

Proposal for an algorithm for the online determination of the MIP peak in the UUB DAQ

SD/UMD Calibration Call 30.10.23

Paul Filip, David Schmidt

Calibration method idea

- Estimate $I_{\text{MIP}}^{\text{est.}}$ (SSD) similar to how $I_{\text{VEM}}^{\text{est.}}$ (WCD) is already estimated
- WCD calibration trigger requires
 - Coincidence of 3 PMTs above 1.75 I_{VEM}
 - Given PMT above 2.5 *I*^{est.} UEM
- Online algorithm sets thresholds such that 70 Hz rate is achieved in all PMTs
- Params determined from reference tank
 - Yields 100 Hz (20 Hz) rate for T1 (T2) trigger

WCD Online Calibration Algorithm

- (1) Start with a value of $I_{VEM}^{est.} = 50 \text{ ch.}$
- (2) Measure, for each PMT, the rate of events satisfying the calibration trigger by counting these events for a time t_{cal} , initially set to 5 s.
- (3) If, for a given PMT, the rate is above $70 + \sigma \, \text{Hz}$, increase $I_{\text{VEM}}^{\text{est.}}$ by δ . Likewise, if the rate is below $70 \sigma \, \text{Hz}$, decrease $I_{\text{VEM}}^{\text{est.}}$ by δ , with $\sigma = 2 \, \text{Hz}$ and $\delta = 1 \, \text{ch}$ initially.
- (4) If the rate of any single PMT is more than 10σ away from 70 Hz, adjust $I_{\text{VEM}}^{\text{est.}}$ by 5 ch in the appropriate direction, set t_{cal} to 10 s, $\delta = 1 \text{ ch}$, and repeat from step (2).
- (5) Otherwise, if $t_{\text{cal}} < 60 \text{ s}$, increase t_{cal} by 5 s. If $\delta > 0.1 \text{ ch}$, decrease δ by 0.1 ch, and repeat from step (2).

doi.org/10.1016/j.nima.2006.07.066

- Use UUBRandoms to compare rate based $I_{\text{MIP}}^{\text{est.}}$ estimate to histogram based $I_{\text{MIP}}^{\text{peak}}$
 - Two datasets with timing information: Nov. 2022 (6 stations), Mar. 2023 (6 stations)
 - Reject stations with large fluctuations in $I_{VEM}^{est.}$: 2 surviving stations $\implies \sim 10$ mil. traces
- Build histogram of maximum values for full bandwidth SSD traces
 - Assert exponential background in tail-end of the spectrum
 - Fit Landau distribution to residuals of histogram exponential background
 - Set I^{est.} as the (numerical) mean of Landau distribution

 $res(x) = histo(x) - A \exp(-m(x - x_0)),$ and $m = -\log\left(\frac{histo(x_1)}{histo(x_0)}\right)/(x_1 - x_0)$ with $A = histo(x_0)$,

 $\operatorname{res}(x) = \operatorname{histo}(x) - A \exp\left(-m(x - x_0)\right),$ and $m = -\log\left(\frac{\operatorname{histo}(x_1)}{\operatorname{histo}(x_0)}\right) / (x_1 - x_0)$ with $A = \operatorname{histo}(x_0),$

	$I_{ m MIP}^{ m peak}$ / ${\sf ADC}$	I ^{est.} / ADC	I ^{est.} / I ^{peak}
NuriaJr	42.95 ± 0.36	99 ± 1	2.31 ± 0.019
NadiaLate	42.80 ± 0.498	95 ± 1	2.22 ± 0.035
NadiaEarly	40.79 ± 1.11	88 ± 1	2.16 ± 0.064

All stations within $\approx 5\%$ of one another. Good first sign

- Calibration procedure (software level) reliant on T1 formation (FPGA level)
 - T1 trigger = all WCD PMTs above 1.75 I_{VEM} in same bin
 - Historical reasons
- Much easier to implement SSD online calibration algorithm with this in mind
 - Rerun analysis with T1 preselected SSD traces
 - Results agree, but rates are lower → worse statistics!

	$I_{ m MIP}^{ m peak}$ / ADC	I ^{est.} / ADC	Iest. / Ipeak MIP	Nuriaffiltered NadiaLate filtered Downsampled NadiaEarly Filtered Downsampled
NuriaJr	46.92 ± 0.347	17 ± 1	0.37 ± 0.022	
NadiaLate	42.22 ± 0.447	19 ± 5	0.47 ± 0.119	
NadiaEarly	42.78 ± 0.593	15 ± 1	0.35 ± 0.024	30 40 50 60 70 80 IAP, KIT Faculty for Physics

Summary & Next steps

- \blacksquare Rate based online estimate of $I_{\text{MIP}}^{\text{est.}}$ seems possible at first glance
- T1 preselection might complicate things, more data needed to say for sure
- Check T3 data and compare UUBRandom histogram peak to offline reported $I_{\rm MIP}^{\rm peak}$
- Quantify bias, std and error on $I_{\text{MIP}}^{\text{est.}}$ for various target rates, ideally with special dataset
- Your ideas

Backup

