

Mechatronics

Week 4 Day 1

Previously

- We distinguished between A, T, D-type elements, and A,T-variables
- We learned modelling multi-domain systems following a five-step procedure to obtain their state-space representation
- We modelled various multi-domain systems involving electrical, mechanical (Newtonian Approach, Vectorial Mechanics), and fluid domains
- We studied modelling mechanical systems via Euler-Largrange formalism (Analytical Mechanics)

Today's lecture: Sampling and Discretization

Motivation

Motivation

Motivation

Continuous-time (analog) data cannot be directly handled by computers.

To use microcontrollers-based information processing data needs to be transformed.

Modern Mechatronics Systems

Modern Mechatronics Systems

Implementing mechatronics systems in practice

Implementation via discrete controller

2. Implementation by discretizing plant

Learning objectives

After today's lecture, you will be able to

- Familiarize with the discretization of continuous-time signals and systems
- Appreciate the significance of choosing appropriate sample rate for the discretization
- Obtain the transfer function of a discrete-time system
- Learn various approximation methods and tools to discretize a continuous time system

Discretization and Reconstruction

Discretization and Reconstruction

Digital system
Processes+controls

Actuator Performs task

Analog-to-digital converter (ADC): transforms analog signal to discrete (discretization)

Digital-to-analog converter (DAC): transforms digital signal to analog (reconstruction)

Sampling theorem

Frequency (ω): number of cycles completed in a second

For the given signal, $\omega = 1Hz$

A digital signal has a fixed sampling time T_s per cycle.

A digital signal has a fixed sampling time T_s per cycle.

Caveat: there is an approximation error as a result of discretization (loss of information)

A digital signal has a fixed sampling time T_s per cycle.

Caveat: there is an approximation error as a result of discretization (loss of information)

Then...

How do we know what sample rate (no of samples per cycle) to use?

Nyquist-Shannon Theorem

If a function x(t) contains no frequencies higher than ω Hertz, it is completely determined by giving its ordinates as a series of points spaced $\frac{1}{2\omega}$ seconds apart.

A sufficient sample rate is 2ω samples/second, where ω frequency of the signal

For the example signal with $\omega = 1Hz$

For the example signal with $\omega = 1Hz$

A sampling of $2\omega = 2$ samples/second is deemed sufficient

 Similar to Laplace transform for continuous-time signals, for discrete-time framework, we have the z-transform

- Similar to Laplace transform for continuous-time signals, for discrete-time framework we have the z-transform
- z-transform is an important tool to study discrete time signals and systems

- Similar to Laplace transform for continuous-time signals, for discrete-time framework we have the z-transform
- z-transform is an important tool to study discrete time signals and systems

Given $x(k) \in \mathbb{R}$, $k = 0,1, \dots \infty$, assuming x(k) = 0 for all k < 0

Definition (z-transform of x(k))

$$X(z) = \mathcal{Z}\{x(k)\} = \sum_{k=0}^{\infty} x(k)z^{-k}$$

where $z \in \mathbb{C}$ is the independent variable.

It is posible to relate **Laplace** and **z transforms** with the following methods:

• $z = e^{ST}$ (Impulse Invariant Method)

• $s = \frac{2(z-1)}{T(z+1)}$ (Bilinear Transform Method)

.

Let x(k+1) = ax(k) with $a \in \mathbb{R}$. This has solution: $x(k) = a^k x(0)$

Therefore, we have the sequence

$$\{x(k)\}=\{x(0), ax(0), a^2x(0) \dots\},\$$

which is infinite and converges if and only if |a| < 1

Let x(k+1) = ax(k), $a \in \mathbb{R}$, with solution: $x(k) = a^k x(0)$

Therefore, we have the sequence

$$\{x(k)\}=\{x(0), ax(0), a^2x(0) \dots\},\$$

which is infinite and converges if and only if |a| < 1.

Then, the z-transform of x(k)

$$X(z) = \sum_{k=0}^{\infty} x(k)z^{-k} = x(0) \sum_{k=0}^{\infty} a^k z^{-k} = x(0) \sum_{k=0}^{\infty} \left(\frac{a}{z}\right)^k,$$

which follows the geometric series formula

Recall geometric series formula:

For a sequence $c_k = c^k$ with |c| < 1. The sum of the elements in the sequence is

$$\sum_{k=0}^{\infty} c^k = \frac{1}{1-c} \ for \ |c| < 1$$

Let x(k+1) = ax(k), $a \in \mathbb{R}$, with solution: $x(k) = a^k x(0)$

Therefore, we have the sequence

$$\{x(k)\}=\{x(0), ax(0), a^2x(0) \dots\},\$$

which is infinite and converges if and only if |a| < 1.

