

סמסטר ב' – תשפ"נ

19/06/2023 :תאריך

9:00-12:00

מבחן סוף סמסטר בקורס "חשבון אינפינטיסימלי 1" 20151

:המרצים

ד"ר אלה ליפץ, ד"ר אלכסנדר ספיבק, ד"ר לובה ברומברג, ד"ר בוריס קריכלי, ד"ר ילנה לונה, ד"ר נירה גרוברגר

:הוראות

- משך המבחן: 3 שעות (180 דקות).
- חומר עזר: דף נוסחאות של הקורס ומחשבון פשוט.
- משקלה של כל שאלה הוא 20%. יש לפתור את חלק א' ועוד 4 שאלות מחלק ב'.
 - נמקו היטב את כל מסקנותיכם.
 - יש לכתוב בעט ולא בעפרון. נא להתחיל כל שאלה וכל סעיף בראש הדף.

חלק א' (חובה)

<u>:1 שאלה</u>

חקרו את הפונקציה $f(x) = \frac{\ln(x) - 1}{\ln(x)}$ על פי הסעיפים הבאים : תחום הגדרה, נקודות חקרו את הפונקציה עליה וירידה, נקודות קיצון, תחומי קמירות וקעירות, נקודות פיתול, אסימפטוטות, שרטוט.

$$y = f(x) = \frac{\ln x - 1}{\ln x}$$
 שלאה 1 (חקירת פונקציה)

 $D = \{x > 0, x \neq 1\}$ תחום הגדרתה הוא (א) תחום הגדרתה

(e,0) נקי חיתוך עם הצירים היא (ב)

$$f'(x) = \frac{\frac{1}{x} \ln x - (\ln x - 1) \frac{1}{x}}{(\ln x)^2} = \frac{\frac{1}{x}}{(\ln x)^2} > 0$$
 (3)

נקודת קיצון.

$$x>1$$
 וקמורה כאשר $e^{-2}< x<1$ ולכן פונקציה קעורה כאשר $f''(x)=\frac{-\left(\ln x+2\right)}{x^2(\ln x)^3}$ (ד)

. פיתול. בעלת נקודת פיתול. $e^{-2}=x$ הפונקציה בעלת נקודת פיתול.

גולומב 52, ת.ד 205, חולון 58102 טלפון 302–5026560, פקס' 970–5026560 52 Golomb St., Holon 58102 Israel www.hit.ac.il Tel. 972-3-502-6560, Fax. 972-3-502-6619

הפקולטה למדעים

Faculty of Sciences

הווה
$$x=1$$
 אז נקבל שקו ישר $\int_{x\to 1^-}^{\lim_{x\to 1^-}} f(x)=+\infty$ מהווה נחשב $\lim_{x\to 1^+} f(x)=-\infty$

אסימפטוטה אופקית באינסוף לגרף הפונקציה.

$$\lim_{x\to 0^+} f(x) = 1$$
: $x = 0$ נקי אי- רציפות מימין בנקי

חלק ב' (בחירה 4 מתוך 5)

<u>:2 שאלה</u>

$$(10\%)$$
 . $\int \frac{2x^2+x+4}{(x+1)(x^2+4)} dx$: א. חשבו את האינטגרל הבא

.
$$a_1=3$$
, $a_{n+1}=rac{1}{2}\Big(a_n+rac{7}{a_n}\Big)$: ב. נתונה הסדרה

הוכיחו כי הסדרה מתכנסת וחשבו את הגבול של הסדרה. (10%)

פתרון:

א. $\int \frac{2x^2+x+4}{(x+1)(x^2+4)} dx$. א. $\int \frac{2x^2+x+4}{(x+1)(x^2+4)} dx$

$$\frac{2x^2 + x + 4}{(x+1)(x^2+4)} = \frac{A}{x+1} + \frac{Bx + C}{x^2 + 4}$$

$$A(x^{2}+4) + (Bx+C)(x+1) = 2x^{2} + x + 4 \Rightarrow$$

$$x = 0 \Rightarrow 4A + C = 4$$

$$x = -1 \Rightarrow 5A = 5 \Rightarrow A = 1 \Rightarrow C = 0$$

 $x = -1 \Rightarrow 5A = 5 \Rightarrow A = 1 \Rightarrow C = 0$

$$x = 1 \Rightarrow 5A + (B + C) \cdot 2 = 7 \Rightarrow 5 + 2B = 7 \Rightarrow B = 1$$

$$\int \frac{2x^2 + x + 4}{(x+1)(x^2 + 4)} dx = \int \frac{1}{x+1} dx + \int \frac{x}{x^2 + 4} dx =$$

$$\ln|x+1| + \frac{1}{2}\ln(x^2 + 4) + C$$

$$\begin{cases} a_{n+1} = \frac{1}{2}(a_n + \frac{7}{a_n}) \\ a_1 = 3 \end{cases} \quad .2$$

מכאן

$$a_1 = 3$$

 $a_2 = \frac{1}{2}(3 + \frac{7}{3}) = \frac{8}{3} < 3$
 $a_3 = \frac{1}{2}(\frac{8}{3} + \frac{21}{8}) = \frac{127}{48} < \frac{8}{3}$

נראה באינדוקציה כי הסידרה יורדת וחיובית.

