fig. 5B

FIG. 6

Figure 7A

Figure 7B

Fig 8A

A.

FIG. 8B

FIG. 9

CTTGATCCCT TCTGGTTGAT GCCAGGAAGCT CTTCCGTGATC CAGGCATTGAT ATCTTCAATT 60
TCTCTACCAA TTGGCTTTGT TGGTTAACCT CTTCATCCTT GTCATCAAGT TGTTTATACA 120
ATTAGCAAG TTCTCTTCA CACTTCTTC TTTCAGCATC GGTAAAACTA CCAGGCCATTC 180
CGACTGCAGC AGCTGGTTA TCACTGGTA TAGCAATATC TTTATCCGCT GTGAAGGGCTT 240
CCAAATTAGC TTCTCTTTG TCAAACTGCT CATCAATAGG CACTGTCTCC CCGTTACGCC 300
AACGGTTAG CTCGTTTCC AGCCACT 327.

FIG. 10

CCGACCGGG A CGGGGAGAAG GAGCGGGAGC GGGAGCAGGC GAGGAAGGAG CGGGAGGAAGG 60
AGCTGGAGCG CGACGGAGA AGGAACGGGA GCGCGAGCTG GAGCGGCAGC GGGAGGCAGCG 120
GGCGAGGGAG AAGGGAGCTGC TGGCTGCCAA GGCCTTAGAG CCCACCCACCT TCCCTGCCTGT 180
GGCCGAGGCTG CACGGACTCC GAGGTACAG CACGGAGGAG CGGGCCAAAGC CCTCGGGAGCA 240
GCTGACCCCA

FIG. 11

CTCAGAGGTG ATCCCTCTCGG AGTCCGAGCTC AGGAGAAGGA GTCCCCCTCT TTGAGACTTG 60
GATGCAGACC TGCATGTCGG AGGAGGGCAA GATTTGAAC CCTGACCATC CCTGCTTCCG 120
CCCTGACTCC ACCGAAGTCG AGTCCTTGTT GGCCCTGCTC ACAACTCTT CAGAGATGAA 180
GCTAGTACAG ATGAAGTAGC ACGAGGCC 208

FIG. 12A

CGACAAACAT CATCTGGAA GACCCACACG ATGGAGGGTA AACTTCATGA TCCAGAAGGC 60
ATGGGAATTAA TTCCAAGAAT AGTGCAGAT ATTCTTAATT ATATTTACTC CATGGATGAA 120
AATTGGAAT TTCTATATTAA GGTTTCATAT TTGAAATAT ATTGGATAA GATAAGGGAC 180
TTGTTAGATG TTCAAAAGAC TAACCTTTCA GTCCATGAAG ACACAAACCG TGTCCCTAT 240
GTAAAGGGT GCACAGAACG TTTCCGTGT AGTCCAGATG AAGTCATGGA TACCATAGAT 300
GAAGGGAAAT CCAACAGAGA TGTCGGCAGTT ACAAAATGAA ATGAACATAG CTCTAGGAGC 360
CACAGCATTAT TTCTTATTAA TGTAAAACAA GAGAATACAC AAACGGAACA GAAACTCAGT 420
GGAAAGCTTT ATCTGGTGA TTTAGCTGGC AGTGAGAAGG TTAGTAAGAC TGGGGCTGAA 480
GGTGC1GTGC TGGATGAAAGC TAAGAACATC AAGAAAGTCAC TTTCTGCACCT TGGAAATGTC 540
ATTCTGCTT TGGCAGAGGG CAGTACCTTATC GTTCCTTATC GAGATAGTAA AATGACCAGA 600
ATTCTCAAG ATTCAATTAGG TGGCAACTGT AGGACCACTA TTGTCATATG CTGCTCTCCA 660
TCATCAACA ATGAGTCTGA GACAAAGTCA ACACCTCCTCT TTGGTCAAAG GGCCAAAACA 720
ATTAAGAACAA CAGTCTGTGTT CAATGTAGAG TTAACGTGCAG AGCAGTGGAA AAAGAAGTAT 780

