802.11 Security - TKIP

Shambhu Upadhyaya Wireless Network Security CSE 566 (Lecture 17)

Shambhu Upadhyaya

TKIP

- Temporal Key Integrity Protocol
- Designed as a wrapper around WEP
 - Can be implemented in software
 - Reuses existing WEP hardware
 - Runs WEP as a sub-component
- Quick-fix to the existing WEP problem
- New "procedures" around Legacy WEP
- Components
 - Cryptographic message integrity code
 - Packet sequencing
 - Per-packet key mixing
 - Re-keying mechanism

TKIP Introduction

- Never use the same IV value more than once for any particular session key
 - Prevents key-stream reuse by a system
- Receivers discard any packets whose IV value is less or equal to the last successfully received packet encrypted with the same key
 - Prevents replay attacks
- Regularly generate a new random session key before the IV counter overflows
 - Prevents key-stream reuse
- Provide a more thorough mixing of the IV value and the session key to derive the packet's RC4 key
 - To "fix" the RC4 Key scheduling issues with WEP

University at Buffalo The State University of New York

Shambhu Upadhyaya

Weaknesses of WEP

- 1 IV value is too short and not protected from reuse
- The way keys are constructed from IV makes it susceptible to weak key (FMS) attack
- 3 No effective way to detect message tampering
- Directly uses master keys with no provision for re-keying
- 5 No protection against replay attacks

University at Buffalo The State University of New York

Changes from WEP to TKIP

Purpose	Change	Weakness Addressed
Message Integrity	Adds a message integrity protocol to prevent tampering (one which can be implemented in software using a low power microprocessor)	(3)
IV selection and use	Changes how IV values are selected, uses it as a replay counter	(1),(3)

University at Buffalo The State University of New York

Changes from WEP to TKIP

Purpose	Change	Weakness Addressed
Per-Packet Key Mixing	Changes encryption key for every frame	(1),(2),(4)
IV Size	Increases the size of the IV to avoid reusing the same IV	(1),(4)
Key Management	Adds a mechanism to distribute and change keys and derive temporal keys	(4)

CAPTER GREAT STATES

University at Buffalo The State University of New York

Shambhu Upadhyaya

Message Integrity

- Essential to security of the message
- WEP uses ICV (Integrity Check Value), but it offers no real protection
- Thus, ICV is not a part of TKIP security
- Basic idea behind computing the MIC (Message Integrity Code) is calculating a checksum over the message bytes so that any modification to the message can be detected
- This MIC is combined with a secret key so that only authorised parties can generate and verify the MIC
- Many available cryptographic methods can be used for the purpose

University at Buffalo The State University of New York

Shambhu Upadhyaya

Message Integrity - Michael

- As WEP is required to work over existing hardware it cannot use computationally intensive cryptographic methods
- Even if the computations are moved to software level in clients, existing Access Points cannot perform heavy computations
- Thus, TKIP uses a method of computing MIC called *Michael*
- Michael uses simple shift and add operations instead of multiplications and hence is usable in TKIP

University at Buffalo The State University of New York

Message Integrity - Michael

- Michael operates on MSDUs (MAC Service Data Unit) rather than individual MPDUs (MAC Protocol Data Unit)
 - Useful as the computation can be performed in the device driver on the computer rather than on the adapter card
 - Also reduces overhead as MIC is not calculated for each MPDU being sent out
- As Michael is computationally simple, it offers a weak form of security
- To counter these drawbacks, it includes a set of countermeasures which are used when an attack is detected

Shambhu Upadhyaya

Michael Countermeasures

- Used to reliably detect attacks and shut down communication to the attacked station for a period of one minute
- This is done by disabling keys for a link as soon as the attack is detected
- Also has a blackout period of one minute before the keys are reestablished
- This can be used by the attacker to launch a DoS attack on the network (theoretically)

Shambhu Upadhyaya

10

IV Selection and Use

- TKIP has the following major changes in the way IVs are used as compared to WEP
 - IV Size is increased from 24 to 48 bits
 - IV has a secondary role as a sequence counter to avoid replay attacks
 - IVs are constructed so as to avoid certain 'weak keys'
 - Instead of directly appending it with the secret key, IVs are used to generate mixed keys

TSC (TKIP Sequence Counter)

- WEP has no protection against replay attacks
- In TKIP IV doubles up as a sequence counter to prevent replay attacks
- TKIP uses the concept of *replay window* to implement the counters
 - The receiver keeps track of the highest TSC and the last 16 TSC values
 - When a new frame arrives it checks and classifies it as one of the following types
 - ACCEPT: TSC is larger than the largest seen so far
 - REJECT: TSC is less than the value of the largest 16
 - WINDOW: TSC is less than the largest, but more than the lower limit

Shambhu Upadhyaya

Per-Packet Key Mixing

- Uses the session keys which are derived from the master keys
- Per Packet key mixing mechanism further derives a separate unrelated key for each packet from the session key
- To save computation key mixing is divided into two phases
 - Phase 1 involves data that is relatively static like secret session key, higher order 32 bits of IV, MAC address etc. so that this computation is done infrequently
 - Phase 2 is quicker to compute and is done for each packet and used the lower 16 bits of the IV (which increases monotonically with each packet)

References

 Jon Edney and William Arbaugh, Real 802.11 Security, Addison-Wesley, 2004

