

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification ⁶ : C12N 15/57, 9/64, 9/54, C11D 9/40		A2	(11) International Publication Number: WO 96/28556
			(43) International Publication Date: 19 September 1996 (19.09.96)
(21) International Application Number: PCT/US96/03005		(81) Designated States: AL, AM, AT, AU, AZ, BB, BG, BR, BY, CA, CH, CN, CZ, DE, DK, EE, ES, FI, GB, GE, HU, IS, JP, KE, KG, KP, KR, KZ, LK, LR, LS, LT, LU, LV, MD, MG, MK, MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, TJ, TM, TR, TT, UA, UG, UZ, VN, ARIPO patent (KE, LS, MW, SD, SZ, UG), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, ML, MR, NE, SN, TD, TG).	
(22) International Filing Date: 6 March 1996 (06.03.96)			
(30) Priority Data: 08/401,574 9 March 1995 (09.03.95) US			
(71) Applicant: THE PROCTER & GAMBLE COMPANY [US/US]; One Procter & Gamble Plaza, Cincinnati, OH 45202 (US).			
(72) Inventors: BRODE, Philip, Frederick, III; 5780 Squirrelsnest Lane, Cincinnati, OH 45252 (US). BARNETT, Bobby, Lee; 12175 Elkwood Drive, Cincinnati, OH 45240 (US). RUBINGH, Donn, Nelson; 8224 Sheed Road, Cincinnati, OH 45247 (US).			
(74) Agents: REED, T., David et al.; The Procter & Gamble Company, 5299 Spring Grove Avenue, Cincinnati, OH 45217 (US).			

(54) Title: PROTEINASE K VARIANTS HAVING DECREASED ADSORPTION AND INCREASED HYDROLYSIS

(57) Abstract

The present invention relates to proteinase K variants having a modified amino acid sequence of wild-type proteinase K amino acid sequence, the wild-type amino acid sequence comprising a first loop region, a second loop region, a third loop region, a fourth loop region, a fifth loop region and a sixth loop region; wherein the modified amino acid sequence comprises different amino acids than that occurring in wild-type proteinase K (i.e., substitution) at specifically identified positions in one or more of the loop regions whereby the proteinase K variant has decreased adsorption to, and increased hydrolysis of, an insoluble substrate as compared to the wild-type proteinase K. The present invention also relates to DNA sequences encoding such proteinase K variants. The present invention also relates to compositions comprising such proteinase K variants for cleaning a variety of surfaces.

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AM	Armenia	GB	United Kingdom	MW	Malawi
AT	Austria	GE	Georgia	MX	Mexico
AU	Australia	GN	Guinea	NE	Niger
BB	Barbados	GR	Greece	NL	Netherlands
BE	Belgium	HU	Hungary	NO	Norway
BF	Burkina Faso	IE	Ireland	NZ	New Zealand
BG	Bulgaria	IT	Italy	PL	Poland
BJ	Benin	JP	Japan	PT	Portugal
BR	Brazil	KE	Kenya	RO	Romania
BY	Belarus	KG	Kyrgyzstan	RU	Russian Federation
CA	Canada	KP	Democratic People's Republic of Korea	SD	Sudan
CF	Central African Republic	KR	Republic of Korea	SE	Sweden
CG	Congo	KZ	Kazakhstan	SG	Singapore
CH	Switzerland	LJ	Liechtenstein	SI	Slovenia
CI	Côte d'Ivoire	LK	Sri Lanka	SK	Slovakia
CM	Cameroon	LR	Liberia	SN	Senegal
CN	China	LT	Lithuania	SZ	Swaziland
CS	Czechoslovakia	LU	Luxembourg	TD	Chad
CZ	Czech Republic	LV	Latvia	TG	Togo
DE	Germany	MC	Monaco	TJ	Tajikistan
DK	Denmark	MD	Republic of Moldova	TT	Trinidad and Tobago
EE	Estonia	MG	Madagascar	UA	Ukraine
ES	Spain	ML	Mali	UG	Uganda
FI	Finland	MN	Mongolia	US	United States of America
FR	France	MR	Montenegro	UZ	Uzbekistan
GA	Gabon			VN	Viet Nam

PROTEINASE K VARIANTS HAVING DECREASED ADSORPTION AND INCREASED HYDROLYSIS

TECHNICAL FIELD

The present invention relates to novel enzyme variants useful in a variety of cleaning compositions, and DNA sequences encoding such enzyme variants.

BACKGROUND

Enzymes make up the largest class of naturally occurring proteins. Each class of enzyme generally catalyzes (accelerates a reaction without being consumed) a different kind of chemical reaction. One class of enzymes known as proteases, are known for their ability to hydrolyze (break down a compound into two or more simpler compounds with the uptake of the H and OH parts of a water molecule on either side of the chemical bond cleaved) other proteins. This ability to hydrolyze proteins has been taken advantage of by incorporating naturally occurring and protein engineered proteases as an additive to laundry detergent preparations. Many stains on clothes are proteinaceous and wide-specificity proteases can substantially improve removal of such stains.

Unfortunately, the efficacy level of these proteins in their natural bacterial environment, frequently does not translate into the relatively unnatural wash environment. Specifically, protease characteristics such as thermal stability, pH stability, oxidative stability and substrate specificity are not necessarily optimized for utilization outside the natural environment of the enzyme.

The amino acid sequence of the protease determines the characteristics of the protease. A change of the amino acid sequence of the protease may alter the properties of the enzyme to varying degrees, or may even inactivate the enzyme, depending upon the location, nature and/or magnitude of the change in the amino acid sequence. Several approaches have been taken to alter the wild-type amino acid sequence of proteases in an attempt to improve their properties, with the goal of increasing the efficacy of the protease in the wash environment. These approaches include altering the amino acid sequence to enhance thermal stability and to

improve oxidation stability under quite diverse conditions.

Despite the variety of approaches described in the art, there is a continuing need for new effective variants of proteases useful for cleaning a variety of surfaces.

Objects of the Present Invention

It is an object of the present invention to provide Proteinase K enzyme variants having improved hydrolysis versus the wild-type of the enzyme.

It is also an object of the present invention to provide cleaning compositions comprising these subtilisin enzyme variants.

SUMMARY

The present invention relates to Proteinase K variants having a modified amino acid sequence of wild-type Proteinase K amino acid sequence, the wild-type amino acid sequence comprising a first loop region, a second loop region, a third loop region, a fourth loop region and a fifth loop region; wherein the modified amino acid sequence comprises different amino acids than that occurring in wild-type Proteinase K (i.e., substitution) at specifically identified positions in one or more of the loop regions whereby the Proteinase K variant has decreased adsorption to, and increased hydrolysis of, an insoluble substrate as compared to the wild-type Proteinase K. The present invention also relates to DNA sequences encoding such Proteinase K variants. The present invention also relates to compositions comprising such Proteinase K variants for cleaning a variety of surfaces.

DESCRIPTION

I. Proteinase K Variants

This invention pertains to subtilisin enzymes, in particular Proteinase K, that have been modified by mutating the various nucleotide sequences that code for the enzyme, thereby modifying the amino acid sequence of the enzyme. The modified subtilisin enzymes (hereinafter, "Proteinase K variants") of the present invention have decreased adsorption to and increased hydrolysis of an insoluble substrate as compared to the wild-type subtilisin. The present invention also pertains to DNA sequences encoding for such Proteinase K variants.

The subtilisin enzymes of this invention belong to a class of enzymes known as proteases. A protease is a catalyst for the cleavage of peptide bonds. One type of protease is a serine protease. A serine protease is

distinguished by the fact that there is an essential serine residue at the active site.

The observation that an enzyme's rate of hydrolysis of soluble substrates increases with enzyme concentration is well documented. It would therefore seem plausible that for surface bound substrates, such as is encountered in many cleaning applications, the rate of hydrolysis would increase with increasing surface concentration. This has been shown to be the case. (Brode, P.F. III and D. S. Rauch, LANGMUIR, "Subtilisin BPN' Activity on an Immobilized Substrate", Vol. 8, pp. 1325-1329 (1992)). In fact, a linear dependence of rate upon surface concentration was found for insoluble substrates when the surface concentration of the enzyme was varied. (Rubingh, D. N. and M. D. Bauer, "Catalysis of Hydrolysis by Proteases at the Protein-Solution Interface," in POLYMER SOLUTIONS, BLENDS AND INTERFACES, Ed. by I. Noda and D. N. Rubingh, Elsevier, p. 464 (1992)). Surprisingly, when seeking to apply this principle in the search for variant proteases which give better cleaning performance, we did not find that enzymes which adsorb more give better performance. In fact, we surprisingly determined the opposite to be the case: decreased adsorption by an enzyme to a substrate resulted in increased hydrolysis of the substrate (i.e., better cleaning performance).

While not wishing to be bound by theory, it is believed that improved performance, when comparing one variant to another, is a result of the fact that enzymes which adsorb less are also less tightly bound and therefore more highly mobile on the surface from which the insoluble protein substrate is to be removed. At comparable enzyme solution concentrations, this increased mobility is sufficient to outweigh any advantage that is conferred by delivering a higher concentration of enzyme to the surface.

The mutations described herein are designed to change (i.e., decrease) the adsorption of the enzyme to surface-bound soils. In Proteinase K, certain amino acids form exterior loops on the enzyme molecule. For purposes of discussion, these loops shall be referred to as first, second, third, fourth and fifth loop regions. Specifically, positions 64-71 form the first loop region; positions 95-107 form the second loop region; positions 133-140 form the third loop region; positions 160-170 form the fourth loop region; positions 190-194 form the fifth loop region; and positions 203-223 form the sixth loop region (position numbering analogous to positions in the amino acid sequence for wild-type subtilisin Proteinase K

(SEQ ID NO:1)).

It is believed that these loop regions play a significant role in the adsorption of the enzyme molecule to a surface-bound peptide, and specific mutations in one or more of these loop regions will have a significant effect on this adsorption. While not wishing to be bound by theory, it is believed that the loop regions are important to the adsorption of the Proteinase K molecule for at least two reasons. First, the amino acids which comprise the loop regions can make close contacts with any surfaces to which the molecule is exposed. Second, the proximity of the loop regions to the active-site and binding pocket of the Proteinase K molecule gives them a role in the catalytically productive adsorption of the enzyme to surface-bound substrates (peptides/protein soils).

As used herein, "variant" means an enzyme having an amino acid sequence which differs from that of wild-type.

As used herein, "mutant Proteinase K DNA" means a DNA sequence coding for a Proteinase K variant.

As used herein, "wild-type Proteinase K" refers to an enzyme represented by SEQ ID NO:1. The amino acid sequence for Proteinase K is further described by Gunkel, F.A. and Gassen H.G., "Proteinase K from Tritirachium album Limber: Characterization of the Chromosomal Gene and Expression of the cDNA in Escherichia coli", EUR. J. BIOCHEM., Vol. 179, pp. 185-194 (1989), incorporated herein by reference.

As used herein, the term "Proteinase K wild-type amino acid sequence" encompasses SEQ ID NO:1 as well as SEQ ID NO:1 having modifications to the amino acid sequence other than at any of positions 64-71, 95-107, 133-140, 160-170, 190-194 and 203-223.

As used herein, "more hydrophilic amino acid" refers to any other amino acid having greater hydrophilicity than a subject amino acid with reference to the hydrophilicity table below. The following hydrophilicity table (Table 1) lists amino acids in descending order of increasing hydrophilicity (see Hopp, T.P., and Woods, K.R., "Prediction of Protein Antigenic Determinants from Amino Acid Sequences", PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCE USA, Vol. 78, pp. 3824-3828, 1981, incorporated herein by reference).

TABLE 1

Amino Acid	Hydrophilicity Value
Trp	-3.4
Phe	-2.5
Tyr	-2.3
Leu, Ile	-1.8
Val	-1.5
Met	-1.3
Cys	-1.0
Ala, His	-0.5
Thr	-0.4
Pro, Gly	-0.0
Gln, Asn	0.2
Ser	0.3
Arg ⁺ , Lys ⁺ , Glu ⁻ , Asp ⁻	3.0

Table 1 also indicates which amino acids carry a charge (this characteristic being based on a pH of from about 8-9). The positively charged amino acids are Arg and Lys, the negatively charged amino acids are Glu and Asp, and the remaining amino acids are neutral. In a preferred embodiment of the present invention, the substituting amino acid is either neutral or negatively charged, more preferably negatively charged (i.e., Glu or Asp).

Therefore, for example, the statement "substitute Gln with an equally or more hydrophilic amino acid which is neutral or has a negative charge" means Gln would be substituted with Asn (which is equally hydrophilic to Gln), or Ser, Glu or Asp (which are more hydrophilic than Gln); each of which are neutral or have a negative charge, and have a greater hydrophilicity value as compared to Gln. Likewise, the statement "substitute Pro with a more hydrophilic amino acid which is neutral or has a negative charge" means Pro would be substituted with Gln, Asn, Ser, Glu or Asp.

In one embodiment of the present invention, the Proteinase K variant has a modified amino acid sequence of Proteinase K wild-type amino acid sequence, wherein the wild-type amino acid sequence comprises a substitution at one or more positions in one or more of the first loop region, the second loop region, the third loop region, the fourth loop region, the fifth loop region or the sixth loop region; whereby the Proteinase K variant has

6

decreased adsorption to, and increased hydrolysis of, an insoluble substrate as compared to the wild-type Proteinase K.

In a preferred embodiment of the present invention, the substituting amino acid for one or more of the positions in one or more of the loop regions is, with reference to Table 1, neutral or negatively charged and equally or more hydrophylic, preferably more hydrophylic, than the amino acid at the subject position in the wild-type amino acid sequence.

A. Substitutions in the First Loop Region

When a substitution occurs in the first loop region, the substitution occurs at one or more of positions 64, 65, 66, 67, 68, 70 or 71.

When a substitution occurs at position 64, the substituting amino acid is Asp or Glu.

When a substitution occurs at position 65, the substituting amino acid is Glu.

When a substitution occurs at position 66, the substituting amino acid is Asn, Asp, Gln, Glu, Pro or Ser.

When a substitution occurs at position 67, the substituting amino acid is Asp, Gln, Glu or Ser.

When a substitution occurs at position 68, the substituting amino acid is Asn, Asp, Gln, Glu, Pro or Ser.

When a substitution occurs at position 70, the substituting amino acid is Asn, Asp, Gln, Glu, Pro or Ser.

When a substitution occurs at position 71, the substituting amino acid is Asn, Asp, Gln, Glu, Gly, Pro or Ser.

B. Substitutions in the Second Loop Region

When a substitution occurs in the second loop region, the substitution occurs at one or more of positions 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106 or 107.

When a substitution occurs at position 95, the substituting amino acid is Ala, Asn, Asp, Cys, Gln, Glu, Gly, His, Met, Pro, Ser or Thr.

When a substitution occurs at position 96, the substituting amino acid is Ala, Asn, Asp, Cys, Gln, Glu, Gly, His, Ile, Met, Pro, Ser, Thr or Val.

When a substitution occurs at position 97, the substituting amino acid is Glu.

When a substitution occurs at position 98, the substituting amino acid is Glu.

When a substitution occurs at position 99, the substituting amino acid

is Asp, Gln, Glu or Ser.

When a substitution occurs at position 100, the substituting amino acid is Asn, Asp, Gln, Glu, Pro or Ser.

When a substitution occurs at position 101, the substituting amino acid is Asp or Glu.

When a substitution occurs at position 102, the substituting amino acid is Asn, Asp, Gln, Glu, Pro or Ser.

When a substitution occurs at position 103, the substituting amino acid is Asn, Asp, Glu or Ser.

When a substitution occurs at position 104, the substituting amino acid is Ala, Asn, Asp, Cys, Gln, Glu, Gly, His, Ile, Leu, Met, Pro, Ser, Thr or Val.

When a substitution occurs at position 105, the substituting amino acid is Asp or Glu.

When a substitution occurs at position 106, the substituting amino acid is Asn, Asp, Gln, Glu, Gly, Pro or Ser.

When a substitution occurs at position 107, the substituting amino acid is Ala, Asn, Asp, Cys, Gln, Glu, Gly, His, Leu, Met, Pro, Ser, Thr or Val.

C. Substitutions in the Third Loop Region

When a substitution occurs in the third loop region, the substitution occurs at one or more of positions 133, 134, 135, 136, 137, 138, 139 or 140, wherein:

When a substitution occurs at position 133, the substituting amino acid is Ala, Asn, Asp, Cys, Gln, Glu, Gly, His, Ile, Met, Pro, Ser, Thr or Val.

When a substitution occurs at position 134, the substituting amino acid is Asn, Asp, Gln, Glu, Pro or Ser.

When a substitution occurs at position 135, the substituting amino acid is Asn, Asp, Gln, Glu, Pro or Ser.

When a substitution occurs at position 136, the substituting amino acid is Asn, Asp, Gln, Glu, Pro or Ser.

When a substitution occurs at position 137, the substituting amino acid is Ala, Asn, Asp, Cys, Gln, Glu, Gly, His, Ile, Leu, Met, Pro, Ser, Thr or Val.

When a substitution occurs at position 138, the substituting amino acid is Asp or Glu.

When a substitution occurs at position 139, the substituting amino acid is Asp or Glu, and

When a substitution occurs at position 140, the substituting amino acid is Asp or Glu.

D. Substitutions in the Fourth Loop Region

When a substitution occurs in the fourth loop region, the substitution occurs at one or more of positions 160, 161, 162, 163, 164, 165, 166, 167, 168, 169 or 170, wherein

When a substitution occurs at position 160, the substituting amino acid is Asn, Asp, Gln, Glu, Pro or Ser.

When a substitution occurs at position 161, the substituting amino acid is Asp, Gln, Glu or Ser.

When a substitution occurs at position 162, the substituting amino acid is Asp, Gln, Glu or Ser.

When a substitution occurs at position 163, the substituting amino acid is Asp, Gln, Glu or Ser.

When a substitution occurs at position 164, the substituting amino acid is Asn, Asp, Gln, Glu, Gly, His, Pro, Ser or Thr.

When a substitution occurs at position 165, the substituting amino acid is Glu.

When a substitution occurs at position 166, the substituting amino acid is Asn, Asp, Gln, Glu, Gly, His, Pro, Ser or Thr.

When a substitution occurs at position 167, the substituting amino acid is Asp or Glu.

When a substitution occurs at position 168, the substituting amino acid is Asp, Gln, Glu or Ser.

When a substitution occurs at position 169, the substituting amino acid is Ala, Asn, Asp, Cys, Gln, Glu, Gly, His, Ile, Leu, Met, Pro, Ser, Thr or Val, and

When a substitution occurs at position 170, the substituting amino acid is Asp or Glu.

E. Substitutions in the Fifth Loop Region

When a substitution occurs in the fifth loop region, the substitution occurs at one or more of positions 190, 191, 192, 193 or 194, wherein

When a substitution occurs at position 190, the substituting amino acid is Asp or Glu.

When a substitution occurs at position 191, the substituting amino acid is Asp or Glu.

When a substitution occurs at position 192, the substituting amino

acid is Ala, Asn, Asp, Cys, Gln, Glu, Gly, His, Ile, Leu, Met, Pro, Ser, Thr, Tyr or Val.

When a substitution occurs at position 193, the substituting amino acid is Asp or Glu. and

When a substitution occurs at position 194, the substituting amino acid is Asp, Gln, Glu or Ser. and

F. Substitutions in the Sixth Loop Region

When a substitution occurs in the sixth loop region, the substitution occurs at one or more of positions 203, 204, 205, 206, 207, 208, 209, 210, 211, 212, 213, 214, 215, 216, 217, 218, 219, 220, 221, 222 or 223. wherein

When a substitution occurs at position 203, the substituting amino acid is Asn, Asp, Gln, Glu, Pro or Ser.

When a substitution occurs at position 204, the substituting amino acid is Asn, Asp, Gln, Glu, Gly or Ser.

When a substitution occurs at position 205, the substituting amino acid is Asn, Asp, Gln, Glu, Pro or Ser.

When a substitution occurs at position 206, the substituting amino acid is Asn, Asp, Gln, Glu, Gly, Pro or Ser.

When a substitution occurs at position 207, the substituting amino acid is Asp or Glu.

When a substitution occurs at position 208, the substituting amino acid is Ala, Asn, Asp, Cys, Gln, Glu, Gly, His, Leu, Met, Pro, Ser, Thr or Val.

When a substitution occurs at position 209, the substituting amino acid is Ala, Asn, Asp, Cys, Gln, Glu, Gly, His, Ile, Met, Pro, Ser, Thr or Val.

When a substitution occurs at position 210, the substituting amino acid is Asp or Glu.

When a substitution occurs at position 211, the substituting amino acid is Asn, Asp, Gln, Glu, Gly, Pro or Ser.

When a substitution occurs at position 212, the substituting amino acid is Ala, Asn, Asp, Cys, Gln, Glu, Gly, His, Ile, Leu, Met, Phe, Pro, Ser, Thr, Tyr or Val.

When a substitution occurs at position 213, the substituting amino acid is Ala, Asn, Asp, Cys, Gln, Glu, Gly, His, Leu, Met, Pro, Ser, Thr or Val.

When a substitution occurs at position 214, the substituting amino acid is Asn, Asp, Gln, Glu, Pro or Ser.

When a substitution occurs at position 215, the substituting amino acid is Asn, Asp, Gln, Glu, Pro or Ser.

When a substitution occurs at position 216, the substituting amino acid is Asp or Glu.

When a substitution occurs at position 217, the substituting amino acid is Asn, Asp, Gln, Glu, Gly, Pro or Ser.

When a substitution occurs at position 218, the substituting amino acid is Asp or Glu.

When a substitution occurs at position 219, the substituting amino acid is Asp or Glu.

When a substitution occurs at position 220, the substituting amino acid is Ala, Asn, Asp, Cys, Gln, Glu, Gly, His, Leu, Met, Pro, Ser, Thr or Val.

When a substitution occurs at position 221, the substituting amino acid is Asp or Glu.

When a substitution occurs at position 222, the substituting amino acid is Asn, Asp, Gln, Glu, Pro or Ser, and

When a substitution occurs at position 223, the substituting amino acid is Asn, Asp, Gln, Glu, Gly, Pro or Ser.

G. Preparation of enzyme variants

Example 1

Mutant Proteinase K DNA

A phagemid ("PKP") containing the wild type Proteinase K gene is constructed. The 2.8 Kbp *Pvu* II restriction enzyme fragment of plasmid pUC119, (Vieira, J. and Messing, J., "Production of Single-Stranded Plasmid DNA", 153 METHODS IN ENZYMOLOGY 3-11 (1989)) is cloned into the *Pvu* II site of plasmid pUB110 (Bacillus Genetic Stock Center, Columbus, OH 1E9). The pUC119-pUB110 hybrid plasmid is named pJMA601. Into pJMA601 is cloned the *Bacillus amyloliquefaciens* subtilisin gene. The subtilisin gene is modified to contain two *Bam*HI sites. One of the *Bam*HI sites is between DNA encoding Gly and Lys, the second and third amino acid residues of the pro region. The other *Bam*HI site follows the TAA stop sequence. A Proteinase K cDNA is amplified from RNA using reverse transcriptase and the polymerase chain reaction with oligonucleotides, each containing a *Bam*HI site in addition to sequences identical to the Proteinase K cDNA. The amplified region consists of the DNA extending from the Ala at the beginning of the pro region of Proteinase K to the carboxy terminal Ala of the mature protease. The amplified segment is used to replace the DNA between two *Bam*HI sites within the *Bacillus amyloliquefaciens* subtilisin gene. Phagemid PKP is transformed into *Escherichia coli* Ung-

strain CJ236 and a single stranded uracil-containing DNA template is produced using the VCSM13 helper phage (Kunkel, T.A., J.D. Roberts and R.A. Zakour, "Rapid and efficient site-specific mutagenesis without phenotypic selection", METHODS IN ENZYMOLOGY, Vol. 154, pp. 367-382, (1987); as modified by Yuckenberg, P.D., F. Witney, J. Geisselsoder and J. McClary, "Site-directed in vitro mutagenesis using uracil-containing DNA and phagemid vectors", DIRECTED MUTAGENESIS - A PRACTICAL APPROACH, ed. M.J. McPherson, pp. 27-48, (1991); both of which are incorporated herein by reference). A single primer site-directed mutagenesis modification of the method of Zoller and Smith (Zoller, M.J., and M. Smith, "Oligonucleotide-directed mutagenesis using M13-derived vectors: an efficient and general procedure for the production of point mutations in any fragment of DNA", NUCLEIC ACIDS RESEARCH, Vol. 10, pp. 6487-6500, (1982), incorporated herein by reference) is used to produce all mutants (basically as presented by Yuckenberg, et al., 1991, above). Oligonucleotides are made using an Applied Biosystem Inc. 380B DNA synthesizer. Mutagenesis reaction products are transformed into *Escherichia coli* strain MM294 (American Type Culture Collection *E. coli* 33625). All mutants are confirmed by DNA sequencing and the isolated DNA is transformed into the *Bacillus subtilis* expression strain BG2036 (Yang, M. Y., E. Ferrari and D. J. Henner, (1984), "Cloning of the Neutral Protease Gene of *Bacillus subtilis* and the Use of the Cloned Gene to Create an In Vitro-derived Deletion Mutation", JOURNAL OF BACTERIOLOGY, Vol. 160, pp. 15-21). For some of the loop mutants a modified PKP with a frameshift-stop codon mutation in the corresponding loop is used to produce the uracil template. Oligonucleotides are designed to restore the proper reading frame and to encode for random substitutions at positions 64, 65, 66, 67, 68, 70, 71, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 133, 134, 135, 136, 137, 138, 139, 140, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 190, 191, 192, 193, 194, 203, 204, 205, 206, 207, 208, 209, 210, 211, 212, 213, 214, 215, 216, 217, 218, 219, 220, 221, 222 or 223 (equimolar and/or variable mixtures of all four nucleotides for all three bases at these codons). Mutations that correct for the frameshift-stop and produce a functional enzyme are identified by their ability to digest casein. The random substitutions are determined by DNA sequencing.

Example 2
Fermentation

The *Bacillus subtilis* cells (BG2036) containing a subtilisin mutant of interest are grown to mid-log phase in a one liter culture of LB-glucose broth and inoculated into a Biostat ED fermenter (B. Braun Biotech, Inc., Allentown, Pennsylvania) in a total volume of 10 liters. The fermentation media contains Yeast Extract, starch, antifoam, buffers and trace minerals (see FERMENTATION: A PRACTICAL APPROACH, Ed. B. McNeil and L. M. Harvey, 1990). The broth is kept at a constant pH of 7.0 during the fermentation run. Chloramphenical is added for antibiotic selection of mutagenized plasmid. The cells are grown overnight at 37°C to an A_{600} of about 60 and harvested.

Example 3
Purification

The fermentation broth is taken through the following steps to obtain pure enzyme. The broth is cleared of *Bacillus subtilis* cells by centrifugation, and clarified by removing fine particulates with a 100K cutoff membrane. This is followed by concentration on a 10K cutoff membrane, and flow dialysis to reduce the ionic strength and adjust the pH to 5.5 using 0.025M MES buffer (2-(*N*-morpholino)ethanesulfonic acid). The enzyme is further purified by loading it onto either a cation exchange chromatography column or an affinity adsorption chromatography column and eluting it from the column with a NaCl or a propylene glycol gradient (see Scopes, R. K., PROTEIN PURIFICATION PRINCIPLES AND PRACTICE, Springer-Verlag, New York (1984), incorporated herein by reference).

The *p*NA assay (DelMar, E.G., C. Largman, J.W. Brodrick and M.C. Geokas, ANAL. BIOCHEM., Vol. 99, pp. 316-320, (1979), incorporated herein by reference) is used to determine the active enzyme concentration for fractions collected during gradient elution. This assay measures the rate at which *p*-nitroaniline is released as the enzyme hydrolyzes the soluble synthetic substrate, succinyl-alanine-alanine-proline-phenylalanine-*p*-nitroanilide (sAAPF-*p*NA). The rate of production of yellow color from the hydrolysis reaction is measured at 410 nm on a spectrophotometer and is proportional to the active enzyme concentration. In addition, absorbance measurements at 280 nm are used to determine the total protein concentration. The active enzyme/total-protein ratio gives the enzyme purity, and is used to identify fractions to be pooled for the stock solution.

To avoid autolysis of the enzyme during storage, an equal weight of propylene glycol is added to the pooled fractions obtained from the chromatography column. Upon completion of the purification procedure the purity of the stock enzyme solution is checked with SDS-PAGE (sodium dodecyl sulfate polyacrylamide gel electrophoresis) and the absolute enzyme concentration is determined via an active site titration method using trypsin inhibitor type II-T: turkey egg white purchased from Sigma Chemical Company (St. Louis, Missouri). The measured conversion factors will show which changes made in the enzyme molecule at the various positions result in the enzyme variant having increased activity over the wild-type, against the soluble substrate *p*NA.

In preparation for use, the enzyme stock solution is eluted through a Sephadex-G25 (Pharmacia, Piscataway, New Jersey) size exclusion column to remove the propylene glycol and exchange the buffer. The MES buffer in the enzyme stock solution is exchanged for 0.1 M Tris buffer (Tris(hydroxymethyl-aminomethane) containing 0.01M CaCl₂ and pH adjusted to 8.6 with HCl. All experiments are carried out at pH 8.6 in Tris buffer thermostated at 25°C.

H. Characterization of enzyme variants

Example 4

Model Surface Preparation

Aminopropyl controlled pore glass (CPG) purchased from CPG Inc (Fairfield, New Jersey) is used as a support for covalently attaching the sAAPF-*p*NA substrate purchased from Bachem, Inc. (Torrence, California). The reaction is carried out in dimethyl sulfoxide and (1-ethyl-3-[3-(dimethylamino)propyl] carbodiimide hydrochloride) (EDC) is used as a coupling agent. Upon completion (monitored by *p*NA assay), the excess solvent is removed, and the CPG:sAAPF-*p*NA is rinsed with dimethyl sulfoxide (DMSO) and doubly-distilled water. This is followed by oven drying with a N₂ purge at about 70°C. The reaction scheme and preparation of the immobilized substrate are conducted as described by Brode, P.F. III, and D.S. Rauch, "Subtilisin BPN": Activity on an Immobilized Substrate," LANGMUIR, Vol. 8, p. 1325-1329, (1992), incorporated herein by reference.

The CPG surface will have $62,000 \pm 7,000$ *p*NA molecules/ μm^2 . The surface area will remain unchanged from the value of $50.0\text{m}^2/\text{g}$ reported by CPG Inc. for the CPG as received. This suggests that the procedure used

to add sAAPF-pNA to CPG does not damage the porous structure (mean diameter is 486 Å).

Example 5

Surface Hydrolysis Assay

Using CPG:sAAPF-pNA, adsorption of an enzyme variant and hydrolysis of a CPG-bound peptide can be measured in a single experiment. A small volume of enzyme variant stock solution is added to a flask containing Tris buffer and CPG:sAAPF-pNA which has been degassed. The flask is shaken on a wrist-action shaker for a period of 90 minutes during which the shaker is stopped at various time intervals (for example, every 2 minutes during the early stages of adsorption hydrolysis - e.g., the first 20 minutes - and every 10 minutes towards the end of the experiment). The CPG:sAAPF-pNA is allowed to settle and the solution is sampled. Both the experimental procedure and the calculation of the adsorption and hydrolysis are conducted as described by Brode et al., 1992, above.

All enzymes are monitored for stability against autolysis and should show no appreciable autolytic loss over the time course of this experiment. Therefore, enzyme adsorption can be determined by measuring solution depletion. The difference between the initial enzyme variant concentration and the concentration measured at each individual time point gives the amount of enzyme variant adsorbed. The amount of pNA hydrolyzed from the surface is measured by taking an absorbance reading on an aliquot of the sample at 410 nm. The total amount of pNA hydrolyzed is calculated by adding the amount sampled and the amount remaining in the flask. This value is corrected by subtracting the amount of pNA that is hydrolyzed by Tris buffer at pH 8.6 when no enzyme is present. This base-hydrolysis ranges from 7-29% of the total hydrolysis depending on the efficiency of the enzyme.

Example 6

Soluble Substrate Kinetic Analysis

The rates of hydrolysis of the soluble substrate sAAPF-pNA are monitored by measuring the adsorbance increase as a function of time at 410 nm on a DU-70 spectrophotometer. The enzyme concentration is held constant and is prepared to be in the range of 6-10 nanomolar while the substrate concentration is varied from 90-700 µM sAAPF-pNA for each kinetic determination. An adsorbance data point is taken each second over

a period of 900 seconds and the data are transferred to a LOTUS™ spreadsheet (Lotus Development Corporation, Cambridge, Massachusetts). Analysis for kinetic parameters is conducted by the standard Lineweaver Burk analysis in which the data in the initial part of the run (generally the first minute) are fit to a linear regression curve to give v_0 . The v_0 and s_0 data are plotted in the standard inverse fashion to give K_M and k_{cat} .

I. Example Proteinase K variants

Proteinase K variants of the present invention which have decreased adsorption to and increased hydrolysis of surface bound substrates are exemplified in Tables 2-36, below. In describing the specific mutations, the original amino acid occurring in wild-type is given first, the position number second, and the substituted amino acid third.

TABLE 2

Loop 1 - Single Mutation Variants

Arg64Asp
Arg64Glu
Asp65Glu
Gly66Asn
Gly66Asp
Gly66Gln
Gly66Glu
Gly66Pro
Gly66Ser
Asn67Asp
Asn67Gln
Asn67Glu
Asn67Ser
Gly68Asn
Gly68Asp
Gly68Gln
Gly68Glu
Gly68Pro
Gly68Ser
Gly70Asn
Gly70Asp
Gly70Gln
Gly70Glu
Gly70Pro
Gly70Ser
Thr71Asn
Thr71Asp
Thr71Gln
Thr71Glu
Thr71Gly
Thr71Pro
Thr71Ser

TABLE 3

Loop 1 - Double Mutation Variants

Asn67Ser + Thr71Asp
 Gly66Ser + Thr71Ser
 Arg64Asp + Thr71Asn
 Arg64Asp + Gly68Ser
 Gly66Glu + Gly70Ser
 Arg64Glu + Gly68Ser
 Arg64Glu + Gly66Gln
 Asn67Glu + Gly70Asn
 Asn67Gln + Thr71Asp
 Gly66Ser + Gly70Asn
 Asp65Glu + Gly70Ser
 Arg64Glu + Gly70Asn
 Gly66Pro + Thr71Asn
 Gly70Gln + Thr71Gln
 Gly68Glu + Gly70Asn
 Asp65Glu + Thr71Ser
 Gly68Asp + Gly70Gln
 Asp65Glu + Gly68Gln
 Gly70Gln + Thr71Asp
 Gly68Gln + Gly70Pro
 Asn67Asp + Gly70Gln
 Gly66Ser + Asn67Gln
 Asp65Glu + Gly68Asn
 Gly68Asp + Gly70Pro
 Gly66Gln + Thr71Pro
 Asp65Glu + Thr71Pro
 Arg64Asp + Gly68Asn
 Gly68Asn + Thr71Glu
 Gly66Asn + Thr71Glu
 Gly68Ser + Thr71Asp
 Gly68Ser + Thr71Gly
 Gly66Ser + Gly68Gln
 Gly66Gln + Gly70Ser
 Gly66Glu + Gly70Pro
 Arg64Glu + Gly70Pro
 Asp65Glu + Thr71Gly
 Arg64Glu + Thr71Gly
 Asp65Glu + Gly70Pro
 Arg64Asp + Gly68Gln
 Arg64Glu + Gly68Pro
 Gly66Asn + Gly70Ser

TABLE 4

Loop 1 - Triple Mutation Variants

Asn67Ser + Gly68Asp + Gly70Ser
 Asn67Asp + Gly70Asn + Thr71Gly
 Arg64Glu + Gly66Asn + Gly70Pro

Gly66Asp + Gly68Ser + Gly70Ser
 Asp65Glu + Gly70Gln + Thr71Gln
 Gly66Glu + Gly68Pro + Gly70Asn
 Arg64Asp + Gly66Ser + Gly70Gln
 Gly66Gln + Asn67Gln + Gly68Glu
 Gly66Glu + Asn67Ser + Thr71Pro
 Gly66Asn + Gly68Pro + Thr71Gln
 Arg64Glu + Gly66Gln + Gly68Gln
 Gly66Asn + Gly68Ser + Gly70Pro
 Arg64Asp + Gly70Gln + Thr71Gly
 Asp65Glu + Gly68Gln + Gly70Ser
 Arg64Glu + Gly66Pro + Gly68Ser
 Gly66Gln + Asn67Gln + Thr71Gly
 Arg64Glu + Gly68Pro + Thr71Ser
 Asn67Asp + Gly70Ser + Thr71Gly
 Arg64Glu + Gly70Pro + Thr71Gln
 Asp65Glu + Gly68Gln + Gly70Gln
 Gly66Pro + Gly68Gln + Thr71Pro
 Gly66Glu + Asn67Gln + Gly70Pro
 Gly66Gln + Gly70Ser + Thr71Gln
 Asp65Glu + Gly68Gln + Gly70Asn
 Arg64Glu + Gly66Ser + Thr71Pro
 Asp65Glu + Gly68Ser + Gly70Asn
 Asp65Glu + Asn67Ser + Gly70Ser
 Arg64Glu + Gly66Ser + Gly70Pro
 Asp65Glu + Gly70Gln + Thr71Gly
 Asp65Glu + Gly68Asn + Gly70Asn
 Gly68Asn + Gly70Pro + Thr71Asp
 Arg64Asp + Gly68Ser + Gly70Pro
 Gly66Asn + Gly68Glu + Gly70Gln
 Asn67Glu + Gly68Gln + Gly70Asn
 Gly66Glu + Gly68Pro + Gly70Gln
 Asn67Asp + Gly68Glu + Gly70Ser
 Asn67Asp + Gly68Asp + Gly70Asn
 Arg64Asp + Asp65Glu + Asn67Ser
 Arg64Asp + Asp65Glu + Gly70Pro
 Arg64Glu + Asp65Glu - Asn67Gln

TABLE 5

Loop 1 - Quadruple Mutation Variants

Asp65Glu + Gly68Pro + Gly70Asn + Thr71Asn
Asp65Glu + Asn67Gln + Gly68Gln + Gly70Ser
Gly66Glu + Asn67Gln + Gly68Asn + Gly70Gln
Asp65Glu + Gly66Asn + Gly70Ser + Thr71Gln
Asn67Gln + Gly68Glu + Gly70Gln + Thr71Gly
Arg64Glu + Gly66Gln + Gly70Asn + Thr71Gln
Gly66Pro + Gly68Ser + Gly70Asn + Thr71Gln
Arg64Glu + Gly68Pro + Gly70Gln + Thr71Pro
Gly66Glu + Gly68Pro + Gly70Asn + Thr71Pro
Asp65Glu + Gly66Glu + Asn67Ser + Gly70Pro
Asp65Glu + Gly66Asp + Gly68Asn + Thr71Ser

Asp65Glu + Gly66Glu + Gly68Pro + Gly70Ser
 Asp65Glu + Gly66Glu + Gly70Asn + Thr71Gln.
 Arg64Asp + Asp65Glu + Asn67Gln + Gly70Asn
 Arg64Asp + Asp65Glu + Gly70Pro + Thr71Gln.
 Gly66Glu + Asn67Asp + Gly68Ser + Gly70Ser
 Gly66Glu + Asn67Glu + Gly70Asn + Thr71Ser
 Asp65Glu + Gly66Asp + Asn67Glu + Gly68Ser
 Arg64Glu + Asp65Glu + Gly66Asp + Gly68Pro
 Gly66Glu + Asn67Asp + Gly68Asp + Gly70Asn
 Asp65Glu + Asn67Glu + Gly68Ser + Gly70Gln
 Asp65Glu + Asn67Asp + Gly68Gln + Gly70Ser
 Asp65Glu + Asn67Glu + Gly68Gln + Gly70Asn
 Asp65Glu + Gly66Asn + Asn67Glu + Gly70Pro
 Asp65Glu + Gly66Asp + Gly68Asp + Thr71Asn
 Asp65Glu + Gly66Glu + Asn67Gln + Gly68Asp

TABLE 6

Loop 2 - Single Mutation Variants

Val	95Ala
Val	95Asn
Val	95Asp
Val	95Cys
Val	95Gln
Val	95Glu
Val	95Gly
Val	95His
Val	95Met
Val	95Pro
Val	95Ser
Val	95Thr
Leu	96Ala
Leu	96Asn
Leu	96Asp
Leu	96Cys
Leu	96Gln
Leu	96Glu
Leu	96Gly
Leu	96His
Leu	96Ile
Leu	96Met
Leu	96Pro
Leu	96Ser
Leu	96Thr
Leu	96Val
Asp	97Glu
Asp	98Glu
Asn	99Asp
Asn	99Gln
Asn	99Glu
Asn	99Ser
Gly	100Asn

Gly100Asp
Gly100Gln
Gly100Glu
Gly100Pro
Gly100Ser
Ser101Asp
Ser101Glu
Gly102Asn
Gly102Asp
Gly102Gln
Gly102Glu
Gly102Prc
Gly102Ser
Gln103Asn
Gln103Asp
Gln103Glu
Gln103Ser
Tyr104Ala
Tyr104Asn
Tyr104Asp
Tyr104Cys
Tyr104Gln
Tyr104Glu
Tyr104Gly
Tyr104His
Tyr104Ile
Tyr104Leu
Tyr104Met
Tyr104Pro
Tyr104Ser
Tyr104Thr
Tyr104Val
Ser105Asp
Ser105Glu
Thr106Asn
Thr106Asp
Thr106Gln
Thr106Glu
Thr106Gly
Thr106Pro
Thr106Ser
Ile107Ala
Ile107Asn
Ile107Asp
Ile107Cys
Ile107Gln
Ile107Glu
Ile107Gly
Ile107His
Ile107Leu
Ile107Met
Ile107Pro
Ile107Ser

Ile107Thr
Ile107Val

TABLE 7

Loop 2 - Double Mutation Variants

Val 95Gln + Ser101Glu
Tyr104His + Ile107Asp
Val 95Glu + Ile107Asn
Asn 99Gln + Gln103Asp
Leu 96Gly + Ser105Glu
Val 95Met + Gln103Asp
Ser101Asp + Ile107Thr
Val 95His + Asp 97Glu
Asp 98Glu + Tyr104Leu
Leu 96Cys + Asp 97Glu
Gln103Glu + Tyr104Gln
Gly102Ser + Tyr104Gly
Leu 96Ala + Thr106Pro
Thr106Gln + Ile107Asn
Asn 99Gln + Ile107Asp
Asn 99Glu + Thr106Gly
Gly102Pro + Gln103Asp
Asn 99Asp + Tyr104Thr
Leu 96Ile + Ser101Glu
Val 95Gly + Gln103Ser
Tyr104Leu + Ser105Glu
Gly102Asn + Tyr104Pro
Leu 96Asp + Ile107Leu
Asp 98Glu + Gly102Asn
Leu 96Pro + Gly100Glu
Ser101Asp + Thr106Ser
Gly100Ser + Gln103Asn
Gly102Pro + Tyr104Thr
Leu 96Glu + Ile107Leu
Leu 96Ile + Gly100Asp
Gly100Pro + Ile107Ser
Asp 97Glu + Asn 99Gln
Asp 97Glu + Ile107Cys
Gly102Ser + Gln103Glu
Gly100Asn + Tyr104Asp
Gly100Pro + Thr106Asp
Val 95Pro + Asp 97Glu
Val 95Thr + Gly100Glu
Thr106Pro + Ile107Glu
Ser101Asp + Gly102Asn
Ser105Glu + Ile107Thr
Asn 99Gln + Ser105Asp
Gln103Ser + Ile107Met
Leu 96Asp + Thr106Gly
Val 95Thr + Gly102Asp
Val 95Ala + Ser105Asp

Gly100Asn + Gln103Ser
 Gly102Asp - Thr106Gln
 Leu 96Asn + Ser105Asp
 Gly100Glu + Gly102Pro
 Gln103Asp + Ile107His
 Tyr104Ala + Ile107Pro
 Asp 97Glu + Ile107Pro
 Asn 99Glu + Tyr104Asn
 Val 95Thr + Asp 98Glu
 Gly100Gln + Thr106Gly
 Asn 99Glu + Gln103Ser
 Val 95His + Ser105Asp
 Gly102Pro + Ile107Ala
 Asp 97Glu + Gly100Gln

TABLE 8

Loop 2 - Triple Mutation Variants

Val 95Gln	+	Leu 96Thr	+	Ser101Glu
Ser101Asp	+	Thr106Ser	+	Ile107Leu
Val 95Asn	+	Leu 96Asn	+	Asp 98Glu
Gln103Glu	+	Tyr104Ser	+	Ile107Ser
Val 95Cys	-	Leu 96Glu	+	Gly102Ser
Val 95His	+	Tyr104Thr	+	Ser105Glu
Leu 96Pro	+	Asn 99Asp	+	Gln103Ser
Val 95Ser	+	Leu 96Asp	+	Gln103Ser
Leu 96Cys	+	Gly102Gln	+	Ile107Leu
Val 95Ser	+	Leu 96His	+	Thr106Pro
Leu 96Gln	+	Gly102Pro	+	Ser105Asp
Leu 96Met	+	Asn 99Ser	+	Ser105Asp
Leu 96His	+	Ser101Asp	+	Tyr104Val
Asn 99Asp	+	Gly100Asn	+	Gly102Ser
Val 95Gln	+	Gly100Asp	-	Thr106Pro
Leu 96Asn	+	Tyr104Glu	+	Ile107Gln
Asn 99Asp	+	Gly102Ser	+	Tyr104His
Val 95Met	+	Leu 96Gly	+	Gly100Pro
Val 95Ala	+	Asp 98Glu	+	Asn 99Ser
Asp 97Glu	+	Tyr104Thr	+	Ile107His
Leu 96Thr	+	Gly102Gln	+	Gln103Asp
Tyr104Met	+	Thr106Glu	+	Ile107Leu
Gly100Ser	+	Gln103Asn	+	Tyr104Ile
Gln103Asn	+	Tyr104Pro	+	Thr106Glu
Val 95Met	+	Asp 98Glu	+	Asn 99Gln
Leu 96His	+	Asp 97Glu	+	Ile107Met
Gly100Asn	+	Gln103Ser	+	Ser105Asp
Gly102Asn	-	Gln103Glu	+	Thr106Pro
Val 95Met	+	Gly100Ser	+	Gly102Asp
Val 95Asp	+	Leu 96Met	+	Tyr104Asn
Gln103Glu	+	Tyr104Cys	+	Ile107Asn
Val 95Met	+	Leu 96Ile	+	Tyr104Met
Val 95Ser	+	Ser101Glu	+	Thr106Gly
Val 95Pro	+	Asn 99Asp	+	Gly100Ser

Gly100Ser + Gln103Glu + Ile107Val
 Gln103Asp + Tyr104Val + Ile107His
 Gly100Gln + Tyr104Met + Thr106Asp
 Asn 99Asp + Gly100Ser + Tyr104His
 Ser101Asp + Gly102Asp + Gln103Ser
 Asp 98Glu + Asn 99Asp + Tyr104Ala
 Asp 98Glu + Asn 99Glu + Gly100Gln
 Gly102Asp + Gln103Asp + Thr106Gln
 Tyr104Glu + Ser105Asp + Thr106Pro
 Asp 97Glu + Asp 98Glu + Tyr104Thr
 Asp 97Glu + Asp 98Glu + Asn 99Asp
 Asn 99Asp + Gly100Asp + Ser101Glu
 Gln103Glu + Tyr104Asp + Ile107Glu
 Leu 96Glu + Asp 97Glu + Gly102Asp
 Leu 96Glu + Ser101Asp + Gln103Asn
 Asp 97Glu + Gly100Asp + Ile107His
 Asp 97Glu + Asn 99Ser + Gly100Asp
 Gln103Asp + Ser105Glu + Thr106Asn
 Leu 96Ser + Ser105Asp + Ile107Asp
 Asp 97Glu + Ser101Glu + Gln103Ser
 Asp 97Glu + Ser101Glu + Tyr104Met
 Asn 99Asp + Gly100Ser + Ser101Asp
 Gln103Asp + Tyr104His + Ile107Glu
 Asp 97Glu + Gly102Glu + Tyr104Pro
 Val 95Asp + Gly102Glu + Tyr104Gly
 Val 95Asp + Asp 97Glu + Ile107Asn

TABLE 9

Loop 2 - Quadruple Mutation Variants

Val 95Gln + Asp 97Glu + Gly100Ser - Ile107Gln
Val 95Ser + Leu 96Pro + Asp 97Glu - Gln103Asn
Leu 96Gln + Gly100Ser + Ser101Asp - Thr106Asn
Val 95Cys + Asp 97Glu + Gly100Gln + Gly102Ser
Leu 96Pro + Gly102Asn + Ser105Asp + Ile107Gln
Val 95Ser + Gly100Gln + Ser101Glu + Ile107Asn
Leu 96Met + Ser101Glu + Gln103Asn + Thr106Pro
Asn 99Asp + Gly100Pro + Gly102Ser + Tyr104Ala
Gly100Pro + Gly102Pro + Thr106Gly + Ile107Glu
Val 95Ser + Gly100Gln + Ser101Asp + Gly102Pro
Val 95Gly + Leu 96Val + Thr106Pro + Ile107Asp
Val 95Gln + Leu 96Val + Asn 99Asp + Ile107Thr
Leu 96Ser + Asp 97Glu + Thr106Gln + Ile107Met
Leu 96Thr + Asn 99Gln + Tyr104Val + Ile107Cys
Asn 99Glu + Gly100Gln + Gly102Asn + Gln103Ser
Val 95Gly + Ser101Glu + Gln103Ser + Thr106Gly
Val 95Asn + Leu 96Gln + Asp 98Glu + Gly100Asn
Val 95Cys + Gly102Pro + Tyr104Val + Ile107Asp
Val 95Met + Leu 96Met + Gly102Glu + Tyr104Thr
Val 95Asp + Leu 96Cys + Thr106Ser + Ile107Gly
Leu 96Met + Gly100Glu + Ser101Glu + Tyr104Cys
Asp 98Glu + Asn 99Glu + Gly102Asn + Ile107Ser

