Ćwiczenia 15

Zadanie 2, kolokwium 2, 2021/22

W tym zadaniu rozważamy dynamiczny, różnowartościowy ciąg liczb całkowitych C. Na ciągu C wykonujemy operacje:

- Ini(C):: C := [] // inicjacja ciągu pustego tylko raz, na początku wykonywania wszystkich operacji
- Insert(C, x, i):: wstaw element x na pozycję i w ciągu C, $1 \le i \le |C| + 1$, // możesz przyjąć, że x nie ma w ciągu C
- Delete(C, i):: usuń i-ty element z ciągu $C, 1 \le i \le |C|$,
- Sorted(C, i, j):: sprawdź, czy podciąg $C_i, C_{i+1}, \ldots, C_j$ jest uporządkowany rosnąco, $1 \le i \le j \le |C|$,
- BSComp(C, i, j):: sprawdź, czy elementy C_i oraz C_j $(1 \le i \le j \le |C|)$ byłyby porównywane ze sobą w pierwszym przebiegu sortowania tablicy $a[1..|C|] = [C_1, C_2, \ldots, C_{|C|}]$ algorytmem BubbleSort, który wykonuje pętlę for $k = 1, 2, \ldots, |C| 1$ do if a[k] > a[k+1] then a[k] :=: a[k+1].

Zaproponuj strukturę danych umożliwiającą wydajne wykonywanie powyższych operacji.

Zadanie 1, kolokwium 2, 2019/20

Zaprojektuj strukturę danych, która umożliwia wydajne wykonywanie następujących operacji na dynamicznym ciągu liczbowym C:

- \bullet Init:: utwórz pusty ciąg C (operacja wykonywana tylko raz na samym początku),
- Insert(i, x):: wstaw element x jako i-ty element ciągu C (za elementem z dotychczasowej pozycji i-1 a przed dotychczasowym elementem z pozycji i), $1 \le i \le |C|+1$,
- Delete(i):: usuń element z pozycji i z ciągu $C, 1 \le i \le |C|$,
- Element(i):: podaj wartość elementu z pozycji i w ciągu $C, 1 \le i \le |C|$,
- isConstant(i, j):: sprawdź, czy w podciągu C[i..j] wszystkie elementy są takie same, $1 \le i \le j \le |C|$,
- \bullet mostCommon:: podaj wartość najczęściej pojawiającego się elementu w ciągu C (w przypadku kilku takich elementów wystarczy podać wartość tylko jednego z nich).

Zadanie 4, egzamin, 2018/19

Niech a[1..n+2] będzie tablicą liczb całkowitych z przedziału [1..n], dla pewnego dodatniego n. Grafem G_a nazywamy nieskierowany graf (V, E), w którym zbiory wierzchołków i krawędzi są zdefiniowane jako $V = \{1, 2, ..., n\}$ oraz

$$E = \{i - j : i \neq j \text{ oraz } \{a[i], a[i+1], a[i+2]\} \cap \{a[j], a[j+1], a[j+2]\} \neq \emptyset\}.$$

(a) Jaka może być maksymalna wysokość DFS-drzewa w grafie G_a o korzeniu w wierzchołku 1?

- (b) Jaka może być maksymalna wysokość BFS-drzewa w grafie G_a o korzeniu w wierzchołku 1?
- (c) Udowodnij, że graf G_a jest dwuspójny wierzchołkowo (jest spójny i nie zawiera wierzchołków rozdzielających).
- (d) Przyjmijmy, że wagą krawędzi i-j jest wartość najmniejszego elementu w zbiorze $\{a[i], a[i+1], a[i+2]\} \cap \{a[j], a[j+1], a[j+2]\}$. Zaprojektuj efektywny algorytm, który dla danej tablicy a oblicza wagę najlżejszego drzewa rozpinającego dla grafu G_a .

Uzasadnij poprawność swoich rozwiązań i przeprowadź analizę złożoności obliczeniowej zaproponowanych algorytmów.