PATENT ABSTRACTS OF JAPAN

(11)Publication number:

09-213995

(43) Date of publication of application: 15.08.1997

(51)Int.Cl.

H01L 33/00 GO1R 19/165 GO1R 31/36 HO1L 21/20 H01L 29/74 H01L 31/111

(21)Application number: 08-013709

(71)Applicant:

MATSUSHITA ELECTRON CORP

(22)Date of filing:

30.01.1996

(72)Inventor:

INOUE TOMIO

SOGAWA MITSUOMI

(54) LIGHT EMITTING THYRISTOR ELEMENT, LIGHT EMITTING DEVICE AND CELL MONITOR

PROBLEM TO BE SOLVED: To realize a high-practicability light emitting thyristor having a switching characteristic and visible light emission

characteristic.

SOLUTION: On a GaP compd. n-type semiconductor single crystal substrate 1 an n-type emitter layer NE 2, p-type base layer PB 3, n-type base layer NB 4 and p-type emitter layer PE 5 are formed to form a pnpn structure. The layer 3 is 3 microns thick or less, and its p-type carrier concn. is set to a range from 4 × 1016cm-3 to 3 × 1017cm-3. The boundaries between the layers 2 and 3 and betwe in the layers 3 and 4 have neither spike-like protrusion nor recess but are made flat to obtain a good switching characteristic. N atoms to be emission centers are doped near junctions J1 and J3 and n-type carrier concn. at the layers 2 and 4 near these p-n junctions is reduced to the order of 1016cm-3, thereby enhancing the brightness of the yellow green.

LEGAL STATUS

[Dat of request for examination]

[Dat of sending the examiner's decision of rejection] [Kind of final disposal of application other than the examiner's decision of rejection or application converted

registration]

[Dat of final disposal for application]

[Pat nt number]

[Date of registration]

[Number of appeal against examiner's decision of

rejection]

[Date of requesting appeal against examiner's decision of

rej ction]

[Dat of extinction of right]

Copyright (C): 1998,2000 Japanese Patent Office

(19)日本国特許庁 (JP)

(12) 公開特許公報(A)

(11)特許出顧公開番号

特開平9-213995

(43)公開日 平成9年(1997)8月15日

(51) Int.Cl. c		識別記号	庁内整理番号	FΙ							技術表示箇所
H01L	33/00			H01	L	33/00				В	
G01R	19/165			G 0 1	R	19/165				M	
	31/36					31/36				E	
H01L	21/20			H 0 1	L	21/20					
	29/74					29/74				F	
			審查請求	未離求	水簡		OL	(全	8	頁)	最終頁に続く
(21)出願番		特顯平8-13709		(71)	出題人	۸ 000005	843				
				ļ		松下電	子工業	株式会	社	•	
(22)出顧日		平成8年(1996)1			大阪府						
				(72) §	老明和	者 井上					
								幸町 1	番	1号	松下電子工業
						株式会					
				(72) 3	色明石						
•						大阪府	高槻市	幸町 1	l 番	1号	松下電子工業
						株式会	社内			-	
				(74) f	C 理)			智之	<u> </u>	(5)	1名)
									_	٠.	

(54) 【発明の名称】 発光サイリスタ素子、発光装置および電池モニター

(57)【要約】

【課題】 スイッチング特性と可視発光特性を兼ね備えた実用性の高い発光サイリスタ素子を実現する。

1 GaP基板

2 NE層

3 PB層

4 NB層

S PE層

【特許請求の範囲】

【請求項1】 化合物半導体機化ガリウム(GaP)の N型単結晶基板上に液相エピタキシャル成長法にてN型エミッタ層(N_B 層)、P型ベース層(P_B 層)、N型ベース層(N_B 層)、およびP型エミッタ層(P_B 層)を順次形成したPNPN構造を有し、電圧駆動のスイッチング特性と可視光の発光特性を兼ね備えたことを特徴とする発光サイリスタ素子。

【請求項2】 スイッチング特性を支配するPN接合 (J_2) において、 P_B 層の膜厚を 3μ m以下、および同 P_B 層のキャリア濃度を 4×10^{16} c m^{-3} 以上、 3×10^{17} c m^{-3} 以下の範囲に設定したことを特徴とする請求項1に記載の発光サイリスタ素子。

