Свойства суммы степенного ряда

Теорема 1.

- 1) Радиусы сходимости рядов $\sum_{n=0}^{\infty} c_n z^n$ и $\sum_{n=1}^{\infty} n c_n z^{n-1}$ совпадают: R = R'.
- 2) Если радиус сходимости R > 0, то внутри круга сходимости сумма $f(z) = \sum_{n=0}^{\infty} c_n z^n$ дифференцируема и вычисляется следующим образом: $f'(z) = \sum_{n=1}^{\infty} n c_n z^{n-1}$, $\forall z \in \{z \colon |z| < R\}$.

Следствие 1. Пусть радиус сходимости ряда $\sum_{n=0}^{\infty} c_n z^n$, R>0. Тогда на $\{z\colon |z|< R\}$ сумма этого ряда бесконечное число раз дифференцируема и её k-ая производная вычисляется следующим образом:

$$f^{(k)}(z) = \sum_{n=k}^{\infty} c_n n(n-1) \cdot \dots \cdot (n-k+1) z^{n-k}$$

В частности, будет верно:

$$\forall k \in \mathbb{N}, \, c_k = \frac{f^{(k)}(0)}{k!}$$

и степенной ряд является рядом Тейлора своей суммы.

Следствие 2. Пусть радиус сходимости ряда $\sum_{n=0}^{\infty} c_n z^n, R > 0$. Тогда радиус сходимости ряда $\sum_{n=0}^{\infty} \frac{c_n}{n+1} z^{n+1}$ равен R и его производная равна исходному ряду внутри круга сходимости:

$$\forall z \in \{z \colon |z| < R\}, \left(\sum_{n=0}^{\infty} \frac{c_n z^{n+1}}{n+1}\right)' = \sum_{n=0}^{\infty} c_n z^n$$

Или, что тоже самое, можно записать так:

$$\forall z \in \{z : |z| < R\}, \int \left(\sum_{n=0}^{\infty} c_n z^n\right) dz = \sum_{n=0}^{\infty} \frac{c_n}{n+1} z^{n+1} + C, C \in \mathbb{C}$$

Теорема 2. Пусть радиус сходимости ряда $\sum_{n=0}^{\infty} c_n z^n$, R > 0 и $\varphi \colon [a,b] \to \{z \colon |z| < R\}$ - непрерывна, а функция g - непрерывна на отрезке [a,b] (со значениями в $\mathbb R$ или в $\mathbb C$). Тогда для функции суммы ряда $f(z) = \sum_{n=0}^{\infty} c_n z^n$ верно, что $f(\varphi(t)) \cdot g(t)$ интегрируема по Риману на [a,b] и выполняется равенство:

$$\int_{a}^{b} f(\varphi(t)) \cdot g(t) dt = \sum_{n=0}^{\infty} c_n \int_{a}^{b} \varphi(t)^n g(t) dt$$

 \mathbf{Rm} : 1. Заметим, что интеграл может быть от комплексно-значной функции, но t - вещественное число:

$$\int_{a}^{b} (u(t) + iv(t)) dt = \int_{a}^{b} u(t)dt + i \int_{a}^{b} v(t)dt$$

и все свойства интегрируемости сохраняются.

Поскольку на круге сходимости функция f(z) - дифференцируема \Rightarrow она непрерывна (или ещё можно так: из-за равномерной сходимости внутри круга, сумма в окрестности любой точки является непрерывной функцией). Как композиция непрерывных функций $t\mapsto f(\varphi(t))\,g(t)$ - непрерывная функция на $[a,b]\Rightarrow$ она интегрируема.

