GEOMETRIC FLOW ON COMPACT LOCALLY CONFORMALLY KÄHLER MANIFOLDS

YOSHINOBU KAMISHIMA AND LIVIU ORNEA

ABSTRACT. We study two kinds of transformation groups of a compact locally conformally Kähler (l.c.K.) manifold. First we study compact l.c.K. manifolds by means of the existence of holomorphic l.c.K. flow (i.e., a conformal, holomorphic flow with respect to the Hermitian metric.) We characterize the structure of the compact l.c.K. manifolds with parallel Lee form. Next, we introduce the Lee-Cauchy-Riemann (LCR) transformations as a class of diffeomorphisms preserving the specific G-structure of l.c.K. manifolds. We show that compact l.c.K. manifolds with parallel Lee form admitting a \mathbb{C}^* flow of LCR transformations are rigid: it is holomorphically isometric to a Hopf manifold with parallel Lee form.

1. Introduction

Let (M, g, J) be a connected, complex Hermitian manifold of complex dimension $n \geq 2$. We denote its fundamental 2-form by ω ; it is defined by $\omega(X, Y) = g(X, JY)$. If there exists a real 1-form θ satisfying the integrability condition

$$d\omega = \theta \wedge \omega$$
 with $d\theta = 0$

then g is said to be a locally conformally Kähler (l.c.K.) metric. A complex manifold M endowed with a l.c.K. metric is called a l.c.K. manifold. The conformal class of a l.c.K. metric g is said to be a l.c.K. structure on M. The closed 1-form θ is called the Lee form and it encodes the geometric properties of such a manifold. The vector field θ^{\sharp} , defined by $\theta(X) = g(X, \theta^{\sharp})$, is called the Lee field.

The purpose of this paper is to study two kinds of transformation groups of a l.c.K. manifold (M, g, J). We first consider $\operatorname{Aut}_{l.c.K.}(M)$, the group of all conformal, holomorphic diffeomorphisms. We discuss its properties in §2. A holomorphic vector field Z on (M, g, J) generates a 1-dimensional complex Lie group C. (The universal covering group of C is \mathbb{C} .) We call C a holomorphic flow on M.

Date: February 1, 2008.

¹⁹⁹¹ Mathematics Subject Classification. 53C55, 57S25.

Key words and phrases. Locally conformally Kähler manifold, Lee form, contact structure, strongly pseudoconvex CR-structure, G-structure, holomorphic complex torus action, transformation groups.

The second author is a member of EDGE, Research Training Network HPRN-CT-2000-00101, supported by The European Human Potential Programme.

Definition 1.1. If a holomorphic flow \mathcal{C} (resp. holomorphic vector field Z) belongs to $\operatorname{Aut}_{l.c.K.}(M)$ (resp. Lie algebra of $\operatorname{Aut}_{l.c.K.}(M)$), then \mathcal{C} (resp. Z) is said to be a holomorphic l.c.K. flow (resp. holomorphic l.c.K. vector field).

A nontrivial subclass of l.c.K. manifolds is formed by those (M,g,J) having parallel Lee form w.r.t. the Levi-Civita connection ∇^g (i.e. $\nabla^g\theta=0$). We observe that a compact non-Kähler l.c.K. manifold (M,g,J) with parallel Lee form θ supports a holomorphic vector field $Z=\theta^{\sharp}-iJ\theta^{\sharp}$ which generates holomorphic isometries of g. (Compare [17],[18],[5].) We shall prove that the converse is also true:

Theorem A. Let (M, g, J) be a compact, connected, l.c.K. non-Kähler manifold, of complex dimension at least 2. If $\operatorname{Aut}_{l.c.K.}(M)$ contains a holomorphic l.c.K. flow, then there exists a metric with parallel Lee form in the conformal class of g.

Corollary A_1 . With the same hypothesis, M admits a l.c.K. metric with parallel Lee form if and only if it admits a holomorphic l.c.K. flow.

In §3, we discuss the existence of l.c.K. metrics with parallel Lee form on the Hopf manifold. (Compare with [6]). Let $\Lambda = (\lambda_1, \ldots, \lambda_n)$ with the λ_i 's complex numbers satisfying $0 < |\lambda_n| \le \cdots \le |\lambda_1| < 1$. By a primary Hopf manifold M_{Λ} of type Λ we mean the compact quotient manifold of $\mathbb{C}^n - \{0\}$ by a subgroup Γ_{Λ} generated by the transformation $(z_1, \ldots, z_n) \mapsto (\lambda_1 z_1, \ldots, \lambda_n z_n)$. Note that a primary Hopf manifold of type Λ of complex dimension 2 is a primary Hopf surface of Kähler rank 1. We prove the following:

Theorem B. The primary Hopf manifold M_{Λ} of type Λ supports a l.c.K. metric with parallel Lee form.

More generally, we prove the existence of a l.c.K. metric with parallel Lee form on the Hopf manifold (cf. Theorem 3.1).

In the second half of the paper we adopt the viewpoint of G-structure theory in order to study a non-compact, non-holomorphic, transformation group of a compact l.c.K. manifold (M, g, J). Locally, the 2-form ω defines the real 1-forms $\theta, \theta \circ J$ and (n-1) complex 1-forms θ^{α} and their conjugates $\bar{\theta}^{\alpha}$, where $\theta \circ J$ is called the *anti-Lee form* and is defined by $\theta \circ J(X) = \theta(JX)$. We consider the group $\mathrm{Aut}_{LCR}(M)$ of transformations of M preserving the structure of unitary coframe fields $\mathcal{F} = \{\theta, \theta \circ J, \theta^1, \dots, \theta^{n-1}, \bar{\theta}^1, \dots, \bar{\theta}^{n-1}\}$. More precisely, an element f of $\mathrm{Aut}_{LCR}(M)$ is called a Lee-Cauchy-Riemann (LCR) transformation if it satisfies the equations:

$$\begin{split} f^*\theta &= \theta, \\ f^*(\theta \circ J) &= \lambda \cdot (\theta \circ J), \\ f^*\theta^\alpha &= \sqrt{\lambda} \cdot \theta^\beta U^\alpha_\beta + (\theta \circ J) \cdot v^\alpha, \\ f^*\bar{\theta}^\alpha &= \sqrt{\lambda} \cdot \bar{\theta}^\beta \overline{U}^\alpha_\beta + (\theta \circ J) \cdot \overline{v}^\alpha. \end{split}$$

Here λ is a positive, smooth function, and $v^{\alpha} \in \mathbb{C}$, $U^{\alpha}_{\beta} \in \mathrm{U}(n-1)$ are smooth functions. Obviously, if $\mathrm{I}(M,g,J)$ is the group of holomorphic isometries, then both $\mathrm{Aut}_{l.c.K.}(M)$ and $\mathrm{Aut}_{LCR}(M)$ contain $\mathrm{I}(M,g,J)$.

As the main result of this part we exhibit the rigidity of compact l.c.K. manifolds under the existence of a non-compact LCR flow:

Theorem C. Let (M, g, J) be a compact, connected, l.c.K. non-Kähler manifold of complex dimension at least 2, with parallel Lee form θ . Suppose that M admits a closed subgroup $\mathbb{C}^* = S^1 \times \mathbb{R}^+$ of Lee-Cauchy-Riemann transformations whose S^1 subgroup induces the Lee field θ^{\sharp} . Then M is holomorphically isometric, up to scalar multiple of the metric, to the primary Hopf manifold M_{Λ} of type Λ .

2. Locally conformally Kähler transformations

Proposition 2.1. Let (M, g, J) be a compact l.c.K. manifold with $\dim_{\mathbb{C}} M \geq 2$. Then $\operatorname{Aut}_{l.c.K.}(M)$ is a compact Lie group.

Proof. Note that $\operatorname{Aut}_{l.c.K.}(M)$ is a closed Lie subgroup in the group of all conformal diffeomorphisms of (M,g). If $\operatorname{Aut}_{l.c.K.}(M)$ were noncompact, then by the celebrated result of Obata and Lelong-Ferrand ([14], [13]), (M,g) would be conformally equivalent with the sphere S^{2n} , $n \geq 2$. Hence M would be simply connected. It is well known that a compact simply connected l.c.K. manifold is conformal to a Kähler manifold (cf. [5]), which is impossible because the sphere S^{2n} has no Kähler structure.

From now on, we shall suppose that the l.c.K. manifolds we work with are compact, non-Kähler and, moreover, the Lee form is not identically zero at any point of the manifold. In particular, these manifolds are not simply connected (cf. [5]). Given a l.c.K. manifold (M,g,J), let \tilde{M} be the universal covering space of M, let $p:\tilde{M}\to M$ be the canonical projection and denote also by J the lifted complex structure on \tilde{M} . We can associate to the fundamental 2-form ω a canonical Kähler form on \tilde{M} as follows. Since the lee form θ is closed, its lift to \tilde{M} is exact, hence $p^*\theta = d\tau$ for some smooth function τ on \tilde{M} . We put $h = e^{-\tau} \cdot p^*g$ (resp. $\Omega = e^{-\tau} \cdot p^*\omega$). It is easy to check that $d\Omega = 0$, thus h is a Kähler metric on (\tilde{M},J) . In particular g is locally conformal to the Kähler metric h (compare with [5] and the bibliography therein). Let $f \in \operatorname{Aut}_{l.c.K.}(M)$. By definition, $f^*\omega = e^{\lambda} \cdot \omega$ for some function λ on M. Differentiate this equality to yield that $(f^*\theta - \theta + d\lambda) \wedge \omega = 0$. As ω is nondegenerate and $\dim_{\mathbb{C}} M > 1$, $f^*\theta = \theta + d\lambda$. Since $p^*\theta = d\tau$, for any lift \tilde{f} of f to \tilde{M} we have $d\tilde{f}^*\tau = d(\tau + p^*\lambda)$, thus $-\tilde{f}^*\tau + p^*\lambda = -\tau + c$ for some constant c. We can write $\tilde{f}^*\Omega = e^c \cdot \Omega$. If $c \neq 0$, \tilde{f} is a holomorphic homothety w.r.t. h; when c = 0, \tilde{f} will be an isometry.

We denote by $\mathcal{H}(\tilde{M}, \Omega, J)$ the group of all holomorphic, homothetic transformations of the universal cover \tilde{M} w.r.t. the Kähler structure (h, J). If $f_1, f_2 \in \mathcal{H}(\tilde{M}, \Omega, J)$, there exists some constant $\rho(f_i)$ (i = 1, 2) satisfying $f_i^*\Omega = \rho(f_i) \cdot \Omega$ as above. It is easy to check that $\rho(f_1 \circ f_2) = \rho(f_1) \cdot \rho(f_2)$. We obtain a continuous homomorphism:

(2.1)
$$\rho: \mathcal{H}(\tilde{M}, \Omega, J) \longrightarrow \mathbb{R}^+.$$

Let $\pi_1(M)$ be the fundamental group of M. Then we note that $\pi_1(M) \subset \mathcal{H}(\tilde{M}, \Omega, J)$. For this, if $\gamma \in \pi_1(M)$, then $\gamma^*\Omega = e^{-\gamma^*\tau} \cdot \gamma^*p^*\omega = e^{-\gamma^*\tau} \cdot p^*\omega = e^{-\gamma^*\tau+\tau} \cdot \Omega$. Since Ω is a Kähler form $(n \geq 2)$, $e^{-\gamma^*\tau+\tau}$ must be constant $\rho(\gamma)$.

Let \mathcal{C} be a holomorphic l.c.K. flow on M. If we denote $\tilde{\mathcal{C}}$ a lift of \mathcal{C} to \tilde{M} , then $\tilde{\mathcal{C}} \subset \mathcal{H}(\tilde{M}, \Omega, J)$. If V is a vector field which generates a one-parameter subgroup of $\tilde{\mathcal{C}}$, then so does JV such as V and JV together generate $\tilde{\mathcal{C}}$. We define a smooth function $s: \tilde{M} \to \mathbb{R}$ to be $s(x) = \Omega(JV_x, V_x)$. Since $\tilde{\mathcal{C}}$ centralizes each element γ of $\pi_1(M)$, it follows that $s(\gamma x) = \Omega(JV_{\gamma x}, V_{\gamma x}) = \Omega(\gamma_* JV_x, \gamma_* V_x) = \rho(\gamma) s(x)$. If every element γ satisfies that $\rho(\gamma) = 1$, i.e., $\gamma^*\Omega = \Omega$, then $\pi_1(M)$ acts as holomorphic isometries of h so that Ω would induce a Kähler structure on M. By our hypothesis, this does not occur. There exists at least one element γ such that $\rho(\gamma) \neq 1$. In particular, we note that:

(2.2) The function
$$s$$
 is not constant on \tilde{M} .

