Modelo Relacional

- Temas:
 - Conceptos Generales.
 - Restricciones de Integridad.
 - Creación y Modificación de Relaciones.
 - Algebra Relacional.
 - Cálculo Relacional.
 - SQL.

Fundamentos de Bases de Datos

Modelo Relacional y Algebra Relacional

Tema 3. Modelo Relacional 1

Modelo Relacional

- Referencia:
 - Capítulos 7, 8 y 9 del [EN].

Fundamentos de Bases de Datos

Modelo Relacional y Algebra Relacional

- Es un Modelo de Datos Lógico.
 - Se usa como Modelo implementado por DBMS.
- Creado por Codd en 1970.
 - Se comenzó con una definición teórica.
 - Se proponía un modelo con fuertes elementos matemáticos para BDs.
- Actualmente : modelo lógico dominante.
 - Los DBMS Relacionales son la enorme mayoria.

Fundamentos de Bases de Datos

Modelo Relacional v Algebra Relacional

3

Conceptos Generales

- Vision Informal del Modelo.
 - Las estructuras consisten en TABLAS,
 - cuyas columnas corresponden a ATRIBUTOS de tipo atómico.
 - y las filas corresponden a registros de datos.
 - Las operaciones están fundamentalmente orientadas a manejo de TABLAS, como conjuntos de registros.
 - Es un modelo de datos extremadamente simple y claro, que también ha resultado potente para la mayor parte de las aplicaciones de BDs.

Fundamentos de Bases de Datos

Modelo Relacional v Algebra Relacional

- Dominio D.
 - Es un conjunto de valores atómicos.

Fundamentos de Bases de Datos

Modelo Relacional y Algebra Relacional

5

Conceptos Generales

- Esquema de relacion R(A₁,...,A_n).
 - R es el nombre de relación.
 - $A_1,...,A_n$ son los *atributos* con dominios $D_1,...,D_n$.

Fundamentos de Bases de Datos

Modelo Relacional y Algebra Relacional

- · Relación r(R).
 - Es una instancia de un esquema de relación R.
 - Consiste en un conjunto de t-uplas (o tuplas)
 - $r = \{ \langle a_1, ..., a_n \rangle, \langle b_1, ..., b_n \rangle, \langle c_1, ..., c_n \rangle, \}$
 - También puede interpretarse a r como:
 - $r(R) \subseteq (D_1 \times ... \times D_n)$

Fundamentos de Bases de Datos

Modelo Relacional y Algebra Relacional

7

Conceptos generales

- Tupla:
 - La instancia de un esquema de relación es un conjunto de Tuplas:
 - Esq: ESTUDIANTES(CI, nombre, dir)
 - Inst: {<1.876.543,"Juan","Bvar Artigas 1232">,<...>}
 - Una tupla es un elemento de un producto cartesiano de N dominios.
 - Puede verse como un "array":
 - <1.876.543,"Juan",Bvar Artigas 1232">[1]=1.876.543
 - Función del nombre de los atributos en el contenido:
 t:{CI,nombre,dir}→Nro ∪ Strings
 - <1.876.543,"Juan",Bvar Artigas 1232">(CI)=1.876.543

Fundamentos de Bases de Datos

Modelo Relacional y Algebra Relacional

- Esquema de BD Relacional o Esquema Relacional:
 - Conjunto de esquemas de relación.

Fundamentos de Bases de Datos

Modelo Relacional y Algebra Relacional

Ç

Ejemplo

EMPLEADO(Nombre, Apellido, NSS, FechaN, Direccion, Sexo, Salario, NSSSuper, ND)

DEPARTAMENTO(Nombre, NumeroD, NSSGTE, Fechal nicGte)

LugaresDeptos(NumeroD, Lugard)

PROYECTO(Nombre, NumeroP, LugarP, NumD)

Trabaja_En(NSSE, NumP, Horas)

Fundamentos de Bases de Datos

Modelo Relacional y Algebra Relacional

Ejemplo de instancia de BD Relacional

Fabricantes que Venden Productos:

FABS			
#f	Nombre	Direcc	
1	Juan	d1	
2	Pedro	d2.	
4 5 6	Maria	d3	
5	Ana	d2	
6	Pedro	d4.	
9	Pepe	d5	
10	Laura	d4	
13	Maria	d3.	
15	Pedro	d1	
16	Oscar	d3	
19	Juan	d4	

