Контекстно-свободные грамматики. Деревья разбора. Нормальная форма Хомского. Первая лемма о накачке

Теория формальных языков $2023 \ z$.

Алфавитные префиксные грамматики

Определение APG

Дана SRS S с правилами переписывания двух видов:

$$a_i \to b_1 \dots b_n$$
 $a_i \to \epsilon$

Разрешим применять правила только к первым буквам слова. Пусть дана пара $\langle S, w_0 \rangle$, где w_0 — слово в алфавите Σ . Эта пара определяет алфавитную префиксную грамматику.

Утверждение

Язык $L(S, w_0)$ регулярен.

Алфавитные префиксные грамматики

Утверждение

Язык $L\langle S, w_0 \rangle$ регулярен.

Скажем, что $a \twoheadrightarrow \epsilon$ (а коллапсирует), если либо $a \to \epsilon \in S$, либо $\exists b_1, \ldots, b_n (\forall b_i (b_i \twoheadrightarrow \epsilon) \ \& \ a \to b_1 \ldots b_n \in S).$

По APG $\langle S, s_1 \dots s_n \rangle$ породим праволинейную грамматику G. Каждому символу алфавита \mathfrak{a}_i сопоставим A_i — нетерминал G.

- Пусть $a \to b_1 \dots b_n$ и $\exists b_i (\neg (b_i \twoheadrightarrow \epsilon) \& \forall j (j < i \Rightarrow b_j \twoheadrightarrow \epsilon)).$ Тогда добавим в G правила $A \to B_1 b_2 \dots b_n, A \to B_2 b_3 \dots b_n, \dots, A \to B_i b_{i+1} \dots b_n, A \to a.$
- **②** Если такого b_i нет, добавляем в G все правила вида $A \to B_1 b_2 \dots b_n, \dots, A \to B_{n-1} b_n, A \to B_n, A \to a$.
- **3** Вводим стартовый нетерминал S и для него добавляем развёртку в исходное слово $s_1 \dots s_m$ по правилам выше.
- **1** Если все s_i коллапсируют, тогда добавляем в G правило $S \to \varepsilon$.

Алфавитные префиксные грамматики

Скажем, что $a \twoheadrightarrow \epsilon$ (а коллапсирует), если либо $a \to \epsilon \in S$, либо $\exists b_1, \ldots, b_n (\forall b_i (b_i \twoheadrightarrow \epsilon) \ \& \ a \to b_1 \ldots b_n \in S).$

По APG $\langle S, s_1 \dots s_n \rangle$ породим праволинейную грамматику G. Каждому символу алфавита a_i сопоставим A_i — нетерминал G.

- Пусть $a \to b_1 \dots b_n$ и $\exists b_i (\neg (b_i \twoheadrightarrow \epsilon) \& \forall j (j < i \Rightarrow b_j \twoheadrightarrow \epsilon)).$ Тогда добавим в G правила $A \to B_1 b_2 \dots b_n, A \to B_2 b_3 \dots b_n, \dots, A \to B_i b_{i+1} \dots b_n, A \to a.$
- **2** Если такого b_i нет, добавляем в G все правила вида $A \to B_1 b_2 \dots b_n, \dots, A \to B_{n-1} b_n, A \to B_n, A \to a.$
- **3** Вводим стартовый нетерминал S и для него добавляем развёртку в исходное слово $s_1 \dots s_m$ по правилам выше.
- **1** Если все s_i коллапсируют, тогда добавляем в G правило $S \to \varepsilon$.

Остается сделать развертку правил вида $A \to B_n$, либо перейти от G к НКА с ϵ -переходами.

Неалфавитные грамматики

Если вместо правил $a_i \to b_1 \dots b_n$ к префиксам слов можно применять любые правила вида $a_1 \dots a_m \to b_1 \dots b_n$, такая грамматика называется (просто) префиксной. Для простоты предполагаем, что начальное слово также может быть не единственным.

Языки префиксных грамматик регулярны.

