ANSWERS

1. POLYNOMIAL EQUATION

1.
$$\pm \frac{1}{\sqrt{3}}$$
, $\frac{(-1 \pm \sqrt{7})}{3}$

2. (a) 1, 2,
$$\frac{1}{2}(-3 + i\sqrt{19})$$

 $\frac{1}{2}(-3 - i\sqrt{19})$

3.
$$\{t \in \mathbb{R} : t \leq \frac{1}{4}\}$$
; $\alpha = -1 - t + ...$, $\beta = -t^{-1} + 1 + t + ...$; $\alpha \rightarrow -1$, $\beta \rightarrow -\infty$

4. (a)
$$a^2x^3 + 4c^2x^2 + ac(2 - a)x + ac = 0$$

5. (a)
$$a(\cos \theta \pm i \sin \theta)$$

(b) $x^2 + x - 1 = 0$

6.
$$(2x - 3)^2(x - 6)$$
 or $\frac{1}{3}(2x - 9)^2(3x - 2)$

7.
$$-2(x - y)(y - z)(z - x)(x + y + z)$$

8. (a)
$$\frac{1}{5(x-2)} - \frac{x+2}{5(x^2+1)}$$
;

(b)
$$\frac{2x}{2}$$
 - 4; $\frac{P(x)}{\sqrt{2}}$ = x^3 - $2x^2$ + x - 2

9.
$$\frac{1}{2}\sqrt{2}$$
, $\sqrt{2}$, $2\sqrt{2}$

10. (a) -5,
$$\frac{1}{2}$$
, 6; (b) (i) $5\frac{1}{4}$, (ii) $-8\frac{3}{8}$

(iii)
$$2x^3 - 5x^2 - x + 7 = 0$$

(iii)
$$2x^3 - 5x^2 - x + 7 = 0$$

11. -a, $a^2 - 2b$; $-a^3 + 3ab - 3c$,
 $x^3 - 4x^2 + 2x - 8 = 0$; 4, $\pm i \sqrt{2}$

12. (a) (i)
$$-4 < k < -3$$
, $-3 < k < 1$;
(ii) $-3 < k < \frac{1}{2}$;
(iii) $-4 < k < -3$, $\frac{1}{2} < k < 1$,

(b) (i)
$$\frac{21}{25}$$
; (ii) $\frac{2}{5}$

(b) (i)
$$\frac{21}{25}$$
; (ii) $\frac{2}{5}$
13. (a) $z^4 - 6z^3 + 18z^2 - 30z + 25 = 0$;

(b)
$$3 \pm i, \pm \frac{1}{2}$$

14. (a)
$$\frac{1}{2}$$
, $\frac{4}{3}$, -6;
(b) $y^3 + 9y^2 + 2y - 48 = 0$

15.
$$a = b = -4$$
, $x = 2 \pm \sqrt{2}$ or $-1 \pm i$

16. (a)
$$a = 6$$
, $b = 4$, $\beta = 1 + i\sqrt{3}$, $Y = -\frac{1}{2}$

17. (a)
$$v = 2 - i$$
, $w = 3 - 4i$;

(b)
$$\pm$$
 (3 - 2i); (c) 1 - i, - 5 + 3i;

(b)
$$\pm$$
 (3 - 2i); (c) 1 - i, - 5 + 3i;
(d) z^4 + 8 z^3 + 16 z^2 - 48 z + 68 = 0

18.
$$p = -3A$$
, $q = \frac{3G^3}{H}$, $r = -G^3$;
2, $5 \pm \sqrt{21}$

19. (a) -5, -5,
$$\frac{1}{3}$$
, $\frac{2}{3}$, $\frac{2}{3}$, $\frac{2}{3}$, -2 $\frac{1}{2}$

20.
$$p = -4$$
, $q = 7$, $r = -1$

21. (b)
$$q^3 = rp^3$$

22. -1;
$$(x^2 + 2x + 2)(3x^2 - 2x - 3)$$
;
-1 \pm i, $\frac{1}{3}(1 \pm \sqrt{10})$

23. (a)
$$16\cos^5\theta - 20\cos^3\theta + 5\cos\theta$$
;
(b) $0, \frac{2}{5}\pi$, $\frac{4}{5}\pi$, $\frac{6}{5}\pi$, $\frac{8}{5}\pi$;

(b)
$$0, \frac{2}{5}\pi, \frac{4}{5}\pi, \frac{6}{5}\pi, \frac{8}{5}\pi$$
;

(c)
$$\frac{1}{4}(\sqrt{5}-1)$$

26. (a) - 5,
$$2 \pm \sqrt{3}$$
; (b) 754

34.
$$x^3 - 15x^2 + 67x - 125 = 0$$
:

2. FUNCTIONS

Injective Surjective Bijective Inverse Domain and Range

(a) No	No	No	No	
(b) Yes	No	No	Yes	$[-1, 1] + [-\frac{\pi}{2}, \frac{\pi}{2}]$
(c) No	No	No	No	_
(d) Yes	Yes	Yes	Yes	$R \rightarrow R$

(d) Yes Yes Yes Yes
2.
$$f^{-1}:x \to 1 - x$$
, $g^{-1}:x \to \frac{1}{1-x}$, $h:x \to \frac{1}{x}$

3. (a)
$$A = \{x: 0 \le x \le \frac{\pi}{2}\}, R^+ \cap O;$$

$$\begin{array}{lll} B=\{x:\ x>\frac{1}{2}\},\ y>1\\ \text{(b)} & \text{(i)} & \theta:x\rightarrow -e^{-x},\ \text{(ii)} & \phi:x\rightarrow \sin\ 2x \end{array}$$

.4. 5. Injective Surjective Range Inverse

(d) Yes Yes C Yes Roh:
$$x \to (5 \sin x + 12 \cos x)^3 + 5 \sin x + 12 \cos x + 1, 2211$$

7. (a)
$$f^{-1}(x) = {x \choose \frac{1}{2}(5-x)}, 0 \le x < 1 \choose 1 < x \le 3$$

(a) bijective; (b) bijective;

(c) injective: (d) none of these;

$$x \longrightarrow \frac{3}{x^2 + 4} + 2$$
; Range (2, $2\frac{3}{4}$)

(b) (i)
$$A = [-1, 0], B = R;$$

(b) (i) A = [-1, 0], B = R;(ii) $A = [-1, 1], B = \{x \in R/x < 1\}$

10. 0, $\pm \frac{1}{2}$, $\pm \frac{1}{2}\sqrt{3}$, ± 1

3. CURVE SKETCHING

1. Zeros at 0, π , 2π , 3π , 4π ;

maxima at $\frac{\pi}{3}$, $\frac{7\pi}{3}$; minima at

$$\frac{5\pi}{3}$$
, $\frac{11\pi}{3}$

2.
$$-\frac{5}{3} - \frac{19h}{12} - \frac{7h^2}{576}$$

3. $\frac{8}{9(x-3)} - \frac{8}{9x} + \frac{1}{3x^2}$; inflexion point

5.
$$y = 2$$
, $18\frac{2}{3}$

6. $(\frac{1}{3}, -20\frac{20}{27})$ 7. (b) $\frac{2n\pi}{3} + \frac{\pi}{18}$ or $\frac{2n\pi}{3} - \frac{\pi}{6}$ 8. $4 + 3\sqrt{3}$

9. $(-3, -5), (\frac{3}{2}, 4)$

10. -

11.
$$1 - \frac{1}{x+1} + \frac{1}{x-2}$$

12. (-1, 0), (1, 8); $0 \le a \le 8$

$$14.\frac{dy}{dx} = \frac{t^2 - 1}{t^2 + 1}; \frac{d^2y}{dx^2} = \frac{4t^3}{(t^2 + 1)^3}$$

There is a maximum at (0, -2), and a minimum at (0, 2)

15. (a) $\frac{4}{5}$ < x < 2; (b) - 3 < x < $\frac{1}{3}$ or

16. -

17. 5, 1

18. x = 0, y = x

19. x = -1, y = x - 1

20. (i) x = 1, y = 2x + 5; (ii) $x = 1 \pm \sqrt{3}$ 21. x = 1, y = 2

22. (i) $x = -\frac{1}{2}$ and y = 2x + 1

23. (i) x = -1 and y = x - 3;

(ii) (1, 0) min. (-3, 8) max.

24. a = 1, b = 1

25. (i) x = -1, y = x - 3;

(ii) x = 1 or -3

26. (i) x = 1, y = x + 4;

(ii) (3, 9);

(iv) 1 root

27. (i) x = -1, y = x - 1; (ii) 1, -3

4. TRIGONOMETRY

1. (a) + 5, - 5

2. R = 13, $\alpha = 1.18(\approx 67.4^{\circ})$

(b) -3.142, -0.790, 3.142, 5.493, 9.425, 11.78

(c) no solution set

3. (a) $0, \frac{\pi}{3}, \frac{\pi}{2}, \frac{2\pi}{3}, \pi, \frac{4\pi}{3}, \frac{3\pi}{2}, \frac{5\pi}{3}, 2\pi$

(b) $\theta = 90^{\circ}n + 16.85^{\circ}$, $n \in \mathbb{Z}$ 4. -287.6°, -139.8°, 72.4°, 220,2°

5. $\theta = 360^{\circ} \text{n} \pm 41.4^{\circ} \text{ or } 180^{\circ} \text{n} \pm (-1)^{\text{n}} 30^{\circ}$

6. $\theta = 360^{\circ}n + 60.5^{\circ} \text{ or } 360^{\circ}n - 166.7^{\circ}$

7. (b) $60^{\circ}n + 5^{\circ} \text{ or } 60^{\circ}n - 25^{\circ}$

8. (a) 34° 36', 163° 50', 214° 36', 343° 50'; (b) 210°, 270°, 330°

9. (a) $\frac{\pi}{4}$, $\frac{3\pi}{4}$, $\frac{\pi}{10}$, $\frac{3\pi}{10}$, $\frac{5\pi}{10}$, $\frac{7\pi}{10}$, $\frac{9\pi}{10}$

(b) R = 6, $\alpha = \frac{\pi}{6}$; $2n\pi + \frac{\pi}{6}$

10. -

11. (a) $\frac{1}{3}\pi$; (b) A + B = $2n\pi$ or A - B = $4n\pi$, $n \in Z^+$

12. x = $\frac{\pi}{6}$, $\frac{5\pi}{6}$, $\frac{3\pi}{2}$; y = $\frac{3\sqrt{3}}{2}$ (max.),

 $y = -\frac{3\sqrt{3}}{2}$ (min.), y = 0(neither);

(a) $k > \frac{1}{\pi}$, (b) $0 < k < \frac{1}{\pi}$

13. p = 4; Roots are 4 cos 50°, 4 cos 70°, 4 cos 170° $\sec 50^{\circ} + \sec 70^{\circ} + \sec 170^{\circ} = 2\sqrt{3}$

14. a = 5, b = 10, $\theta = tan^{-1}(\frac{3}{4})$; $0 \le x < 0.725$, 1.77 < $x \le \pi$

15.(c) $\frac{56}{65}$; (d) 0.785, 1.99, 3.93, 5.86

16. (b) $1 - \frac{1}{2}x^2 + \frac{1}{24}x^4 - \frac{1}{720}x^6$; $12 - 5x^2 + \frac{1}{40}x^6$

