Vysoké Učení Technické v Brně Fakulta informačních technologií

Teoretická informatika (TIN) – 2021/2022 Domáca úloha číslo 2.

Marek Žiška (xziska03)

Brno, 5. prosince 2021

1 Príklad

1.1 Zadanie

Doplňte 3 přechody do následujícího přechodového diagramu tak, aby výsledný Turingův stroj přijímal jazyk $L=\{w\in a,b*|\#a(w)<\#byedvectorsky vysledný Turingův stroj přijímal jazyk <math>L=\{w\in a,b*|\#a(w)<\#byedvectorsky vysledný vysledn$

Riešenie

Doplníme turingov stroj o chýbajúce prechody(viz 1). A následne demonstrujeme běh TS na slove *abaabbbba*. Demonstrace běhu TS na slove *abaabbbba*:

 $\begin{array}{l} \delta(2,\Delta\underline{a}baabbbba\Delta^{w},1) \, \vdash \, \delta(3,\Delta\underline{X}baabbbba\Delta^{w},1) \, \vdash^{2} \, \delta(2,\Delta X\underline{X}aabbbba\Delta^{w},2) \, \vdash^{2} \, \delta(3,\Delta XX\underline{X}abbbba\Delta^{w},3) \, \vdash^{3} \, \delta(4,\Delta XXX\underline{X}\underline{A}bbba\Delta^{w},5) \, \vdash^{5} \, \delta(3,\Delta XXXX\underline{X}aXbbb\underline{X}\Delta^{w},9) \, \vdash^{16} \, \delta(3,\Delta XXX\underline{X}XbbbX\Delta^{w},4) \, \vdash^{3} \, \delta(2,\Delta XXXXX\underline{X}\underline{X}bbX\Delta^{w},6) \, \vdash^{2} \, \delta(4,\Delta XXXXXX\underline{X}\underline{X}bX\Delta^{w},7) \, \vdash^{5} \, \delta(9,\Delta XXXXXXX\underline{X}b\underline{b}\Delta^{w},9) \, \vdash^{9} \, \delta(10,\underline{\Delta}XXXXXXXbb\Delta^{w},0) \end{array}$

Obrázek 1: Turingův stroj přijímající jazyk L.

2 Príklad

2.1 Zadanie

Operátor $vepsáni(tzv.\ wedge) \triangleleft : \Sigma^* \times \Sigma^* \to 2^{\Sigma^*}$ je definován pro slova $u = u_1 u_2 \dots u_n$ a w tak, že:

$$u \triangleleft w = \{u_1 \dots u_i w u_{i+1} \dots u_n \mid 0 \le i \le n\}$$

Operátor je rozšířen na jazyky následujícím způsobem: $L_1 \triangleleft L_2 = \bigcup \{w_1 \triangleleft w_2 \mid w_1 \in L_1, w_2 \in L_2\}$. Například $\{aa\} \triangleleft \{bb\} = \{bbaa, abba, aabb\}$. Dokažte, že množina rekurzivně vyčíslitelných jazyků je uzavřena na \triangleleft .

2.2 Riešenie

- Budiž dány RE jazyky $L_1,L_2\subseteq \Sigma^*$ a vepsání $\lhd:\Sigma^*\times \Sigma^*\to 2^{\Sigma^*}$
- Pretože L_1, L_2 je RE, \exists TS M_1, M_2 také, že $L\left(M_1\right) = L_1$ a $L\left(M_2\right) = L_2$
- Na to aby aby bola operace $L_1 \triangleleft L_2$ uzavřena, musí existovať TS, ktorý by dokázal simulovat túto operáciu.
- Zostrojíme teda NTS M' taký, že $L(M') = L(M_1) \triangleleft L(M_2) = L'$, ktorý bude fungovať nasledovne:
- M' nedeterministicky rozdelí svoj vstup w' na 3 reťazce tak, že $w' = \{u_1 \dots u_i w u_{i+1} \dots u_n \mid 0 \le i \le n\}$ označme $x = \{u_1 \dots u_i \mid 0 \le i \le n\}$ a $y = \{u_{i+1} \dots u_i \mid 0 \le i \le n\}$ a platí že $w \in L_2, x, y \in L_1$
 - TS M' zapíše na druhú pasku reť azec w
- TS M' na druhej páske odsimuluje TS M_2 , ak TS M_2 cyklí, cyklí i TS M'. Ak TS M_2 príjme, TS M' pokračuje dál, jinak odmítne.
 - TS M' zapíše na tretiu pásku konkatenaci reť azcov $x \cdot y$, zadefinové výše.
- TS M' na tretej páske odsimuluje TS M_1 , ak TS M_1 cyklí, cyklí i TS M'. Ak TS M_1 príjme, príjme i TS M', jinak odmítne.

