

JianYan Testing Group Shenzhen Co., Ltd.

Report No: JYTSZ-R12-2200092

IC REPORT

Applicant: Nebra Ltd

Address of Applicant: Unit 4 Bells Yew Green Business Court Bells Yew Green

Equipment Under Test (EUT)

Product Name: Nebra Indoor LoRa Gateway ROCK Pi 4 Version / Nebra Indoor

Helium Hotspot ROCK Pi 4 Version

Model No.: NEBHNT-HHRK4-433, NEBHNT-HHRK4-470, NEBHNT-

HHRK4-868, NEBHNT-HHRK4-915, NEBHNT-HHRK4-433-2, NEBHNT-HHRK4-470-2, NEBHNT-HHRK4-868-2, NEBHNT-HHRK4-915-2, NEBHNT-HHRK4-433-3, NEBHNT-HHRK4-470-3, NEBHNT-HHRK4-868-3, NEBHNT-HHRK4-915-3, NEBHNT-HHRK4-868-

3, NEBHNT-HHRK4-915-3

Canada IC: 27187-HHRK4

Applicable standards: RSS-Gen Issue 5, March 2019 Amendment 1

RSS-247 Issue 2, February 2017

Date of sample receipt: 05 Jan., 2022

Date of Test: 06 Jan., to 28 Jan., 2022

Date of report issued: 29 Jan., 2022

Test Result: PASS*

* In the configuration tested, the EUT complied with the standards specified above.

Authorized Signature:

Bruce Zhang

Laboratory Manager

This report details the results of the testing carried out on one sample. The results contained in this test report do not relate to other samples of the same product and does not permit the use of the JYT product certification mark. The manufacturer should ensure that all products in series production are in conformity with the product sample detailed in this report.

This report may only be reproduced and distributed in full. If the product in this report is used in any configuration other than that detailed in the report, the manufacturer must ensure the new system complies with all relevant standards.

This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 90 days only.

Version

Version No.	Date	Description
00	29 Jan., 2022	Original

Tested by:		Date:	29 Jan., 2022
	Test Engineer	_	, -
Reviewed by:		Date:	29 Jan., 2022
	Project Engineer	_	20 0011., 2022

JianYan Testing Group Shenzhen Co., Ltd. No.101, Building 8, Innovation Wisdom Port, No.155 Hongtian Road, Huangpu Community, Xinqiao Street, Bao'an District, Shenzhen, Guangdong, People's Republic of China. Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

Contents

				Page
1	COV	/ER PAGE		1
2	VER	SION		2
3				
4	TES	T SUMMARY		4
5	GEN			
	5.1	CLIENT INFORMATION		5
	5.2			
	5.3		TEST SAMPLES PLANS	
	5.4			
	5.5			
	5.6		NS FROM THE METHOD	
	5.7			
	5.8			
	5.9			
6	TES	T RESULTS AND MEASUREMENT DA	TA	10
•				
	6.1	CONDUCTED EMISSION		10
	6.2			
	6.3			
	6.4			
	6.5			
	6.5. ² 6.5. ²			
	6.6			
	6.6.1			
	6.6.2			
7	TES	T SETUP PHOTO		38
R	FU	CONSTRUCTIONAL DETAILS		30

4 Test Summary

Test Items	Section	Result	
AC Power Line Conducted Emission	RSS-GEN Section 8.8	Pass	
Conducted Peak Output Power	RSS-247 Section 5.4(d)	Pass	
6dB Emission Bandwidth 99% Occupied Bandwidth	RSS-247 Section 5.2(a)	Pass	
Power Spectral Density	RSS-247 Section 5.2(b)	Pass	
Band Edge	RSS-GEN Section 8.10 RSS-247 Section 5.5	Pass	
Spurious Emission	RSS-GEN Section 6.13 RSS-247 Section 5.5	Pass	

Remark:

- 1. Pass: The EUT complies with the essential requirements in the standard.
- 2. N/A: Not Applicable.
- 3. The cable insertion loss used by "RF Output Power" and other conduction measurement items is 0.5dB (provided by the customer).

ANSI C63.4-2014
ANSI C63.10-2013
KDB 558074 D01 15.247 Meas Guidance v05r02

Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366 Page 4 of 39

5 General Information

5.1 Client Information

Applicant:	Nebra Ltd
Address:	Unit 4 Bells Yew Green Business Court Bells Yew Green
Manufacturer/ Factory:	Nebra Ltd
Address:	Unit 4 Bells Yew Green Business Court Bells Yew Green

5.2 General Description of E.U.T.

Product Name:	Nebra Indoor LoRa Gateway ROCK Pi 4 Version / Nebra Indoor Helium
1 Toddot Harrio.	Hotspot ROCK Pi 4 Version
Model No.:	NEBHNT-HHRK4-433, NEBHNT-HHRK4-470, NEBHNT-HHRK4-868, NEBHNT-HHRK4-915, NEBHNT-HHRK4-433-2, NEBHNT-HHRK4-470-2, NEBHNT-HHRK4-868-2, NEBHNT-HHRK4-915-2, NEBHNT-HHRK4-433-3, NEBHNT-HHRK4-470-3, NEBHNT-HHRK4-868-3, NEBHNT-HHRK4-915-3, NEBHNT-HHRK4-433-3, NEBHNT-HHRK4-470-3, NEBHNT-HHRK4-868-3, NEBHNT-HHRK4-915-3
Operation Frequency:	2412MHz~2462MHz (802.11b/802.11g/80 <mark>2.11n(</mark> H20))
Channel numbers:	11 for 802.11b/802.11g/802.11(H20)
Channel separation:	5MHz
Modulation technology: (IEEE 802.11b)	Direct Sequence Spread Spectrum (DSSS)
Modulation technology: (IEEE 802.11g/802.11n)	Orthogonal Frequency Division Multiplexing(OFDM)
Data speed (IEEE 802.11b):	1Mbps, 2Mbps, 5.5Mbps, 11Mbps
Data speed (IEEE 802.11g):	6Mbps, 9Mbps, 12Mbps, 18Mbps, 24Mbps, 36Mbps, 48Mbps, 54Mbps
Data speed (IEEE 802.11n):	Up to 150Mbps
Antenna Type:	External Antenna
Antenna gain:	1 dBi
AC adapter:	Model No.:R241-1202500I Input: AC100-240V, 50/60Hz 1.5 A Output: DC 12.0V, 2.5A
Remark:	Model No.: NEBHNT-HHRK4-433, NEBHNT-HHRK4-470, NEBHNT-HHRK4-868, NEBHNT-HHRK4-915, NEBHNT-HHRK4-433-2, NEBHNT-HHRK4-470-2, NEBHNT-HHRK4-868-2, NEBHNT-HHRK4-915-2, NEBHNT-HHRK4-433-3, NEBHNT-HHRK4-470-3, NEBHNT-HHRK4-868-3, NEBHNT-HHRK4-915-3, NEBHNT-HHRK4-470-3, NEBHNT-HHRK4-868-3, NEBHNT-HHRK4-915-3, The difference between the models is that the LoRa Radio module used inside is different for each variant. Along with a respective antenna for each region / frequency. The -2 and -3 flags at the end of the model number relates to the specific chip part number for the main LoRa chip.
Test Sample Condition:	The test samples were provided in good working order with no visible defects.