【請求項3】 発光輝度特性を支配する2つのPN接合において、N₅層およびN₅層のN型ドーパントをSiとし、アンモニアガスによりアイソエレクトロニックトラップとなるN原子を注入するとともに、前記PN接合近傍のN型層のキャリア濃度を1×10¹⁷cm⁻³以下として黄緑色の輝度を高くしたことを特徴とする請求項1に記載の発光サイリスタ素子。

【請求項4】 請求項1~3のいずれかに記載の発光サイリスタ素子と、この発光サイリスタ素子と発光色の異なる発光ダイオードとを同一コム上の共通端子にダイスボンディングし、前記発光サイリスタ素子と前記発光ダイオード素子の同極性の電極をそれぞれ個別端子にワイヤーボンディングし、樹脂封止して複数色の発光を可能とした発光装置。

【請求項5】 電池に発振トランスとトランジスタ等からなるブロッキングオシレーター回路を接続し、このブロッキングオシレーターの昇圧された交流電圧を駆動電圧として、請求項1~3のいずれかに記載の発光サイリスタ素子または請求項4に記載の発光装置に印加し、電圧値を発光により表示可能とした電池モニター。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、電圧駆動のスイッチング特性と発光表示機能を兼ね備えた機能素子である発光サイリスタ素子とこの素子を用いた応用装置に関するものである。

[0002]

【従来の技術】

(1) スイッチング特性を持つ素子として、Siなどを使用したサイリスタ素子が一般に知られている。また可視光の発光特性を持つ素子としては、GaPなどの化合物半導体を使用した発光ダイオード素子が知られている。しかし、実用化された両特性を合わせ持つ半導体素子はなく、その両特性が必要な回路、たとえば、コンデンサをある電圧まで充電する回路において、目的の電圧に達したときにスイッチオンと同時に発光して、目的の電圧に達したことを知らせる電圧モニター回路には、ネ

オン管などの部品またはスイッチング素子と発光ダイオードを組み合わせた回路などが用いられている。しかし、特性およびコストで充分満足できる物ではなく、両特性を兼ね備えた半導体素子の要望が増してきた。

【0003】(2)また、現在LEDパネルなどに、発光色の異なる2個の発光ダイオード素子のN電極を同一コムの共通端子にダイスボンディングし、正電極をそれぞれ別の端子にワイヤーボンディングし、樹脂封止した2色発光の3端子発光ダイオードランプが用いられている。しかし静特性の大きく異なる発光素子を用いた2色発光の3端子発光ランプは存在していず、たとえば、1つを赤の発光ダイオード素子、もう1つを黄緑の発光サイリスタ素子を用いた2色発光のランプは、電圧により発光色が異なる電圧センサーとして便利なモニターランプとなるが、従来は発光サイリスタ素子がないために、このようなランプは商品化されていない。

【0004】(3)一般にGaP発光素子は、N型Ga P基板を準備し、この上に液相エピタキシャル成長によ り所定導電型のGaPエピタキシャル層を成長させて形 成される。発光サイリスタ素子はPNPN多層構造であ り、これの形成は多種類のメルトを有するスライドボー トを用いることにより可能である。しかしながら、この 方法は、ガリウム (Ga) の消費量が多く不経済である こと、メルト交換を良好に行うためには、N型GaP基 板を縦に配置する必要があり、その場合メルト中の材料 元素の比重の差により、各層の膜厚やキャリア濃度のば らつきが大きくなり、安定したスイッチング特性のもの を高歩留で得ることは、困難であるなどの問題点があ る。また、カーボンボートに含まれる残留アクセプタ不 純物を積極的に利用して、ドナー濃度を残留アクセプタ 濃度以下の低ドナー濃度に設定したメルトを用いて、N 型基板(Ng層)とN型エピタキシャル層(Ng層)との 間にP型反転層(P_B層)を発生させ、この後、アクセ プタ不純物を気相でドーピングし、N型エピタキシャル 層上にP型エピタキシャル層(Pg層)を形成すること により、1回の液相エピタキシャルで、PNPN構造を 形成する方法が報告されている。この方法では、スイッ チング特性に重要なPN接合、すなわちJ,のP。層に残 留アクセプタ不純物を利用するため、キャリア濃度や膜 厚の制御が困難なことや、P。層とN。層の境界面にスパ イク状の凹凸が発生しやすく、安定したスイッチング特 性が得られない。

