Nr. 353

Das Relaxionsverhalten eines RC-Kreises

Sara Krieg sara.krieg@udo.edu Marek Karzel marek.karzel@udo.edu

Durchführung: 18.12.2018 Abgabe: 08.01.2019

TU Dortmund – Fakultät Physik

Inhaltsverzeichnis

1	Theorie	3
	1.1 Das Relaxionsverhalten	3
	1.2 Die Auf- und Entladung eines Kondensators	3
	1.3 Die Relaxionsphänomene bei periodischer Auslenkung	4
	1.4 Der RC-Kreis als Integrator	5
2	Durchführung	5
3	Auswertung	5
4	Diskussion	5

1 Theorie

Ziel dieses Versuches ist die Untersuchung des Relaxionsverhaltens eines RC-Kreises, sowie demjenigen unter Anschluss von Gleich- oder Wechselstrom.

1.1 Das Relaxionsverhalten

Die Relaxion beschreibt die nicht-oszillatorische Rückkehr eines Systems in einen Grundzustand, aus dem es zuvor gebracht wurde. Diese Rückkehr zum Endzustand $A(\infty)$ ist dabei nur asymptotisch möglich. Außerdem ist die Änderungsgeschwindigkeit proportional zum Abstand der Größe A zu ihrem Endzustand $A(\infty)$.

$$\frac{\mathrm{d}A}{\mathrm{d}t} = c\left[A(t) - A(\infty)\right] \tag{1}$$

Durch Integration von (1) über t von 0 bis t ergibt sich

$$A(t) = A(\infty) + [A(0) - A(\infty)] \cdot e^{ct}.$$
(2)

Allerdings muss, damit A beschränkt ist, c < 0 in (2) gelten. Im Folgenden soll das Relaxionsverhalten für das Beispiel eines über einen Widerstand auf- und entladenden Kondensators nach Abbildung ... betrachtet werden.

1.2 Die Auf- und Entladung eines Kondensators

Liegt an dem Kondensator mit der Kapazität C eine Ladung Q vor, so liegt dort die Spannung

$$U_{\rm C} = \frac{Q}{C} \tag{3}$$

an. Mit dem Zusammenhang

$$I = -\frac{\mathrm{d}Q}{\mathrm{d}t} = \frac{U_{\mathrm{C}}}{R} \tag{4}$$

ergibt sich für die Ladung Q ähnlich zu (1) die zeitliche Differentialgleichung

$$\dot{Q}(t) = -\frac{1}{RC} \cdot Q(t) \ . \tag{5}$$

Mit der Randbedingung $Q(\infty) = 0$, dass der Kondensator sich nach einer unendlich langen Zeitspanne vollständig entladen hat, ergibt sich nach (2) die Lösung

$$Q(t) = Q(0) \cdot e^{\frac{-t}{RC}}.$$
 (6)

Analog führt der Aufladevorgang mit den Randbedingungen Q(0)=0 und $Q(\infty)=CU_0$ zu der Lösung

$$Q(t) = CU_0 \cdot \left(1 - e^{\frac{-t}{RC}}\right) . \tag{7}$$

Der Ausdruck RC wird als Zeitkonstante bezeichnet und gibt an, wie schnell das System seinem Endzustand entgegenstrebt.

1.3 Die Relaxionsphänomene bei periodischer Auslenkung

Als Beispiel für Relaxionsphänomene wird das Verhalten eines RC-Kreises bei anliegender Sinusspannung nach Abbildung ... betrachtet.

An der Schaltung liegt die Spannung

$$U(t) = U_0 \cdot \cos(\omega t) \tag{8}$$

an. Ist die Kreisfrequenz $\omega << \frac{1}{RC}$ hinreichend klein, ist zu jedem Zeitpunkt $U_{\rm C} = U(t)$. Bei einer Erhöhung von ω tritt zwischen den Spannungen eine Phasenverschiebung φ auf und die Amplitude A nimmt wegen des Zurückbleibens des Auf- und Entladevorgangs des Kondensators hinter dem zeitlichen Verlauf von U(t) ab.

Mit einem Ansatz

$$U_{\rm C}(t) = A(\omega)\cos(\omega t + \varphi(\omega)) \tag{9}$$

ergibt sich unter Zuhilfenahme des 2. Kirchhoffschen Gesetzes und des Zusammenhangs

$$I(t) = \frac{\mathrm{d}Q}{\mathrm{d}t} = C \cdot \frac{\mathrm{d}U_{\mathrm{C}}}{\mathrm{d}t} \tag{10}$$

die Gleichung

$$U(t) = U_{\rm R}(t) + U_{\rm C}(t)$$

$$U_0 \cos(\omega t) = -A(\omega) \,\omega R C \sin(\omega t + \varphi) A(\omega) \cos(\omega t + \varphi)$$
(11)

Daraus folgen für die Phasenverschiebung $\varphi(\omega)$ und die Amplitude $A(\omega)$ die Gleichungen

$$\varphi(\omega) = \arctan(-\omega RC) \tag{12}$$

$$A(\omega) = \frac{U_0}{\sqrt{1 + (\omega RC)^2}} \tag{13}$$

Es ist zu erkennen, dass für niedrige Frequenzen die Phase $\varphi(\omega) \to 0$ und die Amplitude $A(\omega) \to U_0$ gegen entsprechende Werte streben. Für größere Frequenzen gilt hingegen $\varphi(\omega) \to \frac{\pi}{2}$ und $A(\omega) \to 0$.

1.4 Der RC-Kreis als Integrator

Unter den Bedingungen

$$\begin{split} \omega >> \frac{1}{RC} \\ \Longrightarrow \; |U_{\rm C}| << |U_{\rm R}| \text{ und } |U_{\rm C}| << |U| \end{split}$$

kann der RC-Kreis die anliegende zeitlich veränderliche Spannung U(t) integrieren. Aus den Gleichungen (11) und (10) ergibt sich die Gleichung

$$U(t) = RC\frac{\mathrm{d}U_{\mathrm{C}}}{\mathrm{d}t} + U_{\mathrm{C}}(t) , \qquad (14)$$

die als

$$U(t) = RC \cdot \frac{\mathrm{d}U_{\mathrm{C}}}{\mathrm{d}t} \tag{15}$$

$$\iff U_{\rm C}(t) = \frac{1}{RC} \int_0^t U(t') \; \mathrm{d}t' \tag{16}$$

genähert werden kann. Dabei ist $U_{\rm C}(t)$ nur unter den oben genannten Bedingungen proportional zu $\int U(t) \; {\rm d}t.$

2 Durchführung

3 Auswertung

4 Diskussion