Introducción a Linux

Fernando Oleo Blanco fernando.oleo@alu.comillas.edu 30 de octubre de 2018

github.com/Irvise/Documents

ICAI - LinuxEC

Índice

Historia

Instalación y recursos

Comparativa con Word

Estructura del documento

documentclass y preámbulo

Manejo del texto

Entornos comunes

Referencias y bibliografía

Escritura científica

Resumen y otros recursos

Resumen

- 1. Diseño del documento
- 2. Configuración del documento
- 3. Estructuración del texto
- 4. Herramientas para el trabajo de texto
- 5. Entornos útiles
- 6. Referencias y bibliografía
- 7. Escritura científica
- 8. Recursos extra

Historia

Figura 1: Donald Ervin Knuth. Creador de TEX

Un pequeño cuento

¿Quién es Knuth?

Americano. Profesor de Stanford, ya retirado. Matemático, físico, informático y teólogo. Actualmente escribe la serie de libros The Art of Computer Programming, precursora del nacimiento de TEX. Considerado uno de los padres de la informática moderna

TEX

Después de crear el segundo volumen y empezar el tercero se dio cuenta que la tipografía carecía calidad. Buscó soluciones y decidió estudiar tipografía para crearse su propio sistema. TEXes el entorno de programación, LATEX es TEX y unos paquetes para agilizar su escritura

"Si una herramienta que uso la utilizan muchas personas, seguramente pensaría que estoy haciendo algo mal"

Instalación y recursos

Instalación

TexStudio, IDE

ullet **T_EXStudio:** Download o busca tu plataforma. Instálalo como solo tú sabes

LATEX 2ε

• "Compilador"

Windows: usad o MikTeX o Texlive. Texlive es el tradicional Mac: instalad MacTeX y listo Linux: buscad texlive en buestra distribución

Recursos on-line

Accesibles desde el link anterior. Es una buena idea tener una copia en la nube. Recomiendo Overleaf, recientemente fusionado con ShareLATEX

Recursos recomendados

Lectura

- The not so Short Introduction to LATEX por Tobias Oetiker
- ETEX Wikibook: Libro escrito por y para Wikipedia. El 99 % de vuestras dudas tienen solución aquí
- More Math Into LaTeX por George Grätzner (esta es una buena muestra)

Internet

- Cualquier servicio con plantillas (Latextemplates por ejemplo)
- Tug: Centro de recursos oficiales
- Foros (Overleaf-learn), "puntos de información", etc
- Google

Comparativa con Word

Diferencias notables

Microsoft Word

- Intuitivo, fácil de usar
- Ya conocido
- Imágines, tablas, etc se hacen solas
- ¡Bibliografía?
- ¿Índice?
- ¿Referencias?

PLEX.

- Complicado, tedioso
- Con un error, ya nada funciona
- Escribirlo todo manualmente...

- Estructura automática
- Texto de calidad sin esfuerzo
- No da problemas las dos semanas antes de la entrega

Estructura del documento

Estructura de archivos

Estructura de archivos

En LATEX podemos, y se recomienda, dividir nuestro archivo en partes pequeñas y en carpetas. Esto permite estructurar mucho mejor el documento, mantener los archivos ordenados, y trabajar con textos menores.

Buenas prácticas generales

- 1. Cuando algo falla, leed el mensaje de error
- Nunca, nunca empecéis desde cero.¡Usad plantillas!
- 3. Sed organizados
- 4. Haced las cosas sencillas, si no es obvio, no lo hagas
- 5. Buscad ayuda (en mi o en los recursos mencionados)
- 6. ¡Comentad lo que hacéis! % Comentario

Estructura general de los comandos

Comando tradicional

Comienzan con \, seguido del comando. Si este comando recibe algún argumento (o algunos), estos van entre llaves. Si reciben opciones, van entre corchetes antes del argumento. Ejemplos:

```
\begin{array}{c} \begin{array}{c} \text{\ \ } \to & \underline{\hspace{1cm}} \end{array} \\ \text{\ \ \ \ \ \ } \to Hola \\ \text{\ \ \ \ \ \ } \to azul \end{array}
```

