Московский государственный технический университет им. Н.Э. Баумана Факультет «Радиоэлектроника и лазерная техника(РЛ)» Кафедра «Радиоэлектронные системы и устройства(РЛ1)»

Домашняя задание №1

по дисциплине

«Электродинамика и распространение радиоволн»

Вариант № 12

Выполнил ст. группы РЛ-41 Филимонов С.В. Преподаватель Русов Ю.С.

Оценка в баллах_____

ΓOCT 18238-72

- 1. **Линия передачи сверхвысоких частот** (Линия передачи) Устройство, ограничивающее область распространения электромагнитных колебаний и направляющее поток сверхвысокочастотной электромагнитной энергии в заданном направлении.
- 2. **Открытая линия передачи -** Линия передачи, поперечное сечение которой не имеет замкнутого проводящего контура, охватывающего область распространения электромагнитной энергии.
- 3. **Гибридная волна -** Электромагнитная волна, векторы электрического и магнитного полей которой имеют отличные от нуля поперечные и продольные составляющие.
- 4. **Критическая частота -** Наименьшая частота, при которой возможно распространение данного типа волны в линии передачи
- 5. Вносимое ослабление десятикратного значение десятичного или половина натурального логарифма отношения мощности падающей волны на выходе при выключении из тракта некоторой его части к мощности падающей волны на том же выходе при включении этой части

ΓΟCT 24375-80

- 1. Радиосвязь электросвязь, осуществляемая посредством радиоволн.
- 2. **Космическая радиосвязь** радиосвязь, в которой используется одна или несколько космических радиостанций или один или несколько отражающих спутников, или другие космические объект.
- 3. **Активная ретрансляция радиосигнала** ретрансляция радиосигнала, включающая его приём, преобразование, усиление и излучение.

- 4. Пассивная ретрансляция радиосигнала ретрансляция радиосигнала путём отражения или преломления, или рассеяния радиоволн в устройствах, телах или искусственных средах с целью изменения направления распространения радиоволн.
- 5. Область тени зона на земной поверхности, окружающая передающую антенну и лежащая за пределами расстояния прямой видимости.

Условие.

Положительный заряд q равномерно распределён по объёму шара радиуса напряжённость Определить электрического поля, электрическую a. индукцию и скалярный потенциал внутри и вне шара. Диэлектрическая εa1, окружающей εa2. проницаемость материала среды Построить зависимости E(r), D(r), φ (r), указать характерные особенности графиков и причину их появления. Провести проверку граничных условий на границе раздела сред. Исходные данные: a[MM] = 0.029; $q[K\pi] = 0.6$; $\epsilon a = \epsilon 0 \epsilon r$; $\epsilon r 1 = 3.2$; $\varepsilon r2 = 1$.

Решение.

Рисунок 1 - Шар с зарядом q.

Для начала введём новую переменную R - радиус сферы, так чтобы R = a. Найдём для начала напряжённость электрического поля и скалярный потенциал внутри и вне шара. Применим теорему Гаусса. Выберем в качестве рассматриваемой поверхности замкнутый шар радиуса r > R. Очевидно, что напряжённость на поверхности этого шара будет одинакова по величине и направлена по радиусу. Тогда поток напряжённости через него будет равен

$$E4\pi r^2$$
.

Согласно теореме Гаусса

$$E4\pi r^2 = \frac{q}{\varepsilon_{r1}\varepsilon_0},$$

откуда следует

$$E(r) = \frac{q}{4\pi\varepsilon_{r1}\varepsilon_0 \cdot r^2}$$
 , при $r > R$.

