We Claim

1. A method for the treatment of an HCV infection in a host, comprising administering an effective treatment amount of a 2',3'-dideoxynucleoside of the formula:

or a pharmaceutically acceptable salt thereof, wherein

(i) X is O, S, S=O, SO₂, NR^1 , $N^+R^1R^2$, CH_2 , CHF and CR^3R^4 ;

 R^1 and R^2 are independently hydrogen, C_{1-6} alkyl, C_{2-6} alkenyl, C_{2-6} alkynyl, or C_{3-8} cycloalkyl;

R³ and R⁴ are independently hydrogen, halogen (F, Cl, Br, or I), OH or OR⁵;

R⁵ is hydrogen or a hydroxyl-protecting group, such as alkyl, acyl or silyl;

- (ii) Y is NH₂, NHR⁶, NR⁶R⁷, OH or OR⁸
 each R⁶, R⁷ and R⁸ is independently H, C₁₋₆ alkyl, C₂₋₆ alkenyl, C₂₋₆ alkynyl, C₃₋₈ cycloalkyl, cyclopropyl, or C₂₋₆ acyl;
- (iii) Z is chosen from hydrogen, halogen (F, Cl, Br, or I), C₁₋₆ alkyl, C₂₋₆ alkenyl, C₂₋₆ alkynyl, CN, CF₃, N₃, NO₂, aryl, heteroaryl and COR⁹;
 R⁹ is chosen from H, OH, SH, C₁₋₆ alkyl, C₁₋₆ aminoalkyl, C₁₋₆ alkoxy and C₁₋₆ thioalkyl; and
- (iv) R is hydrogen, phosphate; stabilized phosphate; acyl; -C(O)R¹⁰, alkyl; sulfonate ester; sulfonyl; a lipid; an amino acid; a carbohydrate; a peptide; a cholesterol; or other pharmaceutically acceptable leaving group, which,

5

10

when administered *in vivo*, is capable of providing a compound wherein R is H or phosphate;

 R^{10} is a C_{1-6} alkyl, C_{2-6} alkenyl, C_{2-6} alkynyl, aryl, monophosphate, diphosphate, triphosphate, or $-P(O)(OR^{11})_2$;

each R^{11} is independently hydrogen, C_{1-6} alkyl, C_{2-6} alkenyl, C_{2-6} alkynyl or a hydroxyl-protecting group;

optionally in a pharmaceutically acceptable carrier.

- 2. The method of claim 1, wherein Z is not hydrogen.
- 3. The method of claim 1, wherein Z is a halogen (F, Cl, Br, or I).
- 10 4. The method of claim 3, wherein Z is F.

5

- 5. The method of claim 1, wherein the 2',3'-dideoxynucleoside is in the β -L-configuration.
- 6. The method of claim 5, wherein the β -L-2',3'-dideoxynucleoside is enantiomerically enriched.
- The method of claim 5, wherein the β -L-2',3'-dideoxynucleoside is substantially free of the β -D-2',3'-dideoxynucleoside.
 - 8. The method of claim 5, wherein the β -L-2',3'-dideoxynucleoside is in isolated form.
- 9. A method for the treatment of an HCV infection in a host, comprising administering an effective treatment amount of a compound of the formula:

or a pharmaceutically acceptable salt thereof, wherein

Z' is chosen from halogen (F, Cl, Br, or I), C_{1-6} alkyl, C_{2-6} alkenyl, C_{2-6} alkynyl, CN, CF₃, N₃, NO₂, aryl, heteroaryl and COR⁹; and

 R^9 is chosen from H, OH, SH, C_{1-6} alkyl, C_{1-6} aminoalkyl, C_{1-6} alkoxy and C_{1-6} thioalkyl.

optionally in a pharmaceutically acceptable carrier.

