Livret de programmation 6809

Sommaire

1 Organisation mémoire	1
2 Fonctions du clavier	2
3 Fonctions disponibles pour l'utilisateur	3
4 Platines d'extension	
4.1 Platine d'extension 1	
4.1.1 Implantation mémoire détaillée	2
4.1.2 Circuit AY3-8910	2
4.1.3 Circuit ROM	3
4.1.4 Fonctions pour l'utilisateur	4
4.2 Platine d'extension 2	
4.3 Implantation mémoire détaillée	5
4.3.1 Circuit PIA (6821)	6
4.3.2 Fonctions pour l'utilisateur	7
5 Exercices d'entraînement	9
5.1 Exercice 1 – Instructions de lecture et d'écriture	9
5.2 Exercice 2 – Écrire des valeurs en mémoire	10
5.3 Exercice 3 – Écrire des valeurs en mémoire en utilisant un registre d'index	11
5.4 Exercice 4 – Écrire des valeurs en mémoire en utilisant l'adressage indirect	12
5.5 Exercice 5 – Point d'arrêt et inspection des registres	13
5.6 Exercice 6 – Temporisation utilisant un registre d'index	14
5.7 Exercice 7 – Utilisation des interruptions (générateur d'impulsions 10ms)	15
5.8 Exercice 8 – Utilisation des interruptions (générateur d'impulsions 10ms)	16
5.9 Exercice 9 – Affichage d'un message sur l'afficheur LCD	17
5.10 Exercice 10 – Chenillard 16 voies	18
5.11 Exercice 11 – Orgue électronique	19
5.12 Exercice 11 – Divertissement musical	21

1 Organisation mémoire

Le 6809 est un microprocesseur 8 bits pouvant adresser 64Ko de mémoire. Dans ce kit, cette mémoire est découpée en 4 zones :

- la mémoire programme (ROM) qui contient le moniteur
- la mémoire vive (RAM) qui contient les programmes utilisateurs et les données volatiles
- les entrées-sorties internes qui permettent de contrôler l'affichage et le clavier
- une zone mémoire libre permettant d'ajouter des cartes d'extensions

La *Figure 1* donne le mapping mémoire adopté par le système 6809.

Figure 1: Mapping mémoire du kit 6809

Le 6809 dispose de 8 registres :

A : accumulateur 8bits B : accumulateur 8bits

D: accumulateur 16 bits (A=OPS, B=OMS)

X: index 16bits Y: index 16bits

DP: registre de page (8bits)

CC : registre d'état

U : pointeur de pile utilisateur S : pointeur de pile système

2 Fonctions du clavier

Le clavier comporte 36 touches réparties comme le montre la *Figure 2*.

Figure 2: Clavier du kit 6809

• 0-F : clavier alphanumérique hexadécimal

• COPY : permet de copier une zone mémoire vers une autre (Start, End, Destination)

• CAL : calculatrice pour calculer les offsets

• DUMP : envoi un dump de 512 octets vers l'USB

• LOAD : lecture d'un programme via USB (format motorola S)

• PC : affiche la valeur actuelle de PC

• REG : permet de visualiser et modifier les registres du 6809

DATA : active la saisie des données
ADDR : active la saisie des adresses
BRKPT : place/enlève un point d'arrêt
SOUND : active/désactive le haut-parleur

INS : insère un octet à l'adresse suivante et déplace un bloc de 512 octets
 DEL : supprime l'octet à l'adresse actuelle et déplace un bloc de 512 octets

• USER : touche utilisateur, provoque le branchement à l'adresse \$7FF9

GO : lance un programme
 RESET : reset du système
 IRQ : interruption IRQ
 NMI : interruption NMI
 FIRQ : interruption FIRQ

3 Fonctions disponibles pour l'utilisateur

La ROM du moniteur propose des fonctions de contrôle du matériel pour l'utilisateur final.

