Análisis Matemático I

Tema 11: Función inversa

Regla de diferenciación

2 Teorema local

3 Aplicaciones

Teorema global

Regla de derivación de la función inversa

Motivación: caso de funciones reales de variable real

$$\emptyset \neq A \subset \mathbb{R}, \quad f: A \to \mathbb{R} \text{ inyectiva, } B = f(A), \quad f^{-1}: B \to \mathbb{R}$$

Supongamos que f es derivable en un punto $a \in A \cap A'$ y sea b = f(a). entonces $b \in B'$ y las siguientes afirmaciones son equivalentes:

- f^{-1} es derivable en el punto b
- f^{-1} es continua en b y $f'(a) \neq 0$

En caso de que ambas se cumplan, se tiene: $\left(f^{-1}\right)'(b) = \frac{1}{f'(a)}$

Observaciones para generalizar el resultado anterior

- \bullet En general necesitaremos que $b \in B^{\, \circ}$, habrá que suponerlo
- $f'(a) \neq 0 \iff Df(a)$ biyectiva
- $(f^{-1})'(b) = \frac{1}{f'(a)} \iff Df^{-1}(b) = Df(a)^{-1}$

Caso general

Homeomorfismo linea

 $X\,,\,Y\,$ espacios normados, $\,T:X\to Y\,$ es un homeomorfismo lineal cuando: $\,T\in L(X,Y)\,,\,\,T\,$ es biyectiva y $\,T^{-1}\in L(Y,X)$

Regla de diferenciación de la función inversa

X,Y normados, $\Omega=\Omega^{\circ}\subset X$, $f:\Omega\to Y$ inyectiva, $B=f(\Omega)$, $f^{-1}:B\to X$ Supongamos que f es diferenciable en $a\in\Omega$ y que $b=f(a)\in B^{\circ}$ Entonces, las siguientes afirmaciones son equivalentes:

- f^{-1} es diferenciable en el punto b
- ullet f^{-1} es continua en b y Df(a) es un homeomorfismo lineal

En caso de que ambas se cumplan, se tiene: $Df^{-1}(b) = Df(a)^{-1}$

Una consecuencia

X,Y espacios normados, $U=U^{\circ}\subset X$, $V=V^{\circ}\subset Y$, $f:U\to V$ biyectiva. Si f es diferenciable en $a\in U$ y f^{-1} es diferenciable en b=f(a), entonces X e Y son linealmente homeomorfos. $\dim(X)=N\in\mathbb{N} \Rightarrow \dim(Y)=N$

Motivación para el teorema de la función inversa

Versión global del teorema de la función inversa en ${\mathbb R}$

 $I \subset \mathbb{R}$, I intervalo no trivial, $f: I \to \mathbb{R}$ derivable.

Supongamos que $f'(x) \neq 0 \quad \forall x \in I$. Entonces:

- \bullet f es inyectiva
- \bullet f(I) es un intervalo
- f^{-1} es derivable en f(I) con $(f^{-1})'(f(x)) = 1/f'(x) \ \forall x \in I$

Versión local del teorema de la función inversa en $\mathbb R$

 $I\subset\mathbb{R}$, I intervalo no trivial, $f:I\to\mathbb{R}$ derivable, $a\in I.$

Supongamos que f' es continua en a y $f'(a) \neq 0$.

Entonces, existe $\delta>0$ tal que, si $I_{\delta}=I\cap]a-\delta,a+\delta[$ y $\varphi=f\Big|_{I_{\delta}}$, se tiene:

- f es inyectiva en I_{δ}
- \bullet $f(I_{\delta})$ es un intervalo
- $f'(x) \neq 0 \quad \forall x \in I_{\delta}$
- φ^{-1} es derivable en $f(I_{\delta})$ con $(\varphi^{-1})'(f(x)) = 1/f'(x) \ \forall x \in I_{\delta}$

Preparativos para el teorema de la función inversa en \mathbb{R}^N

Continuidad del determinante

 $T\in L(\mathbb{R}^N,\mathbb{R}^N)\,,\quad A_T\quad \text{matriz de }T\,,\quad \det A_T\quad \text{det }A_T$ Sabemos que T es biyectiva si, y sólo si, $\ \det A_T\neq 0$

La aplicación $T\mapsto \det A_T$, de $L(\mathbb{R}^N,\mathbb{R}^N)$ en \mathbb{R} , es continua

