AXDA: efficient sampling through variable splitting inspired bayesian hierarchical models

P. Chainais

with Maxime Vono & Nicolas Dobigeon

March 12th 2019

Flight schedule

- Motivations
- 2 Splitted Gibbs sampling (SP)
- 3 Splitted & Augmented Gibbs sampling (SPA)
- 4 Asymptotically exact data augmentation: AXDA

Outline

- Motivations
- 2 Splitted Gibbs sampling (SP)
- ③ Splitted & Augmented Gibbs sampling (SPA)
- 4 Asymptotically exact data augmentation: AXDA

Image inpainting

Image inpainting

I have a dream...

- ▶ solve complex ill-posed inverse problems
- **big** data in **large** dimensions
- excellent performances
- ▶ **fast** inference algorithms
- credibility intervals

with maybe some additional options such as:

- parallel distributed computing
- privacy preserving

I have a dream...

- solve complex ill-posed inverse problems
- ▶ **big** data in **large** dimensions
- excellent performances
- ▶ **fast** inference algorithms
- credibility intervals

with maybe some additional options such as:

- parallel distributed computing
- privacy preserving
- \implies Bayesian approach + MCMC method!

The optimization-based approach

Inverse problems & optimization

- = define a **cost function** : $f(\mathbf{x}) = f_1(\mathbf{x}|\mathbf{y}) + f_2(\mathbf{x})$ where f_2 is typically
 - convex (or not)
 - ightharpoonup not differentiable \Rightarrow proximal operators
 - ▶ a sum of various penalties

Solution: proximal operators

The optimization-based approach

Inverse problems & optimization

= define a **cost function**: $f(\mathbf{x}) = f_1(\mathbf{x}|\mathbf{y}) + f_2(\mathbf{x})$ where f_2 is typically

- ► convex (or not)
- ightharpoonup not differentiable \Rightarrow proximal operators
- a sum of various penalties

Solution: proximal operators and splitting techniques

$$\underset{\mathbf{x}}{\operatorname{arg\,min}} f_1(\mathbf{x}) + f_2(\mathbf{z}) \text{ such that } \mathbf{x} = \mathbf{z}$$

maybe relaxed to (simplified version of **ADMM**)

$$\underset{\mathbf{x}}{\arg\min} f_1(\mathbf{x}) + f_2(\mathbf{z}) + \frac{\alpha}{2} \|\mathbf{x} - \mathbf{z}\|_2^2 + \mathbf{u}^T(\mathbf{x} - \mathbf{z})$$

The Bayesian approach

Inverse problems & Bayes

posterior \propto likelihood $(f1) \times \text{prior}(f2)$

= define a **posterior distribution** $p(\mathbf{x}|\mathbf{y}) = p_1(\mathbf{x}|\mathbf{y}) \cdot p_2(\mathbf{x})$

where p_2 is typically

- ▶ log-concave (or not) \leftrightarrow f_2 convex
- ightharpoonup conjugate \Rightarrow easy sampling/inference
- ▶ a combination of various prior

Solution: MCMC methods and Gibbs sampling

$$x_i \sim p(x_i|x_{\setminus i}) \quad \forall 1 \le i \le d$$

The Bayesian approach

Inverse problems & Bayes

posterior \propto likelihood $(f1) \times \text{prior}(f2)$

= define a **posterior distribution** $p(\mathbf{x}|\mathbf{y}) = p_1(\mathbf{x}|\mathbf{y}) \cdot p_2(\mathbf{x})$

where p_2 is typically

- ▶ log-concave (or not) \leftrightarrow f_2 convex
- ightharpoonup conjugate \Rightarrow easy sampling/inference
- a combination of various prior

Solution: MCMC methods and Gibbs sampling

$$x_i \sim p(x_i|x_{\setminus i}) \quad \forall 1 \le i \le d$$

Can we adapt splitting and augmentation from optimization?

$$\pi_{\rho}(\mathbf{x}, \mathbf{z}, \mathbf{u}) \propto \exp \left[-f_1(\mathbf{x}) - f_2(\mathbf{z}) - \frac{1}{2\rho^2} \|\mathbf{u} - \mathbf{x} + \mathbf{z}\|_2^2 - \frac{1}{2\alpha^2} \|\mathbf{u}\|^2 \right]$$

The Bayesian approach

Inverse problems & Bayes

posterior \propto likelihood $(f1) \times \text{prior}(f2)$

= define a **posterior distribution** $p(\mathbf{x}|\mathbf{y}) = p_1(\mathbf{x}|\mathbf{y}) \cdot p_2(\mathbf{x})$

