SULPHURIC BENCH

সালফিউরিক বেঞ্চ

रुकिंक अ

পদার্থবিজ্ঞান ১ম পত্র

কেটিক্স কিডাপ্স

পদার্থবিজ্ঞান ১ম পত্র

প্রধান পরিকল্পক

व्यायूल्लार व्यावित प्तितांष्जूल रेंजलाप्त (होधूती

प्रम्प्रीपना प्रस्प

জুহায়ের মোবাররাত ভূঁইয়া নাফিসা তাসনিম

ফাহিম আবরার মুবাররাত এ ইশমাম রাফিউর রহমান

मृला: १० ठीका माञ

কৈটিক ক্ৰিক ক্ৰ

পদার্থবিজ্ঞান ১ম পত্র

সংবিধিবদ্ধ সতর্কীকরণ

मृला : १० টोकां मोञ

তে তি ক্র

পদার্থবিজ্ঞান ১ম পত্র

ष्विजीय़ ज्यधारा

ज्जीय जधारा

ढ्ट्रर्थ जधारा

পঞ্চম অধ্যায়

सर्छ ज्यधारा

प्रश्नम ज्यधारा

जष्टेम जधारा

নবম অধ্যায়

দশম অধ্যায়

কুটক তাত্ত্ব কিডাগ্ৰ

পদার্থবিজ্ঞান ১ম পত্র

সূচিপত্ৰ

(১) ভেক্টর বীজগণিতের সূত্র:

বিনিময় সূত্র: $\overline{A} + \overline{B} = \overline{B} + \overline{A}$

সংযোগ সূত্র: $(\overline{A} + \overline{B}) + \overline{C} = \overline{A} + (\overline{B} + \overline{C})$

বণ্টন সূত্র : m $(\overline{A} + \overline{B}) = m\overline{A} + m\overline{B}$

(২) ত্রিভুজ বিধি :

$$\overline{C} = \overline{A} + \overline{B}$$

(৩) অভিক্ষেপঃ

 $\overline{\mathbf{A}}$ এর উপর $\overline{\mathbf{B}}$ এর অভিক্ষেপ (projection of B up on A), $\operatorname{Proj}_{\mathbf{A}} \mathbf{B}$

$$|\overline{\mathbf{B}}|\cos\theta = \frac{\overline{\mathbf{A}}.\overline{\mathbf{B}}}{|\overline{\mathbf{A}}|}$$

(৪) উপাংশ/ অংশক :

 $\overline{\mathbf{A}}$ ভেক্টরের দিক বরাবর $\overline{\mathbf{B}}$ এর উপাংশ $\mathbf{B}\mathbf{cos}\theta = \frac{\overline{\mathbf{A}}.\overline{\mathbf{B}}}{\left|\overline{\mathbf{A}}\right|} \ \widehat{\mathbf{\eta}}$

$$= \frac{\bar{A}.\bar{B}}{A}.\frac{\bar{A}}{A} = \frac{(\bar{A}.\bar{B})\bar{A}}{A^2}$$

<u>ভেক্টর</u>

(c) •
$$|\overline{A}| = \sqrt{A_x^2 + A_y^2 + A_z^2}$$

•
$$\bar{A} + \bar{B} = (A_x + B_x) \hat{i} + (A_y + B_y) \hat{j} + (A_z + B_z) \hat{k}$$

•
$$\overline{A} \cdot \overline{B} = A B \cos \theta = A_x B_x + A_y B_y + A_z B_z$$

•
$$\overline{A} \times \overline{B} = A B \sin\theta \widehat{\eta} = \begin{vmatrix} i & j & k \\ A_x & A_y & A_z \\ B_x & B_y & B_z \end{vmatrix}$$

=
$$\hat{\mathbf{i}}(A_y B_z - A_z B_y) - \hat{\mathbf{j}}(A_x B_z - A_z B_x)$$

+ $\hat{\mathbf{k}}(A_x B_y - A_y B_x)$

দিকঃ ডানহাতি ক্সু

(৬) •
$$\overline{A}$$
 ও \overline{B} লম্ব হলে, \overline{A} . $\overline{B} = AB \cos\theta = 0$

•
$$\overline{A}$$
 ও \overline{B} সমান্তরাল হলে, $\overline{A} \times \overline{B} = 0 = \frac{A_x}{B_x} = \frac{A_y}{B_y} = \frac{A_z}{B_z}$

•
$$\overline{A}, \overline{B}$$
 ও \overline{C} একই সমতলে থাকলে, ($\overline{A} \times \overline{B}$). $\overline{C} = 0$

$$\left| \begin{array}{ccc} A_x & A_y & A_z \\ B_x & B_y & B_z \\ C_x & C_y & C_z \end{array} \right|$$

<u>ভেক্টর</u>

(9)
$$R^2 = P^2 + Q^2 + 2PQ \cos \alpha$$

$$\tan\theta = \frac{Q \sin\alpha}{P + Q \cos\alpha}$$

লব্ধির সর্বোচ্চ মান $R_{max} = P + Q$ লব্ধির সর্বনিম্ন মানঃ $R_{min} = P \sim Q$

(৮) সামন্তরিকের ক্ষেত্রফল =
$$|\overline{A} \times \overline{B}| = \frac{1}{2} |\overline{C} \times \overline{D}|$$
 বাছ কর্ণ

