

GNE.2930R1C3

COPY

PATENT

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

Applicant : Botstein, et al.
Appl. No. : 10/032,996
Filed : December 27, 2001
For : SECRETED AND
TRANSMEMBRANE
POLYPEPTIDES AND NUCLEIC
ACIDS ENCODING THE SAME
Examiner : Fredman, J.
Group Art Unit : 1634

COPY

DECLARATION OF PAUL POLAKIS, PH.D. UNDER 37 C.F.R. § 1.132

Commissioner for Patents
P.O. Box 1450
Alexandria, VA 22313-1450

Dear Sir:

Attached is the Declaration of Paul Polakis, Ph.D.

Respectfully submitted,

KNOBBE, MARTENS, OLSON & BEAR, LLP

Dated: June 16, 2004

By AnneMarie Kaiser
AnneMarie Kaiser
Registration No. 37,649
Attorney of Record
Customer No. 30,313
(619) 235-8550

S:\DOCS\BSG\BSG-1215.DOC
061404

BEST AVAILABLE COPY

DECLARATION OF PAUL POLAKIS, Ph.D.

I, Paul Polakis, Ph.D., declare and say as follows:

1. I was awarded a Ph.D. by the Department of Biochemistry of the Michigan State University in 1984. My scientific Curriculum Vitae is attached to and forms part of this Declaration (Exhibit A).
2. I am currently employed by Genentech, Inc. where my job title is Staff Scientist. Since joining Genentech in 1999, one of my primary responsibilities has been leading Genentech's Tumor Antigen Project, which is a large research project with a primary focus on identifying tumor cell markers that find use as targets for both the diagnosis and treatment of cancer in humans.
3. As part of the Tumor Antigen Project, my laboratory has been analyzing differential expression of various genes in tumor cells relative to normal cells. The purpose of this research is to identify proteins that are abundantly expressed on certain tumor cells and that are either (i) not expressed, or (ii) expressed at lower levels, on corresponding normal cells. We call such differentially expressed proteins "tumor antigen proteins". When such a tumor antigen protein is identified, one can produce an antibody that recognizes and binds to that protein. Such an antibody finds use in the diagnosis of human cancer and may ultimately serve as an effective therapeutic in the treatment of human cancer.
4. In the course of the research conducted by Genentech's Tumor Antigen Project, we have employed a variety of scientific techniques for detecting and studying differential gene expression in human tumor cells relative to normal cells, at genomic DNA, mRNA and protein levels. An important example of one such technique is the well known and widely used technique of microarray analysis which has proven to be extremely useful for the identification of mRNA molecules that are differentially expressed in one tissue or cell type relative to another. In the course of our research using microarray analysis, we have identified approximately 200 gene transcripts that are present in human tumor cells at significantly higher levels than in corresponding normal human cells. To date, we have generated antibodies that bind to about 30 of the tumor antigen proteins expressed from these differentially expressed gene transcripts and have used these antibodies to quantitatively determine the level of production of these tumor antigen proteins in both human cancer cells and corresponding normal cells. We have then compared the levels of mRNA and protein in both the tumor and normal cells analyzed.
5. From the mRNA and protein expression analyses described in paragraph 4 above, we have observed that there is a strong correlation between changes in the level of mRNA present in any particular cell type and the level of protein

expressed from that mRNA in that cell type. In approximately 80% of our observations we have found that increases in the level of a particular mRNA correlates with changes in the level of protein expressed from that mRNA when human tumor cells are compared with their corresponding normal cells.

6. Based upon my own experience accumulated in more than 20 years of research, including the data discussed in paragraphs 4 and 5 above and my knowledge of the relevant scientific literature, it is my considered scientific opinion that for human genes, an increased level of mRNA in a tumor cell relative to a normal cell typically correlates to a similar increase in abundance of the encoded protein in the tumor cell relative to the normal cell. In fact, it remains a central dogma in molecular biology that increased mRNA levels are predictive of corresponding increased levels of the encoded protein. While there have been published reports of genes for which such a correlation does not exist, it is my opinion that such reports are exceptions to the commonly understood general rule that increased mRNA levels are predictive of corresponding increased levels of the encoded protein.

7. I hereby declare that all statements made herein of my own knowledge are true and that all statements made on information or belief are believed to be true, and further that these statements were made with the knowledge that willful false statements and the like so made are punishable by fine or imprisonment, or both, under Section 1001 of Title 18 of the United States Code and that such willful statements may jeopardize the validity of the application or any patent issued thereon:

Dated: 5/07/04

By: Paul Polakis

Paul Polakis, Ph.D.

CURRICULUM VITAE

PAUL G. POLAKIS
Staff Scientist
Genentech, Inc
1 DNA Way, MS#40
S. San Francisco, CA 94080

EDUCATION:

Ph.D., Biochemistry, Department of Biochemistry,
Michigan State University (1984)

B.S., Biology. College of Natural Science, Michigan State University (1977)

PROFESSIONAL EXPERIENCE:

- | | |
|--------------|--|
| 2002-present | Staff Scientist, Genentech, Inc.
S. San Francisco, CA |
| 1999- 2002 | Senior Scientist, Genentech, Inc.,
S. San Francisco, CA |
| 1997 -1999 | Research Director
Onyx Pharmaceuticals, Richmond, CA |
| 1992- 1996 | Senior Scientist, Project Leader, Onyx
Pharmaceuticals, Richmond, CA |
| 1991-1992 | Senior Scientist, Chiron Corporation,
Emeryville, CA. |
| 1989-1991 | Scientist, Cetus Corporation, Emeryville CA |
| 1987-1989 | Postdoctoral Research Associate, Genentech
Inc., South SanFrancisco, CA. |
| 1985-1987 | Postdoctoral Research Associate, Department
of Medicine, Duke University Medical Center
Durham, NC |

1984-1985

Assistant Professor, Department of Chemistry,
Oberlin College, Oberlin, Ohio

1980-1984

Graduate Research Assistant, Department of
Biochemistry, Michigan State University
East Lansing, Michigan

PUBLICATIONS:

1. Polakis, P G. and Wilson, J. E. 1982 Purification of a Highly Bindable Rat Brain Hexokinase by High Performance Liquid Chromatography. **Biochem. Biophys. Res. Commun.** 107, 937-943.
2. Polakis, P.G. and Wilson, J. E. 1984 Proteolytic Dissection of Rat Brain Hexokinase: Determination of the Cleavage Pattern during Limited Digestion with Trypsin. **Arch. Biochem. Biophys.** 234, 341-352.
3. Polakis, P. G. and Wilson, J. E. 1985 An Intact Hydrophobic N-Terminal Sequence is Required for the Binding Rat Brain Hexokinase to Mitochondria. **Arch. Biochem. Biophys.** 236, 328-337.
4. Uhing, R.J., Polakis,P.G. and Snyderman, R. 1987 Isolaton of GTP-binding Proteins from Myeloid HL60 Cells. **J. Biol. Chem.** 262, 15575-15579.
5. Polakis, P.G., Uhing, R.J. and Snyderman, R. 1988 The Formylpeptide Chemoattractant Receptor Copurifies with a GTP-binding Protein Containing a Distinct 40 kDa Pertussis Toxin Substrate. **J. Biol. Chem.** 263, 4969-4979.
6. Uhing, R. J., Dillon, S., Polakis, P. G., Truett, A. P. and Snyderman, R. 1988 Chemoattractant Receptors and Signal Transduction Processes in Cellular and Molecular Aspects of Inflammation (Poste, G. and Crooke, S. T. eds.) pp 335-379.
7. Polakis, P.G., Evans, T. and Snyderman 1989 Multiple Chromatographic Forms of the Formylpeptide Chemoattractant Receptor and their Relationship to GTP-binding Proteins. **Biochem. Biophys. Res. Commun.** 161, 276-283.
8. Polakis, P. G., Snyderman, R. and Evans, T. 1989 Characterization of G25K, a GTP-binding Protein Containing a Novel Putative Nucleotide Binding Domain. **Biochem. Biophys. Res. Comun.** 160, 25-32.
9. Polakis, P., Weber,R.F., Nevins,B., Didsbury, J. Evans,T. and Snyderman, R. 1989 Identification of the ral and rac1 Gene Products, Low Molecular Mass GTP-binding Proteins from Human Platelets. **J. Biol. Chem.** 264, 16383-16389.
10. Snyderman, R., Perianin, A., Evans, T., Polakis, P. and Didsbury, J. 1989 G Proteins and Neutrophil Function. In ADP-Ribosylating Toxins and G Proteins: Insights into Signal Transduction. (J. Moss and M. Vaughn, eds.) Amer. Soc. Microbiol. pp. 295-323.

- 11.** Hart, M.J., Polakis, P.G., Evans, T. and Cerrione, R.A. 1990 The Identification and Characterization of an Epidermal Growth Factor-Stimulated Phosphorylation of a Specific Low Molecular Mass GTP-binding Protein in a Reconstituted Phospholipid Vesicle System. *J. Biol. Chem.* 265, 5990-6001.
- 12.** Yatani, A., Okabe, K., Polakis, P., Halenbeck, R., McCormick, F. and Brown, A. M. 1990 ras p21 and GAP Inhibit Coupling of Muscarinic Receptors to Atrial K⁺ Channels. *Cell*. 61, 769-776.
- 13.** Munemitsu, S., Innis, M.A., Clark, R., McCormick, F., Ullrich, A. and Polakis, P.G. 1990 Molecular Cloning and Expression of a G25K cDNA, the Human Homolog of the Yeast Cell Cycle Gene CDC42. *Mol. Cell. Biol.* 10, 5977-5982.
- 14.** Polakis, P.G., Rubinfeld, B., Evans, T. and McCormick, F. 1991 Purification of Plasma Membrane-Associated GTPase Activating Protein (GAP) Specific for rap-1/krev-1 from HL60 Cells. *Proc. Natl. Acad. Sci. USA* 88, 239-243.
- 15.** Moran, M. F., Polakis, P., McCormick, F., Pawson, T. and Ellis, C. 1991 Protein Tyrosine Kinases Regulate the Phosphorylation, Protein Interactions, Subcellular Distribution, and Activity of p21ras GTPase Activating Protein. *Mol. Cell. Biol.* 11, 1804-1812
- 16.** Rubinfeld, B., Wong, G., Bekesi, E., Wood, A., McCormick, F. and Polakis, P. G. 1991 A Synthetic Peptide Corresponding to a Sequence in the GTPase Activating Protein Inhibits p21^{ras} Stimulation and Promotes Guanine Nucleotide Exchange. *Internatl. J. Peptide and Prot. Res.* 38, 47-53.
- 17.** Rubinfeld, B., Munemitsu, S., Clark, R., Conroy, L., Watt, K., Crosier, W., McCormick, F., and Polakis, P. 1991 Molecular Cloning of a GTPase Activating Protein Specific for the Krev-1 Protein p21^{rap1}. *Cell* 65, 1033-1042.
- 18.** Zhang, K., Papageorge, A., G., Martin, P., Vass, W. C., Olah, Z., Polakis, P., McCormick, F. and Lowy, D. R. 1991 Heterogenous Amino Acids in RAS and Rap1A Specifying Sensitivity to GAP Proteins. *Science* 254, 1630-1634.
- 19.** Martin, G., Yatani, A., Clark, R., Polakis, P., Brown, A. M. and McCormick, F. 1992 GAP Domains Responsible for p21^{ras}-dependent Inhibition of Muscarinic Atrial K⁺ Channel Currents. *Science* 255, 192-194.
- 20.** McCormick, F., Martin, G. A., Clark, R., Bollag, G. and Polakis, P. 1992 Regulation of p21^{ras} by GTPase Activating Proteins. *Cold Spring Harbor Symposia on Quantitative Biology*. Vol. 56, 237-241.
- 21.** Pronk, G. B., Polakis, P., Wong, G., deVries-Smits, A. M., Bos J. L. and McCormick, F. 1992 p60^{v-src} Can Associate with and Phosphorylate the p21^{ras} GTPase Activating Protein. *Oncogene* 7, 389-394.
- 22.** Polakis P. and McCormick, F. 1992 Interactions Between p21^{ras} Proteins and Their GTPase Activating Proteins. In Cancer Surveys (Franks, L. M., ed.) 12, 25-42.

- 23.** Wong, G., Muller, O., Clark, R., Conroy, L., Moran, M., Polakis, P. and McCormick, F. 1992 Molecular cloning and nucleic acid binding properties of the GAP-associated tyrosine phosphoprotein p62. *Cell* 69, 551-558.
- 24.** Polakis, P., Rubinfeld, B. and McCormick, F. 1992 Phosphorylation of rap1GAP in vivo and by cAMP-dependent Kinase and the Cell Cycle p34^{cdc2} Kinase in vitro. *J. Biol. Chem.* 267, 10780-10785.
- 25.** McCabe, P.C., Haubrauck, H., Polakis, P., McCormick, F., and Innis, M. A. 1992 Functional Interactions Between p21^{rap1A} and Components of the Budding pathway of *Saccharomyces cerevisiae*. *Mol. Cell. Biol.* 12, 4084-4092.
- 26.** Rubinfeld, B., Crosier, W.J., Albert, I., Conroy, L., Clark, R., McCormick, F. and Polakis, P. 1992 Localization of the rap1GAP Catalytic Domain and Sites of Phosphorylation by Mutational Analysis. *Mol. Cell. Biol.* 12, 4634-4642.
- 27.** Ando, S., Kaibuchi, K., Sasaki, K., Hiraoka, T., Nishiyama, T., Mizuno, T., Asada, M., Nunoi, H., Matsuda, I., Matsuura, Y., Polakis, P., McCormick, F. and Takai, Y. 1992 Post-translational processing of rac p21s is important both for their interaction with the GDP/GTP exchange proteins and for their activation of NADPH oxidase. *J. Biol. Chem.* 267, 25709-25713.
- 28.** Janoueix-Lerosey, I., Polakis, P., Tavitian, A. and deGunzberg, J. 1992 Regulation of the GTPase activity of the ras-related rap2 protein. *Biochem. Biophys. Res. Commun.* 189, 455-464.
- 29.** Polakis, P. 1993 GAPs Specific for the rap1/Krev-1 Protein. in GTP-binding Proteins: the ras-superfamily. (J.C. LaCale and F. McCormick, eds.) 445-452.
- 30.** Polakis, P. and McCormick, F. 1993 Structural requirements for the interaction of p21^{ras} with GAP, exchange factors, and its biological effector target. *J. Biol. Chem.* 268, 9157-9160.
- 31.** Rubinfeld, B., Souza, B., Albert, I., Muller, O., Chamberlain, S., Masiarz, F., Munemitsu, S. and Polakis, P. 1993 Association of the APC gene product with beta- catenin. *Science* 262, 1731-1734.
- 32.** Weiss, J., Rubinfeld, B., Polakis, P., McCormick, F. Cavenee, W. A. and Arden, K. 1993 The gene for human rap1-GTPase activating protein (rap1GAP) maps to chromosome 1p35-1p36.1. *Cytogenet. Cell Genet.* 66, 18-21.
- 33.** Sato, K. Y., Polakis, P., Haubruck, H., Fasching, C. L., McCormick, F. and Stanbridge, E. J. 1994 Analysis of the tumor suppressor acitivity of the K-rev gene in human tumor cell lines. *Cancer Res.* 54, 552-559.
- 34.** Janoueix-Lerosey, I., Fontenay, M., Tobelem, G., Tavitian, A., Polakis, P. and DeGunzburg, J. 1994 Phosphorylation of rap1GAP during the cell cycle. *Biochem. Biophys. Res. Commun.* 202, 967-975
- 35.** Munemitsu, S., Souza, B., Mueller, O., Albert, I., Rubinfeld, B., and Polakis, P. 1994 The APC gene product associates with microtubules in vivo and affects their assembly in vitro. *Cancer Res.* 54, 3676-3681.

- 36.** Rubinfeld, B. and Polakis, P. 1995 Purification of baculovirus produced rap1GAP. *Methods Enz.* 255,31
- 37.** Polakis, P. 1995 Mutations in the APC gene and their implications for protein structure and function. *Current Opinions in Genetics and Development* 5, 66-71
- 38.** Rubinfeld, B., Souza, B., Albert, I., Munemitsu, S. and Polakis P. 1995 The APC protein and E-cadherin form similar but independent complexes with α -catenin, β -catenin and Plakoglobin. *J. Biol. Chem.* 270, 5549-5555
- 39.** Munemitsu, S., Albert, I., Souza, B., Rubinfeld, B., and Polakis, P. 1995 Regulation of intracellular β -catenin levels by the APC tumor suppressor gene. *Proc. Natl. Acad. Sci.* 92, 3046-3050.
- 40.** Lock, P., Fumagalli, S., Polakis, P. McCormick, F. and Courtneidge, S. A. 1996 The human p62 cDNA encodes Sam68 and not the rasGAP-associated p62 protein. *Cell* 84, 23-24.
- 41.** Papkoff, J., Rubinfeld, B., Schryver, B. and Polakis, P. 1996 Wnt-1 regulates free pools of catenins and stabilizes APC-catenin complexes. *Mol. Cell. Biol.* 16, 2128-2134.
- 42.** Rubinfeld, B., Albert, I., Porfiri, E., Fiol, C., Munemitsu, S. and Polakis, P. 1996 Binding of GSK3 β to the APC- β -catenin complex and regulation of complex assembly. *Science* 272, 1023-1026.
- 43.** Munemitsu, S., Albert, I., Rubinfeld, B. and Polakis, P. 1996 Deletion of amino-terminal structure stabilizes β -catenin in vivo and promotes the hyperphosphorylation of the APC tumor suppressor protein. *Mol. Cell. Biol.* 16, 4088-4094.
- 44.** Hart, M. J., Callow, M. G., Sousa, B. and Polakis P. 1996 IQGAP1, a calmodulin binding protein with a rasGAP related domain, is a potential effector for cdc42Hs. *EMBO J.* 15, 2997-3005.
- 45.** Nathke, I. S., Adams, C. L., Polakis, P., Sellin, J. and Nelson, W. J. 1996 The adenomatous polyposis coli (APC) tumor suppressor protein is localized to plasma membrane sites involved in active epithelial cell migration. *J. Cell. Biol.* 134, 165-180.
- 46.** Hart, M. J., Sharma, S., elMasry, N., Qui, R-G., McCabe, P., Polakis, P. and Bollag, G. 1996 Identification of a novel guanine nucleotide exchange factor for the rho GTPase. *J. Biol. Chem.* 271, 25452.
- 47.** Thomas JE, Smith M, Rubinfeld B, Gutowski M, Beckmann RP, and Polakis P. 1996 Subcellular localization and analysis of apparent 180-kDa and 220-kDa proteins of the breast cancer susceptibility gene, BRCA1. *J. Biol. Chem.* 1996 271, 28630-28635
- 48.** Hayashi, S., Rubinfeld, B., Souza, B., Polakis, P., Wieschaus, E., and Levine, A. 1997 A Drosophila homolog of the tumor suppressor adenomatous polyposis coli

down-regulates β -catenin but its zygotic expression is not essential for the regulation of armadillo. *Proc. Natl. Acad. Sci.* 94, 242-247.

49. Vleminckx, K., Rubinfeld, B., **Polakis, P.** and Gumbiner, B. 1997 The APC tumor suppressor protein induces a new axis in *Xenopus* embryos. *J. Cell. Biol.* 136, 411-420.

50. Rubinfeld, B., Robbins, P., El-Gamil, M., Albert, I., Porfiri, P. and **Polakis, P.** 1997 Stabilization of β -catenin by genetic defects in melanoma cell lines. *Science* 275, 1790-1792.

51. **Polakis, P.** The adenomatous polyposis coli (APC) tumor suppressor. 1997 *Biochem. Biophys. Acta*, 1332, F127-F147.

52. Rubinfeld, B., Albert, I., Porfiri, E., Munemitsu, S., and **Polakis, P.** 1997 Loss of β -catenin regulation by the APC tumor suppressor protein correlates with loss of structure due to common somatic mutations of the gene. *Cancer Res.* 57, 4624-4630.

53. Porfiri, E., Rubinfeld, B., Albert, I., Hovanes. K., Waterman, M., and **Polakis, P.** 1997 Induction of a β -catenin-LEF-1 complex by wnt-1 and transforming mutants of β -catenin. *Oncogene* 15, 2833-2839.

54. Thomas JE, Smith M, Tonkinson JL; Rubinfeld B, and **Polakis P.**, 1997 Induction of phosphorylation on BRCA1 during the cell cycle and after DNA damage. *Cell Growth Differ.* 8, 801-809.

55. Hart, M., de los Santos, R., Albert, I., Rubinfeld, B., and **Polakis P.**, 1998 Down regulation of β -catenin by human Axin and its association with the adenomatous polyposis coli (APC) tumor suppressor, β -catenin and glycogen synthase kinase 3 β . *Current Biology* 8, 573-581.

56. **Polakis, P.** 1998 The oncogenic activation of β -catenin. *Current Opinions in Genetics and Development* 9, 15-21

57. Matt Hart, Jean-Paul Conordet, Irina Lassot, Iris Albert, Rico del los Santos, Herve Durand, Christine Perret, Bonnee Rubinfeld, Florence Margottin, Richard Benarous and **Paul Polakis**. 1999 The F-box protein β -TrCP associates with phosphorylated β -catenin and regulates its activity in the cell. *Current Biology* 9, 207-10.

58. Howard C. Crawford, Barbara M. Fingleton, Bonnee Rubinfeld, **Paul Polakis** and Lynn M. Matrisian 1999 The metalloproteinase matrilysin is a target of β -catenin transactivation in intestinal tumours. *Oncogene* 18, 2883-91.

59. Meng J, Glick JL, **Polakis P**, Casey PJ. 1999 Functional interaction between Galpha(z) and Rap1GAP suggests a novel form of cellular cross-talk. *J Biol Chem.* 17, 36663-9

- 60.** Vijayasurian Easwaran, Virginia Song, Paul Polakis and Steve Byers 1999 The ubiquitin-proteosome pathway and serine kinase activity modulate APC mediated regulation of β -catenin-LEF signaling. *J. Biol. Chem.* 274(23):16641-5.
- 61** Polakis P, Hart M and Rubinfeld B. 1999 Defects in the regulation of beta-catenin in colorectal cancer. *Adv Exp Med Biol.* 470, 23-32
- 62** Shen Z, Batzer A, Koehler JA, Polakis P, Schlessinger J, Lydon NB, Moran MF. 1999 Evidence for SH3 domain directed binding and phosphorylation of Sam68 by Src. *Oncogene.* 18, 4647-53
- 64.** Thomas GM, Frame S, Goedert M, Nathke I, Polakis P, Cohen P. 1999 A GSK3- β binding peptide from FRAT1 selectively inhibits the GSK3-catalysed phosphorylation of axin and beta-catenin. *FEBS Lett.* 458, 247-51.
- 65.** Peifer M, Polakis P. 2000 Wnt signaling in oncogenesis and embryogenesis—a look outside the nucleus. *Science* 287, 1606-9.
- 66.** Polakis P. 2000 Wnt signaling and cancer. *Genes Dev.* 14, 1837-1851.
- 67.** Spink KE, Polakis P, Weis WI 2000 Structural basis of the Axin-adenomatous polyposis coli interaction. *EMBO J* 19, 2270-2279.
- 68.** Szeto , W., Jiang, W., Tice, D.A., Rubinfeld, B., Hollingshead, P.G., Fong, S.E., Dugger, D.L., Pham, T., Yansura, D.E., Wong, T.A., Grimaldi, J.C., Corpuz, R.T., Singh J.S., Frantz, G.D., Devaux, B., Crowley, C.W., Schwall, R.H., Eberhard, D.A., Rastelli, L., Polakis, P. and Pennica, D. 2001 Overexpression of the Retinoic Acid-Responsive Gene Stra6 in Human Cancers and its Synergistic Induction by Wnt-1 and Retinoic Acid. *Cancer Res* 61, 4197-4204.
- 69.** Rubinfeld B, Tice DA, Polakis P. 2001 Axin dependent phosphorylation of the adenomatous polyposis coli protein mediated by casein kinase 1 epsilon. *J Biol Chem* 276, 39037-39045.
- 70.** Polakis P. 2001 More than one way to skin a catenin. *Cell* 2001 105, 563-566.
- 71.** Tice DA, Soloviev I, Polakis P. 2002 Activation of the Wnt Pathway Interferes with Serum Response Element-driven Transcription of Immediate Early Genes. *J Biol. Chem.* 277, 6118-6123.
- 72.** Tice DA, Szeto W, Soloviev I, Rubinfeld B, Fong SE, Dugger DL, Winer J,

- Williams PM, Wieand D, Smith V, Schwall RH, Pennica D, Polakis P. 2002
Synergistic activation of tumor antigens by wnt-1 signaling and retinoic acid revealed
by gene expression profiling. *J Biol Chem.* 277,14329-14335.
73. Polakis, P. 2002 Casein kinase I: A wnt'er of disconnect. *Curr. Biol.* 12, R499.
74. Mao,W. , Luis, E., Ross, S., Silva, J., Tan, C., Crowley, C., Chui, C., Franz, G.,
Senter, P., Koeppen, H., Polakis, P. 2004 EphB2 as a therapeutic antibody drug
target for the treatment of colorectal cancer. *Cancer Res.* 64, 781-788.
75. Shibamoto, S., Winer, J., Williams, M., Polakis, P. 2003 A Blockade in Wnt
signaling is activated following the differentiation of F9 teratocarcinoma cells. *Exp.
Cell Res.* 29211-20.
76. Zhang Y, Eberhard DA, Frantz GD, Dowd P, Wu TD, Zhou Y, Watanabe C, Luoh SM, Polakis P,
Hillan KJ, Wood WI, Zhang Z. 2004 GEPIS--quantitative gene expression profiling in normal and
cancer tissues. *Bioinformatics*, April 8

GNE.3230R1C1

COPY

COPY

PATENT

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

Applicant : Eaton, et al.
Appl. No. : 10/006867
Filed : December 6, 2001
For : SECRETED AND
TRANSMEMBRANE
POLYPEPTIDES AND NUCLEIC
ACIDS ENCODING THE SAME
Examiner : Helms L.
Group Art Unit : 1642

COPY

DECLARATION OF J. CHRISTOPHER GRIMALDI, UNDER 37 C.F.R. §1.132

Commissioner for Patents
P.O. Box 1450
Alexandria, VA 22313-1450

I, J. Christopher Grimaldi, declare and say as follows:

1. I am a Senior Research Associate in the Molecular Biology Department of Genentech, Inc., South San Francisco, CA 94080.

