省选模拟赛-Day1

VanishD

December 23, 2019

题目名称	小 D 的奶牛	小 D 的交通	小 D 的远航
目录	cows	teleports	sailing
可执行文件名	cows	teleports	sailing
输入文件名	cows.in	teleports.in	sailing.in
输出文件名	cows.out	teleports.out	sailing.out
每个测试点时限	1s	1s	1s
内存限制	512MB	512MB	512MB
试题总分	100	100	100
测试点数目	10	10	20
每个测试点分值	10	10	5
是否有部分分	否	否	否
题目类型	传统型	传统型	传统型

1 小 D 的奶牛

1.1 题目背景

暑假,小 D 去了一个神奇的岛屿度假,在这个岛上有一群有神奇的奶牛。

1.2 题目描述

岛屿上的奶牛一共有 N 只,每一天,有一部分奶牛去工作,另一部分奶牛去玩乐。哪些奶牛去工作由奶牛首领决定。

奶牛们都是暴躁老哥,一旦工作安排使他们不满就会发生暴动;具体来说如果某天去工作的奶牛中存在两只奶牛不是朋友关系,它们就会烦躁;或者某天的工作安排和之前某天相同,他们会厌倦,这两种情况下就会暴动。

显然,暴动是一定会发生的。奶牛首领想要暴动尽量晚发生,向小 D 询问暴动最晚的发生时间,但小 D 还要忙着颓废,于是把这个问题交给了你。

1.3 输入格式

从文件 cows.in 中读入数据。

第一行一个整数 N,描述奶牛的数量。

接下来 N 行,每行 N 个 0/1 字符描述关系矩阵 A。

若 $A_{i,i} = 1$ 表示 i 和 j 是朋友关系。

保证 $A_{i,i} = A_{i,i}$, $A_{i,i} = 0$

1.4 输出格式

输出到文件 cows.out 中。

一行一个整数 Ans, 奶牛最晚发生暴动的时间。

1.5 样例 1 输入

3

011

101

110

1.6 样例 1 输出

8

1.7 样例解释

任何非空集合都是合法的工作集合, 共 7 种。 所以最迟在第 8 天发生暴动。

1.8 样例 2 输入

6

011100

101100

110100

111000

000001

000010

1.9 样例 2 输出

19

1.10 样例 3

见下发文件 cows3.in/cows3.ans

1.11 数据范围和约定

对于 100% 的数据, $N \leq 50$

详细数据范围见下表:

测试点编号	N	特殊性质
1	≤ 9	
2	< 20	无
3		
4		每个奶牛的朋友数量不超过 20
5		四十分 四次数重不起过 20
6		
7	≤ 50	
8		无
9		
10		

2 小 D 的交通

2.1 题目背景

在小 D 所处的岛上有一个神奇的交通运输系统,有着超出奶牛所理解的智慧。

2.2 题目描述

为了解决岛屿上间的交通问题,一种转移技术应运而生,它可以快速传送物体。

具体来说,在小岛上共有N个居民点,标号为1..N。每个居民点上都有一个转移站,为了避免混乱,并不是每对转移站都直接连通,而是遵循一定规律:

首先,一个正数 X 被选择用来确定连通参数。

接下来,对于任意两个居民点 i, j,如果 X + i - 1 与 X + j - 1 的最大公约数不为 1,则居民点 i, j 上的转移站可以直接相互连接。

为了避免孤立,防止恐慌,一个连通参数 X 是优秀的,当且仅当按此种方式连接后,整个小岛中的每一对居民点可以通过转移站直接或间接到达(即居民点连通)。

现在小 D 想考考你,一个可行的优秀的连通参数 X 是多少?

2.3 输入格式

从文件 teleports.in 中读取数据。

一行一个整数 N,描述居名点的个数。

2.4 输出格式

输出到文件 teleports.out 中。

如果不存在一个位数小于等于 100000 的优秀的连通参数 X,输出 "No solution" (不包括引号)。

否则输出任意一个优秀的连通参数 X,不超过 100000 位。

2.5 样例 1 输入

2

2.6 样例 1 输出

No solution

2.7 样例解释

无论 X 取多大,X+1-1 与 X+2-1 一定互质,所以一定不连通。

2.8 样例 2 输入

100

2.9 样例 2 输出

1306976361738009591601284672880050414

2.10 样例 2 解释

可行的解还有很多,这里只是一个例子;

