Econometrics 3 - Problem Set 3

Pierre Pili - Isée Biglietti - Marie Gardie 16/02/2024

1. Data Preparation

1)

Table 1: PPEN97 - Scores in Years 1 and 3

var	median	mean	min	max	sd	NAs (%)
score_1	69.8	69.0	9.1	99	12.9	1.1
$score_f_3$	69.2	67.6	0.0	100	15.7	19.8
$score_m_3$	67.5	66.0	0.0	100	15.4	19.9

Table 2: PSEN95 - Scores in Years 6 and 9

var	median	mean	min	max	sd	NAs (%)
score_f_6	47.0	45.7	0.0	68	11.3	4.6
$score_m_6$	52.0	50.4	0.0	78	13.8	4.8
$score_f_9$	11.0	11.3	1.0	20	2.6	38.6
$score_m_9$	11.5	11.3	0.0	20	3.4	38.6
$score_fl_9$	12.0	11.6	0.4	20	3.3	38.8

As grades during year 9 were between 0 and 20 we rescaled them between 0 and 100 to make comparisons easier. The 1997 dataset (PPEN97) contains one variable for year 1 score_1 and two for year 2 measuring French and Math test scores denoted score_f_3 and score_m_3. The 1995 dataset (PSEN95) also contains French and Math test scores for year 6 (score_f_6, score_m_6, score_f_9, score_m_9) and one additional variable for foreign language test scores score_f1_9. We notice that year 9 contains more missing values with almost 40% for score_f_9 and score_m_9.

2)

(see code)

2. Naïve Estimation of Month Birth Effects

1)

Firstly, pupil born in the beginning of the year will most likely join school a year sooner and conversely for those born at the end of the year. This is will reduce the actual age difference among each cohort. Moreover, students can be held back for a year or more which is more likely for students born at the end of the year. Both effects imply an underestimation of the true effect. Secondly, there is a source of endogeneity as social economic backrounds can explain both the month of birth and the test score of the pupil. For

instance, teacher's children are more generally born in may and are more successful at school. There is also a measurment problem with foreign born children who sometimes get assigned a date of birth, usually in January, which leads to January born children to be over-represented. The OLS estimator will thus be biased.

3)

3. IV estimation of month of birth effect

1)

STUVA: Only my own assignement of assigned relative age matter for my own enrollment (if my friend has no assigned relative age, I am still going to enroll in school and pass this test, and passing the test isn't even up to me as a pupil, it's up to the school), and for my own outcome (knowing that I am assigned a relative age but my friends are not doesn't change my studdy behavior a priori).

Random assignement: Not as random as we want it to be as seen before. In fact, we think again about this teacher parents' matter that deprive our instrument of independence with the outcome, here test scores, as teacher parents' children are mostly born in May and are more successful at school (correlation wildly documented).

Exclusion restriction: The instrument must be uncorrelated with the unobservable determinants of test scores, or in other words, out of the data generating process. Again here, the teacher example show us that seasonality in birth month implies different socio-economic background for specific students, as well as grade retention can totally be a variable through which our instrument affects the output measured here.

Relevance condition: Our instrument must be correlated to the original variable it proxies, being here the absolute age at which the pupil took the test. The correlation is very close to one when students are young, and should gradually decrease as retention gets more common. Though we can ask ourselves about

Table 3: Naïve OLS

	Scores			
	Year 1: Global score	Year 3: Math	Year 3: French	
	(1)	(2)	(3)	
Age in Months (Year 1)	0.384*** (0.035)			
Age in Months (Year 3)		-0.169^{***} (0.039)	-0.195^{***} (0.040)	
Constant	39.997*** (2.650)	83.009*** (3.959)	87.204*** (4.007)	
Observations	9,531	7,663	7,728	
\mathbb{R}^2	0.012	0.002	0.003	
Adjusted R^2	0.012	0.002	0.003	
Residual Std. Error	12.823 (df = 9529)	15.393 (df = 7661)	15.665 (df = 7726)	
F Statistic	$120.006^{***} (df = 1; 9529)$	$18.354^{***} (df = 1; 7661)$	$23.913^{***} (df = 1; 7726)$	

Note:

*p<0.1; **p<0.05; ***p<0.01

the fact that skipping classes is more frequent when young, especially in high socio-economic backgroung geographic zones (as primary school system in France is geographically based and more respected than for secondary or high schools).