5

10

15

10. A method for the treatment of an HCV infection in a host, comprising administering an effective treatment amount of a compound of the formula:

or a pharmaceutically acceptable salt thereof, wherein

- (i) R^6 is H, C_{1-6} alkyl, C_{2-6} alkenyl, C_{2-6} alkynyl, C_{3-8} cycloalkyl, cyclopropyl, or C_{2-6} acyl; and
- (ii) R is hydrogen, phosphate; stabilized phosphate; acyl; -C(O)R¹⁰, alkyl; sulfonate ester; sulfonyl; a lipid; an amino acid; a carbohydrate; a peptide; a cholesterol; or other pharmaceutically acceptable leaving group, which, when administered *in vivo*, is capable of providing a compound wherein R is H or phosphate;
- Z' is chosen from halogen (F, Cl, Br, or I), C₁₋₆ alkyl, C₂₋₆ alkenyl, C₂₋₆ alkynyl, CN, CF₃, N₃, NO₂, aryl, heteroaryl and COR⁹; and
 R⁹ is chosen from H, OH, SH, C₁₋₆ alkyl, C₁₋₆ aminoalkyl, C₁₋₆ alkoxy and C₁₋₆ thioalkyl;

11. A method for the treatment of an HCV infection in a host, comprising administering an effective treatment amount of a compound of the formula:

or a pharmaceutically acceptable salt thereof, optionally in a pharmaceutically acceptable carrier.

12. A method for the treatment of an HCV infection in a host, comprising administering an effective treatment amount of a compound of the formula:

or a pharmaceutically acceptable salt thereof,

5

10

15

20

- (i) R^6 is H, C_{1-6} alkyl, C_{2-6} alkenyl, C_{2-6} alkynyl, or C_{3-8} cycloalkyl; and
- (ii) R is hydrogen, phosphate; stabilized phosphate; acyl; -C(O)R¹⁰; alkyl; sulfonate ester; sulfonyl; a lipid; an amino acid; a carbohydrate; a peptide; a cholesterol; or other pharmaceutically acceptable leaving group which when administered *in vivo* is capable of providing a compound wherein R is H or phosphate;

- 13. The method of any one of claims 10, wherein the β -L-2',3'-dideoxynucleoside is enantiomerically enriched.
- 14. The method of any one of claims 10, wherein the β -L-2',3'-dideoxynucleoside is substantially free of the β -D-2',3'-dideoxynucleoside.

- 15. The method of any one of claims 10, wherein the β -L-2',3'-dideoxynucleoside is in isolated form.
- 16. A method for reducing the biological activity of a *Flaviviridae* viral infection in a host comprising administering an effective treatment amount of a 2',3'-dideoxynucleoside of the formula:

$$O$$
 X
 Z
 O
 X
 O
 X
 O
 X

or a pharmaceutically acceptable salt thereof, wherein

5

10

15

20

(i) X is O, S, S=O, SO₂, NR¹, N $^{+}$ R¹R², CH₂, CHF or CR³R⁴;

 R^1 and R^2 are independently hydrogen, C_{1-6} alkyl, C_{2-6} alkenyl, C_{2-6} alkynyl, or C_{3-8} cycloalkyl;

R³ and R⁴ are independently hydrogen, halogen (F, Cl, Br, or I), OH or OR⁵;

R⁵ is hydrogen or a hydroxyl protecting group such as alkyl, acyl or silyl;

- (ii) Y is NH₂, NHR⁶, NR⁶R⁷, OH or OR⁸ each R⁶, R⁷ and R⁸ is independently H, C_{1-6} alkyl, C_{2-6} alkenyl, C_{3-8} cycloalkyl, cyclopropyl, or C_{2-6} acyl;
- (iii) Z is chosen from hydrogen, halogen (F, Cl, Br, or I), C₁₋₆ alkyl, C₂₋₆ alkenyl, C₂₋₆ alkynyl, CN, CF₃, N₃, NO₂, aryl, heteroaryl and COR⁹;
 R⁹ is chosen from H, OH, SH, C₁₋₆ alkyl, C₁₋₆ aminoalkyl, C₁₋₆ alkoxy and C₁₋₆ thioalkyl; and
- (iv) R is hydrogen, phosphate; acyl; -C(O)R¹⁰, alkyl; sulfonate ester; sulfonyl; a lipid; an amino acid; a carbohydrate; a peptide; a cholesterol; or other pharmaceutically acceptable leaving group, which, when

administered *in vivo*, is capable of providing a compound wherein R is H or phosphate;

