

MISCELLANEOUS PAPER M-76-6

COMPARISON OF THE RIDE AND MOBILITY CHARACTERISTICS OF SELECTED COMMERCIAL 1/4- TO 3/4-TON VEHICLES AND THE MILITARY M151A2 UTILITY TRUCK

Ьу

Donald D. Randolph

Mobility and Environmental Systems Laboratory
U. S. Army Engineer Waterways Experiment Station
P. O. Box 631, Vicksburg, Miss. 39180

March 1976 Final Report

Approved For Public Release; Distribution Unlimited

Prepared for U. S. Army Tank-Automotive Command Warren, Michigan 48090

DISCLAIMER NOTICE

THIS DOCUMENT IS BEST QUALITY AVAILABLE. THE COPY FURNISHED TO DTIC CONTAINED A SIGNIFICANT NUMBER OF PAGES WHICH DO NOT REPRODUCE LEGIBLY.

Destroy this report when no longer needed. Do not return it to the originator.

Unclassified SECURITY CLASSIFICATION OF THIS PAGE (When Date Entered) READ INSTRUCTIONS
BEFORE COMPLETING FORM REPORT DOCUMENTATION PAGE 1. REPORT NUMBER 2. GOVT ACCESSION NO. 2. RECIPIENT'S CATALOG NUMBER Miscellaneous Paper M-76-6 Comparison of the Ride and Mobility Characteristic of Selected Commercial 1/4- to 3/4-Ton Vehicles and the Military M151A2 Utility Truck. 7. AUTHOR(s) 8. CONTRACT OR GRANT NUMBER(s) Donald D Randolph PROGRAM ELEMENT, PROJECT, TASK AREA & WORK UNIT NUMBERS U. S. Army Engineer Waterways Experiment Station Mobility and Environmental Systems Laboratory P. O. Box 631, Vicksburg, Miss. 39180 11. CONTROLLING OFFICE NAME AND ADDRESS U. S. Army Tank-Automotive Command Warren, Michigan 48090 15. SECURITY CLASS. (or 14. MONITORING AGENCY NAME & ADDRESS(If different from Controlling Office) Unclassified 15a, DECLASSIFICATION/DOWNGRADING SCHEDULE 16. DISTRIBUTION STATEMENT (of this Report) Approved for public release; distribution unlimited. 17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different from Report) D 18. SUPPLEMENTARY NOTES 18. KEY WORDS (Continue on reverse side if necessary and identify by block number) Military vehicles Mobility Ride dynamics Trucks TRACT (Continue on reverse olds if necessary and identify by block number) A study was conducted to (a) obtain experimental ride, shock, and speed data for 10 commercial 1/4- to 3/4-ton vehicles with 800-1b payloads and with rated payloads; (b) use the experimental data to develop ride and shock rela-

DD FORM 1473 EDITION OF PHOYES IS OBSOLETE

Unclassified

SECURITY CLASSIFICATION OF THIS PAGE (When Date Entered)

(Continued)

038/00

tions for use in the Army Mobility Model (AMM); (c) compare the relative ride performances of the candidate commercial vehicles with that of the military M151A2 utility truck; and (d) use the experimental ride and shock data and the measured traverse speed data to validate the AMM in relation to these vehicles.

Unclassified

SECURITY CLASSIFICATION OF THIS PAGE(When Data Entered)

Ride, shock, and traverse tests were conducted with each vehicle configuration at Fort Hood, Texas. These data were used to develop ride and shock relations for each vehicle and load configuration. Speed limitations due to steering and handling were identified and related to surface roughness for each configuration. Vehicle configurations were ranked according to relative ride quality, cargo responses, obstacle shock, traverse speed, and absorbed energy per mile of traverse. Traverse speed predicted with the AMM was compared to the measured traverse speed for each configuration.

Several of the commercial vehicles outperformed the M151A2 in each of the more important areas in which they were compared. The standard Scout had the best ride quality, the high-performance Ramcharger had the best shock-sustaining characteristics, and the high-performance Bronco had the best traverse speed. The ride quality of most of the commercial vehicles with the rated payload was as good as, or only slightly lower than, those with 800-lb payload. Most of the high-performance commercial vehicles with both the rated payload and the 300-lb payload exceeded the traverse speed of the M151A2.

AMM was determined to be adequate for predicting speed performance on the short test traverse, provided the maximum control speed due to steering- and handling-surface roughness relation is used in predicting speed in place of the 6-watt driver absorbed power limit, which is more appropriate for missions of longer duration.

Appendix A contains the detailed dynamics data for ride and obstacle tests, and Appendix B contains the detailed speed and dynamics data for the traverse tests.

THE CONTENTS OF THIS REPORT ARE NOT TO BE USED FOR ADVERTISING, PUBLICATION, OR PROMOTIONAL PURPOSES. CITATION OF TRADE NAMES DOES NOT CONSTITUTE AN OFFICIAL ENDORSEMENT OR APPROVAL OF THE USE OF SUCH COMMERCIAL PRODUCTS.

PREFACE

Personnel of the U. S. Army Engineer Waterways Experiment Station (WES) conducted the study reported herein from April to November 1975. Vehicles were tested at Fort Hood, Texas, for the Modern Army Selected Systems Test Evaluation and Review (MASSTER) in support of MASSTER Test Plan No. FM300 under Intra-Army Order for Reimbursable Services No. 156-75 dated 23 April 1975. The field test data were analyzed for the Systems Division of the Research, Development, and Engineering Directorate of the U. S. Army Tank-Automotive Command (TACOM), under Intra-Army Order for Reimbursable Services No. 75-12R dated 13 May 1975.

The study was conducted under the general supervision of Messrs. W. G. Shockley, Chief, Mobility and Environmental Systems Laboratory; A. A. Rula, Chief, Mobility Systems Division (MSD); E. S. Rush, Chief, Mobility Investigations Branch (MID); and C. J. Nuttall, Jr., Chief, Mobility Research and Methodology Branch (MRMB). Field tests were conducted at Fort Hood, Texas, with the general support of MASSTER under the general supervision of COL A. S. Hawkins, Director of the Combat Service Support and Special Programs Directorate, and LTC T. G. Holloway, Chief of the Mobility and Maintenance Division, MASSTER, and under the direct support supervision of TC L. W. Grimes, Chief, Mobility Test Branch (MTB) and C. D. Thompson, Test Officer, MTB.

Field test data were collected by Messrs. D. D. Randolph, MRMB;
L. B. Naron, Operations Branch, Instrumentation Services Division;
L. M. Lewis, MIB; C. R. May, MIB; C. D. Currie, MIB; J. N. Peacock, MIB;
and D. E. Strong, MIB. Vehicle performance was predicted using the Army
Mobility Model (AMM) by Mr. R. P. Smith, Data Handling Branch, MSD. The
report was prepared by Mr. Randolph.

COL G. H. Hilt, CE, was the Director of WES during the study and preparation of the report. Mr. F. R. Brown was Technical Director.

CONTENTS

	Page
PREFACE	2
LIST OF FIGURES	4
CONVERSION FACTORS, U. S. CUSTOMARY TO METRIC (SI) UNITS	
OF MEASUREMENT	6
PART I: INTRODUCTION	7
Background	7 8 8
PART II : FIELD TESTS	9
Test Vehicles	9
Responses	14
Test Courses	14 22
Test Procedures	43
PART III : ANALYSIS OF FIELD DATA	45
Dynamics Tests	45 64 72 73 73
PART IV: CONCLUSIONS AND RECOMMENDATIONS	76
Conclusions	76 77
REFERENCES	78
TABLES 1-20	
PLATES 1-20	
APPENDIX A: DETAILED DYNAMICS DATA FOR RIDE AND SHOCK TESTS	
TABLES A1-A2	
APPENDIX B: DETAILED SPEED AND DYNAMICS DATA FOR TRAVERSE COURSES	
TABLES B1-B36	

4.

LIST OF FIGURES

Study vehicles
Portable ride meter and associated accelerometers
Basic instrumentation recording components
Ride meter installed for vehicle test
Accelerometer mount for cargo area
Vicinity map of the Fort Hood Military Reservation, Texas
Location of test areas at Fort Hood, Texas
Dynamics test courses
Layout of obstacle-impact test course
Views and profiles of traverse test course
Surface roughness-speed relations for standard Ramcharger at two payloads
Surface roughness-speed relations for standard Blazer at two payloads
Surface roughness-speed relations for standard CJ5 at two payloads
Surface roughness-speed relations for standard Secut at two payloads
Surface roughness-speed relations for standard Bronco at 800-1b payload
Surface roughness-speed relations for high-performance Ramcharger at two payloads
Surface roughness-speed relations for high-performance Blazer at two payloads
Surface roughness-speed relations for high-performance CJ5 at two payloads
Surface roughness-speed relations for high-performance Scout at two payloads
Surface roughness-speed relations for high-performance Bronco at two payloads
Surface roughness-speed relations for military M151A2 at 800-1b payload
Obstacle height-speed relations for standard vehicles and M151A2

Obstacle height-speed relations for high-performance vehicles
Speed measured in each road or trail unit during instrumented tests on traverse course
Absorbed power-speed relations for M151A2, 800-1b payload at 15-, 20-, and 30-psi tire pressures on CC2A, CC3A,
and T1

大学 のできる から ままでした ちゃんない とうしょうしょう

CONVERSION FACTOR, U. S. CUSTOMARY TO METRIC (SI) UNITS OF MEASUREMENT

Units of measurement used in this report can be converted as follows:

Multiply	Ву	To Obtain
inches	0.0254	metres
feet	0.3048	metres
miles (U.S. statute)	1.609344	kilometres
square inches	6.4516x10 ⁻⁴	square metres
acres	4046.856	square metres
pounds (force))	4.448222	newtons
pounds (force) per square inch	6.894757	kilopascals
miles per hour	1.609344	kilometres per hour
tons (short)	907.1847	kilograms
horsepower per ton	83.82	watts/kilonewton
degrees (angle)	0.01745329	radians

COMPARISON OF RIDE AND MOBILITY CHARACTERISTICS OF SELECTED COMMERCIAL 1/4- TO 3/4-TON VEHICLES AND THE MILITARY M151A2 UTILITY TRUCK

PART I: INTRODUCTION

Background

- 1. The rising cost of consumer goods has affected every element of American society, including the military. The annual military investment in personnel and specially designed military equipment is substantial. Measures have been required to ensure that the task of equipping and maintaining a modern Army can be accomplished with a maximum return on investment. Use of commercially designed vehicles to replace or support certain military vehicle types was identified in the 1972 DA WHEELS Study as an area where cost may be reduced without affecting the overall Army posture.
- 2. In response to the WHEELS Study findings, the U. S. Army Materiel Command (AMC) and the U. S. Army Tank-Automotive Command (TACOM) selected a high-performance vehicle and a standard commercial vehicle from each of five manufacturers for evaluation to assist in identifying a commercial vehicle configuration as a potential replacement for the M151A2 utility truck. Common features of the high-performance vehicle group were high-horsepower engines, power steering, power brakes, automatic transmission, and four-wheel drive. The standard group was characterized by lower horsepower and four-wheel drive at the driver's option.
- 3. The U. S. Army Engineer Waterways Experiment Station (WES) was asked by the Modern Army Selected Systems Test Evaluation and Review (MASSTER) to support its test program No. FM300 by collecting data on the mobility and ride characteristics of the M151A2 1/4-ton utility truck and candidate commercial vehicles. Ride, shock, and traverse tests were to be conducted at Fort Hood, Texas, during May-June 1975

over selected dynamics test courses, rigid obstacles, and a traverse test course. WES was asked by TACOM to analyze the measured ride, shock, and traverse data and to prepare a report.

Purpose

- 4. The purposes of this study were to:
 - a. Obtain experimental ride, shock, and speed data for 10 commercial 1/4- to 3/4-ton vehicles, each carrying an 800-1b payload.
 - b. Use experimental data to develop the appropriate ride and snack relations for use in the Army Modiblity Model (AMM).
 - c. Make a limited comparison of the candidate commercial vehicles with the military M151A2 utility truck on the bases of ride, shock, and traverse performances.
 - d. Use the experimental ride and shock data and the measured traverse speed data to validate the AMM relations.

Scope

5. Tests were conducted with the 10 commercial vehicles and the M151A2 on seven ride test courses, one obstacle-impact test course, and one traverse test course. Data from the ride and obstacle-impact tests were used to characterize the vehicle's vibration and shock qualities for input to the AMM. Speed was predicted for the traverse course with AMM the AMM and compared with the measured traverse speed for each of the study vehicles.

a. Standard Ramcharger

b. Standard Blazer

e. Standard CJ5

Figure 1. Study vehicles (sheet 1 of 4)

d. Standard Scout

e. Standard Bronco

f. High-performance Ramcharger

Figure 1 (sheet 2 of 4)

g. High-performance Blazer

h. High-performance CJ5

i. High-performance Scout

Figure 1 (sheet 3 of 4) 12

j. High-performance Bronco

k. M151A2

Figure 1 (sheet 4 of 4)

Instrumentation for Measuring Vehicle Dynamic Responses

9. The instrumentation for measuring vehicle dynamic responses consisted of: (a) three orthogonally positioned linear accelerometers and two angular accelerometers mounted near the geometric center of the cargo area to measure the bounce, fore-to-aft, side-to-side, and pitchand-roll accelerations in the cargo area; (b) three orthogonally positioned linear accelerometers mounted on the driver's seat and connected to a portable ride meter to measure the driver's absorbed power;* (c) one vertically oriented accelerometer mounted on the floor beneath the driver's seat; and (d) one vertically oriented accelerometer mounted on the front axle. All signals were recorded on FM magnetic tape by a 14channel heavy-duty recorder and its associated signal processor and 30volt battery power source, which were also mounted on the vehicle (Figures 2-5). The ride meter converted the acceleration signals at the driver's seat to absorbed power. In addition to being recorded on tape, absorbed power was displayed continuously on a meter for visual observation of the responses occurring during each test. The elapsed time and time-averaged absorbed power were obtained from a digital meter at the end of each test.

Test Courses

Location

10. MASSTER personnel selected the general test area. WES personnel selected the specific dynamics and traverse courses in areas where obvious GO conditions existed. All courses were in the same general area at Fort Hood, northwest of the Belton Reservoir along Owl Creek (Figure 6). Geographic coordinates for the area and locations of the test sites are given in Figure 7. An environmental description of Fort Hood is given in Reference 5.

^{*} Absorbed power is the criterion used in human tolerance to vibration (see paragraph 35).

Figure 2. Portable ride meter and associated accelerometers

Legend

- 1 Tape recorder
- 2 30-volt power source 3 Signal controller
- 4 Ride meter
- 5 Absorbed power display
- 6 Voltmeter w/averaging circuit

Figure 3. Basic instrumentation recording components

Figure 4. Ride meter installed for vehicle test

Legend

1 - Linear accelerometers2 - Rotational (angular) accelerometers

Figure 5. Accelerometer mount for cargo area

Figure 6. Vicinity map of the Fort Hood Military Reservation, Texas

Figure 7. Location of test areas at Fort Hood, Texas

Description

- 11. Ride test courses. Previous tests^{5,6} at Fort Hood have shown a distinct difference in vehicle ride over cross-country terrain and over roads and trails. The repetitive traffic over trails tends to smooth out the natural high-frequency components in the terrain surface. Therefore, to provide a representative group of surface conditions, three cross-country courses, three trails, and a secondary road (graveled surface) were used to characterize vehicle ride. The cross-country test courses were designated as CC1A, CC2A, and CC3A; the trails, as T1, T3, and T4; and the single secondary road, as SR1 (Figure 7 for locations, and Figure 8 for photos of the courses).
- 12. Trail courses T1, T3, and T4 and secondary road course SR1 were the same as established for previous test programs.^{5,6} CC1A, CC2A, and CC3A were in the same area, but with different paths, to ensure that the high-frequency components of the terrain surface were present.
- 13. The three cross-country courses, course T3, and course SR1 were each 400 ft long; T1 was 800 ft long; and T4 was 300 ft long. A profile of each course was measured with rod and level at 1-ft intervals, and surface roughness (rms elevation) was determined from these profiles using current procedures which eliminate frequency components having wave lengths greater than 60 ft. The surface roughness (rms elevation) for each ride test course was as follows:

Test Course	Surface Roughness (rms elevation), in.
CC1A	0.5
CC2A	1.4
CC3A	1.8
T1	2.0
Т3	0.8
T4	1.2
SRL	0.4

14. Obstacle-impact test course. Rigid, semicircular obstacles 4, 6, and 8 in. high were positioned in a line on a level, hard surface. A perpendicular approach lane to each obstacle was used to permit the

a. Cross-Country Test Course 1A

b. Cross-Country Test Course 2A

c. Cross-Country Test Course 3A d. Secondary Road Test Course 1

Figure 8. Dynamics test courses (sheet 1 of 2)

Trail Test Course 1

f. Trail Test Course 3

g. Trail Test Course 4 h. 8-in. Obstacle on Test Course

Figure 8 (shee 2 of 2)

test vehicles to achieve the desired speeds. Time to traverse the last 100 ft to the obstacle (during which speed was fully stabilized) was used to compute the impact speed. Location of the course is shown in Figure 7; a photograph of the 8-in. obstacle, in Figure 8h; and a sketch of the obstacle course layout, in Figure 9.

15. Traverse course. The traverse course was the same as the course described as the Primary Test Course for a previous study, but all terrain units previou ly classed as cross-country were redefined as trails because of repetitive traffic over the course since the previous study (Figure 10). The course was 7.07 miles long and composed of contiguous secondary road and trail units. The 14 secondary road units (units 1-11 and 41-43) and 38 trail units (units 12-40 and 44-52) comprised 42 and 58 percent, respectively, of the total length.

Test Procedures

Preparation of vehicles for testing

- 16. The test vehicles were serviced and checked before each test to ensure peak mechanical performance during tests. When major mechanical problems developed, the commercial vehicles were returned to local dealers for repair. Minor repairs were accomplished in the field by Army mechanics.
- 17. Roll bars were fitted to all commercial test vehicles to decrease the concess of serious accidents and to ensure that all vehicles were equipped with the same safety devices (some of the candidate commercial vehicles were equipped with roll bars as standard equipment).
- 18. Seat belts and safety helmets were also used during testing of all vehicles except the M151A2. Drivers of the M151A2 were safety helmets but felt safer without the seat belts since the vehicle was not equipped with a roll bar.* However, the WES driver (whose speeds were

^{*} Limited experience with military drivers has indicated that presence of a roll bar increases operating speeds in rough terrain.

b. PROFILE VIEW
Figure 9. Layout of obstacle-impact test course

TERRAIN UNIT NO.

PROFILE CONTINUES ABOVE

大大學大學 医大學 医大學 医水管 医水管 医水管 医水管

ELEVATION IN FRET

Figure 10 (sheet 8 of 8)

END OF PRIMARY TEST COURSE (STATION 373+70)

中国的大学的大学的大学的大学的 人名西班牙斯 医二种性病 医神经病 医二种

1

used for the final evaluation) maintained that he remained in contact with the seat at all times with the aid of the steering wheel.

- 19. Sand bags were used to load all the vehicles except the CJ5 at rated payload. Lead weights were required in addition to sand bags for this vehicle because of the small cargo area. Vehicles were weighed with portable scales at the test site.
- 20. Tire pressures were checked and adjusted as necessary before each traverse test and before and at intervals during the ride and shock tests. Tire pressures used during testing were those recommended by TACOM (Table 2).

Dynamics tests

- 21. Ride tests. Several tests were conducted with each vehicle over each ride test course at selected speeds ranging from a low of about 5 mph to the maximum safe speed. Speed was increased from test to test, usually in 3-5 mph increments, until the ride limit or the maximum control speed due to steering and handling problems was equaled or slightly exceeded.
- 22. Each test began with the vehicle positioned a sufficient distance from the beginning of the test course to enable the driver to reach the desired test speed before entering the test course. This speed was then maintained at a nominally constant level (using the vehicle's speedometer) throughout the length of the course. An observer rode in the vehicle during each test and selected the test speed, operated the ride meter, and narrated details of the tests on the magnetic tape.
- 23. During these tests, data were also taken to define motions in the cargo bed.
- 24. Obstacle-impact tests. Four or five tests were conducted with each vehicle over each obstacle (4-, 6-, and 8-in. heights) at relatively constant speeds from 5 mph to the maximum safe speed to characterize the vehicle shock response.
- 25. Each test began by positioning the test vehicle a sufficient distance from the 100-ft timing stake (Figure 9) so that the driver could reach the desired test speed before reaching the stakes. He then

maintained that speed (using the vehicle's speedometer) until the vehicle had completely crossed the obstacle. (Obstacle-impact speed was computed from the distance and elapsed time between passage of the stakes and obstacle contact.) An observer rode in the vehicle during each test, selected the test speed, operated the ride meter, and narrated the pertinent test activities.

Traverse tests

26. Each of the 20 vehicle configurations was run over the traverse test course by each of three selected military drivers and one experienced WES driver (80 test runs). Prior to traverse testing, all drivers were asked to familiarize themselves with the vehicles they were to drive. Each military driver was then allowed to drive one pass over the traverse test course at a moderate speed accompanied by a WES observer, who pointed out dangerous locations and also determined if the driver seemed sufficiently trained for testing. The test drivers and their experiences expressed in miles driven prior to this test program were:

Driver	Rank	M151A2	Commerc	ial 1/4-ton Off-Road Vehicles
White	E-4	3,000	•	1,000+
Shaw	E-3	8,000		1,000+
Leigh	E-4	3,000		1,000+
Nixe	E-2	0		100
Ellis	E-4	1,000		0
Campbell	E-3	200		1,000+
Allison	E-3	9,000		1,000+
Baker	E-4	15,000		1,000+
Lewis	Civilian	3,000		50,000+

27. Just prior to testing, each driver was instructed to drive the course at the maximum safe speed, considering himself, the observer, and the cargo. He was told that the WES observer was in command of the vehicle at all times but would make no decision as to how the test course should be driven, except to tell the driver to slow the vehicle to a controllable speed if the driver began to lose control. In the

interest of safety, the driver was also instructed to limit his speed on the secondary road to 40 mph. The driver was also instructed to enter the first road unit at 40 mph and to continue along the traverse, adjusting his speed as necessary to obtain a maximum safe speed for the traverse.

28. The WES observer in the vehicle during traverse testing also operated the ride meter and narrated pertinent occurrences. The driver and observer commented on the test activities at the end of each traverse test.

Test Data Collected

Ride tests

29. The principal data for the ride tests were the vertical accelerations at the driver's seat. Fore-to-aft and side-to-side accelerations at the driver and cargo areas and vehicle speed were also measured. The acceleration signals on the driver's seat were converted to absorbed power by the portable ride meter.

Obstacle-impact tests

30. The data collected for the obstacle-impact tests were the same as those measured in the ride tests, but only the peak values of vertical accelerations beneath the driver's seat were considered in the analysis. In addition to the dynamics data, the elapsed time and corresponding average speeds were determined for each test.

Traverse tests

- 31. In addition to the dynamic response data, the time each vehicle spent in each terrain unit in the traverse course was recorded.
- 32. Data were collected to characterize the traverse test course in the quantitative terms (Table 3) required by the AMM for predicting maximum speed. Procedures for collecting terrain data for vehicle mobility tests are given in Reference 5. To achieve maximum prediction accuracy, actual recorded values for terrain rather than midpoint class values were used in the model predictions for this study; however, terrain factor classes were used to establish terrain units and road

segments. Soil strength was measured during wet periods and dry periods to establish the dry, average, and wet soil conditions.

PART III: ANALYSIS OF FIELD DATA

Dynamics Tests

Ride tests

- 33. The basic data describing the ride and cargo responses from the ride tests are listed in Appendix A (Table A1) for each vehicle configuration.
- 34. Ride quality is presently based on the vertical motions at the driver's seat and is used as a basis for assessing the speeds at which a driver will operate the vehicle. Ride quality in itself does not fully represent the degree of accompanying vehicle abuse or vehicle tolerance to such abuse. Other motions, such as fore-and-aft and side-to-side, are being studied in other research programs to determine their effects on driver perceptions of ride quality and his corresponding driving behavior. All three motions were recorded in these field tests, but ride quality values for the present study were developed from vertical motion at the driver's seat only.
- 35. Absorbed power, which is a measure of the rate at which vibrational energy is absorbed by a human, is a ride comfort criterion established through a laboratory test program at TACOM several years ago. Six watts was established as the human tolerance limit when vibration was in the vertical direction only. Results of field tests indicate that the 6-watt value is often low for certain short traverse tests and that a driver is often willing to subject himself to 10-20 watts for short periods of time. Field tests in which drivers have subjected themselves to more than 6 watts for several hours have not been conducted; therefore, the 6-watt criterion is still used for describing ride comfort.
- 36. Cargo area responses to continuous vibrations are described in terms of the composite rms acceleration. Composite rms acceleration is, in essence, a measure of the effective acceleration intensity resulting from the combined vertical, side-to-side, and fore-to-aft motions, disregarding the direction of the resultant vector. It is computed by

the equation

Composite rms acceleration =
$$\sqrt{\frac{1}{T}} \int_{0}^{t} x^{2} dt$$

where

T = the total time over which the accelerations are averaged.

t = the instantaneous time.

x = the square root of the sum of the squares of the accelerations
in the vertical, side-to-side, and fore-to-aft directions.
This particular descriptor was used because it was felt that cargo
demand depends more on the evently intensity of the wibration and loss.

This particular descriptor was used because it was felt that cargo damage depends more on the overall intensity of the vibration and less on the direction of vibration. These assumptions have not been validated, and further study is required to relate these response quantities to cargo damage limits. These data were included in the basic data table only for direct comparison of study vehicles. The angular accelerations were not analyzed because their effects are inherently reflected in the three-dimensional translational acceleration and thus are incorporated in the composite rms accelerations.

- 37. In addition to the composite rms accelerations, the number of occurrences of peak values of the composite acceleration falling within six preselected levels are included in the basic data. These cargo data are included mainly as supplemental information and are not analyzed. They provide a means of examining cargo responses and determining the distribution of peak g levels occurring in the cargo area during each test. This information could be used for estimates of the probability of exceeding given acceleration levels under certain specified conditions.
- 38. The assumptions have not been validated, and further work is required before type of cargo, packaging, etc., can be related to kind and degree of damage to be expected when cargo is subjected to vehicular vibrational environments.
- 39. The bases of the ride and cargo quantification are the absorbed power versus speed and composite rms acceleration versus speed relations, respectively, shown in Plates 1-20. These data show the manner in which

the ride and cargo responses change as a function of speed for each test vehicle configuration on each cross-country and trail course. A distinction was made between the cross-country and trail courses, and separate curves were drawn because past experiences with ride tests have revealed that trail courses generally permit higher speeds than the cross-country courses for corresponding levels of absorbed power and surface roughness. Repetitive vehicular traffic on trails, particularly that of heavy track-laying vehicles, tends to smooth out the high-frequency components in the terrain surface, which constitute a large portion of vibrational energy transmitted to the vehicle's main frame. It is realized that a better way of discriminating the frequency content of a profile is needed because some cross-country profiles may not have high-frequency components. For this study, however, the distinction between roads and trails was made in the absence of a better method.

- 40. The absorbed power-speed and composite acceleration-speed relations were delineated by faired curves through the data points. The lack of sufficient data, and even more important, the lack of consistent curve shape preclude the use of conventional curve-fitting techniques. Therefore, those curves were drawn on the basis of engineering judgments and patterns developed from past experience.
- 41. Ride quality. To compare the ride quality of test vehicles, the corresponding speeds at three levels of absorbed power (3, 6, 9 watts) were obtained from the absorbed power-speed relations (tabulated values are given for 6-watt level in Table 4) and plotted as a function of the corresponding surface roughness (Figures 11-21). However, many of the vehicles were limited by the maximum speed at which the test vehicle could be steered through the test course (designated the maximum control speed) before reaching the 6-watt level of absorbed power. In other cases, the test vehicle reached speeds in excess of 40 mph (about 40 mph was maximum speed on CC1A and T3 due to different surface roughness conditions in the approach and stopping lanes) without reaching a 6-watt level of absorbed power; therefore, engineering judgments were required to complete the relations over the entire speed range.
 - 42. Since most of the test vehicles have relatively good

suspension systems, the effect of steering the vehicles on the ride dynamics test courses under the control of the driver (maximum control speed) was found to be much more of a problem than ride quality for these extremely light vehicles. That is to say, the driver was more concerned with keeping the vehicle under control than with the punishment he was taking in the driver's seat. The maximum control speed-surface roughness relations determined for each study vehicle configuration are shown in Figures 11-21 and tabulated values are shown in Table 4. In most cases, these relations show that the driver will take considerably more than 6 watts of absorbed power and maintain steering control at low speeds (10-15 mph) over high-surface roughness values (1.8- to 2.5-in. rms elevation), but that he is often limited by steering control before reaching 6 watts at higher speeds (30-40 mph) over low-surface roughness values (0.5- to 1.0-in. rms elevation).

- 43. To provide a concise, but approximate,* means of ranking the vehicles on the basis of their ride characteristics, the speeds at which 6 watts of absorbed power occurred at 0.6-, 1.2-, and 2-in. rms elevation values on each cross-country and trail course were averaged to obtain a single measure of the overall cross-country and overall trail speeds for each test vehicle. The vehicles were then ranked in accordance with their average speeds, and each was compared in terms of the percentage of its speed to that of the M151A2 with 800-1b payload. These rankings are given in Table 5. On this basis, the standard Scout with its rated payload of 1919 1b ranked first in ride quality on the cross-country ride test courses with a 10.9-percent increase in speed over the M151A2. The standard Scout with an 800-1b payload ranked first in ride quality with a 39.6-percent increase in speed over the M151A2 on the secondary road and trail test courses.
 - 44. Table 5 generally shows that the commercial vehicles ranked

^{*} This assumes an equal probability of encountering each rms roughness and equal probability of cross-country and trail operation. Actual distributions are highly terrain and mission dependent. Accordingly, the rankings can only be considered approximations, and under some circumstances might be misleading.

Figure 11. Surface roughness-speed relations for standard Ramcharger at two payloads

Figure 12. Surface roughness-speed relations for standard Blazar at two payloads

Figure 13. Surface roughenss-speed relations for standard CJS at two payloads

Figure 14. Surface roughness-speed relations for standard Scout at two payloads

Figure 15. Surface roughness-speed relations for standard Bronco at 800-1b payload

Figure 16. Surface roughness-speed relations for high-performance Ramcharger at two payloads

Figure 17. Surface roughness-speed relations for high-performance Blazer at two payloads

Figure 18. Surface roughness-speed relations for high-performance CJS at two payloads

Figure 19. Surface roughness-speed relations for high-performance Scout at two payloads

Figure 20. Surface roughness-speed relations for high-performance Bronco at two payloads

THE OF THE PROPERTY OF THE PRO

Figure 21. Surface roughness-speed relations for military $$\operatorname{M151A2}$$ at 800-1b payload

equally as well, better, or only slightly lower with their rated payloads than with the 800-lb payload.

- 45. Ranking of vehicles in this manner shows an overall ride quality superiority of vehicles subjected to a wide range of rms elevation values. However, the ranking may not apply to specific vehicle missions or jobs with a lesser range in rms elevation.
- 46. <u>Cargo response</u>. Since research has not yet established tolerance levels to composite acceleration for various types of cargo or even established composite acceleration to be the best measure of cargo response, a comparison was made only for an arbitrarily selected 0.4-g level.
- 47. The speeds at 0.4 g's were obtained directly from Plates 1 to 20 for each study vehicle configuration and ride test course. These speeds were then related to the rms elevation for the test courses as shown in Table 6 and 7.
- 48. To provide a concise means of ranking the study vehicle configurations with regard to cargo response, the speeds at 0.4-g composite acceleration at the different rms elevations were averaged to obtain a representative measure of cross-country and trail speeds for each study vehicle configuration.* The study vehicle configurations were also ranked according to their average speeds, and the percentage of their speed to that of the MISIA2 with an 800-1b payload was computed.** These rankings are listed in Tables 6 and 7.
- 49. The standard Scout with an 800-1b payload ranked first relative to cargo response with a 6.78-percent increase in speed over the M151A2 on the cross-country ride test courses. The M151A2 ranked first in cargo response on the trail test courses with an 0.8-percent increase over the standard Scout with an 800-1b payload, which ranked second on the secondary road and trail test courses.

See footnote paragraph 43.

^{**} This ranking is strictly applicable to travel over trails and secondary roads having the same relative distributions of roughness, slope, curvature, etc., as the test traverse. More reliable rankings can be made through use of AMM only in terrain and scenario conditions representative of projected field use.

Obstacle-impact (shock) tests

- An important aspect of vehicle ground mobility is the ability of vehicles to negotiate minor abrupt discrete obstacles. Logs, boulders, rice paddy dikes, etc., are encountered frequently in off-road travel and produce speed-controlling shock loads that depend on the size of the obstacle, the size of the traction element, and the speed at which the obstacle is impacted. Results of past studies have indicated that obstacle height is a simple, straightforward, suitable descriptor for characterizing such discrete obstacles. The prime response criterion currently used for limiting vehicle speed is that level at which the driver's vertical acceleration reaches 2.5 g's with acceleration peak duration determined by a 30-Hz filter. However, there were instances during the obstacle tests in this study in which the 2.5-g level was not obtained because a slightly different filler in the fieldmeasuring device indicated that this peak 2.5-g level had been reached when subsequent close analysis of the tape-recorded data showed that this was not the case. Some of the vehicles were not tested over the 8in, obstacle because the clearance under these vehicles would definitely have caused the vehicle to slow to less than 2 mph, and even then the chance of severe damage from hitting the unyielding steel obstacle was high. For the vehicles not tested over the 8-in. obstacles, a speed of 2 mph was assigned since it was felt that the vehicle could cross many natural obstacles of similar height at this low speed without damage.
- 51. The basic data for peak accelerations while the vehicles were crossing obstacles are given in Appendix A (Table A2). The relations of obstacle height versus impact speed for 2.5-g vertical acceleration for each vehicle configuration are given in Figures 22-23 and tabulated values are given in Table 8. Data were collected over only 4-, 6-, and 8-in. obstacles. Previous testing has shown that many vehicles will never reach a 2.5-g level of vertical acceleration while crossing a 4-in. obstacle; therefore, all test vehicle configurations which had not reached a peak acceleration of 2.5-g's on the 4-in. obstacles

Figure 22. Obstacle height-speed relations for standard vehicles and M151A2

Figure 23. Obstacle height-speed relations for high-performance vehicles

were assumed to be able to negotiate 2-in. obstacle heights* at 60 mph without reaching a 2.5-g level of acceleration.

- 52. To obtain a better idea of the relative effect of shock on obstacle-crossing ability, the vehicles were ranked in accordance with their average obstacle-crossing speed over 4-, 6-, and 8-in. obstacle heights** and also in terms of the percentage of their speed to that of the M151A2 with an 800-1b payload. These rankings are presented in Table 9.
- 53. The high-performance Ramcharger with an 1885-1b payload ranked first in shock performance with a 13.8-percent increase in speed over the M151A2 over the obstacle test courses.

Traverse Tests

- 54. Eighty traverse tests were conducted with the 20 vehicle configurations. Traverse speed (Table 10) and secondary road or trail unit speed (Appendix B, Tables Bl to Bl6) were measured for each configuration using three military drivers and one WES experienced driver as the basic control. The speed data collected during the test with the WES control driver were used to compare the speed performances of the configurations. The speed data collected during the test with the military drivers were used to compare the performances of the military drivers with that of the WES driver.
- 55. All traverse tests with the WES driver were instrumented to obtain some dynamics data in addition to the speed data. A detailed listing of the data obtained for each vehicle configuration during the instrumented tests is presented in Appendix B (Tables B17 to B36).

^{*} Seldom are obstacles with a 2-in, height described as discrete obstacles. In any event, they would be included as a part of the surface roughness profile. Included as part of the surface roughness profile, they could present either a ride-limiting speed or a control problem due to steering and handling before a 60-mph speed was reached.

^{**} Same hasic caution as noted in footnote, paragraph 43.

Included in these data are the secondary road or trail unit distance, speed, surface roughness (rms elevation), absorbed power, cargo composite acceleration, and peak acceleration measurements.

56. Terrain unit speeds are summarized by the bar graph for each vehicle configuration in Figure 24. These bar graphs show the relatively high speeds that all the vehicles were able to maintain over the secondary road units and the lower speeds over the trail units. For a

simpler comparison, the average speeds for all secondary road units, all

trail units, and the complete traverse are given in Table 11.

- 57. Table 11 shows that all the vehicle configurations were able to average speeds greater than 39.5 mph for all the secondary road units. Variations in vehicle speed for these units were largely a result of vehicle speedometer error and the driver sometimes exceeding the 40-mph speed limit imposed to reduce the chances of a serious accident on the secondary road. Since these differences in speed on the secondary road do not really indicate differences in vehicle performance and are reflected in the traverse speeds, the average speed for all trail units was selected for comparing the vehicle configurations over the traverse.
- 58.. To get a better idea of the relative speed performance of the vehicle configurations over the trail units, the vehicles were ranked according to speed and the percentage of the speed of each configuration to that of the M151A2 with an 800-1b payload. The rankings and speed comparisons are given in Table 12.
- 59. The high-performance Bronco with an 800-1b payload ranked first with a 6.3-percent increase in speed over the M151A2. Table 12 also shows that the traverse speed of most of the high-performance vehicles with a rated payload was equal to or better than with an 800-1b payload. Most of the standard vehicles traverse speeds were better with an 800-1b payload.

Ride quality

Speed performance

60. As experienced in previous test program, at Fort Hood^{5,6} in which vehicles were tested over all or part of the traverse used in this

Speed measured in each road or trail unit during instrumented tests on traverse course (sheet 1 of 4) 24.

Figure 24 (sheet 2 of 4)

Figure 24 (sheet 3 of 4)

Figure 24 (sheet 4 of 4)

study, the test drivers were often willing to tolerate 15-20 watts of absorbed power for many of the units (Appendix B, Tables B17 to B36). The tests in this study have confirmed that the 6-watt ride criterion is not valid for short traverses.

To get some idea of the difference in ride quality of the vehicle configurations over the traverse, the measured absorbed power and speed data for each terrain unit (Appendix D, Tables D17 to D36) were used to compute the absorbed energy per mile for the traverse (E,), which is considered to be an index of relative driver fatigue associated with the measured traverse performance. $E_{\scriptscriptstyle +}$ is given by the following equation:

$$E_{t} = \frac{\sum_{l-n} \frac{P_{tu}}{V_{tu}} \times D_{tu}}{D_{t}}$$

where:

 P_{ti} = average absorbed power for terrain unit, watts

 V_{til} = average speed for terrain unit, mph

 D_{tu} = terrain unit distance, miles D_{t} = traverse distance, miles (= $\sum_{l=n}^{\infty} D_{tu}$)

n = number of terrain unit

The computation involves determination of the absorbed energy per mile for each terrain unit and weighted by distance to obtain an average value for the complete traverse. Absorbed energy per mile of traverse was first expressed in the HIMO Study 8 in which the absorbed power per mile for each terrain unit (P_{tu}/V_{tu}) was estimated from the AMM speed prediction for the terrain unit ($V_{\Delta MM}$) and the 6-watt ride speed for the unit (V_r) by means of the following equation:

$$\frac{P_{tu}}{V_{tu}} = \left(\frac{V_{AMM}}{V_{r}}\right)^{2} \times \frac{6}{V_{AMM}}$$

63. Traverse ride performances of the vehicle configurations were then ranked according to the lowest value of absorbed energy per mile

for the traverse and the percentage of the absorbed energy of each test vehicle configuration to that for the M151A2 with an 800-1b payload. These rankings are given in Table 13.

- 64. The standard Scout with a 1919-1b payload ranked first with an absorbed energy per mile of traverse about one-half that of the M151A2. Cargo response
- 65. Composite acceleration and peak acceleration values are presented in Appendix B (Tables B17 to B36). These data were not analyzed in this study.

Driver comparison

- 66. Examination of the traverse speed data (Table 10) shows a 3-to 17-percent difference in the speed performance between the military driver with the lowest speed and the military driver with the highest speed. Both the traverse speed data and the detailed secondary road and trail unit data (Appendix B, Tables BI to BI6) show that in all cases the WES driver's speed exceeded the speed of any of the three military drivers.
- 67. Table 14 gives the average traverse speeds of the three military drivers, the average traverse speed of the WES driver, and the percent-speed difference between the military drivers and the WES driver. The average speed of the military drivers ranged from 10 to 32 percent lower than that of the WES driver for different vehicle configurations. The average military driver's speed was 19 percent lower than that of the WES driver when all configuration were considered.
- 68. It should be noted that the military drivers did not have complete control over their vehicles during traverse testing and would not have been able to safely maintain the speeds they did without the aid of the observer. Considerably more training of the military drivers than was possible in this study would be required before they could attain high-traverse speeds safely without the aid of an experienced observer.

AMM Predictions

- 69. The primary purpose for conducting the traverse tests was to check the ability of the AMM to predict speed over the traverse test course. The traverse test course represents just one example of a mission that might be expected of the study vehicles; if the AMM can be demonstrated to reflect good performance predictions on the traverse, the model can be used with more confidence to evaluate the study vehicles over the wide range of terrain, road, and trail conditions that must be examined before final decisions are made.
- 70. The AMC-74/x* version of the AMM⁸ was used to determine terrain unit speeds for the traverse. Because some of the terrain units in the traverse occupied short distances, acceleration and deceleration effects (AC/DC) on speed when a vehicle was entering and exiting a terrain unit were also accounted for. Road and trail unit descriptions used in the predictions are given in Table 3. Vehicle characteristics used in the model for predicting speed are shown in Table 15. The item numbers in Table 15 are keyed to the vehicle characteristics numbers in Table 16. A sitional items in Table 16 (38-41) identify the relations used in AMC-74/x and are given in Tables 4, 8, and 17.
- 71. The predicted and measured speed for each of the study vehicles with an 806-1b payload, using the standard 6-vatt absorbed power ride criterion, are shown in Table 18. The percentage of error between the predicted and measured speeds ranged from 2.4 to 40.5 percent for the study vehicles with an 800-1b payload. The large error in the predicted speeds was felt to be largely due to the fact that the driver did not restrain himself to 6-watt absorbed power (Appendix B, Tables B17 to B36). New speed predictions were made with the AMC-74/x substituting the maximum control speed-surface roughness relations instead of the speed at 6-watt absorbed power-surface roughness relation (Table 18). The percentage of error between the predicted and measured speeds ranged from 5.2 to 17.6 percent.

^{*} AMC-74/x denotes the current state of AMM. This version is considered to contain about 95 percent of the refinements to the AMC-74 version.

Miscellaneous Data

Effects of tire pressure on absorbed power

supplemental data.

72. A limited number of dynamics tests were conducted over ride test courses CC1A, CC2A, and T1 using the M151A2 with 800-1b payload at tire pressures of 15 and 30 psi in addition to those conducted at 20 psi (Table 2) to determine the influence of tire pressure on absorbed power. Test results showed very little or no change in absorbed power as tire pressure was changed over this range (Figure 25).

73. VCI₁ predictions were made with the AMM for each vehicle configuration and are given in Table 20. These data are included only as

Summary Discussion of Evaluations

- 74. The vehicle evaluations in this study were all primarily with regard to ride characteristics and should not be interpreted otherwise. The vehicle configurations were not tested over a wide enough range of terrains to completely evaluate the vehicles. The AMM and the dynamic relations developed in this study must be used to evaluate the study vehicles over widely ranging variations in terrains, trails, and roads for trail decision purposes.
- 75. The study vehicles were evaluated and ranked in terms of ride quality and cargo response, shock on impacting obstacles, and traverse speed and absorbed energy per mile over the traverse test course. A summary of these rankings is given in Table 20.
- 76. Of those elements examined in the test program, traverse speed is considered to be the most significant ranking because it integrates the dynamic effect on vehicles due to surface roughness together with some simple effects of soil, slope, obstacles, and visibility, but the

^{*} Minimum soil strength (cone index) required for one pass of a vehicle.

