MAT137 Lecture 51 — Sequences

Before next class:

Watch videos 11.3, 11.4

Warm up

Write a formula for the general term of these sequences

(A)
$$\{a_n\}_{n=0}^{\infty} = \{1, 4, 9, 16, 25, \dots\}$$

(B)
$$\{b_n\}_{n=1}^{\infty} = \{1, -2, 4, -8, 16, -32, \dots\}$$

(C)
$$\{c_n\}_{n=1}^{\infty} = \left\{\frac{2}{1!}, \frac{3}{2!}, \frac{4}{3!}, \frac{5}{4!}, \dots\right\}$$

(D)
$$\{d_n\}_{n=1}^{\infty} = \{1, 4, 7, 10, 13, \dots\}$$

Sequences vs functions – convergence

For any function f with domain $[0, \infty)$, we define a sequence as $a_n = f(n)$. Let $L \in \mathbb{R}$. Which of these implications is true?

(A) IF
$$\lim_{x\to\infty} f(x) = L$$
, THEN $\lim_{n\to\infty} a_n = L$.

(B) IF
$$\lim_{n\to\infty} a_n = L$$
, THEN $\lim_{x\to\infty} f(x) = L$.

(C) IF
$$\lim_{n\to\infty} a_n = L$$
, THEN $\lim_{n\to\infty} a_{n+1} = L$.

Definition of limit of a sequence

Let $\{a_n\}_{n=0}^{\infty}$ be a sequence. Let $L \in \mathbb{R}$.

Which statements are equivalent to "
$$\{a_n\}_{n=0}^{\infty} \longrightarrow L$$
"?

(A)
$$\forall \varepsilon > 0, \ \exists n_0 \in \mathbb{N}, \ \forall n \in \mathbb{N}, \quad n \geq n_0 \implies |L - a_n| < \varepsilon.$$

(B)
$$\forall \varepsilon > 0, \ \exists n_0 \in \mathbb{N}, \ \forall n \in \mathbb{N}, \quad n > n_0 \implies |L - a_n| < \varepsilon.$$

(C)
$$\forall \varepsilon > 0, \ \exists n_0 \in \mathbb{R}, \ \forall n \in \mathbb{N}, \quad n \geq n_0 \implies |L - a_n| < \varepsilon.$$

(D)
$$\forall \varepsilon > 0, \exists n_0 \in \mathbb{N}, \forall n \in \mathbb{R}, \quad n \geq n_0 \implies |L - a_n| < \varepsilon.$$

(E)
$$\forall \varepsilon > 0, \ \exists n_0 \in \mathbb{N}, \ \forall n \in \mathbb{N}, \quad n \geq n_0 \implies |L - a_n| \leq \varepsilon.$$

(F)
$$\forall \varepsilon \in (0,1), \exists n_0 \in \mathbb{N}, \forall n \in \mathbb{N}, \quad n \geq n_0 \implies |L-a_n| < \varepsilon.$$

(G)
$$\forall \varepsilon > 0, \ \exists n_0 \in \mathbb{N}, \ \forall n \in \mathbb{N}, \quad n \geq n_0 \implies |L - a_n| < \frac{1}{\varepsilon}.$$

(H)
$$\forall \mathbf{k} \in \mathbb{Z}^+$$
, $\exists n_0 \in \mathbb{N}$, $\forall n \in \mathbb{N}$, $n \geq n_0 \implies |L - a_n| < \mathbf{k}$.

(I)
$$\forall \mathbf{k} \in \mathbb{Z}^+, \ \exists n_0 \in \mathbb{N}, \ \forall n \in \mathbb{N}, \quad n \geq n_0 \implies |L - a_n| < \frac{1}{k}.$$

MAT137 Lecture 52 — Properties of Sequences

Before next class:

Watch videos 11.5, 11.6

Sequences vs functions - monotonicity and boundness

For any function f with domain $[0, \infty)$, we define a sequence as $a_n = f(n)$. Which of these implications is true?