 R^{10} is a C_{1-6} alkyl, C_{2-6} alkenyl, C_{2-6} alkynyl, aryl, monophosphate, diphosphate, triphosphate, or $-P(O)(OR^{11})_2$;

each R^{11} is independently hydrogen, C_{1-6} alkyl, C_{2-6} alkenyl, C_{2-6} alkynyl or a hydroxyl-protecting group;

optionally in a pharmaceutically acceptable carrier.

- 17. The method of claim 16, wherein Z is not hydrogen.
- 18. The method of claim 16, wherein Z is a halogen (F, Cl, Br, or I).
- 10 19. The method of claim 18, wherein Z is F.

5

15

20

- 20. The method of claim 16, wherein the 2',3'-dideoxynucleoside is in the β -L-configuration.
- 21. A method for reducing the biological activity of a *Flaviviridae* viral infection in a host comprising administering an effective treatment amount of a compound of the formula:

or a pharmaceutically acceptable salt thereof, wherein

Z' is chosen from halogen (F, Cl, Br, or I), C_{1-6} alkyl, C_{2-6} alkenyl, C_{2-6} alkynyl, CN, CF₃, N₃, NO₂, aryl, heteroaryl and COR⁹; and

 R^9 is chosen from H, OH, SH, C_{1-6} alkyl, C_{1-6} aminoalkyl, C_{1-6} alkoxy and C_{1-6} thioalkyl.

22. A method for reducing the biological activity of a *Flaviviridae* viral infection in a host comprising administering an effective treatment amount of a compound of the formula:

or a pharmaceutically acceptable salt thereof, wherein

5

10

15

20

- (i) R^6 is H, C_{1-6} alkyl, C_{2-6} alkenyl, C_{2-6} alkynyl, C_{3-8} cycloalkyl, cyclopropyl, or C_{2-6} acyl; and
- (ii) R is hydrogen, phosphate; acyl; -C(O)R¹⁰, alkyl; sulfonate ester; sulfonyl; a lipid; an amino acid; a carbohydrate; a peptide; a cholesterol; or other pharmaceutically acceptable leaving group, which, when administered *in vivo*, is capable of providing a compound wherein R is H or phosphate;
- Z' is chosen from halogen (F, Cl, Br, or I), C₁₋₆ alkyl, C₂₋₆ alkenyl, C₂₋₆ alkynyl, CN, CF₃, N₃, NO₂, aryl, heteroaryl and COR⁹; and
 R⁹ is chosen from H, OH, SH, C₁₋₆ alkyl, C₁₋₆ aminoalkyl, C₁₋₆ alkoxy and C₁₋₆ thioalkyl;

optionally in a pharmaceutically acceptable carrier.

23. A method for reducing the biological activity of a *Flaviviridae* viral infection in a host comprising administering an effective treatment amount of a compound of the formula:

or a pharmaceutically acceptable salt thereof, optionally in a pharmaceutically acceptable carrier.