Fonction	Adresse	Paramètres(s)	Action
INITLCD	\$F000	aucun	Initialise l'afficheur LCD
CLS	\$F02D	aucun	Efface l'écran
CURSOR	\$F039	A=état curseur	Active/désactive le curseur
LPUTCH	\$F047	A=caractère	Affiche 1 caractère
LPUTS	\$F051	X=début de la chaîne	Affiche 1 chaîne de car,
GOTOXY	\$F062	A=X,B=Y	Place le curseur en X,Y
PRINTHEX	\$F08C	A=nombre	Affiche 1 nombre hexa (2dig.)
PRINTHEX4	\$F099	X=nombre	Affiche 1 nombre hexa (4 dig.)
PRINTINT	\$F0A6	A=nombre	Affiche 1 nombre décimal (3 dig.)
DELAY2	\$F0D6	aucun	Tempo 0,25s
DELAY5	\$F0E3	aucun	Tempo 0,5s
TONE1K	\$F0F5	X=durée	Produit un son @1kHz
TONE2K	\$F110	X=durée	Produit un son @2kHz
CIN	\$F127	A=caractère	Attend 1 car. envoyé par le terminal
COUT	\$F132	A=caractère	Envoie 1 car. au terminal
NWLINE	\$F141	aucun	Envoie CRLF au terminal
PSTRING	\$F149	X=début de la chaîne	Envoie 1 chaîne de car. au terminal
OUT2X	\$F168	A=nombre	Envoie 1 nb hexa (2dig.) au terminal
OUT4X	\$F174	X=nombre	Envoie 1 nb hexa (4 dig.) au terminal
OUTINT	\$F183	A=nombre	Envoie 1 nb décimal (3 dig.) au terminal
SCANKB	\$F1B2	A=code de la touche	Lecture du clavier

Tableau 1: Fonctions utilisateur du kit

La *Figure 3* donne les codes des touches du clavier principal renvoyés par la routine SCANKB. Les touches grisées ne retournent aucun code car elles activent des commandes matérielles.

Figure 3: Codes des touches du clavier (fonction SCANKB)

4 Platines d'extension

Le kit d'initiation MPF1-6809 peut être connecté à différentes cartes d'extension permettant d'ajouter des entrées-sorties logiques, analogiques, sonores ou encore de la mémoire. Ces extensions occupent un espace mémoire situé entre \$B000 et \$BFFF.

4.1 Platine d'extension 1

L'extension 1 propose :

- (1) AY3-8910 : synthétiseur musical 3 voies + générateur de bruit (cadencé à 1MHz) + 2 ports de 8 bits soit 16 E/S. Les ports A et B sont connectés à 2 barrettes de connexion noires à gauche de la platine. La sortie est disponible sur le jack audio 3,5mm situé en haut de la platine (cavalier en position AY3).
- (2) ROM: 512Ko de mémoire à accès indirect.

Figure 4: Platine d'extension 1

4.1.1 Implantation mémoire détaillée

La Figure 5 donne le mapping mémoire détaillé.

Figure 5: Implantation mémoire de l'extension 1

4.1.2 Circuit AY3-8910

Le circuit AY3-8910 est un synthétiseur sonore capable de restituer 3 voix (8 octaves) plus un générateur de bruit. Il possède en plus 2 ports d'E/S à usage général. Chaque port peut être configuré soit en entrée, soit en sortie.

Il occupe 2 cases mémoires (\$B018-\$B020):

- ADDR (\$B020)= adresse du registre visé
- REG (\$B018)= valeur du registre

ADR	Fonction	D7	D6	D5	D4	D3	D2	D1	D0
\$00	Générateur voie A		Fréq. (8 bits p			poids faibles)			
\$01	Ocherated voic A					Fréq. (4 bits poids forts)			
\$02	Générateur voie B			Fréq. (8 bits		aibles)		
\$03	Generaleur voie B						(4 bits	poids	forts)
\$04	Générateur voie C			Fréq. (8 bits p		aibles)		
\$05	Generaleur voie C	Fréq. (4 bits poids for			forts)				
\$06	Générateur de bruit	5 bits fréquence bruit				uit			
\$07	7 Dáglaga miyayır In/Out Bru		Bruit	t Tonalité			é		
Φ07	Réglage mixeur	IOB	IOA	С	В	Α	С	В	Α
\$08	Volume Voie A					M	L3	L2	L1
\$09	Volume Voie B					М	L3	L2	L1
\$0A	Volume Voie C					М	L3	L2	L1
\$0B	Eráguanas anvalanas					poids			
\$0C	Fréquence enveloppe	8 bits poids forts							
\$0D	Forme de l'enveloppe	CONT ATT ALT HOLD							
\$0E	IO port B	8 bits Port B							
\$0F	IO port A				8 bits	Port A			
•	Figure 6. Los registros de génératour conore								

Figure 6: Les registres du générateur sonore

4.1.3 Circuit ROM

La ROM de 512Ko est en accès indirect, c'est à dire que le système ne peut lire qu'une seule case mémoire à la fois.

La commande de cette mémoire occupe 4 cases mémoires (\$B038-\$B03B) :

- ADRU, ADRH, ADRL (\$B038-\$B03A)= adresse mémoire (0-524287 soit 512Ko). ADRU=poids fort, ADRL=poids faible.
- DATA (\$B03B)= contenu de la case mémoire visée.

Remarque: Tous les registres d'adresse sont en écriture seule. Il n'est donc pas possible de lire leurs contenus.

