Grupo ARCOS

uc3m Universidad Carlos III de Madrid

Tema 2: Representación de la información

Estructura de Computadores

Grado en Ingeniería Informática Grado en Matemática aplicada y Computación Doble Grado en Ingeniería Informática y Administración de Empresas

Contenidos

Introducción

- Motivación y objetivos
- 2. Sistemas posicionales

2. Representaciones

- Alfanuméricas
 - Caracteres
 - 2. Cadenas de caracteres
- 2. Numéricas
 - Naturales y enteras
 - 2. Coma fija
 - 3. Coma flotante (estándar IEEE 754)

Contenidos

I. Introducción

- Motivación y objetivos
- 2. Sistemas posicionales

2. Representaciones

- Alfanuméricas
 - Caracteres
 - 2. Cadenas de caracteres
- 2. Numéricas
 - Naturales y enteras
 - 2. Coma fija
 - 3. Coma flotante (estándar IEEE 754)

Introducción: computador

Un computador es una máquina destinada a procesar datos.

Se aplican unas instrucciones y se obtiene unos resultados

Introducción: computador

Un computador es una máquina destinada a procesar datos.

- Se aplican unas instrucciones y se obtiene unos resultados
- Los datos/información pueden ser de distintos tipo

Introducción: computador

Un computador es una máquina destinada a procesar datos.

- Se aplican unas instrucciones y se obtiene unos resultados
- Los datos/información pueden ser de distintos tipo
- Un computador solo usa una representación: binario.

Introducción: representación de la información

El uso de una representación permite transformar los distintos tipos de información en binario (y viceversa)

Introducción: características de la información

- Un computador maneja un conjunto finito de valores
 - Tipo binario (dos estados)
 - Finito (representación acotada)
 - N° de bits de palabra del computador
 o bit (1), nibble (4), byte (8), half w., double w., ...
 - ▶ Con n bits se pueden codificar 2n valores distintos

- Hay algunos tipos de información que son infinitos
 - Imposible representar todos los valores de los números naturales, reales, etc.

La representación elegida tiene limitaciones

Ejemplo 1: la calculadora de Google con 15 dígitos...

http://www.20minutos.es/noticia/415383/0/google/restar/error/

Ejemplo 2: la profundidad de color...

l bit	2 colores		
4 bits	16 colores		
8 bits	256 colores		

http://platea.pntic.mec.es/~lgonzale/tic/imagen/conceptos.html

Ejemplo 2: la profundidad de color...

I bit	2 colores	
4 bits	16 colores	
8 bits	256 colores	

http://platea.pntic.mec.es/~lgonzale/tic/imagen/conceptos.html

Ejemplo 2: la profundidad de color...

I bit	2 colores		
4 bits	16 colores		
8 bits	256 colores		

http://platea.pntic.mec.es/~lgonzale/tic/imagen/conceptos.html

Necesitaremos...

Conocer posibles representaciones:

- Conocer las características de las mismas:
 - Limitaciones

Conocer cómo operar con la representación:

Contenidos

I. Introducción

- Motivación y objetivos
- 2. Sistemas posicionales

2. Representaciones

- Alfanuméricas
 - Caracteres
 - 2. Cadenas de caracteres
- 2. Numéricas
 - Naturales y enteras
 - 2. Coma fija
 - 3. Coma flotante (estándar IEEE 754)

- Un número se define por una cadena de dígitos, estando afectado cada uno de ellos por un factor de escala que depende de la posición que ocupa en la cadena.
- Dada una base de numeración b, un número X se define como la cadena de dígitos:

$$X = (... x_2 x_1 x_0, x_{-1} x_{-2} ...)_b$$
 Con $0 \le x_i < b$ con una lista de pesos asociados:

$$P = (\dots b^2 b^1 b^0 b^{-1} b^{-2} \dots)_b$$

Su valor es:

$$V(X) = \sum_{i=-\infty}^{+\infty} b^{i} \cdot x_{i} = \cdots b^{2} \cdot x_{2} + b^{1} \cdot x_{1} + b^{0} \cdot x_{0} + b^{-1} \cdot x_{-1} + b^{-2} \cdot x_{-2} \cdots$$

Decimal

$$X = 9 7 3 I$$

... $10^3 10^2 10^1 10^0$

Binario

$$X = 0 \ I \ 0 \ I$$
... $2^3 \ 2^2 \ 2^1 \ 2^0$

Hexadecimal

$$X = I F A 8$$

... $I6^3 I6^2 I6^1 I6^0$

Decimal

$$X = 9 7 3 I$$

... $10^3 10^2 10^1 10^0$

Binario

$$X = 0 \ I \ 0 \ I$$
... $2^3 \ 2^2 \ 2^1 \ 2^0$

Hexadecimal

$$X = I F A 8$$

... $16^3 16^2 16^1 16^0$

Paso de binario a hexadecimal:

- Agrupar de 4 en 4 bits, de derecha a izquierda
- Cada 4 bits es el valor del dígito hexadecimal

Decimal

$$X = 9 7 3 I$$
... $10^3 10^2 10^1 10^0$

Binario

$$X = 0 \ I \ 0 \ I$$
... $2^3 \ 2^2 \ 2^1 \ 2^0$

Hexadecimal

$$X = I F A 8$$

... $I6^3 I6^2 I6^1 I6^0$

Ejercicio

Representar 342 en binario:

Ejercicio (solución)

Representar 342 en binario:

▶ Con 3 dígitos binarios, se pueden representar 8 símbolos:

¿Cuántos valores se pueden representar con n bits?

L'Cuántos bits se necesitan para representar m'valores'?

Con n bits, si el valor mínimo representable corresponde al número 0, ¿Cuál es el máximo valor numérico representable?