24. A method for reducing the biological activity of a *Flaviviridae* viral infection in a host comprising administering an effective treatment amount of a compound of the formula:

or a pharmaceutically acceptable salt thereof,

5

10

- (i) R^6 is H, C_{1-6} alkyl, C_{2-6} alkenyl, C_{2-6} alkynyl, or C_{3-8} cycloalkyl; and
- (ii) R is hydrogen, phosphate; acyl; -C(O)R¹⁰, alkyl; sulfonate ester; sulfonyl; a lipid; an amino acid; a carbohydrate; a peptide; a cholesterol; or other pharmaceutically acceptable leaving group, which, when administered *in vivo*, is capable of providing a compound wherein R is H or phosphate;

- 15 25. The method according to claim 16, wherein the *Flaviviridae* viral infection is an HCV infection.
 - 26. The method according to any one of claims 1 or 16, further comprising administering in combination and/or alternation one or more other antiviral agent(s).
- 27. The method according to claim 26, wherein the antiviral agent is selected from the group consisting of ribavirin, interferon, PEGASYS (pegylated interferon alfa-2a), INFERGEN (interferon alfacon-1), OMNIFERON (natural interferon), ALBUFERON, REBIF (interferon beta-1a), Omega Interferon, Oral Interferon Alpha, Interferon gamma-1b, Interleukin-10, IP-501, Merimebodib VX-497, AMANTADINE (Symmetrel), HEPTAZYME, IDN-6556, XTL-002,

HCV/MF59, CIVACIR, LEVOVIRIN, VIRAMIDINE, ZADAXIN (thymosin alfa-1), CEPLENE (histamine dihydrochloride), VX 950 / LY 570310, ISIS 14803, IDN-6556 and JTK 003.

- 28. The method according to any one of claims 1 or 16, wherein the host is a human.
- 5 29. The method according to any one of claims 1 or 16, wherein the host is also infected with HIV and/or HBV.
 - 30. The method according to claim 29, wherein the host is a human.

10

15

20

31. A pharmaceutical composition for the treatment and/or prophylaxis of an HCV infection in a host, comprising an effective treatment amount of a 2',3'-dideoxynucleoside of the formula:

or a pharmaceutically acceptable salt or prodrug thereof, wherein

(i) X is O, S, S=O, SO₂, NR¹, N⁺R¹R², CH₂, CHF or CR³R⁴;

 R^1 and R^2 are independently hydrogen, C_{1-6} alkyl, C_{2-6} alkenyl, C_{2-6} alkynyl, or C_{3-8} cycloalkyl;

R³ and R⁴ are independently hydrogen, halogen (F, Cl, Br, or I), OH or OR⁵;

R⁵ is hydrogen or a hydroxyl protecting group such as alkyl, acyl or silyl;

- (ii) Y is NH₂, NHR⁶, NR⁶R⁷, OH or OR⁸

 each R⁶, R⁷ and R⁷ is independently H, C₁₋₆ alkyl, C₂₋₆ alkenyl, C₂₋₆ alkynyl, C₃₋₈ cycloalkyl, cyclopropyl, or C₂₋₆ acyl;
- (iii) Z is chosen from hydrogen, halogen (F, Cl, Br, or I), C₁₋₆ alkyl, C₂₋₆ alkenyl, C₂₋₆ alkynyl, CN, CF₃, N₃, NO₂, aryl, heteroaryl and COR⁹;

 R^9 is chosen from H, OH, SH, C_{1-6} alkyl, C_{1-6} aminoalkyl, C_{1-6} alkoxy and C_{1-6} thioalkyl; and

(iv) R is hydrogen, phosphate; acyl; -C(O)R¹⁰, alkyl; sulfonate ester; sulfonyl; a lipid; an amino acid; a carbohydrate; a peptide; a cholesterol; or other pharmaceutically acceptable leaving group, which, when administered *in vivo*, is capable of providing a compound wherein R is H or phosphate;

 R^{10} is a C_{1-6} alkyl, C_{2-6} alkenyl, C_{2-6} alkynyl, aryl, monophosphate, diphosphate, triphosphate, or $-P(O)(OR^{11})_2$;

each R^{11} is independently hydrogen, C_{1-6} alkyl, C_{2-6} alkenyl, C_{2-6} alkynyl or a hydroxyl-protecting group;

together with pharmaceutically acceptable carrier.