Val 95Ser + Asp 97Glu + Asp 98Glu + Asn 99Ser
 Val 95Gly + Asp 97Glu + Asp 98Glu + Tyr104Ile
 Leu 96Gly + Asp 97Glu + Asp 98Glu + Asn 99Asp
 Asp 98Glu + Asn 99Glu + Gly100Glu + Thr106Gly
 Leu 96Glu + Asp 97Glu + Ser101Asp + Tyr104Ile
 Asp 97Glu + Gly100Asp + Ser101Glu + Tyr104Leu
 Asp 97Glu + Asp 98Glu + Gly100Glu + Tyr104Met
 Gly100Glu + Ser101Asp + Gly102Asp + Ile107Gly
 Val 95Met + Leu 96Glu + Asp 97Glu + Gly102Asp
 Asp 97Glu + Gly100Glu + Tyr104Ala + Thr106Gln
 Asp 97Glu + Asn 99Glu + Tyr104His + Thr106Gly
 Gly102Ser + Gln103Asp + Ser105Asp + Thr106Ser
 Asp 97Glu + Ser101Asp + Gly102Pro + Tyr104Ile
 Asn 99Asp + Gly100Gln + Ser101Asp + Thr106Pro
 Asn 99Asp + Gly100Ser + Ser101Asp + Ile107Cys
 Gly102Ser + Gln103Glu + Ser105Asp + Ile107Asp
 Asp 98Glu + Gly100Glu + Ser101Glu + Gly102Gln
 Val 95Gly + Asp 98Glu + Asn 99Glu + Ser101Asp
 Asp 97Glu + Gly102Asp + Gln103Ser + Ile107Met
 Leu 96Ser + Asp 97Glu + Gly100Glu + Gly102Glu
 Val 95Thr + Leu 96Glu + Asp 98Glu + Ser101Asp
 Gly102Glu + Tyr104Ala + Ser105Asp + Thr106Asp
 Leu 96Met + Ser101Asp + Gln103Glu + Ile107Gln
 Ser101Asp + Gln103Asp + Tyr104Ser + Ile107Thr
 Asp 98Glu + Gly100Asn + Ser101Glu + Tyr104Val
 Val 95Glu + Gly102Glu + Gln103Asn + Tyr104Glu
 Val 95Thr + Ser101Glu + Gln103Asp + Ile107Glu
 Ser101Glu + Gln103Asp + Tyr104Met + Ile107Glu
 Val 95Glu + Ser101Asp + Tyr104His + Ile107Glu
 Val 95Gly + Asp 97Glu + Gly102Glu + Thr106Glu
 Val 95Ser + Leu 96Asp + Asn 99Gln + Gln103Glu
 Leu 96Glu + Gly102Asn + Tyr104Gln + Thr106Glu
 Val 95Asp + Asp 98Glu + Gly100Asp + Thr106Gly
 Leu 96Glu + Gly102Asp + Gln103Ser + Ser105Glu
 Gly100Ser + Ser101Glu + Gln103Asp + Ser105Asp
 Val 95Met + Gly100Glu + Gly102Asp + Ile107Asp
 Leu 96Ala + Asp 97Glu + Ser101Asp + Ile107Asp
 Leu 96Gln + Asp 97Glu + Gln103Asp + Ile107Glu

TABLE 10
Loop 3 - Single Mutation Variants

Leu133Ala
 Leu133Asn
 Leu133Asp
 Leu133Cys
 Leu133Gln
 Leu133Glu
 Leu133Gly
 Leu133His
 Leu133Ile
 Leu133Met

Leu133Pro
 Leu133Ser
 Leu133Thr
 Leu133Val
 Gly134Asn
 Gly134Asp
 Gly134Gln
 Gly134Glu
 Gly134Pro
 Gly134Ser
 Gly135Asn
 Gly135Asp
 Gly135Gln
 Gly135Glu
 Gly135Pro
 Gly135Ser
 Gly136Asn
 Gly136Asp
 Gly136Gln
 Gly136Glu
 Gly136Pro
 Gly136Ser
 Tyr137Ala
 Tyr137Asn
 Tyr137Asp
 Tyr137Cys
 Tyr137Gln
 Tyr137Glu
 Tyr137Gly
 Tyr137His
 Tyr137Ile
 Tyr137Leu
 Tyr137Met
 Tyr137Pro
 Tyr137Ser
 Tyr137Thr
 Tyr137Val
 Ser138Asp
 Ser138Glu
 Ser139Asp
 Ser139Glu
 Ser140Asp
 Ser140Glu

TABLE 11

Loop 3 - Double Mutation Variants

Gly134Asn + Ser140Asp
Leu133Ala + Gly135Glu
Leu133Thr + Ser139Asp
Leu133Gln + Ser140Asp
Gly136Gln + Ser138Glu

Gly134Ser + Ser138Asp
Gly136Pro + Ser139Asp
Gly135Asn + Ser138Asp
Gly135Glu + Gly136Pro
Leu133Ile + Ser140Asp
Leu133Cys + Ser140Asp
Gly134Asn + Gly135Pro
Leu133Cys + Gly136Asp
Tyr137Asn + Ser139Asp
Gly136Asn + Ser140Glu
Gly134Glu + Gly135Pro
Tyr137Met + Ser140Asp
Gly135Gln + Ser139Glu
Tyr137Thr + Ser138Glu
Leu133Asn + Ser139Glu
Gly135Ser + Gly136Gln
Leu133Gly + Gly136Ser
Leu133Ala + Tyr137His
Leu133Val + Gly136Glu
Tyr137Ile + Ser139Asp
Leu133Ile + Tyr137Gln
Gly136Ser + Ser140Asp
Gly134Asn + Ser138Glu
Gly134Ser + Ser138Glu
Gly135Ser + Ser138Asp
Gly136Ser + Ser140Glu
Gly136Ser + Ser138Glu
Leu133Glu + Gly134Asn
Leu133Glu + Gly135Gln
Gly135Asn + Tyr137Glu
Tyr137Thr + Ser139Glu
Tyr137Ala + Ser139Glu
Gly134Gln + Tyr137Gly
Gly135Pro + Tyr137His
Leu133Pro + Ser138Glu
Leu133Thr + Gly135Ser
Gly136Pro + Ser138Glu
Gly134Ser + Ser140Asp
Leu133Met + Tyr137Ala
Tyr137Val + Ser138Glu
Gly134Pro + Ser140Glu
Leu133Thr + Tyr137Ser
Gly135Glu + Gly136Asn
Leu133Ala + Ser140Glu
Gly134Gln + Ser139Glu
Leu133Pro + Tyr137Gly
Leu133Val + Gly136Ser
Gly136Asp + Tyr137Pro
Gly136Asn + Tyr137Val
Leu133Ala + Ser138Asp
Gly135Gln + Gly136Pro
Tyr137Met + Ser138Glu
Leu133Gln + Tyr137Asp

Tyr137Ser + Ser138Glu
 Gly134Asp + Gly135Pro

TABLE 12

Loop 3 - Triple Mutation Variants

Leu133Cys	+	Gly135Gln	+	Tyr137Glu
Leu133Ile	+	Gly134Ser	+	Gly136Glu
Leu133Gly	+	Gly135Glu	+	Tyr137Val
Leu133Gln	+	Gly135Gln	+	Ser139Asp
Leu133Asp	+	Gly135Pro	+	Tyr137Asn
Leu133Val	+	Gly135Gln	+	Gly136Ser
Gly135Asn	+	Tyr137Ile	+	Ser139Glu
Leu133Met	+	Gly136Pro	+	Ser140Asp
Gly134Pro	+	Gly136Pro	+	Ser138Glu
Gly135Asn	+	Tyr137Met	+	Ser138Asp
Leu133Ser	+	Gly136Asn	+	Tyr137Val
Gly134Glu	+	Gly135Ser	+	Gly136Pro
Gly136Asn	+	Tyr137Met	+	Ser140Glu
Leu133Ile	+	Gly136Pro	+	Tyr137Glu
Leu133Met	+	Gly136Gln	+	Tyr137Gln
Leu133Val	+	Gly135Pro	+	Ser139Asp
Leu133Asp	+	Gly135Gln	+	Tyr137Cys
Gly135Pro	+	Tyr137Met	+	Ser138Glu
Gly136Gln	+	Tyr137Gly	+	Ser140Asp
Leu133Ser	+	Gly134Pro	+	Ser140Asp
Leu133Thr	+	Gly134Asp	+	Gly135Pro
Leu133Ile	+	Gly135Asn	+	Ser139Glu
Gly135Glu	+	Gly136Pro	+	Tyr137His
Gly135Asn	+	Gly136Pro	+	Ser140Glu
Leu133Met	+	Gly134Ser	+	Gly136Gln
Gly134Pro	+	Gly135Asn	+	Ser140Glu
Gly135Gln	+	Gly136Gln	+	Ser138Asp
Gly136Ser	+	Tyr137Met	+	Ser138Glu
Gly134Pro	+	Gly136Ser	+	Ser139Asp
Gly134Ser	+	Tyr137Thr	+	Ser138Asp
Leu133Thr	+	Gly134Pro	+	Ser140Asp
Gly134Gln	+	Gly135Pro	+	Ser140Glu
Gly134Pro	+	Tyr137His	+	Ser138Asp
Leu133Met	+	Gly134Gln	+	Ser139Asp
Leu133Ser	+	Gly134Asn	+	Ser138Glu
Gly136Gln	+	Tyr137Ala	+	Ser139Glu
Leu133Ile	+	Gly136Asn	+	Ser139Asp
Leu133Ala	+	Gly135Asp	+	Gly136Pro
Leu133Asn	+	Ser138Asp	+	Ser139Glu
Gly136Asn	+	Ser138Asp	+	Ser139Asp
Gly135Asn	+	Ser138Asp	+	Ser139Glu
Leu133Asp	+	Gly134Asp	+	Tyr137His
Leu133Asp	+	Gly134Glu	+	Gly135Pro
Leu133Gly	+	Gly136Glu	+	Tyr137Asp
Tyr137Ser	+	Ser139Glu	+	Ser140Asp
Gly134Gln	+	Ser139Asp	+	Ser140Asp

Gly136Asn + Ser139Asp + Ser140Glu
 Tyr137Pro + Ser139Asp + Ser140Asp
 Gly135Ser + Tyr137Glu + Ser138Glu
 Ser138Asp + Ser139Asp + Ser140Asp
 Tyr137Glu + Ser138Asp + Ser139Glu
 Tyr137Ala + Ser138Asp + Ser140Asp
 Tyr137Thr + Ser138Asp + Ser140Glu
 Tyr137Gln + Ser138Asp + Ser140Asp
 Leu133Thr + Ser138Asp + Ser140Glu
 Gly135Ser + Ser138Asp + Ser140Glu
 Gly136Gln + Ser138Asp + Ser140Asp
 Gly135Ser + Ser138Glu + Ser140Asp
 Gly136Gln + Ser138Glu + Ser140Asp
 Leu133Val + Ser138Glu + Ser140Glu

TABLE 13

Loop 3 - Quadruple Mutation Variants

Leu133Ala + Gly134Asn + Tyr137Ser + Ser138Asp
 Gly134Glu + Gly135Asn + Gly136Asn + Tyr137Cys
 Leu133Cys + Gly135Asn + Gly136Gln + Ser138Asp
 Leu133Pro + Gly134Asn + Gly135Ser + Ser139Asp
 Leu133Val + Gly134Gln + Gly136Gln + Ser140Glu
 Leu133Asp + Gly134Gln + Gly136Gln + Tyr137Thr
 Leu133His + Gly135Gln + Gly136Pro + Tyr137Ser
 Leu133Gly + Gly134Ser + Tyr137Ala + Ser138Asp
 Leu133Gln + Gly134Gln + Gly135Asn + Ser140Glu
 Leu133Ser + Gly135Ser + Tyr137Pro + Ser139Glu
 Leu133Asn + Gly134Asn + Gly136Glu + Tyr137Cys
 Leu133Met + Gly134Asn + Gly135Gln + Ser138Glu
 Leu133Asn + Gly134Ser + Tyr137Val + Ser138Glu
 Gly135Asn + Gly136Pro + Tyr137Cys + Ser139Asp
 Leu133Ile + Gly135Asp + Gly136Asn + Tyr137Ile
 Gly134Asp + Gly135Glu + Gly136Gln + Tyr137Thr
 Leu133Gln + Gly134Glu + Gly135Asp + Tyr137Thr
 Gly134Ser + Tyr137Val + Ser138Glu + Ser139Glu
 Gly134Ser + Tyr137Val + Ser138Asp + Ser139Glu
 Leu133His + Gly135Gln + Ser138Asp + Ser139Asp
 Leu133Gly + Gly135Pro + Ser138Glu + Ser139Asp
 Leu133Val + Gly135Pro + Ser138Asp + Ser139Glu
 Leu133Ser + Gly134Gln + Gly135Asp + Gly136Glu
 Leu133Ile + Gly134Gln + Ser139Asp + Ser140Asp
 Leu133Cys + Tyr137Asn + Ser139Asp + Ser140Glu
 Leu133Ser + Tyr137His + Ser139Glu + Ser140Glu
 Gly134Pro + Gly136Gln + Ser139Asp + Ser140Glu
 Gly134Gln + Gly135Ser + Ser139Asp + Ser140Asp
 Leu133Cys + Gly134Pro + Ser139Glu + Ser140Asp
 Leu133Ala + Gly136Asn + Tyr137Glu + Ser138Asp
 Gly136Pro + Ser138Asp + Ser139Glu + Ser140Asp
 Tyr137Leu + Ser138Asp + Ser139Glu + Ser140Glu
 Gly135Asn + Ser138Asp + Ser139Asp + Ser140Glu
 Leu133Gly + Ser138Asp + Ser139Glu + Ser140Glu

Leu133Ser + Tyr137Asp + Ser138Asp + Ser139Glu
 Gly136Gln + Tyr137Asp + Ser138Asp + Ser139Asp
 Gly136Asn + Tyr137Asp + Ser138Asp + Ser139Glu
 Gly134Glu + Gly135Asp + Gly136Asp - Tyr137Ile
 Leu133Gln + Tyr137Val + Ser138Glu + Ser140Asp
 Gly134Pro + Tyr137Gly + Ser138Asp + Ser140Asp
 Leu133His + Tyr137Leu + Ser138Glu + Ser140Glu
 Gly134Gln + Gly135Ser + Ser138Glu + Ser140Glu
 Leu133Cys + Gly136Ser + Ser138Glu + Ser140Glu
 Gly135Gln + Gly136Gln + Ser138Asp + Ser140Asp
 Gly134Pro + Tyr137His + Ser138Asp + Ser140Glu
 Leu133Gln + Gly134Pro + Gly136Glu + Ser138Asp
 Leu133His + Gly134Pro + Gly136Asp + Ser138Glu
 Leu133Ile + Gly135Glu + Tyr137Glu - Ser138Glu
 Gly134Asn + Gly135Asp + Tyr137Asp + Ser138Glu
 Gly135Gln - Tyr137Glu + Ser138Asp - Ser140Glu
 Gly136Asn + Tyr137Glu + Ser138Asp - Ser140Glu
 Leu133Asn + Tyr137Asp + Ser138Glu + Ser140Asp
 Leu133Cys + Gly136Pro + Tyr137Glu + Ser139Asp
 Gly134Glu + Gly135Pro + Gly136Asp - Tyr137Glu
 Gly136Pro + Tyr137Glu + Ser139Asp + Ser140Asp
 Gly135Ser + Tyr137Glu + Ser139Glu + Ser140Glu
 Leu133Pro + Gly134Glu + Gly136Asp + Tyr137Cys
 Gly134Gln + Gly136Asp + Ser138Glu + Ser139Asp
 Gly135Ser + Gly136Glu + Ser138Glu + Ser139Asp
 Gly134Asp + Gly135Glu + Gly136Ser - Ser138Asp

TABLE 14

Loop 4 - Single Mutation Variants

Gly160Asn
 Gly160Asp
 Gly160Gln
 Gly160Glu
 Gly160Pro
 Gly160Ser
 Asn161Asp
 Asn161Gln
 Asn161Glu
 Asn161Ser
 Asn162Asp
 Asn162Gln
 Asn162Glu
 Asn162Ser
 Asn163Asp
 Asn163Gln
 Asn163Glu
 Asn163Ser
 Ala164Asn
 Ala164Asp
 Ala164Gln
 Aia164Glu

Ala164Gly
 Ala164His
 Ala164Pro
 Ala164Ser
 Ala164Thr
 Asp165Glu
 Ala166Asn
 Ala166Asp
 Ala166Gln
 Ala166Glu
 Ala166Gly
 Ala166His
 Ala166Pro
 Ala166Ser
 Ala166Thr
 Arg167Asp
 Arg167Glu
 Asn168Asp
 Asn168Gln
 Asn168Glu
 Asn168Ser
 Tyr169Ala
 Tyr169Asn
 Tyr169Asp
 Tyr169Cys
 Tyr169Gln
 Tyr169Glu
 Tyr169Gly
 Tyr169His
 Tyr169Ile
 Tyr169Leu
 Tyr169Met
 Tyr169Pro
 Tyr169Ser
 Tyr169Thr
 Tyr169Val
 Ser170Asp
 Ser170Glu

TABLE 15

Loop 4 - Double Mutation Variants

Gly160Gln	+	Asp165Glu
Asn161Ser	+	Asn162Ser
Ala164Thr	+	Asn168Asp
Gly160Asn	+	Ser170Glu
Asn161Gln	+	Asn163Glu
Asn162Ser	+	Ser170Asp
Gly160Gln	+	Asn168Glu
Ala166Gly	+	Ser170Asp
Asn161Glu	+	Asn162Ser
Asn162Gln	+	Ser170Asp

Aial66Thr + Ser170Glu
Asn162Ser + Aial64Pro
Gly160Asn + Asn161Gln
Gly160Glu + Aial66Ser
Aial66Gly + Ser170Glu
Ala164His + Aial66Gly
Ala164Asn + Asp165Glu
Asn162Asp + Asn168Ser
Ala164Pro + Asn168Asp
Asn162Asp + Ala164Asn
Tyr169Thr + Ser170Asp
Ala164Glu + Tyr169His
Asp165Glu + Tyr169His
Asn162Glu + Asn168Ser
Gly160Asp + Tyr169Met
Asn162Glu + Aial66Asn
Asn161Glu + Aial66Thr
Asp165Glu + Aial66Asn
Asn161Gln + Tyr169Pro
Asn162Asp + Aial64Thr
Asn162Ser + Arg167Glu
Aial66Pro + Arg167Asp
Aial64Thr + Ser170Asp
Asn163Asp + Ala164Asn
Asp165Glu + Asn168Gln
Asn163Asp + Tyr169Thr
Asn168Asp + Tyr169Gly
Arg167Asp + Asn168Ser
Asn161Ser + Arg167Glu
Asn161Ser + Ser170Glu
Gly160Asp + Aial66Gly
Aial64Asn + Aial66Gln
Gly160Asn + Asn161Glu
Asn162Glu - Aial66Ser
Aial66His + Asn168Asp
Gly160Pro + Aial64Gly
Gly160Asn + Aial64Gly
Aial64Gln + Ser170Asp
Asn161Glu + Aial64Thr
Gly160Glu + Aial66Gly
Aial66Pro - Ser170Asp
Aia166Pro + Tyr169Ala
Gly160Ser + Arg167Glu
Gly160Asp + Aial64Ser
Asn161Gln + Aial64Pro
Asn163Glu + Aial66Gln
Aia164Ser + Asn168Gln
Gly160Glu + Aial64Ser
Gly160Asp + Aial66Gln
Aia164Thr + Asp165Glu

TABLE 16

Loop 4 - Triple Mutation Variants

Gly160Gln + Asn161Ser + Asp165Glu
Ala166Gly + Arg167Glu + Tyr169Cys
Asn162Ser + Ala166Asn + Ser170Asp
Gly160Gln + Asn162Asp + Asn168Ser
Ala164Asn + Asn168Gln + Ser170Glu
Ala164Asp + Ala166Thr + Asn168Ser
Asn163Gln + Ala166Gly + Arg167Glu
Asn162Ser + Ala166His + Asn168Gln
Asp165Glu - Ala166Thr + Asn168Gln
Asn163Ser + Ala164Pro + Asn168Asp
Gly160Glu + Ala164His + Tyr169Gln
Asn161Gln + Asn163Ser + Ser170Glu
Ala166Thr + Tyr169Leu + Ser170Asp
Gly160Ser + Ala164Asn + Asn168Glu
Asn161Gln + Asn162Glu + Asn163Ser
Asn163Ser + Ala166Ser + Arg167Glu
Ala164Thr + Ala166Gly + Arg167Glu
Ala164Ser + Ala166Gly + Ser170Glu
Asn162Gln + Ala164Gln + Ala166Pro
Asn162Glu + Asn163Gln + Ala164Gly
Asn161Asp + Ala164Asn + Tyr169Val
Gly160Asn + Ala164Glu - Ala166Pro
Asn162Gln + Ala164Pro + Arg167Asp
Asn163Ser + Ala164Ser - Tyr169Gly
Ala166Asn + Arg167Glu - Asn166Ser
Asn163Gln + Asp165Glu - Ala166Ser
Asn162Ser + Ala164His - Asn166Asp
Ala164Ser + Arg167Asp - Asn166Asp
Asn162Ser + Arg167Asp - Asn168Asp
Asn161Asp + Asn162Glu + Asn163Gln
Asn161Asp + Asn162Glu + Asn168Gln
Gly160Glu + Asn161Glu + Ala166Asn
Gly160Glu + Asn161Glu + Ala164Ser
Gly160Pro + Asn162Asp + Asn163Asp
Asn162Asp + Asn163Glu + Ala166Asn
Asn161Glu + Asn162Asp + Asn163Glu
Asn162Glu + Asn163Ser + Ala164Asp
Asp165Glu + Arg167Asp + Tyr169Pro
Asp165Glu + Arg167Asp + Asn168Asp
Ala164Gln + Arg167Asp + Tyr169Asp
Asn161Asp + Asn162Asp + Ala164Asp
Asn161Asp + Asn163Asp + Tyr169Thr
Asn161Asp + Asn163Asp + Ala164Asn
Gly160Glu + Asn162Glu + Asn163Gln
Ala164Asp + Asp165Glu + Arg167Glu
Ala164Pro + Asp165Glu + Asn168Asp
Gly160Asp + Asn162Glu + Ala164Glu
Gly160Pro + Asn168Glu + Ser170Glu

Ala164Glu + Arg167Glu + Asn168Glu
 Asn161Glu + Asn163Glu - Asp165Glu
 Gly160Asp - Asn162Glu + Asp165Glu
 Asp165Glu + Ala166Gly - Tyr169Glu
 Gly160Glu - Asn161Asp + Asp165Glu
 Arg167Asp + Asn168Gln - Ser170Asp
 Asn162Gln + Arg167Asp - Ser170Glu
 Asn163Gln - Arg167Glu - Ser170Glu
 Asn162Asp + Asp165Glu - Asn168Glu
 Asn162Asp + Asp165Glu - Arg167Glu
 Gly160Asp + Asn168Gln - Ser170Glu
 Gly160Asp + Asp165Glu + Tyr169Gly

TABLE 17

Loop 4 - Quadruple Mutation Variants

Gly160Gln - Asn161Ser + Asn162Ser + Asp165Glu
 Gly160Glu - Asn161Ser + Asn162Gln + Asn168Ser
 Asn161Ser + Asn163Asp + Ala164Asn + Tyr169Thr
 Gly160Ser + Asp165Glu + Ala166Asn + Tyr169Leu
 Gly160Gln + Ala166Ser + Arg167Asp + Tyr169His
 Gly160Ser + Asn163Ser + Ala166Gly + Ser170Asp
 Asn161Gln + Asn163Gln + Ala164Glu + Ala166Gly
 Asn161Glu + Asn163Gln + Ala166His + Tyr169Asn
 Asn163Gln - Ala166His + Arg167Asp + Asn168Gln
 Gly160Gln + Asn162Ser + Asn163Asp + Tyr169Gln
 Asn162Glu + Ala166Gln + Asn168Ser - Tyr169Gly
 Asn163Glu + Ala166His + Asn168Gln + Tyr169Gln
 Gly160Asn + Asn161Ser + Ala164Thr + Ala166Ser
 Asn161Gln + Asn162Ser + Asn168Glu + Tyr169Ser
 Asn161Gln + Ala166His + Arg167Glu + Tyr169Ala
 Asn161Gln + Ala164Gly + Ala166Gln + Tyr169His
 Ala164Gln + Asp165Glu + Asn168Ser + Tyr169Met
 Ala164Gln + Ala166His + Arg167Glu + Asn168Glu
 Gly160Asn + Asn162Ser + Ala164Glu + Asp165Glu
 Asn161Asp + Asn162Asp + Ala164Asn + Ala166Ser
 Asn161Asp + Asn162Asp + Ala164Asn + Ala166Thr
 Ala164Gln + Ala166Asn + Asn168Asp + Tyr169Asp
 Gly160Pro + Asn163Asp + Ala164Asp + Ala166Thr
 Asn161Ser + Asn163Asp + Ala164Asp + Asn168Gln
 Asn162Asp + Asn163Asp + Ala166Pro + Tyr169Met
 Asn161Ser + Asn163Gln + Tyr169Asp + Ser170Asp
 Asn161Ser + Ala166His + Tyr169Asp + Ser170Glu
 Asn161Glu + Asn162Asp + Asn163Glu + Tyr169Cys
 Asn161Glu + Asn162Glu + Asn163Asp + Tyr169Ala
 Asp165Glu + Ala166Gly + Arg167Asp + Asn168Gln
 Asp165Glu - Arg167Asp + Asn168Gln + Tyr169Val
 Asn161Asp + Asn163Glu + Ala164Asn + Ala166Gly
 Asn163Gln + Ala164Asp + Asp165Glu + Arg167Asp
 Asp165Glu + Ala166Asn + Asn168Asp + Tyr169Glu
 Asn163Gln + Asp165Glu + Arg167Glu + Tyr169Asp
 Asp165Glu + Arg167Asp + Asn168Ser + Tyr169Asp

Asn163Ser + Asp165Glu + Arg167Asp + Tyr169Glu
 Asn163Gln + Ala166Thr + Asn168Glu + Ser170Glu
 Asn161Gln + Ala166Gly + Asn168Asp + Ser170Glu
 Asn163Glu + Asp165Glu + Ala166Gly + Tyr169Leu
 Gly160Pro + Asn162Gln + Asn163Asp + Asp165Glu
 Gly160Glu + Asn163Gln + Asn168Asp + Tyr169Glu
 Gly160Asp + Ala164Glu + Asp165Glu + Tyr169Ser
 Asn161Glu + Ala164Asp + Asp165Glu + Tyr169Gln
 Gly160Asp + Asn162Asp + Ala166Gly + Tyr169Asp
 Asn161Glu + Asn162Glu + Asp165Glu + Ala166Asn
 Asn161Asp + Asn162Asp + Asp165Glu + Ala166Gln
 Asn161Asp + Asn163Asp + Asp165Glu + Asn168Gln
 Gly160Asp + Asn161Ser + Asn163Glu + Tyr169Gly
 Gly160Asp + Asn162Asp + Asp165Glu + Asn168Gln
 Asn161Ser + Arg167Glu + Tyr169Thr + Ser170Asp
 Asn161Gln + Arg167Glu + Asn168Gln + Ser170Asp
 Gly160Asp + Asn163Asp + Asp165Glu + Tyr169Ala
 Gly160Ser + Asn162Glu + Ala164Pro + Asp165Glu
 Gly160Glu + Arg167Glu + Asn168Glu + Tyr169Gln
 Asn161Ser + Ala164Asp + Arg167Glu + Tyr169Asn
 Asn162Ser + Asn163Asp + Ala164Asp + Asn168Asp
 Asn163Glu + Asp165Glu + Ala166Asn + Arg167Glu
 Asn163Asp + Asp165Glu + Arg167Asp + Asn168Ser
 Gly160Glu + Ala164Gly + Asn168Asp + Ser170Asp

TABLE 18

Loop 5 - Single Mutation Variants

Ser190Asp
 Ser190Glu
 Ser191Asp
 Ser191Glu
 Phe192Ala
 Phe192Asn
 Phe192Asp
 Phe192Cys
 Phe192Gln
 Phe192Glu
 Phe192Gly
 Phe192His
 Phe192Ile
 Phe192Leu
 Phe192Met
 Phe192Pro
 Phe192Ser
 Phe192Thr
 Phe192Tyr
 Phe192Val
 Ser193Asp
 Ser193Glu
 Asn194Asp
 Asn194Gln

Asn194Glu
Asn194Ser

TABLE 19

Loop 5 - Double Mutation Variants

Ser190Asp + Phe192Leu
 Ser190Glu + Phe192Gln
 Phe192Glu + Asn194Gln
 Phe192Tyr + Asn194Glu
 Ser190Asp + Phe192Ile
 Ser191Glu + Phe192Ser
 Ser191Asp + Phe192Gly
 Ser191Asp + Asn194Ser
 Ser191Glu + Phe192Thr
 Ser191Glu + Asn194Gln
 Ser191Glu + Phe192His
 Ser191Asp + Phe192Asn
 Ser190Asp + Phe192Gly
 Ser191Asp + Asn194Gln
 Ser191Asp + Phe192Ala
 Ser190Glu + Phe192Cys
 Ser190Glu + Phe192Ile
 Ser191Asp + Phe192Ser
 Ser190Asp + Asn194Gln
 Ser191Glu + Phe192Cys
 Phe192Ser + Asn194Glu
 Ser191Glu + Phe192Gly
 Phe192Gly + Asn194Gln
 Phe192Cys + Asn194Gln
 Phe192Asn + Asn194Asp
 Ser190Glu + Phe192Tyr
 Ser191Glu + Phe192Ala
 Ser190Glu + Asn194Ser
 Phe192Ile + Asn194Ser
 Ser191Glu + Phe192Met
 Ser190Asp + Phe192Met
 Ser190Asp + Asn194Ser
 Phe192Gly + Asn194Asp
 Phe192His + Asn194Ser
 Ser190Glu + Asn194Gln
 Phe192Ala + Asn194Glu
 Phe192Thr + Asn194Glu
 Ser190Glu + Phe192Ser
 Ser191Glu + Phe192Ile
 Phe192Val + Asn194Glu
 Phe192Thr + Asn194Asp
 Ser191Glu + Phe192Pro
 Ser191Asp + Phe192Leu
 Phe192Ile + Asn194Glu
 Ser190Asp + Phe192Thr
 Ser191Asp + Phe192Ile

Phe192Thr + Asn194Gln
 Phe192Ala + Asn194Gln
 Ser191Asp + Phe192Tyr
 Ser190Glu + Phe192Thr
 Phe192Leu + Asn194Glu
 Phe192His + Asn194Gln
 Ser190Asp + Phe192Tyr
 Phe192Val + Asn194Ser
 Phe192Asp + Asn194Gln
 Phe192Gly + Asn194Ser
 Ser191Asp + Phe192Gln
 Phe192Asp + Asn194Ser
 Phe192Thr + Asn194Ser
 Ser190Glu + Phe192Ala

TABLE 20

Loop 5 - Triple Mutation Variants

Ser191Asp + Phe192Met + Asn194Gln
 Ser191Glu + Phe192Ala + Asn194Gln
 Ser191Asp + Phe192Leu + Asn194Ser
 Ser191Glu + Phe192Asn + Asn194Gln
 Ser190Asp + Phe192Gln + Asn194Gln
 Ser191Asp + Phe192Ile + Asn194Gln
 Ser190Asp + Phe192Asn + Asn194Ser
 Ser191Glu + Phe192Ile + Asn194Ser
 Ser190Asp + Phe192Leu + Asn194Gln
 Ser190Asp + Phe192Val + Asn194Ser
 Ser190Glu + Phe192Gln + Asn194Ser
 Ser191Asp + Phe192Val + Asn194Ser
 Ser191Glu + Phe192Ala + Asn194Ser
 Ser191Glu + Phe192Cys + Asn194Gln
 Ser190Glu + Phe192Val + Asn194Ser
 Ser190Glu + Phe192Ile + Asn194Gln
 Ser190Glu + Phe192Ser + Asn194Ser
 Ser190Glu + Phe192Tyr + Asn194Gln
 Ser191Asp + Phe192Ile + Asn194Ser
 Ser190Asp + Ser191Glu + Asn194Ser
 Ser190Asp + Ser191Asp + Phe192Met
 Ser190Glu + Ser191Glu + Phe192Val
 Ser190Asp + Ser191Glu + Phe192Ser
 Ser190Asp + Ser191Asp + Phe192Thr
 Ser190Glu + Ser191Asp + Asn194Ser
 Ser190Glu + Ser191Asp + Phe192Asn
 Ser190Asp + Ser191Asp + Phe192Asn
 Ser190Asp + Ser191Asp + Phe192Val
 Ser190Glu + Ser191Glu + Phe192Cys
 Ser190Asp + Ser191Glu + Phe192Asn
 Ser190Glu + Ser191Glu + Phe192Leu
 Ser190Glu + Ser191Asp + Phe192Gly
 Ser190Glu + Ser191Glu + Phe192Ser
 Ser190Glu + Ser191Glu + Asn194Ser

Ser190Asp + Ser191Asp + Asn194Gln
 Ser190Asp + Ser191Asp - Phe192Tyr
 Ser190Asp + Ser191Glu - Phe192Met
 Ser190Asp + Ser191Asp - Phe192Gly
 Ser190Glu + Ser191Asp - Asn194Gln
 Ser190Asp + Ser191Glu - Phe192Leu
 Ser190Asp + Ser191Glu + Phe192Gly
 Ser190Glu + Ser191Asp + Phe192Tyr
 Ser190Asp + Ser191Glu + Phe192Thr
 Ser190Glu + Ser191Asp + Phe192His
 Ser190Asp + Ser191Asp + Phe192Gln
 Ser190Glu + Ser191Asp + Phe192Ile
 Ser190Asp + Ser191Glu + Asn194Gln
 Ser190Asp + Ser191Asp + Phe192Pro
 Ser190Glu - Ser191Asp + Phe192Cys
 Ser190Asp + Ser191Asp - Asn194Ser
 Ser190Asp + Ser191Glu - Phe192Gln
 Ser190Glu + Ser191Asp + Phe192Pro
 Ser191Asp + Phe192Asp + Asn194Gln
 Ser191Asp + Phe192Glu + Asn194Ser
 Ser191Asp + Phe192Glu + Asn194Gln
 Ser191Asp + Phe192Glu + Asn194Gln
 Ser190Asp + Ser191Glu + Phe192Asp
 Ser190Asp + Ser191Asp + Phe192Glu
 Ser190Glu + Ser191Glu + Phe192Asp
 Ser190Glu + Ser191Asp + Phe192Asp
 Ser190Glu + Ser191Asp + Phe192Glu

TABLE 21

Loop 5 - Quadruple Mutation Variants

Ser190Glu + Ser191Asp + Phe192Ile + Asn194Ser
Ser190Asp + Ser191Asp + Phe192Gly + Asn194Gln
Ser190Glu + Ser191Asp + Phe192His + Asn194Ser
Ser190Glu + Ser191Asp + Phe192Gln + Asn194Gln
Ser190Asp + Ser191Asp + Phe192Met + Asn194Ser
Ser190Asp + Ser191Glu + Phe192Leu + Asn194Gln
Ser190Glu + Ser191Glu + Phe192Ala + Asn194Ser
Ser190Asp + Ser191Asp + Phe192Pro + Asn194Gln
Ser190Glu + Ser191Glu + Phe192Leu + Asn194Ser
Ser190Glu + Ser191Asp + Phe192His + Asn194Gln
Ser190Glu + Ser191Asp + Phe192Cys + Asn194Gln
Ser190Glu + Ser191Asp + Phe192Thr + Asn194Ser
Ser190Glu + Ser191Asp + Phe192Ser + Asn194Gln
Ser190Glu + Ser191Asp + Phe192Thr + Asn194Gln
Ser190Asp + Ser191Glu + Phe192Ile + Asn194Ser
Ser190Glu + Ser191Asp + Phe192Gln + Asn194Ser
Ser190Asp + Ser191Asp + Phe192Cys + Asn194Gln
Ser190Asp + Ser191Asp + Phe192Pro + Asn194Ser
Ser190Glu + Ser191Glu + Phe192Ala + Asn194Gln
Ser190Asp + Ser191Glu + Phe192Thr + Asn194Ser
Ser190Glu + Ser191Asp + Phe192Leu + Asn194Gln
Ser190Glu + Ser191Asp + Phe192Gly + Asn194Gln

Ser190Asp - Ser191Asp + Phe192Cys + Asn194Ser
 Ser190Glu - Ser191Glu + Phe192His - Asn194Gln
 Ser190Glu + Ser191Asp + Phe192Asn + Asn194Ser
 Ser190Asp + Ser191Asp + Phe192His + Asn194Gln
 Ser190Glu + Ser191Glu + Phe192Ile + Asn194Gln
 Ser190Asp + Ser191Asp + Phe192Tyr + Asn194Ser
 Ser190Glu + Ser191Asp + Phe192Tyr + Asn194Gln
 Ser190Glu + Ser191Asp + Phe192Ala + Asn194Ser
 Ser190Asp + Ser191Glu + Phe192Ala + Asn194Ser
 Ser190Asp + Ser191Glu + Phe192Asn + Asn194Ser
 Ser190Glu + Ser191Asp + Phe192Val + Asn194Ser
 Ser190Asp + Ser191Asp + Phe192Gln + Asn194Ser
 Ser190Asp + Ser191Asp + Phe192Gln + Asn194Gln
 Ser190Asp + Ser191Asp + Phe192Leu + Asn194Gln
 Ser190Asp + Ser191Asp + Phe192Ser + Asn194Gln
 Ser190Glu + Ser191Asp + Phe192Glu + Asn194Ser
 Ser190Asp + Ser191Asp + Phe192Asp + Asn194Ser
 Ser190Glu + Ser191Asp + Phe192Glu - Asn194Gln
 Ser190Glu - Ser191Glu + Phe192Glu + Asn194Ser
 Ser190Asp + Ser191Glu + Phe192Glu + Asn194Gln
 Ser190Asp + Ser191Asp + Phe192Glu - Asn194Ser
 Ser190Glu + Ser191Glu + Phe192Asp + Asn194Ser
 Ser190Glu + Ser191Asp + Phe192Asp + Asn194Ser
 Ser190Glu + Ser191Glu + Phe192Asp + Asn194Gln
 Ser190Asp + Ser191Asp + Phe192Asp - Asn194Gln
 Ser190Asp + Ser191Glu + Phe192Glu - Asn194Ser
 Ser190Glu + Ser191Glu + Phe192Tyr + Asn194Glu
 Ser190Glu + Ser191Glu + Phe192Met - Asn194Glu
 Ser190Asp + Ser191Glu + Phe192Gln - Asn194Asp
 Ser190Asp + Ser191Asp + Phe192Ala + Asn194Asp
 Ser190Glu - Ser191Glu + Phe192Leu - Asn194Asp
 Ser190Glu - Ser191Glu + Phe192Ser + Asn194Asp
 Ser190Glu - Ser191Glu + Phe192Met - Asn194Asp
 Ser190Asp + Ser191Glu - Phe192Tyr + Asn194Glu
 Ser190Asp + Ser191Asp + Phe192His + Asn194Asp
 Ser190Glu - Ser191Asp + Phe192Gln + Asn194Asp
 Ser190Asp + Ser191Asp + Phe192Asn + Asn194Glu
 Ser190Asp + Ser191Glu + Phe192Ile + Asn194Asp

TABLE 22

Loop 6 - Single Mutation Variants

Gly203Asn
 Gly203Asp
 Gly203Gln
 Gly203Glu
 Gly203Pro
 Gly203Ser
 Pro204Asn
 Pro204Asp
 Pro204Gln
 Pro204Glu

Pro204Gly
Pro204Ser
Gly205Asn
Gly205Asp
Gly205Gln
Gly205Glu
Gly205Pro
Gly205Ser
Thr206Asn
Thr206Asp
Thr206Gln
Thr206Glu
Thr206Gly
Thr206Pro
Thr206Ser
Ser207Asp
Ser207Glu
Ile208Ala
Ile208Asn
Ile208Asp
Ile208Cys
Ile208Gln
Ile208Glu
Ile208Gly
Ile208His
Ile208Leu
Ile208Met
Ile208Pro
Ile208Ser
Ile208Thr
Ile208Val
Leu209Ala
Leu209Asn
Leu209Asp
Leu209Cys
Leu209Gln
Leu209Glu
Leu209Gly
Leu209His
Leu209Ile
Leu209Met
Leu209Pro
Leu209Ser
Leu209Thr
Leu209Val
Ser210Asp
Ser210Glu
Thr211Asn
Thr211Asp
Thr211Gln
Thr211Glu
Thr211Gly
Thr211Pro

Thr211Ser
Trp212Ala
Trp212Asn
Trp212Asp
Trp212Cys
Trp212Gln
Trp212Glu
Trp212Gly
Trp212His
Trp212Ile
Trp212Leu
Trp212Met
Trp212Phe
Trp212Pro
Trp212Ser
Trp212Thr
Trp212Tyr
Trp212Val
Ile213Ala
Ile213Asn
Ile213Asp
Ile213Cys
Ile213Gln
Ile213Glu
Ile213Gly
Ile213His
Ile213Leu
Ile213Met
Ile213Pro
Ile213Ser
Ile213Thr
Ile213Val
Gly214Asn
Gly214Asp
Gly214Gln
Gly214Glu
Gly214Pro
Gly214Ser
Gly215Asn
Gly215Asp
Gly215Gln
Gly215Glu
Gly215Pro
Gly215Ser
Ser216Asp
Ser216Glu
Thr217Asn
Thr217Asp
Thr217Gln
Thr217Glu
Thr217Gly
Thr217Pro
Thr217Ser

Arg218Asp
 Arg218Glu
 Ser219Asp
 Ser219Glu
 Ile220Ala
 Ile220Asn
 Ile220Asp
 Ile220Cys
 Ile220Gin
 Ile220Glu
 Ile220Gly
 Ile220His
 Ile220Leu
 Ile220Met
 Ile220Pro
 Ile220Ser
 Ile220Thr
 Ile220Val
 Ser221Asp
 Ser221Glu
 Gly222Asn
 Gly222Asp
 Gly222Gln
 Gly222Glu
 Gly222Prc
 Gly222Ser
 Thr223Asn
 Thr223Asp
 Thr223Gln
 Thr223Glu
 Thr223Gly
 Thr223Pro
 Thr223Ser

TABLE 23

Loop 6 - Double Mutation Variants

Gly203Gln	+	Ser219Glu
Thr206Gly	+	Leu209Ser
Trp212Phe	+	Ser221Glu
Arg218Glu	+	Gly222Prc
Gly214Asp	+	Ile220Ser
Gly215Asp	+	Thr217Gly
Gly203Asn	+	Ser219Asp
Trp212Ile	+	Ser221Glu
Trp212Gln	+	Ser219Asp
Trp212Cys	+	Ser219Asp
Thr217Glu	+	Thr223Pro
Gly214Prc	+	Ile220Val
Ile208Pro	+	Thr223Ser
Leu209Gln	+	Ile220Glu
Thr206Asn	+	Ile220His

Ile208Ala + Thr217Ser
Pro204Gln + Ser221Asp
Trp212Thr + Thr223Asn
Gly203Asn + Ser219Glu
Gly203Gln + Gly214Pro
Gly214Asp + Gly215Gln
Gly203Ser + Arg218Glu
Thr206Gln + Trp212Asn
Pro204Ser + Ile213Glu
Ile208Leu + Gly222Glu
Gly215Gln + Thr217Gln
Ile208Thr + Ser219Asp
Gly205Ser + Gly214Asp
Ile208Ser + Arg218Glu
Ile208Ser + Ile220Val
Thr211Gly + Arg218Asp
Ile213Asp + Ile220Ser
Pro204Gln + Ser219Glu
Thr211Gly + Ile220Met
Ile208His + Leu209Ala
Gly205Asn + Ser207Glu
Thr206Ser + Gly215Asn
Gly205Asn + Gly222Ser
Gly203Pro + Ile213Cys
Thr206Gln + Gly215Ser
Ile208Ser + Gly214Glu
Thr217Gln + Ser219Glu
Pro204Ser + Ser216Asp
Gly214Asn + Ser216Asp
Ile208Leu - Thr211Asn
Pro204Gly - Ser207Glu
Ser219Asp + Gly222Asn
Trp212Tyr - Ile213Thr
Thr206Ser - Trp212Val
Ile220Asp + Thr223Pro
Ile208Pro + Trp212Pro
Ile208Leu + Thr217Asp
Pro204Ser + Gly214Ser
Gly203Ser + Gly222Pro
Gly205Ser + Arg218Glu
Gly203Pro + Ser207Asp
Ile208Val + Ser219Glu
Ser216Asp + Gly222Gln
Ser207Asp + Trp212Ala
Ile220Cys + Gly222Glu
Thr206Asn + Ile213Cys
Thr206Asp + Gly215Gln
Ser207Asp + Thr211Ser
Ile208Leu + Ser216Glu
Leu209Val + Gly214Asp
Thr206Glu + Ile213Asn
Pro204Ser + Thr211Ser
Ile213Asp + Gly215Pro

Gly214Asp + Thr223Ser
Gly205Asn + Leu209Cys
Gly205Gln + Ile208Ala
Ile208Leu + Ser219Asp
Leu209Glu + Thr211Pro
Ile208Cys + Thr217Gln
Pro204Asn + Leu209Asn
Gly214Pro + Ile220Pro
Gly203Gln + Thr211Gly
Pro204Gly + Thr223Asp
Gly215Ser + Thr217Pro
Thr206Gln + Thr211Asn
Gly205Pro + Gly215Pro
Gly203Pro + Ser207Glu
Ser207Glu + Ile208His
Pro204Ser + Thr223Gly
Gly205Asn + Gly215Asp
Leu209Gln + Ser219Glu
Gly215Pro + Thr223Ser
Ile208Gln + Ser221Asp
Gly203Gln + Arg218Asp
Gly203Asn + Ile220Asp
Gly205Pro + Arg218Asp
Thr211Asn + Arg218Glu
Gly205Asn + Thr223Glu
Thr206Glu + Leu209His
Thr206Pro + Gly215Asp
Trp212Gln + Ser221Asp
Ser216Glu + Ile220Met
Gly215Asn + Gly222Asp
Ile213Cys + Ser219Asp
Pro204Ser + Thr211Asn
Pro204Ser + Thr223Pro
Pro204Gln + Ile213Glu
Gly214Ser + Ser221Asp
Ile208Leu + Thr223Pro
Ser207Asp - Ile208Gly
Ile208Leu + Arg218Glu
Leu209Ser + Ile220His
Ile213Leu + Arg218Asp
Pro204Ser + Ser219Asp
Gly203Ser + Gly222Glu
Gly205Pro + Thr223Asn
Trp212Thr + Gly214Ser
Thr206Ser + Ser216Asp
Gly203Pro + Thr206Gly
Thr211Pro + Gly222Ser
Ile213Thr + Thr223Glu
Thr206Pro + Ile213Glu
Ser207Asp + Gly222Asn
Ile213Val + Gly214Asn
Thr211Asn + Thr223Asn
Ile213Cys + Thr223Pro

Pro204Ser + Gly222Gln
Gly205Gin + Gly215Glu
Leu209Pro + Gly222Gln
Gly205Ser + Gly222Asp
Pro204Ser + Ile208Leu
Pro204Gln + Thr211Gly
Leu209Ser + Ser219Asp
Thr217Glu + Thr223Asn
Gly203Gln + Thr217Ser
Gly205Pro + Ile213Gln
Leu209Glu + Thr217Ser
Ser216Asp + Thr217Ser
Trp212Gln + Ile213Ala
Arg218Glu + Ile220Gln
Leu209Ile + Thr223Asn
Ile208Met + Gly215Gln
Arg218Asp + Ile220Ala
Gly203Asn + Pro204Asn
Ile208His + Ser221Asp
Ile213Asn + Ser219Asp
Trp212Met + Ser219Glu
Thr206Pro + Ser216Glu
Pro204Gln + Thr206Asp
Thr206Gly + Gly215Pro
Pro204Asn + Gly222Gln
Ser219Glu + Gly222Ser
Ile220Asn + Gly222Asn
Gly205Asn + Ile213Asn
Gly203Ser + Ile213Leu
Ser207Asp + Thr211Asn
Leu209Pro + Ile213Glu
Ile208Pro + Thr223Asp
Thr211Ser + Gly222Asp
Thr206Ser + Thr217Asp
Gly203Gln + Gly214Glu
Gly205Ser + Gly215Ser
Gly203Gln + Leu209Ala
Gly203Gln + Gly222Asn
Ser207Asp + Thr211Gly
Gly205Gln + Ser219Glu
Trp212Cys + Ser216Asp
Gly203Gln + Thr217Glu
Arg218Glu + Ile220Cys
Thr211Gly + Ser221Glu
Pro204Asn + Ser216Asp
Arg218Asp + Gly222Pro
Gly205Pro + Ser221Glu
Arg218Glu + Thr223Ser
Leu209Asn + Ser216Glu
Gly205Pro + Ile220Met
Thr206Asn + Thr217Asp
Gly203Ser + Ile208Thr
Thr217Ser + Arg218Glu

