Level-Crossing Analog to Digital Converter LC-ADC

of Technology

Analog to Digital Conversion [1]

Presenter: Ali Qorbani Fard

Supervisor: Dr. Hossein Shamsi

[1] Marcel J.M Pelgrom, "Analog-to Digital Conversion", 4th ed. Stiphout, the Netherlands: Springer, 2021.

TABLE Of Contents

	INTRODUCTION3	➤ Article 212
	OVERVIEW OF ADC ARCHITECTURES / Flash4	Future Works15
>	OVERVIEW OF ADC ARCHITECTURES / SAR5	> REFERENCES16
>	OVERVIEW OF ADC ARCHITECTURES / Pipeline6	
>	Synchronous VS Asynchronous ADC7	
>	Digital to Analog Converter – DAC	
>	Comparator9	
>	Article 1	

INTRODUCTION

Simplified diagram of ADC [2]

Analog to Digital Converter Modified Version of [2]

- ➤ What is ADC?
- Quantization
- > ADC Application
- > ADC & Sensors

^[2] Anthony Troxell, "DESIGN AND LAYOUT OF A FIXED WINDOW 6-BIT LEVEL CROSSING ANALOG-TO-DIGITAL CONVERTER,", M.S thesis, Dept. of Electrical Eng., California State University, Spring 2023.

[3] Ting-Jen Hsueha, Chien-Hua Pengb, Wei-Shou Chenc, "A transparent ZnO nanowire MEMS gas sensor prepared by an ITO micro-heater," Elsevier, October. 2019.

OVERVIEW OF ADC ARCHITECTURES / Flash

Pros:

- ✓ Extremely Fast Conversion
- ✓ Simple Architecture (for Low Bit-Depth)

Cons:

- ☐ Exponential Hardware Need
- ☐ High Power Consumption
- ☐ Large Chip Area
- ☐ Thermal and Process Sensitivity

Flash ADC, modified Version of [1] $V_{in} = 2.3 \text{ V}$

OVERVIEW OF ADC ARCHITECTURES / SAR

Pros:

- ✓ Cost effective
- ✓ smaller area
- ✓ higher resolution is available

Cons:

- ☐ Slower conversion speed
- ☐ Requires DAC

Successive approximation ADC

[4] Gabriele Manganaro, "Advanced Data Converters", 1st ed. Cambridge: Cambridge University press, 2012.

OVERVIEW OF ADC ARCHITECTURES / Pipeline

Pros:

- ✓ Speed—Resolution Trade-off
- ✓ Efficient Hardware
- ✓ Scalable Architecture

Cons:

- ☐ Latency
- ☐ Power Consumption

Pipeline ADC, Modified Version of [1]

SAR ← Pipeline → Flash

Synchronous VS Asynchronous ADC

Synchronous VS Asynchronous ADC [5]

Basic architecture of Level Crossing ADC (Asynchronous) [6]

^[5] Mario Renteria-Pinon, Xiaochen Tang, Jaime Ramirez-Angulo, and WEI TANG, "Fully Digital Second-order Level-crossing Sampling ADC for Data Saving in Sensing Sparse Signals," in "arXiv.", New York, USA, 2023.

^[6] Sreenivasulu polineni, Anil Kumar Gupta, "8-bit Nano Watt Level Crossing ADC for Bio-Medical Application Medical Application" in "IEEE International Conference on Computer, Communication and Control", Kurukshetra, India, 2015.

Digital to Analog Converter - DAC

- •High matching accuracy due to capacitor ratios
- •Common in **SAR ADCs**
- •Fast, low-power
- •Needs precise capacitor layout (unit capacitor arrays)

DAC Block Diagram [7]

Comparator

- \rightarrow Vin,p > Vin,n \rightarrow Vout = VDD
- $ightharpoonup Vin,p < Vin,n \rightarrow Vout = VSS$
- ➤ Parallel NMOS → discharge & speed increase

Article 1/2 [8]

V_{In} Scaler V_P VDDA VDDD Crossing V_M V_H CO1 Control CH Logic CL

Block diagram of the proposed LC-ADC

[8] Yuting Hou, Khalil Yousef, Mohamed Atef, Guoxing Wang, Yong Lian,"A 1-to-1-kHz, 4.2-to-544-nW, Multi-Level Comparator Based Level-Crossing ADC for IoT Applications," IEEE Transactions on Circuits and Systems II: Express Briefs Volume: 65, Issue: 10, October 2018, pp. 1390 - 1394.

