Machine learning HW1

0510894 電機 4D 翁紹恩

- \ Bayesian Linear Regression

```
0510894 翁紹恩
  P(t|x, X, t) = \int_{\infty}^{\infty} P(t|x, W) P(W|X, t) dW evidence
  P(t|x, \overline{w}) = N(t|y(x, \overline{w}), \beta^{-1}) = N(t|\overline{w}^{-1}\phi(x), \beta^{-1}) Inkelihood
  P(W) = N(W[O, x']) prior.
  by Marginal and Conditional Gaussians equations in book P93
 P(x) = N(x|M, \Lambda)
                                               likelihood
  P(7/x)= N(4/Ax+b, L)
                                                        evidence
=> P(y) = N(y| AM+b, L+ ANAT)
   P(x(y) = N(x ) = { A L(y-b) + DM } 5)
 P(WIX, t) & P(tIX, W)P(W)
      p(t|X,\overline{w}) = N(t|\overline{w}\phi(x), \beta(1))

A = \phi(x), b = 0, L = \beta I
                                                                   likelihood
                                                                   prior
     P(W) = N(W[0, X])
                          M=0. A= XI
     \Sigma = (\Lambda + A^T L A)^T = (\chi I + \phi(x) \beta I \phi(x)^T)^T = (\chi I + \phi(x) \beta \phi(x)^T)^T
    P(\overline{W}|X,t)=N(\overline{W}|\Sigma\{\phi(x)\beta t\},\Sigma)
                                                                      posterior
 =) P(t) x, w) = N(t | WT & w), BT) likelihood
           A = \phi(x)^T. b = 0. L = \beta
     P(\overline{W}|X,t) = N(\overline{W}|\Sigma(\phi(x)\beta t),\Sigma) \qquad \text{prior} \qquad S^{T} = \lambda I + \beta \sum_{n=1}^{N} \phi(x_n)\phi(x_n)^{T}
= N(\overline{W}|S(\phi(x)\beta t),S) \qquad \text{prior} \qquad S = T.
                      = N(W/S(O(X)Bt),S)
                     = N(W/W, 1)
                        M' = S(\beta \phi(x) + ). \Delta = S^{\dagger}, \Sigma' = (\Delta + A^{\dagger} L'A')^{\dagger} = (S^{\dagger} + b(x) \rho \phi(x))^{\dagger}
    P(t|X,X,E) = N(t|\phi(x)s(\beta\phi(x)E), \beta + \phi(x)s\phi(x)) ovidence
                                     S(x) = B^{-1} + \phi(x)^T S \phi(x)
    M(x)= p(x) SBp(x) =
          = BO(x) S & O(xn) tn
```

1. Feature selection

在這部分, training set 和 validation set 的比例為 7:3(768:328)

a. RMS error:

	M=1	M=2
Training	3.6079	2.8550
Validation	6.1140	6.9692

→雖然在 M=1 training set 時 RMS error 比較大,但是 validation set 出來的結果卻比較小,可以看出,在 training set 時,M=2 是比較 fit 整個數據的,但反而因此 overfitting,導致在 validation 上的誤差較大。

b. Analyze the weights of polynomial models(M=1)

The remove data	RMS error
AMB_TEMP	3.6149
CH4	3.6119
CO	3.7076
NMHC	3.6083
NO	3.6079
NO2	3.6083
NOx	3.6081
O3	3.6214
PM10	5.6394
RAINFALL	3.6103
RH	3.6235
SO2	3.6452
THC	3.6108
WD_HR	3.6560
WIND_DIREC	3.6435
WIND_SPEED	3.6091
WS_HR	3.6112

→從本表中可以看出,當移除第九筆資料,PM10 時,所得出的 RMS error 最大且有最明顯變化,沒有 PM10 時會導致極大誤差,因此 PM10 是影響 Training set RMS error 最大的因素。

2. Maximum likelihood approach

在本題當中使用了三種訓練模型(Polynomial, Gaussian, Sigmoidal)做探討

a. 未使用 N-fold cross validation 使用全部參數(x M=1)套入 Polynomial $\rightarrow \Phi = [1, x_1, x_2...,x_D]$

Gaussian
$$\rightarrow \Phi = [1, \exp(\frac{-(x_1 - \mu_1)^2}{2\sigma_1^2}), \exp(\frac{-(x_2 - \mu_2)^2}{2\sigma_2^2})..., \exp(\frac{-(x_D - \mu_D)^2}{2\sigma_D^2})]$$

每一個 model 前面加上 1 做為 intercept term

x M=1

	Training	Testing
Gaussian	8.3566	8.5781
Polynomial	3.6078	6.1140
Sigmoidal	3.9221	5.2801

x M=2(沒有刪資料)

	Training	Testing
Gaussian	4.6459	9.5798
Polynomial	2.8549	6.969
Sigmoidal	2.8169	7.0366