. $a_{n+1} = \frac{1}{2}(a_n + \frac{7}{a_n}) \ge \sqrt{a_n \cdot \frac{7}{a_n}} = \sqrt{7}$, הוכחת חסימות: קודם כל , לפי אי שיוויון הממוצעים ,

 $a_n \ge \sqrt{7}$ ת לכן לכל

הוכחת מונוטוניות:

$$a_n < a_{\scriptscriptstyle n-1}$$
 נניח $a_2 = \frac{1}{2}(3+\frac{7}{3}) = \frac{8}{3} < 3 = a_{\scriptscriptstyle 1}$ נניח $a_1 = 3$ צריך להוכיח כי $a_{\scriptscriptstyle n+1} < a_{\scriptscriptstyle n}$

$$a_{n+1}-a_n=\frac{1}{2}\bigg(a_n+\frac{7}{a_n}\bigg)-a_n=-\frac{1}{2}a_n+\frac{7}{2a_n}=$$
 נסתכל על
$$=\frac{7-a_n^{\ 2}}{2a_n}=\frac{\left[\sqrt{7}-a_n\right]\left[\sqrt{7}+a_n\right]}{2a_n}$$

גולומב 52, ת.ד 305, חולון 58102 טלפון 03-5026560, פקס' 670' 52 Golomb St., Holon 58102 Israel

הפקולטה למדעים

Faculty of Sciences

www.hit.ac.il Tel. 972-3-502-6560, Fax. 972-3-502-6619

 $a_n > 0$ -ו $a_n \ge \sqrt{7}$ המכנה שלילי כי

. המכנה חיובי

$$a_{n+1} - a_n < 0$$
 לכן

לכן הסידרה מונוטונית יורדת.

 $a_n \ge \sqrt{7}$ כמו כן הסדרה חסומה מלרע כי ראינו כי

ולפי משפט סידרה מונוטונית וחסומה מתכנסת.

 $\displaystyle \lim_{n o \infty} a_n = \displaystyle \lim_{n o \infty} a_{n+1} = L$ נניח שהגבול הוא ,L נניח שהגבול

:מתוך ההגדרה הרקורסיבית של הסידרה $a_{n+1} = \frac{1}{2} \left(a_n + \frac{7}{a_n} \right)$ מתוך ההגדרה הרקורסיבית של הסידרה

$$L = \frac{1}{2} \left(L + \frac{7}{L} \right) \Rightarrow \frac{1}{2} L = \frac{7}{2L} \Rightarrow L^2 = 7 \Rightarrow L = \pm \sqrt{7}$$

אבל הסידרה חיובית ולכן לא ייתכן שהגבול שלה שלילי.

 $L = \sqrt{7}$ לכן

<u>:3 שאלה</u>

$$\int_{0}^{x^4} (1+t)^{\frac{2}{t}} dt$$
 (10%) . $\lim_{x\to 0} \frac{\int_{0}^{x^4} (1+t)^{\frac{2}{t}} dt}{x^4}$: א. חשבו את הגבול הבא

$$\lim_{x \to 0} \frac{\int_0^{x^4} (1+t)^{\frac{2}{t}} dt}{x^4} = \lim_{x \to 0} \frac{(1+x^4)^{\frac{2}{x^4}} 4x^3}{4x^3} = \lim_{x \to 0} (1+x^4)^{\frac{2}{x^4}} = e^2$$

(10%) . $\int \frac{dx}{x \cdot (\ln^2 x + 2 \ln x + 5)}$: ב.

$$\int \frac{dx}{x \cdot (\ln^2 x + 2\ln x + 5)} \begin{cases} t = \ln x \\ dt = \frac{dx}{x} \end{cases} = \int \frac{dt}{(t^2 + 2t + 5)}$$
$$= \int \frac{dt}{(t+1)^2 + 2^2} = \frac{1}{2} \arctan \frac{(t+1)}{2} + C = \frac{1}{2} \arctan \frac{(\ln(x) + 1)}{2} + C$$

<u>שאלה 4</u>

: מתקיים את האי-שוויון הבא מתקיים את הוכיחו כי לכל $x\in [-2,\!2]$ א.

