第四章 非线性方程求根

章节概述 解数值问题: 直接法 逐次逼近法 $(A_1 \rightarrow A_2 \rightarrow \cdots \rightarrow A_n \rightarrow \cdots$ 精确解) A 可为数字,向量,矩阵或其他

两种形式: 搜索法 (利用递推公式)、迭代法 (利用法则 (二分法等))

直接法: 小型问题或特殊解 逐次逼近法: 大型问题及非线性问题

4.1 根的搜索

根 设有非线性方程 f(x) = 0,若有 α 使得 $f(\alpha) = 0$,则称 α 为方程的根或零点

注意: 代数方程 5 次及以上无解析公式, 超越方程求根更难

单根区间: f(x) = 0在区间[a,b]上仅有一根 **多根区间**: f(x) = 0在区间[a,b]上有多个根,统称为有根区间 **逐步搜索法** 假定f(a) < 0, f(b) > 0,从 $x_0 = a$ 出发,取**预定步长h** (譬如h = (b - a)/N)一步一步向右跨,检查节点 $x_k = a + kh$ 上的函数值 $f(x_k)$ 的符号,一旦异号,则有 $[x_{k-1},x_k]$ 为**缩小区间**,其宽度为预定步长h 步长h的选择是个关键. 只要 $h < \varepsilon$,可取得任意精度的根。但**计算量大,不适用于高精度计算**。

二分法 考察有根[a,b],取中点 $x_0 = (a+b)/2$,检查 $f(x_0)$ 与f(a)是否同号。

若相同,根在右侧,令 $a_1 = x_0, b_1 = b$ 否则 $a_1 = a, b_1 = x_0$

如此反复二分,可得区间 $[a_k,b_k]$,且 $b_k-a_k=rac{b-a}{2^{k+1}}$,其必收敛于某点lpha,lpha即为根

取根近似值 $x_k = \frac{a_k + b_k}{2}$,有 $|\alpha - x_k| \le \frac{b_k - a_k}{2} = \frac{b - a}{2^{k+1}}$ 即 $|\alpha - x_k| \le \varepsilon$ 即为精度 此法无法求重根

4.2 简单迭代法

4.2.1 基本定义

定义 设方程 $x = \varphi(x)$ 与f(x) = 0同解,任取初值 x_0 令 $x_1 = \varphi(x_0)$, $x_2 = \varphi(x_1)$,…, $x_{k+1} = \varphi(x_k)$, $k = 0,1,2, \dots$ 若 $x_k \to \alpha$,则 $\alpha = \varphi(\alpha)$,从而 $f(\alpha) = 0$ 。 x_k 称为第k步迭代值。若 $\{x_k\}$ 收敛,则迭代法收敛,否则发散

示例 求方程 $x^3-x-1=0$ 在x=1.5附近的根。则方程可等价为 $x=\sqrt[3]{x+1}$ 取初值 $x_0=1.5$,则 $x_1=\sqrt[3]{1.5+1}$ $x_1=1.35721$ $x_2=\sqrt[3]{1.35721+1}$ 以此类推直到 $x_7=\sqrt[3]{1.32473+1}=1.32472$, $x_8=1.32472$ $x_7=x_8$,则认为 x_7 为方程的根, $\alpha\approx x_7=1.32472$

4.2.2 收敛性

收敛性 迭代法不适用于全部情况。例如,如果上式示例转为另一种等价形式 $x = x^3 - 1$,初值取 $x_0 = 1.5$ 发现 $x_1 = 2.375, x_2 = 12.39, x_3 = 1904 ...,结果不趋于某个极限。这种$ **不收敛的迭代称为发散**。

定理 2-1 假定迭代函数 $\varphi(x)$ 满足条件:

① 对任意 $x \in [a,b]$ 有 $a \le \varphi(x) \le b$ 保证迭代序列一直在定义域内

② 存在正数L < 1,使对任意 $x \in [a, b]$ 有 $|\varphi'(x)| \le L < 1$ 保证残差趋于 0 则迭代过程 $x_{k+1} = \varphi(x_k)$ 对于任意初值 $x_0 \in [a, b]$ 均收敛于方程 $x = \varphi(x)$ 的根 α 。