3 Príklad

3.1 Zadanie

Je dána abeceda Σ a jazyky $S, L \subseteq \Sigma^*$. Turingův stroj M nad abecedou Σ rozhoduje jazyk L modulo S, pokud pro všechna slova $w \in \Sigma^* \backslash S$ (i) zastaví a (ii) přijímá w právě tehdy, když $w \in L$ (tj. chování na slovech z S nás nezajímá). Dokažte nebo vyvratte následující tvrzení:

- A) Existuje nekonečný jazyk S takový, že halting problem (HP) je rozhodnutelný modulo S.
- B) Pro všechny jazyky S je HP rozhodnutelný modulo S.
- C) -Existuje konečný jazyk S takový, že HP je rozhodnutelný modulo S. Nápověda: pro některý z důkazu je vhodné upravit dukaz nerozhodnutelnosti HP z prednášek.

3.2 Riešenie

3.2.1 A

Stačí zvoliť $S=\Sigma^*$, keď že Σ^* je nekonečný jazyk a spĺňa $S\subseteq\Sigma^*$. Následne turingův stroj M nad abecedou Σ rozhoduje jazyk HP modulo S, protože pro všechna slova $w\in\Sigma^*\backslash S$ zastaví a rozhodne že $w\in HP$ nebo ne.

3.2.2 B

Stačí zvoliť $S=\varnothing$, keď že \varnothing spĺňa $S\subseteq \Sigma^*$. Následne turingův stroj M nad abecedou Σ nerozhoduje jazyk HP modulo S, protože HP je sam o sebe nerozhodnutelný, takže ani turingův stroj M neni schopny pre všechna slova $w\in \Sigma^*\backslash S$ zastaviť a rozhodnout že $w\in HP$ nebo ne.

3.2.3 C

4 Príklad

4.1 Zadanie

Uvažujte jazyk $L_{\text{prime}} = \{\langle M \rangle \mid L(M) = \{a^p \mid p \text{ je prvočíslo }\}\}$, kde $\langle M \rangle$ značí binární řetězce kódující TS M. Dokažte pomocí redukce, že jazyk L_{prime} není ani částečne rozhodnutelný. Pro redukci lze použít libovolný z následujících problémů(žádný z nich není ani částečne rozhodnutelný):

- co HP
- problém univerzality jazyka TS M ("platí že $L(M) = \Sigma^*$ ")

Stačí slovně popsat princip redukce, není potřeba konstruovat TS.

4.2 Riešenie

- stačí ukázať že L' lze redukovat na co-HP
- Požadovanou redukciou je funkcia $\sigma:\{0,1,\#\}^* \to \{0,1\}^*$ definovaná ako:

- Teda priradí pre každé $w' \in \{0, 1, \#\}$ kód TS M', pracujúceho nasledovne:
 - M' najskôr overí, či jeho vstup $z \in \{a^p \mid p \text{ je prvočíslo }\}$. Čo si zapamätá vo svojom stavovom řízení.
 - Následne zmaže svoju pásku a zapíše na ní w'
 - Ak x nemá strukturu $\langle M \rangle \# \langle w \rangle$, potom ak $z \in \{a^p \mid p \text{ je prvočíslo }\}$, príjme, inak odmietne.
 - Jinak odsimuluje M na w. Ak cyklí, cyklí. Jinak pokud $z \in \{a^p \mid p \text{ je prvočíslo }\}$ príjme, inak odmietne.

- Snadno sa dá nahliadnúť , že sa dá implementovať úplný TS

- Platí:

$$L(M') = \left\{ \begin{array}{cc} \varnothing & \text{pokud } x = \langle M \rangle \# \langle w \rangle, \text{ kde } M \text{ na } w \text{ nezastav} \text{\'i} \\ \{a^p \mid p \text{ je prvočíslo}\} & \text{inak} \end{array} \right.$$

Teda pre $\forall x \in \{0, 1, \#\}$ platí:

$$\sigma(x) = \langle M' \rangle \in L_{prime} \Leftrightarrow$$

$$L\left(M'\right) \in \{a^p \mid p \text{ je prvočíslo }\} \Leftrightarrow$$

$$L\left(M'\right) = \varnothing \Leftrightarrow$$

$$x = \langle M \rangle \# \langle w \rangle \text{ a } M \text{ na } w \text{ nezastaví } \Leftrightarrow$$

$$x \in \text{ co-HP}$$