Computational motivations: difficult sampling

- ▶ non-conjugate priors [conj. priors \Rightarrow easy inference]
- ▶ rich models: complicated prior distributions
- ▶ big datasets: expensive likelihood computation

Strategy: DIVIDE-To-Conquer

 \implies splitting (SP) and augmentation (SPA)

Outline

- Motivations
- 2 Splitted Gibbs sampling (SP)
- 3 Splitted & Augmented Gibbs sampling (SPA)
- 4 Asymptotically exact data augmentation: AXDA

Splitted Gibbs sampling (SP)

$$\pi(\mathbf{x}) \propto \exp\left[-f_1(\mathbf{x}) - f_2(\mathbf{x})\right]$$

$$\downarrow \downarrow$$

$$\pi_{\rho}(\mathbf{x}, \mathbf{z}) \propto \exp\left[-f_1(\mathbf{x}) - f_2(\mathbf{z}) - \frac{1}{2\rho^2} \|\mathbf{x} - \mathbf{z}\|_2^2\right]$$

Splitted Gibbs sampling (SP)

$$\pi(\mathbf{x}) \propto \exp\left[-f_1(\mathbf{x}) - f_2(\mathbf{x})\right]$$

$$\downarrow$$

$$\pi_{\rho}(\mathbf{x}, \mathbf{z}) \propto \exp\left[-f_1(\mathbf{x}) - f_2(\mathbf{z}) - \phi_{\rho}(\mathbf{x}, \mathbf{z})\right]$$

Splitted Gibbs sampling (SP): Theorem 1

Consider the marginal of **x** under π_{ρ} :

$$p_{\rho}(\mathbf{x}) = \int_{\mathbb{R}^d} \pi_{\rho}(\mathbf{x}, \mathbf{z}) d\mathbf{z} \propto \int_{\mathbb{R}^d} \exp\left[-f_1(\mathbf{x}) - f_2(\mathbf{z}) - \phi_{\rho}(\mathbf{x}, \mathbf{z})\right] d\mathbf{z}.$$

Theorem

Assume that in the limiting case $\rho \to 0$, ϕ_{ρ} is such that

$$\frac{\exp\left(-\phi_{\rho}(\mathbf{x}, \mathbf{z})\right)}{\int_{\mathbb{R}^d} \exp\left(-\phi_{\rho}(\mathbf{x}, \mathbf{z})\right) d\mathbf{x}} \xrightarrow{\rho \to 0} \delta_{\mathbf{x}}(\mathbf{z})$$

Then p_{ρ} coincides with π when $\rho \to 0$, that is

$$\|p_{\rho} - \pi\|_{\text{TV}} \xrightarrow{\rho \to 0} 0$$

Splitted Gibbs sampling (SP): marginal distributions

Full conditional distributions under the split distribution π_{ρ} :

$$\pi_{\rho}(\mathbf{x}|\mathbf{z}) \propto \exp\left(-f_1(\mathbf{x}) - \phi_{\rho}(\mathbf{x}, \mathbf{z})\right)$$

$$\pi_{\rho}(\mathbf{z}|\mathbf{x}) \propto \exp\left(-f_2(\mathbf{z}) - \phi_{\rho}(\mathbf{x}, \mathbf{z})\right).$$

Note that f_1 and f_2 are now separated in 2 distinct distributions

Splitted Gibbs sampling (SP): marginal distributions

Full conditional distributions under the split distribution π_{ρ} :

$$\pi_{\rho}(\mathbf{x}|\mathbf{z}) \propto \exp\left(-f_1(\mathbf{x}) - \frac{1}{2\rho^2} \|\mathbf{x} - \mathbf{z}\|_2^2\right)$$

$$\pi_{\rho}(\mathbf{z}|\mathbf{x}) \propto \exp\left(-f_2(\mathbf{z}) - \frac{1}{2\rho^2} \|\mathbf{x} - \mathbf{z}\|_2^2\right).$$

Note that f_1 and f_2 are now separated in 2 distinct distributions

State of the art sampling methods:

- ► P-MYULA = proximal MCMC, (Pereyra 2016; Durmus et al. 2018)
- ▶ Fourier or Aux-V1 or E-PO for Gaussian variables
- **...**

Splitted Gibbs sampling (SP): inverse problems

Linear Gaussian inverse problems

$$\mathbf{y} = \mathbf{P}\mathbf{x} + \mathbf{n},$$

where $\mathbf{P} = \text{damaging operator and } \mathbf{n} \sim \mathcal{N}\left(\mathbf{0}_d, \sigma^2 \mathbf{I}_d\right) = \text{noise.}$

$$\begin{cases} f_1(\mathbf{x}) &= \frac{1}{2\sigma^2} \|\mathbf{y} - \mathbf{P}\mathbf{x}\|_2^2 & \forall \mathbf{x} \in \mathbb{R}^d, \\ f_2(\mathbf{x}) &= \tau \psi(\mathbf{x}), \quad \tau > 0. \end{cases}$$

