Tema 1: Espacios Afines

Eduardo Peña Royuela

Febrero 2020

1. En $\mathbb{A}^3_{\mathbb{R}}$ con la referencia natural considerad el punto $p=(3,\ 5,\ 1)$ y las rectas r y s de ecuaciones

$$r: \begin{cases} x+y=0 \\ x+z-2=0 \end{cases} \qquad s: (x,y,z) = (1,1,0) + [(1,1,1)]$$

(a) Encontrad una recta l que corte r y s y que contenga el punto p

Veamos primero si $r \cap s \neq \emptyset$, para esto pasaremos s a ecuaciones cartesianas mediante eliminación Gaussiana.

$$\begin{pmatrix} 1 & x-1 \\ 1 & y-1 \\ 1 & z \end{pmatrix} \simeq \begin{pmatrix} 1 & x-1 \\ 0 & y-x \\ 0 & z-x+1 \end{pmatrix} \implies s = \begin{cases} x-y=0 \\ x-z=1 \end{cases}$$

Calculemos ahora la intersección de r, s:

$$\begin{cases} x+y=0\\ x+z-2=0\\ x-y=0\\ x-z-1=0 \end{cases} \implies \begin{cases} x=-y\\ x=y \end{cases} \implies x=y=0 \implies \begin{cases} 0=0\\ z=2\\ 0=0\\ z=-1 \end{cases}$$

Como podemos observar, este sistema es claramente incompatible, por tanto la intersección de r y s es vacía. Comprobemos ahora si $r \parallel s$. Para esto pasemos r a sus ecuaciones paramétricas.

$$r: (x, y, z) = (0, 0, 2) + [(1, -1, -1)]$$

$$s: (x, y, z) = (1, 1, 0) + [(1, 1, 1)]$$

1

Se ve claramente que los vectores directores de s y r son linealmente independientes, por tanto $r \not \mid s$. Como consecuencia, r y s se cruzan. En esta situación no podemos aprovecharnos de la posición relativa de estas rectas para construir l, entonces tendremos que imponer que corte a r y s en dos puntos distintos y crear la recta después. Sea $A = l \cap r$ y sea $B = l \cap s$, entonces A es de la forma (a, -a, 2 - a) y B es de la forma (b+1, b+1, b). Sea $\overrightarrow{AB} = (b-a+1, b+a+1, b+a-2)$, construimos la siguiente recta:

$$l = B + \vec{AB} = \begin{cases} x = b + 1 + c(b - a + 1) \\ y = b + 1 + c(b + a + 1) \\ z = b + c(b + a - 2) \end{cases}$$

Imponiendo que contenga a p y resolviendo el sistema obtenemos:

$$\begin{cases} b+1+c(b-a+1) = 3 \\ b+1+c(b+a+1) = 5 \\ b+c(b+a-2) = 1 \end{cases} \implies a = b = c = 1$$

Como el sistema anterior es compatible determinado, la recta l es la única que cumple las hipótesis del enunciado. Su expresión en forma paramétrica es:

$$l:(x,y,z)=(2,2,1)+[(1,3,0)]$$

(b) Encontrad una referencia afin \bar{R} en la cual $r: \bar{y} = \bar{z} = 0$, $s: \bar{x} = \bar{z} - 2 = 0$ $y = (0,0,a)_{\bar{R}}$.

Para encontrar R, pasemos primero las ecuaciones cartesianas que definen a r y s en la referencia \bar{R} a sus ecuaciones paramétricas.

$$r: (\bar{x}, \bar{y}, \bar{z}) = (0, 0, 0) + [(1, 0, 0)]$$

$$s: (\bar{x}, \bar{y}, \bar{z}) = (0, 0, 2) + [(0, 1, 0)]$$

Sea $\bar{R} = \{p_0; v_1, v_2, v_3\}$, podemos observar fácilmente que v_1 es el vector director de r y que v_2 es el vector director de s.