ত্রিভুজের ক্ষেত্রফল = $\frac{1}{2} | \overline{A} \times \overline{B} |$

ত্রিমাত্রিক বক্সের আয়তন =
$$(\overline{\mathbf{b}} \times \overline{\mathbf{c}})$$
. $\overline{\mathbf{a}} = \overline{\mathbf{a}} \cdot (\overline{\mathbf{b}} \times \overline{\mathbf{c}})$
দৈর্ঘ্য, প্রস্থ, উচ্চতা

- (৯) একক ভেক্টরঃ $\frac{\overline{A}}{|A|}$
 - ullet সমান্তরাল একক ভেক্টরঃ $\pm rac{ar{A}}{|A|}$
 - ullet সমান্তরাল সদৃশ একক ভেক্টরঃ $+rac{ar{A}}{|A|}$
 - ullet সমান্তরাল বিসদৃশ একক ভেক্টরঃ $rac{\overline{A}}{|A|}$

(১০) টর্ক :

- $\tau = rFsin \theta$
- $egin{aligned} ar{ au} &= ar{ar{r}} imes ar{ar{F}} \ &= \widehat{m{\eta}} \mathbf{r} \mathbf{F} \mathbf{sin} \ m{ heta} \end{aligned}$

(১১) Ā ও B ভেক্টরদ্বয়ের

- মধ্যবর্তী কোণ = $heta = \cos^{-1}(rac{ar{A} \cdot ar{B}}{AB})$
- 🛚 🛪 🞖 🖪 উভয় ভেক্টরের উপর লম্ব

একক ভেক্টর
$$\widehat{\mathbf{\eta}} = rac{\overline{\mathbf{A}} imes \overline{\mathbf{B}}}{|\overline{\mathbf{A}} imes \overline{\mathbf{B}}|}$$

(১২) Vector Calculus:

- গ্রেডিয়েন্ট (Gradient): স্কেলার রাশির সর্বোচ্চ বৃদ্ধির হার নির্দেশ করে
- $\vec{\nabla} \varphi = \{ \frac{\partial}{\partial x} () \hat{i} + \frac{\partial}{\partial y} \hat{j} + \frac{\partial}{\partial z} \hat{k} \} \varphi = \frac{d\varphi}{dx} \hat{i} + \frac{d\varphi}{dy} \hat{j} + \frac{d\varphi}{dz} \hat{k}$

(১৩) ডাইভারজেন্সঃ

$$\vec{\nabla} \cdot \vec{V} = \{ \frac{\partial}{\partial x} () \hat{i} + \frac{\partial}{\partial y} \hat{j} + \frac{\partial}{\partial z} \hat{k} \} \cdot (V_x \hat{i} + V_y \hat{j} + V_z \hat{k})$$

$$= \frac{d}{dx} V_x + \frac{d}{dy} V_y + \frac{d}{dz} V_z$$

 $\overrightarrow{\nabla}$. \overrightarrow{V} = 0 शल সলিনয়েড।

(১৪) কার্লঃ

$$\vec{\nabla} \times \vec{V} \neq 0 \rightarrow$$
पूर्तनशैल/ \vec{Q} खप्तरक्षभौल

$$\vec{\nabla} \times \vec{V} = . \left(\frac{\partial}{\partial x} () \hat{i} + \frac{\partial}{\partial y} \hat{j} + \frac{\partial}{\partial z} \hat{k} \right) \times (V_x \hat{i} + V_y \hat{j} + V_z \hat{k})$$

$$\longrightarrow \overrightarrow{\nabla} \times \overrightarrow{V} = 2 \overrightarrow{w}$$

→ কোন ভেক্টরদ্বয়ের কার্লের ডাইভারজেন্স শুন্য

$$\overrightarrow{\nabla} (\overrightarrow{\nabla} \times \overrightarrow{V}) = 0$$

(১৫) নদী-নৌকাঃ

নদীর দৈর্ঘ্য বরাবর,

স্রোতের বেগের উপাংশ = u

নৌকার বেগের উপাংশ = v cos α

মোট বেগ = $u + v \cos \alpha$

- নদীর দৈর্ঘ্য বরাবর অতিক্রান্ত দূরত্ব, x = (u + v cos α) t
 নদীর প্রস্থ বরাবর,
 স্রোতের বেগের উপাংশ = 0
 নৌকার বেগের উপাংশ = v sin α
 মোট বেগ = v sin α
- নদীর প্রস্থ বরাবর অতিক্রান্ত দূরত্ব, y = (v sin α) t
- প্রস্থ বরাবর পারাপারে অতিক্রান্ত দূরত্ব . d= (v sin α) Τ
- পারাপারে প্রয়োজনীয় সময়, $T = \frac{d}{v \sin \alpha}$

(১৬) ন্যুনতম সময়ে নদী পারাপারঃ

$$\alpha = 90^{\circ}$$

$$\theta < 90^{\circ}$$

- ullet পারাপারে প্রয়োজনীয় ন্যুনতম সময়, $T_{\mathsf{minimum}} = rac{\mathbf{d}}{\mathbf{v}}$
- ullet লব্ধির মান, $|ar{\mathbf{w}}| = \sqrt{\mathbf{v}^2 + \mathbf{u}^2}$
- লব্ধির দিক (দৈর্ঘ্যের সাথে), $\tan\theta = \frac{u}{v}$

(১৭) ন্যূনতম পথে বা সোজাসুজি পারাপারঃ

$$\alpha = 90^{\circ}$$

$$\theta < 90^{\circ}$$

$$\cos \alpha = \frac{-u}{v}$$

$$ullet$$
 লব্ধির মান, $|ar{w}|=\sqrt{v^2-u^2}$

• পারাপারে প্রয়োজনীয় সময়,
$$\mathbf{T} = \frac{d}{|\overline{w}|} = \frac{d}{\sqrt{v^2 - u^2}}$$