Чтобы найти напряжённость электрического поля внутри шара, выберем в качестве замкнутой поверхности шар радиуса r < R с центром в центре шара.Из симметрии ясно, что напряжённость поля направлена по радиусу и одинакова по величине на всей поверхности сферы. Из теоремы Гаусса следует

$$E(r)4\pi r^2 = \frac{q(r)}{\varepsilon_{\rm r2}\varepsilon_0},$$

где q(r) – заряд внутри выбранной поверхности. Введём плотность заряда шара ρ . Тогда

$$q(r) = \rho \frac{4}{3} \pi r^3 \text{ и } E(r) = \frac{1}{4\pi \varepsilon_{\rm r2} \varepsilon_0} \cdot \frac{q(r)}{r^2} = \frac{\rho r}{3\varepsilon_{\rm r2} \varepsilon_0}.$$

Плотность заряда равна полному заряду, делённому на объем шара

$$\rho = \frac{3q}{4\pi R^3} \ .$$

Для напряжённости поля внутри шара получим

$$E = \frac{1}{4\pi \varepsilon_{r2} \varepsilon_0} \cdot \frac{q}{R^3} r$$
, при $r < R$.

И так подведём итог по напряжённость электрического поля внутри и вне шара

$$E = \frac{1}{4\pi \, arepsilon_{
m r1} arepsilon_0} \cdot \frac{q}{r^2}$$
 при $r > R, E = \frac{1}{4\pi \, arepsilon_{
m r2} arepsilon_0} \cdot \frac{q}{R^3} r$ при $r < R$.

$$E = 8,9918 \cdot 10^9 \cdot \frac{0,6}{r^2} \cdot \frac{B}{M} \text{ при } r > R, E = 2,8099 \cdot 10^9 \cdot \frac{0,6}{0,029^3} r \cdot \frac{B}{M} \text{ при } r < R.$$

$$E = \frac{5,29508 \cdot 10^9}{r^2} \cdot \frac{B}{M} \text{ при } r > R, E = 6,912 \cdot 10^{13} \cdot r \cdot \frac{B}{M} \text{ при } r < R.$$

Теперь найдём электрическую индукцию

$$D = \varepsilon_0 E + P = \varepsilon_0 E + \kappa \varepsilon_0 E = \varepsilon_0 (1 + \kappa) E = \varepsilon_0 \varepsilon_r E$$

Тогда

$$D = \varepsilon_0 \varepsilon_{\rm r1} E \ \text{при} \ r > R, D = \varepsilon_0 \varepsilon_{\rm r2} E \ \text{при} \ r < R.$$

$$D = 8,85 \cdot 10^{-12} \cdot E \ \frac{\rm K\pi}{\rm M^2} \ \text{при} \ r > R, D = 8,85 \cdot 10^{-12} \cdot 3,2 \cdot E \ \frac{\rm K\pi}{\rm M^2} \ \text{при} \ r < R.$$

$$D = 4,686 \cdot 10^{-2} \cdot \frac{1}{r^2} \ \frac{\rm K\pi}{\rm M^2} \ \text{при} \ r > R, D = 1,9574 \cdot 10^3 \cdot r \ \frac{\rm K\pi}{\rm M^2} \ \text{при} \ r < R.$$

Проверим граничные условия для векторов D

$$D_{n(1)}-D_{n(2)}=\kappa,$$

$$D_{n(1)} = D_{n(2)}$$
, значит $\kappa = 0$.

Проверим

$$D_{n(R)} = 8,85 \cdot 10^{12} \cdot 8,9918 \cdot 10^{9} \cdot \frac{0,6}{0,029^{2}} \approx 56,77 \frac{\text{K}_{\Pi}}{\text{M}^{2}},$$

$$D_{n(R)} = 8,85 \cdot 10^{-12} \cdot 3,2 \cdot 2,8099 \cdot 10^{9} \cdot \frac{0,6}{0,029^{2}} \approx 56,77 \frac{\text{K}_{\Pi}}{\text{M}^{2}}.$$

$$D_{n(1)} = D_{n(2)},$$

Значит выполняются граничные условия для тангенциальных составляющих. Осталось определить только потенциал внутри и вне шара. Потенциал и напряжённость связаны следующим соотношением

$$E = -grad \varphi$$
.