PRODS				
#p	desc			
1	t1			
<u>2</u> 3	t2			
3	t3			
5	t2			
6	t3			
7	t4			
9	t2			
10	t1			
11	t3			
12	t2			
15	t3			

VENTAS				
#f	#p	precio		
1	1	100		
1	3	200		
1	3	300		
1	10	1000		
1	11	1100		
1 2 2 2 5 5	3	350		
2	6	600		
2	7 3 5	700		
5	3	350		
5		200		
9	7	100		
9	3	300		
10	3	400		

Fundamentos de Bases de Datos

Modelo Relacional y Algebra Relacional

1

Características de Relaciones

- Es un conjunto de tuplas:
 - No está ordenado.
 - No hay repetidos.
- Valores de Atributos en tuplas:
 - Son valores atómicos (indivisibles).
 - Propiedad: primera forma normal.
- Atributos ordenados o no ?
 - Visión "producto cartesiano": SI.
 - Visión "tuplas como funciones": NO .
 - t:R → D1 U ... U Dn

Fundamentos de Bases de Datos

Modelo Relacional y Algebra Relacional

- Restricciones de Dominios.
 - Restricciones de tipo en los Di.

Fundamentos de Bases de Datos

Modelo Relacional y Algebra Relacional

13

RI en el Modelo Relacional

- Superclave
 - Dado R(A₁,...,A_n), se dice que X ⊆ {A₁,...,A_n} es superclave en un esquema R, si no puede existir ninguna r(R) tal que tenga dos tuplas con valores iguales de X (t[X] = t`[X]).

Fundamentos de Bases de Datos

Modelo Relacional y Algebra Relacional

- · Clave.
 - Una clave es una superclave que no contiene propiamente una superclave (o sea minimal).

Fundamentos de Bases de Datos

Modelo Relacional y Algebra Relacional

15

RI en el Modelo Relacional

- Foreign Keys.
 - Dado R, un conjunto de atributos X es una FK de R si:
 - Los atributos de X coinciden en dominio con los de una clave Y de S.
 - Los valores de X en tuplas de r(R) (para toda r) corresponden a valores de Y en la relación s(S).

Fundamentos de Bases de Datos

Modelo Relacional y Algebra Relacional

- Integridad Referencial
 - Se dice que existe una RI Referencial entre R y S, donde R referencia a S.
 - Es otra forma de decir que en R hay una foreign key sobre S.

Fundamentos de Bases de Datos

Modelo Relacional y Algebra Relacional

17

RI en el Modelo Relacional

- Ejemplo de RI Referenciales:
 - Departamento.NSSGTE FK Empleado.NSS
 - Empleado.NSSSuper FK Empleado.NSS
 - Proyecto.NumeroD FK Departamento.NumeroD

EMPLEADO(Nombre, Apellido, <u>NSS</u>, FechaN, Direccion, Sexo, Salario, NSSSuper, ND)

 ${\tt DEPARTAMENTO}(Nombre, \underline{NumeroD}, {\tt NSSGTE}, FechalnicGte\)$

LugaresDeptos(NumeroD, Lugard)

PROYECTO(Nombre, NumeroP, LugarP, NumD)

Trabaja_En(NSSE, NumP, Horas)

Fundamentos de Bases de Datos

Modelo Relacional y Algebra Relacional

- Una BD se considera válida si:
 - Todas las relaciones r satisfacen las RIs.

Fundamentos de Bases de Datos

Modelo Relacional y Algebra Relacional

19

RI en el Modelo Relacional

- Propiedades importantes:
 - · Las RI surgen de:
 - La observación de la realidad.
 - NO de la observación de relaciones.
 - Las RI se definen a nivel de:
 - ESQUEMA RELACIÓN
 - NO a nivel de instancia.
 - Las RI son violadas por:
 - relaciones (instancias).
 - NO por esquemas de relación.

Fundamentos de Bases de Datos

Modelo Relacional y Algebra Relacional

Operaciones de modificación

Insert.

Sea R(A,B,C) y r(R), insert <a,b,c> into R Incluye la tupla <a,b,c> en la relación r.

Las tuplas insertadas deben cumplir las RI.

Fundamentos de Bases de Datos

Modelo Relacional y Algebra Relacional

21

Operaciones de modificación

Delete.

Sea R(A,B,C) y r(R),

Delete from R where < cond>

borra de las tuplas de r cumplen la condiciçon <cond>

- Borrar tuplas puede generar violaciones a RI,
 - ¿En qué casos ?

