ANALYZING THE ELECTRIC VEHICLE MARKET USING SEGMENTATION -PADMASHRI B V

The electric vehicle (EV) market in India has undergone a significant transformation in recent years, reflecting a global shift towards sustainable and environmentally friendly transportation solutions. As the world grapples with the challenges posed by climate change and seeks cleaner alternatives to traditional fossil fuel-powered vehicles, India has emerged as a key player in the growing electric vehicle market.

India's electric vehicle market has witnessed substantial growth in recent years, driven by a combination of government initiatives, technological advancements, and an increasing awareness of environmental sustainability. The government of India has introduced various policy measures and incentives to promote the adoption of electric vehicles, including the Faster Adoption and Manufacturing of Hybrid and Electric Vehicles (FAME) scheme. Under FAME, subsidies and incentives are provided to manufacturers and consumers to encourage the production and purchase of electric vehicles.

Major players in the automotive industry, both domestic and international, have responded to the changing landscape by investing in the development and production of electric vehicles. Established automakers and new entrants alike are introducing a diverse range of electric vehicles, from electric cars to two-wheelers and commercial vehicles. This diversification is contributing to a broader acceptance of electric mobility across various segments of the population.

The future of the electric vehicle market in India holds immense potential, with several factors contributing to its optimistic outlook. Collaborations between government bodies, private enterprises, and international organizations can accelerate the development of charging infrastructure and technological innovation. Partnerships with renewable energy providers can enhance the sustainability of electric vehicles by promoting clean energy sources for charging.

The electric vehicle market in India is at a pivotal juncture, poised for substantial growth and transformative change. While challenges persist, the commitment of the government, the dynamism of the automotive industry, and advancements in technology create a promising environment for the widespread adoption of electric vehicles.

The ongoing collaborative efforts and a focus on addressing key challenges will determine the trajectory of India's electric vehicle market, shaping a sustainable and environmentally conscious future for transportation in the country.

DATASET USED FOR ANALYSIS

DATASET1-https://drive.google.com/file/d/10xeZejiNFcGVvcAT38B-0e7AFkEIkbs V/view?usp=drive link

DATASET2-https://www.kaggle.com/datasets/geoffnel/evs-one-electric-vehicle-dataset/data?select=ElectricCarData Clean.csv

DATASET 1 is ev stats in india which consists of electric vehicle data of two wheelers ,three wheelers,passenger cars and buses and total number electric vehicle used in all states

1	SI. No	State	Two Wheelers /	Two Wheelers (Two Wheelers //	Three Wheelers	Three Wheelers	Passannar Care	Ruses	Total in state
2		Andhra Pradesh						_		
3		Andrira Fradesii Assam	463							
4	_	Assam Bihar	252							
5	_	Chhattisgarh	613			_			0	
5		Delhi	1395		5018				_	19381
7	_	Goa	1393			_				514
3	_	Gujarat	7182	-	-	_				
-		•	3162			_			_	
0		Haryana Himachal Prade								
1	_	Jammu & Kashr	_	_	_	0	_		0	
2		Jammu & Kasnii Jharkhand	75						_	
3		Karnataka	784						_	
4			432			1				11202
5		Kerala Madhaa Baadaal					_			
		Madhya Pradesi				8				
6		Maharashtra	2630		10148					
7		Manipur	16	_						
8		Meghalaya	0		_	_		_		_
9		Nagaland	0			0				
0		Odisha	377			0				
1		Punjab	698			0			0	
2		Rajasthan	2036						_	
3		Tamil Nadu	491							
4		Telangana	535						_	
5		Tripura	28			0		_	0	
6		Uttar Pradesh	2954						_	
7		Uttarkhand	423						_	
8		West Bengal	1451			3			_	
9		Andaman & Nico		_		_			_	
0		Chandigarh	612			_	_		_	
1	30	Dadra and Naga		_	_			803	0	816
2	31	Total	27549	14069	112538	389	720	105571	27	260863

DATASET 2 consists electric car data which consists of brand, model, Accelsec, Topspeed_kmh, Range_km, efficency_kmh, fastcharge_kmh, Rapidcharge, powertype, Seat, Plug_type, segment, body style, PriceEuro