Operation Frequency each of channel for 802.11b/g/n(H20)							
Channel Frequency Channel Frequency Channel Frequency Channel Frequency							Frequency
1	2412MHz	4	2427MHz	7	2442MHz	10	2457MHz
2	2417MHz	5	2432MHz	8	2447MHz	11	2462MHz

3	2422MHz	6	2437MHz	9	2452MHz	

Note:

- 1. For 802.11n-HT40 mode, the channel number is from 3 to 9;
- 2. Channel 1, 6 & 11 selected for 802.11b/g/n-HT20 as Lowest, Middle and Highest channel. Channel 3, 6 & 9 selected for 802.11n-HT40 as Lowest, Middle and Highest channel, Channel.

Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

Report No: JYTSZ-R12-2200092

5.3 Test environment and test mode, and test samples plans

Operating Environment:	
Temperature:	24.0 °C
Humidity:	54 % RH
Atmospheric Pressure:	1010 mbar
Test mode:	
Transmitting mode	Keep the EUT in continuous transmitting with modulation

The sample was placed 0.8m (below 1GHz)/1.5m (above 1GHz) above the ground plane of 3m chamber. Measurements in both horizontal and vertical polarities were performed. During the test, each emission was maximized by: having the EUT continuously working, investigated all operating modes, rotated about all 3 axis (X, Y & Z) and considered typical configuration to obtain worst position, manipulating interconnecting cables, rotating the turntable, varying antenna height from 1m to 4m in both horizontal and vertical polarizations. The emissions worst-case are shown in Test Results of the following pages.

We have verified the construction and function in typical operation. All the test modes were carried out with the EUT in transmitting operation, which was shown in this test report and defined as follows:

Per-scan all kind of data rate, the follow list were the	e worst case.
Mode	Data rate
802.11b	1Mbps
802.11g	6Mbps
802.11n(H20)	6.5Mbps
802.11n(H40)	13.5Mbps

Remark: Jian Yan Testing Group Shenzhen Co., Ltd. is only responsible for the test project data of the above samples, and will keep the above samples for a month.

5.4 Description of Support Units

The EUT has been tested as an independent unit.

5.5 Measurement Uncertainty

	_
Parameter	Expanded Uncertainty (Confidence of 95%)
Conducted Emission (9kHz ~ 150KHz) for V-AMN	3.11 dB
Conducted Emission (150kHz ~ 30MHz) for V-AMN	2.62 dB
Conducted Emission (150kHz ~ 30MHz) for AAN	3.54 dB
Radiated Emission (9kHz ~ 30MHz electric field) for 3m SAC	3.13 dB
Radiated Emission (9kHz ~ 30MHz magnetic field) for 3m SAC	3.13 dB
Radiated Emission (30MHz ~ 1GHz) for 3m SAC	4.45 dB
Radiated Emission (1GHz ~ 18GHz) for 3m SAC	5.34 dB
Radiated Emission (18GHz ~ 40GHz) for 3m SAC	5.34 dB

5.6 Additions to, deviations, or exclusions from the method

No

Page 7 of 39

5.7 Laboratory Facility

The test facility is recognized, certified, or accredited by the following organizations:

● FCC - Designation No.: CN1211

JianYan Testing Group Shenzhen Co., Ltd. has been accredited as a testing laboratory by FCC(Federal Communications Commission). The test firm Registration No. is 727551.

● ISED - CAB identifier.: CN0021

The 3m Semi-anechoic chamber and 10m Semi-anechoic chamber of JianYan Testing Group Shenzhen Co., Ltd. has been Registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing with Registration No.: 10106A-1.

CNAS - Registration No.: CNAS L15527

JianYan Testing Group Shenzhen Co., Ltd. is accredited to SO/IEC 17025:2017 General Requirements for the Competence of Testing and Calibration laboratories for the competence of testing. The Registration No. is CNAS L15527.

● A2LA - Registration No.: 4346.01

This laboratory is accredited in accordance with the recognized International Standard ISO/IEC 17025:2017 General requirements for the competence of testing and calibration laboratories. The test scope can be found as below link: https://portal.a2la.org/scopepdf/4346-01.pdf

5.8 Laboratory Location

JianYan Testing Group Shenzhen Co., Ltd.

Address: No.101, Building 8, Innovation Wisdom Port, No.155 Hongtian Road, Huangpu Community, Xingiao Street, Bao'an District, Shenzhen, Guangdong, People's Republic of China.

Tel: +86-755-23118282, Fax: +86-755-23116366

Email: info-JYTee@lets.com, Website: http://jyt.lets.com

5.9 Test Instruments list

Radiated Emission:						
Test Equipment	Manufacturer	Model No.	Serial No.	Cal.Date (mm-dd-yy)	Cal.Due date (mm-dd-yy)	
3m SAC	ETS	RFD-100	Q1984	04-14-2021	04-13-2024	
BiConiLog Antenna	SCHWARZBECK	VULB9163	9163-1246	03-07-2021	03-06-2022	
Biconical Antenna	SCHWARZBECK	VUBA 9117	9117#359	06-17-2021	06-17-2022	
Horn Antenna	SCHWARZBECK	BBHA9120D	912D-916	03-07-2021	03-06-2022	
Broad-Band Horn Antenna	SCHWARZBECK	BBHA9170	1067	04-02-2021	04-01-2022	
Broad-Band Horn Antenna	SCHWARZBECK	BBHA9170	1068	04-02-2021	04-01-2022	
EMI Test Receiver	Rohde & Schwarz	ESRP7	101070	03-03-2021	03-02-2022	
Spectrum analyzer	Rohde & Schwarz	FSP30	101454	03-03-2021	03-02-2022	
Spectrum analyzer	Keysight	N9010B	MY60240202	10-27-2021	10-26-2022	
Low Pre-amplifier	SCHWARZBECK	BBV9743B	00305	03-07-2021	03-06-2022	
High Pre-amplifier	SKET	LNPA_0118G-50	MF280208233	03-07-2021	03-06-2022	
Cable	Qualwave	JYT3M-1G-NN-8M	JYT3M-1	03-07-2021	03-06-2022	
Cable	Qualwave	JYT3M-18G-NN-8M	JYT3M-2	03-07-2021	03-06-2022	
Cable	Qualwave	JYT3M-1G-BB-5M	JYT3M-3	03-07-2021	03-06-2022	
Cable	Bost	JYT3M-40G-SS-8M	JYT3M-4	04-02-2021	04-01-2022	
EMI Test Software	Tonscend	TS+		Version:3.0.0.1		

