Identifying and Classifying Symptoms within a Patient's Statement

Nicola Sartorato

Universitá di Trento

23 settembre 2019

Il macro-obiettivo

Il macro-obiettivo

Sviluppare un agente conversazionale capace di condurre l'anamnesi sostituendosi al medico.

Il macro-obiettivo

Il macro-obiettivo

Sviluppare un agente conversazionale capace di condurre l'anamnesi sostituendosi al medico.

L'anamnesi

È la raccolta dalla voce diretta del paziente di tutte le informazioni utili al medico per effettuare una diagnosi.

I medici, infatti:

• svolgono il loro lavoro sotto stringenti limitazioni di tempo

I medici, infatti:

- svolgono il loro lavoro sotto stringenti limitazioni di tempo
- sono occupati principalmente da lavori di scrivania (49.2% del loro tempo) e solo il 27% del loro tempo sono a contatto con i pazienti

I medici, infatti:

- svolgono il loro lavoro sotto stringenti limitazioni di tempo
- sono occupati principalmente da lavori di scrivania (49.2% del loro tempo) e solo il 27% del loro tempo sono a contatto con i pazienti
- l'attività per loro più intensa è l'anamnesi, la quale è:
 - fondamentale

I medici, infatti:

- svolgono il loro lavoro sotto stringenti limitazioni di tempo
- sono occupati principalmente da lavori di scrivania (49.2% del loro tempo) e solo il 27% del loro tempo sono a contatto con i pazienti
- l'attività per loro più intensa è l'anamnesi, la quale è:
 - fondamentale
 - 2 ma a volte incompleta

A piccoli passi

Il primo ostacolo

Identificare e **classificare** i sintomi all'interno di una frase detta da un paziente.

A piccoli passi

Il primo ostacolo

Identificare e **classificare** i sintomi all'interno di una frase detta da un paziente.

Identificare un sintomo

Individuare all'interno di una frase ogni gruppo di parole adiacenti che, insieme, vogliono dire un sintomo.

A piccoli passi

Il primo ostacolo

Identificare e **classificare** i sintomi all'interno di una frase detta da un paziente.

Identificare un sintomo

Individuare all'interno di una frase ogni gruppo di parole adiacenti che, insieme, vogliono dire un sintomo.

Classificare un sintomo

Mappare i sintomi precedentemente identificati in sintomi specifici che fanno riferimento ad una classificazione.

Metodi

Metodi: identificare un sintomo

"I started to have dizziness and sore throat 3 days ago."

"I started to have <mark>dizziness</mark> and <mark>sore throat</mark> 3 days ago."

Il **Symptom Identifier** riceve in input la frase del paziente e restituisce i sintomi identificati (i *tokens for predictions*).

Il **Symptom Identifier** è composto da tre componenti:

Il **Symptom Identifier** è composto da tre componenti:

dal Body Part Finder che evidenzia le parti del corpo all'interno della frase

- Il **Symptom Identifier** è composto da tre componenti:
 - dal Body Part Finder che evidenzia le parti del corpo all'interno della frase
 - dal Question Answering System che si occupa di estrarre, usando Machine Reading Comprehension, il problema generico del paziente e quelli delle parti del corpo presenti nella frase. Lo fa sfruttando uno di questi due modelli:

- Il **Symptom Identifier** è composto da tre componenti:
 - dal Body Part Finder che evidenzia le parti del corpo all'interno della frase
 - dal Question Answering System che si occupa di estrarre, usando Machine Reading Comprehension, il problema generico del paziente e quelli delle parti del corpo presenti nella frase. Lo fa sfruttando uno di questi due modelli:
 - BERT (Devlin, 2018)

- Il **Symptom Identifier** è composto da tre componenti:
 - dal Body Part Finder che evidenzia le parti del corpo all'interno della frase
 - dal Question Answering System che si occupa di estrarre, usando Machine Reading Comprehension, il problema generico del paziente e quelli delle parti del corpo presenti nella frase. Lo fa sfruttando uno di questi due modelli:
 - BERT (Devlin, 2018)
 - R-NET (Wang, 2017)

- Il **Symptom Identifier** è composto da tre componenti:
 - dal Body Part Finder che evidenzia le parti del corpo all'interno della frase
 - dal Question Answering System che si occupa di estrarre, usando Machine Reading Comprehension, il problema generico del paziente e quelli delle parti del corpo presenti nella frase. Lo fa sfruttando uno di questi due modelli:
 - BERT (Devlin, 2018)
 - R-NET (Wang, 2017)
 - dall'Answer Interpreter che converte le risposte estratte dal QA System in tokens for predictions; essi saranno input del Symptom Classifier

Woke up with the same neck pain, plus a severe case of dizziness and slight loss of hearing.

