

Conteúdo

1	Intr	rodução	3			
	1.1	Carregando o pacote e o ambiente				
2	Comandos básicos					
	2.1	Desenhando linhas	4			
	2.2	Retângulos	4			
	2.3	Adicionando alguns parâmetros	Ę			
		2.3.1 Cores				
		2.3.2 Setas	8			
		2.3.3 Espessura, linhas tracejadas e pontilhadas	10			
		2.3.4 Alterando a escala	11			
	2.4	Adicionando uma malha	12			
	2.5	Arcos	13			
	2.6	Parábolas e senóides	15			
	2.7	Curvas	16			
3	Colorindo áreas					
	3.1	Tipos básicos	18			
	3.2	Formas diversas	21			
4	Plo	tando gráficos	23			
5	Adicionando textos às figuras					
6	Dec	corações e padrões	28			
	6.1	Decorações	28			
	6.2	Padrões	30			
7	Des	Desenhos em três dimensões 3				
8	Desenhando circuitos 3					
Q	Referêncies a links úteis					

1 Introdução

O TikZ é um pacote criado por Till Tantau e é utilizado para a confecção de figuras técnicas por meio de códigos escritos em TEX. O nome vem do alemão: "Tikz ist kein Zeichenprogramm" (Tikz não é um programa de desenhos).

Este trabalho tem como objetivo apresentar as funcionalidades básicas do pacote, portanto a abordagem será superficial. O leitor interessado em se aprofundar no assunto deve consultar as referências listadas na última seção, em especial a extensa documentação oficial.

Caso você encontre algum erro, algum código mais adequado, tenha alguma crítica ou sugestão, por favor entre em contato conosco.

1.1 Carregando o pacote e o ambiente

Para carregar o pacote basta escrever \usepackage{tikz} no preâmbulo do documento. Para iniciar o ambiente é necessário escrever:

```
begin{tikzpicture}

%Seu codigo aqui

tend{tikzpicture}
```

Colocando seu código entre \begin{tikzpicture} e \end{tikzpicture}.

Também é possível iniciar o ambiente do TikZ como uma figura, assim é possível utilizar alguns comandos como \center, forçar a imagem a ficar em alguma posição desejada da página ou incluir legendas, dentre outras possibilidades:

```
begin{figure}
center %Centraliza a figura
begin{tikzpicture}

%Seu codigo aqui

cend{tikzpicture}

caption{Esta e uma legenda} %Inclui a legenda
end{figure}
```

2 Comandos básicos

O comando básico para realizar algum tipo de desenho é \draw, em seguida são adicionados parâmetros que irão determinar que tipo de figura será feita.

► Tensores 3

2.1 Desenhando linhas

Para desenhar linhas simples podemos utilizar:

O termo (x_0,y_0) — $-(x_1,y_1)$ indica que será desenhada uma linha da posição (x_0,y_0) até (x_1,y_1) em coordenadas cartesianas . Também é possível desenhar linhas consecutivas, basta adicionar a expressão --(x,y) ao comando para cada coordenada adicional. O código seguinte ilustra o processo:

```
\begin{tikzpicture}

\draw (0,0) --(1,1) --(2,1) --(2,2) --(3,3);

\end{tikzpicture}
```

A figura gerada é:

Adicionando uma malha para facilitar a visualização:

Veja que o caminho percorrido é exatamente aquele descrito no código anterior!

2.2 Retângulos

Retângulos podem ser desenhados especificando-se as coordenadas de seus vértices a partir do comando draw (x0,y0) rectangle (x1,y1). (x_0, y_0) representa a localização

do seu vértice inferior esquerdo e (x_1, y_1) representa a localização de seu vértice superior direito. Segue o exemplo:

```
\langle begin{tikzpicture}
\draw (0,0) rectangle (3,3);
\draw \text{end{tikzpicture}}
```

2.3 Adicionando alguns parâmetros

O comando \draw apresentado anteriormente aceita alguns argumentos que podem modificar o desenho da linha, como a mudança de cores, espessura etc. E alguns desses parâmetros ainda serão válidos ou análogos para outros comandos, portanto é importante aprender como utilizá-los. A estrutura geral é basicamente esta:

```
begin{tikzpicture}

draw [parametros] ...;

tend{tikzpicture}
```

2.3.1 Cores

Adicionar cores aos desenhos é simples, basta inserir color=... entre os delimitadores [e], como no exemplo:

```
begin{tikzpicture}

draw [color=red] (0,0)--(1,2);

end{tikzpicture}
```

As cores padrão são as cores dos sistemas RGB e CMY (Pode haver outras cores dependendo da instalação, contudo as cores listadas a seguir devem estar presentes):

• Branco: white

• Preto: black

• Vermelho: red

• Verde: green

Azul: blue

• Ciano: cvan

• Magenta: magenta

• Amarelo: yellow

Há mais cores pré-definidas provenientes do pacote xcolor, que podem ser utilizadas pelo TikZ (Para incluir o pacote adicione \usepackage[usenames,dvipsnames] { xcolor} ao preâmbulo. Veja a figura ??).