Then the SP conditional distributions are:

$$\pi_{\rho}(\mathbf{x}|\mathbf{z}) = \mathcal{N}\left(\boldsymbol{\mu}_{\mathbf{x}}, \mathbf{Q_{\mathbf{x}}}^{-1}\right)$$
$$\pi_{\rho}(\mathbf{z}|\mathbf{x}) \propto \exp\left(-\tau \boldsymbol{\psi}(\mathbf{z}) - \frac{1}{2\rho^{2}} \|\mathbf{z} - \mathbf{x}\|_{2}^{2}\right),$$

Splitted Gibbs sampling (SP): efficient sampling

Linear Gaussian inverse problems

$$\pi_{\rho}(\mathbf{x}|\mathbf{z}) = \mathcal{N}\left(\boldsymbol{\mu}_{\mathbf{x}}, \mathbf{Q_{\mathbf{x}}}^{-1}\right)$$

$$\pi_{\rho}(\mathbf{z}|\mathbf{x}) \propto \exp\left(-\tau \boldsymbol{\psi}(\mathbf{z}) - \frac{1}{2\rho^{2}} \|\mathbf{z} - \mathbf{x}\|_{2}^{2}\right),$$

Examples:

► Convex non-smooth

$$\psi(\mathbf{x}) = \mathbf{TV}, \, \ell_1 \text{ sparsity...} \Rightarrow \mathbf{proximal \ MCMC}$$

► Tikhonov regularization

$$\psi(\mathbf{z}) = \|\mathbf{Q}\mathbf{z}\|_2^2 \Rightarrow \mathbf{Gaussian \ variables}$$

(e.g. \mathbf{P} or \mathbf{Q} diagonalizable in Fourier \rightarrow E-PO)

Linear Gaussian inverse problems

Posterior distribution

$$p(\mathbf{x}|\mathbf{y}) \propto \exp\left[-\frac{1}{2\sigma^2} \|\mathbf{P}\mathbf{x} - \mathbf{y}\|_2^2 - \beta \text{TV}(\mathbf{x})\right]$$

where P = damaging operator (blur, binary mask...) and

$$\mathrm{TV}(\mathbf{x}) = \sum_{1 \le i, j \le N} \left\| (\nabla \mathbf{x})_{i, j} \right\|_{2}$$

Direct sampling is challenging

- generally high dimension of the image,
- non-conjugacy of the TV-based prior,
- \bullet non-differentiability of $g \neq \text{Hamiltonian Monte Carlo algorithms}$

Linear Gaussian inverse problems

Linear Gaussian inverse problems

Linear Gaussian inverse problems

Linear Gaussian inverse problems

	SALSA	FISTA	SGS	P-MYULA
time (s)	1	10	470	3600
time (\times var. split.)	1	10	1	7.7
nb. iterations	22	214	$\sim 10^4$	10^{5}
SNR (dB)	17.87	17.86	18.36	17.97

 $Rk: \rho^2 = 9$

Linear Gaussian inverse problems

Short auto-correlation of the Markov chain

Linear Gaussian inverse problems

 $\rho = \text{comput. time compromise/quality}$

Outline

- Motivations
- 2 Splitted Gibbs sampling (SP)
- 3 Splitted & Augmented Gibbs sampling (SPA)
- Asymptotically exact data augmentation: AXDA

Splitted & Augmented Gibbs sampling (SPA)

Motivation for augmentation:

better mixing properties of the Markov chain

$$\pi_{\rho,\alpha} \triangleq p(\mathbf{x}, \mathbf{z}, \mathbf{u}; \rho, \alpha)$$

$$\propto \exp\left[-f(\mathbf{x}) - g(\mathbf{z})\right]$$

$$\times \exp\left[-\phi_1(\mathbf{x}, \mathbf{z} - \mathbf{u}; \rho) - \phi_2(\mathbf{u}; \alpha)\right]$$

Assumption 2

 ϕ_2 and ϕ_1 are such that $\forall \mathbf{x}, \mathbf{z} \in \mathbb{R}^d$,

$$\int_{\mathbb{R}^d} \exp\left[-\phi_1(\mathbf{x}, \mathbf{z} - \mathbf{u}; \rho) - \phi_2(\mathbf{u}; \alpha)\right] d\mathbf{u}$$

$$\propto \exp\left[-\phi_1(\mathbf{x}, \mathbf{z}; \eta(\rho, \alpha))\right]. \tag{1}$$

