

Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение

высшего образования «Московский государственный технический университет имени Н.Э. Баумана

(национальный исследовательский университет)» (МГТУ им. Н.Э. Баумана)

ФАКУЛЬТЕТ	«Информатика и системы управления»
КАФЕДРА	«Программное обеспечение ЭВМ и информационные технологии»

Лабораторная работа № 1

Дисциплина Моделирование

Тема _Генераторы случайных чисел_

Студент Ильясов И. М.

Группа ИУ7-73Б

Преподаватель Рудаков И.В.

Формализация задачи

Табличный метод

В табличном генераторе в качестве источника случайных чисел используются специальным образом составленные таблицы, которые содержат в себе никак независящие (некоррелированные) друг от друга цифры. В рамках данной лабораторной работы были использованы две таблицы размерностью 60х60, содержащие в себе цифры. При составлении случайных чисел цифры выбирались исходя из текущего времени в системе (первая таблица бралась, если значение часов в системе было нечетным, а вторая — если значение часов в системе было четным). При выборе і-ой строки и ј-ого столбца таблицы для получения случайного числа брались текущее значение минут и микросекунд времени в системе. После путем объединения нескольких цифр в одно число на выходе получалось 1-, 2- или 3-хразрядное число. Недостатками при использовании табличного метода генерации случайных чисел являются необходимость наличия памяти большого размера для хранения таблиц, трудности создания и проверки данных таблиц. Однако, достоинством метода является то, что получаемые числа и правда случайные.

Метод средних квадратов

Для программной реализации генератора псевдослучайных чисел в качестве алгоритма брался метод средних квадратов, описанный Джоном фон Нейманом в 1949 году. Суть данного метода заключается в возведении в квадрат случайно взятого числа, которое можно сгенерировать любым генератором. Из полученного в результате возведения в квадрат числа извлекаются средние цифры и на выходе получается новое псевдослучайное число. Недостатком данного метода является псевдослучайность (или квазислучайность) получаемого результата, как и у любой другой программной реализации. Также возможно появление коротких циклов, и имеются проблемы при работе с дробными числами. Достоинством данного метода (как и других алгоритмических методов) является быстродействие.

Критерий равномерности

Пусть дана числовая последовательность X_n длины n. При оценке равномерности берется некоторое число d и для каждого r (где $0 \le r < d$) подсчитывается количество случаев, когда элемент последовательности $X_i = r$ (где $0 \le i < n$). После этого применяется критерий χ^2 , в котором вычисляется статистика, имеющая следующий вид:

$$\chi^2 = \sum_{j=0}^{k-1} \frac{(n_j - E_j)^2}{E_j} \sim \chi_{k-1}^2,$$

где k = d,

p=1/d (для каждой категории: 1-, 2-х и 3-хразрядных чисел),

$$E_j=p*n.$$

Имеем распределение χ^2 с k-1 степенями свободы.

После сравнения полученного значения χ^2 с теоретическим χ^2 можно сделать вывод о пригодности генератора для использования. При этом возможно три случая:

- 1) полученный χ^2 много больше любого теоретического χ^2 гипотеза о случайности равномерного генератора не выполняется (разброс чисел слишком велик, чтобы быть случайным);
- 2) полученный χ^2 много меньше любого теоретического χ^2 гипотеза о случайности равномерного генератора не выполняется (разброс чисел слишком мал, чтобы быть случайным);
- 3) полученный χ^2 лежит между теоретическими значениями двух рядом стоящих столбцов гипотеза о случайности равномерного генератора выполняется с вероятностью p (то есть в p случаях из 100).

Стоит отметить, что наилучшим значением p является 50%.

Результаты работы

Табличный метод

N₂	0 - 9	10 - 99	100 - 999
1	7	53	627
2 3	8 7	16 35	651 643
4	7	62	732
5	7	97	985
6	4	64	586
7	3	43	753
8	4	23	414
9	2	84	571
10	9	31	169
11	3	46	626
12	1	66	235
13	6	12	717
14	6	93	467
15	8	84	598
Чисел Оценка(%)	50 83.74	50 54.70	50 96.25

Рисунок 1 — табличный метод. Сгенерировано по 50 чисел для каждой разрядности. Выведены первые 15 чисел.

Метод средних квадратов

N₂	0 – 9	10 - 99	100 - 999
1	1	40	376
2	0	21	290
3	8	72	859
4	0	76	646
5	2	47	569
6	0	48	902
7	8	70	788
8	1	83	224
9	4	76	875
10	1	46	810
11	0	84	120
12	2	70	681
13	4	25	232
14	9	20	122
15	4	56	292
Чисел Оценка(%)	50 86 . 53	50 81.89	50 38 . 22

Рисунок 2 — метод средних квадратов. Сгенерировано по 50 чисел для каждой разрядности. Выведены первые 15 чисел.

Вывод

В результате выполнения лабораторной работы были рассмотрены табличный и алгоритмический (метод средних квадратов) генераторы случайных чисел. Были проведены тестирование и оценка обоих методов.