

PCA (Principal Component Analysis)

André Tavares da Silva andre.silva@udesc.br

Objetivos

- Introduzir os conceitos de PCA
- Revisão dos conceitos básicos de estatística e álgebra linear.
- Definições e interpretação geométrica
- Como calcular (tutorial)
- Aplicações no reconhecimento de padrões

PCA

• Diferença entre PCA e LDA quando aplicados sobre os mesmos dados

Análise de Componentes Principais (PCA)

• Dado um conjunto D com n instâncias e p atributos $(x_1, x_2, ..., x_p)$, uma transformação linear (ex.: rotação) para um novo conjunto de atributos $z_1, z_2, ..., z_p$ pode ser calculada como:

$$\begin{split} z_{I} &= a_{II} \, x_{I} + a_{2I} \, x_{2} + \dots + a_{pI} \, x_{p} \\ z_{2} &= a_{I2} \, x_{I} + a_{22} \, x_{2} + \dots + a_{p2} \, x_{p} \\ \dots \\ z_{p} &= a_{Ip} \, x_{I} + a_{2p} \, x_{2} + \dots + a_{pp} \, x_{p} \end{split}$$

• Componentes Principais (PCs) são tipos específicos de combinações lineares que são escolhidas de tal modo que z_p (PCs) tenham as seguintes características

PCA: Características

- As *p* componentes principais (PC) são não-correlacionadas (independentes)
- As PCs são ordenadas de acordo com quantidade da variância dos dados originais que elas contêm (ordem decrescente)
 - A primeira PC representa a maior variabilidade do conjunto de dados original
 - A segunda PC define a próxima maior e assim por diante
 - Em geral, apenas algumas das primeiras PCs são responsáveis pela maior parte da variabilidade do conjunto de dados
 - O restante das PCs tem uma contribuição insignificante
- PCA é usada em Aprendizado de Máquina principalmente para a redução de dimensionalidade

PCA: Cálculo

- PCA pode ser reduzida ao problema de encontrar os autovalores e autovetores da matriz de covariância (ou correlação) do conjunto de dados
- A proporção da variância do conjunto de dados originais explicada pela *i*-ésima PC é igual ao *i*-ésimo auto-valor divido pela soma de todos os *p* auto-valores
- Ou seja, as PCs são ordenadas decrescentemente de acordo com os autovalores
- Quando os valores dos diferentes atributos estão em diferentes escalas, é preferível usar a matriz de correlação em lugar da matriz de covariância

Estatística

Variância

 Variância de uma variável aleatória é uma medida de dispersão estatística, indicando quão longe em geral os seus valores se encontram do valor esperado.

$$s^{2} = \frac{1}{n-1} \sum_{i=1}^{n} (x_{i} - \overline{x})^{2},$$

Desvio padrão é a raiz da variância

Estatística

Covariância

- Variância é uma medida unidimensional, calculada de maneira independente pois não leva em consideração as outras dimensões.
- Covariância por sua vez, é uma medida bidimensional. Verifica a dispersão, mas levando em consideração duas variáveis aleatórias.

$$cov(X,Y) = \frac{\sum_{i=1}^{n} (X_i - \bar{X})(Y_i - \bar{Y})}{(n-1)}$$

Estatística

- Matriz de covariância
 - Para 3 variáveis aleatórias, x, y e z, o cálculo de todas as covariâncias (x-y, x-z e y-z) pode ser acomodada em uma matriz, a qual denomina-se matriz de covariância.

$$C = \begin{pmatrix} cov(x, x) & cov(x, y) & cov(x, z) \\ cov(y, x) & cov(y, y) & cov(y, z) \\ cov(z, x) & cov(z, y) & cov(z, z) \end{pmatrix}$$

$$Cov(x,y) = cov(y,x)$$

$$Cov(z,z) = var(z)$$

Álgebra

Autovetores

 Como sabe-se duas matrizes podem ser multiplicadas se elas possuem tamanhos compatíveis. Autovetores são casos especiais neste contexto.

