Roll Nu	ımber:	B B	
	Computer Science and	eering and Technology, Patiala d Engineering Department	
		EXAMINATION	
B. E. (Final Year): Mar 2018 (2017/18)		Course Code: UCS802	
		Course Name: Compiler Construction	
March 05, 2018		Monday, 17.30 – 20.30 Hrs	
Time: 3	Hours, M. Marks: 100	Name Of Faculty: Karun Verma	
wherev calcula	er required. Pencil should only be use tor is strictly not allowed.	rts of one question in sequence. Draw n d to draw diagrams. Assume any missin	eat diagrams g data. Use of
Q1.		e Grammar $G = \{ \{S, A\}, S, \{a, b, c, d\}, P \},$	(20)
	where P is set of productions having e	lements:	
	$S \rightarrow Aa$		
	$S \rightarrow bAc$		
	$S \to dc$		
	$S \rightarrow bda$		
	$A \rightarrow d$		
Show that this grammar is LALR(1), but not SLR.			
Q2.	Consider the following Context-Free Grammar		
	$G = \{E, \{E, T, F, M, A\}, \{+, -, \times, \div, id, (,)\}, P\}$ where P is set of productions as		
	$E \to E M T \mid T$		
	$T \rightarrow TAF \mid F$		
	$F \rightarrow id \mid (E)$		
	$M \to \times \div$		
	$A \rightarrow + -$		
	a. Compute the FIRST sets for all	sentential and grammar symbols	5
	b. Compute FOLLOW sets for all		5
	c. Generate the parsing table for l grammar? Justify	LL(1) parser. Is G defined above a LL(1)	5
	d. Parse the following string id_1 :	- W	5
Q3.	a. Represent $k = -(a - b) + (c * - quadruples.$	(x)/(a-y); in the form of triples and	10
		$= \{ \{S, W, X, Y, Z\}, S, \{a, b, c, h, m, n\}, P \},\$	10

where P is set of productions having elements

Eliminate left recursion and Left factor the above grammar.

 $S \to aWXh$ $W \to Wb|c$ $X \to YZ$ $Y \to m|\varepsilon$ $Z \to n|\varepsilon$

Q4. a. What is activation tree? Explain various units of activation tree. Draw the 3+2+5 activation tree for:

```
printf("Enter Your Name: ");
scanf("%s", username);
show_data(username);
printf("Press any key to continue...");
...
int show_data(char *user)
{
    printf("Your name is %s", username);
    return 0;
}
```

...

- b. Differentiate between (citing suitable examples)
 - i) Synthesized and Inherited attributes
 - ii) Dependency graph and Annotated Parse tree
- Q5. a. Consider the following Context free grammar for signed binary numbers as $G = \{\{N, S, L, B\}, N, \{+, -, 0, 1\}, P\}$, where P is set of productions having elements:

10

$$N \rightarrow S L$$

$$S \rightarrow + | -$$

$$L \rightarrow B | L B$$

$$B \rightarrow 0 | 1$$

Let *val*, *neg* be synthesized attributes, and *pos* be an inherited attribute for the above grammar. Create a translation scheme to calculate the value of signed binary number.

b. Using the translation scheme for the above grammar, parse and evaluate the 5 following signed binary number: -101911.