

Courseware

Updates & News Calendar Wiki Discussion Progress

## L3 PROBLEM 1 (10/10 points)

In this problem, we're going to calculate some probabilities of dice rolls. Imagine you have two fair four-sided dice (if you've never seen one, here's a picture. The result, a number between 1 and 4, is displayed at the top of the die on each of the 3 visible sides). 'Fair' here means that there is equal probability of rolling any of the four numbers.

You can answer the following questions in one of two ways - you can calculate the probability directly, or, if you're having trouble, you can simply write out the entire sample space for the problem. A sample space is defined as a listing of all possible outcomes of a problem, and it can be written in many ways - a tree or a grid are popular options. For example, here is a diagram of the sample space for 3 coin tosses.

Some vocabulary before we begin: an **event** is a subset of the sample space, or, a collection of possible outcomes. A **probability function** assigns an event, *A*, a probability *P*(*A*) that represents the likelihood of event *A* occurring.

As an example, let's say we flip a coin. Define the event H as the event that the coin comes up heads. We can assign the probability P(H) = 1/2; the likelihood that event H occurs.

The following problems will ask for the probability that a given event occurs.

| 1. | What is the size of the sam | nple space for one roll of a four sided di | e? |
|----|-----------------------------|--------------------------------------------|----|
|    | 4                           |                                            |    |

2. What is the size of the sample space for two rolls of a four sided die?

| 16 |  |
|----|--|
|----|--|

3. Assume we roll 2 four sided dice. What is P({sum of the rolls is even})? Answer in reduced fraction form - eg 1/5 instead of 2/10.

| 1/2 |
|-----|
|-----|

4. Assume we roll 2 four sided dice. What is P({rolling a 2 followed by a 3})? Answer in reduced fraction form - eg 1/5 instead of 2/10.

| 1/16 |  |  |
|------|--|--|
|------|--|--|

5. Assume we roll 2 four sided dice. What is P({rolling a 2 and a 3, in any order})? Answer in reduced fraction form - eg 1/5 instead of 2/10.

| 1/8 |
|-----|
|-----|

6. Assume we roll 2 four sided dice. What is P({sum of the rolls is odd})? Answer in reduced fraction form - eg 1/5 instead of 2/10.

| 1/2 |  |  |
|-----|--|--|

7. Assume we roll 2 four sided dice. What is P({first roll equal to second roll})? Answer in reduced fraction form - eg 1/5 instead of 2/10.

| 1/4                                              |                                                   |                                                 |
|--------------------------------------------------|---------------------------------------------------|-------------------------------------------------|
| 8. Assume we roll 2 four eg 1/5 instead of 2/10. | sided dice. What is P({first roll larger than sec | cond roll})? Answer in reduced fraction form -  |
| 3/8                                              |                                                   |                                                 |
| 9. Assume we roll 2 four 1/5 instead of 2/10.    | ided dice. What is P({at least one roll is equa   | ıl to 4})? Answer in reduced fraction form - eg |
| 7/16                                             |                                                   |                                                 |
| 10. Assume we roll 2 four instead of 2/10.       | sided dice. What is P({neither roll is equal to 4 | 4})? Answer in reduced fraction form - eg 1/5   |
| 9/16                                             |                                                   |                                                 |
| Check Show Answer                                |                                                   |                                                 |
| Show Discussion                                  |                                                   | <b>♂</b> New Post                               |
|                                                  |                                                   |                                                 |
|                                                  |                                                   |                                                 |
|                                                  |                                                   |                                                 |



EdX offers interactive online classes and MOOCs from the world's best universities. Online courses from MITx, HarvardX, BerkeleyX, UTx and many other universities. Topics include biology, business, chemistry, computer science, economics, finance, electronics, engineering, food and nutrition, history, humanities, law, literature, math, medicine, music, philosophy, physics, science, statistics and more. EdX is a non-profit online initiative created by founding partners Harvard and MIT.

 $\ensuremath{\mathbb{C}}$  2014 edX, some rights reserved.

Terms of Service and Honor Code

Privacy Policy (Revised 4/16/2014)

## **About & Company Info**

About

News

Contact

FAQ

edX Blog

Donate to edX

Jobs at edX

## Follow Us

Twitter

**f** Facebook

Meetup

in LinkedIn

Google+