Napredni algoritmi i strukture podataka – zimski ispitni rok

9. srpnja 2018.

Ovaj ispit donosi ukupno **50 bodova** (prag 35), a vrijednosti pojedinih (pod)zadataka su u zagradi na početku teksta svakog (pod)zadatka. Pogrešni odgovori u nekim zadatcima donose negativne bodove (drugi broj u zagradi, iza ;)! Boduju se isključivo rješenja napisana na dodatnim papirima, dakle oznake i rješenja na ovom obrascu se ne uzimaju u obzir.

- 1. (3; -1) Objasnite, sažeto, čemu služi, tj. zašto je potrebna prva faza dvofaznog simpleks algoritma.
- 2. (10) Zadana je potpuno povezana, unaprijedna (*feedforward*) troslojna neuronska mreža strukture 3x4x2. Aktivacijska funkcija svih neurona u mreži je tangens hiperbolni.
 - a) (1) Skicirati tu mrežu.
 - b) (9) Provedite prvi korak uvježbavanja te mreže (jednom osvježiti sve parametare) algoritmom koračnog uvježbavanja (*on-line learning*) ako se podatci za uvježbavanje uzimaju redom iz sljedeće tablice:

ulaz 1	ulaz 2	ulaz3	izlaz 1	izlaz 2
-1.8	-6.7	-2	-1	-0.9
-0.5	3.2	0.2	1.1	0.5
1.7	1	0.9	1	-0.2
3.6	-0.4	3	-0.6	-1

Početne vrijednosti svih parametara mreže postavite na <u>jedan</u>, a zatrebaju li Vam još neke veličine, pridijelite im vrijednosti po vlastitom nahođenju, samo jasno navedite svoj izbor i kratko naznačite što ta veličina predstavlja.

Naputak: Tangens hiperbolni je skalirani i translatirani sigmoid: tanh(x)=2*sigmoid(x)-1

- 3. (8; –4) Razmatra se problem naprtnjače kapaciteta C za N raspoloživih stvari.
 - a) (4; -2) Napišite u velikoj O notaciji **vremensku** i **prostornu složenost** rješenja tog problema primjenom dinamičkog programiranja.
 - b) (4; -2) Također, napišite složenosti za iscrpnu pretragu koja isprobava sve kombinacije N raspoloživih stvari.

4. (9) Za graf zadan matricom udaljenosti provedite transformaciju u graf s nenegativnim bridovima koja će očuvati međusobne odnose duljina puteva.

	1	2	3	4	5
1					
2	-1				
3	1				8
4	3	0			
5	-4	2			

- 5. (9) U polazno prazno RB stablo:
 - a) (5) upisati, redom, 16, 10, 7, 19, 18, 4, 3, 2, 5 i 1
 - b) (4) izbrisati, redom, 4, 5 i 10.
- 6. (11) Tvornica pomoću dva stroja proizvodi tri artikla u procesu opisanom skicom. Proces proizvodnje je bez gubitaka, a mora biti isporučeno barem 1kg prvog artikla. Pronađite optimalni plan proizvodnje (tj. koliko kojeg artikla treba biti proizvedeno).

Napredni algoritmi i strukture podataka – međuispit

20. studenog 2017.

Ovaj ispit donosi ukupno **42 boda** (prag 10,5), a vrijednosti pojedinih (pod)zadataka su u zagradi na početku teksta svakog (pod)zadatka. Pogrešni odgovori u nekim zadatcima donose negativne bodove (drugi broj u zagradi, iza ;)! Boduju se isključivo rješenja napisana na dodatnim papirima, dakle oznake i rješenja na ovom obrascu se ne uzimaju u obzir.

