ADSBee 1090

Open Source Embedded ADS-B Receiver

RESET RE

Features

- 1090MHz Mode S and ADS-B packet decoding.
- Adjustable receive gain and trigger levels for customized tuning in diverse RF environments.
- Tunable sub-GHz transceiver for UAT / additional protocols.
- Multiple output formats over UART or USB: Raw Frames / ADSBee CSV / MAVLINK1 / MAVLINK2 / Mode S Beast / GDL90
- GNSS module input (UART + PPS) for MLAT or Remote ID applications.
- 2.4GHz 802.11 module for connecting directly to ADS-B databases via WiFi or broadcasting Remote ID beacon frames in UAS applications.
- Integrated M2.5 mounting holes.
- Optional PoE pant for power + data over Ethernet.
- Firmware updates over USB, Serial, WiFi, Ethernet.

Applications

- Aircraft detection for robotics and embedded projects.
- Electronic Flight Bag ADS-B receiver.
- Standalone feeder device for online ADS-B databases. No external compute required, just add power and WiFi!

Quick Specs

Supply Voltage	5V (via USB or 5V pin)
Supply Current	120mA (WiFi disabled)
	~400mA (WiFi enabled)
Minimum RF Input	-70dBm
Power Level	
Simultaneous	≤400
Aircraft Tracks	
Supported	
Connectors	1090MHz RF In: U.FL / MHF1
	Sub-GHz RF In/Out: U.FL / MHF1
	802.11 RF Out: W.FL / MHF3
	Power / Data: USB C
	GPIO / UART: 0.1" Pin Headers

Open Source Hardware + Software

Github Repository: https://github.com/coolnamesalltaken/adsbee

All hardware schematics and source code files required to build ADSBee 1090 are available under a GNU GPL v3 license. This means that they can be freely incorporated into other open-source projects that utilize a compatible license. The hope is that by opening the design to contributions and feedback from a community of users, the functionality of the ADSBee 1090 will be enhanced over time.

Note that the GPL v3 license applies to design and source code files, and not devices. ADSBee 1090 units purchased from Pants for Birds may be used in commercial applications without any licensing restrictions.

For commercial licensing requests of ADSBee hardware or software design files, please contact john@pantsforbirds.com.

Fe	atures		1
Αį	oplicatio	ns	1
Q	uick Spe	cs	1
0	pen Sou	ce Hardware + Software	1
Re	evision H	listory	5
1	Back	ground	6
2	Comi	nunication Interfaces	6
	2.1	Console Interface	6
	2.2	COMMS_UART Interface	6
	2.3	GNSS_UART Interface	6
3	AT Co	ommands	7
	3.1	AT+BAUD_RATE	7
	3.1.1	Set Baud Rate	7
	3.1.2	Query Baud Rate	7
	3.2	AT+BIAS_TEE_ENABLE	8
	3.2.1	Turn the Bias Tees On or Off	8
	3.2.2	Query the Status of the Bias Tee	8
	3.3	AT+DEVICE_INFO	8
	3.4	AT+ESP32_ENABLE	9
	3.4.1	Turn the ESP32 On or Off	9
	3.4.2	Query the Status of the ESP32	9
	3.5	AT+ESP32_FLASH	9
	3.6	AT+ETHERNET	9
	3.6.1	Enable or Disable Ethernet	9
	3.6.2	Query Ethernet Setting	9
	3.7	AT+FEED	9
	3.7.1	Configure a Feed	9
	3.7.2	Query Configuration of All Feeds	11
	3.7.3	Query Configuration of a Single Feed	12
	3.8	AT+HELP	12
	3.9	AT+HOSTNAME	12
	3.9.1	Set the Device Hostname	12
	3.9.2	Query the Device Hostname	12
	3.10	AT+MAVLINK_ID	13

3.10.1	Set the MAVLINK System ID and Component ID	13
3.10.2	Query the MAVLINK System ID and Component ID	
	+LOG_LEVEL	
	+PROTOCOL OUT	
3.12.1	Set the Reporting Protocol for a Serial Interface	
3.12.2	Query the Reporting Protocol for All Serial Interfaces	
3.13 AT	+REBOOT	
3.14 AT	+RX_ENABLE	15
3.14.1	Enable or Disable the Receiver(s)	15
3.14.2	Check Whether the Receiver(s) are Currently Enabled	15
3.15 AT	+SETTINGS	16
3.15.1	Query Current Settings	16
3.15.2	Dump Settings in AT Format	17
3.15.3	Load Settings from EEPROM	17
3.15.4	Save Settings to EEPROM	17
3.15.5	Reset Settings to Factory Default	17
3.16 AT	+SUBG_ENABLE	18
1.1.1	Set Sub-GHz Receiver Enable Status and Line Drive Type	18
1.1.2	Query Sub-GHz Receiver Enable Status and Line Drive Type	18
3.17 AT	+TEST	18
3.18 AT	+TL_READ	19
3.19 AT	+TL_OFFSET	19
3.19.1	Set Trigger Level	19
3.19.2	Query Trigger Level	19
3.20 AT	+UPTIME	20
3.21 AT	+WATCHDOG	20
3.21.1	Configure the Watchdog Timer	20
3.21.2	Query the Watchdog Timer	20
3.21.3	Test the Watchdog Timer	20
3.22 AT	+WIFI_AP	21
3.22.1	Configure the WiFi Access Point	21
3.22.2	Query the WiFi Access Point Configuration	21
3.23 AT	+WIFI_STA	22
3.23.1	Configure the WiFi Station	22
3.23.2	Query the WiFi Station Configuration	22
4 Reportir	g Protocols	23

Firmware Version: 0.9.0

4.1 (CSBee	24
4.1.1	Mode S Aircraft Message	24
4.1.2	UAT Aircraft Message	31
4.1.3	Statistics Message	34
4.2	GDL90	35
4.3 ľ	MAVLINK	36
4.3.1	MAVLINK_HEARTBEAT (Message ID 0) Packet Definition	36
4.3.2	MAVLINK ADSB_VEHICLE (Message ID 246) Packet Definition	36
4.3.3	MAVLINK_REQUEST_DATA_STREAM (Message ID 66) Packet Definition	37
4.3.4	MAVLINK MESSAGE_INTERVAL (Message ID 244) Packet Definition	37
4.4	Mode S Beast	38
4.4.1	Beast: Mode S Frames	38
4.4.2	Beast: UAT Frames	38
4.5 F	Raw Packets	39
4.5.1	Raw Mode S Frames	39
4.5.2	Raw UAT ADSB Frames	39
4.5.3	Raw UAT Uplink Frames	39

Revision History

20250719

• Initial release with version control.

20250821

- Update CSBee protocol with new bit flag positions, new field for separate baro/GNSS vertical rates.
- Change AT+TL_SET AT command to AT+TL_OFFSET AT command.
- Change AT+PROTOCOL AT command to separate AT+PROTOCOL_IN and AT+PROTOCOL_OUT AT commands.

Background

ADSBee 1090 was created as an attempt to build a low-cost ADS-B receiver without the use of an FPGA (found in most embedded ADS-B receivers on the market) and without the need for external compute (a requirement of most SDR-based ADS-B receivers). ADSBee 1090 accomplishes this through the use of a low-cost dual core microcontroller (RP2040) with flexible IO peripherals (PIO) that run a set of custom-written programs for preamble detection and packet decoding. By dedicating the RP2040's PIO peripherals to the tasks required to find and decode ADS-B packets, ADSBee 1090 frees up its remaining cores to perform the logical functions required to validate checksums on decoded packets and decipher aircraft information (position, altitude, callsign, etc).

The ADSBee 1090 reports decoded aircraft information over UART and USB interfaces in a variety of protocols, and can utilize its attached ESP32 S3 module to host WiFi networks for data streaming to other devices, or connect to existing WiFi networks in order to upload data to the internet or other devices on the network.

Provisions are included for connecting an external GNSS module and UAT radio receiver to the ADSBee 1090. These features will enter development in the near future.

2 Communication Interfaces

2.1 Console Interface

The CONSOLE interface (USB-C connector) on the ADSBee 1090 can be used to supply the device with power, configure the device's internal parameters via AT commands, and receive data from the device.

No baud rate configuration is necessary for the CONSOLE interface. Note that AT commands must be suffixed with CR+LF ("\r\n") in order to be processed by the AT command parser.

