TD 6 : Arithmétique modulaire

Christina Boura

Exercice 1 Calculs modulaires

Calculer:

- 1. 24000 mod 24
- 2. 38 mod 13
- $3.\ 14\cdot 17\ \mathrm{mod}\ 15$
- 4. $3 \cdot (1+22) \mod 11$

Exercice 2 Algorithme d'Euclide étendu

Soient a = 1234 et b = 357.

- 1. Calculer le pgcd(a, b) en utilisant l'algorithme d'Euclide.
- 2. Calculer $u, v \in \mathbb{Z}$ tels que $u \cdot a + v \cdot b = \operatorname{pgcd}(a, b)$.
- 3. Calculer l'inverse de b modulo a.

Exercice 3 Fonction ϕ d'Euler

- 1. Calculer $\phi(156)$.
- 2. Calculer $\phi(8800)$.
- 3. Combien y a-t-il d'éléments inversibles dans $\mathbb{Z}_{20} = \{0, 1, 2, \dots, 19\}$?

Exercice 4 Calculs modulaires à l'aide des théorèmes de Fermat et de Euler

- 1. Calculer $2^{751} \mod 31$.
- 2. Calculer $2^{2683} \mod 55$.

Exercice 5 Calcul de l'inverse avec les théorèmes de Fermat et de Euler

Calculer l'inverse $a^{-1} \mod n$ en utilisant le petit théorème de Fermat (si applicable) ou le théorème d'Euler sinon :

- 1. a = 4, n = 7
- 2. a = 5, n = 12
- 3. a = 6, n = 13