Amendments to the claims

This listing of claims will replace all prior versions, and listings, of claims in the application:

1. (original) A compound of formula (I) or a pharmaceutically acceptable salt thereof:

$$\begin{bmatrix} W \end{bmatrix}_{p}^{z}$$

$$\begin{bmatrix} R_{2} \end{bmatrix}_{n}$$

$$\begin{bmatrix} R_{1} \end{bmatrix}_{m}$$

$$\begin{bmatrix} R_{1} \end{bmatrix}_{m}$$

$$\begin{bmatrix} R_{1} \end{bmatrix}_{m}$$

$$\begin{bmatrix} R_{2} \end{bmatrix}_{q}$$

wherein:

- R₁ is halogen, cyano, C₁₋₆alkyl, C₁₋₆alkoxy, haloC₁₋₆alkoxy or haloC₁₋₆alkyl;
- m is 0, 1, 2, 3 or 4;
- X is N or CH;
- R₂ is halogen, cyano, C₁₋₆alkyl, C₁₋₆alkoxy, haloC₁₋₆alkoxy or haloC₁₋₆alkyl;
- n is 0, 1 or 2;
- W is $-CH_2$ -, $-CH(C_{1-6}alkyl)$ or $-C(C_{1-6}alkyl)(C_{1-6}alkyl)$ -;
- p is 0, 1, 2 or 3;
- Y and Z together form a C₃₋₇cycloalkylene group, or Y is -CH₂-, -CH(C₁₋₆alkyl)- or -C(C₁₋₆alkyl)(C₁₋₆alkyl) and Z is -CH₂-, -CHOH-, -CHR₆- or -CR₆R₇- (wherein R₆ and R₇ are independently halogen, cyano, C₁₋₆alkyl or C₁₋₆alkoxy);
- R₃ and R₄ are independently hydrogen, C₁₋₆alkyl, C₁₋₆alkylsulfonyl or a group having the formula (II):

wherein

• r is 0, 1, 2, 3 or 4;

- A is oxygen or sulfur;
- B is a single bond or -NR₈- (wherein R₈ is hydrogen, C₁₋₆alkyl or aryl, wherein the aryl is optionally substituted by one or more substituents independently selected from halogen, oxo, C₁₋₆alkyl, CF₃, cyano, hydroxy, C₁₋₆alkanoyl, and C₁₋₆alkoxy);
- D is $-(CH_2)_{t-}$, $-(CH_2)_{t}$ O- or $-O(CH_2)_{t-}$, wherein t is 0, 1, 2, 3 or 4; and
- E is C₁₋₆alkyl, haloC₁₋₆alkyl, C₃₋₇cycloalkyl (optionally substituted by one or more substituents independently selected from halogen, hydroxy, oxo, C₁₋₆alkyl, cyano, CF₃, OCF₃, C₁₋₆alkoxy and C₁₋₆alkanoyl), aryl (optionally substituted by one or more substituents independently selected from halogen, oxo, C₁₋₆alkyl, CF₃, cyano, hydroxy, C₁₋₆alkanoyl and C₁₋₆alkoxy), or E is -NR₉R₁₀, wherein R₉ and R₁₀ are independently selected from hydrogen, C₁₋₆alkyl and aryl (optionally substituted by one or more substituents independently selected from halogen, oxo, C₁₋₆alkyl, CF₃, cyano, hydroxy, C₁₋₆alkanoyl and C₁₋₆alkoxy);
- or R₃ and R₄, together with the nitrogen atom to which R₃ and R₄ are attached, form a 3-7 membered monocyclic heterocyclic group or a 8-11 membered bicyclic heterocyclic group, wherein each group is optionally substituted by one or more substituents selected from halogen, oxo, C₁₋₆alkyl, cyano, CF₃, C₁₋₆alkoxy, C₁₋₆alkanoyl, aryl and arylC₁₋₆alkyl (wherein the aryl and the arylC₁₋₆alkyl are further optionally substituted by one or more halogen, oxo, C₁₋₆alkyl, cyano, CF₃, C₁₋₆alkoxy or C₁₋₆alkanoyl); and
- R₅ is independently halogen, cyano, C₁₋₆alkyl or C₁₋₆alkoxy; and
- q is 0, 1, 2, 3 or 4.
- 2. (original) A compound as claimed in claim 1, wherein n is 0 or n is 1 and R_2 is $C_{1\text{-}6}$ alkyl.
- 3. (currently amended) A compound as claimed in claim 1 or claim 2, wherein p is 0.
- 4. (currently amended) A compound as claimed in claim 1, 2 or 3, wherein Y and Z are independently -CH₂-, -CH(CH₃)- or -CH(OH)-.
- 5. (currently amended) A compound as claimed in claim 1 any of claims 1-4, wherein formula (II) is:

wherein A is oxygen or sulfur, D is - $(CH_2)_{t^-}$, - $(CH_2)_{t^-}$, or - $O(CH_2)_{t^-}$, wherein t is 0, 1, 2, 3 or 4 and E is C_{1-6} alkyl, C_{3-7} cycloalkyl (optionally substituted by one or more substituents independently selected from halogen, hydroxy, oxo, C_{1-6} alkyl, cyano, CF_3 , OCF_3 , C_{1-6} alkoxy and C_{1-6} alkanoyl), or aryl (optionally substituted by one or more substituents independently selected from halogen, C_{1-6} alkyl, CF_3 , cyano, hydroxy, C_{1-6} alkanoyl, and C_{1-6} alkoxy);

or

wherein A is oxygen or sulfur, D is $-(CH_2)_t$ -, $-(CH_2)_t$ O- or $-O(CH_2)_t$ -, wherein t is 0, 1, 2, 3 or 4 and E is C_{1-6} alkyl, C_{3-7} cycloalkyl (optionally substituted by one or more substituents independently selected from halogen, hydroxy, oxo, C_{1-6} alkyl, cyano, CF_3 , OCF_3 , C_{1-6} alkoxy and C_{1-6} alkanoyl), or aryl (optionally substituted by one or more substituents independently selected from halogen, C_{1-6} alkyl, CF_3 , cyano, hydroxy, C_{1-6} alkanoyl, and C_{1-6} alkoxy).

- 6. (currently amended) A compound as claimed in <u>claim 1</u> any of claims 1-5, wherein E is a 5- to 7- membered monocyclic aromatic ring wherein one or more of the carbon atoms in the ring is optionally replaced by a heteroatom independently selected from nitrogen, oxygen and sulfur, wherein the ring is optionally substituted by one or more substituents independently selected from oxo, halogen, C₁₋₆alkyl, CF₃, cyano, hydroxy, C₁₋₆alkanoyl, and C₁₋₆alkoxy; or E is a 9- to 10- membered bicyclic aromatic ring, wherein one or more of the carbon atoms in the ring is optionally replaced by a heteroatom independently selected from nitrogen, oxygen and sulfur, wherein the ring is optionally substituted by one or more substituents independently selected from oxo, halogen, C₁₋₆alkyl, CF₃, cyano, hydroxy, C₁₋₆alkanoyl, and C₁. 6alkoxy.
- 7. (currently amended) A compound as claimed in <u>claim 1 any of claims 1-5</u>, wherein E is methylamine, ethylamine, propylamine, isopropylamine, butylamine, isobutylamine, sec-butylamine, tert-butylamine, pentylamine, neopentylamine, sec-

pentylamine, n-pentylamine, isopentylamine, tert-pentylamine, hexylamine; dimethylamine, diethylamine, dipropylamine, diisopropylamine, dibutylamine, diisobutylamine, disec-butylamine, ditert-butylamine, dipentylamine, dineopentylamine, dihexylamine, butylmethylamino, isopropylmethylamino, ethylisopropylamino, ethylmethylamino; a monoarylamino such as anilino; or a $monoC_{1-6}$ alkyl-monoarylamino.