Pro204Asn + Thr211Asn
 Gly205Asn + Thr217Glu
 Ser207Asp + Thr223Gly
 Trp212Tyr + Ile213Pro
 Gly214Gln + Ser216Asp
 Thr206Asp + Ile208Thr

TABLE 24

Loop 6 - Triple Mutation Variants

Gly203Gin + Thr206Gly + Ser219Glu
 Ile213Ala + Gly215Asp + Thr217Gly
 Gly203Asn + Ser219Asp + Thr223Ser
 Gly215Pro + Ser216Glu + Thr223Ser
 Gly203Gln + Trp212Pro + Gly222Asp
 Pro204Ser + Gly205Ser + Ser207Glu
 Gly205Pro + Ile208Met + Ser219Asp
 Thr211Gly + Gly215Gln + Thr217Asn
 Thr211Ser + Thr217Gln + Thr223Asp
 Gly205Gln + Thr211Asn + Gly222Asn
 Thr211Pro + Gly214Asn + Thr217Asn
 Gly205Pro + Leu209Asn + Thr223Gln
 Gly203Gln + Trp212Leu + Ile220Ala
 Trp212Thr + Gly215Glu + Ile220Thr
 Gly205Gln + Ser207Asp + Trp212Ala
 Gly205Asn + Trp212Phe + Ser216Glu
 Ser207Glu + Thr211Gly + Gly222Asn
 Pro204Gln + Gly205Ser + Ser221Glu
 Thr206Pro + Leu209Gly + Thr223Asn
 Ile208Met + Thr217Gly + Thr223Gln
 Thr211Ser + Gly215Pro + Gly222Glu
 Ile208Pro + Trp212Pro + Ser216Glu
 Gly203Ser + Thr211Gln + Gly222Prc
 Gly203Pro + Ile208Val + Ser219Glu
 Thr206Pro + Gly215Ser + Ser216Glu
 Thr206Pro + Ile220Asn + Thr223Gly
 Pro204Gln + Gly205Pro + Arg218Glu
 Trp212His + Ile213Met + Gly215Asp
 Ile208Ser + Gly222Gln + Thr223Gln
 Gly205Gln + Trp212Leu + Arg218Asp
 Gly214Gln + Ser216Glu + Gly222Ser
 Gly203Asn + Ser216Glu + Gly222Gln
 Leu209Asn + Gly222Glu + Thr223Ser
 Thr206Asp + Thr211Asn + Gly214Ser
 Pro204Asn + Thr211Gly + Trp212Thr
 Gly203Ser + Ile208Ala + Ser216Glu
 Thr211Ser + Gly214Pro + Gly222Glu
 Gly215Gln + Arg218Asp + Ile220Val
 Gly215Ser + Ser216Asp + Thr223Ser
 Thr206Asn + Thr211Asn + Arg218Glu
 Pro204Asn + Thr217Glu + Thr223Ser
 Thr206Ser + Ile213Met + Gly215Ser

Prc204Gly + Gly205Ser + Trp212Gln
Thr211Pro + Trp212Ala + Thr223Asp
Gly215Glu + Ile220Ala + Thr223Gln
Thr206Gln + Ile208Ser + Leu209Asp
Thr211Ser + Trp212Val + Ser219Glu
Gly205Pro + Thr211Pro + Ser216Asp
Gly205Pro + Trp212His + Ser219Glu
Gly205Pro + Trp212Asn + Ser219Asp
Leu209Ser + Thr211Gln + Arg218Asp
Pro204Gly + Thr211Asn + Gly215Glu
Gly203Pro + Pro204Ser + Ser216Asp
Gly203Gln + Ile213Val + Arg218Glu
Ile208Gly + Thr217Asn + Gly222Ser
Pro204Ser + Gly205Gln + Trp212Ile
Prc204Gln + Gly214Glu + Gly215Gln
Trp212Cys + Gly215Gln + Ser221Glu
Gly203Asn + Leu209Val + Thr217Glu
Gly205Asn + Ser207Asp + Thr217Gly
Pro204Gln + Thr206Asp + Gly215Ser
Ile208Gln + Thr211Pro + Ser219Asp
Gly205Ser + Ile213His + Ser219Glu
Gly203Ser + Ile208Ser + Trp212Met
Thr211Pro + Trp212Tyr + Ser219Asp
Gly205Gln + Ile208His + Gly222Asn
Gly203Ser + Thr211Ser + Ile220Glu
Pro204Gly + Leu209Ile + Arg218Glu
Trp212Tyr + Ile213Ser + Thr217Pro
Ile208Asn + Ile213Pro + Gly214Ser
Gly203Gln + Ile213His + Ser219Asp
Gly205Asn + Thr211Gln + Ser221Glu
Gly205Asn + Ser207Glu + Gly214Gln
Ile208Val + Gly214Glu + Gly222Gln
Gly203Ser + Thr206Gly + Ile213Leu
Pro204Gly + Ile208Pro + Gly215Asp
Thr206Glu + Thr217Gly + Ile220Pro
Ile213Ser + Thr217Asp + Gly222Gln
Ile208Val + Gly215Asn + Thr223Ser
Gly205Pro + Ser207Glu + Thr217Ser
Gly203Pro + Thr206Glu + Ile208His
Gly205Ser + Trp212Cys + Ser216Asp
Pro204Ser + Thr206Asp + Leu209Ile
Thr206Glu + Ile208Thr + Ile220Gly
Ile213Gln + Ile220Glu + Gly222Gln
Ile208Val + Gly214Gln + Gly215Pro
Leu209Pro + Ser216Glu + Thr217Asn
Pro204Gln + Trp212Met + Gly222Glu
Ile208Met + Thr211Asn + Thr223Gln
Pro204Gln + Leu209Ile + Arg218Asp
Ile208Leu + Ser216Glu + Ile220Pro
Prc204Gly + Gly205Gln + Thr206Glu
Ile208Ser + Leu209His + Gly214Pro
Gly203Pro + Ile208Gln + Trp212Ser
Gly205Asn + Gly215Glu + Gly222Pro

Gly203Ser + Thr217Gln + Ile220Leu
 Leu209Ser + Gly214Ser + Gly222Gln
 Ile208Gly + Leu209Pro + Ser221Asp
 Gly205Asn - Thr206Ser + Ile220Gly
 Ser207Glu - Leu209Met + Gly222Asn
 Gly203Ser - Trp212Gln + Ser216Asp
 Gly205Asn - Ile208Cys + Thr211Gln
 Thr211Gly - Trp212Gly + Thr223Glu
 Gly205Asn - Gly214Pro + Ser221Glu
 Gly205Ser - Trp212Ala + Ser216Asp
 Gly203Gln + Arg218Glu + Ile220Leu
 Ser207Asp + Thr211Asn + Thr223Gly
 Trp212Cys + Gly215Asn + Thr223Prc
 Gly205Asn - Gly214Ser + Arg218Glu
 Gly214Pro + Thr217Glu + Gly222Asn
 Thr206Gln + Ile208Asn + Thr211Ser
 Gly203Gln + Gly214Pro + Ser219Glu
 Trp212His - Ile213Gln + Arg218Glu
 Ile208Ala + Ile213Ala + Ser221Glu
 Pro204Asn + Ile208Leu + Trp212Prc
 Gly205Asn + Ser219Asp + Ile220His
 Gly205Gln - Ile208Leu + Thr211Gln
 Trp212Tyr + Ile213Gly + Gly215Gln
 Trp212Met + Gly215Glu + Gly222Asn
 Thr206Ser + Thr211Ser + Thr217Asn
 Ile208Leu + Ile213Ser + Ile220Prc
 Ile208Ser + Gly214Pro + Gly222Asn
 Thr211Ser + Ser216Glu + Thr223Prc
 Gly203Ser + Thr217Pro + Thr223Gly
 Gly203Ser + Trp212Ala + Gly214Asp
 Gly205Asn + Ile208Val + Ser219Asp
 Gly203Ser + Pro204Gln + Ser221Asp
 Gly203Pro + Trp212Gly + Gly222Prc
 Ile208Gln + Thr217Gly + Arg218Glu
 Thr206Gln + Ser207Glu + Thr223Gly
 Ser207Asp - Leu209His + Thr211Pro
 Ile208Thr + Trp212Val + Ile220Met
 Leu209Ala + Ser221Asp + Thr223Gln
 Gly203Asn + Thr211Gly + Gly214Glu
 Gly214Pro + Gly215Glu + Ile220Prc
 Gly205Ser + Gly214Asn + Ser216Glu
 Thr206Gln + Ile213Thr + Ser219Glu
 Pro204Gly + Thr211Gly + Ser221Asp
 Gly203Pro + Gly205Asn + Gly215Asp
 Gly203Pro + Thr211Asn + Thr223Asn
 Pro204Gly + Leu209Pro + Gly215Glu
 Gly203Pro + Ile213Glu + Ile220Gly
 Pro204Gln + Ile213Met + Ile220Pro
 Gly214Pro + Thr217Gln + Gly222Glu
 Ile208His + Ser221Glu + Thr223Asn
 Gly203Pro + Gly214Asn + Arg218Asp
 Ile213Ala + Ser216Asp + Gly222Ser
 Gly203Asn + Thr211Gly + Thr217Asn

Leu209Met + Thr211Gln + Ser219Asp
 Thr206Ser + Leu209Ile + Thr211Gly
 Ile213Met + Gly215Gln + Ser221Asp
 Pro204Asn + Ser207Asp + Ile220His
 Gly203Gln + Ile208Val + Ser221Asp
 Thr217Gln + Ile220Val + Thr223Glu
 Gly205Asn + Ile208Val + Ile213His
 Thr206Asn + Thr211Gly + Thr217Asp
 Ser207Glu + Ile208Cys + Gly215Prc
 Prc204Asn + Gly205Pro + Trp212Ile
 Pro204Gly + Ile208Val + Thr223Asp
 Pro204Gly + Gly215Asn + Ile220His
 Gly205Asn + Thr211Asn + Trp212Prc
 Pro204Ser + Thr206Glu + Ile213Val
 Gly203Pro + Ser207Glu + Gly214Asn
 Pro204Gln + Gly214Glu + Gly215Glu
 Gly205Ser + Thr217Asp + Arg218Asp
 Leu209Met + Thr217Asp + Arg218Asp
 Thr217Asp + Arg218Asp + Ile220Cys
 Thr211Gln + Ser221Glu + Gly222Asp
 Gly205Pro + Thr206Asp + Ser207Glu
 Pro204Gly + Thr206Asp + Ser207Glu
 Thr211Gln + Ile220Glu + Ser221Asp
 Trp212Tyr + Arg218Asp + Ser219Glu
 Ile208Val + Arg218Glu + Ser219Glu
 Gly205Gln + Gly215Asp + Ser216Asp
 Leu209Glu + Trp212Phe + Ser219Asp
 Thr206Glu + Ile208Ala + Ser221Asp
 Gly205Asn + Ser207Glu + Ser221Glu
 Ser207Glu + Thr211Asn + Ile220Asp
 Gly203Pro + Ser207Glu + Ile220Glu
 Ser207Asp + Trp212His + Ser219Asp

TABLE 25

Loop 6 - Quadruple Mutation Variants

Gly203Gln + Thr206Gly + Leu209Ser + Ser219Glu
Ile208Val + Thr217Ser + Ser219Asp + Gly222Pro
Gly203Asn + Ile213Thr + Gly214Pro + Ser219Glu
Gly203Gln + Trp212Phe + Gly214Asn + Gly215Asp
Ser207Asp + Leu209Thr + Thr211Pro + Trp212Gly
Gly205Pro + Trp212Asn + Ile213His + Ile220Asp
Gly203Gln + Pro204Ser + Trp212Ile + Ile220Ser
Pro204Gln + Thr211Gly + Ser219Glu + Ile220Met
Gly203Gln + Trp212Gly + Gly215Glu + Ile220Ala
Thr206Gln + Thr211Pro + Gly215Asn + Ile220Thr
Leu209Val + Thr211Ser + Arg218Asp + Ile220Ser
Gly203Gln + Ile208Cys + Leu209Ser + Gly214Glu
Gly205Gln + Ser207Glu + Gly215Gln + Ile220Ala
Ile208Ala + Leu209Val + Ser216Glu + Thr223Pro
Pro204Gly + Ile208His + Ser219Glu + Ile220Ser
Thr206Asp + Ile208Gly + Thr217Asn + Thr223Ser

Gly203Asn - Leu209Ser + Gly214Ser - Ser221Asp
 Ile213Asp + Gly214Ser + Ile220Gln - Gly222Asn
 Trp212Thr + Ile213Gly + Gly214Ser - Ile220Ala
 Gly203Asn + Leu209Asp + Trp212Phe + Gly222Gln
 Thr206Asn + Thr211Ser + Ile213Gly - Ser219Asp
 Prc204Asn + Gly205Gln + Thr206Asn - Ser207Glu
 Gly203Gln + Gly205Asn + Ser207Asp - Leu209Thr
 Gly205Gln + Ile213Val + Gly214Pro - Arg218Glu
 Thr206Pro + Ile213Pro + Gly222Pro - Thr223Asp
 Gly203Asn + Gly214Asn + Ser221Asp - Thr223Gly
 Ile213Asn + Ser216Asp + Ile220Asn + Gly222Asn
 Prc204Ser + Leu209Pro + Ile213Glu - Ile220Pro
 Gly203Gln + Gly205Ser + Leu209Ala + Gly215Ser
 Gly203Gln + Ser207Asp + Thr211Gly + Gly222Asn
 Pro204Gln + Leu209His + Thr217Gly + Ser219Glu
 Thr206Asp - Ile208Thr + Leu209Ala + Thr217Asn
 Ile208Thr - Leu209Gly + Arg218Asp + Ile220Leu
 Prc204Asn - Ile208Val + Leu209His + Arg218Glu
 Ile208Asn - Thr211Gln + Ser219Glu + Gly222Gln
 Thr206Gly + Ser207Glu + Ile208Thr + Ile213Gly
 Leu209Glu + Gly214Gln + Ile220Val + Gly222Gln
 Gly205Gln + Gly214Asn + Thr217Gln + Thr223Glu
 Gly203Gln + Leu209Val + Gly215Pro + Ile220Glu
 Thr211Gln + Trp212Gln + Gly215Asn + Ser219Glu
 Pro204Ser + Ile208Ser + Gly222Glu - Thr223Gln
 Pro204Gly + Ile208Ser + Gly215Gln + Ser221Asp
 Gly203Gln + Thr211Gly + Ile213Leu + Gly214Asn
 Pro204Asn + Thr211Ser + Gly214Asp + Thr217Asn
 Pro204Gly + Trp212Met + Gly215Glu + Gly222Asn
 Thr206Glu + Ile208Leu + Ile213Ser + Ile220Pro
 Thr206Gly + Trp212Leu + Gly214Asp + Gly222Ser
 Gly203Ser + Gly214Asp + Thr217Pro + Thr223Gly
 Gly203Ser + Pro204Asn + Ile208Ala + Gly215Glu
 Gly203Ser + Thr211Ser + Ser219Glu + Gly222Asn
 Ser207Glu + Ile208Gly + Thr211Pro + Ile220Pro
 Gly203Asn + Gly205Pro + Leu209Ala + Gly222Glu
 Leu209Asn + Thr211Gly + Ile213Thr + Thr223Gln
 Gly203Pro + Pro204Asn + Ile213His + Thr217Gln
 Ile208Asn + Thr217Pro + Ile220Leu + Ser221Glu
 Thr206Ser + Thr211Gln + Ile213Gly + Ser221Asp
 Gly205Pro + Gly215Asp + Ile220His + Thr223Gly
 Pro204Gln + Ile208Thr + Ser219Asp - Gly222Asn
 Gly203Pro + Leu209Met + Thr211Pro + Ile220Cys
 Thr206Gly + Leu209Cys + Ile213His + Ser216Asp
 Ile208Gly + Leu209Met + Thr217Gly + Ile220Pro
 Gly203Asn + Thr206Ser + Gly214Gln + Ser221Glu
 Ile208His + Thr211Ser + Trp212Pro + Arg218Asp
 Thr206Ser + Ile208Pro + Leu209Ile + Gly214Asp
 Gly205Pro + Thr206Glu + Ile213His + Gly222Asn
 Thr211Asn + Ile213Gln + Thr217Asp + Thr223Ser
 Thr206Asn + Trp212Val + Arg218Glu + Ile220Prc
 Pro204Asn + Ser207Asp + Thr211Gln + Gly214Ser
 Pro204Ser + Ile213Met + Gly214Asp + Thr217Gly

Gly203Prc + Ile208Ala + Ser216Glu + Thr217Prc
 Ser207Asp + Trp212Cys + Gly215Pro - Thr217Gly
 Pro204Asn + Gly214Gln + Ser216Glu + Ile220His
 Pro204Ser + Trp212Ala + Gly214Asp + Gly215Prc
 Pro204Asn + Leu209Gly - Thr211Gly + Ile213Thr
 Pro204Ser + Gly205Gln - Ile208His + Ser219Asp
 Gly203Asn + Gly205Ser + Leu209Ser + Arg218Glu
 Thr206Pro + Thr211Gln + Ile213Glu + Gly214Asn
 Ser207Asp + Gly214Asn + Ile220Val + Gly222Asn
 Trp212Tyr + Ile213Val + Gly214Asn + Gly222Ser
 Gly205Pro + Ile208Gly + Ser216Asp + Ile220His
 Gly203Asn + Leu209Gly + Gly214Pro + Arg218Asp
 Pro204Gln + Ile208Cys + Ile213Gly + Gly215Glu
 Pro204Asn + Gly205Prc + Leu209Ala + Thr211Prc
 Gly203Pro + Ile213Ala + Thr217Gly + Arg218Glu
 Gly203Gln - Pro204Gly + Ile220Gly + Ser221Glu
 Gly205Asn + Ile213Gly + Gly214Pro + Gly222Ser
 Gly203Asn + Thr211Gln + Gly214Glu + Gly222Gln
 Ile213Thr + Gly215Gln + Ser219Asp + Ile220Prc
 Gly203Asn + Pro204Ser + Arg218Asp + Thr223Prc
 Gly203Ser + Thr211Gln + Arg218Glu + Ile220Val
 Gly203Ser + Pro204Ser + Ile208Ser + Thr211Gln
 Pro204Gly + Gly214Asn + Gly215Glu + Thr223Asn
 Ile208Cys + Thr211Pro + Trp212Ser + Gly215Prc
 Pro204Asn + Ile213Met + Thr217Glu + Ile220Gln
 Pro204Gly + Gly205Pro + Ile208Gly - Thr211Prc
 Gly203Ser + Thr206Gly + Ile208Asn + Ser219Asp
 Pro204Asn + Ile213Glu + Gly215Pro + Thr217Asn
 Gly203Asn + Thr211Gln + Arg218Glu + Ile220Gly
 Gly203Gln + Ile208Cys + Gly215Ser - Arg218Asp
 Pro204Gln + Gly205Gln + Gly214Ser + Thr223Gly
 Pro204Gln + Leu209Met + Trp212Phe + Ser219Glu
 Gly205Asn + Ile208Cys + Leu209Ile + Ile220Asn
 Gly203Pro + Leu209Cys + Thr217Gly + Ile220Gly
 Gly205Asn + Thr206Gly + Ile208Asn + Ser216Glu
 Pro204Gln + Thr206Pro + Ser207Glu + Gly214Asn
 Gly203Gln + Ile208Met + Trp212His + Thr223Prc
 Pro204Asn + Leu209Val + Thr211Asn + Gly215Ser
 Gly203Asn + Ile208His + Ser221Asp + Gly222Ser
 Pro204Asn + Leu209Pro + Ser219Glu + Ile220Glu
 Thr211Pro + Ile213Asn + Gly214Glu + Gly215Asp
 Thr211Gln + Gly215Ser + Thr217Asp + Arg218Asp
 Gly205Asn + Thr217Asp + Arg218Asp + Ile220Gln
 Ile208Thr + Leu209Thr + Ser221Asp + Gly222Glu
 Gly203Asn + Gly205Asn + Ser221Asp + Gly222Glu
 Thr206Ser + Trp212Pro + Ser221Asp + Gly222Asp
 Ile208Pro + Thr211Ser + Gly222Asp + Thr223Asp
 Pro204Ser + Trp212Met + Gly222Glu + Thr223Asp
 Gly203Gln + Thr206Glu + Ser207Glu + Thr211Gln
 Gly203Asn + Thr206Glu + Ser207Asp + Thr211Asn
 Thr206Asp + Ser207Asp + Ile220Thr + Thr223Prc
 Gly203Gln + Thr217Ser + Ile220Glu + Ser221Asp
 Gly205Ser + Thr211Gln + Arg218Glu + Ser219Asp

Leu209Gly - Gly214Ser + Arg218Glu + Ser219Glu
 Ile208Gln - Gly214Pro + Ser216Asp + Thr217Glu
 Ile208Gly - Ile213Met + Gly215Glu + Ser216Glu
 Ile208Ser - Leu209Asp + Thr211Gly + Ser219Asp
 Pro204Gln - Ile208Thr + Leu209Asp + Ser219Asp
 Thr206Asp + Trp212Gln + Ser221Asp + Thr223Gly
 Gly203Asn + Thr206Asp + Trp212Phe + Ser221Glu
 Pro204Gln + Thr206Glu + Leu209Ile + Ser221Glu
 Pro204Gln + Gly205Gln + Ser207Glu + Ser221Glu
 Ser207Asp + Ile208Leu + Trp212Ile + Ser221Glu
 Ser207Glu + Leu209Met + Ile220Glu + Thr223Ser
 Thr217Asn + Arg218Asp + Ser219Asp + Ile220Asp
 Pro204Asn + Ser207Asp + Ser219Glu + Gly222Gln
 Pro204Gly + Gly205Pro + Ser207Glu + Ser219Glu
 Gly205Gln + Ser207Asp + Trp212Val + Ser219Glu
 Ser207Glu + Ile208Ser + Ser219Glu + Thr223Gly
 Thr206Asp + Thr217Ser + Ile220Asp + Ser221Glu
 Trp212Gln + Gly214Asp + Ser216Glu + Ile220Val
 Gly214Asp + Gly215Gln + Ser216Glu + Thr223Asp
 Gly203Gln + Leu209Asp + Thr211Asn + Arg218Glu
 Pro204Ser + Leu209Glu + Arg218Asp + Ile220Cys
 Ser207Asp - Ile208Gly + Ser221Glu + Gly222Asp
 Pro204Asn + Ser207Glu + Ser221Asp + Gly222Asp
 Pro204Ser + Gly205Ser + Ile213Asp + Ser216Asp
 Thr206Asn + Ser219Glu + Ser221Glu + Thr223Asp
 Thr206Pro + Trp212Pro + Ser216Glu + Arg218Glu
 Gly203Ser + Gly215Asn + Ser216Asp + Arg218Glu
 Thr206Gln + Trp212Asn + Ser216Asp + Arg218Glu
 Leu209Val + Trp212Ile + Ser216Asp + Arg218Glu
 Pro204Gly - Ile208Pro + Ser216Asp + Arg218Asp
 Ile208Gly - Thr211Asn + Ser216Glu + Arg218Glu
 Trp212His - Ile213Asn + Thr217Glu + Ser219Glu
 Ile208Leu - Thr211Pro + Thr217Asp + Ser219Glu
 Gly203Asn + Thr217Asp + Ser219Glu + Ile220Ala
 Thr206Pro - Thr217Glu + Ser219Glu + Ile220Ala
 Gly203Gln + Gly215Glu - Thr217Glu + Ile220Cys
 Gly203Asn + Arg218Glu + Ser219Asp + Ser221Glu
 Leu209Met + Ser219Asp + Ser221Glu + Gly222Asp
 Thr211Ser + Ile213Glu + Ser216Asp + Arg218Asp
 Thr211Asn + Ser216Asp + Arg218Asp + Ser219Asp
 Ser216Glu + Arg218Asp + Ser219Glu + Thr223Ser
 Gly203Pro + Thr206Glu - Leu209Asp + Ile220Asp
 Ser207Glu + Leu209Gln + Gly222Asp + Thr223Ser
 Gly205Gln + Ser207Glu - Ile213Gln + Gly222Asp
 Gly205Asn + Ser207Glu - Ile213Leu + Gly222Asp
 Gly205Gln + Ser207Glu - Gly222Asp + Thr223Glu
 Ser207Asp + Trp212Gly + Ser219Glu + Gly222Glu
 Trp212Thr + Gly214Glu + Ser216Asp + Arg218Asp
 Ser207Asp + Arg218Asp + Ser221Asp + Gly222Asn
 Ser207Asp + Trp212His + Arg218Glu + Ser221Glu
 Pro204Asn + Thr206Asp + Thr211Ser + Ser219Asp
 Thr206Asn + Ile213Pro + Gly214Glu + Thr217Asp
 Thr211Gln + Gly214Glu + Gly215Ser + Thr217Glu

5

Leu209Asp + Gly214Pro - Ser221Glu + Gly222Asp
 Ser207Glu + Leu209Ala - Ile213Ala + Arg218Glu
 Pro204Gln + Ser207Glu - Trp212Leu + Arg218Asp
 Pro204Gly + Ile213Glu - Arg218Glu + Ser219Glu
 Pro204Gly + Thr206Glu - Leu209Asp + Thr223Gly

TABLE 26

Loop 6 - Quintuple Substitution Variants

Pro204Gln + Gly205Gln + Ile208Ala + Ser216Asp +
 Gly222Prc
Pro204Gln + Ser207Glu + Ile208Ser + Thr211Gly +
 Ile220Ala
Gly205Gln + Trp212Phe + Gly214Pro + Gly215Asp +
 Thr217Gly
Gly203Asn - Ile208Gln + Leu209Gln + Thr211Pro +
 Thr223Asp
Gly203Ser - Ile208Cys + Gly214Gln + Ser219Glu +
 Ile220Thr
Trp212Gln + Ile213Ser + Gly214Asn + Thr217Glu +
 Ile220Ser
Gly205Ser + Ile208Pro + Trp212Tyr + Gly214Gln +
 Ser221Asp
Gly205Gln - Thr206Glu + Ile208Thr + Leu209Thr +
 Trp212Cys
Gly203Asn + Gly205Pro + Ile208Val + Gly214Asn +
 Ser219Glu
Gly203Gln + Gly205Gln + Ile208Gly + Thr217Asn +
 Gly222Ser
Ile208Met - Thr211Gly + Ile213Cys + Gly214Pro +
 Ile220Leu
Thr211Pro - Ile213Ser + Thr217Asp + Ile220Pro +
 Gly222Gln
Pro204Asn + Gly205Ser + Thr211Gly + Ile220Thr +
 Gly222Asn
Gly203Asn + Gly205Asn + Leu209His + Ile220His +
 Thr223Gln
Pro204Gly + Ile208Asn + Thr217Gln + Gly222Glu +
 Thr223Gln
Gly205Gln + Ser207Asp + Ile208Met + Ile213Cys +
 Gly214Pro
Gly205Asn + Thr211Gln + Trp212Met + Thr217Glu +
 Gly222Asn
Gly205Gln + Thr206Pro + Leu209Glu + Ile213Thr +
 Ile220Gly
Thr211Asn + Gly214Gln + Gly215Ser + Thr217Ser +
 Gly222Ser
Pro204Gly + Gly205Gln + Thr211Gly + Ser221Glu +
 Thr223Gln
Gly203Ser - Ile208Thr + Ile220Val + Gly222Pro +
 Thr223Glu
Gly205Asn + Thr206Pro + Ser216Glu + Thr217Gln +

Gly222Ser
Gly203Asn + Pro204Gln + Ile208Met + Gly215Gln +
Ser219Asp
Gly205Gln + Thr206Pro + Trp212Ser + Ile213Gln +
Ser221Glu
Leu209Gln + Gly214Gln + Thr217Ser + Ser221Asp +
Thr223Asn
Ser207Glu + Trp212Tyr + Ile213Gly + Gly214Pro +
Ile220Pro
Gly203Pro + Trp212Pro + Gly214Glu + Gly215Pro +
Gly222Pro
Pro204Ser + Thr206Asn + Thr211Gly + Trp212Gln +
Thr223Gln
Pro204Gly + Thr206Pro + Trp212Val + Gly214Pro +
Arg218Glu
Gly203Gln + Thr211Gln + Gly215Asn + Thr217Glu +
Ile220Val
Gly203Gln + Gly205Pro + Leu209Val + Thr211Gln +
Gly214Asp
Pro204Asn + Ile213Thr + Gly215Gln + Ser219Asp +
Ile220Pro
Pro204Gln + Thr206Asn + Ile208Met + Gly215Glu +
Ile220Ala
Gly203Ser + Gly205Pro + Ile208Asn + Leu209Glu +
Thr211Gln
Pro204Gly + Gly205Gln + Thr211Ser + Trp212Met +
Thr217Pro
Gly205Ser + Thr206Gly + Ile208Val + Gly214Asp +
Thr223Pro
Ser207Glu + Ile208Ala + Gly215Pro + Thr217Gln +
Thr223Pro
Gly203Ser + Gly205Gln + Trp212Asn + Ile213Ser +
Thr223Pro
Pro204Gln + Ile208Ala + Leu209Gln + Thr211Ser +
Gly214Ser
Pro204Gln + Ile208His + Thr211Gln + Gly215Pro +
Ser216Asp
Pro204Gln + Leu209Ile + Thr211Ser + Gly214Asp +
Ile220Cys
Leu209Ile + Thr211Gln + Trp212Asn + Ile213Val +
Thr217Asp
Pro204Asn + Ile208His + Leu209Val + Thr211Asn +
Gly222Ser
Gly203Gln + Pro204Asn + Gly205Asn + Ile213Ala +
Gly214Asp
Ser207Asp + Thr211Gln + Trp212Gly + Gly222Gln +
Thr223Gly
Gly205Gln + Ile208Gly + Thr211Gln + Ile220Ser +
Gly222Asp
Gly205Pro + Ile208Pro + Leu209Val + Ile220Leu +
Gly222Glu
Pro204Gly + Thr206Glu + Leu209Cys + Ile213His +
Ile220Met

Leu209Gly + Trp212Val + Ser216Asp + Ile220Cys +
 Thr223Ser
Gly205Gln + Leu209Val + Thr211Asn + Gly214Pro +
 Gly222Asp
Ile206Ala + Leu209His + Gly215Asn + Ile220Val +
 Gly222Glu
Ser207Glu + Ile208Prc + Thr211Asn + Ile213His +
 Gly222Ser
Ile208His + Leu209Cys + Thr217Pro + Ile220Glu +
 Gly222Gln
Prc204Gly + Gly205Ser + Ile208Ala + Trp212Leu +
 Thr223Asn
Gly203Prc + Gly205Pro + Trp212Ala + Gly215Ser +
 Arg218Glu
Prc204Ser + Trp212Ala + Ile213Thr + Gly215Asn +
 Ser216Glu
Thr211Asn + Trp212Thr + Ser216Glu + Gly222Gln +
 Thr223Prc
Thr206Gin + Ile208Pro + Thr211Gly + Ile213Leu +
 Gly215Asp
Gly203Asn + Ile220Met + Ser221Glu + Gly222Gln +
 Thr223Asn
Prc204Gln + Thr206Gly + Trp212Gly + Gly215Asp +
 Ile220Cys
Gly203Asn + Pro204Gln + Trp212Pro + Ile220Gly +
 Thr223Asp
Prc204Ser + Thr206Ser + Ile208Leu + Thr211Ser +
 Gly222Pro
Gly203Ser + Ile208Thr + Leu209His + Thr211Gln +
 Ile220Glu
Pro204Asn + Thr211Pro + Gly214Gln + Gly215Glu +
 Thr217Ser
Prc204Asn + Thr211Pro + Thr217Asp + Ile220Val +
 Thr223Gln
Gly203Ser + Ile208Gln + Leu209Asn + Thr211Ser +
 Trp212Asn
Pro204Asn + Ile208His + Thr211Gln + Ile220Gly +
 Gly222Asp
Gly205Pro + Trp212Val + Gly215Pro + Ser216Asp +
 Thr217Pro
Gly203Gln + Ile208Ala + Thr211Pro + Gly214Ser +
 Arg218Glu
Gly203Asn + Pro204Gln + Leu209Met + Trp212Ser +
 Thr217Glu
Gly205Pro + Ser207Glu + Ile208Met + Leu209Met +
 Ile220Asn
Thr211Gly + Trp212Asn + Ser219Glu + Ile220Asp +
 Thr223Pro
Ile208Met + Ile213Thr + Thr217Asp + Arg218Glu +
 Thr223Gly
Gly203Ser + Ile208Gln + Thr217Glu + Arg218Asp +
 Gly222Pro
Gly205Gln + Thr217Glu + Arg218Glu + Ile220His +

Thr223Pro
 Gly203Ser + Ile213Gln + Thr217Asp + Arg218Asp +
 Gly222Gln
 Gly203Pro + Pro204Gly + Ile208Gly + Ser221Asp -
 Gly222Asp
 Gly203Asn + Thr211Gln + Ile213Asp + Gly214Glu -
 Gly222Gln
 Thr206Glu + Ser207Glu + Leu209Asn + Thr211Gln +
 Thr217Asn
 Gly203Gln + Leu209Met + Thr211Pro + Ile220Glu +
 Ser221Glu
 Ile208Val + Leu209His + Thr211Gln + Arg218Glu +
 Ser219Glu
 Gly203Pro + Pro204Asn + Leu209His + Arg218Asp +
 Ser219Asp
 Ile208Ala + Trp212Gln + Arg218Glu + Ser219Glu +
 Ile220Thr
 Leu209Gly + Thr211Pro + Gly215Asn + Ser216Glu +
 Thr217Asp
 Ile208Asn + Leu209Thr + Ile213His + Ser216Glu +
 Thr217Glu
 Leu209Asn + Gly215Glu + Ser216Asp + Ile220Asn +
 Thr223Asn
 Gly203Ser + Pro204Gly + Gly215Glu + Ser216Asp +
 Thr223Ser
 Pro204Gln + Ile208Cys + Ile213Cys + Gly215Glu +
 Ser216Glu
 Pro204Gln + Gly205Asn + Thr206Asp + Ser207Glu +
 Ser221Glu
 Gly203Gln + Pro204Asn + Thr206Asp + Ile208Cys +
 Ser221Glu
 Pro204Gly + Thr206Glu + Ile208Gln + Trp212His +
 Ser221Glu
 Thr206Asp + Ile208Met + Trp212Met + Ile213Met +
 Ser221Glu
 Ser207Asp + Thr211Gln + Trp212Ala + Ile213Pro +
 Ser221Asp
 Thr206Gln + Ser207Asp + Leu209Val + Thr211Gly +
 Ser221Asp
 Pro204Ser + Ser207Glu + Ile208Thr + Trp212Ile +
 Ser221Asp
 Ser207Glu + Leu209Ala + Thr217Gly + Ile220Ala +
 Ser221Asp
 Ser207Asp + Thr211Pro + Trp212Cys + Gly215Pro +
 Ser221Glu
 Gly205Pro + Ser207Glu + Trp212Asn + Ser221Glu +
 Thr223Ser
 Gly205Gln + Ser207Glu + Thr211Gly + Thr217Gly +
 Ser221Glu
 Thr206Gln + Ser207Glu + Ile208Ala + Leu209Cys +
 Ile220Glu
 Thr211Gln + Arg218Glu + Ser219Asp + Ile220Asp +
 Gly222Ser

Gly205Asn + Thr206Pro + Ser207Asp + Ser219Glu +
Gly222Gln
Pro204Ser + Ser207Asp + Ser219Asp + Ile220Met +
Thr223Prc
Thr206Asn + Ser207Glu + Ile208Thr + Ile213Gly +
Ser219Glu
Gly205Gln + Leu209Asn + Thr217Asp + Arg218Glu +
Ser219Asp
Pro204Gly + Ile206Val + Ile213Asp + Gly214Glu +
Ser216Asp
Pro204Ser + Ile220His + Ser221Glu + Gly222Glu +
Thr223Glu
Thr206Asp + Trp212Val + Ile220Glu + Ser221Asp +
Thr223Pro
Thr206Glu + Ser207Asp + Gly214Asn + Ile220Asp +
Thr223Asn
Ile208Leu + Leu209Val + Thr211Ser + Gly214Asp +
Ser216Glu
Thr211Ser + Ile213His + Gly214Asp + Ser216Asp +
Ile220Gln
Gly205Pro + Thr206Ser + Leu209Glu + Thr217Asn +
Arg218Glu
Gly205Ser + Leu209Asp + Gly214Ser + Gly215Ser +
Arg218Asp
Ser207Glu + Leu209Gly + Trp212Phe + Ser219Glu +
Ser221Glu
Gly203Pro + Pro204Asn + Thr211Ser + Ile213Glu +
Ser216Glu
Thr206Glu + Ser207Asp + Ile208Ala + Gly215Pro +
Ser219Glu
Thr206Glu + Leu209Ser + Trp212Ile + Ile220Thr +
Gly222Glu
Thr206Asp + Ser207Asp + Ile208Leu + Ile213Prc +
Gly222Glu
Gly203Ser + Thr206Asp + Ser207Glu + Ile220Gln +
Gly222Glu
Thr211Gly + Ile213Ala + Gly214Glu + Ser216Glu +
Thr217Asp
Ser207Asp + Thr211Gln + Arg218Glu + Ser219Glu +
Ile220Val
Ser207Glu + Leu209Glu + Gly214Gln + Ile220Val +
Gly222Gln
Ser207Glu + Leu209Glu + Thr211Gln + Gly214Gln +
Thr217Gln
Gly205Gln + Ser207Glu + Thr211Ser + Arg218Asp +
Ile220Glu
Leu209Glu + Thr217Pro + Ser219Asp + Ser221Glu +
Gly222Ser
Thr211Gly + Gly214Asn + Ser219Glu + Ile220Leu +
Ser221Asp
Gly203Pro + Ile208Gln + Gly214Pro + Ser219Asp +
Ser221Glu
Pro204Asn + Leu209Ile + Ser219Glu + Ser221Asp +

Gly205Pro + Ser207Glu + Leu209Glu + Thr217Ser +
Gly222Asp
Ser207Asp + Leu209Asp + Thr217Gly + Gly222Asp +
Thr223Ser
Gly203Asn + Ile208Ser + Leu209Asp + Ser216Glu +
Ser219Asp
Leu209Ala + Trp212Ser + Gly214Glu + Gly215Glu +
Arg218Glu
Gly205Gln + Thr206Glu + Ile213Gln + Arg218Glu +
Ser221Glu
Pro204Gly + Leu209Asn + Gly215Pro + Thr217Asp +
Ile220Asp
Thr206Pro + Trp212Ala + Arg218Asp + Ser219Glu +
Gly222Asp
Gly203Asn + Gly205Pro + Trp212Asn + Arg218Glu +
Ser221Asp
Thr206Gly + Ile208Ala + Trp212Tyr + Arg218Asp +
Ser221Glu
Gly205Gln + Thr211Ser + Arg218Asp + Ser221Glu +
Thr223Pro
Gly205Pro + Thr211Pro + Trp212Pro + Arg218Glu +
Ser221Glu
Gly203Ser + Arg218Asp + Ile220Asn + Ser221Asp +
Thr223Ser
Trp212His + Ile213Asn + Gly214Glu + Thr217Glu +
Ser219Glu
Gly205Pro + Ile213Pro + Gly215Asp + Arg218Glu +
Ser219Asp
Pro204Ser + Gly215Asp + Arg218Glu + Ser219Glu +
Gly222Asn
Ser207Glu + Gly214Gln + Ser216Asp + Arg218Glu +
Gly222Gln
Ser207Asp + Gly215Pro + Ser216Glu + Thr217Asn +
Arg218Asp
Gly205Ser + Ile208Cys + Leu209Ala + Gly215Asp +
Arg218Asp
Gly203Asn + Ser207Asp + Ser216Glu + Ser219Asp +
Gly222Pro
Ser207Glu + Leu209Ile + Ser216Glu + Thr217Gly +
Ser219Glu
Leu209Asp + Trp212Pro + Gly214Glu + Ser216Glu +
Ile220Cys
Gly203Gln + Thr206Gly + Leu209Ser + Ser216Glu +
Ser219Glu
Ile208Leu + Gly214Asn + Ser216Glu + Thr217Ser +
Ser219Glu
Leu209Ser + Ser216Glu + Thr217Ser + Ser219Glu +
Ile220His
Pro204Gln + Leu209Pro + Gly214Ser + Ser216Glu +
Ser219Asp
Thr206Gly + Ile208Met + Gly215Asp + Arg218Asp +
Ile220Glu

TABLE 27

Loop 6 - Sextuple Substitution Variants

Gly203Asn + Thr206Asn + Ile208Asn + Trp212Asn +
 Ile213Leu + Ser221Glu
 Pro204Gln + Gly205Gln + Ile208Ala + Leu209Pro +
 Ser216Asp + Gly222Pro
 Gly203Gln + Gly205Asn + Gly215Ser + Thr217Ser +
 Ile220Met + Ser221Asp
 Ile208Pro + Leu209Ala + Gly215Gln + Arg218Asp +
 Ile220Val + Thr223Ser
 Gly203Ser + Leu209Cys + Trp212Tyr + Ser216Asp +
 Thr217Asn + Ile220Val
 Gly203Gln + Gly205Ser + Leu209Ala + Ile213Met +
 Gly215Asn + Gly222Asn
 Gly203Pro + Gly205Ser + Leu209Ala + Trp212Ala +
 Gly214Gln + Ser219Asp
 Gly203Pro + Leu209Ile + Thr211Pro + Ile213Val +
 Gly215Pro + Ile220Pro
 Thr206Ser + Ile208Asn + Thr211Gln + Ile213Gly +
 Ile220Leu + Ser221Asp
 Pro204Ser + Gly205Pro + Ile208Thr + Gly215Asp +
 Ile220His + Thr223Gly
 Gly203Pro + Pro204Gln + Leu209Met + Thr211Pro +
 Ser219Asp + Ile220Cys
 Pro204Asn + Thr206Asn + Ser207Asp + Thr211Gln +
 Gly214Ser + Ile220Pro
 Gly203Ser + Leu209Pro + Trp212Met + Ile213Cys +
 Thr217Pro + Arg218Glu
 Pro204Asn + Gly205Ser + Ile208Ala + Ile213Pro +
 Gly215Ser + Ile220Gly
 Gly203Ser + Gly205Asn + Ser207Glu + Thr211Ser +
 Trp212Val + Thr217Asn
 Gly203Gln + Pro204Asn + Ile208His + Leu209Pro +
 Ile213Leu + Gly222Asn
 Gly205Asn + Thr206Gly + Ile208Pro + Thr211Pro +
 Trp212Ile + Thr223Asn
 Gly205Gln + Thr206Ser + Ile208Gln + Ser221Asp +
 Gly222Gln + Thr223Pro
 Ile208Leu + Trp212Asn + Ile213Thr + Gly214Ser +
 Thr217Gln + Ser219Glu
 Gly203Gln + Pro204Gln + Leu209His + Ser219Glu +
 Gly222Asn + Thr223Gln
 Pro204Gln + Gly205Asn + Ile208Cys + Leu209Ile +
 Ile220Asn + Thr223Glu
 Gly203Pro + Gly205Gln + Thr206Gly + Thr211Gln +
 Trp212Pro + Gly215Glu
 Thr206Gln + Ile208Leu + Thr211Gln + Gly214Asn +
 Ile220Asn + Thr223Asn
 Ile208Val + Leu209Cys + Thr211Ser + Ile213Gly +
 Gly214Asp + Thr223Gly

Pro204Ser + Gly205Asn + Leu209Ser + Thr217Gly +
Arg218Glu + Gly222Ser
Pro204Ser + Gly205Gln - Leu209His + Thr211Gln +
Gly214Ser + Ser221Glu
Ile208His - Leu209Cys + Thr211Ser + Trp212Ser +
Gly214Glu + Gly222Asn
Ile208Gln + Leu209Gly - Trp212Phe + Thr217Pro +
Ile220Thr + Gly222Glu
Gly205Pro + Ser207Glu - Ile208Met + Leu209Met -
Trp212Cys + Ile220Asn
Pro204Ser + Thr206Asn - Ile208Gln + Trp212Phe +
Ser219Glu + Thr223Gly
Gly205Pro + Ile208Cys - Trp212Ile + Thr217Gln +
Ile220Leu + Gly222Pro
Pro204Ser + Gly205Ser + Ile208Cys + Ile213Pro +
Ser221Asp + Thr223Gln
Pro204Ser + Thr206Gln + Trp212Met + Gly214Ser +
Ser221Asp + Thr223Ser
Gly205Ser - Ile208Gln + Ile213Cys + Gly215Pro +
Thr217Gln + Thr223Asp
Pro204Asn + Gly205Pro - Ile208Ser + Ile213Asp -
Ile220Thr + Gly222Gln
Pro204Asn + Ile208Ala - Leu209Ser + Thr211Gly +
Gly215Ser + Ser219Glu
Gly203Gln + Gly205Gln - Thr206Gln + Ser207Glu +
Ile208Ala + Ile220Ala
Leu209Ser + Thr211Gly + Trp212Tyr + Ile213His +
Ser216Asp + Thr223Pro
Pro204Gln + Thr206Ser - Ile208Met - Leu209Cys -
Thr211Ser + Gly214Asp
Gly203Asn + Leu209Gln - Thr211Ser + Gly215Pro -
Ile220Cys + Gly222Pro
Leu209His + Thr211Asn + Trp212Ile - Ile213Ala +
Ser219Glu + Thr223Gly
Thr206Gln + Ile208His + Trp212Gln + Gly215Ser +
Ser221Asp + Thr223Gln
Ile208Cys + Leu209Met + Trp212Ser + Ile213Gln +
Ser216Glu + Thr223Pro
Gly205Ser + Leu209Met + Trp212Gly + Arg218Glu +
Ile220Gly + Gly222Asn
Pro204Asn + Trp212Gln + Gly215Ser + Ser216Glu +
Thr217Asn + Ile220Asn
Gly203Pro + Ile208Val + Leu209Asp + Trp212Ala +
Ile220Gln + Thr223Gly
Gly203Gln + Gly205Pro + Ile208Gly + Trp212Ser +
Thr217Asp + Gly222Asn
Gly205Ser + Leu209Thr + Thr217Gln + Ile220Met +
Gly222Gln + Thr223Glu
Gly203Asn + Pro204Ser + Gly205Pro + Trp212Pro +
Gly215Gln + Thr217Glu
Pro204Ser + Gly205Ser + Leu209Asn + Ser216Glu +
Ile220Leu + Gly222Asn
Gly203Gln + Leu209Thr + Trp212Leu + Ile213Gly +

Ser219Glu + Ile220His
Ile208Gln + Trp212Gly + Ile213Asn + Thr217Pro +
Gly222Ser + Thr223Asp
Pro204Ser + Ile208His + Thr211Gly + Ile213Met +
Gly214Gln + Ser216Asp
Gly203Asn + Gly205Pro + Leu209Glu + Trp212Ile +
Ile213Val + Gly215Pro
Gly203Asn + Pro204Gln + Leu209Met + Trp212Ser +
Thr217Glu + Arg218Glu
Leu209Gln + Trp212Gln + Gly214Asn + Gly215Ser +
Gly222Glu + Thr223Glu
Gly205Pro + Thr211Gly + Trp212Val + Arg218Glu +
Ser219Asp + Ile220Pro
Gly203Asn + Pro204Gln + Gly205Gln + Gly214Pro +
Arg218Glu + Ser219Asp
Gly205Pro + Thr211Gln + Gly215Asn + Thr217Ser +
Arg218Glu + Ser219Glu
Pro204Asn + Gly205Ser + Ile208Gly + Thr217Ser +
Arg218Glu + Ser219Asp
Thr206Pro + Gly214Ser + Thr217Gln + Arg218Glu +
Ser219Glu + Thr223Asn
Thr206Gln + Leu209Glu + Thr211Asn + Trp212Ile +
Gly215Ser + Ser219Asp
Leu209Glu + Thr211Gln + Ile213Val + Gly215Gln +
Ser219Glu + Gly222Pro
Pro204Gln + Ser207Glu + Ile208Pro + Thr211Gly +
Ile220Pro + Ser221Asp
Pro204Asn + Thr206Gln + Ser207Glu + Ile208Ala +
Leu209Cys + Ile220Glu
Thr206Glu + Thr211Gln + Ile213Pro + Gly214Asn +
Ser221Asp + Gly222Asp
Gly203Asn + Pro204Gln + Leu209Asp + Gly215Pro +
Ser219Asp + Ile220Asp
Ser207Glu + Ile208Ala + Thr211Gly + Trp212Ser +
Ser219Glu + Ile220Gln
Ser207Glu + Leu209Gly + Thr211Pro + Gly215Asn +
Ser219Glu + Ile220Val
Ser207Glu + Ile208Asn + Leu209Cys + Gly215Asn +
Ser219Glu + Thr223Ser
Gly203Asn + Gly205Ser + Ser207Asp + Thr217Ser +
Ser219Asp + Ile220Leu
Gly203Asn + Pro204Asn + Ser207Asp + Leu209Thr +
Ser219Asp + Thr223Gln
Gly203Pro + Ile208Pro + Thr211Ser + Ser221Asp +
Gly222Asp + Thr223Asp
Gly205Ser + Ser207Glu + Leu209Glu + Thr217Ser +
Ser219Glu + Gly222Asn
Thr206Pro + Leu209Ser + Thr211Pro + Ile213Glu +
Gly215Glu + Ile220Ala
Gly203Ser + Ile208Ser + Leu209His + Trp212Gly +
Gly214Asp + Ser216Glu
Gly203Ser + Gly205Ser + Trp212Ala + Gly214Glu +
Gly215Ser + Ser216Asp