Fundamentos de Bases de Datos

Modelo Relacional y Algebra Relacional

วว

Operaciones de modificación

- Update.
 - Sea R(A,B,C) y r(R),
 update R set atributo =<valor>,... where <cond>
 modifica las tuplas de r que cumplen la condición <cond>.
 - Actualizar tuplas puede generar violaciones a RI,
 - ¿En qué casos ?

Fundamentos de Bases de Datos

Modelo Relacional y Algebra Relacional

23

El Algebra Relacional

- Visión General:
 - Conjunto de operadores para consultar BD-Rs.
 - Define conjunto de ops estándar en BD-Rs.
- Operadores que reciben relaciones y devuelven relaciones:
 - Sobre conjuntos de tuplas:
 - Unión, Diferencia, Producto Cartesiano.
 - Específicos para BDs Rel.
 - Selección, Proyección, Join.

Fundamentos de Bases de Datos

Modelo Relacional y Algebra Relacional

El Algebra Relacional

- Sintaxis
 - Qué símbolos se utilizan para cada operador y qué parámetros recibe.
- Semántica
 - ¿Cuál es el esquema del resultado?.
 - → ¿Cuál es la instancia del resultado?.
 - ¿Qué condiciones se deben cumplir para que se pueda aplicar el operador?.

Fundamentos de Bases de Datos

Modelo Relacional v Algebra Relacional

25

Algebra Relacional - Selección

- Descripción General:
 - Permite obtener las tuplas que cumplen una cierta condición.
- Sintaxis:

σ_{<condicion>} (<relacion>)

- donde:
 - Condición es una condición lógica sobre valores de los atributos de las tuplas resultado.
 - Relación es una relación o expresión relacional.

Fundamentos de Bases de Datos

Modelo Relacional v Algebra Relaciona

Algebra Relacional - Selección

- Selección(σ)
 - Sea R una relación y θ una condición.

$$\sigma_{\theta}(R)$$

- da como resultado otra relación
 - con esquema igual que el de R
 - con instancia el conjunto de tuplas de la instancia de R que cumplen con θ.

Fundamentos de Bases de Datos

Modelo Relacional y Algebra Relacional

27

Algebra Relacional - Selección

- Ejemplos:
 - $\sigma_{ND=4}$ (EMPLEADO)
 - σ_{Salario>3000} (EMPLEADO)
 - σ_{ND=4 and Salario>3000} (EMPLEADO)
 - * σ_{not (ND=4 and Salario >3000)} (EMPLEADO)

Fundamentos de Bases de Datos

Modelo Relacional y Algebra Relacional

Algebra Relacional - Proyección

- Descripción General:
 - Permite obtener las tuplas con un cierto conjunto de atributos.
- Sintaxis:

$$\Pi_{\text{}}$$
 ()

- donde:
 - Lista_atributos es una lista de atributos a aparecer en la relación resultado.
 - * Relación es una relación o expresión relacional.

Fundamentos de Bases de Datos

Modelo Relacional y Algebra Relacional

29

Algebra Relacional - Proyección

- Proyección (Π).
 - Sea R una relación.

$$\Pi_{A1,...,An}(R)$$

- da como resultado otra relación:
 - con esquema (A1,...,An)
 - con tuplas formadas a partir de las de R, tomando los valores para los atributos A1,...,An.
- Observación:
 - Como no se admiten tuplas repetidas, al realizar una proyección, podrían quedar menos tuplas que en la relación de partida.

Fundamentos de Bases de Datos

Modelo Relacional v Algebra Relaciona

Algebra Relacional - Proyección

- Ejemplos:
 - 1) Π nombre, dirección (FABS)
 - 2). Π_{desc} (PRODS)
 - 3). $\Pi_{\#}$ (VENTAS)

Fundamentos de Bases de Datos

Modelo Relacional y Algebra Relacional

31

Algebra Relacional - Unión

- Descripción General:
 - Permite obtener la Unión de dos relaciones tomadas como conjuntos de tuplas.
- Sintaxis:

(<relacion>) U (<relacion>)

- donde:
 - relación es una relación o expresión relacional.

Fundamentos de Bases de Datos

Modelo Relacional y Algebra Relacional

Algebra Relacional - Unión

- Unión:
 - Sean R y S dos relaciones con igual esquema (o compatible).
 - La operación:

$$(R \cup S)$$

- da como resultado otra relación:
 - cuyo esquema es igual al de R (y S),
 - y que tiene como conjunto de tuplas a la unión de las de R y las de S.

