# Проект:

Определение намерений пользователя по сессии на сайте: покупка, просмотр товаров, изучение категорий и т.п.

Студент: Антон Саттаров Ментор: Турал Гурбанов

# Проблема:

В современных рекомендательных системах зачастую используется совокупность рекомендательных алгоритмов - гибридные рекомендательные системы, для улучшения качества рекомендаций. Такой подход обеспечивает большую вариативность рекомендаций, так как разные алгоритмы подходят к разному пользовательскому поведению.

Обратной стороной данного подхода, является увеличение накладных расходов на вычисления, а также большое количество получаемых рекомендаций. Увеличение накладных расходов на вычисления приводит к увеличению затрат на компьютерные мощности или к увеличению длительности вычислений, это в свою очередь приводит к тому, что пользователь может получать полезные ему рекомендации слишком поздно, а большое количество получаемых рекомендаций перегружаю интерфейс системы и может отвлекать пользователя от его первоначальных целей.

Оба этих фактора снижают доверие пользователя к рекомендательной системе и портят пользовательский опыт от взаимодействия с сервисом.

# Пути решения:

Для устранения данных недостатков предлагается построить модель определяющую намерения пользователей по их поведению и исходя из результатов её работы оптимизировать гибридную рекомендательную систему. Это может помочь улучшить качество рекомендаций, снизив вес рекомендациям неэффективных алгоритмов для конкретного пользователя, а также снизить накладные расходы на вычисления, не производя расчётов по неэффективным алгоритмам (при этом конечно нужно учитывать, что система по определению намерения тоже имеет свои накладные расходы).

## Цель проекта:

На примере дата сета содержащего *log*-и пользовательских сессий исследовать возможность определения пользовательских намерений по последовательности действий. Под намерением пользователя понимается цель с которой он воспользовался сервисом.

Например, совершить покупку товара, найти и узнать информацию о товаре(наличие, цена, технические характеристики), сравнить несколько товаров и так далее. Под намерения понимается некоторая обобщённая последовательность событий в *log*-ах характеризующая определённые действия пользователя сервиса.

Предполагается, что пользователи имеют ограниченно количество намерений и их можно определить исходя из содержимого *log*-ов и что последовательности событий совершенные пользователями с похожими целями будут так же похожи, то есть их могут быть выделены из данных и обобщены.

Для достижения данной цели предлагается:

- 1. Провести анализ данных, выделив последовательности действий пользователей.
- 2. Отобрать признаки и построить модель способную в online режиме по последовательно поступающим данным о взаимодействии пользователя с сервисом предсказывать намерение пользователя.
- 3. Подобрать метрики и оценить качество по отложенной выборке.

### Похожие проекты:

Статей по данной теме не много, но они есть. Это говорит о том, что проблема существует и актуальна. Например, есть успешное исследование в e-commerce области: Improving Recommender Systems with an Intention-based Algorithm Switching Strategy [8]

В статье описывается решение похожей задачи - но в качестве данных для определения намерения пользователя используются данные о перемещениях мышки и пользователя по сайту.

## Дата сет:

https://www.kaggle.com/retailrocket/ecommerce-dataset

Итак нам доступны следующие данные:

• events.csv - 4.5 месяца клик-стрима пользовательских сессий содержит информацию о времени события в ms, элементе взаимодействия и его типе { "view", "addtocart" и "transaction" }

| index | timestamp     | visitorid | event     | itemid | transactionid |
|-------|---------------|-----------|-----------|--------|---------------|
| 0     | 1430622004384 | 693516    | addtocart | 297662 | -1            |
| 1     | 1430622011289 | 829044    | view      | 60987  | -1            |

• *item\_properties\_part1.csv*, *item\_properties\_part2.csv* описание объектов, содержит информацию о свойствах объекта(например описание, категория и так далее) и их изменения во времени с шагом в 1 неделю.

| index | timestamp     | itemid | property  | value      |
|-------|---------------|--------|-----------|------------|
| 0     | 1431226800000 | 317951 | 790       | n32880.000 |
| 1     | 1431226800000 | 179597 | available | 0          |

- свойство categoryid категория объекта
- свойство *available* информация о наличии
- остальные свойства и их значения хешированы
- *category\_tree.csv* дерево категорий объектов, содержит информацию о родительской категории объекта

| categoryid | parentid |
|------------|----------|
| 1016       | 213      |
| 809        | 169      |