Também é possível definir novas cores pelo sistema RGB, com o comando \ definecolor {nomedacor}{sistemadecores}{valor1,valor2,valor3}. Podemos definir a cor verde como:

```
| \det \operatorname{color} \{ \operatorname{verde} \} \{ \operatorname{rgb} \} \{ 0, 1, 0 \}
```

Veja que a escala para cada cor vai de 0 até 1. Para utilizar a cor em algum desenho:

```
definecolor{verde}{rgb}{0,1,0}

begin{tikzpicture}

draw [verde] (0,0) rectangle (1,2);

end{tikzpicture}
```

Criando a cor magenta, pelo CMY:

```
definecolor{magenta}{cmy}{0,1,0}

begin{tikzpicture}

draw [magenta] (0,0) rectangle (1,2);

end{tikzpicture}
```

Name	Color	Name	Color
Apricot		Aquamarine	
Bittersweet		Black	
Blue		BlueGreen	
BlueViolet		BrickRed	
Brown		BurntOrange	
CadetBlue		CarnationPink	
Cerulean		CornflowerBlue	
Cyan		Dandelion	
DarkOrchid		Emerald	
ForestGreen		Fuchsia	
Goldenrod		Gray	
Green		GreenYellow	
JungleGreen		Lavender	
LimeGreen		Magenta	
Mahogany		Maroon	
Melon		MidnightBlue	
Mulberry		NavyBlue	
OliveGreen		Orange	
OrangeRed		Orchid	
Peach		Periwinkle	
PineGreen		Plum	
ProcessBlue		Purple	
RawSienna		Red	
RedOrange		RedViolet	
Rhodamine		RoyalBlue	
RoyalPurple		RubineRed	
Salmon		SeaGreen	
Sepia		SkyBlue	
SpringGreen		Tan	
TealBlue		Thistle	
Turquoise		Violet	
VioletRed		White	
WildStrawberry		Yellow	
YellowGreen		YellowOrange	

Figura 1: Lista de cores provenientes do pacote xcolor. Fonte: https://en.wikibooks.org/wiki/LaTeX/Colors

Também é possível alterar a intensidade das cores adicionando !intensidade após o nome desejada (A intensidade varia numa escala de 0 a 100), por exemplo:

```
\langle \langl
```

Também é possível misturá-las:

```
begin{tikzpicture}

draw [green!50!blue] (0,0)--(1,2);

end{tikzpicture}
```

2.3.2 Setas

Outra funcionalidade muito útil é a possibilidade de transformar os segmentos em setas. Para desenhar um vetor simples é necessário adicionar —> aos parâmetros do desenho:

▶ Uma breve introdução ao TikZ

```
begin{tikzpicture}

draw [->] (0,0)--(1,2);

end{tikzpicture}
```

É possível adicionar mais de um parâmetro adicionando uma vírgula entre cada um deles:

```
begin{tikzpicture}

draw [->,color=blue] (0,0)--(1,2);

end{tikzpicture}
```


Além disso há outras tipos de setas, como |-> e <->:

```
begin{tikzpicture}

draw [->,color=blue] (1,1)--(2,2);

draw [<->,color=black] (0,0)--(0,3);

draw [|->,color=red] (-1,-1)--(3,-1);

end{tikzpicture}
```


2.3.3 Espessura, linhas tracejadas e pontilhadas

Você pode alterar a espessura das linhas adicionando thick, semithick, very thick, ultra thick, thin, very thin e ultra thin:

```
\langle \langl
```

Para definir um valor específico de espessura utilize line width=valor:

```
begin{tikzpicture}

draw [line width=1] (0,-.5)--(3,-.5);

draw [line width=2] (0,0)--(3,0);

draw [line width=3] (0,.5)--(3,.5);

end{tikzpicture}

end{figure}
```

Para fazer uma linha dupla adicione o parâmetro double (A espessura da linha deve ser grande o suficiente para que o efeito seja perceptível):

```
\login{tikzpicture}
```

