ALGEBRAIC GEOMETRY - LOTHAR GÖTTSCHE LECTURE 13

WANG YUNLEI

Definition 1 (Finiteness). Let $A \subset B$ be k-algebras. B is called finite over A if there exist finite many elements $b_1, \ldots, b_n \in B$ such that

$$B = b_1 A + \dots + b_n A := \{ \sum b_i a_i | a_i \in A \}.$$

Definition 2 (*R*-module). Let *R*. An abelian group *B* together with the composition $\cdot : R \cdot B \to B$ is called an *R*-module if and only if for arbitrary $r, r_1, r_2 \in R$ and arbitrary $b, b_1, b_2 \in B$, the following conditions are satisfied

- (1) $(r_1 \cdot r_2) \cdot b = r_1 \cdot (r_2 \cdot b);$
- (2) $r_1 \cdot (b_1 + b_2) = r \cdot b_1 + r \cdot b_2;$
- (3) $1 \cdot b = b$.

Definition 3 (Finitely generated module). An R-module B is called finitely generated if there exist $b_1, \ldots, b_n \in B$ such that

$$B = b_1 R + \cdot b_n R.$$

Example 1. (1) Let R be a ring, $I \subset R$ be an ideal, then I is an R-module via multiplication in R;

- (2) If $I \subset R$ is an ideal and we put A = R/I, then A is an R-module via multiplication in quotient ring;
- (3) If $A \subset B$ is a subring, then B is an A-module via multiplication in B;

If A and B are k-algebras and $A \subset B$, then B is also an A-module. By definition, it is equivalent between B is a finite A-algebra and B is a finitely generated A-module. For k-algebras, it has a different definition from modules about finitely generating.

Definition 4. Let $A \subset B$ and A, B are k-algebra. For $b_1, \ldots, b_n \in B$, if we can denote B as

$$B = \{g(b_1, \dots, b_n) | g \in A[x_1, \dots, x_n] \}$$

then we call B a finitely generated A-algebra.

By definition, a finite A-algebra is a finitely generated A-algebra, but the converse is not true. For example k[x] is finitely generated k-algebra but not finite.

Proposition 1. Let A, B, C be k-algebras and $A \subset B \subset C$, then we have

(1) if B is finite over A and C is finite over B, then C is finite over A. If C is finite over A, then C is finite over B;

Date: June 19, 2017.

(2) let $B \supset A$ be a finite A-algebra and assume B is an integral domain, then every element $x \in B$ satisfies a monic equation

$$x^n + a_{n-1}x^{n-1} + \dots + a_0 = 0$$

with $a_i \in A$ for $i = 0, \ldots, n-1$;

- (3) assume b satisfies a monic equation over A, then A[b] is finite over A.
- Proof. (1) We can write $B = b_1 A + \cdots_m A$, $b_i \in B$ and $C = c_1 B + \cdots + c_n B$, $c_i \in C$, then we get $C = \sum b_i c_j A$, hence C is finite over A. If $C = c_1 A + \cdots + c_m A$, since $A \subset B$, we get $C = c_1 B + \cdots + c_m B$.
 - (2) Assume $B = \sum_{i=1}^{n} Ab_i$ for $b_1, \ldots, b_n \in B$, then for any element x in B, we can write xb_i as

$$xb_i = \sum_{j=1}^n d_{ij}b_j$$

with $d_{ij} \in A$. It can be rewritten as $\sum_{j=1}^{n} (x\delta_{ij} - d_{ij})b_j = 0$. Thus $(b_1, \dots, b_n)^T \in \ker M$ and $M = (x\delta_{ij} - d_{ij})_{i,j=1}^n$. Since B is an integral domain, we can view b_i as elements in the quotient field Q(B), then we get $\det M = 0$. Since $\det M$ is a monic equation for x, we finish the proof.

(3) If $b^n + a_{n-1}b^{n-1} + \cdots + a_0 = 0$ and $a_i \in A$ for $i = 0, \ldots, n$, then every power of b bigger than or equal to n is a linear combination of $1, b, \ldots, b^{n-1}$, i.e., $A[b] = A + Ab + \cdots + Ab^{n-1}$ is finite.

Definition 5. Let X, Y be affine varieties. A morphism $\varphi : X \to Y$ is called finite if A(X) is a finite $\varphi^*(A(Y))$ -algebra.

