

WYPEŁNIA ZDAJĄCY Miejsce na naklejkę. Sprawdź, czy kod na naklejce to M-100. Jeżeli tak – przyklej naklejkę. Jeżeli nie – zgłoś to nauczycielowi.

Egzamin maturalny

Formula 2023

INFORMATYKA Poziom rozszerzony WYPEŁNIA ZDAJĄCY WYBRANE: (system operacyjny) (program użytkowy) (środowisko programistyczne)

DATA: 14 czerwca 2024 r.

GODZINA ROZPOCZĘCIA: 9:00

CZAS TRWANIA: 210 minut

LICZBA PUNKTÓW DO UZYSKANIA: 50

Przed rozpoczęciem pracy z arkuszem egzaminacyjnym

- Sprawdź, czy nauczyciel przekazał Ci właściwy arkusz egzaminacyjny, tj. arkusz we właściwej formule, z właściwego przedmiotu na właściwym poziomie.
- 2. Jeżeli przekazano Ci **niewłaściwy** arkusz natychmiast zgłoś to nauczycielowi. Nie rozrywaj banderol.
- 3. Jeżeli przekazano Ci **właściwy** arkusz rozerwij banderole po otrzymaniu takiego polecenia od nauczyciela. Zapoznaj się z instrukcją na stronie 2.

Instrukcja dla zdającego

- Sprawdź, czy arkusz egzaminacyjny zawiera 18 stron (zadania 1–8) i czy dołączony jest do niego nośnik danych – podpisany DANE. Ewentualny brak zgłoś przewodniczącemu zespołu nadzorującego egzamin.
- 2. Na pierwszej stronie oraz na karcie odpowiedzi wpisz swój numer PESEL i przyklej naklejkę z kodem.
- 3. Wpisz zadeklarowane (wybrane) przez Ciebie na egzamin: system operacyjny, program użytkowy oraz środowisko programistyczne.
- 4. Symbol zamieszczony w nagłówku zadania zwraca uwagę na to, że zadanie nie wymaga użycia komputera i odpowiedź do zadania należy zapisać tylko w miejscu na to przeznaczonym w arkuszu egzaminacyjnym.
- 5. Jeśli rozwiązaniem zadania lub jego części jest program komputerowy, to umieść w katalogu (folderze) oznaczonym Twoim numerem PESEL wszystkie utworzone przez siebie pliki w wersji źródłowej.
- 6. Jeśli rozwiązaniem zadania lub jego części jest baza danych utworzona z wykorzystaniem MySQL (MariaDB), to umieść w katalogu (folderze) oznaczonym Twoim numerem PESEL treści zapytań w języku SQL oraz (przed zakończeniem egzaminu) wyeksportowaną całą bazę w formacie *.sql.
- 7. Pliki oddawane do oceny nazwij dokładnie tak, jak polecono w treści zadań, lub zapisz je pod nazwami (wraz z rozszerzeniem zgodnym z zadeklarowanym oprogramowaniem), jakie podajesz w arkuszu egzaminacyjnym. Pliki o innych nazwach nie będą sprawdzane przez egzaminatora. Pamiętaj, że zadania praktyczne niezawierające komputerowej realizacji rozwiązań zostaną ocenione na 0 punktów.
- 8. **Przed upływem czasu przeznaczonego na egzamin** zapisz w katalogu (folderze) oznaczonym Twoim numerem PESEL ostateczną wersję plików stanowiących rozwiazania zadań.
- 9. Pisz czytelnie. Używaj długopisu/pióra tylko z czarnym tuszem/atramentem.
- 10. Nie używaj korektora, a błędne zapisy wyraźnie przekreśl.
- 11. Pamiętaj, że zapisy w brudnopisie nie będą oceniane.

Zadania egzaminacyjne są wydrukowane na następnych stronach.

Zadanie 1. Prostokątna liczba binarna

Rozważmy tablicę o w wierszach i k kolumnach oraz dodatnią liczbę całkowitą n, której zapis w postaci binarnej ma co najwyżej $w \cdot k$ cyfr. Tę liczbę zapisujemy w systemie binarnym i wpisujemy otrzymane cyfry w kolejnych komórkach tablicy, począwszy od lewego górnego rogu.

