CINÉTICA QUÍMICA

É o estudo da velocidade das reações químicas e dos fatores que nela interferem.

Velocidade Media De Uma Reacao

Na física, quando desejamos calcular a velocidade de um determinado corpo, medimos o seu deslocamento em função do variação do tempo para percorrer a distância medida

$$v = \frac{\Delta d}{\Delta t}$$

Para a medição da velocidade da reação, basta calcular a variação da concentração de reagentes e de produtos. Portanto, precisamos saber quanto do reagente que "desaparece" e quanto de produto se "forma", por unidade de tempo (segundos, minutos, horas, etc.). considere uma reação hipotética:

$$qA_2 + kB \rightarrow qC_2 + dD$$
Reagentes
Produtos

Velocidade de consumo:

$$v = -\frac{\Delta" quantid.A"}{\Delta t} \qquad v = -\frac{\Delta" quantid.B"}{\Delta t}$$

Velocidade de produção:

$$v = +\frac{\Delta'' quantid.C''}{\Delta t} \qquad v = +\frac{\Delta'' quantid.D''}{\Delta t}$$

O sinal "-" e "+" indicam consumo e produção, respectivamente.

Velocidade media de reação padrão

$$v = -\frac{\Delta[A]}{a\Delta t} = -\frac{\Delta[B]}{b\Delta t} = +\frac{\Delta[C]}{c\Delta t} = +\frac{\Delta[D]}{d\Delta t}$$

A velocidade instantânea pode ser calculada usando a inclinação de uma curva onde se relaciona concentração com o tempo (reta tangente à curva), ou usando o limite da velocidade média para um intervalo de tempo tendendo a zero.

$$v_{\text{in }st} = \frac{d[A]}{dt} = \lim_{\Delta t \to 0} \frac{\Delta[A]}{\Delta t}$$

Leis de velocidade ou leis cinéticas

A velocidade depende da natureza dos reagentes, concentração, pressão, temperatura, estado físico, etc. A cinética busca estudar os fatores que afetam a velocidade, para podermos entender como o processo ocorre. Considerando a reação hipotética,

$$v = k [A]^x [B]^y$$

Onde k é chamado de constante de velocidade de reação e os índices x e y estão relacionados à forma com a qual a velocidade depende da concentração e são chamados de ordens de reação. Os valores de x e y, são encontrados experimentalmente e a ordem global é a soma dos dois.

Quando a reação é elementar, ou seja, ocorre em uma única etapa, os valores de x e y coincidem com os coeficientes estequiométricos da reação. Portanto, para a reação hipotética,

$$v = k [A]^a [B]^b$$

Observe que, para determinar a ordem de uma reação não levamos em consideração os produtos formados.

Para reações não elementares (que ocorre em várias etapas), a etapa lenta é a etapa determinante da velocidade, portanto, a ordem de ração é referente tal etapa e de ordem zero para os outros reagentes.

CLASSIFICAÇÃO DAS REAÇÕES

As reações podem ser classificadas como ordem zero, primeira ordem, segunda ordem, terceira ordem ou ordem mais complexa.

Ordem zero

Indica que a velocidade é constante, independente da concentração dos reagentes, ou seja, a concentração cai linearmente com o tempo. Considere que a nossa reação hipotética seja de ordem zero para o reagente A:

$$v = k[A]^0 \implies v = k \times 1 \implies \underline{v = k}$$

Também podemos calcular o tempo de meia vida $(t_{1/2})$, ou seja, o tempo em que a concentração inicial dos reagentes caírem pela metade:

$$\left[A\right]_{t} = \frac{\left[A\right]_{0}}{2}$$

A velocidade pode ser representada como a variação da concentração dos reagentes pelo tempo:

$$v = -\frac{d[A]}{dt} = k[A]^{0} = k$$
$$-d[A] = k \times dt \implies \int d[A] = -k \int dt$$
$$[A]_{t} - [A]_{0} = -k \times t$$

Substituindo,

$$\frac{\left[A\right]_0}{2} - \left[A\right]_0 = -k \times t_{1/2} \quad \Longrightarrow t_{1/2} = \frac{\left[A\right]_0}{2k}$$

Construindo o gráfico de t vs $[A]_t$, a inclinação (coeficiente angular) será k.

$$\{k\} = mol.L^{-1}.tempo^{-1}$$

Primeira Ordem

A velocidade depende da concentração do reagente. Vamos considerar que o reagente "A" da reação hipotética seja de primeira ordem.

$$v = -\frac{d[A]}{dt} = k[A]^{1} \implies -\frac{d[A]}{[A]} = kdt$$

$$\int \frac{d[A]}{[A]} = -\int kdt \implies \ln[A]_{0}^{t} = -kt$$

$$\ln[A]_{t} = -kt + \ln[A]_{0}$$

Plotando o gráfico, a inclinação (coeficiente angular) será k.