15 psi

Figure 25. Absorbed power-speed relations for MJ51A2, 800-1b payload, at 15-, 20-, and 30-psi tire pressures on CC2A, CC3A, and Tl

evaluation is still limited.*

- 77. Ride quality is felt to be the next order of significance since surface roughness has a continuous effect on vehicle performance. in many terrain situations. Shock over obstacles is considered to be of next significance.
- 78. The significance of cargo response and absorbed energy per mile has not been established but is thought to be less than the other vehicle rankings.
- 79. Based primarily on traverse speed ranking (Table 20), which is felt to reflect the ride characteristics and obstacle shock, all the high-performance commercial vehicles with their rated payloads were able to exceed the performance of the M151A2; and all high-performance commercial vehicles except the CJ5 were able to exceed the performance of the M151A2 with an 800-1b payload. The standard Scout and standard Blazer, both with 800-1b payloads, were the only standard commercial vehicles whose performance exceeded the M151A2.
- 80. None of the rankings directly reflect the abuse to the vehicles involved in reaching the measured performances. The ride and shock measurements at the driver's seat as well as control speed limits are indicative of the speeds at which the vehicle will be operated. Relations of these speeds to potential vehicle reliability and maintenance problems were not the subject of this study.

^{*} GO-NO GO capabilities in soft soils, for example, were not reflected in any of the tests.

PART IV: CONCLUSIONS AND RECOMMENDATIONS

Conclusions

- 81. On the basis of this study, the following conclusions have been reached:
 - a. Candidate evaluation based on test data
 - (1) From the special dynamics tests:
 - (a) The standard Scout with a 1919-1b payload has the best ride quality on cross-country ride test courses. It shows a 10.9-percent increase in speed over the M151A2, which ranks fourth among the 20-vehicle configurations.
 - (b) The standard Scout with an 800-1b payload has the best ride quality on the secondary road and trails ride test courses with a 39.6-percent increase in speed over the M151A2, which ranks last among the 20-vehicle configurations.
 - (c) The high-performance Ramcharger with an 1885-lb payload has the best shock-sustaining characteristics during obstacle crossing with a 13.8-percent increase over the M151A2, which ranks fourth among the 20 study vehicle configurations.
 - (d) Generally, the vehicles with the better ride characteristics have the poorer shock-sustaining characteristics during obstacle crossings.
 - (2) From the traverse tests:
 - (a) The high-performance Bronco with an 800-1b payload has the best traverse speed with a 6.3-percent increase over the M151A2, which ranks sixteenth among the 20-vehicle configurations.
 - (b) Most of the high-performance commercial vehicles are able to acheive a higher traverse speed with both the rated payload and an 800-lb payload then can the M151A2. Only the standard Scout and the standard Blazer with an 800-lb payload are able to exceed the traverse speed of the M151A2.
 - b. AMM validation. AMM can be used to obtain good traverse speed predictions for the study vehicles, provided the maximum control speed-surface roughness relations are

- substituted for (or used in conjunction with) the speed at 6-watt absorbed power-surface roughness relations.
- c. AMM data support. Speed control due to steering and handling is identified as a new factor. First analysis indicates that limiting speed for a given vehicle is a function of terrain roughness expressed in terms of rms elevation.

Recommendations

- 82. It is recommended that the AMM, the ride and shock dynamics relations, and the control speed limit relations developed in this study be used to evaluate the study vehicles over widely ranging variations in terrains, trails, and roads. The terrain developed for the HIMO Study would be ideal for such further evaluations.
- 83. It is further recommended that research be undertaken to define control speed limits in rough terrain more closely and to develop the capability to predict such limits analytically.

REFERENCES

- Rula, A. A., Nuttall, C. J., Jr., and Dugoff, H. J., "Vehicle Mobility Assessment for Project WHEELS Study Group," Technical Report M-73-1, Apr 1973, U. S. Army Engineer Waterways Experiment Station, CE, Vicksburg, Miss.
- 2. Jurkat, M. P., Nuttall, C. J., Jr., and Haley, P., "The AMC-71 Mobility Model," Technical Report No. 11789 (LL 143), Vols I and II, Jul 1973, U. S. Army Tank-Automotive Command, Warren, Mich.
- Nuttall, C. J., Jr., Rula, A. A., and Dugoff, H. J., "Computer Model for Comprehenisve Evaluation of Cross-Country Vehicle Mobility," Earthmoving Industry Conference, Paper No. 740426, presented at Society of Automotive Engineers, Apr 1974.
- 4. Jurkat, M. P., Nuttall, C. J., Jr., and Haley, P., "AMC-74 Mobility Model," Technical Report No. 11921 (LL 149), May 1975, U. S. Army Tank-Automotive Command, Warren, Mich.
- Robinson, J. H., Randolph, D. D., and Murphy, N. R., Jr., "Comparison of the Ride Characteristics of Advanced Concepts Vehicle-Cargo (ACV-C) and Selected Currently Authorized Vehicles," Nov 1974, U. S. Army Engineers Waterways Experiment Station, CE, Vicksburg, Miss.
- 6. Robinson, J. H., and Rula, A. A., "Heavy Equipment Transporter (HET) Mobility Performance Evaluation," Technical Report M-76-4, Feb 1976, U. S. Army Engineer Waterways Experiment Station, CE, Vicksburg, Miss.
- 7. Pradko, F., Lee, R. A., and Kaluza, V., "Theory of Human Vibration Response," Paper 66-WA-BHF-15, presented at ASME meeting, Nov 1966.
- 8. Nuttall, C. J., Jr., and Randolph, D. D., "Mobility Analysis of Standard and High Mobility Tactical Support Vehicles (HIMO Study)," Technical Report M-76-3, Feb 1976, U. S. Army Engineer Waterways Experiment Station, CE, Vicksburg, Miss.

Table 1* Vehicle Specifications

The state of the s

	3	CJ-5	Bronco	nco	Scout	Jt.	Blazer	er	Ramcharger	rger	
Item	basic	hi perf	basic	hi perf	basic	hi perf	basic	hi perf	basic	hi perf	M151A2
Engine	232-6	304-V8	302-V8	302-V8	196-4	V-345A	250-6	350-V8	225-6	360-V8	1.141
Alternator	62amp	62amp	55amp	55amp	6lamp	біатр	61amp	6lamp	72amp	72amp	60amp
Battery 12v	70amp-hr	70amp-hr	70amp-hr	70amp-hr	73amp-hr	73amp-hr	80amp~hr	80amp-hr	70amp-hr	70amp-hr	2hn
Fuel tank gal	15.5	15.5	12.2	19.7	19	19.0	25	30	24	36	17.7
Power steering	0 u	yes	ou	yes	ניס	yes	ou	yes	ou	yes	ou
Power brakes	ou	yes	no	ou	yes	yes	o u	yes	yes	yes	ou
Heavy duty radiator	no	yes	no	yes	no	yes	ou	yes	ou	yes	yes
Free wheeling hubs	yes	yes	Sex	yes	yes	yes	yes	full time 4whl dr	full time 4whl dr	ful time 4whl dr	ou
H D shocks	no	yes	yes	yes	oʻu	yes	u 0	yes	no	yes	yes
H D springs front	1460	1460	1075	1130	1450	1450	1650	1900	1540	1540	ind susp
H D springs rear	1425	1425	1240	1475	1350	1350	1700	1700	1970	1970	ind susp
Towing device	yes	yes	yes	yes	yes	yes	yes	yes	ou	ou	yes
Removable hardtop	soft	soft	yes	yes	yes	yes	yes	yes	yes	yes	yes
Price	\$4,040	\$4,568	\$4,729	\$5,306	\$2,445	\$6,415.	\$4,607	\$5,477	\$4,799	\$5,263	\$3,800
GVW	3750	3750	4 300	4900	6200	6200	6200	9700	6100	9100	3600
Payload	1 300	1300	755	1340	1919	1919	1660	1660	1885	1885	1200
Wheelbase	24	84	76	92	100	100	106.5	106.5	106	106	85
Width	6.65	6,65	8.8	8.39	0.	70	79.5	79.5	79.5	79.5	64.3
Height	69.5	69.5	9.07	9.07	66.5	66.5	69.5	69.5	67.5	67.5	71
Length	138.9	138.9	152.1	152.1	165.8	165.8	184.5	184.5	184.5	184.5	132.7
HP/net	100@3600	15004200	144@4000	144@4000	92@3600	158@3600	105@3800	145@3800	110@4000	140@4000	61@4000
HP/ton	53	80	29	59	29.5	51	33.8	8.94	36.1	95	34
Tires (mud & snow)	700X15	6.00X16	700X150	h1	HR?8X15	HR78X15	7.00X15	10.00X15	7.00X15D	10.00X15	7.00X16
				flotatn							
				9	(Continued)						

* Extracted from MASSIER Test Plan No. FM300.

المتكافية المتكلفية المتكافية المالية المالية المالية المالية المالية المالية المالية المالية المالية المالية

Table 1 (Concluded)

	Ú	CJ-5	Bro	Bronco	Scout	ut	Blazer	er	Ramcharger	rger	
Item	basic	basic hi perf	basic	h1 perf	basic	hi perf	basic	h1 perf	basic	hi perf	M151A2
Axle front	2200	2200	3000	3000	3200	3200НD	3600	3600	3500	3500	
Axle rear	2700	3040	2900	3300	3500	3500	3750	3750	3600	3600	
Patio, axle	4.27	4.27	4.11	3.50	60.4	3.54	4.11	3.73	3.9	3,55	4.86
Transmission	3 spd	3 spd	3 spd	3 spd- auto	3 spd	3 spd- auto	3 spd	3 spd- auto	3 spd	A727 auto	auto 4 spd
Ratios	3.00	3.00	3.41	2.46	2.997	2.45	2.85	2.52	3.02	2.45	5.72
	1.744	1.744	1.86	1.46	1.55	1.45	1.68	1.52	1.76	1.45	3.179
	1.00	1.00	1.00	1.00 2.10 conv	1.00	1.00 2.03 conv	1.00	1.00 2.10 conv	1.00	1.00 2.03 conv	1.674
Transfer case	DANA#20	DANA#20	DANA #20	DANA#20	sgl spd	TC-145	DANA#20	NP203	NP 203	NP203	military
Ratios	2.03	2.03	2.03	2.03	1,00	2.03	2.03	2.01	2.01	2.01	
	1.00	1.00	1.00	1.00		1.00	1.00	1.00	1.00	1.00	1.00

Table 2
Tire Pressures Used During Testing

	Tire Press	ure, psi
Vehicle	Front	Rear
Standard Commercial		
Ramcharger	35	35
Blazer	45	30
CJ5	35	35
Scout	30	30
Bronco	45	45
High-Performance Commercial		
Ramcharger	30	30
Blazer	30	30
CJ5	30	30
Scout	30	30
Bronco	45	45
Military		
M151A2	20	20

Table 3

FORT MODD COURSE - ARELL-HAY 74

MARK
LINARY C
PR
147.104
ACTERI
15 CHAS
BAER UN

	POAO			~					• ^				_	_		_	_								_	_	_							•						~	•		•		• •			
	_	#		•						10.7		12.0		8 0 T	D .		D . C 1							7.0		0					`								0.0	0	•	•	, p					
١.		4		12	::					100	•	12	7	104		124						•		•	•		12						20	-1 -				. :	*	104	149	7	120		200	150	150	:
	<u>.</u>	4	•	٠	• •	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	٠	•	•	•	•	٠	•	• (•	•	•	•	٠	•	• •	•	٠	•	•	٠	•	• 1	•	• •	٠	•	•
F		3	•	•	•	•	•	4	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	• (•	•	•	•	•	•	• •	•	•		•	•	•	•		• •	٠	•	•
		7	•	•	• •	•	•	•	•	•	•	٠	•	•	•	•	•	•	• (•	•	•	٠	•	•	•	•	•	• (•	•	•	•	•	•	• (•	٠	•	•	•	•	•			•	•	•
탈		3	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	• •	• •	•	•	•	•	•	• (•	•	٠	•	•	•	•	•	• •	•	٠	•
		3	•	•	• •	•	•	•	•	٠	•	•	•	•	•	•	• 1	•	•	•	•	•	•	•	•	•	•	•	• •	•	•	•	•	•	•	• •	•	•	•	•	•	•	• (, (•	•	•
		3	•	•	• •	•	•	•	•	•	•	•	•	•	•	•	• (• •	• •	•	•	•	٠	•	•	•	•	•	• •	•	•	•	•	•	•	• •	•	•	٠	•	•	•	• '	• (•	•	•	•
M. S.		3	•	•	•	•	•	•	•	•	٠	٠	•	•	•	•	•	•	• •	•	•	٠	٠	•	•	•	•	•	• (•	•	٠	•	•	•	• •	•	•	٠	•	•	•	•	•	• •	•	٠	•
料) '	3		•	• •	8 4	. 4	. (•		•		•	•	•	4	•	•			. 4	. •	•	•	•	•	•	•	•		. 4	. 4	•	•.	•	~ 4	. 4	. 4		•	•	•	•	, ,	• •		•	•
<u>a</u>	E	2		•		•		•				-	~	•	•	Ď.	•	ŗ	•	•		-	•		•	~	٠.	•	• •	i.	-	-	•	-	• ·	ű.			7	•	ĸ.	•	ė.	•	-	•		~
20000	2		•	•	•	9 6	•	•	۰.	4 6	•	. ~	0	0	N	~4 '	•	40	٠.	4,	• 6	•	4 44	0	•		**	***	~ •	٠,		•	-	-1	44	-14	•	4 @	0	0	~	-		4 (D	-	0	**
M	7		ir da	•	•	I		•	. •		• •	•	*	•		*	•	٠. ،	h (• •	• •	•	•	•	•	*	*	•	-	H (N	•	-	**	*	•		• •	•	•	~	•	⊕r i			•	bi	•
目	-	1	•	•	•	• (• (•	•	•	•	•	•	•	2	٠	•	•	•	•	•	•	•	•	•	•	•	٠,	•	• (. =	4	2	7	•	1152		•	•	•	450	191	•	•	• ;	31.	٠	17
33	ŧ	:		_	_										0		_					`.		_					7:1				=======================================	2,0	. !	0.					152.0	2.0				492.0		463.0
#	3		•	•	•	•	• •	•	•		•	•	•	•	Ŧ -	•	•	•	•		' '	•	•	•	•	•	•	•		•	•			_	•	-		•	•	•	•	•	•	•				
目	# A G . T	=				•					•			•	•	•	•				, ,			•					-	• •	. =		-	5.	•	•					9	40.0			40.0	•	•	304.0
		9																											=				-	•	Š			·							-			-
33333				•	•	•				•	•	•	•	•	12 09	•	•						•	•	·	٠	•	٠,	•	•				, ,	•	=	•	,	•	·		0 10.0						
33		4		•	•	•	•						•		7			•					•	•	•	•	•	•	•	• (· in	-	•	•	200		١,		•	233	72			. 5	121	•	803
3	4	1	9 4	,	~4 ~	٠.	٠.	4 ,			٠.	417		*1	-4	*1	-4 (79 1	٠,	40	٠.	• •	• •	•	•	n	wd i	,	,	,	•	•	,	,	~	,	•	•	٠.	, ,,,	,	-	.	-1 (~~	. 17	,	~
1 2	-	٦.							, ,				7			7				4	•			4	1:3	2.2	1.0	100					2	11							7		ij	•	je		•	m m
1 2		3	2	5	2				9		2	200	•	30.	50	1	S	2			13				123	22	;	8	=				2	•						20	43	. 5	2		•	2	43	7
1	Ì	3		20	5							200	5	20	00.	96								32	136 9	135	6		7				3	:	200				50	150	20	?	2		22		16	73
1	1	3	- • -	150	36	200	720					120	750	190	. 984	150	756	2					200	150	150	150	150	200		200		200	200	120	200	2		200	130	150	976	555	1			202		12
CC BUREAGE COMPOSITION DA	e e		4.00	yd.		٠.	, ,		, i		٠.		اب ا			,	-4				4-	4 -	4	,,,	بر <u>ب</u> ر		**	, . be	,- ,			•		-4		, i		4 -		. ر		-4	-4		-4-		ور ابو ا	-4
1 7				•		•	n 4			•					•	0	.	•	٠.	•					n			-	•		**				n		••				-4	-		N (N 4	, in		~
		4		41	3	2 ;				;;	:	7	6	=	2	107	3		2 (*			•	7	53	91	117	7	2	r i			1	2	7	113		125	5	7	2	:	7		3	315	131	23
	- 17	#	- 40	9 7.	~ <	•	• •	•	* <	7		4 =	5	Ť	=	7	7			•		;	2	-	2	'n	8	N	R I	7	7	Ä	ñ	ř	'n	e d	1			-	3	ţ	7	:	;;	*	3	\$

+ See table ___ for exifa.e type, slope direction, road class,and obstacle epecing type.

• Indicates no -betacle present.

•• Indicates no -betacle present.

(Continued)

Table 4 Surface Roughness-Speed Relations for Study Vehicles

MILLIARY	51A2	Maximum att Control ed Speed in mph	37	15 14 15	13	; ;	:	1 1 1	:	
MIN	W	5peed mph	33 44	24 10 9	on 80	;	; ; ;	111	1	
-	co	Maximum Control Speed mph	36	28 16 16	13	39	28 18	342	13	
	8ronco	6-watt Speed mph	43 35	24 9 9 8	000 1	20+	26 1.7	126	ઝ ∞	
	4	Maximum Control Speed mph	41	156	11 6	43	38 28 24	12 22	11	
	Scout	watt peed mph	30 8	27 13 9	0 ~ 0	8	40 28	5 01 6 6	თ∞	
	High Performance Vehicles	Maximum Control Speed mph	37	28 17 14	112	36	33	19 16 12	12	
	erforman	6-watt Speed	50+	5 4 6 9 4 6	× × ×	9	41	12 9 8	7 00	
			44	7 2 2 3 A	13 12 11	7.4	32	21 17 11	11	
		8lazer Ma 6-watt Co Speed 5 mph	Payload 50+	25 21 20 9	8 1 9	Payload	50+ 43	12	N Q	
		Maximum Control Speed mph	800 lb	22 22 22	1231	Rated	3 2 5	61 91	11 01	
		Ramcharger Maxi 6-watt Cont Speed 5pe	Units 50+	43 11	8 1	hits	\$0 \$0 \$1	11 6	00 00 P	
		Control Speed	Cross-Country Units - 800 lb Payload	8 62 83	12 11 12	Cross-Count Units - Rated Payload	1 1	:::	; ; ;	
		Sronco Ma 6-watt Cor Speed Si) is	41 26 12	o eo r- eo	31	: :	:::	; ; ;	
		Maximum Control Speed	1	38 31 21	15 15 14		38	31 21 17	15 14 13	
		Scout Na 6-watt Co Speed 5		25 13 13	01 6 6 6 6	0	50+	15 to 5	00 00 h	
		Standard Vehicles CJS Maximum 6-Watt Control Speed Speed	rc.	3 X X X	15	61	7 %	845	15 14 13	
		Standard C 6-Watt Speed	udu	ខ្ញុំទដ្ឋ	oo re re	ų.	50+	1223	3 0 1 0	
			ų.	24.8	222	13	4 2	4 51 <u>51</u>	2 2 2 2	
		6-watt	ų,	35	90	9	7:	321	ao f∘ t∘ √0	,
		Kamcharger Maximum watt Control	qua	33 33	52 22 2	17	7	33 31 20	13	:
		0	The state of	50+ 42 25				5 43 8 24 2 11	O 40 10 1	`
		E is	ation 11	0.5			0.0	0.0	N	nò.

		Die.	10]	ed	اء																		
STITTE	M151A2	Maximu	t Contro				46	42	38	30	24	15	=	10		;	1	;	ŧ	1	1	1	1
3	_		6-wat	Speed	ig.		45	35	53	21	15	o.	2	9		;	:	;	:	1	;	:	;
	0.0	Maximum	Control	Speed	hdm		46	39	34	27	22	15.	o,	90		47	43	37	30	24	15	66	20
	Bronco		-watt	Speed	th th		+0	50+	7	ы	2	10	9	2		•00	48	41	6.	1	0	7	9
		Maxi mum	Control 6	Speed S	ı									_									
	Scout	Max			=		50+	44	33	31	25	16	Ξ	10		50+	49	42	33	26	16	10	o.
211112		-	i 6-wat	Speed			4.8	4.3	38	28	2.1	o,	-	ę		20+	20+	50+	33	20	o,	1~	9
2		Maximum	Control	Speed	Hdm		43	40	3.7	56	24	16	ø	GC)		4,7	40	£	28	24	16	6	ec.
TOT TO	CJ 5		5-watt	Speed	Hd:		20+	2 0+	\$0÷	20+	28	6	s	4		\$0÷	50+	\$0÷	50+	33	~ 0	L7	P
1.4	ī	"Laximum	ontrol	beed	udi	iā.	50+	50+	47	35	27	19	15	6		20+	50+	48	35	26	14	10	6
	Blazer	M.	t.	S	-	Paylos									Payload								
-		9	ol 6-wat		ם	8:40 18	÷05	90	5.0	17	깈	£~-	ç	S	ted Pay	\$0	4.2	30	87	14	2	ç	S
-	уди пре г	Maximum	Control	Speed	иди	Frails Units - 5:0 1b Payload	÷0.¢	45	58	3.8	22	14	C.	J.	18 - Ka	45	45	38	78	22	15	01	6
	Кашс		D-Watt	peade	ug.		20+	20+	60	17	13	100	۵	S	Roads and Trails - Kated	50+	20+	38	-1	13	o,	9	
	2	Max1 mum	Control	Speed	uda.	econdary Roads and	36		io C	67	23	m	ŋ	40)	Frads	1	1	;	-	1	1	1	;
	Bronco		-hatt (paado	HOP.	A Vieln	£(1 *		.0	25	19	ę.	b	w)	Sec ndary	1	1	;	-	!	1	-	:
		Max acus	Control 6	Sheed	14	Sec	50.4	50.	4	35	30		•		জ।	50.	: "	¥	27	**	t .	1.1	10
	25000	e e			1				,	,								•			-,		_
		9			E .		5.0	36.	~t	i,	C.	27	ж.			jii.	-	-1	54	90	10	or:	les.
		Max. Tum	Contra	prof. ford			•	-7	12	Ē.,	1	ζ.	4	٠,		113	0;	141	5;	ís is	3,6	3	ð,
The second secon			5-N311	, a.d.	ä		-	+	.÷	. •	ě		•	3		Ð	50.0	iř	+0.6	Ŷ	æ	ت	٠.
1	1	Min . x a %	Control	gaal.	1.Cx		or,	13	ır) JÇi	۲.,	-1	i h	· ·	δ_g		Ļ	45	JE T	ιń	iñ Fi	id	10	6
	1.3		9-11-4-9		HSE!		i	24€	35	a	18	20	ē	. 1		a:	~;	ζ ₁ -	-1	7.	0,	÷	es.
and the second			\$				3		2		7,	;	11.)				17					٠,٠	1
	The state of the s	17	2.1 2.27	3	The state of the s																		
	1		10 - 6 - 4	a of the unit	2			**	20			1	. 1	,		100							
		E	E	•	-1				2 0	-:	•	٠,	- ,	ť		5	ć.	ý	4		-ì	ià	j.

Table 5 Ranking of Vehicles with Respect to Ride Quality*

			mph at				
			ed Power		Average	Percent	
Vehicle	Douland 1h		n.) Indi		Speed	M151A2	n
venicie	Payload, 1b	0.6	1.2	2.0	mph	5peed_	Rai
		1	Cross-Co	intry			
Standard Scout	1919	38**	15	8	20.3	110.9	
Standard Scout	800	38**	13	9	20.0	109.3	
Standard Ramcharger	800	39**	12	8	19.7	107.7	
ligh Performance 81azer	800	39**	12	7	19.3	105.5	
ligh Performance Scout	1919	36**	13	9	19.3	105.5	
tandard Ramcharger	1885	38**	11	8	19.0	103.8	
ligh Performance 81azer	1660	39**	12	6	19.0	103.8	
ligh Performance Ramcharger	800	37**	11	8	18.7	102.2	
ligh Performance Ramcharger	1885	37**	11	8	18.7	102.2	
ligh Performance CJ5	800	34**	14	8	18.7	102.2	
tandard 8lazer	800	35	13	7	18.3	100.0	1
tandard CJ5	1300	36**	12	7	18.3	100.0	1
tundard Bronco	8 00	36**	12	7	18.3	100.0	1
ligh Performance Scout	800	35 * *	13	' 7	18.3	100.0	1
ligh Performance 8ronco	1340	34**	12	9	18.3	100.0	1
!151A2	800	35	12	8	18.3	100.0	1
ligh Performance Bronco	800	34**	12	8	18.0	98.4	1
tandard CJ5	800	35**	11	7	17.7	96.7	1
ligh Performance CJ5	1300	33**	12	8	17.7	96.7	1
tandard 81azer	1660	33**	11	7	17.0	92.9	2
		Ros	ads and T	Trails			
tandard Scout	800	50	29	12	30.3	139.6	
ligh Performance Scout	1919	49**	30	9	29.3	135.0	
itandard Scout	1919	47**	25	10	27.3	125.8	
ligh Performance Scout	800	43	28	9	26.7	123.0	
igh Performance Bronco	1340	41**	29	10	2647	123.0	
tandard CJ5	800	40**	28**	11	26.3	121.2	
ligh Performance CJ5	800	40**	29	9	26.0	119.8	
igh Performance Bronco	800	39**	27	10	25.3	116.6	
tandard CJ5	1300	40	28	8	25.3	116.6	
ligh Performance CJ5	1300	40**	28**	8	25.3	116.6	
tandard Blazer	1660	42	25	7	25.3	116.6	
Standard Ramcharger	1885	14**	22	9	25.0	115.2	1
Standard 8lazer	800	42**	25	8	25.0	115.2	j
ligh Performance Blazer	800	50	17	7	24.7	113.8	j
Standard Ramchargev	800	44**	21	7	24.0	110.6	i
standard Rumchargev	800	37	25	9	23.7	109.2	j
		37 45**	25 17	9	23.7	109.2	1
ligh Performance Ramcharger	1885		18	10	23.7	107.4	1
ligh Performance Blazer	1660	42 45**	17	8	23.3	107.4]
ligh Perforance Ramcharger	800	45	17	0	23.3	70.4.4	2

 ^{* &}quot;lide quality ranking based on average vehicle speed at 6-watt absorbed power for rms elevation values of 0.6, 1.2, and 2.0 in. except as noted.
 ** Maximum control speed reached before o-watt absorbed power obtained.

Table 6

Ranking of Vehicles with Respect to Cargo Responses Cross-Country

			Speed, mph, at Elevation, in.,	at 0.4-g rms* in., Indicated	Average Speed	Percent M151A2	
Vehicle	Payload, 1b	1.8	1.4	0.5	udu	Speed	Rank
Standard Scout	800	20	6	30	16.0	106.7	Н
High-performance Ramcharger	1885	œ	∞	30	15.3	102.0	ा
M15.1A2	800	∞	6	28	15.0	100.0	m
Standria Scout	1919	2	5	26	12.0	0.08	7
High-performance Scout	800	œ	80	20	12.0	80.0	7
Standard Rancharger	1885	7	∞	19	11.3	75.3	9
High-rerformance Blazer	800	7	7	19	11.0	73.3	7
Standard Blazer	1660	7	7	19	11.0	73.3	7
High-rerformance CJ5	1300	œ	∞	16	10.7	71.3	7
High-performance CJ5	800	7	7	17	10.3	68.7	10
Standard Bronco	800	7	7	16	10.0	2.99	11
High-perforance Bronco	1340	7	7	16	10.0	66.7	11
High-performance Ramcharger	800	7	7	15	9.7	64.7	13
Standard Blazer	800	9	7	16	9.7	64.7	13
Standard CJ5	800	5	5	16	9.7	64.7	13
Standard CJ5	1330	9	7	15	9.3	62.0	16
High-performance Scout	1919	œ	7	13	9.3	62.0	16
High-performance Blazer	1660	5	9	15	8.7	58.0	18
Standard Ramcharger	800	9	9	13	8. 3.	55.3	19
High-performance Bronco	800	7	7	10	8.0	53.3	20

Cargo response ranking based on vehicle speed at 0.4-3 rms composite acceleration.

Ranking of Vehicles with Respect to Cargo Responses on Roads and Trails

		Vehicle for rms	cle Speed, mph rms Elevation,	\ _ · ~	at 0.4-g rms* n., Indicated	Average Speed	Percent M151A2	
Vehicle	Payload, 1b	2.3	1.2	9.0	0.4	mph	Speed	Rank
M151A2	800	10	19	33	43	26.2	100.0	rd
Standard Scout	800	œ	18	30	43	26.0	99.2	7
High-performance Scout	1919	∞	14	23	42	21.8	80.2	က
Standard Scout	1919	9	12	22	45	21.2	6.08	7
High-Derformance Ramcharger	1885	6	14	22	37	20.5	78.2	5
High Derformance Blazer	1660	œ	11	23	35	19.2	73.3	9
Standard Blazer	1660	∞	12	20	33	18.3	8.69	7
High rerformance Bronco	1340	6	13	20	29	17.8	67.9	œ
High her formance CJ5	1300	7	,13	20	30	17.5	8.99	6
High rerformance Ramcharger	800	9	13	20	29	17.0	64.9	10
High-nerformance Scout	800	9	11	15	35	16.8	64.1	11
Standard Blazer	800	9	11	19	31	16.8	64.1	Π
Standard Ramcharger	1885	7	12	17	.30	16.5	63.0	13
High-rerformance CJ5	800	7	11	16	30	16.0	61.1	14
High-performance Blazer	800	9	10	13	33	15.5	59.5	15
Standard bronco	800	9	11	16	28	15.2	58.0	16
Standard CJ5	800	9	10	18	26	15.0	57.2	17
Standard CJ5	1300	7	11	19	23	15.0	57.2	17
Standard Ramcharger	800	۲.	10	15	26	14.5	55.3	19
High performance Bronco	800	2	10	16	20	12.8	48.8	20
-								

Cargo response ranking based on average vehicle speed at 0.4-g rms composite acceleration.

Table 8

Obstacle Height and Corresponding Speed at 2.5-g Vertical Acceleration

		Spee	d, mph,	at 2.	5-g Ve	rtical	Accele	era-
			for Ob					
Vehicle	Payload, 1b	2	3	4	_5_	6	7_	_8
Standard Commercial								•
Ramcharger	800	6 0	60	60	18	8	6	4
	1885	60	60	60	20	8	6	4
Blazer	800	60	43	29	17	9	5	4
	1660	60	60	60	19	8	5	4
CJ5	800	60	23	12	9	7	5	4
	1300	60.	26	15	10	6	4	2
Scout	800	60	40	26	16	8	3	2
	1919	60	30	19	14	9	5	2
Bronco	800	60	22	14	11	9	7	6
High-Performance Commer	cial							
Ramcharger	800	60	60	60	26	11	4	2 2
-	1885	60	60	60	36	20	9	2
Blazer	800	60	60	60	22	11	6	4
	1660	60	60	60	21	10	5	2
CJ5	800	60	35	22	14	8.	4	2
	1300	60	23	13	10	7	5	2
Scout	800	60	32	18	11	7	4	2
	1919	60	25	16	12	8	5	2
Bronco	800	60	23	14	10	7	4	2 2
	1340	60	43	28	16	8	4	2
Military								
M151A2	800	60	60	60	28	8	5	4

Table 9

Ranking of Vehicles with Respect to Shock*

		Speed, * I	mph, at 2.	2.5-g			
		10		for Obstacle Indicated	Average Speed	Percent M151A2	
Vehicle	Payload, 1b	4	9	60	hdm	Speed	Rank
High-performance Ramcharger	1885	09	20	2	27.3	113.8	Н
High-performance Blazer	800	09	11	7	25.0	104.2	2
High-performance Ramcharger	308	90	11	2	24.3	101.2	er.
Standard Blazer	1660	09	80	7	24.0	100.0	7
Standard Ramcharger	800	69	80	7	24.0	100.0	7
Standard Ramcharger	1885	09	80	7	24.0	100.0	4
M151A2	800	09	80	7	24.0	100.0	7
High-performance Blazer	1660	09	10	2	24.0	100.0	7
Standard Blazer	800	29	6	7	14.0	58.3	6
High-performance Bronco	1340	28	ω	2	12.7	52.9	10
Standard Scout	800	25	∞	2	12.0	50.0	11
High-Performance CJ5	800	22	80	2	10.7	44.6	12
Standard Scout	1919	14	6	9	6.7	40.4	13
Standard Bronco	800	14	6	9	9.7	40.4	14
High-performance Scout	800	18	7	2	0.6	37.5	15
High-performance Scout.	1919	16	80	2	8.7	36.2	16
High-performance Bronco	800	14	7	2	7.7	32.1	17
Standard CJS	800	12	7	4	7.7	32.1	17
Standard CJS	1300	15	ó	7	7.7	32.1	17
High-performance CJS	1300	13	7	2	7.0	29.2	20

Shock rankings based on average speed at 2.5-g vertical acceleration.

Table 10 Summary of Average Vehicle Speed Data for Traverse

				Trave	Traverse Speed, mph	ydm .				
										WES
				Militar	Military Drivers	s				Driver
Vehicle	Payload, 1b	Allison	Baker	Campbe 11	E1118	Leigh	Nixe	Shaw	White	Levis
Standard Commercial										
Ramcharger	800			20.3		18.7			18.5	28.2
	1885		18.6	22.3		21.0				27.9
Blazer	800		23.0	21.8				24.1		29.4
	1660		23.1	22.4				0.22		28.3
cus	80 0 1300				23.6	22.7 23.2			21.8 21.6	25.2 26.2
Scout	900				23.4	26.0	24.2			30.6
Bronco	800	26.7	•	25.3) :	<u>.</u>		25.0	29.2
High- Performance Commercial										
Ramcharger	800	24.9		22.0	•	24.3				30.6
	1882	77.4		19.0		6.22				3.
Blazer	80 0 1660		26.1 22.1			24.1 26.3		22.3 23.3		30.4 31.1
CJ 5	800 1300	24.8 24.5		24.6 25.5					23,3 23.2	28.5 29.7
Scout	800 1919	24.4		27.1 27.0			25.3 26.9			30.6
Bronco	800 1340	27.2 26.9	26.2 25.0						24.5 26.1	30.4 29.8
Hilitary										
H151A2	800	25.1					22.8		24.0	29.1

[•] WES driver considered control driver.

Table 11

Comparison of Average Vehicle Speeds on Secondary Roads,

Trails, and Traverse

		Speed, mph			
		Secondary Road	Trail		
Vehicles	Payload, 1b	Units	Units	Traverse	
Standard Commercial					
Ramcharger	800	40.7	24.3	28.2	
	1885	40.6	24.0	27.9	
Blazer	800	41.6	25.5	29.4	
	1660	40.6	24.5	28.3	
CJ5	800	39.5	21.3	25.2	
	1300	41.0	22.1	26.2	
Scout	800	39.9	26.5	30.6	
	19 1 9	40.3	22.9	26.9	
Bronco	800	42.4	25.1	29.2	
Ramcharger	800	45.8	26.1	30.6	
	1885	43.7	26.2	30.4	
High-Performance Commercia Ramcharger	800				
Blazer	800	46.0	25.8	30.4	
	1660	45.5	26.6	31.1	
CJ5	800	41.3	24.5	28.5	
	1300	41.3	25.8	29.7	
Scout	800	42.6	26.6	30.6	
	1919	43.6	26.0	30.2	
Bronco	800	40.4	26.9	30.4	
	1340	41.6	25.9	29.8	
Military					
M151A2	800	40.9	25.3	29.1	

Table 12
Ranking of Vehicles with Respect to Traverse Trail-Unit Speed Performance

	·····			
Vehicles	Payload, 1b	Trail Unit Speeds, mph	Percent M151A2 Speed	Rank
High-performance Bronco	800	26.9	106.3	1
High-performance Blazer	1660	26.6	105.1	2
High-performance Scout	800	26.6	105.1	2
Standard Scout	800	26.5	104.7	4
High-performance Ramcharger	1885	26.2	103.6	5
High-performance Ramcharger	800	26.1	103.2	6
High-performance Scout	1919	26.0	102.8	7
High-performance Bronco	1300	25.9	102.4	8
High-performance Blazer	800	25.8	102.0	9
High-performance CJ5	1300	25.8	102.0	9
Standard Blazer	800	25.5	100.8	11
M151A2	800	25.3	100.0	12
Standard Bronco	80C	25.1	99.2	13
Standard Blazer	1660	24.5	96.8	14
High-performance CJ5	800	24.5	96.8	14
Standard Ramcharger	800	24.3	96.0	16
Standard Ramcharger	1885	24.0	.94.9	. 7
Standard Scout	1919	22.9	90.5	18
Standard CJ5	`1300	22.1	87.4	19
Standard CJ5	300	21.3	84.2	20

Table 13

Ranking of Vehicles with Respect to Absorbed Energy

Per mile of Traverse

Veh <i>i</i> cle	Payload lb	Absorbed Energy watt per mile	Percent M151A2 Absorbed Energy	Rank
Standard Scout	1919	0.17	48.6	1
Standard Scout	800	0.19	54.3	2
High-performance CJ5	1300	0.23	66.5	3
High-performance Scout	800	0.24	68.5	4
Standard CJ5	800	0.24	68.5	4
High-performance CJ5	800	0.25	71.4	6
Standard Blazer	1660	0.25	71.4	6
Standard CJ5	1300	0.26	74.3	8
Standard Blazer	800	0.27	77.1	9
High-performance Ramcharger	1885	0.30	85.7	10
Standard Ramcharger	800	0.31	88.6	11
Standard Ramcharger	1885	0.32	91.4	12
High-performance Scout	1919	0.33	94.3	13
High-performance Bronco	800	0.34	97.1	14
High-performance Blazer	1660	0.34	97.1	14
M151A2	800	0.35	100.0	16
High-performance Blazer	800	0.36	د. 102	17
High-performance Bronco	.1340	0.38	108.5	18
Standard Bronco	800	0.43	122.9	19
High-performance Ramcharger	800	0.47	134.3	20

^{*} Based on absorbed energy.

Table 14

Comparison of Performances of Military and MES Drivers*

			Spec	ed, mph
		Military	WES	Percent
Vehicle	Payload, 1b	Driver	Driver	Difference**
Standard Commercial				•
•	800	19.2	28.2	-32
Ramcharger	1885	20.6	27.9	-26
	800	23.0	29.4	-22
Blazer	1660	22.5	28.3	-20
	800	22.7	25.2	-11
CJ5	1300	22.5	26.2	-14
	800	24.5	30.6	- 19
Scout	1900	22.9	26.9	- 16
Bronco	800	25.7	29.2	-12
High-Performance Commercial				
High-refformance comments		27.7	30.6	-22
Ramcharger	800 1885	23.7 21.3	30.4	- 30
	800	24.2	30.4	-20
Blazer ·	1660	23.9	31.1	-23
	800	24.2	28.5	-15
CJ5	1300	24.4	29.7	-18
	800	25.6	30.6	- 16
Scout	1919	27.3	30.2	-10
	800	26.0	30.4	-15
Bronco	1340	26.0	29.8	-13
Military				
M151A2	800	24.0	29.1	-18
M151A2				

^{*} Comparison based on vehicle speed on traverse.

^{**} Percent difference = speed of military driver - speed of WES driver speed of WES driver

Table 15 Vehicle Characteristics Used in the AWG-74 Model

1 4x4 1 4x4 2 5370 3 800 4 6 4 5 7 110 8 6	⊢l																			
2 2 2 3 3 3 4 4 4 4 4 4 4 4 4 4 4 4 4 4		Blazer	CJS	Scout	Bronco	Ram- charger	Blazer	CJ5	Scout	Kam- charger		CJ5 6	cout	Bronco	Ram- charger	Blazer	CJ5	Scout	gronco	pay load M151A2
1 2 2 3 3 3 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4		, ,	1-1	1	1-7	11	1-1	1		7-7	,,	7-7	, ,	7-7	1		1	1 1 1 1	444	4.4
2		t K	+ 4× 4	4X4	1 X 1	t i	4×4	4×4		# X #		+X+	t X	4X4	1 X 1		4 X 4	t t	* * * *	*
w 1 6 55 t w	•	5520	3680	4860	4545	6455	6380	4180		5720		4020	150	4590	6/40		4475	6250	5150	3130
1 2 2 2 4 A A A A A A A A A A A A A A A A		800	800	800	800	1885	1660	1300		800		800	800	800	1885		1300	1919	1340	800
2 7 8 1		1	1	1	1	1	1	1		1		1	ı	1	1		1	1		,
2000		7	7	7	7	7	7	7		7		7	7	7	7		4	7	4	7
7 1		٠.	٠.	٠.		. ~	٠ 4	٠.							٠.		0	٠,		٠,
7 8		٥	t	4	0	4	٥	4		t		xo ,	4	7	4		ıo.	4	٥	ِ ہ
α		105	100	92	144	110	105	100		140		150	158	144	140		150	158	144	61
3		4	4	4	4	4	7	4		4		4	7	4	4		7	7	4	4
6		2	2	2	7	2	7	2		2		7	7	2	2		7	7	2	7
10		80	09	70	69	80	80	09		79		9	20	69	79		9	20	69	64
11. 1		184	139	166	152	184	184	139		184		139	166	152	184		139	166	152	133
12		7	9	7	9	7	7	9		6		7	7	9	6		7	7	9	7
13		15	16	15	15	15	15	16		15		15	15	15	15		15	15	15	16
*		45	35	30	4.5	35	45	35		30		30	30	45	30		200	2	45	20
		4	4	4	4	7	7	4		4		4	7	4	7		4	7	4	4
		NO	ON.	ON	ON	ON	CN	ON		NO.		- OK	, ON	Q	ON		. C	CN	NO.	NO
17		10.0	9.5	9.7	13.0	10.2	10.0	9.5	9.7	11.8		11.0	9.7	12.0	11.8	10.5	11.0	9.7	12.0	12.7
		8.0	8.0	6.9	0.6	9.5	8.0	8.0		8.8		9.0	6.9	0.6	8.8		9.0	6.9	9.0	9.0
		19	14	18	20	19	19	14		20		6	18	21	20		6	18	21	18
		25	84	56	37	27	25	87		29		43	23	45	29		43	23	45	31
		19.5	19.0	19.5	19.0	20.0	19.5	19.0		20		21	50	20	20		21	20	20	18,0
		42	25	87	45	42	42	52		43		54	38	94	43		24	38	46	99
		31.5	30.5	28.2	19.0	31.5	31.5	30.5		32.2		31.5	28.2	31.1	32.2		31,5	, 28.2	31.1	30.0
		19.5	19.0	19.5	19.0	20.0	19.5	19.0		20		21	50	20	20		21	70	20	18.0
		106	76	100	92	106	106	84		106		84	100	92	106		84	100	92	82
		1		•	1	1	•	1		ı		•		ı			ı	ı	•	,
		17.0	17.7	10.0	12	8.0	17.0	17.7		12.0		17.7	10.0	17.7	12.0		17.7	10.0	17.7	11.6
		106	84	100	92	106	106	84		106		84	100	92	106		84	100	92	82
		1	1	ı	,	1	ı	ı		1				ı				•		ı
		1	•	•	•	•	•	•		1		ı					•	•	1	,
			•	1	1	1	ı	1		ı		,	ı	ı	1		1	•		,
		14.6	14.6	13.7	14.2	14.6	14.6	14.6		14.9		14.2	13.7	14.4	14.9		14.2	13.7	14.4	13.4
		æ.	∞.	æ.	æ.	æ.	æ.	₩.		Φ.		œ.	ထ့	æ	œ.		æ	æ.	œ.	œ.
		5520	3680	4860	4545	6455	6380	4180		5720		4050	5150	4590	6740		4475	6250	5150	3130
		6.5	0.5	0.5	0.5	6.5	6.5	0.5		6.5		0.5	6.5	6.5	0.5		0.5	5.0	0.5	9.5
		38.0	54.4	37.9	63.4	34.1	32.9	47.9		0.64		74.1	61.4	62.7	41.5		67.0	50.6	55.9	39.0
_	_	Manual	Manual	Manual	Manual	Manual	Manua 1	Manua1		Auto		Manua1	Auto	Auto	Auto		Manual	l Auto	Auto	Manua1

Table 16

Key to Vehicle Characteristics
Used by AMC-74 Mobility Model

Item No.	Vehicle Characteristics	Dimen- sions	Characteristic Application*
ı	Vehicle configuration		В
2	Gross vehicle weight (cross-country)	1b	В
3	Payload	tons	В
4	Track type		T
5	Grouser height for tracks; number of tires for wheeled	in.	В
6	Tire ply rating	-	N
7	Gross rated horsepower	bhp	В
8	Number of tracks or tires		В
9	Number of axles	-	W
10	Vehicle width	in.	В
11	Vehicle length	in.	В
12	Track width or nominal tire width	in.	В
13	Wheel rim diameter	in.	И
14	Recommended tire pressure (sand)	psi	W
15	Area of one track shoe (tracked) or number of wheels (wheeled)	in. ²	В
16	Number of bogies in contact with ground (tracked) or chain indicator (wheeled) (0 = no chains, 1 = chains)	-	В
17	Vehicle ground clearance at the center of greatest wheel span	in.	W
18	Minimum vehicle ground clearance	in.	В
19	Rear-end clearance (vertical clearance of vehicle trailing edge)	in.	В
20	Vehicle departure angle	deg	В
	(Continued)		

^{*} T denotes tracked vehicles only; W denotes wheeled vehicles only; and B denotes both wheeled and tracked vehicles.