Доказательство использует ту же идею, что в случае АПГ: множество минимальных укорачивающихся комбинаций правил переписывания конечно.

От ДКА к префиксной грамматике

В данном алгоритме рассматривается минимальный ДКА для языка.

- Ведущими словами для нетерминалов (состояний) q_i объявим классы эквивалентности w_i такие, что $q_0 \xrightarrow{w_i} q_i$.
- Для всех стрелок, входящих в q_i из q_k и помеченных буквами а_і, построим правила переписывания: $w_i \rightarrow w_k a_i$.
- Начальными словами объявим слова из классов эквивалентности, лежащих в языке автомата.

От ДКА к префиксной грамматике

Построим префиксную грамматику для языка автомата:

Для q_0 ведущим словом будет b, для q_1 — a, для q_2 ведущее ab (оно же стартовое слово).

Правила префиксной грамматики:

 $b \to bb$ (в q₀ входит лишь одна стрелка) $a \to aa$ $a \to ac$ (стрелки из q₁ в себя) $a \to ba$ (стрелка из q₀ в q₁) $ab \to ab$ (стрелка из q₁ в q₂) $ab \to abc$ $ab \to abb$ (стрелки из q₂ в себя)

От ДКА к префиксной грамматике

Стартовое слово: аb. Правила переписывания:

 $b \to bb$ (в q₀ входит лишь одна стрелка)

 $a \to aa$ $a \to ac$ (стрелки из q_1 в себя)

 $a \to ba$ (стрелка из q_0 в q_1)

 $\mathfrak{a}\mathfrak{b} \to \mathfrak{a}\mathfrak{b} \quad \ \, \text{(стрелка из } \mathsf{q}_1 \ \mathsf{B} \ \mathsf{q}_2)$

 $ab \to abc$ $ab \to abb$ (стрелки из q_2 в себя)

Результат похож на обращенные правила трансформационного моноида, но учитывает префиксность: нет смысла переписывать $c \to cc$, если c может встретиться только после буквы a, либо после префикса ab.

Ограничения регулярных грамматик

- (синтаксический моноид) Слова лишь конечно различимы относительно правил переписывания
- (префиксные грамматики) Доступ лишь к началу (концу) слова
- (накачки) Все циклы в автоматах асинхронны

Что будет, если снять эти условия?

Ограничения регулярных грамматик

- (синтаксический моноид) Слова лишь конечно различимы относительно правил переписывания
- (префиксные грамматики) Доступ лишь к началу (концу) слова
- (накачки) Все циклы в автоматах асинхронны

Что будет, если снять эти условия?

Структура вывода — дерево, а не последовательность.

Ограничения регулярных грамматик

- (синтаксический моноид) Слова лишь конечно различимы относительно правил переписывания
- (префиксные грамматики) Доступ лишь к началу (концу) слова
- (накачки) Все циклы в автоматах асинхронны

Что будет, если снять эти условия?

Структура вывода — дерево, а не последовательность.

Контекстно-свободные грамматики

Определение

Контекстно-свободная грамматика (CFG) — это грамматика $\langle \Sigma, N, P, S \rangle$, где правила переписывания Р имеют вид $A \to \alpha$, $A \in N$, $\alpha \in (\Sigma \cup N)^*$.

- Нетерминалы переписываются независимо друг от друга (можно понимать их как нульместные функции).
- Вывод в грамматике (разбор слова) не линеен.

Контекстно-свободные грамматики

Определение

Контекстно-свободная грамматика (CFG) — это грамматика (Σ, N, P, S) , где правила переписывания P имеют вид $A \to \alpha$, $A \in \mathbb{N}$, $\alpha \in (\Sigma \cup \mathbb{N})^*$.

- Нетерминалы переписываются независимо друг от друга (можно понимать их как нульместные функции).
- Вывод в грамматике (разбор слова) не линеен.