(১৮) ভেক্টর বিভাজনঃ

• লম্ব উপাংশঃ

• উপাংশ দুইটি পরস্পর লম্ব না হলেঃ

$$P = \frac{R \sin \beta}{\sin(\alpha + \beta)}$$

$$Q = \frac{R \sin \alpha}{\sin(\alpha + \beta)}$$

কুটীক্য ভাৰত কিডাপ্ৰ

পদার্থবিজ্ঞান ১ম পত্র

मृि प्रव

(১) সরণ ,বেগ ও ত্বরণঃ

- ullet অবস্থান ভেক্টর, $ec{r}=$ x $ec{\iota}$
- ullet সরণ, $\Delta \, ec{r} = \, ec{r}_f \, \cdot \, ec{r}_i$
- বেগ, $V=rac{dx}{dt}$ গড় বেগ , $ec{v}=rac{\Delta ec{r}}{\Delta t}$ তাৎক্ষণিক বেগ, $ec{v}=rac{dec{r}}{dt}$
- $oldsymbol{\circ}$ ত্বরণ, $\mathbf{a}=rac{d^2x}{dt^2}$ গড় ত্বরণ, $\mathbf{a}=rac{\Delta \vec{V}}{\Delta t}$ তাৎক্ষণিক ত্বরণ, $ec{a}=rac{dec{v}}{dt}$

(২) আপেক্ষিক বেগঃ

• যখন দুইটি বস্তু একই দিকে যায়

 V_A \longleftarrow A বস্তু V_B \longleftarrow B বস্তু

B - এর সাপেক্ষে A এর আপেক্ষিক বেগ,

$$V_{AB} = V_A - V_B$$

যখন দুইটি বস্তু বিপরীত দিকে যায়ঃ

B - এর সাপেক্ষে A এর আপেক্ষিক বেগ,

$$V_{AB} = V_{A} - (-V_{B}) = V_{A} + V_{B}$$

यथन मूरेिं वस (याकान मूरेिंमिक यांग्रः)

B - এর সাপেক্ষে A এর আপেক্ষিক বেগ

$$V_{AB} = \sqrt{V_A^2 + V_B^2 + 2V_A V_B Cos\alpha}$$

•
$$\operatorname{Tan}\theta = \frac{V_{\mathrm{B}}\sin\alpha}{V_{\mathrm{A}} + VB\cos\alpha}$$

(৩) নিক্ষিপ্ত বস্তুর সুত্রাবলী

- $V = V_o gt$
- $h = V_0 t \frac{1}{2} gt^2$
- $V^2 = V_0^2 2gh$

(৪) পড়ন্ত বস্তুর সুত্রাবলী

- $V = V_o + gt$
- $h = V_0 t + \frac{1}{2} g t^2$
- $V^2 = V_0^2 + 2gh$

(৫)অনুভূমিকভাবে নিক্ষিপ্ত বস্তুর ক্ষেত্রেঃ

বস্তুটির উল্লম্ব সরণ , $y = Vy_0 t - \frac{1}{2} gt^2$

বস্তুটির অনুভূমিক সরণ, $x = Vx_0 t = V_0 t$

(৬) প্রাস (Projectile)

	অনুভূমিক উপাংশ	উলম্ব বরাবর
আদিবেগ	V ₀ cos θ	V ₀ sin θ
শেষ বেগ	V cos α	V sin a
ত্বরণ	0	- g
সরল	X	у

- অনুভূমিক বরাবর বেগ $v \cos \alpha = v_0 \cos \theta$
- উলম্ব বরাবর বেগ $v \sin \alpha = v_0 \sin \theta gt$
- অতিক্রান্ত অনুভূমিক গুরুত্ব $\mathbf{x} = (\mathbf{v}_0 \cos \theta)\mathbf{t}$
- অতিক্রান্ত উলম্ব গুরুত্ব $y = (v_0 \sin \theta) t \frac{1}{2} g t^2$

(9)

- উড্ডয়নকাল/পতনকাল, $t' = t'' = \frac{V_0 \sin \theta}{g}$
- বিচরণকাল, $T = \frac{2V_0 \sin \theta}{g}$
- সর্বোচ্চ উচ্চতা, $H = \frac{{V_0}^2 \sin^2 \theta}{2g}$
- পাল্লা, $R = \frac{{V_0}^2 \sin 2\theta}{g}$
- সর্বাধিক পাল্লা, Rmax = $\frac{{V_0}^2}{g}$

(৮) যেকোন মুহুর্তে x ও y অর্থ্যাৎ অবস্থান ভেক্টরের অনুভূমিক ও উলম্ব উপাংশের মধ্যে সম্পর্ক

$$y = (\tan \theta)x - \frac{g}{2(v_0 \cos \theta)^2}x^2$$

$$y = bx - cx^2$$
 (Parabola)

প্রাসের গতিপথ বা চলরেখ একটি পরাবৃত্ত

(৯) যেকোন মুহুর্তে x ও y এর সম্পর্ক তথা অনুভূমিক ও উলম্ব স্থানাঙ্কের মধ্যে সম্পর্ক

$$y = \left(-\frac{g}{2v^2}\right)x^2$$

$$y = cx^2$$
 (Parabola)

