Genes of purine biosynthesis from Ashbya gossypii and the use thereof in microbial riboflavin synthesis

- The present invention relates to genes of purine biosynthesis from Ashbya gossypii and to the use thereof in riboflavin synthesis.
- Vitamin B2, also called riboflavin, is essential for humans and animals. Vitamin B2 deficiency is associated with inflammations of the mucous membranes of the mouth and throat, itching and inflammations in the skin folds and similar cutaneous lesions, conjunctival inflammations, reduced visual accuracy and clouding of the cornea. Babies and children may experience cessation of growth and loss of weight. Vitamin B2 therefore has economic importance, especially as vitamin supplement in cases of vitamin deficiency and as supplement to animal feed. It is also employed for coloring foodstuffs, for example in mayonnaise, icecream, blancmange etc.

Vitamin B2 is prepared either chemically or microbially (see, for example, Kurth et al. (1996) riboflavin, in: Ullmann's Encyclopedia of industrial chemistry, VCH Weinheim). In the

- 25 chemical preparation process, riboflavin is, as a rule, obtained as pure final product in multistage processes, it being necessary to employ relatively costly starting materials such as, for example, D-ribose. An alternative to the chemical synthesis of riboflavin is the preparation of this substance by
- 30 microorganisms. The starting materials used in this case are renewable raw materials such as sugars or vegetable oils. The preparation of riboflavin by fermentation of fungi such as Eremothecium ashbyii or Ashbya gossypii is known (The Merck Index, Windholz et al., eds. Merck & Co., page 1183, 1983), but
- 35 yeasts such as, for example, Candida, Pichia and Saccharomyces, or bacteria such as, for example, Bacillus, clostridia or corynebacteria, have also been described as riboflavin producers.
- 40 EP 405370 describes riboflavin-overproducing bacterial strains obtained by transformation of the riboflavin biosynthesis genes from Bacillus subtilis. These genes described therein, and other genes involved in vitamin B2 biosynthesis from prokaryotes are unsuitable for a recombinant riboflavin preparation process using eukaryotes such as, for example, Saccharomyces cerevisiae or Ashbya gossypii.

DE 44 20 785 describes six riboflavin biosynthesis genes from Ashbya gossypii, and microorganisms transformed with these genes, and the use of such microorganisms for riboflavin synthesis.

- 5 It is possible with these processes to generate producer strains for microbial riboflavin synthesis. However, these producer strains often have metabolic limitations which cannot be eliminated by the inserted biosynthesis genes or are sometimes induced thereby. Such producer strains are sometimes unable to provide sufficient substrate for saturating some steps in the biosynthesis, so that the biosynthetic capacity of some segments of metabolism cannot be fully exploited.
- It is therefore desirable to enhance further sections of
 metabolic pathways, thereby to eliminate metabolic bottlenecks
 and thus further optimize the microorganism employed for the
 microbial riboflavin synthesis (producer strains) in respect of
 their ability for riboflavin synthesis. It is desirable to
 identify the enhancing sections of the complex metabolism and to
 enhance these in a suitable way.

The present invention relates to novel proteins of purine biosynthesis, the genes therefor and the use thereof for microbial riboflavin synthesis.

Purine metabolism (for a review, see, for example, Voet, D. and Voet, J.G., 1994, Biochemie, VCH Weinheim, pages 743-771; Zalkin, H. and Dixon, J.E., 1992, De novo purine nucleotide

30 biosynthesis, in: Progress in nucleic acid research and molecular biology, Vol. 42, pages 259-287, Academic Press) is a part of the metabolism which is essential for all life forms. Faulty purine metabolism may in humans lead to serious diseases (e.g. gout). Purine metabolism is moreover an important target for treating oncoses and viral infections. Numerous publications have appeared describing substances which intervene in purine metabolism for these indications (as review, for example Christopherson, R.I. and Lyons, S.D., 1990, Potent inhibitors of de novo pyrimidine and purine biosynthesis as chemotherapeutic agents, Med. Res.

40 Reviews 10, pages 505-548).

Investigations on the enzymes involved in purine metabolism (Smith, J.L., Enzymes in nucleotide synthesis, 1995, Curr. Opinion Struct. Biol. 5, 752-757) aim to develop novel immunosuppressives, antiparasitic or antiproliferative medicines (Biochem. Soc. Transact. 23, pages 877-902, 1995).

డు

These medicines are normally not naturally occurring purines, pyrimidines or compounds derived therefrom.

- The present invention relates to a protein having the polypeptide sequence depicted in SEQ ID NO:2 or a polypeptide sequence obtainable from SEQ ID NO:2 by substitution, insertion or deletion of up to 15% of the amino acids, and having the enzymatic activity of a phosphoribosyl-pyrophosphate synthetase.
- The sequence depicted in SEQ ID NO:2 is the gene product of the KPR1 gene (SEQ ID NO:1) obtained from Ashbya gossypii.
- The invention further relates to a protein having the polypeptide sequence depicted in SEQ ID NO:5 or a polypeptide sequence obtainable from SEQ ID NO:5 by substitution, insertion or deletion of up to 10% of the amino acids, and having the enzymatic activity of a glutamine-phosphoribosyl-pyrophosphate amidotransferase.
- The sequence depicted in SEQ ID NO:5 is the gene product of the ADE4 gene (SEQ ID NO:3) obtained from Ashbya gossypii.
- The invention further relates to a protein having the polypeptide sequence depicted in SEQ ID NO:8 or a polypeptide sequence obtainable from SEQ ID NO:8 by substitution, insertion or deletion of up to 20% of the amino acids, and having the enzymatic activity of an IMP dehydrogenase.
- The sequence depicted in SEQ ID NO:8 and 9 is the gene product of the GUAl gene (SEQ ID NO:7) obtained from Ashbya gossypii.
- The invention further relates to a protein having the polypeptide 35 sequence depicted in SEQ ID NO:11 or a polypeptide sequence obtainable from SEQ ID NO:11 by substitution, insertion or deletion of up to 10% of the amino acids, and having the enzymatic activity of a GMP synthetase.
- 40 The sequence depicted in SEQ ID NO:11 is the gene product of the GUA2 gene (SEQ ID NO:10) obtained from Ashbya gossypii.
- The invention further relates to a protein having the polypeptide sequence depicted in SEQ ID NO:13 or a polypeptide sequence
 45 obtainable from SEQ ID NO:13 by substitution, insertion or

deletion of up to 10% of the amino acids, and having the enzymatic activity of a phosphoribosyl-pyrophosphate synthetase.

The sequence depicted in SEQ ID NO:13 is the gene product of the 5 KPR2 gene (SEQ ID NO:12) obtained from Ashbya gossypii.

These gene products mentioned can be modified by conventional methods of gene technology, such as site-directed mutagenesis, so that particular amino acids are replaced, additionally inserted or deleted. Amino acid residues are normally (but not exclusively) replaced by those of similar volume, charge or hydrophilicity/ hydrophobicity in order not to lose the enzymatic properties of the gene products. In particular, modifications of the amino acid sequence in the active center frequently results in a drastic alteration in the enzymatic activities. However, modifications of the amino acid sequence and other, less essential sites are often tolerated.

It is possible with the novel proteins

20

25

30

 for up to 15, preferably up to 10 and particularly preferably up to 5, % of the amino acids to be modified, by comparison with sequences depicted in the sequence listing, in the case of the gene product of the AgKPR1 gene;

2. for up to 10 and particularly preferably up to 5% of the amino acids to be modified, by comparison with the sequences depicted in the sequence listing, in the case of the gene product of the AgADE4 gene;

- 3. for up to 20, preferably up to 15, particularly preferably up to 10 and especially preferably up to 5, % of the amino acids to be modified, by comparison with the sequences depicted in the sequence listing, in the case of the gene product of the AgGUAl gene;
- 4. for up to 10 and particularly preferably up to 5% of the amino acids to be modified, by comparison with the sequences depicted in the sequence listing, in the case of the gene product of the AgGUA2 gene;
- 5. for up to 10%, preferably up to 7% and particularly preferably up to 5%, of the amino acids to be modified, by comparison with the sequences depicted in the sequence listing, in the case of the gene product of the AgKPR2 gene.

30

Preferred proteins are those which, while they still have the relevant enzymatic activity, have altered regulation. Many of these enzymes are subject to a strong control of the activity by intermediates and final products (feedback inhibition). This leads to the activity of the enzymes being restricted as soon as sufficient final product is present.

However, in the case of producer strains, this economic control in the physiological state often results in it being impossible to increase the productivity beyond a certain limit. Elimination of such feedback inhibition results in the enzymes retaining their activity, irrespective of the final product concentration, and thus metabolic bottlenecks are bypassed. This in the end leads to a marked increase in riboflavin biosynthesis.

Preferred novel proteins are those no longer inhibited by secondary products of metabolic pathways (derived from products of the enzymes). Particularly preferred novel proteins are those no longer inhibited by intermediates of purine biosynthesis, in particular by purine bases, purine nucleosides, purine nucleotide 5'-monophosphates or purine nucleotide 5'-diphosphates or purine nucleotide 5'-triphosphates. Particularly preferred novel proteins are those with subsequent modifications of the amino acid sequence modifications which comprise these subsequent modifications.

Modifications of the amino acid sequence of the AgKPR1 gene product:

Lysine at position 7 replaced by valine
Aspartate at position 52 replaced by histidine
Leucine at position 131 replaced by isoleucine
35 Aspartate at position 186 replaced by histidine
Alanine at position 193 replaced by valine

Histidine at position 196 replaced by glutamine

40 Modifications of the amino acid sequence of the AgADE4 gene product:

Aspartate at position 310 replaced by valine
Lysine at position 333 replaced by alanine
45
Alanine at position 417 replaced by tryptophan

The following Examples describe the preparation of the novel proteins and nucleic acids and the use thereof for producing microorganisms with increased riboflavin synthesis.

5 Example 1:

Production of a genomic gene bank from Ashbya gossypii ATCC10895

Genomic DNA from Ashbya gossypii ATCC10895 can be prepared by
10 conventional methods as described, for example, in WO9703208. The
genomic gene bank can be constructed starting from this DNA by
conventional methods (e.g. Sambrook, J. et al. (1989) Molecular
cloning: a laboratory manual, Cold Spring Harbor Laboratory Press
or Ausubel, F.M. et al. (1994) Current protocols in molecular
15 biology, John Wiley and sons) in any suitable plasmids or
cosmids, such as, for example, SuperCosl (Stratagene, La Jolla,
USA).

Example 2:

Cloning of the gene for PRPP synthetase from Ashbya gossypii ATCC10895 (AgKPR1)

Cloning of the gene for PRPP synthetase from Ashbya gossypii

(AgKPR1) can take place in two steps. In the first step, it is possible with the following oligonucleotides to amplify a defined region of the KPR1 gene from genomic DNA from Ashbya gossypii by PCR:

30 KPR5: 5'- GATGCTAGAGACCGCGGGGTGCAAC -3'
KPR3: 5'- TGTCCGCCATGTCGTCTACAATAATA -3'

The PCR can be carried out by a conventional method. The resulting 330 bp DNA fragment can be cloned by conventional methods into the vector pGEMT (Promega, Madison, USA) and be sequenced.

A genomic cosmid gene bank can be screened by conventional

methods using this nucleotide sequence as probe. A 1911 bp

PstI-HindIII fragment of a cosmid which gives a signal with this probe can then be subcloned into the vector pBluescript SK+

(Stratagene, La Jolla, USA). The KPR1 gene and incomplete ORFs which show homology with the UBC6 and UBP9 genes of Saccharomyces cerevisiae are located on this fragment.

The PRPP synthetase KPR2 and the putative PRPP synthetase KPR4 from Saccharomyces cerevisiae are the enzymes which are most closely related, with similarities of 80.2% and 79.6% respectively, to the PRPP synthetase from Ashbya gossypii. The 5 KPR2 and KPR4 genes from Saccharomyces cerevisiae have 67.6% and 67.8%, respectively, similarity with the KPR1 gene from Ashbya gossypii. Other enzymes and genes from other organisms are distinctly more different from the KPR1 gene and from the PRPP synthetase from Ashbya gossypii.

