













### **Hierarchical decomposition**

- ☐ Planning solves higher level problems based on aggregate data
- ☐ The planning decisions are then used as constraints (e.g., due dates) for the scheduling
  - May be multiple independent scheduling problems
  - Planning is decoupled to scheduling problems

João Miguel da Costa Sousa

333



#### Supply chain settings and configurations

#### **□** Continuous manufacturing industries

- Main inventory/products are finely divisible
- \*Examples: steel, shampoo, paper

#### **□** Discrete manufacturing industries

- Main inventory/products are individually countable
- Examples: cars, computers, consumer electronics
- Scheduling problems are different.

João Miguel da Costa Sousa

---



# Continuous: (I-a) main processing

- ☐ Raw materials are transformed to intermediate products
- ☐ Machines have high start-up/shutdown costs and
- ☐ High changeover costs
- ☐Often fixed batch sizes
- ☐ Usually run 24/7

João Miguel da Costa Sousa

335





#### **Continuous: (I-b) finishing**

- ☐ Products of main processes are "specialized"
  - Cut, bent, extruded, painted, printed, ...
- ☐ Often these are commodities
  - Many clients
  - Mix of make-to-stock and make-to-order
- ☐ Due dates, sequence dependent changeovers, and inventory management are important

João Miguel da Costa Sousa

337



#### Discrete: (II-a) primary conversion

- ☐ Similar to finishing in continuous
  - Stamping, bending, cutting
- □ Process is generally relatively simple
- Output is often a part
  - Car body part, computer case, ...
- ☐ Schedule is often integrated with downstream processes

João Miguel da Costa Sousa



# Discrete: (II-b) main production

- ☐ Many different operations of many tools
  - 100 step process for semiconductors
- ☐ Machines are very expensive
- ☐ Often organized as a job shop
- ☐ Each order has its own route, quantity, due date
- ☐ Sequence dependent changeovers

João Miguel da Costa Sousa



339



### Discrete: (II-c) assembly

- ☐Put different parts together
- ☐ Typically does not alter the shape or form of any individual part
- ☐ Machines are cheap but material handling is important; can include robotic equipment.
- Assembly lines
  - · cars or consumer electronics
- ☐ Due dates, changeovers, sequencing, ...

João Miguel da Costa Sousa

240



# **Operating characteristics**

| Sector                   | Process                 | Time horizon | Clock speed     | Differentiation |
|--------------------------|-------------------------|--------------|-----------------|-----------------|
| Continuous:<br>Main      | Planning                | Long-medium  | Low             | Very low        |
| Continuous:<br>Finishing | Planning/<br>scheduling | Medium-short | Medium/<br>High | Medium/low      |
| Discrete:<br>Conversion  | Planning/<br>scheduling | Medium-short | Medium          | Very low        |
| Discrete: Main           | Planning/<br>scheduling | Medium-short | Medium          | Medium/low      |
| Discrete:<br>Assembly    | Scheduling              | Short        | High            | High            |

João Miguel da Costa Sousa



# Model types and solution techniques

| Sector                | Models                           | Solution Technique                                                        |
|-----------------------|----------------------------------|---------------------------------------------------------------------------|
| Continuous: Main      | Lot-sizing, cyclic scheduling    | Mixed Integer Programming                                                 |
| Continuous: Finishing | Single machine, parallel machine | Batch scheduling, inventory<br>rules and dispatch rules                   |
| Discrete: Conversion  | Single machine, parallel machine | Batch scheduling, dispatching rules, CP                                   |
| Discrete: Main        | Flow shop, job shop              | IP, shifting bottleneck,<br>dispatching, CP, LS                           |
| Discrete: Assembly    | Assembly line                    | Grouping and Spacing, (meta)-<br>heuristics, make-to-order/JIT,<br>CP, LS |

João Miguel da Costa Sousa





# **Medium-term planning**

- ☐ Minimize total cost over all stages
- □Costs:
  - Production costs
  - Holding or storage costs
  - Transportation costs
  - Tardiness costs
  - Non-delivery costs
  - Costs for increasing resource capacities (e.g. third shifts)
  - Costs for increasing storage capacities

