Privacy Preserving Graph Publication

Social Network Benefits

Protection Methods

- ☐ Two methods
 - Publishing sanitized graph
 - Publishing noised aggregate information
 - Differential privacy on graph

Publishing sanitized graph

- 1 Privacy protection and the attack models
- 2 Preventing passive attacks
- 3 Preventing active attacks
- 4 Other works

Publishing sanitized graph

- 1 Privacy protection and the attack models
- 2 Preventing passive attacks
- 3 Preventing active attacks
- 4 Other works

Attack the Anonymized Data

- An attacker
 - Background knowledge
 - The information he knows about a victim
 - Sensitive information
 - □ The information that user cares

Race	BirthDate	Gender	ZIΡ	Problem
black	9/20/1965	male	02141	short of breath
black	2/14/1965	male	02141	chest pain
black	10/23/1965	female	02138	painful eye
black	8/24/1965	female	02138	wheezing
black	11/7/1964	female	02138	obesity
black	12/1/1964	female	02138	chest pain
white	10/23/1964	male	02138	short of breath
white	3/15/1965	female	02139	hypertension
white	8/13/1964	male	02139	obesity
white	5/5/1964	male	02139	fever
white	2/13/1967			vomiting
white	3/21/1967	male	02138	back pain
		DT		

Attack the Anonymized Data

- An attacker
 - Background knowledge
 - □ The information he knows about a victim
 - Sensitive information
 - □ The information that user cares

	Race	Birth	Gender	ZIP	Problem
t1	Black	1965	m	0214*	short breath
t2	Black	1965	m	0214*	chest pain
t3	Black	1965	f	0213*	hypertension
t4	Black	1965	f	0213*	hypertension
t5	Black	1964	f	0213*	obesity
tб	Black	1964	f	0213*	chest pain
t7	White	1964	m	0213*	chest pain
t8	White	1964	m	0213*	obesity
t9	White	1964	m	0213*	short breath
10	White	1967	m	0213*	chest pain
11	White	1967	m	0213*	chest pain

Information in Social Networks

Information in Social Networks

Protection objectives

Graph Model	Protection		Works
Unweighted	Node Protection (Anti Node re-identification)	$\Pr{ob(u \Rightarrow n)} \le \frac{1}{k}$	[8][12][13][14] [15][21][22][23]
Graph	Link Protection	$\Pr{ob(con(u_1, u_2))} \le \frac{1}{k}$	[13][22]
		$\Pr{ob(u \in e)} \le \frac{1}{k}$	[13]
Weighted Graph	Edge weights	Hide the real edge weights	[17][24]
Weighted Graph		Hide the relative order between weights	[24]

Privacy Protection Method

k=2

An attack can only correctly re-identify a node with probability at most 50%

Original Graph

Clustering

Super node's size >=2

Editing

An attacker's knowledge

Passive attack and Active attack

Passive attack and Active attack

Anti Active attack

Current works

Prevent Attack Type	Method	Papers
Passive Attack	Clustering	[8][13] [15][16]
	Node/Edge Editing	[10][11][12][14][16][18][21] [22][23]
	Protecting edge weights	[17][24]
Active Attack	Fake Nodes Recognition	[11][25]
	Parameter Analysis	[9]

Publishing sanitized graph

- 1 Privacy protection and the attack models
- 2 Preventing passive attacks
 - 1 Edge editing based models
- 3 Preventing active attacks
- 4 Other works

Edge editing based models

Name	Structure knowledge	Protection objective
K-degree anonymous	Node degrees	Avoid Node re-identification
K-neighborhood anonymous	Neighborhood graph	Avoid Node re-identification
K-automorphism anonymous	Any subgraph	Avoid Node re-identification
K-symmetric anonymous	Any subgraph	Avoid Node re-identification
K-isomorphism	Any subgraph	Avoid Node re-identification Avoid Edge discovery
Random change edge model	Neighborhood graph	Avoid Node re-identification Avoid Edge discovery

K-degree anonymous^[12]

□ K-degree anonymous

For every node v, there exist at least k-1 other nodes in the graph with the same degree as

☐ No single node class is identified at H₀ vertex

refinement queries

7	5
6	3

Node	Degree
1	5
2	5
3	3
4	3
5	2
6	2
7	2

Achieve k-degree anonymous by adding/deleting edges

K-degree algorithm skeleton

K-degree algorithm skeleton

K-neighborhood^[14]

- □ K-neighborhood anonymous
 - For every node v, there exist at least k-1 other nodes in the graph with the same m-hop neighborhood subgraph
 - No single node class is identified by sub-graph queries

K-neighborhood algorithm skeleton

- Neighborhood representation problem
 - Minimum DFS code is unique
- Two nodes' neighborhood anonymous
 Unanonymoized, smallest degree

problem

Label Category Tree

u's neighborhood graph

v's neighborhood graph

K-automorphism^[21]

- K-automorphism [21] (k-symmetric [23]) anonymous
 - For every node v, there exist at least k-1 other nodes in the graph that are same on the
 - The graph should be k-symmetry
 - No single node class is identified by any kind of structure queries

When k-neighborhood consider the neighborhood of nodes in I step, I = the longest path in graph, k-neighborhood = k-automorphism

K-automorphism Algorithm Skeleton

K-Automorphism Network

The Motivation

If the released graph is a k-automorphism network, It can resist any attack.

Problem Definition:

Given an original network G, find a network G^* , where G is a sub-graph of G^* , and G^* is a k-automorphic network. G^* is published as G's anonymized version. Furthermore, we require that $Cost(G,G^*)$ is minimized.

KM Algorithm-(Overview)

(a) Naïve anonymization Network *G*'

Framework

Block Alignment

Block Alignment

An Optimal Block Alignment

1	9
4	7
5	6
2	8
3	10

Alignment Vertex Table (AVT)

We prove the optimal block alignment is NP-hard

Degree-Based Alignment

The largest same degree

Vertex Alignment Table

4	8
1	9
3	10
5	7
2	6

After Block Alignment

Edge Copy

(a) Naïve anonymization Network *G*'

Edge Copy

According to Automorphic Function, duplicate all crossing edges.

Alignment Vertex Table (AVT)

1	9
4	7
5	6
2	8
3	10

Automorphic Function:

Crossing Edge

Cost

Edges introduced during alignment

The total cost is the sum of all group costs.

Graph Partition

Objection of this step:

Partition graph G' into n blocks, and cluster these blocks into m groups U_i . Each group U_i has no less than k blocks.

Graph Partition

- 1) Set Min_sup= k (i.e. k=2)
- 2) Find the matches of the largest frequent subgraphs (non-overlapping) as the initial group U of blocks.
- 3) Expand and alignment all blocks in the group U, until Cost(U) is increased.
- 4) Extract all blocks in group U from the original graph G.

Iterate Steps 1-3 until no vertices in Graph left.

2017/12/2

Dynamic Releases

2017/12/2

Vertex ID Generation

Released Networks:

 G_1^*

 G_2^*

$$\begin{array}{cc} T_1 \\ AVT & A_1 \end{array}$$

1	9
2	8
4	7
5	6
3	10

1	9
4	8
2	7
5	6
3	10

$$\operatorname{Re} s(7, G_1^*) = \{4, 7\}$$

$$\operatorname{Re} s(7, G_2^*) = \{2, 7\}$$

$$\operatorname{Re} s(7, G_1^*) \cap \operatorname{Re} s(7, G_2^*) = 7$$

Vertex ID Generation

AVT A

T₂

1	9
4	8
2	7
5	6
3	10

Generalized vertex

ID table

OriID	GenID
1	{1}
2	{2,4}
3	{3}
4	{2,4}
5	{5}
6	{6}
7	{7,8}
8	{7,8}

Link Protection

- Models
 - K-degree
 - K-neighborhood
 - K-automorphism (K-symmetric)
- Protection objective
 - Preventing node re-identification
- □ Link Protection?

Link Leakage in k-automorphism

K-isomorphism [22]

□ K-isomorphism anonymous

The graph contains at least k disjoint

isomorphism subgraphs A 2-isomorphism graph 10 Candidates for Bob 12/2/17 Candidates for Alice

Publishing sanitized graph

- 1 Privacy protection and the attack models
- 2 Preventing passive attacks
 - 1 Edge editing based models
 - 2 Clustering based models
- 3 Preventing active attacks
- 4 Other works

Resist neighborhood attack through graph clustering^[8]

This paper used Simulated Annealing to minimize the number of sampling graphs:

$$|W(G)| = \prod_{X \in V} \begin{pmatrix} \frac{1}{2} |X|(|X|-1) \\ d(X,X) \end{pmatrix} \prod_{X,Y \in V} \begin{pmatrix} |X||Y| \\ d(X,Y) \end{pmatrix}$$

d(X,Y): No. of edges between X and Y

Step1: Partition the graph, each partition contains at least k nodes

Step2: For each partition, generate a super node

Step3: Draw the edges between partitions, the weight is the edge number

Step3: Draw the sel-edges for each partition, the weight is the edge number with it

K-anonymous masked^[15]

