Circuits and Electronics Laboratory

Dept. of Computer Science and Engineering

Student ID:	Lab Section:	
Name:	Lab Group:	

Experiment No. 1

Introduction to Series and Parallel Circuit Connections

Objective

This experiment aims to acquaint students with series and parallel circuit connections and to properly identify them on a breadboard or from a schematic diagram.

Theory

An electrical circuit is a continuous path through which electrical current flows. Amongst various circuit combinations, two prominent ones are called "Series" and "Parallel". For a connection to be called "Series", it must fulfill the following criteria:

- > All the components must be connected *one after the other*.
- The *same current* must flow through all the components.

For instance, we have N resistors in the following circuit: R_1 , R_2 , R_3 , ..., R_N connected one after another, and the same current I is flowing through them. All of these series resistors can be combined into just one equivalent resistance,

Figure: A series connection

Similarly, in a "Parallel" connection,

- ➤ All the components must be connected between the *same two nodes*
- The same potential (voltage) drop should exist across all the components.

For example, in the following figure, we have N resistors with resistances: R_1 , R_2 , R_3 , ..., R_N connected at the same two nodes a and b. And therefore, the voltage drop across all the resistors is, $\Delta V = V_a - V_b$. Hence, we conclude that the resistors are connected in parallel. The equivalent resistance of these resistors is R_{eq} where,

Figure: A parallel connection

In this experiment, we will learn how to connect circuits on breadboards and how to identify series and parallel connections,

Apparatus

- > Multimeter
- ➤ Resistors
- > DC power supply
- > Breadboard
- > Jumper wires

Procedures

- Measure the resistances of the provided resistors and fill up the data table.
- ➤ Construct the following circuits on a breadboard. Try to use as less number of jumper wires as possible.

Circuit 1

Circuit 2

- ➤ Measure the equivalent resistance using a multimeter. To do this, disconnect the power supply (if any) and connect the multimeter across the open terminals.
- \triangleright Apply 6 V potential drop across the terminals a and b. Use the DC power supply to connect the positive terminal to node a and the negative terminal to terminal b.
- ➤ Measure the voltage and current across each resistor. Use multimeter to measure the voltage and use Ohm's law to calculate the current through each resistor. Fill up the data tables.

	Data Tables		
Signature of Lab Faculty:		Date:	

^{**} For all the data tables, take data up to three decimal places, round to two, then enter into the table.

Table 0: Resistance Data

For all your future calculations, please use the observed values only (even for theoretical calculations).

Notation	Expected Resistance	Observed Resistance (kΩ)
R_{1}	1 kΩ	
R_2	3.3 kΩ	
R_3	4.7 kΩ	
R_4	18 kΩ	

Table 1: Data from Circuit 1

In the following table, V_1 is the voltage drop across the resistor R_1 and I_1 is the current through it. A similar syntax applies to remaining resistors. For theoretical calculations, please note that, in a series connection, the supplied voltage will be divided proportionally to the resistances. The voltage supplied to the complete circuit is denoted by V_s and the current being supplied to the whole network is denoted as I_s . Also, calculate the percentage of error between experimental and theoretical values of R_{eq} .

					_			_	eq			
Obser- vation	$R_{eq} \ (\mathrm{k}\Omega)$	V s (V) (from dc power supply)	V s (V) (using multim eter)	$I_{s} = \frac{V_{s}}{R_{eq}}$ (mA)	V ₁ (V)	$I_1 = \frac{V_1}{R_1}$ (mA)	V ₂ (V)	$I_2 = \frac{V_2}{R_2}$ (mA)	V ₃ (V)	$I_3 = \frac{V_3}{R_3}$ (mA)	V ₄ (V)	$I_4 = \frac{V_4}{R_4}$ (mA)
Experi- mental												
Theo- retical												

Percentage of error =
$$\left| \frac{Experimental - Theoretical}{Theoretical} \right| \times 100\%$$

Here, Percentage of error in R_{eq} calculation =	%
---	---

Table 2: Data from Circuit 2

In a parallel connection, all the voltage drops are the same across the components. Hence, we only need the supply voltage V_s . However, the current across each component is inversely proportional to the resistance values.

Observation	$R_{eq} \ (\mathrm{k}\Omega)$	V s (V) (from dc power supply)	V s (V) (using multimeter)	$I_s = \frac{V_s}{R_{eq}}$ (mA)	$I_1 = \frac{V_s}{R_1}$ (mA)	$I_2 = \frac{V_s}{R_2}$ (mA)	$I_3 = \frac{V_s}{R_3}$ (mA)	$I_4 = \frac{V_s}{R_4}$ (mA)
Experimental								
Theoretical								

Here, Percentage of error in R_{eq} calculation =	%

Table 3: Data from Circuit 3

Collect the following data.

Observation	R_{ab} (k Ω)	V s (V) (from dc power supply)	V s (V) (using multimeter)	$I_{s} = \frac{V_{s}}{R_{eq}}$ (mA)	V ₁ (V)	$I_1 = \frac{V_1}{R_1}$ (mA)	V ₂ (V)	$I_2 = \frac{V_2}{R_2}$ (mA)	<i>V</i> ₃ (V)	$I_3 = \frac{V_3}{R_3}$ (mA)	V ₄ (V)	$I_4 = \frac{V_4}{R_4}$ (mA)
Experi- mental												
Theo- retical												

Here, Percentage of error in R_{eq} calculation =	%
•	

ow are the resistors in circuit 3 connected? Justify your answer.						