【0005】また、黄緑色の高輝度発光を得るためには、2つのPN接合、すなわち J_1 と J_3 の近傍、および低キャリア濃度となるN型層側に、発光センターとなる窒素をドーピングする必要があること、および2つのPN接合近傍のN型層のキャリア濃度を低濃度(10^{16} cm $^{-3}$ オーダー)に制御することが必要である。そのために、既に説明した2つのエピタキシャル法では、実現できないという問題がある。

【0006】(4)携帯用の電気製品に、各種の一次電池や二次電池が多く用いられている。電池の劣化の程度を知る方法としては、(A)電池の電流を検知し、励磁コイルでアナログ的な指針メータで表示するものや、

(B)電池の電圧を検知し、D/Aコンバータなどによりデジタル表示するもの、あるいは基準電圧と測定電圧とをコンパレータにより比較し、基準電圧より上あるいは下のとき、発光ダイオードなどを点灯表示するものがある。これらのうち(B)の電池の電圧を検知する方法は、回路部品を駆動するための電源が必要であるから、測定電池が回路部品を駆動するに充分な電圧でない場合は、別電源が必要となる。すなわち、1.5 Vの電池の測定は、別電源が必要である。また(A)の方法は、あくまでも目安であり、正確な電圧設定ができない。

[0007]

【発明が解決しようとする課題】上述したように、これまではGaP化合物半導体を用いた発光サイリスタに関して、以下の点を解決し、商品化したものはない。

【0008】(1)電圧モニター等に適したスイッチング特性と可視光の発光特性を兼ね備えた半導体素子を実現する。

【0009】(2)ダイオード特性とサイリスタ特性のように、静特性の大きく異なる発光素子を用いた2色発光の3端子発光ランプがなく、電圧値により発光色が異なる電圧センサーとして実用的なモニターランプを実現する。

【0010】さらに、上述した特性の素子を実現することで、

(3)電池の電圧を検知し、電池の劣化をモニターする 回路において、一般に1.5Vの乾電池の場合、モニターすべき電池のほかにコンパレータなどの部品および回路を駆動する別電源を不要とし、回路構成を簡単化した 装置を提供する。

[0011]

【課題を解決するための手段】本発明は、上述した課題 を解決するために、以下の手段をとった。

【0012】すなわち、本発明の発光サイリスタ素子では、化合物半導体燐化ガリウム(GaP)のN型単結晶基板上に液相エピタキシャル成長法にてN型エミッタ層(Ng層)、P型ベース層(PB層)、N型ベース層(NB層)、およびP型エミッタ層(Pg層)を順次形成した

PNPN構造を有する。

【0013】これにより、電圧駆動のスイッチング特性と可視光の発光特性とを兼ね備える。

【0014】さらに、本発明の発光装置では、上述の発光サイリスタ素子と発光色の異なる発光ダイオードとを同一コム上の共通端子にダイスボンディングし、前記発光サイリスタ素子と前記発光ダイオード素子の同極性の電極をそれぞれ個別端子にワイヤーボンディングし、樹脂封止した。

【0015】これにより複数色の発光が可能となる。さらにまた、本発明の電池モニターでは、電池に発振トランスとトランジスタ等からなるブロッキングオシレーター回路を接続し、このブロッキングオシレーターの昇圧された交流電圧を駆動電圧として、上述の発光サイリスタ素子に印加する構成とした。

【0016】これにより、電圧値を発光により表示可能となる。

[0017]

【発明の実施の形態】

(1)化合物半導体機化ガリウム (GaP)のN型単結晶基板上に液相エピタキシャル成長法にて、N型エミッタ層 (N_B層)、P型ベース層 (P_B層)、N型ベース層 (N_B層)、P型エミッタ層 (P_B層)を順次形成し、図1に示すようなPNPN構造とすることにより、電圧駆動のスイッチング特性と可視光の発光特性を兼ね備えた発光サイリスタ素子を実現できる。