1. (10) Nalazite se u dućanu i raspolažete s 1900 HRK te birate među stvarima čija će Vas kupnja razveseliti. Koje ćete stvari odabrati s ciljem maksimizacije Vašeg zadovoljstva?

	klompe	potkove	luftić	ukrasni bedž	maketu stadiona	kocka leda
Cijena [HRK]	400	300	100	900	1200	500
Zadovoljstvo (što veći broj, to bolje)	11	6	2	18	30	8

2. (10) U inicijalno prazno AVL stablo:

a) Redom je upisano sljedećih dvanaest elemenata: 2, 18, 3, 17, 20, 8, 9, 16, 28, 24, 11 i 29. Prikažite stvaranje tog stabla.

b) Brišite redom brojeve: 18, 29 i 28.

3. (9) Skicirajte promjene u početno praznom B-stablu trećeg reda uslijed upisivanja redom sljedećih četrnaest brojeva:

86, 69, 89, 68, 4, 85, 74, 48, 46, 83, 61, 76, 43 i 35

- 4. (13) Potpuno povezana, unaprijedna (*feedforward*) troslojna neuronska mreža strukture 2x2x2 je dio sustava iz kojeg na ulaze mreže dolaze signali. Aktivacijska funkcija svih neurona skrivenog i izlaznog sloja u mreži je opći sigmoid.
 - a) (1) Nacrtati ovu mrežu.
 - b) (10) Provesti prvi korak uvježbavanja te mreže (provesti cijeli račun potreban za osvježavanje svih parametara) ako ju treba uvježbati za aproksimaciju funkcije definirane definirane vrijednostima u nekolicini točaka. Ti podatci se, redom, koriste za uvježbavanje mreže:

ulaz1	ulaz2	izlaz1	izlaz2
2	3	0.5	0.25
4	1	0	0
-1	4	0.25	0
3	0	0	0.25

Početne vrijednosti svih parametara mreže postavite na nula, a zatrebaju li Vam još neke veličine, pridijelite im vrijednosti po vlastitom nahođenju, samo jasno navedite svoj izbor i kratko naznačite što ta veličina predstavlja.

c) (2) Opisati nastavak postupka uvježbavanja mreže.

Napredni algoritmi i strukture podataka – jesenski ispitni rok

07. rujna 2018.

Ovaj ispit donosi ukupno **50 bodova** (prag 35), a vrijednosti pojedinih (pod)zadataka su u zagradi na početku teksta svakog (pod)zadatka. Boduju se isključivo rješenja napisana na dodatnim papirima, dakle oznake i rješenja na ovom obrascu se ne uzimaju u obzir.

- 1. (10) Skicirajte polazno prazno AVL stablo uslijed sljedećih promjena (redom kojim su navedene):
 - a) (6) upisivanja redom: 17, 4, 11, 9, 18, 2, 3, 15, 12, 6, 13 i 14
 - b) (4) uklanjanja 2 pa 3.
- 2. (10) Zadana je potpuno povezana, unaprijedna (*feedforward*) troslojna neuronska mreža strukture 3x4x2. Aktivacijska funkcija svih neurona izlaznog sloja jest opći sigmoid dok je aktivacijska funkcija svih ostalih neurona tangens hiperbolni.

Napomena: $tanh(x)=2\sigma(2x)-1$

- a) (1) Skicirati tu mrežu.
- b) (8) Provedite prvi korak uvježbavanja te mreže (jednom osvježiti sve parametare) algoritmom koračnog uvježbavanja (*on-line learning*) ako se podatci za uvježbavanje uzimaju redom iz sljedeće tablice:

ulaz 1	ulaz 2	ulaz3	izlaz 1	izlaz 2
-1.5	4.4	-0.2	0.12	0.45
2.7	1	-0.9	0.4	0.3
-1.1	-6.7	-2	0.25	0.15
3.6	-0.4	3	0.5	0.1

Početne vrijednosti svih parametara mreže postavite na <u>jedan</u>, a zatrebaju li Vam još neke veličine, pridijelite im vrijednosti po vlastitom nahođenju, samo jasno navedite svoj izbor i kratko naznačite što ta veličina predstavlja.

