

Question 1 (a)

I	ect primitive	• Corr
Marks	Criteria	

Question 1 (b)

I	Coitect answer
Marks	Criteria

Question 1 (c)

Marks	Criteria	
3	Correct solution	
7	btains $x = 3$, -2 , or equivalent merit tempts to obtain $x + 6 = x^2$, or equivalent merit	
I		

Question 1 (d)

Marks	Criteria	
3	Correct solution	•
7	Makes substantial progress	•
I	Recognises an appropriate method	•

Question 1 (e)

Criteria	Marks
Correct solution	3
• Correct primitive in terms of <i>u</i> , or equivalent merit	2
• Obtains $-(1-u)\sqrt{u}$ as the integrand, or equivalent merit	1

Question 1 (f)

Criteria	Marks
Correct answer	1

Question 2 (a)

Criteria	Marks
Correct solution	2
• Uses the identity $\sin^2 x = \frac{1 - \cos 2x}{2}$, or equivalent merit	1

Question 2 (b) (i)

Criteria		Marks	
• Co	orrect solution	1	

Question 2 (b) (ii)

Criteria	Marks
Correct solution	2
• Attempts to solve $20 = 36 - 35.5e^{-10k}$	1

Question 2 (b) (iii)

I	Criteria	Marks
Ī	Correct answer	1

-2-

2010 HSC Mathematics Extension 1 Mapping Grid

Question Marks Content Syllabus outcomes				
Question	Marks	Content	Synabus outcomes	
5 (a) (ii)	1	5.6E	PE2, PE6	
5 (b) (i)	3	15.5E, 15.4E	HE4, HE5	
5 (b) (ii)	1	4.2, 15.2E, 15.3E	HE4, HE7	
5 (c) (i)	1	2.10	PE2, PE3, HE7	
5 (c) (ii)	1	2.10	PE2, PE3, HE7	
5 (c) (iii)	2	2.10	PE2, PE3, HE7	
6 (a) (i)	1	5.7E	PE2, HE7	
6 (a) (ii)	1	5.7E, 5.9E, 13.1	PE2, HE7	
6 (b) (i)	3	14.3E	HE3, HE7	
6 (b) (ii) (1)	1	14.3E	HE3, HE7	
6 (b) (ii) (2)	1	13.4, 14.3E	HE3, HE7	
6 (b) (iii)	2	13.5	HE3, HE7	
6 (b) (iv)	1	5.7E	HE3, HE7	
6 (b) (v)	2	14.3E	HE3, HE7	
7 (a)	3	7.4E	HE2	
7 (b) (i)	1	17.3E	HE7	
7 (b) (ii)	1	17.3E	HE7	
7 (b) (iii)	2	17.3E	HE7	
7 (c) (i)	1	18.1E	PE2, PE3	
7 (c) (ii)	1	18.1E	PE2, PE3	
7 (c) (iii)	3	18.1E	PE2, PE3	

- 2 -

Question 2 (c) (i)

Marks	Criteria	
7	Correctly finds and b	
I	Shows an understanding of the remainder theorem	

Question 2 (c) (ii)

ect answer		
I I I I I I I I I I I I I I I I I I I	10.7	•

Question 2 (d)

Ţ	Secognises $\frac{dr}{dt} = \frac{dr}{rb} \cdot \frac{dx}{rb} = \frac{dr}{rb} + 36$, or equivalent merit	
7	• Finds $\frac{d\mathbf{r}}{dx}$ in terms of x , or equivalent merit	
ε	Correct solution	
Marks	Criteria	

Question 3 (a) (i)

Marks	Criteria
I	Correct answer

Question 3 (a) (ii)

	I	Coitect answer	•
5	Marks	Criteria	

Question 3 (b) (i)

Finds x coordinates correctly Finds $f''(x)$ correctly, or equivalent merit Finds $f''(x)$ correctly, or equivalent merit
Finds $f'(x)$ correctly, or equivalent merit

Mathematics Extension 1

2010 HSC Examination Mapping Grid

Syllabus outcomes	Content	Marks	Question
HE4	IS.SE	Ţ	(a)
HE4	12.2E	I	(d) I
ЕН	12.2	ε	(5) [
PE3	I.4E	ε	(b) I
HE4	II.5E	ε	(5) [
HE3	18.2E	I	(f) I
НЕР Н2	13.6E	7	2 (a)
НЕЗ	14.2E	I	(i) (d) 2
НЕЗ	14.2E	7	(ii) (d) 2
нез' нел	14.2E	I	(iii) (d) 2
bE3	16.2E	7	(i) (o) 2
PE3	16.2E	I	(ii) (ɔ) 2
HES	It'IE	ε	(p) 7
DE3	18.1E	I	(i) (s) £
PE3	18.1E	I	(ii) (s) £
сн ,ен	5.21 ,4,01	ε	(i) (d) £
HE4' HE <i>1</i>	IS.IE	I	(ii) (d) £
HE4, H3	15.1E, 12.2, 12.3	7	(iii) (d) £
HE4	12.1E	I	(vi) (d) £
HE4	12.1E	I	(v) (d) £
HE7	16.4E	I	(1) (iv) (d) £
HEZ	16.4E	I	(2) (iv) (d) £
HE3	14.3E	ī	4 (a) (i)
HE3	14.3E	ī	(ii) (s) 4
HE3	14.3E	7	(iii) (s) 4
HE3 HE2 HZ	2.7E, 5.9E, 13.1	ε	(i) (d) t
HE3' HE1' H2	2.7E, 5.9E, 13.1	τ 7	(ii) (d) 4
ьез' ье т ' не <i>л</i>	9.6E, 6.8	£ 3	4 (c) 5 (a) (i)

