Sistemas de apoio à decisão

CAP2-Introdução à Teoria da Decisão

Índice

- Introdução
 - Problemas de decisão
 - Teoria da decisão
 - Processos de decisão
- Preferências e funções de valor
 - Conjuntos, relações e números
 - Preferência/indiferença
 - Noção de função de valor
 - Preferências e tomada de decisão
- Representação das decisões
 - Alternativas, cenários e resultados
 - Tabelas de decisão
 - Problemas de decisão com vários estágios
- Probabilidades em teoria da decisão
 - Noções básicas
 - Abordagens e interpretações
- Teoria da utilidade
 - Funções de utilidade
 - Construção de funções de utilidade
 - Análise Bayesiana das decisões
- Exercícios
- Bibliografia

Objectivos de aprendizagem

- Conhecer os conceitos elementares sobre a teoria de decisão e processos racionais de tomada de decisão;
- Conhecer formas de representar as decisões;
- Compreender noções básicas associadas à teoria das probabilidades no contexto da análise de decisões;
- Compreender os fundamentos da teoria da utilidade;
- Identificar os princípios de base da análise bayesiana das decisões.

Introdução | Problemas de decisão

- Modelos são apenas ferramentas de apoio à tomada de decisão
 - ajudam a compreender e conhecer melhor os problemas;
 - MAS não substituem o decisor;
- Dificuldade inerente aos problemas de decisão:
 - Incerteza;
 - Objectivos conflituais;
- Exemplo | Oferta de emprego

Alternativa A: empresa em área emergente com potencial para crescimento rápido (ou bancarrota!), salário abaixo da média mas possibilidade de crescimento rápido; localizado perto da família e amigos;

Alternativa B: empresa bem estabelecida e com compromisso a longo prazo com os seus empregados; salário acima da média; promoção lenta; localizada longe dos amigos e família;

- > Qual das opções escolher? Nenhuma delas? Aceitar uma e arrepender-se possivelmente mais tarde?
- Teoria da decisão: abordagem para estruturar/analisar problemas de decisão de forma lógica;
- Decisões e resultados
 - Boas decisões não conduzem sempre aos melhores resultados;
 - Exemplo: se optar pela Alternativa A, e a empresa falir ao cabo de alguns meses, não significa necessariamente que a decisão foi má (circunstâncias fora do controlo conduziram a esse resultado);
 - Abordagem estruturada à tomada de decisão permite conhecer melhor os problemas;
 - Espera-se que na maior parte dos casos, abordagens estruturadas conduzem aos melhores resultados.

Introdução | Problemas de decisão

Características dos problemas de decisão

Alternativas

- Linha de acção que conduz à resolução de um problema;
- Um problema de decisão envolve (obviamente!) pelo menos duas alternativas;

Critérios

- Factores considerados pelo decisor como importantes para a tomada de decisão;
- As alternativas s\(\tilde{a}\) avaliadas com base no valor global que possuem nos crit\(\tilde{e}\) riesersons considerados relevantes pelo decisor;
- Exemplo | oferta de emprego: salário inicial, crescimento esperado do salário, atractividade da localização, oportunidades de promoção;

Cenários / estados da natureza

- Acontecimentos futuros fora do controlo do decisor;
- Influenciam o valor das alternativas nos diferentes critérios considerados;
- Exemplo | oferta de emprego: crescimento rápido da empresa, falência da empresa.

Introdução | Teoria da decisão

• Definições (H. Simon, 2003; S. Hansson, 1994)

Teoria da decisão

Analisa as formas através das quais as pessoas escolhem linhas de acção, ou deveriam (racionalmente) escolhêlas. Descreve e explica processos de tomada de decisão humana, e avalia a racionalidade dos processos e a qualidade dos resultados. O termo "racionalidade" refere-se à adequação das acções escolhidas relativamente às metas a que se destinam.

Análise dos comportamentos orientados ao objectivo na presença de opções.

- Área não unificada: diferentes perspectivas sobre as decisões;
- Problemas de decisão e questões teóricas envolvidas | Exemplos
 - Devo levar o guarda-chuva hoje?
 - > A decisão depende de algo que é desconhecido (irá ou não chover)
 - Procuro uma casa à venda. Devo comprar esta?
 - > Gosto desta casa, mas talvez consiga encontrar outra melhor pelo mesmo preço. Devo continuar a procurar? Até quando?
 - Irei fumar o próximo cigarro?
 - > Não há problema em fumar um cigarro, mas se repetir essa decisão mais vezes, ela pode acabar por me matar.
 - Um júri deve decidir se um suspeito é culpado ou inocente?
 - > Dois erros possíveis: culpar um inocente, ou ilibar uma pessoa culpada. Que princípios deve usar o júri se considerar que o primeiro erro é mais grave que o segundo.

