K-디지털 챌린지: NET 챌린지 캠프 시즌11

드론 충돌 방지를 위한 통합 관제 시스템

스카이가디언즈

홍지명, 김승유, 신수지, 이시현, 이현지

드론 시장의 성장

시장 확대 드론 배송 시장이 빠르게 성장 중 실증 사업 2023년 제주도에서 드론 배송 실증 사업이 진행 중 규제 문제 3 안전 문제로 인해 창업시장이 제한적

드론 활용 분야

IT용어사전

도심 항공 교통

[Urban Air Mobility, 都心航空交通]

수직 이착륙이 가능한 친환경 저소음 항공기(eVTOL)를 활용해 도심 내 근거리 이동 승객이나 화물을 효율적으로 운송하는 항공 기반 도심 교통 체계.

운송 및 배달

물류 산업에서 드론 활용 증가

드론택시

UAM 기반 드론 택시 관리

통신사 드론 기술 개발 현황

SKT

KT

LG U+

드론 모빌리티 기술 개발에 주력

남해안권 무인이동체 모니터링 및 실증기반 구축 드론 통신 인프라 확대에 주력

중간 평가까지의 진행 상황

하드웨어 부분 아두이노(ESP32) 드론 및 ESP32 보드 조립

문제점 고차원의 비행이 불가능하고 결과론적인 비행만이 가능함

중간 평가까지의 진행 상황 - 소프트웨어

충돌 회피 아이디어

여러 드론의 경로를 기반으로, 서로 충돌하는 지점을 계산하여 충돌을 피하기 위해 드론의 출발 시간을 조정

클러스터링 아이디어

택배의 HUB 시스템을 차용하여, 목적지가 비슷한 드론을 클러스터링하여 묶음으로 취급하고 위 아이디어를 적용

멘토링 및 질의 응답을 통한 개선 사항

드론 충돌 문제의 개념 변환

실시간 드론 관리는 충돌 회피뿐만 아니라, 네트워크 단말 관리등의 관제 자체의 이슈가 더 컸음

충돌 회피 알고리즘 적용 가능성에 대한 논의로 초점 이동

- 기술 개발이 아닌 현재 나와있는 기술의 적용에 대한 연구 필요
- → 관제 시스템 개발에 초점을 맞추어 진행하는 것으로 결정

드론 관제 시스템의 필요성

1. 불법 드론의 증가와 그로 인한 산업 피해 증가

122

항공기 운항 피해

최근 불법 드론으로 인한 항공기 운항 피해 사례 발생

- 2. 안전 사고 및 추가 사고 위험
- 3. 규제 및 관리 필요
 - 드론 관리 규격 및 운행 관제 시스템 구축
 - 안전한 항공 환경 조성을 위한 체계적인 관리 필요

⇒ 드론 관리 규격 및 운행 관제 시스템을 구축하는 것으로 주제 확정

4

주요 피해 유형

항공기 출발 지연, 운항 중단, 착륙 시도 실패, 회항

개발 수행 결과-소프트웨어 부분

ArduPilot Mission Planner

: ⇒ 하드웨어 드론의 한계점을 보완하여, 시뮬레이션 비행 시스템을 채택

KOREN VM (Ubuntu) 기반 웹 서버 구축

메인 페이지

드론 정보 조회

영상 Live

map 정보 조회

이동 경로 조회

Map-이동 경로 추적

출발지와 목적지 입력

드론 충돌 회피 시뮬레 이션

Welcome to the Drone Management System

Select an option from the menu to proceed.

메인 페이지

드론 정보 조회

영상 Live

map 정보 조회

이동 경로 조회

Map-이동 경로 추적

출발지와 목적지 입력

드론 충돌 회피 시뮬레 이션

Drone Information

Name	Model	Manufacturer	Flight Time (mins)	Battery Capacity (mAh)	Battery Status	Last Flight		
Drone 1	X Quadcopter	uadcopter ArduPilot 55 5880		65%	2024년 9월 17일 08시 15분			
Drone 2	X Quadcopter	ArduPilot 22 4600		4600	70%	2024년 9월 18일 17시 50분		
Drone 3	X Quadcopter	ArduPilot	ArduPilot 27 4280 50%		50%	2024년 9월 19일 16시 20분		
Drone 4	X Quadcopter	ArduPilot	25	2700	60%	2024년 9월 20일 11시 30분		
Drone 5	X Quadcopter	ArduPilot	28	5400	85%	2024년 9월 21일 13시 00분		
Drone 6	X Quadcopter	ArduPilot	40	7100	90%	2024년 9월 23일 10시 45분		
Drone 7	X Quadcopter	ArduPilot	30	6000	80%	2024년 9월 22일 14시 45분		
Drone 8	X Quadcopter	ArduPilot	34	3500	75%	2024년 9월 24일 21시 22분		