Отрезок [a,b] - компакт, φ - непрерывная функция \Rightarrow непрерывный образ компакта $K=\varphi([a,b])$ это тоже компакт в $\{z\colon |z|< R\}$. Возьмем функцию $z\mapsto |z|$ - непрерывна (норма всегда непрерывная функция) \Rightarrow достигает максимума на K в какой-то точке:

$$\exists z_0 : z_0 \in K \Rightarrow \forall z \in K, |z| \leq |z_0| = R_1 < R$$

где последнее верно по определению $K\Rightarrow K\subset\{z\colon |z|\leq R_1\}$. На этом круге ряд $\sum_{n=0}^\infty c_n z^n$ сходится равномерно. При $t\in[a,b],\, \varphi(t)\in K,\, функция <math>g(t)$ - непрерывная на $[a,b]\Rightarrow$ она ограничена на отрезке (равномерно ограничена на нём). Тогда ряд $\sum_{n=0}^\infty c_n \varphi(t)^n g(t)$ сходится равномерно на [a,b]. По теореме о перестановке равномерного предела и интеграла, мы получаем:

$$\int_{a}^{b} f(\varphi(t)) \cdot g(t) dt = \int_{a}^{b} \sum_{n=0}^{\infty} c_n \varphi(t)^n g(t) dt = \sum_{n=0}^{\infty} c_n \int_{a}^{b} \varphi(t)^n g(t) dt$$

Данная теорема достаточно часто применяется на практике. Рассмотрим уже известный пример.

Пример: Разложим $\arctan x$ в нуле, при |x| < 1:

$$\operatorname{arctg} x = \int_{0}^{x} \frac{dt}{1+t^{2}} = \int_{0}^{x} \sum_{n=0}^{\infty} (-1)^{n} t^{2n} dt = \sum_{n=0}^{\infty} (-1)^{n} \int_{0}^{x} t^{2n} dt = \sum_{n=0}^{\infty} \frac{(-1)^{n} x^{2n+1}}{2n+1}$$

Теорема 3. (единственность) Если $\exists z_k \colon z_k \to 0, \, z_k \neq 0, \,$ такие что:

$$\forall k, \, \sum_{n=0}^{\infty} c_n z_k^n = \sum_{n=0}^{\infty} d_n z_k^n$$

где ряды выше сходятся и равны, то $\forall n, c_n = d_n$.

 \square Поскольку в точке z_1 сходятся оба ряда, то есть общий круг сходимости и на нём возникают две функции (немного уменьшив круг можно получить и равномерную сходимость):

$$f(z) = \sum_{n=0}^{\infty} c_n z^n, \ g(z) = \sum_{n=0}^{\infty} d_n z^n$$

На общем круге сходимости f(z) и g(z) непрерывны, тогда :

$$f(0) = c_0 = \lim_{k \to \infty} f(z_k) = \lim_{k \to \infty} g(z_k) = d_0 = g(0)$$

Рассмотрим следующую функцию:

$$\frac{f(z) - c_0}{z} = \sum_{n=1}^{\infty} c_n z^{n-1}$$

её радиус сходимости такой же, как и у исходной функции f(z), следовательно это непрерывная функции на общем круге сходимости. То же самое касается функции:

$$\frac{g(z) - d_0}{z} = \sum_{n=1}^{\infty} d_n z^{n-1}$$

её радиус сходимости также будет аналогичен исходной функции g(z) и она будет непрерывна на общем круге сходимости. Следовательно:

$$c_1 = \lim_{k \to \infty} \frac{f(z_k) - c_0}{z_k} = \lim_{k \to \infty} \frac{g(z_k) - d_0}{z_k} = d_1$$

где второе равенство верно в силу того, что $f(z_k) = g(z_k)$ и $c_0 = d_0$. Далее продолжаем процедуру.

Кратные ряды

Пусть последовательность задана двумя индексами $\{a_{nm}\}_{n,m=1}^{\infty}$, будем рассматривать следующий ряд:

$$\sum_{n,m=1}^{\infty} a_{nm}$$

Можно представлять это так: есть табличка, в клетках таблички стоят элементы последовательности и мы по этой таблице производим суммирование.

`	n	1	2		M	
	1	a_{11}	a_{12}		a_{1M}	
	2	a_{21}	a_{22}		a_{2M}	
	:		• • •	٠.		••
-	N	a_{N1}	a_{N2}		a_{NM}	
	:	:	:	٠٠.	•	٠.

Рис. 1: Последовательность заданная двумя индексами.

Такое суммирование принципиально можно понимать тремя способами. Заметим, все эти способы могут приводить к разным ответам и возникнет естественный вопрос, а когда ответ будет один и тот же? То что ответы разные можно легко увидеть из теорем про произведения двух рядов.