Question 3 (b) (ii)

Į	Criteria	Marks
Ī	Correct explanation	1

Question 3 (b) (iii)

Criteria	Marks
• Finds $f^{-1}(x) = \sqrt{-\ln x}$	2
Makes some progress by correctly taking logarithms of both sides	1

Question 3 (b) (iv)

Ī	Criteria	Marks
	• Correct answer, ie $0 < x \le 1$	1

Question 3 (b) (v)

Criteria	Marks
Correct graph	1

Question 3 (b) (vi) (1)

Criteria	Marks
Correct solution	1

Question 3 (b) (vi) (2)

Criteria	Marks
Substitutes 0.65 and draws a correct conclusion	1

-4-

2010 HSC Mathematics Extension 1 Marking Guidelines

Question 7 (c) (ii)

	Criteria	
•	Correct explanation	1

Question 7 (c) (iii)

	Criteria	Marks
	Correct solution	3
Ī	• Writes an expression summing from $r = 0$ to n , or equivalent progress	2
	• Determines number of selections for a particular r , or equivalent merit	1

-9-

Question 4 (a) (i)

Correct answer	Marks	Criteria
	I	Coitect answer

Question 4 (a) (ii)

Correct answer	Marks	Criteria	
	I	Correct answer	• Corre

Question 4 (a) (iii)

	Marks	Criteria	
	7	Correct solution	•
ļ	I	Finds that the maximum value occurs at $x = -2$, or equivalent merit	•

Question 4 (b) (i)

Marks	Criteria
ε	Correct answer
7	• Correctly finds either a value for R , or a value for α
Ţ	• Expresses $2\cos\theta + 2\cos\left(\theta + \frac{\pi}{3}\right)$ as $3\cos\theta - \sqrt{3}\sin\theta$,
	or equivalent merit

Question 4 (b) (ii)

Marks	Criteria
7	Correct solution
I	Attempts to solve the equation using the result from part (i), or equivalent merit

Question 4 (c)

I	Finds one piece of relevant information
7	Makes significant progress
ε	• Correct proof
Marks	Criteria

Question 6 (b) (v)

Marks	Criteria	
7	Correct explanation	•
l	Recognises that v^2 is a minimum when $F(heta)$ is a maximum,	•
_	or equivalent merit	

Question 7 (a)

ĺ	Marks	Criteria	
	ε	Correct proof	•
	7	Makes substantial progress	•
	I	Shows the statement is true for $n = 1$, or equivalent merit	•

(i) (d) 7 noitsouQ

Ī	I = x satutitates $x = 1$	•
Marks	Criteria	

(ii) (d) 7 noitsouQ

Correct answer	Marks	Criteria
	I	Correct answer

Question 7 (b) (iii)

Narks 2	Correct solution	٠
Ţ	Differentiates both sides of $(1+x)^n = \binom{n}{0} + \dots + \binom{n}{n} x^n$ correctly,	•
	or equivalent merit	

(i) (a) 7 noiteau D

Marks	Criteria	
I	Correct explanation	•

	Criteria	Marks
•	Correct solution	3
•	Finds relevant expressions for TWO of AP, PT, BP	2
•	Finds a relevant expression for ONE of AP, PT, BP	1

Question 5 (a) (ii)

Criteria	Marks
Correct solution	1

Question 5 (b) (i)

Criteria	Marks
Correct solution	3
• Correctly shows that $f'(x) = 0$, or equivalent merit	2
• Attempts to differentiate $f(x)$, or equivalent merit	1

Question 5 (b) (ii)

Criteria	Marks
Correct graph	1

Question 5 (c) (i)

Criteria	Marks
Correct explanation	1

Question 5 (c) (ii)

Criteria	Marks
Correct explanation	1

Question 5 (c) (iii)

Criteria	Marks
Correct proof	2
• Shows that $\angle TAC = \angle ABD$, or that $\angle XDB = \angle BAD$, or equivalent merit	1

2010 HSC Mathematics Extension 1 Marking Guidelines

Question 6 (a) (i)

Criteria	Marks
Correct solution	1

Question 6 (a) (ii)

Criteria	Marks
Correct deduction	1

Question 6 (b) (i)

Criteria	Marks
Correct solution	3
Makes substantial progress	2
• Uses $(x,y) = (d,h)$ and attempts to eliminate t	1

Question 6 (b) (ii) (1)

Ì	Criteria	Marks
1	Correct answer	1

Question 6 (b) (ii) (2)

Criteria	Marks
Correct answer	1

Question 6 (b) (iii)

	Criteria	Marks
I	Correct solution	2
Ī	• Correctly differentiates $F(\theta)$	1

Question 6 (b) (iv)

Criteria	Marks
Correct solution	1

-6-