Лабораторная №11

1) Используя интеграл Дюамеля для физически реализуемых систем

$$y(t) = \int_0^T x(t-\tau)h(\tau) d\tau$$

в классе MODEL реализовать функцию дискретной свертки $y=convolModel(x,\,N,\,h,\,M,...)\,$ заданных функций $x(t)=\{x_k\}$ и $h(t)=\{h_m\}$ по формуле

$$y_k = \sum_{m=0}^{M-1} x_{k-m} h_m$$

$$k = 0, 1, 2, ..., N+M-1$$

Последние M значений дискретной функции $\{y_k\}$ отбросить.

- 2) На основе понятий линейных систем реализовать грубое приближение модели кардиограммы y(t) длительностью 4 сек с помощью функции свертки convolModel(x, N, h, M, ...) импульсной реакции модели сердечной мышцы h(t) и управляющей функции ритма x(t), для этого :
 - а) импульсную реакцию модели сердечной мышцы реализовать с помощью функции мультипликативной модели $h(t)=multModel(h1,\ h2,\ M,...)$ гармонического процесса harm() и нисходящего экспоненциального тренда trend():

$$h(t) = h1(t) \cdot h2(t)$$

 $h1(t) = A \cdot \sin(2 \cdot \pi \cdot f \cdot k \cdot dt)$, $A = 1$, $f = 7$ [Гц]
 $h2(t) = b \cdot \exp(-a \cdot k \cdot dt)$, $a = 30$, $b = 1$
 $dt = 0.005$, $M = 200$

Функцию h(t) нормировать на ее максимум и умножить на 120.

- б) управляющую функцию ритма x(t) задать в виде четырех импульсов минимальной длительности с амплитудами 1 ± 0.1 , следующих через равные интервалы времени, т.е. в виде массива данных длины N=1000, состоящего из нулей за исключением 4-х значений на позициях кратных 200, что при шаге dt=0.005 [сек] равно 1 сек.
- в) Отобразить графики трех функций в трех разных окнах.
- г*) добавить слабый аддитивный шум (<u>опционально</u>).
- 3) Используя функцию x(t)=spikes() и функцию h(t) из п.2а, а также функцию свертки из п.1 смоделировать и отобразить «патологическую» кардиограмму.