

Department of Pathology and Laboratory Medicine No.201, Sec. 2, Shipai Rd., Beitou District, Taipei City, Taiwan 11217, R.O.C.

Tel: 02-2875-7449

**Date**: 22 Feb 2023 1 of 4

### **Sample Information**

Patient Name: 林徐秀英 Gender: Female ID No.: G200335525 History No.: 6547213

**Age:** 71

Ordering Doctor: DOC4205A 柯博伸

Ordering REQ.: H45N3FC Signing in Date: 2023/02/21

**Path No.:** M112-00032 **MP No.:** MY23009

**Assay:** Oncomine Myeloid Assay **Sample Type:** Bone Marrow

Bone Marrow Aspirating Date: 2023/02/16

Reporting Doctor: DOC5466K 葉奕成 (Phone: 8#5466)

Note:

# Sample Cancer Type: Chronic Myelomonocytic Leukemia

| Table of Contents Page Variants (Exclude variant in Taiwan 2 | Report Highlights 0 Relevant Biomarkers |
|--------------------------------------------------------------|-----------------------------------------|
| BioBank with >1% allele frequency)                           | 0 Therapies Available                   |
| Biomarker Descriptions 2                                     | 0 Clinical Trials                       |

### **Relevant Chronic Myelomonocytic Leukemia Variants**

| Gene  | Finding       |
|-------|---------------|
| ASXL1 | None detected |

## **Relevant Biomarkers**

No clinically significant biomarkers found in this sample.

Prevalent cancer biomarkers without relevant evidence based on included data sources  $CSF3R\ p.(T618I)\ c.1853C>T$ 

### Variants (Exclude variant in Taiwan BioBank with >1% allele frequency)

#### **DNA Sequence Variants** Allele Amino Acid Change Coding Variant ID Variant Effect Coverage Gene Locus Frequency Transcript CSF3R p.(T618I) c.1853C>T COSM1737962 chr1:36933434 41.55% NM\_156039.3 missense 2000 p.([L827=;V828I]) c.2481\_2482delGGin . CSF3R chr1:36932068 38.10% NM\_156039.3 synonymous, 1995 sAA missense CSF3R p.(G825=)c.2475G>A chr1:36932075 38.59% NM\_156039.3 synonymous 1998 CSF3R p.(W818\*) c.2453G>A chr1:36932097 2000 39.45% NM\_156039.3 nonsense

### **Biomarker Descriptions**

### CSF3R (colony stimulating factor 3 receptor)

Background: The CSF3R gene encodes the colony stimulating factor 3 trans-membrane receptor for the granulocyte colony-stimulating factor (G-CSF) ligand. CSF3R is a class I membrane-bound cytokine receptor, which lacks intrinsic kinase activity and therefore must interact with downstream proteins for activation¹. Upon ligand activation, CSF3R activates downstream oncogenic pathways by interacting with intracellular signaling proteins through its cytoplasmic tyrosine residues, including proteins from the JAK/STAT, MAPK/ERK, and PI3K/AKT pathways¹.². Nonsense and frameshift mutations in CSF3R target and truncate its cytoplasmic tail, subsequently impairing the internalization signal of the receptor and leading to an overexpression CSF3R on the cell surface³.4.5. Missense mutations in the proximal membrane lead to increased dimerization of the receptor, independent of G-CSF binding³.4.5. These mutations promote constitutive oncogenic JAK-STAT signaling, and increase granulocyte proliferation and survival signaling of hematopoietic progenitor cells¹.6.

Alterations and prevalence: CSF3R activating mutations are observed in up to 80% of patients with chronic neutrophilic leukemia (CNL), and in up to 59% of patients with atypical chronic myelogenous leukemia (aCML)<sup>3,7</sup>. CSF3R mutations occur in 0.5-1% of adult acute myeloid leukemia (AML) and in 2.4% of pediatric AML<sup>7</sup>. In solid malignancies, CSF3R mutations are observed in up to 5% of uterine carcinosarcoma and skin cutaneous melanoma<sup>8,9</sup>. Somatic mutations identified in CNL and AML include T615A, T618I, and T640N missense mutations, as well as truncating mutations at Q749, Q754, Y767, S783, Y787, and P820<sup>7</sup>. T618I mutation is the most frequent variant observed in CNL<sup>10</sup>.

