Detekcija anomalija korištenjem difuzijskih preslikavanja

Doris Đivanović i Karlo Gjogolović

PMF - MO ZG

14. svibnja 2025.

Sadržaj

- Teorijski uvod: Difuzijska preslikavanja
 - Uvod difuzijska preslikavanja
 - Proširenje funkcija izvan uzorka
- 2 Primjena: Detekcija anomalija i konkretni podaci
- 3 Višerezolucijski (Multiscale) pristup
- Zaključak

Uvod - difuzijska preslikavanja

- Analiza podataka podaci velikih dimenzija ⇒ nepraktično
- ullet reprezentirati ih podacima iz prostora puno manje dimenzije
- \Longrightarrow preslikavanje u prostor što je moguće manje dimenzije
- Problemi klasteriranja poseban slučaj: problem detekcije anomalija u podacima
- \Longrightarrow ključni koncepti: povezanost, sličnost, bliskost podataka
- \Longrightarrow želimo preslikavanje koje čuva te odnose
- ⇒ tj. takvo da je:

difuzijska udaljenost orig. podataka = euklidska udaljenost njihovih slika

$$D(x,y) = ||\Psi(x) - \Psi(y)||_2$$

• => tzv. difuzijsko preslikavanje

Uvod - difuzijska preslikavanja

• $\Gamma = \{x_1, ..., x_n\}$ skup podataka iz prostora velike dimenzije

- Kako definirati difuzijsku udaljenost?
- Kako definirati difuzijsko preslikavanje?

Konstrukcija težinskog grafa

- $\Gamma = \{x_1, ..., x_n\}$ skup podataka iz prostora velike dimenzije
- \Longrightarrow težinski graf:
 - čvorovi = podaci x_i
 - težina brida $w(x_i, x_j) =$ **mjera sličnosti (afiniteta)** između x_i i x_j
- \Longrightarrow za težinsku funkciju w želimo da je:
 - simetrična:

$$w(x_i,x_j)=w(x_j,x_i)$$

nenegativna:

$$w(x_i,x_j)\geq 0$$

• (često) normalizirana:

$$w(x_i, x_j) \in [0, 1], \ w(x_i, x_i) = 1.$$

• Kako definirati w?

Funkcija težine

 Prirodno je mjeru afiniteta povezati s euklidskom udaljenošću između podataka i to:

manja udaljenost ←⇒ veća sličnost

$$w(x_i, x_j) = \frac{1}{f(||x_i - x_j||_2)}, \quad f > 0$$

je simetrična i nenegativna

- => uzeti da eksponencijalno ovisi o euklidskoj udaljenosti
- $\bullet \Longrightarrow$

$$w(x_i, x_j) = \frac{1}{e^{||x_i - x_j||_2^2}} = e^{-||x_i - x_j||_2^2}$$

• \Longrightarrow očito je i:

$$w(x_i, x_j) \in [0, 1], \ w(x_i, x_i) = 1.$$

- ullet Bilo bi još dobro težinsku funkciju skalirati nekim faktorom $\sigma>0$
- ullet varijabilni parametar \Longrightarrow promatrati njegov utjecaj s obzirom na njegove različite vrijednosti
- $\bullet \Longrightarrow$

$$w(x_i, x_j) = e^{-\frac{\|x_i - x_j\|_2^2}{\sigma}},$$

• odnosno, ako želimo označiti da oba podatka doprinose sa $\sigma > 0$:

$$w(x_i, x_j) = e^{-\frac{\|x_i - x_j\|_2^2}{\sigma^2}}$$

- \Longrightarrow tzv. Gaussova (gaussovska) jezgra
- Kako odabrati σ ?