Estructura general de los comandos

Comando tradicional

Comienzan con \, seguido del comando. Si este comando recibe algún argumento (o algunos), estos van entre llaves. Si reciben opciones, van entre corchetes antes del argumento. Ejemplos:

Entornos

Como comandos normales, pero cuya función es más extensa y compleja; tienen la estructura:

```
\begin{entorno}[opciones]{argumento}
content... \end{frame}. En IDE Crt1 + e
```

Comienzo de nuestro documento

\documentclass

Nuestra primera línea. Define la naturaleza de nuestro documento. Ejemplo:

\documentclass[12pt, twoside, ...]{article}

Argumentos

- article
- book
- letter
- beamer
- :

Opciones

- Tamaño letra: 10pt
- Orientación: landscape
- Columnas: twocolumn
- Centrado: twoside
- : draft, openright...

Importación de herramientas, \usepackage{}

En LATEX se expande la funcionalidad mediante paquetes, algunos son muy necesarios. Esta sección debería ir justo debajo del documentclass \usepackage{geometry} % Ajusta geometrías \usepackage[spanish]{babel} % Formato en castellaño "{graphicx} % Imágenes, pdfs, etc "{hyperref} % Referencias como tienen que ser "[utf8]{inputenc} % Tildes y otros caracteres "{amsmath, amssymb} % Escritura científica

Ver también: makeidx (índices avanzados), fancyhdr (cabeceras y pie de página), multicol (columnas personalizadas), booktabs (para tablas preciosas)

Datos previos al documento escrito, preámbulo

Como LATEX hará un buen número de cosas automatizadas, le damos unos datos generales en el preámbulo para que el los trate como deba.

Información del autor y texto

```
\author{Fernando ... \and Miguel \thanks{...}}
\title{Título}
\date{\today} % O en blanco si no se quiere
```

Secuencias de diseño o configuración

Si estuviéramos usando fancyhrd, makeidx o similares tendríamos que escribir en el preámbulo su diseño o configuración.

En resumen

Comienzo: documentclass

Paquetes: usepackage

Preámbulo: configuraciones generales

Comienzo del texto

\begin{document} \end{document}

TODO el documento se encontrará entre

```
Comenzamos con:
\begin{document}
\begin{titlepage} % Portada
\maketitle % Generación de portada automática
\thispagestyle{empty} % Para que no salga numerada
\begin{abstract}
Resumen inicial (abstract). Formateo automático
\end{abstract}
\end{titlepage}
```

Cont.

```
Cont.
\cleardoublepage % Nueva página e inicio en derecha
\pagenumbering{Roman} % Numeración romana
\tableofcontents % Esta estructura es un ejemplo
\newpage
\listoffigures % Estos tres comandos también se
\newpage
\listoftables % suelen poner en el apéndice
\newpage
\listoflistings % Para código
\pagenumbering{arabic} % Numeración arábica
```

Cont.

Recordemos que en LATEX se puede dividir el texto. Las partes se incluyen con: \include{file}

Cont.

```
% Ahora podemos importar los distintos archivos \include{Cap1/cap1} % Incluimos el archivo de la % carpeta Cap1. El archivo va sin extensión .tex \include{Cap2/cap2} % Etcétera \appendix % Iniciamos apéndice \include{lo_que_sea} % Incluir bibliografía (se verá después el cómo)
```

Seccionamiento del texto

```
En la clase article, se tienen principalmente tres niveles: \section[short title]{text} \subsection[short title]{text} \subsubsection[short title]{title} [short title] es lo que aparecería en el índice y en el encabezado. Si no se quiere numerado ni en el índice: \section*{title}
```

Para escribir párrafos, dejar una línea en blanco entre ellos. Para romper una línea usar \\

Estilos de texto

C: control, S: shift

Los más comunes y recomendados

Negrita/Boldface \textbf{text} text. En IDE C + b

Cursiva/Énfasis \emph{text} text. En IDE C + S + e

Subrayado \underline{text} <u>text</u>.

