厦门大学《大学物理》B 下期末试卷

2011 级理科非物理类各专业

试卷类型: (A卷) 2013.1.

1、(15分)

如图所示,两个轻弹簧的劲度系数分别为

- 一质量为m的物体联系一起,在光滑的斜面上运动,
- (1) 写出系统的动力学方程,证明物体的运动是简谐振动;

(2) 若计时开始时,系统处于平衡位置,使物体具有斜向下的以沿斜面向下为 *x* 轴的正方向,求物体的运动方程。

初速度

2、(15分)

设一列入射波的表达式为 $y_1(x,t) = A\cos[\omega(t-\frac{x}{u})]$, 在 x = 0 处发生反射,反射点固定不动,

- 求:(1)反射波的表达式;
 - (2) 合成的驻波的表达式;
 - (3) 各波腹和波节的位置。

3、(12分)

在真空中的双缝干涉实验中,单色光源 S_0 到两缝 S_1 和 S_2 的距离分别为 l_1 和 l_2 ,并且 l_1 — l_2 = 3λ , λ 为入射光的波长,双缝之间的距离为 d ,双缝到屏幕的距离为 D ($D\gg d$),如图所示。求:

- (1) 零级明纹到屏幕中央 O 点的距离;
- (2) 相邻两明条纹间的距离。

4、(12分)

用波长为500nm的单色光垂直照射到由两块光学平玻璃构成的空气劈形膜上。在观察反射光的干涉现象中,距劈形膜棱边L=1.56cm的A处,是从棱边算起的第四条暗条纹中心。

- (1) 求此空气劈形膜的劈尖角 θ ;
- (2) 改用 600nm 的单色光垂直照射到此劈尖上,仍观察反射光的干涉条纹,问 A 处反射光的干涉情况如何?

5、(10分)

在夫琅禾费单缝衍射实验中,如果缝宽a与入射光波长 λ 的关系分别为:

(a)
$$a = \lambda$$
; (b) $a = 5\lambda$; (c) $a = 10\lambda$,

- (1) 试分别计算中央明条纹边缘所对应的衍射角分别是多大?
- (2) 讨论计算的结果说明什么问题。

6、(16分)

波长 λ =600 nm 的单色平行光垂直入射到一平面衍射光栅上,发现有两个相邻的主极大分别 出现在 $\sin \varphi = 0.20$ 和 $\sin \varphi = 0.30$ 的方向上,且第四级缺级,问:

- (1) 光栅常数 d是多大?
- (2) 光栅上狭缝的最小宽度 a 是多大?
- (3) 按上述选定的d、a值,求在屏幕上可能呈现的全部主极大的级次。

7、(10分)

- 一束光强为 I_0 的自然光垂直入射在三个平行放置的偏振片 P_1 、 P_2 、 P_3 上,已知 P_1 与 P_3 的偏振化方向相互垂直。求:
 - (1) P_2 与 P_1 的偏振化方向之间夹角为多大时,穿过第三个偏振片的透射光强最大?
 - (2) 此时光强最大值为多少?

8、(10分)

如图所示,一块折射率为 n_2 =1.50的平面玻璃浸在折射率为 n_1 =1.30的水中,已知一束光入射到水面时反射光是完全线偏振光。若要使玻璃表面的反射光也是完全线偏振光,则玻璃表面与水平面的夹角 θ 应为多大?