- > ¿Cuántos valores se pueden representar con n bits?
 - 2n 1011
 - Ej.: con 4 bits se pueden representar 16 valores
- - ► $\lceil Log2(n) \rceil$ (Log₂(n) por exceso)
 - Ej.: para representar 35 valores se necesitan 6 bits
- Con n bits, si el valor mínimo representable corresponde al número 0, ¿Cuál es el máximo valor numérico representable?
 - ▶ 2ⁿ-1

Ejercicio

▶ Calcular el valor de (23 unos):

Ejercicio (solución)

▶ Calcular el valor de (23 unos):

$$X = 2^{23} - 1$$

Truco:

$$X = 2^{23} - 1$$

Operaciones con representación binaria

Sumar en binario:

Restar en binario:

Contenidos

Introducción

- Motivación y objetivos
- 2. Sistemas posicionales

2. Representaciones

- I. Alfanuméricas
 - Caracteres
 - 2. Cadenas de caracteres
- 2. Numéricas
 - Naturales y enteras
 - 2. Coma fija
 - 3. Coma flotante (estándar IEEE 754)

Representación alfanumérica

- Cada carácter se codifica con un byte.
- Para n bits $\Rightarrow 2^n$ caracteres representables:

# bits	# caracteres	Incluye	Ejemplo
6	64	 26 letras: az 10 números: 09 Puntuación: .,;: Especiales: + - [BCDIC
7	128	 añade mayúsculas y caracteres de control 	ASCII
8	256	 añade letras acentuadas, ñ, caracteres semigráficos 	EBCDIC ASCII extendido
16	34.168	Añade distintos idiomas (chino, árabe,)	UNICODE

ASCII value	Character	Control character	ASCII value	Character	ASCII value	Character	ASCII value	Character
000	(null)	NUL	032	(space)	064	@	096	
001	\odot	SOH	033	!	065	A	097	α
002	•	STX	034	n	066	В	098	b
003	♥	ETX	035	#	067	C	099	C
004	•	EOT	036	\$	068	D	100	d
005	*	ENQ	037	%	069	E	101	e
006	A	ACK	038	&	070	F	102	f
007	(beep)	BEL	039	r	071	G	103	g
008	13	BS	040	(072	H	104	h
009	(tab)	HT	041)	073	I	105	i
010	(line feed)	LF	042	*	074	J	106	j
011	(home)	VT	043	+	075	K	107	k
012	(form feed)	FF	044	,	076	L	108	1
013	(carriage return)	CR	045	-	077	M	109	m
014		SO	046		078	N	110	n
015	☼	SI	047	/	079	0	111	0
016		DLE	048	0	080	P	112	p
017		DC1	049	1	081	Q	113	q
018	\$	DC2	050	2	082	R	114	r
019	!!	DC3	051	3	083	S	115	S
020	π	DC4	052	4	084	T	116	t
021	§	NAK	053	5	085	U	117	u
022	MATERIA	SYN	054	6	086	V	118	v
023	<u>‡</u>	ETB	055	7	087	W	119	w
024	<u></u>	CAN	056	8	088	X	120	x
025	↓	EM	057	9	089	Y	121	У
026		SUB	058	:	090	Z	122	z
027	←	ESC	059	;	091	[123	{
028	(cursor right)	FS	060	<	092		124	1
029	(cursor left)	GS	061	= 1	093	1	125	}
030	(cursor up)	RS	062	>	094	^	126	Physical Company
031	(cursor down)	US	063	?	095		127	

Copyright 1998, JimPrice.Com Copyright 1982, Leading Edge Computer Products, Inc.

caracteres de control

ASCII value	Character	Control character	ASCII value	Character	ASCII value	Character	ASCII value	Character
000	(null)	NUL	032	(space)	064	@	096	
001	\odot	SOH	033		065	A	097	α
002	•	STX	034	**	066	В	098	b
003	♥	ETX	035	#	067	C	099	C
004	•	EOT	036	\$	068	D	100	d
005	*	ENQ	037	%	069	E	101	e
006	A	ACK	038	&	070	F	102	f
007	(beep)	BEL	039	r	071	G	103	g
800	12	BS	040	(072	H	104	h
009	(tab)	HT	041)	073	I	105	i
010	(line feed)	LF	042	•	074	J	106	i
011	(home)	VT	043	+	075	K	107	k
012	(form feed)	FF	044	,	076	L	108	1
013	(carriage return)	CR	045	-	077	M	109	m
014	្រា	SO	046		078	N	110	n
015	☼	SI	047	/	079	0	111	0
016		DLE	048	0	080	P	112	p
017	4400	DC1	049	1	081	Q	113	q
018	\$	DC2	050	2	082	R	114	r
019	!!	DC3	051	3	083	S	115	S
020	π	DC4	052	4	084	T	116	t
021	§	NAK	053	5	085	U	117	u
022	cakes	SYN	054	6	086	V	118	v
023	<u></u>	ETB	055	7	087	W	119	w
024	<u>†</u>	CAN	056	8	088	X	120	x
025	į.	EM	057	9	089	Y	121	У
026		SUB	058	:	090	Z	122	z
027		ESC	059	;	091	[123	. {
028	(cursor right)	FS	060	<	092		124	1
029	(cursor left)	GS	061	= '	093]	125	}
030	(cursor up)	RS	062	>	094	\wedge	126	Phys
031	(cursor down)	US	063	?	095	******	127	

< 32

Copyright 1998, JimPrice.Com Copyright 1982, Leading Edge Computer Products, Inc

distancia mayúsculas-minúsculas

ASCII value	Character	Control character	ASCII value	Character	ASCII value	Character	ASCII value	Character
000	(null)	NUL	032	(space)	064	@	096	
001	\odot	SOH	033	1	065	A	097	α
002	•	STX	034	n	066	В	098	b
003	*	ETX	035	#	067	C	099	С
004	*	EOT	036	\$	068	D	100	d
005	*	ENQ	037	%	069	E	101	е
006	A	ACK	038	&	070	F	102	f
007	(beep)	BEL	039	t	071	G	103	g
800		BS	040	(072	H	104	h
009	(tab)	HT	041)	073	I	105	i
010	(line feed)	LF	042	*	074	J	106	i
011	(home)	VT	043	+	075	K	107	k
012	(form feed)	FF	044	,	076	L	108	1
013	(carriage return)	CR	045	-	077	M	109	m
014	. 73	SO	046		078	N	110	n
015	☼	SI	047	/	079	0	111	0
016		DLE	048	0	080	P	112	p
017	-400	DCl	049	1	081	Q	113	q
018	\$	DC2	050	2	082	R	114	r
019	11	DC3	051	3	083	S	115	S
020	π	DC4	052	4	084	T	116	t
021	§	NAK	053	5	085	U	117	u
022	CARCES	SYN	054	6	086	V	118	v
023	<u></u>	ETB	055	7	087	W	119	w
024	<u></u>	CAN	056	8	088	X	120	x
025	Į.	EM	057	9	089	Y	121	У
026		SUB	058	:	090	Z	122	z
027		ESC	059	;	091	[123	· {
028	(cursor right)	FS	060	<	092		124	1
029	(cursor left)	GS	061	= '	093	1	125	}
030	(cursor up)	RS	062	>	094	^	126	~
031	(cursor down)	US	063	?	095		127	