Грамматика G₁

$$S \ \rightarrow \ S\,S$$

$$\begin{array}{ccc} S & \rightarrow & (S) \\ S & \rightarrow & \epsilon \end{array}$$

$$S \rightarrow \varepsilon$$

$$S \rightarrow B \qquad R \rightarrow)$$

$$B \rightarrow (RB R \rightarrow (RR))$$

$$B \rightarrow \epsilon$$

Неоднозначность разбора

Грамматика G₁ для языка Дика

$$S \ \rightarrow \ S \, S$$

$$S \ \rightarrow \ (S)$$

$$S \rightarrow \varepsilon$$

Левосторонний разбор

Шаг левостороннего разбора с.ф. $\alpha_1 A \alpha_2$, где $\alpha_1 \in \Sigma^*$, $A \in \mathbb{N}$, — замена выделенного вхождения A на правую часть $A \to \beta$. Левосторонний разбор S — разбор, каждый шаг которого левосторонний.

Левосторонний разбор

Шаг левостороннего разбора с.ф. $\alpha_1 A \alpha_2$, где $\alpha_1 \in \Sigma^*$, $A \in \mathbb{N}$, — замена выделенного вхождения A на правую часть $A \to \beta$. Левосторонний разбор S — разбор, каждый шаг которого левосторонний.

 \rightarrow (S)

Левосторонний разбор не обязательно единственный, см. ниже.

Левосторонний разбор

Шаг левостороннего разбора с.ф. $\alpha_1 A \alpha_2$, где $\alpha_1 \in \Sigma^*$, $A \in \mathbb{N}$, — замена выделенного вхождения A на правую часть $A \to \beta$. Левосторонний разбор S — разбор, каждый шаг которого левосторонний.

Утверждение

Между деревьями разбора слов $w \in L(G)$ и левосторонними разборами w есть взаимно-однозначное соответствие.

(Не)однозначность грамматик

Грамматика G ₂ для языка Дика					
S	\rightarrow	В	R	\rightarrow)
В	\rightarrow	(RB	R	\rightarrow	(RR
В	\rightarrow	ε			

Грамматика G_2 однозначна — для всех $w \in L(G_2)$ существует единственный левосторонний разбор w. Достаточно заглянуть на 1 символ после разобранной позиции.

Другие проблемы контекстно- свободного разбора слов

- ε -правила (правила вида $A \to \varepsilon$);
- «є-переходы», или цепные правила (правила вида $A \rightarrow B$).

Устранение ε-правил

Устранение ε-правил

- Объявляем Nullable $= \emptyset;$
- $\forall A \in \mathsf{N},$ если $A \to \varepsilon$, тогда Nullable = Nullable $\cup \{A\};$
- Пока Nullable меняется:
 - для всех $A \in \mathbb{N}$, если $A \to B_1 \dots B_n$, $B_i \in \text{Nullable}$ $\Rightarrow \text{Nullable} = \text{Nullable} \cup \{A\}.$
- Итоговое множество Nullable множество всех коллапсирующих нетерминалов.

Устранение ε -правил

- Если $\varepsilon \in L(G)$, тогда добавляем новый стартовый символ S_0 и правила $S_0 \to \varepsilon, S_0 \to S$.
- Стираем все правила $B_i \to \epsilon$, кроме $S_0 \to \epsilon$.
- Для всех правил $A \to \alpha_1 B_i \alpha_2$, где $B_i \in \text{Nullable}$, добавляем правила $A \to \alpha_1 \alpha_2$.

Устранение ε-правил

- Если $\varepsilon \in L(G)$, тогда добавляем новый стартовый символ S_0 и правила $S_0 \to \varepsilon, S_0 \to S$.
- Стираем все правила $B_i \to \varepsilon$, кроме $S_0 \to \varepsilon$.
- Для всех правил $A \to \alpha_1 B_i \alpha_2$, где $B_i \in \text{Nullable}$, добавляем правила $A \to \alpha_1 \alpha_2$. И получаем новые ϵ -правила! Порядок преобразований существенен.

Устранение ε-правил

- Если $\varepsilon \in L(G)$, тогда добавляем новый стартовый символ S_0 и правила $S_0 \to \varepsilon$, $S_0 \to S$.
- Для всех правил $A \to \alpha_1 B_i \alpha_2 \ (|\alpha_1 \alpha_2| \geqslant 1)$, где $B_i \in \text{Nullable}$, добавляем правила $A \to \alpha_1 \alpha_2$.
- Стираем все правила $B_i \to \epsilon$, кроме $S_0 \to \epsilon$.

Уничтожение цепных правил

- Строим транзитивное замыкание $A \to_c^* B$ отношения $A \to_c B : A \to B \in P$.
- $\forall A, B: A \rightarrow_c B$, строим множество правил $A \rightarrow \varphi_i$, для которых $\exists C, \varphi_i(C \rightarrow \varphi_i \in P \& (B \rightarrow_c^* C \lor C = B) \& (|\varphi_i| > 1 \lor \varphi_i = \epsilon \lor (\varphi_i = \alpha \& \alpha \in \Sigma))).$
- Удаляем все правила $A \to B$.

Нормальная форма Хомского

Определение

Грамматика G находится в нормальной форме Хомского (CNF) \Leftrightarrow все её правила имеют вид либо $A \to a$, либо $A \to BC$, либо $S \to \epsilon$, причём S не входит в правую часть никакого правила из G.

Нормальная форма Хомского

Определение

Грамматика G находится в нормальной форме Хомского (CNF) \Leftrightarrow все её правила имеют вид либо $A \to a$, либо $A \to BC$, либо $S \to \varepsilon$, причём S не входит в правую часть никакого правила из G.

- Устраняем ε-правила.
- Устраняем цепные правила.
- $\forall \alpha \in \Sigma$ таких, что α входит в правую часть правила, отличную от α , заводим нетерминал—охранник G_{α} , строим правило $G_{\alpha} \to \alpha$, и во всех правых частях, кроме совпадающих α , заменяем α на G_{α} .
- $\forall A \to B_1 \dots B_n$, n > 2, вводим новый нетерминал B_{1f} и заменяем $A \to B_1 \dots B_n$ на два правила $A \to B_1 B_{1f}$, $B_{1f} \to B_2 \dots B_n$ (рекурсивно).

Смысл нормальной формы Хомского

- Неукорачивающие применения правил
- Нет пустых переходов правила либо финальные, либо удлиняющие
- Контролируемый рост длины сентенциальной формы от количества шагов разбора

Перевод грамматики в CNF позволяет легче анализировать свойства её языка и проводить разбор слов.

Недостижимость и зацикливание

- ullet Стартовый нетерминал $S \in \mathbb{N}$ достижим.
- Нетерминал $A \in N$ достижим, если существует правило $B \to \alpha$ такое, что $|\alpha|_A \geqslant 1$ и B достижим.

15 / 24

Недостижимость и зацикливание

- ullet Стартовый нетерминал $S\in N$ достижим.
- Нетерминал $A \in \mathbb{N}$ достижим, если существует правило $B \to \alpha$ такое, что $|\alpha|_A \geqslant 1$ и B достижим.
- Если существует правило $A \to w, w \in \Sigma^*, A$ порождающий.
- Если $A \to \alpha$ и $\forall B_i(|\alpha|_{B_i} \geqslant 1 \Rightarrow B_i$ порождающий), то A порождающий.
- Удаляем из G все правила, в левых или правых частях которых стоят непорождающие нетерминалы.
- ② Удаляем из G все правила, в левых или правых частях которых стоят недостижимые нетерминалы.

Проверка корректности рекурсивных алгоритмов

 Завершаемость — фундированность — искомое множество М нетерминалов не может уменьшаться, и количество нетерминалов грамматики конечно.

