Taller 1 topo

1. Sea $X = \{1, 2, 3, 4, 5\}$. Considere la topología sobre X dada por

$$\mathcal{T} = \{\emptyset, \{3\}, \{1, 2\}, \{3, 4\}, \{3, 5\}, \{1, 2, 3\}, \{3, 4, 5\}, \{1, 2, 3, 4\}, \{1, 2, 3, 5\}, X\}.$$

- b) Halle el interior int A, la clausura \overline{A} , y el conjunto A' de puntos límites para los siguientes conjuntos:
 - \bullet (* $A = \{1, 3, 4, 5\}$)
- 6 IN(A) = {35 U } 3,43 U {3,5} U {3,4,5} = { 3,4,5 }

$$\bullet$$
 A', $\overline{A-1\times3} = \times$, on $2 \in \times$, $A' = \{2\}$

- Chusura (A) = $A \cup A^1 = \{1, 2, 3, 4, 5\}$
- 2. Sobre R definamos la colección

$$\mathcal{T} = \{\emptyset, \mathbb{R}\} \cup \{(-n, n) : n \in \mathbb{Z}\}\$$

- c) Halle el interior int A, la clausura \overline{A} , y el conjunto A' de puntos límites para los siguientes conjuntos:
 - \bullet (* A = (1,4))
 - IMCA) = Ø
 - A' = § 1 }
 - 0 A = [1,4]
- 3. Considere \mathbb{R} con la topología euclidiana. Halle el interior int A, la clausura \overline{A} , y el conjunto A' de puntos límites para los siguientes conjuntos:

$$A = \left\{ \frac{(-1)^n n}{n+1} : n \in \mathbb{Z}^+ \right\}^{-1}$$

- in+(A) =
 Ø

- **4.** * Sean A, B, y A_{α} subconjuntos del espacio X. Pruebe lo siguiente:
 - a) Si $A \subseteq B$ entonces $\overline{A} \subseteq \overline{B}$.
 - b) $\overline{A \cup B} = \overline{A} \cup \overline{B}$.
 - c) $\bigcup \overline{A_{\alpha}} \subseteq \overline{\bigcup A_{\alpha}}$, dé un ejemplo donde no se cumpla la igualdad.

a) Si A & B entones A & B

AUA' S BUB'

Como ASB la demostración consiste realmente en decir:

A' CBUB'

Sca $x \in A'$, Sabenes que cualquier vecendad U_x contrere a por la arenes un elemento de A, llanémosito $a \in A$ cono $A \subseteq B$, $a \in B$ beyo U_x contrare al menos un elemento de A. Como x era arbitrario entenes $A' \subseteq B \cup B'$.

D AUB = AUB

(AUB) U (AUB) = (AUA') U (BUB')

(AUB) = (AUB) = (AUB) U (A'UB')

(AUB) = (A'UB')

el problem se puede reducer a la escrito arriba

- (a) See $x \in (\text{tob})'$ enteres una verieble U_x intersected con (A U B)', eso quere lectr que $U_x \cap \text{A} \neq \emptyset$ $O U_x \cap \text{B} \neq \emptyset$ bego $(\text{A U B})' \subseteq (\text{A' U B'})$
- (2) Sea $x \in (A' \cup B')$, note ge $U_x \cap A \neq \emptyset$ of $U_x \cap B \neq \emptyset$ o ambos; bego

0x ~ (AUS) +8

así que x es punto hoube de (AUB).

□ □ □ □ □ □ □
⊕ ezemplo donde no se comple la ignalded:
ara
10. Pruebe las siguientes afirmaciones:
Si (X, \mathcal{T}) es un espacio Hausdorff y $Y \subset X$ entonces Y con la topología del subespacio \mathcal{T}_Y es una topología Hausdorff.
dado que (X, T) es un especio de hausdorff, podemos tonar
Y1 + Y2 con Y1, Y2 E Y, Como Y1, Y2 EX podemos hucer
2 vecindades disjuntus Uy, Uy2.
•
Si bus cumos el correspondiente abiento en la hopdogía del sub especio
terenos:
U'y = Uy N Y U'y = Uy N Y
Si probunos:
$O_{Y_1} \cap O_{Y_2} = (O_{Y_1} \cap Y) \cap (O_{Y_2} \cap Y)$
$= (U_{y_1} \wedge U_{y_2}) \wedge Y$
$= \varnothing \wedge \gamma$
= Ø
luego 2 ubiertos arbitrarios de y pueder separakse.
<u> </u>

