Survival Analysis Week 3: Martingales

1 Filtrations and martingales

For a stochastic process X(s) the filtration $\mathcal{F}_t^X = \sigma(X(s): 0 \leq s \leq t)$ contains "the history" of the process. \mathcal{F}_{t-} represents the data available just prior to time t. A process Z is adapted to \mathcal{F}_t if $Z(t) \in \mathcal{F}_t$. Then $\mathcal{F}_t^Z \subset \mathcal{F}_t$.

A stochastic process $M(t), t \in [0, \tau]$, is a martingale with respect to \mathcal{F}_t if

- (i) M(t) is right-continuous with left-hand limits (cadlag)
- (ii) M(t) is adapted to \mathcal{F}_t
- (iii) $E(|M(t)|) < \infty, \forall t$
- (iv) M(t) has the martingale property

$$E(M(t)|\mathcal{F}_s) = M(s), s \leq t \leq \tau$$

In all our applications, M(0) = 0 such that E(M(t)) = 0.

Martingales have uncorrelated increments, i.e., for $0 \le u \le v \le s \le t$,

$$\begin{split} & \operatorname{cov}\left(M(t) - M(s), M(v) - M(u)\right) \\ & = E\left(\left(M(t) - M(s)\right)\left(M(v) - M(u)\right)\right) \\ & = E\left(\underbrace{E\left(M(t) - M(s)\middle|\mathcal{F}_{v}\right)}_{=M(v) - M(v) = 0}\left(M(v) - M(u)\right)\right) = 0. \end{split}$$

1.1 The Doob-Meyer decomposition

 $\bar{M}(t)$ is a submartingale with respect to \mathcal{F}_t if it satisfies (i)-(iii) and

$$E(\bar{M}(t)|\mathcal{F}_s) \geq \bar{M}(s), s \leq t \leq \tau \tag{1}$$

The behaviour of a *predictable* process at t is determined by the information on [0, t). If X(t) is predictable, X(t) is adapted to \mathcal{F}_{t-} . If $X(t) \in \mathcal{F}_t$ and is left-continuous, it is predictable. Any deterministic function is predictable. X(t) is predictable if and only if X is adapted to the σ -algebra generated by all left-continuous adapted processes, see Fleming and Harrington (1991, Section 1.4).

Fleming and Harrington (1991, Section 1.4). A process A(t) has finite variation if $\int_0^\tau |dA(s)| < \infty$. The difference between two nondecreasing processes has finite variation.

A is a compensator of the cadlag and adapted process X, if X - A is a **mean zero** martingale and A is cadlag, predictable and has finite variation. If X has a compensator it is unique.

The Doob-Meyer decomposition: Any process $X(t) \in \mathcal{F}_t$ that is a difference of two submartingales has a compensator A. In particular, submartingales have compensators since the constant process 0 is a submartingale.

1.2 The predictable (co)variance

A square integrable martingale $(E(M(t)^2) < \infty, t \in [0, \tau])$ M satisfies the submartingale property, by Jensen's inequality,

$$E(M^2(t)|\mathcal{F}_s) \ge \left(E(M(t)|\mathcal{F}_s)\right)^2 = M^2(s).$$

As M^2 is a submartingale, it has a compensator $\langle M \rangle$, the predictable variation process of M. Since

$$M^2 - \langle M \rangle$$

is a mean zero martingale, the variance of M(t) is given by

$$var(M(t)) = E(M^2(t)) = E(\langle M \rangle(t)).$$

For $M,\,\tilde{M}$ square integrable martingales, $M\tilde{M}$ is a difference of submartingales. To see this note that $(M+\tilde{M})/2$ and $(M-\tilde{M})/2$ are martingales implying that $(M+\tilde{M})^2/4$ and $(M-\tilde{M})^2/4$ are submartingales, and

$$\begin{split} \frac{1}{4}(M+\tilde{M})^2 - \frac{1}{4}(M-\tilde{M})^2 \\ &= \frac{M^2 + \tilde{M}^2 + 2M\tilde{M} - \left(M^2 + \tilde{M}^2 - 2M\tilde{M}\right)}{4} \\ &= \frac{2M\tilde{M} + 2M\tilde{M}}{4} = M\tilde{M} \end{split}$$

Because $M\tilde{M}$ is a difference of two submartingales, it has a compensator $\langle M, \tilde{M} \rangle$, the predictable covariation process, such that

$$M\tilde{M}-\langle M,\tilde{M}\rangle$$

is a mean zero martingale.