Splitted & Augmented Gibbs sampling (SPA)

$$\pi_{\rho,\alpha} \triangleq p(\mathbf{x}, \mathbf{z}, \mathbf{u}; \rho, \alpha)$$

$$\propto \exp\left[-f(\mathbf{x}) - g(\mathbf{z})\right]$$

$$\times \exp\left[-\phi_1(\mathbf{x}, \mathbf{z} - \mathbf{u}; \rho) - \phi_2(\mathbf{u}; \alpha)\right]$$

Splitted & Augmented Gibbs sampling (SPA) SPA Gibbs sampler

The conditional split-augmented distributions are:

$$p(\mathbf{x}|\mathbf{z}, \mathbf{u}; \rho) \propto \exp\left[-f(\mathbf{x}) - \phi_1(\mathbf{x}, \mathbf{z} - \mathbf{u}; \rho)\right]$$

$$p(\mathbf{z}|\mathbf{x}, \mathbf{u}; \rho) \propto \exp\left[-g(\mathbf{z}) - \phi_1(\mathbf{x}, \mathbf{z} - \mathbf{u}; \rho)\right]$$

$$p(\mathbf{u}|\mathbf{x}, \mathbf{z}; \rho, \alpha) \propto \exp\left[-\phi_2(\mathbf{u}; \alpha)\right] \times \exp\left[-\phi_1(\mathbf{x}, \mathbf{z} - \mathbf{u}; \rho)\right].$$

Splitted & Augmented Gibbs sampling (SPA) SPA Gibbs sampler

The conditional split-augmented distributions are:

$$\begin{split} &p(\mathbf{x}|\mathbf{z},\mathbf{u};\rho) \propto \exp\left[-f(\mathbf{x}) - \frac{1}{2\rho^2} \|\mathbf{x} - \mathbf{z} + \mathbf{u}\|_2^2\right] \\ &p(\mathbf{z}|\mathbf{x},\mathbf{u};\rho) \propto \exp\left[-g(\mathbf{z}) - \frac{1}{2\rho^2} \|\mathbf{x} - \mathbf{z} + \mathbf{u}\|_2^2\right] \\ &p(\mathbf{u}|\mathbf{x},\mathbf{z};\rho,\alpha) \propto \exp\left[-\frac{\|\mathbf{u}\|_2^2}{2\alpha^2} - \frac{1}{2\rho^2} \|\mathbf{x} - \mathbf{z} + \mathbf{u}\|_2^2\right]. \end{split}$$

SPA & ADMM

By replacing each Gibbs sampling step by optimizations, ADMM appears:

Algorithm 1: ADMM (scaled version)

```
Input: Functions f, g, penalty \rho^2, init. t \leftarrow 0, \mathbf{z}^{(0)}, \mathbf{u}^{(0)}

1 while stopping criterion not satisfied do

2 \mathbf{x}^{(t)} \in \arg\min_{\mathbf{x}} -\log p\left(\mathbf{x}|\mathbf{z}^{(t-1)}, \mathbf{u}^{(t-1)}; \rho\right);

3 \mathbf{z}^{(t)} \in \arg\min_{\mathbf{z}} -\log p\left(\mathbf{z}|\mathbf{x}^{(t)}, \mathbf{u}^{(t-1)}; \rho\right);

4 \mathbf{u}^{(t)} = \mathbf{u}^{(t-1)} + \mathbf{x}^{(t)} - \mathbf{z}^{(t)};

5 t \leftarrow t+1;
```

6 end

Output: Approximate solution of the optimization problem $\hat{\mathbf{x}}$.

Splitted Gibbs sampling (SPA): TV restoration

Linear Gaussian inverse problems

The conditional distributions associated to SPA are:

$$\begin{split} &p(\mathbf{x}|\mathbf{z},\mathbf{u}) \propto \exp\left[-\frac{1}{2\sigma^2} \left\|\mathbf{P}\mathbf{x} - \mathbf{y}\right\|_2^2\right] \times \exp\left[-\frac{1}{2\rho^2} \left\|\mathbf{x} - (\mathbf{z} - \mathbf{u})\right\|_2^2\right] \\ &p(\mathbf{z}|\mathbf{x},\mathbf{u}) \propto \exp\left[-\beta \text{TV}(\mathbf{z}) - \frac{1}{2\rho^2} \left\|\mathbf{z} - (\mathbf{x} + \mathbf{u})\right\|_2^2\right] \\ &p(\mathbf{u}|\mathbf{x},\mathbf{z}) \propto \exp\left[-\frac{1}{2\alpha^2} \left\|\mathbf{u}\right\|_2^2 - \frac{1}{2\rho^2} \left\|\mathbf{u} - (\mathbf{z} - \mathbf{x})\right\|_2^2\right] \end{split}$$

