# Redes

Tema 5: Capa de enlace

José Carlos Cabaleiro Domínguez

Escola Técnica Superior de Enxeñería

# Índice

- Introducción
- 2 Modelo IEEE 802
- 3 Direcciones MAC Ethernet
- 4 Ethernet
- Redes inalámbricas
- 6 Redes ATM
- Ejemplo completo



# Índice

- Introducción
- 2 Modelo IEEE 802
- 3 Direcciones MAC Ethernet
- 4 Ethernet
- 6 Redes inalámbricas
- 6 Redes ATM
- Ejemplo completo



# Introducción

## Capa de enlace

- Se encarga de transmitir bloques de bits de un lado a otro de un enlace
- Determina el acceso al medio en redes de difusión
- Tramas o marcos: PDU de la capa de enlace

### Tipos de enlace

- Punto a punto: un emisor y un receptor a ambos extremos del enlace
- Difusión: medio de transmisión compartido por varios emisores



# Introducción

### Capa de enlace

- Implementada en la tarjeta de red (adaptador)
- Nodo: host o router al que se conecta el adaptador
- La capa de enlace añade su propia cabecera

| Aplicacion | 5 |     |
|------------|---|-----|
| Transporte | 4 | TCP |
| Red        | 3 | IP  |
| Enlace     | 2 | ETH |
| Fisica     | 1 |     |

## Protocolos de la capa de enlace

- Definen el formato de las tramas
- Definen las acciones de los nodos cuando envían o reciben tramas

# Introducción

## Servicios posibles de un protocolo de capa de enlace

- Entramado o delimitado de tramas: encapsulado de datagramas
- Acceso al enlace: protocolo MAC (control de acceso al medio)
- Entrega fiable: confirmaciones y retransmisiones
- Control de flujo: limitar el envío de tramas
- Detección de errores: más sofisticada que en capas superiores
- Corrección de errores: paridad, checksums y CRC
- Half-duplex y full-duplex: transmisión en uno o ambos sentidos a la vez



# Índice

- Introducción
- 2 Modelo IEEE 802
- Direcciones MAC Ethernet
- 4 Ethernet
- Redes inalámbricas
- 6 Redes ATM
- Ejemplo completo



# Modelo IEEE 802

#### Modelo IEEE 802

- Principales tipos de LANs definidas por el modelo IEEE 802
  - LANs de difusión: trabajan a nivel de capa de enlace
- Establece un modelo para la capa de enlace en LANs
- Capa de enlace dividida en 2 subcapas:
  - Control de enlace lógico (LLC, Logical Link Control)
  - Control de acceso al medio (MAC, Media Access Control)
- División en dos subcapas:
  - La lógica necesaria para la gestión de acceso a un medio compartido no está en la capa de enlace de datos tradicional
  - Se pueden ofrecer varias opciones MAC para el mismo LLC



# Modelo IEEE 802



# Capa LLC

## Capa LLC

- Interfaz con las capas superiores
- Control de errores y de flujo

### Tipos de servicio

- Sin conexión ni confirmaciones
  - No incluye mecanismos de control de flujo ni errores. No garantiza la recepción de los datos
  - Control de recepción en capas superiores
- Sin conexión con confirmaciones
  - Se confirman las tramas, pero no hay conexión
- Con conexión y confirmaciones
  - Se establece una conexión lógica y hay control de flujo y errores



# Capa MAC

### Capa MAC

- Ensamblaje de datos en tramas con campos de dirección y de detección de errores
- Desensamblaje de tramas:
  - Reconocimiento de dirección
  - Detección de errores
- Control de acceso al medio de transmisión:
  - No se encuentra en la capa 2 de control de enlace de datos tradicionales
- Para un mismo LLC, están disponibles varios MAC



## Protocolos LAN



# Índice

- Introducción
- 2 Modelo IEEE 802
- 3 Direcciones MAC Ethernet
- 4 Ethernet
- Redes inalámbricas
- 6 Redes ATM
- Ejemplo completo



