Resumen de lógica

Mapachana

2 de febrero de 2018

1. Inducción

1.1. Principio de inducción

2. Recurrencias

2.1. Recurrencias lineales homogéneas

Sea $k \in \mathbb{N}$ una recurrencia lineal homogénea es cualquier igualdad de la forma:

$$u_n = a_1 u_{n-1} + \dots + a_k u_k$$

donde $a_1, ..., a_K$ son constantes. Si a_k es distinto de 0, k es el orden de la relación de recurrencia y

$$p(x) = x^k - a_1 x^{k-1} - \dots - a_k$$

es su polinomio característico. Si este polinomio se iguala a 0, se obtiene su ecuación característica. Para resoolver la recurrencia, calcularemos las solucion de la ecuación característica, obteniendo así raíces. Llamaremos m a la multiplicidad de una raíz (por ejemplo, si una ecuación tiene soluciones 2 y 2, solo tiene una ráiz pero con multiplicidad 2). LLamaremos t al número de raíces. Veremos dos casos:

•
$$k = 1$$

 $t=1 m=1$

$$X_n = \alpha \cdot r^n$$

• k = 2

•
$$t=2$$
 $t \in \mathbb{R}$ $m_1=m_2=1$

$$X_n = \alpha_1 \cdot r_1^n + \alpha_2 \cdot r_2^n$$

•
$$t=2$$
 $y \in \mathbb{R}$ $m=2$

$$X_n = (\alpha_{10} + \alpha_{11}n) \cdot r^n$$

•
$$t=2$$
 $t \in \mathbb{C}$ $m_1=m_2=1$

$$X_n = r^n \left(K_1 \cos(n\theta) + K_2 \sin(n\theta) \right)$$

Donde r y θ se calculan como:

$$\begin{array}{ll} r = \sqrt{a^2 + b^2} & \theta = 2\arctan(\frac{b}{a+r}) \\ K_1 = 2a & K_2 = -2b \end{array}$$

Si bien no deberían caer recurrencias de grado mucho mayor de 2, por si acaso, conviene generalizar los casos donde las raíces son reales. La expresión es:

$$X_n = r_1^n(\alpha_{1,0} + \alpha_{1,1}n + \dots + \alpha_{1,m-1}n^{m-1}) + \dots + r_t^n(\alpha_{t,0} + \alpha_{t,1}n + \dots + \alpha_{t,m-1}n^{m-1})$$

Donde cada m varía para cada raíz. Para calcular un recurrencia determinada (nos dan valores de $u_0, u_1, ... u_n$ basta sustituir en la expresión el valor de n que nos dan e igualar al número que queremos obtener para ese valor de n e ir despejeando y hallando incógnitas.

Ejemplo Resuelva la relación de recurrencia y encuentr la solución particular indicada.

$$u_{n+2} = 6u_{n+1} - 9_n$$
$$u_0 = 1, u_1 = 6$$

Orden de la relación de recurrencia: k=2.

Polinomio característico: $x^2 - 6x + 9$.

Ecuación característica: $x^2 - 6x + 9 = 0$.

Las soluciones de la ecuación característica son: $x_1 = x_2 = 3$. Esto es, tenemos una sola raíz con multiplicidad 2 (la misma raíz aparece 2 veces, es solución doble), luego la solución será de la forma:

$$X_n = (\alpha_1 + \alpha_2 n) \cdot 3^n$$

Donde falta hallar dos incógnitas, que conseguiremos usando los valores que nos dan para la recurrencia particular, si no nos pidieran esto, habríamos acabado el ejercicio.

Para hallar las incógnitas sustituyo los valores de n e igualo al valor que me dan como sigue:

$$u_{0} = 1 = (\alpha_{1} + \alpha_{2} \cdot 0) \cdot 3^{0};$$

$$\alpha_{1} = 1$$

$$u_{1} = 6 = (\alpha_{1} + \alpha_{2} \cdot 1) \cdot 3^{1};$$

$$6 = (1 + \alpha_{2}) \cdot 3;$$

$$6 = 3 + 3\alpha_{2};$$

$$\alpha_{2} = 1$$

Luego la recurrencia particular es:

$$X_n = (1+n) \cdot 3^n$$

2.2. Recurencias lineales no homogéneas

Estas recurrencias son de la forma:

$$u_n = a_1 u_{n-1} + \dots + a_k u_k + f(n)$$

Donde f(n) está formada por dos partes:

- \bullet q(n): Es un polinomio que va multiplicando.
- S: Es un número que va elevado a n.