2.2 COMMS_UART Interface

The COMMS_UART interface is used for data output, and can support a number of different protocols. Data can be streamed out of the CONSOLE and COMMS_UART interfaces simultaneously. The baud rate of the COMMS_UART interface can be adjusted via AT commands.

COMMS_UART Parameters

Parameter	Value
Baud Rate	115200 baud (default)
Data Bits	8
Stop Bits	0 (N)
Parity Bits	1
Logic Level	3.3V

2.3 GNSS_UART Interface

The ADSBee 1090's GNSS module connector includes a UART interface which can be used to receive NMEA sentences from a GNSS module. The baud rate of the GNSS UART interface can be adjusted via AT commands.

GNSS_UART Parameters

Parameter	Value
Baud Rate	9600 baud (default)
Data Bits	8
Stop Bits	0 (N)
Parity Bits	1
Logic Level	3.3V

AT Commands

AT Commands are used to configure the ADSBee 1090 receiver's internal parameters via the CONSOLE interface. AT commands can be used to set values (with the '=' operator, e.g. "AT+BAUD_RATE=COMMS_UART,115200") or query values (with the '?' operator, e.g. "AT+BAUD_RATE?").

AT commands and parameters must be all-caps. Whitespace is not ignored and should only be used intentionally (e.g. as part of a WiFi network SSID which contains spaces). Arguments are separated by a single comma and no spaces.

All AT command arguments are optional. Arguments will be ignored if left as blank. For instance, to set the second parameter of AT+TL_SET to 3000 without changing the value of the first parameter, the command "AT+TL_SET=,3000" can be sent. Likewise, to change the first parameter to 2000 without changing the value of the second, the command "AT+TL_SET=2000," can be sent.

Commands from the user to the ADSBee 1090 are prefixed with "AT+" (e.g. "AT+BAUD_RATE..."). Replies may be prefixed with the relevant command (e.g. "+BAUD_RATE=...") or nothing (e.g. "OK"). Replies to AT command queries may include text enclosed by parentheses (e.g. "AT+BAUD_RATE=115200(COMMS),9600(GNSS). These text blobs are annotations to improve human readability of the reply.

IMPORTANT NOTE

No settings will be persisted after shutdown unless AT+SETTINGS=SAVE is executed in order to write new settings values to non-volatile storage.

3.1 AT+BAUD_RATE

3.1.1 Set Baud Rate

AT+BAUD_RATE=<iface>,<baud_rate>

Set the baud rate for a particular serial interface. Note that the USB C port (CONSOLE interface) is a virtual COM port and does not have a baud rate that can be changed.

Parameter	Description	Values
iface	Serial interface to set the baud rate for.	COMMS_UART, GNSS
baud_rate	Baud rate, in characters per second.	9600-115200

3.1.2 Query Baud Rate

AT+BAUD_RATE?

+BAUD_RATE=<comms_uart_baud_rate>(COMMS_UART),<gnss_uart_baud_rate>(GNSS_UART)

Document Version: 20250901

Queries the baud rate for the COMMS_UART and GNSS_UART interfaces. Note that the baud rates returned by this query are the actual system baud rates, which should be close to the baud rates that were requested with AT+BAUDRATE but may be slightly different due to the particulars of how baud rates are implemented inside the RP2040.

Parameter	Description	Values
comms_uart_baud_rate	Baud rate on the COMMS_UART interface.	9600-115200
gnss_uart_baud_rate	Baud rate on the GNSS_UART interface.	9600-115200

AT+BIAS_TEE_ENABLE

3.2.1 Turn the Bias Tees On or Off

AT+BIAS_TEE_ENABLE=<1090_bt_enabled>, <subg_bt_enabled>

Enable or disable the bias tee to enable use of an external LNA.

Parameter	Description	Acceptable Values
1090_bt_enabled	Whether the 1090MHz bias tee is enabled (3.3VDC supplied	0 – Bias tee is disabled.
	to the 1090 RF connector) or disabled (no DC voltage	1 – Bias tee is enabled.
	supplied to the 1090 RF connector).	
subg_bt_enabled	Whether the Sub-GHz radio bias tee is enabled (3.3VDC	0 – Bias tee is disabled.
	supplied to the SubG RF connector) or disabled (no DC	1 – Bias tee is enabled.
	voltage supplied to the SubG RF connector).	

3.2.2 Query the Status of the Bias Tee

```
AT+BIAS_TEE_ENABLE?
+BIAS_TEE_ENABLE=<1090_bt_enabled>,<subg_bt_enabled>
```

Queries the status of the bias tee. See table in 3.1.1 for values and their meanings.

3.3 AT+DEVICE_INFO

Queries the device information of the ADSBee. An example query and reply is shown below.

```
> AT+DEVICE_INFO?
Part Code: 010240002F-20240907-000001
RP2040 Firmware Version: 0.6.2
OTA Key 0:
cf737c4fce892fab44c6ec0d5d0f66dccf06c5630ac5b531f4067599df014d5ef213bb73205a9ce37
8318f259e3d01e3b99c089a75ac0735b204256b9371fbce
OTA Key 1:
1701a736dc40c837f318c9e7ae82557a39fe07588d3745602bb9269b13843b87ca7962daecc9897c6
dfb0ac4ec77997e9cc34cd356e415fc46eb4ae3dd42b717
ESP32 Firmware Version: 0.6.2
ESP32 Base MAC Address: 64:E8:33:5D:0B:C4
ESP32 WiFi Station MAC Address: 64:E8:33:5D:0B:C5
ESP32 Bluetooth MAC Address: 64:E8:33:5D:0B:C6
ESP32 Ethernet MAC Address: 64:E8:33:5D:0B:C6
ESP32 Ethernet MAC Address: 64:E8:33:5D:0B:C7
```


3.4 AT+ESP32_ENABLE

3.4.1 Turn the ESP32 On or Off

AT+ESP32 ENABLE=<enabled>

Turns the ESP32 on or off using its enable line. When the ESP32 is turned off, the ADSBee 1090 will draw less power, but the WiFi and network capabilities will be unavailable. This operational mode is useful for conserving energy in applications where the ADSBee is only being communicated with via its serial interfaces.

Parameter	Description	Acceptable Values
enabled	Whether the ESP32 is turned on.	0 – ESP32 is turned on.
		1 – ESP32 is turned off.

3.4.2 Query the Status of the ESP32

AT+ESP32 ENABLE?

ESP32_ENABLE=<enabled>

Queries whether the ESP32 is turned on or off. See table in 3.4.1 for the values and their meanings.

3.5 AT+ESP32_FLASH

AT+ESP32_FLASH

Flashes the ESP32 with the firmware image stored on the RP2040. This should never be needed, since the RP2040 does a firmware version check of the ESP32 on startup and automatically reflashes he firmware if it is out of date. The AT+ESP32_FLASH command is only used in weird debugging scenarios where the version number of the firmware on the ESP32 matches the version of the firmware stored on the RP2040, but the firmware stored on the RP2040 is different and needs to be flashed onto the ESP32.

3.6 AT+ETHERNET

3.6.1 Enable or Disable Ethernet

Enables or disables Ethernet functionality on the ESP32. Must be connected to a W5500 Ethernet IC via SPI.

Document Version: 20250901

AT+ETHERNET=<enabled>

Parameter	Description	Acceptable Values
enabled	Whether Ethernet connectivity is enabled via the ESP32 and a	0 – Ethernet is enabled.
	connected W5500 Ethernet IC.	1 – Ethernet is disabled.

3.6.2 Query Ethernet Setting

AT+ETHERNET?

ETHERNET=1

3.7 AT+FEED

3.7.1 Configure a Feed

AT+FEED=<index>,<uri>,<port>,<active>,<protocol>

Example command for configuring feed 0 to send data to airplanes.live, which accepts Mode S Beast protocol on port 30004 at the static IP 78.46.234.18:

AT+FEED=0,78.46.234.18,30004,1,BEAST

Parameter	Description	Acceptable Values
index	Which feed slot to configure.	0-5
uri	Static IP address or hostname of the feed destination. If the	Public IP address, e.g. 78.46.234.18
	field is given as a hostname, a DNS lookup will be performed	Hostname, e.g. feed.whereplane.xyz
	in order to convert the hostname to an IP address.	Maximum length 64 characters.
port	Port number to feed to.	0-65535
active	Whether the feed should be activated. This can be used to	0 – Feed is active.
	temporarily disable a feed while still keeping its configuration	1 – Feed is disabled.
	information intact.	
protocol	Which protocol to use when feeding.	BEAST – Send validated packets in
		Mode S Beast format.
		BEAST_RAW – Send both validated
		and invalid (bad checksum) packets in
		Mode S Beast format.