【0018】この発光サイリスタ素子において、スイッチング特性を支配する中央のPN接合、すなわち J_2 の P_B 層と N_B 層のうち、特に P_B 層の膜厚を 3μ m以下、および同 P_B 層のP型キャリア濃度を 4×10^{16} c m^{-3} 以上、 3×10^{17} c m^{-3} 以下の範囲に設定し、 P_B 層の順の境界面、すなわち P_B 層と N_B 層の境界面、および P_B 層と N_B 層の境界面にスパイク状の凹凸がなくフラットな面にすることにより、良好なスイッチング特性を得ることができる。ここで言う良好なスイッチング特性とは、図2に示すような電圧一電流特性のスイッチング電低(I_S)、保持電圧(V_B)、保持電流(I_B)の値が、下記表1の値を持つ

 (V_H) 、保持電流 (I_H) の値が、下記表 1 の値を持つ ものである。

[0019]

【表1】

	特性項目	特性 位						
V s	スイッチング電圧	24~ 36 V						
l s	スイッチング電流	500 # A BF						
l _H	保持電流	10mA 以下						

【0020】 P_B 層の膜厚が 3μ m以上、および同 P_B 層のP型キャリア濃度が 3×10^{17} c m⁻³以上になると、図2の電圧一電流特性の順方向のブレークオーバ電圧(V_B) からスイッチング電圧まで、かなりの電流(スイッチング電流が 500μ A以上)が流れないと負性抵抗領域には入らず、保持電流も10mA以上と大きくなる。図3にこの場合の電圧一電流特性を示す。

【0021】このスイッチング特性については、燐化ガリウムを用いた発光サイリスタ素子に共通である。すなわち発光色が、赤・黄緑・緑に共通である。

【0022】次に、発光輝度特性については、黄緑発光の場合を記述する。発光特性を支配する2つのPN接合、すなわち接合 J_1 および J_3 において、 N_8 層および N_6 層のN型ドーパントをSiとし、アンモニアガスにより、アイソエレクトロニックトラップとなるN原子を、前記の2つのPN接合近傍に注入するとともに、前記アンモニアガスにより、前記の2つのPN接合近傍のN型層側(すなわち N_8 層および N_8 層側)のN型キャリア濃度を 10^{16} c m $^{-3}$ オーダーに低くコントロールすることにより、黄緑色調の輝度を高くすることができる。これは、メルト中のSi原子がアンモニアガスと反応して、Si $_3$ N $_4$ となり、固相中にSiが取り込まれ難くなることを利用している。図4に黄緑色の発光サイリスタ素子の各層のキャリア濃度の概念的なプロファイルを示す。

【0023】(2)上記の発光サイリスタ素子を用いて、図5に示すような静特性の大きく異なる発光素子を用いた2色発光の3端子発光ランプとする。たとえば、1つを赤の発光ダイオード素子、もう1つを黄緑の発光サイリスタ素子を用いた、2色発光のランプは、電圧により発光色が異なる電圧センサーとして便利なモニターランプとなる。

【0024】(3)上記のように、良好なスイッチング 特性と高輝度黄緑色発光特性を兼ね備えて持つ発光サイ リスタ素子を高歩留で実現するには、2回の液相エピタ キシャル徐冷法で行うのが良い。

【0025】1回目のエピタキシャル成長により、燐化ガリウムのN型単結晶基板上に、Ng層とPg層を連続し

て成長させる。この場合、N型ドーパントはSiとし、 GaやGaPと一緒に、微少量メルト中に仕込んでお く。また、PN接合(J3)近傍では、発光センターと なる窒素をアンモニアガスで供給し、ドーピングする。 その際、Ng層のJ3近傍のN型キャリア濃度は、1016cm⁻³オーダーに下げるように、前記アンモニアガス流 量で制御する。さらに、Pa層のP型ドーバントは、亜 鉛をガスの形で供給しドーピングする。P型キャリア濃 度は、亜鉛を気化する炉の温度の飽和蒸気圧で制御し、 4×10¹⁶ c m⁻³以上、3×10¹⁷ c m⁻³以下の範囲に 設定する。このP型キャリア濃度が高いほど、スイッチ ング電流(Is)および保持電流(In)が大きくなる。 また、4×1016 c m-3以下に下げることは、カーボン ボートの残留アクセプタのために困難である。また、こ のP_B層は4μm程度の厚さになるように、徐冷温度を 設定する。

【0026】この方法では、発光センターの窒素も、P型ドーパントの亜鉛も、ガスでドーピングするため、メルトを交換する必要がなく、ウエハーを横に配置することができ、エピタキシャル層厚のばらつきを少なくして、均一に制御できる。

