# Introduction

What is Machine Learning?

# **Machine Learning: A Definition**

**Definition:** The field of study that gives computers the ability to learn without being explicitly learned.

(Arthur Samuel-1950)

# **Machine Learning: A Definition**

**Definition:** A computer program is said to *learn* from experience E with respect to some class of tasks T and performance measure P, if its performance at tasks in T, as measured by P, improves with experience E.

(Tom Mitchell-1998)

# Case study 1: Spam/Not spam emails

- Suppose your email program watches which emails you do or do not mark as spam, and based on that learns how to better filter spam.
   What is the task T in this setting?
  - The task T is classifying emails as spam or not spam
  - The experience E is watching you label emails as spam or not spam
  - The performance P is the number of emails correctly classified as spam or not spam

# Case study 2: Handwriting recognition learning

- Task T: recognizing and classifying handwritten words within images
- Performance measure P: percent of words correctly classified
- Training experience E: a database of handwritten words with given classifications

# **Machine Learning Approaches**

- Supervised learning
- Un-supervised learning

# **Supervised Learning**

- Input and output labels are given.
- Categorized into:
  - regression and
  - Classification
- Regression:
  - map input variables to some continuous function
  - predict results within a continuous output
- Classification:
  - map input variables into discrete categories
  - predict results in a discrete output

## Example 1: Housing price prediction

| Size in<br>Feet <sup>2</sup> | Price in<br>lakhs |
|------------------------------|-------------------|
| 500                          | 25                |
| 750                          | 32                |
| 1000                         | 55                |
| 1200                         | 75                |
| 1400                         | 90                |
| 1500                         | 120               |



Supervised Learning: Labeled data is given.

#### **Housing Price Prediction**



h maps from x's to y's

### Example: Housing price prediction

| Size in<br>Feet <sup>2</sup> | Price in<br>lakhs |
|------------------------------|-------------------|
| 500                          | 25                |
| 750                          | 32                |
| 1000                         | 55                |
| 1200                         | 75                |
| 1400                         | 90                |
| 1500                         | 120               |



Supervised Learning: Labeled data is given.

Regression: Predict continuous valued output(price)

# Example 2: Positive/Negative Sentiment Prediction

| Doc ID | Sentiment |
|--------|-----------|
| D1     | +ve       |
| D2     | +ve       |
| D3     | -ve       |
|        |           |
|        |           |
| D1000  | -ve       |

**Positive Sentiment features**: good, extraordinary, cool, awesome, attractive, special, etc.,

Negative Sentiment features: not good, bad, worse, hate, sad, abused, awkward, dark, etc.,

# Example 2: Positive/Negative Sentiment Prediction

| Doc ID | Sentiment |
|--------|-----------|
| D1     | +ve       |
| D2     | +ve       |
| D3     | -ve       |
|        |           |
|        |           |
| D1000  | -ve       |

**Positive Sentiment features**: good, extraordinary, cool, awesome, attractive, special, etc.,

Negative Sentiment features: not good, bad, worse, hate, sad, abused, awkward, dark, etc.,

Classification: Discrete valued output (+ve or -ve)

You're running a company, and you want to develop learning algorithms to address each of two problems.

Problem 1: You have a large inventory of identical items. You want to predict how many of these items will sell over the next 3 months. Problem 2: You'd like software to examine individual customer accounts, and for each account decide if it has been hacked/compromised.

Should you treat these as classification or as regression problems?

- Treat both as classification problems.
- Treat problem 1 as a classification problem, problem 2 as a regression problem.
- Treat problem 1 as a regression problem, problem 2 as a classification problem.
- 4. Treat both as regression problems.

Input is known but output is not known.

Example 1:Given a collection of text documents, organize them according to content similarity, to produce a topic hierarchy.

Example 1:Given a collection of text documents, organize them according to content similarity, to produce a topic hierarchy.

Example 2: In marketing, segment customers according to similarities, to do targeted marketing.

Example 1:Given a collection of text documents, organize them according to content similarity, to produce a topic hierarchy.

Example 2: In marketing, segment customers according to similarities, to do targeted marketing.

Example 3: On social networks, identifying research communities working on same problem.

Of the following examples, which would you address using an <u>unsupervised</u> learning algorithm? (Select all that apply.)

