Cómputo Evolutivo **Tarea 3**PCIC - UNAM

19 de marzo de 2020

Diego de Jesús Isla López (dislalopez@gmail.com) (diego.isla@comunidad.unam.mx)

1. Definición del problema

Comparar el desempeño de los algoritmos Optimización por Cúmulo de Partículas(PSO), Evolución Diferencial (DE) y algoritmo genético (GA) con las funcines Rastrigin, Himmelblau y Eggholder.

Selección: Torneo binario

• Cruza: aleatoria en un punto con tasa de 0,9

■ Mutación: aleatoria con tasa de $\frac{0,1}{L}$ donde \hat{L} es la longitud del individuo

Elitismo

Población: 1000 individuosNúmero de generaciones: 300

Para PSO a su vez se configura el valor de inercia en 0.3, el factor cognitivo en 0.4 y el factor social en 0.7. Para DE se utiliza un factor de escalamiento F de 0.2. La variante usada de DE es DE/best/2/bin, la cual indica que se utiliza la mejor solución global como base para generar nuevos individuos.

Para todos las pruebas se hicieron 10 ejecuciones de cada algoritmo para cada problema. Se muestran las gráficas y tablas correspondientes.

2. Resultados para Rastrigin

En el caso de GA en ambas codificaciones vemos un comportamiento estable y muy similar con tendencia a converger en la solución óptima del problema (figuras 1 y 2). En la codificación real vemos un poco más de ruido antes de converger en dicha solución.

En las figuras 3 y 4 se observan las gráficas de desempeño para PSO y DE, respectivamente. En el caso de DE, observamos un desempeño similar al de GA-binario, obteniendo soluciones vecinas a la solución óptima. En el caso de PSO, se observa un comporamiento más habitual y que converge a la solución óptima. Comparando el desempeño de DE con

Figura 1: GA binario

Figura 2: GA Real

PSO, es posible observar que ambos son muy similares, aunque en general PSO encuentra mejores soluciones (tablas 1 y 2).

Figura 3: DE

Figura 4: PSO

3. Resultados para Himmelblau

En el caso de GA con codificación real vemos un comportamiento prácticamente estático cercano en la región de la solución óptima (figura 6). Veremos esto para diferentes instancias debido al tamaño de población elegido (1000 individuos).

Muestra	$\Sigma f(x)$	σ	σ^2
E1	64.49	0.04695235	0.002204523
E2	650.16	0	0
E3	1216.04	0	0
E4	139.84	0.05615078	0.00315291
E5	324.62	0.08357625	0.00698499
E6	538.79	0	0
E7	446.18	0.04034733	0.001627907
E8	761.53	0	0
E9	343.14	0	0.
E10	319.09	0.0009950041	9.900332e-07
μ	1.59	0.03737823	0.001397132

Tabla 1: Comportamiendo de DE para Rastrigin

Muestra	$\Sigma f(x)$	σ	σ^2
E1	1.04	0.04259916	0.001814689
E2	1.18	0.06060182	0.00367258
E3	1.68	0.07243441	0.005246744
E4	0.51	0.0217129	0.0004714529
E5	1.77	0.09188202	0.008442306
E6	1.04	0.04426461	0.001959355
E7	2.92	0.1084016	0.01175091
E8	1.21	0.05872637	0.003448786
E9	1.41	0.06650551	0.004422983
E10	1.78	0.08583849	0.007368246
μ	0.0048	0.0697123	0.004859805

Tabla 2: Comportamiendo de PSO para Rastrigin

En las figuras 7 y 8 se muestran las gráficas de desempeño para DE y PSO, respectivamente. Como se mencionó anteriormente, podemos observar de nuevo un comportamiento casi estático en DE, a causa del tamaño de la población. Todas las soluciones están en la vecindad del óptimo. En el caso de PSO vemos un comportamiento similar al anterior, donde encuentra alguna de las soluciones óptimas en las primeras generaciones. En las tablas 3 y 4 podemos apreciar que de nueva cuenta PSO encuentra mejores soluciones en general, y se puede corroborar la poca variación que tienen las soluciones encontradas por DE.