97-65=32

Copyright 1998, JimPrice.Com Copyright 1982, Leading Edge Computer Products, Inc

conversión de un número a carácter

ASCII value	Character	Control character	ASCII value	Character	ASCII value	Character	ASCII value	Character
000	(null)	NUL	032	(space)	064	(i)	096	
001	\odot	SOH	033	1	065	A	097	α
002	•	STX	034	n	066	В	098	b
003	₩	ETX	035	#	067	C	099	C
004	*	EOT	036	\$	068	D	100	d
005	*	ENQ	037	%	069	E	101	е
006	A	ACK	038	&	070	F	102	f
007	(beep)	BEL	039	1	071	G	103	g
008	13	BS	040	(072	H	104	h
009	(tab)	HT	041)	073	I	105	i
010	(line feed)	LF	042	*	074	J	106	i
011	(home)	VT	043	+	075	K	107	k
012	(form feed)	FF	044	*	076	L	108	1
013	(carriage return)	CR	045	_	077	M	109	m
014	រា	SO	046		078	N	110	n
015	☼	SI	047	1	079	0	111	0
016		DLE	048	0	080	P	112	р
017	400	DC1	049	1	081	Q	113	q
018	\$	DC2	050	2	082	R	114	r
019	!!	DC3	051	3	083	S	115	S
020	π	DC4	052	4	084	T	116	t
021	\$	NAK	053	5	085	U	117	u
022	exces	SYN	054	6	086	V	118	v
023	<u></u>	ETB	055	7	087	W	119	w
024	<u>†</u>	CAN	056	8	088	X	120	x
025	į.	EM	057	9	089	Y	121	У
026		SUB	058	:	090	Z	122	z
027		ESC	059	;	091	[123	{
028	(cursor right)	FS	060	<	092		124	1
029	(cursor left)	GS	061	= '	093]	125	}
030	(cursor up)	RS	062	>	094	^	126	~
031	(cursor down)	US	063	?	095		127	

Copyright 1998, JimPrice.Com Copyright 1982, Leading Edge Computer Products, Inc

Curiosidad: Visualización 'gráfica' con caracteres

HHHHCHCCCCCCHHHHHH88X888888X8CC8X77X7XXX888888XX8HHHHHH8X88

http://www.typorganism.com/asciiomatic/

Cadenas de caracteres

1000 00110011 1001 01101100 ••• 1008 10100011

Cadenas de longitud fija:

2. Cadenas de longitud variable con separador:

3. Cadenas de longitud variable con longitud en cabecera:

Contenidos

I. Introducción

- Motivación y objetivos
- 2. Sistemas posicionales

2. Representaciones

- Alfanuméricas
 - Caracteres
 - 2. Cadenas de caracteres

2. Numéricas

- Naturales y enteras
- 2. Coma fija
- 3. Coma flotante (estándar IEEE 754)

Representación numérica

- Clasificación de números reales:
 - Naturales: 0, 1, 2, 3, ...
 - ▶ Enteros: ... -3, -2, -1, 0, 1, 2, 3,
 - Racionales: fracciones (5/2 = 2,5)
 - Irracionales: $2^{1/2}$, π , e, ...
- Conjuntos infinitos y espacio de representación finito:
 - Imposible representar todos
- Características de la representación usada:
 - Elemento representado: Natural, entero, ...
 - Rango de representación:
 Intervalo entre el menor y mayor nº representable
 - Resolución de representación:
 Diferencia entre un n° representable y el siguiente.
 Representa el máximo error cometido. Puede ser cte. o variable.

Sistemas de representación binarios más usados

A. Coma fija sin signo o binario puro

naturales

- B. Signo magnitud
- c. Complemento a uno (Ca I)

enteros

- D. Complemento a dos (Ca 2)
- E. Exceso 2ⁿ⁻¹-1
- F. Coma flotante: Estándar IEEE 754

reales

Coma fija sin signo o binario puro [naturales]

Sistema posicional con base 2 y sin parte fraccionaria.

$$V(X) = \sum_{i=0}^{n-1} 2^i \cdot x_i$$

- Rango de representación: [0, 2ⁿ 1]
- Resolución: I unidad

Ejemplo comparativo (3 bits)

Decimal	Binario Puro		
+7	111		
+6	110		
+5	101		
+4	100		
+3	011		
+2	010		
+1	001		
+0	000		
-0	N.D.		
-1	N.D.		
-2	N.D.		
-3	N.D.		
-4	N.D.		
-5	N.D.		
-6	N.D.		
-7	N.D.		

Coma fija con signo o signo magnitud [enteros]

• Se reserva un bit (S) para el signo $(0 \Rightarrow +; I \Rightarrow -)$

Si
$$x_{n-1} = 0$$
 $V(X) = \sum_{i=0}^{n-2} 2^{i} \cdot x_{i}$ $\Rightarrow V(X) = (1 - 2 \cdot x_{n-1}) \cdot \sum_{i=0}^{n-2} 2^{i} \cdot x_{i}$ Si $x_{n-1} = 1$ $V(X) = -\sum_{i=0}^{n-2} 2^{i} \cdot x_{i}$

- Rango de representación: [-2ⁿ⁻¹ +1, 2ⁿ⁻¹ -1]
- Resolución: I unidad
- Ambigüedad del 0

Ejemplo comparativo (3 bits)

Decimal	Binario Puro	Signo magnitud	
+7	111	N.D.	
+6	110	N.D.	
+5	101	N.D.	
+4	100	N.D.	
+3	011	011	
+2	010	010	
+1	001	001	
+0	000	000	
-0	N.D.	100	
- I	N.D.	101	
-2	N.D.	110	
-3	N.D.	111	
-4	N.D.	N.D.	
-5	N.D.	N.D.	
-6	N.D.	N.D.	
-7	N.D.	N.D.	

