Theorie der Programmierung Wintersemester 2006/07

Übungsblatt 5

Aufgabe 1

Versuchen Sie, die folgenden Ausdrücke so durch Typen zu ergänzen, dass wohlgetypte Ausdrücke entstehen. Gelingt das in allen Fällen?

- a. let $f = \lambda x$ if x = 0 then 1 else f(x 1) in f 3
- b. let $f = \lambda x$. true in let $f = \lambda x$. if x = 0 then 1 else f(x - 1)in f 3
- c. let x = truein let $f = \lambda y$. xin let x = 2in f x
- d. let $g = \lambda x$. truein let $f = \lambda x$. gxin let $g = \lambda x$. x*xin f(g2)
- e. $\lambda x. xx$

Aufgabe 2

Führen Sie den Beweis von Satz 3 ("Preservation") zu Ende.

Aufgabe 3

Machen Sie sich am Beispiel des Ausdrucks

$$e =$$
 let $g = \lambda x :$ int. $x + y$
in $\lambda y :$ bool. if y then $g 1$ else $g 2$

noch einmal klar, warum Preservation auch für Ausdrücke mit frei vorkommenden Namen gilt. Bestimmen Sie dazu

- die Typherleitung für e in einer passenden Typumgebung Γ ,
- den ersten small step $e \to e'$,
- die Typherleitung für e' in Γ

und vergleichen Sie die beiden Typherleitungen miteinander.

Aufgabe 4

Führen Sie den Beweis von Satz 4 ("Progress") zu Ende.

Aufgabe 5

Gelten die in der Vorlesung bewiesenen Sätze (Preservation, Progress und Safety) auch für die in Aufgabe 2 von Übungsblatt 2 eingeführte call by name-Semantik? Begründen Sie Ihre Antwort.