0 1 1 1 5						
Conducted Emission:	Conducted Emission:					
Test Equipment	Manufacturer	Model	No.	Serial No.	Cal. Date (mm-dd-yy)	Cal. Due date (mm-dd-yy)
EMI Test Receiver	Rohde & Schwarz	ESCI	3	101189	03-03-2021	03-02-2022
LISN	Rohde & Schwarz	ENV4	32	101602	04-06-2021	04-05-2022
LISN	Rohde & Schwarz	ESH3-	-Z5	843862/010	06-18-2020	06-17-2022
ISN	Schwarzbeck	CAT3 8	158	#96	03-03-2021	03-02-2022
ISN	Schwarzbeck	CAT5 8	158	#166	03-03-2021	03-02-2022
ISN	Schwarzbeck	NTFM 8	3158	#126	03-03-2021	03-02-2022
RF Switch	TOP PRECISION	RSU03	301	N/A	03-03-2021	03-02-2022
Cable	Bost	JYTCE-1G	-NN-2M	JYTCE-1	03-03-2021	03-02-2022
Cable	Bost	JYTCE-1G	-BN-3M	JYTCE-2	03-03-2021	03-02-2022
EMI Test Software	AUDIX	E3		Ve	ersion: 6.110919	b

Conducted method:					
Test Equipment	Manufact <mark>ur</mark> er	Model No.	Serial No.	Cal. Date (mm-dd-yy)	Cal. Due date (mm-dd-yy)
Spectrum Analyzer	Keysight	N9010B	MY60240202	10-27-2021	10-26-2022
Vector Signal Generator	Keysight	N5182B	MY59101009	10-27-2021	10-26-2022
Analog Signal Generator	Keysight	N5173B	MY59100765	10-27-2021	10-26-2022
Power Detector Box	MWRF-test	MW100-PSB	MW201020JYT	11-19-2021	11-18-2022
Simulated Station	Rohde & Schwarz	CMW270	102335	10-27-2021	10-26-2022
RF Control Box	MWRF-test	MW100-RFCB	MW200927JYT	N/A	N/A
PDU	MWRF-test	XY-G10	N/A	N/A	N/A
DC Power Supply	Keysight	E3642A	MY60296194	11-27-2020	11-26-2023
Temperature Humidity Chamber	ZhongZhi	CZ-C-150D	ZH16491	11-01-2020	10-31-2021
Test Software	MWRF-tes	MTS 8310	\	Version: 2.0.0.0	

Test results and Measurement Data

6.1 Conducted Emission

Test Requirement:	RSS-GEN Section 8.8						
Test Frequency Range:	150 kHz to 30 MHz						
. , ,							
Class / Severity:	Class B						
Receiver setup:	RBW=9 kHz, VBW=30 kHz						
Limit:	Frequency range (MHz)	Limit (1				
		Quasi-peak	Average 56 to 46*				
	0.15-0.5 66 to 56* 56 to 46* 0.5-5 56 46						
	5-30	60	50				
	* Decreases with the logarith		30				
Test procedure	 The E.U.T and simulators are connected to the main power through a line impedance stabilization network (L.I.S.N.), which provides a 50ohm/50uH coupling impedance for the measuring equipment. The peripheral devices are also connected to the main power through a LISN that provides a 50ohm/50uH coupling impedance with 50ohm termination. (Please refer to the block diagram of the test setup and photographs). Both sides of A.C. line are checked for maximum conducted interference. In order to find the maximum emission, the relative positions of equipment and all of the interface cables must be changed according to ANSI C63.4(latest version) on conducted measurement. 						
Test setup:	LISN 40	· ·	ter — AC power				
Test Instruments:	Refer to section 5.9 for details						
Test mode:	Refer to section 5.3 for detail	ls					
Test results:	Passed						

Measurement Data:

Product name:	Nebra Indoor LoRa Gateway ROCK Pi 4 Version / Nebra Indoor Helium Hotspot ROCK Pi 4 Version	Product model:	NEBHNT-HHRK4-915
Test by:	Mike	Test mode:	Wi-Fi Tx mode
Test frequency:	150 kHz ~ 30 MHz	Phase:	Line
Test voltage:	AC 120 V/60 Hz	Environment:	Temp: 22.5℃ Huni: 55%

	Freq	Level l	Factor	Loss	Level	Limit	Limit	Remark
	MHz	₫₿uѶ		dB	dBu∀	dBu₹	₫B	
1 2 3 4 5 6 7 8 9 10 11 12	0. 162 0. 170 0. 190 0. 206 0. 226 0. 238 0. 354 0. 373 0. 377 2. 001 11. 080 11. 139	50. 09 34. 07 47. 56 44. 48 42. 44 31. 19 30. 76 41. 02 35. 32 22. 85 30. 87 23. 68	0. 04 0. 04 0. 04 0. 04 0. 04 0. 04 0. 04 0. 04 0. 07 0. 22 0. 23	0.01 0.03 0.04 0.02 0.02 0.02 0.03 0.03 0.21 0.11	50.14 34.12 47.63 44.56 42.50 31.25 30.82 41.09 35.39 23.13 31.20 24.02	54.94 64.02 63.36 62.61 52.17 48.87 58.43 48.34 46.00 60.00	-16.39 -18.80 -20.11 -20.92 -18.05 -17.34 -12.95 -22.87 -28.80	Average QP QP QP Average Average QP Average Average
			V. L.	••••			20.00	

Notes

- 1. An initial pre-scan was performed on the line and neutral lines with peak detector.
- 2. Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission.
- 3. Final Level =Receiver Read level + LISN Factor + Cable Loss.

