Assignment for the course *The statistical analysis of time series*

Elena, Antonio, Hervégil December 17, 2020

1 Theoretical aspects

- [1.]
 - [1.1] Compute the autocovariance function $\gamma_X(k) = \text{cov}(X_t, X_{t+k})$ for k = 0, 1, ... Is χ stationary? Do we need a restriction on θ ?
 - [1.2] Use the definition of Fourier transform of γ_X and derive the expression of the spectral density, $f_X(\lambda)$, $\lambda \in [-1/2, 1/2]$.
- [2.]
 - [2.1] Compute the autocovariance function $\lambda_Y(k) = \text{cov}(Y_t, Y_{t+k})$ for k = 0, 1, ...
 - [2.2] Use the definition of Fourier transform λ_Y and derive the expression of the spectral density $f_Y(\lambda)$, $\lambda \in [-1/2, 1/2]$
- [3.]
 - [3.1] Derive the expression for joint autocovariance function $\lambda_{WY}(k) = \text{cov}(W_{t+k}, Y_t)$.
 - [3.2] Derive the expression of the cross-spectrum
 - [3.3] Let f_W be the spectral density of the white noise process. Making use of the result in point 3.2, rearrange the terms and express $f_{WY}(\lambda)$. and provide the form of the term $|A_{WY}(\lambda)|^2$
- [4.]
 - [4.1] Show $\gamma_S(k)$
 - [4.1] Proof

2 Numerical exercises

Please see *Assignment_TS.rmd* for the analysis (code and comments).