Conformal prediction and its extensions

1 Conformal prediction

Methods for distribution-free prediction.

Assumption: exchangeability

- The data $Z_i = (X_i, Y_i)$ are assumed to be exchangeable (for example, i.i.d.).
- The algorithm which maps data to a fitted model $\hat{\mu}: \mathcal{X} \to \mathbb{R}$ is assumed to treat the data points symmetrically.

1.1 Split conformal prediction

(inductive conformal prediction)

- 1. initial training data set: pre-trained model $\hat{\mu}: \mathcal{X} \to \mathbb{R}$.
- 2. holdout/calibration set: nonconformity scores $R_{i}=\left|Y_{i}-\hat{\mu}\left(X_{i}\right)\right|, \quad i=1,\ldots,n.$
- $\begin{aligned} &3. \text{ prediction set: } \widehat{C}_n\left(X_{n+1}\right) = \widehat{\mu}\left(X_{n+1}\right) \pm \mathbf{Q}_{1-\alpha}\left(\sum_{i=1}^n \frac{1}{n+1} \cdot \delta_{R_i} + \frac{1}{n+1} \cdot \delta_{+\infty}\right). \\ &\left(\text{the } \lceil (n+1)(1-\alpha) \rceil \text{th smallest of } R_1, \dots, R_n\right) \end{aligned}$

Drawback: the loss of accuracy due to sample splitting.

1.2 Full conformal prediction

(transductive conformal prediction)

- 1. training data & a hypothesized test point: $\hat{\mu}^y = \mathcal{A}\left(\left(X_1,Y_1\right),\ldots,\left(X_n,Y_n\right),\left(X_{n+1},y\right)\right)$ for each $y \in \mathbb{R}$.
- $\text{2. residuals: } R_{i}^{y} = \begin{cases} \left| Y_{i} \hat{\mu}^{y}\left(X_{i}\right) \right|, & i = 1, \ldots, n \\ \left| y \hat{\mu}^{y}\left(X_{n+1}\right) \right|, & i = n+1 \end{cases}.$

3. prediction set: $\widehat{C}_n\left(X_{n+1}\right) = \left\{y \in \mathbb{R} : R_{n+1}^y \leq \mathcal{Q}_{1-\alpha}\left(\sum_{i=1}^{n+1} \frac{1}{n+1} \cdot \delta_{R_i^y}\right)\right\}$.

Drawback: a steep computational cost.

THEOREM:

 $\mathbb{P}\left\{ Y_{n+1} \in \widehat{C}_n\left(X_{n+1}\right) \right\} \geq 1 - \alpha \text{ holds true for both split conformal and full conformal.}$

1.3 Jackknife+

(close to cross-conformal prediction in Vovk (2013), offering a compromise between the computational and statistical costs)

- $1. \ \text{training data with ith point removed: } \\ \hat{\mu}_{-i} = \mathcal{A}\left(\left(X_1,Y_1\right),\ldots,\left(X_{i-1},Y_{i-1}\right),\left(X_{i+1},Y_{i+1}\right),\ldots,\left(X_n,Y_n\right)\right).$
- 2. residuals: $R_{i}^{\mathrm{LOO}} = |Y_{i} \hat{\mu}_{-i}\left(X_{i}\right)|.$
- 3. prediction set:

$$\left[\mathbf{Q}_{\alpha}\left(\sum_{i=1}^{n}\frac{1}{n+1}\cdot\delta_{\widehat{\mu}_{-i}(X_{n+1})-R_{i}^{\mathrm{LOO}}}+\frac{1}{n+1}\cdot\delta_{-\infty}\right),\ \mathbf{Q}_{1-\alpha}\left(\sum_{i=1}^{n}\frac{1}{n+1}\cdot\delta_{\widehat{\mu}_{-i}(X_{n+1})+R_{i}^{\mathrm{LOO}}}+\frac{1}{n+1}\cdot\delta_{+\infty}\right)\right]$$

Drawback: while in practice the it generally provides coverage close to the target level $1-\alpha$, its theoretical guarantee only ensures $1-2\alpha$ probability of coverage in the worst case.

THEOREM:

 $\mathbb{P}\left\{Y_{n+1} \in \widehat{C}_n\left(X_{n+1}\right)\right\} \geq 1 - 2\alpha \text{ holds true for jackknife+}.$

2 Conformal time-series forecasting

Stankeviciute, M Alaa, and Schaar (2021): CF-RNNs

Multi-horizon time-series forecasting problem

Notation:

• the *i*th data point: $Z_i = (y_{1:t}^{(i)}, y_{t+1:t+H}^{(i)})$. Note that the label $y_{t+1:t+H}^{(i)}$ is now an H-dimensional value, in contrast with the scalar y value from before.