Then, the z-transform of x(k)

$$X(z) = \sum_{k=0}^{\infty} x(k)z^{-k} = x(0) \sum_{k=0}^{\infty} a^k z^{-k} = x(0) \sum_{k=0}^{\infty} \left(\frac{a}{z}\right)^k,$$

which follows the geometric series formula

$$X(z) = x(0) \frac{1}{1 - \frac{a}{z}}$$
 when $\left| \frac{a}{z} \right| < 1 \Leftrightarrow X(z) = x(0) \frac{z}{z - a}$ when $|z| > |a|$.

Let x(k+1) = ax(k), with $a \in \mathbb{R}$, with solution: $x(k) = a^k x(0)$

Therefore, we have the sequence

$$\{x(k)\}=\{x(0), ax(0), a^2x(0) \dots\},\$$

which is infinite and converges if and only if |a| < 1

Then, the z-transform of x(k)

$$X(z) = \sum_{k=0}^{\infty} x(k)z^{-k} = x(0) \sum_{k=0}^{\infty} a^k z^{-k} = x(0) \sum_{k=0}^{\infty} \left(\frac{a}{z}\right)^k,$$

which follows the geometric series formula

$$X(z) = x(0) \frac{1}{1 - \frac{a}{z}}$$
 when $\left| \frac{a}{z} \right| < 1 \Leftrightarrow X(z) = x(0) \frac{z}{z - a}$ when $|z| > |a|$.

|z| > |a| is called the Region of Convergence (ROC) of the z-transform

Example 2: Finite sequence

Consider $\{x(k)\}=\{a,b,c,0,0,0,\ldots\}$, with $a,b,c\in\mathbb{R}$

Example 2: Finite sequence

Consider $\{x(k)\}=\{a,b,c,0,0,0,\ldots\}$, with $a,b,c\in\mathbb{R}$

Then, the z-transform of x(k)

$$X(z) = \sum_{k=0}^{\infty} x(k)z^{-k} = x(0)z^{-0} + x(1)z^{-1} + x(2)z^{-2} = a + bz^{-1} + cz^{-2}$$

Example 3: Unit Step

Consider unit step function

$$u(k) = \begin{cases} 0 & k < 0 \\ 1 & k \ge 0 \end{cases}$$

Example 3: Unit Step

Consider unit step function

$$u(k) = \begin{cases} 0 & k < 0 \\ 1 & k \ge 0 \end{cases}$$

when |z| > 1

Then, the z-transform of
$$u(k)$$
 Geometric series
$$U(z) = \sum_{k=0}^{\infty} u(k)z^{-k} = \sum_{k=0}^{\infty} 1z^{-k} = \frac{1}{1-z^{-1}} = \frac{1}{z-1}$$

z-transform pairs

$x(k)$, $k \ge 0$	z-Transform $X(z)$	Region of Convergence
<i>x</i> (k)	$\sum_{k=0}^{\infty} x(k)z^{-k}$	
$\delta(\mathbf{k})$	1	z > 0
au(k)	$\frac{az}{z-1}$	z > 1
ku(k)	$\frac{z}{(z-1)^2}$	z > 1
$k^2u(k)$	$\frac{z(z+1)}{(z-1)^3}$	z > 1
$a^k u(k)$	$\frac{z}{z-a}$	z > a
$e^{-ak}u(k)$	$\frac{z}{(z-e^{-a})}$	$ z > e^{-a}$
$ka^ku(k)$	$\frac{az}{(z-a)^2}$	z > a
sin(ak)u(k)	$\frac{z\sin(a)}{z^2 - 2z\cos(a) + 1}$	z > 1
cos(ak)u(k)	$\frac{z[z-cos(a)]}{z^2-2z\cos(a)+1}$	z > 1
$a^k sin(bk)u(k)$	$\frac{[a \sin(b)]z}{z^2 - [2a \cos(b)]z + a^2}$	z > a
$a^k cos(bk)u(k)$	$\frac{[z-a\cos(b)]z}{z^2-[2a\cos(b)]z+a^{-2}}$	z > a
$e^{-ak}sin(bk)u(k)$	$\frac{[e^{-a}sin(b)]z}{z^2 - [2e^{-a}cos(b)]z + e^{-2a}}$	$ z > e^{-a}$
$e^{-ak}cos(bk)u(\mathbf{k})$	$\frac{[z - e^{-a}cos(b)]z}{z^2 - [2e^{-a}cos(b)]z + e^{-2a}}$	$ z > e^{-a}$