2. I joined Genentech in January of 1999. From 1999 to 2003, I directed the Cloning Laboratory in the Molecular Biology Department. During this time I directed or performed numerous molecular biology techniques including qualitative Polymerase Chain Reaction (PCR) analyses. I am currently involved, among other projects, in the isolation of genes coding for membrane associated proteins which can be used as targets for antibody therapeutics against cancer. In connection with the above-identified patent application, I personally performed or directed the qualitative PCR analyses in the assay entitled "Tumor Versus Normal Differential Tissue Expression Distribution" which is described in EXAMPLE 18 in the specification that were used to identify differences in gene expression between tumor tissue and their normal counterparts.

3. My scientific Curriculum Vitae, including my list of publications, is attached to and forms part of this Declaration (Exhibit A).

4. Chromosomal aberrations, such as gene amplification, and chromosomal translocations are important markers of specific types of cancer and lead to the aberrant expression of specific genes and their encoded polypeptides. Gene amplification is a process in which specific regions of a chromosome are duplicated, thus creating multiple copies of certain genes that normally exist as a single copy. In addition, chromosomal translocations occur when

Appl. No. : 10/006867
Filed : December 6, 2001

two different chromosomes break and are rejoined to each other chromosome resulting in a chimeric chromosome which displays a different expression pattern relative to the parent chromosomes. Amplification of certain genes such as Her2/Neu [Singleton *et al.*, Pathol. Annu., 27Pt1:165-190], or chromosomal translocations such as t(5;14), [Grimaldi *et al.*, Blood, 73(8):2081-2085(1989); Meeker *et al.*, Blood, 76(2):285-289(1990)] give cancer cells a growth or survival advantage relative to normal cells, and might also provide a mechanism of tumor cell resistance to chemotherapy or radiotherapy. If the chromosomal aberration results in the aberrant expression of a mRNA and the corresponding gene product (the polypeptide), as they do in the aforementioned cases, then the gene product is a promising target for cancer therapy, for example, by the therapeutic antibody approach.

5. Those who work in this field are well aware that in the vast majority of cases, when a gene is over-expressed, as evidenced by an increased production of mRNA, the gene product or polypeptide will also be over-expressed. It is unlikely that one identifies increased mRNA expression without associated increased protein expression. Stated in another way, two cell samples which have differing mRNA concentrations for a specific gene are expected to have correspondingly different concentration of protein for that gene. Techniques used to detect mRNA, such as Northern Blotting, Differential Display, *in situ* hybridization, quantitative PCR, Taqman, and more recently Microarray technology all rely on the dogma that a change in mRNA will represent a similar change in protein. If this dogma did not hold true then these techniques would have little value and not be so widely used. The use of mRNA quantitation techniques have identified a seemingly endless number of genes which are differentially expressed in various tissues and these genes have subsequently been shown to have correspondingly similar changes in their protein levels. Thus, the detection of increased mRNA expression is expected to result in increased polypeptide expression. The detection of increased polypeptide expression can be used for cancer diagnosis and treatment.

6. However, even in the rare case where the protein expression does not correlate with the mRNA expression, this still provides significant information useful for cancer diagnosis and treatment. For example, if over-expression of a gene product does not correlate with over-expression of mRNA in certain tumor types but does so in others, then identification of both gene expression and protein expression enables more accurate tumor classification and hence better determination of suitable therapy. In addition, absence of over-expression of the gene product in the presence of a particular over-expression of mRNA is crucial information for the practicing clinician. If a gene is over-expressed but the corresponding gene product is not significantly over-expressed, the clinician accordingly will decide not to treat a patient with agents that target that gene product.

7. I hereby declare that all statements made herein of my own knowledge are true and that all statements made on information or belief are believed to be true, and further that these statements were made with the knowledge that willful false statements and the like so made are punishable by fine or imprisonment, or both, under Section 1001 of Title 18 of the United States Code and that such willful statements may jeopardize the validity of the application or any patent issued thereon.

Appl. No. : 10/006867
Filed : December 6, 2001

By:

J. Christopher Grimaldi,

Date: 12/18/2003

J. Christopher Grimaldi

1434-36th Ave.
San Francisco, CA 94122
(415) 681-1639 (Home)

EDUCATION

University of California, Berkeley
Bachelor of Arts in Molecular Biology, 1984

EMPLOYMENT EXPERIENCE

SRA

Genentech Inc., South San Francisco; 1/99 to present

Previously, was responsible to direct and manage the Cloning Lab. Currently focused on isolating cancer specific genes for the Tumor Antigen (TAP), and Secreted Tumor Protein (STOP) projects for the Oncology Department as well as Immunologically relevant genes for the Immunology Department. Directed a lab of 6 scientists focused on a company-wide team effort to identify and isolate secreted proteins for potential therapeutic use (SPDI). For the SPDI project my duties were, among other things, the critically important coordination of the cloning of thousands of putative genes, by developing a smooth process of communication between the Bioinformatics, Cloning, Sequencing, and Legal teams. Collaborated with several groups to discover novel genes through the Curagen project, a unique differential display methodology. Interacted extensively with the Legal team providing essential data needed for filing patents on novel genes discovered through the SPDI, TAP and Curagen projects. My group has developed, implemented and patented high throughput cloning methodologies that have proven to be essential for the isolation of hundreds of novel genes for the SPDI, TAP and Curagen projects as well as dozens of other smaller projects.

Scientist

DNAX Research Institute, Palo Alto; 9/91 to 1/99

Involved in multiple projects aimed at understanding novel genes discovered through bioinformatics studies and functional assays. Developed and patented a method for the specific depletion of eosinophils in vivo using monoclonal antibodies. Developed and implemented essential technical methodologies and provided strategic direction in the areas of expression, cloning, protein purification, general molecular biology, and monoclonal antibody production. Trained and supervised numerous technical staff.

Facilities

Manager

Corixa, Redwood City; 5/89 - 7/91.

Directed plant-related activities, which included expansion planning, maintenance, safety, purchasing, inventory control, shipping and receiving, and laboratory management. Designed and implemented the safety program. Also served as liaison to regulatory agencies at the local, state and federal level. Was in charge of property leases, leasehold improvements, etc. Negotiated vendor contracts and directed the purchasing department. Trained and supervised personnel to carry out the above-mentioned duties.

8
8

SRA University of California, San Francisco
Cancer Research Institute; 2/87-4/89.

Was responsible for numerous cloning projects including: studies of somatic hypermutation, studies of AIDS-associated lymphomas, and cloning of t(5;14), t(11;14), and t(8;14) translocations. Focused on the activation of hemopoietic growth factors involved in the t(5;14) translocation in leukemia patients..

Research
Technician Berlex Biosciences, South San Francisco; 7/85-2/87.

Worked on a subunit porcine vaccine directed against Mycoplasma hyopneumoniae. Was responsible for generating genomic libraries, screening with degenerate oligonucleotides, and characterizing and expressing clones in *E. coli*. Also constructed a general purpose expression vector for use by other scientific teams.

PUBLICATIONS

1. Hilary F. Clark, et al. "The Secreted Protein Discovery Initiative (SPDI), a Large-scale Effort to Identify Novel Human Secreted and Transmembrane Proteins: a bioinformatics assessment." *Genome Res.* Vol 13(10), 2265-2270, 2003
2. Sean H. Adams, Clarissa Chui' Sarah L. Schilbach, Xing Xian Yu, Audrey D. Goddard, J. Christopher Grimaldi, James Lee, Patrick Dowd, David A. Lewin, & Steven Colman "BFTT, a Unique Acyl-CoA Thioesterase Induced in Thermogenic Brown Adipose Tissue: Cloning, organization of the humanb gene and assessment of a potential link to obesity" *Biochemical Journal*, Vol 360, 135-142, 2001
3. Szeto W, Jiang W, Tice DA, Rubinfeld B, Hollingshead PG, Fong SE, Dugger DL, Pham T, Yansura D, Wong TA, Grimaldi JC, Corpuz RT, Singh JS, Frantz GD, Devaux B, Crowley CW, Schwall RH, Eberhard DA, Rastelli L, Polakis P, and Pennica D. "Overexpression of the Retinoic Acid-Responsive Gene Stra6 in Human Cancers and its Synergistic Activation by Wnt-1 and Retinoic Acid." *Cancer Research* Vol. 61(10), 4197-4205, 2001
4. Jeanne Kahn, Fuad Mehraban, Gladdys Ingle, Xiaohua Xin, Juliet E. Bryant, Gordon Vehar, Jill Schoenfeld, J. Christopher Grimaldi (incorrectly named as "Grimaldi, CJ"), Franklin Peale, Aparna Draksharapu, David A. Lewin, and Mary E. Gerritsen. "Gene Expression Profiling in an in Vitro Model of Angiogenesis." *American Journal of Pathology* Vol 156(6), 1887-1900, 2000.
5. Grimaldi JC, Yu NX, Grunig G, Seymour BW, Cottrez F, Robinson DS, Hosken N, Ferlin WG, Wu X, Soto H, O'Garra A, Howard MC, Coffman RL. "Depletion of eosinophils in mice through the use of antibodies specific for C-C chemokine receptor 3 (CCR3)." *Journal of Leukocyte Biology*; Vol. 65(6), 846-53, 1999
6. Oliver AM, Grimaldi JC, Howard MC, Kearney JF. "Independently ligating CD38 and Fc gammaRIIB relays a dominant negative signal to B cells." *Hybridoma* Vol. 18(2), 113-9, 1999

7. Cockayne DA, Muchamuel T, Grimaldi JC, Muller-Steffner H, Randall TD, Lund FE, Murray R, Schuber F, Howard MC. "Mice deficient for the ecto-nicotinamide adenine dinucleotide glycohydrolase CD38 exhibit altered humoral immune responses." *Blood* Vol. 92(4), 1324-33, 1998
8. Frances E. Lund, Nanette W. Solvason, Michael P. Cooke, Andrew W. Heath, J. Christopher Grimaldi, Troy D. Randall, R. M. E. Parkhouse, Christopher C Goodnow and Maureen C. Howard. "Signaling through murine CD38 is impaired in antigen receptor unresponsive B cells." *European Journal of Immunology*, Vol. 25(5), 1338-1345, 1995
9. M. J. Guimaraes, J. F. Bazan, A. Zolotnik, M. V. Wiles, J. C. Grimaldi, F. Lee, T. McClanahan. "A new approach to the study of haematopoietic development in the yolk sac and embryoid body." *Development*, Vol. 121(10), 3335-3346, 1995
10. J. Christopher Grimaldi, Sriram Balasubramanian, J. Fernando Bazan, Armen Shanafelt, Gerard Zurawski and Maureen Howard. "CD38-mediated protein ribosylation." *Journal of Immunology*, Vol. 155(2), 811-817, 1995
11. Leopoldo Santos-Argumedo, Frances F. Lund, Andrew W. Heath, Nanette Solvason, Wei Wei Wu, J. Christopher Grimaldi, R. M. E. Parkhouse and Maureen Howard. "CD38 unresponsiveness of xid B cells implicates Bruton's tyrosine kinase (btk) as a regulator of CD38 induced signal transduction." *International Immunology*, Vol 7(2), 163-170, 1995
12. Frances Lund, Nanette Solvason, J. Christopher Grimaldi, R. M. E. Parkhouse and Maureen Howard. "Murine CD38: An immunoregulatory ectoenzyme." *Immunology Today*, Vol. 16(10), 469-473, 1995
13. Maureen Howard, J. Christopher Grimaldi, J. Fernando Bazan, Frances E. Lund, Leopoldo Santos-Argumedo, R. M. E. Parkhouse, Timothy F. Walseth, and Hon Cheung Lee. "Formation and Hydrolysis of Cyclic ADP-Ribose Catalyzed by Lymphocyte Antigen CD38." *Science*, Vol. 262, 1056-1059, 1993
14. Nobuyuki Harada, Leopoldo Santos-Argumedo, Ray Chang, J. Christopher Grimaldi, Frances Lund, Camillynn I. Brannan, Neal G. Copeland, Nancy A. Jenkins, Andrew Heath, R. M. E. Parkhouse and Maureen Howard. "Expression Cloning of a cDNA Encoding a Novel Murine B Cell Activation Marker: Homology to Human CD38." *The Journal of Immunology*, Vol. 151, 3111-3118, 1993
15. David J. Rawlings, Douglas C. Saffran, Satoshi Tsukada, David A. Largaespada, J. Christopher Grimaldi, Lucie Cohen Randolph N. Mohr, J. Fernando Bazan, Maureen Howard, Neal G. Copeland, Nancy A. Jenkins, Owen Witte. "Mutation of Unique Region of Bruton's Tyrosine Kinase in Immunodeficient XID Mice." *Science*, Vol. 261, 358-360, 1993
16. J. Christopher Grimaldi, Raul Torres, Christine A. Kozak, Ray Chang, Edward Clark, Maureen Howard, and Debra A. Cockayne. "Genomic Structure and Chromosomal Mapping of the Murine CD40 Gene." *The Journal of Immunology*, Vol 149, 3921-3926, 1992
17. Timothy C. Meeker, Bruce Shiramizu, Lawrence Kaplan, Brian Herndier, Henry Sanchez, J. Christopher Grimaldi, James Baumgartner, Jacob Rachlin, Ellen Feigal, Mark Rosenblum and Michael S. McGrath. "Evidence for Molecular Subtypes of HIV-Associated Lymphoma:

8 8

Division into Peripheral Monoclonal, Polyclonal and Central Nervous System Lymphoma." AIDS, Vol. 5, 669-674, 1991

18. Ann Grimaldi and Chris Grimaldi. "Small-Scale Lambda DNA Prep." Contribution to Current Protocols in Molecular Biology, Supplement 5, Winter 1989
19. J. Christopher Grimaldi, Timothy C. Meeker. "The t(5;14) Chromosomal Translocation in a Case of Acute Lymphocytic Leukemia Joins the Interleukin-3 Gene to the Immunoglobulin Heavy Chain Gene." Blood, Vol. 73, 2081-2085, 1989
20. Timothy C. Meeker, J. Christopher Grimaldi, et al. "An Additional Breakpoint Region in the BCL-1 Locus Associated with the t(11;14) (q13;q32) Translocation of B-Lymphocytic Malignancy." Blood, Vol. 74, 1801-1806, 1989
21. Timothy C. Meeker, J. Christopher Grimaldi, Robert O'Rourke, et al. "Lack of Detectable Somatic Hypermutation in the V Region of the Ig H Chain Gene of a Human Chronic B Lymphocytic Leukemia." The Journal of Immunology, Vol. 141, 3994-3998, 1988

MANUSCRIPTS IN PREPARATION

1. Sriram Balasubramanian, J. Christopher Grimaldi, J. Fernando Bazan, Gerard Zurawski and Maureen Howard. "Structural and functional characterization of CD38: Identification of active site residues"

PATENTS

1. "Methods for Eosinophil Depletion with Antibody to CCR3 Receptor" (US 6,207,155 B1).
2. "Amplification Based Cloning Method." (US 6,607,899)
3. Ashkenazi et al., "Secreted and Transmembrane Polypeptides and Nucleic Acids Encoding the Same." (this patent covers several hundred genes)
4. "IL-17 Homologous Polypeptides and Therapeutic Uses Thereof"
5. "Method of Diagnosing and Treating Cartilaginous Disorders."

MEMBERSHIPS AND ACTIVITIES

Editor Frontiers in Bioscience

Member DNAX Safety Committee 1991-1999
 Biological Safety Affairs Forum (BSAF) 1990-1991
 Environmental Law Foundation (ELF) 1990-1991

The t(5;14) Chromosomal Translocation in a Case of Acute Lymphocytic Leukemia Joins the Interleukin-3 Gene to the Immunoglobulin Heavy Chain Gene

By J. Christopher Grimaldi and Timothy C. Meeker

Chromosomal translocations have proven to be important markers of the genetic abnormalities central to the pathogenesis of cancer. By cloning chromosomal breakpoints one can identify activated proto-oncogenes. We have studied a case of B-lineage acute lymphocytic leukemia (ALL) that was associated with peripheral blood eosinophilia. The chromosomal translocation t(5;14) (q31;q32) from this sample was cloned and studied at the molecular level. This

translocation joined the immunoglobulin heavy chain joining (J_H) region to the promotor region of the interleukin-3 (IL-3) gene in opposite transcriptional orientations. The data suggest that activation of the IL-3 gene by the enhancer of the immunoglobulin heavy chain gene may play a central role in the pathogenesis of this leukemia and the associated eosinophilia.

© 1989 by Grune & Stratton, Inc.

KARYOTYPIC STUDIES of leukemia and lymphoma have identified frequent nonrandom chromosomal translocations. Some of these translocations juxtapose the immunoglobulin heavy chain (IgH) gene with important

Fig 1. DNA blots of the leukemia sample. The restriction fragment pattern of normal human DNA (N) and the leukemia sample (L) were compared using a human J_H probe. Rearranged bands are indicated by arrows. Sample L exhibits a single rearranged band with both Hind III/EcoRI and Sau3A restriction digests. The rearranged bands are less intense than the other bands because the majority of cells in the sample represent normal bone marrow elements.

protooncogenes, such as c-myc and bcl-2.^{1,2} In this way, the IgH gene can activate proto-oncogenes, resulting in disordered gene expression and a step in the development of cancer. The investigation of additional nonrandom translocations into the IgH locus allows us to identify new genes promoting the generation of leukemia and lymphoma.

A distinct subtype of acute lymphocytic leukemia (ALL) has been characterized by B-lineage phenotype, associated eosinophilia in the peripheral blood, and a t(5;14)(q31;q32) chromosomal translocation.^{3,4} This syndrome probably occurs in <1% of all patients with ALL. We hypothesized that the cloning of the translocation characteristic of this leukemia might allow the identification of an important gene on chromosome 5 that plays a role in the evolution of this disease. In this report we demonstrate that the interleukin-3 gene (IL-3) and the IgH gene are joined by this translocation.

MATERIALS AND METHODS

Sample and DNA blots. A bone marrow aspirate from a representative patient with ALL (L1 morphology by French-American-British [FAB] criteria), peripheral eosinophilia (up to 20,000 per microliter with a normal value of <350 per microliter) and a t(5;14)(q31;q32) translocation was studied. Using published methods, genomic DNA was isolated and DNA blots were made.⁵ Briefly, 10 µg of high molecular weight (mol wt) DNA were digested using an appropriate restriction enzyme and electrophoresed on a 0.8% agarose gel. The gel was stained with ethidium bromide, photographed, denatured, neutralized, and transferred to Hybond (Amersham, Arlington Heights, IL). After treatment of the filter with ultraviolet light, hybridization was performed. The filter was washed to a final stringency of 0.2% saturated sodium citrate (SSC) and 0.1% sodium lauryl sulfate (SDS) and exposed to film. The human J_H probe has been previously reported.⁶

Genomic library. The genomic library was made using pub-

From the Division of Hematology/Oncology, Department of Medicine, University of California, San Francisco.

Submitted February 22, 1989; accepted March 8, 1989.

Supported by NIH Grant No. CA01102.

Address reprint requests to Timothy C. Meeker, MD, UCSF/VAMC 111H, 4150 Clement St, San Francisco, CA 94121.

Dr Grimaldi's current address is Biostan Inc, 440 Chesapeake Dr, Seaport Centre, Redwood City, CA 94063.

The publication costs of this article were defrayed in part by page charge payment. This article must therefore be hereby marked "advertisement" in accordance with 18 U.S.C. section 1734 solely to indicate this fact.

© 1989 by Grune & Stratton, Inc.
0006-4971/89/7308-0031\$3.00/0

lished methods.⁵ Approximately 100 μ g of high mol wt genomic DNA were partially digested with the *Sau*3A restriction enzyme. Fragments from 9 to 23 kilobases (kb) in size were isolated on a sucrose gradient and ligated into phage EMBL3A (Stratagene, San Diego). Recombinant phage were packaged, plated, and screened as previously reported.⁶

DNA sequencing. Fragments for sequencing were cloned into M13 vectors and sequenced by the chain termination method using Sequenase (United States Biochemical, Cleveland).⁷ All sequence data were derived from both strands.

RESULTS

We studied a bone marrow sample from a patient with ALL and associated peripheral eosinophilia. Karyotypic analysis showed the characteristic t(5;14)(q31;q32) translocation. These features define a distinctive subtype of ALL.^{8,9} The leukemic cells were analyzed for cell surface phenotype by immunofluorescence. They were positive for B1 (CD20), B4 (CD19), cALLA (CD10), HLA-DR, and terminal deoxynucleotidyl transferase (Tdt), but negative for surface immunoglobulin. This phenotypic profile describes an immature cell from the B-lymphocytic lineage.¹⁰

The leukemia DNA was analyzed by Southern blotting for rearrangements of the IgH gene. Using a human immunoglobulin J_H probe, a single rearranged band was detected by *Eco*RI, *Hind*III, *Sst*I, *Sau*3A, and *Eco*RI plus *Hind*III restriction digests, suggesting rearrangement of one allele (Fig 1). The immunoglobulin J_H region from the other allele was presumably either deleted or in the germline configuration.

We hypothesized that the t(5;14)(q31;q32) juxtaposed a

growth-promoting gene on chromosome 5 with the immunoglobulin J_H region on chromosome 14. Therefore, a genomic library was made from the leukemic sample and screened with a J_H probe. Fifteen distinct positive clones were isolated and screened for the presence of the rearranged *Sau*3A fragment that was detected by DNA blotting. By this analysis, five clones appeared to represent the rearranged allele identified by DNA blots. One of these clones (clone no. 4) was chosen for further study and a detailed restriction map was generated. The *Eco*RI, *Hind*III/*Eco*RI, and *Sst*I fragments from clone no. 4 that hybridized to the human J_H probe were also identical in size to the rearranged fragments from the leukemia sample, confirming that clone no. 4 represented the rearranged leukemic allele.

Phage clone no. 4 contained 3.7 kb of unknown origin joined to the IgH gene in the region of J_H4 (Fig 2). The IgH gene from J_H4 to the C_{Mu} region appeared to be in germline configuration. Previously, the gene encoding hematopoietic growth factor IL-3 had been mapped to chromosome 5q31 so it was suspected that clone no. 4 might contain part of this gene.^{9,11} When the restriction map of human IL-3 and clone no. 4 were compared, they were identical for more than 3 kb (Fig 2).

We confirmed the juxtaposition of the IL-3 gene and the IgH gene by nucleic acid sequencing of the subcloned *Bst*EC/HpaI fragment (Fig 2). The sequence of this fragment showed no disruption of the protein coding region or the messenger RNA of the IL-3 gene. The break in the IL-3 gene occurred in the promoter region, 452 base pairs (bp) upstream of the transcriptional start site (position 64, Fig

Fig 2. Breakpoint region: t(5;14)(q31;q32). Comparative mapping of phage clone no. 4, the germline IgJH region, and the germline IL-3 gene.^{9,11} The map of clone no. 4 is identical to that of IgH until it diverges in the region of J_H4 (at the dashed line), after which it is identical to the map of IL-3. The two genes are positioned in a head-to-head orientation. The Ig μ chain constant region (C μ), switch region (Sp), hatched box indicates the sequenced region.

3A). The break in the IgH gene occurred 2 bp upstream of the J_H4 region. Between the two breaks, 25 bp of uncertain origin (putative N sequence) were inserted.^{13,14} No sequences homologous to the immunoglobulin heptamer and nonamer could be identified in the IL-3 sequence (Fig 3B). Therefore, nucleic acid sequencing confirmed the juxtaposition of the IL-3 gene and the IgH gene. The sequence data clearly showed that the genes were positioned in opposite transcriptional orientations (head-to-head).

Available data also allowed us to determine the normal positions of the IL-3 gene and the GM-CSF gene in relation to the centromere of chromosome 5 (Fig 4). The IgH gene is known to be positioned with the variable regions toward the telomere on chromosome 14q.^{2,15} It has also been shown that

GM-CSF maps within 9 kb of IL-3 in the same transcriptional orientation.¹⁶ Using this information and assuming a simple translocation event in our sample, we can conclude that the IL-3 gene is normally more centromeric, and the GM-CSF gene more telomeric on chromosome 5q (Fig 4). Furthermore, both are transcribed with their 5' ends toward the centromere.

