TABLE VII

n	$4.917 \times n$	Observed Charge	n	$4.917 \times n$	Observed Charge
1 2 3 4 5 6 7 8	4.917 9.834 14.75 19.66 24.59 29.50 34.42 39.34 44.25	19.66 24.60 29.62 34.47 39.38 44.42	10 11 12 13 14 15 16 17	49.17 54.09 59.00 63.92 68.84 73.75 78.67 83.59 88.51	49.41 53.91 59.12 63.68 68.65 78.34 83.22

	d = 0.5cm		d = 0.5cm	Charge on ion			Frictional charge		
t_g	$v_1(=d/t_g)$ (cm/sec)	t_F	$v_2(=d/t_F)$ (cm/sec)	$(v_2'\!-\!v_2)$	n'	$\frac{v_2' - v_2}{n'}$	$v_1 + v_2$	n	$\frac{v_1+v_2}{n}$
18.2	.00286	3.8	.01316				.01602	3	.00534
18.6	avr			.00470	1	.00470			
19.2		2.8	.01786						
18.0				.01561	3	.00520			
17.2		22.2	.00225						
15.4				.00544	1	.00544			
16.7		6.5	.00769						
18.0				.00541	1	.00541			
15.4		21.9	.00228						
17.3				.01123	2	.00562			
18.4		3.7	.01351						
17.5						.00527			.00534
avr						avr			

1	2	3	4
5	6	7	8
9	10	11	12
1	2	3	4
5	6	>7	8
9	10	11	12

 \bullet First line

TABLE VI^a

t_g Sec.	t_F Sec.	$rac{1}{t_F}$	$\frac{1}{t_F'} - \frac{1}{t_F}$	n'	$\frac{1}{n'} \left(\frac{1}{t_F'} - \frac{1}{t_F} \right)$	$\frac{1}{t_g} + \frac{1}{t_F}$	n	$\frac{1}{n}(\frac{1}{t_g} + \frac{1}{t_F})$
11.848	80.708	.01236				.09655	18	.005366
11.890	22.366	}	.03234	6	.005390			
11.908	22.390	.04470 {				.12887	24	.005371
11.904	22.368 $^{ m J}$	}	.03751	7	.005358			
11.882	140.565	.007192				.09138	17	.005375
		}	.005348	1	.005348			
11.906	79.600	$.01254$ $\{$.09673	18	.005374
11.838	34.748	}	.01616	3	.005387			
11.816	34.762	.02870				.11289	21	.005376
11.776	$34.846^{\ \ \ \ \ \ \ \ }$							

Duration of exp. =45 min.Pressure = 75.62 cm.Plate distance = 16 mm.Oil density = .9199= 10.21 mm. $= 1,824 \times 10^{-7}$ [poise] Fall distance Air viscosity = .000276 cm. Initial volts = 5,088.8Radius (a)

- Second line
- Third line, which is quite long and seemingly tedious in the extreme
- Fourth line, which isn't as long as the third
- Fifth line

$$P(\boldsymbol{a}, \boldsymbol{b}) = \int d\lambda \, \rho(\lambda) A(\boldsymbol{a}, \lambda) B(\boldsymbol{b}, \lambda).^{1}$$
 (1)

 $^{^{}a}$ [The bracketed numbers are our corrections of errors in the original paper.]

¹[According to the hypothesis Bell is investigating, the "more complete specification" of the particles' state, the extra information that would tell the observer who knew it which way the particle would respond to a given measurement, is given by λ . Equation (2) considers all the possible λ 's and weights them according to how likely each is. Mathematically, that means integrating over all the possible values of λ and weighting each by its likelihood, represented by the probability distribution $\rho(\lambda)$. It may be helpful to note that P was likely chosen to stand for "product," since the term we are integrating ρ against is the product of A and B. Because we've defined A and B such that the results of measurements yield the values +1and -1, the product for any given value of λ will always be either +1 (meaning that the two particles would both be measured to be pointing either in the selected directions \boldsymbol{a} and \boldsymbol{b} or in directions opposed to them) or -1 (meaning that the directions of σ_1 and σ_2 would be measured to be opposed, whether because σ_1 would not be measured to point in direction aand σ_2 would be measured to point in direction **b** or because σ_1 would be measured to point in direction a and σ_2 would not be measured to point in direction b. Since it is weighted sum of all the positive and negative terms, $P(\boldsymbol{a},\boldsymbol{b})$ is thus a measure of the correlation between the spin-direction of the two particles relative to the angles \boldsymbol{a} and \boldsymbol{b} .