代数 2-H 作业解答

刘博文

Qiuzhen College, Tsinghua University $2023~{\rm Spring}$

目录

第一章	作业解答	2
1.1	第一次作业	9

第一章 作业解答

1.1 第一次作业

练习. 证明 $x^4 + 3x + 3$ 是 $\mathbb{Q}[\sqrt[3]{2}]$ 上的不可约多项式.

证明: 通过艾森斯坦判别法可知 $x^4 + 3x + 3$ 是 $\mathbb Q$ 上的不可约多项式, 取 $\alpha \in \mathbb C$ 是其一根, 则 $[\mathbb Q[\alpha]:\mathbb Q]=4$. 另一方面, 由于 $\sqrt[3]{2}$ 在 $\mathbb Q$ 上的的极小多项式为 x^3-2 , 同样根据艾森斯坦判别法可知其在 $\mathbb Q$ 上不可约, 从而 $[\mathbb Q[\sqrt[3]{2}]:\mathbb Q]=3$. 因此 $3,4\mid [\mathbb Q[\sqrt[3]{2},\alpha]:\mathbb Q]$, 即 $[\mathbb Q[\sqrt[3]{2},\alpha]:\mathbb Q]\geq 12$, 即 $[\mathbb Q[\sqrt[3]{2},\alpha]:\mathbb Q[\sqrt[3]{2}]\geq 4$. 而另一方面, 有

$$\left[\mathbb{Q}\left[\sqrt[3]{2},\alpha\right]:\mathbb{Q}\left[\sqrt[3]{2}\right]\right] \le \left[\mathbb{Q}\left[\alpha\right]:\mathbb{Q}\right] = 4$$

从而 $[\mathbb{Q}[\sqrt[3]{2}, \alpha] : \mathbb{Q}] = 4$,并且 $x^4 + 3x + 3$ 是 α 在 $\mathbb{Q}[\sqrt[3]{2}]$ 上的极小多项式,从而不可约. 注记. 证明的关键在于 3,4 互素,这里用来确定 $[\mathbb{Q}[\sqrt[3]{2}, \alpha]]$ 的办法在之后还会经常用到.

练习. 计算下面的扩张次数

- 1. $[\mathbb{Q}[\sqrt{p},\sqrt{q}]:\mathbb{Q}]$, 其中 p,q 是不同的素数.
- 2. $[\mathbb{Q}[\sqrt[3]{2}, \sqrt{2}] : \mathbb{Q}]$.

证明: (1). 我们断言 $[\mathbb{Q}[\sqrt{p}, \sqrt{q}] : \mathbb{Q}[\sqrt{p}]] = 2$, 从而 $[\mathbb{Q}[\sqrt{p}, \sqrt{q}] : \mathbb{Q}] = 4$. 下面我们来证明断言: 若不然, 假设 $\sqrt{q} = a + b\sqrt{p}$, $a, b \in \mathbb{Q}$, 则

$$q = a^2 + pb^2 + 2ab\sqrt{p}$$

即 ab = 0,依次分类 a = 0 与 b = 0 分类讨论得出矛盾即可.

(2). 首先由于 x^3-2 和 x^2-2 都是 $\mathbb Q$ 上的不可约多项式, 从而 $2,3\mid [\mathbb Q[\sqrt[3]{2},\sqrt{2}]$. 并且模仿第一题中的论断有

$$[\mathbb{Q}[\sqrt[3]{2},\sqrt{2}]:\mathbb{Q}] \leq [\mathbb{Q}(\sqrt[3]{2},\sqrt{2}):\mathbb{Q}(\sqrt[3]{2})][\mathbb{Q}(\sqrt[3]{2}):\mathbb{Q}] \leq 6$$

从而 $[\mathbb{Q}[\sqrt[3]{2}, \sqrt{2}] : \mathbb{Q}] = 6.$

注记. 我们可以给上述的 (2) 另一个更巧妙的证明: 注意到 $\sqrt[6]{2} = (\sqrt{2})(\sqrt[3]{2})^{-1}$, 而显然有 $\sqrt{2}$, $\sqrt[3]{2} \in \mathbb{Q}[\sqrt[6]{2}]$, 从而有 $\mathbb{Q}[\sqrt[3]{2},\sqrt{2}] = \mathbb{Q}[\sqrt[6]{2}]$, 即 $[\mathbb{Q}[\sqrt[3]{2},\sqrt{2}]:\mathbb{Q}] = 6$.