On the other hand, we prove the following lemma. (The proof of the lemma is almost same as that of [9].)

Lemma 2.1. $\rho(\tilde{C}) = \mathbb{R}^+$, i.e., the group \tilde{C} acts by holomorphic, non-trivial homotheties w.r.t. the Kähler metric h on \tilde{M} .

Proof. Suppose that $\rho(\tilde{\mathcal{C}}) = \{1\}$. Then $\tilde{\mathcal{C}}$ leaves Ω invariant. As $\{V, JV\}$ generates $\tilde{\mathcal{C}}$, it follows that $\mathcal{L}_V \Omega = \mathcal{L}_{JV} \Omega = 0$. In particular, Vs = (JV)s = 0. For any distribution D on \tilde{M} , denote by D^{\perp} the orthogonal complement to D w.r.t. the metric h where $h(\tilde{X}, \tilde{Y}) = \Omega(J\tilde{X}, \tilde{Y})$. Since $0 = (\mathcal{L}_V \Omega)(JV, \tilde{X}) = V\Omega(JV, \tilde{X}) - \Omega([V, JV], \tilde{X}) - \Omega(JV, [V, \tilde{X}])$, if $\tilde{X} \in \{V, JV\}^{\perp}$, then $\Omega(JV, [V, \tilde{X}]) = 0$, similarly $\Omega(V, [JV, \tilde{X}]) = 0$. The equality

$$\begin{split} 0 &= 3d\Omega(\tilde{X}, V, JV) = \tilde{X}\Omega(V, JV) - V\Omega(\tilde{X}, JV) + JV\Omega(\tilde{X}, V) \\ &- \Omega([\tilde{X}, V], JV) - \Omega([V, JV], \tilde{X}) - \Omega([JV, \tilde{X}], V) \end{split}$$

implies that $\tilde{X}\Omega(V,JV)=0$, *i.e.*, $\tilde{X}s=0$ for any $\tilde{X}\in\{V,JV\}^{\perp}$. Therefore, s becomes constant, being a contradiction to (2.2).

2.1. The submanifold W and its pseudo-Hermitian structure. As Ker ρ has one dimension, denote by $-J\xi$ the vector field whose one-parameter subgroup $\{\psi_t\}_{t\in\mathbb{R}}$ acts as holomorphic isometries on \tilde{M} .

(2.3)
$$\psi_t^* \Omega = \Omega, \quad t \in \mathbb{R}.$$

Since $-J\xi$ and ξ together generate the group $\tilde{\mathcal{C}}$, the 1-parameter subgroup $\{\varphi_t\}_{t\in\mathbb{R}}$ generated by ξ acts as nontrivial holomorphic homotheties w.r.t. Ω by Lemma 2.1. In particular, the group $\{\varphi_t\}_{t\in\mathbb{R}}$ is isomorphic to \mathbb{R} . Since $\varphi_t^*\Omega = \rho(\varphi_t) \cdot \Omega$ $(t \in \mathbb{R}, \rho(\varphi_t) \in \mathbb{R}^+)$ from (2.1) and ρ is a continuous homomorphism, $\rho(\varphi_t) = e^{at}$ for some constant $a \neq 0$. We may normalize a = 1 so that:

(2.4)
$$\varphi_t^* \Omega = e^t \cdot \Omega, \quad t \in \mathbb{R}.$$

Lemma 2.2. The group $\{\varphi_t\}_{t\in\mathbb{R}}$ acts properly and hence freely on \tilde{M} . In particular, $\xi \neq 0$ everywhere on \tilde{M} .

Proof. Recall that \mathcal{C} lies in $\operatorname{Aut}_{l.c.K.}(M)$ by definition. As $\operatorname{Aut}_{l.c.K.}(M)$ is a compact Lie group, its closure $\overline{\mathcal{C}}$ in $\operatorname{Aut}_{l.c.K.}(M)$ is also compact and so isomorphic to a k-torus $(k \geq 2)$. Therefore, the lift H of $\overline{\mathcal{C}}$ to \tilde{M} acts properly on \tilde{M} . The lift H is isomorphic to $\mathbb{R}^{\ell} \times T^m$ where $\ell + m = k$. Note that $\ell \geq 1$ because ρ maps any compact subgroup of H to $\{1\}$, but the group $\{\varphi_t\}_{t\in\mathbb{R}} \subset H$ satisfies $\rho(\{\varphi_t\}) = \mathbb{R}^+$. Hence the group $\{\varphi_t\}_{t\in\mathbb{R}}$ has a nontrivial summand in \mathbb{R}^{ℓ} which implies that $\{\varphi_t\}_{t\in\mathbb{R}}$ is closed in H. Thus, the group $\{\varphi_t\}_{t\in\mathbb{R}}$ acts properly on \tilde{M} . If we note that $\{\varphi_t\}_{t\in\mathbb{R}}$ is isomorphic to \mathbb{R} , then it acts freely on \tilde{M} .

Proposition 2.2. Let $s: \tilde{M} \to \mathbb{R}$ be the smooth map defined as $s(x) = \Omega(J\xi_x, \xi_x)$. Then 1 is a regular value of s, hence $s^{-1}(1)$ is a codimension one, regular submanifold of \tilde{M} .

Proof. As φ_t is holomorphic, $s(\varphi_t x) = \Omega(J\xi_{\varphi_t x}, \xi_{\varphi_t x}) = \Omega(\varphi_{t*}J\xi_x, \varphi_{t*}\xi_x) = e^t \cdot s(x)$. Hence,

$$\mathcal{L}_{\xi}s = \lim_{t \to 0} \frac{\varphi_t^* s - s}{t} = s.$$

We note also that

$$\mathcal{L}_{\xi}\Omega = \Omega.$$

By Lemma 2.2, notice that $\xi \neq 0$ everywhere on \tilde{M} . Since $s(x) \neq 0$, $s^{-1}(1) \neq \emptyset$. For $x \in s^{-1}(1)$, $ds(\xi_x) = (\mathcal{L}_{\xi}s)(x) = s(x) = 1$. This proves that $ds : T_x \tilde{M} \to \mathbb{R}$ is onto and so $s^{-1}(1)$ is a codimension one smooth regular submanifold of \tilde{M} .

Let now $W = s^{-1}(1)$. We can prove:

Lemma 2.3. The submanifold W is connected and the map $H : \mathbb{R} \times W \to \tilde{M}$, defined by $H(t,w) = \varphi_t w$ is an equivariant diffeomorphism.

Proof. Let W_0 be a component of $s^{-1}(1)$ and $\mathbb{R} \cdot W_0$ be the set $\{\varphi_t w : w \in W_0, t \in \mathbb{R}\}$. As $\mathbb{R} = \{\varphi_t\}$ acts freely and $s(\varphi_t x) = e^t s(x)$, we have $\varphi_t W_0 \cap W_0 = \emptyset$ for $t \neq 0$. Thus $\mathbb{R} \cdot W_0$ is an open subset of \tilde{M} . We prove that it is also closed. Let $\overline{\mathbb{R} \cdot W_0}$ be the closure of $\mathbb{R} \cdot W_0$ in \tilde{M} . We choose a limit point $p = \lim \varphi_{t_i} w_i \in \overline{\mathbb{R} \cdot W_0}$. Then $s(p) = \lim s(\varphi_{t_i} w_i) = \lim e^{t_i} s(w_i) = \lim e^{t_i}$. Put $t = \log s(p)$, then $t = \lim t_i$, so $\varphi_t^{-1}(p) = \lim \varphi_{t_i}^{-1}(\lim \varphi_{t_i} w_i) = \lim w_i$. Since $s^{-1}(1)$ is regular (i.e. closed w.r.t. the relative topology induced from \tilde{M}), its component W_0 is also closed. Hence $\varphi_t^{-1} p \in W_0$. Therefore $p = \varphi_t(\varphi_t^{-1} p) \in \mathbb{R} \cdot W_0$, proving that $\mathbb{R} \cdot W_0$ is closed in \tilde{M} . In conclusion, $\mathbb{R} \cdot W_0 = \tilde{M}$. Now, if W_1 is another component of $s^{-1}(1)$, the same argument shows $\mathbb{R} \cdot W_1 = \tilde{M}$. As $\mathbb{R} \cdot W_0 = \mathbb{R} \cdot W_1$ and $s(W_1) = 1$, this implies $W_0 = W_1$, in other words W is connected.

Let $i:W\to \tilde{M}$ be the inclusion and $\pi:\tilde{M}\to W$ be the canonical projection. Define a 1-form η on W to be

$$\eta = i^* \iota_{\xi} \Omega.$$

Here ι_{ξ} denotes the interior product with ξ . We have from § 2.1 that:

$$(2.7) \qquad \frac{d\psi_t}{dt}(x)|_{t=0} = -J\xi_x.$$

Using (2.3), $s(\psi_t w) = s(w) = 1$ ($w \in W$) so that the group $\{\psi_t\}_{t \in \mathbb{R}}$ leaves W invariant. Hence, the vector field $-J\xi$ restricts to a vector field A to W. If $\{\psi_t'\}_{t \in \mathbb{R}}$ is the one-parameter subgroup generated by A, then

$$(2.8) \psi_t = i \circ \psi_t'.$$

Lemma 2.4. The 1-form η is a contact form on W for which A is the characteristic vector field (Reeb field).

Proof. First note that $\eta(A_w) = \iota_{\xi}\Omega(-J\xi_w) = \Omega(J\xi_w, \xi_w) = s(w) = 1 \quad (w \in W)$. Moreover, from (2.5), $d\eta = i^*d\iota_{\xi}\Omega = i^*(d\iota_{\xi}\Omega + \iota_{\xi}d\Omega) = i^*\mathcal{L}_{\xi}\Omega = i^*\Omega$. Hence, $\eta \wedge d\eta^{n-1} \neq 0$ on W showing that η is a contact form. Noting (2.3), (2.8) and that both φ_t and ψ_{θ} commutes each other, it is easy to see that

(2.9)
$$\psi_t^{\prime *} \iota_{\xi} \Omega = \iota_{\xi} \Omega \quad \text{on } \tilde{M}.$$
$$\psi_t^{\prime *} \eta = \eta \quad \text{on } W.$$

Let Null $\eta = \{X \in TW \mid \eta(X) = 0\}$ be the contact subbundle. Since $\mathcal{L}_A \eta(X) = A\eta(X) - \eta([A, X])$ and $\mathcal{L}_A \eta = 0$ from (2.9), if $X \in \text{Null } \eta$, then $\eta([A, X]) = 0$. Moreover, $d\eta(A, X) = \frac{1}{2}(A\eta(X) - X\eta(A) - \eta([A, X])) = 0$, which implies that $d\eta(A, X) = 0$ for all $X \in TW$, showing that A is the characteristic vector field.

Recall that $\mathbb{R} \to \tilde{M} \xrightarrow{\pi} W$ is a principal fiber bundle with $T\mathbb{R} = <\xi>$. By Lemma 2.3, each point $x \in \tilde{M}$ can be described uniquely as $x = \varphi_t w$. Using (2.8),

(2.10)
$$\pi \circ \psi_{\theta}(x) = \pi \circ \psi_{\theta}(\varphi_{t}w) = \pi \circ \varphi_{t}(\psi_{\theta}w) \\ = \pi \circ i\psi'_{\theta}(w) = \psi'_{\theta}(w) = \psi'_{\theta} \circ \pi(x),$$

hence, $\pi_*(-J\xi) = A$. As $i_*\pi_*X_x - X_x = a \cdot \xi_x$ for some function a, using (2.6), π maps $\{\xi, J\xi\}^{\perp}$ isomorphically onto Null η . Since $\{\xi, J\xi\}^{\perp}$ is J-invariant, there exists an almost complex structure J on Null η such that the following diagram is commutative:

(2.11)
$$\begin{cases}
\{\xi, J\xi\}^{\perp} & \xrightarrow{\pi_*} \text{ Null } \eta \\
\downarrow^J & \downarrow^J \\
\{\xi, J\xi\}^{\perp} & \xrightarrow{\pi_*} \text{ Null } \eta.
\end{cases}$$

Proposition 2.3. The pair (η, J) is a strictly pseudoconvex, pseudo-Hermitian structure on \tilde{W} .

