

SUBJECT INDEX

Vol. 110A, Nos 1-4

- Absorption, 259
Acclimation, 253
Acetate, 375
Acheta domesticus, 87
Acinar cell, 57
Adenine nucleotides, 27
Adenosine, 367
Adenylate cyclase, 79
Age, 303
Age dependence, 299
Ageing chicken, 27
Alarm pheromone, 281
Alimentary tract, 243
2-Aminoisobutyric acid, 107
AMP breakdown, 27
Analbuminaemia, 131, 259
Angiotensin converting enzyme, 223, 229
Angiotensin II, 223, 229
Antarctic isopod, 39
Antibacterial activity, 39
Apis mellifera, 281
Apparatus, 281
Artificial diet, 33
Arrtrial natriuretic peptides, 171
AST, 115

Bactericidins, 39
Bafilomycin A₁, 235
Behavior, 167
Behaviour, 21
Bile, 131
Bioassay, 281
Blood hemoglobin content, 303
Blood, 39
Body composition, 47
Body suspension, 341
Bohr effect, 147
Bombesin, 107
Bombyx mori, 33
Bromine, 357

c-kit, 159
Calcium, 95
Calcium-binding proteins, 95
Calf, 115
Calmidazolium, 79
Calmodulin, 95
Captopril, 223
Carbachol, 57
Cardiac adenosine deaminase, 27
Cardiac adenylate deaminase, 27
Cardiac adenylate phosphatase, 27
Caudate, 151
 Ca^{2+} , 167
 Ca^{2+} /Calmodulin, 79
Cell, 167
Central nervous system, 203
Cervus elaphus, 299
Chicken, 47
Cholinergic agonist, 57
Ciliate, 167
Circadian rhythms, 139
Clarias lazera, 147
 Cl^- uptake, 235
Co-operativity, 147

Copper, 131, 259
Coronary flow, 367
Corticotropin releasing factor, 87
Cortisol, 309
Coryphaenoides mediterraneus, 271
CPK, 115
Crab gills, 235
Crassostrea virginica, 171
Crayfish, 139
Crustacea, 357
Crustaceans, 39
Cyclic AMP, 87

Daizo (T), 33
Decapod, 357
Deer, 329
Denervation, 341
2-Deoxyglucose, 107
Depletion by capsaicin, 71
Developmental changes, 33
Dipnoan, 229
Diuretic peptide, 87
Dopamine β -hydroxylase, 289
Dopamine, 151
Dorsal unpaired median (DUM) neurones, 203
DRG, 71
Drosophila, 185

EDTA, 115
Egg, 95
Electrolytes, 115
Electroreceptors, 217
Embryo, 95
Environment, 171
Environmental fluoride, 299
Epidermal growth factor, 107
Eriocheir sinensis, 235
Excitatory amino acids, 217
Excretion, 131, 259

Feed efficiency, 47
Feeding, 21
Fibrosis, 159
Fish, 271, 335
Fluid transport, 87
Fluoride exposure, 299
Fluoride ions, 79

Gastric inhibitory polypeptide, 107
Gastrin, 107
Gene structure, 185
Germ cell, 95
Gills, 171
Gilthead sea bream, 335
Glucagon, 375
Glucose, 375
Glutamate, 151
Goat, 309
Gonads, 139
Growth hormone, 107
Growth rate, 47, 139