$$w(x_i, x_j) = e^{-\frac{\|x_i - x_j\|_2^2}{\sigma^2}}$$
 $\sigma > 0$

- ullet Vrijednost w proporcionalna vrijednosti σ
- σ jako mali \Longrightarrow većina težina u grafu jako mala, tj. graf jako nepovezan \Longrightarrow podaci bliski samo sebi
- σ jako velik \Longrightarrow većina težina u grafu jako velika \Longrightarrow gotovo svi podaci međusobno povezani, jako bliski
- OVO JE LOŠE ZA PRIMJENE!
- ullet Parametar $\sigma>0$ očito kontrolira (povećava ili umanjuje) utjecaj euklidske udaljenosti dvaju podataka na mjeru njihove sličnosti
- \Longrightarrow odrediti ga empirijski tako da umanjuje ili uvećava onda kada je prikladno

$$w(x_i, x_j) = e^{-\frac{\|x_i - x_j\|_2^2}{\sigma^2}}$$
 $\sigma > 0$

Još jedan problem:

 ovakva težinska funkcija ovisi isključivo o međusobnoj udaljenosti odgovarajućih dvaju podataka, nikako o ostatku skupa podataka

$$w(x_i, x_j) = e^{-\frac{\|x_i - x_j\|_2^2}{\sigma^2}}$$
 $\sigma > 0$

• 1. rješenje: "usrednjenje"

Npr.
$$\sigma =$$

- medijan
- standardna devijacija
- ... svih međusobnih udaljenosti u grafu.
- **Prednost**: "globalan" σ ...
- Mana: ...

- 2. rješenje: skalirati težinu između dva podatka nekim faktorom koji ovisi o bas tim konkretnim podacima
- \bullet Želimo "difuzijsku udaljenost" \Longrightarrow želimo da mjera sličnosti oslikava lokalnu geometriju
- \Longrightarrow definirati preslikavanje koje svakom podatku pridružuje faktor koji ovisi samo o njegovoj maloj okolini, a ne cijelom skupu podataka:

$$x_i \longrightarrow \sigma_i$$

svaki od dva podatka doprinosi međusobnoj težini svojim faktorom:

$$w(x_i, x_j) = e^{-\frac{\|x_i - x_j\|_2^2}{\sigma_i \sigma_j}}$$

$$\sigma_i, \sigma_j > 0$$

Gaussova jezgra za detekciju anomalije

- Primjer problem detekcije anomalije
- Pretpostavljamo:
- Podaci koji nisu anomalija, odnosno u tom smislu "normalni" podaci nalaze se u "gusto naseljenom" području, tj. nalaze se blizu većine ostalih podataka iz skupa podataka
- Podaci koji jesu anomalija nalaze se u "rijetko naseljenom" području, odnosno daleko od gotovo svih ostalih podataka iz skupa podataka

Gaussova jezgra za detekciju anomalije

• Primjer - posebno prikladan za problem detekcije anomalije:

$$w(x_i, x_j) = e^{-\frac{\|x_i - x_j\|_2^2}{\sigma_i \sigma_j}}$$

$$\sigma_i = ||x_i - x_K||_2^2$$

- x_K K-ti najbliži susjed podatka x_i
- Moguća interpretacija ...
- Težinska funkcija $w: \Gamma \times \Gamma \to \mathbb{R}^+$, $\Gamma = \{x_q, \dots, x_n\}$, definira kvadratnu simetričnu **matricu sličnosti** W dimenzije n s jedinicama na dijagonali

$$w_{ij} = w(x_i, x_j)$$

Slučajna šetnja i matrica prijelaza

Na temelju težina $w(x_i, x_j)$ definira se slučajna šetnja na skupu podataka Γ.

• Normalizacijom težinske funkcije w definiramo novu funkciju:

$$p(x_i, x_j) = \frac{w(x_i, x_j)}{d(x_i)}, \quad \text{gdje je } d(x_i) = \sum_{x_j \in \Gamma} w(x_i, x_j).$$

• \Longrightarrow očito vrijedi:

$$\sum_{x_j \in \Gamma} p(x_i, x_j) = 1, \qquad p(x_i, x_j) \ge 0$$

- ullet \Longrightarrow vrijednost $p(x_i,x_j)$ možemo shvatiti kao vjerojatnost prijelaza iz podatka x_i u podatak x_j u jednom koraku
- ullet matrica P s elementima $p_{ij}=p(x_i,x_j)$ je retčano stohastička matrica prijelaza Markovljeva lanca
- \implies matrica P^t je matrica prijelaza u t koraka, ima elemente $p^t_{ij} = p_t(x_i, x_j)$ predstavljaju vjerojatnosti prijelaza iz x_i u x_i u t koraka