Gly205Gln + Ser207Glu + Ile208Ser + Leu209Gly +
Ser219Asp - Ser221Glu
Thr206Pro + Ser207Glu + Ile208His + Trp212Ala +
Ser219Glu + Ser221Asp
Gly205Ser + Ser207Asp + Leu209Cys + Thr217Pro +
Ser221Asp + Gly222Glu
Ser207Glu + Leu209Asp + Thr211Gln + Trp212Gln +
Thr217Gln + Ile220Glu
Leu209Asp + Thr211Gln + Gly214Pro + Thr217Glu +
Ser219Glu + Thr223Gln
Gly203Ser + Thr206Glu + Ser207Glu + Gly215Ser +
Ser219Asp + Ile220Thr
Gly205Ser + Thr206Glu + Ser207Glu + Thr211Gly +
Ile220Val + Gly222Glu
Thr206Glu + Ser207Asp + Leu209Ser + Trp212Ile +
Ile220Thr + Gly222Glu
Gly203Pro + Ser207Glu + Leu209Asn + Thr217Gln +
Arg218Asp + Ser219Asp
Gly205Gln + Thr206Gln + Ser207Asp + Arg218Glu +
Ser219Asp + Ile220Pro
Pro204Ser + Gly205Gln + Ser207Asp + Thr217Asn +
Arg218Asp + Ser219Asp
Gly203Pro + Thr206Pro + Ser207Glu + Ile208Asn +
Leu209Asp + Thr217Ser
Gly203Asn + Pro204Gln + Thr206Asp + Trp212Phe +
Ser221Glu + Thr223Asp
Pro204Gln + Gly205Gln + Ser207Glu + Leu209Glu +
Trp212Met + Ser221Glu
Gly203Asn + Trp212Phe + Gly214Ser + Ser219Asp +
Ser221Glu + Thr223Gln
Gly205Gln + Thr206Gln + Ile208Pro + Thr217Pro +
Ser219Asp + Ser221Asp
Gly203Asn + Thr211Asn + Gly215Pro + Ser219Asp +
Ser221Asp + Gly222Asn
Pro204Ser + Trp212His + Gly214Gln + Ser219Glu +
Ser221Glu + Gly222Gln
Gly203Pro + Thr211Gln + Ile213Met + Ser219Glu +
Ser221Asp + Gly222Ser
Ile208Leu + Thr211Gly + Gly214Pro + Gly215Asn +
Ser216Glu + Arg218Asp
Ile208Ala + Leu209Pro + Trp212Pro + Ser216Glu +
Arg218Asp + Thr223Pro
Gly205Gln + Ile208Asn + Gly215Ser + Ser216Glu +
Arg218Glu + Thr223Asn
Gly203Ser + Thr206Gly + Gly214Pro + Gly215Gln +
Ser216Asp + Arg218Asp
Gly203Ser + Thr206Pro + Trp212Pro + Gly215Asn +
Ser216Glu + Arg218Glu
Gly203Asn + Gly205Asn + Leu209Val + Ile220Glu +
Gly222Glu + Thr223Ser
Pro204Gly + Gly205Pro + Leu209Ile + Ile213Met +
Ser221Asp + Thr223Glu
Gly205Ser + Trp212Tyr + Gly214Pro + Arg218Glu +

Ser219Asp + Ser221Asp
 Gly205Gln + Ile208Ala - Leu209Cys + Arg218Glu -
 Ser219Asp + Ser221Asp
 Gly205Gln + Leu209Val + Trp212Cys + Ile220Asp -
 Ser221Glu + Thr223Asp
 Pro204Gln + Thr211Gln + Gly215Glu + Thr217Asp -
 Arg218Glu + Thr223Asn
 Gly203Gln + Leu209Asn + Ser216Asp + Arg218Glu -
 Ser219Asp + Thr223Pro
 Ile208Ala + Leu209Pro + Gly214Ser + Ser216Asp -
 Arg218Glu + Ser219Asp
 Pro204Asn + Ile208Gly + Thr211Gln + Ser216Asp -
 Arg218Glu + Ser219Glu
 Gly203Ser + Ile208Ala + Trp212Ser + Ser216Glu -
 Arg218Asp + Ser219Glu
 Gly205Pro + Thr211Ser + Ser216Glu + Thr217Asp +
 Ser219Asp + Gly222Asn
 Pro204Gln + Leu209Ala + Gly215Gln + Ser216Glu +
 Thr217Asp + Ser219Asp
 Pro204Asn + Ser207Glu + Thr211Gln + Gly214Ser +
 Gly222Glu + Thr223Asn
 Gly205Asn + Ser207Asp + Trp212His + Gly214Ser +
 Gly222Glu + Thr223Glu
 Gly203Ser + Ser207Glu + Thr211Ser + Ile213Ala +
 Arg218Asp + Ser221Asp
 Gly203Gln + Thr206Glu + Trp212Ile + Ile213Asn +
 Ser219Asp + Gly222Glu
 Ile208Ala + Leu209Met + Thr211Pro + Ile213Thr +
 Gly214Glu + Thr217Glu
 Gly203Ser + Pro204Ser + Gly205Ser + Gly214Asp +
 Gly215Pro + Thr217Glu
 Gly203Asn + Ile208Met + Ile213Cys + Gly214Asp -
 Thr217Glu + Thr223Asn
 Pro204Asn + Leu209Ile + Trp212Val + Ile213Asp +
 Gly215Asp + Arg218Glu
 Ser207Asp + Ile208Met + Thr211Pro + Trp212Ala +
 Gly215Asn + Arg218Glu
 Pro204Asn + Thr206Gln + Ser207Glu + Gly214Asn +
 Gly215Gln + Arg218Glu
 Gly203Gln + Gly205Pro + Ser207Asp + Ile208Gly +
 Arg218Glu + Gly222Gln
 Gly205Pro + Thr206Asn + Ser207Asp + Trp212Tyr +
 Arg218Asp + Ile220Thr
 Pro204Asn + Gly205Pro + Ser207Glu + Ile208Gln +
 Thr217Pro + Arg218Asp
 Thr206Gln + Ser207Glu + Trp212Ser + Thr217Asn +
 Arg218Glu + Ile220Ala
 Gly205Pro + Thr206Glu + Leu209Thr + Gly214Gln +
 Arg218Asp + Ser219Glu
 Gly203Ser + Pro204Asn + Ser207Asp + Gly215Gln +
 Thr217Asp + Ile220Asp
 Ile208Gly + Thr211Gln + Ile213Glu + Arg218Glu -
 Gly222Ser + Thr223Gln

Gly203Pro + Thr206Gly + Gly214Gln + Ser219Glu +
Ser221Asp + Thr223Asp
Thr211Gly + Trp212Phe + Ser219Asp + Ile220Pro +
Ser221Glu + Thr223Glu
Leu209Ala + Ile213Ala + Ser219Asp + Ile220Gln +
Ser221Asp + Thr223Asp
Pro204Gln + Leu209Glu + Trp212Met + Gly214Ser +
Gly215Asp + Thr217Glu
Ile208Met + Ile213Ser + Thr217Glu + Ile220Asp +
Ser221Asp + Thr223Gln
Leu209Asp + Thr211Asn + Ile213Asp + Arg218Glu +
Ile220Leu + Gly222Ser
Gly203Pro + Gly205Gln + Thr217Asp + Arg218Glu +
Ile220Ala + Ser221Asp
Trp212Cys + Ile213Gly + Arg218Glu + Ser219Glu +
Ile220Pro + Gly222Glu
Thr206Gln + Ile208Gly + Leu209Ile + Arg218Glu +
Ser219Glu + Gly222Asp
Gly203Gln + Ile208Met + Ser219Glu + Ile220Glu +
Gly222Pro + Thr223Glu
Gly203Gln + Gly205Asn + Thr211Gln + Ser219Asp +
Ile220Glu + Thr223Glu
Pro204Asn + Gly205Pro + Leu209Ser + Gly214Ser +
Arg218Glu + Ser221Glu
Ile208Thr + Leu209Asn + Trp212Asn + Arg218Asp +
Ser221Glu + Gly222Asn
Gly203Ser + Pro204Gln + Gly205Asn + Thr211Gly +
Arg218Asp + Ser221Glu
Pro204Asn + Thr206Pro + Gly214Pro + Arg218Glu +
Ser221Glu + Thr223Asn
Thr206Asp + Ile213Gln + Gly215Asn + Thr217Asp +
Ser219Asp + Thr223Ser
Ile213Met + Gly214Asp + Gly215Ser + Thr217Glu +
Ser219Asp + Ile220Ser
Pro204Asn + Gly205Gln + Ser207Asp + Gly215Pro +
Ser219Glu + Thr223Glu
Pro204Ser + Thr206Gln + Ser207Glu + Thr217Gly +
Ser219Asp + Thr223Asp
Pro204Gln + Trp212Leu + Gly215Glu + Thr217Pro +
Arg218Asp + Ser219Asp
Gly203Asn + Thr211Gly + Gly214Asn + Gly215Pro +
Ser219Asp + Gly222Asp
Gly203Pro + Trp212Ile + Gly214Asn + Ser219Glu +
Ile220Pro + Gly222Glu
Thr206Glu + Leu209Ile + Gly215Asn + Ser219Asp +
Ile220Cys + Thr223Asp
Gly203Asn + Ser207Asp + Gly214Gln + Ser216Glu +
Arg218Asp + Ile220Thr
Ser207Glu + Ile208Cys + Ile213His + Gly214Ser +
Ser216Asp + Arg218Glu
Thr206Gln + Ile208Ser + Leu209Asp + Gly215Glu +
Arg218Asp + Ile220Ala
Gly205Ser + Ile213Cys + Gly214Asp + Arg218Glu +

Ser219Asp + Gly222Gln
 Pro204Asn + Gly214Asp + Arg218Asp + Ser219Asp +
 Gly222Pro + Thr223Gln
 Pro204Gly + Thr211Asn + Ile213Ala + Gly215Asp -
 Arg218Glu + Ile220Gly
 Ser207Glu + Leu209Ile + Ser216Glu + Thr217Gly -
 Ser219Asp + Ile220Gly
 Gly205Ser + Ser207Asp + Thr211Gly + Ser216Glu +
 Ser219Asp + Ile220Asn
 Pro204Gln + Gly205Ser + Thr206Asn + Leu209Glu +
 Trp212Gly + Ser216Asp
 Gly205Pro + Trp212Gly + Ile213His + Gly214Asp +
 Ser216Glu + Ser219Glu
 Pro204Ser + Thr206Asn + Ile213Ala + Ser216Asp +
 Ser219Glu + Thr223Gln
 Ile208Asn + Trp212Asn + Gly215Asn + Ser216Glu +
 Ser219Glu + Ile220Ser
 Ile208Leu - Thr211Gly + Gly214Gln + Ser216Glu +
 Ser219Glu + Gly222Pro
 Pro204Ser + Thr206Ser + Ser216Asp + Thr217Pro +
 Ser219Glu + Thr223Asn
 Leu209Val + Trp212Cys + Gly214Ser + Arg218Glu +
 Ile220Glu + Thr223Asp
 Gly205Gln + Trp212Met + Gly215Asp + Arg218Glu +
 Ile220Glu + Gly222Ser
 Gly205Pro + Thr206Ser + Ser207Glu + Leu209Gly +
 Gly214Ser + Thr223Glu
 Thr206Asp + Leu209Glu + Thr211Gln + Thr217Gln +
 Ile220Met + Thr223Glu
 Pro204Gly + Ile208Cys + Thr217Ser + Arg218Glu +
 Ser221Glu + Thr223Asp
 Ser207Glu + Leu209Val + Ile213Gly + Ser216Glu +
 Thr217Asp + Gly222Gln
 Ile208Thr + Ser216Glu + Ser219Glu + Ile220Leu +
 Ser221Glu + Thr223Pro
 Gly203Gln - Gly205Gln + Ile213Ala + Ser216Glu +
 Ser219Asp + Ser221Asp
 Gly203Gln + Pro204Gln + Thr206Asp + Leu209Asn +
 Arg218Glu + Gly222Glu
 Gly205Gln + Ile213Ala + Gly215Glu + Ser216Glu +
 Ile220Glu + Gly222Asn
 Thr206Asn + Ile208Ala + Leu209Asp + Ile213Glu +
 Gly214Glu + Gly222Ser
 Gly203Ser + Pro204Ser + Ile208Cys + Ile213Glu +
 Gly215Glu + Ser219Glu
 Thr206Pro + Leu209Cys + Ile213Glu + Gly215Glu +
 Thr217Ser + Ser219Glu

TABLE 28

Loop 6 - Heptuple Substitution Mutation Variants

Pro204Asn + Leu209Thr + Thr211Gln + Trp212His +

Gly215Asp + Ile220Val + Thr223Ser
 Pro204Gly + Gly205Asn + Ile208Leu + Thr211Asn -
 Trp212Gly + Gly214Pro + Arg218Asp
 Gly203Pro - Thr206Gly + Ile208Pro + Thr211Gln -
 Thr217Glu + Ile220Met + Thr223Asn
 Pro204Gln + Ile208Ala + Leu209Gln + Thr211Ser -
 Gly214Ser + Ser219Glu + Thr223Pro
 Pro204Gly + Gly205Pro + Thr206Glu + Ile208Pro -
 Leu209Val + Ile213His + Ile220Leu
 Gly205Gln + Thr206Ser + Ile208Leu + Thr211Ser -
 Gly214Asn + Gly222Pro + Thr223Glu
 Pro204Gly + Gly205Ser + Ile208Ala + Trp212Leu -
 Thr217Gln + Arg218Asp + Thr223Asn
 Ile208Asn + Thr211Asn + Trp212Val + Ile213Asp -
 Ile220Ala + Gly222Pro + Thr223Pro
 Pro204Gly + Ile208Cys + Trp212Cys + Ile213Gly +
 Thr217Gln + Ser219Asp + Ile220Ala
 Gly205Pro + Ile208Asn + Thr211Pro + Trp212Phe -
 Ile220Met + Ser221Glu + Gly222Ser
 Gly203Gln + Pro204Ser + Thr206Ser + Ile208Val -
 Trp212Tyr + Ile220Gly + Ser221Glu
 Pro204Ser + Gly205Pro + Leu209Met + Trp212Leu +
 Ile213Asp + Gly215Gln + Gly222Ser
 Gly205Pro + Ile208Pro + Leu209Thr + Thr211Ser -
 Trp212Asn + Ser216Glu + Ile220Ala
 Gly203Gln + Gly205Ser + Thr206Gly - Trp212Ala -
 Gly215Pro + Thr217Ser + Ser221Glu
 Gly203Ser + Ile208Cys + Leu209Met + Trp212Ser -
 Gly215Pro + Ser216Glu + Thr223Pro
 Gly205Ser + Thr206Gly + Trp212Gly + Thr217Gly -
 Arg218Glu + Ile220Gly + Gly222Asn
 Gly203Ser + Gly205Pro + Thr206Gly + Gly214Gln -
 Ser216Asp + Ile220Gly + Thr223Ser
 Pro204Asn + Trp212Gln + Ile213Thr + Gly215Ser -
 Ser216Glu + Thr217Asn + Ile220Asn
 Gly203Asn + Pro204Gly + Thr206Asn + Ile208Leu -
 Thr211Pro + Ile220Leu + Gly222Pro
 Gly203Asn + Gly205Asn + Thr211Ser + Trp212Met -
 Ile213Glu + Gly214Asn + Thr223Asn
 Pro204Asn + Gly205Pro + Ile208Ser + Thr211Gln -
 Ile213Gln + Gly215Gln + Arg218Glu
 Gly203Gln + Gly205Gln + Thr206Ser + Ile208Val +
 Trp212Gln + Thr217Pro + Ile220Glu
 Pro204Gly + Gly205Pro + Ile208Met + Thr211Ser +
 Ile213Gly + Gly215Pro + Ser216Glu
 Gly203Gln + Gly205Ser + Thr206Ser + Ile208Ala +
 Ile213Ala + Ile220Met + Thr223Glu
 Pro204Gly + Thr206Gln + Leu209Ala + Thr211Gln +
 Thr217Asn + Arg218Glu + Ile220Pro
 Gly203Gln + Pro204Gly + Gly205Ser + Ser207Asp +
 Leu209Asn + Gly214Ser + Gly215Pro
 Gly203Gln + Gly205Gln + Leu209Met + Trp212Thr +
 Gly214Gln + Ile220Asn + Gly222Glu

Gly203Ser + Thr206Asp + Ile208Leu + Thr211Pro +
Gly214Ser + Gly215Ser + Gly222Gln
Pro204Gln + Thr206Gly + Ile208Asn + Trp212Gly +
Ile213Pro + Thr217Pro + Arg218Asp
Gly205Asn + Ile208Thr + Thr211Gly + Ile213His +
Thr217Gly + Arg218Glu + Thr223Asn
Gly205Asn + Thr206Pro + Ile208Ala + Leu209Ala +
Trp212Leu + Gly215Pro + Gly222Asp
Gly203Pro + Thr206Gln + Ile208Asn + Leu209Cys +
Gly215Glu + Gly222Pro + Thr223Ser
Pro204Gln + Ile208Ala + Trp212Asn + Ile213Ser +
Gly215Ser + Ser219Asp + Ile220Asp
Gly203Ser + Thr211Ser + Trp212Met + Arg218Asp +
Ser219Asp + Gly222Asn + Thr223Asn
Gly203Ser + Gly205Pro + Thr206Pro + Ile208Leu +
Arg218Glu + Ser219Glu + Ile220Ala
Pro204Gly + Thr211Asn + Gly214Pro + Ser216Asp +
Thr217Glu + Ile220Gln + Gly222Pro
Gly203Asn + Gly205Pro + Leu209Val + Thr211Pro +
Gly215Asn + Ser216Glu + Thr217Asp
Pro204Gly + Gly205Gln + Thr211Ser + Trp212Met +
Gly215Asp + Ser216Glu + Thr217Pro
Pro204Asn + Thr206Gly + Ile208Met + Leu209Asp +
Ser219Glu + Ile220His + Thr223Pro
Gly205Gln + Thr206Glu + Ile208Thr + Leu209Thr +
Thr211Gln + Trp212Cys + Ser221Asp
Pro204Gly + Thr206Glu + Leu209Ala + Trp212Met +
Ile220Val + Ser221Asp + Gly222Ser
Gly205Gln + Thr206Glu + Thr211Asn + Trp212Ser +
Thr217Gln + Ser221Asp + Thr223Gln
Ser207Glu + Leu209Thr + Ile213Gln - Gly214Gln -
Gly215Asn + Ser219Glu - Ile220Glu
Thr206Gln + Ser207Glu + Leu209Ile - Ile213Ala +
Gly214Ser + Ile220Thr + Ser221Asp
Pro204Asn + Thr206Gln + Ser207Glu + Ile208Ala +
Leu209Cys + Thr211Gly + Ile220Glu
Thr206Pro + Ser207Glu + Thr211Gln + Gly214Pro +
Gly215Ser + Thr217Gly + Ser219Glu
Pro204Asn + Ser207Glu + Leu209Gly + Thr211Asn +
Gly215Asn + Ser219Glu + Ile220Val
Pro204Gln + Gly205Ser + Leu209Ser + Trp212Gly +
Thr217Glu + Arg218Glu + Ser219Asp
Gly203Gln + Ser207Asp + Leu209His + Gly214Ser +
Gly215Gln + Ser219Asp + Ser221Asp
Pro204Gln + Gly205Asn + Ser207Glu + Leu209Gln +
Thr211Gly + Ser219Glu + Ser221Asp
Gly203Asn + Thr206Glu + Ile208Gln + Leu209Gln +
Thr211Pro + Trp212Ile + Gly222Glu
Gly203Ser + Thr206Glu + Ser207Asp + Thr211Ser +
Trp212Gly + Ile220Gly + Gly222Asp
Gly205Pro + Thr206Asp + Ser207Asp + Ile213Pro +
Gly214Ser + Gly222Glu + Thr223Asn
Gly203Gln + Thr206Asp + Leu209Met + Trp212Leu +

Gly214Asn + Gly222Asp + Thr223Glu
Pro204Asn + Thr206Gln + Leu209Ser + Ser216Glu +
Thr217Asp + Arg218Glu + Ser219Asp
Pro204Asn + Thr206Gly + Ser207Glu + Ile208Thr +
Gly215Gln + Ile220Asp + Gly222Glu
Gly203Pro + Gly205Gln + Thr206Ser + Leu209Asp +
Thr211Ser + Ile213Cys + Thr217Asp
Gly205Gln + Ser207Glu + Thr211Ser + Trp212Ser +
Ile213Gln + Arg218Asp + Ile220Glu
Gly203Ser + Pro204Gly + Thr206Glu + Ser207Glu +
Ile208Ser + Leu209Asp + Trp212Ala
Gly203Ser + Ile208Thr + Leu209Glu + Trp212Tyr +
Thr217Gln + Ser219Asp + Ser221Glu
Gly203Ser + Gly205Ser + Thr211Ser + Gly215Gln +
Thr217Pro + Ser219Glu + Ser221Asp
Gly205Gln + Thr206Gly + Leu209Ser + Ile213Gly +
Ser219Glu + Ser221Asp + Thr223Gln
Pro204Gln + Ser207Asp + Ile208Ser + Ile213Leu +
Arg216Glu + Ser219Glu + Ser221Glu
Gly203Asn + Trp212Gln + Gly214Pro + Ser216Glu +
Arg218Glu + Ile220Leu + Thr223Pro
Pro204Asn + Gly205Gln + Thr206Gly + Ile213His +
Gly214Ser + Ser216Asp + Arg218Glu
Ile208Val + Ile213Met + Gly214Ser + Ser216Asp +
Thr217Gly + Arg218Asp + Ile220Met
Pro204Ser + Gly205Asn + Ile208Leu + Leu209His +
Ser216Asp + Arg218Glu + Thr223Pro
Gly203Gln + Ile208Cys + Thr211Pro + Trp212Ser +
Gly215Ser + Ser216Glu + Arg218Glu
Gly203Pro + Gly205Ser + Leu209Ile + Thr211Asn +
Thr217Glu + Ser219Glu + Ile220His
Gly205Ser + Leu209Cys + Thr211Asn + Gly215Gln +
Thr217Glu + Ser219Asp + Gly222Pro
Gly203Gln + Ile208Ala + Trp212Ile + Gly215Gln +
Thr217Glu + Ser219Asp + Gly222Pro
Gly203Ser + Thr206Glu + Ser207Glu + Ile208Pro +
Ile213Thr + Gly222Glu + Thr223Asp
Gly203Ser + Ile208Gln + Trp212Ser + Ile213Leu +
Arg218Asp + Ser219Glu + Ser221Asp
Gly203Gln + Gly205Asn + Trp212Asn + Ile213Glu +
Ser216Glu + Thr217Pro + Arg218Asp
Thr206Asn + Leu209Asp + Ile213Met + Ser216Glu +
Thr217Glu + Ser219Glu + Ile220Gly
Gly205Gln + Thr211Pro + Trp212Val + Gly214Ser +
Ser216Asp + Arg218Glu + Ser219Glu
Thr206Asn + Ser207Asp + Thr211Ser + Ile213Cys +
Ile220Met + Ser221Asp + Thr223Asp
Gly203Asn + Ile213Ser + Thr217Asp + Arg218Glu +
Ser219Asp + Ser221Asp + Thr223Gln
Thr206Asn + Ser207Glu + Leu209Cys + Trp212Ser +
Arg218Glu + Ser221Asp + Gly222Pro
Gly203Gln + Ser207Asp + Gly214Pro + Gly215Pro +
Arg218Asp + Ser221Asp + Gly222Ser

Gly203Asn + Thr206Glu + Leu209Gln + Arg218Glu +
Ser219Asp + Ser221Glu + Gly222Pro
Gly203Prc + Ser207Glu + Trp212Ser + Gly214Pro +
Ser219Glu + Ser221Asp + Thr223Asp
Gly205Gln + Thr211Gln + Ile213Glu + Ser216Glu +
Arg218Asp + Ser219Asp + Ile220Ala
Gly203Asn + Prc204Ser + Ser207Glu + Gly215Gln +
Thr217Asp + Ile220Asp + Ser221Asp
Gly203Gln + Gly205Asn + Ser207Asp + Leu209Ile +
Thr211Gly + Thr217Asp + Arg218Glu
Pro204Gly + Trp212Met + Gly214Asp + Ser216Asp +
Thr217Glu + Ser219Glu + Thr223Gln
Ser207Asp + Trp212Tyr + Gly215Asn + Ser216Asp +
Arg218Glu + Ser219Glu + Thr223Pro
Thr206Gly + Ser207Asp + Ile208Gln + Ser216Glu +
Arg218Glu + Ser219Asp + Ile220Gln
Ser207Glu + Leu209Gln + Thr211Pro + Gly215Pro +
Ser216Asp + Arg218Glu + Ser219Asp
Gly205Asn + Ser207Asp + Ile208Val + Gly214Pro +
Ser216Asp + Arg218Glu + Ser219Glu
Thr206Asp + Ile208His + Thr211Ser + Trp212Asn +
Arg218Asp + Ser219Glu + Gly222Pro
Ile208Gly + Trp212Met + Ile213Gln + Ser216Glu +
Arg218Asp + Ser219Asp + Ser221Asp
Gly203Asn + Thr206Glu + Leu209Asp + Thr217Pro +
Ile220Ser + Gly222Glu + Thr223Asp
Gly203Asn + Thr206Asp + Ile208His + Thr211Ser +
Trp212Phe + Arg218Asp + Ser221Glu
Pro204Asn + Gly214Asn + Gly215Pro - Ser216Glu +
Thr217Asp + Arg218Asp + Ser221Asp
Pro204Gln + Gly205Pro + Thr211Asn + Gly215Gln +
Ser219Glu + Ser221Asp + Thr223Gln
Ser207Asp + Leu209Val + Trp212Cys + Gly214Ser +
Arg218Glu + Ile220Glu + Thr223Asp
Thr206Asn + Ser207Asp + Ile208Ala + Gly215Pro +
Arg218Glu + Ser221Glu + Thr223Asp
Pro204Gln + Gly205Asn + Thr206Gln + Leu209Cys +
Thr217Asp + Arg218Glu + Ser221Glu
Gly203Pro + Thr206Ser + Ile213His + Ser219Glu +
Ile220Cys + Gly222Glu + Thr223Asp
Gly205Ser + Thr211Ser + Trp212Gln + Gly214Ser +
Ser219Asp + Ile220Glu + Thr223Asp
Ser207Asp + Leu209Gln + Ile213Gly + Ser216Glu +
Ser219Asp + Ile220Ser + Ser221Glu
Ser207Asp + Thr211Pro + Trp212Gln + Ile213Pro +
Ser216Asp + Ser219Asp + Ser221Asp
Pro204Gly + Gly205Pro + Ile208Gly + Leu209Glu +
Ile213Thr + Thr217Asp + Ser221Glu
Thr206Gln + Ser207Asp + Ile208Cys + Leu209Thr +
Arg218Asp - Ser219Asp + Thr223Asp
Gly203Pro + Ile208Asn + Thr211Gln + Ile213Met +
Thr217Gln + Arg218Glu + Ser221Asp
Gly203Asn + Gly205Asn + Thr206Gln + Thr211Gly +

Trp212Gln - Arg218Glu + Ser221Glu
Gly203Ser + Ile208Pro + Gly215Pro + Arg218Asp +
Ile220Asn + Ser221Glu + Thr223Asn
Thr206Pro + Thr211Pro + Gly214Ser + Gly215Pro +
Arg218Asp + Ser221Glu + Thr223Ser
Thr206Asp + Ser207Asp + Trp212Thr + Ile213Cys +
Ser216Glu + Thr217Pro + Ser219Asp
Gly205Asn + Thr206Asp + Ser207Asp + Ile213Thr +
Ser216Glu + Ser219Glu + Ile220Leu
Thr206Ser + Ile213Met + Gly214Asp + Gly215Ser +
Thr217Glu + Ser219Asp + Ile220Glu
Pro204Asn + Thr206Pro + Leu209Glu + Thr217Gly +
Arg218Glu + Ser219Asp + Thr223Asp
Pro204Gly + Ser207Glu + Thr211Pro + Gly214Asp +
Arg218Asp + Ser219Asp + Thr223Gln
Gly205Pro + Leu209Glu + Thr211Asn + Gly214Asp +
Thr217Asp + Ile220Met + Gly222Asn
Pro204Ser + Trp212His + Ile213Asn + Gly214Glu +
Thr217Glu + Ser219Glu + Gly222Asn
Gly203Gln + Ser207Glu + Ile208Cys + Gly215Pro +
Ser219Glu + Ile220Asn + Thr223Glu
Ser207Glu + Ile208Gly + Ile213Pro - Arg216Asp +
Ile220Met + Gly222Asp - Thr223Glu
Thr206Asp + Ser207Glu + Ile208Gly - Thr211Gln -
Ser216Asp + Ser221Glu + Thr223Asn
Gly203Asn + Ser207Glu + Trp212Ser - Ile213Asp -
Gly215Asn + Ser216Glu + Arg218Glu
Gly203Asn + Leu209Ser + Ile213Val - Thr217Pro +
Ser219Asp + Ile220Ala + Gly222Glu
Ile208Met + Thr211Gly + Trp212Leu - Gly214Pro -
Gly215Pro + Ser219Asp + Gly222Glu
Ser207Glu + Leu209Ser + Ile213Ser - Gly214Asn +
Ser216Asp + Arg218Glu + Ser221Asp
Gly203Ser + Ser207Asp + Ile208Asn - Thr211Asn +
Gly214Glu + Ser219Asp + Ile220Asp
Ser207Asp + Thr211Asn - Ile213Ala - Gly215Asp +
Thr217Ser + Ser219Glu + Ile220Glu
Pro204Ser + Gly205Asn + Thr211Pro - Thr217Glu +
Ser221Asp + Gly222Glu + Thr223Glu
Ser207Glu + Leu209Ala + Gly214Pro + Ser216Glu +
Thr217Ser + Arg218Glu + Ile220Leu
Ile208Val + Leu209Glu + Trp212Ser + Gly215Glu +
Ser219Asp + Ile220Asp + Gly222Pro
Gly203Gln + Ile213Ser + Gly215Glu + Ser216Asp +
Ser219Asp + Gly222Ser + Thr223Gln
Gly205Pro + Leu209Val + Gly214Asn + Ser216Glu +
Ser219Asp + Ile220Glu + Gly222Asp
Pro204Asn + Leu209Asp + Ile213Met + Gly214Pro +
Thr217Glu + Ser221Glu + Gly222Asp
Gly203Ser + Ser207Glu + Trp212Pro + Gly214Asp +
Ser216Asp + Thr217Asp + Ile220Met
Thr206Glu + Thr211Gln + Ile213Pro + Gly214Asp +
Thr217Gly + Ser221Asp + Gly222Asp

Ile208Cys + Leu209Ser + Thr211Asn + Ile213Ala +
 Gly215Asp + Arg218Glu + Ile220Gly
 Ile209Thr + Leu209His + Ile213Met + Gly214Glu +
 Ser221Glu + Gly222Asp + Thr223Asp
 Thr206Gln + Gly214Gln + Gly215Glu + Thr217Gly +
 Arg218Glu + Ser219Glu + Ser221Asp
 Pro204Ser + Thr206Ser + Ile213Cys + Gly215Glu +
 Ser216Glu + Thr217Glu + Thr223Asp
 Thr206Gln + Ile208Met + Trp212Gly + Gly214Asp +
 Ser216Asp + Thr217Pro + Ser219Asp
 Ser207Glu + Ile208Thr + Thr211Gln + Trp212Gln +
 Gly215Asp + Ser219Asp + Ser221Asp
 Gly203Ser + Pro204Gln + Ser207Glu + Ile208Cys +
 Gly214Glu + Ser219Asp + Ser221Glu
 Ser207Asp + Ile208Thr + Thr211Asn + Gly215Glu +
 Ser219Glu + Ile220Met + Ser221Glu
 Pro204Ser + Ser207Glu + Gly214Ser + Gly215Asp +
 Ser219Asp + Ile220Met + Ser221Glu
 Ser207Asp + Ile208Leu + Trp212Ile + Ile213Asp +
 Thr217Asn + Arg218Glu + Ser221Glu
 Thr206Glu + Trp212Ser + Ile213Cys + Thr217Gly +
 Arg218Glu + Ser219Glu + Thr223Glu
 Thr206Asp + Ser207Glu + Trp212Cys + Ile213Cys +
 Gly215Asn + Ser216Asp + Arg218Glu
 Thr206Glu + Ser207Glu + Gly214Gln + Gly215Pro +
 Ser216Asp + Thr217Ser + Arg218Asp
 Pro204Ser + Gly205Ser + Trp212Pro + Ser216Asp +
 Ser219Asp + Ile220Val + Thr223Ser
 Gly203Gln + Leu209Gln + Trp212Ala + Gly215Asn +
 Arg218Glu + Ile220Glu + Thr223Glu
 Gly203Gln + Leu209Asp + Thr211Asn + Gly214Glu +
 Arg218Glu + Ile220Leu + Gly222Ser
 Gly203Ser + Pro204Gln + Thr211Pro + Gly215Asp +
 Arg218Glu + Ile220Glu + Thr223Asn
 Thr206Asn + Ile208Gln + Ser216Glu + Thr217Gly +
 Arg218Asp + Ile220Gly + Ser221Asp
 Pro204Ser + Ile208His + Gly214Pro + Ser216Glu +
 Arg218Glu + Ser221Glu + Thr223Ser
 Pro204Gln + Leu209Ile + Trp212Ala + Ser216Asp +
 Thr217Ser + Arg218Asp + Ser221Asp
 Gly203Pro + Pro204Asn + Ser207Asp + Ile208Cys +
 Thr217Gly + Ile220Gly + Thr223Glu
 Pro204Ser + Ser207Asp + Leu209His + Thr211Ser +
 Gly215Asn + Gly222Ser + Thr223Glu
 Ile208His + Thr211Pro + Trp212Leu + Thr217Ser +
 Arg218Asp + Ser221Asp + Thr223Glu
 Gly205Asn + Thr206Asn + Ser207Asp + Ile213Thr +
 Ser216Asp + Ser219Asp + Gly222Glu
 Thr206Asp + Ser207Glu + Ile208Leu + Trp212Gly +
 Ser216Glu + Thr217Gln + Gly222Asp
 Gly205Asn + Thr206Asn + Ser207Asp + Ile208Gln +
 Trp212Cys + Ser216Glu + Thr217Glu
 Ser207Glu + Ile208Asn + Trp212Thr + Ile213Gln +

Ser216Asp + Thr217Glu + Thr223Gly
 Ser207Asp + Ile208His + Thr211Asn + Gly215Asn +
 Ser216Asp + Thr217Glu + Thr223Gly
 Gly203Ser + Pro204Ser + Ile213Thr + Ser216Glu +
 Thr217Gly + Ser219Asp + Ser221Glu
 Gly203Asn + Ile208Ser + Thr211Asn + Ser216Asp +
 Ser219Glu + Ser221Asp + Thr223Gly
 Gly203Ser + Thr206Pro + Thr211Gly + Trp212Thr +
 Ser216Glu + Ser219Glu + Ser221Asp
 Trp212Ser + Gly214Prc + Gly215Asp + Thr217Asp +
 Ser219Glu + Ser221Asp + Thr223Pro
 Thr206Ser + Ser207Asp + Ile208Pro + Leu209Glu +
 Gly215Asp + Ile220Thr + Ser221Glu
 Gly203Asn + Trp212Tyr + Gly214Asp + Gly215Ser +
 Arg218Glu + Ile220Pro + Thr223Ser
 Pro204Ser + Ile208Thr + Thr211Gly + Trp212His +
 Gly214Asp + Thr217Pro + Arg218Glu
 Leu209Glu + Thr211Pro + Ile213Cys + Gly214Glu +
 Arg218Asp + Ile220Asn + Ser221Asp
 Gly205Gln + Thr211Asn + Gly214Asp + Gly215Glu +
 Thr217Asp + Ile220Ala + Thr223Glu
 Gly205Gln + Thr211Gln + Ile213Asn + Gly215Asp +
 Thr217Glu + Ile220Glu + Ser221Asp
 Pro204Asn + Ile213Asp + Thr217Glu + Arg218Glu +
 Ile220Ser + Gly222Pro + Thr223Glu
 Gly205Gln + Ser207Glu + Ile208Cys + Gly214Asp +
 Ser216Glu + Ser219Asp + Thr223Gly
 Gly203Ser + Ser207Glu + Gly215Asn + Ser216Asp +
 Thr217Gly + Arg218Glu + Gly222Glu
 Thr206Gln + Leu209Met + Gly214Glu + Gly215Asn +
 Ser219Glu + Ser221Asp + Gly222Glu
 Leu209Met + Thr211Ser + Trp212Cys + Ser216Glu +
 Thr217Pro + Ile220Glu + Ser221Glu
 Thr206Gly + Thr211Gln + Trp212Cys + Ser216Asp +
 Ile220Glu + Ser221Asp + Thr223Gln
 Gly203Ser + Pro204Asn + Ser207Glu + Ile213Asp +
 Thr217Ser + Ser219Glu + Gly222Asn
 Gly205Pro + Thr206Asp + Trp212Leu + Gly214Asn +
 Ser216Glu + Ser219Asp + Gly222Ser
 Gly203Asn + Pro204Ser + Gly205Gln + Ser207Asp +
 Trp212Phe + Gly215Asp + Arg218Glu

TABLE 29

Multi-loop Double Mutation Variants

Leu 96Gly + Leu209Pro
Tyr104Cys + Ile220Gln
Leu133Ile + Ser216Glu
Leu 96Ala + Asn162Glu
Gln103Asp + Ile220Thr
Tyr169Ser + Ser190Asp
Val 95Asp + Gly205Gln

Asp 65Glu + Ile213Asn
Gly100Ser + Ile220Glu
Gly100Glu + Asn163Gln
Asn162Ser + Ser207Asp
Ser170Glu + Ile220Ser
Ser140Glu + Ile220Leu
Gln103Glu + Thr106Pro
Leu133Pro + Leu209Asn
Gly203Asn + Gly222Asp
Ser207Glu + Ile213Leu
Ser101Asp + Thr206Gly
Gly203Ser + Ser207Glu
Asn 99Glu + Trp212Asn
Gly102Pro + Ser216Asp
Ser219Asp + Ile220Met
Gly 70Asp + Leu133Ser
Gly136Asn + Ser216Asp
Arg167Glu + Leu209Pro
Asn194Glu + Leu209Gly
Leu209Gln + Ser216Glu
Gly 68Asn + Ser221Glu
Asp 65Glu + Ile107Cys
Arg218Glu + Ile220Ala
Asp 65Glu + Gly135Pro
Gly 68Asp + Phe192His
Gly 66Asn + Leu209Ser
Asn168Ser + Gly214Pro
Thr 71Gly + Leu 96Gly
Gly 70Gln + Ile220Gly
Tyr169His + Leu209Ile
Thr217Pro + Ser219Asp
Gly 70Pro + Ile220Asp
Leu 96Gln + Asn 99Glu
Asp 65Glu + Gly136Ser
Asn 99Glu + Ile213Met
Gly205Pro + Ser207Asp
Asn 99Glu + Leu209Gln
Val 95Gln + Ser207Asp
Val 95Gln + Ser219Asp
Asn 67Ser + Thr217Glu
Gly160Gln + Leu209Asp
Gly136Asn + Gly160Asn
Asn163Gln + Thr223Asn
Leu209Glu + Thr217Asn
Gly102Pro + Trp212Gln
Arg 64Asp + Gly203Asn
Asn 67Gln + Thr211Asn
Asp 65Glu + Tyr137Pro
Gln103Asp + Leu133Ile
Leu 96Glu + Ile213Gln
Asn161Gln + Arg218Glu
Leu209Asn + Gly214Pro
Gly 68Ser + Thr206Asn

Arg167Asp + Phe192Ile
Asp 65Glu + Thr211Ser
Ser207Asp + Thr223Gly
Ser207Asp + Gly222Ser
Tyr104Leu + Arg167Glu
Asp 98Glu + Ile220Asn
Arg 64Glu + Gly215Asn
Asn 67Asp + Asn163Ser
Gly160Ser + Thr206Gln
Ile213Ser + Thr223Asp
Gly215Gln + Ser219Asp
Phe202Leu + Ser219Glu
Ser207Asp + Ile220Cys
Tyr137Ser + Ser219Asp
Gly100Asn + Leu209Thr
Tyr137His + Ser170Asp
Ser170Asp + Ile220Thr
Thr106Gln + Ser207Asp
Arg167Asp + Leu209Pro
Ser105Asp + Gly136Asn
Ser139Asp + Phe192Thr
Ser190Glu + Pro204Ser
Asn 67Glu + Leu209Ala
Trp212Ser + Ser216Glu
Tyr104Ala + Thr206Asp
Asn161Gln + Gly222Asn
Val 95Thr + Leu133Ser
Gly160Ser + Asp165Glu
Asn163Ser + Leu209Val
Gly136Glu + Ile220Pro
Ser191Asp + Pro204Ser
Thr217Glu + Ile220Asn
Leu209Met + Gly214Asp
Thr 71Pro + Ser191Glu
Ser101Glu + Trp212Phe
Gly 70Ser + Ser219Glu
Gly 66Gln + Asn 99Ser
Asn163Gln + Ser190Glu
Ile107Ser + Ser190Asp
Ile208Thr + Ser219Asp
Ser216Asp + Ile220Leu
Ser140Asp + Alal64His
Asp 65Glu + Val 95Ser
Phe202Met + Leu209Ser
Asn 67Gln + Tyr169Gly
Gly136Ser + Asn162Asp
Gly160Pro + Ser219Asp
Gly102Pro + Ser207Asp
Val 95Asn + Ser207Asp
Asp 97Glu + Ile107Gln
Thr206Glu + Ile220Pro
Ser216Glu + Thr223Gly
Asp 97Glu + Leu133Cys

Gly134Gln + Gly135Asp
Thr206Gln + Ile220His
Gly100Asn + Thr223Asp
Gly 66Pro + Ile220Val
Gly 66Asn + Asn168Glu
Ser190Asp + Ile213Val
Gly135Pro + Asn162Glu
Leu133Ile + Gly134Pro
Asn163Ser + Arg167Glu
Gly134Gln + Ser216Glu
Asn194Gln + Leu209Gly
Asn 99Gln + Ile213Met
Leu 96Ile + Gly160Asp
Arg167Glu + Ile220Ala
Val 95Ala + Ser139Asp
Gln103Ser + Gly214Ser
Asn 67Glu + Thr 71Gln
Gly135Pro + Ser191Glu
Ile107Ala + Ile220Glu
Gly214Gln + Ser219Glu
Gly160Asp + Phe192Met
Leu 96Ala + Asp 97Glu
Asn168Gln + Leu209Glu
Gln103Glu + Gly136Asn
Gly215Asp + Gly222Ser
Ser207Asp + Thr223Asn
Ser216Asp + Ile220Cys
Val 95Ser + Thr206Glu
Gly 70Asn + Ser216Asp
Leu209Ser + Ile220Asp
Ala164Pro + Ile208Thr
Tyr137Thr + Leu209Glu
Thr106Asp + Tyr137Thr
Thr106Gly + Asp165Glu
Asn 99Asp + Ile213Gly
Asn161Glu + Ile220Ser
Gly160Asp + Ile220Met
Gly135Asp + Asn163Gln
Tyr169Ser + Ser216Glu
Ser140Asp + Leu209Asn
Ser140Asp + Leu209Gln
Ser170Glu + Gly222Pro
Ile213His + Ser216Asp
Leu 96Thr + Gly222Asn
Asp 65Glu + Asn168Gln
Tyr104Leu + Ser219Glu
Thr106Pro + Gly134Pro
Asn 99Asp + Gly215Asn
Thr206Glu + Ile220Val
Gly 70Pro + Leu 96Glu
Thr106Gly + Ser219Glu
Gly100Glu + Ile107Gly
Gly102Gln + Tyr169Gly

Arg 64Glu + Pro204Gly
Leu133Gln + Ser207Asp
Gly100Gln + Leu133His
Thr106Asp + Leu209Ala
Gly 68Glu + Ile220Gln
Asn 67Asp + Gly 68Gln
Leu 96Glu + Ile220Leu
Thr206Gln + Ser219Asp
Ala164Gln + Gly222Gln
Gly 66Glu + Gly 68Pro
Ser140Asp + Ala166Asn
Asn 67Ser + Gly100Asp
Ser219Asp + Ile220Thr
Ser170Glu + Gly215Ser
Thr 71Gly + Phe192Ile
Gly100Ser + Ser219Asp
Gly215Pro + Ser219Asp
Leu209Met + Ser221Asp
Asn162Asp - Tyr169Met
Tyr104His + Asn162Glu
Asn 67Gln + Leu 96Ser
Leu209Asp + Ile220Ala
Gly 70Ser + Ile220Gln
Gly 66Ser + Gly 70Glu
Tyr169His + Thr206Gly
Asn194Gln + Thr206Gly
Ile107Glu + Leu209Asn
Gly 66Ser + Gly222Glu
Leu133Ile + Ser190Glu
Ser105Asp + Ile220His
Gly102Asp - Asn194Gln
Leu 96Met + Ser216Asp
Asn161Asp + Gly203Gln
Gly136Gln + Asn161Asp
Phe202Ile + Ser219Asp
Gln103Asp + Ile107Thr
Gly100Gln + Ser216Asp
Phe192Ala + Ser207Glu
Gly136Pro + Ser138Asp
Asp 98Glu - Leu209Thr
Asn194Ser + Ser216Glu
Val 95Asp + Gly222Gln
Thr211Pro + Ile220Met
Arg167Glu + Tyr169Ala
Gly 66Asn + Ser138Asp
Asn 67Glu + Leu209Pro
Gly 70Glu + Tyr169Pro
Gly102Pro + Leu209Asn
Gly 68Ser + Ser207Asp
Ser101Glu + Ile220Ser
Tyr137Val + Ser191Glu
Thr211Gly + Arg218Asp
Asn161Gln + Asn194Gln

Thr106Asn + Leu209Gln
Val 95Ser + Gly134Asp
Ser191Asp + Ile220Ser
Asn163Ser + Thr223Glu
Leu209Thr + Arg218Asp
Gly 70Asp + Val 95Gly
Leu209Met + Ser216Asp
Thr206Ser + Arg218Glu
Leu209Ile + Thr217Asp
Ile213Pro + Ser219Glu
Gly205Ser + Thr206Asp
Phe192Gin + Thr206Glu
Gly 68Asp + Leu209Ser
Gly160Gln + Thr206Gly
Gly214Asp + Ile220Leu
Gly 70Asn - Arg218Asp
Gly 70Glu + Gly136Asn
Leu133Glu + Gly203Pro
Gly135Gln + Ser207Glu
Ile107Gly + Ile213Gln
Ser140Asp + Ile220Leu
Ser191Asp + Gly214Gln
Leu209Ser + Gly214Asp
Asn 67Glu + Ile220Gln
Ala166Pro + Ser219Asp
Gly102Ser + Ile220Val
Gln103Ser + Ser140Glu
Gly102Asp + Ile220Gly
Tyr104Ile - Gly134Gln
Ser101Glu - Ile220Cys
Asn162Gln + Ser207Asp
Val 95Pro - Ser207Asp
Asn168Gln + Leu209Ala
Gly100Gln + Gly136Asn
Phe192Pro + Asn194Glu
Asn 99Ser + Thr211Gln
Gly215Pro + Ile220Asp
Arg 64Glu + Leu133Ile
Ser207Glu - Ile220Cys
Asp 97Glu + Thr206Asn
Thr106Asp + Tyr137Met
Ser138Glu + Thr223Pro
Ser138Asp + Ile220Ala
Ser191Asp + Leu209Asn
Leu133Ile - Ser170Glu
Ile107Cys + Ser139Glu
Asn161Gln + Ser207Asp
Thr206Asn + Ser216Glu
Asn 67Gln + Ser207Asp
Leu209Met + Ser219Glu
Gly 68Ser + Asp 97Glu
Gly136Glu + Gly222Asn
Thr106Pro + Leu209Val

Gln103Glu + Ile213Ala
Leu 96Gln + Ser219Glu
Ile107Asp + Ala164Gln
Tyr169Asp + Thr211Pro
Leu133Glu + Leu209Val
Asp 97Glu + Asn161Ser
Ile213Gly + Ser216Asp
Thr206Pro + Ser207Asp
Ala164Gln + Leu209Cys
Ser170Glu + Leu209Ala
Gly160Pro + Leu209Cys
Asn 67Asp + Asn163Gln
Thr206Gly + Ser216Asp
Leu133Thr + Ser216Glu
Asn163Asp + Leu209Thr
Val 95Met + Phe202Ser
Gly136Ser + Gly222Ser
Leu209Met + Ile220Met
Gln103Ser + Asn163Glu
Ile107His + Arg218Asp
Phe192Ala + Gly215Gln
Leu209Thr + Ser216Glu
Tyr169Glu + Thr217Ser
Ser101Asp + Leu209Ala
Leu209Ala + Ser221Asp
Gly 66Asp + Thr106Gln
Val 95Glu + Ile213Cys
Ser105Asp + Thr211Gln
Asp165Glu + Asn168Ser
Gly 66Asn + Ile220Thr
Ser219Glu + Ile220Pro
Gly 68Glu + Ile220Met
Val 95His + Leu209Met
Gly 66Ser + Leu209Met
Ser140Glu + Gly214Gln
Gly160Asn + Leu209Asp
Thr206Asp + Ile220Met
Gly102Asn + Thr206Glu
Gly134Pro + Phe192Pro
Leu133Asp + Phe202Ser
Asn162Glu + Ile220His
Leu133Gly + Leu209Met
Asn194Ser + Ser219Asp
Gly 70Gln + Thr217Pro
Asp 97Glu + Thr217Gln
Gly100Asp + Leu209Cys
Ser216Asp + Ile220Thr
Arg167Glu + Asn194Ser
Gly 66Gln + Ser170Glu
Ser101Asp + Tyr137Ala
Asn 67Gln + Asn161Asp
Asn168Asp + Leu209Ile
Asn 67Gln + Gly 68Glu