- 8. (currently amended) A compound as claimed in claim 1 any of claims 1-7, wherein R_3 and R_4 , together with the nitrogen atom to which R_3 and R_4 are attached, form a 4-6 membered monocyclic heterocyclic group optionally substituted by one or more substituents selected from oxo, halogen, $C_{1\text{-}6}$ alkyl, cyano, CF_3 , $C_{1\text{-}6}$ alkoxy, $C_{1\text{-}6}$ alkanoyl, aryl and aryl $C_{1\text{-}6}$ alkyl (wherein the aryl and the aryl $C_{1\text{-}6}$ alkyl are further optionally substituted by one or more halogen, oxo, $C_{1\text{-}6}$ alkyl, cyano, CF_3 , $C_{1\text{-}6}$ alkoxy or $C_{1\text{-}6}$ alkanoyl); or R_3 and R_4 , together with the nitrogen atom to which R_2 and R_3 are attached, form a 8-10 membered bicyclic heterocyclic group optionally substituted by one or more substituents selected from oxo, halogen, $C_{1\text{-}6}$ alkyl, cyano, CF_3 , C_1 . $_{6}$ alkoxy, $C_{1\text{-}6}$ alkanoyl, aryl and aryl $C_{1\text{-}6}$ alkyl (wherein the aryl and the aryl $C_{1\text{-}6}$ alkyl are further optionally substituted by one or more halogen, oxo, $C_{1\text{-}6}$ alkyl, cyano, CF_3 , C_1 . $_{6}$ alkoxy or $C_{1\text{-}6}$ alkanoyl).
- 9. (original) A compound as claimed in claim 1, having a general formula (Ia):

$$\begin{bmatrix} Y \end{bmatrix}_{p}^{Z} & NR_{3}R_{4} \\ N & [R_{5}]_{q} \\ \\ [R_{1}]_{m} & X \\ \\ (Ia) \end{bmatrix}$$

wherein:

- R_1 is halogen, cyano, C_{1-6} alkyl, C_{1-6} alkoxy, halo C_{1-6} alkoxy or halo C_{1-6} alkyl;
- m is 0, 1, 2, 3 or 4;
- X is N or CH;
- p is 1, 2, 3 or 4;
- Y is $-CH_2$ -, $-CH(C_{1-6}alkyl)$ or $-C(C_{1-6}alkyl)(C_{1-6}alkyl)$ -;
- Z is $-CH_2$ -, -CHOH-, $-CHR_6$ or $-CR_6R_7$ -, wherein R_6 and R_7 are independently halogen, cyano, C_{1-6} alkyl or C_{1-6} alkoxy;
- R_3 and R_4 are independently hydrogen, C_{1-6} alkyl, C_{1-6} alkylsulfonyl or a group having the formula (II):

wherein:

- r is 0, 1, 2, 3 or 4;
- A is oxygen or sulfur;
- B is a single bond or -NR₈- wherein R₈ is hydrogen, C₁₋₆alkyl or aryl optionally substituted by one or more substituents independently selected from halogen, oxo, C₁₋₆alkyl, CF₃, cyano, hydroxy, C₁₋₆alkanoyl, and C₁₋₆alkoxy;
- D is $-(CH_2)_{t-}$, $-(CH_2)_{t}O$ or $-O(CH_2)_{t-}$, wherein t is 0, 1, 2, 3 or 4; and
- E is C₁₋₆alkyl, haloC₁₋₆alkyl, C₃₋₇cycloalkyl (optionally substituted by one or more halogen, hydroxy, oxo, C₁₋₆alkyl, cyano, CF₃, OCF₃, C₁₋₆alkoxy or C₁₋₆alkanoyl), or aryl (optionally substituted by one or more substituents independently selected from halogen, oxo, C₁₋₆alkyl, CF₃, cyano, hydroxy, C₁₋₆alkanoyl, and C₁₋₆alkoxy); or E is -NR₉R₁₀ (wherein R₉ and R₁₀ are independently selected from hydrogen, C₁₋₆alkyl and aryl optionally substituted by one or more substituents independently selected from halogen, oxo, C₁₋₆alkyl, CF₃, cyano, hydroxy, C₁₋₆alkanoyl, and C₁₋₆alkoxy);
- or R₃ and R₄, together with the nitrogen atom to which R₃ and R₄ are attached, combine to form a 3-7 membered monocyclic heterocyclic group (optionally substituted by 1 to 4 substituents, which may be the same or different, and which is selected from halogen, oxo, C₁₋₆alkyl, cyano, CF₃, C₁₋₆alkoxy and C₁₋₆alkanoyl);
- R₅ is independently halogen, cyano, C₁₋₆alkyl or C₁₋₆alkoxy; and
- q is 0, 1, 2, 3 or 4.
- 10. (original) A compound as claimed in claim 1, which is:
 - 3-(3-{2-[4-(2-methyl-5-quinolinyl)-1-piperazinyl]ethyl}phenyl)-1,3-oxazolidin-2-one;
 - *N*-(3-{2-[4-(2-methyl-5-quinolinyl)-1-piperazinyl]ethyl}phenyl)-*N*'-phenylurea;
 - *N*-[2-(methyloxy)phenyl]-*N*'-(3-{2-[4-(2-methyl-5-quinolinyl)-1-piperazinyl]ethyl}phenyl)urea;
 - 1-(3-{2-[4-(2-methyl-5-quinolinyl)-1-piperazinyl]ethyl}phenyl)-2-imidazolidinone;