Proof. Let $\Psi: \operatorname{Null} \eta \times \operatorname{Null} \eta \to \mathbb{R}$ be the bilinear form defined by $\Psi(X,Y) = d\eta(JX,Y)$. There exist $\tilde{X}, \ \tilde{Y} \in \{\xi, J\xi\}^{\perp}$ such that $\pi_* \tilde{X} = X, \ \pi_* \tilde{Y} = Y$. Then it is easy to see that $i_*JX \equiv J\tilde{X}, \ i_*Y \equiv \tilde{Y} \mod \xi$. Using $d\eta = i^*\Omega$ as above, $\Psi(X,Y) = i^*\Omega(JX,Y) = \Omega(J\tilde{X},\tilde{Y}) = h(\tilde{X},\tilde{Y})$, hence Ψ is positive definite. By definition, η is strictly pseudoconvex. Let $\{\xi, J\xi\}^{\perp} \otimes \mathbb{C} = B^{1,0} \oplus B^{0,1}$ be the canonical splitting of J. Then we prove that $[B^{1,0}, B^{1,0}] \subset B^{1,0}$. Let $\tilde{X}, \tilde{Y} \in B^{1,0}$. Since $T^{1,0}\tilde{M} = \{\xi - iJ\xi\} \oplus B^{1,0}$ and J is integrable on $\tilde{M}, [\tilde{X}, \tilde{Y}] \in T^{1,0}\tilde{M}$. Put $[\tilde{X}, \tilde{Y}] = a(\xi - iJ\xi) + \tilde{Z}$ for some function a and $\tilde{Z} \in B^{1,0}$. As $\pi_*(-J\xi) = A$ from (2.10), $\pi_*([\tilde{X}, \tilde{Y}]) = aiA + \pi_*\tilde{Z}$. By definition, $2d\eta(\pi_*\tilde{X}, \pi_*\tilde{Y}) = -\eta([\pi_*\tilde{X}, \pi_*\tilde{Y}]) = -ai$. On the other hand, since Ω is J-invariant, $\Omega(\tilde{X}, \tilde{Y}) = 0$ for $\forall \ \tilde{X}, \tilde{Y} \in B^{1,0}$. As above, $i_*\pi_*\tilde{X} \equiv \tilde{X} \mod \xi$, similarly for \tilde{Y} , we obtain that $d\eta(\pi_*\tilde{X}, \pi_*\tilde{Y}) = \Omega(i_*\pi_*\tilde{X}, i_*\pi_*\tilde{Y}) = \Omega(\tilde{X}, \tilde{Y}) = 0$. Hence, a = 0 and so $[\tilde{X}, \tilde{Y}] = \tilde{Z} \in B^{1,0}$. If we note that $\pi_* : \{\xi, J\xi\}^{\perp} \otimes \mathbb{C} \to \operatorname{Null} \eta \otimes \mathbb{C}$ is J-isomorphic by (2.11), then $\operatorname{Null} \eta \otimes \mathbb{C} = \pi_*B^{1,0} \oplus \pi_*B^{0,1}$ is the splitting for J, in which we have shown $[\pi_*B^{1,0}, \pi_*B^{1,0}] \subset \pi_*B^{1,0}$. Therefore J is a complex structure on $\operatorname{Null} \eta$.

Consider the group of pseudo-Hermitian transformations on (W, η, J) :

(2.12)
$$PSH(W, \eta, J) = \{ f \in Diff(W) \mid f^*\eta = \eta, f_* \circ J = J \circ f_* \text{ on Null } \eta \}.$$

Corollary 2.1. The characteristic vector field A generates the subgroup $\{\psi'_t\}_{t\in\mathbb{R}}$ consisting of pseudo-Hermitian transformations.

Proof. By (2.3) and (2.9), ψ_t (resp. ${\psi'}_t$) preserves $\{\xi, J\xi\}^{\perp}$ (resp. Null η). Then the equality $\pi \circ \psi_{\theta} = {\psi'}_{\theta} \circ \pi$ from (2.10) with diagram (2.11) implies that ${\psi'}_{t*}J = J{\psi'}_{t*}$ on Null η . Therefore

$$\{\psi_t'\}_{t\in\mathbb{R}}\subset \mathrm{PSH}(W,\eta,J).$$

Proof of Theorem A.

2.2. Parallel Lee form. Let $Y_{\varphi_t w} \in T_{\varphi_t w} \tilde{M}$ be any vector field. As $\pi_* Y_{\varphi_t w} \in T_w W$, $i_* \pi_* Y_{\varphi_t w} - \varphi_{-t_*} Y_{\varphi_t w} = \lambda \xi_w$ for some function λ . Then,

$$\iota_{\xi}\Omega(i_*\pi_*Y_{\varphi_t w}) = \Omega(\xi_w, i_*\pi_*Y_{\varphi_t w}) = \Omega(\xi_w, \varphi_{-t_*}Y_{\varphi_t w}) + \Omega(\xi_w, \lambda \xi_w)$$
$$= \varphi_{-t}^*\Omega(\varphi_{t_*}\xi_w, Y_{\varphi_t w}) = e^{-t}\Omega(\xi_{\varphi_t w}, Y_{\varphi_t w}) = e^{-t}\iota_{\xi}\Omega(Y_{\varphi_t w}).$$

By definition (2.6),

(2.14)
$$\pi^* \eta = \pi^* i^* \iota_{\xi} \Omega = e^{-t} \iota_{\xi} \Omega, \text{ equivalently, } e^t \pi^* \eta = \iota_{\xi} \Omega.$$

As $\Omega = \mathcal{L}_{\xi}\Omega = d\iota_{\xi}\Omega$ from (2.5), we obtain that

(2.15)
$$d(e^t \pi^* \eta) = \Omega \text{ on } \tilde{M}.$$

For the given l.c.K. metric g, the Kähler metric h is obtained as $h = e^{-\tau} \cdot p^*g$ where $d\tau = \tilde{\theta}$. As ω is the fundamental 2-form of g, note that $\Omega = e^{-\tau} \cdot p^*\omega$.

We now consider on M the 2-form:

$$\bar{\Theta} = 2e^{-t} \cdot d(e^t \pi^* \eta) \ (= 2e^{-t} \cdot \Omega).$$

Then $\bar{g}(X,Y) = \bar{\Theta}(JX,Y)$ is a l.c.K. metric. Put $\bar{\theta} = -dt$. Then, as $d\bar{\Theta} = -2e^{-t}dt \wedge d(e^t\pi^*\eta) = -dt \wedge \bar{\Theta}$, so $\bar{\theta}$ is the Lee form of \bar{g} .

Lemma 2.5. $\bar{\theta}$ is parallel w.r.t. \bar{g} ($\nabla^{\bar{g}}\bar{\theta}=0$).

Proof. First we determine the Lee field $\bar{\theta}^{\sharp}$. $(\bar{\theta}(X) = \bar{g}(X, \bar{\theta}^{\sharp}))$. We start from:

$$\bar{g}(\xi, Y) = \bar{\Theta}(J\xi, Y) = 2e^{-t}(e^t dt \wedge \pi^* \eta + e^t d\pi^* \eta)(J\xi, Y)$$
$$= 2(dt \wedge \pi^* \eta + d\pi^* \eta)(J\xi, Y) = 2(dt \wedge \pi^* \eta)(J\xi, Y)$$

because $A = -\pi_* J\xi$ is the characteristic vector field of the contact form η . As before, a point $x \in \tilde{M}$ can be described uniquely as $\varphi_t w$ for some $w \in W$. In particular, using Lemma 2.3, the t-coordinate of x is t. Noting that $\psi_{\theta}(x) = \varphi_t \psi_{\theta} w$ and $\psi_{\theta} w \in W$, by uniqueness the t-coordinate of $\psi_{\theta}(x)$, $t(\psi_{\theta}(x)) = t$. From (2.7),

(2.17)
$$dt(-J\xi_x) = dt(\frac{d\psi_\theta}{d\theta}(x)|_{\theta=0}) = \frac{dt}{d\theta}|_{\theta=0} = 0.$$

The above formula becomes:

$$(2.18) \bar{g}(\xi, Y) = 2(dt \wedge \pi^* \eta)(J\xi, Y) = -dt(Y)\eta(-A) = dt(Y) = -\bar{\theta}(Y) = -\bar{g}(Y, \bar{\theta}^{\sharp})$$

proving that $\bar{\theta}^{\sharp} = -\xi$. Next we observe that the flow $\{\varphi_s\}_{s\in\mathbb{R}}$ acts by isometries w.r.t. \bar{g} . As φ_s is holomorphic, it is enough to prove that each φ_s leaves $\bar{\Theta}$ invariant. But

$$\varphi_s^* \bar{\Theta} = 2e^{-\varphi_s^* t} d(e^{\varphi_s^* t} \varphi_s^* \pi^* \eta) = 2e^{-(s+t)} d(e^{s+t} \pi^* \eta) = 2e^{-t} d(e^t \pi^* \eta) = \bar{\Theta}.$$

Thus $\mathcal{L}_{\theta^{\sharp}}\bar{g} = -\mathcal{L}_{\xi}\bar{g} = 0$. Now we put $\sigma = \bar{\theta}$ in the equality $(\mathcal{L}_{\sigma^{\sharp}}\bar{g})(X,Y) + 2d\sigma(X,Y) = 2\bar{g}(\nabla_X^{\bar{g}}\sigma^{\sharp},Y)$, valid for any 1-form σ , take into account $d\bar{\theta} = 0$ and obtain $\nabla^{\bar{g}}\bar{\theta}^{\sharp} = 0$ which is equivalent with $\nabla^{\bar{g}}\bar{\theta} = 0$, so $\bar{\theta}$ is parallel w.r.t. \bar{g} as announced.

By equation (2.16), \bar{g} is conformal to the lifted metric p^*g :

(2.19)
$$\bar{\Theta} = \mu \cdot p^* \omega \text{ (equivalently } \bar{q} = \mu \cdot p^* q)$$

where $\mu = 2e^{-(t+\tau)} : \tilde{M} \rightarrow \mathbb{R}^+$ is a smooth map. We finally prove:

Lemma 2.6. $\pi_1(M)$ acts by holomorphic isometries of \bar{g} . In particular, $\pi_1(M)$ leaves $\bar{\theta}$ invariant.

Proof. We prove the following two facts:

- 1. $\gamma^*\pi^*\eta = \pi^*\eta$ for every $\gamma \in \pi_1(M)$.
- **2.** $\gamma^* e^t = \rho(\gamma) \cdot e^t$ where $\rho : \pi_1(M) \to \mathbb{R}^+$ is the homomorphism as before.

First note that as $\mathbb{R} = \{\varphi_t\}$ centralizes $\pi_1(M)$, $\gamma_*\xi = \xi$ for $\gamma \in \pi_1(M)$. As γ is holomorphic, $\gamma_*J\xi = J\xi$. Since $\pi_1(M)$ acts on \tilde{M} as holomorphic homothetic transformations, $(i.e., \ \gamma^*\Omega = \rho(\gamma) \cdot \Omega)$, $\pi_1(M)$ preserves $\{\xi, J\xi\}^{\perp}$. If we recall that $\pi_* : \{\xi, J\xi\}^{\perp} \to \text{Null } \eta$ is isomorphic, then for $X \in \{\xi, J\xi\}^{\perp}$, $\gamma^*\pi^*\eta(X) = \eta(\pi_*\gamma_*X) = 0$. As $-\pi_*J\xi = A$ is characteristic, it follows $\gamma^*\pi^*\eta(J\xi) = \eta(\pi_*\gamma_*J\xi) = \eta(\pi_*J\xi) = -1$. This shows that $\gamma^*\pi^*\eta = \pi^*\eta$ on \tilde{M} . On the other hand, if we note $\gamma_*\xi = \xi$, then

$$\gamma^*(\iota_{\xi}\Omega)(X) = \Omega(\xi, \gamma_*X) = \Omega(\gamma_*\xi, \gamma_*X) = \gamma^*\Omega(\xi, X)$$
$$= \rho(\gamma) \cdot \Omega(\xi, X) = \rho(\gamma) \cdot \iota_{\xi}\Omega(X)$$

where $\rho(\gamma)$ is a positive constant number. Applying γ^* to $\pi^*\eta = e^{-t} \cdot \iota_{\xi}\Omega$ from (2.14), we obtain $\gamma^*e^{-t} \cdot \rho(\gamma) = e^{-t}$. Equivalently, $\gamma^*e^t = \rho(\gamma) \cdot e^t$. This shows **1** and **2**. From (2.16),

$$\gamma^* \bar{\Theta} = \gamma^* (2e^{-t} \cdot d(e^t \pi^* \eta)) = 2\rho(\gamma)^{-1} \cdot e^{-t} d(\rho(\gamma) \cdot e^t \gamma^* \pi^* \eta)$$
$$= 2e^{-t} \cdot d(e^t \pi^* \eta) = \bar{\Theta}.$$

