AMENDMENTS TO THE CLAIMS

Docket No.: 4266-0124PUS1

1. (Original) A 2-substituted pyrimidine of the formula I

$$R^{1}$$
 N R^{2} L_{n} R^{4} N R^{3}

1

in which the index and the substituents are as defined below:

n is an integer from 1 to 5;

L is halogen, cyano, cyanato (OCN), C₁-C₈-alkyl, C₂-C₈-alkenyl, C₂-C₈-alkynyl, C₁-C₆-alkoxy, C₂-C₈-alkyenyloxy, C₂-C₈-alkynyloxy, C₃-C₆-cycloalkyl, C₄-C₆-cycloalkenyl, C₃-C₆-cycloalkyloxy, C₄-C₆-cycloalkenyloxy, nitro, -C(=O)-A, -C(=O)-A, -C(=O)-N(A')A, C(A')(=N-OA), N(A')A, N(A')-C(=O)-A, N(A'')-C(=O)-N(A')A, S(=O)_m-A, S(=O)_m-O-A or S(=O)_m-N(A')A, m is 0, 1 or 2;

A, A', A'' independently of one another are hydrogen, C₁-C₆-alkyl, C₂-C₆-alkenyl, C₂-C₆-alkynyl, C₃-C₈-cycloalkyl, C₃-C₈-cycloalkenyl, phenyl, where the organic radicals may be partially or fully halogenated or may be substituted by nitro, cyanato, cyano or C₁-C₄-alkoxy; or A and A' together with the atoms to which they are attached are a five- or six-membered saturated, partially unsaturated or aromatic heterocycle which contains one to four heteroatoms from the group consisting of O,

N and S;

where the aliphatic groups of the radical definitions of L for their part may be partially or fully halogenated or may carry one to four groups R^u:

- R^u is cyano, C₁-C₆-alkoxy, C₃-C₆-cycloalkyl, C₂-C₈-alkenyloxy, C₂-C₈-alkenyloxy, C₄-C₆-cycloalkenyl, C₃-C₆-cycloalkyloxy, C₄-C₆-cycloalkenyloxy,
 -C(=O)-A, -C(=O)-O-A,
 -C(=O)-N(A')A, C(A')(=N-OA), N(A')A, N(A')-C(=O)-A, N(A'')-C(=O)-N(A')A, S(=O)_m-A, S(=O)_m-O-A or S(=O)_m-N(A')A;
- R^1 , R^2 independently of one another are C_1 - C_6 -alkyl, C_2 - C_6 -alkenyl, C_2 - C_6 -alkynyl, C_3 - C_6 -cycloalkyl, C_3 - C_6 -halocycloalkyl, where the aliphatic groups of the radical definitions of R^1 and R^2 may for their part be partially or fully halogenated or may carry one to four groups R^v :

 R^{v} is cyano, C_3 - C_6 -cycloalkyl, C_4 - C_6 -cycloalkenyl, hydroxyl, C_1 - C_6 -alkoxy, C_2 - C_8 -alkenyloxy, C_2 - C_8 -alkynyloxy, C_3 - C_6 -cycloalkyloxy, C_4 - C_6 -cycloalkenyloxy, C_1 - C_6 -alkylthio, -C(=O)-A, -C(=O)-O-A, -C(=O)-N(A')A, C(A')(=N-OA), N(A')A, N(A')-C(=O)-A, N(A'')-C(=O)-N(A')A, S(=O)_m-A, S(=O)_m-O-A or S(=O)_m-N(A')A or phenyl, where the phenyl moiety may carry one to three radicals selected from the group consisting of halogen, C_1 - C_6 -alkyl, C_2 - C_6 -alkenyl, C_2 - C_6 -alkynyl, C_3 - C_6 -cycloalkyl, C_1 - C_6 -halogenalkyl, C_1 - C_6 -alkoxy, cyano, nitro, -C(=O)-A, -C(=O)-O-A, -C(=O)-N(A')A, -C(=O)-OA), N(A')A;

R² may additionally be hydrogen;

Docket No.: 4266-0124PUS1

 R^1 and R^2 may also, together with the nitrogen atom to which they are attached, form a saturated or unsaturated five- or six-membered ring which may be interrupted by an ether (-O-), carbonyl (C=O-), thio (-S-), sulfoxyl (-S[=O]-) or sulfenyl (-SO₂-) or a further amino -(-N(R^a) group where R^a is hydrogen or C_1 - C_6 alkyl and/or may contain one or more substituents from the group consisting of halogen, C_1 - C_6 -alkyl, C_1 - C_6 -haloalkyl and oxy- C_1 - C_3 -alkylenoxy;

R³ is halogen, cyano, C₁-C₄-alkyl, C₂-C₄-alkenyl, C₂-C₄-alkynyl, C₃-C₆-cycloalkyl, C₁-C₄-alkoxy, C₃-C₄-alkenyloxy, C₃-C₄-alkynyloxy, C₁-C₆-alkylthio, di-(C₁-C₆-alkyl)amino or C₁-C₆-alkylamino, where the alkyl, alkenyl and alkynyl radicals of R³ may be substituted by halogen, cyano, nitro, C₁-C₂-alkoxy or C₁-C₄-alkoxycarbonyl; corresponds to one of the formulae

where

 R^4

- x is a direct bond, -(C=O)-, -(C=O)-NH, -(C=O)-O-, -O-, -NR^c-, where the molecule moiety to the left in each case is attached to the nitrogen atom;
- R^a is hydrogen, methyl, benzyl, trifluoromethyl, allyl, propargyl or methoxymethyl;
- R^b is hydrogen, C₁-C₆-alkyl; C₂-C₆-alkynyl;

