Rec'd PCT/PTO

08 OCT 2004 02.05.03

日本国特許庁

JAPAN PATENT OFFICE

別紙添付の書類に記載されている事項は下記の出願書類に記載されている事項と同一であることを証明する。

This is to certify that the annexed is a true copy of the following application as filed with this Office

出願年月日

Date of Application:

2003年 4月 2日

REC'D 2 7 JUN 2003

WIPO

PCT

出願番号 Application Number:

特願2003-099710

[ST.10/C]:

[JP2003-099710]

出 願 人 Applicant(s):

三洋化成工業株式会社トヨタ自動車株式会社

PRIORITY DOCUMENT
SUBMITTED OR TRANSMITTED IN
COMPLIANCE WITH
RULE 17.1(a) OR (b)

2003年 6月 6日

特許庁長官 Commissioner, Japan Patent Office 人们信一部

特2003-09971

【書類名】

特許願

【整理番号】

P5910

【あて先】

特許庁長官

【国際特許分類】

C08L 75/04

【発明者】

【住所又は居所】※京都帯東山区一橋野本町11番地の1号 芝洋化成工業株

式会社内

【氏名】

藤林 慎也

【発明者】

【住所又は居所】

愛知県豊田市トヨタ町1番地 トヨタ自動車株式会社内

【氏名】

竹内 誉人

【発明者】

【住所又は居所】

愛知県豊田市トヨタ町1番地 トヨタ自動車株式会社内

【氏名】

野村 真人

【特許出願人】

【識別番号】 000002288

【氏名又は名称】

三洋化成工業株式会社

【特許出願人】

【識別番号】

000003207

【氏名又は名称】

トヨタ自動車株式会社

【代理人】

【識別番号】

100104813

【弁理士】

【氏名又は名称】

古谷 信也

【先の出願に基づく優先権主張】

【出願番号】

特願2002-108467

【出願日】

平成14年 4月10日

【手数料の表示】

【予納台帳番号】 159618

特2003-099710

【納付金額】 21,000円

【提出物件の目録】

【物件名】 明細書 1

【物件名】 図面 1

【物件名】 要約書 1

【プルーフの要否】 要

【書類名】

明細書

【発明の名称】

ポリウレタン樹脂系スラッシュ成形用材料

【特許請求の範囲】

【請求項1】 熱可塑性ポリウレタン樹脂(A)からなり、該(A)の熱機械分析針入方式による軟化開始温度と軟化終了温度の差が0~30℃であり、かつ軟化開始温度が135~200℃であることを特徴とするスラッシュ成形用材料。

【請求項2】 前記(A)が、対称構造を有するジイソシアネート(a1) と、対称構造を有する低分子ジアミン(a2)、及び/又は、低分子ジオール(a3)とから構成される数平均分子量が200~2000のハードセグメント(A1)と、数平均分子量が500~5000の高分子ジオール(a4)からなるソフトセグメント(A2)とを有するポリウレタン樹脂であり、(A)中のハードセグメントの含有量が5~50重量%であり、(A)中の芳香環含量が35重量%以下であり、芳香環含量とウレア基含量とが以下の関係式(i)を満たす請求項1記載の成形用材料。

$$-0.1x+2.5 \le y \le -0.1x+6$$
 (i)

[式中、xは(A)中の芳香環含量(重量%)、yは(A)中のウレア基含量(重量%)を表す。]

【請求項3】 前記(A)中の芳香環含量xが5~25重量%であり、芳香環含量とウレア基含量yとが以下の関係式(i')を満たす請求項2記載の成形用材料。

$$-0.1x+3 \le y \le -0.1x+5$$
 (i')

【請求項4】 前記(A1)が、対称構造を有するジイソシアネート(a1)と、対称構造を有する低分子ジアミン(a2)及び/又は対称構造を有する低分子ジオール(a3')とから構成される数平均分子量が200~200のハードセグメントである請求項2又は3記載の成形用材料。

【請求項 5 】 前記(a 2)が、炭素数 $2 \sim 1$ 8 の直鎖アルキレンジアミン、ビス(2 - 7ミノエチル)カーボネート、4, 4, 4, -ジシクロヘキシルメタンジアミン、シクロヘキサンー 1, 4 - 3 アミン、2 - 4 アーキシリレンジアミン、2 - 4 の直鎖アルキシンジアミン、2 - 4 の

α, α', α'ーテトラメチルキシリレンジアミン及び4, 4'ージアミノージフェニルメタンからなる群より選ばれる少なくとも1種である請求項2~4のいずれか記載の成形用材料。

【請求項7】 前記(a2)の残基が、前記(a1)の残基と同一の構造を 有する請求項2~6のいずれか記載の成形用材料。

【請求項8】 前記(a3)が下記一般式(1)、(2)、(3)のいずれかで示されるジオールである請求項 $4 \sim 7$ のいずれか記載の成形用材料。

 $HO(CH_2) m - (Q^1) p - (CH_2) mOH$ (1)

 $H (OCH_2CH_2) nO-Q^2-O (CH_2CH_2O) nH$ (2)

 $H (OCH_2CH_2CH_2CH_2) kO-Q^2-O (CH_2CH_2CH_2CH_2)$ O) kH (3)

[式(1)中、 Q^1 はメチレン基、1, 4-シクロヘキシレン基または1, 4-フェニレン基を表し、pは0または1、mは0または $1\sim 6$ の整数である(ただし、pが0の場合又は Q^1 が1, 4-フェニレン基の場合はmは $1\sim 6$ である。)。式(2)及び式(3)中、 Q^2 はビスフェノール類の残基又は1, 4-フェニレン基を示す。nは $1\sim 3$ の整数を表す。式(3)中、kは1または2である。ただし Q^2 がビスフェノール類の残基の場合、kは1である。]

【請求項9】 熱可塑性ポリウレタン樹脂(A)及び可塑剤(B)からなり、100~500μmの体積平均粒径を有し、かつ粒径が75μm以下の粒子の含量が20重量%以下の粉体である請求項1~8のいずれか記載の成形用材料。

【請求項10】 前記(B)が下記一般式(4)で示されるリン酸エステル

【化1】

[式中、Rはハロゲンで置換されていてもよい炭素数1~10の1価の炭化水素基であり、複数個のRは同一でも異なっていてもよい。R'はハロゲンで置換されていてもよい炭素数2~15の2価の有機基を表し、qは1~6の整数を表す。]

【請求項11】 一般式(4)におけるRがフェニル基、アルキルフェニル基、又はハロゲン置換フェニル基であり、R'が下記一般式(5)で示される基である請求項10記載の成形用材料。

$$-Ph' - (A-Ph')p-$$
 (5)

[式中、Ph'は1,4-フェニレン基、pは0又は1、Aは直接結合、メチレン基、イソプロピリデン基又はSOを表す。]

