Transistor Sizing and Technology Scaling

Transistor Sizing or T - Sizing

Noise margin

- is the amount of noise that a CMOS circuit could withstand without compromising the operation of circuit
- does make sure that any signal which is logic '1' with finite noise added to it, is still recognized as logic '1' & not logic '0'
- is a parameter closely related to the input-output voltage characteristics
- allows us to determine the allowable noise voltage on the input of a gate so that the output will not be affected

- Noise margin is specified in terms of 2 parameters:
 - LOW Noise Margin, NM_L
 - HIGH Noise Margin, NM_H

$$\mathbf{NM_{L}} = |\mathbf{V_{ILmax}} - \mathbf{V_{OLmax}}|$$

 $\mathbf{NM_{H}} = |\mathbf{V_{OHmin}} - \mathbf{V_{IHmin}}|$

To optimize both noise margins NM_L and NM_H generally it is desirable to have $V_{IH} = V_{IL}$ & this to be a value that is midway in the logic swing, that is $V_{DD}/2$.

Or,
$$V_{inv,th} = V_{DD}/2$$

The Ideal Gate

We know that, for a CMOS inverter:

$$V_{inv} = \frac{V_{DD} + V_{tp} + V_{tn} \sqrt{\frac{\beta_n}{\beta_p}}}{1 + \sqrt{\frac{\beta_n}{\beta_p}}}$$

- To make $V_{th,inv} = V_{DD}/2$, $\beta_n = \beta_p \rightarrow \mu_n C_{ox} W_n/L_n = \mu_p C_{ox} W_p/L_p$
- But $\mu_n = 2.7 \mu_p$
- Therefore, $W_p = 2.7W_n$
- That is, PMOS is made 2.7 times wider than NMOS.

- This trick of making the PMOS larger to compensate for the lower hole mobility is universally used in silicon design.
- However, making the PMOS 2.7 times larger than the NMOS leads to large circuits that occupy large areas of silicon for little extra benefit.

- If we examine Fig. above for $V_{DD} = 5V$, we see that the rate of change of $V_{th,inv}$ w.r.t. W_p/W_n is large for $W_p/W_n < 1$, but is smaller for $W_p/W_n > 1$. Because of the diminishing improvement in $V_{th,inv}$ for increasing W_p/W_n there is little reward for making W_p/W_n large. In practice, real designs use a compromise value for W_p/W_n typically in the range 1.5 to 2.0
- The adroit selection of transistor dimensions is known as **T-sizing**.

T – Sizing Standard Gates

- In NAND gate above, there are two parallel PMOSs between V_{DD} and Z. If one PMOS is OFF and the other is ON, then the pull-up strength of the gate will be the same as that of an inverter with a similarly sized PMOS
- However, the NMOSs, both must be ON at once to pull down Z. There are two NMOSs, hence two ON resistances added in series between V_{SS} and Z. Hence, the pull-down strength of a NAND gate will be less than that of an inverter with a similarly sized NMOS. This problem is solved by T-sizing

Stacks and Stack Depth

- The N-block and P-blocks of CMOS gates are often referred to as *stacks*
- Each gate can have one or more circuit paths connecting the o/p to one or other of the supply rails, & the number of transistors that appears in any path is referred to as the *stack depth*.

Examples:

- The NAND gate has an N-stack depth of 2 and a P-stack depth of 1
- The NOR gate has an N-stack depth of 1 and a P-stack depth of 2

• If we want to make a NAND gate have the same transfer characteristic as an inverter with W_{ip} and W_{in} , then the MOSFETs in the NAND gate will have $W_{np} = W_{ip}$ and $W_{nn} = 2W_{in}$

$$\mathbf{W_{np}} = \mathbf{S_pW_{ip}}$$
 and $\mathbf{W_{nn}} = \mathbf{S_nW_{in}}$

- where S_p is the P-stack depth and S_n is the N-stack depth

T – Sizing Compound Gates

• The method of T-sizing discussed so far is reliable and easy to apply for simple, single logic function gates, but is less straightforward to apply to compound gates.

Example:

$$Z = \overline{(A+B).C+D}$$

PMOS paths	NMOS paths	Stack depth (S)	New W_p	New W _n

T – Sizing Compound Gates

• The method of T-sizing discussed so far is reliable and easy to use for simple, single logic function gates, but is less straightforward to apply to compound gates.

Example:

The Problem

PMOS paths	NMOS paths	Stack depth (S)	New W_p	New W _n
A-C		2	$2W_{ip}$	
В-С		2	$2W_{ip}$	
D		1	W_{ip}	
	B-A-D	3		$3W_{in}$
	C-D	2		$2W_{in}$

• This procedure generates an anomaly – NMOS **D** is required to have two different sizes. This is clearly impossible to achieve.

The Solution

• A variety of solutions to this problem have been proposed, but the problem is not strictly tractable.