Potential relevance: CSF3R activating mutations including T618I are a diagnostic criteria for CNL as defined by the World Health Organization (WHO)<sup>11</sup>. Mutations in CSF3R are observed in patients with severe congenital neutropenia, which can progress to AML. CSF3R mutations frequently co-occur with CEBPA, and these co-mutations are associated with unfavorable prognosis in AML<sup>7,12,13</sup>. In independent reports, a CNL patient and an aCML patient with the proximal membrane T618I mutation demonstrated sensitivity to JAK1/2 inhibitor, ruxolitinib<sup>3,14</sup>.

Date: 22 Feb 2023

# **Signatures**

**Testing Personnel:** 

**Laboratory Supervisor:** 

Pathologist:

### References

- Zhang et al. Gain-of-function mutations in granulocyte colony-stimulating factor receptor (CSF3R) reveal distinct mechanisms of CSF3R activation. J. Biol. Chem. 2018 May 11;293(19):7387-7396. PMID: 29572350
- 2. Nicholson et al. Distinct regions of the granulocyte colony-stimulating factor receptor are required for tyrosine phosphorylation of the signaling molecules JAK2, Stat3, and p42, p44MAPK. Blood. 1995 Nov 15;86(10):3698-704. PMID: 7579336
- Maxson et al. Oncogenic CSF3R mutations in chronic neutrophilic leukemia and atypical CML. N. Engl. J. Med. 2013 May 9;368(19):1781-90. PMID: 23656643
- 4. Dong et al. The carboxyl terminus of the granulocyte colony-stimulating factor receptor, truncated in patients with severe congenital neutropenia/acute myeloid leukemia, is required for SH2-containing phosphatase-1 suppression of Stat activation. J. Immunol. 2001 Dec 1;167(11):6447-52. PMID: 11714811
- 5. van et al. G-CSF receptor truncations found in SCN/AML relieve SOCS3-controlled inhibition of STAT5 but leave suppression of STAT3 intact. Blood. 2004 Aug 1;104(3):667-74. PMID: 15069015
- 6. Panopoulos et al. Granulocyte colony-stimulating factor: molecular mechanisms of action during steady state and 'emergency' hematopoiesis. Cytokine. 2008 Jun;42(3):277-88. PMID: 18400509
- 7. Maxson et al. CSF3R mutations have a high degree of overlap with CEBPA mutations in pediatric AML. Blood. 2016 Jun 16;127(24):3094-8. PMID: 27143256
- 8. Weinstein et al. The Cancer Genome Atlas Pan-Cancer analysis project. Nat. Genet. 2013 Oct;45(10):1113-20. PMID: 24071849
- Cerami et al. The cBio cancer genomics portal: an open platform for exploring multidimensional cancer genomics data. Cancer Discov. 2012 May;2(5):401-4. PMID: 22588877
- 10. Pardanani et al. CSF3R T618I is a highly prevalent and specific mutation in chronic neutrophilic leukemia. Leukemia. 2013 Sep;27(9):1870-3. PMID: 23604229
- 11. Arber et al. The 2016 revision to the World Health Organization classification of myeloid neoplasms and acute leukemia. Blood. 2016 May 19;127(20):2391-405. PMID: 27069254
- 12. Dong et al. Mutations in the gene for the granulocyte colony-stimulating-factor receptor in patients with acute myeloid leukemia preceded by severe congenital neutropenia. N. Engl. J. Med. 1995 Aug 24;333(8):487-93. PMID: 7542747
- 13. Su et al. CSF3R mutations were associated with an unfavorable prognosis in patients with acute myeloid leukemia with CEBPA double mutations. Ann. Hematol. 2019 Jul;98(7):1641-1646. PMID: 31041512
- 14. Dao et al. Significant clinical response to JAK1/2 inhibition in a patient with CSF3R-T618l-positive atypical chronic myeloid leukemia. Leuk Res Rep. 2014;3(2):67-9. PMID: 25180155