

DevOps / MLOps for Data scientists

Nicki Skafte Detlefsen nsde@dtu.dk

Outline

- Who am I
- What is DevOps / MLOps?
- What does DevOps / MLOps have to do with data science?
- Devops for data scientists
 - Virtual environments
 - Version control
 - Experiment tracking
 - Code testing
- Summary

Code sessions

Who am I

Who am I

- Bachelor, master, PhD from DTU
- Currently: Postdoc
- Old focus:
 - Inductive biases in deep learning
 - Generative models
 - Geometry aware manifolds
- New focus:
 - MLOps
 - Efficient machine learning

Who am I

 Eager open-source contributor

 ML Engineer at <u>https://lightning.ai/</u>

What is DevOps / MLOps?

Let start where you are now

Courses / Projects are linear in nature

Our feedback loop is grades / funding

ML in the real world

Two key observations about the world

1. Data science / Machine Learning in production is a cycle

Data science / Machine learning in production is much more than doing ML modelling

Credit: Hidden Technical Debt in Machine Learning Systems, Sculley et al. 2015

MLOps...

...is a set of <u>tools</u>, <u>processes</u>, and <u>mindset</u> that aim to make **ML Lifecycle** reproducible, trackable, testable and maintainable to continuously create <u>value</u>.

Think as an developer

What software would make my life easier? What software would make collaboration easier?

How do we work together as a team on code?
What processes are necessary for compliance?

How to make sure others understand my code?

MLOps / DevOps is at its core about how to efficiently develop code

What does DevOps / MLOps have to do with data science?

MLOps for data science

Think of reproducibility

- Being able to reproduce other peoples experimental results is an essential part of the scientific method
- Failure to reproduce others results, is a known problem throughout most fields (physics, chemistry, biology)
- With the rise of machine learning we are now seeing the problem within computer science

Question:

What step needs to be reproducible?

Reproducibility in science

Wow this is bad...

Machine Learning / Data science around 22%

Why to we need reproducibility?

Reproducibility is a key component in *Trustworthy ML*

Case:

Imaging an AI agent used for diagnostics. Without reproducibility two persons with the exact same symptoms could get different diagnosis

Trustworthy ML

Reproducibility are not a fixed concept

Reproducibility of model

Reproducibility of results

Dataset	Model Architecture	Random Init	Transfer	Parameters	IMAGENET Top5
RETINA	Resnet-50	96.4% ± 0.05	96.7% ± 0.04	23570408	92.% ± 0.06
RETINA	Inception-v3	$96.6\% \pm 0.13$	96.7% ± 0.05	22881424	93.9%
RETINA	CBR-LargeT	$96.2\% \pm 0.04$	$96.2\% \pm 0.04$	8532480	$77.5\% \pm 0.03$
RETINA	CBR-LargeW	$95.8\% \pm 0.04$	95.8% ± 0.05	8432128	$75.1\% \pm 0.3$
RETINA	CBR-Small	$95.7\% \pm 0.04$	$95.8\% \pm 0.01$	2108672	$67.6\% \pm 0.3$
RETINA	CBR-Tiny	$95.8\% \pm 0.03$	$95.8\% \pm 0.01$	1076480	$73.5\% \pm 0.05$

What is the difference?

The solution is DevOps

Use DevOps tools to make data science / machine learning reproducible

DevOps/MLOps for data scientists

Devops in four topics

What is a virtual environment

A virtual environment is tool for keeping **dependencies** for different projects **separated**. It consist of:

- 1. A python interpreter
- 2. A folder of dependencies

dataquest.io

Why is virtual environments important?

Do you think the following would run on your computer?

