Análisis Matemático I

Tema 9: Matriz jacobiana

Matriz jacobiana

Regla de la cadena

3 Aplicaciones

 $\mathcal{M}_{M\times N}$ matrices $M\times N$ (M filas y N columnas) con coeficientes reales $A \in \mathcal{M}_{M \times N}$, $A = (\alpha_{jk})$ donde $\alpha_{jk} \in \mathbb{R} \ \forall j \in \Delta_M \ \forall k \in \Delta_N$

$$A = \begin{pmatrix} \alpha_{11} & \alpha_{12} & \dots & \alpha_{1k} & \dots & \alpha_{1N} \\ \alpha_{21} & \alpha_{22} & \dots & \alpha_{2k} & \dots & \alpha_{2N} \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ \alpha_{j1} & \alpha_{j2} & \dots & \alpha_{jk} & \dots & \alpha_{jN} \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ \alpha_{M1} & \alpha_{M2} & \dots & \alpha_{Mk} & \dots & \alpha_{MN} \end{pmatrix}$$

 $\mathcal{M}_{M \times N}$ es un espacio vectorial de dimensión MN (isomorfo a \mathbb{R}^{MN})

Producto de matrices: $B \in \mathcal{M}_{P \times M}$, $A \in \mathcal{M}_{M \times N} \longrightarrow B \cdot A \in \mathcal{M}_{P \times N}$

$$B = \left(\beta_{ij}\right), \quad A = \left(\alpha_{jk}\right) \quad \Longrightarrow \quad B \cdot A = \left(\gamma_{ik}\right) \quad \text{ donde}$$

$$\gamma_{ik} = \sum_{i=1}^{M} \beta_{ij} \alpha_{jk} \quad \forall i \in \Delta_P, \quad \forall k \in \Delta_N$$

$$\gamma_{ik} = \sum_{i=1}^{n} \beta_{ij} \alpha_{jk} \quad \forall i \in \Delta_P, \ \forall k \in \Delta_N$$

El espacio vectorial $L(\mathbb{R}^N, \mathbb{R}^M)$

Matriz de una aplicación linea

$$\begin{split} T \in L(\mathbb{R}^N, \mathbb{R}^M) &\longleftrightarrow \quad A = \left(\alpha_{jk}\right) \in \mathcal{M}_{M \times N} \\ \frac{\alpha_{jk}}{a_{jk}} &= (\pi_j \circ T)(e_k) \quad \forall j \in \Delta_M \,, \quad \forall k \in \Delta_N \\ \{e_1, \dots, e_N\} &\text{ base usual, } \{\pi_1, \dots, \pi_M\} \text{ proyecciones coordenadas} \end{split}$$

$$\mathbb{R}^{N} \ni x = \begin{pmatrix} x_{1} \\ x_{2} \\ \vdots \\ x_{N} \end{pmatrix} \in \mathcal{M}_{N \times 1} \xrightarrow{T} \mathbb{R}^{M} \ni T(x) = y = \begin{pmatrix} y_{1} \\ y_{2} \\ \vdots \\ \vdots \\ y_{M} \end{pmatrix} \in \mathcal{M}_{M \times 1}$$

T aparece como producto de matrices: $T(x) = A \cdot x \quad \forall x \in \mathbb{R}^N$

A es la matriz que representa a la aplicación lineal T en las bases usuales de \mathbb{R}^N y \mathbb{R}^M ,

cuando los vectores de \mathbb{R}^N y \mathbb{R}^M se expresan como matrices columna

Abreviado: A es la matriz de la aplicación lineal T

000

$$\Omega = \Omega^{\circ} \subset \mathbb{R}^N, \quad f = (f_1, f_2, \dots, f_M) : \Omega \to \mathbb{R}^M$$

Cuando f es diferenciable en $a \in \Omega$, la matriz jacobiana de f en a, es

la matriz $Jf(a) \in \mathcal{M}_{M \times N}$ de la aplicación lineal $Df(a) \in L(\mathbb{R}^N, \mathbb{R}^M)$