3.7.2 Query Configuration of All Feeds

AT+FEED?

FEED=0(INDEX),192.168.1.103(URI),30004(PORT),1(ACTIVE),BEAST(PROTOCOL),bee00038172d18c(RECEIVER_ID)

FEED=1(INDEX),(URI),0(PORT),0(ACTIVE),NONE(PROTOCOL),bee00038172d18c(RECEIVER_ID)

FEED=2(INDEX),(URI),0(PORT),0(ACTIVE),NONE(PROTOCOL),bee00038172d18c(RECEIVER_ID)

FEED=3(INDEX),(URI),0(PORT),0(ACTIVE),NONE(PROTOCOL),bee00038172d18c(RECEIVER_ID)

Document Version: 20250901

FEED=4(INDEX),78.46.234.18(URI),30004(PORT),1(ACTIVE),BEAST(PROTOCOL),bee00038172d18c(REC EIVER_ID)

FEED=5(INDEX), feed.whereplane.xyz(URI),30004(PORT),0(ACTIVE),BEAST(PROTOCOL),bee00038172d 18c(RECEIVER_ID)

3.7.3 Query Configuration of a Single Feed

AT+FEED?<index>

Example query for configuration of feed 0 only:

```
AT+FEED?0
```

FEED=0(INDEX),192.168.1.103(URI),30004(PORT),1(ACTIVE),BEAST(PROTOCOL),bee00038172d18c(RECEIVER_ID)

3.8 AT+HELP

```
AT+HELP
AT Command Help Menu:

BAUDRATE:

AT+BAUDRATE=<iface>,<baudrate>
Set the baud rate of a serial interface.

AT_BAUDRATE?
Query the baud rate of all serial interfaces.

BIAS_TEE_ENABLE:
AT+BIAS_TEE_ENABLE=<enabled>
Enable or disable the bias tee.

BIAS_TEE_ENABLE?
Query the status of the bias tee.
```

Prints the available AT commands as well as how to use them. The list of commands in the preview above is abridged.

3.9 AT+HOSTNAME

3.9.1 Set the Device Hostname

AT+HOSTNAME=<hostname>

Sets the device hostname, which can make things easier when configuring a local network. Hostname is also used for mDNS, allowing you to visit the device's webpage at <hostname>.local.

3.9.2 Query the Device Hostname

AT+HOSTNAME?

HOSTNAME=ADSBee1090-0240907000001

MAVLINK components have a system and component ID. For more information about system and component IDs, visit: https://mavlink.io/en/services/mavlink id assignment.html.

3.10.1 Set the MAVLINK System ID and Component ID

AT+MAVLINK_ID=<system_id>,<component_id>
OK

Parameter	Description	Acceptable Values
system_id	Unique identifier for the	1-255
	MAVLINK system (e.g. the	
	aircraft). All components in	
	the system should have the	
	same system_id.	
component_id	Unique identifier for a	1-255
	component within the	
	MAVLINK system (e.g. the	Default: 156 (MAV_COMP_ID_ADSB as defined here:
	ADSBee). All components in	https://mavlink.io/en/messages/common.html#MAV_COMPONENT)
	the system should have a	
	unique component_id.	

3.10.2 Query the MAVLINK System ID and Component ID

AT+MAVLINK_ID?
System ID: 1

Component ID: 156

3.11 AT+LOG_LEVEL

AT+LOG_LEVEL=<log_level>

Parameter	Description	Acceptable Values
log_level	Log verbosity level for the console.	INFO – Informational logs. Details every packet received by
	Anything being printed with a lower	the ADSBee and whether it passed checksum. Also prints
	verbosity than the specified level will be	all warnings and errors.
	suppressed. A verbosity level of	
	AT+LOG_LEVEL=WARNINGS is	WARNINGS – Warning logs. Prints out every time
	recommended.	something unexpected happens. Warnings include
		recoverable errors and unexpected values encountered
	Terminal prints are color coded on the	within ADS-B packets being decoded. Also prints all errors.
	Serial CLI (but not on the Web CLI). Errors	
	are printed in red, warnings are printed in	ERRORS – Error logs. Prints every time there is a severe
	yellow, and other prints have no color	error, such as packets being lost in communication
	coding.	between the RP2040 and ESP32, a peripheral failing to
		communicate properly, or fatal errors in code.
		SILENT – No logs. Only AT command replies and console
		protocols will be printed. Use this setting to avoid having
		log messages injected into the console text stream if it is

being used to report a protocol to another device

3.12 AT+PROTOCOL_OUT

3.12.1 Set the Reporting Protocol for a Serial Interface

AT+PROTOCOL_OUT=<iface>,<protocol>

Parameter	Description	Values
iface	Serial interface to set the baudrate for.	CONSOLE, COMMS_UART
protocol	Reporting protocol for the specified serial interface	NONE – No data reported.
		RAW – Raw plain text reporting protocol.
		BEAST – Mode S Beast binary reporting protocol.
		CSBEE – CSBEE plain text reporting protocol.
		MAVLINK1 – MAVLINK 1 binary reporting
		protocol.
		MAVLINK2 – MAVLINK 2 binary reporting
		protocol.
		GDL90 – Garmin GDL90 binary reporting
		protocol.

3.12.2 Query the Reporting Protocol for All Serial Interfaces

AT+PROTOCOL_OUT?

PROTOCOL_OUT=CONSOLE,<console_protocol>

PROTOCOL_OUT=COMMS_UART,<comms_uart_protocol>

Document Version: 20250901

Queries the reporting protocol set for each of the serial interfaces. See the table in 3.12.1 for protocol definitions.

3.13 AT+REBOOT

AT+REBOOT

Reboots the ADSBee 1090 immediately.

3.14.1 Enable or Disable the Receiver(s)

AT+RX_ENABLE=<all_enabled>,<1090_enabled>,<subg_enabled>

Parameter	Description	Values
all_enabled	Flag indicating whether to ignore 1090_enabled	1 – All radios enabled.
	and subg_enabled flags and enable / disable all	0 – All radios disabled.
	radios.	
1090_enabled	Flag indicating whether the 1090MHz receiver	1 – 1090MHz receiver is enabled.
	should be enabled or disabled.	0 – 1090MHz receiver is disabled.
	NOTE: Disabling the 1090MHz receiver does not	
	conserve any power, as the RF frontend is still	
	active. This receiver disable flag simply disables an	
	interrupt within the RP2040 that is used to check	
	for incoming transponder messages.	
subg_enabled	Flag indicating whether the Sub-GHz receiver	1 – Sub-GHz receiver is enabled.
	should be enabled or disabled (if equipped).	0 – Sub-GHz receiver is disabled.
	Disabling the Sub-GHz receiver does save a small	
	amount of power, as the Sub-GHz transceiver chip	
	will be powered down.	

3.14.2 Check Whether the Receiver(s) are Currently Enabled

AT+RX_ENABLE?

