Communication—Efficient Distributed Algorithms for Density Estimation

Abhiram Natarajan

Joint work with Ilias Diakonikolas (USC), Elena Grigorescu (Purdue), Jerry Li (MIT), Krzysztof Onak (IBM), and Ludwig Schmidt (MIT)

Oulline

Motivation and Problem Definition

Learning Unstructured Distributions in ℓ_1

Learning k-Histograms in ℓ_2

Other Results

Conclusion

Can Distributed Cooks make Good Broth?

too much data to store on one machine

Source: Google Images

Can Distributed Cooks make Good Broth?

too much data to store on one machine

Source: Google Images

▶ distributed computation is necessary

Can Distributed Cooks make Good Broth?

too much data to store on one machine

Source: Google Images

- ▶ distributed computation is necessary
- ▶ need communication-efficient distributed algorithms

lacktriangle study density estimation - a fundamental statistical task

- ▶ study density estimation a fundamental statistical task
- ▶ communication-efficient algorithms vs instrinsic limits

- ▶ study density estimation a fundamental statistical task
- communication-efficient algorithms vs instrinsic limits
- obtain optimal and near-optimal algorithms in a variety of settings

- ▶ study density estimation a fundamental statistical task
- ▶ communication-efficient algorithms vs instrinsic limits
- obtain optimal and near-optimal algorithms in a variety of settings
- ► time-complexity vs sample-complexity vs communication-complexity

▶ draw samples from unknown distributon (target distribution)

▶ draw samples from unknown distributon (target distribution)

▶ run algorithm on samples to output *hypothesis* distribution

▶ draw samples from unknown distributon (target distribution)

▶ run algorithm on samples to output *hypothesis* distribution

▶ hope hypothesis is *close* to target distribution

- ▶ draw samples from unknown distribution (target distribution)
 - ${\mathcal D}$ family of distributions over $[n],\ P\in {\mathcal D}$ target distribution draw m i.i.d. samples X_1,\ldots,X_m from P
- run algorithm on samples to output hypothesis distribution

▶ hope hypothesis is *close* to target distribution

- ▶ draw samples from unknown distribution (target distribution)
 - ${\mathcal D}$ family of distributions over $[n],\ P\in {\mathcal D}$ target distribution draw ${\mathfrak m}$ i.i.d. samples X_1,\ldots,X_m from P
- run algorithm on samples to output hypothesis distribution
 - $\theta:[n]^m\to \mathcal{D}$ estimator output hypothesis distribution $\hat{P}=\theta(X_1,\dots,X_m)$
- ▶ hope hypothesis is *close* to target distribution

- draw samples from unknown distribution (target distribution)
 - ${\mathcal D}$ family of distributions over $[n],\ P\in {\mathcal D}$ target distribution draw m i.i.d. samples X_1,\ldots,X_m from P
- run algorithm on samples to output hypothesis distribution
 - $\theta:[n]^m\to \mathcal{D}$ estimator output hypothesis distribution $\hat{P}=\theta(X_1,\dots,X_m)$
- ▶ hope hypothesis is *close* to target distribution

error metric $d: \mathcal{D} \times \mathcal{D} \to \mathbb{R}$ $d(\hat{P},\,P)$ must be low

lacksquare ℓ_1 and ℓ_2 error: $d(\hat{P},P):=\|\hat{P}-P\|_{
ho\in\{1,2\}}$

- lacksquare ℓ_1 and ℓ_2 error: $d(\hat{P},P) \coloneqq \|\hat{P}-P\|_{
 ho \in \{1,2\}}$
- $ightharpoonup \hat{P}$ is a random variable, so is $\|\hat{P} P\|_{\rho}$