Adicionando os parâmetros dashed e dotted, é possível criar linhas tracejadas e pontilhadas,respectivamente :

```
\label{lem:begin} $$ \begin{array}{l} \begin{array}{l} \text{begin} \{ \text{tikzpicture} \} \\ \text{3} \\ \text{4} \\ \text{draw} \  \, [\text{dashed}] \  \, (0\,,0)\,--(3\,,0)\,; \quad \text{\%Linha tracejada} \\ \text{4} \\ \text{draw} \  \, [\text{dotted}] \  \, (0\,,0.5)\,--(3\,,.5)\,; \text{\%Linha pontilhada} \\ \text{6} \\ \begin{array}{l} \text{end} \{ \text{tikzpicture} \} \end{array} \\ \end{array}
```

2.3.4 Alterando a escala

O TikZ permite que você altere a escala da figura adicionando [scale =...] logo após iniciar o ambiente, como no exemplo a seguir:

```
begin{tikzpicture}

draw (0,0) rectangle (2,2);

end{tikzpicture}
begin{tikzpicture}[scale=.5]

draw (0,0) rectangle (2,2);

end{tikzpicture}

begin{tikzpicture}

draw (0,0) rectangle (2,2);

end{tikzpicture}

tend{tikzpicture}

end{tikzpicture}

draw (0,0) rectangle (2,2);

draw (0,0) rectangle (2,2);

draw (0,0) rectangle (2,2);
```


Também é possível alterar a escala em um único eixo:

```
begin{tikzpicture}

draw (0,0) rectangle (2,2);

end{tikzpicture}
begin{tikzpicture}[xscale=.5]

draw (0,0) rectangle (2,2);

end{tikzpicture}

begin{tikzpicture}

draw (0,0) rectangle (2,2);

end{tikzpicture}

begin{tikzpicture}

end{tikzpicture}

logouther

draw (0,0) rectangle (2,2);

draw (0,0) rectangle (2,2);

end{tikzpicture}
```


2.4 Adicionando uma malha

Para algumas figuras é conveniente criar malhas, uma maneira de fazer isso é a seguinte:

```
\langle begin \{ tikzpicture \}
\langle draw (0,0) grid (3,3);
\langle end \{ tikzpicture \}
```


O primeiro par de coordenadas indica a posição do canto inferior esquerdo da malha, o segundo par indica a posição do canto superior direito.

Você provavelmente irá querer usar essa malha como um auxílio na confecção das suas figuras, por isso pode ser conveniente deixa-lá em uma cor clara ou alterar o valor do passo. Para isto basta alterar os parâmetros:

```
begin{tikzpicture}

draw [color=gray!50,xstep=0.5,ystep=1.5] (0,0) grid (3,3);

end{tikzpicture}
```


Os termos xstep e ystep mudam o comprimento de cada divisão nos eixos x e y, respectivamente. Logo, no exemplo anterior o espaçamento de cada retângulo no eixo x vale .5, já no eixo y vale 1.5.

2.5 Arcos

Arcos podem ser desenhados a partir do comando $\operatorname{draw}(x_0,y_0)$ arc [start angle=t0, end angle=t1, radius=r], onde os termos entre colchetes indicam o ângulo inicial, final e raio, respectivamente. As coordenadas (x_0,y_0) indicam a posição na qual o arco está centrado:

```
begin{tikzpicture}

draw [gray!50] (-2,0) grid (0,2);

draw (0,0) arc [start angle=0,end angle=45, radius=1];

end{tikzpicture}
```


Figura 2: Veja que o centro do arco não está centrado na origem, e sim na posição (-2,0)

Uma maneira mais simplificada de escrever isto é:

```
\langle begin \{ tikzpicture \}
\langle draw (0,0) arc (0:45:2);
```

```
\leftrightarrow{4}{5}\\end{tikzpicture}
```

Que gera o mesmo resultado. Também é possível desenhar círculos (Só o raio deve ser especificado):

```
begin{tikzpicture}

draw (0,0) circle [radius=2];

end{tikzpicture}
```


Também é possível escrever o comando de uma forma mais compacta: \draw (0,0) circle (2), que gera uma figura idêntica à anterior.

Ou elipses, especifiando x radius e y radius:

```
begin{tikzpicture}

draw [gray!50] (-4,-1) grid (0,1);

draw (0,0) arc [start angle=0,end angle=270, x radius=2, y radius=1];

end{tikzpicture}
```


Uma maneira alternativa de desenhar elipses é escrevendo:

```
\begin{tikzpicture}

draw (0,0) ellipse (2 and 1);

end{tikzpicture}
```


2.6 Parábolas e senóides

A sintaxe do comando que cria uma parábola que passa pelos pontos (x_0, y_0) e (x_1, y_1) é (x_0, y_0) parabola (x_1, y_1) , conforme o exemplo:

```
\langle begin { tikzpicture }

\langle draw [gray!50] (0,0) grid (3,3);

\langle draw (0,0) parabola (2,2);

\langle end { tikzpicture }
```


Utilizando os comandos (x0,y0) sin (x1,y1) e (x0,y0) cos (x1,y1) é possível desenhar senóides:

```
begin{tikzpicture}

%Desenha a malha
draw [gray!50] (0,-1) grid (12,1);

%Desenha a senoide vermelha
draw [color=red] (0,0) sin (3,-1);

%Desenha uma senoide preta de x=0 ate x=12

draw (0,0) sin (3,1) cos (6,0) sin (9,-1) cos (12,0);

end{tikzpicture}
```


Para desenhar uma senóide contínua, como no exemplo anterior, é necessário alternar os comandos sin e cos, conforme foi feito.