17.
$$\frac{1}{4}(\sqrt{5} - 1)$$
; $(\frac{23 - 5\sqrt{5}}{40})$
18.(b)\alpha = 0.785, \beta = -0.464

$$18.(b)\alpha = 0.785, \beta = -0.464$$

19.(a)
$$\frac{\pi}{4}$$
, $\frac{3\pi}{4}$, π , $\frac{5\pi}{4}$, $\frac{7\pi}{4}$;

(b)8
$$\cos x \cos^3 (\frac{1}{2}a)$$
; 1

20. (a)
$$1+x+\frac{1}{2}x^2+\frac{1}{3}x^3$$
; a=1, b=-1;

(b)
$$\frac{5}{12}$$
, $1 - e^{-\frac{1}{2}}$

21.(a)
$$x + \frac{1}{3}x^3 + \frac{2}{15}x^5; -\frac{1}{20};$$

(b)
$$-3x - \frac{5}{2}x^2 - 3x^3 - \frac{17}{4}x^4$$
; - 0.328

22.(a)
$$y < -\sqrt{7}$$
, $y > \sqrt{7}$; $-\frac{3}{\sqrt{7}}$

23.(a) (i)
$$\frac{1}{6}\pi$$
, $\frac{1}{2}\pi$, $\frac{5}{6}\pi$, $\frac{7}{6}\pi$, $\frac{3}{2}\pi$, $\frac{11}{6}\pi$;
(ii) $\frac{1}{6}\pi$, $\frac{1}{2}\pi$, $\frac{5}{6}\pi$, $\frac{7}{6}\pi$, $\frac{3}{6}\pi$, $\frac{11}{6}\pi$;

$$(iii)\frac{1}{6}\pi, \frac{1}{3}\pi, \frac{1}{2}\pi, \frac{2}{3}\pi, \frac{5}{6}\pi, \frac{7}{6}\pi$$

$$\frac{4}{3}\pi, \frac{3}{2}\pi, \frac{5}{3}\pi, \frac{11}{6}\pi$$

(b) - 2
$$\pm \sqrt{5}$$

24.
$$\frac{1}{4}[3 \sin\theta - \frac{1}{3n} \sin(3^{n+1}\theta)]$$

5. MATHEMATICAL INDUCTION

1.
$$e^{a}(a-1)+1$$

3.
$$a = 1$$
, $b = 4$, $Sn = \frac{n(3n + 4)}{(n + 1)(n + 2)}$

3.
$$a = 1$$
, $b = 4$, $Sn = \frac{1}{(n+1)(n+2)}$

5. (a) - 1; (b)
$$2^{n-1}$$
n; (c) $n(n + 1)2^{n-2}$

7. (a)
$$y = \frac{1}{n+1}[(1+x)^{n+1}-1]$$
;

(b)
$$\frac{(n-r+1)x}{r}$$
, $r=9$

8.
$$\frac{1}{4}N(N+1)(N+2)(N+3)$$

$$\frac{1}{5}$$
N(N+1)(N+2)(N+3)(N+4);

$$a = 1$$
, $b = -6$, $c = 7$, $d = -1$;

$$\frac{1}{5}N(N + 1)(N + 2)(N + 3)(N + 4)$$

$$-\frac{3}{2}N(N+1)(N+2)(N+3) +$$

$$\frac{7}{3}$$
N(N + 1)(N + 2) - $\frac{1}{2}$ N(N + 1)

10. (a)
$$\frac{1}{x} = \frac{2}{x+1} = \frac{1}{x+2}$$

12. (b) (ii)
$$(n+\frac{1}{2})^2 + \frac{3}{4}$$
, $(n-\frac{1}{2})^2 + \frac{3}{4}$
(iii) $S_N = \frac{1}{2}(1 - \frac{1}{N^2 + N + 1})$

13. (a) (i)
$$S_N = \frac{1}{N+1} - e^{-N}$$

6. HYPERBOLIC FUNCTIONS

2.
$$\frac{d}{dx} \tanh^{-1} x = \frac{1}{1-x^2}$$
; 0.131

3.
$$\frac{1}{4} \ln \frac{27}{16}$$

4. (b) In
$$[x + 2 + \sqrt{(x^2 + 4x - 5)}] + c$$

5. (a)
$$x \tanh^{-1} x + \frac{1}{2} \ln(1 - x^2) + c$$
;

(b)
$$1 + \frac{1}{3}x^2 + \frac{1}{5}x^4$$
;

$$\alpha = -\frac{13}{15}, \ \beta = -\frac{5}{13}$$

6. (a) (i) -
$$\cosh^2 x$$
; (iii) A - 2 $\tanh x - \frac{1}{\sinh x \cosh x}$

7.
$$\sinh (\ln 2) = \frac{3}{4}$$
, $\cosh (\ln 2) = \frac{5}{4}$

8.
$$16 \cosh^5 x - 20 \cosh^3 x + 5 \cosh x$$
; 0.332

9. (a)
$$-\frac{1}{2}$$
, $\frac{2}{11}$;

(b) (i)
$$x \sinh^{-1} x - \sqrt{(x^2 + 1)}$$
; (ii) 0.66

10.
$$\ln(\cosh x) - \frac{1}{2} \tanh^2 x - \frac{1}{4} \tanh^4 x + c;$$

0.125

11. (a)
$$x = \ln 3$$
, $y = \ln 2$

12.(a)
$$\frac{1}{\sqrt{(x^2-1)}}$$
; (b) $\frac{3}{4}$

14.
$$\frac{\sqrt{(1+t^2)}}{1-t^2}$$

16.
$$\frac{1024}{5625}$$

7. FURTHER DIFFERENTIATION AND INTEGRATION

1.
$$I_0 = \frac{\overline{2}}{3}$$
, $I_6 = \frac{\overline{32}}{315}$

3.
$$\frac{\text{bncos nt - u}}{\text{ansin nt}}$$
, $\frac{\text{abn}^3 - \text{aun}^2 \cos \text{nt}}{\text{sin nt}}$

5.
$$I_1 = \frac{1}{2}(1 - \frac{1}{e})$$
, $I_9 = 12 - \frac{65}{2e}$

6.
$$\frac{\sqrt{3}}{2\sqrt{3}t+4}$$
, t < -2 or 0 < t < 2

7.
$$x + \frac{1}{6}x^3 + \frac{3}{40}x^5$$
; - 1

9.
$$I_4 = \frac{3}{16} \pi$$
, $I_5 = \frac{8}{15}$; $\int_0^{\frac{1}{2\pi}} \sin^n \theta \ d\theta$

10. (a) (i)
$$x + \frac{1}{6} x^3 + \frac{3}{40} x^5$$

11. Area =
$$\frac{1}{r}$$
, 4.100 < $\sum_{r=2}^{99} \frac{1}{r}$ < 4.195

12.(a) 2 In 2,(b) 2[
$$\cot \frac{\pi}{12} - \cot (\frac{2n+1}{12}\pi)$$
];
n = 6k (k \varepsilon z⁺)

$$13.\frac{1}{22}(5e^4 - 1)$$
; 0.467

$$14.1 + \frac{1}{3}x^2 - \frac{4}{45}x^4$$
; 0.513

15.(a)
$$\frac{5\pi}{32}$$
; (b) $\frac{16}{15}$; (c) 0; (d) $\frac{35\pi}{256}$

17.(a)
$$\frac{1}{13}$$
(- 3 cos 3x - 2 sin 3x)e^{-2x} + K;

(b)
$$1 - 2x - \frac{5}{2}x^2 + \frac{23}{3}x^3$$

$$19.x - \frac{1}{2}x^2 + \frac{1}{6}x^3 - \frac{1}{12}x^4 + \frac{1}{24}x^5$$

20. (a)
$$\frac{1}{2}$$
; (b) $-\frac{1}{2}$; (c) t tan⁻¹ (2t) $-\frac{1}{4}$ In(1 + 4t²) + c

21.y
$$\approx$$
 mx + $\frac{1}{6}$ m(1 - m²)x³; $\frac{21}{25}$

21.y
$$\approx mx + \frac{1}{6} m(1 - m^2)x^3 ; \frac{21}{25}$$

22.(a) $I_1 = k \sin^{-1} k + \sqrt{(1 - k^2)} - 1;$
 $I_2 = \frac{1}{2} \sin^{-1} k + \frac{1}{2}k \sqrt{(1 - k^2)}$

(b)
$$\frac{1}{4}\pi + \frac{1}{2}x - \frac{1}{4}x^2 + \frac{1}{12}x^3$$

23.(a)
$$\frac{1}{\sqrt{2}} \cosh^{-1}(\frac{2x+1}{\sqrt{3}}) + c$$
; (b) $\frac{5}{16}$

24. (a)
$$-\frac{108}{125}$$
; (b) $\frac{\pi^3}{2}$ - 12π + 24

29.
$$I_1 = 9e - 24$$

30. - 31.
$$I_4 = \frac{25}{162} + \frac{3}{8} In 3$$
; 0.504

32. (i)
$$1 - \frac{5}{2e}$$

33. (a) -60; (b)
$$\frac{1}{4} + \frac{3}{32}\pi$$

8. APPLICATIONS OF INTEGRATION

2. (a) a; (b)
$$\frac{1}{2}b\pi$$
, $\frac{1}{2}c\pi$; (c) $\frac{1}{2}\pi(2a^2 + b^2 + c^2)$

(c)
$$\frac{1}{2}\pi(2a^2 + b^2 + c^2)$$

7. (a)
$$\frac{9}{2}a^2\pi$$
; (b) 49
8. $\frac{\pi}{2} - 1$

8.
$$\frac{\pi}{2}$$
 - 1

11.1
$$-\frac{8}{3\pi} \approx 0.151$$
:

$$\pi(\frac{1}{4}\pi - \frac{76}{105}) \approx 0.193$$

13.2
$$\pi + \frac{3}{2}\sqrt{3}$$

15.
$$(\ln \sqrt{2} - \frac{\pi}{12})$$

$$16.\frac{dy}{dx} = \frac{\sin \theta}{1 - \cos \theta}; \frac{d^2y}{dx^2} = -\frac{1}{y^2}$$

$$17. r^2 = a^2 \cos 2\theta$$

$$17. r^2 = a^2 \cos 2\theta$$

18.(a)
$$\frac{1}{2} + \frac{1}{8} \sinh 4$$
; (b) 8a

20.
$$(\frac{205}{162} - \frac{1}{8} \text{ In 3}) \pi$$

22. (b) 1.15; (c)
$$\frac{28\pi}{15}$$

23.(b) 6a; (c)
$$\frac{3\pi a^2}{8}$$

24. (a) (i)
$$\frac{1}{3}(x^2 + a^2)^{\frac{3}{2}}$$
;

(ii)
$$\frac{1}{2}x\sqrt{(x^2 + a^2)} + \frac{1}{2}a^2 \sinh^{-1}(\frac{x}{a});$$

(b) $70a^2$

26. (a)
$$\frac{dy}{dx} = \frac{t(2-t^3)}{1-2t^3}$$
; $(2^{\frac{1}{3}}, 2^{\frac{2}{3}})$, $(2^{\frac{2}{3}}, 2^{\frac{1}{3}})$;

(b)
$$1\frac{1}{2}$$

27.
$$-\frac{2}{28}$$
. $\frac{2\sqrt{2}\pi}{5}(e^{\pi} - 2)$

29. (c)
$$x = 1 + \frac{\pi}{2}$$
, $-1 + \frac{3\pi}{2}$, (d) $2 - \frac{\pi}{2}$

$$30.\frac{1}{8}\pi$$
 (sinh 4a + 4a - 4 sinh 2a)

