An improved union-find algorithm

- makeset(e): e.parent ← e, the canonical element is the root.
- find(e): Follow the parent pointers from
 e to the root of the tree containing e.
 Return the root.
- <u>union(a,b)</u>: a.parent ← canonical element of *larger* of two sets

Why is this better?

Improved Union-Find: Union by Rank

Idea: Store with each node v the size of the subtree (rank) rooted at y. In a union operation, make the tree of the smaller set/rank a subtree of the other tree, and update the size field of the root of the resulting tree.

Union by Rank

- With each node x we store a nonnegative integer x.rank that is an upper bound on the height of x.
- When carrying out makeSet(x), we set x.rank \leftarrow 0.
- To carry out union(x,y), we compare x.rank and y.rank.
 - If x.rank < y.rank then x.parent $\leftarrow y$.
 - If y.rank < x .rank then y.parent $\leftarrow x$.
 - If x.rank = y.rank then x .parent \leftarrow y and y.rank \leftarrow y.rank + 1.

Amortized Time Complexity

- A series of n makeSet, (modified) union, and find operations starting from an initially empty partition take
 O(n log n) time.
- The *amortized* running time per operation is O(log *n*) time.

A series of n makeSet, (modified) union, and find operations starting from an initially empty partition take $O(n \log n)$ time

Lemma: Starting with sets of size 1, using the modified union algorithm, any tree of m nodes has height of at most $\log m$.

An improved union-find algorithm

- $\underline{\mathsf{makeset}(e)}$: $e.\mathsf{parent} \leftarrow e$, the canonical element is the root. O(1)
- find(e): Follow the parent pointers from
 e to the root of the tree containing e. O(log n)
 Return the root.
- <u>union(a,b)</u>: a.parent ← the canonical element of the *larger* set O(1)

Reminder: Kruskal's algorithm

- **Step 1.** Create a forest where each vertex in V represents a tree. O(|V|)
- **Step 2.** Sort the edges of *G* in increasing order.

 $O(|E| \log |E|)$ or store in heap O(|E|)

Step 3. Pick the shortest (minimum weight) edge (x,y) and check whether it belongs to different trees in the forest. *Union-Find Data Structure*

Graph

- tree
- vertex
- edge

Union-Find Structure

- set
- element
- -----

Union-Find: Another Speed-Up Heuristic

- Union-by-size (also called Union-by rank) with
 - Path compression

Path compression

Idea: For each node v that the finds visits, reset the parent pointer from v to point to the root. In other words, after a find operation for an element x for every node v on the path from x to the root r is

$$v.parent() = r$$

Algorithm find(x):

```
if (x ≠ x.parent()) then
    x.parent ← find(x.parent())
return x.parent
```

Definitions and Claims (last class)

Amortized running time

overall running time/number of operations

Canonical element

root of tree

Definitions and Claims (last class)

- Claim 1: Once a node stops being a canonical element it can never become one again
- Claim 2: Once a node stopped being a canonical element its rank remains fixed
- Claim 3: Ranks are monotonically increasing in the trees as we travel from a node to the root of its tree
- Claim 4: When a node gets assigned rank k then there are at least 2^k elements in the subtree

Definitions and Claims

- Claim 5: The number of nodes that are assigned rank k throughout the execution of the union-find data structure is at most $n/2^k$
- Claim 6 (Corollary): The maximum rank of a tree in the union-find data structure with n elements in log(n)
- Claim 7: The time to perform a single *find*-operation when we perform union-by-rank and path-compression is $O(\log(n))$

Amortized Time Complexity

- A series of m makeSet, union, and find operations on n elements using union-by-size and path compression starting from an initially single element sets take O(m ?) time.
- Then the amortized running time per operation is O(?) time.