DISCUSSION

In this report we have cloned a unique chromosomal translocation that appears to be a consistent feature of a rare, yet distinct, clinical form of acute leukemia. This translocation joined the promotor of the IL-3 gene to the IgH gene. Except for the altered promotor, the IL-3 gene appeared

A	5' GGTGACCAGGGT TCCCTGGCCCCAGTAGCAAAGTAGAGGTAATT CATCATAGCTGGGATTAGCAGCGTGACCGGC 3' <u>CCACTGGTCCC</u> AAGGACCGGGGT CATCAGTT CATCATCTCCATTAAGTAGTATCGACGCCATACTGTCGC ACTGGCCG	80
	5' TACCAAGACAAACTCTCATCTGTTCCAGTGGCTCCTGGCCACCCACCAGGACCAAGCAGGGCGGGAGCAGAGGGCCAGG 3' ATGGTCTGTTGAGAGTAGACAAGGTCACCGGAGGACCGGTGGTCTGGTCCGCGTCTCCGGTCC	160
	***** 5' GTAGTCCAGGTGATGGCAGATGAGATCCACTGGGAGGAGGCTCAGTGAGCTGAGTCAGGCTTCCCTGCCACA 3' CATCAGGTCCACTACCGTCTACTCTAGGGTGACCCGCTCCGAGTCACTCGACTCAGTCCGAAGGGGAAGGACGGTGT	240
	5' GGGTCTCTCACCTGCTGCCATGCTTCCCATCTCTCATCTCCCTGACAAGATGAAAGTGTACCGTTAACGTAATCTTT 3' CCCCAGGAGAGTGGACGACGGTACGAAGGGTAGAGAGTAGGAGGAACGTCTACTTACTATGGCAAATTCTAGAAA	320
	***** 5' TTTCTGTTCACTGATCTGAGTACTAGAAAGTCATGGATGAATAATTACGTCTGTGGTTTCATGGAGGTTCCATGT 3' AAAGAACAAAGTGAAGTCAACTCATGATCTTCACTACATTAAATGCAGACACCAAAAGATACCTCCAAGGTACA	400
	5' CAGATAAAAGATCTTCCGACGCCCTGCCACACACCACCTCCCCCGCTTGCCCCGGGTGTGGCACCTTGTGCTGCTG 3' GTCTATTTCTAGGAAGGCTGGACGGGTGTGGTGGAGGGGGCGAACGGCCACACCCGTGAAACGACGAC	480
	5' CACATATAAGGGGGAGGTGTTGCCAACTCTCAAGAGCCCCAGAAGGACCCAGAACAGATGCTCCCTGCCGAT 3' GTGTATATTCCGCCCTCCAACACGGTTGAGAAGTCTGGGTGCTTGTCTGTCTACGGAGGACGGCTA	560
	5' CCAAACATGAGCCGCTGCCGCTCTGCTCCCTGCTCCCAACTCTGGTCGCCCGGACTCCAAAGCTCCCATGACCCAGAC 3' GGTGGTACTCGGGGACGGGAGGACGGAGGACGGAGGTGAGGACCAAGGGGGCTGAGGTTGAGGGTACTGGGTCTG	640
	5' AACGTCTTGAAGACAAGCTGGGTTAAC 3' 3' TTGCAAGGAACTCTGTTGACCCAAATG 5'	668
B IgJh4	5' TGGCCCCAGTAGTCAAAGTAGTCACATTGTTGGAGGCCCCATTAAGGGGTGCACAAAACCTGACTCTC 3' <u>ACCGGGGT</u> CATCAGTT CATCAGTGTAAACACCCCTCCGGTAATTCCCCACGTGTTTGACTGAGAG	+
C1.44	5' TGGCCCCAGTAGTCAAAGTAGTAGAGGTAATT CATCATAGCTGGGATTAGCAGCGTGACCGGTACCA 3' ACCGGGGTCACTCAGTT CATCATCTCCATTAAGTAGTATCGACGCCATACTGTCGACTGGCGATGGT	+
II-3	5' GGCACCAAGAGATGTGTTCTCAGAGCCTGAGGCTGAACGTGGATGTTAGCAGCGTGACGGCTACCA 3' CCGTGGTCTCTACACGAAGAGTCTCGGACTCCGACTTGCACCTACAAATGTCGCACTGGCGATGGT	+

Fig 3. Sequence of t(5;14)(q31;q32) breakpoint region. (A) Nucleotide sequence of the *B*srEII/HpaI fragment indicated on Fig 2. Nucleotides 1 to 36 represent the J_H4 coding region underlined on the coding strand.⁴ Nucleotides 39 to 63 are a putative N region. The sequence from position 64 to 668 is that of the germline IL-3 gene.²² The IL-3 TATA box (486), transcription start (515), and initiation methionine (667) are underlined. Two proposed regulatory sequences in the promotor are marked by asterisks (positions 182 and 389). (B) Comparative sequence of the t(5;14)(q31;q32) breakpoint region. The IgJh4 region is shown with its coding region, heptamer, and nonamer underlined. Clone no. 4 is shown with putative N region sequences underlined. The IL-3 sequence is also shown. A plus sign (+) denotes the identical nucleotide between sequences. No heptamer or nonamer is identified in the IL-3 sequence.

Fig 4. Diagram of the translocation. The normal chromosome 5q31 is shown with the GM-CSF gene telomeric to the IL-3 gene in the transcriptional orientation shown. On normal chromosome 14q32 the V_H regions are telomeric. The t(5;14)(q31;q32) translocation results in the head-to-head orientation of these genes. Symbols are defined in Fig 2. BP, breakpoint position.

intact as no deletions, insertions, or point mutations were detected by restriction mapping of the entire gene and sequencing of part of the gene. The IgH gene has been truncated at the J_H4 region, which places the immunoglobulin enhancer within 2.5 kb of the IL-3 gene.^{17,18} This leads to the hypothesis that the enhancer is increasing transcription of a structurally normal IL-3 gene. The same mechanism is important for activation of the c-myc gene in some cases of Burkitt's lymphoma.¹⁹ An alternate hypothesis is that the elimination of an upstream IL-3 promoter element is crucial to the activation of the IL-3 gene.

The proposed activation of the IL-3 gene suggests that an autocrine loop is important for the pathogenesis of this leukemia.²⁰ Over-expression of the IL-3 gene coupled with

the presence of the IL-3 receptor in these cells could account for a strong stimulus for proliferation. In this regard, there are data indicating that immature B-lineage lymphocytes and B-lineage leukemias may express the IL-3 receptor.^{21,22}

An additional feature of this type of leukemia is the dramatic eosinophilia, consisting of mature forms. It has been hypothesized that the eosinophils do not arise from the malignant clone, but are stimulated by the tumor.^{23,24} Because of the known effect of IL-3 on eosinophil differentiation, secretion of high levels of IL-3 by leukemic cells might have a role in the eosinophilia in this type of leukemia.¹²

The data suggest that the recombination mechanism that is active in the IgH gene during normal differentiation has a role in this translocation.^{13,14} This is supported by the breakpoint location at the 5' end of J_H4 and the presence of putative N-region sequences. On the other hand, no recombination signal sequence (heptamer and nonamer) was found in this region on chromosome 5, suggesting that additional factors also played a role. Further studies will elucidate the mechanism of this and other translocations.

In the leukemia we studied, it is possible that the immunoglobulin enhancer also activates the GM-CSF gene, since this gene is probably positioned only 14 kb away (Fig 4). This is known to be within the range of enhancer activation.²⁵ The interleukin-5 (IL-5) gene maps to chromosome 5q31.²⁶ Deregulation of the IL-5 gene by this translocation would act synergistically with IL-3 in the stimulation of eosinophil proliferation and differentiation.²⁷ These and other questions will be answered by the study of more patient samples. We plan to determine whether the t(5;14)(q31;q32) translocation is capable of activating multiple lymphokines simultaneously and whether they cooperate in the generation of this leukemia.

REFERENCES

- Klein G, Klein E: Evolution of tumors and the impact of molecular oncology. *Nature* 315:190, 1985
- Showe L, Croce C: The role of chromosomal translocations in B- and T-cell neoplasia. *Annu Rev Immunol* 5:253, 1987
- Hogan T, Koss W, Murgo A, Amato R, Fontana J, VanScoy F: Acute lymphoblastic leukemia with chromosomal 5;14 translocation and hypereosinophilia: Case report and literature review. *J Clin Oncol* 5:382, 1987
- Tono-oka T, Sato Y, Matsumoto T, Ueno N, Ohkawa M, Shikano T, Takeda T: Hypereosinophilic syndrome in acute lymphoblastic leukemia with a chromosome translocation t(5q;14q). *Med Pediatr Oncol* 12:33, 1984
- Meeker T, Grimaldi JC, O'Rourke R, Loeb J, Juliusson G, Einhorn S: Lack of detectable somatic hypermutation in the V region of the IgH gene of a human chronic B-lymphocytic leukemia. *J Immunol* 141:3394, 1988
- Ravetch J, Siebenlist U, Korsmeyer S, Waldmann T, Leder P: Structure of the human immunoglobulin μ locus: Characterization of embryonic and rearranged J and D genes. *Cell* 27:583, 1981
- Norrander U, Kempe T, Messing J, Construction of improved M13 vectors using oligodeoxynucleotide-directed mutagenesis. *Gene* 26:101, 1983
- Foon K, Todd R: Immunologic classification of leukemia and lymphoma. *Blood* 68:1, 1986
- LeBeau M, Epstein N, O'Brien SJ, Nienhuis AW, Yang Y-C, Clark S, Rowley J: The interleukin-3 gene is located on human

- chromosome 5 and is deleted in myeloid leukemias with a deletion of Sq. Proc Natl Acad Sci USA 84:5913, 1987
10. LeBeau M, Chandrasekharappa S, Lemons R, Schwartz J, Larson R, Arai N, Westbrook C: Molecular and cytogenetic analysis of chromosome 5 abnormalities in myeloid disorders, in cancer cells, in Proceedings of Molecular Diagnostics of Human Cancer. Cold Spring Harbor Laboratory, NY, 1989 (in press)
 11. Ihle J, Weinstein Y: Immunological regulation of hematopoietic/lymphoid stem cell differentiation by interleukin-3. Adv Immunol 39:1, 1986
 12. Clark S, Kamei R: The human hematopoietic colony-stimulating factors. Science 236:1229, 1987
 13. Bakhshi A, Wright J, Graninger W, Seto M, Owens J, Cossman J, Jensen J, Goldman P, Korsmeyer S: Mechanism of the t(14,18) chromosomal translocation: Structural analysis of both derivative 14 and 18 reciprocal partners. Proc Natl Acad Sci USA 84:2396, 1987
 14. Tsujimoto Y, Louie E, Bashir M, Croce C: The reciprocal partners of both the t(14,18) and the t(11,14) translocations involved in B-cell neoplasms are rearranged by the same mechanism. Oncogene 2:347, 1988
 15. Erikson J, Finan J, Nowell P, Croce C: Translocation of immunoglobulin VH genes in Burkitt lymphoma. Proc Natl Acad Sci USA 80:810, 1982
 16. Yang Y-C, Kovacic S, Kriz R, Wolf S, Clark S, Wellems T, Nienhuis A, Epstein N: The human genes for GM-CSF and IL-3 are closely linked in tandem on chromosome 5. Blood 71:958, 1988
 17. Gillies S, Morrison S, Oi V, Tonegawa S: A tissue-specific transcription enhancer element is located in the major intron of a rearranged immunoglobulin heavy chain gene. Cell 33:717, 1983
 18. Banerji J, Olson L, Schaffner W: A lymphocyte-specific cellular enhancer is located downstream of the joining region in immunoglobulin heavy chain genes. Cell 33:729, 1983
 19. Hayday A, Gillies S, Saito H, Wood C, Wiman K, Hayward W, Tonegawa S: Activation of a translocated human c-myc gene by an enhancer in the immunoglobulin heavy-chain locus. Nature 307:334, 1984
 20. Sporn M, Roberts A: Autocrine growth factors and cancer. Nature 313:745, 1985
 21. Palacios R, Steinmetz M: IL-3-dependent mouse clones that express B-220 surface antigen, contain Ig genes in germ line configuration, and generate B lymphocytes in vivo. Cell 41:727, 1985
 22. Uckun F, Gesner T, Song C, Myers D, Mufton A: Leukemic B-cell precursors express functional receptors for human interleukin-3. Blood 73:533, 1989
 23. Spitzer G, Garson O: Lymphoblastic leukemia with marked eosinophilia: A report of two cases. Blood 42:377, 1973
 24. Catovsky D, Bernasconi C, Verkonck P, Postma A, Howss J, Berg A, Rees J, Castelli G, Morra E, Galton D: The association of eosinophilia with lymphoblastic leukemia or lymphoma: A study of seven patients. Br J Haematol 45:523, 1980
 25. Wang X-F, Calame K: The endogenous immunoglobulin heavy chain enhancer can activate tandem VH promoters separated by a large distance. Cell 43:659, 1985
 26. Sutherland G, Baker E, Callen D, Campbell H, Young I, Sanderson C, Garson O, Lopez A, Vadas M: Interleukin-5 is at 5q31 and is deleted in the 5q-syndrome. Blood 71:1150, 1988
 27. Warren D, Moore M: Synergism among interleukin-1, interleukin-3, and interleukin-5 in the production of eosinophils from primitive hematopoietic stem cells. J Immunol 140:94, 1988
 28. Yang Y-C, Clark S: Molecular cloning of a primate cDNA and the human gene for interleukin-3. Lymphokines 15:375, 1988
 29. Yang Y-C, Ciarletta A, Temple P, Chung M, Kovacic S, Wittek-Giannotti J, Leary A, Kriz R, Donahue R, Wong G, Clark S: Human IL-3 (multi-CSF): Identification by expression cloning of a novel hematopoietic growth factor related to murine IL-3. Cell 47:3, 1986

RAPID COMMUNICATION

Activation of the Interleukin-3 Gene by Chromosome Translocation in Acute Lymphocytic Leukemia With Eosinophilia

By Timothy C. Meeker, Dan Hardy, Cheryl Willman, Thomas Hogan, and John Abrams

The t(5;14)(q31;q32) translocation from B-lineage acute lymphocytic leukemia with eosinophilia has been cloned from two leukemia samples. In both cases, this translocation joined the IgH gene and the interleukin-3 (IL-3) gene. In one patient, excess IL-3 mRNA was produced by the leukemic cells. In the second patient, serum IL-3 levels were measured and shown to correlate with disease

activity. There was no evidence of excess granulocyte/macrophage colony stimulating factor (GM-CSF) or IL-5 expression. Our data support the formulation that this subtype of leukemia may arise in part because of a chromosome translocation that activates the IL-3 gene, resulting in autocrine and paracrine growth effects.
© 1990 by The American Society of Hematology.

A NUMBER OF chromosome translocations have been associated with human leukemia and lymphoma. In many cases the study of these translocations has led to the discovery or characterization of proto-oncogenes, such as *bcl-2*, *c-abl*, and *c-myc*, that are located adjacent to the translocation.^{1,2} It is now widely understood that cancer-associated translocations disrupt nearby proto-oncogenes.

A distinct subtype of acute leukemia is characterized by the triad of B-lineage immunophenotype, eosinophilia, and the t(5;14)(q31;q32) translocation.^{3,4} Leukemic cells from such patients have been positive for terminal deoxynucleotidyl transferase (Tdt), common acute lymphoblastic leukemia antigen (CALLA), and CD19, but negative for surface or cytoplasmic immunoglobulin. In previous work, we cloned the t(5;14) breakpoint from one leukemic sample (Case 1) and determined that the IgH and interleukin-3 (IL-3) genes were joined by this abnormality.⁵ In this report, we extend those findings by showing that the t(5;14)(q31;q32) translocation from a second leukemia sample (Case 2) has a similar structure, and we report our study of growth factor expression in these patients.

MATERIALS AND METHODS

Samples and Southern blots. Case 1 has been described.^{5,6} Clinical features of Case 2 have been described in detail.³ DNA isolation and Southern blotting was done using previously described methods.³ Filters were hybridized with an immunoglobulin J_H probe, a 280 bp *Bam*H I/*Eco*RI genomic IL-3 fragment, and an IL-3 cDNA probe.^{7,8}

Northern blots. RNA isolation and Northern blotting have been described.⁹ Briefly, Northern blots were done by separating 9 µg total RNA on 1% agarose-formaldehyde gels. Equal RNA loading in each lane was confirmed by ethidium bromide staining. Blots were hybridized with an IL-3 cDNA probe extending to the *Xho* I site in exon 5, a 720 bp *Sst* I/*Kpn* I probe derived from intron 2 of the IL-3 gene, a 600 bp *Nhe* I/*Hpa* I IL-5 cDNA probe, and a 500 bp *Pst* I/*Nco* I granulocyte-macrophage colony stimulating factor (GM-CSF) cDNA probe.¹⁰⁻¹²

Polymerase chain reaction. Primers were designed with *Bam*H sites for cloning. One primer hybridized to the J_H sequences from the IgH gene (Primer 144: 5'-TAGGATCCGACGGTGACCAGGGT), and the other hybridized to the region of the TATA box in the IL-3 gene (Primer 161: 5'-AACAGGATCCCGCCTTATATGTGCAG). Polymerase chain reaction (PCR) (95°C for 1 minute, 61°C for 30 seconds, and 72°C for 3 minutes) was done using 500 ng genomic DNA and 50 pmol of each primer in 100 µL containing 67 mM/L Tris-HCl pH 8.8, 6.7 mM/L MgCl₂, 10% dimethyl sulfoxide (DMSO), 170 µg/mL bovine serum albumin (BSA) (fraction V).

16.6 mM/L ammonium sulfate, 1.5 mM/L each dNTP and Taq polymerase (Perkin-Elmer, Norwalk, CT).¹³

Sequencing. Sequencing was done by chain termination in M13 vectors.¹⁴ As part of this study, we sequenced a subclone of a normal IL-3 promotor, covering 598 base pairs from a *Sma* I site at position -1240 (with respect to the proposed site of transcription initiation) to an *Nhe* I site at position -642. The plasmid containing this region was a gift from Naoko Arai of the DNAX Research Institute.

Expression in Cos7 cells. A genomic IL-3 fragment from Case 1 was cloned into the pXM expression vector.¹⁰ Briefly, the *Hind*III/*Sal* I fragment containing the IL-3 gene was subcloned from the previously described phage clone 4 into pUC18.⁵ The 2.6 kb fragment extending from the *Sma* I site 61 bp upstream of the IL-3 transcription start to the *Sma* I site in the polylinker was cloned into the blunted *Xho* I site of pXM. The negative control construct was the pXM vector without insert. Plasmids were introduced into Cos7 cells by electroporation, and supernatant was collected after 48 hours in culture.

TFI bioassay. TF-1 cells were passaged in RPMI 1640 supplemented with 10% heat-inactivated fetal bovine serum, 2 mM L-glutamine, and 1 ng/mL human GM-CSF.¹⁵ Samples and antibodies were diluted in this same medium lacking GM-CSF but containing penicillin and streptomycin. A 25 µL volume of serial dilutions of patient serum was added to wells in a flat bottom 96-well microtiter plate. Rat anti-cytokine monoclonal antibody in a volume of 25 µL was added to appropriate wells and preincubated for 1 hour at 37°C. Fifty microliters of twice washed TF-1 cells were added to each well, giving a final cell concentration of 1 × 10⁴ cells per well (final volume, 100 µL). The plate was incubated for 48 hours. The remaining cell viability was determined metabolically by the colorimetric

From the Division of Hematology/Oncology 111H, Department of Medicine, University of California and the Veterans Administration Medical Center, San Francisco, CA; the Center for Molecular and Cellular Diagnostics, Department of Pathology and Cell Biology, University of New Mexico, Albuquerque, NM; the Division of Hematology/Oncology, Department of Medicine, West Virginia University, Morgantown, WV; and DNAX Research Institute, Palo Alto, CA.

Submitted March 27, 1990; accepted April 19, 1990.

Supported in part by the University of California Cancer Research Coordinating Committee and University of New Mexico Cancer Center funding from the state of New Mexico. The DNAX Research Institute is supported by Schering-Plough.

Address reprint requests to Timothy C. Meeker, MD, Division of Hematology/Oncology 111H, Department of Medicine, University of California and the Veterans Administration Medical Center, 4150 Clement St, San Francisco, CA 94121.

© 1990 by The American Society of Hematology.
0006-4971/90/7602-0022\$3.00/0

IgHs	5' GAGGCTGACAGGGTTCTTGGGCGAAGGACTGAAACCAGTTGTCAACATTTGACAAACAATTGGACAGAAGGGGACAAAGAACGGGAAACGGGACGGG 3' CTGGCACTGTTGCGAAGGAACGGGGTGTCTGAGCTTGTCACAGTGTAACTGTTACGCTCTGGGCTGTTCTTGGGCGGCGGCTGCGAAGGA ***** ***** *****
Clone	5' GAGGCTGACAGGGTTCTTGGGCGAAGGACTGAAACCAGTTGTACCGGCGATGTTATTGGGGGGATCAAGACGCTCAATACAACTGTCGCTGCGAACAT 3' CTGGCACTGTTGCGAAGGAACGGGGTGTCTGAGCTTGTCACAGTACGGGCTGAGGTTAAGTGTGACAGAGGAAACGGGTA (-934)***** ***** *****
IL3	5' CGCGCTCTGCAAACTTGCTACTGGGCGCTGCAACCTGGCAAATCCATGCTCAACACAGAAGGGGATCAAGAACGCTCAATACAACTGTCGCTGCGAACAT 3' GGCGAGAGACGCTTGGGATGACGGGAAAGTGTGACGGGAACTGCTGGTACAGGACTGCTGCGCTGAGGTTAAGTGTGACAGAGGAAACGGGTA

Fig 1. Breakpoint sequences for Case 2. The germline IgJH5 region sequence (protein coding region and recombination signal sequences are underlined) is on top, the translocation sequence from Case 2 (PCR primer sequences and putative N region are underlined) is in the middle, and the germline IL-3 sequence, which we derived from a normal IL-3 clone, is on the bottom.⁷ + indicates that each gene occurred at position -834 (+).

metric method of Mosmann using a VMax microtiter plate reader (Molecular Devices, Menlo Park, CA) set at 570 and 650 nm¹⁶.

Cytokine Immunoassays. These assays used rat monoclonal anti-cytokine antibodies (10 µg/mL) to coat the wells of a PVC microtiter plate. The capture antibodies used were BVD3-6G8, JES1-39D10, and BVD2-23B6, for the IL-3, IL-5, and GM-CSF assays, respectively. Patient sera were then added (undiluted and diluted 1:2 for IL-3, undiluted for IL-5, and undiluted and diluted 1:5 for GM-CSF). The detecting immunoreagents used were either mouse antiserum to IL-3 or nitroiodophenyl (NIP)-derivatized rat monoclonal antibodies JES1-5A2 and BVD2-21C11, specific for IL-5 and GM-CSF, respectively. Bound antibody was subsequently detected with immunoperoxidase conjugates: horseradish peroxidase (HRP)-labeled goat anti-mouse Ig for IL-3, or HRP-labeled rat (J4 MoAb) anti-NIP for IL-5 and GM-CSF. The chromogenic substrate was 3'-azino-bis-benzthiazoline sulfonate (ABTS; Sigma, St. Louis, MO). Unknown values were interpolated from standard curves prepared from dilutions of the recombinant factors using Softmax software available with the VMAX microplate reader (Molecular Devices).

RESULTS

Leukemic DNA from Case 2 was studied by Southern blotting. When digested with the *Hind*III restriction enzyme and hybridized with a human immunoglobulin heavy chain joining region (J_h) probe, a rearranged fragment at approximately 14 kb was detected (data not shown). When reprobed with either of two different IL-3 probes, a rearranged 14 kb

fragment, comigrating with the rearranged J_h fragment, was identified. When leukemic DNA was digested with *Hind*III plus *Eco*RI, a rearranged J_h fragment was detected at 6 kb. The IL-3 probes also identified a comigrating fragment of this size. These experiments indicated that the leukemic sample studied was clonal and that a single fragment contained both J_h and IL-3 sequences, suggesting a translocation had occurred.

To characterize better the joining of the IL-3 gene and the immunoglobulin heavy chain (IgH) gene, the polymerase chain reaction (PCR) was used to clone the translocation.¹³ A Jh primer and an IL-3 primer were designed to produce an amplified product in the event of a head-to-head translocation. While control DNA gave no PCR product, Case 2 DNA yielded a PCR-derived fragment of approximately 980 bp, which was cloned and sequenced.

The DNA sequence of the translocation clone from Case 2 confirmed the joining of the Jh region with the promoter of the IL-3 gene in a head-to-head configuration (Fig. 1). Sequence analysis indicated that the breakpoint on chromosome 14 was just upstream of the Jh5 coding region. The breakpoint on chromosome 5 occurred 934 bp upstream of the putative site of transcription initiation of the IL-3 gene. We also determined that a putative N sequence of 17 bp was inserted between the chromosome 5 and chromosome 14 sequences during the translocation event.^{17,18} Figure 2 shows

Fig 2. Relationship of chromosome 5 breakpoints to the IL-3 gene. This figure shows the two cloned breakpoints (arrows) in relation to the normal IL-3 gene.^{6,10} One breakpoint occurred at position -462 and the other at -934 (arrows). In both circumstances, the translocations resulted in a head-to-head joining of the IgH genes and the IL-3 gene, leaving the mRNA and protein coding regions of the IL-3 gene intact. Boxes denote the five IL-3 exons; restriction enzymes are (B) BamHI, (P) PstI, (H) HpaII, (E) EcoRI, and (X) XbaI.