Introdução | Teoria da decisão

- Teorias alternativas (S. Hansson, 1994)
 - Teoria normativa (prescritiva)
 - > Teoria sobre a forma como as decisões devem ser tomadas (para serem consideradas racionais);
 - > Sugere linhas de acção perante situações de incerteza e/ou falta de informação;
 - > Sugere formas de coordenar as decisões ao longo do tempo ou entre os elementos de um grupo;
 - > Usada após ter sido fixado o quadro ético ou político, para guiar o decisor de forma a atingir os seus objectivos

Se um militar quiser ganhar a guerra, a teoria da decisão diz-lhe como atingir esse fim; a questão sobre se deveria sequer ganhar a guerra não é considerada como uma questão a ser tratada pela teoria da decisão.

- Teoria descritiva
 - > teoria sobre a forma como as decisões são tomadas

Ênfase na teoria normativa

- Algumas versões (H. Simon, 2003)
 - Teoria clássica da decisão (maximização da utilidade esperada, probabilidades subjectivas, análise Bayesiana);
 - Programação Linear e Inteira;
 - Programação Dinâmica;
 - Teoria dos jogos.

Introdução | Processos de decisão

(S. Hansson, 1994)

- > Tomada de decisões são processos no tempo que se desenvolvem tipicamente por etapas
- > 2 abordagens / modelos: sequenciais (ordem das etapas do processo é sempre a mesma), não sequenciais
- Modelos sequenciais
 - J. Dewey, 1910 | 5 estágios
 - Identificação de uma dificuldade;
 - Definição do carácter dessa dificuldade;
 - Sugestão de possíveis soluções;
 - Avaliação da solução sugerida;
 - Observação e testes complementares que conduzem à aceitação ou rejeição da solução sugerida.
 - H. Simon, 1960 | 3 estágios
 - Encontrar ocasiões para tomar uma decisão;
 - Determinar linhas de acção;
 - Escolher uma das linhas de acção.
 - O. Brim et al., 1962 | 5 estágios
 - Identificação do problema;
 - Recolha da informação necessária;
 - Identificação das soluções possíveis;
 - Avaliação dessas soluções;
 - Selecção de uma estratégia.

fase da INTELIGÊNCIA fase do DESENHO

fase da ESCOLHA

Introdução | Processos de decisão

- Modelos não-sequenciais
 - H. Mintzberg et al., 1976 | 3 estágios (com sub-estágios)
 - Mesmas fases que o modelo de H. Simon com outras designações e novos sub-estágios
 - H. Simon | Inteligência > H. Mintzberg et al. | Identificação
 - H. Simon | Desenho > H. Mintzberg et al. | Desenvolvimento
 - H. Simon | Escolha > H. Mintzberg et al. | Selecção
 - 1. Identificação
 - identificação da situação de decisão;
 - Diagnóstico: definir, clarificar as questões relacionadas com o problema de decisão
 - 2. Desenvolvimento
 - pesquisa (de soluções já existentes);
 - desenho (novas soluções, alteração das existentes);
 - 3. Selecção
 - screen/representação limitada (quando existem demasiadas soluções existentes)
 - avaliação das escolhas
 - autorização (pela hierarquia).
 - Os estágios são visitados em ciclo em vez de o ser de forma sequencial.

Introdução | Processos de decisão

Correspondência entre os modelos

(Fonte: S. Hansson, 1994 – Diagrama 2, pg. 92)

Preferências e funções de valor Conjuntos, relações e números

Formalização das noções de conjunto, relações e números

Utilidade > Enquadrar as noções de perferência / indiferença e conceitos relacionados

- Notação standard da teoria de conjuntos
 - Letras maiúsculas para representar conjuntos de objectos, p.ex:
 - \circ A = { a, b, c, d, e};
 - A = {x | x é cidadão das Seychelles }
 - A é subcojunto de B: A ⊂ B;
 - 'a' pertence a A: $a \in A$;
 - Para todos os membros 'a' de A: $\forall a \in A$;
 - Existe um elemento 'a' de A tal que: $\exists a \in A$;
 - Não existe nenhum elemento 'a' de A tal que: ∄ a ∈ A.
- Relações binárias
 - Relação binária R em A: conjunto das afirmações do tipo a R b que se verificam entre os elementos de um conjunto A;
 - Exemplo
 - o Relações binárias: M (é maior que), C (é mais comprido que), P (é o pai de), ...;
 - o a M b significa que a é maior que b;
 - o Para o conjunto $A = \{ João, Maria, António, Penelope \}, com altura do João:1,73m, Maria:1,62m, António:1,83, Penelope:1,49m, e representado João por <math>a$, Maria por b, António por c, Penelope por d;
 - > Temos que a M b, c M a ...
 - Relação binária (num conjunto A): subconjunto do produto $A \times A$ de um conjunto A com ele próprio
 - Subconjunto de $\{(a, b) \mid a \in A, b \in B\}$, i.e. $\{(a, b) \mid a \in A, b \in B, a \in B\}$