Metodi: classificare un sintomo

Il **Symptom Classifier** riceve in input i *tokens for predictions* e restituisce i codici univoci dei sintomi identificati (i CUIs).

La classificazione di sintomi

La classificazione di sintomi utilizzata è MEDCIN:

La classificazione di sintomi

La classificazione di sintomi utilizzata è MEDCIN:

 si trova all'interno dei dizionari supportati da UMLS (Unified Medical Language System), che fornisce un CUI (Concept Unique Identifier) per ogni suo termine

La classificazione di sintomi

La classificazione di sintomi utilizzata è MEDCIN:

- si trova all'interno dei dizionari supportati da UMLS (Unified Medical Language System), che fornisce un CUI (Concept Unique Identifier) per ogni suo termine
- ha un'organizzazione gerarchica (i.e. ad albero)

Il Symptom Classifier è composto da due componenti:

• il **Vectorifier**, che ha il compito di vettorizzare i tokens for predictions in due possibili tipi di embeddings:

- il **Vectorifier**, che ha il compito di vettorizzare i tokens for predictions in due possibili tipi di embeddings:
 - GloVe embeddings (Pennington, 2014)

- il **Vectorifier**, che ha il compito di vettorizzare i tokens for predictions in due possibili tipi di embeddings:
 - GloVe embeddings (Pennington, 2014)
 - BERT embeddings (Devlin, 2018)

- il **Vectorifier**, che ha il compito di vettorizzare i tokens for predictions in due possibili tipi di embeddings:
 - GloVe embeddings (Pennington, 2014)
 - BERT embeddings (Devlin, 2018)
- ② il **Symptom Tree Mapper**, il cui scopo è ritornare, dato un *token for prediction*, il CUI del sintomo predetto. Ogni sintomo appartenente all'albero ha un suo rappresentante (la media dei vettori delle parole nel nome del sintomo).

Il Symptom Classifier è composto da due componenti:

- il **Vectorifier**, che ha il compito di vettorizzare i tokens for predictions in due possibili tipi di embeddings:
 - GloVe embeddings (Pennington, 2014)
 - BERT embeddings (Devlin, 2018)
- ② il Symptom Tree Mapper, il cui scopo è ritornare, dato un token for prediction, il CUI del sintomo predetto. Ogni sintomo appartenente all'albero ha un suo rappresentante (la media dei vettori delle parole nel nome del sintomo).

Criterio di predizione

Viene calcolata la cosine similarity tra ogni token for prediction vettorizzato e il rappresentante di ogni sintomo appartenente all'albero. Il sintomo con maggiore similarità verrà predetto.

II dataset

Al momento, non ci sono dataset utilizzabili per la classificazione di sintomi. Si è rivelato necessario:

- estrarre 336 frasi dai post di un forum medico (doctorslounge.com)
- taggare i sintomi presenti nelle frasi

Risultati

Per valutare il Symptom Identifier i *tokens for predictions* sono stati classificati in:

Per valutare il Symptom Identifier i *tokens for predictions* sono stati classificati in:

correct tokens

Per valutare il Symptom Identifier i *tokens for predictions* sono stati classificati in:

- correct tokens
- 2 redundant tokens

Per valutare il Symptom Identifier i *tokens for predictions* sono stati classificati in:

- correct tokens
- 2 redundant tokens
- non-sense tokens

Risultati: valutare il Symptom Identifier

Per valutare il Symptom Identifier i *tokens for predictions* sono stati classificati in:

- correct tokens
- 2 redundant tokens
- on-sense tokens
- wrong tokens

Risultati: valutare il Symptom Identifier

$$score = \#correct - \#non sense - \#wrong - \#missing$$
 (1)

# of	BERT	R-NET	
correct	423	427	
redundant	275	195	
non sense	122	247	
wrong	8	14	
missing	61	74	
score	232	92	

Tabella: Confronto dello score tra BERT e R-NET come calcolato in (1).

