

planetmath.org

Math for the people, by the people.

isogonal trajectory

Canonical name IsogonalTrajectory
Date of creation 2013-03-22 18:59:20
Last modified on 2013-03-22 18:59:20

Owner pahio (2872) Last modified by pahio (2872)

Numerical id 7

Author pahio (2872)
Entry type Derivation
Classification msc 51N20
Classification msc 34A26
Classification msc 34A09

Related topic AngleBetweenTwoCurves

Related topic OrthogonalCurves

Related topic ExampleOfIsogonalTrajectory

 ${\it Related topic} \qquad {\it Angle Between Two Lines}$

Defines isogonal trajectory

Let a one-parametric family of plane curves γ have the differential equation

$$F(x, y, \frac{dy}{dx}) = 0. (1)$$

We want to determine the *isogonal trajectories* of this family, i.e. the curves ι intersecting all members of the family under a given angle, which is denoted by ω . For this purpose, we denote the slope angle of any curve γ at such an intersection point by α and the slope angle of ι at the same point by β . Then

$$\beta - \alpha = \omega$$
 (or alternatively $-\omega$),

and accordingly

$$\frac{dy}{dx} = \tan \alpha = \frac{\tan \beta - \tan \omega}{1 + \tan \beta \tan \omega} = \frac{y' - \tan \omega}{1 + y' \tan \omega},$$

where y' means the slope of ι . Thus the equation

$$F(x, y, \frac{y' - \tan \omega}{1 + y' \tan \omega}) = 0 \tag{2}$$

is satisfied by the derivative y' of the ordinate of ι . In other, (2) is the differential equation of all isogonal trajectories of the given family of curves.

Note. In the special case $\omega = \frac{\pi}{2}$, it's a question of orthogonal trajectories.