Preferências e funções de valor

Conjuntos, relações e números

- Relações binárias
 - Representação alternativa

para o conjunto A = { João, Maria, António, Penelope }; "X" significa que a relação M se verifica

	а	b	С	d
а		Х		Х
b				Х
С	Х	Х		Х
d				

- Propriedades
 - o Transitividade: R é transitiva se $\forall a, b, c \in A$ tal que $a \in B$ R $c \in B$ R $c \in A$ tal que $a \in B$ R $c \in B$ R $c \in B$ Se verifica $a \in B$ Se verification $a \in B$ S
 - Simetria: R é simétrica se $\forall a, b \in A$ tal que a R b se verifica b R a;
 - O Asimetria: R é asimétrica se $\forall a, b \in A$, a R b e b R a não são simultaneamente verdadeiras;
 - Reflexividade: R é reflexiva se $\forall a \in A$ se verifica $a \in A$;
 - o Comparabilidade/conexão: R é comparável/conexa se $\forall a, b \in A$ se verifica $a \in B$, $b \in A$, ou ambas;
 - Transitividade negativa: R é transitiva negativa se $\forall a, b, c \in A$ tal que se $a \in b$ é falso e $b \in b$ R c também é falso, então $a \in b$ e também falso;
 - o Anti-simetria: R é anti-simétrica se $\forall a, b \in A, a$ R b e b R a implicam a = b.
- Representação numérica do padrão de valor associado a uma relação binária do tipo "'é melhor que"
 - a é melhor que b, b é melhor que c, a é melhor que c;
 - Podemos representar esse padrão de valor através de valores numéricos: p.ex. são atribuídos os valores 15, 13, e 7 a a, b e c, respectivamente;
 - α é melhor que todos os outros (= deve ser a alternativa escolhida) porque tem o maior valor associado.

Preferências e funções de valor

Preferência/indiferença

- Relações binárias do tipo "é melhor que", "é tão bom como", "é pior que" são comuns em contextos de tomada de decisão
- Noções de comparação
 - "É melhor que" representado por >
 - "É pelo menos tão bom como" representado por ≿
 - "Tem o mesmo valor que" representado por \sim (se a \sim b, então o decisor fica igualmente satisfeito se ficar com a ou com b)
 - > Lógica das preferências
 - representa a noção de preferência (forte ou estrita);
 - ❖ ≿ representa a noção de *preferência fraca;*
 - ❖ ~ representa a noção de *indiferença*;
 - ❖ Noção de preferência fraca combina noções de preferência forte e indiferença (se a ≥ b , então a > b ou a ~ b).
- Regras de consistência
 - Entre as noções de indiferença e preferência fraca
 - ❖ a é tão bom como b se e só se a é pelo menos tão bom como b, e b é pelo menos tão bom como a, i.e.

$$a \sim b \Leftrightarrow a \gtrsim b \in b \gtrsim a$$
;

- Entre as noções de preferência forte e preferência fraca
 - ❖ a é (estritamente) melhor que b se e só se a é pelo menos tão bom como b, mas b não é pelo menos tão bom como a, i.e.

 $a > b \Leftrightarrow a \gtrsim b \in b \geq a$.

Preferências e funções de valor

Preferência/indiferença

Preferências fracas | Propriedades

Assume-se que as preferências possuem as propriedades de

- Comparabilidade / conexão : $\forall a, b \in A$, temos que $a \gtrsim b$ ou $b \gtrsim a$, ou ambos;
- Transitividade: $\forall a, b, c \in A$, temos que se $a \geq b$ e $b \geq c$, então $a \geq c$.
- Regras de consistência + Propriedades das preferências fracas

conduzem às seguintes propriedades gerais relativas às noções de preferência

- ➤ é transitiva;
- > é asimétrica;
- ~ é transitiva;
- ~ é reflexiva;
- ~ é simétrica;
- $\forall a, b, c \in A$, $(a \sim b \in b > c) \Rightarrow a > c$;
- $\forall a, b, c \in A, (a > b \in b \sim c) \Rightarrow a > c;$
- $\forall a, b, c \in A, a > b \text{ ou } a \sim b \text{ ou } b > a.$
- Transitividade da noção de indiferença:
 - ! Temperatura do banho: $30^{\circ} \text{ C} \sim 30.1^{\circ} \text{ C}$; $30.1^{\circ} \text{ C} \sim 30.2^{\circ} \text{ C}$, ... $99.99^{\circ} \text{ C} \sim 100^{\circ} \text{ C}$;
 - Contorna-se considerando que o decisor tem capacidade para distinguir temperaturas que são diferentes (mesmo se por pouco)
- Comparabilidade da noção de preferência fraca: assume que o decisor tem opinião sobre tudo (!)