Since $\bar{g}(X,Y) = \bar{\Theta}(JX,Y)$, $\pi_1(M)$ acts through holomorphic isometries of \bar{g} . We have that $\bar{\theta}(Y) = \bar{g}(Y,\bar{\theta}^{\sharp}) = -\bar{g}(Y,\xi)$ $(Y \in T\tilde{M})$ from (2.18). Then,

$$\gamma^* \bar{\theta}(Y) = -\bar{g}(\gamma_* Y, \xi) = -\bar{g}(\gamma_* Y, \gamma_* \xi) = -\bar{g}(Y, \xi) = \bar{\theta}(Y).$$

From this lemma, the covering map $p: \tilde{M} \to M$ induces a l.c.K. metric \hat{g} with parallel Lee form $\hat{\theta}$ on M such that $p^*\hat{g} = \bar{g}$ and $p^*\hat{\theta} = \bar{\theta}$ with $\nabla^{\hat{g}}_{p_*X}\hat{\theta}(p_*Y) = \nabla^{\bar{g}}_X\bar{\theta}(Y)$. Applying γ^* to the both side of (2.19), we derive

$$\gamma^* \bar{g} = \bar{g} = \mu \cdot p^* g.$$
$$\gamma^* \mu \cdot \gamma^* p^* g = \gamma^* \mu \cdot p^* g.$$

Therefore $\gamma^*\mu = \mu$ which implies that μ factors through a map $\hat{\mu}: M \to \mathbb{R}^+$ so that $p^*\hat{g} = p^*(\hat{\mu} \cdot g)$. We have $\hat{\mu} \cdot g = \hat{g}$. The conformal class of g contains a l.c.K. metric \hat{g} with parallel Lee form $\hat{\theta}$. This finishes the proof of Theorem A.

As to Corollary A₁ in the Introduction, we recall the following. (Compare [17], [5, p.37].) Let (M, g, J) be a compact, connected, non-Kähler, l.c.K. manifold with parallel Lee form θ . Then the following results hold: $g(\theta^{\sharp}, \theta^{\sharp}) = const$,

$$\mathcal{L}_{\theta^{\sharp}}J = \mathcal{L}_{J\theta^{\sharp}}J = 0,$$

$$\mathcal{L}_{\theta^{\sharp}}g = \mathcal{L}_{J\theta^{\sharp}}g = 0.$$

Then $Z = \theta^{\sharp} - iJ\theta^{\sharp}$ is a holomorphic vector field because $[\theta^{\sharp}, J\theta^{\sharp}] = 0$ (cf. [11]). By Definition 1.1, $Z = \theta^{\sharp} - iJ\theta^{\sharp}$ is a holomorphic l.c.K. vector field.

Proposition 2.4. The real vector fields θ^{\sharp} and $J\theta^{\sharp}$ satisfy the following:

1. A flow generated by the Lee field θ^{\sharp} lifts to a one-parameter subgroup of nontrivial homothetic holomorphic transformations w.r.t. Ω .

2. A flow generated by the anti-Lee field $-J\theta^{\sharp}$ lifts to a one-parameter subgroup consisting of holomorphic isometries w.r.t. Ω .

Proof. Let $\{\hat{\varphi}_t\}_{t\in\mathbb{R}}$ be the flow generated by θ^{\sharp} on M and $\{\varphi_t\}_{t\in\mathbb{R}}$ its lift to M. Denote by ξ the vector field on M induced by $\{\varphi_t\}$. Then, $p_*\xi = \theta^{\sharp}$. Because θ is parallel, $\{\hat{\varphi}_t\}$ (resp. $\{\varphi_t\}$) acts by holomorphic isometries w.r.t. g (resp. p^*g). In particular, $\{\varphi_t\}$ preserves $p^*\omega$. Then, for $\Omega = e^{-\tau}p^*\omega$, we have $\varphi_t^*\Omega = e^{-(\varphi_t^*\tau - \tau)}\Omega$. As $\rho: \{\varphi_t\}_{t\in\mathbb{R}} \to \mathbb{R}^+$ is a homomorphism and $\rho(\varphi_t) = e^{-(\varphi_t^*\tau - \tau)}$ is a constant for each $t \in \mathbb{R}$ (dim $\mathbb{R} M \geq 2$), we can describe as $-(\varphi_t^*\tau - \tau) = c \cdot t$ for some constant c. Recall that h is the Kähler metric associated to Ω . If $\{\varphi_t\}$ acts as holomorphic isometries w.r.t. h, then the above equation implies that c = 0, i.e. $\varphi_t^*\tau - \tau = 0$ for every t, and so $\mathcal{L}_{\xi}\tau = 0$. On the other hand, as $d\tau = p^*\theta$, we have:

$$0 = \mathcal{L}_{\xi}\tau = d\tau(\xi) = \theta(p_*\xi) = \theta(\theta^{\sharp}) = const > 0,$$

being a contradiction. Thus, $\varphi_t^*\Omega = \rho(\varphi_t)\Omega = e^{c \cdot t}\Omega$ with $c \neq 0$. Hence, $\{\varphi_t\}_{t \in \mathbb{R}}$ is a group of nontrivial homothetic holomorphic transformations isomorphic to \mathbb{R} . On the other hand, let $\{\hat{\psi}_t\}_{t \in \mathbb{R}}$ (resp. $\{\psi_t\}_{t \in \mathbb{R}}$) be the flow generated by $J\theta^{\sharp}$ on M (resp. $J\xi$ on \tilde{M}). As $p_*(J\xi) = Jp_*\xi = J\theta^{\sharp}$,

$$\mathcal{L}_{J\xi}\tau = d\tau(J\xi) = p^*\theta(J\xi) = \theta(J\theta^{\sharp}) = g(J\theta^{\sharp}, \theta^{\sharp}) = 0,$$

and hence $\psi_t^* \tau = \tau$ for every $t \in \mathbb{R}$. Using the fact that $\mathcal{L}_{J\theta^{\sharp}}g = 0$, $\mathcal{L}_{J\theta^{\sharp}}\omega = 0$. This implies that $\psi_t^* \Omega = \psi_t^* e^{-\tau} \psi_t^* p^* \omega = e^{-\tau} p^* \hat{\psi}_t^* \omega = e^{-\tau} p^* \omega = \Omega$.

Let $\mathbb{R} \to \tilde{M} \xrightarrow{\pi} W$ be the principal bundle where $\mathbb{R} = \{\varphi_t\}_{t \in \mathbb{R}}$ (cf. Lemma 2.2). Define the centralizer of \mathbb{R} in $\mathcal{H}(\tilde{M}, \Omega, J)$ to be:

Definition 2.1. $C_{\mathcal{H}}(\mathbb{R}) = \{ f \in \mathcal{H}(\tilde{M}, \Omega, J) \mid f \circ \varphi_t = \varphi_t \circ f \text{ for } \forall t \in \mathbb{R} \}.$

As $\tilde{\mathcal{C}}$ centralizes the fundamental group $\pi_1(M)$, noting the remark below (2.1), (2.20) $\pi_1(M) \subset \mathcal{C}_{\mathcal{H}}(\mathbb{R})$.

Lemma 2.7. There exists a homomorphism $\nu : \mathcal{C}_{\mathcal{H}}(\mathbb{R}) \to \mathrm{PSH}(W, \eta, J)$ for which $\pi : \tilde{M} \to W$ becomes ν -equivariant. Moreover, there is a splitting homomorphism $q : \mathrm{PSH}(W, \eta, J) \to \mathcal{C}_{\mathcal{H}}(\mathbb{R})$.

Proof. By definition, any element $f \in \mathcal{C}_{\mathcal{H}}(\mathbb{R})$ satisfies $f_*\xi = \xi$. As $f^*\Omega = \rho(f)\Omega$, choosing $e^s = \rho(f)$, put $\gamma = \varphi_{-s} \circ f$. Then, $\gamma^*\Omega = \Omega$. In particular, γ leaves W invariant. Let γ' be the restriction of γ to W (i.e., $i \circ \gamma' = \gamma$). Using (2.6) and $\gamma_*\xi = \xi$, we have that $\gamma'^*\eta = \gamma^*\mathcal{L}_{\xi}\Omega = \mathcal{L}_{\xi}\Omega = \eta$. Hence $\gamma' \in \mathrm{PSH}(W, \eta, J)$. If we define $\nu(f) = \gamma'$, then it is easy to see that ν is a well defined homomorphism. Let $x = \varphi_t w$ be a point in \tilde{M} . As $\pi(x) = w$, $\pi(fx) = \pi(\varphi_s\gamma(\varphi_t w)) = \pi(\varphi_s\varphi_t i\gamma' w) = \pi(i\gamma' w) = \gamma' w = \nu(f)\pi(x)$, so π is ν -equivariant. For $\gamma \in \mathrm{PSH}(W, \eta, J)$, we define a diffeomorphism $\tilde{\gamma} : \tilde{M} \to \tilde{M}$ to be

(2.21)
$$\tilde{\gamma}(x) = \tilde{\gamma}(\varphi_t w) = \varphi_t \gamma w.$$

By definition, $\pi \circ \tilde{\gamma} = \gamma \circ \pi$ and the t-coordinate satisfies that $\tilde{\gamma}^*t = t$. Using (2.15) and $\gamma^*\eta = \eta$, it follows that $\tilde{\gamma}^*\Omega = d(e^{\gamma^*t}\pi^*\gamma^*\eta) = d(e^t\pi^*\eta) = \Omega$. To see that $\tilde{\gamma}: \tilde{M} \to \tilde{M}$ is

holomorphic, notice that $\tilde{\gamma}_*\xi = \xi$. As $\tilde{\gamma}(\psi_\theta x) = \tilde{\gamma}(\psi_\theta \varphi_t w) = \tilde{\gamma}(\varphi_t i \psi'_\theta w) = \varphi_t i \gamma \psi'_\theta w$, and $\gamma_* A = A$,

(2.22)
$$\tilde{\gamma}_*(-J\xi_x) = \tilde{\gamma}_*(\frac{d\psi_\theta}{d\theta}(x)|_{\theta=0}) = (\frac{d\varphi_t i\gamma(\psi'_\theta w)}{d\theta}|_{\theta=0}) \\ = \varphi_{t_*}i_*\gamma_*(\frac{d\psi'_\theta}{d\theta}(w)|_{\theta=0}) = \varphi_{t_*}i_*\gamma_*A_w = \varphi_{t_*}i_*A_{\gamma w} = \varphi_{t_*}(-J\xi_{\gamma w}) = -J\xi_{\tilde{\gamma}x}.$$

Hence, $\tilde{\gamma}$ preserves $\{\xi, J\xi\}^{\perp}$. Since the complex structure J: Null $\eta \to \text{Null } \eta$ is defined by the commutative diagram (2.11), $J\gamma_*(\pi_*X) = \gamma_*J(\pi_*X)$ for $X \in \{\xi, J\xi\}^{\perp}$ by definition. Then $\pi_*\tilde{\gamma}_*J(X) = J\gamma_*\pi_*(X) = J\pi_*\tilde{\gamma}_*(X) = \pi_*J\tilde{\gamma}_*(X)$. As a consequence, $\tilde{\gamma}_* \circ J = J \circ \tilde{\gamma}_*$ on \tilde{M} . Hence, $\tilde{\gamma} \in \mathcal{C}_{\mathcal{H}}(\mathbb{R})$. It is easy to check that $q(\gamma) = \tilde{\gamma}$ is a homomorphism of $PSH(W, \eta, J)$ into $\mathcal{C}_{\mathcal{H}}(\mathbb{R})$ such that $\nu \circ q = \text{id}$.