(Sheet 1 of 3)

Table 16 (Continued)

21	Vehicle Characteristics		Application*
	Front-end clearance (vertical clearance of vehicle's leading edge)	in.	В
22	Vehicle approach angle	deg	В
23	Length of track on ground or wheel diameter	in.	В
24	Height of vehicle pushbar (leading edge when no pushbar)	in.	В
25	Distance between first-and last-wheel center lines (or bogies)	in.	В
26	Horizontal distance from the center of gravity to the front-wheel centerline	in.	T
27	Vertical distance from the center of gravity to the road-wheel center lines	in.	В
28	Maximum span between adjacent wheel center lines	in.	W
29	Horizontal distance from the center of gravity to the center of the rear sprocket or idler	in.	T
3 0	Vertical distance from the ground to the center of the rear idler or sprocket	in.	T
31	Track thickness plus the radius of the road wheel	in.	T
32	Rolling radius of tire or sprocket pitch radius	in.	В
3 3	Maximum braking coefficient the vehicle develops	-	В
31+	Maximum force the leading edge can withstand	lb	В
35	Maximum axle load/gross vehicle weight	_	W
36	Vehicle rated horsepower per ton	hp/ton	В
37	Transmission type	_	В
38	Array containing vehicle velocity versus obstacle height at 2.5-g vertical acceleration	-	В

(Continued)

(Sheet 2 of 3)

Table 16 (Concluded)

Item	Vehicle Characteristics	Dimen- siòns	Characteristic Application*
39	Array containing ride dynamics versus speed curve (cross country)	-	В .
40	Array containing ride dynamics versus speed curve (trails and secondary roads)		В
41	Array containing tractive force-speed array	-	В

Table 17

Tractive Force* vs Speed Relations

				Tre	Tractive Force	ce . //6					
	Standard C	Commercial	Vehicles			Military	High-Performance Commercia	rmance Col	mmercial	Vehicles	-
Speed mph	Ramcharger	Blazer	CJS	Scout	Bronco	M151A2	Ramcharger	Blazer	CJS	Scout	Bronco
0	3394	3381	3528	1531	4439	2185	5938	7046	4840	8203	5340
2	3394	3381	3528	1531	4439	2185	5264	6162	7840	7234	468ċ
7	3394	3381	3528	1531	4439	2185	4625	5332	4840	6360	9907
9	3394	3381	3528	1531	4439	2185	3988	4523	4840	5379	3459
80	3394	3381	3408	1531	4364-	2084	3438	3832	4840	4517	2912
10	3318	3229	3185	1531	4122	1929	3040	3489	4840	3924	2600
12	3083	3042	2773	1531	2418	1694	2935	3415	4705	3792	2598
14	2751	2715	2236	1525	2410	1168	2829	3228	4305	3567	25.53
16	1955	2258	1898	1503	2363	1126	2674	3965	3752	32.70	2451
18	1905	1869	1300	1451	2265	1072	2456	2098	2776	2298	1542
20	1820	1812	1667	1383	2106	1003	1733	2055	2686	2251	1540
22	1735	1711	1490	1309	1915	926	1708	1992	2555	2197	1530
24	1606	1584	1389	1231	1737	848	1666	1916	2391	2093	1510
26	1476	1441	1260	792	1297	618	1611	1817	2162	1989	1476
28	1376	1357	1129	786	1284	209	1549	1709	2024	1885	1430
ድ	1100	1261	1062	780	1270	595	1470	1555	1861	1700	1247
32	1079	1140	1019	770	1242	582	1390	1481	1688	1628	1215
34	1052	1071	975	756	1211	995	1283	1408	1528	1464	1184
*	1024	1036	924	742	1170	548	1227	1270	1487	1414	1031
38	266	266	865	722	1107	528	1171	1231	1435	1364	1011
40	296	950	831	702	1053	507	1080	1184	1381	1315	066
. 77	918	106	792	682	1000	485	1042	1138	1315	1101	896
77	898	851	248	662	647	797	1004	1091	1234	1088	756
97	841	824	705	643	641	364	296	975	1191	1066	751
87	803	792	099	294	641	361	831	926	1146	1040	747
20	765	759	615	967	641	356	818	934	1086	1015	742
52	559	720	551	490	9	351	804	806	1027	066	732
54	558	678	244	787	637	347	790	881	971	964	721
26	555	266	538	478	634	341	774	854	921	939	710
58	551	558	532	470	631	335	754	827	785	29	669
09	548	551	526	461	627.	328	734	677	782	762	521
6 2	244	247	517	453	623	321	715	671	167	756	520
7,9	538	542	507	445	616	314	695	799	757	750	518
99	531	537	967	436	809	300	582	657	748	739	516
89 50	524	532	984	428	009	299	577	649	739	727	514
?	218	524	4/5	420	593	291	572	641	727	715	513

^{*} Values computed by power-train submodel and not adjusted for surface traction or slip

Table 18
Comparison of Predicted and Measured Traverse Speeds

	Vehicle	Measured Speed* mph	Predicted Speed mph	Algebraic Deviation** mph	Percent Errort
		6=watt R	ide Criterion		
_ =	Ramcharger	28.2	19.4	- 8.8	31.2
ird ira	Blazer	29.4	20.6	- 8.8	29.9
Standard ommercia Vehicle	CJ5	25.2	25.8	+ 0.6	2.4
eh eh	Scout	30.6	26.7	- 3.9	12.8
Standard Commercial Vehicle	Bronco	29.2	22.3	- 6.9	23.6
1.1	Ramcharger	30.6	18.2	-12.4	40.5
nan ii s	Blazer	30.4	19.3	-11.1	36.5
iligh- erforma ommerci Vehicle	CJ5	28.5	25.8	- 2.7	8.8
in a series	Scout	30.6	24.1	- 6.5	21.2
iligh- Performance Commercial Vehicle	Bronco	30.4	24.2	- 6.2	20.4
Military Vehicle		29.1	22.2	- 6.9	23.7
					
ू हो दु	Ramcharger	28.2	26.6	- 1.4	5.0
Standard Commercial Vehicle	Blazer	29.4	27.9	~ 1.5	5.1
anc Bellicit	CJ5	25.2	26.5	+ 1.3	5.2
St:	Scout	30.6	26.7	- 3.9	12.8
	Bronco	29.2	25.3	- 3.9	13.4
High. Performance Commercial Venicle	Ramcharger	30.6	25.2	- 5.4	17.6
ci Cl	Blazer	30.4	28.2	- 2.2	7.2
High. Performanc Commercial	CJ5	28.5	27.4	- 1.1	3.9
F. F. S.	Scout	30.6	27.6	- 3.0	9.8
	Bronco	30.4	26.3	- 4.1	13.5
Military Vehicle	M151A2	29.1	27.7	- 1.2	4.1

^{*} Measured speed with WES driver.

^{**} Algebraic deviation = predicted speed - measured speed.

[†] Percent error = predicted speed - measured speed measured speed .

Table 19
VCI₁ Values for Test Vehicles

Vehicle	Payload, lb	VCI ₁ (Fine-Grained Soils)
Standard Commercial		
Ramcharger	800 1885	28 31
Blazer	800 1660	30 34
CJ5	800 1300	26 29
Scout	800 1919	27 32
Bronco	800	27
High-Performance Commercial		
Ramcharger	800 1 8 85	22 25
Blazer	800 1660	20 22
CJ5	800 1300	24 26
Scout	800 1919	28 32
Bronco	800 1340	26 28
Military		
M151A2	800	19

Table 20 Summary Evaluation of Vehicle Performance

		Ride Test	Courses				
	Ride Quality	uality	Cargo Response	Sponse		Traverse Test Course	st Course
R.S.		Cross-Country Roads & Trails	Cross-Country	Koads & Trails	Obstacle Shock	Traverse Speed	Absorbed Energy
-	5. Scout 1919*	5. Scout 800	S. Scout 300	M151A2 800	H. P. Ramcharger 1885	H. P. Bronco 800	S. Scont 1919
2	S. Scout 800	H. P. Scout 1919	H. P. Ramcharger 1885	S. Scout 800	II. P. Blazer 800	=	S. Scort 800
m	5. Hancharger 800		M151A2 800	1919	H. P. Ramcharger 800	Ξ	H. P. C.IS 1300
4	4 pit. P. Blazer 800	11.	JS. Scout 1919		(5. Blazer 1660		H. P. Scout 800
S	Ht. P. Scout 1919	Ë	H. P. Scout 800	H. P. Ramcharger 1885	S. Ramcharger 800	Ξ.	'ls. CJS 800
£	JS. Ramcharger 1885	s.	5. Ramcharger 1885	36	S. Ramcharger 1885	Ŧ.	H. P. CJS 800
-	H. P. Blazer 1660	Ξ	4H. P. Blazer 800	5. 81azer 1660	H. P. Blazer 1660	Ξ	S. Blazer 1660
ac	H. P. Rancharger 1000	M. P. Bronco 800	S. Blazer 1660	H, P. Bronco 1340	M151A2 800	H. P. Bronco 1300	S. CJS 1300
o,	M. P. Rancharger 1885	S. CJS 1300	H. P. CJS 1300		S. 81azer 800	₹.	S. Blazer 800
=	M. P. CJS 800	H. P. CJS 1300		H. P. Rancharger 800	340	H. P. CJS 1300	H. P. Ramchatger 1885
=	(5. Blazer 500	S. Blazer 1660		JH. P. Scout 800	5. Scout 800	S. Blazer B00	S. Ramcharger 800
54	S. CJS 1300	S. Ramcharger 1885		5. Blazer 800	H. P. CJS 800	M151A2 800	S. Ramcharger 1885
13	5. Bronco 800	S. Blazer 800	900	S. Rancharger 1885	S. Scout 1919	S. Bronco 800	H. P. Scout 1919
7	M. P. Scout 800	H. P. Blazer 800		H. P. CJS 800	S. Bronco 800	S. Blazer 1660	H. P. Bronco 800
12	 P. Bronco 1543 	S. Rancharger 800	CJS 800	H. P. 8lazer 800	0	H. P. CJS B00	H. P. Blazer 1660
16	MISIAZ BUD	IS. Bronco 800		S. Bronco 800	19	S. Ramcharger 800	M151A2 800
17	H. P. Branco MO	M. P. Rancharger 1885	14. P. Scout 1919	S. CJS 800	20	5. Ramcharger 1885	H. P. Bla.er 800
18	IS. CJS 300	M. P. Blazer 1660	H. P. Blazer 1660	S. CJS 1500		S. Scout 1919	H. P. Brown 1340
6	H. P. CJ S 1300	H. P. Famcharger 800	S. Rancharger 800	S. Ramcharger 800	S. CJS 1300	S. CJS 1300	S. Bronco 800
20	5. Blazer 16:0	M151A2 800	H. P. Bronco 600	H. P. Bronco 800	н. Р. слร 1300	S. CJS 800	H. P. Ramcharger 800

NOTE: H. P. denotes high-performance; S denotes standard performance; and brackets indicate performance rated equal, * Number indicates payload, 1b.

APPENDIX A: DETAILED DYNAMICS DATA FOR RIDE AND SHOCK TESTS

1. The detailed dynamics data for the ride tests are given in Table Al, and the detailed data for the shock tests are presented in Table A2.

Table Al

Data from Controlled Ride Dynamics Tests

				Driver			Cargo Responses	onses			
ę	Test (Test Course		Absorbed	Composite rms	-	No	No. of Occurrences			
No.*	fication	ress, rms	ngh h	rower	Acceleration	>1-1.5	>1.5-2 >2-2.5 >2.5-3	>2-2.5		×3-4	74
				Standa	Standard Ramcharger with		800 1b Payload				
2138	11	2.0	7.4	8.4	0.45	94	2	1	0	0	0
2139			10.6	15.6	0.79	9/	61	20	e	т	7
2140			9.3	8.8	0.62	84	20	2	2	7	0
2141			7.1	0.9	0.48	92	œ	0	0	0	0
2118	Т3	9.0	6.3	0 , 7	0.23	1	1	0	0	0	0
2119			8.9	6.0	0.25	0	1	0	0	0	0
2120			11.2	1.6	0.31	7	0	0	Þ	0	0
2121			14.9	3.0	0.42	2.7	7	0	0	0	0
2122			18.3	2.4	0.42	25	H	0	0	0	0
2124			28.4	2.8	0.54	34	7	0	0	0	0
2125			45.5**	4.7	0.71	30	7	7	н	0	0
2126	7.4	1.2	8.5	2.0	0.35	16	2	0	0	0	0
2127			14.0	4.2	0.50	34	'n	7	т	1	0
2128			25.3	9.6	1.14	36	15	∞	5	П	ო
2129			21.1	4.1	0.56	25	6	П	н	0	0
2130	,		32.5**	7.4	0.94	98	78	47	က	ო	0
2131	SR1	0.4	14.4	2.0	0.28	ო	H	0	0	0	0
2132			21.5	2.5	0.33	7	0	0	0	0	0
2133			27.6	2.4	0.43	15	9	0	0	0	0
2134			30.7	3.4	0.43	18	က	0	0	0	0
2135			36.9	2.6	0.53	20	æ	0	0	0	0
2136			28.4	3.4	77.0	17	7	п	п	0	0
2137			31.7	2.9	0.52	34	9	0	0	7	0
					(Continued)	d)					

* All test were conducted at test tire inflation pressure (Table 2 in main text) except as indicated for the MISIA2.

** Haximum control speed due to steering.

Table Al (Continued)

	8 ^ 44	0000000	00011000	00000	0 1 1 0 0 0 0 0 0
	n Level,	0000000	000100	00401	0 0 1 0 0 0.
rences	>2.5-3	H000000	m O 4 O m m O	00111	00 + 8 3 7
of Occurrences	te of Acc	m000000	19 2 10 3 3 10 0	1 11 2 2	18 18 6 0 0
Cargo Responses	Peak Composite of Acceleration Level,	≻ ₩₩₩₩₩₩	49 59 114 47 8	0 8 21 4 12 10ad	44 6 77 7 0 0 0
Ca	Pea >1-1.5	49 73 73 51 62 62	126 54 146 89 88 122 38	18 0 38 8 58 21 46 4 51 12	88 161 116 96 11 19 d)
Composite rms	Acceleration g	0.59 0.52 0.65 0.43 0.58 0.40	0.91 0.49 0.80 0.56 0.75 0.73	0.41 0.47 0.87 6.50 0.62 Rlazer with	0.52 0.74 0.68 0.53 0.38 0.39 (Continued)
Driver Absorbed	Power watts	2 2 3 3 3 3 4 5 6 6 5 7 5 9 7 5 9 5 9 9 9 9 9 9 9 9 9 9 9 9	26.4 5.2 17.9 6.2 14.1 9.2 3.3	3.5 4.2 17.4 5.8 11.0	6.4 115.8 112.3 8.8 3.6 4.0
	Speed	26.2 18.4 41.4** 13.6 26.5 13.2 23.7	14.1** 8.2 11.8 8.7 11.3 9.5	5.2 7.6 10.9 8.2 9.2	8.6 11.8** 10.9 8.8 6.7 6.0
ourse	Rough- ness, rms	0.5	1.4	1.8	2.0
Test Course	ldenti- fication	CCIA	CC2A	CC3 A	ij
	Test No.*	2147 2148 2149 2150 2151 2153 2153	2155 2156 2157 2158 2159 2160 2161	2142 2143 2144 2145 2146	2356 2357 2358 2359 2360 2361

Table Al (Continued)

		74	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	o	0	0	0	၁	0	0	0	0	0	0	of 35)
Cargo Responses	evels, g	1 .	0	0	0	0	0	н	0	0	0	2	0	0	0	0	0	0	0	0	1	0	0	0	0	0	-	0	(Sheet, 3 c
	rences ration I	>2.5-3	0	0	0	0	0	7	0	0	0	7	0	0	0	П	0	0	0	ပ	-	0	0	0	0	0	0	7	S
	if Occurrences	>2-2.5	0	0	0	0	0	m	3	П	0	5	0	0	0	0		O	1	0	ო	m	C	0	0	0	0	10	
	1 ^	>1.5-2	0	0	1	7	0	2	0	9	2	70	н	0	0	н	0	0	ĸ	0	æ	4	2	0	14	0	Ŋ	23	
Ö	Pes	>1-1.5	0	'n	21	31	0	20	ω,	25	22	30	9	7	н	7	14	н	29	5	31	01	32	0	57	11	51	54	(p
	Composite rms Acceleration	8	0.27	0.33	0.42	0.53	0.27	0.53	0.39	0.54	0.45	0.80	0.29	0.30	0.30	0.40	0.43	0.09	0.56	0.25	99.0	0.50	0.46	0.29	0.59	0.40	69.0	0.84	(Continued)
Driver	Absorbed Power	watts	1.1	2.6	2.7	2.6	1,3	7.1	2.8	5.1	3.6	5.6	3.1	2.7	1.6	2.5	3.9	6.0	6.9	2.7	1.9	2.7	2.8	1.5	2.6	3.1	3.5	5.1	
	Speed	udi	10.5	15.3	19.4	25.5	7.3	15.0	11.2	19.9	12.9	25.9	16.6	20.2	24.8	30.6	35.0	10.5	40.7	13.4	51.5	45.5	20.2	10.3	26.0	15.5	33.7	39.0**	
	course Rough-	ness, rms	9.0				1 2	1					0.4										0.5						
	Test Course Identi- Rough	fication	Т3				14.						SRI										CC1A						
	Test	No. *	2343	2344	2345	2346	2348	2349	2350	2351	2352	2353	2335	2336	2337	2338	2339	2340	2341	2342	2354	2355	2368	2369	2370	2371	2372	2373	

Table AI (Continued)

		×4 4	н	0	0	0	0	c			Ŋ	-	0		0	0	, ,	0	-	-	0	0	0	0	0	0	0	
Cargo Responses	Occurrences	4 1	ч	0	c	0	က	c		۰ ۲	7	٣	0		0	0	т	0	-1	0	0	0	0	0	0	0	0	
		1 .	'n	0	7	0	1		9		• •	7	0		0	0	-	0	4	ထ	0	0	0	0	0	7		
			12	0	2	7	10	c	ď	6,7	17	4	2		0	т	7	4	17	01	0	0	٥	0	0	0	7	
		>1.5-2	18	0	က	7	16	c	- 80	38	26	11	7)ad	. 2	7	27	89	43	41	0	0	c	-1	т	7	~	
	- Peg	>1-1.5	59	Н	84	21	20	-	06	80	72	142	22	0-1b Payl	9	51	119	87	143	158	0	0	10	13	21	25	18	
	Composite rms Acceleration	8	0.77	0.37	0.55	0.51	0.67	0.33	0.76	1.09	1,95	0.70	0.49	dard CJ5 with 800-1b Payload	0.44	0.49	0.70	0.56	0.76	0.76	0.20	0.31	0.33	0.41	0.47	09.0	0.59	
Driver	Absorbed Power	watts	20.6	2.9	7.8	9.9	12.0	2.2	17.7	23.6	31.5	16.2	6.7	Standard	3.6	7.0	15.8	11.6	13.2	15.5	0.8	1.1	1.6	1.1	2.0	2.8	1.9	
	Speed	hop	12.3	6.3	9.3	8.9	11.0	5.7	11.5	16.1	13.8**	9.5	8.3		7.8	0.6	15.0	10.5	15.6	14.9	7.6	10.9	15.7	19.4	24.4	30,3	39.1**	
	Sourse Rough-	ness, rms	1.8								2.0						9.0											
	Test Course Identi- Rough	fication	CC2A					CC3A	CC3A							1.1						S H .						
	Test	No.*	2374	2375	2376	2377	2378	2362	2363	2364	2365	2366	2357		2023	2025	2026	2027	2028	2029	2000	2671	2003	2005	2004	5006	2002	

(Sheet 4 of 35)

(Continued)

Table Al (Continued)

	74	0000,000	000000	000000	5 1 2 0 1 0
\$ [9,6]	1 .	0000000	200000	000000	5 5 0 5 1 0
	1	10100000	000000	000000	00H884
o Responses No. of Occurrences	>2-2.5	000000000000000000000000000000000000000	0000101	000000	0 2 4 11
Cargo Responses No. of	>1.5-2	01516140	0 0 0 0 1 1 1 1	0001000	0 4 16 21 11 18
0 6	>1-1.5	24 24 6 10 18 29	1 0 2 2 13 16	0 8 8 1 16 2 2 2 5	34 53 77 73
Composite rms	8	0.32 0.48 0.39 0.59 0.46 0.42	0.25 0.25 0.31 0.37 0.42 0.51	0.33 0.45 0.38 0.34 0.54	0.34 0.48 0.64 0.65 0.63
Driver Absorbed	Watts	0 4 6 8 9 4 6 8 9 4 6 9 9 1 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	11.33	2.0 2.0 1.7 2.2 2.2	2.2 5.5 10.3 14.1 10.4 17.3
, door o	The state of the s	6.8 16.4 10.5 19.4 14.7 23.4 16.4	10.7 15.2 19.5 23.9 28.7 36.4	13.1 22.5 15.3 24.6 10.8 37.0**	6.1 8.0 9.5 11.0 9.0
ourse	ness, rms		0.4	0.5	1.4
Test Cours	fication	7.1	SR1	CC1A	CC2A
F 00	No.*	2008 2009 2010 2011 2012 2013 2014	2016 2017 2018 2019 2020 2021 2022	2030 2033 2034 2035 2035 2036 2037 2038	2049 2050 2051 2051 2052 2053

(Sheet 5 of 35)

0 0 0 0 0 0 0000000 000000 0000000 Peak Composite Acceleration Levels, 000000 Cargo Responses
No. of Uccurrences 00000 000000 >2-2.5 000000 0000470 >1.5-2 122 8 8 2 5 0 21 24 26 34 0 0 0 0 1 Payload 800-1b 15 17 50 96 93 80 146 120 26 54 36 39 39 Composite rms Acceleration with 0.35 0.52 0.79 0.61 0.64 0.36 0.39 0.56 0.56 0.57 0.77 0.18 0.29 0.36 0.43 0.45 0.26 0.40 0.26 0.52 0.62 0.66 Standard Driver Absorbed Power watts 2.0 2.5 4.3 7.2 9.8 8.6 8.6 10.6 3.1 8.8 16.0 9.0 15.6 0.6 1.5 1.0 1.2 1.8 6.9 9.2 13.4** 11.3 11.8 6.8 7.6 9.8 11.2 15.1 12.0 19.6** 6.8 18.9 9.9 23.2 28.0 32.0 9.7 19.5 14.7 25.0 31.0 ness, rms Test Course Identi- Rough-1.2 2.0 fication 13 디 **1**4 2766 2767 2768 2769 2770 2771 2772 2754 2755 2756 2751 2751 2759 2760 2061 2062 2063 2064 2065 2065 2748 2749 2750 2751 2752 2753

Table Al (Continued)

35)

ψ

(Sheet 6

Table Al (Continued)

	74	00000	0000	01300	00000	0010
	Levels, g > 3-4	00000	0000	10301	70001110	5310
rences	1	00000	0000	97999	0 1 1 5 0 5	0 4 4 6
nses of Occur	Composite Acceleration 1.5-2 >2-2.5 >2.5-3	00000	0000	4 0 14 3 7	357271	1 5 8 20
Cargo Responses	k Composi	00000	0000	6 2 18 9 . 16	4 12 8 12 10 17	0 8 18 28
Ca	Peak >1-1.5 >1	7 5 0 0 2	1 0 10	15 9 36 24 26	20 4 37 12 31 8 39 12 25 10 49 17	20 19 114 134
Composite rms	Acceleration g	0.39 0.16 0.19 0.34 0.33	0.33 0.21 0.40 0.50	0.51 0.32 0.74 0.54 0.55	0.47 0.59 0.55 0.71 0.50 0.86 Bronco with	0.41 0.55 0.64 0.80
Driver	Power watts	1.0 0.6 1.6 1.5	1.5 0.9 1.5	5.3 1.4 12.4 7.9	4.0 7.6 7.8 9.4 5.9 10.5	2.6 7.3 10.2 21.8
	Speed	52.5 10.0 19.2 28.7 38.4	19.6 9.9 28.1 39.5**	9.3 6.2 14.5** 11.2	8.6 9.6 11.9 14.4 9.6	6.9 8.1 10.5 12.2**
ourse	nti- Rough- ation ness, rus	4.0	0.5	1.4	& 	2.0
Test C	Identi- fication	SR1	CCLA	CC2A	CC3A	11
	Test No.*	2784 2785 2786 2787 2787	2780 2781 2782 2783	2761 2762 2763 2764 2765	2774 2775 2776 2777 2777 2779	2962 2963 2964 2965

(Sheet 7 of 35)

Table AI (Continued)

8 × 4 ×	00000	00004300	00000	00000
Levels,	00000	01001001	00000	0000
111	011000	00444409	00000	0000
sponses No. of Occurrences osite Acceleration >2-2.5	\$ 350 HO	0 11 0	00 + 13	00010
Cargo Responses No. of Occurrences Ceak Composite Acceleration >1,5-2 >2-2.5	7 7 7 8 7 8 7	2 11 0 0 23 23 14 10	88800	m -: ≈ 0 4
Ca 2-6-6	2 2 1 18 25 35 28 28	0 16 16 43 33 39	28 22 13 2 0	22 4 42 38 36
Composite rms Acceleration 8	0.30 0.46 0.38 0.56 0.64	0.28 0.41 0.61 0.87 0.55 0.55	0.61 0.54 0.41 0.28	0.52 0.33 0.67 0.55
Driver Absorbed Power watts	0.8 1.6 1.3 7.3 4.4	V 9 8 9 5 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1.2 2.6 1.4 1.2 0.6	2.7 3.5 3.5 2.8
Speed	11.7 21.3 16.0 26.8 40.1**	7.4 115.7 111.8 20.5 29.2** 16.9 25.3	48.7 42.1 30.7 20.8 11.7	20.4 12.1 30.3 36.4**
Souga-	9.0	1.2	4.0	0.5
Test Course Identi- Rough fleation nece	T3	7.	SRI	CC1A
Test No.*	2943 2944 2945 2946 2947 2948	2949 2950 2951 2952 2953 2954 2955	2957 2958 2959 2960 2961	2972 2973 2974 2975 2976

(Sheet 8 of 35)

Table Al (Continued)

1		8	>4	2	0	-	0	0	П	0	0	7	0	0	0		0	0	0	-	0	0	0	0	0	7	0	of 35)
			>3-4	7	0	٣	0	4	-	0	7	4	7	-	5		0	7	0	0	0	0	0	0	0	7	0	(Sheet 9 c
	rences	ration l	>2.5-3	7	0	5	0	e	7	0	7	m	4	e	٣		0	0	0	0	0	Ç	0	0	0	ന	0	S
nses	of Occurrences	te Accele	>2-2-5	'n	0	12	2	10	٣	2	2	7	9	٣	٣		0	7	7	ıત	٣	0	0	0	7	6	m	
Cargo Responses	No.	Peak Composite Acceleration Levels,	>1.5-2	18	0	25	4	13	13	Ŋ	6	23	19	11	9	<u>(18d</u>	7	1	4	2	90	.0	0	٣	တ	24	25	
Ca		Pea	>1-1.5	79	7	57	25	57	34	26	25	69	73	81	38	yload (30	7	14	58	68	92	S	9	38	77	75	20	(p
	Composite rms	Acceleration	80	0.67	0.38	0.75	0.50	69.0	09.0	0.44	0.56	0.77	0.68	99.0	0.53	M15:A2 with 800 lb-Payload (30 psi)	0.31	0.37	0.43	0.47	0.55	0.32	0.35	0.42	0.43	0.62	0.52	(Continued)
Driver	Absorbed	Power	watts	17.6	2.1	18.7	8.9	18.4	10.4	3.3	8.7	15.1	16.6	17.2	8.6	M15.7A	3.3	5.2	7.7	11.3	14.1	2.0	3.0	5.4	6.5	10.1	11.3	
		Speed	H _d	10.4	6.8	13.2**	8.3	10.4	9.6	7.0	8.3	12.6**	6.6	11.0	8.3		4.9	8.0	10.0	11.9	14.0	6.1	7.4	9.7	11.0	14.1	13.8	
	ourse	Rough-	ness, rus	1.4						1.8							2.0					1.4						
	Test Course	Identi-	fication	CCZA						CC3A							1.1					0€2A						
		Test	* ON	2977	2978	2979	2980	2981	2982	2966	2967	2968	5969	2970	297).		25 49	2550	2551	2552	2553	2579	2580	2581	2582	2583	2584	

Table Al (Continued)

	50	>4	0	0	0	0	0	0	0		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Levels,	>3-4	0	0	0	0	0	0	0		0	0	0	0	0	0	0	0	0	0	0	0	0	0	ဂ	0	0	-
rrences		>2.5-3	0	0	0	0	1	0	0		0	-1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	ë
nses of Occurrences	te Accel	>2-2.5	0	0	0	2	5	1	9		0	0	0	0	7	0	0	0	0	0	0	2	0	0	0	0	2	٣
Cargo Responses	Peak Composite Acceleration	>1.5-2	0	2	4	٣	26	17	14	psi)	0	2	0	7	20	· 17	0	0	က	0	4	-	0	0	œ	0	7	χ
CE	Pe	>1-1.5	9	6	28	20	81	92	7.7	yload (20	н	6	24	53	111	82	0	0	œ	m	œ	26	13	0	15	1	27	18
Composite rms	Acceleration	89	0.34	0.40	0.43	0.47	0.61	0.56	09.0	M151A2 with 800-1b Payload (20 psi)	0.28	0.34	0.37	0.42	0.50	0.48	0.22	0.23	0.32	0.32	0.40	0.50	0.43	0.28	0.41	0.30	0.51	0.65
Driver	Power	watts	3.7	6.2	9.1	11.3	16.8	13.8	17.0	M151A	2.1	4.4	5.9	6.6	11.4	13.2	1.0	2.8	2.1	3.0	1.7	7.4	5,8	2.4	5.7	3.0	6.9	7.5
	Speed	right.	6.7	8.3	10.3	11.9	:5.1	14.1	15.1		5.7	7.6	9.6	11.5	14.2	14.2	10.7	15.5	19.4	23.9	28.4	39.5	40.7**	10.5	19.9	14.7	24.6	31.0**
ourse	nti- Rough-	ness, rms	1.8								2.0						9.0							1.2				
Test C	Ident1-	fication	CC3A								II						13							14				
	Test	No.*	2566	2567	2568	2569	2570	2571	2572		2554	2555	2556	2557	2558	60.77	2615	2616	2617	2618	2619	2620	2621	2622	:623	2524	2625	2626

Table Al (Continued)

50	000	0000	00000	00000	010000	0 0 of 35)
Levels, 8	000	0000	00000	00001	00000	0 0
	000	0000	00000	70000	011700	00 .
of Occurrences:	000	0000	00000	3 0 6 1	0 1 6 2 3 5 6	10
Cargo Responses No. of Occurrences Peak Composite Acceleration >1.5-2 > 2-2.5 > 2-3.5-3	000	00021	001000	12 0 0 15 2 2	1 3 12 10 43 17 PS1)	•
Ca Pes	0 0 7	6 11 0	0 0 25 19 18	18 6 65 11 46		2 8 d)
Composite rms Acceleration	0.16 0.18 0.25	0.34 0.40 0.21 0 18	0.30 0.22 0.42 0.52 0.36	0.89 0.32 0.51 0.39	0.33 7 0.38 18 0.49 54 0.47 49 0.64 109 0.49 53 M151A2 with 800 lb Payload (15	0.30 0.33 (Continued)
Driver Absorbed Power	1.4	2.3	2.8 1.9 3.7 2.9	6.5 3.3 13.7 4.8	2.2 4.3 6.9 8.0 14.0 8.7	2.1 3.6
Speed	10.8	35.9 46.2 22.0 16.3	19.5 10.8 28.7 36.4 23.7	9.6 6.3 12.1 8.0 13.0	6.0 7.6 9.5 11.5 14.3	5.9
Course Rough-	4		0.5	1.4	1.8	2.0
Test C Identi- fication	SRI		CC1 A	CC2A	CC3A	ដ
Test No.*	2608 2609 2610	2611 2612 2613 2613 2614	2603 2604 2605 2606 2606	2593 2594 2595 2596 2597	2573 2574 2575 2575 2577 2577	2 560 2561

Table Al (Continued)

	8 >4	0000	00000	00000	00100	0 0 0 0 0 0 0 0
	\text{Levels. } 3-4	0000	00000	000000	00000	0 0 0 0 0
rrences	1	5 0 C O	10000	000000	00 H O H	00000
nses of Occurrences	te Accel	0 1 12	0 4 0 T	مو ۵ م م د م م ۵ م م د	0 6 6 9 9	0 0 0 0 0
Cargo Responses	Peak Composite Acceleration	1 3 8 21	7 0 13 1	0 0 3 8 24 . 25	1 11 35 7 8	00740
0	Pe->1-1.5	27 37 54 101	25 0 28 9	5 6 38 44 75 70 70 x with 800	7 54 126 58 50	0 7 12 19 0
Composite rms	Acceleration 8	0.38 0.38 0.45 0.52	0.43 0.29 0.44 0.37	0.32 0.35 0.42 0.43 0.62 0.52 mance Ramcharger	0.37 0.55 0.66 0.52 0.46	0.21 0.37 0.44 0.55 0.28 (Continued)
Driver	Power	6.1 8.5 12.3 17.6	7.3 2.5 12.4 4.7 15.3	2.0 3.0 5.4 6.5 10.1 11.3	3.4 7.4 16.1 7.1 6.0	0.4 3.1 1.9 1.3
	Speed	9.6 11.4 13.8 14.8**	9.3 6.5 11.7 8.0 13.4	6.1 7.4 9.7 11.0 14.1 13.8	6.0 9.4 10.7** 8.8 6.6	4.9 19.9 28.1 35.9 11.7
ourse	nti- Rough- ation ness, rms	2.0	1.4	1.8	2.0	9.0
Test C	Identi- fication	11	CC2A	CC3A	. II	T3
	Test No.*	2562 2563 2564 2565	2598 2599 2600 2601 2602	2579 2580 2581 2582 2583 2584	2247 2249 2250 2251 2252	2226 2227 2228 2229 2230

Table Al (Continued)

		7,	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2 6 6 7 6	>3-4	0	0	0	0	0	0	0	0	-	-	0	0	0	0	0	0	0	0	0	0	0	0	0	0	7	0
	-	1	0	0	0	0	0	0	7	0	н	7	0	0	0	0	0	-	0	c	0	0	0	0	0	Н	2	- 1
onses	of Occu	-	0	2	0	0	0	0	4	0	4	7	0	0	0	0	~	0	0	2	0	7	0	0	0	7	7	- 1
Cargo Responses	No.	5 >1.5-2	0	2	0	0	80	4	12	Ŋ	17	14	0	0	7	п	0	10	0	10	Т	20	0	0	e	17	56	က
	Da	>1-1.5	50	17	0	m	28	17	40	22	23	25	2	-	4	11	0	21	0	99	5	61	2	10	33	62	75	8
	Composite rms	8	0.31	0.51	0.25	0.34	0.57	0.46	0.75	0.48	0.83	0.85	0.26	0.29	0.37	0.43	0.23	0.55	0.28	0.61	0.38	0.74	0.35	0.38	0.50	09.0	0.74	0.57
Driver	Absorbed Power	watts	3.2	2.9	1.0	2.6	0.6	4.7	6.9	8.4	7.1	8.9	2.5	2.5	2.4	2.6	1.1	2.6	1.4	2.8	3.6	3.6	2.6	3.5	0.9	15.7	21.3	7.6
	Sneed	qdn	15.9	22.9	6.6	10.2	18.8	14.3	22.0	15.6	24.4	26.6**	14.5	20.1	25.3	34,5	9.8	37.9	6.6	27.8	14.8	32.1	14.7	6.4	8.6	11.4	14.8	9.4
	Soush-	ness, rms	0.6			2 1	1						0.4						0.5					1.4				
	Test Course	fication	Т3			14							SR1						CC1A					CC2A				
	E a d	No.*	2231	2232	2233	2233A	2234	2235	2236	2237	2238	2240	2241	2242	2243	2244	2245	2246	2260	2261	2262	2263	2264	2265	2256	2267	2268	2270

(Sheet 14 of 35)

Table Al (Continued)

	×	0	0	7	0	1		1	0		7	ო	0	0	0	0	0	0	0	0	0	0		7
Tevels	l i	0	0	4	0	п		-	0	m	7	10	0	0	0	0	0	0	0	7	-1	0	Ý	9
1 1	1.	0	0	2	~	0		S	0	9	10	11	С	0	т	0	m	т	0	7	7	0	9	'n
		0	0	S	1	1		11	0	11	29	23	T .	0	T	4	4	6	0	10	2	0	14	1,7
Cargo Responses No. of Occu	>1,5-2	-	ю	19	12	S	b Payload	34	7	42	81	29	0	e	9	m	14	14	10	24	18	-1	19	23
O	>1-1.5	6	19	59	77	19	vith 800 1	73	61	145	182	138	10	17	31	63	33	77	56	09	67	4	6	10
Composite rms Acceleration	8	0.36	0.47	0.84	0.65	0.49	High Performance Blazer with 800 1b Payload	99.0	0.48	0.71	0.86	0.88	0.38	0.38	0.46	0.54	0.62	0.78	0.52	0.79	0.64	0.34	1.02	1.04
Driver Absorbed Power	Watts	3.1	5.1	29.0	15.6	7.4	High Perf	12.4	6.7	14.0	26.0	29.0	4.2	2.1	3.3	2.9	3.2	4.7	4.3	6.9	8.3	1.5	7.9	8.1
Speed	udh H	6.2	8.4	13.9 **	10.4	8,3		10.6	7.6	11.5	13.8**	15.2	0.9	13.8	18.7	21.0	28.7	38.4	13.6	22.0	16.9	9.0	29.2	35.9**
course Rough-	ness, rms	1.8						2.0						9.0					1.2					
Test Cours	fication	CC3A						T1						T3					T4					
Test	No.*	2253	2254	2255	2256	2258		2460	2461	2462	2463	2464	2465	2440	2441	2442	2443	2444	2445	2446	2447	2448	2449	2450

Table Al (Continued)

	74	0	>	0	0	0	0	0	0	0	0	0	0	0	0	ч	c	c	. ~	٠ (5	0	П	0	0	0	0		0	0	of 35)
	evels, g	,	o	0	0	0	0	0	0	0	0	0	0	0	0	0	c	· c	. ~) (5	Т	m	1	0	н	0		0	.0	(Sheet 15
Souther	eration I		.	0	-	0	0	0	0	0	0	0	0	0	0	-	_		, v	١ (>	0	7	Т	0	e	0		0	0	
Responses	te Accel		-	0	က	0	0	0	0	0	0	0	0	0	2	7	6	۳,	, C	3 '	n	5	6	6	0	e	7		0	0	
Cargo Respo	Peak Composite Acceleration Levels, 1 >1.5-2 >2-2.5 >2.5-3 >3-4	-	٠,	0	9	2	0	0	0	п	0	0	т	7	9	6	7	12	13	3	20	œ	21	16	0	7	5	ayload	0	m	
CE	Pea		77	13	33	64	5	7	7	9	0	4	н	21	43	43	2.1	9	67	3 6	31	29	53	52	5	47	35	h 800 lb Payload	-4*	07	(þ.
Composite rms	Acceleration		0.40	0.41	0.61	0.52	0,31	0.37	0.36	0.39	0.21	0.37	0.32	0.47	0.62	0.70	67 0	0 67	76.0	****	0.56	0.50	0.76	0.67	0.36	99.0	0.52	High Performance CJ5 with	0.36	97.0	(Continued)
Driver	Power watts		3.5	0.7	2.4	6.0	3.7	0.4	1.3	4.0	0.4	4.5	2.7	4.3	4.0	4.0	4.2	13.4	25.0	0.7	8.9	5.2	19.9	14.7	3.4	14.4	7.7	High Per	3,3	5.8	
	Speed		0.22	31.4	40.7	50.5	15.4	26.1	26.5	35.4	11.9	16.4	12.1	21.6	30.0	45.6**	α 	11 4	15.8	9	0.6	8.1	11.0**	10.2	6.2	10.1	9.8		6.5	8.6	
Course	Rough-	ı	4.0									0.5					1 4	;				1.8							2.0		
Test			TWC									CCIA					ACU3					CC3A							11	}	
	Test No.*		TC+7	2452	2453	2454	2455	2456	2457	2458	2459	2472	2473	2474	2475	2476	2477	27.78	27.70	6447	2480	2466	2467	2468	2469	2470	2471		2660	2661	

Table Al (Continued)

				Driver			Caron Resnonses	Segue			
	Test (Course		Absorbed	Composite rms		No.	of Occu	of Occurrences		
Test No.*	Identi- fication	Rough- ness, rms	Speed	Power watts	Acceleration g	P(>1-1.5	Peak Composite Acceleration Levels,	ite Accel >2-2.5	>2.5-3	evels,	8 >4
2662	I	2.0	10.6	10.4	0.58	76	13	9	. 1	0	0
2663	!		11.7	12.4	0.62	121	24	m	7	7	-
2664			13.2	13.7	0.64	109	29	2	2	0	-
2665			15.3**	16.8	0.83	136	52	6	4	4	5
2639	Т3	0.6	11.2	1.6	0.34	4	0	၁	0	0	0
2640			15.6	1.4	0.36	n	0	-	0	0	0
2641			20.1	2.1	97.0	13	ო	7	0	0	0
2642			23.7	2.0	0.50	8	7	0	0	0	0 (
2643			20.1	2.2	0.46	13	7	0 (0	- •	0 (
7644			23.9	1.9	0.48	17	7	0	0	0	0 (
2645			15.3	2.0	0.37	4	-	0	0	0	0
5646			28.7	1.5	0.52	23	m	7	0	0	0
756.	É	-	ď	-	0 0	_	_	C	c	c	c
2648	1	7 . 1	15.0	1,7	67.0	22	, rr) (°	o C	. 0	0
2649			11.2	7.4	0.38	4	0	0	φ	0	0
2650			16.61	4	0.54	23	'n	0	0	0	0
2651			23.2	3.1	0.63	34	m	-		0	0
2652			29.6**	3.5	0.72	21	7	m	2	0	0
2653	SR1	0.4	11.2	1.4	0.22	0	0	0	0	0	၁
2654			19.9	2.3	0.35	S	0	0	0	0	0
2655			27.3	1.9	0.42	13	0	0	0	0	0
2656			36.4	1.4	0.48	11	m	٦	П	0	0
2657			15.6	2.2	0.28	0	0	0	0	0	0
2658			44.7	1.2	0.55	23	m	0	0	0	0
2659			15.1	2.0	0.26	0	0	0	0	0	0
2672	CC1A	0.5	18.8	2.0	0.44	S	2	0	0	0	0
2673			10.4	2.2	0.30	0	0	0	0	0	0
2674			27.0	2.0	0.56	35	S	0	0		0
2675			36.9 **	1.9	0.63	36	80	0	0	0	0
2676			8.6	1.6	0.29	1	0	0	0	0	0
					(Continued)	ed)			ల	(Sheet 16 of	of 35)