גולומב 52, ת.ד 305, חולון 58102 טלפון 5026500–03, פקס' 63206590 03–50 St., Holon 58102 Israel

הפקולטה למדעים

Faculty of Sciences

ב. חשבו את נפח גוף הסיבוב הנוצר מסיבוב של התחום המישורי

(10%) .X - סביב פיר סביב $y=\sqrt{x\ln x}$, y=0 , x=1 , x=e : הכלוא בין הקווים

$$V = \pi \int_{1}^{e} f^{2}(x) dx = \pi \int_{1}^{e} x \ln x dx = \frac{1}{2} \ln x dx = \frac{$$

<u>שאלה 5</u>

(10%) .
$$\lim_{x \to 1} x^{\frac{1}{\sin(2x-2)}}$$
 : א. חשבו את הגבול הבא

$$\lim_{x \to 1} x^{\frac{1}{\sin(2x-2)}} = \lim_{x \to 1} (1 + x - 1)^{\frac{1}{\sin(2x-2)}}$$

$$= \lim_{x \to 1} (1 + x - 1)^{\frac{x - 1}{(x - 1)\sin(2x - 2)}} = \sqrt{e}$$

ב. בדקו האם הפונקציה:
$$f(x) = \begin{cases} x \arctan \frac{1}{x^2}, & x \neq 0 \\ 0, & x = 0 \end{cases}$$
 גזירה

(10%) אם לא, אם הנגזרת אם כן, מצאו את כן, מצאו את x=0 בנקודה .

$$\lim_{\Delta x \to 0} \frac{\Delta x \arctan \frac{1}{\Delta x^2} - 0}{\Delta x} = \lim_{\Delta x \to 0} \arctan \frac{1}{\Delta x^2} = \frac{\pi}{2}$$

<u>:6 שאלה</u>

- (10%) $y = \frac{3}{9+x^2}$, $y = \frac{1}{1+x^2}$: א. חשבו את השטח הכלוא בין הגרפים של הפונקציות
 - ב. חשבו בקירוב (0.9) באמצעות נוסחת מקלורן מסדר 2 של פונקציה ב. חשבו בקירוב $y = \ln(1+x)$

פתרון

שאלה 6:

- (10%) $y = \frac{3}{9+x^2}$, $y = \frac{1}{1+x^2}$: א. חשבו את השטח הכלוא בין הגרפים של הפונקציות
 - ב. חשבו בקירוב (0.9) באמצעות נוסחת מקלורן מסדר 1 של פונקציה ב. חשבו בקירוב $y = \ln(1+x)$

פתרון

Х.

$$y = \frac{3}{9+x^2}, \quad y = \frac{1}{1+x^2}$$

$$\frac{3}{9+x^2} = \frac{1}{1+x^2}, \quad 3+3x^2 = 9+x^2, \quad x^2 = 3, \ x = \pm\sqrt{3}$$

$$S = 2S_1 = 2\int_0^{\sqrt{3}} \left(\frac{1}{1+x^2} - \frac{3}{9+x^2}\right) dx = 2\left(\arctan x - 3\frac{1}{3}\arctan \frac{x}{3}\right)\Big|_0^{\sqrt{3}} = 2\left(\arctan \sqrt{3} - \arctan \frac{\sqrt{3}}{3}\right) = 2\left(\frac{\pi}{3} - \frac{\pi}{6}\right) = \frac{\pi}{3}$$
Ans.
$$\frac{\pi}{3}$$

ב.

$$\ln(1+x) = x - \frac{x^2}{2} + R_2(x), \qquad R_2(x) = \frac{\left(\ln(1+x)\right)^{(3)}(c)}{3!} x^3 = \frac{1}{3(1+c)^3} x^3,$$

$$c \qquad between \qquad x \qquad and \qquad 0$$

$$\ln 0.9 = \ln\left(1+(-0.1)\right) = -0.1 - \frac{\left(-0.1\right)^2}{2} + R_2(x) \approx -0.105,$$

$$R_2(x) = \frac{1}{3(1+c)^3} (-0.1)^3, -0.1 < c < 0$$

$$\left|R_2(x)\right| = \left|\frac{1}{3(1+c)^3} (-0.1)^3\right| < \frac{1}{3000 \cdot 0.9^3} = 0.00045 = \delta$$

$$Ans.$$

$$\ln 0.9 \approx -0.105, \qquad \delta < 0.00045$$