

UNIVERSIDAD DE SEVILLA

Departamento de Ingenieria Eléctrica

MODELADO Y SIMULACIÓN DE UNA FUENTE DE GENERACIÓN FOTOVOLTAICA

Tesis de Master 2015

Autor: nombre del autor

Director TFM: nombre de tutor/director

Sevilla, Junio de 2015

Agradecimientos

Agradecimientos

Índice general

		primer capítulo
2.1.	Ecuaci	ones
	2.1.1.	Ecuaciones de escalares
		Ecuaciones con matrices
	2.1.3.	Ecuaciones de fasores o complejos
2.2.	Tablas	
	2.2.1.	Tablas sin entorno
	2.2.2.	Tablas con entorno

Índice de cuadros

2.1.	Tabla con entorno	_			_			_	_				_			_		6

Índice de figuras

2.1.	Control proporcional integral	6
2.2.	Libreria de circuitos (ver .svg con inkscape)	6

Capítulo 1

Introducción

Esta es la introducción ...

1.1. Motivación

Capítulo 2

Este es el primer capítulo

2.1. Ecuaciones

2.1.1. Ecuaciones de escalares

Letras mayúsculas para constantes (A, T, L_a) , minúsculas para variables (x, y, v_a) .

$$\dot{\hat{x}} = A\hat{x} + Bu + L(y - C\hat{x}) \tag{2.1}$$

2.1.2. Ecuaciones con matrices

Letras mayúsculas para matrices de constantes $(\mathbf{A}, \mathbf{T}, \mathbf{L}_a)$, minúsculas para variables $(\mathbf{x}, \mathbf{y}, \mathbf{v}_a)$.

$$\dot{\hat{\mathbf{x}}} = \mathbf{A}\hat{\mathbf{x}} + \mathbf{B}\mathbf{u} + \mathbf{L}(\mathbf{y} - \mathbf{C}\hat{\mathbf{x}})$$
 (2.2)

2.1.3. Ecuaciones de fasores o complejos

$$\underline{S}_1 = \sqrt{3}\underline{U}_1\underline{\overline{I}_1} \tag{2.3}$$

2.2. Tablas

2.2.1. Tablas sin entorno

Tecnología	Potencia	Porcentaje
Ciclo	15	20%
Eólica	22	25%
Nuclear	7	25%
Hidráulica	10	25%

Tecnología	Potencia	Porcentaje
Ciclo	15	20%
Eólica	22	25%
Nuclear	7	25%
Hidráulica	10	25%

Tabla 2.1: Tabla con entorno

Figura 2.1: Control proporcional integral

Figura 2.2: Libreria de circuitos (ver .svg con inkscape)

2.2. TABLAS 7

2.2.2. Tablas con entorno

[1]

Capítulo 3

Conclusiones

Estas son las concusiones ...

Bibliografía

[1] P.. Rodriguez, A.V. Timbus, R.. Teodorescu, M.. Liserre, and F.. Blaabjerg. Flexible Active Power Control of Distributed Power Generation Systems During Grid Faults. *IEEE Transactions on Industrial Electronics*, 54(5):2583–2592, October 2007.