Tarea 2 - Anova

Los Celtics 9 de Abril, 2019

Carga de datos

```
algodon <- read.csv("algodon.csv", header = TRUE, row.names = 1)</pre>
```

Datos Cargados:

kable(algodon)

	Observacion.1	Observacion.2	Observacion.3	Observacion.4	Observacion.5
Porc_15	7	7	15	11	9
Porc_20	12	17	12	18	18
Porc_25	14	18	18	19	19
Porc_30	19	25	22	19	23
Porc_35	7	10	11	15	11

Limpieza de datos

Los datos cargados no cumplen con los estándares de *Tidy Data* https://vita.had.co.nz/papers/tidy-data.pdf para el análisis, por lo que es necesario al menos hacer un cambio - cambiar las observaciones (experimentos) a filas, y mantener las variables independientes a columnas. Afortunadamente, esto lo podemos hacer facilmente haciendo la transpuesta:

```
algodon_t <- as.data.frame(t(algodon))
kable(algodon_t)</pre>
```

	Porc_15	Porc_20	Porc_25	Porc_30	Porc_35
Observacion.1	7	12	14	19	7
Observacion.2	7	17	18	25	10
Observacion.3	15	12	18	22	11
Observacion.4	11	18	19	19	15
Observacion.5	9	18	19	23	11

ANOVA

Calculo de ANOVA:

algodon_stacked <- stack(algodon_t)
kable(algodon_stacked)</pre>

values	ind
7	Porc_15
7	Porc_15
15	Porc_15
11	Porc_15
9	Porc_15
12	Porc_20
17	Porc_20
12	Porc_20
18	Porc_20
18	Porc_20
14	Porc_25
18	Porc_25
18	Porc_25
19	Porc_25
19	Porc_25
19	Porc_30
25	Porc_30
22	Porc_30
19	Porc_30
23	Porc_30
7	Porc_35
10	Porc_35
11	Porc_35
15	Porc_35
11	Porc_35

Distribución de los datos en los diferentes tratamientos

Media y cuadrados de los errores por tratamiento


```
anova_algodon <- aov(values ~ ind, data = algodon_stacked, qr = TRUE)
summary(anova_algodon)</pre>
```

```
## Call:
## aov(formula = values ~ ind, data = algodon_stacked, qr = TRUE)
##
## Terms:
## ind Residuals
## Sum of Squares 475.76 161.20
## Deg. of Freedom 4 20
##
## Residual standard error: 2.839014
## Estimated effects may be unbalanced
```

De aquí podemos decir que:

$$F(4,20) = 14.76, p < 0.001$$

Tenemos los grados de libertad 4 (numerador) y 20 (denominador), así como un p menor a 0.001. Con estos datos podemos buscar en la tabla de Fischer para p < 0.001:

Tabla tomada de https://web.ma.utexas.edu/users/davis/375/popecol/tables/f0001.html

Para estos valores del F-Test, al buscarlos en la tabla nos da que el valor crítico es 7.10. Nuestro F-Test da un resultado de 14.76, que es mayor que el valor crítico, lo que significa que al menos un tratamiento tiene un efecto medible sobre las observaciones y es un resultado estadísticamente válido.

La explicación de lo anterior es:

ANOVA lo que hace es calcular varianzas. Estas varianzas nos indican cuán alejados están los datos de la

Table of F-statistics P=0.001

Fig. 1: Tabla de Fisher p < 0.001

media, es decir, la dispersión de los datos. Entre más grande sea la varianza, significa que los datos están más lejos.

El *F-test* lo que indica es la razón entre las varianzas de las medias de la muestra y de las varianzas de los errores de las observaciones de la muestra. La idea es que la varianza de las medias debería de ser similar a la varianza de las observaciones en caso que las diferencias de las observaciones sean por errores, dado que tienen el mismo origen. De no ser así, la varianza de al menos un grupo de medias sería mucho mayor que la varianza entre las muestras, porque habría otro factor que está afectando solamente a ese grupo.

Tomando el ejemplo visto en clase, si partimos que cada observación se compone de tres partes:

$$y_{ij} = \mu + \tau_i + \epsilon_{ij}$$

 $\mu=$ la media $\tau=$ Efecto del i-ésimo tratamiento $\epsilon=$ error de la observación

Tal y como vimos en clase, de esto podemos deducir dos hipótesis:

- Hipótesis nula H_0 : los efectos de los tratamientos no afectan, es decir, la media de todos los tratamientos es la misma, y todo puede ser explicado por $\mu + \epsilon_{ij}$
- Hipótesis alternativa H_1 : Los efectos de los tratamientos si afectan, por lo tanto en al menos un par de tratamientos (i, j), $\mu_i \neq \mu_j$

Para probar estas hipótesis, ANOVA lo que hace es calcular la dispersión de las medias, y dividirlas por la dispersión de todas las observaciones. Si $\tau_i = 0 \forall i$, entonces la dispersión de todas las medias y la dispersión de todas las observaciones sería la misma, y el F test daría 1. De lo contrario daría un número mayor que uno, al afectar τ al menos a uno de los tratamientos moviendo un poco la dispersión.

Adicionalmente, ANOVA utiliza los grados de libertad. En el caso de variables categóricas, como en este caso, para las medias se calcula como uno menos que el numero de niveles $DF_k = k - 1$. En el caso del error, se calcula como el número de observaciones menos el número de niveles (o grupos) usados $DF_n = n - k$.

El cálculo que realiza ANOVA es el siguiente:

$$F = CMF$$

• Lo llamado los mean squares. Estos son

Esto se ve reflejado dentro de los datos en el objeto ANOVA: