Chap 9 der 15

 \mathbf{a}

The transformation is

$$Q = q^{\alpha} \cos \beta p$$
$$P = q^{\alpha} \sin \beta p.$$

In order to be canonical, it must satisfy

$$\begin{split} [Q,P] &= 1 \\ \frac{\partial Q}{\partial q} \frac{\partial P}{\partial p} - \frac{\partial Q}{\partial p} \frac{\partial P}{\partial q} &= 1 \\ \alpha \beta q^{2\alpha - 1} \cos^2 \beta p + \alpha \beta q^{2\alpha - 1} \sin^2 \beta p &= 1 \\ \alpha \beta q^{2\alpha - 1} &= 1 \\ \frac{1}{\alpha \beta} &= q^{2\alpha - 1}. \end{split}$$

This equation will be satisfied for all q only when $2\alpha - 1 = 0$ so, we must have $\alpha = 1/2$ $\beta = 2$.

b)

If this could be an extended canonical transformation, then we would have

$$\begin{split} [Q,P] &= \lambda \\ \alpha\beta q^{2\alpha-1}\cos^2\beta p + \alpha\beta q^{2\alpha-1}\sin^2\beta p &= \lambda \\ \frac{\lambda}{\alpha\beta} &= q^{2\alpha-1}. \end{split}$$

Again $\alpha = 1/2$, but this time $\beta = 2\lambda$. The transformation function of the third kind, $F_3(Q, p)$ for this transformation must satisfy

$$-\frac{\partial F_3}{\partial p} = \lambda q$$
$$-\frac{\partial F_3}{\partial Q} = P$$

$$-\frac{\partial F_3}{\partial p} = \lambda \frac{Q^2}{\cos^2(\beta p)}$$
$$-\frac{\partial F_3}{\partial Q} = Q \tan \beta p.$$

The transformation function satisfying these conditions is given by

$$F_3(Q, p) = -\frac{1}{2\beta}Q^2 \tan(\beta p).$$

c)

Well, the factor of λ appears because when we take a derivative with respect to p, we get a factor of $\beta = 2\lambda$. If the transformation function was instead

$$F_3(Q, p) = -\frac{1}{2\beta}Q^2 \tan(\beta p),$$

then when we take the derivative the β in the denominator would cancel the β we get from differentiating. So, the new equations would be

$$-\frac{\partial F_3}{\partial p} = q$$
$$-\frac{\partial F_3}{\partial Q} = P$$

$$-\frac{\partial F_3}{\partial p} = \frac{Q^2}{\cos^2(\beta p)}$$
$$-\frac{\partial F_3}{\partial Q} = Q \frac{1}{\beta} \tan \beta p.$$

Consequently, the modified transformation equations are

$$Q = q^{\alpha} \cos(\beta p)$$
$$P = q^{\alpha} \sin(\beta p) \frac{1}{\beta}.$$

Chap 9 Ex 28

a)

First, we need to express the velocities in terms of the conjugate momentum and coordinate. Assuming this charged particle is not relativistic, the Lagrangian for a charged particle moving in a magnetic field is

$$\mathcal{L} = \frac{1}{2}m\dot{q}_i\dot{q}_i + e\dot{q}_iA_i$$

So, the conjugate momentum is given by

$$p_i = \frac{\partial L}{\partial \dot{q}_i}$$
$$= m\dot{q}_i + eA_i.$$

In the case of a uniform magnetic field of magnitude B pointing in the z, or third dimension, this becomes

$$\mathcal{L} = \frac{1}{2}m\dot{q}_{i}\dot{q}_{i} - eB\dot{q}_{1}q_{2} + eB\dot{q}_{2}q_{1}$$

$$p_{1} = m\dot{q}_{1} - eBq_{2}$$

$$p_{2} = m\dot{q}_{2} + eBq_{1}$$

$$p_{3} = m\dot{q}_{3}.$$

So, the velocities in terms of q and p are

$$v_{1} = \frac{p_{1} + eBq_{2}}{2m}$$

$$v_{2} = \frac{p_{2} - eBq_{1}}{2m}$$

$$v_{3} = \frac{p_{3}}{2m}$$

Thus, the Poisson brackets are

$$\begin{split} [v_i, v_j] &= \frac{\partial v_i}{\partial q_k} \frac{\partial v_j}{\partial p_k} - \frac{\partial v_j}{\partial q_k} \frac{\partial v_i}{\partial p_k} \\ [v_1, v_2] &= \frac{eB + eB}{2m} = \frac{eB}{m} \\ [v_1, v_3] &= 0 \\ [v_2, v_3] &= 0. \end{split}$$

