Algorytmy optymalizacji dyskretnej, lista 4

Adrian Wilhelmi, 268479

6 stycznia 2025 r.

Zadanie 1

Strutura danych oraz algorytm

Celem zadania jest zaprojektowanie struktury danych reprezetnującej k-wymiarową hiperkostkę jako graf skierowany oraz zaimplementowanie algorytmu Edmondsa-Karpa w celu znalezienia maksymalnego przepływu w tym grafie. Poniżej zaprezentowano zaprojektowaną strukturę.

```
Class Graph:

k - wymiar hiperkostki;

num_nodes - liczba wierzchołków;

num_edges - liczba krawędzi;

adj_list - lista sąsiedztwa;
```

Konstruktor klasy Graph generuje hiperkostkę o podanym wymiarze k zgodnie z treścią zadania oraz w odpowiedni sposób losowo inicializuje wartości maksymalnego przepływu dla każdej krawędzi.

Złożoność czasowa

Zaimplementowano algorytm Edmondsa-Karpa bazujący na metodzie Forda-Fulkersona używając BFS do znajdowania najkrótszej ścieżki powiększającej w grafie rezydualnym. Gwarantuje to złożoność $O(|V||E|^2)$. Z racji, że $|V|=2^k$ oraz $|E|=k2^{k-1}$ otrzymujemy złożoność w zależności od wymiaru kostki k:

$$O(|V||E|^2) = O(2^k \cdot (k2^{k-1})^2) = O(2^k \cdot k^2 \cdot 2^{2k-2}) = O(k^2 \cdot 2^{3k2}) = O(k^2 \cdot 2^k)$$

Wyniki oraz wnioski

Wyniki otrzymane empirycznie przedstawiono na Rysunkach 1, 2 oraz 3. Dla każdego k wykoanno 50 niezależnych powtórzeń eksperymentów i na wykresach zapisano uśrednioną wartość. Wyniki z wykresów 1 oraz 3 potwierdzają eksponencjalny wzrost czasu wykonania algorytmu w zalezności od wymiaru hiperkostki k. Wartość maksymalnego przepływu również wzrasta eksponencjalnie jak widać na Rysunku 2, co ma uzasadnienie biorąc pod uwagę sposób losowania pojemności krawędzi – pojemności są losowane z wykładniczo rosnącego zakresu (2^l) i ponieważ liczba możliwych ścieżek między źródłem a ujściem rośnie również wykładniczo, średnia maksymalna wartość przepływu staje się proporcjonalna do 2^k .

Rysunek 1: Średnia liczba ścieżek powiększających w zależności od wymiaru hiperkostki

Rysunek 2: Średnia wartość maksymalnego przepływu w zależności od wymiaru hiperkostki

Rysunek 3: Średnia liczba ścieżek powiększających w zależności od wymiaru hiperkostki

Zadanie 2

Algorytm Kuhna

Celem zadania jest zbadanie eksperymentalnie wielkości maksymalnego skojarzenia w losowym grafie dwudzielnym $G=(V_1\cup V_2,E)$, o zadanym $|V_1|=|V_2|=2^k$ oraz stopniu wierzchołków i ze zbioru V_1 . Zaimplementowano w tym celu algorytm Kuhna, który używając DFS dla każdego wierzchołka z V_1 szuka połączenia z wierzchołkiem V_2 przepinając ewentualnie wcześniej przypisane połączenia w przypadku kolizji. Z każdym przypisaniem zwiększany jest licznik skojarzeń.

Złożoność czasowa

DFS wywoływany jest na każdym wierzchołku z V_1 . W najgorszym wypadku dla każdego $v \in V_1$ odwiedzony zostanie każdy z jego sąsiadów, co wynosi i. $|V_1| = 2^k$, co daje łącznie złożoność

$$O(i2^k)$$
.

Wyniki oraz wnioski

Na Rysunkach od 4 do 11 obserwowalny jest logarytmiczny wzrost wartości maksymalnego skojarzenia w zależności od stopnia wierzchołków ze zbioru V_1 – intuicyjnie wzrost stopnia ogranicza dostępność wierzchołków z V_2 co skutkuje spowolnionym tempem wzrostu wartości maksymalnego skojarzenia. Na Rysunkach od 12 do 21 zauważyć można eksponencjalny wzrost czasu wykonania algorytmu w zależności od parametru k, co jest zgodne z teoretycznymi obliczeniami.