- (A) IF f is increasing, THEN $\{a_n\}_{n=0}^{\infty}$ is increasing.
- (B) IF $\{a_n\}_{n=0}^{\infty}$ is increasing, THEN f is increasing.
- (C) IF f is bounded, THEN $\{a_n\}_{n=0}^{\infty}$ is bounded.
- (D) IF $\{a_n\}_{n=0}^{\infty}$ is bounded, THEN f is bounded.

Examples

Construct 8 examples of sequences. If any of them is impossible, cite a theorem to justify it.

		convergent	divergent
monotonic	bounded		
	unbounded		
not monotonic	bounded		
	unbounded		

A sequence defined by recurrence

Consider the sequence $\{R_n\}_{n=0}^{\infty}$ defined by

$$egin{cases} R_0 = 1 \ orall n \in \mathbb{N}, \qquad R_{n+1} = rac{R_n + 2}{R_n + 3} \end{cases}$$

Compute R_1 , R_2 , R_3 .

True or False - convergence, monotonicity, and boundedness

- (A) If a sequence is convergent, then it is bounded above.
- (B) If a sequence is bounded, then it is convergent
- (C) If a sequence is convergent, then it is eventually monotonic.
- (D) If a sequence is positive and converges to 0, then it is eventually monotonic.
- (E) If a sequence diverges to ∞ , then it is eventually monotonic.
- (F) If a sequence diverges, then it is unbounded.
- (G) If a sequence diverges and is unbounded above, then it diverges to ∞ .
- (H) If a sequence is eventually monotonic, then it is either convergent, divergent to ∞ , or divergent to $-\infty$.

Convergence and divergence

Let $\{a_n\}_{n=0}^{\infty}$ be a sequence.

Write the formal definition of the following concepts:

(A) $\{a_n\}_{n=0}^{\infty}$ is convergent.

(B) $\{a_n\}_{n=0}^{\infty}$ is divergent.

(C) $\{a_n\}_{n=0}^{\infty}$ is divergent to ∞ .

MAT137 Lecture 53 — Theorems about Sequences

Before next class:

Watch videos 11.7, 11.8

True or False - Rapid fire

- $(A) (convergent) \implies (bounded)$
- (B) (convergent) \Longrightarrow (monotonic)
- (C) (convergent) \Longrightarrow (eventually monotonic)
- (D) (bounded) \Longrightarrow (convergent)
- $(\mathsf{E}) \ (\mathsf{monotonic}) \ \Longrightarrow \ (\mathsf{convergent})$
- $(\mathsf{F}) \; (\mathsf{bounded} + \mathsf{monotonic}) \implies (\mathsf{convergent})$
- (G) (divergent to ∞) \Longrightarrow (eventually monotonic)
- (H) (divergent to ∞) \Longrightarrow (unbounded above)
- (I) (unbounded above) \Longrightarrow (divergent to ∞)

Proof of Theorem 3

Write a proof for the following Theorem

Theorem 3

Let $\{a_n\}_{n=0}^{\infty}$ be a sequence.

- IF $\{a_n\}_{n=0}^{\infty}$ is increasing AND unbounded above,
- THEN $\{a_n\}_{n=0}^{\infty}$ is divergent to ∞

Proof of Theorem 3

Write a proof for the following Theorem

Theorem 3

Let $\{a_n\}_{n=0}^{\infty}$ be a sequence.

- IF $\{a_n\}_{n=0}^{\infty}$ is increasing AND unbounded above,
- THEN $\{a_n\}_{n=0}^{\infty}$ is divergent to ∞
- (A) Write the definitions of "increasing", "unbounded above", and "divergent to $\infty \lq$
- (B) Using the definition of what you want to prove, write down the structure of the formal proof.
- (C) Do some rough work if necessary.
- (D) Write a formal proof.

Proof feedback

- (A) Does your proof have the correct structure?
- (B) Are all your variables fixed (not quantified)? In the right order? Do you know what depends on what?
- (C) Is the proof self-contained? Or do I need to read the rough work to understand it?
- (D) Does each statement follow logically from previous statements?
- (E) Did you explain what you were doing? Would your reader be able to follow your thought process without reading your mind?