-	fix Brand												
A	В	С	D	E	F	G	н	1	J	К	L	M	N
Brand	Model	AccelSec	TopSpeed_KmH	Range_Km	Efficiency_WhKi	FastCharge_Km	RapidCharge	PowerTrain	PlugType	BodyStyle	Segment	Seats	PriceEuro
Tesla	Model 3 Long R	4.6	233	450	161	940	Yes	AWD	Type 2 CCS	Sedan	D		5 55480
Volkswager	ID.3 Pure	10	160	270	167	250	Yes	RWD	Type 2 CCS	Hatchback	С		5 30000
Polestar	2	4.7	210	400	181	620	Yes	AWD	Type 2 CCS	Liftback	D		5 58440
BMW	iX3	6.8	180	360	206	560	Yes	RWD	Type 2 CCS	SUV	D		5 68040
Honda	e	9.5	145	170	168	190	Yes	RWD	Type 2 CCS	Hatchback	В		4 32997
Lucid	Air	2.8	250	610	180	620	Yes	AWD	Type 2 CCS	Sedan	F		5 105000
Volkswager	e-Golf	9.6	150	190	168	220	Yes	FWD	Type 2 CCS	Hatchback	C		5 31900
Peugeot	e-208	8.1	150	275	184	420	Yes	FWD	Type 2 CCS	Hatchback	В		5 29682
Tesla	Model 3 Standar	5.6	225	310	153	850	Yes	RWD	Type 2 CCS	Sedan	D		5 46380
Audi	Q4 e-tron	6.3	180	400	193	540	Yes	AWD	Type 2 CCS	SUV	D		5 55000
Mercedes	EQC 400 4MAT	5.1	180	370	216	440	Yes	AWD	Type 2 CCS	SUV	D		5 69484
Nissan	Leaf	7.9	144	220	164	230	Yes	FWD	Type 2 CHAdeN	Hatchback	C		5 29234
Hyundai	Kona Electric 64	7.9	187	400	160	380	Yes	FWD	Type 2 CCS	SUV	В		5 40798
BMW	i4	4	200	450	178	650	Yes	RWD	Type 2 CCS	Sedan	D		5 65000
Hyundai	IONIQ Electric	9.7	165	250	153	210	Yes	FWD	Type 2 CCS	Liftback	С		5 34459
Volkswager	ID.3 Pro S	7.9	160	440	175	590	Yes	RWD	Type 2 CCS	Hatchback	С		4 40936
Porsche	Taycan Turbo S	2.8	260	375	223	780	Yes	AWD	Type 2 CCS	Sedan	F		4 18078
Volkswager	e-Up!	11.9	130	195	188	170	Yes	FWD	Type 2 CCS	Hatchback	A		4 2142
MG	ZS EV	8.2	140	220	193	260	Yes	FWD	Type 2 CCS	SUV	В		5 30000
Mini	Cooper SE	7.3	150	185	158	260	Yes	FWD	Type 2 CCS	Hatchback	В		4 3168
Opel	Corsa-e	8.1	150	275	164	420	Yes	FWD	Type 2 CCS	Hatchback	В		5 29146
Tesla	Model Y Long R	5.1	217	425	171	930	Yes	AWD	Type 2 CCS	SUV	D		7 58620
Skoda	Enyaq iV 50	10	160	290	179	230	Yes	RWD	Type 2 CCS	SUV	C		5 35000
Audi	e-tron GT	3.5	240	425	197	850	Yes	AWD	Type 2 CCS	Sedan	F		4 125000
Tesla	Model 3 Long R	3.4	261	435	167	910	Yes	AWD	Type 2 CCS	Sedan	D		5 61480
Volkswager	ID.4	7.5	160	420	183	560	Yes	RWD	Type 2 CCS	SUV	С		5 45000
Volkswager	ID.3 Pro	9	160	350	166	490	Yes	RWD	Type 2 CCS	Hatchback	С		5 33000
Volvo	XC40 P8 AWD F	4.9	180	375	200	470	Yes	AWD	Type 2 CCS	SUV	С		5 60437
BMW	i3 120 Ah	7.3	150	235	161	270	Yes	RWD	Type 2 CCS	Hatchback	В		4 38017
Peugeot	e-2008 SUV	8.5	150	250	180	380	Yes	FWD	Type 2 CCS	SUV	В		5 3438
Audi	e-tron 50 quattro	6.8	190	280	231	450	Yes	AWD	Type 2 CCS	SUV	E		5 67358
Kia	e-Niro 64 kWh	7.8	167	370	173	350	Yes	FWD	Type 2 CCS	SUV	С		5 38108
Renault	Zoe ZE50 R110	11.4	135	315	165	230	Yes	FWD	Type 2 CCS	Hatchback	В		5 31184
Tesla	Cybertruck Tri M	3	210	750	267	710	Yes	AWD	Type 2 CCS	Pickup	N		6 75000
Mazda	MX-30	9	150	180	178	240	Yes	FWD	Type 2 CCS	SUV	С		5 32646

EXPLORATORY DATA ANALYSIS OF EV STATS OF INDIA AND THEIR INTERPRETATION

• From the above Figure it is identified that Gujarat has highest number of Two Wheelers (Category L1 & L2 as per

Central Motor Vehicles Rules), but the states like Goa, Himachal pradesh, Jammu & Kashmir, Meghalaya, Nagaland, Andaman and nicobar islands, Dadra and Nagar Haveli the Two Wheelers (Category L1 & L2 as per Central Motor Vehicles Rules) does not exist

• From the above figure it is identified that Uttar Pradesh has the highest number of Two Wheelers (Category L2 (CMVR)), but the states like Goa, Himachal pradesh, Meghalaya, Andaman and nicobar islands, Dadra and Nagar Haveli the Two Wheelers (Category L2 (CMVR)) does not exist

• From the above Figure it is identified that Uttar Pradesh has the highest number of Two Wheelers (Max power not exceeding 250 Watts), but the states like Goa, Himachal pradesh, Jammu & Kashmir, Meghalaya, Nagaland, Manipur, Andaman and nicobar islands, Dadra and

Nagar Haveli the Two Wheelers (Max power not exceeding 250 Watts), does not exist

• From the above figure it is identified that only Uttar Pradesh and Haryana has the highest number of Three Wheelers (Category L5 slow speed as per CMVR) and many states less count and some states the Three Wheelers (Category L5 slow speed as per CMVR) does not exist

• From the above figure it is identified that Uttar pradesh has highest number of Three Wheelers (Category L5 as per CMVR), but in south india and many states it does not exist

• From the above figure it is identified that Delhi has highest number of Buses and other states has very low and in many states no Buses exist

 From the above figure it is identified that Maharashtra has highest number of Passenger Cars (Category M1 as per CMVR) but states like manipur ,meghalaya, nagaland, Tripura the Passenger Cars (Category M1 as per CMVR) does not exist

• From the above figure it is identified that overall counting of the every vehicle numbers of each Maharashtra has highest number of Electric vehicles and Manipur, Nagaland, Meghalaya has no Electric Vehicles in their State

EXPLORATORY DATA ANALYSIS OF ELECTRIC CAR DATA AND THEIR INTERPRETATION

Porsche achieves top speed among all other brands and SEAT has low top speed among all brand

Many cars have seats of 5 and seats of 4 compared to others

Tesla has highest electric vehicle Range per km among all the brands

Distribution of Range per km with Power Train $\,$, the AWD has high Range per km

Pairplot with hue of Range per km with numeric features

Tesla has more Brand value of inr compare to others

Type 2 CCS is the most used plug type

SUV is most used body type in electric vehicle

Most vehicles belong to Segment C

MODEL BUILDING OF BOTH DATASET USING K-MEANS ALGORITHM AND PRINCIPAL COMPONENT ANALYSIS

The K-means algorithm is widely employed in market segmentation to group similar customers or entities based on their characteristics, behaviors, or preferences. In this context, the algorithm helps businesses analyze large datasets containing diverse customer attributes, such as purchasing patterns, demographics, and psychographics. By iteratively partitioning the dataset into K clusters, where K represents the predetermined number of segments, K-means enables companies to identify homogeneous groups within their target market. This segmentation facilitates more effective and personalized marketing strategies, as businesses can tailor their approaches to the distinct needs and preferences of each cluster. Through the iterative process of assigning data points to clusters and optimizing centroids, K-means optimally divides the market, allowing organizations to enhance their understanding of customer segments and consequently refine product offerings, marketing messages, and customer experiences for improved overall business performance.

Principal Component Analysis (PCA) is a valuable technique in market segmentation, particularly when dealing with high-dimensional datasets. In the context of market research, PCA can be applied to reduce the dimensionality of the data by identifying the most significant features or variables that capture the underlying patterns of customer behavior or preferences. By transforming the original variables into a new set of uncorrelated variables, known as principal components, PCA allows businesses to focus on the key aspects that drive market segmentation. This reduction in dimensionality not only simplifies the analysis but also helps in visualizing and interpreting the data more effectively. Through PCA, businesses can uncover latent structures within their customer

data, discerning the major factors influencing market segments. This information proves instrumental in crafting targeted marketing strategies and tailoring products or services to meet the specific needs of distinct customer segments, ultimately enhancing the precision and effectiveness of market segmentation efforts.

In our dataset the first one comes under the segmentation category of GEOGRAPHIC SEGMENTATION because the values statistics of electric vehicles were divided state wise. The second dataset of electric car data and most of the feature come under BEHAVIORAL SEGMENTATION.

EV STATS MODEL BUILDING

This dataset has very vital information in less data.

ELECTRIC CAR DATA

The dataset consists of electric car data with 107 data

AccelSec -	1	-0.79	-0.68	-0.38	-0.51	-0.18	-0.63	-0.63	- 1.0 - 0.8
TopSpeed_KmH -	-0.79	1	0.75	0.36	0.25	0.13	0.83	0.83	- 0.6
Range_Km -	-0.68	0.75	1	0.31	0.4	0.3	0.67	0.67	- 0.4
Efficiency_WhKm -	-0.38	0.36	0.31	1	0.11	0.3	0.4	0.4	- 0.2
RapidCharge -	-0.51	0.25	0.4	0.11	1	0.42	0.2	0.2	- 0.0
Seats -	-0.18	0.13	0.3	0.3	0.42	1	0.021	0.021	0.2
PriceEuro -	-0.63	0.83	0.67	0.4	0.2	0.021	1	1	0.4
inr(10e3) -	-0.63	0.83	0.67	0.4	0.2	0.021	1	1	0.6
	AccelSec	TopSpeed_KmH	Range_Km	Efficiency_WhKm	RapidCharge	Seats	PriceEuro	inr(10e3)	

#Correlation matrix plot for loadings

FINAL ANALYSIS OF WORK

In first dataset , based on Exploratory Data Analysis we can see over all north indian states like maharashtra , Uttar pradesh, Gujarat are those use more electric vehicles but in south indian states are very less popular compared to north india and not does not states like manipur , Meghalaya, Nagaland. In terms of business model we have to expand and make our EV market popular in south india and North-eastern states of india to achieve more profit in this field. In model building we used k-means and PCA ,we used this algorithm because of performance popularity in market segmentation. The visualization of k-means are easier to interpret , in future with more data added to this we can get better results as the model was built in very less data

In second dataset, we see more behavioral features of car being compared in Exploratory Data Analysis like top speed achieved by brand, plug type,body type, categorizing the powertrain and Highest range achieved by brand and many more behavioral feature visualization which helps us to go through easily about dataset .In model building we used K-means and PCA, this algorithm can work very well in market segmentation and this dataset has little more features than the previous but both come under types of segmentation criteria. The model building is done with quite basic approaches inspired from various examples with some more added data. In the future we can build a better model and easily segment it.

In our both datasets we have very vital information about electric vehicles but we have less data, with additional time and budget, the market segmentation project can be substantially enhanced by investing in more comprehensive and granular data sets. This could involve acquiring data from diverse sources such as consumer behavior analytics, social media insights, and third-party databases to gain a holistic understanding of customer preferences and demographics.

Additionally, conducting in-depth surveys or interviews with a representative sample of the target audience can provide qualitative insights, complementing quantitative data. Advanced analytics tools and machine learning algorithms can be employed to uncover hidden patterns and correlations within the data, facilitating a more nuanced segmentation. Furthermore, the extended time frame allows for iterative testing and refinement of the segmentation model, ensuring its accuracy and relevance.

The EV Market in India is estimated at USD 5.61 billion in 2023, and is expected to reach USD 37.70 billion by 2028, growing at a CAGR of 46.38% during the forecast period (2023-2028). The top 4 features that can be used to create the most optimal market segments for electric vehicles are Driving Patterns and Range Requirements ,Charging Infrastructure Accessibility ,Pricing Sensitivity and Incentive Eligibility ,Technological Preferences and Features.

CODING LINK:

https://colab.research.google.com/drive/1dvE6rXMfEFr2AyETgkT50VQnFhIwaVgv?usp=sharing

https://colab.research.google.com/drive/1fszwmrdtbtVbFXQj1E6FwbSy7CNjWEcD?usp=sharing