ECS 122A Homework 2

Hardy Jones 999397426 Professor Bai Spring 2014

1. (a) We can expand some of the polynomial

$$(n+2)^{10} = n^{10} + 20n^9 + \dots + 1024$$

Looking at everything except the first term, we see that the greatest power is n^9 . We can set a *little-oh* bound of n^{10} , because $\forall c > 0, \exists n_0 > 0$ such that $0 \le 20n^9 + \cdots + 1024 < cn^{10}, \forall n \ge n_0$. That is:

$$(n+2)^{10} = n^{10} + o(n^{10})$$

Now, this is $\Theta(n^{10})$ because

 $\exists c_1 > 0, c_2 > 0, n_0 > 0 \text{ such that } 0 \le c_1 n^{10} \le n^{10} + o(n^{10}) \le c_2 n^{10}, \ \forall n \ge n_0$

This simplifies to $0 \le c_1 \le 1 + \frac{o(n^{10})}{n^{10}} \le c_2$.

Now, since $o(n^{10})$ is an upper bound we know the largest the term $\frac{o(n^{10})}{n^{10}}$ can be is 1. So, this further siplifies to $0 \le c_1 \le 2 \le c_2$.

So this is $\Theta(n^{10})$ if we choose appropriate constants. For instance we can choose $c_1 = c_2 = 2$.

Thus, $(n+2)^{10} = \Theta(n^{10})$

(b) We can apply reasoning similar to the previous problem.

We can expand some of the polynomial

$$(n+a)^b = n^b + {b \choose 1} n^{b-1} a + \dots + a^b$$

Looking at everything except the first term, we see that the greatest power is n^{b-1} . We can set a *little-oh* bound of n^b , because $\forall c > 0, \exists n_0 > 0$ such that $0 \leq {b \choose 1} n^{b-1} a + \cdots + a^b < cn^b, \forall n \geq n_0$. That is:

$$(n+a)^b = n^b + o(n^b)$$

Now, this is $\Theta(n^b)$ because

 $\exists c_1 > 0, c_2 > 0, n_0 > 0 \text{ such that } 0 \le c_1 n^b \le n^b + o(n^b) \le c_2 n^b, \ \forall n \ge n_0$

1

This simplifies to $0 \le c_1 \le 1 + \frac{o(n^b)}{n^b} \le c_2$.

Now, since $o(n^b)$ is an upper bound we know the largest the term $\frac{o(n^b)}{n^b}$ can be is 1. So, this further siplifies to $0 \le c_1 \le 2 \le c_2$.

So this is $\Theta(n^b)$ if we choose appropriate constants. For instance we can choose $c_1 = c_2 = 2$.

Thus, $(n+a)^b = \Theta(n^b)$

- 2. "The running time of algorithm A is at least $O(n^2)$," states that the running time of "A" can be greater than $O(n^2)$. This has no meaning because big-oh notation states an asymptotic upper bound on a function. Asserting that the running time can be greater than this value negates the reason for using a bound in the first place.
- 3. (a) Yes. We need to find some positive constants c, n_0 such that $0 \le 2^{n+1} \le c2^n \forall n \ge n_0$.

$$0 \le 2^{n+1} = 2 \cdot 2^n$$

. So we have our c=2, n=1.

Thus $2^{n+1} = O(2^n)$.

(b) No. We need to show that no constants exist that satisfy the definition.

$$2^{2n} = 2^n \cdot 2^n \le c2^n$$

.

It's easy to see that no constant will make this equation true for all values of n. Thus $2^{2n} \neq O(2^n)$.

4. (a) From smallest to largest:

Function	Notes
$\frac{-}{\lg n}$	
nlg n	
n $n^2, n^2 + \lg n$ n^3	These are the same asymptotically because the $\lg n$ term will "drop-out"
$n - n^3 + 7n^5$	
2^n	

(b) From smallest to largest:

Function	Notes
1	
$\lg \lg n$	
$\lg n, \ln n$	The change of base merely changes the value by a constant factor
$(\lg n)^2$	
$n \lg n$	
$\sqrt{n}, \sqrt{2}^{\lg n}, n^{1+\epsilon}$	$\sqrt{n}=\sqrt{2}^{\lg n},\ n^{1+\epsilon}$ differs by constant factor These are the same asymptotically because the $\lg n$ term will "drop-out"
n	
$n^2, n^2 + \lg n$ n^3	These are the same asymptotically because the $\lg n$ term will "drop-out"
$n - n^3 + 7n^5$	
$ \begin{array}{c} n - n^3 + 7n^5 \\ 2^n, 2^{n-1} \\ e^n \end{array} $	See Problem 3.a
e^n	
n!	

5. (a)
$$a=2, b=4, f(n)=1, n^{\log_4 2}=n^{\frac{1}{2}}=\sqrt{n}$$

We can see this fits case 1 of the master theorem, where we let $\epsilon=\frac{1}{2}$.

So we have
$$f(n) = O(n^{\log_4 2 - \frac{1}{2}}) = O(n^{\frac{1}{2} - \frac{1}{2}}) = O(n^0) = O(1)$$
.

Thus,
$$T(n) = \Theta(n^{\frac{1}{2}}) = \Theta(\sqrt{n})$$

(b)
$$a = 2, b = 4, f(n) = \sqrt{n}, n^{\log_4 2} = n^{\frac{1}{2}} = \sqrt{n}$$

This is exactly case 2 of the master theorem.

Thus,
$$T(n) = \Theta(\sqrt{n} \lg n)$$

(c)
$$a = 2, b = 4, f(n) = n, n^{\log_4 2} = n^{\frac{1}{2}} = \sqrt{n}$$

This might fit case 3 of the master theorem (with $\epsilon = \frac{1}{2}$) if we can find an appropriate constant c.

$$af\left(\frac{n}{b}\right) = 2f\left(\frac{n}{4}\right)$$
$$= 2\left(\frac{n}{4}\right)$$
$$= \frac{1}{2}n$$

So, if we let $c = \frac{1}{2}$, then we satisfy the conditions of case 3 of the master theorem. Thus, $T(n) = \Theta(n)$

(d)
$$a = 2, b = 4, f(n) = n^2, n^{\log_4 2} = n^{\frac{1}{2}} = \sqrt{n}$$

This might fit case 3 of the master theorem (with $\epsilon = \frac{3}{2}$) if we can find an appropriate constant c.

$$af\left(\frac{n}{b}\right) = 2f\left(\frac{n}{4}\right)$$
$$= 2\left(\frac{n}{4}\right)^2$$
$$= 2\left(\frac{n}{16}\right)$$
$$= \frac{1}{8}n$$

So, if we let $c = \frac{1}{8}$, then we satisfy the conditions of case 3 of the master theorem. Thus, $T(n) = \Theta(n^2)$