(1) Двойной ряд

Опр: 1. Двойным рядом будем называть суммы вида:

$$\sum_{n,m=1}^{\infty} a_{nm} = \lim_{\substack{n \to \infty \\ m \to \infty}} \sum_{i=1}^{n} \sum_{j=1}^{m} a_{ij} = S$$

Опр: 2. Частичная сумма двойного ряда $S_{NM} = \sum_{n \le N} \sum_{m \le M} a_{nm}$.

Опр: 3. Двойной ряд <u>сходится</u> если $\exists \lim_{\substack{N \to \infty \\ M \to \infty}} S_{NM}$, этот предел называется <u>суммой</u> и равен S.

Rm: 2. Напоминание из прошлого семестра (см. семинары):

$$\lim_{\substack{N \to \infty \\ M \to \infty}} S_{NM} = S \Leftrightarrow \forall \varepsilon > 0, \ \exists \ K \colon \forall N, M \in \mathbb{N} \colon N > K, M > K, \ |S_{NM} - S| < \varepsilon$$

Это тоже самое, что и предел $\lim_{\substack{x \to \infty \\ y \to \infty}} f(x,y)$.

Утв. 1. Если двойной ряд $\sum_{n,m=1}^{\infty} a_{nm}$ сходится, то $\lim_{\substack{n\to\infty\\m\to\infty}} a_{nm}=0$.

□ Распишем член ряда через его частичные суммы:

$$a_{nm} = S_{nm} - S_{n-1m} - S_{nm-1} + S_{n-1m-1} \to S - S - S + S = 0$$

Заметим, что если задана последовательность a_{nm} , то также имеем последовательность частичных сумм и наоборот, если задана последовательность частичных сумм, то можно восстановить последовательность a_{nm} . Для простого ряда было:

$$S_n = a_1 + a_2 + \ldots + a_n \Leftrightarrow a_n = S_n - S_{n-1}$$

Соответственно, в нашем случае ситуация следующая:

$$S_{nm} = \sum_{i=1}^{n} \sum_{j=1}^{m} a_{nm} \Leftrightarrow a_{nm} = S_{nm} - S_{n-1m} - S_{nm-1} + S_{n-1m-1}$$

Rm: 3. Из того, что $a_{nm} \to 0$ не следует, что a_{nm} - ограничена. Более того, из сходимости ряда этого тоже не следует. Это так, поскольку стремление к нулю говорит про n, m > K, но ничего не говорит про то, что происходит с a_{n1} или a_{1m} , например:

$$a_{1m} = m, \ a_{2m} = -m, \ \forall k > 2, \ a_{km} = 0 \Rightarrow \sum_{\substack{n \le N \\ m \le M}} a_{nm} = 0$$

Теорема 4. Двойной ряд с положительными членами $a_{nm} \ge 0$ сходится тогда и только тогда, когда его частичные суммы ограничены.

 \square Очевидно, что если ряд сходится, то его частичные суммы - ограничены. Пусть $S_{NM} \leq L$ и обозначим точную верхнюю грань по всем таким суммам $S = \sup_{N,M} \{S_{NM}\}$. Покажем, что S будет являться суммой ряда. Пусть $\varepsilon > 0$, тогда:

$$\exists S_{N_0M_0}: S_{N_0M_0} > S - \varepsilon \Rightarrow \forall n > N_0, m > M_0, S_{nm} > S - \varepsilon$$

где последнее очевидно: $S_{nm} \leq S_{kp}, \, \forall n \leq k, m \leq p, \,$ поскольку члены ряда неотрицательны. Тогда:

$$\forall \varepsilon > 0, \exists N_0, M_0: \forall n > N_0, m > M_0, |S_{nm} - S| < \varepsilon$$

Это и означает, что: $S = \lim_{\substack{n \to \infty \\ m \to \infty}} S_{nm}$.

Теорема 5. Если сходится двойной ряд из абсолютных значений данного ряда, то и сам ряд сходится.