### Анализ данных:

Для начала разобьём наши дата сеты на 2 выборки - тренировочную и отложенную в пропорции **80/20** и так чтобы события в них не пересекались по времени. Таким образом в тренировочную выборке у нас будут все записи старше записей в отложенной.

https://github.com/dirtymew/netology-project-ds1/blob/master/Project\_train\_test\_split.ipynb

Тренировочная выборки events и item\_properties будут использоваться для всех последующих анализов и построения всех моделей, а на отложенной выборке events будет производиться финальная оценка качества, при этом выборка item\_properties будет использоваться полная.



Puc.1 Train/test split

Задача на следующем этапе - понять каким образом по событиям различать поведение пользователей, и какое оно бывает. Для этого нужно внимательно посмотреть на данные.

| Событий дата сете                | 2204881 |
|----------------------------------|---------|
| Уникальных visitorid в дата сете | 1123767 |

Количество событий по типу:

| view        | 2132032 |
|-------------|---------|
| addtocart   | 54985   |
| transaction | 17864   |



Рис.2 Гистограмма распределения событий по типу

Далее сгруппируем данные по visitorid и вычислим общую длительность взаимодействия:

| Кол-во пользователей:                        | 1123767 |
|----------------------------------------------|---------|
| Кол-во пользователей у которых по 1-му событ | 801886  |
| ию:                                          |         |
| Кол-во пользователей у которых более 1-го со | 321881  |
| бытия:                                       |         |

Длительность взаимодействия (разница между первым и последним событием):

| Минимальная длительность  | мин: 0      |
|---------------------------|-------------|
| Максимальная длительность | мин: 153809 |

#### Выводы:

- Большинство пользователей в данном дата сете имеют 1-но взаимодействие с серви сом эти данные для обучения модели не имеют смысла, по ним не получиться определить намерения пользователя.
- Существуют пользователи у которых длительная история взаимодействия это нав одит на мысль, что такие пользователи использовали сервис несколько раз и возмож но с разными целями.

#### 1. Анализ сессий:

https://github.com/dirtymew/netology-project-ds1/blob/master/Project sessions analysis.ipynb

Определим интервалы между событиями пользователей и построим гистограмму количество интервалов между событиями пользователя относительно их длительности (в минутах).

Квантили распределения интервалы относительно длительности (в минутах):

| 0.25 | 0.601854  |
|------|-----------|
| 0.50 | 2.127133  |
| 0.75 | 31.553021 |

Постоим гистограмму интерквантильного размаха(дисперсии) данного распределения (0.75 квантиль)



Рис.3 Гистограмма интерквантильного размаха 0.75 квантиль

#### Гипотеза №1 о сессий:

Пользовательская сессия - это некоторая конечная временная последовательность вз аимодействий. При этом конец сессии обусловлен завершением взаимодействия со сто роны пользователя на определённый период времени. Таким образом для нахождения п ользовательских сессий предполагается определить граничный интервал, при превыш ении которого с момента последнего взаимодействия будем считать, что сессия завершилась. И следующее взаимодействия пользователя будут началом новой сессии.

Верхнюю границу сессии определим как 3-й квантиль (31.553021 минут)

Далее разобьём выборку на сессии:

| Кол-во пользователей | 321881 |
|----------------------|--------|
| Кол-во сессий        | 592160 |

Теперь сгруппируем данные по сессия и вычислим общую длительность взаимодействия:

| Сессий                  | 592160 |
|-------------------------|--------|
| с 0-ой длительностью    | 285387 |
| с не 0-ой длительностью | 306773 |

Длительность сессии (сумма всех интервалов):

| Минимальная длительность, мин  | 0.0   |
|--------------------------------|-------|
| Максимальная длительность, мин | 728.4 |

Оставим только сессий с вероятностью 99% в данном распределении, тогда гистограмма будет выглядеть следующим образом:



Рис.4 Гистограмма количество сессий пользователя (99%)

Длительность сессий (сумма всех интервалов):

| Минимальная длительность мин:  | 0.0   |
|--------------------------------|-------|
| Максимальная длительность мин: | 62.45 |