Cyfry zapisu binarnego najpierw wprowadzamy do pierwszego wiersza, następnie – do drugiego, potem – do trzeciego wiersza itd. Jeśli w pewnej komórce zakończymy wprowadzanie ostatniej cyfry zapisu binarnego, to od następnej komórki zaczynamy wprowadzać ponownie cyfry zapisu binarnego tej samej liczby, zaczynając od pierwszej cyfry. Szukamy cyfry znajdującej się w prawym dolnym rogu tablicy.

Przykład. 1.

Weźmy w = 5, k = 3, n = 19.

Przedstawiamy liczbę n = 19 w zapisie binarnym: 10011. Wprowadzamy cyfry zapisu binarnego liczby n do tablicy 5 x 3. Zaczynamy od lewego górnego rogu i wpisujemy kolejne cyfry, aż osiągniemy koniec tablicy.

1	0	0
1	1	1
0	0	1
1	1	0
0	1	1

Cyfrą w prawym dolnym rogu jest 1.

Zadanie 1.1. (0-1)

Wprowadź cyfry zapisu binarnego liczby n = 179 do tablicy o wymiarach w = 4 i k = 5 według powyższej metody.

Miejsce na obliczenia (brudnopis)

Zadanie 1.2. (0-4)

Dana jest dodatnia liczba całkowita n. Cyfry zapisu binarnego liczby n wprowadzono w sposób przedstawiony na początku zadania do tablicy o wymiarach $w \times k$. W pseudokodzie lub języku programowania zapisz algorytm, który wyznaczy cyfrę zapisu binarnego liczby n znajdującą się w prawym dolnym rogu tabeli o wymiarach $w \times k$.

Uwaga: W zapisie algorytmu możesz wykorzystać tylko operacje arytmetyczne (dodawanie, odejmowanie, mnożenie, dzielenie, dzielenie całkowite, reszta z dzielenia), porównywanie liczb, odwoływanie się do pojedynczego elementu tablicy za pomocą jego indeksu, instrukcje sterujące, przypisania do zmiennych lub samodzielnie napisane funkcje, wykorzystujące powyższe operacje. **Zabronione** jest używanie funkcji wbudowanych oraz operatorów innych niż wymienione.

Specyfikacja

Dane:

w – dodatnia liczba całkowita, liczba wierszy tablicy

k – dodatnia liczba całkowita, liczba kolumn tablicy

dodatnia liczba całkowita

Wynik:

x – cyfra w zapisie binarnym liczby n, która stoi w dolnym prawym rogu tablicy

Algorytm:

Zadanie 2. Funkcja rekurencyjna

Dana jest funkcja F(x), której argumentem jest nieujemna liczba całkowita x

F(*x*):

Uwaga:

div oznacza dzielenie całkowite

Zadanie 2.1. (0-2)

Uzupełnij poniższą tabelę. Dla podanych wartości x wpisz wyniki działania funkcji F oraz podaj łączną liczbę wywołań funkcji F po wywołaniu F(x), łącznie z tym wywołaniem.

х	wynik	liczba wywołań
3	4	3
16		
35		

Miejsce na obliczenia (brudnopis)

Zadanie 2.2. (0-2)

Podaj najmniejszą i największą wartość parametru *x*, dla którego wartość funkcji jest równa 18.

najmniejsza największa

Miejsce na obliczenia (brudnopis)

Zadanie 3. Słowa

W pliku slowa.txt danych jest 1000 słów (napisów) złożonych z małych liter alfabetu angielskiego. Słowa mają długość mieszczącą się w przedziale od 1 do 200 znaków.

Napisz **program**(-my), dający(-e) odpowiedzi do poniższych zadań. Uzyskane odpowiedzi zapisz w pliku wyniki3.txt, a każdą z nich poprzedź numerem odpowiedniego zadania.

Do Twojej dyspozycji jest plik slowa_przyklad.txt, który zawiera 10 słów w podanym formacie. Odpowiedzi dla tego pliku są podane w treści zadań. Pamiętaj, że Twój program musi ostatecznie działać dla pliku slowa.txt, zawierającego 1000 słów.

Zadanie 3.1. (0-3)

Podaj, w ilu spośród podanych słów znajduje się trójliterowy fragment "k?t", gdzie ? oznacza dowolną pojedynczą literę (taki fragment występuje na przykład w słowach "alamakota", albo "brokat", ale nie – w słowie "krata".)

Dla pliku slowa_przyklad.txt odpowiedzią jest 2

Zadanie 3.2. (0-3)

Alfabet angielski zawiera 26 liter. Kodowanie ROT13 zamienia każdą literę na literę, która jest na pozycji o 13 miejsc dalej w alfabecie (a \rightarrow n, b \rightarrow o itd.), przy czym po przekroczeniu "z" liczymy z powrotem od "a" (czyli m \rightarrow z, ale n \rightarrow a, o \rightarrow b, i tak dalej).