Slučajna šetnja i matrica prijelaza

- Znamo da retčano stohastička matrica P ima potpun skup svojstvenih vrijednosti, od kojih je jedna i najveća $\lambda=1$, čiji je svojstveni potprostor skup svih višekratnika jediničnog vektora.
- Spektar matrice P brzo opada, dakle vrijedi:

$$1=|\lambda_0|\geq |\lambda_1|\geq ...$$

Ako s D označimo dijagonalnu matricu čiji su dijagonalni elementi

$$d_{ii}=d(x_i)=\sum_{x_j\in\Gamma}w(x_i,x_j),\quad\forall\ i\in\{1,\ldots,n\},$$

matricu P očito možemo prikazati kao:

$$P = D^{-1}W$$

Spektar matrice prijelaza i difuzijsko preslikavanje

• Matrica $P = D^{-1}W$ je slična simetričnoj matrici

$$P_s = D^{-1/2} W D^{-1/2},$$

gdje je

$$D^{-1/2}D^{-1/2} = D^{-1},$$

pa te matrice imaju iste svojstvene vrijednosti, a svojstveni vektori im se razlikuju za faktor $D^{-1/2}$.

- ullet Kako je matrica P_s simetrična, ima ortonormirani skup lijevih svojstvenih vektora
- ullet Možemo ga dobiti spektralnom dekompozicijom matrice P_s :

$$P_s = U\Lambda U^T$$
.

 Za ortonormirani skup lijevih i desnih svojstvenih vektora, Markovljev lanac može se predstaviti ovako:

$$p_t(x_i, x_j) = \sum_{l>0} \lambda_l^t u_l(x_i) v_l(x_j)$$

Spektar matrice prijelaza i difuzijsko preslikavanje

 ⇒ za ortonormirani skup lijevih svojstvenih vektora, očito bismo svakom podatku x_i mogli pridružiti sljedeće:

$$x_i \longrightarrow (\lambda_0 u_0(x_i), \lambda_1 u_1(x_i), \lambda_2 u_2(x_i), ..., \lambda_n u_n(x_i))^T$$
.

- Kako je u_0 konstantan, možemo ga izostaviti
- Zbog brzog opadanja spektra svojstvenih vrijednosti (λ_l brzo teže k nuli), za određenu točnost gornje sume dovoljno je uzeti određeni broj vodećih svojstvenih parova, neki l < n
- ullet svakom podatku x_i mogli bismo pridružiti sljedeće:

$$x_i \in \Gamma \longrightarrow (\lambda_1 u_1(x_i), \lambda_2 u_2(x_i), ..., \lambda_\ell u_\ell(x_i))^T \in \mathbb{R}^\ell$$

odnosno:

$$x_i \in \Gamma \longrightarrow \left(\lambda_1^t u_1(x_i), \lambda_2^t u_2(x_i), ..., \lambda_\ell^t u_\ell(x_i)\right)^T \in \mathbb{R}^\ell$$

za odabrani broj koraka t.

• \Longrightarrow ovo je dobar kandidat za difuzijsko preslikavanje!

Difuzijska udaljenost

Difuzijska udaljenost u prostoru Γ može se definirati ovako:

$$D_t^2(x_i, x_j) = \sum_{x_j \in \Gamma} \frac{(p_t(x_i, x_j) - p_t(x_i, x_j))^2}{u_0(x_j)}$$

Zašto je ovo dobro uzeti kao difuzijsku udaljenost, dakle za **mjeru bliskosti** u prostoru Γ?

- ullet Mjeri sličnost distribucija vjerojatnosti podataka x_i i x_i nakon t koraka
- Intuitivno: udaljenost između x_i i x_j je mala, tj. bliskost je velika, ako postoji puno kratkih puteva koji povezuju x_i i x_j
- Robusna na šum jer ovisi o svim putevima duljine t.
- Ovisi o cijelom skupu podataka, za razliku od euklidske

Difuzijsko preslikavanje i difuzijska udaljenost

• Izračun pomoću svojstvenih vektora:

$$D_t^2(x_i, x_j) = \sum_{x_j \in \Gamma} \frac{(p_t(x_i, x_j) - p_t(x_i, x_j))^2}{u_0(x_j)} = \sum_{j \ge 1} \lambda_j^{2t} (u_j(x_i) - u_j(x_j))^2$$

