Εναέρια λήψη εικόνας - Πρώτη τεχνική έκθεση: Μελέτη σύστασης/κατασκευής πλήρους συστήματος εναέριας λήψης εικόνας

Καφετζής Δημήτριος Ανδρέας

13 Σεπτεμβοίου 2012

Περίληψη

Με την αναφορά αυτή επιχειρείται να αποσαφηνιστεί το ίδιο το σύστημα της εναέριας λήψης εικόνας. Παρουσιάζονται τα επί μέρους τμήματα και προτείνονται λύσεις.

Περιεχόμενα

118	εφιεχομενα	2
K	ατάλογος Σχημάτων	4
K	ατάλογος Πινάκων	5
1	Εισαγωγή 1.1 Σκοπός	
2	Τεχνική ανάλυση 2.1 Εισαγωγή	10 10 20 26
3	Νομική ανάλυση 3.1 Νομικό πλαίσιο μη επανδρωμένων εναέριων μηχανών 3.2 Νομικό πλαίσιο τηλεπικοινωνιών	
4	Προτεινόμενα ολοκληρωμένες λύσεις	34

Κατάλογος σχημάτων

2.1	DJI Spreading Wings S800 [πηγή]	14
2.2	Cinestar 6 [πηγή]	14
2.3	Droidworx AD-6HL [πηγή]	14
2.4	Droidworx SkyJib 6 [πηγή]	14

Κατάλογος πινάκων

2.1	Μοντέλα εξαπτέρων	15
2.2	Μοντέλα οχταπτέρων	18
	Μοντέλα αυτόματων πιλότων	
2.4	Μοντέλα gimbal	35
2.5	M	3(

Κεφάλαιο 1

Εισαγωγή

1.1 Σκοπός

Σκοπός μας είναι η σύνθεση και κατασκευή ενός συστήματος εναέριας λήψης φωτογραφιών και βίντεο υψηλής ανάλυσης σε ποικίλες καιρικές συνθήκες. Τα συστήματα αυτά χαρακτηρίζονται ως μη επανδρωμένες εναέριες μηχανές (Uav, Unmanned aerial vehicle)

1.2 Γενικές απαιτήσεις

Η κατασκευή και η λειτουργία του συστήματος θα πρέπει να γίνει λαμβάνοντας υπόψιν τους παρακάτω παραμέτρους:

- Ασφάλεια εξοπλισμού και περιβάλλοντος
- Ευχρηστία πτήσης και λήψης εικόνας
- Λειτουργικότητα πτήσης και λήψης εικόνας
- Ποιότητα εξοπλισμού, πτήσης και λαμβανόμενης εικόνας
- Διάρκεια πτήσης και λαμβανόμενης εικόνας Κόστος

Ασφάλεια Το σύστημα θα πρέπει να είναι ασφαλές, αφενός για τον εαυτό του με σκοπό την προστασία του εξοπλισμού και την αποφυγή καταπόνησης του και αφετέρου για τους χρήστες και το ευρύτερο περιβάλλον στο οποίο θα λειτουργεί.

Ευχοιστία Το σύστημα όντας εύχοιστο θα μας απαλλάξει από δυσάρεστες καταστάσεις. Απαιτούμενος σκοπός είναι η πτήση και η λήψη εικόνας να γίνονται όσο το δυνατόν ομαλά και ευχάριστα για τους χειριστές. Η εμπλεκόμενες διαδικασίες θα πρέπει να είναι αυτοματοποιημένες σε μεγάλο βαθμό δίνοντας τη δυνατότητα στους χειριστές να επικεντρωθούν στην ποιότητα του τελικού αποτελέσματος.

Λειτουργικότητα Θα πρέπει να παρέχονται οι κατάλληλες προϋποθέσεις στους χειριστές του συστήματος για την παραγωγή υψηλής ποιότητας εικόνας και μεγάλου αισθητικού ενδιαφέροντος.