Amortized Time Complexity

We conclude

- A series of m makeSet, union, and find operations for n elements, using union by rank, starting from an initially empty partition take $O(n + m \log(n))$ time.
- Then the amortized running time per operation is $O(\log(n))$ time.

log*(n): The iterated logarithm

• $\log^*(n) = \min\{i : t(i) \ge n\}$ is the inverse of the tower-of-twos function t(i) where

$$t(i) = \begin{cases} 1 & \text{if } i = 0 \\ 2^{t(i-1)} & \text{if } i \ge 1 \end{cases}$$

The tower-of-twos function

$$t(i) = \begin{cases} 1 & \text{if } i = 0 \\ 2^{t(i-1)} & \text{if } i \ge 1 \end{cases}$$

log*(n): The iterated logarithm

• $\log^*(n) = \min\{i : t(i) \ge n\}$

• $\log^*(n) \le 5$ for practical purposes

Even better: Amortized Time Complexity

- A series of n makeSet, union, and find operations for n elements using union-by-size and path compression starting from an initially single element sets take $O(n \log^*(n))$ time.
- Then the amortized running time per operation is O(log*(n)) time.

 $\alpha(n)$

 $\alpha(n)$: inverse Ackerman function

- grows slower than $\log^*(n)$

$$t(3) = 2^{t(3-1)} = 2^{t(2)} = 2^{2^{1}}$$

$$=2^{2^{2^{1}}}=2^{2^{2}}$$

$$t(5) = 2^{t(4)} = 2^{2^{t(3)}} = 2^{2^{2^{t(2)}}}$$

$\alpha(n)$: inverse of Ackerman function A(n)

•
$$\alpha(n) = \min\{m : A(m) \ge n\}$$
 where $A(n) = A_n(n)$ and

$$A_{i}(n) = \begin{cases} 2n & \text{for } i = 0 \text{ and } n \ge 0 \\ A_{i-1}(2) & \text{for } i \ge 1 \text{ and } n = 1 \end{cases}$$
$$A_{i-1}(A_{i}(n-1)) \text{ for } i \ge 1 \text{ and } n \ge 2$$

• What is the growth order of these four functions?

• What is the growth order of these four functions?

• $\log^* n$ grows slower than $\log n$.

• What is the growth order of these four functions?

- $\log^* n$ grows slower than $\log n$.
- $\alpha(n)$ grows slower than $\log^* n$.

• What is the growth order of these four functions?

- $\log^* n$ grows slower than $\log n$.
- $\alpha(n)$ grows slower than $\log^* n$.
- n grows slower than $n \log n$, $n \log^* n$, and $n \alpha(n)$

$\alpha(n)$: inverse Ackerman function

$$A(2) = A_{2}(2) = A_{1}(A_{2}(1)) = A_{1}(A_{1}(2))$$

$$= A_{1}(A_{0}(A_{1}(1))) = A_{1}(A_{0}(2^{2}))$$

$$= A_{1}(2 \cdot 2^{2}) = A_{1}(2^{3}) = A_{0}(A_{1}(2^{3} - 1))$$

$$= A_{0}(A_{0}(A_{1}(2^{3} - 2))) = A_{0}(A_{0}(A_{0}(A_{1}(2^{3} - 3))))$$

$$= A_{0}(A_{0}(A_{0}(A_{0}(A_{1}(2^{3} - 4)))))$$

$$= A_{0}(A_{0}(A_{0}(A_{0}(A_{0}(A_{1}(2^{3} - 5))))))$$

$$= A_{0}(A_{0}(A_{0}(A_{0}(A_{0}(A_{0}(A_{1}(2^{3} - 5))))))$$

$$= A_{0}(A_{0}(A_{0}(A_{0}(A_{0}(A_{0}(A_{0}(A_{1}(2^{3} - 6))))))))$$

$$= A_{0}(A_{0}(A_{0}(A_{0}(A_{0}(A_{0}(A_{0}(A_{0}(A_{1}(2^{3} - 7))))))))))$$

$\alpha(n)$: inverse Ackerman function

$$= A_0(A_0(A_0(A_0(A_0(A_0(A_0(A_0(A_1(1))))))))$$

$$= A_0(A_0(A_0(A_0(A_0(A_0(A_0(2^2)))))))$$

$$= A_0(A_0(A_0(A_0(A_0(A_0(2^3))))))$$

$$= A_0(A_0(A_0(A_0(A_0(2^4)))))$$

$$= A_0(A_0(A_0(A_0(2^5))))$$

$$= A_0(A_0(A_0(2^5))) = A_0(A_0(2^7))$$

$$= A_0(2^8) = 2^9$$

And even better: Amortized Time Complexity

 A series of n makeSet, union, and find operations for n elements using unionby-size and path compression starting from an initially single element sets take

 $O(n \alpha(n))$ time.

