INST0072 Lecture 9: Logic, Prolog, and Clark Completion

- 1. In the Last Lecture
- 2. Prolog and Resolution
- 3. Reminder: Resolution Proof By Contradiction
- 4. Example Resolution Proof By Contradiction
- 5. An Example Prolog Proof
- 6. Transforming Programs Into CNF Theories
- 7. An Example Resolution Proof
- 8. Comparing Resolution and Prolog Proofs
- 9. The Meaning of Prolog Programs with Negation-as-Failure
- 10. A Prolog Search Tree with Negation-as-Failure
- 11. Models of $\{soft \leftarrow (\neg new \land red), red\}$

- 12. Clark Completion for Propositional Programs
- 13. Clark Completion: Propositional Examples
- 14. Clark Completion: Another Example
- 15. Prolog Soundness and Completeness
- 16. Clark Completion for Predicate Prolog Programs
- 17. Safe and Unsafe Prolog Programs
- 18. A Prolog Program, Its General Form and Its Completion
- 19. Example Completion with Equality Theory
- 20. Summary
- 21. Further Reading for Technical Details

1. In the Last Lecture

In the last lecture we saw that

- A Prolog program can include meta-level clauses about itself.
- Three commonly used predefined meta-level predicates are 'clause/2', 'assertz/1' and 'retract/1'.
- The 'clause/2' predicate can be used in *meta-interpreters* that refine or adapt Prolog's search strategy for specific problems.
- The meaning of Prolog programs in terms of classial logic is not always straightforward, partly because Prolog includes *Uniquess-of-names* and *Closed World Assumptions*.

2. Prolog and Resolution

For a Prolog program in which all the predicates have arity 0 (i.e. no arguments) and that does not use negation-by-failure, a successful branch in the search tree of a query is equivalent to a propositional calculus proof by contradiction using resolution.

Reminder: the general resolution inference rule is:

$$\frac{(L_1 \vee \ldots \vee L_i \vee p \vee L_{i+1} \vee \ldots \vee L_m), \quad (L'_1 \vee \ldots \vee L'_j \vee \neg p \vee L'_{j+1} \vee \ldots \vee L'_n)}{(L_1 \vee \ldots \vee L_m \vee L'_1 \vee \ldots \vee L'_n)}$$

For example:

$$\frac{(\textit{big} \lor \textit{soft} \lor \neg \textit{red}), \ (\neg \textit{soft} \lor \neg \textit{new})}{(\textit{big} \lor \neg \textit{red} \lor \neg \textit{new})} \qquad \frac{(\textit{soft}), \ (\neg \textit{soft})}{\bot}$$

3. Reminder: Resolution Proof By Contradiction

The general theorem (from Lecture 3, Slide 12):

Resolution Calculus Soundness and Completeness

For any CNF knowledge base KB and formula F

$$KB \models F$$
 if and only if $KB \cup \mathbf{cnfset}[\neg F] \vdash_{res} \bot$

... and a special (simpler) case if F is a single proposition p:

For any CNF knowledge base KB and proposition p $KB \vDash p \quad \text{if and only if} \quad KB \cup \{\neg p\} \vdash_{\mathit{res}} \bot$

For example: $\{(\neg raining \lor wet), (raining)\} \models wet$ if and only if $\{(\neg raining \lor wet), (raining), (\neg wet)\} \vdash_{res} \bot$

4. Example Resolution Proof By Contradiction

• Finish the following proof of

$$\{(\neg raining \lor wet), (raining), (\neg wet)\} \vdash_{res} \bot$$

by adding the final two steps (4) and (5):

(1) $(\neg raining \lor wet)$

by assumption

(2) (raining)

by assumption

(3) (wet)

by (1), (2), resolution

5. An Example Prolog Proof

Prolog program:

big :- soft, red.
soft :- new.
new.

red.

Query:

?- big.

