Chapitre 2 : Ensembles de nombres

Ensembles usuels

Définition: Entiers

- Un nombre entier naturel est un nombre entier positif ou nul. On note l'ensemble des nombres entiers naturels \mathbb{N} .
- · Un nombre entier relatif est un nombre entier positif, négatif ou nul. On note l'ensemble des nombres entiers relatifs \mathbb{Z} .

Remarque

Tout nombre entier naturel est un nombre entier relatif : on note $\mathbb{N} \subset \mathbb{Z}$.

Définition: Nombres décimaux et rationnels

- Un <u>nombre décimal</u> est un nombre pouvant s'écrire $\frac{a}{10^n}$, où a est un nombre entier relatif et n est un entier naturel. On note l'ensemble des nombres décimaux \mathbb{D} .
- Un <u>nombre rationnel</u> est un nombre pouvant s'écrire $\frac{a}{b}$, où a est un nombre entier relatif et b est un entier naturel non nul. On note l'ensemble des nombres rationnels $\mathbb Q$.

Remarque

- Tout entier relatif est un nombre décimal.
- Tout nombre décimal est un nombre rationnel.

On note $\mathbb{N} \subset \mathbb{Z} \subset \mathbb{D} \subset \mathbb{Q}$.

Définition: Nombre réel

On a deux manières de définir les nombres réels :

- Si on considére une droite graduée, l'ensemble des abscisses des points de cette droite forme l'ensemble des nombres réels.
- Alternativement, un nombre réel est un nombre qui peut s'écrire comme un entier suivi d'un nombre fini ou infini de chiffres après la virgule.

On note l'ensemble des nombres réels R.

Remarque

Tout nombre rationnel est un nombre réel.

On note $\mathbb{N} \subset \mathbb{Z} \subset \mathbb{D} \subset \mathbb{Q} \subset \mathbb{R}$.

Exemple

- Exemple d'entiers naturels : 0; 1; 2; 50; 357; 892 ...
- Exemple d'entiers relatifs mais pas naturels : -1; -76; -2689 ...
- Exemple de nombres décimaux mais pas d'entiers relatifs : 0,8; -89,127 ...
- Exemple de nombres rationnels mais pas décimaux : $\frac{6}{11}$; $\frac{1}{3}$; $\frac{60}{859}$...
- Exemple de nombres réels mais pas rationnels : $\sqrt{2}$; $\sqrt{3}$; π ; e ...

2 Intervalles

Définition : Intervalle de $\mathbb R$

Soient a et b deux nombres réels tels que $a \le b$.

- L'intervalle [a;b] est l'ensemble des nombres réels x tels que $x \ge a$ et $x \le b$. On dit que a et b sont les **bornes** de cet intervalle.
 - L'**amplitude** de cet intervalle est b a.
- L'intervalle $]-\infty;b]$ est l'ensemble des nombres réels x tels que $x \le b$.
- L'intervalle $[a;+\infty[$ est l'ensemble des nombres réels x tels que $x \ge a$.

Pour exclure une des bornes d'un intervalle, il faut utiliser un crochet tourné vers l'extérieur. Ainsi [a;b[est l'ensemble des nombres réels x tels que $x \ge a$ et x < b.

Exemple

Sur la droite ci-dessus, I est l'intervalle [1,3[.

Ainsi :

• I contient par exemple 1, 2 ou encore 1,5.

• I ne contient pas 3, 0 ou encore 5,6.

3 Vocabulaire des ensembles

Définition: Ensemble, éléments

Un **ensemble** contient des **élémen<u>ts</u>**.

Si e est un élément dans E, on note $|e \in E|$

Si un élément e n'est pas dans E, on note $e \notin E$

Exemple

• $1 \in \{1,2,3\}, 2 \in \{1,2,3\}, \text{ et } 3 \in \{1,2,3\}.$ En revanche, $4 \notin \{1,2,3\}.$

Définition: intersection, union

Soient A et B deux ensembles. On note

- A∩B l'**intersection** de A et de B, l'ensemble dont les éléments sont dans A <u>et</u> dans B. On prononce « A **inter** B ».
- $A \cup B$ l'union de A et de B, l'ensemble dont les éléments sont dans A \underline{ou} dans B. On prononce « A union B ».

Exemple

- $\{1,2,3\} \cap \{2,3,4\} = \{2,3\}$
- $\{1,2,3\} \cup \{2,3,4\} = \{1,2,3,4\}$
- $[-1;+\infty[\cap]-\infty;1] = [-1;1]$

Définition: sous-ensemble

Si tous les éléments de B sont dans A, on dit que B est un **sous-ensemble** de A, et on note $B \subset A$

Sinon, on note $B \not\subset A$.

Exemple

- $\{1,2\} \subset \{1,2,3\}$
- $\{1,2,4\}\not\subset\{1,2,3\}$, car $4\not\in\{1,2,3\}$.
- $\mathbb{N} \subset \mathbb{Z}$