COMP3271 Computer Graphics

Curves & Surfaces (I)

2019-20

Objectives

Different representations for curves and surfaces

Design criteria

Parametric curves & surfaces

Interpolation

Escaping Flatland

Until now we have worked with flat entities such as lines and flat polygons

- Fit well with graphics hardware
- Mathematically simple

But the world is not composed of flat entities

- Need curves and curved surfaces
- Implementation can render them approximately with flat primitives

Modeling with Curves

What Makes a Good Representation?

There are many ways to represent curves and surfaces

Some design criteria

- Local control of shape
- Stability
- Smoothness and continuity (in terms of derivatives)
- Ability to evaluate derivatives
- Ease of evaluation
- Ease of rendering
- Must we interpolate or can we just come close to data?

Explicit Representation

Most familiar form of curve in 2D

$$y = f(x)$$

Express a variable in terms of other variables

Cannot represent all curves

- Vertical lines
- Circles

Extension to 3D

- y = f(x), z = g(x)
- The form z = f(x,y) defines a surface

Cannot represent a sphere in the form of z = f(x, y). Why?

Implicit Representation

Two dimensional curve(s)

$$g(x, y) = 0$$

Represents the membership of points on curve

Much more robust

- All lines ax + by + c = 0
- Circles $x^2 + y^2 r^2 = 0$

Not unique

• $(x^2 + y^2 - r^2)^2 = 0$ and $\sqrt{x^2 + y^2} - 1 = 0$ represent the same circle as $x^2 + y^2 - r^2 = 0$.

In general, no analytic way to solve for points that satisfy the equation

Implicit Representation

Three dimensions g(x, y, z)=0 defines a surface

• E.g., $g(x, y, z) = x^2 + y^2 + z^2 - 1 = 0$ represents the unit sphere

Question: how to represent the unit circle centered at the origin in the xy-plane implicitly in the xyz-space?

To represent a 3D curve

Intersect two surfaces to get a curve

Parametric Representation

Two dimensional curves:

$$x = x(t), y = y(t), t \in [a, b]$$

Express the *x*,*y* values of each point on the curve explicitly in terms of an independent variable, *t*, i.e., the **parameter**, with a domain [a,b]

Example: Unit circle

$$P(\theta) = (x(\theta), y(\theta)) = (\cos \theta, \sin \theta), \theta \in [0, 2\pi)$$

Easily extended to three dimensional curves:

$$x = x(u), y = y(u), z = z(u), u \in [a, b]$$

Still in one parameter, hence a curve

Parametric Representation

We trace the curve P(t) = (x(t), y(t), z(t)) as t varies. Hence, we can talk of the velocity of P(t):

$$P'(t) = \frac{dP(t)}{dt} = \begin{bmatrix} \frac{dx(t)}{dt} \\ \frac{dy(t)}{dt} \\ \frac{dz(t)}{dt} \end{bmatrix}$$

This gives the tangent direction of the curve.

The speed of P(t) is then |P'(t)|.

Parametric Representation

When the speed of P(t) is constant or nearly constant, the computed points $P(t_i)$ on P(t) are evenly or nearly evenly spaced if the parameters t_i , i=0,1,2,..., are evenly sampled.

Example. The following parametric equation of the unit circle has a constant speed.

$$P(\theta) = (x(\theta), y(\theta)) = (\cos \theta, \sin \theta), \theta \in [0, 2\pi)$$

Parametric Lines

Example. A straight line passing through the point P_0 with the direction vector D_0 can be represented by

$$P(t) = (x(t), y(t)) = P_0 + tD_0, t \in (-\infty, \infty).$$

With $t \in [0,1]$, we get the straight line segment P_0 and P_1

Example. A straight line passing through two distinct points $P_0 = (x_0, y_0)$ and $P_1 = (x_1, y_1)$ is commonly represented by

$$P(t) = (1-t)P_0 + tP_1, t \in (-\infty, \infty).$$

Unit Circle in Parametric Form

$$P(\theta) = (x(\theta), y(\theta)) = (\cos \theta, \sin \theta), \theta \in [0, 2\pi)$$

Since
$$\cos \theta = \frac{1-\tan^2(\theta/2)}{1+\tan^2(\theta/2)}$$
 and $\sin \theta = \frac{2\tan(\theta/2)}{1+\tan^2(\theta/2)}$

Substituting $t = \tan \frac{\theta}{2}$, we have another parametric from for the unit circle:

$$R(t) = \left(\frac{1-t^2}{1+t^2}, \frac{2t}{1+t^2}\right), t \in (-\infty, \infty).$$

 $R(-\infty) = R(\infty)$ and R(-1)

Is this parameterization with constant speed?