c) (1) Objasniti nastavak postupka, tj. kako bi započeo sljedeći korak uvježbavanja mreže. Uputa: dovoljna je i samo jedna dobro sročena rečenica. Naravno, svako podrobnije objašnjenje je dobrodošlo i smanjit će mogućnost zabune prilikom ocjenjivanja. 3. (12) Linearni program:

$$\label{eq:maxz} \begin{aligned} \text{max z} &= x_1 + 7x_2 - 2x_3 + 4x_4 \\ \text{uz } 8x_1 - 2x_2 + 3x_3 - x_4 &\geq 1 \\ 6x_1 - 6x_2 - x_3 + x_4 &\leq 2 \\ x_4 &\leq 4 \\ x_1, \, x_2, \, x_3 \, x_4 &\geq 0 \end{aligned}$$

- a) (7) riješite simpleks metodom
- b) (5) riješite grafički za slučaj da vrijedi x3=0, x4=1.

4. (10) Nalazite se u dućanu i raspolažete s 1000 HRK. Kupnja različitih stvari različito Vas uveseljava, a želite se što je moguće više oraspoložiti nakon napornog radnog dana. Koje ćete stvari odabrati?

	A	В	С	D	Е	F	G
Cijena [HRK]	500	200	-200	1000	600	1200	700
Utjecaj na raspoloženje (što veći broj, to bolje)	8	4	5	12	7	14	10

5. (8) Pronađite minimalno razapinjuće stablo Primovim algoritmom na neusmjerenom grafu zadanom sljedećom matricom udaljenosti (slova u tablici su oznake vrhova, dane samo vrijednosti u gornjoj trokutastoj matrici, kako je matrica simetrična).

	Α	В	С	D	Е	F	G	Н
Α	-6	-1			6	5	-1	
В			-4					1
С				9		3	5	4
D						-1		
E						4		3
F						-2		
G								
Н								

Napredni algoritmi i strukture podataka – završni ispit

29. siječnja 2018.

Ovaj ispit donosi ukupno **50 bodova** (prag 15), a vrijednosti pojedinih (pod)zadataka su u zagradi na početku teksta svakog (pod)zadatka. Pogrešni odgovori u nekim zadatcima donose negativne bodove (drugi broj u zagradi, iza ;)! Boduju se isključivo rješenja napisana na dodatnim papirima, dakle oznake i rješenja na ovom obrascu se ne uzimaju u obzir.

1. (11) Riješite sljedeći linearni program:

$$\begin{array}{ll} \text{max} & -5x_1 + 6x_2 + 7x_3 \\ \text{uvjeti} & x_1 + 2x_2 - 2x_3 \leq 5 \\ & -x_2 + 2x_3 \leq 1 \\ & x_2 & \leq 6 \\ & x_1, x_2, x_3 \geq 0 \end{array}$$

- 2. (6; -3) Navedite sve **NETOČNE** tvrdnje.
- (a) Prostor mogućih rješenja linearnog programa jest konveksni politop.
- (b) Prostor mogućih rješenja linearnog programa jest politop.
- (c) Poznat je algoritam polinomijalne složenosti za pronalazak Hamiltonovog ciklusa u Hamiltonovim grafovima.
- (d) Bellman-Ford jest label-setting algoritam.
- (e) Maksimalni tok u mreži jest određen kapacitetom maksimalnog presjeka.
- (f) Dijkstrin algoritam pronalazi najkraći put samo između polaznog vrha i točno jednog zadanog vrha u grafu.

Napomena: u ovom zadatku se može steći najviše 6 bodova, ali i dobiti do 3 negativna boda. Vi navodite tvrdnje koje smatrate neistinitima, a prilikom bodovanja će se pretpostaviti da tvrdnje koje niste naveli smatrate istinitima. Time će Vaši odogovori postati vektor sa 6 elemenata ISTINA ili NEISTINA, a bodovanje će se provesti kao binarna usporedba s točnim vektorom. Svaka podudarnost elemenata u vektoru Vaših odgovora i odgovarajućih elemenata u točnom vektoru donijet će 1 bod, a nepodudarnost –0.5 bod. Jedini način da se ovaj zadatak boduje s nula (0) bodova jest da uopće ništa ne napišete.