 \square Пусть $a_{nm}=b_{nm}+c_{nm}=\max\{a_{nm},0\}-\min\{0,a_{nm}\}$, тогда очевидно, что:

$$0 \le b_{nm} \le |a_{nm}|, \ 0 \le c_{nm} \le |a_{nm}|$$

Таким образом, из сходимости двойного ряда из абсолютных значений следует ограниченность сумм и соответственно сходимость рядов:

$$\sum_{n,m=1}^{\infty} b_{nm}, \sum_{n,m=1}^{\infty} c_{nm}$$

Следовательно сходится и их сумма равная исходному ряду:

$$\sum_{n,m=1}^{\infty} a_{nm} = \sum_{n,m=1}^{\infty} b_{nm} + \sum_{n,m=1}^{\infty} c_{nm}$$

(2) Повторные ряды

Опр: 4. Повторными рядами будем называть суммы вида:

$$\sum_{n=1}^{\infty} \left(\sum_{m=1}^{\infty} a_{nm} \right) = \lim_{N \to \infty} \left(\lim_{M \to \infty} S_{NM} \right) \text{ или } \sum_{m=1}^{\infty} \left(\sum_{n=1}^{\infty} a_{nm} \right) = \lim_{M \to \infty} \left(\lim_{N \to \infty} S_{NM} \right)$$

Rm: 4. То есть эти суммы это просто повторные пределы. Из семинаров прошлого семестра известно, что это совсем не тоже самое, что и двойной предел. Заметим также, что повторное суммирование это разные способы суммирования. В одном может быть сходимость, а в другом её может не быть вовсе.

Опр: 5. Повторный ряд <u>сходится</u>, если сходятся все ряды по индексу m и их суммы равны S_n :

$$\forall n, \, \sum_{m=1}^{\infty} a_{nm} = S_n$$

и если сходится ряд из этих сумм:

$$\sum_{n=1}^{\infty} S_n = \sum_{n=1}^{\infty} \sum_{m=1}^{\infty} a_{nm}$$

 \mathbf{Rm} : 5. Аналогично сходимость определяется для суммирования сначала по n, затем по m.

Здесь также можно применить теорему про совпадение двойного ряда и повторного, аналогичную теореме про совпадение повторного предела и двойного предела (см. лекция 9, курс 2).

Теорема 6. Если сходится двойной ряд $\sum_{n,m=1}^{\infty} a_{nm}$ и сходятся все ряды по индексу m, то сходится и повторный ряд и имеет ту же сумму, что и двойной ряд:

$$\sum_{n,m=1}^{\infty} a_{nm} = S = \sum_{n=1}^{\infty} \sum_{m=1}^{\infty} a_{nm}$$

□ Следует напрямую из теоремы о равенстве двойного предела и повторных.

Rm: 6. Теорема аналогично может быть сформулирована для суммирования по индексу n.

(3) Простые ряды

Опр: 6. Простыми рядами будем называть суммы вида:

$$\sum_{k=1}^{\infty} a_{n(k)m(k)}$$

где $k \mapsto (n(k), m(k))$ - биекция, которая нумерует все клетки таблицы.

Теорема 7. Пусть даны двойной и простой ряды, состоящие из одних и тех же членов. Тогда абсолютная сходимость одного из них влечет абсолютную сходимость другого и равенство их сумм.

□ Пусть сходится абсолютно двойной ряд, тогда будет верно:

$$\sum_{n,m=1}^{\infty} |a_{nm}| = S$$

Возьмем частичную сумму простого ряда модулей:

$$\forall K, \sum_{k=1}^{K} |a_{n(k)m(k)}| \le \sum_{n,m=1}^{\infty} |a_{nm}| = S$$

Следовательно простой ряд абсолютно сходится. Пусть теперь сходится абсолютно простой ряд:

$$\sum_{k=1}^{\infty} |a_{n(k)m(k)}| = A$$

тогда для любой частичной суммы абсолютного двойного ряда:

$$\sum_{n=1}^{N} \sum_{m=1}^{M} |a_{nm}| = S_{NM}$$

Следовательно, $\exists K$ такое, что все слагаемые этой суммы будут содержаться среди первых K членов простого абсолютного ряда и тогда: $S_{NM} < A$. В этом случае, двойной ряд будет сходиться абсолютно.

