

$$\Rightarrow 4 \left[0 - (0 - 1) \right]$$

3) Find the probability that time between calls exceeds the expected time.

$$\rho(\chi > 4) = 1 - \rho(\chi \leqslant 4)$$

$$P(x>4) = 1 - (1 - 1)$$

4) Let $X \sim \text{Exp}(5)$. Find Var(X).

Variance of Euponential distribution =
$$\frac{1}{\lambda^2}$$

Here
$$\lambda = 5$$
,

$$\frac{1}{25}$$
 Vor($\frac{1}{25}$ = 0.04

100

20000

20000

ح>

8) The probability density function of a random variable X is given as

$$f_X(x) = egin{cases} 2(1-x) & 0 < x < 1 \ 0 & ext{otherwise} \end{cases}$$

Find the variance of X. Write your answer correct to two decimal points

	- 1
E[X] = (u.F(n)	$E[\chi^2] = (\chi, f(\eta))$
$2)$ 2 $\left(1 n - n^2 \right)$	$\Rightarrow 2 (1 u^2 - u^3)$
Jo	
$25 2 \left[\chi^2 - \chi^3 \right]$	$2) 2 \left[n^3 - 24 \right]$
2 3	3 4
2) 2 []]	シ 2 - ユ
2 3]0	12 6
3) 2 = \	
6 3	

9) The probability density function of a random variable X is given as

$$f_X(x) = egin{cases} x & 0 < x < 1 \ 2 - x & 1 \leq x < 2 \ 0 & ext{otherwise} \end{cases}$$

Find the expected value of X^2 . Write your answer correct to two decimal places.

When
$$0 < n < 1$$

$$7) \quad E[\chi^2] = \int \chi^2 \cdot \chi^2 \cdot \chi$$

$$25 \quad \left[\frac{\chi^3}{3}\right]^{\frac{1}{3}} = \frac{1}{3}$$

When
$$| \leq n \leq 2$$
 $\Rightarrow E[\chi^2] = \int_{1}^{2} 2n^2 - n^3$
 $\Rightarrow \left[\frac{2n^3}{3} - \frac{n^4}{4}\right]_{1}^{2}$
 $\Rightarrow \left[\frac{16}{3} - \frac{16}{4}\right] - \left(\frac{2}{3} - \frac{1}{4}\right)$
 $\Rightarrow \frac{16}{12} = \frac{5}{12}$
 $\Rightarrow \frac{11}{12}$
 $\Rightarrow E[\chi^2] = \frac{11}{12} + \frac{1}{12}$