Khôlles de Mathématiques $\mathbb{H}\mathbb{XII}$ $D\acute{e}rivation$

N. CLOAREC

Du 12-12-16 au 07-01-17

Exercice 1 Soit $f: [0; +\infty[\to \mathbb{R} \text{ de classe } \mathcal{C}^1 \text{ telle que}]$

$$f(0) = -1$$
 et $\lim_{+\infty} f = +\infty$

Montrer que si f s'annule au moins deux fois alors f' aussi.

Exercice 2 Soit $f: I \to \mathbb{R}$ dérivable, avec I un intervalle.

- a) On suppose qu'il existe $a, b \in \mathring{I}$ vérifiant f'(a)f'(b) < 0. Montrer que la dérivée de f s'annule.
- b) En déduire que f'(I) est un intervalle. (théorème de Darboux)

Exercice 3

- a) Calculer de deux façons la dérivée n-ième de $x \mapsto x^{2n}$. En déduire une expression de $\sum_{k=0}^{n} {n \choose k}^2$.
- b) Généraliser la formule précédente.

Exercice 4 Soit $f: \mathbb{R} \to \mathbb{R}$ une fonction deux fois dérivable telle que $|f(x)| \le 1$ pour tout $x \in \mathbb{R}$ et $f(0)^2 + f'(0)^2 = 4$. Montrer qu'il existe x_0 tel que $f(x_0) + f''(x_0) = 0$.

Exercice 5 Soit $n \in \mathbb{N}$ et $f: I \to \mathbb{R}$ une application de classe C^n s'annulant en n+1 points distincts de I.

- a) Montrer que la dérivée n-ième de f s'annule au moins une fois sur I.
- b) Soit α un réel. Montrer que la dérivée (n-1) -ième de $f' + \alpha f$ s'annule au moins une fois sur I. (indice : on pourra introduire une fonction auxiliaire.)

Exercice 6 On pose $f: x \mapsto [(x^2 - 1)^n]^{(n)}$.

- a) Montrer que f est une fonction polynomiale de degré n.
- b) Calculer f(1) et f(-1).
- c) Montrer que f possède exactement n racines distinctes toutes dans]-1;1[.

Exercice 7 Soient $f: I \to \mathbb{R}$ une fonction deux fois dérivable sur I et a, b, c trois points distincts de I.

Montrer

$$\exists d \in I, \frac{f(a)}{(a-b)(a-c)} + \frac{f(b)}{(b-c)(b-a)} + \frac{f(c)}{(c-a)(c-b)} = \frac{1}{2}f''(d)$$

Exercice 8 Soit $f: [0; +\infty[\to \mathbb{R}]]$ une fonction dérivable telle que

$$\lim_{+\infty} f = f(0)$$

Montrer qu'il existe c > 0 tel que f'(c) = 0.

Exercice 9 Soit $f: [0;1] \to \mathbb{R}$ dérivable. On suppose

$$f(x) \xrightarrow[x \to 0^+]{} \ell \in \mathbb{R} \text{ et } xf'(x) \xrightarrow[x \to 0^+]{} \ell' \in \mathbb{R}$$

Que dire de ℓ' ?

Exercice 10 Soit $f \in \mathcal{C}^2(\mathbb{R}_+, \mathbb{R})$ telle que $\lim_{x \to +\infty} f(x) = a \in \mathbb{R}$.

- a) Si f'' est bornée, que dire de f'(x) quand $x \to +\infty$?
- b) Le résultat subsiste-t-il sans l'hypothèse du a)?