【請求項12】 前記(B)がポリアルキレングリコールの芳香族モノカルボン酸ジエステルである請求項9記載の成形用材料。

【請求項13】 更に添加剤(C)を含有してなる請求項1~12のいずれか記載の成形用材料。

【請求項14】 請求項1~13のいずれか記載のスラッシュ成形用材料を加熱成形してなるスラッシュ成形体。

【請求項15】 請求項1~14のいずれか記載のスラッシュ成形用材料を加熱成形してなる自動車内装用スラッシュ成形表皮。

【請求項16】 請求項15記載のスラッシュ成形表皮からなる自動車内装材。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】

[0002]

【従来の技術】

従来、芯地との接着性、耐水洗濯性、及び耐ドライクリーニング性を改良する ために、熱機械分析針入方式による軟化開始温度と軟化終了温度の差、及び軟化 開始温度を特定の範囲にした熱可塑性ポリウレタン樹脂からなるホットメルト接 着剤が提案されており、これをスラッシュ成形用材料にも用いられる旨述べられ ている。(例えば特許文献1参照)

[0003]

しかし、スラッシュ成形用材料、特に自動車内装に好適に適用できる材料としては耐熱性、外観に優れた成形体が得られること、耐摩耗性に優れていること等の条件を満たすことが望ましく、ポリウレタン系材料に着目した場合、これら特性を満足するスラッシュ成形用材料は未だ知られていない。

[0004]

【特許文献1】

特許第2984921号公報

[0005]

【発明が解決しようとする課題】

本発明は、スラッシュ成形時の溶融性を改良し、かつ、耐熱性に優れたスラッシュ成形用材料を提供することを目的とする。

[0006]

【課題を解決するための手段】

本発明者らは、前記課題を解決すべく鋭意検討した結果、本発明に到達した。 すなわち本発明は、熱可塑性ポリウレタン樹脂(A)からなり、該(A)の熱 機械分析針入方式による軟化開始温度と軟化終了温度(以下それぞれSTi及び STeと略記)の差(以下△STと略記)が0~30℃であり、かつSTiが1 35~200℃であるスラッシュ成形用材料;該成形用材料を加熱成形してなる 成形体;該成形用材料を加熱成形してなる自動車内装用スラッシュ成形表皮;該

[0007]

【発明の実施の形態】

本発明における熱可塑性ポリウレタン樹脂(A)は、STi(測定条件:昇温速度5 \mathbb{C}/\mathcal{O} 、荷重5g、針直径0.5mm)が、 $135\sim200\mathbb{C}$ 、好ましくは $145\sim180\mathbb{C}$ 、さらに好ましくは $150\sim170\mathbb{C}$ である \mathbb{R}^{-1} 35 \mathbb{C} 未満では表皮の耐熱性が悪化し、 $200\mathbb{C}$ を超えると成形温度における熱溶融性が悪くなる。

また熱機械分析針入方式による Δ S T は、 $0 \sim 30 \, \mathbb{C}$ 、好ましくは $2 \sim 27 \, \mathbb{C}$ 、さらに好ましくは $3 \sim 25 \, \mathbb{C}$ である。 $30 \, \mathbb{C}$ を超えると溶融性及び耐熱性の両立ができない。このような小さい Δ S T の樹脂はシャープメルト性を有する。

[0008]

上記熱機械分析針入方式は、例えば、斎藤安俊著「物質科学のための熱分析の基礎」 [1990年共立出版発行] 350頁や日本熱測定学会編「新熱分析の基礎と応用」 [(株)リアライズ社発行] 68頁に記載された方法であり、また、特開平10-259369号公報に記載された方法である。

[0009]

本発明における熱可塑性ポリウレタン樹脂(A)としては特に限定されず、例えば、以下のようなポリウレタン樹脂を挙げることができる。即ち、対称構造を有するジイソシアネート(a1)と、対称構造を有する低分子ジアミン(a2)、及び/又は、低分子ジオール(a3)とから構成される数平均分子量が200~200のハードセグメント(A1)と、数平均分子量が500~500の高分子ジオール(a4)からなるソフトセグメント(A2)とを有するポリウレタン樹脂であり、該ポリウレタン樹脂中のハードセグメントの含有量が5~50重量%であり、該ポリウレタン樹脂中の方香環含量が35重量%以下であり、芳香環含量とウレア基含量とが以下の関係式(i)を満たすポリウレタン樹脂が好ましい。

$$-0.1x+2.5 \le y \le -0.1x+6$$
 (i)

式中、xはポリウレタン樹脂中の芳香環含量(重量%)、yはポリウレタン樹

[0010]

本明細書中、対称構造を有するとは、化合物の平面化学構造式が線対称構造を有することを意味する。以下、ハードセグメント(A1)を構成する上記対称構造を有するジイソシアネート(a1)、対称構造を有する低分子ジアミン(a2)、低分子ジオール(a3)について説明する。

[0011]

1. ジイソシアネート (a 1)

ジイソシアネート(a1)としては、例えば、炭素数(NCO基中の炭素を除く。以下同様)2~18の脂肪族ジイソシアネート、例えば1,2ーエチレンジイソシアネート、1,4ーテトラメチレンジイソシアネート、1,6ーヘキサメチレンジイソシアネート(以下HDIと略記する。)、1,8ーオクタメチレンジイソシアネート、1,12ードデカメチレンジイソシアネート等;炭素数4~15の脂環式ジイソシアネート、例えば4,4'ージシクロヘキシルメタンジイソシアネート(以下水添MDIと略記する。)、シクロヘキサンー1,4ージイソシアネート等;炭素数8~15の芳香脂肪族ジイソシアネート、例えばpーキシリレンジイソシアネート、α,α,α',α'ーテトラメチルキシリレンジイソシアネート、α,α,α',α'ーテトラメチルキシリレンジイソシアネート等;及び炭素数3~17のカーボネート系ジイソシアネート、例えばビス(2ーイソシアナトエチル)カーボネート系ジイソシアネート、例えばビス(2ーイソシアナトエチル)カーボネート等;及びこれらのジイソシアネートの対称構造を有する変性物(ウレタン基、カルボジイミド基、ウレア基、ウレトジオン基、オキサゾリドン基含有対称構造の変性物等);ならびにこれらの2種以上の混合物等を挙げることができる。

[0012]

これらのうち好ましいものは、1, 2-xチレンジイソシアネート、1, 4-テトラメチレンジイソシアネート、1, 6-ヘキサメチレンジイソシアネート、1, 12-ドデカメチレンジイソシアネート、ビス(2-イソシアナトエチル)カーボネート、4, 4, 4, -ジシクロヘキシルメタンジイソシアネート、シクロヘキサン-1, 4-ジイソシアネート、2, 2

[0013]

非対称構造のジイソシアネート(a1')(例えば、イソホロンジイソシアネート、トリメチルヘキサメチレンジイソシアネート等)を上記(a1)と併用することもできる。(a1')の使用量は溶融性の観点からモル比で(a1')/(a1)が0.25以下が好ましい。

[0014]

2. ジアミン (a2)

[0015]