Fig 3. Documentation of IL-3 mRNA over-expression. A Northern blot was prepared and hybridized with a probe for IL-3. Lane 1 contained RNA from unstimulated peripheral blood lymphocytes (PBL) as a negative control. Lane 2 contained RNA from PBL stimulated for 4 hours with concanavalin A (ConA), and lane 3 contained RNA from PBL stimulated with ConA for 48 hours. As in the positive control IL-3 gene, in addition, the leukemic sample showed over-expression of an unspliced 2.9 kb IL-3 transcript (lane 4, upper arrow). We documented that this represented an unspliced precursor of the mature 1 kb transcript by showing that this band hybridized to a probe from intron 2 of the IL-3 gene. A similar 2.9 kb band was detected in lane 2, suggesting that an IL-3 mRNA of this size is sometimes detectable in normal mitogen-stimulated cells. Lane 5 through 10 represent RNA from six samples of B-lineage acute lymphocytic leukemia without the t(5;14) translocation, indicating that only the sample with the translocation exhibited IL-3 over-expression. Case 2 could not be analyzed by Northern blot because too few cells were available for study.

the locations of the two cloned breakpoints in relation to the IL-3 gene. The two chromosome 5 breakpoints were separated by less than 500 bp.

The genomic structure in Cases 1 and 2 suggested that a normal IL-3 gene product was over-expressed as a result of the altered promoter structure. This would predict that the IL-3 gene on the translocated chromosome was capable of making IL-3 protein. This prediction was tested by expressing a genomic fragment from the translocated allele of Case 1 containing all five IL-3 exons under the control of the SV40 promoter/enhancer in the Cos7 cell line. Cell supernatants were studied in a proliferation assay using the factor dependent erythroleukemic cell line, TF-1. The supernatants derived from transfections using the vector plus insert supported TF-1 proliferation, while supernatants from transfections using the vector alone were negative in this assay (data not shown). Furthermore, the biologic activity could be blocked by an antibody to human IL-3 (BVD3-6G8). This result showed that the translocated allele retained the ability to make IL-3 mRNA and protein.

The level of expression of IL-3 mRNA in leukemic cells from Case 1 was assessed. Northern blotting showed that the mature IL-3 mRNA (approximately 1 kb) and a 2.9 kb unspliced IL-3 mRNA were excessively produced by the leukemia (Fig 3). The 2.9 kb form of the mRNA is also present at low levels in normal peripheral blood T lymphocytes after mitogen activation (Fig 3). Several B-lineage acute leukemia samples without the t(5;14) translocation had undetectable levels of IL-3 mRNA in these experiments. In addition, although genes for GM-CSF and IL-5 map close to the IL-3 gene and might have been deregulated by the translocation, no IL-5 or GM-CSF mRNA could be detected in the leukemic sample (data not shown).^{19,20}

Three serum samples from Case 2 were assayed by immunoassay for levels of IL-3, GM-CSF, and IL-5 (Table 1). Serum IL-3 could be detected and correlated with the clinical course. When the patient's leukemic cell burden was

highest, the IL-3 level was highest. No serum GM-CSF or IL-5 could be detected.

Since the IL-3 immunoassay measured only immunoreactive factor, we confirmed that biologically active IL-3 was present by using the TF-1 bioassay. This bioassay can be rendered monospecific using appropriate neutralizing monoclonal antibodies specific for IL-3, IL-5, or GM-CSF. We observed that sera from 1-16-84 and 3-14-84 contained TF-1 stimulating activity that could be blocked with anti-IL-3 MoAb (BVD3-6G8), but not with MoAbs to IL-5 (JES1-39D10) or GM-CSF (BVD2-23B6) (Fig 4; GM-CSF data not shown). The amount of neutralizable bioactivity in these two samples correlated very well with the difference in IL-3 levels obtained by immunoassay for these samples. Furthermore, the failure to block TF-1 proliferating activity with either anti-IL-5 or anti-GM-CSF was consistent with the inability to measure these factors by immunoassay and

Table 1. Peripheral Blood Counts and Growth Factor Levels at Different Times in Case 2

	Sample Date		
	11/15/83	1/16/84	3/14/84
Peripheral blood counts (cells/ μ L)			
WBC	81,800	116,500	12,300
Lymphoblasts	0	33,785	0
Eosinophils	46,626	73,080	615
Serum growth factor levels (pg/mL)			
IL-3	<444	7,895	1,051
GM-CSF	<15	<15	<15
IL-5	<60	<60	<60

Peripheral blood counts from Case 2 at three different time points with the corresponding growth factor levels quantified by immunoassay. The patient received chemotherapy between 1/16/84 and 3/14/84 to lower his leukemic burden.³ No serum samples were available for a similar analysis of Case 1.

Abbreviation: WBC, white blood cells.

Fig 4. Bioassay of serum IL-3. Leukemic patient sera were tested for bioactive IL-3 and IL-5 in the TF-1 proliferation assay. The reciprocal of the dilution is indicated on the horizontal axis and the optical density indicating the amount of proliferation is indicated on the vertical axis. Serum from all three time points was assayed simultaneously. The assay was rendered monospecific by using a 1 μ g/ml final concentration of monoclonal rat anti-IL-3, BVD3-6G8 (■), or anti-IL-5, JES1-39D10 (▲); □ indicates no MoAb. On 1/16/84 and 3/14/84, inhibition of proliferation was evident in the presence of anti-IL-3 antibody, documenting serum levels of IL-3 on those days. Serum IL-5 was not detected in this assay, as anti-IL-5 did not alter TF-1 proliferation.

indicated that these other myeloid growth factors were not detectably circulating in the serum of this patient.

DISCUSSION

In this report, we have extended our analysis of acute lymphocytic leukemia and eosinophilia associated with the t(5;14) translocation. In both cases we have studied, we have documented the joining of the IL-3 gene from chromosome 5 to the IgH gene from chromosome 14. The breakpoints on chromosome 5 are within 500 bp of each other, suggesting that additional breakpoints will be clustered in a small region of the IL-3 promotor. The PCR assay we have developed will be useful in the screening of additional clinical samples for this abnormality.

The finding of a disrupted IL-3 promotor associated with an otherwise normal IL-3 gene implied that this translocation might lead to the over-expression of a normal IL-3 gene product. In this work, we have documented that this is true. In addition, neither GM-CSF nor IL-5 are over-expressed by the leukemic cells. Furthermore, in one patient, serum IL-3 could be measured and correlated with disease activity. To our knowledge, this is the first measurement of human IL-3 in serum and its association with a disease process. The measurement of serum IL-3 in this and other clinical settings may now be indicated.

The finding of the IL-3 gene adjacent to a cancer-associated translocation breakpoint suggests that its activation is important for oncogenesis. It is our thesis that an autocrine loop for IL-3 is important for the evolution of this leukemia.²¹ The excessive IL-3 production that we have documented would be one feature of such an autocrine loop. The final proof of our thesis must await additional data. In particular, from the study of additional clinical samples, it will be necessary to document that the IL-3 receptor is present on the leukemic cells and that anti-IL-3 antibody decreases proliferation of the leukemia in vitro.

An important aspect of this work is the suggestion of a therapeutic approach for this disease. If an autocrine loop for IL-3 can be documented in this disease, attempts to lower circulating IL-3 levels or block the interaction of IL-3 with its receptor may prove useful. Because it is also possible that the eosinophilia in these patients is mediated by the paracrine effects of leukemia-derived IL-3, similar interventions may improve this aspect of the disease. Antibodies or engineered ligands to accomplish these goals may soon be available.

ACKNOWLEDGMENT

We thank Naoko Arai, Ken-ichi Arai, R. O'Rourke, J. Grimaldi, and T. O'Connell for technical assistance and/or helpful discussions.

REFERENCES

- Klein G, Klein E: Evolution of tumors and the impact of molecular oncology. *Nature* 315:190, 1985
- Showe L, Croce C: The role of chromosomal translocations in B- and T-cell neoplasia. *Ann Rev Immunol* 5:253, 1987
- Hogan T, Koss W, Murgo A, Amato R, Fontana J, VanSooy F: Acute lymphoblastic leukemia with chromosomal 5;14 translocation and hypereosinophilia: Case report and literature review. *J Clin Oncol* 5:382, 1987
- Tono-oka T, Sato Y, Matsumoto T, Ueno N, Ohkawa M, Shikano T, Takeda T: Hypereosinophilic syndrome in acute lymphoblastic leukemia with a chromosome translocation t(5q;14q). *Med Ped Oncol* 12:33, 1984
- Grimaldi J, Meeker T: The t(5;14) chromosomal translocation in a case of acute lymphocytic leukemia joins the interleukin-3 gene to the immunoglobulin heavy chain gene. *Blood* 73:2081, 1989
- McConnell T, Foucar K, Hardy W, Saiki J: Three-way reciprocal chromosomal translocation in an acute lymphoblastic leukemia patient with hypereosinophilia syndrome. *J Clin Oncol* 5:2042, 1987
- Ravetch J, Siebenlist U, Korsmeyer S, Waldmann T, Loder P: Structure of the human immunoglobulin m locus: Characterization of embryonic and rearranged J and D genes. *Cell* 27:583, 1981
- Otsuka T, Miyajima A, Brown N, Otsu K, Abrams J, Sacland S, Caux C, Malefisi R, Vries J, Meyerson P, Yokota K, Geummel L,

- Remick D, Lee F, Arai N, Arai K, Yokota T: Isolation and characterization of an expressible cDNA encoding human IL-3. *J Immunol* 140:2288, 1988
9. Sambrook J, Fritsch E, Maniatis T: Molecular Cloning. Cold Spring Harbor, NY, Cold Spring Harbor Press, 1989
10. Yang Y-C, Ciarletta A, Temple P, Chung M, Kovacic S, Witsek-Giannotti J, Leary A, Kriz R, Donahue R, Wong G, Clark S: Human IL-3 (multi-CSF): Identification by expression cloning of a novel hematopoietic growth factor related to murine IL-3. *Cell* 47:3, 1986
11. Yokota T, Coffman R, Hagiwara H, Remick D, Takebe Y, Yokota K, Gemmell L, Shrader B, Yang G, Meyerson P, Luh J, Hoy P, Pene J, Briere F, Spits H, Banchereau J, Vries J, Lee F, Arai N, Arai K: Isolation and characterization of lymphokine cDNA clones encoding mouse and human IgA-enhancing factor and eosinophil colony-stimulating factor activities: Relationship to interleukin 5. *Proc Natl Acad Sci USA* 84:7388, 1987
12. Wong G, Witsek J, Temple P, Wilkens K, Leary A, Luxenberg D, Jones S, Brown E, Kay R, Orr E, Shoemaker C, Golde D, Kaufman R, Hewick R, Wang E, Clark S: Human GM-CSF: Molecular cloning of the complementary DNA and purification of the natural and recombinant proteins. *Science* 228:810, 1985
13. Saiki R, Scharf S, Faloona F, Mullis K, Horn G, Erlich H, Arnheim N: Enzymatic amplification of B-globin genomic sequences and restriction site analysis for diagnosis of sickle cell anemia. *Science* 230:1350, 1985
14. Norrander U, Kempe T, Messing J: Construction of improved M13 vectors using oligodeoxynucleotido-directed mutagenesis. *Gene* 26:101, 1983
15. Kitamura T, Tange T, Terasawa T, Chiba S, Kuwaki T, Miyagawa K, Piao Y, Miyazono K, Urabe A, Takaku F: Establishment and characterization of a unique human cell line that proliferates dependently on GM-CSF, IL-3, or erythropoietin. *J Cell Physiol* 140:323, 1989
16. Mosmann T: Rapid colorimetric assay for cellular growth and survival: Application to proliferation and cytotoxicity assays. *J Immunol Methods* 65:55, 1983
17. Bakhshi A, Wright J, Graninger W, Seto M, Owens J, Cossman J, Jensen J, Goldman P, Korsmeyer S: Mechanism of the t(14;18) chromosomal translocation: Structural analysis of both derivative 14 and 18 reciprocal partners. *Proc Natl Acad Sci USA* 84:2396, 1987
18. Tsujimoto Y, Louie E, Bashir M, Croce C: The reciprocal partners of both the t(14;18) and the t(11;14) translocations involved in B-cell neoplasms are rearranged by the same mechanism. *Oncogene* 2:347, 1988
19. Yang Y-C, Kovacic S, Kriz R, Wolf S, Clark S, Wellems T, Niehuis A, Epstein N: The human genes for GM-CSF and IL-3 are closely linked in tandem on chromosome 5. *Blood* 71:958, 1988
20. Sutherland G, Baker E, Callea D, Campbell H, Young I, Sanderson C, Garson O, Lopez A, Vadas M: Interleukin-5 is at Sq31 and is deleted in the Sq—syndrome. *Blood* 71:1150, 1988
21. Sporn M, Roberts A: Autocrine growth factors and cancer. *Nature* 313:745, 1985

Clinical and Pathologic Significance of the c-erbB-2 (HER-2/neu) Oncogene

Timothy P. Singleton and John G. Strickler

The c-erbB-2 oncogene was first shown to have clinical significance in 1987 by Slamon et al.,⁷⁰ who reported that c-erbB-2 DNA amplification in breast carcinomas correlated with decreased survival in patients with metastasis to axillary lymph nodes. Subsequent studies, however, of c-erbB-2 activation in breast carcinoma reached conflicting conclusions about its clinical significance. This oncogene also has been reported to have clinical and pathologic implications in other neoplasms. Our review summarizes these various studies and examines the clinical relevance of c-erbB-2 activation, which has not been emphasized in recent reviews.^{37,38,65} The molecular biology of the c-erbB-2 oncogene has been extensively reviewed^{37,38,65} and will be discussed only briefly here.

BACKGROUND

The c-erbB-2 oncogene was discovered in the 1980s by three lines of investigation. The *neu* oncogene was detected as a mutated transforming gene in neuroblastomas induced by ethylnitrosurea treatment of fetal rats.^{6,13,74,75} The c-erbB-2 was a human gene discovered by its homology to the retroviral gene v-erbB.^{33,49,76} HER-2 was isolated by screening a human genomic DNA library for homology with v-erbB.²⁴ When the DNA sequences were determined subsequently, c-erbB-2, HER-2, and *neu* were found to represent the same gene. Recently, the c-erbB-2 oncogene also has been referred to as NGL.

The c-erbB-2 DNA is located on human chromosome 17q21^{24,33,65} and codes for c-erbB-2 mRNA (4.6 kb), which translates c-erbB-2 protein (p185). This

166 T.P. SINGLETON AND J.G. STRICKLER

protein is a normal component of cytoplasmic membranes. The c-erbB-2 oncogene is homologous with, but not identical to, c-erbB-1, which is located on chromosome 7 and codes for the epidermal growth factor receptor.^{4,103} The c-erbB-2 protein is a receptor on cell membranes and has intracellular tyrosine kinase activity and an extracellular binding domain.^{2,104} Electron microscopy with a polyclonal antibody detects c-erbB-2 immunoreactivity on cytoplasmic membranes of neoplasms, especially on microvilli and the non-villous outer cell membrane.⁶¹ In normal cells, immunohistochemical reactivity for c-erbB-2 is frequently present at the basolateral membrane or the cytoplasmic membrane's brush border.^{22,62}

There is experimental evidence that c-erbB-2 protein may be involved in the pathogenesis of breast neoplasia. Overproduction of otherwise normal c-erbB-2 protein can transform a cell line into a malignant phenotype.²⁵ Also, when the *neu* oncogene containing an activating point mutation is placed in transgenic mice with a strong promoter for increased expression, the mice develop multiple independent mammary adenocarcinomas.^{16,63} In other experiments, monoclonal antibodies against the *neu* protein inhibit the growth (in nude mice) of a *neu*-transformed cell line,²⁶⁻²⁸ and immunization of mice with *neu* protein protects them from subsequent tumor challenge with the *neu*-transformed cell line.¹⁴ Some authors have speculated that the use of antagonists for the unknown ligand could be useful in future chemotherapy.⁸⁵ Further review of this experimental evidence is beyond the scope of this article.

The c-erbB-2 activation most likely occurs at an early stage of neoplastic development. This hypothesis is supported by the presence of c-erbB-2 activation in both *in situ* and invasive breast carcinomas. In addition, studies of metastatic breast carcinomas usually demonstrate uniform c-erbB-2 activation at multiple sites in the same patient,^{11,12,19,41,62} although c-erbB-2 activation has rarely been detected in metastatic lesions but not in the primary tumor.^{57,60,107} Even more rarely, c-erbB-2 DNA amplification has been detected in a primary breast carcinoma but not in its lymph node metastasis.⁵ In patients who have bilateral breast neoplasms, both lesions have similar patterns of c-erbB-2 activation, but only a few such cases have been studied.¹¹

MECHANISMS OF c-erbB-2 ACTIVATION

The most common mechanism of c-erbB-2 activation is genomic DNA amplification, which almost always results in overproduction of c-erbB-2 mRNA and protein.^{17,34,62,81} The c-erbB-2 amplification may stabilize the overproduction of mRNA or protein through unknown mechanisms. Human breast carcinomas with c-erbB-2 amplification contain 2 to 40 times more c-erbB-2 DNA⁴⁵ and 4 to 128 times more c-erbB-2 mRNA^{34,60} than found in normal tissue. Most human breast carcinomas with c-erbB-2 amplification have 2 to 15 times more c-erbB-2 DNA. Tumors with greater amplification tend to have greater overproduction.^{17,52,65} The non-mammary neoplasms that have been studied tend to have

similar levels of c-erbB-2 amplification or overproduction relative to the corresponding normal tissue.

The second most common mechanism of c-erbB-2 activation is overproduction of c-erbB-2 mRNA and protein without amplification of c-erbB-2 DNA.⁵¹ The quantities of mRNA and protein usually are less than those in amplified cases and may approach the small quantities present in normal breast or other tissues.^{11,50,52} The c-erbB-2 protein overproduction without mRNA overproduction or DNA amplification has been described in a few human breast carcinoma cell lines.⁴⁷

Other rare mechanisms of c-erbB-2 activation have been reported. Translocations involving the c-erbB-2 gene have been described in a few mammary and gastric carcinomas, although some reported cases may represent restriction fragment length polymorphisms or incomplete restriction enzyme digestions that mimic translocations.^{31,65,75,84,90,108} A single point mutation in the transmembrane portion of neu has been described in rat neuroblastomas induced by ethylnitrosourea.^{9,55} The mutated neu protein has increased tyrosine kinase activity and aggregates at the cell membrane.^{10,83,90} Although there has been speculation that some of the amplified c-erbB-2 genes may contain point mutations,⁴⁶ none has been detected in primary human neoplasms.^{41,53,61}

TECHNIQUES FOR DETECTING c-erbB-2 ACTIVATION

Detection of c-erbB-2 DNA Amplification

Amplification of c-erbB-2 DNA is usually detected by DNA dot blot or Southern blot hybridization. In the dot blot method, the extracted DNA is placed directly on a nylon membrane and hybridized with a c-erbB-2 DNA probe. In the Southern blot method, the extracted DNA is treated with a restriction enzyme, and the fragments are separated by electrophoresis, transferred to a nylon membrane, and hybridized with a c-erbB-2 DNA probe. In both techniques, c-erbB-2 amplification is quantified by comparing the intensity (measured by densitometry) of the hybridization bands from the sample with those from control tissue.

Several technical problems may complicate the measurement of c-erbB-2 DNA amplification. First, the extracted tumor DNA may be excessively degraded or diluted by DNA from stromal cells.⁶¹ Second, the c-erbB-2 DNA probe must be carefully chosen and labeled. For example, oligonucleotide c-erbB-2 probes may not be sensitive enough for measuring a low level of c-erbB-2 amplification, because diploid copy numbers can be difficult to detect (unpublished data). Third, the total amounts of DNA in the sample and control tissue must be compensated for, often with a probe to an unamplified gene. Many studies have used control probes to genes on chromosome 17, the location of c-erbB-2, to correct for possible alterations in chromosome number. Identical results, however, are obtained by using control probes to genes on other chromosomes,^{5,65,80} with rare exception.¹¹ Studies using control probes to the beta-

168 T.P. SINGLETON AND J.G. STRICKLER

globin gene must be interpreted with caution, because one allele of this gene is deleted occasionally in breast carcinomas.³

Amplification of c-erbB-2 DNA was assessed by using the polymerase chain reaction (PCR) in one recent study.³² Oligoprimer for the c-erbB-2 gene and a control gene are added to the sample's DNA, and PCR is performed. If the sample contains more copies of c-erbB-2 DNA than of the control gene, the c-erbB-2 DNA is replicated preferentially.

Detection of c-erbB-2 mRNA Overproduction

Overproduction of c-erbB-2 mRNA usually is measured by RNA dot blot or Northern blot hybridization. Both techniques require extraction of RNA but otherwise are analogous to DNA dot blot and Southern blot hybridization. Use of PCR for detection of c-erbB-2 mRNA has been described in two recent abstracts.^{33,34}

Overproduction of c-erbB-2 mRNA can be measured by in situ hybridization. Sections are mounted on glass slides, treated with protease, hybridized with a radiolabeled probe, washed, treated with nuclease to remove unbound probe, and developed for autoradiography. Silver grains are seen only over tumor cells that overproduce c-erbB-2 mRNA. Negative control probes are used.^{35,36,37} Our experience indicates that these techniques are relatively insensitive for detecting c-erbB-2 mRNA overproduction in routinely processed tissue. Although the sensitivity may be increased by modifications that allow simultaneous detection of c-erbB-2 DNA and mRNA, in situ hybridization still is cumbersome and expensive (unpublished data).

All of the above c-erbB-2 mRNA detection techniques have several problems that make them more difficult to perform than techniques for detecting DNA amplification. One major problem is the rapid degradation of RNA in tissue that is not immediately frozen or fixed. In addition, during the detection procedure, RNA can be degraded by RNase, a ubiquitous enzyme, which must be eliminated meticulously from laboratory solutions. Third, control probes to genes that are uniformly expressed in the tissue of interest need to be carefully selected.

Detection of c-erbB-2 Protein Overproduction

The most accurate methods for detecting c-erbB-2 protein overproduction are the Western blot method and immunoprecipitation. Both techniques can document the binding specificity of various antibodies against c-erbB-2 protein. In Western blot studies, protein is extracted from the tissue, separated by electrophoresis (according to size), transferred to a membrane, and detected by using antibodies to c-erbB-2. In immunoprecipitation studies, antibodies against c-erbB-2 are added to a tumor lysate, and the resulting protein-antibody precipitate is separated by gel electrophoresis and stained for protein. Both Western blot and immunoprecipitation are useful research tools but currently are not practical for diagnostic pathology. Two recent abstracts have described an enzyme-linked immunosorbent assay (ELISA) for detection of c-erbB-2 protein.^{38,39}

c-erbB-2 ONCOGENE 169

Overproduction of c-erbB-2 protein is most commonly assessed by various immunohistochemical techniques. These procedures often generate conflicting results, which are explained at least partially by three factors. First, various studies have used different polyclonal and monoclonal antibodies. Because some polyclonal antibodies recognize weak bands in addition to the c-erbB-2 protein band on Western blot or immunoprecipitation, the results of these studies should be interpreted with caution.^{22,25,47,61} Even some monoclonal antibodies immunoprecipitate protein bands in addition to c-erbB-2 (p185).^{20,22,66} Second, tissue fixation contributes to variability between studies. For example, some antibodies detect c-erbB-2 protein only in frozen tissue and do not react in fixed tissue. In general, formalin fixation diminishes the sensitivity of immunohistochemical methods and decreases the number of reactive cells.^{21,66} When Bouin's fixative is used, there may be a higher percentage of positive cases.²² Third, minimal criteria for interpreting immunohistochemical staining are generally lacking. Although there is general agreement that distinct crisp cytoplasmic membrane staining is diagnostic for c-erbB-2 activation in breast carcinoma, the number of positive cells and the staining intensity required to diagnose c-erbB-2 protein overproduction varies from study to study and from antibody to antibody. Degradation of c-erbB-2 protein is not a problem because it can be detected in intact form more than 24 hours after tumor resection without fixation or freezing.⁶⁴

ACTIVATION OF c-erbB-2 IN BREAST LESIONS

Incidence of c-erbB-2 Activation

Most studies of c-erbB-2 oncogene activation do not specify histological subtypes of infiltrating breast carcinoma. Amplification of c-erbB-2 DNA was found in 19.1 percent (519 of 2715) of invasive carcinomas in 25 studies (Table 1), and c-erbB-2 mRNA or protein overproduction was detected in 20.9 percent (566 of 2714) of invasive carcinomas in 20 studies. Twelve studies have documented c-erbB-2 mRNA or protein overproduction in 15 percent (88 of 604) of carcinomas that lacked c-erbB-2 DNA amplification.

The incidence of c-erbB-2 activation in infiltrating breast carcinoma varies with the histological subtype. Approximately 22 percent (142 of 650) of infiltrating ductal carcinomas have c-erbB-2 activation, as expected from the above data. Other variants of breast carcinoma with frequent c-erbB-2 activation are inflammatory carcinoma (62 percent, 54 of 87), Paget's disease (82 percent, 9 of 11), and medullary carcinoma (22 percent, 5 of 23). In contrast, c-erbB-2 activation is infrequent in infiltrating lobular carcinoma (7 percent, 5 of 73) and tubular carcinoma (7 percent, 1 of 15).

