

TUTORIAL 2 - WEEK 2

Information Technology

School of

nile University and Computer Science

CSCI101 Team

Machine Language

What Are Bits?

How Does A Computer Work?

- Logic Gates are the fundamental building blocks of digital circuits.
- Logical functions
- Each gate has one or more input signals and produces an output signal based on a certain logic.

Basic Logic Gates

AND Gate

OR Gate

NOT Gate

'AND' Gate

AND Gate

Z = A . B

Input		Output	
A	В	A AND B	
0	0	0	
0	1	0	
1	0	0	
1	1	1	

'OR' Gate

OR Gate

$$Z = A + B$$

Input		Output	
A	В	A AND B	
0	0	0	
0	1	1	
1	0	1	
1	1	1	

'NOT' Gate

NOT Gate

$$Z = A$$

Input	Output
A	NOT A
0	1
1	a

Derived Logic Gates

NAND Gate

NOR Gate

XOR Gate

XNOR Gate

Numbering Systems

- There are multiple numbering systems that we use for different reasons. Some of the systems are:
 - Decimal
 - Binary
 - Octal
 - Hexadecimal

Decimal Numbering

- The Decimal numbering system consists of the numbers we've seen our entire lives, from 0 to 9
- Since this system consists of 10 number (0 to 9), it is known as BASE 10

Binary Numbering

- The Binary Numbering system consists of only 0s and 1s
- Different combinations of these 0s and 1s have different meanings and 101011101 values!
- Since the binary system has 2 numbers only (0 and 1), it is known as BASE 2

Octal Numbering

- From its name, Octal = Eight,
 consists of 8 numbers from 0
 to 7
- Octal is known as BASE 8 number system

Hexadecimal Numbering

- Hexadecimal is slightly different from the previous system, since it consists of both digits AND letters.
- Hexadecimal consists of 16 symbols:
 - 10 digits (from 0 to 9)
 - 6 letters (from A to F)
- Known as BASE 16

Conversions Between Numbering Systems

- Each numbering system has a different purpose.
 - To be able to use all the systems for any reason, we must learn how to convert between them and move from one system to the other!

Decimal to Binary Conversion

Binary Decimal -1000 -1100 12--1001 0001 145

Decimal to Binary Conversion

- There are TWO methods of converting the Decimal numbering system to the Binary numbering system
 - Remainder Method
 - Weights Method

Decimal to Binary Conversion: Remainder Method

Step 1: Divide the given number 13 repeatedly by 2 until you get '0' as the quotient

The remainder method focuses on using division to find the binary value of the number

Step 2: Write the remainders in the reverse 1 1

$$\therefore 13_{10} = 1101_{2}$$
 (Binary)

Each position in the binary system has what we call a "weight"

2 ⁷	26	2 ⁵	2 ⁴	2 ³	2 ²	2 ¹	20
128	64	32	16	8	4	2	1

Lets convert 75 to binary using the weights

Since 75 lies between 128 and 64, we will place a 1 at 64 as follows:

The remaining will be 75-64 = 11

Lets convert 75 to binary using the weights cont.

Since 11 is between 16 and 8, we will place a 1 at the smaller value, 8, and add 0s before it

The remaining will be 11-8=3

Lets convert 75 to binary using the weights cont.

The remaining 3 lies between 4 and 2, which means we will place the 1 at 2

The remaining will be 3-2=1

Lets convert 75 to binary using the weights cont.

Since the remaining value is 1, we will place 1 in that position

The remaining will be 1-1 = 0

Solution:

$$75_{10} = 01001011_{2}$$

Binary Numbering

8——1000 12——1100

Binary to Hexadecimal Conversion

Hexa	8	9	A	В	C	D	E	F
Binary	1000	1001	1010	1011	1100	1101	1110	1111

- Hexadecimal numbers are base-16, using digits 0-9 and letters A-F.
- Each hexadecimal digit represents four binary digits (bits).
- Hexadecimal is often used in programming to simplify binary code representation.

Binary to Hexadecimal Conversion

10111010

11 10

B

Octal Numbering

- Octal numbers are base-8, using digits 0-7.
- Each octal digit represents three binary digits (bits).
- Octal is commonly used in computing for compact binary representation.

Binary to Octal Conversion

$$= (1010111100)2$$

$$= (001 010 111 100)2$$

$$= (1 2 7 4)8$$

$$= (1274)8$$

Numbering Systems Conversion: Example 1

Convert (2A7)₁₆ into Binary

Numbering Systems Conversion: Example 2

Convert (1011101)₂ into Decimal

Tutorial Task

TASKI

Convert (FF)₁₆ into Octal on Paper

Tutorial Task

TASK 2

Convert (2F)₁₆ into its octal equivalent.

Tutorial Task

TASK 3

Calculate the output of the gate.

THANK YOU

Any Questions?

Information Technology and Computer Science

End Slide

YOU CAN ALSO CHECK

https://www.youtube.com/watch?v=Vq04T0Cwj5Y

Resources:

https://www.cuemath.com/numbers/decimal-to-binary/

https://www.log2base2.com/number-system/how-to-convert-hexadecimal-to-octal-with-example.html