Assumption:

• exchangeable time-series observations

2.1 Methodology

(Split conformal prediction)

- 1. training set: train the underlying (auxiliary) model $\hat{\mu}: \mathbb{R}^t \to \mathbb{R}^H$, which produces multihorizon forecasts directly (conditionally independent predictions).
- 2. calibration set: obtain the H-dimensional nonconformity scores

$$R_i = \left[\left| y_{t+1}^{(i)} - \hat{y}_{t+1}^{(i)} \right|, \dots, \left| y_{t+H}^{(i)} - \hat{y}_{t+H}^{(i)} \right| \right]^\top.$$

 $\begin{array}{ll} 3. \ \ \mathrm{prediction\ set:}\ \Gamma_{1}^{\alpha}\left(y_{(1:t)}^{(n+1)}\right), \ldots, \Gamma_{H}^{\alpha}\left(y_{(1:t)}^{(n+1)}\right), \ \ \mathrm{where}\ \Gamma_{h}^{\alpha}\left(y_{(1:t)}^{(n+1)}\right) = \left[\hat{y}_{t+h}^{(n+1)} - \hat{\varepsilon}_{h}, \hat{y}_{t+h}^{(n+1)} + \hat{\varepsilon}_{h}\right], \\ \forall h \ \ \in \ \ \{1,\ldots,H\} \ \ \mathrm{with} \ \ \mathrm{the\ critical\ nonconformity\ scores}\ \ \hat{\varepsilon}_{1},\ldots,\hat{\varepsilon}_{H} \ \ \mathrm{become\ the} \end{array}$ $[(n+1)(1-\alpha/H)]$ -th smallest residuals in the corresponding nonconformity score distributions. (Bonferroni correction)

THEOREM:

- $\mathcal{D} = \left\{ \left(y_{1:t}^{(i)}, y_{t+1:t+H}^{(i)} \right) \right\}_{i=1}^n$: **exchangeable** time-series observations. $\hat{\mu}$: model predicting H-step forecasts using **the direct strategy**.

$$\mathbb{P}\left(\forall h \in \{1, \dots, H\} \cdot y_{t+h} \in [\hat{y}_{t+h} - \hat{\varepsilon}_h, \hat{y}_{t+h} + \hat{\varepsilon}_h]\right) \geq 1 - \alpha.$$

3 Conformal prediction beyond exchangeability

Barber et al. (2023)

- 1. Nonexchangeable conformal with a **symmetric** algorithm (weights)
- 2. Nonexchangeable conformal with **nonsymmetric** algorithms (weights & swap)

3.1 Notation

- the *i*th data point $Z_i = (X_i, Y_i)$
- the full data sequence $Z=(Z_1,\dots,Z_{n+1})$ the sequence after swap $Z^i=(Z_1,\dots,Z_{i-1},Z_{n+1},Z_{i+1},Z_n,Z_i)$

3.2 Methodology

- 1. Choose fixed (non-data-dependent) weights $w_1, \dots, w_n \in [0, 1]$ with the intuition that
- a higher weight should be assigned to a data point that is "trusted" more. 2. Normalize weights $\tilde{w}_i = \frac{w_i}{w_1 + \dots + w_n + 1}, i = 1, \dots, n$ and $\tilde{w}_{n+1} = \frac{1}{w_1 + \dots + w_n + 1}$. 3. Generate "tagged" data points $(X_i, Y_i, t_i) \in \mathcal{X} \times \mathbb{R} \times \mathcal{T}$.
- 4. Swap data set, resulting in Z^K with $K \sim \sum_{i=1}^{n+1} \tilde{w}_i \cdot \delta_i$, i.e., two data points have swapped
- 5. Apply algorithm \mathcal{A} to Z^K in place of Z.

3.3 Split conformal prediction

• prediction set: $\widehat{C}_n(X_{n+1}) = \widehat{\mu}(X_{n+1}) \pm Q_{1-\alpha}\left(\sum_{i=1}^n \widetilde{w}_i \cdot \delta_{R_i} + \widetilde{w}_{n+1} \cdot \delta_{+\infty}\right)$

3.4 Full conformal prediction

- 1. training data & a hypothesized test point: $\hat{\mu}^{y,k} = \mathcal{A}\left(\left(X_{\pi_k(i)}, Y_{\pi_k(i)}^y, t_i\right) : i \in [n+1]\right)$ for any $y \in \mathbb{R}$ and $k \in [n+1]$, where π_k is the permutation on [n+1] swapping indices k
- and n+1, and $Y_i^y = \begin{cases} Y_i, & i=1,\dots,n \\ y, & i=n+1 \end{cases}$.

