

Triangles Ex 4.6 Q9 Answer:

In the given figure, we have DE || BC.

In ΔADE and ΔABC

$$\angle ADE = \angle B$$

(Corresponding angles)

$$\angle DAE = \angle BAC$$
 (Common)

So, $\triangle ADE$ - $\triangle ABC$ (AA Similarity)

(i) We know that the ratio of areas of two similar triangles is equal to the ratio of squares of their corresponding sides.

Hence

$$\frac{Ar(\Delta ADE)}{Ar(\Delta ABC)} = \frac{DE^2}{BC^2}$$

$$\frac{16}{Ar(\Delta ABC)} = \frac{4^2}{6^2}$$

$$Ar(\Delta ABC) = \frac{6^2 \times 16}{4^2}$$

$$Ar(\Delta ABC) = 36 \text{ cm}^2$$

(ii) We know that the ratio of areas of two similar triangles is equal to the ratio of squares of their corresponding sides.

Hence.

$$\frac{Ar(\Delta ADE)}{Ar(\Delta ABC)} = \frac{DE^2}{BC^2}$$

$$\frac{25}{Ar(\Delta ABC)} = \frac{4^2}{8^2}$$

$$Ar(\Delta ABC) = \frac{8^2 \times 25}{4^2}$$

$$Ar(\Delta ABC) = 100 \text{ cm}^2$$

(iii) We know that

$$\frac{Ar(\Delta ADE)}{Ar(\Delta ABC)} = \frac{DE^2}{BC^2}$$

$$Ar(\Delta ADE)$$
 3²

$$\frac{Ar(\Delta ADE)}{Ar(\Delta ABC)} = \frac{3^2}{5^2}$$

$$\frac{Ar(\Delta ADE)}{Ar(\Delta ABC)} = \frac{9}{25}$$

Let Area of $\triangle ADE = 9x$ sq. units and Area of $\triangle ABC = 25x$ sq. units

$$Ar[\text{trapBCED}] = Ar(\Delta ABC) - Ar(\Delta ADE)$$

= $25x - 9x$
= $16x \text{ sq units}$

Now,

$$\frac{Ar(\Delta ADE)}{Ar(\text{trapBCED})} = \frac{9x}{16x}$$

$$\frac{Ar(\Delta ADE)}{Ar(trapBCED)} = \frac{9}{16}$$

Triangles Ex 4.6 Q10

Answer:

Given: In \triangle ABC, D and E are the midpoints of AB and AC respectively. To find: Ratio of the areas of \triangle ADE and \triangle ABC.

Since it is given that D and E are the midpoints of AB and AC, respectively.

Therefore, DE || BC (Converse of mid-point theorem)

Also, $DE = \frac{1}{2}BC$

In ΔADE and ΔABC

 $\angle ADE = \angle B$ (Corresponding angles)

 $\angle DAE = \angle BAC$ (Common)

So, $\triangle ADE - \triangle ABC$ (AA Similarity)

We know that the ratio of areas of two similar triangles is equal to the ratio of squares of their corresponding sides.

$$\frac{ar(\Delta ADE)}{ar(\Delta ABC)} = \left(\frac{AD}{AB}\right)^2$$

$$\frac{\operatorname{ar}(\Delta ADE)}{\operatorname{ar}(\Delta ABC)} = \left(\frac{1}{2}\right)^2$$

$$\frac{\operatorname{ar}(\Delta ADE)}{\operatorname{ar}(\Delta ABC)} = \left(\frac{1}{4}\right)$$

********* END *******