10

The sequence comparisons can be carried out, for example, with the Clustal algorithm with the aid of the PAM250 weighting table or the Wilbur-Lipman DNA alignment algorithm (as implemented, for example, in the MegAlign 3.06 program package supplied by DNAstar). It is not possible with the oligonucleotide pair described to amplify the genes for the different PRPP synthetases from Saccharomyces cerevisiae.

It is also possible to use the probe to find a further clone from 20 the gene bank. This second clone showed a gene which likewise codes for a PRPP synthetase. This gene is called AgKPR2 and is distinctly different from AgKPR1. AgKPR2 shows 66% identity with AgKPR1 at the amino acid level. The AgKPR2 gene (SEQ ID NO:12) was compared with all proteins of the Swissprot database. The 25 maximum similarity shown by this protein (88% identity and 95% similarity) is with the KPR3 gene product from Saccharomyces cerevisiae. The gene product of the AgKPR1 gene is responsible for the predominant part of the PRPP synthetase activity in Ashbya gossypii. Disruption of the AgKPR1 gene of Ashbya gossypii $^{f 30}$ (analogous to the disruption of other Ashbya genes as in the descriptions in Examples 6-8) results in a distinctly reduced enzyme activity: in place of 22 U/mg of protein now only 3 U/mg of protein. See Example 13 for the analysis. Examples 11, 13 and 15 relate to the AgKPR1 gene, but studies of these types can also 35 be carried out with AgKPR2.

Example 3:

Cloning of the gene for glutamine-PRPP amidotransferase from 40 Ashbya gossypii ATCC10895 (AgADE4)

The cloning of the gene for glutamine-PRPP amidotransferase from Ashbya gossypii (AgADE4) can take place in two steps.

In the first step, it is possible with the following oligonucleotides to amplify a defined region of the AgADE4 gene from genomic DNA of Ashbya gossypii by PCR:

ADE4A: 5'- ATATCTTGATGAAGACGTTCACCGT -3'

ADE4B: 5'- GATAATGACGGCTTGGCCGGGAAGA -3'

The PCR can be carried out by a conventional method. The resulting 360 bp DNA fragment can be cloned by conventional methods into the vector pGEMT (Promega, Madison, USA) and then be sequenced.

- This sequence can be used as probe to screen a genomic cosmid gene bank by conventional methods. It is then possible to subclone a 5369 bp HindIII fragment from a cosmid which gives a signal with this probe into the vector pBluescript SK+ (Stratagene, La Jolla, USA). The AgADE4 gene and the gene for the Ashbya homolog for the mitochondrial ABC transporter ATM1 from Saccharomyces cerevisiae and another open reading frame whose function is unknown are located on this fragment.
- The AgADE4 gene product (glutamine-PRPP amidotransferase) shows

 20 the most evident similarity with the ADE4 gene products from
 Saccharomyces cerevisiae and Saccharomyces kluyveri (81% and
 86.3% respectively). The corresponding genes show only 68.8% and
 72%, respectively, homology, however. The similarity with other
 glutamine-PRPP amidotransferases is distinctly less (e.g. only
 27.5% similarity with the corresponding enzyme from Bacillus
 subtilis). The sequence comparisons can be carried out as
- It is not possible with the described pair of oligonucleotides to amplify the ADE4 genes from Saccharomyces cerevisiae or Saccharomyces kluyveri.

Example 4:

described in Example 2.

35 Cloning of the gene for inosine-monophosphate dehydrogenase from Ashbya gossypii ATCC10895 (AgGUA1)

Cloning of the gene for inosine-monophosphate dehydrogenase from Ashbya gossypii (AgGUA1) can take place in two steps.

In the first step, it is possible with the following oligonucleotides to amplify a defined region of the AgGUA1 gene from genomic DNA from Ashbya gossypii by PCR:

45

40

IMP3: 5'- CAGACCGGCCTCGACCAGCATCGCC - 3'

The PCR can be carried out by a conventional method. The resulting 230 bp DNA fragment can be cloned by conventional methods into the vector pGEMT (Promega, Madison, USA) and then be sequenced.

This sequence can be used as probe to screen a genomic cosmid gene bank by conventional methods. A 3616 bp ApaI fragment from a cosmid which gives a signal with this probe can be subloned into the vector pBluescript SK+ (Stratagene, La Jolla, USA). The coding region of the AgGUAl gene is 1569 bp long and is interrupted by a 161 bp-long intron. The intron boundaries (5' splice site AGGTATGT and 3' splice site CAG) can be verified by cloning and sequencing of AgGUAlcDNA.

AgGUAl is the first gene decribed from Ashbya gossypii having an intron.

20

The AgGUA1 gene product (IMP dehydrogenase) shows the most evident similarity with the 4 IMP dehydrogenases from Saccharomyces cerevisiae (similarities between 67% and 77.2%). The similarity with other IMP dehydrogenases is distinctly less.

- 25 The sequence comparisons can be carried out as described in Example 2. Ashbya gossypii appears to have only one gene for this enzyme. This can be shown by Southern blotting with genomic DNA from Ashbya gossypii using the abovementioned probe.
- The gene from Saccharomyces cerevisiae which codes for the IMP dehydrogenase (IMH3) which has most similarity with the AgGUAl gene product has a similarity of 70.2% with the AgGUAl gene. It is not possible with the described pair of oligonucleotides to amplify this gene from Saccharomyces cerevisiae.

Example 5:

Cloning of the gene for guanosine-monophosphate synthetase from Ashbya gossypii ATCC10895 (AgGUA2)

40

Cloning of the gene for guanosine-monophosphate synthetase from Ashbya gossypii (AgGUA2) can take place in two steps.

In the first step, it is possible with the following oligonucleotides to amplify a defined region of the AgGUA2 gene from genomic DNA from Ashbya gossypii by PCR:

GUA2B: 5'- AGGCTGGATCCTGGCTGCCTCGCGC -3'

The PCR can be carried out by a conventional method. The resulting 750 bp DNA fragment can be cloned by conventional methods into the vector pBluescript SK+ (Stratagene, La Jolla, USA) and then be sequenced.

This sequence can be used as probe to screen a genomic cosmid gene bank by conventional methods. A 2697 bp ClaI-EcoRV fragment from a cosmid which gives a signal with this probe can then be subcloned into the vector pBluescript SK+ (Stratagene, La Jolla, USA).

15 The AgGUA2 gene product (GMP synthetase) shows the most evident similarity with GMP synthetase from Saccharomyces cerevisiae (similarity 86.6%). The genes for the GMP synthetases from Saccharomyces cerevisiae and Ashbya gossypii show 71.2% homology. The similarity of the AgGUA2 gene product with other GMP synthetases is distinctly less. The sequence comparisons can be carried out as described in Example 2.

It is not possible with the described pair of oligonucleotides to amplify the GMP synthetase gene from Saccharomyces cerevisiae.

Example 6:

25

Disruption of the AgADE4 gene from Ashbya gossypii ATCC10895

30 Disruption of a gene means destroying the functionality of a genomic copy of the gene either by (a) deleting part of the gene sequence, or by (b) interrupting the gene by inserting a piece of foreign DNA into the gene or by (c) replacing part of the gene by foreign DNA. Any foreign DNA can be used, but it is preferably a gene which brings about resistance to any suitable chemical. Any suitable resistance genes can be used for disruption of genes.

A gene which confers resistance to G418 can be used to disrupt the AgADE4 gene from Ashbya gossypii ATCC10895. It is possible 40 for this to be the kanamycin resistance gene from TN903 under the control of the TEF promoter of Ashbya gossypii (see, for example, Yeast 10, pages 1793-1808, 1994, WO9200379). The gene is flanked 5' and 3' by several cleavage sites for restriction endonucleases, thus constructing a cassette which allows any 45 desired constructions of gene disruptions by conventional methods of in vitro manipulation of DNA.

The resulting plasmid can be replicated in E.coli. The BamHI / BglII fragment of the construct ade4::G418 can be prepared, purified by agarose gel electrophoresis and subsequent elution of the DNA from the gel (see Proc. Natl. Acad. Sci. USA 76, 615-619, 1979) and employed for transforming Ashbya gossypii.

Ashbya gossypii can be transformed by protoplast transformation (Gene 109, 99-105, 1991), but preferably by electroporation (BioRad Gene Pulser, conditions: cuvettes with slit widths 0.4 mm, 1500V, $25\mu\text{F}$, 100Ω). Transformed cells are selected from G418-containing solid medium.

Resulting G418-resistant clones can be examined by conventional methods of PCR and Southern blot analysis to find whether the 20 genomic copy of the AgADE4 gene is in fact destroyed. Clones whose AgADE4 gene is destroyed are purine-auxotrophic.

Example 7:

45

Disruption of the AgGUA1 gene from Ashbya gossypii ATCC10895 ${f 25}$

See Example 6 for a description of the principle of disruption of genes, the use of a resistance cassette and the transformation of Ashbya gossypii.

The internal XhoI / KpnI fragment of AgGUA1 (between positions 1620 and 2061) can be replaced by a resistance cassette as outlined above. The resulting construct is called gual::G418.

35 The resulting plasmid can be replicated in E.coli. The XbaI / BamHI fragment of the construct gual::G418 can be prepared, purified by agarose gel electrophoresis and subsequent elution of the DNA from the gel and employed for transforming Ashbya gossypii.

Resulting G418-resistant clones can be examined by conventional methods of PCR and Southern blot analysis to find whether the genomic copy of the AgGUA1 gene is in fact destroyed. Clones whose AgGUA1 gene is destroyed are guanine-auxotrophic.

all derig the rest that a land rest was and a till the start with med the start with the start w

Example 8:

Disruption of the AgGUA2 gene from Ashbya gossypii ATCC10895

See Example 6 for a description of the principle of disruption of genes, the use of a resistance cassette and the transformation of Ashbya gossypii.

The internal SalI fragment of AgGUA2 (between positions 1153 and 10 1219) can be replaced by a resistance cassette as outlined above. The resulting construct is called gua2::G418.

The resulting plasmid can be replicated in E.coli. The XbaI / BamHI fragment of the construct gua2::G418 can be prepared,

15 purified by agarose gel electrophoresis and subsequent elution of the DNA from the gel and employed for transforming Ashbya gossypii.

- Resulting G418-resistant clones can be examined by conventional methods of PCR and Southern blot analysis to find whether the genomic copy of the AgGUA2 gene is in fact destroyed. Clones whose AgGUA2 gene is destroyed are guanine-auxotrophic.
- 25 Example 9: Cloning of the GAP promoter from Ashbya gossypii

The gene for glyceraldehyde-3-phosphate dehydrogenase from Ashbya gossypii (AgGAP) can be cloned by generally customary screening 30 of a genomic Ashbya gossypii cosmid gene bank (see Example 1, with a probe which was constructed from information on the sequence of the GAP gene from Saccharomyces cerevisiae).

The 5' nontranslated region of the gene (-373 to -8 region relative to the translation start) was assumed to be promoter.

2 cleavage sites for the restriction endonuclease NotI were inserted flanking this sequence. In this region there are the bona fide TATA Box (nt 224-230), two sequence sections (nt 43-51 and 77-85) which correspond to the GCR1 binding element, and a sequence section (nt 9-20) whose complement partially corresponds to the RAP1 binding element of Saccharomyces cerevisiae (see, for example, Johnston, M. and Carlson, M. (1992) pp.193-281 in The molecular biology and cellular biology of the yeast

Saccharomyces: Gene expression, Cold Spring Harbor Laboratory Press). The promoter cassette constructed in this way can be

placed as easily portable expression signal in front of any

desired gene for overexpression in Ashbya gossypii and results in

pronounced overexpression of genes in Ashbya gossypii, as shown in Example 11.

Example 10:

- Construction of plasmids having genes under the control of the GAP promoter from Ashbya gossypii
- In order to introduce the GAP promoter cassette 5' of the coding region of the AgADE4 gene, a unique NotI cleavage site (recognition sequence GCGGCCGC) was inserted by conventional methods (e.g. Glover, D.M. and Hames, B.D. (1995) DNA cloning Vol.1, IRL press) 8 bp 5' of the ATG start codon.
- 15 The GAP promoter cassette can then be inserted via NotI into this position. An analogous procedure can be used for cloning the GAP promoter cassette 5' of the coding region of the genes AgKPR1, AgGUA1, AgGUA2 and for variants of the genes AgADE4, AgKPR1, AgGUA1 and AgGUA2.

