实验 10 压杆稳定性实验

姓名: 邹佳驹

学号: 12012127

同组人: 刘鸿磊

1. 实验目的

- 1)用电测法测定两端较支压杆的临界载荷 P_{cr} ,并与理论值进行比较,验证欧拉公式
- 2)观察两端铰支压杆丧失稳定的现象

2. 实验仪器设备和工具

- 1)材料力学组合实验台中压杆稳定实验部件:
- 2)力&应变综合参数测试仪:
- 3)游标卡尺、钢板尺。

3. 实验原理和方法

对于两端较支,中心受压的细长杆其临界力可按欧拉公式计算:

$$P_{cr} = \frac{\pi^2 E I_{min}}{L^2}$$

 $I_{min} = \frac{bh^3}{12}$,杠杆横截面的最小惯性矩

L, 压杆的计算长度

AB 水平线与 P 轴相交的 P 值,即为依据欧拉公式计算所得的临界力 P_{cr} 的值。

在 A 点之前,当 $P < P_{cr}$ 时压杆式中保持直线形式,处于稳定平衡状态。 在 A 点, $P = P_{cr}$ 时,标志着压杆丧失稳定平衡的开始,压杆可在微弯的状态下维持平衡。 在 A 点之后,当 $P > P_{cr}$ 时压杆将丧失稳定而发生弯曲变形。

因此, P_{cr} 是压杆由稳定平衡过渡到不稳定平衡的临界力。实际实验中的压杆,由于不可避免地在在初曲率,材料不均匀和载荷偏心等因素影响,由于这些影响,在 P_{cr} 时,压杆也会发生微小的弯曲变形,只是当 P_{cr} 时弯曲变形会突然增大而丧失稳定。

实验测定 P_{cr} 时,可采用材料力学多功能试验装置中压杆稳定试验部件,该装置上、下支座为 V 型槽口,将带有圆弧尖端的压杆装入支座中,在外力的作用下,通过能上下活动的上支座 对压杆施加截荷,压杆变形时,两端能自由地绕 V 型口转动,即相当于两端饺支的情况。利用电测法在压杆中央两侧各贴一枚应变片 R1 和 R2,如图(a)所示。

假设压杆受力后如图标向右弯曲情况下,以 ϵ_1 和 ϵ_2 分别表示应变片 R1 和 R2 左右两点的应变值,此时, ϵ_1 是由<u>轴向压应变</u>与<u>弯曲产生的拉应变</u>之代数和, ϵ_2 则是由<u>轴向压应变</u>与<u>弯曲</u>产生的压应变之代数和。

当 $P << P_{cr}$ 时,压杆几乎不发生任何弯曲变形, ε_1 和 ε_2 均为轴向压缩引起的压应变,两者相等;

当载荷 P 增大时,弯曲应变 ε_1 则逐渐增大, ε_1 和 ε_2 的差值也愈来愈大;

当载荷 P 接近临界力 P_{cr} 时,二者相差更大,而 ε_1 变成为拉应变。

故无论 ε_1 还是 ε_2 ,当载荷 P 接近临界力 P_{cr} 时,均急剧增加。如用横坐标代表载荷 P,纵坐标代表压应变 ε ,则压杆的 P- ε 关系曲线如图 b 所示。从图中可以看出,当 P 接近 P_{cr} 时,P- ε_1 和 P- ε_2 曲线都接近同一水平渐近线,A 点对应的横坐标大小即为实验临界压力值。

4. 实验步骤

- 1)设计好本实验所需的各类数据表格
- 2)测量试件尺寸。在试件标距范围内,测量试件三个横截面尺寸,取三处横截面的宽度 b 和厚度 h,取其平均值用于计算横截面的最小惯性矩 lmin。
- 3) 拟定加载方案。加载前用欧拉公式求出压杆临界压力 Pcr 的理论值,在预估临界力值的80%以内,可采用等级加载,进行载荷控制。

例如可以分成 4~5 级加载,载荷每增加一个ΔP,记录响应的应变值一次,超过此范围后,当接近失稳时,变形量快速增加,此时载荷量应取小些,或者改为变形量控制加载,即变形每增加一定的数量读取响应的载荷,直到ΔP 的变化很小,渐近线的趋势已经明显为止。

