Correspondence

2D transformations (a.k.a. warping)

Overview of today's lecture

- Reminder: image transformations.
- 2D transformations.
- Projective geometry 101.
- Transformations in projective geometry.
- Classification of 2D transformations.
- Determining unknown 2D transformations.
- Determining unknown image warps.

Warping example: feature matching

- object recognition
- 3D reconstruction
- augmented reality
- image stitching

How do you compute the transformation?

Warping example: feature matching

Given a set of matched feature points:

$$\{oldsymbol{x}_i,oldsymbol{x}_i'\}$$
 point in one point in the other image

and a transformation:

$$oldsymbol{x'} = oldsymbol{f}(oldsymbol{x}; oldsymbol{p})$$
 transformation $oldsymbol{\nearrow}$ parameters function

find the best estimate of the parameters

Family of image warps

u

How would you implement scaling?

- Each component multiplied by a scalar
- Uniform scaling same scalar for each component

$$x' = ax$$

$$x' = ax$$
$$y' = by$$

What's the effect of using different scale factors?

- Each component multiplied by a scalar
- Uniform scaling same scalar for each component

y

$$x' = ax$$
$$y' = by$$

matrix representation of scaling:

$$\begin{bmatrix} x' \\ y' \end{bmatrix} = \begin{bmatrix} a & 0 \\ 0 & b \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}$$
scaling matrix S

- Each component multiplied by a scalar
- Uniform scaling same scalar for each component

$$x' = f(x; p)$$

$$\begin{bmatrix} x' \\ y' \end{bmatrix} = M \begin{bmatrix} x \\ y \end{bmatrix}$$
parameters p point x

Why do we like using a matrix representation for a transformation?

$$\begin{bmatrix} x' \\ y' \end{bmatrix} = M_4 M_3 M_2 M_1 \begin{bmatrix} x \\ y \end{bmatrix}$$

y

How would you implement translation?

$$x' = x + t_x$$
$$y' = y + t_y$$

$$y' = y + t_{y}$$

What about matrix representation?

$$\begin{bmatrix} x' \\ y' \end{bmatrix} = \begin{bmatrix} ? & ? \\ ? & ? \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}$$

Not possible with a 2x2 matrix!

What can we do instead?

Standard image homogeneous coordinates coordinates

$$\begin{bmatrix} x \\ y \end{bmatrix} \Rightarrow \begin{bmatrix} x \\ y \\ 1 \end{bmatrix}$$
 add a 1 here

Represent 2D point with 3D dimensions

Standard image homogeneous coordinates coordinates

$$\begin{bmatrix} x \\ y \end{bmatrix} \Rightarrow \begin{bmatrix} x \\ y \\ 1 \end{bmatrix} \stackrel{\text{def}}{=} \begin{bmatrix} ax \\ ay \\ a \end{bmatrix}$$

- Represent 2D point with 3D dimensions
- 3D vectors are only defined up to scale

Standard image homogeneous coordinates coordinates

$$\begin{bmatrix} x \\ y \end{bmatrix} \Rightarrow \begin{bmatrix} x \\ y \\ 1 \end{bmatrix}$$

Standard image homogeneous coordinates coordinates

$$\begin{bmatrix} x \\ y \end{bmatrix} \Rightarrow \begin{bmatrix} x \\ y \\ 1 \end{bmatrix}$$

Standard image coordinates \mathcal{X}_1

How do we convert from homogenous back to standard coordinates?

Standard image homogeneous coordinates coordinates \mathcal{X}

$$\begin{bmatrix} x \\ y \end{bmatrix} \Rightarrow \begin{bmatrix} x \\ y \\ 1 \end{bmatrix}$$

Standard image coordinates $\begin{bmatrix} x_1/x_3 \\ x_2/x_3 \end{bmatrix} \leftarrow \begin{bmatrix} x_1 \\ x_2 \\ x_2 \end{bmatrix}$

How do we convert from homogenous back to standard coordinates?

Projective geometry

image point in standard (pixel) $\boldsymbol{x} = \begin{bmatrix} x_1/x_3 \\ x_2/x_3 \end{bmatrix}$ coordinates

$$\boldsymbol{x} = \begin{bmatrix} x_1/x_3 \\ x_2/x_3 \end{bmatrix}$$

image point in homogeneous $oldsymbol{X} = egin{bmatrix} x_1 \\ x_2 \end{bmatrix}$ image point in coordinates

$$oldsymbol{X} = \left[egin{array}{c} x_1 \ x_2 \ x_3 \end{array}
ight]$$

Translation: $egin{bmatrix} 1 & 0 & t_1 \ 0 & 1 & t_2 \ 0 & 0 & 1 \end{bmatrix}$

Euclidean (rigid):

rotation + translation

$$\begin{bmatrix} x' \\ y' \\ 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & t_x \\ 0 & 1 & t_y \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ 1 \end{bmatrix}$$

$$\begin{bmatrix} x' \\ y' \\ y' \end{bmatrix} = \begin{bmatrix} \cos \Theta & -\sin \Theta & 0 \\ \sin \Theta & \cos \Theta & 0 \end{bmatrix} \begin{bmatrix} x \\ y \\ y \end{bmatrix}$$

