Combinatorial Mathematics

Mong-Jen Kao (高孟駿)

Monday 18:30 – 20:20

Outline

- Probabilistic Method II
 - Linearity of Expectation
 - Large Deviation Inequalities
 - Markov's Inequality, Chebyshev's Inequality
 - The Chernoff Bounds
 - The Second Moment Method

Ex 1. Low-Degree Polynomials

The Prime Field \mathbb{F}_2

- Consider the prime field $\mathbb{F}_2 = \{0,1\}$.
 - We have the operators +, -, \times , / defined over $\{0,1\}$.
 - The result is to be mod by 2.
- For example,
 - -1+1=0,
 - -0+1=1,
 - $-1 \times 0 = 0, 1 \times 1 = 1, etc.$

Polynomials over \mathbb{F}_2

- Consider the polynomial over \mathbb{F}_2 .
 - A polynomial $f(x_1, ..., x_n)$ is said to have degree at most d if it has the following form

$$f(x_1, x_2, ..., x_n) = a_0 + \sum_{1 \le i \le m} \prod_{j \in S_i} x_j$$
,

where $a_0 \in \{0,1\}$ and $S_i \subseteq [1,n]$ with $|S_i| \le d$.

Low-Degree Approximation for Products of Polynomials

- Intuitively, if $f_1, f_2, ..., f_m$ are polynomials of degree at most d, then $f := \prod_{1 \le i \le m} f_i$ can have degree up to dm.
- The following lemma says that the product *f* can still be well-approximated by a low-degree polynomial.

Lemma 1 (Razborov 1987).

For any $r \ge 1$, there exists a polynomial g of degree at most dr such that $\Pr_{x \leftarrow \{0,1\}^n}[g(x) \ne f(x)] \le 2^{-r}$.

Lemma 1 (Razborov 1987).

Let $f := \prod_{1 \le i \le m} f_i$,

where $f_1, f_2, ..., f_m$ are polynomials of degree at most d.

For any $r \ge 1$, there exists a polynomial g of degree at most dr such that

$$\Pr_{x \leftarrow \{0,1\}^n} \left[g(x) \neq f(x) \right] \leq 2^{-r},$$

i.e., g and f differ on at most 2^{n-r} inputs.

■ To prove Lemma 1, we define a random polynomial g(x) and show that $\Pr[g(a) \neq f(a)] \leq 2^{-r}$ holds for any input $a \in \{0,1\}^n$.

To prove Lemma 1, we consider a random possible show that $\Pr[g(a) \neq f(a)] \leq 2^{-r}$ for any input

Each possible subset is picked with probability 2^{-m} .

- Let $S_1, S_2, ..., S_r$ be random subsets sampled <u>independently</u> and <u>uniformly</u> from $\{1, 2, ..., m\}$.
- Define

$$g\coloneqq\prod_{1\leq j\leq r}h_j$$
, where $h_j\coloneqq 1-\sum_{i\in S_j}(1-f_i)$.

Let $S_1, S_2, ..., S_r$ be random subsets sampled <u>independently</u> and uniformly from $\{1, 2, ..., m\}$.

Define

$$g \coloneqq \prod_{1 \le j \le r} h_j$$
, where $h_j \coloneqq 1 - \sum_{i \in S_j} (1 - f_i)$.

- Consider any input $a \in \{0,1\}^n$.
 - If f(a) = 1, then $f_i(a) = 1$ for all i, since $f = \prod_i f_i$.
 - Hence, $h_j(a) = 1$ for all j and g(a) = 1 = f(a) with probability 1.

Let $S_1, S_2, ..., S_r$ be random subsets sampled <u>independently</u> and <u>uniformly</u> from $\{1, 2, ..., m\}$.

■ Define
$$g \coloneqq \prod_{1 \le j \le r} h_j$$
, where $h_j \coloneqq 1 - \sum_{i \in S_j} (1 - f_i)$.

- Consider any input $a \in \{0,1\}^n$.
 - If f(a) = 0, then $f_i(a) = 0$ for at least one i. Let S' be the set of all such indexes.
 - By definition, $h_j(a) = 0$ if and only if S_j contains an odd number of elements from S'.

This happens with probability 1/2.

