Estruturas Discretas

Funções Introdução

Profa. Helena Caseli helenacaseli@dc.ufscar.br

- Definição
- Função X Relação binária
- Domínio, Contradomínio e Imagem
- Características importantes
- Notação
- Representação gráfica
- Funções iguais
- Funções interessantes

- Informalmente
 - Mecanismo que transforma uma entrada em uma saída

Função

- Informalmente
 - Mecanismo que transforma uma entrada em uma saída

• Uma função está composta por 3 partes:

- Informalmente
 - Mecanismo que transforma uma entrada em uma saída

- Uma função está composta por 3 partes:
 - 1. **Domínio** conjunto de valores iniciais
 - Contradomínio conjunto de onde saem os valores associados
 - 3. Associação propriamente dita

- Domínio e Contradomínio
 - Representam conjuntos onde os valores são escolhidos

- Domínio e Contradomínio
 - Representam conjuntos onde os valores são escolhidos

- → f é uma função de S em T, simbolizada por f: S → T
- → A associação é um conjunto de pares ordenados (s,t) onde s ∈ S e t ∈ T e t = f(s)
- → A associação é um subconjunto de S × T

- Função
 - Função X Relação binária

- Função X Relação binária
 - A propriedade de uma relação binária que a torna uma função é que todo elemento de S (domínio) tem um único valor em T (contradomínio) associado

- Função X Relação binária
 - A propriedade de uma relação binária que a torna uma função é que todo elemento de S (domínio) tem um único valor em T (contradomínio) associado
 - Todo s ∈ S aparece exatamente uma vez como primeiro elemento de um par (s, t)

- Função X Relação binária
 - A propriedade de uma relação binária que a torna uma função é que todo elemento de S (domínio) tem um único valor em T (contradomínio) associado
 - Todo s ∈ S aparece exatamente uma vez como primeiro elemento de um par (s, t)
 - Os <u>primeiros</u> elementos dos pares ordenados da função vêm do <u>domínio</u>
 - Os <u>segundos</u> elementos dos pares ordenados da função vêm do <u>contradomínio</u>

- Definição formal
 - Sejam S e T conjuntos
 - Uma função f de S em T, f: S → T, é um subconjunto de S × T tal que <u>cada</u> elemento de S aparece <u>exatamente uma vez</u> como o <u>primeiro</u> elemento de um par ordenado

- Definição formal
 - Sejam S e T conjuntos
 - Uma função f de S em T, f: S → T, é um subconjunto de S × T tal que <u>cada</u> elemento de S aparece <u>exatamente uma vez</u> como o <u>primeiro</u> elemento de um par ordenado
 - S é o domínio e T é o contradomínio da função
 - Se (s, t) pertence à função, então denotamos t por f(s)
 - *t* é a **imagem** de *s* sob *f*,
 - s é uma imagem inversa de t sob f e f leva s em t

Função

IMPORTANTE

A imagem é um subconjunto do contradomínio e não necessariamente igual a ele

- Definição formal
 - Sejam S e T conjuntos
 - Uma função f de S em T, f: S → T, é um subconjunto de S × T tal que <u>cada</u> elemento de S aparece <u>exatamente uma vez</u> como o <u>primeiro</u> elemento de um par ordenado
 - S é o domínio e T é o contradomínio da função
 - Se (s, t) pertence à função, então denotamos t por f(s)
 - *t* é a **imagem** de *s* sob *f*,
 - s é uma imagem inversa de t sob f e f leva s em t

Função

Domínio, Contradomínio

- Os <u>primeiros</u> elementos dos pares ordenados de f vêm do domínio
- Os <u>segundos</u> elementos dos pares ordenados de f vêm do contradomínio

Função

Domínio, Contradomínio e Imagem

- Os <u>primeiros</u> elementos dos pares ordenados de f vêm do domínio
- Os <u>segundos</u> elementos dos pares ordenados de f vêm do contradomínio
- O conjunto de todos os segundos elementos dos pares ordenados de f é a imagem

- Exemplos
 - f: $\mathbb{Z} \to \mathbb{Z}$ dada por f(x) = x^2
 - Domínio de f: ?
 - Imagem de f: ?
 - Valor da imagem de -4, ou seja, f(-4): ?
 - Imagens inversas de 9: ?

