Computer Security

Authentication

Prof. Jean-Noël Colin jean-noel.colin@unamur.be
Office #306

This work is licensed under a <u>Creative Commons</u> Attribution-ShareAlike 4.0 International License.

Agenda

- Introduction
- Passwords
- One-Time Passwords
- Certificates
- Biometry
- Social engineering
- Identity management

Introduction

- Authentication = verification of an entity's identity (≠ identification)
- Two main reasons
 - access control/authorization
 - accounting/traceability/auditability
- Establish my identity with
 - something I know
 - password, PIN
 - something I own
 - token, smartcard
 - something I am
 - biometry
 - multifactor authentication
 - bank card, ItsMe

Password

Most common authentication means. . .

Password

Most common authentication means. . .

alphabet size	10 symbols (0-9)			26 symbols(a-z)			62 symbols(a-z,A-Z,0-9)			90 symbols (a-z,A-Z,0-9, symbols)		
password length	4	7	10	8	10	16	8	10	16	8	10	16
equivalent key length (bits)	13	23	33	38	47	75	48	60	95	52	65	104
Brute force possible?	Υ	Υ	Υ	Υ	Υ	?	Y	Υ	N	Υ	Υ	N
		Sourc	e: Référe	ntiel Gén	éral de Se	écurité v2	, ANSSI, 2	014				

https://howsecureismypassword.net/

Password policy

- Ensure proper level of quality (length, format, alphabet, avoid weak passwords, limit history...)
- Define secure initial password
- Force regular expiration and reset of passwords
- Limit the number of failed attempts
- Limit attempt rate by imposing a (variable) delay
- Change default passwords
- Password is forgotten if not used regularly
 - do not change password before holidays

Password security

- Storage
 - never in the clear
 - encrypted? hashed!
 - PBKDF2, Bcrypt...
 - <algorithm>\$<iterations>\$<salt>\$<hash>
- Transmission
 - never in the clear
- do not cache password
- do not hardcode password
- prevent login spoofing
 - display connection history
 - safe key activation
 - mutual authentication

- Assumption: authentication server stores hashed passwords and not passwords themselves
- Problem
 - given h, a digest, find the corresponding password p among N possible choices
 - Ex: 10 char. long passwords, with letters U/l and numbers: 62¹⁰ possibilities = 8,4.10¹⁷
- Similar problem
 - given p and c, find $k \mid c = E(k, p)$
- More generally, invert a one-way function

- Different ways, with variable efficiency
- Parameters
 - T: number of operations (hash or encrypt/decrypt), the time factor
 - M: number of memory words used, the memory factor
 - N: number of possible values (keyspace)

- Method 1: brute force or exhaustive search
 - for all possible passwords, compute the hash, compare to h; if match, p is found
 - on average, password is found in N/2 trials
 - efficiency
 - T=N
 - M=1

- Method 2: precomputation attack
 - precompute the hash of all possible passwords and store them in a table
 - lookup h in table; return corresponding p
 - efficiency
 - T=1
 - M=N
 - keyspace can be limited to a dictionary of frequent passwords

- Method 3: time-memory trade-off
 - M. Hellman. A cryptanalytic time-memory trade-off. IEEE Transactions on Information Theory, 26(4):401 – 406, jul 1980.
 - Objective: find p quicker than method 1 and using less memory than method 2
 - Principle
 - create m chains of t passwords
 - i^{th} element in a chain is computed from $(i 1)^{th}$
 - only first and last elements of the chain are stored

h = hash of the password to find

Efficiency

- table of m chains of length t, hence m.t elements
- M = m.m₀ where m₀ is the space to store $(p_{i,0}, p_{i,t-1})$
- worse case: T = (t 1)
- if all elements are different, $P_{table} = \frac{mt}{N}$
- Hellman shows that $P_{table} \geq \frac{1}{N} \sum_{i=1}^{m} \sum_{j=0}^{t-1} (1 \frac{it}{N})^{j+1}$
- When N increases, efficiency decreases quickly
- Optimal value for m and t when $mt^2 = N$

Limitations

- collision and chain merge
 - collision: $\exists p, q | (p \neq q) \land (R(p)=R(q))$
 - two identical values in the table ⇒ two chains merge
 - the larger the table, the greater the probability of chain merge
 - table efficiency decreases when its size increases
 - solution: use I tables with different reduction functions R₀,R₁,...R_{I-1}
 - in this case: $P_{table} \ge 1 (1 \frac{1}{N} \sum_{i=1}^{m} \sum_{j=0}^{t-1} (1 \frac{it}{N})^{j+1})^l$

Rainbow tables

Use a different reduction function at each step

Oechslin, P. Making a Faster Cryptanalytic Time-Memory Trade-Off, Advances in Cryptology - CRYPTO 2003: 23rd Annual International Cryptology Conference, Santa Barbara, California, USA, August 17-21, 2003. Proceedings, Springer Berlin Heidelberg, 2003, 617-630

