V³ - s'extensão de ordem n=3:

 $K=2 c n=3 \Rightarrow 2^3 = 8 \text{ simboles na fonte } U^3$

	P(S1) =	3/4
1	P(52) =	44

U 3	Probabilidade
S1 S1 S1	$(3/4)^3 = 27/64 - 01$
SISIS2	(3/4)2× (4/4) = 9/64 -002
S1 S2 SI	(3/4)2 x (1/4) = 9/64 - 003
5 2 5 1 5 1	(3/4)2×(3/4)=9/64 → σq
5 2 5 2 5 1	$(1/4)^2 \times (3/4) = 3/64 \rightarrow 05$
S2 S1 S2	(1/4)2 × (3/4) = 3/64 > 06
S1 S2 S2	(3/4) = 3/64 - 0 07
525252	$(4/4)^3 = 4/64 \rightarrow 0.8$

$$H(U^3) = 3 \times H(U) = 3 \times 0,811 = 2,433$$

$$\eta = \underbrace{\eta \times H(U)}_{L\eta} \Rightarrow \eta = \underbrace{H(U^3)}_{L_3} = ?$$

* Vamos construir so código de Shannon-Fano para U3:

