2. 差 (Difference)

- R和S
 - 具有相同的目*n*
 - 相应的属性取自同一个域

- R S
 - 仍为n目关系,由属于R而不属于S的所有元组组成

$$R - S = \{ t | t \in R \land t \notin S \}$$

R

Α	В	С
3	6	7
2	5	7
7	2	3
4	4	3

差运算

S

А	В	С
3	4	5
7	2	3

R-S

Α	В	С
3	6	7
2	5	7
4	4	3

S-R

Α	В	C
3	4	5

3. 交 (Intersection)

- R和S
 - 具有相同的目n
 - 相应的属性取自同一个域

- R∩S
 - 仍为n目关系,由既属于R又属于S的元组组成

$$R \cap S = \{ t | t \in R \land t \in S \}$$

 $R \cap S = R - (R - S)$

交运算

R

А	В	С
3	6	7
2	5	7
7	2	3
4	4	3

S

Α	В	С
3	4	5
7	2	3

 $R \cap S$

Α	В	С
7	2	3

表示记号

- $\widehat{t_r} \, \widehat{t_s}$
 - R为n目关系, S为m目关系
 - $-t_r \in R$, $t_s \in S$, $t_r t_s$ 称为元组的连接。它是一个n+m列的元组,前n个分量为R中的一个n元组,后m个分量为S中的一个m元组

(n+m)元组t_rt_s

n元组tr

m元组ts

4. 笛卡尔积(Cartesian Product)

- 严格地讲应该是广义的笛卡尔积(Extended Cartesian Product)
- R: *n*目关系,*k*₁个元组
- S: *m*目关系,*k*₂个元组
- R×S
 - -列: (n+m)列元组的集合
 - 元组的前n列是关系R的一个元组
 - 后*m*列是关系**S**的一个元组
 - 行: $k_1 \times k_2$ 个元组
 - $R \times S = \{t_r \ t_s \ | t_r \in R \land t_s \in S \}$

笛卡尔积(续)

R		
A	В	С
a_1	b_1	c_1
a_1	b_2	c_2
a_2	b_2	c_1
S		
A	В	С
a_1	b_2	c_2
a_1 a_1	b_2 b_3	$egin{array}{c} c_2 \\ c_2 \end{array}$

RXS					
R.A	R.B	R.C	S.A	S.B	S.C
a_1	b_1	c_1	a_1	b_2	c_2
a_1	b_1	c_1	a_1	b_3	c_2
a_1	b_1	c_1	a_2	b_2	c_1
a_1	b_2	c_2	a_1	b_2	c_2
a_1	b_2	c_2	a_1	b_3	c_2
a_1	b_2	c_2	a_2	b_2	c_1
a_2	b_2	c_1	a_1	b_2	c_2
a_2	b_2	c_1	a_1	b_3	c_2
a_2	b_2	C,	a ₂	<i>b</i> 2	C ₁

rxs:

Α	В	С	D	Ε	
α	1	α	10	a -	
α	1	β	19	a -	
α	1	β	20	b-	
α	1	γ	10	b-	
β	2	α	10	a	
β	2	β	10	a/	
β	2	β	20	b	
β	2	γ	10	b	

2.4 关系代数

- 概述
- 传统的集合运算
- 专门的关系运算

专门的关系运算(续)

- 选择
- 投影
- 连接
- 除

▶图为学生-课程数据库中的student关系、Course关系、SC关系

SC:

Sno	Cno	Grade
200215121	1	92
200215121	2	85
200215121	3	88
200215122	2	90
200215122	3	80

Course:

	Cno	Cname	Cpno	Ccredit
•	1	数据库	5	4
	2	数学		2
	3	信息系统	1	4
	4	操作系统	6	3
	5	数据结构	7	4
	6	数据处理		2
	7	PASCAL语言	6	4

Student:

Sno	Sname	Ssex	Sage	Sdept			
200215121	李勇	男	20	CS			
200215122	刘晨	女	19	IS			
200215123	王敏	女	18	MA			
200215125	张立	男	19	IS			

1.选择(Selection)

• 问题: 如何查询信息系(IS)的全体学生信息

选择满足条件: Sdept='IS'的元组

学号	姓名	性别	年龄	所在系
Sno	Sname	Ssex	Sage	Sdept
200215121	李勇	男	20	CS
200215122	刘晨	女	19	IS
200215123	王敏	女	18	MA
200215125	张立	男	19	IS

选择(续)

- 选择又称为限制(Restriction)
- 选择运算符的含义
 - 在关系/产地择满足给定条件的诸元组

$$\sigma_{F}(R) = \{t \mid t \in R \land F(t) = "\mathfrak{A}"\}$$

-F: 选择条件,是一个逻辑表达式,基本形式为:

$$X_1 \theta Y_1$$

比较运算符,如>,≥,</br>
< ,≤, =,<>

选择(续)

• 选择运算是从关系 *R*中选取使逻辑表达式 *F*为真的 元组

-----是从行的角度进行的运算

44	8
沅	
200	

学号	姓名	性别	年龄	所在系
Sno	Sname	Ssex	Sage	Sdept
200215121	李勇	男	20	CS
200215122	刘晨	女	19	IS
200215123	王敏	女	18	MA
200215125	张立	男	19	IS

• [例1] 查询信息系

$$\sigma_{\text{Sdept=}}$$
 , $_{\text{IS}}$ (Studen

或
$$\sigma_{5 = 1S}$$
 (Student)

□结果:

属性名可以用属 性序号代替

Sno	Sname	Ssex	Sage	Sdept
95002	刘晨	女	19	IS
95004	张立	男	19	IS
				M

	学号	姓名	性别	年龄	所在系	
	Sno	Sname	Ssex	Sage	Sdept	
Z	200215121	李勇	男	20	CS	
• [例2]查询年龄小-	200215122	刘晨	女	19	IS	
	200215123	王敏	女	18	MA	
$\sigma_{Sage < 20}(Stud)$		张立	男	19	IS	
或 σ _{4<20} (Student)						

□结果:

	Sdept	Sage	Ssex	Sname	Sno
	IS	19	女	刘晨	95002
V	MA	18	女	王敏	95003
	IS	19	男	张立	95004
			<u>I</u>	<u>I</u>	

		-				
		学号	姓名	性别	年龄	所在系
		Sno	Sname	Ssex	Sage	Sdept
	Ž	200215121	李勇	男	20	CS
• [例]	[例]查询年龄小于	200215122	刘晨	女	19	IS
	[] TE MI BK 1 1	200215123	王敏	女	18	MA
	σ _{Sage} <20∧Ssex='女'	200215125	张立	男	19	IS

或 $\sigma_{4<20\wedge3='$ 女' (Student)

□结果:

Sno	Sname	Ssex	Sage	Sdept
95002	刘晨	女	19	IS
95003	王敏	女	18	MA

----选择是在关系R中选择满足给定条件的诸元组

2. 投影 (Projection)

• 问题: 如何查询全部学生的姓名及其所在系信息

显示学生关系中的姓名和系属性列

学号	姓名	性別 年龄		所在系
Sno	Sname	Ssex Sage		Sdept
200215121	李勇	男	20	CS
200215122	刘晨	女	19	IS
200215123	王敏	女	18	MA
200215125	张立	男	19	IS

投影(续)

· 投影运算符的含义: 从 P中选择出若干属性列组成新的关系

$$\pi_A(R) = \{ t[A] \mid t \in R \}$$
 ----其中A为R中的属性列

• 投影操作主要是从列的角度进行运算

■但投影之后可能取消某 些元组(避免重复行)

投影(续)

「例3]查询学生的姓名和所在系

即求Student关系上Sname和Sdept两个属性上的投影

年龄

Sage

20

19

18

19

属性名 可以用 属性序 号代替

学号

Sno

200215121

200215122

200215123

200215125

π_{Sname}, Sdept (Student)

性别

Ssex

男

女

女

男

或π_{2.5} (Student)

姓名

Sname

李勇

刘晨

王敏

张立

□结果:

Sname

-	李勇	CS
所在系 Sdept	刘晨	IS
CS IS	王敏	MA
MA IS	张立	IS

Sdept

		学号	姓名	性别	年龄	所在系
	_	Sno	Sname	Ssex	Sage	Sdept
	3	200215121	李勇	男	20	CS
。 「脚川太海兴州光	200215122	刘晨	女	19	IS	
	• [例4] 查询学生关	200215123	王敏	女	18	MA
	π _{Sdept} (Studei	200215125	张立	男	19	IS

