ПОСТАНОВКА ЗАДАЧИ

Цель: спроектировать вычислительную систему (BC)

Задачи:

- 1. определить назначение ВС (реализуемые функции, типы данных, типы операций)
- 2. определить требуемую точность, объём и скорость вычислений
- 3. определить основные концепции ее построения
- 4. выбрать архитектуру ВС
- 5. разработать аппаратную часть
 - формирование функциональной организации ВС
 - формирование структурной организации ВС (компонентов)
 - распределение функций по компонентам
- 6. разработать структуру программной части
 - -формирование системы команд процессорной части (или всех компонентов)
 - формирование структуры ПО ВС (или компонентов)
 - написание и отладка ПО
- 7. протестировать ВС в разных режимах

вычислительные возможности ПРОИЗВОДИТЕЛЬНОСТЬ ВС

КОМПЛЕКСНЫЙ ПОКАЗАТЕЛЬ = скорость вычислений

Пиковая или предельная производительность ВС

Это суммарная пиковая производительность всех её вычислителей (ядер/процессоров/ускорителей)

$$m{R}_{peak} = m{V}_{peak}^1 \cdot N_1 + m{V}_{peak}^2 \cdot N_2 + \cdots$$

Тип ядра 1 Тип ядра 2

ПРЕДЕЛЬНАЯ ПРОИЗВОДИТЕЛЬНОСТЬ ВС

Пиковая скорость работы процессора по выполнению собственных инструкций.

$$V_{\text{peak}}\left[\frac{\text{инстр}}{\text{сек}}\right] = f \cdot \sum_{i=1}^{k} [IPC \text{ (или } OPC)]_i \cdot N,$$

где V_{peak} – пиковая производительность ЦП,

f — максимальная тактовая частота центрального процессора,

k — количество исполнительных блоков в процессоре,

IPC (*instructions per cycle*) — максимальное число инструкций, выполняемых за один машинный такт каждым исполнительным блоком одного ядра,

OPC (*operations per cycle*)— максимальное число операций ЧПЗ заданной точности, выполняемых за один машинный такт каждым исполнительным блоком одного ядра,

N — количество ядер в процессоре.

Пиковая или предельная производительность процессора/ов ВС

Производительность измеряется в MIPS (миллион инструкций в секунду) и во FLOPS (количество операций над числами формата ЧПЗ (с плавающей запятой) в секунду).

Рейтинг MIPS
(Million Instructions Per Second) $= \text{миллион} \frac{\text{инстр}}{\text{сек}} = 10^6 \left[\frac{\text{инстр}}{\text{сек}} \right]$

Рейтинг FLOPS
(Floating Point Operations per Second)
= $\left[\frac{\text{опер. над числами с плав.запятой (ЧПЗ)}}{\text{сек}}\right]$

- GFLOPS (Giga Floating Operations Per Second) миллиард (10⁹) операций над ЧПЗ в секунду;
- TFLOPS (Tera Floating Operations Per Second) триллион (10¹²) операций над ЧПЗ в секунду.
- PFLOPS (Peta Floating Operations Per Second) квадриллион (10¹⁵) операций над ЧПЗ в секунду.

Рассмотрим ВС: ПК на основе процессора Intel Core i7-4770K

Описание Процессор Intel Core i7-4770К ОЕМ

Четырехъядерный процессор Intel Core i7-4770К на базе архитектуры Haswell построен по 22-нанометровому техпроцессору и способе разогнаться до 3900 МГц от базовой частоты 3500 МГц. Присутствует фирменная графическая подсистема HD Graphics 4600 с тактовой частотой до 1250 МГц, а также кэш третьего уровня. Предусмотрена поддержка до 32 гигабайт DDR3-памяти, работающей на частоте 1333 или 1600 МГц с максимальной скоростью обмена данными до 25,6 Гбайт/с. При этом тепловыделение не превышает 84 Ватт при максимальной температуре корпуса 72,72 °C.