অনুভূমিকভাবে নিক্ষিপ্ত বস্তুর গতিপথ একটি পরাবৃত্ত

(১০) কাঠের গুঁড়ি ও বুলেট সংক্রান্ত

$$n = \frac{v_0}{v_1}$$

$$V_1$$
 V_2
 S_1 S_2

ষ্ট্ৰপ্ন
$$a = \frac{\left(\frac{v_o}{n}\right)^2 - v02}{2S_1}$$

$$S_2 = \frac{S1}{n^2 - 1}$$

(১১) রৈখিক ক্ষেত্র ও কৌণিক ক্ষেত্র

	রৈখিক	কৌণিক
সরল	S	θ
আদিবেগ	u/v ₀	ω_{i}
শেষবেগ	v	$\omega_{ m f}$
ত্বরণ	a	α

রৈখিক গতি	কৌণিক গতি
S = vt	$\theta = \theta_o + \omega t$
v = u + at	$\omega_f = \omega_i + \alpha t$
$S = \left(\frac{u+v}{2}\right)t$	$\theta = \theta_o + \left(\frac{\omega_1 + \omega_f}{2}\right) t$
$S = ut + \frac{1}{2}at^2$	$\theta = \theta_0 + \omega_i t + \frac{1}{2} \alpha t^2$
$v^2 = u^2 + 2as$	$\omega_t^2 = \omega_i^2 + 2\alpha\theta$

(১২) রৈখিক গতি কৌণিক গতি

$$S = r\theta$$

$$\omega = \frac{2\pi}{T} = \; \frac{2\pi N}{t} = \, 2\pi f$$

$$v = r\omega$$

$$a = \omega^2 r = \frac{v^2}{r}$$

$$a = r\alpha$$

(ბ৩)

$$\int dt$$

$$\frac{d}{dt}$$

$$\frac{d}{dt}$$

$$\int dt$$

$$\frac{d}{dt}$$

$$\frac{\frac{d}{dt}}{\longrightarrow} \alpha$$

(১৪) কোন বস্তু v₀ আদিবেগ এবং a সমত্বরণে গতিশীল হলে t তম সেকেন্ডে অতিক্রান্ত দূরত্ব –

$$S_{th} = v_o + \frac{2t-1}{2} a$$

$$x \text{ rpm} = x \times \frac{2\pi}{60} \text{ rads}$$

	রৈখিক ক্ষেত্রে	কৌণিক ক্ষেত্রে
সরল	S	θ
বেগ	v	ω
ত্বরণ	а	α
ভর	m	I
ভরবেগ	P = mv	$L = I\omega$
বল	F = ma	$T = I\alpha = F \times d$
গতিশক্তি	$E_x = \frac{1}{2} mv^2$	$E_{k} = \frac{1}{2} I\omega^{2}$

কুটীক্স ভাৰত ডিডিগ্ৰ

পদার্থবিজ্ঞান ১ম পত্র

CONTROL OF THE PARTY OF THE PAR

मृि भंग

(১) নিউটনের গতিসূত্রঃ

রৈখিক গতির ক্ষেত্রেঃ

$$\sum \vec{F} = \vec{0}$$
 হলে $\vec{a} = \vec{0}$

$$\vec{p} = m\vec{v}$$

$$F = m\vec{a}$$

$$\overrightarrow{F_2} = -\overrightarrow{F}_1$$

ঘূর্ণন গতির ক্ষেত্রেঃ

$$\mathbf{\Sigma}\, \mathbf{ au} = \mathbf{0}$$
 হলে $\mathbf{lpha} = \mathbf{0}$

•
$$\alpha = \frac{1}{I} \Sigma \tau$$

$$au_{ij} = - au_{ji}$$

(২) বন্দুকের বেগঃ

$$V = \frac{-m}{M}v$$

গুলির ভর =
$$m$$

গুলির বেগ =
$$v$$

(৩) রকেটের ত্বরণঃ

$$a=rac{F}{M}$$
 $M=$ রকেটের ভর $rac{\Delta m}{\Delta t}=$ জ্বালানি ব্যবহারের হার $=rac{1}{M}igg(rac{\Delta m}{\Delta t}igg) v$ $a=$ রকেটের ত্বরণ $v=$ জ্বালানি বা গ্যাসের বেগ

রকেট অভিকর্ষ বলের সীমার মধ্যে থাকলে -

$$a = \frac{1}{M} \left(\frac{\Delta m}{\Delta t} \right) v - g$$

(৪) প্রাবল্য

তড়িৎক্ষেত্রের কোনো বিন্দুতে স্থাপিত চার্জ +q আধান F বল অনুভব করলে -

- ullet ঐ বিন্দুতে প্রাবল্য , $oldsymbol{E}=rac{F}{q}$
- ullet মহাকর্ষীয় ক্ষেত্র প্রাবল্য , $oldsymbol{E}_G = rac{F}{m}$

(৫) বলঃ

$$F = ma$$

বলের ঘাত, J= বলimes বলের ক্রিয়াকালের গুণফল

$$= F \times \Delta t$$

$$J = \Delta P$$

 \blacksquare ঘাত বল, $F=rac{\mathrm{d}P}{\mathrm{d}t}$

(৬) ঘূর্ণন গতিঃ

- কৌণিক সরণ, $oldsymbol{ heta} = rac{s}{r}$
- ullet কৌণিক বেগ, $w=rac{\mathrm{d} heta}{\mathrm{d}t}$

$$=2\pi f=\frac{v}{r}$$

 $oldsymbol{\cdot}$ রৈখিক বেগ , $\overrightarrow{v} = \overrightarrow{w} imes \overrightarrow{r}$