【0027】次に、2回目のエピタキシャル成長によ り、1回目のエピタキシャル成長で形成したエピタキシ ャルウエハー上に、Ng層とPg層を連続して成長させ る。この場合、前処理として、1回目に成長したエピタ キシャルウエハーのP_B層の表面を、1μm程度エッチ ングし、Pg層のエピタキシャル層厚を3μm以下に制 御する。また、2回目の成長で、N_E層を成長するメル トは、Pg層のメルトバックが起きないように、メルト 中のGaPの溶解度は過飽和の状態にしておく。2回目 の成長においても、1回目と同様に、N型ドーパントは Siとし、GaやGaPと一緒に、微少量メルト中に仕 込んでおく。また、PN接合(J」)近傍では、発光セ ンターとなる窒素をアンモニアガスで供給し、ドーピン グする。その際、N_B層のJ₃近傍のN型キャリア濃度 は、1016 c m-3オーダーに下げるように、前記アンモ ニアガス流量で制御する。さらに、Pg層のP型ドーパ ントは、亜鉛をガスの形で供給しドーピングする。P型

キャリア濃度は、亜鉛を気化する炉の温度の飽和蒸気圧で制御し、 $1 \times 10^{18} \, \mathrm{cm}^{-3}$ 程度に設定する。

【0028】上記のように、2回の液相エピタキシャル成長法により、スイッチング特性に重要なP_B層の膜厚とP型キャリア濃度の制御、および残留アクセプタ不純物によるP型反転層など利用していないため、P_B層を挟むN_B層とN_E層の境界面はスパイク状の凹凸はなく、フラットに制御されている。また、高輝度発光特性に重要なN_B層とN_E層のPN接合近傍のN型キャリア濃度や発光センターの制御もアンモニアガスの流量により容易に可能となる。

【0029】(4)上記発光サイリスタ素子を用いて、電池の電圧を検知し、電池の劣化をモニターする簡単な回路を実現できる。一般に1.5Vの乾電池の場合、モニターする乾電池の他にコンパレータなどの部品、および回路を駆動する別電源が必要である。しかし、図6に示す回路により、時計が動かなくなるまで劣化した1.5Vの単3電池においても、電池の劣化の程度を別電源なしに表示できる簡易型電池モニターが可能である。

【0030】すなわち、乾電池に発振トランスとトラン ジスタ等からなるブロッキングオシレーター回路を接続 し、このブロッキングオシレーターの昇圧された交流電 圧を駆動電圧として、発光サイリスタ素子に印加する。 この電圧(逆起電圧)は、図8のように、電池の電圧に 敏感に依存するので、発光サイリスタ素子のスイッチン グ電圧と電池の劣化電圧レベルを、適正に合わせておく ことにより、劣化電圧レベル以上で、発光サイリスタ素 子が発光し、劣化電圧レベル以下で発光が消えるという モニターが可能になる。また、この部分に3端子2色発 光ランプを用いると、劣化電圧レベルの上下で、発光色 の異なる表示が可能である。ここで、発光サイリスタを 駆動している電流は、交流であり、発光サイリスタは、 常にターンオフの状態にリセットされている。このため 発光は、断続的な発光であり、電圧の減少に対しても、 劣化電圧レベルを感度よく検知できる。

【0031】以下、本発明の実施の形態について、詳述する。本発明の発光サイリスタ素子は、図1に示すように、化合物半導体燃化ガリウム(GaP)のN型単結晶基板1上に、2回の液相エピタキシャル成長法にて、N型エミッタ層(N_B 層)2、P型ベース層(P_B 層)3、N型ベース層(N_B 層)4、P型エミッタ層(P_B 層)5を順次形成し、PNPN構造とする。

【0032】この素子は、図2に示す電圧-電流特性、 すなわちスイッチング特性、および可視光の発光特性を 持つ。

【0033】 P_B 層3の膜厚を 3μ m以下とし、および同 P_B 層のP型キャリア濃度を 4×10^{16} c m⁻³以上、 3×10^{17} c m⁻³以下の範囲に設定し、 P_B 層3の両側の境界面、すなわち、 P_B 層3と N_E 層2の境界面、および P_B 層3と N_B 層4の境界面にスパイク状の凹凸がなく