41

Ejemplo

¿Se puede representar 745₁₀ en signo magnitude con 10 bits?

Ejemplo (solución)

- ¿Se puede representar 745₁₀ en signo magnitude con 10 bits?
- Con 10 bits el rango en signo magnitude es: $[-2^9+1,...,-0,+0,....2^9-1] \Rightarrow [-511,511]$ y por tanto, **no podemos representar** 745

Complemento a uno (a la base menos uno) [enteros] (1/3)

Número positivo: se representa en binario puro con n-1 bits

$$V(X) = \sum_{i=0}^{n-1} 2^{i} \cdot X_{i} = \sum_{i=0}^{n-2} 2^{i} \cdot X_{i}$$

- Rango de representación (+): [0, 2ⁿ⁻¹ -1]
- Resolución: Lunidad

Complemento a uno (a la base menos uno) [enteros] (2/3)

Número negativo:

- Se complementa a la base menos uno
- ▶ El número X < 0 se representa como $2^n X 1$ con n bits

$$V(X) = -2^{n} + \sum_{i=0}^{n-1} 2^{i} \cdot y_{i} + 1$$

- Rango de representación (-): [-(2ⁿ⁻¹-1), -0]
- Resolución: I unidad

Complemento a uno (a la base menos uno) [enteros] (3/3)

- Ejemplo: Para n=4 \Rightarrow el valor +3₁₀ = 00 l l₂
- ▶ Ejemplo: Para n=4 \Rightarrow el valor -3₁₀ = 1100₂
 - ► ⇒ I (bit signo y también parte de magnitud)
 - C a $I(3) \Rightarrow 2^4 00II_2 I = 2^4 3 I = I2 \Rightarrow II00_2$
 - Rango de representación: [-2ⁿ⁻¹+1,2ⁿ⁻¹-1]
 - Resolución: I unidad
 - El 0 tiene doble representación (+0 y -0)
 - Rango simétrico

Complemento a uno

Los números positivos tienen un 0 en el bit más signficativo

Los números negativos tienen un I en el bit más significativo

Ejemplo comparativo (3 bits)

Decimal	Binario Puro	Signo magnitud	Complemento a uno
+7	111	N.D.	N.D.
+6	110	N.D.	N.D.
+5	101	N.D.	N.D.
+4	100	N.D.	N.D.
+3	011	011	011
+2	010	010	010
+1	001	001	001
+0	000	000	000
-0	N.D.	100	111
-1	N.D.	101	110
-2	N.D.	110	101
-3	N.D.	111	100
-4	N.D.	N.D.	N.D.
-5	N.D.	N.D.	N.D.
-6	N.D.	N.D.	N.D.
-7	N.D.	N.D.	N.D.

Ejemplo

Para n = 5 bits y usando complemento a uno:

¿Cómo se representa X = 5?

 \rightarrow ¿Cómo se representa X = -5?

- ¿Cuál es el valor de 00111 en complemento a 1?
- ¿Cuál es el valor de 11000 en complemento a 1?

Ejemplo (solución)

Para n = 5 bits y usando complemento a uno:

- ¿Cómo se representa X = 5?
 - Como es positivo, en binario puro
 - ▶ 00101
- \rightarrow ¿Cómo se representa X = -5?
 - ▶ Como es negativo, se complementa el valor 5 (00101)
 - **II010**
- ¿Cuál es el valor de 00 | 1 | en complemento a | ?
 - Como es positivo, su valor es directamente 7
- ¿Cuál es el valor de 11000 en complemento a 1?
 - Como es negativo, se complementa y se obtiene 00111 (7)
 - ▶ El valor es -7

Complemento a dos (complemento a la base) [enteros] (1/3)

Número positivo: se representa en binario puro con n-1 bits

$$V(X) = \sum_{i=0}^{n-1} 2^{i} \cdot x_{i} = \sum_{i=0}^{n-2} 2^{i} \cdot x_{i}$$

- Rango de representación (+): [0, 2ⁿ⁻¹ -1]
- Resolución: Lunidad

Complemento a dos (complemento a la base) [enteros] (2/3)

Número negativo:

- Se complementa a la base
- El número X < 0 se representa como $2^n X$ con n bits

$$V(X) = -2^n + \sum_{i=0}^{n-1} 2^i \cdot y_i$$

- Rango de representación (-): [-2ⁿ⁻¹, -1]
- Resolución: I unidad

Complemento a dos (complemento a la base) [enteros] (3/3)

Truco:
$$C \ a \ 2 \ (X) = X$$

 $C \ a \ 2 \ (-X) = C \ a \ I \ (X) + I$

- ► Ejemplo: Para $n=4 \Rightarrow +3 = 0011_2$
- ▶ Ejemplo: Para $n=4 \Rightarrow -3 = 1101_2$
 - ► $I \Rightarrow$ (bit signo y también parte de magnitud)
 - C a 2 (3) = C a 2(00|1₂) = 2^4 3 = $13 \Rightarrow 1101_2$
 - Rango de representación: [-2ⁿ⁻¹, 2ⁿ⁻¹-1]
 - Resolución: Lunidad
 - El 0 tiene una única representación (No ∃ -0)
 - Rango asimétrico

Ejemplo comparativo (3 bits)

Decimal	Binario Puro	Signo magnitud	Complemento a uno	Complemento a dos
+7	111	N.D.	N.D.	N.D.
+6	110	N.D.	N.D.	N.D.
+5	101	N.D.	N.D.	N.D.
+4	100	N.D.	N.D.	N.D.
+3	011	011	011	011
+2	010	010	010	010
+1	001	001	001	001
+0	000	000	000	000
-0	N.D.	100	111	N.D.
-1	N.D.	101	110	Ш
-2	N.D.	110	101	110
-3	N.D.	111	100	101
-4	N.D.	N.D.	N.D.	100
-5	N.D.	N.D.	N.D.	N.D.
-6	N.D.	N.D.	N.D.	N.D.
-7	N.D.	N.D.	N.D.	N.D.