O tempo de meia vida pode ser calculado usando:

$$\ln \frac{\left[A\right]_{t}}{\left[A\right]_{0}} = -k \times t_{1/2} \quad \Rightarrow \ln \frac{\left[X\right]_{0}}{2} = -k \times t_{1/2}$$

$$\ln \frac{1}{2} = -k \times t_{1/2} \quad \Rightarrow t_{1/2} = \frac{0,6931}{k}$$

$$\{k\} = tempo^{-1}$$

Segunda ordem

A velocidade depende da concentração do reagente ao quadrado. Vamos considerar que o reagente "A" da reação hipotética seja de segunda ordem.

$$v = -\frac{d[A]}{dt} = k[A]^{2} \implies -\frac{d[A]}{[A]^{2}} = kdt$$

$$\int \frac{d[A][A]^{-2+1}}{-2+1} = -\int kdt \implies \frac{[A]^{-1}}{-1} \Big|_{0}^{t} = -kt$$

$$-\left(\frac{1}{[A]_{t}} - \frac{1}{[A]_{0}}\right) = -kt \implies \frac{1}{[A]_{t}} = kt + \frac{1}{[A]_{0}}$$

Plotando o gráfico, a inclinação (coeficiente angular) será k.

O tempo de meia vida pode ser calculado usando:

$$\begin{split} \frac{1}{\left[A\right]_{t}} - \frac{1}{\left[A\right]_{0}} &= kt_{1/2} \quad \Rightarrow \frac{1}{\left[A\right]_{0}} - \frac{1}{\left[A\right]_{0}} &= kt_{1/2} \\ \frac{1}{\left[A\right]_{0}} &= kt_{1/2} \quad \Rightarrow t_{1/2} &= \frac{1}{k\left[A\right]_{0}} \\ \{k\} &= L.mol^{-1}.tempo^{-1} \end{split}$$

Terceira Ordem

Reações de terceira ordem são muito pouco comuns, pois necessitam que haja a colisão de 3 moléculas ao mesmo tempo.

$$A+B+C \rightarrow \text{Pr } oduto \implies [A]_0 = [B]_0 = [C]_0$$

$$v = -\frac{d[A]}{dt} = -\frac{d[B]}{dt} = -\frac{d[C]}{dt} = k[A]^3$$

Realizando a integral usando o método de substituição,

$$\frac{1}{[A]_{i}^{2}} - \frac{1}{[A]_{0}^{2}} = 2kt$$

Plotando o gráfico, a inclinação será 2k.

O tempo de maia vida será $t_{1/2} = \frac{3}{2k[A]_0^2}$

$$\{k\} = L^2.mol^{-2}.tempo^{-1}$$

Ordens aparentes podem acontecer, principalmente quando ocorre uma reação onde um dos reagentes estiver saturado, com a concentração diminuindo no decorrer da reação.

Na prática, o pesquisador deve tomar alguns cuidados com a ordem de reação, pois se for analisado em um pequeno intervalo de tempo, os dados podem não ser conclusivos. É muito importante estender a experiência por um tempo suficientemente longo para que a linha adeque a ordem correta de reação.

REAÇÕES REVERSÍVEIS

Nas reações reversíveis de primeira ordem, escritas genericamente por $A \xrightarrow[k_2]{k_1} B$, o reagente A forma

o produto B com uma velocidade governada pela constante k_1 , ao mesmo tempo em que o produto B forma o reagente A com uma velocidade governada pela constante k_2 , até atingir o equilíbrio do processo, ou seja, até que a reação tenha a mesma velocidade, tanto no sentido direto quanto no sentido inverso.

$$v = -\frac{d[A]}{dt} = k_1[A] - k_2[B]$$

rearranjando,

$$-\frac{d[A]}{dt} = (k_1 + k_2)[A] - k_2[A]_0$$

A resolução dessa integral deve ser feita mudandose a variável de integração

$$[A] = \left(1 - \frac{\left(k_1 e^{-(k_1 + k_2)t} + k_2\right)}{\left(k_1 + k_2\right)}\right) [A]_0 = [B]$$

Como o sistema está em equilíbrio, a lei de velocidade para a reação direta é igual à inversa.