Rk: sampling from $p(\mathbf{z}|\mathbf{x}, \mathbf{u}) \Rightarrow \text{P-MYULA} + \text{Chambolle's algorithm}$

Splitted Gibbs sampling (SPA): confidence intervals

 ${\bf Linear~Gaussian~inverse~problems}$

	SALSA	P-MYULA	\mathbf{SP}	SPA
Balloons	26.18	23.00	26.19	26.18
Baboon	14.37	13.35	14.60	14.59
Elaine	23.61	21.21	23.86	23.84
Clock	25.72	24.50	25.45	25.42
Donna	24.71	21.69	23.87	23.82
House	20.21	19.59	20.43	20.43
Peppers	20.35	19.20	20.22	20.20
Cameraman	19.48	18.76	19.34	19.34
Boat	20.81	19.80	20.74	20.71

Splitted & Augmented Gibbs sampling (SPA) Applications

Many problems can be considered using SPA:

- ▶ Laplacian + ℓ₂ regularizer for deconvolution
 M. Vono et al., "Split-and-augmented Gibbs sampler Application to large-scale inference problems," in *IEEE Trans. Signal Processing*, 2019
- Poisson noise + blur + non-negativity + ...
 M. Vono et al., "Bayesian image restoration under Poisson noise and log-concave prior," in Proc. ICASSP 2019
- Machine learning: logistic regression,...
 M. Vono et al. (2018), "Sparse Bayesian binary logistic regression using the split-and-augmented Gibbs sampler," in Proc. IEEE MLSP 2018

Splitted & Augmented Gibbs sampling (SPA)

Poisson denoising + deblurring: sparse wavelet transform + non-negativity

- ▶ 6 times faster than P-MYULA,
- ▶ no approximation (e.g., Anscombe in P-MYULA)
- ▶ ... but using SPA + P-MYULA!
- ▶ performances similar to PIDAL (Figueiredo & Bioucas-Dias 2010)
- ▶ + confidence intervals

Splitted & Augmented Gibbs sampling (SPA)

Poisson denoising + deblurring: sparse wavelet transform + non-negativity

- ▶ 6 times faster than P-MYULA,
- ▶ no approximation (e.g., Anscombe in P-MYULA)
- ▶ ... but using SPA + P-MYULA!
- ▶ performances similar to PIDAL (Figueiredo & Bioucas-Dias 2010)
- ▶ + confidence intervals

Splitted & Augmented Gibbs sampling (SPA)

Poisson denoising + deblurring: sparse wavelet transform + non-negativity

- ▶ 6 times faster than P-MYULA,
- ▶ no approximation (e.g., Anscombe in P-MYULA)
- ▶ ... but using SPA + P-MYULA!
- ▶ performances similar to PIDAL (Figueiredo & Bioucas-Dias 2010)
- ▶ + confidence intervals

15

Outline

- Motivations
- 2 Splitted Gibbs sampling (SP)
- ③ Splitted & Augmented Gibbs sampling (SPA)
- 4 Asymptotically exact data augmentation: AXDA

Asymptotically exact data augmentation (AXDA)

Let $\pi \in L^1$ a target **probability distribution** with density with respect to (w.r.t.) the Lebesgue measure

$$\pi(\mathbf{x}) \propto \exp(-f(\mathbf{x}))$$

where $f: \mathcal{X} \subseteq \mathbb{R}^d \to (-\infty, +\infty]$ stands for a **potential** function.

With a slight abuse of notations, π shall refer to

ightharpoonup a prior $\pi(\mathbf{x})$,

Motivations

- ▶ a likelihood $\pi(\mathbf{x}) \triangleq \pi(\mathbf{y}|\mathbf{x})$,
- ▶ a posterior $\pi(\mathbf{x}) \triangleq \pi(\mathbf{x}|\mathbf{y})$,

where \mathbf{y} are observations.

Asymptotically exact data augmentation (AXDA) Motivations

Let $\pi \in L^1$ a target **probability distribution** with density with respect to (w.r.t.) the Lebesgue measure

$$\pi(\mathbf{x}) \propto \exp(-f(\mathbf{x}))$$

where $f: \mathcal{X} \subseteq \mathbb{R}^d \to (-\infty, +\infty]$ stands for a **potential** function.

Assumption 1

Inference from π is difficult and possibly inefficient.

