数理逻辑基础 作业 8

练习 17. 2. 设 $\varphi, \psi \in \Phi_M$. 求证: 若对项 t 中的任一变元 x 都有 $\varphi(x) = \psi(x)$, 则 $\varphi(t) = \psi(t)$.

解: 以 t 中出现的个体常元, 个体变元和运算为基础构建项集 T, 对 t 在 T 中的层次数 k 进行归纳:

- 1° 当 k=0 时, $t=c_i$ 或 $t=x_i$, 因为 $\varphi(c_i)=\psi(c_i)=\overline{c_i}$ 和 $\varphi(x_i)=\psi(x_i)$, 所以 $\varphi(t)=\psi(t)$.
- 2° 当 k > 0 时, 设 $t = f_i^n(t_1, \dots, t_n)$, 其中 t_1, \dots, t_n 是较低层次的项. 由归纳假设, 有

$$\varphi(t_1) = \psi(t_1), \cdots, \varphi(t_n) = \psi(t_n)$$

因此

 $\varphi(t) = \varphi(f_i^n(t_1, \cdots, t_n)) = \overline{f_i^n}(\varphi(t_1), \cdots, \varphi(t_n)) = \overline{f_i^n}(\psi(t_1), \cdots, \psi(t_n)) = \psi(f_i^n(t_1, \cdots, t_n)) = \psi(t)$ 由项集 T 的分层性及 1° 和 2° 归纳可知题中命题成立.

练习 17. 3. 设 $t \in T$, φ 和 $\varphi' \in \Phi_M$, φ' 是 φ 的 x 变通, 且 $\varphi'(x) = \varphi(t)$. 用项 t 代换项 u(x) 中 x 所得的项记为 u(t). 求证 $\varphi'(u(x)) = \varphi(u(t))$.

解: 对 u(x) 在项集 T 中的层次数 k 进行归纳:

- 1° 当 k = 0 时, 有三种可能的情况:
 - 1) $u(x) = c_i$, 此时 $u(t) = c_i$, 有 $\varphi'(u(x)) = \varphi'(c_i) = \overline{c_i} = \varphi(c_i) = \varphi(u(t))$.
 - 2) u(x) = x, 此时 u(t) = t, 由已知条件有 $\varphi'(u(x)) = \varphi'(x) = \varphi(t) = \varphi(u(t))$.
 - 3) $u(x) = y \neq x$, 此时 u(t) = y, 因为 φ' 是 φ 的 x 变通, 所以有 $\varphi'(u(x)) = \varphi'(y) = \varphi(y) = \varphi(u(t))$
- 2° 当 k > 0 时,设 $u(x) = f_i^n(t_1(x), \dots, t_n(x))$,其中 $t_1(x), \dots, t_n(x)$ 是较低层次的项. 这时 $u(t) = f_i^n(t_1(t), \dots, t_n(t))$. 由归纳假设,有

$$\varphi'(t_1(x)) = \varphi'(t_1(t)), \cdots, \varphi'(t_n(x)) = \varphi'(t_n(t))$$

因此

$$\varphi'(u(x)) = \varphi'(f_i^n(t_1(x), \dots, t_n(x))) = \overline{f_i^n}(\varphi'(t_1(x)), \dots, \varphi'(t_n(x)))$$
$$= \overline{f_i^n}(\varphi(t_1(t)), \dots, \varphi(t_n(t))) = \varphi(f_i^n(t_1(t), \dots, t_n(t))) = \varphi(u(t))$$

由项集 T 的分层性及 1° 和 2° 归纳可知题中命题成立.

练习 18. 1. 设 K 中的 $C = \{c_1\}$, $F = \{f_1^1, f_1^2, f_2^2\}$, $R = \{R_1^2\}$. 它的一个解释域是 $\mathbb{N} = \{0, 1, 2, \cdots\}$, $\overline{c_1} = 0$, $\overline{f_1^1}$ 是后继函数, $\overline{f_1^2}$ 是 +, $\overline{f_2^2}$ 是 ×, $\overline{R_1^2}$ 是 =. 试对以下公式分别找出 $\varphi, \psi \in \Phi_{\mathbb{N}}$, 使 $|p|(\varphi) = 1$, $|p|(\psi) = 0$, 其中 p 为:

- $3^{\circ} \neg R_1^2(f_2^2(x_1, x_2), f_2^2(x_2, x_3)).$
- $4^{\circ} \ \forall x_1 R_1^2(f_2^2(x_1, x_2), x_3).$
- $5^{\circ} \ \forall x_1 R_1^2(f_2^2(x_1, c_1), x_1) \to R_1^2(x_1, x_2).$

数理逻辑基础 作业 8 傅申 PB20000051

解: 3° 取 φ 满足 $\varphi(x_1) \neq \varphi(x_3)$ 且 $\varphi(x_2) = 0$ 即可, 比如 $\varphi(x_1) = 1, \varphi(x_2) = 1, \varphi(x_3) = 2$.