- Given email labeled as spam/not spam, learn a spam filter.
- Given a set of news articles found on the web, group them into set of articles about the same story.
- Given a database of customer data, automatically discover market segments and group customers into different market segments.
- Given a dataset of patients diagnosed as either having diabetes or not, learn to classify new patients as having diabetes or not.

# **Linear Regression**

# Linear Regression with one variable

#### Single feature(variable)

| Size (feet²) | Price (lakhs) |  |  |
|--------------|---------------|--|--|
|              |               |  |  |
| 2104         | 460           |  |  |
| 1416         | 232           |  |  |
| 1534         | 315           |  |  |
| 852          | 178           |  |  |
| •••          | •••           |  |  |

#### Model

$$h_w(x) = w_0 + w_1 * x_1$$

# Linear Regression with one variable

#### Single feature(variable)

| Size (feet²)<br>x | Price (lakhs)<br>y |
|-------------------|--------------------|
| 2104              | 460                |
| 1416              | 232                |
| 1534              | 315                |
| 852               | 178                |
| •••               | •••                |

#### Hypothesis Model

$$h_{w}(x) = w_{0} + w_{1} * x$$

# Example:

 Suppose we have the following set of training data:

| input x | output y |
|---------|----------|
| 0       | 4        |
| 1       | 7        |
| 2       | 7        |
| 3       | 8        |

- Now we can make a random guess about our  $h_w(x)$  function:  $w_0=2$  and  $w_1=2$ . The hypothesis function becomes  $h_w(x)=2+2x$ .
- For input of 1, hypothesis, y will be 4

# Linear Regression with Multiple variables

#### Multiple features(variables)

| Size (feet²) | Number of bedrooms | Number of floors | Age of home (years) | Price (lakhs) |
|--------------|--------------------|------------------|---------------------|---------------|
| x1           | <b>x2</b>          | х3               | <b>x4</b>           | Υ             |
| 2104         | 5                  | 1                | 45                  | 460           |
| 1416         | 3                  | 2                | 40                  | 232           |
| 1534         | 3                  | 2                | 30                  | 315           |
| 852          | 2                  | 1                | 36                  | 178           |
| •••          | •••                | •••              |                     |               |

#### Hypothesis Model

$$h_w(x) = h(x) = w_0 + w_1 * x_1 + w_2 * x_2 + w_3 * x_3 + w_4 * x_4$$

# **Hypothesis**

$$h(x) = w_0 + w_1^* x_1 + w_2^* x_2 + w_3^* x_3 + w_4^* x_4$$

#### Example:

$$h(x) = 80 + 0.1*x1+ 0.01 *x2 + 3*x3 - 2 *w4$$

Now,

#### Input is a vector of the form

$$x_0$$

$$X = x_1 \in \mathbb{R}^{n+1}$$

$$x_2$$

$$x_3$$
...
$$x_n$$

#### W's is a vector of the form

# **Hypothesis**

#### Input is a vector of the form

#### W's is a vector of the form

Now, 
$$h(x) = w_0 + w_1^*x_1 + w_2^*x_2 + w_3^*x_3 + w_4^*x_4$$
  
For convenience of notation, define  $x_0=1$ 

Therefore, 
$$h(x) = W^T X = \begin{bmatrix} w_0 & w_1 & w_2 & ... & w_n \end{bmatrix} \begin{bmatrix} x_0 \\ x_1 \\ x_2 \end{bmatrix}$$

$$\begin{array}{c} 1x (n+1) \\ matrix \\ ... \\ x_n \end{array}$$

# **Cost Function**

Hypothesis function:  $h_w(x) = w_0 + w_1^*x$ 



Hypothesis function:  $h_w(x) = w_0 + w_1 * x$ 



$$w_0 = 1.5$$
  
 $w_1 = 0$ 

$$w_0 = 0$$
  
 $w_1 = 0.5$ 

$$w_0 = 1$$
  
 $w_1 = 0.5$ 







Hypothesis function:  $h_w(x) = w_0 + w_1^*x$ 



$$w_0 = 1.5$$
  
 $w_1 = 0$ 

$$w_0 = 0$$
  
 $w_1 = 0.5$ 

$$w_0 = 1$$
  
 $w_1 = 0.5$ 







Hypothesis function:  $h_w(x) = w_0 + w_1^*x$ 



$$w_0 = 1.5$$
  
 $w_1 = 0$ 

$$w_0 = 0$$
  
 $w_1 = 0.5$ 

$$w_0 = 1$$
$$w_1 = 0.5$$







# How to choose parameters?



**Idea is** to choose  $w_0$ ,  $w_1$  so that  $h_w(x)$  is close to y for training examples (x, y)

$$\begin{aligned} & \underset{\text{w0, w1}}{\text{minimize}} \frac{1}{2m} \sum_{i=1}^{m} \left( h_{\text{w}}(x_i) - y_i \right)^2 \\ & \text{where } h_{\text{w}}\left( \mathbf{x} \right) = \mathbf{w_0} + \mathbf{w_1}^* \mathbf{x} \end{aligned}$$