Why?

```
import numpy as np
x = np.array([1,2,3])
y = np.array([4,5,6])
z = np.vstack([x,y], dtype=np.float)
```

Two kind of errors:

Hard errors: Feature X no longer exist, code fails on use
 Soft errors: Feature X was changed, code runs but produce wrong result

Virtual envs in python

Use a package management system

Examples:

- Conda (what I like)
- Pipenv
- venv
- <u>pyenv</u>
- pdb


```
(lightning) C:\Users\nsde\Documents\metrics>conda env list
# conda environments:
                         C:\Users\nsde\Anaconda3
ensemble
                         C:\Users\nsde\Anaconda3\envs\ensemble
 laplace
                         C:\Users\nsde\Anaconda3\envs\laplace
lightning
                      * C:\Users\nsde\Anaconda3\envs\lightning
mixerensemble
                         C:\Users\nsde\Anaconda3\envs\mixerensemble
mlops
                         C:\Users\nsde\Anaconda3\envs\mlops
protein
                         C:\Users\nsde\Anaconda3\envs\protein
                         C:\Users\nsde\Anaconda3\envs\pvae
ovae
stochman
                         C:\Users\nsde\Anaconda3\envs\stochman
(lightning) C:\Users\nsde\Documents\metrics>
```

(lightning) C:\Users\n # packages in environm			ightning
# packages In cliving	ent at t. (users (i	130E (Allacolloa) (Ell43 (1	agneriang.
# Name	Version	Build	Channel
absl-py	1.2.0	pypi 0	pypi
aiohttp	3.8.3	pypi 0	pypi
aiosignal	1.2.0	pypi 0	pypi
alabaster	0.7.12	pypi 0	pypi
asttokens	2.0.5	pyhd3eb1b0_0	
async-timeout	4.0.2	pypi_0	pypi
atomicwrites	1.4.1	pypi_0	pypi
attrs	22.1.0	pypi_0	pypi
babel	2.10.3	pypi_0	pypi
backcall	0.2.0	pyhd3eb1b0_0	
beautifulsoup4	4.11.1	pypi_0	pypi
black	22.8.0	pypi_0	pypi
blas	2.116	mkl	conda-forge
blas-devel	3.9.0	16_win64_mkl	conda-forge
bleach	5.0.1	pypi_0	pypi
brotlipy	0.7.0	py38h294d835_1004	conda-for
build	0.8.0	pypi_0	pypi
ca-certificates	2022.07.19	haa95532_0	
cachetools	5.2.0	pypi_0	pypi
certifi	2022.9.14	py38haa95532_0	
cffi	1.15.1	py38hd8c33c5_0	conda-forge
cfgv	3.3.1	pypi_0	pypi
charset-normalizer	2.1.1	pyhd8ed1ab_0	conda-forge
check-manifest	0.48	pypi_0	pypi
click	8.1.3	pypi_0	pypi
cloudpickle	2.2.0	pypi_0	pypi
colorana	0.4.5	py38haa95532_0	
commonmark	0.9.1	pypi_0	рурі
contourpy	1.0.5	pypi_0	pypi
coverage	6.4.4	pypi_0	pypi
cryptography	37.0.4	py38hb7941b4_0	conda-forge
cudatoolkit	11.6.0	hc0ea762_10	conda-forge
cycler	0.11.0	pypi_0	рурі
decorator	5.1.1	pyhd3eb1b0_0	
defusedxml	0.7.1	pypi_0	рурі
distlib	0.3.6	pypi_0	рурі
docutils	0.17.1	pypi_0	рурі
dython	0.7.2	pypi_0	pypi

How do we inform people of requirements?

When you call

pip install package

What (often*) happens is

- Download package
- Calls *pip -r requirements.txt*
- Calls python setup.py install

^{*} alternative is using a pyproject.toml file

What is the job of pip?

Dependency resolution: Finding versions of all dependencies that works together

Code breakout

What is version control

For code development in a **team** we need

- A location/method for centrally storing files
- Keeping a record of changes
- Who did what, when in the system

Question:

What are you currently using to share code?

Would that scale to 10 persons? 100? 1000?

What is the problems version control solves?