• কৌণিক ত্বরণ,
$$\pmb{lpha} = rac{\mathrm{d} w}{\mathrm{d} t}$$
 $= rac{\pmb{ heta}}{\pmb{t}^2}$

ঘূর্ণনের সময় গতি নির্দিষ্ট হয়ে গেলে-

$$\vec{a} = \vec{a}_c$$

$$a_c = \frac{v^2}{r}$$

(৭) জড়তার ভ্রামকঃ

$$I = \sum_{i} m_{i} r_{i}^{2}$$
$$= \frac{2E}{w^{2}}$$

(৮) চক্রগতির ব্যাসার্ধ

$$K = \sqrt{\frac{I}{M}}$$

M ভরের কোনো বস্তু অনুভূমিকভাবে গড়াতে থাকলে-

মোট গতিশক্তি,
$$K = \frac{1}{2}mv^2 + \frac{1}{2}Iw^2$$

(৯) কৌণিক ভরবেগ

$$\vec{L} = \overrightarrow{r} \times \vec{p}$$

$$L = Iw$$

(১০) টর্ক বা বলের ভ্রামক

$$\vec{\tau} = \vec{r} \times \vec{F}$$

$$\tau = I\alpha$$

(১১) কৌণিক ভরবেগের সংরক্ষণ সূত্র:

প্রযুক্ত টর্ক শুন্য হলে ব্যবস্থার কৌণিক ভরবেগ ধ্রুবক থাকে।

$$\tau = 0$$
 হলে $\frac{dL}{dt} = 0$

অর্থাৎ, L = ধ্রুবক

(১২)কেন্দ্রমুখী বল

$$F = \frac{mv^2}{r}$$
$$= mw^2 r$$
$$\overrightarrow{F} = -m\frac{v^2}{r^2} \hat{r}$$

ullet কেন্দ্রমুখী ত্বরণ $a=rac{v^2}{r}$

(১৩)কেন্দ্রবিমুখী বল

$$F_c = \frac{mv^2}{r}$$

(১৪) ব্যাংকিং কোণ

কোন বস্তু V সমদ্রুতিতে r ব্যাসার্ধের বৃত্তাকার পথে বাক নেয়ার
 সময় উলম্বের সাথে θ কোণে বাক নিলে -

ব্যাংকিং কোণ,
$$heta= an^{-1}\left(rac{v^2}{rg}
ight)$$

ব্যাংকিং কোণ =θ, রাস্তার প্রস্থ =d,
 রাস্তার ভিতরের প্রান্ত হতে বাইরের প্রান্তের উচ্চতা = h হলে

$$h=dsin \theta$$

(১৫) ঘর্ষণ গুণাংক

- স্থিতি ঘর্ষণ গুণাংক, $\mu_s = \frac{f_s}{R}$ $= tan \lambda; \qquad \lambda =$ ঘর্ষণ কোণ
- গতীয় ঘর্ষণ গুণাংক, $\mu_k = \frac{f_k}{R}$; $f_k =$ গতীয় ঘর্ষণ বল R = অভিলম্বিক প্রতিক্রিয়া

$$F-f_k=ma$$

 $oldsymbol{\omega}$ আবর্ত ঘর্ষণ গুনাংক $oldsymbol{\mu}_r = rac{f_r}{R}$; $oldsymbol{f}_r =$ আবর্ত ঘর্ষণ

(১৬) ভরবেগের পরিবর্তনঃ

$$\Delta P = \text{mv-mu}$$

• ভরবেগের সংরক্ষনশীলতা নীতি-

$$m_1u_1 + m_2u_2 = m_1v_1 + m_2v_2$$

(১৭) স্থিতিস্থাপক সংঘর্ষ,

$$\frac{1}{2}m_1u_1^2 + \frac{1}{2}m_2u_2^2 = \frac{1}{2}m_1v_1^2 + \frac{1}{2}m_2v_2$$

- st যদি ${f u_1}{=}{f u_2}$ হয় তবে সংঘর্ষ হবে না।
- st যদি $\mathbf{m_1} \mathbf{=} \mathbf{m_2}$ হয় তবে $\mathbf{v_1} \mathbf{=} \mathbf{v_2}$ এবং $\mathbf{v_2} \mathbf{=} \mathbf{u_1}$ হবে
- st যদি $m m_1>>m_2$ হয় তবে $m v_1>u_1$ এবং $m v_2=2u_2$ হবে

শর্ট ট্রিক্স

(১) গতিশক্তি n গুণ বৃদ্ধি করলে বর্তমান বেগ,

$$v_2 = v_1 \times \sqrt{n}$$

(২) বেগ n গুণ বৃদ্ধি করলে গতিশক্তি,

$$E_2 = (n^2 \times E_1)$$

(৩) লিফট a ত্বরণে উপরে উঠলে বা নিচে নামলে ওজন,

$$W = m (g \pm a)$$

(8) লিফটে h উচ্চতা থেকে কোনো বস্তুকে ছেড়ে দিলে ভূমি স্পর্শ করার সময়,

$$t = \sqrt{\frac{2h}{g \pm a}}$$

(৫) লিফট g ত্বরণে নিচে নামলে ওজন,

$$W = m(g-g) = 0$$

নিউটনিয় বলবিদ্যা

(৬) আনত তল বরাবর গোলক আকৃতির কিছু গড়িয়ে পড়লে মোট শক্তি,

$$E = \frac{7}{10} \, \text{mv}^2$$

(৭) খাড়া অবস্থায় রাখা L মিটার দৈর্ঘের দন্ড কাত হয়ে পড়লে,

$$w = \frac{1}{L} \sqrt{3g}$$

ত্তু তি ক্যু তিড়াপ্ত

পদার্থবিজ্ঞান ১ম পত্র

काफा, भारत हैं।

সূচিপত্ৰ

(১) কৃতকাজঃ

 $\Theta = F^S$

Unit: J

 $Dim : ML^2T^{-2}$

(\(\frac{1}{2}\)) • (+ve) work
$$\rightarrow \cos\theta$$
 (+ve) $\rightarrow 0^{\circ} \le \theta < 90^{\circ}$