Determinante jacobiano

$$\Omega = \Omega^{\,\circ} \subset \mathbb{R}^N \,, \quad f: \Omega \to \mathbb{R}^N \quad \text{diferenciable en } \ a \in \Omega$$

$$\det Jf(a) \ \ \text{es el determinante jacobiano de } f \ \text{en } a$$

Si $f \in D(\Omega, \mathbb{R}^N)$ y Df es continua en $a \in \Omega$, entonces:

la aplicación $\,x\mapsto \det Jf(x)$, de $\,\Omega\,$ en $\,\mathbb{R}$, es continua en $\,a\,$

Enunciado del teorema de la función inversa local en \mathbb{R}^N

Teorema de la función inversa (local)

$$\Omega = \Omega^{\circ} \subset \mathbb{R}^N, \quad f \in D(\Omega, \mathbb{R}^N), \quad a \in \Omega$$

Supongamos que Df es continua en a y $\det Jf(a) \neq 0$. Entonces:

Existe un abierto U , con $a \in U \subset \Omega$, tal que, si $\varphi = f\big|_U$, se tiene:

- ullet f es inyectiva en U
- ullet V = f(U) es abierto
- $\det Jf(x) \neq 0 \quad \forall x \in U$
- $\varphi^{-1} \in D(V, \mathbb{R}^N)$ con $D\varphi^{-1}(f(x)) = Df(x)^{-1} \quad \forall x \in U$

Se dice que φ^{-1} es una inversa local de f en el punto aNótese que φ^{-1} está definida en V, que es un entorno de f(a)

Esquema de demostración. Caso particular: a = f(a) = 0, Df(0) = Id

Primera fase: uso de las hipótesis

- Las hipótesis sobre f se trasladan a la función $g = \operatorname{Id} f$
- Se usa que $\,Dg\,$ es continua en $\,0\,$ con $\,Dg(0)=0\,$
- Se usa que $x \mapsto \det Jf(x)$ es continua en 0 con $\det Jf(0) = 1$

Conclusión: existe un $\ r>0$ con $\ B(0,3r)\subset\Omega$, tal que:

$$||x|| < 3r \implies ||Dg(x)|| \le 1/2 \text{ y } \det Jf(x) \ne 0$$

Segunda fase: Desigualdad del valor medio

$$x,z \in B(0,3r) \quad \Longrightarrow \quad \|g(x)-g(z)\| \leqslant (1/2)\|x-z\| \quad \text{y} \quad \|g(x)\| \leqslant (1/2)\|x\|$$

Tercera fase: Teorema del punto fijo de Banach

Para cada
$$y_0 \in \overline{B}(0,r)$$
 existe un único $x_0 \in \overline{B}(0,2r)$ tal que $f(x_0) = y_0$ Si además $\|y_0\| < r$, entonces $\|x_0\| < 2r$

Cuarta fase: Fin del caso particular

$$U = B(0, 2r) \cap f^{-1}(B(0, r))$$

- Las tres primeras afirmaciones son fáciles
- Para la cuarta, se prueba que φ^{-1} es lipschitziana, luego continua

Quinta fase: el caso general se deduce del caso particular ya resuelto

- $\Omega_0 = \{ z \in \mathbb{R}^N : z + a \in \Omega \}$
- $f_0(z) = Df(a)^{-1} (f(z+a) f(a)) \quad \forall z \in \Omega_0$
- ullet f_0 cumple las mismas hipótesis que f y está en el caso particular
- ullet Existe un abierto U_0 que cumple lo pedido, para f_0
- $U = \{z + a : z \in U_0\}, \quad f(x) = Df(a)(f_0(x a)) + f(a) \quad \forall x \in \Omega$
- ullet El abierto U cumple todo lo pedido en el teorema

Aplicaciones del teorema de la función inversa (I)

Coordenadas polares en el plano

$$\begin{split} \Omega &= \mathbb{R}^+ \times \mathbb{R}, \quad f(\rho,\theta) = (\rho \cos \theta \,,\, \rho \sin \theta) \quad \forall \, (\rho,\theta) \in \Omega \\ f(\Omega) &= \mathbb{R}^2 \setminus \{(0,0)\} = G \,, \quad \text{pero } f \, \text{ no es inyectiva} \\ \forall \, (x,y) \in G \quad \exists \, \, (\rho,\theta) \in \Omega \,: \, x = \rho \cos \theta \,, \quad y = \rho \sin \theta \end{split}$$
 Todo $(x,y) \in G$ tiene coordenadas polares $(\rho,\theta) \in \Omega$, que no son únicas

$$f \in C^1(\Omega, \mathbb{R}^2)$$
 con $\det Jf(\rho, \theta) = \rho \neq 0 \ \forall (\rho, \theta) \in \Omega$

f admite una inversa local en cada punto $(\rho,\theta)\in\Omega$, es decir,

En un entorno de cada punto de G, se pueden definir de manera única las coordenadas polares, como una función diferenciable de las coordenadas cartesianas