#### **Cost Function**

Cost Function:  $J(w_0, w_1)$ : This takes an average difference of all the results of the hypothesis with inputs from x's and the actual output y's.

$$J(\mathbf{w_0}, \mathbf{w_1}) = \frac{1}{2m} \sum_{i=1}^{m} (h_{W}(x_i) - y_i)^2$$

Minimize the cost function i.e.,

minimize 
$$\frac{1}{2m} \sum_{i=1}^{m} (h_{W}(x_i) - y_i)^2$$

#### **Hypothesis:**

$$h_{w}(x) = w_{0} + w_{1}^{*}x$$

#### **Parameters:**

$$W_0 + W_1$$

#### **Cost Function:**

**J(w<sub>0</sub>, w<sub>1</sub>)=** 
$$\frac{1}{2m} \sum_{i=1}^{m} (h_{W}(x_i) - y_i)^2$$

Goal: minimize  $J(W_0, W_1)$ w0, w1

# Simplified Hypothesis

$$h_{w}(x) = w_{1}^{*} x$$



**J(w<sub>1</sub>)** = 
$$\frac{1}{2m} \sum_{i=1}^{m} (h_{W}(x_i) - y_i)^2$$

#### minimize

w0, w1

## Visualization of Cost Function J

#### Hypothesis, $h_{w}(x)$

(For fixed  $w_1$ , this is function of x)

# $h_w(x)$ $w_1 = 1$

$$\mathbf{w}_1 = \mathbf{1}$$

#### Cost function: J(w1)

(function of parameter w1)



$$\mathbf{w_1} = \mathbf{1}$$

$$J(1) = (1/2*3) [((1-1)^2) + ((2-2)^2) + ((3-3)^2)]$$

$$J(1) = (1/6) [0^2 + 0^2 + 0^2]$$

$$J(1) = (1/6)[0] = 0$$

## Hypothesis, $h_w(x)$

(For fixed  $w_1$ , this is function of x)



$$w_1 = 0.5$$

### Cost function: J(w1)



Hypothesis,  $h_w(x)$ 

(For fixed  $w_1$ , this is function of x)

Cost function: J(w1)



$$w_1 = 0.5$$



## Hypothesis, $h_w(x)$

(For fixed  $w_1$ , this is function of x)

## Cost function: J(w1)





$$w_1 = 0.5$$

$$J(0.5) = (1/2*3) [((0.5-1)^2) + ((1-2)^2) + ((1.5-3)^2)]$$

$$J(0.5) = (1/6) [(-0.5)^2 + (-1)^2 + (-1.5)^2]$$

$$J(0.5) = (1/6)[3.5] = 0.58$$

## Hypothesis, $h_{w}(x)$

(For fixed  $w_1$ , this is function of x) (function of parameter w1)

**Cost function: J(w1)** 



## Hypothesis, $h_{w}(x)$

Cost function: J(w1)

(For fixed  $w_1$ , this is function of x) (function of parameter w1)



$$J(0) = (1/2*3) [((-1)^2) + ((0-2)^2) + ((0-3)^2)]$$

$$J(0) = (1/6) [1 + 4 + 9]$$

$$J(0) = (1/6) [14] = 14/6 = 2.33$$

## Hypothesis, $h_w(x)$

(For fixed  $w_1$ , this is function of x)



$$w_1 = 0$$

#### **Cost function: J(w1)**



$$W_1 = 1.5, 2, 2.5, ...$$

## Hypothesis, $h_w(x)$

(For fixed  $w_1$ , this is function of x)



$$W_1 = 0$$

### **Cost function: J(w1)**

(function of parameter w1)



$$W_1 = 1.5, 2, 2.5, ...$$

minimize J<sub>w1</sub>(W1)

# **Logistic Regression**

Logistic Regression is classification problem.

