CLAIMS

1. (currently amended) A compound of formula (I):

Het
$$CH_2$$
 R^3 CH_2 R^4

wherein:

Het is a five or six membered heteroaromatic ring of the formula
$$x^{i} = x^{i}$$
 in which

one of R^1 and R^2 is optionally substituted heteroaryl and the other is optionally substituted beteroaryl or optionally substituted aryl; X^1 is a bond, X^3 and X^4 are each independently N or C and X^2 and X^5 are independently CH, N, NH, O or S; or X^3 and X^4 are C, one of X^1 , X^2 and X^5 is N and the others are N or CH; but excluding compounds in which X^1 is a bond, one of X^2 and X^5 is N and the other is NH and X^3 and X^4 are both C;

R³ represents a group -L¹-R⁶;

R4 represents hydrogen, alkyl or hydroxyalkyl; or

 \mathbb{R}^3 and \mathbb{R}^4 , when attached to the same carbon atom, may form with the said carbon atom a cycloalkyl, cycloalkenyl or heterocycloalkyl ring or a group $\mathbb{C}=\mathbb{C}H_2$;

R5 represents hydrogen or alkyl;

R⁶ is hydrogen, alkyl, azido, hydroxy, alkoxy, aryl, arylalkyloxy, aryloxy, carboxy, [[(ori]] an acid hiokostere selected from the group consisting of C(=O) NHOH, -C(=O)-CH₂OH, -C(=O)-CH

 \mathbb{R}^7 is hydrogen, alkyl, aryl, arylalkyl, cyclonikyl, heteroaryl, beteroarylalkyl, or heterocyclonikyl;

 \mathbb{R}^8 is alkyl, alkoxy, avyl, arylalkyloxy, cycloalkyl, heteroaryl, heteroarylalkyloxy or heterocycloalkyl;

R⁹ is alkovy, aryl, arylalkyloxy, arylalkyloxycarbonylamino, carboxy, an acid bioisustere selected from the group consisting of C(=0) NHOH, -C(=0)-CH₂OH, -C(=0)-CH₂SH, -C(=0) NH-CN, sulpho, phosphono, alkylsulphonylcarbamovl, tetrazolyl, arylsulphonylcarbamovl, heteroarylsulphonylcarbamovl, N methoxycarbamovl, 3 hydroxy-3-cyclobutene-1,2-dione, 3,5-dioxo-1,2-4-oxadiazolidinyl, 3 hydroxyisoxazolyl and 3 hydoxy 1 methylpyrazolyl, (or an acid bioisostere), cycloalkyl, cyano, halo, heteroaryl, heteroarylalkoxy, heterocycloalkyl, hydroxy or .Ny3y4:

 \mathbb{R}^{10} is alkyl, aryl, arylalkyl, cycloalkyl, heteroaryl, heteroarylalkyl, or heterocycloalkyl; \mathbb{L}^1 represents a direct bond or a straight- or branched-chain alkylene linkage containing from 1 to 6 carbon atoms and optionally substituted by halogen, hydroxy, alkoxy or oxo;

 Y^5 is hydrogen, alkyl, aryl, arylalkyl, $-C(=Z)R^{10}$, $-C(=Z)OR^{10}$ or $-SO_2R^{10}$;

Z is an oxygen or sulphur atom;

m is zero or an integer 1 or 2; and

n is zero or an integer 1 or 2:

and an N-oxide N-oxides thereof, and an ester prodrug their prodrugs; and a pharmacentically acceptable sait and a hydrate of a compound of formula (f) and an N-oxide thereof, and its ester

<u>prodrug</u>, salts and solvates of compounds of formula (I) and N-oxides thereof, and their prodrugs.

2. (cancelled)

3. (previously presented) A compound according to Claim 1 in which Het is $\frac{R^2}{R^2}$

wherein X^2 and X^5 are independently CH, N, NH. O or S, and X^3 and X^4 independently are N or C, but excluding compounds in which one of X^2 and X^5 is N and the other is NH and X^3 and X^4 are both C.

4. (previously presented) A compound according Claim 1 in which the ring

5. (previously presented) A compound according to Claim 1 in which one of \mathbb{R}^1 and \mathbb{R}^2 is 4-pyridyl and the other is 4-fluorophenyl.

6. (cancelled)

7. (cancelled)

8. (currently amended) A compound according to Claim 1 having the formula(Ib)

in which R^3 , R^4 , X^2 , X^3 , X^4 and X^5 are as defined defined in Claim 1, one of R^1 and R^2 is 4-pyridyl and the other is 4-fluorophenyl, an N-oxide thereof, and an ester prodrug; a

pharmacentically acceptable salt and a hydrate of a compound of formula (Ia) and an N-oxide thereof, and its ester prodrug.

and N-oxides thereof, and their prodrugs; and pharmaceutically acceptable salts and solvates of compounds of formula (Ib) and N-oxides thereof, and their prodrugs.

9. (cancelled)

10. (cancelled)

11. (previously presented) A compound according to Claim 1 in which \mathbb{R}^3 and \mathbb{R}^4 are both $C_{1..d}$ alkyl groups.

12. (previously presented) A compound according to Claim 1 in which R^3 is $-C(\equiv 0)-NY^1Y^2$ (where Y^1 and Y^2 are as defined in Claim 1) and R^4 is $C_{1.4}$ alkyl.

13. (previously presented) A compound according to Claim 12 in which $Y^{\hat{I}}$ is hydrogen and $Y^{\hat{I}}$ is alkyl or cycloalkyl.

14. (cancelled)

15. (previously presented) A pharmaceutical composition comprising a compound according to Claim I together with a pharmaceutically acceptable carrier or excipient.

16-20 (cancelled)