4장 차원축소

데이터의 차원 → 변수의 개수로 결정.

Land 마이닝 알고리즘을 효율적으로 수행하기 위해선 변수 개수 축소 된호.

파일첫 / 프로토 타입 단계의 일박로 모델을 사용하기원에 시해

차원축소의 접근법

- ① 범투를 제거하거나 결합하기 위해서 주어진 자료와 관련된 특정 분야의 지식을 도입.
- ② 변수 안 생물는 정보를 검찰하기 위해서 자료였다는 시행 나 바건 시 변수 경화 / 삭제.
- ③ 범형 빤→ 수채형 빤 등 재를 실시.
- ④ 두성분분석(PCA)와 같은 자동라된 차원축소 기술 사용.

1. 서론

- · 데이터 준비단계 에서는 변수변환등으로 변수의 가수가 과도하게 증가할 수 있음.
- · 이런 경우 변수 간의 <u>과도한</u> 상관관계가 생기거나 결<u>과변수와 관련없는 변수가 또한될 수 있음. > 과적합유발</u>
- · 과적한 이외에도 지도학습 알고가든에서 별도의 계산문제가 생길수도 있음.
- · 모델에 변수가 많을 경우 데이터 수집 비용역시 증가 나 모델의 차원: 모델에 의해 사용된 독립번수/입력변수의 개수

2. 차원의 저두

차원이 증가할수록 가능한 선택지는 기하급수적으로 증가

⇒ 데이터의 <u>때</u>턴과 구도분석이 불가능.

┗ 정확도의 희생을 조산화하면서 차원을 축소하는 것이 때우 등요.

3. 실질적인 고려사항.

데이터 탄색의 첫 단계에서 흑성변수들이 주어진 과제에 덕합한지 확인하는 과정 필요.

, 어떤 변수들이 가장 중효하고, 어떤 것이 쑬모칪는가.

어떤 변수가 오차가 많이 생길 것인가.

돈을 고려

본석을 계속할 때 흑성이 가능한가? 내용은?

결과값이 나오게던에 출전이 가능한가?

→ 첫 마에서의 입장 횟수같이 참매가 끝나기전인 알 수 없는 첫들

4. 데이터 요약

데이터 요약을 통해 데이터를 더 잘 이해하고 필호하는 번수 식별 가능.
[평균 (rean), 화소,최대값, 최반값, 증망값(red:on) 등의 호박통계상.
| 취합 / 피빗테이블

5. 상관분석

상관계수를 살펴보는 삼관본석을 통해 등특되는 정보를 가진 변수들을 식별 가능

6. 범주현 변수의 뱀두 개수 축소.

범주의 개수가 많은 병주형 변수가 예측변수인 경우 다수의 가변수로 변환 ⇒ 변수의 개수가 크게 들어날.

만축지의 개수가 적은 범주들은 다른 범주와 합치기 좋은 후보.
합쳐서 해결.

기. 범주형 변수에서 수치형 변수로의 변환

구간 변수 → 수치형 변수로 나 여러 개의 가변수가 필요하는 수치형 변수로의 변환.

8 주성분 분석 (PCA) Principal Component Analysis)

변수들의 수가 글 때, 차원축소에 유용한 방법
데이터가 많은 스케일로 측정되고 상완관계가 높은 측정치들을 포함할 때 특히 유용. 존대 변수가 가지고 있는 지부분 표현.

지 이런 경우, 변수들을 가용전형실할 (weighted linear Combination)으로 재포현하여 소수의 (3예정되 변수소 재료현) PCA는 암택변수 (quantitue variable)에 자용되는 기법.

나 병수형 변수의 경우에는 대응분석과 같은 다른 기법이 더 적합.
(Correspondence Analysis)

CX) 두 데이터 X,Y의 题이 각각 106.88, 42.67 0亿 魏산행 S가

⇒ 두 변수의 전체 변동 중 69%는 공유하고 있는 변동이다. (한 변수의 변동이 다는 변수의 변동에서도 나타날)

후 한동 = 두 변수의 분산의 합 = 379.63+191.32 = 577. \sim 철명하고 있음.

차원 축소를 위해 한 변수를 떼게하면 최소 34%의 홈번동이 줄어들게 됨.

→ 두 번속의 전형결합으로 생성된 새로운 변수에 두 번수 사이의 홍 번등은 재용배한다면 홍번동의 큰 부분을 설명할 수 있는 새로운 번수 한게만 유지기는

Z₂ 값은 두 번째로 큰 반동성을 갖지면 <u>기과 상관관계는 0</u> 당당. Z₁, Z₂ 두 직원을 이용하여 새로운 좌표를 구성 (화면행정 이용)

$$Z_i = \underline{\alpha_{i,1}} \left((X_i - \overline{X_i}) + \underline{\alpha_{i,2}} \left((X_1 - \overline{X_2}) + \cdots + \underline{\alpha_{i,3}} \right) \right)$$

· 데이션의 첫/화

원래 변수들이 각 주성분에 얼마나 기여하는지를 알아보고 위해 가증지를 볼색.

특정 변수들의 분산이 지나치게 크다면 두성분들이 그 변수에 큰 영향을 받게 된

→ PCA이던데 데이터 중규화 필요. (현대 반약 분분이 1번 표준화된 변약소 대취)

5개화를 통해 모든 변수들이 변동성 관점에서 동동한 등요도를 갖게 함.

(독점 단위가 공통적이고 변수의 스케일이 변수의 중요성을 나타낼 때는 정국화가 필요하지 않지만 변수들이 다른 단위로 특정되어 변수간의 변동성을 배교하는 밝혔다.

. 불규와 예측을 위한 주성! 사용

예측 변수로 사용될 변수의 차원료소

- ~ 학습데이터는 이용하여 예측변수들에 대해 PCA 실행
- 걸증 셋에서는 학습셋의 주성별 전수 이용.

★ 비선형되인 예측점또는 잃을 수 있음.