Ποιότητα Ο παράγοντας αυτός αφορά τόσο τα κατασκευαστικά χαρακτηριστικά του εξοπλισμού, όσο και την ποιότητα της πτήσης και
της καταγραφόμενης εικόνας. Ο εξοπλισμός οφείλεται να αντέξει στο
χρόνο με εμφάνιση ελαχίστων προβληματικών εξαρτημάτων ή υποσυστημάτων και με διακριτική συντήρηση τους. Επιπλέον, η πτήση αναμένεται να είναι τόσο ομαλή και ανεπηρέαστη από τις διάφορες καιρικές συνθήκες (αέρας, βροχή, χιόνι) ώστε να αποτελεί αιτία για λήψη
χαμηλής ποιότητας φωτογραφιών και βίντεο. Αναφορικά με την ίδια
την ποιότητα της λαμβανόμενης εικόνας επιθυμείτε να είναι η μέγιστη
δυνατή αν όχι υψηλής ανάλυσης (high definition).

Διάρκεια Το σύστημα θα πρέπει να επιτρέπει την αδιάλειπτη καταγραφή εικόνας για μεγάλο χρονικό διάστημα. Ως ενδεικτικός χρόνος συνεχόμενης πτήσης αναφέρονται τα σαράντα (40) λεπτά, ενώ για το χρόνο καταγραφής οι δύο (2) με δυόμιση (2 και 1/2) ώρες.

Κόστος Το κόστος απαιτείται να κυμανθεί στο χαμηλότερο δυνατό επίπεδο. Η σύσταση του συστήματος οφείλεται να γίνει λαμβάνοντας υπόψιν τον υπάρχων εξοπλισμό.

Κεφάλαιο 2

Τεχνική ανάλυση

2.1 Εισαγωγή

Στο κεφάλαιο αυτό θα παρουσιάσουμε τα μέρη από τα οποία θα αποτελείται το σύστημα. Θα καταγραφούν τα χαρακτηριστικά που πρέπει να έχει το κάθε τμήμα του ώστε να πληρούνται οι απαιτήσεις που τέθηκαν στο προηγούμενο κεφάλαιο.

Ας ξεκαθαρίσουμε από τι μέρη θα αποτελείται το εν λόγω σύστημα.

- πλατφόρμα πτήσης
- πλατφόρμα προσγείωσης
- αυτόματος πιλότος
- χειοοκίνητη πτήση
- επίγειος σταθμός ελέγχου πτήσης
- πλατφόρμα της μηχανής
- αυτόματος πιλότος για πλατφόρμα της μηχανής
- μηχανή
- επίγειος σταθμός ελέγχου της μηχανής
- εναέριος σταθμός μετάδοσης εικόνας
- επίγειος σταθμός λήψης σύγχρονης εικόνας
- επίγειος σταθμός καταγραφής της εικόνας

2.2 Πτητική μηχανή

2.2.1 Πλατφόρμα πτήσης και προσγείωσης

πλατφόρμα πτήσης Αναφέρεται στην πτητική συσκευή. Για λόγους ευστάθειας, ασφάλειας, ευχρηστίας, συντήρησης οδηγούμαστε στην επιλογή ενός ηλεκτρικού μέσου και συγκεκριμένα ενός πολυπτέρου. Το πλήθος των κινητήρων δεν έχει αποσαφηνιστεί. Επιλογές αποτελούν τα εξάπτερα και τα οχτάπτερα.

Κάθε πολύπτερο απαρτίζεται από τον σκελετό, τους κινητήρες, τους ελεγκτές των κινητήρων και τους έλικες. Στην αγορά διατίθενται μοντέλα που περιλαμβάνουν όλα αυτά τα υποσυστήματα και μοντέλα που αποτελούνται μόνο από το σκελετό δίνοντας την ευελίξία για την χρήση κινητήρων της επιλογής μας. Για τα τελευταία μοντέλα θα χρειαστεί η συμβουλή και η πιθανότητα η συναρμολόγηση τους από ειδικό πάνω στον

Η πλατφόςμα αυτή μαζί με τη βάση για τη μηχανή αποτελούν τα κυριότερα υποσυστήματα αφού θα καθορίσουν και την επιλογή των υπολοίπων. Στα βασικά χαρακτηριστικά της πτητικής πλατφόςμας πρέπει να περιλαμβάνονται η εύκολη και γρήγορη συναρμολόγηση της, η ανύψωση όσο το δυνατόν μεγαλύτερου φορτίου, η προστασία του περιβάλλοντος της από τους περιστρεφόμενους έλικες. Επιπλέον, η μεγαλύτερη δυνατή παρουσία στον αέρα και αντιμετώπιση διαφορετικών καιρικών συνθηκών αποτελούν σημαντικοί παράγοντες.

