FGA0137 Sistemas de Banco de Dados 1

Prof. Maurício Serrano

Material original: Prof. Jose Fernando Rodrigues Junior

2021/2

Dependências Funcionais e Normalização

Módulo 3

Introdução: Contexto da Normalização

Projeto de bancos de dados

- Objetivos de projeto:
 - Completo: todos os requisitos
 - Correto: sem erros de modelagem
 - Fácil de Entender: dados e relacionamentos claros e expressivos
 - Simples: o mais simples possível atendendo aos requisitos
 - Livre de redundâncias e consistente

Projeto de bancos de dados

- Objetivos de projeto:
 - Completo: todos os requisitos
 - Correto: sem erros de modelagem
 - Fácil de Entender: dados e relacionamentos claros e expressivos
 - Simples: o mais simples possível atendendo os requisitos
 - Livre de redundâncias e consistente

 Uma das principais técnicas (mas não a única) para evitar redundâncias e garantir consistência: Normalização

Problema

- Projetos não bem elaborados -> anomalias:
 - Redundância: espaço desperdiçado por duplicidade de dados
 - Complexidade desnecessária: presença de valores NULL
 - Junções com perda: perda de dados em operações de junção
 - Falta de integridade!!!
 - Inconsistência de inserção
 - Inconsistência de remoção
 - Inconsistência de atualização
- Solução: NORMALIZAÇÃO → o SGBD garante a integridade

Problema

- Projetos não bem elaborados -> anomalias:
 - Redundância: espaço desperdiçado por duplicidade de dados
 - Complexidade desnecessária: presença de valores NULL
 - Junções com perda: perda de dados em operações de junção
 - Falta de integridade!!!
 - Inconsistência de inserção
 - Inconsistência de remoção
 - Inconsistência de atualização

Solução: NORMALIZAÇÃO → o SGBD garante a integridade

Normalização: ferramenta conceitual

Modelo Relacional, inerentemente formal

Ferramentas conceituais - gerência de consistência

 Projeto deve satisfazer propriedades bem definidas → Normalização

Normalização: ferramenta conceitual

Modelo Relacional, inerentemente formal

Após alguma prática, a normalização torna-se uma técnica bastante intuitiva

A teoria de normalização provê:

- uma maneira formal de melhoria de projeto
- desenvolve a intuição de projetos de melhor qualidade

Conceitos

Revisão de conceitos

- Superchave: conjunto com um ou mais atributos que identifica uma tupla unicamente
- Superchave mínima: superchave que, se tiver um atributo removido, deixa se ser superchave
- Chave candidata: qualquer uma das superchaves mínimas existente em uma relação
- Atributo primo: pertence a uma chave candidata
- Atributo comum ou ordinário: atributo não primo

Dependência funcional

- O valor de um conjunto de atributos A permite descobrir o valor de um outro conjunto B, dizemos que A determina funcionalmente B, ou que B depende de A, e denotamos: A → B
- Exemplos:
 - Matr → Nome, Curso
 - Sala, Dia, Hora → CodigoDisciplina
 - CodigoDisciplina → Nome, Ementa, Ncréditos
- Chaves determinam funcionalmente todos os outros atributos, mas nem toda dependência funcional parte de uma chave

Dependência funcional

- O valor de um conjunto de atributos A permite descobrir o valor de um outro conjunto B, dizemos que A determina funcionalmente B ou que B Pergunta para identificar DF:
 - "Se o valor de A se repetir, o valor de B também se repete necessariamente?"
 - Sim: há DF
 - Não: não há DF
- Chaves determinam funcionalmente todos os outros atributos, mas nem toda dependência funcional parte de uma chave

Dependência funcional parcial

- Seja A um conjunto de atributos
 - Dados dois conjuntos de atributos A e B; se um subconjunto de atributos de A define funcionalmente o conjunto de atributos B, dizemos que B possui dependência funcional parcial em relação a A.
- Exemplos:
 - Matricula(Matr, CodigoDisciplina, NomeAluno, Média)

- Matr, CodigoDisciplina → Média
 - DF
- Matr → NomeAluno
 - DF parcial de NomeAluno em relação a {Matr, CodigoDisciplina}

Dependência funcional parcial

- Seja A um conjunto de atributos
 - Dados dois conjuntos de atributos A e B; se um subconjunto de atributos de A define funcionalmente o conjunto de atributos B, dizemos que B possui dependência funcional parcial em relação a A.

