Exam 1 – Take Home EE 324/Phys 324 SPRING 2016

•	Due	date:	Wec	lnesc	lay,	Μ	arcl	ı i	2.
---	-----	-------	-----	-------	------	---	------	-----	----

- Open book/notes.
- This exam is intended to be an independent effort your part; you are therefore not permitted to discuss it with **anyone!** If you need clarification on a problem you may email me, or see me in person.
- Upon completion of the exam please sign the Honor code below.

EE Honor Code "No aid received, given or observed"

1. A bar with total resistance R, makes electrical contact with a system perfectly conducting rails, as shown in the figure. At t = 0 the switch is closed so that the DC voltage source (with magnitude V_0) results in current flow through the closed loop. This, in turn, gives rise to a net force on the bar, given by,

$$\mathbf{F} = \mathbf{I}\ell \times \mathbf{B}$$
,

which causes the bar to accelerate to the right. For a constant magnetic field $\mathcal{B} = -\hat{z}B_0$ throughout, and assuming frictionless rails, determine the velocity of the bar as $t \to \infty$.

Your solution should be in terms of the variables V_0 , B_0 and ℓ .

2. The electric field intensity of a linearly polarized uniform plane wave propagating in the +z-direction in seawater ($\epsilon_r = 80$, $\mu_r = 1$, $\sigma = 4$ S/m) at z = 0 is,

$$\mathcal{E} = \hat{x}10\sin\left(2\pi \times 10^6 t - \pi/8\right).$$

- (a) Determine the attenuation constant α , the phase constant β , the intrinsic impedance η , the phase velocity, the wavelength.
- (b) Find the distance the wave must propagate for the magnitude of $\bf E$ to be reduced to 0.01 (V/m).
- (c) Write expressions for $\mathcal{E}(z,t)$ and $\mathcal{H}(z,t)$.
- 3. A uniform plane-wave in free-space (i.e. of the form $\mathbf{E}^i = \hat{y} E_0 e^{-jk_0 z}$) is incident on a lossless layered dielectric slab. The first layer has thickness d and permittivity ϵ_2 , with the second layer infinite in extent and having a permittivity ϵ_3 , as shown in the sketch below. Assume $\mu = \mu_0$ throughout.

- (a) Write an expression for the reflection coefficient at x = 0.
- (b) If $d = .25\lambda$, what is the net reflection coefficient (magnitude and angle) at x = 0.
- (c) Use the Smith chart to verify your result from part (b).
- 4. Derive the general expressions for the attenuation and phase constants $k = \beta j\alpha$ for conducting medium,

$$\alpha = \omega \sqrt{\frac{\mu \epsilon}{2}} \left[\sqrt{1 + \left(\frac{\sigma}{\omega \epsilon}\right)^2} - 1 \right]^{1/2},$$

and

$$\beta = \omega \sqrt{\frac{\mu \epsilon}{2}} \left[\sqrt{1 + \left(\frac{\sigma}{\omega \epsilon}\right)^2} + 1 \right]^{1/2}.$$

Obtain expressions for α and β in the limit as $\omega \to \infty$ and $\omega \to 0$.

5. A plane wave in a lossy medium (i.e. with material properties ϵ , μ , σ) propagates in the +z-direction such at its electric field is given by,

$$\mathbf{E}(z) = \hat{x}E_0e^{-\alpha z}e^{-j\beta z},$$

with the propagation constant $k = \beta - j\alpha$. Determine the total real power absorbed within a cylinder of cross section A, and length d along the z-axis, as shown in the sketch below.

Do this by,

(a) evaluating the Poynting vector,

$$\mathbf{P} = \frac{1}{2} \Re[\mathbf{E} \times \mathbf{H}^*].$$

and determining the difference in real power flow across the two interfaces.

(b) Show that this is exactly the power absorbed resulting from the conductivity, σ , given by

$$\frac{1}{2} \iiint_V \sigma |\mathbf{E}|^2 dv,$$

where V is the volume of the cylinder and $|\mathbf{E}|^2 \equiv \mathbf{E} \cdot \mathbf{E}^*$.

Hint: You will need to make use of results from the previous problem.