Tarea 13 - Métodos numéricos Giovanni Gamaliel López Padilla

Problema 1

Implementa y evalúa las siguientes integrales usando la regla compuesta de Simpson 3/8 para $n=\{3,6,9,12,15\}$ y muestra una gráfica de n contra el valor absoluto del error.

El integrando de f(x) puede aproximarse como:

$$\int_{a}^{b} f(x) = \frac{3h}{8} \sum_{i=1}^{n/3} f(x_{3i-3}) + 3f(x_{3i-2}) + 3f(x_{3i-1}) + f(x_{3i})$$
 (1)

$$\int_{-1}^{1} e^x dx \tag{2}$$

Usando la aproximación de Simpson (ecuación 1) se obtuvieron los resultados mostrados en la tabla 1 y en la figura 1.

Puntos	Resultado	Diferencia
3	2.355648	0.005246
6	2.350756	0.000354
9	2.350473	0.000071
12	2.350425	0.000023
15	2.350412	0.000010

Tabla 1: Resultados y diferencia absoluta del algoritmo de la regla compuesta de Simpson 3/8 para diferentes valores de puntos dados.

(a) Resultados de la integral usando el algoritmo de la regla compuesta de Simpson.

(b) Diferencia absoluta entre el algoritmo de Simpson y el valor análitico.

Figura 1: Resultados usando el algoritmo de la regla compuesta de Simpson 3/8 con la ecuación 2.

$$\int_{-1}^{1} \frac{1}{x^2 + 1} dx \tag{3}$$

Usando la aproximación de Simpson (ecuación 1) se obtuvieron los resultados mostrados en la tabla 2 y en la figura 2.

Puntos	Resultado	Diferencia
3	1.600000	2.920367e-02
6	1.569231	1.565327e-03
9	1.570850	5.367321e-05
12	1.570792	4.326795 e - 06
15	1.570796	3.267949e-07

Tabla 2: Resultados y diferencia absoluta del algoritmo de la regla compuesta de Simpson 3/8 para diferentes valores de puntos dados.

(a) Resultados de la integral usando el algorit- (b) Diferencia absoluta entre el algoritmo de mo de la regla compuesta de Simpson. Simpson y el valor análitico.

Figura 2: Resultados usando el algoritmo de la regla compuesta de Simpson 3/8 con la ecuación 3.

Considerando las figuras 1 y 2 se observa que a un mayor número de puntos se obtiene una mejor aproximación al valor análitico de la integral.

Problema 2

Implementa el algoritmo de Newton para calcular las raices del polinomio de Legendre $P_n(x)$

$$x_{i+1} = x_i - \frac{P_n(x_i)}{P'_n(x_i)}$$

Usando como puntos iniciales

$$x_0 = cos\left(\frac{\pi(k+0.75)}{n+0.5}\right)$$
 $k = 0, 1, 2, \dots, n$

Se calcularon las raices para los polinomios de Legendre de grados $n = \{2, 3, 4, 5, 6, 7\}$. Se utilizo el método de Newton usando como $dx = 10^{-6}$ para el calculo de la derivada. Estos resultados se muestran en las tablas 3, 4, 5, 6, 7 y 8. En la figura 3 se muestran los polinomios de Legendre en conjunto a sus raices.

Punto	\mathbf{x}_0	Raiz
0	0.587785	0.577350
1	-0.587785	-0.577350

Tabla 3: Raices del polinomio de Legendre de grado 2.

Punto	\mathbf{x}_0	Raiz
0	0.866025	0.861136
1	0.342020	0.342020
2	-0.342020	-0.342020
3	-0.866025	-0.861136

Tabla 5: Raices del polinomio de Legendre de grado 4.

Punto	\mathbf{x}_0	Raiz
0	0.935016	0.932470
1	0.663123	0.663123
2	0.239316	0.238619
3	-0.239316	-0.238619
4	-0.663123	-0.663123
5	-0.935016	-0.932470

Tabla 7: Raices del polinomio de Legendre de grado 6.

