

Security, Privacy and Confidentiality

Ashish Sharma Department of Biomedical Informatics

Information Security

- Clinical information systems sensitive information linked to patients (or participants in a study)
- Sensitive information and patient's/participant's privacy have to be protected
- There are institutional, state, and federal rules governing what information can be disclosed and to whom the information can be disclosed
- Individual / Institutional intellectual property has to be protected
- Clinical informatics systems and informaticians have to provide support for protecting sensitive information

Authorization and Access Control

Authorization: Determining whether an entity can perform an operation on a resource

Access Control: Determining what an entity can do on a resource

Trust Management: Managing whether an individual's credential should be trusted and at what level

Identification & Authentication

Identity Management: Being able to uniquely and verifiably identify entities in an environment

Authentication: Being able to verify that an entity is who/what the entity claims to be

Secure Information Storage and Exchange

Data Integrity: Encryption, Cryptographic hashing **Communication Integrity:** Digital signatures

Information/Systems Security Goals

- Confidentiality: A resource is protected from unauthorized access and disclosure
- Integrity: Resource accessed, retrieved, or exchanged is not corrupted.
 - Authenticity: Verifiable assertion that content of a resource has not been altered by some other party
 - Non-repudiation: ensuring that when a message is exchanged between parties, the sender of a message cannot later deny having sent the message and that the recipient cannot deny having received the message.
 - Accountability: Actions performed on a resource can be tracked back to the entity that performed the actions
- Availability: A resource is available to <u>authorized parties</u> when needed

Secure Information Storage and Exchange

- 1. Cryptographic Hashes for Integrity
- 2. Encryption for **Privacy**
 - Symmetric Key Encryption
 - Public Key Infrastructure
- 3. Digital Signatures for Authenticity

1. Cryptographic Hashes

- A deterministic procedure that takes an arbitrary block of data and returns a fixed-size bit string
 - HashFunction(data) → Hash value
 - Must not be reversible
 - Should be designed to withstand brute-force attacks
- An accidental or intentional change to the data will change the hash value
 - Should produce results that have no or very low possibility of collision
- Examples
 - MD5: 128 bits output e.g. /etc/password in RHEL
 - SHA-1: 160 bits
 - SHA-2: 256 bits (Federally mandated for certificate issuers operated or funded by federal agencies)

Applications

- Password storage
 - Passwords are mapped to a hash value and stored in the system
 - When a password is to be checked, it is mapped to a hash value by the same method and compared to stored values
- File and message integrity checking
 - A check-sum value is generated for file or message
 - When a message is received, it is processed by the same hash function to generate a check-sum value
 - The two check-sum values are compared
- Secure Certificate Generation, Digital certificates

2. Encryption

 Re-arranging data temporarily into a form that is unreadable and unintelligible

- Example Algorithms
 - AES (128, 192, 256 bit), Serpent, Blowfish, Twofish
- Software Based
 - TrueCrypt, PGP, FileVault
- Hardware Based

Symmetric-key vs Public Key Encryption

- One key is used in symmetric-key encryption
 - Key needs to be private
 - Key distribution problem
- Public Key Encryption
 - Asymmetric keys
 - One private and one public
 - Use one key for encryption and the other for decryption
 - Alleviates key distribution problem

Public Key Encryption

How do I ensure that the data integrity is not compromised over the communication channel?

Secure Information Storage and Exchange

- ✓ Cryptographic Hashes for Integrity
- ✓ Encryption for **Privacy**
 - ✓ Symmetric Key Encryption
 - ✓ Public Key Infrastructure
- ✓ Digital Signatures for Authenticity

Identification and Authentication

- Uniquely and verifiably identifying a user in the environment
- Determining if the user is who he/she claims to be
- Common informatics methods
 - User name and password
 - Certificates (using Public Key Infrastructure)
- Identity Management System Examples
 - OpenLDAP
 - Microsoft Active Directory
 - SourceID
 - caGrid Dorian
 - OpenID

Some Relevant Standards

- **X.509**
 - A widely adopted standard for defining digital certificates
- SAML (Security Assertion Markup Language)
 - An XML-based framework for communicating user authentication, entitlement, and attribute information.
 - Entities make assertions regarding the identity, attributes, and entitlements of a subject (an entity that is often a human user) to other entities
- Shibboleth
 - A system for identity federation and secure exchange of authorization information (e.g., user attributes)