Since, we already have v_i in terms of p and q, evaluating these Poisson brackets is straight forward

$$\begin{split} [q_i, v_j] &= \frac{\partial v_j}{\partial p_i} = \frac{1}{2m} \delta_{ij} \\ [p_i, v_j] &= -\frac{\partial v_j}{\partial q_i} \\ [p_2, v_1] &= \frac{eB}{2m} \\ [p_1, v_2] &= -\frac{eB}{2m} \\ [q_1, \dot{p_j}] &= -[v_i, p_j] = [p_j, v_i] \\ [q_2, \dot{p_1}] &= -\frac{eB}{2m} \\ [q_1, \dot{p_2}] &= \frac{eB}{2m} \\ [p_i, \dot{p_j}] &= [p_i, \frac{\mathcal{L}}{q_j}] \\ [p_1, \dot{p_1}] &= eB[p_1, v_2] = -\frac{e^2B^2}{2m} \\ [p_1, \dot{p_2}] &= -eB[p_2, v_1] = -\frac{e^2B^2}{2m} \end{split}$$

Poisson brackets equal to 0 have not been written out explicitly. Chap 9 Ex 31

The Hamiltonian for the 1D harmonic oscillator is

$$\mathcal{H} = \frac{p^2}{2m} + \frac{1}{2}m\omega^2 q^2.$$

If $u(q, p, t) = ln(p + im\omega q) - i\omega t$ is a constant of motion, then we must have

$$[u,\mathcal{H}] = -\frac{\partial u}{\partial t}$$

$$\frac{ip\omega - m\omega^2 q}{p + im\omega q} = i\omega$$

$$ip\omega - m\omega^2 q = i\omega p - m\omega^2 q.$$

Thus, it is a constant of motion. The physical significance probably has something to do with the symmetry of the harmonic oscillator. Chap 9 Ex 32 The Hamiltonian we are given is

$$\mathcal{H} = q_1 p_1 - q_2 p_2 - a q_1^2 + b q_2^2.$$

First, lets check if $F_1 = \frac{p_1 - aq_1}{q_2}$ is a constant of motion as in the last problem

$$[F_1, \mathcal{H}] = -\frac{\partial F_1}{\partial t}$$

$$\frac{-a}{q_2}(q_1) + \frac{p_1 - aq_1}{q_2} - \left(\frac{p_1 - 2aq_1}{q_2}\right) = 0$$

$$\frac{-2aq_1}{q_2} + \frac{2aq_1}{q_2} + \frac{p_1}{q_2} - \frac{p_1}{q_2} = 0$$

$$0 = 0$$

Thus, F_1 is a constant of motion. Now, for $F_2 = q_1q_2$

$$[F_2, \mathcal{H}] = -\frac{\partial F_2}{\partial t}$$
$$q_1 q_2 - q_1 q_2 = 0$$

So, F_2 is also a constant of motion. Assuming a third constant of motion F_3 , can somehow be generated using Jacobi's Identity, lets see what happens when we simplify it

$$[F_1, [F_2, \mathcal{H}]] + [\mathcal{H}, [F_1, F_2]] + [F_2, [\mathcal{H}, F_1]] = 0$$
$$[\mathcal{H}, [F_1, F_2]] = 0$$
$$[\mathcal{H}, F_3] = 0$$
$$[F_3, \mathcal{H}] = 0$$

So, $F_3 = [F_1, F_2]$.