conjuntos: ■ Los intervalos $(a, b) \subset \mathbb{R}$ con a < b; ■ Las vecindades de P obtenidas como una vecindad de 0, quitando 0 y agregando P, es decir, conjuntos de la forma $((a,b) - \{0\}) \cup \{P\}, \text{ con } a < 0, b > 0.$ a) Pruebe que si $I \subset X$ es cualquier intervalo que contiene a 0 entonces $P \in \overline{I}$. Similarmente, si $V \subset X$ es cualquier vecindad de P entonces $0 \in \overline{V}$. b) Pruebe que si $A \subseteq X$ es un subconjunto con $0 \in A'$ entonces $P \in A'$. c) Pruebe que la sucesión $\{\frac{1}{n}: n \in \mathbb{N}\}$ como subconjunto de X converge a 0 y a P. Es decir, sucesiones en X pueden tener más de un límite. esta generalo por buses de la forma (a,b) CIR. Para poder decir que PEI es necessirio decir que PEI. Si consideranos una recordad de P Up note que para cualquer recordad por la defención de la base habrá una intersection. Es decer: I es un intervalo de la forma (a,b), prodo generar Up con base a un intervalo de la forma de I, así: { Ca, b) - {0}} U { P}, hego co duro que Up (1 I # Ø. ose que le I'. b) Pruebe que Si A C X es un subconjunto con OEA enforces PEA' Si A C X con O & A' huy 2 cases: (▷ ∈ A :) A es de la fara (a,b): er ayo Cuso Claro ejencicio anterior que PE A. (o ← A:) A es de la forma {Ca, b) - {0}} Julps, y walquier vecadorio de f

12. Sea $X = \mathbb{R} \cup \{P\}$ donde $P \notin \mathbb{R}$. En X podemos definir la topología \mathcal{T}_{oo} generada por los

alredelor de cero cupturarens infinites portos de ¿ fine N}
lueys lu sucesión converge a cero.
ρ
lara probut que converge a l', podens persur en una Vecindad arbitration de l',
Vecinodo atentado de 1
entonces $\delta \in \mathcal{T}$.
entonies 0 E V.
Como cualquier recular de l'es de la forma
0= { ca, b) - {o}} \ U {P}
Pero note fue es claro que coalquier vecindad de (ero, $V_0 = (-E, E)$, se intersectu con V_0 bego cero es on ponto límite
(ero, $V_0 = (-\epsilon, \epsilon)$, se intersectu con V_0 bego
Cero es un pinto limite
18. Pruebe que si $f: X \to Y$ es continua y $\{x_n\} \subset X$ es una sucesión que converge a $x \in X$,
entonces la sucesión $\{f(x_n)\}\subset Y$ converge a $f(x)$.
Dulo X -> X, Considere un vacandiuris de fcx),
Debo $X_n \rightarrow X$, considere on vectordario de $f(x)$, digamos $V_{f(x)}$) entonces $f^{-1}(V_{f(x)})$ as on vectordario
de x.
luego existe un NeW tal que X, Ef (Ufix) para 1 7 N. de esta marra f(Xn) EV para 1 7 N.
hara U & No Oc sta maria +(xv) Er bara V D.
21. Un espacio topológico X es conexo si es imposible escribir X como la unión de dos abiertos no vacíos y disjuntos. Es decir, si $X = U \cup V$ con U, V abiertos tales que $U \cap V = \emptyset$ entonces
$U=\emptyset$ o $V=\emptyset$. Pruebe que conexidad es una propiedad topológica.

Considere la image de
$$X$$
, es decir Y :

$$Y = f(X)$$

$$= f(U \cup V), \text{ cono } U = \emptyset \text{ sin problem}$$

$$= f(V)$$

$$= f(V) \cup \emptyset$$

$$= f(V) \cup \emptyset$$

$$= f(V) \cup f(U), \text{ por que } f(U) = \emptyset$$

$$\text{vego } Y = \emptyset.$$

$$\text{vego } Y = \emptyset.$$

25. * Dé un ejemplo de una función que es continua solo en un punto (justifique su respuesta).

$$h(x) = \begin{cases} X & \text{si } x \in \mathbb{R} \\ 69 & \text{si } x \in \mathbb{I} \end{cases}$$

debilo q que siempre pudo encontrar un irracionale atre 2 irracionales lu función da q tener un trón errettico y el único porto dende un a ser contrar será x=64

$$\Delta = \{(x,x) \in X \times X\}$$

es cerrado en la topología producto de $X \times X$.

Considere un $(x,y) \in X \times X$, $(x,y) \notin \Delta$, es dear $x \neq y$. así existe $(x,y) \notin \Delta$,

Vea entonces que $U_X \times U_Y$ es un elemento de la base de $X \times X$. Si se toma coalquier $(W, Z) \in U_X \times U_Y$ cono $U_X \wedge U_Y = \emptyset$ entonces $W \neq Z$.

es deux que $(U_{\chi} \times U_{\gamma}) \cap \Delta = \emptyset$. Lueyo (x,y) con $(x,y) \notin \Delta$ so pertene ce a Δ' .

entonces A debe terre todos les purtos de avunduente la que la vietre cerrado.

Si Δ ro cercado en $X \times X$, considere $x \neq y$. $(x,y) \notin \Delta$ or (x,y) no es puto limite for razores similares a las de $(x \neq y)$.

(one) es cerrolo y tiere tolos sis pritos limite desto, un vecindario () cx,4) no intrisecta a 1

 $O_{(x,y)} \cap \Delta = \emptyset$

Son abicitis 1C X con XEZ Y YEW.

Note que 2 y W deben ser jisjn+s de 6 Contrario habria un (J, J) € ZXW, pero ZXW N D= Ø. luego X o de housdoff.