Leçon 156 : Exponentielle de matrices. Applications.

Développements :

Surjectivité de l'exponentielle dans le cas complexe, Homéomorphisme entre H_n et H_n^{++}

Bibliographie:

Szpirglas, Ahmed Lesfari Equations différentielles ordinaires et équations aux dérivées partielles, Gourdon Algèbre, H2G2 tome 1 nouvelles histoires, OA

Plan

 $\mathbb{K} = \mathbb{R}$ ou \mathbb{C}

1 Première approche de l'exponentielle

1.1 Définition et premières propriétés

Définition 1 (Sz p. 349). Exponentielle de matrices par la série convergente

Proposition 2 (Sz p. 349). Si M et N commutent, exp(M+N) =

Contre-exemple 3. Cas où ça commute pas

Corollaire 4 (Sz p. 349). $exp(M) \in GL$

Proposition 5 (Sz p. 350+H2G2 p. 355 pour compléter). Tout un tas de relations sur l'exponentielle + le fait que c'est un polynôme.

 ${\bf Application} \ {\bf 6.} \ {\bf Condition} \ {\bf n\'ecessaire} \ {\bf pour} \ {\bf \^{e}tre} \ {\bf une} \ {\bf exponentielle} \ {\bf de} \ {\bf matrices} \ {\bf r\'eelle}$

1.2 Calculs d'exponentielles de matrices

Proposition 7 (Sz p. 350). Tout un autre tas de relations sur l'exponentielle mais qui vraiment propre au calcul (ex : exp d'une matrice diagonale)

Exemple 8. ex de calculs

Proposition 9 (Gou p. 196+Sz p.350). Dunford appliqué au calcul de l'exponentielle de matrices

Exemple 10 (Gou ex1 p.199).

2 Propriétés analytiques/de régularité de l'exponentielle

2.1 Différentielle et inversion locale

2.1.1 Différentiabilité

Proposition 11 (Sz p. 350). Différentiabilité en 0

Proposition 12 (Sz p. 352). Classe C^1 et différentielle en M

Proposition 13 (H2G2 p. 357). Homéo entre S_n et S_n^{++}

Proposition 14 (H2G2 p. 357). Homéo entre H_n et H_n^{++}

 ${\bf Application~15}$ (H2G2 p. 358). Csqces topologiques de la décomposition polaire

2.1.2 Injectivité?

Proposition 16 (Sz p. 354). Non injectivite

Proposition 17 (Sz p. 354). Difféo local en 0

Application 18 (Sz p. 354). Sous groupes arbitrairement petits

2.1.3 Logarithme matriciel : un inverse à droite

Définition 19 (Sz p. 356). Logarithme matriciel

Lemme 20 (Sz p. 356). Dérivée de log(I + tN)

Théorème 21 (Sz p. 356). exp(log(M)) = M

Application 22 (Sz p. 357). Limite d'exponentielles

Définition 23 (Sz p. 357). Logarithme pour les unipotents

Proposition 24 (Sz p. 357). Homéo entre Nilpotent et Unipotent avec inverse ce log

Corollaire 25 (0A p.215). A diagonalisable ssi exp(A) l'est

2.2 Image de l'exponentielle

Théorème 26 (Sz p. 358). Surjectivité de l'exponentielle sur $\mathbb C$

Application 27 (Sz p. 358). GL_n connexe par arcs

Proposition 28 (Sz p. 359). Image dans le cas réel

Exemple 29.

Proposition 30 (Sz p. 365). Image de A_n par exp

3 L'exponentielle de matrices dans la résolution des équations différentielles

3.1 Système à coefficients constants

Proposition 31 (Sz p. 351). Dérivée de exp(tA)

Théorème 32 (Les p.75). Solution générale

Exemple 33 (Les p.77).

Théorème 34 (Sz p.360). Stabilité du système

3.2 Système à coefficients non constants

Définition 35 (Les p.62). Résolvante

Théorème 36 (Les p.64). Résolvante et solution de l'equation

Proposition 37 (Les p. 64). Equation de Jacobi-Liouville

Proposition 38 (Les p.65). Résolvante quand ça commute