 $\langle M, \tilde{M} \rangle$ is symmetric and bilinear like an ordinary covariance. Also,

$$\langle M_1 + M_2 \rangle = \langle M_1 \rangle + \langle M_2 \rangle + 2 \langle M_1, M_2 \rangle$$

If $\langle M, \tilde{M} \rangle = 0$ we say that M and \tilde{M} are orthogonal.

The quadratic covariation of M and \tilde{M} , is

$$[M,\tilde{M}](t) = \sum_{s \leq t} \Delta M(s) \Delta \tilde{M}(s).$$

The process

$$M\tilde{M}-[M,\tilde{M}]$$

is a martingale, but $[M, \tilde{M}]$ is not predictable. When $[M\tilde{M}]$ is square integrable,

$$[M\tilde{M}] - \langle M, \tilde{M} \rangle$$

is a martingale and $\langle M, \tilde{M} \rangle$ is the compensator of $[M\tilde{M}].$ Note that

$$E([M](t)) = E(\langle M \rangle(t)) = var(M(t))$$

and both [M](t) and $\langle M \rangle(t)$ can be used for estimating the variance

1.3 The martingale transform

The integral of a bounded \mathcal{F}_t -predictable process $H(\cdot)$ with respect to a finite variation martingale,

$$\int_0^t H(s)dM(s),$$

is again a martingale, i.e., the martingale property is preserved under stochastic integration. The predictable and quadratic covariation processes are

$$\begin{split} \left\langle \int H dM, \int \tilde{H} d\tilde{M} \right\rangle &= \int H \tilde{H} d \left\langle M, \tilde{M} \right\rangle \\ \left[\int H dM, \int \tilde{H} d\tilde{M} \right] &= \int H \tilde{H} d \left[M, \tilde{M} \right]. \end{split}$$

Counting processes

Let T_i^* , $i=1,\ldots,n$, be i.i.d. absolute continous event times with hazard α . Let $A(t)=\int_0^t \alpha(s)ds$. Let C_i be independent right-censoring times so that we only observe $T_i=T_i^* \wedge C_i$ and $\Delta_i=I\{T_i^* \leq C_i\}$.

$$\begin{split} N_i(t) &= I\{T_i \leq t, \Delta_i = 1\} \\ N_i^C(t) &= I\{T_i \leq t, \Delta_i = 0\} \end{split}$$

The filtration

$$\mathcal{F}_{t-} = \sigma(N_i(u), N_i^C(u): 0 \leq u < t, i = 1, \ldots, n).$$

is the history on [0,t). It contains $Y_i(t) = I\{T_i \geq t\}$, i.e., $Y_i(t) \in \mathcal{F}_{t-}$. $N_i(t)$ is a submartingale, for s < t,

$$\begin{split} E(N_i(t)|\mathcal{F}_s) &= E((N_i(t) - N_i(s)) + N_i(s)|\mathcal{F}_s) \\ &= \underbrace{E(N_i(t) - N_i(s)|\mathcal{F}_s)}_{\geq 0} + N_i(s) \geq N_i(s). \end{split}$$

Thus, by the Doob-Meyer decomposition, $N_i(t)$, has a compensator Λ_i such that

$$M_i(t) = N_i(t) - \Lambda_i(t)$$

is a mean zero martingale and $E(N_i(t))=E(\Lambda_i(t)).$ $N_i(0)=0,$ so $E(\Lambda_i(0))=E(N_i(0))=0.$

In the absolute continous case that we consider, there is a \mathcal{F}_t -predictable function $\lambda_i(s)$ called the *intensity* so that $\Lambda_i(t) = \int_0^t \lambda_i(s) ds$. Heuristically, from

$$E(dM_i(t)|\mathcal{F}_{t-}) = E(dN_i(t) - \lambda_i(t)dt|\mathcal{F}_{t-}) = 0$$

we have that $\lambda_i(t)dt = E(dN_i(t)|\mathcal{F}_{t-})$. With independent censoring, noting that $N_i(t)$ can only jump at t if $Y_i(t) = 1$,

$$d\Lambda_i(t) = E(dN_i(t)|\mathcal{F}_{t-}) = Y_i(t)d\mathbf{A}(t) = Y_i(t)\alpha(t)dt.$$