### Direcciones de los adaptadores

- La arquitectura TCP/IP considera dos direcciones:
  - Una dirección MAC, que tiene sentido en el enlace o LAN
  - Una dirección IP, que tiene sentido en Internet

#### **Direcciones MAC**

- En la LAN, los adaptadores usan las direcciones MAC
- Fuera de la LAN, se eliminan las cabeceras MAC y el paquete viaja usando las direcciones IP



#### **Direcciones Ethernet**

- Todos los nodos Ethernet (802.3) tienen una dirección única que los identifica (dir. MAC, o MAC address)
- La dirección la proporciona el adaptador Ethernet y suele estar fijada en una memoria ROM
- Las direcciones constan de 6 bytes, expresados en hexadecimal: 00:08:74:4A:BA:4B
- Para asegurar que no se repitan direcciones cada fabricante tiene un código único para el comienzo de la dirección, ejemplos:

```
\begin{array}{cccc} 08:00:20 & \rightarrow & \text{Sun} \\ 08:00:5A & \rightarrow & \text{IBM} \\ 00:20:18 & \rightarrow & \text{Realtek} \\ 00:80:9F & \rightarrow & \text{Alcatel} \end{array}
```

### Direcciones Ethernet especiales

- Dos direcciones Ethernet especiales:
  - Broadcast: todos los bits a 1 (FF:FF:FF:FF:FF), trama dirigida a todos los nodos de la red
  - Multicast: bit menos significativo del primer byte a 1, trama dirigida a un grupo de nodos de la red
- Un nodo acepta todas las tramas en las que la dirección destino sea:
  - Su propia dirección Ethernet (unicast)
  - Todos los bits a 1 (broadcast)
  - El LSB del primer byte a 1 (multicast)
  - Cualquier valor si está en modo promiscuo (ej. ifconfig eth0 promisc)

### ARP (Address Resolution Protocol)

- Las tarjetas de red manejan direcciones MAC
- El software de los nodos trabajan con direcciones IP
- ⇒ se necesita obtener direcciones MAC a partir de las IPs
  - El Protocolo ARP mantiene una tabla (caché ARP) con correspondencias direcciones IP/direcciones MAC
  - Cuando ARP recibe una IP, busca en la tabla
    - Si la encuentra, devuelve la MAC correspondiente
    - Si no está en la tabla
      - ARP emite una trama broadcast indicando esa IP
      - El adaptador al que corresponda esa IP responde con su dirección MAC
      - La respuesta se almacena en la cache del peticionario
      - Se procede al envío de la trama
  - Las entradas se eliminan a los 15 minutos

# **ARP**



# Índice

- Introducción
- 2 Modelo IEEE 802
- Direcciones MAC Ethernet
- 4 Ethernet
- Redes inalámbricas
- 6 Redes ATM
- Ejemplo completo



#### Características

- La red Ethernet es el tipo de LAN más sencilla y más común
- Servicio no fiable
- Red de difusión
  - Topología bus: cable coaxial puentea todos los adaptadores. Obsoleta
  - Topología estrella: par trenzado conecta cada adaptador con el centro



- El protocolo Ethernet funciona sobre cable coaxial, par trenzado y fibra óptica
- Muchas velocidades: 10 Mbps, 100 Mbps, 1 y 10 Gbps

## Trama MAC Ethernet

#### **Formato**



SFD = Delimitador de comienzo de trama (Start of Frame Delimiter)

DA = Dirección destino (Destination Address) SA = Dirección origen (Source Address)

- Cabecera: 7 bytes 10101010 cada uno, sincronización
- SFD: byte 10101011, indica el comienzo real de la trama
- Longitud del campo de datos (2 bytes)
  - En Ethernet DIX, campo de Tipo, indica el protocolo de red usado (IP o ARP)
- Relleno: para que la trama tenga un tamaño mínimo
  - Tamaño mínimo (sin cabecera ni SFD): 64 bytes = 512 bits
  - Tamaño máximo: 1518 bytes = 12144 bits
- FCS (Frame Check Sequence): código CRC de 4 bytes

