Output:

Section 6.1 Computer Problems:

Problem 1b:

Table of Euler's Method with step size h = 0.1 on [0, 1] for the IVP $y' = t^2 * y$, y(0) = 1 ti wi Error

0	1	0
0.1	1 (0.0003
0.2	1.001	0.0017
0.3	1.005	0.004
0.4	1.014	0.0075
0.5	1.0303	0.0123
0.6	1.056	0.0186
0.7	1.094	0.0271
0.8	1.1477	0.0384
0.9	1.2211	0.054
1	1.32	0.0756

Problem 2b:

The turquoise line represents the exact solution for the IVP $y' = t^2 * y$, y(0) = 1 on [0, 1]. The orange line represents an Euler's Method approximation of the IVP with step size h = 0.025. The blue line represents an Euler's Method approximation of the IVP with step size h = 0.05. The red line represents an Euler's Method approximation of the IVP with step size h = 0.1

Section 6.2 Computer Problems:

Problem 1b:

Table of Explicit Trapezoid Method with step size h = 0.1 on [0, 1] for the IVP $y' = t^2 * y$, y(0) = 1

ti	wi	Global	Truncation	Error

		· · ·	
0	1	0	
0.1	1.0005	0.0002	
0.2	1.003	0.0003	
0.3	1.0095	0.0005	
0.4	1.0222	0.0007	
0.5	1.0434	0.0008	
0.6	1.0757	0.001	
0.7	1.1224	0.0012	
0.8	1.1875	0.0014	

0.9 1.2767 0.0016 1 1.3974 0.0018

Problem 2b:

Zoomed in to better see the exact and approximate solutions:

The orange line represents the exact solution for the IVP $y' = t^2 * y$, y(0) = 1 on [0, 1]. The green line represents an Explicit Trapezoid Method approximation of the IVP with step size h = 0.025.

The purple line represents an Explicit Trapezoid Method approximation of the IVP with step size h=0.05.

The yellow line represents an Explicit Trapezoid Method approximation of the IVP with step size h = 0.1.

Section 7.1 Computer Problems:

Problem 1a:

Section 7.2 Computer Problems:

Problem 1a:

The green line represents the exact solution for the BVP $y'' = y + (2/3)e^{t}$, y(0) = 0, $y(1) = (1/3)e^{t}$. The dark orange line represents a finite difference approximation of the BVP with n = 9 steps. The yellow line represents a finite difference approximation of the BVP with n = 19 steps. The purple line represents a finite difference approximation of the BVP with n = 39 steps.

Note: Ignore the blue line, I am dealing with a problem with MATLAB and/or Citrix that is showing an unrelated function.

Note: This graph is supposedly representing the errors as a function of t for the same BVP based on the three previously described finite difference method approximations.