For completeness, I supply the heuristic argument by verifying that $M_i(t) = N_i(t) - \int_0^t Y_i(u)\alpha(u)du$ fulfills the martingale property, for $0 \le s \le t \le \tau$, $E(M_i(t)|\mathcal{F}_s) = M_i(s)$. From

$$\begin{split} E(M_i(t)|\mathcal{F}_s) &= E\left(\left.N_i(t) - \int_0^t Y_i(u)\alpha(u)du\right|\mathcal{F}_s\right) \\ &= \underbrace{N_i(s) - \int_0^s Y_i(u)\alpha(u)du}_{=M_i(s)} \\ &+ E\left(\left.\int_s^t dN_i(u)\right|\mathcal{F}_s\right) - E\left(\left.\int_s^t Y_i(u)\alpha(u)du\right|\mathcal{F}_s\right). \end{split} \tag{2}$$

We need to show that (2) is zero. Consider the last term of (2). It can only be non-zero when neither N_i nor N_i^C has jumped before time s, so that

$$\begin{split} E\left(\left.\int_{s}^{t}Y_{i}(u)\alpha(u)du\right|\mathcal{F}_{s}\right) &=Y_{i}(s-)\int_{s}^{t}E\left(\left.Y_{i}(u)\right|T_{i}>s\right)\alpha(u)du\\ &=Y_{i}(s-)\frac{\int_{s}^{t}\operatorname{pr}(T_{i}\geq u)\alpha(u)du}{\operatorname{pr}(T_{i}>s)}. \end{split} \tag{3}$$

The first term in (2) is

$$E\left(\int_{s}^{t} dN_{i}(u) \middle| \mathcal{F}_{s}\right) = Y_{i}(s-)\operatorname{pr}\left\{s < T_{i} \leq t, \Delta_{i} = 1 \middle| T_{i} > s\right\}$$

$$= Y_{i}(s-) \frac{\operatorname{pr}\left\{s < T_{i} \leq t, \Delta_{i} = 1\right\}}{\operatorname{pr}\left(T_{i} > s\right)}$$

$$= Y_{i}(s-) \frac{\operatorname{pr}\left(s < T_{i}^{*} \leq t, C_{i} \geq T_{i}^{*}\right)}{\operatorname{pr}\left(T_{i} > s\right)}$$

$$= Y_{i}(s-) \frac{\int_{s}^{t} \left(-\frac{\partial}{\partial v} \operatorname{pr}\left(T_{i}^{*} \geq v, C_{i} \geq u\right) \middle|_{v=u}\right) du}{\operatorname{pr}\left(T_{i} > s\right)}$$

$$= Y_{i}(s-) \frac{\int_{s}^{t} \operatorname{pr}\left(T_{i} \geq u\right) \frac{-\frac{\partial}{\partial v} \operatorname{pr}\left(T_{i}^{*} \geq v, C_{i} \geq u\right) \middle|_{v=u}}{\operatorname{pr}\left(T_{i} \geq u\right)} du}{\operatorname{pr}\left(T_{i} > s\right)}$$

$$= Y_{i}(s-) \frac{\int_{s}^{t} \operatorname{pr}\left(T_{i} \geq u\right) \frac{-\frac{\partial}{\partial v} \operatorname{pr}\left(T_{i}^{*} \geq v, C_{i} \geq u\right) \middle|_{v=u}}{\operatorname{pr}\left(T_{i} \geq u\right)} du}{\operatorname{pr}\left(T_{i} > s\right)}$$

$$= Y_{i}(s-) \frac{\int_{s}^{t} \operatorname{pr}\left(T_{i} \geq u\right) \frac{-\frac{\partial}{\partial v} \operatorname{pr}\left(T_{i}^{*} \geq v, C_{i} \geq u\right) \middle|_{v=u}}{\operatorname{pr}\left(T_{i} \geq u\right)} du}{\operatorname{pr}\left(T_{i} > s\right)}$$

$$= Y_{i}(s-) \frac{\int_{s}^{t} \operatorname{pr}\left(T_{i} \geq u\right) \frac{-\frac{\partial}{\partial v} \operatorname{pr}\left(T_{i}^{*} \geq v, C_{i} \geq u\right) \middle|_{v=u}}{\operatorname{pr}\left(T_{i} \geq u\right)} du}{\operatorname{pr}\left(T_{i} > s\right)}$$