(Sheet 17 of 35)

			7,	0	0	0	7	0	0	0	0	0	0	0	0		0	0	0	0	0	0	0	0	0	0	0	0	0	0
		4	>3-4	O	0	1	7	-	-т	0	0	-	0	7	0		0	0	0	0	0	-	0	0	0	-	0	7	-	-
		_	>2.5-3	0	0	ღ	-	0	0	0	0	2	0	0	0		0	0	0	0	0	က	0	0	0	н	0	2	Э	-
nses	of Occurrences	te Accel	>2-2.5	0	1	4	7	7	0	0	7	1	2	Н	0		0	0	3	7	6	11	0	ч	0	4	н	7	2	S
Cargo Responses	No.	Peak Composite Acceleration	>1.5-2	0	-	4	17	7	7	ю	Ŋ	œ	9	4	0	Payload	-	7	13	24	38	36	0	ო	2	7	œ	7	6	12
C,		Pe	×1-1.5	က	10	41	62	25	13	13	21	41	74	29	0	with 800 1b	25	99	119	150	174	138	7	24	15	9	41	16	18	31
	Composite rms	Acceleration	80	0.34	(4.41	0.62	0.69	0.56	0.41	0.43	0.51	0.62	0.62	0.55	0.34	Scout	0.42	0.49	0.60	0.57	69.0	0.65	0.32	0.47	0, 40	0.54	0.59	0.79	0.77	0.70
Driver	Absorbed	Power	watts	2.2	4.2	13.1	13.0	2.6	9.7	5.0	7.5	16.5	14.0	12.3	2.8	High Performance	2.8	5.2	8.2	11.6	13.2	15.5	1.2	2.6	1.6	2.5	2.8	6.1	6.5	4.0
	,	Speed	udi.	0.9	7.6	6.6	12.0**	8.8	7.2	7.9	8.6	10.9	12.1**	9.6	6.1		6.8	7.6	10.4	10.8	14.6	12.7**	10.9	20.5	15.3	24.6	29.0	40.1	44.5**	33.7
	ourse		ness, rms	1.4						1.8							2.0						9.0							
	Test Course	Identi-	ilcation	CC2A						CC3A							11						T3							
	i	Test	No.	2677	2678	2679	2680	2681	2682	2666	2667	2668	5669	2670	2671		3012	3013	3014	3015	3016	3017	2993	2994	2995	2996	2997	2998	2999	3000

Table Al (Continued)

Table Ali (Continued)

Driver Absorbed Speed Power mmh watts
Watts
2.1 3.6
1.7
5.1
4.0
0.
7.4
.3
2.3
2.3
1.6
3.4
4.3
4.0
10.8
3.0
16.2
2.4
3.7
13.4
2.2
14.1
9.4
12.7
0.0

Table Al (Continued)

	6	74		0	0	-	-	0	0	0	0	0	0	0	0	0	0	0	0	0	0		0	o	0	0	0
	Levels.	>3-4		0	0	0	Н	S	0		0	0	0	0	0	0	က	C	0	0	0	0	က	0	0	0	0
		ı		0	Q	2	6	14	0	0	0	-	2	0	7	0	က	0	0	0	0	0	9	7	7	0	0
nses	of Occurrences	>2-2.5		-	0	10	27	77	0	e	0	ო	2	1	4	-1	4	0	0	0	7	ო	ю	e	2	0	0
Cargo Responses	No. of Occurrences Pcak Composite Acceleration	>1.5-2	lb Payload	10	٣	43	79	104	0	9	က	7	17	Н	4	6	17	0	0	-	'n	11	14	6	6	15	٣
0	Pc	>1-1.5	with 800 1	99	75	509	248	211	7	32	25	77	67	21	53	40	40	0	0	51	22	38	36	25	25	45	19
	Composite rms Acceleration	8	High Performance Bronco with 800 1b Payload	0.45	0.47	0.65	0.76	0.89	0.32	0.51	0,40	0.58	0.92	0.43	79.0	0.56	0.84	0.31	0.27	0.41	0.52	0.65	0.89	0.53	0.54	0.57	07.0
Driver	Absorbed Power	watts	High Perf	2.7	3.8	7.5	13.4	18.1	1.1	1.5	1.0	1.8	0.9	2.0	3.4	2.2	4.7	1.0	6.0	2.2	2.1	3.6	1.9	2.0	3.1	2.2	1.5
	Speed	uph h		9.9	7.4	10.8	12.3	14.5**	10.6	20.4	14.4	25.6	39.3**	10.8	19.5	14.8	26.1**	6.2	10.8	19.9	29.3	37.9	48.7	27.3	29.6	19.2	10.7
	ourse Rough-	ness, rms		2.0					9.0					1.2					0.4							0.5	
	Test Course Identi- Roug	fication		11					T3					5 J					SR1							CC1A	
	Test	No.*		2860	2861	2862	2863	2864	2843	2844	2845	2846	2847	2848	2849	2850	2851	2852	2853	2854	2955	2856	2857	2858	2859	2872	2873

(Sheet 19 of 35)

Table Al (Continued)

	>4	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		0	7	0	0	0
11 .	1	0	0	0	0	2	e	0	-	0	0	0	0	0	0	7	0		0	1	9	0	7
rrences eration I	>2.5-3	0	7	0	0	e	7	0	0	0	0	0	П	-	0	Н	0		0	1	1	0	П
of Occurrences	>2-2.5	7	4	7	0	7	11	7	9	0	0	٣	7	e	6	14	0	m)	0	1	5	0	9
Cargo Responses No. of Occurrences Peak Composite Acceleration Levels,	>1.5-2	17	34	12	Ŋ	32	35	œ	21	7	0	٣	6	59	41	42	0	Rated Payload	Н	1	30	11	17
D ed	>1-1.5	99	183	26	57	94	98	26	75	18	7	87	99	82	108	93	ო	1885 1b Rat	П	c o	100	09	79
Composite rms Acceleration	8	0.69	0.84	0.58	0.54	0.76	0.82	0.55	99.0	0.39	0.36	0.53	0.59	99.0	0.78	0.85	0.36	Standard Ramcharger with 18	0.32	0.41	0.70	0.51	0.60
Driver Absorbed Power	watts	3.3	4.2	2.3	2.1	17.4	19.7	6.1	13.1	2.1	1.8	7.5	8.2	12.2	11.6	14.5	2.0	Standard Ra	2.8	6.2	19.0	8.1	10.9
Speed	ų di	28.4	35.9 **	21.5	16.7	12.1	14.5 **	8.7	10.9	0.9	5.9	8.0	8.9	11.8	13.4	14.9**	2.1		5.4	7.6	13.6**	10.0	10.6
ourse Rough-	ness, rms	0.5				1.4						1.8							0 0	•			
Test Cours	fication	CC1A				CC2A						CC3A							11				
Test	No.*	2874	2875	2876	2877	2878	2880	2881	2882	2883	2884	2856	2867	2868	2869	2870	2871		2204	2205	2206	2207	2208

(Sheet 20 of 35)

Table Al (Continued)

	50	74	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
		>3-4	0	0	0	-	0	0	0	0	0	7	0	0	0	0	7	c	0	0	0	၁	0	0	0	0	
	rrences eration I	>2.5-3	0	0	0	0	0	0	0	0	0	0	0	0	7	п	н	0	0	0	0	0	1	0	0	0	
mses	No. of Occurrences osite Acceleration	>2-2.5	0	0	0	0	9	0	0	0	0	e	1	٣	٣	4	0	0	0	0	0	0	7	0	0	0	
Cargo Responses	No. of Occurrences Peak Composite Acceleration Levels,	>1.5-2	1	7	0	7	9	7	n	0	0	e	80	e,	ſΛ	7	٦.	0	0	0	0	0	7	0	0	0	
Ca	Pea	>1-1.5	0	22	1	16	11	23	16	0	9	15	29	14	26	12	27	0	-	0	0	20	7	15	17	2	
	Composite rms Acceleration	50	0.27	0.41	0.29	0.39	0.48	0.50	0.41	0.28	0.34	0.51	0.55	0.53	0.64	0.62	0.55	0.25	0.33	0.25	0.32	0.43	0.52	0.35	0.38	0.37	
Driver	Absorbed Power	Watts	1.0	2.6	1.5	3.9	2.5	2.8	2.3	1.4	3.0	4.2	0.9	4.0	5.3	5.8	4.6	2.4	2.2	2.5	2.0	3.1	1.6	2.4	2.9	1.6	
	Speed	than the	8.6	14.8	11.3	17.3	24.3	31.2	22.4	7.5	10.7	15.2	21.1	22.7	29.7**	27.8	19.6	15.8	22.0	14.7	21.8	30.6	40.1	26.7	28.1	34.5	
	Course Reugh-	ness, rms	0.6							1.2								0.4									
F	Identi- Roug	fication	T3							T4								SR1									
	Test	No.	2172	2173	2174	2175	2176	2177	2178	2179	2180	2181	2182	2183	2184	2185	2186	2195	2196	2197	2198	2199	2200	2201	2202	2203	

•

(Sheet 21 of 35)

Table Al (Continued)

		74	0	0	0	0	0	0	0	0	0	0	0	0	0	0	-	0	0		0	0	0	-	of 35)
	1	×3-4 ×3-4	0	0	0	0	0	0	0	0	0	-	0	0	0	0	0	0	0		0	0	-	1	(Sheet 22
	i	1	0	0	0	0	0	0	0	0	0	-	0	၁	0	0	7	-	-		0	0	-	e	s)
nses	No. of Occurrences	>2-2.5	0	0	0	0	0	0	0	0	-	7	0	0	0	0	0	4	0		0	7	-	6	
Cargo Responses	No. of Occurrences	>1.5-2	0	-	0	0	2	0	0	-	9	6	2	-	0	-	9	9	0	Payload	0	Ŋ	11	14	
Ç	Dog	>1-1.5	en	7	14	19	16	7	т	7	22	30	13	2	H	13	55	25	6	1b Rated	7	36	4.8	109	d)
	Composite rms	8	0.37	0.41	0.43	0.44	0.51	0.30	0.25	0.40	0.50	0.62	0, 40	0.35	0.33	0.42	79.0	0.54	07.0	Standard Blazer with 1660 1b Rated Payload	0.35	0.47	0.53	0.65	(Continued)
Driver	Absorbed	watts	3.9	3.6	3.5	4.3	3.6	2.9	1.5	5.3	9.5	17.5	4.0	4.1	2.5	6.7	18.2	8.9	5.7	Standard 1	3,3	6.5	8.3	15.4	
	Poods	uph	18.7	22.4	26.0	27.8	35.0	12.9	9.3	8.3	10.2	11.8	7.8	6.4	5.5	8.6	12.2	10.2	7.7		6.2	8.2	9.8	11.8**	
	Test Course	ness, rns	0.5							1.4					1.8						2.0)			
	Test C	fleation	CCIA							CC2A					CC3A						Ħ				
	Toot	No. 3	2214	2215	2216	2217	22.3	2219	2220	2221	2222	2223	2224	2225	2209	2210	2211	2212	2213		2409	2410	2411	2412	

Table Al (Continued)

	24	000000	00000	00000	00000	000
	Levels	000000	71000	00000	00000	5 0 0
rences		7100000	51050	00000	00000	001
nses of Occurrences	te Accel	7701000	0 4 1 4 0	000017	040%0	00%
Cargo Responses	Peak Composite Acceleration	0 0 6 6 7 7	0 4 3 14 8		7 6 0 8 0	0 60 .
	>1-1.5	1 2 25 25 14 17	5 17 18 26 22	16 14 13 4 0	5 26 53 31	4 17 38
Composite rms	Acceleration 8	0.29 0.31 0.49 0.30 0.59	0.37 0.52 0.46 0.71 0.73	0.59 0.45 0.39 0.42 0.21	0.88 0.53 0.30 0.67 0.51	0.32 0.48 0.69
Driver	Power	0.2 2.7 2.2 2.7 2.7 1.6 3.8	5.7 4.2 6.1 4.8	2.0 3.1 1.9 2.3 2.7	2.5 4.0 1.8 4.8 3.0	2.6 6.0 14.8
	Speed	10.3 15.8 20.5 25.5 111.7 32.5 40.7**	11.2 20.7 15.4 25.0 30.1**	47.9 40.1 30.0 21.3 35.0	18.8 31.0 11.1 37.9**	5.1 9.0 10.3
ourse	Rough- ness, rms	9.0	1.2	9.4	5.0	1.4
Test Course	Identi- fication	13	14	SR1	V 100	CC2A
	No.*	2391 2392 2393 2394 2395 2395 2397	2 398 2 399 2 400 2 402	2403 2405 2405 2406 2407 2407	2419 2420 2421 2421 2423	2424 2425 2426

(Sheet 23 of 35)

Table Al (Continued)

8	74	000	00000		00100	000000	0000
Levels,	>3-4	T T 7	101110		30710	00000п	0000
	>2.5-3	3 5	000370		1 7 6 1	170000	0001
of Occurrences	>2-2.5	0 1 1	0 7 9 4 0 0		0 8 11 9 3	2 3 1 0 0 0 0	7 1 0 0
Cargo Responses No. of Occurrences Peak Composite Acceleration	>1.5-2	16 15 7	3 9 9 9 9 9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Payload	0 11 34 39 24	0 2 0 10 12	8 7 0 0
Pe	>1-1.5	35 33 26	15 30 30 50 1 40	1b Rated Payload	14 57 174 137 109	0 6 118 113 30 28	0 4 18 34
Composite rms Acceleration	8	0.67 0.65 0.64	0.46 0.65 0.65 0.69 0.30	Standard CJ5 with 1330	0.37 0.56 0.75 0.67	0.25 0.28 0.37 0.40 0.55	0.32 0.35 0.48 0.63
Driver Absorbed Power	watts	15.7 12.7 11.3	6.6 111.0 18.5 16.9 2.0 15.9	Standar	2.8 9.8 15.9 16.0	0.6 1.1 1.7 2.8 1.7 1.6	1.0 2.7 3.1 4.6
Speed	ų ų	12.9 10.1 10.4	8.3 9.1 11.2 13.6** 5.1		6.9 9.4 15.2** 11.6	6.8 10.9 15.2 18.8 20.5 27.3	6.9 10.5 14.4 22.1
ourse Rough-	ness, rms	1.4	1,8		2.0	9.0	1.2
Test Cours Identi- Rou	fication	CC2A	CC3A		11	T3	14
Test	No.*	2427 2428 2429	2413 2414 2415 2415 2417 2417		2088 2089 2090 2091 2092	2069 2070 2071 2072 2973 2074	2076 2077 2078 2079

(Sheet 24 of 35)

Table Al (Continued)

00000
00000
001700
) 10480
540004
11 23 64 16 18
0.49 0.58 0.68 0.57
5.0 13.4 13.2 11.0 7.6
6.3 7.8 10.0 11.5 8.3 8.6
o i
CCSA
2093 2094 2095 2096 2097 2098

(Sheet 25 of 35)

Table Al (Continued)

24 ×	нчония	00000	00000	.	0 0 0 of 35)
Levels,	2 6 9 7 15	00010	013150	00000	0 0 0
1 1 1 .	12 12 6 36 5 26	31000	315100		s) .
nses of Occurrences te Acceleration >2-2.5 > 2.5-3	4 25 18 36 15 45	0000%	000444	10000	•••
Irgo Respo No. A Composi	4 Kaytoad 19 59 48 64 39 72	0 4 4 10 11	. 3 90 8 10 12 12	N400 0	0 1 1
>1-1.5	74 74 175 167 114 129 184	0 12 18 14 26	15 163 28 31 36 25	12 12 0 0	9 4 16 14
Composite Accelerati E	0.55 0.71 0.72 0.72 0.71 0.71	0.22 0.36 0.30 0.47 0.69	0.34 0.63 0.47 0.67 0.58	0.40 0.39 0.30 0.20 0.16	0.34 0.25 0.40 (Continued)
Driver Absorbed Power watts	Seandard 6.0 9.6 9.6 2.0 10.3	0.7 1.8 1.2 5.5 3.0	1.3 2.1 3.5 3.6	1.2 1.5 0.9 0.6	1.3 1.1 1.5
Speed	9.6 11.6 16.8** 6.3 13.0	9.6 18.9 14.1 24.1 36.4	10.6 20.3 15.2 26.2 21.3 32.0**	47.9 39.0 29.3 18.9 9.7	20.8 11.6 25.0
Rough- ness, rms	2.0	9.0	1.2	0.4	0.5
Test Course Identi- Roug fication ness	11	Т3	т,	SR1	CCIA
Test No.*	2820 2821 2822 2823 2824 2824	2804 2805 2806 2807 2808	2809 2810 2811 2512 2813 2814	2799 2800 2801 2802 2803	2831 2832 2833

(Sheet 26 of 35)

Table All (Continued)

	>4	00	00000	-	0000	00000	000
Levels. g	1 .	10	70882	0 4 5 3 1	T 7 0 0	00000	000
		00	0 m 0 m 10	00000	7500	00000	000
onses of Occurrences ite Acceleration	>2-2.5	00	13 12 8	7 10 7 13 1	0 0 15	77000	000
Cargo Responses No. of Occurrences Peak Composite Acceleration	>1.5-2	ન ન	28 11 31 29 16	19 7 22 10 10 7 21 13 2 1	0 2 11 38	00004	000
D ad	>1-1.5	23 9	75 37 106 55 56	62 58 76 51 25 1885 1b	3 18 42 98	0 5 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	000
Composite rms	8	0.49	0.67 0.44 0.76 0.64	0.57 0.65 0.69 0.82 0.55	0.35 0.45 0.58 0.71	0.24 0.31 0.28 0.39	0.22 0.37 0.27
Driver Absorbed	watts	1.7	10.8 3.2 12.1 8.4 5.9	1 8.6 1 10.4 5 11.4 5 ** 18.0 2 3.7 High Performance	3.8 6.8 13.1 21.1	0.8 2.9 2.1 2.9	0.6 6.6 1.5
Spage	댐	32.1 35.4	13.0 8.9 15.5 ** 11.1	10.1 11.1 13.2 15.5** 7.2	7.3 9.3 11.3 15.0**	9.7 18.3 14.3 23.3	5.5 14.6 9.8
ourse Rough-	ness, rms	0.5	1.4	1.8	2.0	9.0	1.2
Test Course	fication	W T00	CC2 A	CC3A	11	E .	T4
Teat	No.*	2834 2835	2815 2816 2817 2818 2819	2826 2827 2828 2829 2830	2310 2311 2312 2313	2298 2299 2300 2301 2302	2303 2304 2305

(Sheet 27 of 35)

(Continued)

(Sheet 28 of 35)

	64	7,	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	⊣ (0
	Levels,	Ι.	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	-	Н.	⊣ (0
			0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	O	0	4	၀	00
nses	No. ot Occurrences osite Acceleration	>2-2.5	0	0	7	4	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	2	v,	7 0
Cargo Responses	No. of Occurrences Peak Composite Acceleration	>1.5-2	7	0	က	9	0	0	0	5	5	0	0	0	0	0	0	0	0	-1	0	0	7	ای	10 ,	n 0
Ö	Pe	>1-1.5	m	6	18	16	0	0	0	16	2.2	0	0	က	0	9	0	c l	0	0	0	-	07	1.5	98 ;	4 -
	Composite rms Acceleration	80	0.47	0.37	0.58	0.61	0.44	0.22	0.28	0.42	0.59	0.28	91.0	0.35	0.29	0.40	0.31	0.32	0.22	0.25	0.28	0.69	0.41	0.52	0.63	0.45
Driver	Absorbed Power	watts	5.6	2.9	5.6	5.3	2.1	2.1	2.0	2.4	2.3	1.6	0.7	2.7	3.5	3.1	3.4	2.6	1.3	1.6	3.8	4.5	4.1	10.7	18.0	6.1 3.2
	Speed	udin	18.9	12.2	21.3	28.0 **	14.2	18.6	24.8	37.4	43.3	28.7	10.3	25.3	15.3	29.0	19.1	20.8	9.6	11.8	16.0	7.0	8.0	10.4	13.7**	9.1 6.5
	Rough-	ness, rms	1.2				9.0							0.5								1.4				
	Test Course Identi- Roug	fication	T4				SRI							CCIA								CC2A				
	Test	No.*	2306	2307	2308	2309	2291	2232	2293	2294	2295	2296	2297	2325	2326	2327	2328	2329	2330	2331	2332	2319	2320	2321	2322	2323 2324

Table Al (Continued)

		>4	0 0	> C	o c	, ₋		c	٠,	⊣ (7 (0		0	0	c	· C	÷ C	> <	> 0	0	0	0	က	-	c)	0	0	5 35)
		evels 8	0	.	> 	ı m		ш	n (7 -	5 (0	~	0	0		· c		.	۰ د	-	0	0	2	2		> 1	0	0	(Sheet 29 of
	1	7	0 ,	T (1 7	0		1	†	.n -	7 (m	m	0	O	· c	· c	o	4 (> (0	0	0	0	2	•	4	0	0	(She
Ises	No. of Occurrences	2-2.5	0	۳ د	, 0	5 2	pr	6	2 :	17	20	m	7	1	C		+ c	o c	.	5 (en.	0	7	3	9	•	>	0	0	
Cargo Responses	No.	Peak Composite Acceleration > 1.5-2 > 2-2.5 > 2.5-3	0 (> <	; α	5 0	ted Paylo	7.0	4.	643	ક્ષ :	14	37	7		ı —	1 6	4	; ,	- 1 (7	2	4	'n	6	<	>	0	7	
Ca		>1-1.5	۳-	4 , c	31	24	1660 1b Rated Payload	163	707	183	126	108	124	32	~	, C	2 0	7 F	ገ -	٠,	19	11	24	Ŋ	33	•	-1	4	6	(P
	Composite rms	Acceleration 8	0.34	0.39	77.0	0.54	High Performance Blazer with	70 0	0.04	0.71	0.71	0.56	0.67	0.43	0.34	30	5.0		20.00	0.27	0.56	0.45	0,60	0.50	0.86	9	0.19	0.29	0.41	(Continued)
Driver	Absorbed	Power	2.7	5.4	14.5	8.9	gh Performan		4.07	17.9	11.6	8.9	12.7	5.6	7.7				٠,٠	F. 8	6.1	6.0	8.9	2.4	6.1	ľ	`.	3.2	1.4	
		Speed	9.9	4.0	12.6**	9.7	HT	111	14.4" "	11.9	11.1	9.5	10.9	7.4	7 2	7 2 2	4.77	7.07	32.9	17.0	40.7	15.7	21.3	11.8	35.3**		17.0	21.2	30,3	
	Course	Rough- ness, rms	1.8						7.0						9 0								7.1				. c			
	11	Identi- fication	CC3A					í	T.I.						т,	?						174				į	SKT			
		Test No.*	2314	2315	2310	2318			7757	2518	2519	2520	2521	2522	2,40%	2,00	2493	2490	1647	2498	2499	2506	2507	2508	2509	1	75 TO	2511	2512	

Table Al (Continued)

Identi- fication SR1	Test Course		Absorbed	Composite rms		Cargo kesponses No. of	of Occu	of Occurrences		
	Rough- ness, rms	Speed	Power watts	Acceleration 8	Pe 21-1.5	Peak Composite Acceleration	te Accel >2-2.5		Levels, g >3-4	>4
	0.4	40.1	3.0	0.41	13	н о	н о	00	00	00
		50.5	1.7	0.57	13	6	: 0	, 0	0	0
		25.5	1.8	0.29	4	0	0	0	0	0
	0.5	21.0	5.7	0.44	18	0	0	0	0	0
		11.6	2.3	0.30	2	0	0	0	0	0
		30.6	3.8	0.59	77	10	0	0	0	0
		40.7**	4.3	0.67	47	16	7	0	0	0
		14.9	3.2	0.39	12	0	0	0	0	0
		25.3	4.2	0.55	65	80	0	0	0	0
		20.1	4.8	0.49	94	S	н	0	0	0
CC2A	1.4	8.9	4.3	0.41	16	4	0	0	0	Н
		9.6	6.2	0.56	38	9	7	Н	1	0
		11.0	13.1	0.64	57	15	2	ო	ო	0
		12.4**	20.2	0.71	29	œ	σ	0	7	7
		11.4	11.4	0.63	20	14	2	2	0	7
CC3A	1.8	7.7	6.9	0.56	34	7	0	0	0	0
		8.9	8.8	0.54	32	.00	0	П	0	0
		10.4	12.8	0.64	55	żi	7	7	-	0
		12.6**	16.8	0.70	61	13	6	П	0	0
		12.2	20.5	0.73	88	22	ជ	4	Н	- -i
		11.2	16.1	99.0	54	17	4	n	т	0
			High Perfo	High Performance CJ5 with	1300 1b R	Rated Payload	ad			
	2.0	7.8	4.6	0.43	21	2	1	0	П	Н
		9.3	8.1	0.56	59	12	9	ო	-	က
		13.4	11.8	0.62	116	21	9	0	7	0
		12.0	11.9	0.60	95	15	2	7	.0	0
		15.4**	14.2	0.72	152	45	9	ო	-	0

(Sheet 30 of 35)

(Sheet 31 of 35)

				Driver			Cargo Regnonese	00000			
	Test Cours	Course		Absorbed	Composite rms		NO	of Occurrences	T'ences		
Test No.*	Identi- fication	Rough- ness, rms	Speed	Power watts	Acceleration g	Pe >1-1.5	Peak Composite Acceleration 1.5-2 >2-2.5 >2.5-3	te Accele	1	Levels, g	74
2693 2694 2695 2696 2697	13	9.0	11.2 18.9 14.4 22.6 40.0**	1.7 2.6 2.0 2.0	0.29 0.40 0.34 0.74	0 6 13 24	0 1 10	00000	00000	00000	00000
2698 2699 2700 2701 2702	T4	1.2	9.9 17.3 13.1 23.5 28.8**	3.5 3.8 3.6 3.6	0.33 0.45 0.41 0.71	1 13 11 22 16	0 1 7 7 9 9	00075	70000	00000	00000
2703 2704 2705 2706 2706 2707 2709 2709	SR1	9.7	11.3 21.5 29.0 40.7 28.1 43.3 17.0	1.0 1.1 1.5 1.7 1.6 1.6	0.21 0.33 0.41 0.58 0.41 0.54 0.50	0 13 18 17 17 17	00mm4v0v	70101000	0000000	0000000	0000000
2724 2725 2725 2727 2727	CC1A	0.5	19.8 10.5 23.9 29.0 35.4 **	2.5 2.1 2.2 2.6	0.46 0.28 0.47 0.56	10 15 32 34	11102	00011	00000	10000	00000
2730 2731 2732	CC2A	1.4	8.0 10.5 13.6 **	5.8 18.7 17.9	0.45 0.62 0.68	10 25 51	1 6 T	3 3 10	3 7 0	·	000

Table Al (Continued)

	× × 4	000	00000000	0000	00000	00000
	>3-4	000	00110	9000	00000	
rrences	>2.5-3	2 0 1	00164170	21700	00000	00000
sponses No. of Occurrences	>2-2.5	m00	0 2 2 2 4 7 4 4 0	1441	10100	0400mm
Cargo Responses	Veak Composite Acceleration Levels, >1.5-2 >2-2.5 >2.5-3 >3-4	3 1 8	4 4 5 17 13 6 8 0 Rated Payload	0 3 12 22	00101	0 6 1 3 4 4
	>1-1.5	25 1 13	15 34 33 63 66 66 34 24 0	4 16 57 88	0 0 18 18 19	1 31 16 24 24 16
Composite rms	Acceleration 8	0.56 0.36 0.47	0.48 0.55 0.54 0.69 0.75 0.59 0.32 ance Scout with	0.35 0.40 0.53 0.62	0.29 0.37 0.36 0.42 0.57	0.36 0.55 0.45 0.62 0.66
Driver Absorbed	Power	15.8 3.0 7.0	6.7 12.2 13.8 13.0 15.7 16.1 12.2 2.6 High Performance	2.4 3.4 6.2 12.2	0.8 2.0 1.3 2.5 3.7	2.0 3.8 5.1 5.0 5.0
	peed mph	10.2 7.2 8.9	9.0 12.2 10.3 14.0** 16.1 11.5 10.9 6.3	5.9 7.4 9.7 10.9	10.7 20.2 15.5 24.4 44.7**	10.6 20.7 15.5 24.6 32.0 35.3**
Test Course	Rough- ness, rms	1.4	1.8	2.0	9.0	1.2
Test (Identi- fication	CC2A	CC3A	11	T3	14
	No.*	2732A 2733 2734	2716 2717 2718 2718 2720 2721 2722 2722	3060 3061 3062 3063	3042 3043 3044 3045 3046	3047 3048 3049 3050 3051 3052

(Sheet 32 of 35)

Table Al (Continued)

		>4	•	o ()	o (0	0	0		0	0		· c	0 0	>	ď	۰	0	0	0	C	o c	•	>	(> 0	.	-1 (0				0	0		of 35)
	Levels. g	١		0	0	0	0	0	0		0	c	· c	• •	> 0	>	(9	0	-	C			> (D	,	0	o '	7	0				0	0		(Sheet 33
	rences	>2.5-3		0	0	0	0	0	0	1	0	· C	o C	.	> (0		4	0	-	c		> ~	寸 (e		н	0	ന	2				1	H		
nses	of Occur	>2-2.5		0	0	0	0	0	C	>	c	o c	> 0)	0	0		9	0	-	i -	-l -	٦,	7	4		4	0	e	2		oad		Ü	2	ı	
Cargo Responses	No. of Occurrences	× compost		0	-	0	C	,	i C)	c	.	> (>	0	4		6	0			۰ ،	⊣	œ	80		80	٦	13	Ξ	i	ated Pavl		7	15	}	
Ca		yea		0	9	· (C)	, ,	7 00	0, 0	n	00	7	-	4	15	33		30	2	,	5 ,	12	20	30	28		62	r} ;4	99	2.4	7	1340 1h F	27 0467	79	110	770	ed)
	Composite rms	eration	90	0.22	30.30	35.0	200	7.0	0.40	0.31		0.43	0.32	0.42	0.51	0.53		05 0	0.00	0.33	0.60	0.44	0.44	0.54	0.57		0.61	0.37	67	0.0	16.0	post of the 1340 1h Rated Payload	ı	65.0	20.0	0.60	(Continued)
	Absorbed	Power	Walts	,) ·	7.0	2.1	1.4	1.8		2.6	1.5	2.5	α .		1		1.0	J. /	15.2	3.2	5.0	2 7		7.2	12 5	7.7	7.7	10.0	7.0		High Periormance		٥.٠	7.9	
		Speed	udm		10.0	19.0	7.87	37.4	9.67	21.8		20.2	10.8	27.8	30 5 **	32.5	75.7		10.6	ۍ ه	11.7**	8.0	9	,	7.0	7.01		7.5	0.0	ĸ	ω ω		≅I	•	9.5	10.8	
		Rough-	ness, rms		4.0							0.5						•	1.4									× .							2.0		
	F	Identi- Roug	fication		SR1							CCIA							CC2A									CC3A							TT		
		Test	No.*		3053	3055	3056	3057	3058	3059		3068	9000	9009	30/0	3071	3072		3073	30.74	2075	2,000	30/0	3077	3078	30 79		3064	3065	3066	3067				2914	2915	

ot

(Sheet 34

000000

7 Cargo Responses
No. of Occurrences
Peak Composite Acceleration Levels, g 000000 000000 000000 00000 000000 101000 000000 00000 2 6 000000 >1-1.5 0 12 22 22 22 22 22 0 1 2 2 2 3 Composite rms Acceleration 0.27 6.42 0.37 0.55 0.60 0.61 0.19 0.29 0.39 0.49 0.51 0.48 0.45 0.33 0.53 0.65 0.43 0.69 0.28 0.38 0.33 0.46 0.52 0.46 Absorbed Power watts 10.3 0.8 2.6 1.5 3.0 3.8 3.8 0.7 1.5 2.0 2.5 2.0 2.2 1.1 2.5 2.9 1.9 10.4 19.5 14.1 24.4 39.0** 22.6 11.6 30.0 38.4** 24.6 30.5** 13.1 20.3 23.2 11.6 20.5 31.7 41.3 40.7 52.5 ness, rms Test Course 2.0 9.0 0.5 4.0 Identification CCIA SR1 T1**1**7 2895 2896 2897 2898 2899 2900 2908 2909 2910 2911 2912 2913 2924 2925 2926 2927 2928 No. * 2916 2917 2901 2902 2903 2904 2905 2906

Table Al (Continued)

			74	0	0	0	0	7	0	0	0	-	0	0
		evels, g	>3-4		0	0	0		1	0	0	0	0	0
	rences	ration L	>2.5-3	ന	0		0	7	1	0	80	0	-	0
nses	No. of Occurrences	te Accele	>2-2.5	4	0	6		7	S	-1	14	ᠻ	80	0
Cargo Responses	No.	Peak Composite Acceleration Levels	>1.5-2	9	က	6	က	53	19	7	26	7	23	0
Ca		Pea	>1-1.5	33	4	87	24	11	52	29	75	37	63	en
	Composite rms	Acceleration	89	0.58	0.39	0.64	0.51	0.76	0.66	0.55	0.87	0.58	0.75	0.36
Driver	Absorbed	Power	watts	11.4	2.4	12.6	5.6	18.9	11.0	8.5	23.4	10.5	10.5	1.9
		Speed	ų di	10, 5	6.8	13.8**	8.2	16.1	12.9	8.9	15.0	10.2	14.3**	4.9
	ourse	Rough-	ness, rms	1.4					1.8					
	Test Course	Identi-	fication	CC2A					CC3A					
		Test	No. *	2929	2930	2931	2932	2933	2918	2919	2920	2921	2922	2923

Basic Field Data from Obstacle Shock Tests Table A2

		010000			2	0 10 20	21 A 2 2 2 1 2 2	No of items on Appending to Design		
	Test	Height	Time	Speed		Greater than	al Accelei	Indicated	ņ	
Vehicle	No.	in.	sec	udu	>1 - 1.5	>1.5 - 2	12	>2.5 - 3	>3 - 4	7
Standard Ramcharger (800-1b Payload)	2162	4	12.4	5.1	7	1	1	0	0	0
	2163	4	7.5	8.4	4	3	-	1	0	0
	2164	4	4.0	15.7	ιΩ	9	3	1	-	0
	2165	4	3.1	20.3	11	0	1	0	0	0
	2166	9	12.2	5.1	4	3	3	1	0	0
	2167	9	8.1	7.8	4	0	0	0	0	0
	2168	9	5.7	11.0	6	7	2	3	m	0
	2169	9	4.1	15.3	1	S	2	-	4	7
	2170	∞	15.7	4.0	10	9	0	ю	-	7
	217i	œ	24.4	5.6	10	52	2	0	7	0
Standard Blazer (800-1b Payload)	2379	4	6.1	10.3	9	ıs	0	0	0	0
	2380	4	4.6	13.7	4	4	0	0	0	0
	2381	4	3.9	16.1	6	2	0	0	0	0
	2382	4	2.9	21.7	ы	1	4	0	0	0
	2383	ø,	9.4	6.7	4	1	-	0	0	0
	2384	9	6.8	9.5	4	3	-	2	0	0
	2385	9	12.3	5.1	10	0	-	1	0	0
	2386	9	16.2	3.9	-	2	0	0	0	С
	2387	œ	22.5	2.8	2	7	0	0	0	0
	2388	œ	15.4	4.1	9	0	-	-	1	0
Standard CJS (800-1b Payload)	2039	4	6.6	6.3	1	0	0	0	0	0
	2040	4	9.9	9.5	4	2	-	0	0	0
	2041	4	5.3	11.8	10	יט	0	0	0	0
	2042	4	8.0	7.8	10	7	0	0	0	0
	2043	9	13.0	4.8	23	7	0	0	0	0
	2044	9	10.1	6.2	7	4	۲ũ	0	-	0
	2045	9	8.4	7.5	7	S	-	0	-	0
	2046	œ	14.0	4.5	6	1	-	0	0	0
	2047	80	17.4	3.6	6	2	1	0	-	0
	2048	œ	19.3	3,3	7	0	C	1	П	0
		EO)	(Continued)	_				(Sheet	et 1 of	(7

Table A2 (Continued)

		Obstacle			No	No. of Vertical		Acceleration Peaks	aks	
	Test	Height	Time	Speed	Ö	Greater than	n g Range	Indicated		
Vehicle	No.	in.	sec	udm.	>1 - 1.5	>1.5 - 2	>2 - 2.5	>2.5 - 3	>3 - 4	×
Standard Scout (800-lb Payload)	2789	4	7.9	7.9	7	0	0	0	0	0
	2790	4	5.5	11.4	2	0	0	0	0	0
	2791	4	3.5	17.9	8	7	0	0	0	0
	2792	4	2.0	31.4		-	0	0	0	0
	2793	9	12.9	4.9	0	7	0	0	0	0
	2794	9	10.8	8.8	4	0	0	1	0	0
	2795	9	9.6	6.5	ŧΩ	0	0	0	0	C
	27.96	9	7.5	8.4	4	33	1	0	0	0
Standard Bronco (800-lb Payload)	2983	4	6.3	10.0	10	М	2	0	-	_
	2984	4	4.3	14.6	œ	S	0	0	ю	0
	2985	4	10.8	5.8	01	ю	1	0	0	0
	2986	4	6.0	10./5	7	4	1	0	7	_
	2987	9	12.8	4.9	12	2	1	0	0	_
	2988	9	10.4	0.9	∞	9	7	0	0	0
	2989	9	6.9	9.1	13	9	4	0	7	_
	2990	œ	26.9	2.3	2	-	0	0	0	_
	2991	∞	12.5	2.0	11	ю	1	0	0	_
High-Performance Ramcharger (800-1b Payload)	2271	4	15.5	4.1	-	0	0	0	0	0
	2272	4	7.5	8.4	Ŋ	-	0	0	0	0
	2273	4	5.3	11.8	9	2	0	0	0	_
	2274	4	4.0	15.7	7	0	0	0	0	0
	2275	4	2.7	23.3	œ	7	0	0	0	0
	2276	9	15.8	4.0	-	0	0	0	0	_
	2277	9	9.5	8.9	9	7	7	0	0	_
	2278	9	7.5	8.4	7	ю	7	0	0	0
	2279	9	5.0	12.6	15	œ	7	7	Н	
	2281	∞	11.8	5.3	۲۲	-	0	0	0	0
		w)	(Continued)	_					(Sheet 2	of

Table A2 (Continued)

