C*-Algebras, and Gelfand-Naimark Theorems

Luke Armitage

University of York

June 8, 2017

Definitions

C* algebra, state, pure state, * isomorphism, representation, faithful representation,

Examples

Cool Asides

how these are forced by C* axiom: uniqueness of norm, automatic continuity of bounded operators,

Gelfand-Naimark Theorems

Theorem

Every Abelian C^* -algebra A is *-isomorphic to $C(\mathcal{P}(A))$, the algebra of continuous functions on the compact Hausdorff space $\mathcal{P}(A)$ of pure states on A.

Gelfand-Naimark Theorems

Theorem

Every Abelian C^* -algebra A is *-isomorphic to $C(\mathcal{P}(A))$, the algebra of continuous functions on the compact Hausdorff space $\mathcal{P}(A)$ of pure states on A.

Theorem

Every C*-algebra has a faithful representation.

The Gelfand-Naimark-Segal Construction

Used to prove the GN theorem.

Given a state on a C* algebra, we can construct a Hilbert space and a representation on that space. Given a and b in A, define $\langle a,b\rangle=\rho(b^*a)$. This is a semi-inner product – basically an inner product, but there exist $a\neq 0$ such that $\langle a,a\rangle=0$. However, if we consider the quotient vector space of A by the collection of such elements, this space completes to a Hilbert space with $\langle \cdot,\cdot\rangle$ as the inner product.

References