Exemplos:

- Matricula(<u>Matr, CodigoDisciplina</u>, NomeAluno, Média)
 - Matr, CodigoDisciplina → Média
 - DF
 - Matr → NomeAluno
 - DF parcial de NomeAluno em relação a {Matr, CodigoDisciplina}

Dependência funcional - propriedades

Principais propriedades

1. Reflexiva:

Se B \subset A então A \rightarrow B

2. Aumentativa:

Se A \rightarrow B então AX \rightarrow B

E também

Se A \rightarrow B então AX \rightarrow BX

3. Transitiva:

Se A \rightarrow B, B \rightarrow C então A \rightarrow C

4. Decomposição:

Se A \rightarrow BC então A \rightarrow B, A \rightarrow C

5. Aditiva:

Se $A \rightarrow B$, $A \rightarrow C$ então $A \rightarrow BC$

6. Pseudo-Transitiva:

Se $AB \rightarrow D$ e $C \rightarrow A$ então $CB \rightarrow D$

Normalização

 Relação satisfazendo uma determinada propriedade de normalização → diz-se que ela está em uma "Forma Normal"

- Serão vistas:
 - 1a. Forma Normal
 - 2a. Forma Normal
 - 3a. Forma Normal
 - Forma Normal de Boyce Codd
 - 4a. Forma Normal

Dependência Funcional - Observações

- Não podem ser inferidas pelo sistema
- Parte da semântica do domínio → identificadas pelo projetista
- Intenções do projeto
- DFs são a base da 2a. Forma Normal, da 3a. Forma Normal e da Forma Normal de Boyce Codd

Simples, mas necessária

 1a. Forma Normal: todos os atributos são Monovalorados e Atômicos (não há relações aninhadas)

Violação por atributo multivalorado

 Exemplo de relação que não está na 1FN Aluno = (<u>Matr</u>, Nome, Idade, Disciplinas)

<u>Matr</u>	Nome	Idade	Disciplinas
221323	Maria	20	FGA0100; FGA0101
241245	José	21	FGA0122, FGA0131, FGA0244

Violação por atributo multivalorado

Exemplo de relação que não está na 1FN

Aluno = (Matr, Nome, Idade, Disciplinas)

<u>Matr</u>	Nome	Idade	Disciplinas
221323	Maria	20	FGA0100; FGA0101
241245	José	21	FGA0122, FGA0131, FGA0244

Atributo multivalorado <-

Violação por atributo multivalorado

Exemplo de relação que não está na 1FN

Aluno = (<u>Matr</u>, Nome, Id<u>ade, Disciplin</u>as)

<u>Matr</u>	Nome	Idade	Disciplinas	
221323	Maria	20	FGA0100; FGA0101	
241245	José	21	FGA0122, FGA0131, FGA0244	

Atributo multivalorado <-

Violação por atributo multivalorado

Exemplo de relação que não está na 1FN

Atributo multivalorado <---

Aluno = (<u>Matr</u>, Nome, Id<u>ade, Disciplin</u>as)

			
Nome	Idade	Disciplinas	
Maria	20	FGA0100; FGA0101	
José	21	FGA0122, FGA0131, FGA0244	
	Maria	Maria 20	Maria 20 FGA0100; FGA0101 José 21 FGA0122, FGA0131,

Consulta nesta relação:

SELECT matr

FROM aluno

WHERE disciplinas = '???' → todas as disciplinas, separadas por , ou ;

Como normalizar esta relação?

<u>Matr</u>	Nome	Idade	Disciplinas
221323	Maria	20	FGA0100, FGA0101
241245	José	21	FGA0122, FGA0131

Atributo multivalorado <-

- 1) Nova relação: mesma chave + atributo multivalorado, ambos como chave
- 2) Atributo multivalorado sai da relação

Relação normalizada:

atributos monovalorados (e atômicos)

<u>Matr</u>	Idade	Nome
221323	20	Maria
241245	21	José

<u>Matr</u>	<u>Disciplina</u>
221323	FGA0100
221323	FGA0101
241245	FGA0122
241245	FGA0131

Violação por atributo composto

 Exemplo de relação que não está na 1FN Aluno(NomeAluno, DeptDisc, Idade)

<u>NomeAluno</u>	DeptDisc	Idade
Benedita	Computação Estatística	20
Mauro	Matemática Estatística	21

Violação por atributo composto

 Exemplo de relação que não está na 1FN Aluno(NomeAluno, DeptDisc, Idade)

<u>NomeAluno</u>	DeptDisc	Idade
Benedita	Computação Estatística	20
Mauro	Matemática Estatística	21

Atributo composto <-

Consulta nesta relação:

SELECT NomeAluno

FROM Aluno

WHERE DeptDisc = '???' → como filtrar por departamento ou por disciplina?