Słowo **aren** ma ciekawą własność – po zakodowaniu za pomocą ROT13 staje się słowem **nera**, czyli tym samym słowem czytanym od tyłu.

Podaj, ile w pliku slowa. txt jest słów, które mają tę własność. Wypisz ich liczbę oraz najdłuższe z nich.

Dla pliku slowa_przyklad.txt odpowiedzią jest

2
aren
(w pliku slowa przyklad.txt są 2 słowa o tej własności: aren i bo)

Zadanie 3.3. (0-3)

Znajdź i wypisz z pliku slowa.txt wszystkie takie słowa, w których ta sama litera występuje na co najmniej połowie pozycji (przykładowo: w słowie "owocowo" litera "o" ma 4 wystąpienia na ogólną liczbę 7 liter w słowie i spełnia podany warunek, za to w słowie "ambaras" litera "a" ma tylko 3 wystąpienia na 7 liter, więc nie spełnia podanego warunku).

W pliku slowa_przyklad.txt są 4 takie słowa: terefere ananas bo alabama

Do oceny oddajesz:

- plik wyniki3.txt zawierający odpowiedzi do zadań 3.1.–3.3.
 (odpowiedź do każdego zadania powinna być poprzedzona jego numerem)
- plik(-i) zawierający(-e) kod(-y) źródłowy(-e) Twojego(-ich) programu(-ów) o nazwie(-ach) (uwaga: brak tego(-ych) pliku(-ów) jest równoznaczny z brakiem rozwiązania zadania):

zadanie 3.1.	 	 	
zadanie 3.2.	 	 	
zadanie 3.3			

Zadanie 4. Komputery i pakiety

W pewnej sieci jest *n* > 1 komputerów. Komputery przesyłają między sobą pakiety informacji. Rozsyłanie odbywa się w rundach. W rundzie zerowej każdy komputer ma swój jeden pakiet oznaczony numerem tego komputera. Każdy komputer ma z góry zadany numer **odbiorcy**, czyli komputera, do którego w kolejnych rundach wysyła pakiety. Na początku każdej rundy każdy komputer wysyła wszystkie pakiety, które miał w rundzie poprzedniej. Pakiety przychodzące do komputera w trakcie rundy są przechowywane w tym komputerze do początku następnej rundy.

Przykład 1.

Poniżej zapisano numery odbiorców dla n = 6 komputerów o numerach odpowiadających numerom wierszy (od 1 do 6):

4

5

3

1

2

Odbiorcą dla komputera pierwszego jest komputer 4, odbiorcą dla komputera drugiego jest komputer 3 itd.

Zatem w pierwszej rundzie:

- komputer pierwszy przesyła swój pakiet (nr 1) do komputera czwartego (pakiet nr 1 po pierwszej rundzie znajdzie się w komputerze czwartym)
- komputer drugi wysyła swój pakiet (nr 2) do komputera trzeciego (pakiet nr 2 po pierwszej rundzie znajdzie w komputerze trzecim)

itd.

W drugiej rundzie pakiet numer 1, który był w komputerze nr 4, zostanie przez niego wysłany do komputera nr 3 (który jest odbiorcą dla komputera nr 4) itd.

W poniższej tabeli dla każdego numeru pakietu przedstawiono miejsce, w którym ten pakiet znajdzie się na koniec kolejnych rund (do rundy 6) dla danych z przykładu 1.

Nr pakietu Nr rundy	1	2	3	4	5	6
1. runda	4	3	5	3	1	2
2. runda	3	5	1	5	4	3
3. runda	5	1	4	1	3	5
4. runda	1	4	3	4	5	1
5. runda	4	3	5	3	1	4
6. runda	3	5	1	5	4	3

Zadanie 4.1. (0-2)

Uzupełnij tabelę – dla poniższych danych (n = 6) wpisz numery komputerów, w których znajdą się pakiety o numerach od 1 do 6, po każdej z rund: 2, 3 i 4:

3

1

6

5 4

5

Nr pakietu Nr rundy	1	2	3	4	5	6
1. runda	3	1	6	5	4	5
2. runda						
3. runda						
4. runda						

Informacja do zadań 4.2.–4.4.

