

Universidad de Granada

Doble Grado en Ingeniería Informática y Matemáticas

ÁLGEBRA III

Autor: Jesús Muñoz Velasco

Índice general

Introducción

Comenzaremos la introducción al contenido de esta asignatura recordando brevemente el concepto de cuerpo¹. Lo primero que sabemos es que un cuerpo es un tipo de anillo conmutativo. Un anillo² es un conjunto no vacío, A que tiene definidas dos aplicaciones binarias y dos elementos especiales, $(A, +, 0, \cdot, 1)$. Con (+, 0) tenemos que A es un grupo aditivo y con $(\cdot, 1)$ tenemos que A es un monoide, es decir, que cuenta con una aplicación asociativa con elemento neutro 1. Además estas 2 operaciones tienen que guardar una cierta compatibilidad (axiomas), que llamamos leyes distributivas y que son los siguientes:

- •) $a \cdot (b+c) = a \cdot b + a \cdot c$
- •) $(b+c) \cdot a = b \cdot a + c \cdot a$, $\forall a, b \in A$

Con esto habremos completado la definición de anillo. La conmutatividad hace referencia a la siguiente propiedad:

$$a \cdot b = b \cdot a \ \forall a, b \in A$$

Veamos ahora qué tiene que suceder para que a este anillo conmutativo lo llamemos cuerpo. Para ello, es equivalente decir que $A \setminus \{0\}$ es un grupo y que $\forall a \in A \setminus \{0\}$ existe un $a^{-1} \in A \setminus \{0\}$ tal que $a \cdot a^{-1} = 1$ (lo cual implica claramente $0 \neq 1$).

Ejemplo.

- •) Los racionales, Q.
- •) Los reales, \mathbb{R} .
- •) Los complejos, \mathcal{C} .
- •) $\mathbb{Z}_p \text{ con } p \text{ primo.}$

Recordaremos ahora los conceptos de subanillo y subcuerpo

¹field en inglés

²ring en inglés