□结果:

Sdept

CS

IS

MA

投影之后取消了原 关系中的某些元组 (避免重复行)

▶图为学生-课程数据库中的student关系、Course关系、SC关系

SC:

Sno	Cno	Grade
200215121	1	92
200215121	2	85
200215121	3	88
200215122	2	90
200215122	3	80

Course:

	Cno	Cname	Cpno	Ccredit
•	1	数据库	5	4
	2	数学		2
	3	信息系统	1	4
	4	操作系统	6	3
	5	数据结构	7	4
	6	数据处理		2
	7	PASCAL语言	6	4

Student:

Sno	Sname	Ssex	Sage	Sdept
200215121	李勇	男	20	CS
200215122	刘晨	女	19	IS
200215123	王敏	女	18	MA
200215125	张立	男	19	IS

选择投影运算复合使用示例

复合运用投影、选择、笛卡尔积运算,可以从任意n张表中截取满足条件的子表例
 查询选修了2号课程的学生的学号。

 π_{Sno} ($\sigma_{Cno='2'}$ (SC)) = { 200215121, 200215122} 例 查询选过"数据库"课程学生学号。

 $π_{Sno}(σ_{sc.cno=course.cno ^ Cname= '数据库'} (SC×Course))$

解:需查询的数据要根据"选课"信息以及"课程"

信息来完成,因此,查询涉及SC和COURSE两张表

step1: 先将"选课"与"课程"表合并为一张表

SC×Course, 结果为所有选过任意课程的信息

step2: 再从上一步结果中,对于任意一次选课,所选课程存在sc.cno=course.cno,且选的课程是"数据库"即Cname='数据库'的元组

笛卡尔连接运算存在的问题

 问题示例 观察上例中表达式SC×Course,其结果中包含 所有的选课与所有课程的组合,而实际中,一个学生不可能 选所有课程,这样结果元组中许多是无意义的。上例对 200215121学生只有第一个元组有意义

SNO	CNO	GRADE	CNO	CMANE	CPNO	CREDIT
200215121	1	92	1	数据库	5	4
200215121	1	92	2	数学	null	2
200215121	1	92	3	信息系统	1	4
200215121	1	92	4	操作系统	6	3
200215121	1	92	5	数据结构	7	4
200215121	1	92	6	数据处理	null	2
200215121	1	92	7	C 语言	6	4
***	•••	•••	•••	•••	•••	/
200215121	2	92	1	数据库	5	4

连接运算

 问题分析 笛卡尔乘运算为了保证数学上的完整性,将两张 表的'所有'内容合并,若该两张表之间存在关 联关系,则合并后结果中将那些无关联关系的元 组也合并了。

数学上的"完整"在使用中不便, 甚至造成"信息丢失"

- 问题解决 1) 通过在σ_P运算中确定适当的P,去除那些无关 联的元组。如 sc.cno=course.cno
 - 2) 定义扩展的笛卡尔乘运算,在合并时去除无 关联元组

- · 连接也称为 θ 连接
- 连接运算的含义
 - 从两个关系的笛卡尔积中选取属性间满足一定条件 的元组

$$R \bowtie_{A \Theta B} S = \{ \hat{t_r t_s} t_r \in R \land t_s \in S \land t_r [A] \theta t_s [B] \}$$

- ◆A和B:分别为R和S上度数相等且可比的属性组
- ◆ θ: 比较运算符

- 连接运算从*R*和*S*的广义笛卡尔积*R*×*S*中选取(*R*关系)在 *A*属性组上的值与(*S*关系)在*B*属性组上值满足比较关系 θ 的元组

$$R \bowtie_{A \Theta B} S = \{ \widehat{t_{\mathbf{r}}} \widehat{t_{\mathbf{s}}} \mid t_{\mathbf{r}} \in R \land t_{\mathbf{s}} \in S \land t_{\mathbf{r}}[A] \ \theta \ t_{\mathbf{s}}[B] \}$$