31.(a) 0.084

$$33.\frac{-x(x^3-2by^2)}{y(y^3-2bx^2)}$$
; $\frac{5b^2}{2}$

34. (a)
$$-\frac{1}{4a}\csc^4(\frac{t}{2})$$
; (c) 8a

35. (a)
$$\sin t$$
, $\frac{\cos^5 t}{3 \sin t}$

36. (a)
$$\tanh^{-1} x = x + \frac{1}{3}x^3 + \frac{1}{5}x^5$$
;

(b)
$$\sqrt{2}$$
 a (e ^{$\frac{1}{2}$ II - 1)}

37. (a)
$$\frac{1}{2}x\sqrt{(4+x^2)} + 2 \sinh^{-1}(\frac{1}{2}x) + c$$

38. -

39.2 -
$$\frac{1}{2}\pi$$

40. (i)
$$-(t^{3} + t)(t^{2} - 1)^{-3}$$

42.
$$\frac{35}{96}$$

43. (i)
$$\frac{8}{3}$$
, (ii) (2.4, 1.5)

46. (i)
$$\frac{1}{8}a^2(e^{\pi}-1)$$
; (ii) $\frac{\sqrt{5}}{4}a(e^{\frac{1}{2}\pi}-1)$

47. (i) 4; (ii)
$$(\frac{20}{7}, 5)$$
; (iii) 16.6

9. DIFFERENTIAL EQUATION

1. $x = \sinh^2 t$; $v = \sinh 2t$

2.
$$\frac{dz}{dt} = \frac{n}{A} \{1 - (\frac{z}{h})^{\frac{1}{2}}\}$$
;
 $z = \frac{16h}{9}$ when $t = \frac{2h}{n} (\frac{2}{3} + \text{In } 3)$

3. (a) $x^2y = \sec^2 x + c$

(b)
$$x - 1 = In \left| \frac{x + 2y}{x - 2y} \right|$$

(b) $x - 1 = \ln \left| \frac{x + 2y}{x - 2y} \right|$ 13. $x = e^{-t} \sin 2t + 2$; $x \to 2$ as $t \to \infty$

$$16 \cdot \frac{dz}{dx} - 2z = -2x$$

17.(a) $y = 2 \sin x$; (b) $x = (1 - t)e^{-t}$ 18. $y = 2e^{t} + 2e^{-2t}$ 19.(a) $y \cos x = x^{2} + c$; (b) $\sqrt{5} \text{ ms}^{-1}$

19.(a) y cos x =
$$x^2$$
 + c; (b) $\sqrt{5}$ ms
20.y = cos x - cos 2x; x = $2n\pi$ or

$$2n\pi \pm \frac{2\pi}{3}$$
; $\cos x = \frac{1}{4}$ or ± 1

21. (a)
$$y = \frac{1}{2}x^3 \sin 2x + \frac{1}{4}x^2 \cos 2x + cx^2$$

(b) $x^2 = 2y^2 \ln Ay$

22.
$$x = 2 \sin 3t - 6 \cos 3t(1 - e^{-2t})$$

23. (a) $y = (1 - 2x)e^{-2x}$; (b) x^2e^{-2x}

24. x = 100 - 99 e<sup>$$-\frac{1}{50}$$
 t²; 5.89</sup>

25.8
$$\sqrt{2}$$
; 7
26.y = x² + Ce^{X²}

27.(b)
$$y = (\frac{x - 1}{x})e^{-x}$$

28.(b)
$$y = x^3(\ln x - 1) + 3x^2$$

29. y = A cos
$$3x^2 + b$$
 sm $3x^2 - \frac{2}{3}$

30.(a)
$$x = t$$
;

(b)
$$y = tan^{-1}x - 1 + ke^{-tan^{-1}x}$$

31. $x = t - 2 + 2(t + 1)e^{-t}$
32. $y = cos x + k cos^2 x$; $\frac{1}{4}$

$$31. x = t - 2 + 2(t + 1)e^{-t}$$

32.
$$y = \cos x + k \cos^2 x$$
; $\frac{1}{4}$

33.
$$y = \frac{3}{13}\cos 2x + \frac{2}{13}\sin 2x + Ae^{-3x},$$

 $y = \frac{1}{39}(9\cos 2x + 6\sin 2x + 26 + 4e^{-3x})$

34. (a) 0; (b)
$$y = \{x - 2 \tan^{-1}(\frac{1}{2}x) + c\}$$

 $e^{\tan^{-1}(\frac{1}{2}x)}$; $c = \frac{1}{2}\pi - 1$

35.
$$y = e^{-x} (1 + A \cos 2x + B \sin 2x)$$
;
 $y = e^{-x} (2 \sin 2x + 1)$;
 $\frac{11}{12}\pi$, $\frac{19}{12}\pi$, $\frac{23}{12}\pi$

36. (a)
$$\frac{1}{5}e^{2x}(2 \cos X + \sin X) + k$$
;

(b)
$$y = \frac{1}{5}(2 \cos X + \sin X + 3t^{-2x})$$
;

(c)
$$x = e^{-t}(A \cos 3t + B \sin 3t) + \frac{1}{85}(9 \sin t - 2 \cos t)$$

37.
$$y = (Ax + B)e^{3x} + x + \frac{2}{3}$$
;

(b)
$$y \sqrt{a^2 - x^2} = c - a^2 \sin^{-1}(\frac{x}{a})$$

38. (a)
$$y = (x^2 + x + c)(1 - 2x)(1 + 2x)$$
;
(b) $x = \frac{1}{4}t \cos 2t$

(b)
$$x = \frac{1}{4}t \cos 2t$$

39. (b)
$$y = \frac{1}{x} [A \sin(2 \ln x) + B \cos(2 \ln x)] + \frac{x^3}{20}$$

40. (a)
$$y = (4 + 4x + e^{x})/(4 + e^{x})$$
;

(b)
$$y = \frac{2}{5} \sin 2x - \frac{3}{10} \cos 2x + Ae^{-X} + Be^{-2X}$$
; $R = 0.5$, $\phi = 0.644$

41. (a)
$$y = \frac{1}{2\ln x} + \frac{e^2}{2x^2\ln x}$$
;

(b)
$$y = \frac{1}{\sqrt{x}} [e^{-x} (A \cos x + B \sin x) + \frac{1}{2}x - \frac{1}{2}]$$

42. (a)
$$y^2(1+x^2)^2 = (6x+2x^3)+1, \frac{3}{2}$$
;

(b)
$$b = e^{-2X}(\cos 4x + \sin 4x) + 3x + 7$$

$$\overline{43}$$
. (i) $\overline{y} = \overline{\tanh x} + \overline{sechx}$;

(b)
$$\frac{b}{y} = \frac{e^{-2x}(\cos 4x + \sin 4x) + 3x + 7}{\tan x + \frac{1}{3}}$$

(i) $\frac{b}{y} = \frac{e^{-2x}(\cos 4x + \sin 4x) + 3x + 7}{\tan x + \frac{1}{3}}$
(ii) $\frac{b}{y} = \frac{e^{-2x}(\cos 4x + \sin 4x) + 3x + 7}{\tan x + \frac{1}{3}}$

44. (a)
$$y = \frac{1}{2}x^3 + \frac{1}{2}x$$
,
 $y = e^{-\frac{X}{2}}(A \cos \frac{\sqrt{3}}{2}x + B \sin \frac{\sqrt{3}}{2}x)$
+ 3 sinx - cosx

45. (a)
$$y = \frac{1 + \sinh^{-1}x}{\sqrt{(1+x^2)}}$$
;

(b)
$$y = Ae^{-x} + Be^{-ax} + e^{-2x};$$

 $y = \frac{1}{a-1}e^{-x} + \frac{1}{1-a}e^{-ax} + e^{-2x}$

46. (a)
$$y = (\frac{1}{3} + \frac{A}{x^3}) \sin x$$
;

(b)
$$y = e^{-3x}(A \cos 4x + B \sin 4x) + \sin 2x$$

47. (a)
$$y = \frac{3(1+x)^2}{(1+x)^3+2}$$
;

47. (a)
$$y = \frac{3(1+x)^2}{(1+x)^3+2}$$
;
(b) $y = ae^{-x} + be^{-3x} - 8 \cos 2x$
 $-\sin 2x$

48. (a)
$$y = (x + \frac{\pi}{2})\sin x$$
;

(b)
$$y = \frac{1}{x}[A \cos(3\ln x) + B \sin(3\ln x)] + 4 + \ln x$$

10. COMPLEX NUMBER (I) -

DE MOIVRE'S THEOREM

2. (a)
$$2^{19}$$
 (-1 - i $\sqrt{3}$); (b) 2i, $\sqrt{3}$ - i, $-\sqrt{3}$ - i

14. (a) (i)
$$(\sqrt{2}, -\frac{1}{4}\pi)$$
; (ii) $(2, \frac{1}{6}\pi)$; (iii) $(\sqrt{2}, \frac{5}{12}\pi)$; (iv) $(64, \pi)$

15. (a) A = 64, B = -112, C = 56,
D = -7; x =
$$4 \cos^2 \frac{1}{14} \pi$$
,

$$4 \cos^2 \frac{3}{14} \pi$$
, $4 \cos^2 \frac{5}{14} \pi$

18. (a)
$$x^2 + 2x \cos\theta + 1$$
;

18. (a)
$$x^2 + 2x \cos\theta + 1$$
;
(b) $(x^2 + 1)(x^2 + \sqrt{3}x + 1)$
 $(x^2 - \sqrt{3}x + 1)$

20. (a)
$$\cos 2\theta + i \sin 2$$
; $\cos \frac{2\pi}{9}$
+ $i \sin \frac{2\pi}{9}$, $\cos \frac{8\pi}{9} + i \sin \frac{8\pi}{9}$,
 $\cos \frac{14\pi}{9} + i \sin \frac{14\pi}{9}$;

(b)
$$z = 0$$
, 4, $\frac{2}{5} \pm \frac{6}{5}i$

22.
$$\tan 7\theta = \frac{(7t - 35t^3 + 21t^5 - t^7)}{(1 - 21t^2 + 35t^4 - 7t^5)}$$
;
 $\sec^2(\frac{1}{7}\pi) + \sec^2(\frac{2}{7}\pi) + \sec^2(\frac{3}{7}\pi) = 24$

24. (a)
$$\frac{1}{32}\cos 6\theta - \frac{1}{16}\cos 4\theta + \frac{1}{32}\cos 2\theta + \frac{1}{16}; \frac{1202}{729};$$

(b)
$$-3$$
, $-\frac{1}{3}$, $-\frac{3}{5}$ + $\frac{4}{5}$ i; $-\frac{3}{5}$ - $\frac{4}{5}$ i

25. (a)
$$8\sqrt{2} - 9 \le |z - w| \le 8\sqrt{2} + 9$$
;
(b) -1,6r + 3(r \in Z)

26. (a)
$$7 - 14t + 7t^2 - t^3$$
, $x = \pm 2 \sin \frac{\pi}{7}$, $\pm 2 \sin \frac{3\pi}{7}$;

27.
$$e^{\frac{2}{5}ir\pi}$$
, $(r = 0, ..., 4)$;
together with $e^{\frac{1}{4}(2r+1)i\pi}$, $(r = 0, ..., 3)$

