Alcohols, Phenols & Ethers
Introduction:
$R-H \xrightarrow{-H} R-OH$
+OH
Alkone Alcohol
Clarsification:
Monohyderic -> Containg one -OH group
0
CH3-0H CH3-CH2-0H
Methonal CH2-CH2-OH Methonal CH3-CH2-OH 1º Alconal
10 Alcohol
CH3-CH-CH3 CH3-CH-CH3-CH3
du du
propon-2-ol 20 butan-2-ol
(iso-propyl alcohal) (Sec-butyl alcohal)
CH3
CH_2-C-OH
CH2 2-methyl propor 2- al
(test-butyl alcohal)
3 Alcohol

)

Polyhydric Alcohal => Containg more than one CH2-011 CH2-OH <u>CH - OH</u> ethan-1,2-dial (instable) foropon-1,2,3-triol (unitable) (Cooses H20) (looses 40) Allylic Alcohol $CH_2 = CH - CH_2 - OH$ Alcohol > ethenol CH2=CH-OH (unstable) changes to keto form Kelo-enal tautomousm CH3 = CH = CH3 - C-H

Enal 1,3 H

Rele

from Stigration James Kelo from

cyclic emous CH2-(H2 oxistane) CH2-CH-CH3
2-Methyloxistane
(1,2-Epoxy propose) CH3-CH-CH-CH3 2,3-Dimethyloxiscane Furan

Alcohols:
Preparation of Alcohols
1) From Alkyl Malides: Reaction with agy Alkalie or Moist AgoH
MOIST AGOM
an Kau
RX - OR R-OH
agna oh or
Moist Agoll
Nucleophilic Substitution ==> : Base is Strong
=> SN2) => AHack from Rease
=> Inversion of Configuration
CH3I+ KOH -> BH3OH+ KT
CM3-CM2-B8+ KOH -> CM3-CM2-OM+ KB8
3 2 (00) 3 2
Carle I + AgoH -> Carle OH + Ag 7 (Moist)
(OSI)
limitation: elimination also takes place side by side
I hence alkene is also produced.
limitation: elimination also takes place side by side I hence alkene is also produced. (Mainly for 3° Alkyl Halide)