Lista 7

Victor Sena Molero - 8941317

May 2, 2016

1 Exercícios

Ex 23. Seja G um grafo simples de ordem $n \ge 2k$ e tal que $g(v) \ge k \ge 1$ para todo v em G. Mostre que G tem um emparelhamento com pelo menos k arestas.

Prova. Primeiro, vamos provar que se G é um grafo simples de ordem $n \geq 2$ e tal que $g(v) \geq 1$ para todo v em G, G tem um emparelhamento com pelo menos 1 aresta. Trivialmente, G tem pelo menos uma aresta pois tem pelo menos um vértice e todo vértice tem grau pelo menos 1, logo, podemos escolher esta aresta qualquer e formar um emparelhamento em G de tamanho 1. Agora, só precisamos resolver o exercício no caso k > 1.

Seja k um inteiro positivo maior que 1 e G um grafo simples de ordem $n \geq 2k$ tal que $g(v) \geq k \forall v \in V(G)$. Vamos mostrar que G tem um emparelhamento com pelo menos k arestas.

Se a tese for falsa, teremos um contra-exemplo. Além disso, sabemos que um grafo completo de ordem $n \geq 2k$ tem um emparelhamento de tamanho k, logo, temos pelo menos um contra-exemplo diferente do grafo completo. Escolhemos um grafo G não-completo onde

valem as hipóteses, não vale a tese e tal que, se adicionarmos uma aresta qualquer ao grafo, vale a tese, ou seja, um contra-exemplo maximal.

Escolhemos então um par qualquer de vértices não adjacentes u e v tal que, se adicionarmos a aresta uv ao grafo G formaremos o grafo G' com um emparelhamento E' de tamanho k. Se $uv \notin E'$, então E' é também um emparelhamento em G, portanto, G tem um emparelhamento de tamanho k.

Caso contrário, escolhemos o emparelhamento E=E'-uv, sabemos que |E|=k-1 e u e v são não-adjacentes. Seja X o conjunto de vértices adjacentes a u e Y o conjunto de vértices adjacentes a v, sabemos que $|X| \geq k$ e $|Y| \geq k$. Suponha, por absurdo que não existe nenhum vértice livre em $X \cup Y$ e não existe alguém em X emparelhado com alguém de Y, assim, podemos definir o conjunto Z de vértices emparelhados com vértices de X, sabemos que |X| = |Z| e que $Z \cap Y = \emptyset$, então temos que $|Z \cup Y| = |Z| + |Y| = |X| + |Y| \geq 2 * k$, porém, só existem 2(k-1) vértices emparelhados no grafo, então existe alguém em $Z \cup Y$ não emparelhado, ou seja, livre, um absurdo. Assim, sabemos que existem 3 possibilidades (não disjuntas):

- Existe alguém livre em X, assim, adicionamos uma aresta de u para tal vértice livre no emparelhamento E' gerando um emparelhamento E de tamanho k.
- \bullet O caso com alguém, livre em Y é análogo.
- Existe uma aresta emparelhada xy tal que $x \in X$ e $y \in Y$, assim, existe um caminho alternante u, x, y, v no grafo, que tem duas pontas livres, assim, pode-se gerar um emparelhamento de tamanho k.

Em todos os casos, então, obtivemos um emparelhamento de tamanho k.

Ex 24. Seja G um grafo bipartido com pelo menos uma aresta. Mostre que existe um emparelhamento que cobre todos os vértices de grau $\Delta(G)$

Proof. Seja G um grafo (X,Y)-bipartido com pelo menos uma aresta. Seja X^* o conjunto de vértices de grau $\Delta(G)$ em X. Vamos provar que sempre existe um emparelhamento em G que cobre X^* .

Suponha, por absurdo, que existe um subconjunto S de X^* tal que |Adj(S)| < |S|. Consideremos o grafo H induzido em G por $S \cup Adj(S)$. Já que H é (S, Adj(S))-bipartido, temos que

$$\sum_{u \in S} g_H(u) = \sum_{v \in Adj(S)} g_H(v)$$

, mas

$$\sum_{u \in S} g_H(u) = |S| \Delta(G)$$

e

$$\sum_{v \in Adj(S)} \le |Adj(S)|\Delta(G) < |S|\Delta(G)$$

, ou seja

$$|S|\Delta(G) < |S|\Delta(G)$$

, um absurdo.

Temos, então, que para todo subconjunto S de X^* , $|Adj(S)| \ge |S|$, portanto, vale o teorema de Hall e existe um emparelhamento em G que cobre X^* .

