Digital Ambient Light Sensor

Descriptions

The AL3010 is a 16-bit digital ambient light sensor [ALS] in a chipLed RoHS package. This device provides a multiple gain function with linear response over a dynamic range 1216/4863/19452/77806 and is well suited to applications under clear glass or darkened glass.

Function Block Diagram

Features

- I2C interface (up to 400k Hz, contact factory for 3.4M Hz option)
- 3 selectable I2C address
- Mode Select : Power Up/Down, ALS Once, Reset
- Built-in temperature compensation circuit
- Wide supply voltage from +2.3V ~ +3.6V
- Wide operating temperature range (-30°C to +80°C)
- Ambient Light Photo Sensor
 - 16-bit effective linear output (0~65535)
 - 4 user selectable dynamic range.
 - Anti-flicker rejection (reject 50/60 Hz)
 - High sensitivity @ darkened glass
- Small form factor 2.0 mm x 2.0 mm x 0.7 mm
- · RoHS compliant

Applications

- Mobile handsets
- Personal Navigation Device
- Tablet PCs
- LCD/PDP TV backlight systems

Ordering Information

Part No.	Packing Type	Package	Quantity
AL3010	Tape and Reel	6Ld Chipled 2.0 x 2.0 x 0.7mm	2,500

Please be aware that an **Important Notice** concerning availability, disclaimers, and use in critical applications of DI products is at the end of this document.

Digital Ambient Light Sensor

Recommended Application Circuit Components

Component	Recommended Value	Condition / Range
R_{p1}, R_{p2}	Depends on system design(*1)	
R_{p3}	Depends on system design	
C_1	$0.1\mu F, \pm 20\%$	
C_2	1 μF, ±20%	Optional

Note 1: I²C Pull up resistor for standard protocol format. For the complete description of maximum pull up resistor and minimum pull up resistor, please refer to: http://www.semiconductors.philips.com.

Pin Descriptions

Pin Number	I/O Type	Pin Name	Description
1		VDD	Digital/Analog Power Supply
2		GND	Ground
3	I	SEL	Connect to GND
4	O	INT	Interrupt pin
5	I	SCL	I ² C serial clock line
6	I/O	SDA	I ² C serial data line

Absolute Maximum Ratings

Parameter	Symbol	Value	Unit
Supply Voltage	VDD	4.5	V
I ² C Address Pin Voltage	SEL	-0.2 to 4.5	V
I ² C Bus Pin Voltage	SCL, SDA	-0.2 to 4.5	V
I ² C Bus Pin Current	SCL, SDA	10	mA
ESD Rating, HBM	НВМ	2k	V
Operating Temperature	$T_{ m ope}$	-40 to +85	℃
Storage Temperature	$T_{ m stg}$	-40 to +100	°C

Note: Exceeding these ratings could cause damage to the device. All voltages are with respect to ground. Currents are positive into, negative out of the specified terminal.

Recommended Operation Conditions

Description	Symbol	Min.	Тур.	Max.	Unit	Condition
Supply Voltage	V_{DD}	2.3	3.3	3.63	V	
Operating Temperature	T_{ope}	-30		80	°C	
I ² C Bus Input Pin High Voltage	$V_{IH_SCL}, \ V_{IH_SDA}$	1.62			V	
I ² C Bus Input Pin Low Voltage	$V_{\text{IL_SCL}}, \ V_{\text{IL_SDA}}$			0.4	V	
SDA Output Low Voltage	Vor an	0		0.4	V	3mA sinking current
SDA Output Low Voltage	V_{OL_SDA} ,	0		0.6	V	6mA sinking current
INT Output Low Voltage	$V_{\mathrm{OL_INT}}$	0		0.4	V	3mA sinking current

Note : The specs are defined under VDD=2.8V, T=25°C

Electrical & Optical Specifications All specifications are at VDD=3.3V, Tope=25°C, white light LED, unless otherwise noted.