$$= Y_{i}(s-) \frac{\int_{s}^{t} \operatorname{pr}\left(T_{i} \geq u\right) \frac{-\frac{\partial}{\partial v} \operatorname{pr}\left(T_{i}^{*} \geq v, C_{i} \geq u\right) \middle|_{v=u}}{\operatorname{pr}\left(T_{i} \geq u\right)} du}{\operatorname{pr}\left(T_{i} > s\right)}$$

$$= Y_{i}(s-) \frac{\int_{s}^{t} \operatorname{pr}\left(T_{i} \geq u\right) \frac{-\frac{\partial}{\partial v} \operatorname{pr}\left(T_{i} \geq u\right)}{\operatorname{pr}\left(T_{i} \geq u\right)} du}{\operatorname{pr}\left(T_{i} \geq u\right)}$$

$$= Y_{i}(s-) \frac{\int_{s}^{t} \operatorname{pr}\left(T_{i} \geq u\right) du}{\operatorname{pr}\left(T_{i} \geq u\right)} du}{\operatorname{pr}\left(T_{i} \geq u\right)}$$

From the independent censoring assumption, i.e.,

$$\lim_{h\downarrow 0}\frac{1}{h}\mathrm{pr}(t\leq T_i^*< t+h|T^*\geq t, C_i\geq t)=\lim_{h\downarrow 0}\frac{1}{h}\mathrm{pr}(t\leq T_i^*< t+h|T_i^*\geq t)=\alpha(t),$$

we have that

$$\frac{-\frac{\partial}{\partial v} \operatorname{pr}(T_{i}^{*} \geq v, C_{i} \geq u)|_{v=u}}{\operatorname{pr}(T_{i} \geq u)} = \frac{\lim_{h \downarrow 0} \frac{1}{h} \operatorname{pr}(u \leq T_{i}^{*} < u + h, C_{i} \geq u)}{\operatorname{pr}(T_{i}^{*} \geq u, C_{i} \geq u)}$$

$$= \lim_{h \downarrow 0} \frac{1}{h} \operatorname{pr}(u \leq T_{i}^{*} < u + h, C_{i} \geq u|T_{i}^{*} \geq u, C_{i} \geq u)$$

$$= \lim_{h \downarrow 0} \frac{1}{h} \operatorname{pr}(u \leq T_{i}^{*} < u + h|T_{i}^{*} \geq u, C_{i} \geq u)$$

$$= \lim_{h \downarrow 0} \frac{1}{h} \operatorname{pr}(u \leq T_{i}^{*} < u + h|T_{i}^{*} \geq u) = \alpha(u). \tag{5}$$

Inserting (5) into (4), yields

$$Y_i(s-)\frac{\int_s^t \operatorname{pr}(T_i \geq u)\alpha(u)du}{\operatorname{pr}(T_i > s)}$$

which equals (3) and thus (2) is zero and the martingale property is established.

We now turn to the predictable and quadratic variation of M_i . As the compensator is continuous and doesn't jump, all jumps in the martingale M_i stem from jumps in N_i and the quadratic variation of M is

$$[M_i](t) = \sum_{s \leq t} \left(\Delta M_i(s)\right)^2 = \sum_{s \leq t} \left(\Delta N_i(s)\right)^2 = N_i(t).$$

As $\langle M_i \rangle$ is the compensator of $[M_i] = N_i,$ and N_i has the unique compensator $\Lambda_i,$

$$\langle M_i \rangle(t) = \Lambda_i(t) = \int_0^t Y_i(s) \alpha(s) ds.$$

Assume that no two of the (continuous time) processes N_1, \dots, N_n jump at the same time. Then,

$$[M_i,M_j](t) = \sum_{s < t} (\Delta M_i(s))(\Delta M_j(s)) = \sum_{s < t} (\Delta N_i(s))(\Delta N_j(s)) = 0, \text{ almost surely},$$

 $[M_i,M_j]$ has compensator $\langle M_i,M_j \rangle$, but since $[M_i,M_j]=0$ we also have $\langle M_i,M_j \rangle=0$ almost surely. The martingales $M_i,\,i=1,\ldots,n$, are orthogonal.

