Nuclear Engineering 150 – Discussion Section Team Exercises #4

Problem 1

A reactor contains 5% (by atom) enriched uranium dioxide, which is 15% of the entire core by volume.

- a) Calculate the macroscopic cross section for this core if we were to treat it as a homogeneous volume.
- b) If the reactor were a cube with a side length of 4 m and a beam of 10^{15} thermal neutrons were incident on one face of the cube, how many neutrons would we expect to make it through to the other side?

Nucleus	Thermal $\sigma_{\rm t}$
$^{1}\mathrm{H}$	20.8 b
^{16}O	3.5 b
$^{235}{ m U}$	607.5 b
$^{238}\mathrm{U}$	11.8 b
Compound	ρ
$_{\mathrm{H_2O}}$	$1 \mathrm{g/cm^3}$
UO_2	$10.4 \mathrm{\ g/cm^3}$

Problem 2

A neutron beam with an intensity of 2×10^{12} neutrons/(cm²·s) is incident on an unknown shielding material and has a beam spot of 5 cm³. The shielding material has a thickness of 10 cm.

- a) On average, 3.0×10^9 neutrons/s make it through the shield uncollided. What is the macroscopic cross section of the shield material?
- b) What is the mean free path of a neutron in the shielding material?
- c) If a single beam pulse is 10 μ s, how many collisions are expected to take place in the shielding material?