Relační model dat (Codd 1970)

Odkud vychází, co přináší?

- Formální abstrakce nejjednodušších souborů.
- Relační kalkul a relační algebra (dotazovací prostředky).
- Metodika pro posuzování kvality relačního schématu.
- Metodika pro návrh kvalitního relačního schématu.

Michal Valenta (valenta@fel.cvut.cz)

DBS – Databázové modely

2. prosince 2008

1 / 35

Relace - zavedení pojmů

- jména **atributů** [*A*₁, *A*₂, *A*₃, ..., *A*_n]
- domény atributů D_i nebo dom(A_i)
 1.NF požaduje, aby atributy byly atomické.
- **n-tice** (*a*₁, *a*₂, ..., *a*_n) (prvek relace)
- množina n-tic $\subset D_1 \times D_2 ... \times D_n$ je **relace**
- jméno relace R
- schéma relace $R(A_1 : D_1, A_2 : D_2, ..., A_n : D_n)$, zkráceně R(A)

Intuitivně (ale nepřesně, viz dále):

- relace = tabulka
- schéma relace = záhlaví tabulky

Relace vs. tabulky 1/3

Mějme tabulky: **KINO*** a **FILM***

NazevK	Adresa
Blaník	Václ. n. 4
Vesna	Olšiny 3
Mír	Strašnická 3
Domovina	V dvorcích 7

JmenoF	Herec	Rok
Černí baroni	Vetchý	1994
Černí baroni	Landovský	1994
Top gun	Cruise	1986
Top gun	McGillis	1986
Kmotr	Brando	1972
Nováček	Brando	1990
Vzorec	Brando	1980

Dále máme relace:

KINO (NazevK, Adresa) a FILM (JmenoF, Herec, Rok).

Otázky:

Jaký je vztah mezi relacemi KINO a FILM a tabulkami KINO* a FILM*? Jak zařídit vztah – film je na programu kina?

U jednoho filmu chceme sledovat více herců. Jak to zařídit?

Michal Valenta (valenta@fel.cvut.cz)

DBS – Databázové modely

2. prosince 2008

4/35

Relace vs. tabulky 2/3

Jaký je vztah mezi relacemi KINO a FILM a tabulkami KINO* a FILM*?

Relace vs. tabulky - terminologie

relace tabulka

schéma relace záhlaví tabulky jméno atributu jméno sloupce

atribut sloupec

n-tice řádek tabulky

Odlišnosti:

- V relaci nezáleží na pořadí n-tic.
- Relace neobsahují duplicitní n-tice (jsou to množiny).

Relace vs. tabulky 3/3

U jednoho filmu chceme sledovat více herců. Jak to zařídit?

Nápad 1: Více atributů herec.

<u>NázevF</u>	Herec1	Herec2	Rok
Černí baroni	Vetchý	Landovský	1994
Kmotr	Brando		1972

Co když více než dva herci? Prázné sloupce. Není v 1NF.

Nápad 2: Vícehodnotový atribut.

<u>NázevF</u>	Herec	Rok
Černí baroni	Vetchý, Landovský	1994
Kmotr	Brando	1972

Vícehodnotové atributy se v relačním modelu nepřipouští. Není v 1NF.

Nápad 3: Více řádek pro jeden film.

NázevF	Herec	Rok
Černí baroni	Vetchý	1994
Černí baroni	Landovský	1994

Zbytečná redundance, update anomálie. Není ve 2NF.

Detailní diskuse a "čisté" relační řešení viz přednáška o normalizaci schématu.

Michal Valenta (valenta@fel.cvut.cz)

DBS – Databázové modely

2. prosince 2008

6/35

Relační model dat – definice

Je nutné zajistit, aby se do relací dostala pouze "správná data" – přípustné n-tice.

Def.: Schéma (relační) databáze:

(R, I) je schéma relační databáze, kde:

- $R = \{R_1, R_2, ..., R_n\}$ je množina relací a
- I je množina integritních omezení.

Def.: Přípustná (relační) databáze:

Přípustná relační databáze se schématem (R, I) je množina (konkrétních) relací $\{R_1^*, R_2^*, ..., R_n^*\}$ takových, že jejich n-tice vyhovují tvrzením v I.

Relační model dat – definice klíče schématu

Def.: Klíč schématu

Klíč K schématu R(A) je taková **minimální** podmnožina atributů z A, která jednoznačne určí každou n-tici (konkrétní) relace R^* .

