STROKE PREDICTION CARDIOVASCULAR SYSTEM

PROJECT GUIDE BY:-

MR.ABHAY MANE

MEMBERS:-

ANKIT BHOGE ROHIT GOYAL

ACHARYA SARANG ABHISHEK PANDEY

SHEIKH MOHSIN

HOW DO WE SOLVE PROBLEM?

- For solving this problem we have used machine learning techniques.
- Using this we are trying to predict the possibility of a person getting cardio strok
- · For prediction we have consider that parameter which we can measure at home
- For making this system user-friendly we have prepared the web interface through

SYSTEM DESIGN

HOW WE BUILD MACHINE LEARNING MODEL?

For building machine learning model.

- Finding out proper dataset which will help us addressing and solving problem bet
- Doing data preprocessing.
- Trying out different machine learning algorithm.
- Hyperparameter tuning.
- Building front-end using Django.
- Deploying using AWS.

FINDING DATASET

We have found the dataset on kaggle.

Cardiovascular Disease dataset

Code (159)

Discussion (8)

Expected upd

Not specified

♣ Download (760 kB)

New Notebook

817

Objective: factual information;

There are 3 types of input features:

- Examination: results of medical examination;
- · Subjective: information given by the patient.

Features:

- 1. Age | Objective Feature | age | int (days)
- 2. Height | Objective Feature | height | int (cm) |
- 3. Weight | Objective Feature | weight | float (kg) |
- 4. Gender | Objective Feature | gender | categorical code |
- 5. Systolic blood pressure | Examination Feature | ap_hi | int |
- 6. Diastolic blood pressure | Examination Feature | ap_lo | int |
- 8. Glucose | Examination Feature | gluc | 1: normal, 2: above normal, 3: well above normal |

7. Cholesterol | Examination Feature | cholesterol | 1: normal, 2: above normal, 3: well above normal

- 9. Smoking | Subjective Feature | smoke | binary |
- 10. Alcohol intake | Subjective Feature | alco | binary |
- 11. Physical activity | Subjective Feature | active | binary |
- 12. Presence or absence of cardiovascular disease | Target Variable | cardio | binary |

All of the dataset values were collected at the moment of medical examination.

DATA PREPROCESSING

	Type 1 error (False	Type 1 error Type 2 error (False (False								
	Positive)	Negative)	Accuracy	Accuracy F1 - Score Precision Recall Important Feature	Precision	Recall	Importan	t Feature		
Basic Implementation directly on data	2378		71.52	2606 71.52 71.3497 72.2973 70.4267 age	72.2973	70.4267	age	ap_hi	weight	ap_lc
Treating numerical columns in details	2340		2557 71.9643		71.471 72.3861 70.5788 age	70.5788	age	weight	ap_hi	heigh
Adding some more columns	2466		2546 71.3059		70.992 71.3222 70.6648 age	70.6648	age	BMI	ap_hi	weig
standardScaler - LeaveOneOutEncoder	- 2254		2660 71.8669	71.4535	71.4535 73.1794 69.807	69.807				
dropping record	2388	2577		71.09 70.3387 71.142 69.5534 age	71.142	69,5534	age	BMI	weight	heigh
dropping features	2328		2584 71.3986	70.748	70.748 71.8433 69.6856 age	69,6856	age	BMI	weight	heigt

TRYING WITH DIFFERENT ALGORITHM

Algorithm Name	Accuracy	Precision	Recall	F-1 Score	False Positive	False !
Random forest	74.1341	76.9348		72.8583	1818	2
AdaBoost	73.4757	76.6334	66.5468	71.2361	1749	2
Multi-Layer Percerptron	72.8803	73.107	72.508	72.843	2337	2
Decision Tree	73.24	73.19	73.56	73.37	3450	3
NB	73.25	73.19	73.56	73.37	3450	2
XGBoost	73.64	7.1	78	75	2255	3
SVM	73	7.1	79	75	2170	3
Bagging	72.87	75	69	72	2448	3
Gradient Boosting	73.11	75	69	72	2375	3
Logistic Regression	69	29	77	72	2054	3

HYPERMETER TUNING

- Random Search
- Grid Search
- TPE (Tree Parzen Estimator)

RANDOM AND GRID SEARCH

TPE

DJANGO

AWS DEPLOYMENT