Monotonicity: It is quite belivable that there are no defiers in this configuration, as being assigned 11 (january) will not tend to give an incentive to NOT change cohort while having a 9 would give you the incentive to skip a year. The more plausible assumption is that if you want to skip a year having been assigned 9, you will want to skip having been assigned any other number. We however expect the presence of compliers (as seen in the paper).

The instrument is not perfect, and maybe other methods could be considered as the exclusion restriction is hardly reliable here.

2)

The benchmark model writes:

$$s_{ig} = \alpha_g + \beta_g a_{ig} + \epsilon_{ig}$$

where, for grade level g by students i, s_{ig} identifies test score obtained, a_{ig} is the absolute age, in month, at which the test is taken (the endogenous variable), β_g is the partial impact of a_{ig} on academic performance s_{ig} , ϵ_{ig} is the error term. Column (3) is generated based on the first stage, that writes as follow:

$$a_{ig} = \gamma_g + \delta_g z_i + \eta_g$$

where $z_i = 12 - m_i$ is the assigned relative age (our instrument), η_g the new error term (orthogonal to \$z_i), δ_g estimates the relevance of our instruments. Column (4) is generated based on the reduced form, writting:

$$s_{ig} = \lambda_g + \mu_g z_i + \nu_i g$$

Here, μ_g measures the impact of assigned relative age (instrument) on test scores (outcome), net of grade retention, early and late entry. The IV estimate writes:

$$\hat{\beta}_g^{IV} = \frac{\mu_g}{\delta_g}$$

Our IV, as always, identifies the effect of absolute age on test scores for students that started school in their right cohort (entering CP having 6 years old before the 1st of January). To put it differently, it identifies the average treatment effect on compliers, and thus correspond to a LATE.

3)

Table 4: First stage

		Scores	
	Year 1: Global score	Year 3	Math
	(1)	(2)	(3)
Age in Months (Year 1)	0.908***	0.853***	0.853***
, ,	(0.006)	(0.011)	(0.011)
Age in Months (Year 3)	70.512***	95.455***	95.455***
,	(0.041)	(0.074)	(0.074)
Observations	9,641	7,728	7,728
\mathbb{R}^2	0.681	0.424	0.424
Adjusted R^2	0.681	0.424	0.424
Residual Std. Error	2.122 (df = 9639)	3.385 (df = 7726)	3.385 (df = 7726)
F Statistic	$20,568.520^{***}$ (df = 1; 9639)	$5,691.122^{***} (df = 1;7726)$	$5,691.122^{***}$ (df = 1; 7726)

Note:

*p<0.1; **p<0.05; ***p<0.01

Table 5: Reduced Form

	Scores			
	Year 1: Global score	Year 3: Math	Year 3: French	
	(1)	(2)	(3)	
Age in Months (Year 1)	0.734***	0.651***	0.479***	
, ,	(0.038)	(0.051)	(0.052)	
Age in Months (Year 3)	64.960***	62.416***	64.968***	
	(0.246)	(0.333)	(0.340)	
Observations	9,531	7,720	7,728	
\mathbb{R}^2	0.038	0.021	0.011	
Adjusted R^2	0.038	0.021	0.011	
Residual Std. Error	12.657 (df = 9529)	15.267 (df = 7718)	15.604 (df = 7726)	
F Statistic	$373.918^{***} (df = 1; 9529)$	$162.788^{***} (df = 1; 7718)$	$84.436^{***} (df = 1; 7726)$	

Note:

*p<0.1; **p<0.05; ***p<0.01