Fundamentos de Bases de Datos

Modelo Relacional y Algebra Relacional

33

Algebra Relacional - Diferencia

- Descripción General:
 - Permite obtener la Diferencia de dos relaciones tomadas como conjuntos de tuplas.
- Sintaxis:

- donde:
 - Relación es una relación o expresión relacional.

Fundamentos de Bases de Datos

Modelo Relacional y Algebra Relacional

Algebra Relacional - Diferencia

- Diferencia:
 - Sean R y S dos relaciones con igual esquema (o compatible).
 - La operación:

$$(R - S)$$

- da como resultado otra relación:
 - cuyo esquema es igual al de R (y S),
 - y que tiene como conjunto de tuplas a la resta de las de R menos las de S.

Fundamentos de Bases de Datos

Modelo Relacional v Algebra Relacional

35

Algebra Relacional - Producto Cartesiano

- Descripción General:
 - Permite obtener el Producto Cartesiano de dos relaciones tomadas como conjuntos de tuplas.
- Sintaxis:

- donde:
 - Relación es una relación o expresión relacional.

Fundamentos de Bases de Datos

Modelo Relacional y Algebra Relacional

Algebra Relacional - Producto Cartesiano

- Producto Cartesiano:
 - Sean R y S dos relaciones con esquemas (A1,...,An) y (B1,...,Bm) respectivamente.
 - La operación:

 $R \times S$

- da como resultado:
 - otra relacion cuyo esquema es
 - (A1,...,An,B1,...,Bm)
 - y cuyas tuplas son generadas por todas las combinaciones posibles de las de R con las de S.

Fundamentos de Bases de Datos

Modelo Relacional y Algebra Relacional

37

Algebra Relacional - Producto Cartesiano

- Ejemplos:
 - $\sigma_{\text{#p<3}}$ (PRODS) x $\sigma_{\text{#p<3}}$ (VENTAS) da como resultado:

<u>#p</u>	desc	#f	#p	<u>precio</u>
1	t1	1	1	100
1	t1	1	2	200
2	t2	1	1	100
2	t2	1	2	200

 Este operador permite combinar las tuplas de dos tablas.

Fundamentos de Bases de Datos

Modelo Relacional y Algebra Relacional

Ejemplo

- Ejemplo:
 - $\Pi_{\$2,\$3,\$4,\$5}$ ($\sigma_{\$1<3}$ (PRODS) x $\sigma_{\$2<3}$ (VENTAS))
 - da como resultado:

desc	#f	#p	precio
t1	1	1	100
t1	1	2	200
t2	1	1	100
t2	1	2	200

 La notación de atributos numerados también puede ser usada en la selección.

Fundamentos de Bases de Datos

Modelo Relacional y Algebra Relacional

39

Operadores Derivados

- Los operadores presentados antes:
 - son los básicos del Álgebra Relacional.
- Se definen otros que:
 - se pueden expresar en función de los básicos,
 - pero que expresan operaciones importantes dado que se usan habitualmente.
- Estos operadores son:
 - Join:
 - Permite expresar la combinación de tablas.
 - División:
 - Permite obtener los datos que se relacionan con todos los elementos de otro conjunto.

Fundamentos de Bases de Datos

Modelo Relacional y Algebra Relacional

Algebra Relacional - Join

- Descripción General:
 - Permite combinar tuplas de dos relaciones a través de una condición sobre los atributos.
 - Corresponde a una selección sobre el Prod. Cartesiano de las relaciones.
- Sintaxis:

Fundamentos de Bases de Datos

Modelo Relacional v Algebra Relacional

41

Algebra Relacional - Θ-Join

- Θ–Join.
 - Sean R y S dos relaciones, la operación

$$R ><|_{condición} S$$

• es equivalente a realizar :

$$\sigma_{\text{condicion}}$$
 (R x S)

Fundamentos de Bases de Datos

Modelo Relacional v Algebra Relacional

Algebra Relacional - Join

Natural

- Join Natural.
 - Sean R y S dos relaciones, la operación

R * S

- es equivalente a realizar el:
 - θ-Join con la condicion de igualdad entre los atributos de igual nombre y luego proyectar eliminando columnas con nombre repetido.

