Prove:

$$((x_{m-1})?(-(2^m - \sum_{i=0}^{m-1} x_i 2^i)) : (\sum_{i=0}^{m-1} x_i 2^i)) \Rightarrow ((\sum_{i=0}^{m-2} x_i 2^i) - x_{m-1} 2^{m-1})$$

How:

A ternary expression effectively has the form "if a then b follows and if not a then c follows," because of that a two case conditional proof starting first with $x_{m-1}=1$ as case 1, followed by $x_{m-1}=0$ as case 2 is sufficient.

Case 1: $x_{m-1} = 1$

1	$x_{m-1} = 1$	Assumption
2	$(x_{m-1})?(-(2^m - \sum_{i=0}^{m-1} x_i 2^i)) : (\sum_{i=0}^{m-1} x_i 2^i)$	Assumption
3	$-(2^m - \sum_{i=0}^{m-1} x_i 2^i)$	From 1 and 2, defn of ternary stmt
4	$\left(\sum_{i=0}^{m-1} x_i 2^i\right) - 2^m$	From 3, Multiplication
5	$\left(\sum_{i=0}^{m-2} x_i 2^i\right) + x_{m-1} 2^{m-1} - 2^m$	From 4, Expansion of a Series
6	$\left(\sum_{i=0}^{m-2} x_i 2^i\right) - \left(2^m - x_{m-1} 2^{m-1}\right)$	5, Factoring
7	$\left(\sum_{i=0}^{m-2} x_i 2^i\right) - \left(2^m - (1)2^{m-1}\right)$	6 and 1, Multiplicative identity
8	$\left(\sum_{i=0}^{m-2} x_i 2^i\right) - \left(2^m - 2^{m-1}\right)$	7, Simplification
9	$\left(\sum_{i=0}^{m-2} x_i 2^i\right) - \left(2^m - 2^m 2^{-1}\right)$	8, Rules of Exponents
10	$\left(\sum_{i=0}^{m-2} x_i 2^i\right) - 2^m \left(1 - \frac{1}{2}\right)$	9, Factoring
11	$\left(\sum_{i=0}^{m-2} x_i 2^i\right) - 2^m \left(\frac{1}{2}\right)$	10, Simplification
12	$\left(\sum_{i=0}^{m-2} x_i 2^i\right) - 2^{m-1}$	11, Rules of Exponents
13	$\left(\sum_{i=0}^{m-2} x_i 2^i\right) - (1)2^{m-1}$	12, Multiplicative identity
14	$\left(\sum_{i=0}^{m-2} x_i 2^i\right) - x_{m-1} 2^{m-1}$	1 and 13, Substitution

Which completes the proof for Case 1.

Case 2:
$$x_{m-1} = 0$$

Which completes the proof for Case 2 and ends the proof.