Want : 0 <= h(x) <= 1

For linear regression:  $h(x) = W^TX$ 

For logistic regression:  $h(x) = g(W^TX) = g(z) = 1/1 + e^{-z} - this is logistic function$ 

Therefore,

$$g(z) = 1$$
  
 $1 + e^{-z}$   
 $h(x) = 1$   
 $1 + e^{-W^{T}X}$ 



# **Hypothesis output**

h(x) = estimated probability that y=1 on input x

$$h(x) = 1 = p(y=1/x,w)$$
  
1+  $e^{-W^TX}$ 

Predict "y=1" if h(x) >= 0.5

Predict "y=0" if h(x) < 0.5



When z>=0, g(z)>=0.5i.e.,  $h(x)=g(w^Tx)>=0.5$  as  $z=w^Tx$ 

# **Loss Function**

$$J(w) = \frac{1}{m} \sum_{i=1}^{m} \frac{1}{2} \left( h(x^{(i)}) - y^{(i)} \right)^{2}$$
 Let, cost(h(x),y)=  $\frac{1}{2} \left( h(x^{(i)}) - y^{(i)} \right)^{2}$  where, h(x) =  $\frac{1}{1 + e^{-W^{T}X}}$ 

# Loss/Objective/Error Function

$$\begin{split} &\mathsf{J(w)} = \tfrac{1}{m} \sum_{i=1}^m \mathsf{Cost}\big(h_{\mathsf{w}}(x^{(i)}), y^{(i)}\big) \\ &\operatorname{Cost}(h_{\mathsf{w}}(x), y) = -\log(h_{\mathsf{w}}(x)) \quad \text{if } y = 1 \\ &\operatorname{Cost}(h_{\mathsf{w}}(x), y) = -\log(1 - h_{\mathsf{w}}(x)) \quad \text{if } y = 0 \end{split}$$



# Logistic regression cost function

$$\operatorname{Cost}(h_{\mathsf{w}}(x),y) = \begin{cases} -\log(h_{\mathsf{w}}(x)) & \text{if } y = 1\\ -\log(1-h_{\mathsf{w}}(x)) & \text{if } y = 0 \end{cases}$$



Cost = 0 if 
$$y = 1, h_{w}(x) = 1$$
  
But as  $h_{w}(x) \to 0$   
 $Cost \to \infty$ 

Captures intuition that if  $h_{\mathsf{w}}(x) = 0$ , (predict  $P(y = 1|x; \ ) = 0$ ), but y = 1, we'll penalize learning algorithm by a very large cost.

# Logistic regression cost function

$$\operatorname{Cost}(h_{\mathsf{w}}(x),y) = \left\{ \begin{array}{cc} -\log(h_{\mathsf{w}}(x)) & \text{if } y = 1 \\ -\log(1-h_{\mathsf{w}}(x)) & \text{if } y = 0 \end{array} \right.$$



Cost = 
$$\infty$$
 if  $y = 0$ ,  $h_w(x) = 1$   
But as  $h_w(x) \to 0$   
 $Cost \to 0$ 

Captures intuition that if  $h_{\mathsf{w}}(x) = 1$ , (predict  $P(y=0 | x; \mathsf{w}) = 1$ ), but y=1, we'll penalize learning algorithm by a very large cost.

# Simplified Logistic regression cost function

$$Cost(h(x), y) = \begin{cases} -\log(h(x)) & \text{if } y = 1\\ -\log(1 - h(x)) & \text{if } y = 0 \end{cases}$$

$$J(w) = \frac{1}{m} \sum_{i=1}^{m} Cost(h(x^{(i)}), y^{(i)})$$

$$Cost(h(x^{(i)}), y^{(i)}) = -y^{(i)} \log h(x^{(i)}) + (1 - y^{(i)}) \log (1 - h(x^{(i)}))$$

$$J(w) = -\frac{1}{m} \left[ \sum_{i=1}^{m} y^{(i)} \log h(x^{(i)}) + (1 - y^{(i)}) \log (1 - h(x^{(i)})) \right]$$