Asn161Asp - Thr217Pro
 Thr206Asp - Leu209Met
 Asp 97Glu + Leu209Met
 Asp 97Glu + Tyr104His
 Asp 98Glu + Gly102Pro
 Tyr104Ala + Ser191Glu
 Gly100Ser + Arg167Glu
 Ser207Asp + Leu209Ser
 Asn194Ser + Ser207Asp
 Leu 96Val + Ile220Cys
 Asn163Gln + Ser191Asp
 Asn162Gln + Asp165Glu
 Gly 66Gln + Thr 71Asn
 Tyr137Leu + Phe192Asn
 Gly 66Asn + Ser207Glu
 Asp 97Glu + Leu133Ser
 Thr206Gln + Ser216Asp
 Leu 96Pro + Ile213Glu
 Asp165Glu + Gly214Asn
 Ser190Glu + Thr217Gly
 Tyr104Met + Ile220Glu
 Asp 65Glu + Thr223Ser
 Gly100Asn + Ser170Glu
 Gly134Ser + Leu209Cys
 Ala164Gly + Ser207Asp
 Thr 71Asn + Ile220Asp
 Ile107Cys + Ser219Asp
 Thr106Gly + Asn162Asp
 Asn161Glu + Leu209Thr
 Gly214Gln + Ser221Asp
 Ala164Gln + Ser207Glu
 Asn 67Ser + Ser216Asp
 Leu209Ala + Thr217Ser
 Ala166Gln + Ser216Asp
 Leu209Gln + Ile220Glu

TABLE 33

Multi-loop Triple Mutation Variants

Leu 96Gly +	Leu209Pro +	Ser216Glu
Arg 64Glu +	Tyr104Cys +	Ile220Gln
Tyr169Ser +	Ser190Asp +	Ile220Thr
Gly100Glu +	Asn162Ser +	Asn163Gln
Gln103Glu +	Leu133Pro +	Leu209Asn
Gly 70Asp +	Leu133Ser +	Gly136Asn
Gly 68Asn +	Leu209Gln +	Ser216Glu
Asp 65Glu +	Gly135Pro +	Ile220Ala
Gly 66Asn +	Asn 67Glu +	Leu209Ser
Thr 71Gly +	Leu 96Gly +	Gly214Pro
Gly 70Gln +	Leu209Ile +	Ile220Gly
Tyr169His +	Thr217Pro +	Ser219Asp
Asn 67Ser +	Val 95Gln +	Thr217Glu

Gly136Asn + Gly160Gln + Leu209Asp
Gly136Glu + Asn163Gln + Thr223Asn
Arg 64Asp + Gly203Asn + Trp212Gln
Gly 68Ser + Leu209Asn + Gly214Pro
Arg167Asp + Phe192Ile + Thr206Asn
Ser207Asp + Gly222Ser + Thr223Gly
Gly160Ser + Asn163Ser + Thr206Gln
Gly100Asn + Tyr137Ser + Ser219Asp
Asn 67Asp + Gly100Ser + Tyr137His
Ser105Asp + Gly136Asn + Phe192Thr
Val 95Thr + Leu133Ser + Asn161Gln
Ser140Glu + Asn163Ser + Leu209Val
Pro204Ser + Thr217Glu + Ile220Asn
Ile107Ser + Ile208Thr + Ser219Asp
Asp 65Glu + Val 95Ser + Leu209Ser
Asn 67Gln + Tyr169Gly + Phe202Met
Gly136Ser + Gly160Pro + Asn162Asp
Val 95Asn + Ile107Gln + Ser207Asp
Gly135Asp + Thr206Gln + Ile220His
Gly 66Pro + Gly100Asn + Ile220Val
Gly135Pro + Asn162Glu + Ile213Val
Leu133Ile + Gly134Pro + Arg167Glu
Gly134Gln + Asn163Ser + Ser216Glu
Asn194Gln + Ser207Glu + Leu209Gly
Arg 64Glu + Asn 99Gln + Ile213Met
Tyr104Ser + Arg167Glu + Ile220Ala
Val 95Ala + Gln103Ser + Ser139Asp
Ile107Ala + Gly214Gln + Ile220Glu
Gln103Glu + Gly136Asn + Asn168Gln
Thr206Pro + Ser216Glu + Ile220Cys
Asn 67Asp + Ala164Pro + Ile208Thr
Asp 65Glu + Asn168Gln + Gly222Asn
Tyr104Leu + Leu209Ser + Ser219Glu
Ile107Pro + Asn194Glu + Thr206Gly
Leu133Asn + Leu209Ile + Ile213Asp
Gly 70Pro + Thr106Gly + Ser219Glu
Asp 65Glu + Gly102Gln + Tyr169Gly
Gly100Gln + Leu133Gln + Gly160Asp
Ala164Ser + Ser216Asp + Thr217Gly
Gly 68Glu + Leu209Ala + Ile220Gln
Gly 66Glu + Ala164Gln + Gly222Gln
Thr 71Gly + Phe192Ile + Gly215Ser
Asn 67Gln + Leu 96Ser + Leu209Asp
Arg 64Glu + Gly 70Ser + Ile220Gln
Gly 66Ser + Tyr169His + Thr206Gly
Ser170Glu + Thr206Gly + Gly215Ser
Gly 66Ser + Ile107Glu + Leu209Asn
Ser105Asp + Asn194Gln + Ile220His
Leu 96Met + Asn161Asp + Gly203Gln
Gly136Gln + Asn161Asp + Phe202Ile
Gly100Gln + Phe192Ala + Ser216Asp
Thr211Pro + Ile220Met + Gly222Gln
Gly 68Ser + Thr106Gln + Ser207Asp

Asn161Gln + Thr211Gly + Arg218Asp
Thr106Asn + Asn194Gln + Leu209Gln
Asp 65Glu + Tyr169Val + Ile220Val
Gly 70Asp + Val 95Gly + Leu209Met
Gly205Ser + Thr206Asp + Ile213Pro
Phe192Gln + Thr206Glu + Leu209Ser
Gly160Gln + Thr206Gly + Gly214Asp
Gly 70Asn - Arg218Asp + Ile220Leu
Gly 70Glu + Gly136Asn + Gly203Pro
Ile107Gly + Ile213Gln + Ser219Asp
Gly102Ser + Ala166Pro + Ile220Val
Tyr104Ile + Gly134Gln + Ile220Cys
Val 95Pro + Asn162Gln + Ser207Asp
Gly100Gln + Gly136Asn + Asn194Glu
Asn 99Ser + Thr211Gln + Ile220Asp
Arg 64Glu + Leu133Ile + Ile220Ser
Asp 97Glu + Thr206Asn + Ile220Cys
Ile107Asn + Thr206Asn + Ser207Glu
Asn 67Gln + Leu 96Gln + Ile213Asp
Gly 68Ser + Leu209Met + Ser219Glu
Tyr169Asp + Leu209Val + Thr211Pro
Thr206Pro + Ile213Gly + Ser216Asp
Ala164Gln + Ser207Asp + Leu209Cys
Asn 67Asp + Gly160Pro + Leu209Cys
Asn163Gln + Thr206Gly + Ser216Asp
Val 95Met + Phe202Ser + Leu209Thr
Gly136Ser + Ile220Met + Gly222Ser
Gln103Ser + Asn163Glu + Leu209Met
Ile107His + Phe192Ala + Arg218Asp
Ser101Asp + Leu209Ala + Thr217Ser
Gly 66Asn + Asp165Glu + Asn168Ser
Gly 66Ser + Leu209Met + Gly214Gln
Gly134Pro + Ser140Glu + Phe192Pro
Leu133Gly + Ser207Glu + Leu209Met
Gly 70Gln + Asn163Asp + Asn194Ser
Gly100Asp + Leu209Cys + Thr217Gln
Gly 66Gln + Ser101Asp + Tyr137Ala
Asn 67Gln + Asn168Asp + Leu209Ile
Asn161Asp + Leu209Met + Thr217Pro
Gly100Ser + Ser207Asp + Leu209Ser
Leu 96Val + Asn194Ser + Ser207Asp
Asn163Gln + Ser191Asp + Ile220Cys
Gly 66Gln + Thr 71Asn + Ser216Asp
Gly 66Asn + Tyr137Leu + Phe192Asn
Asp 97Glu + Leu133Ser + Ile220Met
Leu 96Pro + Thr206Gln + Ile213Glu
Asp165Glu + Gly214Asn + Thr217Gly
Asp 65Glu + Gly100Asn + Thr223Ser
Gly134Ser + Ser170Glu + Leu209Cys
Thr 71Asn + Ile107Cys + Ser219Asp
Thr106Gly + Asn162Asp + Leu209Thr
Asn 67Ser + Ala164Gln + Ser207Glu
Ala166Gln + Leu209Ala + Ser216Asp

Leu 96Gly + Leu133Ser + Ser190Glu
Ser207Asp + Leu209Thr + Ile220Prc
Tyr137Thr + Ser139Glu + Gly215Pro
Thr206Gly - Leu209Asp + Thr211Asn
Thr206Asp + Ile208Val - Ile220Leu
Leu 96Cys + Ser207Glu + Ile220Leu
Ile107Leu + Gly136Glu + Ile220Gly
Thr106Asn + Ser139Glu + Ala164Thr
Ser191Glu + Leu209Ser + Ile220Gly
Ser140Glu + Gly215Ser + Gly222Pro
Leu 96Ser + Ala164Gly + Ile220His
Asp 97Glu + Tyr104Asn + Tyr137Gln
Gly 70Gln + Asp 98Glu + Leu133Thr
Gly 66Ser + Thr 71Gly + Phe202Ser
Ser101Asp + Thr206Gly + Ile213Gly
Tyr169Ile + Ser170Glu - Thr211Gly
Gly160Ser + Ile213Val + Ser219Glu
Leu209Gly + Ile220Gly + Thr223Pro
Thr106Gln + Ala164Gln + Phe192Glu
Asn 99Glu + Leu209Gln + Ile220Met
Gly160Gln + Asn194Glu + Gly215Gln
Ser105Asp + Phe202Pro + Leu209Gln
Gly 66Glu + Leu133Thr + Leu209Asn
Ala164Thr + Leu209Met + Ile220Thr
Thr 71Gly + Gly214Asp + Gly222Asn
Val 95Pro + Thr206Gly + Ile213Asp
Leu 96Asn + Gly100Asn + Asn194Ser
Arg 64Glu + Gly100Asn + Ile220Met
Gly 66Ser + Arg218Asp + Gly222Ser
Asp 65Glu + Asn162Gln + Ile220Thr
Asn 99Asp + Thr206Ser + Ile220Ser
Leu 96Ser + Tyr169His + Ser216Asp
Asp 98Glu + Tyr169His + Gly215Asn
Tyr104Leu + Ser207Asp + Leu209Ser
Asn161Ser + Phe192His + Thr206Pro
Leu 96Ser + Ser170Asp + Leu209Ile
Thr106Gln + Asn163Gln + Ser207Asp
Gly 70Gln + Asn 99Ser + Asn161Ser
Asn 99Ser + Ala164Asp + Thr217Pro
Ser139Glu + Thr206Asn + Ile213Leu
Leu 96Asn + Thr217Asn + Ile220His
Gln103Ser + Leu209Pro + Ser219Glu
Asp 65Glu + Leu 96Cys + Gln103Asn
Asn 67Gln + Ser207Asp + Gly214Asn
Gly 68Pro + Thr211Ser + Thr223Asp
Tyr137Gln + Ser138Glu + Ile220Asn
Asp 65Glu + Phe192Val + Gly215Ser
Thr 71Gln + Gly203Gln + Thr206Asp
Arg 64Asp + Asn 99Ser + Thr106Ser
Gly135Gln + Asn168Ser + Phe192Asp
Leu133Ala + Leu209Ala + Ser219Glu
Ala164Thr + Asn168Ser + Ile213Pro
Ser207Glu + Gly214Gln + Ile220Asn

Phe192Tyr + Leu209Pro + Gly215Gln
Asn163Gln + Thr206Gly + Leu209Asn
Leu 96Pro + Asp 98Glu + Asn163Gln
Ser101Asp + Asn168Gln + Tyr169Val
Gly136Pro + Asn162Glu + Ile220Thr
Leu209Cys + Gly214Gln + Ile220Cys
Arg 64Asp + Leu209Ile + Ile220His
Gly134Pro + Gly135Ser + Ser219Glu
Ala164Thr + Leu209Thr + Ser219Glu
Trp212Phe + Ser219Glu + Ile220Glu
Leu 96Glu + Asp 97Glu + Ile220Leu
Leu 96Glu + Asp 97Glu + Gly222Pro
Asn161Asp + Asn162Glu + Gly214Ser
Gly160Asp + Asn161Glu + Ile220Ser
Tyr137Val + Thr206Glu + Ser207Asp
Gly 68Pro + Arg218Glu + Ser219Glu
Leu209Thr + Arg218Glu + Ser219Asp
Tyr104Gln + Ser216Asp + Thr217Asp
Leu209Glu + Thr217Asn + Ser219Asp
Leu209Asp + Ser219Glu + Ile220Ser
Asn194Gln + Ser207Asp + Ser221Glu
Ala164Gly + Ser207Asp + Ile220Asp
Leu 96Val + Ser207Asp + Ile220Asp
Leu 96Glu + Gly102Glu + Ile213Gln
Gly 68Asn + Ser207Glu + Ser219Glu
Ser207Asp + Ser219Glu + Ile220Cys
Leu 96Gln + Ser207Glu + Ser219Glu
Gly102Pro + Ser207Asp + Ser219Asp
Gln103Ser + Ser207Asp + Ser219Glu
Val 95Gln + Ser207Asp + Ser219Asp
Ser207Asp + Ile213Pro + Ser219Glu
Asp 65Glu + Asn 67Asp + Ala164His
Asp 65Glu + Asn 67Glu + Gly136Ser
Asn162Gln + Asp165Glu + Arg167Glu
Leu209Met + Gly214Asp + Ser216Glu
Ser138Asp + Ser170Asp + Ile220Met
Ser138Glu + Asn168Gln + Ser170Glu
Arg 64Glu + Gly 66Asp + Thr217Pro
Asp165Glu + Asn168Asp + Thr211Asn
Leu 96Glu + Asp 98Glu + Gly222Ser
Thr206Ser + Ser216Asp + Arg218Glu
Ala164Ser + Ser216Glu + Arg218Glu
Asn161Asp + Asn162Asp + Thr223Asp
Leu209Ile + Thr217Asp + Ser219Glu
Ser101Asp + Gln103Asp + Leu133Ile
Asn 67Glu + Asp 97Glu + Leu209Ala
Leu133Ile + Ser190Glu + Gly222Glu
Ser207Asp + Ser219Glu + Gly222Asp
Ala164Asp + Asn168Glu + Leu209Pro
Asp 65Glu + Gly 68Glu + Asp 97Glu
Asn163Ser + Thr206Asp + Ser219Glu
Arg 64Glu + Asn 67Asp + Gly215Asn
Tyr137Asp + Ser139Glu + Arg167Asp

Ser140Asp + Ser170Glu + Gly222Ser
Tyr137Glu + Ser140Asp + Leu209Gln
Arg 64Glu + Asp 97Glu + Tyr104His
Val 95Glu + Ser105Asp + Thr211Gln
Gly100Asn + Asn161Glu + Ser221Asp
Asp 65Glu + Asn 99Glu + Trp212Asn
Asp 65Glu + Asn 99Asp + Thr217Ser
Ser190Glu + Ser207Glu + Ile220Glu
Gly 68Glu + Gly136Pro + Ser216Glu
Val 95Glu + Asp 98Glu - Gly102Pro
Asn162Asp + Asp165Glu + Ser191Glu
Val 95Cys + Ser138Asp + Arg167Glu
Leu209Asp + Ser216Glu + Ile220Ala
Gly100Glu + Gln103Asp + Ile107Gly
Gly100Asp + Gly102Pro + Gln103Glu
Ser216Asp + Ser219Glu + Ile220Thr
Gly102Pro + Ser216Asp + Ser219Asp
Tyr104Gln + Ser216Glu + Ser219Glu
Asn 99Gln + Ser216Glu + Ser219Asp
Thr206Gln + Ser216Asp + Ser219Asp
Ser207Asp + Ser216Asp + Thr217Asp
Gly134Asp + Asn162Glu + Phe192Glu
Gly102Glu + Ser105Asp + Leu133Glu
Ser216Asp + Ser219Asp + Ser221Asp
Asn163Asp + Ser170Glu + Asn194Asp
Tyr137Glu + Asn162Glu + Arg167Glu
Ser105Asp + Gly135Asp + Tyr169Asp
Val 95Asp + Asp 98Glu + Ser105Glu
Gly136Asp + Ser140Asp + Gly203Gln
Ser207Asp + Ser216Glu + Ile220Asp
Thr106Gly + Tyr137Asp + Asp165Glu
Asp 65Glu + Gly100Glu - Gln103Asp
Ser101Glu + Arg167Glu + Asn168Glu
Asn 67Asp + Ser191Asp + Phe192Glu
Asp 98Glu + Asn 99Glu + Ser216Asp
Asp 98Glu + Asn 99Asp + Ser216Asp
Arg 64Glu + Asp 65Glu + Asp165Glu
Gly102Glu + Gln103Glu + Ser221Glu
Leu133Glu + Thr206Asp + Ser207Glu
Ser139Asp + Ser216Asp + Thr217Asp
Asp165Glu + Gly215Asp + Ser216Asp
Asp 97Glu + Leu209Glu + Ser219Glu
Ser191Glu + Leu209Glu + Ser219Glu
Thr106Asp + Leu209Asp + Ser219Asp
Asn 99Glu + Ile213Asp + Ser216Glu
Ser207Glu + Leu209Glu + Ile213Asp
Asn 67Glu + Asp 98Glu + Leu209Asp
Ser101Asp + Ser207Asp + Ser221Asp
Gly135Asp + Ser207Asp + Ser219Glu
Asn162Glu + Ser207Asp + Ser219Glu
Ser139Glu + Ser207Glu + Ser219Glu
Gly134Glu + Ser170Glu + Ser216Asp
Asp165Glu + Arg167Glu + Ser207Asp

Asp165Glu + Arg167Asp + Ser219Asp
 Asp 65Glu + Ser138Glu + Ser140Asp
 Asp 97Glu + Arg167Glu + Tyr169Asp
 Ser207Glu + Ile213Glu + Ser216Glu
 Thr 71Prc + Ser191Glu + Ser207Glu
 Ser191Asp + Ser207Asp + Gly214Gln
 Gly 66Glu + Gly 70Glu + Ser216Glu
 Asn163Asp + Ser191Asp + Ile220Glu
 Asp 97Glu + Ser207Glu + Leu209Glu
 Tyr104Asp + Ser207Glu + Leu209Glu
 Ser190Asp + Thr206Glu + Ser216Asp
 Asp 97Glu + Leu133Glu + Asn161Ser
 Asn168Asp + Ser170Asp + Ser190Asp
 Asp 98Glu + Ser221Asp + Thr223Glu
 Asn 67Asp + Asp 97Glu + Gly135Glu
 Asn 67Asp + Asp 97Glu + Ser219Asp
 Ser105Glu + Gly160Asp + Gly222Asp
 Asp 98Glu + Gly160Asp + Asn163Glu
 Ser139Glu + Ser170Glu + Arg218Asp
 Gln103Glu + Ser207Asp + Gly222Glu
 Ser207Glu + Ser216Asp + Gly222Asp
 Gly135Glu + Gly160Glu + Ser216Glu
 Tyr104Glu + Asn163Asp + Ser190Glu
 Ser190Glu + Asn194Asp + Ser219Asp
 Tyr104Met + Ser190Glu + Ile220Glu
 Asn 67Asp + Ser216Asp - Ser219Glu
 Leu133Asp + Asn162Glu - Phe202Ser
 Asn162Glu + Ser191Asp + Leu209Glu
 Asp 65Glu + Leu 96Asp - Asn162Asp
 Arg 64Asp + Gly136Glu - Arg167Asp
 Asn 67Asp + Gly 68Gln - Ser216Glu
 Asn 67Glu + Ser216Glu + Ile220Cys
 Ser101Glu + Thr206Asp - Leu209Glu
 Asp 65Glu + Leu209Glu + Ser216Glu
 Ser101Glu + Ile107Glu + Ser219Glu
 Gly 68Asp + Ser170Glu + Ser216Asp
 Gly136Asp + Ser139Glu + Ser216Glu
 Gly135Asp + Leu209Ser + Thr223Asp
 Leu133Glu + Asn161Glu + Gly214Glu
 Arg 64Glu + Ser191Glu + Ser221Asp
 Asn 67Glu + Gly214Asp + Ser219Glu
 Thr106Glu + Ser219Glu + Gly222Glu
 Asp 98Glu + Ile220Asp + Thr223Glu
 Arg167Asp + Gly215Glu + Arg218Asp
 Tyr104Asp + Ser139Glu + Ser219Asp
 Ile107Gly - Asn161Asp + Ile220Asp
 Gly160Glu + Ser216Asp + Ser219Asp
 Asp165Glu + Ser216Glu + Ser219Asp
 Asp 98Glu + Ser207Asp + Thr223Asp
 Ser139Asp + Asn168Glu + Ser207Glu
 Ser105Asp + Ser138Glu + Ile220Glu
 Ser105Glu + Ser138Asp + Ser219Asp
 Ser105Asp + Ser138Asp + Gly222Asp

Ile213Pro + Ser216Glu - Ile220Glu
 Ser101Glu + Gly214Glu + Arg218Glu
 Gly136Glu - Asp165Glu + Ser190Asp
 Asp 65Glu + Leu209Cys + Ser216Asp
 Ser138Asp + Asn161Glu + Thr206Glu
 Gly136Asp + Ser140Asp + Ser219Glu
 Gly 68Glu + Gly134Glu + Ser219Asp
 Gly 68Asp + Asn194Glu + Ser219Asp
 Gly 68Glu + Asn161Glu + Ser219Asp
 Gly 68Asp + Ile107Asp + Ser219Glu
 Gly 68Glu + Ser139Asp + Ser219Asp
 Asp 98Glu + Gly135Asp + Ser139Glu
 Gly135Glu + Ser139Glu + Leu209Glu
 Ala164Glu + Ser190Asp - Ser219Glu
 Gln103Asp + Tyr137Asp + Gly160Ser
 Gly 70Glu + Gly102Asp + Tyr169Pro
 Gly 70Glu + Ser219Glu + Gly222Asn
 Gly 70Glu - Leu209Met + Ser221Asp
 Ile213Ser + Ser219Asp + Thr223Asp
 Gly135Asp + Ser140Glu + Gly215Asp
 Gly102Glu + Ser170Glu + Thr206Asn
 Gly102Glu + Gly135Asp + Thr206Glu
 Gly 70Glu + Asp165Glu + Ile220Asp
 Phe192Asp + Ser207Asp + Ile213Glu
 Ala164Glu + Arg218Asp + Thr223Asp
 Gly135Asp + Ser190Glu + Ile220Glu
 Asn 99Glu + Leu133Asp + Asp165Glu
 Asp165Glu + Ser219Glu + Thr223Asp
 Asn 67Glu + Asn162Asp + Ser216Glu

TABLE 34

Multi-loop Quadruple Mutation Variants

Tyr104Cys + Leu133Ile + Ser216Glu + Ile220Gln
 Gly102Asn + Gly160Ser + Ala164Gly + Arg218Asp
 Asn 67Glu + Thr206Gln + Leu209Met + Ile220Met
 Gln103Glu + Thr106Pro + Leu133Pro + Leu209Asn
 Val 95His + Gly136Asn + Gly160Gln + Gly222Glu
 Arg 64Asp + Gly102Pro + Gly203Asn + Trp212Gln
 Val 95Thr + Leu133Ser + Asn161Gln + Gly222Asn
 Gly 66Gln + Gly 70Ser + Asn 99Ser + Ser219Glu
 Asp 65Glu + Gly 68Asn + Tyr169Val + Ile220Val
 Phe192Gln + Gly205Ser + Thr206Glu + Leu209Ser
 Leu133Val + Asn162Asp + Leu209Val + Ile220Ala
 Leu 96Thr + Leu209Ile + Ile220Val + Thr223Ser
 Gly100Glu + Gly102Asn + Gly134Ser + Ile208Pro
 Gly100Ser + Asn194Gln + Ser207Glu + Ile220Thr
 Asn 67Gln + Ala164Gln + Tyr169Asp + Ile220Thr
 Gly160Ser + Ser191Glu + Ile220Ser + Gly222Ser
 Thr206Pro + Ser207Asp + Leu209Cys + Ile213Gly
 Val 95Met + Gly136Ser + Phe202Ser + Gly222Ser
 Gln103Ser + Asn163Glu + Leu209Met + Ile220Met

Ile107His + Phe192Ala + Gly215Gln - Arg216Asp
 Gly 66Asn + Asp165Glu + Asn168Ser + Ile220Thr
 Gly100Asn + Ser140Glu + Leu209Met + Gly214Gln
 Gly 70Gln + Asn163Asp + Asn194Ser + Thr217Pro
 Asn161Ser + Phe192His + Thr206Pro + Ser219Asp
 Val 95Cys + Leu 96Ser + Ser138Asp + Leu209Ile
 Gly 68Gln + Ser101Asp + Thr106Pro + Ile220Met
 Gly100Pro + Gly102Gln + Leu209Cys + Gly215Asp
 Gly100Asn + Gln103Ser + Ser207Asp + Leu209Val
 Thr106Gln + Ile107Asn + Phe192Val + Thr223Gly
 Tyr137Gin + Ser138Asp + Leu209Val + Trp212Asn
 Leu133Ala + Asn162Asp + Tyr169Val + Leu209Ile
 Gly102Ser + Gly134Gln + Gly136Asn + Ser207Glu
 Gly100Gln + Gly134Pro + Gly160Asn + Ser219Glu
 Tyr137Met + Asn194Gln + Ser207Asp + Gly215Pro
 Ala164Asn + Ser190Asp + Phe202Ser + Ile213Asn
 Gly 68Pro + Asp 98Glu + Ala166His + Asn168Ser
 Ile107Pro + Gly136Pro + Ser207Glu + Gly222Gln
 Arg 64Asp + Tyr169Gly + Phe192Pro + Gly205Ser
 Val 95Thr + Tyr104Cys + Gly134Asp + Ile208Asn
 Ile107His + Gly135Glu + Phe192Gly + Thr217Pro
 Ile107Gly + Ser191Glu + Leu209Met + Thr223Gln
 Gly 68Gln + Val 95Ala + Ser207Glu + Leu209Asn
 Gly 66Asn + Asp 97Glu + Asn161Ser + Gly214Asn
 Tyr137Met + Leu209Ser + Ser216Asp + Ile220Pro
 Val 95Asn + Leu209Val + Ser219Asp + Thr223Pro
 Gly135Asn + Ser140Glu + Ala164Thr + Ile220Leu
 Gly 70Ser + Gly135Asp + Thr217Gln + Ile220Thr
 Gly 66Ser + Ser140Asp + Leu209Pro + Ile213Leu
 Val 95Asn - Leu 96Ile + Thr217Pro + Ile220Gly
 Leu 96Met - Gly203Asn + Ser219Glu + Ile220Gly
 Tyr104Cys + Tyr169Ser + Leu209Thr + Ser216Glu
 Gly 70Gln + Ser138Asp + Thr206Asn - Ile220Gln
 Asn163Gln + Gly214Pro + Ile220Asn + Thr223Glu
 Gly 68Asn + Ser138Asp + Asn168Ser + Ile220Met
 Asn161Gln + Phe192His + Thr217Asp + Ile220Ala
 Gln103Ser + Phe192Asn + Arg218Glu + Ile220Thr
 Ala164Gly + Asn168Gln + Ser207Asp + Ile208Met
 Thr106Gly + Ser139Asp + Phe192Thr + Gly215Asn
 Leu209His + Ile213Ser + Gly214Asn + Ser219Glu
 Gly 66Asn + Asn 99Ser + Ser101Glu + Asn194Gln
 Tyr137Glu + Thr206Pro + Trp212Thr + Ile220His
 Gly135Glu + Tyr169Cys + Thr206Gln + Ile220Ser
 Thr206Pro + Leu209Ser + Ser216Glu - Ile220Val
 Gly 66Asn + Gly 68Asn + Ser105Asp + Leu209Pro
 Ser170Glu + Thr206Gly + Leu209Gln + Ile220Cys
 Tyr104Thr + Asn163Ser + Leu209His + Gly222Asn
 Thr106Glu + Tyr137Gin + Asn162Ser + Leu209Ala
 Leu 96Thr + Ser207Asp + Gly214Ser + Ile220Gly
 Asn 99Ser + Phe192Pro + Trp212Val + Ser216Asp
 Gly136Ser + Tyr137Asp + Leu209Val + Ile220Gly
 Gly 66Ser + Gly203Asn + Ser219Glu + Ile220Met
 Ala164Thr + Thr206Asn + Thr217Ser + Ser219Glu

Gly102Prc + Thr106Asn + Asn161Glu + Tyr169Ser
 Thr106Gly + Gly134Gln + Thr206Asn + Ser207Glu
 Gly 66Asn - Gln103Asn + Thr106Gln + Ile220Gln
 Arg 64Asp - Asn 67Gln + Ile107Ala + Asn162Ser
 Thr 71Gly - Thr106Ser + Asn163Ser + Ile220Asn
 Asn 67Gln - Ala164Ser + Ser207Asp + Ile220Thr
 Gly 68Ser - Asn163Gln + Arg167Asp + Ile208Thr
 Tyr137Ser - Asn168Glu + Leu209Asn + Ile213Ala
 Gly134Ser - Gly135Pro + Ala164His + Asn168Ser
 Asn163Gln + Ala164Asp + Leu209Gly + Gly215Pro
 Gly102Pro + Gly136Pro + Leu209Ser + Ile220Pro
 Tyr104Cys + Gly136Asn + Ala164Asn + Leu209His
 Asp 65Glu + Leu 96Val + Gly136Asn + Tyr169Pro
 Asn 67Asp + Gly100Pro + Tyr104Leu + Leu209Ala
 Val 95His + Gly135Gln + Ser191Glu + Ile220Ala
 Asn163Ser + Asn194Ser + Ser207Glu + Leu209Ser
 Gly 66Glu - Leu 96Ile + Tyr104Thr + Ile213Ala
 Gln103Asn - Ser138Glu + Gly160Ser + Phe202Cys
 Gly 68Prc - Thr106Ser + Asn194Asp + Thr211Ser
 Gly100Gln - Tyr169Thr + Thr211Pro + Thr217Ser
 Gly 66Asn + Val 95Cys + Ser139Asp + Asn194Gin
 Gly135Pro + Asn161Glu + Asn162Ser + Leu209Ala
 Gly 66Ser + Thr 71Ser + Val 95Thr + Ile107Asn
 Asn168Gln + Leu209Pro + Ser219Glu + Ile220Gln
 Gly 66Prc + Tyr137Asn + Tyr169Ile + Thr223Asp
 Ser101Glu + Ile107Pro + Leu133Cys + Leu209Prc
 Asn 67Asp + Gly 68Ser + Asn161Ser + Thr223Ser
 Asn 99Gln + Gly102Asn + Ile107Met + Trp212Gly
 Tyr137Ala - Asn194Gin + Ile213Asp - Gly214Asn
 Leu 96Ala - Leu209Met + Gly222Asn - Thr223Gln
 Leu 96Val - Asn162Ser + Asn163Gln - Ser170Glu
 Asn 67Ser - Leu133Gln + Leu209Gin + Ser221Asp
 Val 95Gln + Ala164Thr + Ser207Glu + Leu209His
 Gly100Gln + Asn168Gln + Ser219Asp + Ile220Asp
 Asp 97Glu + Asp 98Glu + Ile213Ala + Thr217Gly
 Gln103Asn + Gly135Ser + Gly215Glu + Ser216Glu
 Asn194Ser + Leu209Gly + Gly215Glu + Ser216Glu
 Gly 70Gln + Tyr104Cys + Leu209Glu + Ser219Glu
 Ile107Val - Thr206Asp + Ser207Glu + Ser221Glu
 Leu133Gly + Ser207Glu + Leu209Met + Ser221Glu
 Val 95Thr + Tyr137His + Ser207Glu + Ser219Glu
 Gly 68Gln + Asn162Ser + Ser207Asp + Ser219Glu
 Tyr137Ala + Ser207Glu + Ile213Pro + Ser219Asp
 Gly100Asn + Tyr137Ser + Ser207Asp + Ser219Asp
 Tyr137Gly + Ser207Glu + Gly215Asn + Ser219Glu
 Asp 65Glu + Asn 67Asp + Phe202Ser + Thr206Gly
 Gly160Ser + Asn161Glu + Asn194Glu + Thr217Asn
 Asn 67Gln + Ser207Asp + Ser219Asp + Ser221Glu
 Gly102Asn - Gly134Gln + Ser138Glu + Ser170Asp
 Asp 65Glu - Gly 68Asp + Gly135Pro + Phe192His
 Phe192Asn + Thr206Glu + Ser207Glu + Ser219Glu
 Gly160Pro + Thr206Asp + Ser207Glu + Ser219Asp
 Leu 96Asn + Thr206Glu + Ser207Asp + Gly222Glu

Asp 65Glu + Asp 98Glu + Phe192Leu + Ile213Gln
 Gly 66Gln + Asn162Ser + Ser207Glu + Leu209Asp
 Gly 66Ser + Gly136Gln + Ser190Asp + Thr206Asp
 Asn 67Gln + Ile107His + Asp165Glu + Asn168Asp
 Phe202Thr + Ser207Asp + Ile220Glu + Gly222Glu
 Asn 67Ser + Val 95Gln + Leu209Asp + Thr217Glu
 Asn163Asp + Ser191Asp + Asn194Glu + Ile220Met
 Ser207Glu + Leu209Glu + Ile213Met + Ser221Asp
 Asn 67Glu + Leu 96Asp + Asp 97Glu + Leu209Ala
 Thr206Asp + Leu209Asp + Ser219Asp + Ile220Pro
 Ser216Glu + Thr217Glu + Ser219Glu + Gly222Gln
 Ser139Glu + Ser170Glu + Phe192His + Leu209Gln
 Gly102Asn + Pro204Ser + Ser207Asp + Gly222Glu
 Thr106Gln + Ser207Asp + Leu209Ser + Gly222Asp
 Gly100Ser + Ser207Asp + Ile220Asn + Gly222Asp
 Thr106Asn + Ser190Glu - Ser207Asp + Ser221Glu
 Leu209Met + Gly214Asp + Thr217Glu + Ile220Asn
 Ala164Gln + Ser207Asp - Arg218Asp + Ile220Val
 Tyr169Gly + Leu209Asp + Ser216Glu + Ser219Glu
 Arg167Glu + Asn194Asp + Leu209Ser + Ile220Pro
 Gly102Pro + Ile213Asp + Arg218Asp + Ser219Glu
 Asp 98Glu + Gly102Asp + Asn161Gln + Leu209Ser
 Ile107Gly + Gly134Asp + Ser138Asp + Tyr169Ser
 Gly 68Glu + Gly134Pro + Phe192Pro + Ser216Glu
 Asp 65Glu + Gly214Glu + Ile220Thr + Gly222Prc
 Ser190Asp + Ser207Asp + Ile208Met + Ile220Val
 Gly134Asn + Phe202His + Arg218Asp + Ser221Asp
 Leu 96Ala + Ile213Glu + Ser216Glu + Ser219Asp
 Gly160Gln + Ser207Asp + Arg218Glu + Gly222Asp
 Gly 70Glu + Ile107His + Leu133Glu + Phe192Thr
 Gly136Asp + Ser170Asp + Asn194Asp + Gly222Ser
 Tyr104Glu + Leu133Asp + Ile213Ser + Gly215Gln
 Gly100Gln + Ser207Glu + Ser216Asp + Ser219Glu
 Gly100Asn + Tyr137Ala - Leu209Asp + Ser216Giu
 Asn162Ser + Ser216Glu + Ser219Asp + Ile220Asn
 Val 95Ser + Leu 96Pro + Ser216Asp + Ser219Asp
 Gly102Pro + Ser216Asp + Ser219Asp + Ile220Met
 Gly135Glu + Gly136Gln + Arg167Asp + Asn194Glu
 Asn 99Gln + Ser207Glu + Ser216Asp + Thr217Asp
 Asp 65Glu + Ser101Glu + Gly102Glu + Leu133Thr
 Asn163Gln + Ser216Glu + Ser219Asp + Ser221Asp
 Gly 66Gln + Asn163Asp + Ser170Glu + Asn194Asp
 Gly 66Pro + Gly134Asp + Asn161Glu + Ser191Asp
 Leu133Thr + Asn161Asp + Ser219Asp + Ile220Asp
 Ser105Asp + Gly135Asp + Gly136Ser + Tyr169Asp
 Asn 67Gln + Asn163Glu + Asn194Glu + Ser221Asp
 Ser207Glu + Ile213Pro + Ser216Glu + Ile220Glu
 Gly 68Asp + Leu 96Glu + Thr206Gly + Gly214Glu
 Asn 99Glu + Ser101Glu + Gly136Glu + Asn163Gln
 Ser138Glu + Ser139Asp + Asn163Asp + Ile220Met
 Ser101Glu + Trp212Phe + Ser219Glu + Ile220Glu
 Ala164Glu + Asn168Gln + Ser219Glu + Ile220Asp
 Ser101Glu + Gly160Gln + Arg167Glu + Asn168Glu

Arg167Glu + Asn168Glu + Asn194Ser + Ser207Asp
 Arg167Glu - Asn168Asp + Asn194Ser + Ile220Glu
 Leu 96Thr + Arg167Asp + Asn168Glu + Ser216Glu
 Thr106Asp + Leu209Asn - Ser221Asp + Gly222Asp
 Asp 65Glu + Tyr137His + Asn161Glu + Asn162Asp
 Asn 67Asp + Ser191Asp + Phe192Glu + Pro204Ser
 Arg 64Asp + Gly 68Ser + Gly222Asp + Thr223Glu
 Ser139Glu + Ser140Glu + Arg218Asp + Thr223Pro
 Leu 96Met + Asp 98Glu + Asn 99Asp + Ser219Asp
 Arg 64Asp - Asp 65Glu + Gln103Asp + Leu209Ile
 Tyr137Glu + Ser138Glu - Ser216Asp + Thr217Asn
 Gly136Asp + Thr206Asp + Ser207Glu + Ile220Met
 Ser101Asp + Ala164Ser + Thr206Asp + Ser207Glu
 Gly 66Gln + Tyr104Asp + Ser105Asp + Ser219Asp
 Ser138Asp + Thr217Gln + Arg218Glu + Ser219Asp
 Arg 64Asp + Leu209Gln + Ser216Glu + Thr217Glu
 Ser105Glu + Leu209Asp + Ser219Glu + Thr223Gln
 Ser101Asp + Leu209Asp + Ser219Glu + Ile220Ser
 Asn163Asp + Phe192Leu + Asn194Glu + Ser207Asp
 Asn163Asp + Asn194Glu + Ser207Glu + Trp212His
 Ala164Asp + Asn194Glu + Ser207Asp + Ile220Leu
 Ala164Glu + Asn194Glu + Ser207Glu + Ile220Ser
 Gly100Asp + Ala164Glu + Asn194Asp + Thr206Ser
 Leu 96Pro + Ser207Glu + Ser216Glu + Ser221Asp
 Val 95Asp + Phe192Tyr + Ser207Asp + Ser221Asp
 Ala164Asp + Ser207Asp + Gly215Gln + Ser221Asp
 Asp 65Glu + Leu209Gln + Ser216Asp + Arg218Asp
 Ile107Cys + Ser139Asp + Ser207Glu + Ser219Asp
 Tyr137Glu + Ser207Asp + Ser219Glu + Ile220Ser
 Val 95Gln + Tyr104Asp + Ser207Asp + Ser219Asp
 Asn163Glu + Ser207Glu - Ser219Glu + Gly222Ser
 Asn168Glu + Ser207Glu + Ser219Glu + Gly222Asn
 Gly135Asp + Gly203Ser - Ser207Glu + Ser219Glu
 Leu 96Thr + Ser139Glu + Ser207Asp + Ser219Asp
 Gly100Glu + Ser207Asp + Ser219Glu + Ile220Cys
 Gln103Glu + Tyr104Pro + Gly136Glu + Ile220Asn
 Gln103Glu + Ser105Glu + Ser219Asp + Ile220Cys
 Gln103Glu + Ser105Asp + Tyr137Thr + Thr206Glu
 Gly160Asn + Ser207Asp + Gly214Glu + Ser216Asp
 Asp 97Glu + Ser101Asp + Ser207Asp + Ile220Thr
 Thr106Asp + Tyr137Met + Leu209Glu + Arg218Glu
 Gly136Gln + Ser138Asp + Ser170Glu + Ser216Glu
 Gly 70Asp - Leu133Ser + Ser138Asp + Ser170Asp
 Asn163Glu + Tyr169Cys + Ser219Asp + Gly222Asp
 Arg 64Glu + Gly 66Asp + Asn168Gln + Arg218Asp
 Ser105Asp + Gly136Asn + Ser139Asp + Phe192Thr
 Tyr137Leu + Ser191Glu + Ser207Glu + Gly222Ser
 Ser191Asp + Ser207Asp + Leu209His + Ile220Thr
 Asn 99Ser + Ser191Glu + Ser207Asp + Ile220Asn
 Gly 66Asp + Asn 99Asp + Thr106Gln + Ser216Asp
 Asp 97Glu + Phe202Thr + Arg218Glu + Ile220Asp
 Gly 70Gln + Asn 99Asp + Ser207Glu + Leu209Glu
 Thr106Glu + Ser207Glu + Leu209Asp + Gly214Gln

Asp 65Glu + Tyr137Pro + Asp165Glu + Asn168Asp
 Asn 99Gln + Asp165Glu + Asn168Asp + Gly215Glu
 Asn 67Glu + Asn161Glu + Ile220Ala + Gly222Glu
 Gly 66Asp + Leu 96Gly + Leu209Glu + Ile220Asp
 Asp 98Glu + Leu209Ala + Ser219Glu + Ser221Asp
 Asn 67Glu + Ala164Gln + Ser219Glu + Ser221Asp
 Gly100Glu + Gly136Asn + Ser216Asp + Arg218Glu
 Ile107Asp + Thr206Ser + Ser216Asp + Arg218Glu
 Ala164Gly + Asn194Asp + Thr217Asp + Ser219Glu
 Asp 98Glu + Asn163Asp + Asp165Glu + Trp212Tyr
 Ser139Glu + Gly215Glu + Thr217Asp + Gly222Pro
 Ser101Glu + Ser105Glu + Phe192Val + Leu209His
 Tyr104Asn + Leu209Glu + Ser216Asp + Gly222Asp
 Gly 70Glu + Tyr104Ala + Thr206Asp + Ser219Glu
 Leu 96Glu + Asn 99Asp + Ala164Gln + Gly214Glu
 Ser139Asp + Asn161Glu + Ala164Glu + Ile220Gly
 Asn 67Ser + Gly 70Asp + Leu 96Glu + Ser221Glu
 Asn 67Asp + Asp 97Glu + Asn163Ser + Ser221Glu
 Ser170Glu + Ser207Asp + Ile220Ser + Gly222Asp
 Leu 96Gly + Asn163Asp + Thr206Asp + Ser219Glu
 Asn 67Asp + Ser190Asp + Gly215Ser + Gly222Asp
 Tyr137Cys + Arg167Asp + Ser170Asp + Ser219Asp
 Gly135Glu + Ser138Asp + Gly214Glu + Gly222Ser
 Asp 65Glu + Asp 97Glu + Asn194Glu + Gly205Asn
 Gly102Ser + Ser105Asp + Leu133Glu + Thr223Asp
 Gly 70Asp + Asp 98Glu + Leu209Met + Ser216Asp
 Ser138Glu + Ala164Ser + Thr206Glu + Ser219Glu
 Gly 68Pro - Asp 97Glu + Thr206Asp + Ser219Asp
 Ser105Glu + Ser140Glu + Arg218Glu + Thr223Gln
 Asn 99Asp + Gly102Glu + Ile213Val + Ser219Glu
 Asn 99Asp + Gly102Asp + Gly136Ser + Ser138Asp
 Gly 70Glu + Val 95Glu + Gly100Asn + Gly222Glu
 Asn 67Glu + Ser216Glu + Ser219Asp + Ile220Cys
 Asn 67Asp + Ala164Pro + Ser216Glu + Ser219Asp
 Asn 99Asp + Asn161Glu + Ser190Asp + Gly215Asn
 Val 95Asp + Asn161Gln + Ser190Glu + Ser221Asp
 Gly 68Asp + Gly100Glu + Gly222Ser + Thr223Glu
 Gly134Glu + Tyr169Leu + Ser207Glu + Arg218Glu
 Thr106Asp + Ser207Glu + Arg218Asp + Ile220Cys
 Arg 64Glu + Asn163Ser + Ser207Asp + Arg218Asp
 Ser139Asp + Ser207Asp + Arg218Asp + Ile220Thr
 Leu133Asp + Gly134Pro + Asn162Asp + Tyr169Asn
 Val 95Asp + Gly134Glu + Asn194Glu + Thr211Gly
 Ile107Asn + Ser140Glu + Ser170Glu + Ser219Asp
 Tyr137Cys + Ser140Glu + Ser170Asp + Ser219Glu
 Tyr137Thr + Ser140Glu + Ser170Glu + Thr206Glu
 Tyr137Asn + Gly160Glu + Asp165Glu + Ser216Glu
 Asn 99Glu + Gly160Asp + Asp165Glu + Leu209Gln
 Asp 97Glu + Tyr104Glu + Leu133Ser + Ile220Leu
 Asn 67Glu + Val 95Gly + Pro204Ser + Ser216Asp
 Asn 99Asp + Asn162Gln + Ser191Asp + Gly222Glu
 Gly100Glu + Thr106Gly + Asn162Asp + Tyr169Glu
 Asp 65Glu + Asn 99Asp + Gly135Asn + Gly160Asp

Asp 65Glu + Asn 99Glu + Trp212Asn + Ser219Asp
 Gly134Glu + Asn161Asp + Thr217Pro + Ser219Asp
 Asp 97Glu + Gln103Glu + Asn163Gln + Ile220Glu
 Asn161Glu + Asp165Glu + Ser207Asp + Thr223Gln
 Ser140Glu + Ala164His + Thr217Asp + Ile220Asp
 Gly 70Ser + Gly102Asp + Leu133Asp + Ser191Asp
 Ser101Glu + Ile107Glu + Thr217Pro + Ser219Glu
 Tyr137Glu + Asn162Glu + Ser190Asp + Ile213Gln
 Gly 68Asp + Ser170Glu + Ser216Asp + Ile220Val
 Gln103Asp + Gly135Asp + Leu209Met + Ser216Asp
 Tyr104Val + Gly136Glu + Ser139Glu + Ser190Asp
 Gly102Pro + Asn161Glu + Asp165Glu + Gly214Glu
 Gly 70Glu + Tyr169Cys + Ser190Glu + Ser207Glu
 Asn168Glu + Ser190Glu + Pro204Ser + Ser207Glu
 Ser190Asp + Ser207Asp + Leu209Ser + Ser216Glu
 Asn 67Glu + Ser101Glu + Tyr137Asp + Gly215Gln
 Arg 64Glu + Ser191Glu + Ile220His + Ser221Asp
 Arg167Asp + Ser191Asp + Ile213Ala + Ser221Glu
 Arg167Glu + Thr206Ser + Ser219Asp + Gly222Glu
 Ser101Glu + Asn161Gln + Asn162Asp + Ser190Asp
 Ser101Asp + Gly136Pro + Ser216Asp + Ser219Glu
 Tyr104Gln + Thrl06Glu + Ser216Glu + Ser219Glu
 Gly 68Pro + Leu133Glu + Ser216Glu + Ser219Glu
 Gly160Glu + Leu209Val + Ser216Glu + Ser219Glu
 Ser191Glu + Leu209Gln + Ser216Asp + Ser219Asp
 Asn 67Gln + Arg167Glu + Ser216Glu + Ser219Asp
 Asn 99Gln + Ser170Asp + Ser216Glu + Ser219Asp
 Ser138Glu + Asn162Gln + Ser216Glu + Ser219Glu
 Gly135Gln + Asn168Glu + Ser216Asp + Ser219Asp
 Gly100Glu + Thr206Ser + Ser207Glu + Thr223Glu
 Asn163Gln + Gly214Asn + Ser216Glu + Ile220Asp
 Gly100Pro + Thr211Asn + Ser216Asp + Ile220Glu
 Thr206Pro + Leu209Thr + Ser216Glu + Ile220Asp
 Gly102Asp + Gly160Asp + Ser190Glu + Trp212Ser
 Leu133Cys + Gly134Asp + Asn162Asp + Ser216Asp
 Asp 65Glu + Thrl06Gln + Ser216Glu + Gly222Gln
 Asp 98Glu + Gly100Ser + Asn168Asp + Ile213Glu
 Ser101Asp + Tyr137Ala + Asn161Glu + Thr206Glu
 Gly 70Asp + Gly136Glu + Ser140Glu + Ile220Pro
 Gly 68Glu + Tyr104Glu + Leu209Val + Ser219Asp
 Gly 68Asp + Gly160Gln + Asn194Glu + Ser219Asp
 Asn163Gln + Ser190Glu + Ser216Glu + Ile220Glu
 Arg 64Asp + Gln103Asn + Leu133Asp + Gly214Glu
 Arg 64Glu + Tyr104Ser + Leu209Glu + Gly214Asp
 Gly 70Asp + Ser101Asp + Ser140Glu + Ile220Val
 Gly 70Asp + Leu 96Thr + Leu209Asn + Ser216Glu
 Ile107Asp + Ser138Glu + Ala166Gln + Ser219Asp
 Asn161Glu + Ser207Asp + Leu209Ile + Thr217Asp
 Gly 68Asn + Asn163Glu + Arg167Glu + Ser219Asp
 Asn 99Ser + Gln103Asp + Gly136Glu + Thr206Glu
 Gln103Glu + Leu133Gln + Gly136Glu + Ser216Glu
 Gly102Asp + Leu133Thr + Ser207Asp + Thr217Glu
 Asp 97Glu + Ser207Asp + Thr217Glu + Thr223Asn

