

28nm FD-SOI Synopsys Reference Flow Sign-Off Application Notes

Version 3.1

Digital Design Flows & Methodologies

January 2019

Revisions 2

Version	Date	Comment
3.1	January 2019	No Change. Alignment with PnR 3.1
3.0	October 2018	 No Change. Alignment with PnR 3.0
2.0	March 2018	 Updated EDA tools versions Vdd range is 0.8V to 1.2V OCV derate factors have to be applied on both gate delays and wire delays Updated hold data derates for PB0 & PB4 clock tree Updated Primetime settings Updated POCV PrimeTime settings
1.0	June 2017	Initial Version

Prerequisites: Documentation 3

- Please refer to the Foundation_Synopsys_TechnoKit_cmos028FDSOI User Manual for the description of the technology files
- Please refer to the 28nm FD-SOI Synopsys Reference Flow PnR **Application Notes** for information regarding Place-and-Route flow

EDA Tools Versions 4

 The 28nm FD-SOI Synopsys Reference Flow has been qualified with the following EDA tools

Sign-Off Step	EDA Tool & Version
Gate-Level RC Extraction	StarRC m-2017.06-sp2
Static Timing Analysis	PrimeTime m-2017.06-sp3-2
Power Analysis	PrimeTime-PX m-2017.06-sp3-2

• EDA tools versions used for flow execution are left up to user discretion

Gate-Level RC Extraction

8 Sign-Off Extraction Scenarios

#	RC	Т
1	SigCmin	max T
2	SigCmin	min T
3	SigCmax	max T
4	SigCmax	min T
5	SigRCmin	max T
6	SigRCmin	min T
7	SigRCmax	max T
8	SigRCmax	min T

28nm FD-SOI RC Corners Description

28nm FD-SOI RC Corners Summary

Nama	Description			
Name	Capacitance	Resistance		
SigCmin	Clateral MIN	Rwire MAX		
SigCmin	Cvertical MIN	Rvia MIN		
Sim Company	Clateral MAX	Rwire MIN		
SigCmax	Cvertical MAX	Rvia MAX		
SigPCmin	Clateral MAX	Rwire MIN		
SigRCmin	Cvertical MIN	Rvia MIN		
SigRCmax	Clateral MIN	Rwire MAX		
	Cvertical MAX	Rvia MAX		

Static Timing Analysis

16 Sign-Off STA Scenarios per timing mode 10

#	Р	V	Т	RC
1	ff28	max V	max T	SigCmin
2	ff28	max V	min T	SigCmin
3	ff28	max V	max T	SigCmax
4	ff28	max V	min T	SigCmax
5	ff28	max V	max T	SigRCmin
6	ff28	max V	min T	SigRCmin
7	ff28	max V	max T	SigRCmax
8	ff28	max V	min T	SigRCmax
9	ss28	min V	max T	SigCmin
10	ss28	min V	min T	SigCmin
11	ss28	min V	max T	SigCmax
12	ss28	min V	min T	SigCmax
13	ss28	min V	max T	SigRCmin
14	ss28	min V	min T	SigRCmin
15	ss28	min V	max T	SigRCmax
16	ss28	min V	min T	SigRCmax

Max. transition constraint on clock

- The maximum transition check on clock depends on the operating voltage
- In case of multiple operating voltages, it is required to check the max. transition on clock only at the lowest voltage

Voltage	Clock Max. Transition Constraint
0.95 V	150 ps
0.90 V	160 ps
0.85 V	170 ps
0.80 V	200 ps

Clock Tree Implementation Rules 12

Criteria	Value	
Maximum clock transition	See previous slides	
Clock tree cells	Only balanced clock cells (*CN* cells)	
CTS	Only inverters	
Vth	No Vth mix	
VIII	Use fastest Vth*	
Doly Pigging	No Poly Biasing mix	
Poly Biasing	Use fastest PB*	
Minimum drive strength allowed	X9	
Maximum drive strength allowed (EMG constraints)	X70	

* Recommended

28nm FD-SOI OCV / POCV Strategy 13

Both OCV and POCV can be used for 28nm FD-SOI Sign-Off STA

- For OCV Sign-Off STA
 - Use derating factors from <u>slide #13</u> in case of PB0 clock tree
 - Use derating factors from slide #14 in case of PB4 clock tree
 - Use CCS libraries
- For POCV Sign-Off STA
 - Use derating factors from slide #15 in case of PB0 clock tree
 - Use derating factors from <u>slide #16</u> in case of PB4 clock tree
 - For CLOCK libraries, use CCS libraries with LVF views (available in /electrical/lvf/ repository)