SmallCaps \textsc{text} TEXT. En IDE C + S + c

Typewritter \texttt{text} text. En IDE C + S + t

Otras herramientas útilies i

Medidas y espaciados. No los deberíais necesitar

- \hfill rellena espacio horizontal.
- \vfill ídem, pero en vertical.
- \hspace{text} espaciado horizontal (usar em como medida). Tienen versiones forzadas.
- \vspace{text} idem pero en vertical. Ambos permiten valores negativos.
- \hrulefill

Otras herramientas útilies ii

Cont. medidas "programáticas"

- \textwidth ancho del texto disponible (permite operaciones matemáticas). \columnwidth es el ancho de la columna.
- \textheight altura de la zona de texto.
- \linewidth como \textwidth pero relativo al entorno de trabajo

Estas son muy útiles para su uso con figuras o en tablas

Otras herramientas útilies iii

Bloques (boxes)

Hay una buena ristra. El más importante, que puede que necesitéis, es \mbox{text}. Este forma un bloque único inseparable (útil para, por ejemplo, nombres propios o números).

Notas a pie de página

 \footnote{text} . Las notas a pie de página van integradas en el texto y su formato es automático. Por ejemplo¹.

Por ejemplo\footnote{Damos una aclaración}.

¹Damos una aclaración

Tablas i

Entorno tabular/array básico

Esto es una introducción básica, pero suficiente, cubrirá vuestras necesidades. El IDE tiene una herramienta para hacer tablas *ala* Excel.

\begin{tabular}[opciones]{alineacion}
contenido

\end{tabular}

p, m, b sirven para hacer párrafos (top, middle, bottom)

Ejemplo:	11	12	13
	hola	hola	hola
	adiós querida	adiós	Sayonara Baby

Tablas ii

```
Código anterior (el espaciado lo da el editor)

\begin{tabular}{1||c|r}

11 & 12 & 13 \\
\hline \hline

hola & hola & hola \\
\hline

adiós querida & adiós & Sayonara Baby
```

El & es bien importante, es el símbolo de separación y alineación.

Nota: ver booktabs, (ejemplo)

\end{tabular}

Items, enumeraciones y descripciones/listas i

Items

Para \item automático en
 IDE C + S + i

Newww Ejemplo bastante largo para que se vean las diferencias

Otro item

```
\begin{itemize}
\item Para ...
\item[Newww] E...
\item Otro item
\end{itemize}
```

Items, enumeraciones y descripciones/listas ii

Enumeraciones

- 1. Ejemplo
- 2. Cont.
 - 2.1 Anidados

```
\begin{enumerate}
\item Para ...
\item Cont.
\begin{enumerate}
\item Anidados
\end{enumerate}
\end{enumerate}
```

Items, enumeraciones y descripciones/listas iii

Descripciones/listas label muy largo Ejemplo de texto un tanto largo \begin{description} para que se \item[label] Ejem... vean las \item[Nombre] Cont. diferencias \end{description} Nombre muy largo Descripción del texto

Imágenes u otros elementos gráficos (pdfs)

La imagen al inicio de la presentación

```
\begin{figure}[h] % Opciones h, t, b, c
\centering
\includegraphics[height=0.75\linewidth]{Donald...}
\caption{Donald Ervin Knuth. Creador de \TeX}
\label{fig:donald-knuth-stanford-computer-science}
\end{figure}
```

includegraphics nos da opciones para el control de la altura, ancho y escala. Sirve para un buen número de formatos, incluido .pdf. \caption[short title]{text} es el texto que aparece debajo de la imagen y en la tof. Usad el wizard que trae el IDE.

Programas y fragmentos de código

Se usa \usepackage{listings}. Es personalizable hasta el final, desde color del fondo, esquemas de color para el código, reconoce docenas de lenguajes, etc. **Por favor,** miraros la documentación y copiad ejemplos.

```
\begin{lstlisting}[language=Pascal]
for i:=maxint to 0 do

begin
{ do nothing }
end;
Write('Case insensitive ');
Write('Pascal keywords.');
\end{lstlisting}
for i:=maxint to 0 do

begin
{ do nothing }
end;
Write('Case__insensitive__');
Write('Pascal__keywords.');
```

Referencias i

Labels, etiquetado

\label{key} nos permite etiquetar lo que deseemos referenciar (anterior o posteriormente). Ejemplos:

- \label{eq:maxwell} ecuación de Maxwell
- \label{fig:imagen} alguna imagen
- \label{tab:tabla} alguna tabla
- \label{sec:appendixa} apéndice A
- Etcétera

Usadla/Indicádla a continuación de lo que queráis citar, dentro del entorno.