The sum of martingales

$$M_{\bullet}(t) = \sum_{i=1}^n M_i(t) = \sum_{i=1}^n \int_0^t Y_i(u) \alpha(s) ds = \int_0^t Y_{\bullet}(u) \alpha(s) ds,$$

where $Y_{\bullet}(t) = \sum_{i=1}^{n} Y_{i}(t)$, is a martingale with predictable variation

$$\begin{split} \langle M_{\bullet} \rangle(t) &= \sum_{i} \langle M_{i} \rangle(t) + 2 \sum_{i < j} \overbrace{\langle M_{i}, M_{j} \rangle(t)}^{=0} \\ &= \sum_{i=1}^{n} \Lambda_{i}(t) = \int_{0}^{t} Y_{\bullet}(s) \alpha(s) ds \end{split}$$

The quadratic variation is

$$[M_{\bullet}](t) = \sum_{i=1}^{n} N_i(t) = N_{\bullet}(t).$$

For the martingales

$$\sum_{i=1}^n \int_0^t H_i(u) dM_i(u)$$

where $H_i(\cdot)$ are bounded and \mathcal{F}_t -predictable processes,

$$\left\langle \sum_{i=1}^{n} \int_{0}^{\cdot} H_{i}(u) dM_{i}(u) \right\rangle(t) = \sum_{i=1}^{n} \int_{0}^{t} H_{i}^{2}(u) d\langle M_{i} \rangle(u) = \sum_{i=1}^{n} \int_{0}^{t} H_{i}^{2}(u) Y_{i}(u) \alpha(u) du \\ \left[\sum_{i=1}^{n} \int_{0}^{\cdot} H_{i}(u) dM_{i}(u) \right](t) = \sum_{i=1}^{n} \int_{0}^{t} H_{i}^{2}(u) d[M_{i}](u) = \sum_{i=1}^{n} \int_{0}^{t} H_{i}^{2}(u) dN_{i}(u).$$

The innovation theorem: Consider filtrations \mathcal{G}_t and \mathcal{H}_t such that $\mathcal{G}_t\subseteq\mathcal{H}_t.$ If $N_i(t)$ is adapted to both filtratios and has intensity $\lambda_i^{\mathcal{H}}(t)$ with respect to $\mathcal{H}_t,$ then the intensity with respect to \mathcal{G}_t is

$$\lambda_{i}^{\mathcal{G}}(t) = E\left(\left.\lambda_{i}^{\mathcal{H}}(t)\right|\mathcal{G}_{t}\right).$$

A martingale CLT

Let U be a Gaussian martingale with $\langle U \rangle = [U] = V$, a right continuous deterministic function with positive semidefinite increments and V(0) = 0. This means that,

$$\bullet \quad U(t) - U(s) \sim N(0, V(t) - V(s))$$

$$\bullet \quad U(t) - U(s) \perp \!\!\! \perp U(s)$$

for all $u \leq s \leq t$.

For bounded and predictable H_i and square integrable martingales M_i , define

$$\begin{split} L^{(n)}(t) &= \sum_{i=1}^n \int_0^t H_i(s) dM_i(s), \\ L^{(n)}_\epsilon(t) &= \sum_{i=1}^n \int_0^t H_i(s) I\{|H_i(s)| > \epsilon\} dM_i(s) \end{split}$$

that registers the jumps of size ϵ or more in $L^{(n)}$. The integrands in both processes are predictable, so both are martingales

CLT for martingales: If,

(a)
$$\langle L^{(n)} \rangle (t) \stackrel{P}{\to} V(t)$$
,

(b) The Lindeberg condition $\langle L_{\epsilon}^{(n)} \rangle(t) \stackrel{P}{\to} 0$,

for all $t \in [0, \tau]$ and $\epsilon > 0$, then $L^{(n)} \stackrel{\mathcal{L}}{\to} U$ with variance process V(t) and $\langle L^{(n)} \rangle (t) \stackrel{P}{\to} V(t)$ and $[L^{(n)}](t) \stackrel{P}{\to} V(t)$ uniformly.

For counting process martingales $M_i(t) = N_i(t) - \int_0^t Y_i(u)\alpha(s)ds$, the conditions are

(a)
$$\int_0^t H_i(s)^2 Y_i(s) \alpha(s) ds \stackrel{P}{\to} V(t)$$
,

(b)
$$\int_0^t H_i(s)^2 I\{|H_i(s)| > \epsilon\} Y_i(s) \alpha(s) ds \stackrel{P}{\to} 0$$
,

References

Fleming, T. R. and Harrington, D. P. (1991). Counting Processes and Survival Analysis. John Wiley & Sons.