Search tree:

6. Transforming Programs Into CNF Theories

Prolog program:

big :- soft, red. $big \leftarrow (soft \land red)$

soft :- new. $soft \leftarrow new$ new. new

 $egin{array}{lll} {
m new.} & & {\it new.} \\ {
m red.} & & {\it red.} \\ \end{array}$

In CNF:

 $(\mathit{big} \vee \neg \mathit{soft} \vee \neg \mathit{red})$

 $\begin{array}{l}
(soft \lor \neg new) \\
(new) \\
(red)
\end{array}$

 $big \leftarrow (soft \land red)$

In logic:

 $\equiv big \lor \neg (soft \land red)$ [implication]

 $\equiv big \lor (\neg soft \lor \neg red)$ [De Morgan]

 \equiv (big $\vee \neg soft \vee \neg red$) [\vee associativity]

7. An Example Resolution Proof

CNF Knowledge Base KB:

(1)) (bia	V	$\neg soft$	V	$\neg red$)
\ -	, ,	009	•	.00,10	•	.,	,

(2)
$$(soft \lor \neg new)$$

$$(3)$$
 (new)

Proposition to prove:

big

Resolution proof:

(5)
$$(\neg big)$$
 [assumption]

(6)
$$(\neg soft \lor \neg red)$$
 [by (1),(5)]

7)
$$(\neg new \lor \neg red)$$
 [by (2),(6)]

(8)
$$(\neg red)$$
 [by (3),(7)]

$$(9) \quad \bot \qquad \qquad [by (4),(8)]$$

So by resolution soundness:

$$KB \models big$$

8. Comparing Resolution and Prolog Proofs

Resolution proof (from Slide 7):

- (5) $(\neg big)$
- (6) $(\neg soft \lor \neg red)$
- (7) $(\neg new \lor \neg red)$
- (8) $(\neg red)$
- (9) \perp

Prolog search tree (from Slide 5):

9. The Meaning of Prolog Programs with Negation-as-Failure

Negation-as-failure (" \downarrow +") cannot be directly translated as classical logic negation (" \neg "). A simple example shows why:

Prolog program:

:- dynamic new/0, soft/0, red/0.

Query:

?- soft.
true.

Equivalent knowledge base KB?

$$soft \leftarrow (\neg new \land red).$$
 red.

No equivalent entailment:

$$KB \not\models soft$$

10. A Prolog Search Tree with Negation-as-Failure

Prolog program:

:- dynamic new/0, soft/0, red/0.

Query:

?- soft.
true.

11. Models of $\{soft \leftarrow (\neg new \land red), red\}$

Reminders:

- In propositional logic, the models of a formula are the lines in the formula's truth table that make the formula true.
- If F and G are formulas, then " $F \models G$ " means "every model of F is also a model of G".

So, $\{soft \leftarrow (\neg new \land red), red\} \not\models soft$ because line 5 is not a model of soft.

12. Clark Completion for Propositional Programs

Given a proposition 'p' appearing in a propositional program PR:

- 1. If 'p' does not appear as a fact or as the head of a clause in PR then $COMP(p, PR) = \neg p$.
- 2. If 'p' appears as a fact in PR then COMP(p, PR) = p.
- 3. If 'p' does not appear as a fact in PR and has a definition

$$p := Body_1.$$
 ... $p := Body_n.$

then **COMP**(p, PR) = [$p \leftrightarrow (B_1 \lor ... \lor B_n)$], where each B_i is the same as 'Body_i' but with '\+' replaced by '¬', and ',' replaced by '∧'.

Clark Completion: $COMP(PR) = \{COMP(p, PR) \mid p \text{ appears in } PR\}.$

13. Clark Completion: Propositional Examples

14. Clark Completion: Another Example

What is COMP(PR) if PR is the following program?

```
happy :- on_holiday, has_money.
happy :- work_done, \+ has_lectures.
has_money :- \+ student.
has_lectures :- term_time, student.
work_done.
```

15. Prolog Soundness and Completeness

Let 'p' be a proposition appearing in the propositional Prolog program PR.

Soundness:

If PR returns 'true' for the query '?- p' then $COMP(PR) \models p$.

If PR returns 'false' for the query '?- p' then $COMP(PR) \models \neg p$.

Completeness:

If $COMP(PR) \models p$ and PR is *stratified* (i.e. does not contain loops) then PR will return 'true' for the query '?- p'.

If $COMP(PR) \models \neg p$ and PR is *stratified* (i.e. does not contain loops) then PR will return 'false' for the query '?- p'.

