หาทำเลตั้งศูนย์บริการลูกค้า

1 second, 32 megabytes

ร้านคอมพิวเตอร์ K.I.B. ต้องการขยายฐานลูกค้าไปยังเมืองใหม่ โดยเมืองดังกล่าวมีการวางผังเมืองเป็นพื้นที่สี่เหลี่ยม ย่อยจำนวน M imes N พื้นที่ (M แถว N หลัก) และจากการสำรวจสำมะโนประชากรทำให้ทราบจำนวนประชากรใน แต่ละพื้นที่ (ดูภาพประกอบด้านล่าง)

เนื่องจากร้าน K.I.B. ต้องการเปิดศูนย์บริการลูกค้าเพียงร้านเดียวในเมืองนี้ ยิ่งไปกว่านั้นพื้นที่บริการที่ร้านให้บริการ ลูกค้าได้จะครอบคลุมบริเวณที่ประกอบด้วยสี่เหลี่ยมย่อยจำนวน $K \times K$ พื้นที่ (K แถว K หลัก) เท่านั้น ทางร้าน จึงพยายามหาพื้นที่บริการที่ดีที่สุด ซึ่งในที่นี้หมายถึงพื้นที่บริการที่มีประชากรรวมกันมากที่สุด

5	9	2	9	1	2	8	9	1	6
9	1	3	9	8	4	2	1	5	7
2	7	9	3	8	5	2	7	6	8
1	6	2	1	7	7	1	9	4	1
8	5	2	3	9	8	5	6	3	3

ภาพประกอบตัวอย่างโจทย์ แสดงผลการหาทำเลตั้งศูนย์บริการลูกค้าในพื้นที่ขนาด $2\times 2~(K=2)$ ของผังเมืองขนาด 5×10 ซึ่งในที่นี้ บริเวณที่ถูกเน้นคือพื้นที่บริการที่ดีที่สุด

โ**จทย์** จงเขียนโปรแกรมที่มีประสิทธิภาพในการหาจำนวนประชากรรวมในทำเลพื้นที่บริการที่ดีที่สุด

ข้อมูลนำเข้า

บรรทัดแรก ระบุเลขจำนวนเต็มบวกสองตัวบอกจำนวนแถว M และจำนวนหลัก N ตามลำดับ โดยที่ $2 \leq M, N \leq 1\,000$

บรรทัดที่สอง ระบุขนาดพื้นที่บริการของร้าน K โดยที่ 0 < K < M และ 0 < K < N

บรรทัดที่ 3 **ถึง** M+2 ระบุจำนวนประชากรในแถวที่ 1 ถึง M ตามลำดับ ข้อมูลแต่ละบรรทัดประกอบด้วยตัวเลข จำนวนเต็มบวก N จำนวน ซึ่งระบุจำนวนประชากรของพื้นที่สี่เหลี่ยมย่อย N หลัก เรียงจากซ้ายไปขวาในแถวนั้น ๆ แต่ละจำนวนถูกคั่นด้วยช่องว่าง โดยประชากรในแต่ละพื้นที่สี่เหลี่ยมย่อยมีจำนวนไม่เกิน 2 000 คน

programming .in.th

ข้อมูลส่งออก

มีบรรทัดเดียว ระบุจำนวนประชากรภายในพื้นที่บริการที่ดีที่สุด

ตัวอย่างข้อมูลนำเข้าและข้อมูลส่งออก

ตัวอย่างข้อมูลนำเข้า	ตัวอย่างข้อมูลส่งออก			
5 10	31			
2				
5 9 2 9 1 2 8 9 1 6				
9 1 3 9 8 4 2 1 5 7				
2 7 9 3 8 5 2 7 6 8				
1 6 2 1 7 7 1 9 4 1				
8 5 2 3 9 8 5 6 3 3				
6 4	55			
3				
7 8 5 1				
0 3 5 2				
3 3 2 9				
9 7 8 9				
4 3 5 9				
8 6 5 2				

แหล่งที่มา

การแข่งขันคอมพิวเตอร์โอลิมปิกระดับชาติครั้งที่ 8 (SUTOI8)