Article 1/2 [8]

Block diagram of the proposed LC-ADC

The schematic of self-biased multi-level comparator

TABLE I

The die and layout of proposed LC-ADC (the top layer of the die is full of dummy pattern)

[8] Yuting Hou, Khalil Yousef, Mohamed Atef, Guoxing Wang, Yong Lian,"A 1-to-1-kHz, 4.2-to-544-nW, Multi-Level Comparator Based Level-Crossing ADC for IoT Applications," IEEE Transactions on Circuits and Systems II: Express Briefs (Volume: 65, Issue: 10, October 2018), pp. 1390 - 1394.

Article 2/2 [9]

Block diagram of the proposed LC-ADC

process and generated gain code

UD, output sampling and RESET signals

[9] Yuting Hou, Jiali Qu, Zhenzhen Tian, Mohamed Atef, Khalil Yousef, Yong Lian, "A 61-nW Level-Crossing ADC With Adaptive Sampling for Biomedical Applications," IEEE Transactions on Circuits and Systems II: Express Briefs Volume: 66, Issue: 1, January ,2019, pp. 56 - 60.

Article 2/2 [9]

Accumulator (a) The block diagram of Time to Voltage Converter; (b) Block diagram of Gain Code Generator;

[9] Yuting Hou, Jiali Qu, Zhenzhen Tian, Mohamed Atef, Khalil Yousef, Yong Lian" A 61-nW Level-Crossing ADC With Adaptive Sampling for Biomedical Applications," IEEE Transactions on Circuits and Systems II: Express Briefs Volume: 66, Issue: 1, January ,2019, pp. 56 - 60.

Article 2/2 [9]

The schematic of sampling window comparator

LC-ADC chip micrograph

The measured adaptive sampling method

[9] Yuting Hou, Jiali Qu, Zhenzhen Tian, Mohamed Atef, Khalil Yousef, Yong Lian" A 61-nW Level-Crossing ADC With Adaptive Sampling for Biomedical Applications," IEEE Transactions on Circuits and Systems II: Express Briefs Volume: 66, Issue: 1, January ,2019, pp. 56 - 60.

Future Works

- Design optimized low-power comparators
- Optimize DAC circuit
- System-level validation with real signals
- Investigate ultra-low power techniques

REFERENCES

- [1] Marcel J.M Pelgrom, "Analog-to Digital Conversion", 4th ed. Stiphout, the Netherlands: Springer, 2021.
- [2] Anthony Troxell, "DESIGN AND LAYOUT OF A FIXED WINDOW 6-BIT LEVEL CROSSING ANALOG-TO-DIGITAL CONVERTER,", M.S thesis, Dept. of Electrical Eng., California State University, Spring 2023.
- [3] Ting-Jen Hsueha, Chien-Hua Pengb, Wei-Shou Chenc, "A transparent ZnO nanowire MEMS gas sensor prepared by an ITO micro-heater," Elsevier, October. 2019.
- [4] Gabriele Manganaro, "Advanced Data Converters", 1st ed. Cambridge: Cambridge University press, 2012.
- [5] Mario Renteria-Pinon, Xiaochen Tang, Jaime Ramirez-Angulo, and WEI TANG, "Fully Digital Second-order Level-crossing Sampling ADC for Data Saving in Sensing Sparse Signals," in "arXiv.", New York, USA, 2023.
- [6] Sreenivasulu polineni, Anil Kumar Gupta, "8-bit Nano Watt Level Crossing ADC for Bio-Medical Application Medical Application" in "IEEE International Conference on Computer, Communication and Control", Kurukshetra, India , 2015.

REFERENCES

- [7] Kieren Pa, "SYNCHRONOUS LEVEL CROSSING ADC FOR BIOMEDICAL RECORDING APPLICATIONS," M.S. thesis, Department of Electrical Engineering, University of North Texas, Texas, USA, 2021.
- [8] Yuting Hou, Khalil Yousef, Mohamed Atef, Guoxing Wang, Yong Lian,"A 1-to-1-kHz, 4.2-to-544-nW, Multi-Level Comparator Based Level-Crossing ADC for IoT Applications," IEEE Transactions on Circuits and Systems II: Express Briefs (Volume: 65, Issue: 10, October 2018), pp. 1390 1394.
- [9] Yuting Hou, Jiali Qu, Zhenzhen Tian, Mohamed Atef, Khalil Yousef, Yong Lian" A 61-nW Level-Crossing ADC With Adaptive Sampling for Biomedical Applications," IEEE Transactions on Circuits and Systems II: Express Briefs Volume: 66, Issue: 1, January ,2019, pp. 56 60.

Thank You For Your Attention