1^a. Forma Normal – Atributo Composto

Como normalizar esta relação?

<u>NomeAluno</u>	Dept Disc	Idade
Benedita	Computação Estatística	20
Mauro	Matemática Estatística	21

Atributo composto <----

Quebrar atributo

1^a. Forma Normal – Atributo Composto

 Relação normalizada atributos atômicos (e monovalorados)

<u>NomeAluno</u>	Dept	Disc	Idade
Benedita	Computação	Estatística	20
Mauro	Matemática	Estatística	21

1^a. Forma Normal – Atributo Composto

 Fundamental para a própria conceituação do Modelo Relacional

Exigida pelos SGBDs Relacionais contemporâneos

 Violação → "Relações aninhadas" (relações dentro de Relações) → violação do modelo

- Relação está na 2a. Forma Normal quando:
 - está na 1a. FN
 - Atributos comuns n\u00e3o dependem parcialmente de qualquer chave

Exemplo:

```
Ministra = (<u>Professor</u>, CodDisc, Livro)
```

- Relação está na 2a. Forma Normal quando:
 - está na 1a. FN
 - Atributos comuns n\u00e3o dependem parcialmente de qualquer chave

Exemplo:

```
Ministra = (<u>Professor</u>, CodDisc, Livro)
```

Turma = (CodDisc, Numero, Sala, No.Horas)

- Relação está na 2a. Forma Normal quando:
 - está na 1a. FN
 - Atributos comuns n\u00e3o dependem parcialmente de qualquer chave

Exemplo:

2^a. Forma Normal - Violação

Exemplo:

Turma = (CodDisc, Numero, Sala, No.Horas)

Suponha que cada disciplina tem sua quantidade de horas bem definida como ocorre no mundo real.

Assim, o modelo não deve permitir que duas disciplinas sejam armazenadas com número de horas diferentes.

Exemplo:

Turma = (CodDisc, Numero, Sala, No.Horas)

CodDisc	<u>Numero</u>	Sala	No.Horas
SMA	1	24	60
PA	1	13	30
PA	2	25	30
SMA	2	31	50

Exemplo:

Turma = (CodDisc, Numero, Sala, No.Horas)

CodDisc	<u>Numero</u>	Sala	No.Horas
SMA	1	24	60
PA	1	13	30
PA	2	25	30
SMA	2	31	50

Dependência funcional parcial à chave

2^a. Forma Normal - Anomalias

Exemplo:

Turma = (CodDisc, Numero, Sala, No.Horas)

CodDisc	<u>Numero</u>	Sala	No.Horas
SMA	1	24	60
PA	1	13	30
PA	2	25	30
SMA	2	31	50

- Se CodDisc = PA → No. Horas = 30
- Se CodDisc = SMA → No. Horas = 60 ou 50?

2^a. Forma Normal - Anomalias

Exemplo:

Turma = (CodDisc, Numero, Sala, No.Horas)

CodDisc	<u>Numero</u>	Sala	No.Horas
SMA	1	24	60
PA	1	13	30
PA	2	25	30
SMA	2	31	50

- Se CodDisc = PA → No. Horas = 30
- Se CodDisc = SMA → No. Horas = 60 ou 50?

Redundância e Inconsistência de inserção

Como normalizar esta relação?

```
Turma = (<u>CodDisc</u>, <u>Numero</u>, Sala, No.Horas)
```

1) Nova relação:

parte da chave que define a dependência (chave da nova relação)

+

atributos dependentes desta parte da chave

2) Atributos parcialmente dependentes da chave saem da relação

Relação normalizada
 sem dependências funcionais parciais à chave

<u>CodDisc</u>	<u>Numero</u>	Sala
SMA	1	24
PA	1	13
PA	2	25
SMA	2	31

CodDisc	No.Horas
SMA	60
PA	30
<	

A própria estrutura do esquema:

- -garante a não redundância
- -garante a consistência (apenas uma versão dos dados)

Exemplo:

<u>Projld</u>	<u>FuncId</u>	Funcao	Gerente
P23	F101	Eletricista	Felipe
P14	F101	Encanador	João
P25	F453	Porteiro	Márcio
P14	F453	Segurança	João

Não haverá mais a função de eletricista

DELETE FROM ProjetoFuncao

WHERE Funcao = 'Eletricista'

- Qual é o problema decorrente desta operação?
- Por que não está normalizado? Como normalizar?