#### Control de acceso al medio

- Red de difusión ⇒ protocolo MAC para decidir quién transmite
- Ethernet usa CSMA/CD, acceso múltiple por detección de portadora con detección de colisión
- Para recibir: todos los adaptadores escuchan continuamente el cable
- Para transmitir:
  - El adaptador escucha el medio
    - Si está libre transmite
    - Si está ocupado, espera hasta que quede libre + un pequeño intervalo de seguridad
- Se pueden producir colisiones
- Colisión: en el medio coinciden dos señales de datos



#### Detección de colisiones

- El nodo emisor escucha el cable mientras transmite
  - Tiempo de vulnerabilidad: un nodo ocupa el medio y su transmisión tarda un tiempo en alcanzar otros nodos
  - Durante ese tiempo, otros nodos ven el medio libre pueden transmitir
  - Los datos en el medio se alteran ⇒ error
  - Condición: t<sub>trama</sub> > 2t<sub>prop</sub>. Implica un tamaño de trama mínimo o una longitud de enlace máxima

## Respuesta a las colisiones

- Cuando un nodo detecta una colisión
  - Acaba de transmitir la cabecera de la trama
  - Emite una secuencia de 32 bits (jamming sequence)
  - Detiene la transmisión
  - Usa el algoritmo de espera exponencial binaria

## Espera exponencial binaria (exponential backoff)

- Divide el tiempo en ranuras discretas de longitud  $T = 2t_{\text{prop max}}$  ( $T = 51,2 \,\mu s$  a 10 Mbps)
- Las estaciones esperan un tiempo 0 o T antes de volver a intentar la transmisión
- Si se detecta una nueva colisión, selecciona aleatoriamente entre 0, T, 2T o 3T
- En general, el tiempo de espera se elige aleatoriamente entre 0 y  $(2^n 1)T$ , n = 1, 2, ..., 10
- A partir de 10 colisiones, el tiempo se escoge entre 0 y 1023T
- Después de 16 colisiones seguidas, el controlador desiste e informa del fallo
- Capas superiores se encargan de recuperar el fallo

### Repetidores

- Dispositivo de capa 1 (física) que trabaja sobre bits individuales
- Tiene dos o más interfaces
- Copia bits que llegan por una interfaz en el resto de las interfaces (excepto por donde llegó)
  - Reconstruye el pulso de tensión



Para transmisiones a largas distancias

### Topología bus (obsoleta)

- Bus de cable coaxial usando conectores T
- Terminadores en los extremos
- No se permite más de 4 repetidores
- Se limita el número de adaptadores en cada segmento



- Nomenclatura: <Mbps><transmisión><centenas m>. Ejemplos:
  - 10base2: 10 Mbps, banda de base y segmento de 200 m
  - 10base5: 10 Mbps, banda de base y segmento de 500 m
  - 10broad36: 10 Mbps, banda ancha con modulación y segmento de 3600 m

### Topología estrella

- Estrella con un centro (hub o conmutador) con par trenzado o fibra óptica
- Cada nodo usa un par trenzado o fibra de entrada y otra de salida (en 10 y 100 Mbps)
- Distancia limitada, 100 m en el caso de par trenzado
- A partir de 1000 Mbps se usan 4 pares trenzados
- Funcionamiento del protocolo equivalente al de un bus
- Nomenclatura: T par trenzado y F, S, L y E fibra óptica



## Topología estrella: ejemplos

- 10base-T: 10 Mbps, banda de base y longitud de 100 m
- 100base-TX (fast Ethernet de par trenzado): 100 Mbps, banda de base y longitud de 100 m
- 100base-FX (fast Ethernet de fibra óptica): 100 Mbps, banda de base y longitud de 400 m
- 1000base-T (Gigabit Ethernet de par trenzado)
- 1000base-SX y 1000base-LX (Gigabit Ethernet de fibra óptica)
- 10Gbase-S, 10Gbase-L y 10Gbase-E (10 Gigabit Ethernet de fibra óptica)