Product name:	Nebra Indoor LoRa Gateway ROCK Pi 4 Version / Nebra Indoor Helium Hotspot ROCK Pi 4 Version	Product model:	NEBHNT-HHRK4-915		
Test by:	Mike	Test mode:	Wi-Fi Tx mode		
Test frequency:	150 kHz ~ 30 MHz	Phase:	Neutral		
Test voltage:	AC 120 V/60 Hz	Environment:	Temp: 22.5℃ Huni: 55%		

MHz dBuV dB dB dBuV dBuV dB 1 0.162 49.86 0.05 0.01 49.92 65.34 -15.42 QP 2 0.166 34.64 0.05 0.01 34.70 55.16 -20.46 Average 3 0.190 32.07 0.04 0.03 32.14 54.02 -21.88 Average 4 0.198 44.20 0.04 0.04 44.28 63.71 -19.43 QP 5 0.230 40.71 0.04 0.02 40.77 62.44 -21.67 QP 6 0.358 33.82 0.04 0.02 33.88 48.78 -14.90 Average 7 0.358 39.08 0.04 0.02 39.14 58.78 -19.64 QP 8 0.373 34.47 0.04 0.03 34.54 48.43 -13.89 Average 9 2.167 25.71 0.06 0.18 25.95 56.00 -30.05 QP 10 2.225 21.30 0.07 0.17 21.54 46.00 -24.46 Average 11 18.920 23.40 0.29 0.15 23.84 60.00 -36.16 QP 12 19.740 15.37 0.30 0.15 15.82 50.00 -34.18 Average		Freq	Read Level F	LISN	Cable Loss	Level	Limit Line	Over Limit	Remark
2 0.166 34.64 0.05 0.01 34.70 55.16 -20.46 Average 0.190 32.07 0.04 0.03 32.14 54.02 -21.88 Average 0.198 44.20 0.04 0.04 44.28 63.71 -19.43 QP 0.230 40.71 0.04 0.02 40.77 62.44 -21.67 QP 0.358 33.82 0.04 0.02 33.88 48.78 -14.90 Average 0.358 39.08 0.04 0.02 39.14 58.78 -19.64 QP 0.373 34.47 0.04 0.03 34.54 48.43 -13.89 Average 2.167 25.71 0.06 0.18 25.95 56.00 -30.05 QP 10 2.225 21.30 0.07 0.17 21.54 46.00 -24.46 Average 11 18.920 23.40 0.29 0.15 23.84 60.00 -36.16 QP		MHz	dBu∀	āB	₫Ē	dBuV	dBu∀	<u>d</u> B	
	10 11	0.166 0.190 0.198 0.230 0.358 0.358 0.373 2.167 2.225 18.920	34.64 32.07 44.20 40.71 33.82 39.08 34.47 25.71 21.30 23.40	0. 05 0. 04 0. 04 0. 04 0. 04 0. 04 0. 06 0. 07 0. 29	0.01 0.03 0.04 0.02 0.02 0.02 0.03 0.18 0.17	34.70 32.14 44.28 40.77 33.88 39.14 34.54 25.95 21.54 23.84	55. 16 54. 02 63. 71 62. 44 48. 78 58. 78 48. 43 56. 00 46. 00 60. 00	-20.46 -21.88 -19.43 -21.67 -14.90 -19.64 -13.89 -30.05 -24.46 -36.16	Average Average QP QP Average QP Average QP Average QP

Notes

- 1. An initial pre-scan was performed on the line and neutral lines with peak detector.
- 2. Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission.
- 3. Final Level =Receiver Read level + LISN Factor + Cable Loss.

6.2 Conducted Output Power

Test Requirement:	RSS-247 Section 5.4 (d)
Limit:	1W(conducted Power) and 4W(EIRP)
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane
Test Instruments:	Refer to section 5.9 for details
Test mode:	Refer to section 5.3 for details
Test results:	Passed

6.3 Occupy Bandwidth

6.4 Power Spectral Density

Test Requirement:	RSS-247 section 5.2(b)
Limit:	8 dBm/3kHz
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane
Test Instruments:	Refer to section 5.9 for details
Test mode:	Refer to section 5.3 for details
Test results:	Passed

Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

6.5 Band Edge

6.5.1 Conducted Emission Method

Test Requirement:	RSS-247 section 5.5					
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated device is operating, the RF power that is produced shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided that the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of root-mean-square averaging over a time interval, as permitted under section 5.4(d), the attenuation required shall be 30 dB instead of 20 dB. Attenuation below the general field strength limits specified in RSS-Gen is not required.					
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane					
Test Instruments:	Refer to section 5.9 for details					
Test mode:	Refer to section 5.3 for details					
Test results:	Passed					

Xinqiao Street, Bao'an District, Shenzhen, Guangdong, People's Republic of China. Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

6.5.2 Radiated Emission Method

6.5.2 Radiated Emission							
Test Requirement:	RSS-GEN section	RSS-GEN section 8.10					
Test Frequency Range:	2310 MHz to 2390	0 MHz and 24	183.5 MHz to 2	500 MHz			
Test Distance:	3m						
Receiver setup:	Frequency	Detector	RBW	VBW	Remark		
	Above 1GHz	Peak	1MHz	3MHz	Peak Value		
I imaid.	Frequency	RMS	1MHz	3MHz	Average Value Remark		
Limit:		54.00			Average Value		
	Above 1GH	Z	74.00		Peak Value		
Test setup:	the ground at determine the 2. The EUT was antenna, white tower. 3. The antenna ground to det horizontal an measurement 4. For each sus and then the and the rotal maximum reasonable and the rotal form the emission of the EUT would margin.	t a 3 meter case position of the position of the set 3 meters chewas mount height is varietermine the module of the case of th	the highest radics away from the saway from the ted on the top ed from one maximum value arizations of the tion, the EUT was set to Peak Maximum Hold EUT in peak in a could be stop d. Otherwise the tested one by coiled and then reserved.	ole was rotated ation. e interference of a variable- eter to four monor of the field size antenna are was arranged ats from 1 me rees to 360 cm. Competent Fund Mode. The emissions one using pear of the pear	ed 360 degrees to e-receiving height antenna leters above the trength. Both e set to make the to its worst case ter to 4 meters legrees to find the etion and dB lower than the beak values of that did not have ak, quasi-peak or ata sheet.		
Test Instruments:	Refer to section 5.9 for details						
Test mode:	Refer to section 5	.3 for details					
Test results:	Passed						

802.11b mode:

Product name:	Nebra Indoor LoRa Gateway ROCK Pi 4 Version / Nebra Indoor Helium Hotspot ROCK Pi 4 Version	Product model:	NEBHNT-HHRK4-915
Test By:	Mike	Test mode:	802.11b Tx mode
Test Channel:	Lowest channel	Polarization:	Vertical
Test Voltage:	AC 120/60Hz	Environment:	Temp: 24℃ Huni: 57%

	NO.	Freq. [MHz]	Reading [dBµV/m]	[1	Level dBµV/m]	Factor [dB]	Limit [dBµV/m]	Margin [dB]	Trace	Polarity
	1	2330.00	21.98		57.39	35.41	74.00	16.61	PK	Vertical
	2	2330.00	14.84		50.25	35.41	54.00	3.75	AV	Vertical
	3	2360.00	15.21		50.84	35.63	54.00	3.16	AV	Vertical
	4	2360.00	22.85		58.48	35.63	74.00	15.52	PK	Vertical
L	5	2390.00	23.71		59.55	35.84	74.00	14.45	PK	Vertical
L	6	2390.00	15.77		51.61	35.84	54.00	2.39	AV	Vertical

Remark:

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product name:	Nebra Indoor LoRa Gateway ROCK Pi 4 Version / Nebra Indoor Helium Hotspot ROCK Pi 4 Version	Product model:	NEBHNT-HHRK4-915		
Test By:	Mike	Test mode:	802.11b Tx mode		
Test Channel:	Lowest channel	Polarization:	Horizontal		
Test Voltage:	AC 120/60Hz	Environment:	Temp: 24°C Huni: 57%		

	NO.	Freq. [MHz]	Reading [dBµV/m]	1	Level dBµV/m]	Factor [dB]	Limit [dBµV/m]	Margin [dB]	Trace	Polarity
	1	2330.00	22.24		57.65	35.41	74.00	16.35	PK	Horizontal
	2	2330.00	14.68		50.09	35.41	54.00	3.91	AV	Horizontal
l	3	2360.00	13.87		49.50	35.63	54.00	4.50	AV	Horizontal
	4	2360.00	21.93		57.56	35.63	74.00	16.44	PK	Horizontal
	5	2390.00	21.98		5 7.82	35.84	74.00	16.18	PK	Horizontal
	6	2390.00	14.16		50.00	35.84	54.00	4.00	AV	Horizontal

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

Product name:	Nebra Indoor LoRa Gateway ROCK Pi 4 Version / Nebra Indoor Helium Hotspot ROCK Pi 4 Version	Product model:	NEBHNT-HHRK4-915			
Test By:	Mike	Test mode:	802.11b Tx mode			
Test Channel:	Highest channel	Polarization:	Vertical			
Test Voltage:	AC 120/60Hz	Environment:	Temp: 24°C Huni: 57%			

	NO	Freq. [MHz]	Reading [dBµV/m]	Level BµV/m]	Factor [dB]	Limit [dBµV/m]	Margin [dB]	Trace	Polarity
	1	2483.50	23.06	58.78	35.72	74.00	15.22	PK	Vertical
L	2	2483.50	15.60	51.32	35.72	54.00	2.68	AV	Vertical
L	3	2489.00	15.37	51 .08	35.71	54.00	2.92	AV	Vertical
	4	2489.00	22.52	58.23	35.71	74.00	15.77	PK	Vertical
	5	2495.00	22.37	58.06	35.69	74.00	15.94	PK	Vertical
	6	2495.00	15.96	51.65	35.69	54.00	2.35	AV	Vertical

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product name:	Nebra Indoor LoRa Gateway ROCK Pi 4 Version / Nebra Indoor Helium Hotspot ROCK Pi 4 Version	Version / Nebra Indoor Helium Product model:				
Test By:	Mike	Test mode:	802.11b Tx mode			
Test Channel:	Highest channel	Polarization:	Horizontal			
Test Voltage:	AC 120/60Hz	Environment:	Temp: 24°C Huni: 57%			

NO.	Freq. [MHz]	Reading [dBµV/m]		Level dBµV/m]	Factor [dB]	Limit [dBµV/m]	Margin [dB]	Trace	Polarity
1	2483.50	22.93		5 8.65	35.72	74.00	15.35	PK	Horizontal
2	2483.50	14.12	X	49.84	35.72	54.00	4.16	AV	Horizontal
3	2489.00	14.54		50.25	35.71	54.00	3.75	AV	Horizontal
4	2489.00	22.76		58.47	35.71	74.00	15.53	PK	Horizontal
5	2495.00	22.32		5 8.01	35.69	74.00	15.99	PK	Horizontal
6	2495,00	14.62		50.31	35.69	54.00	3.69	AV	Horizontal

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

802.11g mode:

Product name:	Nebra Indoor LoRa Gateway ROCK Pi 4 Version / Nebra Indoor Helium Hotspot ROCK Pi 4 Version	Product model:	NEBHNT-HHRK4-915			
Test By:	Mike	Test mode:	802.11g Tx mode			
Test Channel:	Lowest channel	Polarization:	Vertical			
Test Voltage:	AC 120/60Hz	Environment:	Temp: 24°C Huni: 57%			

NO.	Freq. [MHz]	Reading [dBµV/m]	[<u>Q</u>	Level BµV/m]	Factor [dB]	Limit [dBµV/m]	Margin [dB]	Trace	Polarity
1	2328.43	15.96		51.36	35.40	54.00	2.64	AV	Vertical
2	2329.22	24.19		59.60	35.41	74.00	14.40	PK	Vertical
3	2347.38	16.24		51.78	35.54	54.00	2.22	AV	Vertical
4	2366.61	25.01		60.68	35.67	74.00	13.32	PK	Vertical
5	2390.01	22.93		5 8.77	35.84	74.00	15.23	PK	Vertical
6	2390.01	15.44		51.28	35.84	54.00	2.72	AV	Vertical

Remark:

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product name:	Nebra Indoor LoRa Gateway ROCK Pi 4 Version / Nebra Indoor Helium Hotspot ROCK Pi 4 Version	Product model:	NEBHNT-HHRK4-915		
Test By:	Mike	Test mode:	802.11g Tx mode		
Test Channel:	Lowest channel	Polarization:	Horizontal		
Test Voltage:	AC 120/60Hz	Environment:	Temp: 24°C Huni: 57%		