5

10

15

- 32. The pharmaceutical composition of claim 31, wherein Z is not hydrogen.
- 33. The pharmaceutical composition of claim 31, wherein Z is a halogen (F, Cl, Br, or I).
 - 34. The pharmaceutical composition of claim 33, wherein Z is F.
 - 35. The pharmaceutical composition of claim 31, wherein the 2',3'-dideoxynucleoside is in the β-L-configuration.
- 36. The pharmaceutical composition of claim 35, wherein the β-L-2',3'-dideoxynucleoside is enantiomerically enriched.
- 37. The pharmaceutical composition of claim 35, wherein the β -L-2',3'-dideoxynucleoside is substantially free of the β -D-2',3'-dideoxynucleoside.
- 38. The pharmaceutical composition of claim 35, wherein the β -L-2',3'-dideoxynucleoside is in isolated form.

39. A pharmaceutical composition for the treatment and/or prophylaxis of an HCV infection in a host, comprising an effective amount of a compound of the formula:

or a pharmaceutically acceptable salt or prodrug thereof, wherein

Z' is chosen from halogen (F, Cl, Br, or I), C_{1-6} alkyl, C_{2-6} alkenyl, C_{2-6} alkynyl, CN, CF₃, N₃, NO₂, aryl, heteroaryl and COR⁹; and

 R^9 is chosen from H, OH, SH, C_{1-6} alkyl, C_{1-6} aminoalkyl, C_{1-6} alkoxy and C_{1-6} thioalkyl.

together with a pharmaceutically acceptable carrier.

5

10

15

20

40. A pharmaceutical composition for the treatment and/or prophylaxis of an HCV infection in a host, comprising an effective amount of a compound of the formula:

or a pharmaceutically acceptable salt or prodrug thereof, wherein

- (i) R^6 is H, C_{1-6} alkyl, C_{2-6} alkenyl, C_{2-6} alkynyl, C_{3-8} cycloalkyl, cyclopropyl, or C_{2-6} acyl; and
- (ii) R is hydrogen, phosphate; acyl; -C(O)R¹⁰, alkyl; sulfonate ester; sulfonyl; a lipid; an amino acid; a carbohydrate; a peptide; a cholesterol; or other pharmaceutically acceptable leaving group, which, when

administered *in vivo*, is capable of providing a compound wherein R is H or phosphate;

(iii) Z' is chosen from halogen (F, Cl, Br, or I), C₁₋₆ alkyl, C₂₋₆ alkenyl, C₂₋₆ alkynyl, CN, CF₃, N₃, NO₂, aryl, heteroaryl and COR⁹; and
 R⁹ is chosen from H, OH, SH, C₁₋₆ alkyl, C₁₋₆ aminoalkyl, C₁₋₆ alkoxy and C₁₋₆ thioalkyl;

together with a pharmaceutically acceptable carrier.

41. A pharmaceutical composition for the treatment and/or prophylaxis of an HCV infection in a host, comprising an effective amount of a compound of the formula:

or a pharmaceutically acceptable salt or prodrug thereof, together with a pharmaceutically acceptable carrier.

42. A pharmaceutical composition for the treatment and/or prophylaxis of an HCV infection in a host, comprising an effective amount of a compound of the formula:

or a pharmaceutically acceptable salt or prodrug thereof,

- (i) R^6 is H, C_{1-6} alkyl, C_{2-6} alkenyl, C_{2-6} alkynyl, or C_{3-8} cycloalkyl; and
- (ii) R is hydrogen, phosphate; acyl; -C(O)R¹⁰, alkyl; sulfonate ester; sulfonyl; a lipid; an amino acid; a carbohydrate; a peptide; a cholesterol;

5

10

or other pharmaceutically acceptable leaving group, which, when administered *in vivo*, is capable of providing a compound wherein R is H or phosphate;

together with a pharmaceutically acceptable carrier.

