Graph Theory

Daniel Mao

Copyright \bigodot 2020 Daniel Mao All Rights Reserved.

Contents

1	Graph Basics	1		
2	Trees 2.1 Definitions	3 3		
3	Graph Isomorphism			
	3.1 Definitions	5		
	3.2 Properties	5		
4		7		
	4.1 Matching	7		
	4.2 Cover	7		
	4.3 Relations Between Matchings and Covers	8		
5	Bipartite Graphs	9		
	5.1 Definitions	9		
	5.2 Characterizations	9		
6	Planar Graphs	11		
	6.1 Definitions	11		
	6.2 Properties	11		
	6.3 Numerology	11		
7	Duality	13		
	7.1 Definitions	13		
8	Graph Coloring			
	8.1 Chromatic Number	15		
	8.2 5-color Theorem	15		
9	Probability and Edge Density	19		

ii CONTENTS

Graph Basics

Definition (Spanning Subgraph). Let G = (V, E) be a graph. Let H = (W, F) be a subgraph of G. We say that H is **spanning** if W = V. i.e., if H contains all vertices of G.

Trees

2.1 Definitions

Definition (Spanning Tree). Let G = (V, E) be a graph. Let H = (W, F) be a subgraph of G. We say that H is a **spanning tree** if H is a spanning subgraph of G and is a tree.

2.2 Properties

Proposition 2.2.1. A graph is connected if and only if it has a spanning tree.

Graph Isomorphism

3.1 Definitions

Definition (Isomorphism). Let G and H be two graphs. We define an **isomorphism** from G to H to be a function f from V(G) to V(H) such that

- f is bijective, and that
- for any pair of vertices $v, w \in V(G)$, $f(v)f(w) \in E(H)$ if and only if $vw \in E(G)$.

i.e., a bijective function that both itself and its inverse preserve adjacency.

Definition (Isomorphic). Let G and H be two graphs. We say that G and H are **isomorphic**, denoted by $G \simeq H$, if there exists an isomorphism from G to H.

Proposition 3.1.1. The relation simeq of isomorphism is an equivalence relation. That is, it is reflexive, symmetric, and transitive.

3.2 Properties

Proposition 3.2.1. Let G and H be isomorphic graphs with isomorphism f. Then for any vertex $v \in V(G)$, we have $\deg_G(v) = \deg_H(f(v))$.

Matchings and Covers

4.1 Matching

Definition (Matching). Let G = (V, E) be a graph. Let M be a subset of E. We say that M is a **matching** in G if every vertex in the spanning subgraph (V, M) has degree at most one.

Definition (Saturated). Let (G = (V, E) be a graph. Let M be a subset of E. Let v be a vertex of G. We say that v is M-saturated if $\deg(v) = 1$ in (V, M).

Definition (Maximal Matching). Let G = (V, E) be a graph. Let M be a subset of E(G). We say that M is a **maximal matching** if it is a matching in G and any other matching is not a superset of it.

Definition (Maximum Matching). Let G = (V, E) be a graph. Let M be a subset of E(G). We say that M is a **maximum matching** if it is a matching in G and any other matching contains edges no more than M.

Definition (Perfect Matching). Let G = (V, E) be a graph. Let M be a subset of E(G). We say that M is a **perfect matching** if it matches all vertices of the graph. i.e., any vertex in G is incident to some edge in M.

Proposition 4.1.1. Every maximum matching is maximal.

Proposition 4.1.2. Every perfect matching is maximum.

Proposition 4.1.3. Let G = (V, E) be a graph. Let A and B be two maximal matchings of G. Then both $|A| \leq 2|B|$ and $|B| \leq 2|A|$.

4.2 Cover

Definition (Cover). Let G = (V, E) be a graph. Let C be a subset of V. We say that C is a **cover** of G if any edge has an end in C.

4.3 Relations Between Matchings and Covers

Proposition 4.3.1. Let G = (V, E) be a graph. Let M be a matching of G. Let C be a cover of G. Then $|M| \leq |C|$.

Bipartite Graphs

5.1 Definitions

Definition (bipartition). Let G = (V, E) be a graph. Let A and B be two subsets of V. We say the pair (A, B) is a **bipartition** if

Definition (Bipartite). Let G = (V, E) be a graph. We say that G is bipartite if there exists a bipartition of G.

5.2 Characterizations

Proposition 5.2.1. A graph is bipartite if and only if it has no odd cycles.

Planar Graphs

6.1 Definitions

Definition (Plane Embedding). Let G(V, E, B) be an undirected multigraph. A plane embedding of G is a pair of sets (\mathcal{P}, Γ) such that

6.2 Properties

Proposition 6.2.1. Every subgraph of a planar graph is planar.

Proposition 6.2.2. A multigraph is planar if and only if its simplification is planar.

Proposition 6.2.3. Let G be a multigraph and e be an edge in G. Then G is planar if and only if $G \bullet e$ is planar.