Parameter		Symb ol	MIN	TYP	MAX	Notes	UNIT
Supply Voltage		VDD	2.3	3.3	3.63		V
I ² C Bus Pin Voltage		VBus	1.7		3.63		V
Operating Temperature			-30		80		°C
Active Supply Curren	nt	Idd		175	250	Ev=0, Range 1	μΑ
Shutdown Current		Ipd		1	2.5	Ev=0, I ² C inactive	μΑ
	Range 1				77806	1.1872 lux/count (Default)	lux
L'accett December	Range 2				19452	0.2968 lux/count	lux
Linearity Response	Range 3				4863	0.0742 lux/count	lux
	Range 4				1216	0.0186 lux/count	lux

Ambient Ligh	nt Sensor					
	Range 1		108		Ev=128lux	count
ADC count	Range 2		431		Ev=128lux	count
	Range 3		1725		Ev=128lux	count
	Range 4	5865	6900	7935	Ev=128lux	count
Dark count				10	Ev=0	count
Conversion Time			50	60		ms
Response Tim	e (First Stable Data)		210	250	Sychronous Test	ms
			1		Default	unit
Persist Function			4			unit
1 unit = 1 conversion time			8			unit
			16			unit

Note1: Considering VDD rising time, please make sure a VDD slew rate at least 0.6V/ms. If users want to use the hardware reset method, please set VDD = GND for more than one second and then power back up at the requirement slew rate.

Typical Performance Charts

Fig1. Angular Response of ALS Active Current (IDD) v.s Temp 250 200 Active Current (uA) 100 50 -45 -35 -25 -15

Fig3. Active Current vs Temp

Normalized Response 8.0 0.4

Fig5. Spectrum Response of ALS

Fig4. ALS Output Code Ratio vs Temp

Definition of timing for I²C devices

This section will describe the main protocol of the I²C bus. For more details and timing diagrams, please refer to the I²C specification.

The Device can operate at the standard mode I^2C bus line or the fast mode I^2C bus line. The characteristics of the I^2C bus for difference modes are as below.

Characteristics of the SDA and SCL bus lines for I²C bus devices

(All specifications are at Tope=25°C, unless otherwise noted.)

Domonoston (*)	Cross b ol	Fast m	Fast mode		
Parameter (*)	Symbol	Min	Max	Unit	
SCL clock frequency	$f_{\it SCL}$	1	400	kHz	
Bus free time between a STOP and START condition	$t_{\it BUF}$	1.3	i	μs	
Hold time (repeated) START condition. After this period, the first clock pulse is generated	$t_{HD;STA}$	0.6		μs	
LOW period of the SCL clock	t_{LOW}	1.3		μs	
HIGH period of the SCL clock	$t_{\it HIGH}$	0.6		μs	
Set-up time for a repeated START condition	$t_{SU;STA}$	0.6		μs	
Set-up time for STOP condition	$t_{SU;STO}$	0.6	1	μs	
Rise time of both SDA and SCL signals	t_r		300	ns	
Fall time of both SDA and SCL signals	t_f		300	ns	
Data hold time	$t_{HD;DAT}$	50		ns	
Data setup time	$t_{SU;DAT}$	100		ns	
Pulse width of spikes which must be suppressed by the input filter	t_{SP}	0	50	ns	

Note1: C_b (capacitance of one bus line) = $10\sim400(pF)$

^(*) Specified by design and characterization; not production tested.

I²C Protocols

I²C Slave Address

The device offers three slave addresses that are selectable via SEL pin. The slave addresses are 7 bits. A read/write bit should be appended to the slave address by the master device to properly communicate with the device.

ADDR SEL TERMINAL LEVEL SLAVE	ADDRESS
GND	0x1C
VDD	0x1D
Float	0x1E

Register Table list

System Register set

ADDR (HEX)	REGISTER NAME	DESCRIPTION
0x00	SYSTEM CONFIGURATION	Power Down, Enable ALS, Reset & execute ALS once
0x01	INTERRUPT STATUS	Interrupt status output
0x0C	ALS DATA LOW	ALS ADC data low byte
0x0D	ALS DATA HIGH	ALS ADC data high byte