В сферической системе координат составляющие

$$E_{ heta}$$
 и $E_{ heta}$ равны нулю, тогда $E=E_{r}=-rac{\partial}{\partial r}\phi \Longrightarrow \int \partial \varphi = \int E_{r}\partial r.$

Тогда для начала найдём потенциал вне шара при r > R выразится в виде

$$\varphi(r) = -\int E = \frac{1}{4\pi\varepsilon_{\mathrm{r}1}\varepsilon_{0}} \cdot \frac{q}{r^{2}} \partial r = \frac{1}{4\pi\varepsilon_{\mathrm{r}1}\varepsilon_{0}} \cdot \frac{q}{r} + C_{1},$$

Определим С1

$$r \Longrightarrow \infty$$
 , $\varphi \Longrightarrow 0$, тогда $\frac{q}{4\pi \varepsilon_{\rm rl} \varepsilon_0} \cdot \frac{1}{\infty} = 0 \Longrightarrow C_1 = 0$.

Теперь найдём потенциал внутри шара $r \le R$

$$\varphi(r) = -\int \frac{1}{4\pi \varepsilon_{r2} \varepsilon_0} \cdot \frac{qr}{R^3} \partial r = -\frac{1}{4\pi \varepsilon_{r2} \varepsilon_0} \cdot \frac{qr^2}{R^3} + C_2,$$

Определим С2

$$r \Longrightarrow R$$
 , тогда $-\frac{1}{4\pi\varepsilon_{\rm r1}\varepsilon_0}\cdot\frac{qR^2}{R^3} + C_2 = -\frac{1}{4\pi\varepsilon_{\rm r1}\varepsilon_0}\cdot\frac{q}{R} + C_2 = \frac{1}{4\pi\varepsilon_{\rm r2}\varepsilon_0}\cdot\frac{q}{R}\Longrightarrow$
$$C_2 = \frac{q}{4\pi\varepsilon_0R}\left(\frac{1}{\varepsilon_{\rm r1}} + \frac{1}{\varepsilon_{\rm r2}}\right).$$

$$C_2 = \frac{0,6}{0.029}(2,8099 + 8,9918)\cdot 10^9 = 1,279\cdot 10^{11}.$$

И так подведём итог по потенциалу внутри и вне шара

$$\varphi(r) = \frac{1}{4\pi\varepsilon_{\rm r1}\varepsilon_0} \cdot \frac{q}{r} \text{ при } r > R, \ \varphi(r) = -\frac{1}{4\pi\varepsilon_{\rm r2}\varepsilon_0} \cdot \frac{qr^2}{R^3} + 1,279 \cdot 10^{11} \text{ при } r \leq R.$$

$$\varphi(r) = 8,9918 \cdot 10^9 \cdot \frac{0,6}{r} \ B \text{ при } r > R, \ \varphi(r) = -2,8099 \cdot 10^9 \cdot \frac{0,6 \cdot r^2}{0,029^3} + 1,279 \cdot 10^{11} \ B \text{ при } r \leq R.$$

$$\varphi(r) = \frac{54 \cdot 10^{10}}{r} \ B \text{ при } r > R, \ \varphi(r) = -6,912 \cdot 10^{13} \cdot r^2 + 1,279 \cdot 10^{11} \ B \text{ при } r \leq R.$$

Построим графики для полученных функций:

Рисунок 2 - Напряжённости Е(r).

Рисунок 3 - Электрическая индукция D(r).

Рисунок 4 - Скалярный потенциал φ(r).

Условие.

По бесконечно длинному цилиндрическому проводнику радиуса а протекает постоянный ток I, равномерно распределенный по площади поперечного сечения. Построить зависимости напряжённости и индукции магнитного поля H(r) и B(r), создаваемого этим током в однородной среде с $\mu r = 1$. Исходные данные: $I[A] = 0,1 \cdot N + M$, $a[MM] = 2 + 0,1 \cdot N$.

Решение.

Рисунок 5 - Проводник.