πλατφόρμα προσγείωσης Αναφέρεται στα "πόδια" του συστήματος. Συνήθως αποτελούν ενιαίο τμήμα με την πλατφόρμα πτήσης.

Οι εταιρίες που δραστηριοποιούνται στο χώρο των πολυπτέρων διαθέτουν όλες τους μοντέλα που ικανοποιούν επί το πλείστον τις απαιτήσεις μας. Έχουν ικανοποιητική δύναμη για να ανυψώσουν το βάρος όλου του συστήματος, συναρμολογούνται μέσα σε 5 με 10 λεπτά και μπορούν να συντηρηθούν εύκολα και γρήγορα. Επιπλέον, τα προτεινόμενα συστήματα υποστηρίζονται συνεχώς από τις κατασκευάστριες εταιρίες με αποτέλεσμα να διορθώνονται τυχόν δυσλειτουργίες, να παρουσιάζονται αναβαθμίσεις παρουσιάζονται και να μην υπάρχει έλλειψη ανταλλακτικών.

Από τα απαιτούμενα χαρακτηριστικά κανένα από τα προτεινόμενα μοντέλα δεν διαθέτει σύστημα προστασίας από τους περιστρεφόμενους έλικες. Γενικά η αγορά υπολείπεται στον τομέα αυτό. Έχουν υπάρξει κάποιες προσπάθειες αλλά δεν αποτελούν αξιόπιστη λύση. Η μόνη εν αναμονή λύση προέρχεται από την εταιρία Safeflight Copters'. Δυστυχώς όμως δεν έχει φτάσει ακόμα στο στάδιο της διάθεσης.

Τέλος, μόνο η εταιρία Droidworx προσφέρει σύστημα προστασίας του εξοπλισμού. Συγκεκριμένα στο πάνω μέρος της πλατφόρμας τοποθετούνται προστατευτικές μπάρες ή προστατευτικό κάλυμμα, το οποίο κάλυμμα προφυλάσσει και από βροχή.

Εξάπτερα μοντέλα

Στον πίνακα 2.1 παρουσιάζονται τα προτεινόμενα μοντέλα.

DJI Spreading Wings S800 Εξάπτερο της εταιρίας DJI που ενσωματώνει και το σύστημα προσγείωσης. Κεντρικό εξάρτημα αποτελεί η κεντρική πλατφόρμα στην οποία ενσωματώνονται τα υπόλοιπα συστήματα. Διαθέτει και ειδικό χώρο για την ΙΜU μονάδα του αυτόματου πιλότου της ίδιας της εταιρίας. Επιπλέον, οι βραχίονες έχουν ενσωματωμένους τα κυκλώματα οδήγησης των κινητήρων και τα απαραίτητα καλώδια. Γενικά, αποτελεί μία στιβαρή κατασκευή, με αρκετά προσεγμένο σχεδιασμό και οργανωμένη διάταξη των εξαρτημάτων.

Παρατίθενται δείγματα δουλειάς του συγκεκριμένου εξαπτέρου:

- DJI video 1
- DJI S800- quick installation video
- DJI S800 stationary flight
- DJI Z15 carrying a Sony Nex 5n mounted on a DJI S800
- dji s800 hexacopter with zenmuse head and sony nex-5n

ιστοσελίδα: http://safeflightcopters.com/

FreeFly Cinestar 6 Εξάπτερο της Freefly Systems με χαρακτηριστικά την εύκολη συναρμολόγηση και την προσοχή που έχει δοθεί στη σταθερότητα του, δηλαδή στη μείωση της δόνησης που δέχεται το σύστημα της φωτογραφικής μηχανής.

Παρατίθενται δείγματα δουλειάς του συγκεκριμένου εξαπτέρου:

- DJI video 1
- Payload test
- Cinestar 6 and Cinestar gimbal
- Cinestar 6
- Cinestar 6 above Nab2012
- FreeFly Radian Stabiliser/Cinestar 6/Photohigher Av130/Panasonic GH2

Droidworx AD-6HL Εξάπτερο της Droidworx φτιαγμένο από ανθρακονήματα και σχεδιασμένο για ανύψωση αυξημένου φορτίου. Συνδυάζεται με αρκετά συστήματα αυτόματων πιλότων και παρέχει τη δυνατότητα για 360 μοίρες θέαση με το να υποστηρίζει πλατφόρμες φωτογραφικής μηχανής που ενσωματώνουν το σύστημα προσγείωσης. Όσον αφορά τις υποστηριζόμενες μηχανές αυτές είναι οι Samsung HMX-Q10, Panasonic GH2 και Canon 550d.