Квантили данного распределения:

| 0.25 | 0.917700 |
|------|----------|
| 0.50 | 2.906800 |
| 0.75 | 9.170033 |

Таким образом можем разделить сессии по длительности на:

| Короткие | 75928  |
|----------|--------|
| Средние  | 151851 |
| Длинные  | 75926  |

Как видно коротких сессий довольно много, при этом их максимальная длительность меньше 1 минуты. Возможно это куски других сессий и граница разбиения была выбрана неверно.

| Событий в коротких сессиях         | 166861 |
|------------------------------------|--------|
| Пользователей с короткими сессиями | 71326  |
| Общее количество пользователей     | 253761 |

Сгруппируем данные события по пользователям у которых есть короткие сессии, их количество - **51405** 

Таким образом мы потенциально неверно определили сессий для 19921 пользователя.

Сгруппируем события по данным пользователям и по сессиям - 31696 сессий

Можно заменить, что короткие сессии бываю 2 видов, одни являются первой сессий пользователя и их максимальный интервал не будет больше **31.553021** - граничного интервала сессии, другие напротив являются потенциальным концом предыдущий сессий и их максимальный интервал будет больше граничного.

| Количество начальных сессий | 15462 |
|-----------------------------|-------|
| Количество оконечных сессий | 16234 |

Для анализа начальных сессий составим выборку из сессий идущих следующими. И сравним их максимальный интервал с максимальной длительностью в **62.45** минут.

Количество таких начальных сессий - 1743

Оконечные сессии также сравним с максимальной длительностью 1631

Таким образом ошибочных разбиений **~ 3 374**, что составляет **~ 1%** от общего количества сессий.

#### 2. Анализ событий:

Исходя из этих данных можно определить намерения, то есть провести кластеризацию по признакам, но отсутствие ground-truth данных не позволит проверить качество этих решений.

По этой причине, было решено переключиться на задача классификации намерения пользователя, предполагая, что намерения заранее известны.

В нашем случае, в дата сете присутствует как минимум одно чёткое намерение - покупка. Далее будет рассматриваться задача классификации намерения по 2-м классам "Купить" и "Не купить"

Для классификации сессий нужно подобрать набор признаков.

Пользователь может взаимодействовать с:

- одним товаром
- с несколькими товарами:

- одной категории
- разных категорий

Категорию товара можно найти в *item\_properties*, а «близость» категорий можно определить как количество величину кратчайшего пути, если представить *category\_tree* как граф.

Так мы можем представить 3 элементарных действия:

- Посмотреть view
- Отложить addtocard
- Купить *transaction*

Намерение в общем случае не тоже самое что действие. Но в нашем случае ("Купить" и "Не купить") оно безусловно выражается в действии transaction. Таким образом если в сессии есть событие transaction, то по нашей гипотезе все предыдущие события должны выражать намерение "Купить". На данном допущении будет строится дальнейшие исследование.

### Построение модели:

### 1. Классификация намерений по признакам:

https://github.com/dirtymew/netology-project-ds1/blob/master/Project\_data\_for\_model.ipynb

Для проверки гипотезы о намерении - предлагается построить классификатор отличающий намерение "Купить" от других по признаковому описанию сессии.

Составим набор признаков для классификации, предварительно очистив сессии с покупками от событий следующими за *transaction*.

Далее определим категорию объектов исходя из данных в category\_tree и item\_properties.

Очистим сессии от последнего события – сохранив его как целевое значение, а сгруппировав их по id сессии, получим следующие признаки для классификации:

```
count - количество событий items_unique - количество уникальных объектов sessions_len - длительность сессий ssid_type - тип сессии(короткая, средняя, длинная) delta_mean - средние значение интервалов между событиями categories - количество уникальных категорий объектов event_type_nu - категориальный признак 0-если в сессии один тип события, 1-если несколько dist1_mean - среднее расстояний категорий объектов в сессии dist1_max - максимальное расстояний категорий объектов dist1_sum - сумма расстояний категорий объектов target - была ли покупка в сессии
```

https://github.com/dirtymew/netology-project-ds1/blob/master/Project\_transaction\_classifier.ipynb

### Заметим что классы несбалансированные:



Рис.5 Гистограмма распределения классов

Необходимо сбалансировать выборку, иначе модель хорошо обучиться только на объектах одного класса.

Разделим выборку на train/test с сохранением баланса между классами.