Remark 2.1. From this lemma, there is an isomorphism $\mathcal{C}_{\mathcal{H}}(\mathbb{R}) \approx \mathbb{R} \times \mathrm{PSH}(W, \eta, J)$ where each element of $\mathcal{C}_{\mathcal{H}}(\mathbb{R})$ is described as $\varphi_s \cdot q(\alpha)$ for $s \in \mathbb{R}$, $\alpha \in \mathrm{PSH}(W, \eta, J)$. It acts on \tilde{M} as

$$\varphi_s \cdot q(\alpha)(\varphi_t \cdot w) = \varphi_{s+t} \cdot \alpha w,$$

for which there is an equivariant principal bundle:

$$\mathbb{R} \to (\mathcal{C}_{\mathcal{H}}(\mathbb{R}), \tilde{M}) \xrightarrow{(\nu, \pi)} (\mathrm{PSH}(W, \eta, J), W).$$

2.3. Central group extension. Consider the exact sequence:

$$(2.23) 1 \rightarrow \mathbb{R} \rightarrow \mathcal{C}_{\mathcal{H}}(\mathbb{R}) \xrightarrow{\nu} \mathrm{PSH}(W, \eta, J) \rightarrow 1.$$

Suppose that $\mathbb{R} \cap \pi_1(M)$ is nontrivial. Then it is an infinite cyclic subgroup \mathbb{Z} such that the quotient group \mathbb{R}/\mathbb{Z} is a circle S^1 . Put $Q = \nu(\pi_1(M)) \subset \mathrm{PSH}(W, \eta, J)$. We have a central group extension:

$$(2.24) 1 \rightarrow \mathbb{Z} \rightarrow \pi_1(M) \xrightarrow{\nu} Q \rightarrow 1.$$

The above principal bundle restricts to the following one:

$$(2.25) (\mathbb{Z}, \mathbb{R}) \to (\pi_1(M), \tilde{M}) \xrightarrow{(\nu, \pi)} (Q, W).$$

As both \mathbb{R} and $\pi_1(M)$ act properly on \tilde{M} , Q acts also properly discontinuously (but not necessarily freely) on W such that the quotient Hausdorff space W/Q is compact. Since $\rho(\mathbb{Z}) \subset \rho(\mathbb{R}) = \mathbb{R}^+$ from § 2.1, $\rho(\mathbb{Z})$ is an infinite cyclic subgroup of \mathbb{R}^+ . We need the following lemma. (Compare [9], [4].)

Lemma 2.8. Let $1 \rightarrow \mathbb{Z} \rightarrow \pi_1(M) \xrightarrow{\nu} Q \rightarrow 1$ be the central extension as in (2.24). Then, $\pi_1(M)$ has a splitting subgroup π' of finite index: $1 \rightarrow \mathbb{Z} \rightarrow \pi' \xrightarrow{\nu} Q' \rightarrow 1$ In particular, there exists a subgroup H' of π' which maps isomorphically onto a subgroup Q' of finite index in Q.

Proof. Consider the homomorphism $\rho' = \rho|_{\pi_1(M)} : \pi_1(M) \longrightarrow \mathbb{R}^+$ from (2.1). Then, $\rho'(\pi_1(M))$ is a free abelian group of rank $k \geq 1$. If we note that $\rho'(\mathbb{Z})$ is an infinite cyclic subgroup of $\rho'(\pi_1(M))$, then we can choose a subgroup G of finite index in $\rho'(\pi_1(M))$ such that $\rho'(\mathbb{Z})$ is a direct summand in G; $G = \rho'(\mathbb{Z}) \times \mathbb{Z}^{k-1}$. Put $\pi' = {\rho'}^{-1}(G)$ and $H' = {\rho'}^{-1}(\mathbb{Z}^{k-1})$. Then, π' has finite index in $\pi_1(M)$. Obviously ν maps H' isomorphically onto $\nu(H') = Q'$ which is of finite index in Q.

Proposition 2.5. The subgroup Q' acts freely on W so that the orbit space W/Q' is a closed strictly pseudoconvex pseudo-Hermitian manifold induced from the pseudo-Hermitian structure (η, J) on W.

Proof. Let $f = \nu'^{-1} : Q' \to H'$ be the inverse isomorphism. For each $\alpha' \in Q'$ there exists a unique element $\lambda(\alpha') \in \mathbb{R}$ such that $f(\alpha') = \varphi_{\lambda(\alpha')} \cdot q(\alpha')$. As we know that Q acts properly discontinuously on W from the remark below (2.25), the stabilizer at each point is finite. Suppose that $\alpha'w = w$ for some point $w \in W$. As $\alpha' \in Q_w$, $\alpha'^{\ell} = 1$ for some ℓ . Since φ_t is a central element and q is a homomorphism, $1 = f(\alpha'^{\ell}) = \varphi_{\ell\lambda(\alpha')} \cdot q(\alpha'^{\ell}) = \varphi_{\ell\lambda(\alpha')}$. Thus, $\lambda(\alpha') = 0$, i.e., $f(\alpha') = q(\alpha')$. By definition of the action (π', \tilde{M}) , $f(\alpha')(\varphi_t w) = q(\alpha')(\varphi_t w) = \varphi_t \alpha' w = \varphi_t w$. As π' acts freely on \tilde{M} , $f(\alpha') = 1$ and so $\alpha' = 1$. If we note that $Q' \subset \mathrm{PSH}(W, \eta, J)$, then (η, J) induces a pseudo-Hermitian structure $(\hat{\eta}, J)$ on W/Q'. Here we use the same notation J to the complex structure on Null $\hat{\eta}$.

3. Examples of L.C.K. Manifolds with parallel Lee form

In this section we present an explicit construction for the Hopf manifolds. Let $S^{2n-1}=\{(z_1,\ldots,z_n)\in\mathbb{C}^n\mid |z_1|^2+\cdots+|z_n|^2=1\}$ be the sphere endowed with its standard contact structure

(3.1)
$$\eta_0 = \sum_{j=1}^n (x_j dy_j - y_j dx_j), \text{ where } z_j = x_j + \sqrt{-1} y_j.$$

Let J_0 be the restriction of the standard complex structure of \mathbb{C}^n to $\mathbb{C}^n - \{0\}$. It is known that the group of pseudo-Hermitian transformations, $PSH(S^{2n-1}, \eta_0, J_0)$ is isomorphic with U(n) (see [20], for example). We define a 1-parameter subgroup $\{\psi_t\}_{t\in\mathbb{R}}\subset PSH(S^{2n-1}, \eta_0, J_0)$ by the formula:

$$\psi_t(z_1,\ldots,z_n)=(e^{\mathrm{i}ta_1}z_1,\ldots,e^{\mathrm{i}ta_n}z_n),$$

where $i = \sqrt{-1}$ and $a_1, \ldots, a_n \in \mathbb{R}$. The vector field induced by this action is

$$A = \sum_{j=1}^{n} a_j \left(x_j \frac{d}{dy_j} - y_j \frac{d}{dx_j} \right)$$

and satisfies $\eta_0(A) = a_1|z_1|^2 + \dots + a_n|z_n|^2$.

Now we require that $\eta_0(A) > 0$ everywhere on S^{2n-1} . Then the numbers a_k must satisfy (up to rearrangement):

$$(3.2) 0 < a_1 \le \dots \le a_n.$$

Define a new contact form η_A on the sphere by

$$\eta_A = \frac{1}{\sum_{j=1}^n a_j |z_j|^2} \cdot \eta_0.$$

The contact distributions of η_0 and η_A coincide, but the characteristic field of η_A is A: $\eta_A(A) = 1$, $\iota_A d\eta_A = 0$. As A generates the flow $\{\psi_t\}_{t\in\mathbb{R}} \subset \mathrm{PSH}(S^{2n-1}, \eta_0, J_0)$, note that $\psi_{t*} \circ J_0 = J_0 \circ \psi_{t*}$ on Null η_A . Define a 2-form on the product $\mathbb{R} \times S^{2n-1}$ by:

$$\Omega_A = 2d(e^t \operatorname{pr}^* \eta_A), \quad (t \in \mathbb{R}).$$

Here pr : $\mathbb{R} \times S^{2n-1} \to S^{2n-1}$ is the projection. If $\mathbb{R} = \{\varphi_s\}_{s \in \mathbb{R}}$ acts on $\mathbb{R} \times S^{2n-1}$ by left translations: $\varphi_s(t,z) = (s+t,w)$, then the group $\mathbb{R} \times \mathrm{PSH}(S^{2n-1},\eta_A,J_0)$ acts by homothetic transformations w.r.t. Ω_A :

(3.3)
$$(\varphi_s \times \alpha)^* \Omega_A = e^s \cdot \Omega_A, \quad (\alpha \in PSH(S^{2n-1}, \eta_A, J_0)).$$

In general, $PSH(S^{2n-1}, \eta_A, J_0)$ is the centralizer of $\{\psi_t\}_{t\in\mathbb{R}}$ in U(n). In view of the formula of ψ_t , $PSH(S^{2n-1}, \eta_A, J_0)$ contains the maximal torus of U(n) at least.

$$(3.4) T^n \subset PSH(S^{2n-1}, \eta_A, J_0).$$

(For example, if all a_j are distinct, $PSH(S^{2n-1}, \eta_0, J_0) = T^n$).

Let $N = \frac{d}{dt}$ be the vector field induced on $\mathbb{R} \times S^{2n-1}$ by the \mathbb{R} -action. Taking into account that $T(\mathbb{R} \times S^{2n-1}) = N \oplus A \oplus \text{Null } \eta_A$, we define an almost complex structure J_A on $\mathbb{R} \times S^{2n-1}$ by:

$$J_A N = -A, \quad J_A A = N,$$

 $J_A |\text{Null } \eta_A = J_0$

and show its integrability. Indeed, let

$$T(\mathbb{R} \times S^{2n-1}) \otimes \mathbb{C} = \{T^{1,0} + (A - iN)\} \oplus \{T^{0,1} + (A + iN)\}$$

be the splitting corresponding to J_A (here $T^{1,0}+T^{0,1}=\operatorname{Null}\eta_A\otimes\mathbb{C}$). As $J_A|\operatorname{Null}\eta_A=J_0$, $[T^{1,0},T^{0,1}]\subset T^{1,0}$. Recalling that A is the characteristic field of η_A , we see that $[X,A]\in\operatorname{Null}\eta_A$ for any $X\in\operatorname{Null}\eta_A$. If $X\in T^{1,0}$, then $[X,A-\mathrm{i}N]=[X,A]=\lim_{t\to 0}\frac{X-\psi_{-t*}X}{t}$. Noting that $\psi_t\in\operatorname{PSH}(S^{2n-1},\eta_A,J_0)$ (i.e., $\psi_{t*}J_0=J_0\psi_{t*}$),

$$J_A[X, A - iN] = J_0[X, A] = \lim_{t \to 0} \frac{J_0X - \psi_{-t*}J_0X}{t} = [J_0X, A]$$
$$= [iX, A] = i[X, A] = i[X, A - iN].$$

Thus $[X, A - iN] \in \{T^{1,0} + (A - iN)\}$. Hence J_A is integrable. By the definition of J_A , it is easy to check that the elements of $\mathbb{R} \times \mathrm{PSH}(S^{2n-1}, \eta_A, J_0)$ are holomorphic w.r.t. J_A . Moreover, Ω_A is J_A -invariant. Hence, Ω_A is a Kähler form on the complex manifold ($\mathbb{R} \times$

 $S^{2n-1}, J_A)$ on which $\mathbb{R} \times \mathrm{PSH}(S^{2n-1}, \eta_A, J_0)$ acts as the group of holomorphic homothetic transformations. Define a Hermitian metric \tilde{g}_A and its fundamental 2-form $\tilde{\omega}_A$ by setting

(3.5)
$$\tilde{\omega}_A = 2e^{-t} \cdot \Omega_A.$$

$$\tilde{g}_A(X,Y) = \tilde{\omega}_A(J_A X, Y), \quad \forall \ X, Y \in T(\mathbb{R} \times S^{2n-1}).$$