1090 Receiver: ENABLED SubG Receiver: DISABLED

3

3.15.1 Query Current Settings

```
AT+SETTINGS?
Settings Struct
        Receiver: ENABLED
        Trigger Level: 1300 milliVolts (-62 dBm)
        Bias Tee: DISABLED
        Watchdog Timeout: 10 seconds
        Log Level: WARNINGS
        Reporting Protocols:
                CONSOLE: NONE
                COMMS UART: CSBEE
        Comms UART Baud Rate: 115207 baud
        GNSS UART Baud Rate: 9600 baud
        ESP32: ENABLED
        WiFi AP: ENABLED
                Channel: 3
                SSID: ADSBee1090-0240907000001
                Password: yummyflowers
        WiFi STA: ENABLED
                SSID: Smart Bidet Wifi
                Password: ******
        Feed URIs:
                0 URI:192.168.1.103 Port:30004 ACTIVE Protocol:BEAST
ID:0xbee00038172d18c1
                1 URI: Port:0 INACTIVE Protocol:NONE ID:0xbee00038172d18c1
                2 URI: Port:0 INACTIVE Protocol:NONE ID:0xbee00038172d18c1
                3 URI: Port:0 INACTIVE Protocol:NONE ID:0xbee00038172d18c1
                4 URI:78.46.234.18 Port:30004 ACTIVE Protocol:BEAST ID:0xbee00038172d18c1
                5 URI:feed.whereplane.xyz Port:30004 INACTIVE Protocol:BEAST
ID:0xbee00038172d18c1
```

OK

3.15.2 Dump Settings in AT Format

Sending AT+SETTINGS?DUMP outputs a dump of all nonvolatile settings in AT command format, allowing them to be easily re-entered when restoring the ADSBee settings after a firmware upgrade, or for moving setting between devices.

```
AT+SETTINGS?DUMP
AT+SETTINGS=RESET
AT+BAUD_RATE=CONSOLE, 115200
AT+BAUD_RATE=COMMS_UART,115200
AT+BAUD_RATE=GNSS_UART,115200
AT+BIAS_TEE_ENABLE=0
AT+ESP32_ENABLE=1
AT+FEED=0,,0,0,NONE
AT+FEED=1,,0,0,NONE
AT+FEED=2,,0,0,NONE
AT+FEED=3,,0,0,NONE
AT+FEED=4, feed.airplanes.live, 30004, 1, BEAST
AT+FEED=5, feed.adsb.fi, 30004, 1, BEAST
AT+LOG LEVEL=WARNINGS
AT+PROTOCOL=CONSOLE, NONE
AT+PROTOCOL=COMMS_UART, MAVLINK1
AT+RX_ENABLE=1
AT+TL SET=1300
AT+WATCHDOG=10
AT+WIFI AP=1, ADSBee1090-0240907000001, yummyflowers, 11
AT+WIFI_STA=0,,
OK
```

3.15.3 Load Settings from EEPROM

AT+SETTINGS=LOAD

3.15.4 Save Settings to EEPROM

AT+SETTINGS=SAVE

Note that this command is also used to synchronize settings between the RP2040 and ESP32. When changing parameters in the Serial CLI or Web CLI, run AT+SETTINGS=SAVE or reboot the device to synchronize new settings (e.g. new feed parameters or network settings).

3.15.5 Reset Settings to Factory Default

AT+SETTINGS=RESET

Note that this command resets settings to factory defaults, but will not persist them to the next power on unless AT+SETTINGS=SAVE is run subsequently.

3.16 AT+SUBG_ENABLE

Enable or disable the Sub-GHz receiver, if present. Can be used to drive the Sub-GHz receiver enable line HI or LO, or leave the corresponding GPIO in a high impedance state in order to allow external control (e.g. for using an external debugger).

1.1.1 Set Sub-GHz Receiver Enable Status and Line Drive Type

AT+SUBG_ENABLE=<enabled>

Parameter	Description	Values
enabled	Flag indicating whether the Sub-GHz receiver	0 – Sub-GHz receiver is disabled.
	should be enabled or disabled.	1 – Sub-GHz receiver is enabled.
		EXTERNAL – Sub-GHz receiver enable is pulled
		low by default, but can be overridden by an
		external device.

1.1.2 Query Sub-GHz Receiver Enable Status and Line Drive Type

AT+SUBG_ENABLE?
SUBG_ENABLE=1

3.17 AT+TEST

Used for running internal self-tests. Can only be run once per boot cycle.

AT+TL READ?

TL READ=1258mV (-64 dBm)

Queries the current value of the internal trigger level of the RF frontend's data slicer circuit. Signals peaking above this level will trigger a demodulation. This value should be set substantially above the noise floor in order to avoid false triggers.

Note that the value returned from TL_READ is different from querying TL_SET, since the value returned by TL_READ is read from the RP2040's ADC, while the value returned from querying TL_SET is the setpoint for the PWM output that generates the trigger level signal. They should be roughly similar, but slightly offset.

3.19 AT+TL_OFFSET

3.19.1 Set Trigger Level

AT+TL_OFFSET=<command>

Parameter	Description	Values
command	Trigger level offset (milliVolts above the measured	0-3300
	noise floor), or the activation word to begin a self-	LEARN
	learning process for the trigger level using	
	simulated annealing.	Trigger level defaults to 200.

The AT+TL_OFFSET command sets the value of the internal trigger level of the RF frontend's data slicer circuit. Signals peaking above this level will trigger a demodulation. This value should be set above the noise floor in order to avoid false triggers.

A higher trigger level makes the receiver less sensitive, while a lower trigger level makes the receiver more sensitive (and thus more likely to be triggered by unwanted noise).

A self-learning process can be activated by sending AT+TL_OFFSET=LEARN instead of providing a trigger value in milliVolts. The self-learning process uses simulated annealing, where a random trigger value is chosen, and then random neighbors are traversed to if their trigger levels seem to provide an improved number of valid packets within the learning window. The allowable traversal distance is gradually decreased over time until a final value is settled upon. The self-learning process takes approximately 20 minutes. Note that as of the current firmware revision, hand-tuning the trigger value (or using the provided default value) may outperform the self-learning routine.

3.19.2 Query Trigger Level

AT+TL_OFFSET?
TL_OFFSET=200mV

Queries the trigger level that is set internally. Note that this may differ from the actual value that is read using an ADC, as provided by AT+TL_READ.

Queries the uptime of the ADSBee, in seconds.

AT+UPTIME?
UPTIME=71

3.21 AT+WATCHDOG

The ADSBee features a watchdog timer on the RP2040, which will automatically reset all microcontrollers on the board if code executing on the RP2040 freezes up, or if SPI communication with the ESP32 breaks down. This is intended to provide a means of automatic recovery in case of a hard fault caused by firmware bugs (likely), power glitches (maybe), or cosmic rays (probably not). As the watchdog may not be wanted in some cases, like debugging hardfaults, or during device programming / beakpoint debugging, it can be disabled. Additionally, means are provided for self-testing the watchdog via AT command in order to verify that it is still active.

3.21.1 Configure the Watchdog Timer

AT+WATCHDOG=<timeout_sec>

Parameter	Description	Values
command	Trigger level, in milliVolts, or the activation word to	0-3300
	begin a self-learning process for the trigger level	LEARN
	using simulated annealing.	

3.21.2 Query the Watchdog Timer

AT+WATCHDOG? WATCHDOG=10

Prints the value of the watchdog timer in seconds, or 0 if the watchdog timer is disabled.

3.21.3 Test the Watchdog Timer

AT+WATCHDOG=TEST

Blocking for 11 seconds.

(ADSBee Reboots here)

The AT+WATCHDOG=TEST command blocks the processor for the currently configured watchdog timeout plus one second. This should induce a device reboot, otherwise an error message will be displayed indicating that the watchdog failed to activate.

The ADSBee creates its own WiFi access point that allows other devices to join its network in order to access the Web CLI and receive aircraft data (e.g. GDL90 traffic info over UDP port 4000). The WiFi AP can be enabled/disabled and can have its SSID, password, and WiFi channel customized. Note that WiFi settings don't have any affect unless the ESP32 is enabled, and are not propagated to the ESP32 unless settings are saved with AT+SETTINGS=SAVE.

3.22.1 Configure the WiFi Access Point

AT+WIFI_AP=<enabled>,<ap_ssid>,<ap_pwd>,<ap_channel>

Parameter	Description	Values
enabled	Toggle whether the AP is enabled or disabled.	0 – Disable WiFi access point.
		1 – Enable WiFi access point.
ap_ssid	SSID for the access point. Defaults to a unique SSID	ASCII string up to 32 characters in length.
	with the format "ADSBee1090-0240907000001".	
	Can be set to a value up to 32 characters long.	
ap_pwd	Password for the access point. Defaults to	ASCII string up to 64 characters in length.
	"yummyflowers". Can be set to a value up to 64	
	characters long.	
ap_channel	WiFi channel number for the access point. Can be	1-11
	set to a value from 1-11. A random channel value is	
	chosen by default during initial programming of the	
	device. It is recommended to change the channel	
	value to a frequency with low utilization in the	
	installation location.	

3.22.2 Query the WiFi Access Point Configuration

AT+WIFI_AP?
WIFI_AP=1,ADSBee1090-0240907000001,yummyflowers,3

Reply format matches argument values and ordering from the configuration command.