• Zero work $\rightarrow \cos\theta (0) \rightarrow \theta = 90^{\circ}$

• (-ve) work $\rightarrow \cos\theta$ (-ve) $\rightarrow 90^{\circ} < \theta \le 180^{\circ}$

(৩) পরিবর্তনশীল বল দ্বারা কৃতকাজঃ

•
$$W = \int_{x_i}^{x_f} F(x) dx$$

(৪) ঘূর্ণন গতির ক্ষেত্রে -

কৃতকাজ = প্রযুক্ত টর্ক
$$imes$$
 অতিক্রান্ত দূরত্ব $= au(heta_2- heta_1)$

ঘুর্ণায়মান বস্তুর গতিশক্তি, $\mathbf{K} = \frac{1}{2} \boldsymbol{I} \boldsymbol{\omega}^2$

(৫) চলন-ঘূর্ণন গতি সম্পন্ন বস্তুর গতিশক্তি-

$$K = \frac{1}{2}Mv_{cm}^2 + \frac{1}{2}Icm$$

$$\omega^2$$

বস্তুর ভর
$$=$$
 M
ভরকেন্দ্রের বেগ $=$ V_{cm}
ঘূর্ণন জড়তা $=$ I_{cm}
কৌণিক বেগ $=$ ω

(৬) অভিকর্ষজ বিভব শক্তি

$$U = mgh$$

(৭) হুকের সূত্রঃ

- F ∝ -x
- $F_{agent} = Kx$
- বল ধ্রুবক, K = $\frac{F_{agent}}{x}$ [Unit: Nm-1]
- সমান্তরালে যুক্ত স্প্রিং এর তুল্য বল ধ্রুবক $K=k_1+k_2+\ldots$
- সমান্তরালে যুক্ত স্প্রিং এর তুল্য বল ধ্রুবক

$$\frac{1}{k} = \frac{1}{k_1} + \frac{1}{k_2} + \dots$$

•
$$F_{restoring} = -Kx$$

•
$$W_{agent} = \frac{K}{2} (x_f^2 - X_i^2)$$

(১০) গ্রহের কেন্দ্র হতে r_i দূরত্বে থাকা কোন বস্তুকে সরিয়ে r_f দূরত্বে নিতে Agent কর্তৃক কৃতকাজঃ

- $W_{\text{agent}} = \text{GMm}\left[\frac{1}{r_i} \frac{1}{r_f}\right]$ (বেশি উচ্চতার ক্ষেত্রে)
- ullet মহাকর্ষ বল দ্বারা কৃতকাজঃ GMm $\left[rac{1}{r_f} rac{1}{r_i}
 ight]$
- $F_{\text{earth}} = -G \frac{Mm}{r^2}$

(১১) ভূপৃষ্ঠ হতে কোন বস্তুর h সরণ ঘটানোর জন্য-

- প্রযুক্ত বল, $F = -F_G = \frac{GMm}{r^2}$
- **F** বলের জন্য কৃতকাজ , $W = \frac{GMmh}{R(R+h)}$

(১২) গতিশক্তি ও ভরবেগের সম্পর্কঃ

• বস্তুর গতিশক্তি, $K = \frac{1}{2} m v^2$ $K = \frac{P^2}{2m}$

(১৩) কাজ-শক্তি উপপাদ্য

প্রযুক্ত বল দ্বারা কৃতকাজ = বস্তুটির গতিশক্তির পরিবর্তন
 W = K - K₀ = Δ K

(১৪) কোন স্প্রিংকে x=0 হতে x=x অবস্থানে টানটান করলে, স্প্রিং এ সঞ্চিত বিভবশক্তিঃ

•
$$U = \frac{1}{2} Kx^2$$

(১৫) যান্ত্রিক শক্তির নিত্যতা বা সংরক্ষনশীলতাঃ

- গতিশক্তি + বিভব শক্তি = ধ্রুবক
- $K_i + U_i = K_f + U_f$

(১৬) কোন বস্তুকে এক অবস্থান থেকে অন্য অবস্থানে নিতে কৃতকাজ :

$$\mathbf{W} = \mathbf{mg} \left(\mathbf{h_f} - \mathbf{h_i} \right)$$
 প্রসঙ্গতল বা ভূমি হতে উচ্চতা ভূমি হতে শেষ উচ্চতা