Examples:

- ▶ non-trivial maximum likelihood estimation
- ▶ difficult posterior sampling with poor mixing chains

Data augmentation (DA)

One surrogate is to introduce auxiliary variables $\mathbf{z} \in \mathcal{Z} \subseteq \mathbb{R}^k$ such that

$$\int_{\mathcal{Z}} \pi(\mathbf{x}, \mathbf{z}) d\mathbf{z} = \pi(\mathbf{x}).$$

Numerous well-known advantages:

- ▶ augmented likelihood $\pi(\mathbf{x}, \mathbf{z}) \triangleq \pi(\mathbf{y}, \mathbf{z} | \mathbf{x})$ easier to work with
- ▶ joint posterior $\pi(\mathbf{x}, \mathbf{z}) \triangleq \pi(\mathbf{x}, \mathbf{z}|\mathbf{y})$ with simpler full conditionals
- ▶ improved inference (multimodal problems, mixing properties)

The art of exact data augmentation: XDA

Unfortunately, satisfying

$$\int_{\mathcal{Z}} \pi(\mathbf{x}, \mathbf{z}) d\mathbf{z} = \pi(\mathbf{x}) \quad (XDA)$$

is a matter of art (van Dyk and Meng 2001).

Difficulties:

- ▶ finding $\pi(\mathbf{x}, \mathbf{z})$ (Geman and Yang 1995)
- ► scaling in high-dimensional/big data settings (Neal 2003; Polson et al. 2013).

Goal: relax (XDA) while keeping XDA's advantages

Asymptotically exact data augmentation (AXDA)

Let consider an augmented density $p_{\rho}(\mathbf{x}, \mathbf{z})$ and define

$$\pi_{\rho}(\mathbf{x}) = \int_{\mathcal{Z}} p_{\rho}(\mathbf{x}, \mathbf{z}) d\mathbf{z},$$

where $\rho > 0$.

Assumption 2

For all $\mathbf{x} \in \mathcal{X}$, $\lim_{\rho \to 0} \pi_{\rho}(\mathbf{x}) = \pi(\mathbf{x})$.

Theorem 1 (Scheffé 1947)

Under Assumption 2,

$$\|\pi_{\rho} - \pi\|_{\text{TV}} \xrightarrow[\rho \to 0]{} 0.$$

Choice of the augmented density

Take inspiration from variable splitting in optimization (Boyd et al. 2011)...

This motivates the choice (Vono et al. 2019)

$$p_{\rho}(\mathbf{x}, \mathbf{z}) \propto \exp(-f(\mathbf{z}) - \phi_{\rho}(\mathbf{x}, \mathbf{z}))$$

- ▶ **simplify** the inference (splitting complicated potentials) (Vono et al. 2019)
- ▶ distribute the inference (Rendell et al. 2018)
- ▶ accelerate the inference (Vono et al. 2019).

Properties based on convolution

- **(H1)** $\pi \in L^1$ is log-concave.
- (H2) $\phi_{\rho}(\mathbf{x}, \mathbf{z}) = \tilde{\phi}_{\rho}(\mathbf{x} \mathbf{z})$, such that

$$\pi_{\rho}(\mathbf{x}) = \int_{\mathcal{Z}} p_{\rho}(\mathbf{x}, \mathbf{z}) d\mathbf{z}$$

$$K_{\rho} \propto \exp(-\tilde{\phi}_{\rho})$$
 is \mathcal{C}^{∞} log-concave,
 $\forall k \geq 0, \ \partial^{k} K_{\rho}$ is bounded
 $\lim_{\rho \to 0} K_{\rho}(\mathbf{u}) = \delta(\mathbf{u})$ with $\mathbb{E}_{K_{\rho}}(U) = 0$.

Then,

i)
$$\pi_{\rho} \xrightarrow[\rho \to 0]{} \pi$$

- ii) π_{ρ} is log-concave
- iii) π_{ρ} is infinitely differentiable on \mathcal{X}
- iv) $\pi(\mathbf{x}) \Longrightarrow \mathbb{E}_{\pi_{\rho}}(X) = \mathbb{E}_{\pi}(X)$ $\operatorname{var}_{\pi_{\rho}}(X) = \operatorname{var}_{\pi}(X) + \operatorname{var}_{K_{\rho}}(X).$

Non-asymptotic bound on the TV distance

(H3) f is L_f -Lipschitz,

(H4)
$$\phi_{\rho}(\mathbf{x}, \mathbf{z}) = \frac{1}{2\rho^2} \|\mathbf{x} - \mathbf{z}\|_2^2$$
.

Let $d = \dim(\mathcal{X})$. For all $\rho > 0$,

$$\|\pi_{\rho} - \pi\|_{\text{TV}} \le 1 - \Delta_d(\rho) = 1 - \frac{D_{-d}(L_f \rho)}{D_{-d}(-L_f \rho)}$$

$$1 - \Delta_d(\rho) \underset{\rho \to 0}{\sim} \frac{2\sqrt{2}\Gamma\left(\frac{d+1}{2}\right)}{\Gamma\left(\frac{d}{2}\right)} L_f \rho$$

The function D_{-d} is the parabolic cylinder special function.

