RESEARCH PAPERS REFERRED

S. No	Paper Title	Author(s)	Year	Summary	Dataset Used	Preventive Methods	Results	Strengths	Limitations
1	Automated Penetration Testing: Formalization and Realization	C. Skandylas, M. Asplund	2024	Discusses formalization of automated penetration testing, evaluating Al-based approaches for security assessment	-	Al-driven automated pentesting	Highlights improvements in Al-based security analysis	Framework for automated penetration testing	Ethical concerns, reliance on Al
2	CIPHER: Cybersecurity Intelligent Penetration-testing Helper for Ethical Researcher	Derry Pratama, Naufal Suryanto, Andro Aprila Adiputra, et al.			Pentesting QnA Dataset, OpenHermes Dataset	Al-assisted penetration testing guidance	Al models improve efficiency in security testing	Al-driven penetration testing frameworks	Model hallucinations, reliance on pre- trained knowledge
3	Maximizing Penetration Testing Success with Effective Reconnaissance Techniques using ChatGPT	Sheetal Temara	2024	Explores ChatGPT's role in reconnaissance for penetration testing	Case study using ChatGPT queries	Al-assisted reconnaissance	Improves penetration testing planning	Efficiency gains	Potential biases, incorrect responses
4	Offensive Al: Enhancing Directory Brute-forcing Attack with the Use of Language Models	Alberto Castagnaro, Mauro Conti, Luca Pajola	2024	Investigates AI-enhanced directory brute-forcing attacks	1M URLs (universities, hospitals, etc.)	Language Model-based brute- forcing	Increases efficiency by 969%	AI significantly improves attack rates	Ethical concerns, misuse
5	PentestGPT: An LLM-empowered Automatic Penetration Testing Tool	Gelei Deng, Yi Liu, Victor Mayoral- Vilches, et al.	2024		HackTheBox, VulnHub (182 sub-tasks)	LLM-guided pentesting	Outperforms GPT-3.5 by 228.6%	Interactive penetration testing	LLMs struggle with context retention
6	Getting pwn'd by Al: Penetration Testing with Large Language Models	Andreas Happe, Jürgen Cito	2024	Examines LLMs as AI sparring partners for penetration testers	MITRE ATT&CK tactics, vulnerable VM	Al-guided security testing	Shows Al-assisted penetration testing potential	Al assists human testers	LLMs struggle with full context retention
7	An Al-Based Approach for Automating Penetration Testing	-	2024	Discusses Al-assisted pentesting, explores automation challenges in ethical hacking	-	Automated Al-based penetration testing	Improves efficiency in vulnerability identification	Al reduces manual effort	Ethical concerns, reliance on training data

8	Towards Automated Penetration Testing: Introducing LLM Benchmark, Analysis, and Improvements	Isamu Isozaki, Manil Shrestha, Rick Console, Edward Kim	Proposes an LLM-based benchmark for penetration testing, evaluates GPT-4o & Llama 3.1	PentestGPT benchmark (HackTheBox, VulnHub)	Al-driven pentesting automation	GPT-4o, Llama 3.1 show progress, but not fully automated	Structured benchmarking for Al in pentesting	LLMs require human oversight
9	AUTOATTACKER: A Large Language Model Guided System to Implement Automatic Cyber- attacks	Jiacen Xu, Jack W. Stokes, Geoff McDonald, et al.		Simulated network, Metasploit	Al-driven cyber-attacks	GPT-4 achieves full attack automation	Enhances security testing	Risk of Al-powered cyber- attacks
10	Knowledge-Informed Auto-Penetration Testing Based on Reinforcement Learning	Yuanliang Li, Hanzheng Dai, Jun Yan	1	MITRE ATT&CK datasets	Al-powered lateral movement automation	RL improves efficiency in pentesting	Knowledge- guided Al decisions	Complexity in RL implementation
11	Hacking, The Lazy Way: LLM Augmented Pentesting	Dhruva Goyal, Sitaraman Subramanian, Aditya Peela	INANTASTINA TANI	Testbenching framework (Boot2Root box)	LLM-augmented penetration testing	GPT-4-turbo improves efficiency	Al-driven pentesting assistance	Requires ethical safeguards
12	PenTest++: Elevating Ethical Hacking with Al	Haitham S. Al- Sinani, Chris J. Mitchell		Simulated pentest environment	Al-enhanced pentesting workflows	Al streamlines pentesting, reduces effort	Scalable automation	Al hallucinations, ethical concerns
13	A Unified Modeling Framework for Automated Penetration Testing	Yunfei Wang, Shixuan Liu, Wenhao Wang, et al.	Introduces AutoPT-Sim, a modeling framework for penetration testing automation	Publicly available network dataset	Policy automation for pentesting	AutoPT-Sim improves Al-assisted security testing	Unified approach for pentesting modeling	Al limitations in real-world applications