Compressing CNNs with CP decomposition

Никита Загайнов, Павел Кривенко, Хусейин Агаджанов

Релевантные работы

https://arxiv.org/abs/1701.07148	База нашего проекта. Мы реализовывали данную статью в форме библиотеки	[1]
https://arxiv.org/abs/2112.10855	Алгоритм, используемый для вычисления СР разложения	[2]
https://arxiv.org/abs/2005.13746	Подробнее о том, как происходит свертка разложенным ядром	[3]
https://arxiv.org/abs/1412.6553v3	В работе приведена одна из первоначальных идей со сжатием моделей	[4]

Background: CP decomposition

- Реальное название CANDECOMP/PARAFAC or canonical polyadic (CP)
- Ранг тензора NР сложная задача
- Алгоритм Alternating Least Squares (ALS) [2]
- Применяется в визуализации, РСА, **сжатии** данных, и в других целях
- Свертка с СР-разложенным ядром легко реализуема

 $X = A \otimes B \otimes C + E$

 $1. \min_{\mathbf{A}} \|\mathbf{X} - \mathbf{A} \otimes \mathbf{B} \otimes \mathbf{C}\|$

 $2. \min_{\mathbf{B}} \|\mathbf{X} - \mathbf{A} \otimes \mathbf{B} \otimes \mathbf{C}\|$

 $3. \min_{\mathbf{C}} \|\mathbf{X} - \mathbf{A} \otimes \mathbf{B} \otimes \mathbf{C}\|$

Мотивация и цель проекта

В работе [1] приведен алгоритм для эффективного сжатия сверточных нейросетей с много значащими результатами, однако в работе приводятся результаты экспериментов только над моделью AlexNet, и не прилагается код для воспроизведения результатов.

Мы ставим целью проекта реализовать предложенный алгоритм в форме библиотеки на **PyTorch**, предназначенную для сжатия моделей CNN, а также воспроизведение с ее помощью результатов данной статьи и обобщение на дополнительных моделях и сценариях.

Алгоритм сжатия CNN

Мы используем метод, описанный в [1]

- Определяем ранг каждого слоя, измеряя их "чувствительность": разложить этот слой с малым рангом и посмотреть на лосс
- После определения ранга, последовательно раскладываем каждый слой
- Важная деталь: чтобы не потерять точность, дообучаем модель после каждой операции разложения

Воспроизведение результатов [1]

	Conv1	Conv2	Conv3	Conv4	Conv5	Conv Total	FC1	FC2	FC3	FC Total
Loss from [1]	5.38	11.89	11.86	13.68	15.17	57.99	28.69	21.50	20.31	70.40
Rank from [1]	69	154	153	178	196	750	365	275	260	900
Loss (ours)	8.34	7.46	8.66	7.16	6.66	38.28	6.68	6.77	5.51	18.96
Rank (ours)	164	147	169	140	130	750	318	321	261	900
Layer size (1e3)	23	307	664	885	590	2468	37749	16777	4096	58622

Воспроизведение результатов [1]

Воспроизведение результатов [1]

Эксперименты: AlexNet

Эксперименты: AlexNet

Transfer Learning

Transfer Learning. Fashion MNIST

Transfer Learning. CIFAR10

Transfer Learning. Cats vs Dogs

Результаты и Выводы

- Этим проектом мы представляем реализацию алгоритма из [1] и частичное воспроизведение их результатов
- СР разложение позволяет сильно уменьшить размер и увеличить скорость модели без больших потерь по качеству
- СР разложенные модели можно использовать в Transfer Learning

Спасибо за внимание!

GitHub: https://github.com/SqVaD-NLA2024/conv-cp-decomposition