Elastic Bayesian Model Calibration

Calibrate the aligned data and shooting vectors using the following model

$$\tilde{z}(t, \mathbf{x_i}) = \tilde{y}(t, \mathbf{x_i}, \theta) + \delta_{\tilde{y}}(t, \mathbf{x_i}) + \epsilon_{\tilde{z}}(t, \mathbf{x_i}), \quad \epsilon_{\tilde{z}}(t, \mathbf{x_i}) \sim \mathcal{N}(0, \sigma_{\tilde{z}}^2)$$

$$\mathbf{v}_{z \to z}(\mathbf{x}_i) = \mathbf{v}_{y \to z}(\mathbf{x}_i, \theta) + \delta_{\mathbf{v}}(\mathbf{x}_i) + \epsilon_{\mathbf{v}}(\mathbf{x}_i), \quad \epsilon_{\mathbf{v}}(\mathbf{x}_i) \sim \mathcal{N}(0, \sigma_v^2 \mathbf{I})$$

Note: The shooting vector will be identity if the data is aligned to the observation (experiment)

Then if heta is calibrated correctly the shooting vectors will be identity

MCMC Sampling

For each experiment the likelihood is a Gaussian likelihood

- 1. We fit an emulator (Gaussian Process, BASS, MARS) to the simulated data
- 2. Uniform priors on heta
- 3. Sample posterior using delayed rejection adaptive Metropolis Hastings
- 4. Implemented using Impala (LANL) or Dakota (SNL) calibration framework