Per valutare il Symptom Classifier le predizioni sono state divise in:

• correct, se la predizione si trova in uno dei sottoalberi di un sintomo presente nella frase; a loro volta divise in:

- correct, se la predizione si trova in uno dei sottoalberi di un sintomo presente nella frase; a loro volta divise in:
 - non-redundant, se il sottoalbero in questione non è stato marcato come già associato

- correct, se la predizione si trova in uno dei sottoalberi di un sintomo presente nella frase; a loro volta divise in:
 - non-redundant, se il sottoalbero in questione non è stato marcato come già associato
 - redundant, se invece è già stato marcato come associato

- correct, se la predizione si trova in uno dei sottoalberi di un sintomo presente nella frase; a loro volta divise in:
 - non-redundant, se il sottoalbero in questione non è stato marcato come già associato
 - redundant, se invece è già stato marcato come associato
- wrong, se la predizione non si trova in nessun sottoalbero

Assieme al Symptom Classifier sono state valutate le seguenti opzioni:

• diversi tipi di embeddings

- diversi tipi di embeddings
- se usare o meno il Body Part Finder

- diversi tipi di embeddings
- se usare o meno il Body Part Finder
- se cercare o meno il sintomo solo nei sottoalberi relativi alle parti del corpo trovate nella frase (l'opzione "pruning")

- diversi tipi di embeddings
- se usare o meno il Body Part Finder
- se cercare o meno il sintomo solo nei sottoalberi relativi alle parti del corpo trovate nella frase (l'opzione "pruning")
- diversi minimum similarity thresholds: il valore minimo di similarità affinché una predizione sia ritenuta valida

embedding type	accuracy	correct predictions	harmonic mean	missed symptoms
GloVe 50	55.5 %	40.1 %	46.5 %	208
GloVe 100	55.2 %	39.1 %	45.8 %	209
GloVe 200	59.1 %	43.7 %	50.2 %	191
GloVe 300	59.3 %	42.2 %	49.3 %	190
BERT emb.	46.7 %	32.9 %	38.6 %	249

Tabella: Confronto tra diversi tipi di embeddings usando indici diversi. La media armonica tra accuracy e correct predictions indica che GloVe 200 e GloVe 300 hanno performance migliori degli altri tipi.

Figura: Confronto della composizione delle predizioni quando il Body Part Finder è attivo (search) e quando non lo è (no search).

	accuracy	correct predictions	missed symptoms
pruning	59.1 %	43.7 %	191
no pruning	43.7 %	36.0 %	263

Tabella: Confronto fra indici quando l'opzione "pruning" è attiva (pruning) e quando non lo è (no pruning). L'introduzione di questa opzione provoca un miglioramento del 15.4% nell'accuracy e del 7.7% nelle predizioni corrette.

Figura: Confronto della composizione delle predizioni usando diversi *minimum similarity thresholds* (0.00, 0.70, 0.80, 0.90, 0.95).

Conclusioni

- I risultati sono complessivamente positivi perché, anche usando una rappresentazione semplificata, il modello raggiunge:
 - il 58.7% di accuracy
 - il 48.0% di predizioni corrette
 - facendo 1.5 medium attempts

Conclusioni

- I risultati sono complessivamente positivi perché, anche usando una rappresentazione semplificata, il modello raggiunge:
 - il 58.7% di accuracy
 - il 48.0% di predizioni corrette
 - facendo 1.5 medium attempts
- Il fatto che i risultati dipendano molto dalle rappresentazioni dei sintomi indica che c'è molto margine di miglioramento.

Conclusioni

- I risultati sono complessivamente positivi perché, anche usando una rappresentazione semplificata, il modello raggiunge:
 - il 58.7% di accuracy
 - il 48.0% di predizioni corrette
 - facendo 1.5 medium attempts
- Il fatto che i risultati dipendano molto dalle rappresentazioni dei sintomi indica che c'è molto margine di miglioramento.
- Il Symptom Classifier è la prima componente da migliorare: infatti, si passa dall'84.8% di *tokens for predictions* corretti al 48.0% di previsioni corrette.

Conclusioni: future work

Questa componente può essere usata come base per una futura che riesca a focalizzare le domande su sintomi correlati a quelli già scoperti:

Conclusioni: future work

Questa componente può essere usata come base per una futura che riesca a focalizzare le domande su sintomi correlati a quelli già scoperti:

 usare cui2vec (Beam, 2018) come rappresentazioni per i sintomi e algoritmi di clustering per esplorare gruppi di sintomi correlati

Grazie per l'attenzione