Fundamentos de Bases de Datos

Modelo Relacional y Algebra Relacional

43

Algebra Relacional - Join

- ¿Cómo se ejecuta el Join?
 - Cuando se realiza un Join entre dos relaciones (R y S), cada vez que una tupla de R y otra de S cumplen la condición del join, se genera una tupla en el resultado.
 - Para que se genere una tupla en el resultado alcanza con que exista una tupla en R y otra en S que se "conecten" por la condición del Join.

Fundamentos de Bases de Datos

Modelo Relacional y Algebra Relacional

Algebra Relacional - Join

Natural

- Ejemplos:
 - 1). Dar los nombres de fabricantes y la descripción de los productos que vende.
 - * $\Pi_{\text{nombre,desc}}$ ((FABS * VENTAS) * PRODS)
 - 2). Dar descripción y precio de productos vendidos por Juan.
 - * $\Pi_{\text{desc,precio}}$ (($\sigma_{\text{nombre='Juan'}}$ (FABS) * VENTAS) * PRODS)

Fundamentos de Bases de Datos

Modelo Relacional v Algebra Relacional

45

Algebra Relacional - Join

- Por ejemplo:
 - Cuando se consulta el nombre y descripción de producto tal que el fabricante vende ese producto,
 - alcanza con que el fabricante venda un producto para que este en la solución.
 - Si vende varios productos, se obtendrán varias tuplas en la solución.

Fundamentos de Bases de Datos

Modelo Relacional y Algebra Relacional

Algebra Relacional - División

- División.
 - Sean R y S dos relaciones con esquemas
 - (A1,...,An,B1,...,Bm) y (B1,...,Bm) respectivamente.
 - La operación

$$R \div S$$

- da como resultado otra relación con esquema (A1,...,An)
- y su contenido son:
 - las tuplas tomadas a partir de las de r(R) tales que su valor (a1,...,an) está asociado en r(R) con TODOS los valores (b1,...,bm) que están en s(S).

Fundamentos de Bases de Datos

Modelo Relacional y Algebra Relacional

47

Algebra Relacional - División

- Por ejemplo:
 - Sean R y S,
 - y Q = R ÷ S

Fundamentos de Bases de Datos

Modelo Relacional y Algebra Relacional

Algebra Relacional - División

- Observación:
 - Las tuplas solución deben estar relacionadas con todos los valores de S, pero NO se exige que lo este solo con esos valores. Pueden estar relacionadas con otros valores.
- Ejemplo:
 - Dar los #p vendidos por todos los fabricantes.

Result =
$$\Pi_{\text{#p,#f}}$$
 (VENTAS) ÷ $\Pi_{\text{#f}}$ (FABS)

Fundamentos de Bases de Datos

Modelo Relacional v Algebra Relacional

49

Ejemplos

- Ejemplo1.
 - Dar los #p vendidos por todos los fabricantes que venden algún producto.
 - $\Pi_{\text{\#p,\#f}}$ (VENTAS) ÷ $\Pi_{\text{\#f}}$ (VENTAS)
- Ejemplo 2.
 - Dar los #f que venden todos los productos vendidos por algún fabricante.
 - $\Pi_{\text{#f,\#p}}$ (VENTAS) ÷ $\Pi_{\text{#p}}$ (VENTAS)

Fundamentos de Bases de Datos

Modelo Relacional v Algebra Relaciona

Ejemplos

- Ejemplo 3.
 - Dar los #f que venden todos los productos con descripción "t1".
 - * A = $\Pi_{\text{#f,#p}}$ (VENTAS) $\div \Pi_{\text{#p}}$ ($\sigma_{\text{desc="t1"}}$ (PRODS))
- Ejemplo 4.
 - Dar nombre y dirección de fabricantes que venden todos los productos con descripción "t1".
 - Π_{nombre. direc} (FABS * A)

Fundamentos de Bases de Datos

Modelo Relacional y Algebra Relacional

51

Algebra Relacional - División

- La división en función de operadores base.
 - Sea:
 - $T(X) = R(X,Y) \div S(Y)$.
 - T1 = $\Pi_{\rm x}$ (R).
 - Valores base a incluir en el resultado.
 - T2 = Π_X ((T1 x S) R)
 - Tuplas de R a las que les falta relacionarse en R con algún elemento de S.
 - Lo que NO se quiere en el resultado.
 - T = T1 T2

Fundamentos de Bases de Datos

Modelo Relacional v Algebra Relaciona