Height Time Speed Greater than g Range Indicated in. sec mph			Obstacle			No	. of Verti		eration Peal	KS	
No. in. Sec mph >1 - 1.5 >1.5 - 2 >2 - 2 - 2 5 5 5 5 4 10ad 2481		Test	Height	Time	Speed	S	reater tha		Indicated		
10ad) 2481 4 5.9 10.6 7 2 0 0 0 0 2482 4 5.3 19.0 5 1 1 1 0 0 0 0 2483 4 5.0 20.9 3 2 2 2 0 0 0 0 2 2486 6 8.1 17.8 7 5 5 0 1 1 0 0 0 2 2488 6 7.1 8.1 3 7 7 1 1 1 2 0 0 0 2 2489 6 7.1 8.1 3 7 7 7 1 1 1 1 2 2 2490 8 21.5 2.9 11 2 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Vehicle	No.	in.	sec	_u d _m	1	,		ı	1	×
2482 4 3.3 19.0 5 1 1 1 0 0 0 2483 4 5.0 20.9 3 2 2 0 0 1 2486 6 5.6 11.2 2 3 1 1 2 0 2488 6 7.1 8.1 2 2 3 1 2 2 0 2488 6 7.1 8.1 3 2 4 0 0 2489 6 4.4 14.3 7 7 7 1 1 1 2 2490 8 21.5 2.9 1 2 0 0 0 2491 8 10.4 6.0 5 2 1 1 1 2 2684 4 7.3 8.6 3 0 0 0 0 2688 6 13.7 4.6 7 2 0 0 0 2689 6 11.9 5.3 3 0 1 0 0 2689 6 11.7 5.4 5 0 1 0 0 2689 6 13.7 4.6 7 2 0 0 0 2689 6 13.7 4.6 7 6 1 0 0 2689 7 6 1 1 0 0 0 2680 7 8.8 7.1 6 1 0 0 2680 8 8 8 7.1 6 1 0 0 2680 9 8 8 8 7.1 6 1 0 0 2680 9 8 8 8 7.1 6 1 0 2680 9 1 1 0 0 0 2680 9 1 0 0 0 2680 0 0 0 0 0 0 2680 0 0 0 0 0 0 2680 0 0 0 0 0 0 2680 0 0 0 0 0 0 2680 0 0 0 0 0 0 2680 0 0 0 0 0 0 2680 0 0 0 0 0 0 2680 0 0 0 0 0 0 2680 0 0 0 0 0 0 2680 0 0 0 0 0 0 2680 0 0 0 0 0 0 2680 0 0 0 0 0 0 2680 0 0 0 0 0 0 0 2680 0 0 0 0 0 0 0 2680 0 0 0 0 0 0 0 2680 0 0 0 0 0 0 0 2680 0 0 0 0 0 0 0 2680 0 0 0 0 0 0 0 2680 0 0 0 0 0 0 0 2680 0 0 0 0 0 0 0 2680 0 0 0 0 0 0 0 2680 0 0 0 0 0 0 0 2680 0 0 0 0 0 0 0 2680 0 0 0 0 0 0		2481	4	5.9	10.6	7	2	0	0	ပ	0
2483 4 3.0 20.9 3 2 2 0 0 0 0 2486 6 8.1 7.8 7 5 0 0 1 0 0 2487 6 5.6 11.2 2 3 1 2 0 0 1 0 0 2488 6 7.1 8.1 3 2 2 3 1 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		2482	4	3.3	19.0	S	-	¬	0	0	٥
2486 6 8.1 7.8 7 5 0 1 0 0 1 2487 6 5.6 11.2 2 3 1 2 4 0 0 1 2 2488 6 7.1 8.1 3 7 7 7 1 1 1 2 2 0 0 1 2489 6 4.4 14.3 7 7 7 1 1 1 1 2 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0		2483	4	3.0	20.9	ъ	2	2	0	0	٠
2487 6 5.6 11.2 2 3 1 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		2486	9	8.1	7.8	7	ß	0	1	0	Ĭ
2488 6 7.1 8.1 3 2 4 0 0 0 2489 6 4.4 14.3 7 7 1 1 1 2 2490 8 21.5 2.9 1 2 0 0 0 2491 8 10.4 6.0 5 2 1 1 1 1 2 2491 8 10.4 6.0 5 2 1 1 1 1 2 2492 8 21.5 2.9 1 2 0 0 0 2684 4 7.3 8.6 3 0 0 0 0 0 2688 6 13.7 4.6 7 2 0 0 0 2689 6 13.7 4.6 7 2 0 0 0 2689 6 11.7 5.4 5 0 1 0 0 2689 6 11.7 5.4 5 0 1 0 0 2690 6 8.8 7.1 6 1 0 2 2690 7 1 0 0 0 0 2690 6 9.8 3 3 1 0 0 3035 4 6.4 9.8 3 3 1 0 0 3036 6 11.3 5 6 6 1 0 0 3037 6 11.3 5 6 6 1 1 0 0 3040 6 9.1 6.9 5 7 2 2 1 2 3041 6 6.6 9.5 7 2 2 1 1 3041 6 6.6 9.5 7 2 2 1 1 3050 6 11.3 6.9 5 7 2 2 1 1 3050 7 1 1 1 1 1 1 3050 7 1 1 1 1 1 3050 7 1 1 1 1 1 1 3050 7 1 1 1 1 1 1 3050 7 1 1 1 1 1 1 3050 7 1 1 1 1 1 1 3050 7 1 1 1 1 1 1 1 3050 7 1 1 1 1 1 1 3050 7 1 1 1 1 1 1 3050 7 1 1 1 1 1 1 3050 7 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		2487	9	5.6	11.2	2	3	-	2	0	_
2489 6 4.4 14.3 7 7 1 1 1 2 2490 8 21.5 2.9 1 2 0 0 0 2491 8 10.4 6.0 5 2 1 1 1 2 2491 8 21.5 2.9 1 2 0 0 0 2684 4 7.3 8.6 3 0 0 0 0 2688 4 5.3 11.8 3 2 2 2 0 0 2688 6 13.7 4.6 7 2 0 0 0 2689 6 11.7 5.4 5 0 1 0 0 2690 6 8.8 7.1 6 1 0 0 3035 4 6.4 9.8 3 3 1 0 0 3036 4 3.2 19.6 5 5 5 5 2 0 3040 6 9.1 6.9 5 7 2 2 1 3041 6 6.6 9.5 7 2 1 0 0 3041 1 1 1 1 1 1 3041 1 1 1 1 1 1 3041 1 1 1 1 1 1 3041 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		2488	9	7.1	8.1	153	2	4	0	0	
2490 8 21.5 2.9 1 2 0 0 0 0 0 0 2491 8 10.4 6.0 5 2 1 1 1 1 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0		2489	9	4.4	14.3	7	7	-	1	7	
2491 8 10.4 6.0 5 2 1 1 1 2 2683 4 8.3 7.6 2 0 0 0 0 0 2684 4 7.3 8.6 3 0 0 0 0 0 2688 6 11.9 5.3 13.8 2 2 0 2689 6 11.7 5.4 5 0 1 0 0 2690 6 8.8 7.1 6 1 0 0 3035 4 6.4 9.8 3 3 1 0 3035 4 6.4 9.8 3 3 1 3038 4 3.2 19.6 5 5 5 2 0 3040 6 9.1 6.9 5 7 2 0 3040 6 9.1 6.9 5 7 2 0 3041 6 6.6 9.5 7 2 1 3041 6 6.6 9.5 7 2 2 1 3041 6 6.6 9.5 7 2 2 1 3041 6 6.6 9.5 7 2 2 1 3041 6 6.6 9.5 7 2 2 1 3041 8 6.6 9.5 7 2 2 1 3041 8 6.6 9.5 7 2 2 1 3041 8 6.6 9.5 7 2 2 1 3041 8 6.6 9.5 7 2 2 1 3041 8 6.6 9.5 7 2 2 1 3041 8 6.6 9.5 7 2 2 1 3041 8 6.6 9.5 7 2 2 1 3041 8 6.6 9.5 7 2 2 1 3041 8 6.6 9.5 7 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3		2490	œ	21.5	2.9	-	2	0	0	0	
2683 4 8.3 7.6 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		2491	∞	10.4	0.9	S	2	H	1	7	
2684 4 7.3 8.6 3 0 0 0 0 0 0 0 0 0 0 0 0 2686 4 5.3 11.8 3 2 2 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	igh Performance CJS (800-1b Payload)	2683	4	8.3	7.6	7	0	0	0	0	
2686 4 5.3 11.8 3 2 2 0 0 0 0 2687 6 11.9 5.3 3 0 1 1 0 0 0 0 2688 6 13.7 4.6 7 2 0 0 0 0 0 2689 6 11.7 5.4 5 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		2684	4	7.3	8.6	ъ	0	0	0	0	
2687 6 11.9 5.3 3 0 1 0 0 0 2688 13.7 4.6 7 2 0 0 0 0 0 0 2689 6 11.7 5.4 5 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		2686	4	5.3	11.8^{2}	8	2	2	0	0	
2688 6 13.7 4.6 7 2 0 0 0 0 0 2689 6 11.7 5.4 5 0 1 0 0 0 0 0 2690 6 8.8 7.1 6 1 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		2687	9	11.9	5.3	м	0	-	0	0	
2689 6 11.7 5.4 5 0 1 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0		2688	9	13.7	4.6	7	2	O	0	0	
2690 6 8.8 7,1 6 1 0 2 0 3035 4 6.4 9.8 3 3 1 0 0 3036 4 4.6 13.7 6 2 1 2 0 3037 4 3.5 17.9 7 6 3 2 0 3038 4 3.2 19.6 5 5 2 0 1 3939 6 11.3 5 6 6 1 0 0 3040 6 9.1 6.9 2 4 0 1 3041 6 6.6 9.5 7 2 2 1 (Sheet 3		2689	9	11.7	5.4	Ŋ	0	-	0	0	
Oad) 3035 4 6.4 9.8 3 3 1 0 0 0 3036 4 4.6 13.7 6 2 1 2 0 3037 4 3.5 17.9 7 6 3 2 0 3038 4 3.2 19.6 5 5 2 0 1 3939 6 11.3 5 6 6 1 0 0 1 3040 6 9.1 6.9 2 4 0 1 3041 6 6.6 9.5 7 2 2 1 (Sheet 3		2690	9	8	7.1	9		0	7	0	
3036 4 4.6 13.7 6 2 1 2 0 3037 4 3.5 17.9 7 6 3 2 0 3038 4 3.2 19.6 5 5 2 0 1 3939 6 11.3 5 6 6 1 0 1 0 3040 6 9.1 6.9 2 4 0 1 1 3041 6 6.6 9.5 7 2 2 1 2 (Sheet 3		3035	4	6.4	8.6	8	ю	-	0	0	
4 3.5 17.9 7 6 3 2 0 4 3.2 19.6 5 5 2 0 1 6 11.3 5 6 6 1 0 1 0 6 9.1 6.9 2 4 0 1 1 6 6.6 9.5 7 2 2 1 2 (Continued)		3036	4	4.6	13.7	9	2	-	2	0	
4 3.2 19.6 5 5 2 0 1 6 11.3 5 6 6 1 0 1 0 6 9.1 6.9 2 4 0 1 1 6 6.6 9.5 7 2 2 1 2 (Continued) (Sheet 3		3037	4	3.5	17.9	7	9	М	2	0	
6 11.3 5 6 6 1 0 1 0 6 9.1 6.9 2 4 0 1 1 6 6.6 9.5 7 2 2 1 2 (Continued) (Sheet 3		3038	4	3.2	19.6	ιλ	ις	2	0	-	
6 9.1 6.9 2 4 0 1 1 1 6 6 6 6 6 6 9.5 7 2 2 1 2 7 (Continued)		3939	9	11.3	2 6	9	-	0	-	0	
6 6.6 9.5 7 2 2 1 2 (Sheet 3 (Sheet 3		3040	9	9.1	6.9	2	4	0	-	-	
) (Sheet 3		3041	9	9.9		7	2	7	1	7	
			DO)	ntinued	<u>.</u>				S)	М	ĭ

Table A2 (Continued)

the second secon		Obstacle			No	. of Vertic	1	Acceleration Peaks	ks	
	Test	Height	Time	Speed		er t	~~	Indicated		- {
Vehicle	No.	in.	Sec	ydii.	>1 - 1.5	>1.5 - 2	>2 - 2.5	>2.5 - 3	>3 - 4	71
High-Performance Bronco (800-1b Payload)	2885	4	6.7	9.4	7	-	-4	-	0	٠
	2886	4	5.5	12.1	11	9	0	3	0	0
	2887	ঘ	10.6	5.9	3	-	-	0	0	0
	2888	9	13.2	4.8	4	0	0	-	0	٥
	2889	9	9.3	8.9	11	٣	2	0	7	
	2890	9	7.8	8.1	6	S	7	4	0	J
	2891	80	21.9	5.9	4	1	-		0	
	2892	∞	11.0	5.7	∞	S	7	0	Ú	_
MISIA2 (800-1b Payload)	2627	4	12.9	4.9	0	п	0	0	0	Ŭ
•	2628	4	7.0	0.6	٦	-	0	0	0	Ö
	2629	4	, 5.1	12.3	2	٣	0	0	0	Ŭ
	2630	4	9.9	9.5	2	1	0	0	0	Ŭ
	2631	4	9.6	6.5	2	0	0	0	0	٠
	2632	9	11.6	5.4	2	0	-	0	0	_
	2633	9	8.0	7.8	7.	8	0	2	0	_
	2634	9	9.9	9.5	٦	2	٦	0	7	Ü
	2635	∞	16.8	3.7	2	ю	٦	-	0	_
	2636	8	19.3	3.3	2	1	0	0	0	
Standard Ramcharger (Rated Payload)	2188	4	10.1	6.2	0	0	0	0	0	_
	2189	4	4.1	15.3	S	7	2	7	H	_
	2 190	4	3.0	20.9	2	2	2	0	0	Ö
	2191	9	11.2	2.6	~	2	0	0	0	Ö
	2192	9	8.2	7.7	6	7	0	0	0	0
	2193	9	9.0	10.5	П	7	0	2	0	Ī
	2194	∞	16.1	3.9	12	2	0	3	7	_
		(Cont	(Continued)					(Sh	Sheet 4 of	2

Tarle A2 (Continued)

		Obstacle			N	No. of Vertical	Ι.	Acceleration Peaks	SS	
	Test	Height	Time	Speed		r	g Range	Indicated		
Vehicle	No.	in.	sec	udu	>1 - 1.5	>1.5 - 2 >	2 - 2.5	>2.5 - 3	>3 - 4	X.
Standard Blazer (Rated Payload)	2430	4	6.7	9.4	ы	2	0	0	0	
	2431	4	4.9	12.8	4	2	2	0	0	
	2432	4	3.4	18.5	9	_	1	0	0	
	2433	4	3.0	20.9	4	23	0	0	0	
	2434	9	12.2	5.1	4	-	1	0	>	
	2435	9	9.4	6.7	2	23	0	0	0	
	2436	9	7.1	8 8	3	2	1	0	0	
	2438	00	14.4	4.4	ß	23	-	0	-	
	2439	ø	25.8	2.4	1	0	0	0	0	
Standard CJS (Rated Payload)	2109	4	8.5	7.4	4	0	0	0	0	
	2110	4	7.6	8.3	4	0	0	0	C	
	2111	4	5.6	11.2	S	1	0	0	0	
	2112	4	5.0	12.6	00		-	0	0	
	2113	4	12.1	5.2	. 2	0	0	0	0	
	2114	9	15.8	4.0	23	0	0	0	0	
	2115	9	12.8	4.9	2		Н	-	0	
	2116	9	7.9	7.9	10	3	2	1	153	
Standard Scout (Rated Payload)	2836	4	6.5	9.7	П	ю	0	0	0	
	2837	4	4.5	14.0	9	2	0	0	0	
	2838	4	3.5	17.9	-1	3	-	-	0	
	2938	4.	3.0	20.9	12	2	4	0	1	
	2840	9	12.0	5.2	7	2	ю	Т	0	
	2841	9	8.0	7.8	9	3	1	0	0	
	2842	9	9.9	9.5	∞	4	7	7	-	
		(Con	(Continued)					(She	(Sheet 5 of	5

Table A2 (Continued)

		Obstacle			7	No. of Vertical	1	Acceleration Peaks	ıks	
	Test	Height	Time	Speed		Greater than		Indicated		
Vehicle	No.	in.	sec	HQT.	>1 - 1.5	>1.5 - 2		>2.5 - 3	>3 - 4	×
High-Performance Ramcharger (Rated Payload)	2282	4	14.0	4.5	1	0	0	0	0	0
	2283	4	7.2	8.7	7	0	0	0	0	0
	2284	4	5.5	11.4	7	8	0	0	0	0
	2285	4	44.0	15.7	7	H	1	0	0	0
	2286	9	12.7	4.9	ъ	1	0	0	0	0
	2287	9	8.9	7.1	9	0	0	0	0	0
	2288	9	7.5	8.4	6	2	0	7	0	0
	2289	9	5.5	12.1	4	4	7	0	-	0
	2290	œ	12.6	2.0	S	3	1	0	0	0
High-Performance Blazer (Rated Payload)	2541	₹	4.8	13.1	80	7	0	0	0	0
	2542	4	3.4	18.5	6	1	0	0	0	0
	2543	4	1.7	36.9	10	0	1	0	0	0
	2544	9	7.4	8.5	ъ	œ	0	7	0	c
	2545	9	6.1	10.3	∞	2	7	2	0	0
	2546	9	5.1	12.3	, ∞	2	7	0	-	0
	2547	œ	14.3	4.4	4	1	1	0	1	0
	2548	90	11.5	5.5	7	9	0	ъ	-	7
High-Performance CJ5 (Rated Payload)	2735	4	6.3	10.0	4	П	-	0	0	0
	2736	4	4.9	12.8	4	4	1	0	7	0
	2737	4	3.7	17.0	8	4	М	~	~	-
	2738	4	2.5	25.1	2	1	0	0	0	0
	2739	9	10.6	5.9	12	4	0	1	0	0
	2740	9	7.7	8.2	ß	3	1	-	0	0
	2741	9	5.2	12.1	6	7	2	0	0	0
	2742	∞	31.8	2.0	2	1	0	0	0	0
		(Con	(Continued)						(Sheet 6 of 7)	of 7)

Table A2 (Concluded)

		Obstacle			No	No. of Vertica]	Ι.	Acceleration Peaks	(5	
	Test	Height	Time	Speed	9	Greater than g	g Range	Indicated		
Vehicle	No.	in.	sec	_t di	>1 - 1.5	>1.5 - 2	>2 - 2.5	>2.5 - 3	>3 - 4	×
High-Performance Scout (Rated Payload)	3080	4	6.7	9.4	15	7	0	0	C	0
	3081	7	4.7	13.4	6	S	7	1	0	0
	3082	4	3.8	16.5	16	S	7	7	0	0
	3083	4	5.9	21.7	ιΩ	ιΩ	7	0	0	7
	30.84	9	12.6	5.0	Ŋ	Ŋ	9	7	0	7
	3086	9	19.1	3.3	0	0	0	0	0	0
High-Performance Bronco (Rated Payload)	2934	4	6.9	9.1	4	г	7	0	0	0
	2935	4	11.5	5.6	Ŋ	1	0	0	0	0
	2936	4	4.6	13.7	9	7		0	0	0
	2937	9	10.0	6.3	9	ιΩ	1	0	0	0
	2938	9	×8.0	7.8	Ŋ	9	-		7	0
	2940	9	9.4	6.7	7	9		0	0	0
	2941	9	13.5	4.7	7	9	0	0	0	0
	2942	œ	16.0	3.9	, ,	7	0	0	0	9

APPENDIX B: DETAILED SPEED AND DYNAMICS DATA FOR TRAVERSE COURSES

1. The traverse speed data for the secondary road and trail units are given in detail as shown below:

Table No.	Vehicle	Payload, 1b	Units
B1	Standard commercial and M151A2	800	1-13
B2	Standard commercial	800	14-26
В3	Standard commercial	800	27-39
B4	Standard commercial	800	40-52
B5	High-performance commercial	800	1-13
В6	High-performance commercial	800	14-26
B7	High-performance commercial	800	27-39
B8	High-performance commercial	800	40-52
В9	Standard commercial	Rated	1-13
B10	Standard commercial	Rated	14-26
B11	Standard commercial	Rated	27-39
B12	Standard commercial	Rated	40-52
B13	High-performance commercial	Rated	1-13
B14	High-performance commercial	Rated	14-26
B15	High-performance commercial	Rated	27-39
B16	High-performance commercial	Rated	40-52

2. The dynamics data for the traverse are given in detail as shown below:

Table No.	Vehicles	Payload, 1b
B17	Standard Ramcharger	800
B18	Standard Blazer	800
B19	Standard CJ5	800
B20	Standard Scout	800
B21	Standard Bronco	800
B22	High-performance Ramcharger	800
B23	High-performance Blazer	800
B24	High-performance CJ5	800
B25	High-performance Scout	800

Table No.	Vehicle	Payload, 1b
B26	High-performance Bronco	800
B27	Military M151A2	800
B28	Standard Ramcharger	Rated
B29	Standard Blazer	Rated
B30	Standard CJ5	Rated
B31	Standard Scout	Rated
B32	High-performance Ramcharger	Rated
B33	High-performance Blazer	Rated
B34	High-performance CJ5	Rated
B35	High-performance Scout	Rated
B36	High-performance Bronco	Rated

Secondary Road or Trail Unit Speeds of 1/4-Ton Standard Commercial Vehicles and M151A2

Table B1

with 800-1b Payload, Units 1-13, Traverse Test Course, Fort Hood, Texas

13	22.0	29.0	21.6	35.2	30.2	31.1	26.4	36.2	25.7	25.3	22.9	27.7	29.2	30.2	33.0	32.2	36.2	36.5	29.7	31.7	26.0	26.8	29.2	31.7
12	12.7	17.3	12.8	22.0	12.4	20.7	16.8	19.4	18.2	14.7	13.3	20.7	16.6	14.9	14.5	15.5	20.2	21.4	18.7	24.2	14.4	14.2	17.5	23.8
11	42.4	41.2	39.4	6.04	40.6	41.8	38.9	41.8	41.8	39.4	37.8	37.8	32.8	39.4	39.7	46.0	43.1	39.4	35.4	41.8	35.8	35.8	39.4	78.7
10	36.2	35.9	32.2	37.9	36.6	35.0	40.2	38.3	35.8	35.8	34.3	40.2	32.5	32.5	34.3	40.2	37.4	41.3	39.3	47.3	33.5	34.3	35.0	36.2
6	21.5	19.1	19.4	25.7	23.2	17.1	19.8	25.7	26.7	17.6	17.5	23.5	21.4	19.4	15.4	28.1	24.3	19.9	21.4	30.5	17.2	23.7	23.0	23.2
ω	41.6	38.6	37.1	41.1	42.1	37.1	39.4	48.5	41.1	40.3	38.6	40.7	41.6	39.4	37.9	44.5	39.8	39.4	36.4	46.2	34.4	37.1	37.1	42.5
ed, mph	40.5	39.9	40.8	45.0	45.0	40.9	40.2	41.2	43.0	37.2	37.5	40.9	42.3	38.6	41.2	45.8	42.6	43.4	39.5	40.2	36.4	38.0	40.2	46.2
Unit Speed	40.3	41.2	40.6	45.4	43.0	45.4	45.4	40.5	41.8	39.5	38.9	41.2	42.4	0.44	44.0	45.0	42.4	41.8	42.1	46.5	36.0	37.9	36.9	45.4
2																								
4	41.1	41.6	41.1	41.6	45.9	41.6	9.05	41.6	42.1	40.2	40.2	39.7	41.6	41.1	44.8	45.3	43.7	42.6	44.2	9.05	38.0	39.7	38.0	45.6
3	41.3	41.9	40.7	40.7	43.9	41.3	40.7	41.9	42.5	40.7	44.5	35.2	42.5	40.7	43.9	44.5	45.9	43.2	41.9	45.3	37.5	40.7	43.5	40.7
2	34.1	39.4	36.5	41.1	41.1	40.2	39.4	60.2	40.2	40.2	37.9	40.2	39.4	38.3	39.4	44.7	40.2	41.5	39.1	43.7	34.7	38.0	38.7	38.7
j.	9.04	40.6	38.8	40.1	41.3	41.3	39.7	41.5	39.9	40.1	38.4	40.1	40.0	40.7	42.1	44.1	41.7	41.9	39.8	43.6	39.5	41.9	38.3	41.3
Driver*	Leigh	C p bell	White	Lewis**	Baker	Campbe 11	Shaw	Lewis**	Ellis	Leigh	White	Levis**	Nixe	Leigh	Ellis	Lewis**	Allison	Campbe 11	White	Levis**	Leigh	White	Allison	Lew1 ***
Weight	5370				5520				3680				4860				4545				3130			
Vehicle	Ramcharger				Blazer				CJ 5				Scout				Bronco				M151A2			

All drivers military except Lewis.

Table B2

Secondary Road or Trail Unit Speeds of 1/4-Ton Standard Commercial Vehicles and M151A2 with 800-1b Payload, Units 14-26, Traverse Test Course, Fort Hood, Texas

	Gross						n	nit Spe	ed. mph						ļ
Vehicle	Weight	Driver*	14	15	16	17	18	19	20	21	. 22	23	24	25	25
Ramcharger	5370	Leigh	17.8	13.9	15.8	19.0		20.9	17.0	10.3	11.0	15.8	14.1	13.9	12.9
		Campbe 11	15.4	15.4	21.2	23.1		27.1	22.2	10.6	11.0	16.0	13.1	15.4	15.0
		White	15.1	11.7	15.5	15.1		20.3	17.2	10.2	11.3	14.2	12.4	14.9	6.6
		Lewis**	29.3	17.4	24.4	30.1		39.0	29.3	13.5	16.9	22.7	17.6	26.4	21.7
Blazer	5520	Baker	26.4	13.8	18.0	23.4		26.8	23.6	12.9	14.5	18.8	15.4	18.5	15.8
		Campbel1	25.9	13.5	17.5	21.0		27.3	21.2	0 6	12.2	16.2	13.6	19.6	15.1
		Shaw	24.9	15.6	21.5	26.3		27.4	24.8	15.2	15.1	19.4	18.5	20.4	18.1
		Lewis**	28.7	18.2	26.8	34.5		43.4	37.5	14.9	19.6	25.9	22.1	29.8	24.7
CJ5	3680	E111s	21.6	13.0	18.1	22.1		27.8	26.1	11.7	16.7	21.7	17.4	20.2	19.4
		Leigh	50.6	10.9	18.5	22.4		24.5	19.5	12.3	13.3	11.1	15.7	17.5	17.9
		White	21.3	12.9	19.0	22.4		25.0	21.8	12.1	14.8	17.4	14.3	18.8	16.0
		Lewis**	25.9	16.1	23.8	28.6		32.2	27.1	11.5	16.4	20.0	16.0	19.0	18.2
Scout	4860	Nixe	24.0	16.4	23.8	26.3		28.6	20.9	13.5	24.2	20.2	18.3	20.9	17.3
		Leigh	27.8	15.3	24.7	28.6		31.5	23.2	15.4	17.2	22.1	19.6	22.7	21.0
		Ellis	56.9	13.8	18.6	23.4		27.1	22.2	11.1	13.1	19.6	17.1	20.4	18.6
		Lewis**	30.3	22.6	29.8	32.9		35.6	34.8	17.9	21.7	25.2	25.5	28.8	25.3
Bronco	4545	Allison	31.1	16.0	25.7	28.1		31.1	25.9	16.4	16.1	22.0	19.2	22.0	20.4
		Campbe 11	30.0	14.8	21.8	24.8		31.9	27.1	13.4	16.0	21.7	15.5	22.0	19.5
		White	24.0	15.2	22.5	25.5		29.6	56.6	14.3	17.1	20.8	10.8	17.1	13.8
		Levis**	30.3	50.6	27.6	30.5		40.8	56.6	13.4	17.7	26.7	19.6	25.4	23.7
M151A2	3130	Leigh	20,3	12.8	20.2	23.6		27.1	23.8	13.4	15.3	16.7	16.3	19.1	18.1
		White	23.6	14.9	20.7	23.9		29.7	25.7	12.8	17.0	19.5	13.1	19.9	17.1
		Allison	25.9	17.0	22.7	27.0		29.4	26.1	13.6	16.0	21.2	20.5	22.5	20.0
		Levis**	31.4	19.9	28.1	31:2		40.0	31.8	15.7	17.8	24.3	23.4	25.9	23.8

* All drivers military except Lewis.

Table B3

Secondary Road or Trail Unit Speeds of 1/4-Ton Standard Commercial Vehicles and M151A2 with 800-1b Payload, Units 27-39, Traverse Test Course, Fort Hood, Texas

	Gross						- 1	Unit Speed, mph	ed, mph						
Vehicle	Weight	Driver*	27	28	29	æ	31	32	33	1	35	36	37_	38	39
Ramcharger	5370	Leigh	13.9	15.9	13.9	14.6	11.8	14.9	11.5	12.9	20.1	15.5	17.8	13.6	14.2
		Campbell White	13.0	15.0	12.4	12.2	12.1	17.7	11.3	12.8	18 0	14.3	16.4	16.0	12.0
		Lewis**	19.5	25.8	21.3	23.0	16.3	22.9	17.1	16.3	29.0	21.6	29.5	25.0	23.2
Blazer	5520	Baker	16.6	20.1	16.3	17.8	13.6	17.8	15.9	15.2	21.8	15.9	21.9	21.4	20.9
		Campbe 11	15.1	18.7	14.7	13.9	13.5	14.9	12.3	14.5	22.4	15.8	24.7	20.5	15.2
		Shaw Lewis**	18.8 25.5	21.5	$\frac{20.6}{21.1}$	19.4 25.7	17.9 17.3	19.9 23.5	17.1 19.8	16.0 20.1	22.9 31.1	19.1 24.5	20.6	20.5 26.2	20.9
CJ5	3680	E1118	17.4	21.6	17.3	17.0	17.5	18.6	14.6	14.5	24.7	21.2	23.0	21.6	16.6
		Leigh	17.6	20.2	17.8	18.0	17.1	19.3	15.8	14.3	23.6	18.6	22.2	19.2	18.0
		White	16.5	20.6	16.8	15.8	14.5	17.2	14.4	14.5	21.1	17.7	18.3	18.4	14.9
		Lewis**	19.6	22.8	16.2	18.8	16.3	19.6	16.8	15.9	29.0	21.9	24.5	26.2	22.4
Scout	4860	Nixe	16.9	23.0	18.4	18.7	14.3	19.9	16.5	15.2	22.0	19.9	23.3	21.4	16.8
		Leigh	21.5	24.6	19.0	20.2	17.4	22.0	20.0	16.6	22.2	19.2	26.2	24.9	21.5
		Ellis	14.0	21.8	15.5	18.7	13.0	17.4	15.1	14.2	27.2	20.3	19.7	21.5	15.9
		Lewis**	25.7	31.6	24.3	25.4	22.6	27.3	21.2	20.8	35.1	28.1	30.1	29.1	23.2
Bronco	4545	Allfson	19.9	25.1	16.1	19.0	15.0	19.5	16.6	17.9	26.5	23.7	26.2	26.5	23.7
		Campbe 11	18.2	23.1	16.9	20.2	15.0	19.6	15.9	15.6	25.6	18.3	23.2	20.6	17.7
		White	18.7	23.1	17.7	16.7	13.2	20 %	15.3	17.0	24.2	17.7	20.7	20.6	21.3
		Lewis**	22.6	28.6	19.6	22.6	17.4	2 .)	18.2	19.4	25.9	25.2	29.4	27.9	26.1
M151A2	3130	Leigh	17.3	20.4	17.1	17.8	16.9	18.0	16.1	13.4	23.1	16.2	21.2	18.7	20.1
		White	17.8	21.8	18.8	18.5	18.2	21.0	17.0	18.4	21.8	18.4	20.3	21.7	16.7
		Allison	19.0	23.2	17.3	20.4	16.6	21.5	18.5	15.1	25.3	22.6	20.0	21.6	19.3
		Lewis**	22.7	29.8	20.4	22.2	17.7	27.0	20.1	20.8	29.4	25.3	26.9	27.1	23.2

All drivers military except Lewis.

^{**} Instrumented test.

Table B4

The state of the s

Secondary Road or Trail Unit Speeds of 1/4-Ton Standard Commercial Vehicles and MI51A2 with 800-1b Payload, Units 40-52, Traverse Test Course, Fort Hood, Texas

	Gross						n	nit Spe	ed, mph						
Vehicle	Weight	Driver*	04	41	42	43	4.6	45 46	94	47	84	67	20	51:	52
Ramcharger	5370	Leigh Campbell White Lewis**	18.6 20.5 18.1 22.0	34.3 37.3 30.8 39.7	31.0 33.5 28.7 47.9	25.9 28.5 31.7 43.2	21.0 28.5 21.6 37.5	8.6 19.3 9.5 12.3	28.0 30.4 24.0 38.1	19.5 22.1 19.2 23.4	17.7 21.3 16.9 33.8	24.4 24.0 20.5 38.8	13.0 12.8 10.5 18.8	22.7 25.4 22.6 33.0	18.6 19.8 18.2 24.0
Blazer	5520	Baker Campbell Shaw Lewis**	16.2 18.3 19.7 22.3	38.2 39.9 37.6 43.1	41.9 42.8 40.6 44.7	34.8 41.9 36.6 45.3	27.9 33.8 30.1 41.5	11.2 10.7 10.1 13.7	31.8 33.8 32.5 40.8	24.2 25.4 23.1 30.5	22.5 25.4 21.8 30.7	31.5 29.4 29.4 40.9	17.3 10.6 11.5 18.8	29.9 31.7 28.6 32.8	21.2 15.0 21.9 25.6
CJ S	3680	Ellis Leigh White Lewis**	18.3 19.5 19.5 21.3	36.7 34.3 32.0 39.0	38.7 40.2 40.2 40.2	30.0 34.5 30.7 37.5	32.0 25.4 25.8 31.0	11.7 11.9 10.5 15.0	35.7 31.1 29.8 39.7	24.2 22.8 21.5 25.8	23.9 23.3 19.0 25.5	27.5 27.5 24.2 30.2	13.8 16.0 13.4 17.0	29.1 27.2 26.2 42.1	18.0 23.2 19.1 23.2
Scout	7860	Nixe Leigh Ellis Lewis**	15.8 17.7 15.0 15.8	34.7 38.5 36.1 41.2	36.6 39.8 41.9 48.5	31.7 37.5 32.8 41.9	28.7 35.3 28.5 42.7	11.0 11.9 10.7 23.1	27.2 34.9 34.9 38.1	22.7 23.8 24.1 30.5	24.3 24.3 23.3	27.0 33.7 29.4 40.9	14.9 15.8 12.7 16.0	27.9 32.1 28.4 34.0	21.1 25.6 17.5 25.6
Bronco	4545	Allison Campbell White Lewis**	20.5 31.2 20.5 29.4	39.9 41.5 34.3 39.7	41.1 41.9 42.4 42.4	34.8 35.6 33.9 38.5	35.3 33.6 28.3 41.8	12.3 11.7 11.7 11.7	36.6 31.8 30.4 46.1	26.5 28.8 23.9 32.0	26.5 27.0 23.1 28.1	32.9 30.3 29.1 38.8	15.9 14.0 15.8 18.6	33.0 31.7 28.8 37.4	26.6 24.4 24.2 29.4
N151A2	3130	Leigh White Allison Lewis**	23.6 21.6 22.0 22.3	34.3 33.9 36.1 41.9	37.9 38.7 38.0 42.4	29.7 33.9 34.8 36.6	25.8 27.4 29.5 41.8	11.2 11.7 11.0 12.3	28.0 31.4 34.9 38.1	23.1 23.4 26.3 27.2	22.1 22.1 24.1 27.0	30.0 28.3 28.3 35.6	15.3 16.5 14.5 18.4	28.1 28.2 29.7 32.9	22.2 23.2 21.6 25.0

All drivers military except Lewis. Instrumented test.

Table B5

Secondary Road or Trail Unit Speeds of 1/4-Ton High-Performance Commercial Vehicles with 800-1b Payload, Units 1-13, Traverse Test Course, Fort Hood, Texas

							-	2 4 5 -1	1						
Vehicle	13	Driver*	1	2	3	4	2	9	7	8	6	10	11	12	13
Ramcharger	5720	Campbell Leigh Allison Lewis**	41.1 39.9 40.8 47.0	39.4 37.3 42.8 44.2	40.7 40.7 46.7 50.9	42.2 39.4 43.4 47.1	42.4 38.6 42.9 47.2	43.0 59.6 40.9 38.0 41.2 37.7 46.9 46.6	59.6 38.0 37.7 46.6	38.6 41.6 41.1 53.3	26.4 19.6 26.7 27.4	36.6 36.6 38.3 44.1	41.5 37.3 41.8 50.2	20.2 18.3 19.4 24.3	33.6 31.4 31.4 38.0
Blazer	5880	Shaw Leigh Baker Lewis**	39.8 41.6 41.7 47.2	40.2 41.1 42.8 44.2	44.5 44.5 41.9 49.2	42.6 43.7 43.7 49.5	44.7 43.9 50.1 49.1	43.0 44.3 48.8 50.1	41.2 43.8 48.5 46.6	38.6 42.1 45.1 51.2	18.6 20.3 22.0 26.0	36.6 39.3 40.2 39.7	40.0 42.4 46.0 50.2	17.1 18.0 20.2 22.5	25.7 30.1 33.9 35.8
c.J.5	4005	Campbell White Allison Lewis**	39.3 37.3 38.7 41.3	40.2 39.4 44.7 42.8	40.7 37.5 41.9 46.0	40.4 39.7 40.9 43.1	44.7 41.4 36.3 44.7	40.6 46.5 43.0 43.0	39.6 33.9 40.2 42.6	39.4 30.8 39.0 43.0	21.8 20.5 22.2 31.4	42.9 31.6 40.2 44.7	37.3 42.4 38.9 46.0	20.2 20.0 18.1 23.0	34.5 27.3 31.7 42.2
Scout	5150	Allison Nixe Campbell Lewis**	39.1 41.1 40.1 41.9	40.2 40.2 40.2 42.8	41.9 43.2 39.6 42.5	40.2 41.1 40.0 45.3	39.7 41.7 40.7 45.1	40.0 40.0 40.0 42.7	37.5 41.2 38.6 49.4	39.4 39.4 36.0 48.5	20.1 16.9 17.5 26.4	36.6 36.6 39.3 42.4	42.1 37.8 40.6 46.8	13.0 14.9 17.5	31.7 27.7 35.8 39.6
Bronco	4590	Baker White Allison Lewis**	46.1 41.2 40.3 40.7	42.4 38.3 38.7 40.2	43.9 39.6 40.7 40.7	43.4 41.1 42.1 40.4	40.7 38.5 35.8 41.4	41.6 38.4 45.7 40.6	43.8 39.6 38.0 41.2	40.7 36.4 37.9 42.1	23.5 18.1 23.2 34.4	40.2 39.3 37.9 44.1	45.2 38.9 39.4 41.2	20.7 20.7 19.9 25.8	34.2 29.2 33.3 39.6

Table B6

Secondary Road or Trail Unit Speeds of 1/4-Ton High-Performance Commercial Vehicles with 800-1b Payload, Units 14-26, Traverse Test Course, Fort Hood, Texas

	Gross						1	Init Spe	ed, mpk						
Vehtcle	Weight	Driver*	14	15	16	17	18	19 20	20	21	22	23	24	25	26
Ramcharger	5720	Campbe 11	23.2	13.4	18.5	21.6	15.7	27.9	25.2	9.2	12.6	17.0	13.0	16.7	15.6
		Leigh Allison	23.8	14.2	22.5	27.9	20.3	33.2	24.2	13,3	15.3	20.6	16.3	18.0	17.6
		Leviska	28.7	18.1	32.6	32.4	28.8	40.2	32.5	14.1	18.6	27.8	17.4	26.4	26.1
Blazer	5880	Shaw	21.6	13.8	18.6	22.3	18.8	27.2	20.9	12.6	14.0	18.0	15.7	17.5	15.3
		Leigh	25.4	13.6	21.0	25.2	20.0	28.1	22.5	11.8	13.8	19.8	14.9	19.5	19.1
		Baker	28.1	14.9	21.8	27.1	20.6	30.0	25.7	12.5	16.3	21.7	18.0	21.6	18.9
		Levis**	29.3	17.2	27.9	31.4	26.5	40.8	33.2	14.0	18.7	27.5	24.0	28.5	25.0
cJ5	4005	Campbe 11	30.0	16.2	22.3	26.6	20.9	30.9	25.7	12.5	14.9	19.9	17.8	22.0	19.9
		White	23.2	16.2	21.1	24.2	19.2	27.6	22.7	13.5	15.3	17.5	16.5	19.8	18.1
		Allison	26.9	15.9	22.8	25.8	21.7	33.4	27.6	12.8	15.5	20.2	20.2	21.6	19.1
		Levis**	28.1	18.5	28.1	30.7	22.7	33.6	29.9	14.3	17.8	23.5	19.6	24.7	22.7
Scout	5150	Allison	27.5	15.9	24.7	26.0	18.7	27.6	19.0	19.0	16.3	18.8	18.1	18.3	18.1
		Nixe	23.6	14.9	22.9	56.6	21.9	37.3	25.9	11.5	17.0	23.1	18.9	23.6	20.8
		Campbe 11	28.1	15.5	23.2	27.0	23.0	33.6	26.6	14.5	17.4	23.6	20.8	25.7	22 \$
		Levis**	32.2	20.1	29.7	32.4	26.3	42.2	30.5	15.4	19.8	28.4	24.9	29.8	25.9
Bronco	4590	Baker	29.0	18.2	23.7	28.1	23.8	32.5	31.8	15.4	16.2	21.5	18.2	22.5	
		White	24.0	15.6	22.5	24.8	18.8	29.4	22.9	12.9	16.2	20.0	17.1	20.7	
		Allison	29.3	18.0	25.6	26.0	22.9	32.5	26.6	15.1	17.4	25.5	20.0	23.6	19.1
		Levis**	30.7	20.8	30.4	31.9	26.0	39.7	32.2	16.1	20.0	28.4	25.7	30.9	

Secondary Road or Trail Unit Speeds of 1/4-Ton High-Performance Commercial Vehicles with 600-1b Payload, Units 27-39, Traverse Test Course, Fort Hood, Texas

	Gross						ח	Init Spe	ed, mph						
Vehicle	Weight	Driver*	27	28	29	30	31	32 33	33	34	35	36	37	38	39
Ramcharger	5720	Campbell Leigh Allison	15.2 18.3 19.0	19.5 21.0 23.4	13.7 17.5 16.9	15.8 18.8 20.0	12.8 14.5 14.9	15.6 17.2 17.7	12.3 20.1 16.1	13.6 15.3 13.5	25.9 24.2 25.9	14.8 19.8 19.2	21.2 23.5 25.7	20.9 21.2 26.0	18.8 21.3 26.1
Blazer	5880	Shaw Leigh Baker	16.5 17.2 18.9	19.5 20.2 24.3	17.3 15.6 19.9	17.2 18.3 19.6	14.3	16.7 16.8 20.8	13.9 15.1 17.4	13.2 15.1 17.0	22.7 24.2 24.7 32.0	16.9 19.0 19.2	20.3 23.5 27.1	18.9 22.8 22.3	13.5 23.7 21.5 21.5
CJ5	4005	Campbell White Allison Lewis**	17.1 16.7 17.8 22.8	23.1 23.4 21.9 27.9	16.8 16.2 16.3 20.4	17.8 18.0 17.3 23.8	15.9 16.0 15.6 18.5	19.3 18.8 19.3 22.3	14.6 15.0 14.9 19.6	15.8 16.9 17.7 19.7	26.5 23.6 26.2 30.2	19.7 17.2 20.1 23.4	21.8 21.0 23.7 27.7	19.5 19.5 22.1 24.4	19.3 17.2 20.7 23.4
Scout	5150	Allison Nixe Campbell Lewis**	17.2 19.3 22.3 24.0	20.1 25.3 30.8 33.0	17.0 18.8 19.6 21.0	19.8 19.8 19.6 22.2	16.3 16.7 18.3 18.8	23.5 22.3 22.7 26.5	14.0 16.9 18.4 20.3	16.4 15.7 17.9 22.7	25.9 23.6 27.2 32.0	21.4 22.6 21.2 25.1	25.8 23.9 26.2 31.4	23.9 23.7 24.3 29.5	20.7 19.0 21.1 26.1
Bronco	4590	BBaker White Allison Lewis**	18.7 18.3 21.2 23.0	23.8 23.7 25.0 30.4	16.5 17.4 16.2 22.6	20.8 18.2 18.0 25.7	16.5 15.2 17.9 21.4	18.0 18.2 22.5 27.0	15.2 15.3 17.1 19.5	16.0 17.2 21.7 22.3	25.3 25.6 25.6 29.8	17.3 18.6 22.9 26.3	22.6 21.8 27.4 30.8	22.8 22.2 23.4 28.1	22.0 19.7 26.1 25.8

Table B8

Secondary Road or Trail Unit Speeds of 1/4-Ton High-Performance Commercial Vehicles with 800-1b Payload, Units 40-52, Traverse Test Course, Fort Hood, Texas

	Gross						n	nit Spe	ed. mph						
Vehicle	Weight	Driver*	3	41	42	43	777	45 46	949	47	87	67	20	51	52
Ramcharger	5720	Campbell Leigh Allison Lewis**	23.6 22.9 22.4 23.4	38.5 34.3 38.0 42.5	39.4 49.1 38.0 46.8	46.0 34.3 40.2 43.2	34.9 31.0 35.1 41.5	11.0 10.1 11.4 12.6	32.5 33.2 30.4 44.0	24.4 24.1 23.3 30.5	24.6 24.6 24.5 29.0	27.3 31.5 33.2 43.3	12.6 15.5 16.7 19.3	28.5 34.0 32.5 35.9	20.6 20.5 17.7 25.9
Blazer	5880	Shaw Leigh Baker Lewis**	19.7 22.9 22.6 22.6	35.7 40.5 40.3 41.6	37.3 39.4 45.7 47.9	33.1 38.0 37.5 44.5	25.6 30.1 32.7 43.9	9.5 11.4 11.8 12.1	29.8 36.6 34.8 40.8	22.1 24.8 28.8 29.6	22.5 25.5 24.6 30.3	24.2 31.2 34.4 42.1	14.3 17.3 19.1 18.8	27.8 30.7 32.3 33.2	19.1 22.2 23.2 24.4
£5	4005	Campbell White Allison Lewis**	21.6 19.7 20.8 24.0	35.3 31.8 34.2 34.3	40.2 37.6 39.4 42.8	38.0 36.1 30.0 38.0	32.0 26.7 30.0 39.9	12.3 10.3 12.6 10.1	29.2 30.7 35.7 36.6	26.1 24.4 25.6 29.2	26.5 21.8 24.6 27.0	31.2 27.5 32.6 32.9	17.8 16.2 17.1 19.4	29.4 26.2 30.7 35.9	20.9 22.9 22.0 26.1
Scout	2150	Allison Nixe Campbell Lewis**	16.4 14.8 20.0 21.3	36.4 37.0 42.9 41.1	38.0 40.2 39.4 4ĭ.5	37.0 33.1 39.6 30.7	33.4 31.0 34.9 44.5	10.9 10.8 12.9 13.6	34.4 33.2 34.8 43.3	24.1 27.6 28.0 29.2	22.5 25.0 27.0 30.7	31.9 31.5 35.2 42.1	15.5 16.5 16.0 18.4	29.4 32.4 35.3 37.1	23.4 22.4 26.5 27.5
Bronco	4590	Baker White Allison Lewis**	24.3 20.4 21.9 27.1	37.8 34.6 37.0 39.0	41.5 36.6 38.7 40.2	36.1 32.4 37.5 40.7	30.1 30.7 33.4 42.1	11.8 11.2 12.2 14.2	32.5 31.1 33.2 39.7	25.6 24.8 24.8 27.0	23.5 22.3 25.5 29.7	31.2 29.7 34.4 40.9	14.1 17.4 18.1 19.3	31.8 29.0 32.4 35.3	23.4 24.4 25.9 27.0

Table 89

Secondary Road or Trail Unit Speeds of 1/4-Ton Standard Commercial Vehicles with Rated Payload, Units 1-13, Traverse Test Course, Fort Hood, Texas

	Payload	Gross Weight							Unit	Speed, mph	mph.					
Vehicle	1b	वा	Driver*	П	2	m	4	2	او		_∞	6	2	7	12	13
Ramcharger	1885	6515	Leigh Campbell White Lewis**	40.6 40.7 38.8 41.3	34.1 39.4 36.5 41.1	41.3 41.9 40.7 40.7	41.1 41.6 41.1 42.5	41.4 41.0 44.0 42.4	40.3 41.2 40.6 40.0	40.5 39.9 40.8 41.9	41.6 38.6 37.1 39.4	21.6 19.1 19.4 25.4	36.2 35.7 32.2 35.8	42.4 41.2 39.4 44.5	14.6 18.6 14.3 21.7	25.0 28.8 22.6 34.5
Blazer	1660	6400	Shaw Campbell Baker Lewis**	37.3 40.8 42.8 41.0	38.7 40.2 38.7 40.2	41.9 43.2 42.5 43.2	40.2 40.6 46.5 40.6	40.4 41.0 47.2 41.0	39.5 40.0 44.3 40.6	38.0 41.6 43.4 40.9	39.8 37.1 40.3 47.3	17.2 21.1 20.9 26.0	32.2 37.4 35.0 37.4	39.4 42.4 39.1 41.5	15.8 20.2 18.2 19.1	24.8 32.5 30.1 34.5
വട	1300	4090	White Leigh Ellis Lewis**	39.1 39.2 39.8 41.6	38.0 36.6 41.1 41.9	39.6 39.6 41.9 47.5	38.9 38.0 42.6 42.6	39.1 37.9 38.5 43.9	38.4 36.2 36.9 42.4	37.5 36.9 38.6 43.0	37.4 36.4 40.3 41.1	16.2 18.7 20.9 23.2	32.8 37.9 38.3 40.2	36.3 34.9 41.8 44.3	13.3 16.1 14.3 18.9	25.3 27.5 27.1 36.5
Scout	1919	5950	Nixe Leigh Ellis Lewis**	41.2 40.3 43.2 42.8	37.3 38.7 40.2 42.4	43.9 40.7 42.5 46.0	42.1 40.6 44.8 43.9	42.8 40.0 44.3 43.2	40.6 39.5 43.7 43.7	41.6 37.5 44.1 43.4	41.1 37.9 38.6 41.1	16.7 18.1 10.5 26.7	28.2 32.8 31.0 35.8	33.6 38.9 38.3 43.8	12.5 13.0 9.1 14.4	26.0 29.0 27.1 31.1
Bronco	885+															

** Instrumented test.

Small difference in rated payload and the 800 lb payload did not warrant retesting.