2.11 数据范围和约定

对于 10% 的数据: $N \le 15$;

对于 30% 的数据: N < 40;

对于 50% 的数据: N < 200;

对于 100% 的数据, $1 \le N \le 100000$ 。

3 小 D 的远航

3.1 题目背景

为了在奶牛的暴动前离开这座岛屿, 小 D 造好了一艘船准备远航。

3.2 题目描述

作为一个老司机兼强迫症患者,小 D 造的船严格满足很多规则:它有一个对称轴和一个合适的形状:可以把这个轴看做船的中轴,船的船头、船尾很窄,逐渐向船的内部变宽。(换句话说,在中轴上存在一个不一定是中点的点,从它向船的两侧宽度单调不增)。小 D 喜欢整数,因此船的对称轴一定位于整点处。

不幸的是,小 D 的船停在一个充满礁石的内海,地形非常险恶;同时,小 D 的船非常不灵活,只能向上下左右四个方向航行,且不能转向。

为了驶离内海,小 D 绘制了岛屿的地形图,地形图上标记了障碍、水面和船的当前位置,在航行的过程中,船的任何部位不能碰到障碍(可以相邻)。

在内海上航行非常艰难, 小 D 想要尽快驶离内海, 因此, 他想请你算出驶离内海的最短航程。

内海外面就是海洋、所以可以认为地形图之外的位置都是可以航行的。

船离开了内海,当且仅当船的任何一部分都不在地形图上。

 •			•	•	•	 							•		 	•	•	•	•	•	•	•	•	•		•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•			•	•	•	•	•	•		 •	 •
						 								 	 				•	r									•													•		•											
	rı	r	•			 				. 1	۲.			 	 		.]	r:	r	r	r	r	٠.								r	r	r																						
 r	rı	r	r			 	. 1	n	1	<u></u>	^1	1	٢.	 	 		.]	r	r	r	r	r	•							r	r	r	r	r	r	r								.]	rı	<u></u>	rı	rı	rı	r					
	rı	r	٠.			 				. 1	۲.			 	 		.]	r	r	r	r	r	•										r	r	r									.]	rı	<u></u>	rı	rı	rı	r					
						 								 	 			.]	r	r	r																																		
						 								 	 				•	r																																			

以上前三个是一艘船(第三个是竖着的),后两个不是(第5个没有整点对称轴)。

3.3 输入格式

从文件 sailing.in 中读入数据。

第一行一个整数 N 描述地图的大小。

接下来 N 行,每行 N 个字符描述矩阵 A,表示地形。

 $A_{i,i} = X'$ 表示这一格是障碍。

 $A_{i,j} = '$.' 表示水面。

 $A_{i,j} = r'$ 表示这一格是船的一部分。

保证所有的 'r' 互相连通,且满足题目中船的性质。

3.4 输出格式

输出到文件 sailing.out 中

如果船可以完全离开这片海域,输出离开海域的最小步数,否则输出"NIE"。

3.5 样例 1 输入

3.6 样例 1 输出

10

3.7 样例解释

3.8 样例 2 输入

25 X..XXXXXXXXXXXXX..... X.XXXXXXXXXXXXXX.X..X... X.X.....r...X..X..X.. X.X....xr..X.X.X. X.X....rrr..X..X.... X.X....rrr.X..... X.X...rrrrrrrrX....X.XX.....rrrx.X..X... X......rrrX...... XX.....rrX...... X.....rX...... XX...... XX...... XX...... XX....X... XX...... X....X... X...... XXXX...XXXX......... .XXX...X.X.X....X.X.X... X.X.X.XXXXXX.X..X..X..

3.9 样例 2 输出

42

3.10 样例 3

见下发文件 sailing3.in/sailing3.ans

3.11 数据范围和约定

测试点编号	N	特殊性质									
1	≤ 100										
2		无									
3	≤ 400)L									
4											
5		 保证船的形状是平行于坐标轴的矩形									
6		从配加时////及上月1至你相时////////////////////////////////////									
7		 保证船的形状是与坐标轴成 45° 角的正方形									
8											
9											
10		 数据类似真实的水路地图,海岸线较为平缓									
11		<u> </u>									
12	≤ 2000										
13	2000										
14											
15											
16											
17											
18											
19											
20											