Preferências e funções de valor Noção de (função de) valor

- Noções de preferência | Representações numéricas
 - ≥ é comparável/conexa e transitiva, logo ≥ define uma *ordenação fraca*;

 - ~ é reflexiva, simétrica e transitiva, logo ~ corresponde a uma relação de equivalência.
 - > As ordenações definidas pelas relações de preferência são similares às ordenações numéricas obtidas através dos operadores "maior ou igual que" e "maior que";
 - As preferências podem ser expressas atribuindo um valor numérico a cada uma das alternativas através de uma função de valor v(.), tal que $\forall a, b \in A$:

$$v(a) \ge v(b) \Leftrightarrow a \gtrsim b$$

A função de valor v(.) representa ≿ no conjunto A.

- ! Valores representam a ordenação das alternativas segundo as preferências do decisor (média, adição, subtracção, ... podem não ter significado algum)
- ! Pode ser difícil perceber o significado exacto dos valores associados às alternativas
- ! Valores atribuídos às alternativas podem ser reduzidos à noção de utilidade,

... e a tomada de decisão ao exercício que consiste em maximizar a utilidade total.

Preferências e funções de valor Preferências e tomada de decisão

(S. Hansson, 1994)

- Tomada de decisão com base em preferências
 - > Regra (óbvia)

A melhor (ou uma das melhores) alternativa é aquela que é pelo menos tão boa como todas as outras. Um decisor deve escolher essa (ou uma dessas) alternativas.

- ➤ Perante um conjunto de preferências definido de forma racional, é sempre possível identificar essa alternativa.

 racional=garantia de transitividade; adicionalmente, assume-se a comparabilidade da relação de preferência
- Tomada de decisão com base em utilidades
 - > Regra

Escolher a alternativa que maximiza a utilidade.

Alternativas, cenários e resultados

(S. Hansson, 1994)

- Alternativas = linhas de acção (opções) ao dispor do decisor no momento da tomada de decisão;
- Características das alternativas
 - Conjunto aberto de alternativas: novas opções podem ser descobertas, inventadas, ... e consideradas no momento da tomada de decisão;
 - Conjunto fechado de alternativas: o número de alternativas é limitado e conhecido a priori;
 - Duas categorias
 - Conjunto é fechado por iniciativa do decisor;
 - Conjunto é fechado Independentemente da vontade do decisor;
 - Mutuamente exclusivas: não podem ser escolhidas/executadas duas alternativas diferentes de forma simultânea
- Assunções típicas em teoria da decisão
 - Conjunto fechado de alternativas mutuamente exclusivas
- Cenários = conjunto de factores fora do controlo do decisor (tempo, procura de um produto, ...);
- Resultados da tomada de decisão: efeito da combinação entre uma alternativa e um cenário possível Exemplos
 - Chove e não levo guarda-chuva > molho-me;
 - Produzo muito e o meu produto tem baixa procura > acumulo stock.

Tabelas de decisão

Problemas de decisão vs cenários

Os problemas de decisão são definidos em função do conhecimento que o decisor tem do cenário que irá ocorrer

- Problemas de decisão sob condições de certeza
 - > O decisor sabe de antemão o cenário que irá acontecer;
- Problemas de decisão sob condições de risco
 - O decisor não conhece a priori o cenário que irá acontecer, mas consegue quantificar a sua incerteza através de uma distribuição de probabilidades;
- Problemas de decisão sob condições de incerteza estrita (ignorância)
 - > O decisor não conhece a priori o cenário que irá acontecer, e não consegue também quantificar a sua incerteza.
- Representação de um problema de decisão sob condições de certeza, risco ou ignorância
 Tabelas de decisão | Forma geral : n cenários; m alternativas

Resultados		Cenários			
		S_1	S_2		S_n
	a_1	<i>X</i> ₁₁	X ₁₂		<i>X</i> _{1n}
	a_2	<i>X</i> ₂₁	X ₂₂		X_{2n}
Acções					
	a_m	X_{m1}	X_{m2}		X_{mn}

Tabelas de decisão

Representação de um problema de decisão sob condições de certeza, risco ou ignorância
 Tabelas de decisão | Forma geral : n cenários; m alternativas

 x_{ij} representa o resultado da acção (alternativa) a_i sob o cenário S_j ; x_{ij} pode ser substituído pelo seu valor dado por uma função v(.), i.e. x_{ij} é substituído por $v(x_{ij})$

Problema de decisão sob condições de certeza

Tabela de decisão (n=1)

Resultados		Cenário	
		S ₁	
	a_1	<i>x</i> ₁₁	
Acções	a_2	X ₂₁	
	a_m	X_{m1}	

Problema de decisão sob condições de risco
 Tabela de decisão (com probabilidades de ocorrência do cenário P(S_i))