$$f = 3.9 \ \Gamma$$
гц = $3.9 \times 10^9 \frac{\text{тактов}}{\text{сек}}$

N=4

микроархитектура – Intel Haswell

Рассмотрим микроархитектуру процессора Intel Haswell

Рейтинг MIPS

Дополнительно для расчета требуется посчитать:

- р число одновременно работающих исполнительных устройств, исполняющих инструкции, которое совпадает с числом портов от диспетчера микроопераций
- IPC число инструкций, исполняемых каждым устройством за такт

для одного ядра микроархитектуры Intel Haswell: p = 8 IPC=1

Суммарно для 1 ядра=
$$\sum_{i=1}^{k} IPC_i = 8$$
 инстр/такт

Рейтинг MIPS

Подставим все полученные данные в расчетную формулу.

$$V_{\text{peak}}\left[\frac{\text{инстр}}{\text{сек}}\right] = f \cdot \sum_{i=1}^{k} IPC_i \cdot N = 3.9 \times 10^9 \frac{\text{тактов}}{\text{сек}} \cdot \sum_{i=1}^{8} 1 \frac{\text{инстр}}{\text{такт}} \cdot 4 =$$

$$= 124,8 \times 10^9 \frac{\text{инстр}}{\text{сек}} = 124,8 \times 10^9 \frac{\text{инстр}}{\text{сек}} = 124,8 \times 10^3 \frac{\text{млн.инстр}}{\text{сек}} = 124800 \text{ MIPS}$$

Рейтинг FLOPS

Для расчета требуется посчитать:

- 1. k число устройств для обработки ЧПЗ
- 2. Обратить внимание на *b* количество шин, поставляющих информацию этим устройствам
- 3. OPC число операций, исполняемых каждым устройством за 1 такт

Как посчитать **k** - число операций, исполняемых каждым устройством за 1 такт?

Тип операции **FMA** — fused multiply-addition — склеенные 2 операции сложения и умножения в 1 моп за такт. Оба устройства относятся к классу векторных, т.е. за 1 такт обрабатывается несколько пар данных (элементов вектора). Чтобы понять сколько именно пар, нужно рассмотреть внимательно описание микроархитектуры CPU и блока FMA (например, здесь https://ru.wikipedia.org/wiki/FMA или https://ru.wikipedia.org/wiki/FMA или https://compress.ru/article.aspx?id=23845).

Как посчитать **k** - число операций, исполняемых каждым устройством за 1 такт?

Размер вектора для FMA3 = 256 бит IEEE 754-2008 http://ali.ayad.free.fr/IEEE_2008.pdf

	_		Разрядность (бит)			
Тип данных	Размер (байт)	Точность	<i>s</i> знак	<i>р</i> порядок	т мантисса	всего
binary32 (float)	4	Одинарная (SP)	1	8	23	32
binary64 (double)	8	Двойная (DP)	1	11	52	64
binary128 (long double)	16	учетверённая	1	15	112	128

Один вектор содержит $\frac{256}{64}$ = 4 элемента данных двойной точности (DP=64 разряда) или $\frac{256}{32}$ = 8 элементов данных одинарной точности (SP=32 разряда). 1 векторная операция=4 (8) скалярным операциям за такт. Для FMA 2 векторные операции за такт.

$$\sum_{i=1}^{\min(k,b)} OPC_i = \begin{cases} 2 \times \frac{256}{32} \times 2 = 2 \times 8 \times 2 = 32 \text{ SP FLOP/такт} \\ 2 \times \frac{256}{64} \times 2 = 2 \times 4 \times 2 = 16 \text{ DP FLOP/такт} \end{cases}$$
 2 блока FMA

Рейтинг FLOPS для Intel HASWELL

$$V_{\text{peak}} \left[\frac{\text{инстр}}{\text{сек}} \right] = f \cdot \sum_{i=1}^{k} OPC_i \cdot N$$

$$V_{\text{peak}}[SP\ FLOPS] = 3.9 \times 10^9 \frac{\text{тактов}}{\text{сек}} \cdot 32 \frac{\text{SP FLOP}}{\text{такт}} \cdot 4 =$$