Complemento a dos

2^{N-I} no negativos2^{N-I} negativosI cero

Complemento a dos para 32 bits

```
0000 \dots 0000 \ 0000 \ 0000 \ 0000_{dos} =
0000 \dots 0000 \ 0000 \ 0001_{dos} =
                                                 1_{(10)}
0000 \dots 0000 \ 0000 \ 0010_{dos} =
                                                 2_{(10)}
0111 \dots 1111 \quad 1111 \quad 1111 \quad 1101_{dos} = 2,147,483,645_{(10)}
0111 \dots 1111 \quad 1111 \quad 1111 \quad 1110_{\text{dos}} = 2,147,483,646_{(10)}
0111 \dots 1111 \quad 1111 \quad 1111 \quad 1111_{\text{dos}} = 2,147,483,647_{(10)}
1000 \dots 0000 \ 0000 \ 0000_{\text{dos}} = -2,147,483,648_{(10)}
1000 \dots 0000 \ 0000 \ 0001_{dos} = -2,147,483,647_{(10)}
1000 \dots 0000 \ 0000 \ 0000 \ 0010_{dos} = -2,147,483,646_{(10)}
1111 ... 1111 1111 1111 1101_{dos} = -3_{(10)}
1111 ... 1111 1111 1111 1110_{\text{dos}} = -2_{(10)}
1111 ... 1111 1111 1111 1111_{\text{dos}} = -1_{(10)}
```

Representación en Exceso 2ⁿ⁻¹-1 [enteros]

- ▶ El valor X con n bits se reprsenta como X + 2ⁿ⁻¹-I
- Se denomina sesgo a la cantidad 2ⁿ⁻¹-1

$$V(X) = \sum_{i=0}^{n-1} 2^{i} \cdot x_{i} - (2^{n-1} - 1)$$

- Rango de representación: [-(2ⁿ⁻¹-1), 2ⁿ⁻¹]
- Resolución: Lunidad
- No existe ambigüedad con el 0

Ejemplo comparativo (3 bits)

Decimal	Binario Puro	Signo magnitud	Complemento a uno	Complemento a dos	Exceso 3
+7	111	N.D.	N.D.	N.D.	N.D.
+6	110	N.D.	N.D.	N.D.	N.D.
+5	101	N.D.	N.D.	N.D.	N.D.
+4	100	N.D.	N.D.	N.D.	Ш
+3	011	011	011	011	110
+2	010	010	010	010	101
+1	001	001	001	001	100
+0	000	000	000	000	011
-0	N.D.	100	111	N.D.	N.D.
-1	N.D.	101	110	Ш	010
-2	N.D.	110	101	110	001
-3	N.D.	111	100	101	000
-4	N.D.	N.D.	N.D.	100	N.D.
-5	N.D.	N.D.	N.D.	N.D.	N.D.
-6	N.D.	N.D.	N.D.	N.D.	N.D.
-7	N.D.	N.D.	N.D.	N.D.	N.D.

Representaciones resumen

Nombre	Binario puro	Signo-magnitud	Cal	Ca2	Exceso 2 ⁿ⁻¹ -1
Representa	Natural	Entero	Entero	Entero	Entero
Signo	Todos los bits son magnitud, no hay signo	MSB es el signo $(0 \Rightarrow + y \mid \Rightarrow -)$	MSB es signo y magnitud (0 \Rightarrow + y \mid \Rightarrow -)	MSB es signo y magnitud (0 \Rightarrow + y \Rightarrow -)	MSB es signo y magnitud $(0 \Rightarrow -$ o 0 y $ \Rightarrow +$ no 0)
Rango	[0, 2 ⁿ - 1]	$[-2^{n-1}+1, 2^{n-1}-1]$	$[-2^{n-1}+1,2^{n-1}-1]$	$[-2^{n-1}, 2^{n-1}-1]$	$[-(2^{n-1}-1), 2^{n-1}]$
Resolución	I unidad	I unidad	l unidad	I unidad	I unidad
Inconveniente	No negativos	+0 y -0	+0 y -0	Rango a simétrico	Rango a simétrico
Ventaja		Rango simétrico	Rango simétrico	(No ∃ - 0)	(No ∃ - 0)
Truco		Quitar primer bit y con el resto es igual que binario	+: = binario -: cambiar I por 0 y 0 por I	+: = binario -: Cal + l	Restar siempre el sesgo (2 ⁿ⁻¹ -1)
Valor		$V(X) = (1 - 2 \cdot x_{n-1}) \cdot \sum_{i=0}^{n-2} 2^{i} \cdot x_{i}$	+: $V(X) = \sum_{i=0}^{n-2} 2^i \cdot x_i$ -: $V(X) = -2^n + \sum_{i=0}^{n-1} 2^i \cdot X_i + 1$	+: $V(X) = \sum_{i=0}^{n-2} 2^i \cdot x_i$ -: $V(X) = -2^n + \sum_{i=0}^{n-1} 2^i \cdot X_i$	$V(X) = \sum_{i=0}^{n-1} 2^i \cdot x_i - (2^{n-1} - 1)$

Ejemplo comparativo (3 bits)

Decimal	Binario Puro	Signo magnitud	Complemento a uno	Complemento a dos	Exceso 3
+7	111	N.D.	N.D.	N.D.	N.D.
+6	110	N.D.	N.D.	N.D.	N.D.
+5	101	N.D.	N.D.	N.D.	N.D.
+4	100	N.D.	N.D.	N.D.	Ш
+3	011	011	011	011	110
+2	010	010	010	010	101
+1	001	001	001	001	100
+0	000	000	000	000	011
-0	N.D.	100	111	N.D.	N.D.
-1	N.D.	101	110	111	010
-2	N.D.	110	101	110	001
-3	N.D.	111	100	101	000
-4	N.D.	N.D.	N.D.	100	N.D.
-5	N.D.	N.D.	N.D.	N.D.	N.D.
-6	N.D.	N.D.	N.D.	N.D.	N.D.
-7	N.D.	N.D.	N.D.	N.D.	N.D.