Questions

1. Refer to the following illustration of the **Linear DC Power Supply** you used in the laboratory to answer the following questions—

- (a) Which of the operational modes of the power supply did you use for this experiment?
 - ☐ Constant Voltage (C.V.)
- ☐ Constant Current (C.C.)

(b)	Maximum, ho	ow many voltag	ges can we take	from the power supply?
	□ 1 □ 2	□ 3 □ 4		
(c)	If you are to that apply— CH1	take a voltage €	equal to $7 V$, where \Box CH3	nich of the channels can you use? Select all
(d)		following is the	e voltage range	for channel 3 (CH3)?
	$\Box \ 1 - 30 V$			
	$\square \ 0 \ - \ 30 \ V$			
	$\Box 2.2 - 5.5$	5 <i>V</i>		
	\square 8 - 15 V			
(e)	Which of the	following is the	e voltage range	for channel 4 (CH4)?
()	$\Box 1 - 30 V$	J		
	$\Box 0 - 30 V$			
	$\Box 2.2 - 5.5$	5 <i>V</i>		
	\square 8 - 15 V			
(f)		maximum curre	ent limits for C	H1 and CH2, respectively?
	\Box 1 A, 3 A			
	\square 2 A, 3 A			
	\square 3 A for bot			
	\Box 1 <i>A</i> for bot	th		
(g)	What are the	maximum curre	ent limits for C	H3 and CH4, respectively?
(0)	\Box 1 A, 3 A			, ,
	\square 2 A, 3 A			
	\square 3 A for bot	th		
	\Box 1 <i>A</i> for bot	th		
(h)		-		Selector Buttons, voltages for which pair of cously? Select all that apply—
	□ CH1 & CH	H2 □ CH	11 & CH3	□ CH1 & CH4
	□ CH2 & CH	I4 □ CH	13 & CH4	□ CH2 & CH3

(i)		want to set negative voltages to nodes with respect to a reference node (often ground), can we do this using the power supply?
	□ Yes	
	If yes,	
(j)		the squares adjacent to each of the following statements to indicate whether it or false:
	I.	The bigger voltage and current knobs correspond to CH1 and CH2.
	II.	☐ True ☐ False The smaller voltage knobs are used to set voltages for CH3 and CH4.
	11.	☐ True ☐ False
	III.	The current knobs are used to set maximum limits of current.
		□ True □ False
	IV.	The display shows the voltage-current for CH1 and CH2 only.
		□ True □ False
	V.	Current values on the screen indicate the maximum current limit set in CH1 and CH2.
		□ True □ False
	VI.	Only the maximum current limits for CH1 and CH2 are tunable.
		□ True □ False
	VII.	The power supply doesn't provide any voltage for a channel if its current limit is set 0.
		□ True □ False
•	VIII.	Can this source be a constant current for applications such as recharging a battery?
		□ Yes □ No
	IX.	Connecting CH1 and CH2 in series is a feature of the source.
		□ True □ False
	Χ.	Pressing the "Output On" button makes the current values displayed equal to 0. It means the source is not supplying any current to the circuit connected to it.
		□ True □ False

2.

(a) After taking voltage and current measurements in a laboratory for the circuit shown above, the currents through the R_4 and R_7 resistors are found to be equal. Are R_4 and R_7 in series?

	Yes	□ No
Jus	stify your ch	noice.

(b) R_1 , R_2 , and, R_3 are connected in

□ Series	□ Parallel	☐ Neither series nor parallel	☐ Cannot be predicted
Explain your	choice.		

3.

(a) If the voltages v_x and v_y are equal, are R_1 and R_5 in parallel?

□ Yes	□ No			
Justify your	answer.			

4.

Draw a circuit diagram of the circuit constructed on the breadboard above.

5. For the following circuit:

L	Circuit Element	Starting/Ending Node	Ending/Starting Node
ļ	12 kΩ Resistor		
ļ	4 kΩ Resistor		
	18 kΩ Resistor		
	9 kΩ Resistor		
	8 kΩ Resistor		
	24 kΩ Resistor		
	$3.3 \text{ k}\Omega$ Resistor		

6. For the following circuit, determine R_{ab} , R_{ad} , R_{bd} and R_{bc} . Use logical operators to indicate the series-parallel combinations. For example, the following equation of R_{xy} means, two $10~\Omega$ resistors are in parallel, their combination is in series with a $5~\Omega$ resistor, and the total is again parallel with a $20~\Omega$ resistor.

$$R_{xy} = \{(10 \mid\mid 10) + 5\} \mid\mid 20$$

$R_{ab} =$	$R_{ad} =$
=	=
$R_{bd} =$	$R_{bc} =$
=	=

Report

- 1. Fill up the theoretical parts of all the data tables.
- **2.** Answers to the questions.
- **3.** Discussion [your overall experience, accuracy of the measured data, difficulties experienced, and your thoughts on those].