■连接后,结果关系的关系模式由R和S的所有属性组成,R的属性在前,S的属性在后

• [例]计算 SC Course

SC. Cno<Course. Cno

关系SC

Sno	Cno	Grade
001	1	92
001	3	88
002	2	90
003	6	80

关系Course

Cno	Cname	Cpno	Ccredit
1	操作系统	6	3
3	数据结构	7	ig 4
6	数据处理		2

----从SC×Course中选取SC关系中课程号小于Course关

系中课程号值的元组

SC. Cno Course. Cno

• 计算步骤

(1) 计算笛卡尔积SC×Course, 结果为

Sno	SC. Cno	Grade	Course.Cno	Cname	Cpno	Ccredit
001	1	92	1	操作系统	6	3
001	1	92	3	数据结构	7	4
001	1	92	6	数据处理		2
001	3	88	1	操作系统	6	3
001	3	88	3	数据结构	7	4
001	3	88	6	数据处理		2
002	2	90	1	操作系统	6	3
002	2	90	3	数据结构	7	4
002	2	90	6	数据处理		2
003	6	80	1	操作系统	6	3 /
003	6	80	3	数据结构	7	4
003	6	80	6	数据处理		2

连接(续) SC. Cno Course. Cno

(2)从SC×Course中选择满足SC. Cno<Course. Cno的元组

Sno	SC. Cno	Grade	Course. Cno	Cname	Cpno	Ccredit
001	1	92	1	操作系统	6	3
001	1	92	3	数据结构	7	4
001	1	92	6	数据处理		2
001	6	88	1	操作系统	6	3
001	3	88	3	数据结构	7	4
001	3	88	6	数据处理		2
002	2	90	1	操作系统	6	3
002	2	90	3	数据结构	7	4
002	2	90	6	数据处理		2
003	6	80	1	操作系统	6	3
003	6	80	3	数据结构	7	4
003	6	80	6	数据处理		2

$\underset{\mathsf{SC.\,Cno}<\mathsf{Course}.\,\mathsf{Cno}}{\mathsf{Course}}$

(3) 结果为

对关系SC和Course进行连接的结果

Sno	SC. Cno	Grade	Course.Cno	Cname	Cpno	Ccredit
001	1	92	3	数据结构	7	4
001	1	92	6	数据处理		2
001	3	88	6	数据处理		2
002	2	90	3	数据结构	7	4
002	2	90	6	数据处理		2

连接(续)----例

计算 R k S

.

 $R \bowtie_{1 \geq 1} S$

В	D	В	С	D
5	8	3	5	8
4	1	4	4	1
5	8	4	1	8
Δ	g G	6	4	1
	5 4 5 4	5 8 4 1 5 8	$egin{array}{c ccccccccccccccccccccccccccccccccccc$	5 8 4 1 5 8 4 1 6 4

A	R. B	R. D	S. B	С	S. D
5	4	1	3	5	8
5	4	1	4	4	1
5	4	1	4	1	8
4	5	8	3	5	8

- ❖ 注意连接运算的执行情况!!
- ❖ 满足条件的元组 ----匹配的元组(保留)
- ❖ 不满足条件的元组 ---- 不匹配的元组(舍去)

- 常用的两类连接运算
 - 等值连接(equijoin)
 - 自然连接(Natural join)

连接(续)---等值连接

- 等值连接
 - θ为"="的连接运算
 - 含义: 从关系*R*与*S*的广义笛卡尔积中选取*A、B*属性值相等的那些元组

$$R_{\bowtie} S = \{ \widehat{t_{\mathbf{r}} t_{\mathbf{s}}} | t_{\mathbf{r}} \in R \land t_{\mathbf{s}} \in S \land \underline{t_{\mathbf{r}} [A] = t_{\mathbf{s}} [B]} \}$$

等值连接(续)--例

计算 R ≥ S

R

S

 $R \bowtie_{1=1} S$

A	В	D	В	С	D
	5	8	3	5	8
7	4	1	4	4	1
4	5	8	4	1	8
3	4	9	6	4	1
	I				

A	R. B	R. D	S. B	С	S. D
4	5	8	4	4	1
4	5	8	4	1	8
3	4	9	3	5	8

- 1. $R \times S$
- 2. $\sigma_{R. A=S. B}(R \times S)$

连接(续)----自然连接

- ❖自然连接: 一种特殊的等值连接
 - ■两个关系中进行比较的分量须是相同的属性组
 - ■在结果中把重复的属性列去掉
- ightharpoonup含义: R和S具有相同的属性组B $R \bowtie S = \{ \widehat{t_r}\widehat{t_s} \mid t_r \in R \land t_s \in S \land t_r[B] = t_s[B] \}$