练习. 计算 $\sqrt[3]{2} + \sqrt{3}$ 在 \mathbb{O} 上的极小多项式.

$$x^2 + 9x - 2 = \sqrt{3}(3x^2 + 3)$$

即 $\sqrt{3} \in \mathbb{Q}(\sqrt[3]{2} + \sqrt{3})$, 从而 $\mathbb{Q}(\sqrt[3]{2} + \sqrt{3}) = \mathbb{Q}(\sqrt[3]{2}, \sqrt{3})$. 利用之前同样的论断可知 $[\mathbb{Q}(\sqrt[3]{2}, \sqrt{3}) : \mathbb{Q}] = 6$, 即 x 的极小多项式次数为 6. 平方上述关于 x 的等式可知

$$x^6 - 9x^4 - 4x^3 + 27x^2 - 36x - 23 = 0$$

从而上述多项式就是 x 的极小多项式.

练习. 在同构的意义下分类 ℚ 的所有二次扩张.

证明:根据课上的结果,我们有 \mathbb{Q} 的所有二次扩张都形如 $\mathbb{Q}[\sqrt{d}], d \in \mathbb{Q}$,通过乘以 \mathbb{Q} 中可逆元的操作我们不妨假设 $d \in \mathbb{Z}\setminus\{0,1\}$ 且 d 无平方因子,下面我们断言对于不同的 d_1, d_2 ,有 $\mathbb{Q}[\sqrt{d_1}]$ 与 $\mathbb{Q}[\sqrt{d_2}]$ 不同构,从而给出 \mathbb{Q} 上所有二次扩张的分类. 假设 $\sqrt{d_1} \in \mathbb{Q}[\sqrt{d_2}]$,那么存在 $a,b \in \mathbb{Q}$ 使得 $(a+b\sqrt{d_2})^2=d_1$,即

$$a^2 + d_2b^2 + 2ab\sqrt{d_2} = d_1$$

从而 ab = 0, 再根据 a = 0 或 b = 0 分类讨论得出矛盾即可.

注记. 这与第二题的 (1) 的证明思路一致.

练习. 假设域 F 的特征为 2, K 是 F 的二次扩张, 证明要么 $K = F[\alpha], \alpha^2 \in F, \alpha \notin F$, 或者 $K = F[\alpha], \alpha^2 - \alpha \in F, \alpha \notin F$. 这两种情况可能同构吗?

证明: 取 $\beta \in K$ 使得 $\{1, \beta\}$ 构成了 K 的一组 F-基, 则存在 $a, b \in F$ 使得 $\beta^2 + a\beta + b = 0$, 则 考虑如下两种情况:

- 1. 若 $a \neq 0$, 则 $\frac{\beta^2}{-a^2} + \frac{\beta}{-a} + \frac{b}{-a^2} = 0$, 即 $(\frac{\beta}{a})^2 \frac{\beta}{a} \in F$, 且 $\{1, \frac{-\beta}{a}\}$ 是一组 F-基, 为第一种情况.
- 2. 若 a=0, 则 $\beta^2 \in F$, 为第二种情况.

并且这两种情况不可能同构: 假设存在 F-同构 φ : $F[\alpha] \to F[\beta]$, 其中 $\alpha^2 \in F$, $\beta^2 - \beta \in F$, $\alpha, \beta \notin F$. 假设 $\varphi(\alpha) = a + b\beta \in F[\beta]$, $a, b \in F$, $b \neq 0$. 根据特征为 2 有

$$\alpha^2 = \varphi(\alpha^2) = (a+b\beta)^2 = a^2 + b^2\beta^2$$

从而

$$\beta = \frac{\alpha^2 - a^2}{b^2} \in F$$

矛盾.

练习. 在同构意义下分类 $\mathbb{F}_2(x)$ 的所有二次扩张.