上記(a 1)と上記(a 2)の組み合わせとしては、(a 2)の残基(アミノ基を除いた)が、(a 1)の残基(イソシアネート基を除いた)と同一構造を有するのが好ましい。例えば、HDIとHDA;ビス(2-4ソシアナトエチル)カーボネートとビス(2-7ミノエチル)カーボネート;水添MDIと水添MDA;シクロヘキサンー1,4-ジアミン; α -キシリレンジイソシアネートとシクロヘキサンー1,4-ジアミン; α -キシリレンジイソシアネートと α -ネートと α -ネーテトラメチルキシリレンジイソシアネートと α -ネートと α -ネーテトラメチルキシリレンジアミン;4,4'ージフェニルメタンジイソシアネートと α -ネートと α -ネージアミノージフェニルメタン等の組み合わせである。

[0017]

非対称構造のジアミン(a2') (例えば、イソホロンジアミン、トリメチル ヘキサメチレンジアミン等)を上記(a2)と併用することもできる。(a2')の使用量は溶融性の観点からモル比で(a2')/(a2)が0.25以下が 好ましい。

[0018]

上記(a2)はケチミンの形で使用してもよい。ケチミンとしては、例えば、ジアミンと炭素数3~6のケトン類[アセトン、メチルエチルケトン(以下ME Kと略記)、メチルイソブチルケトン等]とを反応させてなるケチミンが挙げられる。

[0019]

3. 低分子ジオール (a3)

低分子ジオール(a3)としては、例えば、500未満の数平均分子量を有するジオールが挙げられる。

上記低分子ジオールの具体例としては、例えば、炭素数 2~18の脂肪族ジオール類 [直鎖ジオール (エチレングリコール、ジエチレングリコール、1,3ープロパンジオール、1,4ーブタンジオール (1,4ーBG)、1,5ーペンタンジオール、1,6ーヘキサンジオール等)、分岐鎖を有するジオール (プロピレングリコール、ネオペンチルグリコール、3ーメチルー1,5ーペンタンジオ

ール(以下、MPDと略記する。)、2,2ージエチルー1,3ープロパンジオール、1,2ー、1,3ーもしくは2,3ーブタンジオール等)等];炭素数3~18の環状基を有するジオール類[例えば、特公昭45-1474号公報記載のもの;炭素数3~30の脂肪族環状基含有ジオール(1,4ービス(ヒドロキシメチル)シクロヘキサン、水添ビスフェノールA等);炭素数6~15の芳香族環状基含有ジオール((mー、及びpー)キシリレングリコール);ピロカテコール、レゾルシノール、ハイドロキノン、ビスフェノールA、ビスフェノールS、ビスフェノールF及びジヒドロキシナフタレンからなる群より選ばれる少なくとも1種のもののAO付加物(付加モル数2~6);上記ジオールのAO付加物(付加モル数1~6)]及びこれらの2種以上の混合物が挙げられる。

[0020]

上記AOとしては、例えば、エチレンオキサイド(EO)、プロピレンオキサイド(PO)、1, 2-、1, 3-、1, 4及び2, 3-ブチレンオキサイド、スチレンオキサイド、炭素数 $5\sim1$ 0またはそれ以上の $\alpha-$ オレフンオキサイド、エピクロルヒドリン及びこれらの2種以上の混合物(ブロックまたはランダム付加)が挙げられる。

[0021]

上記低分子ジオール(a3)のうちで、例えば、500未満の数平均分子量を有する対称構造のジオール(a3')、例えば下記一般式(1)、(2)及び(3)で示されるもの[以下、各(a3'1)、(a3'2)、(a3'3)とする。]、上記(a3'1)のエチレンオキサイド(以下EOと略記)またはテトラヒドロフラン(以下THFと略記)付加物(a3'4)、及び側鎖を有するグリコール(a3'5)等;ならびにこれらの2種以上を併用したものが好ましい。これらのうち、(a3'1)、(a3'2)、(a3'3)がさらに好ましい

式 (1) 中、 Q^1 はメチレン基、1, 4-シクロヘキシレン基または1, 4-フェニレン基を表し、pは0または1、mは0または $1\sim 6$ の整数である(ただし、pが0の場合又は Q^1 が1, 4-フェニレン基の場合はmは $1\sim 6$ である。)。式 (2) 及び (3) 中、 Q^2 はビスフェノール類の残基又は1, 4-フェニレン基を示す。nは $1\sim 3$ の整数を表す。式 (3) 中、kは1または2である。ただし、 Q^2 がビスフ全ノール類の残基の場合、kは1である意

ビスフェノール類としては、下記一般式(6)で示される基が挙げられる。 【0022】

【化2】

[0023]

式中、Zは直接結合、炭素数 $1\sim 6$ のアルキレン基、炭素数 $2\sim 6$ のアルキリデン基、シクロアルキリデン基、アリールアルキリデン基、O、SO、SO $_2$ 、CO、S、CF $_2$ 、C (CF $_3$) $_2$ Z は N H e 示す。

[0024]

上記(a3'1)としては、例えば、炭素数2~18の直鎖アルキレンジオール、例えばエチレングリコール、1,4ーブタンジオール(以下BGと略記する)、1,6ーヘキサンジオール(以下HGと略記)、1,8ーオクタンジオール、1,12ードデカンジオール;炭素数4~15の脂環式ジオール、例えば1,4ーピス(ヒドロキシメチル)シクロヘキサン、1,4ーシクロヘキサンジオール;炭素数8~15の芳香脂肪族ジオール、例えばpーキシリレングリコール等が挙げられる。

[0025]

上記(a 3 $^{\prime}$ 2)としては、例えば、ハイドロキノンのEO($2\sim6$ モル)付加物、ビスフェノールAのEO($2\sim6$ モル)付加物、ビスフェノールFのEO($2\sim6$ モル)付加物及びビスフェノールSのEO($2\sim6$ モル)付加物等が挙げられる。

上記(a 3'3)としては、例えば、ハイドロキノンのTHF($2\sim4$ モル)付加物、ビスフェノールAのTHF($2\sim4$ モル)付加物、ビスフェノールFのTHF($2\sim4$ モル)付加物及びビスフェノールSのTHF($2\sim4$ モル)付加物等が挙げられる。

上記(a3'4)としては、例えば、ジエチレングリコール、トリエチレング リコール等が挙げられる。

上記(a3'5)としては、例えば、ネオペンチルグリコール等が挙げられる・

[0028]

上記(a3')として好ましいものは、エチレングリコール、1,4ーブタンジオール、1,6-ヘキサンジオール、1,4-ビス(ヒドロキシメチル)シクロヘキサン及び1,4-シクロヘキサンジオールであり、特に好ましいものは1,4-ブタンジオール、1,6-ヘキサンジオール及び1,4-ビス(ヒドロキシメチル)シクロヘキサンである。

[0029]

上記(a 2)と上記(a 3)は、それぞれ単独で用いることもできるが、(a 2)と(a 3)を併用するのが好ましく、そのモル比は(a 2)/(a 3) = 0 . $5\sim10$ 、とくに $1\sim5$ が好ましい。

[0030]

本発明において、上記(a 1)、上記(a 2)及び/または上記(a 3)から構成されるハードセグメント(A 1)の数平均分子量(以下Mnと略記)は、好ましくは200~2000、さらに好ましくは300~1000である。シャープメルト性の観点から200以上が好ましく、STiの観点から2000以下が好ましい。ハードセグメント(A 1)のMnは、下記計算式(i i)から求めることができる。

[(a1)の重量+(a2)の重量+(a3)の重量]/

[(a1)のモル数-(a2)のモル数-(a3)のモル数] (ii)

また上記(A)中のハードセグメント(A1) [(a1)+(a2)+(a3))の合計]の含有量は、表皮の耐熱性の観点から5重量%以上が好ましく、STiの観点から50重量%以下が好ましい。さらに好ましくは8~40重量%、特に好ましくは10~30重量%である。

[0032]/; - 4.