The c-erbB-2 protein overproduction is present in 44 percent (44 of 100) of ductal carcinomas *in situ* and especially comedocarcinoma *in situ* (68 percent, 49 of 72). The micropapillary type of ductal carcinoma *in situ* also tends to have c-erbB-2 activation,^{40,64,68} especially if larger cells are present. The greater fre-

TABLE 1. *c-erbB-2* ACTIVATION IN MALIGNANT HUMAN BREAST NEOPLASMS

Histological Diagnosis	<i>c-erbB-2</i> DNA Amplification*	<i>c-erbB-2</i> mRNA Overproduction	<i>c-erbB-2</i> Protein Overproduction
Carcinoma, not otherwise specified	146/528, ^m 52/310, ¹⁷ 52/291, ^m 28/176, ⁶⁷ 171/57, ^{11a} 22/141, ⁴⁸ 14/136, ^p 12/122, ⁴ 19/103, ^p 16/95, ⁵⁰ 15/86, ^{11b} 17/73, ⁷⁷ 16/86, ^d 8/61, ⁵⁰ 11/57, ^e 10/57, ⁶⁵ 13/51, ^f 8/49, ⁵¹ 10/36, ^g 12/38, ³⁴ 1/25, ¹⁵ 7/24, ⁵¹ 7/15, ³¹ 7/10, ⁵⁴ 2/10, ⁶⁷	42/180, ^m 49/126, ²⁵ 19/62, ^m 19/57, ⁵⁰ 3/11, ^m 6/10, ^m 3/89 ^a 24/63, ⁵⁰ 23/47, ⁷³ 22/45, ^e 11/36, ⁵⁴ 7/24, ^m 1/10 ^m	118/728, ^{50b} 58/330, ^m 47/313, ⁵⁰ 171/95, ¹¹ 32/191, ⁵⁰ 31/185, ^m 34/102, ⁴⁴ 24/63, ⁵⁰ 23/47, ⁷³ 0/17 ^m
Carcinoma, type not specified but lacking <i>c-erbB-2</i> DNA amplification	—	18/136, ^m 14/73, ⁵⁰ 8/16, ^m 0/6, ^m 11/4, ⁵¹ 0/3 ^m	16/231, ^m 18/138, ⁵⁰ 13/35, ^m 14/23, ⁵⁰ 1/28, ^m 3/24, ⁵⁰ 9/24 ^m
Infiltrating ductal carcinoma	21/118, ⁵⁰ 23/107, ²⁴ 17/50, ⁴⁴ 7/37 ⁵⁰ 14/53 (comedo- carcinoma) ¹⁸ 3/33 (tubuloductal carcinoma) ¹⁴	35/85 ⁵⁰	22/137, ⁵⁰ 14/83, ⁵⁰

Inflammatory carcinoma	33/80, ³⁶ 3/62	46/75 ²⁸	5/6 ²⁰	5/6, ⁴⁰ 2/3, ⁴⁴ 2/22 ²⁷
Pager's disease	—	—	1/8 ⁴⁰	1/12, ⁴⁰ 1/3, ⁴⁴ 1/2, ²⁷
Tubular carcinoma	0/5, ¹⁶ 0/1 ⁵³	—	0/1 ³⁰	0/1 ³⁰
Medullary carcinoma	2/4, ¹⁶ 0/1 ²⁴	0/1 ³⁴	—	—
Mucinous carcinoma	0/1, ¹⁶ 0/1 ⁵⁰	—	—	—
Invasive papillary carcinoma	0/2 ⁴⁰	—	—	—
Infiltrating lobular carcinoma	1/15, ¹⁰ 0/6 ²⁴	1/5 ²⁴	2/27, ⁴⁰ 0/12, ⁴⁰ 0/3, ²⁷	1/5 ²⁰
Mammary fibrosarcoma	0/1 ³⁰	—	—	0/1 ³⁰
"Benign cystosarcoma."	—	—	—	—
Ductal CIS ^a with minimal invasion	3/5 ²⁷	—	—	33/74, ⁴⁰ 10/24 ²⁹
Ductal CIS	0/2 ²⁴	1/2 ²⁴	—	20/33, ⁴⁰ 19/29, ²²
Ductal CIS, solid or comedo type	—	—	—	10/10 ²⁴
Ductal CIS, micropapillary type	—	—	—	1(focal)/1/4 ²⁴
Ductal CIS, microepithelial or cribiform type	—	—	—	0/16, ²² 1/9, ⁴⁴ 0/3 ²⁰
Ductal CIS, papillary or cribiform type	—	—	—	0/16 ²⁰
Lobular CIS	—	—	—	—

^aShown as number of cases with activation/number of cases studied; reference is given as a superscript.

^bThese protein studies used Western blots; the rest used immunohistochemical methods.

CIS = carcinoma in situ.

172 T.P. SINGLETON AND J.G. STRICKLER

quency of c-erbB-2 protein overproduction in comedocarcinoma in situ, compared with infiltrating ductal carcinoma, could be explained by the fact that many infiltrating ductal carcinomas arise from other types of intraductal carcinoma, which show c-erbB-2 activation infrequently. Others have speculated that carcinoma in situ with c-erbB-2 activation tends to regress or to lose c-erbB-2 activation during progression to invasion.^{41,63,64} Infiltrating and in situ components of ductal carcinoma, however, usually are similar with respect to c-erbB-2 activation,^{11,29} although some authors have noted more heterogeneity of the immunohistochemical staining pattern in invasive than in in situ carcinoma.^{40,41,65} Activation of c-erbB-2 is infrequent in lobular carcinoma in situ. If lesions contain more than one histological pattern of carcinoma in situ, the c-erbB-2 protein overproduction tends to occur in the comedocarcinoma in situ but may include other areas of carcinoma in situ.^{42,64,66} Overproduction of c-erbB-2 protein in ductal carcinoma in situ correlates with larger cell size and a periductal lymphoid infiltrate.⁶⁸

Activation of c-erbB-2 has not been identified in benign breast lesions, including fibrocystic disease, fibroadenomas, and radial scars (Table 2). Strong membrane immunohistochemical reactivity for c-erbB-2 has not been described in atypical ductal hyperplasia, although weak accentuation of membrane staining has been noted infrequently.^{29,42,54} In normal breast tissue, c-erbB-2 DNA is diploid, and c-erbB-2 is expressed at lower levels than in activated tumors.^{34,35,65,68}

These preliminary data suggest that c-erbB-2 activation may not be useful for resolving many of the common problems in diagnostic surgical pathology. For example, c-erbB-2 activation is infrequent in tubular carcinoma and radial scars. In addition, because c-erbB-2 activation is unusual in atypical ductal hyperplasia, cribriform carcinoma in situ, and papillary carcinoma in situ, detection of c-erbB-2 activation in these lesions may not be helpful in their differential diagnosis. The histological features of comedocarcinoma in situ, which commonly overproduces c-erbB-2, are unlikely to be mistaken for those of benign lesions. Activation of

TABLE 2. c-erbB-2 ACTIVATION IN BENIGN HUMAN BREAST LESIONS

Histological Diagnosis	c-erbB-2 DNA Amplification*	c-erbB-2 mRNA Overproduction	c-erbB-2 Protein Overproduction
Fibrocystic disease	0/10 ³³	—	0/32, ³⁹ 0/9, ⁶⁵ 0/8 ⁶⁶
Atypical ductal hyperplasia	—	—	2(weak)/21, ⁵⁴ 1(cytoplasmic)/13 ³⁰
Benign ductal hyperplasia	—	—	0/12 ³⁹
Sclerosing adenosis	—	—	0/4 ³⁹
Fibroadenomas	0/16, ³⁴ 0/6, ³³ 0/2, ²¹ 0/1 ²¹	0/6, ³⁵ 0/3 ³⁴	0/21, ³⁹ 0/10, ⁶⁶ 0/8, ⁶⁸ 0/3 ⁴²
Radial scars	—	—	0/22 ³⁹
Blunt duct adenosis	—	—	0/14 ³⁸
"Breast mastosis"	—	0/3 ³⁵	—

*Shown as number of cases with activation/number of cases studied; reference is given as a superscript.

c-erbB-2 ONCOGENE 173

c-erbB-2, however, does favor infiltrating ductal carcinoma over infiltrating lobular carcinoma. Further studies of these issues would be useful.

Correlation of c-erbB-2 Activation With Pathologic Prognostic Factors

Multiple studies have attempted to correlate c-erbB-2 activation with various pathologic prognostic factors (Table 3). Activation of c-erbB-2 was correlated with lymph node metastasis in 8 of 28 series, with higher histological grade in 6 of 17 series, and with higher stage in 4 of 14 series. Large tumor size was not associated with c-erbB-2 activation in most studies (11 of 14). Tetraploid DNA content and low proliferation, measured by Ki-67, have been suggested as prognostic factors and may correlate with c-erbB-2 activation.^{6,7}

Correlation of c-erbB-2 Activation With Clinical Prognostic Factors

Various studies have attempted also to correlate c-erbB-2 activation with clinical features that may predict a poor outcome (Table 4). Activation of c-erbB-2 correlated with absence of estrogen receptors in 10 of 28 series and with absence of progesterone receptors in 6 of 18 series. In most studies, patient age did not correlate with c-erbB-2 activation, and, in the rest of the reports, c-erbB-2 activation was associated with either younger or older ages.

Correlation of c-erbB-2 Activation With Patient Outcome

Slamon et al^{7,8} first showed that amplification of the c-erbB-2 oncogene independently predicts decreased survival of patients with breast carcinoma. The correlation of c-erbB-2 amplification with poor outcome was nearly as strong as the correlation of number of involved lymph nodes with poor outcome. Slamon et al also reported that c-erbB-2 amplification is an important prognostic indicator only in patients with lymph node metastasis.^{7,8}

A large number of subsequent studies also attempted to correlate c-erbB-2 activation with prognosis (Table 5). In 12 series, there was a correlation between c-erbB-2 activation and tumor recurrence or decreased survival. In five of these series, the predictive value of c-erbB-2 activation was reported to be independent of other prognostic factors. In contrast, 18 series did not confirm the correlation of c-erbB-2 activation with recurrence or survival. Four possible explanations for this controversy are discussed below.

One problem is that c-erbB-2 amplification correlates with prognosis mainly in patients with lymph node metastasis. As summarized in Table 5, most studies of patients with axillary lymph node metastasis showed a correlation of c-erbB-2 activation with poor outcome. In contrast, most studies of patients without axillary metastasis have not demonstrated a correlation with patient outcome. Table 6 summarizes the studies in which all patients (with and without axillary metastasis) were considered as one group. There is a trend for studies with a higher percentage of metastatic cases to show an association between c-erbB-2 activation and poor outcome. Thus, most of the current evidence suggests that c-erbB-2 activation has prognostic value only in patients with metastasis to lymph nodes.

TABLE 3. CORRELATION OF c-erbB-2 ACTIVATION WITH PATHOLOGIC PROGNOSTIC FACTORS IN BREAST CARCINOMA

Prognostic Factor	P _a	c-erbB-2 DNA Amplification ^b	c-erbB-2 mRNA Overproduction	c-erbB-2 Protein Overproduction ^c
Metastasis to axillary lymph nodes	<0.05	(115) ¹⁵ (105) ¹⁴ (19) ¹³	(104) ¹⁵ (82) ¹⁴ (9) ¹¹	(350) ¹⁵ (36) ¹³
	0.05–0.15	(103) ¹⁷ (86) ¹⁷ (58) ¹¹	—	(189) ¹²
	>0.15	(279) ¹⁷ (176) ¹⁷ (57) ¹³	(50) ⁵⁰	(329) ¹⁷ (281) ¹⁶ (185) ¹¹
Larger size	<0.05	(122) ¹⁴ (85) ¹⁰ (50) ¹²	—	(102) ¹⁴ (60) ¹⁰
	0.05–0.15	(50) ¹⁴ (47) ¹³ (41) ¹³	—	(330) ¹⁷ (188) ¹²
	>0.15	(280) ¹⁷	(51) ⁶⁰	(350) ¹⁵ (185) ¹³ (34) ¹²
Higher stage	<0.05	(86) ¹⁷	—	(349) ¹⁷
	0.05–0.15	(176) ¹⁷ (157) ¹³ (103) ¹⁰	—	(102) ¹⁴ (58) ¹⁰
	>0.15	(84) ¹⁷ (58) ¹¹ (45) ¹¹	—	(178) ¹⁵ (168) ¹¹ (39) ¹⁰
Higher histological grade	<0.05	(30) ¹⁷ (84) ¹⁷ (58) ¹¹	—	(83) ⁶⁵
	0.05–0.15	(56) ¹²	—	(290) ¹⁶ (189) ¹² (102) ¹⁰
	>0.15	(176) ¹⁷ (157) ¹³ (84) ¹⁰	(51) ¹⁰ (53) ⁷ (52) ⁷	(41) ¹⁰
	<0.05	(61) ¹⁰ (53) ⁷ (52) ⁷	(47) ¹³ (15) ¹¹	(47) ¹³ (15) ¹¹
	0.05–0.15	(41) ¹⁰	(122) ¹¹ (113) ¹⁴ (95) ¹⁰	(83) ⁶⁵
	>0.15	(56) ¹¹ (50) ¹⁴ (41) ¹⁰	(58) ¹¹ (50) ¹⁴ (41) ¹⁰	(83) ⁶⁵ (65) ¹⁰

^aA correlation is statistically significant at <0.05, equivocal at best between 0.05 and 0.15, and not statistically significant at >0.15.

^bNumbers inside parentheses are the number of patients in an individual study; superscript is the reference. Some studies analyzed more than one group of patients.

^cBy Western blot method; all other protein studies used immunohistochemical methods.

TABLE 4. CORRELATION OF cerbB-2 ACTIVATION WITH CLINICAL PROGNOSTIC FACTORS IN BREAST CARCINOMA

Prognostic Factor	P*	c-erbB-2 DNA Amplification ^b	c-erbB-2 mRNA Overproduction ^b	c-erbB-2 Protein Overproduction ^b
Absence of estrogen receptors	<0.05	(253) ¹⁵ (141) ¹⁵ (109) ³⁴ (86) ¹⁷ (50) ¹⁴ (47) ¹³	(104) ³⁵	(350) ¹⁵ (330) ¹⁵ (185) ¹⁰
	0.05–0.15	(157) ¹¹ (122) ¹⁴ (103) ⁷⁹ (95) ³⁰ (64) ¹⁷ (61) ⁵⁰ (58) ¹¹ (53) ²¹ (51) ³⁷	(180) ¹⁶ (62) ³⁵ (57) ³⁰	(280) ¹⁵ (172) ¹¹ (51) ¹⁰⁰ (38) ¹³
	>0.15	(41) ¹⁸	—	(350) ¹⁵ (308) ¹⁷
Absence of progesterone receptors	<0.05	(253) ¹⁵ (141) ³⁵ (109) ³⁴ (60) ¹⁴	—	—
	0.05–0.15	(86) ¹⁷ (49) ¹² (157) ¹¹ (122) ¹⁴ (103) ⁷⁹ (64) ¹⁷	(180) ¹⁶ (103) ¹⁵ (82) ¹⁵ (56) ³⁵	(90) ¹¹ (49) ¹²
	>0.15	—	—	(younger: 330) ¹⁵ (older: 56) ¹⁵
Age (menopausal status)	<0.05	—	—	—
	0.05–0.15	(younger: 86) ¹⁷ (230) ¹¹ (176) ¹⁷ (157) ¹¹ (122) ¹⁴ (116) ¹⁴ (103) ⁷⁹	(62) ¹⁵	(350) ¹⁵ (250) ¹⁵ (189) ¹⁵ (162) ¹¹ (45) ¹⁷
	>0.15	(95) ³⁰ (64) ¹⁷ (58) ¹¹ (56) ¹⁵ (53) ²¹ (49) ¹⁵ (41) ¹⁸ (15) ²¹	—	—

^aA correlation is statistically significant at <0.05, equivocal at best between 0.05 and 0.15, and not statistically significant at >0.15.^bNumbers inside parentheses are the number of patients in an individual study; superscript is the reference. Some studies analyzed more than one group of patients.

By Western blot method; all other protein studies used immunohistochemical methods.

176 T.P. SINGLETON AND J.G. STRICKLER

TABLE 5. CORRELATION OF c-erbB-2 ACTIVATION WITH OUTCOME IN PATIENTS WITH BREAST CARCINOMA

P*	Type of c-erbB-2 Activation ^b	Number of Patients				
		With Metastasis to		No Metastasis	Statistical Analysis ^a	Reference
		Axillary Lymph Nodes	Total			
<0.05	DNA	176		M	87	
<0.05	DNA	61		U	60	
<0.05	DNA	57		U	65	
<0.05	DNA	41		U	93	
<0.05	mRNA	62		U	65	
<0.05	Protein	102		M	101	
<0.05	ONA		345	M	81	
<0.05	DNA		120	U	17	
<0.05	DNA		91	U	87	
<0.05	DNA		86	M	79	
<0.05	Protein-WB		350	M	85	
<0.05	Protein		62	44	U	101
0.05-0.15	DNA	67		U	111	
0.05-0.15	Protein	189		M	82	
0.05-0.15	Protein		120	U	86	
>0.15	DNA	130		U	113	
>0.15	DNA	122		M	4	
>0.15	DNA	50		U	44	
>0.15	mRNA	57		U	50	
>0.15	Protein	290		M	86	
>0.15	Protein	195		U	11	
>0.15	Protein	102		U	39	
>0.15	Protein		137	U	17	
>0.15	DNA		181	M	81	
>0.15	DNA		159	U	17	
>0.15	DNA		73	U	87	
>0.15	Protein-WB		378	U	85	
>0.15	Protein-WB		192	U	17	
>0.15	Protein		141	U	86	
>0.15	Protein		41	U	40	

*The endpoints of these studies were tumor recurrence or decreased survival or both. Correlation between c-erbB-2 activation and a poorer patient outcome is statistically significant at <0.05, is of equivocal significance at 0.05 to 0.15, and is not significant at >0.15.

^aShown as variable measured. Letters "WB" indicate assay by Western blot; the other protein studies used immunohistochemical methods.

^bM = multivariate statistical analysis; U = univariate statistical analysis.

TABLE 6. PERCENTAGE OF BREAST CARCINOMAS WITH METASTASIS COMPARED WITH PROGNOSTIC SIGNIFICANCE OF c-erbB-2 ACTIVATION

P for correlation of c-erbB-2 activation with patient outcome.

Each study's percentage of breast carcinomas with metastasis is compared with the correlation between c-erbB-2 activation and outcome. These data include only those studies that considered, as one group, all breast cancer patients, whether or not they had axillary metastasis. Superscripts are the references. In parentheses are the types of c-erbB-2 activation. *P* values are interpreted as in Table 3.

A second problem is that various types of breast carcinoma are grouped together in many survival studies. Because the current literature suggests that c-erbB-2 activation is infrequent in lobular carcinoma, studies that combine infiltrating ductal and lobular carcinomas may dilute the prognostic effect of c-erbB-2 activation in ductal tumors. In addition, most studies do not analyze inflammatory breast carcinoma separately. This condition frequently shows c-erbB-2 activation and has a worse prognosis than the usual mammary carcinoma, but it is an uncommon lesion.

A third potential problem is the paucity of studies that attempt to correlate c-erbB-2 activation with clinical outcome in subsets of breast carcinoma without metastasis. Two recent abstracts reported that in patients without lymph node metastasis who had various risk factors for recurrence (such as large tumor size and absence of estrogen receptors), c-erbB-2 overexpression predicted early recurrence.^{21,67} In patients with ductal carcinoma in situ, one small study found no association between tumor recurrence and c-erbB-2 activation.⁴⁰

A fourth problem is the lack of data regarding whether the prognosis correlates better with c-erbB-2 DNA amplification or with mRNA or protein overproduction. Most studies that find a correlation between c-erbB-2 activa-

178 T.P. SINGLETON AND J.G. STRICKLER

tion and poor patient outcome measure c-erbB-2 DNA amplification (Table 5), and breast carcinoma patients with greater amplification of c-erbB-2 may have poorer survival.^{28,41} Recent studies suggest that amplification has more prognostic power than overproduction,^{17,34,35} but the clinical significance of c-erbB-2 overproduction without DNA amplification deserves further research.^{17,52} Few studies have attempted to correlate patient outcome with c-erbB-2 mRNA overproduction, and many studies of c-erbB-2 protein overproduction use relatively less reliable methods such as immunohistochemical studies with polyclonal antibodies.

Comparison of c-erbB-2 Activation With Other Oncogenes in Breast Carcinoma

Other oncogenes that may have prognostic implications in human breast cancer are reviewed elsewhere.^{71,106} This section will be restricted to a comparison between the clinical relevance of c-erbB-2 and these other oncogenes.

The c-myc gene is often activated in breast carcinomas, but c-myc activation generally has less prognostic importance than c-erbB-2 activation.^{21,34,77,87,93} One study found a correlation between increased mRNAs of c-erbB-2 and c-myc, although other reports have not confirmed this.^{34,106} Subsequent research, however, could demonstrate a subset of breast carcinomas in which c-myc has more prognostic importance than c-erbB-2.

The gene c-erbB-1 for the epidermal growth factor receptor (EGFR) is homologous with c-erbB-2 but is infrequently amplified in breast carcinomas.⁷⁹ Overproduction of EGFR, however, occurs more frequently than amplification and may correlate with a poor prognosis. In studies that have examined both c-erbB-2 and EGFR in the same tumor, c-erbB-2 has a stronger correlation with poor prognostic factors.^{35,52} Studies have tended to show no correlation between amplification of c-erbB-2 and c-erbB-1 or overproduction of c-erbB-2 and EGFR, although at the molecular level EGFR mediates phosphorylation of c-erbB-2 protein.^{51,52,61,68,106} Recent reviews describe EGFR in breast carcinoma.^{21,100}

The genes c-erbA and ear-1 are homologous to the thyroid hormone receptor, and they are located adjacent to c-erbB-2 on chromosome 17. These genes are frequently coamplified with c-erbB-2 in breast carcinomas. The absence of c-erbA expression in breast carcinomas, however, is evidence against an important role for this gene in breast neoplasia.⁸⁰ Amplification of c-erbB-2 can occur without ear-1 amplification, and these tumors have a decreased survival that is similar to tumors with both c-erbB-2 and ear-1 amplification.⁶⁷ Consequently, c-erbB-2 amplification seems to be more important than amplification of c-erbA or ear-1.

Other genes also have been compared with c-erbB-2 activation in breast carcinomas. One study found a significant correlation between increased c-erbB-2 mRNA and increased mRNAs of *fos*, platelet-derived growth factor chain A, and *Ki-ras*.¹⁰⁶ Allelic deletion of c-Ha-ras may indicate a poorer prognosis in breast carcinoma,⁴¹ but it has not been compared with c-erbB-2 activation. Some studies have suggested a correlation between advanced stage or recurrence of breast carcinoma and activation of any one of several oncogenes.^{21,113}

ACTIVATION OF c-erbB-2 IN NON-MAMMARY TISSUES

Incidence of c-erbB-2 Activation in Non-Mammary Tissues

Table 7 summarizes the normal tissues in which c-erbB-2 expression has been detected, usually with immunohistochemical methods using polyclonal anti-

TABLE 7. PRESENCE OR ABSENCE OF c-erbB-2 mRNA OR c-erbB-2 PROTEIN IN NORMAL HUMAN TISSUES

Tissues With c-erbB-2 mRNA	Tissues Producing c-erbB-2 Protein ^a	Tissues Lacking c-erbB-2 mRNA	Tissues Lacking c-erbB-2 Protein
Skin ²⁴	Epidermis ⁶² External root sheath ⁶² Eccrine sweat gland ⁶² Fetal oral mucosa ⁶² Fetal esophagus ⁶²		Postnatal oral mucosa ⁶² Postnatal esophagus ⁶²
Stomach ²⁴	Stomach ^{22,62} Fetal Intestine ⁶²		
Jejunum ²⁴	Small Intestine ^{22,62}		
Colon ²⁴	Colon ^{22,62}		
Kidney ²⁴	Fetal Kidney ⁶² Fetal proximal tubule ⁶² Distal tubule ⁶² Fetal collecting duct ⁶² Fetal renal pelvis ⁶² Fetal ureter ⁶²	Kidneys ¹⁰⁴	Glomerulus ⁶² Postnatal Bowman's capsule ⁶² Postnatal proximal tubule ⁶²
Liver ²⁴	Hepatocytes ²² Pancreatic acini ²² Pancreatic ducts ^{22,62} Endocrine cells of islets of Langerhans ²²		Postnatal collecting duct ⁶² Postnatal renal pelvis ⁶² Postnatal fetal ureter ⁶² Liver ^{22,62}
Lung ²⁴	Fetal trachea ⁶² Fetal bronchioles ⁶² Bronchioles ⁶²		Pancreatic islets ⁶²
Fetal brain ²⁴	Fetal ganglion cells ⁶²		Postnatal trachea ⁶² Postnatal bronchioles ⁶²
Thyroid ¹¹			Postnatal alveoli ^{62,90}
Uterus ²⁴	Ovary ¹²		Postnatal brain ⁶²
Placenta ²⁴	Blood vessels ⁶²		Postnatal ganglion cells ⁶²
			Endothelium ⁶²
			Adrenocortical cells ⁶² Postnatal thymus ⁶² Fibroblasts ⁶² Smooth muscle cells ⁶² Cardiac muscle cells ⁶²

^aThis protein study used Western blots; the rest used immunohistochemical methods.

180 T.P. SINGLETON AND J.G. STRICKLER

bodies. Only a few studies have been performed, and some of these do not demonstrate convincing cell membrane reactivity in the published photographs. The interpretations in these studies, however, are listed, with the caveat that these findings should be confirmed by immunoprecipitation or Western or RNA blots. Production of c-erbB-2 has been identified in normal epithelium of the gastrointestinal tract and skin. Discrepancies regarding c-erbB-2 protein in other tissues could be due, at least in part, to differences in techniques.

The data on c-erbB-2 activation in various non-mammary neoplasms should be interpreted with caution, because only small numbers of tumors have been studied, usually by immunohistochemical methods using polyclonal antibodies. Studies using cell lines have been excluded, because cell culture can induce amplification and overexpression of other genes, although this has not been documented for c-erbB-2.

Activation of c-erbB-2 has been identified in 32 percent (64 of 203) of ovarian carcinomas in eight studies (Table 8). One abstract⁴⁵ stated that ovarian carcinomas contained significantly more c-erbB-2 protein than ovarian non-epithelial malignancies. Another report⁶¹ showed that 12 percent of ovarian carcinomas had c-erbB-2 overproduction without amplification.