- lacksquare ℓ_1 and ℓ_2 error: $d(\hat{P},P):=\|\hat{P}-P\|_{
 ho\in\{1,2\}}$
- $ightharpoonup \hat{P}$ is a random variable, so is $\|\hat{P} P\|_{p}$
- ▶ fix error $\varepsilon \in (0, 1)$ we need

$$\mathsf{E}\left[\|\hat{P} - P\|_{\rho}\right] \leqslant \varepsilon$$

- lacksquare ℓ_1 and ℓ_2 error: $d(\hat{P},P) \coloneqq \|\hat{P}-P\|_{
 ho \in \{1,2\}}$
- $ightharpoonup \hat{P}$ is a random variable, so is $\|\hat{P} P\|_{p}$
- ightharpoonup fix error $\varepsilon \in (0,1)$ we need

$$\mathsf{E}\left[\|\hat{P}-P\|_{\rho}\right]\leqslant \epsilon$$

called Den-Est $(\mathcal{D}, \varepsilon, \ell_{\rho})$ problem

Sample Complexity of Density Estimation

Definition

$$m_1=m_1(n,\,arepsilon)$$
 is sufficient sample size for Den-Est $(\mathcal{D},\,arepsilon,\,\ell_{
ho})$

 \blacktriangleright there exists algorithm $\mathcal{A}_{\mathcal{D}}$ takes \mathfrak{m}_1 samples and

$$\mathsf{E}\left[\|\hat{\mathsf{P}} - \mathsf{P}\|_{\mathsf{P}}\right] \leqslant \varepsilon \qquad \forall \, \mathsf{P} \in \mathcal{D}$$

Sample Complexity of Density Estimation

Definition

$$\mathfrak{m}_1=\mathfrak{m}_1(\mathfrak{n},\,\epsilon)$$
 is sufficient sample size for Den-Est $(\mathfrak{D},\,\epsilon,\,\ell_
ho)$

lacktriangle there exists algorithm ${\cal A}_{\cal D}$ takes m_1 samples and

$$\mathsf{E}\left[\|\hat{\mathsf{P}} - \mathsf{P}\|_{\mathsf{p}}\right] \leqslant \epsilon \qquad \forall \, \mathsf{P} \in \mathcal{D}$$

 $m_2=m_2(n,\epsilon)$ is necessary sample size for Den-Est $({\mathbb D},\epsilon,\ell_{
ho})$

▶ any conceivable algorithm must take m₂ samples

Communication Complexity

- ► communication complexity introduced by [Yao, 1979]:
 - ightharpoonup players contain information X_1, \ldots, X_n known only to them
 - ▶ communicate to referee via a protocol to compute $f(X_1, ..., X_n)$
 - ▶ we care about number of bits communicated

Communication Complexity

- communication complexity introduced by [Yao, 1979]:
 - ightharpoonup players contain information X_1,\ldots,X_n known only to them
 - ▶ communicate to referee via a protocol to compute $f(X_1, ..., X_n)$
 - ▶ we care about number of bits communicated

► communication complexity - pratical and more!

Communication Complexity

- communication complexity introduced by [Yao, 1979]:
 - ightharpoonup players contain information X_1, \ldots, X_n known only to them
 - ightharpoonup communicate to referee via a protocol to compute $f(X_1, \ldots, X_n)$
 - ▶ we care about number of bits communicated

- communication complexity pratical and more!
- ➤ applications in seemingly unrelated complexity theory areas turing machines, decision trees, geometric problems, etc.

ightharpoonup sufficient sample size for Den-Est(\mathfrak{D} , ε, ℓ_{ρ})

- ightharpoonup lpha sufficient sample size for Den-Est $(\mathfrak{D}, \varepsilon, \ell_{\rho})$
- lackbox distribute lpha samples from some $P\in \mathcal{D}$ amongst \mathfrak{m} machines each machine gets $s=rac{lpha}{\mathfrak{m}}$ samples