$$(1,0,0)_{\bar{R}} = 1(v_1) + 0(v_2) + 0(v_3) \Longrightarrow v_1 = (1,-1,-1)$$

 $(0,1,0)_{\bar{R}} = 0(v_1) + 1(v_2) + 0(v_3) \Longrightarrow v_2 = (1,1,1)$

Una vez encontrados v_1 y v_2 , necesitamos un tercer vector linealmente independiente con estos dos vectores para formar la base de la referencia. Vectores linealmente independientes a v_1, v_2 hay infinitos, pero podemos hacer uso de lo siguiente: vemos que $p = (0, 0, a)_{\bar{R}}$

y como solo tiene entradas diferentes de 0 en la tercera componente esto implica que p vive en $< v_3 >$. Por tanto, de los infinitos vectores linealmente independientes con v_1, v_2 si imponemos que además el espacio que genera este vector contenga a p, solamente hay un vector que cumpla esto. Este es el vector director de la recta l del apartado (a). Como sabemos $p \in l$ y además $l \cap r \neq \emptyset, l \cap s \neq \emptyset \Longrightarrow v_1, v_2, v_3$ l.i, siendo v_3 un múltiple del vector director de l. Es decir, $v_3 = \lambda(1,3,0)$. La λ será determinada más adelante en este ejercicio, de momento nos serviremos de que v_3 sea un múltiple de (1,3,0).

Ahora que ya hemos encontrado los vectores de la base de la referencia R, observamos que $(0,0,0)_{\bar{R}} \in r_{\bar{R}}$. Esto significa que el punto p_0 de la referencia \bar{R} pertenece a la recta r. Otra observación a hacer es la siguiente:

$$p_{\bar{R}} = (0, 0, a)_{\bar{R}} \implies p_0 + 0(v_1) + 0(v_2) + a(v_3) = p_0 + a\lambda(\frac{1}{2}, \frac{3}{2}, 0) = (3, 5, 1) = p$$

Como p en la referencia ordinaria tiene un 1 en la tercera componente y v_3 es nulo en la tercera componente, implica que p_0 tiene que tener un 1 en su tercera componente. Imponiendo esto y teniendo en cuenta que p_0 pertenece a r, tenemos:

$$r = \begin{cases} x + y = 0 \\ x + z - 2 = 0 \end{cases} \implies \begin{cases} y = -1 \\ x = 1 \end{cases}, \quad (\text{con } z = 1)$$

Por tanto $p_0 = (1, -1, 1)$ en la referencia ordinaria.

Finalmente solo nos queda determinar qué múltiple del vector v_3 forma parte de la referencia \bar{R} , dicho de otra manera, queda determinar la λ .

$$(0,0,2)_{\bar{R}} \in s \implies p_0 + 2\lambda v_3 \in s \implies (1+2\lambda, -1+6\lambda, 1) \in s \iff$$

$$\begin{cases} (1+2\lambda) + (1-6\lambda) = 0\\ (1+2\lambda) - (1) = 1 \end{cases} \iff \lambda = \frac{1}{2}$$

De modo que $v_3 = \lambda(1,3,0) = \frac{1}{2}(1,3,0) = (\frac{1}{2},\frac{3}{2},0).$

En conclusión, la referencia afín que es requerida en el enunciado de este ejercicio es $\bar{R} = \{p_0; v_1, v_2, v_3\} = \{(1, -1, 1); (1, -1, -1), (1, 1, 1), (\frac{1}{2}, \frac{3}{2}, 0)\}.$

(c) Decid cuento vale a

Sabiendo que $\bar{R} = \{(1, -1, 1); (1, -1, -1), (1, 1, 1), (\frac{1}{2}, \frac{3}{2}, 0)\}$, es inmediato comprobar que a = 4, ya que:

$$p_{\bar{R}} = (0, 0, a)_{\bar{R}} \Longrightarrow p_0 + a(v_3) = (1, -1, 1) + a(\frac{1}{2}, \frac{3}{2}, 0) = (3, 5, 1) = p_R$$

$$(1 + \frac{a}{2}, -1 + \frac{3a}{2}, 1) = (3, 5, 1) \iff a = 4$$

Una manera alternativa de proceder es mediante el cálculo de razones simples, que recordemos, su valor es independiente de la referencia escogida. Entonces, sea $A=r\cap l$, $B=s\cap l$ y el punto p. Como $A,B,p\in l$, esto implica que estos tres puntos están alineados y que podemos calcular su razón simple:

$$p = (3,5,1)$$
 $A = (1,-1,1)$ $B = (2,2,1)$
$$(p,A,B) = \frac{2-3}{1-3} = \frac{1}{2}$$

Por tanto, expresando los puntos p, A, B en la referencia \bar{R} y calculando su razón simple:

$$p_{\bar{R}} = (0, 0, a)$$
 $A_{\bar{R}} = (0, 0, 0)$ $B_{\bar{R}} = (0, 0, 2)$
$$(p, A, B)_{\bar{R}} = \frac{2 - a}{-a} = \frac{1}{2} \iff a = 4$$

