El algoritmo A:
$\ell \colon E(4) \to \mathbb{R}_{>0}$
Problema: Sea 9 un grafo con peros positivos en las aristas
y sea T una colección de verticos de salida marcados.
Iniciando en un vértice 5 que remos saber cómo alcontar algún
vi-Fire de salida t eT con el mínimo costo posible?
Más precisarente quevenos resolver el poblema
$f^* = \min_{v \in T} \left[S(s, v) \right]$
VEL 1
donde S(s,v) = min { l(P): Pes in camillo de savy,
El algoritmo A nos permite encontrar una solución
ÓPTIMA a este poblema isado menos tiempo de
busqueda que Dijkstu Si Disponemos DE UNA
HEURÍSTICA ADMISIBLE.
Deg: Una heuristica es una fonción h: V(q) -> R. (inhibivamente h(v) es una "aproximación" paa el
costa total del problema iniciando en el vértice v)
Una houristica admissible es ma función h: V(4) -> R
que estima el costo por debajo, es decir que cumple
$h(x) \leq \min h(x, y)$
veT
pas todo vértice x c V(G).

```
Algoritmo A en pseudo código: (con heurística h)
                               , Contenda paejos (valor vértices)
X \leftarrow Set()
```

a - priority Overe () < y ← map () ← Estimados (l'de l'osto mínho de s a V previous = map() = Recordaní deciriones óptimos

Inicialización: s v2 v3 ... VNJ-vétie de G Prev [NULL NULL ... NULL]

Q. insert ((0,s))

Ejecvaion:

while not Q. empty:

u = Q. extract_min ()

X - X U {u}

Signe la función previterativamente desde u hasta Sy retorna la liste revesala de arista.

if uET: return (Reconstruct path (prev , s, u))

else:

for v ∈ u. neighbors () alt = p [n] + lu,v) heuristica if alt < q [v] y[v] = a|tEstina el 7f = Y[v] + h(v) & a. insert ((f, V)) prev [v] = L


```
Depha
Dem: \Delta := \{ n \in X : n \in \mathbb{P} \}
  entanus SE △ (lægo △≠ Ø)
            u& A (presuxX)
   así que existe un índia mínimo Va lo logo de P
   en el que salimo, de A y sea w el vértie eX
   innediatante artion. Como NE X sabemos que
   par todos los recinos y en primal par V se
   comple que
              y[v] < y[w] + l(w, v)

( ) - weΔ
                         δ(s,w) + L(w,v)
                           De Pes S-óptio.
     Como P[V] > 8(s,v) siempe, se tree la ignaldad.
Lema: Asura que h es ma heuristica admisible.
Paa todo camino óptinoPde s a algún nodo t El
 \exists v \in O \quad con \quad f(v) \leqslant f^*
Dem: Por el lema artino existe VEP, VEO
        con y[v] = S(S,v). De aquí:

| heart shick | admissible |
      f[v] = y[v] + hcv] = S(s,v) + h(v) \leq
          < 8(S, V) + min 8(v,a) (=) 8(S, V) + 8(v,t)
                                  ophralided de 11
```

Teorema [validez de A*] Una heuristica admisible siempre

Ileva a que A* termhe con un cambo óptimo.

Dem: Por el lema antivor en cualquer institut hoy

escogenius válidas con f \(\int \int \) en el \(\Omega_{\text{o}} \)

Si el algoritmo termina de manea no \(\int \int \int \)

es porque sac\(\int \) m nodo terminal t*

que tiere mínimo \(\int \int \int \) = \(\int \int \int \int \int \)

lugo \(\phi \) [t*] > \(\int \)

Segul el lema antivo \(\omega \) \(\int \int \)

en el paso antion en \(\Omega \) lo (val es una contradicción.

Obs: Paa constrin heuristicus admisibles
necentamos cotas inferiores poa
Min [S(V,t)]
teT

Por ejemplo