28. (a) 1,
$$\pi$$
; (b) $\frac{21}{32}\sqrt{3}$, $\frac{\pi}{6}$

29. (a)
$$e^{\frac{2ik\pi}{5}}$$
 (k = 0,, 4);

(c)
$$\tan{(\frac{k\pi}{5})}(k = 0, ..., 4)$$

30. (a) (i)
$$\sqrt{2}$$
, $-\frac{1}{4}\pi$; (ii) 4, π ;

(iii) 1,
$$\frac{1}{3}\pi$$
;

(b)
$$2^{\frac{1}{6}} e^{\frac{-i\pi}{12}}$$
, $2^{\frac{1}{6}} e^{\frac{7\pi}{12}}$, $2^{\frac{1}{6}} e^{\frac{i3\pi}{4}}$

31. (a)
$$e^{-\frac{13}{9}i\pi}$$
, $e^{-\frac{7}{9}i\pi}$, $e^{-\frac{1}{9}i\pi}$, $e^{\frac{1}{9}i\pi}$, $e^{\frac{1}{9}i\pi}$, $e^{\frac{7}{9}i\pi}$, $e^{\frac{13}{9}i\pi}$;

(b)
$$a = 1$$
, $b = -2$, $c = -2$, $d = 6$

33. e^{$$\frac{2}{7}\pi i$$} 34. (b) -

35. (c) Sin (n + 1)
$$\theta$$

36.
$$e^{\frac{1}{9}\pi i\pi}$$
 for $n = 1, 5, 7, 11, 13, 17$

37.
$$2 \cos \frac{\theta}{2} (\cos \frac{\theta}{2} + i \sin \frac{\theta}{2}),$$

 $2 \cos \frac{\theta}{3} [\cos(-\frac{\theta}{2}) + i \sin(-\frac{\theta}{2})]$

39. (a)
$$\cos(\frac{2\pi k}{9}) + i \sin(\frac{2\pi k}{9})$$
, where $k = 0, 1, 2, \dots 8$; Sum = 0

44. -
$$i(\frac{2\pi k}{6})$$

44. -
$$i(\frac{2\pi k}{6})$$
, $k = 0, 1, 2, 3, 4, 5;$

(b)
$$16s^5 - 20s^3 + 5s$$
;
 $\sin \frac{\pi}{30}$, $\sin \frac{\pi}{6}$, $\sin \frac{13\pi}{30}$

11. COMPLEX NUMBER (II) -LOCI AND TRANSFORMATION

1.
$$z_1 = 1 + i\sqrt{3}$$
, $z_2 = 1 - i\sqrt{3}$
If $n \equiv 0 \pmod{6}$, $z_1^n = z_2^n = 2^n$;
If $n \equiv 1 \pmod{6}$, $z_1^n = 2^{n-1} (1 + i\sqrt{3})$;
 $z_2^n = 2^{n-2} (1 - i\sqrt{3})$

3. (b)
$$W \in \{w : \frac{1}{4} < \text{Re } w < \frac{1}{2}\}$$

15.
$$x + 3y = -4$$
; A: $x + y = 0$,
B: $x = \frac{1}{2}$, C: $x = y$

17.
$$w\overline{w} + \frac{(1+i)}{2}w + \frac{(1-i)}{2}\overline{w} = 0$$
,
a circle centre $-\frac{1}{2} + \frac{1}{2}i$,

radius
$$\frac{1}{\sqrt{2}}$$

18. (a) 2, 8;
$$\frac{24}{7}$$
; (b) $-\frac{13}{4}$, $-\frac{13}{4}$, 0; $z = \frac{13}{2}$

19.
$$\frac{4}{3}$$
 - $\frac{4}{9}$ i

20. (a)
$$z = 2 - i$$
, $w = 1 + 3i$

- 22. A line which is perpendicular to the line joining the origin and the point
- 23. a = 4, b = 9, c = -4; (a) Centre 4, radius 5 24. w - $\overline{w} = 4ib^2$

24. w -
$$\overline{w} = 4ih^2$$

25.
$$(2 + i)\overline{z} + (2-i)z - 7 = 0$$
 or $4x + 2y - 7 = 0$

26. Centre - 2 + i, radius
$$\sqrt{5}$$

27.
$$4.8 \le |z| \le 10$$

28. (a) - 2 + i; (b) (i)
$$\frac{2}{3}$$
i, $\frac{4}{3}$;

(ii)
$$w(1 + 2i) + \overline{w}(1 - 2i) = 3$$

29.
$$\sqrt{(\alpha^2 + \beta^2 - b)}$$
; (a) 1; (b) - 1; (c) - 1 ± $2\sqrt{2}$

30. (a)
$$(1 - i)w + iz$$
, $2w - z$, $(1 + i)w - iz$

31. Re
$$w = 1$$
; $(1 + i)a$

32. (a) 1 - i, 2; (b)
$$e^{-i\pi/6}$$
, $e^{i\pi/2}$, $e^{-is\pi/6}$; (c) $n = 4k + 2$ where $k \in \mathbb{Z}$

33. (a)
$$(3 + i)z^* + (3 - i)z - 10 = 0$$
;

(b)
$$zz^* - \frac{1}{2}(3 + i)z^* - \frac{1}{2}(3 - i)z = 0$$

34. (c)
$$\Rightarrow$$
 (b) ; 20 \leq $|z| \leq$ 40 ;
 $-\frac{6}{17} \leq \arg z \leq \frac{3}{4}$

35. (a)
$$(a_1 - a_2)z^* + (a_1 - a_2)^*$$

 $z + (b_2 - b_1) = 0$

36. (a)
$$-4 + 3i$$
, 5; (b) $(3 - 4i)z^* + (3 + 4i)z + 48 = 0$

37. (a) Centre
$$(\frac{5}{3}, 0)$$
, radius $\frac{4}{3}$;

(b) Centre (-1,
$$-\frac{1}{2}$$
), radius $\frac{\sqrt{5}}{2}$

(ii) The point Q starts at C and moves once round the circle |w| = 2 in an anticlockwises sense to return to C.

39. (a) (i)
$$z = \cos(\frac{2}{3}k\pi) + i \sin(\frac{2}{3}k\pi)$$

where $k = 0, 1, 2$

where k = 0, 1, 2
(ii)
$$z = \cos(\frac{1+3k}{3})\pi \pm \sin(\frac{1+3k}{3})\pi$$

where k = 0, 1

(b) (ii)
$$\frac{1}{25}$$
 (28 + 4i)

41.
$$k = \frac{1}{7}$$

42.
$$\frac{2\sqrt{2}}{3}$$

(ii) Q moves anti-clockwise around the circle |z| = 1 from the point representing the point -i;

44. Q starts at a point representing
$$\frac{3}{4}$$
 and moves vertically up to a point representing $(\frac{3}{4} + \frac{1}{4}i)$

from (1 - i) to $(1 - \frac{1}{3}i)$;

(ii) moves through an arc of the circle from O to $(\frac{1}{2} - \frac{1}{2}i)$

12. VECTOR

1. 2.

(a) r = 2i + 3j + k + 1 + 2i - 2k;

(c) $r = 2i + 3j + k + \lambda(-i - 2j - 2k)$ + $\mu(-i - 3j)$;

(d) $\cos^{-1} \left(\frac{10}{\sqrt{41}\sqrt{29}} \right)$

20. P = (5, 4, -1), Q = (6, 2, 0)

- 21. $r = (1, -1, 1) + \lambda(1, 2, 1) + \mu(1, 3, 3)$ or 3x 2y + z = 6; $r = (1, -1, 1) + \lambda(3, -1, -4)$ or $\frac{x-1}{3} = \frac{y+1}{-1} = \frac{z-1}{-1}$
- 24. (a) $\pm \frac{1}{3}(2i j + 2k)$; (b) $\frac{2}{3}$;
- 25. Magnitude 5 at $\sin^{-1}(-\frac{3}{5})$ to
- direction of i; t = 2; $4\sqrt{5}$ 26. (a) False; (b) False; (c) True;

(d) False; (e) True

- 27. (b) $\mathbf{r} \cdot (2\mathbf{i} 3\mathbf{j} + 6\mathbf{k}) = 24$; 12 28. (a) $\frac{2}{5} \cdot (-\mathbf{i} + 2\mathbf{j} + \mathbf{k}) / \sqrt{6}$; (b) $2\sqrt{6}$; (c) $\mathbf{i} + 7\mathbf{j} 2\mathbf{k}$ 29. (a) $3\mathbf{x} 2\mathbf{y} + \mathbf{z} = 6$ or
- $r = (1, -1, 1) + \lambda(1, 2, 1) + \mu(2, 2, -2);$

(b) RB : BC = 1 : 3

30. (b) (i) True; (ii) False; (iii) True

31. g(2i - 6j + 3k) = 4; $\frac{5\sqrt{21}}{62}$

- 32. (a) $\binom{3}{5}$, $\binom{-1}{1}$; (b) r. $\binom{2}{2}$ = 3
- 33. (a) $\mathbf{r} \cdot (3, -4, -1) = -7$; (b) (3, 3, 4); (c) (1, 3, -2)

- 35. (1, 1, -1); $\underline{r}.(2, -2, 1) = -1$; (a) $\frac{5}{\sqrt{26}}$; (b) $\frac{5}{\sqrt{1066}}$
- 36. 6a 5c, $\frac{8}{3}$ b $\frac{5}{3}$ c

37. 3 i - 4 j + k 38. (a) True; (b) False; (c) False;

(d) False

39. (b)
$$\frac{bc}{\sqrt{(b^2 + c^2)}}$$
, $\frac{ca}{\sqrt{(a^2 + c^2)}}$

40. (a)
$$\frac{16}{\sqrt{310}}$$
; (b) $\begin{pmatrix} 0 \\ 5 \\ 2 \end{pmatrix} + \lambda \begin{pmatrix} 1 \\ -2 \\ 1 \end{pmatrix}$

41. (a) (i)
$$r = \begin{pmatrix} 1 \\ 0 \\ -3 \end{pmatrix} + t \begin{pmatrix} 2 \\ 1 \\ -3 \end{pmatrix}$$
;

(ii) No solutions;

(b)
$$x = \frac{1}{2} \left[c - \left(\frac{b \cdot c}{2 + a \cdot b} \right) a \right]$$

(b)
$$x = \frac{1}{2} [c - (\frac{b \cdot c}{2 + a \cdot b}) \underline{a}]$$

42. $\frac{r \cdot (2, 3, -6)}{\sqrt{21}} = -\frac{4}{4}; (5, 3, 12);$

43. $\lambda^2 \left| \frac{\lambda - 1}{\lambda + 1} \right|$

44.
$$\mu = \frac{2}{3}b.(u - 2v)$$
;

(a) $r = a + \lambda u + \mu y$; (b) $\frac{2}{\sqrt{3}} u \times y$;

•(c)
$$r = t \{ a + \frac{2}{3} b (2u - y) - u \}$$

45. (a)
$$\begin{pmatrix} 3 \\ 1 \\ 2 \end{pmatrix}$$
; (b) $\frac{1}{\sqrt{6}} \begin{pmatrix} 1 \\ -1 \\ 2 \end{pmatrix}$; (c) $\begin{pmatrix} 1 \\ 9 \\ 4 \end{pmatrix}$, $\begin{pmatrix} -7 \\ -7 \\ 0 \end{pmatrix}$