Critique this proof - #1

•
$$\forall M \in \mathbb{R}, \exists n_0 \in \mathbb{N}, \forall n \in \mathbb{N}, n \geq n_0 \implies x_n > M$$

• M is not an upper bound: $\exists n_0 \in \mathbb{N} \text{ s.t. } x_{n_0} > M$

$$\bullet \quad n \geq n_0 \implies x_n \geq x_{n_0} > M$$

Critique this proof - #2

• WTS $a_n \to \infty$. This means: $\forall M \in \mathbb{R}, \ \exists n_0 \in \mathbb{N}, \ \forall n \in \mathbb{N}, \quad n \geq n_0 \implies x_n > M$

• bounded above: $\exists M \in \mathbb{R}, \ \forall n \in \mathbb{N}, \ x_n \leq M$

• negation: $\forall M \in \mathbb{R}, \ \exists n \in \mathbb{N}, \ x_n > M$

• $\forall n \in \mathbb{N}$, take $n = n_0$.

MAT137 Lecture 54 — The Big Theorem

Before next class:

Watch videos 12.1, 12.4, 12.5

Calculations

(A)
$$\lim_{n\to\infty}\frac{n!+2e^n}{3n!+4e^n}$$

(B)
$$\lim_{n\to\infty} \frac{2^n + (2n)^2}{2^{n+1} + n^2}$$

(C)
$$\lim_{n\to\infty} \frac{5n^5 + 5^n + 5n!}{n^n}$$

True or False – The Big Theorem

Let $\{a_n\}_{n=0}^{\infty}$ and $\{b_n\}_{n=0}^{\infty}$ be positive sequences.

(A) IF
$$a_n << b_n$$
, THEN $\forall m \in \mathbb{N}$, $a_m < b_m$.

(B) IF
$$a_n << b_n$$
, THEN $\exists m \in \mathbb{N} \text{ s.t. } a_m < b_m$.

(C) IF
$$a_n << b_n$$
, THEN $\exists n_0 \in \mathbb{N}$ s.t. $\forall m \in \mathbb{N}, m > n_0 \implies a_m < b_m$.

True or False – The Big Theorem

Let $\{a_n\}_{n=0}^{\infty}$ and $\{b_n\}_{n=0}^{\infty}$ be positive sequences.

(A) IF
$$a_n << b_n$$
, THEN $\forall m \in \mathbb{N}$, $a_m < b_m$.

(B) IF
$$a_n << b_n$$
, THEN $\exists m \in \mathbb{N} \text{ s.t. } a_m < b_m$.

(C) IF
$$a_n << b_n$$
, THEN $\exists n_0 \in \mathbb{N}$ s.t. $\forall m \in \mathbb{N}, m \geq n_0 \implies a_m < b_m$.

(D) IF
$$\forall m \in \mathbb{N}, a_m < b_m$$
, THEN $a_n << b_n$.

(E) IF
$$\exists m \in \mathbb{N} \text{ s.t. } a_m < b_m$$
, THEN $a_n << b_n$.

(F) IF
$$\exists n_0 \in \mathbb{N} \text{ s.t. } \forall m \in \mathbb{N}, \ m \geq n_0 \implies a_m < b_m$$
, THEN $a_n << b_n$.

Refining the Big Theorem - 1

(A) Construct a sequence $\{u_n\}_n$ such that

$$\begin{cases} \forall a < 0, & n^a \ll u_n \\ \forall a \geq 0, & u_n \ll n^a \end{cases}$$

(B) Construct a sequence $\{v_n\}_n$ such that

$$\begin{cases} \forall a \leq 0, & n^a \ll v_n \\ \forall a > 0, & v_n \ll n^a \end{cases}$$

Refining the Big Theorem - 2

(A) Construct a sequence $\{u_n\}_n$ such that

$$\begin{cases} \forall a < 2, & n^a \ll u_n \\ \forall a \ge 2, & u_n \ll n^a \end{cases}$$

(B) Construct a sequence $\{v_n\}_n$ such that

$$\begin{cases} \forall a \leq 2, & n^a \ll v_n \\ \forall a > 2, & v_n \ll n^a \end{cases}$$