

IBM PowerPC Broadway RISC Microprocessor Revision Level DD1.X

Datasheet

Version: 0.3

Preliminary

February 24, 2005 IBM Confidential

© Copyright International Business Machines Corporation 2005

All Rights Reserved

Printed in the United States of America February 2005.

The following are trademarks of International Business Machines Corporation in the United States, or other countries,

or both.

IBMIBM LogoPowerPCPowerPC LogoPowerPC 750PowerPC Architecture

IEEE is a registered trademark in the United States, owned by the Institute of Electrical and Electronics Engineers.

Other company, product and service names may be trademarks or service marks of others.

All information contained in this document is subject to change without notice. The products described in this document are NOT intended for use in applications such as implantation, life support, or other hazardous uses where malfunction could result in death, bodily injury, or catastrophic property damage. The information contained in this document does not affect or change IBM product specifications or warranties. Nothing in this document shall operate as an express or implied license or indemnity under the intellectual property rights of IBM or third parties. All information contained in this document was obtained in specific environments, and is presented as an illustration. The results obtained in other operating environments may vary.

While the information contained herein is believed to be accurate, such information is preliminary, and should not be relied upon for accuracy or completeness, and no representations or warranties of accuracy or completeness are made.

Note: This document contains information on products in the sampling and/or initial production phases of development. This information is subject to change without notice. Verify with your IBM field applications engineer that you have the latest version of this document before finalizing a design.

Some of the information provided herein pertains to third party vendors and their products and services. You are directed to contact such vendors with all questions pertaining to their respective products or services, as well as any requests for product or service updates. You are solely responsible for the selection of any vendors, including their products and services. The vendors identified herein are not agents or representatives of IBM and are not authorized to make commitments, warranties or representations on behalf of IBM. IBM makes no commitments, warranties or representations with regard to the vendors, their respective product or services, or the compatibility of such products or services with any of IBM's product or services.

The information contained in this document is provided on an "AS IS" basis and no warranties of any kind, including but not limited to the implied warranties of merchantability and fitness for a particular purpose, are provided. In no event will IBM be liable to you or to any third parties for any damages arising directly or indirectly from any use of the information contained in this document.

IBM Microelectronics Systems and Technology Group 2070 Route 52, Bldg. 330 Hopewell Junction, NY 12533-6351

The IBM home page can be found at ibm.com

The IBM Microelectronics home page can be found at ibm.com/chips

750bwy_ds_title.fm.0.3 February 24, 2005 IBM Confidential- Available under NDA only

1.	General Information	
	1.1 Features	
	1.2 Processor version Register	. !!
2.	Overview	12
	2.1 Block Diagram	. 12
	2.2 General Parameters	
3.	Electrical and Thermal Characteristics	14
	3.1 DC Electrical Characteristics	. 14
	3.2 AC Electrical Characteristics	
	3.3 Clock AC Specifications	
	3.4 60x Bus Input AC Specifications	
	3.4.1 Input Setup Timing	
	3.5 60x Bus Output AC Specifications	. 21
	3.5.1 IEEE 1149.1 AC Timing Specifications	. 24
4.	Dimensions and Signal Assignments	27
	4.1 Package	
	4.1.1 Överview	
	4.1.2 Features	. 28
	4.1.3 Package Cross-Section	. 28
	4.2 Mechanical Specifications	. 28
	4.3 Microprocessor Ball Placement	. 30
	4.4 Pinout Listings	. 31
5.	System Design Information	35
	5.1 PLL Configuration	
	5.2 PLL Power Supply Filtering	
	5.3 Connection Recommendations	
	5.4 Output Buffer DC Impedance	
	5.4.1 Input/Output Usage	
	5.5 Operational and Design Considerations	
	5.5.1 Level Protection	. 41
	5.5.2 Adjusting the processor clock frequency	
	5.5.3 Configuring the Processor During Reset	
	5.5.4 64-Bit or 32-Bit Data Bus Mode	
	5.5.4.1 Precharge Duration Selection and Application	
	5.6 JTAG Test Access Port (TAP) Operation	
	5.6.1 Interface Pins	
	5.6.2 Supported IEEE 1149 JTAG Instructions and Data Registers	
	5.6.2.1 Instructions	
	5.6.2.2 Data Registers	
	5.6.3 5.8.3 Recommendations to Support System Debug	
	5.6.3.1 Processor Debug System Enablement when Implementing Precharge Selection	. 40
R	Revision Log	47

Figure 2-1.	IBM PowerPC Broadway RISC Microprocessor Block Diagram	12
Figure 3-1.	SYSCLK Input Timing Diagram	17
Figure 3-2.	Input Timing Definition	19
Figure 3-3.	Input Timing Diagram	19
Figure 3-4.	Mode Select Input Timing Diagram	20
Figure 3-5.	Output Valid Timing Definition	22
Figure 3-6.	Output Timing Diagram for IBM PowerPC Broadway RISC Microprocessor	23
Figure 3-7.	JTAG Clock Input Timing Diagram	25
Figure 3-8.	TRST Timing Diagram	25
Figure 3-9.	Boundary-Scan Timing Diagram	25
Figure 3-10.	Test Access Port Timing Diagram	26
Figure 4-1.	Mechanical Dimensions and Bottom Surface Nomenclature of the FC-PBGA Package for DD1.0 27	
Figure 4-2.	FC-PBGA Two-Layer Core Package Cross Section	28
Figure 4-3.	FC-PBGA Two-Layer Core Package Configuration	28
Figure 4-4.	Mechanical Dimensions and Bottom Surface Nomenclature of the FC-PBGA Package for DD1.0 29	
Figure 4-5.	PowerPC Broadway Microprocessor Ball Placement	30
Figure 5-1.	PLL Power Supply Filter Circuit	37
Figure 5-2.	Driver Impedance Measurement	38
Figure 5-3.	Selection of Processor Frequency at Power-On	42
Figure 5-4.	Control Sequence for Switching Processor Clock Frequency	42
Figure 5-5.	IBM RISCWatch JTAG to HRESET, TRST, and SRESET Signal Connector	46

Table 1-1.	Broadway Processor Version Register (PVR)	11
Table 2-1.	Broadway General Parameters	13
Table 3-1.	Recommended Operating Conditions	14
Table 3-2.	Package Thermal Characteristics	15
Table 3-3.	DC Electrical Specifications	15
Table 3-4.	Power Consumption	16
Table 3-5.	Clock AC Timing Specifications	16
Table 3-6.	60x Bus Input AC Timing Specifications	18
Table 3-7.	60x Bus Output AC Timing Specifications	21
Table 3-8.	JTAG AC Timing Specifications (Independent of SYSCLK)	24
Table 4-1.	List of Drawings with IBM Package Numbers	27
Table 4-2.	Pinout Listing for the FC-PBGA Package ,	31
Table 4-3.	Signal Listing for the FC-PBGA Package	34
Table 4-4.	Signal Locations	34
Table 4-5.	Voltage and Ground Assignments	34
Table 5-1.	Broadway Microprocessor PLL Configuration	35
Table 5-2.	Driver Impedance Characteristics	39
Table 5-3.	Input/Output Usage	40
Table 5-4.	Summary of Mode Select	43
Table 5-5.	TAP Pins	44
Table 5-6.	Instruction Encodings	45
Table 5-7	ITAG Instructions	45

1. General Information

The IBM PowerPC[®] Broadway RISC¹ Microprocessor is a 32-bit implementation of the IBM PowerPC family. This document contains pertinent physical and electrical characteristics of the IBM PowerPC Broadway RISC Microprocessor Revision DD1.X Single Chip Module (SCM). The IBM PowerPC Broadway RISC Microprocessor is also referred to as the Broadway throughout this document.