메인 페이지

드론 정보 조회

영상 Live

map 정보 조회

이동 경로 조회

Map-이동 경로 추적

출발지와 목적지 입력

드론 충돌 회피 시뮬레 이션

Live Video

메인 페이지

드론 정보 조회

영상 Live

map 정보 조회

이동 경로 조회

Map-이동 경로 추적

출발지와 목적지 입력

드론 충돌 회피 시뮬레 이션

Map Information

메인 페이지

드론 정보 조회

영상 Live

map 정보 조회

이동 경로 조회

Map-이동 경로 추적

출발지와 목적지 입력

드론 충돌 회피 시뮬레 이션

출발지와 목적지 입력

출발지 위도:	출발지 경도:
목적지 위도:	목적지 경도:
드론 선택: 드론 1 🗸	
경로 생성	

```
intu@drone1:~$ ls -l drone1_mission.json
v-rw-r-- 1 ubuntu ubuntu 368 Sep 24 01:59 c
intu@drone1:~$ cat drone1_mission.json
 "mission": {
     "drone": "drone1",
     "waypoints": [
             "lat": 37.5665,
             "lng": 126.978,
             "alt": 50
             "lat": 37.5906,
             "lng": 127.0337,
             "alt": 50
     "speed": 5,
     "mode": "AUTO"
ountu@drone1:~$
```

출발지와 목적지 입력

출발지 위도: 37.5665 출발지 경도: 126.9780 목적지 위도: 37.5906 목적지 경도: 127.0337

드론 선택: 드론 1 🗸

경로 생성

메인 페이지

드론 정보 조회

영상 Live

map 정보 조회

이동 경로 조회

Map-이동 경로 추적

출발지와 목적지 입력

드론 충돌 회피 시뮬레 이션

드론 충돌 회피 시뮬레이션

	로	겨ㄹ	OI	려.
_	_	\sim	_	

드론 1:

출발 X: 도착 Y: 도착 Y:

드론 추가 시뮬레이션 실행

메인 페이지

드론 정보 조회

영상 Live

map 정보 조회

이동 경로 조회

Map-이동 경로 추적

출발지와 목적지 입력

드론 충돌 회피 시뮬레 이션

드론 충돌 회피 시뮬레이션

드론 경로 입력:

드론 1:

출발 X: 0 출발 Y: 8 도착 X: 10 도착 Y: 8

드론 2:

출발 X: 0 출발 Y: 0 도착 X: 8 도착 Y: 10

드론 3:

출발 X: 10 출발 Y: 1 도착 X: 1 도착 Y: 9

드론 추가 시뮬레이션 실행

결과

출발 딜레이 시간: 0, 1, 2

시간별 드론 위치:

시간 3초:

三差 1: X = 4.50, Y = 8.00 三差 2: X = 1.87, Y = 2.34 三差 3: X = 8.88, Y = 2.00

개발 수행 결과

충돌회피코드 코드 구축

접근 방식 개요

- 드론 간의 충돌 지점 감지
- 충돌을 피하기 위해 출발 시간 조정

핵심 기능

- calculate_collision_point: 두 드론의 경로가 교차하는지 여부와 교차하는 위치를 결정
- adjust_departure_times: 충돌을 방지하기 위해 출발 시간을 수정

```
A = np.array([
       [direction1[0], -direction2[0]],
      [direction1[1], -direction2[1]]
])
b = np.array(start2) - np.array(start1)

try:
    t1, t2 = np.linalg.solve(A, b)
except np.linalg.LinAlgError:
    return None # Lines are parallel or coincident

if 0 <= t1 <= 1 and 0 <= t2 <= 1:</pre>
```

```
num_drones = len(drone_paths)
collision_info = []
for i in range(num_drones):
   for j in range(i + 1, num_drones):
       start1, end1 = drone_paths[i]
       start2, end2 = drone_paths[i]
       collision_point = calculate_collision_point(start1, end1, start2, end2)
       if collision_point is not None:
           collision_info.append((i, j, collision_point))
           print(f"Collision detected between Drone {i+1} and Drone {j+1} at: {collision_point}")
If not collision_info:
   print("No collisions detected.")
    return [0] * num drones
departure_times = [0] * num_drones
for i, j, _ in collision_info:
    departure_times[j] += 1 # Simple example: delay the second drone in the pair
```