Для начала введём новую переменную R - радиус проводника, так чтобы R = a. Учтём первое уравнение Максвелла

$$\oint_{L} \overrightarrow{H} d\overrightarrow{l} = \int_{S} \left(\overrightarrow{j} + \frac{\partial}{\partial t} \overrightarrow{D} \right) d\overrightarrow{S},$$

Пусть по бесконечно длинному цилиндрическому проводу радиуса R протекает постоянный ток I . Возьмём окружность за контур L т.к. она обладает осевой симметрией(поле по модулю будет одинаковым). А так же центр совпадает с центром поперечного сечения в результате

$$H = const.$$

Так как H направлен по касательной, то при выборе такого контура вектор H и D параллельны. Тогда из первого уравнения Максвелла следует,

что
$$\overrightarrow{H}\overrightarrow{d}\overrightarrow{l}=Hdl$$
 и $\oint_{L}\overrightarrow{H}\overrightarrow{d}\overrightarrow{l}=\oint_{L}Hdl$, тогда

$$\oint_{I} \overrightarrow{H} d\overrightarrow{l} = \oint_{I} H dl = H(r) \oint_{I} dl = H(r) 2\pi r,$$

где H(r) - не зависит от L. И так теперь мы имеем два случая:

$$\frac{\partial}{\partial t}D = 0$$

так как ток постоянный и поле соответственно тоже постоянно.

$$\int_{S} \overrightarrow{J} d\overrightarrow{S} = JdS, \text{ T. K. } \overrightarrow{J} || d\overrightarrow{S}$$

то плотность тока считается постоянной, так как ток постоянный и распределенн равномерно, то ток протекает перпендикулярно поперечному сечению провода. Тогда

$$J = \frac{I}{S(a)} = \frac{I}{\pi a^2}.$$

Для случая 1 r ≤ a, тогда

$$\int_{S} \overrightarrow{J} d\overrightarrow{S} = J \int_{S} dS \frac{I}{\pi a^{2}} \Longrightarrow \pi r^{2} = \frac{I}{a^{2}} r^{2},$$

тогда из первого уравнения Максвелла следует, что

$$H(r)2\pi r = \frac{I}{a^2}r^2 \Longrightarrow H(r) = \frac{Ir}{2\pi a^2},$$

а так же, так как

$$\overrightarrow{B} = \mu(r)\overrightarrow{H}$$
,

$$B(r) = \frac{Ir\mu(r)}{2\pi a^2}.$$

Тогда для случая 2 r ≥ a, будет

$$\int_{S} \overrightarrow{J} d\overrightarrow{S} = I,$$

тогда

$$H(r)2\pi r = I \Longrightarrow H(r) = \frac{I}{2\pi r} \; ,$$

а так же, так как

$$\overrightarrow{B} = \mu(r)\overrightarrow{H}$$
, to

$$B(r) = \frac{I\mu(r)}{2\pi r}.$$

Проверим граничные условия для векторов Н

$$H_{\tau(1)} - H_{\tau(2)} = J_{\text{nob}},$$

$$H_{\tau(1)} = H_{\tau(2)}$$
, при $J_{\text{пов}} = 0$.

Проверим

$$H_{\tau(R)} = \frac{6.2}{2\pi \cdot 3.2 \cdot 10^{-3}} \approx 310 \frac{A}{M},$$

$$H_{\tau(R)} = \frac{6,2}{2\pi \cdot 3, 2 \cdot 10^{-3}} \approx 310 \frac{A}{M}.$$

$$H_{\tau(1)} = H_{\tau(2)},$$

Значит выполняются граничные условия для тангенциальных составляющих. Итак подведём итог:

$$H = \frac{I}{2\pi r}$$
 при $r > R, H = \frac{Ir}{2\pi a^2}$ при $r < R,$

$$H = \frac{6,2}{2\pi r} \frac{A}{M}$$
 при $r > R, H = \frac{6,2 \cdot r}{2\pi \cdot 3,2^2 \cdot 10^{-6}} \frac{A}{M}$ при $r < R$.

$$H=0,9867\cdot r\,rac{A}{_{\mathcal{M}}}$$
 при $r>R,H=96363\cdot r\,rac{A}{_{\mathcal{M}}}$ при $r< R.$

$$B = \frac{I\mu(r)}{2\pi r}$$
 при $r > R, B = \frac{Ir\mu(r)}{2\pi a^2}$ при $r < R,$