Resultados —		Cenários				
		S_1	S_2	•••	S_n	
	a_1	<i>x</i> ₁₁	<i>x</i> ₁₂		X_{1n}	
	a_2	X ₂₁	X ₂₂		X_{2n}	
Acções						
	a_m	<i>X</i> _{m1}	<i>X</i> _{<i>m</i>2}		X _{mn}	
Probabilidades dos estados						
		$P(S_1)$	$P(S_2)$		$P(S_n)$	

Problemas de decisão com vários estágios

- Tabelas de decisão são representações estáticas dos problemas de decisão;
- Representação de problemas de decisão com vários estágios | Árvores de decisão

Elementos

- Pontos ou nós de decisão: representados através de quadrados com ramificações que representam as acções (alternativas);
- Nós de acaso:
 - Colocados no final dos ramos que representam as acções ;
 - Com uma ramificação por cada cenário possível;
 - No final dessas ramificações, é colocada a consequência associada, ou o valor correspondente.

Problemas de decisão com vários estágios

Representação de problemas de decisão com vários estágios | Árvores de decisão

Fig. 7.2 The diesel turbocharger problem. Note that the decision whether to build a large factory only appears in the relevant branch, namely that stemming from the decision to authorise development and its subsequent success.

Noções básicas

(S. French, 1993)

Evento aleatório: colecção de cenários/acontecimentos futuros possíveis;

Exemplo

O evento "o dado cai com a uma face par para cima" é a colecção dos 3 cenários possíveis seguintes:

- i. O dado é lançado, com a face n.º 2 para cima;
- ii. O dado é lançado, com a face n.º 4 para cima;
- iii. O dado é lançado, com a face n.º 6 para cima.

O evento "o dado cai com a uma face par para cima" ocorre se um dos acontecimentos acima ocorrer.

- A e B são dois eventos aleatórios
 - $A \cup B$: conjunto dos acontecimentos que pertencem a A ou a B; $A \cup B = \{a | a \in A \text{ ou } a \in B\}$
 - $-A \cap B$: conjunto dos acontecimentos que pertencem a A e a B;
 - \bar{A} : conjunto dos acontecimentos que não pertencem a A;
 - Para sequências de eventos
 - $\bigcup_{i=1}^{N} A_i = \{a | a \in A_i \text{ para pelo menos um } A_i\};$
 - $\bigcap_{j=1}^{N} A_j = \{a | a \in A_j \text{ para todos os } A_j, j = 1, 2, ..., N\}.$

 $A \cap B = \{a | a \in A \ e \ a \in B\}$

 $\bar{A} = \{a | a \notin A \}$

Noções básicas

Espaço de amostragem Θ

- Conjunto de todos os acontecimentos possíveis;
- Qualquer evento é subconjunto de Θ ;
- Θ irá ocorrer garantidamente.

Leis de Kolmogorov

- P(A) ≥ 0, \forall evento A;
- $P(\Theta) = 1;$
- Se $A \cap B = \phi$, $p(A \cup B) = p(A) + p(B)$.

Probabilidades condicionais

- p(B|A): probabilidade do evento B ocorrer dado que o o evento A ocorreu;
- $p(B|A) = p(B \cap A)/P(A).$

Probabilidades condicionais | Teorema de Bayes

Dada uma partição A_1 , A_2 , A_3 ,..., A_N de Θ , ie $\Theta = \bigcup_{j=1}^N A_j$ e $A_j \cap A_l = \emptyset$ para $j \neq l$, e um evento B tal que P(B) > 0, temos que

$$p(A_l|B) = p(B|A_l)p(A_l) / \sum_{j=1}^{N} p(B|A_j)p(A_j).$$

Noções básicas

Probabilidades condicionais | Exemplo

Uma empresa quer determinar o tamanho que deve ter uma futura fábrica sua para produzir um novo modelo de carro. O custo de construir uma fábrica grande é de 25M€, e o custo para uma fábrica pequena é de 15M€. A empresa estima que a probabilidade de a procura do novo carro ser alta é de 70%; a probabilidade da procura ser baixa foi estimada em 30%. Além disso, a empresa conduziu um inquérito para avaliar a atitude dos consumidores perante o novo carro. A avaliação resultou em duas medidas: favorável e não favorável (ao novo modelo de carro).

Conjunto de eventos

1º grupo: tipo de procura H : procura elevada; L : procura baixa.

2º grupo: resposta ao inquérito

F : resposta favorável; U : resposta não favorável.

