1 VLAN Trunking Protocol VTP

1.1 Nutzen & Begriffe

- Zentralisierung des VLAN Management
- Schnelles Einfügen eines zusätzlichen VLANs
- Konsistenz über ganzes Netz
- VTP-Domain: Gruppe von Switches, die VTP untereinander ausführen S(config)#vtp domain DOMAIN_NAME.
- VTP Advertisments: VTP-Infos werden über trunk Ports verteilt (Layer-2)
- VTP Modi (def. server): $S(config) \# vtp \ mode \ [server \mid client \mid transparent]$
- VTP Pruning: sorgt dafür, dass Advertisments nicht auf jedes IF geflutet werden.

1.2 VTP Funktionen

Praxis: Erst alle Switches konfigurieren, die NICHT VTP-Server sein sollen

1.2.1 VTP Domain

- Verteilung durch Server
- Achtung: Verteilte Namen können nicht mehr einfach so überschrieben werden!
- Vorsicht beim Einbau eines neuen Switches (Verbreitung von falschen Infos)

1.2.2 VTP advertisments

3 Arten von Advertisments:

- Summary Advertisments: alle 5 Minuten mit aktueller Config
- Subset Advertisments: Änderungen von VLANs werden bekannt gegeben
- Request Advertisments: Client an Server, danach Summary Advertisment

1.2.3 VTP Konfiguration

Server	Client
$S\#sh\ vtp\ status$ $S(config)\#vtp\ domain\ myName$ $S(config)\#vtp\ version\ 2$	$S\#sh\ vtp\ status$ $S(config)\#vtp\ mode\ client$ $S(config)\#vtp\ version\ 2$ $S(config)\#vtp\ password\ myPW$

2 Spanning Tree Protocol STP

2.1 Der ST Algorithmus

Ablauf:

- 1.) Bestimmung Root Bridge (RB) (tiefste Bridge ID [Standard: MAC Adresse]).
- 2.) Bestimmung der "root ports" (kürzester Weg zur Root Bridge [Link Metrik]).
- 3.) Auf jedem LAN-Segment: Bestimmung des "designated ports".
- 4.) "non-designated ports" (weder root noch designated ports) werden blockiert.

2.2 Bridge ID

- Bridge Priority (2 Bytes) + MAC Address (6 Bytes)
- Bridge Priority (4 Bits) + Extended System ID (12 bits) + MAC Address (48 Bits)
- Bridge Priority: Kann nur in Schritten von 4096 verändert werden
- Extended System ID: gibt an, zu welchem VLAN der Rahmen gehört
- Somit hat ein Switch so viele Bridge IDs wie VLANs

2.3 Port-Rollen & STP Zustände

- Ermittlung des Root Ports (nächster zur Root Bridge [Link-Kosten]) Kosten manipulieren: $S(config-if)\#spanning-tree\ cost\ 25$
- Ermittlung des Designated Ports ("nächster"Port zur Root) Falls "unentschieden":
 - tiefere BID
 - tiefere Port ID
- Beeinflussbar durch höhere Priority: S(config-if)#spanning-tree port-priority 112
- $\bullet \;\; \text{Zust"ande: Disabled} \rightarrow \text{Blocking} \rightarrow \text{Listening} \rightarrow \text{Learning} \rightarrow \text{Forwarding}$
- Nachrichten: Topology Change Notification (TCN), Topology Change Acknowledgement (TCA), Topology Change (TC)
- Topologieänderung: Switch [TCN]→ RB RB [TCA]→Switch RB [TC]→All Switches
- \bullet Zustandsänderung: [TCN] \rightarrow Blocking \rightarrow Listening \rightarrow Learning \rightarrow Forwarding

3 Point-to-Point Protocol PPP

3.1 Serielle Punkt-zu-Punkt Verbindungen

- Einsatz: Layer-2-Protocol eingesetzt, um zwei Knoten miteinander zu verbinden
- über möglichst alle Medien laufen (Kupferkabel, Glasfaser, etc.)
- Unterstützung verschiedener gleichzeitig laufender Layer-3-Protokolle
- Data Terminating Equipment (DTE): LAN-Abschlussgerät (z.B. Router)
- \bullet Data Communication Equipment (DCE): WAN-Abschlussgerät (Telecom \to NTU \to definiert Takt)
- High Level Data Link Control (HDLC): PPP baut auf HDLC auf
- \bullet HDLC: Receive + Send Sequence Number \rightarrow kann fehlerhafte Rahmen wiederholen lassen
- HDLC-Konfiguration: $R(config if) \#encapsulation \ hdlc$

3.2 Konzepte & Konfiguration von PPP

3.2.1 PPP enthält 3 Unterprotokolle:

- Rahmenbildung (ähnlich wie HDLC)
- Link Control Protocol (LCP): Hinauffahren, Konfiguration und Test des Links
- Network Control Protocol (NCP): Um versch. Layer-3-Protokolle zu konfigurieren