Here are a few:

- T-size the deepest stack first.
 T-size the least deep stack first

 Linear Scaling
- 3. Use sub-linear scaling e.g. multiply by \sqrt{S} instead of S

N- or PMOS		od 1 - deepest		od 2 least deep	Meth Sub-line	od 3 ear (√) –
(by input label)		k first		first		tack first
	New W _p	New W _n	New W _p	New W _n	New W _p	New W _n
A	$2W_{ip}$	$3W_{in}$	$2W_{ip}$	$4W_{in}$	$1.4W_{ip}$	$1.7W_{in}$
В	$2W_{ip}$	$3W_{in}$	$2W_{ip}$	$4W_{in}$	$1.4W_{ip}$	$1.7W_{in}$
C	$2W_{ip}$	$1.5W_{in}$	$2W_{ip}$	$2W_{in}$	$1.4W_{ip}$	$1.22W_{in}$
D	W_{ip}	$3W_{in}$	W_{ip}	$2W_{in}$	W_{ip}	$1.7W_{in}$

Assignments

 Design gates with the following logic functions and T-size them using all linear and sub-linear methods:

$$Z = \overline{(A.B + C.D).E}$$

$$Z = \overline{(A+B).C+D}$$

Typical Scaling Scenario

- 1974: $5\mu m$ Technology, $V_{DD} = 10V$
- 1984: 1 μ m Technology, $V_{DD} = 5V$
- 1994: $0.35 \mu m$ Technology, $V_{DD} = 3.5 V$
- 2004: 90nm Technology, $V_{DD} = 1V$
- 2014: 15nm Technology, $V_{DD} = 0.8V$
- 2018: 10nm Technology, $V_{DD} = 0.5V$

- Technology scaling has a threefold objective:
 - Increase the transistor density
 - Reduce the gate delay
 - Reduce the power consumption
- At present, between two technology generations, the objectives are:
 - Doubling of the transistor density
 - Reduction of the gate delay by 30% (at 43% increase in frequency)
 - Reduction of the power by 50% (at 43% increase in frequency)

Bulk nMOSFET

Device Parameter
Length, <i>L</i>
Width, W
Gate oxide thickness, t_{ox}
Supply voltage, V_{DD}
Threshold voltages, V_{tn} , V_{tp}
Substrate doping, N_A

Why odd numbers?

0.25μ, 0.18μ, 0.13μ, 90nm and 65nm technologies, continuing on to 15nm and 10nm, 7nm, 5nm

- A scaling factor (S) reduces device dimensions as 1/S.
- Successive generations of technology have used a scaling $S = \sqrt{2}$, doubling the number of transistors per unit area. This produced 0.25μ , 0.18μ , 0.13μ , 90nm and 65nm technologies, continuing on to 7nm and 5nm ...
- A 5% gate shrink (S = 1.05) is commonly applied to boost speed as the process matures.

N. H. E. Weste and D. Harris, *CMOS VLSI Design, Third Edition*, Boston: Pearson Addison-Wesley, 2005, Section 4.9.1.

- 1. Constant Field Scaling
- 2. Constant Voltage Scaling
- 3. Lateral Scaling

Constant Electric Field Scaling

Device Parameter	Scaling
Length, L	1/S
Width, W	1/S
Gate oxide thickness, t_{ox}	1/S
Supply voltage, V _{DD}	1/S
Threshold voltages, V_{tn} , V_{tp}	1/S
Substrate doping, N_A	S

Constant Electric Field Scaling (Cont.)

Device Characteri	stic	Scaling
β	$W/(L t_{ox})$	S
Current, I_{ds}	$\beta (V_{DD} - V_t)^2$	1/S
Resistance, R	$V_{ m DD}/I_{ m ds}$	1
Gate capacitance, C	WL/t_{ox}	1/S
Gate delay, т	RC	1/S
Clock frequency, f	1/ т	S
Dynamic power per gate, P	CV ² f	$1/S^2$
Chip area, A		$1/S^2$
Power density	P/A	1
Current density	I_{ds} /A	S

Parameter	Sensitivity	Constant Field	Lateral	Constant Voltage
Scaling	Parameters			
Length: L		1/S	1/S	1/S
Width: W		1/S	1	1/S
Gate oxide thickness: t_{ox}		1/S	1	1/S
Supply voltage: V_{DD}		1/S	1	1
Threshold voltage: V_{tn} , V_{tp}		1/S	1	1/8
Substrate doping: N_A		S	1	S
Device C	haracteristics			
β	$\frac{W}{L} \frac{1}{t_{\text{ox}}}$	S	S	S
Current: I_{ds}	$\beta (V_{DD} - V_t)^2$	1/8	S	1/S
Resistance: R	$\frac{V_{DD}}{I_{ds}}$	1	1/S	1
Gate capacitance: C	$\frac{WL}{t_{\text{ox}}}$	1/S	1/S	1/S
Gate delay: τ	RC	1/S	1/52	1/S
Clock frequency: f	1/τ	S	S^2	S
Dynamic power dissipation (per gate): P	CV^2f	1/52	S	1/8
Chip area: A	AND ALL STREET	1/52	1	$1/S^2$
Power density	P/A	1	S	1
Current density	I_{ds}/A	S	S	S