Referencias ii

Referencias, citas

\autoref{key} nos generará la referencia de manera automática, tendrá en cuenta el entorno usado, sección, etc. Es del paquete hyperref. Ver Figura 1. Ver también el paquete cleveref.

Bibliografía, programas externos i

No son necesarios para trabajar en LATEX como veremos. Pero son muy útiles para el manejo de bibliografías grandes y complicadas. Además de traer muchas herramientas de búsqueda y formato de gran ayuda.

Recordad que hay servicios bibliográficos, como **Google Scholar,** donde podemos buscar la información de las referencias. Además, todos estos servicios sacan formato $BibT_{E}X$.

Nota, hay varios procesadores internos de bibliografía, nosotros usaremos el más sencillo, aunque se recomienda que les echéis un ojo a $BibI\!\!\!/\!\! T_E\!Xy\ Biber.$

Bibliografía, programas externos ii

Programas

Zotero Multiplataforma y exporta tanto a LATEX como a Word. Todas las herramientas necesarias están incluidas excepto un motor de búsqueda con texto (puede ISBNs, DOIs, etc), aunque tiene integración con Firefox y Safari.

JavRef Multiplataforma y también exporta a Word.

Completo y avanzado. También tiene integración con Firefox.

KBibTeX Solo Linux. Muy simple pero sencillo de usar y flexible, además de traer varios motores de búsqueda.

Bibliografía en LATEX uso en el documento i

Citas

Para citar una obra simplemente se hace \cite{bibid} donde se quiera la referencia. El bibid es el identificador de nuestra referencia.

Bibliografía en LATEX uso en el documento ii

Uso inclusión en el documento y estilos

```
\section{Bibliografía}
\bibliographystyle{style} % plain, abbrv, alpha...
\bibliography{bib1,bib2,bib...} % Añadimos
% archivo(s), sin espacios ni extensión
\end{document} % si queremos terminar
```

Bibliografía en La uso en el documento iii

Estructura del archivo .bib

Todas las entradas empiezan con una @ y su identificador (article, journal, book, etc); esto sirve para darles formato. A continuación se abren llaves.

Entre las llaves se escribirá la información separada por comas. Lo <u>más importante</u> es la primera palabra que pondremos, esa será la identificación para el comando \cite{bibid}. A continuación rellenaremos tantos campos como necesitemos año, título, autor, url, editor, etc, tal y como está indicado en el ejemplo.

Bibliografía en LATEX uso en el documento iv

El archivo .bib

```
El archivo .bib, que se recomienda que esté junto con el
documento .tex principal, es nuestra base de datos con las
referencias. Un ejemplo sería:
@BOOK{White201501,
title={Fluid Mechanics},
author={Frank M. White}.
publisher={McGraw-Hill Education},
year={2015},
edition={8},
isbn={9780073398273},
totalpages={864},
timestamp={2018.10.29},
```

Escritura científica

Lógica de la escritura científica en LATEX

Desarrollo

• LATEX se creó para permitir una fácil y rápida creación de textos, aunque parezca poco intuitivo al principio.

Regla de la mano derecha: si algo es muy utilizado y básico en el mundo de las matemáticas y de las ciencias, está acortado, simplificado. El resto son los nombres descriptivos.

Ejemplo: la integral cerrada se usa mucho \rightarrow está simplificada:

$$\phi = \infty$$

La doble integral cerrada sigue su desarrollo, pero no viene en Amsmath: \circ La flecha a la derecha no es un símbolo matemático muy querido \rightarrow no se abrevia \circ rightarrow

