DUAL N-CHANNEL FETS

Dual symmetrical n-channel silicon planar epitaxial junction field-effect transistors in a TO-71 metal envelope, with electrically insulated gates and a common substrate connected to the envelope; intended for high performance low level differential amplifiers.

QUICK REFERENCE DATA

Characteristics measured at $T_{amb} = 25$ °C; $I_D = 200 \mu A$; $V_{DG} = 15 \text{ V}$									
	BF	Q10	11	12	13	14	15	16	
$ \Delta I_G $	<	10	10	10	10	10	10	10	pΑ
$ \Delta V_{GS} $	<	5	10	10	10	15	20	50	mV
dΔV _{GS} dT	<	5	5	10	20	20	40	50	μV/K
91fs 92fs			0.98 1.02	0.98 1.02	0.98 1.02	0.98 1.02	0.95 1.05	0.95 1.05	
$\left \Delta \frac{1}{g_{fs}}\right $	<	6	6	12	12	12	20	30	Ω
$\Delta \frac{g_{os}}{g_{fs}}$	<	18	30	40	50	60	70	100	μV/V
CMRR	>	95	90	85	85	80	80	80	dB
	$\begin{array}{ c c } \Delta I_G \\ \Delta V_{GS} \\ \hline \frac{d\Delta V_{GS}}{dT} \\ \hline \frac{g_1 f_s}{g_2 f_s} \\ \Delta \frac{1}{g_{fs}} \\ \Delta \frac{g_{os}}{g_{fs}} \end{array}$	$\begin{array}{c c} & & & & \\ \Delta I_G & < & \\ \hline \Delta V_{GS} & < & \\ \hline \frac{d\Delta V_{GS}}{dT} & < & \\ \hline \frac{g_1 f_s}{g_2 f_s} & < & \\ \hline \Delta \frac{1}{g_{fs}} & < & \\ \hline \Delta \frac{g_{os}}{g_{fs}} & < & \\ \hline \end{array}$	$\begin{array}{c c} & \text{BFQ10} \\ \hline \Delta I_{G} & < 10 \\ \hline \Delta V_{GS} & < 5 \\ \hline \frac{d\Delta V_{GS}}{dT} & < 5 \\ \hline \frac{g_{1fs}}{g_{2fs}} & > 0.98 \\ \hline 2fs & < 1.02 \\ \hline \Delta \frac{1}{g_{fs}} & < 6 \\ \hline \Delta \frac{g_{0s}}{g_{fs}} & < 18 \\ \hline \end{array}$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$					

MECHANICAL DATA

Dimensions in mm

Fig. 1 TO-71.

All leads insulated from the case.

January 1989

87

RATINGS

Limiting values in accordance with the A	Absolute Maximum System (IEC 13	4)
--	---------------------------------	----

Drain-source voltage	^{±V} DS	max.	30	٧
Drain-gate voltage (open source)	v_{DGO}	max.	30	V
Gate-source voltage (open drain)	-V _{GSO}	max.	30	٧
Voltage between gate 1 and gate 2	±V1G-2G	max.	40	٧
Drain current	۱ _D	max.	30	mΑ
Gate current	١G	max.	10	mΑ
Total power dissipation up to T _{amb} = 75 °C	P _{tot}	max.	250	mW
Storage temperature range	⊤ _{stg}	-65 to +	200	оС
Junction temperature	Тј	max.	200	οС

THERMAL RESISTANCE

From junction to ambient in free air	R _{th i-a}	=	500 K/W

88 December 1972

CHARACTERISTICS (total device)

T_{amb} = 25 °C unless otherwise specified

Measured at: I_D = 200 μ A; V_{DG} = 15 V except for drain current ratio.

