Computer Vision

(VO, 911.908, Winter term 22/23)

Roland Kwitt

Department of Artificial Intelligence and Human Interfaces (AIHI)
University of Salzburg, Austria

Schedule for today

- Logistics
- Resources
- What is computer vision?
- Some typical computer vision problems

Logistics

- **E-Mail:** Roland [dot] Kwitt [at] plus [dot] ac [dot] at
- Course material: available online at http://rkwitt.org (→ Teaching)

Logistics

Grading

1 final exam at the end of the course (see course website for details)

Resources

PyTorch (most recent version v1.12.1)

https://pytorch.org/

scikit-learn (Python)

http://scikit-learn.org/stable/

scikit-image (Python)

http://scikit-image.org

Resources

"Deep Learning"

Goodfellow, Bengio, Courville http://www.deeplearningbook.org/

Please check the course website for updates on relevant research papers.

Resources

Throughout the lecture, we will primarily cover "modern" approaches to computer vision, using (deep) neural networks.

However, I still do want to mention a "classic" vision book which is definitely worth reading.

"Computer Vision: Algorithms and Applications"

R., Szeliski, 2010

http://szeliski.org/Book/

Courtesy of Szeliski

(Luiz Gomez Photos)

The human visual system (HVS) is remarkably good at so many tasks, e.g.,

- detecting people & object's
- perceiving translucency, shape, color (see figure on the left),
- counting people & vehicles (see middle figure)
- recognizing scenes, etc.

Remarkable fact:

A substantial fraction of the macaque's total cortical area is devoted to vision (approx. 15% according to [Hubel, "Eye, Brain and Vision"])

We want to build systems for automatic understanding of images/videos.

This includes, but is not limited to,

- 1) inferring properties of the 3D world (measurement)
- 2) enabling recognition of objects, people, scenes, etc. (perception)
- 3) mining, searching and interacting with visual data (search / organization)

Bio-Imaging

Surveillance

Medical Imaging

Autonomous Cars

Mapping

Robotics

Overview of the field

Conferences

Computer Vision

- Computer Vision and Pattern Recognition (CVPR)
- International Conference on Computer Vision (ICCV)
- European Conference on Computer Vision (ECCV)
- British Machine Vision Conference (BMVC)

Machine learning

- Neural Information Processing Systems (NIPS)
- International Conference on Machine Learning (ICML)
- International Conference on Learning Representations (ICLR)

Overview of the field

1.	Advanced Materials	<u>252</u>	342
2.	IEEE/CVF Conference on Computer Vision and Pattern Recognition	<u>240</u>	383
3.	Energy & Environmental Science	<u>207</u>	323
4.	ACS Nano	<u>203</u>	280
5.	Nano Letters	<u>188</u>	270
6.	Nature Materials	<u>179</u>	323
7.	Renewable and Sustainable Energy Reviews	<u>174</u>	238
8.	Neural Information Processing Systems (NIPS)	<u>169</u>	334
9.	Journal of Materials Chemistry. A	<u>163</u>	214
10.	Nature Nanotechnology	<u>160</u>	278
11.	Advanced Functional Materials	<u>154</u>	203
12.	Advanced Energy Materials	<u>152</u>	211
13.	International Conference on Learning Representations	<u>150</u>	276
14.	Nature Photonics	<u>150</u>	261
15.	ACS Applied Materials & Interfaces	<u>147</u>	188
16.	Chemistry of Materials	<u>141</u>	191
17.	Nanoscale	<u>139</u>	188
18.	European Conference on Computer Vision	<u>137</u>	263
19.	International Conference on Machine Learning (ICML)	<u>135</u>	254
20.	Journal of Cleaner Production	<u>132</u>	166

Google scholar, Engineering & Computer Science (as of Oct. 19)

Recognition

→ "Saiga antilope"

Task: Label an image by its class membership

Segmentation

Task: Label each pixel of an image by its class membership.

Detection

Task: Locate and label objects via, e.g., bounding boxes (i.e., coordinates)

Panoptic Segmentation

Semantic segmentation

Instance segmentation

Panoptic segmentation

Goal: Unify <u>semantic segmentation</u> and <u>instance segmentation</u>.

Image-to-Image translation

Arial → Map

BW → Color

Label map → Image

Text-to-Image Generation

Prompt: An extremely angry bird.

<u>Prompt</u>: A photo of a Persian cat wearing sunglasses and a red shirt skateboarding on a beach.

Some interesting resources

Browse D. H. Hubel's online book (Nobel prize winner, 1981) http://hubel.med.harvard.edu/book/bcontex.htm

Read one of his and Torsten Wiesel's seminal papers, e.g.,

Receptive Fields and Functional Architecture of Monkey Striate Cortex,

D. H. Hubel and T. N. Wiesel

J. Physiol., 1968

http://www.ncbi.nlm.nih.gov/pubmed/4966457)