Ejercicio

Indique la representación de los siguientes números, razonando brevemente su respuesta:

- 1. -32 en complemento a uno con 6 bits
- 2. -32 en complemento a dos con 6 bits
- 3. -10 en signo magnitud con 5 bits
- 4. +14 en complemento a dos con 5 bits

Ejercicio (solución)

- Con 6 bits **no es representable** en C1: $[-2^{6-1}+1,...,-0,+0,....2^{6-1}-1]$
- 2. C| + | -> |00000|
- 3. Signo=1, magnitud=1010 -> 11010
- 4. Positivo -> CI=C2=SM -> **01110**

Contenidos

I. Introducción

- Motivación y objetivos
- 2. Sistemas posicionales

2. Representaciones

- Alfanuméricas
 - Caracteres
 - 2. Cadenas de caracteres
- 2. Numéricas
 - Naturales y enteras
 - Operaciones aritméticas
 - 2. Coma fija
 - 3. Coma flotante (estándar IEEE 754)

Comparación de aritmética en BP, C1 y C2

	Binario puro	Complemento a I	Complemento a 2
Suma	10110 01100 100010	igual que B.P.	igual que B.P.
Resta	10110 01100 01010	sumar y si hay Cn-I entonces sumar Cn-I al total	sumar y si hay Cn-I entonces descartarlo

En hardware, es más fácil operar con complemento

Comparación de aritmética en BP, C1 y C2 por qué sumar el acarreo en Ca1

Corrección de resultado sumando el acarreo...

Comparación de aritmética en BP, C1 y C2 por qué descartar el acarreo en Ca2

Corrección de resultado descartando el acarreo...

Comparación de aritmética en BP, C1 y C2

	Binario puro	Complemento a I	Complemento a 2
Detectar desbordamiento	El resultado necesita I bit más	Suma de + + es –, Suma de – – es +	Suma de + + es –, Suma de – – es +
despordamiento	Hay Cn	Cn <> Cn-I	Cn <> Cn-I
Extensión de signo	00 10110	11*10110 00*00110	11*10110 00*00110
	•••	•••	•••

Extensión de signo en complemento a dos

¿Cómo pasar de n bits a m bits, siendo n < m?</p>

Ejemplo:

- n = 4, m = 8
- Si X = 0110 con 4 bits \Rightarrow X = 00000110 con 8 bits
- Si X = 1011 con 4 bits \Rightarrow X = 11111011 con 8 bits

Ejercicio

- Usando 5 bits para representarlo, haga las siguientes sumas en complemento a uno:
 - a) 4 + 12
 - b) 4-12
 - c) **-4-12**

Ejercicio (Solución Ca1 con 5 bits)

```
4 + 12
                   00100
                   01100
                    10000 \Rightarrow se obtiene un negativo \Rightarrow -15 \Rightarrow overflow
     4 - 12
                   00100
                    10011
                    10111 ⇒ -8
c) -4 - 12
                    11011
                    10011
                  101110 \Rightarrow negativo con 6 bits \Rightarrow overflow
```

Contenidos

I. Introducción

- Motivación y objetivos
- 2. Sistemas posicionales

Representaciones

- Alfanuméricas
 - Caracteres
 - 2. Cadenas de caracteres
- 2. Numéricas
 - Naturales y enteras
 - 2. Coma fija
 - 3. Coma flotante (estándar IEEE 754)

Otras necesidades de representación

¿Cómo representar?

- Números muy grandes: 30.556.926.000₍₁₀
- Números muy pequeños: 0.000000000529177₍₁₀
- Números con decimales: 1,58567

Ejemplo de fallo...

- Explosión del Ariane 5 (primer viaje)
 - Enviado por ESA en junio de 1996
 - Coste del desarrollo:
 10 años y 7000 millones de dólares
 - Explotó 40 segundos después de despegar, a 3700 metros de altura.

El software del sistema de referencia inercial realizó la conversión de un valor real en coma flotante de 64 bits a un valor entero de 16 bits. El número a almacenar era mayor de 32767 (el mayor entero con signo de 16 bits) y se produjo un fallo de conversión y una excepción.

Coma fija [racionales]

Se fija la posición de la coma binaria y se utilizan los pesos asociados a las posiciones decimales

Ejemplo:

$$|00|.|0|0 = 2^4 + 2^0 + 2^{-1} + 2^{-3} = 9,625$$

Representación de fracciones con representación binaria en coma fija

Ejemplo de representación con 6 bits:

- Ejemplo de número: $10,1010_{(2} = 1 \times 2^{1} + 1 \times 2^{-1} + 1 \times 2^{-3} = 2.62510$
- Asumiendo esta coma fija, el rango sería:

 [0 a 3.9375 (casi 4)]

Potencias negativas

i	2-i	
0	1.0	1
1	0.5	1/2
2	0.251/4	
3	0.125	1/8
4	0.0625	1/16
5	0.03125	1/32
6	0.015625	
7	0.0078125	
8	0.00390625	
9	0.001953125	5
10	0.0009765625	

Contenidos

I. Introducción

- Motivación y objetivos
- 2. Sistemas posicionales

2. Representaciones

- Alfanuméricas
 - Caracteres
 - 2. Cadenas de caracteres

2. Numéricas

- Naturales y enteras
- 2. Coma fija
- 3. Coma flotante (estándar IEEE 754)

Notación científica decimal

- Cada número lleva asociado una mantisa y un exponente
- Notación científica decimal usada: notación normalizada
 - Solo un dígito distinto de 0 a la izquierda del punto
- Se adapta el número al orden de magnitud del valor a representar, trasladando la coma decimal mediante el exponente

Notación científica en binario

- Forma normalizada: Un I (solo un dígito) a la izq. de la coma
 - Normalizada: 1.0001×2^{-9}
 - No normalizada: 0.0011×2^{-8} , 10.0×2^{-10}

Estándar IEEE 754 [racionales]

- Estándar para coma flotante usado en la mayoría de los ordenadores.
- Características (salvo casos especiales):
 - Exponente: en exceso con sesgo 2 num_bits_exponente I I
 - Mantisa: signo-magnitud, normalizada, con bit implícito
- Diferentes formatos:
 - Precisión simple: 32 bits (signo: I, exponente: 8 y mantisa: 23)
 - **Doble precisión**: 64 bits (signo: I, exponente: I I y mantisa: 52)
 - Cuádruple precisión: 128 bits (signo: 1, exponente: 15 y mantisa: 112)

Normalización y bit implícito

Normalización

Para normalizar la mantisa se ajusta el exponente para que el bit más significativo de la mantisa sea I

- Ejemplo: $60010000000010101 \times 2^3$ (no lo está) $100000000010101000 \times 2^0$ (ahora sí)

Bit implícito

Una vez normalizado, dado que el bit más significativo es 1, **no** se almacena para dejar espacio para un bit más (aumenta la precisión)