從兩者資料可以看出,只要使用 M=2 的模型,因為輸入的參數太多,因此都會 overfitting,所以要減少使用 data 的量。

根據第 1.b 題得出的數據,我取前五個對數據影響較大的參數,分別是 CO、O3、PM10、RH、WD_HR 只用這五個參數做二階相乘。

Polynomial
$$\rightarrow \Phi = [1, x_1, x_2...,x_D, x_3x_8, x_3x_9..., x_{11}x_{14}]$$

Gaussian
$$\Rightarrow \Phi = [1, \exp(\frac{-(x_1 - \mu_1)^2}{2\sigma_1^2}), \exp(\frac{-(x_2 - \mu_2)^2}{2\sigma_2^2})..., \exp(\frac{-(x_D - \mu_D)^2}{2\sigma_D^2}),$$

$$\exp\left(\frac{-(x_3x_8-\mu_{3*8})^2}{2\sigma_{3*8}^2}\right), \ \exp\left(\frac{-(x_3x_9-\mu_{3*9})^2}{2\sigma_{3*9}^2}\right)..., \ \exp\left(\frac{-(x_{11}x_{14}-\mu_{11*14})^2}{2\sigma_{11*14}^2}\right)\right]$$

Sigmoidal
$$\Rightarrow \Phi = [1, \frac{1}{1 + \exp(-\frac{(x_1 - \mu_1)}{\sigma_1})}, \frac{1}{1 + \exp(-\frac{(x_2 - \mu_2)}{\sigma_2})}, \frac{1}{1 + \exp(-\frac{(x_D - \mu_D)}{\sigma_D})}]$$

$$\frac{1}{1+\exp(-\frac{(x_3x_8-\mu_{3*8})}{\sigma_{3*8}})}, \frac{1}{1+\exp(-\frac{(x_3x_9-\mu_{3*9})}{\sigma_{3*9}})}, \cdots, \frac{1}{1+\exp(-\frac{(x_{11}x_{14}-\mu_{11*14})}{\sigma_{11*14}})}\right]$$

x M=2(二階取五筆資料)

	Training	Testing
Gaussian	6.5369	7.1877
Polynomial	3.3279	6.0078
Sigmoidal	3.5148	5.3715

由上表和 M=1 時比較,可以發現 overfitting 的問題就消失了。

b. 使用 4-fold cross validation

x M=1

T i	T4:
Training	i iesting i
1141111115	10501115

Gaussian	8.2385	8.6905
Polynomial	3.9964	4.8668
Sigmoidal	4.1535	4.2553

x M=2(沒有刪資料)

	Training	Testing
Gaussian	4.8783	8.1891
Polynomial	3.2170	5.7974
Sigmoidal	3.1329	5.5475

x M=2(二階取五筆資料)

	Training	Testing
Gaussian	6.4846	7.1467
Polynomial	3.7406	4.7350
Sigmoidal	3.8363	4.4117

使用 M=2 的時候,很明顯的沒刪參數時因為參數太多,所以有 overfitting 的現象,在如上題適當的選取幾個影響大的參數後, overfitting 的結果明顯改善。

而用 cross validation 的方法後,可以觀察到 error 整體都有下降的趨勢,讓我們對於參數的調整可以更加客觀。

3. Maximum a posteriori approach

和第2題的模型差異為w的改變,w= $(\lambda I + \emptyset^T \emptyset)^{-1} \emptyset^T y$

a. $\mathfrak{P} \lambda = 10$

x M=1

	Training	Testing
Gaussian	8.5289	8.5433
Polynomial	3.7287	6.4873
Sigmoidal	4.4205	5.3803

x M=2(沒有刪資料)

	Training	Testing
Gaussian	6.6072	7.6802
Polynomial	2.8896	6.6814
Sigmoidal	3.6998	5.1839

x M=2(二階取五筆資料)

	Training	Testing
Gaussian	7.5493	7.6582
Polynomial	3.3916	6.2601
Sigmoidal	3.8463	5.1569

可以看到加入 regularization term 之後,本來 overfitting 的結果,現在和有先挑選過參數的結果是差不多的。

b. 使用 4-fold cross validation

x M=1

	Training	Testing
Gaussian	8.3913	8.6591
Polynomial	4.2162	5.1141
Sigmoidal	4.6589	4.5394

x M=2(沒有刪資料)

	Training	Testing
Gaussian	6.5611	7.3550
Polynomial	3.2779	5.4216
Sigmoidal	3.9390	4.1457

x M=2(二階取五筆資料)

	Training	Testing
Gaussian	7.4215	7.7062
Polynomial	3.8923	4.8512
Sigmoidal	4.1454	4.1233

使用 cross-validation 在 Gaussian model 上並沒有差很多,但是在 Polynomial 和 Sigmoidal model 上,testing set error 都有明顯下降。

c. Compare the result between maximum likelihood approach and maximum a posteriori approach.

綜合上述資料,可以發現兩者最主要的差異,在參數很多、模型十分 複雜時,maximum a posteriori approach 可以有效的減少 RMS error,如 此一來對於我們在訓練模型上也較為方便不用做參數篩選,但是可以 看出,還是有做適當篩選的模型可以得到平均起來較好的結果。