Show, Attend and Tell:

Neural Image Caption Generation With Visual Attention (ICML2015)

"attention"

- Hard attention
- Soft attention
- Two attention based image caption generator model

1. image captioning model structure

overview

Input: 주어진 이미지

Output: feature vector a (L*D)

- 마지막 layer은 I개의 필터와 d개의 뉴런

- Fc layer을 사용하지 않음

$$\begin{pmatrix} i \\ f \\ o \\ g \end{pmatrix} = \begin{pmatrix} \sigma \\ \sigma \\ \sigma \\ \tanh \end{pmatrix} W \begin{pmatrix} h_{t-1} \\ x_t \end{pmatrix}$$
 기존 LSTM 수식
$$c_t = f \odot c_{t-1} + i \odot g$$

$$h_t = o \odot \tanh(c_t)$$

$$\begin{pmatrix}
\mathbf{i}_{t} \\
\mathbf{f}_{t} \\
\mathbf{o}_{t} \\
\mathbf{g}_{t}
\end{pmatrix} = \begin{pmatrix}
\sigma \\
\sigma \\
\tanh
\end{pmatrix} T_{D+m+n,n} \begin{pmatrix}
\mathbf{E}\mathbf{y}_{t-1} \\
\mathbf{h}_{t-1} \\
\hat{\mathbf{z}_{t}}
\end{pmatrix}$$

$$\mathbf{c}_{t} = \mathbf{f}_{t} \odot \mathbf{c}_{t-1} + \mathbf{i}_{t} \odot \mathbf{g}_{t}$$

$$\mathbf{h}_{t} = \mathbf{o}_{t} \odot \tanh(\mathbf{c}_{t}).$$
(1)
Attention 적용 후

Input:

- 1. Eyt-1 : 단어 embedding vector
 - 2. ht-1: hidden state vector
 - 3. zt : image feature vector

2. Attention Mechanism

$$score(\boldsymbol{h}_{t}, \bar{\boldsymbol{h}}_{s}) = \begin{cases} \boldsymbol{h}_{t}^{\top} \bar{\boldsymbol{h}}_{s} & dot \\ \boldsymbol{h}_{t}^{\top} \boldsymbol{W}_{a} \bar{\boldsymbol{h}}_{s} & general \\ \boldsymbol{v}_{a}^{\top} \tanh \left(\boldsymbol{W}_{a} [\boldsymbol{h}_{t}; \bar{\boldsymbol{h}}_{s}]\right) & concat \end{cases}$$

- 1. Dot (내적): caption의 어느 부분이 이미지의 어느 위치 벡터와 가장 유사한지 파악
- 2. General: 두 벡터 사이의 연관도를 나타냄
- 3. Concat: 두 벡터를 concat한 후 학습

3. Stochastic Hard Attention

$$p(s_{t,i}=1 \mid s_{j< t}, \mathbf{a}) = \alpha_{t,i} \longrightarrow \text{timestep take St.} = 12 \text{ the St.} : multinoulli dist.}$$
 $\hat{\mathbf{z}}_t = \sum_i s_{t,i} \mathbf{a}_i.$ All $\mathbf{z}_t \in \mathbb{R}$. V (Random Variable) $\hat{\mathbf{z}}_t \approx \mathbf{z}_t$

$$S_{\epsilon} = \begin{bmatrix} 0,0,0,1,\cdots,0,\cdots,0 \end{bmatrix}$$

$$\frac{3b1 L}{}$$

Why stochastic?

• 모든 s에 대해 계산을 하려면 즉, 모든 위치 i에 대해 모든 경우의 수를 다 계산하기는 어려움

• 따라서 mini batch와 비슷한 개념으로 sampling하여 gradient를 계사

4. Deterministic Soft Attention

$$\mathbb{E}_{p(s_t|a)}[\hat{\mathbf{z}}_t] = \sum_{i=1}^{L} \alpha_{t,i} \mathbf{a}_i$$

하나만 고르지 않고, 어느 것을 얼만큼 사용할 것인지 비율에 맞게 가져다 사용. sampling하지 않아도 되고, end-to-end로 학습이 가능

4. 결론

		BLEU				
Dataset	Model	BLEU-1	BLEU-2	BLEU-3	BLEU-4	METEOR
Flickr8k	Google NIC(Vinyals et al., 2014) ^{† Σ}	63	41	27	_	_
	Log Bilinear (Kiros et al., 2014a)°	65.6	42.4	27.7	17.7	17.31
	Soft-Attention	67	44.8	29.9	19.5	18.93
	Hard-Attention	67	45.7	31.4	21.3	20.30
Flickr30k	Google NIC $^{\dagger \circ \Sigma}$	66.3	42.3	27.7	18.3	_
	Log Bilinear	60.0	38	25.4	17.1	16.88
	Soft-Attention	66.7	43.4	28.8	19.1	18.49
	Hard-Attention	66.9	43.9	29.6	19.9	18.46
COCO	CMU/MS Research (Chen & Zitnick, 2014) ^a	_	_	_	122	20.41
	MS Research (Fang et al., 2014) ^{†a}	_	_	_	_	20.71
	BRNN (Karpathy & Li, 2014)°	64.2	45.1	30.4	20.3	_
	Google NIC $^{\dagger \circ \Sigma}$	66.6	46.1	32.9	24.6	_
	Log Bilinear [◦]	70.8	48.9	34.4	24.3	20.03
	Soft-Attention	70.7	49.2	34.4	24.3	23.90
	Hard-Attention	71.8	50.4	35.7	25.0	23.04

- BLEU score: N-gram 단위로 정답 caption과의 유사도를 측정
- Flickr dataset 및 COCO dataset 모두에서 **attention을 적용한 모델의** 성능(BLEU score)이 더 높음