La mémoire EPROM (MYM1) contient des musiques de l'AMSTRAD CPC au format MYM (les N° sont exprimés en Hexadécimal).

N°	Titre	N°	Titre	N°	Titre	N°	Titre
00	Le 5ème AXE	0C	Zombie	18	Marche à l'ombre	23	Shadow of the beast
01	Antiriad	0D	Druid	19	Passager du temps	24	Saboteur 2
02	Captain' Blood	0E	Exolon	1A	Passager du vent 1	25	Н,А,Т,Е
03	Cauldron I	0F	Jet set willy	1B	Passager du vent 3	26	Deliverance
04	Cauldron II	10	Krakout	1C	Passager du vent 8	27	Amaurote
05	Equinox	11	Metro cross	1D	Target renegade	28	Glider rider
06	Gyroscope	12	Nemesis	1E	Robocop	29	Boulder dash
07	Ikari Warrior	13	Sapiens	1F	Hotshot	2A	Gunfright
08	James Bond	14	Prehistorik	20	Galivan	2B	M'enfin
09	Barbarians	15	The last V8	21	Crafton & Xunk	2C	Starfighter
0A	Benedict (démo)	16	Rambo	22	Mag max	2D	1943
0B	Deflektor	17	Prohition				

Tableau 2: N° des musiques de l'EPROM MYM1

4.1.4 Fonctions pour l'utilisateur

Pour simplifier la gestion des différents périphériques, la ROM du moniteur intègre un certain nombre de fonctions de contrôle des éléments de la platine d'extension 1.

INITSND	\$F300	Aucun	Initialise le circuit AY3-8910
MUTE	\$F317	Aucun	Coupe le son
VOLUME	\$F329	A=volume (015)	Définit le volume pour les 3 voies
PLAY_A	\$F33D	X=fréquence (04095)	Joue un son sur la voie A
PLAY_B	\$F35B	X=fréquence (04095)	Joue un son sur la voie B
PLAY_C	\$F361	X=fréquence (04095)	Joue un son sur la voie C
MODEIO	\$F374	A: b7=IOB, b6=IOA 0=out, 1=in	Définit le mode des IOs (IN/OUT)
RDAY_A	\$F396	A=valeur lue	Lecture PORT IOA
WRAY_A	\$F39F	A=valeur à écrire	Écriture PORT IOA
RDAY_B	\$F3AC	A=valeur lue	Lecture PORT IOB
WRAY_B	\$F3B5	A=valeur à écrire	Écriture PORT IOA
ROMRD	\$F3C2	X=addr, A=up addr	Lecture ROM indirecte [@AX] dans A
PLAYMYMR	\$F405	B=N° musique	Lecture d'une musique MYM en ROM
PLAYSONGS	\$F690	Aucun	Lecture de toutes les musiques de la ROM
PLAYSONGSN	\$F691	B=N° 1ère musique	Lecture des musiques à partir du N° B

Tableau 3: Fonctions de contrôle des éléments de la platine d'extension 1

4.2 Platine d'extension 2

La platine d'extension 2 propose :

- (1) un PIA 6821 : 16 E/S. Les ports A et B sont connectés à 2 barrettes de connexion noires à gauche de la platine. 2 bargraphs, placés juste à côté, indiquent l'état des E/S (allumé=1, éteint=0). Les sorties CBx sont utilisées ainsi que PB7 pour réaliser un contrôleur I²C.
- (2) une EEPROM I²C (24C04 à 24C512)=mémoire non volatile
- (3) un ADC/DAC I²C (0-5V) 8 bits PCF8591
- (4) une NVRAM/RTC I²C PCF8583=horloge temps réel sauvegardée par batterie.

Figure 7: Platine d'extension 2

4.3 Implantation mémoire détaillée

La **Figure 8** donne le mapping mémoire détaillé de l'extension 2.

Figure 8: Implantation mémoire de l'extension 2

4.3.1 Circuit PIA (6821)

Le PIA est un circuit d'entrées sorties numériques. Il possède 2 ports 8 bits configurables bit à bit en entrée ou en sortie ainsi que 4 signaux de handshake pour l'échange de données avec d'autres périphériques.

Seuls les 2 ports d'E/S du 6821 sont disponibles sur les barrettes de connexion de la platine. Les signaux CAx et CBx ne sont pas disponibles. Les signaux CBx (+PB7) sont utilisés pour commander un contrôleur logiciel de bus I²C.

Le PIA dispose de 6 registres accessibles à 4 adresses mémoire.

PRA/PRB (\$x0,\$x2)= valeurs présentes sur les PORTA et PORTB

DDRA/DDRB (\$x0,\$x2)= registres de direction des ports A et B (bit à 0=entrée, bit à 1=sortie)

CRA/CRB (\$x1,\$x3)= registres de contrôle

Les registre PRx et DDRx partagent les mêmes adresses. C'est le bit 2 des registres de contrôles qui détermine lequel est accessible.

A 1	Bit de	contrôle	Danistora
Adresses	CRA.b2	CRB.b2	Registres
\$B000	1	X	PRA
\$B000	0	X	DDRA
\$B001	X	X	CRA
\$B002	X	1	PRB
\$B002	X	0	DDRB
\$B003	X	X	CRB

Tableau 4: Accès aux registres du PIA

Exemple : Pour définir le PORTA en sortie et le PORTB en entrée, il suffit de faire :

CRA=0; DDRA=\$FF; CRA=4;

CRB=0; DDRB=0; CRB=4:

4.3.2 Fonctions pour l'utilisateur

Pour simplifier la gestion des différents périphériques, la ROM du moniteur intègre un certain nombre de fonctions de contrôle des éléments de la platine d'extension 2.

INITI2C	\$F700	Aucun	Initialise le bus I2C
START	\$F756	Aucun	Condition START
STOP	\$F75F	Aucun	Condition STOP
WRITEI2C	\$F767	A=valeur	Émission un octet
READI2C	\$F789	A=valeur	Réception d'un octet
RDACK	\$F7A7	Aucun	Acquittement
RDNACK	\$F7B2	Aucun	Non acquittement
WRT_RTC	\$F7DF	X=adr	Écrit la zone depuis X (160) dans RTC
RDT_RTC	\$F7F9	X=adr	Lis la zone RTC (160) vers X
WRM_RTC	\$F825	X=adr	Écrit la zone depuis X dans RAM RTC
RDM_RTC	\$F831	X=adr	Lis la zone RAM RTC vers X
WR_EE	\$F845	A=val, X=adr	Écrit une valeur à l'adresse X
RD_EE	\$F854	A=val, X=adr	Lis une valeur à l'adresse X
WR_EEP	\$F86F	X=adr EE, Y=adr RAM	RAM @ Y dans EEPROM @ X (1280)
RD_EEP	\$F87F	X=adr EE, Y=adr RAM	EEPROM @ X dans RAM @ Y (1280)

Tableau 5: Fonctions de contrôle des éléments de la platine d'extension 2

5 Exercices d'entraînement

5.1 Exercice 1 – Instructions de lecture et d'écriture

Addr	Hex code	Label	Instruction
0200			org \$200
0200	86 55	main	lda #\$55
0202	B7 80 00		sta \$8000
0205	3F		swi
			end

L'accumulateur A est chargé avec la valeur \$55. Puis il est écrit dans la case mémoire d'adresse \$8000. Cette adresse correspond aux 8 leds GPIO placées à droite des afficheurs. L'instruction SWI permet de retourner au moniteur à la fin du programme.

Entrez ce programme à partir de l'adresse \$200. Pour cela, appuyez sur la touche ADDR pour obtenir l'affichage de l'adresse en cours et la données contenue à cette adresse. Les 4 points décimaux de la partie adresse sont allumés pour indiquer que l'adresse peut être modifiée en appuyant sur les touches numériques.

Ajuster l'adresse si nécessaire puis appuyez sur la touche DATA pour passer en mode édition de données (les 2 points décimaux de la partie données sont allumés).

Entrez la $1^{\text{ère}}$ valeur de la colonne *Hex code* puis appuyez sur la touche + pour passer à l'adresse suivante. En cas d'erreur de saisie, il suffit de saisir à nouveau la valeur pour écraser l'ancienne. Les touches + et – permettent de se déplacer dans la mémoire.

Une fois la saisie terminée, entrez à nouveau l'adresse \$200 à l'aide de la touche ADDR puis appuyez sur la touche GO pour lancer votre programme.

Que se passe-t-il?

Modifiez la valeur placée dans A de \$55 à \$AA. Comment faire ?

Relancez votre programme. Testez avec différentes valeurs. Que montre l'affichage de GPIO ?

5.2 Exercice 2 – Écrire des valeurs en mémoire

Addr	Hex code	Label	Instruction
0200			org \$200
0200	86 00	main	lda #\$00
0202	1F 8B		tfr a,dp
0204	86 55		lda #\$55
0206	B7 80 00		sta \$8000
0209	97 40		sta \$40
020B	B7 60 00		sta \$6000
020E	3F		swi
			end

L'accumulateur A est chargé avec la valeur 0, puis cette valeur est transférée dans le registre de page DP. Ce registre permet de définir l'adresse haute (8 bits de poids fort) de la 'page 0'.

L'accumulateur A est ensuite chargé avec la valeur 0x55 puis cette valeur est écrite dans la mémoire aux adresses \$8000, \$40 et \$6000.

