STAT 4710: Homework 1

Name

Due: September 15, 2022 at 12:00pm

Contents

In	tructions	1
C	se study: Major League Baseball	2
1	Wrangle (35 points for correctness; 5 points for presentation)	5
	1.1 Import (5 points)	
	1.2 Tidy (15 points)	
	1.3 Quality control (15 points)	. :
2	Explore (50 points for correctness; 10 points for presentation)	3
	2.1 Payroll across years (15 points)	. :
	2.2 Win percentage across years (15 points)	. 4
	2.3 Win percentage versus payroll (15 points)	. 4
	2.4 Team efficiency (5 points)	

Instructions

Materials

The allowed materials are as stated on the Syllabus:

"Students may consult all course materials, including course textbooks, for all assignments and assessments. For programming-based assignments (homeworks and exams), students may also consult the internet (e.g. Stack Overflow) for help with general programming tasks (e.g. how to add a dashed line to a plot). Students may not search the internet for help with specific questions or specific datasets on any homework or exam. In particular, students may not use solutions to problems that may be available online and/or from past iterations of the course."

Collaboration

The collaboration policy is as stated on the Syllabus:

"Students are permitted to work together on homework assignments, but must write up and submit solutions individually. In particular, students may not copy each others' solutions. Furthermore, students must disclose all classmates with whom they collaborated on a given homework assignment."

In accordance with this policy,

Please list anyone you discussed this homework with:

Writeup

Use this document as a starting point for your writeup, adding your solutions after "Solution". Add your R code using code chunks and add your text answers using bold text. Consult the preparing reports guide for guidance on compilation, creation of figures and tables, and presentation quality. In particular, if the instructions ask you to "print a table", you should use kable. If the instructions ask you to "print a tibble", you should not use kable and instead print the tibble directly.

Programming

The tidyverse paradigm for data visualization, manipulation, and wrangling is required. No points will be awarded for code written in base R.

Grading

The point value for each problem sub-part is indicated. Additionally, the presentation quality of the solution for each problem (as exemplified by the guidelines in Section 3 of the preparing reports guide will be evaluated on a per-problem basis (e.g. in this homework, there are three problems). There are 100 points possible on this homework, 85 of which are for correctness and 15 of which are for presentation.

Submission

Compile your writeup to PDF and submit to Gradescope.

Case study: Major League Baseball

What is the relationship between payroll and wins among Major League Baseball (MLB) teams? In this homework, we'll find out by wrangling, exploring, and modeling the dataset in MLPayData_Total.csv, which contains the winning records and the payroll data of all 30 MLB teams from 1998 to 2014.

The dataset has the following variables:

- payroll: total team payroll (in billions of dollars) over the 17-year period
- avgwin: the aggregated win percentage over the 17-year period
- Team.name.2014: the name of the team
- p1998, ..., p2014: payroll for each year (in millions of dollars)
- X1998, ..., X2014: number of wins for each year
- X1998.pct, ..., X2014.pct: win percentage for each year

We'll need to use the following R packages:

```
library(tidyverse) # tidyverse
library(ggrepel) # for scatter plot point labels
library(kableExtra) # for printing tables
library(cowplot) # for side by side plots
```

1 Wrangle (35 points for correctness; 5 points for presentation)

1.1 Import (5 points)

- Import the data into a tibble called mlb_raw and print it.
- How many rows and columns does the data have?
- Does this match up with the data description given above?

Solution.

1.2 Tidy (15 points)

The raw data are in a messy format: Some of the column names are hard to interpret, we have data from different years in the same row, and both year-by-year and aggregate data are present.

- Tidy the data into two separate tibbles: one called mlb_aggregate containing the aggregate data and another called mlb_yearly containing the year-by-year data. mlb_total should contain columns named team, payroll_aggregate, pct_wins_aggregate and mlb_yearly should contain columns named team, year, payroll, pct_wins, num_wins. Comment your code to explain each step.
- Print these two tibbles. How many rows do mlb_aggregate and mlb_yearly contain, and why?