$$\left(\begin{array}{cc} 2 & 3 \\ 2 & 1 \end{array}\right) \times \left(\begin{array}{c} 1 \\ 3 \end{array}\right) = \left(\begin{array}{c} 11 \\ 5 \end{array}\right)$$

$$\begin{pmatrix} 2 & 3 \\ 2 & 1 \end{pmatrix} \times \begin{pmatrix} 3 \\ 2 \end{pmatrix} = \begin{pmatrix} 12 \\ 8 \end{pmatrix} = 4 \times \begin{pmatrix} 3 \\ 2 \end{pmatrix} \longrightarrow \begin{array}{c} \text{M\'ultiplo do} \\ \text{vetor resultante} \end{array}$$

Autovetores

- Nesse caso (3,2) representa um vetor que aponta da origem (0,0) para o ponto (3,2).
- A matriz quadrada, pode ser vista como uma matriz de transformação.
- Se esta matriz for multiplicada por outro vetor, a resposta será outro vetor transformado da sua posição original.
- É da natureza desta transformação que surgem os autovetores.

Autovetores

Propriedades

- Podem ser achados somente em matrizes quadradas.
- Para uma dada *n* x *n* matriz, existem *n* autovetores.
- Nem todas as matrizes possuem autovetores.
- Se o vetor for multiplicado por uma constante, ainda obteremos o mesmo resultado

$$2 \times \left(\begin{array}{c} 3\\2 \end{array}\right) = \left(\begin{array}{c} 6\\4 \end{array}\right)$$

$$\left(\begin{array}{cc} 2 & 3 \\ 2 & 1 \end{array}\right) \times \left(\begin{array}{c} 6 \\ 4 \end{array}\right) = \left(\begin{array}{c} 24 \\ 16 \end{array}\right) = 4 \times \left(\begin{array}{c} 6 \\ 4 \end{array}\right)$$

Apenas fazemos o vetor mais longo, mas não mudamos a direção.

Autovetores/Autovalores

- Todos os autovetores são ortogonais (perpendiculares), ou seja os dados podem ser expressos em termos destes vetores.
- O valor pelo qual o vetor é multiplicado é conhecido como autovalor
 - Um autovetor sempre possui um autovalor associado.

Interpretação Geométrica

u é autovetor de Tv não é autovetor de T

Definições

- Seja A uma matriz de ordem nxn
- O número λ é o **autovalor** (*eigenvalue*) de *A* se existe um vetor não-zero *v* tal que

$$A v = \lambda v$$

• Neste caso, o vetor \mathbf{v} é chamado de **autovetor** (*eigenvector*) de \mathbf{A} correspondente à λ .

• Pode-se reescrever a condição:

$$A v = \lambda v$$

como

$$(A - \lambda I) v = 0$$

onde I é a matriz identidade de ordem nxn.

• Para que um vetor não-zero v satisfaça a equação, $(A - \lambda I)$ deve ser **não** inversível.

• Caso contrário, se $(A - \lambda I)$ tiver uma inversa, então

$$(A - \lambda I)^{-1} (A - \lambda I) v = (A - \lambda I)^{-1} 0$$

 $v = 0$

• Mas, procura-se por um vetor v não-zero.

- Voltando, isto é, o determinante de $(A \lambda I)$ deve ser igual à 0.
- Chama-se

$$p(\lambda) = \det(A - \lambda I)$$

de polinômio característico de A.

• Os autovalores de A são as raízes do polinômio característico de A.

• Para se calcular o i-ésimo autovetor $v_i = [v_1; v_2; ...; v_n]$

correspondente à um autovalor λ_i , basta resolver o sistema linear de equações dado por

$$(A - \lambda I) v = 0$$

Análise dos Componentes Principais (PCA)

- Uma maneira de identificar padrões em dados, colocando em evidência suas similaridades e diferenças.
- Ferramenta importante para altas dimensões, onde não podemos fazer uma análise visual.
- Uma vez encontrados esses padrões, podemos comprimir os dados sem grande perda de qualidade.
- Escolha de características (representação)

PCA

Interpretação geométrica

$$J = \mathbf{x}^t \mathbf{S} \mathbf{x} \ge 0$$
, $\mathbf{S} sim \acute{e} trica$

$$J = \begin{bmatrix} u & v \end{bmatrix} \begin{bmatrix} \lambda_1 & 0 \\ 0 & \lambda_2 \end{bmatrix} \begin{bmatrix} R \end{bmatrix}^T \begin{bmatrix} u \\ v \end{bmatrix} = \begin{bmatrix} u' & v' \end{bmatrix} \begin{bmatrix} \lambda_1 & 0 \\ 0 & \lambda_2 \end{bmatrix} \begin{bmatrix} u' \\ v' \end{bmatrix} = const$$

$$\lambda_1, \lambda_2$$
 – autovalores de S

$$\lambda_1(u')^2 + \lambda_2(v')^2 = const$$

PCA

- Variância total = soma das variâncias
- Variância total = traço de S

$$\operatorname{tr}(\mathbf{S}) = \sum_{i=1}^{N} \sigma_i^2 = \sum_{i=1}^{N} \lambda_i$$

