Закон Кюри-Вейсса

Марк Гончаров

25 сентября 2020 г.

1 Цель работы

Изучение температурной зависимости магнитной восприимчивости ферромагнетика выше точки Кюри.

2 В работе используется

Катушка самоиндукции, термостат, частотометр, вольтметр, LC-автогенератор, термопара.

3 Теоретическая справка к работе

Парамагнетик - вещество с магнитной восприимчивостью $\chi>0$, при именении же температуры для таких веществ выполняется **закон Кюри**:

$$\chi \propto \frac{1}{T}$$

Некоторые парамагнетики при понижении температуры испытывают фазовый переход в ферромагнитное состояние. Температуру этого фазового перехода и называют температурой Кюри - Θ_K

Выше точки Кюри действует закон Кюри-Вейсса

$$\chi \propto \frac{1}{T - \Theta_n}$$

 Θ_p - парамагнитная точка Кюри

4 Экспериментальная установка

Рис. 1: Установка

- 1. Катушка
- 2. Стеклянный сосуд
- 3. Термостатическая жидкость
- 4. Ртутный термометр
- 5. Термостат

Введем μ - магнитная проницаемость, тогда для катушки $L \propto \mu$. Более того, при изменении индуктивности образца меняется период колебаний автогенератора:

$$\tau = 2\pi\sqrt{LC}$$

где C - ёмкость контура автогенератора, тогда разность самоиндукций катушки с образцом и без него:

$$\chi \propto L - L_0 \propto \tau^2 - \tau_0^2$$

Добавляем сюда закон Кюри-Вейсса и получаем

$$\frac{1}{\tau^2 - \tau_0^2} \propto T - \Theta_p$$

5 Выполнение задания

- 1. Подготоавливаем установку, включаем вольтметр, частотометр, термостат
- 2. Зафиксируем данные, полученные с приборов: период без образца, указанный на установке $9{,}045\mu s$.

- 3. Оцениваем допустимую ЭДС термопары, при которой разность температур образца и рабочей жидкости $\delta T=0.5^{\circ}C$. Т.к. постоянная термопары k=24K/mV, то мы имеем допустимую $V=0.5/24\approx 0.02mV$. Т.к. абсолютная погрешность вольтметра 0.012mV при наших измерениях, то при нагревании дожидаетмся, когда показания вольтметра будут $\approx 0.01mV$, затем снимаем показания.
- 4. Проведем измерения периода в интервале с 14 до 40 градусов с шагом 2 градуса.

6 Обработка результатов

T, °C	F(T)	G(T)
14,09	34,4	0,0291
15,95	32,46	0,0308
18,03	29,07	0,0344
20,04	23,25	0,043
22,04	15,11	0,0662
24,05	10,06	0,0994
26,04	6,74	0,1485
28,04	5,29	0,1889
30,04	4,36	0,2294
32,04	3,73	0,268
34,02	3,27	0,3058
36,03	2,92	0,3425
38	2,64	0,3782
40,02	2,42	0,4126

Рис. 2: Таблица с полученными результатами

1. Построим графики

$$f(T) = \tau^2 - \tau_0^2$$

$$g(T) = \frac{1}{\tau^2 - \tau_0^2}$$

2. Оценим погрешность полученных измерений. Берем погрешность частотометра 1 единица последней значащей цифры, то есть в данным случае абсолютная погрешность $\sigma_{\tau} \approx 0.001 \mu s$. Для погрешности температуры возьмём $\sigma_{T} \approx 0.2^{\circ}C$, т.к. при зафиксированной на апаратуре температуре, мы все равно имеем небольшое различие между температурами исследуемого образца и термостата. Более того, наш термометр измеряет лишь один знак после запятой с погрешностью соответственно тогда $0.1^{\circ}C$. Вследствие этого и будем оценивать абсолютную погрешность измерения температуры как $0.2^{\circ}C$.

Рис. 3: Графическое нахождение парамагнитной точки Кюри

- 3. Для нахождения парамагнитной точки Кюри для гадолиния необходимо отбросить 4 точки с минимальной температурой, апроксимировать график по МНК, точка пересечения с осью абсцисс и есть искомая температура. Мы можем использовать этот метод, т.к.:
 - (а) Измерения независимы, погрешности случайны.

- (b) Все погрешности по у (т.е. по формуле G(T)) приблизително одинаковы
- (c) $\delta_T \approx 0.0007, \delta_{G(T)} \approx 2*\delta_{ au} \approx 0.01$, т.е. выполняется условие $\delta_T \ll \delta_{G(T)}$

Рис. 4: Расчёт аппроксимации к прямой по методу наименьших квадратов

- 4. Получили уравнение прямой у = 0.0195х 0.36 с погрешностью $\sigma_k \approx 0.0004$, $\sigma_b \approx 0.01$. Эти погрешности мы будем использовать для того, чтобы расчитать погрешность найденной парамагнитной точки Кюри
- 5. $\Theta_p = x(0) = \Theta_p \approx \frac{0.36}{0.0195} \approx 18.46^{\circ} C$ Получаем итоговую абсолютную погреш-

Рис. 5: Вычисление косвенной погрешности для парамагнитной точки Кюри ность этого измерения $\sigma_p \approx 0.64^{\circ}C$. Да, немало, большой вклад здесь составил коэффициент b и слишком малое число точек, использующихся в МНК.

6. Ферромагнитную точку Кюри мы можем лишь приблизительно определить исходя с графиков - при меньшей от нее температуре закон Кюри-Вейсса нарушается.

В данном случае $\Theta_k \approx 18^{\circ}C$. Однако эта цифра очень приблизительна, с погрешностью $1^{\circ}C$, которое и было между измерениями

7 Вывод

Мы научились опытным путём вычислять парамагнитную точку Кюри, также приблизительно оценивать ферромагнитную точку Кюри (температуру Кюри Θ_K). Полученные измерения $\Theta_P \approx 18.5 \pm 0.6 ^{\circ}C$ не сильно отличаются от табличных $20.2 ^{\circ}C$ в приложении учебника. Конечно, расхождение связано с тем, что элемент уже долгое время использовался на установке, двух полностью одинаковых элементов гадолиния не существует. Потому можно считать эксперимент удачно проведённым!