Задача 1

Вычислить определитель произведения следующих матриц:

$$\mathbf{A} = \begin{bmatrix} 1 & 1 & 1 & 1 \\ 0 & 2 & 2 & 1 \\ 0 & 0 & 2 & 1 \\ 0 & 0 & 0 & 1 \end{bmatrix}, \quad \mathbf{B} = \begin{bmatrix} 2 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 2 \end{bmatrix}, \quad \mathbf{C} = \begin{bmatrix} 1 & 1 & 1 & 0 \\ 0 & 1 & 1 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 1 & 1 \end{bmatrix}.$$

Ответ:

$$|ABC| = 16$$
.

Залача 2

Определить ранг матрицы, указать базисный минор, базисные строки и столбцы следующих матриц:

$$\mathbf{A}_{1} = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}, \quad \mathbf{A}_{2} = \begin{bmatrix} 1 & 0 \\ 1 & 0 \end{bmatrix}, \quad \mathbf{A}_{3} = \begin{bmatrix} 1 & 1 \\ 0 & 0 \end{bmatrix}, \quad \mathbf{A}_{4} = \begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix}, \quad \mathbf{A}_{5} = \begin{bmatrix} 1 & 2 \\ 2 & 4 \end{bmatrix},$$

$$\mathbf{A}_{6} = \begin{bmatrix} 1 & 2 & 0 \\ 2 & 4 & 0 \\ 0 & 0 & 1 \end{bmatrix}, \quad \mathbf{A}_{7} = \begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 1 \end{bmatrix}, \quad \mathbf{A}_{8} = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 1 & 1 \end{bmatrix}, \quad \mathbf{A}_{9} = \begin{bmatrix} 1 & 2 & 3 \\ 6 & 5 & 4 \\ 7 & 8 & 9 \end{bmatrix}.$$

Ответы:

$$r(\mathbf{A}_1) = 1$$
, $r(\mathbf{A}_2) = 1$, $r(\mathbf{A}_3) = 1$, $r(\mathbf{A}_4) = 2$, $r(\mathbf{A}_5) = 1$, $r(\mathbf{A}_6) = 2$, $r(\mathbf{A}_7) = 2$, $r(\mathbf{A}_8) = 3$, $r(\mathbf{A}_9) = 3$.

Залача 3

Оценить ранг квадратной матрицы **A** размера $n \times n$, если известно, что она содержит нулевую подматрицу размера $(n-1) \times (n-1)$, привести примеры матриц, для которых имеет место (не)равенство.

Otbet: $r(\mathbf{A}) \leq 2$;

неравенство:

$$\mathbf{A} = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 0 & 0 \\ 1 & 0 & 0 \end{bmatrix}; \qquad \qquad \mathbf{A} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}.$$

Задача 4

Определить ранг матрицы, указать базисный минор, базисные строки и столбцы спелующих матриц:

$$\mathbf{A}_{1} = \begin{bmatrix} 5 & -5 & 5 & 3 & 8 \\ -2 & 2 & -2 & -1 & -3 \\ 1 & -1 & 1 & 0 & 1 \\ 3 & -3 & 3 & 2 & 5 \end{bmatrix}, \quad \mathbf{A}_{2} = \begin{bmatrix} -2 & 2 & 2 & -1 & 5 \\ -2 & 0 & 0 & -6 & 6 \\ 1 & -4 & -4 & -7 & -1 \\ 1 & -1 & -1 & 1 & -3 \end{bmatrix},$$

$$\mathbf{A}_{3} = \begin{bmatrix} 1 & 2 & 0 & 0 & 3 \\ -3 & -4 & 1 & -2 & -7 \\ 1 & 0 & 0 & 3 & 0 \\ 1 & 5 & 6 & 2 & 2 \end{bmatrix}, \quad \mathbf{A}_{4} = \begin{bmatrix} 1 & -1 & 0 & 1 & 0 \\ 2 & -2 & 2 & 4 & 0 \\ -3 & 3 & 7 & 0 & 8 \\ -2 & 2 & 2 & -1 & 2 \end{bmatrix}.$$

Ответы:

$$r(\mathbf{A}_1) = 2$$
, $r(\mathbf{A}_2) = 3$, $r(\mathbf{A}_3) = 4$, $r(\mathbf{A}_4) = 3$.

30.11.2017 23:05:09 crp. 1 u3 2

Задача 5 (*)

Определить, какие из перечисленных ниже соотношений возможны, и привести примеры матриц \mathbf{A} и \mathbf{B} четвёртого порядка, для которых эти соотношения выполняются:

- 1) r(A + B) = r(A);
- 2) $r(\mathbf{A} + \mathbf{B}) < r(\mathbf{A})$;
- 3) r(A+B) > r(A);
- 4) r(A + B) = r(A) + r(B);
- 5) r(A+B) < r(A) + r(B);
- 6) r(A+B) > r(A) + r(B);
- 7) $r(\mathbf{A} + \mathbf{B}) = \min(r(\mathbf{A}), r(\mathbf{B}))$;
- 8) $r(A+B) < \min(r(A), r(B))$;
- 9) $r(A + B) > \min(r(A), r(B))$;
- 10) $r(A+B) = \max(r(A), r(B));$
- 11) $r(\mathbf{A} + \mathbf{B}) < \max(r(\mathbf{A}), r(\mathbf{B}))$;
- 12) $r(A+B) > \max(r(A), r(B))$.

Задача 6 (*)

Дана матрица

$$\mathbf{B} = \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}.$$

Найти матрицы \mathbf{A}_1 и \mathbf{A}_2 размера 2×2 , не равные единичной и нулевой матрице, такие, что $r(\mathbf{A}_1\mathbf{B})=1$ и $r(\mathbf{A}_2\mathbf{B})=0$.

Задача 7 (*)

Доказать, что:

- 1) если ранг матрицы равен единице, то её можно представить в виде произведения вектор-столбца на вектор-строку;
- 2) если ранг матрицы равен r, то её можно представить в виде суммы r матриц единичного ранга;
- 3) если ранг матрицы **A** размера $m \times n$ равен r, то матрица, составленная из любых s строк этой матрицы, будет иметь ранг не меньше r + s m.

Задача 8 (*)

Доказать или опровергнуть следующие утверждения:

- 1) r(AB) = r(B), если A невырожденная матрица для любой матрицы B;
- 2) r(AB) < r(B), если A вырожденная матрица для любой матрицы B.

30.11.2017 23:05:09