- Local + central code communication
- No accidental overwrites
- Infinite scaling of team members
- Possible to roll back

In simple terms, VC is a graph of hashes

When you have work you are satisfied with you **commit** it to the graph

Everyone have access to the graph, and can *only add to the end of the graph

You therefore need to be in sync with the graph to commit.

Parallel work using branches

Branching and merging allows multiple users working together

Technologies for version control

Biggest version control system is git

Biggest repository system is github

Figure credit:

https://www.analyticsvidhya.com/blog/2021/09/git-and-github-tutorial-for-beginners/https://medium.com/swlh/an-introduction-to-git-and-github-22ecb4cb1256

Code breakout

What is experiment tracking

The core part of doing DS/ML is making experiments

Experiments are the way to test your hypothesis

Question:

What is important in data science to log during an experiment?

What should we log in my option

- Metrics related to the performance of the experiment
- Configuration of experiment (=hyperparameters)
- Virtual environment used
- Compute setup
- Code used (=what commit we ran from)

A reason to be careful about logging

Re-Implementation of 255 paper. Hypothesis testing on what "paper features" have an effect on reproducibility.

A Step Toward Quantifying Independently Reproducible Machine Learning Research

Edward Raff

Booz Allen Hamilton raff_edward@bah.com University of Maryland, Baltimore County raff.edward@umbc.edu

Abstract

What makes a paper independently reproducible? Debates on reproducibility center around intuition or assumptions but lack empirical results. Our field focuses on releasing code, which is important, but is not sufficient for determining reproducibility. We take the first step toward a quantifiable answer by manually attempting to implement 255 papers published from 1984 until 2017, recording features of each paper, and performing statistical analysis of the results. For each paper, we did not look at the authors code, if released, in order to prevent bias toward discrepancies between code and paper.

Table 1: Significance test of which paper properties impact reproducibility. Results significant at $\alpha \le 0.05$ marked with"*".

Feature	p-value	
Year Published	0.964	
Year First Attempted	0.674	
Venue Type	0.631	
Rigor vs Empirical*	1.55×10^{-9}	
Has Appendix	0.330	
Looks Intimidating	0.829	
Readability*	9.68×10^{-25}	
Algorithm Difficulty*	2.94×10^{-5}	
Pseudo Code*	2.31×10^{-4}	
Primary Topic*	7.039×10^{-4}	
Exemplar Problem	0.720	
Compute Specified	0.257	
Hyperparameters Specified*	8.45×10^{-6}	
Compute Needed*	8.75×10^{-5}	
Authors Reply*	6.01×10^{-8}	
Code Available	0.213	
Pages	0.364	
Publication Venue	0.342	
Number of References	0.740	
Number Equations*	0.004	
Number Proofs	0.130	
Number Tables*	0.010	
Number Graphs/Plots	0.139	
Number Other Figures	0.217	
Conceptualization Figures	0.365	
Number of Authors	0.497	

Todays tool landscape is filled with tools for logging

Todays tool landscape is filled with tools for logging

A logging tool should be

- simple to use
- store various kinds of data

Code breakout

What is code testing

It is the process used to identify the **correctness**, **completeness** and **quality** of develop software

Objectives

- Uncover errors
- Software matches requirements
- Validate quality

Why do we need code testing?

Because fixing bugs in production is expensive!

Unit tests are the shit

Test are the cornerstones of a good pipeline

- In particular, unit tests are important.
- A single unittest, tests a small part of your code
- By testing code in small pieces, bugs are easier to find

Other types of testing: integration, system

Writing test in python

In python, we recommend using the **pytest** framework.

Test are simple functions that start with *test_* and uses *assert*

```
import numpy as np

# functions.py
def mean_squared_error(preds: np.ndarray, target: np.ndarray):
    return np.sum(np.power(np.abs(preds - target), 2.0))

# test_functions.py
def test_mean_squared_error():
    preds = np.zeros(10,)
    target = np.zeros(10,)
    assert mean_squared_error(preds, target) == 0
```


Test can be as simple or complicated as needed

Test can be simple...

```
def test_warning_on_nan(tmpdir):
    preds = torch.randint(3, size=(20, ))
    target = torch.randint(3, size=(20, ))

with pytest.warns(
    UserWarning,
    match='.* nan values found in confusion matrix have been replaced with zeros.',
):
    confusion_matrix(preds, target, num_classes=5, normalize='true')
```


Test can be as simple or complicated as needed

Test can be simple...

```
def test_warning_on_nan(tmpdir):
    preds = torch.randint(3, size=(20, ))
    target = torch.randint(3, size=(20, ))

with pytest.warns(
    UserWarning,
    match='.* nan values found in confusion matrix have been replaced with zeros.',
):
    confusion_matrix(preds, target, num_classes=5, normalize='true')
```

Or complicated

```
Code
Testing
```

```
pytest.mark.parametrize("normalize", ['true', 'pred', 'all', None])
apytest.mark.parametrize(
   "preds, target, sk_metric, num_classes, multilabel",
   [(input_binary_prob.preds, input_binary_prob.target, sk_cm_binary_prob, 2, False),
   (_input_binary_logits.preds, _input_binary_logits.target, _sk_cm_binary_prob, 2, False),
   (_input_binary.preds, _input_binary.target, _sk_cm_binary, 2, False),
   (input mlb prob.preds, input mlb prob.target, sk cm multilabel prob, NUM CLASSES, True),
   (_input_mlb_logits.preds, _input_mlb_logits.target, _sk_cm_multilabel_prob, NUM_CLASSES, True),
   (_input_mlb.preds, _input_mlb.target, _sk_cm_multilabel, NUM_CLASSES, True),
   (_input_mcls_prob.preds, _input_mcls_prob.target, _sk_cm_multiclass_prob, NUM_CLASSES, False),
   (_input_mcls_logits.preds, _input_mcls_logits.target, _sk_cm_multiclass_prob, NUM_CLASSES, False),
   (_input_mcls.preds, _input_mcls.target, _sk_cm_multiclass, NUM_CLASSES, False),
   (_input_mdmc_prob.preds, _input_mdmc_prob.target, _sk_cm_multidim_multiclass_prob, NUM_CLASSES, False),
    (_input_mdmc.preds, _input_mdmc.target, _sk_cm_multidim_multiclass, NUM_CLASSES, False)]
class TestConfusionMatrix(MetricTester):
   @pytest.mark.parametrize("ddp", [True, False])
   @pytest.mark.parametrize("dist_sync_on_step", [True, False])
   def test_confusion_matrix(
       self, normalize, preds, target, sk_metric, num_classes, multilabel, ddp, dist_sync_on_step
       self.run class metric test(
           ddp=ddp.
           preds=preds,
           target=target.
           metric_class=ConfusionMatrix,
           sk_metric=partial(sk_metric, normalize=normalize),
           dist_sync_on_step=dist_sync_on_step,
           metric_args={
                                               Parametrize is powerful:
               "num_classes": num_classes,
               "threshold": THRESHOLD,
                                               4 \times 11 \times 2 \times 2 = 176 \text{ tests!}
               "normalize": normalize,
               "multilabel": multilabel
```


Test driven development

Change your mindset from this

Code breakout

In summary

DevOps/MLOps provides methods for

- Virtual environments
- Version control
- Experiment tracking
- Code testing

such that experiments become **reproducible**.

MLOps at DTU

https://kurser.dtu.dk/course/02476

https://github.com/SkafteNicki/dtu_mlops

3 weeks in January

5 ECTS

Thanks for your attention

Programmers

This code is unreadable and your dataset is flawed. No one will be able to reproduce your results!

It's not my fault the legacy environment is messed up! We still have 97.3% unit test coverage.

Scientist

This code is unreadable and your dataset is flawed. No one will be able to reproduce your results!

I know:)

Feel free to contact me nsde@dtu.dk
skaftenicki@gmail.com,
https://www.linkedin.com/in/nicki-skafte-detlefsen/