

百度分布式计算技术发展

连林江 <u>lianlinjiang@baidu.com</u> 2012.07.08

我

- 基础架构部
 - 项目经理
- 负责分布式计算团队
 - HDFS
 - MapReduce及其他批量计算模型
 - Resource Management System

大纲

- 分布式计算平台
- 我们的挑战
- 分布式计算技术2.0
- 展望

分布式计算平台

- **2008**
 - [●] 开始于Hadoop v0.18/0.19
 - 300台机器,2个集群
- Now
 - ●总规模2W以上
 - ●最大集群接近4,000节点
 - ●每日处理数据20PB+
 - 每日作业数120,000+

我们的挑战

- ●规模
 - 单集群1000→2000→3000→5000→10000
- 效率
 - ●资源利用率(cpu/mem/io)—高峰vs平均
 - 存储利用—无压缩、冷数据
 - 存储与计算资源使用均衡问题
- 服务可用
 - 随着规模增大问题变得突出
 - 3K+节点升级或异常小时级中断
 - 用户影响面:在可用99.9%下用户容忍度变低

分布式计算技术2.0

- 1.0面临问题
 - 内存可扩展性
 - 1.5亿文件/1.2亿块,内存占用90GB

Cluster Summary

156146781 files and directories, 120438664 blocks = 276585445 total.

Heap Memory used 89.51 GB is 69% of Committed Heap Memory 127.95 GB. Max Heap Memory is 127.95 GB.

Non Heap Memory used 29.99 MB is 66% of Committed Non Heap Memory 45.42 MB. Max Non Heap Memory is 132 MB.

- 负载可扩展性
 - ◆集群规模扩大→单点NameNode请求压力增大
 - ₹3000节点:连接超时/拒绝,有时操作响应延迟高

blkX, blkY, blkZ

blkX, blkY, blkZ

user, group, rwxr-x---, size, repl

inode450->

- 内存负载: 10亿文件, 10亿块
 - Namespace:66GB文件数据+1GB目录,单节点管理
- ●请求负载
 - ¶ 13.7%耗cpu操作 → Namespace
 - Namespace不再维护块信息,大部分操作都不需要加 全局锁,可以更充分利用CPU资源
- ●吞吐
 - ▽按照我们的负载读写比例 x5~10

HDFS 2.0--Availability

- **1.0面临问题**
 - NameNode单点/手工Failover
 - 启动/升级时间长
 - 2亿文件/3K节点,启动时间40-50分钟(百度)

HDFS 2.0--Availability

HDFS 2.0--Availability

- 热备支持
- 分钟级别切换
- 最坏情况,应用可能丢失1分钟级数据

HDFS 2.0--透明压缩

- 存储压力很大?
 - 很多是存储决定预算
 - 70-80%使用率
- 为什么不压缩?
 - ◎ 应用层压缩后,造成无法对数据split来分布式计算
 - 使用可分割的压缩算法,使用非常复杂
 - 压缩需要同步耗费CPU
 - 用户希望透明
- ●冷数据
 - 使用不频繁
 - 量很大
 - 存储成本较高

HDFS 2.0--透明压缩

HDFS 2.0--透明压缩

- ●改进效果
 - 节省存储空间30%+ , 增加Quota 40%+
 - 进一步的高压缩算法启用会有更大收益

MapReduce 2.0

- 1.0面临问题
 - ●JobTracker单点
 - 负载太重,扩展性受限→1W
 - 故障/升级中断服务重跑作业
 - 资源粒度过粗
 - slot (cpu, mem)
 - 资源利用不高
 - Shuffle+Reduce,空占slot

MapReduce 2.0

MapReduce 2.0 - 架构优势

- 可扩展性W台以上
- 架构松耦合,支持多种计算模型
- ●可支持热升级
- 更精细的资源调度
- MR优化: Shuffle独立/Task同质调度

MapReduce 2.0 - 资源模型

MapReduce 2.0 - 资源模型

- 资源需求用一个多元组表示,目前使用(cpu, mem),后续可以变成(cpu, mem, disk, disk io, net io)
- ●调度
 - 资源的共享与抢占
 - * 作业的优先级
 - 资源的物理分组与逻辑分组

MapReduce 2.0 - 资源模型优势

- 资源充分共享
- 灵活的优先级控制
- 管理方便

MapReduce 2.0 – Shuffle独立

Shuffle Service Admininstration

Ram Manager

shuffleBufferMegabytes	maxSingleShuffleLimit	startMergePercent(%)	PercentUsed(%)	waitForMemoryThreads	numStarted	numClosed	maxInMemOutputs	m
1024	33554432	80.0	0.0	0	0	0	20000	0.

Shuffle Result

ShuffleID	JobPriority	ResultStatus	ResultFileNum	ResultFileList
job_201108291638_0001-195	NORMAL	DONE	2	&file:/home/disk4/dcmmapred/shuffleService/job_201108291638_0001/195/output/map_283.out&/shuffleService/job_201108291638_0001/195/output/map_46.out
job_201108291638_0001-198	NORMAL	DONE	2	&file:/home/disk6/dcmmapred/shuffleService/job_201108291638_0001/198/output/map_351.out&/shuffleService/job_201108291638_0001/198/output/map_2.out
job_201108291638_0001-197	NORMAL	DONE	2	&file:/home/disk7/dcmmapred/shuffleService/job_201108291638_0001/197/output/map_176.out&/shuffleService/job_201108291638_0001/197/output/map_46.out
job_201108291638_0001-199	NORMAL	DONE	2	&file:/home/disk8/dcmmapred/shuffleService/job_201108291638_0001/199/output/map_352.out&/shuffleService/job_201108291638_0001/199/output/map_46.out

ShuffleWorks

shuffleWork	totalMaps	remainingMaps	usedMem	inMemorySegments	onDiskSegments	totalFailures	pending Hosts	fetchFailedMaps	penalties
-------------	-----------	---------------	---------	------------------	----------------	---------------	---------------	-----------------	-----------

ShuffleCopiers

Copier-Id	Running ShuffleWork
1	null
2	null
3	null
4	null
5	null

展望

- W台以上大集群
 - 『高吞吐高资源利用率
- HDFS
 - 压缩传输&分级压缩
 - Untility Storage
- MapReduce
 - DAG
- IDLE计算平台

Q & A

谢 谢!

