and the assertion follows from Lemma 1.6.

Before going on let us recall the basic facts of the <u>ultrapower</u> \hat{E} of a Banach space E with respect to some free ultrafilter U on N (compare A-I,3.6). If $\ell^{\infty}(E)$ is the Banach space of all bounded functions on N with values in E, then

$$c_{U}(E) := \{(x_{n}) \in \ell^{\infty}(E) : \lim_{U} ||x_{n}|| = 0\}$$

is a closed subspace of $\,\,\iota^{\infty}(E)\,$ and equal to the kernel of the seminorm

$$\|(\mathbf{x}_n)\| := \lim_{u} \|\mathbf{x}_n\|$$
, $(\mathbf{x}_n) \in \ell^{\infty}(\mathbf{E})$.

By the ultrapower \hat{E} we understand the quotient space $l^{\infty}(E)/c_{\mathcal{U}}(E)$ with norm

$$\|\hat{\mathbf{x}}\| = \lim_{u} \|\mathbf{x}_n\|$$
, $(\mathbf{x}_n) \in \hat{\mathbf{x}} \in \hat{\mathbf{E}}$.

Moreover, for a bounded linear operator T(L(E)), we denote by \hat{T} the well defined operator $\hat{T}\hat{x}:=(Tx_n)+c_{\mathcal{U}}(E)$, $(x_n)\in\hat{x}$. It is clear by virtue of $(x+(x,x,..)+c_{\mathcal{U}}(E))$ that each $x\in E$ defines an element $\hat{x}\in E$. This isometric embedding as well as the operator map $(T+\hat{T})$ are called canonical. In particular, if $R:(D\to L(E))$ is a pseudo-resolvent, then

$$\hat{R} := (\lambda \rightarrow R(\lambda)^{\circ}): D \rightarrow L(\hat{E})$$
,

is a pseudo-resolvent, too. Recall that the approximative point spectrum $A_{\sigma}(T)$ is equal to the point spectrum $P_{\sigma}(\hat{T})$ (see, e.g., [Schaefer (1974), Chapter V, §1]). This construction gives us the possibility to characterize uniformly ergodic semigroups with finite dimensional fixed space.

<u>Lemma</u> 2.2. Let R be a pseudo-resolvent on D = $\{\lambda \in \mathbb{C}: \operatorname{Re}(\lambda) > 0 \}$ such that $\|\mu R(\mu + i\alpha)\| \le 1$ for all $(\mu, \alpha) \in \mathbb{R}_+ \times \mathbb{R}$ and suppose

0 < dim Fix((
$$\lambda$$
-i α) $\hat{R}(\lambda$)) < ∞ for some $\lambda \in D$, $\alpha \in \mathbb{R}$

and the canonical extension $\hat{\textbf{R}}$ on some ultrapower $\;\hat{\textbf{E}}$.