Problem 1: Know the Curves

Describe the Shape of the Following Curve $\vec{v}(t)$:

1.
$$\begin{pmatrix} 1 \\ -1 \end{pmatrix} + t \begin{pmatrix} 3 \\ 4 \end{pmatrix}$$

line

$$t$$
 2. $\begin{pmatrix} t \\ t^2 \end{pmatrix}$

$$3. \ \begin{pmatrix} 3t \\ 4 \\ 1 \end{pmatrix} + 2 \begin{pmatrix} t+1 \\ t-1 \\ 2t \end{pmatrix}$$

$$\vec{v}(t) = \begin{pmatrix} -3\pi \sin \pi t \\ 3\pi \cos \pi t \end{pmatrix}$$

vite) = (Toward

5.
$$\begin{pmatrix} \cos \pi t \\ \sin \pi t \\ t \end{pmatrix}$$

4. $\begin{pmatrix} 3\cos \pi t \\ 3\sin \pi t \end{pmatrix}$

$$\vec{v}''(t) = \begin{pmatrix} -3\pi^2 \cos \pi t \\ -3\pi^2 \sin \pi t \end{pmatrix}$$

1.

$$\vec{N}'(t) = \begin{pmatrix} 3 \\ 4 \end{pmatrix}$$

$$\vec{v}'(t) = \vec{o}$$

2

$$\vec{N}'(t) = \begin{pmatrix} 1 \\ 2t \end{pmatrix}$$

$$\vec{v}'(t) = \begin{pmatrix} 1 \\ 2t \end{pmatrix} \qquad \vec{v}''(t) = \begin{pmatrix} 0 \\ 2 \end{pmatrix}$$

3.
$$\vec{v}(t) = \begin{pmatrix} 5 \\ 2 \end{pmatrix}$$
 $\vec{v}'(t) = \vec{o}$

4.

$$\vec{v}'(t) = \begin{pmatrix} -3\pi \sin \pi t \\ 3\pi \cos \pi t \end{pmatrix}$$

$$\vec{v}''_{(t)} = \begin{pmatrix} -3\pi^2 \cos \pi t \\ -3\pi^2 \sin \pi t \end{pmatrix}$$

Problem 2: Derivation of Vector Functions

Compute $\vec{v}'(t)$ and $\vec{v}''(t)$ for the vector functions in Problem 1:

- 1. Compute all $\vec{v}'(t)$ for Problem 1
- 2. Compute all $\vec{v}''(t)$ for Problem 1
- 3. Compute $\frac{d}{dt} \|\vec{v}(t)\|^2$ for 3, 4, 5 in Problem 1
- 4. Compute $\vec{v}'(t) \times \vec{v}(t)$ for $\stackrel{3}{\cancel{4}}$ in Problem 1

3.
$$\frac{d}{dt} \|\vec{v}(t)\|^2 = \frac{d}{dt} \vec{v}(t) \cdot \vec{v}(t) = \left(\frac{d}{dt} \vec{v}(t)\right) \cdot \vec{v}(t) + \vec{v}(t) \cdot \left(\frac{d}{dt} \vec{v}(t)\right)$$

for 3:
$$2\vec{v}(t) \cdot \vec{v}(t) = 2 \cdot \begin{pmatrix} 5t+2 \\ 2t+2 \\ 4t+1 \end{pmatrix} \cdot \begin{pmatrix} 5 \\ 2 \\ 4 \end{pmatrix} = 2(25t+10+4t+4+16t+4)$$

5:
$$2 \cdot \vec{v}(t) \cdot \vec{v}'(t) = 2 \cdot \begin{pmatrix} \omega s \pi t \\ \sin \pi t \end{pmatrix} \cdot \begin{pmatrix} -\pi s \ln \pi t \\ \pi \cos \pi t \end{pmatrix} = 2t$$

Problem 3: Bonus Problem

Do you know these curves? What is the shape?

1.
$$\left(\frac{\cos \pi t}{2\sin \pi t}\right)$$

$$2. \left(\frac{t}{\sqrt{1-t^2}}\right)$$

1. ellipse:
$$\chi^2 + (\frac{y}{2})^2 = 1$$

4.
$$\vec{v}'(t) \times \vec{v}(t) = \begin{vmatrix} \vec{v} & \vec{v} & \vec{v} \\ -\pi & -\pi & -\pi \\ \sin \pi t & \cos \pi t \end{vmatrix}$$

= $\begin{pmatrix} -\pi t \cos \pi t - \sin \pi t \\ \cos \pi t + \pi t \sin \pi t \\ -\pi \sin \pi t + \pi \cos \pi t \end{pmatrix}$

2. half circle:
$$x^2 + y^2 = 1$$
, $y > 0$