证明:根据上一题的结果, $\mathbb{F}_2(x)$ 的所有二次扩张有如下的两种情况:

- 1. $\mathbb{F}_2(x)[t]/(t^2-u)$, 其中 $u \in \mathbb{F}_2(x)$.
- 2. $\mathbb{F}_2(x)[t]/(t^2-t-d)$, 其中 $d \in \mathbb{F}_2(x)$.

下面我们要将这两种情况再详细地描述:

1. 由于 $t^2 \in \mathbb{F}_2(x)$, 不妨找 $f \in \mathbb{F}_2(x)$ 使得 $(ft)^2 \in \mathbb{F}_2[x]$, 并且考虑分解 $(ft)^2 = g_1(x) + xg_2(x)$, 其中 $g_1(x), g_2(x) \in \mathbb{F}_2[x]$ 只有偶次项, 那么由于 \mathbb{F}_2 的特征为 2, 上述分解等价于

$$(ft - \sqrt{g_1})^2 = xg_2(x) \iff (\frac{ft}{\sqrt{g_2}} - \frac{\sqrt{g_1}}{\sqrt{g_2}})^2 = x$$

其中如果 $g = \sum_k a_k x^{2k}$,则 $\sqrt{g} := \sum_k a_k x^k$,因此第一种情况等价于向 $\mathbb{F}_2(x)$ 中添加 \sqrt{x} ,即第一种情况为 $\mathbb{F}_2(\sqrt{x})$.

2. 令 $G = \{f^2 - f \in \mathbb{F}_2(x) \mid f \in \mathbb{F}_2(x)\}$, 我们断言 $\mathbb{F}_2(x)[t]/(t^2 - t - d_1) \cong \mathbb{F}_2(x)[t]/(t^2 - t - d_2)$ 当且仅当 $d_1 - d_2 \in G$: 如果有 $\mathbb{F}_2(x)$ -同构 $\varphi \colon \mathbb{F}_2(x)[t]/(t^2 - t - d_1) \to \mathbb{F}_2(x)[t]/(t^2 - t - d_2)$,设 $\varphi(t) = a + bt, a, b \in \mathbb{F}_2(x), b \neq 0$,那么

$$d_1 = \varphi(d_1) = \varphi(t^2 - t) = a^2 + b^2t^2 - a - bt = (b^2 - b)t + a^2 - a + b^2d_2 =$$

从而对照系数则有

$$\begin{cases} b^2 - b = 0 \\ d_1 = a^2 - a + b^2 d_2 \end{cases}$$

注意到 $b \neq 0$, 从而 b = 1, 进而 $d_1 - d_2 = a^2 - a \in G$. 另一方面, 如果 $d_1 - d_2 \in G$, 假设 $d_1 = d_2 + f^2 - f$, $f \in \mathbb{F}_2[x]$, 考虑

$$\varphi \colon \mathbb{F}_2(x)[t]/(t^2 - t - d_1) \to \mathbb{F}_2(x)[t]/(t^2 - t - d_2)$$

$$a + bt \mapsto a + bf + bt$$

则 φ 给出了一个 $\mathbb{F}_2(x)$ -同构.

练习. 正九边形能否通过尺规作图得到?

证明:不可以,直接验证 $\cos(2\pi/9)$ 不可构造.

注记. 尺规可做正 n 边形当且仅当 $n=2^kp_1\dots p_s$, 其中 $p_i,1\leq i\leq s$ 是费马素数, 可直接验证 9 不是如上形式的数.

练习. 计算

- 1. $f(x) = x^5 2$ 的分裂域在 \mathbb{Q} 上的扩张次数.
- 2. $f(x) = x^p x 1$ 的分裂域在 \mathbb{F}_p 上的扩张次数.

