Mathematics II

A Comprehensive Guide to Advanced Mathematics for IT
Applications

Contents

I	Con	nplex Numbers	4		
	1.1	Definition and Integral Powers of <i>i</i>	4		
	1.2	Algebra of Complex Numbers	4		
	1.3	Properties of Complex Numbers and Conjugates	5		
	1.4	Modulus and Argands Diagram	5		
	1.5	Polar Representation	5		
	1.6	Square Roots of Complex Numbers	5		
	1.7	De Moivres Theorem and Applications	6		
2	Infinite Sequences and Series				
	2.1	Introduction to Convergence Tests	7		
	2.2	Direct and Limit Comparison Tests	7		
	2.3	P-Series, Ratio Test, and Alternating Series Test	7		
3	App	lication of Antiderivatives	8		
	3.1	Definite and Improper Integrals	8		
	3.2	Quadrature (Area Calculation)	8		
	3.3	Rectification (Curve Length)	8		
	3.4	Beta and Gamma Functions	8		
4	Optimization: Functions of Several Variables				
	4.1	Partial Derivatives	10		
	4.2	Rules of Partial Differentiation	10		
	4.3	Maxima and Minima for Two Variables	10		
5	Ord	linary Differential Equations	11		
	5.1	First-Order Differential Equations	11		
	5.2	Second-Order Linear Equations with Constant Coefficients	11		
	5.3	Initial and Boundary Value Problems	11		
6	Inte	gers and Division	12		
	6.1	Primes and Fundamental Theorem of Arithmetic	12		
	6.2	Division Algorithm, GCD, and LCM	12		

Contents 3

	6.3	Modular Arithmetic and Cryptology Applications	12
7	Fou	rier Series and Integrals	14
	7.1	Even and Odd Functions	14
	7.2	Periodic Functions and Fourier Coefficients	14
	7.3	Fourier Sine/Cosine Series	14
	7.4	Fourier Integrals	15

1 Complex Numbers

1.1 Definition and Integral Powers of i

Complex numbers are of the form z = a + bi, where a and b are real numbers, and $i = \sqrt{-1}$. In IT, they are used in signal processing and cryptography.

- **Definition**: $i^2 = -1$, $i^3 = -i$, $i^4 = 1$, and the cycle repeats every four powers.
- IT Use: Complex numbers model alternating currents in network simulations.

Example 1.1.1. Compute
$$i^7$$
: Since $i^4 = 1$, $i^7 = i^4 \cdot i^3 = 1 \cdot (-i) = -i$.

Practice computing powers of i for signal processing applications.

1.2 Algebra of Complex Numbers

Operations include:

- **Addition**: (a + bi) + (c + di) = (a + c) + (b + d)i.
- **Subtraction**: (a + bi) (c + di) = (a c) + (b d)i.
- Multiplication: (a+bi)(c+di) = (ac-bd) + (ad+bc)i.
- **Division**: $\frac{a+bi}{c+di} = \frac{(a+bi)(c-di)}{c^2+d^2}$.

Example 1.2.1. For $z_1 = 2 + 3i$, $z_2 = 1 - i$:

$$z_1 + z_2 = (2+1) + (3-1)i = 3+2i$$

$$z_1 \cdot z_2 = (2 \cdot 1 - 3 \cdot (-1)) + (2 \cdot (-1) + 3 \cdot 1)i = 5 + i$$

Practice complex number operations for IT applications like image processing.

1.3 Properties of Complex Numbers and Conjugates

The conjugate of z = a + bi is $\overline{z} = a - bi$.

- Properties: $z + \overline{z} = 2a$, $z \cdot \overline{z} = a^2 + b^2$.
- IT Use: Conjugates simplify computations in Fourier transforms.

Example 1.3.1. For
$$z = 3 + 4i$$
, $\overline{z} = 3 - 4i$, and $z \cdot \overline{z} = 3^2 + 4^2 = 25$.

Practice using conjugates in IT contexts like signal analysis.

1.4 Modulus and Argands Diagram

The modulus is $|z| = \sqrt{a^2 + b^2}$, and the Argand diagram represents z = a + bi as a point (a, b).

Example 1.4.1. For
$$z = 3 + 4i$$
, $|z| = \sqrt{3^2 + 4^2} = 5$.

Practice plotting complex numbers for IT visualizations.

1.5 Polar Representation

In polar form, $z = r(\cos \theta + i \sin \theta)$, where r = |z|, $\theta = \tan^{-1}(b/a)$.