A = Generalization Information Lost

B = Structural Information Lost

Cost = a*A + b*B

The algorithm is partition the graph into clusters bigger than k by minimizing this cost

Clustering model for link protection [13]

- □ Graph Model
 - Undirected bipartite graph (V, I, E)
 - V is a set of users
 - ☐ Each user has a group of attributes
 - I is a set of interactions
 - □ Each interaction can contain more than two users
 - Edge(v, i) means user v is involved in interaction I
- □ Protect Objectives
 - Node protection: $\Pr{ob(u \Rightarrow n) \leq \frac{1}{k}}$
 - Link protection 1: $Prob(e(u_1, u_2)) \le \frac{1}{k}$
 - \square user x and y are in any interaction together
 - Link protection 2: $Prob(u \in e) \le \frac{1}{h}$
 - \square user x is involved in interaction i

Graph Model Demo

Clustering graphs

Attacks using node attributes

Attacks using node attributes + structure information

Safety Clustering Condition

Safety Clustering Condition: $\forall \{u,i\}, \{v,i\} \in E : friends(u,v)$

 $\forall u \in S, v \in S \Rightarrow (\neg friends(u, v)) \land (\neg \exists w (friends(u, w) \land friends(v, w)))$

Case 1: u and v are friend

Case 2: u and v are friend

Safety Clustering Condition Cont.

$$\Pr{ob(u \ in \ i)} = \frac{2}{2} > \frac{1}{2}$$

Safety Clustering Condition Cont.

Cluster together

$$Prob(u \ connect \ with \ w) = \frac{3}{4} > \frac{1}{2}$$

Safety Clustering Condition cont.

Case 1: u and v are friend

$$|C| \ge k \Rightarrow \forall u \in C, \operatorname{Pr}ob(u \ in \ i) \le \frac{1}{k}$$

Case 2: u and v are friend

Publishing sanitized graph

- 1 Privacy protection and the attack models
- 2 Preventing passive attacks
 - 1 Edge editing based models
 - 2 Clustering based models
 - 3 Protecting edge weights
- 3 Preventing active attacks
- 4 Other works

Noised edge weights [17]

- ☐ Graph model: weighted graph
- Protection objective
 - Hide the real value of edge weights
- □ An attacker's background knowledge
 - The published graph
 - ☐ Using the edge weights he saw to guess the original weights
- Utility
 - Length of shortest paths
- Method
 - Add gaussian randomization multiplication noise to edge weights
 - Has high probability to preserve the length of shortest paths

ICDE 10: Anonymous Weighted Graph [24]

- ☐ Graph model: weighted graph
- Protection objectives
 - ☐ Hide the weights or the orders of the weights
- An attacker's background knowledge
 - The published graph
- Utility
 - Certain graph metrics (Can be modeled as the linear inequations between edges weights)
 - □ Single source shortest path tree
 - □ Some shortest paths

Motivation Example

Motivation Example cont.

Solution Skeleton

Motivation Example cont.

The dilemma of a publisher

Social Network Websites Support ..

Choose Your Privacy Settings ▶ Customize settings

Method: Node protection

Grouping + Node attributes permutation

Group ID	Node attributes
3	[1] Asian, 33, Phd [2] American, 26, master [3] African, 27, master
7	[1] European, 29, Phd[2] American, 40, bachelor[3] Australian, 35, bachelor
M	

Method: Node protection

Grouping + Node attributes permutation

Edge protection (Two safety conditions)

[1] Make sure No edge within a group

[2] Control the number of edges between groups

 $\frac{d}{\mid X \mid\mid Y \mid} \le \frac{1}{k}$

Each user has 2/k probability to have this edge

Method: Node protection

Grouping + Node attributes permutation

Edge protection (Two safety conditions)

[1] Make sure No edge within a group

[2] Control the number of edges between groups $\frac{d}{|X||Y|} \le \frac{1}{k}$ 0: friend
1: family $\{p_1, p_2, p_3\}$ $\{p_4, p_5, p_6\}$

 $\Pr bb(u_x, v_y) = \frac{d}{|X||Y|} \le \frac{1}{k}$

Objective: For any group that contains one node need this level's protection, make all the nodes in it have the same degree

Method: Add noise edges/nodes under the two safety conditions

Objective: For any group that contains one node need this level's protection, make all the nodes in it have the same degree

Method: Add noise edges/nodes under the two safety conditions

Objective: For any group that contains one node need this level's protection, make all the nodes in it have the same degree

Method: Add noise edges/nodes under the two safety conditions

Objective: For any group that contains one node need this level's protection, make all the nodes in it have the same degree label sequence

Method: Generalize the edge labels

Objective: For any group that contains one node need this level's protection, make all the nodes in it have the same degree label sequence

