The listing of claims will replace all prior versions, and listings, of claims in the application:

Listing of Claims:

(original) An electrochemical device component, comprising:
 an active metal electrode having a first surface and a second surface;

a protective composite separator on the first surface of the electrode, the composite comprising,

a first material layer in contact with the electrode, the first material being ionically conductive and chemically compatible with the active metal, wherein the first material comprises a material selected from the group consisting of a composite reaction product of the active metal with a metal nitride, a composite reaction product of the active metal with silicon nitride, a composite reaction product of the active metal with a metal halide, a composite reaction product of the active metal with a metal phosphide, a reaction product of the active metal with red phosphorus, and a reaction product of the active metal with LiPON coated with a wetting layer; and

a second material layer in contact with the first layer, the second material being substantially impervious, ionically conductive, reactive to the active metal and chemically compatible with the first material;

wherein the ionic conductivity of the composite is at least 10^{-7} S/cm.

- 2. (original) The component of claim 1, further comprising a current collector on the second surface of the active metal electrode.
- 3. (currently amended) The component of claim 1, wherein the second material <u>is</u> <u>comprised in an comprises the sole</u> electrolyte in a <u>subsequently formed</u> battery cell.
- 4. (currently amended) The component of claim 3, wherein the <u>second material is the sole</u> electrolyte in the subsequently formed battery cell further comprises an electrolyte.
- 5. (original) The component of claim 1, wherein the ionic conductivity of the second material layer is at least 10^{-7} S/cm
- 6. (original) The component of claim 1, wherein the ionic conductivity of the second material layer is between about 10^{-6} S/cm and 10^{-3} S/cm.

- 7. (original) The component of claim 1, wherein the ionic conductivity of the second material layer is about 10^{-3} S/cm.
- 8. (original) The component of claim 1, wherein the thickness of the first material layer is about 0.1 to 5 microns.
- 9. (original) The component of claim 1, wherein the thickness of the first material layer is about 0.2 to 1 micron.
- 10. (original) The component of claim 1, wherein the thickness of the first material layer is about 0.25 micron.
- 11. (original) The component of claim 1, wherein the thickness of the second material layer is about 0.1 to 1000 microns.
- 12. (currently amended) The component of claim 1, wherein the ionic conductivity of the second material layer is at least about 10⁻⁷ S/cm and the thickness of the second material layer is about 0.25 to 1 micron.
- 13. (original) The component of claim 1, wherein the ionic conductivity of the second material layer is between about 10^{-4} about 10^{-3} S/cm and the thickness of the second material layer is about 10 to 500 microns.
- 14. (original) The component of claim 13, wherein the thickness of the second material layer is about 10 to 100 microns.
- 15. (original) The component of claim 1, wherein the active metal of the electrode is selected from the group consisting of alkali metals, alkaline earth metals, and transition metals.
- 16. (original) The component of claim 1, wherein the active metal of the electrode is an alkali metal.
- 17. (original) The component of claim 1, wherein the active metal of the electrode is lithium or a lithium alloy.
- 18. (currently amended) The component of claim 17 elaim 1, wherein the first material comprises a material selected from the group consisting of a composite reaction product of \underline{Li} active metal with a metal nitride C_3N , active metal nitrides, active metal phosphides, and active metal halides, and active metal phosphorus oxynitride glass.
- 19. (currently amended) The component of <u>claim 18</u> elaim 1, wherein the <u>metal nitride is</u> selected from the group consisting of copper nitride, tin nitride, zinc nitride, iron nitride, cobalt

nitride and aluminum nitride first material comprises a material selected from the group consisting of a composite reaction product of Li with C₃N, Li₃N, Li₃P and LiI, LiBr, LiCl, LiF, and LiPON.

