

Systeme II

3. Die Datensicherungsschicht

Christian Schindelhauer
Technische Fakultät
Rechnernetze und Telematik
Albert-Ludwigs-Universität Freiburg
Version 15.05.2017

Fehlerkontrolle

- Zumeist gefordert von der Vermittlungsschicht
 - Mit Hilfe der Frames
- Fehlererkennung
 - Gibt es fehlerhaft übertragene Bits?
- Fehlerkorrektur
 - Behebung von Bitfehlern
 - Vorwärtsfehlerkorrektur (Forward Error Correction)
 - Verwendung von redundanter Kodierung, die es ermöglicht Fehler ohne zusätzliche Übertragungen zu beheben
 - Rückwärtsfehlerkorretur (Backward Error Correction)
 - Nach Erkennen eines Fehlers, wird durch weitere Kommunikation der Fehler behoben

Fehlerkontrolle

Fehlererkennung

Fehlerkorrektur

Vorwärtsfehlerkorrektur Rückwärtsfehlerkorrektur 5

Rückwärtsfehlerkorrektur

- Bei Fehlererkennung muss der Frame nochmal geschickt werden
- Wie ist das Zusammenspiel zwischen Sender und Empfänger?

to_lower, from_lower beinhalten CRC oder (bei Bedarf) Vorwärtsfehlerkorrektur

Einfaches Simplex-Protokoll mit Bestätigungen

- Empfänger bestätigt Pakete dem Sender
- Der Sender wartet für eine bestimmte Zeit auf die Bestätigung (acknowledgment)
- Falls die Zeit abgelaufen ist, wird das Paket wieder versendet
- Erster Lösungsansatz

Sender

Empfänger

Diskussion

- Probleme
 - Sender ist schneller als Empfänger

- Was passiert, wenn Bestätigungen verloren gehen?

2. Versuch

- Lösung des ersten Problems
 - Ein Paket nach dem anderen

Empfänger

From_lower (p); To_upper(p), to_lower (ack)

Diskussion

Protokoll etabliert elementare Flusskontrolle

Diskussion

2. Fall: Verlust von Bestätigung

Sender Empfänger

Probleme der 2. Version

- Sender kann nicht zwischen verlorenem Paket und verlorener Bestätigung unterscheiden
 - Paket muss neu versendet werden
- Empfänger kann nicht zwischen Paket und redundanter Kopie eines alten Pakets unterscheiden
 - Zusätzliche Information ist notwendig

Idee:

- Einführung einer Sequenznummer in jedes Paket, um den Empfänger Identifikation zu ermöglichen
- Sequenznummer ist im Header jedes Pakets
- Hier: nur 0 oder 1
- Notwendig in Paket und Bestätigung
 - In der Bestätigung wird die Sequenznummer des letzten korrekt empfangenen Pakets mitgeteilt
 - (reine Konvention)

3. Versuch: Bestätigung und Sequenznummern

3. Version Alternating Bit Protocol

- Die 3. Version ist eine korrekte Implementation eines verlässlichen Protokolls über einen gestörten Kanal
 - Alternating Bit Protokoll
 - aus der Klasse der Automatic Repeat reQuest (ARQ)
 Protokolle
 - beinhaltet auch eine einfache Form der Flusskontrolle
- Zwei Aufgaben einer Bestätigung
 - Bestätigung, dass Paket angekommen ist
 - F Erlaubnis ein neues Paket zu schicken

Alternating Bit Protocol – Effizienz

- Effizienz η
 - Definiert als das Verhältnis zwischen
 - der Zeit um zu senden
 - und der Zeit bis neue Information gesendet werden kann
 - (auf fehlerfreien Kanal)
 - $\eta = T_{packet} / (T_{packet} + d + T_{ack} + d)$
- Bei großen Delay ist das Alternating Bit Protocol nicht effizient

Verbesserung der Effizienz

- Durchgehendes Senden von Paketen erhöht Effizienz
 - Mehr "ausstehende" nicht bestätigte Pakete erhöhen die Effizienz
 - "Pipeline" von Paketen
- Nicht mit nur 1-Bit-Sequenznummer möglich

Gleitende Fenster

01234567801234567

- Der Raum für Sequenznummern wird vergrößert
 - auf n Bits oder 2ⁿ Sequenznummern
- Nicht alle davon können gleichzeitig verwendet werden
 - auch bei Alternating Bit Protocol nicht möglich
- "Gleitende Fenster" (sliding windows) bei Sender und Empfänger behandeln dieses Problem
 - Sender: Sende-Fenster
 - Folge von Sequenznummer, die zu einer bestimmten Zeit gesendet werden können
 - Empfänger: Empfangsfenster
 - Folge von Sequenznummer, die er zu einer bestimmten Zeit zu akzeptieren bereit ist
 - Größe der Fenster können fest sein oder mit der Zeit verändert werden
 - Fenstergröße entspricht Flusskontrolle