(১৭) কুয়া থেকে পানি উত্তোলনে কৃতকাজঃ

• W= mg Δ h

Δh = পানির ভরকেন্দ্রের উলম্ব সরন

= উপরের স্তরের উলম্ব সরন + নিচের স্তরের উলম্ব সরন

পানিপূর্ণ কুয়ার ক্ষেত্রে,

$$\Delta h = \frac{0+H}{2} = \frac{H}{2}$$

(১৮) পরপর n সংখ্যক ইট তুলে রাখতে কৃতকাজঃ

• $W = mgh.^nC_2$

Unit: Watt বা J/S বা H.P

1 Horse power = 746 watt

(১৯) ক্ষমতাঃ

•
$$P = \frac{W}{t} = \frac{FS}{t} = Fv$$

(২০) কর্মদক্ষতাঃ

- η = <u>কার্যকর ক্ষমতা</u> মোটক্ষমতা
- $\eta = \frac{W}{E} \times 100\%$

(২১) ক্ষমতা বেগ বলঃ

• P = F.V

শর্ট ট্রিক্স

(১) n সংখ্যক ইট যাদের প্রত্যেকের ভর m এবং উচ্চতা h পরষ্পর সাজিয়ে স্তম্ভ বানানো হলে কৃতকাজ;

$$E = mg \frac{n(n-1)}{2}$$

(২) অভিকর্ষের অভাবে h উচ্চতা হতে ,মুক্তভাবে পতনশীল বস্তু ভূমিতে পড়ার পর কাদার ভিতরে r দূরত্ব পর্যন্ত পৌছালে, কাদায় প্রযুক্ত গড় বল,

$$F = \frac{mg(h+r)}{r}$$

(৩) m ভরের কোনো গুলি v বেগ নিয়ে কোনো তক্তার ভিতর r দূরত্ব ভেদ করে থেমে গেলে ,

$$Fr = \frac{1}{2} mv^2$$

(8) m ভরের একটি হাতুড়ি দ্বারা নগন্য ভরের একটি পেরেককে v বেগে আঘাত করায় পেরেকটি দেয়ালে x দূরত্ব আবেশ করলে দেয়ালের বাধা,

$$Fx = \frac{1}{2} mv^2 + mgx$$
 [যখন দেয়াল আনুভূমিক]

$$Fx = \frac{1}{2} mv^2$$
 [যখন দেয়াল উলম্ব]

সূচিপত্র ৪০

ত্তু তি ক্যু তিড়াপ্ত

পদার্থবিজ্ঞান ১ম পত্র

HEITE SOURCE

मृिष्ठ

(১) নিউটনের মহাকর্ষ সূত্রঃ

•
$$F = \frac{Gm_1m_2}{r^2}$$
 $G = 6 \cdot 673 \times 10^{-11} Nm^2 kg^{-2}$

$$oldsymbol{ec{F}}=rac{Gm_1m_2}{r^2}\widehat{oldsymbol{\eta}}=Grac{m_1m_2}{r^3}ec{r}$$
 মাত্রাগু $L^3M^{-1}T^{-2}$

(৩)

• ভূপৃষ্ঠে
$$\rightarrow g = \frac{GM}{R^2} = \frac{4}{3}\pi \rho GR$$

$$ullet$$
ভূপৃষ্ঠ হতে $oldsymbol{\mathsf{h}}$ উচ্চতায় $oldsymbol{ o} g_{up} = rac{gR^2}{(R+h)^2} = \left(1 - rac{2h}{R}
ight)g$

• ভুপৃষ্ঠ হতে h গভীরতায় —>

•
$$g_{down} = \frac{G\dot{M}}{(R-h)^2}$$
 • $g_{down} = \frac{4}{3}G\pi\rho(R-h)$

$$= \left(\frac{R-h}{R}\right)g$$

$$= \left(1 - \frac{h}{R}\right)g$$

(৪) ভিন্ন অক্ষাংশেঃ

•
$$g_{\lambda} = g - \omega^2 R \cos^2 \lambda$$

•
$$\omega = \frac{2\pi}{T} = \frac{2\pi}{24 \times 60 \times 60} = 7.27 \times 10^{-5} rads^{-1}$$

(4) Some Constant:

$$oldsymbol{M}_e = 6 imes 10^{24} \ kg = rac{gR^2}{G} =$$
পৃথিবীর ভর

$$R_e = 6.4 \times 10^6 m$$

•
$$\rho_e = 5.5 \times 10^5 \, kgm^{-3}$$

(৬) বিভিন্ন অঞ্চলে ঘূর্ণনের জন্য ${f g}'$ এর মানঃ

$$ullet$$
 মেরুতে $igodap \lambda = 90^0$

$$g_{pole} = g = 9.8 \, ms^{-2}$$

$$g_{equator} = g - \omega^2 R = 9.78039 \text{ ms}^{-2}$$
 (lowest value)

(৭) মহাকর্ষ ক্ষেত্র প্রাবল্যঃ

•
$$E_G = \frac{F}{m}$$
 Unit: Nkg^{-1} Dim: LT^{-2}

(৮) মহাকর্ষীয় বিভবঃ

•
$$v = GM\left(\frac{1}{r_1} - \frac{1}{r_2}\right) = -\frac{GM}{R}$$
 Unit: Jkg^{-1} Dim: L^2T^{-2}

যেকোনো গ্রহের

$$ullet$$
 মহাকর্ষীয় বিভব শক্তি, $oldsymbol{\mathrm{U}}=oldsymbol{\mathrm{mV}}=-rac{oldsymbol{\mathit{M}}oldsymbol{\mathit{mG}}}{r}$

(৯) মহাকর্ষীয় বিভব ←→ প্রাবল্যঃ

•
$$\int E dr = v$$

•
$$E = -\frac{dv}{dr} = -\overrightarrow{\nabla}v$$

মহাকর্ষীয় প্রাবল্য হচ্ছে মহাকর্ষীয় বিভবের ঋণাত্ত্বক Gradient

(১০) Escape Velpcity (মুক্তিবেগ):

$$V_e = \sqrt{rac{2GM}{R}} = \sqrt{2gR}$$
 পৃথিবীতে মুক্তিবেগের মান= 11200 m/s= 11.2 km/s

