Vivekananda College of Engineering & Technology, Puttur [A Unit of Vivekananda Vidyavardhaka Sangha: Puttur ®] Affiliated to VTU, Belagavi & Approved by AICTE New Delhi

First Semester B.E Degree Preparatory Examination-April 2022 Calculus & Differential Equations-21MAT11

Duration: 3 hrs Max. Marks:100

Note: Answer 5 full questions choosing 1 full question from each module

Module 1

1a) With usual notation prove that $\tan \phi = r \frac{d \theta}{dr}$

b) Find the pedal equation of the polar curve $r^m = a^m cosm \theta$

c) Find the radius of curvature for $x^3 + y^3 = 3$ axy at the point $(\frac{3a}{2}, \frac{3a}{2})$

OR

2a) Find the angle of intersection of the curves $r^n cosn \theta = a^n \& r^n sinn \theta = b^n$

b) Find the radius of curvature for $x = a \left[cost + log \left(tan \left(\frac{t}{2} \right) \right) \right]$, y = a sint

c)Derive the expression for radius of curvature for $r = f(\theta)$ in polar form

Module 2

3a) Exapand e^{sinx} as the Macalurin's series upto the terms containing x^4

b)Evaluate $\lim_{x\to 0} \left(\frac{\sin x}{x}\right)^{1/x}$

c) If $u = f(\frac{x}{y}, \frac{y}{z}, \frac{z}{x})$, Prove that $x \frac{\partial u}{\partial x} + y \frac{\partial u}{\partial y} + z \frac{\partial u}{\partial z} = 0$

4(a) Find the extreme values of the function $x^3 + 3xy^2 - 15x^2 - 15y^2 + 72x$

b) If u=x+y+z, v=y+z, w=z then evaluate $J=\frac{\partial(u,v,w)}{\partial(x,y,z)}$

c) Find the total derivative of $z=xy^2+x^2y$ where x=at, y=2at

5a) Solve $x^3 \frac{dy}{dx} - x^2 y = -y^4 \cos x$

b)A bottle of mineral water at a room temperature of $72^0\,F$ is kept in a refrigerator where the temperature is 44^0F . After half an hour, water cooled to $61^0\,F$. What is the temperature of the mineral water in another half an hour

c) Solve for p;
$$\frac{dy}{dx} - \frac{dx}{dy} = \frac{x}{y} - \frac{y}{x}$$
OR

6a) Solve:
$$(x^2 + y^2 + x) dx + xy dy = 0$$

b) Show that the family of parabolas $x^2=4a(y+a)$ is self orthogonal

c) Find the general and singular solutions of $xp^2 + xp - yp + 1 - y = 0$

7a)Solve $(D^4-1)y = sinx + 2$

b) Solve: $(D^3+8)y=1+2x+x^4$

c)Solve: $(D^2-2D+1)y = \frac{e^x}{x}$ by variation of parameter OR 8a Solve: $(2x+3)^2y^{11} - 2(2x+3)y^1 - 12y = 6x$

(b) Solve: $x^2y^{11}-3xy^1+4y=(1+x)^2$

c)Solve: $(D^2+3D+2)y = \sinh(2x+3)$

Module 5

9a) Find the rank of the following matrices by elementary row transformations :

 $A = \begin{bmatrix} 0 & 2 & 3 & 4 \\ 2 & 3 & 5 & 4 \\ 4 & 8 & 13 & 12 \end{bmatrix}$

b) Solve by Gauss elimination method :

2x+3y-z=5, 4x+4y-3z=3, 2x-3y+2z=2

c) Find the largest eigen value and the corresponding eigen vector of

 $A = \begin{bmatrix} 2 & 0 & 1 \\ 0 & 2 & 0 \\ 1 & 0 & 2 \end{bmatrix}$ by using the power method

10a) Find for what values of k the system of equations

x+y+z=1x+2y+4z=k $x+4y+10z=k^2$

possess a solution. Solve completely in each case.

b)Apply Gauss-Jordan method to solve the following system of equations $3x_1 + 4x_2 + 5x_3 = 18, 2x_1 - x_2 + 8x_3 = 13, 5x_1 - 2x_2 + 7x_3 = 20$

c)Solve the following system of equations by Gauss-Seidal method : x+y+54z=110,27x+6y-z=85,6x+15y+2z=72