 H^+ -ATPase, 235
Haemolymph, 253
Haemolymph urea, 33

- Heart, 229
 Heat stress, 309
 Hematocrit, 303
 Hemocyte, 39
 Hemoglobin, 147
 Hepatic GH-binding activity, 47
Hirudo medicinalis, 79
 Host defence, 39
 Hypertension, 223
 Hypocalcemia, 115
 Immunocytochemistry, 203
 Immunohistochemistry, 289
 Inhibition, 319
 Innervation, 289
 Insulin, 375
 Insulin-like growth factor I, 107
 Intercellular communication, 57
 Intravenous GH infusion, 47
 Invertebrate immunity, 39
 Ion concentration, 167
 Ion fluxes, 235
 Ion regulation, 357
 Iron, 131
 Ja-value, 167
 K⁺, 167
 Kidney, 329
 Large field response, 185
 LDH, 115
Lineus lacteus, 319
Lineus sanguineus, 319
 Liver, 289
 Lobula plate giant neurons, 185
Locusta migratoria, 87
 Low protein diet, 223
 Lungfish, 147, 229
Macrobrachium, 357
 Magnesium, 115
 Malpighian tubules, 87
 Mammal, 289
 Mandibles, 299
Manduca sexta, 87
 Mast cells, 159
 Maturation, 367
 Melatonin, 319
 Metabolic rate, 65, 347
 Milk fever, 115
 Mineral absorption, 243
 Mineral concentrations, 243
 Molting, 139
 5'-Monodeiodinase activity, 47
 Monosodium glutamate, 151
 Mutant mice, 159
 Myotube, 107
 Mystromys, 65
 n-Butyrate, 375
 Na⁺-K⁺ pump activity, 341
 Nemertean worm, 319
 Neotropical bats, 347
Nerodia rhombifera, 21
 Neural inhibition, 341
 Neurogenetics, 185
 Neurosecretory cells, 203
 Nucleus, 151
 OCT, 115
 Octopamine, 203
 Ontogeny, 139
 Oocyte, 95
 Optic lobes, 185
 Optomotor behaviour, 185
Optomotor-blind, 185
 Original strain, 33
 Osmolality, 253, 309
 Osmoregulation, 171, 235, 357
 Otolith, 271
 Ouabain, 235
 Oxygen-binding, 147
 Oxygenation, 367
 Oyster, 171
Panaeus chinensis, 253
Paramecium caudatum, 167
 Parasympathectomy, 57
 Photoinducible phase, 139
 Photoperiodism, 139
 Photophase, 139
 Pig, 375
 Plasma hormones, 47
 Postprandial, 21
 Prawn, 357
 Pregnancy, 223, 309
 Prohormone, 171
 Propionate, 375
 Protein gene product 9.5, 289
 Proteins, 303
Protopterus annectens, 229
 Protozoa, 167
 Rabbit antiserum, 335
 Radioimmunoassay, 335
 Rat, 57, 71, 131, 223, 259, 341
 Recombinant growth hormone, 335
 Rectal temperature, 309
 Red blood cells, 303
 Red deer, 299
 Regeneration, 319
 Release, 151
 Renal osmolytes, 329
 Renin, 223
 Renin activity, 229
 Renin-angiotensin system, 229
 Roe deer, 243
 Role of hindgut, 243
 Roost microclimate, 347
 Salinity, 171, 253
 Salivary secretion, 57
 Scotophase, 139
 Sea urchins, 95
 Segmental ganglia, 79
 Serotonin, 79
 Sheep, 107
 Silkworm, 33
 Skeletal fluoride accumulation, 299
 Skeletal muscle, 341
 Snakes, 21
 Sodium excretion, 309
 Somatostatin, 107
 Spermatozoon, 95
 Spinal cord, 71
 Stinging, 281
 Storage, 131, 259
 Strontium, 357
 Strontium δ¹⁸O, 271
 Submandibular gland, 57
 Survival, 253
 Synaptic transmission, 217
 Teleost, 335
 Temperature, 21, 253

- Thermal biology, 65
Thermal conductance, 347
Thermal selection, 21
Thermoregulation, 21
Thigmotaxis, 167
Tight skin, 159
Tissue water, 253
Toxicity, 319
Trachyrincus murrayi, 271
Transepithelial potential difference, 235
Trifluoperazine, 79
Trigeminal, 71
Triglycerides, 303
Turnover, 259
- Type FF muscle, 341
Type S muscle, 341
Tyrosine hydroxylase., 289
- Uptake, 151
Urea, 303
Uric acid, 303
Urine flow, 309
- Vasopressin, 71
- Water intake, 309
White blood cells, 303
Worker honey-bee, 281