Pour écrire dans la mémoire aux adresses \$8000 et \$6000, il est fait appel à un adressage absolu (extended) qui nécessite 3 octets (le code de l'instruction suivi de l'adresse sur 2 octets) : B7 80 00

Pour écrire à l'adresse \$40, il est fait appel à l'adressage en 'page 0'. Ce mode d'adressage utilise le registre de page DP pour définir les 8 bits de poids fort de l'adresse si bien que l'instruction n'a besoin que de 2 octets (le code de l'instruction suivi des 8 bits de poids faible de l'adresse) : 97 40. En contrepartie, ce mode d'adressage ne peut adresser que 256 octets (une page).

Pour tester ce programme, il faut d'abord regarder les valeurs stockées à ces adresses avant exécution. Utilisez la touche ADDR pour entrer les adresses afin de lire leurs contenus.

Adresse	Contenu avant exécution	Contenu après exécution
\$40		
\$6000		
\$8000		

Entrez le programme dans la mémoire puis exécutez le. Vérifiez ensuite le contenu des 3 cases mémoire. Conclusion ?

Modifiez le contenu de DP (par exemple \$10) et lancez à nouveau votre programme. Regardez le contenu de la case mémoire \$1040.

5.3 Exercice 3 – Écrire des valeurs en mémoire en utilisant un registre d'index

Addr	Hex code	Label	Instruction	
0200			org \$200	
0200	86 33	main	lda #\$33	
0202	C6 50		ldb #\$50	
0204	8E 10 00		ldx #\$1000	;adresse de base
0207	A7 84		sta ,x	
0209	A7 01		sta 1,x	
020B	A7 02		sta 2,x	
020D	A7 03		sta 3,x	
020F	A7 1F		sta -1,x	
0211	A7 88 7F		sta \$7F,x	
0214	A7 89 10 00		sta \$1000,x	
0218	A7 85		sta b,x	
021A	3F		swi	
			end	

L'accumulateur A est chargé avec la valeur 0x33 tandis que l'accumulateur B est chargé avec la valeur \$50. Puis la valeur de A est écrite en mémoire en utilisant l'adressage indexé associé au registre d'index X.

Entrez ce programme sans l'exécuter puis calculez les adresses de chaque case mémoire visée et regardez leurs contenus avant exécution.

Instruction	Adresse effective	Contenu avant	Contenu après
sta ,x	\$1000		
sta 1,x			
sta 2,x			
sta 3,x			
sta \$7f,x			
sta \$1000,x			
sta b,x			

Lancez votre programme puis regardez le contenu de chaque case mémoire. Modifiez votre programme pour utiliser la valeur \$44 dans l'accumulateur et utiliser le registre d'index Y au lieu du registre d'index X. Pour ajouter du code au milieu d'un programme, il suffit de se placer à une adresse N puis d'appuyer sur la touche INS pour libérer un octet situé à l'adresse N+1 tout en déplaçant le bloc des 512 octets suivants vers le haut.

5.4 Exercice 4 – Écrire des valeurs en mémoire en utilisant l'adressage indirect

Addr	Hex code	Label	Instruction	
0200			org \$200	
0200	A6 9F C0 00	main	lda [\$C000]	
0204	B7 80 00		sta \$8000	; GPIO
0207	3F		swi	
			end	

L'accumulateur A est chargé avec la valeur contenue dans la case mémoire dont l'adresse est stockée en \$C000. Cette valeur est ensuite envoyée sur les leds du kit (GPIO)

Quelle est l'adresse de l'emplacement mémoire contenant la valeur placée dans A?

Entrez ce programme puis exécuter le. Que se passe-t-il?

Modifiez le contenu de l'emplacement mémoire précédent puis relancez votre programme.

5.5 Exercice 5 – Point d'arrêt et inspection des registres

Addr	Hex code	Label	Instruction
0200			org \$200
0200	86 12	main	lda #\$12
0202	C6 45		ldb #\$45
0204	1E 89		exg a,b
0206	3F		swi
			end

L'accumulateur A est chargé avec la valeur \$12 tandis que l'accumulateur B est chargé avec la valeur \$45 puis leur contenu est échangé.

Entrez ce programme en mémoire et placez vous à l'adresse \$0204 puis appuyez sur la touche BRKPT (Breakpoint=point d'arrêt). Retournez à l'adresse \$200 et lancez votre programme.

Le programme s'est arrêté en \$204 au niveau de l'instruction exg a,b qui n'a pas encore été exécutée.

Appuyez sur la touche REG puis la touche 0 (registre A) afin de contrôler le contenu des registres A et B. Appuyez ensuite sur la touche ADDR pour revenir au mode normal puis terminez l'exécution du programme en appuyant sur GO. Vérifiez à présent le contenu de A et B.