João Miguel da Costa Sousa



## Medium-term aggregation

- ☐ Time abstraction
  - 1 unit = 1 week or 1 month (not 1 day)
- ☐ Product abstraction
  - Work at product "family" level
  - ❖Example: Tuborg beer, not 6-pack, 12, 24, keg, ...
- □Cost/job/capacity abstraction
  - Average processing times
  - Sequence dependencies ignored
  - Factory treated as a single resource

João Miguel da Costa Sousa

345



João Miguel da Costa Sousa



































### **Short term scheduling**

- ☐ Production schedule at factories
  - what products on what machines and when?
- ☐ Transportation schedule between factories, DC, and customers
  - · what products on what trucks and when?

João Miguel da Costa Sousa

363



## **Short term scheduling**

- □ For each week the number of items of each family that need to be produced is known (from  $x_{iji}$ )
- ☐ However, that number is based on an estimate of the processing time required:
- In reality each product has a process plan including release date, due date, quantity, and setups.

João Miguel da Costa Sousa

\_\_\_



# "Normal" scheduling problem?

- □ Like in manufacturing or service problems?
- ☐ But ... we have a **modeling problem:**
- ➤ How much of the "real world" is represented?
- ☐ Model can be single machine, parallel machines job shop or flexible flow shop depending on the focus
  - can be only on the bottleneck machine(s)

João Miguel da Costa Sousa

365



#### Short term model with parallel machines

■ minimize



Weighting parameters

Setup cost if job k follows job j on machine i

**□** Very hard problem!

João Miguel da Costa Sousa

366



#### Single machine

- ☐ Schedule really depends on a single bottleneck machine
  - if the bottleneck schedule is fixed, everything else is relatively easy
- ☐ May be a much easier problem in practice.

João Miguel da Costa Sousa

367



# **Modeling problem**

- ☐ It is an open research question of how one take a real factory (or call centre) and create a "model" of it with optimization tools
  - What's the best level of detail?
  - What can you ignore?
- ☐ Research developed at the CIS/IDMEC:
  - Objective function formulated in fuzzy terms
  - Use of meta-heuristics to solve optimization problems
  - Distributed optimization paradigm

João Miguel da Costa Sousa















## **Stages 2 and 3: Optimization**

- ☐ Placement of pallets at DC and warehouses
- ☐ Transportation to warehouses
- ☐ Transportation to customers
  - vehicle routing problem

João Miguel da Costa Sousa

375



### **Scheduling process**

- ☐ Medium term: 12 weeks
  - given demand and forecasts for products
- □ 3 MIP models solved sequentially
  - Costs: production, storage (at brewery, DC, warehouse), transportation, tardiness, non-delivery penalty, and violation of safety stock
- ☐ Each MIP is composed of 5-10 sub-problems based on products
  - Have 100 000 to 500 000 variables and 50 000 to 150 000 constraints!

João Miguel da Costa Sousa

\_\_\_



# Safety stock

- ☐ One goal is customer service
  - Usually achieved by maintaining inventory at DC and warehouses
  - Minimum inventory levels = safety stock
- ☐ A lot of safely stock → good customer service, but also high inventory costs!

João Miguel da Costa Sousa

377



#### **Short term scheduling**

- ☐ Based on medium term schedule, short term scheduling plans the actual production for one week
  - More detailed model of resource (i.e., sequence dependent setup costs)
  - Use genetic algorithm or constraint programming
- ☐ Transportation scheduling

João Miguel da Costa Sousa

371



#### **Overall process**

- ☐ Decompositions are crucial
  - medium term/short term
  - product-based
  - transportation scheduling decoupled from production scheduling
- ☐ Medium term plan is re-done every day using up-todate information: takes 10 to 12 hours!
- ☐ Then short term scheduling is re-done
- ☐ See slides of APO-SAP of this example.

João Miguel da Costa Sousa