Theorem 1. A multigraph is planar if and only if it does not contain a repeated subdivision of K_5 or $K_{3,3}$ as a subgrph.

6.3 Numerology

Definition (Footprint). Let G(V, E, B) be a planar multigraph. Let (\mathcal{P}, Γ) be a plane embedding of the graph. We define the **footprint** of G, denoted by fp(G), to be the union of the points and curves in \mathbb{R}^2 representing the vertices and edges in G.

Definition (Face). Let G(V, E, B) be a planar multigraph. Let (\mathcal{P}, Γ) be a plane embedding of the graph. We define a **face** of (\mathcal{P}, Γ) to be a connected component of the set $\mathbb{R}^2 \setminus fp(G)$.

Definition (Degree). Let G(V, E, B) be a planar multigraph. Let (\mathcal{P}, Γ) be a plane embedding of the graph. We define the **degree** of a face to be the sum of the number of edges and the number of bridges in its boundary.

Proposition 6.3.1. An edge e in a planar multigraph is a bridge if and only if the two faces on either side of the curve γ_e are the same.

Duality

7.1 Definitions

Definition (Dual Graph). Let G = (V, E, B) be a multigraph. Let (\mathcal{P}, Γ) be a plane embedding of G. Let \mathcal{F} be the set of faces of G. We define the **dual graph** of this embedding to be the multigraph $G^* = (V^*, E^*, B^*)$ where $V^* = \mathcal{F}$ and $E^* = \{e^* : e \in E\}$.

Proposition 7.1.1. Let G = (V, E, B) be a multigraph. Let (\mathcal{P}, Γ) be a plane embedding of G. Let $(G^* = (V^*, E^*, B^*)$ be the dual graph of G. Then for any face $f \in \mathcal{F}$, the degree of f as a face of \mathcal{P}, Γ equals the degree of f as a vertex of G^* .

Proposition 7.1.2. If G is a connected multigraph embedded in the plane, then G^{**} is isomorphic with G.

Graph Coloring

8.1 Chromatic Number

Definition ((Proper) Coloring). Let G = (V, E) be a graph. Let X be a finite set of colors. We define a **(proper)** X-coloring of G to be a function $f: V \to X$ such that if $vw \in E$, then $f(v) \neq f(w)$.

Definition (Chromatic Number). Let G = (V, E) be a graph. Let X be a finite set of colors. We define the **chromatic number** of G, denoted by $\chi(G)$, to be the smallest natural number $k \in \mathbb{N}$ for which G has a (proper) k-coloring.

Proposition 8.1.1. The chromatic number exists and $\chi(G) \leq |V|$.

Proof. Take X = V.

Proposition 8.1.2. G is complete if and only if $\chi(G) = |V(G)|$.

Proposition 8.1.3. The only graph with chromatic number zero is the empty graph.

Proposition 8.1.4. A graph has chromatic number one if and only if it has no edges and at least one vertex.

Proposition 8.1.5. A graph has chromatic number two if and only if it is bipartite and has at least one edge.

Proposition 8.1.6. Let G be a graph. Let $d_{max}(G)$ be the maximum degree of a vertex in G. Then $\chi(G) \leq 1 + d_{max}(G)$.

8.2 5-color Theorem

Theorem 2. Every planar graph is 5-colorable.

Proof. (1890)

True for $|V| \leq 5$.

Inductively, suppose the theorem holds for planar graphs on n-1 vertices for $n \geq 5$. Suppose G is a planar graph on n vertices.

Let v be a vertex of degree ≤ 5 in G. This exists by a lemma in our lectures.

Since G is a planar, G-v is planar. By the induction hypothesis, G-v has a 5-coloring.

If some color does not appear on any neighbor of v, we can extend the coloring to a coloring of G.

Otherwise, v has exactly 5 neighbors with different colors.

For each pair i, j of colors, let G_{ij} be the subgraph of G - v induced by the vertices colored i or j.

If the component H of G_{ij} containing x_i does not contain x_j , then we can switch the colors of all vertices in H between i and j to get a coloring of G - v that assigns only 4 colors to neighbors of v, and thus extends to a coloring of G.

So G_{ij} contains a path from x_i to x_j .

Because $G_{2,5}$ and $G_{1,4}$ have disjoint vertex sets, this contradicts the planarity of G.

Definition (Near-triangulation). Planar drawing of G where the infinite face is bounded by a cycle, and every other face is bounded by a triangle

Theorem 3. Every planar near-triangulation has a 5-coloring.

Theorem $3 \implies$ Theorem 2.

Definition (List Assignment). A list assignment L of G is a function that assigns a set L(v) of colors to each $v \in V$.

Definition (L-coloring). An L-coloring of G is a choice of a color in L(v) for each $v \in V$ such that adjacent vertices get different colors.

