Backpropagation

Hung-yi Lee

李宏毅

Gradient Descent

Network parameters
$$\theta = \{w_1, w_2, \dots, b_1, b_2, \dots\}$$

$$\theta^0 \longrightarrow \theta^1 \longrightarrow \theta^2 \longrightarrow \cdots$$

Parameters
$$\nabla L(\theta) \qquad \qquad Compute \ \nabla L(\theta^0) \qquad \theta^1 = \theta^0 - \eta \nabla L(\theta^0)$$

$$= \begin{bmatrix} \partial L(\theta)/\partial w_1 \\ \partial L(\theta)/\partial w_2 \\ \vdots \\ \partial L(\theta)/\partial b_1 \\ \partial L(\theta)/\partial b_2 \\ \vdots \end{bmatrix} \qquad \text{Millions of parameters}$$

$$To compute \ \text{the gradients efficiently,}$$
 we use
$$\underline{backpropagation}.$$

Compute
$$\nabla L(\theta^0)$$
 $\theta^1 = \theta^0 - \eta \nabla L(\theta^0)$

Compute
$$\nabla L(\theta^1)$$

$$\theta^2 = \theta^1 - \eta \nabla L(\theta^1)$$

Chain Rule

Some preliminaries

Case 1

$$y = g(x)$$
 $z = h(y)$

$$\Delta x \xrightarrow{\mathbf{g}} \Delta y \xrightarrow{\mathbf{h}} \Delta z$$

$$\frac{dz}{dx} = \frac{dz}{dy} \frac{dy}{dx}$$

Case 2

$$x = g(s)$$
 $y = h(s)$ $z = k(x, y)$

$$\Delta s = \frac{\partial z}{\partial x} \frac{\partial x}{\partial s} + \frac{\partial z}{\partial y} \frac{\partial y}{\partial s}$$

Backpropagation

Ignore the superscript n here. N = N(One data at a time.)

$$L(\theta) = \sum_{n=1}^{N} l^{n}(\theta) \qquad \frac{\partial L(\theta)}{\partial w} = \sum_{n=1}^{N} \frac{\partial l^{n}(\theta)}{\partial w}$$

Look at this part first.

We can just understand this part.

Backpropagation

Backpropagation – Forward pass

Compute $\partial z/\partial w$ for all parameters

Backpropagation – Forward pass

Compute $\partial z/\partial w$ for all parameters It's just the input.

Compute $\partial l/\partial z$ for all <u>activation function</u> inputs $z \Rightarrow 3$ It's sigmoid a W_1 in this example. χ_1 $a = \sigma(z)$ 4 b W_2 3 χ_2 $\sigma(z)$ $\partial a \partial l$ ∂l complex $\sigma'(z)$ 0.2 easy

Compute $\partial l/\partial z$ from the output layer \Rightarrow @

Compute $\partial l/\partial z$ from the output layer \Rightarrow 4

If we know the latter, we can calculate the front. 10/17

Amplifier (It's multiplication, not addition.)

Compute $\partial l/\partial z$ from the output layer \Rightarrow 4

12/1

Compute $\partial l/\partial z$ from the output layer \Rightarrow 4

Case 2. Not Output Layer If we are NOT at the last layer.

Compute $\partial l/\partial z$ from the output layer \Rightarrow 4

14/17

Forward pass

Compute $\partial l/\partial z$ for all activation function inputs z \Rightarrow 3

Compute $\partial l/\partial z$ from the output layer \Rightarrow 4 Backward pass

Compute $\partial l/\partial z$ for all activation function inputs $z \Rightarrow 0$ Compute $\partial l/\partial z$ from the output layer $\Rightarrow 0$

Backpropagation – Summary

Forward Pass Backward Pass complex easy for all w