第二章 牛顿动力学

2015年10月3日 17:09

- 一、作用力
- 二、力和质点运动的关系

1. 作用力(interaction force)

- a. 作用力是两个物体间的相互作用.
 - i. 施力物体和受力物体总成对出现.
 - ii. 若某力作用于物体但没有施力物体,则该力不是物理 真实的力. 称为虚拟力.
- b. 力可以叠加.
 - i. 物体所受外力 $\overrightarrow{F_i}$, $\mathbf{i}=1,2,3,\cdots,n$,等效于只受一个合外力 $\overrightarrow{F_{\mathrm{c}}}=\sum_{i=1}^{n}\overrightarrow{F_i}$

ii.
$$\overrightarrow{F_x} = \sum_{i=1}^n \overrightarrow{F_{ix}}$$

iii.
$$\overrightarrow{F_y} = \sum_{i=1}^{n} \overrightarrow{F_{iy}}$$

iv.
$$\overrightarrow{F_z} = \sum_{i=1}^{n} \overrightarrow{F_{iz}}$$

- c. 力信号的传播速度
 - i. 牛顿假设为无穷大.
 - ii. 实际上 $v_F = c$.
- 2. 四种基本相互作用
 - a. 万有引力
 - i. m_1 、 m_2 以c交换引力子.
 - ii. 大量引力子形成引力波.
 - b. 电磁力
 - i. q_1 、 q_2 以c交换光量子(光子).
 - ii. 大量光子形成电磁波.
 - c. 强核力
 - i. 原子能.
 - ii. n、p以c交换胶子
 - d. 弱核力
 - i. 加热地幔,火山爆发.
 - ii. n、p、 π …以c交换玻色子
- 3. 常见作用力

- a. 地面附近物体受重力mg, $g = 9.8m \cdot s^{-2}$.
- b. 弹性力 $F = -k\Delta x$.
 - i. 张力是一种弹力, 其中 $\Delta x \to 0, k \to \infty$.
- c. 摩擦力(friction)
 - i. 两物体接触面大量分子产生的随机作用力(电磁力),其宏观合力为摩擦力.
 - ii. 动摩擦(kinetic friction) $|\overrightarrow{f_k}| = \mu_k N$.
 - iii. 静摩擦(static friction)
 - 1) 干摩擦
 - a) $\overrightarrow{f_S} \leq \mu_S N$.
 - b) μ_S 略大于 μ_k .
 - 2) 湿摩擦
 - a) 低速下: $\overrightarrow{f_v} = -\eta \overrightarrow{v_r}$.
 - b) 高速下: $\overrightarrow{f_v} = -\eta v_r^2 \overrightarrow{e_v}$.

二、力和质点运动的关系

2015年10月10日 19:14

1. 惯性 (inertia)

- a. 惯性定律
 - i. 公理地位的牛顿第一定律.
 - ii. 惯性定律的现代表述: 自由粒子永远保持静止或匀速 直线运动的状态.
- b. 惯性参考系
 - i. 该系中, 所有不变的物体保持速度不变.
 - ii. 一旦找到惯性系K,则相对于K做匀速直线运动的所有参考系K'都满足惯性定律,因而都是惯性系.
 - iii. 不存在绝对惯性参考系.
 - 1) 即不存在以太系.
 - 2) 自然界中存在近似的参考系.
- c. 惯性质量
 - i. 希格斯玻色子对物质的粘滞产生惯性质量.
 - ii. 随着速度上升, 粘滞增强, 惯性质量上升.

1)
$$m_{\text{tt}} = f\left(\frac{v}{c}\right)$$

- 2) 当 $v \ll c$ 时, $m_{\text{惯}}$ 近似为常量.
- 2. 力的定义
 - a. 动量(momentum) $\vec{p}=m\vec{v}$.

b.
$$\vec{F} = \frac{\mathrm{d}\vec{p}}{\mathrm{d}t} = \frac{\mathrm{d}(m\vec{v})}{\mathrm{d}t}$$

- i. 低速时,*m*近似为常量,有: $\vec{F} = \frac{\mathrm{d}\vec{p}}{\mathrm{d}t} = \frac{\mathrm{d}(m\vec{v})}{\mathrm{d}t} 1 = m\frac{\mathrm{d}\vec{v}}{\mathrm{d}t} = m\vec{a}$.
- c. 作用力与反作用力
 - i. 作用力与反作用力大小相等,方向相反.
 - ii. 只适用于低速运动; 高速情况下, 由于力信号只能以 光速传递, 因而与低速下结论不同.
- 3. 伽利略变换(Galilean Transformation, GT)
 - a. 设 $K(t,\vec{r})$, $K'(t',\vec{r}')$.

i.
$$\vec{r}' = \vec{r} - \vec{\mu}t - \overrightarrow{d_0}$$

- ii. 其中 $\vec{\mu}$ 为K'相对于K的运动速度.
- b. 实际上假定了dt = dt'.