Por tanto: $Df(a)(x) = Jf(a) \cdot x \quad \forall x \in \mathbb{R}^N$

Cálculo de la matriz jacobiana

$$Jf(a) = \begin{pmatrix} \alpha_{jk} \end{pmatrix} \in \mathcal{M}_{M \times N} \quad \text{donde} \quad \alpha_{jk} = \frac{\partial f_j}{\partial x_k}(a) \quad \forall j \in \Delta_M \,, \quad \forall k \in \Delta_N$$

$$Jf(a) = \begin{pmatrix} \frac{\partial f_1}{\partial x_1}(a) & \frac{\partial f_1}{\partial x_2}(a) & \dots & \dots & \frac{\partial f_1}{\partial x_N}(a) \\ \\ \frac{\partial f_2}{\partial x_1}(a) & \frac{\partial f_2}{\partial x_2}(a) & \dots & \dots & \frac{\partial f_2}{\partial x_N}(a) \\ \\ \vdots & \vdots & & \vdots & & \vdots \\ \frac{\partial f_M}{\partial x_1}(a) & \frac{\partial f_M}{\partial x_2}(a) & \dots & \dots & \frac{\partial f_M}{\partial x_N}(a) \end{pmatrix}$$

Derivadas parciales de una composición de funciones

Regla de la cadena para las derivadas parciales

$$\Omega = \Omega^{\circ} \subset \mathbb{R}^{N}, \qquad U = U^{\circ} \subset \mathbb{R}^{M}$$
$$f: \Omega \to U, \qquad g: U \to \mathbb{R}^{P}, \qquad h = g \circ f: \Omega \to \mathbb{R}^{P}$$

Si f es diferenciable en un punto $a\in\Omega$, y g es diferenciable en el punto $b=f(a)\in U$, entonces:

$$Jh(a) = Jg(b) \cdot Jf(a)$$

$$f = (f_1, f_2, \dots, f_M), \quad g = (g_1, g_2, \dots, g_P), \quad h = (h_1, h_2, \dots, h_P)$$

$$\frac{\partial h_i}{\partial x_k}(a) = \sum_{i=1}^{M} \frac{\partial g_i}{\partial y_j}(b) \frac{\partial f_j}{\partial x_k}(a) \quad \forall i \in \Delta_P, \ \forall k \in \Delta_N$$

Cómo se entiende y cómo se recuerda la regla de la cadena

La regla de la cadena vista como cambio de variables

f,g,h describen la relación entre tres variables: $x\in\Omega,\ y\in U,\ z\in\mathbb{R}^P$:

$$y = f(x), \quad z = g(y), \quad z = g(f(x)) = h(x)$$

$$x=(x_1,x_2,\ldots,x_N)\,,\quad y=(y_1,y_2,\ldots,y_M)\,,\quad z=(z_1,z_2,\ldots,z_P)$$
 Para cada $\ j\in\Delta_M\$ y cada $\ i\in\Delta_P\$ se tiene:

$$y_j = f_j(x_1, x_2, \dots, x_N), \quad z_i = g_i(y_1, y_2, \dots, y_M), \quad z_i = h_i(x_1, x_2, \dots, x_N)$$

Notación intuitiva: para $k \in \Delta_N$, $j \in \Delta_M$, $i \in I_P$, escribimos:

$$\frac{\partial y_j}{\partial x_k}(a) = \frac{\partial f_j}{\partial x_k}(a), \quad \frac{\partial z_i}{\partial y_j}(b) = \frac{\partial g_i}{\partial y_j}(b), \quad \frac{\partial z_i}{\partial x_k}(a) \frac{\partial h_i}{\partial x_k}(a)$$

Entonces, la regla de la cadena toma la siguiente forma:

$$\frac{\partial z_i}{\partial x_k}(a) = \sum_{i=1}^{M} \frac{\partial z_i}{\partial y_j}(b) \frac{\partial y_j}{\partial x_k}(a) \qquad \forall k \in \Delta_N, \ \forall i \in \Delta_P$$

$N=M=2\,,\;P=1$ campo escalar en coordenadas polares

$$\Omega = \mathbb{R}^+ \times]0, \pi[\subset \mathbb{R}^2, \quad f: \Omega \to \mathbb{R}^2, \quad f = (x, y)$$

$$f(\rho, \theta) = (\rho \cos \theta, \rho \sin \theta), \quad x(\rho, \theta) = \rho \cos \theta, \quad y(\rho, \theta) = \rho \sin \theta \quad \forall (\rho, \theta) \in \Omega$$

f es diferenciable en todo punto $(\rho,\theta)\in\Omega$ con

$$Jf(\rho,\theta) = \begin{pmatrix} \frac{\partial x}{\partial \rho}(\rho,\theta) & \frac{\partial x}{\partial \theta}(\rho,\theta) \\ \frac{\partial y}{\partial \rho}(\rho,\theta) & \frac{\partial y}{\partial \theta}(\rho,\theta) \end{pmatrix} = \begin{pmatrix} \cos\theta & -\rho \sin\theta \\ \sin\theta & \rho \cos\theta \end{pmatrix}$$

$$U = \{(x,y) \in \mathbb{R}^2 : y > 0\} = f(\Omega), \ g: U \to \mathbb{R}$$
 differenciable, $h = g \circ f$