2.7 Curvas

Há diversas maneiras de desenhar curvas, serão introduzidas aqui quatro delas. A primeira consiste em especificar um conjunto de pontos e adicionar os parâmetros smooth, tension e utilizar o comando \draw de maneira um pouco diferente :

```
\langle \langle \text{begin \{ tikzpicture \}} \\ \draw \text{plot \[smooth, tension=1\] coordinates \{ \langle (0,0) \langle (2,2) \langle (4,1) \langle (3,-1) \\ \langle (-3,2) \langle (-2,-2) \langle (0,0) \}; \\ \text{end \{ tikzpicture \}} \\ \end \{ tikzpicture \}}
```


Os valores entre coordinates {...} representam o conjunto de pontos, o parâmetro tension altera a suavidade das curvas. Por exemplo, se fizermos com que ele seja o triplo na figura anterior obtemos uma figura com curvas mais acentuadas:

A segunda consiste em definir um ângulo inicial e um ângulo final tangentes à curvatura:

```
\langle \langl
```


Também é possível utilizar o parâmetro bend:

```
\langle begin{tikzpicture}
\draw (0,0) to [bend right] (3,1);
\end{tikzpicture}
```


Por fim, também é possível curvar uma reta adicionando 'pontos de controle'. Eles fazem com que o segmento 'se curve' em sua direção. Basta adicionar o termo ... controls (x,y)... entre as coordenadas de uma linha:

```
\langle begin { tikzpicture }
\draw (0,0) ... controls (3,3) ... (3,1);
\draw { tikzpicture }
```


A bolinha preta foi utilizada para ilustrar a localização do ponto de controle, localizado em (3,3). Também é possível adicionar um segundo ponto de controle, conforme o exemplo:

```
\begin{tikzpicture}

\draw (0,0) .. controls (0,1) and (3,2) .. (2,4);

\end{tikzpicture}
```


3 Colorindo áreas

3.1 Tipos básicos

É bem provável que você precise colorir certas regiões em suas figuras, para isso você pode utilizar o comando \ fill . Para utilizar este comando é necessário especificar a área que será preenchida. Para preencher a região compreendida por um retângulo por exemplo, basta fazer o seguinte:

```
begin{tikzpicture}

fill (0,0) rectangle (3,2);

end{tikzpicture}
```


A sintaxe é basicamente aquela apresentada nas seções anteriores, a diferença é que o comando \draw foi substituído pelo comando \fill . A cor padrão de preenchimento é a cor preta, para mudá-la é ncessário adicionar a cor desejada da mesma maneira feita nas seções anteriores para retas, retângulos, etc:

```
begin{tikzpicture}

fill [color=yellow!50] (0,0) circle (1);

end{tikzpicture}
```


Agora, que tal adicionar um gradiente de cores? Você pode criar uma figura que apresente um gradiente da esquerda para a direita:

De cima para baixo:

Ou do interior para o exterior:

```
\login{tikzpicture}
```

▶ Uma breve introdução ao TikZ

Nós também podemos utilizar o comando \shade, que é capaz de fazer a mesma coisa, contudo é obrigatório especificar as cores do gradiente, caso contrário ele gera um gradiente cinza:

Também é possível desenhar o contorno da figura e preenchê-la simultaneamente utilizando o comando \draw e especificando-se a cor de preenchimento:

```
begin{tikzpicture}

%Desenha um quadrado azul com contorno preto
| draw [fill=blue!50,draw=black] (0,0) rectangle (3,2);
| end{tikzpicture}
```


3.2 Formas diversas

O preenchimento de áreas não se restringe somente às figuras mais simples, o TikZ também é capaz de preencher áreas arbitrárias, como a do seguinte exemplo:

```
begin{tikzpicture}

draw [fill=green!50, thick] (0,0)--({3*cos(60)},{3*sin(60)})--(3,0)
    --cycle;

%Para utilizar funcoes matematicas como sin e cos e necessario isolar
    cada coorenada entre os delimitadores {}, deste modo o codigo e
    compilado corretamente

%A expressao cycle faz com que o comando draw trace uma figura "
    fechada", voltando para a posicao inicial

end{tikzpicture}
```


