Министерство образования Республики Беларусь

Учреждение образования БЕЛОРУССКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ИНФОРМАТИКИ И РАДИОЭЛЕКТРОНИКИ

Факультет Компьютерных сетей и систем

Кафедра Информатики

МАШИННОЕ ОБУЧЕНИЕ

ЛАБОРАТОРНАЯ РАБОТА №6 «Применение сверточных нейронных сетей (многоклассовая классификация)»

БГУИР 1-40 81 04

Магистрант: гр. 858641 Кукареко А.В. Проверил: Стержанов М. В.

ХОД РАБОТЫ

Данные.

Набор данных для распознавания языка жестов, который состоит из изображений размерности 28х28 в оттенках серого (значение пикселя от 0 до 255). Каждое из изображений обозначает букву латинского алфавита, обозначенную с помощью жеста, как показано на рисунке ниже (рисунок цветной, а изображения в наборе данных в оттенках серого). Обучающая выборка включает в себя 27,455 изображений, а контрольная выборка содержит 7172 изображения. Данные в виде csv-файлов можно скачать на сайте Kaggle -> https://www.kaggle.com/datamunge/sign-language-mnist.

Задание.

- 1. Загрузите данные. Разделите исходный набор данных на обучающую и валидационную выборки;
- 2. Реализуйте глубокую нейронную сеть со сверточными слоями. Какое качество классификации получено? Какая архитектура сети была использована?
- 3. Примените дополнение данных (data augmentation). Как это повлияло на качество классификатора?
- 4. Поэкспериментируйте с готовыми нейронными сетями (например, AlexNet, VGG16, Inception и т.п.), применив передаточное обучение. Как это повлияло на качество классификатора? Можно ли было обойтись без него? Какой максимальный результат удалось получить на контрольной выборке?

Результат выполнения:

1. Загрузите данные. Разделите исходный набор данных на обучающую, валидационную и контрольную выборки.

Рисунок 1 - кол-во изображений в каждом классе.

Как видно из рисунка 1 – данные в классах не совсем сбалансированы.

Классы можно сбалансировать с помощью аугментации, до размеров мажоритарного класса. Такая техника называется oversampling.

Рисунок 2 - кол-во изображений в каждом классе после oversampling.

Теперь мы можем применять метрику ассигасу для определения точности классификатора.

Всего изображений 38 228. Они были разделены на:

- тренировочную выборку 23 292 изображений;
- валидационную выборку 7 764изображений;
- тестовую выборку 7 172 изображений.

Рисунок 3 – пример данных из набора «sign-language-mnist».

2. Реализуйте глубокую нейронную сеть с как минимум тремя сверточными слоями. Какое качество классификации получено?

Для реализации нейронной сети была выбрана библиотека tensorflow 1.14.

Архитектура нейронной сети представлена в таблице 1.

Таблица 1 – Архитектура нейронной сети.

Слой		Размер	Фильтры	Ядро	Смещение	Активация
Входной	-	28x28x1	-	-	-	-
1	Conv2d	28x28	32	4 x 4	1	ReLU
2	B. Norm.	-	-	-	-	-
3	Max Pool	14x14	32	2 x 2	2	-
4	Conv2d	14x14	64	4 x 4	1	ReLU
5	B. Norm.	-	-	-	_	-

6	Max Pool	7x7	64	2 x 2	2	-
7	Conv2d	7x7	128	4 x 4	1	ReLU
8	B. Norm.	-	-	-	-	-
9	Max Pool	4x4	128	2 x 2	2	-
10	Flatten	2048	-	-	-	-
11	FC	128	-	-	-	ReLU
12	Dropout(0.3)					
13	FC	128	-	-	-	ReLU
14	Dropout(0.3)					
Выходной	FC	24	-	-	-	Softmax

Тренировка нейросети была запущена со следующими параметрами:

- epochs -30;
- batch size 64;
- dropout 0.42.

Рисунок 4 – график изменения ассигасу первой модели.

Рисунок 5 – график изменения loss первой модели.

На тестовой выборке модель показала следующий результат:

- loss 0.1423;
- accuracy 0.9872.
- 3. Примените дополнение данных (data augmentation). Как это повлияло на качество классификатора?

Для «data augmentation» была использована библиотека "keras ImageDataGenerator".

Для генерации картинок использовались следующие параметры:

- rotation range 40;
- width shift range 0.2;
- height shift range 0.2;
- zoom range 0.2;
- horizontal flip-True.

Рисунок 6 – пример аугментированных изображений в итерации 1.

Рисунок 7 – пример аугментированных изображений в итерации 1.

Если сравнить рисунки 5 и 6 можно увидеть, как «ImageDataGenerator» преобразует одни и те же изображения.

