UNIVERSITY OF WATERLOO MIDTERM EXAMINATION SPRING TERM 2005

Surname:	
First Name:	
Id.#:	

Course Number	MATHEMATICS 239				
Course Title	Introduction to Combinatorics				
Instructor	 □ P. Schellenberg 9:30 MWF LEC 001 □ J. Verstraete 1:30 MWF LEC 002 				
Date of Exam	Thursday, June 23, 2005				
Time Period	4:30 - 6:30 p.m.				
Number of Exam Pages (including this cover sheet)	12				
Exam Type	Closed Book				
Additional Materials Allowed	None				
Additional Instructions	Write your answers in the space provided.				

r		1			
Problem	Value	Mark Awarded	Problem	Value	Mark Awarded
1	3		6	4	
2	3		7	6	
3	4		8	6	
4	8		9	3	
5	4		10	9	
	1		Total	50	

(a)
$$1 - x^2 + x^4 - x^6 + x^8 - \dots$$

(b)
$$1 + nx^2 + \binom{n}{2}x^4 + \binom{n}{3}x^6 + \dots + \binom{n}{n}x^{2n}$$
.

(c)
$$\left(\frac{x}{1-x}\right) + \left(\frac{x}{1-x}\right)^3 + \left(\frac{x}{1-x}\right)^5 + \left(\frac{x}{1-x}\right)^7 + \dots$$

$$f(x) = \frac{\Phi(x)}{1-x}.$$

Determine $[x^n]f(x)$ in terms of the coefficients a_i .

$$w(n) = \begin{cases} n & \text{if } n \text{ is odd,} \\ \frac{n}{2} & \text{if } n \text{ is even.} \end{cases}$$

Determine the generating function $\Phi_{\mathbb{N}}(x)$ as a rational function $\frac{p(x)}{q(x)}$ where p(x) and q(x) are polynomials.

- [8] 4. Let n be a positive integer and let b_n denote the number of compositions of n into k parts, where each part is one or two. For example, (1, 2, 1, 2, 1) and (2, 2, 1, 1, 1) are two compositions of n = 7 into k = 5 parts.
 - (a) Determine the generating function for b_n .
 - (b) Prove that $b_n = \binom{k}{n-k}$ for $k \le n \le 2k$ and $b_n = 0$ otherwise.
 - (c) Determine the generating function for c_n , the number of compositions of n into any number of parts, each of which is one or two.
 - (d) Find a recurrence equation for c_n with appropriate initial conditions.

	(a)	Are the strings of	of {101,	010,	01010}*	uniquely	created?	Justify your	answer.
--	-----	--------------------	----------	------	---------	----------	----------	--------------	---------

[4] 5. (b) Are the strings of {110, 011, 01010}* uniquely created? Justify your answer.

- [4] **6.** For each of the following sets, write down a decomposition that uniquely creates the elements of that set.
 - (a) Binary strings that do not contain the substring 1111.
 - (b) Binary strings in which every block of 1's of even length is followed by a block of 0's of even length.

$$S = \{0\}^* \left(\{1\}\{1\}^*(\{0\}\{0\}^*\backslash\{000\}) \right)^* \{1\}^* \{\varepsilon, 1000\}$$

where the strings on the right are uniquely created. Let a_n be the number of binary strings of length n that do not contain the substring 10001.

(a) Show that

$$\sum_{n\geq 0} a_n x^n = \frac{1+x^4}{1-2x+x^4-x^5}.$$

(b) Determine a recurrence relation for the sequence of a_n 's together with sufficient initial condition to uniquely determine the sequence.

[6] **8.** (a) Solve the homogeneous linear recurrence relation

$$b_n - 3b_{n-1} + 3b_{n-2} - b_{n-3} = 0 \qquad \forall n \ge 3$$

with initial conditions $b_0 = 1$, $b_1 = 0$, $b_2 = 1$.

(b) Solve the nonhomogeneous linear recurrence relation

$$a_n - 3a_{n-1} - 4a_{n-2} = 6n - 11 \qquad \forall n \ge 3$$

with initial conditions $a_1 = 5$ and $a_2 = 12$.

- [9] **10.** Let G(n,r) denote the graph whose vertices are subsets of $\{1,2,\ldots,n\}$ of size r, and whose edges are pairs of subsets of $\{1,2,\ldots,n\}$ of size r which are disjoint.
 - (a) Draw G(3,1) and G(4,2).
 - (b) Determine the number of vertices in G(n, r).
 - (c) Determine the degree of every vertex of G(n, r).
 - (d) Determine the number of edges in G(n, r).
 - (e) Prove that G(3r, r) is connected for all $r \ge 1$.

Blank page - this page will not be marked