Droidworx Skyjib 6 Εξάπτερο της Droidworx όπως και το προηγούμενο, αλλά αποτελεί το μεγαλύτερο πολύπτερο της εταιρίας. Είναι κατασκευασμένο για να σηκώνει μέχρι και 10 κιλά (π.χ. τη μηχανή Red Epic) διατηρώντας τα υπόλοιπα πλεονεκτήματα του προηγούμενου μοντέλου.

Ένα βασικό πλεονέκτημα των δυο παραπάνω μοντέλων αποτελεί το προστατευτικό κάλυμμα το οποίο μπορεί να τοποθετηθεί στο πάνω μέρος της πλατφόρμας πτήσης.

Παρατίθενται δείγματα δουλειάς των συγκεκριμένων εξαπτέρων:

- Droidworx AD-6HLE Hexaprod Promo Video
- Panasonic GH2 on Droidworx AD-6 Hexakopter
- FPV flight with AD6 and Panny GH2 over Steamboat Lake
- SkyJib 6X flying Red
- Droidworx CS series flight testing

Σχήμα 2.1: DJI Spreading Wings S800 [πηγή]

Σχήμα 2.2: Cinestar 6 [πηγή]

Σχήμα 2.3: Droidworx AD-6HL [πηγή]

Σχήμα 2.4: Droidworx Sky Jib 6 [πηγή]

Πίνακας 2.1: Μοντέλα εξαπτέρων

Μοντέλο	DJI Spreading Wings S800	Cinestar 6	AD-6HL	SkyJib 6
	DJI Innovations dji-innovations	0 0	Droidworx Droidworx	Droidworx Droidworx
		Χαρακτηριστικά		
βάρος απογεί- ωσης (κιλά)	5-7	5,8 (μέγιστο)	4,2	6,6
βάρος φορτίου -πλατφόρμας και gimbal (κιλά)	0-2,5	2,6	1,75	3
μπαταρίες	LiPo (6S, 10000mAh 15000m 15C(Min))	Ah,		
μέγιστη κατα- νάλωση (watt)	2100W			

κατανάλωση αιώρησης (watt)	720W (με 6 κιλά βάρος)			
0 700	16 λεπτά (@10000mAh & 6κιλά βάρος)			
τάση τροφοδο- σίας κινητήρων	6S LiPo			
υποστηριζόμενες μηχανές	Nex5-7, Panasonic GH2	a GoPro to a Red Epic	Samsung HMX- Q10, Panasonic GH2, Canon 550d	Up to Red Scarlet class camera
προτεινόμενα gimbal	Zenmuse Z15	cinestar 3-axis	AV-200/360 - AV130/360	AV200

ολοκληρώθηκε ο πίνακας 2.1

Οχτάπτερα

Στον πίνακα 2.2 παρουσιάζονται τα προτεινόμενα μοντέλα.

 $\chi \chi \chi$

Παρατίθενται δείγματα δουλειάς του συγκεκριμένου οχταπτέρου :

XXXX

Πίνακας 2.2: Μοντέλα οχταπτέρων

Μοντέλο	Cinestar 8	Droidworx V3	AD8	SkyJib 8
Κατασκευαστής Ιστοσελίδα				
	2	Χαρακτηριστικά		
βάρος απογεί- ωσης (κιλά)				
βάρος φορτίου -πλατφόρμας και gimbal (κιλά)				
μπαταρίες				
μέγιστη κατα- νάλωση (watt)				
κατανάλωση αιώρησης (watt)				70

ο πίνακας συνεχίζεται στην επόμενη σελίδα

συνέχεια του πίνακα 2.2

μέγιστος χρόνος αιώρησης (λεπτά)

