	c; pilities Berliness		Harcourt Butler Technical University Kanpur								END SEM EXAM	
Branch			MCA Progr						1		MCA	
Course Name			Digital Image Processing					Semester			IV	
Course Code			Year ECA-576							(F Year) 2023-24		
Time			2:30 Hr Maximum M						ım Ma	orks 50		
Knowledge Level (KL)			K1: Remembering			K3: Ap	K3: Applying K5:			 Evaluating	5	
]	K2: Understanding K4: Analy			alyzing	ing K6: Creating					
Note: A	answer All Q	uestions										
Q. No	Questions								Marks	CO	KL	
	Give short	answers	for the follo	wing:								
1.	a) What is the Shannon Sampling Theorem and how is it significant in Digita Image Processing?							igital	2	CO1	K1,K2	
	b) Give the kernels for High boost filter. Explain their use.									2	CO2	K1,K3
	c) What is a median filter? Explain it's one use.d) How would we apply the Laplacian filter using python?e) What is dilation? Where is it used?							2	CO3	K1,K4		
								2	CO4	K6		
								2	CO5	K1,K3		
2.	Answer bo	th parts:										
	 a) Which filter would you use for detecting the two lines in this image and why? Give the kernels of the filters and apply them on the following image. Give the interpretation of the result you get. 								5	CO1	K3,K5	
	200	10	10	20	20	20	20	2	0			
	10	200	10	20	20	20	20		0			
	200	200	200	200 200	200	200	200		00			
	20	20	20	200	200	0	0)			
	20	20	20	20	20	200	0)			
	b) What is Noise in image processing? How do we remove salt and pepper noise from an image?								5	CO2	K1,K6	
3.	Answer bo	th parts:										1

		0 1 000			77.0					
		form region filling of the given image with the given mask and initial	5	CO3	K3					
	poir	nt p showing all intermediate steps:								
		w does Laplacian of Gaussian work? What advantage does it have over	5	CO3	K2,K5					
4		lacian filter?								
4.	Answer boti				T					
		at is Segmentation ? Explain the Region growing approach for	5	CO4	K1,K3					
		mentation.								
	b) Find	d convex hull for the image given using SEs given	5	CO4	K4					
	1	x x 1 x x x x x x x x x x x x x x x x x								
	1	0 x x 0 x x 0 1 x 0 x								
	1	x x x x x x 1 1 1 1 1								
	\mathbf{B}^1	B^2 B^3 B^4								
5.	Answer both parts:									
	a) What	at do you understand by SIFT? Discuss its advantages and disadvantages?	5	CO5	K2,K5					
	a) Exp	plain the Hit or Miss transform with suitable example.	5	CO5	K4					
		CO1 Apply sampling and quantization techniques for conversion of an analog imag	e into digita	al form.						
c	Course	CO2 Enhance the image using various types of filtering, segmentation and edge det	ection tech	niques						
Ou	itcomes	CO3 Analyze and interpret the effects of high pass and low pass filter in an image.								
		CO4 Restore the image in the presence of noise by using modern restoration software	re							
		CO5 Use the techniques of morphological image processing, image registration and	l image reco	ognition						