отмети, что

$$\mu(r) = \mu_r \cdot \mu_0$$
, где $\mu_r = 1$,

по условию, тогда

$$B = \frac{I\mu_0}{2\pi \cdot r} \text{ при } r > R, B = \frac{I\mu_0 \cdot r}{2\pi a^2} \text{ при } r < R,$$

$$B = \frac{6, 2 \cdot \mu_0}{2\pi \cdot r} \text{ Тл при } r > R, B = \frac{6, 2 \cdot r \cdot \mu_0}{2\pi \cdot 3, 2^2 \cdot 10^{-6}} \text{ Тл при } r < R.$$

$$B = 1, 23 \cdot 10^{-6} \cdot r \text{ Тл при } r > R, B = 0, 12 \cdot r \text{ Тл при } r < R.$$

Построим графики для полученных функций:

Рисунок 6 - Напряжённость магнитного поля Н(r).

Рисунок 7 - Индукция магнитного поля В(r).

Условие.

Плоская монохроматическая линейно поляризованная электромагнитная волна распространяется в неограниченном пространстве без потерь. Диэлектрическая проницаемость среды – єа, магнитная проницаемость среды – μа, амплитуда напряжённости электрического поля – Em, частота – f. значений Записать выражения мгновенных напряжённостей ДЛЯ магнитного полей плоской электромагнитной электрического И волны. Определить основные параметры волны. Исходные данные: $\epsilon a = \epsilon 0$ er; er = 2+N/10; μ a= μ 0 μ r; μ r = 1+N/10; Em[MB/M] = 50+N; f $[\Gamma II] =$ $(M+N/20)10^9$.

Решение.

Для начала совместим одну из осей координат с вектором Е, а направление распространения волны с осью z. Тогда, рассмотрим плоскую электромагнитную волну с линейной поляризацией, которая распространяется в бесконечной и однородной среде. В этом случае для плоской электромагнитной волны имеем:

$$\overrightarrow{E}(t,z) = E_m \cos(\omega t - \beta z) \overrightarrow{x_0},$$

где мы можем определить

$$\omega = 2\pi f = 2\pi \cdot 5, 6 \cdot 10^9 = 3,52 \cdot 10^{10} \frac{\text{рад}}{c}.$$

Где f - это частота в Герцах. Определим другой коэффициент

$$\dot{k} = \beta - i\alpha$$

так как среда без потерь, то

$$\alpha = 0 \frac{1}{M}$$
.

Тогда

$$k = \omega \sqrt{\varepsilon_a \mu_a} = \beta = 3,52 \cdot 10^{10} \cdot \sqrt{2,832 \cdot 10^{-11} \cdot 2,75 \cdot 10^{-6}} = 310,51 \frac{1}{M}$$

Подведём итог по вектору Е:

$$\overrightarrow{E}(t,z) = 62 \cdot \cos(3,52 \cdot 10^{10} \cdot t - 310,51 \cdot z) \overrightarrow{x_0} \frac{B}{M}$$

Найдём теперь напряжённость магнитного поля

$$\overrightarrow{H}(t,z) = H_m \cos(\omega t - \beta z) \overrightarrow{y_0}.$$

В уравнении

$$H_m = \frac{E_m}{Z_c},$$

где Zc - это коэффициент пропорциональности между составляющими электрического и магнитного поля равен характеристическому (волновому) сопротивлению среды

$$Z_c = \frac{\omega \mu_a}{k} = \frac{\omega \mu_a}{\omega \sqrt{\varepsilon_a \mu_a}} = \sqrt{\frac{\mu_0 \mu}{\varepsilon_0 \varepsilon}} = \sqrt{\frac{\mu_a}{\varepsilon_a}} = \sqrt{\frac{2,832 \cdot 10^{-11}}{2,75 \cdot 10^{-6}}} = 311,616 \,\mathrm{Om}.$$

Откуда

$$H_m = \frac{62}{311,616} = 0,199 \frac{A}{M}.$$

Подведём итог по вектору Н:

$$\overrightarrow{H}(t,z) = 0,199 \cdot \cos(3,52 \cdot 10^{10} \cdot t - 310,51 \cdot z) \overrightarrow{y_0} \xrightarrow{A}_{M}$$