En este caso la notación más intuitiva consiste en escribir:

$$z = g(x, y) = g(\rho \cos \theta, \rho \sin \theta) = h(\rho, \theta) \quad \forall (\rho, \theta) \in \Omega$$

- Las variables de partida x_1 y x_2 son ρ y θ
- $x \in y$ son funciones de ρ y θ mediante f
- ullet pero también son las variables de las que depende z mediante g
- y como consecuencia, z depende de ρ y θ mediante h

Gradiente en coordenadas polares

Cálculo de las derivadas parciales en el ejemplo anterior

Si para $(\rho, \theta) \in \Omega$ escribimos $(x, y) = (\rho \cos \theta, \rho \sin \theta) \in U$, se tiene:

$$\frac{\partial z}{\partial \rho}(\rho,\theta) = \frac{\partial z}{\partial x}(x,y) \frac{\partial x}{\partial \rho}(\rho,\theta) + \frac{\partial z}{\partial y}(x,y) \frac{\partial y}{\partial \rho}(\rho,\theta)
= \cos\theta \frac{\partial z}{\partial x}(x,y) + \sin\theta \frac{\partial z}{\partial y}(x,y)
\frac{\partial z}{\partial \theta}(\rho,\theta) = \frac{\partial z}{\partial x}(x,y) \frac{\partial x}{\partial \theta}(\rho,\theta) + \frac{\partial z}{\partial y}(x,y) \frac{\partial y}{\partial \theta}(\rho,\theta)
= -\rho \sin\theta \frac{\partial z}{\partial x}(x,y) + \rho \cos\theta \frac{\partial z}{\partial y}(x,y)
\cos\theta \frac{\partial z}{\partial \rho}(\rho,\theta) - \frac{\sin\theta}{\rho} \frac{\partial z}{\partial \theta}(\rho,\theta) = \frac{\partial z}{\partial x}(x,y)
\sin\theta \frac{\partial z}{\partial \rho}(\rho,\theta) + \frac{\cos\theta}{\rho} \frac{\partial z}{\partial \theta}(\rho,\theta) = \frac{\partial z}{\partial y}(x,y)$$

Relación entre rectas tangentes y plano tangente

N = P = 1, M = 2

$$\Omega=\Omega\subset\mathbb{R}^2$$
 , Ω conexo, $f:\Omega o\mathbb{R}$ continua, $\Sigma=\mathsf{Gr}\,f$

$$\Sigma \subset \mathbb{R}^3$$
 es la superficie explícita de ecuación: $z = f(x,y) \ \ \forall (x,y) \in \Omega$

$$f$$
 differenciable en $(x_0, y_0) \in \Omega$, $z_0 = f(x_0, y_0)$, $P_0 = (x_0, y_0, z_0)$

Plano tangente
$$\Pi$$
: $z-z_0=(x-x_0)\frac{\partial f}{\partial x}(x_0,y_0)+(y-y_0)\frac{\partial f}{\partial y}(x_0,y_0)$

$$C$$
 curva paramétrica en \mathbb{R}^3 , con $P_0 \in C \subset \Sigma$

$$C=\gamma(J)\,,\;\;J$$
 intervalo abierto, $\gamma:J o\Sigma$ continua, $P_0=\gamma(t_0)\,,\;\;t_0\in J$

Ecuaciones paramétricas de $C\colon \ x=x(t)\,,\ \ y=y(t)\ \ z=f\left(x(t),y(t)\right)\ \ \forall t\in J$

$$\gamma$$
 derivable en t_0 con $\gamma'(t_0) \neq 0$ (punto regular) $z'(t_0) = x'(t_0) \frac{\partial f}{\partial x}(x_0, y_0) + y'(t_0) \frac{\partial f}{\partial y}(x_0, y_0)$

$$\begin{array}{ll} \text{Recta tangente } R\colon & x=x_0+tx'(t_0)\,, & y=y_0+ty'(t_0)\\ z=z_0+t\left(x'(t_0)\frac{\partial f}{\partial x}(x_0,y_0)+y'(t_0)\frac{\partial f}{\partial y}(x_0,y_0)\right) \end{array}$$