τάση τροφοδοσίας κινητήρων υποστηριζόμενες μηχανές προτεινόμενα gimbal

ολοκληρώθηκε ο πίνακας 2.2

2.2.2 Αυτόματος πιλότος και χειριστήριο εδάφους

αυτόματος πιλότος Για την εξασφάλιση τόσο της ασφάλειας πολυπτέρου και περιβάλλοντος, όσο και της ποιότητας του αποτελέσματος κρίνεται απαραίτητος. Διαθέτοντας αυτόν, το πολύπτερο μπορεί να αιωρείται μόνο του χωρίς την παρέμβαση του ανθρώπου από το έδαφος, ελαχιστοποιώντας με αυτόν τον τρόπο τις αναταράξεις που μπορεί να επιφέρει η χειροκίνητη καθοδήγηση. Επίσης, σημαντικό αποτελεί το γεγονός ότι χάνοντας το σήμα δεν καταρρίπτεται αλλά διατηρεί το ύψος ή/και την πορεία του. Επιπλέον, δύναται να προγραμματιστεί ώστε να επιστρέφει αυτόματα ύστερα από κάποια δεύτερα. Τέλος, στο ίδιο μοτίβο, σε περίπτωση που οι μπαταρίες αδειάσουν, επιστρέφει σε προκαθορισμένο σημείο προσγείωσης με ασφάλεια.

Υπάρχουν εταιρίες που προσφέρουν ολοκληρωμένα συστήματα αυτόματου πιλότου τα οποία διαφοροποιούνται στην ποιότητα τους -στο πόσο σταθερό είναι το πολύπτερο στον αέρα- και στις λειτουργίες που ενσωματώνουν δίνοντας ιδιαίτερη έμφαση στην αυτόματες διαδικασίες ασφάλειας.

Στον πίνακα 2.4 παρουσιάζονται τα προτεινόμενα μοντέλα.

Zero YS-X6 Παρατίθενται δείγματα δουλειάς του συγκεκριμένου πιλότου :

- Zero YS-X6 10km/h test
- Zero YS-X6

DJI Wookong-M Αποτελεί ένα πλήσες σύστημα αυτοματοποιημένης πτήσης. Διαθέτει τρία mode πτήσης. Το Gps-Atti όντας απόλυτα αυτόματο από την απογείωση μέχρι και την προσγείωση ή το Atti το οποίο αφορά χειροκίνητο χειρισμό με ενεργοποιημένο το σταθεροποιητή πτήσης και τέλος την πλήσως χειροκίνητη πτήση χωρίς καμία βοήθεια.

Παρατίθενται δείγματα δουλειάς του συγκεκριμένου πιλότου:

- DJI Wookong-M
- Droidworx ADX3 HL, DJI Wookong
- DJI Wookong 4S Test 1

Feiyu Tech FY-91Q Ο συγκεκριμένος πιλότος έχει ως μεγάλο πλεονέκτημα την τιμή του, αλλά δυστυχώς δεν διαθέτει αρκετές λειτουργίες καθώς και μονάδα τροφοδοσίας. Παρατίθενται δείγματα δουλειάς του συγκεκριμένου πιλότου:

- FY91Q Kiso river
- FY-91Q GoPro

HoverflyPRO Παρατίθενται δείγματα δουλειάς του συγκεκριμένου πιλότου :

- Guam helicopter aerials
- Aerial Video Aspen Trees
- Got Aerial and Aerial Exposure

Πίνακας 2.3: Μοντέλα αυτόματων πιλότων

Μοντέλο	Zero YS-X6 GU-INS	DJI Wookong-M	Feiyu Tech FY- 91Q	HoverflyPRO
Κατασκευαστής Ιστοσελίδα	Zero Zero	DJI Innovations dji-innovations	Feiyu Tech Feiyu Tech	Hoverfly Hoverfly
		Χαρακτηριστικά		
Υποστηριζόμενα πολύπτερα	4, 6, 8	4, 6, 8	4, 6	4, 6, 8
Τύπος υπο- στηριζόμενου δέκτη	Normal, Futaba, Sbus	JR, Futaba, Hitec, S-Bus, PPM		Typical RC Receiver
Τύπος υποστη- οιζόμενου πο- μπού	PCM, 2.4GHz, S-Bus	PCM or 2.4GHz with minimum 7 channels and Failsafe function available on all channels	Robbe-Futaba (PPM, PCM 1024, PCM G3 mode, 2.4 GHz systems), Graupner-JR (PPM 8, PPM 12, SPCM mode), MPX (PPM8, PPM 12 with UNI mode)	HiTec, Spektrum, JR, Futaba (it needs 5 channels)
Διαστάσεις				