### Hubs (concentradores)

- Dispositivos de capa 1 (capa física) que trabajan a nivel de bits individuales
- Hoy en día están obsoletos
- Difunden los bits: regenera el bit y lo envía por todas las interfaces excepto por la que llegó
- Si llegan a la vez por distintos interfaces, el hub informa a los adaptadores de que hubo colisión



## Bridges (puentes) y switches (conmutadores)

- Dispositivos de capa 2 que trabajan a nivel de tramas Ethernet
  - Procesan los distintos campos de las tramas Ethernet, extraen la dirección destino, determinan si tienen errores usando el CRC, etc.
- Disponen de colas en las interfaces de salida
- Los puentes tienen pocas interfaces y los conmutadores decenas
- Los switches han dejado obsoletos a los puentes



# Conmutadores y puentes Ethernet

### Autoaprendizaje

- Aprenden la localización de los adaptadores
- Tabla de reenvío: entradas para algunos adaptadores
  - Dirección Ethernet, Interfaz, Instante de creación
- Al principio, la tabla está vacía. Utilizan difusión
- Aprendizaje hacia atrás: examinan las tramas que llegan
  - La interfaz de llegada indica la localización del adaptador
  - La dirección origen indica la identidad del adaptador



Se eliminan las entradas de más de unos minutos

# Conmutadores y puentes Ethernet

### Aislamiento del tráfico y filtrado

- Adaptador destino en la tabla ⇒ reenvían las tramas sólo por la interfaz indicada
- El resto de los adaptadores no verán esa transmisión ⇒ tráfico aislado ⇒ evita colisiones
- Interfaz origen coincide con el destino ⇒ el conmutador descarta la trama ⇒ filtrado

### Tasa de transmisión agregada

- Múltiples transmisiones simultáneas, siempre que las interfaces origen y destino sean distintas
- Muchas interfaces ⇒ tasa de transmisión agregada elevada ⇒ diseño de prestaciones elevadas



# Conmutadores Ethernet frente a routers

## Conmutadores y routers

- Ambos son dispositivos de almacenamiento y reenvío
- Conmutadores:
  - Trabajan con cabeceras Ethernet (capa de enlace)
  - Mantienen las tablas de conmutación, implementan filtrado y algoritmos de aprendizaje
- Routers:
  - Trabajan con cabeceras IP (capa de red)
  - Mantienen las tablas de rutas, implementan algoritmos de encaminamiento



## Conmutadores Ethernet

# Ejemplo de red institucional



• Inconvenientes:

- Si un usuario se cambia físicamente de dpto. y desea seguir conectado al anterior
- Dominio de broadcast único
  - Tramas de mensajes ARP o DHCP
- Uso ineficiente de los conmutadores: cada uno solo usa unos pocos puertos

### Redes de área local virtuales. VLANs

 Se pueden abordar esos problemas con un conmutador compatible con VLANs, que soporte el estándar IEEE 802.1Q (se añaden unos campos en la cabecera) 

## **VLANs**

#### **VLANs**

 Los conmutadores que soportan VLAN permiten definir múltiples LANs virtuales sobre una única red física

### VLANs basadas en puertos

- Se dividen los puertos del conmutador en grupos
- Cada grupo una VLAN
  - Se mantiene una tabla puertos - VLAN
  - Solo se entregan tramas entre puertos de la misma VLAN
- Cualquier cambio ⇒ reconfiguración software



## **VLANs**

### VLANs basadas en puertos

- Aislamiento del tráfico
  - Solo se entregan tramas entre puertos de la misma VLAN
  - Se pueden definir VLANs por MAC
- Pertenencia dinámica
  - Asignación dinámica de puertos a VLANs
- Reenvío entre VLANs mediante encaminamiento
  - En la práctica, se combinan routers y switches



# Índice

- Introducción
- 2 Modelo IEEE 802
- 3 Direcciones MAC Ethernet
- 4 Ethernet
- 6 Redes inalámbricas
- Redes ATM
- Ejemplo completo