20

Expression of the genes which harbor the GAP promoter cassette 5' of the coding region in Ashbya gossypii is controlled by the GAP promoter.

25 Example 11:

Overexpression of genes in Ashbya gossypii under the control of the GAP promoter

- 30 Transformation of Ashbya gossypii with the DNA constructs described in Example 10 can be carried out as described in Example 6. The recipient clones can preferably, but not exclusively, be those which, before the transformation to be carried out here, harbor a disruption of the gene to be
- 35 overexpressed. Thus, for example, the Ashbya gossypii mutant which is described in Example 6 and harbors an ade4::G418 mutation can be transformed with a GAP-ADE4 construct described in Example 10. Integration of the construct into the genome can be verified by Southern blot analysis. The resulting clones no
- 40 longer have a G418 resistance gene (and are thus G418-sensitive) and are purine-prototrophic. Overexpression can be demonstrated by Northern blot analysis or detection of the enzymatic activity (as described in Example 12). On expression of the AgADE4 gene under the natural promoter, 0.007 U/mg of protein can be
- 45 detected. On expression of the AgADE4 gene under the GAP promoter, 0.382 U/mg of protein can be detected.

A sequence section of the coding region of the AgADE4 gene can be used as probe. An analogous procedure can be used with AgKPR1, AgGUA1, AgGUA2 and for variants of all these genes. In addition, combinations of one of these genes together with other genes can 5 be introduced in this way into the genome of Ashbya gossypii.

The wild type Ashbya gossypii has a specific PRPP synthetase activity of 22 U/mg of protein (see Example 13 for analysis of the PRPP synthetase). On expression of the AgKPR1 gene with the 10 GAP promoter, 855 U/mg of protein is detectable.

Example 12:

30

Variants of the AgADE4 gene product (glutamine-PRPP amidotransferase) no longer subject to feedback inhibition by purines or intermediates of purine synthesis.

Glutamine-PRPP amidotransferases are subject to feedback inhibition by purine nucleotides. This inhibition is found in numerous organisms (see, for example, Switzer, R.L. (1989) Regulation of bacterial Glutamine Phosphoribosylpyrophosphate Amidotransferase, in: Allosteric enzymes pp. 129-151, CRC press, Boca Raton).

25 The glutamine-PRPP amidotransferase from Ashbya gossypii is likewise inhibited by AMP or GMP (see Figure). The activity of glutamine-phosphoribosyl-pyrophosphate amidotransferase from Ashbya gossypii can be measured as described in Messenger and Zalkin (1979) J. Biol. Chem. 254, pages 3382-3392.

Modified glutamine-phosphoribosyl-pyrophosphate amidotransferases no longer inhibited by purines can be constructed. It is evident that overexpression of such deregulated enzymes will enhance purine metabolism distinctly more than overexpression of enzymes subject to feedback inhibition. Alterations in the sequence of the AgADE4 gene can be brought about by conventional methods (e.g. Glover, D.M. and Hames, B.D. (1995) DNA cloning Vol.1, IRL press). It is possible, for example, for the following amino acids in glutamine-phosphoribosyl-pyrophosphate amidotransferase to be replaced:

The codon which codes for aspartate at position 310 can be replaced by a codon which codes for valine. The codon which codes for lysine at position 333 can be replaced by a codon which codes for alanine. The codon which codes for alanine at position 417 can be replaced by a codon which codes for tryptophan. It is

additionally possible to construct AgADE4 genes which harbor combinations of these substitutions.

- All enzymes which carry D310V, K333A, A417W or any combination of substitutions which comprise D310V or K333A show diminished feedback inhibition by AMP and GMP (see Figure). This can be shown, for example, by expressing the enzymes in Ashbya gossypii (see Example 11).
- Example 13:

Variants of the AgKPR1 gene product (PRPP synthetase) no longer subject to feedback inhibition by purines or intermediates of purine synthesis.

15

PRPP synthetases are subject to feedback inhibition by purines, pyrimidines and amino acids. This inhibition is found in numerous organisms (see, for example, Gibson, K.J. et al. (1982) J. Biol. Chem. 257, 2391-2396; Tatibana, M. et al. (1995) Adv., Enzyme 20 Regul. 35, 229-249 and papers quoted therein).

In clinical medical research there are descriptions of cases of hereditary gout based on enhanced purine biosynthesis. The molecular cause thereof is what is called superactivity of human

- 25 PRPP synthetase (see, for example, Amer. J. Med. 55 (1973) 232-242; J. Clin. Invest. 96 (1995) 2133-2141; J. Biol. 268 (1993) 26476-26481). The basis thereof may be a mutation which leads to the enzyme no longer being subject to feedback inhibition by purines.
- 30 The activity of the PRPP synthetase from Ashbya gossypii can be measured as described in Anal. Biochem. 98 (1979) 254-263 or J. Bacteriol. 174 (1992) 6852-6856. The specific activity (U/mg) is defined via the amount of resulting product (nmol/min/g of protein).
- 35 It is possible to construct modified PRPP synthetases no longer inhibited by purines. It is evident that overexpression of such deregulated enzymes enhances purine metabolism distinctly more than does overexpression of enzymes subject to feedback inhibition. Modifications of the sequence of the AgKPR1 gene may
- 40 be brought about by conventional methods (e.g. Glover, D.M. and Hames, B.D. (1995) DNA cloning Vol. 1, IRL press). It is possible, for example, to exchange the following amino acids of the PRPP synthetase:
- The codon which codes for leucine at position 131 can be replaced 45 by a codon which codes for isoleucine. The codon which codes for histidine at position 196 can be replaced by a codon which codes for glutamine.

All enzymes which have one of these amino acid exchanges (L131I or H196Q) show a reduced feedback inhibition by purines. Figure 2 shows this by the example of ADP.

This can be shown after expression of the corresponding enzymes 5 in Ashbya gossypii. This can be carried out in accordance with Example 11.

Example 14:

Variants of the AgGUA1 gene product (IMP dehydrogenase) no longer subject to feedback inhibition by purines or intermediates of purine synthesis.

Example 15:

- 15 Effects of the enhancement and/or optimization of enzymes of purine metabolism and their genes on riboflavin production in Ashbya gossypii
- The original strain Ashbya gossypii ATCC10895 can be tested for riboflavin productivity in shaken flasks, comparing with clones which are derived therefrom and harbor chromosomal copies of genes under the control of the GAP promoter (as described in Example 11). It is possible to use for this purpose 300 ml shaken flasks with 20 ml of YPD medium (Sambrook, J. et al. (1989)

 Molecular cloning: a laboratory manual, Cold Spring Harbor Laboratory Press), incubating at a temperature of 28°C.
- After 2 days, the control strain produces on average 14.5 mg of riboflavin per 1 of culture broth. Strains which overexpress genes for enzymes of purine metabolism (as shown, for example, in Example 11), or overexpress genes for optimized enzymes of purine metabolism (for example as in Examples 12, 13 and 14), produce more riboflavin. Thus, the strain which overexpresses

 AGADE4D310VK333A (Example 12) produces on average 45.4 mg of riboflavin per 1 of culture broth in 2 days.

The strain which overexpresses AgKPR1 with the GAP promoter produces not 14 mj/l (like the WT) but 36 mg/l riboflavin. The strain which overexpresses AgKPR1H196Q with the GAP promoter produces 51 mg/l riboflavin.

Figure 1:

Measurement of the activity of Gln-PRPP amidotransferase from A. 45 gossypii and of modified forms of the enzyme as a function of the concentration of adenosine 5'-monophosphate (AMP) and guanosine 5'-monophosphate (GMP).

WT: Gln-PRPP amidotransferase

A417W: Gln-PRPP amidotransferase, alanine at position 417 replaced by tryptophan.

5 K333A: Gln-PRPP amidotransferase, lysine at position 333 replaced by alanine.

D310VK333A: Gln-PRPP amidotransferase, aspartate at position 310 replaced by valine and lysine at position 333 replaced by alanine.

10

Figure 2:

Measurement of the activity of the PRPP synthetase from A. gossypii and of modified forms of the enzyme as a function of the concentration of adenosine 5'-diphosphate (ADP)

15 WT: PRPP synthetase

L131I: PRPP synthetase, leucine at position 131 replaced by isoleucine

H196Q: PRPP synthetase, histidine at position 196 replaced by glutamine

20 H196Q, L131I: PRPP synthetase, histidine at position 196 replaced by glutamine and leucine at position 131 replaced by isoleucine

25

30

35

40

45

SEQUENCE LISTING

- (1) GENERAL INFORMATION:
 - (i) APPLICANT:
 - (A) NAME: BASF Aktiengesellschaft
 - (B) STREET: Carl-Bosch-Strasse 38
 - (C) CITY: Ludwigshafen
 - (E) COUNTRY: Federal Republic of Germany
 - (F) POSTAL CODE: D-67056
 - (G) TELEPHONE: 0621/6048526
 - (H) TELEFAX: 0621/6043123
 - (I) TELEX: 1762175170
 - (ii) TITLE OF APPLICATION: Genes of purine biosynthesis from Ashbya gossypii and their use in microbial riboflavin biosynthesis
 - (iii) NUMBER OF SEQUENCES: 13
 - (iv) COMPUTER-READABLE FORM:
 - (A) MEDIUM TYPE: Floppy disk
 - (B) COMPUTER: IBM PC compatible
 - (C) OPERATING SYSTEM: PC-DOS/MS-DOS
 - (D) SOFTWARE: PatentIn Release #1.0, Version #1.25 (EPO)
- (2) INFORMATION FOR SEQ ID NO: 1:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 1911 base pairs
 - (B) TYPE: Nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: DNA (genomic)
 - (iii) HYPOTHETICAL: NO
 - (iv) ANTISENSE: NO
 - (ix) FEATURES:
 - (A) NAME/KEY: 5'UTR
 - (B) LOCATION: 1..625
 - (ix) FEATURES:
 - (A) NAME/KEY: CDS
 - (B) LOCATION: 626..1582
 - (ix) FEATURES:
 - (A) NAME/KEY: 3'UTR

(B) LOCATION: 1583..1911

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 1:

GGI	AGTO	GCT	CATO	GACA	GA C	ACAA	TCGC	G TG	TTCT	CTCT	GAA	TCGI	CCA	TTGG	GTGTCA	60
GCA	TCCT	GAT	CGCG	GGCG	GA I	'GGAA	TGGG.	T AA	TCAT	TAGG	AAA	CACC	AAT	GTCC	CATGGT	120
ATT	GTCC	GTC	CTCG	TATG	GT G	TCTC	AGGA	.G GA	.CCCG	TGAT	CAC	GTAG	TGC	CACA	CCAGGA	180
TAT	TGTC	TTC	CTTT	'GGTG	CT G	CCAC	GATG	T AG	GGCG	GGGG	GTT	CTCG	GTC	ATCA	TTTTGT	240
ACT	CCTT	TGA	GAGC	CGCT	TG T	ACGC	CTGT	C TT	GATG	CCAT	CTT	GCCT	ACT	ATTA	GTTTCT	300
CAC	CACT	TCC	CGCC	AAAC	AA T	CTGC.	ACTT	T AC	GAGC	GCTA	TCT	ATCC	CTC	GGGT	CGCTCT	360
AGT	TGAT	TAT	TGGC	GAAA	CT G	ATAG	TTCA	G GT	ACTT	CCAT	GAT	GCGG	TCA	TATC	CACGTA	420
TGT	GATC	ACG	TGAT	CATC.	AG C	CATG	CTGC	C AG	CTCA	CGGG	CCT	GCCT.	ACA	CTAT'	TGGAGG	480
CTC	TGTG	AGT	CATG	ATTT.	AT T	GCAT	ATCA	A GC	CCAG.	ATAG	TCG	TTGG	GGA	TACT	ACCGTT	540
GCC	GCGA	TGA	GCTC	CGAT	AT T	AAGT'	TGTA	G CC	AAAA	ATTT	TAA	CGGA	TGA	CTTC	TTAACA	600
GTT.	ATTG.	ACG	CCGC.	AATC	CT A	CGCC								CTG Leu		652
							1	501	DCI	11511	5	*TC	пуз	Leu	пец	
GCA Ala	GGT Gly	AAC Asn	TCG Ser	CAC His	CCG	GAC	CTA	GCT	GAG	AAG	GTC	TCC	GTT	CGC	CTA	700
10	•				15		200		O1u	20	Val	261	Val	ALG	25	
			CTT Leu													748
4			204	30	2,5	110	Gry	Val	35	птр	TÄT	ser	ASII	40	GIU	
ACG Thr	TCA	GTT Val	ACT	ATC	GGC	GAA	AGT	ATC	CGT	GAT	GAA	GAT	GTC	TAC	ATC	796
	DOI	vul	Thr 45	110	GIY	Giu	ser	50	Arg	ASP	GIU	Asp	55	Tyr	lle	
			GGA													844
++-	211	60	Gly	TIIT	ату	GIU	65 65	GIU	тте	ASN	Asp	Phe 70	Leu	Met	Glu	
			ATG													892
ыeu	75	тт 6	Met	тте	uis	80	cys	Arg	ser	Ala	Ser 85	Aía	Arg	Lys	Ile	