Pozn.: minimalita klíče (viz předchozí definice)

Klíč K schématu R(A) je **minimální**, pokud neexistuje takové $K' \subset K$ jež je klíčem schématu R(A).

Tvrzení 1:

Nechť K je klíč schématu R(A). Pak pro každou přípustnou relaci R^* platí : jsou-li u a v dvě ruzné n-tice z R^* , potom $u[K] \neq v[K]$.

Tvrzení 2:

Relace R může mít několik (alternativních) klíčů.

Příklad: řekněme, že R(a,b,c) a R(a,b,c), pak ale už ne R(a,b,c), protože a.b není minimální!

Michal Valenta (valenta@fel.cvut.cz)

DBS – Databázové modely

2. prosince 2008

8/35

Relační model dat – příklad IO

```
KINO (NazevK, Adresa)
FILM (JmenoF, Herec, Rok)
MA_NA_PROGRAMU(NazevK, JmenoF, Datum)
```

Integritní omezení:

- IO1 : primární klíče (podtržené)
- IO2 : cizí klíče:
 MA_NA_PROGRAMU[JmenoF] ⊆ FILM[JmenoF]
 MA_NA_PROGRAMU[NazevK] ⊆ KINO[NazevK]
- IO3: V kině se nehraje více než dvakrát týdně.
- IO4 : Jeden film se nehraje více než ve třech kinech.

Relační model dat – ošetření IO

- Jak definovat IO nad schématem úložiště?
- Jak zajistit dodržování daného IO?

Možností vyjádření (a kontroly) IO:

- deklarativní: při vytvoření schématu (relace), hlídá je automaticky DBMS, výše jsme zavedli PK a FK, později v SQL přibudou UK, NOT NULL a CHECK.
- procedurální na straně serveru
- procedurální na straně klienta

Michal Valenta (valenta@fel.cvut.cz)

DBS - Databázové modely

2. prosince 2008

10 / 35

Relační model dat – definice dotazu

Def.: Dotaz

Databázový **dotaz** nad schématem S je výraz, který vrací odpověd se schématem T. Přičemž:

- definičním oborem jsou všechna úložiště se schématem S,
- oborem hodnot jsou všehny relace se schématem T,
- data v odpovědi pocházejí z databáze,
- odpověď nezávisí na fyzickém uložení dat.

Def.: Dotazovací jazyk

Dotazovací jazyk je množina všech použitelných výrazů pro konstrukci dotazu.

Relační model dat – manipulace s relacemi

- Vložení n-tice do dané relace.
- Zrušení/změna daných n-tic v dané relaci.
 - ⇒ Algoritmus manipulačních operací zahrnuje kontolu dodržovaní (deklarativních) IO.
- Zadání dotazu:
 - ⇒ relační algebra,
 - ⇒ relační kalkul,
 - \Rightarrow SQL.

Michal Valenta (valenta@fel.cvut.cz)

DBS - Databázové modely

2. prosince 2008

12/35

Relační model dat – shrnutí

- Relace (tabulky) jsou v 1NF,
 tj. komponenty jejich n-tic (řádků) jsou atomické.
- Přístup k prvkům relace (řádkům tabulky) dle obsahu.
- Jedinečné n-tice (řádky).
 Jde o zdůraznění množinového myšlení v RMD.
- Vyhodnocení dotazu nezávislá na fyzickém uložení dat.
- Existují silné prostředky pro manipulaci s daty.
 Viz relační algebra a SQL dále.
- Existují matody návrhu schématu úložiště v relační databázi, které vedou na schémata "dobrých vlastností".
 Viz normalizace schématu dále.

RA – operace 1/5, předp. R(A) a S(B)

- selekce (restrikce) relace R dle podmínky φ
 Značení: R(φ). Definice: R(φ) =_{def} {u | u ∈ R ∧ φ(u)},
 kde φ je (složený) logický výraz typu (t₁Θt₂) a/nebo (tΘa),
 kde t zastupuje atribut, a konstantu a Θ relační operátor.
- **projekce** relace R na množinu atributů C, kde $C \subseteq A$ **Značení:** R[C]. **Definice:** $R[C] =_{def} \{u[C] \mid u \in R\}$.
- přirozené spojení relací R(A) a S(B) s výsledkem T(C)
 Značení: R * S. Definice: R * S =_{def} {u | u[A] ∈ R ∧ u[B] ∈ S},
 kde C = A ∪ B a kde výběr n-tic pro spojení je dán rovností na
 všech průnikových atributech A a B.
- přejmenování atributu
 Značení: t → alias.