- Exemplos
 - f: $\mathbb{Z} \to \mathbb{Z}$ dada por f(x) = x^2
 - Domínio de f: conjunto de todos os inteiros
 - Imagem de f: conjunto de todos os quadrados perfeitos
 - Valor da imagem de -4, ou seja, f(-4): 16
 - Imagens inversas de 9: -3 e +3

- Exemplos
 - f: $\mathbb{Z} \to \mathbb{Z}$ dada por f(x) = x^2
 - Domínio de f: conjunto de todos os inteiros
 - Imagem de f: conjunto de todos os quadrados perfeitos
 - Valor da imagem de -4, ou seja, f(-4): 16
 - Imagens inversas de 9: -3 e +3
 - Cada s ∈ S (Z) aparece exatamente uma vez como primeiro elemento de um par ordenado
 ..., (-3, 9), (-2, 4), (-1, 1), (0, 0), (1, 1), (2, 4), (3, 9), ...
 - A imagem de dois inteiros pode ser a mesma!

Função

- Exemplos
 - f: $\mathbb{Z} \to \mathbb{Z}$ dada por f(x) = x^2
 - Domínio de f: conjunto de todos os inteiros
 - Imagem de f: conjunto de todos os quadrados perfeitos
 - Valor da imagem de -4, ou seja, f(-4): 16
 - Imagens inversas de 9: -3 e +3
 - Cada s ∈ S (Z) aparece exatamente uma vez como primeiro elemento de um par ordenado
 ..., (-3, 9), (-2, 4), (-1, 1), (0, 0), (1, 1), (2, 4), (3, 9), ...
 - A imagem de dois inteiros pode ser a mesma!

CUIDADO

Para ser função a restrição é de que o primeiro elemento do par apareça apenas uma vez, o segundo pode repetir!

- Características importantes
 - Consistência
 - Toda vez que um número específico é fornecido como entrada para uma função, a mesma saída é retornada

- Características importantes
 - Consistência
 - Toda vez que um número específico é fornecido como entrada para uma função, a mesma saída é retornada
 - Valores não numéricos
 - As entradas e saídas de uma função não precisam ser números

- Características importantes
 - Descrição não algébrica
 - O mecanismo de uma função não precisa ser expresso em forma algébrica, pode ser especificado
 - Por uma regra que define explicitamente como gerar saídas a partir das entradas ou
 - Pelo <u>conjunto de pares</u> de entrada e saída sem definição da regra que associa as entradas às saídas

- Características importantes
 - Descrição não algébrica
 - O mecanismo de uma função não precisa ser expresso em forma algébrica, pode ser especificado
 - Por uma regra que define explicitamente como gerar saídas a partir das entradas ou
 - Pelo <u>conjunto de pares</u> de entrada e saída sem definição da regra que associa as entradas às saídas

```
Por exemplo, a função f(x) = x^2 pode ser definida
```

- algebricamente: $f = \{ (x,y) \mid x, y \in \mathbb{Z}, y = x^2 \}$
- por uma regra que a define: "Seja f a função definida para um inteiro x por $f(x)=x^2$ "
- listando os pares que a formam: $f = \{..., (-3, 9), (-2, 4), (-1, 1), (0, 0), (1, 1), (2, 4), (3, 9), ...\}$

- Características importantes
 - Funções de várias variáveis
 - A definição de uma função pode incluir mais de uma variável
 - Podemos ter uma função $f: S_1 \times S_2 \times ... S_n \rightarrow T$ que associa cada n-upla de elementos $(s_1, s_2, ... s_n), s_i \in S$, um único elemento de T

