17 The data below are taken from a test of a petrol engine for a motor car.

power output

150 kW

fuel consumption

20 litres per hour

energy content of fuel

40 MJ per litre

What is the ratio $\frac{\text{power output}}{\text{power input}}$?

A
$$\frac{150 \times 10^3}{40 \times 10^6 \times 20 \times 60 \times 60}$$

$$B = \frac{150 \times 10^3 \times 60 \times 60}{20 \times 40 \times 10^6}$$

C
$$\frac{150 \times 10^3 \times 40 \times 10^6 \times 20}{60 \times 60}$$

$$\textbf{D} = \frac{150 \times 10^3 \times 20}{40 \times 10^3 \times 60 \times 60}$$

18 Leonardo da Vinci proposed a flying machine that would work like a screw to lift the pilot into the air. The 'screw' is rotated by the pilot.

The machine and the pilot together have a total mass of 120 kg.

Which useful output power must the pilot provide to move vertically upwards at a constant speed of $2.5 \,\mathrm{m \, s^{-1}}$?

- **A** 48W
- **B** 300 W
- **C** 470 W
- 2900 W
- **19** A metal wire, fixed at one end, has length *l* and cross-sectional area *A*. The wire extends a distance *e* when mass *m* is hung from the other end of the wire.

What is an expression for the Young Modulus *E* of the metal?

- **A** $E = \frac{ml}{Ae}$ **B** $E = \frac{mgl}{Ae}$ **C** $E = \frac{me}{Al}$ **D** $E = \frac{mge}{Al}$