

Methods and models for multivariate data analysis

Lecture 2. A bit about time (practice).

Dr. Alex Hvatov, Composite Al Lab Head

SPb 29.11.2022

Fac et excusa- act now, excuse later

(Finite difference processes)

Main modelling concepts:

- What if we can make a stationary process and study it?
- How do we model the non-stationary part?
 - Polynomial Fitting
 - AR* models
 - Fourier transform (?)
 - DE
 - •
 - igorplus And what is the difference between T(t) and S(t)? Should we remove

Flashback: AR(p) models

- Model is: $y_t = a_1 y_{t-1} + a_2 y_{t-2} + \dots + a_p y_{t-p} + \varepsilon_p$
 - $y_t = a_1 y_{t-1} + a_2 y_{t-2} + \cdots + a_p y_{t-p}$ with truncated noise
 - We need something like a linear system to find a_i

•
$$A = \begin{pmatrix} (y_{t-1}, y_{t-1}) & \dots & (y_{t-1}, y_{t-p}) \\ \vdots & \ddots & \vdots \\ (y_{t-1}, y_{t-p}) & \dots & (y_{t-p}, y_{t-p}) \end{pmatrix}, b = \begin{pmatrix} (y_t, y_{t-1}) \\ \vdots \\ (y_t, y_{t-p}) \end{pmatrix}$$

- Solve for x: Ax = b, where $x = (a_1, ... a_p)$
- After that unit root test is used

Trend T(t) and I,pt.I

- Model is: $y_t = a_1 y_{t-1} + a_2 y_{t-2} + \cdots + a_4 y_{t-4}$
- Coefficients:{0.3815,0.3815,0.4 416,0.9987}
 Just one root close to one. So, a linear trend?

Trend T(t) and I,pt.II

- Model is: $y_t = a_1 y_{t-1} + a_2 y_{t-2} + \cdots + a_4 y_{t-4}$
- Coefficients:{0.3815,0.3815,0.4 416,0.9987}
 Just one root close to one. So a linear trend?

Trend T(t) and I,pt.II

- Model is: $y_t = a_1 y_{t-1} + a_2 y_{t-2} + \cdots + a_4 y_{t-4}$
- Coefficients:{0.3815,0.3815,0.4 416,0.9987}

Just one root close to one. So a

linear trend?

Parabola?

4th degree polynomial?

Trend T(t) and I,pt.3

Residual time series

- Specter of residuals
- Specter is <u>shifting</u> when trend is not removed!

Reminder: Fourier Series

•
$$f(t) = \frac{a_0}{2} + \sum_{s=1}^{n} a_s \cos \frac{2\pi s}{n} t + b_s \sin \frac{2\pi s}{n} t$$
 - Discrete Fourier series

•
$$a_S = \sum_{k=1}^n f(k) \cos \frac{2\pi s}{n} k$$

•
$$b_S = \sum_{k=1}^n f(k) \sin \frac{2\pi s}{n} k$$

 Bugcat Capoo wants you to remember Fourier transform, it will be used today

$$F(s) = \int_{-\infty}^{\infty} f(t) \exp(-2\pi st) dt$$

Seasonal component S(t) and I,pt.I

- What if we will ignore polynomial part and start with seasonal?
- What is the physical meaning of zero frequency?
- What is the length of the season?

Seasonal component S(t) and I,pt.I

- What if we will ignore polynomial part and start with seasonal?
- What is the physical meaning of zero frequency?
- What is the length of the season?
- 8 days?

Seasonal component S(t) and I,pt.I

- What if we will ignore polynomial part and start with seasonal?
- What is the physical meaning of zero frequency?
- What is the length of the season?
- 30 days?

Seasonal component S(t) and I,pt.II

Residual time series

Specter of residuals

Low frequencies are removed with seasonal component – we lose information!

The (classical) plan - I

Remove polynomial trend T(t)

Good place to stop R2>0.5

Linear: R2=0.15

Quadric: R2=0.62

4th degree: R2=0.66

13/31

The (classical) plan - II

- Seasonal part is more tricky, since it affects specter
- Good place to start is to plot amplitudes $\sqrt{a_s^2 + b_s^2}$
- More informative $\frac{\sqrt{a_s^2 + b_s^2}}{\max \sqrt{a_s^2 + b_s^2}}$
- Seasonal component is waves with frequency higher than ~ 0.75