Así se puede representar mantisas con un bit más

▶ El valor se calcula con la siguiente expresión (salvo casos especiales):

$$N = (-1)^{S} \times 2^{E-127} \times 1.M$$

donde:

S = 0 indica número positivo, S = I indica número negativo

0 < E < 255 (E=0 y E=255 indican casos especiales)

Existencia de casos especiales:

(-1)s * 0.mantisa * 2-126

Exponente	Mantisa	Valor especial
0 (0000 0000)	0	+/- 0 (según signo)
0 (0000 0000)	No cero	Número NO normalizado
255 (1111 1111)	No cero	NaN (0/0,)
255 (1111 1111)	0	+/-infinito (según signo)
1-254	Cualquiera	Número normalizado (no especial)

(-I)s * I.mantisa * 2^{exponente-127}

Ejemplos (incluyen casos especiales)

S	E	M	Ν
I	00000000	000000000000000000000000000000000000000	-0 (Excepción 0) E=0 y M=0.
I	01111111	000000000000000000000000000000000000000	$-2^0 \times 1.0_2 = -1$
0	10000001	111000000000000000000000000000000000000	$+2^2 \times 1.111_2 = +2^2 \times (2^0 + 2^{-1} + 2^{-2} + 2^{-3}) = +7.5$
0	111111111	000000000000000000000000000000000000000	∞ (Excepción ∞) E=255 y M=0
0	11111111	100000000000000000000000000000000000000	NaN (Not a Number) E=255 y M≠0.

Ejercicio

a) Calcular el valor correspondiente al número
 0 10000011 11000000000000000000
 dado en coma flotante según norma 754 de simple precisión

Ejercicio (solución)

- - a) Bit de signo: $0 \Rightarrow (-1)^0 = +1$
 - b) Exponente: $10000011_2 = 131_{10} \Rightarrow E 127 = 131 127 = 4$

Por tanto el valor decimal del n° es $+1 \times 2^4 \times 1,75 = +28$

Ejercicio

b) Expresar según norma IEEE 754 de simple precisión el n°-9

Ejercicio (solución)

b) Expresar según norma IEEE 754 de simple precisión el n°-9

$$-9_{10} = -1001_2 = -1001_2 \times 2^0 = -1,001_2 \times 2^3$$
 (mantisa normalizada)

- a) Bit de signo: negativo \implies S=1
- Exponente: 3+127 (exceso) = $130 \implies 10000010$

- Rango de magnitudes representables (sin considerar el signo):
 - Menor normalizado:
 - Mayor normalizado:

- Menor no normalizado:
- Mayor no normalizado:

 $(-1)^s * 0.mantisa * 2^{-126}$

Exponente	Mantisa	Valor especial
0	≠ 0	No normalizado
1-254	cualquiera	normalizado

(-I)^s * I.mantisa * 2^{exponente-127}

- Rango de magnitudes representables (sin considerar el signo):
 - Menor normalizado:

Mayor normalizado:

- Menor no normalizado:
- Mayor no normalizado:

Truco:

$$X = 2 - 2^{-23}$$

- Rango de magnitudes representables (sin considerar el signo):
 - Menor normalizado:

Mayor normalizado:

- Menor no normalizado:
- Mayor no normalizado:

Ejercicio

¿Cuántos números de floats (coma flotante de simple precisión) hay entre el 1 y el 2 (no incluido)?

¿Cuántos números de floats (coma flotante de simple precisión) hay entre el 2 y el 3 (no incluido)?

Ejercicio (solución)

- ¿Cuántos números de floats (coma flotante de simple precisión) hay entre el 1 y el 2 (no incluido)?

 - ▶ Entre I y 2 hay 2²³ números
- ¿Cuántos números de floats (coma flotante de simple precisión) hay entre el 2 y el 3 (no incluido)?

 - ▶ Entre 2 y 3 hay 2²² números

Números representables

Resolución variable:
 Más denso cerca de cero, menos hacia el infinito

Números representables

(b) Números en coma flotante

Ejemplo 1 imprecisión

0,4 -> 0 0111101 1001100110011001101

3.9999998 x 10⁻¹

0,1 → 0 01111011 100110011001100100

9.9999994 x 10⁻²

Ejemplo 2 imprecisión

¿Cómo realiza C una división?

```
t2.c
#include <stdio.h>
int main ()
 float a;
 a = 3.0/7.0;
 if (a == 3.0/7.0)
      printf("Igual\n");
 else printf("No Igual\n");
 return (0);
```

Ejemplo 2 imprecisión

¿Cómo realiza C una división?

```
t2.c
#include <stdio.h>
int main ()
 float a;
  a = 3.0/7.0;
  if (a == 3.0/7.0)
      printf("Igual\n");
  else printf("No Igual\n");
  return (0);
```

```
$ gcc -o t2 t2.c
$ ./t2
No Igual
```

Ejemplo 2 imprecisión

¿Cómo realiza C una división?

```
t2.c
         #include <stdio.h>
         int main ()
           float a;
                             double
float
           a = 3.0/7.0;
           if (a == 3.0/7.0)
               printf("Igual\n");
           else printf("No Igual\n");
           return (0);
```

\$ gcc -o t2 t2.c \$./t2 No Igual

Ejemplo 3 imprecisión

La propiedad asociativa no siempre se cumple i(a + b) + c?

```
#include <stdio.h>

int main ()
{
    float x, y, z;

    x = 10e30; y = -10e30; z = 1;
    printf("(x+y)+z = %f\n",(x+y)+z);
    printf("x+(y+z) = %f\n",x+(y+z));

    return (0);
}
```

Ejemplo 3 imprecisión

La propiedad asociativa no siempre se cumple ¿ a + (b + c) = (a + b) + c ?

```
#include <stdio.h>

int main ()
{
    float x, y, z;

    x = 10e30; y = -10e30; z = 1;
    printf("(x+y)+z = %f\n",(x+y)+z);
    printf("x+(y+z) = %f\n",x+(y+z));

    return (0);
}
```

```
$ gcc -o t1 t1.c
$ ./t1
(x+y)+z = 1.000000
x+(y+z) = 0.000000
```

Asociatividad

La coma flotante no es asociativa

$$x = -1.5 \times 10^{38}, y = 1.5 \times 10^{38}, y z = 1.0$$

$$(x + y) + z = (-1.5 \times 10^{38} + 1.5 \times 10^{38}) + 1.0$$

$$= (0.0) + 1.0 = 1.0$$

- Las operaciones coma flotante no son asociativas
 - Los resultados son aproximados
 - $ightharpoonup 1.5 imes 10^{38}$ es mucho más grande que 1.0
 - ▶ 1.5×10^{38} + 1.0 en la representación en coma flotante sigue siendo 1.5×10^{38}

103

Conversión int \rightarrow float \rightarrow int

```
if (i == (int)((float) i)) {
    printf("true");
}
```

- ▶ No siempre es cierto
- Muchos valores enteros grandes no tienen una representación exacta en coma flotante
- ¿Qué ocurre con double?