Ejemplos de lógica

Expresivos

- ϕ \$\phi\$
- φ \$\varphi\$
- Φ \$\Phi\$
- \ \\$\downarrow\$
- \$\Downarrow\$

Abreviados

- ∏ \$\prod\$
- \neq \$\neq\$
- \bullet $\in \pi$
- ∋ \$\ni\$

Ejercicio, adivinad los símbolos

- ullet \sim
- П
- ±
- ∓
- ullet \to

Ejemplos de lógica

Expresivos

- ϕ \$\phi\$
- φ \$\varphi\$
- Φ \$\Phi\$
- \ \\$\downarrow\$
- \$\Downarrow\$

Abreviados

- ∏ \$\prod\$
- \neq \$\neq\$
- \bullet $\in \pi$
- → \$\ni\$

Ejercicio, adivinad los símbolos

- ~
- П
- ±
- •
- ullet \to

Respuestas

- \$\sim\$
 - \$\Pi\$
 - \$\pm\$
 - \$\mp\$
 - \$\rightarrow\$

Un par de fórmulas para que os familiaricéis

Ecuación de Bernoulli

$$\left(\frac{p}{\rho g} + \frac{\alpha}{2g}V^2 + z\right)_{ent} = \left(\frac{p}{\rho g} + \frac{\alpha}{2g}V^2 + z\right)_{sal} + h_{tur} + h_{fr} - h_{bom}$$

$$$$ \left(\frac{p}{\rho g} + \frac{2g}V^2 + z\right)_{ent} = \left(\frac{p}{\rho g} \right) + h_{tur} + h_{fr} - h_{bom}$$

Hermosas mates

$$\zeta(s) = \sum_{n=1}^{\infty} \frac{1}{n^s} \qquad \Gamma(z) = \int_0^{\infty} t^{z-1} e^{-t} dt$$

$$\label{eq:continuits_n=1}^{\left(\inf y\right)} \frac{1}{n^s} $$ \operatorname{Camma}(z) = \inf \{0\}^{\left(\inf y\right)} t^{z-1} e^{-t} dt $$ dt $$$$

Escritura científica, dos formas

En LATEX existen dos formas de escribir fórmulas matemáticas. La razón es simple, estilo y formato.

Inline

Traducido al español: en línea. Se usa para meter símbolos y fórmulas **dentro del texto.** Este modo respetará el formato que posea el texto. Se accede con el signo del dólar. Ejemplo: $\frac{2^2}{4}=1$ \$\frac{2^2}{4} = 1\$, \(\ldots\\\\\\\) también se permite.

Escritura científica, dos formas

En LATEX existen dos formas de escribir fórmulas matemáticas. La razón es simple, estilo y formato.

Inline

Traducido al español: en línea. Se usa para meter símbolos y fórmulas **dentro del texto.** Este modo respetará el formato que posea el texto. Se accede con el signo del dólar. Ejemplo: $\frac{2^2}{4}=1$ \$\frac{2^2}{4} = 1\$, \(\ldots\)\) también se permite.

Display (En TF*, usad equation o similar)

Se utiliza para la escritura a parte de la expresión matemática. Genera un espacio nuevo para la fórmula. Se accede con $\[\ldots\]$.

$$\frac{2^{23}}{4} = 2^{21}$$

 $\left[\frac{2^{23}}{4} = 2^{21}\right].$

Matrices

Arrays/Tablas

Funciona igual que el entorno tabular pero se usa dentro del entorno de escritura matemática. Juntando esto con el \left(...\right) o cualquier otro símbolo podemos hacer matrices.

Matrices

Arrays/Tablas

Funciona igual que el entorno tabular pero se usa dentro del entorno de escritura matemática. Juntando esto con el \left(...\right) o cualquier otro símbolo podemos hacer matrices.

Pero L'TEX es bien eficiente

Las matrices son una herramienta muy usada, por lo que hay una forma sencilla. \begin{*matrix}...\end{*matrix}. No requiere de opciones de alineación. *: significa el tipo de puntuación a usar: p: paréntesis; v: vertical; b: corchetes; B: llaves. Ejemplo:

$$\begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix} \rightarrow \begin{vmatrix} 1 & 2 \\ 3 & 4 \end{vmatrix} = -2 \Rightarrow \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}^2 = \begin{cases} 7 & 10 \\ 15 & 22 \end{cases}$$

El ejemplo de las matrices

```
\[\begin{pmatrix}
1 & 2 \\
3 & 4
\end{pmatrix} \rightarrow
\begin{vmatrix}
1 & 2 \\
3 & 4
\end{vmatrix} = -2 \Rightarrow
\begin{bmatrix}
1 & 2 \\
3 & 4
\end{bmatrix}^2 =
\begin{Bmatrix}
7 & 10 \\
15 & 22
\end{Bmatrix}\]
```

Entorno equation(*)

La base de la estructuración

\begin{equation}...\end{equation} tiene los mismos efectos que \[...\] sin embargo, para ecuaciones formales, importantes y largas es preferido. Da mayor claridad al código, otros entornos se pueden usar dentro suyo y permite la **referencia y numeración.** Para evitar la numeración se le pone un * al final de su declaración.