- ightharpoonup lpha sufficient sample size for Den-Est $(\mathfrak{D}, \varepsilon, \ell_{\rho})$
- lackbox distribute lpha samples from some $P\in \mathfrak{D}$ amongst \mathfrak{m} machines each machine gets $s=rac{lpha}{\mathfrak{m}}$ samples
- ightharpoonup machines communicate to a referee, transcript is Π

- ightharpoonup lpha sufficient sample size for Den-Est($\mathfrak{D}, \varepsilon, \ell_{\rho}$)
- ▶ distribute α samples from some $P \in \mathcal{D}$ amongst \mathfrak{m} machines each machine gets $s = \frac{\alpha}{\mathfrak{m}}$ samples
- ightharpoonup machines communicate to a referee, transcript is Π
- ightharpoonup referee runs algorithm on Π to output hypothesis distribution \hat{P}

$$\sup_{P \in \mathcal{D}} E \left[\|\hat{P} - P\|_1 \right] \leqslant \varepsilon$$

- ightharpoonup lpha sufficient sample size for Den-Est($\mathfrak{D}, \, \varepsilon, \, \ell_{
 ho}$)
- lacktriangleright distribute lpha samples from some $P\in \mathfrak{D}$ amongst \mathfrak{m} machines each machine gets $s=rac{lpha}{\mathfrak{m}}$ samples
- ightharpoonup machines communicate to a referee, transcript is Π
- ightharpoonup referee runs algorithm on Π to output hypothesis distribution \hat{P}

$$\sup_{\mathbf{P}\in\mathcal{D}} \mathsf{E}\left[\|\hat{\mathbf{P}}-\mathbf{P}\|_1\right] \leqslant \varepsilon$$

called Dist-DE(\mathcal{D} ,m, ε , ℓ_{ρ}) problem

Communication Model - Simultaneous

referee

 $X_1^{(1)}$ \vdots $X_s^{(1)}$

 $X_1^{(2)}$: $X_2^{(2)}$

1.A.M.

(---)

 $X_s^{(m)}$

Communication Model - Simultaneous

blackboard (६)

referee

 $X_{1}^{(1)}$ \vdots $X_{s}^{(1)}$

 $X_1^{(2)}$ \vdots $X_s^{(2)}$

 $X_1^{(m)}$ \vdots $X_s^{(m)}$

Communication Model — Interactive

Communication Model — Interactive

Main Conceptual Messages

▶ when unstructured, naive protocol is best we can do

Main Conceptual Messages

▶ when unstructured, naive protocol is best we can do

▶ when structure is present (k-histograms, monotone), can be exploited for non-trivial improvement

Communication Complexity of Density Estimation

Definition

Protocol $\Pi_{\mathcal{D}}$ solves Dist-DE $(\mathcal{D}, \mathfrak{m}, \varepsilon, \ell_{\rho})$ with $\beta_1 := \mathcal{CC}(\Pi_{\mathcal{D}})$ bits

 \blacktriangleright in $\Pi_{\mathcal{D}}$ machines communicate at most β_1 bits and referee outputs hypothesis

$$\mathsf{E}\left[\|\hat{\mathsf{P}} - \mathsf{P}\|_{\rho}\right] \leqslant \varepsilon \qquad \forall \, \mathsf{P} \in \mathcal{D}$$

Communication Complexity of Density Estimation

Definition

Protocol $\Pi_{\mathcal{D}}$ solves Dist-DE(\mathcal{D} , \mathfrak{m} , ε , ℓ_{ρ}) with $\beta_1 := \mathcal{CC}(\Pi_{\mathcal{D}})$ bits

 \blacktriangleright in $\Pi_{\mathcal{D}}$ machines communicate at most β_1 bits and referee outputs hypothesis

$$\mathsf{E}\left[\|\hat{\mathsf{P}} - \mathsf{P}\|_{\rho}\right] \leqslant \varepsilon \qquad \forall \, \mathsf{P} \in \mathcal{D}$$

$$\beta_2 := \mathcal{CC}(\mathsf{Dist}\text{-}\mathsf{DE}(\mathfrak{D}, \mathfrak{m}, \varepsilon, \ell_{\rho}))$$