Ser101Glu + Ser191Asp + Ser207Glu + Leu209Cys
 Ile107Ser + Ser191Glu + Ser207Asp + Ser216Asp
 Thr 71Pro + Ser191Glu + Ser207Glu + Ser216Glu
 Ala164Gln + Ser191Glu + Ser207Glu + Ser216Asp
 Ser170Glu + Asn194Asp + Ser207Glu + Ile220Val
 Ser170Asp + Asn194Glu + Trp212Ser + Ser216Glu
 Arg 64Glu + Asn 99Glu + Ser170Asp + Leu209Thr
 Asp 97Glu + Leu133Glu + Asn161Ser + Ser216Asp
 Tyr137Pro + Ser140Asp + Phe192Asp + Ser207Glu
 Asn 99Ser + Gln103Glu + Ser170Asp + Ser219Asp
 Gln103Glu + Asn163Glu + Ser170Glu + Ile220His
 Asp 65Glu + Asn 99Ser + Ser101Glu + Ser191Asp
 Ser105Glu + Gly135Asp + Thr206Asp + Thr217Gln
 Leu 96Cys + Asn161Glu + Arg167Glu + Arg218Asp
 Arg 64Glu + Gly100Glu + Asn161Ser + Leu209Glu
 Val 95Met + Asp 97Glu + Ser105Glu + Ile220Asn
 Gly 68Glu + Val 95Glu + Asn168Ser + Leu209Ala
 Asn 67Glu + Asn161Asp + Ser216Asp + Gly222Asn
 Asn 67Asp + Leu133His + Arg167Glu + Ser216Glu
 Ser105Asp + Gly160Ser + Ser170Asp + Thr206Glu
 Gly 66Pro + Asn162Asp + Ser170Glu + Ser219Glu
 Gly100Glu + Gly102Asn + Tyr104Asp + Ser207Asp
 Gly100Glu + Tyr104Asp + Gly160Glu + Gly215Gln

TABLE 35

Multi-loop Quintuple Mutation Variants

Leu133Gln + Gly136Glu + Thr206Gln + Leu209Met +	Ile220Met
Gly203Asn + Gly205Gln + Ser216Glu + Thr217Gly +	Ile220Gly
Val 95His + Ala164Ser + Ser170Glu + Phe192Met +	Thr223Gly
Leu133Asn + Asn161Gln + Asn163Gln + Leu209Met +	Ile220Leu
Asn 67Gln + Gly136Ser + Asn162Asp + Tyr169Gly +	Phe202Met
Ile107Asn + Leu209Gin + Ile213Gly + Ser219Glu +	Ile220His
Gly 66Ser + Thr 71Gly + Tyr169His + Phe202Ser +	Ile220Asp
Gly135Ser + Ala166Ser + Ser207Glu + Ile213Gly +	Gly222Ser
Asp 98Glu + Thr106Pro + Tyr137Cys + Trp212Ile +	Ile220Val
Gly134Asn + Ala166Pro + Phe192Met + Thr206Gly +	Ser219Glu
Thr106Glu + Gly205Asn + Leu209Cys + Gly215Pro +	Ile220Thr
Asn163Gln + Asn168Gln + Phe192Cys + Thr206Gln +	Leu209Ser
Leu 96Gly + Ile107Gly + Ser140Asp + Leu209Ala +	

Thr223Gly
 Asn 67Ser + Val 95His + Gly135Gln + Ser191Glu +
 Ile220Ala
 Ile107Gly + Tyr169Ser + Asn194Ser + Ser207Glu +
 Leu209Ser
 Tyr137His + Leu209Met + Ile220Val + Gly222Asn +
 Thr223Gln
 Val 95Ala + Tyr137Pro + Ala164Glu + Asn168Gln +
 Thr206Asn
 Leu 96Gln + Tyr137Leu + Tyr169His + Leu209Asp +
 Ile220Pro
 Gly 66Pro + Gly 70Asn + Leu133Pro + Phe202Pro +
 Ser207Glu
 Val 95Ala + Leu 96Met + Tyr104Asn + Ile107Ala +
 Ser216Asp
 Gly 70Ser + Ile107Gly + Leu133Met + Phe192His +
 Asn194Asp
 Gly 68Pro + Val 95Ser + Gly100Asn + Tyr137Cys +
 Ile220Pro
 Gly 66Ser + Gly102Gln + Ala164Gln + Ser219Glu +
 Gly222Asn
 Gly135Gln + Ser190Glu + Leu209Cys + Gly215Gln +
 Ile220Val
 Gly 68Pro + Asn163Asp + Phe192Pro + Leu209Gly +
 Ile220Thr
 Asn 67Gln + Gly 70Asn + Ile107Leu + Gly136Asn +
 Asn162Glu
 Gly 70Pro + Ile107His + Ser190Glu + Pro204Asn +
 Leu209Gln
 Leu 96Ile + Asp165Glu + Phe202Gly + Leu209Asn +
 Thr211Gly
 Gly 66Pro + Gly 70Asp + Tyr169Asn - Leu209His +
 Gly215Ser
 Tyr104Met + Asn194Glu + Leu209Cys + Thr217Pro +
 Ile220Gln
 Gly 70Asn + Leu 96Ile + Tyr104His + Asn161Asp +
 Ile220Gln
 Val 95Thr + Gly102Pro + Thr206Ser + Gly214Glu +
 Gly222Ser
 Thr106Gln + Asn163Ser + Ile213Pro + Ser216Glu +
 Ile220Ser
 Leu 96Cys + Gly136Asn + Ser170Glu + Thr206Gln +
 Ile220Gln
 Gly 66Gln + Ser105Glu + Gly135Pro + Gly205Asn +
 Thr206Ser
 Gly102Pro + Tyr104Ile + Thr211Gly + Ser216Glu +
 Thr223Gln
 Tyr104Ala + Gly203Asn + Leu209Gly + Arg218Asp +
 Ile220Cys
 Gly 66Pro + Val 95Thr + Asn161Ser + Asn162Gln +
 Ile220Cys
 Gly102Asn + Gly136Gln + Phe202Met + Ile208Val +
 Ile213Glu

Gly 66Ser + Gly 68Ser + Gly134Gln + Ala164Gly + Asp165Glu
Gly 66Pro + Ala164Asp + Tyr169Ser + Thr206Gln + Thr217Asn
Leu 96Ile + Gly136Gln + Asn161Ser + Thr206Gln + Ser207Asp
Asn 67Asp + Tyr104Asn + Gly135Gln + Tyr169Ile + Leu209His
Gly 70Pro + Gly136Pro + Ser190Asp + Leu209Ser + Gly214Pro
Asp 65Glu + Tyr137Val + Ala164Asn + Phe192Ala + Thr206Ser
Leu 96Thr + Gln103Ser + Tyr104Asn + Asp165Glu + Ile220His
Gly 68Asp + Gly 70Pro + Asn 99Ser + Gly214Ser + Thr223Ser
Leu 96Ser + Leu133Ala + Tyr137Met + Leu209Ile + Ser221Asp
Gly134Gln + Asn194Gln + Thr206Ser + Leu209Met + Ile213Leu
Gly 70Glu + Leu133Cys + Gly135Gln + Thr206Gly + Gly222Asn
Gly134Ser + Ala166Gln + Tyr169Cys + Thr206Gly + Ser221Asp
Gly160Ser + Thr206Asp + Ile213Gln + Ile220Pro + Thr223Gly
Tyr104Asn + Gly135Pro + Leu209Ile + Ser219Glu + Ile220Val
Asn 67Gln + Thr106Asn + Gly160Glu + Tyr169Asn + Leu209Ala
Val 95Glu + Gly100Pro + Thr206Asn + Leu209Thr + Ile220Ala
Asp 98Glu + Gly102Ser + Ala164Gln + Thr206Ser + Ile220Asn
Gln103Asn + Gly136Pro + Ser138Asp + Leu209Gly + Ile220Gln
Asn 67Gln + Thr106Asn + Gly136Gln + Thr206Ser + Ile220Asn
Asn 67Gln + Gly134Gln + Tyr169Cys + Ser219Asp + Ile220Asp
Ala166His + Thr206Glu + Ser207Asp + Ile213Cys + Ile220His
Gly 70Pro + Ile107Gly + Leu209Gln + Ile220Glu + Ser221Asp
Asn 99Ser + Gly160Ser + Gly215Glu + Ser216Glu + Thr217Gln
Gly102Gln + Ile107Cys + Ala164Ser + Leu209Asp + Ser219Asp
Gly134Asn + Tyr137Gln + Leu209Glu + Ser219Asp + Ile220Met
Gly102Gln + Gly160Gln + Leu209Asp + Arg218Asp + Ser219Glu
Gly 70Asn + Ser207Glu + Leu209Val + Ser219Glu +

Ile220Glu
Ala164Asn + Ser207Asp + Thr217Pro + Ser219Glu -
Ile220Asp
Val 95Thr + Ala164Pro + Ser207Glu + Ile213Val -
Ser221Asp
Val 95Asn + Gly102Pro + Gly160Pro + Ser207Asp -
Ser219Asp
Asn 67Gln + Ser207Glu + Leu209Val + Ser219Asp -
Ile220Ala
Asn 67Gln + Gly136Gln + Ser138Glu + Ser140Asp -
Leu209Met
Tyr104Asn + Ser138Glu + Ser140Asp + Leu209Thr -
Ile220Val
Asp 97Glu + Asn 99Asp + Gly102Gln + Tyr137Ser -
Ile220Cys
Asn161Asp + Asn163Gln + Tyr169Ala + Asn194Asp -
Leu209Ala
Thr206Glu + Ser207Asp + Leu209His + Ser219Asp -
Thr223Gly
Gly102Ser + Gly136Asn + Thr206Glu + Leu209Thr -
Gly222Asp
Thr 71Gly + Gly102Asn + Ser219Asp + Ile220Cys -
Ser221Glu
Thr106Ser + Gly160Asn + Gly205Asn + Ser219Asp -
Ser221Asp
Val 95Gln + Leu133Gln + Gly215Asn + Thr217Asp -
Ser219Asp
Leu209Ser + Ser219Glu + Ile220Gly + Ser221Glu -
Gly222Asp
Gln103Ser + Gly203Pro + Ser216Glu + Arg218Glu -
Ser219Asp
Val 95Ser + Gly135Gln + Ser138Asp + Tyr169Glu -
Ile213Thr
Asn 67Gln + Gly160Pro + Ser207Glu + Leu209Cys -
Gly222Glu
Gly135Asp + Ser138Glu + Gly203Gln + Ile213Met -
Gly222Asn
Asn162Gln + Ser207Asp + Leu209Pro + Ser219Glu -
Gly222Asp
Tyr137Asn + Ala164Asp + Arg167Asp + Leu209Ile +
Ile220Met
Leu 96Gln + Gly102Asn + Gly135Asp + Asn168Asp +
Ile220Ala
Val 95Pro + Asn 99Asp + Gly102Asp + Gly160Gln -
Leu209Asn
Asn 99Ser + Ile107Gly + Asn162Gln + Leu209Asp -
Ser221Glu
Gly 66Pro + Asn162Asp + Ser191Asp + Thr206Asn -
Thr223Asn
Gln103Asp + Tyr104Asn + Ser105Glu + Ser140Asp +
Leu209Cys
Leu 96Ser + Gly136Ser + Asn168Glu + Asn194Asp +
Thr206Asn

Gly 68Glu + Val 95Ala + Gly136Asn + Gly203Asn +
Ser216Asp
Asp 65Glu + Thr106Asn + Gly134Gin + Gly214Asp +
Ser216Glu
Gly 68Gln + Val 95Pro + Asn162Gln + Ser190Glu +
Ser207Asp
Ala166Thr + Ser190Glu + Ser207Glu + Leu209Gln +
Thr217Gly
Gly100Pro + Gly160Gln + Ser190Glu + Ser207Asp +
Leu209Pro
Asn 67Glu + Ser101Glu + Tyr104His + Phe192Ser +
Leu209Thr
Ser191Glu + Phe202His + Leu209Met + Ser221Asp +
Thr223Gin
Gly134Asp + Ser139Asp + Ser140Glu + Ile213Met +
Thr223Asn
Tyr137Asn + Tyr169Ile + Thr206Asp + Ser219Asp +
Thr223Asp
Tyr104Cys + Leu133Ile + Ser207Glu + Ser216Glu +
Arg218Asp
Gly 68Asn + Tyr137Ser + Ser207Glu + Ser216Asp +
Ser219Glu
Tyr137Ser + Asn168Ser + Gly214Asp + Ser216Asp +
Ser219Glu
Ile107His + Asn162Ser + Ser216Glu + Ser219Asp +
Ile220Asn
Asn 67Gln + Asn163Ser + Ser216Asp + Ser219Glu +
Thr223Ser
Leu 96Asn + Leu133Pro + Thr206Gln + Ser216Asp +
Ser219Asp
Ser191Glu + Thr206Asp + Gly214Asn + Ser219Asp +
Thr223Asn
Gly 66Ser + Ser105Glu + Thr106Pro + Ser138Glu +
Leu209Ile
Gly136Asp + Gly160Glu + Asn163Ser + Ile220Ser +
Gly222Asp
Ile107Met + Asn162Asp + Ser190Asp + Ser221Asp +
Gly222Ser
Gly 70Gln + Gly214Ser + Ser216Glu + Ser219Glu +
Ser221Glu
Gly136Glu + Asn162Glu + Gly214Ser + Gly215Asn +
Ile220Leu
Gly 68Asp + Leu209Thr + Arg218Glu + Ser221Asp +
Thr223Pro
Gly100Ser + Phe192Glu + Gly215Asn + Ser219Asp +
Ile220Glu
Gly134Gln + Phe192Glu + Ile213Gly + Ser219Asp +
Ile220Glu
Thr106Gly + Asn162Ser + Asn194Asp + Thr206Asp +
Ser221Asp
Gln103Asn + Asn161Asp + Ser207Asp + Thr217Ser +
Ile220Glu
Gly 68Asn + Phe192Asp + Ser207Asp + Leu209Asp +

Ile220Asn
 Gly 68Asp + Phe192Tyr + Leu209Gly + Ser219Asp +
 Ile220Gln
 Arg 64Asp + Asp 98Glu + Tyr137Val + Phe192Val +
 Gly214Asp
 Tyr104Gly + Ile107Glu + Gly160Glu + Ser170Glu +
 Leu209Cys
 Val 95Thr + Ile107Gly + Ser191Glu + Ser219Glu +
 Ile220Asp
 Asp 65Glu + Gly 66Asp + Gly100Asn + Gly102Ser +
 Ser190Glu
 Asp 65Glu + Gly 66Asp + Gly134Gln + Ile220Asp +
 Thr223Gin
 Asp 65Glu + Gly 66Asp + Leu209Glu + Ile213Ala +
 Ile220Ala
 Asn 99Gln + Ser190Glu + Ser191Asp + Ser219Glu +
 Ile220His
 Gly 70Asp + Ser101Asp + Tyr137Cys + Gly160Ser +
 Ile220His
 Tyr137Ser + Ser138Asp + Ser139Glu + Ile213Met +
 Ser216Asp
 Gly135Ser + Ser138Glu + Asn194Ser + Ser219Glu +
 Ile220Glu
 Thr 71Pro + Asp 97Glu + Thr106Ser + Ser219Glu +
 Ile220Glu
 Arg 64Asp + Gly 66Gln + Thr206Gly + Ser219Glu +
 Ile220Asp
 Val 95Ala + Gln103Ser + Ser139Asp + Arg167Glu -
 Ile220Ala
 Ser101Asp + Gly102Glu - Ile213Val - Thr217Ser -
 Thr223Glu
 Asn 99Asp + Gly100Glu + Tyr137Thr + Asn163Glu -
 Gly215Gln
 Gly 66Ser + Ile107Glu + Leu209Asn + Ser221Glu +
 Gly222Glu
 Asn 67Glu + Thr 71Gln + Asn161Asp + Asn162Glu +
 Gly214Ser
 Gly100Asp + Ser101Glu + Thr106Gln + Ile213Cys +
 Ser221Asp
 Arg 64Asp + Asp 65Glu + Gly 68Ser + Leu 96Gln +
 Asn168Asp
 Gly160Pro + Thr206Glu + Ser207Glu + Gly215Glu +
 Gly222Pro
 Gly102Ser + Tyr137Asp + Tyr169His + Thr206Glu +
 Ser207Asp
 Gly 70Asp + Asn 99Ser + Tyr104Glu + Ser105Asp +
 Thr217Gln
 Leu 96Glu + Gly135Ser + Thr217Ser + Ile220Glu +
 Ser221Glu
 Asp 97Glu + Asp 98Glu + Gly205Pro + Gly215Ser +
 Ser219Glu
 Gly 68Gln + Ser138Asp + Leu209Ile + Arg218Asp +
 Ser219Asp

Asn 67Ser + Gly136Asp + Gly215Pro + Ser216Glu +
 Thr217Asp
 Asn 99Gln - Ser101Glu + Asn161Gln + Asn162Asp +
 Asn163Asp
 Tyr137Gln - Tyr169Thr + Ser207Asp + Gly215Asp +
 Ser216Asp
 Leu 96Cys - Ser190Asp + Gly215Glu + Ser216Glu +
 Ile220Cys
 Gly160Pro - Phe192Asn + Ser207Glu + Gly215Asp +
 Ser216Glu
 Thr 71Asn - Phe192Val + Ser207Asp + Gly215Asp +
 Ser216Asp
 Gly134Glu - Asn168Asp + Trp212Ile + Ile220Asn +
 Thr223Glu
 Gln103Asp - Gly134Ser + Ser139Glu + Asn162Ser +
 Ser170Asp
 Gln103Asp - Thr106Ser + Ser138Glu + Leu209Val +
 Gly215Gln
 Asn 67Gln - Gln103Asp + Gly135Gln + Ser138Glu +
 Leu209Asn
 Asp 97Glu + Ile107Gln + Gly136Ser + Ser207Asp +
 Ser221Asp
 Tyr137Ile + Ser138Glu + Asn194Ser + Ser207Asp +
 Ser221Asp
 Gln103Asp - Gly135Asn + Gly136Pro + Ser207Glu +
 Ile220Glu
 Gly102Gln - Gly135Glu + Gly203Ser + Ser207Glu +
 Ile220Glu
 Tyr104Ile + Asn163Asp + Arg167Glu + Tyr169Cys +
 Ile208Cys
 Gly 66Glu - Asp 97Glu + Tyr104Glu + Gly136Gln -
 Leu209Met
 Gly102Ser + Ile107Cys + Arg167Asp + Ser207Asp +
 Ser219Asp
 Gly100Asn - Gly134Asp + Ser207Glu + Gly214Ser +
 Ser219Asp
 Arg 64Asp - Val 95Ser + Thr206Ser + Ser207Asp +
 Ser219Glu
 Asn194Asp + Ser207Glu + Ser219Asp + Ile220Met +
 Thr223Asn
 Ser140Glu + Ser207Glu + Leu209Ala + Gly215Gln +
 Ser219Glu
 Tyr104Ser + Gly160Glu + Ser207Glu + Gly215Ser +
 Ser219Asp
 Asp 65Glu + Thr206Ser + Ser207Glu + Gly215Ser +
 Ser219Asp
 Gln103Ser + Asn168Glu + Pro204Gln + Ser207Glu +
 Ser219Asp
 Leu133Thr + Ser140Glu + Asn161Ser + Ser207Asp +
 Ser219Glu
 Leu 96Pro + Ser140Glu + Ser207Glu + Leu209Thr +
 Ser219Glu
 Asn161Asp + Asn168Gln + Ser170Asp + Ser191Asp +

Phe192Gln
Gln103Glu + Thr106Glu + Leu209Gly + Ile213His +
Ser219Glu
Asp 65Glu + Asn 67Asp + Thr106Asn + Asn194Glu +
Ile208Asn
Asp 65Glu + Asn 67Glu + Leu 96Ala + Gly102Ser +
Tyr169Asp
Asn 99Ser + Asp165Glu + Arg167Asp + Ile213Gly +
Ser219Asp
Tyr104Ile + Tyr137Ile + Asp165Glu + Arg167Glu +
Ser219Asp
Ser190Glu + Phe192Glu + Leu209Cys + Ser219Glu +
Ile220Ala
Ser138Glu + Ser140Glu + Thr206Gly + Ile220His +
Ser221Glu
Val 95Pro + Ile107Ser + Ser138Asp + Ser140Glu +
Ser219Asp
Asp 65Glu + Gly102Ser + Ser138Glu + Ser140Asp +
Ala166Gly
Val 95Cys + Ser101Glu + Ser138Glu + Ser140Asp +
Phe192Ser
Asp 97Glu + Asn 99Asp + Ser139Asp + Ile213Thr +
Thr223Gly
Asp 97Glu + Asn 99Asp + Ser140Glu + Ala166Gln +
Phe192Thr
Leu 96Met + Gly136Glu + Asn161Asp + Asn168Gln +
Ile220Pro
Gln103Asp + Ser105Glu + Asn162Ser + Ser207Glu +
Thr223Gln
Arg 64Glu + Gln103Glu + Ser105Asp + Asn163Gln +
Leu209Cys
Tyr137Ala + Ser170Glu + Phe192Met + Gly214Glu +
Ser216Asp
Gly 70Ser + Ser105Glu + Gly214Glu + Ser216Glu +
Thr223Asn
Gln103Ser + Asn168Asp + Gly205Ser + Gly214Asp +
Ser216Asp
Gly135Glu + Tyr169Glu + Ser207Asp + Leu209Met +
Ile220Cys
Asn 99Gln + Gly136Asp + Gly160Ser + Ser170Asp +
Ser216Asp
Gly136Asp + Tyr169Ser + Ser170Asp + Ile213Glu +
Thr217Asn
Asp 97Glu + Ser101Asp + Ser139Glu + Asn162Ser +
Ile220Val
Asp 97Glu + Ser101Glu + Ile213Met + Thr217Gly +
Arg218Asp
Thr106Asn + Ile107Pro + Asn194Glu + Ser219Asp +
Ser221Glu
Leu 96Met + Asn 99Asp + Ser101Glu + Ser139Asp +
Leu209Thr
Asn 99Asp + Ser101Glu + Gln103Ser + Ser139Asp +
Ile220Pro

100

Gly 66Glu + Asp 97Glu + Gly160Asn + Asn163Ser +
 Ile220Asp
 Arg 64Asp + Gly 66Asp + Ile107Gly + Ser207Glu +
 Ile220Val
 Gly 70Gln + Gln103Asp + Leu133Ile + Ser140Asp +
 Leu209Thr
 Asn 67Glu + Gly 70Glu + Asn 99Gln + Tyr104Met +
 Leu209Asp
 Tyr104Gln + Ile107His + Ser191Asp + Thr206Glu +
 Arg218Asp
 Asn161Glu + Ala164Gln + Ile213Asp + Ser216Asp +
 Thr217Asn
 Thr106Gln + Gly136Pro + Thr206Ser + Ser207Glu +
 Thr217Glu
 Asp 65Glu + Leu 96Gly + Asp 98Glu + Thr106Asp +
 Ile220Gln
 Asp 65Glu + Asp 98Glu + Ile107Gly + Gly135Asn +
 Gly136Asp
 Gly136Asp + Ser138Asp + Ser207Glu + Leu209Asn +
 Gly222Asn
 Thr106Gln + Gly136Asp + Ser138Asp + Leu209Cys +
 Ser216Glu
 Val 95Ala + Asp 97Glu + Asn168Ser + Ser207Asp +
 Leu209Glu
 Ile107Glu + Thr206Ser + Ser207Glu + Leu209Glu +
 Thr211Gly
 Gly 70Pro + Leu 96Val + Gly102Glu + Ser207Glu +
 Leu209Asp
 Val 95His + Asn194Asp + Ser207Asp + Leu209Asp +
 Thr217Asn
 Ser140Asp + Ala164Pro + Ser207Asp + Leu209Asp +
 Ile220Gly
 Gln103Asp + Tyr104Gln + Gly160Ser + Asp165Glu +
 Asn168Asp
 Asp 65Glu + Gly 66Ser + Gly 70Glu + Gly136Asn +
 Ser207Asp
 Gly 68Asp + Phe192Asn + Gly205Asn + Thr217Asp +
 Ser221Asp
 Gly134Asp + Gly136Asp + Ser207Glu + Leu209Ile +
 Ile220Cys
 Gly100Asn + Gly136Glu + Gly160Gln + Ser219Asp +
 Ser221Glu
 Gly102Ser + Ser170Glu + Gly215Asn + Ser219Glu +
 Ser221Glu
 Gly 66Ser + Asn163Gln + Arg167Glu + Ser219Glu +
 Ser221Asp
 Gly100Glu + Gly136Asn + Leu209Ser + Ser219Glu +
 Ser221Asp
 Leu133Ala + Gly134Asp + Ile213Cys + Ser219Glu +
 Ser221Glu
 Gly102Asn + Gln103Glu + Thr206Ser + Ser216Glu +
 Arg218Asp
 Asp 98Glu + Thr206Gly + Ile213Ala + Ser216Asp +

101

Arg218Glu
 Asn163Asp + Ile206Asn + Ile213Asn + Ser216Asp +
 Arg218Asp
 Gly 66Ser + Gly 70Glu + Tyr169His + Thr206Gly +
 Ile220Asp
 Arg 64Glu + Asn 67Glu + Ile107Gly + Leu209Val +
 Ile220Glu
 Gln103Glu + Gly134Ser + Ser138Glu + Arg167Asp +
 Thr223Asn
 Gly100Pro + Tyr104Pro + Leu133Gln + Phe192Asp +
 Ser207Glu
 Gly 68Asn + Ser138Glu + Asn163Glu + Arg167Asp +
 Thr206Gly
 Gly 70Ser + Gln103Asp + Asn162Ser + Ser170Asp +
 Leu209Met
 Asp 98Glu + Gly100Ser + Ser101Asp + Asn161Ser +
 Ile220Asp
 Tyr137Pro + Ser139Asp + Asn161Glu + Ala164Glu +
 Ile220Gly
 Gly 66Asp + Asn 99Glu + Tyr104Met + Ser207Glu +
 Leu209Pro
 Gly 66Asp + Asp 97Glu + Tyr104Gln + Ile208Val +
 Leu209Asp
 Ile107Asp + Phe192Met + Ser207Asp + Gly222Glu +
 Thr223Gln
 Arg 64Glu + Leu 96Ala + Ala164Asn + Ser207Glu +
 Gly222Asp
 Leu 96His + Ser207Glu + Ser216Glu + Thr217Asn +
 Gly222Glu
 Tyr169His + Ser170Glu + Ser207Asp + Ile220Ser +
 Gly222Asp
 Gly 68Pro + Leu133Glu + Leu209Asp + Gly214Gln +
 Ser221Glu
 Ser101Asp + Arg167Asp + Ser170Glu + Gly215Asn +
 Thr223Gly
 Asp 65Glu + Asp 97Glu + Ser207Asp + Gly222Ser +
 Thr223Ser
 Asp 65Glu + Asp 97Glu + Asn 99Gln + Gly135Glu +
 Thr206Gly
 Tyr104Met + Gly160Asp + Ala164Glu + Leu209Asp +
 Ile220Thr
 Leu 96Ser + Asn162Glu + Asp165Glu + Tyr169Cys +
 Arg218Glu
 Asp 65Glu + Ile107Thr + Asn162Glu + Asp165Glu +
 Thr217Pro
 Val 95Glu + Ser101Asp + Asn162Glu + Phe192Thr +
 Gly215Gln
 Gln103Asn + Tyr104His + Thr206Glu + Ser216Glu +
 Thr223Glu
 Gly135Asp + Asn168Asp + Tyr169Asn + Ser191Glu +
 Gly205Pro
 Gly102Glu + Ser105Glu + Asn161Gln + Ser207Glu +
 Ile220Met

102

Leu133Glu + Phe192Pro + Thr206Glu + Thr217Pro +
Ser219Glu
Asn 99Asp + Ser105Glu + Leu133Val + Ser140Glu +
Gly214Ser
Asn 99Glu + Gly102Asp + Asn162Gln + Phe192Pro +
Ser219Asp
Ile107Val + Ser190Glu + Asn194Glu + Leu209Thr +
Ser216Glu
Gly100Glu + Leu133Glu + Ala166Thr + Ser216Asp +
Thr217Pro
Arg 64Asp + Ala164Gln + Ser191Asp + Thr206Glu +
Leu209Cys
Leu 96Val + Gly134Asp + Gly136Pro + Ser191Asp +
Thr206Glu
Tyr104Asn + Asp165Glu + Phe192Asp + Ser207Asp +
Ile220Gln
Ser101Asp + Ala164Ser + Thr206Pro + Ser207Glu +
Arg218Asp
Asp165Glu + Ser207Glu + Leu209Asn + Trp212Gly +
Arg218Asp
Gly100Asn + Tyr104Pro + Ser138Glu + Ser207Glu +
Arg218Glu
Ser140Glu + Ser170Glu + Thr211Gln + Gly215Asn +
Ser221Asp
Gly100Glu + Ser140Asp + Ser170Asp + Thr206Ser +
Leu209His
Ser140Glu + Tyr169Pro + Ser170Glu + Arg216Asp +
Ile220Pro
Gln103Ser + Tyr104Asp + Leu209Glu + Ser221Asp +
Gly222Ser
Asp 97Glu + Ile107Cys + Asn162Asp + Ser191Asp +
Leu209Ala
Asp 97Glu + Tyr104Glu + Ile107Gly + Leu133Ser +
Ile220Leu
Leu 96Glu + Leu133Asp + Gly134Asn + Gly215Ser +
Ser216Glu
Asn 67Glu + Leu 96Glu + Thr106Pro + Ile107Cys +
Ser207Glu
Arg 64Glu + Asp 97Glu + Gly102Asn + Asp165Glu +
Phe192Tyr
Gly 66Ser + Gly134Asp + Asn161Asp + Ser207Glu +
Thr217Gly
Asp 65Glu + Gly 70Asn + Gly100Pro + Leu209Asp +
Ser216Asp
Gly 68Glu + Ser101Asp + Leu209Thr + Trp212Ala +
Ser219Asp
Thr106Gly + Asn163Asp + Leu209Pro + Ser219Glu +
Thr223Glu
Asp 65Glu + Gln103Ser + Gly134Glu + Gly136Asn +
Ser138Glu
Gln103Ser + Ile107His + Asn161Asp + Asp165Glu +
Ser207Glu
Gly 66Pro + Ser140Glu + Ala164His + Thr217Asp +

103

Ile220Asp
Arg 64Asp + Ser101Asp + Tyr104Leu + Ile107Glu +
Ile220Asn
Arg 64Glu + Val 95Met + Gly136Ser + Ser190Glu +
Ile213Asp
Gly135Glu + Gly160Pro + Leu209Gln + Ile220Leu +
Thr223Glu
Asp 65Glu + Val 95Gln + Ser170Glu + Phe192Met +
Gly214Glu
Gly100Asn + Ser190Asp + Ser207Asp + Leu209Ser +
Ser216Glu
Val 95Gly + Arg167Asp + Ser190Asp + Ser207Glu +
Ile220Asn
Asn 67Glu + Ser101Glu + Leu133Ser + Asn163Asp +
Thr223Ser
Asn 67Glu + Asn 99Ser + Ser101Glu + Tyr104Ala +
Ser207Glu
Gly134Asn + Ser138Asp + Arg218Asp + Ile220His +
Ser221Glu
Gly 66Gln + Val 95Pro + Ser138Glu + Arg218Glu +
Ser221Asp
Asn 67Asp + Thr 71Ser + Gly135Glu + Asn161Asp +
Ala164His
Asp 65Glu + Gly 66Pro + Ser191Glu + Ile213Ser +
Ser221Glu
Gly 70Pro + Gly134Pro + Ser191Asp + Ser216Asp +
Ser221Asp
Gly100Glu + Tyr104Glu + Asn163Gln + Ile213Pro +
Ile220Ser
Gly134Glu + Gly136Pro + Asn162Gln + Ser216Asp +
Thr223Asp
Thr 71Asn + Ser105Asp + Leu209Met + Ser219Asp +
Gly222Glu
Gly 66Asn + Gly102Asn + Tyr169Asp + Ser216Asp +
Ser219Asp
Gly136Pro + Asn161Glu + Ser216Glu + Ser219Glu +
Ile220Ser
Ser140Glu + Ile208Met + Ser216Glu + Ser219Glu +
Ile220Asn
Gly160Asp + Thr206Gln + Gly214Ser + Ser216Glu +
Ser219Glu
Asn 99Ser + Ser190Glu + Ser216Glu + Ser219Glu +
Ile220His
Ser139Asp + Thr206Gln + Ser216Glu + Ser219Asp +
Gly222Asn
Gly102Asn + Ser190Asp + Ser216Glu + Ser219Asp +
Gly222Gln
Gln103Ser + Asn163Asp + Trp212Met + Ser216Asp +
Ser219Asp
Thr 71Gly + Gly136Glu + Asn194Gln + Ser216Asp +
Ser219Glu
Asp 97Glu + Leu209Met + Ser216Glu + Ser219Asp +
Ile220Val

105

106

TABLE 36

Multi-loop Sextuple Mutation Variants

Val 95His + Ala164Ser + Ser170Glu + Phe192Met +
Leu209Thr + Ile220Pro
Leu133Asn + Asn161Gln + Asn163Gln - Leu209Met +
Ile220Leu + Thr223Gly
Gly134Asn + Tyr169Ala + Thr211Pro + Ser216Asp +
Ile220Met + Gly222Gln
Gly136Glu + Gly203Gln + Thr206Pro - Leu209Thr +
Gly215Pro + Ile220Met
Gly100Ser + Gly135Asn + Ala164Thr + Gly214Glu +
Thr217Gln + Ile220Leu
Thr106Ser + Thr206Pro + Ile208Cys - Leu209Ser +
Ser216Asp + Ile220Ser
Gly 68Asn + Leu 96His + Gly102Asn + Leu209Cys +
Trp212Ala + Ile220Val
Gly 70Pro + Val 95Gln - Gly102Gln + Asn162Asp +
Gly214Gln + Ile220His
Asn 67Gln + Leu 96Val + Leu133Ala - Ala164Thr +
Leu209Ala + Ser219Asp
Gly100Asn + Leu133Asp + Asn161Gln - Thr206Gly +
Ile213Leu + Gly222Gln
Leu 96Asn + Gly100Gln + Thr106Asn - Ser140Glu +
Tyr169His + Ile220Asn
Gly 70Pro + Asn 99Ser + Gly135Gln + Tyr169Gly +
Thr206Ser + Ser216Asp
Ser101Glu + Gly102Glu + Tyr169Met - Thr206Asn +
Leu209Ile + Ile220Gln
Val 95Ala + Asn168Gln + Gly214Asp + Gly215Glu +
Ser216Glu + Ile220Pro
Leu 96Pro + Thr106Gly + Ile107Gln + Asn163Glu +
Phe192Glu + Leu209Gly
Asn194Ser + Phe202Gly + Ser207Glu + Arg218Glu +
Ser219Asp + Ile220Asp
Asp 65Glu + Asp 97Glu - Asp 98Glu + Asn168Ser +
Tyr169Thr + Thr211Ser
Asn 67Gln + Gly215Ser - Ser219Glu + Ile220Pro +
Ser221Glu + Gly222Gln
Gly102Asn + Gln103Ser + Tyr169Ile + Thr206Gly +
Ser216Glu + Arg218Asp
Asn 67Glu + Gly 70Glu - Leu 96Pro + Asn 99Ser +
Asn162Gln + Phe192Pro
Asn 67Asp + Gly 68Gln + Gly 70Asp + Leu133Val +
Leu209Gly + Thr217Asn

Gly 68Ser + Leu133Glu + Gly135Asp + Ser170Glu +
Ile213Asn + Ile220Ser
Val 95Asp + Asp 97Glu + Gly100Asp + Gly135Gln +
Leu209Gln + Thr223Ser
Leu 96Cys + Gly134Asp + Gly160Glu + Asn161Glu +
Asn162Glu + Leu209Pro
Asp 65Glu + Leu 96Glu + Asp 97Glu + Asn 99Asp +
Ile220Ser + Gly222Pro
Val 95Pro + Leu209Ser + Ser219Glu + Ile220Gly +
Ser221Glu + Gly222Asp
Gly 66Asn + Asp 98Glu + Ser101Asp + Tyr104Cys +
Asn194Gln + Ile220Asn
Ile107Thr + Tyr137His + Phe202Leu + Ser216Glu +
Arg218Asp + Ser219Glu
Gly134Pro + Tyr137Pro + Ser207Glu + Leu209Cys +
Ser219Asp + Gly222Glu
Leu133Thr + Asn163Ser + Ser207Asp + Ile213Met +
Arg218Asp + Ser221Asp
Arg 64Asp + Asp 98Glu + Thr106Ser + Gly160Asn +
Ile213Pro + Ile220Asn
Gly 70Gln + Leu 96Asn + Tyr169Met + Thr206Glu +
Leu209Cys + Thr223Asp
Gly 68Pro + Ala164Glu + Arg167Glu + Pro204Asn +
Thr206Gln + Ile220Ser
Asn 99Ser + Gly135Asp + Tyr137Met + Ser138Glu +
Asn168Asp + Thr211Asn
Gly 68Pro + Tyr104Glu + Ser138Glu + Thr217Ser +
Ile220Gln + Thr223Pro
Gly 66Ser + Asn163Gln + Thr206Asp + Leu209Gly +
Ser219Asp + Ile220Met
Gly 68Asp + Thr106Pro + Thr206Gly + Leu209Glu +
Ser219Glu + Ile220Asp
Tyr137Leu + Tyr169Cys + Phe192Asn + Ser207Asp +
Arg218Glu + Ile220Leu
Gly 68Asn + Val 95Glu + Gly100Glu + Leu133Cys +
Gly134Pro + Thr217Ser
Gly 68Asp + Gly100Gln + Thr206Pro + Ser219Glu +
Ile220Glu + Ser221Glu
Tyr137Asn + Ala164Gln + Ser207Glu + Leu209Glu +
Arg218Asp + Gly222Glu
Gly135Pro + Ser191Asp + Asn194Gln + Thr206Glu +
Ser207Glu + Ser219Glu
Val 95Asp + Ser105Asp + Gly160Asn + Leu209Gly +
Gly215Pro + Ile220Ala
Gly 68Asp + Gly100Ser + Gly134Asn + Ser207Glu +
Ser219Glu + Ser221Glu
Asn 67Gln + Gln103Ser + Thr206Glu + Leu209Glu +
Ser216Glu + Ser219Asp
Tyr104Ile + Thr206Glu + Ser216Asp + Arg218Asp +
Ser219Glu + Thr223Ser
Gly 68Gln + Val 95Pro + Leu133Ala + Asn162Gln +
Ser190Glu + Ser207Asp
Asn163Ser + Thr206Asp + Ser207Glu + Leu209Ser +

Ser216Glu - Ser219Asp
 Asn161Ser - Thr206Ser + Gly214Asp + Gly215Asp +
 Thr217Glu - Ile220Glu
 Asn 99Ser - Ser136Asp + Ser139Asp + Ser140Asp +
 Ile213Gly - Ser216Asp
 Gly 70Glu + Leu 96Asn + Thr206Asn + Ser207Glu +
 Ser219Asp + Ser221Asp
 Tyr104His + Asn161Asp + Ser170Asp + Phe192His +
 Asn194Asp - Gly222Pro
 Leu 96Glu - Asp 97Glu + Ser101Asp + Leu209Thr +
 Ser219Asp - Ile220Asn
 Ser207Asp + Ile208Ala + Leu209Thr + Ser216Asp +
 Ser219Glu - Ile220Leu
 Gly100Glu - Leu133Glu + Gly135Glu + Asn161Glu +
 Ala164Gly - Leu209Thr
 Leu 96Asn - Gly136Ser + Leu209His + Gly214Glu +
 Ser216Asp - Ser219Glu
 Tyr104Leu - Ile107Glu + Tyr137Glu + Ser138Asp +
 Asn168Gln - Leu209Ile
 Tyr137Glu - Phe192Met + Ser207Glu - Ser219Asp +
 Ser221Glu + Thr223Pro
 Tyr137Asp + Asn168Asp + Ser170Glu + Phe192Asn +
 Ser207Asp - Ile220Asn
 Val 95Ser + Gly102Ser + Asn162Gln + Leu209Ser +
 Ser216Glu + Ser219Asp
 Gly 66Ser + Gly102Gln + Ser216Glu - Ser219Asp +
 Ile220Val + Gly222Asn
 Asp 97Glu + Asp 98Glu + Ser101Glu + Gly134Pro +
 Asn162Glu + Thr206Gln
 Val 95Pro + Ser101Asp + Gly135Asn + Ser207Asp -
 Leu209Asp - Ile220Asp
 Asp 98Glu + Gly203Ser + Ser207Glu + Leu209Pro +
 Arg218Glu - Ser219Asp
 Thr106Pro + Gly135Asp + Ser140Asp + Asn162Glu -
 Ser170Glu + Gly214Gln
 Gly 68Gln + Ile107Asn + Asn162Ser + Ser191Asp +
 Ser207Asp + Ser219Glu
 Gly102Ser + Gly136Asn + Thr206Glu + Leu209Thr +
 Arg218Asp + Gly222Asp
 Asp 65Glu + Gln103Ser + Ser207Glu + Leu209Gln +
 Arg218Asp + Ile220Glu
 Gly 66Pro + Asn 99Gln + Gly136Asp + Arg218Asp +
 Ile220Glu + Ser221Asp
 Tyr104Asp + Gly134Glu + Gly135Asp + Thr211Ser -
 Ser219Glu + Ile220Val
 Gly100Gln + Tyr104Ser + Ser139Glu + Ser191Glu +
 Phe192Asp + Thr206Glu
 Ser138Glu + Thr206Pro + Leu209Thr + Ser216Glu +
 Arg218Asp + Ser219Asp
 Asp 97Glu + Leu209Gln + Ser216Asp + Arg218Asp +
 Ser219Glu + Ile220Ala
 Gly102Asp + Leu133Thr + Asn163Gln + Ser216Glu +
 Thr217Glu + Ser219Asp

Asp 98Glu + Asn 99Asp + Gly102Asp + Thr106Ser +
Ile107Gln + Ser138Asp
Asn 67Asp + Gly 70Glu + Ser170Asp + Phe192Pro +
Leu209Thr + Ile213Glu
Gln103Asp - Gly134Asn + Asn162Glu + Phe192Glu +
Ile220Leu - Gly222Asp
Asp 65Glu + Asp 97Glu + Gly100Asp + Tyr169Met +
Ser191Glu - Ile220Cys
Asn 67Asp + Asp 98Glu - Ala164Pro - Ile208Thr +
Leu209Ser - Ile220Asp
Gly136Asn - Ser191Asp + Thr206Pro + Arg218Asp +
Ser219Asp + Gly222Asp
Asp 98Glu + Gly136Asp + Ser138Glu + Ser140Asp +
Gly203Gln - Ile220Met
Leu133Ile + Gly134Pro + Gly135Pro + Asn162Glu +
Arg167Glu + Ile213Val
Gly102Asn + Ser140Asp + Asn161Glu + Asn162Asp +
Ser190Glu + Gly205Asn
Ser139Glu + Gly160Glu + Asn161Gln + Thr206Pro +
Ser221Glu + Gly222Glu
Gly 66Asp + Asn 67Asp + Ile107Gly + Asn194Gln +
Ser207Asp + Ile220Glu
Tyr104Gly + Gly136Asp + Ser170Asp + Ser190Glu +
Asn194Asp + Gly222Ser
Gly 68Asp + Ile107Asp + Gly135Asn + Gly215Glu +
Ser216Glu + Ile220Gly
Ser101Glu + Ser207Asp + Leu209Met + Gly215Pro +
Thr217Glu + Ser219Glu
Asp 65Glu + Gly100Glu + Gln103Asp + Asn161Gln +
Phe192His - Ile220Ser
Gly 68Gln + Ser138Asp + Ser139Glu - Ala164Gly +
Asn194Glu + Phe202Gln
Asn 99Glu + Thr106Gln + Gly214Gln + Gly215Asn +
Ser219Asp + Ile220Glu
Gly 66Pro + Asn163Glu + Ala164Gln + Phe192His +
Ser219Asp + Ile220Asp
Gly100Gln + Tyr104Pro + Tyr137His + Arg167Asp +
Asn168Asp + Ser207Asp
Asn 99Ser + Gly100Ser + Asn161Asp + Asn162Asp +
Leu209Asn + Ser216Glu
Gly100Asp + Ser101Glu + Asn168Gln + Leu209Met +
Ile213Ser + Ser219Asp
Val 95His + Gly100Gln + Ser139Glu + Ser140Asp +
Ser207Glu + Thr217Ser
Gly100Asp + Gly134Gln + Ser139Asp + Ser140Asp +
Asn161Ser + Leu209Val
Val 95Cys + Gly100Glu + Thr106Asn + Ser139Asp +
Ser140Glu + Gly222Ser
Ser105Asp + Asn194Gln + Thr206Asp + Ser207Asp +
Leu209Val + Gly215Ser
Asn163Glu + Phe192Pro + Trp212Val + Ser216Asp +
Thr217Asp + Gly222Pro
Val 95Asn + Gln103Asn + Leu209Gln + Gly215Asp +

Ser216Glu + Ser221Asp
Gly 66Gln + Gly134Glu - Ser170Asp + Leu209Thr -
Ile220Asp + Gly222Asp
Gly 66Gln + Thr106Glu - Ile107Glu + Asn163Asp -
Asn194Glu - Pro204Asn
Gly102Glu - Gln103Asp - Phe192Ile + Ser207Glu -
Leu209Pro + Ile220Asp
Arg 64Glu + Asp 65Glu - Ala164Asn + Ser207Glu -
Leu209His + Ser219Asp
Arg 64Asp + Asp 65Glu - Gly135Pro + Tyr137Met -
Ser207Glu + Ser219Asp
Tyr104Gly + Ser105Glu - Phe192Gln + Ser207Asp -
Ser221Asp + Gly222Gln
Ser105Glu + Tyr137Ile - Ala164His + Thr206Asn -
Ser207Glu + Ser221Glu
Asn 67Gln - Asp 98Glu - Asn161Gln + Asn168Ser +
Ser207Glu + Ile220Asp
Gly134Ser + Ser139Asp - Thr206Asp + Ile213Ala -
Arg218Glu + Ser219Asp
Asp 98Glu + Gly100Gln - Gln103Asn + Gly134Asp +
Ser139Glu + Ser170Glu
Leu 96Gly + Asp 98Glu - Thr106Asn + Leu209Glu +
Ser216Asp + Ser219Asp
Gly 70Glu + Asp 97Glu - Asn 99Glu + Gly135Ser +
Asn194Glu + Leu209Thr
Thr106Gly + Arg167Glu - Ser207Glu + Gly214Gln +
Gly215Pro + Ser219Glu
Ala164Glu + Thr206Gly - Ser207Asp - Leu209His -
Ser219Asp + Ile220Gln
Gly160Ser + Asn162Gln - Ser170Glu + Thr206Pro +
Ser207Asp + Ser219Asp
Tyr104Cys + Asn162Gln - Tyr169Asp + Ser207Glu +
Leu209Ala + Ser219Asp
Asn 67Gln + Asp165Glu - Ser207Glu + Leu209Val +
Ser219Asp + Ile220Ala
Gly 66Glu + Thr106Gln - Phe192Asp + Asn194Ser +
Thr206Glu + Ser207Asp
Gly134Asp + Ala164Ser + Ser170Asp + Ser207Asp -
Ile208Met + Ser219Asp
Gly 66Gln + Gly102Asn - Gly136Asp + Ser139Glu +
Asn168Asp + Ser219Asp
Asp 97Glu + Asn 99Asp - Thr206Asn + Ser207Asp +
Ser219Asp + Ile220Met
Ile107Val + Asn162Asp + Ser191Asp + Ser207Asp +
Ser219Glu + Gly222Pro
Gly 66Ser + Asn 67Glu + Ser138Asp + Ser140Glu +
Leu209Cys + Ile213Ala
Gly 70Ser + Asp 98Glu + Gly100Asp + Asn162Gln +
Ser207Glu + Ser219Glu
Asp 97Glu + Asn 99Glu - Tyr104Gly + Thr206Glu +
Leu209Ala + Thr217Gln
Arg 64Glu + Gly 66Glu + Asn162Asp + Tyr169Ser +
Leu209His + Gly214Glu