Behavior when $\rho \to 0$ & illustration

Bounds on potentials

$$f_{\rho}(\mathbf{x}) = \frac{d}{2}\log(2\pi\rho^2) - \log \int_{\mathcal{X}} \exp\left(-f(\mathbf{z}) - \frac{1}{2\rho^2} \|\mathbf{z} - \mathbf{x}\|_2^2\right) d\mathbf{z}$$

For all $\rho > 0$ and $\mathbf{x} \in \mathcal{X}$,

$$L_{\rho} \leq f_{\rho}(\mathbf{x}) - f(\mathbf{x}) \leq U_{\rho}$$

with

$$L_{\rho} = \log M_{\rho} - \log D_{-d}(-L_{f}\rho)$$

$$U_{\rho} = \log M_{\rho} - \log D_{-d}(L_{f}\rho)$$

$$M_{\rho} = \frac{2^{d/2 - 1}\Gamma(d/2)}{\Gamma(d)\exp\left(L_{f}^{2}\rho^{2}/4\right)}.$$

Bounds on credibility intervals

Illustration

$$(1 - \alpha) \frac{M_{\rho}}{D_{-d}(-L_{f}\rho)} \leq \int_{\mathcal{C}_{\alpha}^{\rho}} \pi(\mathbf{x}) d\mathbf{x} \leq \min \left(1, (1 - \alpha) \frac{M_{\rho}}{D_{-d}(L_{f}\rho)}\right)$$

Distributed sampling and data privacy

Regularized logistic regression

$$\forall i \in [1, n], \quad y_i \sim \text{Bernoulli}\left(\sigma(\mathbf{a}_i^T \mathbf{x})\right)$$

$$\pi(\mathbf{x}|\mathbf{y}) \propto \exp\left(-f(\mathbf{x}) - \sum_{j=1}^{b} g^{(j)}(\mathbf{x})\right)$$

where

- $\triangleright \mathcal{D}_j$ indices associated to the jth block of data,
- $ightharpoonup f = \text{prior on the regressor } \mathbf{x}$

Issues:

- ▶ the full data set is distributed over b nodes, $b \in [1, n]$
- data privacy.

Distributed sampling and data privacy

Applying AXDA b times

$$p_{\rho}(\mathbf{x}, \mathbf{z}_{1:b}) \propto \exp\left(-f(\mathbf{x}) - \sum_{j=1}^{b} \left[\frac{1}{2\rho^2} \|\mathbf{x} - \mathbf{z}_j\|^2 + \sum_{i \in \mathcal{D}_j} \log\left(1 + \exp\left(-y_i \mathbf{a}_i^T \mathbf{z}_j\right)\right) \right] \right)$$

Benefits of AXDA:

- \triangleright inference via a Gibbs sampler distributed on b nodes
- ▶ the master node never *sees* the data set: **privacy**
- ▶ theoretical guarantees on the approximation

Conclusion

- ► SP & SPA split-and-augment strategy
 - Bayesian inference for complex models
 - large scale problems (big & tall)
 - confidence intervals
- ▶ Efficient algorithms for inference
 - acceleration of state-of-the-art sampling algorithms
 - distributed inference (simulation, optimization, variational approx.)
- ► **AXDA**: **unifying** statistical framework
 - asymptotically exact: control parameter ρ
 - non-asymptotic theoretical guarantees on the approximation under mild assumptions

Interested in AXDA for your statistical problems?

Theory and methods

- ► M. Vono et al. (2019), "Asymptotically exact data augmentation: models, properties and algorithms". Technical report. https://arxiv.org/abs/1902.05754/
- ▶ M. Vono et al. (2019), "Split-and-augmented Gibbs sampler Application to large-scale inference problems," *IEEE Transactions on Signal Processing*.
- L. J. Rendell et al. (2018), "Global consensus Monte Carlo". Technical report. https://arxiv.org/abs/1807.09288/

Applications

- M. Vono et al. (2019), "Bayesian image restoration under Poisson noise and log-concave prior," in *Proc. ICASSP*.
- M. Vono et al. (2018), "Sparse Bayesian binary logistic regression using the split-and-augmented Gibbs sampler," in Proc. MLSP.

