Complex Analysis Qualifying Exam Spring 1985

1. Let $f \in C(G)$, where G is the open square defined by -1 < Rez < 1 and -1 < Imz < 1. Suppose that

$$\int_{\gamma} f dz = 0$$

for all rectangular loops γ in G with one side contained in the real axis. Prove that $f \in H(G)$.

2. Evaluate

$$I_n = \int_0^\infty \frac{dx}{1 = x^n} \text{ for } n = 2, 3, \dots$$

3. Let G be a region in \mathbb{C} , and let (f_n) be a uniformly bounded sequence in H(G). Suppose that the set

$$A = \{ z \varepsilon G : \lim_{n} f_n(z) = 0 \}$$

has a limit point in G. Prove that the f_n converge to 0 uniformly on compact subsets of G.

- **4.** Let G be a region in \mathbb{C} , f_n a sequence in H(G), and $f \in H(G)$. Suppose that the f_n converge to f uniformly on compact subsets of G, that $\{z \in \mathbb{C} : |z-a| \le r\} \subset G$, and that f has no zero on the circle |z-a|=r. Prove that there exists an integer N such that for each n>N, f_n and f have the same number of zeros in D(a,r).
- **5.** Let G be a region in \mathbb{C} , $f, g \in H(G)$, and $\varepsilon > 0$. Suppose that $|f| \cdot |g|^{\varepsilon}$ attains a maximum on G. Prove that $|f| \cdot |g|^{\varepsilon}$ is a constant on G.
- **6.** Let $G = \{z \in \mathbb{C} : \text{Rez } > 0\}$, $f \in C(\overline{G})$, and $f \in H(G)$. Suppose that f is bounded on the imaginary axis, and that $|f(z)|/(1+|z|^t)$ is bounded on G for each t > 0. Prove that f is bounded on G.
- 7. Let $G \subset \mathbb{C}$ be open, and $\alpha \in \mathbb{C}$. Suppose that there exists $g \in H(G)$ such that $g(z)^2 = z \alpha$ for all z in G. Prove that α belongs to an unbounded component of $\mathbb{C} \setminus G$.

HINT: You may use the fact (without proof) that if B is a bounded component of $\mathbb{C}\backslash G$, then there exists a bounded open subset V of G such that $B \subset V$ and $\partial V \subset G$.

- ${\bf 8.}\,$ State and prove the Harnack inequality for harmonic functions.
- **9.** Let G be a region in \mathbb{C} , and let u be a real-valued continuous function on G. Suppose that for each $a\varepsilon G$, there exists R>0 such that $D(a,R)\subset G$ and

$$2\pi u(a) \le \int_{-\pi}^{\pi} u(a + re^{it}) dt \quad \forall r \varepsilon [0, R).$$

Prove:

- (a) If u attains a maximum on G, then u is a constant on G.
- (b) u is subharmonic on G.
- 10. Let G be a region in \mathbb{C} . State four conditions each of which is equivalent to the simple connectivity of G. Also prove their equivalence.