z-transform properties

Linearity

$$Z(a_1x_1(k) + a_2x_2(k)) = a_1X_1(z) + a_2X_2(z)$$

Time shift

$$\mathcal{Z}(x(k-k_0)) = z^{-k_0} X(z)$$

Time reversal

$$\mathcal{Z}(x(-k)) = X(z^{-1})$$

First difference

$$\mathcal{Z}(x(k) - x(k-1)) = (1 - z^{-1})X(z)$$

faculty of science and engineering

z-transform properties

$x(n), n \ge 0$	Sequence	Transform	Region of Convergence
	$egin{aligned} x[k] \ x_1[k] \ x_2[k] \end{aligned}$	$egin{aligned} X(z) \ X_1(z) \ X_2(z) \end{aligned}$	$R\\R_1\\R_2$
Linearity	$(a_1x_1(k) + a_2x_2(k))$	$a_1 X_1(z) + a_2 X_2(z)$	At least intersection of R_1 and R_2
Time shifting	$x[k-k_0]$	$z^{-n_0} X(z)$	R except possible addition or deletion of origin
Scaling in z-domain	$e^{j\omega_0k}x[k]$	$X(e^{-j\omega_0}z)$	R
	$z_0^k x[k]$	$X\left(\frac{z}{z_0}\right)$	z_0R
	a ^k x[k]	$X(a^{-1}z)$	Scaled version of R
Time reversal	x[-k]	$X(z^{-1})$	Inverted R
Conjugation	$x^*[k]$	$X^*(z^*)$	R
Convolution	$x_1[k] * x_2[k]$	$X_1(z)X_2(z)$	At least intersection of R_1 and R_2
First difference	x[k] - x[k-1]	$(1-z^{-1})X(z)$	At least intersection of R and $ z > 0$
Accumulation	$\sum_{k=-\infty}^{n} x[k]$	$\frac{1}{1-z^{-1}}X(z)$	At least intersection of R and $ z > 1$
Differenciation in z -domain	kx[k]	$-z\frac{dX(z)}{dz}$	R

Transfer functions

Consider the n-th order difference equation

$$y(k) + a_1 y(k-1) + \dots + a_n y(k-n)$$
$$= b_0 u(k) + b_1 u(k-1) + \dots + b_n u(k-n)$$

Transfer functions

Consider the n-th order difference equation

$$y(k) + a_1 y(k-1) + \dots + a_n y(k-n)$$
$$= b_0 u(k) + b_1 u(k-1) + \dots + b_n u(k-n)$$

Applying *z*-transformation

$$(1 + a_1 z^{-1} + \dots + a_n z^{-n}) Y(z) = (b_0 + b_1 z^{-1} + \dots + b_n z^{-n}) U(z)$$

Transfer functions

Consider the n-th order difference equation

$$y(k) + a_1 y(k-1) + \dots + a_n y(k-n)$$
$$= b_0 u(k) + b_1 u(k-1) + \dots + b_n u(k-n)$$

Applying *z*-transformation

$$(1 + a_1 z^{-1} + \dots + a_n z^{-n}) Y(z) = (b_0 + b_1 z^{-1} + \dots + b_n z^{-n}) U(z)$$

Then, the transfer function

$$G(z) = \frac{Y(z)}{U(z)} = \frac{b_0 + b_1 z^{-1} + \dots + b_n z^{-n}}{1 + a_1 z^{-1} + \dots + a_n z^{-n}} = \frac{b_0 z^n + b_1 z^{n-1} + \dots + b_n}{z^n + a_1 z^{n-1} + \dots + a_n}$$

State space representation and transfer functions

Just as in continuous time

$$x(k+1) = Ax(k) + Bu(k)$$
$$y(k) = Cx(k) + Du(k)$$

where $x(k) \in \mathbb{R}^n$, $u(k) \in \mathbb{R}^p$, $y(k) \in \mathbb{R}^m$ is a state space representation of an n-th order difference equation

State space representation and transfer functions

Just as in continuous time

$$x(k+1) = Ax(k) + Bu(k)$$
$$y(k) = Cx(k) + Du(k)$$

where $x(k) \in \mathbb{R}^n$, $u(k) \in \mathbb{R}^p$, $y(k) \in \mathbb{R}^m$ is a state space representation of an n-th order difference equation

Applying z-transformation

$$G(z) = \frac{Y(z)}{U(z)} = C(zI - A)^{-1}B + D$$

From continuous to discrete transfer function

Depending on the approximation method, there are several ways to relate s and z. The most important ones are