- Características importantes
 - Funções de várias variáveis
 - A definição de uma função pode incluir mais de uma variável
 - Podemos ter uma função $f: S_1 \times S_2 \times ... S_n \rightarrow T$ que associa cada n-upla de elementos $(s_1, s_2, ... s_n), s_i \in S$, um único elemento de T
 - Descrição completa
 - Uma definição completa de uma função necessita que se dê o domínio, o contradomínio e a associação

- Notação
 - Seja f uma função e seja a um objeto
 - A notação f(a) é definida desde que exista um objeto
 b tal que (a,b) ∈ f
 - \rightarrow Nesse caso, f(a) = b
 - Se não existir par ordenado (a, -) em f, f(a) não está definida
 - Logo, a notação (1,2) ∈ f é equivalente a notação
 f(1) = 2

- Diga quais das relações a seguir são funções
 - a) $f = \{ (1,2), (2,3), (3,1), (4,7) \}$
 - **b)** $g = \{ (1,2), (1,3), (4,7) \}$
 - c) $h: \mathbb{N} \to \mathbb{N}$ dada por h(x) = x 4

Função

Diga quais das relações a seguir são funções

a)
$$f = \{ (1,2), (2,3), (3,1), (4,7) \}$$

SIM

b)
$$g = \{ (1,2), (1,3), (4,7) \}$$

NÃO

c) h:
$$\mathbb{N} \to \mathbb{N}$$
 dada por $h(x) = x - 4$

NÃO

h não está definida para 0, 1, 2, 3

NÃO

SIM

Função

Dê o domínio e a imagem das funções a seguir

```
a) f = \{ (1,2), (2,3), (3,1), (4,7) \}
```

b)
$$g = \{ (1,a), (2,b), (3,c), (4,a), (5,c) \}$$

c)
$$h = \{ (1,1), (2,2), (3,3), (4,4), (5,5) \}$$

Função

Dê o domínio e a imagem das funções a seguir

```
a) f = \{ (1,2), (2,3), (3,1), (4,7) \}

dom f = \{ 1, 2, 3, 4 \}

im f = \{ 2, 3, 1, 7 \}

b) g = \{ (1,a), (2,b), (3,c), (4,a), (5,c) \}

dom g = \{ 1, 2, 3, 4, 5 \}

im g = \{ a, b, c \}

c) h = \{ (1,1), (2,2), (3,3), (4,4), (5,5) \}

dom h = \{ 1, 2, 3, 4, 5 \}

im h = \{ 1, 2, 3, 4, 5 \}
```

- Representação gráfica
 - Gráfico de funções
 - Diagrama de setas

Representação gráfica

- Gráfico de funções
 - Para funções com entradas e saídas sendo números reais (\mathbb{R})
 - Marca-se um ponto no plano com as coordenadas (x, f(x)) para todo $x \in \text{dom } f$

Representação gráfica

- Gráfico de funções
 - Para funções com entradas e saídas sendo números reais (\mathbb{R})
 - Marca-se um ponto no plano com as coordenadas (x, f(x)) para todo $x \in \text{dom } f$
 - Teste da reta vertical
 - O gráfico resultante representa uma função se qualquer reta vertical no plano intercepta o gráfico no máximo em um ponto

Representação gráfica

- Gráfico de funções
 - Para funções com entradas e saídas sendo números reais (\mathbb{R})
 - Marca-se um ponto no plano com as coordenadas (x, f(x)) para todo $x \in \text{dom } f$

Teste da reta vertical

- O gráfico resultante representa uma função se qualquer reta vertical no plano intercepta o gráfico no máximo em um ponto
- Se uma reta vertical interceptar o gráfico da função em mais de um ponto significa que existe mais de um valor de saída associado a cada valor de entrada

