

Politechnika Śląska jako Centrum Nowoczesnego Kształcenia opartego o badania i innowacje

POWR.03.05.00-IP.08-00-PZ1/17

Projekt współfinansowany przez Unię Europejską ze środków Europejskiego Funduszu Społecznego

Metody numeryczne w fizyce Instytut Fizyki Fizyka Techniczna, stopień 1

1. Ekstrema funkcji jednej zmiennej

Potencjał pomiędzy jonami Na⁺ i Cl⁻ opisany jest zależnością:

$$V(r) = \frac{-e^2}{4\epsilon_0 \pi r} + V_0 \exp(-r/r_0)$$

gdzie: $r_0 = 0.330 \text{ Å}$, $V_0 = 1.09 \cdot 10^3 \text{ eV (Pang, 2006)}$.

- 1.1 Narysować wykres funkcji V(r).
- 1.2 Metodą złotego podziału odszukać *r* dla którego funkcja *V(r)* osiąga minimum. W zadaniu samodzielnie określić warunki początkowe przeszukiwania obszaru oraz warunek wykrycia minimum.
- 1.2 Metodą interpolacji parabolicznej odszukać *r* gdzie funkcja *V(r)* osiąga minimum. W zadaniu samodzielnie określić warunki początkowe przeszukiwania obszaru oraz warunek wykrycia minimum.
- 1.3 Metodą Brenta odszukać r gdzie funkcja V(r) osiąga minimum. W zadaniu samodzielnie określić warunki początkowe przeszukiwania obszaru oraz warunek wykrycia minimum.

2. Ekstrema funkcji wielu zmiennych

2.1 Odszukać położenia atomów, takich jak np. argon gdzie oddziaływania pomiędzy atomami opisane są przy pomocy potencjału Lennarda-Jonesa. Potencjał Lennarda-Jonesa opisany jest zależnością:

$$V_{ij} = 4 \varepsilon \left(\left(\frac{\sigma}{r_{ij}} \right)^{12} - \left(\frac{\sigma}{r_{ij}} \right)^{6} \right)$$

gdzie ε i σ są parametrami (Pang, 2006). Obliczenia wykonać dla 2, 3, 4, 5, 10 i 20 atomów. Narysować jak atomy są rozmieszczone w przestrzeni 3D.

Pang, T. (2006). An introduction to computational physics, second edition. In *An Introduction to Computational Physics, Second Edition*. https://doi.org/10.1017/CBO9780511800870