46. -

47.
$$\frac{1}{7}\sqrt{629} \approx 3.58$$

48. (a) $\sqrt{3}/\sqrt{2}$

- 49. (a) A(6, 0, -1), B(2, 2, 1); (c) (3, 6, -1)
- 50. (a) $2 \sin \delta \sqrt{1 + \cos^2 \delta}$; $\theta = \frac{1}{3}\pi$,
- 51. (a) $\left(0, \frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}\right)$; (b) $\cos^{-1}\left(\frac{1}{\sqrt{10}}\right)$; (c) $\frac{4}{5}\sqrt{5}$; (d) $2\sqrt{2}$

52. $\frac{1}{3}$ (a + b + c)

53. (a)
$$k = 2$$
, $\begin{pmatrix} 0 \\ 3 \\ -6 \end{pmatrix}$;
(b) $r = \begin{pmatrix} 0 \\ 3 \\ -6 \end{pmatrix} + t \begin{pmatrix} 1 \\ 1 \\ -1 \end{pmatrix}$

54. 9
$$\dot{i}$$
 + 6 \dot{j} - 18 \dot{k} ; - $\frac{1}{3}$, $\frac{2}{3}$, $\frac{2}{3}$;
 $\dot{r} = (\frac{7\frac{1}{2}}{2} + 2\lambda)\dot{i} + 9\dot{j} + (\lambda = 15)$

55. (i)
$$x + 3y + 2z = -2$$
; (ii) $-k$;
(iii) $-i + j - k$, $-5i - j + 4k$
56. (i) $i + 2j + k$; (ii) $4i - 17j + 45k$, $14i + 3j + 55k$
57. $-i + 4j$, $-4i + 16j$; $-7i - 8j - 18k$

57.
$$-1 + 4j$$
, $-4i + 16j$; $-7i - 8j - 18k$

58. -

60. -

61. (2, -4, 1)

62.
$$3\sqrt{6}$$
; (i) $\begin{pmatrix} 9 \\ -6 \\ -3 \end{pmatrix}$; (ii) $\begin{pmatrix} 4 \\ 0 \\ -4 \end{pmatrix}$ and $\begin{pmatrix} -2 \\ 4 \\ -2 \end{pmatrix}$

63. (iii)
$$-5i + 5j + 5k$$

64. (ii) $p = 2i + 3j - 4k$, $q = -i + j + k$;
(iii) $7x - 8y + z + 14 = 0$
65. (i) $(7 \cos t)i + (7 \sin t)j$;

65. (i)
$$(7 \cos t)i + (7 \sin t)j$$

(iv) 64.5°

66. (i)
$$2i - 2j - 4k$$

67. -

68. (i) PQ =7,
$$p = i - j + 2k$$
,
 $q = 3i + 2j + 8k$
69. (i) $\frac{1}{2}$ a, $\frac{1}{3}$ (2a + b), $\frac{3}{4}$ c;

69. (i)
$$\frac{1}{2}$$
 a, $\frac{1}{3}$ (2a + b), $\frac{3}{4}$ c;

(iv) $\frac{3}{8}$

70. (i) 4;

(ii) 20

71.
$$\overrightarrow{OL} = \frac{1}{4} \underbrace{a}_{1} + \frac{1}{2} \underbrace{b}_{2} + \frac{1}{4} \underbrace{c}_{3}^{2}$$

(i) $\frac{1}{5} \underbrace{a}_{1} + \frac{2}{5} \underbrace{b}_{3}^{2}$;

(ii)
$$\frac{1}{6}$$
 $\frac{a}{6}$ $+\frac{1}{3}$ $\frac{b}{6}$ $+\frac{1}{6}$ $\frac{c}{6}$

72. P(1, -6.4), Q(-5, 0, 4); 1

73. Locus of W is a plane containing the point (-5, 9, 1) and parallel to

(iii)
$$r = \frac{1}{4} \begin{pmatrix} 8 \\ 13 \\ -21 \end{pmatrix} + \lambda \begin{pmatrix} 2 \\ 1 \\ 0 \end{pmatrix}$$

74. (ii) 1.20; (iii) 54.7

2.

13. SET AND RELATION

(a) Each equivalence class contains only one element; (b) Nothing

 X_2 Х3 Х5 0 0 \mathbf{x}_1 0 1 1 1 1 1 Хı 0 0 1 0 0 Хз 1 0 1 1

P is a total ordering: $x_2 P x_4$ P X5 P X1 P X3

(a) Symmetric; (b) equivalence relation, only class is S;

(c) order relation: 2 < 4 < 8 < 16; 3 < 9 < 18; 2, 3 < 6 < 12 < 18etc; (d) equivalence relation, classes: $\{2, 4, 8\}, \{3, 9\}, \{5\},$

11. -12. {a}, {b, e}, {c, d, f, g}, { f, g, c, d}

13. -

15. (a) ρ_1 : Transitive, ρ_2 = reflexive and transitive, P_3 = symmetric; (b) (i) $\{a, 2 - a\}$; (ii) $\{a, a + 2n\pi,$ $(2n + 1)\pi - a$

17. (ii) {Even numbers}, { odd numbers}; (iv){Reduced fractions with the same denominator; (v) {f}, {a, c}, {b, d, e}

18. -

19. -

21. (a) - 2, 4; (b) $1\frac{1}{4}$

22. (b) 1, 3, 7, 9; (d) 10, 20, 40, 80

23. (ii) The operation * is not distributive over the operation o; (iii)Identity in C with respect to

* is
$$\circ$$
. Inverse of z with respect
to * is $-\frac{z}{z+1}(z \neq -1)$;

 $(iv) - 1, \pm i$.

24. (i) (0, 0), (1, 1); (iii)₀ (1, 1), (1, -1), (-1, 1), (-1, -1); (iv) 12

25. (i) 15; (ii) 112; (iv) 126 and 104

26. (ii) $P = \begin{pmatrix} \pm 1 & x \\ 0 & \pm 1 \end{pmatrix}$

27. (i) $I = \{ax+b \in S: a \equiv 1 \pmod{5} \text{ and } \}$ $b=1 \pmod{7}$

> (ii) $Q = \{ax+b \in S: a=2 \pmod{5}\}$ and b=3(mod7)

(iii) $R = \{ax+b \in S: a=0 \pmod{5}\} \cup$ $\{ax+b \in S: b=0 \pmod{7}\}, 11$

28. (ii) 0;

(iii) $-\frac{1}{k}$,

(iv) $k = \pm 1$

29. -

30. (ii) $\{x^2+2x+3, x^2+3x+2, 2x^2+x+3,$ $2x^2+2x+2$, $2x^2+3x+1$, $3x^2+x+2$, $3x^2+2x+1$ }

(iii)	an element of the equivalence class	no. of elements		
	$x^2 + x + 1$	1		
	$x^2 + x + 2$	3		
	$x^2 + x + 3$	6		
	$x^2 + 3x + 3$	6		
	$2x^2 + 3x + 3$	3		
	$3x^2 + 3x + 3$	1		

- 31. (iii) $\{(x, y)/y=0\}$; (iv) $\{(-1, \frac{1}{2}), (-1, -\frac{1}{2})\}$
- R₁ and R₃ are not equivalence relation,
 R₂ is an equivalence relation

14. MATRICES AND GROUP

- 1. ad $\neq 0$
- 2. -
- 3. -
- 4. H = {0, 1, 2, 3, 4} under addition modulu 5

5.
$$\{1, -\frac{1}{2} + \frac{\sqrt{3}}{2}i, -\frac{1}{2} - \frac{\sqrt{3}}{2}i\}$$

- 6. $f: x \to 0$ for all $x \in Z$ and g:0, $3 \to 0$; 1, $4 \to 1$; 2, $5 \to 2$
- 7.
- 8. -
- 9.
- 10. -
- 34. 81; (a) 20, (b) $\{\begin{pmatrix} \pm 1 & 0 \\ 0 & \pm 1 \end{pmatrix}\}$, $\begin{pmatrix} \pm 1 & 0 \\ 0 & \mp 1 \end{pmatrix}\}$ or $\{\begin{pmatrix} \mp 1 & 0 \\ 0 & \pm 1 \end{pmatrix}\}$, $\begin{pmatrix} 0 & \pm 1 \\ \mp 1 & 0 \end{pmatrix}\}$ or $\{\begin{pmatrix} \pm 1 & 0 \\ 0 & \pm 1 \end{pmatrix}\}$, $\begin{pmatrix} 0 & \pm 1 \\ 0 & \pm 1 \end{pmatrix}\}$
- 35. (a) H = K; (b) H = K
- 36. -
- 37. -
- 39. -
- 41. I = (1, 0), $A^{-1} = (\frac{a_1}{a_1^2 + a_2^2}, -\frac{a_2}{a_1^2 + a_2^2})$; $X = (0, \pm 1), (\pm 1, 0)$
- 42. $C = \{aI\}, (a \in R, a \neq 0)$

44. (a)
$$\{1, -1\}$$
, $\{1, i, -1, -i\}$;
(c) $\theta = \frac{k\pi}{4}$ where $k = 0, 1, 2, ..., 7$

46.
$$C = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, D = \begin{pmatrix} -1 & 0 \\ 0 & -1 \end{pmatrix}$$

	С	D	Α	В
C D A B	C D	D	Α	В
D	D	C	В	Α
Α	A B	В	С	D
В	В	Α	D	C

48. -

49.
$$t(x) = 1 - x$$
, $u(x) = \frac{x - 1}{x}$;

(p, r), (p, s), (p, t), (p, q, u) 50. (b) Multiplication; Z; addition

51. -

52. 6

53. (iii)
$$w = x \neq 0$$
, $y = z = 0$

(d) The groups in (a) and (c) are isomorphic

55, $\frac{1}{3}$

56.
$$s = 1$$
, $t = -1$; $\alpha = -\frac{1}{\mu}(\lambda^2 + \frac{3}{4})$, $\beta = \lambda - \frac{1}{2}$; $\{\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, \begin{pmatrix} 2 & 7 \\ -1 & -3 \end{pmatrix}, \begin{pmatrix} -3 & -7 \\ 1 & 2 \end{pmatrix}\}$

57. *	ј e	a	a ²	b	ab	a²b
е	е	a a ² e a ² b b ab	a²	Ь	ab	a²b
a	, a	a²	e e	ab	a ² b b a ²	b
a'	a²	e	a	a²b	b	ab
р	b	a²b	ab	е -	$\mathbf{a^2}$	а
ab	ab	Ь	a²b	$\mathbf{a}^{:}$	е	a^2
a²b	a²b	ab	b	a ²	а	е

Required equivalence class is $\{a^2, ab\}$.

