Supplementary
Material
for
Recurrent
Networks

Compiled by: Rajesh P. N. Rao Computational Neuroscience

Solving the Differential Equation for a Linear Recurrent Network

$$\tau \frac{d\mathbf{v}}{dt} = -\mathbf{v} + \mathbf{\mathbf{\mathbf{Wu}}} + \mathbf{\mathbf{Mv}}$$

Using Eigenvectors to Solve for $\mathbf{v}(t)$

$$\tau \frac{d\mathbf{v}}{dt} = -\mathbf{v} + \mathbf{h} + \mathbf{M}\mathbf{v}$$

- ightharpoonup Suppose $N \times N$ matrix M is symmetric
- ♦ M has *N orthogonal* eigenvectors \mathbf{e}_i and *N* eigenvalues λ_i which satisfy:

$$\mathbf{M}\mathbf{e}_{i}=\lambda_{i}\mathbf{e}_{i}$$

- Normalize eigenvectors to have length 1
 ⇒ Divide each by its length
- → Then we have a set of *orthonormal* vectors (a new "basis" or coordinate system) such that:

$$\mathbf{e}_i \cdot \mathbf{e}_j = 0$$
 for $i \neq j$ and 1 otherwise

Using Eigenvectors to Solve for $\mathbf{v}(t)$

• We can represent any N-dimensional vector, including our output vector $\mathbf{v}(t)$, using the orthonormal eigenvectors of M:

$$\mathbf{v}(t) = \sum_{j=1}^{N} c_j(t) \mathbf{e}_j$$

♦ Substituting above in the diff. equation for v: $\tau \frac{d\mathbf{v}}{dt} = -\mathbf{v} + \mathbf{h} + \mathbf{M}\mathbf{v}$

$$\tau \frac{d\sum_{j=1}^{N} c_{j} \mathbf{e}_{j}}{dt} = -\sum_{j=1}^{N} c_{j} \mathbf{e}_{j} + \mathbf{h} + \mathbf{M} \sum_{j=1}^{N} c_{j} \mathbf{e}_{j}$$

$$\tau \sum_{j=1}^{N} \frac{dc_{j}}{dt} \mathbf{e}_{j} = -\sum_{j=1}^{N} c_{j} (\mathbf{e}_{j} - \mathbf{M} \mathbf{e}_{j}) + \mathbf{h}$$

$$\tau \sum_{j=1}^{N} \frac{dc_{j}}{dt} \mathbf{e}_{j} = -\sum_{j=1}^{N} c_{j} (\mathbf{e}_{j} - \lambda_{j} \mathbf{e}_{j}) + \mathbf{h}$$

Using eigenvector equation

$$\mathbf{M}\mathbf{e}_{j}=\lambda_{j}\mathbf{e}_{j}$$

Using Eigenvectors to Solve for $\mathbf{v}(t)$

 \bullet Taking the dot product of both sides with any \mathbf{e}_i :

$$(\tau \sum_{j=1}^{N} \frac{dc_{j}}{dt} \mathbf{e}_{j} = -\sum_{j=1}^{N} c_{j} (\mathbf{e}_{j} - \lambda_{j} \mathbf{e}_{j}) + \mathbf{h}) \cdot \mathbf{e}_{i}$$

$$\tau \frac{dc_{i}}{dt} = -c_{i} (1 - \lambda_{i}) + \mathbf{h} \cdot \mathbf{e}_{i}$$
Using orthonormality of the \mathbf{e}_{i}

♦ Solve differential equation for c_i (and use it to get $\mathbf{v}(t)$!):

$$c_i(t) = \frac{\mathbf{h} \cdot \mathbf{e}_i}{1 - \lambda_i} \left(1 - \exp(\frac{-t(1 - \lambda_i)}{\tau}) + c_i(0) \exp(\frac{-t(1 - \lambda_i)}{\tau}) \right)$$

$$\mathbf{v}(t) = \sum_{i=1}^{N} c_i(t) \mathbf{e}_i$$

Eigenvalues determine Network Stability!

$$\mathbf{v}(t) = \sum_{i=1}^{N} c_i(t) \mathbf{e}_i \qquad c_i(t) = \frac{\mathbf{h} \cdot \mathbf{e}_i}{1 - \lambda_i} (1 - \exp(\frac{-t(1 - \lambda_i)}{\tau}) + c_i(0) \exp(\frac{-t(1 - \lambda_i)}{\tau}))$$

If any $\lambda_i > 1$, $\mathbf{v}(t)$ explodes \Rightarrow network is unstable!