Code

► https://github.com/mvono

- Beaumont, M. A., Zhang, W., and Balding, D. J. (2002), "Approximate Bayesian Computation in Population Genetics," *Genetics*, 162, 2025–2035.
- Besag, J. and Green, P. J. (1993), "Spatial Statistics and Bayesian Computation," Journal of the Royal Statistical Society, Series B, 55, 25–37.
- Boyd, S., Parikh, N., Chu, E., Peleato, B., and Eckstein, J. (2011), "Distributed Optimization and Statistical Learning via the Alternating Direction Method of Multipliers," Foundations and Trends in Machine Learning, 3, 1-122.
- Damien, P., Wakefield, J., and Walker, S. (1999), "Gibbs sampling for Bayesian non-conjugate and hierarchical models by using auxiliary variables," *Journal of the Royal Statistical Society, Series B*, 61, 331–344.
- Del Moral, P., Doucet, A., and Jasra, A. (2012), "An adaptive sequential Monte Carlo method for approximate Bayesian computation," Statistics and Computing, 22, 1009–1020.
- Dempster, A. P., Laird, N. M., and Rubin, D. B. (1977), "Maximum Likelihood from Incomplete Data via the EM Algorithm," Journal of the Royal Statistical Society, Series B, 39, 1–38.
- Doucet, A., Godsill, S. J., and Robert, C. P. (2002), "Marginal maximum a posteriori estimation using Markov chain Monte Carlo," Statistics and Computing, 12, 77-84.
- Durmus, A., Moulines, E., and Pereyra, M. (2018), "Efficient Bayesian Computation by Proximal Markov chain Monte Carlo: When Langevin Meets Moreau," SIAM Journal on Imaging Sciences, 11, 473-506.
- Filstroff, L., Lumbreras, A., and Févotte, C. (2018), "Closed-form Marginal Likelihood in Gamma-Poisson Matrix Factorization," in *Proceedings of the 35th International Conference on Machine Learning (ICML)*, vol. 80, pp. 1506–1514.
- Geman, D. and Yang, C. (1995), "Nonlinear image recovery with half-quadratic regularization," IEEE Transactions on Image Processing, 4, 932–946.
- Ising, E. (1925), "Beitrag zur Theorie des Ferromagnetismus," Zeitschrift für Physik, 31, 253–258.
- Neal, R. M. (2003), "Slice sampling," The Annals of Statistics, 31, 705–767.
- Peel, D. and McLachlan, G. J. (2000), "Robust mixture modelling using the t distribution," Statistics and Computing, 10, 339–348.
- Pereyra, M. (2016), "Proximal Markov chain Monte Carlo algorithms," Statistics and Computing, 26, 745–760.

- Polson, N. G., Scott, J. G., and Windle, J. (2013), "Bayesian Inference for Logistic Models Using Polya-Gamma Latent Variables," Journal of the American Statistical Association, 108, 1339–1349.
- Potts, R. B. (1952), "Some generalized order-disorder transformations," Mathematical Proceedings of the Cambridge Philosophical Society, 48, 106–109.
- Ratmann, O., Andrieu, C., Wiuf, C., and Richardson, S. (2009), "Model criticism based on likelihood-free inference, with an application to protein network evolution," Proceedings of the National Academy of Sciences, 106, 10576-10581.
- Rendell, L. J., Johansen, A. M., Lee, A., and Whiteley, N. (2018), "Global consensus Monte Carlo," [online]. Technical report. Available at https://arxiv.org/abs/1807.09288/.
- Scheffé, H. (1947), "A useful convergence theorem for probability distributions," The Annals of Mathematical Statistics, 18, 434–438.
- Scott, S. L., Blocker, A. W., Bonassi, F. V., Chipman, H. A., George, E. I., and McCulloch, R. E. (2016), "Bayes and Big Data: The Consensus Monte Carlo Algorithm," International Journal of Management Science and Engineering Management, 11, 78-88.
- Sisson, S., Fan, Y., and Beaumont, M. (eds.) (2018), Handbook of Approximate Bayesian Computation, Chapman and Hall/CRC Press, 1st ed.
- Swendsen, R. H. and Wang, J.-S. (1987), "Nonuniversal critical dynamics in Monte Carlo simulations," Physical Review Letters, 58, 86–88.
- van Dyk, D. A. and Meng, X.-L. (2001), "The Art of Data Augmentation," Journal of Computational and Graphical Statistics, 10, 1–50.
- Vono, M., Dobigeon, N., and Chainais, P. (2018), "Sparse Bayesian binary logistic regression using the split-and-augmented Gibbs sampler," in IEEE International Workshop on Machine Learning for Signal Processing, Aalborg, Denmark.
- (2019), "Split-and-augmented Gibbs sampler Application to large-scale inference problems," IEEE Transactions on Signal Processing, 67, 1648–1661.
- Wang, C. and Blei, D. M. (2018), "A General Method for Robust Bayesian Modeling," Bayesian Analysis, 13, 1163–1191.