10

15

20

- 5 43. The pharmaceutical composition of any one of claims 40, wherein the β-L-2',3'-dideoxynucleoside is enantiomerically enriched.
 - 44. The pharmaceutical composition of any one of claims 40, wherein the β -L-2',3'-dideoxynucleoside is substantially free of the β -D-2',3'-dideoxynucleoside.
 - 45. The pharmaceutical composition of any one of claims 40, wherein the β -L-2',3'-dideoxynucleoside is in an isolated form.
 - 46. A pharmaceutical composition for reducing the biological activity of a *Flaviviridae* viral infection in a host comprising an effective amount of a 2',3'-dideoxynucleoside of the formula:

or a pharmaceutically acceptable salt or prodrug thereof, wherein

(i) X is O, S, S=O, SO₂, NR¹, N⁺R¹R², CH₂, CHF or CR³R⁴;

 R^1 and R^2 are independently hydrogen, $C_{1\text{-}6}$ alkyl, $C_{2\text{-}6}$ alkenyl, $C_{2\text{-}6}$ alkynyl, or $C_{3\text{-}8}$ cycloalkyl;

R³ and R⁴ are independently hydrogen, halogen (F, Cl, Br, or I), OH or OR⁵;

 R^5 is hydrogen or a hydroxyl protecting group such as alkyl, acyl or silyl;

(ii) Y is NH₂, NHR⁶, NR⁶R⁷, OH or OR⁸
each R⁶, R⁷ and R⁷ is independently H, C₁₋₆ alkyl, C₂₋₆ alkenyl, C₂₋₆ alkynyl, C₃₋₈ cycloalkyl, cyclopropyl, or C₂₋₆ acyl;

(iii) Z is chosen from hydrogen, halogen (F, Cl, Br, or I), C₁₋₆ alkyl, C₂₋₆ alkenyl, C₂₋₆ alkynyl, CN, CF₃, N₃, NO₂, aryl, heteroaryl and COR⁹;
 R⁹ is chosen from H, OH, SH, C₁₋₆ alkyl, C₁₋₆ aminoalkyl, C₁₋₆ alkoxy and C₁₋₆ thioalkyl; and

5 (iv) R is hydrogen, phosphate; acyl; -C(O)R¹⁰, alkyl; sulfonate ester; sulfonyl; a lipid; an amino acid; a carbohydrate; a peptide; a cholesterol; or other pharmaceutically acceptable leaving group, which, when administered in vivo, is capable of providing a compound wherein R is H or phosphate;

10

15

20

 R^{10} is a C_{1-6} alkyl, C_{2-6} alkenyl, C_{2-6} alkynyl, aryl, monophosphate, diphosphate, triphosphate, or $-P(O)(OR^{11})_2$;

each R^{11} is independently hydrogen, C_{1-6} alkyl, C_{2-6} alkenyl, C_{2-6} alkynyl or a hydroxyl-protecting group;

together with a pharmaceutically acceptable carrier.

- 47. The pharmaceutical composition of claim 46, wherein Z is not hydrogen.
 - 48. The pharmaceutical composition of claim 46, wherein Z is a halogen (F, Cl, Br, or I).
 - 49. The pharmaceutical composition of claim 48, wherein Z is F.
 - 50. The pharmaceutical composition of claim 46, wherein the 2',3'-dideoxynucleoside is in the β-L-configuration.
 - 51. A pharmaceutical composition for reducing the biological activity of a *Flaviviridae* viral infection in a host comprising an effective amount of a compound of the formula:

or a pharmaceutically acceptable salt or prodrug thereof, wherein

Z' is chosen from halogen (F, Cl, Br, or I), C_{1-6} alkyl, C_{2-6} alkenyl, C_{2-6} alkynyl, CN, CF₃, N₃, NO₂, aryl, heteroaryl and COR⁹; and

 R^9 is chosen from H, OH, SH, C_{1-6} alkyl, C_{1-6} aminoalkyl, C_{1-6} alkoxy and C_{1-6} thioalkyl.

together with a pharmaceutically acceptable carrier.

