Machine learning algorithms

Linear regression 1

2020-09-25

CSCI 471 / 571, Fall 2020 Kameron Decker Harris

What is ML?

Data + Optimization + Statistics → Predictions

Examples of ML applications

- Let's list some examples together o home assistant - learn from your behavior purchasing voice · targeted ads o self-driving cars — identify obstacles/objects — model cars around it o classify species i Northralist
 - o evolutionary embodied vobots/simulated organism
 - · optimize airflow w/ feedback
 - · Character recognition

odenoising fouch-up" o conversation bots

Famous recent ML successes

Image classification

(CIFAR 100 data)

AlphaGo

Wikimedia commons Dilaudid

fuy

ML in data analysis

Ex: network reconstruction

x: source expression

y: target expression

<u>Goal</u>

Find unknown weight matrix W so

ML for neuroscience

Harris et al., 2020

Hochberg et al., (2012)

Goals for the quarter

Goals for the quarter

- Understand important, existing algorithms
 - Theoretical grounding
 - Implementation in code

Goals for the quarter

- Understand important, existing algorithms
 - Theoretical grounding
 - Implementation in code
- General principles of ML
 - Tradeoffs, scalability, uncertainty
 - Building blocks of cutting-edge algorithms

Data

(ensus

F	G	Н	I	J
STNAME	CTYNAME	CENSUS2000POP	ESTIMATESBASE2000	POPESTIMATE2000 I
Alabama	Alabama	4447100	4447382	4451849
Alabama	Autauga County	43671	43671	43872
Alabama	Baldwin County	140415	140415	141358
Alabama	Barbour County	29038	29038	29035
Alabama	Bibb County	20826	19889	19936
Alabama	Blount County	51024	51022	51181
Alabama	Bullock County	11714	11626	11604
Alabama	Butler County	21399	21399	21313
Alabama	Calhoun County	112249	112243	111342
Alabama	Chambers County	36583	36614	36593
Alabama	Cherokee County	23988	23986	24053

3

Color
Red
Red
Yellow
Green
Yellow

Data

F	G	Н	I	J
STNAME	CTYNAME	CENSUS2000POP	ESTIMATESBASE2000	POPESTIMATE2000
Alabama	Alabama	4447100	4447382	4451849
Alabama	Autauga County	43671	43671	43872
Alabama	Baldwin County	140415	140415	141358
Alabama	Barbour County	29038	29038	29035
Alabama	Bibb County	20826	19889	19936
Alabama	Blount County	51024	51022	51181
Alabama	Bullock County	11714	11626	11604
Alabama	Butler County	21399	21399	21313
Alabama	Calhoun County	112249	112243	111342
Alabama	Chambers County	36583	36614	36593
Alabama	Cherokee County	23988	23986	24053

One-hot

Color	Red	Yellow	Green
Red			
Red	1	0	0
Yellow	1	0	0
Green	0	1	0
Yellow	0	0	1

ML Taxonomy

Supervised lea Data ets hav	rning (.o	. image	classification	1 (cat dog
Data pts hav Goal: given	re labels	w/o label) L. Ovedict	•
- classificat	ion, catego	rical (tree (false, co	lars)
- regression	, just #'s	(real)	*	* * * * * * * * * * * * * * * * * * * *
unsupervised No labels	learning	ix Xi		× /
Groal: describ	e structure	2 custe	No.	00
- manifold - probability	learning	X	7,2	

Data as vectors

	Population	Income
Town 1	1	2
Town 2	2	0
Town 3	2	-1

$$||x|| = \sqrt{\sum_{i=1}^{d} x_i^2} = ||x||_2 ^2 - norm''$$

$$\begin{bmatrix} \times_1, \times_2 \end{bmatrix}$$

inner product "dot", "scalar"

duct
calar"
$$x^Ty = \sum_{i=1}^{d} x_i y_i$$

$$|A|_{2} = |A|_{2} = |A|_$$

$$|| \times || = \sqrt{\times^{\tau} \times}$$

 $y = \beta_1 \times + \beta_0 = f(x)$ linear fit x (predictor) How to measure goodness of fix? $y - y = \beta_1 \times + \beta_0 - \beta_1 \times + \beta_0$ Squared error (y-y)2 Pick Bo, B, so that 5 ((B,x,+Bo)-y;)2 -s min in d-dimensions $f(x) = \beta_0 + \beta_1 \times_1 + \beta_2 \times_2 + \cdots + \beta_d \times_d$ Z= (x,TB-y;)2= ||XB-y||2 vectors

$$X = \begin{bmatrix} -x_1 - \\ -x_2 - \end{bmatrix}$$

$$N \times d \quad \text{matrix of data}$$

$$N = \# \text{ data pts}$$

$$d = \text{ dimension}$$

$$X_n - J$$

$$X\beta - y = \begin{bmatrix} x_1^T \beta - y_1 \\ x_2^T \beta - y_2 \end{bmatrix}$$
 nx1 vector of residuals