▶ any conceivable protocol must take $β_2$ bits to solve Dist-DE(𝔻, m, ε, $ℓ_ρ$)

Outline

Motivation and Problem Definition

Learning Unstructured Distributions in ℓ_1

Learning k-Histograms in ℓ_2

Other Results

Conclusion

Folklore Result in Density Estimation

Theorem (Learning unstructured dists. in ℓ_1)

 $\mathfrak{D}_{\mathfrak{n}}$ - unstructured distributions over $[\mathfrak{n}].$ For Den-Est($\mathfrak{D}_{\mathfrak{n}},\,\epsilon,\,\ell_1)$

 $ightharpoonup m_1 = O\left(\frac{n}{\varepsilon^2}\right)$ is sufficient sample size

Folklore Result in Density Estimation

Theorem (Learning unstructured dists. in ℓ_1)

 $\mathfrak{D}_{\mathfrak{n}}$ - unstructured distributions over $[\mathfrak{n}].$ For Den-Est($\mathfrak{D}_{\mathfrak{n}},\,\epsilon,\,\ell_1)$

- $ightharpoonup m_1 = O\left(rac{n}{arepsilon^2}
 ight)$ is sufficient sample size
- $ightharpoonup m_2 = \Omega\left(rac{n}{arepsilon^2}
 ight)$ is necessary sample size

Folklore Result in Density Estimation

Theorem (Learning unstructured dists. in ℓ_1)

 $\mathfrak{D}_{\mathfrak{n}}$ - unstructured distributions over $[\mathfrak{n}].$ For Den-Est($\mathfrak{D}_{\mathfrak{n}},\,\epsilon,\,\ell_1)$

- $ightharpoonup m_1 = O\left(rac{n}{\epsilon^2}
 ight)$ is sufficient sample size
- $ightharpoonup m_2 = \Omega\left(rac{n}{arepsilon^2}
 ight)$ is necessary sample size

Moreover, algorithm $\mathcal{A}_{\mathfrak{D}_{\mathfrak{n}}}$ outputs empirical distribution of samples

$$\hat{P}(\mathfrak{i}) = \frac{\textit{number of } \mathfrak{i} \textit{ amongst samples}}{m_1} \qquad \forall \mathfrak{i} \in [\mathfrak{n}]$$

 \mathcal{D}_n - unstructured distributions over [n] $\alpha = \frac{cn}{\epsilon^2} \text{ is sufficient sample size for Den-Est}(\mathcal{D}_n, \epsilon, \ell_1)$

 \mathfrak{D}_n - unstructured distributions over [n] $\alpha = \frac{cn}{\epsilon^2} \text{ is sufficient sample size for Den-Est}(\mathfrak{D}_n, \epsilon, \ell_1)$

Theorem (Communication upper bound)

There exists trivial protocol $\Pi_{\mathfrak{D}_n}$ solves Dist-DE(\mathfrak{D}_n , \mathfrak{m} , ϵ , ℓ_1) with

$$\mathfrak{CC}(\Pi_{\mathfrak{D}_{\mathfrak{n}}}) = O\left(\frac{\mathfrak{n}}{\varepsilon^2}\log\mathfrak{n}\right)$$
,

for all $1 \leqslant m \leqslant \alpha$.

 \mathfrak{D}_n - unstructured distributions over [n] $\alpha = \frac{cn}{\epsilon^2} \text{ is sufficient sample size for Den-Est}(\mathfrak{D}_n, \epsilon, \ell_1)$

Theorem (Communication upper bound)

There exists trivial protocol $\Pi_{\mathfrak{D}_n}$ solves Dist-DE(\mathfrak{D}_n , \mathfrak{m} , ϵ , ℓ_1) with

$$\mathfrak{CC}(\Pi_{\mathfrak{D}_{\mathfrak{n}}}) = O\left(\frac{\mathfrak{n}}{\epsilon^2}\log\mathfrak{n}\right)$$
 ,

for all $1 \leqslant m \leqslant \alpha$.

