

Process-Based Cost Modeling

Christian Smart, Ph.D. SAIC March 9, 2004

Background

- Cost analysts have used weight-based parametric cost models for 50 years*
- Weight-based estimates have advantages, but also limitations
- Recent focus has been placed on developing nextgeneration cost models**

^{*}Joe Hamaker, "But What Will It Cost? The Evolution of NASA Cost Estimating", Issues in NASA Program and Project Management, 1991.

^{**}Andy Prince, "Weight and the Future of Space Flight Hardware Cost Modeling,", SCEA National Conference, 2003

Next Generation Cost Modeling

- Traditional parametric approaches are very useful for cost estimating
- But even the most sophisticated multivariate models have limitations
 - One example is out-of-date samples and small sample sizes for some manned launched vehicle subsystems
 - Crew Accommodations
 - Crew Life Support
- There is need for a tool to supplement existing parametric models

Overview

- ☐ The objective is to improve state-of-the-art cost modeling techniques using process-based estimation
- Process-based models supplement traditional parametric tools
 - they are *not* intended to replace parametric estimates
- Traditional parametrics provide an early estimate of a project's cost
- □ These traditional weight-based statistical estimates can be greatly refined using a process-based model

Process-Based Modeling

- Process-based cost modeling promises to provide a greater level of fidelity for cost estimating
 - May be especially useful for large projects
- Parametric analysis has tended to focus on the "what" of cost
- Process-based modeling focuses on the "how"
- Process-based modeling is a relatively new approach to cost estimation
 - Process-based models are also being developed by Boeing and Galorath

Process-Based Modeling (cont.)

- Process-based modeling provides cost estimates by relating cost drivers to the processes that occur during design, development, test, evaluation, and production
- Cost drivers affect cost by directly impacting the cost of the processes
 - Adding/removing some process,
 - Changing the number of times some process occurs
 - Changing the cost of a specific process
- In addition to serving as an estimation tool, the process-based model will also be a communication tool between cost analysts and project personnel and management

Scope

- Capture all processes that occur during Phase C/D, from ATP up to Operational Readiness Review
- Focus on manned launch vehicles only
- Reflect recent aerospace program development and experience
- Model is top-down, with processes defined at an intermediate level (rather than the lowest level possible)

Outline of the Modeling Process

- Document processes at the subsystem level design, tooling, fabrication, assembly, etc., and account for interfaces
- Collect detailed time-phased costs for several programs
- Analyze historical data
- Create calibrated models
- Develop algorithms for relating complexity generators to cost

Cataloging Processes

- Created detailed process flows (process catalogue) for all spacecraft-related subsystems
 - Includes hardware and systems engineering/integration subsystems
- Met with subject-matter experts for each subsystem to validate the process flows and revise as needed
- Catalogued over 500 generic processes

Data Collection

- Collected detailed cost data for several missions
 - Apollo
 - Cassini
 - Chandra
 - Shuttle
 - Galileo
- In the process of collecting data for other missions
 - Gemini
 - X-37

Data Analysis

- Collected detailed, time-phased WBS level cost and data for Shuttle and Apollo
- Allocated cost to the individual process level using schedules and other information

Model Development - Shuttle

Analyzed detailed, time-phased historical data for Shuttle
 Orbiter and modeled 22 subsystems and over 700 processes

Structures – 58	Technical Mgt. and Support – 24					
Thermal Protection – 43	Provisioning – 9					
EPD&C - 40	Trainers and Mockups – 31					
GN&C - 38	Mechanical Systems – 38					
CC&DH - 59	Auxiliary Propulsion - 48					
Avionics Dev. And Int. Labs - 19	ECLS - 31					
Approach and Landing Tests - 23	IACO - 24					
Crew Station – 33	GSE - 37					
Major Test and Support - 36	Power Generation (APU) - 35					
Flight Tech. Analysis – 11	System Requirements – 11					
Design and Project Control - 19	Safety and Reliability - 24					

14

 Analyzed detailed, time-phased historical data for Apollo CSM and modeled 8 subsystems and over 250 processes