The ADSBee can join external WiFi networks as a WiFi station in order to allow connections from other devices on the existing network, or to connect to the internet in order to feed remote endpoints with air traffic data.

3.23.1 Configure the WiFi Station

AT+WIFI_STA=<enabled>,<sta_ssid>,<sta_pwd>

Parameter	Description	Values
enabled	Toggle whether the AP is enabled or disabled.	0 – Disable WiFi station.
		1 – Enable WiFi station.
sta_ssid	SSID for the access point to connect to. Can be set	ASCII string up to 32 characters in length.
	to a value up to 32 characters long.	
sta_pwd	Password for the access point to connect to. Can be	ASCII string up to 64 characters in length.
	set to a value up to 64 characters long.	

3.23.2 Query the WiFi Station Configuration

WIFI_STA=1,My Supercool WiFi Network,*******

Queries the configuration used by the ADSBee to join an external WiFi network. Note that the value and ordering of the arguments is identical to the configuration command, except the password is censored.

Reporting Protocols

ADSBee 1090 supports the following reporting protocols on CONSOLE and COMMS_UART.

- CSBee
- GDL90
- MAVLINK 1
- MAVLINK 2
- Mode S Beast
- Raw Packets

The CONSOLE interface reports debug messages and AT command responses in addition to the selected reporting protocol. If the CONSOLE interface is being used as a reporting interface, it is recommended to send AT+LOG_LEVEL=SILENT to silence any debug logs that might corrupt the reported data, and to avoid sending additional AT commands while reading reported data in order to avoid the reported data being interspersed with OK and other AT command responses from the ADSBee 1090.

Comma Separated Bee protocol containing information about tracked aircraft as plain text.

The CSBee protocol is heavily inspired by the Aerobits Aero CSV protocol.

4.1.1 Mode S Aircraft Message

This message contains information about an aircraft being tracked via ADS-B (1090MHz). Aircraft reports are provided once per second, per aircraft, until contact with the aircraft has been lost for 60 seconds.

#A:ICAO,FLAGS,CALL,SQUAWK,ECAT,LAT,LON,BARO_ALT,GNSS_ALT,DIR,SPEED,BARO_VRATE,GNSS_VRATE,NICNAC,ACDIMS,VERSION,SIGS,SIGQ,SFPS,ESFPS,CRC\r\n

Field	Description	Format	Example value
#A	Mode S aircraft message start indicator.		
ICAO	ICAO number of aircraft (3 bytes). Hex Integer 3C65AC		3C65AC
FLAGS	Flags bitfield, see table 4.1.1.1.	Hex Integer	12F356A8
CALL	Callsign of aircraft.	String	N61ZP
SQUAWK	SQUAWK of aircraft.	Octal Integer	7232
ECAT	Emitter category, see table 4.1.1.2.	Integer	14
LAT	Latitude, in degrees.	Float	57.57634
LON	Longitude, in degrees.	Float	17.59554
BARO_ALT	Barometric altitude, in feet.	Integer	5000
GNSS_ALT	Geometric altitude, in feet.	Integer	5000
	Direction of aircraft, in degrees [0,360). Consult bit flags to	Integer	
DIR	determine whether this field is true heading, magnetic heading,	agnetic heading, 35	
	or track.		
SPEED	Horizontal velocity of aircraft, in knots.	Integer	464
BARO_VRATE	Barometric vertical velocity of aircraft, in ft/min. Integer -1344		-1344
GNSS_VRATE	Geometric vertical velocity of the aircraft, in ft/min Integer -1344		-1344
NICNAC	Aircraft data integrity. See table 4.1.1.3 Hex Integer		
ACDIMS	Aircraft physical dimensions and system design assurance. See	Hex Integer	31BE89F2
ACDIIVIS	table 4.1.1.4.	318689F2	
VERSION	ADS-B protocol version used by the aircraft.	Integer	2
SIGS	Signal strength, in dBm.	Integer	-92
SIGQ	Signal quality, in dB.	Integer	2
SFPS	Number of valid 56-bit Squitter Mode S frames received from the	Integer	2
31 F 3	aircraft during the last second.		2
ESFPS	Number of valid 112-bit Extended Squitter Mode S frames	Integer	5
LJIFJ	received from the aircraft during the last second.		<i>y</i>
CRC	CRC16 (described in 4.1.1.5). Hex Integer 2D3E		2D3E

4.1.1.1 FLAGS Bitfield

Note: All bits 25-31 are momentary (cleared and updated every reporting interval).

Bit	Bit Name	Meaning if the bit is set (1)	
0	IS_AIRBORNE	Emitter is airborne.	
1	BARO_ALTITUDE_VALID	Emitter has provided a barometer altitude.	
2	GNSS_ALTITUDE_VALID	Emitter has provided a GNSS altitude.	
3	POSITION_VALID	Emitter has provided a pair of even and odd Compact Position Reporting	
	_	packets that were decoded to a location.	
4	DIRECTION_VALID	Emitter has provided a direction (may be ground track, magnetic compass	
	_	heading, or true compass heading).	
5	HORIZONTAL_SPEED_VALID	Emitter has provided a horizontal velocity.	
6	BARO_VERTICAL_RATE_VALID	Emitter has provided a barometric vertical velocity.	
7	GNSS_VERTICAL_RATE_VALID	Emitter has provided a GNSS vertical velocity.	
8	IS_MILITARY	Emitter has transmitted at least one packet using a military format, such as	
		Military Extended Squitter (DF=19).	
9	IS_CLASS_B2_GROUND_VEHICLE	Emitter is actually a ground vehicle using a Class B2 transponder with a	
		transmission power < 70W.	
10	HAS_1090_ES_IN	Emitter has receive capability for 1090MHz Extended Squitter transmissions.	
11	HAS_UAT_IN	Emitter has receive capability for UAT (978MHz Universal Access	
		Transceiver) transmissions.	
12	TCAS_OPERATIONAL	Emitter has a functional TCAS (Traffic Collision Avoidance System) onboard.	
13	SINGLE_ANTENNA	Emitter is using a single antenna, instead antennas above and below the	
		fuselage. Transmissions may be weak or irregular during maneuvering.	
14	DIRECTION_IS_HEADING	Surface position messages provided by the aircraft indicate a heading and	
		not a track angle.	
15	HEADING_USES_MAGNETIC_NORTH	Heading reported by the aircraft while on the surface uses magnetic north	
		instead of true north.	
16	IDENT	The aircraft has its SPI (Special Position Identification) bits set in Mode A/C	
		or Mode S messages. This indicates that the pilot has depressed the	
		momentary IDENT switch on their transponder, most likely at the request of	
		air traffic control.	
17	ALERT	The aircraft is issuing either a permanent or momentary alert. This could	
		correspond to an operational mode change or something else.	
18	TCAS_RA	The aircraft has an active TCAS resolution advisory (i.e. the aircraft is	
		warning the pilot to take action in order to avoid colliding with another	
		aircraft).	
	22 Reserved		
23	UPDATED_BARO_ALTITUDE	Barometric altitude has been updated within the last reporting interval.	
24	UPDATED_GNSS_ALTITUDE	GNSS altitude has been updated within the last reporting interval.	
25	UPDATED_POSITION	Position (latitude / longitude) has been updated within the last reporting	
2.5	LIBBATER RIPECTION	interval.	
26	UPDATED_DIRECTION	Direction has been updated within the last reporting interval.	
27	UPDATED_HORIZONTAL_SPEED	Horizontal velocity has been updated within the last reporting interval.	
28	UPDATED_BARO_VERTICAL_RATE	Barometric vertical velocity has been updated within the last reporting	
22	LIBBATED CARS ASSTRALL BATE	interval.	
29	UPDATED_GNSS_VERTICAL_RATE	GNSS vertical velocity has been updated within the last reporting interval.	
30-3	31 Reserved		

4.1.1.2 ECAT Field

The ECAT field indicates the Emitter Category (i.e. airframe type) for each ADSB emitter that is being tracked. This field contains information about what kind of aircraft, ground vehicle, obstacle, or other airspace user is emitting ADS-B packets, and can be used to understand the emitter's maneuvering capability and potential for wake vortex impact.

