Lab program no 5

Build Logistic Regression Model for a given dataset

Predicting if a person would buy life insurnace based on his age using logistic regression

- import pandas as pd
- from matplotlib import pyplot as plt
- %matplotlib inline

- df = pd.read_csv("insurance_data.csv")
- df.head()

- plt.scatter(df.age,df.bought_insurance,marker='+',color='red')
- from sklearn.model selection import train test split
- Perform the split
- X_train, X_test, y_train, y_test = train_test_split(df[['age']],df.bought_insurance,train_size=0.8)
- Display X_test
- from sklearn.linear_model import LogisticRegression
- model = LogisticRegression()
- model.fit(X_train, y_train)
- Display X_test

- y_predicted = model.predict(X_test)
- model.predict_proba(X_test)
- model.score(X_test,y_test)
- Display y_predicted
- Display X_test

Analyze thro Linear regression

- model.coef_ indicates value of m in y=m*x + b equation
- model.coef_
- model.intercept_ indicates value of b in y=m*x + b equation
- model.intercept_

Analyze thro sigmoid function

```
import math
def sigmoid(x):
  return 1 / (1 + math.exp(-x))
```

prediction_function

```
def prediction_function(age): z = 0.042 * age - 1.53 # 0.04150133 \sim 0.042 \ and -1.52726963 \sim -1.53 y = sigmoid(z) return y
```

Check for

```
age = 35

prediction_function(age)

Check the value with probability

age = 43

prediction_function(age)

Check the value with probability
```

- Download employee retention dataset from here: https://www.kaggle.com/giripujar/hr-analytics.
- Now do some exploratory data analysis to figure out which variables have direct and clear impact on employee retention (i.e. whether they leave the company or continue to work)
- 2. Plot bar charts showing impact of employee salaries on retention
- 3. Plot bar charts showing corelation between department and employee retention
- 4. Now build logistic regression model using variables that were narrowed down in step 1
- 5. Measure the accuracy of the model

• https://github.com/codebasics/py/blob/master/ML/7_logistic_reg/Exercise/7_logistic_regression_exercise.ipynb