2. Discutid en función del parámetro $a \in \mathbb{R}$ la posición relativa de los planos π_1 y π_2 de $\mathbb{A}^4_{\mathbb{R}}$ que tienen por ecuaciones en la referencia natural

$$\pi_1 : \begin{cases} x = 1 + \lambda + \mu \\ y = -2\lambda + \mu \\ z = 2 + \mu \end{cases} \quad (\lambda, \mu \in \mathbb{R}) \qquad \pi_2 : \begin{cases} x - 2u = 0 \\ x + 2y - az = 1 \end{cases}$$

Antes de empezar, recordemos que existen solamente 3 posibles posiciones relativas de estos planos: $\pi_1 \parallel \pi_2$, $\pi_1 \cap \pi_2 \neq \emptyset$ o, si no se dan ninguna de los anteriores escenarios, π_1, π_2 se cruzan.

Primero comprobaremos si por algún valor de a los planos π_1 y π_2 se cortan. Para eso substituimos en las ecuaciones que definen π_2 los valores de las coordenadas de π_1 en función de λ i μ :

$$\begin{cases} (1+\lambda+\mu) - 2(2) = 0 \\ (1+\lambda+\mu) + 2(-2\lambda+\mu) - a(2+\mu) = 1 \end{cases} \implies \begin{cases} \lambda+\mu = 3 \\ -3\lambda + 3\mu - a\mu = 2a \end{cases}$$

Resolviendo la ecuación substituyendo la primera ecuación en función de μ en la segunda, nos queda:

$$-3(3-\mu) + 3\mu - a\mu = 2a \implies -9 + \mu(6-a) = 2a \implies \mu = \frac{2a+9}{(6-a)}$$

Observamos que si $a \neq 6$ el sistema anterior es un sistema compatible determinado, y por tanto, **los planos se cortan en un punto**. Calculemos la expresión de este punto en función de a:

$$\begin{cases} \lambda + \mu = 3 \\ \mu = \frac{2a+9}{6-a} \end{cases} \implies \begin{cases} \lambda = \frac{9-5a}{6-a} \\ \mu = \frac{2a+9}{6-a} \end{cases} \implies \begin{cases} x = 1 + \frac{9-5a}{6-a} + \frac{2a+9}{6-a} = 4 \\ y = \frac{-2(9-5a)}{6-a} + \frac{2a+9}{6-a} = \frac{-9+12a}{6-a} \\ z = 2 + \frac{2a+9}{6-a} = \frac{21}{6-a} \\ u = 2 \end{cases}$$

Por tanto, si $a \neq 6$,

$$\pi_1 \cap \pi_2 = \begin{pmatrix} 4 \\ \frac{-9+12a}{6-a} \\ \frac{21}{6-a} \\ 2 \end{pmatrix}$$

Ahora el único caso que nos queda comprobar es cuando a=6, que como sabemos que los planos no intersecan, tenemos que comprobar si son paralelos, en caso contrario los planos se cruzan. Para esto expresemos π_1 en forma paramétrica:

$$\pi_1 = \begin{pmatrix} 1 \\ 0 \\ 2 \\ 2 \end{pmatrix} + \lambda \begin{pmatrix} 1 \\ -2 \\ 0 \\ 0 \end{pmatrix} + \mu \begin{pmatrix} 1 \\ 1 \\ 1 \\ 0 \end{pmatrix}, \quad \lambda, \mu \in \mathbb{R}$$

Sean $v_1 = (1, -2, 0 \ 0)$ y $v_2 = (1, 1, 1, 0)$ los vectores directores de π_1 , entonces: $\pi_1 \parallel \pi_2 \iff v_1$ y v_2 satisfacen las ecuaciones homogéneas que definen a π_2 . Comprobemos esto último con v_1 :

$$\begin{cases} 1 - 2(0) = 1 = 0 \\ 1 + 2(-2) - 6(0) = 1 - 4 = -3 = 0 \end{cases}$$

Como hemos visto, v_1 no satisface las ecuaciones de π_2 homogenizadas, por tanto, sin necesidad de comprobarlo por v_2 (ya que π_1 y π_2 son variedades lineales con la misma dimensión), podemos afirmar que $\pi_1 \not \mid \pi_2$. Así que por a = 6 los planos no se intersecan ni son paralelos, por tanto π_1, π_2 se cruzan.