- 20. (currently amended) The component of claim 1, wherein the second layer comprises a material selected from the group consisting of phosphorus-based glass, oxide-based glass, <u>sulfur-based glass</u> sulpher based glass, oxide/sulfide based glass, selenide based glass, gallium based glass, germanium based glass, glass-ceramic active metal ion conductors, sodium beta-alumina and lithium beta-alumina.
- 21. (withdrawn) The component of claim 1, wherein the second layer comprises a material selected from the group consisting of LiPON, Li₃PO₄.Li₂S.SiS₂, Li₂S.GeS₂.Ga₂S₃, LISICON, NASICON, sodium and lithium beta-alumina.
- 22. (withdrawn) The component of claim 1, wherein the first layer material comprises a complex of an active metal halide and a polymer.
- 23. (withdrawn) The component of claim 23, wherein the polymer is selected from the group consisting of poly(2-vinylpyridine), polyethylene and tetraalkylammonium.
- 24. (withdrawn) The component of claim 23, wherein the complex is LiI-poly(2-vinylpyridine).
- 25. (currently amended) The component claim 1, wherein the first layer comprises a composite reaction product of Li with $\underline{\text{Cu}_3\text{N}}$ $\underline{\text{C}_3\text{N}}$.
- 26. (withdrawn) The component claim 1, wherein the first layer comprises Li₃P.
- 27. (withdrawn) The component claim 1, wherein the first layer comprises LiPON.
- 28. (original) The component of claim 1, wherein the second layer is an ion conductive glass-ceramic having the following composition:

Composition	mol %
P_2O_5	26-55%
${ m SiO}_2$	0-15%
$GeO_2 + TiO_2$	25-50%
in which GeO ₂	050%

${ m TiO_2}$	050%
ZrO_2	0-10%
M_2O_3	0 < 10%
Al_2O_3	0-15%
Ga_2O_3	0-15%
Li ₂ O	3-25%

and containing a predominant crystalline phase composed of $Li_{1+x}(M,Al,Ga)_x(Ge_{1-y}Ti_y)_{2-x}(PO_4)_3$ where $X\leq 0.8$ and $0\leq Y\leq 1.0$, and where M is an element selected from the group consisting of Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm and Yb and/or and $Li_{1+x+y}Q_xTi_{2-x}Si_yP_{3-y}O_{12}$ where $0< X\leq 0.4$ and $0< Y\leq 0.6$, and where Q is Al or Ga.

- 29. (withdrawn) The component claim 28, wherein the first layer comprises Li₃P.
- 30. (currently amended) The component claim 28, wherein the first layer comprises a composite reaction product of Li with $\underline{\text{Cu}_3\text{N}}$ $\underline{\text{C}_3\text{N}}$.
- 31. (withdrawn) The component claim 28, wherein the first layer comprises LiI poly-2-vinylpyridine.
- 32. (withdrawn) The component claim 28, wherein the first layer comprises LiPON.
- 33. (withdrawn) The component of claim 1, wherein the second layer is a flexible membrane comprising particles of an ion conductive glass-ceramic having the following composition:

Composition	mol %	
P ₂ O ₅	26-55%	
SiO_2	0-15%	
$GeO_2 + TiO_2$	25-50%	
in which GeO ₂	050%	
${ m TiO_2}$	050%	
ZrO_2	0-10%	
M_2O_3	0 < 10%	

Al_2O_3	0-15%
Ga_2O_3	0-15%
Li ₂ O	3-25%

and containing a predominant crystalline phase composed of $\text{Li}_{1+x}(M,\text{Al},\text{Ga})_x(\text{Ge }_{1-y}\text{Ti}_y)_{2-x}(\text{PO}_4)_3$ where $X \leq 0.8$ and $0 \leq Y \leq 1.0$, and where M is an element selected from the group consisting of Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm and Yb and/or and $\text{Li}_{1+x+y}Q_x\text{Ti}_{2-x}\text{Si}_yP_{3-y}O_{12}$ where $0 < X \leq 0.4$ and $0 < Y \leq 0.6$, and where Q is Al or Ga in a solid polymer electrolyte.

34-72. (canceled)

- 73. (new) The component of claim 18, wherein the metal nitride is copper nitride (Cu₃N).
- 74. (new) The component of claim 17, wherein the first material comprises a material selected from the group consisting of a composite reaction product of Li with a metal halide.
- 75. (new) The component of claim 17, wherein the first material comprises a material selected from the group consisting of a composite reaction product of Li with a metal phosphide.
- 76. (new) The component of claim 17, wherein the first material comprises a material selected from the group consisting of a reaction product of Li with red phosphorus.
- 77. (new) The component of claim 17, wherein the first material comprises a material selected from the group consisting of a reaction product of Li with LiPON coated with a wetting layer.
- 78. (new) The component of claim 77, wherein the wetting layer coating is Ag.
- 79. (new) The component of claim 77, wherein the wetting layer coating is Sn.