Euclidean (rigid): rotation + translation

$$\begin{bmatrix} \cos \theta & -\sin \theta & t_x \\ \sin \theta & \cos \theta & t_y \\ 0 & 0 & 1 \end{bmatrix}$$

$$\begin{bmatrix} x' \\ y' \\ 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & t_x \\ 0 & 1 & t_y \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ 1 \end{bmatrix}$$

$$\begin{bmatrix} x' \\ y' \\ 1 \end{bmatrix} = \begin{bmatrix} \cos \Theta & -\sin \Theta & 0 \\ \sin \Theta & \cos \Theta & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ 1 \end{bmatrix}$$

Similarity: uniform scaling + rotation + translation

$$\begin{bmatrix} s \cos \theta & -s \sin \theta & t_x \\ s \sin \theta & s \cos \theta & t_y \\ 0 & 0 & 1 \end{bmatrix}$$

(this matrix assumes that we apply uniform scaling first, then translation / rotation)

Translation * Rotation * Scale * x

Affine transform:

uniform scaling + shearing + rotation + translation

$$\begin{bmatrix} x' \\ y' \\ 1 \end{bmatrix} = \begin{bmatrix} 1 & \beta_x & 0 \\ \beta_y & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ 1 \end{bmatrix}$$

Shear in x, y

Affine transformations

Affine transformations are combinations of

- arbitrary (4-DOF) linear transformations; and
- translations

Properties of affine transformations:

- lines map to ?
- parallel lines map to ?
- ratios are?
- compositions of affine transforms are ?

$$\begin{bmatrix} x' \\ y' \\ w' \end{bmatrix} = \begin{bmatrix} a & b & c \\ d & e & f \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ w \end{bmatrix}$$

Affine transformations

Affine transformations are combinations of

- arbitrary (4-DOF) linear transformations; and
- translations

Properties of affine transformations:

- lines map to lines
- parallel lines map to ?
- ratios are?
- compositions of affine transforms are ?

$$\begin{bmatrix} x' \\ y' \\ w' \end{bmatrix} = \begin{bmatrix} a & b & c \\ d & e & f \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ w \end{bmatrix}$$

Affine transformations

Affine transformations are combinations of

- arbitrary (4-DOF) linear transformations; and
- translations

Properties of affine transformations:

- lines map to lines
- parallel lines map to parallel lines
- ratios of segments within a line are ?
- compositions of affine transforms are ?

$$\begin{bmatrix} x' \\ y' \\ w' \end{bmatrix} = \begin{bmatrix} a & b & c \\ d & e & f \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ w \end{bmatrix}$$

Affine transformations

Affine transformations are combinations of

- arbitrary (4-DOF) linear transformations; and
- translations

Properties of affine transformations:

- lines map to lines
- parallel lines map to parallel lines
- ratios of segments within a line are preserved
- compositions of affine transforms are ?

$$\begin{bmatrix} x' \\ y' \\ w' \end{bmatrix} = \begin{bmatrix} a & b & c \\ d & e & f \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ w \end{bmatrix}$$

Affine transformations

Affine transformations are combinations of

- arbitrary (4-DOF) linear transformations; and
- translations

$$\begin{bmatrix} x' \\ y' \\ w' \end{bmatrix} = \begin{bmatrix} a & b & c \\ d & e & f \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ w \end{bmatrix}$$

Properties of affine transformations:

- lines map to lines
- parallel lines map to parallel lines
- ratios of segments within a line are preserved
- compositions of affine transforms are affine transforms

Projective transformations (aka homographies)

$$\begin{bmatrix} x' \\ y' \\ w' \end{bmatrix} = \begin{bmatrix} a & b & c \\ d & e & f \\ g & h & i \end{bmatrix} \begin{bmatrix} x \\ y \\ w \end{bmatrix}$$

How many degrees of freedom?