58. (i)		I	Р	Q	R	S	T
	Į P	Į P	P	Q	R T	S R	T S
	Q R	Q	ľ	P T	ŝ	T	R
	S	R	S T	Ř	Q	P I	Q P
	Ti	T	R	-S-	Þ	Ω	ī

(iii)	Element	Р	Q	R	S	Т
	Order	3	3	2	2	2

59. (ii)
$$\{f_1, f_2\}, \{f_1, f_3\}, \{f_1, f_6\}, \{f_1, f_4, f_5\}$$

61. (i) 1, 6, 3, 2, 3, 6
(ii) 1, 3, 3, 2, 2, 2, {e,
$$x_1$$
, x_2 }, {e, x_3 }, {e, x_4 }, {e, x_5 }

(iii) (a) L is isomorphic to G;
Define
$$f:G \to L$$
 such that
 $f(e) = 0$, $f(a) = 1$, $f(a^2) = 2$,
 $f(a^3) = 3$, $f(a^4) = 4$, $f(a^5) = 5$

(b) M is isomorphic to G;
Define f:G
$$\rightarrow$$
M such that
g(e) = 1, g(a) = 3, g(a²) = 2,
g(a³) = 6, g(a⁴) = 4, g(a⁵) = 5

(iv) not isomorphic

15. LINEAR SPACE

1.
$$A^{-1} = \frac{1}{6} \begin{pmatrix} -13 & 2 & 5 \\ 21 & -3 & -6 \\ -11 & 1 & 4 \end{pmatrix}$$
,

$$x = \frac{1}{6} \left(-\frac{13}{12} \right)$$

2.
$$\begin{pmatrix} 1 & -a & ac - b \\ 0 & 1 & -c \\ 0 & 0 & 1 \end{pmatrix}$$
;

$$\begin{pmatrix} 3 & -3a - 1 & 3ac - 3b + c + 2 \\ 1 & -a & ac - b + 5 \end{pmatrix}$$

18.
$$\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$
, $\begin{pmatrix} \frac{1}{2} & -\frac{\sqrt{3}}{2} \\ \frac{\sqrt{3}}{2} & \frac{1}{2} \end{pmatrix}$, $\begin{pmatrix} -\frac{1}{2} & -\frac{\sqrt{3}}{2} \\ \frac{\sqrt{3}}{2} & -\frac{1}{2} \end{pmatrix}$,

$$\begin{pmatrix} -1 & 0 \\ 0 & -1 \end{pmatrix} , \begin{pmatrix} -\frac{1}{2} & \frac{\sqrt{3}}{2} \\ -\frac{\sqrt{3}}{2} & -\frac{1}{2} \end{pmatrix},$$

$$\begin{pmatrix} \frac{1}{2} & \frac{\sqrt{3}}{2} \\ -\frac{\sqrt{3}}{2} & \frac{1}{2} \end{pmatrix}$$

22.
$$\left\{ \begin{pmatrix} 3\\1\\1 \end{pmatrix} \right\}$$
, $\left\{ \begin{pmatrix} 2\\1\\0 \end{pmatrix} \right\}$, $\left\{ \begin{pmatrix} 1\\3\\1 \end{pmatrix} \right\}$ (or any two

linearly independent vectors of the form $\begin{pmatrix} 2\lambda - \mu \\ \lambda + 3\mu \end{pmatrix}$; $\left\{ \begin{pmatrix} 10 + 3\lambda \\ -2 - \lambda \end{pmatrix} \right\}$ $\lambda \in \mathbb{R}$; This is not a subspace.

23. (b) 2,
$$\left\{ \begin{pmatrix} 3 \\ -2 \\ 9 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 0 \\ 2 \\ 1 \end{pmatrix} \right\}$$
 (or any two

linearly independent vectors of the

$$form \begin{pmatrix} 3 \lambda \\ -2 \lambda \\ 9 \lambda + 2\mu \end{pmatrix}$$

24. (a)
$$x = 0$$
, $y = 3t$, $z = t$; $t \in R$;
(b) $x = -\frac{1}{2}$, $y = 3t - \frac{3}{2}$, $z = t$; $t \in R$

0, 1)

27.
$$\begin{pmatrix} 0 & 1 \\ 2 & 1 \end{pmatrix}, \begin{pmatrix} 0 & -1 \\ -2 & -1 \end{pmatrix}, \begin{pmatrix} \frac{4}{3} & \frac{1}{3} \\ \frac{2}{3} & \frac{5}{3} \end{pmatrix},$$

$$\begin{pmatrix} -\frac{4}{3} & -\frac{1}{3} \\ -\frac{2}{3} & -\frac{5}{3} \end{pmatrix}$$

29. (b) 1;
$$x = 3 - 5\lambda$$
, $y = \lambda$, $z = 4\lambda - 2(\lambda \in \mathbb{R})$

31. Basic for V is
$$\begin{pmatrix} -1\\4\\-1\\1 \end{pmatrix}$$
, $X = \begin{pmatrix} 1\\1\\1\\1 \end{pmatrix} + \begin{pmatrix} -1\\4\\-1\\1 \end{pmatrix}$

32. (b) (i) , (iii) not possible; (ii)
$$\begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}$$
;

(c) (i)
$$\left\{ \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} \right\}$$
;

34. (a)
$$P = \begin{pmatrix} 0 & \frac{1}{2} \\ \frac{1}{3} & -\frac{1}{6} \end{pmatrix}$$

$$Q = \begin{pmatrix} 1 & 0 & -2 \\ 0 & 1 & -\frac{1}{3} \\ 0 & 0 & 1 \end{pmatrix};$$

(b)
$$P = \begin{pmatrix} 1 & 0 & 0 \\ -1 & \frac{1}{2} & 0 \\ -2 & \frac{3}{2} & -\frac{1}{2} \end{pmatrix}$$
,

$$Q = \begin{pmatrix} 1 & 1 & -3 \\ 0 & 1 & -2 \\ 0 & 0 & 1 \end{pmatrix},$$

$$A^{-1} = \begin{pmatrix} 6 & -\frac{4}{3} & \frac{3}{2} \\ 3 & -\frac{5}{2} & 1 \\ -2 & \frac{3}{3} & -\frac{1}{2} \end{pmatrix}$$

(c)
$$P = \begin{pmatrix} 1 & 0 & 0 \\ -2 & 1 & 0 \\ 4 & -3 & 1 \end{pmatrix}$$
,

$$Q = \begin{pmatrix} 1 & \frac{1}{2} & -\frac{3}{2} \\ 0 & \frac{1}{2} & -1 \\ 0 & 0 & \frac{1}{2} \end{pmatrix}$$

35. (b)
$$S : \{(1, 0, 1, 1), (1, 0, 0, 0)\}$$
, $T : \{(1, -1, 0, 1), (0, 1, 1, 0)\}$,

37.
$$a = -3$$
; (a) $x = -\frac{(9t + 2)}{5}$, $y = t$,

$$z = -\frac{(11t+8)}{5}$$
; (b) no solutions

38.
$$\begin{pmatrix} 11\\1\\3\\0 \end{pmatrix}$$
, $\begin{pmatrix} 2\\-1\\0\\3 \end{pmatrix}$, $\{\begin{pmatrix} 1\\0\\4 \end{pmatrix}$, $\begin{pmatrix} -4\\9\\5 \end{pmatrix}\}$,

$$\left\{ \begin{pmatrix} 1\\1\\1\\1 \end{pmatrix} + s \begin{pmatrix} 11\\1\\3\\0 \end{pmatrix} + t \begin{pmatrix} 2\\-1\\0\\3 \end{pmatrix} \right\}$$

39. (b)
$$\begin{pmatrix} 3 \\ 3 \\ 1 \end{pmatrix}$$
; (c) $\begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix} + \lambda \begin{pmatrix} 2 \\ 1 \\ 1 \end{pmatrix}$

40. (a)
$$\{x^2, x\}$$
; (b) Not a subspace, (c) $\{x^2 - 1, x - 1\}$, (d) $\{x^2 - 1\}$

42.
$$\left\{ \begin{pmatrix} 1\\2\\0\\2 \end{pmatrix}, \begin{pmatrix} -4\\1\\1 \end{pmatrix} \right\}$$
,

(a)
$$X = \begin{pmatrix} \lambda & \lambda & \mu \\ 2 \lambda - 4 \mu & \mu \\ -2 \lambda + \mu \end{pmatrix}$$
;

(b)
$$X = \begin{pmatrix} 1 + \lambda \\ 1 + 2\lambda - 4\mu \\ u \\ -2\lambda + \mu \end{pmatrix}$$

43.
$$\begin{pmatrix} 11 & -12 & -7 \\ -8 & 9 & 5 \\ 7 & -8 & -4 \end{pmatrix}$$
;
(a) $\begin{pmatrix} 11 & -8 & 7 \\ -12 & 9 & -8 \\ -7 & 5 & 4 \end{pmatrix}$;

(a)
$$\begin{pmatrix} \frac{11}{-12} & \frac{-8}{9} & \frac{7}{-8} \\ -7 & 5 & -4 \end{pmatrix}$$
;

(b)
$$\begin{pmatrix} 5\frac{1}{2} & -12 & -7 \\ -4 & 9 & 5 \\ 3\frac{1}{2} & -8 & -4 \end{pmatrix}$$
(c) $\begin{pmatrix} -2 & -4 & -1\frac{1}{2} \\ -1\frac{1}{2} & -2\frac{1}{2} & -\frac{1}{2} \\ -\frac{1}{2} & -2 & -\frac{1}{2} \end{pmatrix}$
44. $x = \lambda c$, $y = \mu + \lambda d$, $A = \lambda M + \mu I$;
(d) $\begin{pmatrix} 5 & 5 \\ 2 & 2 \end{pmatrix}$, $\begin{pmatrix} -2 & 5 \\ 2 & -5 \end{pmatrix}$
45. (a) $\lambda \begin{pmatrix} 1 \\ 2 \\ 0 \end{pmatrix}$, (b) No solution;
(c) $\begin{pmatrix} 1 \\ 2 \\ 0 \end{pmatrix} + \lambda \begin{pmatrix} 0 \\ 2 \\ 1 \end{pmatrix}$; range has basis $\begin{pmatrix} 1 \\ 1 \\ -1 \end{pmatrix}$; range has basis $\begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}$, $\begin{pmatrix} -1 \\ 1 \\ 0 \end{pmatrix}$;

Line $r = \begin{pmatrix} 3 \\ 0 \\ 3 \end{pmatrix} + \lambda \begin{pmatrix} -1 \\ 2 \\ 1 \end{pmatrix}$; (b) Point $\begin{pmatrix} 3 \\ 0 \\ 3 \end{pmatrix}$; (c) Line $r = \lambda \begin{pmatrix} 3 \\ 2 \\ 5 \end{pmatrix}$
47. (a) $\frac{1}{2}(e_1 + e_2)$; (b) $-e_1 + e_2 + e_3$; (c) $\frac{1}{2}e_3 + t(-e_1 + e_2 + e_3)(t \in \mathbb{R})$
48. $p = \begin{pmatrix} -\frac{1}{2} & 0 & 0 \\ \frac{1}{6} & \frac{1}{3} & 0 \\ -2 & -3 & 1 \end{pmatrix}$, $Q = \begin{pmatrix} 1 & 0 & 0 \\ -\frac{3}{5} & \frac{1}{5} & 0 \\ 11 & -2 & 5 \end{pmatrix}$;

$$q = 2, \beta = 3, \quad \gamma = -1$$
49. (a) 3; (b) $5x - 6y - 7z = 0$; dimension $= 2$; (c) $\frac{7}{9}$
50. (a) $q = -3$; (b) $q = 7$; $q = -3$; $q = -3$; (c) $q = -3$; (d) $q = -3$; (e) $q = -3$; (e) $q = -3$; (f) $q = -3$; (f) $q = -3$; (f) $q = -3$; (g) $q = -3$; (g) $q = -3$; (e) $q = -3$; (f) $q = -3$; (f) $q = -3$; (g) $q = -3$; (g) $q = -3$; (e) $q = -3$; (f) $q = -3$; (f) $q = -3$; (g) $q = -3$; (g) $q = -3$; (e) $q = -3$; (f) $q = -3$; (f) $q = -3$; (g) $q = -3$; (g) $q = -3$; (g) $q = -3$; (e) $q = -3$; (f) $q = -3$; (f) $q = -3$; (g) $q = -3$; (g) $q = -3$; (e) $q = -3$; (f) $q = -3$; (f) $q = -3$; (f) $q = -3$; (g) $q = -3$; (g) $q = -3$; (e) $q = -3$; (f) $q = -3$; (g) $q = -3$; (g) $q = -3$; (e) $q = -3$; (f) $q = -3$; (g) $q = -3$; (g) $q = -3$; (e) $q = -3$; (f) $q = -3$; (g) $q = -3$;