Punto	\mathbf{x}_0	Raiz
0	0.781831	0.774597
1	0.000000	0.000000
2	-0.781831	-0.781831

Tabla 4: Raices del polinomio de Legendre de grado 3.

Punto	$\mathbf{x_0}$	\mathbf{Raiz}
0	0.909632	0.906180
1	0.540641	0.540641
2	0.000000	0.000000
3	-0.540641	-0.538469
4	-0.909632	-0.909632

Tabla 6: Raices del polinomio de Legendre de grado 5.

Punto	\mathbf{x}_0	Raiz
0	0.951057	0.949108
1	0.743145	0.743145
2	0.406737	0.405846
3	0.000000	0.000000
4	-0.406737	-0.406737
5	-0.743145	-0.741531
6	-0.951057	-0.951057

Tabla 8: Raices del polinomio de Legendre de grado 7.

Figura 3: Polinomios de Legendre de grado 2 al 7 en conjunto a sus raices.

Problema 3

Implemente el algoritmo de cuadratura de Gauss-Legendre y evalua las integrales usando 2, 4 y 10 nodos.

Se tiene que una manera de aproximar el valor de una integral definida en el intervalo [-1,1] es usando el algoritmo de cuadratura de Gauss-Legendre es:

$$\int_{-1}^{1} f(x) = \sum_{i}^{n} \omega_{i} f(x_{i}) \tag{4}$$

donde ω_i, x_i es el peso y la raiz i-esima del polinomio de Legendre de grado n respectivamente. Para una integral definida en el intervalo [a, b] se tiene que la aproximación usando el algoritmo de cuadratura de Gauss-Legendre es:

$$\int_{a}^{b} f(x) = \frac{b-a}{2} \sum_{i}^{n} \omega_{i} f\left(\frac{b-a}{2} x_{i} + \frac{b+a}{2}\right)$$

$$\tag{5}$$

$$\int_0^{\pi} x \cos(x) dx \tag{6}$$

Usando la aproximación de cuadratuea de Gauss-Legendre (ecuación 5) se obtuvieron los resultados mostrados en la tabla 9 y en la figura 4.

Puntos	Resultado	Diferencia
2	-2.243950	0.243950
3	-2.007514	0.007514
4	-2.005662	0.005662
5	-2.005474	0.005474
6	-2.000419	0.000419
7	-1.998000	0.002000
8	-1.997685	0.002315
9	-1.997847	0.002153
10	-1.997586	0.002414

Tabla 9: Resultados y diferencia absoluta del algoritmo de la cuadratura de Gauss-Legendre para diferentes valores de puntos para la ecuación 6.

(a) Resultados de la integral usando la cuadratura de Gauss-Legendre.

(b) Diferencia absoluta entre el algoritmo de Simpson y el valor análitico.

Figura 4: Resultados usando el algoritmo de cuadratura de Gauss-Legendre con la ecuación 6.

$$\int_{-1}^{0} x e^{-x} dx \tag{7}$$

Usando la aproximación de cuadratuea de Gauss-Legendre (ecuación 5) se obtuvieron los resultados mostrados en la tabla 10 y en la figura 5.

Puntos	Resultado	Diferencia
2	-0.998258	0.001742
3	-0.988563	0.011437
4	-0.999618	0.000382
5	-0.990694	0.009306
6	-0.998878	0.001122
7	-0.994253	0.005747
8	-0.998817	0.001183
9	-0.995918	0.004082
10	-0.998939	0.001061

Tabla 10: Resultados y diferencia absoluta del algoritmo de la cuadratura de Gauss-Legendre para diferentes valores de puntos para la ecuación 7.

(a) Resultados de la integral usando la cuadratura de Gauss-Legendre.

(b) Diferencia absoluta entre el algoritmo de Simpson y el valor análitico.

Figura 5: Resultados usando el algoritmo de cuadratura de Gauss-Legendre con la ecuación 7.

En las figuras 4 y 5 se observa que a un número mayor de puntos. Se obtiene una mejor aproximación con un número par de puntos, esto es debido a los pesos del polinomio de Legendre.