- Consider any input $a \in \{0,1\}^n$.
 - If f(a) = 0, then $f_i(a) = 0$ for at least one i. Let S' be the set of all such indexes.
 - By definition, $h_j(a) = 0$ if and only if S_i contains an odd number of elements from S'.
 - Hence,

$$\Pr[g(a) = 0] = 1 - \Pr[h_j(a) = 1 \,\forall j] = 1 - 2^{-r}.$$

This happens with probability 1/2.

- Consider any input $a \in \{0,1\}^n$.
 - If f(a) = 1, then g(a) = f(a) for sure.
 - If f(a) = 0, then g(a) = f(a) with probability $1 2^{-r}$.
- Let X_a be the indicator variable for the event that $g(a) \neq f(a)$ and $X := \sum_a X_a$.
- We have $E[X] = \sum_a E[X_a] = \sum_a \Pr[X_a] \le 2^{n-r}$.
 - Hence, there must exist such a collection of $S_1, ..., S_r$ such that g(x) differs from f(x) on at most 2^{n-r} inputs.

Large Deviation Inequalities

How Far can X Deviate from E[X]?

- Expectation (expected value) is the <u>weighted average</u> of a variable taking a random value.
- Very often, knowing the expectation is not sufficient to know the true value of the variable.
 - Consider the random variable X that takes the values $\pm 10^{10}$ with probability 1/2 each.
 - E[X] = 0, but X is either 10^{10} or -10^{10} .

Markov's Inequality

If E[X] is what we only have, then a tight bound is given by the following theorem.

Theorem 2 (Markov's Inequality).

If X is a non-negative random variable, then, for any t > 0, E[X]

$$\Pr[X \ge t] \le \frac{E[X]}{t}.$$

Alternatively, $\Pr[X \ge t \cdot E[X]] \le 1/t$.

Theorem 2 (Markov's Inequality).

If X is a non-negative random variable, then, for any t>0, $\Pr[X\geq t\]\ \leq \frac{E[X]}{t}\ .$

■ We have

$$E[X] = \sum_{i} i \cdot \Pr[X = i] \ge \sum_{i \ge t} t \cdot \Pr[X = i] = t \cdot \Pr[X \ge t].$$

■ The above bound is tight, if E[X] is what we only have.

Chebyshev's Inequality

If we also know Var[X], then a (much) tighter guarantee can be obtained.

Theorem 2 (Chebyshev's Inequality).

For any
$$t > 0$$
,

$$\Pr[|X - E[X]| \ge t] \le \frac{\operatorname{Var}[X]}{t^2}.$$

Alternatively,

$$\Pr\left[|X - E[X]| \ge t \cdot \sqrt{\operatorname{Var}[X]}\right] \le 1/t^2$$
.

Theorem 2 (Chebyshev's Inequality).

For any
$$t > 0$$
,

$$\Pr[|X - E[X]| \ge t] \le \frac{\operatorname{Var}[X]}{t^2}.$$

- Consider the random variable $Y := (X E[X])^2 \ge 0$.
 - Apply the Markov's inequality, we obtain

$$\Pr[|X - E[X]| \ge t] = \Pr[Y \ge t^2] \le \frac{E[(X - E[X])^2]}{t^2} = \frac{\text{Var}[X]}{t^2}.$$

Probability
$$\geq 1 - 1/t^2$$

$$E[X] - t \cdot \sqrt{\text{Var}[X]} \qquad E[X] \qquad E[X] + t \cdot \sqrt{\text{Var}[X]}$$

Moment Generating Function &

The Chernoff Bounds

Moments of a Random Variable

- The k^{th} moment of a random variable X is defined as $E[X^k]$.
 - The 1^{st} -moment is exactly the expectation E[X].
 - The 2^{nd} -moment gives the variance

$$Var[X] := E[(X - E[X])^2] = E[X^2] - (E[X])^2$$
.

The Moment Generating Function

■ The moment generating function of a random variable *X* is defined as

$$M_X(t) := E[e^{tX}].$$

- The moment generating function $M_X(t)$ is important in that
 - It captures all the moments of X.
 - We have

$$E[X^n] = M_X^{(n)}(0),$$

where $M_X^{(n)}(t)$ is the n^{th} -derivative of $M_X(t)$.

The Chernoff Bounds

If we have the mgf $M_X(t)$ of X, then the tightest <u>concentration bound</u> is given by the Chernoff bounds.

Theorem 3 (Chernoff Bounds).