Seasonal frequencies here 2,9,14,15

The (classical) plan - III

- Model noise ε_t in usual way as stationary process
- Total model is $f(t)=T(t)+S(t)+\varepsilon_t$

$$R2 = 0.814$$
 $m_t \sim 10^{-13}$
 $D_t \sim 4.867$

The (classical) plan - final

- Well, mean error is 8.58
- Mean value is 77.4
- Pretty good result for 10 minutes of approximation
- Better work with noise –
 better results

The (modern) plan

- What if we <u>still</u> can make a stationary process and study it?
- How do we model the non-stationary part?
 - LSTM-like
 - Prophet (I do not want to think way)
 - Various esoteric methods (algebraic decomposition, neural-ODE)
- $f(t) = F(t) + \varepsilon(t) = G(t)\varepsilon'(t)$

LSTM way (I sign up to train NNs)

Classical LSTM Model may be written as:

$$a_{t+M}y_{t+M} + \cdots + a_{t+1}y_{t+1} + a_ty_t = a_{t-1}y_{t-1} + a_{t-2}y_{t-2} + \cdots + a_{t-N}y_{t-N} + \varepsilon_p$$
 (whoa (!) it looks like autoregression)

- Trend shifts specter issue
- Noised in -> noised out

LSTM way (I sign up to train NNs)

ITMO UNIVERSITY

- Classical LSTM Model predicts only stationary processes
- Maybe not so good
- We could also use the several LSTMs

Non-stationary part:

 Not really differs from trendseason decomposition part

Non-stationary part

Noise part:

 We add noise to the predicted nonstationary part

Non-stationary part+noise

How do we assess modelling:

- RMSE (it is a stochastic process though)
- Distribution
- Spectre

How do we assess modelling:

- RMSE (it is a stochastic process though)
- Distribution
- Spectre

Prophet (I do not want to think way)

$$g(t) = \frac{C(t)}{1 + \exp(-(k + a(t)^{\mathrm{T}}\delta)(t - (m + a(t)^{\mathrm{T}}\gamma)))} \sim \frac{C}{\exp(-k(t - m))}$$
 for non-stationary TS

$$g(t) = (k + a(t)^{\mathrm{T}}\delta)(t - (m + a(t)^{\mathrm{T}}\gamma))$$
 – for close to stationary time-series

$$s(t)$$
 - season as ususal

$$h(t) \sim N(0, v^2)$$
 + some pre-defined values

Pros:

- Non-stationary timeseries modelling
- Should model (and generate) various timeseries

Cons:

One scale (daily human behaviour)

24/31

Источник рисунка: Taylor S.J., Letham B. Forecasting at Scale // Am. Stat. 2018

Date Very good prediction from article

Prophet (I do not want to think way)

Temperature:

Nah, not working temperature is not a human

RMSE: 4.839

25/31

Prophet (I do not want to think way)

Summary:

- Prophet cannot be used to model a lot of applications
- Works only for task Facebook designed it
- Holydays (peaks) could not be modelled even if hourly scale is considered

100 synthetic time series distribution and spectrum

Let the model-expression be defined by a set of tokens:

$$M(\vec{A},t) = \sum_{I} \prod_{J} c_{i,j}(\vec{a}_{i,j},t) \quad I,J \in N$$

$$\vec{A} = (\vec{a}_{i_1,j_1}, \dots) - multi \ parameter$$

Then the **problem** is to find such tokens $c_{i,j}$ with such parameters $\vec{a}_{i,j}$ that the model has the smallest Euclidean distance to the input data P:

$$argmin_{\vec{A}} N(\vec{A}) = \sqrt{\sum_{k=1}^{k=n} (P(t_k) - M(\vec{A}, t_k))^2}$$
ITAMOre than a UNIVERSITY Fitness of the expression

A **token** is a parameterized mathematical (and not very) function and a building block for expressions, for example:

$$c(\vec{a},t) = a_1 Sin(a_2 t + a_3)$$

 $\vec{a} - vector\ of\ parameters$

Model:

- We extract trend, seasonal component, pulses and other components using evolutionary algorithm
- Resulting model is a closed-form algebraic expression
- We could model noise for every term as a unique stationary process

Subtropical temperature zone

Moderate temperature zone

Periodic data:

- You don't have to care about the significance of the parts
- Allows to direct stationary function parameters optimization

Arctic zone temperature

Subequatorial zone temperature

Non-periodic data:

- We use pulses to model different peaks
- Pulse parameters are also may be modelled as the stationary variables
- Since it is required many pulses to model the process, the number of parameters is relatively large and the modelling require fine tuning

УНИВЕРСИТЕТ ИТМО

Thanks for coming!

www.ifmo.ru

(IT;MOre than a UNIVERSITY)