Поскольку простой ряд сходится абсолютно, то в нём мы можем переставить слагаемые любым биективным способом (см. лекцию 4) ⇒ расположим их по "квадратам" (т.е. на схеме идем от левого верхнего угла к правому нижнему растущими квадратами), тогда возьмем частичную сумму по целому квадрату:

$$A = \lim_{N \to \infty} \sum_{n=1}^{N} \sum_{m=1}^{N} a_{nm} = \lim_{N=M \to \infty} S_{NN} = S$$

Сходимость двойных, повторных и простых рядов

Рассмотрим несколько примеров.

Пример: $S_{NM}=\frac{1}{N}\sin M+\frac{1}{M}\sin N,$ тогда:

$$\forall N, \not\equiv \lim_{M \to \infty} S_{NM}, \forall M, \not\equiv \lim_{N \to \infty} S_{NM}$$

Но при этом существует двойной предел:

$$\exists \lim_{\substack{N \to \infty \\ M \to \infty}} S_{NM} = 0$$

Таким образом, заметим, что следующие пределы - разные и по смыслу, и по значению:

$$\lim_{N\to\infty} \left(\lim_{M\to\infty} S_{NM} \right), \lim_{M\to\infty} \left(\lim_{N\to\infty} S_{NM} \right), \lim_{\substack{N\to\infty\\M\to\infty}} S_{NM}$$

Пример: $S_{NM} = \frac{NM}{N^2 + M^2}$, тогда:

$$\lim_{N \to \infty} \left(\lim_{M \to \infty} S_{NM} \right) = \lim_{N \to \infty} \left(0 \right) = 0$$

Но при этом, если мы возьмем N = M:

$$S_{NN} = \frac{N^2}{N^2 + N^2} = \frac{1}{2} \to 0$$

То есть не существует двойного предела:

$$\forall \varepsilon > 0, \ \exists K \colon \forall N > K, M > K, \ |S_{NM} - S| < \varepsilon$$

$$N = M \to \infty \Rightarrow S = \frac{1}{2}; M > K, N \to \infty \Rightarrow S = 0$$

Теорема 8. Если хотя бы один из рядов:

$$\sum_{n,m=1}^{\infty} a_{nm}, \sum_{n=1}^{\infty} \left(\sum_{m=1}^{\infty} a_{nm} \right), \sum_{m=1}^{\infty} \left(\sum_{n=1}^{\infty} a_{nm} \right), \sum_{k=1}^{\infty} a_{n(k)m(k)}$$

сходится абсолютно, то все ряды сходятся абсолютно и их суммы равны.

 \square Пусть сходится ряд $\sum_{k=1}^{\infty} |a_{n(k)m(k)}|$ и его сумма равна S. Тогда $\forall N, m, \sum_{n=1}^{N} |a_{nm}| \leq S$. Следовательно

ряд сходится абсолютно и сходится ряд $\sum_{n=1}^{\infty} a_{nm}$ для любых m. По определению:

$$\forall \varepsilon > 0, \ \exists \ K \colon \forall k > K, \ \sum_{k=K+1}^{\infty} |a_{n(k)m(k)}| < \varepsilon \Rightarrow \left| \sum_{k=K+1}^{\infty} a_{n(k)m(k)} \right| = \left| S - \sum_{k=1}^{K} a_{n(k)m(k)} \right| < \varepsilon$$

При больших N и M, следующая разность есть сумма группы членов $a_{n(k)m(k)}$ для номеров с k > K:

$$\exists N_0, M_0 : \forall N > N_0, M > M_0, \left| \sum_{m=1}^{M} \sum_{n=1}^{N} a_{nm} - \sum_{k=1}^{K} a_{n(k)m(k)} \right| \leq \sum_{k=K+1}^{\infty} |a_{n(k)m(k)}| < \varepsilon$$

Перейдем к пределу по $N \to \infty$, поскольку ряд по n сходится, то:

$$\forall M > M_0, \left| \sum_{m=1}^{M} S_m - \sum_{k=1}^{K} a_{n(k)m(k)} \right| \le \varepsilon$$