(Compare (2.16).) By (3.3), $\mathbb{R} \times \mathrm{PSH}(S^{2n-1}, \eta_A, J_0)$ acts as holomorphic isometries of (\tilde{g}_A, J_A) . When we choose a properly discontinuous group $\Gamma \subset \mathbb{R} \times \mathrm{PSH}(S^{2n-1}, \eta_A, J_0)$ acting freely on $\mathbb{R} \times S^{2n-1}$, \tilde{g}_A (resp. $\tilde{\omega}_A$) induces a Hermitian metric g_A (resp. the fundamental 2-form ω_A) on the quotient complex manifold $(\mathbb{R} \times S^{2n-1}/\Gamma, \hat{J}_A)$, where the complex structure \hat{J}_A is induced from J_A . We have to check that g_A is a l.c.K. metric with parallel Lee form. Let $p: \mathbb{R} \times S^{2n-1} \to \mathbb{R} \times S^{2n-1}/\Gamma$ be the projection so that $p^*\omega_A = \tilde{\omega}_A$. Since $\tilde{\omega}_A = e^{-t} \cdot \Omega_A$, we have $d\tilde{\omega}_A = -dt \wedge \tilde{\omega}_A$. Thus \tilde{g}_A is a l.c.K. metric with Lee form d(-t) on $\mathbb{R} \times S^{2n-1}$. If we note that the group $\mathbb{R} \times \mathrm{PSH}(S^{2n-1}, \eta_A, J_0)$ leaves d(-t) invariant, i.e. $(\varphi_s \times \alpha)^* d(-t) = d(-(s+t)) = d(-t)$, then d(-t) induces a 1-form θ on $\mathbb{R} \times S^{2n-1}/\Gamma$ such that $p^*\theta = d(-t)$. The equation $d\tilde{\omega}_A = -dt \wedge \tilde{\omega}_A$ implies that $d\omega_A = \theta \wedge \omega_A$ on $\mathbb{R} \times S^{2n-1}/\Gamma$. As $d\theta = 0$, g_A is a l.c.K. metric with Lee form θ . For the rest, the same argument as in the proof of Lemma 2.5 can be applied to show that θ is the parallel Lee form of g_A . Finally, we examine the complex structure \hat{J}_A on $\mathbb{R} \times S^{2n-1}/\Gamma$. Let $H: \mathbb{R} \times S^{2n-1} \to \mathbb{C}^n - \{0\}$ be the diffeomorphism defined by:

$$H(t,(z_1,\ldots,z_n))=(e^{-a_1t}z_1,\ldots,e^{-a_nt}z_n),$$

where $\{a_1, \ldots, a_n\}$ satisfies the condition (3.2). We shall show that H is a (J_A, J_0) -biholomorphism. We have:

$$H_*(N_{(s,z)}) = \frac{dH(t+s,z)}{dt}|_{t=0} = (-a_1 \cdot e^{-a_1 s} \cdot z_1, \dots, -a_n \cdot e^{-a_n s} \cdot z_n);$$

$$H_*(J_A N_{(s,z)}) = H_*(-A_{(s,z)}) = -H_*((s, \frac{d}{dt}(e^{ita_1}z_1, \dots, e^{ita_n}z_n)|_{t=0})$$

$$= -(ia_1 e^{-a_1 s}z_1, \dots, ia_n e^{-a_n s}z_n) = J_0 H_*(N_{(s,z)}).$$

From $H_*(A_{(s,z)}) = -J_0H_*(N_{(s,z)})$, we derive $J_0H_*(A_{(s,z)}) = H_*(N_{(s,z)}) = H_*(J_AA)$. Now let $X \in \text{Null } \eta_A \subset TS^{2n-1}$ and let $\sigma(t)$ be an integral curve of X on S^{2n-1} : $\dot{\sigma}(t) = X$, $\dot{\sigma}(0) = X_z$. We can view X as a pair: $X_{(s,z)} = (s, \dot{\sigma}(0))$. Then:

$$H_*(X_{(s,z)}) = \frac{d}{dt}H(s,\sigma(t))|_{t=0} = (e^{-a_1s}\dot{\sigma}_1(0),\dots,e^{-a_ns}\dot{\sigma}_n(0)).$$

From this we obtain:

$$H_*(J_A X_{(s,z)}) = H_*((s, J_0 \dot{\sigma}(0))) = H_*((s, (i\dot{\sigma}_1(0), \dots, i\dot{\sigma}_n(0))))$$

$$= (ie^{-a_1 s} \dot{\sigma}_1(0), \dots, ie^{-a_n s} \dot{\sigma}_n(0))$$

$$= J_0(e^{-a_1 s} \dot{\sigma}_1(0), \dots, e^{-a_n s} \dot{\sigma}_n(0)) = J_0 H_*(X_{(s,z)}).$$

Therefore $H: (\mathbb{R} \times S^{2n-1}, J_A) \to (\mathbb{C}^n - \{0\}, J_0)$ is a biholomorphism.

Let $\operatorname{Hol}(\mathbb{C}^n - \{0\}, J_0)$ be the group of all biholomorphic transformations. If we associate to each $\gamma \in \mathbb{R} \times \operatorname{PSH}(S^{2n-1}, \eta_A, J_0)$ the biholomorphic map $H \circ \gamma \circ H^{-1}$, we obtain a faithful

homomorphism $\mathbb{R} \times \mathrm{PSH}(S^{2n-1}, \eta_A, J_0) \longrightarrow \mathrm{Hol}(\mathbb{C}^n - \{0\}, J_0)$. Let Γ_H be the image of Γ in $\mathrm{Hol}(\mathbb{C}^n - \{0\}, J_0)$.

Definition 3.1. The quotient complex manifold $\mathbb{C}^n - \{0\}/\Gamma_H$ is called a Hopf manifold. We have shown:

Theorem 3.1. The Hopf manifold $\mathbb{C}^n - \{0\}/\Gamma_H$ admits a l.c.K. metric g with parallel Lee form θ .

By (3.4), $T^n \subset \text{PSH}(S^{2n-1}, \eta_A, J_0)$. Choose $s \in \mathbb{R} - \{0\}$ and n-complex numbers $c_1, \ldots, c_n \in S^1$. Consider an infinite cyclic subgroup \mathbb{Z} generated by the element $(s, (c_1, \ldots, c_n))$ from $\mathbb{R} \times \text{PSH}(S^{2n-1}, \eta_0, J_0)$. Then the corresponding group \mathbb{Z}_H is generated by the element $(e^{-a_1s} \cdot c_1, \ldots, e^{-a_ns} \cdot c_n)$ acting on $\mathbb{C}^n - \{0\}$. Let $\Lambda = (\lambda_1, \ldots, \lambda_n)$, with $\lambda_j = e^{-a_js} \cdot c_j$ and so $\mathbb{Z}_H = \langle (\lambda_1, \ldots, \lambda_n) \rangle$. The condition (3.2) ensures that the complex numbers λ_j satisfy

$$0 < |\lambda_n| \le \cdots \le |\lambda_1| < 1.$$

Put $M_{\Lambda} = \mathbb{C}^n - \{0\}/\Gamma_H$. We call M_{Λ} a primary Hopf manifold of type Λ . Indeed, for n = 2, one recovers the primary Hopf surfaces of Kähler rank 1. In particular, we derive Theorem B in the Introduction.

Remark 3.1. Note that the manifolds M_{Λ} are all diffeomorphic with $S^1 \times S^{2n-1}$ and that for $c_1 = \cdots = c_n = 1$ and $a_1 = \cdots = a_n$, we obtain the standard Hopf manifold, the first known example of a l.c.K. manifold with parallel Lee form, cf. [17].

In [6] a l.c.K. metric with parallel Lee form is constructed on the primary Hopf surface $M_{\lambda_1,\lambda_2} = \mathbb{C}^2 - \{0\}/\Gamma$, $\Gamma \cong \mathbb{Z}$ generated by $(z_1,z_2) \mapsto (\lambda_1 z_1,\lambda_2 z_2)$, $|\lambda_1| \geq |\lambda_2| > 1$. There the diffeomorphism between M_{λ_1,λ_2} and $S^1 \times S^3$ is used to construct a potential for the Kähler metric h (in the present paper notations) on the universal cover. The same diffeomorphism is then used to transport the l.c.K. structure on $S^1 \times S^3$ and to show that the induced Sasakian structure on S^3 is a deformation of the standard Sasakian structure of the 3-sphere. See also [1] where a complete list of compact, complex surfaces admitting l.c.K. metrics with parallel Lee form is provided.

4. Lee-Cauchy-Riemann transformations

In this section, we consider the group $\operatorname{Aut}_{LCR}(M)$ described in the Introduction. Let $\{\theta, \theta \circ J, \theta^{\alpha}, \bar{\theta}^{\alpha}\}_{\alpha=1,\dots,n-1}$ be a unitary, local coframe field adapted to a l.c.K. manifold (M, g, J). Consider the subgroup G of $\operatorname{GL}(2n, \mathbb{R})$ consisting of the following elements:

$$\left\{ \begin{pmatrix}
1 & 0 & 0 & 0 \\
0 & u & v^{\alpha} & \bar{v}^{\alpha} \\
0 & 0 & \sqrt{u} U_{\beta}^{\alpha} & 0 \\
0 & 0 & 0 & \sqrt{u} \bar{U}_{\beta}^{\alpha}
\end{pmatrix} \mid u \in \mathbb{R}^{+}, v^{\alpha} \in \mathbb{C}, U_{\beta}^{\alpha} \in U(n-1) \right\}.$$

Let $G \to P \to M$ be the principal bundle of the G-structure consisting of the above coframes $\{\theta, \theta \circ J, \theta^{\alpha}, \bar{\theta}^{\alpha}\}$. If we note that G is isomorphic to the semidirect product $\mathbb{C}^{n-1} \rtimes (\mathrm{U}(n-1) \times \mathbb{R}^+)$, then the Lie algebra \mathfrak{g} is isomorphic to $\mathbb{C}^{n-1} + \mathfrak{u}(n-1) + \mathbb{R}$. In particular, the matrix group $\mathfrak{g} \subset \mathfrak{g}l(2n,\mathbb{R})$ has no element of rank 1, *i.e.* it is *elliptic* (cf.

[10]). Note that \mathbb{C}^{n-1} is of infinite type, while $\mathfrak{u}(n-1) + \mathbb{R}$ is of order 2. As M is assumed to be compact, the group of automorphisms \mathcal{U} of P is a (finite dimensional) Lie group.

Definition 4.1. The group of all diffeomorphisms of M onto itself which preserve the above G-structure is denoted by $\operatorname{Aut}_{LCR}(M,g,J,\theta)$ (or simply by $\operatorname{Aut}_{LCR}(M)$). We call $\operatorname{Aut}_{LCR}(M)$ the group of Lee-Cauchy-Riemann transformations on a l.c.K. manifold (M,g,J) adapted to the Lee form θ .

By definition, if $f \in \text{Aut}_{LCR}(M)$, then $f^* : P \to P$ is a bundle automorphism satisfying $f^*\theta = \theta$,

$$(4.1) \qquad f^*(\theta \circ J) = \lambda \cdot (\theta \circ J), \text{ for some positive, smooth function } \lambda,$$

$$f^*\theta^\alpha = \sqrt{\lambda} \cdot \theta^\beta V^\alpha_\beta + (\theta \circ J) \cdot w^\alpha,$$

$$f^*\bar{\theta}^\alpha = \sqrt{\lambda} \cdot \bar{\theta}^\beta \bar{V}^\alpha_\beta + (\theta \circ J) \cdot \bar{w}^\alpha,$$

for functions $V^{\alpha}_{\beta} \in \mathrm{U}(n-1)$ and $w^{\alpha} \in \mathbb{C}$. Note that the group of holomorphic isometries $\mathrm{I}(M,g,J)$ is contained in $\mathrm{Aut}_{LCR}(M)$. In fact, an element $f \in \mathrm{I}(M,g,J)$ satisfies $f^*\theta = \theta$, $f^*(\theta \circ J) = (\theta \circ J)$ and $f^*\omega = \omega$. Let $\{\theta^{\sharp}, J\theta^{\sharp}\}^{\perp}$ be the orthogonal complement of the complex plane field $\{\theta^{\sharp}, J\theta^{\sharp}\}$ w.r.t. g. It is obviously J-invariant. If we note that $\omega |\{\theta^{\sharp}, J\theta^{\sharp}\}^{\perp} = -\mathrm{i} \sum_{\alpha,\beta} \delta_{\alpha\beta} \theta^{\alpha} \wedge \bar{\theta}^{\beta}$, then $f^*\theta^{\alpha} = \theta^{\beta} U^{\alpha}_{\beta}$, $f^*\bar{\theta}^{\alpha} = \bar{\theta}^{\beta} \bar{U}^{\alpha}_{\beta}$ for some matrix function $U^{\alpha}_{\beta} \in \mathrm{U}(n-1)$.

Lemma 4.1. Any element $f \in \operatorname{Aut}_{LCR}(M)$ preserves $\{\theta^{\sharp}, J\theta^{\sharp}\}^{\perp}$ and is holomorphic on it.