ECAT Value	Emitter Category
-1	Invalid
0	No Category Information
1	Light Aircraft (< 7,000kg)
2	Medium 1 (7,000kg – 34,000kg)
3	Medium 2 (34,000kg – 136,000kg)
4	High Vortex Aircraft
5	Heavy (> 136,000kg)
6	High Performance (> 5 G acceleration and > 400 kts speed)
7	Rotorcraft
8	Reserved
9	Glider / Sailplane
10	Lighter Than Air
11	Parachutist / Skydiver
12	Ultralight / Hang Glider / Paraglider
13	Reserved 1
14	Unmanned Aerial Vehicle
15	Space / Transatmospheric Vehicle
16	Reserved 2
17	Surface Emergency Vehicle
18	Surface Service Vehicle
19	Point Obstacle
20	Cluster Obstacle
21	Line Obstacle

4.1.1.3 NICNAC Bitfield

NICNAC E	Bitfield														
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Source I	Source Integrity Geometr		etric	Na	vigatio	n Accı	iracy	Navigation			Navigation	Nav	Navigation Integrity		
Level	(SIL)	Vert	ical	Ca	ategory	: Posi	tion	Α	ccurac	У	Integrity	(Catego	ry (NIC)
		Accu	racy		(N	4C _p)		Categ	ory: Ve	locity	Category:				
		(GV	/A)						(NAC _v)		Barometer				
											(NIC _{baro})				

NICNAC[0-3]: Navigation Integrity Category (NIC)

The radius of containment (NIC) indicates how much trust should be placed in an aircraft's reported location in the horizonal plane. The NIC reports a radius of containment specified by the avionics system of the emitter. The probability that the aircraft is outside of this radius of containment due to its avionics system receiving a faulty signal from one of its inputs (without displaying an error) is provided by another bitfield called the Source Integrity Level (SIL). Combined, the NIC and SIL indicate how likely it is that an aircraft is not actually contained by a bubble of a specified size, centered at the aircraft's reported location, assuming that the avionics onboard the aircraft are functioning correctly but may be given faulty inputs.

A higher NIC value indicates more trust in an aircraft's reported latitude / longitude position.

NIC Value	0	1	2	3	4	5	6	7	8	9	10	11
Radius of	Unknown	< 20	< 8	< 4	< 2	< 1	< 0.6	< 0.2	< 0.1	< 75	< 25	< 7.5
Containment		NM	NM	NM	NM	NM	NM	NM	NM	m	m	m

NICNAC [4]: Navigation Integrity Category: Barometer (NICbaro)

The barometric altitude integrity (NIC_{baro}) indicates how much trust should be placed in an aircraft's reported altitude. The field is a single bit that indicates whether the aircraft uses an altimeter that has been cross-checked against other sources. Old school encoding altimeters have many parallel wires and output an altitude in a format called a Gillham Code, and have no built-in method of error checking. A single faulty wire can result in erroneous readings, so this bit lets air traffic control know whether to take altitude readings from the aircraft with a grain of salt. A 0 indicates that the transponder is outputting altitude from a Gillham coded source (with no way to cross check the value), while a 1 indicates that the transponder is outputting altitude from a Gillham coded source while using another sensor to cross-check it, or is using a more modern barometer that supports a protocol with built-in error checking.

A higher NIC_{baro} value (i.e. 1 instead of 0) indicates more trust in the aircraft's reported altitude.

NIC _{baro} Value	0	1
Barometric Altitude Integrity	Altitude is from a Gillham-coded	Altitude is from a Gillham-coded input
	input, not cross checked.	that is being cross-checked with
		another source, or from a non
		Gillham-coded input with built-in error
		checking features.

NICNAC [5-7]: Navigation Accuracy Category: Velocity (NAC_v)

The horizontal velocity error (NAC $_{v}$) indicates the expected accuracy of the reported velocity of the aircraft when systems are operating nominally. This varies depending on the accuracy capabilities of the measurement equipment onboard the aircraft, and not how often we expect said equipment to fail.

A higher NAC_v indicates a more accurate velocity measurement system.

NAC _v Value	Horizontal Velocity Error
0b000	Unknown or ≥ 10 m/s
0b110	< 10 m/s
0b010	< 3 m/s
0b011	< 1 m/s
0b100	< 0.3 m/s

NICNAC [8-11]: Navigation Accuracy Category: Position (NAC_p)

The estimated position uncertainty (NAC_p) indicates the expected accuracy of the aircraft's reported location when systems are operating nominally. This varies depending on the capabilities of the aircraft's positioning system and not on how often we expect said equipment to fail.

A higher NAC_p indicates a more accurate positioning system.

NAC _p Value	0	1	2	3	4	5	6	7	8	9	10	11
Estimated	Unknown	< 10	< 4	< 2	< 1	< 0.5	< 0.3	< 0.1	< 0.5	< 30	< 10	< 3 m
Position	or ≥	NM	NM	NM	NM	NM	NM	NM	NM	m	m	
Uncertainty	10NM											

NICNAC[12-13]: Geometric Vertical Accuracy (GVA)

The geometric vertical accuracy indicates the 95% confidence interval (vertical figure of merit) provided by the aircraft's onboard GNSS system (i.e. assuming some distribution of altitudes, the aircraft's GNSS system is confident that 95 out of 100 times, the aircraft falls within some height of the reported geometric altitude.

GVA Value	0	1	2	3
95% Vertical Figure	Unknown or ≥ 150 m	< 150 m	≤ 45 m	< 45 m (Was previously
of Merit (VFOM)				"reserved", the actual value
				of this field may change but
				is guaranteed to be < 45 m).

NICNAC[14-15]: Source Integrity Level (SIL)

The source integrity level indicates the probability that the aircraft exceeds the bounds of its horizontal radius of containment (NIC) due to a silent fault in signals received by the aircraft (no avionics failure).

SIL Value	Probability of Exceeding NIC Radius of Containment Due to Silent Fault
0	Unknown or > 1x10 ⁻³ per flight hour.
1	≤ 1x10 ⁻³ per flight hour.
2	≤ 1x10 ⁻⁵ per flight hour.
3	≤ 1x10 ⁻⁷ per flight hour.
4	Unknown or > 1x10 ⁻³ per sample.
5	≤ 1x10 ⁻³ per sample.
6	≤ 1x10 ⁻⁵ per sample.
7	≤ 1x10 ⁻⁷ per sample.

4.1.1.4 ACDIMS Bitfield

ACDIN	ACDIMS Bitfield														
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	GNSS Offset Forward of Reference Point (GOF)								GN	SS Offse	t Right (GC		ence Po	oint	
_											_				

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	
	Aircraft Length								Aircraft Width							
			(ACL)							(ACW)				Des	sign	
													Assur	rance		
														(SE	DA)	

ACDIMS[0-1]: System Design Assurance (SDA)

The system design assurance indicates how robust the aircraft's position reporting systems are to failures of various severities. For instance, SDA = 1, a low SDA value, corresponds to Software and Hardware Design Assurance Level D, which states that a minor failure could cause the aircraft to transmit misleading position information with a probability of $\leq 1 \times 10^{-3}$ per flight hour. A more robust system with SDA = 3, corresponding to Software and Hardware Design Assurance Level B, is expected to transmit misleading position information with a probability of 1×10^{-7} per flight hour even under a Hazardous failure condition.

Software Design Assurance categories used in this field are classified under RTCA DO-178B, Airborne Electronic Hardware Design Assurance are classified under RTCA DO-254, and failure classification levels are defined in FAA Advisory Circular AC-23.1309-1E.

SDA Value	Supported Failure Condition	Probability of Undetected Fault causing transmission of False or Misleading Information	Software and Hardware Design Assurance Level
0	Unknown / No Safety Effect	> 1x10 ⁻³ per flight hour or unknown.	N/A
1	Minor	≤ 1x10 ⁻³ per flight hour.	D
2	Major	≤ 1x10 ⁻⁵ per flight hour.	С
3	Hazardous	≤ 1x10 ⁻⁷ per flight hour.	В

ACDIMS[2-8] Aircraft Width (ACW)

Approximate value for the width of the aircraft bounding box, in meters. Can be interpreted as a 7-bit unsigned integer.

ACDIMS[9-15] Aircraft Length (ACL)

Approximate value for the length of the aircraft bounding box, in meters. Can be interpreted as a 7-bit unsigned integer.

ACDIMS[16-23] GNSS Offset Right of Reference Point (GOR)

Signed 8-bit integer representing the left/right offset of the GNSS antenna from the aircraft's reference point. A positive value indicates that the GNSS antenna is to the right of the aircraft reference point.