Muestra	$\Sigma f(x)$	σ	σ^2
E1	15.05	0	0
E2	156.52	0	0
E3	0.15	0.00517212	2.675083e-05
E4	18.12	0.002441338	5.960133e-06
E5	132.44	0	0
E6	0.92	0.03743385	0.001401293
E7	6.14	0.003441007	1.184053e-05
E8	0.04	0.001147002	1.315615e-06
E9	66.224	0	0
E10	10.42	0.05458574	0.002979604
μ	0.1344	0.0210398	0.0004426764

Tabla 3: Comportamiento de DE para Himmelblau

Muestra	$\Sigma f(x)$	σ	σ^2
E1	0.55	0.02507954	0.0006289834
E2	0.17	0.005100322	2.601329e-05
E3	3.15	0.1696637	0.02878578
E4	0.28	0.0113048	0.0001277984
E5	10.91	0.611737	0.3742222
E6	0.17	0.005034543	2.534662e-05
E7	0.54	0.01980162	0.0003921041
E8	0.81	0.04109016	0.001688401
E9	3.38	0.19482	0.03795482
E10	0.42	0.02084978	0.0004347132
μ	0.0067	0.210781	0.04442862

Tabla 4: Comportamiento de PSO para Himmelblau

Figura 5: GA binario

Figura 6: GA Real

Figura 7: DE

Figura 8: PSO

4. Resultados para Eggholder

En la figuras 9 y 10se observa el desempeño de GA para Eggholder, donde de nuevo observamos el comportamiento estático con la codificación real, mientras que con la codificación binaria observamos un desempeño más regular y que en general se acerca a una solución cercana a la óptima.

En la figuras 11 y 12 tenemos el desempeño de DE y PSO respectivamente, en los cuales para ambos casos encontraron soluciones fuera del espacio de búsqueda, lo cual fue la razón para ajustar el número de individuos a 1000, pues fue la configuración con la que esto sucedió con menos frecuencia. PSO fue el algoritmo que se comportó más esta-

Figura 9: GA binario

Figura 10: GA Real

ble, teniendo su promedio dentro del espacio de búsqueda. Para ambos casos vemos una variación similar en las soluciones encontradas. (tablas 5 y 6)

Figura 11: DE

Figura 12: PSO

5. Conclusiones

Podemos observar que el desempeño en general es bueno para ambos algoritmos, pudiendo ser PSO el que tiene un comportamiento ligeramente mejor y más estable. Para estos experimentos se dejó el factor de inercia fijo, aunque es recomendable que se disminuya con cada generación para tener saltos más pequeños en la exploración. En DE podemos

Muestra	$\Sigma f(x)$	σ	σ^2
E1	-254330	0	0
E2	-251073.1	0	0
E3	-392082.2	24.68532	609.3648
E4	-268360.5	0.691349	0.4779634
E5	-392825.6	36.8634	1358.91
E6	-353568	24.2301	587.0977
E7	-260246.7	0.05014597	0.002514618
E8	-269136.1	0	0
E9	-391590.1	25.66835	658.8639
E10	-258029.2	0.	0
μ	-1,023.59	17.92963	321.4717

Tabla 5: Comportamiento de DE para Eggholder

Muestra	$\Sigma f(x)$	σ	σ^2
E1	-269424.6	1.66723	2.779659
E2	-269437	1.161445	1.348954
E3	-269455.7	0.1193114	0.01423522
E4	-269412.4	2.193421	4.811094
E5	-269126.4	15.88424	252.3089
E6	-269444.5	0.6601638	0.4358162
E7	-391813.6	49.5586	2456.055
E8	-269348.5	3.05734	9.347327
E9	-269405.8	2.172272	4.718768
E10	-269430.8	1.408742	1.984555
μ	-932.549	16.53422	273.3805

Tabla 6: Comportamiento de PSO para Eggholder

observar que los resultados presentados se obtuvieron con una alta probabilidad de cruza y con un factor de escalamiento pequeño, favoreciendo la diversidad de las soluciones auxiliares generadas.