Proof. Let $X \in \{\theta^{\sharp}, J\theta^{\sharp}\}^{\perp}$. The equations $f^*\theta = \theta$, $f^*(\theta \circ J) = \lambda \cdot (\theta \circ J)$ show that

$$g(f_*X, \theta^{\sharp}) = \theta(f_*X) = \theta(X) = g(X, \theta^{\sharp}) = 0,$$

$$(4.2) \qquad g(f_*X, J\theta^{\sharp}) = -g(Jf_*X, \theta^{\sharp}) = -\theta(Jf_*X) = -\theta \circ J(f_*X)$$

$$= -\lambda \cdot \theta \circ J(X) = -g(X, (\theta \circ J)^{\sharp}) = g(X, J\theta^{\sharp}) = 0.$$

Thus f_* applies $\{\theta^{\sharp}, J\theta^{\sharp}\}^{\perp}$ onto itself. Moreover, if θ^{\sharp}_{α} is a dual frame field to θ^{α} (similarly for $\bar{\theta}^{\alpha}$), then the frame $\{\theta^{\sharp}_{\alpha}, \bar{\theta}^{\sharp}_{\alpha}\}_{\alpha=1,\dots,n-1}$ spans $\{\theta^{\sharp}, J\theta^{\sharp}\}^{\perp} \otimes \mathbb{C}$.

The equation $f^*\theta^{\alpha} = \sqrt{\lambda} \cdot \theta^{\beta} V_{\beta}^{\alpha} + (\theta \circ J) \cdot w^{\alpha}$ implies that $f_*\theta^{\sharp}_{\alpha} = \sqrt{\lambda} \cdot \theta^{\sharp}_{\beta} V_{\alpha}^{\beta}$ (similary for $f_*\bar{\theta}^{\sharp}_{\alpha}$). Therefore $f_*\circ J = J\circ f_*$ on $\{\theta^{\sharp}, J\theta^{\sharp}\}^{\perp}$.

When a noncompact LCR flow exists on a compact l.c.K. manifold M with parallel Lee form, we shall prove a rigidity similar to the one implied by a noncompact CR-flow on a compact CR-manifold (cf. [14], [8]).

Proof of Theorem C.

4.1. Existence of spherical CR-structure on W/Q'. Let $1\to\mathbb{Z}\to\pi' \xrightarrow{\nu} Q'\to 1$ be the split central group extension from Lemma 2.8. Put $M'=\tilde{M}/\pi'$. Then it is easy to see that the Lee form θ , the LCR-action \mathbb{C}^* lift to those of M', so we retain the same notations for M'. We put $\mathbb{C}^*=S^1\times\mathbb{R}^+$ where $\mathbb{R}^+=\{\hat{\phi}_t\}_{t\in\mathbb{R}}$ is a LCR flow on M'. By hypothesis, $S^1=\{\hat{\varphi}_t\}_{t\in\mathbb{R}}$ induces the Lee field θ^{\sharp} . From 1 of Proposition 2.4, S^1 lifts to a nontrivial

holomorphic homothetic flow $\mathbb{R} = \{\varphi_t\}_{t \in \mathbb{R}}$ on \tilde{M} w.r.t. Ω . We obtain a LCR-action of $\mathbb{R} \times \mathbb{R}^+$ on \tilde{M} for which \mathbb{R} acts properly as before. Consider the commutative diagram of principal bundles:

$$(4.3) \qquad \begin{array}{cccc} \mathbb{Z} & \longrightarrow & \pi' & \stackrel{\nu}{\longrightarrow} & Q' \\ \downarrow & & \downarrow & & \downarrow \\ \mathbb{R} & \longrightarrow & (\mathbb{R} \times \mathbb{R}^+, \tilde{M}) & \stackrel{(\tilde{\nu}, \pi)}{\longrightarrow} & (\mathbb{R}^+, W) \\ \downarrow & & \downarrow^p & & \downarrow^p \\ S^1 & \longrightarrow & (S^1 \times \mathbb{R}^+, M') & \stackrel{(\hat{\nu}, \hat{\pi})}{\longrightarrow} & (\mathbb{R}^+, W/Q') \end{array}$$

From the bottom line, the projection $\hat{\nu}$ maps the group $\mathbb{R}^+ = {\{\hat{\phi}_t\}_{t \in \mathbb{R}}}$ onto a group $\mathbb{R}^+ = {\{\bar{\phi}_t\}_{t \in \mathbb{R}}}$ acting on W/Q'.

Lemma 4.2. The group $\mathbb{R}^+ = \{\bar{\phi}_t\}_{t \in \mathbb{R}}$ acts by CR-transformations on W/Q' w.r.t. the CR-structure induced from the strictly pseudoconvex, pseudo-Hermitian structure $(\hat{\eta}, J)$.

Proof. As ξ generates the flow $\mathbb{R} = \{\varphi_t\}_{t\in\mathbb{R}}$, $p_*\xi = \theta^\sharp$ on M' by hypothesis and so $p: \tilde{M} \to M'$ maps the complex plane field $\{\xi, J\xi\}$ onto $\{\theta^\sharp, J\theta^\sharp\}$. By Lemma 4.1, each $\hat{\phi}_t \in \operatorname{Aut}_{LCR}(M')$ preserves $\{\theta^\sharp, (\theta \circ J)^\sharp\}^\perp$. So its lift ϕ_t preserves the J-invariant distribution $\{\xi, J\xi\}^\perp$. Since $\pi_*: (\{\xi, J\xi\}^\perp, J) \to (\operatorname{Null} \eta, J)$ is J-isomorphic and each ϕ_t is holomorphic on $\{\xi, J\xi\}^\perp$, $\hat{\pi}_*: (\{\theta^\sharp, (\theta \circ J)^\sharp\}^\perp, J) \to (\operatorname{Null} \hat{\eta}, J)$ is also J-isomorphic through the commutative diagram and thus each $\bar{\phi}_t$ is holomorphic on $\operatorname{Null} \hat{\eta}$; $(\bar{\phi}_{t*} \circ J = J \circ \bar{\phi}_{t*})$. Therefore, $\mathbb{R}^+ = \{\bar{\phi}_t\}_{t\in\mathbb{R}}$ is a closed, noncompact subgroup of CR-transformations of W/Q' w.r.t. (Null $\hat{\eta}, J$).

By this lemma, we obtain a compact strictly pseudoconvex CR-manifold W/Q' admitting a closed, noncompact CR-transformations \mathbb{R}^+ . Then we apply the result of [8] to show that W/Q' is CR-equivalent to the sphere S^{2n-1} with the standard CR-structure. In particular $Q' = \{1\}$ and thus Q is a finite subgroup of $PSH(W, \eta, J)$ from Lemma 2.8. By definition of spherical CR-structure (cf. [12], [7]), there exists a developing pair:

$$(\mu, \operatorname{dev}) : (\operatorname{Aut}_{CR}(W), W) \rightarrow (\operatorname{PU}(n, 1), S^{2n-1})$$

for which dev is a CR-diffeomorphism and $\mu: \operatorname{Aut}_{CR}(W) \to \operatorname{PU}(n,1)$ is the holonomy isomorphism. Here $\operatorname{PU}(n,1) = \operatorname{Aut}_{CR}(S^{2n-1})$ and $\operatorname{Aut}_{CR}(W)$ is the group of all CR-automorphisms of W containing the groups \mathbb{R}^+ and $\operatorname{PSH}(W,\eta,J) \supset Q$.

As S^1 ($\subset \mathbb{C}^*$) acts on M without fixed points (but not necessarily freely), the quotient space $M/S^1 = W/Q (\approx S^{2n-1}/\mu(Q))$ is an orbifold, so such a finite subgroup Q may exist.

On the other hand, we recall some facts from the theory of hyperbolic groups (cf. [3]). The noncompact closed $\mu(\mathbb{R}^+)$ -action on S^{2n-1} is characterized as whether it is either loxodromic (= \mathbb{R}^+) or parabolic (= \mathbb{R}) for which \mathbb{R}^+ has exactly two fixed points $\{0, \infty\}$ or \mathbb{R} has the unique fixed point $\{\infty\}$ on S^{2n-1} . Moreover, the centralizer $\mathcal{C}_{PU(n,1)}(\mu(\mathbb{R}^+))$ of $\mu(\mathbb{R}^+)$ in PU(n,1) is one of the following groups up to conjugacy:

(4.4)
$$\mathcal{R} \times \mathrm{U}(n-1)$$
 or $\mathbb{R}^+ \times \mathrm{U}(n-1)$.

Since $\pi_1(M)$ centralizes $\mathbb{R} \times \mathbb{R}^+$, note that Q centralizes \mathbb{R}^+ (cf. (2.24)). The holonomy group $\mu(Q)$ belongs to $\mathcal{C}_{PU(n,1)}(\mu(\mathbb{R}^+))$. As $\mu(Q)$ is a finite subgroup, (4.4) implies that

$$\mu(Q) \subset \mathrm{U}(n-1).$$

4.2. Rigidity of (M, g, J) under the LCR action of \mathbb{R}^+ . Let (η_0, J_0) be the standard strictly pseudoconvex pseudo-Hermitian structure on S^{2n-1} (cf. (3.1)). By definition, there exists a positive function u on W such that

By Lemma 2.4, we know that A is the characteristic CR-vector field on W for (η, J) . If $\{\psi'_t\}$ is the flow generated by A, then note from (2.13) that $\{\psi'_t\} \subset \mathrm{PSH}(W, \eta, J)$. Because W is compact, $\mathrm{PSH}(W, \eta, J)$ is compact. As $\mathrm{PSH}(W, \eta, J) \subset \mathrm{Aut}_{CR}(W)$, the closure of the holonomy image $\mu(\{\psi'_t\})$ (which is a connected abelian group) lies in the maximal torus T^n of the maximal compact subgroup $\mathrm{U}(n)$ in $\mathrm{PU}(n,1)$ up to conjugacy. We can describe it as

$$\mu(\psi'_t) = (e^{ia_1 \cdot t}, \cdots, e^{ia_n \cdot t}) \quad (\forall t \in \mathbb{R})$$

for some $a_i \in \mathbb{R}$ $(i=1,\ldots,n)$. On the other hand, let $\mathcal{A} = \operatorname{dev}_*(A)$. Since dev is equivariant, $\operatorname{dev}(\psi'_t w) = \mu(\psi'_t) \operatorname{dev}(w)$ on $S^{2n-1} = \{z = (z_1, z_2, \cdots, z_n) \in \mathbb{C}^n \mid |z_1|^2 + |z_2|^2 + \cdots + |z_n|^2 = 1\}$, we have:

(4.7)
$$\mathcal{A}_z = \frac{d\mu(\psi'_t)}{dt} = \sum_{j=1}^n a_j (x_j \frac{d}{dy_j} - y_j \frac{d}{dx_j}) \quad (z = \text{dev}(w), \quad z_j = x_j + iy_j).$$

As $\eta(A) = 1$, we have

(4.8)
$$u(w) = \operatorname{dev}^* \eta_0(A) = \eta_0(A_z) = \sum_{j=1}^n a_j \cdot |z_j|^2.$$

Since u > 0 from (4.6), we can assume that

$$(4.9) 0 < a_1 \le \dots \le a_n.$$

As dev⁻¹ maps the pseudo-Hermitain structure (η, J) on W to $(\text{dev}^{-1*} \eta, J_0)$ on S^{2n-1} , we put

$$\eta_{\mathcal{A}} = \operatorname{dev}^{-1*} \eta.$$

Using (4.8), we obtain:

(4.11)
$$\eta_{\mathcal{A}} = \frac{1}{\sum_{j=1}^{n} a_j \cdot |z_j|^2} \cdot \eta_0 \text{ on } S^{2n-1}.$$

When we note that $\eta_0 = u' \cdot \eta_{\mathcal{A}}$ where $u' = u \circ \text{dev}^{-1}$, and $T(\mathbb{R} \times S^{2n-1}) = \{\frac{d}{dt}, \mathcal{A}\} \oplus \text{Null } \eta_0$, denote the complex structure $J_{\mathcal{A}}$ on $\mathbb{R} \times S^{2n-1}$ by

(4.12)
$$J_{\mathcal{A}} \frac{d}{dt} = -\mathcal{A}, \quad J_{\mathcal{A}} \mathcal{A} = \frac{d}{dt}$$
$$J_{\mathcal{A}} |\text{Null } \eta_0 = J_0.$$

(Compare §3.) Let $Pr : \mathbb{R} \times S^{2n-1} \to S^{2n-1}$ be the canonical projection. In view of (3.5), setting

(4.13)
$$\Omega_{\mathcal{A}} = d(e^t \cdot \Pr^* \eta_{\mathcal{A}}), \quad \tilde{\omega}_{\mathcal{A}} = 2e^{-t} \cdot \Omega_{\mathcal{A}}, \\ \tilde{g}_{\mathcal{A}}(X, Y) = \tilde{\omega}_{\mathcal{A}}(J_{\mathcal{A}}X, Y),$$

we obtain a l.c.K. structure $(\Omega_{\mathcal{A}}, J_{\mathcal{A}})$ on $\mathbb{R} \times S^{2n-1}$ endowed with the group $\mathbb{R} \times \mathrm{PSH}(S^{2n-1}, \eta_{\mathcal{A}}, J_0)$ of holomorphic homothetic transformations.

