6.2/6.3 - Power Sets and Indexed Collections of Sets

Cliff Sun

March 1, 2024

Theorem 0.1. If $A \subseteq B$, then $P(A) \subseteq P(B)$

Proof. Suppose that $A \subseteq B$, then to prove that $P(A) \subseteq P(B)$, choose c to be an element of P(A). That is $c \in A$. Thus, $c \in A \in B$, thus it follows that $c \in P(B)$. This proves the theorem that $P(A) \in P(B)$.

How do power sets relate to Cartesian Products? That is Is $P(A \times B) = P(A) \times P(B)$?

Suppose that that |A| = a and |B| = b, then $P(A \times B) = 2^{ab}$ and $P(A) \times P(B) = 2^{a+b}$.

However, suppose that A and B are disjoint, that is they don't have any elements in common. Then the cardinality of $P(A) \times P(B)$ and $P(A \cup B)$ have the same cardinality. Therefore, there must be a bijection between them.

Indexed Collections of Sets

Let I be any set, call it an "Indexed Set". Then, for $n \in I$, suppose that we have some set called A_n . Generally, I could be the natural numbers, the real numbers, etc. Given this set-up, we can write down some definitions:

Theorem 0.2. The collection of all of these sets is called an "Index Collection Of Sets", written in mathematical notation is the following:

$$\{A_n : n \in I\} \tag{1}$$

Theorem 0.3. $\bigcup_{n\in I} A_n = \{x : x \in A_n \text{ for some } n \in I\}$

 $\cap_{n\in I} A_n = \{x : x \in A_n \forall n \in I\}$

The collection $\{A_n : n \in I\}$ is pairwise disjoint if we have that $A_n \cap A_m$ for $m \neq n$ in I.

Simply speaking, this \cup represents the union of all sets, where \cap is the intersection of all sets.

General fact:

- 1. For any $m \in I$, A_m is always a subset of the union of the Sets
- 2. For any $n \in I$, the intersection of all of the sets will be a subset of A_n