Homework 2

Nov. 19, 2020

NOTE: Homework 2 is due next Thursday (Nov. 26, 2020). The questions started with * are for Exercise only, and you are not required to submit the answers.

- 1. Let r.v.'s X_1, \dots, X_n i.i.d. $\sim N(\theta + 1, \theta^2)$, is \bar{X} a sufficient statistic of θ ?
- 2. Let X_1, \dots, X_n be a random sample from the distribution with p.d.f.

$$f(x; \theta) = \frac{1}{2\theta} \exp\left\{-\frac{|x|}{\theta}\right\}, \quad -\infty < x < +\infty, \ \theta > 0.$$

Show that $T = \sum_{i=1}^{n} |X_i|$ is a sufficient and complete statistic of θ .

- 3. Let X_1, \dots, X_m i.i.d. $\sim N(a, \sigma^2), Y_1, \dots, Y_n$ i.i.d. $\sim N(b, \sigma^2), \text{ and } X_i$'s and Y_j 's are independent. Derive the sufficient and complete statistic of (a, b, σ^2) .
- 4. Let r.v.'s X_1, \dots, X_n i.i.d. $\sim U(-\theta/2, \theta/2), \theta > 0$, show that $(X_{(1)}, X_{(n)})$ is sufficient but not complete.
- 5. Let X_1, \dots, X_n be a random sample from $N(a, \sigma^2)$, show that \bar{X} is independent of $X_{(n)} X_{(1)}$.
- 6. Let $X = (X_1, \dots, X_n)$ be a random sample from exponential distribution with p.d.f.

$$f(x;\theta) = \exp\{-(x-\theta)\} I_{\{x>\theta\}}, \quad -\infty < \theta < +\infty$$

- Derive the moment estimator of θ and show that it is unbiased;
- 7. Let $X = (X_1, \dots, X_n)$ be a random sample from Normal distribution $N(0, \sigma^2)$, derive the moment estimators of σ and P(X > 1).
- 8. Let $X = (X_1, \dots, X_n)$ be a random sample from Uniform distribution $U(0, 2\theta)$.
 - Show that $\hat{\theta}_1 = \bar{X}$ and $\hat{\theta}_2 = (n+1)X_{(n)}/(2n)$ are unbiased estimators of θ ;
 - Show that $\hat{\theta}_1$ is a strongly consistent estimator of θ , and $\theta_2^* = X_{(n)}/2$ is a weakly consistent estimator of θ ;
 - Which one of $\hat{\theta}_1$ and $\hat{\theta}_2$ is more efficient?
- 9. Let $(X_1, Y_1), \dots, (X_n, Y_n)$ be a random sample from the Hong Kong Children height data. Let $(\mu_1, \mu_2, \sigma_1^2, \sigma_2^2, \rho)$ be the population means, variances, and correlation of height and weight. The observed values of the sample \boldsymbol{X} with sample size n=200 are given in the attached file "Homework-HongKong-Height-Weight.csv".
 - Compute the moment estimators of $(\mu_1, \mu_2, \sigma_1^2, \sigma_2^2, \rho)$ (denoted as $(\hat{\mu}_1, \hat{\mu}_2, \hat{\sigma}_1^2, \hat{\sigma}_2^2, \hat{\rho})$).
 - Estimate the biases and variances of $(\hat{\mu}_1, \hat{\mu}_2, \hat{\sigma}_1^2, \hat{\sigma}_2^2)$ (suppose X_i and Y_i are normally distributed).
 - How to decrease the MSE of the above estimators?

*1. Show that the *n*-dimensional normal family $\{f(\boldsymbol{x}; \boldsymbol{\mu}, \Sigma); \boldsymbol{\mu} \in \mathbb{R}^n, \ \Sigma \in \mathcal{M}_n\}$ is an exponential family, where \boldsymbol{x} and $\boldsymbol{\mu}$ are *n*-dimensional column vector, \mathcal{M}_n is a collection of $n \times n$ symmetric positive definite matrices and

$$f(\boldsymbol{x};\boldsymbol{\mu},\boldsymbol{\Sigma}) = \frac{1}{(2\pi)^{n/2}|\boldsymbol{\Sigma}|^{1/2}} \exp\left[-\frac{1}{2}(\boldsymbol{x}-\boldsymbol{\mu})^{\mathrm{T}}\boldsymbol{\Sigma}^{-1}(\boldsymbol{x}-\boldsymbol{\mu})\right], \quad \boldsymbol{x} \in R^{n}.$$

- *2. Let $X = (X_1, \dots, X_n)$ be a random sample from Poisson distribution $P(\lambda)$, derive the limiting distribution of $(\bar{X} \lambda)/\sqrt{\bar{X}/n}$.
- *3. Let $X = (X_1, \dots, X_n)$ be a random sample from Normal distribution $N(a, \sigma^2)$, let $S^2 = \sum_{i=1}^n (X_i \bar{X})^2/(n-1)$ be the sample variance, show that S^2 is an unbiased, weakly consistent, and consistent in quadratic mean estimator of σ^2 .
- *4. Let $X = (X_1, \dots, X_n)$ be a random sample from exponential distribution with p.d.f.

$$f(x;\theta) = \theta e^{-\theta x}, \ x > 0, \ \theta \in \Theta = (0,\infty).$$

- Show that both \bar{X} and $nX_{(1)}$ are unbiased estimators of $1/\theta$;
- Which of these two estimators would you prefer?
- *5. Let $X = (X_1, \dots, X_n)$ be a random sample from Gamma distribution with parameters α, β and p.d.f.

$$f(x; \alpha, \beta) = \frac{1}{\Gamma(\alpha)\beta^{\alpha}} x^{\alpha - 1} e^{-x/\beta}, \quad x > 0, \ \alpha > 0, \ \beta > 0.$$

Derive the moment estimators of α and β .

*6 Let X_1, \dots, X_n be a random sample from two parameter exponential distribution with p.d.f.

$$f(x; \lambda, \mu) = \lambda^{-1} \exp\left\{-\frac{x-\mu}{\lambda}\right\} I_{\{x>\mu\}},$$

where $0 < \lambda < +\infty, -\infty < \mu < +\infty$ are two unknown parameters. Show that

- $-(X_{(1)}, \sum_{i=1}^{n} X_{(i)})$ is sufficient for (λ, μ) ;
- $-X_{(1)}$ is independent of $\sum_{i=1}^{n} (X_i X_{(1)})$.