			TTC Phe			•		940
			ACT Thr					988
			GTT Val					1036
			ATT Ile					1084
			CAA Gln 160					1132
			GGG Gly					1180
			TTC Phe					1228
			ATG Met					1276
			GAC Asp					1324
			ATC Ile 240					1372
			TTT Phe					1420
			ATC Ile					1468

														TTG Leu	GCC Ala	٠	1516
	Ala													CTG Leu			1564
			GTC Val		TAG	rgcto	GTC P	AGTGO	GCAG <i>I</i>	AT GO	CATGI	ATCGO	TG(GCCT?	TTA		1619
ATCI	GTGI	'AA G	STTGA	ATACA	AA TO	GCAGT	יאאמי	r AC	AGTAC	CATA	AAAC	TGA	ATG '	rttt	CACT'	r	1679
AGGG	GTGC	TT 1	rgtte	STTCI	G A	PAGCO	GTGT	G TGC	CGAAT	TTG	GAGG	GTGA	AAG !	PTGA!	ACATC	A	1739
CGT	ATGA	AT A	ACAAA	ACAAG	SA T	rgcac	CATT	A GG)AAA	GCGA	TAA	ATTAT	TTT	ATTA	TTTGC.	A	1799
ACTO	GCCI	TT (GAGCO	STTTF	AA GO	CCTGI	AACAT	r TTI	rtgc	CCTT	TTGT	TTG	ACC (GTAC	CGTTA'	r	1859
CACT	CGTC	CT 1	CATAT	ratgo	GC TA	ATCC	TTCT	C TTC	CCGG2	AACT	TCTT	CGA	GCG :	ΓA			1911

(2) INFORMATION FOR SEQ ID NO: 2:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 318 amino acids
 - (B) TYPE: amino acid
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 2:

Met Ser Ser Asn Ser Ile Lys Leu Leu Ala Gly Asn Ser His Pro Asp 1 5 10 15

Leu Ala Glu Lys Val Ser Val Arg Leu Gly Val Pro Leu Ser Lys Ile 20 25 30

Gly Val Tyr His Tyr Ser Asn Lys Glu Thr Ser Val Thr Ile Gly Glu
35 40 45

Ser Ile Arg Asp Glu Asp Val Tyr Ile Ile Gln Thr Gly Thr Gly Glu 50 55 60

Gln Glu Ile Asn Asp Phe Leu Met Glu Leu Leu Ile Met Ile His Ala
65 70 75 80

Cys Arg Ser Ala Ser Ala Arg Lys Ile Thr Ala Val Ile Pro Asn Phe 85 90 95

Pro Tyr Ala Arg Gln Asp Lys Lys Asp Lys Ser Arg Ala Pro Ile Thr 100 105 110

Ala Lys Leu Val Ala Lys Met Leu Glu Thr Ala Gly Cys Asn His Val 115 120 125

Ile Thr Met Asp Leu His Ala Ser Gln Ile Gln Gly Phe Phe His Ile 130 135 140

Pro Val Asp Asn Leu Tyr Ala Glu Pro Asn Ile Leu His Tyr Ile Gln 145 150 155 160

His Asn Val Asp Phe Gln Asn Ser Met Leu Val Ala Pro Asp Ala Gly 165 170 175

Ser Ala Lys Arg Thr Ser Thr Leu Ser Asp Lys Leu Asn Leu Asn Phe 180 185 190

Ala Leu Ile His Lys Glu Arg Gln Lys Ala Asn Glu Val Ser Arg Met 195 200 205

Val Leu Val Gly Asp Val Ala Asp Lys Ser Cys Ile Ile Val Asp Asp 210 215 220

Met Ala Asp Thr Cys Gly Thr Leu Val Lys Ala Thr Asp Thr Leu Ile 225 230 235 240

Glu Asn Cys Ala Lys Glu Val Ile Ala Ile Val Thr His Gly Ile Phe 245 250 255

Ser Gly Gly Ala Arg Glu Lys Leu Arg Asn Ser Lys Leu Ala Arg Ile 260 265 270

Val Ser Thr Asn Thr Val Pro Val Asp Leu Asn Leu Asp Ile Tyr His
275 280 285

Gln Ile Asp Ile Ser Ala Ile Leu Ala Glu Ala Ile Arg Arg Leu His 290 295 300

Asn Gly Glu Ser Val Ser Tyr Leu Phe Asn Asn Ala Val Met 305 310 315

(2) INFORMATION FOR SEQ ID NO: 3:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 5369 base pairs

(B) TYPE: Nucleic acid(C) STRANDEDNESS: Single

	(D) TOPOLOGY: linear
(ii)	MOLECULE TYPE: DNA (genomic)
(iii)	HYPOTHETICAL: NO
(iv)	ANTISENSE: NO
(ix)	FEATURES:
	(A) NAME/KEY: 5'UTR
	(B) LOCATION: 154
(ix)	FEATURES:
	(A) NAME/KEY: CDS
	(B) LOCATION: 551482
(ix)	FEATURES:
	(A) NAME/KEY: CDS
	(B) LOCATION: 17673299
(ix)	FEATURES:
	(A) NAME/KEY: CDS
	(B) LOCATION: 35884703
(ix)	FEATURES:
, ,	(A) NAME/KEY: 3'UTR
	(B) LOCATION: 47045369
(xi)	SEQUENCE DESCRIPTION: SEQ ID NO: 3:
AAGCTTGACC	TTGGCTGGCA CTTGAGTCGG CAGACAGGTG GACTAACCCG AGCA ATG 5
	Met 1
ርልጥ ሮርጥ ርር	T TGT AAA GGT ATC TCT TAT GTG CTC AGT GCA ATG GTT TTT 10
	y Cys Lys Gly Ile Ser Tyr Val Leu Ser Ala Met Val Phe
	5 10 15
CAC ATA AT	A CCG ATT ACA TTT GAA ATA TCG ATG GTA TGT GGC ATA TTG 15
	e Pro Ile Thr Phe Glu Ile Ser Met Val Cys Gly Ile Leu
	0 25 30

		GCT Ala						201
		TTT Phe 55						249
		AAC Asn						297
		AAT Asn						345
		AAG Lys						393
		TCG Ser						441
		ACT Thr 135						489
		GGC Gly						537
		CAG Gln						585
		AAG Lys						633
		CAG Gln						681
		AAA Lys 215						729

			CGG Arg					777
			ACT Thr					825
			CTC Leu					 873
			GGC Gly 280					921
			GGT Gly					969
			AAT Asn					1017
			GCC Ala					1065
			GGC Gly					1113
			GAG Glu 360					1161
			CTG Leu					1209
			CAG Gln			 	 	 1257
			ACG Thr					1305

	ATC Ile															1353
	GAA Glu 435															1401
	CGG Arg															1449
	GAG Glu									TAG	ACGTO	CTG A	ACTA(GAGA?	PT	1499
ATA	TAAT	AAC (CCTC	GAGC	CA A	AATTA	ATACO	G GCG	CTA	ACAA	GTA	AAAA	TTT T	ragt?	TACTTT	1559
TCT	GACT:	rct (CTAC	GCTG <i>I</i>	AC T	rctc	PACCO	C TTC	CTAAC	CATA	GTT	AATT(GAA (GTAGT	rggtta	1619
ATG	ACGA	CTG (CATT	TAT	PA T	rgrco	CACT	r TGC	CATT	AGAA	GTA	CTAG	rgc :	rtaa(GCGCTC	1679
TTT	AGGC	CGC 5	PTTC	TCT	rc Ti	rtgt(CAGG	C CGC	CAAG	GTAA	AGG	AAGCI	ACC A	AACGO	GATTGC	1739
TAC	CGCT	GCT 1	ATTC	CTGCT	rc to	CTCA!								rr G: al Va		1790
	GCC Ala		CAG	TCG	AAG	GTG	GTC	ccc								
	10	ASP	Gln													1838
	10 TTC Phe	TTA	CAG	Ser CAT	Lys CGC	Val 15 GGT	Val	Ala GAT	Pro GCT	Glu GCC	Leu 20 GGG	Phe ATT	Asp GCT	Gly ACG	Ser	1838
Leu 25 GGC	TTC	TTA Leu GGT	CAG Gln GGG	Ser CAT His	CGC Arg 30	Val 15 GGT Gly	Val CAA Gln	Ala GAT Asp	Pro GCT Ala	GCC Ala 35 GGC	Leu 20 GGG Gly AAT	Phe ATT Ile	Asp GCT Ala	Gly ACG Thr	TGC Cys 40	
Leu 25 GGC Gly	TTC Phe	TTA Leu GGT Gly	CAG Gln GGG Gly	CAT His CGC Arg 45	CGC Arg 30 TTG Leu	Val 15 GGT Gly TAC Tyr	CAA Gln CAA Gln	Ala GAT Asp TGT Cys	GCT Ala AAG Lys 50	GCC Ala 35 GGC Gly	Leu 20 GGG Gly AAT Asn	ATT Ile GGT Gly	GCT Ala ATG Met	ACG Thr GCA Ala 55	TGC Cys 40 CGG Arg	1886

		GTG Val						2078
		AAC Asn 110						2126
		ATT Ile						2174
		GAG Glu						2222
		TGT Cys						2270
		GTT Val						2318
		GGG Gly 190						2366
		ATG Met						2414
		TTC Phe						2462
		AAA Lys						2510
		GAG Glu						2558
		GAC Asp 270						2606

						•	AAA Lys 295	2654
							ACT Thr	2702
							TAT Tyr	2750
							ATG Met	2798
							CCA Pro	2846
							TCC Ser 375	2894
							GAA Glu	2942
							CGT Arg	2990
							GTC Val	3038
							GAC Asp	3086
							ACA Thr 455	3134
							GTT Val	3182