3. (11) Riješite problem kineskog poštara koji kreće u obilazak iz čvora 3.

- 4. (11) WFI algoritmom pronađite najkraće udaljenosti među svim čvorovima u grafu zadanom u 3. zadatku ako se uklone vrhovi 6 i 7.
- 5. (11) U grafu zadanom simetričnom matricom udaljenosti pronađite obilazak za trgovačkog putnika koji nije dulji od dvostruke duljine najkraćeg razapinjućeg stabla. Udaljenosti zadovoljavaju nejednakost trokuta. Polazni vrh neka bude **a**.

	a	b	С	d	e	f
a	0	1	2	2	3	4
b		0	1	2	2	3
c			0	3	2	2
d				0	1	5
e					0	4
f						0

Napomena: morate ilustrirati slijed koraka koji jasno pokazuju razumijevanje algoritma. Ako upotrijebite algoritam koji nije predavan na NASP-u, morate navesti izvor koji ste koristili za učenje i taj izvor mora sadržavati dokaz točnosti algoritma ili mora sadržavati referencu na neki drugi izvor s prikladnim dokazom.

Napredni algoritmi i strukture podataka – zimski ispitni rok

12. veljače 2018.

Ovaj ispit donosi ukupno **50 bodova** (prag 35), a vrijednosti pojedinih (pod)zadataka su u zagradi na početku teksta svakog (pod)zadatka. Pogrešni odgovori u nekim zadatcima donose negativne bodove (drugi broj u zagradi, iza ;)! Boduju se isključivo rješenja napisana na dodatnim papirima, dakle oznake i rješenja na ovom obrascu se ne uzimaju u obzir.

- 1. (3; -1) Opišite, sažeto, kako u RB stablu nastaje stanje koje modeliramo pomoću dvostruko crnog čvora. Drugim riječima, objasnite kada se u RB stablu pojavljuje dvostruko crni čvor.
- 2. (12) Zadana je potpuno povezana, unaprijedna (*feedforward*) troslojna neuronska mreža strukture 3x4x2. Aktivacijska funkcija svih neurona skrivenog sloja je opći sigmoid, dok je u izlaznom sloju Adaline.
 - a) (1) Skicirati tu mrežu.
 - b) (11) Provedite prvi korak uvježbavanja te mreže (jednom osvježiti sve parametare) algoritmom koračnog uvježbavanja (*on-line learning*) ako se podatci za uvježbavanje uzimaju redom iz sljedeće tablice:

ulaz 1	ulaz 2	ulaz3	izlaz 1	izlaz 2
2.0	-6.7	-2	-1	-1.5
-0.1	3.2	10.2	3.1	0.5
2.7	-1	0.9	-1	-3
4.6	-0.7	3	-4	1

Početne vrijednosti svih parametara mreže postavite na <u>jedan</u>, a zatrebaju li Vam još neke veličine, pridijelite im vrijednosti po vlastitom nahođenju, samo jasno navedite svoj izbor i kratko naznačite što ta veličina predstavlja.

3. (12) Za graf zadan matricom udaljenosti provedite transformaciju u graf s nenegativnim bridovima koja će očuvati međusobne odnose duljina puteva.

	1	2	3	4	5
1		1	-1		
2				4	
3		5		-2	
4					
5				-1	

- 4. (11) U polazno prazno AVL stablo:
 - a) (6) upisati, redom, 25, 7, 24, 15, 27, 37, 47, 36 i 34
 - b) (5) izbrisati, redom, 47, 37 i 27.
- 5. (12) Simpleks postupkom riješite sljedeći linearni program:

$$\max z = -3x_1 + 5x_2 - 2x_3 + 6x_4$$

$$uz \ x_1 - 2x_2 + 3x_3 - 3x_4 \le 11$$

$$-x_1 + 8x_2 + x_3 + x_4 \le 4$$

$$x_1 \le -3$$

$$x_2, \ x_3 \ x_4 \ge 0$$