Table B10

Secondary Road, or Trail Unit Speeds of 1/4-Ton Standard Commercial Vehicles with Rated Payload, Units 14-26, Traverse Test Course, Fort Hood, Texas

											•					
	Deolived	Gross Weight							Unit	Unit Speed,		22	23	24	25	26
Vehicle	r ay road	1b	Driver*	14	15	16	17	18	TÀ	3	17					1
Ramcharger	1885	6515	Leigh Sampbell	22.4	13.1	19.4 20.4 16.3	23.4 23.4 19.5	15.6 16.5 15.6	24.7 25.9 21.8	18.3 24.8 19.4	11.3 10.6 10.5	11.0 12.5 11.1	16.1 18.0 14.3	14.8 14.2 12.7	16.2 17.3 14.6	15.0 113.0
			white Lewis**	28.4	16.0		30.0			34.0		18.2	24.3	1.02	7. 7.	17 1
Blazer	1660	9400	Snaw Campbell	21.6	13.9	17.4	21.7 21.8	18.7	26.1 27.8 26.6	19.6 24.0 24.0	13.4 11.7 12.3	14.5 13.5 13.5	18.9 17.0 18.0	16.7 16.3	19.5 19.6	16.0
			Baker Lewis**	24.4	15.3	25.0	31.2	24.6	38.7	34.8	14.1	19.4	28.1	22.1	28.8	7.47
C.5	1300	4090	White		13.5	18.8	21.4	17.7	26.3	22.2	11.8 13.5	14.2	17.5	15.1	18.3 18.8	16.0 17.6
			Leigh Ellis	25.4	12.4	19.8 24.0	24.0	20.0	28.2 34.1	24.4 24.0	11.4 13.3	13.7 15.3	18.5 22.5	14.9 17.4	20.9	20.8
		0	C T A T A			22.8	27.0	19.3	27.3	21.0	12.4	4.6	20.2	17.3	19.6	18.7
Scout	1919	0060	Leigh Ellis	24.0	11.7	22.7 17.5	27.0	18.9 15.8 22.5	31.5 28.1 31.2	23.8 19.5 28.7	9.1 14.6	10.3 16.9	20.6 24.2	13.2	20.9	18.4 20.8
			Lewisan			,										
Bronco	8851															

Bronco

All drivers military except Lewis.

^{**} Instrumented test.

Small difference in rated payload and the 800 1b payload did not warrant retesting.

Table B11

Secondary Road or Trail Unit Speeds of 1/4-Ton Standard Commercial Vehicles with Rated Payload, Units 27-39, Traverse Test Course, For Hood, Texas

Vehicle	Payload 1b	Gross Weight 1b	Driver*	27	28	29	99	31	Unit 32	Speed,	34 Bh	35	98	37	38	39
Ramcharger	1885	6515	Leigh Campbell White Lewis**	15.1 16.1 12.7 22.3	19.2 21.8 15.6 27.0	13.5 15.8 12.1 20.0	16.3 16,0 12.3 23.2	13.2 13.8 11.7 18.8	15.6 17.1 13.2 22.7	14.3 13.4 11.0 19.4	14.5 14.9 10.8 16.5	20.9 22.2 18.6 32.5	16.2 16.7 12.5 24.8	20.5 22.6 15.6 29.4	17.5 18.7 15.5 26.5	17.4 17.1 13.9 20.9
Blazer	1660	970	Shaw Campbell Baker	16.9 16.1 15.9	19.4 19.7 20.5	17.3 15.2 16.5	16.7 15.6 18.0	15.3 13.9 15.0	17.0 16.0 17.7	15.4 13.2 15.6	13.1 14.0 15.2	21.1 25.6 23.4	17.8 14.8 17.6	18.9 21.4 22.0 29.4	18.2 22.2 21.8 25.5	14.9 18.5 20.3
CJ5	1300	7090	White Leigh Ellis Lewis**	15.6 18.3 15.4 29.3	20.6 21.2 19.5 24.3	15.1 16.7 14.6 17.3	16.2 17.7 16.5 20.1	19.4 16.7 14.8 16.2	17.6 18.8 16.3 25.2	13.5 14.6 15.3 17.7	14.8 15.1 14.2 15.2	20.5 21.8 23.1 32.5	16.2 17.8 18.6 21.0	18.0 21.4 22.2 26.0	18.9 20.6 18.5 25.1	14.1 18.3 27.8 23.2
Scout	1919	5950	Nixe Leigh Ellis Lewis**	17.3 20.9 15.5 19.4	16.3 23.4 20.5 26.0	16.3 17.7 12.8 17.9	18.1 20.7 19.0 20.8	13.4 17.7 13.6 16.7	18.3 21.5 16.0 22.2	15.6 19.8 15.8 16.3	14.1 14.8 13.9 19.2	21.3 28.3 25.9 28.6	19.2 18.3 21.0 23.7	21.3 26.8 23.9 24.7	20.1 24.1 22.3 26.5	16.3 22.2 16.7 23.7
Bronco	885†															

** Instrumented test.

Small difference in rated payload and the 800 lb payload did not warrant retesting.

Table B12

Secondary Road or Trail Unit Speeds of 1/4-Ton Standard Commercial Vehicles with Rated Payload, Units 40-52, Traverse Test Course, Fortublood, Texas

	Payload	Gross Weight							Unit	Speed	, mph					
Vehicle	16	16	Driver*	07	41	42	43	44	45	45 46 47	47	48	67	20	51	52
Ramcharger	1885	6515	Leigh Campbell White Lewis**	20.2 22.4 16.4 16.1	29.6 32.7 28.2 41.0	39.4 39.4 36.5	25.9 30.3 28.5 40.7	23.6 27.9 19.9 37.9	8.3 10.3 9.1	33.2 31.1 24.2 37.6	20.5 22.1 18.5 27.8	20.2 23.2 18.6 27.6	25.9 27.0 20.2 37.4	13.9 14.3 10.4 16.5	23.7 27.0 20.6 33.7	19.8 20.4 16.2 24.4
Blazer	1660	9709	Shaw Campbell Baker Lewis**	20.6 19.5 18.6	35.2 34.9 37.8	36.6 41.5 41.1 43.7	33.1 40.7 36.5 43.9	24.8 31.4 28.7 38.9	9.5 11.6 9.5	28.6 29.8 29.8 35.7	20.9 23.1 23.5 28.4	20.8 24.6 22.1 25.5	27.2 30.3 30.3 38.8	12.1 12.0 15.1 16.5	26.0 29.0 29.5 30.7	18.6 19.8 19.8 22.9
വട	1300	4090	White Leigh Ellis Lewis**	16.8 22.3 17.3 21.5	33.0 35.6 36.0	38.0 38.0 41.1 43.7	34.3 31.3 29.7 36.0	25.8 26.0 29.3 32.3	10.9 11.1 10.6 11.8	29.2 29.8 31.1 35.3	22.3 22.3 24.8 26.1	15.2 22.9 21.8 24.6	23.8 28.0 24.8 34.4	13.8 16.2 14.9 17.7	24.9 28.6 28.2 35.2	19.1 20.6 20.9 24.8
Scout	1919	5950	Nixe Leigh Ellis Lewis**	14.0 16.1 13.4 14.8	33.8 36.7 34.6 40.5	38.0 37.3 43.3 44.7	30.0 40.2 36.5 41.9	26.5 33.4 29.3 38.2	8.6 10.3 9.4 10.1	25.1 31.1 31.1 36.6	19.6 23.3 23.1 26.5	23.5 25.0 31.4 30.7	28.6 36.0 27.5 31.2	13.9 14.1 11.9 12.5	26.9 30.3 29.7 31.4	20.9 26.5 19.3 25.6
Bronco	885†													*		

^{*} All drivers military except Lewis.

^{**} Instrumented test.

⁺ Small difference in rated payload and the 800 lb payload did not warrant retesting.

Table B13

Secondary Road or Trail Unit Speeds of 1/4-Ton High-Performance Commercial Vehicles with Rated Payload, Units 1-13, Traverse Test Course, Fort Hood, Texas

	Payload	Gross Weight						į	Unit	Speed,						
Vehicle	1b		Driver*		2	3	4	2	9		8	6	10	11	12	13
Ramcharger	1885	6740	Campbell Leigh Allison Lewis**	40.5 40.4 39.5 44.0	39.4 42.8 40.2 43.3	40.7 39.6 40.7 43.2	41.0 39.5 40.0 50.2	42.9 40.4 37.1 45.5	43.0 39.5 40.3 48.0	41.9 39.9 40.2 45.0	38.6 43.0 37.1 47.3	20.9 20.0 20.1 23.7	38.3 34.2 35.7 39.7	38.6 39.1 40.3 44.5	17.6 17.5 15.7 21.7	28.8 27.5 26.0 38.8
Blazer	1660	6710	Shaw Leigh Baker Lewis**	40.5 40.7 39.5 46.0	39.5 39.8 40.2 49.1	43.4 38.0 39.6 52.8	40.2 41.1 42.1 49.1	38.5 41.4 42.8 47.2	40.6 40.0 40.6 47.2	39.6 41.2 42.6 49.0	43.0 39.8 41.1 49.8	20.7 21.3 17.8 26.0	36.6 36.5 33.5 36.6	41.2 42.4 41.8 47.6	17.7 14.3 14.7 22.3	26.8 28.3 25.7 34.5
cu5	1300	4475	Campbell White Allison Lewis**	38.8 36.3 39.5 41.6	38.7 37.3 38.7 41.1	40.7 37.5 39.6 43.9	39.7 38.4 39.3 43.9	40.4 38.8 39.1 42.1	39.2 36.9 40.3 40.6	39.9 38.0 38.6 43.0	40.3 35.7 35.0 43.5	23.2 21.8 22.2 27.7	34.2 34.2 39.7	38.3 36.8 43.1 43.8	21.3 18.2 18.0 21.8	33.3 25.7 29.2 39.2
Scout	1919	6250	Campbell Nixe Allison Lewis**	40.3 40.4 41.2 45.0	38.0 42.8 42.8 46.3	39.6 44.5 40.7 43.2	42.6 42.6 42.6 42.6	42.4 42.1 39.1 43.2	42.7 41.2 44.3 44.3	41.9 41.9 49.4 45.0	37.9 41.6 42.5 47.3	18.1 17.2 15.2 25.4	39.3 24.8 43.5 40.2	40.9 40.6 47.6 52.1	17.7 17.7 17.5 17.5	38.8 32.2 35.2 37.2
Bronco	1340	5150	Allison Baker White Lewis**	40.4 38.4 38.5 41.6	40.2 38.0 39.5 41.5	43.2 39.6 38.5 45.3	41.6 36.1 40.6 44.2	39.7 37.1 40.4 41.7	43.0 38.2 38.7 42.7	37.7 36.6 38.0 44.1	37.9 37.5 36.7 45.6	24.3 21.8 21.8 30.5	38.3 36.6 37.9 46.7	42.8 36.1 38.9 42.4	20.5 18.4 19.9 23.6	33.9 29.7 29.0 38.0

All drivers military except Lewis.

^{**} Instrumented test.

Table B14

Secondary Road or Trail Unit Speeds of 1/4-Ton High-Performance Commercial Vehicles with Rated Payload, Units 14-26, Traverse Test Course, Fort Hood, Texas

	Payload	Gross							Unit	Speed,	, mph					
Vehicle	119	16	Driver*	14	15	16	17	18	19		1 1	22	23	24	25	26
Runcharger	1885	6740	Campbell Leign	22.8	11.7	18.1 21.3	19.1 24.8	14.4	25.5	20.8	8.0	9.5	14.8 18.0	10.2	14.5	13.0
			Levis**	32.6	17.5		30.9	25.7		33.2	15.0	20.6	28.4	24.9		27.0
Blazer	1660	6710	Shaw	22.8			24.2	•		21.5					_	
			Baker	19.7	13.0	19.8	22.7	17.9	27.2	21.8	28.9	13.4	16.9	14.3	18.0	16.7
			Lewisan	7.05			53.9			3/.5					_	
CJ 5	1300	4475	Campbe 11	27.5	16.9	23.2	28.1	22.9	31.5	25.2	14.0	16.3	21.0	19.4	22.3	19.7
			White	$\frac{21.8}{21.8}$	14.8	19.2	$\frac{22.1}{2}$	18.9		22.5	12.4	15.1	19.7	16.0	20.1	17.9
			Allison	25.1	•		25.7	20.4		25.7		•				
			Lewis**	31.1	•		33.1	25.5		29.6		•		•		
Scout	1918	6250	Campbe 11	30.	18.0		27.7	24.7			_	•			25.9	
			Nixe	26.9	17.4	27.0	29.0	24.6	37.3	26.6	12.3	17.2	25.0	19.9	23.6	20.8
			Allison	28.7	18.8		28.8	22.6				•			22.5	
			Lewis**	31.4	20.5		31.6	27.4							28.8	
Bronce	1340	5150	Allison	28.4			27.0	23.9		30.5	_				25.2	
			Baker	25.1	16.7	21.2	25.3	20.7	30.1	28.4	13.3	13.9	21.2	18.0	20.2	17.9
			White	24.7			56.6	22.0		24.8					22.7	
			Lewis**	31.8			33.1	27.3		31.1					27.3	

All drivers military except Lewis.

^{**} Instrumented test.

Table B15

Secondary Road or Trail Unit Speeds of 1/4-Ton High-Performance Commercial Vehicles with Rated Payload, Units 27-39, Traverse Test Course, Fort Hood, Texas

	Payload	Gross							Unit	Speed						
Vehicle	110	19	Driver*	27	28	29	90	31	32	33	34	35	36	37_	38	39
Ramcharger	1885	07/9	Campbell Leigh Allison	11.3 17.1 15.7	14.9 19.2 19.4	10.5 15.3 16.5	12.3 15.3 16.4	9.9 13.2 12.8	12.3 15.0 16.1	9.5 13.4 13.2	11.1	21.8 20.9 26.5	12.9 17.5 18.5	19.0 19.1 22.6	16.3 19.1 23.1	15.1 19.7 22.2
Blazer	1660	6710	Levis** Shaw Leigh	23.6 17.8 18.8	30.6 19.9 22.8	20.7 18.4 20.1	25.5 18.6 20.3	12.4	25.8 17.7 19.7	20.0 15.3 17.8	14.5	29.4 23.1 26.2	17.5	31.6 22.0 26.0	23.5 23.5 23.1	24.8 16.7 26.1
			Baker Lewis**	15.5 24.2		14.9 22.1	17.5 24.7	13.3	16. <i>7</i> 25.0	14.4 20.5	14.3 22.7	21.3 31.1	15.4 25.1	20.1 30.4	18.6 29.4	18.8 23.2
CJ5	1300	4475	Campbell White	18.7	24.2 21.2	17.5	18.5	17.1	20.8	16.6 14.8	16.3 16.6	24.7	18.8 18.2 21.6	23.8	21.5	18.1 19.0 21.3
			Lewis**	22.2		20.0	23.3	22.1	26.1	18.9	20.2	29.0	22.0	27.4		20.9
Scout	1919	6250	Campbell Nixe	23.5	30.0	19.6	26.5	18.5	26.3	27.0	18.8	27.2 26.9	20.0	28.3	23.7 24.8	22.9
			Lewis**	21.3	31.7	21.0	22.0	18.5	25.8	20.1	21.9	30.2	25.8	30.8	30:0	25.8
Bronco	1340	5150	Allison Baker	19.6 17.0	24.8	17.3	$\frac{21.3}{19.1}$	17.4	21.6 18.6	17.5	19.2 16.0	25.0 24.2	22.1 18.0	26.2 20.6	23.8	23.7
			White Levis**	19.0 22.6	24.7 27.9	17.5 24.5	19.7 25.4	17.2 18.4	21.7 23.5	16.7 18.0	19.2 21.0	24.2 31.1	20.0 24.7	22.8 28.2	27.1 29.1	21.5 27.8

^{*} All drivers military except Lewis.

^{**} Instrumented test.

Table 816

Secondary Road or Trail Unit Speeds of 1/4-Ton High-Performance Commercial Vehicles with Rated Payload, Units 40-52, Traverse Test Course, Fort Hood, Texas

	payload	Gross							Unit							
Vehicle	16	116	Driver*	07	41	42	43	747	45	949	47	48	67	20	51	52
Ramciazger	1885	6740	Campbell Leigh	18.3	36.5	40.2	38.0	31.4	10.3	31.4	23.3	22.3	23.3	9.6	27.5	18.1
			Allison	15.3	35.8	40.6	38.5	27.0	10.3	27.7	22.8	23.9	28.6	14.9	27.4	19.1
			TYSMTS	0.12	T - 74	7.44	46.0	43.0	13.7	† †	0.07	7.67		10.7	7.70	T . 07
Blazer	1660	6710	Shaw	21.1	37.0	39.4	33.1	27.4	10.9	32.5	22.1	22.9	28.8	14.5	26.6	21.9
			Leigh	26.0	40.9	43.0	40.2	32.3	10.9	38.6	23.1	27.0	35.2	16.1	30.4	24.8
			baker	1/.5	35.5	7.04	33.9	71.9	y.	37.5	73.7	27.8	7/.0	14.7	7.17	70.4
			Lewista	22.6	41.6	47:3	47.5	43.9	12.1	39.7	29.6	27.8	40.9	19.3	33.0	27.0
CJ \$	1300	4475	Campbe 11	24.3	35.7	37.3	36.5	34.1	12.3	34.0	28.0	22.7	30.3	17.3	32.5	23.4
			White	21.3	33.8	37.3	37.5	28.7	11.1	29.8	23.5	22.0	28.0	16.1	26.7	22.7
			Allison	21.6	33.8	43.3	35.6	29.7	10.8	34.0	23.3	22.9	27.3	16.5	28.8	22.2
			Lewis**	19.1	38.6	44.2	40.7	40.2	14.9	39.1	30.8	29.4	37.9	21.5	36.0	28.3
Scout	1919	6250	Campbe 11	18.8	39.5	45.4	40.2	36.4	12.6	34.0	27.4	27.6	37.9	14.9	34.9	25.2
			Nixe	17.7	40.1	39.8	38.0	33.4	11.4	32.8	27.6	26.0	29.1	26.5	34.5	23.6
			Allison	18.6	39.5	45.8	38.5	36.6	10.6	36.6	26.5	28.1	37.4	18.8	36.3	25.6
			Levis**	19.5	41.2	44.7	40.7	42.7	12.3	37.1	29.6	28.1	40.4	18.1	34.9	26.1
Bronco	1340	5150	Allison	27.1	37.0	40.2	38.5	35.3	11.6	34.4	25.0	23.9	33.6	16.7	31.9	25.6
			Baker	20.8	34.9	37.3	36.5	28.6	12.3	35.7	24.7	21.4	32.2	17.4	29.3	23.6
			White	23.6	36.2	37.6	38.0	31.7	11.5	34.0	25.3	23.9	30.3	16.2	31.8	24.2
			Lewiska	26.0	39.0	39.1	39.1	39.9	12.6	38.1	25.6	28.1	35.2	18.9	36.6	27.5

^{*} All drivers military except Lewis.

^{**} Instrumented test.

Dynamics Data for Standard Ramcharger with 800-1b Payload
Over Traverse Test Course

errain	Distance	Speed	rms Elevation	Absorbed Power	Cargo		o. of A Between				
Unit	ft	mph	in		g		>1.5-2				>4
1	4055	40.1	0.2	0.63	0.54	262					_
2	590	41.1	0.2	0.62	0.46	202	17	8 0	1 0	2	0
3	416	40.7	0.3	0.61	0.49	14	1 0		0	0	(
4	1037	41.6	0.4	2.13	0.55	48	5	0 4	1	0	(
5	734	40.0	0.1	0.73	0.54	61	0	0	0	0	(
6	845	42.4	0.2	0.73	0.45	24	5	0	0	0	(
7	725	45.0	0.1	1.31	0.55	43	16	1	Ö	0	(
8	555	41.1	0.1	1.25	0.53	19	5	3	0	0	(
9	313	25.7	1.3	4.08	0.59	31	4	2	Ö	. 0	ì
10	472	37.9	0.2	0.46	0.47	24	ō	Õ	Ö	. 0	(
11	809	40.9	0.1	0.33	0.46	16	ő	ő	Ö	ŏ	ì
12	432	22.0	2.3	6.22	0.70	92	13	1	ĭ	ő	ì
13	557	35.2	0.3	2.25	0.55	31	7	î	2	ŏ	(
14	387	29.3	0.8	6.72	0.86	210	72	6	ō	ĭ	
15	596	17.4	2.6	14.44	0.84	103	50	15	4	ō	
16	1070	24.4	1.0	8.68	0.78	159	42	28	3	4	
17	617	30.1	0.8	6.53	0.79	141	28	9	4	ì	į
18	1486	23.4	2.1	8.20	0.82	240	95	25	6	3	ì
19	897	39.0	0.9	6.46	0.82	109	35	9	3	2	ì
20	429	29.3	1.0	5.08	0.91	117	37	1Ó	9	2	ì
21	568	13.5	1.8	18.06	0.89	133	68	23	Ś	4	
22	875	16.9	2.2	14.90	0.84	182	58	29	6	3	
23	733	22.7	1.0	12.49	0.97	97	54	17	13	ĭ	
24	460	17.6	2.2	20.14	0.97	302	178	22	9	3	i
25	380	26.4	0.9	8.58	0.86	64	32	12	3	ĭ	Ò
26	593	21.7	1.9	8.22	0.89	96	34	12	4	3	
27	815	19.5	1.2	18.46	1.01	118	80	37	10	4	
28	1171	25.8	0.8	9.63	0.93	170	80	50	18	4	Ċ
29	431	21.3	1.3	13.75	0.99	84	54	22	5	2	
30	580	23.0	1.4	14.98	0.94	100	43	17	4	5	(
31	550	16.3	2.2	20.69	0.94	86	45	17	9	4	- 2
32	793	22.9	1.9	11.38	0.93	149	80	36	9	4	(
33	927	17.1	1.1	20.00	0.93	185	99	39	1	5	(
34	513	16.3	1.5	11.96	0.83	78	28	15	2	4]
35	319	29.0	1.0	4.64	0.69	34	15	1	1	0	(
36	590	21.6	1.4	16.25	0.94	106	38	17	6	1	(
37	723	29.5	1.0	11.04	1.01	186	194	56	9	6	:
38	1152	25.0	1.9	9.96	0.84	116	56	17	11	3	1
39	306	23.2	0.7	5.00	0.80	231	18	5	1	0	(
40	457	22.0	1.6	9.00	-	-*	-	-	•	•	•
41	1258	39.7	0.2	2.47	0.58	50	15	8	1	1	:
42	590	47.9	0.3	0.68	0.42	15	1	0	0	0	(
43	418	43.2	0.4	0.91	0.49	10	0	0	0	0	(
44	901	37.5	1.2	2.22	0.53	38	3	0	0	0	(
45	181	12.3	1.0	7.42	0.69	29	10	3	0	0	(
46	419	38.1	1.0	3.03	0.64	10	4	0	1	0	(
47	582	23.4	1.6	4.84	0.58	36	4	1	ō	ŏ	Ò
48	396	33.8	0.7	1.39	0.62	25	5	3	2	ŏ	ì
49	444	38.8	1.4	5.87	0.84	41	18	3	ō	ŏ	(
50	319	18.8	3.4	8.58	0.68	30	7	2	2	ŏ	(
51	1316	33.0	0.5	4.86	0.60	49	14	4	ī	ŏ	
) L	436	22.0	0.5	7.00	0.00	47	3	-	ō	Ŏ	(

^{*} Dashes indicate that no data were collected as a result of instrumentation failures.

Dynamics Data for Standard Blazer with 800-1b Payload
Over Traverse Test Course

				Absorbed	Cargo	No	of Acce	Terati	on Peaks		-
Torrein	Distance	Speed	rms Elevation	Power	cargo				Indicate		
Unit	ft	mph	in	watts	g				>2.5-3		>4
1	4055	41.5	0.2	0.52	0.44	62	9	4	1	1	0
2	590	40.2	0.3	0.46	0.41	15	2	ŏ	ō	ō	ō
3	416	41.9	0.4	0.98	0.46	18	ō	ŏ	ŏ	ŏ	ō
4	1037	41.6	0.2	1.52	0.46	40	4	2	Ö.	ō	ō
5	734	42.1	0.1	0.52	0.43	12	ĭ	ō	ō	ō	ō
6	845	40.5	0.2	0.28	0.36	6	Ū	C	Ŏ	Ö	0
7	725	41.2	0.1	1.04	0.49	26	6	1	Ō	Ō	0
8	555	48.5	0.2	0.88	0.57	33	4	2	0	0	0
9	313	25.7	1.3	1.64	0.52	4	4	1	0	. 0	0
10	472	38.3	0.2	0.58	0.43	6	0	0	0	0	0
11	809	41.8	0.1	0.20	0.40	5	0	0	0	0	0
12	432	19.4	2.3	4.20	0.61	45	6	1	1	0	0
13	557	36.2	0.3	2.72	0.51	18	3	1	0	0	0
14	387	28.7	0.8	4.48	0.63	29	3	3	0	0	0
15	596	18.2	2.6	13.58	0.86	93	36	19	5	2	0
16	1070	26.8	1.0	8.88	0.86	148	84	76	33	6	3
17	617	34.5	0.8	6.92	0.76	49	13	4	5	0	0
18	1486	25.9	2.1	7.90	0.80	149	71	22	6	5	0
19	89 7	43.4	0.9	13.75	0.96	76	18	12	9	1	4
20	429	37.5	1.0	12.84	0.98	36	21	12	2	2	0
21	568	14.9	1.8	17.22	0.79	105	35	11	2	3	0
22	875	19.6	2.2	15.35	0.87	146	58	16	6	4	2
23	733	25.9	1.0	11.34	0.97	79	41	19	11	6	3
24	460	22.1	2.2	15.60	0.98	63	38	30	6	2	0
25	380	29.8	0.9	7.20	0.72	57	17	4	0	1	0
26	593	24.7	1.9	7.84	0.80	78	25	7	5	2	0
27	815	25.5	1.2	15.90	0.91	116	36	14	6	3	2
28	1171	27.9	0.8	13.04	0.99	122	63	28	9	11	7
29	431	21.1	1.3	19.14	0.95	58	20	12	5	4	1
30	580	25.7	1.4	11.52	0.96	55	33	19	4	6	0
31	550	17.3	2.2	12.83	0.80	56	25	12	3	2	0
32	793	23.5	1.9	13.13	0.91	113	61	17	2	3	2
33	927	19.8	1.1	13.85	0.86	184	69	21	4	3	1
34	513	20.1	1.5	10.31	0.89	72	28	8	4	3	0
35	319	31.1	1.0	4.94	0.73	23	11	2	0	0	0
36	590	24.5	1.4	10.00	0.87	77	25	7 7	4	3 6	1
37	723	27.7	1.0	9.92	0.85	61 95	38 42	6	3	4	0
38	1152	26.2	1.9	10.06	0.82		11	4	0	ő	0
39	306	24.6	0.7	4.52	0.71	40					
40	457	22.3	1.6	10.06	0.80	46	9	6	2	4	2
41	1258	43.1	0.2	2.38	0.54	32	9	2	9	0	0
42	590	44.7	0.3	0.52	0.40	4	0	0	0	0	0
43	418	45.3	0.4	0.90	0.51	15	2	0	0	0	0
44	901	41.5	1.2	2.68	0.61	44	10	2	1	0	0
45	181	13.7	1.0	5.39	0.70	23	5	2	0	0	0
46	419	40.8	1.0	4.66	0.77	6	6	0	0	1	1
47	582	30.5	1.6	6.52	0.82	37	8	5	2	1	0
48	396	30.7	0.7	2.60	0.69	25	4	1	5	0	0
49	444	40.9	1.4	8.40	0.84	27	ç	7	1	1	0
50	319	18.8	3.4	4.78	0.67	17	10	1	1	0	0
51 52	1316	32.8	0.5	4.78	0.60	55 21	14 3	3 3	3 0	0 1	0
	436	25.6	1.3	11.68	0.71	.) 1	- 2		1)		1

Dynamics Data for Standard CJ5 with 800-lb Payload
Over Traverse Test Course

Terrain	Distance	Speed	rms Elevation	Absorbed Power	Cargo		o. of A n Betwe				
Unit	ft	mph_	in	watts	g	>1-1.5	>1.5-2	>2-2.5	>2.5-3	>3-4	>4
1 2	4055 590	40.1 40.2	0.2 0.3	0.44 0.48	0.44	43 5	10 0	0 0	0	0	0 0
3	416	35.2	0.3	0.48	0.42	2	1	0	0	0	0
4	1037	39.7	0.4	0.43	0.41	23	0	0	Ö	0	0
5	734	41.7	0.1	0.35	0.44	8	0	0	0	Ö	0
6	845	41.2	0.2	0.27	0.37	2	0	Ö	Ö	Ö	o
7	725	40.9	0.1	0.83	0.45	23	2	o	ŏ	Ö	ō
8	555	40.7	0.2	0.57	0.43	14	3	Ö	ő	ŏ	ő
9	313	23.2	1.3	2.70	0.49	14	3	ŏ	ŏ	ŏ	Ö
10	472	40.2	0.2	0.50	0.44	10	ő	ŏ	ō	Ö	ŏ
11	809	37.8	0.1	0.44	0.41	4	ō	Ŏ	Ŏ	ō	ō
12	432	20.7	2.3	4.13	0.60	50	5	1	ō	Ō	0
13	557	27.7	0.3	2.14	0.55	35	7	ō	·ō	ō	ō
14	387	25.9	0.8	2.29	0.61	32	4	4	ō	Ō	0
15	596	16.1	2.6	6.04	0.72	121	28	6	1	1	0
16	1070	23.8	1.0	4.63	0.70	117	33	18	3	1	0
17	617	28.6	0.8	4.22	0.72	63	17	4	3	2	0
18	1486	19.6	2.1	7.42	0.71	214	41	13	5	2	1
19	897	32.2	0.9	3.73	0.65	109	15	1	0	0	0
20	429	27.1	1.0	4.07	0.77	59	20	5	1	2	0
21	568	11.5	1.8	14.68	0.67	241	63	14	3	0	0
22	875	16.4	2.2	13.63	-*	-	-	-	-	-	-
23	733	20.0	1.0	9.68	0.69	68	22	7	3	1	1
24	460	16.0	2.2	8.70	0.70	100	21	1	0	1	0
25	380	19.0	0.9	8.10	0.70	75	9	4	3	0	0
26	593	18.2	1.9	10.06	0.65	92	11	2	0	0	0
27	815	19.6	1.2	10.14	0.70	128	28	4	2	1	0
28	1171	22.8	0.8	6.68	0.70	141	31	10	3	0	1
29	431	16.2	1.3	7.70 `	0.67	91	13	2	0	0	0
30	580	18.8	1.4	9.00	0.71	112	25	6	1	0	0
31	550	16.3	2.2	13.57	0.72	69	17	9	1	1	0
32	793	19.6	1.9	9.00	0.71	124	41	8	0	1	1
33	927	16.8	1.1	10.68	0.76	222	56	14	1	0	0
34	513	15.9	1.5	8.94	0.72	92	28	7	0	1	0
35	319	29.0	1.0	2.62	0.63	26	5	0	0	0	0
36	590	21.9	1.4	8.94	0.80	98	35	10	0	3	0
37	723	24.5	1.0	8.20	0.69	51	16	9	3	3	0
38	1152	26.2	1.9	8.20	0.65	93	22	7	0	2	Ü
39	306	22.4	0.7	4.40	0.58	28	2	0	0	_	0
40	457	21.3	1.6	7.40	0.60	55	6	3	1	0	0
41	1258	39.0	0.2	1.43	0.48	38	10	1	0	0	0
42	590	40.2	0.3	0.43	0.36	3	0	0	0	0	0
43	418	37.5	0.4	0.60	0.40	1	2.	0	0	3	0
44	901	31.0	1.2	1.78	0.51	11	3	1	0	0	0
45	181	15.0	1.0	3.44	0.63	17	10	1	0	0	0
46	419	39.7	1.0	7.46	0.71	7	1	2	0	0	0
47	582	25.8	1.6	3.50	0.55	20	1	1	0	0	0
48	396	25.5	0.7	0.94	0.50	4	1	0	Ç	0	0
49	444	30.2	1.4	4.09	0.58	28	1	0	0	0	0
50	319	17.0	3. 4	3.54	0.56	16	5	0	0	0	0
51	1316	42.1	0.5	4. 15	0.52	32	14	1	0	0	0
52	436	23.2	1.3	5.36	0.57	8	1	1	1	0	0

^{*} Dashes indicate that no data were collected as a result of instrumentation failures.

Dynamics Data for Standard Scout with 800-1b Payload
Over Traverse lest Course

Terrain	Distance	Speed	rms Elevation	Absorbed Power	Cargo		o. of A				
Unit	ft	mph	in	Watts	g	>1-1.5	Betwee	en Kans >2-2.5	>2.5-3	> 3-4	>4
		-	 								
1	4055	44.1	0.2	0.40	0.33	11	1	1	1	0	0
2	590	44.7	0.3	0.34	0.25	0	0	0	0	0	0
3	416	44.5 45.3	0.4	0.42	0.28	0	0	0		-	0
4	1037		0.2	0.82	0.32	7	0	0	0	0	(
5	734	46.4	0.1	0.30	0.35	2	2	0	0	0	0
6	845	45.0 45.8	0.2	0.18	0.23	0	0	0	0	0	(
7	725 5 55	44.5	0.1 0.2	0 40 0.42	0.31	0 1	0	0	0	0	C
8 9	313	28.1	1.3	3.16	0.28	10	1	0	2	. 1	(
10	472	40.2	0.2	0.54	0.37	10	0	0	0	. 0	Č
11	809	46.0	0.1	0.18	0.33	0	0	9	0	0	Ċ
12	432	15.5	2.3	3.26	-*	-	-	-	_	_	-
13	557	32.2	0.3	1.82	0.35	2	0	0	0	0	C
14	387	30.3	0.8	3.20	0.61	12	5	2	0	1	C
15	596	22.6	2.6	10.36	0.89	72	37	13	7	5	Ċ
16	1070	29.8	1.0	5.28	0.66	76	25	10	2	4	Ċ
17	617	32.9	0.8	6.40	0.71	39	17	8	2	2	Ċ
18	1486	26.1	2.1	6.18	0.69	101	22	15	6	4	Č
19	897	35.6	0.9	6.86	0.69	35	18	6	8	2	Ò
20	429	34.8	1.0	4.46	0.81	31	9	10	3	2	Ò
21	568	17.9	1.8	14.80	0.83	49	48	11	7	2	j
22	875	21.7	2.2	15.78	0.88	110	31	25	ģ	5	- 2
23	733	25.2	1.0	9.25	0.79	58	21	14	7	6	Ċ
24	460	25.5	2.2	9.29	0.75	69	10	7	2	ő	C
25	380	28.8	0.9	5.48	0.64	30	6	3	ī	Ö	Č
26	593	25.3	1.9	9.20	0.74	57	11	8	2	2	j
27	815	25.7	1.2	14.26	0.89	88	40	12	4	5]
28	1171	31.6	0.8	6.18	0.80	113	31	17	11	3	Ċ
29	431	24.3	1.3	15.62	0.94	46	22	14	5	2	Č
30	580	25.4	1.4	6.56	0.81	81	22	11	3	2	Č
31	550	22.6	2.2	11.00	0.84	58	26	6	ì	3	Č
32	793	27.3	1.9	8.02	0.84	92	38	17	7	4	Ò
33	927	21.2	1.1	10.83	0.86	163	62	21	6	5	Č
34	513	20.8	1.5	7.46	0.87	66	19	9	1.0	5	Ò
35	319	35.1	1.0	3.25	0.70	17	9	2	0	ó	Ò
36	590	28.1	1.4	6.69	0.80	66	19	4	2	1	j
37	723	30.1	1.0	6.32	0.74	58	14	8	7	ō	ď
38	1152	29.1	1.9	5.63	0.68	31	19	5	ó	2	Č
39	306	23.2	0.7	2.55	0.63	28	1	ő	Ö	ō	Č
40	457	15.8	1.6	4.84	0.60	34	10	2	0	2]
41	1258	41.2	0.2	1.14	0.49	27	5	1	1	0	0
42	590	48.5	0.3	0.32	0.36	0	ó	ō	ō	ŏ	0
43	418	41.9	0.4	0.44	0.50	3	1	0	0	0	Ċ
						_		-	-	_	
44	901	42.7	1.2	2.62	0.56	17	4	2	0	1]
45	181	13.1	1.0	4.94	0.67	11	2	1	2	0	0
46	419	38.1	1.0	5.65	0.63	5	2	3	1	1	(
47	582	30.5	1.6	6.74	0.78	17	9	3	1	4	1
48	396	30.0	0.7	0.92	0.56	9	2	2	0	0	(
49	444	40.9	1.4	3.58	0.70	27	3	3	U	0	(
50	319	16.0	3.4	4.93	0.54	11	2	3	0	0	(
51	1316	34.0	0.5	1.88	0.47	20	2	3	1	1	0
52	436	25.6	1.3	5.19	0.62	10	5	1	1	2	C

[.] Dashes indicate that no data were collected as a result of instrumentation failues.

Table B21

Dynamics Data for Standard Bronco with 800-1b Payload

Over Traverse Test Course

			rms	Absorbed	Cargo	1	lo. of A	ccelera	tion Pe	aks	
Terrain Unit	Distance ft	Speed mph	Elevation in	Power Watts	rms g		n Betwee >1.5-2				>4
1	4055	43.6	0.2	0.68	0.40	16	7	1	1	1	1
2	590	43.7	0.3	0.32	0.33	0	C	0	0	0	0
3	416	45.3	0.4	0.30	0.34	0	0	0	0	0	0
4	1037	40.6	0.2	0.68	0.35	7	0	0	0	0	0
5	734	39.7	0.1	0.48	_*		-	-	<u>.</u>	-	-
6	845	46.5	0.2	6.34	0.32	0	0	0	0	0	0
7	725	40.2	0.1	0.70	0.39	15	2	0	0	0	0
8	555	46.2	0.2	0.24	0.23	0	0	0	0	0	0
9	313	30.5	1.3	32.54	0.93	11	4	3	1	3	2
10	472	47.3	0.2	0.80	0.46	12	0	0	0	0	0
11	809	41.8	0.1	0.20	0.35	0	0	0	0	0	0
12	432	24.2	2.3	8.80	0.77	52	10	3	3	1	0
13	557	31.7	0.3	1.75	0.59	34	4	0	0	0	0
14	387	30.3	0.8	8.95	J.71	20	10	0	3	1	0
15	596	20.6	2.6	14.70	0.89	102	49	11	7	2	1
16	1070	27.6	1.0	12.30	0.83	114	42	16	16	7	2
17	617	30.5	0.8	26.35	0.80	72	22	11	4	1	0
18	1486	25.1	2.1	14.90	0.81	195	54	20	4	4	2
19	897	40.8	0.9	21.40	0.90	90	31	9	5	5	1
20	429	26.6	1.0	9.65	0.86	41	14	10	4	1	1
21	568	13.4	1.8	22.87	0.77	122	47	14	3	3	1
22	875	17.7	2.2	16.55	0.83	148	64	19	9	8	0
23	733	26.7	1.0	16.04	0.87	86	37	19	4	3	1
24	460	19.6	2.2	21.30	0 - 82	109	33	9	4	6	0
25	380	25.4	0.9	8.06	0.79	53	16	5	2	1	0
26	593	23.7	1.9	29.90	0.89	109	40	19	4	3	0
27	815	22.6	1.2	22.92	0.89	122	67	23	11	4	0
28	1171	28.6	0.8	30.10	0.95	77	75	34	9	6	3
29	431	19.6	1.3	21.57	0.75	186	35	6	2	1	1
30	580	22.6	1.4	28.45	0.94	209	130	141	3	6	1
31	550	17.4	2.2	23.38	0.78	103	30	9	4	2	0
32	793	24.0	1.9	12.95	0.83	119	33	8	8	2	1
33	927	18.2	1.1	17.14	0.93	193	68	35	7	1	1
34	513	19.4	1.5	14.24	0.98	78	38	20	8	1	1
35	319	25.9	1.0	2.90	0.63	17	5	1	1	0	0
36	590	25.2	1.4	18.38	0.86	64	45	8	5	3	0
37	723	29.4	1.0	9.56	0.79	75	31	13	5	2	0
38	1152	27.9	1.9	13.54	0.85	121	59	17	4	3	2
30	306	26.1	0.7	5 .29	0.74	36	11	3	2	0	1
40	457	29.4	1.6	13.85	1.00	56	18	10	2	4	1
41	1258	39.7	0.2	1.24	0.53	34	7	4	0	1	0
42	590	42.4	0.3	0.28	0.35	0	0	0	0	0	0
43	418	38.5	0.4	0.42	0.42	6	1	0	0	0	0
44	901	41.8	1.2	4.84	0.68	26	5	3	0	3	1
45	181	13.1	1.0	9.44	0.88	37	6	4	2	2	2
46	419	46.1	1.0	6.80	0.75	13	4	3	1	0	Ð
47	582	32.0	1.6	17.16	1.02	25	12	7	2	5	5
48	396	28.1	0.7	2.60	0.74	36	11	3	3	Ö	0
49	444	38.8	1.4	4.90	0.83	37	18	2	0	1	1
50	319	18.6	3.4	8.22	0.67	30	7	3	0	0	0
51	1316	37.4	0.5	6.40	0.64	45	8	5	1	3	1
					0.94			4	2	2	2

^{*} Dashes indicate that no data were collected as a result of instrumentation fertures.

