청년 AI · Big data 아카데미 8기

loB를 활용한

사용자 환경 최적화 디바이스

A반 2조 BloT

전체 구상도

ροsco 포스코인재창조원

IoT

심박수 클라우드서버에 저장하기

- 와이파이 모듈이 장착된 아두이노에 심박센서 장착
- 심박데이터를 IOT 클라우드 서비스(ThingSpeak)에 저장

IoT

인터넷으로 LED 제어하기

- 와이파이 모듈이 장착된 아두이노에 LED를 장착하여 웹으로 LED on/off를 제어

HRVAS 는 ibi(inter-beat interval 혹은 R-R interval)파일을 읽은 후 HRV time domain 과 frequency domain 분석을 한다. 그 결과로 amplitude를 분별하고 LF/HF ratio 등의 결과 값을 산출해낸다. 오른쪽 그래프에서는 ECG morphology 가 P, Q, R, S, and T 라는 다섯가지 특징적인 wave로 표현되어있음을 볼 수 있다.

산소포화도 활용 방안

- photoplethysmography(PPG)는 조직의 미세 혈관 층에서 혈액량 변화를 감지하는 데 사용하는 기술로 PPG 센서는 산소포화도의 변화를 결정하는 데 사용된다.
- PPG에서 산소포화도 신호의 최고점을 감지하기 위해 최대 기울기를 사용하였으며 다음의 방정식으로 최고점을 계산할 수 있다.

$$\mathbf{Y}(\mathbf{n}) = \mathbf{X}(\mathbf{n} + 1) - \mathbf{X}(\mathbf{n})$$

[Psychological stress index]

- HBI는 인접한 최고점 사이의 시간 간격
- 아래 식을 통해 PSI 값을 계산할 수 있다.

$$PSI = 100 \times (1 - 0.7 \times PPGAnorm - 0.3 \times HBInorm)$$

openCV

openCV

- openCV는 컴퓨터 비전 관련 기술으로 사람이 시각 정보를 입력값으로 하여 행동하기 이전에 생각하고 판단하는 부분을 컴퓨터가 대신하도록 하는 기술.
- OpenCV는 Computer Vision 관련 프로그래밍을 쉽게 할 수 있도록 도와주는 Open Library로 OpenCV는 영상처리, 3D 구성, 추적, 기계학습, 인식 그리고 딥러닝까지 유용한 기능이 포함되어 있음.

openCV

얼굴 인식을 위한 모듈: face_recognition

© 사진에서 얼굴 찾기

사진에 등장하는 모든 얼굴들을 찾습니다:

import face_recognition
image = face_recognition.load_image_file("your_file.jpg")
face_locations = face_recognition.face_locations(image)

사진에 있는 얼굴의 특징을 찾기&조작하기

각각의 사람의 눈, 코, 입, 턱의 위치와 윤곽을 잡아냅니다.

import face_recognition
image = face_recognition.load_image_file("your_file.jpg")
face_landmarks_list = face_recognition.face_landmarks(image)

openCV

사용할 기술: 실시간 얼굴 인식, 실시간 감정 분석

주된 사용 모듈:

tensorflow(딥러닝을 위한 오픈소스 라이브러리),
Dlib(C++의 복잡한 소프트웨어를 만드는 도구와 기계학습
알고리즘을 포함한 현대의 C++ 툴킷),
keras(케라스는 유저가 손쉽게 딥 러닝을 구현할 수 있도록
도와주는 상위 레벨의 인터페이스)

STT & TTS

STT(Speech to Text)

- STT는 음성 인식(Speech Recognition)라고도 하며, 말소리의 음파를 기계가 해석해 문자형 데이터로 전환하는 기술이다.
- 다양한 화자들이 발성한 음성들을 통계적으로 모델링하여 음향모델(AM)을 구성하며, 말뭉치 수집을 통하여 언어모델(LM)을 구성한다.

TTS(Text to Speech)

- TTS는 음성 합성(Speech Synthesis)라고도 하며, 말소리의 음파를 기계가 자동으로 만들어내는 기술이다.
- 모델이 된 사람의 말소리를 녹음하여 음성 단위로 분할한 다음, 부호를 붙여 합성기에 저장해놓고 입력된 지시에 따라 필요한 음성 단위만을 다시 합성하여 말소리를 만들어낸다.

한눈으로 보는 STT & TTS

음성인식 기술 개요

- 음성 신호를 문자 기호로 해석한다는 차원에서 음성 인식 알고리즘을 디코더(Decoder)라 한다.
- 디코딩 단계에서는 학습 단계 결과인 음향 모델(AM, Acoustic Model), 언어 모델(LM, Language Model)과 발음 사전을 이용하여 입력된 정보를 모델과 비교, 스코어링 하여 적절한 단어 배열을 최종적으로 결정한다.

체성분 분석

스마트 체중계(ex. Mi scale)로부터 얻은 정보를 이용하여 건강 점수(body score) 계산

-활용 방안

: 사용자의 체성분 정보 및 그로부터 산출한 건강정보를 사용자에게 알려주기

Standard Errors assume that the covariance matrix of the errors is correctly specified.

[2] The condition number is large, 3.66e+06. This might indicate that there are strong multicollinearity or other numerical problems.

Thank U for listening!!

[참고] 심박변이도

그림 1-1 심박변이도와 생리적 건강 상태: 개념적 모식도

그림 1-2 심박변이도: 심박에서 개별 박동과 박동 사이 간격의 연속적인 변이를 분석한 것