Parametric Surfaces

Surfaces require 2 parameters

$$x = x(u, v)$$

$$y = y(u, v)$$

$$z = z(u, v)$$

$$p(u, v) = [x(u, v), y(u, v), z(u, v)]^{T}$$

the four boundary curves of a patch

Want same properties as curves:

- Smoothness
- Differentiability
- Ease of evaluation

Surface Normals

We can differentiate with respect to u and v to obtain the normal at any point p

$$\frac{\partial \mathbf{p}(u,v)}{\partial u} = \begin{bmatrix} \partial \mathbf{x}(u,v)/\partial u \\ \partial \mathbf{y}(u,v)/\partial u \\ \partial \mathbf{z}(u,v)/\partial u \end{bmatrix} \qquad \frac{\partial \mathbf{p}(u,v)}{\partial v} = \begin{bmatrix} \partial \mathbf{x}(u,v)/\partial v \\ \partial \mathbf{y}(u,v)/\partial v \\ \partial \mathbf{z}(u,v)/\partial v \end{bmatrix}$$

$$\frac{\partial \mathbf{p}(u,v)}{\partial v} = \begin{bmatrix} \partial \mathbf{x}(u,v) / \partial v \\ \partial \mathbf{y}(u,v) / \partial v \\ \partial \mathbf{z}(u,v) / \partial v \end{bmatrix}$$

$$\mathbf{n} = \frac{\partial \mathbf{p}(u, v)}{\partial u} \times \frac{\partial \mathbf{p}(u, v)}{\partial v}$$

Parametric Planes

Point-vector form

$$\mathbf{p}(u, v) = \mathbf{p}_0 + u\mathbf{q} + v\mathbf{r}$$
$$\mathbf{n} = \mathbf{q} \times \mathbf{r}$$

Three-point form

$$\mathbf{q} = \mathbf{p}_1 - \mathbf{p}_0$$
$$\mathbf{r} = \mathbf{p}_2 - \mathbf{p}_0$$

Parametric Spheres

$$x(\theta, \varphi) = r \cos \theta \sin \varphi$$
$$y(\theta, \varphi) = r \sin \theta \sin \varphi$$
$$z(\theta, \varphi) = r \cos \varphi$$
$$0 \le \theta \le 2\pi$$

 $0 \le \varphi \le \pi$

 θ : constant; circles of constant longitude

 φ : constant; circles of constant latitude

Exercise: differentiate to show n = p

Curve Segments

After normalizing u_i , each curve can be written as

$$\mathbf{p}(u) = [x(u), y(u), z(u)]^T, 0 \le u \le 1$$

In classical numerical methods, we design a single global curve

In computer graphics and CAD, it is better to design small connected curve segments

Parametric Polynomial Curves

 $\mathbf{p}(t) = (x(t), y(t), z(t))^T$ is called a polynomial curve if x(t), y(t) and z(t) are polynomial functions of t.

A polynomial curve of degree n is of the form

$$\mathbf{p}(t) = \sum_{k=0}^{n} \mathbf{c}_k t^k \text{ where } \mathbf{c}_k = \begin{pmatrix} c_{xk} \\ c_{yk} \\ c_{zk} \end{pmatrix}.$$

also a polynomial curve of order n+1

Hence,

$$x(t) = \sum_{k=0}^{n} c_{xk} t^{k}, y(t) = \sum_{k=0}^{n} c_{yk} t^{k}, z(t) = \sum_{k=0}^{n} c_{zk} t^{k}$$
$$t \in [0,1].$$

We need to determine 3(n+1) coefficients Equivalently we need 3(n+1) independent conditions

Why Polynomials

Easy to evaluate – need only +, -, \times , \div (e.g., no sin/cos)

Continuous and differentiable everywhere

 Still need to worry about continuity at join points including continuity of derivatives

Cubic Parametric Polynomials

We mostly use cubic curves which gives balance between ease of evaluation and flexibility in design

$$\mathbf{p}(t) = \sum_{k=0}^{3} \mathbf{c}_k t^k$$

Four coefficients to determine for each of x, y and z

Seek four independent conditions for various values of t resulting in 4 equations in 4 unknowns for each of x, y and z

 Conditions are a mixture of continuity requirements at the join points and conditions for fitting the data

Representation in Matrix-Vector Form

$$\mathbf{p}(u) = \sum_{k=0}^{3} \mathbf{c}_{k} u^{k} = \mathbf{c}_{0} + \mathbf{c}_{1} u + \mathbf{c}_{2} u^{2} + \mathbf{c}_{3} u^{3}$$

$$= \mathbf{u}^{T} \mathbf{c} = \mathbf{c}^{T} \mathbf{u}$$

where

$$\mathbf{c} = \begin{pmatrix} \mathbf{c}_0 \\ \mathbf{c}_1 \\ \mathbf{c}_2 \\ \mathbf{c}_3 \end{pmatrix}, \quad \mathbf{u} = \begin{pmatrix} 1 \\ u \\ u^2 \\ u^3 \end{pmatrix}, \quad \mathbf{c}_k = \begin{pmatrix} c_{kx} \\ c_{ky} \\ c_{kz} \end{pmatrix}$$

Interpolating Curve

Given four data (control) points \mathbf{p}_0 , \mathbf{p}_1 , \mathbf{p}_2 , \mathbf{p}_3 determine cubic $\mathbf{p}(u)$ which passes through them

Need to find \mathbf{c}_0 , \mathbf{c}_1 , \mathbf{c}_2 , \mathbf{c}_3

Interpolation Equations

$$\mathbf{p}(u) = \sum_{k=0}^{3} \mathbf{c}_{k} u^{k} = \mathbf{c}_{0} + \mathbf{c}_{1} u + \mathbf{c}_{2} u^{2} + \mathbf{c}_{3} u^{3}$$

$$\mathbf{p}_{0} = \mathbf{p}(0)$$

$$\mathbf{p}_{0} = \mathbf{p}(0)$$

$$\mathbf{p}_{2} = \mathbf{p}(2/3)$$

apply the interpolating conditions at u = 0, 1/3, 2/3, 1

$$\mathbf{p}_{0} = \mathbf{p}(0) = \mathbf{c}_{0}$$

$$\mathbf{p}_{1} = \mathbf{p}(1/3) = \mathbf{c}_{0} + (1/3)\mathbf{c}_{1} + (1/3)^{2}\mathbf{c}_{2} + (1/3)^{3}\mathbf{c}_{2}$$

$$\mathbf{p}_{2} = \mathbf{p}(2/3) = \mathbf{c}_{0} + (2/3)\mathbf{c}_{1} + (2/3)^{2}\mathbf{c}_{2} + (2/3)^{3}\mathbf{c}_{2}$$

$$\mathbf{p}_{3} = \mathbf{p}(1) = \mathbf{c}_{0} + \mathbf{c}_{1} + \mathbf{c}_{2} + \mathbf{c}_{2}$$

or in matrix form

$$\mathbf{p} = (\mathbf{p}_0, \mathbf{p}_1, \mathbf{p}_2, \mathbf{p}_3)^T = \mathbf{Ac}, \qquad \mathbf{A} = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 1 & (\frac{1}{3}) & (\frac{1}{3})^2 & (\frac{1}{3})^3 \\ 1 & (\frac{2}{3}) & (\frac{2}{3})^2 & (\frac{2}{3})^3 \\ 1 & 1 & 1 & 1 \end{pmatrix}$$

Interpolation Matrix

$$\mathbf{p} = \mathbf{Ac}, \qquad \mathbf{A} = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 1 & (\frac{1}{3}) & (\frac{1}{3})^2 & (\frac{1}{3})^3 \\ 1 & (\frac{2}{3}) & (\frac{2}{3})^2 & (\frac{2}{3})^3 \\ 1 & 1 & 1 & 1 \end{pmatrix}$$

Let $\mathbf{M}_I = \mathbf{A}^{-1}$ and solving for \mathbf{c}_i

$$\mathbf{c} = \mathbf{M}_I \mathbf{p}, \qquad \mathbf{M}_I = \begin{pmatrix} 1 & 0 & 0 & 0 \\ -5.5 & 9 & -4.5 & 1 \\ 9 & 22.5 & 18 & -4.5 \\ -4.5 & 13.5 & -13.5 & 4.5 \end{pmatrix}$$

Note that M_I does not depend on input data and can be used for each segment in x, y, and z

Interpolating Multiple Segments

Get continuity at join points but not continuity of derivatives

Blending Functions

Rewriting the equation for p(u)

$$\mathbf{p}(u) = \mathbf{u}^T \mathbf{c} = \mathbf{u}^T \mathbf{M}_I \mathbf{p} = \mathbf{b}(u)^T \mathbf{p}$$

where $\mathbf{b}(u) = [b_0(u) \ b_1(u) \ b_2(u) \ b_3(u)]^T$ is an array of blending polynomials such that

$$\mathbf{p}(u) = b_0(u)\mathbf{p}_0 + b_1(u)\mathbf{p}_1 + b_2(u)\mathbf{p}_2 + b_3(u)\mathbf{p}_3$$

$$b_0(u) = -4.5(u - \frac{1}{3})(u - \frac{2}{3})(u - 1)$$

$$b_1(u) = 13.5u (u - \frac{2}{3})(u - 1)$$

$$b_2(u) = -13.5u (u - \frac{1}{3})(u - 1)$$

$$b_3(u) = 4.5u (u - \frac{1}{3})(u - \frac{2}{3})$$

Blending Functions

These functions are not smooth

• Hence the interpolation polynomial is not smooth

Cubic Polynomial Surfaces

A degree $m \times n$ parametric polynomial surface is defined as

$$\mathbf{p}(u,v) = \begin{pmatrix} x(u,v) \\ y(u,v) \\ z(u,v) \end{pmatrix} = \sum_{i=0}^{n} \sum_{j=0}^{n} \mathbf{c}_{ij} u^{i} v^{j}, \qquad (u,v) \in [0,1]^{2}$$