28nm FD-SOI OCV Derating Factors 14

PB0 Clock Tree

	Clask	Data Derate for Hold	Technology Uncertainty	
	Clock	Checks	Setup	Hold
1.20 V	+/- 5 %	- 23 %	0 ps	20 ps
1.10 V				
1.00 V				
0.90 V				
0.85 V				
0.80 V				

- To be applied on both gate delays and wire delays
- Valid under compliance with "Clock Tree Implementation Rules"

28nm FD-SOI OCV Derating Factors 15

PB4 Clock Tree

	Clask	Data Derate for Hold	Technology Uncertainty	
	Clock	Checks	Setup	Hold
1.20 V	+/- 5 %	-18 %	0 ps	20 ps
1.10 V				
1.00 V				
0.90 V				
0.85 V				
0.80 V				

- To be applied on both gate delays and wire delays
- Valid under compliance with "Clock Tree Implementation Rules"

28nm FD-SOI POCV Derating Factors 16

PB0 Clock Tree

	Olask	Data Derate for Hold	Technology Uncertainty	
	Clock	Checks	Setup	Hold
1.20 V	+/- 1.5 %	- 23 %	0.00	20.00
1.10 V	+/- 1.6 %			
1.00 V	+/- 1.7 %			
0.90 V	+/- 1.8 %		0 ps	20 ps
0.85 V	+/- 1.9 %			
0.80 V	+/- 2.0 %			

- To be applied on both gate delays and wire delays
- Valid under compliance with "Clock Tree Implementation Rules"

28nm FD-SOI POCV Derating Factors -17

PB4 Clock Tree

	Olaska	Data Derate for Hold	Technology Uncertainty	
	Clock	Checks	Setup	Hold
1.20 V	+/- 1.5 %	- 18 %	0 no	
1.10 V	+/- 1.6 %			20 no
1.00 V	+/- 1.7 %			
0.90 V	+/- 1.8 %		0 ps	20 ps
0.85 V	+/- 1.9 %			
0.80 V	+/- 2.0 %			

- To be applied on both gate delays and wire delays
- Valid under compliance with "Clock Tree Implementation Rules"

OCV & CRPR Strategy 18

Setup Checks

Hold Checks

Required Settings for PrimeTime 19

 The following variables have to be set in PrimeTime for static timing analysis in 28nm FD-SOI:

 set ccs timing vc step number 100000000

• set timing remove clock reconvergence pessimism true

 set timing clock reconvergence pessimism same transition

 set timing early launch at borrowing latches false

 set si_enable_analysis true

 set si xtalk double switching mode clock network

 set delay calc waveform analysis mode disabled

CCS libraries mandatory (timing & noise)

Setting STA 0y/2ey in PrimeTime 20

- In file: .svnopsvs pt.setup (example for 2 library)
 - set link path {* \$mv working path/LIBRARIES/C28SOI SC 12 CORE LL/ccs/C28SOI SC 12 CORE LL ss28 0.80V 0.00V 0 \$mv_working_path/LIBRARIES/C28SOI_SC_12_CLK_LL/ccs/C28SOI_SC_12_CLK_LL_ss28_0.80V_0.00V_0.
 - set link path per instance [list \
 - [list instance1 "* lib1 lib2 ..."]
 - [list instance2 "* lib1 lib2 ..."]
- In script TIMING ANALYSIS.pt (example for 2 library)
 - read verilog TOP.v
 - current design TOP
 - link design
 - set min library -min version \$my working path/LIBRARIES/C28SOI SC 12 CORE LL/ccs/C28SOI SC 12 CORE LL ss28 0.80V 0.00V 0.00V 0.00V 0.00V 0.00V \$my_working_path/LIBRARIES/C28SOI_SC_12_CORE_LL/ccs/C28SOI_SC_12_CORE_LL_ss28_0.80V_0.00V_
 - set min library -min version \$my working path/LIBRARIES/C28SOI SC 12 CLK LL/ccs/C28SOI SC 12 CLK LL ss28 0.80V 0.00V 0.00V 0.00V 0.00V 0.00V \$mv_working_path/LIBRARIES/C28SOI_SC_12_CLK_LL/ccs/C28SOI_SC_12_CLK_LL_ss28_0.80V_0.00V_0.
 - read parasitics ...
- To verify library relationships/settings; list libs command
 - An uppercase 'M' (resp. A lowercase 'm') to the left of a library indicates that the library is the maximum (resp. minimum) library of a max/min library relationship created by the set min library command.
 - pt_shell> list_libraries -only_used
 - Library Registry:
 - *M C28SOI SC 12 CLK LL /path/ccs/C28SOI SC 12 CLK LL ss28 0.80V 0.00V 0.00V 0.00V 0C 2ey.db:C28SOI SC 12 CLK LL
 - m C28SOI SC 12 CLK LL /path/ccs/C28SOI SC 12 CLK LL ss28 0.80V 0.00V 0.00V 0.00V 0.00V 0.0db:C28SOI SC 12 CLK LL