4. 高分子ジオール (a 4)

以下、ソフトセグメント(A 2)を構成する高分子ジオール(a 4)を説明する。高分子ジオール(a 4)は、好ましくは500~5,000、より好ましくは700~3,000のMnを有し、好ましくは重量平均分子量(以下Mwと略記)/Mnの比が1.0~3.0、特に好ましくは1.0~2.0の比を有する。Mnは、風合いとSTiの観点から500以上が好ましく、シャープメルト性の観点から500以下が好ましい。(a 4)のMw及びMnは、溶媒としてテトラヒドロフランを用いるゲルパーミエーションクロマトグラフィー(以下GPCと略記)法で測定される。

[0033]

上記(a4)としては、例えば、ポリエーテルジオール、ポリエステルジオール、ポリシロキサングリコール、ポリブタジエングリコール、アクリルジオール、ポリマージオール(高分子量のジオール中でビニル単量体を重合してなるジオール)及びこれら2種以上の混合物等が挙げられる。これらのうち好ましくは、ポリエーテルジオール及びポリエステルジオールである。以下説明する。

[0034]

ポリエーテルジオール

ポリエーテルジオールとしては、例えば、2個の活性水素原子を有する化合物(2価アルコール、2価フェノール、1級モノアミン等)にアルキレンオキサイド(以下AOと略記)が付加した構造の化合物及びそれらの混合物等が挙げられる。

[0035]

上記2個アルコールとしては、例えば、エチレングリコール、ジエチレングリ

コール、プロピレングリコール、1,3-及び1,4-ブタンジオール、1,6
ーヘキサンジオール、ネオペンチルグリコール等のアルキレングリコール、環状基を有するジオール(例えば、特公昭45-1474号公報に記載のもの)等が挙げられる。また、2価フェノールとしてはピロガロール、ハイドロキノン、フロログルシン等の単環多価フェノール;ビスフェノールA、ビスフェノールS、ビスフェノールF等のビスフェノール類等が挙げられる。を一記 a

上記2個の活性水素原子を有する化合物として好ましいものは2個アルコール 、特に1,4-ブタンジオールである。

[0036]

AOとしては、例えば、炭素数2~8のAO及び置換AO、例えばEO、プロピレンオキサイド(以下POと略記)、1,2-、1,3-、及び2,3-ブチレンオキサイド、THF、スチレンオキサイド及びこれらの2種以上の併用(ブロックまたはランダム付加)等が挙げられる。これらのうち好ましいものはPO単独及びEOとPOの併用である。

[0037.]

ポリエステルジオール

ポリエステルジオールとしては、例えば、①縮合ポリエステルジオール、②ポリラクトンジオール、③ポリカーボネートジオール、及びこれらの2種以上の併用が挙げられる。

上記①は例えばジオール(低分子ジオール及び/又はポリエーテルジオール等)の1種以上とジカルボン酸もしくはそのエステル形成性誘導体 [低級アルキル (炭素数1~4) エステル、酸無水物、ハライド (クロライド等) 等] との縮合重合、又は、ジオールとジカルボン酸無水物及びAOとの反応により製造することができる。

上記②は上記ジオールの1種以上を開始剤としてラクトンを開環重合して得られる。

上記③は上記ジオールとアルキレンカーボネート (エチレンカーボネート) との反応により製造することができる。

[0038]

上記①、②及び③のための原料ジオールのうち低分子ジオールとしては、例えば、脂肪族低分子ジオール類(エチレングリコール、ジエチレングリコール、プロピレングリコール、1,4ーブタンジオール、1,6ーヘキサンジオール等);環状基を有する低分子ジオール類[例えば特公昭45-1474号公報に記載のもの:1,4ービス(ヒドロキシメチル)シクロヘキサン、mーまたはpーキシリレングリコール等];ビスフェノール類のアルキレンホキサイド低モル付加物(分子量500未満);及びこれらの2種以上の併用等を挙げることができ、ポリエーテルジオールとしては、例えば、先に説明したポリエーテルジオールの1種以上等を挙げることができる。好ましいのは1,4ーブタンジオール及び1,6-ヘキサンジオールである。

[0039]

上記①のための原料ジカルボン酸としては、例えば、炭素数2~10の脂肪族ジカルボン酸(コハク酸、アジピン酸、セバシン酸、グルタル酸、アゼライン酸、マレイン酸、フマル酸等)、炭素数8~12の芳香族ジカルボン酸(テレフタル酸、イソフタル酸等)及びこれらの2種以上の併用等が挙げられる。

[0040]

上記①の好ましい例としては、例えば、ポリブチレンアジペートジオール及びポリヘキサメチレンイソフタレートジオール(以下、それぞれPBA及びPHIPと略記)ならびにこれらの併用等を挙げることができる。

[0041]

上記②のための原料ラクトンとしては、例えば、γーブチロラクトン、γーバ レロラクトン、εーカプロラクトン及びこれらの2種以上の併用等が挙げられる

[0042]

上記(A)中の芳香環含量×は35重量%以下が好ましく、ウレア基含量(重量%) yが以下の関係式(i)を満たす範囲であることが好ましい。すなわち、溶融性の観点からyが-0.1x+6を越えないことが好ましく、耐熱性の観点からyが少なくとも-0.1x+2.5であることが好ましく、低温特性の観点からxが35重量%以下であることが好ましい。

 $-0.1x+2.5 \le y \le -0.1x+6$ (i)

さらに、以下の式(i')を満たしxが $1\sim30$ 重量%であることが好ましく、

 $-0.1x+2.5 \le y \le -0.1x+5.5$ (i'')

特に、以下の式(i'') を満たしxが2~30重量%であることが好ましく、 、 コンヴェーリ

 $-0.1x+2.5 \le y \le -0.1x+5.5$ (i'')

耐摩耗性の観点から、以下の式(i')を満たしxが5~25重量%であることが最も好ましい。

 $-0.1x+3 \le y \le -0.1x+5$ (i')