Esto es: $f(n) = q(n) \cdot S^n$ Para resolver estas recurrencias calcularemos dos cosas: La solución a la recurrencia lineal homogénea asociada (quitando el f(n)) que será $\{X_n^{(h)}\}$ y la solución $\{X_n^{(p)}\}$ que, al sumarlas, nos dará la solución de la recurrencia. Para calcular $\{X_n^{(p)}\}$ Simplemente localizaremos S y q(n) por separado y comprobaremos si S es una solución de la ecuación homogénea asociada, m será la multiplicidad de S en las raíces de la ecuación. Llamaremos por ejemplo g al grado de q(n), entonces:

$$\{X_n^{(p)}\} = n^m \cdot (c_1 + c_2 n + \dots + c_g n^g) \cdot S^n$$

Para calcular las constantes del polinomio $c_1, c_2, ..., c_n$ se sustituirá la solución en la recurrencia variando n de acuerdo a la expresión y se resolverá el sistema o ecuación para calcular estos valores.

Ejemplo Resuelva la relación de recurrencia:

$$u_{n+2} = -4u_{n+1} - 3u_n + 5(-2)^n$$

Orden de la relación de recurrencia: k = 2.

Polinomio característico asociado: $x^2 - 4x + 3$.

Ecuación característica asociada: $x^2 + 4x + 3 = 0$.

Las soluciones de la ecuación característica asociada son: $x_1 = -1$; $x_2 = -3$. Esto es, tenemos dos raíces con multiplicidad 1, luego la solución será de la forma:

$$\{X_n^{(h)}\} = \alpha_1(-1)^n + \alpha_2(-3)^n$$

Donde falta hallar dos incógnitas, que en este caso no tenemos datos para calcular, por lo que los dejaremos así.

Ahora calcularemos la otra solución necesaria.

$$f(n) = 5 \cdot (-2)^n$$

Luego:

$$q(n) = 5$$
 $S = -2$

El grado de q(n) es 1 y -2 no es solución de la ecuación característica asociada, por lo que la solución será de la forma:

$$\{X_n^{(p)}\} = n^0 \cdot c \cdot (-2)^n = c \cdot (-2)^n$$

Donde sólo faltaría hallar c, lo que haremos sustituyendo en la ecurrencia de esta forma:

$$c(-2)^{n+2} = -4(c(-2)^{n+1}) - 3(c(-2)^n) + 5(-2)^n;$$

$$c(-2)^2(-2)^n + 4c(-2)(-2)^n + 3c(-2)^n - 5(-2)^n = 0;$$

$$4c(-2)^n - 8c(-2)^n + 3c(-2)^n - 5(-2)^n = 0;$$

$$(-2)^{n}(4c - 8c + 3c - 5) = 0;$$

$$4c - 8c + 3c - 5 = 0;$$

$$-c - 5 = 0;$$

$$c = -5$$

Por tanto:

$$\{X_n^{(p)}\} = -5 \cdot (-2)^n$$

Y la solución de la recurrencia es la suma de ambas, entonces la solución es:

$$X_n = \alpha_1(-1)^n + \alpha_2(-3)^n - 5(-2)^n$$

Para calcular α_1 y α_2 necesitaríamos unos valores de n, como $u_0,u_1,\ldots U_n$ para sustituir y despejarlos.

2.3. Recurrencias no lineales

Si cae esto, llorad. Es básicamente probar lo que se te ocurra y tener suerte.

3. Lógica proposicional

- 3.1. Introducción
- 3.2. Algoritmo de Davis-Putnam
- 4. Álgebra de Boole
- 4.1. Álgebras de Boole
- 4.2. Mapas de Karnaugh
- 4.3. Algoritmo de Quentin-Mc Cluskey
- 5. Lógica de primer orden
- 5.1. Introducción
- 5.2. Forma prenexa
- 5.3. Resolución por reducción