=
$$499.2 \times 10^9 \frac{\text{SP FLOP}}{\text{cek}}$$
 = **499,2 GFLOPS(SP)**

$$V_{\text{peak}}[DP \ FLOPS] = 3.9 \times 10^9 \cdot 16 \cdot 4 = 249, 6 \ GFLOPS(DP)$$

Микроархитектура Intel xeon phi

Основные компоненты ядра Intel Xeon Phi

ПРЕДЕЛЬНАЯ ПРОИЗВОДИТЕЛЬНОСТЬ INTEL xeon phi

$$f_{\text{MAKC}} = 1.50 \text{ GHz}$$
 $N = 64$

$$V_{\text{peak}} \left[\frac{\text{инстр}}{\text{сек}} \right] = f \cdot \sum_{i=1}^{K} IPC_i \cdot N = 1,5 \times 10^9 \cdot \sum_{i=1}^{2} 1 \cdot 64 = 192000 \text{ MIPS}$$

BO FLOPS

$$V_{\text{peak}} \left[\frac{\text{инстр}}{\text{сек}} \right] = f \cdot \sum_{i=1}^{\kappa} OPC_i \cdot N = 1,5 \times 10^9 \times 16 \times 64 = 1,536 \text{ TFLO}$$

=1,536 TFLOPS (DP<mark>)</mark>

= 3,072 TFLOPS (SP)

РЕАЛЬНАЯ ПРОИЗВОДИТЕЛЬНОСТЬ ВС

Это скорость работы ВС по выполнению собственных инструкций/операций с учётом:

- времени обращения к оперативной памяти за операндами,
- времени выполнения операций ввода/вывода,
- ошибок/исключений в ходе выполнения реальной программы.

ОПРЕДЕЛЯЕТСЯ ТОЛЬКО ОПЫТНЫМ ПУТЁМ

$$R_{real}^{FLOPS} = rac{n_{
m onepauum \, 4\Pi3}}{t_{
m Bhino, Th}}$$

• Встроенный тест в ОС - WinSAT

ПРИМЕРЫ:

- Спец. ПО AIDA64, Everest
- Программы Linpack

РЕАЛЬНАЯ ПРОИЗВОДИТЕЛЬНОСТЬ ВС

Чаще всего используется тест Linpack и оценивается максимальная достигнутая производительность

Rank	Site	System	Cores	Rmax (TFlop/s)	Rpeak (TFlop/s)	Power (kW)
1	DOE/SC/Oak Ridge National Laboratory United States	Summit - IBM Power System AC922, IBM POWER9 22C 3.07GHz, NVIDIA Volta GV100, Dual-rail Mellanox EDR Infiniband IBM	2,397,824	143,500.0	200,794.9	9,783
2	DOE/NNSA/LLNL United States	Sierra - IBM Power System S922LC, IBM POWER9 22C 3.1GHz, NVIDIA Volta GV100, Dual-rail Mellanox EDR Infiniband IBM / NVIDIA / Mellanox	1,572,480	94,640.0	125,712.0	7,438
3	National Supercomputing Center in Wuxi China	Sunway TaihuLight - Sunway MPP, Sunway SW26010 260C 1.45GHz, Sunway NRCPC	10,649,600	93,014.6	125,435.9	15,371
4	National Super Computer Center in Guangzhou China	<u>Tianhe-2A</u> - TH-IVB-FEP Cluster, Intel Xeon E5-2692v2 12C 2.2GHz, TH Express-2, Matrix-2000 NUDT	4,981,760	61,444.5	100,678.7	18,482

ЭФЕКТИВНОСТЬ ВС (по производительности)

Отношение максимальной реально измеренной производительности ВС к её теоретически рассчитанной пиковой производительности

$$E = \frac{R_{max}}{R_{peak}}$$

ЭФЕКТИВНОСТЬ ВС (по производительности)