ACDIMS[24-31] GNSS Offset Forward of Reference Point (GOF)

Signed 8-bit integer representing the forward/back offset of the GNSS antenna from the aircraft's reference point. A positive value indicates that the GNSS antenna is forward of the aircraft's reference point. Always 0 for Mode S aircraft.

CSBee messages use a 16-bit Cyclical Redundancy Checksum (CRC-16), which can be calculated using the algorithm in the C++ code snippet below. Note the "swap16" helper function which also needs to be included.

```
uint16_t swap16(uint16_t value) { return (value << 8) | (value >> 8); }

uint16_t CalculateCRC16(const uint8_t *data_p, int32_t length) {
    uint8_t x;
    uint16_t crc = 0xFFFF;
    while (length--) {
        x = crc >> 8 ^ *data_p++;
        x ^= x >> 4;
        crc = (crc << 8) ^ ((uint16_t)(x << 12)) ^ ((uint16_t)(x << 5)) ^ ((uint16_t)x);
    }
    return swap16(crc);
}</pre>
```


UAT Aircraft Message

#U:ICAO,UAT_FLAGS,CALL,SQUAWK,ECAT,LAT,LON,BARO_ALT,GNSS_ALT,DIR,SPEED,BARO_VRATE,GNSS_VR
ATE,UAT_EMERG,NICNAC,ACDIMS,VERSION,SIGS,SIGQ,UATFPS,CRC\r\n

Field	Description	Format	Example value
#U	UAT aircraft message start indicator.		
ICAO	ICAO number of aircraft (3 bytes).	Hex Integer	3C65AC
UAT_FLAGS	Flags bitfield, see table 4.1.2.1.	Hex Integer	12F356A8
CALL	Callsign of aircraft.	String	N61ZP
SQUAWK	SQUAWK of aircraft.	Octal Integer	7232
ECAT	Emitter category, see table 4.1.1.2.	Integer	14
LAT	Latitude, in degrees.	Float	57.57634
LON	Longitude, in degrees.	Float	17.59554
BARO_ALT	Barometric altitude, in feet.	Integer	5000
GNSS_ALT	Geometric altitude, in feet.	Integer	5000
	Direction of aircraft, in degrees [0,360). Consult bit flags to	Integer	
DIR	determine whether this field is true heading, magnetic heading,		35
	or track.		
SPEED	Horizontal velocity of aircraft, in knots.	Integer	464
BARO_VRATE	Barometric vertical velocity of aircraft, in ft/min.	Integer	-1344
GNSS_VRATE	Geometric vertical velocity of the aircraft, in ft/min	Integer	-1344
UAT_EMERG	Aircraft UAT emergency / priority status. See table.	Integer	0
NICNAC	Aircraft data integrity. See table 4.1.1.3	Hex Integer	
ACDIMS	Aircraft physical dimensions and system design assurance. See	Hex Integer	31BE89F2
ACDIVIS	table 4.1.1.4.		3100972
VERSION	UAT protocol version used by the aircraft.	Integer	1
SIGS	Signal strength, in dBm.	Integer	-92
SIGQ	Number of bits corrected using UAT forward error correction. 0	Integer	2
JIGQ	(best), 6 (worst).		
UATFPS	Number of valid UAT frames received from the aircraft in the last	Integer	1
UAITPS	second.		1
CRC	CRC16 (described in 4.1.1.5).	Hex Integer	2D3E

NOTE: See Mode S Aircraft message decoding reference for any bitfields not prefixed with "UAT_".

4.1.2.1 UAT_FLAGS Bitfield

Bit	Bit Name	Meaning if the bit is set (1)
0	IS_AIRBORNE	Emitter is airborne.
1	BARO_ALTITUDE_VALID	Emitter has provided a barometer altitude.
2	GNSS ALTITUDE VALID	Emitter has provided a GNSS altitude.
3	POSITION VALID	Emitter has provided a pair of even and odd Compact Position Reporting
		packets that were decoded to a location.
4	DIRECTION_VALID	Emitter has provided a direction (may be ground track, magnetic compass
	_	heading, or true compass heading).
5	HORIZONTAL_SPEED_VALID	Emitter has provided a horizontal velocity.
6	BARO_VERTICAL_RATE_VALID	Emitter has provided a barometric vertical velocity.
7	GNSS_VERTICAL_RATE_VALID	Emitter has provided a GNSS vertical velocity.
8	HAS_CDTI	Aircraft has Cockpit Display of Traffic Information (CDTI) equipped.
9	TCAS_OPERATIONAL	Aircraft is equipped with an operational TCAS / ACAS system.
10	DIRECTION_IS_HEADING	Surface position messages provided by the aircraft indicate a heading and
		not a track angle.
11	HEADING_USES_MAGNETIC_NORTH	Heading reported by the aircraft while on the surface uses magnetic north
		instead of true north.
12	IDENT	The aircraft has its SPI (Special Position Identification) bits set in Mode A/C
		or Mode S messages. This indicates that the pilot has depressed the
		momentary IDENT switch on their transponder, most likely at the request of
		air traffic control.
-	14 Reserved	
15	TCAS_RA	The aircraft has an active TCAS resolution advisory (i.e. the aircraft is
		warning the pilot to take action in order to avoid colliding with another
		aircraft).
16	RECEIVING_ATC_SERVICES	
	22 Reserved	
23	UPDATED_BARO_ALTITUDE	Barometric altitude has been updated within the last reporting interval.
24	UPDATED_GNSS_ALTITUDE	GNSS altitude has been updated within the last reporting interval.
25	UPDATED_POSITION	Position (latitude / longitude) has been updated within the last reporting interval.
26	UPDATED_DIRECTION	Direction has been updated within the last reporting interval.
27	UPDATED_HORIZONTAL_SPEED	Horizontal velocity has been updated within the last reporting interval.
28	UPDATED_BARO_VERTICAL_RATE	Barometric vertical velocity has been updated within the last reporting
		interval.
29	UPDATED_GNSS_VERTICAL_RATE	GNSS vertical velocity has been updated within the last reporting interval.
30-3	31 Reserved	

4.1.2.2 UAT_EMERG Bitfield

Contains the emergency / priority status reported by a UAT emitter.

UAT_EMERG Value	Meaning			
0	No emergency.			
1	General emergency.			
2	Lifeguard / medical emergency.			
3	Minimum fuel.			
4	No communications.			
5	Unlawful interference.			
6	Downed aircraft.			
7	Reserved.			

4.1.3 Statistics Message

This message contains some useful statistics about ADSBee's operational status. Format of that frame is shown below:

#S:VERSION,DPS,RAW_SFPS,SFPS,RAW_ESFPS,ESFPS,RAW_UATFPS,UATFPS,TSCAL,UPTIME,CRC\r\n

Field	Description	Format	Example Value
#S	Statistics message start indicator.		
VERSION	Version of the CSBee protocol being used.	Integer	2
SDPS	Number of attempted Mode S demodulations in the last second.	Integer	106
RAW_SFPS	Number of squitter (56-bit Mode S) frames received in the last second.	Integer	150
SFPS	Number of valid squitter (56-bit Mode S) frames received in the last second.	Integer	20
RAW_ESFPS	Number of extended squitter (112-bit Mode S) frames received in the last second.	Integer	15
ESFPS	Number of valid Mode S frames received in the last second.	Integer	3
RAW_UATFPS	Number of UAT frames received in the last second.	Integer	5
UATFPS	Number of valid UAT frames received in the last second.	Integer	4
NUM_AIRCRAFT	Number of aircraft tracked in the last second.	Integer	20
TSCAL	Calibration value for TS field in raw frames	Integer	13999415
UPTIME	Receiver uptime, in seconds.	Integer	13456
CRC	CRC16 (described in 4.1.3.1).	Hex Integer	2D3E

4.1.3.1 CRC Field

See 4.1.1.5.

ADSBee complies with the GDL90 public data interface specification <u>560-1058-00 Rev A</u>.

Tracked aircraft information is sent in MAVLINK ADSB_VEHICLE messages, in a data burst once per second. The data burst consists of 1x MAVLINK Heartbeat message, Nx ADSB_VEHICLE messages, where N is the number of tracked aircraft, and 1x special delimiter message (MAVLINK_REQUEST_DATA_STREAM for MAVLINK1 mode, MAVLINK_MESSAGE_INTERVAL for MAVLINK2 mode) which indicates the end of the list of tracked aircraft. Note that this is a binary protocol which is not human readable.