Si $g:G \to \mathbb{R}$ es un campo escalar, y $h=g\circ f$, entonces h es diferenciable si, y sólo si, g es diferenciable

Aplicaciones del teorema de la función inversa (II)

Coordenadas cilíndricas

$$\Omega = \mathbb{R}^+ \times \mathbb{R}^2, \quad f(\rho, \theta, z) = (\rho \cos \theta, \rho \sin \theta, z) \quad \forall (\rho, \theta, z) \in \Omega$$
$$f(\Omega) = \mathbb{R}^3 \setminus \{(0, 0, z) : z \in \mathbb{R}\} = G, \text{ pero } f \text{ no es inyectiva}$$

$$\forall (x,y,z) \in G \ \exists \ (\rho,\theta,z) \in \Omega \ : \ x = \rho \cos \theta \,, \ \ y = \rho \sin \theta$$
 Todo $(x,y,z) \in G$ tiene coordenadas cilíndricas $(\rho,\theta,z) \in \Omega$, que no son únicas

$$f \in C^1(\Omega, \mathbb{R}^3)$$
 con $\det Jf(\rho, \theta, z) = \rho \neq 0 \ \forall (\rho, \theta, z) \in \Omega$

f admite una inversa local en cada punto $(\rho,\theta,z)\in\Omega$, es decir,

 $\label{eq:condition} \mbox{En un entorno de cada punto de G,} \mbox{se pueden definir de manera única las coordenadas cilíndricas,} \mbox{como una función diferenciable de las coordenadas cartesianas}$

Si
$$g:G\to\mathbb{R}$$
 es un campo escalar, y $h=g\circ f$, entonces h es diferenciable si, y sólo si, g es diferenciable

Aplicaciones del teorema de la función inversa (III)

Coordenadas esféricas

$$\Omega = \left\{ (r,\theta,\varphi) \in \mathbb{R}^3 \ : \ r \in \mathbb{R}^+, \ |\varphi| < \pi/2 \right\}$$

$$f(r,\theta,\varphi) = (r\cos\theta\cos\varphi, r\sin\theta\cos\varphi, r\sin\varphi) \ \ \forall (\rho,\theta,z) \in \Omega$$

$$f(\Omega) = \mathbb{R}^3 \setminus \{ (0,0,z) : z \in \mathbb{R} \} = G, \ \ \text{pero} \ f \ \ \text{no es inyectiva}$$

$$\forall (x,y,z) \in G \ \exists \ (r,\theta,\varphi) \in \Omega \ : \ x = r\cos\theta\cos\varphi, \ \ y = r\sin\theta\sin\varphi, \ \ z = r\sin\varphi$$
 Todo $(x,y,z) \in G$ tions coordenades efficies $(x,\theta,\varphi) \in \Omega$, que no son (pieces

Todo $(x,y,z)\in G$ tiene coordenadas esféricas $(r,\theta,\varphi)\in \Omega$, que no son únicas

$$f \in C^1(\Omega, \mathbb{R}^3)$$
 con $\det Jf(r, \theta, \varphi) = r^2 \cos \varphi \neq 0 \ \forall (r, \theta, \varphi) \in \Omega$
 f admite una inversa local en cada punto $(r, \theta, \varphi) \in \Omega$, es decir,

En un entorno de cada punto de G, se pueden definir de manera única las coordenadas esféricas, como una función diferenciable de las coordenadas cartesianas

Si $g:G \to \mathbb{R}$ es un campo escalar, y $h=g\circ f$, entonces h es diferenciable si, y sólo si, g es diferenciable

Teorema global

Teorema de la función inversa global

$$\Omega = \Omega^{\circ} \subset \mathbb{R}^N, \ f \in C^1(\Omega, \mathbb{R}^N)$$

Supongamos que f es inyectiva y que $\det Jf(x) \neq 0 \ \forall x \in \Omega$. Entonces

- $W = f(\Omega)$ es abierto
- f^{-1} es diferenciable con $Df^{-1}(f(x)) = Df(x)^{-1} \ \forall x \in \Omega$

De hecho,
$$f^{-1} \in C^1(W, \mathbb{R}^N)$$

Observación para probarlo

$$\mathcal{G} = \{ T \in L(\mathbb{R}^N, \mathbb{R}^N) : T \text{ biyectiva } \}$$

La aplicación $T \mapsto T^{-1}$, de \mathcal{G} en \mathcal{G} , es continua