Analogamente, existe um emparelhamento em G que cobre o conjunto Y^* de vértices de grau $\Delta(G)$ em Y.

Escolhemos então um emparelhamento E_X que cobre X^* e um E_Y que cobre Y^* . Escolha o conjunto de arestas $E=E_X\cup E_Y$, se não houver nenhum vértice $x\in X^*$ ou $y\in Y^*$

coberto por duas arestas este é um emparelhamento em G que cobre todos os vértices de grau máximo. Se não, E tem duas arestas adjacentes. Escolha uma qualquer suponha, s.p.g. que existem duas arestas adjacentes num vértice $x \in X^*$. Obrigatóriamente uma delas pertence a E_X , podemos remover esta de E gerando um novo conjunto de arestas que cobre X^* e Y^* . Podemos remover arestas até que não exista nenhum par de arestas adjacentes, já que em cada passo mantemos a propriedade de que o conjunto cobre tanto X^* quanto Y^* , obtemos um emparelhamento que cobre tanto X^* quanto Y^* .

Ex 25. Prove que se G é um grafo (X,Y)-bipartido com pelo menos uma aresta e $g(x) \ge g(y)$ para todo $x \in X$ e $y \in Y$, então existe em G um emparelhamento que cobre X.

Proof. Seja G um grafo (X, Y)-bipartido com pelo menos uma aresta e tal que $g(x) \ge g(y)$ para todo par $x \in X$, $y \in Y$. Seja m o valor grau mínimo de um vértice de X.

Consideremos o grafo H induzido em G por $S \cup Adj(S)$. Já que H é (S, Adj(S))-bipartido, temos que

$$\sum_{u \in S} g_H(u) = \sum_{v \in Adj(S)} g_H(v)$$

, mas

$$\sum_{u \in S} g_H(u) \ge |S| m$$

e

$$|Adj(S)|m \ge \sum_{v \in Adj(S)}$$

, ou seja

$$|Adj(S)|m \ge |S|m$$

$$|Adj(S)| \ge |S|$$

Ou seja, vale o teorema de Hall e existe um emparelhamento que cobre X.

Ex 26. Um retângulo latino $m \times n$ é uma matriz com m linhas e n colunas, cujas entradas são símbolos, sendo que cada símbolo ocorre no máximo uma vez em cada linha e em cada coluna. Um quadrado latino de ordem n é um retângulo latino $n \times n$ sobre n símbolos.

Prove: Se m < n então todo retângulo latino $m \times n$ sobre n símbolos pode ser estendido a um quadrado latino de ordem n.

Proof. Assumindo que os n símbolos possíveis são s_1, s_2, \ldots, s_n .

Basta montar um grafo G(X,Y)-bipartido onde $X=x_1,x_2,\ldots,x_n$ e $Y=y_1,y_2,\ldots,y_n$ e para todo par $i,j\in\mathbb{N}$, com $0\leq i,j\leq n$ tem-se que x_i e y_j são adjacentes entre si se e somente se não existe, na linha i, o símbolo s_j .

Com isso, temos que, para um i qualquer, o grau de x_i é igual à quantidade de símbolos não utilizados na coluna i. Já que m linhas foram usadas e nenhum símbolo se repetiu numa única coluna, $g(x_i) = n - m \forall i$. Por outro lado, para um j qualquer, o grau de y_i é a quantidade de colunas onde o símbolo s_i ainda não foi usado. Sabemos que cada símbolo aparece exatamente uma vez por linha e nunca se repete numa coluna, ou seja, ele já foi usado em exatamente m colunas. Temos então que o $g(y_j) = n - m \forall j$.

Assim, temos um grafo G(X,Y)-bipartido onde para todo par $x \in X$ e $y \in Y$, $g(x) \ge g(y)$, pelo exercício anterior, existe um emparelhamento que cobre X, já que |X| = |Y|, temos um emparelhamento que cobre X e Y, assim, se houver uma aresta entre x_i e y_j no emparelhamento para qualquer i, j então podemos colocar o símbolo s_j na coluna i da nova linha e gerar um retângulo latino $m + 1 \times n$ para qualquer m < n.

Assim, basta repetir o processo acima n-m vezes, a cada passo n-m>0, então o

grafo	montado	vai ter	pelo	menos	uma	aresta	e ser	bipartido,	ou seja,	vai	valer	a h	ipótese	do
teore	ma provac	do acim	ıa.											