Relancez votre programme depuis \$200. Lorsqu'il est arrêté en \$204, appuyez sur la touche REG puis 0 (registre A). Appuyez maintenant sur la touche DATA. Vous pouvez à présent modifier le contenu du registre, par exemple \$36. Pour retourner au mode visualisation, il suffit d'appuyer à nouveau sur la touche DATA. Terminez l'exécution du programme puis vérifiez le nouveau contenu des registres.

Pour supprimer le point d'arrêt, il suffit de retourner à l'adresse à laquelle il est placé puis d'appuyer sur la touche BRKPT. Si vous avez oublié son emplacement, il suffit d'appuyer 2 fois sur la touche BRKPT.

Remarque : il n'est possible de définir qu'un seul point d'arrêt à la fois.

5.6 Exercice 6 – Temporisation utilisant un registre d'index

L'accumulateur A est chargé avec la valeur \$01 puis cette valeur est écrite sur les leds (GPIO). Le programme appelle ensuite une temporisation et la valeur dans l'accumulateur subit une rotation.

Addr	Hex code	Label	Instruction
0200			org \$200
0200	86 01	main	lda #\$01
0202	B7 80 00		sta \$8000
0205	8D 03		bsr tempo
0207	49		rola
0208	20 xx		bra loop
020A	8E 30 00	tempo	ld x,#\$3000
020D	30 1F	tmp1	leax -1,x
020F	26 xx		bne tmp1
0211	39		rts
			end

Pour pouvoir entrer ce programme en mémoire, il faut compléter les 2 valeurs manquantes. Elles correspondent aux offsets des instructions de branchement relatif. (BSR= appel à un sousprogramme, BRA :branchement inconditionnel (goto), BNE : branchement si non nul).

La valeur se calcule à partir de la valeur de PC juste après l'instruction de branchement et l'adresse de destination : offset=destination-PC.

Pour faciliter ce calcul, la touche CAL propose une petite calculatrice destinée à cet usage.

Il faut d'abord appuyer sur CAL puis entrer l'adresse de destination ensuite appuyer sur la touche – puis entrer la valeur de PC juste après l'instruction et enfin appuyer sur GO pour obtenir le résultat.

Pour l'instruction BSR, l'offset vaut \$20A - \$207 = \$03

Calculez les 2 autres offsets puis entrez ce programme en mémoire. Les instructions utilisées sont limitées à un branchement court, c'est à dire que la valeur de l'offset n'est codée que sur un octet. Le saut peut donc aller de -126 à +127. La calculatrice fournit une valeur sur 16 bits donc il ne faut prendre que l'octet de poids faible.

Lancez votre programme. Pour l'arrêter, il faut appuyer sur la touche RESET. Le programme n'est pas effacé durant cette opération.

Comment changer la vitesse de défilement ?

Comment changer le sens de défilement ?

5.7 Exercice 7 – Utilisation des interruptions (générateur d'impulsions 10ms)

Addr	Hex code	Label	Instruction	
0200			org \$200	
0200	86 7E	main	lda #\$7E	
0202	B7 7F F0		sta \$7FF0	
0205	8E 30 00		ldx #\$3000	; int_service
0208	BF 7F F1		stx \$7FF1	
020B	0F 00		clr \$00	
020D	0F 01		clr \$01	
020F	1C EF		andcc #%11101111	Autorise IRQ
0211	20 FE		bra \$0211	Boucle infinie
3000			org \$3000	
3000	0C 00	int_service	inc \$00	
3002	96 00		lda \$00	
3004	81 64		cmpa #100	
3006	26 09		bne skip	
3008	0F 00		clr \$00	
300A	0C 01		inc \$01	
300A 300C	0C 01 96 01		inc \$01 lda \$01	
300C	96 01	skip	lda \$01	
300C 300E	96 01 B7 80 00	skip	lda \$01 sta \$8000	

La 1^{ère} partie du programme détourne les interruptions vers le programme situé en \$3000 puis initialise 2 cases mémoire (\$00 et \$01) à 0. Elles servent de variables à notre programme (\$00 compte le temps tandis que \$01 stocke la valeur envoyée aux leds).

La 2^{ème} partie constitue le programme d'interruption. Ce programme est associé à un signal reçu sur la patte IRQ du microprocesseur. Le kit 6809 possède un générateur d'interruption qui envoie une impulsion (requête d'interruption) toutes les 10ms. Pour l'activer il suffit de placer l'interrupteur sur INT.

Dans ce programme, la variable d'adresse \$00 est incrémentée jusqu'à atteindre la valeur 100 (100x10ms=1s). Lorsque cette valeur est atteinte, la variable d'adresse \$01 est incrémentée puis sa valeur est envoyée sur les leds.