- ullet \Longrightarrow aproksimacija koristeći prvih ℓ svojstvenih vektora je računski efikasna
- Ako difuzijsko preslikavanje definiramo ovako:

$$\Psi_t: x_i \in \Gamma \longrightarrow \left(\lambda_1^t u_1(x_i), \lambda_2^t u_2(x_i), ..., \lambda_\ell^t u_\ell(x_i)\right)^T \in \mathbb{R}^\ell$$

ovakva **difuzijska udaljenost** uistinu je jednaka Euklidskoj udaljenosti u prostoru difuzijskog preslikavanja:

$$D_t^2(x_i, x_j) = \|\Psi_t(x_i) - \Psi_t(x_j)\|^2$$

Proširenje funkcija izvan uzorka

- Za velike skupove podataka (npr. slike), računanje difuzijskog preslikavanja za sve podatke je nepraktično
- \Longrightarrow izračunaj preslikavanje za podskup uzoraka $\Gamma'\subseteq \Gamma$, a zatim proširi ulaganje na sve podatke u Γ .
- Poznate metode: Nyströmova ekstenzija, geometrijske harmonike.
- Višerezolucijska Laplaceova piramida:
- Aproksimacija funkcije na svakoj razini piramide / pomoću Gaussove jezgre

$$W_I(x_i, x_j) = \exp(-\|x_i - x_j\|^2/\sigma_I)$$

s progresivno manjim σ_l .

Normalizirana jezgra:

$$K_{l} = q_{l}^{-1}W_{l}, \qquad q_{l}(x_{i}) = \sum_{i} W_{l}(x_{i}, x_{j}).$$

Višerezolucijska Laplaceova piramida

• Laplaceova piramidalna reprezentacija funkcije f definirana je iterativno komponentama s_l :

$$egin{aligned} s_0(x_k) &= \sum_{i=1}^{n_{subset}} K_0(x_i,x_k) f(x_i) \ s_l(x_k) &= \sum_{i=1}^{n_{subset}} K_l(x_i,x_k) d_l(x_i), \quad l \geq 1 \ \end{aligned}$$
gdje je $d_l(x_k) = f(x_k) - \sum_{m=0}^{l-1} s_m(x_k), \quad l \geq 1$

- Iterira se dok norma reziduala ne padne ispod zadanog praga / tolerancije
- Proširenje funkcije f na novu točku $\bar{x}_k \in \Gamma \setminus \Gamma'$:

$$f(\bar{x}_k) = \sum_{l>0} s_l(\bar{x}_k)$$

gdje se $s_l(\bar{x}_k)$ računaju analogno gornjim formulama, ali s \bar{x}_k umjesto x_k , tj. $K_l(x_i, \bar{x}_k)$ umjesto $K_l(x_i, x_k)$

Višerezolucijska Laplaceova piramida

• Primjer: $f(x) = \sin\left(\frac{1}{x+0.1}\right)$

Višerezolucijska Laplaceova piramida

• Provodi se za svaku difuzijsku koordinatu Ψ_j , tj. komponentnu funkciju preslikavanja Ψ , zasebno.

Primjena: Detekcija anomalija na digitalnoj slici

- Cilj: Detektirati dijelove digitalne slike koji odskaču od ostatka (tzv. pozadine), tj. anomalije
- Problem se svodi na klasteriranje visokodimenzionalnih podataka (u dva klastera)
- Riješit ćemo ga ulaganjem podataka u prostor puno manje dimenzije
- Ulazni podaci: digitalna slika (npr. 'grayscale') podatak tipa Image
- ullet \Longrightarrow MATLAB: matrica piksela kao cjelobrojnih vrijednosti intenziteta sive boje \in [0, 255], tj. decimalnih vrijednosti \in [0, 1] nakon normalizacije

Primjena: Detekcija anomalija na digitalnoj slici

- Cilj: za svaki piksel slike odrediti pripada li anomaliji
- Difuzijsko preeslikavanje ne računamo na pikselima, nego na skupu kvadratnih podmatrica odabrane dimenzije *patchevi*
- \Longrightarrow parametar **patchDim**
- \Longrightarrow svakom pikselu pridružujemo različiti *patch* unutar kojeg se nalazi
- ullet uzimati patcheve npr. t.d. da im je element centar ili gornji lijevi vrh
- Može se napraviti padding matrice kako bi se mogli izdvojiti patchevi centrirani i na rubnim elementima (npr. MATLAB funckija padarray(...) s opcijom 'symmetric').
- ⇒ vrijednost dif. preslikavanja za piksel ne ovisi samo o tom pikselu, nego o cijeloj njegovoj kvadratnoj okolini !