- 2,4-dimethyl-*N*-(3-{2-[4-(2-methyl-5-quinolinyl)-1-piperazinyl]ethyl}phenyl)-1,3-thiazole-5-carboxamide;
- *N*-(3-{1-hydroxy-2-[4-(2-methyl-5-quinolinyl)-1-piperazinyl]ethyl}phenyl)-2,4-dimethyl-1,3-thiazole-5-carboxamide;
- 2-fluoro-*N*-(3-{2-[4-(2-methyl-5-quinolinyl)-1-piperazinyl]ethyl}phenyl)benzamide;
- 3-(3-{2-[4-(2-methyl-5-quinolinyl)-1-piperazinyl]propyl}phenyl)-1,3-oxazolidin-2-one;
- 3-(3-{2-[(2R)-2-methyl-4-(2-methyl-5-quinolinyl)-1-piperazinyl]ethyl}phenyl)-1,3-oxazolidin-2-one;
- 1-methyl-3-(3-{2-[4-(2-methyl-5-quinolinyl)-1-piperazinyl]ethyl}phenyl)-2-imidazolidinone;
- 1-(4-fluoro-3-{2-[4-(2-methyl-5-quinolinyl)-1-piperazinyl]ethyl}phenyl)-2-imidazolidinone;
- 3-(4-fluoro-3-{2-[4-(2-methyl-5-quinolinyl)-1-piperazinyl]ethyl}phenyl)-1,3-oxazolidin-2-one;
- 1-(3-{2-[4-(2-methyl-5-quinolinyl)-1-piperazinyl]ethyl}phenyl)-2,4-imidazolidinedione;
- 1-(3-{2-[4-(2-methyl-5-quinolinyl)-1-piperazinyl]ethyl}phenyl)-1,3-dihydro-2H-imidazol-2-one;
- 1-methyl-3-(3-{2-[4-(2-methyl-5-quinolinyl)-1-piperazinyl]ethyl}phenyl)-1,3-dihydro-2H-imidazol-2-one;
- 4,4-dimethyl-1-(3-{2-[4-(2-methyl-5-quinolinyl)-1-piperazinyl]ethyl}phenyl)-2-imidazolidinone;

or a pharmaceutically acceptable salt thereof.

- 11. (original) A process for the preparation of a compound as claimed in claim 1, which process comprises:
- (a) converting a compound of formula (III):

$$\begin{bmatrix} \mathbf{R}_{2} \end{bmatrix}_{\mathbf{n}}^{\mathbf{N}} \begin{bmatrix} \mathbf{R}_{5} \end{bmatrix}_{\mathbf{q}}^{\mathbf{R}}$$

$$\begin{bmatrix} \mathbf{R}_{1} \end{bmatrix}_{\mathbf{m}}^{\mathbf{N}} \begin{bmatrix} \mathbf{R}_{5} \end{bmatrix}_{\mathbf{q}}^{\mathbf{q}}$$
(III)

wherein R₁, m, X, R₂, n, W, p, Y, Z, R₅ and q are as defined in claim 1; or

(b) for a compound of formula (I) wherein Y and Z form a cyclopropylene group,

$$\begin{bmatrix} \mathbf{R}_{2} \end{bmatrix}_{n} \begin{bmatrix} \mathbf{R}_{5} \end{bmatrix}_{q}$$

$$\begin{bmatrix} \mathbf{R}_{1} \end{bmatrix}_{m} \begin{bmatrix} \mathbf{R}_{1} \end{bmatrix}_{m} \begin{bmatrix} \mathbf{R}_{1} \end{bmatrix}_{m} \begin{bmatrix} \mathbf{R}_{2} \end{bmatrix}_{q}$$

$$(IV)$$

converting a compound of formula (IV):

