Skript Mathe 2

30. Mai 2018

1. Dabei wird der Winkel φ meistens im Bogenmaß angegeben, d.h. $\varphi \in [0,2\pi].$

Einige wichtige Werte:

Gradmaß:	0°	30°	45°	60°	90°	180°
Bogenmaß:	0	$\frac{\pi}{6}$	$\frac{\pi}{4}$	$\frac{\pi}{3}$	$\frac{\pi}{2}$	π
sin:	0	$\frac{1}{2}$	$\frac{1}{\sqrt{2}}$	$\frac{\sqrt{3}}{2}$	1	0
cos:	1	$\frac{\sqrt{3}}{2}$	1	1/2	0	-1

Daraus können weitere Werte mit Hilfe des Einheitskreises abgeleitet werden:

$$\cos\left(\frac{2\pi}{3}\right) = -\frac{1}{2} = -\cos\left(\frac{\pi}{3}\right)$$

$$\sin\!\left(\frac{2\pi}{3}\right) = \frac{\sqrt{3}}{2} = -\sin\!\left(\frac{\pi}{3}\right)$$

2. sin und cos sind nicht bijektiv. Jedoch ist $\sin[-\frac{\pi}{2}, \frac{\pi}{2}] \to [-1, 1]$ und $\cos[0, \pi] \to [-1, 1]$ bijektiv. Die Umkehrfunktionen sind:

1

arcsin: $[-1,1] \rightarrow [-\frac{\pi}{2}, \frac{\pi}{2}]$ arccos: $[-1,1] \rightarrow [0,\pi]$

Entsprechend erhält man:

arctan: $\mathbb{R} \to (-\frac{\pi}{2}, \frac{\pi}{2})$ arccotan: $\mathbb{R} \to (0, \pi)$

3. • Es ist $\sin(x + \frac{\pi}{2}) = \cos(x) \quad \forall x \in \mathbb{R}$

- \sin , \cos \sin d 2π -periodisch, d.h. $\sin(x + 2\pi) = \sin(x)$, $\cos(x + 2\pi) = \cos(x)$
- tan, cotan sind π -periodisch
- 4. Symmetrien

$$\cos(x) = \cos(-x) \qquad \forall x \in \mathbb{R}$$
$$\sin(x) = -\sin(-x) \qquad \forall x \in \mathbb{R}$$
$$\tan(x) = -\tan(-x) \qquad \forall x \in \mathbb{R}$$
$$\cot(x) = -\cot(-x) \qquad \forall x \in \mathbb{R}$$

- 5. Rechenregeln
 - a) $\sin x + \cos x = 1 \quad \forall x \in \mathbb{R}$
 - b) Additions theoreme
 - $\sin(x+y) = \sin(x) \cdot \cos(y) + \cos(x) \cdot \sin(y)$
 - $\cos(x+y) = \cos(x) \cdot \cos(y) \sin(x) \cdot \sin(y)$

1 Grenzwerte von Funktionen und Stetigkeit

1.1 Definition: Grundbegriffe und Beispiele

Sei $M \subseteq \mathbb{R}$.

- a) $X_0 \in \mathbb{R}$ heißt Häufungspunkt von M: \Leftrightarrow Es gibt eie Folge (X_n) in $M \setminus \{X_0\}$ mit $X_n \mapsto X_0$
- b) $X_0 \in M$ heißt isolierter Punkt von M: $\Leftrightarrow X_0$ ist kein Häufungspunkt von M

1.2 Beispiele

- a) $M = (0,1) \cup \{2\} \cup (3,4)$
 - Menge der Häufungspunkte von M: $H = [0,1] \cup [3,4]$ denn z.B für $X_0 = \frac{1}{2}$ hat die Folge $(\frac{1}{2} \frac{1}{n})_{n \geq 3}$ den Limes X_0 und liegt in $M \setminus \{X_0\}$.

Auf analoge Weise können für jedes andere $X_0 \in M$ Folgen in $M \setminus \{X_0\}$ konstruiert werden.

- Einziger isolierter Punkt in M ist 2, denn es gibt in $M \setminus \{2\} = (0,1) \cup (3,4)$ keine Folge mit Grenzwert 2.
- b) $M = \{\frac{1}{n} \mid n \in \mathbb{N}\}$
 - Menge der HP von $M: \{0\}$
 - ullet Menge der isolierten Punkte: M

Bemerkung

Ein isolierter Punkt X_0 von M liegt vor, wenn es ein $\epsilon > 0$ gibt, so dass $|X - X_0| \ge \epsilon \quad \forall x \in M \setminus \{X_0\}, \text{ z.B ist in 5.2a } |X - 2| \ge 1 \quad \forall x \in M \setminus \{2\}$

Definition Grenzwert I

Sei $f: D \to \mathbb{R}$ reelle Funktion und $a \in \mathbb{R}$. Ist X_0 ein Häufungspunkt von D, so sagt man f hat in X_0 den Grenzwert a, oder f(x) konvergiert gegen a für $x \to a : \Leftrightarrow \lim_{n \to \infty} f(X_n) = a$, für jede beliebige Folge (X_n) in $D \setminus \{X_0\}$ mit $X_n \to X_0$.

Schreibweise: $\lim_{x \to X_0} f(x) = a$ oder $f(x) \to a$ für $x \to X_0$

Beispiele 1.5

a) $f: \mathbb{R} \to \mathbb{R}, x \mapsto x^2, X_0 = 1$

Für (X_n) in $\mathbb{R} \setminus \{1\}$ mit $X_n \to 1$ ist $f(X_n) = X_n^2 \xrightarrow[n \to \infty]{} 1$ (1.13/3)

b) Es muss für jede Folge (X_n) in $D \setminus \{X_0\}$ mit $X_n \to X_0$ gelten: $f(X_n) \to a$

Gegenbeispiel: $f: \mathbb{R} \to \mathbb{R}$ $f(x) = \begin{cases} -1 & x < 0 \\ +1 & x > 0 \end{cases}$

$$f(-\frac{1}{n}) = -1 \xrightarrow[n \to \infty]{} -1$$
 und

Grenzwert in
$$X_0=0$$
 existiert nicht, denn $f(-\frac{1}{n})=-1 \xrightarrow[n \to \infty]{} -1$ und $f(\frac{1}{n})=1 \xrightarrow[n \to \infty]{} 1$, obwohl $\frac{-1}{n} \to X_0$ und $\frac{1}{n} \to X_0$

1.6 ϵ – φ –Kriterium

Sei $f:D\to\mathbb{R}$ reelle Funktion, X_0 HP in $D,\,a\in\mathbb{R}.$ Dann:

$$\lim_{x \to X_0} f(x) = a \Leftrightarrow \forall \epsilon > 0 \ \forall x \in D \setminus \{X_0\} :$$

$$\underbrace{|x - X_0| < \delta \Rightarrow |f(x) - a| < \epsilon}_{(*)}$$