AUTHOR INDEX

Vol. 110A, Nos 1-4

- Aguilar M., 139
Akaike N., 341
Akoev G. N., 217
Akster H. A., 3
Amakata Y., 289
Arnoult F., 319
Audsley N., 87

Beas-Zárate C., 151
Bedford J. J., 329
Beems R. B., 131
Beynen A. C., 131, 259
Biondi C., 79
Brown J. H., 357
Buttery P. J., 107
Buzzi M., 79

Calduch-Giner J. A., 335
Castañon-Cervantes O., 139
Che Y.-M., 71
Chisholm J. R. S., 39
Clô C., 27
Coast G. M., 87
Cogburn L. A., 47
Coote G., 271

Dahlborn K., 309
Desmecht D. J.-M., 115
Devecchi M., 229
Downs C. T., 65

Epstein M. L., 367
Erdelen M., 299
Everett E. T., 159

Fanjul-Moles M. L., 139
Feria-Velasco A., 151
Ferretti M. E., 79
Finelli C., 27
Friedl F. E., 171
Funge-Smith S. J., 357

Gauldin R. W., 271
Giordano A. T., 171
Godeau J.-M., 115
Gonzalez-Moran G., 139

Haji Baba A. S., 107
Harley R. A., 159
Harper J. M. M., 107
Hayes T. K., 87
Heisenberg M., 185
Hirano T., 167
Holand Ø., 243

Holmes G., 367
Hossaini-Hilali J., 309
Hutchison V. H., 21
Hydbring E., 309

Iwatsuki K., 167

Jackson A. A., 223
Jiann-Chu Chen, 253
Jin-Nien Lin, 253
Joles J. A., 131
Josäter-Hermelin M., 309

Kai-Kai M. A., 71
Kanno Y., 57
Kay I., 87
Kaysen G. A., 131
Khotimchenko Yu. S., 95
Kierdorf H., 299
Kierdorf U., 299
Koumans J. T. M., 3
Kreimer D. I., 95

Langley-Evans S. C., 223
LeRoy E. C., 159
Leader J. P., 329
Lekeux P. M., 115
Lensky Y., 281
Linden A. S., 115
Lugo C., 139

Machoy Z., 299
Maeda T., 289
Martínez-Barberá J. P., 335
Marti-Palanca H., 335
Masini M. A., 229
Matherne G. P., 367
Matsubara F., 33
Merrett N., 271
Min-Nan Lin, 253
Ming-Chung T., 21
Mizuno M., 341
Moellers R. F., 47
Morales-Villagran A., 151
Nagaoka R., 341
Nakamura E., 375
Napoli L., 229
Nava M. P., 303
Norris J. S., 159
Nosaka S., 289

Olsson K., 309
Ortuño S. D., 151

Pablos J. L., 159
Palmer P. A., 171
Pane G., 27
Pareschi M. C., 79
Pendón C., 335
Pérez-Sánchez J., 335
Perrin M. R., 65
Petrausch G., 235
Pflugfelder G. O., 185
Puerta M., 303

Riestenpatt S., 235
Rodríguez R. B., 335
Rodríguez-Durán A., 347
Roe J. A., 107

Sano H., 375
Sasaki Y., 57
Shiba Y., 57
Shiguang Yu, 131, 259
Siebers D., 235
Smiley M., 329
Smith V. J., 39
Spörhase-Eichmann U., 203
Staaland H., 243
Stevenson P. A., 203
Sumida M., 33

Taiwo F. A., 147
Takahashi H., 375
Tanaka Y., 33
Taylor A. C., 357
Tel-Zur D., 281
Terashima Y., 375

Uva B. M., 229

Valdivia M. M., 335
Van den Berg G. J., 259
Veiga J. P., 303
Venero C., 303
Vernet G., 319
Vesely D. L., 171

Wegelin I., 27
West I. F., 271
Whitley J., 357

Yamashita S., 341
Yaw-shing Lin, 289
Yoshio H., 33
Yun-Yang Ting, 253

Zanfanti M. L., 27