Проверка корректности рекурсивных алгоритмов

- Завершаемость фундированность искомое множество М нетерминалов не может уменьшаться, и количество нетерминалов грамматики конечно.
- Корректность способ доказательства «minimal bad sequence» — пусть существуют элементы $k_i \in M$, которые не находятся рекурсивным алгоритмом. Выберем тот из них, до которого минимальный путь из S (варианты — из которого минимальный путь до Σ^* ; до ε). Покажем, что есть ещё какой-то с путём вывода ещё короче.

Н.Ф. Хомского и префиксные грамматики

При линеаризации правил, поведение КС-грамматики G в Н.Ф. Хомского в точности описывается алфавитной префиксной грамматикой на нетерминалах.

- Переведём АПГ в регулярную грамматику по методу, описанному в предыдущей лекции.
- У этой грамматики есть длина накачки, т.е. всякое достаточно длинное слово имеет вид $w_1(w_2)^n w_3$, причём w_1w_3 также входит в язык сентенциальных форм G.

Поскольку G — КС-грамматика, то $w_1 \longrightarrow \alpha_1, w_3 \longrightarrow \alpha_3$, каждое из $w_2 \longrightarrow \alpha_2$.

Но ещё есть шаг порождения w_2 , также выбрасывающий последовательность терминалов.

Лемма о накачке КС-языков

Лемма о накачке (разрастании)

Пусть G — KC-грамматика в форме Хомского. Тогда существует $p \in \mathbb{N}$ такое, что любое слово $w \in L(G)$ длины не меньше p имеет представление вида $x_1y_1zy_2x_2$, где $|y_1y_2| \geqslant 1, |y_1zy_2| \leqslant p$, и все слова вида $x_1y_1^kzy_2^kx_2$ также принадлежат L(G).

Лемма о накачке КС-языков

Пусть в н.ф. Хомского G п нетерминалов. Возьмём $p=2^n$. Его вывод будет иметь минимум высоту $n+1\Rightarrow$ в нём будет существовать путь, содержащий два одинаковых нетерминала A.

Лемма о накачке КС-языков

Пусть в н.ф. Хомского G п нетерминалов. Возьмём $\mathfrak{p}=2^n$. Его вывод будет иметь минимум высоту $\mathfrak{n}+1\Rightarrow$ в нём будет существовать путь, содержащий два одинаковых нетерминала A.

Выберем самые нижние два одинаковых нетерминала \Rightarrow высота поддерева от первого из них не больше $n+1\Rightarrow$ длина выводимого слова $u_1zu_2\leqslant 2^n$ (т.е. $\leqslant p$).

Пример применения

Парсинг в Python

Проанализировать язык

$$\{a^n z_1 a^n z_2 a^n | n \geqslant 1, |z_i|_a = 0, |z_i| \geqslant 1\}.$$

Пример применения

Парсинг в Python

Проанализировать язык $\{\alpha^n z_1 \alpha^n z_2 \alpha^n | n \geqslant 1, |z_i|_{\alpha} = 0, |z_i| \geqslant 1\}.$

Пусть длина накачки есть p. Рассмотрим слово $a^pba^pba^p$. Заметим, что если $y_1zy_2=a^iba^j$ (где i и j могут быть равны 0), тогда $|y_1y_2|_b=0$. Действительно, иначе нулевая накачка породит слово a^mba^p , которое не принадлежит языку.

Значит, $y_1=a^j, y_2=a^i$. Однако слова $a^{p+i+j}ba^pba^p,$ $a^pba^{p+i+j}ba^p, a^pba^{p+i+j}, a^{p+j}ba^{p+i}ba^p,$ $a^pba^{p+i}ba^{p+i}$ ни одно не принадлежат требуемому языку \Rightarrow он не контекстно-свободен.