- 4) 根据加载方案, 调整好实验加载装置。
- 5) 按实验要求接好线, 调整好仪器, 检查整个系统是否处于正常工作状态.
- 6) 加载分成三个阶段, 在达到理论临界载荷 Pcr 的 80%之前, 由载荷控制, 均匀缓慢加载, 每增加一级载荷, 记录两点应变值 ϵ_1 和 ϵ_2 ;超过理论临界载荷 80%以后, 由变形控制每增加一定的应变量读取相应的载荷值。当试件的弯曲变形明显时即可停止加载。卸掉载荷。实验至少重复两次。
- 7) 作完试验后,逐级卸掉载荷,仔细观察生活间的变化,直到试件回弹至初始状态。关闭电源,整理好所用仪器设备,清理实验现场,将所用仪器设备复原,实验资料交指导教师检查签字。

5. 实验数据记录与处理

1. 试件测量

试件参数及有关资料	截面Ⅰ	截面Ⅱ	截面Ⅲ	平均值				
厚度h(mm)	1.98	2.05	2.02	2.017				
宽度b(mm)	19.8	19.99	19.95	19.91				
长度L(mm)	320							
最小惯性矩	Imin=1.3614*10^-11							
弹性模量	E=210GPa							

2. 实验数据

载荷P/N	应变2/με	应变1/με	载荷P/N	应变2/με	应变1/με	载荷P/N	应变2/με	应变1/με
12	-4	1	185	-175	131	217	-333	287
16	-5	1	186	-177	134	218	-338	291
18	-7	2	188	-182	140	219	-350	302
22	-8	2	190	-185	143	225	-414	365
23	-9	2	191	-193	150	226	-420	371
54	-10	3	192	-196	152	227	-438	390
123	-28	14	194	-202	159	228	-445	395
128	-84	56	195	-206	162	229	-467	419
129	-80	50	196	-209	165	230	-488	441
147	-81	50	197	-217	172	231	-490	443
153	-105	73	199	-221	177	232	-512	464
160	-109	74	200	-226	182	233	-532	485
164	-120	83	201	-231	186	234	-550	502
165	-129	91	203	-239	195	235	-576	528
169	-129	91	204	-245	200	236	-602	555
167	-133	95	205	-251	206	237	-609	561
170	-136	98	206	-256	211	238	-637	589
171	-139	100	207	-261	215	239	-655	608
173	-142	101	209	-271	224	240	-702	656
175	-148	107	210	-276	230	241	-719	672
177	-150	110	211	-283	238	242	-750	700
178	-155	114	212	-289	243	243	-770	723
179	-159	118	213	-301	254	244	-824	776
182	-160	121	214	-311	264			
184	-168	125	216	-322	275			

3. 实验数据处理

1) 用方格纸绘出 $P-\varepsilon_1$ 和 $P-\varepsilon_2$ 曲线,以确定实测临界力 Pcr

值得注意的是, 在载荷小于 120N 时, 转动仪器进行加载时, 轻微转动加载杆都将引起载荷的较大变化, 图像中载荷约为 130N 时曲线的"凸起"就是因此产生。

2) 理论临界力计算 P_{cr}

$$P_{cr\#} = \frac{\pi^2 E I_{min}}{L^2} = \frac{\pi^2 \times 210 \times 10^9 \times \frac{0.01991 \times 0.002017^3}{12}}{0.32^2} = 275.57N$$

3) 实验值与理论值比较, 误差百分率(%)

$$Error = \frac{\left| P_{cr \cancel{Z}} - P_{cr \cancel{Z}} \right|}{P_{cr \cancel{Z}}} = \frac{\left| 275.57 - 260 \right|}{260} \times 100\% = 5.988\%$$

与理论值相比, 实验测量值偏小。

如果实验中继续增大载荷,所得到的载荷-应变曲线将更加向右偏移,即更加靠近理论计算值,但实际实验中,最大载荷仅增加到 244N,所以所得实验值小于理论值。