Number of quantifier alternations in Huang and nested

1.1 **Outline**

Goal: try proof Huang and nested equal.

Method: proof for both:

Conjectured Proposition 1. Let I be an interpolant created by \$algorithm. If I contains a term t such that t has n color changes, then I has at least n quantifier alternations.

1.1.1 generally keep in mind

• Need to define all new terms here: color-changing, single-color, Φ -literal

1.2 **Preliminaries**

Quantifier alternations in I usually assumes the quantifier-alternation-minimising arrangement of quantifiers in I

Definition 2 (Color alternation col-alt). Colors Γ and Δ , term t:

$$\operatorname{col-alt}(t) \stackrel{\operatorname{def}}{=} \operatorname{col-alt}_{\perp}(t)$$

$$\begin{aligned} & \text{Let } t = f\left(t_1, \dots, t_n\right) \text{ for constant, function and variable symbols (syntax abuse)} \\ & \text{col-alt}_{\Phi}(t) = \begin{cases} & \max(\text{col-alt}_{\Phi}(t_1), \dots, \text{col-alt}_{\Phi}(t_n)) & f \text{ is grey} \\ & \max(\text{col-alt}_{\Phi}(t_1), \dots, \text{col-alt}_{\Phi}(t_n)) & f \text{ is of color } \Phi \end{cases} & \Delta \\ & 1 + \max(\text{col-alt}_{\Psi}(t_1), \dots, \text{col-alt}_{\Psi}(t_n)) & f \text{ is of color } \Psi, \Phi \neq \Psi \end{aligned}$$

Definition 3. PI_{step}° is defined just like PI_{step} but without applying any substitution. Δ

Hence $\mathrm{PI}^{\circ}_{\mathrm{step}}(\cdot)\sigma=\mathrm{PI}_{\mathrm{step}}(\cdot)$. C° is somehow the same, i.e. if $C=D\sigma$, then $C^{\circ}=D$ where σ is derived from the context.

1.3 Random thoughts

- Quantifiers are introduced for lifting variables which actually occur in the interpolant
- If term t with col-alt(t) = n enters I, we need subterm s of t with col-alt(s) = n 1 to be in I (of course colors of t and s are exactly opposite)

1.3.1 **Proof**

- Induction over $\ell_{\Delta}^{x}[PI(C) \vee C]$ and also about Γ -terms with Δ -lifting vars in that formula. Cf. -final
- ullet TODO: describe proof method with $\sigma_{(0,i)}$: which PI?
 - Factorisation: easy: just apply σ_i for all i to $PI(C) \vee C$. When done, a literal will be there twice and we can remove it without losing anything
 - Resolution: create propositional structure first.

```
Ex.: C_1: D \vee l, C_2: \neg l \vee E:
```

If we talk about properties for which it holds that if they hold for $\operatorname{PI}(C_i) \vee C_i$, $i \in \{1,2\}$, then they also hold for $A \equiv \Big((l \wedge \operatorname{PI}(C_2)) \vee (\neg l \wedge \operatorname{PI}(C_1)) \Big) \vee C^{\circ}$, then we can apply σ_i for all i to that formula.

So if we can assume it for *A* and show it for all σ_i , we get that it holds for $PI(C) \vee C$.

1.4 Proof port attempt from -final

need to show that grey occurrences are in grey literals, all grey literals end up in the interpolant!

conj: if a Δ-term t occurs in a Γ -literal in a clause C, then t occurs in a grey literal in PI(C). evidence:

- situation does not occur in Γ or Δ
- terms are only changed by unificators
- Δ and Γ -terms are not unifiable, so one of the literals has to have a variable at a grey position when a Δ -term enters a Γ -literal
- that literal has to be grey
- QED?

Conjectured Lemma 4. If a Φ -term t occurs in a Ψ -literal in a clause C, then t occurs at a grey position in PI(C).

Proof. As all grey literals of clauses involved in a refutation end up in the interpolant, it suffices to show that *t* occurs at a grey position in a grey literal.

Substitutions are applied to all variables, hence we only need to consider terms t which just enter a foreign colored literal.