Authentication using Certificates

- Public Key Certificate = Public Key + Information about Identity
- Relies on Public Key Infrastructure (PKI)
 - Public key has information about user
 - Stored as X-509 certificate
 - Certificates obtained from a certificate authority
 - Self Signed
 - Endorsed Verisign
- Proxy certificates created from permanent certificates
- Proxy certificates are used to interact with resources

Certificates and Digital Signatures

Authentication using Certificates

User Credentials

- Long term X.509 Certificate and Private Key.
- Clients authenticate using a proxy
- Proxy consists of a private key and proxy certificate signed by the user's long term private key.
- Short Lifetime
- Asserts Identity of users and services.
- Enables single sign-on
- Delegation

Authorization and Access Control

- Authorization determines whether a client is allowed to access and/or perform an operation on a given resource
- Access Control is closely related to Authentication and Authorization
 - Defining and enforcing who can access what and perform which operations

Early Access Control

- Secure Network not Resource
 - Firewalls, DMZ, Audit Trails
 - Assume control and ownership of network and physical resources
 - Centralized security management
- Access patterns are client-server
- Limited number of users
- Static, coarsely grained
 - E.g., User, Admin, Guest
 - No consideration of operational contexts

Access Control Models

- Access Control Lists
- Role-based Access Control (RBAC)
 - Users are assigned one or more roles
 - Access to a resource and permission to perform an operation are granted based on these roles
- Attribute-based Access Control (ABAC)
 - Access is granted based on the attributes of the requestor and the attributes of the resource.
 - ABAC policy specifies claims on what attributes should be satisfied and proved/verified to grant access to a resource.

XACML (eXtensible Access Control and Markup Language)

- XML like: you can actually read and write XACML with your favorite text editor
- human-readable and verbose enough for users to get an understanding of what it's doing
- belongs to the OASIS family of standards.
- eXtensible: you can add profiles to cater for specific scenarios
 - a profile for hierarchical resources,
 - role-based access control
 - export control...
- is about access control: authorizing who can do what when and how
- implements ABAC, attribute-based access control

XACML Architecture

- Policy Decision Point (PDP): core of the architecture where policies are evaluated and decisions are reached.
 - PDP ≈ Supreme Court
- Policy Enforcement Point (PEP): integration items which can be anywhere
 in an application architecture. PEPs are extremely versatile depending on
 where they enforce access control.
 - PEP ≈ Police, Judges...
- Policy Retrieval Point (PRP): point through which policies are read from the policy repository. Policy retrieval points ensure the independence of XACML from specific storage mechanisms.
 - PRP ≈ place where law is written and maintained.
- Policy Information Point (PIP): Attributes or Protection Elements. Describe users, services, resources, actions, and the environment. Policy Information Points are attribute stores. They can be any format and located anywhere.
 - PIPs ≈ police records, census bureau, etc... are to a nation and its citizens.
- Policy Administration Point (PAP): this is where you manage your policies.

XACML: Standard for representing access control policies

- eXtensible Access Control Markup Language
- Policy & PolicySet combining of applicable policies using CombiningAlgorithm
 - Contains: Description, Target, Rules, Obligations, Rule Combining Algorithm
- Target Rapidly index to find applicable Policies or Rules
 - Normally use Subject or Resource
 - Matches against value
- Rules Smallest unit of administration
 - Contains: Description, Target, Condition, Effect
- Effect Permit or "Deny"
- Combining Algorithms: Deny-overrides, Permit-overrides, Firstapplicable, Only-one-applicable
 - Applicable for Policies
- Support for various datatypes

Regulations

HIPAA, PHI...

Security and Privacy

- Federal, state, and local laws govern access to and control of health record information, particularly:
 - Who can have access
 - What should be done to protect the data
 - How long the records should be kept
 - Whom to notify and what to do if a breach is discovered

HIPAA

- Health Insurance Portability and Accountability Act
- One part of it deals with insurance coverage
- Another part regulates usage and sharing of health information
 - Privacy Rules
 - Transactions
 - Security Rules
 - Enforcement Rules
 - UID Rules

Security and Privacy: HIPAA

- HIPAA = Health Insurance Portability and Accountability Act of 1996
- One part deals with insurance coverage while the second deals with usage of information
 - Protected Health Information (PHI) includes any health information that:
 - Explicitly identifies an individual
 - Could reasonably be expected to allow individual identification.
 - Excludes PHI in education records covered by Family Educational Rights and Privacy Act (FERPA), employment records.

Security and Privacy: HIPAA (cont'd)

18 identifiers recognized as providing identifiable links to individuals.

- Name, address, ZIP code
- Dates (birth dates, discharge dates, etc.)
- Contact info, including email, web URLs
- Social Security Number or record numbers
- Account numbers of any sort
- License number, license plates, ID numbers
- Device identifiers, IP addresses
- Full face photos, finger prints, recognizable markings

(Summary of the HIPAA Privacy Rule, n.d.)

Who does it affect

- Health insurance companies, HMOs, corporate health plans, Medicare and Medicaid
- Most healthcare providers hospitals, clinics, doctors, psychologists, chiropractors, pharmacies, nursing homes...
- Healthcare Clearinghouse work with healthcare data → transcription, coding...

Covered Entity

What is HIPAA Privacy?

- Federal law governing privacy of patients' medical records and other health information maintained by covered entities including:
 - Health plans, including Veterans Health Administration, Medicare, and Medicaid
 - Most doctors & hospitals
 - Healthcare clearinghouses
- Gives patients access to records and significant control over use and disclosure.
- Compliance required since April 2003.

(Summary of the HIPAA Privacy Rule, n.d.)

HIPAA Privacy Rule

- When can PHI be disclosed by a covered entity
- It is the responsibility of the covered entity to make reasonable efforts to limit the use or disclosure of PHI to achieve the stated goals of data access.
- You, as a patient, could waive the privacy rule
 - Read the papers you sign before you see your doctor

HIPAA Privacy Rule

- Privacy and security complaints
 - All investigated by Office of Civil Rights (OCR) of Dept. of Health and Human Services (HHS), as of 2009.
 - 35,386 complaints received (as of July 2016), of which 24,331 required corrective actions.
 - 143M individuals affected (as of July 2015)
 - Steep fines for validated complaints.
 - Entities needing the most corrective actions:
 - Private health care practices
 - General hospitals
 - Pharmacies
 - Outpatient facilities
 - Group health plans

Violations investigated most often:

- Impermissible uses and disclosures of protected health information (PHI)
- 2. Lack of safeguards of PHI
- 3. Lack of patient access to their PHI
- Uses or disclosures of more than the minimum necessary PHI
- 5. Complaints to the covered entity

(HIPAA Enforcement Highlights, 2012; Numbers at a Glance, n.d.; Poremba, 2008; Hamilton, 2009)

- Established standards for securing electronic protected health information (ePHI) created, received, maintained, or transmitted.
- Entities required to:
 - Ensure confidentiality, integrity, availability of all ePHI
 - Identify and protect against reasonably anticipated threats to the security or integrity of the information.
 - Protect against reasonably anticipated, impermissible uses or disclosures.
 - Ensure compliance by workforce.
- Works in tandem with Privacy Rule.

Categories:

- 1. Administrative safeguards
- 2. Physical safeguards
- 3. Technical safeguards

Administrative Safeguards

- Address process of security management in your organization.
- Risk analysis
 - Evaluating likelihood and impact of potential risks to ePHI
 - Implementing appropriate security measures to address identified risks
 - Documenting security measures chosen, with rationale
 - Maintaining continuous, reasonable, appropriate protections
- Ongoing process, with regular reviews.

Administrative Safeguards (cont'd): Access policy

- Policies & procedures for authorizing access to ePHI only when appropriate for one's role (role-based access).
 - Who gets access to ePHI data?
 - What level of access is needed?
 - Who is the agent authorizing the access?
 - Is this authorization adequately documented?
 - Is the access periodically reviewed?
 - Is there a process for rescinding access when no longer needed?

Physical Safeguards: Access

- Limit physical access to facilities, while ensuring that authorized access is allowed.
 - Server rooms where ePHI is stored
 - Work areas where ePHI is accessed
 - Back-up media storage potentially containing ePHI
- Inventory hardware and software.
 - Know where inventory is kept.
 - Know value of hardware, software, equipment.

Physical Safeguards (cont'd): Device Security

- Policies and procedures for proper use of & access to workstations & electronic media, including transfer, removal, disposal, re-use.
 - Lock down publicly-accessible systems potentially containing ePHI.
 - Strong passwords
 - At least 256-bit encryption, especially for wireless, backups, & offsite data
 - Media thoroughly wiped and rendered inaccessible