GGT GTT GAG GAT GTG TAC TTG CAG GAA TTA GAA CGT TGC CGC GCT CTT Gly Val Glu Asp Val Tyr Leu Gln Glu Leu Glu Arg Cys Arg Ala Leu 475 480 485	323.0
AAT AAC TCG AAT AAG GGT GAA GCG AAG GCC GAG GTT GAT ATT GGT CTC Asn Asn Ser Asn Lys Gly Glu Ala Lys Ala Glu Val Asp Ile Gly Leu 490 495 500	3278
TAC AAT TCT GCC GAC TAT TAGCGGCGCC GTTGCCGGCA TCCGGCCCCA Tyr Asn Ser Ala Asp Tyr 505 510	3326
TATATAGACT CATCGGGACC TAAAATAAGC CTTTACAGAT CATTATCTAC AAATATAGAT	3386
ACCATTAAAA GCCTGACTTT CGACTTACTC CTAGCACACC CCGTTGTATC CCTGTGCTTG	3446
CTTTCTTAAA TGCCGTTGGT TAGGCTTTGG ACTTAGCGTC CCGCCCATTT TCTAGCATGT	3506
GCAGATCTAG CAAATTTGGC CTAAGACAAG AAGATCCATT CGGCACCCAC ATCCTGGAGC	3566
CAGCACACAG TGGACCCAGA C ATG AGC AGC GGC AAT ATA TGG AAG CAA TTG Met Ser Ser Gly Asn Ile Trp Lys Gln Leu 1 5 10	3617
CTA GAG GAG AAT AGC GAA CAG CTG GAC CAG TCC ACT ACG GAG ACT TAC Leu Glu Glu Asn Ser Glu Gln Leu Asp Gln Ser Thr Thr Glu Thr Tyr 15 20 25	3665
GTG GTA TGC TGC GAG AAC GAA GAT TCC CTT AAC CAG TTT TTG CAA CAA Val Val Cys Cys Glu Asn Glu Asp Ser Leu Asn Gln Phe Leu Gln Gln 30 35 40	3713
TGT TGG CAG ATT GAC GAG GGC GAG AAG GTG ACC AAC CTG GAG CCG TTG Cys Trp Gln Ile Asp Glu Gly Glu Lys Val Thr Asn Leu Glu Pro Leu 45 50 55	3761
GGA TTC TTT ACA AAG GTG GTT TCG CGC GAC GAA GAG AAC CTC CGG CTC Gly Phe Phe Thr Lys Val Val Ser Arg Asp Glu Glu Asn Leu Arg Leu 60 65 70	3809
AAC GTA TAC TAT GCC AAG AGC CCA CTG GAT GCA CAG ACG CTG CAG TTT Asn Val Tyr Tyr Ala Lys Ser Pro Leu Asp Ala Gln Thr Leu Gln Phe 75 80 85 90	3857
CTG GGC GTG TTC CTG CGC CAA ATG GAA ACC TCA CAA ATA CGT TGG ATC Leu Gly Val Phe Leu Arg Gln Met Glu Thr Ser Gln Ile Arg Trp Ile 95 100 105	3905

			CTG Leu						39	953
			GCC Ala						40	001
			GTG Val						4 (049
			ATG Met 160						4(097
_			GCT Ala						4 1	145
			ACT Thr						43	193
			CCT Pro						42	241
			CCC Pro						42	289
			TTC Phe 240						43	337
			GAG Glu						4:	385
			GAC Asp						4.	433
			GCT Ala						4,	481

ACC CT Thr Le	eu Ty														4529
CAG CAG Gln Hi															4577
GAG CT Glu Le															4625
GCA GC Ala Al															4673
GAT GG Asp Gl		e Val						TGAC	CGTC	GAC A	ACAAZ	'TAAL	ГT		4720
TGTTAC	CTGTT	CTCTC	CGAGA	A CI	TATTO	CTCAT	CCZ	AGTAC	CTGA	CATA	ATTAC	GAA (GGCGZ	AAGTGA	4780
ACTAGG	SATTT	ATATA	AAGT	A GO	CCTTC	CAGGC	: AAI	TGC	ACAG	GGT	CTATT	GA (GTCGC	CTGCCG	4840
TTCACG	SAGAG	AGCCC	CAATA	T AT	CGAG	GACT	' AA'	TGGT	CAC	TTTT	'GTTI	TG (CTATA	ACTCAC	4900
CCTGTA	TTTG	CTAAT	CATI	T AT	CCGC	TTTG	TCC	CAAGI	GGT	TGC	SAAGA	ATA!	rcgac	GCCAGA	4960
ACATTA	GAAT	CTGGT	TTGC	C GC	CATCO	TAGA	GCI	GTCI	CCA	AGCC	CAGTT	GA A	ACCGT	TTGCGG	5020
GAGATT	'ACCG	CAGCO	GGTT	T GA	TCAG	AGTA	CTG	GTGA	CTG	CCAG	CACC	CCA (CGTTI	TGTGAC	5080
TTATAA	LATAT	ACGCC	CTGT	G GA	AGCCA	TAGO	CAT	TGGC	CATA	AAGA	GAAG	GAG (CACCO	CCGTGC	5140
CACGAT	GCAG	ACACI	TCCG	G TO	TACC	CAGC	GTC	CACAG	SACT	GCGT	CGCC	CTA (CGAAC	GCGTGA	5200
ACTTGC	AGCG	GCGCC	CTCG	G TO	CCGC	AGGA	CGG	GCGCC	CGG	CTGC	CTGC	CGC 2	AGCTO	CACTTT	5260
AGTGAC	GCCC	CCAGA	ACCT	G AI	ATCC	AGAA	GAA	GTCA	GTG	CGAT	CTC	.GG	rcgco	CGTTT	5320
AAGCAT	CTCG	GAGAC	CAGAT	'G TA	GTGA	AGAG	TGP	TATO	GTG	GCTA	AGCI	T			5369

(2) INFORMATION FOR SEQ ID NO: 4:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 475 Amino acids
- (B) TYPE: Amino acid
- (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: Protein

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 4:

Met 1	Asp	Arg	Gly	Cys 5	Lys	Gly	Ile	Ser	Tyr 10	Val	Leu	Ser	Ala	Met 15	Val
Phe	His	Ile	Ile 20	Pro	Ile	Thr	Phe	Glu 25	Ile	Ser	Met	Val	Cys 30	Gly	Ile
Leu	Thr	Tyr 35	Gln	Phe	Gly	Ala	Ser 40	Phe	Ala	Ala	Ile	Thr 45	Phe	Ser	Thr
Met	Leu 50	Leu	Tyr	Ser	Ile	Phe 55	Thr	Phe	Arg	Thr	Thr 60	Ala	Trp	Arg	Thr
Arg 65	Phe	Arg	Arg	Asp	Ala 70	Asn	Lys	Ala	Asp	Asn 75	Lys	Ala	Ala	Ser	Val 80
Ala	Leu	Asp	Ser	Leu 85	Ile	Asn	Phe	Glu	Ala 90	Val	Lys	Tyr	Phe	Asn 95	Asn
Glu	Lys	Tyr	Leu 100	Ala	Asp	Lys	Tyr	His 105	Thr	Ser	Leu	Met	Lys 110	Tyr	Arg
Asp	Ser	Gln 115	Ile	Lys	Val	Ser	Gln 120	Ser	Leu	Ala	Phe	Leu 125	Asn	Thr	Gly
Gln	Asn 130	Leu	Ile	Phe	Thr	Thr 135	Ala	Leu	Thr	Ala	Met 140	Met	Tyr	Met	Ala
Cys 145	Asn	Gly	Val	Met	Gln 150	Gly	Ser	Leu	Thr	Val 155	Gly	Asp	Leu	Val	Leu 160
Ile	Asn	Gln	Leu	Val 165	Phe	Gln	Leu	Ser	Val 170	Pro	Leu	Asn	Phe	Leu 175	Gly
Ser	Val	Tyr	Arg 180	Asp	Leu	Lys	Gln	Ser 185	Leu	Ile	Asp	Met	Glu 190	Ser	Leu
Phe	Lys	Leu 195	Gln	Lys	Asn	Gln	Val 200	Thr	Ile	Lys	Asn	Ser 205	Pro	Asn	Ala
Gln	Asn 210	Leu	Pro	Ile	His	Lys 215	Pro	Leu	Asp	Ile	Arg 220	Phe	Glu	Asn	Val
Thr	Phe	Gly	Tyr	Asp	Pro	Glu	Arg	Arg	Ile	Leu	Asn	Asn	Val	Ser	Phe

post

Thr Ile Pro Ala Gly Met Lys Thr Ala Ile Val Gly Pro Ser Gly Ser 245 250 255

Gly Lys Ser Thr Ile Leu Lys Leu Val Phe Arg Phe Tyr Glu Pro Glu 260 265 270

Gln Gly Arg Ile Leu Val Gly Gly Thr Asp Ile Arg Asp Leu Asp Leu 275 280 285

Leu Ser Leu Arg Lys Ala Ile Gly Val Val Pro Gln Asp Thr Pro Leu 290 295 300

Phe Asn Asp Thr Ile Trp Glu Asn Val Lys Phe Gly Asn Ile Ser Ser 305 310 315 320

Ser Asp Asp Glu Ile Leu Arg Ala Ile Glu Lys Ala Gln Leu Thr Lys 325 330 335

Leu Leu Gln Asn Leu Pro Lys Gly Ala Ser Thr Val Val Gly Glu Arg

Gly Leu Met Ile Ser Gly Gly Glu Lys Gln Arg Leu Ala Ile Ala Arg 355 360 365

Val Leu Leu Lys Asp Ala Pro Leu Met Phe Phe Asp Glu Ala Thr Ser 370 380

Ala Leu Asp Thr His Thr Glu Gln Ala Leu Leu His Thr Ile Gln Gln 385 390 395 400

Asn Phe Ser Ser Asn Ser Lys Thr Ser Val Tyr Val Ala His Arg Leu 405 410 415

Arg Thr Ile Ala Asp Ala Asp Lys Ile Ile Val Leu Glu Gln Gly Ser 420 425 430

Val Arg Glu Glu Gly Thr His Ser Ser Leu Leu Ala Ser Gln Gly Ser 435 440 445

Leu Tyr Arg Gly Leu Trp Asp Ile Gln Glu Asn Leu Thr Leu Pro Glu 450 455 460

Arg Pro Glu Gln Ser Thr Gly Ser Gln His Ala 465 470 475

(2) INFORMATION FOR SEQ ID NO: 5:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 510 Amino acids

- (B) TYPE: Amino acid
- (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: Protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 5:
- Met Cys Gly Ile Leu Gly Val Val Leu Ala Asp Gln Ser Lys Val Val l 5 10 15
- Ala Pro Glu Leu Phe Asp Gly Ser Leu Phe Leu Gln His Arg Gly Gln
 20 25 30
- Asp Ala Ala Gly Ile Ala Thr Cys Gly Pro Gly Gly Arg Leu Tyr Gln 35 40 45
- Cys Lys Gly Asn Gly Met Ala Arg Asp Val Phe Thr Gln Ala Arg Met 50 55 60
- Ser Gly Leu Val Gly Ser Met Gly Ile Ala His Leu Arg Tyr Pro Thr 65 70 75 80
- Ala Gly Ser Ser Ala Asn Ser Glu Ala Gln Pro Phe Tyr Val Asn Ser 85 90 95
- Pro Tyr Gly Ile Cys Met Ser His Asn Gly Asn Leu Val Asn Thr Met
 100 105 110
- Ser Leu Arg Arg Tyr Leu Asp Glu Asp Val His Arg His Ile Asn Thr 115 120 125
- Asp Ser Asp Ser Glu Leu Leu Asn Ile Phe Ala Ala Glu Leu Glu 130 135 140
- Lys Tyr Asn Lys Tyr Arg Val Asn Asn Asp Asp Ile Phe Cys Ala Leu 145 150 155 160
- Glu Gly Val Tyr Lys Arg Cys Arg Gly Gly Tyr Ala Cys Val Gly Met 165 170 175
- Leu Ala Gly Tyr Gly Leu Phe Gly Phe Arg Asp Pro Asn Gly Ile Arg
 180 185 190
- Pro Leu Leu Phe Gly Glu Arg Val Asn Asp Asp Gly Thr Met Asp Tyr 195 200 205
- Met Leu Ala Ser Glu Ser Val Val Leu Lys Ala His Arg Phe Gln Asn 210 215 220