55. (a)
$$p = a + d$$
, $q = ad - bc$;
(b) $\begin{pmatrix} 1 & 1 & 2 & 1 \\ 1 & 2 & 1 & 1 \end{pmatrix}$
56. (a) True; (b) False; (c) True;
(d) True; (e) False
57. $\begin{pmatrix} 1 & 1 & -4 \\ -2 & -1 & 7 \\ 1 & -1 & -1 \end{pmatrix}$; $\begin{pmatrix} -8 \\ 13 \\ 0 \end{pmatrix}$; (b) (5, 0, -13)
58. $\left\{ \begin{pmatrix} -5 \\ 1 \\ 3 \\ 0 \end{pmatrix}, \begin{pmatrix} -9 \\ 0 \\ 4 \\ 2 \end{pmatrix} \right\}$; $\left\{ \begin{pmatrix} 0 \\ 0 \\ 2 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \\ -1 \end{pmatrix} \right\}$;
 $\begin{pmatrix} -2 \\ 0 \\ 3 \end{pmatrix} + \lambda \begin{pmatrix} 1 \\ 1 \\ 3 \end{pmatrix} + \mu \begin{pmatrix} 9 \\ 0 \\ 4 \\ 2 \end{pmatrix}$
59. Dimension = 4; $x^3 = (x + 1)^3 - 3(x + 1)^2 + 3(x + 1) - 1$; $x = 8$; x^2 , $x = 1$; $x = 1$;

67. (a) 2; (b)
$$\begin{pmatrix} 3 \\ -4 \\ 1 \\ 3 \end{pmatrix}$$
, $\begin{pmatrix} 0 \\ 2 \\ -2 \\ -3 \end{pmatrix}$; (c) $\begin{pmatrix} 2 \\ 4 \\ 3 \\ 0 \end{pmatrix}$, $\begin{pmatrix} 1 \\ 2 \\ 0 \\ 1 \end{pmatrix}$; $\begin{pmatrix} 1 \\ 0 \\ 0 \\ 0 \end{pmatrix}$ + s $\begin{pmatrix} 2 \\ 4 \\ 3 \\ 0 \end{pmatrix}$ + t $\begin{pmatrix} 1 \\ 2 \\ 0 \\ 1 \end{pmatrix}$

68.
$$\begin{pmatrix} \frac{1}{3} & \frac{1}{3} & 0 \\ -3 & 1 & 1 \end{pmatrix}; x_1 = 2\lambda - 5\mu + v,$$

$$x_2 = 2\mu + v, x_3 = \lambda, x_4 = \mu,$$

$$x_5 = v;$$

$$3; \{(2, 0, 1, 0, 0), (-5, 2, 0, 1, 0), (1, 1, 0, 0, 1)\};$$

$$a = 2; x_1 = 2\lambda - 5\mu + v,$$

$$x_2 = 2 + 2\mu + v, x_3 = \lambda,$$

$$x_4 = \mu, x_5 = v$$

69. (a) 2, 2; (b)
$$5x - 3y - 2z = 0$$
; (c) $(3, -3, -2)$; (d) $\{(0, 2, -3)\}$

70.
$$\frac{1}{9} \begin{pmatrix} -2 & 4 & 1 \\ 1 & -2 & 4 \\ 4 & 1 & -2 \end{pmatrix}$$
; (a) $\begin{pmatrix} 2 & \lambda \\ \lambda \\ -4 & \lambda \end{pmatrix}$, dimension 1; (b) $\frac{1}{3} \begin{pmatrix} 0 \\ 2 \\ 1 \end{pmatrix} + \frac{10}{3} \begin{pmatrix} 1 \\ 0 \\ 2 \end{pmatrix} + \frac{1}{3} \begin{pmatrix} 1 \\ 0 \\ 2 \end{pmatrix}$; $4 \begin{pmatrix} 1 \\ 0 \\ 2 \end{pmatrix}$

71. {(1, 1, 0), (0, 1, 1)}; {(2, -2, 1)};
(i)
$$r = \begin{pmatrix} 5 \\ 3 \\ -2 \end{pmatrix} + \lambda \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix} i$$

(i)
$$r = \begin{pmatrix} 5 \\ 3 \\ -2 \end{pmatrix} + \lambda \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix} i$$

(ii)
$$r = \begin{pmatrix} 5 \\ -2 \\ 0 \end{pmatrix} + \lambda \begin{pmatrix} 2 \\ -2 \\ 1 \end{pmatrix}$$

72.
$$A^{-1} = \begin{pmatrix} 2 & -1 & -1 \\ -1 & 2 & 0 \\ -4 & 0 & 3 \end{pmatrix}, B^{-1} = \begin{pmatrix} 12 & -6 & -24 \\ -6 & 12 & 0 \\ -24 & 0 & 72 \end{pmatrix}$$

73. (a)
$$a = 7$$
; (b) $a = 5$; $x = 24t - 4$, $y = 13t - 3$, $z = t$ (c) $a \neq -5$

74. (a)
$$4a - 5b - 2c = 0$$

75. (b)
$$\alpha = 3y - 4x$$
, $\beta = 3x - 2y$; $\binom{11}{1}$, $\binom{15}{2}$; $\binom{-41}{31}$ $\binom{-54}{41}$)

76. 2; (a)
$$x = 3t$$
, $y = 11t$, $z = 10t$, $t \in R$; (b) $x = 3t$, $y = 11t - \frac{5}{3}$, $z = 10t - \frac{14}{3}$, $t \in R$; (c) No Solution

77. (a)
$$\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$
, $\begin{pmatrix} 1 & 0 \\ 1 & 0 \end{pmatrix}$; $\begin{pmatrix} 1 & -1 \\ 0 & -1 \end{pmatrix}$, $\begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}$; $\begin{pmatrix} \lambda + \mu - \frac{1}{2} & \frac{1}{2} \\ \lambda & \mu \end{pmatrix}$; (b) $\begin{pmatrix} x + y \\ 2x - 3y \end{pmatrix}$

78. (a) 2;
$$\begin{pmatrix} 1\\2\\-1\\2 \end{pmatrix}$$
, $\begin{pmatrix} 2\\3\\-3\\5 \end{pmatrix}$; $\begin{pmatrix} 2\\1\\1\\0 \end{pmatrix}$, $\begin{pmatrix} 7\\4\\0\\1 \end{pmatrix}$;

(b) (i)
$$\begin{pmatrix} 1 \\ -1 \\ 0 \end{pmatrix}$$
, $\begin{pmatrix} 1 \\ 0 \\ -1 \end{pmatrix}$

$$A^{-1} = \begin{pmatrix} -1 & 2 & 3 \\ 2 & 1 & 0 \\ -4 & 2 & 5 \end{pmatrix}$$
;

79. (a) (-7 6 12), (b)
$$x = \lambda$$
 , $y = 7\lambda - 10$, $z = 4 - 6\lambda$, $t = 11 - 12\lambda$

(b) 2,
$$x^3 + 3x^2 - 3$$
, $2x^2 + x - 2$

81.
$$\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$
, $\begin{pmatrix} -\frac{1}{2} & \frac{\sqrt{3}}{2} \\ -\frac{\sqrt{3}}{2} & -\frac{1}{2} \end{pmatrix}$, $\begin{pmatrix} -\frac{1}{2} & \frac{\sqrt{3}}{2} \\ \frac{\sqrt{3}}{2} & -\frac{1}{2} \end{pmatrix}$, $\begin{pmatrix} -\frac{\sqrt{3}}{3} & -\frac{1}{2} \\ \frac{1}{2} & -\frac{\sqrt{3}}{2} \end{pmatrix}$

82. 3, 10;
$$\begin{pmatrix} 1+3\lambda \\ 1-2\lambda \\ \lambda \end{pmatrix}$$

83.
$$\lambda \begin{pmatrix} 1 \\ 1 \end{pmatrix}$$
, dimension; coefficients 1, -2, 4, -1 and 1, -1, 2, 0

84. 2,
$$\left\{ \begin{pmatrix} 0 & 0 \\ -1 & 1 \end{pmatrix}, \begin{pmatrix} 2 & 0 \\ 1 & 1 \end{pmatrix} \right\}$$
; $\left\{ \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}, \begin{pmatrix} 1 & -1 \\ 0 & -1 \end{pmatrix} \right\}$; $\left\{ \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \text{ and } \begin{pmatrix} 1 & 0 \\ 1 & 0 \end{pmatrix} \right\}$

85.
$$\begin{pmatrix} 6 & -1 & -4 \\ -7 & 3 & 5 \\ 15 & -3 & -10 \end{pmatrix}$$
; (a) (26 -4 -17);

(b)
$$x = 7 - 26t$$
, $y = 2 + 4t$, $z = -4 + 17t$,

86. (a) (1); (b)
$$\begin{pmatrix} 1 & 1 \\ 0 & -\frac{1}{2} \end{pmatrix}$$
; (c) $\begin{pmatrix} 1 & 1 & -2 \\ 0 & -\frac{1}{2} & -\frac{1}{2} \\ 0 & 0 & 1 \end{pmatrix}$,

$$A^{-1} = \begin{pmatrix} -3 & -2 & 1 \\ -2 & 0 & 1 \\ 3 & 1 & -1 \end{pmatrix};$$

$$\text{(d)} \begin{pmatrix} 1 & 1 & -2\lambda \\ 0 & -\frac{1}{2} & 0 \\ 0 & 0 & \lambda \end{pmatrix}$$

87. (a) 1; (b) 10, -1, -7; (c)
$$\begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}$$
 + $\lambda \begin{pmatrix} 1 \\ 2 \\ 0 \end{pmatrix}$ + $\lambda \begin{pmatrix} -3 \\ 2 \\ 1 \end{pmatrix}$, $2x-y + 8z = 1$

88.
$$p = \begin{pmatrix} 1 & 1 & 0 \\ 1 & 2 & 0 \\ -1 & 1 & 1 \end{pmatrix},$$

$$Q = \begin{pmatrix} \frac{1}{3} & \frac{1}{2} & \frac{1}{4} \\ -\frac{1}{3} & \frac{1}{12} & \frac{1}{4} \end{pmatrix},$$

$$A^{-1} = \begin{pmatrix} -4 & 3 & 4 \\ 12 & -9 & -11 \\ -1 & 1 & 1 \end{pmatrix} ; B \text{ has no}$$
inverse; (a)
$$\begin{pmatrix} 7 \\ -16 \\ 2 \end{pmatrix} ; (b) \begin{pmatrix} 3t + 1 \\ -9t + 2 \end{pmatrix}$$