Тогда мы получим:

$$\forall M > M_0, \left| \sum_{m=1}^{M} S_m - S \right| \le \left| \sum_{m=1}^{M} S_m - \sum_{k=1}^{K} a_{n(k)m(k)} \right| + \left| \sum_{k=1}^{K} a_{n(k)m(k)} - S \right| < 2\varepsilon$$

Следовательно, повторный ряд сходится к S. Наоборот, если сходится ряд $\sum_{m=1}^{\infty} \left(\sum_{n=1}^{\infty} |a_{nm}| \right) = S$, то:

$$\forall N, M, \sum_{m=1}^{M} \left(\sum_{n=1}^{N} |a_{nm}| \right) < S$$

Рассмотрим частичную сумму простого ряда от 1 до K, тогда:

$$\forall K, \exists N_0, M_0 : \forall N > N_0, M > M_0, \sum_{k=1}^K |a_{n(k)m(k)}| \le \sum_{m=1}^M \left(\sum_{n=1}^N |a_{nm}|\right) < S$$

Следовательно, простой ряд сходится абсолютно \Rightarrow сходится. Аналогичное утверждение в обе стороны будет верно для повторной суммы сначала по m и затем по n. Объединяя это с теоремой про равенство абсолютной сходимости простого и двойного рядов мы получаем требуемое.

Упр. 1. Исследовать сходимость ряда:

$$\sum_{n,m=0}^{\infty} \frac{1}{n^p + m^p}, \ p > 0$$

Кратные степенные ряды

Пусть последовательность задана двумя индексами $\{c_{nm}\}_{n,m=1}^{\infty}$, будем рассматривать следующий кратный степенной ряд (предварительно сделав сдвиг по переменным в $z_0 = 0$, $w_0 = 0$):

$$\sum_{n,m=0}^{\infty} c_{nm} z^n w^n, \, \forall n, m, \, c_{nm} \in \mathbb{C}, \, z, w \in \mathbb{C}$$

Область сходимости этого ряда не обязана представлять из себя что-то обобщающее круг сходимости. Иногда можно переписать этот ряд в виде повторного:

$$\sum_{n=0}^{\infty} \left(\sum_{m=0}^{\infty} c_{nm} w^m \right) z^n$$

Но это тогда просто степенной ряд по переменной z и аналогично по w, где радиусы сходимости будут зависеть от другой переменной: $|z| \leq R(w)$ и $|w| \leq R(z)$. Таким образом, область сходимости не обязательно будет выглядеть как прямоугольник: |z| < R, $|w| < R_1$, более того, область сходимости может не содержать внутренних точек. Но можно ли понять, что этот ряд где-то сходится?

Утв. 2. Предположим, что $z_1 \neq 0$, $w_1 \neq 0$ и $\exists M : \forall n, m, |c_{nm}z_1^nw_1^m| \leq M$. Тогда $\forall q \in (0,1)$ на области:

$$\{(z, w) \colon |z| \le q|z_1|, |w| \le q|w_1|\}$$

степенной ряд $\sum_{n,m=0}^{\infty} c_{nm} z^n w^n$ сходится абсолютно и равномерно.

 \square Поскольку $|z| \leq q|z_1|$ и $|w| \leq q|w_1|$, тогда:

$$|c_{nm}z^nw^m| \le |c_{nm}z_1w_1|q^nq^m \le Mq^{n+m}$$

Рассмотрим следующий ряд с неотрицательными слагаемыми:

$$\sum_{n,m=0}^{\infty} q^{n+m}$$

Из теоремы про сходимость кратных рядов достаточно исследовать на сходимость один из трех известных рядов. Рассмотрим повторный ряд, поскольку все слагаемые неотрицательны, то:

$$\sum_{n=0}^{\infty} \left(\sum_{m=0}^{\infty} q^{n+m} \right) = \sum_{n=0}^{\infty} \frac{q^n}{1-q} = \frac{1}{(1-q)^2} < \infty \Rightarrow \sum_{n=0}^{\infty} q^{n+m} < \infty$$

Обозначим частичную сумму кратного степенного ряда следующим образом:

$$S_{NK}(z, w) = \sum_{n=0}^{N} \sum_{m=0}^{K} c_{nm} z^{n} w^{m}$$

Равномерная сходимость означает то же самое, что и всегда:

$$S_{NK} \stackrel{E}{\Longrightarrow} S \Leftrightarrow \sup_{(z,w)\in E} |S_{NK}(z,w) - S(z,w)| \xrightarrow[N,K\to\infty]{} 0$$