TODO: propagation 1: Φ -terms vs Ψ -terms (in Ψ -literals) TODO: propagation 2: Φ -terms vs other Φ -terms (in Ψ -literals)

Induction on refutation and σ ; base case easy.

Resolution or factorisation inference ι . Let λ be a Γ -literal containing a variable u at position \hat{u} such that $u\sigma_i$ contains a Δ -term t.

If the resolved or factorised literals are grey, they become part of PI(C) and if t occurs grey there, we are done.

- Suppose the resolved literals are Γ -colored. Then IH.
- Suppose the resolved literals are Δ -colored. TODO:
- Suppose the resolved literals are grey and t does not occur at a grey position in $\lambda \sigma = \lambda' \sigma$. TODO:

Let λ' be the other resolved or factorised literal.

- Suppose λ' is Γ -colored
- Suppose λ' is grey.

Conjectured Lemma 5. Resolution or factorisation step ι from \bar{C} .

If u col-change var in $(\operatorname{PI}_{\operatorname{step}}^{\circ}(\iota,\operatorname{PI}(C_1),\ldots,\operatorname{PI}(C_n)) \vee C^{\circ})\sigma_{(0,i)}$, then u also occurs grey in that formula.

Proof. Abbreviation: $F \equiv (\operatorname{PI}_{\operatorname{step}}^{\circ}(\iota, \operatorname{PI}(C_1), \dots, \operatorname{PI}(C_n)) \vee C^{\circ})$

Induction over refutation and σ ; base case easy.

Step: Supp color change var u present in $F\sigma_{(0,i)}$. (could also say introduced, then proof would be somehow different)

Supp u not grey in $F\sigma_{(0,i-1)}$ as otherwise done. As a first step, we show that if a (not necessarily color-changing) variable v occurs in a single-colored Φ -term t[v] in $F\sigma_{(0,i)}$, then at least one of the following holds:

1. ν occurs in some single-colored Φ -term in $F\sigma_{(0,i-1)}$

 $\langle \text{var_occ_1} \rangle$ 2. there is a color-changing variable w in $F\sigma_{(0,i-1)}$ such that v occurs grey in $w\sigma_i$.

 $\langle \text{var_occ_2} \rangle$ We consider the different cases which can introduce a variable ν in a single-colored term Φ : Either it has been there before, it was introduced in a s.c. Φ -colored term, or a s.c. Φ -term containing the var is in ran(σ).

- Suppose a term t'[v] is present in $F\sigma_{(0,i-1)}$ such that $t'[v]\sigma_i = t[v]$. Then 1 is the case.
- Suppose a variable w occurs in a single-colored Φ -term in $F\sigma_{(0,i-1)}$ such that ν occurs grey in $w\sigma_i$. Suppose furthermore that 1 is not the case, i.e. ν does not occur in a s.c. Φ -term in $F\sigma_{(0,i-1)}$, as otherwise we would be done. We show that 2 is the case.

As ν occurs neither grey nor in a s.c. Φ -term in $F\sigma_{(0,i-1)}$ but occurs in $ran(\sigma_i)$, it must occur in $F\sigma_{(0,i-1)}$ and this can only be in a single-colored Ψ -term.

As by assumption ν occurs grey in $w\sigma_i$, there must be an occurrence \bar{w} of w in a resolved or factorised literal, say $\lambda\sigma_{(0,i-1)}$ such that for the other resolved literal $\lambda'\sigma_{(0,i-1)},\lambda'\sigma_{(0,i-1)}|_{\bar{w}}$ is a subterm in which ν occurs grey. But as the occurrence of ν in $\lambda'\sigma_{(0,i-1)}|_{\bar{w}}$ must be contained in a single-colored Ψ -term, so is $\lambda\sigma_{(0,i-1)}|_{\bar{w}}$, hence z occurs in a single-colored Ψ -term as well. Therefore 2 is the case.

• Suppose there is a variable z in $F\sigma_{(0,i-1)}$ such that v occurs in a single-colored Φ -term in $z\sigma_i$. Then $z\sigma_i$ occurs in $F\sigma_{(0,i-1)}$, but this is a witness for 1.