POCV Settings for PrimeTime 21

 The following variables have to be set in PrimeTime to use POCV with LVF views in 28nm FD-SOI:

set timing_pocvm_enable_analysis	true
 set timing_enable_slew_variation 	true
 set timing_enable_constraint_variation 	false
 set timing_ocvm_enable_distance_analysis 	false
set timing_pocvm_corner_sigma	3
set timing_pocvm_report_sigma	3

LVF views mandatory for CLOCK libraries

POCV Settings for PrimeTime 22

0.0

 The following commands have to be applied in PrimeTime to set derating factors with POCV methodology in 28nm FD-SOI:

```
• set timing derate -pocym coefficient scale factor -cell delay -data -late 0.0
```

• set timing derate -pocym coefficient scale factor -cell delay -data -early 0.0

• set_timing_derate -clock -early -incremen	t -0.02
• set_timing_derate -clock -late -increment	+0.02
• set_timing_derate -data -early -increment	-0.18
• set_timing_derate -data -late -increment	0.0

•	set_timing_derate -net_delay -clock -early -increment -dynamic	0.0
•	set_timing_derate -net_delay -clock -late -increment -dynamic	0.0
•	set_timing_derate -net_delay -data -early -increment -dynamic	0.0

• set timing derate -net delay -data -late -increment -dynamic

Values to be set depending on voltage (cf. slide 14)

Example given @ 0.8V:

- Clock OCV: +/- 2%
- Data OCV for hold: -18%
- Data OCV for setup: 0%

 It is mandatory to use « -increment » switch with set_timing_derate to avoid conflicts in PrimeTime for POCVM-based runs

Recommended PrimeTime Settings 23

PrimeTime globals

• set timing_crpr_threshold_ps

• set timing enable max capacitance set case analysis true

set si_xtalk_delay_analysis_mode all path edges

 set report capacitance use ccs receiver model false

 set pba path recalculation limit compatibility false

set timing_include_uncertainty_for_pulse_checks setup only

 set timing save pin arrival and slack true

Recommended PrimeTime Settings 24

ECO

- Define eco instance name prefix/eco net name prefix (avoid bug in PT)
- In case of 3rd party tool used for PnR
 - set eco strict pin name equivalence true
- Footprint constant cell swap
 - define user attribute -import -classes lib cell -type string cell footprint
 - set eco alternative cell attribute restrictions cell footprint

SI Analysis

set_noise_parameters -enable_propagation -analysis_mode report_at_endpoint

SDF Generation

SDF Generation Methodology

- SDF can be generated in PrimeTime for back-annotated simulation purpose
- Using native SDF 3.0 flow, ST standards cells have empty mapping files: it is not required to
 use them in the PrimeTime write_sdf command
- Some memories and macros may have non empty mapping files
 - In that case those mapping files are compliant with SDF 3.0
 - They have to be loaded in the write sdf command
- PrimeTime settings and commands
 - set timing_reduce_parallel_cell_arcs "false"
 - write_sdf -significant_digit 4 -input_port_nets -output_port_nets -context verilog -version 3.0 -include {SETUPHOLD RECREM} -compress gzip -map "" <design>.verilog.sdf.gz

Power Analysis

Sign-Off Power Analysis Scenarios Description 28

• The two following corners are typically used for power consumption measurements. However, power analysis scenarios may vary depending on chip specifications and power targets

#	Intent	Р	V	Т	RC
1	Typical Power Measurement	tt28	Nom. V	25°C	nominal
2	Maximum Power Measurement	ff28	Max. V	Max T	SigCmax

Required Settings for PrimeTime-PX 29

 The following variables have to be set in PrimeTime-PX for power analysis in 28nm FD-SOI:

		and the second second	and the second s	
	cot power	anabla	onolygic	truo
,	set power	enable	alialysis	true

•	set power_	_model	_preference	nl	pm
---	------------	--------	-------------	----	----

set power_table_include_switching_power false

 set power use ccsp pin capacitance false

 set rc_ccs_extrapolation_range_compatibility false

set link_keep_unconnected_cells true

• set link keep cells with pg only connection true