NO.	Freq. [MHz]	Reading [dBµV/m]		Level [dBµV/m]	Factor [dB]	Limit [dBµV/m]	Margin [dB]	Trace	Polarity
1	2335.97	24.43	1	59.89	35.46	74.00	14.11	PK	Horizontal
2	2340.84	15.08		50.57	35.49	54.00	3.43	AV	Horizontal
3	2353.16	14.65		50.23	35.58	54.00	3.77	AV	Horizontal
4	2355.52	25.33		60.92	35.59	74.00	13.08	PK	Horizontal
5	2390.01	22.20		58.04	35.84	74.00	15.96	PK	Horizontal
6	2390.01	14.40		50.24	35.84	54.00	3.76	AV	Horizontal

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

Product name:	Nebra Indoor LoRa Gateway ROCK Pi 4 Version / Nebra Indoor Helium Hotspot ROCK Pi 4 Version	Product model:	NEBHNT-HHRK4-915
Test By:	Mike	Test mode:	802.11g Tx mode
Test Channel:	Highest channel	Polarization:	Vertical
Test Voltage:	AC 120/60Hz	Environment:	Temp: 24°C Huni: 57%

	NO.	Freq. [MHz]	Reading [dBµV/m]	Į(Level d <u>BµV/</u> m]	Factor [dB]	Limit [dBµV/m]	Margin [dB]	Trace	Polarity
	1	2483.50	15.31		51.03	35.72	54.00	2.97	AV	Vertical
L	2	2483.50	22.03		57.75	35.72	74.00	16.25	PK	Vertical
I	3	2485.28	23.12		58.83	35.71	74.00	15.17	PK	Vertical
	4	2486.09	15.19		50.90	35.71	54.00	3.10	AV	Vertical
	5	2488.64	23.15		5 8.86	35.71	74.00	15.14	PK	Vertical
	6	2496,94	14.72		50.41	35.69	54.00	3.59	AV	Vertical

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product name:	Nebra Indoor LoRa Gateway ROCK Pi 4 Version / Nebra Indoor Helium Hotspot ROCK Pi 4 Version	Product model:	NEBHNT-HHRK4-915		
Test By:	Mike	Test mode:	802.11g Tx mode		
Test Channel:	Highest channel	Polarization:	Horizontal		
Test Voltage:	AC 120/60Hz	Environment:	Temp: 24°C Huni: 57%		

NO.	Freq. [MHz]	Reading [dBµV/m]]	Level dBµV/m]	Factor [dB]	Limit [dBµV/m]	Margin [dB]	Trace	Polarity
1	2483.50	20.85		56.57	35.72	74.00	17.43	PK	Horizontal
2	2483.50	14.35		50.07	35.72	54.00	3.93	AV	Horizontal
3	2485.55	15.56		51.27	35.71	54.00	2.73	AV	Horizontal
4	2487.43	24.88		60.59	35.71	74.00	13.41	PK	Horizontal
5	2491.86	24.48		60.18	35.70	74.00	13.82	PK	Horizontal
6	2492.43	15.69	Z	51.39	35.70	54.00	2.61	AV	Horizontal

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

802.11n(HT20):

Product name:	Nebra Indoor LoRa Gateway ROCK Pi 4 Version / Nebra Indoor Helium Hotspot ROCK Pi 4 Version	Product model:	NEBHNT-HHRK4-915		
Test By:	Mike	Test mode:	802.11n(HT20) Tx mode		
Test Channel:	Lowest channel	Polarization:	Vertical		
Test Voltage:	AC 120/60Hz	Environment:	Temp: 24°C Huni: 57%		

NO.	Freq. [MHz]	Reading [dBµV/m]	[,	Level dBµV/m]	Factor [dB]	Limit [dBµV/m]	Margin [dB]	Trace	Polarity
1	2319.54	16.90		52.24	35,34	54.00	1.76	AV	Vertical
2	2330.42	16.50		51.92	35.42	54.00	2.08	AV	Vertical
3	2371.50	27.63		63.34	35.71	74.00	10.66	PK	Vertical
4	2385.54	30.48		66.29	35.81	74.00	7.71	PK	Vertical
5	2390.01	25.73		61.57	35.84	74.00	12.43	PK	Vertical
6	2390.01	15.74		51.58	35.84	54.00	2.42	AV	Vertical

Remark

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

Product name:	Nebra Indoor LoRa Gateway ROCK Pi 4 Version / Nebra Indoor Helium Hotspot ROCK Pi 4 Version	Product model:	NEBHNT-HHRK4-915		
Test By:	Mike	Test mode:	802.11n(HT20) Tx mode		
Test Channel:	Lowest channel	Polarization:	Horizontal		
Test Voltage:	AC 120/60Hz	Environment:	Temp: 24℃ Huni: 57%		

NO.	Freq. [MHz]	Reading [dBµV/m]]	Level dBμV/m]	Factor [dB]	Limit [dBµV/m]	Margin [dB]	Trace	Polarity
1	2352.63	16.46		52.03	35.57	54.00	1.97	AV	Horizontal
2	2357.53	24.38		59.99	35.61	74.00	14.01	PK	Horizontal
3	2375.01	24.49		60.22	35.73	74.00	13.78	PK	Horizontal
4	2376.08	15.55		51.29	35.74	54.00	2.71	AV	Horizontal
5	2390.01	14.15		49.99	35.84	54.00	4.01	AV	Horizontal
6	2390.01	21.31		57.15	35.84	74.00	16.85	PK	Horizontal

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

Product name:	Nebra Indoor LoRa Gateway ROCK Pi 4 Version / Nebra Indoor Helium Hotspot ROCK Pi 4 Version	Product model:	NEBHNT-HHRK4-915		
Test By:	Mike	Test mode:	802.11n(HT20) Tx mode		
Test Channel:	Highest channel	Polarization:	Vertical		
Test Voltage:	AC 120/60Hz	Environment:	Temp: 24°C Huni: 57%		

NO.	Freq. [MHz]	Reading [dBµV/m]]	Level dBµV/m]	Factor [dB]	Limit [dBµV/m]	Margin [dB]	Trace	Polarity
1	2483.50	22.97		58.69	35.72	74.00	15.31	PK	Vertical
2	2483.50	15.38		51 .10	35.72	54.00	2.90	AV	Vertical
3	2485.04	17.03		52.74	35.71	54.00	1.26	AV	Vertical
4	2486.16	28.00		63.71	35.71	74.00	10.29	PK	Vertical
5	2492.90	16.68		52.38	35.70	54.00	1.62	AV	Vertical
6	2492.91	25.61		61.31	35.70	74.00	12.69	PK	Vertical

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

Product name:	Nebra Indoor LoRa Gateway ROCK Pi 4 Version / Nebra Indoor Helium Hotspot ROCK Pi 4 Version	Product model:	NEBHNT-HHRK4-915		
Test By:	Mike	Test mode:	802.11n(HT20) Tx mode		
Test Channel:	Highest channel	Polarization:	Horizontal		
Test Voltage:	AC 120/60Hz	Environment:	Temp: 24°C Huni: 57%		