Ran k	System	Cores	Rmax (TFlop/s)	Rpeak (TFlop/s)	Эффективность (%)	Power (kW)
1	Summit United States	2,397,824	143,500.0	200,794.9	71,47	9,783
2	Sierra United States	1,572,480	94,640.0	125,712.0	75,28	7,438
3	Sunway TaihuLight - China	10,649,600	93,014.6	125,435.9	74,15	15,371
4	<u>Tianhe-2A</u> China	4,981,760	61,444.5	100,678.7	61,03	18,482

$$E = R_{max}/R_{peak} \approx 60 \div 90\%$$

ЭФЕКТИВНОСТЬ ВС (по производительности)

Rank	System	Cores	Rmax (TFlop/s)	Rpeak (TFlop/s)	Power (kW)	Эффективнос ть Rmax/ Rpeak
1	<u>Sunway,</u> China	10,649,600	93,014.6	125,435.9	15,371	74 %
2	<u>Tianhe-2,</u> <u>China</u>	3,120,000	33,862.7	54,902.4	17,808	62 %
3	<u>Titan – Cray,</u> <u>United States</u>	560,640	17,590.0	27,112.5	8,209	64 %
4	Sequoia, United States	1,572,864	17,173.2	20,132.7	7,890	85 %
5	K computer, Japan	705,024	10,510.0	11,280.4	12,660	89 %

$$E = R_{max}/R_{peak} \approx 60 \div 90\%$$

ТРЕБУЕМАЯ МАКСИМАЛЬНАЯ ПРОИЗВОДИТЕЛЬНОСТЬ

$$V_{\text{real}} = X \text{ FLOPS}$$

k – количество исполнительных блоков

Задание 1. Производительность ВС

- 1) Определить единицы измерения пиковой производительности ВС.
- 2) Рассмотреть конкретный пример BC (можно top500.org или для своего домашнего ПК), построить схему архитектуры BC
- 3) Измерить Rmax взять с сайта или скачать и запустить тест (обычно Linpack может считать долго!!! наберитесь терпения)
- 4) Вывести формулу расчёта пиковой производительности выбранной ВС
- 5) Рассчитать Rpeak, Е

$$E = \frac{R_{\text{max}} - \text{Maximal (LINPACK) performance achieved}}{R_{\text{peak}} - \text{Theoretical peak performance}}$$

Источники:

- 1.Сайт ferra.ru. Логинов Вячеслав, Haswell: заглянем под крышечку, 2013, http://www.ferra.ru/ru/system/review/Intel-Haswell-inside/#363742
- 2.Сайт компании Intel с описанием процессоров http://ark.intel.com/#@Processors
- 3.URL: http://www.top500.org/
- 4.Шнитман В. Современные высокопроизводительные компьютеры: Информационно-аналитические материалы Центра информационных технологий, URL: http://citforum.ru/hardware/svk/contents.shtml
- 5. Тесты производительности процессора. URL: http://www.parallel.ru/computers/benchmarks/perf.html
- 6.NAS Parallel Benchmarks. URL: http://www.nas.nasa.gov/publications/npb.html)
- 7. Сайт CSA (Computational Science Alliance)/раздел Сравнительная производительность. URL: http://www.csa.ru/CSA/performance1.shtmr
- 8.Черняк Л. Флопсы и лошадиные силы//Открытые системы.2011. № 07. URL: http://www.osp.ru/os/2011/07/13010474/
- 9.Сайт корпорации SPEC. URL: http://www.spec.org/
- 10.Bailey D. H. Twelve Ways to Fool the Masses When Giving Performance Results on Parallel Computers, Ref: Supercomputing Review. Aug. 1991. P. 54—55. URL: http://www.pdc.kth.se/training/ twelve-ways.html. Пер. на русск.: Двенадцать способов обмана, представляя производительность параллельных компьютеров. URL: http://favorit-studio.com/novostu-vusokix-texnologiy/desyatsposobov-obmana-na-rezultatax-izmereniya-proizvoditelnosti-gpu.html
- 11. Иванова Е. М. Сравнительная оценка производительности вычислительных систем // Информационные технологии. 2013. № 8. С. 22-26.
- 12. Алгоритмы*, Блог компании Intel, Программирование* Как и зачем мерить FLOPSы http://habrahabr.ru/company/intel/blog/144388/