Remark. (1) (Definition of finite morphisms for general cases)By definition, we only define the finiteness of morphisms between affine varieties. In general, a morphism $\varphi: X \to Y$ of varieties is called finite if and only if Y has an open affine cover $U_1, \ldots, u_n, Y = U_1 \cup \ldots U_n$ such that $\varphi^{-1}(U_i) = W_i$ is affine for $i = 1, \ldots, n$ and the morphism $\varphi|_{W_i}: W_i \to U_i$ is finite.

- (2) If Y is a closed subvariety of an affine variety X, the inclusion $i: Y \to X$ is a finite morphism(Because $i^*: A(X) \to A(Y)$ is surjective).
- (3) Let $\varphi: X \to Y$ and $\psi: Y \to Z$ be morphisms of affine varieties
 - (a) if φ and ψ are both finite, then the composition $\psi \circ \varphi$ is finite;
 - (b) if $\psi \circ \varphi$ is finite, then φ is finite. In particular, if $\varphi : X \to Y$ is finite and $\varphi(X)$ is a subset of aclosed subvariety W of Y, then $\varphi : X \to W$ is finite.

Theorem 1. Finite morphisms are closed.

Before we prove this theorem, we need to prove two lemmas we need to use.

Lemma 1. If X is an affine variety, $I \subsetneq A(X)$ is a proper ideal, then $Z(I) := \{ p \in X | f(p) = 0, \forall f \in I \} \neq \emptyset$.

Proof. Let

$$\pi: k[x_1, \dots, x_n] \to A(X)$$

be a conanical map, then it is surjective. So $\pi^{-1}(I)$ is a proper ideal in $k[x_1,\ldots,x_n]$. By Nullstellensatz we know $Z(\pi^{-1}(I)) \neq \emptyset$. By definition, $Z(I) = Z(\pi^{-1}(I)) \cap X$, but $\pi^{-1}(I) \supset I(X)$, so $Z(\pi^{-1}(I)) \subset X$, hence we get $Z(I) = Z(\pi^{-1}(X)) \neq \emptyset$. \square

Lemma 2. Let B be a finite A-algebra and B be an integral domain, let $I \subsetneq A$ be a proper ideal of A, then $IB \subsetneq B$ is a proper ideal of B.

Proof. Assume IB = B, since B is finite over A, we can write $B = Ab_1 + \cdots + Ab_n$, $b_1, \ldots, b_n \in B$. Then $B = IB = I(Ab_1 + Ab_n) = Ib_1 + Ib_n$. In particular, $b_i = \sum_{j=1}^n a_{ij}b_j$, $a_{ij} \in I$. Then we get $M \cdot (b_1, \ldots, b_n)^T = (0, \ldots, 0)^T$ with $M = (\delta_{ij} - a_{ij})_{i,j=1}^n$. Again view M as a matrix in Q(B) we get $\det M = 0$, hence

$$0 = \det M = 1 + \sum_{l} c_{l}$$

with $c_l \in I$, it implies $1 \in I$ and hence I is not a proper ideal in A. By this contradiction we know $IB \neq B$.

Proof of theorem 1. Let $\varphi: X \to Y$ be a finite morphism of affine varieties, and let W be a closed subvariety of X. We need to show $\varphi(W)$ closed in Y. Let Z be the closure of $\varphi(W)$ in Y, then we have to show $Z = \varphi(W)$. Replacing X by W and Y by Z, then our aim has changed to show a finite morphism $\varphi: X \to Y$ of varieties with dense image is surjective. As $\varphi(X)$ is dense in Y, we have that

$$\varphi^*: A(Y) \to A(X)$$

is injective, hence we can identify A(Y) with the image $\varphi^*(A(Y)) \subset A(X)$. Let $Y \subset \mathbb{A}^n$, we take x_1, \ldots, x_n coordinates on \mathbb{A}^n . For any element $p = (a_1, \ldots, a_n) \in Y$, define an ideal in A(Y)

$$M := \langle x_1 - a_1, \dots, x_n - a_n \rangle.$$

Now we identify elements in M with the corresponding elements in A(X), let A(X)· M be an ideal generated by M in A(X). In addition,

$$\varphi^{-1}(p) = \{q \in X | \varphi(q) = p\}
= \{q \in X | (x_i - a_i)(f(q)) = 0 \forall i = 1, ..., n\}
= \{q \in X | (x_i - a_i) \circ \varphi(q) = 0, \forall i = 1, ..., n\}
= \{q \in X | \varphi^*(x_i - a_i)(q) = 0, \forall i = 1, ..., n\}
= Z(A(X) \cdot M).$$

Thus by lemma 1 we only need to show $A(X) \cdot M \subsetneq A(X)$, this is done by lemma 2, hence we finish the proof.

E-mail address: wcghdpwyl@126.com