III

Gly 70Gln + Leu133Asp + Gly136Glu + Asn194Asp +
 Ile213Cys + Gly222Asp
 Gly 70Gln + Gln103Asp + Ser105Glu + Thr106Pro +
 Ser219Asp + Ile220Ser
 Gln103Glu + Ser105Glu + Asn162Gln + Gly205Pro -
 Trp212Asn + Arg218Glu
 Asp 97Glu + Asn 99Gln + Gly136Asp + Gly160Ser +
 Ser170Asp + Leu209Met
 Ser105Glu + Ile107Glu + Ser207Glu + Ile213Thr +
 Gly215Ser + Ile220Asn
 Ser190Asp + Phe192Ile + Ser216Glu + Ser219Glu +
 Ile220Glu + Gly222Ser
 Asp 65Glu + Gly102Gln + Ser207Asp + Ile213Asp +
 Ser216Glu + Ile220Asn
 Gln103Asp + Leu133Asn + Phe192Asp + Ile213Val +
 Ile220Asp + Ser221Asp
 Leu 96Cys + Ile107Gly + Asn162Asp + Asn194Asp +
 Ser216Asp + Ile220His
 Ser101Asp + Ser105Glu + Thr106Asn + Ser138Asp +
 Ser170Glu + Leu209Ser
 Gly 70Ser + Tyr169Val + Phe192Asp + Ser216Glu +
 Ser119Glu + Ile220Asp
 Gly136Gln + Asn161Asp + Asn163Gln + Arg167Asp +
 Asn194Glu + Ser216Glu
 Asp 97Glu + Asp 98Glu + Asn161Glu + Ala164Asp +
 Ile213Ala + Thr217Gly
 Ile107Cys + Arg167Asp + Asn168Glu + Ser207Glu +
 Ile220Thr + Gly222Glu
 Arg167Asp + Tyr169His + Ser170Glu + Leu209Val +
 Ser219Asp + Ile220Glu
 Gly 70Gln + Phe192Asp + Ser216Glu + Arg218Glu -
 Ile220Val + Gly222Glu
 Arg 64Asp + Gly 70Asn + Phe192Ala + Ser207Asp +
 Leu209Glu + Thr223Gly
 Gly 68Asn + Asp 98Glu + Ser207Asp + Leu209Asp +
 Ile220Asn + Thr223Gln
 Gly100Gln + Leu133Ile + Asp165Glu + Ala166His +
 Tyr169Asp + Ser191Glu
 Asn163Asp + Ser191Asp + Thr206Gly + Leu209Asp +
 Thr211Asn + Ile220Glu
 Asn 99Gln + Gly160Glu + Tyr169Val + Ser191Asp +
 Ser216Asp + Gly222Asp
 Asn 67Glu + Asp 97Glu + Ser105Asp + Ala164Thr +
 Thr206Ser + Ile220Val
 Arg 64Asp + Gly 70Glu + Val 95Thr + Asp 97Glu +
 Asn162Asp + Thr223Gln
 Leu 96Ser + Gln103Glu + Ser105Glu + Gly134Asp +
 Asn194Ser + Ser219Asp
 Gly100Gln + Leu133Gln + Ala164Gln + Arg167Glu +
 Ser219Asp + Ser221Glu
 Val 95Gln + Tyr137Asn + Ser140Glu + Pro204Asn +
 Ser219Asp + Ser221Asp
 Gly134Ser + Ser190Glu + Ser207Glu + Leu209Gln +

Thr217Glu + Ile220His
 Gly 70Ser + Gly134Ser + Asn162Ser + Ser170Asp +
 Ser216Glu + Arg218Asp
 Asp 97Glu + Tyr137Thr + Tyr169Gin + Ser216Glu +
 Arg218Glu + Gly222Gln
 Asn 67Glu + Gly 70Glu + Asn 99Gln + Tyr104Met +
 Gly136Asp - Ala164Asn
 Asn 67Glu + Gly 66Asp + Gly 70Gin + Ser191Glu +
 Ile213Ser + Ile220Glu
 Thr106Gly + Asn162Glu + Gly215Glu + Thr217Asp +
 Ser219Glu + Ile220Asn
 Arg 64Asp + Asp 65Glu - Ile208Gin + Leu209Asp +
 Ser216Asp + Ile220Val
 Ser101Glu + Leu133Glu + Thr206Asn + Ser207Glu +
 Thr217Asn + Ser219Asp
 Tyr104Glu + Ser138Glu + Asn162Glu + Asn194Glu +
 Thr211Ser + Trp212Ser
 Asp 98Glu + Asn 99Gln + Gly102Glu + Ser190Glu +
 Ser191Glu + Ile220Pro
 Val 95Asp + Gly134Gln + Tyr169Pro + Phe192Asn +
 Ser221Glu + Thr223Asp
 Asn 67Glu + Leu 96Glu + Gly160Ser + Asn162Ser +
 Thr206Gly + Thr217Asp
 Gly 68Asp + Val 95Glu + Asn 99Glu + Tyr169Ala +
 Gly215Asp + Thr217Ser
 Val 95Ser + Gly135Ser + Asn161Asp - Ile213Asp +
 Ser216Asp + Ser219Asp
 Arg 64Glu + Asp 98Glu + Gly136Ser + Gly160Gln +
 Leu209Asp + Ile220Asp
 Asp 65Glu + Gly 66Ser - Asn194Gln - Ser207Asp +
 Ser216Asp + Ser219Asp
 Asn 99Ser + Ser101Asp - Tyr104Asp - Gly134Ser +
 Ser207Asp + Ile220Asp
 Arg 64Glu + Asp 98Glu + Ile107Asn + Thr206Ser +
 Ser219Asp + Ser221Glu
 Val 95Pro + Ala164Asp + Asp165Glu + Ser170Asp +
 Ile213Asp + Ile220Val
 Gly135Ser + Asn161Gln + Asn162Asp + Tyr169Asp +
 Gly215Gln + Ser221Glu
 Tyr137His + Ser140Asp + Asn161Gln + Ser170Asp +
 Ser207Asp + Leu209Asp
 Leu 96Ile + Ser138Glu + Ala164His + Asn194Asp +
 Thr206Asp + Gly222Glu
 Asn161Glu + Ser207Asp + Gly214Asn + Ser216Asp +
 Arg218Glu + Gly222Gln
 Leu 96Asn + Ser170Asp + Ile208Asn + Gly215Glu +
 Arg218Glu + Ser219Asp
 Gly134Asp + Ser139Asp + Ser140Glu + Thr206Asp +
 Ile213Met + Thr223Asn
 Asp 65Glu + Asp165Glu + Phe192Pro + Leu209Gly +
 Gly215Glu + Ser216Asp
 Asn 99Asp + Ser101Glu + Ile107Glu + Ser191Glu +
 Asn194Gln + Ile220Leu

Asp 65Glu - Ser190Glu + Asn194Gln + Ser207Glu +
Gly215Pro + Ser219Glu
Gly134Asn + Ser138Glu + Ser139Glu + Ser216Glu +
Ser219Asp + Ile220Pro
Tyr137Cys + Ala164Thr + Ser190Glu + Ile208His +
Ser216Glu + Gly222Glu
Asp165Glu + Ser207Asp + Ser216Glu + Arg218Asp +
Ile220Pro + Gly222Pro
Val 95Met + Ser139Glu + Ser140Asp + Ala164Asn +
Ser216Asp + Ser219Asp
Val 95Gly + Gly102Ser + Ser105Asp + Ser138Glu +
Asn163Glu + Ala164Glu
Asp 65Glu + Val 95Gly + Asp 97Glu + Gly160Ser +
Asp165Glu + Ile220Ser
Thr 71Gln + Ser101Asp + Thr106Glu + Tyr169Pro +
Ser207Glu + Ser219Asp
Tyr137Ile + Asp165Glu + Tyr169Cys + Gly214Asp +
Arg218Glu + Ser219Asp
Asn 99Ser + Ala164Asp + Ser170Asp + Asn194Glu +
Thr206Gln + Ser216Asp
Asp 65Glu + Gly134Asp + Gly160Asn + Asn161Glu +
Asn168Asp + Ile220Asn
Asp 65Glu + Phe192Ser + Ser216Glu + Ser219Glu +
Ile220Met + Ser221Glu
Gly 68Asn + Leu133Gln + Asn168Asp + Ser207Glu +
Ser216Glu + Ser219Asp
Gly135Glu + Ser207Glu + Ser216Asp + Thr217Asn +
Ser219Glu + Ile220Pro
Gly 68Asn + Asn163Glu + Ser207Asp + Ser216Glu +
Ser219Glu + Ile220Asn
Gly102Glu + Tyr137Cys + Thr206Ser + Ser207Glu +
Ser216Asp + Ser219Asp
Leu133Ser + Arg167Glu + Ser170Asp + Ser191Asp +
Thr206Asp + Leu209His
Gly 66Gln + Gly136Glu + Ser138Glu + Thr206Gln +
Arg218Glu + Ser221Asp
Asn 67Glu + Ser139Asp + Ile208Val + Leu209Ser +
Ser216Asp + Thr217Asp
Arg 64Asp + Val 95His + Gly134Glu + Ser138Glu +
Arg167Glu + Leu209Cys
Arg 64Asp + Phe192Val + Thr206Asp + Leu209Ala +
Ser219Glu + Gly222Ser
Leu 96Ala + Ser140Asp + Phe202Gln + Thr206Asp +
Leu209Ala + Ser219Glu
Leu 96Ile + Gly102Pro + Gly134Asp + Thr206Asp +
Leu209Ala + Ser219Asp
Gly102Glu + Ser105Asp + Ile107Cys + Ser140Asp +
Asn194Asp + Ile220Ala
Gly100Glu + Ser105Asp + Tyr137Pro + Ser140Glu +
Gly203Asn + Gly222Pro
Thr106Asn + Asn162Glu + Asn168Asp + Ser216Glu +
Arg218Asp + Ile220Asn
Asp 98Glu + Leu133Gly + Gly136Asp + Ser140Glu +

Asn168Glu + Phe192Ser
 Val 95Ala + Asp165Glu + Asn168Ser + Ser207Asp -
 Leu209Glu + Ser216Asp
 Gly134Glu - Ala164Asp + Asn168Glu - Phe192Cys +
 Ser219Glu + Ile220Pro
 Gly 66Asn - Ser191Asp - Phe192Asn - Gly215Glu +
 Ser219Glu + Ser221Glu
 Gln103Glu + Ile107Asn + Ser140Glu + Ser190Glu +
 Ser191Glu + Leu209Thr
 Tyr104Ala + Leu133Asn + Asn162Asp + Thr206Glu -
 Ser207Asp + Thr217Asp
 Gly160Asn + Asn194Asp + Ser207Asp + Ile213Val +
 Ser216Asp + Thr217Asp
 Leu 96Ile + Ala164Gln + Asp165Glu + Ser207Glu +
 Arg218Glu + Ile220Met
 Gly 66Glu + Ile107Ala + Gly160Asn + Phe192Val +
 Ser207Glu + Arg218Glu
 Gly100Gln + Tyr104Asp + Gly134Asp + Ala164Ser +
 Phe192Leu + Ser216Asp
 Arg167Glu + Leu209Thr + Ser216Glu + Ser219Glu +
 Ser221Glu + Gly222Asn
 Gly 68Asn + Asp 98Glu + Leu209Gly + Ser216Asp +
 Ser219Asp + Ser221Glu
 Asp 65Glu + Ser207Glu + Leu209Asp + Gly215Asp +
 Gly222Ser + Thr223Asn
 Gly134Ser + Ser140Glu - Asn168Gln + Ser191Glu +
 Asn194Glu + Ser221Asp
 Leu 96Ile + Thr106Glu + Gly160Asp - Ser219Glu +
 Gly222Glu + Thr223Ser
 Ser101Asp + Ser105Glu + Asn161Gln - Ser207Glu +
 Ile213Asn + Ser221Glu
 Gln103Ser + Gly135Asp + Ser190Glu + Thr206Ser +
 Ser219Glu + Ile220Glu
 Asp 65Glu + Gly100Asp + Ser105Asp + Ser140Glu +
 Phe192Thr + Ile220His
 Asp 65Glu + Ser101Glu + Ala164Thr - Ile213Glu +
 Thr217Asn + Ser219Glu
 Ser105Asp + Gly134Asp + Asn168Ser + Ser191Asp +
 Phe192Glu + Ile220Cys
 Leu 96Asp + Ile107Asp + Gly214Ser + Ser216Glu +
 Ser219Glu + Ile220Val
 Asn162Gln + Asp165Glu + Arg218Asp + Ser219Glu +
 Ile220Thr + Thr223Asp
 Thr 71Gly + Asn161Asp + Asn168Asp + Ser207Glu +
 Leu209Asp + Thr223Gln
 Asp 65Glu + Asp 98Glu + Leu133Ser + Asp165Glu +
 Leu209Met + Gly215Glu
 Arg 64Asp + Asn 99Glu + Asp165Glu + Ala166Asn -
 Asn194Glu + Ile220Cys
 Asn 99Ser + Gly136Asp + Asn163Asp + Asp165Glu +
 Phe202Cys + Ser216Glu
 Val 95Pro + Leu133Thr + Gly136Glu + Asp165Glu +
 Ser216Asp + Arg218Glu

Leu133Pro - Gly134Asn + Asn194Asp - Thr206Glu +
 Gly214Glu - Ser221Asp
 Gly 70Asp - Asp 97Glu + Tyr104Asn + Pro204Gly +
 Leu209Asp + Ser216Glu
 Gln103Asp + Gly135Asp + Ser140Asp - Asn168Gln +
 Gly214Asp + Ile220Leu
 Asp 65Glu + Thr 71Ser + Asn 99Glu + Ser138Asp +
 Phe192Tyr + Leu209Gly
 Tyr104Val - Ile107Glu + Thr206Asp - Ser216Asp +
 Ser219Glu + Ile220Leu
 Leu133Ala + Arg167Glu + Leu209Gln + Ser216Glu +
 Thr217Glu + Ser221Glu
 Asn 67Glu + Asp 98Glu + Tyr137Ala + Asp165Glu +
 Thr206Pro + Ile220Asp
 Ser101Glu - Ile107Asp + Asn161Glu - Asp165Glu +
 Ile220Thr + Thr223Gln
 Tyr104Asp + Thr106Asn + Tyr137Glu - Gly160Gln +
 Asn162Asp + Gly215Ser
 Asn 67Asp - Asp 97Glu + Tyr104Thr - Leu133Asp +
 Ala164Glu + Ile220Ala
 Asp 97Glu + Asn 99Ser + Ser105Asp - Thr206Asp +
 Ser207Glu + Trp212Thr
 Asn 67Gln - Tyr104Ile + Ser105Glu - Asn163Glu +
 Ile220Glu + Ser221Glu
 Asp 98Glu + Asn 99Gln + Leu133Asp - Phe192Glu -
 Asn194Glu + Gly205Pro
 Asn 99Asp + Ile107Ser + Tyr137Met - Asn161Glu +
 Asp165Glu + Ile213Asn
 Gly 70Asn + Gln103Ser + Ser138Glu - Ala164Asp +
 Ser170Glu + Ser219Asp
 Ser101Glu - Thr106Asn + Gly135Glu - Leu209Ser -
 Thr217Asn + Ser219Glu
 Gly 68Glu - Gly102Gin + Gly135Ser - Ser190Asp -
 Ser207Asp + Ile220Ala
 Asp 65Glu - Val 95Glu + Gly100Gln - Ser105Asp -
 Asn194Ser + Leu209Glu
 Asp 65Glu + Tyr137His + Asn161Glu + Asn162Asp +
 Tyr169Thr + Ser207Asp
 Asn 67Ser + Gly134Pro + Asn194Asp + Gly214Asp +
 Arg218Asp + Ser221Glu
 Asp 65Glu + Tyr137Asn + Thr211Pro + Arg218Asp +
 Ile220Val + Ser221Asp
 Asp 65Glu + Gly100Ser + Tyr104Ala + Ser207Glu +
 Thr217Asp + Gly222Asp
 Asp 98Glu + Asn 99Gln + Gln103Glu + Gly136Ser +
 Leu209Asp + Arg218Glu
 Asp 65Glu + Val 95Pro + Ser101Asp + Gln103Glu +
 Asn168Ser + Ser219Glu
 Tyr104Val + Gly134Pro + Tyr137Asp + Ala164Glu +
 Thr211Gly + Gly215Ser
 Ser101Asp + Gly135Pro + Ser190Asp + Ser191Asp +
 Ser216Asp + Gly222Gln
 Asn 99Glu + Ser101Glu + Gln103Ser + Gly160Pro +

Ile213Asp - Gly222Glu
 Gly 68Ser - Ser136Glu + Ser139Glu - Gly160Glu -
 Asn163Ser - Ser219Glu
 Arg 64Glu - Ser101Glu + Ser138Glu + Ser139Glu -
 Asn161Ser + Thr206Asn
 Gly 66Asn + Gly 68Asp + Tyr104Leu + Ser138Asp -
 Ser139Asp + Ser207Asp
 Asp 65Glu + Gln103Glu + Tyr137Cys + Thr206Asn -
 Ser219Glu - Ile220Glu
 Leu 96Asp - Tyr137Asp + Leu209Thr + Ile213Gly -
 Ser219Asp - Ile220Glu
 Leu 96Asp - Asp 97Glu + Ser140Glu + Phe192Ala -
 Thr217Asp + Gly222Pro
 Ser101Glu - Leu133Cys + Arg167Asp + Asn168Glu +
 Leu209Ala + Ser216Glu
 Val 95Gly - Thr106Glu + Arg167Asp + Asn168Glu +
 Ser191Asp + Ile220Val
 Gly 66Ser - Asp 97Glu + Tyr169Thr + Ser170Asp -
 Thr217Glu + Arg218Asp
 Arg 64Asp - Ile107His + Gly135Asp + Gly136Asp -
 Ile213Thr + Ser219Asp
 Asp 97Glu - Leu133Thr + Gly134Glu + Arg218Glu -
 Ser219Asp + Thr223Ser
 Asp 98Glu + Gly102Ser + Leu133Met + Ser139Asp -
 Ser140Asp + Ser216Glu
 Tyr137Ile + Ser139Glu + Ser140Glu + Gly160Gln -
 Leu209Asp + Gly214Asp
 Leu 96Ala + Asp 98Glu + Asn 99Glu + Asp165Glu -
 Leu209Thr + Ser216Glu
 Asn 99Gln - Ser138Asp + Asn161Glu + Gly215Glu -
 Ser216Asp + Ile220Gly
 Ser105Asp - Thr106Pro + Gly136Pro + Gly160Glu -
 Leu209Asp + Ser219Asp
 Gln103Glu - Ala166Thr + Asn194Glu + Leu209Asp -
 Ser219Glu + Ile220Cys
 Tyr104Met - Thr106Ser + Ser139Asp + Thr206Pro -
 Ser219Asp + Gly222Glu
 Ile107Gln - Asp165Glu + Asn168Glu + Ser191Asp +
 Leu209Met + Ser219Glu
 Gly 68Ser + Thr106Glu - Ile107Gly + Asn162Glu -
 Ser207Asp + Ile220Asp
 Arg 64Asp + Gly160Asp + Ser207Glu + Ile208Gly +
 Ile213Leu + Ile220Asp
 Tyr137Asp - Ser170Asp + Phe192Ser + Ser207Glu -
 Leu209Pro + Gly214Glu
 Tyr104Cys + Gly135Asp + Ser138Asp + Thr206Asp -
 Gly214Gln + Arg218Glu
 Arg 64Asp + Asp 97Glu + Ser139Asp + Asn168Gln +
 Thr206Asn + Gly214Asp
 Asp 65Glu + Leu133Asn + Ser170Glu + Ile208Thr +
 Ser216Glu + Arg218Asp
 Ser101Asp + Ser138Glu + Thr206Pro + Ser207Glu +
 Ser219Glu + Ile220Cys

Gly134Glu + Ser207Glu - Leu209Ser + Gly214Glu -
 Ser219Glu + Ile220Ala
 Arg 64Asp + Gly 68Asn + Gly135Asp + Gly136Gln -
 Ser207Asp + Ser219Asp
 Ser101Asp - Ser138Glu + Ser207Asp - Leu209Ile -
 Ser219Glu + Gly222Gln
 Gly 66Asp + Ser105Asp + Ala164Gln + Phe192Ala -
 Ser207Glu + Ser219Asp
 Arg 64Glu + Gly 66Asn + Asn 99Ser + Ser138Glu -
 Ser207Asp + Ser219Glu
 Arg 64Asp + Ile107Thr + Ile213Gly + Ser216Asp -
 Arg218Asp + Gly222Glu
 Gln103Glu + Ile107His + Gly135Pro + Gly136Asp +
 Arg167Asp + Ser219Glu
 Gly 68Glu + Asp 97Glu + Thr106Glu + Phe192Met -
 Ser207Glu + Ile213Ala
 Ala164Glu + Asn168Ser + Ser191Glu + Ser216Asp -
 Ser219Glu + Ile220Thr
 Gly 68Gln + Asn162Glu + Ser190Asp + Leu209Thr -
 Ser219Asp + Gly222Gln
 Val 95Cys + Ile107Asp + Tyr137Ala + Asn194Glu -
 Gly214Asp + Ser216Glu
 Asp 65Glu + Gly 70Gln + Leu209Gly + Ser216Glu -
 Ser221Asp + Thr223Glu
 Ser101Glu + Gly205Gln + Leu209Glu + Ser216Asp -
 Thr217Ser + Ile220Thr
 Tyr137Thr + Ser139Glu + Leu209Asp + Gly215Pro +
 Ser216Glu + Thr217Gln
 Asn 99Glu + Gly136Pro + Ser140Glu + Ser170Glu -
 Asn194Glu + Ile220Met
 Gly 66Gln + Asp 98Glu + Gly100Glu + Ser105Glu -
 Ile220Asp + Thr223Asn
 Asp 98Glu + Gly100Glu + Ser105Asp + Gly136Ser -
 Asn168Glu + Gly214Pro
 Val 95Asn + Asp 97Glu + Ser101Asp + Asp165Glu -
 Phe192His + Ile220Glu
 Gly135Glu + Asn163Asp + Phe192Tyr + Asn194Gln +
 Ser219Glu + Ser221Glu
 Asn 99Glu + Ser101Asp + Ser140Asp + Asn161Gln -
 Ser190Asp + Gly215Asn
 Gly 68Gin + Gly100Asp + Gln103Asp + Tyr137Gly -
 Gly160Asp + Leu209Cys
 Gly100Asp + Gln103Asp + Gly160Gln + Leu209Asn +
 Trp212Ser + Ser221Glu
 Gly135Asp + Ser138Asp + Asn162Gln + Leu209Val -
 Ser216Glu + Thr223Asp
 Arg 64Asp + Gly 66Glu + Leu 96Thr + Thr106Ser -
 Asn161Glu + Arg218Glu
 Tyr137Ser + Asn161Asp + Ser170Asp + Ser190Glu +
 Leu209Asp + Gly215Gln
 Leu133Ala + Ser139Asp + Thr206Gln + Leu209Ala +
 Ser216Asp + Ser219Glu
 Asn 67Ser + Val 95Thr + Ser140Glu + Thr206Pro +

Ser216Glu + Ser219Asp
 Val 95Asn + Ser138Glu + Ile208Gln + Leu209Val -
 Ser216Glu + Ser219Asp
 Gly 70Asp + Asn 99Gln - Ser101Glu + Leu133Asn -
 Leu209Gln + Ser216Asp
 Tyr104Gin - Ile107His - Ser138Asp + Ser191Asp -
 Thr206Glu + Arg218Asp
 Thr106Glu + Ser138Glu + Thr206Gly + Ser219Glu -
 Ile220Thr + Ser221Glu
 Tyr137Glu + Asn161Glu + Leu209Thr + Ile213Asp -
 Ser216Asp + Thr217Asn
 Arg 64Glu + Asn 67Glu + Ser170Asp + Trp212His -
 Ile213Ala + Arg218Glu
 Val 95Asp + Ile107Gly - Gly134Asp + Ser138Asp -
 Asn161Gln + Ser190Glu
 Asp 65Glu + Asp 98Glu - Gly160Ser + Asp165Glu -
 Phe192Gly + Ser219Glu
 Asp 97Giu + Leu133His + Gly136Glu + Ser138Asp -
 Leu209Gly + Ser216Asp
 Asp 65Glu + Ser138Glu + Tyr169Met + Ser207Asp -
 Leu209Glu + Gly215Pro
 Leu 96Gln + Asp 97Glu + Ser138Glu + Thr206Pro -
 Ser207Glu + Leu209Asp
 Gly 70Gln + Asp 97Glu + Ser190Asp + Thr206Glu -
 Ser216Asp + Ile220Asn
 Arg 64Glu + Gly 66Pro + Gly 70Ser + Asp165Glu -
 Tyr169Glu + Ser191Asp
 Gly136Asp + Asn163Asp + Phe192Pro + Ser216Glu +
 Arg218Asp + Ile220Val
 Gly 66Asp + Tyr137Gly + Asn162Ser + Ala164Glu +
 Arg167Asp + Ser216Glu
 Gly100Asn + Gly102Asp - Tyr104His + Asp165Glu -
 Ser216Asp + Arg218Asp
 Gly102Glu + Leu133Val - Ser140Glu + Thr206Glu -
 Ile220Glu + Thr223Pro
 Ser105Glu + Leu133Asn + Ala164Asn + Asp165Glu -
 Thr217Glu + Ser219Asp
 Gly 70Asp + Val 95Thr + Gly134Asp + Ser139Glu -
 Asn161Glu + Asn194Ser
 Gly100Ser + Gly135Glu + Ser140Glu + Asn161Asp -
 Ile213Cys + Arg218Glu
 Gly136Asp + Tyr137Gly + Ser140Asp + Asn162Glu -
 Thr211Gly + Gly214Asp
 Val 95Gly + Tyr104Ala + Ser138Glu + Asn163Asp -
 Arg167Asp + Ser219Asp
 Asp 65Glu + Gly 70Asn + Val 95Ser + Ser191Asp -
 Thr206Glu + Ser216Asp
 Tyr104Leu + Leu133Cys + Gly134Asp + Asn162Asp -
 Tyr169Pro + Ser216Asp
 Val 95Glu + Asn 99Asp + Tyr104Ala + Tyr137Ala -
 Leu209Asp + Ile220Cys
 Gly 66Glu + Thr106Ser + Leu209Gly + Gly215Asn -
 Ser216Asp + Ile220His

Thr 71Pro + Gly102Glu + Gly134Asp + Ser139Asp +
 Ile220Pro + Ser221Asp
 Leu 96Ser + Asp 98Glu + Ser101Asp + Gln103Ser +
 Gly160Asp + Ser216Glu
 Leu 96Cys - Ala164Asn - Tyr169Pro + Thr217Asn +
 Arg218Asp + Gly222Asp
 Tyr104Asn - Gly136Glu + Tyr137His + Ser140Glu +
 Ser216Glu + Ile220Cys
 Asp 98Glu + Gly135Asp - Ser138Glu + Asn163Glu +
 Phe192Cys + Ile220Ser
 Gly 66Glu + Asn 99Glu + Gly102Pro + Thr106Asn +
 Ser139Glu + Ser221Asp
 Gly 68Glu - Tyr104Ala + Ala164Gln + Asn168Asp +
 Ser219Glu + Thr223Asn
 Asn 99Glu + Gly102Pro + Ser140Asp + Ser207Glu +
 Leu209Asn + Gly222Asp
 Ser105Asp + Thr106Gln + Gly160Asp + Ser191Asp +
 Phe192His + Gly203Gin
 Asp 98Glu + Tyr104Thr + Asn162Gln + Arg167Asp +
 Ser170Glu + Ser216Glu
 Asn 99Asp + Gly102Ser + Tyr137Asp + Asp165Glu +
 Ile220Ala + Thr223Gly
 Asp 98Glu + Thr106Pro + Gly135Asp + Ser138Glu +
 Phe192Asp + Ile220Gln
 Arg 64Glu + Val 95Ala + Leu 96Asn + Ala164Glu +
 Leu209Ala + Gly214Glu
 Arg 64Glu + Gly136Asn + Ala166Ser + Leu209His +
 Gly214Asp + Ser221Glu
 Asn 67Asp + Gly102Asn + Ala164Glu + Asn168Glu +
 Ser207Asp + Ile220Leu
 Gly135Glu + Gly136Gln + Ser139Asp + Gly160Asn +
 Ala164Ser + Thr206Glu
 Ser105Asp + Asn163Gln + Thr206Glu + Gly215Glu +
 Arg218Glu + Ile220Cys
 Gly 68Gln + Ser101Asp + Ser139Glu + Asn162Asp +
 Asp165Glu + Leu209Gln
 Gly100Ser + Ser140Asp + Asn162Glu + Asp165Glu +
 Pro204Gln + Ser207Glu
 Thr106Glu + Ile107Ala + Gly136Glu + Ser140Asp +
 Asn168Gln + Ser219Asp
 Arg 64Glu + Val 95Thr + Asp 98Glu + Tyr104Thr +
 Ser140Glu + Ser191Asp

II. Cleaning Compositions

In another embodiment of the present invention, an effective amount of one or more of the enzyme variants are included in compositions useful for cleaning a variety of surfaces in need of proteinaceous stain removal. Such cleaning compositions include detergent compositions for cleaning hard surfaces, unlimited in form (e.g., liquid and granular); detergent

compositions for cleaning fabrics, unlimited in form (e.g., granular, liquid and bar formulations); dishwashing compositions (unlimited in form); oral cleaning compositions, unlimited in form (e.g., dentifrice, toothpaste and mouthwash formulations); denture cleaning compositions, unlimited in form (e.g., liquid, tablet); and contact lens cleaning compositions, unlimited in form (e.g., liquid, tablet).

The cleaning compositions also comprise, in addition to the Proteinase K variants described hereinbefore, one or more cleaning composition materials compatible with the protease enzyme. The term "cleaning composition material", as used herein, means any liquid, solid or gaseous material selected for the particular type of cleaning composition desired and the form of the product (e.g., liquid, granule, bar, spray, stick, paste, gel), which materials are also compatible with the Proteinase K variant used in the composition. The specific selection of cleaning composition materials are readily made by considering the surface material to be cleaned, the desired form of the composition for the cleaning condition during use (e.g., through the wash detergent use). The term "compatible", as used herein, means the cleaning composition materials do not reduce the proteolytic activity of the Proteinase K variant to such an extent that the protease is not effective as desired during normal use situations. Specific cleaning composition materials are exemplified in detail hereinafter.

As used herein, "effective amount of enzyme variant" refers to the quantity of enzyme variant necessary to achieve the enzymatic activity necessary in the specific cleaning composition. Such effective amounts are readily ascertained by one of ordinary skill in the art and is based on many factors, such as the particular enzyme variant used, the cleaning application, the specific composition of the cleaning composition, and whether a liquid or dry (e.g., granular, bar) composition is required, and the like. Preferably the cleaning compositions comprise from about 0.0001% to about 10% of one or more enzyme variants of the present invention, more preferably from about 0.001% to about 1%, more preferably still from about 0.01% to about 0.1%. Several examples of various cleaning compositions wherein the enzyme variants may be employed are discussed in further detail below. All parts, percentages and ratios used herein are by weight unless otherwise specified.

As used herein, "non-fabric cleaning compositions" include hard surface cleaning compositions, dishwashing compositions, oral cleaning

compositions, denture cleaning compositions and contact lens cleaning compositions.

A. Cleaning Compositions for Hard Surfaces, Dishes and Fabrics

The enzyme variants of the present invention can be used in a variety of detergent compositions where high sudsing and good insoluble substrate removal are desired. Thus the enzyme variants can be used with various conventional ingredients to provide fully-formulated hard-surface cleaners, dishwashing compositions, fabric laundering compositions and the like. Such compositions can be in the form of liquids, granules, bars and the like. Such compositions can be formulated as modern "concentrated" detergents which contain as much as 30%-60% by weight of surfactants.

The cleaning compositions herein can optionally, and preferably, contain various anionic, nonionic, zwitterionic, etc., surfactants. Such surfactants are typically present at levels of from about 5% to about 35% of the compositions.

Nonlimiting examples of surfactants useful herein include the conventional C₁₁-C₁₈ alkyl benzene sulfonates and primary and random alkyl sulfates, the C₁₀-C₁₈ secondary (2,3) alkyl sulfates of the formulas CH₃(CH₂)_x(CHOSO₃⁻M⁺)CH₃ and CH₃(CH₂)_y(CHOSO₃⁻M⁺)CH₂CH₃ wherein x and (y+1) are integers of at least about 7, preferably at least about 9, and M is a water-solubilizing cation, especially sodium, the C₁₀-C₁₈ alkyl alkoxy sulfates (especially EO 1-5 ethoxy sulfates), C₁₀-C₁₈ alkyl alkoxy carboxylates (especially the EO 1-5 ethoxycarboxylates), the C₁₀-C₁₈ alkyl polyglycosides, and their corresponding sulfated polyglycosides, C₁₂-C₁₈ alpha-sulfonated fatty acid esters, C₁₂-C₁₈ alkyl and alkyl phenol alkoxylates (especially ethoxylates and mixed ethoxy/propoxy), C₁₂-C₁₈ betaines and sulfobetaines ("sultaines"), C₁₀-C₁₈ amine oxides, and the like. The alkyl alkoxy sulfates (AES) and alkyl alkoxy carboxylates (AEC) are preferred herein. (Use of such surfactants in combination with the aforesaid amine oxide and/or betaine or sultaine surfactants is also preferred, depending on the desires of the formulator.) Other conventional useful surfactants are listed in standard texts. Particularly useful surfactants include the C₁₀-C₁₈ N-methyl glucamides disclosed in US Patent 5, 194,639, Connor et al., issued March 16, 1993, incorporated herein by reference.

A wide variety of other ingredients useful in detergent cleaning compositions can be included in the compositions herein, including other

active ingredients, carriers, hydrotropes, processing aids, dyes or pigments, solvents for liquid formulations, etc. If an additional increment of sudsing is desired, suds boosters such as the C₁₀-C₁₆ alkylamides can be incorporated into the compositions, typically at about 1% to about 10% levels. The C₁₀-C₁₄ monoethanol and diethanol amides illustrate a typical class of such suds boosters. Use of such suds boosters with high sudsing adjunct surfactants such as the amine oxides, betaines and sulfonates noted above is also advantageous. If desired, soluble magnesium salts such as MgCl₂, MgSO₄, and the like, can be added at levels of, typically, from about 0.1% to about 2%, to provide additionally sudsing.

The liquid detergent compositions herein can contain water and other solvents as carriers. Low molecular weight primary or secondary alcohols exemplified by methanol, ethanol, propanol, and isopropanol are suitable. Monohydric alcohols are preferred for solubilizing surfactants, but polyols such as those containing from about 2 to about 6 carbon atoms and from about 2 to about 6 hydroxy groups (e.g., 1,3-propanediol, ethylene glycol, glycerine, and 1,2-propanediol) can also be used. The compositions may contain from about 5% to about 90%, typically from about 10% to about 50% of such carriers.

The detergent compositions herein will preferably be formulated such that during use in aqueous cleaning operations, the wash water will have a pH between about 6.8 and about 11.0. Finished products thus are typically formulated at this range. Techniques for controlling pH at recommended usage levels include the use of buffers, alkalis, acids, etc., and are well known to those skilled in the art.

When formulating the hard surface cleaning compositions and fabric cleaning compositions of the present invention, the formulator may wish to employ various builders at levels from about 5% to about 50% by weight. Typical builders include the 1-10 micron zeolites, polycarboxylates such as citrate and oxydisuccinates, layered silicates, phosphates, and the like. Other conventional builders are listed in standard formularies.

Likewise, the formulator may wish to employ various additional enzymes, such as cellulases, lipases, amylases and proteases in such compositions, typically at levels of from about 0.001% to about 1% by weight. Various detergents and fabric care enzymes are well-known in the laundry detergent art.

Various bleaching compounds, such as the percarbonates,

perborates and the like, can be used in such compositions, typically at levels from about 1% to about 15% by weight. If desired, such compositions can also contain bleach activators such as tetraacetyl ethylenediamine, nonanoyloxybenzene sulfonate, and the like, which are also known in the art. Usage levels typically range from about 1% to about 10% by weight.

Various soil release agents, especially of the anionic oligoester type, various chelating agents, especially the aminophosphonates and ethylenediaminedisuccinates, various clay soil removal agents, especially ethoxylated tetraethylene pentamine, various dispersing agents, especially polyacrylates and polyasparatates, various brighteners, especially anionic brighteners, various suds suppressors, especially silicones and secondary alcohols, various fabric softeners, especially smectite clays, and the like can all be used in such compositions at levels ranging from about 1% to about 35% by weight. Standard formularies and published patents contain multiple, detailed descriptions of such conventional materials.

Enzyme stabilizers may also be used in the cleaning compositions. Such enzyme stabilizers include propylene glycol (preferably from about 1% to about 10%), sodium formate (preferably from about 0.1% to about 1%) and calcium formate (preferably from about 0.1% to about 1%).

1. Hard surface cleaning compositions

As used herein "hard surface cleaning composition" refers to liquid and granular detergent compositions for cleaning hard surfaces such as floors, walls, bathroom tile, and the like. Hard surface cleaning compositions of the present invention comprise an effective amount of one or more enzyme variants of the present invention, preferably from about 0.001% to about 10%, more preferably from about .01% to about 5%, more preferably still from about .05% to about 1% by weight of active enzyme of the composition. In addition to comprising one or more of the enzyme variants, such hard surface cleaning compositions typically comprise a surfactant and a water-soluble sequestering builder. In certain specialized products such as spray window cleaners, however, the surfactants are sometimes not used since they may produce a filmy/streaky residue on the glass surface.

The surfactant component, when present, may comprise as little as 0.1% of the compositions herein, but typically the compositions will contain from about 0.25% to about 10%, more preferably from about 1% to about 5% of surfactant.

Typically the compositions will contain from about 0.5% to about 50% of a detergency builder, preferably from about 1% to about 10%.

Preferably the pH should be in the range of about 8 to 12. Conventional pH adjustment agents such as sodium hydroxide, sodium carbonate or hydrochloric acid can be used if adjustment is necessary.

Solvents may be included in the compositions. Useful solvents include, but are not limited to, glycol ethers such as diethyleneglycol monohexyl ether, diethyleneglycol monobutyl ether, ethyleneglycol monobutyl ether, ethyleneglycol monohexyl ether, propyleneglycol monobutyl ether, dipropyleneglycol monobutyl ether, and diols such as 2,2,4-trimethyl-1,3-pentanediol and 2-ethyl-1,3-hexanediol. When used, such solvents are typically present at levels of from about 0.5% to about 15%, preferably from about 3% to about 11%.

Additionally, highly volatile solvents such as isopropanol or ethanol can be used in the present compositions to facilitate faster evaporation of the composition from surfaces when the surface is not rinsed after "full strength" application of the composition to the surface. When used, volatile solvents are typically present at levels of from about 2% to about 12% in the compositions.

The hard surface cleaning composition embodiment of the present invention is illustrated by the following examples.

125

Examples 7-12

Component	Liquid Hard Surface Cleaning Compositions					
	Example No.					
	7	8	9	10	11	12
Asn67Ser	0.05	0.50	0.02	0.03	0.10	0.03
Val95His	-	-	-	-	0.20	0.02
Na ₂ DIDA*						
EDTA**	-	-	2.90	2.90	-	-
Na Citrate	-	-	-	-	2.90	2.90
NaC ₁₂ Alkyl-benzene sulfonate	1.95	-	1.95	-	1.95	-
NaC ₁₂ Alkylsulfate	-	2.20	-	2.20	-	2.20
NaC ₁₂ (ethoxy)*** sulfate	-	2.20	-	2.20	-	2.20
C ₁₂ Dimethylamine oxide	-	0.50	-	0.50	-	0.50
Na Cumene sulfonate	1.30	-	1.30	-	1.30	-
Hexyl Carbitol****	6.30	6.30	6.30	6.30	6.30	6.30
Water*****	balance to 100%					

*Disodium N-diethyleneglycol-N,N-iminodiacetate

**Na₄ ethylenediamine diacetic acid

***Diethyleneglycol monohexyl ether

****All formulas adjusted to pH 7

In Examples 7-10, the Proteinase K variants recited in Tables 2-36, among others, are substituted for Asn 67Ser, with substantially similar results.

In Examples 11-12, any combination of the Proteinase K variants recited in Tables 2-36, among others, are substituted for Asn67Ser and Val95His, with substantially similar results.

Examples 13-18
Spray Compositions for Cleaning Hard Surfaces
and Removing Household Mildew

Component	Example No.					
	13	14	15	16	17	18
Gly134Asn + Ser140Asp	0.50	0.05	0.60	0.30	0.20	0.30
Leu96Gly + Leu209Pro	-	-	-	-	0.30	0.10
Sodium octyl sulfate	2.00	2.00	2.00	2.00	2.00	2.00
Sodium dodecyl sulfate	4.00	4.00	4.00	4.00	4.00	4.00
Sodium hydroxide	0.80	0.80	0.80	0.80	0.80	0.80
Silicate (Na)	0.04	0.04	0.04	0.04	0.04	0.04
Perfume	0.35	0.35	0.35	0.35	0.35	0.35
Water	balance to 100%					

Product pH is about 7.

In Examples 13-16, the Proteinase K variants recited in Tables 2-36, among others, are substituted for Gly134Asn + Ser140Asp, with substantially similar results.

In Examples 17-18, any combination of the Proteinase K variants recited in Tables 2-36, among others, are substituted for Gly134Asn + Ser140Asp and Leu96Gly + Leu209Pro, with substantially similar results.

2. Dishwashing Compositions

In another embodiment of the present invention, dishwashing compositions comprise one or more enzyme variants of the present invention. As used herein, "dishwashing composition" refers to all forms for compositions for cleaning dishes, including but not limited to, granular and liquid forms. The dishwashing composition embodiment of the present invention is illustrated by the following examples.

Examples 19-24
Dishwashing Composition

Component	Example No.					
	19	20	21	22	23	24
Ala164Asp	0.05	0.50	0.02	0.40	0.10	0.03
Ser191Asp + Phe192Met + Asn194Gln	-	-	-	-	0.40	0.02
C ₁₂ -C ₁₄ N-methyl-glucamide	0.90	0.90	0.90	0.90	0.90	0.90
C ₁₂ ethoxy (1) sulfate	12.00	12.00	12.00	12.00	12.00	12.00
2-methyl undecanoic acid	4.50	4.50	4.50	4.50	4.50	4.50
C ₁₂ ethoxy (2) carboxylate	4.50	4.50	4.50	4.50	4.50	4.50
C ₁₂ alcohol ethoxylate (4)	3.00	3.00	3.00	3.00	3.00	3.00
C ₁₂ amine oxide	3.00	3.00	3.00	3.00	3.00	3.00
Sodium cumene sulfonate	2.00	2.00	2.00	2.00	2.00	2.00
Ethanol	4.00	4.00	4.00	4.00	4.00	4.00
Mg ⁺⁺ (as MgCl ₂)	0.20	0.20	0.20	0.20	0.20	0.20
Ca ⁺⁺ (as CaCl ₂)	0.40	0.40	0.40	0.40	0.40	0.40
Water	balance to 100%					

Product pH is adjusted to 7.

In Examples 19-22, the Proteinase K variants recited in Tables 2-36, among others, are substituted for Ala164Asp, with substantially similar results.

In Examples 23-24, any combination of the Proteinase K variants recited in Tables 2-36, among others, are substituted for Ala164Asp and Ser191Asp + Phe192Met + Asn194Gln, with substantially similar results.

3. Fabric cleaning compositions

In another embodiment of the present invention, fabric cleaning compositions comprise one or more enzyme variants of the present invention. As used herein, "fabric cleaning composition" refers to all forms for detergent compositions for cleaning fabrics, including but not limited to, granular, liquid and bar forms. Preferred fabric cleaning compositions are those in the liquid form.

a. Granular fabric cleaning compositions

The granular fabric cleaning compositions of the present invention contain an effective amount of one or more enzyme variants of the present invention, preferably from about 0.001% to about 10%, more preferably from

about 0.005% to about 5%, more preferably from about 0.01% to about 1% by weight of active enzyme of the composition. In addition to one or more enzyme variants the granular fabric cleaning compositions typically comprise at least one surfactant, one or more builders, and, in some cases, a bleaching agent.

The granular fabric cleaning composition embodiment of the present invention is illustrated by the following examples

Examples 25-28

Granular Fabric Cleaning Composition

Component	Example No.			
	25	26	27	28
Ile208Ala	0.10	0.20	0.03	0.05
Trp212Phe	-	-	0.02	0.05
C ₁₃ linear alkyl benzene sulfonate	22.00	22.00	22.00	22.00
Phosphate (as sodium tripolyphosphates)	23.00	23.00	23.00	23.00
Sodium carbonate	23.00	23.00	23.00	23.00
Sodium silicate	14.00	14.00	14.00	14.00
Zeolite	8.20	8.20	8.20	8.20
Chelant (diethylenetriamine-pentaacetic acid)	0.40	0.40	0.40	0.40
Sodium sulfate	5.50	5.50	5.50	5.50
Water	balance to 100%			

In Examples 25-26, the Proteinase K variants recited in Tables 2-36, among others, are substituted for Ile208Ala, with substantially similar results.

In Examples 27-28, any combination of the Proteinase K variants recited in Tables 2-36, among others, are substituted for Ile208Ala and Trp212Phe, with substantially similar results.

Examples 29-32
Granular Fabric Cleaning Composition

Component	Example No.			
	29	30	31	32
Asn194Glu + Leu209Gly	0.10	0.20	0.03	0.05
Gly100Asn + Gln103Ser + Ser207Asp + Leu209Val	-	-	0.02	0.05
C ₁₂ alkyl benzene sulfonate	12.00	12.00	12.00	12.00
Zeolite A (1-10 micrometer)	26.00	26.00	26.00	26.00
2-butyl octanoic acid	4.00	4.00	4.00	4.00
C ₁₂ -C ₁₄ secondary (2,3) alkyl sulfate, Na salt	5.00	5.00	5.00	5.00
Sodium citrate	5.00	5.00	5.00	5.00
Optical brightener	0.10	0.10	0.10	0.10
Sodium sulfate	17.00	17.00	17.00	17.00
Water and minors	balance to 100%			

In Examples 29-30, the Proteinase K variants recited in Tables 2-36, among others, are substituted for Asn194Glu + Leu209Gly, with substantially similar results.

In Examples 31-32, any combination of the Proteinase K variants recited in Tables 2-36, among others, are substituted for Asn194Glu + Leu209Gly and Gly100Asn + Gln103Ser + Ser207Asp + Leu209Val, with substantially similar results.

130

Examples 33-36
Granular Fabric Cleaning Composition

Component	Example No			
	33	34	35	36
Arg64Asp + Gly70Gln + Thr71Gly	0.10	0.20	0.03	0.05
Phe192Asp + Asn194Ser	-	-	0.02	0.05
C ₁₃ linear alkyl benzene sulfonate	22.00	22.00	22.00	22.00
Phosphate (as sodium tripolyphosphates)	23.00	23.00	23.00	23.00
Sodium carbonate	23.00	23.00	23.00	23.00
Sodium silicate	14.00	14.00	14.00	14.00
Zeolite	8.20	8.20	8.20	8.20
Chelant (diethylenetriamine-pentaacetic acid)	0.40	0.40	0.40	0.40
Sodium sulfate	5.50	5.50	5.50	5.50
Water	balance to 100%			

In Examples 33-34, the Proteinase K variants recited in Tables 2-36, among others, are substituted for Arg64Asp + Gly70Gln + Thr71Gly, with substantially similar results.

In Examples 35-36, any combination of the Proteinase K variants recited in Tables 2-36, among others, are substituted for Arg64Asp + Gly70Gln + Thr71Gly and Phe192Asp + Asn194Ser, with substantially similar results.

131

Examples 37-40
Granular Fabric Cleaning Composition

Component	Example No.			
	37	38	39	40
Ala164His + Ala166Gly	0.10	0.20	0.03	0.05
Ile213Pro + Ser216Glu + Ile220Glu	-	-	0.02	0.05
C ₁₂ alkyl benzene sulfonate	12.00	12.00	12.00	12.00
Zeolite A (1-10 micrometer)	26.00	26.00	26.00	26.00
2-butyl octanoic acid	4.00	4.00	4.00	4.00
C ₁₂ -C ₁₄ secondary (2,3) alkyl sulfate, Na salt	5.00	5.00	5.00	5.00
Sodium citrate	5.00	5.00	5.00	5.00
Optical brightener	0.10	0.10	0.10	0.10
Sodium sulfate	17.00	17.00	17.00	17.00
Water and minors	balance to 100%			

In Examples 37-38, the Proteinase K variants recited in Tables 2-36, among others, are substituted for Ala164His + Ala166Gly, with substantially similar results.

In Examples 39-40, any combination of the Proteinase K variants recited in Tables 2-36, among others, are substituted for Ala164His + Ala166Gly and Ile213Pro + Ser216Glu + Ile220Glu, with substantially similar results.