取 ψ 满足 $\psi(x_1) = \psi(x_3)$ 或 $\psi(x_2) = 0$ 即可, 比如 $\psi(x_1) = 1$, $\psi(x_2) = 0$, $\psi(x_3) = 1$.

 4° 取 φ 满足 $\varphi(x_2) = \varphi(x_3) = 0$ 即可, 比如 $\varphi(x_1) = \varphi(x_2) = \varphi(x_3) = 0$.

取 ψ 满足 $\psi(x_2)$ 和 $\psi(x_3)$ 不同时为 0 即可, 比如 $\psi(x_1) = 0, \psi(x_2) = 1, \psi(x_3) = 1.$

5° 公式在该解释域中恒真,所以对所有的 φ 都有 $|p|(\varphi)=1$,比如 $\varphi(x_1)=\varphi(x_2)=0$.

不存在 $\psi \in \Phi_{\mathbb{N}}$ 使得 $|p|(\psi) = 0$.

练习 18. 2. 已知 K 中 $C = \{c_1\}$, $F = \{f_1^2\}$, $R = \{R_1^2\}$, 还已知 K 的解释域 \mathbb{Z} (整数集), $\overline{c_1} = 0$, $\overline{f_1^2}$ 是 减法, $\overline{R_1^2}$ 是 "<". 试给出 $\varphi, \psi \in \Phi_{\mathbb{Z}}$, 使 $|p|(\varphi) = 1$, $|p|(\psi) = 0$, 其中 p 为:

- $3^{\circ} \neg R_1^2(x_1, f_1^2(x_1, f_1^2(x_1, x_2))).$
- $4^{\circ} \ \forall x_1 R_1^2(f_1^2(x_1, x_2), x_3).$
- $5^{\circ} \ \forall x_1 R_1^2(f_1^2(x_1, c_1), x_1) \to R_1^2(x_1, x_2).$

解: 3° 取 φ 满足 $\varphi(x_1) \ge \varphi(x_2)$ 即可, 比如 $\varphi(x_1) = \varphi(x_2) = 0$.

取 ψ 满足 $\psi(x_1) < \psi(x_2)$ 即可, 比如 $\psi(x_1) = 1, \psi(x_2) = 2$.

 4° 公式在该解释域中恒假, 所以不存在 $\varphi \in \Phi_{\mathbb{Z}}$ 使得 $|p|(\varphi) = 1$.

对所有的 ψ 都有 $|p|(\psi) = 0$, 比如 $\psi(x_1) = \psi(x_2) = \psi(x_3) = 0$.

 5° 公式在该解释域中恒真, 所以对所有的 φ 都有 $|p|(\varphi)=1$, 比如 $\varphi(x_1)=\varphi(x_2)=0$.

不存在 $\psi \in \Phi_{\mathbb{N}}$ 使得 $|p|(\psi) = 0$.

练习 20. 2. 设 $K + C = \{c_1\}, F = \{f_1^2\}, R = \{R_1^2\}, \text{ 还已知 } K \text{ 的解释域 } \mathbb{Z} \text{ (整数集), } \overline{c_1} = 0, \overline{f_1^2} \text{ 是减 } \text{ 法, } \overline{R_1^2} \text{ 是 "<". 求 } |p|_{\mathbb{Z}}, \text{ 其中 } p \text{ 为:}$

- $3^{\circ} \forall x_1 \forall x_2 \forall x_3 (R_1^2(x_1, x_2) \to R_1^2(f_1^2(x_1, x_3), f_1^2(x_2, x_3))).$
- $4^{\circ} \ \forall x_1 \exists x_2 R_1^2(x_1, f_1^2(f_1^2(x_1, x_2), x_2)).$

解: 3° 因为对任意的 $\varphi \in \Phi_{\mathbb{Z}}$, $\varphi(x_1) < \varphi(x_2)$ 和 $\varphi(x_1) - \varphi(x_3) < \varphi(x_2) - \varphi(x_3)$ 同为真或同为假, 就有 $|R_1^2(x_1, x_2) \to R_1^2(f_1^2(x_1, x_3), f_1^2(x_2, x_3))|(\varphi) = 1$, 得到 $|R_1^2(x_1, x_2) \to R_1^2(f_1^2(x_1, x_3), f_1^2(x_2, x_3))|_{\mathbb{Z}} = 1$, 所以 $|p|_{\mathbb{Z}} = 1$.

 4° 因为对任意的 $\varphi \in \Phi_{\mathbb{Z}}$, 总是存在 φ 的 x_2 变通 $\varphi' : \varphi'(x_2) < 0$ 使得

$$\varphi'(x_1) < (\varphi'(x_1) - \varphi'(x_2)) - \varphi'(x_2) = \varphi'(x_1) - 2\varphi'(x_2)$$

即 $|\exists x_2 R_1^2(x_1, f_1^2(f_1^2(x_1, x_2), x_2))|(\varphi) = 1$, 得到 $|\exists x_2 R_1^2(x_1, f_1^2(f_1^2(x_1, x_2), x_2))|_{\mathbb{Z}} = 1$, 所以 $|p|_{\mathbb{Z}} = 1$.