

UNIVERSITY OF GHANA

(All rights reserved)

BACHELOR OF SCIENCE IN ENGINEERING SECOND SEMESTER EXAMINATIONS, 2012/2013 CPEN 206: LINEAR CIRCUITS (3 Credits)

Answer All Questions; TIME: 3 Hours

- 1. (a) When operated at a wavelength of 750nm, a certain Ti:sapphire laser is capable of producing pulses as short as 50 f s, each with an energy content of $500 \mu J$.
 - i. calculate the instantaneous output power of the laser.

[2 marks]

- ii. if the laser is capable of a pulse repetition rate of 80MHz, calculate the maximum average output power that can be achieved. [3 marks]
- (b) An electric vehicle is driven by a single motor rated at 40hp. If the motor is run continuously for 3h at maximum output, calculate the electrical energy consumed. Express your answer in SI units using engineering notation. [3 marks]
- 2. (a) Determine the current labelled I_3 in the circuit of Figure 1.

[4 marks]

Figure 1: Circuit for question 2a

(b) Determine a value for the voltage, v, as labelled in the circuit of Figure 2, and compute the power supplied by the two current sources. [6 marks]

Figure 2: Circuit for question 2b

Page 1 of 4 Examiner : Steven Armoo

- 3. For the circuit of Figure 3, calculate the nodal voltage, v_1 , if the dependent current source, A_1 , is
 - (a) $2i_1$ [5 marks]
 - (b) $2v_1$ [5 marks]

Figure 3: Circuit for question 3

4. For the circuit of Figure 4, using the principle of a supermesh, determine the mesh current i_1 and the power dissipated by the 1Ω resistor. [10 marks]

Figure 4: Circuit for question 4

- 5. (a) Briefly differentiate between a first order circuit and a second order circuit. [2 marks]
 - (b) Show, from first principles, that for a driven RL circuit, the response is given by

$$i = \frac{V_o^{\prime)}}{R} - \frac{V_o}{R}e^{-Rt/L}$$

for all t > 0 and all symbols have their usual meaning

[4 marks]

Page 2 of 4 Examiner: Steven Armoo

- (c) We can safely assume the switch in the circuit of Figure 5 was closed a very long time prior to being thrown open at t = 0.
 - i. determine the circuit time constant [2 marks]
 - ii. obtain an expression for $i_1(t)$ which is valid for t > 0 [3 marks]
 - iii. determine the power dissipated by the 12Ω resistor at t = 500ms [2 marks]

Figure 5: Circuit for question 5c

- 6. (a) Using repeated source transformations, reduce the circuit of Figure 6 to a voltage source in series with a resistor, both of which are in series with the $6M\Omega$ resistor. [7 marks]
 - (b) Calculate the power dissipated by the $6M\Omega$ resistor using your simplified circuit. [2 marks]

Figure 6: Circuit for question 6

7. For the circuit of Figure 7, what value of R_L will ensure it absorbs the maximum possible amount of power? [10 marks]

Figure 7: Circuit for question 7

Examiner: Steven Armoo

- 8. (a) Assuming an ideal op amp, it is required to design the circuit shown in Figure 8 to implement a current amplifier with a gain of $i_L/i_I = 20A/A$.
 - i. find the required value for R

[5 marks]

ii. if $R_L = 1k\Omega$ and the op amp operates in an ideal manner so long as v_o ranges from +12V to -12V. What range of i_I is possible? [5 marks]

Figure 8: Circuit for question 8a

(b) In the circuit of Figure 9, use the principle of superposition to find the output voltage, v_o , in terms of v_1 and v_2 . [10 marks]

Figure 9: Circuit for question 8b

(c) Assuming in the circuit of Figure 9, the $1k\Omega$ resistor is disconnected from ground and connected to a third signal source, v_3 , use the principle of superposition to determine v_o in terms of v_1 , v_2 and v_3 .

Page 4 of 4

Examiner: Steven Armoo