W kolejnych wierszach pliku odbiorcy. txt zapisano numery odbiorców dla n = 1024 komputerów. W wierszu pierwszym pliku zapisano numer odbiorcy pakietów od komputera pierwszego, w wierszu drugim – numer odbiorcy pakietów od komputera drugiego itd.

Napisz **program**(-my), dający(-e) odpowiedzi do poniższych zadań. Uzyskane odpowiedzi zapisz w pliku wyniki4.txt, a każdą z nich poprzedź numerem odpowiedniego zadania.

Do Twojej dyspozycji jest plik odbiorcy_przyklad. txt składający się z 16 wierszy, z których każdy zawiera jedną liczbę. Wiersz o numerze *i* = 1, 2, ..., 16 zawiera odbiorcę pakietów dla komputera o numerze *i*. Odpowiedzi dla tego pliku są podane w treści zadań.

Zadanie 4.2. (0-2)

Dla danych zapisanych w pliku odbiorcy. txt podaj liczbę komputerów, które nie są odbiorcami żadnych pakietów.

W przykładzie 1. jest jeden taki komputer – komputer 6 nie jest odbiorcą żadnego pakietu.

 $Dla\ pliku\ odbiorcy_przyklad.txt\ odpowiedzią\ jest$ 3

(komputery 1, 6 i 10 nie są odbiorcami pakietów).

Zadanie 4.3. (0-3)

W kolejnych rundach może się zdarzyć, że pakiet wróci do komputera, z którego został początkowo wysłany (komputera o numerze takim, jaki ma ten pakiet).

W przykładzie 1. w rundzie czwartej pakiety o numerach 1, 3, 4 i 5 wrócą do komputerów, w których znajdowały się przed rozpoczęciem rozsyłania.

Wyznacz najmniejszy numer rundy, w której którykolwiek pakiet powróci do komputera, z którego startował (o tym samym numerze co numer tego pakietu). Podaj najmniejszy numer takiego pakietu dla wyznaczonego numeru rundy.

Dla przykładu 1. odpowiedzią jest: 4 1 (runda 4, numer pakietu 1).

Dla danych z pliku odbiorcy_przyklad.txt odpowiedzią jest: 37

(runda 3, numer pakietu 7).

Zadanie 4.4. (0-3)

Podaj największe liczby pakietów, które trafiają do jednego komputera – odpowiednio – po każdej z rund: 1, 2, 4 i 8.

Jako odpowiedź podaj liczby tych pakietów zapisane w jednym wierszu, rozdzielone znakiem odstępu.

Dla pliku odbiorcy_przyklad.txt prawidłowa odpowiedź to 2234.

Do oceny oddajesz:

- plik wyniki4.txt zawierający odpowiedzi do zadań 4.2.–4.4.
 (odpowiedź do każdego zadania powinna być poprzedzona jego numerem)
- plik(-i) zawierający(-e) kod(-y) źródłowy(-e) Twojego(-ich) programu(-ów) o nazwie(-ach) (uwaga: brak tego(-ych) pliku(-ów) jest równoznaczny z brakiem rozwiązania zadania):

zadanie 4.2.	 	 	
zadanie 4.3.	 	 	
zadanie 4.4.	 	 	

Zadanie 5. (0-1)

Oceń prawdziwość podanych zdań. Zaznacz \mathbf{P} , jeśli zdanie jest prawdziwe, albo \mathbf{F} – jeśli jest fałszywe.

1.	Ochrona praw autorskich przysługuje twórcy niezależnie od spełnienia jakichkolwiek formalności.	Р	F
2.	Programy komputerowe nie są dziełami chronionymi prawami autorskimi.	Р	F

Zadanie 6. (0-2)

Wykonaj działania na liczbach zapisanych w systemach pozycyjnych o podstawach 5 i 6. Wynik dodawania liczb w systemie o podstawie 5 zapisz w tym systemie, wynik odejmowania liczb zapisanych w systemie o podstawie 6 zapisz w systemie o podstawie 6.

Miejsce na obliczenia (brudnopis)

Zadanie 7. Uzdrowisko

Pewne uzdrowisko słynie z leczniczego źródła wody.

W pliku uzdrowisko.txt zapisano przyjazdy i wyjazdy kuracjuszy do tego uzdrowiska w okresie od stycznia do grudnia 2023 roku (wszystkie dane są fikcyjne i wygenerowane na potrzeby zadania).