- 例题: 一根均匀纯金细链挂在一个钉在墙上的铁钉子上,连接面绝对光滑. 钉子左侧的细链长为 l_b ,右侧长为 l_a (l_a > l_b),重力加速度为g. 求细链完全脱离钉子的时间.
 - 0解:
 - 设细链质量为m,总长为L,t时刻细链右侧长x,取地而系.

• left:
$$T - \frac{m}{L}(L - x)g = \frac{m}{L}(L - x)a$$
, right: $T - \frac{m}{L}xg$
$$= -\frac{m}{L}xa$$

$$\Rightarrow a = \frac{(2x - L)g}{L} \Rightarrow \frac{dv}{dt} = \frac{(2x - L)g}{L} \Rightarrow v \frac{dv}{dx}$$

$$= \frac{(2x - L)g}{L}$$

$$\Rightarrow v \, dv = \frac{g}{2} (2x - L) \, dx \Rightarrow \int_0^v v \, dv = \frac{g}{L} \int_{l_a}^x (2x - L) \, dx$$

$$\Rightarrow \frac{1}{2}v^2 = \frac{g}{L}(x^2 - Lx + l_a l_b) \Rightarrow \frac{dx}{dt}$$

$$= \sqrt{\frac{2g}{L}(x^2 - Lx + l_a l_b)}$$

$$\Rightarrow \frac{\mathrm{d}x}{\sqrt{x^2 - Lx + l_a l_b}} = \sqrt{\frac{2g}{L}} \, \mathrm{d}t \Rightarrow \int_{l_a}^{L} \frac{\mathrm{d}x}{\sqrt{x^2 - Lx + l_a l_b}}$$

$$= \int_0^T \sqrt{\frac{2g}{L}} \, \mathrm{d}t$$

$$\Rightarrow T = \sqrt{\frac{l_a + l_b}{2g}} \ln \frac{\sqrt{l_a} + \sqrt{l_b}}{\sqrt{l_a} - \sqrt{l_b}}$$

- 。 实验结果:
 - 基本与理论值相符.
 - 当 $t \to T$ 时,左侧链条向外甩,不可忽略惯性离心力的作用
- 4. 非惯性系
 - a. 爱因斯坦: 惯性系并无特殊优越性
 - b. 加速平动系 $K'(t',\vec{r}')$,相对于 $K(t,\vec{r})$,假设以 \vec{a} 沿 \vec{x} 方向平

动,
$$\diamondsuit x = x' + s(t)$$

i.
$$K: F_x = m \frac{\mathrm{d}^2 x}{\mathrm{d}t^2} \Rightarrow K': m \frac{\mathrm{d}^2 x'}{\mathrm{d}t^2} = \frac{m \, \mathrm{d}}{\mathrm{d}t} \left(\frac{\mathrm{d}x}{\mathrm{d}t} - \frac{\mathrm{d}s}{\mathrm{d}t} \right)$$

$$= m \frac{\mathrm{d}^2 x}{\mathrm{d}t^2} - m \frac{\mathrm{d}^2 s}{\mathrm{d}t^2} = F_x - ma$$

- ii. 平移惯性力 $\overrightarrow{f_{\text{tf}}} = -m\vec{a}$.
- c. 转动的非惯性系
 - i. 惯性离心力 $\overrightarrow{f_{\parallel}} = -m\overrightarrow{a_{\parallel}} = m\omega^2\overrightarrow{r}$.
 - ii. 科里奥利力
 - 1) 转动参考系 $K'(t',\vec{r}')$, 相对于 $K(t,\vec{r})$:
 - a) 参考系K的 $\frac{D}{Dt}$, 称为绝对微商;
 - b) 参考系K'的 $\frac{d}{dt}$, 称为相对微商.

2)
$$\vec{v} = \frac{D\vec{r}}{Dt} = \frac{d\vec{r}'}{dt} + \vec{\omega} \times \vec{r}'$$

3)
$$\vec{a} = \frac{D\vec{v}}{Dt} = \frac{d\vec{v}'}{dt} + \vec{\omega} \times \vec{v}' = \vec{a_0} + \vec{a_{\parallel}} + 2\vec{\omega} \times \vec{v}'$$

4) 其中 $2\vec{\omega} \times \vec{v}'$ 所对应的力称作科里奥利力(G.Coliolos).