Worksheet 14 Review

April 1, 2020

Question 1

a. Since the inner loop starts at j = 0 and finishes at j = n - 1 with j increasing by 1 per iteration, we can conclude that the inner loop has

$$\lceil n - 1 - 0 + 1 \rceil = n \tag{1}$$

iterations.

Since the inner loop takes 1 step per iteration, we can conclude that the inner loop has the total cost of

$$n \cdot 1 = n \tag{2}$$

steps.

For the outer loop, because it starts at i = 0 and ends at i = n - 1 with i increasing by 5 per iteration, we can conclude that the outer loop has

$$\left\lceil \frac{n-1-0+1}{5} \right\rceil = \left\lceil \frac{n}{5} \right\rceil \tag{3}$$

iterations.

Since each iteration in the outer loop takes n steps, we can conclude the outer loop has the total cost of

$$n \cdot n = n^2 \tag{4}$$

steps.

Since we are ignoring the cost of the loop variables, the total cost of the algorithm is $n^2 + n$ steps.

Then, because we know the algorithm takes total of $n^2 + n$ steps, we can conclude the algorithm has the runtime of $\Theta(n^2)$.

b. We will determine the exact cost and theta of this algorithm by first calculating the exact cost of inner loop 1

```
j = 1
while j < n:
j = j * 3
4</pre>
```

and then, calculating the exact cost of inner loop 2

```
k = 0
while k < n:
k = k + 2</pre>
```

and then, calculating the exact cost of the outer loop using the information from the exact cost of inner loop 1 and inner loop 2

```
i = 4
while i < n:
    j = 1
while j < n:
    j = j * 3
k = 0
while k < n:
    k = k + 2
i = i + 1</pre>
```

and then, we will finish off by calculating the theta of the outer loop.

Part 1 (Calculating the exact cost of loop 1):

Because we kow $j = j \cdot 3$, we can calculate

$$i_1 = 3$$

$$i_2 = 9$$

$$i_3 = 27$$

$$\vdots$$

$$i_j = 3^j$$

Then, using the fact that loop termination occurs when $i_j \geq n$, we can conclude

$$3^j \ge n \tag{1}$$

$$j \ge \log_3 n \tag{2}$$

Since we are looking for the smallest value of j resulting in loop termination, we can conclude the value of j is $\lceil \log_3 n \rceil$.

Since the inner loop 1 takes constant step per iteration, we can conclude that the loop has exact cost of

$$\lceil \log_3 n \rceil \cdot 1 = \lceil \log_3 n \rceil \tag{3}$$

steps.

Part 2 (Calculating the exact cost of loop 2):

Part 3 (Calculating the exact cost of outer loop):

Part 4 (Calculating Theta):

Question 2