CS 580 ALGORITHM DESIGN AND ANALYSIS

Randomized Algorithms 1

Vassilis Zikas

- n processes P_1, \dots, P_n competing for access to a single database
- Time is divided into discrete rounds
- Database can be accessed by at most one process at a time
- Processes cannot communicate with each other
- How can they "take turns" accessing the database?

- Simple protocol for process *i*:
 - \circ Attempt to access the database with probability p (independently) in each round
 - *p* TBD

- Trivial to state (and implement)
- Hard (interesting) to analyze

- Step 1: Define relevant events!
- A[i, t] = event that process i attempts to access the database in round t
 - Pr[A[i, t]] = p by definition
- Complementary event $\overline{A[i,t]}$
 - $\circ \Pr[\overline{A[i,t]}] = 1 p$
- S[i, t] = event that process i succeeds in accessing database in round t
 - Pr[S[i,t]] = Pr[i is the only one who attempts to] access the database at step t
 - $\circ = \Pr[A[i,t] \cap \left(\cap_{j \neq i} \overline{A[j,t]} \right)]$

- $\Pr[S[i,t]] = \Pr[A[i,t]] \cdot \prod_{j \neq i} \Pr[\overline{A[j,t]}]$ • $= p \cdot (1-p)^{n-1}$
- Closed form!
- Now, we choose p so that the function $f(p) = p \cdot (1-p)^{n-1}$ is maximized
 - Sanity check f(0) = f(1) = 0

- $f(p) = p \cdot (1-p)^{n-1}$
- $f'(p) = (1-p)^{n-1} p(n-1)(1-p)^{n-2}$
- f'(p) = 0 for p = 1/n is the unique root in (0,1)
- Fix p = 1/n
- What is Pr[S[i, t]]?

•
$$\Pr[S[i,t]] = \frac{1}{n} \left(1 - \frac{1}{n}\right)^{n-1}$$

- What does $\left(1 \frac{1}{x}\right)^x$ behave like?
 - From x = 2 to ∞ it goes from $\frac{1}{4}$ to $\frac{1}{e}$

- What does $\left(1 \frac{1}{x}\right)^{x-1}$ behave like?
 - From x = 2 to ∞ it goes from 1/2 to 1/e

•
$$\Pr[S[i,t]] = \frac{1}{n} \left(1 - \frac{1}{n}\right)^{n-1}$$

- So, probability that *i* accesses in any given round *t* is small (gets smaller and smaller as *n* grows)
- What about probability of accessing in a window of rounds?
- F[i, t] = event that i fails to access in rounds 1 through t

•
$$\Pr[F[i,t]] = \Pr[\bigcap_{r=1}^t \overline{S[i,r]}]$$

• $= \prod_{r=1}^t \Pr[\overline{S[i,r]}]$
• $= \left(1 - \frac{1}{n} \left(1 - \frac{1}{n}\right)^{n-1}\right)^t$

Ok, let's take a step back...

- $\Pr[S[i,t]] = \frac{1}{n} \left(1 \frac{1}{n}\right)^{n-1}$ is at most $\frac{1}{2n}$ and at least $\frac{1}{en}$
- $\Pr[\overline{S[i,t]}] \le 1 \frac{1}{en}$
- $\Pr[F[i,t]] = \prod_{r=1}^t \Pr[\overline{S[i,r]}] \le \left(1 \frac{1}{en}\right)^t$
- Setting t = en (or [en] if you want to get technical) we can get something we know!
- $\Pr[F[i,en]] \le \left(1 \frac{1}{en}\right)^{en} \le \frac{1}{e}$
 - The probability that i is successful in the first en rounds is at least $1 \frac{1}{e} \approx 0.63$

•
$$\Pr[F[i,t]] = \prod_{r=1}^t \Pr[\overline{S[i,t]}] \le \left(1 - \frac{1}{en}\right)^t$$

• Setting $t = [en] \cdot cln(n)$ we have

•
$$\Pr[F[i,t]] \le \left(1 - \frac{1}{en}\right)^{[en] \cdot cln(n)} \le e^{-cln(n)} = n^{-c}$$

- Overall:
 - The probability that i fails in the first en rounds is at most a constant
 - The probability that i keeps failing much longer is tiny