フラットな面にすることにより、良好なスイッチング特性を得ることができる。また、2つのPN接合、すなわち J_1 および J_3 近傍に発光センターとなる窒素原子をドーピングし、かつ、前記の2つのPN接合近傍のN型層側、すなわち N_B 層2および N_B 層4側のN型キャリア濃度を 10^{16} c m $^{-3}$ オーダーに低くコントロールすることにより、黄緑色の輝度を高くすることができる。図4に黄緑色の発光サイリスタ素子の各層のキャリア濃度の概念的なプロファイルを示す。

【0034】この発光サイリスタ素子は、たとえば表1に示すような特性値をもつ。上記の発光サイリスタ素子を用いて、図5に示すような静特性の大きく異なる発光素子を用いた2色発光の3端子発光ランプとする。たとえば、1つを赤の発光ダイオード素子21、もう1つを黄緑の発光サイリスタ素子22とする。同一コム上に、前記2つの素子21と22のN電極側を下にして、共通端子23にダイスボンディングする。さらに、前記2つの素子のP電極側をそれぞれ個別端子24と25にワイヤーボンディングする。その上を透明樹脂により封止し、2色発光のランプとする。これは、電圧により発光色が異なる電圧センサーとして便利なモニターランプとなる。

【0035】表1に示す良好なスイッチング特性と高輝 度黄緑色発光特性を兼ね備えて持つ、前記発光サイリス タ素子を、高歩留で実現する2回の液相エピタキシャル 徐冷法についての一例を示す。

【0036】図9に、2回液相エピタキシャル徐冷法の1回目のプログラムを示す。まず、GaとGaP多結晶およびN型不純物となるSiを適正量混合し、高純度黒鉛製の成長用ボート上部のメルト溜に入れる。この成長用ボートの下部に、N型のGaP単結晶基板を横にメルトが入る隙間を保って、数枚重ね置く。この成長用ボートを炉内にいれ、抵抗加熱により前記混合物を溶融する。これをメルトと言う。炉内は、高純度の水素ガスが流れており、炉内温度および冷却速度が制御される。

【0037】まず、1000℃で溶融したメルトを前記N型GaP単結晶基板の上に注ぐ。その後、冷却速度1.5℃/分で、925℃まで冷却する。ここで、冷却速度を1.0℃/分にかえ、NH3ガスを1cc/分の流量で流し始め、805℃まで冷却する。ここで、NH3ガスの流量を7cc/分にかえ、785℃まで冷却する。ここまでで、Ng層が形成される。この温度で、サブ炉のヒーターを入れ、545℃まで温度を上げ、P型不純物である亜鉛を気化させる。これが平衡に達するまで、785℃の温度で40分間ホールドする。その後、0.5℃/分の冷却速度で780℃まで冷却し、Pg層を形成する。Pg層のP型キャリア濃度は、サブ炉の温度で制御される。また、Pg層の膜厚はこの成長で、約4μm程度となる。さらに、PN接合J3近傍のNg層のN型キャリア濃度もNH3ガスにより、1016cm-3の

オーダーに制御される。

【0038】図10に、2回目のプログラムを示す。前 記の1回目で成長したエピタキシャルウエハーのP。層 を、エッチングにより、3μm以下にする。これを前記 成長ボートに前記と同様にセットする。まず、925℃ でメルトを前記エピタキシャルウエハーに注ぐ。この 時、メルトは、前記エピタキシャルウエハーからのメル トバックが起こらないように、GaPが過飽和の状態に しておく。また、NH3ガスを1cc/分の流量で流し 始める。冷却速度1℃/分で920℃まで冷却し、NH 3ガスを7cc/分の流量にあげ、さらに900℃まで 冷却し、Ng層を形成する。この温度で、サブ炉のヒー ターを入れ、545℃まで温度を上げ、P型不純物であ る亜鉛を気化させる。これが平衡に達するまで、900 ℃の温度で40分間ホールドする。その後、1℃/分の 冷却速度で780℃まで冷却し、Pェ層を形成する。Pェ 層の表面近傍は、サブ炉の温度を610℃にして、P型 キャリア濃度を上げておく。

【0039】この方法で、PN接合 J_2 は、制御よくフラットになる。また、PN接合 J_1 近傍の N_B 層のN型キャリア濃度 bNH_3 ガスにより、 10^{16} c m^{-3} のオーダーに制御される。

