Оглавление

1	Комплексные числа	2
	1.1 Тригонометрическая форма комплексного числа (продолжение)	2
_	Полиномы 2.1 \$1. Кольцо многочленов	5

Глава 1

Комплексные числа

1.1 Тригонометрическая форма комплексного числа (продолжение)

Утверждение.

$$n \in \mathbb{Z}$$
$$z = r(\cos \varphi + i \sin \varphi) \implies z^n = r^n(\cos(n\varphi) + i \sin(n\varphi))$$

Доказательство.

 \bullet n=0

$$z^0 = 1$$
 $r_0(\cos(0 \cdot \varphi) + i\sin(0 \cdot \varphi)) = 1$

• *n* > 0

$$z^{n} = \underbrace{r(\cos\varphi + i\sin\varphi) \cdot r(\cos\varphi + i\sin\varphi)\dots}_{n \text{ pas}} = \underbrace{r \cdot r \cdot \dots \cdot r}_{n \text{ pas}}(\cos(\varphi + \varphi + \dots) + i\sin(\varphi + \varphi + \dots)) = r^{n}(\cos(n\varphi) + i\sin(n\varphi))$$

• n < 0Положим $k = -n, \ k > 0$

$$z^{n} = \frac{1}{z^{k}} = \frac{1}{r^{k}(\cos(n\varphi) + i\sin(n\varphi))} = \frac{1}{r^{k}}(\cos(-k\varphi) + i\sin(-k\varphi)) = r^{n}(\cos(n\varphi) + i\sin(n\varphi))$$

Пример. Найти $(-\sqrt{3}+i)^{10}$

$$z = -\sqrt{3} + i$$

$$r = \sqrt{(-\sqrt{3})^2 + 1^2} = 2$$

$$\cos \varphi = -\frac{\sqrt{3}}{2} \quad \sin \varphi = \frac{1}{2} \quad \varphi = \frac{5\pi}{6}$$

$$z = 2(\cos \frac{5\pi}{6} + i \sin \frac{5\pi}{6})$$

$$z^{10} = 2^{10}(\cos(\frac{5\pi}{6} \cdot 10 + i \sin(\frac{5\pi}{6} c \dot{10}))) = 1024(\cos \frac{\pi}{3} + i \sin \frac{\pi}{3}) = 512 + 512\sqrt{3}i$$

Теорема 1 (Извлечение корня в тригонометрической форме). Пусть $a \in \mathbb{C}, \ a \neq 0, \ n \in \mathbb{N}$. Тогда уравнение $z^n = a$ имеет n решений.

Если $a = r(\cos \varphi + i \sin \varphi)$, то решениями уравнения являются числа:

$$z_k = r^{\frac{1}{n}} (\cos \frac{\varphi + 2\pi k}{n} + i \sin \frac{\varphi + 2\pi k}{n}), \quad k = 0, 1, ..., n - 1$$

Доказательство. Ищем решение в виде $z=
ho(\cos\psi+i\sin\psi)$. Возведём z в n степень:

$$\rho^{n}(\cos(n\psi) + i\sin(n\psi)) = r(\cos\varphi + i\sin\varphi)$$

$$\begin{cases} \rho^n = r \\ n\psi = \varphi + 2\pi k, \ k \in \mathbb{Z} \end{cases} \implies \begin{cases} \rho = r^{\frac{1}{n}} \\ \psi = \frac{\varphi + 2\pi k}{n}, \ k \in \mathbb{Z} \end{cases}$$

Проверим, что при k=0,1,..,n-1 корни различны, и любой корень совпадает с одним из них:

Положим $z_k = r^{\frac{1}{n}} (\cos \frac{\varphi + 2\pi k}{n} + i \sin \frac{\varphi + 2\pi k}{n})$

$$z_k = z_l \implies \arg z_k = \arg z_l \iff \frac{\phi + 2\pi k}{n} = \frac{\phi + 2\pi l}{n} + 2\pi m \iff \\ \iff \phi + 2\pi k = \phi + 2\pi l + 2\pi m \cdot n \iff k = l + mn \iff k \equiv l$$

Пример.

$$z^{3} = 8i$$

$$r = 8 \quad \phi = \frac{\pi}{2}$$

$$z_{k} = \sqrt[3]{8} \left(\cos \frac{\frac{\pi}{2} + 2\pi k}{3} + i \sin \frac{\frac{\pi}{2} + 2\pi k}{3}\right), \quad k = 0, 1, 2$$

•
$$k = 0$$

$$z_0 = 2 \cdot (\cos \frac{\pi}{6} + i \sin \frac{\pi}{6}) = \sqrt{3} + i$$

•
$$k = 1$$

$$z_1 = 2(\cos \frac{5\pi}{6} + i \sin \frac{5\pi}{6}) = -\sqrt{3} + i$$

•
$$k = 2$$

$$z_2 = 2(\cos\frac{3\pi}{2} + i\sin\frac{3\pi}{2}) = -2i$$

Определение 1. Число $\varepsilon \in \mathbb{C}$ называется корнемм n-й степени из единицы, если $\varepsilon^n = 1$

Обозначение.

$$\varepsilon_k = \cos\frac{2\pi k}{n} + i\sin\frac{2\pi k}{n}$$

Пример. n=4

$$\varepsilon_0 = 1$$

$$\varepsilon_1 = i$$

$$\varepsilon_2 = -1$$

$$\varepsilon_3 = -\epsilon$$

Свойства.