- What about the time for everyone to get access?
- The protocol fails after round t if some process hasn't accessed the database in the first t rounds
- F_t = event that the protocol fails after round t
- $F_t = \bigcup_{i=1}^n F[i, t]$
- $Pr[F_t]$??
- Union bound!
- $\Pr[F_t] \le \sum_{i=1}^n \Pr[F[i, t]]$
- $\leq n \cdot n^{-c}$, by picking t = [en]cln(n)
- Theorem: With probability at least 1 1/n, all processes access the database in the first $t = 2[en]\ln(n)$ rounds

- Input: An undirected graph G = (V, E)
- Output: A global minimum cut

- Recall that a cut (A, B) is a partition of the vertices into two sets
- The value of a cut is the number of edges across the cut

- Wait a second...
- We already know how to solve this!
- Use Max s-t flow = Min s-t cut, for every pair of nodes s, t
- Oops, that was for directed graphs!
- Easy fix:
 - Replace each edge e = (u, v) with two directed edges $u \rightarrow v$ and $v \rightarrow u$ with capacity 1 to get a new graph G'
 - Pick a vertex s
 - The minimum global cut separates *s* from something...
 - Try out all possible $t \in V$
- But, finding maximum flows was so hard...
- Can we do better?

- Contraction algorithm:
 - Pick an edge e = (u, v) uniformly at random
 - Contract the edge *e*:
 - Replace u and v by a single super-node w
 - Preserve edges, updating the end points of u and v to w
 - Keep parallel edges, but delete self-loops

- Contraction algorithm:
 - Pick an edge e = (u, v) uniformly at random
 - Contract the edge *e*:
 - Replace u and v by a single super-node w
 - Preserve edges, updating the end points of u and v to w
 - Keep parallel edges, but delete self-loops
 - \circ Repeat until graph has two nodes v_1 and v_2
 - Return that cut (all nodes corresponding to super-set v_1)

• Claim: The contraction algorithms returns the global min-cut with probability at least $\frac{1}{\binom{n}{2}}$

• Proof:

- Consider a global min-cut (A, B), and let F be the edges with one endpoint in A and the other in B. Let k = |F|
- What could go wrong?
- We could contract an edge F and put nodes in A and B in the same super-node
- Upper bound the probability that this happens
- \circ In turn, need to lower bound size of E

Proof (continued):

- All vertices v have degree $\geq k$; otherwise, if v has degree < k, $\{v\}$ would be the minimum cut
- \circ $|E| \ge kn/2$
- Probability that edge in F is contracted is at most $\frac{k}{|E|} \le \frac{k}{\frac{kn}{2}} = \frac{2}{n}$
- Assume that after j iterations no edge in F has been contracted
- There are n j super-nodes
- There are at least k edges incident to every super-node; at least k(n-j)/2 total edges
- The probability of contracting an edge in F is at most $\frac{k}{\frac{k(n-j)}{2}} = 2/(n-j)$

Proof (continued):

- E_j = event that an edge in F is **not** contracted in iteration j
- ∘ $Pr[E_1] \ge 1 2/n$
- $\circ \Pr[E_2|E_1] \ge 1 2/(n-1)$
- $\Pr[E_{j+1}|E_1 \cap E_2 \cap \cdots E_j] \ge 1 2/(n-j)$
- ∘ $Pr[no\ edge\ is\ contracted] = Pr[E_1 \cap E_2 \dots \cap E_{n-2}]$
- $\circ = \Pr[E_1] \cdot \Pr[E_2|E_1] \cdot \Pr[E_3|E_1 \cap E_2] \cdot \dots$
- $\circ \geq \left(1 \frac{2}{n}\right) \cdot \left(1 \frac{2}{n-1}\right) \cdot \dots \cdot \left(1 \frac{2}{3}\right)$
- $\circ = \frac{n-2}{n} \cdot \frac{n-3}{n-1} \cdot \frac{n-4}{n-2} \cdot \dots \cdot \frac{2}{4} \cdot \frac{1}{3}$
- $\circ = \frac{2}{n(n-1)} = 1/\binom{n}{2}$

- So, we fail with probability $1 \frac{1}{\binom{n}{2}}$
- Which is basically 1...
- But less than 1...
- What if we run it again?
- The probability that we fail twice is $\left(1 \frac{1}{\binom{n}{2}}\right)^2$
- What if we keep going?
- Repeat $\binom{n}{2}$ times
- Probability we fail all the time at most $\left(1 \frac{1}{\binom{n}{2}}\right)^{\binom{n}{2}} \le 1/e$
- Repeat $\binom{n}{2} \ln(n)$ times
- Probability we fail at most $e^{-\ln(n)} = 1/n!$