Příklad: Hvězdy (herci), které hrají ve filmech promítaných v kině Mír. *MA_NA_PROGRAMU*(*NazevK* =' *Mir*')[*JmenoF*, *Datum*] * *FILM*[*Herec* → *Hvezda*] Rozbor dotazu po krocích viz dále.

Michal Valenta (valenta@fel.cvut.cz)

DBS – Databázové modely

2. prosince 2008

15 / 35

RA – operace 2/5, předp. R(A) a S(B)

• obecné spojení (Θ -spojení) R(A) a S(B) s výsledkem T(C) Značení: $R[t_1 \ominus t_2]S$.

Definice: $R[t_1 \ominus t_2]S =_{def} \{u \mid u[A] \in R, u[B] \in S, u.t_1 \ominus u.t_2\},$ kde $\Theta \in \{<,>,=,\leq,\geq,\neq\}$, přípustné je také použití logických spojek $\{\land,\lor,\neg\}$ pro konstrukci složitějších podmínek spojení. C je "zřetězením" A a B - spol. atributy ve výsledku se opakují, nutno je přejmenovat nebo používat kvalifikaci, např. R.A.

množinové operace:

sjednocení – $R \cup S$ průnik – $R \cap S$ množinový rozdíl – $R \setminus S$ (někdy též klasicky R - S) kartézský součin – $R \times S$

Minimální množina operací RA: $\{\times, selekce, projekce, \rightarrow, \bigcup, \setminus\}$ Ostatní operace se dají zapsat s jejich pomocí. Např. * nebo Θ -spojení pomocí $\times, selekce, projekce$.

RA – příklad – Θ-spojení

Mějme relace R(A, B, C) a S(B, C.D, E). T := R[A < S.B]S.

R	Α	В	С
	8	2	3
	1	2	3 4
	2	1	4
	2 3 3	6 8	7
	3	8	9

S	В	С	D	Е
	3	4	2	3
	3	3	3 5	3
	1	4	5	6
	2	3	4	7

T	Α	R.B	R.C	S.B	S.C	D	E
	1	2	3	3	4	2	3
	1	2	3	3	3	3	3
	1	2	3	2	3	4	7
	2	1	4	3	4	2	3
	2	1	4	3	3	3	3

Michal Valenta (valenta@fel.cvut.cz)

DBS – Databázové modely

2. prosince 2008

17 / 35

Relační algebra – charakteristika

- Programování vs. relační algebra
 - Relační algebra je "vyšší" jazyk.
 - Nespecifikujeme "jak se mají věci udělat" (typicky 3GL), ale "co má být výsledkem".
 - Na druhou stranu je to jazyk velmi úzce specializovaný.
- Dotazovací jazyk, který umožňuje realizovat relační algebru se nazývá relačně úplný.
- Komerční svět
 - SQL (je relačně úplný)
 - jazyky formulářů
 - obrázkové jazyky

RA – příklad 1/4 – selekce

Rozeberme po krocích dotaz:

Hvězdy (herci), které hrají ve filmech promítaných v kině Mír.

Databáze:

MA_NA_PROGRAMU(NazevK, JmenoF, Datum)

R1 := MA_NA_PROGRAMU(NazevK = 'Mir')

MA_NA_PROGRAMU	<u>NazevK</u>	<u>NazevF</u>	Datum
	Blaník	Tog gun	29.3. 1994
	Blaník	Kmotr	8.3. 1994
	Mír	Nováček	10.3. 1994
	Mír	Top gun	9.3. 1994
	Mír	Kmotr	8.3. 1994

R1	NazevK	NazevF	Datum
	Mír	Nováček	10.3. 1994
	Mír	Top gun	9.3. 1994
	Mír	Kmotr	8.3. 1994

Michal Valenta (valenta@fel.cvut.cz)

DBS – Databázové modely

2. prosince 2008

19 / 35

RA – příklad 2/4 – projekce

R2 := R1[JmenoF, Datum]

R1	NazevK	NazevF	Datum
	Mír	Nováček	10.3. 1994
	Mír	Top gun	9.3. 1994
	Mír	Kmotr	8.3. 1994