证明 由微分中值定理: $x_{k+1} - \alpha = \varphi(x_k) - \varphi(\alpha) \stackrel{\text{同除}}{=} \varphi'(\xi)(x_k - \alpha)$ $\xi \in \alpha = x_k$ 之间的某一点 $\exists x_k \in [a,b]$ 时, $\xi \in [a,b]$,则可利用条件断定 $|x_{k+1} - \alpha|_{\dot{\mathcal{L}} - \chi h b \iota g} \leq L |x_k - \alpha|_{\dot{\mathcal{L}} - \chi h \iota g} \leq L |x_k - \chi h \iota g} \leq L |x_k - \chi h \iota g \leq L |x_k - \chi$

检验 对于 $\varphi(x_k) = \sqrt[3]{x+1}$, $\left[\sqrt[3]{2}, \sqrt[3]{3}\right] \in [1,2]$, $\varphi'(x) = \frac{1}{3(x+1)^{2/3}} < 1$, 所以迭代法收敛

说明 ① 条件是**充分的**而非必要的. 例如 $x^3 - 2x = 0$,取 $\varphi(x_k) = \frac{1}{2}x^3$, $\varphi'(x) = \frac{3}{2}x^2$,在[-1,1]上不满足 $|\varphi'(x)| < 1$ 。但区间可缩小,实际上 $\alpha = 0$,如果取初值在零附近,可能收敛。

- ② 通常可先用定理判断,若不满足,则改变迭代公式使之满足,然后迭代
- ③ 如果 $|\varphi'(x)| \ge 1$,则 $|x_{k+1} x_k| = |\varphi(x_k) \varphi(x_{k-1})| = |\varphi'(\xi)|_{L + \frac{\pi}{2}} |x_{k+1} x_k| \ge |x_{k+1} x_k| \ge |x_k -$

- ② 右式用于估计迭代次数: $|x_k \alpha| \le \frac{L^k}{1-L} |x_1 x_0| < \varepsilon$ 求出k值
- ③ 由于L值并不知道(可理解为 $\varphi'(\xi)$),工程实际上只看 $x_k x_{k-1} < \varepsilon$
- ④ 该定理以[a,b]中任意一点作初值,迭代都收敛,称为全局收敛。 由于该要求很难满足,故考虑在α的某一邻域的收敛,即局部收敛性。

证明 详见 PPT

- **说明** 只要 x_0 充分接近 α ,且 $|\varphi'(x_0)|$ 明显小于 1,则 $\{x_k\}$ 收敛于 α
- 示**何** 求方程 $x = e^{-x}$ 在x = 0.5附近的一个根,要求精度 $\delta < 10^{-3}$ 记 $f(x) = x e^{-x}$,则f(0.5) < 0,f(1) > 0,即根在[0.5,1]之间,要验证第一定理很难,可以验证第二定理。 因为 $\varphi(x) = e^{-x}$, $\varphi'(x) = -e^{-x}$, $|\varphi'(x)| < 1$,所以取 $x_0 = 0.5$,迭代法必然收敛。可逐项计算。

到准确值的距离不断收敛

4.2.3 收敛阶

定义 2-1 用于**衡量收敛速度**. 设由某方法确定的序列 $\{x_k\}$ 收敛于方程的根 α , 如果存在正实数p,

使得 $\lim_{k\to\infty}\frac{|\alpha-x_{k+1}|_{k+1}$ 次绝对误差 =C,则称 $\{x_k\}$ 收敛于 α 的速度是p阶的,或称该方法具有p阶敛速。

特别的,当p=1,称为**线性收敛(一次收敛)**; p=2,称为**平方收敛**,p>1时,称为**超线性收敛**

说明 一个方法的收敛速度实际就是绝对误差的收缩率。敛速的阶 p 越大,绝对误差缩减得越快 若 $\varphi'(x)$ 连续,且 $\varphi'(\alpha) \neq 0$,则迭代格式 $x_{k+1} = \varphi(x_k)$ 必然为线性收敛