Dynamics Data for High-Performance Ramcharger with 800-1b Payload
Over Traverse Test Course

Unit 1 2 3 4 5 6 7 8 9 10 11 12 13 14	Distance ft 4055 590 416 1037 734 845 725 555 313 472 809 432 557	mph 47.0 44.2 50.9 47.1 47.2 46.9 46.6 53.3 27.4 44.1 50.2	0.2 0.3 0.4 0.2 0.1 0.2 0.1 0.2 1.3	0.52 0.48 0.62 0.76 0.54 0.40 1.26	0.44 0.38 0.42 0.35 0.41 0.33 0.42	>1-1.5 50 3 5 12 14 6	8etwee >1.5-2 10 0 0 0 0 0 0 0	3 0 0 0 0	2.5-3 1 0 0 0 0	0 . 0 . 0 0 0	0 0 0
1 2 3 4 5 6 7 8 9 10 11 12 13 14	4055 590 416 1037 734 845 725 555 313 472 809 432 557	47.0 44.2 50.9 47.1 47.2 46.9 46.6 53.3 27.4 44.1	0.2 0.3 0.4 0.2 0.1 0.2 0.1 0.2	0.52 0.48 0.62 0.76 0.54 0.40 1.26	0.44 0.38 0.42 0.35 0.41 0.33	50 3 5 12 14 6	10 0 0 0 0	3 0 0 0 0	1 0 0 0	. 0 . 0 0	0 0 0
2 3 4 5 6 7 8 9 10 11 12 13 14	590 416 1037 734 845 725 555 313 472 809 432 557	44.2 50.9 47.1 47.2 46.9 46.6 53.3 27.4 44.1 50.2	0.3 0.4 0.2 0.1 0.2 0.1 0.2 1.3	0.48 0.62 0.76 0.54 0.40 1.26 0.44	0.38 0.42 0.35 0.41 0.33	3 5 12 14 6	0 0 0	0 0 0 0	0 0 0	. 0 0 0	0
3 4 5 6 7 8 9 10 11 12 13 14	416 1037 734 845 725 555 313 472 809 432 557	50.9 47.1 47.2 46.9 46.6 53.3 27.4 44.1 50.2	0.4 0.2 0.1 0.2 0.1 0.2	0.62 0.76 0.54 0.40 1.26 0.44	0.42 0.35 0.41 0.33	5 12 14 6	0 0 0	0 0 0	0 0	0	0
4 5 6 7 8 9 10 11 12 13 14	1037 734 845 725 555 313 472 809 432 557	47.1 47.2 46.9 46.6 53.3 27.4 44.1 50.2	0.2 0.1 0.2 0.1 0.2 1.3	0.76 0.54 0.40 1.26 0.44	0.35 0.41 0.33	12 14 6	0 0	0 0	0	0	
5 6 7 8 9 10 11 12 13 14	734 845 725 555 313 472 809 432 557	47.2 46.9 46.6 53.3 27.4 44.1 50.2	0.1 0.2 0.1 0.2 1.3	0.54 0.40 1.26 0.44	0.41 0.33	14 6	0	0		-	^
6 7 8 9 10 11 12 13 14	845 725 555 313 472 809 432 557	46.9 46.6 53.3 27.4 44.1 50.2	0.2 0.1 0.2 1.3	0.40 1.26 0.44	0.33	6			0	Λ	0
7 8 9 10 11 12 13 14	725 555 313 472 809 432 557	46.6 53.3 27.4 44.1 50.2	0.1 0.2 1.3	1.26 0.44			Λ		_		0
8 9 10 11 12 13 14	555 313 472 809 432 557	53.3 27.4 44.1 50.2	0.2 1.3	0.44	0.42			0	0	0	0
9 10 11 12 13 14	313 472 809 432 557	27.4 44.1 50.2	1.3			21	2	0	0	0	0
10 11 12 13 14	472 809 432 557	44.1 50.2			0.40	11	1	0	0	0	0
11 12 13 14	809 432 557	50.2	0.2	1.88	0.59	6	3	1	1	. 0	0
12 13 14	432 557			0.80	0.44	10	0	0	0	0	0
13 14	557		0.1	0.26	0.41	5	0	0	0	0	0
14		24.3	2.3	8.62	0.89	44	17	3	2	1	2
		38.0	0.3	3.08	0.64	33	5	2	1	0	0
	387	28.7	0.8	11.46	0.90	27	8	4	1	3	2
15	596	18.1	2.6	13.90	0.84	96	32	8	2	1	2
16	1070	32.6	1.0	8. 76	0.93	290	40	28	11	5	0
17	617	32.4	0.8	8.52	0.88	125	20	10	5	3	0
18	1486	28.8	2.1	12.18	1.00	129	67	14	11	8	2
19	897	40.2	0.9	16.08	1.02	58	21	13	4	4	2
20	429	32.5	1.0	7.38	1.09	33	25	4	8	1	2
21	568	14.1	1.8	25.00	0.93	102	36	16	9	3	1
22	875	18.6	2.2	17.97	0.87	133	59	14	8	2	2
23	733	27.8	1.0	23.40	1.09	60	47	21	9	9	2
24	460	17.4	2.2	16.20	0.92	78	37	12	1	2	0
25	380	26.4	0.9	6.75	0.83	77	32	1	2	0	0
26	593	26.1	1.9	6.73	0.90	44	21	9	5	1	3
27	815	22.6	1.2	17.88	0.91	92	37	16	2	5	2
28	1171	29.4	0.8	9.42	0.93	107	45	26	11	3	1
29	431	23.3	1.3	22.35	1.06	105	73	13	8	2	2
30	580	23.4	1.4	16.80	1.02	51	28	19	11	2	2
31	550	16.6	2.2	16.10	0.87	74	19	14	5	3	1
32	793	25.8	1.9	14.64	1.00	266	45	30	9	4	2
33	927	19.8	1.1	17.45	0.92	138	72 、	29	4	2	0
34	513	18.9	1.5	14.34	0.84	76	29	10	2	1	0
35	319	33.0	1.0	4.70	0.84	17	5	4	0	0	0
36	590	25.3	1.4	9.14	1.01	42	31	21	4	2	0
37	723	30.8	1.0	13.92	1.02	174	56	37	10	5	1
38	1152	29.2	1.9	11.52	0.87	98	36	15	4	5	0
39	306	24.8	0.7	4.38	0.71	34	7	2	0	0	0
40	457	23.4	1.6	17.00	0.84	45	11	7	4	0	0
41	1258	42.5	0.2	2.76	0.55	26	12	3	0	1	0
42	590	46.8	0.3	0.60	0.36	3	0	0	0	0	0
43	418	43.2	0.4	1.02	0.46	2	0	1	0	0	0
44	901	41.5	1.2	3.42	0.63	27	2	1	2	0	0
45	181	12.6	1.0	4.50	0.76	13	11	1	0	0	0
46	419	44.0	1.0	5.73	1.05	6	6	2	1	0	1
47	582	30.5	1.6	6.62	0.88	28	6	1	5	1	ō
48	396	29.0	0.7	3.10	0.72	17	4	3	ó	ō	0
49	444	43.3	1.4	5.50	0.72	40	10	4	1	1	0
50	319	19.3		7.17	0.67	20	5	i	ō	ō	0
51	1316	35.9	0.5	4.68	0.62	45	8	4	4	2	0
52	436	25.9	1.3	13.30	0.81	15	8	0	2	1	0

Dynamics Data for High-Performance Blazer with 800-1b Payload

Over Traversc Test Course

			rms	Absorbed	Cargo		o. of Ac				
Terrain		Speed	Elevation	Power	rms		n Betwee				
Unit	<u>ft</u>	mph	in	watts	_g	<u>>1-1.5</u>	>1.5-2	>2-2.5	>2.5-3	>3-4	>4
1	4055	47.2	0.2	0.76	0.48	99	28	7	3	0	0
2	590	44.2	0.3	0.50	0.41	14	0	0	0	0	C
3	416	49.2	0.4	0.86	0.45	19	0	0	0	0	C
4	1037	49.5	0.2	1.67	0.51	73	13	2	0	0	C
5	734	49.1	0.1	0.52	0.53	66	4	ō	Ō	ō	Ċ
6	845	50.1	0.2	0.77	0.42	28	3	ō	ì	Õ	Č
7	725	46.6	0.1	1.40	0.55	35	13	4	ī	Õ	Č
8	555	51.2	0.2	0.44	0.48	23	1	i	ō	ō	Ċ
9	313	26.0	1.3	3.43	0.64	8	7	3	ŏ	· 1]
10	472	39.7	0.2	0.57	0.49	18	3	ő	Ö	ō	Ċ
11	809	50.2	0.1	0.29	0.47	38	3	í	ŏ	ŏ	C
12	432	22.5	2.3	6.73	0.72	54	13	6	2	ő	Č
13	557	35.8	0.3	3.02	0.52	20	4	ì	ī	ő	Č
14	387	29.3	0.8	6.10	0.71	31	5	2	ī	í	Č
15	596	17.2	2.6	15.41	0.85	111	35	22	5	5]
16	1070	27.9	1.0	13.10	0.92	131	56	30	23	7]
17	617	31.4	0.8	12.84	0.86	62	29	11	7	4	Ć
18	1486	26.5	2.1	11.00	0.82	197	54	24	19	3	Ċ
19	897	40.8	0.9	17.14	0.92	110	38	9	6	3]
20	429		1.0	7.40	0.92	36	22	6	4	1]
		33.2				91	33	9	3	5]
21	568	14.0	1.8	20.24	0.84				9	6]
22	875	18.7	2.2		0.85	150	64	20			
23	733	27.5	1.0	17.06	0.99	84	42	19	12	4]
24	460	24.0	2.2	24.57	1.08	65	50	29	9	5	0
25	380	28.5	0.9	11.72	0.87	171	21	6	1	1	1
26	593	25.0	1.9	11.14	0.90	44	27	19	6	4	2
27	815	22.2	1.2	19.82	0.99	250	101	24	6	12	3
28	1171	28.8	0.8	14.20	1.05	133	67	29	9	8	:
29	431	22.3	1.3	22.42	0.95	125	63	18	3	4	2
30	580	23.3	1.4	18.98	1.12	296	48	24	9	7	5
31	550	19.7	2.2	26.27	0.97	62	38	24	13	4	2
32	793	24.0	1.9	16.15	0.93	123	51	29	6	7	1
33	927	19.8	1.1	24.06	0.94	162	76	31	7	1	1
34	513	20.1	1.5	13.80	0.88	84	40	16	1	2	C
35	31 9	32.0	1.0	7.08	0.82	29	7	5	2	2	C
36	590	25.8	1.4	15.55	1.03	61	45	22	7	6	1
37	723	31.6	1.0	8.91	0.82	99	2 6	14	3	1	C
38	1152	28.4	1.9	11.20	0.82	116	39	13	3	2	C
39	306	26.8	0.7	4.78	0.71	34	12	3	0	0	(
40	457	22.9	1.6	13.49	0.70	57	18	0	2	0	(
41 •	1258	41.6	0.2	2.42	0.56	41	12	7	2	0	(
42	590	47.9	0.3	0.60	0.41	14	1	0	0	0	(
43	418	44.5	0.4	0.96	0.55	24	5	1	0	0	(
44	901	43.9	1.2	3.05	0.60	23	9	5	0	0	(
45	181	12.1	1.0	7.60	0.65	24	3	1	ŏ	Ō	Ċ
46	419	40.8	1.0	5.28	0.78	7	2	ī	1	1	
					0.78	2 8	11	2	2	ō	(
47	582	29.6	1.6	5.51			5	3	ō	2	i
48	396	30.3	0.7	1.74	0.67	22		6	0	0	(
49	444	42.1	1.4	8.82	0.84	22	15		0	0	(
50	319	18.8	3.4	8.38	0.65	23	6	1		0	(
51	1316	33.2	0.5	6.40	0.62	42	12	7	3 0	0	(
52	436	24.4	1.3	7.66	0.56	16	2	1	U	U	,

Dynamics Data for High-Performance CJ5 with 800-1b Payload
Over Traverse Test Course

Terrain	Distance	Speed	rms Elevation	Absorbed Power	Cargo rms	No	o. of Ac n Betwee	celera	tion Poi	ints	
Unit	ft	mph	in	watts	o c		>1.5-2				-4
1	4055	41.3	0.2	0.50	0.44	48		2	0	0	
2	590	42.8	0.2	0.38	0.44	2	11 0	0	0	0	0
3	416	46.0	0.4	0.54	0.42	6	0	0	0	0	0
4	1037	43.1	0.2	0.96	0.46	28	5	Ö	Ó	0	0
5	734	44.7	0.1	0.52	0.47	19	0	0	Ö	0	0
6	845	43.0	0.2	0.40	0.39	18	ő	ő	ő	ő	ő
7	725	42.6	0.1	0.74	0.46	15	3	ő	ő	ő	ő
8	555	43.0	0.2	0.50	0.38	5	ő	ő	ő	ő	ő
9	313	31.4	1.3	3.76	0.65	16	4	1	3	. 0	ő
10	472	44.7	0.2	0.65	0.56	29	8	ō	ō	0	ō
11	809	46.0	0.1	0.72	0.38	5	ő	Ö	Ö	0	ō
12	432	23.0	2.3	2.96	0.71	39	18	3	Ö	ō	ō
13	557	42.2	0.3	2.27	0.66	36	7	5	Ö	0	ō
14	387	28.1	0.8	2.75	0.66	30	8	2	ō	0	ō
15	596	18.5	2.6	9.28	0.87	102	51	15	7	2	0
16	1070	28.1	1.0	5.36	0.84	124	47	22	7	6	0
17	617	30.7	0.8	4.84	0.82	66	24	8	8	ŏ	ŏ
18	1486	22.7	2.1	6.44	0.71	151	55	18	3	ō	ō
19	897	33.6	0.9	5.60	0.78	75	31	6	ŏ	3	0
20	429	29.9	1.0	5.00	0.87	29	17	6	5	1	1
21	568	14.3	1.8	17,20	0.81	110	36	19	6	1	0
22	875	17.8	2.2	14.59	0.80	139	53	22	10	ō	3
23	733	23.5	1.0	9.08	0.85	65	29	9	3	3	2
24	460	19.6	2.2	10.60	0.79	85	22	9	4	Õ	ō
25	380	24.7	0.9	6.95	0.78	53	22	8	2	1	0
26	593	22.7	1.9	5.33	0.67	6.	16	6	1	1	0
27	815	22.8	1.2	11.12	0.94	121	61	23	4	2	3
28	1171	27.9	0.8	8.66	0.93	134	61	28	12	6	2
29	431	20.4	1.3	17.15	0.83	69	20	6	3	2	0
30	580	23.8	1.4	8.40	0.93	94	36	10	8	4	Ō
31	550	18.5	2.2	17.24	0.89	76	21	13	6	7	0
32	793	22.3	1.9	8.48	0.86	151	47	17	5	2	0
33	927	19.6	1.1	12.48	1.01	187	117	37	15	9	12
34	513	19.7	1.5	7.40	0.91	87	44	18	3	3	1
35	319	30.2	1.0	1.38	0.70	26	5	1	0	0	0
36	590	23.7	1.4	8.76	0.93	75	47	17	7	3	0
37	723	27.7	1.0	5.52	0.75	7 7	12	10	1	2	0
38	1152	24.4	1.9	9.29	0.73	121	42	8	5	1	0
39	306	23.4	0.7	4.14	0.64	30	6	2	0	0	0
40	457	24.0	1.6	8.31	-*	_	-	_	-	-	-
41	1258	34.3	0.2	2.80	0.54	48	14	4	1	0	0
42	590	42.8	0.3	0.70	0.42	10	0	o	ō.		
43	418	38.0	0.4	0.72	0.41	3	0	0	3	0	0
44	901	39.9	1.2	3.34	0.60	34	9	3		0	0
45	181	10.1	1.0	5.50	0.55	10	1	0	0 0	0	0
46	419	36.6	1.0	2.72	0.67						0
47	582	29.2	1.6	5.40		5	1	2	1	0	0
48	396	27.0	0.7	1.96	0.71	283	163	3 3	2	0	0
49	444	32.9	1.4	4.64	0.72	25	3	6	2	0	1
50	319	19.4	3.4	6.36	0.72 0.67	36	9	5	1	0	0
51	1316	35.9	0.5	5.02	0.61	27	4	2	0	0	0
52	436	26.1	1.3	8.38		51	13	5	2	2	0
	. 30		1. 5	0.00	0.67	17	7	3	0	0	0

^{*} Dashes indicate that no data were collected as a result of instrumentation failures.

Dynamics Data for High-Performance Scout ws --- 1b Payload
Over Traverse Test Course

rerrain	Distance	Speed	rms Elevation	Absorbed Power	Cargo rms				ion Peal E Indica		
Unit	ft	mph	in	watts					>2.5-3		>4
1	4055	41.9	0.2	0.54	0.37	22	4	1	1	1	
2	590	42.8	0.3	0.38	0.29	0	ō	ō	ō	ō	Ò
3	416	42.5	0.4	0.22	0.31	0	Ö	Ö	ŏ	0	(
4	1037	45.3	0.2	0.74	0.32	6	ō	Ö	ŏ	ŏ	Ò
5	734	45.1	0.1	0.50	0.33	3	Ö	Ö	Ö	Ö	Ò
6	845	42.7	0.2	0.44	0.29	3	ŋ	Ö	Ŏ	Ö	(
7	725	49.4	0.1	0.86	0.31	3	í	Ö	ŏ	Ö	(
8	555	48.5	0.2	0.38	0.28	ī	ō	Ö	Ö	ō	(
9	313	26.4	1.3	1.38	0.49	5	Ō	Ö	Ō	ō	-
10	472	42.4	0.2	0.58	0.36	2	Ō	Ō	Ö	Ō	(
11	809	46.8	0.1	0.16	0.30	0	0	Ō	Ō	0	(
12	432	17.3	2.3	3.54	- *	-	_	_	_	_	
13	557	39.6	0.3	3.46	0.52	17	2	0	0	0	(
14	387	32.2	0.8	7.88	0.84	27	3	1	2	0	
15	596	20.1	2.6	14.20	0.93	81	27	4	1	2	
16	1070	29.7	1.0	10.72	0.83	76	35	14	7	1	
17	617	32.4	0.8	10.02	0.84	33	15	7	3	2	
18	1486	26.3	2.1	9.58	0.80	112	39	10	5	4	
19	897	42.2	0.9	8.56	0.82	56	18	8	2	0	
20	429	30.5	1.0	7.88	0.89	3 2	8	5	3	1	
21	568	15.4	1.8	14.76	0.80	100	30	12	2	1	
22	875	19.8	2.2	11.52	0.81	107	40	10	7	3	
23	733	28.4	1.0	8.26	0.81	68	15	9	0	1	-
24	460	24.9	2.2	12.34	0.97	49	23	12	5	4	
25	380	29.8	0.9	5.58	0.79	46	16	2	Ō	0	
26	593	25.9	1.9	12.23	0.89	72	25	11	4	0	
27	815	24.0	1.2	10.34	0.87	96	51	16	6	3	
28	1171	33.0	0.8	11.13	0.92	91	31	13	4	3	1
29	431	21.0	1.3	11.48	0.88	54	24	4	2	2	1
30	580	22.2	1.4	10.20	0.83	52	22	11	4	0	
31	550	18.8	2.2	12.54	0.79	61	15	11	1	2	-
32	793	26.5	1.9	12.53	0.96	82	35	13	9	5	-
33	927	20.3	1.1	11.88	0.89	162	54	24	5	3	
34	513	22.7	1.5	10.96	0.89	58	32	3	5	1	
35	319	32.0	1.0	4.00	0.76	21	3	3	1	0	
36	590	25.1	1.4	15.69	1.02	43	36	9	4	5	
37	723	31.4	1.0	10.57	0.77	48	16	12	0	3	
38	1152	29.5	1.9	9.60	0.79	89	24	11	5	3	
39	306	26.1	0.7	4.92	0.71	34	9	3	0	0	
40	457	21.3	1.6	4.60	0.66	35	4	ī	i	i	1
41	1258	41.1	0.2	2.26	0.59	28	8	4	3	2	1
42	590	41.5	0.3	0.36	0.30	0	Ö	Ŏ	ő	ō	
43						3	1	0	0	0	
	418	40.7	0.4	0.94	0.43		_	_		-	
44	901	44.5	1.2	3.22	0.62	20	5 7	1 1	2	0	
45 46	181	13.6	1.0	6.42	0.73 0.68	16 17	11	0	0 1	0	
	419	43.3 29.2	1.0	3.42	0.63	14		1	0	1	
47	582		1.6	5.10			2 2	2	0	0	
48	396	30.7 42.1	0.7	1.72	0.62	13	8	0	1		
49	444		1.4	€.75	0.79	26	8 3			1	
50	319	18.4	3.4	8.98	0.62	18		0	0	0	
51	1316	37.1	0.5	3.44	0.60	31	9	0	1	0	
52	436	27.5	1.3	3.54	0.64	18	2	1	0	0	

^{*} Dashes indicate that no data were collected as a result of instrumentation failures.

Table B26

Dynamics Data for High-Performance Bronco with 800-1b Payload
Over Traverse Test Course

Tonrois	Distance	Speed	rms	Absorbed	Cargo		of Ac				
Terrain Unit	Distance ft	mph mph	Elevation in	Power watts	rms		>1.5-2				>4
1	4055	40.7	0.2	0.80	0.42	44	10	3	1	0	0
2	590	40.2	0.3	0.44	0.35	0	0	0	0	0	0
3	416	40.7	0.4	0.39	0.34	0	0	0	0	0	0
4	1037	40.4	0.2	1.16	0.40	19	2	0	0	0	0
5	734	41.4	0.1	0.26	_ *	-	_	-	-	-	-
6	845	40.6	0.2	1.10	0.50	11	3	1	0	0	0
7	725	41.2	0.1	1.50	0.48	29	2	2	0	0	0
8	555	42.1	0.2	0.48	0.30	0	0	0	0	0	0
9	313	34.4	1.3	10.58	0.86	4	3 .	2	2	0	0
10	472	44.1	0.2	0.70	0.50	14	2	1	0 0	0	0
11	809	41.2	0.1	0.26	0.36	5	0 13	0 5	1	1	0
12	432 557	25.8	2.3 0.3	9.22 1.92	0.81 0.57	46 28	2	0	0	0	0
13	387	39.6 30.7	0.3	11.90	0.76	31	7	2	0	1	0
14	596				0.76	87	30	13	3	0	0
15 16	1070	20.8 30.4	2.6 1.0	14.10 15.36	0.83	88	30 41	5	6	2	2
	617	31.9	0.8	17.60	0.80	40	16	8	1	0	0
17 18	1486	26.0	2.1	10.84	0.81	147	53	11	8	3	1
19.	897	39.7	0.9	15.09	0.81	61	20	6	2	1	0
20	429	32.2	1.0	12.44	0.88	32	7	4	2	0	0
21	568	16.1	1.8	29.73	0.86	83	, 57	16	4	Ö	0
22	875	20.0	2.2	12.85	0.81	123	52	10	6	ő	Ö
23	733	28.4	1.0	13.28	0.84	73	26	5	6	0	0
24	460	25.7	2.2	16.50	0.94	70	38	13	3	2	Ö
25	380	30.9	0.9	8.00	0.89	44	21	5	3	ō	ő
26	593	23.8	1.9	18.35	0.87	77	32	10	í	ĭ	ő
27	815	23.0	1.2	24.28	0.89	100	42	18	4	2	1
28	1171	30.4	0.8	19.88	0.95	97	52	30	10	2	1
29	431	22.6	1.3	16.45	0.82	60	24	8	1	ō	ō
30	580	25.7	1.4	15.72	0.91	79	36	14	3	2	Ö
31	550	21.4	2.2	25.45	0.91	65	27	17	2	3	ō
32	793	27.0	1.9	11.98	0.87	84	41	18	1	Ō	Ō
33	927	19.5	1.1	19.08	0.90	145	67	27	7	2	0
34	513	22.3	1.5	13.98	0.88	69	22	10	4	3	0
35	319	29.8	1.0	4.05	0.74	29	3	4	Ó	0	Ó
36	590	26.3	1.4	12.57	0.89	74	32	10	4	1	1
37	723	30.8	1.0	13.04	0.83	49	22	13	5	1	1
38	1152	28.1	1.9	9.96	0.76	113	34	9	4	0	0
39	306	25.8	0.7	6.35	0.66	27	4	1	0	0	0
40	457	27.1	1.6	13.26	0.83	46	9	4	4	2	0
41	1258	39.0	0.2	2.16	0.53	36	10	4	2	0	0
42	590	40.2	0.3	0.44	0.33	0	0	ō	ō	ő	ő
43	418	40.7	0.4	0.82	0.43	6	ő	ő	ő	ő	ő
44	901	42.1	1.2	2.32	0.59	26	4	ì	ŏ	ő	ō
45	181	14.2	1.0	7.05	0.72	26	7	ō	0	ő	0
46	419	39.7	1.0	3.56	0.72	12	2	1	2	1	ŏ
47	582	27.0	1.6	9,20	0.68	16	6	5	ī	ī	Ō
48	396	29.7	0.7	3.97	0.65	17	12	1	Ō	0	0
49	444	40.9	1.4	7.50	0.81	19	11	1	0	0	0
50	319	19.3	3.4	6.80	0.69	26	8	0	0	0	0
51	1316	35.3	0.5	3.15	0.61	44	9	4	1	1	0
52	436	27.0	1.3	12.43	0.78	14	9	3	0	0	0
					•			_	_		

^{*} Dashes indicate that no data were collected as a result of instrumentation failures.

Table B27

Dynamics Data for Military M151A2 with 800-1b Payload

Over Traverse Test Course

m	Distance	Casad	rms	Absorbed	Cargo		o. of Ac				**
Terrain Unit	Distance ft	Speed mph	Elevation in	Power watts	rms g		n Betwee >1.5-2				>4
1	4055	41.3	0.2	0.94	0.35	24	3	4	0	0	1
2	590	38.7	0.3	0.54	0.28	2	0	0	0	0	0
3	416	40.7	0.4	0.54	0.28	0	0	0	0	0	0
4	1037	42.6	0.2	1.09	0.26	3	0	0	0	0	0
5	734	41.7	0.1	0.92	0.30	0	0	0	0	0	0
6	845	42.4	0.2	0.62	0.24	0	0	0	0	0	0
7	725	46.2	0.1	0.77	0.28	1	0	0	0	0	0
8	555	42.5	0.2	0.36	0.22	0	0	0	0	0	0
9	313	23.2	1.3	4.26	0.50	6	1	0	1	. 0	0
10	472	36.2	0.2	1.18	0.30	2	0	0	0	0	0
11	809	48.4	0.1	0.41	0.30	0	0	0	0	0	0
12	432	23.8	2.3	6.64	0.56	48	1	0	0	0	0
13	557	31.7	0.3	4.30	0.37	7 21	0 3	0 3	0	0	0
14	387	31.4	0.8	0.54	0.63	85	20	5	1	1	0
15	596	19.9	2.6	14.30	0.63			3 11	4	3	2
16	1070	28.1	1.0	13.34	0.75	119	61	4	0		0
17	617	31.2	0.8	11.87	0.61	55	10 39	10	7	0 2	0
18	1486	26.5	2.1	14.14	0.63 0.65	121 49	21	8	2	0	0
19	897	40.0	0.9	11.18		49		2	2	1	0
20	429	31.8	1.0	10.70	0.69	101	12 16	4	2	1	0
21	568	15.7	1.8	18.42	0.61	97	21	8	2	2	2
22	875	17.8	2.2	21.36	0.60	97 83	13	3.	3	0	2
23	733	24.3	1.0	19.58	0.63	85	13	3	0	0	0
24	460	23.4	2.2	16.99	0.66	35	99	2	1	0	0
25	380	25.9	0.9	9.70	0.61	43	7	1	2	Ö	0
26	593	23.8	1.9	6.25	0.55 0.73	108	28	2	6	1	1
27	815	22.7	1.2	19.14		130	50	11	7	3	3
28	1171	29.8	0.8	18.60 28.25	0.81	63	13	0	1	1	0
29	431	20.4	1.3			91	18	3	2	1	0
30	580	22.2	1.4	22.40	0.68	61	17	5	2	1	0
31	550	17.7	2.2	24.20	0.63		14	5	0	2	0
32	793	27.0	1.9	15.95	0.62	92 168	28	10	3	1	3
33	927	20.1	1.1	13.35	0.75		13	2	0	1	0
34	513	20.8	1.5	14.34	0.64	62		0	0	0	0
35	319 •	29.4	1.0	4.00	0.55	12	1 17	3	2	0	0
36	590	25.3	1.4	14.12	0.69	66	16		1	0	0
37	723	26.9	1.0	12.08	0.60	53	9	1 5	1	0	0
38	1152	27.1	1.9	10.00	0.58	73					
39	306	23.2	0.7	4.00	0.50	10	1	0	0	0	0
40	457	22.3	1.6	9.07	0.55	24	9	0	0	0	0
41	1258	41.9	0.2	2.70	0.42	23	5	0	0	0	0
42	590	42.4	0.3	0.72	0.29	0	0	0	0	0	0
43	418	36.6	0.4	0.90	0.39	2	0	0	0	0	0
44	901	41.8	1.2	6.10	0.48	5	3	0	1	0	0
45	181	12.3	1.0	5.16	0.50	8	0	0	0	0	0
46	419	38.1	1.0	10.26	0.68	10	2	0	0	1	1
47	582	27.2	1.6	8.38	0.54	11	2	1	0	1	0
48	396	27.0	0.7	2.00	0.45	6	0	0	0	0	0
49	444	35.6	1.4	7.46	0.59	15	1	1	0	0	0
50	319	18.4	3.4	5.78	0.50	5	1	0	0	0	0
51	1316	32.9	0.5	3.30	0.39	12	5	0	Ō	Ō	0
52	436	25.0	1.3	15.42	0.51	17	5	0	1	ō	ō

Dynamics Data for Standard Ramcharger with Rated Payload
Over Traverse Test Course

Terrain	Distance	Speed	rns Elevation	Absorbed Power	Cargo rms	No in	ef Ac	celeraten Range	ion Pea Indica	iks ited	
Unit	ft	mph	in	watts	_g_	>1-1.5	>1.5-2	>2-2.5	>2.5-3	>3-4	>4
1	4055	41.3	0.2	0.58	0.37	31	3	1	0	0	0
2	590	41.1	0.3	0.35	0.35	0	0	0	0	0	0
3	416	40.7	0.4	0.46	C.36	4	C	0	0	Õ	ō
4	1037	42.6	0.2	1.02	0.36	7	0	0	Ó	0	Ō
	734	42.4	0.1	0.62	0.34	1	0	0	0	0	0
5 6	845	40.0	0.2	0.35	0.30	0	0	0	Ö	Ö	0
7	725	41.9	0.1	1.07	0.38	8	0	0	0	0	0
8	555	39.4	0.2	1.40	0.46	22	3	1	2	. 0	Q
9	313	25.4	1.3	4.44	0.51	7	3	0	0	1	0
10	472	35.8	0.2	0.49	0.39	7	0	0	0	0	0
11	809	44.5	0.1	0.20	0.35	3	0	0	0	0	0
12	432	21.7	2.3	6.56	0.58	29	3	0	0	1	0
13	557	34.5	0.3	2.23	0.44	6	1	0	0	0	0
14	387	28.4	0.8	9.20	0.68	24	6	1	1	1	0
15	596	16.0	2.6	12.16	0.73	99	22	7	1	1	1
16	1070	26.3	1.0	8.00	0.68	97	22	10	5	3	0
17	617	30.0	0.8	10.57	0.66	48	14	4	1	0	0
18	1486	24.8	2.1	10.57	0.73	117	41	14	6	4	1
19	897	38.7	0.9	7.27	0.67	56	8	8	2	0	0
20	429	34.0	1.0	7.04	0.83	48	19	3	2	1	0
21	568	14.7	1.8	19.12	0.83	88	30	13	9	2	ō
22	875	18.2	2.2	18.06	0.73	107	32	10	4	2	1
23	733	24.3	1.0	15.04	0.81	78	22	6	7	ō	ī
24	460	20.1	2.2	20.40	0.79	59	15	13	6	Ō	ō
25	380	24.9	0.9	8.57	0.64	29	5	3	Ō	ō	ō
26	593	21.5	1.9	7.66	0.66	53	16	4	Õ	Ō	Õ
27	815	22.3	1.2	17.52	0.82	109	39	12	8	3	0
28	1171	27.0	0.8	12.16	0.79	102	43	14	11	3	0
29	431	20.0	1.3	13.01	0.81	197	19	9	2	Ō	ō
30	580	23.2	1.4	15.47	0.85	92	39	10	5	1	0
31	550	18.8	2.2	19.66	0.84	73	30	19	ŏ	2	1
32	793	22.7	1.9	14.49	0.76	124	40	10	7	ī	ō
33	927	19.4	1.1	17.85	0.82	159	37	19	12	3	0
34	513	16.5	1.5	12.26	0.75	55	23	11.	3	0	ō
35	319	32.5	1.0	6.64	0.70	29	4	3	ì	Ö	0
36	590	24.8	1.4	10.72	0.91	77	38	1.3	10	4	Ö
37	723	29.4	1.0	10.67	0.83	79	41	13	2	5	1
38	1152	26.5	1.9	12.08	0.75	l18	49	7	2	2	2
39	306	20.9	0.7	6.38	0.64	36	6	i	ō	ō	ō
40	457	16.1	1.6	10.24	0.67	33	12	6	1	Õ	2
41	1258	41.0	0.2	2.13	0.49	29	9	5	ō	Ö	ō
42	590	41.1	0.3	0.44	0.37	0	ó	ő	ŏ	ő	Ö
43	418	40.7	0.4	0.70	0.39	1	ő	Ö	ŏ	ő	Ö
44	901	37.9	1.2	2.70	0.48	26	1	Ö	Ö	Ö	Ö
44	181	10.8	1.0	5.69	0.56	11	2	9	0	o	0
				4.20	0.69	9	4	0	1	1	0
46	419	37.6	1.0					1	0		
47	582	27.8	1.6	3.90	0.59	14	7			0	0
48	396	27.6	0.7	1.60	0.55	6	9	1	0	0	0
49	444	37.4	1.4	7.55	0.73	34	9	1	2	0	0
50	319	16.5	3.4	10.99	0.63	11	3	4	1	1	0
51	1316	33.7	0.5	4.28	0.47	23	4	2	0	1	0
52	436	24.4	1 3	8.42	0.70	15	6	2	1	0	0

Dynamics Data for Standard Blazer with Rated Payload
Over Traverse Test Course

Terrain	Distance	Speed	rms Elevation	Absorbed Power	Cargo rms	ir	o. of Acc n Between	n Range	e Indica	ted	
Unit	ft	mph	in	watts	<u> </u>	>1-1.5	>1.5-2	>2-2.5	>2.5-3	>3-4	>4
1	4055	41.0	0.2	0.57	0.42	38	10	10	3	1	0
2	390	40.2	0.3	0.43	0.32	0	0	0	0	0	0
3	416	43.2	0.4	0.59	0.40	5	0	0	0	0	0
4	1037	40.6	0.2	1.40	0.44	19	12	1	1	0	0
5	734	41.0	0.1	0.44	0.43	19	3	О	0	0	0
6	845	40.6	0.2	0.58	0.39	9	2	3	2	0	0
7	725	40.9	0.1	0.88	0.45	31	7	0	0	0	0
8	555	47.3	0.2	0.92	0.51	14	2	3	3	1	0
9	313	26.0	1.3	1.42	0.52	8	1	1	0	. 0	0
10	472	37.4	0.2	0.48	O.39	8	0	0	0	0	9
11	809	41.5	0.1	0.26	0.40	6	3	0	0	0	0
12	432	19.1	2.3	4.23	0.59	29	6	1	0	0	0
13	557	34.5	0.3	1.60	0.47	17	3	1	0	0	0
14	387	29.3	0.8	4.74	0.70	15	6	2	1	0	0
15	596	17.4	2.6	11.32	0.77	88	3 3	12	5	2	0
16	1070	25.0	1.0	6.60	0.68	103	33	8	2	3	0
17	617	31.2	0.8	6.22	0.77	51	14	7	2	3	0
18	1486	24.6	2.1	6.10	0.71	153	47	8	7	1	0
19	897	38.7	0.9	5.75	0.84	82	29	5	5	7	0
20	429	34.8	1.0	5.17	0.89	45	21	8	1	2	1
21	568	14.1	1.8	17.66	0.75	93	25	13	5	1	0
22	875	19.4	2.2	12.50	0.76	154	39	15	5	5	0
23	733	28.1	1.0	14.08	0.91	72	45	16	7	3	0
<u> </u>	460	22.1	2.2	15.20	0.96	54	37	15	7	2	3
25	380	28.8	0.9	5.82	U. 85	42	17	4	4	1	3
26	593	24.1	1.9	6.58	0.74	43	14	4	0	0	3
27	815	22.4	1.2	16.12	0.84	87	34	8	7	4	3
28	1171	27.2	0.8	11.53	0.87	123	57	24	4	5	1
29	431	21.2	1.3	12.00	0.73	34	16	7	1	2	0
30	580	22.0	1.4	13.82	0.83	82	41	8	0	2	0
31	550	18.8	2.2	14.00	0.75	45	17	8	4	1	1
32	793	24.4	1.9	10.60	0.69	95	20	9	2	0	0
33	927	19.9	1.1	15.42	0.83	129	42	10	7	4	3
34	513	20.3	1.5	9.08	0.72	73	25	3	1	0	9
35	319	27.2	1.0	4.08	0.68	15	6	7	2	0	0
36	590	22.4	1.4	8.23	0.81	66	24	11	3	3	0
37	723	29.4	1.0	7.28	0.69	43	8	5	1	3	1
38	1152	25.5	1.9	7.50	0.71	78	19	8	3	3	0
39	306	22.2	0.7	4.90	0.61	28	13	0	1	0	0
40	457	19.5	1.6	13.74	0.63	23	5	3	1	1	0
41	1258	39.4	0.2	1.90	0.47	33	9	1	1	0	0
42	590	43.7	0.3	0.44	0.32	0	0	0	0	0	0
43	418	43.9	0.4	0.68	0.39	1	0	0	0	0	0
44	901	38.9	1.2	2.40	0.49	8	3	i	0	0	0
45	181	12.3	1.0	3.94	0.52	15	0	0	0	O	0
46	419	35.7	1.0	4.24	0.54	3	4	0	0	0	0
47	582	28.4	1.6	3.70	0.58	14	9	1.	0	0	0
48	396	25.5	0.7	1.06	0.50	7	4	.1	0	0	0
49	444	38.8	1.4	4.20	0.58	16	4	1.	0	0	0
50	319	16.5	3.4	4.34	0.57	17	2	2	0	0	0
50 51	1316	30.7	0.5	3.64	0.45	22	. 1	1	0	0	0
52	436	22.9		4.35	0.54	13	0	1	0	0	0
26	730	,									

Table B30

Dynomics Data for Standard CJ5 with Rated Payload
Over Traverse Test Course

Corret-	Distance	Snood	rms	Absorbed	Cargo	No.	of Ac n Betwee	celera	tion Per	ks ited	
Terrain Unit	Distance ft	Speed mph	Elevation in	Power watts	rms		>1.5-2				>4
1	4055	41.6	0.2	0.43	0.38	23	3	0	0	0	-
2	590	41.9	0.3	0.27	0.32	2	ŏ	ō	Ö	Ŏ	Ö
3	416	47.5	0.4	0.47	0.39	4	i	Ö	Ö	Ŏ	Ö
4	1037	42.6	0.2	0.64	0.43	15	4	2	ŏ	ŏ	Ċ
5	734	43.9	0.1	0.44	0.44	6	ī	ō	ŏ	ő	ì
6	845	42.4	0.2	0.50	0.34	7	ō	ő	ő	ő	
7	725	43.0	0.1	0.69	0.38	8	1	0	0	0	Ì
8	555	41.1	0.2	0.79	0.50	12	2	0	0	0	
Š	313	23.2	1.3	4.18	0.42	5	Õ	0	0	ő	
10	472	40.2	0.2	0.39	0.38	7	0	0	0	. 0	
11	809	44.3	0.1	0.43	0.36	ó		0	0	0	
12	432	18.9	2.3		0.53	22	0 2			1	(
13	557			5.88				0 0	0	0	
14	387	36.5	0.3	1.42	0.45	11	0		0		1
		25.4	0.8	2.35	0.51	18	4	0 4	0	0	
15	596	15.9	2.6	8.72	0.66	58	13	-	2	0	
16	1070	24.0	1.0	5.87	0.63	76	34	10	1	2	
17	617	26.6	0.8	7.62	0.64	38	7	3	0	0	
18	1486	21.4	2.1	6.96	0.59	80	18	6	1	1	
19	897	34.1	0.9	3.99	0.57	37	10	0	0	0	
20	429	24.0	1.0	5.44	0.67	37	7	2	1	1	
21	568	13.3	1.8	15.96	0.68	78	13	5	2	0	
22	875	15.3	2.2	14.13	0.61	82	17	5	0	1	
23	733	22.5	1.0	11.74	0.69	54	14	3	1	2	
24	460	17.4	2.2	9.28	0.65	50	6	0	0	Øi	
25	380	20.9	0.9	6.10	0.62	42	6	3	0	0	
26	593	20.8	1.9	12.00	0.71	5 9	12	3	2	1	
27	815	29.3	1.2	10.30	0.67	85	20	4	2	0	
28	1171	24.3	0.8	8.88	0.65	92	20	5	2	2	
29	431	17.3	1.3	11.34	0.65	42	12	1	0	0	
30	580	20.1	1.4	12.49	0.73	69	18	3	2	2	
31	550	16.2	2.2	13.88	0.67	35	11	4	3	0	
32	793	25.2	1.9	11.69	0.68	78	17	5	2	1	
33	927	17.7	1.1	11.49	0.68	1 3 5	20	9	1	1	
34	513	15.2	1.5	10.45	0.66	54	5	4	1	0	
35	319	32.5	1.0	1.86	0.59	9	2	0	0	0	
36	590	21.0	1.4	11.54	0.72	66	17	7	0	0	
37	723	26.0	1.0	9.14	0.65	38	7	1	2	3	
38	1152	25.1	1.9	7.31	0.59	48	12	3	0	0	
39	306	23.2	0.7	3.50	0.52	15	0	Ō	0	0	
40	457	21.5	1.6	8.20	0.58	25	8	2	1	Ö	
41	1258	39.0	0.2	0.93	0.45	19	6	0	ō	Ō	
42	590	43.7	0.3	0.34	0.35	0	ō	0	ŏ	ŏ	
43	418	36.0			0.39	ŏ	ŏ	Ö	ŏ	Ŏ	
44	901	32.3	1.2	1.94	0.43	4	2	ő	ő	ŏ	
					0.59		1	1	0	ő	
45	181	11.8	1.0	4.82		8		0	0	9	
46	419	35.3	1.0	1.48	0.50	2	0				
47	582	26.1	1.6	4.00	0.55	16	1	0	0	0	
48	396	24.6	0.7	1.21	0.48	6	0	0	0	0	
49	444	34.4	1.4	3.55	0.56	12	2	0	0	0	
50	319	17.7	3.4	6.64	0.59	10	2	1	0	0	
51	1316	35.2	0.5	5.80	0.49	15	5	1	0	2	
52	436	24.8	1.3	10.34	0.59	6	3	2	0	0	-

Dynamics Data for Standard Scout with Rated Payload
Over Treverse Test Course

Unit ft mph in watts g \frac{>1-1.5 \cdot 51.5 - 2 \cdot 2-2.5 \cdot 52.5 - 3 \cdot 3-4 \cdot 2}{5.5 - 590} \text{42.4} 0.3 0.27 0.36 19 11 2 0 \qq 0 \q	Terrain	Distance	Speed	rms Elevation	Absorbed Power	Cargo	iı	o. of Ac	n Range	e_Indica	ated	
2 590 42.4 0.3 0.27 0.36 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0												>4
2 590 42.4 0.3 0.27 0.36 1 0 0 0 0 0 0 0 4 4 1037 43.9 0.2 0.36 0.31 0 0 0 0 0 0 0 0 6 5 734 43.2 0.1 0.26 0.30 0 0 0 0 0 0 0 0 0 6 845 43.7 0.2 0.32 0.31 2 0 0 0 0 0 0 0 0 6 8 8 555 41.1 0.2	1	4055	42.8	0.2	0.42	0.36	19	11	2	0	1	0
4 1037 43.9 0.2 0.36 0.31 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	2	590			0.27	0.36		0	0	0	0	0
5 734 43.2 0.1 0.26 0.30 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	3	416	46.0	0.4	0.42	0.33	0	0	0	0	0	0
6 845 43.7 0.2 0.32 0.31 2 0 0 0 0 0 0 0 7 7 725 43.4 0.1 1.12 0.29 1 0 0 0 0 0 0 0 8 8 555 41.1 0.2+	4	1037	43.9	0.2	0.36	0.31	0	0	0	0	0	0
7 725 43.4 0.1 1.12 0.29 1 0			43.2	0.1				0	0		0	0
8 555 41.1 0.2								-	-			0
9 313 26.7 1.3 4.84 0.53 12 2 0 2 1 0 0 472 35.8 0.2 0.36 0.33 10 0 0 0 0 0 0 0 0 1 1 809 43.8 0.1 0.13 0.31 1 1 0 0 0 0 0 0 1 1 2 432 14.4 2.3 2.56 0.54 15 3 2 0 1 1 3 557 31.1 0.3 1.88 0.42 7 7 0 0 0 0 0 0 1 1 4 387 30.0 0.8 5.02 0.66 16 6 1 2 0 1 1 5 596 27.8 2.6 11.56 0.82 61 27 10 5 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			43.4		1.12		1	0	0	0	0	0
10												-
11												0
12												0
13												0
14 387 30.0 0.8 5.02 0.66 16 6 1 2 0 15 596 27.8 2.6 11.56 0.82 61 27 10 5 3 16 1070 25.3 1.0 7.48 0.72 111 33 17 8 3 17 617 27.7 0.8 5.75 0.60 55 13 4 3 0 18 1486 22.5 2.1 4.14 0.61 133 43 19 6 1 20 429 28.7 1.0 3.40 0.69 36 17 4 1 3 21 568 14.6 1.8 11.51 0.72 79 26 12 4 4 22 875 16.9 2.2 9.94 0.71 121 41 20 15 6 6 22 875 16.9 2.2 9.94 0.71 121 41 20 15 6 6 <td></td> <td>1</td>												1
15									_		_	0
16 1070 25.3 1.0 7.48 0.72 111 33 17 8 3 17 617 27.7 0.8 5.75 0.60 55 13 4 3 0 0 18 1486 22.5 2.1 4.14 0.61 133 43 19 6 1 19 897 31.2 0.9 2.67 0.56 60 13 7 1 2 20 429 28.7 1.0 3.40 0.69 36 17 4 1 3 2 21 568 14.6 1.8 11.51 0.72 79 26 12 4 4 22 875 16.9 2.2 9.94 0.71 121 41 20 15 6 6 23 733 24.2 1.0 5.63 0.69 79 19 9 6 4 6 24 460 20.6 2.2 7.45 0.74 63 16 11												1
17 617 27.7 0.8 5.75 0.60 55 13 4 3 0 6 18 1486 22.5 2.1 4.14 0.61 133 43 19 6 1 20 429 28.7 1.0 3.40 0.69 36 17 4 1 3 21 568 14.6 1.8 11.51 0.72 79 26 12 4 4 2 22 875 16.9 2.2 9.94 0.71 121 41 20 15 6 23 733 24.2 1.0 5.63 0.69 79 19 9 6 4 24 460 20.6 2.2 7.45 0.74 63 16 11 6 1 25 380 23.1 0.9 3.84 0.62 36 16 6 5 1 6 5 1 6 6 5 1 6 6 5 1 6 6	-											1
18 1486 22.5 2.1 4.14 0.61 133 43 19 6 1 19 897 31.2 0.9 2.67 0.56 60 13 7 1 2 20 429 28.7 1.0 3.40 0.69 36 17 4 1 3 21 568 14.6 1.8 11.51 0.72 79 26 12 4 4 22 875 16.9 2.2 9.94 0.71 121 41 20 15 6 23 733 24.2 1.0 5.63 0.69 79 19 9 6 4 24 460 20.6 2.2 7.45 0.74 63 16 11 6 1 25 380 23.1 0.9 3.84 0.62 32 12 0 3 0 27 815 19.4 1.2 5.97 0.66 116 21 16 7 3 28 <td></td> <td>1</td>												1
19 897 31.2 0.9 2.67 0.56 60 13 7 1 2 0.0 429 28.7 1.0 3.40 0.69 36 17 4 1 3 3 12 1 568 14.6 1.8 11.51 0.72 79 26 12 4 4 1 22 875 16.9 2.2 9.94 0.71 121 41 20 15 6 6 22 3 733 24.2 1.0 5.63 0.69 79 19 9 6 4 6 24 460 20.6 2.2 7.45 0.74 63 16 11 6 1 25 380 23.1 0.9 3.84 0.62 32 12 0 3 0 0 26 593 20.8 1.9 5.29 0.62 56 16 6 5 1 6 7 3 0 28 1171 26.0 0.8 4.32 0.71 130 42 19 7 3 0 28 1171 26.0 0.8 4.32 0.71 130 42 19 7 3 0 29 431 17.9 1.3 8.46 0.71 46 13 15 1 2 0 3 0 580 20.8 1.4 6.85 0.70 76 26 6 4 1 1 3 1 5 1 2 0 3 3 0 580 20.8 1.4 6.85 0.70 76 26 6 4 1 1 5 2 7 7 8 3 3 9 27 16.3 1.1 9.74 0.77 156 45 9 9 1 3 3 9 27 16.3 1.1 9.74 0.77 156 45 9 9 1 3 3 9 27 16.3 1.1 9.74 0.77 156 45 9 9 1 3 3 19.2 1.5 5.84 0.74 72 23 6 7 2 2 3 3 1 15 2 26.5 1.9 5.77 0.63 84 20 7 4 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0												0
20												0
21					_							0
22 875 16.9 2.2 9.94 0.71 121 41 20 15 6 (23 733 24.2 1.0 5.63 0.69 79 19 9 6 4 (24 460 20.6 2.2 7.45 0.74 63 16 11 6 1 25 380 23.1 0.9 3.84 0.62 32 12 0 3 0 26 593 20.8 1.9 5.29 0.62 56 16 6 5 1 (27 815 19.4 1.2 5.97 0.66 116 21 16 7 3 (28 1171 26.0 0.8 4.32 0.71 130 42 19 7 3 (29 431 17.9 1.3 8.46 0.71 46 13 15 1 2 (30 580 20.8 1.4 6.85 0.70 76 26 6 4 1 (31 550 16.7 2.2 10.16 0.74 85 22 9 5 5 (32 793 22.2 1.9 6.06 0.65 93 22 11 5 2 (33 927 16.3 1.1 9.74 0.77 156 45 9 9 1 34 513 19.2 1.5 5.84 0.74 72 23 6 7 2 (33 35 319 28.6 1.0 2.68 0.61 14 3 0 1 0 0 36 590 23.7 1.4 6.86 0.79 84 28 16 7 3 37 723 24.7 1.0 4.80 0.62 62 11 3 5 2 (33 39 306 23.7 0.7 2.94 0.59 17 4 4 0 0 0 (43 41 1258 40.5 0.7 0.7 2.94 0.59 17 4 4 0 0 0 (43 41 1258 40.5 0.7 0.7 2.94 0.59 17 4 4 0 0 0 (43 41 1258 40.5 0.7 0.7 2.94 0.59 17 4 4 0 0 0 (43 41 1258 40.5 0.2 0.94 0.48 23 3 1 1 0 1 4 (44 901 38.2 1.2 1.9 0.40 6.6 0.41 7 2 0 2 0 0 (44 901 38.2 1.2 1.9 0.40 6.66 0.41 7 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0												1
23 733 24.2 1.0 5.63 0.69 79 19 9 6 4 6 224 460 20.6 2.2 7.45 0.74 63 16 11 6 1 25 380 23.1 0.9 3.84 0.62 32 12 0 3 0 26 593 20.8 1.9 5.29 0.62 56 16 6 5 1 6 5 1 6 5 1 6 5 1 6 5 1 6 6 5 1 6 6 5 1 6 6 5 1 6 6 5 1 6 6 5 1 6 2 2 1 1 1 7 3 0 2 2 1 1 1 1 7 3 0 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1												1 0
24								_				0
25												1
26												1
27 815 19.4 1.2 5.97 0.66 116 21 16 7 3 6 28 1171 26.0 0.8 4.32 0.71 130 42 19 7 3 6 29 431 17.9 1.3 8.46 0.71 46 13 15 1 2 30 580 20.8 1.4 6.85 0.70 76 26 6 4 1 6 31 550 16.7 2.2 10.16 0.74 85 22 9 5 5 32 793 22.2 1.9 6.06 0.65 93 22 11 5 2 33 927 16.3 1.1 9.74 0.77 156 45 9 9 1 34 513 19.2 1.5 5.84 0.74 72 23 6 7 2 3 35 319 28.6 1.0 2.68 0.61 14 3 0							_					ō
28												0
29 431 17.9 1.3 8.46 0.71 46 13 15 1 2 6 30 580 20.8 1.4 6.85 0.70 76 26 6 4 1 6 31 550 16.7 2.2 10.16 0.74 85 22 9 5 5 6 32 793 22.2 1.9 6.06 0.65 93 22 11 5 2 33 927 16.3 1.1 9.74 0.77 156 45 9 9 1 34 513 19.2 1.5 5.84 0.74 72 23 6 7 2 35 319 28.6 1.0 2.68 0.61 14 3 0 1 0 36 590 23.7 1.4 6.66 0.79 84 28 16 7 3 37 723 24.7 1.0 4.80 0.62 62 11 3 5 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>ő</td></t<>												ő
30 580 20.8 1.4 6.85 0.70 76 26 6 4 1 6 31 550 16.7 2.2 10.16 0.74 85 22 9 5 5 6 32 793 22.2 1.9 6.06 0.65 93 22 11 5 2 33 927 16.3 1.1 9.74 0.77 156 45 9 9 1 34 513 19.2 1.5 5.84 0.74 72 23 6 7 2 3 35 319 28.6 1.0 2.68 0.61 14 3 0 1 0 0 36 590 23.7 1.4 6.66 0.79 84 28 16 7 3 37 723 24.7 1.0 4.80 0.62 62 11 3 5 2 38 1152 26.5 1.9 5.77 0.63 84 20 7 4 2 6 39 </td <td></td> <td>Ö</td>												Ö
31 550 16.7 2.2 10.16 0.74 85 22 9 5 5 6 32 793 22.2 1.9 6.06 0.65 93 22 11 5 2 6 33 927 16.3 1.1 9.74 0.77 156 45 9 9 1 34 513 19.2 1.5 5.84 0.74 72 23 6 7 2 6 35 319 28.6 1.0 2.68 0.61 14 3 0 1 0 36 590 23.7 1.4 6.66 0.79 84 28 16 7 3 723 24.7 1.0 4.80 0.62 62 11 3 5 2 2 38 1152 26.5 1.9 5.77 0.63 84 20 7 4 2 6 39 306 23.7 0.7 2.94 0.59 17 4 4 0 0 0 6 2 39 306 23.7 0.7 2.94 0.59 17 4 4 0 0 0 6 2 6 2 11 2 2 6 2 2 1 2 2 6 2 2 2 2 2			_					_	_			ŏ
32 793 22.2 1.9 6.06 0.65 93 22 11 5 2 33 927 16.3 1.1 9.74 0.77 156 45 9 9 1 34 513 19.2 1.5 5.84 0.74 72 23 6 7 2 6 35 319 28.6 1.0 2.68 0.61 14 3 0 1 0 6 36 590 23.7 1.4 6.66 0.79 84 28 16 7 3 37 723 24.7 1.0 4.80 0.62 62 11 3 5 2 38 1152 26.5 1.9 5.77 0.63 84 20 7 4 2 6 39 306 23.7 0.7 2.94 0.59 17 4 4 0 0 6 40 457 14.8 1.6 3.23 0.54 31 3 1 1												0
33 927 16.3 1.1 9.74 0.77 156 45 9 9 1 34 513 19.2 1.5 5.84 0.74 72 23 6 7 2 6 35 319 28.6 1.0 2.68 0.61 14 3 0 1 0 6 36 590 23.7 1.4 6.66 0.79 84 28 16 7 3 37 723 24.7 1.0 4.80 0.62 62 11 3 5 2 38 1152 26.5 1.9 5.77 0.63 84 20 7 4 2 6 39 306 23.7 0.7 2.94 0.59 17 4 4 0 0 6 40 457 14.8 1.6 3.23 0.54 31 3 1 1 2 6 41 1258 40.5 0.2 0.94 0.48 23 3 1<												Ō
34 513 19.2 1.5 5.84 0.74 72 23 6 7 2 6 35 319 28.6 1.0 2.68 0.61 14 3 0 1 0 6 36 590 23.7 1.4 6.66 0.79 84 28 16 7 3 37 723 24.7 1.0 4.80 0.62 62 11 3 5 2 38 1152 26.5 1.9 5.77 0.63 84 20 7 4 2 2 39 306 23.7 0.7 2.94 0.59 17 4 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 <td></td> <td>1</td>												1
35 319 28.6 1.0 2.68 0.61 14 3 0 1 0 6 36 590 23.7 1.4 6.66 0.79 84 28 16 7 3 37 723 24.7 1.0 4.80 0.62 62 11 3 5 2 38 1152 26.5 1.9 5.77 0.63 84 20 7 4 2 6 39 306 23.7 0.7 2.94 0.59 17 4 4 0 0 0 40 457 14.8 1.6 3.23 0.54 31 3 1 1 2 41 1258 40.5 0.2 0.94 0.48 23 3 1 0 1 42 590 44.7 0.3 0.30 0.36 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0												0
36 590 23.7 1.4 6.66 0.79 84 28 16 7 3 37 723 24.7 1.0 4.80 0.62 62 11 3 5 2 38 1152 26.5 1.9 5.77 0.63 84 20 7 4 2 6 39 306 23.7 0.7 2.94 0.59 17 4 4 0 0 6 40 457 14.8 1.6 3.23 0.54 31 3 1 1 2 1 2 1 4 4 0 0 0 0 0 0 1 1 2 1 2 1 1 2 1 1 2 1 2 1 1 2 1 2 1 1 1 2 1 2 1 1 1 2 1 1 1 1 1 1 1 1 2 1 2 1 1 1								3	0	1	0	0
37 723 24.7 1.0 4.80 0.62 62 11 3 5 2 38 1152 26.5 1.9 5.77 0.63 84 20 7 4 2 6 39 306 23.7 0.7 2.94 0.59 17 4 4 0							84		16	7	3	1
39 306 23.7 0.7 2.94 0.59 17 4 4 0 0 40 457 14.8 1.6 3.23 0.54 31 3 1 1 2 41 1258 40.5 0.2 0.94 0.48 23 3 1 0 1 42 590 44.7 0.3 0.30 0.36 0 0 0 0 0 43 418 41.9 0.4 0.66 0.41 7 2 0 2 0 2 44 901 38.2 1.2 1.79 0.46 9 5 5 0 0 6 45 181 10.1 1.0 3.36 0.56 16 2 1 0 0 0 6 46 419 36.6 1.0 1.16 0.52 12 4 0 1 0 6 47 582 26.5 1.6 6.44 0.68 31 8 4							62	11	3	5	2	1
39 306 23.7 0.7 2.94 0.59 17 4 4 0 0 6 40 457 14.8 1.6 3.23 0.54 31 3 1 1 2 41 1258 40.5 0.2 0.94 0.48 23 3 1 0 1 42 590 44.7 0.3 0.30 0.36 0 0 0 0 0 0 43 418 41.9 0.4 0.66 0.41 7 2 0 2 0 2 44 901 38.2 1.2 1.79 0.46 9 5 5 0 0 6 45 181 10.1 1.0 3.36 0.56 16 2 1 0 0 6 46 419 36.6 1.0 1.16 0.52 12 4 0 1 0 6 47 582 26.5 1.6 6.44 0.68 31 8							84	20	7			0
40 457 14.8 1.6 3.23 0.54 31 3 1 1 2 41 1258 40.5 0.2 0.94 0.48 23 3 1 0 1 42 590 44.7 0.3 0.30 0.36 0 0 0 0 0 43 418 41.9 0.4 0.66 0.41 7 2 0 2 0 2 44 901 38.2 1.2 1.79 0.46 9 5 5 0 0 6 45 181 10.1 1.0 3.36 0.56 16 2 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0							17	4	4	0	0	0
41 1258 40.5 0.2 0.94 0.48 23 3 1 0 1 42 590 44.7 0.3 0.30 0.36 0 0 0 0 0 0 43 418 41.9 0.4 0.66 0.41 7 2 0 2 0 6 44 901 38.2 1.2 1.79 0.46 9 5 5 0 0 6 45 181 10.1 1.0 3.36 0.56 16 2 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0												Ö
42 590 44.7 0.3 0.30 0.36 0	-											
43 418 41.9 0.4 0.66 0.41 7 2 0 2 0 4 4 4 901 38.2 1.2 1.79 0.46 9 5 5 0 0 0 6 4 5 181 10.1 1.0 3.36 0.56 16 2 1 0 0 6 6 6 6 6 6 7 1 0 0 6 7 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1												1
44 901 38.2 1.2 1.79 0.46 9 5 5 0 0 6 45 181 10.1 1.0 3.36 0.56 16 2 1 0 0 6 46 419 36.6 1.0 1.16 0.52 12 4 0 1 0 6 47 582 26.5 1.6 6.44 0.68 31 8 4 4 2 48 396 30.7 0.7 1.08 0.55 18 4 4 0 1 49 444 31.2 1.4 3.10 0.64 25 10 3 1 0 6 50 319 12.5 3.4 2.06 0.49 13 0 2 1 0 6 51 1316 31.4 0.5 1.94 0.47 19 4 4 1 0												
45 181 10.1 1.0 3.36 0.56 16 2 1 0 0 6 6 6 6 419 36.6 1.0 1.16 0.52 12 4 0 1 0 6 6 6 7 7 7 7 8 8 2 26.5 1.6 6.44 0.68 31 8 4 4 2 6 7 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8								5				0
46 419 36.6 1.0 1.16 0.52 12 4 0 1 0 6 4 7 582 26.5 1.6 6.44 0.68 31 8 4 4 2 6 4 8 396 30.7 0.7 1.08 0.55 18 4 4 0 1 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6								2				0
47 582 26.5 1.6 6.44 0.68 31 8 4 4 2 48 396 30.7 0.7 1.08 0.55 18 4 4 0 1 49 444 31.2 1.4 3.10 0.64 25 10 3 1 0 50 319 12.5 3.4 2.06 0.49 13 0 2 1 0 51 1316 31.4 0.5 1.94 0.47 19 4 4 1 0											0	Ö
48												ŏ
49 444 31.2 1.4 3.10 0.64 25 10 3 1 0 6 6 6 7 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8												Ö
50 319 12.5 3.4 2.06 0.49 13 0 2 1 0 (51 1316 31.4 0.5 1.94 0.47 19 4 4 1 0									3			ő
51 1316 31.4 0.5 1.94 0.47 19 4 4 1 0												Ŏ
10.01												ō
32 430 2010 110 2010 2010												2
	32	430	23.0					_				

^{*} Dashes indicate that no data were collected as a result of instrumentation failures.

Table B32

Dynamics Data for High Performance Ramcharger with Rated Payload

Over Traverse Test Course

m d	D4	Contra	rms	Absorbed	Cargo	No. of Acceleration Peaks in Between Range Indicated						
errain Unit	Distance fr	Speed mph	Elevation in	Power watts	rms		Betwee >1.5-2				> /:	
					_g	~1-1.5	71.3-2	~2-2.5	72.3-3	-3-4		
1	4055	44.0	0.2	0.51	0.41	30	11	1	2	0	1	
2	590	43.3		0.43	0.38	1	0	0	0	0	C	
3	416	43.2	0.4	0.50	0.44	4	0	0	0	0	C	
4	1037	50.2	0.2	1.23	0.42	26	4	1	0	0	(
5	734	45.5	0.1	0.57	0.39	6	0	0	0	0	(
6	845	48.0	0.2	0.34	0,33	2	0	0	0	0	(
7	725	45.0	0.1	1.02	0.39	9	1	0 ,	0	0	(
8 9	555 313	47.3 23.7	0.2	0,35	0.35	2	0	0	0	0	(
10	313 472	39.7	1.3	2.93	0.76	6	2	4	2	1	- 2	
11	809	44.5	0.2 0.1	0.69	0.39	1	0	0	0	0	(
12	432	21.7	2.3	0.24 8.60	0.37	0	0	1	0	0	(
13	557 '	38.8	0.3	3.34	0.59	28	4	0	0	1	(
14	387	32.6	0.3	5.49	0.50	16	4	1	0	0	(
15	596	17.5	2.6	16.32	0.68 0.87	20	3	0	1	1	(
16	1070	28.3	1.0	9.63		80	29	16	3	5	3	
17	617	30.9	. 0.8	7.54	0.75 0.66	101	46	15	5	8	3	
18	1486	25.7	2.1	9.88		43	22	5	3	0	(
19	897	43.1	0.9	10.89	0.80 0.82	172	61	17	6	6	4	
20	429	33.2	1.0	8.26		79 20	28	8	8	5	(
21	568	15.0	1.8	17.62	0.89 0.81	39 79	19	6	1	3	(
22	875	20.6	2.2	20.10	0.85	110	30	10	6	4	1	
23	733	28.4	1.0	17.97	0.85	113	37	26	8	4	2	
24	460	24.9	2.2	21.39	0.89	92	53 37	13	5	1	3	
25	380	24.0	0.9	11.26	0.72	50	18	20	11	1	0	
26	593	27.0	1.9	7.58	0.80	57	20	3 6	0	1	1	
27	815	23.6	1.2	19.46	0.88	203	76	1	2 5	2 5 3	4	
28	1171	30.6	0.8	9.60	0.82	116	44	21	9	3	2	
29	431	20.7	1.3	19.95	0.93	52	22	15	3	5	2	
30	580	25.5	1.4	15.48	0.80	237	32	4				
31	550	17.5	2.2	17.35	0.79	73	24	6	2 3	0 3	0	
32	793	25.8	1.9	15.05	0.86	110	36	21	11	6	3	
33	927	20.0	1.1	15.28	0.86	164	62	18	11	4	1	
34	513	18.6	1.5	11.32	0.80	72	17	9	6	3	ō	
35	319	29.4	1.0	3.28	0.63	15	5	2	ō	ō	0	
36	590	27.2	1.4	10.64	0.82	82	28	5	5	1	1	
37	723	31.6	1.0	10.22	0.83	111	26	8	6	ī	1	
38	1152	30.3	1.9	12.68	0.78	114	43	i.2	3	2	3	
39	306	24.8	0.7	5.72	0.70	22	9	1	ō	ō	ō	
40	457	21.8	1.6	11.38	0.69	34	7	4	1	1	0	
41	1258	42.1	0.2	1.84	0.54	38	9	3	1	0	3	
42	590	44.2	0.3	0.56	0.38	1	0	0	0	0	0	
43	418	46.0	0.4	0.68	0.50	2	1	0	0	0	0	
44	901	43.0	1.2	3.59	0.61	27	3	1	2	0	2	
45	181	13.7	1.0	4.86	0.69	17	3	2	2	0	0	
46	419	41.4	1.0	2.62	0.70	15	3	1	1	0	0	
47	582	28.8	1.6	9.67	0.73	11	9	4	3	2	0	
48	396	29.7	0.7	1.18	0.59	16	5	0	0	0	C	
49	444	40.9	1.4	4.80	0.70	31	6	3	0	0	C	
50	319	18.9	3.4	6.14	0.58	16	1	1	0	0	0	
51	1316	37.1	0.5	4.60	0.54	39	11	4	1	0	0	
52	436	26.1	1.3	14.56	0.72	20	. 6	4	1	0	6	

Dynamics Data for High Performance Blazer with Rated Payload
Over Traverse Test Course

Terrain	Distance	Speed	rms Elevation	Absorbed Power	Cargo rms	in Between Range Indicated						
Unit	ft	mph	in	watts	_8	>1-1.5	>1.5-2	>2-2.5	>2.5-3	>3-4	>4	
1	4055	46.0	0.2	0.68	0.41	30	8	2	1	1	0	
2	590	49.1	0.3	0.58	0.33	0	0	0	0	0	0	
3	416	52.8	0.4	0.62	0.34	0	0	0	0	0	0	
4	1037	49.1	0.2	1.60	0.36	14	1	0	0	0	0	
5	734	47.2	G.1	0.68	0.41	12	0	0	0	0	0	
6	845	47.2	0.2	0.80	0.31	4	3	1	0	0	0	
7	725	49.0	0.1	1.00	0.40	Ģ	2	0	0	0	0	
8	555	49.8	0.2	0.74	0.39	9	4	1	0	0	0	
9	313	26.0	1.3	3.00	0.62	7	2	0	1	2	0	
10	472	36.6	0.2	0.58	0.39	4	0	0	0	0	0	
11	809	47.6	0.1	0.26	0.31	0	0	0	0	0	0	
12	432	22.3	2.3	5.34	0.57	19	3	0	ŋ	0	0	
13	557	34.5	0.3	2.52	0.43	3	2	0	٠0	0	0	
14	387	30.7	0.8	10.10	0.79	12	5	1	3	0	0	
15	596	16.9	2.6	13.88	0.71	74	19	7	2	0	0	
16	1070	28.7	1.0	9.22	0.74	72	26	11	8	ì	2	
17	617	33.9	0.8	9.18	0.72	46	9	5	2	2	1	
18	1486	27.2	2.1	11.06	0.73	116	40	9	6	2	0	
19	897	40.8	0.9	7.44	0.74	39	15	11	3	0	1	
20	429	37.5	1.0	7.60	0.73	41	16	1	0	0	0	
21	568	18.3	1.8	25.70	1.00	80	32	16	5	7	5	
22	875	20.4	2.2	24.90	0.91	120	41	21	7	6	4	
23	733	29.1	1.0	21.75	0.97	78	36	14	7	4	5	
24	460	24.5	2.2	20.80	0.87	74	39	7	3	2	1	
25	380	30.5	0.9	7.38	0.70	45	9	4	0	0	1	
26	593	24.7	1.9	9.80	0.80	34	17	12	2	3	1	
27	315	24.2	1.2	18.74	G.82	82	43	13	2	1	1	
28	1171	31.7	0.8	13.79	0.94	117	44	22	7	1	1	
29	431	22.1	1.3	22.54	0.90	52	27	15	2	2	2	
30	580	24.7	1.4	17.64	0.87	86	45	7	3	2	1	
31	550	19.1	2.2	25.05	0.85	68	26	12	5	2	1	
32	793	25.0	1.9	15.97	0.79	97	45	11	2	0	0	
33	927	20.5	1.1	23.05	0.93	150	46	23	7	3	5	
34	513	22.7	1.5	13.14	0.81	64	18	7	3	2	0	
35	319	31.1	1.0	5.48	0.75	27	6	1	1	1	0	
36	590	25.1	1.4	17.85	0.90	69	27	14	3	1	1	
37	723	30.4	1.0	8.84	0.74	46	16	5	1	2	0	
38	1152	29.4	1.9	14.11	0.71	65	23	8	2	0	0	
39	306	23.2	0.7	5.05	0.62	25	4	1	0	1	0	
40	457	22.6	1.6	12.30	0.60	25	5	3	0	1	0	
41	1258	41.6	0.2	1.82	0.49	24	8	5	0	1	1	
42	590	47.3	0.3	0.44	0.35	0	0	0	0	0	0	
43	418	47.5	0.4	0.74	0.41	1	2	0	0	0	0	
44	901	43.9	1.2	3.00	0.57	10	5	2	0	0	0	
45	181	12.1	1.0	7.74	0.57	12	0	0	0	0	0	
46	419	39.7	1.0	5.72	0.69	4	5	2	0	1	0	
47	582	29.6	1.6	8.14	0.68	19	7	2	1	2	0	
48	396	27.8	0.7	1.85	0.61	14	4	2	0	0	0	
49	444	40.9	1.4	5.96	0.77	21	8	1	0	1	0	
50	319	19.3	3.4	5.88	0.61	12	4	0	1	1	0	
51	1316	33.0	0.5	83	0.53	24	4	4	2	0	0	
52	4 36	27.0	1.3	51	0.60	12	2	2	0	0	0	

Dynamics Data for High Performance CJ5 with Rated Payload
Over Traverse Test Course

Terrain	Distance	Speed	rms Elevation	Absorbed Power	Cargo	N i	o. of Ac n Betwee	celerat	ion Pea	ks ated							
Unit	ft	mph	in	_watts_	-8-		>1.5-2				>4						
1	4055	41,6	0.2	0.78	0.42	44	7	4	2	1	0						
2	590	41.1	0.3	0.46	0.36	0	0	0	0	0	0						
3	416	43.9	0.4	0.78	0.41	7	0	0	0	0	0						
4	1037	43.9	0.2	0.72	0.38	8	0	0	0	0	0						
5	734	42.1	0.1	0.60	0.41	12	0	0	0	0	0						
6	845	40.6	0.2	0.51	0.35	5	0	0	0	0	0						
7	725	43.0	0.1	0.88	0.43	21	1.	0	0	0	0						
8	555	43.5	0.2	0.48	0.33	0	0	0	0	0	0						
9	313	27.7	1.3	1.86	0.53	11	2	0	0	. 0	0						
10	472	39.7	C.2	0.80	0.42	7	1	0	0	0	0						
11	809	43.8	0.1	0.52	0.41	10	0	0	O	0	0						
12	432	21.8	2.3	3.42	0.63	49	7	2	0	0	0						
13	557	39.2	0.3	2.86	0.68	39	8	4	2	1	0						
14	387	31.1	0.8	3.08	0.67	20	8	0	3	1	ð						
15	596	21.7	2.6	11.74	1.01	81	38	15	7	6	3						
16	1070	32.7	1.0	9.50	0.94	207	43	21	9	11	3						
17	617	33.1	0.8	7.38	0.80	49	12	. 8	2	3	0						
18	1486	25.5	2.1	8.20	0.80	129	50	14	5	4	5						
19	897	36.4	0.9	7.32	0.90	72	32	4	4	5	3						
20	429	29.6	1.0	7.06	0.91	34	12	2	2	4	1						
21	568	15.6	1.8	17.56	0.85	111	3.3	13	9	5 4	0						
2 2	875	20.0	2.2	11.70	0.82	134	51	26	6		1						
23	733	26.2	1.0	10.1ó	0.89	66	37	10	4	4	1						
24	460	23.2	2.2	10.88	0.94	69	32	9	5	5	0						
25	380	25.2	0.9	4.92	0.72	47	15	3	1	1	0						
26	593	23.8	1.9	14.00	1.01	63	30	17	. 5	5	2						
27	815	22.2	1.3	10.82	0.95	105	39	24	11	9	3						
28	1171	29.6	0.8	11.00	0.99	107	65	15	12	7	7						
29	431	20.0	1.3	10.30	0.95	60	19	18	8	5	0						
30	580	23.3	1.4	10.18	0.99	80	37	. 8	7	4	3						
31	550	22.1	2.2	11.96	0.88	69	38	14	6	4	2						
32	793	26.1	1.9	11.53	0.97	107	54	15	5	9	4						
33	927	18.9	1.1	12.80	1.01	177	90	41	21		5						
34	513	20.2	1.5	10.34	0.89	92	29	14	5	1 0	0						
35	319	29.0	1.0	2.28	0.93	25	8	2	0	5	0						
36	590	22.0	1.4	9.26	1.08	64	37	11 5	4 3	1	0						
37	723	27.4	1.0	6.00	0.93	25	4 21		1	2	0						
38	1152	25.6	1.9	9.30	0.69	101		ó	0	1	0						
39	306	20.9	0.7	3.54	0.62	30	2 7		3	1							
40	457	19.1	1.6	11.10	0.73	26 35	9	3 4	0	0	1 0						
41	1258	38.6	0.2	1.38	0.55	35 0	0	ō	0	0	0						
42	590	44.2	0.3	0.44	0.35			_		ů	_						
43	418	40.7	0.4	0.72 3.02	0.44 0.80	4 12	1	3	0 2	0	0						
44	901 181	40.2 14.9	1.2	3.02 4.84	0.80	18	5	4	ó	0	0						
45 46		39.1	1.0	3.10	0.91	6	1	2	1	Ö	0						
46	419						6	5		3	0						
47	582	30.8	1.6	9.37	0.94	94	4	1	1 0	0	0						
48	396	29.4	0.7	1.72	0.59	12		0	0	1							
49	444	37.9	1.4	4.82	0.84	21	12 3	3		0 T	0						
50	1	21.5	3.4	7.40	0.91	12		ر 6	0 2	-	0						
51	ندد1	36.0	0.5	4.40	0.78	30	11		3	0 1	0						
52	4 36	28.3	1.3	10.26	0.88	12	5	6	3	Ţ	U						

Dynamics Data for High Performance Scout with Rated Payload
Over Traverse Test Course

Terrain	Distance	Speed	rms Elevation	Absorbed Power	Cargo rms	jr	ı Betwee	en Range	tion Pea	ited	
Unit	ft	mph	in	watts	g				>2.5-3		>4
1	4055	45.0	0.2	0.46	0.40	57	13	2	0	0	0
2	590	46.3	0.3	0.38	0.35	0	0	0	0	0	0
3	416	43.2	0.4	0.44	0.36	3	0	0	0	0	0
4	1037	42.6	0.2	0.72	0.36	15	0	0	0	0	0
5	734	43.2	0.1	0.28	0.43	22	0	0	Ó	0	0
6	845	44.3	0.2	0.38	0.35	11	0	0	0	0	0
7	725	45.0	0.1	0.60	0.37	12	0	0	0	0	0
8	555	47.3	0.2	0.24	0.27	0	0	0	0	0	0
9	313	25.4	1.3	1.42	0.55	16	5	1	2	. 0	0
10	472	40.2	0.2	0.56	0.53	48	7	0	0	0	0
11	809	52.1	0.1	0.16	0.38	5	0	0	0	0	0
12	432	19.1	2.3	4.00	0.65	70	12	6	1	0	0
13	557	37.2	0.3	2.42	0.45	13	1	0	0	0	0
14	387	31.4	0.8	4.82	0.75	40	7	7	3	3	0
15	596	20.5	2.6	10.32	0.82	104	37	14	5	3	1
16	1070	31.9	1.0	7.71	0.78	133	45	15	9	4	2
17	617	31.6	0.8	11.34	0.75	74	23	12	2	1	1
18	1486	27.4	2.1	7.10	0.73	205	47	11	6	4	1
19	897	38.7	0.9	11.37	0.77	94	18	17	3	2	1
20	429	31.1	1.0	5.24	0.76	40	12	7	3	1	0
21	568	14.3	1.8	16.62	0.85	121	57	1/	3	5	2
22	875	19.4	2.2	9.58	0.77	158	48	16	7	3	0
23	733	27.5	1.0	8.96	0.82	98	36	12	8	3	0
24	460	17.2	2.2	11.40	0.81	94	34	7	4	2	0
25	380	28.8	0.9	7.60	0.83	62	16	8	2	3	0
26	593	24.4	1.9	10.48	0.77	103	25	5	2	5 4	0
27	815	21.3	1.2	9.72	0.81	137	51	12	7	2	1
28	1171	31.7	0.8	8.38	0.79	133	52	17	10	1	1
29	431	21.0	1.3	12.88	0.76	68	25	3	4 5	2	. <u>.</u>
30	580	22.0	1.4	14.68	0.82	125	44 27	11 11	3 7	3	1
31	550	18.5	2.2	16.74	0.81	82	42	21	5	0	2
32	793	25.8	1.9	12.42	0.82	111	59	20	10	7	3
33	927	20.1	1.1	12.68 13.64	0.91 0.81	184 78	34	8	4	2	0
34	513	21.9	1.5 1.0	2.82	0.63	21	4	Ö	0	ō	0
35 36	319	30.2 25.8	1.4	10.32	0.83	101	34	10	2	1	Ö
36 37	590 723	30.8	1.4	7.34	0.72	72	22	7	4	Ô	ő
38	152	30.0	1.9	7.34 8.65	0.72	120	26	6	3	3	ő
39	306	25.8	0.7	3.69	0.77	38	9	4	3	1	ő
40	457	19.5	1.6	4.48	0.62	46	12	4	ő	ō	ő
40	1258	41.2	0.2	1.35	0.47	15	2	2	0	1	ŏ
42	590	44.7	0.3	0.34	0.33	2	0	ō	Ö	ō	ō
42 43	418	40.7	0.4	0.58	0.41	2	2	ŏ	Ö	0	0
44	901	42.7	1.2	2.60	0.55	19	4	ĭ	2	1	0
45	181	12.3	1.0	8.20	0.61	11	6	ī	1	ō	0
46	419	37.1	1.0	3.34	0.69	12	4	2	ō	í	1
47	582	29.6	1.6	10.44	0.71	25	7	6	3	2	ō
48	390	28.1		1.83	0.57	22	2	ŭ	ő	ō	Ö
49	444	40.4	1.4	6.11	0.74	23	15	2	ŏ	Ō	Ō
50	319	18.1	3.4	6.52	0.57	16	2	ī	ō	Ö	ō
51	1316	34.9	0.5	2.92	0.48	24	4	î	Ö	Ö	Ŏ
52	436	26.1	1.3	6.17	0.64	14	10	3	Ö	i	ō
24	4.20	20.1	Τ. 3	0.1/	0,04	14	10	J	J	_	

Table B36

Dynamics Data for High-Performance Bronco with Rated Payload

Over Traverse Test Course

Terrain	Distance	Speed	RMS Elevation	Absorbed Power	Cargo rms	No. of Acceleration Peaks in Between Range Indicated						
Unit	ft	mph	in	watts	g	>1-1.5	>1.5-2	>2-2.5	>2.5-3	>3-4	>4	
1	4055	41.6	0,2	0.72	0.40	43	3	2	1	1 -	0	
2	590	41.5	0.3	0.62	0.74	2	ŏ	ō	Ô	ō	Ö	
3	416	45.3	0.4	0.46	0.38	2	ŏ	0	Ö	0	Ö	
4	1037	44.2	0.2	1.44	0.39	24	4	ŏ	ĭ	ŏ	ŏ	
5	734	41.7	0.1	0.80	0.45	27	Ó	ŏ	ō	Ö	ŏ	
6	845	42.7	0.2	0.48	0.35	8	Ö	Ö	0	Ö	Õ	
7	725	44.1	0.1	1.00	0,42	24	2	Ö	o	0	ō	
8	555	45.6	0.2	0.44	0.29	3	ō	Ö	Ŏ	Ö	Ö	
9	313	30.5	1.3	10.64	0.77	7	5	5	2	3	ŏ	
10	472	46.7	0.2	0.66	0.52	21	. 6	0	ō	ő	ŏ	
11	809	42.4	0.1	0.36	0.38	1	0	0	0	0	ŏ	
12	432	23.6	2.3	4.16	0.67	52	7	1	Ö	0	ŏ	
13	557	38.0	0.3	2.30	0.55	33	5	2	1	Ö	Ö	
14	387	31.8	0.8	8.64	0.68	23	7	5	î	ŏ	ŏ	
15	596	20.1	2.6	9.36	0.82	112	37	11	Ô	2	ő	
16	1070	29.7	1.0	8.88	0.73	138	39	18	8	1	ŏ	
17	617	33.1	0.8	8.40	0.78	53	34	9	3	1	Ö	
18	1486	27.3	2.1	8.94	0.79		66	25	6	ō	ő	
19	897	36.9	0.9	13.92	0.79	94	21	18	4	2	ŏ	
20	429	31.1	1.0	9.32	0.77	55	19	4	1	ō	ŏ	
21	568	14.3	1.8	16.31	0.81	128	41	20	3	1	ő	
22	875	19.9	2.2	12.97	0.84	173	48	23	11	3	Ö	
23	733	26.9	1.0	9.52	0.84	91	53	9	2	1	0	
24	460	23.6	2.2	10.50	0.83	91	39	15	1	ō	Ö	
25	380	27.3	0.9	5.30	0.86	55	19	3	2	2	ŏ	
26	593	25.3	1.9	11.48	0.81	105	33	12	5	õ	ŏ	
27	815	22.6	1.2	15.76	0.81	126	33	17	7	2	ĭ	
28	1171	27.9	0.8	11.18	0.77	1.62	38	19	3	õ	ō	
29	431	24.5	1.3	19.09	0.94	68	35	16	2	6	ő	
30	580	25.4	1.4	11.19	0.82	88	36	7	3	ĭ	ŏ	
31	550	18.4	2.2	11.81	0.80	74	28	8	0	3	ŏ	
32	793	23.5	1.9	9.37	0.75	103	40	14	ő	0	ŏ	
33	927	18.0	1.1	11.34	0.75	184	60	16	6	4	ŏ	
34	513	21.0	1.5	10.98	0.82	91	31	4	2	2	ŏ	
3 5	319	31.1	1.0	3.94	0.70	18	5	1	0	ō	ō	
36	590	24.7	1.4	9,22	0.75	84	31	5	3	Ö	Ö	
37	723	28.2	1.0	7.52	0.69	73	21	5	0	o	Ö	
38	1152	29.1	1.9	9.63	0.74	96	28	11	3	2	ŏ	
39	306	27.8	0.7	3.20	0.61	30	1	0	Õ	õ	ŏ	
40	457	26.0	1.6	8.46	0.67	37	5	5	Ö	o.	ŏ	
41	1258	39.0	0.2	1.74	0.49	24	7	1	0	Ö	ŏ	
42	590	39.1	0.3	0.30	0.32	0	ó	ō	0	0	ŏ	
		39.1	0.4	0.56	0.43	3	0	0	0	Ö	ŏ	
43 44	418 901	39.1	1.2	1.86	0.43	43	2	0	ì	Ö	Š	
44 45	181	12.6	1.2	3.96	0.64	18	2	0	0	Ö	ő	
45 46	419	38.1	1.0	1.52	0.53	8	1	0	Ö	ŏ	ŏ	
		25.6		3.08	0.59	21	3	4	1	0	0	
47	582		1.6	1.62		21	2	1	0	1	Ö	
48	396	28.1	0.7		0.61		10	1	0	0	0	
49	444	35.2	1.4	4.42	0.71	3 5				0	0	
50	319	18.9	3.4	4.42	0.64	27	2	0	1		0	
51	1316	36.6	0.5	2.10	0.55	41	9	1	0	1 2		
52	436	27.5	1.3	8.54	0.76	12	4	5	3	4	0	

In accordance with ER 70-2-3, paragraph 6c(1)(b), dated 15 February 1973, a facsimile catalog card in Library of Congress format is reproduced below.

Randolph, Donald D

Comparison of the ride and mobility characteristics of selected commercial 1/4- to 3/4-ton vehicles and the military M151A2 utility truck, by Donald D. Randolph. Vicksburg, U. S. Army Engineer Waterways Experiment Station, 1976.

l v. (various pagings) illus. 27 cm. (U. S. Waterwaya Experiment Station. Miscellaneous paper M-76-6)
Prepared for U. S. Army Tank Automotive Command, Warren, Michigan.

Includea bibliography.

1. Military vehicles. 2. Mobility. 3. Ride dynamics. 4. Trucks. I. U. S. Army Tank Automotive Command. (Seriea: U. S. Waterways Experiment Station, Vicksburg, Miss. Miscellaneous paper M-76-6)
TA7.W34m no.M-76-6