W każdym wierszu pliku uzdrowisko. txt zapisano następujące dane:

- datę z zakresu od 1 stycznia 2023 do 31 grudnia 2023 w formacie rrrr-mm-dd (data)
- liczbę kuracjuszy, którzy przyjechali w podanym dniu do uzdrowiska (przyjechali)
- liczbę kuracjuszy, którzy w podanym dniu opuścili uzdrowisko (wyjechali).

Dane w wierszach są rozdzielone znakiem tabulacji.

Fragment pliku uzdrowisko.txt:

data	przyjechali	wyjechali
2023-01-01	528	484
2023-01-02	641	625
2023-01-03	352	603
2023-01-04	342	412

Z wykorzystaniem powyższych danych oraz dostępnych narzędzi informatycznych wykonaj poniższe zadania. Odpowiedzi zapisz w pliku tekstowym wyniki7.txt, a każdą z nich poprzedź numerem odpowiedniego zadania.

Zadanie 7.1. (0-3)

Utwórz zestawienie łącznej liczby kuracjuszy, którzy <u>przyjechali</u> do uzdrowiska w każdym miesiącu 2023 roku.

Dla otrzymanego zestawienia sporządź wykres kolumnowy ilustrujący wyniki. Pamiętaj o prawidłowym i czytelnym opisie wykresu (wstaw tytuł i opisy osi).

Zadanie 7.2. (0-2)

Zakładamy, że w dniu 31.12.2022 w uzdrowisku przebywało 10 000 kuracjuszy. Podaj, w jakim dniu po raz pierwszy liczba kuracjuszy (po przyjeździe nowych i wyjeździe wszystkich opuszczających uzdrowisko w danym dniu) przekroczyła 11 000, oraz podaj datę, kiedy liczba kuracjuszy (po przyjeździe nowych i wyjeździe wszystkich opuszczających uzdrowisko w danym dniu) była najwieksza.

Zadanie 7.3. (0-4)

Źródło ma wydajność 3900 litra/dobę. Każdy z kuracjuszy pije dziennie 0,4 litra wody ze źródła. Jeżeli wydajność źródła jest większa niż łączne potrzeby kuracjuszy danego dnia, to pozostałą ilość wody uzdrowisko butelkuje w szklanych butelkach o pojemności 5 litrów (butelki zawsze wypełnia się do pełna, a pozostała woda jest zużywana do innych celów). W przypadku, gdy wydajność dobowa źródła jest zbyt mała, aby zaspokoić potrzeby wszystkich kuracjuszy obecnych w uzdrowisku, pracownicy uzdrowiska brakującą wodę podają z butelek. Przy tym każda otwarta butelka zawsze jest zużywana do końca i w pierwszej kolejności na potrzeby kuracjuszy, tj. jeśli zostanie jakaś część wody w ostatniej użytej butelce, to zostanie wykorzystana do innych celów (nie liczymy jej w następnym dniu).

Uwaga: zakładamy, że:

- w dniu 31.12.2022 w uzdrowisku przebywało 10 000 kuracjuszy
- w dniu 31.12.2022 wieczorem w magazynie uzdrowiska znajdowało się 120 sztuk 5-litrowych butelek wody.
- kuracjusze otrzymują wodę w dniu przyjazdu, a w dniu odjazdu tej wody nie otrzymują
- a) Podaj datę, kiedy po raz pierwszy zabrakło zarówno wody ze źródła, jak i wody butelkowanej, aby zaspokoić potrzeby wszystkich kuracjuszy przebywających w danym dniu w uzdrowisku.
- b) Podaj łączną liczbę dni, w których zabrakło wody dla wszystkich kuracjuszy.
- **c)** Podaj najmniejszą liczbę butelek wody, jaka powinna znajdować się w dniu 31.12.2022 w magazynie uzdrowiska, aby wody nie zabrakło przez cały rok.

Do oceny oddajesz:

- plik tekstowy wyniki7.txt, zawierający odpowiedzi do poszczególnych zadań (odpowiedź do każdego zadania powinna być poprzedzona jego numerem)
- plik(i) zawierający(e) komputerową realizację Twoich obliczeń o nazwie(-ach)
 (uwaga: brak tego(-ych) pliku(-ów) jest równoznaczny z brakiem rozwiązania zadania):

Zadanie 8. Szczepienia

W pewnym centrum medycznym odbywają się szczepienia. Lekarz przepisuje pacjentowi odpowiednią szczepionkę, a każda szczepionka ma rekomendowaną liczbę dawek. Pacjent zostaje uznany za zaszczepionego, jeśli przyjmie wszystkie dawki rekomendowane dla danej szczepionki.