Chap 9 Ex 36

a)

Using the theorem concerning Poisson brackets of vector functions and components of the angular momentum, show that if \mathbf{F} and \mathbf{G} are two vector functions of the coordinates and momenta only, then

$$[F \cdot L, G \cdot L] = L \cdot (G \times F) + L_i L_j [F_i, G_j]$$

So, lets start with the left hand side and show that it becomes the right hand side

$$\begin{split} [F \cdot L, G \cdot L] &= [F_i L_i, G_j L_j] \\ &= F_i [L_i, G_j L_j] + L_i [F_i, G_j L_j] \\ &= F_i L_j [L_i, G_j] + F_i G_j [L_i, L_j] + L_i G_j [F_i, L_j] + L_i L_j [F_i, G_j] \\ &= L_i L_j [F_i, G_j] + F_i L_j [L_i, G_j] + F_i G_j [L_i, L_j] + L_i G_j [F_i, L_j] \\ &= L_i L_j [F_i, G_j] - F_i L_j [G_j, L_i] + F_i G_j [L_i, L_j] + L_i G_j [F_i, L_j] \\ &= L_i L_j [F_i, G_j] - F_i L_j \epsilon_{jik} G_k + F_i G_j \epsilon_{ijk} L_k + L_i G_j \epsilon_{ijk} F_k \\ &= L_i L_j [F_i, G_j] - L \cdot (F \times G) + L \cdot (F \times G) + L_i (G \times F) \\ &= L_i (G \times F) + L_i L_j [F_i, G_j] \end{split}$$

b)

Let F be the unit vector in the μ direction, G be the unit vector in the ν direction, and λ by the third direction (so if $\mu = 1$ and $\nu = 2$ then λ will equal 3. Ok, now if we substitute the value of F and G into the equation from part a we get

$$[F \cdot L, G \cdot L] = L \cdot (G \times F) + L_i L_j [F_i, G_j]$$
$$[F_i L_i, G_j L_j] = L_i \epsilon_{ijk} G_j F_k + L_i L_j [F_i, G_j].$$

Now, we know that the only non-zero terms of F_k and G_j are F_μ and G_ν so the equation above becomes

$$[F_iL_i, G_jL_j] = L_i\epsilon_{ijk}G_jF_k + L_iL_j[F_i, G_j]$$
$$[F_\mu L_\mu, G_\nu L_\nu] = L_i\epsilon_{i\nu\mu}G_\nu F_\mu + L_\mu L_\nu[F_\mu, G_\nu]$$

remember that $F_{\mu}=G_{\nu}=1$ since these are unit vectors, so the expression above becomes further simplified

$$[F_{\mu}L_{\mu}, G_{\nu}L_{\nu}] = L_{i}\epsilon_{i\nu\mu}G_{\nu}F_{\mu} + L_{\mu}L_{\nu}[F_{\mu}, G_{\nu}]$$
$$[L_{\mu}, L_{\nu}] = L_{i}\epsilon_{i\nu\mu} + L_{\mu}L_{\nu}[1, 1]$$
$$[L_{\mu}, L_{\nu}] = L_{i}\epsilon_{i\nu\mu}.$$

Lets call the direction perpendicular to μ and ν as λ , so the equation above becomes

$$[L_{\mu}, L_{\nu}] = L_{\lambda} \epsilon_{\lambda \nu \mu} . [L_{\mu}, L_{\nu}] \qquad = I_{\lambda} \omega_{\lambda} \epsilon_{\lambda \nu \mu} .$$

Therefore all of the sums reduce to simply one expression, where λ is just equal to whatever μ and ν is not equal. In the case where $\mu = \nu$ it is unclear what to pick for λ , but in this case the epsilon is equal to zero since $\mu = \nu$ so it doesn't matter. **c**)

So, the equation of motion for L_i is

$$\begin{split} \frac{dL_i}{dt} &= [L_i, H] + \frac{\partial L_i}{\partial t} \\ \frac{dL_i}{dt} &- [L_i, H] = \frac{\partial L_i}{\partial t} \\ \frac{dL_i}{dt} &- \epsilon_{ikj} \omega_j \omega_k I_k = N_i \\ \frac{dL_i}{dt} &+ \epsilon_{ijk} \omega_j \omega_k I_k = N_i. \end{split}$$