»PHYSWIKIQUIZ« ISSUES

RIGHT-HAND SIDE SUBSTITUTIONS

- Centripetal acceleration: a_C= \fraC{v^2} r
 → The index a_C is not supported.
- Conservation of energy:
 - $E_{\text{tot,1}} = E_{\text{tot,2}}$
 - \rightarrow The indices $_{\{tot,x\}}$ are not supported.
- Dirac equation in curved spacetime: i\gamma^a e_a^\mu D_\mu \Psi m \Psi = 0
 - → The formula right-hand side (rhs) already set zero, the left-hand side (lhs) is not a single identifier.
- Elastic energy: $U = \frac{1}{2}k \cdot Delta \times^2|$ with identifier properties
 - [('spring constant', 'k'), ('linear strain', '\Delta x'), ('elastic energy', 'U')] \rightarrow The identifiers are in wrong order, 'spring constant' k is interpreted as lhs.
- Energy-momentum relation: E^2 = p^2c^2 + m^2c^4 -> c**4*m**2 + c**2*p**2 -> 62426 → Very large number, lhs is identifier squared.
- Escape velocity: $v_{\text{e}} = \sqrt{\frac{2GM}{r}} = \sqrt{2gr}$
 - \rightarrow Two equation signs = occur.
- Euler-Lagrange equation:

 - \rightarrow The lhs is a complex expression.
- Force: F = \frac{d p}{d t}
 - → Identifier properties and formula are not matching.
- Four-momentum: p^\mu=\begin{matrix}...
 - → Matrix cannot be calculated, formula too general depending on index dimension.
- Galilean transformation:
 - $(t,\mathbb{x} \times x) \to (t+s,\mathbb{x} \times x)$
- → The operator 'mapsto' is not supported, two variable transformation.
- Generalized momentum: $p_i = \frac{d L}{d \det\{q\}_i}$
 - → The \dot derivative is not supported.
- Hamiltonian operator: $H\left(q,p,t\right) = p*\det\{q\} L\left(q,\det\{q\},t\right)$
 - \rightarrow Function arguments like () or **\left** are not supported.
- Rest mass: E_\mathrm{total} -> {E}_{t, o, t, a, 1}
 - \rightarrow Translation of index letters into identifiers.
- Tangential velocity: v = omega r
 - ightarrow Identifier \omega is v in identifier properties list.
- Work: A = \int_{\Gamma} F * d r
 - → Integral semantic index used instead of boundaries (interpreted as lower limit with upper missing).

EXPLANATION TEXT GENERATION

- Energy-momentum relation: Solution from www.wikidata.org/wiki/Q103439852 formula $E^2 = p^2c^2 + m^2c^4$ with 10100 m² kg s² 2 = 2 m kg s¹ 2 5 m s¹ 2 5 m s² 5 m s² 4.
 - \rightarrow Implicit multiplication operators, square power operator brackets missing.
- Hooke's law: Solution from www.wikidata.org/wiki/Q170282 formula F= k X with 40 m kg s^-2 = 4 kg s^-2 10 1 .
 - \rightarrow Unit of dimensionless identifier X set to 1.
- Mass-energy equivalence: Solution from www.wikidata.org/wiki/Q35875 formula e= m c^2 with e= 1 kg 10 m s^-1 ^2.
 - → Rhs value missing, square power operator brackets missing.
- Mechanical impedance: Solution from www.wikidata.org/wiki/Q6421317 formula $Z_{m} = Z_{a} A^2$ with $Z_{m} = Z_{a} 8 m^2 ^2$.
 - \rightarrow Identifiers with indices not evaluated.
- Moment of inertia: Solution from www.wikidata.org/wiki/Q165618 formula J_{Q} = \int r_{Q}^{2} d m with J_{Q} = \int r_{Q}^{2} d 7 kg .
 - \rightarrow Rhs and integral not evaluated.