Example 1.5.1. For z = 3 + 4i, r = 5, $\theta = \tan^{-1}(4/3) \approx 53.13^{\circ}$, so $z = 5(\cos 53.13^{\circ} + i \sin 53.13^{\circ})$.

Practice converting to polar form for signal processing.

1.6 Square Roots of Complex Numbers

The square root of z = a + bi uses polar form or algebraic methods.

Example 1.6.1. For z = 3 + 4i, use polar form: r = 5, $\theta = 53.13^{\circ}$. Square roots are:

$$\sqrt{z} = \sqrt{5} \left(\cos \frac{53.13^{\circ}}{2} + i \sin \frac{53.13^{\circ}}{2} \right).$$

Practice computing square roots for IT algorithms.

1.7 De Moivres Theorem and Applications

De Moivres Theorem: $(\cos \theta + i \sin \theta)^n = \cos n\theta + i \sin n\theta$.

• **Applications**: Compute powers and roots, e.g., in signal processing.

Example 1.7.1. For z = 1 + i, in polar form $z = \sqrt{2}(\cos 45^{\circ} + i \sin 45^{\circ})$, so:

$$z^{3} = (\sqrt{2})^{3}(\cos(3\cdot 45^{\circ}) + i\sin(3\cdot 45^{\circ})) = 2\sqrt{2}(-i).$$

Practice using De Moivres Theorem for IT applications like cryptography.

2 Infinite Sequences and Series

2.1 Introduction to Convergence Tests

A sequence converges if its terms approach a limit; a series converges if the sum of its terms is finite. In IT, convergence tests optimize algorithms like numerical approximations.

- Sequence: $a_n = \frac{1}{n}$, converges to 0.
- Series: $\sum \frac{1}{n^2}$, converges to a finite value.

Example 2.1.1. Test if $\sum \frac{1}{n}$ converges (it diverges, harmonic series).

Practice convergence tests for IT numerical methods.

2.2 Direct and Limit Comparison Tests

- Direct Comparison: If $0 \le a_n \le b_n$ and $\sum b_n$ converges, so does $\sum a_n$.
- Limit Comparison: If $\lim_{n\to\infty} \frac{a_n}{b_n} = L > 0$, then $\sum a_n$ and $\sum b_n$ converge or diverge together.

Example 2.2.1. For $\sum \frac{1}{n^2+1}$, compare to $\sum \frac{1}{n^2}$ (converges).

Practice comparison tests for series in IT algorithms.

2.3 P-Series, Ratio Test, and Alternating Series Test

- **P-Series**: $\sum \frac{1}{n^p}$ converges if p > 1.
- Ratio Test: If $\lim_{n\to\infty} \left| \frac{a_{n+1}}{a_n} \right| < 1$, the series converges.
- Alternating Series: Converges if terms decrease and approach 0.

Example 2.3.1. For $\sum (-1)^n \frac{1}{n}$, the alternating series test confirms convergence.

Practice these tests for IT series computations.

3 Application of Antiderivatives

3.1 Definite and Improper Integrals

Definite integrals compute areas; improper integrals handle infinite limits or discontinuities.

- **Definite**: $\int_a^b f(x) dx$.
- Improper: $\int_a^\infty f(x) dx$.
- IT Use: Model system performance over time.

Example 3.1.1. Compute
$$\int_0^1 x^2 dx = \frac{1}{3}$$
.

Practice improper integrals for IT applications like signal analysis.

3.2 Quadrature (Area Calculation)

Quadrature computes areas under curves, e.g., for performance metrics.

Example 3.2.1. The area under
$$y = x^2$$
 from 0 to 1 is $\int_0^1 x^2 dx = \frac{1}{3}$.

Practice quadrature for IT data visualization.

3.3 Rectification (Curve Length)

Curve length is computed as $\int_a^b \sqrt{1 + \left(\frac{dy}{dx}\right)^2} dx$.

Example 3.3.1. For
$$y = x^2$$
, length from 0 to 1 is $\int_0^1 \sqrt{1 + (2x)^2} \, dx$.

Practice rectification for IT path-planning algorithms.

3.4 Beta and Gamma Functions

- Beta: $B(m,n) = \int_0^1 t^{m-1} (1-t)^{n-1} dt$.
- Gamma: $\Gamma(n) = \int_0^\infty t^{n-1} e^{-t} dt$.