Ile Arg Asp Ile Leu Pro Gly Gln Ala Val Ile Ile Pro Lys Thr Cys Gly Ser Ser Pro Pro Glu Phe Arg Gln Val Val Pro Ile Glu Ala Tyr Lys Pro Asp Leu Phe Glu Tyr Val Tyr Phe Ala Arg Ala Asp Ser Val Leu Asp Gly Ile Ser Val Tyr His Thr Arg Leu Leu Met Gly Ile Lys Leu Ala Glu Asn Ile Lys Lys Gln Ile Asp Leu Asp Glu Ile Asp Val Val Val Ser Val Pro Asp Thr Ala Arg Thr Cys Ala Leu Glu Cys Ala Asn His Leu Asn Lys Pro Tyr Arg Glu Gly Phe Val Lys Asn Arg Tyr Val Gly Arg Thr Phe Ile Met Pro Asn Gln Lys Glu Arg Val Ser Ser Val Arg Arg Lys Leu Asn Pro Met Asn Ser Glu Phe Lys Asp Lys Arg Val Leu Ile Val Asp Asp Ser Ile Val Arg Gly Thr Thr Ser Lys Glu Ile Val Asn Met Ala Lys Glu Ser Gly Ala Ala Lys Val Tyr Phe Ala Ser Ala Ala Pro Ala Ile Arg Phe Asn His Ile Tyr Gly Ile Asp Leu Ala Asp Thr Lys Gln Leu Val Ala Tyr Asn Arg Thr Val Glu Glu Ile Thr Ala Glu Leu Gly Cys Asp Arg Val Ile Tyr Gln Ser Leu Asp Asp Leu Ile Asp Cys Cys Lys Thr Asp Ile Ile Ser Glu Phe Glu Val Gly Val Phe Thr Gly Asn Tyr Val Thr Gly Val Glu Asp Val Tyr Leu Gln Glu Leu Glu Arg Cys Arg Ala Leu Asn Asn Ser Asn Lys Gly Glu Ala

Lys	Ala	Glu	Val	Asp	Ile	Gly	Leu	Tyr	Asn	Ser	Ala	Asp	Tyr
			500					505					510

- (2) INFORMATION FOR SEQ ID NO: 6:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 371 Amino acids
 - (B) TYPE: Amino acid
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: Protein
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 6:
- Met Ser Ser Gly Asn Ile Trp Lys Gln Leu Leu Glu Glu Asn Ser Glu

 1 5 10 15
- Gln Leu Asp Gln Ser Thr Thr Glu Thr Tyr Val Val Cys Cys Glu Asn 20 25 30
- Glu Asp Ser Leu Asn Gln Phe Leu Gln Gln Cys Trp Gln Ile Asp Glu 35 40 45
- Gly Glu Lys Val Thr Asn Leu Glu Pro Leu Gly Phe Phe Thr Lys Val 50 55 60
- Val Ser Arg Asp Glu Glu Asn Leu Arg Leu Asn Val Tyr Tyr Ala Lys
 65 70 75 80
- Ser Pro Leu Asp Ala Gln Thr Leu Gln Phe Leu Gly Val Phe Leu Arg 85 90 95
- Gln Met Glu Thr Ser Gln Ile Arg Trp Ile Phe Leu Leu Asp Trp Leu
 100 105 110
- Leu Asp Asp Lys Arg Leu Trp Leu Arg Gln Leu Arg Asn Ser Trp Ala 115 120 125
- Ala Leu Glu Glu Ala Gln Val Ala Pro Phe Pro Gly Gly Ala Val Val 130 135 140
- Val Val Leu Asn Pro Ser His Val Thr Gln Leu Glu Arg Asn Thr Met 145 150 155 160
- Val Trp Asn Ser Arg Arg Leu Asp Leu Val His Gln Thr Leu Arg Ala 165 170 175

Ala Cys Leu Asn Thr Gly Ser Ala Leu Val Thr Leu Asp Pro Asn Thr 180 185 190

Ala Arg Glu Asp Val Met His Ile Cys Ala Leu Leu Ala Gly Leu Pro 195 200 205

Thr Ser Arg Pro Val Ala Met Leu Ser Leu Gln Ser Leu Phe Ile Pro 210 215 220

His Gly Ala Asp Ser Ile Gly Lys Ile Cys Thr Ile Ala Pro Glu Phe 225 230 235 240

Pro Val Ala Thr Val Phe Asp Asn Asp Phe Val Ser Ser Thr Phe Glu 245 250 255

Ala Ala Ile Ala Pro Glu Leu Thr Pro Gly Pro Arg Val Pro Ser Asp 260 265 270

His Pro Trp Leu Thr Glu Pro Thr Asn Pro Pro Ser Glu Ala Thr Ala 275 280 285

Trp His Phe Asp Leu Gln Gly Arg Leu Ala Thr Leu Tyr Arg His Leu 290 295 300

Gly Asp Ser Asn Lys Ala Ile Ser Val Thr Gln His Arg Phe His Lys 305 310 315

Pro Arg Ser Glu Asp Tyr Ala Tyr Glu Phe Glu Leu Pro Ser Lys His 325 330 335

Pro Thr Ile Arg Asp Leu Ile Arg Ser Ala Ala Ala Asp Ser Pro Asn 340 345 350

Asp Val Ala Asp Ser Ile Asp Gly Leu Met Asp Gly Ile Val Gln Arg 355 360 365

Asn Val His

(2) INFORMATION FOR SEQ ID NO: 7:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 3616 base pairs
 - (B) TYPE: Nucleic acid
 - (C) STRANDEDNESS: Single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: DNA (genomic)

- (iii) HYPOTHETICAL: NO
- (iv) ANTISENSE: NO
- (ix) FEATURES:
 - (A) NAME/KEY: 5'UTR
 - (B) LOCATION: 1..863
- (ix) FEATURES:
 - (A) NAME/KEY: CDS
 - (B) LOCATION: 864..1316
- (ix) FEATURES:
 - (A) NAME/KEY: intron
 - (B) LOCATION: 1317..1477
- (ix) FEATURES:
 - (A) NAME/KEY: CDS
 - (B) LOCATION 1478..2592
- (ix) FEATURES:
 - (A) NAME/KEY: 3'UTR
 - (B) LOCATION: 2593..3616
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 7:

GGGCC	CGGTG	CCAGCTCGCC	AGGTGCGGAC	TCGCGCTCGG	GCTGTGGGCG	CTCTACCTGC	60
TGCTG	CTCGG	CAGCTGCCTG	ACGCGCGCGT	ACGAGCTGTC	GGATCTCGAA	AACCTGGAAT	120
CCGAT	TACTA	CAGCTACGTG	CTGGATGTGA	ACTTCGCGCT	GCTGAGCGCC	ATGAGCGCGA	180
CCGGC	CTCGC	GATGGGCGCC	GTGAGCGGCT	CCCTCGGGAG	CGCGCCGGTG	CTCGCGCAGT	240
GGCCG	GCAGC	GATCTGGGCC	GTGCGCTTCC	TGCGCGCCGC	GGGCTATGTC	GCGATAGTCC	300
TAATC	CTGCC	GTTCCTGTCC	GTCGTCGCAT	TCCTGCAGCC	GCTCTGCGAG	CGCGCGCTGG	360
CGCTG	TTCCC	GTTTGTGCGC	GCGTGGGGCA	TGGACGGCGT	GTTCAACTTC	CTGCTGCTCT	420
CCGCC	GTGCT	CTGGACTGTA	TTCCTGGCCG	TTCGCCTGCT	CCGCGCCGTC	TACAGACTGC	480
TGCGC	TGGCT	GGTCGGTCTT	TTGGTCCGCC	TGGCACGCCT	GCTGCTGCGA	GGCGCCCGTC	540
GGACG	CCTGC	GGCGGCCCCC	GAGGAGCCCG	TCTAGCGTGC	GCGCGTTCTA	GGCCCCTGAC	600
አሮሮሞር	CTT CC	mccmccmccc	CCCCCCBXCC	CCTCCCATCC	THE CONCECTOR OF	CCCCAMMCCM	660

TTT	TGGC	CCC (CGCT	GGAT(CA TO	CGTT'	rctt'	r TAC	CGTG	AAAA	GTT.	rgca(GCG 2	ATGA(GCTGCA	720
GTA	TAAA'	TAG (GTTT'	rcta(GA T	GCGC	CAAA!	r cc	CAGC'	TGGG	TTT	ACCG	GCG !	rctg:	TTCGGG	780
ATA	GTTA	CTT	GATG	GATG	GG T	CAAC!	rtga(G AG	CTTG	GGTT	TAG	rgtt(GAC !	rccr:	CTCTT	840
CAT	AGCA	CGC (CGAA	CAAA	GC G(AC GO sp Al					890
	GAG Glu															938
	TTG Leu															986
	GTC Val															1034
	TCG Ser															1082
	CCG Pro 75															1130
	CTG Leu															1178
	GCG Ala															1226
	GCC Ala															1274
	ATG Met															1316
GGT	ATGTI	rag z	AGTGO	CAC	GC GC	GGC	rgcac	G GC:	rgggi	ATGA	TGA	rcat <i>i</i>	AAA !	rcaa:	FAACTT	1376
TCG'	CGTTCTACT GACTGCGATC AAACGATCGT GTAGACACCT TTTACTCTGA CCGCAGACGT 1436											ACTC	rga (CCGC	AGACGT	1436

GCA	.GCGC	CTT	TTTG	GCAG	GA A	CATG	TACT	'A AC	ACAT	CAGC				GC A		1489
	Thr		AAG Lys								Arg					1537
			GAG Glu		Leu											1585
			AAG Lys 40													1633
			AAG Lys													1681
			ATG Met													1729
			TCC Ser													1777
			ACC Thr													1825
			CTG Leu 120													1873
GTC Val	TTC Phe	CAG Gln 135	ATC Ile	AAC Asn	ATG Met	ATC Ile	AAG Lys 140	TGG Trp	ATC Ile	AAG Lys	GAG Glu	ACC Thr 145	TTC Phe	CCA Pro	GAC Asp	1921
			ATT Ile													1969
			GCC Ala													2017

									41							
			ATC													2065
Ser	Ile	Cys	Ile		Gln	Glu	Val	Met		Cys	Gly	Arg	Pro	Gln	Gly	
				185					190					195		
ACC	GCT	GTC	TAC	AAC	GTC	ACG	CAG	ጥጥር	GCC	AAC	CAG	արար	CCT	СТС	CCA	2113
			Tyr													2113
			200					205					210			
			GAC													2161
Cys	TTE	A1a 215	Asp	GTĀ	GLY	Val	Gin 220	Asn	ile	Gly	His	11e 225	Thr	Lys	Ala	
		213					220					223				
ATC	GCT	CTT	GGC	GCG	TCC	ACC	GTC	ATG	ATG	GGC	GGT	ATG	CTG	GCA	GGC	2209
Ile	Ala	Leu	${\tt Gly}$	Ala	Ser	Thr	Val	Met	Met	Gly	Gly	Met	Leu	Ala	Gly	
	230					235					240					
ACT	ACA	GAG	TCT	CCA	GGC	GAG	ТАС	ጥጥር	ጥጥር	AGG	GAC	GGG	AAG	ACA	ርሞር	2257
			Ser													225
245					250		-			255	•	-	-	,	260	
			AGA													2305
Lys	Thr	Tyr	Arg	265	Met	GIĀ	Ser	lle	Asp 270	Ala	Met	Gin	Lys		Asp	
				203					210					275		
GTC	AAG	GGT	AAC	GCC	GCT	ACC	TCC	CGT	TAC	TTC	TCT	GAG	TCT	GAC	AAG	2353
Val	Lys	Gly	Asn	Ala	Ala	Thr	Ser	Arg	Tyr	Phe	Ser	Glu	Ser	Asp	Lys	
			280					285					290			
GTT	CTG	GTC	GCT	CAG	GGT	GTT	ACT	GGT	TCT	GTG	ATC	GAC	AAG	GGC	TCC	2401
			Ala													
		295					300					305				
አጥር	አ አ C	አአሮ	መአሮ	y ma	CCA	m v m	CITIC	ma C	7. 7. CT	CCB	Om 3	03.0	070	mac	mca.	2440
			TAC Tyr													2449
	310	_2 -	-1-			315		-1-			320	0211	1120	DCI	CIS	
			GGT													2497
325	Asp	ile	Gly	vaı	Arg	Ser	Leu	Vai	Glu	Phe	Arg	Glu	Lys	Val	Asp 340	
323					330					333					340	
TCT	GGC	TCG	GTC	AGA	TTT	GAG	TTC	AGA	ACT	CCA	TCT	GCC	CAG	TTG	GAG	2545
Ser	Gly	Ser	Val		Phe	Glu	Phe	Arg		Pro	Ser	Ala	Gln		Glu	
				345					350					355		
GGT	GGT	GTG	CAC	AAC	TTG	CAC	TCC	TAC	GAG	AAG	CGC	СТА	$_{ m TTT}$	GACT	TGAGTGC	2597
			His													
			360					365					370			
C 2 C 7	יאריי	ירר י		י מוח עו	יא אי	ישממי	maaa		,,,,,,,	maa	03.00	,			ייי אינוייט אינו	2652
CACI	HGG(.CC F	ACACT	ATAG	A AG	1 GGP	TUCC	. GG(JGUGI	ATGG	CACC	CATA	ACT I	rTTA'	TATTAT	2657