• Then the amortized running time per operation is $O(\alpha(n))$ time.

Kruskal's Algorithm

```
Time complexity analysis
Algorithm Kruskal
Input: a weighted connected graph G = (V, E)
Output: an MST T for G
Data structure: Disjoint sets (lists or union-find) DS;
   sorted weights A[]; and tree T
for each vertex v in V of G do C(v) \leftarrow DS.insert(v) end
A[] ← sort all edges by edge weight; // sorted array priority queue
T \leftarrow \emptyset; k \leftarrow 0;
                               O(m \log m) or O(m) with heap
while T has fewer than n-1 edges do
  (u, v) \leftarrow A[k]; k \leftarrow k + 1; // next edge with smallest weight; deleteMin()
  C(v) \leftarrow \mathsf{DS}.\mathsf{findCluster}(v);
  C(u) \leftarrow \mathsf{DS}.\mathsf{findCluster}(u);
  if C(v) \neq C(u) then
                                      Total merging O(m \log n)
    add edge (v, u) to T;
    DS.insert(DS.union(C(v), C(u))); // merge two clusters
  end
                                   Total O(m \log n)
end
return T
```

Prim's Algorithm

Initialize tree with single chosen vertex

Cut property

- Grow tree by finding lightest edge not yet in tree and expanding the tree, and connect it to tree; repeat until all vertices are in the tree
- Example of greedy algorithm

Implementing Prim's algorithm

• Using heaps

Pseudocode: Prim's Algorithm

D:distance vector,

vertices

```
Input: a weighted connected graph G = (V, E)
                                                                         maintains reachable
Output: an MST T for G
Data structure: array D; Priority Queue PQ; and tree T
                                                                       PQ: a priority queue for
pick an arbitrary vertex v in G; D[v] \leftarrow 0
                                                                       the edges according to
for each vertex u \neq v do D[u] \leftarrow +\infty end
                                                                             values in D
T \leftarrow \emptyset
for each vertex u do PQ.insert(\{(u, (null), D[u]\}) end // including v
// for each vertex u, (u, edge) is the element and D[u] is the key in PQ
while not PQ.empty() do
  (u, e) \leftarrow PQ.deleteMin()
  add vertex u and edge e to T
  for each vertex z adjacent to u such that z is in PQ do
    if weight((u, z) \le D[z] then
      D[z] \leftarrow \mathsf{weight}((u, z))
      in PQ, change element and key of z to \{z, (u, z), D[z]\}
      update PQ
    end
  end
end
return T
```

Algorithm Prim-Jarník-Dijkstra

D

a	b	С	d	e	f	g	h	i	j
0	3	9	+∞	+∞	6	+∞	+∞	+∞	+∞

a	b	С	d	e	f	g	h	i	j
0	3	9	+∞	+∞	6	+∞	+∞	+∞	+∞

a	b	С	d	e	f	g	h	i	j
0	3	9	+∞	+∞	6	+∞	+∞	+∞	+∞

a	b	С	d	e	f	g	h	i	j
0	3	9	+∞	+∞	6	+∞	+∞	+∞	+∞
0	3	9	9	2	4	+∞	+∞	+∞	+∞

a	b	С	d	e	f	g	h	i	j
0	3	9	+∞	+∞	6	+∞	+∞	+∞	+∞
0	3	9	9	2	4	+∞	+∞	+∞	+∞

a	b	c	d	e	f	g	h	i	j
0	3	9	+∞	+∞	6	+∞	+∞	+∞	+∞
0	3	9	9	2	4	+∞	+∞	+∞	+∞

a	b	С	d	e	f	g	h	i	j
0	3	9	+∞	+∞	6	+∞	$+\infty$	+∞	+∞
0	3	9	9	2	4	+∞	+∞	+∞	+∞
0	3	9	8	2	2	9	+∞	+∞	+∞

