In [2]:	<pre>from PIL import Image import torch import matplotlib.pyplot as plt import numpy as np import torch.nn.functional as F from torch import nn from torchvision import datasets, transforms import torchvision.models as models import tors import math from time import time os.chdir(r'/Users/jeremywan/Desktop/MMTech/lab1_cbir_student') impgath = r'./images' from ai_pytorch_module import * device= torch.device("cpu")</pre>
In [3]:	### Load model used to extract feature model = models.vgg16(pretrained=True) model.to(series) model.classifier = model.classifier[:4] # until linear (3)before relu (4) model.to(evice) print(model) VGG(
	(20): ReLU(inplace=True) (21): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)) (22): ReLU(inplace=True) (23): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False) (24): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)) (25): ReLU(inplace=True) (26): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)) (27): ReLU(inplace=True) (28): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)) (29): ReLU(inplace=True) (30): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)) (avgood): AdaptiveAvgPool2d(output_size=(7, 7)) (classifier): Sequential((0): Linear(in_features=25088, out_features=4096, bias=True) (1): ReLU(inplace=True) (2): Dropout(p=0.5, inplace=False) (3): Linear(in_features=4096, out_features=4096, bias=True))
<pre>In [4]: Out[4]: In [5]:</pre>	pwd '/Users/jeremywan/Desktop/MMTech/lab1_cbir_student' #%% Extract the feature from pre-trained convolutional neural network CNN
	<pre>filename = '002.jpg' start = time() filename_ = os.path.join(imgoath, filename, device, showTmage = False,) end = Lime() print("The feature dimension = ", imgFeature.shape) print("Time taken to extract feature from one image (sec) = ", end - start) # 1.3 sec im = Image_open(filename_) print("Time taken to extract feature from one image (sec) = ", end - start) # 1.3 sec im = Image_open(filename_) print("Index taken to extract feature from one image (sec) = ", end - start) # 1.3 sec im = Image_open(filename_) print("Index taken to extract feature from one image (sec) = ", end - start) # 1.3 sec im = Image_open(filename_) # Extract the feature from colour histogram # Your code for getColorMist(filename) def getColorMist(filename) im = np.array(Image_open(filename)) # create the histogram plot, with three lines, one for # seak color colors = ("r", "g", "g", "g", "g", "g", "g", "g",</pre>
	histogram, bin_edges = np.histogram(im[:, :, channel_id], bins=256, range=(0, 256)) plt.plot(bin_edges[0:-1], histogram, color=c) histogram_n = histogram / np.sum(histogram) histL.extend(histogram_n) hist_feat = np.array(histL) # hist is the histogram vector that represent the image im plt.xlabel("Color value") plt.ylabel("pixels") plt.title(filename) plt.show() return hist_feat
	/Users/jeremywan/opt/anaconda3/lib/python3.8/site-packages/torch/nn/functional.py:718: UserWarning: Named tensors and all their associated APIs are an experimental feature and subject to change. Please do not use them for anythin g important until they are released as stable. (Triggered internally at /Users/distiller/project/conda/conda-bld/pytorch_1623459044803/work/c10/core/TensorImpl.h:1156.) return torch.max_pool2d(input, kernel_size, stride, padding, dilation, ceil_mode) The feature dimension = (1, 4996) Time taken to extract feature from one image (sec) = 1.002465009689331 Question 3: (a) Compute dissimilarity distance (euclidian) with feature from colour histogram Extract the feature from image '001.jpg', '022.jpg' and '400.jpg'. Compute the euclidian distance between the two feature vector from '001.jpg', '022.jpg'. Then Compute the euclidian distance between the two feature vector
	from '001.jpg', '400.jpg'. (b) Compute dissimilarity distance (euclidian) with feature from pre-trained convolutional neural network CNN Extract the feature from image '001.jpg', '022.jpg' and '400.jpg'. Compute the euclidian distance between the two feature vector. Compute the euclidian distance between the two feature vector from '001.jpg', '022.jpg'. Then Compute the euclidian distance between the two feature vector from '001.jpg'.
In [6]:	<pre># Answer: Insert your code in this cell #%% Get color histogram feature for f in ['001.jpg', '022.jpg', '400.jpg'] : filename = os.path.join(imgpath, f) img = Image.open(filename) plt.figure() plt.imshow(img) plt.title(filename) print(filename) imgpath = r'./images' feat_hists = []</pre>
	<pre>for f in ['001.jpg', '022.jpg', '400.jpg'] : filename = os.path.join(imppath, f) feat = getColorHist(filename) feat_hists.append(feat) #%% Comparing with color histogram # '001.jpg' vs '022.jpg' # your code h1 = feat_hists[0] #001 h2 = feat_hists[1] #022 h3 = feat_hists[2] #400</pre>
	<pre># printing Euclidean distance #h_dist1_vs_22 = np.linalg.norm(h1-h2) h_dist1_vs_22 = np.linalg.norm(h1-h2) print("With color hist, image 1 vs image 22 , distance = ", h_dist1_vs_22) # '001.jpg' , '400.jpg'. # your code # printing Euclidean distance h_dist1_vs_400 = np.linalg.norm(h1-h3)</pre>
	<pre>print("With color hist, image 1 vs image 400 , distance = ", h_dist1_vs_400) #%% Get CNN feature feat_cnns = [] i=0 for f in ['001.jpg', '022.jpg', '400.jpg'] : filename = os.path.join(imppath, f) feat = getCNNFeature(model, filename, device, showImage = False) feat_cnns.append(feat) #%% Comparing with CNN feature # '001.jpg' vs '022.jpg' # your code c1 = feat_cnns[0] c2 = feat_cnns[1] c3 = feat_cnns[2]</pre>
	<pre># printing Euclidean distance cnns_dist1_vs_22 = np.linalg.norm(c1-c2) print("With cnn feature, image 1 vs image 22 , distance = ", cnns_dist1_vs_22) # # '001.jpg' , '400.jpg'. # your code # printing Euclidean distance cnns_dist1_vs_400 = np.linalg.norm(c1-c3) print("With cnn feature, image 1 vs image 400 , distance = ", cnns_dist1_vs_400) # //images/001.jpg //images/400.jpg //images/400.jpg</pre> //images/400.jpg
	Image 002.jpg
	0 50 -
	50 - 100 - 150 - 200 - 250 300 350 O
	150 - 200 - 250 0 50 100 150 200 250 300 350
	Jimages/001.jpg 600 400 50 1000 150 200 250 Color value
	Jimages/022.jpg 800 -
	Jimages/400.jpg 40000 -
	Color value With color hist, image 1 vs image 22, distance = 0.0345468839243469 With color hist, image 1 vs image 400, distance = 0.7658398822987645 With cnn feature, image 1 vs image 22, distance = 97.46642 With cnn feature, image 1 vs image 400, distance = 137.08414 Question 4: Explain your conclusion on the pairwise similarity between the three images '001.jpg', '022.jpg' and '400.jpg'. Comment on the semantic similarity between the three images and the euclidian distance among their feature vectors. Compare colour histogram and CNN feature.
	Your answer The smaller the euclidean distance, the more similarity between images. By comparing the colour histogram and CNN feature, the euclidean distance among their feature vector between '001.jpg' and '022.jpg' are smaller, however, between '001.jpg' and '400.jpg' are bigger. Hence, the similarity between images '001.jpg' and '022.jpg' are more similar, meanwhile, '001.jpg' and '400.jpg' are less similar.

Display an image and extract feature using pre-trained convolutional neural network

Once deleted, variables cannot be recovered. Proceed (y/[n])? Nothing done.

In [1]: %reset