[Hint: For mlb_yearly, the main challenge is to extract the information from the column names. To do so, you can pivot_longer all these column names into one column called column_name, separate this column into three called prefix, year, suffix, mutate prefix and suffix into a a new column called tidy_col_name that takes values payroll, num_wins, or pct_wins, and then pivot_wider to make the entries of tidy_col_name into column names.]

Solution.

1.3 Quality control (15 points)

It's always a good idea to check whether a dataset is internally consistent. In this case, we are given both aggregated and yearly data, so we can check whether these match. To this end, carry out the following steps:

- Create a new tibble called mlb_aggregate_computed based on aggregating the data in mlb_yearly, containing columns named team, payroll_aggregate_computed, and pct_wins_aggregate_computed.
- Ideally, mlb_aggregate_computed would match mlb_aggregate. To check whether this is the case, join these two tibbles into mlb_aggregate_joined (which should have five columns: team, payroll_aggregate, pct_wins_aggregate, payroll_aggregate_computed, and pct_wins_aggregate_computed.)
- Create scatter plots of payroll_aggregate_computed versus payroll_aggregate and pct_wins_aggregate_computed versus pct_wins_aggregate, including a 45° line in each. Display these scatter plots side by side, and comment on the relationship between the computed and provided aggregate statistics.

Solution.

2 Explore (50 points for correctness; 10 points for presentation)

Now that the data are in tidy format, we can explore them by producing visualizations and summary statistics.

2.1 Payroll across years (15 points)

• Plot payroll as a function of year for each of the 30 teams, faceting the plot by team and adding a red dashed horizontal line for the mean payroll across years of each team.

- Using dplyr, identify the three teams with the greatest payroll_aggregate_computed, and print a table of these teams and their payroll_aggregate_computed.
- Using dplyr, identify the three teams with the greatest percentage increase in payroll from 1998 to 2014 (call it pct_increase), and print a table of these teams along with pct_increase as well as their payroll figures from 1998 and 2014.
- How are the metrics payroll_aggregate_computed and pct_increase reflected in the plot above, and how can we see that the two sets of teams identified above are the top three in terms of these metrics?

[Hint: To compute payroll increase, it's useful to pivot_wider the data back to a format where different years are in different columns. Use names_prefix = "payroll_" inside pivot_wider to deal with the fact column names cannot be numbers. To add different horizontal lines to different facets, see this webpage.]

Solution.

2.2 Win percentage across years (15 points)

- Plot pct_wins as a function of year for each of the 30 teams, faceting the plot by team and adding a red dashed horizontal line for the average pct_wins across years of each team.
- Using dplyr, identify the three teams with the greatest pct_wins_aggregate_computed and print a table of these teams along with pct_wins_aggregate_computed.
- Using dplyr, identify the three teams with the most erratic pct_wins across years (as measured by the standard deviation, call it pct_wins_sd) and print a table of these teams along with pct_wins_sd.
- How are the metrics pct_wins_aggregate_computed and pct_wins_sd reflected in the plot above, and how can we see that the two sets of teams identified above are the top three in terms of these metrics?

Solution.

2.3 Win percentage versus payroll (15 points)

Let us investigate the relationship between win percentage and payroll.

- Create a scatter plot of pct_wins versus payroll based on the aggregated data, labeling each point
 with the team name using geom_text_repel from the ggrepel package and adding the least squares
 line.
- Is the relationship between payroll and pct_wins positive or negative? Is this what you would expect, and why?

Solution.

2.4 Team efficiency (5 points)

Define a team's *efficiency* as the ratio of the aggregate win percentage to the aggregate payroll—more efficient teams are those that win more with less money.

- Using dplyr, identify the three teams with the greatest efficiency, and print a table of these teams along with their efficiency, as well as their pct_wins_aggregate_computed and payroll_aggregate_computed.
- In what sense do these three teams appear efficient in the previous plot?

Side note: The movie "Moneyball" portrays "Oakland A's general manager Billy Beane's successful attempt to assemble a baseball team on a lean budget by employing computer-generated analysis to acquire new players."

Solution.