Тренировка нейросети была запущена со следующими параметрами:

- epochs -30;
- batch size 64;
- dropout 0.2.

Рисунок 8 – график изменения ассигасу модели с применением аугментированных данных.

Рисунок 9 – график изменения loss первой модели с применением аугментированных данных.

На тестовой выборке модель показала следующий результат:

- loss 0.0402;
- accuracy 0.9906.

Если посмотреть на рисунки 7 и 8, можно увидеть, что даже при меньшем значении dropout, переобучение модели отсутствует.

4. Поэкспериментируйте с готовыми нейронными сетями (например, AlexNet, VGG16, Inception и т.п.), применив передаточное обучение. Как это повлияло на качество классификатора? Какой максимальный результат удалось получить на сайте Kaggle? Почему?

Для передаточного обучения была выбрана сеть VGG16. Готовые сети с весами предоставляет библиотека «keras.applications». Архитектуру сети VGG16 можно посмотреть на рисунке 9.

	Layer	Feature Map	Size	Kernel Size	Stride	Activation
Input	Image	1	224 x 224 x 3	-	-	-
1	2 X Convolution	64	224 x 224 x 64	3x3	1	relu
	Max Pooling	64	112 x 112 x 64	3x3	2	relu
3	2 X Convolution	128	112 x 112 x 128	3x3	1	relu
	Max Pooling	128	56 x 56 x 128	3x3	2	relu
5	2 X Convolution	256	56 x 56 x 256	3x3	1	relu
	Max Pooling	256	28 x 28 x 256	3x3	2	relu
7	3 X Convolution	512	28 x 28 x 512	3x3	1	relu
	Max Pooling	512	14 x 14 x 512	3x3	2	relu
10	3 X Convolution	512	14 x 14 x 512	3x3	1	relu
	Max Pooling	512	7 x 7 x 512	3x3	2	relu
13	FC	-	25088	-	-	relu
14	FC	-	4096	-	-	relu
15	FC	-	4096	-	-	relu
Output	FC	-	1000	-	-	Softmax

Рисунок 10 – архитектура сети vgg16.

У сети VGG16 были убраны последние 4 полносвязанных слоя и добавлены 3 новых. Архитектуру новой модели можно увидеть в таблице 2.

Таблица 2 — Архитектура новой модели с применением передаточного обучения.

Слой		Размер	Активация
Входной	-	32x32x3	-
-	VGG16	1x1x512	-
-	Flatten	512	-
-	FC	128	ReLU
-	Dropout(0.5)		
-	FC	128	ReLU
-	Dropout(0.5)		
Выходной	FC	24	Softmax

Так же было проведено 2 эксперимента:

- Модель была обучена на оригинальном наборе данных.
- Модель была обучена на аугментированном наборе данных

Так как минимальным входным размером изображенй сети VGG16 является размер: 32x32x3, то все изображения пришлось модифицировать.

- по краям добавился паддинг в размере 4 пикселей;
- 1 канал продублировался на 3.

Рисунок 11 – пример модифицированного изображения.

Обучение моделей запускалось со следующими параметрами:

- epochs − 20;
- batch size 64.

Рисунок 12 – график изменения ассигасу модели с применением передаточного обучения данных (без аугментации).

Рисунок 13 – график изменения loss первой модели с применением передаточного обучения данных (без аугментации).

На тестовой выборке модель показала следующий результат:

- loss 0.1247;
- accuracy 0.9639.

Рисунок 14 — график изменения ассигасу модели с применением передаточного обучения данных (с аугментацией).

Рисунок 15 – график изменения loss первой модели с применением передаточного обучения данных (с аугментацией).

На тестовой выборке модель показала следующий результат:

- loss 0.8956;
- accuracy 0.7008.

Рисунок 16 – сравнение результатов моделей.

Таблица 3 – сравнение результатов моделей на тестовой выборке.

Модель	Accuracy
Conv + augmented data	0.9906 (99.06%)
Conv + original data	0.9872 (98.72%)
Transfer learning vgg16 + original data	0.9639 (96.39%)
Transfer learning vgg16 + augmented data	0.7008 (70.08%)

Вывод.

В ходе выполнения лабораторной работы я построил одну модель использующих сверточные слои для классификации изображений жестов. Обучил эту модель без применения аугментации, и с применением аугментации данных. Так же для решения данной задачи были использованы готовые модели, а именно VGG16 и техника передаточного обучения.

После обучения всех моделей и анализа результатов, можно сделать вывод, что техника «передаточного обучения» не во всех случаях дает прирост точности модели. По результатам этой работы видно, что модели использующие передаточное обучение показали худший результат.