3.2.2 Aufbau einer PPP Verbindung

- 1. Phase: Link Establishment, Aushandlung von Optionen
- 2. Phase (optional): Kontrolle der Linkqualität (Fehlerrate)
- 3. Phase: Aushandlung der Layer-3-Optionen

3.2.3 PPP Konfiguration

 $R(config-if)\#encapsulation\ ppp$

 $R(config-if)\#compress\ [stack \mid predictor]$

R(config-if) #ppp quality 80

 $R(config-if) \# ppp \ multilink$

3.2.4 PPP Authentication

Password Authentication Protocol (PAP) und Challenge Handshake Authentication Protocol (CHAP) (PAP NICHT mehr sicher, da Passwort Klartext gesendet wird)

R1(config)#username R3 password cisco

R(config-if) #ppp authentication chap

4 Frame Relay

FR erledigt:

- Rahmenbildung
- Zugang zum Netz
- ßwitcht"Rahmen ans Ziel
- gibt Rahmen in richtiger Reihenfolge ab
- Fehler werden erkannt, aber nicht korrigiert

4.1 Zuordnung FR VC zu IP

Local Management Interface LMI umfasst:

- Virtual Circuit (VC) status message: sollte VC gelöscht werden wird Frame Relay Access Device (FRAD), welches beim Kunden steht, informiert.
- Multicasting: Rahmen wird an eine Gruppe von Zielen gesendet
- Global Addressing: Gibt Data Link Connection Identifiers (DLCIs) [da FR verbindungsorientiert ist], die globale Bedeutung haben
- Simple flow control: Xon/Xoff Mechanismus für Protokoll-Suiten ohne Flusskontrollen

4.2 Konfiguration

Inverses ARP ausschalten:

 $R(config-if)\#encapsulation\ frame-relay\ ietf$

 $R(config-if)#no\ frame-relay\ inverse-arp$

Statisches Mapping:

R(config-if)#frame-relay map ip XXX.XXX.XXXXXX 102 broadcast

R(config-if)#int s0/0/1.112 point-to-point

R(config-subif)#encapsulation frame-relay ietf

 $R(config-subif)\#ip\ address\ [IP]\ [SUBNET]$

 $R(config-subif) \# frame-relay\ interface-dlci\ 115$

5 Access Control Lists ACLs

TBD!!!

6 IP Adressierungsdienste (DHCP, NAT, IPv6)

6.1 DHCP

6.1.1 Einführung

Folgendes wird für Kommunikation benötigt:

- MAC-Adresse (Schicht 2)
- eine Schicht-3-Adresse
- eine Subnetz-Maske
- ein Default Gateway und
- die Adresse eines DNS Servers

DHCP Server hat Aufgabe, Arbeitsstationen beim Aufstarten mit nötigen Parametern zu versorgen. Er verwaltet die IP-Adressen.

6.1.2 Funktion von DHCP

Drei verschiedene Mechanismen:

- Manuelle Vergabe: Admin vergibt Host gezielt IP-Adresse, DHCP teilt Adresse dem Client mit.
- Automatische Vergabe: DHCP vergibt Host statische IP aus Pool. Es wird keine Lease-Time vereinbart! → permanente Vergabe
- Dynamische Vergabe: DHCP vergibt IPs aus Pool dynamisch. Lease-Time wird von DHCP-Server bestimmt. Wird IP nicht mehr gebraucht, teilt dies der Client am Server mit.

Ablauf der dynamischen Vergabe:

Abbildung 7.2: Ablauf des DHCP-Protokolls

6.1.3 BOOTP & DHCP

BOOTP	DHCP
Static mappings	Dynamic mappings
Permanent assignment	Lease
Only supports four configuration parameters	Supports over 20 configuration parameters

Danach folgt ein DHCP Acknowledge Paket.

6.1.4 Konfiguration DHCP (1./2. = Server; 3. = Client)

- 1.) Reserv. Adressbereich: R1(config)#ip dhcp exclude-address [LOWADDR] [HIGHADDR]
- 2.) Pool: R1(config)#ip dhcp pool [POOLNAME]
 R1(config)#network [ADDR] [MASK]
 R1(config)#default-router [ADDR]
 R1(config)#dns-server [ADDR]
 R1(config)#domain-name [NAME]
 R1(config)#netbios-name-server [ADDR]
- 3.) $S1(config-if)\#ip \ address \ dhcp$

6.1.5 DHCP Relay

Dient dazu Anfragen von zwei Netzen weiterzuleiten (Bsp. 192.168.10.X nach 192.168.11.5). $R1(config)\#int\ fa0/0\Rightarrow (192.168.10.X-Netz)$ $R1(config-if)\#ip\ helper-address\ 192.168.11.5$