Crew Module Structures - 39	Service Module Structures – 38					
Crew Module Heat Shield - 37	Crew Accommodations - 33					
Crew Module Mechanisms - 37	Launch Escape Structures - 38					
Earth Landing System - 37	Launch Escape SRMs - 38					

Calibrating the models to specific historical programs is similar in its approach to using analogy-calibrated weight based CERs

Complexity Generator

- Our efforts to date have been focused on calculating the "intercepts"
- We have more "intercepts" to calculate, but we must also must calculate the "slope"

Algorithms and Process Drivers

- NAFCOM complexity generator inputs are used
- Also, based on our research to date and the information gathered from subject matter experts and several key process drivers will be added, including
 - Material type
 - Hardware geometry
 - Organizational structure

Process-Based Modeling and NAFCOM

- Process-based model is at the subsystem level
 - Structures
 - Thermal Control
 - Systems Engineering
 - Etc.
- Cost drivers include all the NAFCOM complexity generators, plus others:
 - Material Type
 - Organization Structure
 - Etc.

Example – Detailed Structural Design Cost Drivers

- NAFCOM Cost Drivers for Structures Include:
 - Weight
 - New Design
 - Engineering Management
 - Manufacturing Methods
 - Number of Deployed Structures
 - Funding Availability
 - Test Approach
 - Integration Complexity
 - Amount of Pre-Development Study
 - Large Inert Structure (Yes/No)

Engineering Management reflects the experience of the design team and the environment of the design effort

To Cost

- Both % New Design and Engineering Management can range from 0 to 100
- Detailed Structural Design has three sets of loops
- One of the projects (but not the only project) to which the model is calibrated is Shuttle - for Shuttle, the number of iterations was 5, 3, and 2

Example – Relating % New Design and Engineering Management To Cost (cont'd)

- Engineering Management
 - 0-12, Minimum Design Changes
 - 13-37, Few Design Changes
 - 38-62, Moderate Design Changes
 - 63-87, Dedicated Design Team, Experiences Sig. Reqmts. Changes
 - 88-100, Distributed Design Team, Dependent Upon Major Technological Advances

- % New Design
 - 0-10, Reflight
 - 11-21, Minor Mods., No Requal.
 - 22-31, Minor Mods., Requal.
 - 32-55, Moderate Mods.
 - 56-73, Significant Mods.
 - 74-85, Based on Prev.Design
 - 86-96, Similar to Prev.
 Design
 - 97-100, New Design

Example – Relating % New Design and Engineering Management To Cost (cont'd)

Using the Shuttle values as a point of departure as an example, the definitions of levels of engineering management and % new design, we have the following table:

% New Design

											97-100
Eng. Mgt.	0-12	1,0,0	1,0,0	1,0,0	2,0,0	2,0,0	3,0,0	3,0,0	4,0,0	5,0,0	5,0,0
	13-37	1,1,0	1,1,0	1,1,0	2,1,0	2,1,0	3,1,0	3,1,0	4,1,0	5,1,0	5,0,0 5,1,0
	38-62	1,2,1	1,2,1	1,2,1	2,2,1	2,2,1	3,2,1	3,2,1	4,2,1	5,2,1	5,2,1 5,3,1
	63-87	1,3,1	1,3,1	1,3,1	2,3,1	2,3,1	3,3,1	3,3,1	4,3,1	5,3,1	5,3,1
	88-100	1,3,2	1,3,2	1,3,2	2,3,2	2,3,2	3,3,2	3,3,2	4,3,2	5,3,2	5,3,2

Additional Products

In addition to providing a modeling tool, an additional product of the process-based model is the most complete and detailed time-phased breakout of Shuttle and Apollo costs known to exist

Future Plans

- Incorporate recent advances in aerospace design and manufacturing
- Make model applicable to generic launch vehicles
- Test the model and compare results to NAFCOM
- Deliver a stand-alone Excel-based prototype model in November for use in the evaluation of future launch vehicle architectures
- Eventually incorporate model into NAFCOM