ADDR (Hex)	REGISTER NAME	Bits	REGISTER COMMAND	FUNCTIONS/DESCRIPTION
0x00	System Configuration (Default :0x00)	2:0	Sysm Mode (Default :000)	000: Power down (Default)
	(Delauit .0x00)		(Default .000)	001: Enable ALS
				100: Reset (Note 1)
				101: Execute ALS function once.
0x01	INT Status	0	ALS Int (Read only) (Default=0)	O: Interrupt is cleared or not triggered yet 1: Interrupt is triggered (Note 2)
0x02	Reserved	7:0	(Read only) (Default :0x00)	
0x03	Reserved	7:0	(Read only) (Default :0x00)	
0x04	Reserved	7:0	(Read only) (Default :0x00)	
0x0C	ALS DATA LOW	7:0	(Read only)	ALS ADC data low byte
0x0D	ALS DATA HIGH	7:0	(Read only)	ALS ADC data high byte

Note1. It takes 10 ms to complete Reset function. To avoid abnormal operation, don't issue any command during this period.

Note2. Clear interrupt status bit automatically by reading the ALS DATA HIGH register 0x0D.

SYSTEM CONFIGURATION Register (Read/Write)

0x00	SYSTEM CONFIGURATION (default = 0x00)								
BIT	В7	В6	B5	B4	В3	B2	B1	В0	
	Reserved					System Mode	2		

The SYSTEM CONFIGURATION register is used to power up/down the device and to select ALS once/Reset function.

AL3010

Digital Ambient Light Sensor

Field	BITS	Description						
Reserved	7:3	Write as 0	Write as 0					
System mode	2:0	001: Enable AL 100: Reset ALS 101: Get one Al	000: Power down (Default) 001: Enable ALS 100: Reset ALS and all registers in default settings. 101: Get one ALS data and then power down. I ² C COMMAND: SYSTEM MODE = 101					
		Power down	ALS (50ms)	ALS (50ms)	(25ms)	Power down		
			(50ms) (50ms) (25ms) 10wer down					

INT STATUS Register (Read Only)

0x01	ALS Interrupt Status Register (default = $0x00$)						
BIT	B7 B6 B5 B4 B3 B2 B1						В0
	Reserved						ALS INT

The ALS interrupt status register is used to indicate the ALS interrupt status. It will be set after interrupt occur and cleared automatically after reading ALS DATA HIGH register 0x0D.

ALS DATA LOW/HIGH Register (Read only)

0x0C	ALS DATA LOW (default = 0x00)							
BIT	В7	B7 B6 B5 B4 B3 B2 B1 B0						
	ALS Data Low byte							

0x0D	ALS DATA HIGH (default = 0x00)							
BIT	В7	B7 B6 B5 B4 B3 B2 B1 B0						
	ALS Data High byte							

The ALS ADC data are expressed as 16-bit data spread across two registers, ALS Data Low and ALS Data High.

The upper byte data register must be read after a read to the lower byte register. After reading the lower byte register, the upper byte register is stored in a temporary register, which should be read by a subsequent read to the upper byte.

Digital Ambient Light Sensor

ALS Register set

ADDR (HEX)	REGISTER NAME	DESCRIPTION
0x10	CONFIGURATION	Gain control, ALS conversion time & interrupt filter Settings
0x1A	ALS LOW THRESHOLD(7:0)	ALS low threshold low byte
0x1B	ALS LOW THRESHOLD(15:8)	ALS low threshold high byte
0x1C	ALS HIGH THRESHOLD(7:0)	ALS high threshold low byte
0x1D	ALS HIGH THRESHOLD(15:8)	ALS high threshold high byte

ADDR (Hex)	REGISTER NAME	Bit	REGISTER COMMAND	FUNCTIONS/DESCRIPTION
0x10	ALS Configuration (Default :0x00)	6:4	Gain (Default=00)	Ambient light detectable range 000: 0 ~ 77806 lux (Default) 001: 0 ~ 19452 lux 010: 0 ~ 4863 lux 011: 0 ~ 1216 lux
		1:0	Interrupt Filter (Default=00)	ALS Interrupt is triggered after (integrated cycle) 00: 1 conversion time (Default) 01: 4 conversion time 10: 8 conversion time 11: 16 conversion time
0x1A	ALS Threshold low L (Default :0x00)	7:0		ALS low threshold low byte
0x1B	ALS Threshold low H (Default :0x00)	7:0		ALS low threshold high byte
0x1C	ALS Threshold High L (Default :0xFF)	7:0		ALS high threshold low byte
0x1D	ALS Threshold High H (Default :0xFF)	7:0		ALS high threshold high byte

ALS CONFIGURATION Register (Read/Write)

0x10	ALS CONFIGURATION (default = 0x00)							
BIT	В7	В6	B5	B4	В3	B2	B1	В0
	Reserved	ALS Gain		Reserved		ALS Interrupt Filter		

The ALS CONFIGURATION register is used to control the following ALS features.

