Math 212, Lecture Notes Several Complex Variables Professor: Maciej Zworski, Fall 2021

Scribe: Vishal Raman

Contents

1	Lecture 1: 4/26/2021	3
	1.1 Review of 1D Complex Analysis	3

§1 Lecture 1: 4/26/2021

§1.1 Review of 1D Complex Analysis

Definition 1.1 (Holomorphic). Let $D \subset \mathbb{C}$ be an open connected domain and take $u \in C^1(D)$. The function u is **holomorphic** if $\partial_{\overline{z}}u = 0$ where $\partial_{\overline{z}} = (\partial_x + i\partial_y)$.

We also have the equivalent conditions that

$$u \in \operatorname{Hol}(D) \Leftrightarrow \partial_{\overline{z}} = 0 \Leftrightarrow \lim_{h \to 0} \frac{u(z+h) - u(z)}{h}$$
 exists and is continuous.

Fact 1.2 (Green's Theorem). For $\Omega \subset \mathbb{C}$, $\partial \Omega \in C^1$, we have

$$\int_{\partial \Omega} u \, dz = \iint_{\Omega} \partial_{\overline{z}} u \, d\overline{z} \wedge dz.$$

Theorem 1.3 (Cauchy-Pompieu Formula)

Let $u \in C^1(\overline{\Omega})$. For all $\zeta \in \Omega$,

$$u(\zeta) = \frac{1}{2\pi i} \left(\int_{\partial \Omega} \frac{u(z)}{z - \zeta} \, dz + \iint_{\Omega} \frac{\partial_{\overline{z}} u(z)}{z - \zeta} \, dz \wedge d\overline{z} \right)$$

Proof. Let $\Omega_{\varepsilon} = \Omega \setminus \overline{D(\zeta, \epsilon)}$, where $0 < \epsilon << 1$. Applying Green's Theorem to $w(z) = \frac{u(z)}{z-\zeta} \in C^1(\overline{\Omega_{\varepsilon}})$ and noting that $\partial_{\overline{z}} w = \frac{\partial_{\overline{z}} u(z)}{z-\zeta}$, we have

$$\iint_{\Omega_{\varepsilon}} \frac{\partial_{\overline{z}} u(z)}{z - \zeta} d\overline{z} \wedge dz = \int_{\partial \Omega} \frac{u(z)}{z - \zeta} dz - \int_{\partial D(\zeta, \epsilon)} \frac{u(z)}{z - \zeta} dz.$$

The left-hand side converges to $\iint_{\Omega} \frac{\partial_{\overline{z}} u(z)}{z-\zeta} d\overline{z} \wedge dz$ by the dominated convergence theorem. Parameterizing the disc via polar coordinates, we can write

$$\int_{\partial D(\zeta,\epsilon)} \frac{u(z)}{z-\zeta} dz = \int_0^{2\pi} u(\zeta + \epsilon e^{i\theta}) d\theta \to 2\pi i u(\zeta).$$

The desired formula follows from rearranging the terms upon taking the limit as $\epsilon \to 0$.

Remark 1.4. We also have a partial converse: let $\varphi \in C_c^k(\mathbb{C})$ with $k \geq 1$ and $u(z) = \iint \frac{\varphi(z)}{z-\zeta} dz \wedge d\overline{z}$. Then $u \in C^k(\mathbb{C})$ and $\partial_{\overline{z}} u = \varphi$.

Some other notable corollaries that follow from Cauchy's Theorem:

- $u \in \operatorname{Hol}(D) \Rightarrow u \in C^{\infty}(D)$.
- For all $K \in \Omega \in D$, k, there exists C such that for all $u \in \text{Hol}(D)$, we have

$$\sup_{K} |u^{(j)}(z)| \le C ||u||_{L^{1}(\Omega)}.$$

• $u_j \in \text{Hol}(D), u_j \to u$ uniformly on bounded sets, then $u \in \text{Hol}(D)$.