



# Solving Hard Scientific Problems Using Quantum Computers

**Progress Presentation** 





#### **Table of contents**

Quantum Computation and Information

Quantum Computational Complexity

Quantum Computing for Scientific Problems: Quantum Chemistry

Other Possible Scientific Applications for Quantum Computers





#### **Quantum Computation and Information**

Quantum computers take advantage of quantum mechanical effects such as superposition and interference to solve certain problems faster than classical computers.







### **Quantum Computation and Information: Qubits**

- Unlike a classical bit, a qubit can be in superposition of 0 and 1.
- In a superposition, each state has an amplitude, which can be a negative or positive complex number.
- When we measure a qubit, it collapses to 0 or 1 randomly.
- The amount of amplitudes grow exponentially with the number of qubits: a n-qubit system requires 2<sup>n</sup> amplitudes to describe the system.





### **Quantum Computation and Information: Interference**

"The goal in quantum computing is to choreograph a computation so that the amplitudes leading to wrong answers cancel each other out, while the amplitudes leading to right answers reinforce." - Aaronson [1]











#### Quantum Computation and Information: Entanglement

Particles can interact and produce entangled states which show correlations in measurement outcomes.

Example: Bob and Alice share two entangled electrons with opposite spins. When Bob measures his electron to be spin up, Alice's electron must be spin down and vice versa.





- We describe running time of an algorithm as a function of the size of the input [4].
- We usually concentrate on the worst-case running time of an algorithm.
- Problems in class P: polynomial-time algorithms ("easy" problems) grow by some constant k given input size n: O(nk).
- Porblems in class NP: superpolynomial-time algorithms ("hard problems"), grow faster than O(n<sup>k</sup>), for example O(2<sup>n</sup>) or O(n!).















Figure: A diagram illustrating the hierarchy of several important complexity classes. Image by MIT OpenCourseWare.





| Algorithm               | Quantum Speedup | Technique  |
|-------------------------|-----------------|------------|
| Factoring               | Superpolynomial | [11]       |
| Quantum Simulation      | Superpolynomial | [12, 7, 3] |
| Searching               | Polynomial      | [6]        |
| Constraint Satisfaction | Polynomial      | [2]        |





# **Quantum Computing for Scientific Problems: Quantum Chemistry**

Problem: find the minimum energy state of a molecule

- Since the founding of the field of quantum mechanics, we have been able to describe the state of a quantum-mechanical system by solving the Schrödinger equation [5].
- Applications in chemistry, biology, drug discovery, and materials science [8].





# **Quantum Computing for Scientific Problems: Quantum Chemistry**

Problem: find the minimum energy state of a molecule

- Unfit for classical computers: quantum system grows exponentially with the number of particles - requires an exponential amount of classical bits to represent the quantum system.
- Quantum state's amplitudes grows exponentially with the amount of qubits — requires a linear amount of qubits to represent the quantum system.





# **Quantum Computing for Scientific Problems: Quantum Chemistry**

Problem: find the minimum energy state of a molecule Quantum algorithms for finding the minimum energy state of a molecule:

- Quantum Phase Estimation (QPE) algorithm requires fault-tolerant quantum computer [9].
- Variational Quantum Eigensolver (VQE) candidate for near-term quantum devices using iterative classical optimization [10].





#### Other Possible Scientific Applications for Quantum Computers

- · Machine learning
- Cryptography
- Biology (genome sequencing)







- [1] Scott Aaronson. "Quantum Computing Promises New Insights, Not Just Supermachines". In: *Quantum Computing since Democritus*. Cambridge University Press, 2011. Chap. Quantum, pp. 109–131. ISBN: 9780511979309. DOI: 10.1017/cbo9780511979309.010.
- [2] Andris Ambainis. "Quantum search algorithms". In: (2005). arXiv: quant-ph/0504012.
- [3] A. Aspuru-Guzik. "Simulated Quantum Computation of Molecular Energies". In: Science 309.5741 (2005-09), pp. 1704–1707. ISSN: 0036-8075, 1095-9203. DOI: 10.1126/science.1113479.
- [4] Thomas H Cormen et al. *Introduction to algorithms*. press, 2009.



- [6] Lov K Grover. "A fast quantum mechanical algorithm for database search". In: Proceedings of the twenty-eighth annual ACM symposium on Theory of computing. 1996, pp. 212–219.
- [7] Seth Lloyd. "Universal quantum simulators". In: *Science* (1996), pp. 1073–1078.
- [8] Sam McArdle et al. *Quantum computational chemistry*. 2018. arXiv: 1808.10402 [quant-ph].
- [9] Michael A. Nielsen and Isaac L. Chuang. Quantum Computation and Quantum Information. 10th Anniversary Edition. 10th. New York, NY, USA: Cambridge University Press, 2009. ISBN: 9780511976667. DOI: 10.1017/cbo9780511976667.





- [10] Alberto Peruzzo et al. "A variational eigenvalue solver on a photonic quantum processor". In: *Nat Commun* 5.1 (2014-07), p. 4213. ISSN: 2041-1723. DOI: 10.1038/ncomms5213.
- [11] Peter W. Shor. "Polynomial-Time Algorithms for Prime Factorization and Discrete Logarithms on a Quantum Computer". In: SIAM Rev. 41.2 (1999-01), pp. 303–332. ISSN: 0036-1445, 1095-7200. DOI: 10.1137/s0036144598347011.
- [12] Christof Zalka. "Efficient simulation of quantum systems by quantum computers". In: Fortschritte der Physik: Progress of Physics 46.6-8 (1998), pp. 877–879.