# Redes inalámbricas (WLAN, Wireless LAN)

#### Especificación IEEE 802.11

- 11b (en 2.4 GHz, DSSS, hasta 11 Mbps)
  - Interferencias, velocidad baja
  - Menor absorción, mayor alcance (120–460 m exterior, 30–90 m interior)
- 11a (en 5 GHz, OFDM, hasta 54 Mbps)
  - Menos interferencias, pero mayor absorción y menor alcance (30–300 m exterior, 12–90 m interior)
  - En España, frecuencia reservada para uso militar
- 11g (en 2.4 GHz, OFDM/DSSS, hasta 54 Mbps)
  - Misma velocidad que 11a con mayor alcance
  - Coexistencia con 11b (WiFi)
- 11n (bandas 2,4 Ghz y 5 Ghz, hasta 600 Mbps teóricos)
  - Es la actual, en casi todos los productos
- 11ac nuevo estándar (hasta 1 Gbps teórico)

## Configuraciones WLAN

#### Redes simples (ad-hoc)

- Conexiones de igual a igual
- Permiten comunicar 2 estaciones siempre que están en su radio de alcance



# Configuraciones WLAN

### Redes distribuidas (managed), con estación base central

- LAN troncal cableada (distribution system) que conecta los servidores y los puntos de acceso (AP, access point)
- Cada AP da servicio a un número de estaciones móviles, distribuyendo el espacio en celdas



## Redes inalámbricas

#### Protocolo de acceso al medio

- Protocolo MACA (Multiple Access with Collision Avoidance). También denominado CSMA/CA
- Un host que quiera transmitir sondea el medio
  - Si está libre, espera un intervalo de seguridad grande (DIFS, Distributed Inter Frame Space)
  - Si continúa libre, transmite
  - Si está ocupado, continúa escuchando hasta que quede libre. Espera un intervalo y, si sigue libre, emite
  - Si sigue ocupado, utiliza un algoritmo de espera exponencial binaria
- No tiene detección de colisiones. Se usan los ACKs
  - Entre la recepción de la trama y el envío del ACK se espera un intervalo corto (SIFS)
  - Todos los hosts deben esperar a la transmisión del ACK



## Redes inalámbricas

#### Protocolo de acceso al medio

- Uso de tramas de control para asegurar la transmisión
  - Se envía primero una trama de petición de envío (RTS)
  - El destino responde con una trama de reserva del canal (CTS)
  - Los demás hosts deben esperar a que la transmisión se



# Índice

- 1 Introducción
- 2 Modelo IEEE 802
- 3 Direcciones MAC Ethernet
- 4 Ethernet
- 6 Redes inalámbricas
- 6 Redes ATM
- Ejemplo completo



#### Modo de transferencia asíncrono

- Tipo de red con la que trabajaban (trabajan) las compañías telefónicas
- Diseñada para operar a alta velocidad
  - Pueden transmitir datos, voz y vídeo
  - Los conmutadores pueden operar a velocidades de terabits por segundo
- El modelo ATM cubre las tres capas inferiores
  - Capa física, de enlace y de red
- Se integra en la arquitectura TCP/IP
- Se usaba en redes telefónicas y en las troncales de Internet



#### Tipos de servicio

- CBR (Constant Bit Rate)
  - Se reserva y garantiza una cierta tasa de transmisión
  - Los retardos y las pérdidas bajo ciertos límites garantizados
  - Adecuado para transmitir audio y vídeo
- ABR (Available Bit Rate)
  - La tasa de transmisión varía en función de los recursos disponibles, aunque se garantiza un mínimo
  - No se garantiza un mínimo en las pérdidas o el retardo
- UBR (Unespecified Bit Rate)
  - Solo se transmiten paquetes cuando el resto de los servicios de la red dejan recursos
- VBR (Variable Bit Rate) para aplicaciones en tiempo real (VBR-rt) o no en tiempo real (VBR-nrt)



