MATH 425a ASSIGNMENT 3 SOLUTIONS FALL 2015 Prof. Alexander

These solutions are for the individual use of Math 425a students and are not to be distributed outside that group.

Rudin Chapter 2:

- (5) $\left\{\frac{1}{n}, 1 + \frac{1}{n}, 2 + \frac{1}{n} : n \ge 2\right\}$ is one example. Its limit points are $\{0, 1, 2\}$.
- (7)(b) Since $A_i \subset B$, for each i we have $A_i \subset B \subset \overline{B}$ and $A'_i \subset B' \subset \overline{B}$. Therefore $\overline{A_i} = A_i \cup A'_i \subset \overline{B}$. Since this is true for all i, we have $\bigcup_{i=1}^{\infty} \overline{A_i} \subset \overline{B}$.
- (8) If E is open and $x \in E$, there is a neighborhood $N_r(x) \subset E$. For all $s \leq r$, $N_s(x)$ contains points other than x and all these points are in E. For s > r, $N_s(x)$ contains $N_r(x)$ which in turn contains points other than x, and again these points are in E. This shows all neighborhoods of x contain points of E other than x, so x is a limit point of E.
- (9)(a) Suppose $x \in E^{\circ}$. This means there is a neighborhood $N_r(x) \subset E$. By 2.19, $N_r(x)$ is open, so given $y \in N_r(x)$ there is a radius s such that $N_s(y) \subset N_r(x) \subset E$. This shows that $y \in E^{\circ}$, and then since $y \in N_r(x)$ is arbitrary, we get that $N_r(x) \subset E^{\circ}$. Therefore E° is open.
- (c) Suppose $G \subset E$ and G is open. If $x \in G$, then x has a neighborhood contained in G, so this neighborhood is also contained in E. This means $x \in E^{\circ}$. Thus $G \subset E^{\circ}$.
- (11) d_1 is not a metric. For example, consider the points 0, 1, 2. We have $d_1(0, 1) = d_1(1, 2) = 1$ but $d_1(0, 2) = 4$, so $d_1(0, 2) > d_1(0, 1) + d_1(1, 2)$ and the triangle inequality fails.

 d_3 is not a metric. For $x \neq 0$ we have $d_3(x, -x) = 0$ but $x \neq -x$.

 d_4 is not a metric. For $x \neq 0$ we have $d_4(2x, x) = 0$ but $2x \neq x$.

 d_2 is a metric. It is clear that $d_2(x,x)=0$ and $d_2(x,y)=d_2(y,x)$ for all x,y. To prove the triangle inequality, first observe that for $a,b\geq 0$ we have $(\sqrt{a}+\sqrt{b})^2=a+2\sqrt{ab}+b\geq a+b$ so $\sqrt{a+b}\leq \sqrt{a}+\sqrt{b}$. Using this and the triangle inequality for Euclidean distance, we see that for $x,y,z\in\mathbb{R}$,

$$\sqrt{|x-y|} \le \sqrt{|x-z| + |z-y|} \le \sqrt{|x-z|} + \sqrt{|z-y|},$$

which shows the triangle inequality holds for d_2 .

Handout:

(I)(a) Suppose x is not a limit point of any A_i . Then for each $i \leq n$, there is a radius $r_i > 0$ such that $N_{r_i}(x)$ contains no points of A_i except possibly x itself. Let $r = \min\{r_i : i \leq n\}$.

Then $N_r(x)$ contains no points of $\bigcup_{i=1}^n A_i$, except possibly x itself. Thus x is not a limit point of $\bigcup_{i=1}^n A_i$.

- (b) Part (a) says "if $x \in (\bigcup_{i=1}^n A_i')^c$ then $x \in (B')^c$, or $(\bigcup_{i=1}^n A_i')^c \subset (B')^c$. Taking complements shows this is also equivalent to $B' \subset \bigcup_{i=1}^n A_i'$.
- (c) From (b) and the definition of B we have $(\bigcup_{i=1}^n A_i) \cup (\bigcup_{i=1}^n A_i') \subset B' \cup B$, or equivalently, $\bigcup_{i=1}^n \overline{A_i} \subset \overline{B}$.
- (II) Choose r, s > 0 with $r + s \le d(x, y)$. Then for $z \in N_r(x)$, from the triangle inequality we have $d(z, y) \ge d(x, y) d(x, z) \ge d(x, y) r \ge s$, so $z \notin N_s(y)$. This shows $N_r(x) \cap N_s(y) = \emptyset$.
- (III) For each point $x \in F$, x is isolated so there is a radius $\delta_x > 0$ such that $N_{\delta_x}(x) \cap F = \{x\}$. This mean that for $x, y \in F$ we have $d(x, y) \geq \delta_x$ and $d(x, y) \geq \delta_y$, and therefore (*) $d(x, y) \geq (\delta_x + \delta_y)/2$. The neighborhoods $N_{\delta_x}(x)$ are not necessarily disjoint, but we can let $r_x = \delta_x/2$. By (*), we then have $d(x, y) \geq r_x + r_y$ for all x, y in F with $x \neq y$. By the solution of problem (II), this shows $N_{r_x}(x)$ and $N_{r_y}(y)$ are disjoint for all $x \neq y$ in F.
- (IV) Since $A \subset F$ and F is closed, we have $A' \subset F' \subset F$, so $\overline{A} = A \cup A' \subset F$.
- (V)(a) $E_n = [n, \infty)$ is one example.
 - (b) $E_1 = \emptyset$, $E_n = \left[\frac{1}{n}, 1 \frac{1}{n}\right]$ for $n \ge 2$ is one example. The union is (0, 1).