

Artificial Vision

COUITC J

Chapter 5: Video Surveillance of Human Activity

Dr. Benaliouche Houda

Faculté des nouvelles technologies

Houda.benaliouche@univ-constantine2.dz

Université Constantine 2 2024/2025.

Artificial Vision

Course 5

Chapter 5: Video Surveillance of Human Activity

Dr. Benaliouche Houda

Faculté des nouvelles technologies

Houda.benaliouche@univ-constantine2.dz

Etudiants concernés

Faculté/Institut	Département	Niveau	Spécialité
Nouvelles technologies	/	Master 2	Sciences de Données et Intelligence Artificielle (SDIA)

Summary

Prerequisites

- Mathematical Notions
- Algorithmic Notions

Course Objective

A look into video surveillance process and activities

OUTLINE

- ✓ Definition of video surveillance
- Historical Overview
- Core Concepts in Video Surveillance
 - ✓ Components of video surveillance systems
 - Cameras and sensors
 - Storage and processing units
 - ✓ Types of video surveillance
 - Real-time vs. recorded
 - Passive vs. active monitoring
- Human Activity Recognition (HAR)
- Challenges in Human Activity Surveillance
- Case Studies and Examples
- Conclusion

DEFINITION

Video surveillance involves the use of video cameras to observe, monitor, and record activities within a specific area to enhance security, gather information, or monitor behaviors.

Key Aspects:

Monitoring activities to detect unusual or suspicious behavior.

Enhancing security by deterring criminal actions and providing evidence for investigations.

Benefits:

Real-time monitoring and instant alerts for potential threats.

Cost-effective compared to human surveillance.

Example Applications:

Public Safety: Monitoring public spaces like parks, malls, and streets to prevent crime.

Healthcare: Observing patients and ensuring safety in hospitals and elder care facilities.

Smart Homes: Detecting intrusions, managing deliveries, and ensuring household safety.

Video surveillance applications

Historical overview

Historical Overview

•Analog Era:

Basic analog cameras used for video monitoring without automation.

History of Analog Cameras:

- 1942: Siemens introduced the first closed-circuit television (CCTV) system, "Vericon," in Germany.
- 1960s: Analog CCTV systems became commercially available for use in banks and stores.
- 1970s: Cameras were employed for urban security, such as monitoring public spaces in New York.
- 1980s: VCR technology enabled video footage storage, boosting surveillance capabilities.
- 1990s: Analog cameras improved in image quality and affordability, dominating the market before digital technology emerged.

Université Constantine 2 © Dr houda Benaliouche

Historical overview

Historical Overview

•Digital Era:

- •1990s: Introduction of digital surveillance systems with features like higher resolution and better storage capabilities.
- •2000s: Emergence of IP (Internet Protocol) cameras, enabling remote monitoring via the internet.
- •2010s: Integration of cloud storage, enhancing accessibility and scalability of surveillance systems.
- •Late 2010s: Adoption of Al-powered analytics for automated threat detection and activity recognition.
- •2020s: Increased use of edge computing and IoT for real-time, decentralized processing in surveillance systems.

Université Constantine 2 © Dr houda Benaliouche

8

Historical overview

✓ Core Concepts in Video Surveillance

✓ Components of video surveillance systems

Cameras and Sensors:

- Types of cameras (fixed, PTZ, thermal,,etc).
- Additional sensors (motion detectors, infrared).

Data Storage Solutions:

- Cloud storage for scalability.
- Edge storage for real-time processing.

Processing Units:

 Use of Graphics Processing Units (GPUs) and Tensor Processing Units (TPUs) for high-performance analytics

- •Types of Cameras:
- •Analog Cameras: Cost-effective with basic recording capabilities, reliant on coaxial cables and VCRs (Video Casset Recorder) for storage.

• **Digital Cameras:** Offer higher resolution, better storage, and integration with modern technologies like cloud systems.

•**IP Cameras:** Enable remote access and real-time monitoring over the internet.

•PTZ Cameras (Pan-Tilt-Zoom): Allow dynamic control for covering wide areas and zooming in on specific details.

- •Types of Cameras:
- •Thermal Cameras: Detect heat signatures, useful in low-light or no-light conditions for security and search applications.