- Representação gráfica
 - Gráfico de funções
 - Exemplos

a)
$$f : \mathbb{R} \to \mathbb{R}$$

 $f(x) = x+2$

b)
$$f : \mathbb{R} \to \mathbb{R}$$

 $f(x) = x^2$

- Diagrama de setas
 - Para funções $f: A \rightarrow B$ sendo A e B conjuntos finitos
 - Desenha-se um conjunto de pontos para A à esquerda e um conjunto de pontos para B à direita
 - Traça-se uma seta de a para b quando f(a) = b

- Diagrama de setas
 - Para funções $f: A \rightarrow B$ sendo A e B conjuntos finitos
 - Desenha-se um conjunto de pontos para A à esquerda e um conjunto de pontos para B à direita
 - Traça-se uma seta de a para b quando f(a) = b
 - No diagrama resultante
 - → Todo ponto à esquerda (em A) tem exatamente uma seta partindo dele e terminando à direita (em B)
 - É possível que um ou mais elementos de B não sejam apontados por nenhum seta no diagrama

- Representação gráfica
 - Diagrama de setas
 - Exemplo

```
f = \{(a,s), (b,u), (c,r), (d,s)\}
```

- Representação gráfica
 - Diagrama de setas
 - Exemplo

 $f = \{(a,s), (b,u), (c,r), (d,s)\}$

- Represente, usando o diagrama de setas, as funções a seguir definidas com
 - domínio D = { 1, 2, 3, 4 } e
 - contradomínio C = { 2, 4, 6, 8 }
 - a) $f = \{ (1, 2), (3, 4), (2, 2), (4, 8) \}$
 - b) $g: D \rightarrow C$ dada por g(x) = x * 2
 - c) $h = \{ (4, 4), (2, 4), (3, 4), (1, 8) \}$

- Represente, usando o diagrama de setas, as funções a seguir definidas com
 - domínio D = { 1, 2, 3, 4 } e
 - contradomínio C = { 2, 4, 6, 8 }
 - a) $f = \{ (1, 2), (3, 4), (2, 2), (4, 8) \}$
 - b) $g: D \rightarrow C$ dada por g(x) = x * 2
 - c) $h = \{ (4, 4), (2, 4), (3, 4), (1, 8) \}$

- IMPORTANTE
 - Nem toda função pode ser representada graficamente
 - Exemplo

$$f: 2^A \to \mathbb{N}$$
 definida por $f(x) = |x|$

- (A cada subconjunto x de A, a função f associa um número natural que é o seu tamanho)
- Não há maneira prática de representar essa função como um gráfico

Funções iguais

- Duas funções são ditas iguais se têm:
 - 1. O mesmo domínio
 - 2. O mesmo contradomínio
 - 3. A mesma **associação** de valores de domínio em valores do contradomínio

Funções iguais

- Duas funções são ditas iguais se têm:
 - 1. O mesmo domínio
 - 2. O mesmo contradomínio
 - 3. A mesma **associação** de valores de domínio em valores do contradomínio
- Exemplo
 - f: $\mathbb{Z} \to \mathbb{Z}$ dada por f(x) = x^2
 - g: $\mathbb{Z} \to \mathbb{Z}$ dada por g(x) = x*x

Funções iguais

- Duas funções são ditas iguais se têm:
 - 1. O mesmo domínio
 - 2. O mesmo contradomínio
 - A mesma associação de valores de domínio em valores do contradomínio
- Exemplo
 - f: $\mathbb{Z} \to \mathbb{Z}$ dada por f(x) = x^2
 - g: $\mathbb{Z} \to \mathbb{Z}$ dada por g(x) = x*x

PROVANDO QUE DUAS FUNÇÕES SÃO IGUAIS

- Dadas duas funções com os mesmos domínio e contradomínio, demonstrar que elas são iguais é mostrar que a associação é a mesma: dado um elemento arbitrário no domínio, demonstra-se que ambas as funções produzem o mesmo elemento no contradomínio.