Activation of c-erbB-2 has been identified in 20 percent (40 of 198) of gastric adenocarcinomas in seven studies, including 33 percent (21 of 64) of

TABLE 8. c-erbB-2 ACTIVATION IN HUMAN GYNECOLOGIC TUMORS*

Tumor Type	c-erbB-2 DNA Amplification	c-erbB-2 mRNA Over-production	c-erbB-2 Protein Over-production
Ovary—carcinoma, not otherwise specified	31/120, ⁶¹ 1/11, ⁵⁷ 0/6, ¹⁰⁷ 0/6, ⁶⁴ 0/3, ¹¹² 0/2, ⁷² 0/11 ⁶⁰	23/67 ⁶¹	23/73, ¹² 36/72 ⁶¹
Ovary—serous (papillary) carcinoma	2/7, ¹¹⁰ 1/7, ¹¹² 0/6 ⁷²	—	—
Ovary—endometrioid carcinoma	0/3 ¹¹⁰	—	—
Ovary—mucinous carcinoma	1/2, ¹¹⁰ 0/1 ⁷²	—	—
Ovary—clear cell carcinoma	0/2, ¹¹² 0/1 ⁷²	—	—
Ovary—mixed epithelial carcinoma	0/2 ⁷²	—	—
Ovary—endometrioid borderline tumor	0/1 ⁷²	—	—
Ovary—mucinous borderline tumor	0/3 ⁷²	—	—
Ovary—serous cystadenoma	0/4 ⁷²	—	—
Ovary—mucinous cystadenoma	0/2 ⁷²	—	—
Ovary—sclerosing stromal tumor	0/1 ⁷²	—	—
Ovary—fibrothecoma	0/1 ⁷²	—	—
Uterus—endometrial adenocarcinoma	0/4, ⁶⁴ 0/1 ¹¹⁰	—	—

*Shown as number of cases with amplification (or overproduction)/total number of cases studied; reference is given as superscript. All protein studies used immunohistochemical methods.

c-erbB-2 ONCOGENE 181

intestinal or tubular subtypes and 9 percent (4 of 47) of diffuse or signet ring cell subtypes (Table 9). Activation of c-erbB-2 has been detected in 2 percent (6 of 281) of colorectal carcinomas, although an additional immunohistochemical study detected c-erbB-2 protein in seven of eight tissues fixed in Bouin's solution. One study found greater immunohistochemical reactivity for c-erbB-2 protein in colonic adenomatous polyps than in the adjacent normal epithelium, using Bouin's fixative. Lesions with anaplastic features and progression to invasive carcinoma tended to show decreased immunohistochemical reactivity for c-erbB-2 protein.⁵² Hepatocellular carcinomas (12 of 14 cases) and cholangiocarcinomas (46 of 63 cases) reacted with antibodies against c-erbB-2 in one study, but some of these "positive" cases showed only diffuse cytoplasmic staining, which

TABLE 9. c-erbB-2 ACTIVATION IN HUMAN GASTROINTESTINAL TUMORS*

Tumor Type	c-erbB-2 DNA Amplification	c-erbB-2 Protein Over-production
Esophagus—squamous cell carcinoma	0/1 ⁶⁷	0/1 ⁶¹
Stomach—carcinoma, poorly differentiated	0/22 ¹⁰⁴	—
Stomach—adenocarcinoma	2/24, ⁶⁴ 2/8, ¹⁰⁷ 2/8, ¹¹¹ 2/8, ⁵⁷ 0/1 ¹⁰⁸	4/27, ²⁰ 3/10 ⁶¹
Stomach—carcinoma, intestinal or tubular type	5/10 ¹⁰⁸	16/54 ²⁰
Stomach—carcinoma, diffuse or signet ring cell type	0/2 ¹⁰⁸	4/45 ²⁰
Colon—carcinoma	2/49, ⁶⁴ 1/45, ¹¹¹ 1/45, ⁵⁷ 1/45, ⁶⁰ 0/40, ⁶¹ 0/32, ¹⁰⁷ 0/3 ⁶²	1/22, ⁶⁰ 7/8 ²²⁰
Colon—villous adenoma	0/1 ⁶⁰	—
Colon—tubulovillous adenoma	0/5 ⁶⁰	—
Colon—tubular adenoma	0/7 ⁶⁰	19/19 ²²⁰
Colon—hyperplastic polyp	0/1 ⁶⁰	—
Intestine—leiomyosarcoma	—	0/1 ⁶¹
Hepatocellular carcinoma	0/12 ¹¹¹	12/14, ⁶⁵ 0/2 ⁶¹
Hepatoblastoma	0/1 ⁶⁷	—
Cholangiocarcinoma	—	46/63 ⁶⁵
Pancreas—adenocarcinoma	—	2/80, ^{11c} 0/2 ⁶¹
Pancreas—acinar carcinoma	—	0/1 ⁴¹
Pancreas—clear cell carcinoma	—	0/2 ⁴¹
Pancreas—large cell carcinoma	—	0/3 ⁴¹
Pancreas—signet ring carcinoma	—	0/1 ⁴¹
Pancreas—chronic inflammation	—	0/14 ^{41c}

*Shown as number of cases with amplification (or overproduction)/total number of cases studied; reference is given as superscript. All protein studies used immunohistochemical methods. No studies analyzed for c-erbB-2 mRNA.

^bTissues fixed in Bouin's solution.

^cOnly cases with distinct membrane staining are interpreted as showing c-erbB-2 overproduction.

162

T.P. SINGLETON AND J.G. STRICKLER

TABLE 10. c-erbB-2 ACTIVATION IN HUMAN PULMONARY TUMORS*

Tumor Type	c-erbB-2 DNA Amplification	c-erbB-2 Protein Overproduction
Non-small cell carcinoma	2/60, ⁷⁵ 0/60 ⁶¹	1/84 ⁵⁸
Epidermoid carcinoma	0/13, ⁴² 0/10, ⁴² 0/6 ²⁰	3/5 ⁶⁰
Adenocarcinoma	0/21, ⁴² 1/13, ⁵⁰ 0/7, ¹¹¹ 0/7, ⁵⁷ 0/3 ¹⁰⁷	4/12 ⁶⁰
Large cell carcinoma	0/9, ⁴² 0/6 ²⁰	—
Small cell carcinoma	—	0/26, ⁵⁸ 0/3 ⁹⁹
Carcinoid tumor	0/1 ⁶²	0/3 ⁹⁹

*Shown as number of cases with amplification (or overproduction)/total number of cases studied; reference is given as superscript. All protein studies used immunohistochemical methods. No studies analyzed for c-erbB-2 mRNA.

does not indicate c-erbB-2 activation in breast neoplasms.⁵⁸ Also, some pancreatic carcinomas and chronic pancreatitis tissue had cytoplasmic immunohistochemical reactivity for c-erbB-2 protein, in addition to the rare case of pancreatic adenocarcinoma with distinct cell membrane staining.⁴¹

Tables 10 through 14 summarize the studies of c-erbB-2 activation in other neoplasms. The c-erbB-2 oncogene is not activated in most of these tumors. Activation of c-erbB-2 has been detected in 1 percent (4 of 299) of pulmonary non-small cell carcinomas in nine studies, although one additional report⁹⁹ found c-erbB-2 protein overproduction in 41 percent (7 of 17). Renal cell carcinoma had c-erbB-2 activation in 7 percent (2 of 30) in four studies. Overproduction of c-erbB-2 protein was described in one transitional cell carcinoma of the urinary bladder, a grade 2 papillary lesion.⁵⁸ Squamous cell carcinoma and basal cell carcinoma of the skin may contain c-erbB-2 protein, but it is not clear

TABLE 11. c-erbB-2 ACTIVATION IN HUMAN HEMATOLOGIC PROLIFERATIONS*

Tumor Type	c-erbB-2 DNA Amplification	c-erbB-2 mRNA Over-production	c-erbB-2 Protein Over-production
Hematologic malignancies	0/23 ¹¹¹	—	—
Malignant lymphoma	0/9, ⁵⁷ 0/3 ¹⁰⁷	0/1 ¹	0/15 ⁶¹
Acute leukemia	0/14 ⁵⁷	—	—
Acute lymphoblastic leukemia	0/1 ¹⁰⁷	—	—
Acute myeloblastic leukemia	0/3 ¹⁰⁷	—	—
Chronic leukemia	0/18 ⁵⁷	—	—
Chronic lymphocytic leukemia	0/6 ¹⁰⁷	—	—
Chronic myelogenous leukemia	0/8 ¹⁰⁷	—	—
Myeloproliferative disorder	0/1 ⁵⁷	—	—

*Shown as number of cases with amplification (or overproduction)/total number of cases studied; reference is given as superscript. All protein studies used immunohistochemical methods.

TABLE 12. c-erbB-2 ACTIVATION IN HUMAN TUMORS OF SOFT TISSUE AND BONE*

Tumor Type	c-erbB-2 DNA Amplification
Sarcoma	0/10, ¹¹ 0/8 ¹⁷
Malignant fibrous histiocytoma	0/1 ¹⁷
Liposarcoma	0/3 ¹⁷
Pleomorphic sarcoma	0/1 ¹⁷
Rhabdomyosarcoma	0/1 ¹⁷
Osteogenic sarcoma	0/2, ¹⁷ 0/2 ⁵⁷
Chondrosarcoma	0/1 ¹⁷
Ewing's sarcoma	0/1 ¹⁷
Schwanoma	0/1 ¹⁷

*Shown as number of cases with amplification (or overproduction)/total number of cases studied; reference is given as superscript. No studies analyzed for c-erbB-2 mRNA or c-erbB-2 protein.

whether the protein level is increased over that of normal skin.⁵⁵ Thyroid carcinomas and adenomas can have low levels of increased c-erbB-2 mRNA. One abstract described low-level c-erbB-2 DNA amplification in one of ten salivary gland pleomorphic adenomas.⁴⁸

Correlation of c-erbB-2 Activation With Patient Outcome

Very few studies have attempted to correlate c-erbB-2 activation in non-mammary tumors with outcome. Slamon et al⁵¹ showed that c-erbB-2 amplification or overexpression in ovarian carcinomas correlates with decreased survival, especially when marked activation is present. However, they did not report the stage, histological grade, or histological subtype of these neoplasms. Another study of stages III and IV ovarian carcinomas found a correlation between decreased survival and c-erbB-2 protein overproduction, but not between survival and histological grade.¹² One abstract stated that c-erbB-2 protein overproduction in 10 of 16 pulmonary adenocarcinomas correlated with decreased disease-free interval.⁷⁰ Another abstract described a tendency for immunohisto-

TABLE 13. c-erbB-2 ACTIVATION IN HUMAN TUMORS OF THE URINARY TRACT*

Tumor Type	c-erbB-2 DNA Amplification	c-erbB-2 mRNA Over-production	c-erbB-2 Protein Over-production
Kidney—renal cell carcinoma	1/5, ⁵⁷ 1/4, ¹⁷ 0/5 ⁵⁴	0/16 ¹⁰⁴	—
Wilms' tumor	0/4 ⁵⁷	—	—
Prostate—adenocarcinoma	—	—	0/23 ⁵⁸
Urinary bladder—carcinoma	—	—	1/48 ⁵⁸

*Shown as number of cases with amplification (or overproduction)/total number of cases studied; reference is given as superscript. All protein studies used immunohistochemical methods.

184

T.P. SINGLETON AND J.G. STRICKLER

TABLE 14. c-erbB-2 ACTIVATION IN MISCELLANEOUS HUMAN TUMORS.

Tumor Type	c-erbB-2 DNA Amplification	c-erbB-2 mRNA Overproduction	c-erbB-2 Protein Over-production
Skin—malignant melanoma	—	—	0/10 ^a
Skin, head and neck—squamous cell carcinoma	0/7 ^b	—	—
Site not stated—squamous cell carcinoma	0/8, ^c 0/2 ^d	—	—
Salivary gland—adenocarcinoma	1/1 ^e	—	—
Parotid gland—adenoid cystic carcinoma	—	—	0/1 ^f
Thyroid—anaplastic carcinoma	0/1 ^g	0/1 ^h	—
Thyroid—papillary carcinoma	0/5 ⁱ	3(low levels)/5 ^j	—
Thyroid—adenocarcinoma	0/1 ^k	—	—
Thyroid—adenoma	0/2 ^l	1(low levels)/2 ^m	—
Neuroblastoma	0/35, ⁿ 0/9, ^o 0/1 ^p	—	—
Meningioma	0/2 ^q	—	—

*Shown as number of cases with amplification (or overproduction)/total number of cases studied; reference is given as superscript. All protein studies used immunohistochemical methods.

chemical reactivity for c-erbB-2 protein to correlate with higher grades of prostatic adenocarcinoma.⁹⁷ Additional prognostic studies of ovarian carcinomas and other neoplasms are needed.

SUMMARY

Activation of the *c-erbB-2* oncogene can occur by amplification of *c-erbB-2* DNA and by overproduction of *c-erbB-2* mRNA and *c-erbB-2* protein. Approximately 20 percent of breast carcinomas show evidence of *c-erbB-2* activation, which correlates with a poor prognosis primarily in patients with metastasis to axillary lymph nodes. Studies that have attempted to correlate *c-erbB-2* activation with other prognostic factors in breast carcinoma have reported conflicting conclusions. The pathologic and clinical significance of *c-erbB-2* activation in other neoplasms is unclear and should be assessed by additional studies.

REFERENCES

1. Aasland R, Lillehaug JR, Male R, et al. Expression of oncogenes in thyroid tumors: Coexpression of c-erbB2/neu and c-erbB. *Br J Cancer*. 57:358, 1988
 2. Akiyama T, Sudo C, Ogawara H, et al. The product of the human c-erbB-2 gene: A 185-kilodalton glycoprotein with tyrosine kinase activity. *Science*. 232:1644, 1986

3. Ali IU, Lidereau R, Theillet C, Callahan R. Reduction to homozygosity of genes on chromosome 11 in human breast neoplasia. *Science*. 238:185, 1987
4. Ali IU, Campbell G, Lidereau R, Callahan R. Amplification of c-erbB-2 and aggressive human breast tumors. *Science*. 240:1795, 1988
5. Ali IU, Campbell G, Lidereau R, Callahan R. Lack of evidence for the prognostic significance of c-erbB-2 amplification in human breast carcinoma. *Oncogene Res.* 3:139, 1988
6. Bacus SS, Bacus JW, Slamon DJ, Press MF. HER-2/neu oncogene expression and DNA ploidy analysis in breast cancer. *Arch Pathol Lab Med*. 114:164, 1990
7. Bacus SS, Ruby SG, Weinberg DS, et al. HER-2/neu oncogene expression and proliferation in breast cancers. *Am J Pathol*. 137:103, 1990
8. Bargmann CI, Hung MC, Weinberg RA. The *neu* oncogene encodes an epidermal growth factor receptor-related protein. *Nature*. 319:226, 1986
9. Bargmann CI, Hung MC, Weinberg RA. Multiple independent activations of the *neu* oncogene by a point mutation altering the transmembrane domain of p185. *Cell*. 45:649, 1986
10. Bargmann CI, Weinberg RA. Oncogenic activation of the *neu*-encoded receptor protein by point mutation and deletion. *EMBO J*. 7:2043, 1988
11. Barnes DM, Lammie GA, Millis RR, et al. An immunohistochemical evaluation of c-erbB-2 expression in human breast carcinoma. *Br J Cancer*. 58:448, 1988
12. Berchuck A, Kamel A, Whitaker R, et al. Overexpression of HER-2/neu is associated with poor survival in advanced epithelial ovarian cancer. *Cancer Res*. 50:4087, 1990
13. Berger MS, Locher GW, Saurer S, et al. Correlation of c-erbB-2 gene amplification and protein expression in human breast carcinoma with nodal status and nuclear grading. *Cancer Res*. 48:1238, 1988
14. Bernards R, Destree A, McKenzie S, et al. Effective tumor immunotherapy directed against an oncogene-encoded product using a vaccinia virus vector. *Proc Natl Acad Sci USA*. 84:6854, 1987
15. Blunno I, Pozzi MR, Pierotti MA, et al. Structure and expression of oncogenes in surgical specimens of human breast carcinomas. *Br J Cancer*. 57:464, 1988
16. Borg Å, Linell F, Idvall I, et al. *Her2/neu* amplification and comedo type breast carcinoma. *Lancet*. 1:1268, 1989
17. Borg Å, Tandon AK, Sigurdsson H, et al. *HER-2/neu* amplification predicts poor survival in node-positive breast cancer. *Cancer Res*. 50:4332, 1990
18. Bouchard L, Lamarre L, Tremblay PJ, Jolicoeur P. Stochastic appearance of mammary tumors in transgenic mice carrying the MMTV/c-neu oncogene. *Cell*. 57:931, 1989
19. Carney WP, Retos C, Petit D, et al. Quantitation of the *neu* oncogene protein using a monoclonal antibody based immunoassay (abstract). *Mod Pathol*. 3:15A, 1990
20. Cline MJ, Battifora H. Abnormalities of protooncogenes in non-small cell lung cancer: Correlations with tumor type and clinical characteristics. *Cancer*. 60:2669, 1987
21. Cline MJ, Battifora H, Yokota J. Proto-oncogene abnormalities in human breast cancer: Correlations with anatomic features and clinical course of disease. *J Clin Oncol*. 5:999, 1987
22. Cohen JA, Weiner DB, More KF, et al. Expression pattern of the *neu* (NGL) gene-encoded growth factor receptor protein (p185^{new}) in normal and transformed epithelial tissues of the digestive tract. *Oncogene*. 4:81, 1989
23. Colnaghi MI, Miotti S, Andreola S, et al. New prognostic factors in breast cancer (abstract). *Am Assoc Cancer Res Ann Meeting*. 30:230A, 1989

186 T.P. SINGLETON AND J.G. STRICKLER

24. Coussens L, Yang-Feng TL, Liao YC, et al. Tyrosine kinase receptor with extensive homology to EGF receptor shares chromosomal location with *neu* oncogene. *Science*. 230:1132, 1985
25. Di Fiore PP, Pierce JH, Kraus MH, et al. *erbB-2* is a potent oncogene when overexpressed in NIH/3T3 cells. *Science*. 237:178, 1987
26. Drebin JA, Link VC, Weinberg RA, Greene ML. Inhibition of tumor growth by a monoclonal antibody reactive with an oncogene-encoded tumor antigen. *Proc Natl Acad Sci USA*. 83:9129, 1986
27. Drebin JA, Link VC, Greene ML. Monoclonal antibodies reactive with distinct domains of the *neu* oncogene-encoded p185 molecule exert synergistic anti-tumor effects in vivo. *Oncogene*. 2:273, 1988
28. Drebin JA, Link VC, Greene ML. Monoclonal antibodies specific for the *neu* oncogene product directly mediate anti-tumor effects in vivo. *Oncogene*. 2:387, 1988
29. Falck VG, Gullick WJ. *c-erbB-2* oncogene product staining in gastric adenocarcinoma. An immunohistochemical study. *J Pathol*. 159:107, 1989
30. Fendly BM, Winget M, Hudziak RM, et al. Characterization of murine monoclonal antibodies reactive to either the human epidermal growth factor receptor or *HER2/neu* gene product. *Cancer Res*. 50:1550, 1990
31. Fontaine J, Tesseraux M, Klein V, et al. Gene amplification and expression of the *neu* (*c-erbB-2*) sequence in human mammary carcinoma. *Oncology*. 45:360, 1988
32. Frye RA, Benz CC, Liu E. Detection of amplified oncogenes by differential polymerase chain reaction. *Oncogene*. 4:1153, 1989
33. Fukushige SI, Matsubara KI, Yoshida M, et al. Localization of a novel *v-erbB*-related gene, *c-erbB-2*; on human chromosome 17 and its amplification in a gastric cancer cell line. *Mol Cell Biol*. 6:955, 1986
34. Guerin M, Barrois M, Terrier MJ, et al. Overexpression of either *c-myc* or *c-erbB-2/neu* proto-oncogenes in human breast carcinomas: Correlation with poor prognosis. *Oncogene Res*. 3:21, 1988
35. Guerin M, Gabillet M, Mathieu MC, et al. Structure and expression of *c-erbB-2* and EGF receptor genes in inflammatory and non-inflammatory breast cancer: Prognostic significance. *Int J Cancer*. 43:201, 1989
36. Gullick WJ, Berger MS, Bennett PLP, et al. Expression of the *c-erbB-2* protein in normal and transformed cells. *Int J Cancer*. 40:246, 1987
37. Gullick WJ, Venter DJ. The *c-erbB2* gene and its expression in human cancers. In: Waxman J, Sikora K, eds. *The Molecular Biology of Cancer*. Boston, Blackwell Sci Publ; 1989: 38-53
38. Gullick WJ. Expression of the *c-erbB-2* proto-oncogene protein in human breast cancer. *Recent Results Cancer Res*. 113:51, 1989
39. Gusterson BA, Machin LG, Gullick WJ, et al. *c-erbB-2* expression in benign and malignant breast disease. *Br J Cancer*. 58:453, 1988
40. Gusterson BA, Machin LG, Gullick WJ, et al. Immunohistochemical distribution of *c-erbB-2* in infiltrating and *in situ* breast cancer. *Int J Cancer*. 42:842, 1988
41. Hall PA, Hughes CM, Staddon SL, et al. The *c-erbB-2* proto-oncogene in human pancreatic cancer. *J Pathol*. 161:195, 1990
42. Hanna W, Kahn HJ, Andrusis I, Pawson T. Distribution and patterns of staining of *neu* oncogene product in benign and malignant breast diseases. *Mod Pathol*. 3:455, 1990
43. Harris AL, Nicholson S. Epidermal growth factor receptors in human breast cancer.

c-erbB-2 ONCOGENE 187

- In: Lippman ME, Dickson RB, eds. *Breast Cancer: Cellular and Molecular Biology*. Boston, Kluwer Academic Publ; 1988: 93-118
44. Heintz NH, Leslie KO, Rogers LA, Howard PL. Amplification of the c-erbB-2 oncogene and prognosis of breast adenocarcinoma. *Arch Pathol Lab Med.* 114:160, 1990
 45. Huettner P, Carney W, Delellis R, et al. Quantification of the *neu* oncogene product in ovarian neoplasms (abstract). *Mod Pathol.* 3:46A, 1990
 46. Hung MC, Yan DH, Zhao X. Amplification of the proto-*neu* oncogene facilitates oncogenic activation by a single point mutation. *Proc Natl Acad Sci USA.* 86:2545, 1989
 47. Hynes NE, Gerber HA, Saurer S, Groner B. Overexpression of the c-erbB-2 protein in human breast tumor cell lines. *J Cell Biochem.* 39:167, 1989
 48. Kahn HJ, Hanna W, Auger M, Andreulis I. Expression and amplification of *neu* oncogene in pleomorphic adenoma of salivary glands (abstract). *Mod Pathol.* 3:50A, 1990
 49. King CR, Kraus MH, Aaronson SA. Amplification of a novel v-erbB-related gene in a human mammary carcinoma. *Science.* 229:974, 1985
 50. King CR, Swain SM, Porter L, et al. Heterogeneous expression of erbB-2 messenger RNA in human breast cancer. *Cancer Res.* 49:4185, 1989
 51. Kokai Y, Dobashi K, Weiner DB, et al. Phosphorylation process induced by epidermal growth factor receptor alters the oncogenic and cellular *neu* (NGL) gene products. *Proc Natl Acad Sci USA.* 85:5389, 1988
 52. Lacroix H, Igglehart JD, Skinner MA, Kraus MH. Overexpression of erbB-2 or EGF receptor proteins present in early stage mammary carcinoma is detected simultaneously in matched primary tumors and regional metastases. *Oncogene.* 4:145, 1989
 53. Lemaitre NR, Staddon S, Dickson C, et al. Absence of activating transmembrane mutations in the c-erbB-2 proto-oncogene in human breast cancer. *Oncogene.* 5:237, 1990
 54. Lodato RF, Maguire HC, Greene MJ, et al. Immunohistochemical evaluation of c-erbB-2 oncogene expression in ductal carcinoma in situ and atypical ductal hyperplasia of the breast. *Mod Pathol.* 3:449, 1990
 55. Maguire HC, Greene MI. The *neu* (c-erbB-2) oncogene. *Semin Oncol.* 16:148, 1989
 56. Maguire HC, Jaworsky C, Cohen JA, et al. Distribution of *neu* (c-erbB-2) protein in human skin. *J Invest Dermatol.* 89:786, 1989
 57. Masuda H, Battifora H, Yokota J, et al. Specificity of proto-oncogene amplification in human malignant diseases. *Mol Biol Med.* 4:213, 1987
 58. McCann A, Dervan PA, Johnston PA, et al. c-erbB-2 oncoprotein expression in primary human tumors. *Cancer.* 65:88, 1990
 59. McKenzie SJ, Marks PJ, Lam T, et al. Generation and characterization of monoclonal antibodies specific for the human *neu* oncogene product, p185. *Oncogene.* 4:543, 1989
 60. Meltzer SJ, Ahnen DJ, Battifora H, et al. Protooncogene abnormalities in colon cancers and adenomatous polyps. *Gastroenterology.* 92:1174, 1987
 61. Mori S, Akiyama T, Morishita Y, et al. Light and electron microscopical demonstration of c-erbB-2 gene product-like immunoreactivity in human malignant tumors. *Virchows Arch [B].* 54:8, 1987
 62. Mori S, Akiyama T, Yamada Y, et al. C-erbB-2 gene product, a membrane protein commonly expressed in human fetal epithelial cells. *Lab Invest.* 61:93, 1989
 63. Muller WJ, Sian E, Pattengale PK, et al. Single-step induction of mammary