1	VO.	Freq. [MHz]	Reading [dBµV/m]	Level [dBμV/m]	Factor [dB]	Limit [dBµV/m]	Margin [dB]	Trace	Polarity
	1	2483.50	21.92	57.64	35.72	74.00	16.36	PK	Horizontal
L	2	2483.50	14.60	50.32	35.72	54.00	3.68	AV	Horizontal
L	3	2486.48	15.74	51.45	35.71	54.00	2.55	AV	Horizontal
	4	2490.01	23.83	5 <mark>9.53</mark>	35.70	74.00	14.47	PK	Horizontal
L	5	2492.69	24.41	60.11	35.70	74.00	13.89	PK	Horizontal
	6	2494.32	15.70	51.39	35.69	54.00	2.61	AV	Horizontal

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Page 29 of 39

6.6 Spurious Emission

6.6.1 Conducted Emission Method

Test Requirement:	RSS-247 section 5.5				
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated device is operating, the RF power that is produced shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided that the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of root mean-square averaging over a time interval, as permitted under section 5.4(d the attenuation required shall be 30 dB instead of 20 dB. Attenuation below the general field strength limits specified in RSS-Gen is not required.				
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane				
Test Instruments:	Refer to section 5.9 for details				
Test mode:	Refer to section 5.3 for details				
Test results:	Passed				

Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

6.6.2 Radiated Emission Method

Test Requirement:	Method RSS-Gen section 6.13								
Test Frequency Range:	9kHz to 25GHz								
Test Distance:	3m								
Receiver setup:	Frequency	Detector	ctor RBW		Remark				
receiver detap.	30MHz-1GHz	Quasi-peak	120KHz	VBW 300KHz	Quasi-peak Value				
	A1 4011	Peak	1MHz	3MHz	Peak Value				
	Above 1GHz	RMS	1MHz	3MHz	Average Value				
Limit:	Frequency	Lim	it (dBuV/m @3	m)	Remark				
	30MHz-88MH	z	40.0	C	Quasi-peak Value				
	88MHz-216MH		43.5	$\overline{}$	Quasi-peak Value				
	216MHz-960MI		46.0		Quasi-peak Value				
	960MHz-1GH	Z	54.0	C	Quasi-peak Value				
	Above 1GHz	:	54.0		Average Value				
Test Procedure:	1. The EUT was placed on the top of a rotating table 0.8m(below 1GHz)/1.5m(above 1GHz) above the ground at a 3 meter chamber. The table was rotated 360 degrees to determine the position of the highest radiation. 2. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower. 3. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement. 4. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rota table was turned from 0 degrees to 360 degrees to find the maximum reading. 5. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode. 6. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.								
Test setup.	Below 1GHz Turn Table Ground F Above 1GHz	0.8m							

Measurement Data (worst case):

Below 1GHz:

Product name:	Nebra Indoor LoRa Gateway ROCK Pi 4 Version / Nebra Indoor Helium Hotspot ROCK Pi 4 Version	Product model:	NEBHNT-HHRK4-915		
Test By:	Mike	Test mode:	Wi-Fi Tx mode		
Test Frequency:	30 MHz ~ 1 GHz	Polarization:	Vertical		
Test Voltage:	AC 120/60Hz	Environment:	Temp: 24℃ Huni: 57%		

NO.	Freq. [MHz]	Reading [dBµV/m]]	Level dBµV/m]	Factor [dB]	Limit [dBµV/m]	Margin [dB]	Trace	Polarity
1	42.8525	32.26		17.47	-14.79	40.00	22.53	PK	Vertical
2	54.4925	30.68		16.06	-14.62	40.00	23.94	PK	Vertical
3	109.418	31.90		16.04	-15.86	43.50	27.46	PK	Vertical
4	307.783	30.92		18.43	-12.49	46.00	27.57	PK	Vertical
5	539.735	31.97		25.17	-6.80	46.00	20.83	PK	Vertical
6	981.812	31.89		31.01	-0.88	54.00	22.99	PK	Vertical

Remark:

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.
- 3. The Aux Factor is a notch filter switch box loss, this item is not used.

Product name:	Nebra Indoor LoRa Gateway ROCK Pi 4 Version / Nebra Indoor Helium Hotspot ROCK Pi 4 Version	Product model:	NEBHNT-HHRK4-915
Test By:	Mike	Test mode:	Wi-Fi Tx mode
Test Frequency:	30 MHz ~ 1 GHz	Polarization:	Horizontal
Test Voltage:	AC 120/60Hz	Environment:	Temp: 24℃ Huni: 57%

	NO.	Freq. [MHz]	Reading [dBµV/m]]	Level dBµV/m]	Factor [dB]	Limit [dBµV/m]	Margin [dB]	Trace	Polarity
E	1	37.1538	31.03		16.26	-14.77	40.00	23.74	PK	Horizontal
L	2	55.9475	31.15		16.46	-14.69	40.00	23.54	PK	Horizontal
	3	116.330	30.76		15.14	-15.62	43.50	28.36	PK	Horizontal
L	4	302.812	32.27		1 9.64	-12.63	46.00	26.36	PK	Horizontal
	5	534.278	31.83		24.99	-6.84	46.00	21.01	PK	Horizontal
	6	959.502	32.28	7	31.40	-0.88	46.00	14.60	PK	Horizontal

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.
- 3. The Aux Factor is a notch filter switch box loss, this item is not used.

