STUDY AND LEARNING CENTRE

www.rmit.edu.au/studyandlearningcentre

STUDY TIPS

Applications of Differentiation

DN1.8: CURVE SKETCHING

To sketch a curve, find

- the maximum and minimum stationary points
- the intercepts on the axes

A stationary point is a point on a graph of a function y = f(x) where the tangent to the curve is horizontal. At a stationary point the derivative function y = f'(x) = 0.

A **maximum** stationary point occurs at x = a if

f'(x) < 0 for x < a

• f'(x) = 0 for x = a

f'(x) > 0 for x > a

A **minimum** stationary point occurs at x = a if

f'(x) < 0 for x ≤ a</p>

f'(x) = 0 for x = a

• f'(x) > 0 for x > a

Example

Find the turning point of the parabola defined by $y = x^2 + 4x + 5$

$$f(x) = x^2 + 4x + 5 \implies f'(x) = 2x + 4$$

At a stationary point f'(x) = 0

ie
$$2x + 4 = 0$$

 $2x = -4$
 $x = -2$

When
$$x = -2$$
, $y = (-2)^2 + 4(-2) + 5 = 1$

So there is a stationary point at (-2, 1).

Sign Test

Do a sign test to check whether the stationary point is a minimum or maximum. (Check the slope of the tangent on each side of the stationary point)

Х	-2.1	-2	-1.9
f '(x)	-	0	+
gradient	\		/

:. There is a minimum point at (-2,1)

Example

Sketch the graph of $y = x^3 - x$

$$f(x) = x^3 - x \implies f'(x) = 3x^2 - 1$$

Stationary points: f'(x) = 0

$$3x^2 - 1 = 0$$

$$3x^2 = 1$$

$$x^2 = \frac{1}{3}$$

$$x = \pm \frac{1}{\sqrt{3}}$$

$$x \approx \pm 0.58$$

When
$$x = 0.58$$
, $y = -0.38$ (0.58,-0.38)

$$x = -0.58$$
, $y = 0.38$ (-0.58, 0.38)

Do sign tests to check whether stationary points are *minima* or *maxima*:

X	0.5	0.58	0.0
f '(x)	-	0	+
gradient	\		/

X	-0.6	-0.58	-0.5
f '(x)	+	0	-
radient	/	_	\

There is a minimum point at (0.58, -38) and a maximum point at (-0.58, 0.38)

x-intercepts: When y = 0, $x^3 - x = 0$

$$x(x^2 - 1) = 0$$

$$x(x-1)(x+1)=0$$

x(x-1)(x+1) = 0x-intercepts at x = 0, x = 1 and x = -1

y-intercepts: When x = 0, y = 0

$$y = x^3 - x$$

Exercise

Sketch the graphs of the following functions showing all intercepts and turning points

1.
$$y = x^2 - 4x$$

2.
$$y = x^3 - 2x^2 + x$$

3.
$$y = 6 - x - x^2$$

4.
$$y = (x + 1)^4$$

Answers

2.

3.

4.

