Consider the "mystery surface":

1) Find $\chi(s)$.

$$\chi(s)$$
 .

1 - 3 + 1 = -1

2) Find a presentation 17, (5).

 $\langle a, b, c \rangle$ ab $c^{-1} = cba$

a) Find X (P2 # T2).

2 - 5 + 2 = -1

b) Find a presentation for T, (P2# T2)

 $\langle b_j c_j d_j f | cb=b^{-1}, dcf=fd$

Find X (K2 # T2).

$$1 - 5 + 2 = -2$$

5)
$$T^2 - D^2$$

$$x_0 \longrightarrow x_0$$

- a) Find $\chi(T^2 D^2)$ 1 3 + 1 = -1
- b) Find a presentation of $\Pi_1(T^2-D^2)$

6) Recall: X and T, are homotopy invariants, and thus also homeomorphism invariants.

That means, from (4), $S \neq K^2 \# T^2$, and $S \neq K^2 \# T^2$.

However, X and TI, don't tell us which spaces are homeomorphic. A cut-and-glue sequence allows us to construct a homeomorphism.