#### Características

- Paquetes muy pequeños y sencillos (celdas), para garantizar su conmutación a altas velocidades
  - 53 bytes: 5 bytes de cabecera y 48 de datos
- Red de circuitos virtuales (canales virtuales) orientada a conexión
  - Antes de la transmisión, hay una solicitud de conexión
  - Se planifica la ruta
  - Las celdas llevan el número de canal virtual
    - El conmutador ATM consulta en la tabla de canales virtuales y selecciona la línea de salida
    - Todas las celdas siguen el mismo camino ⇒ llegan en orden
  - Al finalizar, hay una fase de desconexión en la que se eliminan los canales virtuales
- No hay ACKs ni retransmisiones, pero las celdas tienen control de errores de la cabecera

### Modelo de capas en ATM

- ATM puede funcionar sobre cualquier capa física
- La capa de adaptación a ATM (AAL) permite que otros protocolos usen la red ATM



- Diferentes AAL dependiendo del tipo de servicio
  - TCP/IP: a la entrada de la ATM se fragmentan los datagramas para que quepan en las celdas y se reensamblan a la salida
  - Audio y vídeo: se agrupan los datos hasta rellenar una celda



#### Identificador de circuito virtual

- Define dos niveles de conexión:
  - VCC (Virtual Channel Connection): Canal Virtual
    - Es un circuito virtual
  - VPC (Virtual Path Connection): Camino Virtual
    - Conjunto de VCCs con los mismos extremos
    - Facilitan la gestión de los VCCs



#### Estructura de las celdas



- Dos formatos: interfaz usuario-red e interfaz red-red
- Control de flujo genérico: para la QoS
  - Solo en la interfaz usuario-red
- Identificador de canal virtual, VPI y VCI
- Tipo de carga útil
  - Si la celda es de datos o de control
  - También indica si se detecta congestión
- Bit de prioridad de la celda, CLP
- Byte de control de error de la cabecera



## Índice

- Introducción
- 2 Modelo IEEE 802
- 3 Direcciones MAC Ethernet
- 4 Ethernet
- 6 Redes inalámbricas
- 6 Redes ATM
- Ejemplo completo



# Ejemplo completo: acceso a una página web



#### Inicio: obtención de IP,...

- Mensaje de solicitud DHCP
  - En un segmento UDP, puerto destino 67, puerto origen 68
  - En un datagrama IP, IP destino 255.255.255.255, IP origen 0.0.0.0
  - En una trama Ethernet, MAC destino ff:ff:ff:ff:ff:ff, MAC origen 00:16:d3:23:68:8a (P)
    - 1ª trama que emite el portátil al conmutador Ethernet, que la reenvía por todos sus puertos
  - El router R1 (servidor de DHCP) recibe la trama, extrae el datagrama con IP destino la de broadcast y se la pasa a las capas superiores (se demultiplexa, se extrae el segmento UDP y se obtiene el mensaje DHCP)

#### Inicio: obtención de IP....

- El servidor DHCP crea un mensaje ACK DHCP con la IP asignada, la del DNS, la de la puerta de enlace por defecto y la máscara
  - En un segmento UDP, en un datagrama IP
  - En una trama Ethernet, MAC destino 00:16:d3:23:68:8a
    (P), MAC origen 00:22:6b:45:1f:1b (R1)
    - Se envía al conmutador Ethernet, que ya sabe cómo reenviarla al portátil
  - El portátil recibe la trama, extrae el datagrama, extrae el segmento UDP y obtiene el mensaje ACK DHCP

#### Inicio: DNS, ARP

- El portátil intenta crear el socket TCP para la solicitud HTTP, pero necesita la IP
- Mensaje de consulta de DNS "www.google.com"
  - En un segmento UDP, puerto destino 53
  - En un datagrama IP, IP destino 68.87.71.226 (DNS), IP origen 68.85.2.101 (P)
  - En una trama Ethernet al router, MAC destino ? ⇒ ARP
- Consulta ARP con la IP del router por defecto (68.85.2.1)
  - En una trama Ethernet con MAC destino ff:ff:ff:ff:ff:ff; que el conmutador entrega a todos
  - El router R1 recibe la trama con la petición ARP con su propia IP