R2	NazevF	Datum
	Nováček	10.3. 1994
	Top gun	9.3. 1994
	Kmotr	8.3. 1994

RA – příklad 3/4 – přirozené spojení

R3 := R2 * FILM

R2	NazevF Datum		
Nováček		10.3. 1994	
	Top gun	9.3. 1994	
	Kmotr	8.3. 1994	

FILM	<u>NazevF</u>	Herec	Rok
	Černí baroni	Vetchý	1994
	Černí baroni	Landovský	1994
	Top gun	Cruise	1986
	Top gun	McGillis	1986
	Kmotr	Brando	1972
	Nováček	Brando	1990
	Vzorec	Brando	1980

R3	NazevF	Datum	Herec	Rok
	Nováček	10.3. 1994	Brando	1990
	Top gun	9.3. 1994	Cruise	1986
	Top gun	9.3. 1994	McGillis	1986
	Kmotr	8.3. 1994	Brando	1972

Spojení bylo provedeno přes rovnost na atributech JmenoF.

Michal Valenta (valenta@fel.cvut.cz)

DBS – Databázové modely

2. prosince 2008

21 / 35

RA – příklad 4/4 – projekce, selekce a přejmenování

 $R4 := R3[Herec \rightarrow Hvezda]$

R3	NazevF	Herec	Rok	Datum
	Nováček	Brando	1990	10.3. 1994
	Top gun	Cruise	1986	9.3. 1994
	Top gun	McGillis	1986	9.3. 1994
	Kmotr	Brando	1972	8.3. 1994

R4	Hvezda		
	Cruise		
	Brando		
	McGillis		

Poznámka:

Díky "množinovému" chápání RMD dojde automaticky k vyloučení duplicit v relaci R4.

Bez mezikroků:

Hvězdy (herci), které hrají ve filmech promítaných v kině Mír.

 $((MA_NA_PROGRAMU(NazevK = 'Mir')[JmenoF, Datum])* FILM)[Herec <math>\rightarrow Hvezda]$

RA – operace 3/5 – polospojení

• levé ⊖-polospojení

Značení: $R < t_1 \Theta t_2]S$

Definice: $R < t_1 \Theta t_2]S =_{def} (R[t_1 \Theta t_2]S[A])$

• pravé Θ -polospojení Značení: $R[t_1 \ominus t_2 > S]$

Definice: $R[t_1 \ominus t_2 > S =_{def} (R[t_1 \ominus t_2]S[B])$

levé přirozené polospojení

Značení: R <∗ S

Definice: $R < *S =_{def} (R *S)[A]$

pravé přirozené polospojení

Značení: R *> S

Definice: $R *> S =_{def} (R * S)[B]$

Lze chápat jako "syntaktickou zkratku" – spojení následované projekcí na A resp. B Skutečná implementace může být mnohem efektivnější.

Interpretace *R* <* *S*

Podmnožina n-tic z R, které jsou **spojitelné** s nějakou n-ticí z S.

Michal Valenta (valenta@fel.cvut.cz)

DBS – Databázové modely

2. prosince 2008

23 / 35

RA – operace 4/5 – antijoin

Motivace:

Tato operace se používá v modulu query executor v Oracle.

Můžeme ji vidět v prováděcích plánech SQL dotazů při vyhodnocení klauzule NOT EXIST.

Značení: $R \supset S$

Definice: $R \ni S =_{def} R \setminus (R < *S)$

Interpretace $R \supset S$

Podmnožina n-tic z R, které **nejsou spojitelné** s žádnou n-ticí z S.

Příklad: Najděte kina, která nic nejhrají.

KINO ∋ MA NA PROGRAMU

Bez operace antijoin: KINO \ (KINO <*MA_NA_PROGRAMU)

RA - příklady 1/6

D1: Názvy kin, která něco hrají.

MA_NA_PROGRAMU[NazevK]

D2: Seznam kin, která nic nehrají.

KINO[NazevK] \ (MA_NA_PROGRAMU[NazevK])

D3: Názvy kin, která hrají film Top Gun.

MA_NA_PROGRAMU(JmenoF = 'TopGun')[NazevK]

D4: Jména filmů, které hraje kino s adresou Zvonkova.

