

OPERATING SYSTEM

Multi-Processor & Real-time Scheduling

Dr Rahul Nagpal

Computer Science

OPERATING SYSTEM

Multi-Processor & Real-time Scheduling

Dr. Rahul NagpalComputer Science

Outline

PES UNIVERSITY ONLINE

- Multiprocessor Scheduling
- Real-time Scheduling
 - Priority Based Scheduling
 - Rate Monotonic Scheduling
 - Earliest Deadline First Scheduling
 - Proportional Share Scheduling

Multiple-Processor Scheduling

- CPU scheduling more complex when multiple CPUs are available
- Homogeneous processors within a multiprocessor
- Asymmetric multiprocessing only one processor accesses the system data structures, alleviating the need for data sharing
- Symmetric multiprocessing (SMP) each processor is selfscheduling, all processes in common ready queue, or each has its own private queue of ready processes
 - Currently, most common
- Processor affinity process has affinity for processor on which it is currently running
 - soft affinity, hard affinity, Variations including processor sets

NUMA and **CPU** Scheduling

Note that memory-placement algorithms can also consider affinity

Multiple-Processor Scheduling – Load Balancing

PES UNIVERSITY ONLINE

- If SMP, need to keep all CPUs loaded for efficiency
- Load balancing attempts to keep workload evenly distributed
- Push migration periodic task checks load on each processor, and if found pushes task from overloaded CPU to other CPUs
- Pull migration idle processors pulls waiting task from busy processor

Multicore Processors

- Recent trend to place multiple processor cores on same physical chip
- Faster and consumes less power
- Multiple threads per core also growing
 - Takes advantage of memory stall to make progress on another thread while memory retrieve happens

Multithreaded Multicore System

Real-Time CPU Scheduling

- Can present obvious challenges
- Soft real-time systems no guarantee as to when critical real-time process will be scheduled
- Hard real-time systems task must be serviced by its deadline
- Two types of latencies affect performance
 - 1.Interrupt latency time from arrival of interrupt to start of routine that services interrupt
 - 2.Dispatch latency time for schedule to take current process off CPU and switch to another

Real-Time CPU Scheduling (Cont.)

- Conflict phase of dispatch latency:
 - 1. Preemption of any process running in kernel mode
 - 2. Release by low-priority process of resources needed by high-priority processes

Priority-based Scheduling

- For real-time scheduling, scheduler must support preemptive, priority-based scheduling
 - But only guarantees soft real-time
- For hard real-time must also provide ability to meet deadlines
- Processes have new characteristics: periodic ones require CPU at constant intervals
 - Has processing time t, deadline d, period p
 - $0 \le t \le d \le p$
 - Rate of periodic task is 1/p

Virtualization and Scheduling

- Virtualization software schedules multiple guests onto CPU(s)
- Each guest doing its own scheduling
 - Not knowing it doesn't own the CPUs
 - Can result in poor response time
 - Can effect time-of-day clocks in guests
- Can undo good scheduling algorithm efforts of guests

Rate Monotonic Scheduling

PES UNIVERSITY ONLINE

- A priority is assigned based on the inverse of its period
- Shorter periods = higher priority;
- Longer periods = lower priority
- P₁ is assigned a higher priority than P₂.

Missed Deadlines with Rate Monotonic Scheduling

Earliest Deadline First Scheduling (EDF)

- Priorities are assigned according to deadlines
 - the earlier the deadline, the higher the priority;
 - the later the deadline, the lower the priority

Proportional Share Scheduling

- T shares are allocated among all processes in the system
- An application receives N shares where N < T
- This ensures each application will receive N / T of the total processor time

THANK YOU

Dr Rahul Nagpal

Department of Computer Science

rahulnagpal@pes.edu