Basta desenhar o caminho que se deseja com o comando \draw e adicionar o parâmetro fill =..., com a cor desejada. Para colorir um arco, podemos fazer o seguinte:

```
\langle begin { tikzpicture }
\draw [fill=red!50] (0,0) -- (2,0) arc (0:60:2) -- cycle;
\langle end { tikzpicture }
```


Para preencher áreas um pouco mais complicadas você pode utilizar o comando plot, motrado nas seções anteriores, e adicionar parâmetros (Veja que os parâmetros relativos à cor, espesura da linha, etc aparecem *antes* do comando plot):

```
\login{tikzpicture}
```



```
begin{tikzpicture} [scale=.5]

draw [inner color=yellow!40, outer color=orange!40, ultra thick]
    plot [smooth,tension=1] coordinates { (0,0) (2,2) (4,1.5) (6,3)
        (8,1) (5,0) (3,-2) (-1,-1) (0,0)};

end{tikzpicture}
```


Um detalhe importante do tikz é que as figuras são desenhadas na ordem em que aparecem no código. Você pode se aproveitar disso para realizar certos tipos de desenhos, como na seguinte imagem:

```
begin{tikzpicture}

begin{tikzpicture}

%Desenha um quadrado verde

draw [fill=GreenYellow!50] (0,0) rectangle (4,4);

%Em seguida desenha um circulo branco
draw [fill=white] (2,2) circle (2);

end{tikzpicture}
```


Preencher a parte destacada fica fácil por meio desta estratégia. Basta desenhar um retângulo verde e em seguida desenhar um círculo branco dentro do quadrado, apagando a parte indesejada. Tentar fazer a mesma figura por outros métodos seria um pouco mais complicado.

4 Plotando gráficos

Durante o seu trabalho você provavelmente precisará plotar gráficos. Apesar de alguns programas como o Octave e Mathematica serem mais adequados para este tipo de tarefa, o TikZ é capaz de realizar tarefas mais simples muito bem, com a vantagem de criar figuras simulares ao resto daquelas utilizadas no documento e tornar possível a integração de gráficos com outros tipos de figuras, tudo isso no mesmo código.

A maneira mais simples de desenhar gráficos no TikZ é utilizar a seguinte estrutura:

```
draw [parametros] plot (variavel, funcao);
```

Como no exemplo a seguir, no qual é plotada a função y=x-1, no invervalo x=[-1.5,2.5]:

```
| begin{tikzpicture}
| draw [domain=-1.5:2.5, variable=\x, color=red, thick] plot ({\x},{\x},-1});
| draw [domain=-1.5:2.5, variable=\x, color=red, thick] plot ({\x},{\x},-1});
| draw [domain=-1.5:2.5, variable=\x, color=red, thick] plot ({\x},{\x},-1});
| draw [domain=-1.5:2.5, variable=\x, color=red, thick] plot ({\x},{\x},{\x},-1});
| draw [domain=-1.5:2.5, variable=\x, colo
```


No exemplo anterior a variável utilizida é x. Podemos introduzir uma variável digitando \ e em seguida a letra ou nome desejado (No caso foi feito \x). O domínio é especificado entre os delimitadores [e], como parâmetro, utilizando domain=x0:x1. É possível utilizar muitas outras funções matemáticas, como as seguintes:

```
\begin{tikzpicture}
  %Exponencial negativa
  draw [domain=-0:3.75, variable=\x, color=red, thick] plot (\{x\}, 3*exp\{-
  %Logaritmo natural
  draw [domain=0.2:3.75, variable=\x, color=green, thick] plot ({\x}, 2*ln
      {\x});
  %Senoide
  \frac{draw}{draw} [domain=-3.75:3.75, variable=\x, color=blue, thick] plot (\frac{x}{x}, sin
      \{\deg(\mathbf{x})\};
  \frac{\text{draw}[\text{domain} = -3.75:3.75, \text{variable} = \x, \text{color} = \text{blue}, \text{thick}]}{\text{plot}}
      deg(\langle x \rangle);
10 Parabola (Caso o codigo nao compile, tente escrever a funcao y entre
       { e }, como foi feito na expressao a seguir. Isto pode ocorrer
      devido ao uso de parenteses, que pode fazer com que o compilador
      interprete o caractere ')' utilizado em algumas funcoes
      matematicas como um indicador do fim do comando plot)
11 \mid draw[domain=-3.75:3.75, variable=\x, color=orange, thick] plot ({\x})
      \},\{1/5*pow(\mathbf{x},2)-3\});
  \langle draw \ [<->] \ (-4,0) - -(4,0);
| | draw | (---) | (0, -4) - (0, 4) ;
  \fill (0,0) circle (.075);
  \end{ tikzpicture }
```


Veja que para plotar a função $\sin x$ a sintaxe utilizada foi $\sin\{\deg(x)\}$. O termo $\deg(x)$ indica que a variável x deve ser tratada como um ângulo (em radianos).