Com base nos dados da tabela

 $p(F \cap H)=0.6$; $p(F \cap L)=0.067$; $p(U \cap H)=0.1$; $p(U \cap L)=0.233$ >>> p(H)=0.7; p(L)=0.3; p(F)=0.667; p(U)=0.333

Dado que $p(B|A) = p(B \cap A)/p(A)$ $p(H|F) = p(H \cap F)/p(F) = 0.6/0.667 = 0.9$ $p(L|F) = p(L \cap F)/p(F) = 0.067/0.667 = 0.1$

(since sinage	,	9 , , , ,	,	
	Joint Probabilities			
	High Demand	Low Demand	Total	
Favorable Response	0.600	0.067	0.667	
Unfavorable Response	0.100	0.233	0.333	
Total	0.700	0.300		
	Conditional Probabilities			
		rvey Response		
	High Demand	Low Demand		
Favorable Response	0.900	0.100		
Unfavorable Response	0.300	0.700		
	Conditional	Probabilities		
		Demand Level		
	High Demand	Low Demand		
Favorable Response	0.857	0.223		
Unfavorable Response	0,143	0.777		
-				

(Fonte: C. Ragsdale, 2004 – Fig. 15.34, pg. 795)

Noções básicas

Teorema de Bayes | Exemplo

Numa determinada população, 50% dos gémeos são gémeos verdadeiros, e 50% são gémeos falsos. No grupo dos gémeos verdadeiros, 50% são pares de meninos, sendo que os restantes 50% correspondem a pares de meninas. No grupo de gémeos falsos, 25% são pares de meninos, 25% são pares de meninas, e 50% são pares menino-menina. Suponha que nos é dito que um determinado grupo de gémeos é formado apenas por pares de meninos, qual é a probabilidade desse grupo ser um grupo de gémeos verdadeiros.

Conjunto de eventos

 A_1 : os gémeos são verdadeiros;

 A_2 : os gémeos são falsos;

B: os gémeos são pares de meninos;

M : os gémeos são pares menino-menina;

G: os gémeos são pares de meninas;

A partir das proporções, derivam-se as probabilidades associadas à ocorrência dos eventos:

 $p(A_1) = 0.5;$

 $p(B|A_1) = 0.5$; $p(M|A_1) = 0$; $p(G|A_1) = 0.5$;

 $p(A_2) = 0.5;$

 $p(B|A_2) = 0.25$; $p(M|A_2) = 0.5$; $p(G|A_2) = 0.25$

Queremos calcular $P(A_1|B)$

 \triangleright A_1 e A_2 formam uma partição de Θ

> Pelo teorema de Bayes:

 $p(A_1|B) = p(B|A_1) P(A_1) / (p(B|A_1) P(A_1) + p(B|A_2) P(A_2)) = 0.5 \times 0.5 / (0.5 \times 0.5 + 0.25 \times 0.5) = 0.67$

Probabilidades em teoria da decisão Abordagens e interpretações

- Abordagem baseada no cálculo de frequências (interpretação objectiva)
 - Frequência relativa com que um sistema é observado no longo prazo num determinado estado;
 - Assume que é possível repetir as observações do sistema um número infinito de vezes em condições aproximadamente similares.
- Probabilidade / interpretação subjectiva
 - O valor da probabilidade depende do observador;
 - Representa o grau de confiança que o observador tem que o sistema irá adoptar um estado em particular;
 - A probabilidade é uma avaliação pessoal, e por isso não objectiva.
- Fiabilidade das estimações probabilísticas
 - Directamente relacionada com a presença ou ausência de diferença sistemáticas entre as estimativas objectivas e subjectivas das probabilidades.

Teoria da utilidade Funções de utilidade

- Baseada na noção de função de utilidade e na maximização da utilidade esperada;
- Funções de utilidade são mais representativas do que as funções de valor
 - > para cada decisor individual, existe uma função de utilidade que representa as suas preferências
- Exemplo | Decisões baseadas no valor monetário (esperado)

Possibilidade de aquisição de uma empresa com dividendos anuais potenciais expressos em função da conjuntura económica (cenários) representados na tabela de decisão seguinte (€):

Dogultos	laa	Cenários		
Resultados		S_1	S_2	
F	Α	150000	-30000	
Empresa	В	70000	40000	
Probabilidade		0.5	0.5	

O valor monetário esperado no caso de ser comprada a empresa A é de 60000€; no caso da empresa B, é de 55000€.

- >> Se optarmos pela maximização do valor monetário esperado, a decisão será adquirir a empresa A
- ... contudo, não é claro que esta seja efectivamente a melhor opção (um decisor averso ao risco, p.ex., optaria mais facilmente pela aquisição empresa B)

Conclusão: o valor monetário esperado não traduz necessariamente a atractividade das alternativas ao dispor de um decisor.