Above 1GHz

Above 1GHZ									
			802.11b						
Test channel: Lowest channel									
Detector: Peak Value									
Frequency (MHz)	Read Level (dBuV)	Factor(dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Margin (dB)	Polarization			
4824.00	54.25	-9.46	44.79	74.00	29.21	Vertical			
4824.00	55.48	-9.46	46.02	74.00	27.98	Horizontal			
		Dete	ctor: Average Va	alue					
Frequency (MHz)	Read Level (dBuV)	Factor(dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Margin (dB)	Polarization			
4824.00	47.09	-9.46	37.63	54.00	16.37	Vertical			
4824.00	48.11	-9.46	38.65	54.00	15.35	Horizontal			
		Test ch	nannel: Middle ch	nannel					
Detector: Peak Value									
Frequency (MHz)	Read Level (dBuV)	Factor(dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Margin (dB)	Polarization			
4874.00	54.45	-9.11	45.34	74.00	28.66	Vertical			
4874.00	55.60	-9.11	46.49	74.00	27.51	Horizontal			
		Dete	ctor: A <mark>vera</mark> ge Va	alue					
Frequency (MHz)	Read Level (dBuV)	Factor(dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Margin (dB)	Polarization			
4874.00	47.45	-9.11	38.34	54.00	15.66	Vertical			
4874.00	47.87	-9.11	38.76	54.00	15.24	Horizontal			
			annel: Highest c						
		De	tector: Peak Valu	ie					
Frequency	Read Level	Factor(dB)	Level	Limit Line	Margin	Polarization			

Test channel: Highest channel									
	Detector: Peak Value								
Frequency (MHz)	Read Level (dBuV)	Fa	ctor(dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Margin (dB)	Polarization		
4924.00	54.62		-8.74	45.88	74.00	28.12	Vertical		
4924.00	55.60		-8.74	46.86	74.00	27.14	Horizontal		
			Dete	ctor: Average Va	alue				
Frequency (MHz)	Read Level (dBuV)	Fa	ctor(dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Margin (dB)	Polarization		
4924.00	47.19		-8.74	38.45	54.00	15.55	Vertical		
4924.00	47.81		-8.74	39.07	54.00	14.93	Horizontal		

Remark:

Xinqiao Street, Bao'an District, Shenzhen, Guangdong, People's Republic of China. Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

Final Level = Receiver Read level + Factor.

The emission levels of other frequencies are lower than the limit 20dB and not show in test report.

802.11g										
Test channel: Lowest channel										
Detector: Peak Value										
Frequency (MHz)	Read Level (dBuV)	Factor(dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Margin (dB)	Polarization				
4824.00	54.09	-9.46	44.63	74.00	29.37	Vertical				
4824.00	55.31	-9.46	45.85	74.00	28.15	Horizontal				
	Detector: Average Value									
Frequency (MHz)	Read Level (dBuV)	Factor(dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Margin (dB)	Polarization				
4824.00	47.44	-9.46	37.98	54.00	16.02	Vertical				
4824.00	48.20	-9.46	38.74	54.00	15.26	Horizontal				
		Test ch	annel: Middle ch	nannel						
		Det	tector: Peak Valu	ne						
Frequency (MHz)	Read Level (dBuV)	Factor(dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Margin (dB)	Polarization				
4874.00	54.00	-9.11	44.89	74.00	29.11	Vertical				
4874.00	55.42	-9.11	46 <mark>.3</mark> 1	74.00	27.69	Horizontal				
		Dete	ctor: A <mark>ver</mark> age Va	alue						
Frequency (MHz)	Read Level (dBuV)	Factor(dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Margin (dB)	Polarization				
4874.00	47.53	-9.11	38.42	54.00	15.58	Vertical				
4874.00	47.97	-9.11	38.86	54.00	15.14	Horizontal				
		Test cha	annel: Highest c	hannel						
		Det	tector: Peak Valu	ue						
Frequency (MHz)	Read Level (dBuV)	Factor(dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Margin (dB)	Polarization				
4924.00	54.16	-8.74	45.42	74.00	28.58	Vertical				
4924.00	55.04	-8.74	46.30	74.00	27.70	Horizontal				
		Dete	ctor: Average Va	alue						
Frequency (MHz)	Read Level (dBuV)	Factor(dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Margin (dB)	Polarization				
4924.00	47.49	-8.74	38.75	54.00	15.25	Vertical				
4924.00	48.36	-8.74	39.62	54.00	14.38	Horizontal				
Remark:										

Xinqiao Street, Bao'an District, Shenzhen, Guangdong, People's Republic of China. Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

Final Level = Receiver Read level + Factor.

The emission levels of other frequencies are lower than the limit 20dB and not show in test report.

			000 44 m (LITOO)							
802.11n(HT20)										
Test channel: Lowest channel Detector: Peak Value										
Frequency	Read Level	De	Level	ue I	Limit Line	Margin	I			
(MHz)	(dBuV)	Factor(dB)	(dBuV/m)		(dBuV/m)	Margin (dB)	Polarization			
4824.00	54.38	-9.46	44.92		74.00	29.08	Vertical			
4824.00	55.33	-9.46	45.87		74.00	28.13	Horizontal			
	Detector: Average Value									
Frequency (MHz)	Read Level (dBuV)	Factor(dB)	Level (dBuV/m)		Limit Line (dBuV/m)	Margin (dB)	Polarization			
4824.00	47.44	-9.46	37.98		54.00	16.02	Vertical			
4824.00	48.61	-9.46	39.15		54.00	14.85	Horizontal			
		Test ch	annel: Middle ch	nan	nel					
		Det	tector: Peak Valu	ue						
Frequency (MHz)	Read Level (dBuV)	Factor(dB)	Level (dBuV/m)		Limit Line (dBuV/m)	Margin (dB)	Polarization			
4874.00	54.21	-9.11	45.10		74.00	28.90	Vertical			
4874.00	54.98	-9.11	45.87		74.00	28.13	Horizontal			
		Dete	ctor: A <mark>vera</mark> ge Va	alue						
Frequency (MHz)	Read Level (dBuV)	Factor(dB)	Level (dBuV/m)		Limit Line (dBuV/m)	Margin (dB)	Polarization			
4874.00	47.92	-9.11	38.81		54.00	15.19	Vertical			
4874.00	49.08	-9.11	39.97		54.00	14.03	Horizontal			
		Test cha	annel: Highest c	har	nnel					
		Det	tector: Peak Valu	ue						
Frequency (MHz)	Read Level (dBuV)	Factor(dB)	Level (dBuV/m)		Limit Line (dBuV/m)	Margin (dB)	Polarization			
4924.00	54.34	-8.74	45.60		74.00	28.40	Vertical			
4924.00	55.36	-8. 74	46.62		74.00	27.38	Horizontal			
		Dete	ctor: Average Va	alue	9					
Frequency (MHz)	Read Level (dBuV)	Factor(dB)	Level (dBuV/m)		Limit Line (dBuV/m)	Margin (dB)	Polarization			
4924.00	48.07	-8.74	39.33		54.00	14.67	Vertical			
4924.00	48.67	-8.74	39.93		54.00	14.07	Horizontal			
Remark:										

Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

^{1.} Final Level = Receiver Read level + Factor.

^{2.} The emission levels of other frequencies are lower than the limit 20dB and not show in test report.

EUT Constructional Details 8

Reference to the test report No.: JYTSZ-R12-2200089.

-----End of report-----

Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366