((KINO(Adresa = 'Zvonkova')[NazevK])*

MA_NA_PROGRAMU)[JmenoF]

Michal Valenta (valenta@fel.cvut.cz)

DBS - Databázové modely

2. prosince 2008

25 / 35

RA – příklady 2/6

D5: Názvy kin, která hrají něco s hercem Brando.

*D*5 :=

(FILM(Herec = 'Brando')[JmenoF] * MA_NA_PROGRAMU)[NazevK]

D6: Názvy kin, která **nedávají žádný** film s Brando.

Přeformulujme dotaz D6 na D6':

Názvy všech kin kromě těch, která hrají něco s hercem Brando.

KINO[NazevK] \ D5

D6B: Názvy kin, která hrají, ale nehrají žádný film s Brando.

MA_NA_PROGRAMU[*NazevK*] \ *D*5

RA – příklady 3/6 – negace (¬) a ex. kvant. (\exists)

D7: Názvy kin, ve kterých se nehraje některý film s Brando.

- 1.krok:
 - ⇒ Univerzum pro množinu dvojic {kino, "film s Brando"}.

 $U := KINO[NazevK] \times (FILM(Herec = 'Brando')[JmenoF])$

- 2.krok :
 - ⇒ Získejme reálnou množinu dvojic {kino, film }.

 $R := MA_NA_PROGRAMU[NazevK, JmenoF]$

- 3.krok :
 - ⇒ Odečtením výše zkonstruovaných relací získáme množinu v programu nezrealizovaných dvojic {kino, "film s Brando"}.

 $N := U \setminus R$

- 4.krok :
 - \Rightarrow Projekcí na první atribut získáme požadovaný seznam kin. N[NazevK]

Poznámka: Opravdu není nutné omezovat R na filmy s Brando.

Michal Valenta (valenta@fel.cvut.cz)

DBS – Databázové modely

2. prosince 2008

27 / 35

RA – příklady 4A/6 – všeobecný kvantifikátor (∀)

Princip formulace dotazů se všeobecným kvantifikátorem.

$$\forall x. P(x) = \neg \exists x. (\neg P(x))$$

D8: Názvy kin, ve kterých se dávají všechny filmy s Brando.

Přepis 1 D8':

Názvy kin, která něco hrají, a zároveň **není pravda**, že **ne**hrají **některý** film s Brando.

Přepis 2 D8":

Seznam kin, ve kterých něco hrají s výjimkou těch kin, která **ne**hrají **některý** film s Brando.

Přepis 3 **D8**"":

{*NazevK* | kino něco hraje} ∖

{NazevK | kino **ne**hraje **některý** film s Brando}

RA – příklady 4B/6 – všeobecný kvantifikátor (∀)

D8": {*NazevK* | kino něco hraje} \ {*NazevK* | kino **ne**hraje **některý** film s Brando}

- 1. krok: Názvy kin, která něco hrají.
 K := MA_NA_PROGRAMU[NazevK]
- 2. krok: Univerzum dvojic {"kino s programem", "film s Brando"}. $U := K \times (FILM(Herec = 'Brando')[JmenoF])$
- 3. krok: Reálná množina dvojic {kino, film }.
 R := MA_NA_PROGRAMU[NazevK, JmenoF]
- 4.krok: Nerealizované {"kino s programem", "film s Brando"}. $N := U \setminus R$
- 5. krok: Kina, která nehrají některý film s Brando.
 B := N[NazevK]
- 6. krok: Konečný výsledek.K \ B

Michal Valenta (valenta@fel.cvut.cz)

DBS – Databázové model

2. prosince 2008

29 / 35

RA – operace 5/5 – db. dělení (\div) a př. 4C/6 – (\forall)

Mějme A(x, y) a B(y).

Značení: $A \div B$

Definice: $A \div B =_{def} A[x] \setminus ((A[x] \times B) \setminus A)[x])$

Interpretace $A \div B$

- Výsledkem jsou všechny hodnoty x z A, které v A tvoří dvojici s každým prvkem y z B.
- Pomocí prvků y z B se snažíme diskvalifikovat prvky x z A. Prvek x je diskvalifikován, pokud v A neexistuje ve dvojici s každým y z B. Výsledkem A ÷ B jsou ty prvky x z A, které se diskvalifikovat nepodařilo.

```
D8": {NazevK | kino něco hraje} \ {NazevK | kino nehraje některý film s Brando}
```

RA – příklady 5/6 – všeobecný kvantifikátor (∀)

D9: Názvy kin, ve kterých se hrají **všechny** filmy, které jsou na programu.