,		./	0.4
συνέχεια	του	πινακα	2.4
00.00000	• • •	•••••	

Ποωτεύων ελεγκτής (μμ)	60x90	51,2x38x15,3	55x33x20	70x70x12.7		
ΙΜυ (μμ)	40x45	41,4x31,1x27,8	ενσωματώνεται στον ελεγκτή	ενσωματώνεται στον ελεγκτή		
GPS-Compass (μμ)	55x12	50x9	55x33x20	70x70x12.7		
Wift 2.4ghz (μμ)	42x67		δεν διαθέτει	δεν διαθέτει		
Led (μμ)		25x25x7	δεν διαθέτει	δεν διαθέτει		
Power unit (μμ)		39,5x27,5x9,7	δεν διαθέτει	δεν διαθέτει		
Βάρος (γραμμά- οια)	180	<= 118	40	70		
Συχνότητα	$4\bar{0}\bar{0}\bar{M}\bar{H}\bar{z}$	$-400 \overline{\mathrm{MHz}}$	$400 \overline{\text{MHz}}$			
Θερμοκρασία λειτουργίας (celsius)		-5 to 60	-25 to 70			
Mode λειτους- γίας	Manual, Attitude, GPS attitude	Manual, Attitude, GPS attitude	Stabilized Mode, Automated Hover Hold, Automated Return to Home Mode	Auto-Leveling, Altitude Hold		
Μέγιστη γω- νιακή ταχύτητα (deg/s)	300					
	ο πίνακας συνεχίζεται στην επόμενη σελίδα					

	(τυνέχεια του πίνακα 2	2.4
Ακρίβεια αιώ- οπσης			
κάθετα (μ)	0,5	-0,5	
οριζόντια (μ)	2	$-\bar{2}$	1,5
Μέγιστη yaw			
γωνιακή ταχύ- τητα (deg/s)		150	
Μέγιστη γωνία tilt (μοί <i>ρες</i>)	25	35	
Μέγιστη οριζό- ντια ταχύτητα			
Μέγιστη κά-			
θετη ταχύτητα (m/s)	4	6	
Λειτουογίες ασφαλείας	Auto Hover mode, Auto Navigation mode, Auto Go Home, Low voltage alarm via phone/tablet	Voltage Protection, Hover, Go-home, Altitude Go- home, Attitute controllable when one power output failed	Return-to-Home
	ο πίνακας	συνεχίζεται στην επό	πενη σελίδα

	C	συνέχεια του π	τίνακα	2.4	
Επιτοεπτές συνθήκες ανέ- μου	- 8m/s(28.2km/h)	<pre>< (17.9mph/28.8)</pre>	 8m/s .km/h)		
Επιπλέον λει- τουργίες	Follow me (with a phone having gps), Auto take off-landing, Waypoint navigation (limit 4 points, within 200m diameter), Point of interest	Auto take landing, Poi interest	off- nt of		Data Logging
Μπαταρίες	3-6s lipo	2S 6S LiPo		5Volt είσοδος	2S 5S LiPo
Κατανάλωση			5A@7.	4V,0.4A@8V)	
	ολο	κληδώθηκε ο	πίνακ	ας 2.4	

χειφοκίνητη πτήση Συνήθως αποτελείται από ένα χειφιστήφιο και ένα δέκτη τοποθετούμενο στην πλατφόφμα πτήσης. Ο χειφιστής θα μποφεί να καθοφίζει σε πραγματικό χρόνο την ποφεία του πολυπτέφου και να το κατευθύνει κατά την επιθυμία του.

Υπάρχουν ποικίλα μοντέλα που ικανοποιούν τις απαιτήσεις μας. Συγκεκριμένα χρειαζόμαστε ένα από τα JR, Futaba, Hitec, S-Bus ή PPM στα 2,4Ghz με 7 κανάλια τουλάχιστον και κάθε κανάλι να προσφέρει λειτουργίες ασφαλείας.

