Co1_So8_函数的连续性与间断点

第一章 函数与极限 第八节 函数的连续性与间断点 目录

- 一、函数的连续性
- 二、函数的间断点
 - · 1. 定义
 - · 2. 分类
 - 2.1 第一类间断点
 - 2.2 第二类间断点

一、函数的连续性

增量: Δx 、 Δy

设函数 y = f(x) 在点 x_0 的某一邻域内有定义,如果

$$\lim_{\Delta x \to 0} \Delta y = \lim_{\Delta x \to 0} [f(x_0 + \Delta x) - f(x_0)] = 0$$

,那么就称函数 y = f(x) 在点 x_0 连续。

设函数 y = f(x) 在点 x_0 的某一邻域内有定义,如果

$$\lim_{x \to x_0} f(x) = f(x_0)$$

,那么就称函数 y = f(x) 在点 x_0 连续。

f(x) 在点 x_0 连续 $\Leftrightarrow \forall \varepsilon > 0, \exists \delta > 0, \exists |x - x_0| < \delta$ 时,有 $|f(x) - f(x_0)| < \varepsilon$

左连续: $f(x_0^-) = f(x_0)$

右连续: $f(x_0^+) = f(x_0)$

二、函数的间断点

1. 定义

设函数 y = f(x) 在点 x_0 的某一去心邻域内有定义,如果函数 f(x) 有下列三种情形之一:

- (1) 在 $x = x_0$ 没有定义
- (2) 虽在 $x = x_0$ 有定义,但 $\lim_{x \to x_0} f(x)$ 不存在
- (3) 虽在 $x = x_0$ 有定义,且 $\lim_{x \to x_0} f(x)$ 存在,但 $\lim_{x \to x_0} \neq f(x_0)$

那么函数f(x) 在点 x_0 为不连续,而点 x_0 称为函数f(x) 的不连续点或间断点。

2. 分类

2.1 第一类间断点

点 x_0 是函数 f(x) 的间断点,但 $f(x_0^-)$ 及 $f(x_0^+)$ 都存在

可去间断点: $f(x_0^-) = f(x_0^+)$

跳跃间断点: $f(x_0^-) \neq f(x_0^+)$

2.2 第二类间断点

不是第一类间断点的任何间断点

无穷间断点、振荡间断点