 R^{c} is hydrogen, methyl or C_1 - C_4 -acyl and

Z is S or NR^b ;

where the aliphatic groups of the radical definitions of R^a, R^b and/or R^c for their part may carry one or two groups R^w:

 R^{w} is halogen, OR^{x} , NHR^{x} , C_{1} - C_{6} -alkyl, C_{1} - C_{4} -alkoxycarbonyl, C_{1} - C_{4} -acyl-amino, [1,3]dioxolane- C_{1} - C_{4} -alkyl, [1,3]dioxane- C_{1} - C_{4} -alkyl, where R^{x} is hydrogen, methyl, allyl or propargyl.

- 2. (Original) A 2-substituted pyrimidine as claimed in claim 1, where R³ is chlorine, cyano, methyl or methoxy.
- (Original) A 2-substituted pyrimidine as claimed in claim 1, where R^a is hydrogen and R^b is hydrogen, C₁-C₆-alkyl or C₂-C₆-alkenyl.
- 4. (Currently Amended) A 2-substituted pyrimidine as claimed in any of claims 1 to 3 claim
 1, in which the phenyl group substituted by L_n is the group B

5

where # is the point of attachment to the pyrimidine skeleton and

- L¹ is fluorine, chlorine, CH₃ or CF₃;
- L², L⁴ independently of one another are hydrogen, CH₃ or fluorine;

- Docket No.: 4266-0124PUS1
- L³ is hydrogen, fluorine, chlorine, cyano, CH₃, SCH₃, OCH₃, SO₂CH₃, NH-C(=O)CH₃, N(CH₃)-C(=O)CH₃ or COOCH₃ and
- L⁵ is hydrogen, fluorine, chlorine or CH₃.
- 5. (Original) A process for preparing 2-substituted pyrimidines of the formula I as claimed in claim 1, where R⁴ is a thioamide, which comprises reacting a compound of the formula II

$$\begin{array}{c|c}
R^{1} & R^{2} \\
 & R^{2} \\
 & R^{3}
\end{array}$$

in which the substituents L, R^1 , R^2 and R^3 are as defined in claim 1 and R' is an unsubstituted or substituted C_1 - C_6 -alkyl radical or an unsubstituted or substituted phenyl radical with an alkali metal cyanide, alkaline earth metal cyanide or tin cyanide of the formula (III) and then reacting the resulting compound IV

$$\mathbb{R}^{1}$$
 $\mathbb{N}^{\mathbb{R}^{2}}$ $\mathbb{I}^{\mathbb{N}}$

with hydrogen sulfide to give IA

Docket No.: 4266-0124PUS1

6. (Original) A process for preparing compounds of the formula IC, where the substituents L_n , R^1 , R^2 , R^3 , R^a and R^b are as defined in claim 1

starting from nitrile IV by reaction with mercaptans of the formula R^bSH under acidic conditions and further reaction of the dithiocarboxylic ester of the formula VII which is obtained, with azides of the formula R^aN₃.

7. (Original) A compound of the formula VII

Docket No.: 4266-0124PUS1

where the substituents R¹, R², R³, R^b and L_n have the meaning in claim 1.

- (Original) A composition suitable for controlling harmful fungi, which composition
 comprises a solid or liquid carrier and a compound of the formula I as claimed in claim 1.
- 9. (Original) A method for controlling phytopathogenic harmful fungi, which comprises treating the fungi or the materials, plants, the soil or the seeds to be protected against fungal attack with an effective amount of a compound of the formula I as claimed in claim 1.
- 10. (New) A 2-substituted pyrimidine as claimed in claim 2, in which the phenyl group substituted by L_n is the group B

$$L^{5} \xrightarrow{L^{4}} L^{3}$$

$$+ L^{2}$$

$$B$$

where # is the point of attachment to the pyrimidine skeleton and

- L¹ is fluorine, chlorine, CH₃ or CF₃;
- L², L⁴ independently of one another are hydrogen, CH₃ or fluorine;
- L³ is hydrogen, fluorine, chlorine, cyano, CH₃, SCH₃, OCH₃, SO₂CH₃, NH-C(=O)CH₃, N(CH₃)-C(=O)CH₃ or COOCH₃ and
- L⁵ is hydrogen, fluorine, chlorine or CH₃.

11. (New) A 2-substituted pyrimidine as claimed in claim 3, in which the phenyl group substituted by L_n is the group B

where # is the point of attachment to the pyrimidine skeleton and

- L¹ is fluorine, chlorine, CH₃ or CF₃;
- L², L⁴ independently of one another are hydrogen, CH₃ or fluorine;
- L³ is hydrogen, fluorine, chlorine, cyano, CH₃, SCH₃, OCH₃, SO₂CH₃, NH-C(=O)CH₃, N(CH₃)-C(=O)CH₃ or COOCH₃ and
- L⁵ is hydrogen, fluorine, chlorine or CH₃.

9 ADM/mao

Docket No.: 4266-0124PUS1