For any t > 0,

$$\Pr[X \ge a] = \Pr[e^{tX} \ge e^{ta}] \le E[e^{tX}] \cdot e^{-ta}$$
.

Similarly, for any t < 0,

$$\Pr[X \le a] = \Pr[e^{tX} \ge e^{ta}] \le E[e^{tX}] \cdot e^{-ta}$$
.

The Chernoff Bounds

- If we have the mgf $M_X(t)$ of X, then the tightest <u>concentration bound</u> is given by the Chernoff bounds.
- Theorem 3 gives the original form of Chernoff bounds, which is derived from the Markov's inequality.
 - Depending on what the actual distribution of X,
 the Chernoff bounds may have different final form.
 - As an example,
 let's consider the sum of independent variables from [0,1].

Theorem 4 (Chernoff Bounds for Sum of Independent Variables).

Let $X_1, X_2, ..., X_n$ be independent variables taking values from the interval [0,1]. Let $X := \sum_i X_i$ and $\mu := E[X]$.

Then, for any a > 0,

$$\Pr[X \ge \mu + a] \le e^{-\frac{a^2}{2n}}$$
 and $\Pr[X \ge \mu - a] \le e^{-\frac{a^2}{2n}}$.

- Intuitively, the bound says that the outcome of X concentrates between $\mu \pm \theta(\sqrt{n})$.
 - Outside this interval, the likelihood decreases *exponentially*.

Theorem 4 (Chernoff Bounds for Sum of Independent Variables).

Let $X_1, X_2, ..., X_n$ be independent variables taking values from the interval [0,1]. Let $X := \sum_i X_i$ and $\mu := E[X]$.

Then, for any a > 0,

$$\Pr[X \ge \mu + a] \le e^{-\frac{a^2}{2n}}$$
 and $\Pr[X \ge \mu - a] \le e^{-\frac{a^2}{2n}}$.

Taking $t = O(\sqrt{n \ln n})$, the above probability is bounded by $O(n^{-1})$.

The Second Moment Method

The Second Moment Method

- Let *X* be a non-negative integer-valued random variable.
- The following inequality, obtained from Chebyshev's inequality, is one typical way and often useful.

$$\Pr[X = 0] \le \frac{\operatorname{Var}[X]}{(E[X])^2}.$$

- Indeed, we have

$$\Pr[X = 0] \le \Pr[|X - E[X]| \ge E[X]] \le \text{Var}[X] / (E[X])^2$$
.

Ex 2. Threshold Behavior in Random Graphs

The Random Graph $G_{n,p}$

- Consider the graph $G_{n,p} = (V, E)$ with |V| = n and the edge set E generated randomly as follows.
 - For any $u, v \in V$, we draw an edge $(u, v) \in E$ <u>independently</u> with probability p.
- It follows that

$$E[|E|] = {n \choose 2}p$$
 and $Pr[|E| = m] = p^m(1-p)^{{n \choose 2}-m}$.

The Threshold Behavior of $G_{n,p} \supseteq K_4$

- Let G be a realization (sample) of $G_{n,p}$ and consider the event that G contains a clique of size 4.
- We have the following theorem.

Theorem 5. For any $\epsilon > 0$ and sufficiently large n,

if
$$p = o(n^{-2/3})$$
, then $\Pr[G \text{ contains } K_4] < \epsilon$.

On the contrary, if
$$p = \omega(n^{-2/3})$$
, then

$$\Pr[G \text{ does not contain } K_4] < \epsilon$$
.

Theorem 5. For any $\epsilon > 0$ and sufficiently large n,

if
$$p = o(n^{-2/3})$$
, then $\Pr[G \text{ contains } K_4] < \epsilon$.

- Suppose that $p = o(n^{-2/3})$.
 - Let $C_1, \dots, C_{\binom{n}{4}} \subseteq V$ be all possible set of 4 vertices in G.

- Let
$$X_i = \begin{cases} 1 & \text{if } C_i \text{ is a } K_4, \\ 0 & \text{otherwise,} \end{cases}$$
 and $X \coloneqq \sum_i X_i$.

- It follows that $\Pr[X_i] = p^6 = o(n^{-4})$ and $E[X] = \binom{n}{4}o(n^{-4}) = o(1)$.
- Since X is integer-valued, $\Pr[X \ge 1] \le E[X] < \epsilon$ for sufficiently large n.