Entorno equation(*)

La base de la estructuración

\begin{equation}...\end{equation} tiene los mismos efectos que \[...\] sin embargo, para ecuaciones formales, importantes y largas es preferido. Da mayor claridad al código, otros entornos se pueden usar dentro suyo y permite la **referencia y numeración.** Para evitar la numeración se le pone un * al final de su declaración.

Ejemplo

$$f(x) = (x+a)(x+b) \tag{1}$$

Como se puede ver en la Ecuación 1, $\angle AT_EX$ es bien sencillo. \begin{equation} \label{ec:ejemplo1} f(x)=(x+a)(x+b)

\end{equation}

Ecuaciones alineadas

Existen varios entornos, todos con sus peculiaridades, pero prácticamente idénticos. Los más conocidos son split, aligned & align. align numera cada salto de línea por defecto.

Más flexibilidad en la escritura

LATEX aporta una forma elegante de incluir anotaciones en nuestras fórmulas

Anotaciones sobre fórmulas

\overset{}{} y \underset{}{} Nos permiten poner unos símbolos encima de otros. Ejemplo:

$$A \stackrel{!}{=} B$$
; $A \stackrel{!}{=} B \rightarrow$

\$A \overset{!}{=} B; A \stackrel{!}{=} B\$.

Más flexibilidad en la escritura

LATEX aporta una forma elegante de incluir anotaciones en nuestras fórmulas

Anotaciones sobre fórmulas

\overset{}{} y \underset{}{} Nos permiten poner unos símbolos encima de otros. Ejemplo:

$$A \stackrel{!}{=} B$$
; $A \stackrel{!}{=} B \rightarrow$

^\text{número complejo}\$

\$A \overset{!}{=} B; A \stackrel{!}{=} B\$.

Tipografía

Para introducir texto normal se usa \$\text{text}\$

- \mathbb{}: SOLO MAYÚSCULAS
- \mathbf{} 1234 text
- \mathfrak{}1234 text Re, 3, L, F, M
- \mathrm{} 1234 text
- \mathcal{} SOLO MAYÚSCULAS
- \mathrm{} 1234 text

Cuadros

Solo ecuación

 $\begin{equation} \begin{equation} \color=(x+a)(x+b) \end{equation}$

$$f(x) = (x+a)(x+b)$$
 (3)

Toda la ecuación

$$f(x) = (x+a)(x+b)$$
 (4)

```
\fbox{\begin{minipage}{0.9\textwidth}
\begin{equation}
f(x)=(x+a)(x+b)
\end{equation}
\end{minipage}}
```

Resumen y otros recursos

Resumen

- 1. Diseño del documento
- 2. Configuración del documento
- 3. Estructuración del texto
- 4. Herramientas para el trabajo de texto
- 5. Entornos útiles
- 6. Referencias y bibliografía
- 7. Escritura científica
- 8. Recursos extra

Temas no tratados

Recursos que no se han mencionado pero que son de gran ayuda (dentro o fuera de $\mathsf{TF}(\mathsf{G},\mathsf{M})$)

- 1. MACROS: permiten hacer comandos especializados. Muy útil cuando se tienen estructuras repetitivas.
- 2. Beamer: entorno de presentaciones más usado, por ejemplo esta misma.
- 3. LuaMEX: procesadores más modernos y con más herramientas, automatización y programables.
- 4. Preprocesadores de bibliografía como biber.
- 5. Distintas tipografías (hay algunas preciosas).
- Más paquetes que os sean de ayuda, pero tenéis los suficientes. Scoping
- 7. Aprended bien el editor (mi propuesta TEXStudio).

FIN Y GRACIAS!

Contacto fernando.oleo@alu.comillas.edu

Plantillas La de la universidad o la que tendréis en el mismo link que esta presentación

Agradecimientos Daniel Andrés Arcones,
Pablo Frías Marín,
Aurelio García Cerrada
y las asociaciones compañeras