Comment peut-on augmenter la fréquence de comptage à 10Hz?

5.8 Exercice 8 – Utilisation des interruptions (générateur d'impulsions 10ms)

Addr	Hex code	Label	Instruction	
0200			org \$200	
0200	0F 01	main	clr \$01	
0202	1C EF		andcc #%11101111	
0204	B6 7F FF	loop	lda \$7FFF	;TICK
0207	81 64		cmpa #100	
0209	26 F9		bne loop	
020B	7F 7F FF		clr \$7FFF	
020E	96 01		lda \$01	
0210	8B 01		adda #\$01	
0212	19		daa	
0213	97 01		sta \$01	
0215	B7 80 00		sta \$8000	;GPIO
0218	20 EA		bra loop	
			end	

On peut simplifier le programme précédent en utilisant la variable système TICK. Après le RESET, l'interruption IRQ est automatiquement dirigée vers une routine de gestion de la variable temporelle TICK. Toutefois, l'interruption IRQ reste masquée.

Pour activer le comptage de cette variable, il suffit d'activer l'interruption IRQ pour qu'elle soit incrémentée à chaque appel IRQ (10ms). Le programme va ensuite lire cette variable et s'en servir comme base de temps.

Tapez ce programme puis exécutez le. Qu'est ce qui change par rapport au programme précédent ?

5.9 Exercice 9 – Affichage d'un message sur l'afficheur LCD

Pour cet exercice, il faut ajouter un afficheur LCD sur la platine. Ce programme permet d'afficher du texte sur la 1ère ligne de l'écran LCD. Pour cela, il fait appel aux fonctions du Tableau 1. La fonction INITLCD permet d'initialiser l'afficheur suivie de la fonction LPUTS pour afficher la chaîne de caractères placée à l'adresse contenue dans X (la chaîne doit se terminer par un 0).

Addr 0200	Hex code	Label	Instruction org \$200	
0200	BD F0 00	main	jsr \$F000	; INITLCD
0203	8E 03 00		ldx #text1	
0206	BD F0 51		jsr \$F051	; LPUTS
0209	3F		swi	
0300	48 65 6C 6C 6F 20 77 6F 72 6C 64	text1	fcc "Hello world"	
030B	00		fcb 0	
			end	

Testez ce programme puis ajoutez du texte dans la chaîne de caractère (n'oubliez pas le 0 à la fin). Relancez votre programme. Que s'est-il passé ?

En fait la 2^{ème} ligne commence à la position 64, il faut donc déplacer le curseur pour y accéder. C'est le rôle de la fonction GOTOXY qui a été ajoutée dans la suite du programme (ci-dessous).

Addr	Hex code	Label	Instruction	
0209	CC 03 01		ldd #0301	; A=3, B=1
020C	BD F0 62		jsr \$F062	; GOTOXY
020F	8E 03 0C		ldx #text2	
0212	BD F0 51		jsr \$F051	; LPUTS
0215	3F		swi	
0300	48 65 6C 6C 6F 20 77 6F 72 6C 64	text1	fcc "Hello world"	
030B	00		fcb 0	
030C	49 20 61 6D 20 36 38 30 39 20 43 50 55	text2	fcc "I am 6809 CPU"	
0319	00		fcb 0	
			end	

Complétez votre programme puis testez le à nouveau. Résultat ?

5.10 Exercice 10 – Chenillard 16 voies

Cet exercice utilise le PIA de l'extension 2. Le but est de créer un chenillard faisant défiler une led allumée sur les 16 disponibles dans les sens haut vers bas.

Figure 9: Chenillard 16 voies

La première étape consiste à définir les 2 ports A et B en sortie. Pour cela, il faut initialiser DDRA et DDRB à \$FF. Ensuite, il faut programmer la séquence de défilement.

Addr 0200	Hex code	Label	Instruction org \$200	
0200	86 00	main	lda #\$00	
0202	B7 B0 01		sta \$B001	; Accès DDRx
0205	B7 B0 03		sta \$B003	
0208	86 FF		lda #\$FF	
020A	B7 B0 00		sta \$B000	
020D	B7 B0 02		sta \$B002	
0210	86 04		lda #\$04	
0212	B7 B0 01		sta \$B001	; Accès PORTx
0215	B7 B0 03		sta \$B003	
0218			•••	

5.11 Exercice 11 – Orgue électronique

Cet exercice nécessite l'extension 1, Il utilise le synthétiseur AY3-8910 pour transformer le clavier du kit en instrument de musique permettant de jouer des notes simples du DO² au SI⁵.