As colisões efetivas

s moléculas possuem um movimento de agitação térmica que faz com que estejam continuamente sofrendo colisões.

Uma colisão será efetiva quando:

- As partículas estiverem em posição favorável à colisão;
- As partículas tiverem energia suficiente para formar o complexo ativado.

Representação esquemática da reação

$$A + B \longleftrightarrow A_{Comp.\ Ativado} \to P$$

ENERGIA DE ATIVACAO

Apenas as moléculas dotadas de energia suficiente conseguem sofrer colisões efetivas, portanto, as moléculas devem possuir um valor mínimo de energia para que a reação ocorra. Essa energia mínima é denominada "ENERGIA DE ATIVAÇÃO".

Observando o gráfico verificamos que existe uma barreira de energia (energia de ativação) a ser vencida para que ocorra a reação e consequente formação dos produtos.

Quanto maior a energia de ativação, mais lenta e a reação.

Como os reagentes têm energia mais baixa que os produtos, dizemos que a reação é endotérmica, uma vez o $\Delta H > 0$. Em outras palavras, a reação absorve calor (endotérmica), ao invés de liberá-lo para o ambiente.

Também existe outro tipo de reação que é a exotérmica ($\Delta H < 0$), isto é, aquela que absorve calor do ambiente.

Como os reagentes têm energia mais alta que os produtos, dizemos que a reação é exotérmica. Em outras palavras, a reação libera calor, ao invés de absorvê-lo do ambiente.

A velocidade de uma reação depende do numero de moléculas que possuam energia igual ou maior que a energia de ativação.

FATORES QUE INFLUEM NA VELOCIDADE DAS REACOES

Efeito Do Catalisador Sobre A Velocidade De Uma Reação

Catalisador é uma espécie química ou biológica (enzima) que aumenta a velocidade de uma reação ao abaixar a energia de ativação de uma reação, sem ser consumido durante o processo.

- Catalise Homogênea: é aquela que ocorre em uma única fase. O catalisador tem o mesmo estado de agregação que os reagentes;
- Catalise heterogênea: é aquela que ocorre na presença de um catalisador com estado de agregação diferente dos reagentes.

Efeito Da Temperatura

O aumento da temperatura aumenta a agitação das moléculas. Assim, aumenta o número de moléculas com energia igual ou superior à energia de ativação. A velocidade da reação será maior devido ao aumento do número de choques.

Para uma temperatura fixa, o valor de k é constante, mas com a variação da temperatura, irá variar também o valor da constante de velocidade, como pode ser representada pela equação de Arrhenius:

$$k = Ae^{-\frac{E_a}{RT}}$$
 $\Rightarrow \ln k = \ln A - \frac{E_a}{RT}$

Plotando o gráfico da dependência da constante de velocidade pela ao inverso da temperatura, a inclinação será a razão da energia de ativação pela constante dos gases ideais.

Para situações onde haverá duas temperaturas distintas e consequentemente, cada temperatura será representada por uma constante de velocidade própria. Rearranjando a equação anterior, podemos ter:

$$\ln \frac{k_2}{k_1} = -\frac{E_a}{R} \left(\frac{1}{T_2} - \frac{1}{T_1} \right)$$

Em situações onde a temperatura for muito baixa, as reações podem nem acontecer.

Efeito da Pressão

Para reagentes gasosos, o aumento da pressão favorecerá o aumento da velocidade da reação, pois, com a diminuição do volume, aumenta-se a frequência dos choques.

Efeito da Superfície de Contato

Quando algum reagente for sólido, a velocidade da reação não dependerá da sua concentração no sistema e sim da sua superfície de contato.

Quanto maior a superfície de contato entre os reagentes, maior e a velocidade da reação, pois ocorre maior probabilidade de choques efetivos.