本明細書中、芳香環含量とは(A)中の芳香環部分の含量のことである。また、ウレア基含量とは(A)中の-NHCONH-基の含量のことである。

[0043]

本発明における熱可塑性ポリウレタン樹脂(A)のMnは、樹脂強度の観点から4000以上が好ましく、STiの観点から4000以下が好ましい。さらに好ましくは8000~25000である。

Mnは、溶媒にN, N-ジメチルフォルムアミド(以下DMFと略記)を用いるGPC法で測定される。

[0044]

上記(A)は上記(a1)と活性水素含有成分[上記(a2)及び/又は上記(a3)、及び上記(a4)及び必要により重合停止剤(a5)]を一段で反応させるワンショット法;ジオール[上記(a4)及び必要により上記(a3)]ならびに必要により(a5)と過剰の(a1)を反応させてNCO末端ウレタンプレポリマー(以下Upと略記)を形成し、Upと残りの活性水素含有成分[(a2)及び/又は(a3)、及び必要により(a5)]を反応させるプレポリマー法のいずれで製造してもよい。好ましいのはプレポリマー法である。

[0045]

上記(A)は粉体として得ることが好ましい。(A)の粉体を得る方法としては、①上記方法で得られたブロック状またはペレット状の(A)を冷凍粉砕法、

水結粉砕法等の方法で粉砕し、(A)の粉体を得る方法;②無溶剤下または溶剤の存在下で上記(a4)及び必要により上記(a3)及び/又は上記(a5)と過剰の上記(a1)を反応させて得られたUpを、分散安定剤を含む水中に高速撹拌機を用いて分散し、水及び/または(a2)と必要により(a5)とを反応させる方法;③無溶剤下または溶剤の存在下で②と同様にして得られたUpを、分散安定剤を含む非水系分散媒(ヘキサン、ヘプタン等)中に分散し、(a2)と必要により(a5)を反応させる方法等が挙げられる。これら①~③の方法において、(a5)はプレポリマー製造時、又はウレタン樹脂製造時のいずれの時に添加してもよい。これらの方法のうち特に好ましい製造方法は②の方法である

[0046]

上記②及び③の方法において、Up、上記(a 2)及び必要により上記(a 5)の混合体(M)100重量部に対する、分散安定剤と水又は非水系分散媒とからなる分散安定剤液の量は、(M)の分散状態、得られる樹脂粉末の粒度の観点から50重量部以上が好ましく、さらに好ましくは100~1000重量部である。また必要により混合体(M)を低粘度化するために加温(例えば40~100°)してもよく、また、エステル系溶剤、ケトン系溶剤、塩素系溶剤、芳香族溶剤等のイソシアネートに不活性な有機溶剤を添加してもよい。高速分散機の回転数は好ましくは少なくとも1000rpm、さらに好ましくは3000~1000rpmである。

[0047]

この場合において上記 (a 2) 及び必要により上記 (a 5) は、Upを水中に分散させた後に添加してもよく、またUpの分散直前に添加してもよいが、反応がより均一に行われる点で後者の方が好ましい。

[0048]

上記 (a 5) としては、例えば、炭素数 $1 \sim 1$ 2 の 1 価のアルコール(メタノール、エタノール、n ーブタノール、n ーオクタノール、2 ーエチルヘキサノール、セロソルブ、フェノールのアルキレンオキサイド付加物等)及び炭素数 $1 \sim 1$ 2 のモノアミン [ジエチルアミン、ジブチルアミン(以下DBAと略記)、ジ

[0049]

ウレタン化反応において、必要により公知の触媒を使用できる。該触媒の具体例としては、例えば、有機金属化合物 [スズ系触媒、例えば、ジブチルスズジラウレート、ジオクチルスズジラウレート、スタナスオクテート等;鉛系触媒、例えば、オクテン酸鉛等];アミン類 [トリエチルアミン、トリエチレンジアミン、ジアザビシクロウンデセン(サンアプロ(株)製, DBU)等];及びこれらの2種以上の併用等が挙げられる。触媒の使用量は特に限定はないが上記(A)100重量部当り、0.001~0.05重量部が好ましい。

また、ウレタン化反応において、必要により公知の溶剤(THF、DMF、トルエン、MEK等)を使用できる。

[0050]

本発明の成形用材料は、上記(A)のみでもよく、可塑剤(B)を更に含んでいてもよく、また、必要により(A)に、又は(A)及び(B)に、更に添加剤(C)を含んでいてもよい。

上記(B)としては、例えば、リン酸エステル;ポリ(重合度3~10)アルキレン(炭素数2~3)グリコールの芳香族モノカルボン酸ジエステル;フタル酸エステル[フタル酸ジブチル、フタル酸ジオクチル、フタル酸ジブチルベンジル、フタル酸ジイソデシル等];脂肪族ジカルボン酸エステル[アジピン酸ジー2-エチルヘキシル、セバシン酸-2-エチルヘキシル等];トリメリット酸エステル[トリメリット酸トリー2-エチルヘキシル、トリメリット酸トリオクチル等];及び脂肪酸エステル[オレイン酸ブチル等];ならびにこれらの2種以上の混合物等が挙げられる。

[0051]

上記(B)として好ましいものは、耐吸湿性の観点からリン酸エステルであり、特に下記一般式(4)で示されるリン酸エステル(B1)であり、また、低温特性、特に低温でのエアバッグドアの開裂性の観点から、下記一般式(7)で示されるポリ(重合度3~10)アルキレン(炭素数2~3)グリコールの芳香族

[0052]

【化3】

[0053]

式中、Rは、それぞれ独立に、ハロゲンで置換されていてもよい炭素数 1~10の1価の炭化水素基であり、複数個のRは同一でも異なっていてもよい。R'はハロゲンで置換されていてもよい炭素数 2~15の2価の有機基を表し、qは1~6の整数を表す。

[0054]

Rとしては、例えば、炭素数1~10の脂肪族炭化水素基(メチル基、エチル基、イソプロピル基、n-ブチル基、t-ブチル基、ヘキシル基等)、炭素数1~4のアルキル基で置換されていてもよい芳香族炭化水素基(フェニル基、キシレニル基、クレジル基、エチルベンジル基、ブチルベンジル基等)及びこれらのハロゲン置換された基等が挙げられる。好ましくはフェニル基、アルキルフェニル基、又はハロゲン置換フェニル基である。

[0055]

R'としては、例えば、炭素数 2~15の2価の脂肪族炭化水素基(エチレン基、プロピレン基、nーブチレン基、tーブチレン基、へキシレン基等)、炭素数 6~15の硫黄又は酸素原子を含んでもよい2価の芳香族炭化水素基 [フェニレン基、ビフェニレン基、ーPhーCH2ーPhー、ーPhーC(CH3)2ーPhー、ーPhーSOーPhー(Phはフェニレン基を示す)、ビスフェノール類(ビスフェノールA、ビスフェノールF、ビスフェノールS等)の水酸基を除いた残基等]及びこれらのハロゲン置換された基等が挙げられる。

