4.1 Triangle Man's Game of Life

a.

b.

T=1:

T=2:

T=3:

T=4:

C.

If (i+j) even

$$N(i,j) = q_{(i-1,j-2)} + q_{(i-1,j-1)} + q_{(i-1,j)} + q_{(i-1,j+1)} + q_{(i,j+2)} + q_{(i,j-2)} + q_{(i,j-1)} + q_{(i,j+1)} + q_{(i,j+1)} + q_{(i+1,j-1)} + q_{(i+1,j)} + q_{(i+1,j+1)} + q$$

If (i+j) odd

$$N(i,j) = q_{(i-1,j-1)} + q_{(i-1,j)} + q_{(i-1,j+1)} + q_{(i,j-2)} + q_{(i,j-1)} + q_{(i,j+1)} + q_{(i,j+2)} + q_{(i+1,j-2)} + q_{(i+1,j-1)} + q_{(i+1,j)} + q_{(i+1,j+1)} + a_{(i+1,j+2)} +$$

d.

$$\begin{array}{lll} \delta(q_{i,j}) &=& 1 & \quad if \; N(i,j) = 3 \; or \; (q_{i,j} = 1 \; and \; N(i,j) = 2) \\ \delta(q_{i,j}) &=& 0 & \quad otherwise \end{array}$$

4.2 Simulating a JK Flip-Flop

a.

X	(t)	q(t)	$\lambda(q)$	$\delta(q,x)$
j(t)	k(t)			
0	0	0	0	0
0	0	1	1	1
0	1	0	0	0
0	1	1	1	0
1	0	0	0	1
1	0	1	1	1
1	1	0	0	1
1	1	1	1	0

b.

t	0	1	2	3	4	5	6	7	8	9
j(t)	0	1	0	1	1	0	0	1	0	0
k(t)	1	0	1	1	1	0	1	0	1	0
q(t)	0	0	1	0	1	0	0	0	1	0
v(t)	0	0	1	0	1	0	0	0	1	0

4.3 Modeling Covid 19

a.

$$\begin{split} \delta(S,\,dS/dt,\,\Delta t) &= S(t) \,+\, \Delta t \,\, ^* \,\, dS/dt \\ \delta(I,\,dI/dt,\,\Delta t) &= I(t) \,\,+\,\, \Delta t \,\, ^* \,\, dI/dt \\ \delta(R,\,dR/dt,\,\Delta t) &= R(t) \,\,+\,\, \Delta t \,\, ^* \,\, dR/dt \end{split}$$

b.

$$\beta/\gamma = R_0 = 3$$

 $1/\gamma = 10 --> \gamma = 1/10$
 $\beta/(1/10) = 3 --> \beta = 3/10$

C.

d.

Peak infected: 484.78 at t = 41.2 days

e.

$$0.2 * 1506.77 = 30.135$$
 deaths

f.

i.
$$R_0 = \beta/\gamma = 0.2/0.1 = 2$$

ii.

iii.

Peak infections: 320.743 at t = 41.6 days

ίV.

0.2 * 1321.49 = 26.43 deaths