개발 수행 결과

충돌 감지 코드

개발 수행 결과

충돌 방지를 위한 출발 시간 조정

KOREN 연동 및 활용 결과

충돌 Ubuntu Openstack VM 네트워크 환경 구축

Disp	Displaying 4 items										
	인스턴스 이름	이미지 이름	IP 주소	Flavor	키페어	Status	가용 구역	작업	전원 상태	생성된 이후 시간	Actions
0	middle	-	10.0.0.15 유동 IP: 61.252.59.68	m1.large	new_middle	Active	nova	None	Running	1일, 9시간	스냅샷 생성 ▼
	drone3	-	10.0.0.7 유동 IP: 61.252.59.47	large3	drone3	Active	nova	None	Running	2일, 21시간	스냅샷 생성 ▼
	drone1	-	10.0.0.5 유동 IP: 61.252.59.49	large3	1	Active	nova	None	Running	3일, 4시간	스냅샷 생성 ▼
	drone2	-	10.0.0.4 유동 IP: 61.252.59.45	large3	drone2	Active	nova	None	Running	3일, 8시간	스냅샷 생성 ▼

'EXT_IP': 외부 pc에서의 접속을 위한 vm

'스카이가디언즈_new': vm간 소통

Ardupilot Simulator 연동 - 드론 정보(drone_info)

Ardupilot simulator

OS: Windows 11 or Ubuntu

Ardupilot Simulator(Ubuntu)에 MAVlink 패키지 설치하여 웹서버에서 접속할 수 있는 환경 구성 (IP/Port 설정 필요) **드론 정보 정보** (MAVLink 연동)

(웹서버에서 드론 정보 조회 페이지 조회할 때 가져옴) - 웹 서버 DB에 저장

Web Server(Flask – Python) – drone_info

Ardupilot Simulator 연동 - 비행 정보(path_info)

Ardupilot simulator

OS: Windows 11 or Ubuntu

Ardupilot Simulator(Ubuntu)에 MAVlink 패키지 설치하여 웹서버에서 접속할 수 있는 환경 구성 (IP/Port 설정 필요) 드론 비행 정보 (MAVLink 연동)

(웹서버에서 주기적으로 조회) - 웹 서버 DB에 저장

Web Server(Flask – Python) – path_info

KOREN 연동 및 활용 결과 - 웹 서버

웹 서버를 통한 드론 경로 관리

KOREN 내부 네트워크의 Ubuntu에서 실행되는 Flask 기반 웹 서버

웹 클라이언트(브라우저)를 통해 실시간으로 드론 경로를 시각화

데이터 관리

MySQL 데이터베이스를 이용하여 드론 경로, 위치, 상태 관리실시간 충돌 예측 및 동적 경로 최적화.

KOREN 연동 및 활용 결과

추후 개발 계획

영상 스트리밍 기능

GStreamer를 활용 하여 영상을 서버로 전송하고, Flask 기반 웹서버에서 RTSP 프로토콜을을통해 해당 영상을 스트리밍하는 기능

클러스터링 기능

- MissionPlanner에서의 여러 대의 드론 시뮬레이션 진행
- 헤드 드론을 설정하고, 서버와 연결하여 데이터를 전송
- 헤드 드론과 나머지 드론 간의 통신을 설정하여 군집형 관 제를 시행

Ardupilot Simulator 연동 - 실시간 영상

Ardupilot simulator

Ardupilot Simulator<mark>에</mark> Gstreamer 설치</mark>하여 영상을 보내줌 (IP/Port 설정 필요) 드론에서 찍고 있는 영상을 실시간으로 받아와서 웹페이지에 스트리밍

Web Server(Flask – Python)

기대효과

안전성 및 효율성 향상 실시간 영상 정보 및 비행 데이터 전송을 통한 안전성 및 효율성 향상

성능 개선

실시간 데이터 분석 통한 성 능 개선

원격 관제 효율 극대화 실시간 모니터링으로 대규 모 작업에서 즉각적 대응이 가능해짐 → 원격 관제 효율 극대화

드론 시장 활용 확대 드론 시장의 상업적/공공적 활용 확대

도심 활용 가능성 확대 충돌 방지 프로그램 → 도심 에서의 활용 가능성 확대

건전한 산업 성장 기여 규제 준수를 용이하게 하여, 건전한 산업 성장에 기여