Theorem 5. For any $\epsilon > 0$ and sufficiently large n,

if
$$p = \omega(n^{-2/3})$$
, then $\Pr[G \text{ does not contain } K_4] < \epsilon$.

- Suppose that $p = \omega(n^{-2/3})$.
 - In this case $E[X] \rightarrow \infty$ as n tends to infinity.
 - This, however, is <u>not strong enough</u> to guarantee the statement of the theorem.
- We will show that $Var[X] = o((E[X])^2)$.
 - Then we have Pr[X = 0] = o(1) and the theorem holds.

- Suppose that $p = \omega(n^{-2/3})$.
 - We will show that $Var[X] = o((E[X])^2)$.
- To compute Var[X], we need the following lemma.

Lemma 6.

Let $Y_1, ..., Y_m$ be 0-1 random variable and $Y := \sum_i Y_i$.

Then
$$\operatorname{Var}[Y] \leq E[Y] + \sum_{\substack{1 \leq i,j \leq m, \\ i \neq j}} \operatorname{Cov}(Y_i, Y_j)$$
,

where
$$Cov(Y_i, Y_j) := E[Y_i \cdot Y_j] - E[Y_i] \cdot E[Y_j]$$
.

- Suppose that $p = \omega(n^{-2/3})$.
 - We will show that $Var[X] = o((E[X])^2)$.
- For any $1 \le i, j \le m$ with $i \ne j$, consider the covariance of X_i and X_j .
 - If $|C_i \cap C_j| \le 1$, then C_i and C_j share no edge, and X_i and X_j are independent.

Hence, $E[X_iX_j] = E[X_i] \cdot E[X_j]$ and $Cov(X_i, X_j) = 0$.

- For any $1 \le i, j \le m$ with $i \ne j$, consider the covariance of X_i and X_j .
 - If $|C_i \cap C_j| = 2$, then C_i and C_j **share one edge**.

The <u>11 edges</u> in $C_i \cup C_j$ have to appear at the same time for $X_i \cdot X_j$ to be 1.

Hence,

$$Cov(X_i, X_j) = E[X_i X_j] - E[X_i] E[X_j] \le E[X_i X_j] = p^{11}.$$

There are $\binom{n}{6} \cdot \binom{6}{2;2;2}$ such pairs of C_i and C_j .

For any $1 \le i, j \le m$ with $i \ne j$, consider the covariance of X_i and X_j .

- Similarly, if $|C_i \cap C_j| = 3$, then C_i and C_j **share three edges**.

The <u>9 edges</u> in $C_i \cup C_j$ have to appear at the same time for $X_i \cdot X_j$ to be 1.

Hence,

$$Cov(X_i, X_j) = E[X_i X_j] - E[X_i] E[X_j] \le E[X_i X_j] = p^9.$$

There are $\binom{n}{5} \cdot \binom{5}{1;3;1}$ such pairs of C_i and C_j .

- For any $1 \le i, j \le m$ with $i \ne j$, consider the covariance of X_i and X_j .
 - Apply Lemma 6, we obtain

$$Var[X] \leq E[X] + \sum_{i \neq j} Cov(X_i, X_j)$$

$$\leq {n \choose 4} p^6 + {n \choose 6} \cdot {6 \choose 2; 2; 2} p^{11} + {n \choose 5} \cdot {5 \choose 1; 3; 1} p^9$$

$$= \theta(n^6 p^{11})$$

$$= o((E[X])^2) \text{ since } (E[X])^2 = \theta(n^8 p^{12}) \text{ and } p = \omega(n^{-2/3}).$$

It remains to prove the following lemma.

Lemma 6.

Let $Y_1, ..., Y_m$ be 0-1 random variable and $Y := \sum_i Y_i$.

Then
$$\operatorname{Var}[Y] \leq E[Y] + \sum_{\substack{1 \leq i,j \leq m, \\ i \neq j}} \operatorname{Cov}(Y_i, Y_j)$$
.

- By definition, we have $Var[Y] = \sum_i Var[Y_i] + \sum_{i \neq j} Cov(Y_i, Y_j)$.
 - Since Y_i is a 0-1 random variable, $E[Y_i^2] = E[Y_i]$.
 - Hence, $Var[Y_i] = E[Y_i^2] (E[Y_i])^2 \le E[Y_i]$.