Now recall that we have assumed u to be a color-changing variable in $F\sigma_{(0,i)}$. Hence it occurs in a single-colored Γ -term as well as in a single-colored Δ -term. By the reasoning above, this leads to two case:

- In $F\sigma_{(0,i-1)}$, u occurs both in some single-colored Γ -term as well as in some single-colored Δ -term. Then we get the result by the induction hypothesis and the fact that $u \notin \text{dom}(\sigma_i)$ as u does occur in $F\sigma_{(0,i)}$.
- Otherwise for some color Φ , u does not occur in a single-colored Φ -term in $F\sigma_{(0,i-1)}$. Then case 2 above must hold and there is some color-changing variable w in $F\sigma_{(0,i-1)}$ such that u occurs grey in $w\sigma_{(0,i)}$. But then by the induction hypothesis, w occurs grey in $F\sigma_{(0,i-1)}$ and hence u occurs grey in $F\sigma_{(0,i)}$.

Conjectured Lemma 6. *If* $PI(C) \lor C$ *contains a maximal colored occurrence of a* Γ *-term* t[s] *containing* Δ *-term s, then s occurs grey in* $PI(C) \lor C$.

Proof. Note that it suffices to show that at the step where s is introduced as subterm of t[s], s occurs grey in $PI(C) \lor C$ as any later modification by substitution is applied to both occurrences s, so they stay equal throughout the remaining derivation. TODO: what if it's in PI(C) and it disappears due to not being a colored literal?

Induction over π and σ .

Base case: √

Step: Resolution or factorisation inference ι , $mgu(\iota) = \sigma = \sigma_1 \cdots \sigma_n$ The term t[s] is created by one of the following two ways:

- A variable u occurs in $(\operatorname{PI}_{\operatorname{step}}^{\circ}(\iota,\operatorname{PI}(C_1),\operatorname{PI}(C_2))\vee C^{\circ})\sigma_{(0,i-1)}$ such that $u\sigma_i=t[s]$. Then u occurs in a resolved or factorised literal $\lambda\sigma_{(0,i-1)}$ at \hat{u} such that at the other resolved or factorised literal $\lambda'\sigma_{(0,i-1)},\lambda'\sigma_{(0,i-1)}|_{\hat{u}}=t[s]$. Then the condition is present at $(\operatorname{PI}_{\operatorname{step}}^{\circ}(\iota,\operatorname{PI}(C_1),\operatorname{PI}(C_2))\vee C^{\circ})\sigma_{(0,i-1)}$ and we get the result by the induction hypothesis.
- Note that we only consider maximal colored terms. Let t[u] be a maximal colored Γ -term in $(\operatorname{PI}_{\operatorname{step}}^{\circ}(\iota,\operatorname{PI}(C_1),\operatorname{PI}(C_2))\vee C^{\circ})\sigma_{(0,i-1)}$ such that in the tree-representation of t[u], the path from the root to u does not contain a node labelled with a Δ -symbol.

Suppose that u occurs grey in $(\operatorname{PI}^{\circ}_{\operatorname{step}}(\iota,\operatorname{PI}(C_1),\operatorname{PI}(C_2))\vee C^{\circ})\sigma_{(0,i-1)}$. Then s occurs grey in $(\operatorname{PI}^{\circ}_{\operatorname{step}}(\iota,\operatorname{PI}(C_1),\operatorname{PI}(C_2))\vee C^{\circ})\sigma_{(0,i)}$ and we are done.

Now suppose that u does not occur grey in $(\operatorname{PI}_{\operatorname{step}}^{\circ}(\iota,\operatorname{PI}(C_1),\operatorname{PI}(C_2)) \vee C^{\circ})\sigma_{(0,i-1)}$.

TODO: need color changing variable lemma for $PI(C) \lor C$, or actually the PI_{step} -representation TODO: case with u in s.c. Γ-term

is probably not same *t* as in lemma statement, which isn't technically wrong but confusing