Sebastian Marr

Kookkurrenzbasierte Link Discovery am Beispiel von Produkttags

Masterkolloquium

Zielsetzung der Arbeit

- * Link Discovery: Methoden des Data Minings, die zum Ziel haben, Verbindungen zwischen Objekten herzustellen
- * Beispiel: benutzergenerierte Begriffswelt eines Tagging-Systems
- * Anwendungsgebiete:
 - dynamische Navigationskonzepte
 - Erweiterung von Suchräumen

Aufgaben

- * Modellierung des betrachteten Weltausschnittes und Überführung in eine geeignete Datenstruktur
- * Entwicklung und Durchführung eines Prozesses zur Extraktion von Beziehungen
- * Anreicherung der Beziehungen durch weitere Datenquellen
- * Priorisierung der Beziehungen

Ausgangssituation

- * 2 Mio. Tags
- * 6,5 Mio. Benutzer
- * 26 Mio. Dokumente
- * 72 Mio. Taggings

Ausgangssituation

Modell - Weltausschnitt

Prozess

- * Initiale Erstellung des Weltausschnittes aus Tagging-Daten
- * Anreicherungsschritte
 - Integration von Clicktracking-Daten
 - * Zerlegung von Wortgruppen
 - * Integration des Wortschatzes der Universität Leipzig
- * Priorisierung mittels interaktiver evolutionärer Algorithmen

Kookkurrenz

Kookkurrenzmaße

$$\delta_{Dice}(a,b) = \frac{2|A \cap B|}{|A| + |B|}$$

$$\delta_{Jaccard}(a,b) = \frac{|A \cap B|}{|A \cup B|}$$

$$\delta_{Cosine}(a,b) = \frac{|A \cap B|}{\sqrt{|A| \times |B|}}$$

Graphenrepräsentation

Tagging-Daten

- ♦ Tags ⇒ Knoten
 - Beschränkung auf deutsche Tags
 - * Entfernung von Groß-/Kleinschreibung und Bereinigung: Reduktion um 68%
- Kanten vom Typ Tagging-Kookkurrenz
- * Ergebnis: 314 351 Knoten und 21 834 868 Kanten

Clicktracking

- * Klicks auf Suchergebnisseiten
- Gleiche Artikel zu verschiedenen Suchbegriffen: Kookkurrenz
- Ergebnis:
 - * 78 237 neue Knoten
 - * 310 860 Kanten

Zerlegung von Wortgruppen

- * 47% aller Begriffe bestanden aus mehreren Wörtern
- * Zerlegung:
 - * 38 349 neue Knoten
 - * 1 238 900 neue Kanten der Typen Zerlegung und Zusammensetzung

Wortschatz der Universität Leipzig

- * Informationen: Grundform, Wortformen, Synonyme, Thesaurus-Beziehungen und Kategorien
- * Kategorien: Kookkurrenz
- * Restliche Beziehungen direkt als Kantentypen integriert
- * Ergebnis: 145 023 neue Knoten, 50 227 965 Kanten
 - * davon ca. 48 Mio. Kategorie-Kookkurrenz

575 960 Knoten 73 612 593 Kanten

Priorisierung

- * 9 Kantentypen, 3 Kookkurrenzmaße
- * 15 Stichproben
- interaktiver evolutionärerAlgorithmus
- Selektion: Auswahl eines
 Gewinners durch vergleich der höchstgewichteten Nachbarn
- * 13 Generationen
- * 975 Selektionen

Priorisierung - Ergebnisse

- Nach der mit der Periodisierung ermittelten Gewichtung nächste Nachbarn:
 - kind: kleinkind, säugling, junge, nachwuchs, dreikäsehoch
 - leipzig: i heart leipzig, tshirts leipzig, t-shirts leipzig, leipzig stadt, deutschland leipzig
 - mountainbike: mountainbikes, fahrrad, rennrad, rad, gangschaltung

Technische Aspekte

- Datenbanksystem: MongoDB
- JavaScript zur
 Implementierung der
 Algorithmen mittels
 MapReduce
- JavaScript und node.js zur serverseitigen Priorisierung, API und Tag Explorer

Ausblick

- Qualitative Untersuchung der erzeugten Zusammenhänge
- * Integration weiterer Datenquellen
- * Clusteranalyse
- * Interaktiver Trainingsschritt zum manuellen Entfernen und Hinzufügen von Zusammenhängen

Zusammenfassung

- * Link Discovery: Herstellung von Zusammenhängen
- * Modellierung: Begriffe, Zusammenhänge, Kontexte
- * Kookkurrenz als primäres Mittel der Beziehungserzeugung
- * Tagging-Daten als Ausgangspunkt
- * Integration weiterer Datenquellen
- Priorisierung mittels interaktiver evolutionärer
 Algorithmen