 $\Pi_{\mathcal{D}_{\mathfrak{n}}}$ just makes every machine send it's sample using $\log \mathfrak{n}$ bits.

 \mathfrak{D}_n - unstructured distributions over [n] $\alpha = \frac{cn}{\epsilon^2} \text{ is sufficient sample size for Den-Est}(\mathfrak{D}_n, \epsilon, \ell_1)$

Theorem (Communication upper bound)

There exists trivial protocol $\Pi_{\mathfrak{D}_n}$ solves Dist-DE(\mathfrak{D}_n , \mathfrak{m} , ε , ℓ_1) with

$$\mathfrak{CC}(\Pi_{\mathfrak{D}_{\mathfrak{n}}}) = O\left(\frac{\mathfrak{n}}{\epsilon^2}\log\mathfrak{n}\right)$$
 ,

for all $1 \leq m \leq \alpha$.

 $\Pi_{\mathcal{D}_n}$ just makes every machine send it's sample using log n bits.

Theorem (Communication lower bound)

$$\mathfrak{CC}(\mathsf{Dist}\text{-}\mathsf{DE}(\mathfrak{D},\,\alpha,\,\epsilon,\,\ell_\rho)) = \Omega\left(\frac{n}{\epsilon^2}\log n\right).$$

construct family of nearly uniform distributions on [n]: for elements 2i-1 and 2i, probabilities are $\frac{1+100\delta_i\epsilon}{n}$ and $\frac{1-100\delta_i\epsilon}{n}$, δ_i uniform on $\{-1,1\}$

construct family of *nearly uniform* distributions on [n]: for elements 2i-1 and 2i, probabilities are $\frac{1+100\delta_i\epsilon}{n}$ and $\frac{1-100\delta_i\epsilon}{n}$, δ_i uniform on $\{-1,1\}$

construct family of *nearly uniform* distributions on [n]: for elements 2i-1 and 2i, probabilities are $\frac{1+100\delta_i\epsilon}{n}$ and $\frac{1-100\delta_i\epsilon}{n}$, δ_i uniform on $\{-1,1\}$

- learning distribution is equivalent to learning $\{\delta_i\}$

- ightharpoonup contradiction: there is protocol sends $o\left(rac{n}{arepsilon^2}\log n
 ight)$ bits
 - ▶ can't send too many long messages
 - ▶ can't send too many short messages with few repetitions
 - ▶ there must be lots of repetitions

- ightharpoonup contradiction: there is protocol sends $o\left(\frac{n}{\varepsilon^2}\log n\right)$ bits
 - ▶ can't send too many long messages
 - ▶ can't send too many short messages with few repetitions
 - ▶ there must be lots of repetitions

▶ information content in message is only $O(\varepsilon^2/t)$ when t repetitions, while coin toss provides $\Theta(\varepsilon^2)$ information

- ightharpoonup contradiction: there is protocol sends $o\left(\frac{n}{\epsilon^2}\log n\right)$ bits
 - ▶ can't send too many long messages
 - ▶ can't send too many short messages with few repetitions
 - ▶ there must be lots of repetitions

- ▶ information content in message is only $O(\varepsilon^2/t)$ when t repetitions, while coin toss provides $\Theta(\varepsilon^2)$ information
- ▶ less information means more error (Fano's inequality)