wherein R₁, m, X, R₂, n, W, p, R₃, R₄ and R₅ and q are as defined in claim 1; or

(c) reacting a compound of formula (V):

$$\begin{bmatrix} \mathbf{R}_{2} \end{bmatrix}_{\mathbf{n}} \begin{bmatrix} \mathbf{R}_{5} \end{bmatrix}_{\mathbf{q}}$$

$$\begin{bmatrix} \mathbf{R}_{1} \end{bmatrix}_{\mathbf{m}} \begin{bmatrix} \mathbf{R}_{5} \end{bmatrix}_{\mathbf{q}}$$

$$(V)$$

wherein R_1 , m, X, R_2 , n, W, p, Y, Z, R_5 and q are as defined in claim 1, and L is a leaving group, with a compound of formula (VI):

$$R_3R_4NH$$
 (VI)

wherein R₃ and R₄ are as defined in claim 1; or

(d) reacting a compound of formula (VII):

$$\begin{bmatrix} R_2 \end{bmatrix}_n \begin{bmatrix} N \\ N \end{bmatrix}$$

$$\begin{bmatrix} R_1 \end{bmatrix}_m \begin{bmatrix} N \\ N \end{bmatrix}$$
(VII)

wherein R_1 , m, X, R_2 and n are as defined in claim 1, with a compound of formula (VIII):

$$\begin{bmatrix} \mathbf{W} \end{bmatrix}_{p}^{\mathbf{Z}} \xrightarrow{\mathbf{NR}_{3}\mathbf{R}_{4}} \mathbf{H} \begin{bmatrix} \mathbf{R}_{5} \end{bmatrix}_{q}$$
(VIII)

wherein W, p, Y, Z, R_5 , q, R_3 and R_4 are as defined in claim 1, and L is a leaving group; or

(e) for a compound of formula (I) wherein Z is –CH(OH), reacting a compound of formula (VII) as defined in step (d) with a compound of formula (XIII):

$$\begin{bmatrix} W \end{bmatrix}_{p}^{p}$$

$$\begin{bmatrix} R_{5} \end{bmatrix}_{q}$$
(XIII)

wherein W, p, Y, Z, R₅, q, R₃ and R₄ are as defined in claim 1; or

(f) for a compound of formula (I) wherein Y and Z form a C₃₋₇cycloalkylene group, reacting a compound of formula (VII) as defined above with a compound of formula (XIV):

$$NR_3R_2$$

$$\begin{bmatrix} R_5 \end{bmatrix}_q$$
(XIV)

wherein R₅, R₂, R₃ and q are as defined in claim 1 and a is 0, 1, 2, 3 or 4; or

(g) for a compound of formula (I) wherein the group W or Y attached to the nitrogen in the piperazine group in formula (I) is CH_2 or $CH(C_{1-6}alkyl)$, reacting a compound of formula (VII) as defined above with a compound of formula (XV):

$$Q = \begin{bmatrix} W \end{bmatrix}_{b}^{Y} \begin{bmatrix} XV \end{bmatrix}_{q}$$

$$[R_{5}]_{q}$$

wherein R_3 , R_4 , R_5 , q, Z, Y and W are as defined in claim 1 and b is 0, 1 or 2 and Q is hydrogen or C_{1-6} alkyl;

and thereafter optionally for any of steps (a) to (g):

- removing any protecting groups and/or
- converting a compound of formula (I) into another compound of formula (I) and/or
- forming a pharmaceutically acceptable salt.
- 12. (cancelled)
- 13. (cancelled)
- 14. (cancelled)
- 15. (currently amended) A method of treatment of a CNS disorder in a mammal including a human, which comprises administering to the sufferer a therapeutically safe and effective amount of a compound as claimed in claim 1 any of claims 1-10.
- 16. (original) A method as claimed in claim 15, wherein the disorder is depression or anxiety.
- 17. (cancelled)
- 18. (cancelled)
- 19. (currently amended) A pharmaceutical composition comprising a compound as claimed in <u>claim 1 any of claims 1 10</u>, and a pharmaceutically acceptable carrier or excipient.

20. (currently amended) A process for preparing a pharmaceutical composition as defined in claim 19, the process comprising mixing a compound as claimed in claim 1 any of claims 1-10 and a pharmaceutically acceptable carrier or excipient.