

Materia:

DISEÑO ELECTRÓNICO BASADO EN SISTEMAS EMBEBIDOS

Alumno:

Posadas Pérez Isaac Sayeg Paniagua Rico Juan Julian García Azzúa Jorge Roberto

Grado y grupo:

8°G

Profesor:

Garcia Ruiz Alejandro Humberto

Unidad 4 - Tarea 4:

FOG COMPUTING VS EDGE COMPUTING

FOG COMPUTING VS EDGE COMPUTING

Introducción

El crecimiento del Internet de las Cosas (IoT), la automatización industrial y las aplicaciones en tiempo real ha generado la necesidad de nuevas arquitecturas que permitan procesar datos de forma eficiente, segura y rápida. Entre las soluciones más destacadas se encuentran **Fog Computing** y **Edge Computing**, dos modelos que, aunque comparten la idea de acercar el procesamiento al origen de los datos, presentan diferencias importantes en cuanto a su ubicación, propósito y estructura. Entender cómo se comparan y se complementan es esencial para el diseño de sistemas distribuidos modernos.

Desarrollo

Fog Computing y Edge Computing surgen como alternativas al enfoque centralizado de la computación en la nube, permitiendo el procesamiento descentralizado y local de datos. Aunque ambos buscan reducir la latencia y el uso del ancho de banda, se diferencian en su nivel de proximidad al dispositivo origen y en su papel dentro del sistema.

A continuación, se presenta una **tabla comparativa** que resume las principales diferencias:

Característica	Edge Computing	Fog Computing
Ubicación del procesamiento	Directamente en el dispositivo o en su proximidad inmediata	En un nodo intermedio entre el dispositivo y la nube

Ejemplo típico	Sensor con microcontrolador que toma decisiones autónomas	Gateway que recibe datos de múltiples sensores y los procesa
Latencia	Muy baja	Baja
Uso de red	Mínimo	Moderado (procesa y puede enviar datos a la nube)
Capacidad de cómputo	Limitada (procesadores embebidos)	Mayor (servidores locales o gateways potentes)
Escalabilidad	Menor, depende de cada dispositivo	Mayor, puede integrar múltiples dispositivos
Autonomía del sistema	Alta, cada nodo puede operar de forma independiente	Depende de una arquitectura jerárquica
Relación con la nube	Opcional, puede funcionar sin conectividad	Complementaria, suele comunicarse con la nube para análisis mayor
Ideal para	Tiempo real, baja latencia, sistemas autónomos	Sistemas distribuidos, análisis local + comunicación con la nube

Ejemplo práctico

Consideremos una planta industrial inteligente:

- En un sistema Edge, cada máquina está equipada con sensores y un microcontrolador que analiza localmente la vibración y temperatura. Si detecta una anomalía, detiene la máquina automáticamente.
- En un sistema Fog, esos sensores envían los datos a un gateway central (fog node), que recoge información de todas las máquinas. El gateway puede aplicar algoritmos más complejos, coordinar decisiones entre múltiples dispositivos, y enviar reportes a la nube para análisis histórico.

Ambos modelos pueden coexistir: el *edge* actúa en tiempo real, mientras que el *fog* coordina, agrega datos y comunica con sistemas superiores.

Conclusión

Tanto Fog Computing como Edge Computing son fundamentales en el diseño de arquitecturas modernas de loT y sistemas inteligentes. **Edge Computing** destaca por su inmediatez y autonomía en dispositivos individuales, mientras que **Fog Computing** ofrece un nivel intermedio que facilita la coordinación, procesamiento agregado y conexión con la nube. Elegir entre uno u otro —o combinarlos—depende de los requisitos específicos de latencia, escalabilidad, seguridad y capacidad de procesamiento del sistema.

Bibliografía

- 1. Bonomi, F., Milito, R., Zhu, J., & Addepalli, S. (2012). Fog Computing and Its Role in the Internet of Things.
- 2. Shi, W., Cao, J., Zhang, Q., Li, Y., & Xu, L. (2016). *Edge Computing: Vision and Challenges*. IEEE IoT Journal.

- 3. OpenFog Consortium. (2017). *OpenFog Reference Architecture for Fog Computing*.
- 4. Satyanarayanan, M. (2017). *The Emergence of Edge Computing*. Computer, IEEE.
- 5. Garcia Lopez, P., et al. (2015). *Edge-centric Computing: Vision and Challenges*. ACM SIGCOMM.