Beispiel

- "Sliding Window"-Beispiel für n=3 und fester Fenstergröße = 1
- Der Sender zeigt die momentan unbestätigten Sequenznummern an
 - Falls die maximale Anzahl nicht bestätigter Frames bekannt ist, dann ist das das Sende-Fenster

- a. Initial: Nichts versendet
- b. Nach Senden des 1.Frames mit Seq.Nr. 0
- c. Nach dem Empfang des 1. Frame

d. Nach dem Empfang der Bestätigung

Übertragungsfehler und Empfangsfenster

Annahme:

- Sicherungsschicht muss alle Frames korrekt in der richtigen Reihenfolge verschicken
- Sender "pipelined" Paket zur Erhöhung der Effizienz

Bei Paketverlust:

- werden alle folgenden Pakete ebenfalls fallen gelassen

Go-back-N

- Mit Empfangsfenster der Größe 1 können die Frames, die einem verloren Frame folgen, nicht durch den Empfänger bearbeitet werden
 - Sie können einfach nicht bestätigt werden, da nur eine Bestätigung für des letzte korrekt empfangene Paket verschickt wird
- Der Sender wird einen "Time-Out" erhalten
 - Alle in der Zwischenzeit versandten Frames müssen wieder geschickt werden
 - "Go-back N" Frames!

Kritik

- Unnötige Verschwendung des Mediums
- Spart aber Overhead beim Empfänger

Selektierte Wiederholung

Angenommen

- der Empfänger kann die Pakete puffern, welche in der Zwischenzeit angekommen sind
- d.h. das Empfangsfenster ist größer als 1

Beispiel

- Der Empfänger informiert dem Sender fehlende Pakete mit negativer Bestätigung
- Der Sender verschickt die fehlenden Frames selektiv
- Sobald der fehlende Frame ankommt, werden alle (in der korrekten Reihenfolge) der Vermittlungsschicht übergeben

Duplex-Betrieb und Huckepack

Ach A > B

Simplex

 Senden von Informationen in einer Richtung

Duplex

 Senden von Informationen in beide Richtungen

Bis jetzt:

- Simplex in der Vermittlungsschicht
- Duplex in der Sicherungsschicht
- Duplex in den höheren Schichten
 - Nachrichten und Datenpakete separat in jeder Richtung
 - Oder Rucksack-Technik
 - Die Bestätigung wird im Header eines entgegen kommenden Frames gepackt

Der Mediumzugriff in der Sicherungsschicht

- Die Bitübertragung kann erst stattfinden, wenn das Medium reserviert wurde
 - Funkfrequenz bei drahtloser Verbindung (z.B. W-LAN 802.11, GSM, GPRSM)
 - Zeitraum bei einem Kabel mit mehreren Rechnern (z.B. Ethernet)
- Aufgabe der Sicherungsschicht
 - Koordination zu komplex für die "einfache" Bitübertragungsschicht

Der Mediumzugriff in der Sicherungsschicht

- Statisches Multiplexen
- Dynamische Kanalbelegung
 - Kollisionsbasierte Protokolle
 - Kollisionsfreie Protokolle (contention-free)
 - Protokolle mit beschränkten Wettbewerb (limited contention)

Statisches Multiplexen

- Gegeben sei eine einzelne Leitung (Ressource)
- Mehreren
 Kommunikations verbindungen werden feste
 Zeiträume/Kanäle (slots/
 channels) zugewiesen
 - Oder: Feste Frequenzbänder werden ihnen zugeweisen
- Feste Datenraten und entsprechenden Anteilen am Kanal
 - Quellen lasten die Leitung aus

Verkehrsspitzen (bursty traffic)

- Problem: Verkehrsspitzen (bursty traffic)
 - Definition: Großer Unterschied zwischen Spitze und Durchschnitt
 - In Rechnernetzwerken: Spitze/Durchschnitt = 1000/1 nicht ungewöhnlich

Verkehrsspitzen und statisches Multiplexen

- Leitung für statisches Multiplexen:
- entweder
 - Genügend große Kapazität um mit dem Peak fertig zu werden
 - Verschwendung, da die Durchschnittsrate den Kanal nicht auslasten wird

- oder
 - Ausgelegt für Durchschnittsrate
 - Versehen mit Warteschlangen (queue)
 - Vergrößerung der Verzögerung (delay) der Pakete

Verkehrsspitzen und statisches Multiplexen - Verzögerung

- Vergleich der Verzögerung
- Ausgangsfall:
 - Kein Multiplexing
 - Einfacher Datenquelle mit Durchschnittsrate ρ (bits/s) und der Leitungskapazität C bits/s
 - Sei T die Verzögerung
- Multiplex-Fall
 - Die Datenquelle wird in N Quellen unterteilt mit der selben Datenrate
 - Statischer Multiplex über die selbe Leitung
 - Dann ergibt sich (im wesentlichen) die Verzögerung: NT
- Schluss: Statisches Multiplexen vergrößert den Delay eines Pakets in der Regel um den Faktor N
 - Grund: Bei einer Verkehrsspitze sind n-1 Kanäle leer