Найдём другие характеристики волны: период, длину волны и фазовой скоростью. Период находится из формулы

$$T = \frac{1}{\nu} = \frac{1}{5, 6 \cdot 10^9} = 1, 8 \cdot 10^{-10} c.$$

Длина волны следует из

$$k = \omega \sqrt{\varepsilon_a \mu_a} = \frac{2\pi}{\lambda} \Longrightarrow \lambda = \frac{2\pi}{k} = \frac{2\pi}{310,51} = 0,02 \text{ M},$$

Рассмотрим основные характеристики плоской электромагнитной волны на примере составляющей электрического поля волны:

$$\overrightarrow{E}(z,t) = E_m \cos(\omega t - kz),$$

в нем

$$(\omega t - kz)$$
,

это есть фаза волны, которая зависит от времени t и от пространственной координаты z. Геометрическое место точек, в которых электромагнитное поле имеет одинаковую фазу, называется фазовым или волновым фронтом волны. Для плоской электромагнитной волны фронт волны представляет собой плоскость z = const. Скорость перемещения фазового фронта называется фазовой скоростью Vф волны. Определим Vф плоской электромагнитной волны, для чего зафиксируем фазу поля и продифференцировав её по времени, получим

$$\omega - k \frac{\mathrm{d}}{\mathrm{d}t} z = 0.$$

Тогда отсюда можно получить

$$V_{\phi} = \frac{\mathrm{d}}{\mathrm{d}t} z = \frac{\omega}{k} = \frac{\omega}{\omega \sqrt{\varepsilon_a \mu_a}} = \frac{1}{\sqrt{\varepsilon_0 \mu_0} \sqrt{\mu \varepsilon}} = \frac{c}{\sqrt{\mu \varepsilon}},$$

где

$$c = \frac{1}{\sqrt{\varepsilon_0 \mu_0}} \approx 3 \cdot 10^8 \, \frac{\mathcal{M}}{c},$$

это скорость света. Найдём Vф

$$V_{\phi} = \frac{3 \cdot 10^8}{\sqrt{3, 2 \cdot 2, 2}} = 1,13 \cdot 10^8 \frac{M}{c}.$$

Условие.

В диэлектрике с параметрами єа, µа, вдоль оси z распространяется электромагнитная волна, имеющая линейную поляризацию по x и частоту f. Напряжённость электрического поля в точке z=0 в момент времени t=0 равна Em. Записать выражения для мгновенных значений напряжённостей электрического и магнитного полей и определить расстояние, на котором амплитуда напряжённости электрического поля уменьшится в S раз относительно начального значения. Исходные данные: $\epsilon a = \epsilon 0 \epsilon r$; $\epsilon r = (3+N)/2$; $\mu a = \mu 0 \mu r$; $\mu r = M+N/2$; $Em[B/m] = M+0.05 \cdot N$; f $[M\Gamma \pi] = N/10$; S = $M \cdot 10^{\circ}(-3)$.

Решение.

Рассмотрим плоскую электромагнитную волну с линейной поляризацией, которая распространяется в среде с потерями. В этом случае для плоской электромагнитной волны имеем:

$$\overrightarrow{E}(t,z) = E_{\infty}\cos(\omega t - \beta z).$$

где мы можем определить

$$\omega = 2\pi f = 2\pi \cdot 12 \cdot 10^5 = 7,5398 \cdot 10^6 \frac{\text{pag}}{c}$$
.

Где f - это частота в Герцах. Определим другой коэффициент

$$\widetilde{\varepsilon}_{a} = \varepsilon_{a}' - i\varepsilon_{a}'' = \varepsilon_{a} - i\frac{\sigma}{\omega},$$

$$\widetilde{\mu_a} = \mu_a' - i\mu_a'' = \mu_a,$$

По условию. Тогда

$$\dot{k} = \omega \sqrt{\widetilde{\varepsilon}_a \widetilde{\mu}_a} = \omega \sqrt{\mu_a \left(\varepsilon_a - i \frac{\sigma}{\omega}\right)},$$

$$\dot{k} = 7,5398 \cdot 10^6 \cdot \sqrt{1,375 \cdot 10^{-5} \cdot \left(6,6375 \cdot 10^{-11} - i \frac{0,012}{7,5398 \cdot 10^6}\right)} = 0,8053 - 0,7724i \frac{1}{M}.$$