From discrete to continuous transfer function

The reverse transformations to go from z to s are shown below for the most important methods:

Consider the system

$$\frac{dx(t)}{dt} = \begin{bmatrix} -1 & 3 \\ 0 & -2 \end{bmatrix} \begin{bmatrix} x_1(t) \\ x_2(t) \end{bmatrix} + \begin{bmatrix} 0 \\ 1 \end{bmatrix} u(t)$$

$$y(t) = \begin{bmatrix} 1 & 0 \end{bmatrix} \begin{bmatrix} x_1(t) \\ x_2(t) \end{bmatrix}, D = 0$$

Consider the system

$$\frac{dx(t)}{dt} = \begin{bmatrix} -1 & 3 \\ 0 & -2 \end{bmatrix} \begin{bmatrix} x_1(t) \\ x_2(t) \end{bmatrix} + \begin{bmatrix} 0 \\ 1 \end{bmatrix} u(t)$$

$$y(t) = \begin{bmatrix} 1 & 0 \end{bmatrix} \begin{bmatrix} x_1(t) \\ x_2(t) \end{bmatrix}, D = 0$$

• Can we use $C(z) = C(zI - A)^{-1}B + D$ to obtain discrete time TF?

Consider the system

$$\frac{dx(t)}{dt} = \begin{bmatrix} -1 & 3 \\ 0 & -2 \end{bmatrix} \begin{bmatrix} x_1(t) \\ x_2(t) \end{bmatrix} + \begin{bmatrix} 0 \\ 1 \end{bmatrix} u(t)$$

$$y(t) = \begin{bmatrix} 1 & 0 \end{bmatrix} \begin{bmatrix} x_1(t) \\ x_2(t) \end{bmatrix}, D = 0$$

- Can we use $C(z) = C(zI A)^{-1}B + D$ to obtain a discrete time TF?
- NO! It's a continous-time system represented by a differential equation, not a discrete-time system represented by a difference

Consider the system

$$\frac{dx(t)}{dt} = \begin{bmatrix} -1 & 3 \\ 0 & -2 \end{bmatrix} \begin{bmatrix} x_1(t) \\ x_2(t) \end{bmatrix} + \begin{bmatrix} 0 \\ 1 \end{bmatrix} u(t)$$

$$y(t) = \begin{bmatrix} 1 & 0 \end{bmatrix} \begin{bmatrix} x_1(t) \\ x_2(t) \end{bmatrix}, D = 0$$

- Can we use $C(z) = C(zI A)^{-1}B + D$ to obtain a discrete time TF?
- NO! It's a continous-time system represented by a differential equation, not a discrete-time system represented by a difference
- We instead need to use $C(s) = C(sI A)^{-1}B + D$

It follows that

$$C(s) = C(sI - A)^{-1}B + D = \begin{bmatrix} 1 & 0 \end{bmatrix} \begin{bmatrix} s+1 & -3 \\ 0 & s+2 \end{bmatrix}^{-1} \begin{bmatrix} 0 \\ 1 \end{bmatrix} + 0$$
$$= \begin{bmatrix} 1 & 0 \end{bmatrix} \frac{1}{(s+1)(s+2)} \begin{bmatrix} s+1 & 3 \\ 0 & s+2 \end{bmatrix} \begin{bmatrix} 0 \\ 1 \end{bmatrix} = \frac{3}{(s+1)(s+2)}$$

It follows that

$$C(s) = C(sI - A)^{-1}B + D = \begin{bmatrix} 1 & 0 \end{bmatrix} \begin{bmatrix} s+1 & -3 \\ 0 & s+2 \end{bmatrix}^{-1} \begin{bmatrix} 0 \\ 1 \end{bmatrix} + 0$$
$$= \begin{bmatrix} 1 & 0 \end{bmatrix} \frac{1}{(s+1)(s+2)} \begin{bmatrix} s+1 & 3 \\ 0 & s+2 \end{bmatrix} \begin{bmatrix} 0 \\ 1 \end{bmatrix} = \frac{3}{(s+1)(s+2)}$$

• Using Euler forward approximation (for example), $s \simeq \frac{z-1}{T_s}$, we get the transfer function in z:

$$G(z) = \frac{3T_s^2}{(z + T_s - 1)(z + 2T_s - 1)}$$

Summary

- Discretization plays important role in information processing part of a Mechatronics system
- Nyquist-Shannon sampling theorem establishes necessary and sufficient conditions to select adequate sample rate
- z-transform, analogous to Laplace, is useful to obtain transfer function of a discrete-time system

Next lecture:

Discrete-time systems and control