Você também pode criar funções paramétricas. No exemplo a seguir foi desenhado um ciclóide, parametrizado por:

$$x(t) = \frac{1}{2}(t - \sin t)$$
$$y(t) = \frac{1}{2}(1 - \cos t)$$

E uma curva de Lissajous, parametrizada por:

$$x(t) = 3\sin(2t)$$
$$y(t) = 2\cos(t)$$

```
9 \ \draw [<->] (0,-2.5) --(0,2.5);

10 \ fill (0,0) circle (.075);

11 \ \end{ tikzpicture}
```


Na plotagem do ciclóide foi adicionado o parâmetro smooth para suavizar a curva.

5 Adicionando textos às figuras

Outra funcionalidade conveniente do TikZ é a adição de textos às figuras. Você pode fazer isso utilizando o comando \node at (x,y) {texto}, conforme o exemplo:

```
begin{tikzpicture}

draw [gray!50] (0,0) grid (4,4);

draw [->] (0,0) - -(4.25,0);

draw [->] (0,0) - -(0,4.25);

fill (0,0) circle (.075);

node at (2,2) {The cake is a lie};

node [fill=blue!30] at (3,1) {Sonic Boom!};

node [color=red] at (3,3) {It's dangerous to go alone};

end{tikzpicture}
```


Também é possível colocar o texto imediatamente acima, abaixo ou ao lado do ponto desejado:

```
\langle begin{tikzpicture}

\langle draw [gray!50] (0,0) grid (4,4);

\langle draw [->] (0,0) --(4.25,0);

\langle draw [->] (0,0) --(0,4.25);

\langle fill (0,0) circle (.075);

\langle node [left] at (2,2) {1};

\langle node [above] at (2,2) {2};

\langle node at (2,2) {3};

\langle node [below] at (2,2) {4};

\langle node [right] at (2,2) {5};

\langle node [tikzpicture]
```


Ou até mesmo combinar os comandos anteriores:

```
\langle begin \{ tikzpicture \}
\langle draw [gray!50] (0,0) grid (4,4);
\langle draw [->] (0,0) -- (4.25,0);
\langle draw [->] (0,0) -- (0,4.25);
```


Decorações e padrões

6.1 Decorações

As decorações são certos padrões utilizados para confecionar desenhos, dados os caminhos desejados. Antes de mais nada, adicione algumas das bibliotecas necessárias para as decorações escrevendo \usetikzlibrary {decorations.pathmorphing,patterns,decorations .shapes} no preâmbulo do documento. Agora iremos iniciar com um exemplo simples, no qual desenharemos um zigue-zague:

```
begin{tikzpicture}

draw [decorate,decoration=zigzag] (0,0)--(5,0);

end{tikzpicture}
```

