Table of Contents

Title: 2ND ORDER SYSTEM CONTROL	L
Author: Filippo Valmori	l
Date: 21/07/2023	l
Reference: [1] MATLAB and Simulink crash course for engineers (Eklas Hossain, 2022) [Ch.9]	
PARAMETERS	l
PARTIAL FRACTION EXPANSION	Ĺ
SYMBOLIC)
TRANSFER FUNCTION	3
STEP RESPONSE	3
IMPULSE RESPONSE	1

Title: 2ND ORDER SYSTEM CONTROL

Author: Filippo Valmori

Date: 21/07/2023

Reference: [1] MATLAB and Simulink crash course for engineers (Eklas Hossain, 2022) [Ch.9]

```
close all; clearvars; clc
```

PARAMETERS

PARTIAL FRACTION EXPANSION

```
-1.0000 + 2.2361i
-1.0000 - 2.2361i
k =
```

SYMBOLIC

TRANSFER FUNCTION

STEP RESPONSE

IMPULSE RESPONSE

```
[Yimp,Ximp] = impulse(H2);
  % Estimate impulse response
subplot(2,2,3)
plot(Ximp, Yimp, 'b.-')
xlabel('Time [s]')
ylabel('Amplitude')
title('IMPULSE RESPONSE')
grid on
h(t) = ilaplace(H1)
  % Calculate impulse response formula
dc_gain = limit(H1,s,0)
   % Calculate DC gain of transfer function (NB: shall match H(s) in 1st graph
 for s=0)
lim0 = limit(s*H1,s,Inf)
   % Calculate transfer function initial value through limit in Laplace domain
 (NB: shall match h(t) forumla for t=0)
limInf = limit(s*H1,s,0)
    % Calculate transfer function final value through limit in Laplace domain
 (NB: shall match h(t) forumla for t=Inf)
```


Published with MATLAB® R2022a