WARNING: Windows has a bug, which causes some machines to recognize a serial port reporting MAVLINK packets as a mouse, which can result in phantom mouse movements and clicks (ask me how I know). Please use caution while running MAVLINK on a serial port while the computer is unattended.

4.3.1 MAVLINK_HEARTBEAT (Message ID 0) Packet Definition

Field Name	Туре	Units	Values	Description	
custom_mode	uint32_t		0	Unused.	
type	uint8_t		MAV_TYPE_ADSB	Always MAV_TYPE_ADSB (27).	
autopilot	uint8_t		MAV_AUTOPILOT_INVALID	Always MAV_AUTOPILOT_INVALID (8).	
base_mode	uint8_t		0	Unused.	
system_status	uint8_t		MAV_STATE_ACTIVE	Always MAV_STATE_ACTIVE (4).	
mavlink_version	uint8_t		MAVLINK_VERSION	1 for MAVLINK1 mode, 2 for MAVLINK2 mode.	

4.3.2 MAVLINK ADSB_VEHICLE (Message ID 246) Packet Definition

From: https://mavlink.io/en/messages/common.html#ADSB VEHICLE

Field Name	Туре	Units	Values	Description
ICAO_address	uint32_t			ICAO address
lat	int32_t	degE7		Latitude
lon	int32_t	degE7		Longitude
altitude_type	uint8_t		ADSB_ALTITUDE_TYPE	ADSB altitude type.
altitude	int32_t	mm		Altitude(ASL)
heading	uint16_t	cdeg		Course over ground
hor_velocity	uint16_t	cm/s		The horizontal velocity
ver_velocity	int16_t	cm/s		The vertical velocity. Positive is up
callsign	char[9]			The callsign, 8+null
emitter_type	uint8_t		ADSB_EMITTER_TYPE	ADSB emitter type.
tslc	uint8_t	S		Time since last communication in seconds
flags	uint16_t		ADSB_FLAGS	Bitmap to indicate various statuses including valid data fields
squawk	uint16_t			Squawk code

4.3.3 MAVLINK_REQUEST_DATA_STREAM (Message ID 66) Packet Definition

This message serves as the delimiter which indicates the end of the aircraft list in MAVLINK1 mode.

Field Name	Туре	Units	Description
req_message_rate	uint16_t		Always 0 (unused).
target_system	uint8_t		Always 0 (unused).
target_component	uint8_t		Always 0 (unused).
req_stream_id	uint8_t		Always 0 (unused).
start_stop	uint8_t		Always 0 (unused).

4.3.4 MAVLINK MESSAGE_INTERVAL (Message ID 244) Packet Definition

This message serves as the delimiter which indicates the end of the aircraft list in MAVLINK2 mode.

From: https://mavlink.io/en/messages/common.html#MESSAGE_INTERVAL

Field Name	Туре	Units	Description
			The ID of the requested MAVLink message. v1.0 is limited to 254 messages.
message_id	uint16_t		NOTE: For ADSBee 1090, message_id is always 246, corresponding to the ADSB_VEHICLE message.
			The interval between two messages. A value of -1 indicates this stream is disabled, 0 indicates it is not available, > 0 indicates the interval at which it is sent.
interval_us	int32_t	us	NOTE: For ADSBee 1090, message_id is always 1000 us.

Mode S Beast

Mode S Beast is a popular feed protocol used by both open-source and commercial data exchanges to send Mode S data, often over TCP sockets or serial connections.

Mode S Beast sends packets as raw binary, with 0x1a used as an "escape" character indicating the start of a Beast frame. Any non start-of-frame instance of 0x1a is escaped with an additional 0x1a beforehand. Thus, 0x1a can be interpreted as the start of a Beast frame, and 0x1a1a can be interpreted as a 0x1a value within a Beast frame.

4.4.1 Beast: Mode S Frames

Field	Frame Start	Frame Type	Timestamp	RSSI	Payload
Length [Bytes]	1	1	6-12	1-2	Mode S Short: 7-14 Mode S Long: 14-28
Example	0x1a	0x32	0x123456781a1aff	0x56	<data></data>
Definition	Ox1a Frame start is always an escape char.	0x32: Mode S Short 0x33: Mode S Long	6-byte 12MHz MLAT timestamp, MSB first. May have up to 6	RSSI byte is "Beast Power Level", which is the square root of the un-logged dBFS value.	Packet contents. May theoretically have up to <packet_length> escapes, but this would</packet_length>
		No escapes.	escapes.	May have up to 1 escape.	not correspond to a valid packet and will not be seen in practice.

4.4.2 Beast: UAT Frames

Field	Frame Start	Frame Type	UAT Message Type	Timestamp	RSSI	Payload
Length [Bytes]	1	1	1	6-12	1-2	UAT Short ADSB:
Example	0x1a	0xec	0x73	0x123456781a1aff	0x56	<data></data>
Definition	Ox1a Frame start is always an escape char.	Oxec Indicates frame type UAT (both ADSB and uplink). No escapes.	Ox73 ('s'): UAT short ADSB (30 byte payload, not including escapes). Ox5c ('l'): UAT long ADSB (48 byte payload, not including escapes) Ox75 ('u'): UAT Uplink (552 byte payload, not including escapes) No escapes.	6-byte 12MHz MLAT timestamp, MSB first. May have up to 6 escapes.	RSSI byte is "Beast Power Level", which is the square root of the un- logged dBFS value. May have up to 1 escape.	Packet contents, including both payload and FEC parity. Uplink packets remain interleaved (transmitted byte order retained). May theoretically have up to <packet_length> escapes, but this would not correspond to a valid packet and will not be seen in practice.</packet_length>

Raw Packets

4.5.1 Raw Mode S Frames

Raw Mode S packets are reported in the format below. Only packets that have passed checksum validation and match a supported Mode S downlink format are reported.

#MDS*RAW_FRAME;(SOURCE,SIGS,SIGQ,TS)\r\n

Field	Description	Format	Example value
#MDS	Indicates the start of a raw Mode S frame.		
RAW_FRAME	The packet contents as raw hexadecimal. Varies in length depending on packet	Hexadecimal String	8D48C22D60AB0452BFAD19A695E0
_	length.	J	
SOURCE	An unsigned integer	int16_t	2
SIGS	Signal strength of the packet in dBm, printed as a decimal value.	int16_t	-60
SIGQ	Signal quality of the packet in dB, printed as a decimal value.	int16_t	2
TS	64-bit 48MHz MLAT counter ticks, printed as a hexadecimal string.	uint64_t	0000000FB671342

4.5.2 Raw UAT ADSB Frames

Raw UAT frames are reported in the format below. Only packets that have passed checksum validation are reported. Note that UAT uplink frames can be quite long (552 Bytes / 1104 chars), so serial buffers need to be able to handle this!

#UAT*-RAW_FRAME;(SIGS,SIGQ,TS)\r\n

Field	Description	Format	Example value	
#UAT	Indicates the start of a raw UAT frame.			
	The packet contents as raw hexadecimal.	Hexadecimal		
RAW_FRAME	Varies in length depending on packet	String		
	length.			
SIGS	Signal strength of the packet in dBm.	int16_t	-60	
SIGQ	Signal quality of the packet in dB.	int16_t	2	
TS	64-bit MLAT counter value in hexadecimal	uint64 t	0000000FB671342	
13	format.	_	1 000000001 5071342	

4.5.3 Raw UAT Uplink Frames

Raw UAT uplink frames are reported in the format below. Only packets that have passed checksum validation are reported. Note that UAT uplink frames can be quite long (552 Bytes / 1104 chars), so serial buffers need to be able to handle this!

Document Version: 20250901

#UAT*+RAW_FRAME;(SIGS,SIGQ,TS)\r\n

Field	Description	Format	Example value
#UAT	Indicates the start of a raw UAT frame.		
	The packet contents as raw hexadecimal.	Hexadecimal	
RAW_FRAME	Varies in length depending on packet	String	
	length.		
SIGS	Signal strength of the packet in dBm.	int16_t	-60
SIGQ	Signal quality of the packet in dB.	int16_t	2
TS	64-bit MLAT counter value in hexadecimal	uint64 t	0000000FB671342
13	format.	_	00000000FB671342