Проведём oversampling train сета, а test оставим без изменений [2].

Стратегия балансировки - Naive random over-sampling - суть которой случайное копирование с перемещением строк в выборке.

Полученное распределение классов в обучающей выборке:

| класс 0 | 236750 |
|---------|--------|
| класс 1 | 236750 |

Моделью для классификации был выбран ансамбль алгоритмов *Random Forest* библиотеки *scikit-learn* с подбором параметров по сетке и оценкой качества по 'f1'. [1]

Деревья решений просты в интерпретации и удобны в использовании. Это сильные алгоритмы, но склонные к переобучению.

Параметры подбираемые по сетке:

```
param_grid = {'n_estimators': [ 20, 50, 150, 500], 'max_features': [ 3, 5, 7, 10]}
```

Кросс-валидация:

```
StratifiedKFold(n_splits=5, random_state=None, shuffle=True)
(n_jobs=-1,oob_score=True,random_state = 42,verbose=0)
```

Параметры "лучшего классификатора":

#### Метрики качества

Обучим модель и предскажем намерения для test сета и оценим качество по метрикам.



Рис.6 Матрица ошибок классификации

Доля правильных ответов алгоритма:

$$accuracy = \frac{TP + TN}{TP + TN + FP + FN}$$

accuracy - **0.967** 

В нашем случае выборка несбалансированная и оценивать качество модели по ассuracy не правильно.

Например если в предсказанной выборке все значения будут 0-класса то:

$$accuracy = \frac{TP + TN}{TP + TN + FP + FN} = \frac{59188 + 0}{59188 + 0 + 0 + 2107} = 0,966$$

Поэтому ориентироваться нужно на точность

$$precision = \frac{TP}{TP + FP}$$

и полноту

$$recall = \frac{TP}{TP + FN}$$

Precision - это долю объектов определённых классификатором действительно являющимися объектами этого класса

Recall - долю объектов определённого классификатором класса из всех объектов класса определённого алгоритмом.

 $\Phi$ -мера f1- это среднее гармоническое precision и recall

$$F_1 = (1+b^2)*\frac{precision*recall}{b^2*precision+recall}$$
 
$$edeb=1$$

Precision, Recall, F1 не зависят от баланса классов.

Для оценки качества модели была выбрана f1, так как неясно что важнее для данной задачи точность или полнота.

Ниже приведены результаты классификации:[2]

|             | Precision | recall | f1-score | support |
|-------------|-----------|--------|----------|---------|
| class 0     | 0.98      | 0.98   | 0.98     | 59188   |
| class 1     | 0.52      | 0.54   | 0.53     | 2107    |
| avg / total | 0.97      | 0.97   | 0.97     | 61295   |



Puc.7 precision – recall кривая

Рис.8 ROC кривая

Видно что намерение "Купить" можно выделить.

Определяющими факторами являются:



Рис.9 Важность признаков

Данный факт наводит на мысль, что анализ последовательности действий event над товарами *itemid* должен дать хорошие результаты.

https://github.com/dirtymew/netology-project-ds1/blob/master/Project\_rnn.ipynb

### Гипотеза №2 о намерении:

Предположим что намерение пользователя отражаются в его действиях, то в нашем слу чае они должны выражаться в последовательности элементарных действий (actions) с товарами (items) совершенных пользователем (visitorid).

Для анализа последовательности существует несколько алгоритмов - основанные на Марковских цепях или на рекуррентных нейронный сетях (RNN). Особенность этих методов в том, что они учитываю зависимость следующего состояния от предыдущего.[9]

Для данной задачи был выбран вариант использования нейронной сети, так как считается что, они способны находить более глубокие зависимости в последовательностях чем Марковские цепи. [9]Но у него есть и свои недостатки - результаты работы сложно объяснить в отличии от Марковских цепей, а также высокие накладные расходы на обучение модели.[9]

В качестве рекуррентных слоёв сети стоит использовать слои *LSTM* или *GRU*, так как они обладают свойством долгосрочной памяти, а проблемы долговременных зависимостей и *vanishing/exploiding gradient* проявляются в меньшей степени, чем в классической *RNN*.[3][9]

Для предсказания последующих действий будем использовать следующее представление сессии:

Последовательность:

$$(event_i, item_i) \longrightarrow (event_{i+1}, item_{i+1}) \longrightarrow \cdots \longrightarrow (event_{n-1}, item_{n-1})$$

будет использоваться как данные - Х

 $(event_n)$  - как целевое значение.