Теоретико-игровая интерпретация

Достаточное условие непринадлежности языка L к КС по лемме о накачке: $\forall p \exists w \in L(|w| > p \& \forall x_i, y_i, z(w = x_1y_1zy_2x_2 \& |y_1zy_2|$

В пренексной форме этого условия кванторы образуют последовательность: $\forall\exists\forall\exists$. Эта последовательность задаёт правила игры, где каждый квантор \exists — ход протагониста, квантор \forall — ход антагониста. Ходы антагониста назначают неопределённые параметры. Ходы протагониста дают выбор известной вам структуры, зависящей от ходов антагониста. В случае леммы о накачке это выглядит так.

- Антагонист выбирает длину накачки р.
- Зная р, протагонист выбирает w.
- Антагонист выбирает разбиение w на пять подстрок.
- Возможно, в зависимости от этого разбиения, протагонист предъявляет і, для которого накачка не выполняется.

Теоретико-игровая интерпретация

- Антагонист выбирает длину накачки р.
- Зная р, протагонист выбирает w.
- Антагонист выбирает разбиение w на пять подстрок.
- Возможно, в зависимости от этого разбиения, протагонист предъявляет і, для которого накачка не выполняется.

Иногда такая система анализа свойств, записанных в виде формул с чередующимися кванторами, также называется игрой Элоизы и Абеляра (по буквам, образующим кванторы \exists и \forall).

Пока без доказательства: множество КС-языков замкнуто относительно пересечения с регулярными языками.

Техника применения

Сужение перебора

Если в язык L входят подслова произвольной формы из Σ^+ , где $|\Sigma| > 1$, тогда, скорее всего, потребуется пересечь L с регулярным языком, чтобы облегчить поиск свидетельства о ненакачиваемости. Пример: язык $\{w_1w_1w_2\,|\,|w_1|_\alpha=|w_2|_\alpha\}$. Пересечение этого языка с ba*bba*bba* гораздо легче поддаётся анализу, поскольку такие слова разбиваются на подходящие w_1 и w_2 однозначно.

- Начальная буква b вынуждает w_1 содержать ровно две буквы b. Действительно, если $|w_1|_b=1$, тогда второе вхождение w_1 должно будет начинаться с b^2 , что противоречит выбору w_1 .
- Последняя буква b навязывает позицию начала w_2 .

Техника применения

Работа с отрицанием

Если характеристическая функция L содержит предикат отрицания, связывающий две структуры неопределённого размера, в некоторых случаях это приводит к невозможности применения леммы о накачке. В других можно попробовать воспользоваться приёмом «всё включено». Поскольку мы знаем, что длина накачиваемого фрагмента y_1zy_2 меньше p, то выберем w так, чтобы в нём нашлись всевозможные фрагменты такой длины, удовлетворяющие желательному свойству.

Техника применения

Покажем, что язык $L = \{w \mid w \neq a^{n^2} \& w \in \{a,b\}^*\}$ не является КС. Для начала заметим, что слова L содержат произвольные подслова в $\{a,b\}^*$, и пересечём L c a^* . Получим $L' = \{a^k \mid k \neq n^2\}$ — если он не КС, то исходный язык также не КС.

- Антагонист выбирает р.
- Наша задача подобрать такое k, что $\forall p' \exists i, m(p' . То есть включить возможность взятия любого такого <math>p'$ в наше значение k как конструктивного элемента для построения квадрата числа.
- ullet Возьмём $k=(\mathfrak{p}!)^2+1$. Тогда при любом значении \mathfrak{p}' , меньшем \mathfrak{p} , можно взять $\mathfrak{i}=rac{\mathfrak{p}!}{\mathfrak{p}'}*2$, и получим $k+\mathfrak{p}'*\mathfrak{i}=(\mathfrak{p}!+1)^2$.

Ещё пример применения

Покажем, что язык $L=\{ww^R\alpha^n\,|\,|w|_\alpha=n\}$ не является КС. Опять сначала избавимся от произвольных подслов в L и пересечём его с языком $b\alpha^+b^2\alpha^+b\alpha^+$. Пересечение с таким языком вынуждает w иметь вид $b\alpha^ib$, а весь язык — вид $L'=\{b\alpha^nbb\alpha^nb\alpha^n\}$.