- 1. ALS Gain (Ambient light detectable range). There are 4 ranges for AL3010.
 - A. Range 1: $0 \sim 77806$ Lux. Resolution = 1.1872 lux/count.
 - B. Range 2: $0 \sim 19452$ Lux. Resolution = 0.2968 lux/count.
 - C. Range 3: $0 \sim 4863$ Lux. Resolution = 0.0742 lux/count.
 - D. Range 4: $0 \sim 1216$ Lux. Resolution = 0.0186 lux/count

ADC data to Lux conversion formula as below

Ambient Light (lux) = 16 bit ADC data * Resolution

2. ALS Interrupt Filter: Configurable filtering is provided to allow hardware interrupt to be generated after interrupts trigger for N consecutive numbers of conversion time. The ALS Interrupt Filter bits determine N.

AL3010

Digital Ambient Light Sensor

ALS LOW THRESHOLD Register (Read/Write)

0x1A	ALS LOW THRESHOLD (default = 0x00)						
BIT	B7 B6 B5 B4 B3 B2 B1 B0						
	ALS Low Threshold Low byte						

0x1B	ALS LOW THRESHOLD (default = 0x00)						
BIT	B7 B6 B5 B4 B3 B2 B1 B0						
	ALS Low Threshold High byte						

The ALS LOW THRESHOLD registers store the values of the low threshold data for comparison against ALS DATA (Registers 0CH and 0DH). If the ALS DATA crosses below or is equal to the ALS Low Threshold, an interrupt is asserted.

ALS HIGH THRESHOLD Register (Read/Write)

0x1C	ALS HIGH THRESHOLD (default = 0xFF)						
BIT	B7 B6 B5 B4 B3 B2 B1 B0						
	ALS High Threshold Low byte						

0x1D	ALS HIGH THRESHOLD (default = 0xFF)						
BIT	B7 B6 B5 B4 B3 B2 B1 B0						
	ALS High Threshold High byte						

The ALS HIGH THRESHOLD registers store the values of the high threshold for comparison against ALS DATA (Registers 0CH and 0DH). If ALS DATA crosses above or is equal to the ALS High Threshold, an interrupt is asserted.

Package Outline Dimensions

Bottom View

Recommended Land Pattern

PCB Stencil

Note: The dimensions of stencil are designed base on the SMT process tolerance (less than $\pm -3^{\circ}$ rotation and ± -0.05 mm offset).

Package Dimension of Tape and Reel

Recommended Reflow Profile

	Peak temperature (Tpeak)	255-260C (max) ; 10sec			
Pre-Heat	Temperature min (Tsmin) Temperature max (Tsmax) P2: (Ts min to Ts max)	150C 2C/sec 150C-217C 100s to 180s 90-110s			
Time maintain above	Temperature (T _{reflow}) Time (P3) R3 slope (from 217C -> peak) R4 slope (from peak -> 217C)	217C 60-90sec 2C/sec [typ] -> 2.5C/sec (max) -1.5C/sec [typ]-> -4C/sec (max)			
	Time to peak temperature	480s max			
	Cooling down slope (peak to 217C)	2-4C/ sec			

Note: The actual profile may need to be adjusted base on the actual layout. When parts are placed upside down, proper protection/support is recommended. Max reflow should not exceed 2x max.

Important Notice and Disclaimer

DI reserves the right to make changes to this document and its products and specifications at any time without notice. Customers should obtain and confirm the latest product information and specifications before final design, purchase or use.

DI makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does DI assume any liability for application assistance or customer product design. DI does not warrant or accept any liability with products which are purchased or used for any unintended or unauthorized application.

No license is granted by implication or otherwise under any intellectual property rights of DI.

DI products are not authorized for use as critical components in life support devices or systems without express written approval of DI.