16. Clark Completion for Predicate Prolog Programs

Clark completion can be applied to predicate Prolog programs as well, but extra steps and conditions must be applied:

- Programs must be <u>safe</u> written in such a way that negative sub-goals (i.e. sub-goals with '\+') are evaluated <u>only</u> after the variables in them have all been *ground* (i.e. substituted with terms containing no variables).
- Clauses must be re-written in <u>general form</u>, i.e. including quantifiers and with only universally quantified variables in their head, before the **COMP** procedure is applied.
- <u>Clark equality theory</u> must be added to the completion to ensure that the '=' predicate corresponds to Prolog unification.

17. Safe and Unsafe Prolog Programs

An unsafe Prolog program:

```
happy(X) :-
     \+ sad(X).
sad(mani).
hungry(nina).
```

Queries:

```
?- happy(X).
false.
?- happy(nina).
true.
```

A safe Prolog program:

```
happy(X) :-
    person(X),
    \+ sad(X).
sad(mani).
hungry(nina).
person(mani).
person(nina).
```

Query:

?- happy(X).
X=nina.

18. Example General Form and Completion

Prolog program PR:

```
likes(X, partner_of(X)).
likes(nina, X) :- polite(X).
polite(partner_of(mani)).
```

PR in general form:

```
\forall x_1 \forall x_2.[likes(x_1, x_2) \leftarrow \exists x.(x_1 = x \land x_2 = partner\_of(x))],
\forall x_1 \forall x_2.[likes(x_1, x_2) \leftarrow \exists x.(x_1 = nina \land x_2 = x \land polite(x))],
\forall x_1.[polite(x_1) \leftarrow x_1 = partner\_of(mani)]
```

COMP(PR):

```
\forall x_1 \forall x_2. [likes(x_1, x_2) \leftrightarrow [\exists x. (x_1 = x \land x_2 = partner\_of(x)) \lor \\ \exists x. (x_1 = nina \land x_2 = x \land polite(x))]],\forall x_1. [polite(x_1) \leftrightarrow x_1 = partner\_of(mani)],- plus the Clark equality theory for PR.
```

19. Example Completion with Equality Theory

Prolog program PR:

```
likes(X, partner_of(X)).
likes(nina, X) :- polite(X).
polite(partner_of(mani)).
```

COMP(PR):

```
\forall x_1 \forall x_2. [likes(x_1, x_2) \leftrightarrow [\exists x. (x_1 = x \land x_2 = partner\_of(x)) \lor \\ \exists x. (x_1 = nina \land x_2 = x \land polite(x))]],
\forall x_1. [polite(x_1) \leftrightarrow x_1 = partner\_of(mani)],
\frac{Clark \ equality \ theory \ for \ PR:}{mani \neq nina \land \forall x. [partner\_of(x) \neq mani \land partner\_of(x) \neq nina],}
\forall x_1 \forall x_2. [x_1 \neq x_2 \rightarrow partner\_of(x_1) \neq partner\_of(x_2)],
plus for any structured term \tau[x] containing any variable x:
\tau[x] \neq x \qquad [e.g. \ partner\_of(partner\_of(x)) \neq x]
```

20. Summary

- A query execution with a stratified (i.e. non-looping) propositional Prolog program without negation-as-failure corresponds to a search for a resolution proof by contradiction.
- For "sensibly written" (i.e. safe, stratified) Prolog programs with negation-as-failure, their logical meaning can be understood as their Clark completion.
- For predicate Prolog programs, the Clark completion must include Clark equality theory, because of the way Prolog unifies terms and variables.
- In A.I. terms, Clark completion is related to the "closed world assumption", and Clark equality theories are examples of "uniquness-of-names axioms".

21. Further Reading for Technical Details

- Marek Sergot's notes on negation as failure are available at: https://www.doc.ic.ac.uk/~mjs/teaching/KnowledgeRep491/NBF_491-2x1.pdf (Marek Sergot is a professor in the Computer Science Department at Imperial College London.)
- Keith Clark's original paper "Negation as Failure", first published in: Logic and Data Bases, (eds Gallaire and Minker), 1978, can be found at: https://www.doc.ic.ac.uk/~klc/NegAsFailure.pdf