Examen¹ la Geometrie I, seria 11, 31.01.2021

Nume și prenume: ROBU VLAD NICOLAE

Grupa: 111

I. Decideți dacă următoarele afirmații sunt adevărate sau false, justificând pe scurt alegerea:

- 1. Punctul $P=(2,\sqrt{2})$ se află în interiorul elipsei de ecuație $\mathcal{E}:\frac{x^2}{9}+\frac{y^2}{5}=1.$ (0,7p)
- 2. Nu există $\alpha \in \mathbb{R}$ astfel încât dreptele din plan d_1 de direcție (3,4) și d_2 de direcție $(1,\alpha)$ sunt ortogonale. (0,7p)
- 3. Dacă A = (1, -1), B = (3, 4) și C = (-4, 1), atunci triunghiul ABC este dreptunghic. (0,7p)
- **4.** Dacă în spațiul real \mathbb{R}^3 avem $d: \frac{x-1}{2} = \frac{y+2}{7} = \frac{z}{1}$ și $\pi = \{(1+t-s, 2t+s, -1+s) \mid t, s \in \mathbb{R}\}$, atunci $d \parallel \pi$. (0,7p)
- 5. Dacă $f: \mathbb{R}^2 \to \mathbb{R}^2, f \neq id_{\mathbb{R}^2}$, este o izometrie şi $f \circ f = id_{\mathbb{R}^2}$, atunci f este o simetrie (centrală sau axială). (0,7p)

II. Redactaţi rezolvările complete²:

- **1.** În planul \mathbb{R}^2 , fie dreapta d: x+3y-2=0 și funcția $f: \mathbb{R}^2 \to \mathbb{R}^2, f(x,y)=(\frac{3}{5}x+\frac{4}{5}y-1,\frac{4}{5}x-\frac{3}{5}y+2)$.
- a) Arătați că f este o simetrie axială și determinați axa de simetrie. (0,75p)
- b) Aflați ecuația dreptei d' = f(d) și calculați $\cos \angle (d, d')$. (0,75p)
- c) Găsiți ecuația unei conice nedegenerate care este tangentă la d și d'. (0,5p)
- 2. În \mathbb{R}^2 , fie conica

$$\Gamma: 5x^2 + 5y^2 + 2xy + 2x - 2y - 3 = 0$$

- a) Aflați natura conicei Γ. Precizați dacă este nedegenerată și dacă are centru unic. (0,5p)
- b) Aduceți Γ la o formă canonică și precizați reperul ortonormat pozitiv orientat în care are această formă. (1p)
- 3. În planul euclidian \mathbb{R}^2 , fie cercurile neconcentrice

$$C_1: f_1(x,y) = x^2 + y^2 + a_1x + b_1y + c_1 = 0,$$

 $C_2: f_2(x,y) = x^2 + y^2 + a_2x + b_2y + c_2 = 0$

și d axa lor radicală.

Considerăm mulțimea de conice

$$\mathcal{F} = \{ \Gamma_{\alpha_1, \alpha_2} : \alpha_1 f_1 + \alpha_2 f_2 = 0 \mid \alpha_1, \alpha_2 \in \mathbb{R}, \ \alpha_1^2 + \alpha_2^2 > 0 \}.$$

a) Demonstrați că $d \in \mathcal{F}$ și este singura dreaptă din \mathcal{F} .

 $(0,25p) \ (0,75p)$

- b) Demonstrați că cercurile din \mathcal{F} , diferite de \mathcal{C}_1 , au axa radicală cu \mathcal{C}_1 dreapta d.
- c) Demonstrați că dacă $C_1 \cap C_2 = \{A, B\}$, atunci cercurile din \mathcal{F} sunt exact cercurile ce trec prin punctele A și B. (0,25p)
- d) Demonstrați că dacă $C_1 \cap C_2 = \emptyset$, atunci cercurile din \mathcal{F} sunt disjuncte două câte două. (0,25p)
- 4. Considerăm \mathbb{R}^2 planul euclidian.
- a) Fie $\Gamma \subset \mathbb{R}^2$ o conică. Demonstrați că dacă $A, B, C, D \in \Gamma$ sunt vârfurile unui paralelogram cu centru O, atunci O este și centru al conicei Γ .
- b) Demonstrați că singura conică în care nu poate fi înscris un paralelogram (eventual degenerat) este parabola. (0,5p)

 $^{^1}$ Se acordă 1 punct din oficiu. Nota pe lucrare este minimul dintre suma punctajelor și 10. Timp de lucru: 3 ore. Succes!

²Puteți presupune un subpunct adevărat în subpunctele următoare, chiar dacă nu ați reușit să îl demonstrați.