• 一般的连接操作是从行的角度进行运算

❖自然连接还需要取消重复列,所以是同时从行和列的角度进行运算。

自然连接(续)

- 自然连接运算的步骤
 - 计算笛卡尔积R×S
 - 从R×S中选择那些公共属性A的数值相同 (σ_{R. A=S. A})的 元组
 - 去掉S. A(或R. A),将留下来的R. A(或S. A)改为A,即得 所要的结果

- 自然连接例: 计算SC ⋈ Course
- 步骤:
 - (1) 计算SC×Course

Sno	SC. Cno	Grade	Course. Cno	Cname	Cpno	Ccredit
001	1	92	1	操作系统	6	3
001	1	92	3	数据结构	7	4
001	1	92	6	数据处理		2
001	6	88	1,	操作系统	6	3
001	3	88	3	数据结构	7	4
001	3	88	6	数据处理		2
002	2	90	1	操作系统	6	3
002	2	90	3	数据结构	7	4
002	2	90	6	数据处理		2
003	6	80	1.	操作系统	6	3
003	6	80	3	数据结构	7	4
003	6	80	6	数据处理		2

自然连接例(续)

(2) 选择 $\sigma_{SC. Cno=Course. Cno}$ (SC×Course)

Sno	SC. Cno	Grade	Course. Cno	Cname	Cpno	Ccredit
001	1	92	1	操作系统	6	3
001	3	88	3	数据结构	7	4
003	6	80	6	数据处理		2

自然连接例(续)

(3) 删除重复列SC. Cno,并将留下来的Course. Cno改为Cno, 得到结果

进行SC Course运算的结果

Sno	Grade	Cno	Cname	Cpno	Ccredit
001	92	1	操作系统	6	3
001	88	3	数据结构	7	4
003	80	6	数据处理		2

自然连接与等值连接

- 自然连接的两个关系要求有公共的属性组B,等 值连接则不要求;
- 自然连接中等值的条件一定是公共属性组的值相等(R. B=S. B), 而等值连接不一定;
- 自然连接中等值的条件隐含,不显式地写出来,而等值连接要写出来;
- 自然连接要在结果中去掉重复的一个属性组B, 而等值连接则不。

自然连接运算---例

R和S有公共属性B,D

R

A	B	C	D
α	1	α	a
β	2	γ	a
γ	4	β	b
α	1	γ	a
δ	2	β	b

S

B	D	E
1	a	α
3	a	$ \beta $
1	a	y
2	b	$ \delta $
3	b	ϵ

结果中只有一个B,D

 $R \bowtie S$

	A	B	C	D	E
--	---	---	---	---	---

α	1	α	a	α
α	1	α	a	γ
α	1	γ	a	α
α	1	γ	a	γ
δ	2	β	b	δ

自然连接与笛卡尔积的区别

 1)两者的语义上都有合并两张表的作用 笛卡尔乘是数学意义上的所有可能组合的乘积,而自然 连接则是将两张表中有关联关系的元组合并 例如 SC×Course是所有可能的选课及所有课程信息

2) 自然连接有选择σρ的语义

例如 将两个表SC、Course做自然连接▷ ,可以理解 为在SC中选择那些选过"…课程"的学生

SC™Course则是所有的选课及所选课程的信息

示例 找出选过学分为4的学生号

 $\sigma_{credit=4}(Course)$ //找出学分为4的课程 $SC \bowtie \sigma_{credit=4}(Course)$ //选出选过4分的选课 π_{Sno} ($SC \bowtie \sigma_{credit=4}(Course)$) //选出选过4分的学号

假设 R_1 、 R_2 和 R_3 是三个关系

 $R_{\!\scriptscriptstyle
m l}$

A	В	С
a_1	\mathbf{b}_1	55
a_2	b_2	45
a_4	b_2	35

 R_2

A	В	С
a_1	b_2	55
a_2	b_2	45
a_3	b_1	35
a_4	b_2	35

 R_3

A	D
a_1	101
a_2	101
a_2	102
a_3	102

 $R_1 \bowtie R_2$ $R_1.C < R_2.C$

 $R_1 \bowtie R_2$ $R_1.C=R_2.C$

 $R_1 \bowtie R_3$