Projective transformations (aka homographies)

Properties of projective transformations:

- Do lines map to lines?
- Do parallel lines map to parallel lines?
- Are ratios of segments within a line preserved?
- Are compositions of projective transforms are also projective transforms?

$$\begin{bmatrix} x' \\ y' \\ w' \end{bmatrix} = \begin{bmatrix} a & b & c \\ d & e & f \\ g & h & i \end{bmatrix} \begin{bmatrix} x \\ y \\ w \end{bmatrix}$$

8 DOF: vectors in homogenous coordinates are defined up to scale)

Projective transformations (aka homographies)

Properties of projective transformations:

- Do lines map to lines?
- Do parallel lines map to parallel lines? No
- Are ratios of segments within a line preserved?
- Are compositions of projective transforms are also projective transforms?

$$\begin{bmatrix} x' \\ y' \\ w' \end{bmatrix} = \begin{bmatrix} a & b & c \\ d & e & f \\ g & h & i \end{bmatrix} \begin{bmatrix} x \\ y \\ w \end{bmatrix}$$

8 DOF: vectors in homogenous coordinates are defined up to scale)

Yes

Transformation	Matrix	# DoF	Preserves	Icon
translation	$\left[\begin{array}{c c} I & t\end{array}\right]_{2 \times 3}$	2	orientation	

$$x' = x + t_x$$

$$y' = y + t_y$$

$$\begin{bmatrix} x' \\ y' \end{bmatrix} = \begin{bmatrix} 1 & 0 & t_x \\ 0 & 1 & t_y \end{bmatrix} \begin{bmatrix} x \\ y \\ 1 \end{bmatrix}$$

Transformation	Matrix	# DoF	Preserves	Icon
translation	$\left[egin{array}{c c} I & t \end{array} ight]_{2 imes 3}$	2	orientation	
rigid (Euclidean)	$\left[egin{array}{c c} oldsymbol{R} & oldsymbol{t} \end{array} ight]_{2 imes 3}$	3	lengths	\Diamond

$$\begin{bmatrix} x' \\ y' \end{bmatrix} = \begin{bmatrix} \cos \theta & -\sin \theta & t_x \\ \sin \theta & \cos \theta & t_y \end{bmatrix} \begin{bmatrix} x \\ y \\ 1 \end{bmatrix}$$

Transformation	Matrix	# DoF	Preserves	Icon
translation	$\left[egin{array}{c c} oldsymbol{I} & oldsymbol{t} \end{array} ight]_{2 imes 3}$	2	orientation	
rigid (Euclidean)	$\left[egin{array}{c c} oldsymbol{R} & oldsymbol{t} \end{array} ight]_{2 imes 3}$	3	lengths	\bigcirc
similarity	$\left[\begin{array}{c c} sR & t\end{array}\right]_{2 \times 3}$	4	angles	\Diamond

$$\begin{bmatrix} x' \\ y' \end{bmatrix} = \begin{bmatrix} s\cos\theta & -s\sin\theta & t_x \\ s\sin\theta & s\cos\theta & t_y \end{bmatrix} \begin{bmatrix} x \\ y \\ 1 \end{bmatrix}$$

Transformation	Matrix	# DoF	Preserves	Icon
translation	$\left[egin{array}{c c} oldsymbol{I} & oldsymbol{t} \end{array} ight]_{2 imes 3}$	2	orientation	
rigid (Euclidean)	$\left[egin{array}{c c} oldsymbol{R} & oldsymbol{t} \end{array} ight]_{2 imes 3}$	3	lengths	\Diamond
similarity	$\left[\begin{array}{c c} s R \mid t\end{array}\right]_{2 \times 3}$	4	angles	\Diamond
affine	$\left[egin{array}{c} oldsymbol{A} \end{array} ight]_{2 imes 3}$	6	parallelism	
1	$\begin{bmatrix} x' \\ y' \end{bmatrix} = \begin{bmatrix} a \\ d \end{bmatrix}$ change of base		$\begin{bmatrix} x \\ y \\ 1 \end{bmatrix}$	
	(rotate, scale x y, rotate)		2D inslation	

Transformation	Matrix	# DoF	Preserves	Icon
translation	$\left[egin{array}{c c} oldsymbol{I} & oldsymbol{t} \end{array} ight]_{2 imes 3}$	2	orientation	
rigid (Euclidean)	$\left[egin{array}{c c} oldsymbol{R} & oldsymbol{t} \end{array} ight]_{2 imes 3}$	3	lengths	\Diamond
similarity	$\left[\begin{array}{c c} s R \mid t\end{array}\right]_{2 imes 3}$	4	angles	\Diamond
affine	$\left[egin{array}{c} oldsymbol{A} \end{array} ight]_{2 imes 3}$	6	parallelism	
projective	$\left[egin{array}{c} ilde{m{H}} \end{array} ight]_{3 imes 3}$	8	straight lines	
λ	$\begin{bmatrix} x' \\ y' \\ 1 \end{bmatrix} = \begin{bmatrix} a \\ d \\ g \end{bmatrix}$	$\left[egin{array}{ccc} b & c \ e & f \ h & i \end{array} ight]$	$\begin{bmatrix} x \\ y \\ 1 \end{bmatrix}$	

Relates the image projections of

(1) planar scene under any camera or (2) any scene under rotated cameras

Important property captured by 2D affine warps: foreshortening

Fronto-parallel view

Affine warp (Rotation of far-away plane)

All squares become more narrow

Perspective projection

Homography warp (Rotation of close-by plane)

Far squares -> smaller Close squares -> larger

Suppose we have two triangles: ABC and DEF.