186 T.P. SINGLETON AND J.G. STRICKLER

- adenocarcinoma in transgenic mice bearing the activated *c-neu* oncogene. *Cell*. 54:105, 1988
64. Ong G, Gullick W, Sikora K. Oncoprotein stability after tumor resection. *Br J Cancer*. 61:538, 1990
 65. Parks HC, Lillycrop K, Howell A, Craig RK. *C-erbB2* mRNA expression in human breast tumors: Comparison with *c-erbB2* DNA amplification and correlation with prognosis. *Br J Cancer*. 61:39, 1990
 66. Popescu NC, King CR, Kraus MH. Localization of the *erbB-2* gene on normal and rearranged chromosomes 17 to bands q12-21.32. *Genomics*. 4:362, 1989
 67. Press ME, Pike MC, Paterson MC, et al. Overexpression of *HER-2/neu*, proto-oncogene in node negative breast cancer: Correlation with increased risk of early recurrent disease (abstract). *Mod Pathol*. 3:80A, 1990
 68. Ramachandra S, Machin L, Ashley S, et al. Immunohistochemical distribution of *c-erbB-2* in *in situ* breast carcinoma: A detailed morphological analysis. *J Pathol*. 161:7, 1990
 69. Rio MC, Bellocq JP, Gairard B, et al. Specific expression of the pS2 gene in subclasses of breast cancers in comparison with expression of the estrogen and progesterone receptors and the oncogene *ERBB2*. *Proc Natl Acad Sci USA*. 84:9243, 1987
 70. Robinson R, Kern J, Weiner D, et al. *p185^{neu}* expression in human lung non-small cell carcinomas: An immunohistochemical study with clinicopathologic correlation (abstract). *Mod Pathol*. 3:85A, 1990
 71. Rochlitz CF, Benz CC. Oncogenes in human solid tumors. In: Benz C, Liu E, eds. *Oncogenes*. Boston, Kluwer Academic Publ; 1989: 199-240
 72. Sasano H, Garret CT, Wilkinson DS, et al. Protooncogene amplification and tumor ploidy in human ovarian neoplasms. *Hum Pathol*. 21:382, 1990
 73. Schechter AL, Stern DF, Vaidyanathan L, et al. The *neu* oncogene: An *erb-B*-related gene encoding a 185,000-M_r tumor antigen. *Nature*. 312:513, 1984
 74. Schechter AL, Hung MC, Vaidyanathan L, et al. The *neu* gene: An *erbB*-homologous gene distinct from and unlinked to the gene encoding the EGF receptor. *Science*. 229:976, 1985
 75. Schneider PM, Hung MC, Chiocca SM, et al. Differential expression of the *c-erbB-2* gene in human small cell and non-small cell lung cancer. *Cancer Res*. 49:4968, 1989
 76. Semba K, Kamata N, Toyoshima K, Yamamoto T. A *v-erbB*-related protooncogene, *c-erbB-2*, is distinct from the *c-erbB-1*/epidermal growth factor-receptor gene and is amplified in a human salivary gland adenocarcinoma. *Proc Natl Acad Sci USA*. 82:6497, 1985
 77. Seshadri R, Matthews C, Dobrovic A, Horsfall DJ. The significance of oncogene amplification in primary breast cancer. *Int J Cancer*. 43:270, 1989
 78. Shih C, Padhy LC, Murray M, Weinberg RA. Transforming genes of carcinomas and neuroblastomas introduced into mouse fibroblasts. *Nature*. 290:261, 1981
 79. Slamon DJ, Clark GM, Wong SG, et al. Human breast cancer: Correlation of relapse and survival with amplification of the *HER-2/neu* oncogene. *Science*. 235:177, 1987
 80. Slamon DJ, Clark GM. Amplification of *c-erbB-2* and aggressive human breast tumors. *Science*. 240:1795, 1988
 81. Slamon DJ, Codolfin W, Jones LA, et al. Studies of the *HER-2/neu* proto-oncogene in human breast and ovarian cancer. *Science*. 244:707, 1989

82. Slebos RJC, Evers SG, Wagenaar SS, Rodenhuis S: Cellular protooncogenes are infrequently amplified in untreated non-small cell lung cancer. *Br J Cancer*. 59:76, 1989
83. Stern DF, Kamps MP, Cao H: Oncogenic activation of p185^{neo} stimulates tyrosine phosphorylation in vivo. *Mol Cell Biol*. 8:3969, 1988
84. Tal M, Wetzler M, Josefberg Z, et al: Sporadic amplification of the *HER2/neu* protooncogene in adenocarcinomas of various tissues. *Cancer Res*. 48:1517, 1988
85. Tandon AK, Clark GM, Chamness GC, et al: *HER-2/neu* oncogene protein and prognosis in breast cancer. *J Clin Oncol*. 7:1120, 1989
86. Thor AD, Schwartz LH, Koerner FC, et al: Analysis of c-erbB-2 expression in breast carcinomas with clinical follow-up. *Cancer Res*. 49:7147, 1989
87. Tsuda H, Hirohashi S, Shimosato Y, et al: Correlation between long-term survival in breast cancer patients and amplification of two putative oncogene-coamplification units: *hst-1/tit-2* and c-erbB-2/ear-1. *Cancer Res*. 49:3104, 1989
88. Tsutsumi Y, Naber SP, DeLellis RA, et al: Neu oncogene protein and epidermal growth factor receptor are independently expressed in benign and malignant breast tissues. *Hum Pathol*. 21:750, 1990
89. Tsutsumi Y, Stork PJ, Wolfe HJ: Detection of DNA amplification and mRNA overexpression of the *neu* oncogene in breast carcinomas by polymerase chain reaction (abstract). *Mod Pathol*. 3:101A, 1990
90. Van de Vijver M, van de Beresselaar R, Devilee P, et al: Amplification of the *neu* (c-erbB-2) oncogene in human mammary tumors is relatively frequent and is often accompanied by amplification of the linked c-erbA oncogene. *Mol Cell Biol*. 7:2019, 1987
91. Van de Vijver MJ, Mooi WJ, Wisman P, et al: Immunohistochemical detection of the *neu* protein in tissue sections of human breast tumors with amplified *neu* DNA. *Oncogene*. 2:175, 1988
92. Van de Vijver MJ, Peterse JL, Mooi WJ, et al: Neu-protein overexpression in breast cancer: Association with comedo-type ductal carcinoma in situ and limited prognostic value in stage II breast cancer. *N Engl J Med*. 319:1239, 1988
93. Varley JM, Swallow JE, Brammar WJ, et al: Alterations to either c-erbB-2 (*neu*) or c-myc proto-oncogenes in breast carcinomas correlate with poor short-term prognosis. *Oncogene*. 1:423, 1987
94. Venter DJ, Tuuli NL, Kumar S, Gullick WJ: Overexpression of the c-erbB-2 oncoprotein in human breast carcinomas: Immunohistological assessment correlates with gene amplification. *Lancet*. 2:69, 1987
95. Voravud N, Foster CS, Gilbertson JA, et al: Oncogene expression in cholangiocarcinoma and in normal hepatic development. *Hum Pathol*. 20:1163, 1989
96. Walker RA, Senior PV, Jones JL, et al: An immunohistochemical and in situ hybridization study of c-myc and c-erbB-2 expression in primary human breast carcinomas. *J Pathol*. 158:97, 1989
97. Ware JL, Maygarden SJ, Koontz WW, Strom SC: Differential reactivity with anti-c-erbB-2 antiserum among human malignant and benign prostatic tissue (abstract). *Am Assoc Cancer Res Ann Meeting*. 30:437A, 1989
98. Weiner DB, Liu J, Cohen JA, et al: A point mutation in the *neu* oncogene mimics ligand induction of receptor aggregation. *Nature*. 339:230, 1989
99. Weiner DB, Nordberg J, Robinson R, et al: Expression of the *neu* gene-encoded protein (p185^{neo}) in human non-small cell carcinomas of the lung. *Cancer Res*. 50:421, 1990.

190 T.P. SINGLETON AND J.G. STRICKLER

100. Wells A. The epidermal growth factor receptor and its ligand. In: Benz C, Liu E, eds. *Oncogenes*. Boston, Kluwer Academic Pub; 1989: 143-168
101. Wright C, Angus B, Nicholson S, et al. Expression of c-erbB-2 oncoprotein: A prognostic indicator in human breast cancer. *Cancer Res.* 49:2087, 1989
102. Wu A, Colombero A, Low J, et al. Analysis of expression and mutation of the erbB-2 gene in breast carcinoma by the polymerase chain reaction (abstract). *Mod Pathol.* 3:108A, 1990
103. Yamamoto T, Ikawa S, Akiyama T, et al. Similarity of protein encoded by the human c-erbB-2 gene to epidermal growth factor receptor. *Nature.* 319:230, 1986
104. Yao M, Shuin T, Misaki H, Kubota Y. Enhanced expression of c-myc and epidermal growth factor receptor (C-erbB-1) genes in primary human renal cancer. *Cancer Res.* 48:6753, 1988
105. Yarden Y, Weinberg RA. Experimental approaches to hypothetical hormones: Detection of a candidate ligand of the *neu* protooncogene. *Proc Natl Acad Sci USA.* 86:3179, 1989
106. Yee LD, Kacinski BM, Carter D. Oncogene structure, function and expression in breast cancer. *Semin Diagn Pathol.* 6:110, 1989
107. Yokota J, Yamamoto T, Toyoshima K, et al. Amplification of c-erbB-2 oncogene in human adenocarcinomas in vivo. *Lancet.* 1:765, 1986
108. Yokota J, Yamamoto T, Miyajima N, et al. Genetic alterations of the c-erbB-2 oncogene occur frequently in tubular adenocarcinoma of the stomach and are often accompanied by amplification of the v-erbA homologue. *Oncogene.* 2:283, 1988
109. Zeillinger R, Kury F, Czerwenka K, et al. HER-2 amplification, steroid receptors and epidermal growth factor receptor in primary breast cancer. *Oncogene.* 4:109, 1989
110. Zhang X, Silva E, Gershenson D, Hung MC. Amplification and rearrangement of c-erbB proto-oncogenes in cancer of human female genital tract. *Oncogene.* 4:985, 1989
111. Zhou D, Battifora H, Yokota J, et al. Association of multiple copies of the c-erbB-2 oncogene with spread of breast cancer. *Cancer Res.* 47:6123, 1987
112. Zhou D, Gonzalez-Cadavid N, Ahuja H, et al. A unique pattern of proto-oncogene abnormalities in ovarian adenocarcinomas. *Cancer.* 62:1573, 1988
113. Zhou D, Ahuja H, Cline MJ. Proto-oncogene abnormalities in human breast cancer: c-erbB-2 amplification does not correlate with recurrence of disease. *Oncogene.* 4:105, 1989

COPY
COPY

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

Applicant : Ashkenazi et al.

App. No. : 09/903,925

Filed : July 11, 2001

For : SECRETED AND
TRANSMEMBRANE
POLYPEPTIDES AND NUCLEIC
ACIDS ENCODING THE SAME

Examiner : Hamud, Fozia M

Group Art Unit 1647

CERTIFICATE OF EXPRESS MAILING

I hereby certify that this correspondence is being deposited with the United States Postal Service with sufficient postage as first class mail in an envelope addressed to Commissioner of Patents, Washington D.C. 20231 on:

(Date)

Commissioner of Patents
P.O. Box 1450
Alexandria, VA 22313-1450

DECLARATION OF AVI ASHKENAZI, PH.D UNDER 37 C.F.R. § 1.132

I, Avi Ashkenazi, Ph.D. declare and say as follows: -

1. I am Director and Staff Scientist at the Molecular Oncology Department of Genentech, Inc., South San Francisco, CA 94080.
2. I joined Genentech in 1988 as a postdoctoral fellow. Since then, I have investigated a variety of cellular signal transduction mechanisms, including apoptosis, and have developed technologies to modulate such mechanisms as a means of therapeutic intervention in cancer and autoimmune disease. I am currently involved in the investigation of a series of secreted proteins over-expressed in tumors, with the aim to identify useful targets for the development of therapeutic antibodies for cancer treatment.
3. My scientific Curriculum Vitae, including my list of publications, is attached to and forms part of this Declaration (Exhibit A).
4. Gene amplification is a process in which chromosomes undergo changes to contain multiple copies of certain genes that normally exist as a single copy, and is an important factor in the pathophysiology of cancer. Amplification of certain genes (e.g., Myc or Her2/Neu)

gives cancer cells a growth or survival advantage relative to normal cells, and might also provide a mechanism of tumor cell resistance to chemotherapy or radiotherapy.

5. If gene amplification results in over-expression of the mRNA and the corresponding gene product, then it identifies that gene product as a promising target for cancer therapy, for example by the therapeutic antibody approach. Even in the absence of over-expression of the gene product, amplification of a cancer marker gene - as detected, for example, by the reverse transcriptase TaqMan® PCR or the fluorescence *in situ* hybridization (FISH) assays - is useful in the diagnosis or classification of cancer, or in predicting or monitoring the efficacy of cancer therapy. An increase in gene copy number can result not only from intrachromosomal changes but also from chromosomal aneuploidy. It is important to understand that detection of gene amplification can be used for cancer diagnosis even if the determination includes measurement of chromosomal aneuploidy. Indeed, as long as a significant difference relative to normal tissue is detected, it is irrelevant if the signal originates from an increase in the number of gene copies per chromosome and/or an abnormal number of chromosomes.

6. I understand that according to the Patent Office, absent data demonstrating that the increased copy number of a gene in certain types of cancer leads to increased expression of its product, gene amplification data are insufficient to provide substantial utility or well established utility for the gene product (the encoded polypeptide), or an antibody specifically binding the encoded polypeptide. However, even when amplification of a cancer marker gene does not result in significant over-expression of the corresponding gene product, this very absence of gene product over-expression still provides significant information for cancer diagnosis and treatment. Thus, if over-expression of the gene product does not parallel gene amplification in certain tumor types but does so in others, then parallel monitoring of gene amplification and gene product over-expression enables more accurate tumor classification and hence better determination of suitable therapy. In addition, absence of over-expression is crucial information for the practicing clinician. If a gene is amplified but the corresponding gene product is not over-expressed, the clinician accordingly will decide not to treat a patient with agents that target that gene product.

7. I hereby declare that all statements made herein of my own knowledge are true and that all statements made on information or belief are believed to be true, and further that these statements were made with the knowledge that willful false statements and the like so

made are punishable by fine or imprisonment, or both, under Section 1001 of Title 18 of the United States Code and that such willful statements may jeopardize the validity of the application or any patent issued thereon.

By: Avi Ashkenazi
Avi Ashkenazi, Ph.D.

Date: 9/15/03

SV 455281 v1
9/12/03 3:06 PM (39780.7000)

CURRICULUM VITAE**Avi Ashkenazi**

July 2003

Personal:

Date of birth: 29 November, 1956
Address: 1456 Tarrytown Street, San Mateo, CA 94402
Phone: (650) 578-9199 (home); (650) 225-1853 (office)
Fax: (650) 225-6443 (office)
Email: aa@gene.com

Education:

1983: B.S. in Biochemistry, with honors, Hebrew University, Israel
1986: Ph.D. in Biochemistry, Hebrew University, Israel

Employment:

1983-1986: Teaching assistant, undergraduate level course in Biochemistry
1985-1986: Teaching assistant, graduate level course on Signal Transduction
1986 - 1988: Postdoctoral fellow, Hormone Research Dept., UCSF, and
Developmental Biology Dept., Genentech, Inc., with J. Ramachandran
1988 - 1989: Postdoctoral fellow, Molecular Biology Dept., Genentech, Inc.,
with D. Capon
1989 - 1993: Scientist, Molecular Biology Dept., Genentech, Inc.
1994 -1996: Senior Scientist, Molecular Oncology Dept., Genentech, Inc.
1996-1997: Senior Scientist and Interim director, Molecular Oncology Dept.,
Genentech, Inc.
1997-1990: Senior Scientist and preclinical project team leader, Genentech, Inc.
1999 -2002: Staff Scientist in Molecular Oncology, Genentech, Inc.
2002-present: Staff Scientist and Director in Molecular Oncology, Genentech, Inc.

Awards:

1988: First prize, The Boehringer Ingelheim Award

Editorial:

Editorial Board Member: Current Biology
Associate Editor, Clinical Cancer Research.
Associate Editor, Cancer Biology and Therapy.

Refereed papers:

1. Gertler, A., Ashkenazi, A., and Madar, Z. Binding sites for human growth hormone and ovine and bovine prolactins in the mammary gland and liver of the lactating cow. *Mol. Cell Endocrinol.* 34, 51-57 (1984).
2. Gertler, A., Shamay, A., Cohen, N., Ashkenazi, A., Friesen, H., Levanon, A., Gorecki, M., Aviv, H., Hadari, D., and Vogel, T. Inhibition of lactogenic activities of ovine prolactin and human growth hormone (hGH) by a novel form of a modified recombinant hGH. *Endocrinology* 118, 720-726 (1986).
3. Ashkenazi, A., Madar, Z., and Gertler, A. Partial purification and characterization of bovine mammary gland prolactin receptor. *Mol. Cell Endocrinol.* 50, 79-87 (1987).
4. Ashkenazi, A., Pines, M., and Gertler, A. Down-regulation of lactogenic hormone receptors in Nb2 lymphoma cells by cholera toxin. *Biochemistry InternatL* 14, 1065-1072 (1987).
5. Ashkenazi, A., Cohen, R., and Gertler, A. Characterization of lactogen receptors in lactogenic hormone-dependent and independent Nb2 lymphoma cell lines. *FEBS Lett.* 210, 51-55 (1987).
6. Ashkenazi, A., Vogel, T., Barash, I., Hadari, D., Levanon, A., Gorecki, M., and Gertler, A. Comparative study on in vitro and in vivo modulation of lactogenic and somatotropic receptors by native human growth hormone and its modified recombinant analog. *Endocrinology* 121, 414-419 (1987).
7. Peralta, E., Winslow, J., Peterson, G., Smith, D., Ashkenazi, A., Ramachandran, J., Schimerlik, M., and Capon, D. Primary structure and biochemical properties of an M2 muscarinic receptor. *Science* 236, 600-605 (1987).
8. Peralta, E. Ashkenazi, A., Winslow, J., Smith, D., Ramachandran, J., and Capon, D. J. Distinct primary structures, ligand-binding properties and tissue-specific expression of four human muscarinic acetylcholine receptors. *EMBO J.* 6, 3923-3929 (1987).
9. Ashkenazi, A., Winslow, J., Peralta, E., Peterson, G., Schimerlik, M., Capon, D., and Ramachandran, J. An M2 muscarinic receptor subtype coupled to both adenylyl cyclase and phosphoinositide turnover. *Science* 238, 672-675 (1987).

10. Pines, M., Ashkenazi, A., Cohen-Chapnik, N., Binder, L., and Gentler, A. Inhibition of the proliferation of Nb2 lymphoma cells by femtomolar concentrations of cholera toxin and partial reversal of the effect by 12-o-tetradecanoyl-phorbol-13-acetate. *J. Cell. Biochem.* 37, 119-129 (1988).
11. Peralta, E., Ashkenazi, A., Winslow, J., Ramachandran, J., and Capon, D. Differential regulation of PI hydrolysis and adenylyl cyclase by muscarinic receptor subtypes. *Nature* 334, 434-437 (1988).
12. Ashkenazi, A., Peralta, E., Winslow, J., Ramachandran, J., and Capon, D. Functionally distinct G proteins couple different receptors to PI hydrolysis in the same cell. *Cell* 56, 487-493 (1989).
13. Ashkenazi, A., Ramachandran, J., and Capon, D. Acetylcholine analogue stimulates DNA synthesis in brain-derived cells via specific muscarinic acetylcholine receptor subtypes. *Nature* 340, 146-150 (1989).
14. Lammaro, D., Ashkenazi, A., Fleury, S., Smith, D., Sekaly, R., and Capon, D. The MHC-binding and gp120-binding domains of CD4 are distinct and separable. *Science* 245, 743-745 (1989).
15. Ashkenazi, A., Presta, L., Marsters, S., Camerato, T., Rosenthal, K., Fendly, B., and Capon, D. Mapping the CD4 binding site for human immunodeficiency virus type I by alanine-scanning mutagenesis. *Proc. Natl. Acad. Sci. USA* 87, 7150-7154 (1990).
16. Chamow, S., Peers, D., Byrn, R., Mulkerrin, M., Harris, R., Wang, W., Bjorkman, P., Capon, D., and Ashkenazi, A. Enzymatic cleavage of a CD4 immunoadhesin generates crystallizable, biologically active Fd-like fragments. *Biochemistry* 29, 9885-9891 (1990).
17. Ashkenazi, A., Smith, D., Marsters, S., Riddle, L., Gregory, T., Ho, D., and Capon, D. Resistance of primary isolates of human immunodeficiency virus type 1 to soluble CD4 is independent of CD4-gp120 binding affinity. *Proc. Natl. Acad. Sci. USA* 88, 7056-7060 (1991).
18. Ashkenazi, A., Marsters, S., Capon, D., Chamow, S., Figari, L., Pennica, D., Goeddel, D., Palladino, M., and Smith, D. Protection against endotoxic shock by a tumor necrosis factor receptor immunoadhesin. *Proc. Natl. Acad. Sci. USA* 88, 10535-10539 (1991).
19. Moore, J., McKeating, J., Huang, Y., Ashkenazi, A., and Ho, D. Virions of primary HIV-1 isolates resistant to sCD4 neutralization differ in sCD4 affinity and glycoprotein gp120 retention from sCD4-sensitive isolates. *J. Virol.* 66, 235-243 (1992).

20. Jin, H., Oksenberg, D., Ashkenazi, A., Peroutka, S., Duncan, A., Rozmahel, R., Yang, Y., Mengod, G., Palacios, J., and O'Dowd, B. Characterization of the human 5-hydroxytryptamine1B receptor. *J. Biol. Chem.* 267, 5735-5738 (1992).
21. Marsters, A., Frutkin, A., Simpson, N., Feudly, B. and Ashkenazi, A. Identification of cysteine-rich domains of the type 1 tumor necrosis receptor involved in ligand binding. *J. Biol. Chem.* 267, 5747-5750 (1992).
22. Chamow, S., Kogan, T., Peers, D., Hastings, R., Byrn, R., and Ashkenazi, A. Conjugation of sCD4 without loss of biological activity via a novel carbohydrate-directed cross-linking reagent. *J. Biol. Chem.* 267, 15916-15922 (1992).
23. Oksenberg, D., Marsters, A., O'Dowd, B., Jin, H., Havlik, S., Peroutka, S., and Ashkenazi, A. A single amino-acid difference confers major pharmacologic variation between human and rodent 5-HT1B receptors. *Nature* 360, 161-163 (1992).
24. Haak-Frendscho, M., Marsters, S., Chamow, S., Peers, D., Simpson, N., and Ashkenazi, A. Inhibition of interferon γ by an interferon γ receptor immunoadhesin. *Immunology* 79, 594-599 (1993).
25. Penica, D., Lam, V., Weber, R., Kohr, W., Basa, L., Spellman, M., Ashkenazi, A., Shire, S., and Goeddel, D. Biochemical characterization of the extracellular domain of the 75-kd tumor necrosis factor receptor. *Biochemistry* 32, 3131-3138. (1993).
26. Barfod, L., Zheng, Y., Kuang, W., Hart, M., Evans, T., Cerione, R., and Ashkenazi, A. Cloning and expression of a human CDC42 GTPase Activating Protein reveals a functional SH3-binding domain. *J. Biol. Chem.* 268, 26059-26062 (1993).
27. Chamow, S., Zhang, D., Tan, X., Mhtre, S., Marsters, S., Peers, D., Byrn, R., Ashkenazi, A., and Yunghans, R. A humanized bispecific immunoadhesin-antibody that retargets CD3+ effectors to kill HIV-1-infected cells. *J. Immunol.* 153, 4268-4280 (1994).
28. Means, R., Krantz, S., Luna, J., Marsters, S., and Ashkenazi, A. Inhibition of murine erythroid colony formation in vitro by interferon γ and correction by interferon γ receptor immunoadhesin. *Blood* 83, 911-915 (1994).
29. Haak-Frendscho, M., Marsters, S., Mordenti, J., Gillet, N., Chen, S., and Ashkenazi, A. Inhibition of TNF by a TNF receptor immunoadhesin: comparison with an anti-TNF mAb. *J. Immunol.* 152, 1347-1353 (1994).