Тогда:

$$|S_{NK}(z,w) - S(z,w)| = \left| \sum_{\substack{n=N+1\\m=K+1}}^{\infty} c_{nm} z^n w^m \right| \le M \cdot \sum_{\substack{n=N+1\\m=K+1}}^{\infty} q^{n+m} \to 0$$

Поскольку хвост у сходящегося ряда стремится к нулю, то взяв супремум, мы получим требуемое.

Rm: 7. Рассматриваем $\{(z,w): |z| \leq q|z_1| \land |w| \leq q|w_1|\}$, где (z_1,w_1) взяты из утверждения. Тогда ряд:

$$\sum_{n,m=0}^{\infty} |c_{nm}| \cdot |z|^n \cdot |w|^m$$

сходится. Следовательно, по теореме о равенстве кратных сходящихся рядов, мы можем рассматривать исходный ряд в следующем виде:

$$\sum_{n,m=0}^{\infty} c_{nm} z^n w^m = \sum_{n=0}^{\infty} \left(\sum_{m=0}^{\infty} c_{nm} z^n w^m \right) = \sum_{n=0}^{\infty} \left(\sum_{m=0}^{\infty} c_{nm} w^m \right) z^n = f(z,w)$$

Всё свелось к одномерному случаю. При фиксированном w получим степенной ряд по z и наоборот \Rightarrow можно применять весь инструментарий из обычных степенных рядов. В частности, можно дифференцировать бесконечное число раз на множестве сходимости (можно считать почленно дифференцируя):

$$\exists \frac{\partial^{n+m} f}{\partial z^n \partial w^m} (z, w)$$

И, в частности, если взять такую производную в нуле, мы получим коэффициенты ряда:

$$\frac{\partial^{n+m} f}{\partial z^n \partial w^m}(0,0) = c_{nm} n! m!$$

Следовательно, этот ряд окажется рядом Тейлора для своей суммы, только понадобится сделать группировку по степеням n и m, чтобы порядок производной был один и тот же, тогда это получится в чистом виде дифференциал.

Пример: Пусть $z_1 \neq 0$ и $c_{0m} = z_1 m!, \ c_{1m} = -m!, \ \forall k \geq 2, \ c_{km} = 0, \ N \geq 2.$ Тогда:

$$S_{NK} = \sum_{n=0}^{N} \sum_{m=0}^{K} c_{nm} z^n w^m = \sum_{m=0}^{K} w^m (z - z_1) m!$$

Этот ряд сходится $\Leftrightarrow w = 0$ или $z = z_1$. Никаких внутренних точек сходимости нет.

Rm: 8. В учебнике Фихтенгольца теорема Абеля для кратных степенных рядов формулируется с ошибкой. Там отсутствует требование ограниченности и делается ошибочный вывод, что из сходимости следует ограниченность коэффициентов.

Таким образом, для кратных степенных рядов, если в какой-то точке установили, что слагаемые ограничены, то появлется разумная область сходимости с которой уже можно работать. В том числе, сводится всё к повторным рядам и анализируются, как обычные степенные ряды, в противном случае, всё становится очень сложным.

Пример: Рассмотрим следующий ряд:

$$\sum_{n,m=0}^{\infty} C_{n+m}^n z^n w^m$$

Найти область сходимости? Рассмотрим область, где этот ряд сходится абсолютно:

$$\sum_{n,m=0}^{\infty} C_{n+m}^{n} \cdot |z|^{n} \cdot |w|^{m} = \sum_{k=0}^{\infty} \sum_{n,m:\; n+m=k} C_{n+m}^{n} \cdot |z|^{n} \cdot |w|^{m} = \sum_{k=0}^{\infty} \left(|z| + |w|\right)^{k} = \frac{1}{1 - \left(|z| + |w|\right)}$$

Таким образом, ряд сходится при |z| + |w| < 1. Внутри этого ромба ряд сходится, вне - расходится, что происходит на границе области - вопрос.