- What type of transformation will map A to D, B to E, and C to F?
- How many degrees of freedom do we have? 6 = 3 (x,y) coordinates

Suppose we have two triangles: ABC and DEF.

- What type of transformation will map A to D, B to E, and C to F?
- How many degrees of freedom do we have? 6 = 3 (x,y) coordinates

Affine transform:

uniform scaling + shearing + rotation + translation

$$egin{array}{cccc} a_1 & a_2 & a_3 \ a_4 & a_5 & a_6 \ 0 & 0 & 1 \ \end{array}$$

Imagine triangle as half a parallelogram

Suppose we have two triangles: ABC and DEF.

- What type of transformation will map A to D, B to E, and C to F?
- How many degrees of freedom do we have?

uniform scaling + shearing + rotation + translation

$$\begin{bmatrix} a_1 & a_2 & a_3 \\ a_4 & a_5 & a_6 \\ 0 & 0 & 1 \end{bmatrix}$$

unknowns x' = Mxpoint correspondences

How do we solve this for **M**?

Affine transform:

uniform scaling + shearing + rotation + translation

$$\begin{bmatrix} a_1 & a_2 & a_3 \\ a_4 & a_5 & a_6 \\ 0 & 0 & 1 \end{bmatrix}$$

How do we solve this for **M**?

1) Find pairs of corresponding points

$$(x_1, x_1')$$

 (x_2, x_2')
 (x_3, x_3')

2) Write down an objective:

$$\min_{M} \sum_{i} ||x' - Mx||^2$$

3) Solve for M

Affine transformation:

$$\left[egin{array}{c} x' \ y' \end{array}
ight] = \left[egin{array}{ccc} p_1 & p_2 & p_3 \ p_4 & p_5 & p_6 \end{array}
ight] \left[egin{array}{c} x \ y \ 1 \end{array}
ight]$$

Why can we drop the last line?

Vectorize transformation parameters:

Stack equations from point correspondences:

Notation in system form:

Solving the linear system

Convert the system to a linear least-squares problem:

$$E_{\text{LLS}} = \|\mathbf{A}\boldsymbol{x} - \boldsymbol{b}\|^2$$
$$= (Ax - b)^T (Ax - b)$$

$$||x||^2 = x^T x$$

$$[x_1, x_2, 1]^{x_1} = x_1^2 + x_2^2 = ||x||^2$$

Example: $[x_1 \ x_2] \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = x_1^2 + x_2^2 = ||x||^2$

Expand the error:

$$E_{\mathrm{LLS}} = \boldsymbol{x}^{\top} (\mathbf{A}^{\top} \mathbf{A}) \boldsymbol{x} - 2 \boldsymbol{x}^{\top} (\mathbf{A}^{\top} \boldsymbol{b}) + \|\boldsymbol{b}\|^{2}$$

 $(AB)^T = B^T A^T$

Minimize the error:

Set derivative to 0
$$(\mathbf{A}^{ op}\mathbf{A})oldsymbol{x} = \mathbf{A}^{ op}oldsymbol{b}$$

Solve for x
$$oldsymbol{x} = (\mathbf{A}^{ op}\mathbf{A})^{-1}\mathbf{A}^{ op}oldsymbol{b}$$

In Python:

Affine transform:

uniform scaling + shearing + rotation + translation

$$\begin{bmatrix} a_1 & a_2 & a_3 \\ a_4 & a_5 & a_6 \\ 0 & 0 & 1 \end{bmatrix}$$

unknowns $\mathbf{x}' = \mathbf{M}\mathbf{x}$ point correspondences

How do we solve this for **M**?

1) Find pairs of corresponding points

$$(x_1, x'_1)$$

 (x_2, x'_2)
 (x_3, x'_3)

2) Write down an objective:

$$\min_{M} \sum_{i} ||x' - Mx||^{2}$$

$$\mathbf{A}x = \mathbf{h}$$

3) Least squares:

$$oldsymbol{x} = (\mathbf{A}^{ op}\mathbf{A})^{-1}\mathbf{A}^{ op}oldsymbol{b}$$

What are the issues with this approach?

Problems with noise

How did we fix this last time?

We will see next class another way to fix this for the task of finding a transform to match two images!