Funções de utilidade

- A utilidade mede a atractividade das alternativas para um dado decisor;
- A função de utilidade que se aplica depende da atitude do decisor perante o risco e o valor dos ganhos
 - Decisor averso ao risco: utilidade marginal diminui em função do valor dos ganhos;
 - Decisor neutro: toma as suas decisões maximizando o valor monetário esperado;
 - Decisor com propensão para o risco: utilidade marginal aumenta ao mesmo tempo que aumenta o valor dos ganhos;

(Fonte: C. Ragsdale, 2004 - Fig. 15.35, pg. 798)

Construção de funções de utilidade

- Uma abordagem
 - Ao ganho/resultado mais baixo (pior) é atribuída a utilidade 0;
 - Ao ganho/resultado mais alto (melhor) é atribuída a utilidade 1;
 - Aos ganhos/resultados intermédios são atribuídas utilidades entre 0 e 1.

OU o valor mais baixo de uma escala arbitrária

OU o valor mais alto de uma escala arbitrária

OU um valor entre o mais baixo e o mais alto da escala arbitrária escolhida acima

- Exemplo | Aquisição de uma empresa (slides anteriores)
 - A. u(-30000)=0; u(150000)=1;
 - B. Determinar (p.ex.) a probabilidade associada ao ganho de 70000€ (Empresa A, cenário S₁)
 - a) Determinar a probabilidade p^* para a qual o decisor é indiferente à escolha da alternativa 1 ou 2 (seguintes):
 - Alternativa 1: ganhar 70000€ (garantidamente);
 - Alternativa 2: ganhar 150000€ com probabilidade p e perder 30000€ com probabilidade 1-p.
 - > Para p=0 e p=1, a decisão é trivial!
 - > À medida que p aumenta, o decisor tende a inclinar-se para a alternativa 2; o "ponto de viragem" p^* corresponde à probabilidade para qual ele não terá preferência por nenhuma das alternativas
 - b) Vamos assumir que *p*=0.8;* para essa probabilidade, a utilidade associada ao ganho de 70000€ é igual à utilidade esperada associada à alternativa 2:

 $u(70000)=u(150000)p^*+u(-30000)(1-p^*)=1p^*+0p^*=p^*=0.8$

Construção de funções de utilidade

- Exemplo | Aquisição de uma empresa (slides anteriores)
 - u(40000)? (Alternativa A, cenário S_2)
 - > Como o valor do ganho diminui, é natural que a probabilidade p^* seja mais baixa neste caso.
 - > Vamos assumir que *p*=0.65: u(40000)=u(150000)p*+u(-30000)(1-p*)=1p*+0p*=p*=0.65*
 - Função de utilidade para este exemplo >>>
 - Perfil do decisor nestas circunstâncias?
- Quando as utilidades são expressas numa escala de 0 a 1, o valor da probabilidade p* para a qual o decisor é indiferente às alternativas 1 e 2 corresponde sempre à utilidade que o decisor atribui à alternativa 1.

(Fonte: C. Ragsdale, 2004 – Fig. 15.36, pg. 801)

Construção de funções de utilidade

- Exemplo | Aquisição de uma empresa (slides anteriores)
 - Decisão baseada na maximização da utilidade esperada

Resultados		Cenários			_
		S_1	S_2	Utilidade esperada	
_ A	Α	1	0	0.5	
Empresa	В	0.8	0.65	0.725	<<<
Probabilidade		0.5	0.5		

- > Decisão: adquirir a empresa B, apesar desta ter o valor monetário esperado mais baixo.
- Na prática, estimar os valores das probabilidades p* é difícil
 - ... é possível recorrer a aproximações;
 - > no caso de um decisor averso ao risco, a função de utilidade exponencial pode ser usada:

$$u(x) = 1 - e^{-x/R}$$

em que R é um parâmetro que mede a tolerância ao risco do decisor.

Construção de funções de utilidade

• Função de utilidade exponencial: $u(x) = 1 - e^{-x/R}$

Análise Bayesiana das decisões

(S. Hansson, 1994)

Princípios

- O conjunto das probabilidades subjectivas definidas pelo decisor é coerente
 - = obedece às leis matemáticas das probabilidades;
 - > p. ex., se o decisor atribui uma probabilidade de 0.5 à possibilidade de chover amanhã, não pode atribuir uma probabilidade de 0.6 de nevar no mesmo local;
- O conjunto das probabilidades subjectivas definido pelo decisor é completo
 - = O decisor atribui uma probabilidade a qualquer um dos eventos possíveis;
- Quando é sujeito a novas evidências, o decisor actualiza as probabilidades de acordo com as probabilidades
 condicionais que ele próprio determinou
 - = Aplica-se a regra $p(B|A) = p(B \cap A)/p(A)$;
 - > p. ex., se A designar o evento "chove em Braga depois de amanhã" e B "chove em Braga amanhã", o facto de saber que B é verdadeiro leva a que se estime novamente o valor de p(A) para que este coincida com a estimação feita anteriormente para p(A|B);
- O decisor escolhe a alternativa que maximiza a utilidade esperada.