- patchevi vektorizacija
- \Longrightarrow podaci su vektori u prostoru \mathbb{R}^m , gdje je $m = \mathsf{patchDim}^2$.
- dimenziju m smatramo velikom
- Za svaki patch, tj. odgovarajuće podatke, pamte se indeksi retka i stupca njegovog centra (ili gornjeg lijevog kuta) na originalnoj slici
- dif. preslikavanje MATLAB funkcije knnsearch(...), pdist2(...) => patcheve-vektore spremamo kao retke jedne matrice

⇒ patcheve-vektore spremamo kao retke jedne matrice

Podskup skupa podataka

- računska složenost ⇒ dif. preslikavanje računamo na nasumično odabranom podskupu određene veličine
- MATLAB funkcije: round(), randperm(...)

• \Longrightarrow potencijalni problemi premalenog ili nerelevantog uzorka

${f Matrica\ sličnosti\ }W$ za podskup

$$w(x_i, x_j) = e^{-\frac{\|x_i - x_j\|_2^2}{\sigma_i \sigma_j}}$$
$$\sigma_i = \|x_i - x_K\|_2^2$$

- rijetka matrica \Longrightarrow za svaki podatak x_i pronalazi se kNN najbližih susjeda
- \Longrightarrow parametri K i kNN
- težine se računaju samo za te parove
- zadovoljava se uvjet simetričnosti težina
- ostale težine su 0
- ullet računati i samog sebe uz kNN najbližih susjeda, jer ne želimo da je sličnost sa samim sobom 0, nego 1

Matrica sličnosti W za podskup

- MATLAB funkcija knnsearch(...)
- MATLAB funkcija sparse(...)
- ⇒ za konstrukciju rijetke matrice dovoljno je konstruirati:
 - vektor indeksa redaka
 - vektor indeksa stupaca
 - vektor pripadnih vrijednosti
 - za sve elemente koji nisu = 0
- spremiti i rijetku matricu (kvadrata) međusobnih udaljenosti podataka u podskupu
- da bismo je mogli iskoristiti kasnije u Laplacevoj piramidi

Difuzijsko preslikavanje

- Računanje matrice $D^{-1/2}$
- $\bullet \implies D^{-1/2} * D^{-1/2} = D^{-1}$
- ullet \Longrightarrow dijagonalna matrica s $\dfrac{1}{\sqrt{d(i,i)}}$ na dijagonali
- želimo rijetku matricu (sparse)
- MATLAB funkcija spdiags(...)
- Simetrična matrica $P_s = D^{-1/2} * W * D^{-1/2}$

Difuzijsko preslikavanje

- Spektralna dekompozicija P_s : funkcijom **eigs(...)** dobiva se željeni broj vodećih svojstvenih parova (željena niska dimenzija postavljena kao parametar **numEigs** \Longrightarrow matrice U i Λ
- odgovarajući skup svojstvenih vektora matrice P dobivamo kao

$$\Phi = D^{-1/2}U$$

- Koordinate difuzijskog preslikavanja egzaktne za podskup: skaliranjem svojstvenih vektora matrice P odgovarajućim svojstvenim vrijednostima
- Proširenje na sve originalne podatke (patcheve): izravno pomoću gore opisane Laplaceove piramide, ali također s rijetkim matricama težina koristeći kNN najbližih susjeda, i unaprijed izračunate potrebne euklidske udaljenosti

Primjena difuzijskog preslikavanja

Kako koristimo dobiveno difuzijsko preslikavanje za detekciju anomalije među podacima?