If all $\lambda_i < 1$, network is stable and $\mathbf{v}(t)$ converges to steady state value:

$$\mathbf{v}_{ss} = \sum_{i} \frac{\mathbf{h} \cdot \mathbf{e}_{i}}{1 - \lambda_{i}} \mathbf{e}_{i}$$

Amplification of Inputs in a Recurrent Network

$$\mathbf{v}_{ss} = \sum_{i} \frac{\mathbf{h} \cdot \mathbf{e}_{i}}{1 - \lambda_{i}} \mathbf{e}_{i}$$

If all $\lambda_i < 1$ and one λ_i (say λ_1) is close to 1 with others much smaller:

$$\mathbf{v}_{ss} \approx \frac{\mathbf{h} \cdot \mathbf{e}_1}{1 - \lambda_1} \mathbf{e}_1$$
 Amplification of input projection by a factor of $\frac{1}{1 - \lambda_i}$

Memory in Linear Recurrent Networks

$$\tau \frac{d\mathbf{v}}{dt} = -\mathbf{v} + \mathbf{h} + \mathbf{M}\mathbf{v} \qquad \mathbf{v}(t) = \sum_{i=1}^{N} c_i(t) \mathbf{e}_i$$

Suppose $\lambda_1 = 1$ and all other $\lambda_i < 1$. Then, $\tau \frac{dc_1}{dt} = \mathbf{h} \cdot \mathbf{e}_1$

Solving for
$$c_1$$
, we get $c_1(t) = c_1(0) + \frac{1}{\tau} \int_0^t \mathbf{h}(t') \mathbf{e}_1 dt' \tau$

If input **h** is turned on and then off, can show that even after $\mathbf{h} = 0$:

$$\mathbf{v}(t) = \sum_{i} c_{i}(t)\mathbf{e}_{i}$$

$$\approx c_1 \mathbf{e}_1 = \frac{\mathbf{e}_1}{\tau} \int_0^t \mathbf{h}(t') \ \mathbf{e}_1 dt' \quad \text{(assuming } c_1(0) = 0)$$

Sustained activity without any input!

Networks keeps a memory of integral of past input

Stability of Nonlinear Recurrent Networks

$$\tau \frac{d\mathbf{v}}{dt} = -\mathbf{v} + F(\mathbf{h} + \mathbf{M}\mathbf{v})$$

Stability Analysis of Nonlinear Recurrent Networks

General case: $\frac{d\mathbf{v}}{dt} = \mathbf{f}(\mathbf{v})$

We want to know: How stable is the

Suppose \mathbf{v}_{∞} is a fixed point (i.e., $\mathbf{f}(\mathbf{v}_{\infty}) = 0$) network near \mathbf{v}_{∞} ?

Near \mathbf{v}_{∞} , $\mathbf{v}(t) = \mathbf{v}_{\infty} + \boldsymbol{\varepsilon}(t)$. Differentiating both sides wrt $t : \frac{d\mathbf{v}}{dt} = \frac{d\boldsymbol{\varepsilon}}{dt}$.

Taylor expansion near \mathbf{v}_{∞} : $\mathbf{f}(\mathbf{v}(t)) \approx \mathbf{f}(\mathbf{v}_{\infty}) + \frac{\partial \mathbf{f}}{\partial \mathbf{v}} \left| \mathbf{\epsilon}(t) = \frac{\partial \mathbf{f}}{\partial \mathbf{v}} \right| \mathbf{\epsilon}(t)$

i.e.
$$\frac{d\mathbf{v}}{dt} = \mathbf{f}(\mathbf{v}(t)) = \frac{\partial \mathbf{f}}{\partial \mathbf{v}}\Big|_{\mathbf{v}_{x}} \mathbf{\varepsilon}(t) = J \cdot \mathbf{\varepsilon}(t)$$
 J is the stability or "Jacobian" matrix

Also, since
$$\frac{d\mathbf{v}}{dt} = \frac{d\mathbf{\varepsilon}}{dt}$$
, we have $\frac{d\mathbf{\varepsilon}}{dt} = J \cdot \mathbf{\varepsilon}(t)$

Assuming J is real with N linearly independent eigenvectors \mathbf{e}_i , we can write:

$$\mathbf{\varepsilon}(t) = \sum_{i} c_{i}(t)\mathbf{e}_{i}$$

Stability Analysis of Nonlinear Recurrent Networks

Continued from previous page:

Substituting $\mathbf{\varepsilon}(t) = \sum_{i} c_i(t) \mathbf{e}_i$ into $\frac{d\mathbf{\varepsilon}}{dt} = J \cdot \mathbf{\varepsilon}(t)$, we find that the coefficients must satisfy:

$$\frac{dc_i}{dt} = \lambda_i c_i$$
. The solution is: $c_i(t) = c_i(0) \exp(\lambda_i t)$

 $\frac{dc_i}{dt} = \lambda_i c_i. \text{ The solution is}: \ c_i(t) = c_i(0) \exp(\lambda_i t)$ Therefore, $\mathbf{\varepsilon}(t) = \sum_i c_i(0) \exp(\lambda_i t) \mathbf{e}_i$ i.e., evolution of $\mathbf{v}(t)$ near \mathbf{v}_{∞} depends on eigenvalues of J.

Each individual term in the above sum is called a mode.

Eigenvalues of J can be complex, e.g., $\lambda_k = a_k + ib_k$, which means that :

 $\exp(\lambda_{\iota}t) = \exp(a_{\iota}t)\exp(ib_{\iota}t) = \exp(a_{\iota}t)(\cos(b_{\iota}t) + i\sin(b_{\iota}t))$. This implies:

For complex λ_k ($b_k \neq 0$), the mode will oscillate with frequency b_k .

If $a_k < 0$ for all k, the oscillations will be damped exponentially to 0 and the network will be stable near the fixed point \mathbf{v}_{∞} .

If $a_k > 0$ for any k, the oscillations for that mode will grow exponentially and the network may not be stable (unless the network's nonlinearity curbs the growth as in the following example).

Example: Non-Symmetric Nonlinear Recurrent Network

◆ Example: Network of Excitatory (E) and Inhibitory (I) Neurons
 ❖ Connections can't be symmetric: Why?

10 ms
$$\tau_{E} \frac{dv_{E}}{dt} = -v_{E} + \left[M_{EE}v_{E} + M_{EI}v_{I} - \gamma_{E}\right]^{+}$$

$$\tau_{I} \frac{dv_{I}}{dt} = -v_{I} + \left[M_{II}v_{I} + M_{IE}v_{E} - \gamma_{I}\right]^{+}$$

Parameter we will vary to study the network

We want to analyze stability of this network near fixed point \mathbf{v}_{∞} i.e., near the (v_E, v_I)

which results in
$$\frac{dv_E}{dt} = \frac{dv_I}{dt} = 0$$
.

Linear Stability Analysis near Fixed Point

$$\frac{dv_E}{dt} = \frac{-v_E + [M_{EE}v_E + M_{EI}v_I - \gamma_E]^+}{\tau_E}$$
Take derivatives of right hand side with respect to
$$\frac{dv_I}{dt} = \frac{-v_I + [M_{II}v_I + M_{IE}v_E - \gamma_I]^+}{\tau_I}$$
both v_E and v_I

Stability Matrix (aka the "Jacobian" Matrix):

$$J = \begin{bmatrix} \frac{(M_{EE} - 1)}{\tau_E} & \frac{M_{EI}}{\tau_E} \\ \frac{M_{IE}}{\tau_I} & \frac{(M_{II} - 1)}{\tau_I} \end{bmatrix}$$

Compute the Eigenvalues

Jacobian Matrix:

$$J = egin{bmatrix} (M_{EE} - 1) & M_{EI} \ au_E & au_E \ M_{IE} & (M_{II} - 1) \ au_I & au_I \end{bmatrix}$$

 \bullet Its two eigenvalues (obtained by solving $det(J - \lambda I) = 0$):

$$\lambda = \frac{1}{2} \left(\frac{\frac{1.25}{(M_{EE} - 1)} + \frac{0}{(M_{II} - 1)}}{\tau_{E} + \frac{10}{10}} \pm \sqrt{\frac{M_{EE} - 1}{\tau_{E}} - \frac{M_{II} - 1}{\tau_{I}}}^{2} + 4\frac{M_{EI}M_{IE}}{\tau_{E}\tau_{I}}} \right)$$

Next page plots real and imaginary parts of λ as a function of τ_I

Phase Plane and Eigenvalue Analysis

Damped Oscillations in the Network

Choose $\tau_I = 30$ ms (makes real part of eigenvalues negative)

Unstable Behavior and Limit Cycle

Choose $\tau_I = 50$ ms (makes real part of eigenvalues positive)

Oscillations grow initially but curbed by rectification nonlinearity