

SITUATION

Pour démontrer des propriétés sur les suites, en particulier sur les suites définies par récurrence, on est parfois conduit à utiliser la démonstration par récurrence. Si une propriété est vraie à un premier rang noté n_0 et est héréditaire, alors elle est vraie pour tout entier n supérieur ou égal à n_0 .

ÉNONCÉ

Soit (u_n) la suite définie par son premier terme $u_0=1$ et pour tout entier naturel n par :

$$u_{n+1} = u_n^2 + rac{1}{2}$$

Montrer que l'on a, pour tout entier n, $u_n\geqslant 1$.

Etape 1

Identifier la propriété à démontrer

On précise que l'on va démontrer par récurrence que, pour tout entier naturel n (ou pour tout entier $n\geqslant n_0$), une propriété $P\left(n\right)$ est vraie.

APPLICATION

On montre par récurrence que pour tout entier naturel \emph{n} , on a $u_n\geqslant 1$.

Etape 2

Écrire l'initialisation

On démontre que la propriété est vérifiée au premier rang demandé (en général il s'agit du rang n=0).

APPLICATION

Comme $u_0=1$, on a bien :

 $u_0\geqslant 1$

La propriété est initialisée.

Etape 3

Écrire l'hérédité

On fixe un entier naturel n quelconque. On suppose la propriété vraie à ce rang n. On montre alors que la propriété est vraie au rang n+1. Pour cela, on utilise :

- L'hypothèse de récurrence : on a supposé $P\left(n\right)$ vraie.
- Une relation de récurrence : lorsqu'une suite est définie par récurrence, il existe un lien entre l'expression du rang n+1 de la suite et celle du rang n.

APPLICATION

Soit n un entier naturel, on suppose que $u_n\geqslant 1$. On montre alors que $u_{n+1}\geqslant 1$.

La relation de récurrence est la suivante :

$$u_{n+1} = u_n^2 + rac{1}{2}$$

Or, on a:

 $u_n\geqslant 1$

Donc:

$$u_n^2\geqslant 1$$

Et, comme $\frac{1}{2}\geqslant 0$:

$$u_n^2+rac{1}{2}\geqslant 1+0$$

Donc:

 $u_{n+1}\geqslant 1$

La propriété est héréditaire.

Etape 4

Écrire la conclusion

La propriété est initialisée et héréditaire ; elle est donc vraie pour tout entier naturel n (éventuellement $n \geqslant n_0$ en fonction du rang de l'initialisation).

APPLICATION

La propriété est initialisée et héréditaire ; elle est donc vraie pour tout entier naturel *n*.

Ainsi, pour tout entier naturel $n\colon u_n\geqslant 1$.