Exercícios Probabilidades

1. Três reclusos, o Álvaro, o Beto e o Carlitos, estão confinados em regime de isolamento. O Álvaro sabe que dois vão morrer, e um será libertado, mas não sabe qual deles será libertado. O Álvaro conclui assim que tem 1/3 de hipóteses de sobreviver. Preocupado com o seu destino, o Álvaro pergunta ao guarda o que lhe irá acontecer, mas o guarda não lhe responde. Ansioso em conseguir alguma informação do guarda, o Álvaro reformula a sua pergunta da seguinte forma:

"Eu sei que dois vão morrer, logo ou o Beto ou o Carlitos irá morrer, ou ambos. Se me disseres qual dos dois irá morrer, não me dirás nada sobre o meu destino, e como não posso comunicar com eles, nenhum dos outros saberá o que lhe irá acontecer. Por isso, diz-me qual dos dois irá morrer."

O guarda aceita o argumento do Álvaro, e diz-lhe que o Carlitos irá morrer. O Álvaro conclui agora que ou ele ou o Beto irá morrer, e acredita finalmente que tem 1/2 de hipóteses de sobreviver. Estará o raciocíno do Álvaro correcto?

Exercícios

Preferências

2. Está-se a preparar para pintar a sala da casa sua tia Maria Gisela que, muito indecisa, é totalmente incapaz de lhe dizer qual é a cor que deve usar. Apesar de indecisa, a sua tia consegue dizer-lhe de forma consistente qual é a cor que prefere quando lhe são apresentadas duas cores ao mesmo tempo. O leque das escolhas é limitado às seguintes cores:

Lilas (L); Azul (B); Castanho(Br); Creme (M); Branco (W); Verde (G) e Rosa (P).

No total, fez 7 perguntas à sua tia e ficou a conhecer as seguintes preferências:

$$M > P$$
; $M > G$; $P > W$; $B > M$; $G > W$; $Br > L$; $L > M$.

Qual é a próxima e última pergunta que deve colocar à sua tia?

Qual é o número mínimo de perguntas que lhe poderia ter colocado?

É capaz de definir uma estratégia que resulte no menor número de perguntas?

Pistas:

- > Represente graficamente a ordem definida pela lista de preferências da sua tia;
- > Consistente = transitividade;

Exercícios

Teoria da utilidade

3. O pato Donald convidou os seus sobrinhos para jantar, mas sabe que nem todos irão aparecer. Ele acha que as probabilidades de virem 0, 1, 2 ou 3 dos seus sobrinhos é igual a 1/8, 2/8, 2/8 e 3/8, respectivamente. O Donald quer decidir quantas refeições irá preparar. As preferências do Donald podem ser representadas através da função de utilidade seguinte:

$$u(x, y, z) = x - 2y - z^2$$

Em que x representa o número de sobrinhos que jantaram, y representa o número de sobrinhos que não jantaram porque ele não preparou refeições suficientes, e z representa o número de refeições desperdiçadas porque preparou refeições a mais.

As refeições não podem ser partilhadas, e cada um dos sobrinhos só pode comer uma refeição.

Determine o número de refeições que o Donald deve cozinhar.

Pistas:

- > Comece por representar a tabela de decisão associada a este problema;
- > Converta os resultados que estão na tabela de decisão em valores de utilidade.

Exercícios

Teoria da utilidade

4. Um investidor tem 1000€ para aplicar em dois produtos A e B. Se investir m € no produto A, ele irá investir os (1000-m) € restantes no produto B. Um investimento no produto A tem uma probabilidade de 0.7 de duplicar o seu valor, e uma probabilidade de 0.3 de resultar numa perda total do capital investido. Um investimento no produto B tem uma probabilidade de 0.6 de duplicar o seu valor, e uma probabilidade de 0.4 de resultar numa perda total do capital investido. As probabilidades associadas ao produto A são independentes das probabilidades associadas ao produto B.

Determine o valor óptimo de m, se a função de utilidade do decisor perante um ganho ou uma perda de $x \in f$ for a seguinte: $u(x) = log_e(x + 3000)$.

Qual seria o valor óptimo de m, se a função de utilidade do decisor fosse esta: $u(x) = (x + 3000)^2$.

Bibliografia

- S. French, "Decision Theory", Ellis Horwood Limited, 1993.
- S. Hansson, "Decision Theory A Brief Introduction", Royal Institute of Technology, Estocolmo, 1994, revisto em 2005.
- C. Ragsdale, "Spreadsheet Modeling and Decision Analysis", 4th edition, Thomson South-Western, 2004.
- H. Simon, "Decision Theory", in Encyclopedia of Information Systems, Volume 1, pp. 567-581, Elsevier Science, 2003.
- T. Stewart, "Decision-Making Approaches", in Encyclopedia of Information Systems, Volume 1, pp. 535-549, Elsevier Science, 2003.