Method: Generalize the edge labels

Publishing sanitized graph

- 1 Privacy protection and the attack models
- 2 Preventing passive attacks
- 3 Preventing active attacks
- 4 Other works

Anti Active attack

RLA on email networks [11]

- □ Random link attack (RLA)
 - A group of noise nodes
 - □ Form communities themselves
 - Preventing to be filtered as outlier nodes
 - Randomly link to a large number of victims

Observations

[1] Victims are randomly selected

Most of their friends do not have connection

Most of its friends know each other

The noise nodes form communities

Cluster Coefficient is small Triangle ratio is very low

Cluster Coefficient is large Triangle ratio is high

Two step filtering

Two step filtering

Find suspects by spectral characteristics [25]

Publishing sanitized graph

- 1 Privacy protection and the attack models
- 2 Preventing passive attacks
- 3 Preventing active attacks
- 4 Other works

Other Works^{[10][20]}

- How to embed a re-identifiable subgraph with minimum nodes
- How to safely compose a large id anonymized graph through the sub-graphs gathered from agencies

un-trustable

Users

Outline

- Information Sharing in On-line Social networks
- Understanding Your Privacy Risk
- Managing Your Privacy Control

Outline

- Information Sharing in On-line Social networks
- □ Understanding Your Privacy Risk
 - Privacy risk due to what you shared explicitly
- Managing Your Privacy Control

Privacy risk due to what you shared explicitly

- □ Basic Idea
 - Privacy risk is measured by Privacy Score^[1]
 - Privacy Score takes into account what information you've shared and who can view that information
- □ Basic Premises of Privacy Score
 - Sensitivity
 - The more sensitive the information revealed by a user, the higher his privacy risk
 - Visibility

12/2/17

The wider the information about a user spreads, the higher his privacy risk

The framework

Outline

- Information Sharing in On-line Social networks
- □ Understanding Your Privacy Risk
 - Privacy risk due to what you shared explicitly
 - Privacy risk due to what you shared implicitly
- Managing Your Privacy Control

What is node classification?

What is node classification?

Privacy Risk due to What You Shared Implicitly

- Privacy information can be inferred from
 - Your public profile, friendships, group memberships, etc.
- Private information can be inferred using
 - Majority voting^{[1][2]}
 - Community detection^[3]
 - Classification^{[1][4]}

Classification Methods

- Naive Method
 - Based on network distribution
- Local Classification Methods
 - Based on friendship links
 - □ AGG, BLOCK, LINK
 - Based on social groups
 - ☐ CLIQUE, GROUP, GROUP*
 - Based on both links and groups
 - LINK-GROUP
 - Iterative Classification Method (CC)
- Random Walk Based Methods

Outline

- Information Sharing in On-line Social networks
- □ Understanding Your Privacy Risk
 - Privacy risk due to what you shared explicitly
 - Privacy risk due to what you shared implicitly
 - Tools to visualize your privacy policies
- Managing Your Privacy Control

Outline

- Information Sharing in On-line Social networks
- □ Understanding Your Privacy Risk
 - Privacy risk due to what you shared explicitly
 - Privacy risk due to what you shared implicitly
 - Tools to visualize your privacy policies
- □ Managing Your Privacy Control

Privacy Management of Individuals

- ☐ Social Navigation^{[1][7]}
- □ Preventing Inference Attacks^[4]

□ Learning Privacy Preferences with Limited User Inputs^{[8][9]}

Social Navigation

Social navigation helps users make better privacy decisions using community knowledge and expertise.

Preventing Inference Attacks

Remove/hide risky links, profiles or groups that contributed most to the inference attacks.

Pr(political views = 'conservative' | group = 'texas conservatives', edge_a, edge_a, edge_a)

Learning Privacy Preferences

- Privacy Wizards for Social Networking Sites
 - Best student paper in WWW 10

Privacy preference setting in Facebook

Problem and Challenges

Solution: a privacy wizard based on an implicit set of

Challenges

rules

- Low Effort, High Accuracy
- Graceful Degradation
- Visible Data

Basic observation

Figure 1: User K's neighborhood graph, and her privacy preferences toward Date of Birth. (Shaded nodes indicate allow, and white nodes indicate deny.) Notice that K's privacy preferences are highly correlated with the *community* structure of the graph.

Structure and Enhancement

Figure 4: Visualization of Decision Tree Model

Summary

- You have certain control of the information you are sharing
- You often cannot estimate the long term risk vs. shot term gain
- Algorithms to measure potential privacy risks due to information shared either explicitly or implicitly
- Models to alleviate your burden on privacy management