Exemplo:

<u>Projld</u>	<u>FuncId</u>	Funcao	Gerente
P23	F101	Eletricista	Felipe
P14	F101	Encanador	João
P25	F453	Porteiro	Márcio
P14	F453	Segurança	João

Dependência funcional <

parcial à chave

Exemplo:

<u>Projld</u>	<u>FuncId</u>	Funcao	Gerente
P23	F101	Eletricista	Felipe
P14	F101	Encanador	João
P25	F453	Porteiro	Márcio
P14	F453	Segurança	João

 Não haverá mais a função de eletricista DELETE FROM ProjetoFuncao
 WHERE Funcao = 'Eletricista'

Exemplo:

<u>Projld</u>	<u>FuncId</u>	Funcao	Gerente	
P23	F101	Eletricista	Felipe	<
P14	F101	Encanador	João	
P25	F453	Porteiro	Márcio	
P14	F453	Segurança	João	

 Não haverá mais a função de eletricista DELETE FROM ProjetoFuncao

WHERE Funcao = 'Eletricista'

Exemplo:

<u>Projld</u>	<u>FuncId</u>	Funcao	Gerente
P14	F101	Encanador	João
P25	F453	Porteiro	Márcio
P14	F453	Segurança	João

 Problema no projeto P23, quem é o gerente que vai responder por isso?

SELECT gerente

FROM ProjetoFuncao

WHERE projld = 'P23'

Exemplo:

<u>Projld</u>	<u>FuncId</u>	Funcao	Gerente
P14	F101	Encanador	João
P25	F453	Porteiro	Márcio
P14	F453	Segurança	João

 Problema no projeto P23, quem é o gerente que vai responder por isso?

Inconsistência de remoção NULL

Como normalizar esta relação?

ProjetoFuncao(Projld, Funcld, Funcao, Gerente)

1) Nova relação:

parte da chave que define a dependência (chave da nova relação)

+

atributos dependentes desta parte da chave

2) Atributos parcialmente dependentes da chave saem da relação

Como normalizar esta relação?

ProjetoFuncao(<u>ProjId</u>, <u>FuncId</u>, Funcao, Gerente)

<u>Projld</u>	<u>FuncId</u>	Funcao
P23	F101	Eletricista
P14	F101	Encanador
P25	F453	Porteiro
P14	F453	Segurança

<u>Projld</u>	Gerente
P23	Felipe
P14	João
P25	Márcio

Como normalizar esta relação?

ProjetoFuncao(<u>ProjId</u>, <u>FuncId</u>, Funcao, Gerente)

<u>Projld</u>	<u>FuncId</u>	Funcao
P23	F101	Eletricista
P14	F101	Encanador
P25	F453	Porteiro
P14	F453	Segurança

<u>Projld</u>	Gerente
P23	Felipe
P14	João
P25	Márcio

A própria estrutura do esquema:

- -garante a não redundância
- -garante a consistência de remoção
- -aumenta a confiabilidade dos dados como um todo

3^a. Forma Normal

3^a. Forma Normal

- Uma relação está na 3a. Forma Normal quando:
 - está na 2a. Forma Normal
 - atributos comuns não dependem transitivamente de qualquer superchave

Exemplo:

Campeoes(Competicaold, Ano, Vencedor, DataNascVenc)

3^a. Forma Normal

- Uma relação está na 3a. Forma Normal quando:
 - está na 2a. Forma Normal
 - atributos comuns não dependem transitivamente de qualquer superchave

Exemplo:

Campeoes(Competicaold, Ano, Vencedor, DataNascVenc)

Como:

(Competicaold, Ano → Vencedor) E (Vencedor→ DataNasc Venc)

Então, por transitividade:

Competicaold, Ano → DataNascVenc

Exemplo:

Campeoes(Competicao, Ano, Vencedor, DataNascVenc)

Competicaold	<u>Ano</u>	Vencedor	DataNascVenc
C21	2001	Miguel	04/04/1975
C34	2002	César	09/12/1980
C21	2003	Miguel	04/04/1975
C57	2004	Fabiano	06/02/1978

Exemplo:

Competicaold	<u>Ano</u>	Vencedor	DataNascVenc
C21	2001	Miguel	04/04/1975
C34	2002	César	09/12/1980
C21	2003	Miguel	04/04/1975
C57	2004	Fabiano	06/02/1978

Atributo não-primo DataNasc depende transitivamente da chave {Competicaold,Ano}<-

Exemplo:

Campeoes(Competicao, Ano, Vencedor, DataNascVenc)

Competicaold	<u>Ano</u>	Vencedor	DataNascVenc	
C21	2001	Miguel	04/04/1975	
C34	2002	César	09/12/1980	\mathbf{X}
C21	2003	Miguel	04/04/1975	
C57	2004	Fabiano	06/02/1978	