1. Корни *n*-й степени из единицы образуют группу по умножению

Доказательство.

- (а) Ассоциативность всегда верно в С
- (b) Нейтральный элемент: 1 корень n-й степени из 1
- (с) Обратный элемент:

$$(\frac{1}{x})^n = \frac{1^n}{x^n} = \frac{1}{1} = 1$$

(d) Замкнутость относительно операции:

$$(xy)^n = x^n y^n = 1 \cdot 1 = 1$$

2. Пусть $a\in\mathbb{C},\ a\neq 0,\ x$ – корень n-й степени из a. Тогда $\varepsilon_0x,\varepsilon_1x,...,\varepsilon_nx$ – все корни n

Доказательство. Докажем, что, если $y = \varepsilon_i x$, то y – корень n-й степени из 1:

$$y^n = \varepsilon_i^n x^n = 1 \cdot a$$

Докажем, что, если y – корень n-й степени из 1, то $y=\varepsilon_i x$, т. е. $\frac{y}{x}$ – корень n-й степени из 1:

$$(\frac{y}{x})^n = \frac{y^n}{x^n} = \frac{a}{a} = 1$$

Определение 2. Число $\varepsilon \in \mathbb{C}$ называется перовобразным корнем n-й степени из 1, если $\varepsilon^n =$ $1, \ \varepsilon^k \neq 1$ при $1 \leq k < n$. Также называется корнем, принадлежащим показателю n

Пример. n = 4 1, i, -1, -i

i,-i – первообразные (принадлежат показателю 4)

- -1 первообразный корень степени 2
- 1 первообразный корень степени 1

Свойства.

1. ε_k – первообразный корень n-й степени из $1\iff (k,n)=1$

Доказательство. Пусть $km = nq + r, \quad 0 \le r \le n$

$$\varepsilon_k = \left(\cos\frac{2\pi k}{n} + i\sin\frac{2\pi k}{n}\right)^m = \cos\frac{2\pi km}{n} + i\sin\frac{2\pi km}{n} = \cos\frac{2\pi r}{n} + i\sin\frac{2\pi r}{n}$$

- Пусть (k,n)=1. Если $\varepsilon_k^m=1$, то $mk \ : n \implies m \ : n \implies m \ge n$ Пусть $(k,n)=d \ne 1 \implies \frac{n}{d} \cdot k \ : n \implies \varepsilon_k^{\frac{n}{d}}=1 \implies \varepsilon_k$ не первообр.

2. Пусть ε_k – первообразный корень. Тогда любой корень n-й степени из 1 равен ε_k^m для некоторого m

Доказательство. $\varepsilon_k, \varepsilon_k^2, ..., \varepsilon_k^n$ – корни n-й степени из 1. Докажем, что они различны: Пусть $\varepsilon_k^m = \varepsilon_m^l, \quad 1 \leq m < l \leq n \implies \varepsilon_k^{l-m} = 1, \quad 1 \leq l-m < n$

Глава 2

Полиномы

2.1 §1. Кольцо многочленов

Будем рассматривать многочлены как бесконечные последовательность коээфициентов (начиная с какого-то момента – нули)

Определение 3. Пусть A – кольцо. Многочленом над A будем называть последовательность $(a_1, a_2, ...)$, в которой только конечное количество членов отлично от нуля.

Определение 4. Суммой многочленов $(a_0, a_1, ...)$ и $(b_0, b_1, ...)$ называется многочлен $(c_0, c_1, ...)$, где $c_k = a_k + b_k \ \forall k$

Определение 5. Произведением многочленов $(a_0,a_1,...)$ и $(b_0,b_1,...)$ называется многочлен $(d_0,d_1,...)$, где $d_k=a_0b_k+a_1b_{k-1}+...+a_kb_0$, то есть $d_k=\sum_{i+j=k}a_ib_j$

Обозначение. Множество многочленов над A обозначается A[x]

Теорема 2.

- 1. Сумма и произведение многочленов определены корректно, т. е. в последовательностях $(c_0, c_1, ...)$ и $(d_0, d_1, ...)$ только конечное колическто членов отлично от нуля
- $2. \ A[x]$ кольцо

Доказательство.

- 1. Пусть $N,M: \left\{ egin{aligned} a_i = 0 & \text{при } i > N \\ b_i = 0 & \text{при } i > M \end{aligned}
 ight\} \implies c_i = 0 & \text{при } i > \max \left\{ \left. N, M \right. \right\}$
- 2. Докажем, что $d_k = 0$ при k > M + N:

$$d_k = a_0 b_k + \dots + a_k b_0 = \sum_{i+j=k} a_i b_j$$

$$i+j=k \implies i+j>M+N \implies \begin{bmatrix} i>N \\ j>M \end{bmatrix} \implies \begin{bmatrix} a_i=0 \\ b_j=0 \end{bmatrix} \implies a_ib_j=0$$