Exercise Sheet 2

Exercise 1 Solution

- 1. $\mathbb{Z} \times \mathbb{Z}$ is not a Dedekind domain as it is not even an integral domain. Take $(1,0) \in \mathbb{Z} \times \mathbb{Z}$ and $(0,1) \in \mathbb{Z} \times \mathbb{Z}$ for example. $(1,0) \cdot (0,1) = (0,0)$ even though we chose nonzero elements.
- 2. We have $\mathbb{Z}[X]/(X^2+3)\cong\mathbb{Z}[\sqrt{-3}]$; therefore, $\mathbb{Z}[X]/(X^2+3)$ is an integral domain. $\mathbb{Z}[X]/(X^2+3)$ is also noetherian as \mathbb{Z} is noetherian and therefore it's polynomial ring and the quotient ring.