【0040】本発明の電池モニター回路の実施の形態に ついて、図6を参照して説明する。すなわち、乾電池4 1に発振トランス42とトランジスタ43、および抵抗 4.4からなるブロッキングオシレーター回路を接続す る。42の発振トランスには、発振に必要な巻線a, b の他に、発光サイリスタを駆動するための巻線でを追加 しておく。電池により、駆動された発振は、図7に示す 波形で振動する。巻線cの波形は、(ハ)に示す波形と なり、逆起電圧側が40Vとなるように、巻線cの巻数 を選定しておく。この逆起電圧は、図8に示すように、 電池の電圧に敏感に依存する。巻線での両端に、分圧抵 抗45、46および赤色発光ダイオード47を直列につ なぎ、さらに、抵抗46と発光ダイオード47に並列に 発光サイリスタ48をつなぐ。分圧抵抗46により、発 光サイリスタが〇N時に流れる電流を決め、抵抗45に より、電池劣化の下限電圧のレベルと発光サイリスタ4 8のスイッチング電圧(Vs)とを適正に合わせ、前 記、下限電圧以上の場合に 、発光サイリスタ48がタ ーンオンし、低抵抗の状態となるようにする。

【0041】上記のような回路構成により、前記、電池の下限電圧以上の場合は、電流は抵抗46のために発光サイリスタ48にほとんど流れ、黄緑に発光する。また、前記、下限電圧以下になると、発光サイリスタ48が高抵抗の状態になり、電流は殆ど発光ダイオードに流れ、赤色に発光する。

[0042]

【発明の効果】本発明による発光サイリスタ素子は、化 合物半導体燐化ガリウムのN型単結晶基板上に液相エピ タキシャル成長法にてN型エミッタ層、P型ベース層、 N型ベース層、およびP型エミッタ層を順次形成したP NPN構造とすることにより、電圧駆動のスイッチング 特性と可視光の発光特性とを兼ね備える。

【0043】さらに、本発明の発光装置では、上述の発光サイリスタ素子と、発光色の異なる発光ダイオードとを同一コム上の共通端子にダイスボンディングし、これら素子の同極性の電極をそれぞれ個別端子にワイヤーボンディングし、樹脂封止した構造としたので、複数色の発光が可能となった。

【0044】さらにまた、本発明の電池モニターでは、電池に発振トランスとトランジスタ等からなるブロッキングオシレーター回路を接続し、このブロッキングオシレーターの昇圧された交流電圧を駆動電圧として、上述の発光サイリスタ素子に印加する構成としたので、発光により電圧値を簡単な構成の回路で表示可能となった。 【図面の簡単な説明】

【図1】本発明の発光サイリスタ素子の構造説明図

【図2】スイッチング特性の良い発光サイリスタ素子の 電圧-電流特性図

【図3】スイッチング特性の悪い発光サイリスタ素子の 電圧-電流特性図

【図4】本発明の発光サイリスタ素子のキャリア濃度プロファイルを示す図

【図5】本発明の発光サイリスタ素子を用いた2色発光の3端子発光ランプの構造説明図

【図6】本発明の発光サイリスタ素子を用いた電池モニ ターの回路図

【図7】図6における主要部の信号波形を示す図

【図8】図6の回路において、乾電池の電圧と発振コイルの巻線cに発生する逆起電圧との関係を示す図

【図9】本発明の発光サイリスタ素子の製造工程における1回目の液相エピタキシャル成長の炉温度制御図 【図10】本発明の発光サイリスタ素子の製造工程にお

ける2回目の液相エピタキシャル成長の炉温度制御図 【符号の説明】

- 1 燐化ガリウムのN型単結晶基板
- 2 N型エミッタ層
- 3 P型ベース層
- 4 N型ベース層
- 5 P型エミッタ層
- 21 赤色発光ダイオード
- 22 発光サイリスタ素子
- 23 3端子発光ランプの共通端子
- 24 3端子発光ランプの発光ダイオード側の個別端子
- 25 3端子発光ランプの発光サイリスタ側の個別端子
- 41 乾電池
- 42 発振トランス
- 43 トランジスタ
- 44~46 抵抗

乾電池電圧 (V)

フロントページの続き

(51) Int. Cl. 6 H O 1 L 31/111

識別記号 庁内整理番号

FI HO1L 29/74 31/10 技術表示箇所

E F