52. A pharmaceutical composition for reducing the biological activity of a *Flaviviridae* viral infection in a host comprising an effective amount of a compound of the formula:

10

5

or a pharmaceutically acceptable salt or prodrug thereof, wherein

- (i) R^6 is H, C_{1-6} alkyl, C_{2-6} alkenyl, C_{2-6} alkynyl, C_{3-8} cycloalkyl, cyclopropyl, or C_{2-6} acyl; and
- (ii) R is hydrogen, phosphate; acyl; -C(O)R¹⁰, alkyl; sulfonate ester; sulfonyl; a lipid; an amino acid; a carbohydrate; a peptide; a cholesterol; or other pharmaceutically acceptable leaving group, which, when administered *in vivo*, is capable of providing a compound wherein R is H or phosphate;

20

15

(iii) Z' is chosen from halogen (F, Cl, Br, or I), C_{1-6} alkyl, C_{2-6} alkenyl, C_{2-6} alkynyl, CN, CF₃, N₃, NO₂, aryl, heteroaryl and COR⁹; and

 R^9 is chosen from H, OH, SH, $C_{1\text{-}6}$ alkyl, $C_{1\text{-}6}$ aminoalkyl, $C_{1\text{-}6}$ alkoxy and $C_{1\text{-}6}$ thioalkyl;

together with a pharmaceutically acceptable carrier.

53. A pharmaceutical composition for reducing the biological activity of a *Flaviviridae* viral infection in a host comprising an effective amount of a compound of the formula:

or a pharmaceutically acceptable salt or prodrug thereof, together with a pharmaceutically acceptable carrier.

54. A pharmaceutical composition for reducing the biological activity of a *Flaviviridae* viral infection in a host comprising an effective amount of a compound of the formula:

or a pharmaceutically acceptable salt or prodrug thereof,

5

10

15

- (i) R^6 is H, C_{1-6} alkyl, C_{2-6} alkenyl, C_{2-6} alkynyl, or C_{3-8} cycloalkyl; and
- (ii) R is hydrogen, phosphate; acyl; -C(O)R¹⁰, alkyl; sulfonate ester; sulfonyl; a lipid; an amino acid; a carbohydrate; a peptide; a cholesterol; or other pharmaceutically acceptable leaving group, which, when administered *in vivo*, is capable of providing a compound wherein R is H or phosphate;

together with a pharmaceutically acceptable carrier.

55. The pharmaceutical composition according to claim 52, wherein the *Flaviviridae* viral infection is an HCV infection.

- 56. The pharmaceutical composition according to any one of claims 31 or 46, further comprising one or more other antiviral agent(s).
- 57. The pharmaceutical composition according to claim 56, wherein the antiviral agent is selected from the group consisting of ribavirin, interferon, PEGASYS (pegylated interferon alfa-2a), INFERGEN (interferon alfacon-1), OMNIFERON (natural interferon), ALBUFERON, REBIF (interferon beta-1a), Omega Interferon, Oral Interferon Alpha, Interferon gamma-1b, Interleukin-10, IP-501, Merimebodib VX-497, AMANTADINE (Symmetrel), HEPTAZYME, IDN-6556, XTL-002, HCV/MF59, CIVACIR, LEVOVIRIN, VIRAMIDINE, ZADAXIN (thymosin alfa-1), CEPLENE (histamine dihydrochloride), VX 950 / LY 570310, ISIS 14803, IDN-6556 and JTK 003.

5

10

- 58. The pharmaceutical composition according to any one of claims 31 or 46, wherein the host is a human.
- 59. The pharmaceutical composition according to any one of claims 32 or 46, wherein the host is also infected with HIV and/or HBV.
- 60. The pharmaceutical composition according to claim 59, wherein the host is a human.