 Dome Cameras: Compact and vandal-resistant, ideal for discreet indoor or outdoor surveillance.

 Bullet Cameras: Cylindrical and highly visible, suitable for long-range outdoor monitoring.

•360-Degree Cameras: Provide comprehensive views of an area with minimal blind spots.

differences between analog and digital cameras

Aspect	Analog Camera	Digital Camera
Transmission	Transmits analog signals over coaxial cables to a DVR(Digital Video Recorder)	Transmits digital signals over IP networks to an NVR (Network Video Recorder) or cloud.
Image Quality	Lower resolution, limited by signal and hardware.	High-definition (HD) and ultra-HD quality with better clarity.
Scalability	Limited scalability; adding cameras requires additional infrastructure.	Easily scalable through network integration.
Features	Basic functionality; limited analytics capabilities.	Advanced features like motion detection and facial recognition.
Cost	Lower upfront costs; affordable maintenance.	Higher upfront costs but more feature-rich.
Cybersecurity	Not networked, less susceptible to hacking.	Requires network security measures; can be hacked if not secured.

Université Constantine 2 © Dr houda Benaliouche 13

Types of Video Surveillance

Human Activity Recognition

Human Activity Recognition (HAR)
Overview of HAR

- Definition and Significance:
 - Recognizing and interpreting human behaviors in video footage.
- •Examples of Recognized Activities:
 - Daily activities: walking, running, sitting, and falling.
 - Complex actions: group gatherings, hand gestures.

Human Activity Recognition

Techniques for HAR

- •Rule-based Systems:
 - Predefined thresholds and heuristics.
- •Machine Learning Algorithms:
 - Supervised and unsupervised learning approaches.
- •Deep Learning:
 - CNNs for spatial recognition.
 - RNNs for sequential patterns.

Challenges

Challenges in Human Activity Surveillance

1 Environmental Challenges

• Lighting Conditions

Example: Surveillance in poorly lit areas like parking lots or nighttime streets often fails to detect activities accurately.

Weather Conditions

Example: Dense fog can blur video feeds, as shown in highway traffic monitoring systems.

Occlusion

Example: In crowded urban areas, people often occlude each other, complicating tracking.

Université Constantine 2 © Dr houda Benaliouche

Challenges

Challenges in Human Activity Surveillance

2. Complexity of Human Behavior

Variability in Activities

Example: A single person might switch between walking, running, or pausing, which adds complexity to recognition models.

Interpersonal Interactions

Example: Detecting a fight in a crowded stadium requires distinguishing aggressive interactions from benign gestures.

Subtle Activities

Example: Detecting pickpocketing in a marketplace requires attention to small hand movements

Challenges in Human Activity Surveillance

3. Data Challenges

High Dimensionality

Example: Surveillance in a smart city generates terabytes of video data daily, overwhelming traditional systems.

Annotation

Example: Creating a labeled dataset for elder fall detection in homes involves extensive manual labor.

Imbalanced Datasets

Example: Violent activities make up less than 1% of footage but are crucial to detect.

Challenges in Human Activity Surveillance

4. Technical Challenges

Real-time Processing

Example: Real-time traffic monitoring on highways necessitates low-latency systems.

Multi-camera Coordination

Example: Coordinating cameras in a shopping mall to track a suspect across multiple floors.

Privacy Preservation

Example: Using anonymization techniques to blur faces in retail surveillance.

Reference: Sun et al. (2022) propose privacy-preserving methods for public area surveillance.

Challenges in Human Activity Surveillance

5. Robustness of Algorithms

Adversarial Scenarios

Example: Suspects use masks or props to deceive facial recognition systems.

Adaptability

Example: Updating models for new activities like e-scooter usage in urban surveillance.

False Positives/Negatives

Example: Mistaking a handshake for a fight in event monitoring.

Université Constantine 2 © Dr houda Benaliouche

21

Challenges in Human Activity Surveillance

6. Ethical and Legal Concerns

Bias in Al Models

Example: Systems performing worse on non-Western demographic groups.

Surveillance Misuse

Example: Using surveillance for political targeting.