• IT Use: Used in probability models for machine learning.

Example 3.4.1.
$$\Gamma(n) = (n-1)!$$
 for integer n .

Practice Beta/Gamma functions for IT statistical models.

4 Optimization: Functions of Several Variables

4.1 Partial Derivatives

For f(x,y), partial derivatives $\frac{\partial f}{\partial x}$, $\frac{\partial f}{\partial y}$ measure change in one variable.

Example 4.1.1. For
$$f(x,y) = x^2 + y^2$$
, $\frac{\partial f}{\partial x} = 2x$, $\frac{\partial f}{\partial y} = 2y$.

Practice partial derivatives for IT optimization, like cost functions.

4.2 Rules of Partial Differentiation

Rules include sum, product, and chain rules for partial derivatives.

Example 4.2.1. For
$$f(x,y) = x\sin(y)$$
, $\frac{\partial f}{\partial x} = \sin(y)$, $\frac{\partial f}{\partial y} = x\cos(y)$.

Practice differentiation rules for IT models.

4.3 Maxima and Minima for Two Variables

Find critical points by solving $\frac{\partial f}{\partial x} = 0$, $\frac{\partial f}{\partial y} = 0$, and use the second derivative test.

Example 4.3.1. For $f(x,y) = x^2 + y^2$, critical point at (0,0) is a minimum.

Practice optimization for IT resource allocation.

5 Ordinary Differential Equations

5.1 First-Order Differential Equations

Solve using separation of variables or homogeneity.

Example 5.1.1. Solve
$$\frac{dy}{dx} = \frac{y}{x}$$
: Solution is $y = Cx$.

Practice solving ODEs for IT system modeling, like network growth.

5.2 Second-Order Linear Equations with Constant Coefficients

Solve ay'' + by' + cy = 0 using characteristic equations.

Example 5.2.1. For
$$y'' - 3y' + 2y = 0$$
, roots 1, 2 give $y = c_1 e^x + c_2 e^{2x}$.

Practice solving for IT signal processing.

5.3 Initial and Boundary Value Problems

Use conditions to determine constants.

Example 5.3.1. For
$$y'' + y = 0$$
, $y(0) = 1$, $y'(0) = 0$, solution is $y = \cos x$.

Practice IVPs for IT simulations.

6 Integers and Division

6.1 Primes and Fundamental Theorem of Arithmetic

Every integer n > 1 is a product of primes uniquely.

Example 6.1.1. $12 = 2^2 \cdot 3$, unique factorization.

Practice prime factorization for IT cryptography.

6.2 Division Algorithm, GCD, and LCM

The division algorithm states a = bq + r, $0 \le r < b$. GCD uses Euclidean algorithm; LCM uses GCD.

Example 6.2.1. GCD(48, 18) = 6 via Euclidean algorithm.

Practice GCD for encryption algorithms.

6.3 Modular Arithmetic and Cryptology Applications

Modular arithmetic: $a \equiv b \pmod{m}$. Used in RSA encryption.

Example 6.3.1. In RSA, choose primes p = 3, q = 11, compute n = pq = 33, and use modular exponentiation.

```
def mod_exp(base, exp, mod):
    result = 1
    base = base % mod
    while exp > 0:
        if exp % 2 == 1:
            result = (result * base) % mod
        base = (base * base) % mod
        exp //= 2
    return result
```

Practice modular arithmetic for IT security.

7 Fourier Series and Integrals

7.1 Even and Odd Functions

Even: f(-x) = f(x); Odd: f(-x) = -f(x).

Example 7.1.1. $f(x) = x^2$ is even; $f(x) = x^3$ is odd.

Practice identifying functions for Fourier analysis.

7.2 Periodic Functions and Fourier Coefficients

Periodic functions repeat; Fourier coefficients define series.

Example 7.2.1. For f(x) = x on $[-\pi, \pi]$, coefficients are computed as integrals.

Practice computing coefficients for IT signal processing.

7.3 Fourier Sine/Cosine Series

Series represent functions as sums of sines or cosines.

Example 7.3.1. The Fourier series of $f(x) = x^2$ includes cosine terms due to evenness.

Practice Fourier series for IT applications like audio processing.

7.4 Fourier Integrals

Fourier integrals extend series to non-periodic functions.

Example 7.4.1. The Fourier integral of $f(x) = e^{-|x|}$ is used in signal analysis.

Practice Fourier integrals for IT data processing.