Так как

$$\dot{k} = \beta - i\alpha$$

То тогда из это следует, что

$$\beta = \text{Re}(\dot{k}) = 0,8053 \frac{1}{M} u \alpha = \text{Im}(\dot{k}) = 0,7724 \frac{1}{M}.$$

Выведем вектор Е

$$\dot{E} = E_m e^{i(\omega t - kz)} = E_m e^{-\alpha z} e^{i(\omega t - \beta z)} \Longrightarrow$$

$$\overrightarrow{E}(t,z) = E_m e^{-\alpha z} \cos(\omega t - \beta z) \overrightarrow{x_0},$$

Подведём итог по вектору Е:

$$\overrightarrow{E}(t,z) = 5, 6 \cdot e^{-0.7724 \cdot z} \cdot \cos(7,5398 \cdot 10^6 \cdot t - 0,8053 \cdot z) \overrightarrow{x_0} \cdot \frac{B}{M}.$$

Найдём теперь напряжённость магнитного поля

$$\overrightarrow{H} = H_m e^{i(\omega t - kz)} \overrightarrow{y_0} = |H_m| e^{-\alpha z} e^{i(-\varphi)} e^{i(\omega t - \beta z)} \overrightarrow{y_0} = |H_m| e^{-\alpha z} e^{i(\omega t - \beta z - \varphi)} \overrightarrow{y_0},$$

Отсюда получаем

$$\overrightarrow{H}(t,z) = \operatorname{Re}\left(\overrightarrow{H}\right) = |H_m|e^{-\alpha z}\cos(\omega t - \beta z - \varphi)\overrightarrow{y_0}.$$

В уравнении

$$\dot{H_m} = \frac{E_m}{\dot{Z_c}},$$

где Zc - это коэффициент пропорциональности между составляющими электрического и магнитного поля равен характеристическому (волновому) сопротивлению среды

$$\dot{Z_c} = \sqrt{\frac{\widetilde{\mu_a}}{\widetilde{\epsilon_a}}} = \sqrt{\frac{\mu_a}{\varepsilon_a - i\frac{\sigma}{\omega}}},$$

$$\vec{Z}_c = \sqrt{\frac{1,375 \cdot 10^{-5}}{6,6375 \cdot 10^{-11} - i \frac{0,012}{7,5398 \cdot 10^6}}} = 67,05 + 64,31i \text{ Om}.$$

Откуда

$$\dot{H_m} = \frac{5,6}{67,05+64,31i} = 0,0435-0,0417i \frac{A}{M}.$$

Разложим

$$\dot{H_m} = |H_m|e^{i\varphi},$$

где

$$|H_m| = \sqrt{\text{Re}(\dot{H_m})^2 + \text{Im}(\dot{H_m})^2} = \sqrt{0.0435^2 + 0.0417^2} = 0,0603 \frac{A}{M},$$

И

$$\varphi = \operatorname{arctg}\left(\frac{\operatorname{Im}(\dot{H_m})}{\operatorname{Re}(\dot{H_m})}\right) = \operatorname{arctg}\left(\frac{-0.0417}{0.0435}\right) = -0,76 \frac{\operatorname{рад}}{c}.$$

Подведём итог по вектору Н:

$$\overrightarrow{H}(t,z) = 0,0603 \cdot e^{-0.7724 \cdot z} \cdot \cos(7,5398 \cdot 10^6 \cdot t - 0,8053 \cdot z - 0,76) \overrightarrow{y_0} \xrightarrow{A}_{M}.$$

Найдём расстояние, на котором амплитуда напряжённости электрического поля уменьшится в S раз относительно начального значения

$$E_m(z) = E_m e^{-\alpha z} = \frac{E_m}{S} \Longrightarrow e^{-\alpha z} = \frac{1}{S} \Longrightarrow e^{\alpha z} = S \Longrightarrow \ln(e^{\alpha z}) = \alpha z = \ln(S) \Longrightarrow$$
$$z = \frac{\ln(S)}{\alpha} = \frac{\ln(510)}{0,7724} = 8,0713 \text{ M}.$$