Zadanie 3

Dla problemów zdefiniowanych w Zadaniach 1 oraz 2 napisano równoważne modele programowania liniowego. Model w pakiecie JuMP z języka Julia zostanie wygenerowany dla programu po włączeniu go z odpowiednią komendą.

Model dla zadania 1

$$G = (V, E)$$
 – wejściowy graf $s \in V$ – źródło $t \in V$ – ujście $x_{i,j}$ – przepływ dla krawędzi (i, j) $c_{i,j}$ – pojemność krawędzi (i, j)

 $x_{i,j}$ jest zmienną decyzyjną. Ograniczenia:

$$(\forall i, j)(c_{i,j} \geqslant x_{i,j} \geqslant 0)$$
$$(\forall i \in V \setminus (\{s, t\}))(\sum_{(i,j) \in E} x_{i,j} = \sum_{(j,i) \in E} x_{j,i})$$

Funkcja celu:

$$\max \sum_{(s,i)\in E} x_{s,i}$$

Model dla zadanie 2

$$G = (V_1 \cup V_2, E)$$
 – wejściowy graf
$$x_{i,j} - \text{Czy krawędź (i, j)} \in E \text{ należy do skojarzenia}$$

 $x_{i,j}$ jest binarną zmienną decyzyjną. Ograniczenia:

$$(\forall i \in V_1)(\sum_{(i,j)\in E} <= 1)$$

$$(\forall j \in V_2)(\sum_{(i,j) \in E} <= 1)$$

Funkcja celu:

$$\max \sum_{(i,j)\in E} x_{i,j}$$

Obserwacje oraz wnioski

Modele LP zwracają te same wartości maksymalnego przepływu oraz wielkości maksymalnego skojarzenia — implikuje to poprawność zaimplementowanych algorytmów oraz modeli. Algorytmy zaimplementowane w C++ znajdują rozwiązania szybciej niż modele LP, co ma sens, ponieważ C++ pozwala na większą kontrole pamięci, a JuMP nie jest zoptymalizowany pod kątem szybkości obliczeń. Rozwiązania zwrócone przez algorytmy napisane w C++ różnią się minimalnie od tych zwracanych przez modele LP, co sugeruje różne podejście w obliczaniu przepływów oraz skojarzeń w grafie.

Rysunek 4: Wielkość maksymalnego skojarzenia w zalezności od i dla k=3

Rysunek 5: Wielkość maksymalnego skojarzenia w zależności od i dla k=4

Rysunek 6: Wielkość maksymalnego skojarzenia w zależności od idla $k=5\,$

Rysunek 7: Wielkość maksymalnego skojarzenia w zależności od i dla k=6

Rysunek 8: Wielkość maksymalnego skojarzenia w zależności od i dla k=7

Rysunek 9: Wielkość maksymalnego skojarzenia w zależności od i dla k=8

Rysunek 10: Wielkość maksymalnego skojarzenia w zależności od idla $k=9\,$

Rysunek 11: Wielkość maksymalnego skojarzenia w zależności od i dla k=10

Rysunek 12: Czas wykonania algorytmu w zależności od idla $k=1\,$

Rysunek 13: Czas wykonania algorytmu w zależności od idla $k=2\,$

Rysunek 14: Czas wykonania algorytmu w zależności od i dla k=3

Rysunek 15: Czas wykonania algorytmu w zależności od idla $k=4\,$

Rysunek 16: Czas wykonania algorytmu w zależności od idla $k=5\,$

Rysunek 17: Czas wykonania algorytmu w zależności od i dla k=6

Rysunek 18: Czas wykonania algorytmu w zależności od idla $k=7\,$

Rysunek 19: Czas wykonania algorytmu w zależności od idla $k=8\,$

Rysunek 20: Czas wykonania algorytmu w zależności od i dla k=9

Rysunek 21: Czas wykonania algorytmu w zależności od idla $k=10\,$