Logique

• Numero 3

• Prof: Hémon Sébastien

• Date: 08/11/2017

Rappel

 $\varphi \equiv \Psi$ Veut dire semantiquement equivalentes.

Elles ont donc les memes tables de verites.

Loi De Morgan

• $A \implies B \equiv \neg A \vee B$

• $\neg (A \lor B) \equiv \neg A \ land \neg B$

• $\neg (A \land B) \equiv \neg A \ lor \neg B$

Loi de Pierce

On se donne:

 $\bullet \ P \implies (Q \implies P)$

 $\bullet \ (P \implies Q) \implies P$

Р	Q	$P \implies Q$	$(P \implies Q) \implies P$	$Q \implies Q$	$P \implies (Q \implies P)$
0	0	1	0	1	1
0	1	1	0	0	1
1	0	0	1	1	1
1	1	1	1	1	1

On remarque:

- 1. \implies n'est pas associative
- 2. $P \implies (Q \implies P)$ est une tautologie

Cette tautologie s'appelle Loi de Pierce

Proprietes:

- $(A \wedge B) \wedge C \equiv A \wedge (B \wedge C)$
- $(A \lor B) \lor C \equiv A \lor (B \lor C)$

Proposition:

 $\varphi \equiv \Psi$ si est seulement si $\varphi \iff \Psi$ tautologie.

⚠ Ne se generalise pas pour toutes les logiques.

La logique d'ordre 0 est complete du a cette propriete de completude.

Definition d'une relation d'ordre generale

Relation binaire

Soit \mathcal{R} une relation binaire, c'est a dire definie de sorte que pour tout couple (x, y) d'objets (d'un certain type):

xRy est verifie ou invalide.

Donnons les paradigmes de ${\cal R}$.

- Proposition par formule logique:
 - $x\mathcal{R}y$ si et seulement si $\varphi(x,y)$ est verifer avec φ formule logique.

Ex1: (Type Integer) $x\mathcal{R}y$ lorsque $\exists n$ integer x=y+n Ex2: (Sur les complexes $\mathbb{C} x\mathcal{R}w$ lorsque $|z|=\frac{1}{1+w^2}$ $\land w \neq 0 \land w^2 \neq -1$

• Definition ensembliste

- Definition par fonction booleene:
 - \mathcal{R} peut etre vue a l'aide d'une application 1_R a valeur des 0, 1 a deux variables $1_R: (x,y) \to 1$ si $x\mathcal{R}y$ verifie 0 sinon
- Definition par graphe. On assimile \mathcal{R} a un graphe G tel que s_1, s_2 forment une arrete lorsque $s_1 \mathcal{R} s_2$.

Relation d'equivalence

Les relations d'equivalences sont des relations binaires particulieres.

- 1. Reflexivite: $\forall x : \mathcal{TR}x$ (Dans le domaine \mathcal{T} considere)
- 2. Symetrique: $\forall x : \mathcal{T} \forall y : \mathcal{T} x \mathcal{R} y \iff y \mathcal{R} x$
- 3. Transitivite: $\forall x : \mathcal{T} \forall y : \mathcal{T} \forall z : \mathcal{T}$ $(x\mathcal{R}y \land y\mathcal{R}z) \implies x\mathcal{R}z$

Ex: L'egalite est une equivalence naturelle.

Ex: Construire des congreuences. $a \equiv b[n]$ signifie b-a multiple de n. ou encore a et b ont meme reste dans la division euclidienne par n. Ecrivons $a \equiv_n b$ dans ce cas \equiv_n est une relation d'equivalence sur \mathbb{Z}

Peut on etre logique (sans raisonner comme les autres)

La logique est a la fois mathematique informatique et phylosophique.

$$1 + 1 = 2$$
 Logique?

Non c'est arithmetique.

Il y a donc un probleme semantique (syntaxe).

Regles deductives:

• Modus ponens $A \wedge (A \implies B)$ donc B

- Modus tolens
- Syllogisme
- Sophisme (A pour but de convaincre les gens, peut importe si c'est vrai ou faux)

A donc $A \lor B$ Ceci est une bonne deduction (on appelle ca un affaiblissement)

Dans le langage lorsqu'une personne dis A puis B alors on l'interprete comme $A \wedge B$. C'est un sequent primitif. C'est une deduction (On reli les formules entre elles).