D9': Názvy kin, ve kterých něco hrají, a zároveň **není** pravdou, že **ne**hrají **některý** z filmů z programu.

D9": Názvy kin, ve kterých něco hrají s výjimkou kin, kde **ne**hrají **některý** z filmů v programu.

D9": {*NazevK* | kino něco hraje} \ {*NazevK* | kino **ne**hraje **některý** film z programu}

- bez použití operace ÷:
 - ▶ 1. krok: $K := MA_NA_PROGRAMU[NazevK]$
 - 2. krok: $U := K \times (MA_NA_PROGRAMU[JmenoF])$
 - 3. krok: R := MA_NA_PROGRAMU[NazevK, JmenoF]
 - 4. krok: N := U \ R
 - 5. krok: B := N[NazevK]
 - ▶ 6. krok: *K* \ *B*
- \$ s pomoci operace \(\div:\):
 MA_NA_PROGRAMU[NazevK, JmenoF] \(\div(MA_NA_PROGRAMU[JmenoF])\)

Michal Valenta (valenta@fel.cvut.cz)

DBS - Databázové modely

2. prosince 2008

31 / 35

RA – příklady 6/6 – všeobecný kvantifikátor (∀)

D10: Název kina,

ve kterém se hrají všechna představení z programu.

Poznámka: Výsledek je buď jedno kino, nebo nic.

D10': Název kina, pro které není pravda,

že **ne**hraje **některé** přestavení z programu.

D10": Názvy kin, která něco hrají s výjimkou kin,

ve kterých se **ne**hraje **některé** představení z programu.

D10": {*NazevK* | kino něco hraje} \

{NazevK | kino **ne**hraje **některé** představení z programu}

 $\textit{MA_NA_PROGRAMU}[\textit{NazevK}, \textit{JmenoF}, \textit{Datum}] \div$

(MA_NA_PROGRAMU[JmenoF, Datum])

Operace za RMD – vnější spojení

Motivace: Chceme seznam představení včetně kin, která nic nehrají.

Zavedeme "bottom" prvek **NULL** do každé domény atributu.

Hodnota **NULL** má význam **UKNOWN** / **NESPECIFIKOVÁNO** / **N/A**. Nezaměňovat s 0 pro čísla nebo s prázdným řetězcem pro char!

R	NazevK	Adresa	JmenoF	Datum
	Blaník	Václ.n. 4	Top gun	29.03.1992
	Blaník	Václ.n. 4	Kmotr	08.03.1992
	Mír	Starostrašnická 3	Nováček	10.03.1992
	Mír	Starostrašnická 3	Top gun	09.03.1992
	Mír	Starostrašnická 3	Top gun	08.03.1992
	Mír	Starostrašnická 3	Kmotr	08.03.1992
	Vesna	V olšinách 6	NULL	NULL
	Domovina	V dvorcích	NULL	NULL

Michal Valenta (valenta@fel.cvut.cz)

DBS – Databázové modely

2. prosince 2008

33 / 35

Operace "za" relačním modelem

levé vnejší přirozené spojení

Značení: R * L S

Definice:

 $R *_L S =_{def} (R * S) \bigcup ((R \setminus R < * S) \times \{NULL, ..., NULL\})$

pravé vnejší přirozené spojení

Značení: $R *_R S$

Definice:

 $R *_R S =_{def} (R * S) \bigcup ((S \setminus S < * R) \times \{NULL, ..., NULL\})$

plne vnejší přirozené spojení

Značení: $R *_F S$

Definice: $R *_F S =_{def} (R *_L S) \bigcup (R *_R S)$

Poznámky:

- Analogicky bychom mohli definovat vnější (obecné) Θ-spojení.
- Za předpokladu R(A) a S(B) platí:

$$(R*_L S)[A] = R$$

 $(R *_L S)[B] = (R *> S) \bigcup \{NULL, ..., NULL\}$

Operace "za" relačním modelem

Program kin včetně těch kin, která nic nehrají.

KINO *L MA_NA_PROGRAMU

Program kin včetně těch kin, která nic nehrají, a včetně filmů, které nejsou na programu žádného kina.

KINO *L MA_NA_PROGRAMU *R FILM