Сгруппируем данные в сессии, таким образом чтобы получить 2 массива actions и items, и заменим строковые значение action  $\{view, addtocard, transaction\}$  на  $\{0,1,2\}$ , itemid оставим без изменений.

Также как и при классификации моделью Random Forest, перед обучение необходимо сбалансировать выборку, Oversampling будем проводить по той же стратегии[2]

Реализации *RNN* в *Keras* не поддерживают динамическую длину последовательности, соответственно необходимо выбрать максимальную длину и привести все сессии к ней. [7]

В дата сете есть очень длинных последовательностей - для ускорения процесса обучения стоит или их удалить из выборки или удалить часть событий с начала последовательности.

Максимальную длину последовательности определим следующим образом – определим 0.99 квантиль длин сессий. Для обучающей выборки – это 99% сессий с покупкой имею меньше **36** событий.

У сессий с длинной больше 36, удалим часть событий с начала сессии.



Рис.10 Гистограмма распределения количества событий в сессии

Модель будет обучаться на (n-1) элементах массива и предсказывать следующие действие (либо класс намерения).

Тут стоит отметить, что если использовать action\_n как целевую переменную, то по факту алгоритм будет обучаться на предсказание следующего действия, в нашем случае можно сразу предсказывать намерение и отнести сессии окончившиеся на 0, 1 кодному классу.

## Архитектура сети:

Входными параметрами сети являются 2 массива вида:

actions = [0,1...1,0...] items=[422417,422417,...,220109..]

Далее следует преобразование элементов обоих массивов - *Embedding* . На этом слое происходит преобразование последовательности *actions* и *items* в последовательность вектор латентных признаков.

Размерность векторов подбирается вручную. [4,5,6]

В результате по сути получаются 2 матрицы размерностью:

количество типов событий/объектов Х максимальная длинны последовательности



Puc.11 Embedding действия и объектов.

Далее производится с полученных векторов: [4,5,6]



Рис.12 Конкатенация векторов действия и объектов.

и результат отправляется в рекуррентные слои.

Будем использовать 2 слоя *GRU* с регуляризацией рекуррентных слоёв *l2* и *dropout*.[4,5] Параметры регуляризации и dropout подбираются вручную.

Затем идут полносвязные слои, их может быть несколько, но выход последнего слоя имеет размерность соответствующую количеству предсказываемых классов, с функцией активации softmax.[3]

Функция потерь - 'categorial\_crossentropy' [5,3]

Функция оптимизации - 'adam' [5,7]

Метрика качества - 'categorical\_accuracy' [5]

#### Полная схема сети:

| Layer (type)                                                                  | Output | Shape    | Param #    | Connected to                         |
|-------------------------------------------------------------------------------|--------|----------|------------|--------------------------------------|
| actions (InputLayer)                                                          | (None, | 60)      | 0          |                                      |
| items (InputLayer)                                                            | (None, | 60)      | 0          |                                      |
| embedding_1 (Embedding)                                                       | (None, | 60, 100) | 300        | actions[0][0]                        |
| embedding_2 (Embedding)                                                       | (None, | 60, 100) | 14718400   | items[0][0]                          |
| concatenate_1 (Concatenate)                                                   | (None, | 60, 200) |            | mbedding_1[0][0]<br>mbedding_2[0][0] |
| gru_1 (GRU)                                                                   | (None, | 60, 200) | 240600 con | catenate_1[0][0]                     |
| gru_2 (GRU)                                                                   | (None, | 200)     | 240600     | gru_1[0][0]                          |
| dense_1 (Dense)                                                               | (None, | 4)       | 804        | gru_2[0][0]                          |
| dense_2 (Dense)                                                               | (None, | 2)       | 10         | dense_1[0][0]                        |
| activation_1 (Activation)                                                     | (None, | 2)       | 0          | dense_2[0][0]                        |
| Total params: 15,200,714 Trainable params: 15,200,714 Non-trainable params: 0 |        |          |            |                                      |

# Обучение модели:

Нужно определить количество эпох обучения и  $batch\_size$  и можно обучать модель. Каждая эпоха занимает  $\sim 400$  секунд - с вычислениями на GPU GeForce GTX 1060 6GB

Так как на выходе получаются вероятности, то для определения классов из вероятностей необходимо использовать функцию *argmax*.