2	3	4	5	◆ Octave
131	262	523	1046	Fréq. (Hz)
\$01DE				◆ Valeur TP
147	294	587	1175	
\$01A9				
165	330	659	1318	
\$017B				
175	349	698	1397	
\$0166				
196	392	784	1568	
\$013F				
220	440	880	1760	
\$011C				
247	494	988	1975	
\$00FD				
	131 \$01DE 147 \$01A9 165 \$017B 175 \$0166 196 \$013F 220 \$011C 247	131 262 \$01DE 147 294 \$01A9 165 330 \$017B 175 349 \$0166 196 392 \$013F 220 440 \$011C 247 494	131 262 523 \$01DE 587 147 294 587 \$01A9 - 165 330 659 \$017B - 175 349 698 \$0166 - - 196 392 784 \$013F - - 220 440 880 \$011C - - 247 494 988	131 262 523 1046 \$01DE 587 1175 \$01A9 1318 \$017B 1318 \$175 349 698 1397 \$0166 1568 \$013F 1568 \$011C 1760 247 494 988 1975

Tableau 6: Fréquences des notes

La fréquence de sortie du circuit synthétiseur est obtenue par la formule $F_s=F_{CLK}/16$. TP où FCLK est la fréquence d'horloge (1MHz) et TP la valeur de commande sur 12 bits. Complétez ce tableau avec les valeurs TP au format hexadécimal (ce sera plus facile pour la suite).

Figure 10: Affectation des notes au clavier du kit

La fonction de lecture du clavier renvoie un nombre N indiquant sur quelle touche l'utilisateur a appuyé. Si aucune touche n'est appuyée, la fonction retourne 255 (\$FF).

Pour traduire la touche appuyée en note, il peut être pratique d'utiliser une table associée à un adressage indexé afin de simplifier le code.

Chaque note est définie par une valeur TP codée sur 12bits (2 octets) donc si X contient l'adresse du début de la table, il suffit de lire les 2 octets placés aux adresses X+2*N et X+2*N+1.

Attention, il reste 1 colonne inutilisée à droite correspondant aux codes N=7, 15, 23 et 31. Cela n'est pas très grave car il suffit d'ajouter un 0 dans la table pour associer cette touche à un silence. Au final, on obtient le programme suivant :

Addr	Hex code	Label	Instruction	
0200			org \$200	
0200	BD F3 00	main	jsr \$F300	; INITSND
0203	86 0F		lda #\$0F	
0205	BD F3 29		jsr \$F329	; VOLUME
0208	BD F0 5A	loop	jsr \$F05A	; DELAY2
020B	BD F1 BE		jsr \$F1BE	; SCANKB
020E	B7 80 00		sta \$8000	
0211	2B 0C		bmi note_off	
0213	10 8E 02 30		ldy #table	
0217	48		asla	
0218	AE A6		ldx a,y	
021A	BD F3 3D		jsr \$F33D	; PLAY_A
021D	20 E9		bra loop	
021F	8E 00 00	note_off	ldx #\$0000	
0222	BD F3 3D		jsr \$F33D	; PLAY_A
0225	20 E1		bra loop	
0230	01 DE 01 A9	table	fcb \$01DE, \$01A	9, \$017B, \$0166,
	01 7B 01 66			
			••••	
			end	

Entrez ce programme puis complétez la table en n'oubliant pas d'ajouter un zéro après le SI de chaque octave. Testez votre programme.

5.12 Exercice 11 – Divertissement musical

Le kit 6809 peut aussi jouer de la musique en exploitant les 4 canaux du synthétiseur. Pour cela, il faut produire un flux de données alimentant le synthétiseur en continu. Cet exercice nécessite l'extension 1.

Les ordinateurs familiaux des années 1980-90 utilisaient massivement le synthétiseur AY3-8910 et on trouve aujourd'hui un grand nombre de fichiers musicaux au format YM. Ce format regroupe les 14 registres du circuits échantillonnés à une fréquence de 50 Hz. Ces fichiers sont compressés afin de prendre moins de place.

Ce format ne peut pas être pris en compte directement par le kit 6809, il faut d'abord le convertir au format MYM qui permet une décompression des données à la volée lors de la lecture.

Le programme permettant de lire les données se trouve dans la ROM du moniteur tandis que les données musicales sont stockées dans la ROM de l'extension. La lecture d'un morceau consiste à indiquer au programme le N° du morceau puis il suffit d'appeler la routine. Pour que le programme fonctionne, il faut placer l'interrupteur d'interruption sur INT.

Addr	Hex code	Label	Instruction	
0200			org \$200	
0200	C6 29		ldb #\$29	; BOULDER DASH
0202	BD F4 05		jsr \$F405	; PLAYMYMR
0205	3F		swi	