因为
$$|\alpha - x_{k+1}| = |\varphi(\alpha) - \varphi(x_k)| = |\varphi'(\xi)| |\alpha - x_k|$$
 $\lim_{k \to \infty} \frac{|\alpha - x_{k+1}|}{|\alpha - x_k|} = \lim_{k \to \infty} |\varphi'(\xi)| = |\varphi'(\alpha)| \neq 0$ 如果 $\varphi'(\alpha) = 0$,则收敛速度就不只是线性的了

定理 2-2 设方程 $x = \varphi(x)$,正整数 $p \ge 2$,若 $\varphi^{(p)}$ 在根 α 的某个邻域内连续,且满足 $\begin{cases} \varphi^{(k)}(\alpha) = \mathbf{0} \\ \varphi^{(p)}(\alpha) \neq \mathbf{0} \end{cases}$

其中(k = 1, 2, ..., p - 1),则 $\{x_k\}$ p阶局部收敛

证明 详见 PPT

示例 设 $f \in C^2[a,b]_{- \text{阶连续}} \varphi(x) = x - r_1(x)f(x) - r_2(x)f^2(x)$, α 为 f 的 单 重 零 点 。 试 确 定 未 知 函 数 $r_1(x), r_2(x)$ 使得迭代法 $x_{k+1} = \varphi(x_k)$ 至少是三阶局部收敛的。

由定理 2-2, 应当有 $\varphi'(\alpha) = \varphi''(\alpha) = 0$, 因为 $\varphi'(x) = 1 - r_1'(x)f(x) - r_1(x)f'(x) - r_2'(x)f^2(x) - 2r_2(x)f(x)f'(x)$

而
$$f(\alpha) = 0, f'(\alpha) \neq 0$$
, 令 $\varphi'(\alpha) = 0$ 有 $1 - r_1'(\alpha)f'(\alpha) = 0$ 取 $r_1(x) = \frac{1}{f'(x)}$ 则有 $\varphi'(\alpha) = 0$

此时有 $\varphi'(x) = -r_1'(x)f(x) - r_2'(x)f^2(x) - 2r_2(x)f(x)f'(x) \Rightarrow \varphi''(x) = -r_1''(x)f(x) - r_1'(x)f'(x) - r_2''(x)f^2(x)$

同理求解得: $r_2(x) = \frac{f''(x)}{2[f'(x)]^3}$ 详见 PPT

4.3 牛顿迭代法及其变形

4.3.1 牛顿迭代法的基本概念

方法概念 希望是**平方收敛的,因此\varphi'(\alpha) = \mathbf{0}** 取 $\varphi(x) = x + k(x)f(x)$,则 $x = \varphi(x)$ 与f(x) = 0同解。 希望构造一个k(x)使得 $\varphi'(\alpha) = 0$ 则求导有 $\varphi'(x) = 1 + k'(x)f(x) + k(x)f'(x)$

令
$$\varphi'(\alpha) = 0 \Rightarrow k(\alpha)f'(\alpha) = -1$$
 若 $f'(\alpha) \neq 0$,则有 $\frac{k(\alpha)}{f'(\alpha)} = -\frac{1}{f'(\alpha)}$ 即 $\varphi(x) = x - \frac{f(x)}{f'(x)}$

称迭代法: $x_{k+1} = x - \frac{f(x_k)}{f'(x_k)}$ 为牛顿迭代法

几何意义 给定非线性方程f(x) = 0的解 α 的近似值 x_n ,用过点 $P_n(x_n, f(x_n))$ 的**切线**: $y = f(x_n) + (x - x_n)f'(x_n)$ 近似表示曲线y = f(x),并将**该切线与x轴的交点横坐标x_{n+1}**作为 α 的新的近似值 一般计算器计算根号等内容均使用该方法

例题 1. 用牛顿法计算方程 $x^3 - x - 1 = 0$ 在x = 1.5附近的根

$$f(x) = x^3 - x - 1$$
 $f'(x) = 3x^2 - 1$ 在 1.5 附近不为零。则有 $x_{k+1} = x_k - \frac{x_k^3 - x_k - 1}{3x_k^2 - 1}$ $k = 0,1,2,...$

如此迭代 3 次, 即有六位有效数字

2. 用 Newton 法求非线性方程 $f(x) = xe^x - 1 = 0$ 在(0,1)内的根,取x(0) = 0.5

$$f'(x) = (1+x)e^x \Rightarrow x_{k+1} = x_k - \frac{x_k e^{x_{k-1}}}{(1+x_k)e^{x_k}} k = 0,1,2,...$$
 可迭代计算