好ましいのは、炭素数 6~15の硫黄又は酸素原子を含んでもよい2価の芳香 族炭化水素基である。 [0056]

上記(B1)として例示したもののうち、特に好ましいものは一般式(4)におけるRがフェニル基、アルキルフェニル基、又はハロゲン置換フェニル基であり、R'が下記一般式(5)である可塑剤(B2)である。

$$-Ph' - (A-Ph')p-$$
 (5)

式中、Ph'は1,4ーフェニレン基、pは0又は1,Aは直接結合、メチレン基、イソプロピリデン基又はSOを表す。

[0057]

上記 (B2) としては、下記一般式 (7) で示されるものが挙げられる。

[0058]

【化4】

[0059]

式中、R 1 及びR 2 は同一または異なる芳香族モノカルボン酸残基、Xは炭素数 2 \sim 4 のアルキレン基を表し、n は 1 \sim 1 0 の整数を表す。

[0060]

 R^{1} 及び R^{2} としては、例えば、炭素数 $1\sim10$ のアルキル基及び/またはハロゲン (C1、Br等)で核置換(置換度 $1\sim3$) されていてもよい芳香族炭化水素基(フェニル基、トルイル基、キシレニル基、4-ブチルフェニル基、2, 4-ジブチルフェニル基、2-メチル-4-クロロフェニル基、ノニルフェニル基等)が挙げられる。

また、Xとしては、例えば、炭素数 $2\sim4$ の直鎖または分岐のアルキレン基(エチレン基、1, 2-及び1, 3-プロピレン基、1, 2-、2, 3-、1, 3-、1, 4-ブチレン基等)及びこれらのハロゲン置換された基。(1-クロロメチルエチレン基、1-ブロモメチルエチレン基等)が挙げられる。

(B2) の具体例としては、ポリエチレングリコール(重合度3~10) ジ安

息香酸エステル、ポリプロピレングリコール(重合度3~10)ジ安息香酸エステル等が挙げられる。

[0061]

上記(B1)及び(B2)はそれぞれ単独で、あるいは併用で、あるいはこれら以外の上記の他の可塑剤の1種以上と併用して用いられる。併用する場合は、特に(B1)の場合は耐吸湿性の観点から、(B2)の場合は低温特性、特に低温でのエアバッグドアの開裂性の観点から、上記(B)中の(B1)又は(B2)の含有量が50重量%以上、特に70重量%以上であることが望ましい。

[0062]

本発明のスラッシュ成形用材料において、上記(B)の配合割合は、上記(A)100重量部に対して80重量部以下が好ましく、より好ましくは2~70重量部、更に好ましくは5~50重量部である。(B)は成形時の溶融粘度の観点から2重量部以上がより好ましく、経時的なブリードアウトの観点から80重量部以下が好ましい。

[0063]

添加剤(C)としては、例えば、顔料、安定剤及びその他の添加剤が挙げられる。

額料としては特に限定されず、例えば、公知の有機額料及び/または無機顔料を使用することができ、上記(A)100重量部に対して、0~5重量部配合することが好ましい。

有機額料としては、例えば、不溶性アゾ額料、溶性アゾ額料、銅フタロシアニン系顔料、キナクリドン系顔料等が挙げられ、無機系顔料としては、例えば、クロム酸塩、フェロシアン化合物、金属酸化物、硫化セレン化合物、金属塩類(硫酸塩、珪酸塩、炭酸塩、燐酸塩等)、金属粉末、カーボンブラック等が挙げられる。

[0064]

安定剤としては特に限定されず、例えば、公知の酸化防止剤及び/または紫外 線吸収剤を使用することができ、上記(A)100重量部に対して、0~5重量 部配合することが好ましい。 酸化防止剤としては、例えば、フェノール系 [2,6-ジーtーブチルーpークレゾール、ブチル化ヒドロキシアニソール等];ビスフェノール系 [2,2'ーメチレンビス(4-メチルー6-t-ブチルフェノール)等];リン系 [トリフェニルフォスファイト、ジフェニルイソデシルフォスファイト等]等が挙げられる。

紫外線吸収剤としては、例えば、ベンゾフェノン系 [2,4ージヒドロキシベンゾフェノン、2ーヒドロキシー4ーメトキシベンゾフェノン等];ベンゾトリアゾール系 [2ー(2'ーヒドロキシー5'ーメチルフェニル)ベンゾトリアゾール等]、サリチル酸系 [フェニルサリシレート等];ヒンダードアミン系 [ビス(2,2,6,6ーテトラメチルー4ーピペリジル)セバケート等]等が挙げられる。

[0065]

その他の添加剤としては、例えば、ブロッキング防止剤、離型剤及び難燃剤等が挙げられる。

[0066]

ブロッキング防止剤としては特に限定されず、公知の無機系ブロッキング防止剤、有機系ブロッキング防止剤を使用することができる。無機系ブロッキング防止剤としては、例えば、シリカ、タルク、酸価チタン、炭酸カルシウム等が挙げられ、有機系ブロッキング防止剤としては、例えば、粒子径10μm以下の熱硬化性樹脂(熱硬化性ポリウレタン樹脂、グアナミン系樹脂、エポキシ系樹脂等)及び粒子径10μm以下の熱可塑性樹脂(熱可塑性ポリウレタン樹脂、ポリ(メタ)アクリレート樹脂等)、フタル酸マレイミド粉末等が挙げられる。

ブロッキング防止剤の配合量は上記(A)100重量部に対して、0~2重量 部が好ましい。

[0067]

離型剤としては特に限定されず、公知の離型剤が使用でき、例えば、フッ素系離型剤(リン酸フルオロアルキルエステル等)、シリコン系離型剤(ジメチルポリシロキサン、アミノ変性ジメチルポリシロキサン、カルボキシル変性ジメチルポリシロキサン等)、脂肪酸エステル系離型剤(アルカン(炭素数11~24)

酸アルケニル(炭素数 6~24)エステル等)、リン酸エステル系離型剤(リン酸トリブチルエステル)等が挙げられる。離型剤の配合量は上記(A)100重量部に対し、0~2重量部である。

[0068]

難燃剤としては特に限定されず、公知の難燃剤、例えば、リン酸エステル系のもの、ハロゲシ化水素系のもの等を使用することができる。

リン酸エステル系難燃剤としては、例えば、トリクレジルホスフェート(TCP)、トリス(β-クロロエチル)ホスフェート、トリス(ジクロロプロピル)ホスフェート、トリス(ジブロムプロピル)ホスフェート、ブロモホスフェート等が挙げられる。ハロゲン化炭化水素系難燃剤としては、例えば、塩素化パラフィン、四臭化エチレンが挙げられる。該ハロゲン化炭化水素系難燃剤は酸化アンチモン、ジンクボレート等との併用が好ましい。難燃剤の配合量は上記(A)100重量部あたり、0~20重量部が好ましい。

[0069]

上記 (C) の合計の配合量は上記 (A) 100重量部に対して、 $0\sim34$ 重量 部が好ましく、より好ましくは $0.05\sim20$ 重量部である。