1.1 Features

This section summarizes the features of the Broadway implementation of the PowerPC Architecture™. Major features of the Broadway include the following:

- · Branch processing unit
 - · Fetches four instructions per clock
 - Processes one branch per cycle and can resolve two speculations
 - Executes single speculative stream during fetch of another speculative stream
 - · Has 512-entry branch history table (BHT) for dynamic prediction
- · Dispatch unit
 - · Has full hardware detection of dependencies which are resolved in the execution units
 - Dispatches two instructions to six independent units (system, branch, load/store, fixed-point unit 1, fixed-point unit 2, or floating-point)
 - Has serialization control (predispatch, postdispatch, execution, serialization).
- Decode
 - · Register file access
 - Forwarding control
 - · Partial instruction decode
- Load/store unit
 - Has single-cycle load or store cache access (byte, half-word, word, double-word).
 - Has effective address generation
 - Allows hits under misses (one outstanding miss).
 - Has single-cycle misaligned access within double word boundary
 - Has alignment, zero padding, sign extend for integer register file
 - Converts floating-point internal format (using alignment, normalization, and quantization).
 - Sequences for load/store multiples and string operations.
 - Has store gathering.
 - Has cache and TLB instructions
 - Supports big and little-endian byte addressing
 - Supports misaligned little-endian in hardware.
- Fixed-point units

1. Reduced instruction set computer

750bwy_ds_body.fm.0.3 General Information
February 24, 2005 IBM Confidential - Available under NDA only Page 9 of 47

- Fixed-point unit 1 (FXU1); multiply, divide, shift, rotate, arithmetic, logical
- Fixed-point unit 2 (FXU2); shift, rotate, arithmetic, logical
- · Single-cycle arithmetic, shift, rotate, logical
- Multiply and divide support (multi-cycle)
- · Early out multiply.
- Floating-point unit
 - Support for IEEE-754 standard single- and double-precision floating-point arithmetic
 - 3-cycle latency, 1-cycle throughput, single-precision multiply-add
 - 3-cycle latency, 1-cycle throughput, double-precision add
 - · 4-cycle latency, 2-cycle throughput, double-precision multiply-add
 - · Hardware support for divide
 - Hardware support for denormalized numbers
 - Time deterministic non-IEEE mode
 - Support for paired single floating point arithmetic
 - · Data quantization support.
- · System unit
 - Executes CR logical instructions and miscellaneous system instructions
 - · Has special register transfer instructions.
- · Level 1 (L1) cache structure
 - 32K, 32-byte line, 8-way set associative instruction cache.
 - 32K, 32-byte line, 8-way set associative data cache.
 - · Instruction cache line lock.
 - · Optional local memory partition.
 - · Single-cycle cache access.
 - · Pseudo-LRU replacement.
 - Copy-back or write-through data cache (on a page per page basis).
 - Supports PowerPC memory coherency modes.
 - Non-blocking instruction and data cache (supports hits under one outstanding miss).
 - No snooping of instruction cache.
- · Memory management unit
 - 128 entry, 2-way set associative instruction TLB.
 - 128 entry, 2-way set associative data TLB.
 - · Hardware reload for TLB's.
 - 4 instruction BAT's and 4 data BATs (8 each in enhanced mode).
 - Virtual memory support for up to 4 exabytes (252) virtual memory.
 - Real memory support for up to 4 gigabytes (232) of physical memory.

- Level 2 (L2) cache
 - 256KB, 64-byte line, 2-way set associative on-chip cache memory
 - Internal L2 cache controller with 2K-entry tag array.
 - Copy-back or write-through data cache (on a page basis, or for all L2).
 - 64-byte cache line organized as two 32-byte sectors.
 - · L2 frequency at core speed.
 - Load miss causes 32B fetch from memory (64B or 128B fetch selectable in enhanced mode).
 - Error correction code (ECC) protection on cache array.
- · Bus interface
 - · Is compatible with 60X processor interface
 - · Has a 32-bit address bus
 - Has a 64-bit data bus (also supports 32-bit data bus mode)
 - Supports bus-to-core frequency multipliers of 2x, 2.5x, 3x, 3.5x, 4x, 4.5x, 5x, 5x, 6x, 6.5x, 7x, 7.5x, 8x, 8.5x, 9x, 9.5x, 10x, 11x, 12x, 13x, 14x, 15x, 16x, 17x, 18x, 19x and 20x
 - Has DMA support for local memory load/store.
 - Supports up to two outstanding transactions on the bus (four in enhanced mode).
- · Write Gather Pipe
 - 128 byte circular queue
 - · 32 byte transfers
 - · Independent read and write ports
- · Testability
 - · LSSD scan design
 - JTAG interface.

1.2 Processor Version Register

The IBM PowerPC Broadway RISC Microprocessor has the following processor version register (PVR) values for the respective design revision levels.

Table 1-1. Broadway Processor ersion Register (PVR)

Broadway Design Revision Level	Broadway PVR	
	0x000871r0	
Note: r = reserved nibble; reserved bits can be either '0' or	'1', and should be masked in application software.	

General Information 750bwy_ds_body.fm.0.3 February 24, 2005 IBM Confidential - Available under NDA only Page 11 of 47

2. Overview

The IBM PowerPC Broadway RISC Microprocessor, also called the Broadway, is targeted for high-performance, low-power systems using a 60x bus. The Broadway also includes an internal 256kB L2 cache with on-board error correction circuitry (ECC).

2.1 Block Diagram

Figure 2-1. IBM PowerPC Broadway RISC Microprocessor Block Diagram

2.2 General Parameters

Table 2-1. Broadway General Parameters

Item	Description	Notes
Technology	90nm copper silicon-on-insulator (SOI) technology Low-K dialectric 8 layer metal wirings	
Die Size	15.21 sq. mm (3.9x3.9mm)	
Logic design	Fully static	
Package	292-pin plastic ball grid array (FC-PBGA) 21 × 21 mm (1.0-mm pitch) 0.8-mm ball size	
Core power supply	1.15V ± 5%	
I/O power supply	1.20 V ±120 mV	

3. Electrical and Thermal Characteristics

This section provides AC and DC electrical specifications and thermal characteristics for the Broadway.

3.1 DC Electrical Characteristics

The tables in this section describe the DC electrical characteristics for the Broadway.

Table 3-1. Recommended Operating Conditions

Characteristic	Symbol	Value	Unit	Notes
Core supply voltage (729 MHz)	V _{DD}	1.15 +/- 5%	V	
60X bus I/O supply voltage	OV _{DD}	1.20 +/- 120mV	V	
PLL supply voltage ²	AV _{DD}	1.20 +/- 120mV	V	
Input voltage	V _{IN}	GND to OV _{DD}	V	
Die-junction temperature	T_J	0 to 95	°C	
Case temperature	T _c	90	°C	3

- 1. ESD Specifications:
 - Human body model +/- 500V (Nintendo Specs) Machine model +/- 200V (Nintendo Specs)
 - CDM = 800V (Nintendo's specs)
- 2. AVDD power supply AC noise should be less than 20mV for 0 to 500MHz and 3mV for 500MHz and higher.
- 3. T_c corresponds to max. junction temperature of 95C with a max. power dissipation of 5.5W.

Table 3-2. Package Thermal Characteristics

Characteristic	Symbol	Value	Unit
FC-PBGA package thermal resistance, junction-to-case thermal resistance (typical)	θ _{JC}	TBD	°C/W
FC-PBGA package thermal resistance, junction-to-lead thermal resistance (typical)	θ_{JB}	TBD	°C/W

Note: θ_{JC} is the internal resistance from the junction to the back of the die. A heat sink customized to the end user application and ambient operating environment is required to ensure the die junction temperature is maintained within the limits defined in *Table 3-1* on page 14.

Table 3-3. DC Electrical Specifications
See Table 3-1 on page 14 for recommended operating conditions.

Characteristic	Symbol	Volt	tage	Unit	Notes
Characteristic		Min.	Max.		Notes
Input high voltage	V _{IH (1.20 V)}	0.75	_	V	
Input low voltage	V _{IL (1.20 V)}	_	0.40	V	
Input leakage current, V_{IN} = applies to all OV_{DD} levels	I _{IN}	_	TBD	μΑ	
Hi-Z (off state) leakage current, V_{IN} = applies to all OV_{DD} levels	I _{TSI}	_	TBD	μΑ	
Output high voltage, I _{OH} = -4 mA	V _{OH (1.20 V)}	0.90	_	V	
Output low voltage, I _{OL} = 4 mA	V _{OL (1.20 V)}	_	0.30	V	
Capacitance, V _{IN} = 0 V, f = 1 MHz	C _{IN}	_	5	pF	

Table 3-4. Power Consumption

See Table 3-1 on page 14 for recommended operating conditions.

Mode	T _i	T _c	Processor Frequency		
	,		729 MHz	Unit	Notes
Maximum Power ¹	95°C	90°C	5.5	W	
Maximum Power ¹	90°C	TBD	5.2	W	
Maximum Power ¹	85°C	TBD	4.8	W	

Note:

3.2 AC Electrical Characteristics

This section provides the AC electrical characteristics for the Broadway. After fabrication, parts are sorted by maximum processor core frequency as shown in *Section 3.3, Clock AC Specifications*, on page 16, and tested for conformance to the AC specifications for that frequency. The processor core frequency is determined by the bus (SYSCLK) frequency and the settings of the PLL configuration (PLL_CFG[0-4]) signals.

3.3 Clock AC Specifications

Table 3-5 provides the clock AC timing specifications as defined in Figure 3-1.

Table 3-5. Clock AC Timing Specifications See *Table 3-1* on page 14 for recommended operating conditions.^{1, 3, 5}

Figure 3-1 Timing	Characteristic	Va	lue	Unit	Notes
Reference		Min.	Max.		Notes
	Processor frequency	486	729	MHz	
	SYSCLK frequency	162	243	MHz	
1	SYSCLK cycle time	4.11	6.17	ns	
2, 3	SYSCLK slew rate	2.50	10.0	V/ns	2

- Caution: The SYSCLK frequency and the PLL_CFG[0:4] settings must be chosen such that the resulting SYSCLK (bus) frequency, CPU (core) frequency, and PLL frequency do not exceed their respective maximum or minimum operating frequencies. Refer to the PLL_CFG[0:4] signal description in *Table 5-1, Broadway Microprocessor PLL Configuration*, on page 35 for valid PLL_CFG[0:4] settings.
- 2. Slew rate for the SYSCLK inputs is measured from 0.4 to 0.75 V.
- 3. Timing is guaranteed by design and characterization, and is not tested.
- 4. Relock timing is guaranteed by design and characterization, and is not tested. PLL-relock time is the maximum amount of time required for PLL lock after a stable V_{DD} and SYSCLK are reached during the power-on reset sequence. This specification also applies when the PLL has been disabled and subsequently re-enabled during sleep mode. Also note that hard reset (HRESET) must be held asserted for a minimum of 255 bus clocks after the PLL-relock time during the power-on reset sequence.
- 5. During power-up or if the frequency of SYSCLK is changed during hardware reset (HRESET), then the PLL must be reset to lock onto the new frequency. The PLL is reset with the SRESET pin. Internal PLL reset time is the minimum time that SRESET must be asserted once SYSCLK and applied voltage are stable.

Maximum power is an estimate of DC and AC power for worst case instruction mix and process parameters at Vdd=1.2V, OVdd=1.2V, 729Mhz, and different T_i and T_c conditions (i.e. junction and case temperature, respectively).

Table 3-5. Clock AC Timing Specifications

See Table 3-1 on page 14 for recommended operating conditions. 1, 3, 5

Figure 3-1	Characteristic	Va	lue	Unit	Notes
Timing Reference		Min.	Max.		notes
4	SYSCLK duty cycle measured at 0.60 V	25	75	%	
	SYSCLK cycle-to-cycle jitter	_	TBD	ps	4
	Internal PLL relock time	_	100	μs	4
	Internal PLL reset time	10	_	μs	5

Notes:

- 1. Caution: The SYSCLK frequency and the PLL_CFG[0:4] settings must be chosen such that the resulting SYSCLK (bus) frequency, CPU (core) frequency, and PLL frequency do not exceed their respective maximum or minimum operating frequencies. Refer to the PLL_CFG[0:4] signal description in Table 5-1, Broadway Microprocessor PLL Configuration, on page 35 for valid PLL_CFG[0:4] settings.
- 2. Slew rate for the SYSCLK inputs is measured from 0.4 to 0.75 $\rm V.$
- 3. Timing is guaranteed by design and characterization, and is not tested.
- 4. Relock timing is guaranteed by design and characterization, and is not tested. PLL-relock time is the maximum amount of time required for PLL lock after a stable V_{DD} and SYSCLK are reached during the power-on reset sequence. This specification also applies when the PLL has been disabled and subsequently re-enabled during sleep mode. Also note that hard reset (HRESET) must be held asserted for a minimum of 255 bus clocks after the PLL-relock time during the power-on reset sequence.
- 5. During power-up or if the frequency of SYSCLK is changed during hardware reset (HRESET), then the PLL must be reset to lock onto the new frequency. The PLL is reset with the SRESET pin. Internal PLL reset time is the minimum time that SRESET must be asserted once SYSCLK and applied voltage are stable.

Figure 3-1. SYSCLK Input Timing Diagram

3.4 60x Bus Input AC Specifications

Table 3-6 provides the 60x bus AC timing specifications defined in Figure 3-3 and Figure 3-4 on page 20.

Table 3-6. 60x Bus Input AC Timing Specifications See Table 3-1 on page 14 for operating conditions.^{1, 5, 6}

Figure 3-3 and 3-4 Timing Reference	Characteristic	Min.	Max.	Unit	Notes
10a	Input setup: SYSCLK to all inputs valid	TBD	_	ns	
10c	Mode select input setup to HRESET, (TLBISYNC), QACK, and DRTRY	8	_	tsysclk	2, 3, 4
11a	Input hold: SYSCLK to inputs invalid	TBD	_	ns	
11c	HRESET to mode select input hold (TLBISYNC)., QACK, and DRTRY	0	_	ns	2, 4
V _M	Measurement reference voltage for inputs			_	
V _{IL-AC}	AC timing reference levels	_	TBD	V	7
V _{IH-AC}	AC uning reference levels	TBD	_	\ \ \ \	,
Slew Rate	Reference input slew rate	TBD	_	V/ns	

Notes:

- Input specifications are measured from the midpoint voltage (V_M) of the signal in question to the V_M of the rising edge of the input SYSCLK. Timings are measured at the pin (see *Figure 3-3* on page 19).
- 2. The setup and hold time is with respect to the rising edge of HRESET (see Figure 3-4 on page 20).
- 3. t_{SYSCLK} is the period of the external clock (SYSCLK) in nanoseconds (ns). The numbers given in the table must be multiplied by the period of SYSCLK to compute the actual time duration (in ns) of the parameter in question.
- 4. This specification is for configuration mode select only. Also note that the HRESET must be held asserted for a *minimum of 255* bus clocks after the PLL relock time during the power-on reset sequence.
- 5. All values are guaranteed by design, and are not tested.
- 6. Refer to Section 3.4.1 on page 18 and Figure 3-2 on page 19 for input setup timing definitions.
- 7. Input reference signal levels used to establish the timings defined in this table.

3.4.1 Input Setup Timing

The information in this subsection is provided to clarify the criteria used to establish the timings in *Table 3-6*. The DC Electrical Specifications shown in *Table 3-3* on page 15 are not altered by this clarification. The valid input signal levels remain V_{IH} and V_{IL} .

The input setup times shown as 10a in *Table 3-6* specify the required time from the input signal crossing V_M to the rising edge of SYSCLK crossing V_M .

For the timings in *Table 3-6* to be valid, the falling edge of the input signal shown in *Table 3-6* is assumed to transition through V_M and cross V_{IL-AC} at the slew rate specified in *Table 3-6*. Input signals that do not reach the V_{IL-AC} boundary, or slew from V_M to V_{IL-AC} more slowly than specified, will result in longer input setup times.

In the same way, on the rising edge, the input signal must continue past V_M and cross the V_{IH-AC} boundary within the specified minimum slew rate. Input signals that do not reach the V_{IH-AC} boundary within the slew rate specified will result in longer input setup times.

Figure 3-3 provides the input timing diagram for the Broadway.

in a Defini

Figure 3-3. Input Timing Diagram

Figure 3-4 provides the mode select input timing diagram for the Broadway.

Figure 3-4. Mode Select Input Timing Diagram

3.5 60x Bus Output AC Specifications

Table 3-7 provides the 60× bus output AC timing specifications for the Broadway as defined in *Figure 3-6* on page 23.

Table 3-7. 60x Bus Output AC Timing Specifications See Table 3-1 on page 14 for operating conditions.^{1, 4, 6}

Figure 3-6	Characteristic			l lait	Notes
Timing Reference	Characteristic	Min.	Max.	Unit	Notes
12	SYSCLK to Output Driven (Output Enable Time)	TBD	_	ns	
13	SYSCLK to Output Valid	_	TBD	ns	5
14	SYSCLK to Output Invalid (Output Hold)	TBD	-	ns	
15	SYSCLK to Output High Impedan <u>ce</u> (all signals <u>exc</u> ept address retry [ARTRY], address bus busy [ABB], and data bus busy [DBB])	_	TBD	ns	
16	SYSCLK to ABB and DBB high impedance after precharge	_	1.0	tsysclk	2
17	SYSCLK to ARTRY high impedance before precharge	_	TBD	ns	
18	SYSCLK to ARTRY precharge enable	TBD	_	ns	3
19	Maximum delay to ARTRY precharge	_	1.0	tsysclk	2, 3
20	SYSCLK to ARTRY high impedance after precharge	_	2.0	t _{SYSCLK}	2, 3

Notes:

- All output specifications are measured from the V_M of the rising edge of SYSCLK to the midpoint of the output signal in question using a test load as shown in *Figure 3-5* on page 22. Both input and output timings are measured at the pin. Timings are determined by design.
- 2. t_{SYSCLK} is the period of the external bus clock (SYSCLK) in nanoseconds (ns). The numbers given in the table must be multiplied by the period of SYSCLK to compute the actual time duration on the parameter in question.
- 3. Nominal precharge width for $\overline{\text{ARTRY}}$ is 1.0 t_{SYSCLK} .
- 4. Guaranteed by design and characterization, and not tested
- 5. Output Valid timing increases as the V_{DD} is reduced. These values assume a V_{DD} minimum of TBD V.
- 6. See Figure 3-5 on page 22 and Figure 3-6 on page 22 for output loading and timing definitions.

750bwy_ds_body.fm.0.3 February 24, 2005 IBM Confidential - Available under NDA only

Figure 3-5. Output Valid Timing Definition

Note: The timing definition is valid using the termination model shown here with timings referenced to the respective pin of the specified output driver.

Figure 3-6. Output Timing Diagram for IBM PowerPC Broadway RISC Microprocessor

3.5.1 IEEE 1149.1 AC Timing Specifications

Table 3-8 provides the IEEE 1149.1 (JTAG) AC timing specifications as defined in the following figures:

To find out more about	See
JTAG Clock Input Timing Diagram	Figure 3-7 on page 25.
TRST Timing Diagram	Figure 3-8 on page 25.
Boundary-Scan Timing Diagram	Figure 3-9 on page 25.
Test Access Port Timing Diagram	Figure 3-10 on page 26.

The five JTAG signals are: test data input (TDI), test data output (TDO), test mode select (TMS), test clock (TCK), and test reset (TRST).

Table 3-8. JTAG AC Timing Specifications (Independent of SYSCLK) See Table 3-1 on page 14 for operating conditions.

Figures 3-7 through 3-10 Timing Reference	Characteristic	Min.	Max.	Unit	Notes
	TCK frequency of operation	TBD	TBD	MHz	
1	TCK cycle time	TBD	_	ns	
2	TCK clock pulse width measured at TBD V	TBD	_	ns	
3	TCK rise and fall times	TBD	TBD	ns	4
4	Specification obsolete, intentionally omitted	_	_	_	
5	TRST assert time	TBD	_	ns	1
6	Boundary-scan input data setup time	TBD	_	ns	2
7	Boundary-scan input data hold time	TBD	_	ns	2
8	TCK to output data valid	_	TBD	ns	3, 5
9	TCK to output high impedance	TBD	TBD	ns	3, 4
10	TMS, TDI data setup time	TBD	_	ns	
11	TMS, TDI data hold time	TBD	_	ns	
12	TCK to TDO data valid	TBD	TBD	ns	5
13	TCK to TDO high impedance	TBD	TBD	ns	4
14	TCK to output data invalid (output hold)	TBD	_	ns	

- 1. TRST is an asynchronous level sensitive signal. Guaranteed by design.
- 2. Non-JTAG signal input timing with respect to TCK.
- 3. Non-JTAG signal output timing with respect to TCK.
- 4. Guaranteed by characterization and not tested.
- 5. Minimum specification guaranteed by characterization and not tested.

Figure 3-7 provides the JTAG clock input timing diagram.

Figure 3-7. JTAG Clock Input Timing Diagram

Figure 3-8 provides the $\overline{\mathsf{TRST}}$ timing diagram.

Figure 3-8. TRST Timing Diagram

Figure 3-9 provides the boundary-scan timing diagram.

Figure 3-9. Boundary-Scan Timing Diagram

Figure 3-10 provides the test access port timing diagram.

Figure 3-10. Test Access Port Timing Diagram

4. Dimensions and Signal Assignments

IBM offers a plastic ball grid array (FC-PBGA) that supports 292 balls for the Broadway package. This is a signal and power compatible footprint to the PowerPC 750FX RISC Microprocessor module.

This section contains several views of the Broadway physical package and descriptions and listings of the signals and ball/pin locations. For more information about the physical layout of the Broadway, see *Table 4-2, Pinout Listing for the FC-PBGA Package*, on page 31.

Table 4-1 lists the drawings used in this section and the corresponding IBM package numbers. For the latest package information, obtain the current IBM drawings.

List of Drawings with IBM Package Numbers

Table 4-1. List of Drawings with IBM Package Numbers

For Figure	See Page	Package Number						
Mechanical Dimensions and Bottom Surface Nomenclature of the FC-PBGA Package for DD1.0	38	TBD						
Note: Use A01 corner designation for correct placement. Use the five plated dots that form a right angle (_) to locate the A01 corner as								

Note: Use A01 corner designation for correct placement. Use the five plated dots that form a right angle (|_) to locate the A01 corner as shown in *Figure 4-3, Mechanical Dimensions and Bottom Surface Nomenclature of the FC-PBGA Package for DD1.0,* on page TBD.

Figure 4-1. Mechanical Dimensions and Bottom Surface Nomenclature of the FC-PBGA Package for DD1.0

4.1 Package

4.1.1 Overview

FC-PBGA packages are suited for applications requiring much higher I/O counts and better electrical performance than that offered by EPBGA and HPBGA packages. They are recommended for applications having medium electrical performance and power dissipation requirements.

4.1.2 Features

- · Low dielectric-constant organic build-up substrate
- Flip chip die attach; BGA second-level interconnect
- · Two-layer core
- Up to eight discrete surface-mount dogbone or interdigitated decoupling capacitors (custom offering). Not all menu points support on-package capacitors.
- JEDEC-compliant packages

4.1.3 Package Cross-Section

Figure 4-2 FC-PBGA Two-Layer Core Package Cross Section and Figure 4-3 FC-PBGA Two-Layer Core Package Configuration show the predominant metal function on each layer.

Figure 4-2. FC-PBGA Two-Layer Core Package Cross Section

TBD

Figure 4-3. FC-PBGA Two-Layer Core Package Configuration

TBD

4.2 Mechanical Specifications

Figure 4-4. Mechanical Dimensions and Bottom Surface Nomenclature of the FC-PBGA Package for DD1.0

4.3 Microprocessor Ball Placement

Figure 4-5. PowerPC Broadway Microprocessor Ball Placement

	Α	В	С	D	Е	F	G	Н	J	K	L	M	N	Р	R	Т	U	٧	W	Υ
1	DL1	NC	DL4	DL8	DL7	DL9	DL14	NC	DL18	DL17	DL21	NC	DL24	DL25	DL29	DL31	TRST	TMS	GBL	KGND
2	DL0	GND	DL2	DL6	DL5	DL11	DL10	DL12	DL16	DL15	DL19	DL20	DL22	DL27	DL28	TCK	DL30	TDI	GND	KVDD
3	A29	A30		OVDD	GND		OVDD	GND		VDD	VDD		GND	OVDD		GND	OVDD		DRTRY	BR
4	A28	A27	OVDD		DL3		NC	DL13		GND	GND		DL23	DL26		CI		OVDD	BG	NC
5	A22	A26	GND	A25	A31		GND	OVDD		OVDD	OVDD		OVDD	GND		NC	WT	GND	TDO	DBG
6	TH	A23				VDD									VDD				TEA	PU
7	A20	A19	OVDD	A24	GND		OVDD			GND	GND			OVDD		GND	PU	OVDD	ARTRY	SRESET
8	AACK	NC	GND	A21	VDD		GND	GND	VDD	VDD	VDD	VDD	GND	GND		VDD	QREQ	GND	TH	QACK
9	A18	A17				VDD		GND	VDD			VDD	GND		VDD				BVSEL	INT
10	TH	A16	VDD	GND	OVDD	GND				GND	GND				GND	OVDD	GND	VDD	TH	CKSTP
11	TBST	TSIZ2	VDD	GND	OVDD	GND				VDD	VDD				GND	OVDD	GND	VDD	TLBI-SYNC	HRESET
12	TA	TSIZ1				VDD		GND	GND			GND	GND		VDD				МСР	CHECKST
13	NC	TT4	GND	NC	VDD		GND	GND	VDD	VDD	VDD	VDD	GND	GND		VDD	LLSD_ MODE	GND	L2_TSTCLK	L1_TSTCI
14	TSIZ0	TT2	OVDD	TT0	GND		OVDD			GND	GND			OVDD		GND	NC	OVDD	PLL_CFG4	AGND
15	TT3	TS				VDD									VDD				NC	A1VDD
16	A14	A15	GND	NC	A7		GND	OVDD		OVDD	OVDD		OVDD	GND		DH7	PLL_CFG3	GND	SYSCLK	TL
17	A12	TT1	OVDD		A9		DH30	DH27		GND	GND		DH12	DH13		DH1		OVDD	PLL_CFG1	PLL_CFG
18	A11	A10		OVDD	GND		OVDD	GND		VDD	VDD		GND	OVDD		GND	OVDD		DH0	PLL_CFG
19	A13	GND	A5	A4	A1	DH29	NC	DH28	DH23	DH24	DH21	DH20	NC	DH17	DH11	DH8	DH6	DH5	GND	DH3
20	A6	A8	A3	A2	A0	DH31	DH25	DH26	NC	DH22	DHI9	DHI8	DHIO	DH15	DH14	NC	DH9	DH10	DH4	DH2

Note: This view is looking down from above the Broadway placed and soldered on the system board.

4.4 Pinout Listings

Table 4-2 contains the pinout listing for the Broadway FC-PBGA package.

Table 4-2. Pinout Listing for the FC-PBGA Package,

Signal Name	Pin Number	Active	Input/Output	Notes
A[0:31]	E20, E19, D20, C20, D19, C19, A20, E16, B20, E17, B18, A18, A17, A19, A16, B16, B10, B9, A9, B7, A7, D8, A5, B6, D7, D5, B5, B4, A4, A3, B3, E5.	High	Input/Output	
A1V _{DD}	Y15	_	_	
AACK	A8	Low	Input	
AGND	Y14	_	_	
ARTRY	W7	Low	Input/Output	
BG	W4	Low	Input	
BR	Y3	Low	Output	
BVSEL	W9	_	Input	3
CHECKSTOP	Y12	Low	Output	
CI	T4	Low	Output	
CKSTP_IN	Y10	Low	Input	
DBG	Y5	Low	Input	
DH[0:31]	W18, T17, Y20, Y19, W20, V19, U19, T16, T19, U20, V20, R19, N17, P17, R20, P20, N20, P19, M20, L20, M19, L19, K20, J19, K19, G20, H20, H17, H19, F19, G17, F20	High	Input/Output	
DL[0:31]	A2, A1, C2, E4, C1, E2, D2, E1, D1, F1, G2, F2, H2, H4, G1, K2, J2, K1, J1, L2, M2, L1, N2, N4, N1, P1, P4, P2, R2, R1, U2, T1	High	Input/Output	
DRTRY	W3	Low	Input	
GBL	W1	Low	Input/Output	
GND	B2, B19, C5, C8, C13, C16, D10, D11, E3, E7, E14, E18, F10, F11, G5, C8, G13, G16, H3, H8, H9, H12, H13, H18, J12, K1, K7, K10, K14, K17, L4, L7, L10, L14, L17, M12, N3, N8, N9, N12, N13, N18, P5, P8. P13, P16, R10, R11, 18, T7, T14, T18, U10, U11, V5, V8, V13 V16, W8, W19,	_	_	
HRESET	Y11	Low	Input	
ĪNT	Y9	Low	Input	
L1_TSTCLK	Y13	High	Input	3

- at signals for factory use only and must be pulled up to OV_DD for normal machine operation.
- OV_{DD} inputs supply power to the input/output drivers and V_{DD} inputs supply power to the processor core.
 BVSEL and L1_TSTCLK select the input/output voltage mode on the 60x bus.
- 4. TCK must be tied high or low for normal machine operation.
- 5. No connect
- 6. Pullup resistor to OV_{DD}.
- 7. Tied high to OV_{DD}.
- 8. Tied low to GND.
- 9. Kelvin V_{DD} and GND for voltage regulator sensing.