a	b	С	d	e	f	g	h	i	j
0	3	9	$+\infty$	$+\infty$	6	+∞	+∞	+∞	+∞
0	3	9	9	2	4	+∞	+∞	+∞	+∞
0	3	9	8	2	2	9	+∞	+∞	+∞

a	b	С	d	e	f	g	h	i	j
0	3	9	$+\infty$	+∞	6	+∞	+∞	+∞	+∞
0	3	9	9	2	4	+∞	+∞	+∞	+∞
0	3	9	8	2	2	9	+∞	+∞	+∞

a	b	С	d	e	f	g	h	i	j
0	3	9	+∞	+∞	6	+∞	+∞	+∞	+∞
0	3	9	9	2	4	+∞	+∞	+∞	+8
0	3	9	8	2	2	9	+∞	+∞	+∞
0	3	8	8	2	2	9	+∞	+∞	$+\infty$

a	b	С	d	e	f	g	h	i	j
0	3	9	+∞	+∞	6	+∞	+∞	+∞	+∞
0	3	9	9	2	4	+∞	+∞	+∞	+∞
0	3	9	8	2	2	9	+∞	+∞	+∞
0	3	8	8	2	2	9	+∞	+∞	+∞

a	b	С	d	e	f	g	h	i	j
0	3	9	+∞	+∞	6	+∞	+∞	+∞	+∞
0	3	9	9	2	4	+∞	+∞	+∞	+∞
0	3	9	8	2	2	9	+∞	+∞	+∞
0	3	8	8	2	2	9	9	+∞	+∞

a	b	С	d	e	f	g	h	i	j
0	3	9	+∞	+∞	6	+∞	+∞	+∞	+∞
0	3	9	9	2	4	+∞	+∞	+∞	+∞
0	3	9	8	2	2	9	+∞	+∞	+∞
0	3	8	8	2	2	9	9	+∞	+∞
0	3	8	8	2	2	7	9	+∞	10

a	b	С	d	e	f	g	h	i	j
0	3	9	+∞	$+\infty$	6	$+\infty$	+∞	+∞	$+\infty$
0	3	9	9	2	4	+∞	+∞	+∞	+∞
0	3	9	8	2	2	9	+∞	+∞	+∞
0	3	8	8	2	2	8	9	+∞	+∞
0	3	8	8	2	2	7	9	+∞	10

a	b	С	d	e	f	g	h	i	j
0	3	9	+∞	$+\infty$	6	+∞	+∞	+∞	+∞
0	3	9	9	2	4	+∞	+∞	+∞	+∞
0	3	9	8	2	2	9	+∞	+∞	+∞
0	3	8	8	2	2	8	9	+∞	+∞
0	3	8	8	2	2	7	9	+∞	10

a	b	С	d	c e	f	g	h	i	j
0	3	9	+∞	+∞	6	+∞	+∞	+∞	$+\infty$
0	3	9	9	2	4	+∞	+∞	+∞	$+\infty$
0	3	9	8	2	2	9	+∞	+∞	$+\infty$
0	3	8	8	2	2	8	9	+∞	+∞
0	3	8	8	2	2	7	9	+∞	10
0	3	8	8	2	2	7	1	4	4

a	b	c	d	c e	f	g	h	i	j
0	3	9	+∞	+∞	6	+∞	+∞	+∞	+∞
0	3	9	9	2	4	+∞	+∞	+∞	+∞
0	3	9	8	2	2	9	+∞	+∞	+∞
0	3	8	8	2	2	8	9	+∞	+∞
0	3	8	8	2	2	7	5	4	10
0	3	8	8	2	2	7	1	4	4

a	b	С	d	c e	f	g	h	i	j
0	3	9	+∞	+∞	6	+∞	+∞	$+\infty$	$+\infty$
0	3	9	9	2	4	+∞	+∞	+∞	+∞
0	3	9	8	2	2	9	+∞	$+\infty$	+∞
0	3	8	8	2	2	8	9	$+\infty$	+∞
0	3	8	8	2	2	7	5	4	10
0	3	8	8	2	2	7	1	4	4

				//					
0	3	9	+∞	$\mathbf{c}_{+\infty}$	6	+∞	+∞	+∞	+∞
0	3	9	9	2	4	+∞	+∞	+∞	+∞
0	3	9	8	2	2	9	+∞	+∞	+∞
0	3	8	8	2	2	8	9	+∞	+∞
0	3	8	8	2	2	7	5	4	10
0	3	8	8	2	2	7	1	4	4
0	3	8	8	2	2	7	1	4	3

 $+\infty$ $+\infty$ $+\infty$ $+\infty$ $+\infty$

a

a	b	9 c	9	6/	f	g	h	i	j
0	3	9	+∞	c +∞	6	+∞	+∞	+∞	$+\infty$
0	3	9	9	2	4	+∞	+∞	+∞	+∞
0	3	9	8	2	2	9	+∞	+∞	+∞
0	3	8	8	2	2	8	9	+∞	+∞
0	3	8	8	2	2	7	5	4	10
0	3	8	8	2	2	7	1	4	4
0	3	8	8	2	2	7	1	4	3

Pseudocode: Prim's Algorithm

```
Algorithm Prim-Jarník-Dijkstra
Input: a weighted connected graph G = (V, E)
Output: an MST T for G
Data structure: array D; Priority Queue PQ; tree T
pick an arbitrary vertex v in G; D[v] \leftarrow 0
for each vertex u \neq v do D[u] \leftarrow +\infty end
T \leftarrow \emptyset
for each vertex u do PQ.insert(\{(u, (null), D[u]\}) end // including v
// for each vertex u, (u, edge) is the element and D[u] is the key in PQ
while not PQ.empty() do
  (u, e) \leftarrow PQ.deleteMin()
  add vertex u and edge e to T
  for each vertex z adjacent to u such that z is in PQ do
    if weight((u, z)) \leq D[z] then
      D[z] \leftarrow \mathsf{weight}((u, z))
      in PQ, change element and key of z to \{z, (u,z), D[z]\}
      update PQ
    end
  end
end
return T
```

D: distance vector, maintains reachable vertices

PQ: priority queue(heap) for the edges,according to theirvalues in D

Prim-Jarník Time Complexity

Theorem. The Prim-Jarník algorithm constructs a minimum spanning tree for a connected weighted graph G = (V, E) with n vertices and m edges in $O(m \log(n))$ time.

Borůvka's Algorithm

```
Algorithm Borůvka
Input: a weighted connected graph G = (V, E), all edge weights
  pairwise distinct
Output: an MST T for G
Data structure: Priority Queue PQ; tree T
let T be a subgraph of G initially containing just the vertices in V
for each edge e in E do PQ.insert(e) end
while T has fewer than n-1 edges do
 for each connected component C_k in T do
   e = (v, u) \leftarrow PQ.deleteMin() with v \in C_k and u \notin C_k
   add e to T unless e is already in T
 end
end
return T
```

Time Complexity

- Every stage of the algorithm divides number of trees by two
- No more than $O(\log(n))$ stages
- A stage may take O(m) time
- Total: $O(m \log(n))$

Borůvka's Algorithm

Time complexity analysis

```
Algorithm Borůvka
Input: a weighted connected graph G = (V, E)
Output: an MST T for G
Data structure: Priority Queue PO; tree T
let T be a subgraph of G initially containing just the vertices in V
for each edge e in E do PQ.insert(e) end
while T has fewer than n-1 edges do
                                                           O(\log n)
 for each connected component C_k in T do
   e = (v, u) \leftarrow PQ.deleteMin() with v \in C_k and u \notin C_k
                                                              O(m)
   add e to T unless e is already in T
 end
end
return T
```

Total $O(m \log n)$

More on Implementation (Borůvka's Algorithm)

possible using union-find data structure

Implementation Considerations

- All three algorithms: same worst-case running time
- each uses different data structures/different approaches
- Kruskal's algorithm uses priority queue to store edges, and union-find data structure, to store clusters
- Prim-Jarník's algorithm is similar to implement as Dijkstra's single-source shortest-path algorithm (for the ones who know Dijkstra's algorithm already)
- Borůvka's algorithm is also easy to implement and stores connected components
- There is no clear winner with respect to best constant