Se tiene claramente que $R\subset\Pi$

Superficies en forma paramétrica

Definición de superficie paramétric

$$\Omega = \Omega^{\,\circ} \subset \mathbb{R}^2\,, \ \Omega$$
 conexo, $\Gamma: \Omega o \mathbb{R}^3$ continua

$$\Sigma = \Gamma(\Omega) = \{\Gamma(t,s) : (t,s) \in \Omega\}$$
 es una superficie paramétrica en \mathbb{R}^3

Si
$$\Gamma = (x, y, z)$$
, las ecuaciones paramétricas de Γ son:

$$x = x(t,s), \quad y = y(t,s), \quad z = z(t,s), \quad \forall (t,s) \in \Omega$$

Toda superficie explícita es una superficie paramétrica

$$\Omega = \Omega^{\circ} \subset \mathbb{R}^2 \,, \quad \Omega \quad {\sf conexo}, \ f:\Omega o \mathbb{R} \quad {\sf continua}$$

$$\operatorname{Gr} f = \Gamma(\Omega) \quad \operatorname{donde} \quad \Gamma(x,y) = \left(x,y,f(x,y)\right) \quad \forall \, (x,y) \in \Omega$$

luego $\operatorname{\mathsf{Gr}} f$ es una superficie paramétrica

Análogamente se parametrizan superficies explícitas de los otros dos tipos:

$$\Sigma_1 = \left\{ \left(f(y,z), y, z \right) : (y,z) \in \Omega \right\} \quad \text{y} \quad \Sigma_2 = \left\{ \left(x, f(x,z), z \right) : (x,z) \in \Omega \right\}$$

Superficie paramétrica que no es explícita: un cilindro

$$\Sigma = \{(x,y,z) \in \mathbb{R}^3 \, : \, x^2 + y^2 = 1\}$$
 , superficie paramétrica de ecuaciones:

$$x = \cos t$$
, $y = \sin t$, $z = s$ $\forall (t, s) \in \mathbb{R}^2$

Plano tangente a una superficie paramétrica (I)

Se busca plano tangente

$$\Sigma = \Gamma(\Omega)$$
 superficie paramétrica en \mathbb{R}^3

 Ω abierto conexo de \mathbb{R}^2 y $\Gamma=(x,y,z):\Omega \to \mathbb{R}^3$ continua Suponemos que Γ es diferenciable en $(t_0,s_0)\in \Omega$ y sea $P_0=\Gamma(t_0,s_0)\in \Sigma$

$$J\Gamma(t_0, s_0) = \begin{pmatrix} \frac{\partial x}{\partial t}(t_0, s_0) & \frac{\partial x}{\partial s}(t_0, s_0) \\ \frac{\partial y}{\partial t}(t_0, s_0) & \frac{\partial y}{\partial s}(t_0, s_0) \\ \frac{\partial z}{\partial t}(t_0, s_0) & \frac{\partial z}{\partial s}(t_0, s_0) \end{pmatrix} = \begin{pmatrix} \frac{\partial \Gamma}{\partial t}(t_0, s_0), \frac{\partial \Gamma}{\partial s}(t_0, s_0) \end{pmatrix}$$

Suponemos además que $J\Gamma(t_0,s_0)$ tiene rango 2

Sea $\delta>0$ con $J_1\times J_2\subset\Omega$, donde $J_1=]t_0-\delta,t_0+\delta[$ y $J_2=]s_0-\delta,s_0+\delta[$ Definimos $\gamma_1(t)=\Gamma(t,s_0)$ $\forall t\in J_1$ y $\gamma_2(s)=\Gamma(t_0,s)$ $\forall s\in J_2$ $\gamma_1(J_1)$ y $\gamma_2(J_2)$ curvas paramétricas contenidas en Σ , con $\gamma_1(t_0)=\gamma_2(s_0)=P_0$ $\gamma_1'(t_0)=\frac{\partial\Gamma}{\partial t}(t_0,s_0)$ y $\gamma_2'(s_0)=\frac{\partial\Gamma}{\partial s}(t_0,s_0)$ linealmente independientes

Tenemos un único candidato para ser el plano tangente a Σ en P_0

Plano tangente a una superficie paramétrica (II)

Definición del plano tangente

 Ω abierto conexo de \mathbb{R}^2 , $\Gamma=(x,y,z):\Omega\to\mathbb{R}^3$ continua, $\Sigma=\Gamma(\Omega)$

Si Γ es diferenciable en $(t_0,s_0)\in\Omega$ y $J\Gamma(t_0,s_0)$ tiene rango 2, decimos que $P_0=\Gamma(t_0,s_0)$ es un punto regular de la superficie $\Sigma=\Gamma(\Omega)$

Entonces, el plano tangente Π a la superficie $\Sigma=\Gamma(\Omega)$ en el punto $P_0=\Gamma(t_0,s_0)=(x_0,y_0,z_0)$ es el de ecuaciones paramétricas:

$$x = x_0 + (t - t_0) \frac{\partial x}{\partial t}(t_0, s_0) + (s - s_0) \frac{\partial x}{\partial s}(t_0, s_0)$$

$$y = y_0 + (t - t_0) \frac{\partial y}{\partial t}(t_0, s_0) + (s - s_0) \frac{\partial y}{\partial s}(t_0, s_0)$$

$$z = z_0 + (t - t_0) \frac{\partial z}{\partial t}(t_0, s_0) + (s - s_0) \frac{\partial z}{\partial s}(t_0, s_0)$$

que se pueden abreviar en forma matricial:

$$\begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} x_0 \\ y_0 \\ z_0 \end{pmatrix} + J\Gamma(t_0, s_0) \cdot \begin{pmatrix} t - t_0 \\ s - s_0 \end{pmatrix}$$

Observaciones sobre el plano tangente (I)

Justificación analítica

 Π es también una superficie paramétrica, $\Pi=P(\mathbb{R}^2)$ donde:

$$P(t,s) = \Gamma(t_0,s_0) + D\Gamma(t_0,s_0)\left((t,s)-(t_0,s_0)\right) \quad \forall (t,s) \in \mathbb{R}^2$$
, luego
$$\|\Gamma(t,s)-P(t,s)\|$$

$$\lim_{(t,s)\to(t_0,s_0)} \frac{\left\|\Gamma(t,s) - P(t,s)\right\|}{\left\|(t,s) - (t_0,s_0)\right\|} = 0$$

Plano tangente a un cilindro

$$\Sigma = \{(x,y,z) \in \mathbb{R}^3: x^2+y^2=1\} = \Gamma(\mathbb{R}^2) \subset \mathbb{R}^3 \text{, donde}$$

$$\Gamma(t,s) = (\cos t, \sin t, s) \ \ \forall (t,s) \in \mathbb{R}^2$$

 Γ es diferenciable en todo punto $(t,s)\in\mathbb{R}^2$ con

$$J\Gamma(t,s) = \begin{pmatrix} -\sin t & 0\\ \cos t & 0\\ 0 & 1 \end{pmatrix}$$

luego todo punto $(x_0,y_0,z_0)\in\Sigma$ es regular, con plano tangente:

$$x_0 x + y_0 y = 1$$

Observaciones sobre el plano tangente (II)

Justificación geométrica

 $J \quad \text{intervalo abierto en } \mathbb{R} \,, \quad \varphi: J \to \Omega \ \, \text{continua,} \quad (t_0,s_0) = \varphi(\alpha_0) \quad \text{con } \, \alpha_0 \in J$

$$\gamma = \Gamma \circ \varphi$$
 , $\, \gamma(J) \,$ curva paramétrica, con $\, P_0 = \gamma(\alpha_0) \in \gamma(J) \subset \Sigma \,$

Supongamos que φ es derivable en α_0 con $\varphi'(\alpha_0) \neq 0$ entonces γ también es derivable en α_0 con:

$$\gamma'(\alpha_0) = J\Gamma(t_0, s_0) \cdot \varphi'(\alpha_0) \neq 0$$

luego $P_0=\gamma(\alpha_0)$ es punto regular de la curva $\gamma(J)$ y

las ecuaciones de la recta tangente ${\it R}\,{\it ,}$ en forma matricial, son:

$$\begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} x_0 \\ y_0 \\ z_0 \end{pmatrix} + J\Gamma(t_0, s_0) \cdot \varphi'(\alpha_0) \cdot (\alpha - \alpha_0) \quad \forall \alpha \in \mathbb{R}$$

Para $(x,y,z) \in R$, basta tomar $(t,s) \in \mathbb{R}^2$ dado por:

$$\begin{pmatrix} t - t_0 \\ s - s_0 \end{pmatrix} = \varphi'(\alpha_0) \cdot (\alpha - \alpha_0)$$

para obtener que $(x,y,z)\in\Pi$. Luego $R\subset\Pi$

Observaciones sobre el plano tangente (III)

Caso particular de una superficie explícita

 $\begin{array}{ll} f:\Omega\to\mathbb{R} & \text{continua, } \operatorname{Gr} f=\Gamma(\Omega)\,, \quad \Gamma(x,y)=\left(x,y,f(x,y)\right) \quad \forall \, (x,y)\in\Omega\\ & \text{Si } f \text{ es diferenciable en el punto } (x_0,y_0)\in\Omega\,, \ \Gamma \text{ también lo es, con} \end{array}$

$$J\Gamma(x_0, y_0) = \begin{pmatrix} 1 & 0 \\ 0 & 1 \\ \frac{\partial f}{\partial x}(x_0, y_0) & \frac{\partial f}{\partial y}(x_0, y_0) \end{pmatrix}$$

luego $P_0 = \Gamma(t_0,s_0) = (x_0,y_0,z_0)$ es un punto regular, con plano tangente:

$$x = x_0 + t$$
, $y = y_0 + s$, $z = z_0 + t \frac{\partial f}{\partial x}(x_0, y_0) + s \frac{\partial f}{\partial y}(x_0, y_0)$ $\forall (t, s) \in \mathbb{R}^2$

que claramente equivale a:

$$z - z_0 = (x - x_0) \frac{\partial f}{\partial x}(x_0, y_0) + (y - y_0) \frac{\partial f}{\partial y}(x_0, y_0)$$

De vuelta al gradiente de un campo escalar

Conjuntos de nivel de un campo escala

$$U = U \,{}^{\circ} \subset \mathbb{R}^N \,, \quad f: U \to \mathbb{R} \quad \text{diferenciable,} \quad \lambda \in f(\Omega)$$

El conjunto de nivel λ del campo escalar f es:

$$N_{\lambda} = \{ x \in \mathbb{R}^N : f(x) = \lambda \}$$

Caso N=2: curvas de nivel

Una curva $\gamma(J)$ es una curva de nivel del campo f cuando está contenida, en un conjunto de nivel, es decir, $\gamma(J)\subset U$ y $f\circ\gamma$ es constante

Si $(x_0, y_0) = \gamma(t_0)$ es un punto regular de $\gamma(J)$, se tiene entonces: $\left(\nabla f(x_0, y_0) \middle| \gamma'(t_0)\right) = 0$

Caso
$$N=3$$
: superficies de nivel

Una superficie $\Gamma(\Omega)$ es una superficie de nivel del campo f cuando está contenida en un conjunto de nivel, es decir, $\Gamma(\Omega) \subset U$ y $f \circ \Gamma$ es constante Si $(x_0,y_0,z_0) = \Gamma(t_0,s_0)$ es un punto regular de $\Gamma(\Omega)$, se tiene entonces:

$$\left(\nabla f(x_0, y_0, z_0) \middle| \frac{\partial \Gamma}{\partial t}(t_0, s_0)\right) = \left(\nabla f(x_0, y_0, z_0) \middle| \frac{\partial \Gamma}{\partial s}(t_0, s_0)\right) = 0$$

Un ejemplo ilustrativo

¿Regla de la cadena para funciones parcialmente derivables?

$$f: \mathbb{R} \to \mathbb{R}^2$$
, $f(t) = (t,t) \quad \forall t \in \mathbb{R}$, $f'(0) = (1,1)$

$$g: \mathbb{R}^2 \to \mathbb{R}$$
, $g(x,y) = \frac{x^2 y}{x^2 + y^4} \quad \forall (x,y) \in \mathbb{R}^2 \setminus \{(0,0)\}, \quad g(0,0) = 0$

g es parcialmente derivable en (0,0)=f(0) con $\,\nabla g(0,0)=(0,0)\,$

$$h = g \circ f : \mathbb{R} \to \mathbb{R}, \quad h(t) = \frac{t}{1+t^2} \quad \forall t \in \mathbb{R}, \quad h'(0) = 1 \neq 0$$

En general, la regla de la cadena no es válida para la composición de dos funciones parcialmente derivables

$$\Sigma = \operatorname{Gr} g$$
 es una superficie en forma explícita

$$C=\gamma(\mathbb{R})$$
 con $\gamma(t)=ig(t,t,h(t)ig)\ \ \forall\,t\in\mathbb{R}$ curva paramétrica con $C\subset\Sigma$

La recta tangente a C en el origen tiene vector de dirección (1,1,1),

luego no está contenida en el plano $\,z=0\,$

Por tanto, $\,z=0\,\,$ no puede ser plano tangente a $\,\Sigma\,$ en el origen