Dane dotyczące szczepień od 2 stycznia 2023 do 7 maja 2024 są zapisane w dwóch plikach: szczepionki.txt oraz wizyty.txt. Pierwszy wiersz w każdym pliku jest wierszem nagłówkowym i zawiera nazwy odpowiednich pól. Dane w wierszach rozdzielone są znakiem tabulacji.

Plik o nazwie szczepionki.txt zawiera informacje o szczepionkach. W każdym wierszu znajduje się:

kod_szczepionki – tekst do 10 znaków, określający jednoznacznie szczepionkę
liczba_dawek – liczba rekomendowanych dawek, liczba całkowita większa od 0
i mniejsza od 10

Przykład:

kod_szczepionki liczba_dawek

sz1_3d 3 sz2_1d 1

Plik o nazwie wizyty. txt zawiera informacje o podanej pacjentowi dawce szczepionki. W każdym wierszu znajduje się:

pesel – numer PESEL pacjenta przyjmującego daną dawkę szczepienia,

składający się z 11 znaków

kod szczepionki - kod podanej szczepionki

data szczepienia - data szczepienia w formacie rrrr-mm-dd

numer dawki - liczba całkowita mniejsza od 10 określająca, która dawka

szczepionki została podana.

Przykład:

 Pesel
 kod_szczepionki data_szczepienia
 numer_dawki

 79051863861
 sz16_1d
 2023-01-02
 1

 84100517145
 sz13 5d
 2023-01-02
 1

Z wykorzystaniem danych zawartych w podanych plikach oraz dostępnych narzędzi informatycznych podaj odpowiedzi do zadań 8.1.–8.3. Odpowiedzi zapisz w pliku wyniki8.txt, a każdą z nich poprzedź numerem odpowiedniego zadania.

Zadanie 8.1. (0-2)

Dla każdej szczepionki podaj, ile łącznie jej dawek zostało podanych pacjentom. Jako wynik podaj listę zawierającą kod szczepionki i liczbę dawek. Lista powinna być posortowana nierosnąco według liczby dawek.

Zadanie 8.2. (0-3)

Podaj, ilu różnych pacjentów przyjęło przynajmniej jedną dawkę szczepionki o kodzie sz12_3d. Podaj, ile wśród nich było kobiet (płeć określa przedostatnia cyfra numeru PESEL, cyfra parzysta oznacza płeć żeńską).

Zadanie 8.3. (0-3)

Podaj rok i miesiąc, w którym najwięcej osób ukończyło szczepienie (czyli: w tym miesiącu przyjęło ostatnią rekomendowaną dawkę danego szczepienia). Podaj także liczbę osób, które ukończyły szczepienie w tym terminie.

Do oceny oddajesz:

- plik tekstowy wyniki8.txt zawierający odpowiedzi do poszczególnych zadań (odpowiedź do każdego zadania powinna być poprzedzona jego numerem)
- plik(i) zawierający(-e) komputerową realizację Twoich obliczeń o nazwie(-ach) (uwaga: brak tego(-ych) pliku(-ów) jest równoznaczny z brakiem rozwiązania zadania):

Zadanie 8.4. (0-2)

Informacje o szczepieniach rozszerzono o dodatkowe dane:

- do tabeli WIZYTY dodano pole kod_punktu określające punkt szczepień, w którym odbyło się szczepienie
- dodano tabele PACJENCI i PUNKT_SZCZEPIEN
- w tabeli PACJENCI podano numer PESEL pacjenta (pesel) i województwo (województwo_pacjenta), w którym pacjent mieszka
- w tabeli PUNKT_SZCZEPIEN podano kod punktu (*kod_punktu*) szczepienia i województwo (*województwo punktu*), w którym znajduje się punkt szczepień.

Relacje między tabelami pokazuje poniższy schemat:

Zapisz **w języku SQL** zapytanie, w którym podasz numery PESEL pacjentów, którzy przyjęli co najmniej jedną dawkę szczepienia w województwie innym niż to, w którym mieszkają. Twoja odpowiedź będzie poprawna, także jeżeli PESEL pacjenta będzie wypisany więcej niż jeden raz.

Miejsce na zapis zapytania

BRUDNOPIS (nie podlega ocenie)

INFORMATYKA Poziom rozszerzony

Formula 2023

INFORMATYKA Poziom rozszerzony

Formula 2023

INFORMATYKA Poziom rozszerzony

Formula 2023