 2. residuals: $R_i^{y,k} = \begin{cases} |Y_i \hat{\mu}^{y,k}(X_i)|, & i=1,\dots,n \\ |y \hat{\mu}^{y,k}(X_{n+1})|, & i=n+1 \end{cases}$.
- 3. prediction set: $\widehat{C}_n\left(X_{n+1}\right) = \left\{y: R_{n+1}^{y,K} \leq Q_{1-\alpha}\left(\sum_{i=1}^{n+1} \widetilde{w}_i \cdot \delta_{R^{y,K}}\right)\right\}.$

THEOREM:

• Lower bounds on coverage.

$$\mathbb{P}\left\{Y_{n+1} \in \widehat{C}_n\left(X_{n+1}\right)\right\} \geq 1 - \alpha - \sum_{i=1}^n \tilde{w}_i \cdot \mathrm{d_{TV}}\left(R(Z), R\left(Z^i\right)\right)$$

• Upper bounds on coverage.

$$\mathbb{P}\left\{Y_{n+1} \in \widehat{C}_{n}\left(X_{n+1}\right)\right\} < 1 - \alpha + \tilde{w}_{n+1} + \sum_{i=1}^{n} \tilde{w}_{i} \cdot \mathrm{d_{TV}}\left(R(Z), R\left(Z^{i}\right)\right),$$

if $R_1^{Y_{n+1},K},\dots,R_n^{Y_{n+1},K},R_{n+1}^{Y_{n+1},K}$ are distinct with probability 1.

The results hold true for both nonexchangeable split conformal and full conformal.

So, if $\tilde{w}_{n+1} = \frac{1}{w_1 + \cdots + w_n + 1}$ is small (the effective sample size is large), then mild violations of exchangeability can only lead to mild undercoverage or to mild overcoverage.

3.5 Jackknife+

1. training data with ith point removed and data tag swapped:

$$\hat{\mu}_{-i}^k = \mathcal{A}\left(\left(X_{\pi_k(j)}, Y_{\pi_k(j)}, t_j\right) : j \in [n+1], \pi_k(j) \notin \{i, n+1\}\right).$$

- 2. residuals: $R_i^{k,\text{LOO}} = |Y_i \hat{\mu}_{-i}^k(X_i)|$.
- 3. prediction set:

$$\left[\mathbf{Q}_{\alpha} \left(\sum_{i=1}^{n} \tilde{w}_{i} \cdot \delta_{\widehat{\mu}_{-i}^{K}(X_{n+1}) - R_{i}^{K, \text{LOO}}} + \tilde{w}_{n+1} \cdot \delta_{-\infty} \right), \ \mathbf{Q}_{1-\alpha} \left(\sum_{i=1}^{n} \tilde{w}_{i} \cdot \delta_{\widehat{\mu}_{-i}^{K}(X_{n+1}) + R_{i}^{K, \text{LOO}}} + \tilde{w}_{n+1} \cdot \delta_{+\infty} \right) \right]$$

THEOREM:

$$\mathbb{P}\left\{Y_{n+1} \in \widehat{C}_n\left(X_{n+1}\right)\right\} \geq 1 - 2\alpha - \textstyle\sum_{i=1}^n \tilde{w}_i \cdot \mathrm{d_{TV}}\left(R_{\mathrm{jack}\;+}(Z), R_{\mathrm{jack}\;+}\left(Z^i\right)\right)$$

4 References

Barber, Rina Foygel, Emmanuel J. Candès, Aaditya Ramdas, and Ryan J. Tibshirani. 2023. "Conformal Prediction Beyond Exchangeability." *The Annals of Statistics* 51 (2). https://doi.org/10.1214/23-aos2276.

Stankeviciute, Kamile, Ahmed M Alaa, and Mihaela van der Schaar. 2021. "Conformal Time-Series Forecasting." Advances in Neural Information Processing Systems 34: 6216–28.

Vovk, Vladimir. 2013. "Cross-Conformal Predictors." Annals of Mathematics and Artificial Intelligence 74 (1-2): 9–28. https://doi.org/10.1007/s10472-013-9368-4.