MATH 438: Introduction to Complex Variables Assignment 2

b

c 5

e x > 1/2

f $0 < y < \pi$

g $-\pi < x < \pi$

h true

i y < 0

j false

8. **Proof**

$$p(z) = (z - z_0)h(z) + p(z_0)$$

$$p(z) - p(z_0) = (z - z_0)h(z)$$

$$\frac{p(z) - p(z_0)}{z - z_0} = h(x)$$

$$\text{Let}p(z_0) = 0$$

$$\frac{p(z)}{z - z_0} = h(z)$$

Since $p(z_0) = 0, z_0$ is a root of p and therefore it evenly devides p. Making h(z) having degree of one less than p(z)

2. a $|arg(z)| < \pi/4$

$$\mathbf{c} \ |z| = arg(z)$$

7. Proof

$$\begin{split} \left| \frac{z^m}{z^n + 1} \right| & \leq & \frac{|z|^m}{|z|^n - 1} \\ \frac{|z^m|}{|z^n + 1|} & \leq & \frac{|z|^m}{|z|^n - 1} \\ \frac{1}{|z^n + 1|} & \leq & \frac{1}{|z|^n - 1} \\ |z|^n - 1 & \leq & |z^n + 1| \\ |z^n| & \leq & |z^n + 1| + 1 \text{by the triangle inequality} \end{split}$$