Definition (5-list-colorable). A graph is **5-list-colorable** if for every list assignment L of G with $|L(v)| \ge 5$, G is L-colorable.

Theorem 4. Every planar near-triangulation is 5-list-colorable.

Theorem $4 \implies$ Theorem 3 because coloring is a special case of list coloring.

Theorem 5 (Carsten Thomassen, 1993). If G is a near-triangulation and L is a list assignment such that

- (1) |L(v)| = 5 for every non-boundary vertex,
- (2) |L(v)| = 3 for every boundary vertex.

Then G has an L-coloring even if two adjacent boundary vertices have their colors arbitrarily decided in advance.

Proof.

Case 1. There is a "chord" between two boundary vertices.

Let G_1 and G_2 be subgraph of G obtained by "cutting" G along the chord, where G_1 contains the pre-colored vertices.

By applying the inductive hypothesis to G_1 , and then applying it to G_2 with the two ends of the chord pre-colored according to the coloring of G_1 , we get a coloring of G_1 .

Case 2. There is no chord.

Let u and u' be the pre-colored vertices.

Let x, y be the next two vertices occurring in order around the boundary.

Theorem $5 \implies$ Theorem 4.

Probability and Edge Density

Q: Let G be a graph on n vertices with no triangles. How many edges can G have?

Theorem 6 (Mantel). If G is triangle-free and has n vertices, then

$$|E| \le \frac{n^2}{4}.$$

Proof

Let $P_{2,1}$ denote the probability that a pair of distinct vertices chosen uniformly at random, are adjacent.

$$P_{2,1} = |E|/\binom{n}{2}.$$

Let $P_{3,2}$ denote the probability that a randomly chosen triple of vertices contains exactly two edges.

Let $P_{3,1}$ denote ... one edge.

Let $P_{3,0}$ denote ... no edges.

Notice $P_{3,2} + P_{3,1} + P_{3,0} = 1$.

claim (1).

$$P_{2,1} = \frac{2}{3}P_{3,2} + \frac{1}{3}P_{3,1}.$$

Proof. Notice that the graph is triangle-free. So $P_{3,3} = 0$. Choosing a pair at random is the same as choosing a triple at random, then choosing a pair at random within that triple.

For a fixed vertex v, let $Q_{v,1}$ denote the probability that a randomly chosen vertex $u \neq v$ is adjacent to v.

$$Q_{v,1} = \frac{deg(v)}{n-1}.$$

Let $Q_{v,2}$ denote the probability that two distinct randomly chosen vertices other than v are both adjacent to v.

$$Q_{v,2} = \binom{deg(v)}{2} / \binom{n-1}{2}.$$

claim (2).

$$Q_{v,1}^2 \approx Q_{v,2}$$
.

Proof. Both give (essentially) the probability that a pair x, y of vertices other than v are both adjacent to v. The LHS allows x = y. The RHS does not. But x = y occurs with negligible probability.

claim (3).

$$P_{2,1} = \frac{1}{n} \sum_{v} Q_{v,1}.$$

Proof. Both the RHS and LHS are just the probability of an edge between two vertices. The RHS calls the first chosen vertex v.

claim (4).

$$\frac{1}{3}P_{3,2} = \frac{1}{n}\sum_{v} Q_{v,2}.$$

Proof. Both sides give the probability that, if we choose 3 vertices at random, and then choose one among those 3 and call it v, that v is adjacent to both the others.

claim (Cauchy-Schwarz Inequality).

$$\langle x, y \rangle \le ||x|| ||y||.$$

Proof of the theorem.

Now

$$\begin{split} P_{2,1} &= \frac{2}{3} P_{3,2} + \frac{1}{3} P_{3,1} \ge \frac{2}{3} P_{3,2} \\ &= 2 \left(\frac{1}{n} \sum_{v} Q_{v,2} \right) \approx 2 \left(\frac{1}{n} \sum_{v} Q_{v,1}^{2} \right) \\ &\ge 2 \left(\frac{1}{n} \sum_{v} Q_{v,1} \right)^{2} = 2 P_{2,1}^{2}. \end{split}$$

So
$$P_{2,1} \le \frac{1}{2}$$
. So $|E| \le \frac{n^2}{4}$.

Q: If G has n vertices, no K_{t+1} -subgraph, how many edges can G have?

Theorem 7 (Turan). If G is a graph on n vertices with no K_{t+1} -subgraph, then

$$|E| \le \frac{n^2}{2} \left(1 - \frac{1}{t} \right).$$

Theorem 8 (Erdos-Stone). If H is a graph and G is a graph on n vertices without H as a subgraph, then

$$|E| \le \frac{n^2}{2} \left(1 - \frac{1}{\chi(H) - 1} + \varepsilon(n) \right)$$

where $\varepsilon(n) \to 0$ as $n \to \infty$ and $\chi(H)$ is the chromatic number of H, the fewest number of colors needed to properly color the vertices of H.