Other Regimes of Unstructured Dists. in ℓ_1

samp. per mach.	lower bound	upper bound
1	$\Omega\left(\frac{n}{\varepsilon^2}\log n\right)$	$O\left(\frac{n}{\varepsilon^2}\log n\right)$
$s = \Theta\left(rac{n}{arepsilon} ight)$	$\Omega\left(\mathfrak{n}\lograc{1}{arepsilon} ight)$	$O\left(\frac{n}{\varepsilon}\log\frac{1}{\varepsilon}\right)$
$s = \Theta\left(\frac{n}{\epsilon^2}\right)$	$\Omega\left(\mathfrak{n}\log\frac{1}{\varepsilon}\right)$	$O\left(n\log\frac{1}{\epsilon}\right)$
A STATE OF THE STA		1034-101.003/101

Oulline

Motivation and Problem Definition

Learning Unstructured Distributions in ℓ_1

Learning k-Histograms in ℓ_2

Other Results

Conclusion

k-histogram Distributions

▶ k-histogram over [n] is a probability distribution that is piecewise constant over some set of k intervals over [n]

k-histogram Distributions

▶ k-histogram over [n] is a probability distribution that is piecewise constant over some set of k intervals over [n]

 $ightharpoonup \Theta\left(rac{k}{arepsilon^2}
ight)$ samples necessary and sufficient

k-histogram Distributions

▶ k-histogram over [n] is a probability distribution that is piecewise constant over some set of k intervals over [n]

- $ightharpoonup \Theta\left(\frac{k}{\varepsilon^2}\right)$ samples necessary and sufficient
- ightharpoonup when partition known, reduces to unstructured $\Theta(rac{k}{\epsilon^2}\log k)$ bits

k—histogram Distributions

▶ k-histogram over [n] is a probability distribution that is piecewise constant over some set of k intervals over [n]

- $ightharpoonup \Theta\left(rac{k}{\varepsilon^2}\right)$ samples necessary and sufficient
- ▶ when partition known, reduces to unstructured $\Theta(\frac{k}{\varepsilon^2}\log k)$ bits
- ▶ when partition unknown, trivial protocol uses too much communication $\Theta(\frac{k}{s^2}\log n)$ bits

Learning k-histograms in ℓ_2

 \blacktriangleright at each step, algorithm maintains a partition of [n]

Learning k-histograms in l2

- ightharpoonup at each step, algorithm maintains a partition of [n]
- ▶ in every iteration splits partition at lowest error point

Learning k-histograms in l₂

- lacktriangle at each step, algorithm maintains a partition of [n]
- ▶ in every iteration splits partition at lowest error point
- ► returns flattening over final partition

Learning k-histograms in ℓ_2

- lacktriangle at each step, algorithm maintains a partition of [n]
- ▶ in every iteration splits partition at lowest error point
- ► returns flattening over final partition

Key idea to approximate error:

- \blacktriangleright server i has access to $x_i \in \mathbb{R}^n$ (vector of counts)
- ▶ using [Johnson and Lindenstrauss, 1984] lemma, get accurate estimate of $||x||_2^2$, where $x = \sum_i x_i$

Some Regimes for k-histograms in ℓ_2

ε	samp. per mach.	lower bound	upper bound
$\Theta\left(\frac{1}{\sqrt{k}}\right)$	$\leqslant \tilde{O}(k\log n)$	$\Omega(k\log\frac{n}{k} + \sqrt{k}\log k)$	O(k log n)
	$> \tilde{O}(k \log n)$	$\Omega(k\log\frac{n}{k} + \sqrt{k}\log k)$	$\tilde{O}(\frac{k^2}{s}\log n)$

histogram Approximation

Our algorithm is agnostic!