#### Inicio: DNS. ARP

- El router R1 prepara la respuesta ARP: la IP 68.85.2.1 se corresponde con la MAC 00:22:6b:45:1f:1b
  - En una trama Ethernet con MAC destino 00:16:d3:23:68:8a
    (el portátil)
  - El portátil recibe la trama y obtiene la MAC del router por defecto
- El portátil completa la trama con el mensaje de consulta de DNS
  - En un segmento UDP, puerto destino 53
  - En un datagrama IP, IP destino 68.87.71.226 (DNS), IP origen 68.85.2.101 (P)
  - En una trama Ethernet con MAC destino 00:22:6b:45:1f:1b (R1)



#### Inicio: DNS

- El router R1 recibe la trama y extrae el datagrama con la consulta DNS con destino 68.87.71.226 y determina según su tabla que debe reenviarlo al router R2 de la red del ISP
  - En una trama de capa de enlace según el tipo de enlace existente entre esos dos routers
- R2 recibe la trama y extrae el datagrama con IP destino 68.87.71.226 y determina la interfaz por la que debe reenviarlo
  - Esta tabla se rellenó con el protocolo intradominio del ISP (RIP, OSPF) y con BGP
- El datagrama con la consulta al DNS llega al servidor DNS
  - Extrae la consulta y busca www.google.com en su base de datos
  - Encuentra el registro que contiene (www.google.com, 64.233.169.105, A)

#### Inicio: DNS

- El servidor genera un mensaje con la correspondencia obtenido
  - En un segmento UDP, que inserta en un datagrama con destino el portátil (68.85.2.101)
  - Este datagrama se reenvía a través de la red del ISP hasta el router R1
  - Desde R1 se reenvía al portátil a través del conmutador Ethernet
  - El portátil extrae la dirección IP de www.google.com

### Interacción cliente servidor: TCP y HTTP

- El portátil puede crear el socket TCP que usará para el mensaje GET de HTTP
- Un segmento TCP SYN con puerto destino 80 (acuerdo en 3 fases)
  - En un datagrama con destino www.google.com (64.233.169.105)
  - En una trama Ethernet con MAC destino 00:22:6b:45:1f:1b (R1, router por defecto) al conmutador
- Los routers R1, los del ISP y los de Google reenvían el datagrama

### Interacción cliente servidor: TCP y HTTP

- El host www.google.con recibe el datagrama con el segmento TCP SYN
  - Se extrae el segmento TCP SYN
  - Se demultiplexa y se entrega al socket de acogida en el puerto 80
  - Se crea el socket de conexión TCP entre el servidor HTTP de Google y el portátil
  - Se genera un segmento TCP SYNACK
    - En un datagrama con IP destino la del portátil
    - En una trama de enlace según la conexión de www.google.com con su router de primer salto
  - El datagrama con el segmento SYNACK se envía a través de las redes y se recibe en la tarjeta Ethernet del portátil
    - Se extrae el datagrama, el segmento TCP y se demultiplexa al socket creado para iniciar la conexión

ttro IEEE 802 MAC Ethernet WLAN ATM **Ejemplo** 

# Acceso a una página web

### Interacción cliente servidor: TCP y HTTP

- El navegador del portátil genera el mensaje HTTP GET con el URL que desea
  - Este mensaje se escribe en el socket, es decir, pasa a ser la carga útil de un segmento TCP
  - El segmento se incluye en un datagrama
  - Se entrega a www.google.com
- El servidor HTTP en www.google.com lee el mensaje HTTP GET del socket de conexión
- Crea un mensaje HTTP de respuesta, insertando la página web solicitada en el cuerpo del mensaje y lo envía a través del socket
- El datagrama con la respuesta se envía al portátil
- El navegador lee la respuesta del socket, extrae el código HTML de la página y la muestra