Mechanics of Materials

Lecture 19 - Discontinuity Functions

Dr. Nicholas Smith

Wichita State University, Department of Aerospace Engineering

27 October, 2020

schedule

- 27 Oct Beam Deflection (discontinuity functions), HW 8 Due, HW 7 Self-Grade Due
- 29 Oct Beam Deflection (superposition)
- 3 Nov Statically Indeterminate Beams, HW 9 Due, HW 8 Self-Grade Due
- 5 Nov Statically Indeterminate Beams

2

1

outline

- discontinuity functions
- group problems

3

discontinuity functions

- Direct integration can be very cumbersome if multiple loads or boundary conditions are applied
- Instead of using a piecewise function, we can use discontinuity functions

Macaulay functions

 Macaulay functions can be used to describe various loading conditions, the general definition is

$$\langle x - a \rangle^n = \begin{cases} 0 & \text{for } x < a \\ (x - a)^n & \text{for } x \ge a \end{cases} n \ge 0$$

5

singularity functions

 Singularity functions are used for concentrated forces and can be written

$$w = P\langle x - a \rangle^{-1} = \begin{cases} 0 & \text{for } x \neq a \\ P & \text{for } x = a \end{cases}$$

6

discontinuity functions

TABLE 12-2			
Loading	Loading Function $w = w(x)$	Shear $V = \int w(x)dx$	Moment $M = \int V dx$
M ₀	$w=M_0\langle x\!-\!a\rangle^{-2}$	$V=M_0\langle x-a\rangle^{-1}$	$M=M_0\langle x-a\rangle^0$
P -x	$w = P(x-a)^{-1}$	$V=P\langle x-a\rangle^0$	$M = P(x-a)^{1}$
	$w=w_0(x-a)^0$	$V=w_0\langle x\!-\!a\rangle^1$	$M = \frac{w_0}{2}(x-a)^2$
slope = m	$w=m\langle x\!-\!a\rangle^1$	$V = \frac{m}{2} \langle x - a \rangle^2$	$M = \frac{m}{6} \langle x - a \rangle^3$

7

discontinuity functions

- 1. We add these up for each loading case along our beam
- 2. We integrate as usual to find displacement from load, slope, or moment

integration

- discontinuity functions follow special rules for integration
- when $n \ge 0$, they integrate like a normal polynomial
- when n < 0, they instead follow

$$\int \langle x - a \rangle^n dx = \langle x - a \rangle^{n+1}$$

9

signs

- we need to be careful to match the sign convention
- loads are defined as positive when they act upward
- moments are defined as positive when they act clockwise

example 12.5

11

group one

Find the maximum deflection using either direct integration or discontinuity functions.

group two

Find the maximum deflection using either direct integration or discontinuity functions.

group three

Find the maximum deflection using either direct integration or discontinuity functions.

13