[0070]

本発明のスラッシュ成形用材料の製造方法は特に限定されないが、上記(B) 及び上記(C)を含有する場合は、例えば以下の方法が例示できる。

- ①上記(A)の粉体、(B)及び(C)を一括して混合装置で混合する方法。
- ②あらかじめ (B) 及び (C) を混合しておき、これを (A) の粉体と混合する方法。
- ③ (A) の粉体を製造する任意の段階であらかじめ(B) 及び(C) の一部または全部を含有させておく方法。

これらうち製造工程の簡略化の点から②の方法が好ましい。

[0071]

本発明において、スラッシュ成形用材料の製造装置は特に限定されず、公知の粉体混合装置を使用することができる。

粉体混合装置としては、例えば、高速剪断混合装置〔ヘンシェルミキサー(登

録商標)等〕、低速混合装置〔ナウタミキサー(登録商標)、プラネタリーミキ サー等〕等が挙げられる。

[0072]

本発明のスラッシュ成形用材料の体積平均粒径は、粉体流動性及びスラッシュ 成形時に金型の細部まで粉が入り込むという観点から、100μm以上特に13 0μm以上が好ましく、成形表皮のピンホール発生の観点から、500μm以下 特に200μm以下が好ましい。

また、粒径75μm以下の粒子の割合は、粉塵による作業環境、粉体流動性及びスラッシュ成形時に金型の細部まで粉が入り込むという観点から20重量%以下特に15重量%以下が好ましい。

本明細書中、体積平均粒子径は、レーザー式光散乱法で測定した篩い下50%の粒子径の値である。測定機器としては、例えばマイクロトラックHRA粒度分析計9320-X100(日機装株式会社製)を挙げることができる。

[0073]

本発明の成形用材料をスラッシュ成形法で成形するには、例えば、パウダー状にした本発明の成形用材料が入ったボックスと200~280℃に加熱した金型を共に揺動回転させ、パウダーを型内で溶融流動させた後冷却固化させ、表皮を製造する方法で好適に実施することができる。

本発明の成形用材料で成形された表皮の厚さは、0.5~1.5mmが好ましい。該表皮は自動車内装材、例えばインストルメントパネル、ドアトリム等の表皮に好適に使用される。

[0074]

【実施例】

以下、製造例、実施例により本発明をさらに詳細に説明するが、本発明はこれらに限定されるものではない。

[0075]

以下の例において使用したポリオールIはMnが1000のPBA、ポリオールIIはMnが900のPHIP、ポリオールIIIはMnが2000のポリエチレンアジペート、安定剤Iはチバスペシャリティーケミカルズ(株)社製イル

ガノックス1010、酸化チタンは石原産業(株)製タイペークR-820、分散剤 I は三洋化成工業(株)製サンスパールPS-8、ケチミン I はHDAのM E Kケチミン、ケチミン I I は水添MDAのME Kケチミン、ケチミン I I I はイソホロンジアミンのME Kケチミン、分散機 I はヤマト科学(株)製ウルトラディスパーザー、可塑剤 I は大八化学(株)社製CR741 [一般式(5)でRがフェニル基、qが1、R'がーPhーイソプロピリデンーPhーであるリン酸エステル]、可塑剤 II は三洋化成工業(株)社製 サンソフト E B 3 0 0、ブロッキング防止剤 I はフタル酸マレイミド樹脂粉末(体積平均粒子径3μm、融点280℃)である。

[0076]

製造例1~8

表1に記載の処方(重量部。表中では部と表示)に従って、以下のようにして、 、Up (Up1~Up8)の溶液を製造した。

温度計、撹拌機及び窒素吹込み管を備えた反応容器に、ポリオール、低分子ジオール及び1-オクタノールを仕込み、窒素置換した後、撹拌しながら110℃に加熱して溶融させた。続いて、ジイソシアネートを投入し、85℃で6時間反応させてNCO末端Upを形成した。次いで、Upを60℃に冷却した後、THF、安定剤及び酸化チタンを加えて(Up7では、DBAを60℃に冷却後に加えた。)、均一に混合して、Upの溶液を得た。それらのUp(溶液)のNCO含量(重量%。表中では%と表示)を併せて表1に示した。

[0077]

製造例	F	2	က	4	5	9	7	«
ポリオール I (部)	575	950	800	100	946	200		570
本。リオールⅡ(部)	383	1	I	810	ı	720	1	387
ポリオール皿(部)	ì	ı	ı	1	1	1	1271	1
1-オクタノール(部)	16.8	17.2	21	16.6	16.7	18.3	1	17.6
DBA (部)	i	1	ı	I	ı	1	21	ı
BG(部)	1	4.5	18	1	1	1	1	1
HG (部)	1	_	ı	ı	ı	ì	42	1
MPD(部)	_	-	1	1	11.9	ı	1	i
HDI (部)	242	242	1	244	244	307	214	244
水添MDI(部)	_	ŀ	490	l	ı	1	-	1
THF(部)	217	217	238	209	227	223	277	218
安定剤 I (部)	2.5	2.5	3.1	2.4	2.4	2.7	3.1	2.6
酸化が(部)	15.3	12.6	15.3	12.2	15.2	13.3	15.7	12.8
UpNa	Up1	Up2	Up3	Up4	gďn	9ďN	Up7	Up8
NCO含量(%)	2.2	2.2	4.2	2.3	2.2	4.3	0.9	2.2

[0078]

製造例9

ジアミンのMEKケチミン化物の製造

ジアミンと過剰のMEK (ジアミンに対して4倍モル量)を80℃で24時間 環流させながら生成水を系外に除去した。その後減圧にて未反応のMEKを除去 してMEKケチミン化物であるケチミンI~IIIを得た。

[0079]

製造例10~14及び比較製造例1~3

反応容器に、表2に記載の配合(重量部。表中では部と表示)でUp及びケチミンを投入し、そこに1.3重量部の分散剤Iを溶解した水溶液340重量部を添加し、分散機Iを用いて9000rpmの回転数で1分間混合した。この混合物を温度計、撹拌機及び窒素吹込み管を備えた反応容器に移し、窒素置換した後、撹拌しながら50℃で10時間反応さた。反応終了後、濾別及び乾燥を行い、ポリウレタン樹脂(F1~F8)の粉末を製造した。ん

得られた樹脂のMn、STi (\mathbb{C})、 ΔST (\mathbb{C})、ハードセグメント含量(計算値)(重量%)、ウレア基含量(重量%)、芳香環含量(重量%)及び体積平均粒径 (μm)を表 2 に示した。

[0080]

			製造例			1	比較製造例	
	10	11	12	13	14	1	× 2	3
Up No.	Up1	ZďN	£ďN	Vp4	gďn	9ďN	2dn ∵	8ďN
(親)	100	100	100	100	100	100	100	100
好沙Nb。	I	I	П	I	I	Ι	I	ш
(始)	5.6	5.6	16.9	5.8	5.6	11.1	2.2	5.7
樹脂No.	FI	F2	F3	F4	F5	. F6	F7	F8
$Mn \times 1000$	25	23	26	24	24	3 2	56	24
STi	161	140	172	170	160	219	118	68
ΔST	19	20	27	25	27	37	9	52
10x.62.1-v	22.3	7.22	45.7	23. 4	23.3	29. 2	17.4	23.7
含量								
小基含量	3.3	3.3	5.7	3.5	3.3	6.3	1.9	3.3
芳香環含量	8.0	0	0	17.5	0	14.2	0 .	7.9
体積平均粒	151	150	150	154	152	150	. 153	154
쬾								
							171.	