89.
$$\alpha = x - 2y + z$$
, $\beta = y - 2z$, $\gamma = z$

$$L \begin{pmatrix} 2 \\ 3 \end{pmatrix} = \begin{pmatrix} 5 \\ -4 \\ 3 \end{pmatrix}, L \begin{pmatrix} 3 \\ 4 \end{pmatrix} = \begin{pmatrix} 7 \\ -5 \\ 5 \end{pmatrix};$$

$$\alpha = 16$$
, $\beta = -10$, $\gamma = 3$;

$$L\begin{pmatrix} 3\\4 \end{pmatrix} = 22\begin{pmatrix} 1\\0\\0 \end{pmatrix} - 15\begin{pmatrix} 2\\1\\0 \end{pmatrix} + 5\begin{pmatrix} 3\\2\\1 \end{pmatrix};$$

$$L\left(\begin{array}{c}4\\6\end{array}\right) = 32\begin{pmatrix}1\\0\\0\end{pmatrix} - 20\begin{pmatrix}2\\1\\0\end{pmatrix} + 6\begin{pmatrix}3\\2\\1\end{pmatrix};$$

$$L(\frac{35}{7}) \pm 38 \begin{pmatrix} 1\\0\\0 \end{pmatrix} - 25 \begin{pmatrix} 2\\1\\0 \end{pmatrix} + 8 \begin{pmatrix} 3\\2\\1 \end{pmatrix};$$

$$L\left(\begin{array}{c} 9 \\ 13 \end{array}\right) = 70 \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} - 45 \begin{pmatrix} 2 \\ 1 \\ 0 \end{pmatrix} + 14 \begin{pmatrix} 3 \\ 2 \\ 1 \end{pmatrix};$$

$$K = 2$$
; (ii) $e_1 = \begin{pmatrix} 1 \\ 0 \\ -1 \\ -1 \end{pmatrix}$, $e_2 = \begin{pmatrix} 0 \\ 1 \\ 2 \\ -1 \end{pmatrix}$;

(iii)
$$e_3 = \begin{pmatrix} 0 \\ 0 \\ 1 \\ 0 \end{pmatrix}$$
, $e_4 = \begin{pmatrix} 0 \\ 0 \\ 0 \\ 1 \end{pmatrix}$

91. (ii) 2; (iii) not linearly independent; (iv) given vector does belong to the range of T

92. (i) 3; (ii)
$$\left\{ \begin{pmatrix} 1\\1\\1\\2 \end{pmatrix}, \begin{pmatrix} 1\\2\\-3\\1 \end{pmatrix}, \begin{pmatrix} 2\\1\\7\\4 \end{pmatrix} \right\};$$

(iii) W not a vector space since it does not contain the zero vector

(ii)
$$\left\{ \begin{pmatrix} 2\\1\\0\\0 \end{pmatrix}, \begin{pmatrix} 0\\1\\-1\\1 \end{pmatrix} \right\}$$
, $r = -150.5$, $s = 151.5$

94. (ii) Any two columns of M may be selected as a basis for R_T;

$$\begin{pmatrix} -4\\3\\0\\0 \end{pmatrix}$$

95. (ii)
$$e_1 = \begin{pmatrix} 7 \\ -6 \\ -5 \end{pmatrix}$$
, $e_2 = \begin{pmatrix} 7 \\ -11 \\ 0 \\ 5 \end{pmatrix}$

96. (ii)
$$e_1 = \begin{pmatrix} 1 \\ 0 \\ a \\ -a \end{pmatrix}$$
, (iii) $e_2 = \begin{pmatrix} 1 \\ -a \\ 0 \\ 0 \end{pmatrix}$

97. (i) Rank of M is 2;
(ii)
$$p = -3$$
, $q = -1$, $r = 4$, $s = 0$

$$(iv) \chi = \begin{pmatrix} 6 \\ -5 \\ 10 \\ 0 \end{pmatrix}$$

98. (ii)
$$\left\{ \begin{pmatrix} 1\\-1\\2\\3 \end{pmatrix}, \begin{pmatrix} 0\\1\\-1\\2 \end{pmatrix}, \begin{pmatrix} 0\\0\\1\\-1 \end{pmatrix} \right\}$$
; (iv) No value

99. (i)
$$\left\{ \begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 0 \\ 1 \\ -1 \end{pmatrix} \right\}; (ii) \left\{ \begin{pmatrix} 1 \\ 1 \\ 1 \\ 1 \end{pmatrix} \right\}$$

$$\begin{pmatrix}
1 & 1 \\
1 & 3 \\
-24 \\
15
\end{pmatrix}$$

16. EIGENVALUES AND EIGENVECTORS

1.
$$p = \begin{pmatrix} 3 & 0 \\ 4 & 5 \end{pmatrix}$$
, $Q = \begin{pmatrix} 5 & 0 \\ 4 & 3 \end{pmatrix}$, $R = \begin{pmatrix} \frac{3}{5} & \frac{4}{5} \\ -\frac{4}{5} & \frac{3}{5} \end{pmatrix}$

2. (a)
$$\lambda^{2}$$
; (b) $\lambda + 3$; (c) λ^{-1}

9.
$$\lambda_1 = -1$$
, $\lambda_2 = 2$; $e_1 = \begin{pmatrix} 4 \\ 3 \end{pmatrix}$, $e_2 = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$; $\begin{pmatrix} 4 & 1 \\ 3 & 1 \end{pmatrix}$;

10.
$$p^{-1} = \begin{pmatrix} 0 & 0 & 1 \\ 1 & -1 & 0 \\ -1 & 2 & 0 \end{pmatrix}$$
,

$$B^{n} = \begin{pmatrix} 2^{n+1} & -2^{n+1} & 0 \\ 2^{n-1} & -2^{n+1} & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

12.
$$p = \begin{pmatrix} -1 & 1 & 0 \\ 0 & 1 & 1 \\ 1 & -1 & -1 \end{pmatrix}$$
, $D = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & -3 \end{pmatrix}$,

$$E = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 8 & 0 \\ 0 & 0 & -27 \end{pmatrix}$$

13. Eigenvalues are 1, -1, -2; corresponding eigenvectors are

$$\begin{pmatrix} 2 \\ 3 \\ 1 \end{pmatrix}$$
, $\begin{pmatrix} 4 \\ -1 \\ -4 \end{pmatrix}$ and $\begin{pmatrix} 1 \\ 0 \\ -1 \end{pmatrix}$ respectively.

$$p \ = \begin{pmatrix} \frac{1}{3} & 0 & \frac{1}{3} \\ 1 & -1 & 1 \\ -\frac{11}{3} & 4 & -\frac{14}{3} \end{pmatrix} \ ,$$

$$D = \begin{pmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & -2 \end{pmatrix} , E = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 16 \end{pmatrix}$$

14. 1, -1, 2 and $\begin{pmatrix} 3\\1\\1 \end{pmatrix}$, $\begin{pmatrix} 1\\1\\1 \end{pmatrix}$, $\begin{pmatrix} 1\\0\\1 \end{pmatrix}$ respectively;

(i) 11, 9, 12 and
$$\begin{pmatrix} 3\\1\\-1 \end{pmatrix}$$
, $\begin{pmatrix} 1\\1\\1\\-1 \end{pmatrix}$, $\begin{pmatrix} 1\\0\\-1 \end{pmatrix}$

respectively;

(ii)
$$P = \begin{pmatrix} \frac{1}{2} & 0 & \frac{1}{2} \\ -\frac{1}{2} & 1 & -\frac{1}{2} \\ 0 & -1 & -1 \end{pmatrix}$$

15. C: -1, 3, 5 and
$$\begin{pmatrix} -17 \\ 6 \\ 7 \end{pmatrix}$$
, $\begin{pmatrix} 1 \\ -2 \\ 1 \end{pmatrix}$, $\begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}$

respectively

D: -3, -1 and
$$\begin{pmatrix} 1 \\ -2 \\ 1 \end{pmatrix}$$
, $\begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}$ respectively; $\begin{pmatrix} 1 \\ -2 \\ 1 \end{pmatrix}$, -9

16. -1, 1, 2 and
$$\begin{pmatrix} 1\\4\\-1 \end{pmatrix}$$
, $\begin{pmatrix} 1\\-2\\-1 \end{pmatrix}$, $\begin{pmatrix} 1\\-4\\-4 \end{pmatrix}$ respectively;

$$Q = \begin{pmatrix} 1 & 1 & 1 \\ -2 & -4 & -4 \\ -1 & -1 & -4 \end{pmatrix}; D = \begin{pmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 2 \end{pmatrix}$$

18. 1, 3, -4 and
$$\begin{pmatrix} 1 & 1 \\ -5 \\ -6 \end{pmatrix}$$
, $\begin{pmatrix} 5 \\ -7 \\ -5 \end{pmatrix}$, $\begin{pmatrix} 1 \\ 0 \\ -1 \end{pmatrix}$ respectively;

$$Q = \begin{pmatrix} 11 & 5 & 1 \\ -5 & -7 & 0 \\ -6 & -5 & -1 \end{pmatrix}, D = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 9 & 0 \\ 0 & 0 & 16 \end{pmatrix}$$

19. 4, 5, 7 and
$$\begin{pmatrix} 2 \\ -3 \\ 1 \end{pmatrix}$$
, $\begin{pmatrix} -3 \\ -2 \\ 3 \end{pmatrix}$, $\begin{pmatrix} -1 \\ 0 \\ 1 \end{pmatrix}$ respectively;

$$Q = \begin{pmatrix} 2 & -3 & -1 \\ -3 & -2 & 0 \\ 1 & 3 & 1 \end{pmatrix}, D = \begin{pmatrix} 4 & 0 & 0 \\ 0 & 5 & 0 \\ 0 & 0 & 7 \end{pmatrix}$$

20. 1, 2, -3;
$$\begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}$$
, $\begin{pmatrix} 3 \\ 1 \\ 0 \end{pmatrix}$, $\begin{pmatrix} -1 \\ 8 \\ -5 \end{pmatrix}$;

$$\frac{1}{6}$$
, $\frac{1}{7}$, $\frac{1}{2}$; $\begin{pmatrix} 1\\0\\0 \end{pmatrix}$, $\begin{pmatrix} 3\\1\\0 \end{pmatrix}$, $\begin{pmatrix} -1\\8\\-5 \end{pmatrix}$

21. Q =
$$\begin{pmatrix} 13 & 24 & 2 \\ 1 & -5 & 0 \\ 6 & 12 & 1 \end{pmatrix}$$
, D = $\begin{pmatrix} \frac{1}{2} & 0 & 0 \\ 0 & -\frac{1}{2} & 0 \\ 0 & 0 & \frac{1}{3} \end{pmatrix}$

17. STATICS

5.
$$\frac{5}{6\sqrt{3}} \approx 0.481$$
 , 1.58a

10. (a)
$$\cos \theta = \frac{4}{5}$$
; (b) no equilibrium position; B will move to C

11.
$$W(1 - 2 \sin \theta \cos^2 \theta + \sin^2 \theta \cos^2 \theta)^{\frac{1}{2}}$$

14. (a) P < 2
$$\mu$$
W; (b) P < μ W; (c) P < Wa/(a + h); (d) P < Wa/2h
15. $\frac{3}{2} \rho l$; $\frac{5\rho g l^2}{6a}$; $\frac{\rho g l!}{12a}$; $\frac{5}{18}$

15.
$$\frac{3}{2} \rho l$$
; $\frac{5\rho g l^2}{6a}$; $\frac{\rho g l}{12a} \frac{18a - 5l}{12a}$; $\frac{5}{18}$

16. 12a;
$$\frac{1}{8}$$