Redundância

Se Vencedor = Miguel → DataNascVenc = 04/04/1975 <-

Exemplo:

Competicaold	<u>Ano</u>	Vencedor	DataNascVenc
C21	2001	Miguel	04/04/1975
C34	2002	César	09/12/1980
C21	2003	Miguel	04/04/1975
C57	2004	Fabiano	06/02/1978

 O vencedor da competição C21 de 2001 forneceu data de nascimento errada – precisamos atualizar os dados

UPDATE Campeoes

SET DataNascVenc='14/04/1975'

WHERE Competicaold = C21 AND ANO=2001

Exemplo:

Competicaold	<u>Ano</u>	Vencedor	DataNascVenc
C21	2001	Miguel	14/04/1975<
C34	2002	César	09/12/1980
C21	2003	Miguel	04/04/1975
C57	2004	Fabiano	06/02/1978

 O vencedor da competição C21 de 2001 forneceu data de nascimento errada – precisamos atualizar os dados

UPDATE Campeoes

SET DataNascVenc='14/04/1975'

WHERE Competicaold = C21 AND ANO=2001

Exemplo:

Campeoes(<u>Competicao</u>, <u>Ano</u>, Vencedor, DataNascVenc)

C21 2001 Miguel 14/04/1975 C34 2002 César 09/12/1980 C21 2003 Miguel 04/04/1975 C57 2004 Fabiano 06/02/1978 Inconsistência de	Competicaold	<u>Ano</u>	Vencedor	DataNascVenc
C21 2003 Miguel 04/04/1975 C57 2004 Fabiano 06/02/1978	C21	2001	Miguel	14/04/1975
C57 2004 Fabiano 06/02/1978	C34	2002	César	09/12/1980
	C21	2003	Miguel	04/04/1975
Inconsistência de	C57	2004	Fabiano	06/02/1978
atualização				

Como normalizar esta relação?

```
Campeoes(Competicao, Ano, Vencedor, DataNascVenc)
```

```
    1) Nova relação:

            atributos dependentes transitivamente
            +

    atributos dos quais eles dependem diretamente

            (chave da nova relação)
```

2) Atributos dependentes transitivamente saem da relação

Como normalizar esta relação?

```
Campeoes(Competicao, Ano, Vencedor, DataNascVenc)
```

1) Nova relação:

atributos dependentes transitivamente

+

atributos dos quais eles dependem diretamente

(chave da nova relação)

2) Atributos dependentes transitivamente saem da relação

Relação normalizada
 sem dependências funcionais transitivas
 a qualquer chave

Competicao	<u>Ano</u>	Vencedor
C21	2001	Miguel
C34	2002	César
C21	2003	Miguel
C57	2004	Fabiano

<u>Vencedor</u>	DataNascVenc
Miguel	14/04/1975
César	09/12/1980
Fabiano	06/02/1978
<	J

A própria estrutura do esquema:

- -garante a não redundância
- -garante a consistência de atualização
- -reduz os custos de manutenção (consolidação tem custo)

Exemplo:

<u>Discld</u>	DeptId	DeptNome	DeptChefe
FGA0102	D4	Computação	Marcos
FGA0110	D4	Computação	Marcos
FGA0210	D5	Matemática	Vilma
FGA0215	D5	Matemática	Sandra

Exemplo:

<u>Discld</u>	DeptId	DeptNome	DeptChefe
FGA0102	D4	Computação	Marcos
FGA0110	D4	Computação	Marcos
FGA0210	D5	Matemática	Vilma
FGA0215	D5	Matemática	Sandra

Redundância e inconsistência de inserção dos dados

Como normalizar esta relação?

Exemplo:

<u>Discld</u>	DeptId	DeptNome	DeptChefe
FGA0102	D4	Computação	Marcos
FGA0110	D4	Computação	Marcos
FGA0210	D5	Matemática	Vilma
FGA0215	D5	Matemática	Sandra

Atributos não-primos DeptNome e DeptChefe dependem transitivamente da chave (DiscId)

Exemplo:

<u>Discld</u>	DeptId
FGA0102	D4
FGA0110	D4
FGA0210	D5
FGA0215	D5

<u>DeptId</u>	DeptNome	DeptChefe
D4	Computação	Marcos
D5	Matemática	Sandra

Observações

- As práticas de modelagem vistas durante o curso não geram esquemas desnormalizados
- A teoria de normalização, assim tem dois propósitos:
 - Normalizar projetos já existentes, mas que apresentam problemas de redundância e inconsistência
 - Desnormalizar projetos que possuem requisitos específicos de recuperação de dados → garatir a normalização usando outros recursos, como triggers e interfaces de inserção dos dados