1) a)
$$5n^3 + 2n^2 + 3n = O(n^3)$$

 $5n^3 + 2n^2 + 3n \le Cn^3$ for $n \ge n_0$
1f $\begin{cases} C = 10 & 2n^2 + 3n \le 5n^3 \\ n_0 = 1 & 2 + 3 \le 5 \end{cases}$ \vdots $5n^3 + 2n^2 + 3n = O(n^3)$

b)
$$\sqrt{7n^2 + 2n - 8} = \Theta(n)$$

$$\lim_{n\to\infty} \sqrt{7n^2+2n-8} = \lim_{n\to\infty} \sqrt{7n^2}$$

$$f(n) = (7n^{2}+2n-8)^{\frac{1}{2}}$$

$$f'(n) = \frac{1}{2}(7n^{2}+2n-8)^{\frac{1}{2}}(14n+2)$$

$$f'(2) = 3.062$$

$$|f \begin{cases} n_0 = 2 \\ k_1 = \frac{1}{2} \end{cases} \quad k_1 n \le f(n) \le k_2 n$$

$$|f \begin{cases} k_2 = \frac{1}{2} \\ k_2 = 5 \end{cases} \quad \sqrt{3n^2 + 2n - 8} = \frac{1}{2} + \frac{1}{2$$

c) Given:
$$d(n) = O(f(n))$$
 $e(n) = O(g(n))$

Show: $d(n)e(n) = O(f(n)g(n))$

Suppose:

 $a \le c$ and $b \le d$.

Then: $ab \le cd$
 $d(n) \le f(n)$ and $d(n) \le g(n)$,

 $d(n)e(n) \le f(n)g(n)$

Thus:

 $d(n) \le c_1f(n) \implies d(n)e(n) \le c_1c_2f(n)g(n)$
 $e(n) \le c_2g(n) \implies d(n)e(n) \le C(f(n)g(n))$
 $c_1 \cdot c_2 = C \implies d(n)e(n) \le C(f(n)g(n))$
 $d(n)e(n) = O(f(n)g(n))$

2) a) $\Theta(n^2)$ where n is lenc (s+) 6) $\Theta(n)$ c) $\Theta(\sqrt{n^2}) = \Theta(n)$ d) N(n/2)(n/2) = 8 + 4 + 2 + 1 $\Theta(\sqrt{n})$