- Overall:
 - Guaranteed to run in polynomial time
 - Likely to get an optimal solution

- Maximization version of EXACT 3-SAT
- Given an EXACT 3-SAT formula (exactly 3 literals per clause) with n variables and k clauses, find an assignment that satisfies as many clauses as possible
 - Of course, it's still NP-complete

• Idea for a randomized algorithm: flip a coin and set each variable x_i to T with probability 1/2

- Claim: The expected number of clauses satisfied is 7k/8
- Proof:
 - Random variable Z for the number of satisfied clauses
 - Consider indicator random variable Z_j for the event that clause C_i is satisfied
 - $Z_j = 1$ if C_j is satisfied and $Z_j = 0$ otherwise

$$\circ E[Z_j] = \Pr[Z_j = 1] = \frac{7}{8}$$

- There is only one way for C_i to **not** be satisfied!
- $\circ E[Z] = \sum_{j=1}^{k} E[Z_j] = 7k/8$

- Corollary: For every EXACT 3-SAT formula there
 exists a truth assignment that satisfies at least a 7/8
 fraction of the clauses
- Proof:
 - \circ With some probability the random variable Z takes a value at least its expectation
 - That corresponds to an outcome (i.e. truth assignment)
 with at least a 7/8 fraction of clauses satisfied
- This proof technique is called the probabilistic method
 - Show that something exists by showing it exists with strictly positive probability

- Question: Can we get a 7/8 approximation algorithm?
- Lemma 1: The probability that a random assignment satisfies at least 7k/8 clauses is at least $\frac{1}{8k}$
- Proof:
 - Let p_i be the probability that exactly j clauses are satisfied
 - Let p be the probability that $\geq 7k/8$ clauses are satisfied

$$\circ E[Z] = \sum_{j=1}^{k} j \cdot p_j$$

$$\circ = \sum_{j < \frac{7k}{8}} \mathbf{j} \cdot p_j + \sum_{j \geq \frac{7k}{8}} \mathbf{j} \cdot p_j$$

$$\circ \leq \left(\frac{7k}{8} - \frac{1}{8}\right) \sum_{j < \frac{7k}{8}} p_j + k \sum_{j \geq \frac{7k}{8}} p_j$$

$$\circ \leq \left(\frac{7k}{8} - \frac{1}{8}\right) \cdot 1 + k \cdot p$$

- But, E[Z] = 7k/8
- Re-arranging gives $p \ge 1/(8k)$

- Johnson's algorithm: Repeatedly generate random truth assignments until one of them satisfies $\geq 7k/8$ clauses
- Theorem: Johnson's algorithm is a 7/8-approximation algorithm that has polynomial expected running time.
- Proof:
 - Lemma 1 gives that each iteration succeeds with probability at least 1/(8k)
 - Let X be the random variable for the number of iterations until the first success
 - *X* follows the geometric distribution
 - \circ $E[X] = \frac{1}{p}$, where p the probability of a success
 - So, 8k iterations in expectation

GEOMETRIC DISTRIBUTION (13.3)

- You have a coin that gives H w.p. p
- Flip coin until it comes up H
- Let X be the random variable indicating the number of flips performed
- $\Pr[X = j] = (1 p)^{j-1} \cdot p$
- $E[X] = \sum_{j \ge 1} j \cdot \Pr[X = j] = \sum_{j \ge 1} j (1 p)^{j-1} \cdot p$
- $\bullet = \frac{p}{1-p} \sum_{j \ge 1} j (1-p)^j$
- $\bullet = \frac{p}{1-p} \cdot \frac{1-p}{p^2} = \frac{1}{p}$

MONTE CARLO VS LAS VEGAS

- Monte Carlo algorithm (e.g. the contraction algorithm for min-cut):
 - Guaranteed poly-time
 - Likely to give optimal solution
- Las Vegas algorithm (e.g. Johnson's algorithm):
 - Guaranteed to give optimal solution
 - Likely to run in poly-time
- Can always convert Las Vegas into Monte Carlo (stop algorithm at some point)

SUMMARY

- Contention Resolution (13.1)
- MIN-CUT (13.2)
- EXACT 3-SAT (13.4)

 Take a look at 13.3 for examples and exercises on linearity of expectation if you need practice!