Fermi denel in Internsic - Semiconductors

In Intrinsic Semi Conductors

Ne = Nh - Rep. concentration of electrons

& holes.

4 \(\frac{4 \sqrt{2}}{\kappa^3} \left(\frac{\pi}{me} \kt)^{3/2} \end{array} e^{\left(\frac{\EF-Eg}{kT} \right)} = \frac{4 \sqrt{\pi}}{\kappa^3} \left(\pi m_R^+ kt \right)^{3/2} e^{\left(-EF/kT)}

after cancellation, $(me^{+})^{3/2}e^{\frac{(E_{F}-E_{g})}{KT}}=(mh^{+})^{3/2}e^{\frac{(-E_{F}/kT)}{KT}}$

 $\frac{e^{-(E_F-E_g)/kT}}{e^{-(E_F/kT)}} = \frac{m_e^{*}}{m_e^{*}}^{3/2}$ $\frac{m_e^{*}}{m_e^{*}}^{3/2}$ $\frac{m_e^{*}}{m_e^{*}}^{*}$ $\frac{m_e^{*}}{m_e^{*}}^{*}$

 $e^{\left(\frac{2E_{F}-E_{g}}{KT}\right)}=\left(\frac{m_{h}^{*}}{m_{e}^{*}}\right)^{3/2}$

Taking nælned log on boln sides.

 $\frac{2E_{F}-E_{g}}{KT}=\frac{3}{2}\ln\left(\frac{M_{h}}{me^{+}}\right)$

 $2E_{F}-E_{g}=\frac{3}{2}\ln\left(\frac{M_{e}^{*}}{m_{e}^{*}}\right)KT$

 $2E_{f} = \left[\frac{3}{2} \ln \left(\frac{m^{2}h}{m_{e}^{2}}\right) + E_{f}\right]$

as $m_h = m_e^+$ (:. $l_h 1 = 0$)

 $g = \frac{Eg}{Ef} = \frac{Eg}{2}$

charge carrier density or carrier concentration, denotes the number of charge callier in fer volume Catrier Concontration in Intrinsic Semiconductor Inside a semiconductor, è fhotes au generaled with themsal energy, me election & hole concertiation at lemperature Tk. ni internsie semiconductor n= p= ni, when ni is college intensie semi conductor. Also the product np = ni2 -(1) where $n = n_c = 2 \left(\frac{2\pi m_e^+ kT}{h^2} \right)^{3/2} e^{-\left(\frac{E_c - E_F}{E_F} \right) \left| \frac{kT}{kT} \right|^{3/2}}$ B= no = 2 (271 Met KT) 8/2 e - (EF-EV)/KT n= Mc (Ec-Ec)/kT on substituting not p in Eq. (1). n; = (No Nc) e - (Ef - Eu) / kT . e - (Ec - Ef) / kT ni2 = (No Nc) e - (Ex-Ea+Ec-Ex)/KT ni2 = (No No) e - [Ec-Eo]/kr ni2 = (NU NC) e = [Eg][KT or ni = (Ne No] 1/2 e - Eg / 2KT Substituting No & Mc ni = 2 [2TI KT] 3/2 [Mat. Met] 3/4 e = Eg | 2KT

If $me^{2} = mp^{2} = m$ is the vert mass of e^{2} , the sph becomes $ni = 2\left(\frac{2\pi i \, kT}{h^{2}}, m\right)^{3} |_{2}$, $e^{-\frac{2\pi i \, mk}{h^{2}}} \int_{1}^{3} |_{2} - \frac{2\pi i \, mk}{h^{2}} \int_{$