4.3.2 牛顿迭代法的收敛性

若α是f(x)的单重根 $f(\alpha) = 0, f'(\alpha) \neq 0$ 因为 $\varphi'(\alpha) = \frac{f(\alpha)f''(\alpha)}{[f'(\alpha)]^2} = 0, \varphi''(\alpha) = \frac{f''(\alpha)}{f'(\alpha)}$ 一般不为零。

所以在 $f'(\alpha) \neq 0$, f''(x)连续的条件下,牛顿迭代法至少是平方收敛的。

若 α 是f(x)的重根 则有 $f(x) = (x - \alpha)^m g(x)$,其中 $g(\alpha) \neq 0, m \geq 2$

因为 $f'(x) = m(x - \alpha)^{m-1}g(x) + (x - \alpha)^m g'(x)$ 记 $x = \alpha + h$

$$\mathbb{J} \quad \varphi(\alpha+h) = (\alpha+h) - \frac{h^m g(\alpha+h)}{mh^{m-1}g(\alpha+h) + h^m g'(\alpha+h)} = \varphi(\alpha) + h - \frac{hg(\alpha+h)}{mg(\alpha+h) + hg'(\alpha+h)}$$

$$\Rightarrow \varphi'(\alpha) = \lim_{h \to 0} \frac{\varphi(\alpha+h) - \varphi(\alpha)}{h} = \lim_{h \to 0} \left(1 - \frac{g(\alpha+h)}{mg(\alpha+h) + hg'(\alpha+h)}\right) = 1 - \frac{1}{m}$$

当 $m \ge 2$ 时, $\varphi'(\alpha) \ne 0$,由 $|\varphi'(\alpha)| < 1$,得牛顿迭代法一阶收敛。

改进形式 ① 取 $\varphi(x) = x - m \frac{f(x)}{f'(x)}$, 易得 $\varphi'(\alpha) = 0$, 所以如果事前知道 α 的重数, 就可以改造迭代公式:

 $x_{k+1} = x_k - m \frac{f(x)}{f'(x)}$ 此时,**迭代序列是二阶收敛的**

② 事前不知道重数,或者令 $u(x) = \frac{f(x)}{f'(x)} = \frac{(x-\alpha)^m g(x)}{m(x-\alpha)^{m-1} g(x) + (x-\alpha)^m g'(x)} = \frac{(x-\alpha)g(x)}{mg(x) + (x-\alpha)g'(x)}$

则 $\alpha = u(x)$ 的单重零点(把原有重根转化为单根),对u(x)应用牛顿法:

有
$$\mathbf{x}^{(k+1)} = \mathbf{x}^{(k)} - \frac{\mathbf{u}(\mathbf{x}^{(k)})}{\mathbf{u}'(\mathbf{x}^{(k)})} = \mathbf{x}^{(k)} - \frac{f(\mathbf{x}^{(k)})f'(\mathbf{x}^{(k)})}{[f'(\mathbf{x}^{(k)})]^2 - f(\mathbf{x}^{(k)})f''(\mathbf{x}^{(k)})}$$
 迭代序列也是二阶收敛的

例题 1. $\sqrt{2}$ 是方程 $x^4 - 4x^2 + 4 = 0$ 的二重根,求解它

① 牛顿法:
$$\varphi(x) = x - \frac{x^4 - 4x^2 + 4}{4x^3 - 8x} = x - \frac{x^2 - 2}{4x}$$

②
$$\Re \bigoplus \varphi(x) = x - m \frac{f(x)}{f'(x)}$$
: $x_{k+1} = x_k - 2 \frac{(x_k)^2 - 2}{4x_k} = x_k - \frac{(x_k)^2 - 2}{2x_k}$

2. 计算√7的近似值

 $\sqrt[3]{7}$ 是方程 $x^3 - 7 = 0$ 的根,使用牛顿迭代公式: $x_{k+1} = x_k - \frac{x_k^3 - 7}{3x_k^2}$ 可递推

4.3.3 弦截法

推导 牛顿迭代法**计算导数不方便** 使用差分代替 $f'(x_k) \approx \frac{f(x_k) - f(x_{k-1})}{x_k - x_{k-1}}$