		В	FQ10	11	12	13	14	15	16	
Drain current ratio (note 1) V _{DG} = 15 V; V _{GS} = 0	11D-1SS 12D-2SS		0.97 1.03	0.95 1.05	0.95 1.05	0.95 1.05	0.92 1.08	0.90 1.10	0.80 1.20	
Difference in gate current	lΔIGI	<	10	10	10	10	10	10	10	pA
Gate-source voltage difference	∆V _{GS}	<	5	10	10	10	15	20	50	mV
Thermal drift of gate-source voltage difference	$\frac{d\Delta V_{GS}}{dT}$	<	5	5	10	20	20	40	50	μV/I
Transfer conductance ratio	91fs 92fs	> <	0.98 1.02	0.98 1.02	0.98 1.02	0.98 1.02	0.98 1.02	0.95 1.05	0.95 1.05	
Difference in transfer impedance (note 2	$\left \triangle \frac{1}{9 f_{s}} \right $	<	6	6	12	12	12	20	30	Ω
Difference in penetration factor (note 3)	$\left \Delta \frac{gos}{gfs}\right $	<	18	30	40	50	60	70	100	μV/\
Common mode rejection ratio (note 4)	CMRR	>	95	90	85	85	80	80	80	dB

Notes

- 1. Measured under pulse conditions.
- The difference in transfer impedance is equal to the ratio of the change of the gate-source voltage difference to the change of drain current, at constant drain-gate voltage.

$$(\Delta \frac{1}{g_{fs}} = \frac{\text{d} \Delta V_{GS}}{\text{d} I_{D}} \text{ at } V_{DG} = \text{constant}).$$

3. The difference in penetration factor is equal to the ratio of the change of the gate-source voltage difference to the change of drain-gate voltage, at constant drain current.

$$(\Delta \frac{g_{OS}}{g_{fs}} = \frac{d\Delta V_{GS}}{dV_{DG}}$$
 at $I_D = constant)$.

4. Common mode rejection ratio:

CMRR (in dB) =
$$-20\log \left| \Delta \frac{g_{os}}{g_{fs}} \right|$$

January 1989

89

CHARACTERISTICS (Individual transistor)

Tamb =	- 25	oC	unless	otherwise	specified
--------	------	----	--------	-----------	-----------

dillo			
Gate cut-off current		_	100
$-V_{GS} = 20 \text{ V}; V_{DS} = 0$	-tGSS	<	100 pA
$-V_{GS} = 20 \text{ V; } V_{DS} = 0; T_{amb} = 125 \text{ °C}$	-!GSS	<	20 nA
Gate current			
$I_D = 200 \mu\text{A}; V_{DG} = 15 \text{V}; T_{amb} = 125 ^{\circ}\text{C}$	IG	<	10 nA
Drain current (note 1)	_		
V _{DS} = 15 V; V _{GS} = 0	IDSS		0.5 to 10 mA
Gate-source voltage	000		
$I_D = 200 \mu\text{A}; V_{DG} = 15 \text{V}$	-v _{GS}	<	2.7 V
Gate-source cut-off voltage	45		
•	V		05 to 05 M
I _D = 1 nA; V _{DG} = 15 V	−V _{(P)GS}		0.5 to 3.5 V
Transfer conductance at f = 1 kHz			
I _D = 200 μA; V _{DG} = 15 V	9fs	>	1.0 mS
Output conductance at f = 1 kHz			
$I_D = 200 \mu\text{A}; V_{DG} = 15 \text{V}$	gos	<	5 μS
	202	•	ىم ت
Input capacitance at f = 1 MHz (note 2)	_		
$I_D = 200 \mu\text{A}; V_{DG} = 15 \text{V}$	Cis	<	8 pF
Feedback capacitance at f = 1 MHz (note 2)			
$I_D = 200 \mu\text{A}; V_{DG} = 15 \text{V}$	Crs	<	1.0 pF
Equivalent noise voltage	, 3		•
$I_D = 200 \mu\text{A}$; $V_{DS} = 15 \text{V}$;			
B = 0.6 to 100 Hz		_	05.14
D - 0.0 (0 100 MZ	Vn	<	0.5 μV

Note:

- 1. Measured under pulse conditions.
- 2. Measured with case grounded.

90

December 1972

1

December 1972

91

■ 6653931 0035741 265 **■**

103

 10^{4}

f (Hz)

105

94 December 1972

10

10²