Regulatory Compliance

Example: GDPR regulations require anonymizing personal data in European surveillance systems.

Challenges

Challenges in Human Activity Surveillance

7. Integration with Other Technologies

IoT Devices

Example: Using IoT sensors for movement detection enhances video surveillance accuracy.

Edge Computing

Example: Processing on edge devices reduces latency in stadium surveillance.

Security

Example: Cyberattacks targeting surveillance feeds to delete evidence.

Challenges

Challenges in Human Activity Surveillance

8. Scalability

Large-scale Deployment

Example: Monitoring public transportation hubs requires scalability.

Resource Allocation

Example: Allocating bandwidth for high-priority areas like banks or government buildings.

Case study

Here are notable case studies and examples of video surveillance in human activity

monitoring across various sectors:

- 1. Public Safety and Crime Prevention Case: London's CCTV Network (UK)
- •Context: London has one of the world's most extensive CCTV networks, covering streets, subways, and public spaces.
- •Purpose: Monitor crowd activities, prevent crimes, and support law enforcement.
- •Outcome: CCTV footage has been instrumental in solving cases like the 2005 London bombings. Challenges included privacy concerns and system scalability.

Case study

2. Smart Cities

Case: Singapore's Smart Nation

Initiative

•Context: Singapore integrates video surveillance with IoT sensors in public spaces.

- •Purpose: Monitor traffic, detect unusual activities, and manage public safety.
- •Outcome: Enhanced response times to emergencies and improved urban planning. Challenges involve data management and maintaining citizen trust.

Case study

3. Traffic Monitoring

Case: Dubai's Smart Traffic Management System

•Context: The city integrates surveillance cameras with AI for real-time traffic monitoring.

•Purpose: Detect traffic violations, manage congestion, and monitor pedestrian safety.

•Outcome: Improved traffic flow and reduced accident rates.

Case study

4. Military and Border Surveillance

Case: US-Mexico Border Surveillance

•Context: Surveillance systems are deployed to monitor human activities along the border.

•Purpose: Detect illegal crossings and ensure border security.

•Outcome: Enhanced detection capabilities but faced criticism for ethical concerns and high costs.

The U.S.-Mexico border surveillance employs cameras, sensors, drones, radar, smart fences, biometric systems, mobile units, and AI analytics to monitor and secure the border effectively.

Conclusion

With continuous advancements in AI and integration with IoT, video surveillance has the potential to become more accurate, scalable, and ethically responsible, paving the way for safer and smarter environments.

References

- 1. Dana H. Ballard & Christopher M. Brown. Computer Vision Prentice Hall, Inc, 1982
- 2. Robert M. Haralick & Linda G. Shapiro. Computer and Robot Vision, Vol-I, Addison-Wesley Publishing Company, 1992
- 3. Robert M. Haralick & Linda G. Shapiro. Computer and Robot Vision, Vol-II, Addison-Wesley Publishing Company, Inc, 1993
- 4. Linda Shapiro & Azriel Rosen eld. Computer Vision and Image Processing, Academic Press, Inc, 1992
- 5. Berthold Klaus Paul Horn. Robot Vision, MIT Press McGraw-Hill Book Company, 1986
- 6. Robert J. Schalko. Digital Image Processing and Computer Vision, John Wiley & Sons Inc, 1989
- 7. George Stockman and Linda Shapiro. Three Dimensional Computer Vision. Prentice Hall 2000.
- 8. David Marr. Vision, W. H Freeman and Company, NY, 1982
- 9. Rafael C. Gonzalez and Paul Wintz. Digital Image Processing, Third edition, Addison Wesley, MA. (Now with Prentice Hall, eective 1999).
- 10. Ernest Hall. Computer Image Processing and Recognition, second edition, Academic press 1982.
- 11. Azriel Rosenfeld and Avinash C. Kak. Digital Picture Processing, Vol. 1 & Vol. 2, Academic Press, 1982.
- 12. Robert J. Schalko. Digital Image Processing and Computer Vision: An introduction to theory and implementations, John Wiley & Sons, New York, 1989.
- 13. William K. Pratt. Digital Image Processing, John Wiley & Sons, 1993.

Université Constantine 2 © Dr houda benaliouche 30