- Ako je piksel sličan drugim pikselima nije anomalija
- Ako je piksel "daleko" od ostalih anomalija je
- Računa se sličnost $\bar{w}(i,j)$ između x_i i x_j , za sve piksele x_j u kvadratnom "prozoru" slike oko x_i , koristeći **difuzijsku udaljenost** i Gaussovu jezgru s globalnim faktorom $\bar{\sigma}$:

$$\bar{w}(i,j) = e^{-\frac{\|\Psi(x_i) - \Psi(x_j)\|^2}{\bar{\sigma}}}$$

Primjena difuzijskog preslikavanja

• Računa se afinitet $\bar{w}(i,j)$ između x_i i x_j , za sve x_j u kvadratnom "prozoru" slike oko x_i , koristeći **difuzijsku udaljenost** i Gaussovu jezgru s globalnim faktorom $\bar{\sigma}$:

$$\bar{w}(i,j) = e^{-\frac{\|\Psi(x_i) - \Psi(x_j)\|^2}{\bar{\sigma}}}$$

ullet Globalni faktor $ar{\sigma}$ se određuje empirijski, npr.

$$\bar{\sigma} = r \cdot \sigma_{pair}^2$$

- σ_{pair}^2 varijanca difuzijskih udaljenosti nasumično odabranih n_{pair} parova podataka
- faktor skaliranja udaljenosti (npr. r = 20).
- Maskiranje: unutarnji dio prozora N_i se često isključuje da se izbjegne usporedba s neposrednim susjedima (anomalija je veća od jednog piksela)
- Veličina prozora winDim i maske maskDim ovise o očekivanoj veličini anomalije

Primjena difuzijskog preslikavanja

Stupanj anomalije (Anomaly Score)

- N_i skup m susjeda u prozoru oko x_i
- \Longrightarrow sličnost s okolinom:

$$\frac{1}{m}\sum_{j\in N_i}\bar{w}(i,j)$$

ullet \Longrightarrow **stupanj anomalije** (anomaly score) za piksel x_i

$$C(i) = 1 - \frac{1}{m} \sum_{j \in N_i} \bar{w}(i, j)$$

ullet mala sličnost s okolinom \Longrightarrow visok anomaly score (blizu 1) \Longrightarrow potencijalna anomalija

"Jednorezolucijski pristup" u analizi digitalnih slika

• Problemi ...

Višerezolucijski pristup - Generalna ideja

Umjesto primjene algoritma na samo jednoj rezoluciji slike, koristi se **Gaussova piramida** slike: $\{G_I\}_{I=0}^L$, gdje je G_0 originalna slika (najfinija rezolucija), a G_L slika najgrublje rezolucije.

- Algoritam se odvija iterativno po razinama piramide, počevši od najgrublje (I = L) prema najfinijoj (I = 0).
- **Ključna ideja**: Informacije o "sumnjivim" podacima s grubljih razina koriste se za usmjeravanje uzorkovanja i analize na finijim razinama

Višerezolucijski pristup - Generalna ideja

Prednosti

- Povećava vjerojatnost da će anomalija biti prikladno zastupljena u uzorku na finijim razinama
- Dozvoljava postavljanje nižih pragova za detekciju sumnjivih područja na grubljim razinama, jer konačna odluka pada na najfinijoj razini
- Računski efikasniji jer se na grubljim razinama koriste manji patchevi

Gaussova piramida

Umjesto primjene algoritma na samo jednoj rezoluciji slike, koristi se **Gaussova piramida** slike: $\{G_I\}_{I=0}^L$, gdje je G_0 originalna slika (najfinija rezolucija), a G_L slika najgrublje rezolucije.

- Gaussov filter
- "downsampling"
- impyramid(...)

Gaussova piramida

Rezultat

Zaključak

- Difuzijska preslikavanja su moćan alat za nelinearnu redukciju dimenzionalnosti i analizu strukture podataka.
- Korištenjem patcheva umjesto pojedinačnih piksela omogućuje se hvatanje lokalnog konteksta i strukture, što je bitno za detekciju anomalija u slikama.
- Proširenje funkcija (npr. Laplaceovom piramidom) omogućuje primjenu na velike skupove podataka uzorkovanjem manjeg podskupa za inicijalnu konstrukciju preslikavanja.
- Višerezolucijski (multiscale) pristup dodatno poboljšava robusnost i efikasnost detekcije:
 - Usmjerava proces uzorkovanja na finijim skalama prema područjima koja su se pokazala sumnjivima na grubljim skalama.
 - Povećava šanse za detekciju anomalija različitih veličina.
 - Može biti računski efikasniji od nekih jednorezolucijskih metoda.
- Mjera anomalije temeljena na gustoći susjedstva u prostoru difuzijskih koordinata omogućuje kvantifikaciju "čudnosti" svakog podatkovnog objekta (patcha).