# **Problem on Linear Regression**

• Given the following data set. Using linear regression, estimate the target variable y as a function of the input feature x. The hypothesis is  $h_w(x) = w_0 + w_1(x)$ 

| X  | Y |
|----|---|
| 2  | 3 |
| 3  | 4 |
| 4  | 5 |
| 5  | 6 |
| 6. | 7 |

- 1. Given w parameter, find the ones which will best fit the data: i)  $w_0 = 1$ ,  $w_1 = 0.5$ 
  - ii)  $W_0 = 1$ ,  $W_1 = 1.5$
  - iii)  $W_0 = 1.5$ ,  $W_1 = 1$ .
- 2. Plot the hypothesis for best w parameters and give the value of the cost function for the same, which is mean square error function?
- 3. Use answer of (1) to evaluate  $h_w(x = 8)$

| $w_0 = 1$ | $w_0 = 1$ and $w_1 = 0.5$ |                        |                |                           |
|-----------|---------------------------|------------------------|----------------|---------------------------|
| X         | Υ                         | $h(X) = w_0 + w_1 * X$ | h(X)-Y         | (h(X)-Y)^2                |
| 2         | 3                         | 1 + 0.5 * 2 = 2        | 2 -3 = -1      | (-1)^2 = 1                |
| 3         | 4                         | 1 + 0.5 * 3 = 2.5      | 2.5 – 4 = -1.5 | (-1.5)^2 = 2.25           |
| 4         | 5                         | 1 + 0.5 * 4= 3         | 3 – 5 = -2     | (-2)^2 = 4                |
| 5         | 6                         | 1 + 0.5 * 5 = 3.5      | 3.5 – 6 = -2.5 | (-2.5)^2 = 6.25           |
| 6         | 7                         | 1 + 0.5 * 6 = 4        | 4 – 7 = -3     | (-3)^2 = 9                |
|           |                           |                        |                | $\Sigma(h(X)-Y)^2 = 22.5$ |

Cost Function: J(w0,w1) = 
$$\frac{1}{2m} \sum_{i=1}^{m} (h_{W}(x_{i}) - y_{i})^{2}$$

$$J(1,0.5) = (1/2*5)*22.5 = (1/10)*22.5 = 2.25$$

| $w_0 = 1$ | $w_0 = 1$ and $w_1 = 1.5$ |                        |               |                    |
|-----------|---------------------------|------------------------|---------------|--------------------|
| X         | Υ                         | $h(X) = w_0 + w_1 * X$ | h(X)-Y        | (h(X)-Y)^2         |
| 2         | 3                         | 1 + 1.5 * 2 = 4        | 4 -3 = 1      | (1)^2 = 1          |
| 3         | 4                         | 1 + 1.5 * 3 = 5.5      | 5.5 – 4 = 1.5 | (1.5)^2 = 2.25     |
| 4         | 5                         | 1 + 1.5 * 4= 7         | 7 – 5 = 2     | (2)^2 = 4          |
| 5         | 6                         | 1 + 1.5 * 5 = 8.5      | 8.5 – 6 = 2.5 | (2.5)^2 = 6.25     |
| 6         | 7                         | 1 + 1.5 * 6 = 10       | 10 – 7 = 3    | (3)^2 = 9          |
|           |                           |                        |               | Σ(h(X)-Y)^2 = 22.5 |

Cost Function: J(w0,w1) = 
$$\frac{1}{2m} \sum_{i=1}^{m} (h_{W}(x_{i}) - y_{i})^{2}$$

$$J(1,1.5) = (1/2*5)*22.5 = (1/10)*22.5 = 2.25$$

| <b>w</b> <sub>0</sub> = 1 | $w_0 = 1.5 \text{ and } w_1 = 1$ |                        |               |                           |
|---------------------------|----------------------------------|------------------------|---------------|---------------------------|
| X                         | Υ                                | $h(X) = w_0 + w_1 * X$ | h(X)-Y        | (h(X)-Y)^2                |
| 2                         | 3                                | 1.5 + 1 * 2 = 3.5      | 3.5 - 3 = 0.5 | (0.5)^2 = 0.25            |
| 3                         | 4                                | 1.5 + 1 * 3 = 4.5      | 4.5 - 4 = 0.5 | (0.5)^2 = 0.25            |
| 4                         | 5                                | 1.5 + 1 * 4= 5.5       | 5.5 – 5 = 0.5 | (0.5)^2 = 0.25            |
| 5                         | 6                                | 1.5 + 1 * 5 = 6.5      | 6.5 - 6 = 0.5 | (0.5)^2 = 0.25            |
| 6                         | 7                                | 1.5 + 1 * 6 = 7.5      | 7.5 – 7 = 0.5 | (0.5)^2 = 0.25            |
|                           |                                  |                        |               | $\Sigma(h(X)-Y)^2 = 1.25$ |

