

CLAIM AMENDMENTS

1. (Original)

An organic electroluminescence element material comprising a metal complex provided with a ligand represented by Formula (1),

Formula (1)

wherein, X_1 , X_2 , X_3 and X_4 are each independently a carbon atom or a nitrogen atom; C_1 and C_2 are carbon atoms; Z_1 in conjunction with C_1 , X_1 and X_3 , and Z_2 in conjunction with C_2 , X_2 and X_4 , are each an atomic group which forms an aromatic hydrocarbon ring or an aromatic heterocyclic ring, respectively; A_1 is a nitrogen atom or a boron atom; R_1 is a substituent group; and a bond between C_1 and X_1 , a bond between C_2 and X_2 , a bond between X_1 and X_3 , and a bond between X_2 and X_4 , are a single bond or a double bond.

2. (Original)

The organic electroluminescence element material of claim 1, wherein R_1 of Formula (1) is an aromatic hydrocarbon ring or an aromatic heterocyclic ring.

3. (Original)

An organic electroluminescence element material comprising a metal complex provided with a partial structure represented by Formula (2),

Formula (2)

wherein, C_3 , C_4 , C_5 , C_6 , and C_7 are each independently a carbon atom or a nitrogen atom; Z_3 in conjunction with C_3 , C_4 and C_5 is an atomic group which forms an aromatic hydrocarbon ring or an aromatic heterocyclic ring; Z_4 in conjunction with C_6 , C_7 and N is an atomic group which forms an aromatic heterocyclic ring; A_2 is a nitrogen atom or a boron atom; R_2 is a substituent group; M_{11} is an element of the 8th to 10th groups of the periodic table; and a bond between C_3 and C_4 , a bond between C_4 and C_5 , a bond between C_6 and C_7 , and a bond between C_7 and N , are a single bond or a double bond.

4. (Original)

The organic electroluminescence element material of claim 3, wherein R_2 of Formula (2) is an aromatic hydrocarbon ring or an aromatic heterocyclic ring.

5. (Original)

The organic electroluminescence element material of claim 3, wherein the metal complex is provided with a partial structure represented by Formula (3) or a tautomer thereof,

Formula (3)

wherein A₃ is a nitrogen atom or a boron atom, R₃ is a substituent group, R₄ and R₅ are substituent groups, n1 and n2 are each 0, 1 or 2, and M₁₂ is an element of the 8th to 10th groups of the periodic table.

6. (Currently Amended)

The organic electroluminescence element material of claim 3, wherein M₁₁ or M₁₂ is iridium.

7. (Currently Amended)

The organic electroluminescence element material of claim 4, wherein M₁₁ or M₁₂ is iridium.

8. (Currently Amended)

The organic electroluminescence element material of claim 5, wherein M₁₁ or M₁₂ is iridium.

9. (Currently Amended)

The organic electroluminescence element material of claim 3, wherein M_{11} or M_{12} is platinum.

10. (Currently Amended)

The organic electroluminescence element material of claim 4, wherein M_{11} or M_{12} is platinum.

11. (Currently Amended)

The organic electroluminescence element material of claim 5, wherein M_{11} or M_{12} is platinum.

12. (Original)

An organic electroluminescence element comprising the organic electroluminescence element material of claim 1.

13. (Original)

The organic electroluminescence element of claim 12, wherein the element is provided with at least one emission layer as a constituent layer.

14. (Original)

The organic electroluminescence element of claim 12, wherein the element is provided with at least one emission layer and one positive hole inhibition layer, serving as constituent layers.

15. (Original)

A display device comprising the organic
electroluminescence element of claim 12.

16. (Original)

An illumination device comprising the organic
electroluminescence element of claim 12.