Ou seja, estrutura básica consiste em adicionar decorate e decoration=... aos parâmetros do comando. Além da decoração em zigue-zague há muitas outras, como:

```
\login{tikzpicture}
```

```
 \begin{array}{c} \text{3} \\ \text{draw} \ [\text{decorate,decoration=brace}] \ (0\,,0) - - (5\,,0)\,; \\ \text{4} \\ \text{draw} \ [\text{decorate,decoration=saw}] \ (0\,,-1) - - (5\,,-1)\,; \\ \text{5} \\ \text{6} \\ \text{10} \ (0\,,-2) - - (5\,,-2)\,; \\ \text{6} \\ \text{12} \ (\text{decorate,decoration=\{expanding waves, angle=10\}}] \ (0\,,-4) \\ - - (5\,,-4)\,; \\ \text{7} \\ \text{13} \ [\text{decorate,decoration=\{crosses\}}] \ [\text{fill=blue}\,!\,20\,,\text{draw=blue}\,,\text{thick}\,] \\ (0\,,-5\,.5) \ - - \ (5\,,-5\,.5)\,; \\ \text{8} \\ \text{9} \\ \text{12} \ (\text{decorate,decoration=\{crosses\}}) \ [\text{fill=blue}\,!\,20\,,\text{draw=blue}\,,\text{thick}\,] \\ \text{13} \ (0\,,-5\,.5) \ - - \ (5\,,-5\,.5)\,; \\ \text{14} \ (0\,,-5\,.5) \ - - \ (5\,,-5\,.5)\,; \\ \text{15} \ (0\,,-5\,.5) \ - - \ (5\,,-5\,.5)\,; \\ \text{16} \ (0\,,-5\,.5) \ - - \ (5\,,-5\,.5)\,; \\ \text{17} \ (0\,,-5\,.5) \ - - \ (5\,,-5\,.5)\,; \\ \text{18} \ (0\,,-5\,.5) \ - - \ (5\,,-5\,.5)\,; \\ \text{18} \ (0\,,-5\,.5) \ - - \ (5\,,-5\,.5)\,; \\ \text{18} \ (0\,,-5\,.5) \ - - \ (5\,,-5\,.5)\,; \\ \text{18} \ (0\,,-5\,.5) \ - - \ (5\,,-5\,.5)\,; \\ \text{18} \ (0\,,-5\,.5) \ - - \ (5\,,-5\,.5)\,; \\ \text{19} \ (0\,,-5\,.5) \ - - \ (5\,,-5\,.5)\,; \\ \text{10} \ (0\,,-5\,.5) \ - - \ (5\,,-5\,.5)\,; \\ \text{10} \ (0\,,-5\,.5) \ - - \ (5\,,-5\,.5)\,; \\ \text{10} \ (0\,,-5\,.5) \ - - \ (5\,,-5\,.5)\,; \\ \text{10} \ (0\,,-5\,.5) \ - - \ (5\,,-5\,.5)\,; \\ \text{10} \ (0\,,-5\,.5) \ - - \ (5\,,-5\,.5)\,; \\ \text{10} \ (0\,,-5\,.5) \ - - \ (5\,,-5\,.5)\,; \\ \text{10} \ (0\,,-5\,.5) \ - - \ (5\,,-5\,.5)\,; \\ \text{10} \ (0\,,-5\,.5) \ - - \ (5\,,-5\,.5)\,; \\ \text{10} \ (0\,,-5\,.5) \ - - \ (5\,,-5\,.5)\,; \\ \text{10} \ (0\,,-5\,.5) \ - - \ (5\,,-5\,.5)\,; \\ \text{10} \ (0\,,-5\,.5) \ - - \ (5\,,-5\,.5)\,; \\ \text{10} \ (0\,,-5\,.5) \ - - \ (5\,,-5\,.5)\,; \\ \text{10} \ (0\,,-5\,.5) \ - - \ (5\,,-5\,.5)\,; \\ \text{10} \ (0\,,-5\,.5) \ - - \ (5\,,-5\,.5)\,; \\ \text{10} \ (0\,,-5\,.5) \ - - \ (5\,,-5\,.5)\,; \\ \text{10} \ (0\,,-5\,.5) \ - - \ (5\,,-5\,.5)\,; \\ \text{10} \ (0\,,-5\,.5) \ - - \ (5\,,-5\,.5)\,; \\ \text{10} \ (0\,,-5\,.5) \ - - \ (5\,,-5\,.5)\,; \\ \text{10} \ (0\,,-5\,.5) \ - - \ (5\,,-5\,.5)\,; \\ \text{10} \ (0\,,-5\,.5) \ - - \ (5\,,-5\,.5)\,; \\ \text{10} \ (0\,,-5\,.5) \ - - \ (5\,,-5\,.5)\,; \\ \text{10} \ (0\,,-5\,.5) \ - - \ (5\,,-5\,.5)\,; \\ \text{10} \ (0\,,-5\,.5) \ - - \ (5\,,-5\,.5)\,; \\ \text{10} \ (0\,,-5\,.5) \ - - \ (5\,,-5\,.5)\,; \\ \text{10} \ (0\,,-5\,.5) \ - - \ (5\,,-5\,.5)\,; \\ \text
```


As decorações não precisam ser feitas somente em linhas retas, você também pode utilizá-las em caminhos arbitrários:

Também é possível decorar somente uma parte do caminho:

```
\lambda begin { tikzpicture } \lambda draw [decoration={triangles}, draw=blue, thick] (0,0) -- (5,0) decorate { --(0,3)} -- (5,3); \lambda end{tikzpicture}
```


6.2 Padrões

Para adicionar a biblioteca de padrões escreva \usetikzlibrary {patterns} no preâmbulo, assim como foi feito para a biblioteca de decorações. Os padrões são desenhos similares às decorações e se repetem. Os padrões podem ser utilzados utilizando os comandos \ fill ou \draw, como no exemplo a seguir:

```
\login{tikzpicture}
```

Também é possível utilizar outras cores, formas e tipos de padrões:

```
| begin{tikzpicture}
| begin{tikzpicture}
| fill [pattern=bricks ,pattern color=red] (0,0) rectangle (2,2);
| fill [pattern=horizontal lines,pattern color=blue] (4,1) circle (1);
| fill [pattern=north east lines] (0,-.5) rectangle (5,-.3);
| draw (0,-.25)--(5,-.25);
| end{tikzpicture}
```


Desenhos em três dimensões

Até agora todos os exemplos foram feitos utilizado figuras bidimensionais, contudo é possível utilizar o pacote 3dplot para confecionar figuras tridimensionais. Para isso adicione \usepackage{tikz-3dplot} ao preâmbulo e garanta que o pacote esteja na mesma pasta do seu projeto ou já tenha sido instalado.