More specifically, a cubic polynomial surface is given by

$$\mathbf{p}(u,v) = \sum_{i=0}^{3} \sum_{j=0}^{3} \mathbf{c}_{ij} u^{i} v^{j}, \qquad (u,v) \in [0,1]^{2}.$$

Need 48 coefficients ($4 \times 4 \times 3$) to determine a surface patch

Interpolating Patch

$$\mathbf{p}(u,v) = \sum_{i=0}^{3} \sum_{j=0}^{3} \mathbf{c}_{ij} u^{i} v^{j}$$

a bicubic surface

Define $\mathbf{u} = [1 \ u \ u^2 \ u^3]^T$, $\mathbf{v} = [1 \ v \ v^2 \ v^3]^T$, $\mathbf{c} = [\mathbf{c}_{ij}]$

4x4 matrix, each element is a 3-vector

We may write

$$\mathbf{p}(u,v) = \sum_{i=0}^{3} \sum_{j=0}^{3} \mathbf{c}_{ij} u^{i} v^{j} = \mathbf{u}^{T} \mathbf{C} \mathbf{v}$$

Interpolating Patch in Matrix Form

$$\mathbf{p}(u,v) = \sum_{i=0}^{3} \sum_{j=0}^{3} \mathbf{c}_{ij} u^{i} v^{j} = \mathbf{u}^{T} \mathbf{C} \mathbf{v}$$

Need 16 conditions to determine the 16 coefficients \mathbf{c}_{ij}

Consider u = v = 0, and we have

$$\mathbf{p}_{00} = \begin{bmatrix} 1 & 0 & 0 & 0 \end{bmatrix} \mathbf{C} \begin{bmatrix} 1 \\ 0 \\ 0 \\ 0 \end{bmatrix} = \mathbf{c}_{00}$$

Choose $u, v = 0, \frac{1}{3}, \frac{2}{3}, 1$ and we have the 16 conditions

a 3-vector

Interpolating Patch in Matrix Form

Instead of writing the 16 equations one by one and solve for C,

let's consider v = 0,

$$\mathbf{p}(u,0) = \sum_{i=0}^{3} \mathbf{c}_{i0} u^{i} = \mathbf{u}^{T} \mathbf{C} \begin{bmatrix} 1\\0\\0\\0\\0 \end{bmatrix} = \mathbf{u}^{T} \mathbf{M}_{I} \begin{bmatrix} \mathbf{p}_{00}\\\mathbf{p}_{10}\\\mathbf{p}_{20}\\\mathbf{p}_{30} \end{bmatrix}$$
A cubic curve interpolating \mathbf{p}_{00i} \mathbf{p}_{10i} \mathbf{p}_{20i} \mathbf{p}_{30}

Doing the same for $v = \frac{1}{3}, \frac{2}{3}$, 1, and we have 3 more equations similar to the above. Hence we have

$$\mathbf{u}^T \mathbf{C} \mathbf{A}^T = \mathbf{u}^T \mathbf{M}_I \mathbf{P}$$
 where $\mathbf{P} = [\mathbf{p}_{ij}]$ and therefore $\mathbf{C} = \mathbf{M}_I \mathbf{P} \mathbf{M}_I^T$

$$\mathbf{M}_I = \mathbf{A}^{-1}$$

The bicubic surface is given by $\mathbf{p}(u, v) = \mathbf{u}^T \mathbf{M}_I \mathbf{P} \mathbf{M}_I^T \mathbf{v}$

Blending Patches

We can build and analyze surfaces from our knowledge of curves

$$\mathbf{p}(u,v) = \mathbf{u}^T \mathbf{M}_I \mathbf{P} \mathbf{M}_I^T \mathbf{v}$$

Note that $\mathbf{M}_I \mathbf{u}^T$ are the blending functions

$$\mathbf{b}(u) = [b_0(u) \ b_1(u) \ b_2(u) \ b_3(u)]^T$$

Hence we may rewrite the surface equation as

$$\sum_{i=0}^{3} \sum_{j=0}^{3} b_i(u)b_j(u)\mathbf{p}_{ij}$$

Each $b_i(u)$ $b_j(v)$ describes a blending patch