# Optimizing the Trade-Off between Complexity and Conformance in Process Reduction

Alessandro Marchetto, Chiara Di Francescomarino, Paolo Tonella Fondazione Bruno Kessler – SE unit {marchetto, dfmchiara, tonella}@fbk.eu

#### Outline

- Process recovery for web applications
- Process reduction and (multi-objective) optimization
- Case Study
- Conclusions, Ongoing and Future works

## Process Recovery: the idea

- Web Applications (WAs) are often the preferred way to expose business processes;
- The implemented process is however rarely documented;
- WAs are UI-oriented → The process underlying a WA is guided by the user in her interaction with the WA GUI



→ By capturing the information about the activated buttons, links and forms the application process can be inferred.

## Process Recovery: by example



## Limit and existing solutions

- (1) Under-generalization  $\rightarrow$  consider more traces
- (2) Over-generalization  $\rightarrow$  improve the model recovery algorithm
- (3) Size and complexity of recovered processes



- (1) they reproduce all traced behaviors
- (2) they generalize
- → large, complex and intricate processes

#### **Modularization/Clustering**



#### Frequency-based reduction (FBR)



[CSMR09, JSME10]

#### Process Reduction: by example

Recovered process models are reduced by means of atomic reduction **operations** applied to the process elements.



An atomic reduction operation is the removal of a transition from the process, followed by the removal of

removal of the transition (S,C)



removal of the transition (S, SA)



## Multi-objective optimization

Which elements can be removed?



Reducing recovered processes is a BI-DIMENSIONAL problem

Improving process model comprehensibility (i.e., reducing process model size and complexity)

... without loosing business information

→ Multi-objective Optimization Problem

#### Multi-objective Optimization of the process reduction

Non-dominated Sorting Genetic Algorithm II (NSGA-II)

**Solution Encoding**: a solution is a process in which some edges are kept while other removed. A standard binary encoding (binary vector) is used.

**Initialization**: (a) random; and (b) frequency-based reduction (FBR)

**Genetic Operators**: bit-flip mutation, one-point crossover, and binary tournament for the selection.

**Fitness Functions**: each process is evaluated in terms of process complexity and non-conformance.

#### Process quality: a bi-dimentional problem

#### The process control flow complexity

$$CFC(P) = \sum_{g \in G(P) \land FOUT(g) > 1} FOUT(g)$$

A high value of CFC indicates a high number of alternative execution flows, thus denoting a process difficult to read and understand.

The **process non-conformance** is its inability to reproduce the execution traces

$$NConf(P) = \left| \bigcup_{t \in T} \{(a, b) | (a, b) \in t \land dc(a, b) \notin P \} \right|$$

A high value of NConf indicates that the process is not able to reproduce many transitions in the traces.

#### Case Study: the application

**Softslate Commerce** is a Java-based (>200k LOCs) shopping cart application for managing on-line stores. It implements, e.g., catalogue, cart, order form, payment and checkout management;



#### Research questions

#### *quantitative*

**RQ1**: Does the shape of the Pareto fronts offer a set of solutions which includes a wide range of tunable trade-offs between complexity and conformance?

**RQ2**: Does the genetic algorithm improve the initial solutions (both random and frequency-based reduction)?

#### *qualitative*

**RQ3**: Are the reduced processes in the Pareto front understandable and meaningful for business analysts?

**RQ4**: Do the processes obtained by applying multi-objective optimization offer qualitative improvements over those obtained by applying the frequency-based reduction (FBR)?

#### Procedure

- (1) We **trace some executions** of Softslate Commerce by exercising each application functionality at least once.
- (2) We recover the **unreduced process model**.
- (3) We reduce the unreduced process model by applying **FBR**. A set of solutions is obtained by varying the frequency threshold.
- (4) We reduce the unreduced process model by applying the **multi-objective reduction** (MGA):
  - MGA<sub>R</sub>: random initial population;
  - MGA<sub>F</sub>: FBR-based initial population.

## Quantitative Analysis





| Algo    | Iter    | Time   |
|---------|---------|--------|
|         |         | (min.) |
| $MGA_R$ | 100     | 1.18   |
| $MGA_R$ | 10000   | 39.3   |
| $MGA_R$ | 100000  | 294.2  |
| $MGA_R$ | 1000000 | 2097.9 |
| $MGA_F$ | 0       | < 0.2  |
| $MGA_F$ | 100     | 1.24   |
| $MGA_F$ | 10000   | 12.1   |
| $MGA_F$ | 1000000 | 1077.2 |
| Fbr     | -       | -      |

**RQ1**: MGA produces a Pareto front which includes a wide range of tunable solutions. However, this requires a high enough number of iterations and a carefully initialized starting population (via FBR).