Cost Function: J(w0,w1) = 
$$\frac{1}{2m} \sum_{i=1}^{m} (h_{W}(x_{i}) - y_{i})^{2}$$

$$J(1.5,1) = (1/2*5)*1.25 = (1/10)*1.25 = 0.125$$

# Plot of Difference between true and predicted values for $w_0=1.5$ and $w_1=1$



| $\mathbf{w}_{0}$ | $\mathbf{w_1}$ | J(w <sub>0</sub> , w <sub>1</sub> ) |
|------------------|----------------|-------------------------------------|
| 1                | 0.5            | 2.25                                |
| 1                | 1.5            | 2.25                                |
| 1.5              | 1              | 0.125                               |

Cost is minimum for the weight values  $w_0=1.5$  and  $w_1=1$ . these are the parameters which best fit the data. Plot is:



# **Gradient Descent**

Have some function  $J(\theta_0,\theta_1)$ 

Want 
$$\min_{\theta_0,\theta_1} J(\theta_0,\theta_1)$$

#### **Outline:**

- Start with some  $\,\theta_0, \theta_1\,$
- Keep changing  $\, heta_0, heta_1\,$  to reduce  $J( heta_0, heta_1)$  until we hopefully end up at a minimum

# **Gradient Descent**



#### **Gradient descent algorithm**

repeat until convergence { 
$$\theta_j := \theta_j - \alpha \frac{\partial}{\partial \theta_j} J(\theta_0, \theta_1) \quad \text{(for } j = 0 \text{ and } j = 1)$$
 }

#### Correct: Simultaneous update

$$temp0 := \theta_0 - \alpha \frac{\partial}{\partial \theta_0} J(\theta_0, \theta_1)$$

$$temp1 := \theta_1 - \alpha \frac{\partial}{\partial \theta_1} J(\theta_0, \theta_1)$$

$$\theta_0 := temp0$$

$$\theta_1 := temp1$$

#### Incorrect:

$$temp0 := \theta_0 - \alpha \frac{\partial}{\partial \theta_0} J(\theta_0, \theta_1)$$

$$\theta_0 := temp0$$

$$temp1 := \theta_1 - \alpha \frac{\partial}{\partial \theta_1} J(\theta_0, \theta_1)$$

$$\theta_1 := temp1$$

# Linear regression with one variable Gradient Descent

#### **Gradient descent algorithm**

# repeat until convergence {

$$\theta_j := \theta_j - \alpha \frac{\partial}{\partial \theta_j} J(\theta_0, \theta_1)$$

(for 
$$j = 1$$
 and  $j = 0$ )

#### **Linear Regression Model**

$$h_{\theta}(x) = \theta_0 + \theta_1 x$$

$$J(\theta_0, \theta_1) = \frac{1}{2m} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)})^2$$

$$\frac{\partial}{\partial \theta_j} J(\theta_0, \theta_1) = \frac{\partial}{\partial \theta_j} \frac{1}{2m} \sum_{i=1}^m (h_\theta(x^{(i)}) - y^{(i)})^2$$

$$\frac{\partial}{\partial \theta_j} J(\theta_0, \theta_1) = \frac{\partial}{\partial \theta_j} \frac{1}{2m} \sum_{i=1}^m (\theta_0 + \theta_1 x^{(i)} - y^{(i)})^2$$

$$j = 0 : \frac{\partial}{\partial \theta_0} J(\theta_0, \theta_1) = \frac{1}{m} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)})$$

$$j = 1 : \frac{\partial}{\partial \theta_1} J(\theta_0, \theta_1) = \frac{1}{m} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)}) x^{(i)}$$

#### **Gradient descent algorithm**

repeat until convergence {

$$\theta_0 := \theta_0 - \alpha \frac{1}{m} \sum_{i=1}^m \left( h_\theta(x^{(i)}) - y^{(i)} \right)$$
 update 
$$\theta_0 = \theta_1 - \alpha \frac{1}{m} \sum_{i=1}^m \left( h_\theta(x^{(i)}) - y^{(i)} \right) \cdot x^{(i)}$$
 update 
$$\theta_0 = \theta_0$$
 and  $\theta_1$  simultaneous 
$$\theta_1 := \theta_1 - \alpha \frac{1}{m} \sum_{i=1}^m \left( h_\theta(x^{(i)}) - y^{(i)} \right) \cdot x^{(i)}$$

simultaneously