Оценим качество предсказаний:



Рис.13 Матрица ошибок классификации

# Отчет по классификации

|             | precision | recall | f1-score | support |
|-------------|-----------|--------|----------|---------|
| 0           | 0.99      | 0.96   | 0.98     | 59188   |
| 1           | 0.42      | 0.83   | 0.56     | 2107    |
| avg / total | 0.97      | 0.95   | 0.96     | 61295   |



Puc.14 precision – recall кривая

Рис.15 ROC кривая

Качество сравнимо с  $Random\ Forest:$  - F1 примерно равно, точность ниже, но выше полнота.

#### Результаты

https://github.com/dirtymew/netology-project-ds1/blob/master/Project\_results.ipynb

Для предсказания намерения на отложенной выборке сначала необходимо подготовить данные: разделить на сессии, выделить последовательности [(action,items)], удалить события после покупки и привести последовательности у одной длине. Предварительно стоит доучить сеть на данных использовавшихся для тестирования.

Ниже приведены результаты:



Рис.16 Матрица ошибок классификации



Puc.17 precision – recall кривая

Рис.18 ROC кривая

|             | precision | recall | f1-score | support |
|-------------|-----------|--------|----------|---------|
| 0           | 0.99      | 0.97   | 0.98     | 73455   |
| 1           | 0.45      | 0.66   | 0.53     | 2769    |
| avg / total | 0.97      | 0.96   | 0.96     | 76224   |

Качество на отложенной выборке немного ниже чем при обучении.

### Выводы

Обе выбранных модели показываются сравнимое качество работы. Но не высокое качество предсказаний возможно обусловлено слабыми зависимостями между выделенными признаками и предсказываемым намерением.

Если сравнивать модели то, к достоинствам Random Forest можно отнести:

- Накладные расходы на вычисления ниже чем у RNN
- Простота в реализации и подборе параметров
- Объяснимость результатов

Недостатки следующие:

- Сложность в подготовке данных и больше признаков чем у RNN
- Не учитывает последовательности
- Сложнее доучивать модель на новых данных

В защиту *RNN* также можно отнести относительно малое количество данных для обучения в данном дата сете.

На мой взгляд решение задачи методом анализа последовательности более перспективно. Модели на основе рекуррентных сетей хорошо для этого подходят.

#### Дальнейшие пути улучшения:

Попробовать различные архитектуры рекуррентных сетей в комбинации с различными параметрами и модели на основе скрытых Марковский цепей (НММ).

Попробовать добавить больше признаков для обучения модели - например добавить *Embedding* для пользователя - это даст сети историю пользователя.

### Используемые материалы

- [1] Documentation of scikit-learn (http://scikit-learn.org/stable/documentation.html)
- [2] Data Mining for Imbalanced Datasets: An Overview. (2010) Chawla, Nitesh V. (https://www3.nd.edu/ $\sim$ dial/publications/chawla2005data.pdf)
- [3] Deep Learning. (2016) Ian Goodfellow, Yoshua Bengio, Aaron Courville (http://www.deeplearningbook.org/contents/rnn.html)
- [4] Tensorflow Documentation (https://www.tensorflow.org/api\_docs/python/)
- [5] Keras Documentation (https://keras.io)
- [6] Deep matrix factorization using Apache MXNet. (2017) Jacob Schreiber (https://www.oreilly.com/ideas/deep-matrix-factorization-using-apache-mxnet)
- [7] An overview of gradient descent optimization algorithms. Sebastian Ruder (2017) Sebastian Ruder (https://arxiv.org/pdf/1609.04747.pdf)
- [8] Improving Recommender Systems with an Intention-based Algorithm Switching Strategy. (2017) Fanjuan Shi, Chirine Ghedira [https://www.researchgate.net/publication/316035689 Improving Recommender Systems with an Intention-based Algorithm Switching Strategy)
- [9] A Critical Review of Recurrent Neural Networks for Sequence Learning (2015) Zachary C. Lipton , John Berkowitz (https://arxiv.org/pdf/1506.00019.pdf)