30. Chamow, S., Kogan, T., Venuti, M., Gadek, T., Peers, D., Mordenti, J., Shak, S., and Ashkenazi, A. Modification of CD4 immunoadhesin with monomethoxy-PEG aldehyde via reductive alkylation. *Biocong. Chem.* 5, 133-140 (1994).
31. Jin, H., Yang, R., Marsters, S., Bunting, S., Wurm, F., Chamow, S., and Ashkenazi, A. Protection against rat endotoxic shock by p55 tumor necrosis factor (TNF) receptor immunoadhesin: comparison to anti-TNF monoclonal antibody. *J. Infect. Diseases* 170, 1323-1326 (1994).
32. Beck, J., Marsters, S., Harris, R., Ashkenazi, A., and Chamow, S. Generation of soluble interleukin-1 receptor from an immunoadhesin by specific cleavage. *Mol. Immunol.* 31, 1335-1344 (1994).
33. Pitti, B., Marsters, M., Haak-Frendscho, M., Osaka, G., Mordenti, J., Chamow, S., and Ashkenazi, A. Molecular and biological properties of an interleukin-1 receptor immunoadhesin. *Mol. Immunol.* 31, 1345-1351 (1994).
34. Oksenberg, D., Havlik, S., Petoutka, S., and Ashkenazi, A. The third intracellular loop of the 5-HT₂ receptor specifies effector coupling. *J. Neurochem.* 64, 1440-1447 (1995).
35. Bach, E., Szabo, S., Dighe, A., Ashkenazi, A., Aguet, M., Murphy, K., and Schreiber, R. Ligand-induced autoregulation of IFN- γ receptor β chain expression in T helper cell subsets. *Science* 270, 1215-1218 (1995).
36. Jin, H., Yang, R., Marsters, S., Ashkenazi, A., Bunting, S., Marra, M., Scott, R., and Baker, J. Protection against endotoxic shock by bactericidal/permeability-increasing protein in rats. *J. Clin. Invest.* 95, 1947-1952 (1995).
37. Marsters, S., Penica, D., Bach, E., Schreiber, R., and Ashkenazi, A. Interferon γ signals via a high-affinity multisubunit receptor complex that contains two types of polypeptide chain. *Proc. Natl. Acad. Sci. USA* 92, 5401-5405 (1995).
38. Van Zee, K., Moldawer, L., Oldenburg, H., Thompson, W., Stackpole, S., Montegut, W., Rogy, M., Meschter, C., Gallati, H., Schiller, C., Richter, W., Loetcher, H., Ashkenazi, A., Chamow, S., Wurm, F., Calvano, S., Lowry, S., and Lesslauer, W. Protection against lethal *E. coli* bacteremia in baboons by pretreatment with a 55-kDa TNF receptor-Ig fusion protein, Ro45-2081. *J. Immunol.* 156, 2221-2230 (1996).
39. Pitti, R., Marsters, S., Ruppert, S., Donahue, C., Moore, A., and Ashkenazi, A. Induction of apoptosis by Apo-2 Ligand, a new member of the tumor necrosis factor cytokine family. *J. Biol. Chem.* 271, 12687-12690 (1996).

40. Marsters, S., Pitti, R., Donahue, C., Rupert, S., Bauer, K., and Ashkenazi, A. Activation of apoptosis by Apo-2 ligand is independent of FADD but blocked by CrmA. *Curr. Biol.* 6, 1669-1676 (1996).
41. Marsters, S., Skubatch, M., Gray, C., and Ashkenazi, A. Herpesvirus entry mediator, a novel member of the tumor necrosis factor receptor family, activates the NF- κ B and AP-1 transcription factors. *J. Biol. Chem.* 272, 14029-14032 (1997).
42. Sheridan, J., Marsters, S., Pitti, R., Gurney, A., Skubatch, M., Baldwin, D., Ramakrishnan, L., Gray, C., Baker, K., Wood, W.I., Goddard, A., Godowski, P., and Ashkenazi, A. Control of TRAIL-induced apoptosis by a family of signaling and decoy receptors. *Science* 277, 818-821 (1997).
43. Marsters, S., Sheridan, J., Pitti, R., Gurney, A., Skubatch, M., Baldwin, D., Huang, A., Yuan, J., Goddard, A., Godowski, P., and Ashkenazi, A. A novel receptor for Apo2L/TRAIL contains a truncated death domain. *Curr. Biol.* 7, 1003-1006 (1997).
44. Marsters, A., Sheridan, J., Pitti, R., Brush, J., Goddard, A., and Ashkenazi, A. Identification of a ligand for the death-domain-containing receptor Apo3. *Curr. Biol.* 8, 525-528 (1998).
45. Rieger, J., Naumann, U., Glaser, T., Ashkenazi, A., and Weller, M. Apo2 ligand: a novel weapon against malignant glioma? *FEBS Lett.* 427, 124-128 (1998).
46. Pender, S., Fell, J., Chamow, S., Ashkenazi, A., and MacDonald, T. A p55 TNF receptor immunoadhesin prevents T cell mediated intestinal injury by inhibiting matrix metalloproteinase production. *J. Immunol.* 160, 4098-4103 (1998).
47. Pitti, R., Marsters, S., Lawrence, D., Roy, Kischkel, F., M., Dowd, P., Huang, A., Donahue, C., Sherwood, S., Baldwin, D., Godowski, P., Wood, W., Gurney, A., Hillan, K., Cohen, R., Goddard, A., Botstein, D., and Ashkenazi, A. Genomic amplification of a decoy receptor for Fas ligand in lung and colon cancer. *Nature* 396, 699-703 (1998).
48. Mori, S., Marakami-Mori, K., Nakamura, S., Ashkenazi, A., and Bonavida, B. Sensitization of AIDS Kaposi's sarcoma cells to Apo-2 ligand-induced apoptosis by actinomycin D. *J. Immunol.* 162, 5616-5623 (1999).
49. Gurney, A., Marsters, S., Huang, A., Pitti, R., Mark, M., Baldwin, D., Gray, A., Dowd, P., Brush, J., Heldens, S., Schow, P., Goddard, A., Wood, W., Baker, K., Godowski, P., and Ashkenazi, A. Identification of a new member of the tumor necrosis factor family and its receptor, a human ortholog of mouse GITR. *Curr. Biol.* 9, 215-218 (1999).

50. Ashkenazi, A., Pai, R., Fong, S., Leung, S., Lawrence, D., Marsters, S., Blackie, C., Chang, L., McMurtrey, A., Hebert, A., DeForge, L., Khoumenis, I., Lewis, D., Harris, L., Bussiere, J., Koeppen, H., Shahrokh, Z., and Schwall, R. Safety and anti-tumor activity of recombinant soluble Apo2 ligand. *J. Clin. Invest.* 104, 155-162 (1999).
51. Chuntharapai, A., Gibbs, V., Lu, J., Ow, A., Marsters, S., Ashkenazi, A., De Vos, A., Kim, K.J. Determination of residues involved in ligand binding and signal transmission in the human IFN- α receptor 2. *J. Immunol.* 163, 766-773 (1999).
52. Johnsen, A.-C., Haux, J., Steinkjer, B., Nonstad, U., Egeberg, K., Sundan, A., Ashkenazi, A., and Espevik, T. Regulation of Apo2L/TRAIL expression in NK cells – involvement in NK cell-mediated cytotoxicity. *Cytokine* 11, 664-672 (1999).
53. Roth, W., Isenmann, S., Naumann, U., Kugler, S., Bahr, M., Dichgans, J., Ashkenazi, A., and Weller, M. Eradication of intracranial human malignant glioma xenografts by Apo2L/TRAIL. *Biochem. Biophys. Res. Commun.* 265, 479-483 (1999).
54. Hymowitz, S.G., Christinger, H.W., Fu, G., Ultsch, M., O'Connell, M., Kelley, R.F., Ashkenazi, A. and de Vos, A.M. Triggering Cell Death: The Crystal Structure of Apo2L/TRAIL in a Complex with Death Receptor 5. *Molec. Cell* 4, 563-571 (1999).
55. Hymowitz, S.G., O'Connell, M.P., Utsch, M.H., Hurst, A., Totpal, K., Ashkenazi, A., de Vos, A.M., Kelley, R.F. A unique zinc-binding site revealed by a high-resolution X-ray structure of homotrimeric Apo2L/TRAIL. *Biochemistry* 39, 633-640 (2000).
56. Zhou, Q., Fukushima, P., DeGraff, W., Mitchell, J.B., Stetler-Stevenson, M., Ashkenazi, A., and Stoeg, P.S. Radiation and the Apo2L/TRAIL apoptotic pathway preferentially inhibit the colonization of premalignant human breast cancer cells overexpressing cyclin D1. *Cancer Res.* 60, 2611-2615 (2000).
57. Kischkel, F.C., Lawrence, D.A., Chuntharapai, A., Schow, P., Kim, J., and Ashkenazi, A. Apo2L/TRAIL-dependent recruitment of endogenous FADD and Caspase-8 to death receptors 4 and 5. *Immunity* 12, 611-620 (2000).
58. Yan, M., Marsters, S.A., Grewal, I.S., Wang, H., *Ashkenazi, A., and *Dixit, V.M. Identification of a receptor for BlyS demonstrates a crucial role in humoral immunity. *Nature Immunol.* 1, 37-41 (2000).

59. Marsters, S.A., Yan, M., Pitti, R.M., Haas, P.E., Dixit, V.M., and Ashkenazi, A. Interaction of the TNF homologues BLyS and APRIL with the TNF receptor homologues BCMA and TACI. *Curr. Biol.* 10, 785-788 (2000).
60. Kischkel, F.C., and Ashkenazi, A. Combining enhanced metabolic labeling with immunoblotting to detect interactions of endogenous cellular proteins. *Biotechniques* 29, 506-512 (2000).
61. Lawrence, D., Shahrokh, Z., Marsters, S., Achilles, K., Shih, D., Mounho, B., Hillan, K., Totpal, K., DeForge, L., Schow, P., Hooley, J., Sherwood, S., Pai, R., Leung, S., Khan, L., Gliniak, B., Bussiere, J., Smith, C., Strom, S., Kelley, S., Fox, J., Thomas, D., and Ashkenazi, A. Differential hepatocyte toxicity of recombinant Apo2L/TRAIL versions. *Nature Med.* 7, 383-385 (2001).
62. Chuntharapai, A., Dodge, K., Grimmer, K., Schroeder, K., Martsters, S.A., Koeppen, H., Ashkenazi, A., and Kim, K.J. Isotype-dependent inhibition of tumor growth in vivo by monoclonal antibodies to death receptor 4. *J. Immunol.* 166, 4891-4898 (2001).
63. Pollack, I.F., Erff, M., and Ashkenazi, A. Direct stimulation of apoptotic signaling by soluble Apo2L/tumor necrosis factor-related apoptosis-inducing ligand leads to selective killing of glioma cells. *Clin. Cancer Res.* 7, 1362-1369 (2001).
64. Wang, H., Marsters, S.A., Baker, T., Chan, B., Lee, W.P., Fu, L., Turnas, D., Yan, M., Dixit, V.M., *Ashkenazi, A., and *Grewal, LS. TACI-ligand interactions are required for T cell activation and collagen-induced arthritis in mice. *Nature Immunol.* 2, 632-637 (2001).
65. Kischkel, F.C., Lawrence, D. A., Tinel, A., Virmani, A., Schow, P., Gazdar, A., Blenis, J., Arnott, D., and Ashkenazi, A. Death receptor recruitment of endogenous caspase-10 and apoptosis initiation in the absence of caspase-8. *J. Biol. Chem.* 276, 46639-46646 (2001).
66. LeBlanc, H., Lawrence, D.A., Varfolomeev, E., Totpal, K., Morlan, J., Schow, P., Fong, S., Schwall, R., Sinicropi, D., and Ashkenazi, A. Tumor cell resistance to death receptor induced apoptosis through mutational inactivation of the proapoptotic Bcl-2 homolog Bax. *Nature Med.* 8, 274-281 (2002).
67. Miller, K., Meng, G., Liu, J., Hurst, A., Hsei, V., Wong, W-L., Ekert, R., Lawrence, D., Sherwood, S., DeForge, L., Gaudreault, Keller, G., Sliwkowski, M., Ashkenazi, A., and Presta, L. Design, Construction, and analyses of multivalent antibodies. *J. Immunol.* 170, 4854-4861 (2003).

68. Varfolomeev, E., Kischkel, F., Martin, F., Wan, H., Lawrence, D., Olsson, C., Tom, L., Erickson, S., French, D., Schow, P., Grewal, I. and Ashkenazi, A.. Immune system development in APRIL knockout mice. Submitted.

Review articles:

1. Ashkenazi, A., Peralta, E., Winslow, J., Ramachandran, J., and Capon, D., J. Functional role of muscarinic acetylcholine receptor subtype diversity. *Cold Spring Harbor Symposium on Quantitative Biology*. LIII, 263-272 (1988).
2. Ashkenazi, A., Peralta, E., Winslow, J., Ramachandran, J., and Capon, D. Functional diversity of muscarinic receptor subtypes in cellular signal transduction and growth. *Trends Pharmacol. Sci. Dec Supplement*, 12-21 (1989).
3. Chamow, S., Duliege, A., Ammann, A., Kahn, J., Allen, D., Eichberg, J., Byrn, R., Capon, D., Ward, R., and Ashkenazi, A.. CD4 immunoadhesins in anti-HIV therapy: new developments. *Int. J. Cancer Supplement* 7, 69-72 (1992).
4. Ashkenazi, A., Capon, and D. Ward, R. Immunoadhesins. *Int. Rev. Immunol.* 10, 217-225 (1993).
5. Ashkenazi, A. and Peralta, E. Muscarinic Receptors. In *Handbook of Receptors and Channels*. (S. Petoutka, ed.), CRC Press, Boca Raton, Vol. I, p. 1-27, (1994).
6. Krantz, S. B., Means, R. T., Jr., Lina, J., Marsters, S. A., and Ashkenazi, A.. Inhibition of erythroid colony formation in vitro by gamma interferon. In *Molecular Biology of Hematopoiesis* (N. Abraham, R. Shadduck, A. Levine F. Takaku, eds.) Intercept Ltd. Paris, Vol. 3, p. 135-147 (1994).
7. Ashkenazi, A. Cytokine neutralization as a potential therapeutic approach for SIRS and shock. *J. Biotechnology in Healthcare* 1, 197-206 (1994).
8. Ashkenazi, A. and Chamow, S. M. Immunoadhesins: an alternative to human monoclonal antibodies. *Immunomethods: A companion to Methods in Enzymology* 8, 104-115 (1995).
9. Chamow, S., and Ashkenazi, A.. Immunoadhesins: Principles and Applications. *Trends Biotech.* 14, 52-60 (1996).
10. Ashkenazi, A. and Chamow, S. M. Immunoadhesins as research tools and therapeutic agents. *Curr. Opin. Immunol.* 9, 195-200 (1997).
11. Ashkenazi, A. and Dixit, V. Death receptors: signaling and modulation. *Science* 281, 1305-1308 (1998).
12. Ashkenazi, A. and Dixit, V. Apoptosis control by death and decoy receptors. *Curr. Opin. Cell. Biol.* 11, 255-260 (1999).

13. Ashkenazi, A. Chapters on Apo2L/TRAIL; DR4, DR5, DcR1, DcR2; and DcR3. Online Cytokine Handbook (www.apnet.com/cytokinereference/).
14. Ashkenazi, A. Targeting death and decoy receptors of the tumor necrosis factor superfamily. *Nature Rev. Cancer* 2, 420-430 (2002).
15. LeBlanc, H. and Ashkenazi, A. Apoptosis signaling by Apo2L/TRAIL. *Cell Death and Differentiation* 10, 66-75 (2003).
16. Almasan, A. and Ashkenazi, A. Apo2L/TRAIL: apoptosis signaling, biology, and potential for cancer therapy. *Cytokine and Growth Factor Reviews* 14, 337-348 (2003).

Book:

Antibody Fusion Proteins (Chamow, S., and Ashkenazi, A., eds., John Wiley and Sons Inc.) (1999).

Talks:

1. Resistance of primary HIV isolates to CD4 is independent of CD4-gp120 binding affinity. UCSD Symposium, HIV Disease: Pathogenesis and Therapy. Greenelefe, FL, March 1991.
2. Use of immuno-hybrids to extend the half-life of receptors. IBC conference on Biopharmaceutical Halflife Extension. New Orleans, LA, June 1992.
3. Results with TNF receptor Immunoadhesins for the Treatment of Sepsis. IBC conference on Endotoxemia and Sepsis. Philadelphia, PA, June 1992.
4. Immunoadhesins: an alternative to human antibodies. IBC conference on Antibody Engineering. San Diego, CA, December 1993.
5. Tumor necrosis factor receptor: a potential therapeutic for human septic shock. American Society for Microbiology Meeting, Atlanta, GA, May 1993.
6. Protective efficacy of TNF receptor immunoadhesin vs anti-TNF monoclonal antibody in a rat model for endotoxic shock. 5th International Congress on TNF. Asilomar, CA, May 1994.
7. Interferon- γ signals via a multisubunit receptor complex that contains two types of polypeptide chain. American Association of Immunologists Conference. San Francisco, CA, July 1995.
8. Immunoadhesins: Principles and Applications. Gordon Research Conference on Drug Delivery in Biology and Medicine. Ventura, CA, February 1996.

9. Apo-2 Ligand, a new member of the TNF family that induces apoptosis in tumor cells. Cambridge Symposium on TNF and Related Cytokines in Treatment of Cancer. Hilton-Head, NC, March 1996.
10. Induction of apoptosis by Apo2 Ligand. American Society for Biochemistry and Molecular Biology, Symposium on Growth Factors and Cytokine Receptors. New Orleans, LA, June, 1996.
11. Apo2 ligand; an extracellular trigger of apoptosis. 2nd Clontech Symposium, Palo Alto, CA, October 1996.
12. Regulation of apoptosis by members of the TNF ligand and receptor families. Stanford University School of Medicine, Palo Alto, CA, December 1996.
13. Apo-3: a novel receptor that regulates cell death and inflammation. 4th International Congress on Immune Consequences of Trauma, Shock, and Sepsis. Munich, Germany, March 1997.
14. New members of the TNF ligand and receptor families that regulate apoptosis, inflammation, and immunity. UCLA School of Medicine, LA, CA, March 1997.
15. Immunoadhesins: an alternative to monoclonal antibodies. 5th World Conference on Bispecific Antibodies. Volendam, Holland, June 1997.
16. Control of Apo2L signaling. Cold Spring Harbor Laboratory Symposium on Programmed Cell Death. Cold Spring Harbor, New York. September, 1997.
17. Chairman and speaker, Apoptosis Signaling session. IBC's 4th Annual Conference on Apoptosis. San Diego, CA., October 1997.
18. Control of Apo2L signaling by death and decoy receptors. American Association for the Advancement of Science. Philadelphia, PA, February 1998.
19. Apo2 ligand and its receptors. American Society of Immunologists. San Francisco, CA, April 1998.
20. Death receptors and ligands. 7th International TNF Congress. Cape Cod, MA, May 1998.
21. Apo2L as a potential therapeutic for cancer. UCLA School of Medicine. LA, CA, June 1998.
22. Apo2L as a potential therapeutic for cancer. Gordon Research Conference on Cancer Chemotherapy. New London, NH, July 1998.
23. Control of apoptosis by Apo2L. Endocrine Society Conference, Stevenson, WA, August 1998.
24. Control of apoptosis by Apo2L. International Cytokine Society Conference, Jerusalem, Israel, October 1998.

25. Apoptosis control by death and decoy receptors. American Association for Cancer Research Conference, Whistler, BC, Canada, March 1999.
26. Apoptosis control by death and decoy receptors. American Society for Biochemistry and Molecular Biology Conference, San Francisco, CA, May 1999.
27. Apoptosis control by death and decoy receptors. Gordon Research Conference on Apoptosis, New London, NH, June 1999.
28. Apoptosis control by death and decoy receptors. Arthritis Foundation Research Conference, Alexandria GA, Aug 1999.
29. Safety and anti-tumor activity of recombinant soluble Apo2L/TRAIL. Cold Spring Harbor Laboratory Symposium on Programmed Cell Death. Cold Spring Harbor, NY, September 1999.
30. The Apo2L/TRAIL system: therapeutic potential. American Association for Cancer Research, Lake Tahoe, NV, Feb 2000.
31. Apoptosis and cancer therapy. Stanford University School of Medicine, Stanford, CA, Mar 2000.
32. Apoptosis and cancer therapy. University of Pennsylvania School of Medicine, Philadelphia, PA, Apr 2000.
33. Apoptosis signaling by Apo2L/TRAIL. International Congress on TNF. Trondheim, Norway, May 2000.
34. The Apo2L/TRAIL system: therapeutic potential. Cap-CURE summit meeting. Santa Monica, CA, June 2000.
35. The Apo2L/TRAIL system: therapeutic potential. MD Anderson Cancer Center. Houston, TX, June 2000.
36. Apoptosis signaling by Apo2L/TRAIL. The Protein Society, 14th Symposium. San Diego, CA, August 2000.
37. Anti-tumor activity of Apo2L/TRAIL. AAPS annual meeting. Indianapolis, IN Aug 2000.
38. Apoptosis signaling and anti-cancer potential of Apo2L/TRAIL. Cancer Research Institute, UC San Francisco, CA, September 2000.
39. Apoptosis signaling by Apo2L/TRAIL. Kenote address, TNF family Minisymposium, NIH. Bethesda, MD, September 2000.
40. Death receptors: signaling and modulation. Keystone symposium on the Molecular basis of cancer. Taos, NM, Jan 2001.
41. Preclinical studies of Apo2L/TRAIL in cancer. Symposium on Targeted therapies in the treatment of lung cancer. Aspen, CO, Jan 2001.

42. Apoptosis signaling by Apo2L/TRAII. Weizmann Institute of Science, Rehovot, Israel, March 2001.
43. Apo2L/TRAII: Apoptosis signaling and potential for cancer therapy. Weizmann Institute of Science, Rehovot, Israel, March 2001..
44. Targeting death receptors in cancer with Apo2L/TRAII. Cell Death and Disease conference, North Falmouth, MA, Jun 2001.
45. Targeting death receptors in cancer with Apo2L/TRAII. Biotechnology Organization conference, San Diego, CA, Jun 2001.
46. Apo2L/TRAII signaling and apoptosis resistance mechanisms. Gordon Research Conference on Apoptosis, Oxford, UK, July 2001.
47. Apo2L/TRAII signaling and apoptosis resistance mechanisms. Cleveland Clinic Foundation, Cleveland, OH, Oct 2001.
48. Apoptosis signaling by death receptors: overview. International Society for Interferon and Cytokine Research conference, Cleveland, OH, Oct 2001.
49. Apoptosis signaling by death receptors. American Society of Nephrology Conference. San Francisco, CA, Oct 2001.
50. Targeting death receptors in cancer. Apoptosis: commercial opportunities. San Diego, CA, Apr 2002.
51. Apo2L/TRAII signaling and apoptosis resistance mechanisms. Kimmel Cancer Research Center, Johns Hopkins University, Baltimore MD. May 2002.
52. Apoptosis control by Apo2L/TRAII. (Keynote Address) University of Alabama Cancer Center Retreat, Birmingham, Al. October 2002.
53. Apoptosis signaling by Apo2L/TRAII. (Session co-chair) TNF international conference. San Diego, CA. October 2002.
54. Apoptosis signaling by Apo2L/TRAII. Swiss Institute for Cancer Research (ISREC). Lausanne, Switzerland. Jan 2003.
55. Apoptosis induction with Apo2L/TRAII. Conference on New Targets and Innovative Strategies in Cancer Treatment. Monte Carlo. February 2003.
56. Apoptosis signaling by Apo2L/TRAII. Hemanin Brain Tumor Center Symposium on Apoptosis. Detroit, MI. April 2003.
57. Targeting apoptosis through death receptors. Sixth Annual Conference on Targeted Therapies in the Treatment of Breast Cancer. Kona, Hawaii. July 2003.
58. Targeting apoptosis through death receptors. Second International Conference on Targeted Cancer Therapy. Washington, DC. Aug 2003.

Issued Patents:

1. Ashkenazi, A., Chamow, S. and Kogan, T. Carbohydrate-directed crosslinking reagents. US patent 5,329,028 (Jul 12, 1994).
2. Ashkenazi, A., Chamow, S. and Kogan, T. Carbohydrate-directed crosslinking reagents. US patent 5,605,791 (Feb 25, 1997).
3. Ashkenazi, A., Chamow, S. and Kogan, T. Carbohydrate-directed crosslinking reagents. US patent 5,889,155 (Jul 27, 1999).
4. Ashkenazi, A. APO-2 Ligand. US patent 6,030,945 (Feb 29, 2000).
5. Ashkenazi, A., Chunthrapai, A., Kim, J., APO-2 ligand antibodies. US patent 6,046,048 (Apr 4, 2000).
6. Ashkenazi, A., Chamow, S. and Kogan, T. Carbohydrate-directed crosslinking reagents. US patent 6,124,435 (Sep 26, 2000).
7. Ashkenazi, A., Chunthrapai, A., Kim, J., Method for making monoclonal and cross-reactive antibodies. US patent 6,252,050 (Jun 26, 2001).
8. Ashkenazi, A. APO-2 Receptor. US patent 6,342,369 (Jan 29, 2002).
9. Ashkenazi, A., Fong, S., Goddard, A., Gurney, A., Napier, M., Tunas, D., Wood, W. A-33 polypeptides. US patent 6,410,708 (Jun 25, 2002).
10. Ashkenazi, A. APO-3 Receptor. US patent 6,462,176 B1 (Oct 8, 2002).
11. Ashkenazi, A. APO-2LI and APO-3 polypeptide antibodies. US patent 6,469,144 B1 (Oct 22, 2002).
12. Ashkenazi, A., Chamow, S. and Kogan, T. Carbohydrate-directed crosslinking reagents. US patent 6,582,928B1 (Jun 24, 2003).

**This Page is Inserted by IFW Indexing and Scanning
Operations and is not part of the Official Record**

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

- BLACK BORDERS**
- IMAGE CUT OFF AT TOP, BOTTOM OR SIDES**
- FADED TEXT OR DRAWING**
- BLURRED OR ILLEGIBLE TEXT OR DRAWING**
- SKEWED/SLANTED IMAGES**
- COLOR OR BLACK AND WHITE PHOTOGRAPHS**
- GRAY SCALE DOCUMENTS**
- LINES OR MARKS ON ORIGINAL DOCUMENT**
- REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY**
- OTHER:** _____

IMAGES ARE BEST AVAILABLE COPY.

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.