GTTGATTGAT	GTACGTAAAC	GATAGATATA	ATAACAGACG	CGGCATCTCA	TTTGTATGCA	2717
ATATATCTGG	AACATGGTTA	TGCGTACTCA	ACTGTATGTA	CTACTTTATA	TACACAGCTC	2777
TGGGACACTT	GGTGAGATAT	ATGTTTCATT	ATGTATGCCT	CGCTATCGAA	AGGTCTGGCA	2837
TTATGGGCTA	CTGGGTCTAA	GAGTCATGGC	TTATGAGTAT	TTATTTATTT	ATTTCTCTTC	2897
CTTTTCATTA	AACTCCTCGA	GCTTCTTTCT	GTAATACTGC	TCTCTAGACT	TCTCCACATC	2957
TGCTAATGAT	GGTGGAAGTC	GTTCGTTTTC	CAAATCCGCT	CTACGAGCGC	GCTCGAAGTT	3017
AGACAGCGCC	TCGTTCAGAC	CTTCAGACCC	GCGTGACAGC	GCTCCACGAG	GCAGCACGCC	3077
AGAATTCATT	GTTTTTAGGT	ACTGCACCTT	ATCGCTCTCT	TCTCTCAACA	CGCTATACAT	3137
TCGGGAAACC	TTGGCAATCG	CCAATATTTT	ACTGCGTAGT	GCACGCCGTT	TTGCATCATC	3197
GTCCAGAATA	GACCGTTTTT	TCTTCGATTT	CTTGGAGCCA	GGTATAACAG	TTACAACCTG	3257
CTCAGTGTTT	TTGGACTTCA	ATGTAGCACC	TAAGTCCTCC	CTTATAACAA	AAGTCTCTTC	3317
CTCCAATTCT	TCTTCAGTAC	AAATGTTTAA	TATCGAAACC	AACATTTCAG	TCACTTTCTC	3377
GCCAACAAAT	GGCAAAGACC	AGGTGAATAC	GTCCATGAAA	TTCGGTAACC	AATACGGATG	3437
CTGTGACATG	TTAAATTGTC	TAATGTTCAT	AACGTTATCC	GAGTATTTTA	GGACCGCGGC	3497
CTTGTTCTTG	TAAGTGTCCA	AGTAGTTGGG	TGCGCTGAAC	AACGTAAGTA	AACTAGGAAA	3557
GCCCAGATTC	TTGGTATTCT	TGTACATTCT	GTAGCCCTGA	TCTTGGGCTT	CGTGGGCCC	3616
(2) INFORM	ልጥፐርክ ፑርፑ S	EO ID NO. 8	•			

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 151 Amino acids
- (B) TYPE: Amino acid
- (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: Protein

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 8:

Met Thr Tyr Arg Asp Ala Ala Thr Ala Leu Glu His Leu Ala Thr Tyr 1 5 10 15

Ala Glu Lys Asp Gly Leu Ser Val Glu Gln Leu Met Asp Ser Lys Thr 20 25 30

Arg Gly Gly Leu Thr Tyr Asn Asp Phe Leu Val Leu Pro Gly Lys Ile 35 40 45

· .

Asp Phe Pro Ser Ser Glu Val Val Leu Ser Ser Arg Leu Thr Lys Lys 50 55 60

Ile Thr Leu Asn Ala Pro Phe Val Ser Ser Pro Met Asp Thr Val Thr 65 70 75 80

Glu Ala Asp Met Ala Ile His Met Ala Leu Leu Gly Gly Ile Gly Ile 85 90 95

Ile His His Asn Cys Thr Ala Glu Glu Gln Ala Glu Met Val Arg Arg
100 105 110

Val Lys Lys Tyr Glu Asn Gly Phe Ile Asn Ala Pro Val Val Gly
115 120 125

Pro Asp Ala Thr Val Ala Asp Val Arg Arg Met Lys Asn Glu Phe Gly 130 135 140

Phe Ala Gly Phe Pro Val Thr 145 150

- (2) INFORMATION FOR SEQ ID NO: 9:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 371 Amino acids
 - (B) TYPE: Amino acid
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: Protein
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 9:

Asp Asp Gly Lys Pro Thr Gly Lys Leu Gln Gly Ile Ile Thr Ser Arg
1 5 10 15

Asp Ile Gln Phe Val Glu Asp Glu Thr Leu Leu Val Ser Glu Ile Met 20 25 30

Thr Lys Asp Val Ile Thr Gly Lys Gln Gly Ile Asn Leu Glu Glu Ala 35 40 45

Asn Gln Ile Leu Lys Asn Thr Lys Lys Gly Lys Leu Pro Ile Val Asp 50 55 60

- Glu Ala Gly Cys Leu Val Ser Met Leu Ser Arg Thr Asp Leu Met Lys 65 70 75 80

 Asn Gln Ser Tyr Pro Leu Ala Ser Lys Ser Ala Asp Thr Lys Gln Leu
- Leu Cys Gly Ala Ala Ile Gly Thr Ile Asp Ala Asp Arg Gln Arg Leu
 100 105 110
- Ala Met Leu Val Glu Ala Gly Leu Asp Val Val Leu Asp Ser Ser 115 120 125
- Gln Gly Asn Ser Val Phe Gln Ile Asn Met Ile Lys Trp Ile Lys Glu 130 135 140
- Thr Phe Pro Asp Leu Gln Val Ile Ala Gly Asn Val Val Thr Arg Glu
 145 150 155 160
- Gln Ala Ala Ser Leu Ile His Ala Gly Ala Asp Gly Leu Arg Ile Gly 165 170 175
- Met Gly Ser Gly Ser Ile Cys Ile Thr Gln Glu Val Met Ala Cys Gly
 180 185 190
- Arg Pro Gln Gly Thr Ala Val Tyr Asn Val Thr Gln Phe Ala Asn Gln 195 200 205
- Phe Gly Val Pro Cys Ile Ala Asp Gly Gly Val Gln Asn Ile Gly His 210 215 220
- Ile Thr Lys Ala Ile Ala Leu Gly Ala Ser Thr Val Met Met Gly Gly 225 230 235 240
- Met Leu Ala Gly Thr Thr Glu Ser Pro Gly Glu Tyr Phe Phe Arg Asp 245 250 255
- Gly Lys Arg Leu Lys Thr Tyr Arg Gly Met Gly Ser Ile Asp Ala Met 260 265 270
- Gln Lys Thr Asp Val Lys Gly Asn Ala Ala Thr Ser Arg Tyr Phe Ser 275 280 285
- Glu Ser Asp Lys Val Leu Val Ala Gln Gly Val Thr Gly Ser Val Ile 290 295 300
- Asp Lys Gly Ser Ile Lys Lys Tyr Ile Pro Tyr Leu Tyr Asn Gly Leu 305 310 315 320
- Gln His Ser Cys Gln Asp Ile Gly Val Arg Ser Leu Val Glu Phe Arg 325 330 335

	3 3
Glu Lys Va	Asp Ser Gly Ser Val Arg Phe Glu Phe Arg Thr Pro Ser 340 345 350
Ala Gln Le	eu Glu Gly Gly Val His Asn Leu His Ser Tyr Glu Lys Arg 360 365
Leu Phe As	gp
(2) INFOR	MATION FOR SEQ ID NO: 10:
(i)	SEQUENCE CHARACTERISTICS: (A) LENGTH: 2697 base pairs (B) TYPE: Nucleic acid (C) STRANDEDNESS: Single (D) TOPOLOGY: linear
(ii)	MOLECULE TYPE: DNA (genomic)
(iii)	HYPOTHETICAL: NO
(iv)	ANTISENSE: NO
(ix)	FEATURES: (A) NAME/KEY: 5'UTR (B) LOCATION: 1455
(ix)	FEATURES: (A) NAME/KEY: CDS (B) LOCATION: 4562033
(ix)	FEATURES: (A) NAME/KEY: 3'UTR (B) LOCATION: 20342697
(xi)	SEQUENCE DESCRIPTION: SEQ ID NO: 10:
ATCGATTTCA	GGAGATTTTT GGTAGCATTA TTGAGGTCAT TAGAGGCGTT CTGTGACTTT 60
CGACGATTTG	CACGCGCAGA AGAGGGCGTT CAACCAGCCT TTCGGATATT CCGGTTCGAG 120
TTATACCAGC	AGGGATCAGC GCAGGCACTA GAGTGGCGGG TGCTAATAAG AGGAGCAGGT 180
CCTGGAACTG	AAGTTGCAAG AGATAAGCAT TGCGCGGAGA AGGAGGCGGT TAGAGGCGTGC 240

AAGCGAGCAG GATGGGGTCT TCGATGAACT TCCCGTCTGG GTATGTGAAC AAGCACACGC

TGC	AGGCI	ACA (CCGGT	raggo	GC GZ	AGTGC	CAGGO	TGA	AAA	ATAT	ATA'	rgcg(CTC (GAGA	AGCGC!	<u>r</u>	360
GGGG	SATG	AGT !	rcgto	CTGC	AA CO	GCA	GCGG	ATC	CTTC.	ATCT	GAC	AAAA	CCA (GCTG	CCTAC	Ŧ	420
TCAG	STGC	GAA (GCTGT	TTCAC	FT G2	ATAG <i>I</i>	ATAC	GAC					GTT (Val (473
			GTG Val 10														521
			CTG Leu														569
			CCG Pro														617
			ATT Ile														665
			GTG Val														713
			TAC Tyr 90														761
			GGC Gly														809
			GCG Ala														857
			CAC His														905
			ACG Thr							Cys							953

	_	 	ATC Ile					1001
			CTG Leu					1049
			ATG Met 205					1097
			GGC Gly					1145
			ACC Thr					1193
			GCG Ala					1241
			GTG Val					1289
			GAC Asp 285					1337
			GAG Glu					1385
			CGC Arg					1433
			CTG Leu					1481
			AAG Lys					1529

Sons Long

									40							
	AAC Asn 360															1577
	TTG Leu															1625
	GGG Gly															1673
	ATC Ile															1721
	GCC Ala															1769
	CTA Leu 440															1817
	TCT Ser															1865
	CTA Leu															1913
	TTT Phe															1961
	GTT Val														CCT Pro	2009
	GCT Ala 520						TAA	rcaco	CCT T	rggg <i>i</i>	ATCC	GC TO	GACTO	GCT	A	2060
CTGT	TAATT	CT A	ATGT	AGTGG	SA TI	ragr <i>i</i>	ACGA:	C AAC	STTAC	CTTT	TGT	ATGAT	rag 2	ATGT	AATCAC	2120
ATCT	rggci	TAT T	TAAA?	ATGAC	CT CA	4GCC0	GAGG:	r aa <i>i</i>	ATCT!	AACG	TCC	CTTC	ACA A	AGGG:	TGTTCC	2180
TGT	GTGGA	ACT 1	rccgo	CTG	יד A	TTTT?	ATAG?	A TAT	PATAC	SATA	CTC	TACTO	CAT (GAAC	AACCTG	2240

CAACCGAATA	AGCATTAGTG	CCAGGAGAAG	AGAACCGTGG	AAATGGGGCA	AGTAGAAAAA	2300
ATCATATTCC	TTAAGAATAA	GACAGTACCA	GAGGACCATT	ACGAGACGAT	TTTTGAATCG	2360
AATGGCTTCC	AGACTCACTT	TGTACCCATA	ATAACCCATG	AACACCTGCC	AGATGAGGTT	2420
CGCGGTCGAC	TATCCGACGC	GAATTACATG	AAAAGGTTGA	ATTGTTTGGT	GGTAACCTCT	2480
CAGAGGACTG	TGGAGTGTCT	CTATGAGGAC	GTTCTGCCCT	CTCTTCCAGC	TGAAGCACGC	2540
AAATCTCTTC	TCAATACGCC	AGTATTCGTG	GTTGGGCGTG	CCACTCAGGA	ATTTATGGAG	2600
AGATGCGGCT	TTACGGACGT	GAGAGGGGGA	TCTGAGACTG	GTAATGGCGT	TTTGCTAGCG	2660
GAGTTAATGT	TAAATATGAT	CCAGAAGGGC	GATGGGG			2697