Oulline

Motivation and Problem Definition

Learning Unstructured Distributions in ℓ_1

Learning k-Histograms in ℓ_2

Other Results

Conclusion

Other results

- near optimal bounds for distributed learning in all regimes for:
 - ightharpoonup unstructured distributions in ℓ_2 (similar to ℓ_1)
 - ▶ k-histograms in ℓ_1 (quite different from ℓ_2 , need to approximate \mathcal{A}_k distance)
 - ▶ monotone distributions in ℓ₁ (uses Birgé oblivious decomposition [Birgé, 1987b, Birgé, 1987a])

Other results

- near optimal bounds for distributed learning in all regimes for:
 - ightharpoonup unstructured distributions in ℓ_2 (similar to ℓ_1)
 - ▶ k-histograms in ℓ_1 (quite different from ℓ_2 , need to approximate \mathcal{A}_k distance)
 - ▶ monotone distributions in ℓ₁ (uses Birgé oblivious decomposition [Birgé, 1987b, Birgé, 1987a])
- ▶ our algorithms are agnostic

Other results

- ▶ near optimal bounds for distributed learning in all regimes for:
 - ightharpoonup unstructured distributions in ℓ_2 (similar to ℓ_1)
 - ▶ k-histograms in ℓ_1 (quite different from ℓ_2 , need to approximate \mathcal{A}_k distance)
 - ▶ monotone distributions in ℓ₁ (uses Birgé oblivious decomposition [Birgé, 1987b, Birgé, 1987a])
- our algorithms are agnostic
- ► can be extended to a huge class of distributions unimodal, O(1)-modal, log-concave, monotone hazard rate (MHR) distributions, certain piecewise-polynomial continuous distributions, etc.

Outline

Motivation and Problem Definition

Learning Unstructured Distributions in ℓ_1

Learning k-Histograms in ℓ_2

Other Results

Conclusion

Many obvious next questions:

tighten bounds in regimes where not tight

- ► tighten bounds in regimes where not tight
- ▶ prove bounds for other classes of distributions densities, etc.

- ► tighten bounds in regimes where not tight
- ▶ prove bounds for other classes of distributions densities, etc.
- ▶ go from univariate to multivariate

- ► tighten bounds in regimes where not tight
- ▶ prove bounds for other classes of distributions densities, etc.
- ▶ go from univariate to multivariate
- study distribution testing in this model

- ▶ tighten bounds in regimes where not tight
- ▶ prove bounds for other classes of distributions densities, etc.
- ▶ go from univariate to multivariate
- ► study distribution testing in this model
- ▶ generalize bounds in terms of entropy of distribution

- ▶ tighten bounds in regimes where not tight
- ▶ prove bounds for other classes of distributions densities, etc.
- ▶ go from univariate to multivariate
- study distribution testing in this model
- ▶ generalize bounds in terms of entropy of distribution
- ▶ more than sufficient sample, also unequal number of samples

Conclusion

 we provide first near-optimal bounds for a huge class of discrete distributions

Conclusion

▶ we provide first near-optimal bounds for a huge class of discrete distributions

communication complexity of learning tasks - can it shed fundamental insights on the nature of learning?

References

Birgé, L. (1987a)

Estimating a density under order restrictions: Nonasymptotic minimax risk. The Annals of Statistics, pages 995-1012.

Birgé, L. (1987b).

On the risk of histograms for estimating decreasing densities. The Annals of Statistics, pages 1013-1022.

Diakonikolas, I. (2016).

Learning structured distributions.

In Bühlmann P., Drineas, P., Kane, M., and van Der Laan, M., editors, *Handbook of Big Data*, Chapman & Hall/CRC Handbooks of Modern Statistical Methods, chapter 15, pages 267–284.
Taylor & Francis.

Diakonikolas, I., Grigorescu, E., Li, J., Natarajan, A., Onak, K., and Schmidt, L. (2017).

Communication-efficient distributed learning of discrete distributions.

To appear.

Johnson, W. B. and Lindenstrauss, J. (1984).
Extensions of lipschitz mappings into a hilbert space.
Contemporary mathematics, 26(189-206):1-1.

Yao, A. (1979)

Some complexity questions related to distributive computing(preliminary report).

In Proceedings of the Eleventh Annual ACM Symposium on Theory of Computing, STOC '79, pages 209–213. ACM.