- Funções interessantes
 - Função identidade
 - Função de um conjunto A que associa cada elemento a si mesmo

$$1_A(a) = a$$

- Funções interessantes
 - Função identidade
 - Função de um conjunto A que associa cada elemento a si mesmo

$$1_A(a) = a$$

- Exemplo
 - A função identidade sobre os reais é a função $f: \mathbb{R} \to \mathbb{R}$ dada por $1_{\mathbb{R}}(x) = x$ v

- Função piso e teto
 - Função piso $\lfloor x \rfloor$ associa a cada número real x o maior inteiro menor ou igual a x
 - Função teto $\lceil x \rceil$ associa a cada número real x o menor inteiro maior ou igual a x

- Função piso e teto
 - Função piso $\lfloor x \rfloor$ associa a cada número real x o maior inteiro menor ou igual a x
 - Função teto $\lceil x \rceil$ associa a cada número real x o menor inteiro maior ou igual a x
 - Ambas são funções de $\mathbb R$ em $\mathbb Z$
 - → Se x é um inteiro, $\lfloor x \rfloor = \lceil x \rceil$; caso contrário, $\lfloor x \rfloor + 1 = \lceil x \rceil$

- Função piso e teto
 - Função piso $\lfloor x \rfloor$ associa a cada número real x o maior inteiro menor ou igual a x
 - Função teto $\lceil x \rceil$ associa a cada número real x o menor inteiro maior ou igual a x
 - Ambas são funções de $\mathbb R$ em $\mathbb Z$
 - → Se x é um inteiro, $\lfloor x \rfloor = \lceil x \rceil$; caso contrário, $\lfloor x \rfloor + 1 = \lceil x \rceil$
 - Exemplos
 - $\lfloor 2,5 \rfloor = ? e \lceil 2,5 \rceil = ?$
 - $\lfloor -2,5 \rfloor = ? e \lceil -2,5 \rceil = ?$

- Função piso e teto
 - Função piso $\lfloor x \rfloor$ associa a cada número real x o maior inteiro menor ou igual a x
 - Função teto $\lceil x \rceil$ associa a cada número real x o menor inteiro maior ou igual a x
 - Ambas são funções de $\mathbb R$ em $\mathbb Z$
 - → Se x é um inteiro, $\lfloor x \rfloor = \lceil x \rceil$; caso contrário, $\lfloor x \rfloor + 1 = \lceil x \rceil$
 - Exemplos
 - $\lfloor 2,5 \rfloor = 2 e \lceil 2,5 \rceil = 3$
 - $\lfloor -2,5 \rfloor = -3 \text{ e} \lceil -2,5 \rceil = -2$

- Função valor inteiro (INT)
 - Seja x um número real qualquer
 - INT(x) converte x em um inteiro truncando a parte fracionária do número
 - INT(x) = $\lfloor x \rfloor$ se x é positivo e
 - INT(x) = $\lceil x \rceil$ se x é negativo

- Função valor inteiro (INT)
 - Seja x um número real qualquer
 - INT(x) converte x em um inteiro truncando a parte fracionária do número
 - INT(x) = $\lfloor x \rfloor$ se x é positivo e
 - INT(x) = $\lceil x \rceil$ se x é negativo
 - Exemplos
 - INT(3,33) = ?
 - INT(-7,4) = ?

- Função valor inteiro (INT)
 - Seja x um número real qualquer
 - INT(x) converte x em um inteiro truncando a parte fracionária do número
 - INT(x) = $\lfloor x \rfloor$ se x é positivo e
 - INT(x) = $\lceil x \rceil$ se x é negativo
 - Exemplos
 - INT(3,33) = 3
 - INT(-7,4) = -7

- Função valor absoluto (ABS)
 - Denotada por ABS(x) ou |x| é o maior dos valores entre x e -x
 - \rightarrow ABS(0) = 0
 - \rightarrow ABS(x) = x para x positivo e
 - \rightarrow ABS(-x) = x para x negativo

- Função valor absoluto (ABS)
 - Denotada por ABS(x) ou |x| é o maior dos valores entre x e -x
 - \rightarrow ABS(0) = 0
 - \rightarrow ABS(x) = x para x positivo e
 - \rightarrow ABS(-x) = x para x negativo
 - Exemplos
 - ABS(-8,1) = ?
 - ABS(3,4) = ?