**RQ2**: MGA improves both random and FBR solutions, the latter to a lower degree.

## Qualitative analysis





| (c) | Selected | processes | $_{ m in}$ | the | final | Pareto | fronts |
|-----|----------|-----------|------------|-----|-------|--------|--------|
|-----|----------|-----------|------------|-----|-------|--------|--------|

|   |   | Pr.       | $\operatorname{id}$ | #Act    | #G  | #SF | CFC | NConf |  |  |  |
|---|---|-----------|---------------------|---------|-----|-----|-----|-------|--|--|--|
|   |   | unreduced |                     |         |     |     |     |       |  |  |  |
|   |   |           |                     | 213     | 105 | 581 | 502 | 0     |  |  |  |
|   |   | $MGA_R$   |                     |         |     |     |     |       |  |  |  |
|   |   | p24       | 1                   | 31      | 25  | 104 | 46  | 74    |  |  |  |
|   |   | p25       |                     | 39      | 37  | 125 | 62  | 40    |  |  |  |
|   |   | p66       |                     | 48      | 50  | 168 | 102 | 7     |  |  |  |
|   |   |           |                     | $MGA_F$ |     |     |     |       |  |  |  |
|   |   | p23       |                     | 21      | 8   | 52  | 11  | 148   |  |  |  |
|   |   | p27       |                     | 23      | 15  | 60  | 20  | 97    |  |  |  |
| Į |   | p67       |                     | 36      | 25  | 97  | 43  | 44    |  |  |  |
| ۱ |   | p41       |                     | 46      | 38  | 142 | 77  | 6     |  |  |  |
|   |   |           |                     |         | Ī   | OT  |     |       |  |  |  |
|   |   | n/1       |                     | 10      | 16  | 51  | 99  | 199   |  |  |  |
|   | 1 | p15       |                     | 46      | 44  | 188 | 128 | 6     |  |  |  |

## RQ3: meaningful processes

| Busi | Business activities                                 |  |  |  |  |  |  |  |
|------|-----------------------------------------------------|--|--|--|--|--|--|--|
| a3   | a3.Add To Cart; a7.Clear This Cart; a8. Check-      |  |  |  |  |  |  |  |
| out; | a10.Delete Item; a11.Log In; a12. Create New        |  |  |  |  |  |  |  |
| Acco | ount; a14.Confirm Order; a19.Reorder                |  |  |  |  |  |  |  |
| Busi | iness properties                                    |  |  |  |  |  |  |  |
| pr2  | Remove has to follow Add To Cart, Pick Up or Re-    |  |  |  |  |  |  |  |
|      | order                                               |  |  |  |  |  |  |  |
| pr3  | After Edit it has to be possible to Edit Item or to |  |  |  |  |  |  |  |
|      | Delete Item                                         |  |  |  |  |  |  |  |
| pr5  | Delete Item has to follow Add To Cart, Pick Up or   |  |  |  |  |  |  |  |
|      | Reorder                                             |  |  |  |  |  |  |  |
| pr15 | After Pick Up it has to be possible to choose among |  |  |  |  |  |  |  |
|      | Edit, Remove, Continue Shopping, Save This Cart,    |  |  |  |  |  |  |  |
|      | Clear This Cart and Checkout                        |  |  |  |  |  |  |  |
| pr19 | Confirm Order has to follow Checkout                |  |  |  |  |  |  |  |

|                     |         |     |     |   | E  |     |           |    |       |     |
|---------------------|---------|-----|-----|---|----|-----|-----------|----|-------|-----|
| unreduced           | $MGA_R$ |     |     | F | br |     | $MGA_{I}$ |    |       |     |
|                     | p24     | p25 | p66 | p | 1  | p15 | p23       | p2 | ' p41 | o67 |
| Business Activities |         |     |     |   |    |     |           |    |       |     |
| 19                  | 17      | 18  | 19  | 1 | )  | 19  | 15        | 16 | 19    | 18  |
| Business Properties |         |     |     |   |    |     |           |    |       |     |
| 19                  | 19      | 21  | 25  | 1 | 3  | 24  | 19        | 22 | 25    | 25  |
|                     |         |     |     |   |    |     |           |    |       |     |

19 activities & 28 properties

#### **RQ3**:

- Few missing business activities and properties in the reduced processes.
- Reduction is almost always beneficial thanks to its implicit capability of reducing over-generalization.

**RQ4:** (comparing "similar" processes generated by FBR and MGA<sub>F</sub>)

- MGA is more effective in both the two dimensions.
- MGA offers also a wider range of alternative solutions.

## Conclusions, Ongoing and Future Works

Multi-objective optimization for process model reduction by balancing complexity and conformance.

#### Results of the case study:

- (1) MGA produces a rich, fine grained, evenly distributed set of alternatives;
- (2) though reduced, processes produced by MGA include relevant business activities and properties;

Future works will be devoted to perform further experiments, involving additional case studies.

# Thanks ...

[SSBSE11] Marchetto A., Di Francescomarino C., Tonella P., Optimizing the Trade-Off between Complexity and Conformance in Process Reduction. In proc. of Search Based Software Engineering (2011)

[JSME10] Di Francescomarino, C., Marchetto, A., Tonella, P., Cluster-based Modularization of Processes Recovered from Web Applications. Journal of Software Maintenance and Evolution: Research and Practice (2010)

[CSMR09] Di Francescomarino, C., Marchetto, A., Tonella, P., Reverse Engineering of Business Processes exposed as Web Applications. In proc of European Conference on Software Maintenance and Reegnineering (2009)