证明: (1). 不难发现 $\mathbb{Q}[\sqrt[5]{2}, \xi_5]$ 是 $x^5 - 2$ 的分裂域, 其中 ξ_5 是五次单位根. 由于 $x^5 - 2$ 是不可约多项式, 从而 $[\mathbb{Q}[\sqrt[5]{2}]:\mathbb{Q}] = 5$,同样的, 由于 $x^5 - 1/(x-1)$ 是不可约多项式, 从而 $[\mathbb{Q}[\xi_5]:\mathbb{Q}] = 4$,即 $[\mathbb{Q}[\sqrt[5]{2}, \xi_5]:\mathbb{Q}] \geq 20$. 另一方面,用第一题中的论断可以同样的证明 $[\mathbb{Q}[\sqrt[5]{2}, \xi_5]:\mathbb{Q}] \leq 20$,从 而 $[\mathbb{Q}[\sqrt[5]{2}, \xi_5]:\mathbb{Q}] = 20$.

(2). 由于我们已经知道 x^p-x-1 在 \mathbb{F}_p 上是不可约的, 从而 $K=\mathbb{F}_p[x]/(x^p-x-1)$ 是 p 次扩张, 并且包含 $x^p-x-1=0$ 的一个根, 而如果 K 包含其一个根 α , 则 α , $\alpha+1,\ldots,\alpha+p-1$ 给出了所有的根, 即 K 是 x^p-x-1 的分裂域, 从而分裂域在 \mathbb{F}_p 上的扩张次数为 p.

注记. 形如 $x^p - x - a, a \in \mathbb{F}_p$ 的多项式被称为 Artin Schreier 多项式.

练习. 令 K 是 n 次多项式 f(x) 在 F 上的分裂域,证明 $[K:F] \mid n!$,能否对每一个 n 都举出一个例子?

证明: 证明见讲义分裂域存在性定理, 而对于每一个 n 的例子, 答案依赖于 F 的选取: 例如当 $\mathbb{F} = \mathbb{R}$ 的时候, 其上最多只有二次扩张, 从而不会对任意的 n 成立. 而 $F = \mathbb{Q}$ 的时候, 之后我们会证明如下定理:

定理 1.1.1. 对于 $n \ge 1$, 存在一个 \mathbb{Q} 上的 n 次不可约多项式, 使得其 Galois 群为 S_n .

从而根据 Galois 对应, 可知此时分裂域的扩张次数为 n!.

练习. 判断如下三个域是否同构

- $1. x^2 t^3 \in \mathbb{Q}(t)$ 的分裂域.
- $2. x^2 t^5 \in \mathbb{Q}(t)$ 的分裂域.
- $3. x^2 + t^2 \in \mathbb{Q}(t)$ 的分裂域.

证明:由于上述三个多项式都在 $\mathbb{Q}(t)$ 上不可约,并且若 α 是其根,则 $-\alpha$ 也是其根,从而 $\mathbb{Q}(t)[x]/(x^2-t^3),\mathbb{Q}(t)[x]/(x^2-t^5),\mathbb{Q}(t)[x]/(x^2+t^2)$ 分别是它们的分裂域,记为 K_1,K_2,K_3 . 我们先来证明 K_1,K_2 同构,考虑 $\varphi\colon K_1\to K_2$,其限制在 Q(t) 上是恒等,并且

$$\varphi \colon x + (x^2 - t^3) \mapsto \frac{x}{t} + (x^2 - x^5)$$

其是良好定义的, 因为 $x^2 - t^3 \mapsto (x/t)^2 - t^3 = (x^2 - t^5)/t^2$, 并且是满射, 再由于域之间的态射都是单的, 从而给出了 K_1 和 K_2 之间的同构.

下面来证明 K_1, K_3 不同构, 注意到 $(x/t)^2 + 1 = 0 \in K_3$, 即方程 $X^2 + 1 = 0$ 在 K_3 中有解, 现在我们证明这个方程在 K_1 中不存在解: 假设存在解, 不妨假设为 $f(t) + g(t)\sqrt{t}$, 其中 $f(t), g(t) \in \mathbb{Q}(t)$, 从而

$$(f(t) + g(t)\sqrt{t})^2 + 1 = 0$$

即

$$f^{2}(t) + g^{2}(t)t + 2f(t)g(t)\sqrt{t} + 1 = 0$$

这意味着 f(t)g(t) = 0, 再根据 f(t) = 0 或 g(t) = 0 分类讨论得出矛盾即可.

注记. 第二题的 (1) 的证明思路再次出现.