- Абеляр выбирает р. Элоиза строит слово $ba^pb^2a^pba^p$. Абеляру предоставляется возможность построить его разбиение на $x_1y_1zy_2x_2$.
- Если Абеляр выберет $|y_1|_a > 0$ & $|y_1|_b > 0$ (т.е. y_1 содержащим сразу буквы a и b), тогда ненулевая накачка сразу же выведет нас из языка. Аналогично c y_2 .
- Если Абеляр решит накачивать только b (т.е. выберет y₁ либо y₂ равными b или b²), тогда любая накачка также будет выводить из языка.

Ещё пример применения

Покажем, что язык $L = \{ww^R a^n \mid |w|_a = n\}$ не является КС. Опять сначала избавимся от произвольных подслов в L и пересечём его с языком $ba^+b^2a^+ba^+$. Пересечение с таким языком вынуждает w иметь вид ba^ib , а весь язык — вид $L' = \{ba^nbba^nba^n\}$.

- Абеляр выбирает р. Элоиза строит слово $ba^pb^2a^pba^p$. Абеляру предоставляется возможность построить его разбиение на $x_1y_1zy_2x_2$.
- Остаётся только возможность $y_1 = a^i$, $y_2 = a^j$, что позволяет следующие накачки y_1 , y_2 на расстоянии не больше p:
 - $ba^{p+i*k}b^2a^{p+j*k}ba^p$ можно сохранить свойство палиндрома, но нельзя сохранить корректный подсчёт букв a, последний индекс не меняется.
 - $ba^pb^2a^{p+i*k}ba^{p+j*k}$ теряется свойство палиндрома.
 - ba^{p+(i+j)*k}b²a^pba^p теряется свойство палиндрома, при накачке только второго подслова а^p аналогично.
 - $ba^pb^2a^pba^{p+(i+j)*k}$ некорректный подсчёт букв а в w.

Некоторые не КС-языки тоже накачиваются, например, $\{a^mb^nc^nd^n\,|\,m>0\}\cup\{b^ic^jd^k\}.$

Некоторые не КС-языки тоже накачиваются, например, $\{a^mb^nc^nd^n\,|\,m>0\}\cup\{b^ic^jd^k\}.$

Действительно, если слово языка содержит буквы α , тогда мы можем взять $y_1y_2=\alpha^i$. Иначе накачку можно выбрать произвольно.

Некоторые не КС-языки тоже накачиваются, например, $\{a^mb^nc^nd^n\,|\,m>0\}\cup\{b^ic^jd^k\}.$

Действительно, если слово языка содержит буквы α , тогда мы можем взять $y_1y_2=\alpha^i$. Иначе накачку можно выбрать произвольно.

То, что этот язык — не КС, можно понять по тому факту, что его пересечение с регулярным языком $ab^*c^*d^*$ не контекстно-свободно.

Некоторые не КС-языки тоже накачиваются, например, $\{a^mb^nc^nd^n\mid m>0\}\cup\{b^ic^jd^k\}.$

Действительно, если слово языка содержит буквы α , тогда мы можем взять $y_1y_2=\alpha^i$. Иначе накачку можно выбрать произвольно.

То, что этот язык — не КС, можно понять по тому факту, что его пересечение с регулярным языком $ab^*c^*d^*$ не контекстно-свободно.

Иногда пересечение с регулярным языком делает язык «излишне накачиваемым»: например, пересекая $L=\{ww^R\alpha^n\,|\,|w|_\alpha=n\}\,c$ $b\alpha^+b^*\alpha^+b\alpha^+$, мы даём возможность Абеляру выбрать в качестве y_1 пару букв из центрального блока b^* (положив $y_2=\epsilon$). Заметим, что слова без этого блока будут иметь вид $b\alpha^2nb\alpha^n$ — а такие слова тоже можно накачивать, выбрав y_1 из α^{2n} , y_2 — из α^n .