如果其收敛,则最终值必然相等,则代入 $x_{k+1} = x_k - \frac{f(x)}{f'(x)}$ 可得

$$x_{k+1} = x_k - \frac{f(x_k)}{\frac{f(x_k) - f(x_{k-1})}{x_k - x_{k-1}}} = x_k - \frac{f(x_k)}{f(x_k) - f(x_{k-1})} (x_k - x_{k-1})$$
 称该方法为弦截法

弦截法/割线法示意图

几何意义 由于 $\Delta A x_{k-1} x_{k+1} \sim \Delta B x_k x_{k+1}$ 所以 $\frac{f(x_k)}{x_k - x_{k-1}} = \frac{-f(x_{k-1})}{x_{k+1} - x_{k-1}} \Rightarrow x_{k+1} = x_k - \frac{f(x_k)}{f(x_k) - f(x_{k-1})} (x_k - x_{k-1})$

注意 ① 当 Newton 法与弦截法都收敛时, 弦截法的收敛阶为1.681, 低于 Newton 法

② 弦截法虽无需求导,但需**前两步**的值. (有两个起始点)

例题 1. 用迭代方法求方程 $f(x) = x - 2^{-x} = 0$ 在[0,1]内实根的近似值,精度 10^{-4} ,初值取 $x_0 = 0.5$

简单迭代公式: $x_{k+1} = 2^{-x_k}$ 很慢

牛顿迭代公式: $x_{k+1} = x_k - \frac{x_k - 2^{-x_k}}{1 + 2^{-x_k} \ln 2}$ (k = 0,1,2,...) 4 次收敛

弦截法迭代公式: $x_{k+1} = x_k - \frac{f(x_k)}{f(x_k) - f(x_{k-1})} (x_k - x_{k-1})$ (k = 1, 2, ...) 5 次收敛

4.3.4 牛顿下山法

概述 为防止牛顿法发散,加入条件有 $|f(x_{k+1})| < |f(x_k)|$,即要求单减

引入 为此,引入 $0 < \lambda < 1$,令 $x_{k+1} = x_k - \lambda \frac{f(x_k)}{f'(x_k)}$ 称入为下山因子

后一个点是前一个点加一个矫正项,如果后一项 $\frac{f(x_k)}{f'(x_k)}$ 过大,可能会脱离定义域,要增加 λ 保证更新后的值仍在定义域内。 $|f(x_{k+1})| < |f(x_k)|$ 代表值不断趋向准确值。

如果知道 x_k 后,为了求 x_{k+1} 可以先用 $\lambda = 1, \frac{1}{2}, \frac{1}{2^2}, \frac{1}{2^3}$ …进行试算,若求不到使得 $|f(x_{k+1})| < |f(x_k)|$ 的 x_{k+1} ,则称为下山失败,应当另取初始值 x_0

例题 1. 用牛顿下山法计算 $f(x) = \frac{x^3}{3} - x = 0$

4.4 迭代法的加速

4.4.1 Aitken 加速

推导 设 $x_k \to \alpha$ 为线性收敛,则当k充分大时, $\frac{x_k - \alpha}{x_{k-1} - \alpha} \approx C$,从而 $\frac{x_k - \alpha}{x_{k-1} - \alpha} \approx \frac{x_{k+1} - \alpha}{x_k - \alpha}$

 $\Rightarrow \alpha \approx \frac{x_{k-1}x_{k+1}-x_k^2}{x_{k-1}-2x_k+x_{k+1}} = x_{k+1} - \frac{(x_{k+1}-x_k)^2}{x_{k-1}-2x_k+x_{k+1}}$ **当前结果与前面 2 次结果**结合,得到矫正项,使之加速

公式 令 $\bar{x}_{k+1} = x_{k+1} - \frac{(x_{k+1} - x_k)^2}{x_{k-1} - 2x_k + x_{k+1}}$ 可以证明 $\lim_{k \to \infty} \frac{\bar{x}_k - \alpha}{x_k - \alpha} = 0$ 则速度比原始方法快,称此法为 Aitken 加速法

注意 有时甚至可能将发散的迭代格式变为收敛