Introdução à simulação de circuitos com o LTspice IV

Renan Birck Pinheiro

Universidade Federal de Santa Maria

3 de Setembro de 2012

■ Por que simular circuitos?

- Por que simular circuitos?
 - Complexidade do projeto de novos circuitos

- Por que simular circuitos?
 - Complexidade do projeto de novos circuitos
 - Reduzir custos de prototipagem

- Por que simular circuitos?
 - Complexidade do projeto de novos circuitos
 - Reduzir custos de prototipagem
 - Simplificar o processo de projeto

- Por que simular circuitos?
 - Complexidade do projeto de novos circuitos
 - Reduzir custos de prototipagem
 - Simplificar o processo de projeto
 - entre outros.

SPICE

- Simulation Program With Integrated Circuit Emphasis Ferramenta de Simulação com Enfase em Circuitos Integrados
- Primeiras versões: FORTRAN, anos 70, grandes computadores, modo texto
- **SPICE 2**: linguagem C, anos 80/90, computadores de pequeno/médio porte, interface gráfica simples
- **Versões atuais**: C/C++, computadores pessoais, interface gráfica avançada, desenho de circuitos

SPICE

- Simulation Program With Integrated Circuit Emphasis Ferramenta de Simulação com Enfase em Circuitos Integrados
- Primeiras versões: FORTRAN, anos 70, grandes computadores, modo texto
- **SPICE 2**: linguagem C, anos 80/90, computadores de pequeno/médio porte, interface gráfica simples
- **Versões atuais**: C/C++, computadores pessoais, interface gráfica avançada, desenho de circuitos
- Vários fabricantes pegaram o código e fizeram suas próprias versões adicionando recursos
 - Motivação: atender interesses específicos de indústrias: microeletrônica, RF etc...
 - Assim, temos hoje diversos simuladores: PSpice, HSpice, LTspice, Spectre, Proteus entre outros

Vantagens:

- Projeto mais rápido, podem-se testar diversos componentes antes da compra.
- Realizar medidas que muitas vezes são difíceis de fazer na bancada.
- Projeto iterativo, usando métodos de otimização para atender requisitos.

Desvantagens:

- Não substitui prototipagem: os modelos são aproximados, não levam efeitos térmicos ou as componentes parasitas da placa
- Necessidade de modelos para os componentes
- O simulador deverá suportar as tecnologias usadas
- Em geral: lixo entra, lixo sai. Os resultados das simulações são tão bons quanto os modelos e o projeto do circuito forem.

Figura : O simulador é uma "máquina ignorante" que só faz o que ele é mandado. Pena que ele não faz café

Obtendo e instalando o LTspice

- http://www.linear.com/ltspice \rightarrow Download LTspice IV
- Proceder com a instalação, será criado um ícone na área de trabalho.

Desenhando um circuito

Componentes

- Acessíveis pelo teclado: Resistor (R), capacitor (C), indutor (L), diodo (D)
- No menu de componentes (aperte F2): Fonte de tensão (Voltage) e de corrente (Current), transistores (npn/pnp, njf/pjf (FET), nmos/pmos (MOSFET))

Parâmetros: fontes de tensão/corrente

Clique com o botão direito na fonte e após clique em Advanced. Aparecerá uma janela com diversas configurações possíveis para a

Functions	-DC Value-
C (none)	DC value:
◆ PULSE(V1 V2 Tdelay Trise Tfall Ton Period Noycles)	Make this information visible on schematic: 🗹
C SINE(Voffset Vamp Freq Td Theta Phi Noycles)	
C EXP(V1 V2 Td1 Tau1 Td2 Tau2)	Small signal AC analysis(AC)
C SFFM(Voff Vamp Foar MDI Fsig)	AC Amplitude:
C PWL(t1 v1 t2 v2)	AC Phase:
C PWL FILE: Browse	Make this information visible on schematic: 🔽
Velia(V) Vor(V)	Parasite Properties Seine Renistrace(ph Parasite Capacit ance) Parasite Capacit ance) Make this information visible on schematic. Make this information visible on schematic.
Make this information visible on schematic: ✓	Cancel OK

fonte.

Parâmetros: resistores, capacitores e indutores

- Para capacitores e indutores, podemos definir condições iniciais de tensão e corrente, respectivamente...
- mas elas só serão respeitadas se marcarmos Use initial Conditions nos parâmetros de simulação

Parâmetros: semicondutores

- Modelos de semicondutores contêm os parâmetros que serão usados pelas equações de dispositivos.
- Normalmente esses modelos são fornecidos pelos fabricantes.
- Componentes mais complexos (op-amps, buffers etc...) estão disponíveis na forma de subcircuitos.

Análise transiente

 Simulação no domínio do tempo, para circuitos lineares ou não, empregando as equações de dispositivos e as técnicas de análise de circuitos

Análise transiente - opções de configuração

- Stop Time: por quanto tempo executar a simulação
- Time to Start Saving Data: quando começar a salvar dados?
- Start external DC supplies at 0V: iniciar as fontes DC em 0V;
 após 20 μs elas subirão ao nível especificado
- Skip Initial Operating Point Solution: usar as condições iniciais especificadas anteriormente (se não tiver nenhuma, ele usa 0 V), caso contrário ele tenta calcular um ponto de operação DC.

Exemplo 1: Circuitos RC e RLC

Exemplo 2: Transformador

Usamos o elemento K para definir um acoplamento magnético entre dois indutores.

Exemplo 3: Circuito a transistor

Análise AC

- Análise de pequenos sinais no domínio da frequência
- Circuitos não-lineares são linearizados ao redor do ponto de operação
- As fontes são definidas como fasores com módulo e fase
- Por exemplo: Fonte definida como AC 1 0 = $1 \angle 0$

Análise AC - Opções de configuração

- Type of Sweep: seleciona se a varredura é feita por oitavas, por décadas, de forma linear ou para pontos especificados.
 - Oitava: faixa de frequências de f a 2f
 - Década: faixa de frequências de f a 10f
- Number of Points: número de pontos.
- Start Frequency/Stop Frequency: frequências de início e de fim.

Exemplo 4: Circuito com amplificador operacional

Análise de varredura DC

Exemplo 5: Curvas do diodo

Análise de Fourier

- Permite visualizar o conteúdo harmônico de um sinal, isto é, as frequências que formam esse sinal.
- Sempre especificar o parâmetro plotwinsize=0, para desativar a compactação (que pode resultar na perda de componentes do sinal).

Exemplo 6: Modulador AM a transistor

Resultados

Da teoria de Fourier, sabemos que ao multiplicarmos um sinal de frequência F_s por uma portadora de frequência F_c (modulação em amplitude), obtemos as harmônicas $F_s + F_c$ e $F_s - F_c$. E isso fica visível no gráfico.

Medição de THD com Fourier

- Excita-se o circuito com um sinal senoidal naentrada, e determina-se o conteúdo harmônico da saída.
 - Sintaxe: .four freq-fundamental V(out)
 - Obs.: definir uma análise transiente antes

Exemplo 7: Amplificador push-pull

Links de interesse

http://tech.groups.yahoo.com/group/LTspice/ - grupo de usuários do LTspice

OBRIGADO!

Contatos: renan.ee.ufsm@gmail.com http://facebook.com/renanbirck http://twitter.com/renan2112

O código-fonte desses slides e os circuitos empregados estão disponíveis em

https://github.com/renanbirck/minicurso-2012 ou com o autor.

Crédito das tirinhas: Vida de Programador http://www.vidadeprogramador.com.br