2.2.3 Επίγειος σταθμός ελέγχου πτήσης

επίγειος σταθμός ελέγχου πτήσης Αποτελεί συσκευή που ενσωματώνει επιπλέον δυνατότητες παρακολούθησης της πτήσης και επέμβασης σε αυτήν. Μπορεί να διαθέτει ειδικό λογισμικό με το οποίο να αποτυπώνεται η πορεία του σε χάρτη (π.χ. google maps) και με το οποίο μπορούν να δοθούν κρίσιμες εντολές όπως άμεση προσεδάφιση, επιστροφή στο σπίτι κ.λ.π.. Επιπλέον μπορεί να διαθέτει λειτουργία OSD -on screen data, δεδομένα στην οθόνη. Δηλαδή, λαμβάνεται βίντεο της πτήσης από την οπτική του πολυπτέρου και επιπλέον απεικονίζονται και διάφορα σημαντικά δεδομένα, όπως υψόμετρο, ταχύτητα ανέμου, ταχύτητα πολυπτέρου κ.λ.π..

Το σύστημα αυτό δεν θα αναλυθεί στην έκδοση αυτή του κειμένου. Απλώς αναφέρεται ότι από τους προαναφερθέντες αυτόματους πιλότους ο DJI Wookong-M διαθέτει έξτρα κεραία και λογισμικό για την καθοδήγηση και την OSD παρατήρηση του πολυπτέρου από το σταθμό αυτό. Ο Zero YS-X6 GU-INS διαθέτει μέσα στο αρχικό πακέτο την κεραία και το αντίστοιχο λογισμικό. Ο Feiyu Tech FY-91Q απαιτεί ξεχωριστό εξάρτημα για την OSD παρέχοντας και το λογισμικό παρατήρησης και καθοδήγησης. Τέλος, ο HoverFly ενσωματώνει τη λειτουργία OSD αλλά δεν παρέχει αντίστοιχο λογισμικό. Επιτρέπει απλώς την παρατήρηση της πτήσης μέσω της παράθεσης των δεδομένων (ύψος, ταχύτητα, κ.λ.π.) με το βίντεο που καταγράφει η κάμερα.

2.3 Σύστημα λήψης εικόνας

πλατφόρμα της μηχανής Στα αγγλικά χρησιμοποιείται ο όρος "gimbal". Αποτελεί το σημείο στήριξης της μηχανής πάνω στην πλατφόρμα πτή-

σης. Είναι υπεύθυνο για το είδος και μέγεθος της μηχανής, τις επιτρεπτές κινήσεις που μπορεί να εκτελέσει η μηχανή καθώς και για τις δυνατές γωνίες λήψεις. Οι δυνατές κινήσεις είναι η περιστροφή στον κάθετο άξονα -tilt, κίνηση πάνω κάτω- η περιστροφή στον οριζόντιο άξονα -pan, κίνηση δεξιά αριστερά- και η περιστροφή γύρω από τον εαυτό της -roll. Όσο μεγαλύτερο το εύρος των κινήσεων αυτών, τόσο το καλύτερο.

Πίνακας 2.4: Μοντέλα gimbal

Μοντέλο	DJI Zenmuse Z15	Cinestar 3 Axis	AV200 + 360 pan RTU V3		
Κατασκευαστής Ιστοσελίδα	DJI Innovations dji-innovations	Freefly Systems Cinestar	PhotoHigher PhotoHigher		
Χαρακτηριστικά ολοκληρώθηκε ο πίνακας ??					

αυτόματος πιλότος για πλατφόρμα της μηχανής Αποτελεί απαραίτητο υποσύστημα εφόσον αναλαμβάνει το ρόλο του σταθεροποιητή του gimbal ενάντια στις διάφορες αναταράξεις που δέχεται η κάμερα. Φροντίζει, λοιπόν, να παραμένει η κάμερα στο επιθυμητό σημείο ανεξάρτητα από την κίνηση του πολυπτέρου. Εν παραδείγματι, έστω ότι χρησιμοποιούμε τη λειτουργία που μας επιτρέπει η κάμερα να κρατάει σταθερή θέση σε σχέση με το πολύπτερο. Ο σταθεροποιητής φροντίζει για αυτό -να μην αλλάζει η σχετική θέση πολυπτέρου - κάμερας. Επιπλέον, φροντίζει κάθε μετάβαση της κάμερας, αυτόματη ή μη, να γίνεται με τον πλέον ομαλό τρόπο. Χρησιμοποιώντας τον αυτόματο πιλότο του gimbal λαμβάνουμε εξαιρετικής ποιότητας λήψεις χωρίς κουνήματα ή "δόντι" στην εικόνα.