[0081]

実施例1~3、5及び比較例1~3

表3に記載の樹脂の粉末100重量部と15重量部の可塑剤Iをヘンシェルミキサー内に投入し200rpmで1分間混合した。

混合後、80℃で2時間熟成した後40℃まで冷却し、1重量部のブロッキング防止剤Iを添加して、表3に記載の体積平均粒径(μm)及び粒子径が75μ

m以下の微粒子の含量(重量%)を有するスラッシュ成形用材料(S1~S3、S5~S8)を製造した。

[0082]

実施例4

表3に記載の樹脂の粉末100重量部と15重量部の可塑剤IIをヘンシェルミキサー内に投入し200rpmで1分間混合したボーニ

混合後、80℃で2時間熟成した後40℃まで冷却し、1重量部のブロッキング防止剤Iを添加して、表3に記載の体積平均粒径(μm)及び粒子径が75μm以下の微粒子の含量(重量%)を有するスラッシュ成形用材料(S4)を製造した。

得られた材料について、レベリング時間(秒)を下記方法により測定した。

スミモールドFA [住鉱潤滑油(株)製]を吹きつけ250℃に加熱した金型に、スラッシュ成形用材料(S1~S8)を、30秒間接触させ熱溶融後、室温中で1分間放置した後、水冷して成形シートを作成した。

得られた成形シートについて、溶融性及び耐熱性を下記方法により試験した。 それらの結果を表3に示した。

[0083]

【表3】

			実施例				比較例	
	1	2	E	7	5	1	2	က
樹脂No.	F1	F2	F3	F4	F5	F6	F7	8
材料No.	S1	S2	S3	S4	SS	9S	S7	28
体積平均粒径	159	158	191	158	157	158	160	191
微粒子の含量	13	14	15	14	13	14	13	13
い、小が時間	85	. 68	78	81	28	009₹	38	97
猝融性	4級	5級	4級	4級	4級	1 級	5級	4級
耐熱性	0	0	0	0	0	*	×	×

赤ール部門の

[0084]

<物性測定>

(1) STi及びSTeの測定方法

熱可塑性ウレタン樹脂粉末を190℃で2分間プレス成形し膜厚800~1200μmのフィルムを作成した。このフィルムを試料として、STi及びSTeは、熱機械分析装置「サーモフレックスTMA8140」及び「TAS100」(理学電機株式会社製)を使用し、熱機械分析針入方式(以下、TMAと記す)により求めた。TMAチャートにおいて、「JIS K7121-1987、P

. 5、図 3、階段状変化」の方法に準じて、STiは補外ガラス転移開始温度(Tig、 \mathbb{C})と同じ方法で、STeは補外ガラス転移終了温度(Teg、 \mathbb{C})と同じ方法でそれぞれ求めた。(TMA測定条件:昇温速度 $5\mathbb{C}/\mathcal{O}$ 、荷重 5g、針直径 0.5mm。)また、得られた樹脂粉末(F1)及び(F7)のTMAチャートを図 1 及び図 2 にしめす。図中のTMA曲線(実線)の接線(破線)の交点の温度がSTi 及びSTe に相当する。 $\Delta ST \neq STe - STi$ である。

[0085]

<性能評価>

溶融性、レベリング時間及び耐熱性の評価は、下記方法により行った。

(1) 溶融性

成形シートの金型面と、その裏面の溶融状態を目視で観察し、以下の5段階で 評価した。

5級:金型面は完全溶融。裏面は均一に溶解し、平坦であり、光沢がある状態

4級:金型面は完全溶融。裏面は均一に溶解しているが、やや凹凸がある。

3級:金型面は完全溶融。裏面に一部パウダーの溶け残りが存在する状態。

2級:金型面の溶融不十分。裏面は溶け残りが多い。

1級:全く溶融せず。

[0086]

(2) レベリング時間

190℃に加熱したホットプレートにスリ鋼板をのせ、その上に試料粉末10~14mgをミクロスパチュラにとり落とす。落とす面積は4mm×8mmになるようにする。スリ鋼板に落とした試料粉末が完全に溶融して表面が光るようになるまでの時間(秒)を測定する。

[0087]

(3) 耐熱性

成形シートを、循環乾燥機中に、130℃で24時間放置し、その状態を以下 の3段階で目視評価した。

◎:変化なし、○:シボは流れていないが、グロスアップする、×:シボ流れ、 グロスアップ有り。

【発明の効果】

本発明のポリウレタン樹脂系スラッシュ成形用材料は下記の効果を有する。

- 1. 耐熱性に優れ、高温の耐熱試験においても試験後の表皮外観がグロスアップしたり、表皮のシボが流れたりすることがない。
- 2. 熱溶融性に優れるので、色ムラが無く、外観の優れた成形体を得ることができる。²
- 3. 粉末の長期貯蔵安定性がよい。
- 4. 耐摩耗性に優れる成形体を得ることができる。

上記効果を奏することから本発明のスラッシュ成形用材料から得られる成形体及び自動車内装用スラッシュ成形表皮は、インストルメントパネル、ドアトリムをはじめ自動車の各種内装材として極めて有用である。また、表皮付きソファー等のインテリア家具等他の成形品への応用も可能である。

【図面の簡単な説明】

- 【図1】 ウレタン樹脂粉末 (F1)のTMAチャートを示す。
- 【図2】 ウレタン樹脂粉末(F8)のTMAチャートを示す。

-1 000 L

Temperature (°C)

240 250

【書類名】

要約書

【要約】

【課題】 スラッシュ成形時の溶融性を改良し、かつ、耐熱性に優れたスラッシュ成形用材料を提供する。

【選択図】 なし

出願人履歴情報

識別番号

[000002288]

我、全工。

1. 変更年月日

1990年 8月 8日

[変更理由]

新規登録

住 所

京都府京都市東山区一橋野本町11番地の1

氏 名

三洋化成工業株式会社

2. 変更年月日

2003年 4月 7日

[変更理由]

名称変更

住 所

京都府京都市東山区一橋野本町11番地の1

氏 名

三洋化成工業株式会社

出願 人 履 歴

識別番号

[000003207]

1. 変更年月日

1990年 8月27日

[変更理由] 新規登録

住 所

愛知県豊田市トヨタ町1番地

氏 名 トヨタ自動車株式会社