Rainbow tables

Advantage

- worse case: $T = \frac{t(t-1)}{2}$
- more efficient than Hellman: let's use t tables m.t (Hellman) and 1 table mt.t (Rainbow table), thus mt2 passwords in both cases
 - success probabilities are approximately equal
 - $T = t^2$ (Hellman) vs $T = \frac{t(t-1)}{2}$ (Rainbow tables)
- Go and check the price of rainbow tables

One-time password

- Password is generated when needed and used only once
- Renders any attack on the password itself useless
- No need to remember password
- Password could be exchanged in the clear
- Requires some kind of synchronized state and shared secret between client and server
- OTP generation
 - OTP = f(shared secret, clock)
 - OTP = f(shared secret, sequence number)
 - OTP = f(shared secret, random number)
- Other solutions
 - list of codes
 - password matrix
 - asymmetric crypto instead of shared secret

Certificats

- Certificate
 - (issuer, subject, public key, signature)
 - Authentication through
 - certificate validation
 - challenge/response with asymmetric encryption

Biometry

- Physiological or behavioral data
 - fingerprint, iris or retina scan, voice authentication, keyboard hit
- collect models
 - identification: find 1 sample among n models
 - authentication: check match for 1 sample
 - threshold algorithms

Social engineering

- Set of techniques used to manipulate, influence or lure someone into doing something he shouldn't normally do.
 Often, this involves disclosing confidential information
- Human factor is the weak link
 - sensitive to authority, emergency, similarity, sense of responsibility, kindness
- Typical targets
 - people with little security concern
 - people in support roles
 - people with privileged roles
 - people with specific knowledge
 - people with access to valuable assets

Social engineering attack

- Physical data collection
 - dumpster diving, theft, blackmail, bribary, extortion, desktop hacking...
- Often complex and hybrid attacks
 - ex: (spear) phishing, CEO fraud

Protection against social engineering

Education

- Main challenges
 - differentiate between good and evil, true and false
 - define clear criteria and reporting lines
- Know how and when report a potential problem
- Define clear policies
- Define clear lines of communication
- Coordinate between all security actors

Identity Management

- Identity = set of information related to an entity (person, system)
- In a complex IS, there are often multiple sources of identity
 - multiple applications
 - multiple levels (OS, applications. . .)
- How to maintain those sources consistent?
- Strong impact on global security

File

- simple to implement
- limited expressiveness
- sensitive data can be encrypted
- control access to sensitive data

Database

- simple to implement
- flexible and extensible datamodel
- sensitive data can be encrypted
- control access to sensitive data
- often application specific

- LDAP Lightweight Directory Access Protocol
 - defines both a datamodel and a data access protocol
 - derived from X.500 standard
 - data is organized as a tree: DIT Directory Information Tree
 - data stored in tree nodes
 - node structure defined in an extensible schema
 - all schema elements identified by unique Object Identifier (OID)
 - root node identified by a root suffix
 - i.e.: dc=unamur, dc=be

- LDAP Lightweight Directory Access Protocol
 - node = DSE Directory Service Entry
 - identified by a node name (DN & RDN)
 - instantiates one or more classes ObjectClass, which define mandatory and optional node attributes, and can inherit from one another
 - node represents a user, a group (static or dynamic)
 - or any entity: just define the appropriate ObjectClass

LDAP

LDAP

LDAP

- LDAP Lightweight Directory Access Protocol
 - access protocol
 - bind (session opening): authenticated or anonymous
 - operation(s):
 - search, delete, modify (add or update)
 - unbind (session closing)
 - access control Access Control List (ACL)
 - defines name, target, permission, bind rules
 - often server specific

```
aci: (target="ldap:///uid=jnc,dc=example,dc=com")
(targetattr="*")(version 3.0; acl "example aci"; allow
(write) userdn="ldap://self";)
```

Independent sources

Multiple identities

Risk of inconsistent data

Simple

Isolation

Synchronized sources

- One single identity
- Synchronization cost
- Not scalable
- Application specific
- No isolation

Shared sources

- One single identity
- Application specific ?
- No isolation

External authentications service

- Frees the application from the management of identities and authentication process
- Requires a secure protocol
- Requires trust between parties, possibly cross-organization

Distributed identity management

Motivations

- One authoritative source of information
- Better control over privacy
- Reduced management overhead
- Better user experience
- Better structured software architecture
- Security: credentials never shared
- Cross-body integration and cooperation

Distributed identity management

- Major protocols
 - OpenIDv1, v2, OpenID Connect
 - oAuthv1, oAuthv2
 - SAML Security Assertion Markup Language

Conclusion

- Authentication is the key to your system
- Different approaches are available, with various scopes and levels of complexity and cost
- Make sure you adopt secure yet usable authentication mechanism
- When going for distributed approach, choose for interoperability: adopt a standard
- Implementation can (will) be costly and lengthy
- Re-assess mechanisms regularly