Πίνακας 2.5: Μ	οντέλα αυτόματου πιλότου gimbal]Μοντέλα αυτόματου πιλότου gimbal
----------------	--

Μοντέλο	DJI Zenmuse Z15	Freefly Radian		
Κατασκευαστής Ιστοσελίδα		Freefly Systems dii-innovations		
Ιστοσελίδα	dji-innovations	dji-innovations Yangumnaigmuá		
Χαρακτηριστικά				

ολοκληφώθηκε ο πίνακας 2.5

μηχανή Η μηχανή λήψης εικόνας. Για μεγαλύτερη ποιότητα είναι απαραίτητο να τραβάει υψηλής ανάλυσης εικόνα και βίντεο (hd) καθώς και να διαθέτει μεγάλη χωρητικότητα για μεγαλύτερης διάρκεια γύρισμα.

Διαθέτουμε ήδη μία Canon 550D, μία Panasonic AG-HPX200 και μία GoPro. Επιπλέον, αποδεκτές λύσεις αποτελούν και οι Sony nex7 και Panasonic GH2 οι οποίες απαιτούνται από το gimbal της Dji.

επίγειος σταθμός ελέγχου της μηχανής Αποτελείται από ένα πομπό τοποθετούμενο στο έδαφος και ένα δέκτη τοποθετούμενο στην πλατφόρμα πτήσης σε συνδυασμό με την πλατφόρμα της μηχανής. Ο πομπός συνήθως είναι ένα χειριστήριο που ενσωματώνει τις απαραίτητες λειτουργίες. Ενδεικτικά θα πρέπει να μας επιτρέπει να λαμβάνουμε όποτε επιθυμούμε φωτογραφίες και να καταγράφουμε όποτε επιθυμούμε πάλι βίντεο. Τέλος, θα πρέπει να υποστηρίζει την ενεργοποίηση του φλας.

Υπάρχουν ποικίλα μοντέλα που ικανοποιούν τις απαιτήσεις μας. Συγκεκριμένα χρειαζόμαστε ένα από τα JR, Futaba, Hitec, S-Bus ή PPM στα 2,4Ghz με 7 κανάλια τουλάχιστον και κάθε κανάλι να προσφέρει λειτουργίες ασφαλείας.

εναέφιος σταθμός μετάδοσης εικόνας Αποτελεί τη συσκευή που μεταδίδει την εικόνα που "βλέπει" η μηχανή με σκοπό να τη λήψη της από επίγειες συσκευές. Θα πρέπει η μετάδοση να είναι ομαλή και απρόσκοπτη και εφικτή για μεγάλες αποστάσεις. Θα πρέπει να λαμβάνει υπόψιν τους περιορισμούς μετάδοσης σήματος σε ανοιχτούς χώρους.

επίγειος σταθμός λήψης σύγχουνης εικόνας Αποτελεί τη συσκευή με την οποία λαμβάνεται η εικόνα που βλέπει η μηχανή στον αέρα και σύμφωνα με την οποία δρα αναλόγως ο χρήστης της μηχανής. Δηλαδή τραβάει ή όχι φωτογραφίες και βίντεο.

επίγειος σταθμός καταγραφής της εικόνας Αποτελεί τη συσκευή η οποία επιτρέπει την καταγραφή εικόνας σε υψηλή ανάλυση (hd).

Η μονάδα αποθήκευσης θα πρέπει να εξυπηρετεί τις ανάγκες των γυρισμάτων για μεγάλος πλήθος φωτογραφιών και πολύωρου βίντεο.

Τα δύο αυτά συστήματα δεν θα αναλυθούν στην παρούσα έκδοση του κειμένου.

Κεφάλαιο 3

Νομική ανάλυση

- 3.1 Νομικό πλαίσιο μη επανδοωμένων εναέοιων μηχανών
- 3.2 Νομικό πλαίσιο τηλεπικοινωνιών

Κεφάλαιο 4

Προτεινόμενα ολοκληρωμένες λύσεις