ALMA MATER STUDIORUM UNIVERSITÀ DI BOLOGNA - CAMPUS DI CESENA

Scuola di Ingegneria e Architettura Corso di Laurea Triennale in Ingegneria e Scienze Informatiche

IOT PER L'INQUINAMENTO ACUSTICO: algoritmi di machine learning per la calibrazione di microfoni low cost

Relatore:
Chiar.mo Prof. Silvia Mirri

Presentata da: Mattia Vincenzi **Correlatore:**

Dott. Lorenzo Monti

SESSIONE II ANNO ACCADEMICO 2018-2019

INQUINAMENTO ACUSTICO DEFINIZIONE ED EFFETTI SULLA SALUTE

Nella vita quotidiana l'essere umano è sottoposto ad ogni genere di suono desiderato o indesiderato che sia e l'insieme di tutti quei suoni che accompagnano un'attività indesiderata vengono considerati rumore, e di conseguenza inquinamento acustico. Tale piaga non provoca solamente un senso di irritazione e fastidio, ma va ad intaccare anche aspetti sociali e lavorativi, comportando quindi una vasta gamma di disturbi extra-uditivi (ormonali, vascolari, psicologici).

Per poter monitorare il rumore ambientale all'interno dell'Università degli Studi di Bologna - Campus di Cesena, al fine di determinare la presenza di inquinamento acustico durante l'orario di studio/lavoro, è necessario avere a disposizione dispositivi che forniscano misure quanto più accurate possibili.

Obiettivo di questa tesi diventa quindi quello di calibrare dei microfoni a basso costo mediante algoritmi di machine learning, cercando di raggiungere le stime ottenute tramite il fonometro.

ARCHITETTURA PER IL RACCOGLIMENTO DATI

- Elemento fondamentale per poter applicare strategie di apprendimento automatico è il dataset.
- Dispositivi Internet Of Things (IoT) nell'architettura:
 - Raspebrry Pi 2 model B + microfono
 - UDOO Neo + fonometro UT351/352
 - Canarin II

Questi vengono chiamati edge della rete.

ARCHIETTURA UTILIZZATA COMPONENTI CONFIGURATE SUGLI EDGE

Autossh

Crontab

Script per invio automatico

METODO DI ANALISI

A scopo di ricerca sono stati utilizzati tre metodi di analisi differenti, creando dataset diversi, e applicando ad ognuno di essi degli algoritmi di machine learning. In questo modo è stato possibile lavorare con un numero di occorrenze e di features diverse per ogni metodo di analisi applicato.

PRIMO DATASET

- Regressione univariata.
- Variabile indipendente (X): db microfono
- Variabile dipendente (Y): db fonometro

Datetime	db_{mic}	db_{phon}		
2019-05-23 19:00:07	83.8346078673	52.126464811400005		
2019-05-23 19:00:08	81.7981022288	50.595703093599994		
2019-05-23 19:00:09	82.92256071359999	49.145507781999996		

Periodo di campionamento: un mese (circa un milione di occorrenze)

METODO DI ANALISI

A scopo di ricerca sono stati utilizzati tre metodi di analisi differenti, creando dataset diversi, e applicando ad ognuno di essi degli algoritmi di machine learning. In questo modo è stato possibile lavorare con un numero di occorrenze e di features diverse per ogni metodo di analisi applicato.

SECONDO DATASET

- Regressione multivariata
- Frequenza campionamenti al secondo
- ▶ Variabile indipendente (X): db microfono, dati ambientali
- Variabile dipendente (Y): db fonometro

DateTime	db_{mic}	db_{phon}	PM1.0	PM10	PM2.5	Pres	Temp	Hum
19:00:13	83.9	51.0	3.0	7.0	5.0	1007.7	21.9	59.2
22:06:54	81.7	50.7	4.0	6.9	6.9	1008.4	21.4	60.5
23:55:34	96.2	64.8	4.4	7.5	7.5	1008.5	21.1	60.2

Periodo di campionamento: un mese (circa un milione di occorrenze)

METODO DI ANALISI

A scopo di ricerca sono stati utilizzati tre metodi di analisi differenti, creando dataset diversi, e applicando ad ognuno di essi degli algoritmi di machine learning. In questo modo è stato possibile lavorare con un numero di occorrenze e di features diverse per ogni metodo di analisi applicato.

TERZO DATASET

- Regressione multivariata
- Frequenza campionamenti al minuto
- ▶ Variabile indipendente (X): db microfono, dati ambientali
- Variabile dipendente (Y): db fonometro

DateTime	db_{mic}	db_{phon}	PM1.0	PM10	PM2.5	Pres	Temp	Hum
19:00:13	83.9	51.0	3.0	7.0	5.0	1007.7	21.9	59.2
19:01:14	82.4	50.6	3.0	6.0	5.0	1007.7	21.9	59.2

Periodo di campionamento: due mesi (circa quaranta mila occorrenze)

RISULTATI MIGLIORI

Ad ognuno dei tre dataset sono stati applicati gli stessi algoritmi di machine learning. Nella tabella sono riportati i risultati riassuntivi del migliore modello per ciascun dataset.

	Miglior Modello	Coef. R^2	RMSE	Err. Relativo
Metodo I	Reg. polinomiale	0.85	4.15	5.78%
Metodo II	Random forest	0.93	2.74	2.57%
Metodo III	Random forest	0.87	3.59	3.90%

VALORI IPERPARAMETRI

METODO I

Grado polinomio: 20Regolarizzazione: 0.1

METODO II

Numero di alberi decisionali: 40

METODO III

Numero di alberi decisionali: 99

INTEGRAZIONE MODELLI NEL SISTEMA

INTEGRAZIONE DEI MODELLI NEL TOOL DI MONITORAGGIO DEL RUMORE INSTALLATO SU DISPOSITIVI EMBEDDED:

Calibrazione Tiny

- Leggera
- Semplice da applicare
- Sfrutta minor numero di componenti possibile
- Si basa sul modello ottenuto dal Metodo I

Calibrazione Full

- Precisa
- Complessa da applicare
- Utilizza anche i dati raccolti dal Canarin II
- Si basa sul modello ottenuto dal Metodo II

02

Nel sistema è stata integrata la calibrazione tiny in quanto non necessita dell'aggiunta di componenti.

01

Il modello migliore è quello basato su random forest, ottenuto dal secondo dataset ed addestrato utilizzando 40 alberi decisionali.

CONCLUSIONE

03

Il modello pre-addestrato sul primo dataset è stato esportato in binario, venendo quindi richiamato ad ogni campionamento del microfono.

SVILUPPI FUTURI

Aumento valore iperparametri

 Utilizzo di algoritmi di learning più complessi

Campionamento delle features ambientali con frequenza al secondo

