Variational Monte Carlo with Proximal Policy Optimization

- Variational Monte Carlo with Proximal Policy Optimization
 - Requirement
 - Neural-network quantum state (NQS)
 - o Optimization: Natural gradient descent
 - PPO algorthim
 - Stochastic reconfiguration (TDVP)

Requirement

```
pyTorch >= 1.8.0 + cu111
```

Neural-network quantum state (NQS)

algos.core

Two types of convolution neural network are implemented as NQS.

Inputs: spin configurations.

Outputs:

 $\log |\Psi|$ and θ

• pesudocomplex CNN with only real parameters.

• complex CNN contains two sublayers in each layer, one stands for real part and the other denotes the imag part of the complex layer.

Optimization: Natural gradient descent

Optimization object,

$$\operatorname{minimize}_{w} E_{w}(\Psi(s; w)) \quad \text{s.t.} D_{FS}^{2}(\Psi_{\text{old}}(s; w_{\text{old}}), \Psi(s; w)) \leq \delta.$$

where

 E_w

is the energy estimated via importance sampling and

 D_{FS}

is the Fubini-Study distance.

PPO algorthim

algos.pesudocomplex_ppo or algos.complex_ppo

NGD can be approximately solved by PPO-clip and PPO-clip updates wavefunctions via,

$$w_{k+1} = \operatorname{argmin}_{w} \mathbb{E}[L(w_k, w)]$$

with the loss function,

$$L(w_k, w) = \max \left(\frac{|\Psi_w|^2}{|\Psi_{w_k}|^2} E_{w \text{ or } w_k}, \text{clip}\left(\frac{|\Psi_w|^2}{|\Psi_{w_k}|^2}, 1 - \epsilon, 1 + \epsilon \right) E_{w \text{ or } w_k} \right),$$

where E_w

is estimated by the current wavefunction Ψ_w and $E_{w \iota}$

is estimated by the old wavefunction

 Ψ_{w_k}

Stochastic reconfiguration (TDVP)

algos.pesudocomplex_sr or algos.complex_sr

The optimization object of NGD is also equivalent to,

minimize_{$$\Delta w$$} $\left\{ E_w + \nabla_w E_w \Delta w \right\}$ s.t. $\frac{1}{2} \Delta w^{\dagger} \mathbf{S} \Delta \omega < \delta$,

due to,

$$D_{FS}^2 \approx \sum_{ij} dw_i^* dw_j [\langle \mathcal{O}_i^* \mathcal{O}_j \rangle - \langle \mathcal{O}_i^* \rangle \langle \mathcal{O}_j \rangle],$$

where

$$S_{ij} = [\langle \mathcal{O}_i^* \mathcal{O}_j \rangle - \langle \mathcal{O}_i^* \rangle \langle \mathcal{O}_j \rangle]$$

is the stochastic reconfiguration matrix and

$$O_i = \partial_w \log \Psi$$

Such a contitional minimal problem is hence equivalent to:

minimize_{$$\Delta w$$} { $E_w + \nabla_w E_w + \lambda (\frac{1}{2} \Delta w^{\dagger} \mathbf{S} \Delta w - \epsilon)$ },

with a Lagrange multiplier

λ

. Its minimal satisfies,

$$S\Delta w = -\alpha \nabla_w E_w$$
,

which is the exact TDVP equation.