Agrisoft

Développement Backend en TypeScript avec Cloud Function pour Google Cloud Platform (GCP)

But

Cet examen vise à évaluer l'agilité d'un développeur backend spécialisé en TypeScript et en développement de Cloud Function pour Google Cloud Platform (GCP). L'évaluation se fera à travers la manipulation de fichiers GeoJSON et la réalisation de recherches géographiques.

Prérequis

Avant de commencer l'examen, assurez-vous d'avoir les éléments suivants :

- Un fichier texte nommé coordonnees.txt joint au courriel.
- Un fichier GeoJSON nommé *plan-culture.geojson* contenant des polygones représentants des zones géographiques et leurs propriétés associées.

Préparer l'environnement d'exécution de l'exercice :

- Un compte Google Cloud Platform avec un projet configuré.
- Le service Cloud Functions activé dans votre projet GCP.
- Le service Cloud Storage configuré dans votre projet GCP.
- Un environnement de développement Node.js et TypeScript configuré.
- Avoir un compte GitHub pour le dépôt du code du projet

Exercice

Configuration du projet Google Cloud Platform

- 1. Création du projet Google Cloud Platform
 - o Connectez-vous à la console Google Cloud Platform.
 - Créez un nouveau projet dans GCP et nommez-le : examen-cloudfunction + « -votre prenom » afin de bien distinguer votre projet des autres candidats.
- 2. Configuration des permissions IAM (Identity and Access Management)
 - Créez un bucket nommé exercice dans Cloud Storage pour stocker les fichiers suivants : coordonnees.txt et plan-culture.geojson.
 - Attribuez les droits d'accès au bucket de Cloud Storage. Plus précisément, accordez uniquement les permissions de lecture et d'écriture sur ce bucket à l'utilisateurs IAM softconceptcanada@gmail.com.

Programmation et déploiement d'une Cloud fonction

Vous devez développer et déployer une Cloud Function en Node.js/TypeScript qui produit le résultat suivant :

Pour chacune des lignes du fichier **coordonnees.txt** dont les coordonnées intersectent avec les géométries du fichier **plan-culture.geojson**, ajouter les propriétés des features collections suivantes : clecomposite, nochamp, culture, variete, nosemi, date_semi.

Le fichier résultant doit se nommer resultat.csv.

Test et Validation

Appelez l'URL de la Cloud Function pour déclencher son exécution et le traitement des données.

Vérifiez que le fichier de sortie au format CSV nommé *resultat.csv* a été correctement généré et sauvegardé dans le bucket *exercice* dans le Cloud Storage.

Dépôt du code dans GitHub

Déposer le projet de développement dans GitHub et donner un accès privé à ce dépôt à **lerobindesbois@icloud.com**.

Critères d'évaluation

Votre travail sera évalué selon les critères suivants :

- Droits d'accès
- La bonne exécution de la Cloud fonction
- Fichier résultant
- Qualité du code dans le dépôt GitHub (repository).

Livrable

Votre courriel du livrable doit contenir :

- 1. Votre nom
- 2. Lien vers GitHub à lerobindesbois@icloud.com
- 3. Lien vers le projet GCP de l'exercice
- 4. Lien de déclenchement de la Cloud Fonction

Délai

Si vous avez des questions sur l'exercice, veuillez les adresser par courriel à Robin Tremblay avant jeudi 27 mars à 18h. La date limite pour la livraison de l'exercice est le vendredi 28 mars 2025 à 18h à l'adresse courriel <u>r.tremblay@agrisoft.ai</u>.

Bon exercice! Agrisoft