Table 4-2. Pinout Listing for the FC-PBGA Package (Continued),

Signal Name	Pin Number	Active	Input/Output	Notes
L2_TSTCLK	W13	High	Input	1
LSSD_MODE	U13	Low	Input	1
MCP	W12	Low	Input	
OV _{DD}	C4, C7, C14, C17, D3, D18, E10, E11, G3, G7, G14, G18, H5, H16, K5, K16, L5, L16, N5, N16, P3, P7, P14, P18, T10, T11, U3, U18, V4, V7, V14, V17	_	_	2
PLL_CFG[0:4]	Y18, W17, Y17, U16, W14	High	Input	
QACK	Y8	Low	Input	
QREQ	U8	Low	Output	
SRESET	Y7	Low	Input	
SYSCLK	W16	High	Input	
TA	A12	Low	Input	
TBST	A11	Low	Input/Output	
TCK	T2	High	Input	4
TDI	V2	High	Input	
TDO	W5	High	Output	
TEA	W6	Low	Input	
TLBISYNC	W11	Low	Input	
TMS	V1	High	Input	
TRST	U1	Low	Input	
TS	B15	Low	Input/Output	
TSIZ[0:2]	A14, B12, B11	High	Output	
TT[0:4]	D14, B17, B14, A15, B13	High	Input/Output	
V _{DD}	C10, C11, E8, E13, F6, F9, F12, F15, J8, J9, J13, K3, K8, K11, K13, K18, L3, L8, L11, L13, L18, M8, M9, M13, R6, R9, R12, R15, T8, T13, V10, V11	_	_	2
WT	U5	Low	Output	
NC	W15, U14, Y4, D16, D13, A13, B8, T5, T20, N19, J20, G19, B1, G4, H1, M1	_	_	5
PU	Y6,U7	_	_	6
TH	W10, W8, A10, A6	_	_	7
TL	Y16	_	_	8

- These are test signals for factory use only and must be pulled up to OV_{DD} for normal machine operation.
 OV_{DD} inputs supply power to the input/output drivers and V_{DD} inputs supply power to the processor core.
- 3. BVSEL and L1_TSTCLK select the input/output voltage mode on the 60x bus.
- 4. TCK must be tied high or low for normal machine operation.
- 5. No connect.
- 6. Pullup resistor to OV_{DD} .
- 7. Tied high to OV_{DD}.
- 8. Tied low to GND.
- 9. Kelvin V_{DD} and GND for voltage regulator sensing.

Table 4-2. Pinout Listing for the FC-PBGA Package (Continued),

Signal Name	Pin Number	Active	Input/Output	Notes
KGND	Y1	_	_	9
KV _{DD}	Y2	_	_	9

- 1. These are test signals for factory use only and must be pulled up to ${\rm OV}_{\rm DD}$ for normal machine operation.
- 2. OV_{DD} inputs supply power to the input/output drivers and V_{DD} inputs supply power to the processor core.
- 3. BVSEL and L1_TSTCLK select the input/output voltage mode on the 60x bus.
- 4. TCK must be tied high or low for normal machine operation.
- 5. No connect.
- 6. Pullup resistor to ${\rm OV_{DD}}$.
- 7. Tied high to OV_{DD} .
- 8. Tied low to GND.
- 9. Kelvin V_{DD} and GND for voltage regulator sensing.

Table 4-3. Signal Listing for the FC-PBGA Package

Signal Name	Pin Count	Active	Input/Output	Notes
TBD	TBD	TBD	TBD	TBD
Notes:				

Table 4-4. Signal Locations

Signal	Ball Location						
TBD	TBD	TBD	TBD	TBD	TBD	TBD	TBD

Table 4-5. Voltage and Ground Assignments

A1V _{DD}	A2V _{DD}	OV _{DD}	OV _{DD}	V _{DD}	V_{DD}	GND	GND
TBD	TBD	TBD	TBD	TBD	TBD	TBD	TBD

5. System Design Information

This section provides electrical and thermal design recommendations for successful applications on the Broadway.

5.1 PLL Configuration

Table 5-1 shows the PLL configuration for the Broadway for nominal frequencies.

Table 5-1. Broadway Microprocessor PLL Configuration

PII C	FG [0:4]		Frequency Range Supported by VCO Having an Example Range of							
T LL_O	0 [0.4]	Processor to Bus Frequency Ratio	SYSCL	C ¹ (MHz)	Core	(MHz)				
Binary	Decimal	(PTBFR)	Minimum (SYSCLK _{MIN})	Maximum (SYSCLK _{MAX})	Minimum (Core Frequency _{MIN})	Maximum (Core Frequency _{MAX}				
00100	4	2×	200	243	400	486				
00101	5	2.5×	160	243	400	608				
00110	6	3×	133	243	400	729				
00111	7	3.5×	114	229	400	800				
01000	8	4×	100	200	400	800				
01001	9	4.5×	89	178	400	800				
01010	10	5×	80	160	400	800				
01011	11	5.5×	80	145	440	800				
01100	12	6×	80	133	480	800				
01101	13	6.5×	80	123	520	800				
01110	14	7×	80	114	560	800				
01111	15	7.5×	80	107	600	800				
10000	16	8×	80	100	640	800				
10001	17	8.5×	80	94	680	800				
10010	18	9×	80	89	720	800				
10011	19	9.5×	80	84	760	800				
10100	20	10×	80	80	800	800				
10101	21	11x	N/A	N/A	N/A	N/A				
10110	22	12*	N/A	N/A	N/A	N/A				
10111	23	13x	N/A	N/A	N/A	N/A				
11000	24	14x	N/A	N/A	N/A	N/A				
11001	25	15×	N/A	N/A	N/A	N/A				

Notes:

- 1. The SYSCL frequency equals the core frequency divided by the processor-to-bus frequency ratio (PTBFR).
- 2. In clock-off mode, no clocking occurs inside the Broadway regardless of the SYSCLK input.
- 3. In PLL-bypass mode, the SYSCLK input signal clocks the internal processor directly, the PLL is disabled, and the bus mode is set for 1:1 mode operation. This mode is intended for factory use only.

The AC timing specifications given in the document do not apply in PLL-bypass mode.

750bwy_ds_body.fm.0.3 System Design Information
February 24, 2005 IBM Confidential - Available under NDA only Page 35 of 47

Table 5-1. Broadway Microprocessor PLL Configuration (Continued)

PLL_CFG [0:4]		Processor to Bus Frequency Ratio	Frequency Range Supported by VCO Having an Example Range of			
			SYSCLK ¹ (MHz)		Core (MHz)	
Binary	Decimal	(PTBFR)	Minimum (SYSCLK _{MIN})	Maximum (SYSCLK _{MAX})	Minimum (Core Frequency _{MIN})	Maximum (Core Frequency _{MAX})
11010	26	16×	N/A	N/A	N/A	N/A
11011	27	17×	N/A	N/A	N/A	N/A
11100	28	18×	N/A	N/A	N/A	N/A
11101	29	19×	N/A	N/A	N/A	N/A
11110	30	20×	N/A	N/A	N/A	N/A
11111	31	Off ²	N/A	N/A	N/A	N/A

Notes

- 1. The SYSCLK frequency equals the core frequency divided by the processor-to-bus frequency ratio (PTBFR).
- 2. In clock-off mode, no clocking occurs inside the Broadway regardless of the SYSCLK input.
- 3. In PLL-bypass mode, the SYSCLK input signal clocks the internal processor directly, the PLL is disabled, and the bus mode is set for 1:1 mode operation. This mode is intended for factory use only.

The AC timing specifications given in the document do not apply in PLL-bypass mode.

5.2 PLL Power Supply Filtering

The Broadway microprocessor has an AV_{DD} signal which provides power to the clock generation PLL.

To ensure stability of the internal clock, the power supplied to the AV_{DD} input signals should be filtered using a circuit similar to the one shown in *Figure 5-1* on page 37. The circuit should be placed as close as possible to the AV_{DD} pin to ensure it filters out as much noise as possible.

Figure 5-1. PLL Power Supply Filter Circuit

5.3 Connection Recommendations

To ensure reliable operation, it is highly recommended to connect unused inputs to an appropriate signal level. Unused active low inputs should be tied to OV_{DD}. Unused active high inputs should be connected to GND. All no-connect (NC) signals must remain unconnected.

Power and ground connections must be made to all external V_{DD}, OV_{DD}, AV_{DD}, and GND pins of the Broadway.

5.4 Output Buffer DC Impedance

The Broadway 60x drivers were characterized over various process, voltage, and temperature conditions. To measure driver impedance, an external resistor is connected to the chip pad, either to OV_{DD} or GND. Then the value of such resistor is varied until the pad voltage is OV_{DD}/2 (see *Figure 5-2*).

750bwy_ds_body.fm.0.3 System Design Information
February 24, 2005 IBM Confidential - Available under NDA only Page 37 of 47

The output impedance is actually the average of two resistances: the resistance of the pull-up and the resistance of pull-down devices. When Data is held high, SW1 is closed (SW2 is open), and R_N is trimmed until Pad = $OV_{DD}/2$; R_N then becomes the resistance of the pull-up devices. When Data is held low, SW2 is closed (SW1 is open), and R_P is trimmed until Pad = $OV_{DD}/2$; R_P then becomes the resistance of the pull-down devices. With a properly designed driver, R_P and R_N are close to each other in value; then driver impedance equals $(R_P + R_N)/2$.

Figure 5-2. Driver Impedance Measurement

Table 5-2 summarizes the driver impedance characteristics a designer uses to design a typical process.

Table 5-2. Driver Impedance Characteristics

Process	60× Impedance (Ω)	OV _{DD} (V)
Worst	57	1.20
Typical	50	1.20
Best	46	1.20

5.4.1 Input/Output Usage

Table 5-3, Input/Output Usage, on page 40 provides details on the input/output usage of the IBM PowerPC Broadway RISC Microprocessor signals. The Usage Group column refers to the general functional category of the signal.

enabled. In Table 5-3, the "Input/Output with Internal Pullup Resistors" column defines which signals have these pullups or pulldowns and their active or inactive state. The "Level Protect" column defines which signals have the designated function added to their Input/Output cell. For In the IBM PowerPC Broadway RISC Microprocessor, certain input/output signals have pullups and pulldowns, which may or may not be more about level protection, see Section 5.5.1 on page 41.

Caution: This section is based on preliminary information and is subject to change.

Table 5-3. Input/Output Usage

Notes	TBD
Comments	ТВО
Required External Resistor	TBD
Level Protect	TBD
Input/Output with Internal Pullup Resistors	TBD
Usage Group	TBD
Input/ Output	TBD
Active Level	TBD
Broadway Signal Name	TBD

5.5 Operational and Design Considerations

5.5.1 Level Protection

A level protection feature is included in the IBM PowerPC Broadway RISC Microprocessor. This feature prevents ambiguous floating reference voltages by pulling the respective signal line to the last valid or nearest valid state.

For example, if the input/output voltage level is closer to OV_{DD} , the circuit pulls the I/O level to OV_{DD} . If the I/O level is closer to GND, the I/O level is pulled low. This self-latching circuitry *keeps* the floating inputs defined and avoids meta-stability. In *Table 5-3, Input/Output Usage*, on page 40, these signals are defined as "keeper" in the "Level Protect" column.

The level protect circuitry provides no additional leakage current to the signal I/O; however, some amount of current must be applied to the *keeper* node to overcome the level protection latch. This current is process dependent, but in no case is the current required over 100 μA.

This feature allows the system designer to limit the number of resistors in the design and optimize placement and reduce costs.

Note: Having a *keeper* on the associated signal I/O does not replace a pull-up or pull-down resistor that is needed by a separate device located on the 60x bus. The designer must supply any termination requirements for these separate devices, as defined in their specifications.

5.5.2 Adjusting the processor clock frequency

The Broadway processor generates an internal clock that is a frequency multiple of the external system clock, SYSCLK, using an internal phase-lock loop (PLL) circuit. The PLL circuit must generate a stable internal clock before executing microprocessor instructions. Consequently, any time the PLL clock frequency is changed, a proper reset sequence of the processor is required.

At power up, the voltage applied to the processor through the Vdd, AVdd, and OVDD pins must be within specification prior to asserting processor reset, HRESET. When HRESET is asserted, SRESET is pulsed to reset the PLL and start it syncronizing to SYSCLK with the clock multiple selected by the PLL_CFG pins. After the pulse on SRESET, HRESET is held asserted a mininum100usec to allow the PLL to stabilize. This process is illustrated in *Figure 5-3 Selection of Processor Frequency at Power-On.*

After power-up and PLL stabilization, the PLL frequency may be changed by adjusting the frequency of the external SYSCLK. The reset procedure previously described is used, whereby the SYSCLK frequency is changed while SRESET is asserted. Once the SYSCLK frequency stabilizes, then SRESET may be deasserted. This is illustrated in *Figure 5-4 Control Sequence for Switching Processor Clock Frequency*.

Figure 5-4. Control Sequence for Switching Processor Clock Frequency

SRESET

5.5.3 Configuring the Processor During Reset

Operating modes of the processor such as data bus width, drtry mode, etc. are selected when the processor exits reset mode (i.e. when HRESET is deasserted). Specifically, selected pins are sampled when HRESET transitions to the de-asserted state and the sampled value determines the operating mode. The mode select pins and their descriptions follow.

Table 5-4. Summary of Mode Select

Mode	Broadway	
32-bit mode	Sample TLBISYNC to select High = 64-bit mode Low = 32-bit mode	
Data retry mode	Selects DRTRY mode. 0 at HRESET transition No DRTRY mode 1 at HRESET transition DRTRY mode	
Standard/extended precharge mode	QACK in a logical high state at the transition of HRESET from asserted to negated enables standard precharge mode, the recommended default. See Section 5.5.4.1 for details.	

5.5.4 64-Bit or 32-Bit Data Bus Mode

The typical operation for the Broadway DD1.X revision level is considered to be in 64-bit data bus mode. Mode setting is determined by the state of the mode signal, TLBISYNC, at the transition of HRESET from its active to inactive state (low to high). If TLBISYNC is high when HRESET transitions from active to inactive, 64-bit mode is selected. If TLBISYNC is low when HRESET transitions from active to inactive, 32-bit mode is selected.

5.5.4.1 Precharge Duration Selection and Application

An extended precharge feature is available for the signals ABB, DBB, and ARTRY in situations where the loading and net topology of these signals requires a longer precharge duration for the signals to attain a valid level.

This feature has not been fully tested and should not be necessary in a properly designed system, even at 200 MHz. System designers should assume standard precharge as the default selection, with an option to use extended precharge.

The bus signals, \overline{ABB} , \overline{DBB} , and \overline{ARTRY} , require a precharge to the inactive state (bus high) before going to tristate. The precharge duration in standard precharge mode is approximately one half cycle, and should be used for systems with point-to-point topologies. Extended precharge mode increases the precharge duration to one cycle. This increase may be required for bus speeds approaching 200 MHz when bus loading is high.

QACK in a logical high state at the transition of HRESET from asserted to negated enables standard precharge mode in the Broadway. QACK in a logical low state at the transition of HRESET from asserted to negated enables extended pre-charge mode in the Broadway.

5.6 JTAG Test Access Port (TAP) Operation

Broadway supports the IEEE 1149.1 standard, "IEEE Standard Test Access Port and Boundary-Scan Architecture". The standard defines a five-pin interface that is used to perform functions such as continuity testing between components on boards and system debug. Data is serially shifted into the processor through the TDI pin and shifted out of the processor through the TDO pin. The scan operations can be divided into two categories: instruction scan and data scan operations. The operations or modes are selected using the TMS pin. Finally, all scanning and mode selection is performed synchronously with respect to the clock pin, TCK.

This section details the IEEE 1149.1 operations supported by the Broadway processor and also recommendations for system design to support system debug using the TAP interface. For additional details, please refer to the IEEE 1149.1 document.

5.6.1 Interface Pins

A brief description of the five dedicated pins comprising the Test Access Port (TAP) are given below. These pins do not have an associated boundary scan cell.

Table 5-5. TAP Pins

Pin	Input/Output	Weak Pullup	Mandatory TAP Pin	Function
TDI	Input	Yes	Yes	Serial Scan input pin
TDO	Output	No	Yes	Serial Scan output pin
TMS	Input	Yes	Yes	TAP controller mode pin
TCK	Input	No	Yes	Scan clock
TRST	Input	Yes	No	TAP controller reset

TRST_ is an optional pin, but it is required for Broadway to reset the TAP controller on a power-on reset (POR). The 1149.1 standard requires a weak pullup only on the TRST_ pin, but in the Broadway, weak pullups are provided to most TAP input pins such that the Broadway will function normally with the TAP pins unconnected. However, it is recommended to tie the TDI and TMS input pins high and TRST_ low when they are not in use for greater system reliability.

5.6.2 Supported IEEE 1149 JTAG Instructions and Data Registers

5.6.2.1 Instructions

Broadway supports the three required JTAG instructions; Bypass, Sample/Preload and Extest. plus the optional HIGHZ and CLAMP JTAG instructions. The 8-bit hexadecimal encoding for these instructions is shown in the table below. Hexadecimal encodings not included in the table are reserved for other functions.

JTAG instructions are scanned in serially (LSB bit first) into an 8 bit TAP controller instruction register via the TDI pin. Please consult the IEEE 1149.1 standard for details regarding loading the jtag instructions using the TAP.

Table 5-6. Instruction Encodings

Instruction	Encoding	Description
EXTEST	X'00'	JTAG extest instruction
SMPL_PLD	X'C0'	JTAG sample/preload instruction
HIGHZ	X'F0'	JTAG HIGHZ instruction
CLAMP	X'F1'	JTAG CLAMP instruction
BYPASS	X'FF'	JTAG bypass instruction

The instruction register output is forced to the Bypass instruction (all 1s) if the TAP controller is in the Test_Logic_Reset state or if TRST_ is active.

5.6.2.2 Data Registers

Broadway supports the Bypass and Boundary Scan data registers. When selected with the corresponding JTAG instruction (as shown in the table below), the register is inserted between the TDI and TDO TAP pins and may be scanned when the TAP controlled is in "Shift-DR" state to control or observe Broadway input and output states. Please consult the IEEE 1149.1 specification for details on manipulation of the data registers. An industry-standard boundary scan design language (i.e. BSDL) file will be created for Broadway with specific information on the boundary scan latch size and organization. This document can be used to create card level connectivity tests between components.

Table 5-7. JTAG Instructions

Data Register	Instruction	TAP State	S <mark>c</mark> an Clock	Data Register Length
Bypass register	Bypass	Shift DR	TCK	1
Boundary scan register	Sample/preload or extest	Shift-D	TCK	TBD

Bypass Register

The Bypass register is required by the 1149.1 standard. This is a single bit register that is used to bypass the Broadway This feature allows a shorter system data scan string when scanning an entire system board in which the Broadway boundary scan string is a part of a larger system data scan string.

Boundary Scan Register

Boundary scan register allow system board trace tests, and access to the pins where physical access is difficult. Basically a latch is placed on inputs to capture data and a latch is placed on outputs to force data. Additional latches may be needed to configure bidirectional pins as either inputs or outputs and also enable or disable tri-state outputs. All these latches, or boundary scan cells, are serially connected to comprise the boundary scan register.

Not all pins of the Broadway have an associated boundary scan cell. The 5 TAP pins and the dedicated test pins do not have a boundary scan cell.

750bwy_ds_body.fm.0.3 February 24, 2005 IBM Confidential - Available under NDA only

An industry-standard boundary scan design language (i.e. BSDL) file will be created for Broadway with specific information on the boundary scan register size and individual cell placement and function. This document can then be used to create card level connectivity tests between components

5.6.3 5.8.3 Recommendations to Support System Debug

The TAP interface also allows functions such as observation and control of Broadway general-purpose registers, cache contents, 60x bus cycles, etc., using the IBM RISCwatch debug tool. To simplify system debug, the following system design recommendations are offered to allow use of RISCwatch and other diagnostic tools.

HRESET_, SRESET_, and TRST_ are signals used for RISCwatch to enable proper operation of the tool. Logical 'AND' gates should be placed between these signals and the IBM Broadway RISC microprocessor as shown below.

Figure 5-5. IBM RISCWatch JTAG to HRESET, TRST, and SRESET Signal Connector

5.6.3.1 Processor Debug System Enablement when Implementing Precharge Selection

System designers who want to use a processor debug system attached to the Broadway IEEE 1149.1 test access port (TAP) interface (such as the IBM RISCWatch debug system) should provide a method to assert QACK after the transition of HRESET. Debug systems use a "soft stop" feature to stop the processor, allow processor internal states to be read, and then restart of the processor. A soft stop requires the system to be in a quiescent state before the processor can be queried for internal state values. This is accomplished by the assertion of a quiescent request (that is, QREQ is asserted) and subsequent acknowledgement (that is, QACK is asserted). Systems that do not use the power management features; doze, nap, and sleep; and do not require the extended pre-charge feature can drive the QACK pin with an inverted version of HRESET.

Revision Log

Date	Description
January 17, 2005	Initial advance release (version 0.1).
February 16, 2005	Updated advance release (version 0.2). Changed Table 2-1. Broadway General Parameters. Changed Table 3-1. Recommended Operating Conditions. Changed Table 3-3. DC Electrical Specifications. Changed Table 3-4. Power Consumption. Changed note 2 in Table 3-5. Clock AC Timing Specifications. Changed Table 3-5. Clock AC Timing Specifications. Changed Figure 3-1. SYSCLK Input Timing Diagram.
February 24, 2005	Updated advance release (version 0.3). Changed Table 3-1. Recommended Operating Conditions. Changed Table 3-4. Power Consumption.