- ▶ El número 133000405 en binario es:
- Se normaliza

 - S = 0 (positivo)
 - \rightarrow e = 26 \rightarrow E = 26 + 127 = 153
- El número realmente almacenado es
 - \downarrow 1, 11111011010110110011010 \times 2²⁶ =

Conversión float \rightarrow int \rightarrow float

```
if (f == (float)((int) f)) {
    printf("true");
}
```

- No siempre es cierto
- Los números con decimales no tienen representación entera

Redondeo

- El redondeo elimina cifras menos significativas de un número para obtener un valor aproximado.
- ▶ Tipos de redondeo:
 - ▶ Redondeo hacia + ∞
 - ▶ Redondeo "hacia arriba": $2.001 \rightarrow 3$, $-2.001 \rightarrow -2$
 - ▶ Redondeo hacia ∞
 - ▶ Redondea "hacia abajo": $1.999 \rightarrow 1$, $-1.999 \rightarrow -2$
 - ▶ Truncar
 - \blacktriangleright Descarta los últimos bits: 1.299 \rightarrow 1.2
 - Redondeo al más cercano
 - ightharpoonup 2.4 ightharpoonup 2.6 ightharpoonup 3, -1.4 ightharpoonup -1

Redondeo

- El redondeo supone ir perdiendo precisión.
- ▶ El redondeo ocurre:
 - > Al pasar a una representación con menos representables:
 - Ej.: Un valor de doble a simple precisión
 - ▶ Ej.: Un valor en coma flotante a entero
 - > Al realizar operaciones aritméticas:
 - Ej.: Después de sumar dos números en coma flotante (al usar dígitos de guarda)

Dígitos de guarda

- Se utilizan dígitos de guarda para mejorar la precisión: internamente se usan dígitos adicionales para operar.
- \blacktriangleright Ejemplo: 2,65 x 10⁰ + 2.34 x 10²

	SIN dígitos de guarda	CON dígitos de guarda
I igualar exponentes	$0.02 \times 10^2 + 2.34 \times 10^2$	0.0265×10^{2} + 2.3400×10^{2}
2 sumar	$2,36 \times 10^{2}$	$2,3665 \times 10^2$
3 redondear	$2,36 \times 10^{2}$	$2,37 \times 10^2$

Operaciones en coma flotante

Sumar

Restar

- 1. Comprobar valores cero.
- 2. Igualar exponentes (desplazar número menor a la derecha).
- 3. Sumar/restar las mantisas.
- 4. Normalizar el resultado.

Multiplicar

Dividir

- 1. Comprobar valores cero.
- 2. Sumar/restar exponentes.
- 3. Multiplicar/dividir mantisas (teniendo en cuenta el signo).
- 4. Normalizar el resultado.
- 5. Redondear el resultado.

Suma y resta: Z=X+Y y Z=X-Y

Multiplicación: Z=X*Y

División: Z=X/Y

Ejercicio

Usando el formato IEEE 754, sumar 7,5 y 1,5 paso a paso

1) 7,5 + 1,5 =

2) $1,111*2^2 + 1,1*2^0 =$ Igualar exponentes

3) $1,111*2^2 + 0,011*2^2 =$ 4) $10,010*2^2 =$ Sumar

5) $1,0010*2^3$

Ajustar

exponentes

Pasar a binario

Representación de los números

Se separa exponentes y mantisas y se añade el bit implícito

7,5 → 0	10000001	1.	111000000000000000000000000000000000000
1,5 → 0	01111111	1.	100000000000000000000000000000000000000

Sumar mantisas

Normalizar el resultado

Se produce un acarreo, mantisa no normalizada

Normalizar el resultado

Se almacena el resultado eliminando el bit implícito

Ejercicio

Usando el formato IEEE 754, multiplicar 7,5 y 1,5 paso a paso

Representación de los números

Se separan exponentes y mantisas y se añade bit implícito

Se añade el bit implícito para operar

Multiplicar: sumar exponentes y multiplicar mantisas

Multiplicar: quitar el sesgo al exponente (hay dos)

- 01111111

Multiplicar: normalizar el resultado

▶ Resultado normalizado...

	7,5 →	0	10000001	.11100000000000000000000000000000000000
X	1,5 →	0	0111111	.10000000000000000000000000000000000000
	11,25	0	10000010	.01101000000000000000000000000000000000

Se almacena el resultado eliminando el bit implícito

Evolución de IEEE 754

- ▶ 1985 IEEE 754
- ▶ 2008 IEEE 754-2008 (754+854)
- ▶ 2011 ISO/IEC/IEEE 60559:2011 (754-2008)

Name	Common name	Base	Digits	E min	E max	Notes	Decimal digits	Decimal E max
binary16	Half precision	2	10+1	-14	+15	storage, not basic	3.31	4.51
binary32	Single precision	2	23+1	-126	+127		7.22	38.23
binary64	Double precision	2	52+1	-1022	+1023		15.95	307.95
binary128	Quadruple precision	2	112+1	-16382	+16383		34.02	4931.77
decimal32		10	7	-95	+96	storage, not basic	7	96
decimal64		10	16	-383	+384		16	384
decimal 128		10	34	-6143	+6144		34	6144

http://en.wikipedia.org/wiki/IEEE_floating_point

Grupo ARCOS

uc3m Universidad Carlos III de Madrid

Tema 2: Representación de la información

Estructura de Computadores

Grado en Ingeniería Informática Grado en Matemática aplicada y Computación Doble Grado en Ingeniería Informática y Administración de Empresas

