Tiempos de comunicación entre procesos

Simon Aparicio Bocanegra Juan Andrés Gonzalez Arias Samuel Gonzalez Nisperuza

Sistemas Operativos Universidad Nacional de Colombia Miércoles 20 de mayo de 2020

1. Comunicación entre procesos con archivos.

Tamaño	Tiempo en μs
1KB	838
10KB	1036
100KB	2103
1MB	9782
10MB	156951
100MB	1866016

Tabla 1: Tiempo de transferencia entre procesos utilizando archivos.

Tiempo en µs frente a Bytes (Archivos)

Figura 1: Tiempo con archivos.

2. Comunicación entre procesos con tuberías.

Tamaño	Tiempo en μs
1KB	333
10KB	317
100KB	992
1MB	7984
10MB	39685
100MB	221814

Tabla 2: Tiempo de transferencia entre procesos utilizando tuberías.

Tiempo en µs frente a Bytes (Tuberias)

Figura 2: Tiempo de transferencia entre procesos con tuberías.

3. Comunicación entre procesos con memoria compartida.

Tamaño	Tiempo en μs
1KB	579
10KB	561
100KB	975
1MB	4232
10MB	34579
100MB	131732

Tabla 3: Tiempo de transferencia entre procesos utilizando memoria compartida.

Tiempo en µs frente a Bytes (Memoria compartida)

Figura 3: Tiempo de transferencia entre procesos con memoria compartida.

4. Comunicación entre procesos con paso de mensajes.

4.1. Cliente.

Tamaño	Tiempo en μs
1KB	69
10KB	102
100KB	238
1MB	2128
10MB	18864
100MB	103427

Tabla 4: Tiempo de transferencia entre procesos utilizando paso de mensajes. Cliente.

Tiempo en µs frente a Bytes (Paso de Mensajes - Cliente)

Figura 4: Tiempo con Paso de mensajes. Cliente.

4.2. Servidor.

Tamaño	Tiempo en μs
1KB	40
10KB	47
100KB	172
1MB	2277
10MB	19976
100MB	103555

Tabla 5: Tiempo de transferencia entre procesos utilizando paso de mensajes. Servidor.

Tiempo en µs frente a Bytes (Paso de Mensajes - Servidor)

Figura 5: Tiempo con Paso de mensajes. Servidor.

5. Conclusiones.

Figura 6: Comparación de métodos de transferencia entre procesos (ambos ejes en escala logarítmica).

Para todos los volúmenes de datos de transferencia, la comunicación cliente-servidor la más rápida y la comunicación por archivos es la más lenta. Podemos observar por ejemplo:

- Para el volumen de datos de 100 MB el paso de mensajes con respecto a archivos es 18 veces más rápido.
- Para el volumen de datos de 1 KB el paso de mensajes con respecto a la memoria compartida es 8 veces más rápido, mientras que para 100 MB es sólo 1.2 veces más rápido.
- La transferencia de 100 MB por tuberías es 2.1 veces más lenta que la realizada por paso de mensa jes.
- Para volúmenes de datos menores la comunicación usando tuberías es más rápida que aquella usando memoria compartida, pero para los volúmenes mayores a 10 KB la memoria compartida tiene un menor tiempo de transferencia.