Tolga Tel

27.06.2019

1 Heaps

Heaps

•00000

- Binäre Suchbäume
- 3 AVL-Bäume
- 4 a, b-Bäume

Heaps

- Binärbaum mit Heapstruktur
 - jeder Knoten der Tiefe höchstens t-2 hat genau zwei Kinder
 - wenn ein Knoten v der Tiefe t-1 weniger als zwei Kinder hat, haben alle Knoten rechts von v bei Tiefe t-1 keine Kinder
 - wenn ein Knoten v Tiefe t-1 genau ein Knid hat, ist dies ein linkes Kind
- speichert Prioritäten gemäß der Heapordnung ab
 - Für jeden Knoten v und für jedes Kind w von v gilt: $p(v) \ge p(w)$

Arraydarstellung

Array H ist ein Heap für T, wenn

- H[1] = p(r) für Wurzel r von T und
- wenn H[i] die Priorität des Knotens v von T speichert:
 - linkes Kind: $H[2 \cdot i] = P(v_L)$
 - rechtes Kind: $H[2 \cdot i + 1] = P(v_R)$

Insert + Repair_up

Insert: Neue Priorität p wird am Ende des Arrays eingefügt \to Heap-Struktur wird eingehalten, aber Heap-Ordnung könnte verletzt sein.

Repair_up: Wir verschieben die Priorität so lange nach oben, bis:

- Prioriät des Elternknotens mindestens genauso groß ist
- die Wurzel erreicht ist

$Delete_max + Repair_down$

Delete_max: Heap mit n Prioritäten:

- Überschreibe die Wurzel mit H[n]
- verringere n um 1

Repair_down:

- Priorität p wird mit der Priorität des größten Kindes verglichen und gegebenenfalls vertauscht
- endet, wenn die Position passt oder das Blatt erreicht wurde

$Change_Priority$

Wenn die Priorität ansteigt \rightarrow repair_up Wenn die Priorität fällt \rightarrow repair_down

- 2 Binäre Suchbäume

- 3 AVL-Bäume
- 4 a, b-Bäume

Binäre Suchbäume

```
\begin{aligned} \mathsf{Daten}(\mathsf{v}) &= (\mathsf{Schl\"{u}ssel}(\mathsf{v}), \, \mathsf{Info}(\mathsf{v})) \\ \mathsf{Eigenschaften} &: \end{aligned}
```

- Für jeden Schlüsselwert x gibt es höchstens einen Knoten v mit Schlüssel(v) = x
- Für jeden Knoten v, jeden Knoten V_{LINKS} im linken Teilbaum von v und jeden Knoten v_{RECHTS} im rechten Teilbaum von v gilt:

```
Schlüssel(v_{LINKS}) \leq Schlüssel(v) \leq Schlüssel(v_{RECHTS})
```

lookup + insert

lookup(x):

- Beginn der Suche an der Wurzel
- Vergleich x und Schlüssel(v)
 - x = Schlüssel(v) → Schlüssel gefunden
 - x < Schlüssel(v) → linker Teilbaum
 - $x > Schlüssel(v) \rightarrow rechter Teilbaum$

insert(x): Suche nach Schlüssel x

- x gefunden → überschreibe Infoteil
- ullet x nicht gefunden o füge Schlüssel an der Stelle ein, an der die Suche abbricht

remove

Suche nach Schlüssel x. Suche endet in Knoten v.

- v ist ein Blatt → entferne Blatt
- \bullet v hat genau ein Kind w \to entferne v, der Elternknoten von v ist jetzt der Elternknoten von w
- ullet v hat zwei Kinder o Ersetze v durch den kleinsten Schlüssel s im rechten Teilbaum von v

- Binäre Suchbäume
- 3 AVL-Bäume
- 4 a, b-Bäume

AVL-Bäume

- ein binärer Suchbaum
- für jeden Knoten v mit linkem Teilbaum T_L(v) und rechtem Teilbaum T_R(v):

$$| \mathsf{Tiefe}(\mathsf{T}_L(\mathsf{v})) - \mathsf{Tiefe}(\mathsf{T}_R(\mathsf{v})) | \leq 1$$

• Balance-Grad: $b(v) = Tiefe(T_L(v)) - Tiefe(T_R(v))$

- Binäre Suchbäume
- 3 AVL-Bäume

4 a, b-Bäume

(a, b)-Eigenschaft

- $a \ge 2$, $b \ge 2a-1$
- alle Blätter von T haben die gleiche Tiefe
- alle Knoten haben höchstens b Kinder
- Wurzel hat mindestens 2 Kinder, alle anderen Knoten haben mindestens a Kinder

(a, b)-Bäume

- jeder Schlüssel wird in genau einem Knoten von T gespeichert
- ein Knoten speichert Schlüssel in aufsteigender Reihenfolge
- jeder Knoten mit k Kindern speichert genau k-1 Schlüssel
- ein Blatt speichert a-1 bis b-1 Schlüssel

Insert(x)

Suche nach x:

- x gefunden → überschreibe Infoteil
- ullet x nicht gefunden o Suche endet in Blatt v o füge x in v ein
 - \bullet Fall 1: v hat maximal b-1 Schlüssel \to (a, b)-Eigenschaft erfüllt
 - Fall 2: v hat b Schlüssel → (a, b)-Eigenschaft verletzt
 → ersetze v durch zwei Knoten:
 - v_{LINKS} (Schlüssel: $x_1, ..., x_{\lceil b/2 \rceil 1}$)
 - $v_{RECHTS}(Schlüssel: x_{\lceil b/2 \rceil+1}, ..., x_b)$
 - Schlüssel $x_{\lceil b/2 \rceil}$ unterscheidet v_{LINKS} und v_{RECHTS} und ist im Elternknoten enthalten

Remove(x)

- Suche nach x

 - \bullet x in Blatt \rightarrow entferne x
- ullet Fall 1: v hat min. a-1 Schlüssel o (a, b)-Eigenschaft erfüllt
- Fall 2: v hat a-2 Schlüssel
 - Schlüsselklau von Elternknoten, wenn möglich Fall 2.1: Der linke oder rechte Geschwisterknoten hat mindestens a Schlüssel
 - linker Geschwisterknoten v' hat Schlüssel $y_1 < ... < y_{k'}$
 - Schlüssel z im Elternknoten trennt v' und v: v klaut z und hat a-1 Schlüssel Schlüssel z wird durch Schlüssel y_{k'} ersetzt
 - Sonst: Fusion mit Geschwisterknoten
 Fall 2.2: beide Geschwisterknoten besitzen a-1 Schlüssel
 - linker Geschwisterknoten v' hat Schlüssel $y_1 < ... < y_{a-1}$
 - verschmelze v und v' Fusionierter Knoten hat (a-1)+(a-2)+1 = 2a-2 \leq b-1 Schlüssel z wird aus Elternknoten genommen (a-1)+(a-2)+1=2a-2