132

Examples 41-42
Granular Fabric Cleaning Composition

Component	Example No.	
	41	42
Linear alkyl benzene sulphonate	11.4	10.70
Tallow alkyl sulphate	1.80	2.40
C ₁₄ -15 alkyl sulphate	3.00	3.10
C ₁₄ -15 alcohol 7 times ethoxylated	4.00	4.00
Tallow alcohol 11 times ethoxylated	1.80	1.80
Dispersant	0.07	0.1
Silicone fluid	0.80	0.80
Trisodium citrate	14.00	15.00
Citric acid	3.00	2.50
Zeolite	32.50	32.10
Maleic acid acrylic acid copolymer	5.00	5.00
Diethylene triamine penta methylene phosphonic acid	1.00	0.20
Gly203Gln + Thr211Gly + Ile213Leu + Gly214Asn	0.30	0.30
Lipase	0.36	0.40
Amylase	0.30	0.30
Sodium silicate	2.00	2.50
Sodium sulphate	3.50	5.20
Polyvinyl pyrrolidone	0.30	0.50
Perborate	0.5	1
Phenol sulphonate	0.1	0.2
Peroxidase	0.1	0.1
Minors	Up to 100	Up to 100

Examples 43-44
Granular Fabric Cleaning Composition

Component	Example No.	
	43	44
Sodium linear C ₁₂ alkyl benzene-sulfonate	6.5	8.0
Sodium sulfate	15.0	18.0
Zeolite A	26.0	22.0
Sodium nitrilotriacetate	5.0	5.0
Polyvinyl pyrrolidone	0.5	0.7
Tetraacetylene diamine	3.0	3.0
Boric acid	4.0	-
Perborate	0.5	1
Phenol sulphonate	0.1	0.2
Asp98Glu + Tyr104Leu	0.4	0.4
Fillers (e.g., silicates; carbonates; perfumes; water)	Up to 100	Up to 100

Example 45	
Compact Granular Fabric Cleaning Composition	
Component	Weight %
Alkyl Sulphate	8.0
Alkyl Ethoxy Sulphate	2.0
Mixture of C ₂₅ and C ₄₅ alcohol 3 and 7 times ethoxylated	6.0
Polyhydroxy fatty acid amide	2.5
Zeolite	17.0
Layered silicate/citrate	16.0
Carbonate	7.0
Maleic acid acrylic acid copolymer	5.0
Soil release polymer	0.4
Carboxymethyl cellulose	0.4
Poly (4-vinylpyridine) -N-oxide	0.1
Copolymer of vinylimidazole and vinylpyrrolidone	0.1
PEG2000	0.2
Gly136Ser + Tyr137Met + Ser138Glu	0.5
Lipase	0.2
Cellulase	0.2
Tetracetylene diamine	6.0
Percarbonate	22.0

134

Ethylene diamine disuccinic acid	0.3
Suds suppressor	3.5
Disodium-4,4'-bis (2-morpholino -4-anilino-s-triazin-6-ylamino) stilbene-2,2'-disulphonate	0.25
Disodium-4,4'-bis (2-sulfostyryl) biphenyl	0.05
Water, Perfume and Minors	Up to 100

Example 46**Granular Fabric Cleaning Composition**

Component	Weight %
Linear alkyl benzene sulphonate	7.6
C ₁₆ -C ₁₈ alkyl sulfate	1.3
C ₁₄ -15 alcohol 7 times ethoxylated	4.0
Coco-alkyl-dimethyl hydroxyethyl ammonium chloride	1.4
Dispersant	0.07
Silicone fluid	0.8
Trisodium citrate	5.0
Zeolite 4A	15.0
Maleic acid acrylic acid copolymer	4.0
Diethylene triamine penta methylene phosphonic acid	0.4
Perborate	15.0
Tetraacetylethylene diamine	5.0
Smectite clay	10.0
Poly (oxy ethylene) (MW 300,000)	0.3
Ser219Asp	0.4
Lipase	0.2
Amylase	0.3
Cellulase	0.2
Sodium silicate	3.0
Sodium carbonate	10.0
Carboxymethyl cellulose	0.2
Brighteners	0.2
Water, perfume and minors	Up to 100

Example 47

Granular Fabric Cleaning Composition

Component	Weight %
Linear alkyl benzene sulfonate	6.92
Tallow alkyl sulfate	2.05
C ₁₄ -15 alcohol 7 times ethoxylated	4.4
C ₁₂ -15 alkyl ethoxy sulfate - 3 times ethoxylated	0.16
Zeolite	20.2
Citrate	5.5
Carbonate	15.4
Silicate	3.0
Maleic acid acrylic acid copolymer	4.0
Carboxymethyl cellulase	0.31
Soil release polymer	0.30
Ser190Glu + Ser191Glu + Phe192Leu + Asn194Ser	0.2
Lipase	0.36
Cellulase	0.13
Perborate tetrahydrate	11.64
Perborate monohydrate	8.7
Tetraacetylene diamine	5.0
Diethylene tramine penta methyl phosphonic acid	0.38
Magnesium sulfate	0.40
Brightener	0.19
Perfume, silicone, suds suppressors	0.85
Minors	Up to 100

b. Liquid fabric cleaning compositions

Liquid fabric cleaning compositions of the present invention comprise an effective amount of one or more enzyme variants of the present invention, preferably from about 0.005% to about 5%, more preferably from about 0.01% to about 1%, by weight of active enzyme of the composition. Such liquid fabric cleaning compositions typically additionally comprise an anionic surfactant, a fatty acid, a water-soluble detergency builder and water.

The liquid fabric cleaning composition embodiment of the present invention is illustrated by the following examples.

Examples 48-52
Liquid Fabric Cleaning Compositions

Component	Example No.				
	48	49	50	51	52
Ile220Asp	0.05	0.03	0.30	0.03	0.10
Thr206Asp + Ile220Met	-	-	-	0.01	0.20
C ₁₂ - C ₁₄ alkyl sulfate, Na	20.00	20.00	20.00	20.00	20.00
2-butyl octanoic acid	5.00	5.00	5.00	5.00	5.00
Sodium citrate	1.00	1.00	1.00	1.00	1.00
C ₁₀ alcohol ethoxylate (3)	13.00	13.00	13.00	13.00	13.00
Monethanolamine	2.50	2.50	2.50	2.50	2.50
Water/propylene glycol/ethanol (100:1:1)	balance to 100%				

In Examples 48-50 the Proteinase K variants recited in Tables 2-36, among others, are substituted for Ile220Asp, with substantially similar results.

In Examples 51-52, any combination of the Proteinase K variants recited in Tables 2-36, among others, are substituted for Ile220Asp and Thr206Asp + Ile220Met, with substantially similar results.

Examples 53-57
Liquid Fabric Cleaning Compositions

Component	Example No.				
	53	54	55	56	57
Gly136Ser	0.05	0.03	0.30	0.03	0.10
Gly215Pro	-	-	-	0.01	0.20
C ₁₂ - C ₁₄ alkyl sulfate, Na	20.00	20.00	20.00	20.00	20.00
2-butyl octanoic acid	5.00	5.00	5.00	5.00	5.00
Sodium citrate	1.00	1.00	1.00	1.00	1.00
C ₁₀ alcohol ethoxylate (3)	13.00	13.00	13.00	13.00	13.00
Monethanolamine	2.50	2.50	2.50	2.50	2.50
Water/propylene glycol/ethanol (100:1:1)	balance to 100%				

In Examples 53-55 the Proteinase K variants recited in Tables 2-36, among others, are substituted for Gly136Ser, with substantially similar results.

In Examples 56-57, any combination of the Proteinase K variants recited in Tables 2-36, among others, are substituted for Gly136Ser and Gly215Pro, with substantially similar results.

Examples 58-59
Liquid Fabric Cleaning Composition

Component	Example No.	
	58	59
C ₁₂ -14 alkenyl succinic acid	3.0	8.0
Citric acid monohydrate	10.0	15.0
Sodium C ₁₂ -15 alkyl sulphate	8.0	8.0
Sodium sulfate of C ₁₂ -15 alcohol 2 times ethoxylated	-	3.0
C ₁₂ -15 alcohol 7 times ethoxylated	-	8.0
C ₁₂ -15 alcohol 5 times ethoxylated	8.0	-
Diethylene triamine penta (methylene phosphonic acid)0.2	-	-
Oleic acid	1.8	-
Ethanol	4.0	4.0
Propanediol	2.0	2.0
Pro204Asn + Thr211Pro + Gly214Gln + Gly215Glu + Thr217Ser	0.2	0.2
Polyvinyl pyrrolidone	1.0	2.0
Suds suppressor	0.15	0.15
NaOH	up to pH 7.5	
Perborate	0.5	1
Phenol sulphonate	0.1	0.2
Peroxidase	0.4	0.1
Waters and minors	up to 100 parts	

In each of Examples 58 and 59 herein, the Proteinase K variants recited in Tables 2-36, among others, are substituted for Pro204Asn + Thr211Pro + Gly214Gln + Gly215Glu + Thr217Ser, with substantially similar results.

Examples 60-62
Liquid Fabric Cleaning Composition

Component	Example No.		
	60	61	62
Citric Acid	7.10	3.00	3.00
Fatty Acid	2.00	-	2.00
Ethanol	1.93	3.20	3.20
Boric Acid	2.22	3.50	3.50
Monoethanolamine	0.71	1.09	1.09
1,2 Propanediol	7.89	8.00	8.00
NaCumene Sulfonate	1.80	3.00	3.00
NaFormate	0.08	0.08	0.08
NaOH	6.70	3.80	3.80
Silicon anti-foam agent	1.16	1.18	1.18
Leu96Met + Asn99Ser + Ser105Asp	0.0145	-	-
Thr211Ser + Gly222Asp	-	0.0145	-
Tyr169Ser + Ser190Asp + Ile220Thr	-	-	0.0145
Lipase	0.200	0.200	0.200
Cellulase	-	7.50	7.50
Soil release polymer	0.29	0.15	0.15
Anti-foaming agents	0.06	0.085	0.085
Brightener 36	0.095	-	-
Brightener 3	-	0.05	0.05
C ₁₂ alkyl benzenesulfonic acid	9.86	-	-
C ₁₂ -15 alkyl polyethoxylate (2.5) sulfate	13.80	18.00	18.00
C ₁₂ glucose amide	-	5.00	5.00
C ₁₂ -13 alkyl polyethoxylate (9)	2.00	2.00	2.00
Water, perfume and minors	balance to 100%		

c. Bar fabric cleaning compositions

Bar fabric cleaning compositions of the present invention suitable for hand-washing soiled fabrics contain an effective amount of one or more enzyme variants of the present invention, preferably from about 0.001% to about 10%, more preferably from about 0.01% to about 1% by weight of the composition.

The bar fabric cleaning composition embodiment of the present invention is illustrated by the following examples.

Examples 63-66
Bar Fabric Cleaning Compositions

Component	Example No.			
	63	64	65	66
Leu96Ala + Asp97Glu + Ser101Asp + Ile107Asp	0.3	-	0.1	0.02
Ser193Asp	-	-	0.4	0.03
C ₁₂ -C ₁₆ alkyl sulfate, Na	20.0	20.0	20.0	20.00
C ₁₂ -C ₁₄ N-methyl glucamide	5.0	5.0	5.0	5.00
C ₁₁ -C ₁₃ alkyl benzene sulfonate, Na	10.0	10.0	10.0	10.00
Sodium carbonate	25.0	25.0	25.0	25.00
Sodium pyrophosphate	7.0	7.0	7.0	7.00
Sodium tripolyphosphate	7.0	7.0	7.0	7.00
Zeolite A (0.1-10μ)	5.0	5.0	5.0	5.00
Carboxymethylcellulose	0.2	0.2	0.2	0.20
Polyacrylate (MW 1400)	0.2	0.2	0.2	0.20
Coconut monethanolamide	5.0	5.0	5.0	5.00
Brightener, perfume	0.2	0.2	0.2	0.20
CaSO ₄	1.0	1.0	1.0	1.00
MgSO ₄	1.0	1.0	1.0	1.00
Water	4.0	4.0	4.0	4.00
Filler*	balance to 100%			

*Can be selected from convenient materials such as CaCO₃, talc, clay, silicates, and the like.

In Examples 63-64 the Proteinase K variants recited in Tables 2-36, among others, are substituted for Leu 96Ala + Asp 97Glu + Ser101Asp + Ile107Asp, with substantially similar results.

In Examples 65-66, any combination of the Proteinase K variants recited in Tables 2-36, among others, are substituted for Leu96Ala + Asp97Glu + Ser101Asp + Ile107Asp and Ser193Asp, with substantially similar results.

Examples 67-70
Bar Fabric Cleaning Compositions

Component	Example No.			
	67	68	69	70
Arg64Asp + Gly68Gln	0.3	-	0.1	0.02
Tyr137Gln	-	0.3	0.4	0.03
C ₁₂ -C ₁₆ alkyl sulfate, Na	20.0	20.0	20.0	20.00
C ₁₂ -C ₁₄ N-methyl glucamide	5.0	5.0	5.0	5.00
C ₁₁ -C ₁₃ alkyl benzene sulfonate, Na	10.0	10.0	10.0	10.00
Sodium carbonate	25.0	25.0	25.0	25.00
Sodium pyrophosphate	7.0	7.0	7.0	7.00
Sodium tripolyphosphate	7.0	7.0	7.0	7.00
Zeolite A (0.1-.10μ)	5.0	5.0	5.0	5.00
Carboxymethylcellulose	0.2	0.2	0.2	0.20
Polyacrylate (MW 1400)	0.2	0.2	0.2	0.20
Coconut monethanolamide	5.0	5.0	5.0	5.00
Brightener, perfume	0.2	0.2	0.2	0.20
CaSO ₄	1.0	1.0	1.0	1.00
MgSO ₄	1.0	1.0	1.0	1.00
Water	4.0	4.0	4.0	4.00
Filler*	balance to 100%			

*Can be selected from convenient materials such as CaCO₃, talc, clay, silicates, and the like.

In Example 67, the Proteinase K variants recited in Tables 2-36, among others, are substituted for Arg64Asp + Gly68Gln, with substantially similar results.

In Example 68, the Proteinase K variants recited in Tables 2-36, among others, are substituted for Tyr137Gln, with substantially similar results.

In Examples 69-70, any combination of the Proteinase K variants recited in Tables 2-36, among others, are substituted for Arg64Asp + Gly68Gln and Tyr137Gln, with substantially similar results.

B. Additional Cleaning Compositions

In addition to the hard surface cleaning; dishwashing and fabric cleaning compositions discussed above, one or more enzyme variants of the present invention may be incorporated into a variety of other cleaning compositions where hydrolysis of an insoluble substrate is desired. Such

(14)

additional cleaning compositions include but are not limited to, oral cleaning compositions, denture cleaning compositions, and contact lens cleaning compositions.

1. Oral cleaning compositions

In another embodiment of the present invention, a pharmaceutically-acceptable amount of one or more enzyme variants of the present invention are included in compositions useful for removing proteinaceous stains from teeth or dentures. As used herein, "oral cleaning compositions" refers to dentifrices, toothpastes, toothgels, toothpowders, mouthwashes, mouth sprays, mouth gels, chewing gums, lozenges, sachets, tablets, biogels, prophylaxis pastes, dental treatment solutions, and the like. Preferably, the oral cleaning compositions comprise from about 0.0001% to about 20% of one or more enzyme variants of the present invention, more preferably from about 0.001% to about 10%, more preferably still from about 0.01% to about 5%, by weight of the composition, and a pharmaceutically-acceptable carrier. As used herein, "pharmaceutically-acceptable" means that drugs, medicaments or inert ingredients which the term describes are suitable for use in contact with the tissues of humans and lower animals without undue toxicity, incompatibility, instability, irritation, allergic response, and the like, commensurate with a reasonable benefit/risk ratio.

Typically, the pharmaceutically-acceptable oral cleaning carrier components of the oral cleaning components of the oral cleaning compositions will generally comprise from about 50% to about 99.99%, preferably from about 65% to about 99.99%, more preferably from about 65% to about 99%, by weight of the composition.

The pharmaceutically-acceptable carrier components and optional components which may be included in the oral cleaning compositions of the present invention are well known to those skilled in the art. A wide variety of composition types, carrier components and optional components useful in the oral cleaning compositions are disclosed in U.S. Patent 5,096,700, Seibel, issued March 17, 1992; U.S. Patent 5,028,414, Sampathkumar, issued July 2, 1991; and U.S. Patent 5,028,415, Benedict, Bush and Sunberg, issued July 2, 1991; all of which are incorporated herein by reference.

The oral cleaning composition embodiment of the present invention is illustrated by the following examples.

Examples 71-74
Dentifrice Composition

Component	Example No.			
	71	72	73	74
Gly160Pro	2.000	3.500	1.500	2.000
Sorbitol (70% aqueous solution)	35.000	35.000	35.000	35.000
PEG-6*	1.000	1.000	1.000	1.000
Silica dental abrasive**	20.000	20.000	20.000	20.000
Sodium fluoride	0.243	0.243	0.243	0.243
Titanium dioxide	0.500	0.500	0.500	0.500
Sodium saccharin	0.286	0.286	0.286	0.286
Sodium alkyl sulfate (27.9% aqueous solution)	4.000	4.000	4.000	4.000
Flavor	1.040	1.040	1.040	1.040
Carboxyvinyl Polymer***	0.300	0.300	0.300	0.300
Carrageenan****	0.800	0.800	0.800	0.800
Water	balance to 100%			

*PEG-6 = Polyethylene glycol having a molecular weight of 600.

**Precipitated silica identified as Zeodent 119 offered by J.M. Huber.

***Carbopol offered by B.F. Goodrich Chemical Company.

****Iota Carrageenan offered by Hercules Chemical Company.

In Examples 71-74 the Proteinase K variants recited in Tables 2-36, among others, are substituted for Gly160Pro, with substantially similar results.

Examples 75-78
Mouthwash Composition

Component	Example No.			
	75	76	77	78
Ala166Gln + Ser216Asp	3.00	7.50	1.00	5.00
SDA 40 Alcohol	8.00	8.00	8.00	8.00
Flavor	0.08	0.08	0.08	0.08
Emulsifier	0.08	0.08	0.08	0.08
Sodium Fluoride	0.05	0.05	0.05	0.05
Glycerin	10.00	10.00	10.00	10.00
Sweetener	0.02	0.02	0.02	0.02
Benzoic acid	0.05	0.05	0.05	0.05
Sodium hydroxide	0.20	0.20	0.20	0.20
Dye	0.04	0.04	0.04	0.04
Water	balance to 100%			

In Examples 75-78, the Proteinase K variants recited in Tables 2-36, among others, are substituted for Ala166Gln + Ser216Asp, with substantially similar results.

Examples 79-82
Lozenge Composition

Component	Example No.			
	79	80	81	82
Gly70Ser + Ile107Gly + Leu133Met + Phe192His + Asn194Asp	0.01	0.03	0.10	0.02
Sorbitol	17.50	17.50	17.50	17.50
Mannitol	17.50	17.50	17.50	17.50
Starch	13.60	13.60	13.60	13.60
Sweetener	1.20	1.20	1.20	1.20
Flavor	11.70	11.70	11.70	11.70
Color	0.10	0.10	0.10	0.10
Corn Syrup	balance to 100%			

In Examples 79-82, the Proteinase K variants recited in Tables 2-36, among others, are substituted for Gly70Ser + Ile107Gly + Leu133Met + Phe192His + Asn194Asp, with substantially similar results.

Examples 83-86
Chewing Gum Composition

Component	Example No.			
	83	84	85	86
Gly214Asn	0.03	0.02	0.10	0.05
Sorbitol crystals	38.44	38.40	38.40	38.40
Paloja-T gum base*	20.00	20.00	20.00	20.00
Sorbitol (70% aqueous solution)	22.00	22.00	22.00	22.00
Mannitol	10.00	10.00	10.00	10.00
Glycerine	7.56	7.56	7.56	7.56
Flavor	1.00	1.00	1.00	1.00

*Supplied by L.A. Dreyfus Company.

In Examples 83-86, the Proteinase K variants recited in Tables 2-36, among others, are substituted for Gly214Asn, with substantially similar results.

2. Denture cleaning compositions

In another embodiment of the present invention, denture cleaning compositions for cleaning dentures outside of the oral cavity comprise one or more enzyme variants of the present invention. Such denture cleaning compositions comprise an effective amount of one or more of the enzyme variants, preferably from about 0.0001% to about 50% of one or more of the enzyme variants, more preferably from about 0.001% to about 35%, more preferably still from about 0.01% to about 20%, by weight of the composition, and a denture cleansing carrier. Various denture cleansing composition formats such as effervescent tablets and the like are well known in the art (see for example U.S. Patent 5,055,305, Young, incorporated herein by reference), and are generally appropriate for incorporation of one or more of the enzyme variants for removing proteinaceous stains from dentures.

The denture cleaning composition embodiment of the present invention is illustrated by the following examples.

Examples 87-90

Two-layer Effervescent Denture Cleansing Tablet

Component	Example No.			
	87	88	89	90
<u>Acidic Layer</u>				
Tyr137Leu + Tyr169Cys + Phe192Asn + Ser207Asp + Arg218Glu + Ile220Leu	1.0	1.5	0.01	0.05
Tartaric acid	24.0	24.0	24.00	24.00
Sodium carbonate	4.0	4.0	4.00	4.00
Sulphamic acid	10.0	10.0	10.00	10.00
PEG 20,000	4.0	4.0	4.00	4.00
Sodium bicarbonate	24.5	24.5	24.50	24.50
Potassium persulfate	15.0	15.0	15.00	15.00
Sodium acid pyrophosphate	7.0	7.0	7.00	7.00
Pyrogenic silica	2.0	2.0	2.00	2.00
TAED*	7.0	7.0	7.00	7.00
Ricinoleylsulfosuccinate	0.5	0.5	0.50	0.50
Flavor	1.0	1.0	1.00	1.00
<u>Alkaline Layer</u>				
Sodium perborate monohydrate	32.0	32.0	32.00	32.00
Sodium bicarbonate	19.0	19.0	19.00	19.00
EDTA	3.0	3.0	3.00	3.00
Sodium tripolyphosphate	12.0	12.0	12.00	12.00
PEG 20,000	2.0	2.0	2.00	2.00
Potassium persulfate	26.0	26.0	26.00	26.00
Sodium carbonate	2.0	2.0	2.00	2.00
Pyrogenic silica	2.0	2.0	2.00	2.00
Dye/flavor	2.0	2.0	2.00	2.00

*Tetraacetylethylene diamine

In Examples 87-90, the Proteinase K variants recited in Tables 2-36, among others, are substituted for Tyr137Leu + Tyr169Cys + Phe192Asn + Ser207Asp + Arg218Glu + Ile220Leu, with substantially similar results.

3. Contact Lens Cleaning Compositions

In another embodiment of the present invention, contact lens cleaning compositions comprise one or more enzyme variants of the present invention. Such contact lens cleaning compositions comprise an effective

amount of one or more of the enzyme variants, preferably from about 0.01% to about 50% of one or more of the enzyme variants, more preferably from about 0.01% to about 20%, more preferably still from about 1% to about 5%, by weight of the composition, and a contact lens cleaning carrier. Various contact lens cleaning composition formats such as tablets, liquids and the like are well known in the art (see for example U.S. Patent 4,863,627, Davies, Meaken and Rees, issued September 5, 1989; U.S. Patent Re. 32,672, Huth, Lam and Kirai, reissued May 24, 1988; U.S. Patent 4,609,493, Schäfer, issued September 2, 1986; U.S. Patent 4,690,793, Ogunbiyi and Smith, issued September 1, 1987; U.S. Patent 4,614,549, Ogunbiyi, Riedhammer and Smith, issued September 30, 1986; and U.S. Patent 4,285,738, Ogata, issued August 25, 1981; each of which are incorporated herein by reference), and are generally appropriate for incorporation of one or more enzyme variants of the present invention for removing proteinaceous stains from contact lenses.

The contact lens cleaning composition embodiment of the present invention is illustrated by the following examples

Examples 91-94

Enzymatic Contact Lens Cleaning Solution

Component	Example No.			
	91	92	93	94
Gly102GIn	0.01	0.5	0.1	2.0
Glucose	50.00	50.0	50.0	50.0
Nonionic surfactant (polyoxyethylene-polyoxypropylene copolymer)	2.00	2.0	2.0	2.0
Anionic surfactant (polyoxyethylene-alkylphenylether sodium sulfonate)	1.00	1.0	1.0	1.0
Sodium chloride	1.00	1.0	1.0	1.0
Borax	0.30	0.3	0.3	0.3
Water	balance to 100%			

In Examples 91-94, the Proteinase K variants recited in Tables 2-36, among others, are substituted for Gly102GIn, with substantially similar results.

While particular embodiments of the subject invention have been described, it will be obvious to those skilled in the art that various changes and modifications of the subject invention can be made without departing from the spirit and scope of the invention. It is intended to cover, in the

147

appended claims, all such modifications that are within the scope of the invention.

SEQUENCE LISTING

(1) GENERAL INFORMATION:

- (i) APPLICANT: BRODE, PHILIP F
BARNETT, BOBBY L
RUBINGH, DONN N
- (ii) TITLE OF INVENTION: PROTEINASE K VARIANTS HAVING DECREASED ADSORPTION AND INCREASED HYDROLYSIS
- (iii) NUMBER OF SEQUENCES: 1
- (iv) CORRESPONDENCE ADDRESS:
 - (A) ADDRESSEE: THE PROCTER & GAMBLE COMPANY
 - (B) STREET: 11810 EAST MIAMI RIVER ROAD
 - (C) CITY: ROSS
 - (D) STATE: OH
 - (E) COUNTRY: US
 - (F) ZIP: 45061
- (v) COMPUTER READABLE FORM:
 - (A) MEDIUM TYPE: Floppy disk
 - (B) COMPUTER: IBM PC compatible
 - (C) OPERATING SYSTEM: PC-DOS/MS-DOS
 - (D) SOFTWARE: PatentIn Release #1.0, Version #1.30
- (vi) CURRENT APPLICATION DATA:
 - (A) APPLICATION NUMBER:
 - (B) FILING DATE:
 - (C) CLASSIFICATION:
- (vii) ATTORNEY/AGENT INFORMATION:
 - (A) NAME: HAKE, RICHARD A
 - (B) REGISTRATION NUMBER: 37,343
 - (C) REFERENCE/DOCKET NUMBER: 5605
- (ix) TELECOMMUNICATION INFORMATION:
 - (A) TELEPHONE: (513)-627-0087
 - (B) TELEFAX: (513)-627-0260

(2) INFORMATION FOR SEQ ID NO:1:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 279 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:1:

Ala	Ala	Gln	Thr	Asn	Ala	Pro	Trp	Gly	Leu	Ala	Arg	Ile	Ser	Ser	Thr	
1									5				10		15	
Ser	Pro	Gly	Thr	Ser	Thr	Tyr	Tyr	Tyr		Asp	Glu	Ser	Ala	Gly	Gln	Gly
									20				25		30	

149

Ser Cys Val Tyr Val Ile Asp Thr Gly Ile Glu Ala Ser His Pro Glu
35 40 45

Phe Glu Gly Arg Ala Gln Met Val Lys Thr Tyr Tyr Tyr Ser Ser Arg
50 55 60

Asp Gly Asn Gly His Gly Thr His Cys Ala Gly Thr Val Gly Ser Arg
65 70 75 80

Thr Tyr Gly Val Ala Lys Lys Thr Gln Leu Phe Gly Val Lys Val Leu
85 90 95

Asp Asp Asn Gly Ser Gly Gln Tyr Ser Thr Ile Ile Ala Gly Met Asp
100 105 110

Phe Val Ala Ser Asp Lys Asn Asn Arg Asn Cys Pro Lys Gly Val Val
115 120 125

Ala Ser Leu Ser Leu Gly Gly Tyr Ser Ser Val Asn Ser Ala
130 135 140

Ala Ala Arg Leu Gln Ser Ser Gly Val Met Val Ala Val Ala Ala Gly
145 150 155 160

Asn Asn Asn Ala Asp Ala Arg Asn Tyr Ser Pro Ala Ser Glu Pro Ser
165 170 175

Val Cys Thr Val Gly Ala Ser Asp Arg Tyr Asp Arg Arg Ser Ser Phe
180 185 190

Ser Asn Tyr Gly Ser Val Leu Asp Ile Phe Gly Pro Gly Thr Ser Ile
195 200 205

Leu Ser Thr Trp Ile Gly Gly Ser Thr Arg Ser Ile Ser Gly Thr Ser
210 215 220

Met Ala Thr Pro His Val Ala Gly Leu Ala Ala Tyr Leu Met Thr Leu
225 230 235 240

Gly Lys Thr Thr Ala Ala Ser Ala Cys Arg Tyr Ile Ala Asp Thr Ala
245 250 255

Asn Lys Gly Asp Leu Ser Asn Ile Pro Phe Gly Thr Val Asn Leu Leu
260 265 270

Ala Tyr Asn Asn Tyr Gln Ala
275

What is Claimed is:

1. A Proteinase K variant having a modified amino acid sequence of Proteinase K wild-type amino acid sequence, the wild-type amino acid sequence comprising a first loop region, a second loop region, a third loop region, a fourth loop region, a fifth loop region and a sixth loop region; wherein the modified amino acid sequence comprises a substitution at one or more positions in one or more of the loop regions; wherein
 - A. when a substitution occurs in the first loop region, the substitution occurs at one or more of positions 64, 65, 66, 68, 70 or 71; wherein
 - a. when a substitution occurs at position 64, the substituting amino acid is Asp or Glu;
 - b. when a substitution occurs at position 65, the substituting amino acid is Glu;
 - c. when a substitution occurs at position 66, the substituting amino acid is Asn, Asp, Gln, Glu, Pro or Ser;
 - d. when a substitution occurs at position 68, the substituting amino acid is Asn, Asp, Gln, Glu, Pro or Ser;
 - e. when a substitution occurs at position 70, the substituting amino acid is Asn, Asp, Gln, Glu, Pro or Ser; and
 - f. when a substitution occurs at position 71, the substituting amino acid is Asn, Asp, Gln, Glu, Pro or Ser;
 - B. when a substitution occurs in the second loop region, the substitution occurs at one or more of positions 95, 96, 97, 98, 100, 102, 103, 104, 106 or 107; wherein
 - a. when a substitution occurs at position 95, the substituting amino acid is Ala, Asn, Asp, Cys, Gln, Glu, Gly, His, Met, Pro, Ser or Thr;
 - b. when a substitution occurs at position 96, the substituting amino acid is Ala, Asn, Asp, Cys, Gln, Glu, Gly, His, Ile, Met, Pro, Ser, Thr or Val;
 - c. when a substitution occurs at position 97, the substituting amino acid is Glu;

- d. when a substitution occurs at position 98, the substituting amino acid is Glu;
 - e. when a substitution occurs at position 100, the substituting amino acid is Asn, Gln, Pro or Ser;
 - f. when a substitution occurs at position 102, the substituting amino acid is Asn, Gln, Glu, Pro or Ser;
 - g. when a substitution occurs at position 103, the substituting amino acid is Asn or Ser;
 - h. when a substitution occurs at position 104, the substituting amino acid is Asp, His, Ile, Leu, Met, Pro or Val;
 - i. when a substitution occurs at position 106, the substituting amino acid is Asn, Gln, Gly, Pro or Ser; and
 - j. when a substitution occurs at position 107, the substituting amino acid is Ala, Asn, Cys, Gln, Gly, His, Leu, Met, Pro, Ser, Thr or Val;
- C. when a substitution occurs in the third loop region, the substitution occurs at one or more of positions 133, 134, 136, 137, 138, 139 or 140; wherein
- a. when a substitution occurs at position 133, the substituting amino acid is Ala, Asn, Cys, Gln, Gly, His, Met, Pro, Ser, Thr or Val;
 - b. when a substitution occurs at position 134, the substituting amino acid is Asn, Asp, Gln, Glu, Pro or Ser;
 - c. when a substitution occurs at position 136, the substituting amino acid is Asn, Asp, Gln, Glu, Pro or Ser;
 - d. when a substitution occurs at position 137, the substituting amino acid is Asp, His, Ile, Leu, Met or Pro;
 - e. when a substitution occurs at position 138, the substituting amino acid is Asp or Glu;
 - f. when a substitution occurs at position 139, the substituting amino acid is Asp or Glu; and
 - g. when a substitution occurs at position 140, the substituting amino acid is Asp or Glu;

- D. when a substitution occurs in the fourth loop region, the substitution occurs at one or more of positions 161, 162, 163, 164, 165, 166, 167, 168, 169 or 170; wherein
- a. when a substitution occurs at position 161, the substituting amino acid is Gln;
 - b. when a substitution occurs at position 162, the substituting amino acid is Asp, Gln, Glu or Ser;
 - c. when a substitution occurs at position 163, the substituting amino acid is Asp, Gln, Glu or Ser;
 - d. when a substitution occurs at position 164, the substituting amino acid is Asn, Asp, Gln, Glu, Gly, His, Pro, Ser or Thr;
 - e. when a substitution occurs at position 165, the substituting amino acid is Glu;
 - f. when a substitution occurs at position 166, the substituting amino acid is Asn, Asp, Gln, Glu, Gly, His, Pro, Ser or Thr;
 - g. when a substitution occurs at position 167, the substituting amino acid is Asp or Glu;
 - h. when a substitution occurs at position 168, the substituting amino acid is Asp, Gln, Glu or Ser;
 - i. when a substitution occurs at position 169, the substituting amino acid is Asp, His, Ile, Leu, Met or Pro; and
 - j. when a substitution occurs at position 170, the substituting amino acid is Asp or Glu;
- E. when a substitution occurs in the fifth loop region, the substitution occurs at one or more of positions 190, 192, 193 or 194; wherein
- a. when a substitution occurs at position 190, the substituting amino acid is Asp or Glu;
 - b. when a substitution occurs at position 192, the substituting amino acid is Asn, Cys, Gln, His, Ile, Met, Pro, Thr, Tyr or Val;
 - c. when a substitution occurs at position 193, the substituting amino acid is Asp or Glu; and

- d. when a substitution occurs at position 194, the substituting amino acid is Asp, Gln, Glu or Ser; and
- F. when a substitution occurs in the sixth loop region, the substitution occurs at one or more of positions 203, 204, 205, 206, 208, 209, 210, 211, 212, 213, 214, 215, 216, 217, 218, 219, 220, 221, 222 or 223; wherein
 - a. when a substitution occurs at position 203, the substituting amino acid is Asn, Asp, Gln, Glu, Pro or Ser;
 - b. when a substitution occurs at position 204, the substituting amino acid is Asn, Asp, Gln, Glu, Gly or Ser;
 - c. when a substitution occurs at position 205, the substituting amino acid is Asn, Asp, Gln, Glu, Pro or Ser;
 - d. when a substitution occurs at position 206, the substituting amino acid is Asn, Asp, Gln, Glu, Gly, Pro or Ser;
 - e. when a substitution occurs at position 208, the substituting amino acid is Ala, Asn, Asp, Cys, Gln, Glu, Gly, His, Leu, Met, Pro, Ser, Thr or Val;
 - f. when a substitution occurs at position 209, the substituting amino acid is Ala, Asn, Asp, Cys, Gln, Glu, Gly, His, Ile, Met, Pro, Ser, Thr or Val;
 - g. when a substitution occurs at position 210, the substituting amino acid is Asp or Glu;
 - h. when a substitution occurs at position 211, the substituting amino acid is Asn, Asp, Gln, Glu, Pro or Ser;
 - i. when a substitution occurs at position 212, the substituting amino acid is Asp or Glu;
 - j. when a substitution occurs at position 213, the substituting amino acid is Ala, Asn, Asp, Cys, Gln, Glu, Gly, His, Leu, Met, Pro, Ser, Thr or Val;
 - k. when a substitution occurs at position 214, the substituting amino acid is Asn, Gln, Pro or Ser;

- l. when a substitution occurs at position 215, the substituting amino acid is Asn, Asp, Gln, Glu, Pro or Ser;
- m. when a substitution occurs at position 216, the substituting amino acid is Asp or Glu;
- n. when a substitution occurs at position 217, the substituting amino acid is Asn, Asp, Gln, Glu, Gly, Pro or Ser;
- o. when a substitution occurs at position 218, the substituting amino acid is Asp or Glu;
- p. when a substitution occurs at position 219, the substituting amino acid is Asp or Glu;
- q. when a substitution occurs at position 220, the substituting amino acid is Ala, Asn, Asp, Cys, Gln, Glu, Gly, His, Leu, Met, Pro, Ser, Thr or Val;
- r. when a substitution occurs at position 221, the substituting amino acid is Asp or Glu;
- s. when a substitution occurs at position 222, the substituting amino acid is Asn, Asp, Gln, Glu, Pro or Ser; and
- t. when a substitution occurs at position 223, the substituting amino acid is Asn, Asp, Gln, Glu, Pro or Ser;

whereby the Proteinase K variant has decreased adsorption to, and increased hydrolysis of, an insoluble substrate as compared to wild-type Proteinase K.

- 2. The Proteinase K variant of Claim 1, wherein one or more substitutions occur in the first loop region.
- 3. The Proteinase K variant of Claim 1, wherein one or more substitutions occur in the second loop region.
- 4. The Proteinase K variant of Claim 1, wherein one or more substitutions occur in the third loop region.

5. The Proteinase K variant of Claim 1, wherein one or more substitutions occur in the fourth loop region
6. The Proteinase K variant of Claim 1, wherein one or more substitutions occur in the fifth loop region
7. The Proteinase K variant of Claim 1, wherein one or more substitutions occur in the sixth loop region
8. A cleaning composition selected from the group consisting of a hard surface cleaning composition, a dishwashing composition, an oral cleaning composition, a denture cleansing composition, a contact lens cleaning composition and a fabric cleaning composition, characterized in that the cleaning composition comprises the Proteinase K variant of any of Claims 1-7 and a cleaning composition carrier; preferably the cleaning composition is a hard surface cleaning composition or a fabric cleaning composition; preferably the composition comprises at least about 5% surfactant and at least about 5% builder, by weight of the composition; preferably the composition further comprises cleaning composition materials selected from the group consisting of solvents, buffers, enzymes, soil release agents, clay soil removal agents, dispersing agents, brighteners, suds supressors, fabric softeners, suds boosters, enzyme stabilizers, bleaching agents, dyes, perfumes, and mixtures thereof.
9. A DNA sequence encoding the Proteinase K variant of any of Claims 1-7.

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification : C12N 15/57, 9/58, C11D 3/386		A3	(11) International Publication Number: WO 96/28556 (43) International Publication Date: 19 September 1996 (19.09.96)
(21) International Application Number: PCT/US96/03005 (22) International Filing Date: 6 March 1996 (06.03.96) (30) Priority Data: 08/401,574 9 March 1995 (09.03.95) US		(81) Designated States: AL, AM, AT, AU, AZ, BB, BG, BR, BY, CA, CH, CN, CZ, DE, DK, EE, ES, FI, GB, GE, HU, IS, JP, KE, KG, KP, KR, KZ, LK, LR, LS, LT, LU, LV, MD, MG, MK, MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, TJ, TM, TR, TT, UA, UG, UZ, VN, ARIPO patent (KE, LS, MW, SD, SZ, UG), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, ML, MR, NE, SN, TD, TG).	
(71) Applicant: THE PROCTER & GAMBLE COMPANY [US/US]; One Procter & Gamble Plaza, Cincinnati, OH 45202 (US). (72) Inventors: BRODE, Philip, Frederick, III; 5780 Squirrelsnest Lane, Cincinnati, OH 45252 (US). BARNETT, Bobby, Lee; 12175 Elkwood Drive, Cincinnati, OH 45240 (US). RUBINGH, Donn, Nelson; 8224 Sheed Road, Cincinnati, OH 45247 (US). (74) Agents: REED, T., David et al.; The Procter & Gamble Company, 5299 Spring Grove Avenue, Cincinnati, OH 45217 (US).		Published <i>With international search report.</i> <i>Before the expiration of the time limit for amending the claims and to be republished in the event of the receipt of amendments.</i> (88) Date of publication of the international search report: 17 July 1997 (17.07.97)	
<p>(54) Title: PROTEINASE K VARIANTS HAVING DECREASED ADSORPTION AND INCREASED HYDROLYSIS</p> <p>(57) Abstract</p> <p>The present invention relates to proteinase K variants having a modified amino acid sequence of wild-type proteinase K amino acid sequence, the wild-type amino acid sequence comprising a first loop region, a second loop region, a third loop region, a fourth loop region, a fifth loop region and a sixth loop region; wherein the modified amino acid sequence comprises different amino acids than that occurring in wild-type proteinase K (i.e., substitution) at specifically identified positions in one or more of the loop regions whereby the proteinase K variant has decreased adsorption to, and increased hydrolysis of, an insoluble substrate as compared to the wild-type proteinase K. The present invention also relates to DNA sequences encoding such proteinase K variants. The present invention also relates to compositions comprising such proteinase K variants for cleaning a variety of surfaces.</p>			

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AM	Armenia	GB	United Kingdom	MW	Malawi
AT	Austria	GE	Georgia	MX	Mexico
AU	Australia	GN	Guinea	NE	Niger
BB	Barbados	GR	Greece	NL	Netherlands
BE	Belgium	HU	Hungary	NO	Norway
BF	Burkina Faso	IE	Ireland	NZ	New Zealand
BG	Bulgaria	IT	Italy	PL	Poland
BJ	Benin	JP	Japan	PT	Portugal
BR	Brazil	KE	Kenya	RO	Romania
BY	Belarus	KG	Kyrgyzstan	RU	Russian Federation
CA	Canada	KP	Democratic People's Republic of Korea	SD	Sudan
CF	Central African Republic	KR	Republic of Korea	SE	Sweden
CG	Congo	KZ	Kazakhstan	SG	Singapore
CH	Switzerland	LI	Liechtenstein	SI	Slovenia
CI	Côte d'Ivoire	LK	Sri Lanka	SK	Slovakia
CM	Cameroon	LR	Liberia	SN	Senegal
CN	China	LT	Lithuania	SZ	Swaziland
CS	Czechoslovakia	LU	Luxembourg	TD	Chad
CZ	Czech Republic	LV	Latvia	TG	Togo
DE	Germany	MC	Monaco	TJ	Tajikistan
DK	Denmark	MD	Republic of Moldova	TT	Trinidad and Tobago
EE	Estonia	MG	Madagascar	UA	Ukraine
ES	Spain	ML	Mali	UG	Uganda
FI	Finland	MN	Mongolia	US	United States of America
FR	France	MR	Mauritania	UZ	Uzbekistan
GA	Gabon			VN	Viet Nam

INTERNATIONAL SEARCH REPORT

International Application No
PCT/US 96/03005

A. CLASSIFICATION OF SUBJECT MATTER
 IPC 6 C12N15/57 C12N9/58 C11D3/386

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)
 IPC 6 C12N

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practical, search terms used)

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category *	Citation of document with indication, where appropriate, of the relevant passages	Relevant to claim No.
X	EP 0 405 901 A (UNILEVER PLC ;UNILEVER NV (NL)) 2 January 1991 see page 15, line 21 - page 19, line 42 ---	1,2,8,9
Y	JOURNAL OF CELLULAR BIOCHEMISTRY, vol. 18D, 1994, page 151 XP000651912 P. BRODE ET AL: "Surface active variants of subtilisin BPN': interfacial hydrolysis" see abstract S307	1,2,9
Y	WO 89 09819 A (GENEX CORP) 19 October 1989 see claim 1; table 2 ---	8 1,2,8,9
		-/-

Further documents are listed in the continuation of box C.

Patent family members are listed in annex.

* Special categories of cited documents :

- *A* document defining the general state of the art which is not considered to be of particular relevance
- *E* earlier document but published on or after the international filing date
- *L* document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
- *O* document referring to an oral disclosure, use, exhibition or other means
- *P* document published prior to the international filing date but later than the priority date claimed

T later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention

X document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone

Y document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art

& document member of the same patent family

3

Date of the actual completion of the international search

Date of mailing of the international search report

14 March 1997

30.05.97

Name and mailing address of the ISA
 European Patent Office, P.B. 5812 Patentlaan 2
 NL - 2280 HV Rijswijk
 Tel. (+ 31-70) 340-2040, Tx. 31 651 epo nl.
 Fax (+ 31-70) 340-3016

Authorized office

VAN DER SCHAAL C.A.

INTERNATIONAL SEARCH REPORT

Inte
onal Application No
PCT/US 96/03005

C(Continuation) DOCUMENTS CONSIDERED TO BE RELEVANT

Category	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
Y	PROTEIN ENGINEERING, vol. 4, no. 7, 1 January 1991, pages 719-737, XP002008733 SIEZEN R J ET AL: "HOMOLOGY MODELLING AND PROTEIN ENGINEERING STRATEGY OF SUBTILASES, THE FAMILY OF SUBTILISIN-LIKE SERINE PROTEINASES" see the whole document ---	1,2,8,9
A	CHEMICAL ABSTRACTS, vol. 116, no. 23, 8 June 1992 Columbus, Ohio, US; abstract no. 230623, BRODE, P. F., III ET AL: "Subtilisin BPN': activity on an immobilized substrate" XP002027110 cited in the application see abstract & LANGMUIR (1992), 8(5), 1325-9 CODEN: LANGD5; ISSN: 0743-7463, 1992, ---	
P,X	WO 95 30011 A (PROCTER & GAMBLE) 9 November 1995 see the whole document ---	1,2,8,9
P,X	WO 95 30010 A (PROCTER & GAMBLE) 9 November 1995 see the whole document -----	1,2,8,9

INTERNATIONAL SEARCH REPORT

International application No

PCT/US 96/03005

Box I Observations where certain claims were found unsearchable (Continuation of item 1 of first sheet)

This International Search Report has not been established in respect of certain claims under Article 17(2)(a) for the following reasons:

1. Claims Nos.: because they relate to subject matter not required to be searched by this Authority, namely:

2. Claims Nos.: because they relate to parts of the International Application that do not comply with the prescribed requirements to such an extent that no meaningful International Search can be carried out, specifically:

3. Claims Nos.: because they are dependent claims and are not drafted in accordance with the second and third sentences of Rule 6.4(a).

Box II Observations where unity of invention is lacking (Continuation of item 2 of first sheet)

This International Searching Authority found multiple inventions in this international application, as follows:

6 inventions * see continuation-sheet PCT/ISA/210 *

1. As all required additional search fees were timely paid by the applicant, this International Search Report covers all searchable claims.

2. As all searchable claims could be searched without effort justifying an additional fee, this Authority did not invite payment of any additional fee.

3. As only some of the required additional search fees were timely paid by the applicant, this International Search Report covers only those claims for which fees were paid, specifically claims Nos.:

4. No required additional search fees were timely paid by the applicant. Consequently, this International Search Report is restricted to the invention first mentioned in the claims; it is covered by claims Nos.:

2 and, partially, 1,8,9

Remark on Protest

- The additional search fees were accompanied by the applicant's protest
- No protest accompanied the payment of additional search fees.

INTERNATIONAL SEARCH REPORT

International Application No. PCT/US 96/03005

FURTHER INFORMATION CONTINUED FROM PCT/USA/

1. claim 2 and, partially, 1,8,9:

Proteinase K variants having modified amino acids in the first loop region, DNA encoding and cleaning compositions containing the enzyme

2. claim 3 and, partially, 1,8,9:

Proteinase K variants having modified amino acids in the second loop region, DNA encoding and cleaning compositions containing the enzyme

3. claim 4 and, partially, 1,8,9:

Proteinase K variants having modified amino acids in the third loop region, DNA encoding and cleaning compositions containing the enzyme.

4. claim 5 and, partially, 1,8,9:

Proteinase K variants having modified amino acids in the fourth loop region, DNA encoding and cleaning compositions containing the enzyme

5. claim 6 and, partially, 1,8,9:

Proteinase K variants having modified amino acids in the fifth loop region, DNA encoding and cleaning compositions containing the enzyme

6. claim 7 and, partially, 1,8,9,:
7.

Proteinase K variants having modified amino acids in the sixth loop region, DNA encoding and cleaning compositions containing the enzyme

INTERNATIONAL SEARCH REPORT

Information on patent family members

Inte	onal Application No
	PCT/US 96/03005

Patent document cited in search report	Publication date	Patent family member(s)	Publication date
EP 0405901 A	02-01-91	CA 2034486 A WO 9100334 A JP 4500385 T EP 0405902 A WO 9100335 A JP 4500384 T	27-12-90 10-01-91 23-01-92 02-01-91 10-01-91 23-01-92
WO 8909819 A	19-10-89	US 4990452 A EP 0409892 A JP 3503604 T US 5116741 A	05-02-91 30-01-91 15-08-91 26-05-92
WO 9530011 A	09-11-95	AU 1253695 A AU 2294495 A AU 8079794 A CA 2173105 A CA 2173106 A CA 2189427 A CN 1137288 A CN 1137289 A CZ 9601052 A CZ 9601053 A EP 0723579 A EP 0723580 A EP 0758389 A WO 9510591 A WO 9510592 A	04-05-95 29-11-95 04-05-95 20-04-95 20-04-95 09-11-95 04-12-96 04-12-96 11-09-96 11-09-96 31-07-96 31-07-96 19-02-97 20-04-95 20-04-95
WO 9530010 A	09-11-95	AU 2159195 A AU 2293195 A CA 2189426 A EP 0758388 A EP 0758373 A FI 964411 A NO 964590 A WO 9529979 A ZA 9502220 A AU 7870394 A BR 9407502 A CA 2170491 A	29-11-95 29-11-95 09-11-95 19-02-97 19-02-97 01-11-96 30-10-96 09-11-95 14-12-95 03-04-95 07-01-97 23-03-95

INTERNATIONAL SEARCH REPORT

Information on patent family members

International Application No.

PCT/US 96/03005

Patent document cited in search report	Publication date	Patent family member(s)	Publication date
WO 9530010 A		CN 1134728 A	30-10-96
		CZ 9600791 A	12-06-96
		EP 0719339 A	03-07-96
		JP 9502610 T	18-03-97
		NO 961067 A	15-05-96
		WO 9507991 A	23-03-95