- Função valor absoluto (ABS)
 - Denotada por ABS(x) ou |x| é o maior dos valores entre x e -x
 - \rightarrow ABS(0) = 0
 - \rightarrow ABS(x) = x para x positivo e
 - \rightarrow ABS(-x) = x para x negativo
 - Exemplos
 - ABS(-8,1) = 8,1
 - ABS(3,4) = 3,4

- Funções interessantes
 - Função módulo (ou função resto)
 - Para qualquer inteiro x e qualquer inteiro positivo n, a função módulo n associa a cada x o resto de sua divisão por n
 - $f(x) = x \mod n \text{ ou } x = qn+r, 0 \le r < n \text{ e } r = f(x)$

Funções interessantes

- Função módulo (ou função resto)
 - Para qualquer inteiro x e qualquer inteiro positivo n, a função módulo *n* associa a cada *x* o resto de sua divisão por *n*
 - $f(x) = x \mod n$ ou x = qn+r, $0 \le r < n$ e r = f(x)
 - Exemplos
 - 25 mod 7 = ?
 - 25 mod 5 = ?
 - -26 mod 7 = ?
 - -371 mod 8 = ? ▶
 - -39 mod 3 = ?

Para x < 0 divide |x| por n obtendo r' e faz x mod n = n-r'

quando $r' \neq 0$

Funções interessantes

- Função módulo (ou função resto)
 - Para qualquer inteiro x e qualquer inteiro positivo n, a função módulo n associa a cada x o resto de sua divisão por n
 - $f(x) = x \mod n \text{ ou } x = qn+r, 0 \le r < n \text{ e } r = f(x)$
 - Exemplos
 - 25 mod 7 = 4
 - 25 mod 5 = 0
 - -26 mod 7 = 2
 - -371 mod 8 = 5 ▲
 - -39 mod 3 = 0

Para x < 0 divide |x| por n obtendo r' e faz x mod n = n-r' quando r' $\neq 0$

Funções interessantes

- Função logarítmica
 - O logaritmo de qualquer número positivo x na base b (também um número positivo) representa o expoente ao qual b precisa ser elevado para obter x

→ Seja y = $log_b x$ então $b^y = x$

- Função logarítmica
 - O logaritmo de qualquer número positivo x na base b (também um número positivo) representa o expoente ao qual b precisa ser elevado para obter x

- → Seja y = $log_b x$ então $b^y = x$
- Exemplos
 - $\log_2 8 = ?$
 - $\log_{b} 1 = ?$
 - $\log_{b}b = ?$

- Função logarítmica
 - O logaritmo de qualquer número positivo x na base b (também um número positivo) representa o expoente ao qual b precisa ser elevado para obter x

- → Seja y = $log_b x$ então $b^y = x$
- Exemplos
 - $\log_2 8 = 3$
 - $\log_{\rm h} 1 = 0$
 - $\log_{b} b = 1$

- Calcule
 - a) [-47,1]
 - **b)** [-7,8]
 - c) INT(83,24)
 - d) INT(-14,5)
 - e) 39 (mod 7)
 - f) -39 (mod 7)
 - g) -49 (mod 7)
 - h) log₁₀ 100
 - i) $\log_2 128$

Funções interessantes

Calcule

a)
$$\lfloor -47,1 \rfloor = -48$$

b)
$$[-7,8] = -7$$

c)
$$INT(83,24) = 83$$

d)
$$INT(-14,5) = -14$$

$$e)$$
 39 (mod 7) = 4

f)
$$-39 \pmod{7} = 3$$

g)
$$-49 \pmod{7} = 0$$

h)
$$\log_{10} 100 = 2$$
 já que $10^2 = 100$

i)
$$\log_2 128 = 7$$
 já que $2^7 = 128$