

MA-1002 CÁLCULO II SEGUNDO CICLO DE 2018

PRÁCTICA SOBRE SUCESIONES NUMÉRICAS E INDUCCIÓN MATEMÁTICA

1) Calcule el límite de las siguientes sucesiones, por el paso a la variable continua. Puede utilizar métodos convencionales para los límites de funciones y otros como la Regla de L'Hôpital y desarrollos limitados:

(a)
$$(a_n)$$
 si: $a_n = \frac{\sqrt{9n^4+1}}{(n+1)^2-(n-1)^2}$

(b)
$$(y_n)$$
 si: $y_n = \frac{ln^2n}{n}$

(c)
$$(b_n)$$
 si: $b_n = 1 - 2n + \sqrt{4n^2 + n}$

(d)
$$(\mathbf{z}_n)$$
 si: $\mathbf{z}_n = n^2 - n^3 sen\left(\frac{1}{n}\right)$

2) Muestre que la sucesión: $\langle \left(1+\frac{a}{n}\right)^n \rangle$ converge a e^a ; donde "a" es un número real. (Sugerencia: pase a la variable continua "x" y realice el cambio de variable u=a/x).

3) Utilice el resultado obtenido en el ejercicio anterior para calcular los siguientes límites de sucesiones:

(a)
$$\lim_{n \to 1} \left(\frac{n}{n+1} \right)^n$$

(b)
$$\lim_{n\to 1} \left(\frac{n+3}{n+1}\right)^{3n+1}$$

(c)
$$\lim_{n\to\infty} \left(\frac{n}{n-2}\right)^n$$

(d)
$$\lim_{n \to \infty} n \left[\ln(n-1) - \ln n \right]$$

(e)
$$\lim_{n \to \infty} n \ln \left(\frac{2n}{2n-3} \right)$$

- 4) Considere la sucesión (a_n) , definida por recurrencia: $a_1=1$, $a_{n+1}=\frac{5+a_n}{2}$
 - (i) Demuestre por inducción matemática que (a_n) está acotada superiormente por 5.
 - (ii) Muestre que (a_n) es una sucesión creciente (trate de hacerlo directamente y también por inducción matemática).
 - (iii) Justifique porqué se puede concluir que (a_n) es convergente.
 - (iv) Calcule el límite de (a_n)
- 5) Considere la sucesión (b_n) , definida por recurrencia: $b_1=5$, $b_{n+1}=\frac{4+b_n}{3}$
 - (i) Demuestre por inducción matemática que (b_n) está acotada inferiormente por 2.
 - (ii) Muestre que (b_n) es una sucesión decreciente (trate de hacerlo directamente y también por inducción matemática).
 - (iii) Justifique porqué se puede concluir que (b_n) es convergente.
 - (iv) Calcule el límite de (b_n)
- **6)** En este ejercicio vamos a estudiar el por qué es importante determinar primero la convergencia o divergencia de una sucesión, antes de ponerse a determinar un supuesto valor límite mediante una técnica de cálculo que no garantice la existencia de dicho límite.

Considere la sucesión (c_n) , definida por recurrencia: $c_0=2$, $c_{n+1}=\frac{1}{c_n}$

- (i) Demuestre por inducción matemática que (c_n) es una sucesión de términos positivos.
- (ii) Suponga que (c_n) es una sucesión convergente a un número L y justifique por qué L debería ser igual a 1.
- (iii) Pruebe mediante inducción matemática que: $c_{2n}=2$ y que: $c_{2n+1}=\frac{1}{2} \quad \forall \ n\geq 0$.
- (iv) Utilice lo probado en (iii) para mostrar que (c_n) en realidad es una sucesión divergente y por consiguiente no tiene límite. Por consiguiente, el cálculo realizado en (ii) sería incorrecto y el error radica en suponer que dicho límite sí existe sin haberlo verificado previamente. Esto pone de manifiesto la importancia de los "Criterios de Convergencia" como el TCM: "Teorema de la Convergencia Monótona".
- 7) Considere la sucesión (r_n) , definida por recurrencia: $r_1=9$, $\,r_{n+1}=\sqrt{r_n}$
 - (i) Demuestre por inducción matemática que (r_n) está acotada inferiormente por 1/4.
 - (ii) Muestre que (r_n) es una sucesión decreciente.
 - (iii) Justifique porqué se puede concluir que (r_n) es convergente.
 - (iv) Calcule el límite de (r_n)
- **8)** Sea (y_n) , definida por: $y_n = \frac{\ln n}{\sqrt{n}}$
 - (i) Muestre que (y_n) , es decreciente $\forall n \geq 8$. (Sugerencia: Analice en variable continua.)
 - (ii) Calcule el límite de (y_n) .