- Eixos principais também representam a variância total do conjunto de dados.
 - Primeiro eixo: $\lambda_1/\text{traço}(S)$
 - Segundo eixo: $\lambda_2/\text{traço}(S)$

- 1) Escolha um conjunto de dados.
- 2) Centralize os dados, subtraindo-os da média.

	X	y	
Dados	2.5	2.4	
	0.5	0.7	
	2.2	2.9	
	1.9	2.2	
	3.1	3.0	
	2.3	2.7	
	2	1.6	
	1	1.1	
	1.5	1.6	
	1.1	0.9	

	Х	у
	.69	.49
	-1.31	-1.21
	.39	.99
SO	.09	.29
Centrados	1.29	1.09
enti	.49	.79
	.19	31
ados	81	81
Da	31	31
	71	-1.01

3) Calcule a matriz de covariância para os dados normalizados. Uma vez que os dados possuem duas dimensões, teremos uma matriz 2x2

$$cov = \begin{pmatrix} .616555556 & .615444444 \\ .615444444 & .716555556 \end{pmatrix}$$

- 4) Encontre os autovetores e autovalores para a matriz de covariância.
 - Uma vez que a matriz de covariância é quadrada podemos encontrar os autovetores e autovalores.

$$eigenvalues = \begin{pmatrix} .0490833989 \\ 1.28402771 \end{pmatrix}$$

$$eigenvectors = \begin{pmatrix} -.735178656 & -.677873399 \\ .677873399 & -.735178656 \end{pmatrix}$$

O que esses valores significam??

- 5) Escolhendo os componentes que vão formar o vetor
 - Como vimos, os autovalores são bastante diferentes.
 - Isso permite ordenar os autovetores por ordem de importância.
 - Se quisermos eliminar um componente, devemos então eliminar os que tem menos importância.

 $FeatureVector = (eig_1 \ eig_2 \ eig_3 \ \ eig_n)$

- No nosso exemplo temos duas escolhas
 - Manter os dois.
 - -Eliminar um autovetor, diminuindo assim a dimensionalidade dos dados.
 - Maldição da dimensionalidade: quanto maior a dimensionalidade do seu vetor, mais dados serão necessários para a aprendizagem do modelo.

- 5) Construindo novos dados.
 - Uma vez escolhidos os componentes (autovetores),
 nós simplesmente multiplicamos os dados pelo autovetor(es) escolhidos.
 - O que temos?
 - Dados transformados de maneira que expressam os padrões entre eles.
 - Os PCs (*Principal Components*) são combinações lineares de todas as características, produzindo assim novas características não correlacionadas.

Dados transformados usando 2 autovetores

x	y
827970186	175115307
1.77758033	.142857227
992197494	.384374989
274210416	.130417207
-1.67580142	209498461
912949103	.175282444
.0991094375	349824698
1.14457216	.0464172582
.438046137	.0177646297
1.22382056	162675287

$$y = \frac{-W_1 \times x - b}{W_2}$$

AUTOVETORES

-0.6779 -0.7352

-0.7352 0.6779

AUTOVALORES

1.2840

0.0491

Utilização do PCA

- Objetivo: reduzir a dimensionalidade do espaço de entrada R^n , mantendo tanta informação quanto possível, em um novo espaço R^n .
 - Adquirir os dados: Número de vetores...
 - Calcular a Matriz de Covariância/Correlação
 - Calcular os Autovalores e Autovetores
 - Escolher os autovetores: Critério da informação...
 - Mapear os dados para o novo espaço

Exemplo: Reconhecimento de Face

EigenFaces

Próxima aula!

Análise de Componentes Principais

- Principais Limitações
 - Assume apenas relações lineares entre os atributos
 - A interpretação dos resultados em termos dos atributos originais pode ficar mais difícil