FIG. 12B

GAAAAAGAAA AGGAAAAAAA TAAGACTCTA CGGAACACTA TTCAGTGGCT GGAAAACGAG 840
CTAAACCCTT GGCGTAAACGG GGAGGACAGTG CCTATTGATG AGCAGTTGA CAAAGAGAAA 900
GCTAATTGGA AGGCCTTCAC AGCGGATAAA GATACTGCTA TTACCCAGTGA TAAACCAGCT 960
GCTGCAGTCG GAATGGCTGG TAGTTTACCG GATGCTGAAA GAAGAAAGTG TGAAGAAGAA 1020
CTTGCTAAAT TGTATAAACAA GCTTGATGAC AAGGATGAAAG AGATTAACCA ACAAAAGCCAA 1080
TTGGTAGAGA ATTGAAAGAC ACAAAATGCTG GATCAGGAAG AGCTTCTGGC ATCAAACCGA 1140
AGGGATCAAG ATAATATGCA AGCTGAACGT AATCGCCTCC AAGCAGAAA TGATGCTTCT 1200
AAAGAAGAAG TCAAAGAAGT TTTACAGGCC TTAGAGGAAC TGGCTGTTAA TTATGATCAG 1260
AAGTCTCAGG AAGTGAAGA CAAAACAAG GAATATGAAT TGCTTAGTGA TGAATTGAAT 1320
CAAAATCTG CAACTTTCAGC AAGTATTGAT GCTGAGCTTC AGAAAGCTGAA GGAATGACC 1380
AACCCACAGA AGAAACGAGC AGCTGAATG ATGGCATCAT TATTAAGA CCTTGAGAA 1440
ATAGGAATTG CTGTGGGAA TAACGATGTT AAGGAAACCAAG AAGGAACTGG TATGATAGAT 1500
GAAGGAGTTA CTGTGCAAG ACTCTACAT AGCAGAAATGA AATCAGAAGT AAAGACCATG 1560

FIG. 12C

GTGAAACAGCT GCAAACAGCT AGAAAGCACC	1620
CAGACTGAGA GCAACAAAAA AATGGAAGAA	
AATGAGAAAG AGTTAGCAGC ATGCCAGCTT CGGATCTCCC AACATGAAGC CAAATCAAG	1680
TCACTGACTG AGTACCTTCA GAATGTAGAA CAAAGAAGA GGCAGCTGGA GGAATCTGTT	1740
GATTCCCTTG GTGAGGGCT AGTCCAACTC CGAGCACAAAG AGAAAGTCCA TGAATGGAA	1800
AAAGAGCACT TGAACAAAGGT TCAGACTGCA AATGAAGTCA AGCAAGCTGT TGAGCAGCAG	1860
ATCCAGAGTC ACAGAGAAC CCACCAAAA CAAATCAGTA GCTTGGAGAA TGAAAGTTGAG	1920
GCAAAGGAAA AGCTAATCAC TGACCTCCAA GACCAAAACC AGAAAGATGGT GTTGGAGCAG	1980
GAACGGCTAA GGGTGGAGCA TGAGGGCTG AAGGCTACAG ACCAAGAGAA GAGCAGGAG	2040
CTGCATGAGC TCACGGTTAT GCAAGACAGA CGAGAACAAAG CAAGACAAGA CTTGAAGGGT	2100
TTGGAGGAGA CCGTGGCAA AGAACTTCAG ACTTTACACA ACCTGCGTAA GCTCTTTGTT	2160
CAGGACTTGG CTACCCAGGGT GAAAAGAGG CCGAGGGTCAA CTCTGACGAC ACTGGGGCA	2200
GTGCTGCACA GAAGCAGAAA ATCTCCTTC TTGAAACAA CCTTGAACAG CTCACCAAAG	2280
TGCACAAAGCA GTTGGTACGT GATAATGCAG ATCTTCGCTG TGAGCTTCCT AAGTTAGAGA	2340
AACGGCTTAG AGCTACTGCA GAAAGAGTGA AAGCTTGGA GTCAGCCCCG	2389

FIG. 13A

FIG. 13B

FIG. 13C

FIG. 13D

FIG. 14A

FIG. 14B

FIG. 14C

FIG. 14D

FIG. 14E

Adriamycin
[$\mu\text{g/mL}$]

FIG. 14F

Fig 15

no infection

insert-free
vector

anti-khcs GSE

Figure 16