(2) INFORMATION FOR SEQ ID NO: 11:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 525 Amino acids
 - (B) TYPE: Amino acid
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: Protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 11:

Met Ala Ala Val Glu Gln Val Ser Ser Val Phe Asp Thr Ile Leu Val 1 5 10 15

Leu Asp Phe Gly Ser Gln Tyr Ser His Leu Ile Thr Arg Arg Leu Arg
20 25 30

Glu Phe Asn Val Tyr Ala Glu Met Leu Pro Cys Thr Gln Lys Ile Ser 35 40 45

Glu Leu Gly Trp Lys Pro Lys Gly Val Ile Leu Ser Gly Gly Pro Tyr
50 55 60

Ser Val Tyr Ala Ala Asp Ala Pro His Val Asp Arg Ala Val Phe Glu 65 70 75 80

Leu Gly Val Pro Ile Leu Gly Ile Cys Tyr Gly Leu Gln Glu Leu Ala 85 90 95

Trp Ile Ala Gly Ala Glu Val Gly Arg Gly Glu Lys Arg Glu Tyr Gly
100 105 110

- Arg Ala Thr Leu His Val Glu Asp Ser Ala Cys Pro Leu Phe Asn Asn 115 120 125
- Val Asp Ser Ser Thr Val Trp Met Ser His Gly Asp Lys Leu His Ala 130 135 140
- Leu Pro Ala Asp Phe His Val Thr Ala Thr Thr Glu Asn Ser Pro Phe 145 150 155 160
- Cys Gly Ile Ala His Asp Ser Lys Pro Ile Phe Gly Ile Gln Phe His 165 170 175
- Pro Glu Val Thr His Ser Ser Gln Gly Lys Thr Leu Leu Lys Asn Phe 180 185 190
- Ala Val Glu Ile Cys Gln Ala Ala Gln Thr Trp Thr Met Glu Asn Phe 195 200 205
- Ile Asp Thr Glu Ile Gln Arg Ile Arg Thr Leu Val Gly Pro Thr Ala 210 215 220
- Glu Val Ile Gly Ala Val Ser Gly Gly Val Asp Ser Thr Val Ala Ala 225 230 235 240
- Lys Leu Met Thr Glu Ala Ile Gly Asp Arg Phe His Ala Ile Leu Val 245 250 255
- Asp Asn Gly Val Leu Arg Leu Asn Glu Ala Ala Asn Val Lys Lys Ile 260 265 270
- Leu Gly Glu Gly Leu Gly Ile Asn Leu Thr Val Val Asp Ala Ser Glu 275 280 285
- Glu Phe Leu Thr Lys Leu Lys Gly Val Thr Asp Pro Glu Lys Lys Arg 290 295 300
- Lys Ile Ile Gly Asn Thr Phe Ile His Val Phe Glu Arg Glu Ala Ala 305 310 315 320
- Arg Ile Gln Pro Lys Asn Gly Glu Glu Ile Glu Phe Leu Leu Gln Gly 325 330 335
- Thr Leu Tyr Pro Asp Val Ile Glu Ser Ile Ser Phe Lys Gly Pro Ser 340 345 350
- Gln Thr Ile Lys Thr His His Asn Val Gly Gly Leu Leu Asp Asn Met 355 360 365
- Lys Leu Lys Leu Ile Glu Pro Leu Arg Glu Leu Phe Lys Asp Glu Val 370 375 380

Arg His Leu Gly Glu Leu Leu Gly Ile Ser His Glu Leu Val Trp Arg 385 390 395 400

His Pro Phe Pro Gly Pro Gly Ile Ala Ile Arg Val Leu Gly Glu Val 405 410 415

Thr Lys Glu Gln Val Glu Ile Ala Arg Lys Ala Asp His Ile Tyr Ile
420 425 430

Glu Glu Ile Arg Lys Ala Gly Leu Tyr Asn Lys Ile Ser Gln Ala Phe 435 440 445

Ala Cys Leu Leu Pro Val Lys Ser Val Gly Val Met Gly Asp Gln Arg
450 455 460

Thr Tyr Asp Gln Val Ile Ala Leu Arg Ala Ile Glu Thr Thr Asp Phe 465 470 475 480

Met Thr Ala Asp Trp Tyr Pro Phe Glu His Glu Phe Leu Lys His Val 485 490 495

Ala Ser Arg Ile Val Asn Glu Val Glu Gly Val Ala Arg Val Thr Tyr 500 505 510

Asp Ile Thr Ser Lys Pro Pro Ala Thr Val Glu Trp Glu 515 520 525

(2) INFORMATION FOR SEQ ID NO: 12:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 1634 Base pairs
 - (B) TYPE: Nucleic acid
 - (C) STRANDEDNESS: Double
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: cDNA for mRNA
- (iii) HYPOTHETICAL: NO
- (iv) ANTISENSE: NO
- (ix) FEATURES:
 - (A) NAME/KEY: 5'UTR
 - (B) LOCATION: 1..519
- (ix) FEATURES:
 - (A) NAME/KEY: CDS

(B) LOCATION: 520..1482

(ix) FEATURES:

(A) NAME/KEY: 3'UTR

(B) LOCATION: 1483..1634

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 12:

· , -	~		
CCTCGAACAT CTATCTTCTG AGCTCG	ATAG TCTACGAAAT C	CGGCACACTA GCCTAATTG	C 60
CGAGATGAAG AGCTCCAGGG AACCGT	TAAA GATCTGATGT T	CCATCTTCA ATCAGGACA	A 120
ATGTTACGGG ATGTCCCTGA CGCCAC	AGAA GGTAGCCTGG T	GGTCCAGAC AGAAAAAGA	G 180
CCTACACCAA AGAAGAAACA TAACAA	GAAA AAGCCTCCGC A	ATCGTTTTGG TAAATCATA	A 240
TAGGCACGAT GCGCATATAC CCTGAC	CATC ATAGCGGTTC C	CCCCGCTAA CTGCTCCGA	G 300
CGGGTAACCC CATGTCACAA AGTGAC	TCTG TCTCTTCGTG G	TAGGTGATG TCAAATTTT	C 360
ACGACTTCCC ACCCCGATGA GCATCC	GTAT TCCTTTTCAT C	TAAATTCTA ATAGATGGC	T 420
TATGGATTCT TATTGGCGAC TTACAA	GCCT ATGTAGTTGG C	TTCCCTCAA GTGTTCGTA	G 480
TCTACCACCT CACACCCGGT CTAACA	GCTT ACGAGAATA AT	G GCT ACT AAT GCA	534
		et Ala Thr Asn Ala 1 5	
ATC AAG CTT CTT GCG CCA GAT	ATC CAC AGG GGT C	TTG GCA GAG CTG GTC	582
Ile Lys Leu Leu Ala Pro Asp	Ile His Arg Gly L 15	eu Ala Glu Leu Val 20	
GCT AAA CGC CTA GGC TTA CGT			630
Ala Lys Arg Leu Gly Leu Arg			630
25	30	35	
TGT AAC GGG GAG GCG ACA TTT Cys Asn Gly Glu Ala Thr Phe			678
40	45	50	
GAT ATC TAC ATC ATC ACG CAG Asp Ile Tyr Ile Ile Thr Gln			726
55 60		65	
GTG CTG GAG CTG CTC ATC ATG			774
Val Leu Glu Leu Leu Ile Met 70 75	Ile Asn Ala Ser L 80	Lys Thr Ala Ser Ala 85	
CGG CGA ATT ACG GCT GTG ATT	CCA AAC TTC CCA T		822
Arg Arg Ile Thr Ala Val Ile : 90	Pro Asn Phe Pro T	Yr Ala Arg Gln Asp	-
30	95	100	

						ATG Met 115		870
						GAC Asp		918
						AAC Asn		966
						CCC Pro		1014
						CGT Arg		1062
						CAT His 195		1110
						GGC Gly		1158
						ACT Thr		1206
						GCG Ala		1254
						GCC Ala		1302
_						AAC Asn 275		1350
						GTA Val		1398
						AAT Asn		1446

						AAA Lys					TGAT	TTTT	GCT '	rctc(SATGCT
GGCTTCTTGA GGGCCAATTT TGCCGTAGAG GTAGTATCCC											TTCTTTTTAT			ATTGACTATT	
TAACGAAGAC TATTTCTTCA TAAATGGACT TCGGCTTCAC										CAC	TGTGAATCTC A			ACATGATATA	
GTTGTTTCAG AGACC															
(2)	INF	ORMA	rion	FOR	SEQ	ID N	10: 1	13:							
	(i) SEQUENCE CHARACTERISTICS:(A) LENGTH: 320 Amino acids(B) TYPE: Amino acid(D) TOPOLOGY: linear(ii) MOLECULE TYPE: Protein														
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 13:														
Met 1	Ala	Thr	Asn	Ala 5	Ile	Lys	Leu	Leu	Ala 10	Pro	Asp	Ile	His	Arg 15	Gly
Leu	Ala	Glu	Leu 20	Val	Ala	Lys	Arg	Leu 25	Gly	Leu	Arg	Leu	Thr 30	Asp	Cys
Lys	Leu	Lys 35	Arg	Asp	Cys	Asn	Gly 40	Glu	Ala	Thr	Phe	Ser 45	Ile	Gly	Glu
Ser	Val 50	Arg	Asp	Gln	Asp	Ile 55	Tyr	Ile	Ile	Thr	Gln 60	Val	Gly	Ser	Gly
Asp 65	Val	Asn	Asp	Arg	Val 70	Leu	Glu	Leu	Leu	Ile 75	Met	Ile	Asn	Ala	Ser 80
Lys	Thr	Ala	Ser	Ala 85	Arg	Arg	Ile	Thr	Ala 90	Val	Ile	Pro	Asn	Phe 95	Pro
Tyr	Ala	Arg	Gln 100	Asp	Arg	Lys	Asp	Lys 105	Ser	Arg	Ala	Pro	Ile 110	Thr	Ala
Lys	Leu	Met 115	Ala	Asp	Met	Leu	Thr 120	Thr	Ala	Gly	Cys	Asp 125	His	Val	Ile
Thr	Met 130	Asp	Leu	His	Ala	Ser 135	Gln	Ile	Gln	Gly	Phe 140	Phe	Asp	Val	Pro
Val 145	Asp	Asn	Leu	Tyr	Ala 150	Glu	Pro	Ser	Val	Val 155	Lys	Tyr	Ile	Lys	Glu 160
His	Ile	Pro	His	Asp 165	Asp	Ala	Ile	Ile	Ile 170	Ser	Pro	Asp	Ala	Gly 175	Gly

Ala Lys Arg Ala Ser Leu Leu Ser Asp Arg Leu Asn Leu Asn Phe Ala Leu Ile His Lys Glu Arg Ala Lys Ala Asn Glu Val Ser Arg Met Val Leu Val Gly Asp Val Thr Asp Lys Val Cys Ile Ile Val Asp Asp Met Ala Asp Thr Cys Gly Thr Leu Ala Lys Ala Ala Glu Val Leu Leu Glu His Asn Ala Arg Ser Val Ile Ala Ile Val Thr His Gly Ile Leu Ser Gly Lys Ala Ile Glu Asn Ile Asn Asn Ser Lys Leu Asp Arg Val Val Cys Thr Asn Thr Val Pro Phe Glu Glu Lys Met Lys Leu Cys Pro Lys Leu Asp Val Ile Asp Ile Ser Ala Val Leu Ala Glu Ser Ile Arg Arg

Leu His Asn Gly Glu Ser Ile Ser Tyr Leu Phe Lys Asn Asn Pro Leu