No ambiente 3D, o uso de muitas funções utilizadas é análogo ao das funções mais simples no ambiente 2D:

```
\tdplotsetmaincoords \{70\} \{110\}
\text{begin \{ tikzpicture \} [tdplot_main_coords]}
\draw [->] \( (0,0,0) - -(3,0,0); \\ draw [->] \( (0,0,0) - -(0,3,0); \)
```

```
6 \draw [->] (0,0,0) --(0,0,3);

8 \draw [color=red,->] (0,0,0) --(1,3,2);

10 \draw [fill=gray!10] (1,1,0) --(1,3,0) --(2,1,0)--cycle;

11 \node [left] at (0,0,3) {z};

12 \node [right] at (0,3,0) {y};

13 \node [below] at (3,0,0) {x};

15 \end{tikzpicture}
```


Contudo, note um detalhe importante no exemplo anterior: é necessário adicionar a expressão \tdplotsetmaincoords{70}{110} antes de iniciar o ambiente TikZ e também escrever [tdplot_main_coords] após \begin{tikzpicture}. Isso faz com que as coordenadas sejam transformadas corretamente, se esses comandos não fossem incluídos muitas intruções relativas à 3ª coordenada seriam ignorados e algumas figuras seriam desenhadas como se estivessem no ambiente 2D. Os valores 70 e 110 referem-se aos ângulos de rotação, que podem ser alterados.

Desenhando circuitos

A biblioteca cirtuitikz foi escrita por Massimo Redaelli que pode ser utilizada para confeccionar diagramas de circuito elétricos. Para incluir a biblioteca escreva \usepackage{circuitikz} no preâmbulo. A sintaxe básica para desenhar um componente é:

```
\begin{circuitikz}
\draw [...] (x0,y0) to (x1,y1);
\end{circuitikz}
```

Onde \cdots é substituído pelo nome que designa um componente. Para desenhar um resistor, que é designado pela letra R, escrevemos:

```
begin{circuitikz}

draw [R=$470 \Omega$] (0,0) to (2,0); % Resistor, R designa um
    resistor

end{circuitikz}
```

$$-\sqrt{100}$$

Segue um exemplo contendo alguns componentes simples,

```
begin{circuitikz}

draw (0,0) to (0,-1) node[ground] {GND};

draw [voltmeter] (1,0) to (2,0) ;

draw [battery] (1,-1) to (2,-1) ;

draw [diode] (3,0) to (4,0) ;

draw [C] (3,-1) to (4,-1);

draw [sV] (5,-1) to (6,-1) ; %Fonte AC

draw [closing switch] (5,0) to (6,0) ;

draw (7,-.5) node [npn] {}; $Transistor NPN

location | April | Apr
```


E um exemplo contendo um circuitlo R-L:

```
begin{circuitikz}

draw (0,0)

to[V,v=$V$] (0,2) % Fonte de tensao

to[R=$R$] (2,2) % Resistor

to[short] (2,0)%Desenha um fio

to[L=$L$] (0,0);%Indutor

end{circuitikz}
```


Também é possível utilizar a biblioteca para desenhar portas lógicas:

```
begin{circuitikz}

draw (0,0) node[and port] {};%Porta AND

draw (2,0) node[or port] {};%Porta OR

draw (4,0) node[nand port] {};%Porta NAND

draw (6,0) node[xor port] {};%Porta XOR

draw (7.3,0) node[not port] {};%Porta NOT

end{circuitikz}
```


9 Referências e links úteis

- Documentação do pacote: http://ftp.fau.de/ctan/graphics/pgf/base/doc/pgfmanual.pdf
- Um pequeno manual do TikZ, no qual este trabalho foi inspirado: http://cremeronline.com/LaTeX/minimaltikz.pdf
- Documentação do Circuitikz: http://texdoc.net/texmf-dist/doc/latex/circuitikz/circuitikzmanual.pdf
- Documentação do pactote 3dplot: ftp://ftp.yzu.edu.tw/CTAN/graphics/pgf/contrib/tikz-3dplot/tikz-3dplot_documentation.pdf
- Stack Exchange, site muito útil para tirar dúvidas:http://tex.stackexchange.com/
- Exemplos de figuras feitas em TikZ: http://www.texample.net/tikz/examples/