Proposition 4.1. There exists an equivariant holomorphic isometry between $(C_{\mathcal{H}}(\mathbb{R}), \tilde{M}, \Omega, J)$ and $(\mathbb{R} \times \mathrm{PSH}(S^{2n-1}, \eta_{\mathcal{A}}, J_0), \mathbb{R} \times S^{2n-1}, \Omega_{\mathcal{A}}, J_{\mathcal{A}})$.

Proof. Let $G: \tilde{M} \to \mathbb{R} \times S^{2n-1}$ be a diffeomorphism defined by $G(\varphi_t w) = (t, \operatorname{dev}(w))$. Note that $\operatorname{Pr} \circ G = \operatorname{dev} \circ \pi$ on \tilde{M} . As every element of $\mathcal{C}_{\mathcal{H}}(\mathbb{R})$ is described as $\varphi_s \cdot q(\alpha)$ from Remark 2.1, define a homomorphism $\Psi: \mathcal{C}_{\mathcal{H}}(\mathbb{R}) \to \mathbb{R} \times \operatorname{PSH}(S^{2n-1}, \eta_{\mathcal{A}}, J_0)$ by setting

$$\Psi(\varphi_s \cdot q(\alpha)) = (s, \mu(\alpha)).$$

Recall that the action $q(\alpha)(\varphi_t w) = \varphi_t \alpha w$ from (2.21). Then,

$$G(\varphi_s \cdot q(\alpha)(\varphi_t w)) = G(\varphi_{s+t} \cdot \alpha w) = (s+t, \operatorname{dev}(\alpha w))$$

= $(s+t, \mu(\alpha) \operatorname{dev}(w)) = (s, \mu(\alpha))(t, \operatorname{dev}(w)) = \Psi(\varphi_s \cdot q(\alpha))G(\varphi_t w).$

Hence, $(\Psi, G): (\mathcal{C}_{\mathcal{H}}(\mathbb{R}), \tilde{M}) \to (\mathbb{R} \times \mathrm{PSH}(S^{2n-1}, \eta_{\mathcal{A}}, J_0), \mathbb{R} \times S^{2n-1})$ is equivariantly diffeomorphic. Next, since $G^*t = t$ for the t-coordinate of $\mathbb{R} \times S^{2n-1}$ and $\mathrm{dev}^* \eta_{\mathcal{A}} = \eta$ from (4.10), it follows that:

$$(4.14) G^*\Omega_{\mathcal{A}} = G^*d(e^t \cdot \operatorname{Pr}^*\eta_{\mathcal{A}}) = d(e^{G^*t} \cdot G^*\operatorname{Pr}^*\eta_{\mathcal{A}}) = d(e^t \cdot \pi^*\eta) = \Omega.$$

By definition, $G_*\xi = \frac{d}{dt}$. Moreover, when $x = \varphi_s w$,

$$G(\psi_t(x)) = G(\varphi_s \psi_t w) = G(\varphi_s i \psi'_t w) = (s, \operatorname{dev}(\psi'_t w)) = (s, \mu(\psi'_t) \operatorname{dev}(w)).$$

Using (2.7) and (4.7),

$$G_*(-J\xi_x) = \frac{dG\psi_t}{dt}(x)|_{t=0} = \mathcal{A}_{Gx} = -J_{\mathcal{A}}(\frac{d}{dt})_{Gx}.$$

Thus $G_*(J\xi) = J_{\mathcal{A}}G_*\xi$. As $G^*\Omega_{\mathcal{A}} = \Omega$ from (4.14), G maps $\{\xi, J\xi\}^{\perp}$ onto $\{\frac{d}{dt}, \mathcal{A}\}^{\perp}$. Consider the commutative diagram:

$$(\{\xi, J\xi\}^{\perp}, J) \xrightarrow{\pi_*} (\operatorname{Null} \eta, J)$$

$$\downarrow^{G_*} \qquad \qquad \downarrow^{\operatorname{dev}_*}$$

$$(\{\frac{d}{dt}, \mathcal{A}\}^{\perp}, J_{\mathcal{A}}) \xrightarrow{\operatorname{Pr}_*} (\operatorname{Null} \eta_0, J_0).$$

Here note that $J_{\mathcal{A}} = J_0$ on Null $\eta_{\mathcal{A}} = \text{Null } \eta_0$. For $X \in \{\xi, J\xi\}^{\perp}$,

$$\Pr_* G_* J(X) = \operatorname{dev}_* (J \pi_* X) = J_0 \operatorname{dev}_* \pi_* (X) = J_A \Pr_* G_* (X) = \Pr_* J_A G_* (X),$$

thus, $G_*J(X) = J_{\mathcal{A}}G_*(X)$. Hence, G is $(J, J_{\mathcal{A}})$ -biholomorphic. Moreover, as $G^*\tilde{\omega}_{\mathcal{A}} = G^*(2e^{-t}\Omega_{\mathcal{A}}) = 2e^{-t}\Omega = \bar{\Theta}$ and $\bar{g}(X,Y) = \bar{\Theta}(JX,Y)$, we obtain that $G^*\tilde{g}_{\mathcal{A}} = \bar{g}$. Therefore, (Ψ, G) induces a holomorphic isometry from (M, \hat{g}, J) onto $(\mathbb{R} \times S^{2n-1}/\Psi(\pi_1(M)), \hat{g}_{\mathcal{A}}, \hat{J}_{\mathcal{A}})$.

4.3. The Hopf manifold $\mathbb{R} \times \mathbf{S^{2n-1}}/\Psi(\pi_1(\mathbf{M}))$. We prove that $\mathbb{R} \times S^{2n-1}/\Psi(\pi_1(M))$ is a primary Hopf manifold M_{Λ} for some Λ obtained in §3. Each element of $\pi_1(M)$ is of the form $\gamma = \varphi_s \cdot q(\alpha)$ for some $s \in \mathbb{R}$ where $\nu(\gamma) = \alpha \in Q = \nu(\pi_1(M))$. By definition of Ψ , $\Psi(\gamma) = (s, \mu(\alpha))$. We show that $\Psi(\pi_1(M))$ has no torsion element. For this, if $\Psi(\gamma)$ is of finite order (say, ℓ), then $1=(0,1)=\Psi(\gamma^{\ell})=(\ell s,\mu(\alpha^{\ell}))$. Then, s=0 so that $\Psi(\gamma) = (0, \mu(\alpha))$. On the other hand, recall from (4.5) that $\mu(Q) \subset \mathrm{U}(n-1)$ up to conjugacy, and so $\mu(Q)$ has a fixed point $w_0 \in S^{2n-1}$. Since $\Psi(\pi_1(M))$ acts freely on $\mathbb{R} \times S^{2n-1}$, while $\Psi(\gamma)(t,w_0) = (t,\mu(\alpha)w_0) = (t,w_0)$, it follows that $\Psi(\gamma) = 1$. Moreover, if $\gamma_1 = \varphi_{s_1} \cdot q(\alpha_1)$, $\gamma_2 = \varphi_{s_2} \cdot q(\alpha_2)$, then $\Psi([\gamma_1, \gamma_2]) = (0, \mu([\alpha_1, \alpha_2]))$. By the same reason, $\Psi([\pi_1(M), \pi_1(M)]) = \{1\}$. Hence, $\pi_1(M)$ is a finitely generated torsionfree abelian group. If we recall from (2.24) that $1 \to \mathbb{Z} \to \pi_1(M) \xrightarrow{\nu} Q \to 1$ is the central group extension where Q is finite, then $\pi_1(M)$ itself is an infinite cyclic group. Since $\Psi(\pi_1(M)) \subset \mathbb{R} \times \mathrm{PSH}(S^{2n-1}, \eta_A, J_0)$ and the projection maps $\Psi(\pi_1(M))$ onto $\mu(Q)$ in $PSH(S^{2n-1}, \eta_A, J_0), \mu(Q)$ is a finite cyclic group. As $PSH(S^{2n-1}, \eta_A, J_0)$ has the maximal torus T^n (cf. (3.4)), we obtain that $\Psi(\pi_1(M)) \subset \mathbb{R} \times T^n$ up to conjugacy. A generator of $\Psi(\pi_1(M))$ is described as $(s,(c_1,\cdots,c_n))\in\mathbb{R}\times T^n$. Noting (4.9), let $\lambda_i=e^{-a_js}c_i$ and $\Lambda = (\lambda_1, \dots, \lambda_n)$. By Theorem 3.1 and the remark below, $\mathbb{R} \times S^{2n-1}/\Psi(\pi_1(M))$ is a primary Hopf manifold M_{Λ} of type Λ . This finishes the proof of Theorem C in the Introduction.

References

^[1] F.A. Belgun, On the metric structure of non-Kähler complex surfaces, Math. Ann., 317 (2000), 1-40.

^[2] D.E. Blair, Contact manifolds in Riemannian geometry, L.N.M. **509**, Springer Verlag 1976.

^[3] S.S. Chern and L. Greenberg, Hyperbolic Spaces, in Contribution to Analysis (A Collection of papers Dedicated to Lipman Bers, eds. L. Ahlfors and others), Academic Press, New York and London, 49-87, 1974.

- [4] P. Conner and F. Raymond, Injective operation of the toral groups, Topology, 10 (1971), 283-296.
- [5] S. Dragomir and L. Ornea, Locally conformal Kähler geometry, Progress in Math. 155, Birkhäuser 1998.
- [6] P. Gauduchon and L. Ornea, Locally conformally Kähler metrics on Hopf surfaces, Annales de l'Inst. Fourier, 48 (1998), 1107-1127.
- [7] W. Goldman, Complex hyperbolic geometry, Oxford Mathematical Monographs, Oxford Univ. Press, 1999.
- [8] Y. Kamishima, Geometric flows on compact manifolds and global rigidity, Topology, 35 (1996), 439-450
- [9] Y. Kamishima, *Holomorphic torus actions on compact locally conformal Kähler manifolds*, Compositio Math., **124** (2000), 341-349.
- [10] S. Kobayashi, Transformation groups in differential geometry, Ergebnisse der Math. 70, Springer Verlag, 1972.
- [11] S. Kobayashi and K. Nomizu, Foundationsv of differential geometry II, Interscience Publisheres, New York, 1969.
- [12] R. Kulkarni, On the principle of uniformization, J. Diff. Geom., 13 (1978), 109-138.
- [13] J. Lelong-Ferrand, Transformations conformes et quasi conformes des variétés riemanniennes compactes, Acad. Roy. Belgique Sci. Mem. Coll., 8 (1971), 1-44.
- [14] M. Obata, The conjectures on conformal transformations of Riemannian manifolds, J. Diff. Geom., 6 (1971), 247-258.
- [15] M. S. Raghunathan, Discrete subgroups of Lie groups, Springer Verlag, 1972.
- [16] F. Tricerri, Some examples of locally conformal Kähler manifolds, Rend. Sem. Mat. Univ. Politecn. Torino 40 (1982), 81-92.
- [17] I. Vaisman, Locally conformal Kähler manifolds with parallel Lee form, Rend. Mat. 12 (1979), 263-284.
- [18] I. Vaisman, Generalized Hopf manifolds, Geometriae Dedicata, 13(1982), 231-255.
- [19] S. M. Webster, On the transformation group of a real hypersurface, Trans. Amer. Math. Soc., 231 (1977), 179-190.
- [20] S. M. Webster, Pseudohermitian geometry of a real hypersurface, J. Diff. Geom., 13 (1978), 25-41.

DEPARTMENT OF MATHEMATICS, TOKYO METROPOLITAN UNIVERSITY,

MINAMI-OHSAWA 1-1, HACHIOJI, TOKYO 192-0397, JAPAN

E-mail address: kami@comp.metro-u.ac.jp

University of Bucharest, Faculty of Mathematics

14 Academiei Str., 70109 Bucharest, Romania

E-mail address: lornea@imar.ro