(১১) কৃত্রিম উপগ্রহের বেগ, আবর্তনকাল এবং ভূপৃষ্ঠ হতে উচ্চতাঃ

•
$$v = \sqrt{\frac{GM}{R+h}}$$

$$h = \left(\frac{GMT^2}{4\pi^2}\right)^{\frac{1}{3}} - R$$

•
$$T=2\pi\sqrt{\frac{(R+h)^3}{GM}}$$

•
$$K = \frac{GMm}{2(R+h)}$$
 (গতিশক্তি)

•
$$v = \frac{2\pi(R+h)}{T}$$

ullet কৃত্রিম উপগ্রহের কেন্দ্রমুখী বল $oldsymbol{\mathsf{,F}} = rac{mv^2}{R+h}$

(১২) মুক্তিবেগের সাথে একটি কৃত্রিম উপগ্রহের উৎক্ষেপণ বেগের সম্পর্কঃ

•
$$v = 0.707V_e$$

(১৩) ভূ-স্থির উপগ্রহের বেগ এবং উচ্চতা(ভূ-পৃষ্ঠ হতে):

•
$$h = 3.6 \times 10^4 Km$$
 • $v = 3.08 \text{ km/s}$

$$h = \frac{v^2}{2g - \frac{v^2}{R}}$$

(১৫) r ব্যাসার্ধের বৃত্তাকার পথে ঘূর্ণনরত বস্তুর কেন্দ্রমুখী বল,

•
$$F = \frac{mv^2}{r}$$

(১৬)

$$ullet$$
 কেপলারের ২য় সূত্রঃ $rac{dA}{dt}=oldsymbol{0}$

$$ullet$$
 কেপলারের ৩য় সূত্রঃ $T^2 lpha \, r^3 \longrightarrow rac{{T_1}^2}{{r_1}^3} = rac{{T_2}^2}{r^3}$

$$T^2 = Kr^3$$

$$K = \frac{4\pi^2}{GM}$$

(১৭) পড়ন্ত বস্তু(Falling bodies):

• ২য় সুত্রঃ
$$v \alpha t \longrightarrow \frac{v_1}{t_1} = \frac{v_2}{t_2}$$

• ৩য় সুত্রঃ
$$h \alpha t^2 \longrightarrow \frac{h_1}{{t_1}^2} = \frac{h_2}{{t_2}^2}$$

(১৮) সরল দোলকঃ

- সমকাল সূত্রঃ L, g = constant হলে, T = constant
- দৈর্ঘ্যের সূত্রঃ ${f g}={f constant}$ হলে , ${f T}$ ${f lpha}$ ${f \sqrt{L}}$
- ullet ত্বরণের সূত্রঃ L = constant হলে, T lpha $\sqrt{rac{l}{g}}$
- ভরের সূত্রঃ L, g = constant হলে, T ববের ভর, আয়তন, উপাদান ইত্যাদির উপর নির্ভর করে না
- ullet সরল দোলকের সূত্রঃ $extit{\emph{T}} = 2\pi \sqrt{rac{l}{g}}$

(১৯) সরল দোলকের ব্যবহারঃ

- $oldsymbol{\cdot}$ পাহাড়ের চুড়ায় অভিকর্ষজ ত্বরণঃ $\dfrac{T_{hill\ top}}{T} = \sqrt{\dfrac{g}{g_{hill\ top}}}$
- পাহাড়ের উচ্চতা নির্ণয়েঃ $rac{T_{hill\ top}}{T}=\sqrt{rac{(R+h)^2}{R^2}}=(1-rac{h}{R})$

(২০) ভূ-পৃষ্ঠে সেকেন্ড দোলকের কার্যকর দৈর্ঘ্যঃ

L = 0.992948 m

(२४) সূর্যের চারদিকে ঘূর্ণায়মান গ্রহের পর্যায়কালঃ

$$T = \frac{2\pi r}{v}$$

শর্ট ট্রিক্স

(১) h উচ্চতায় অভিকর্ষজ ত্বরণ পৃথিবী পৃষ্ঠে $\frac{1}{n}$ অংশ হলে,

$$h = (\sqrt{n}-1) R$$

$$h = (\sqrt{\frac{g}{g_n}} - 1) R$$

(২) ভূ-পৃষ্ঠের অভ্যন্তরে d দূরত্বে গেলে অভিকর্ষজ ত্বরণ ভূপৃষ্ঠের নু অংশ হলে,

$$d = (\frac{n-1}{n}) R$$

(৩) h উচ্চতায় অভিকর্ষজ ত্বরণ পৃথিবী পৃষ্ঠের x% হলে,

$$h = (\frac{9.81 - \sqrt{x}}{\sqrt{x}}) R$$

(8) পৃথিবীর ব্যাসার্ধ্য চাঁদের ব্যাসার্ধ্যের ${\bf n}_1$ গুণ এবং পৃথিবীর ভর চাঁদের ভরের ${\bf n}_2$ গুণ হলে পৃথিবীর মুক্তিবেগ চাঁদের মুক্তিবেগের $\sqrt{\frac{n_2}{n_1}}$ গুণ

কুটীক_{ত্র} কিডিক্র

পদার্থবিজ্ঞান ১ম পত্র

ध्राध्य शंचलक धर्म

मृि प्रव

ি দৈর্ঘ্য বিকৃতি
$$=\frac{l}{L}$$
 আয়তন বিকৃতি $=\frac{v}{v}$ ব্যবর্তন বিকৃতি $=$ ব্যবর্তন কোণ $=\theta^C=\frac{d}{D}$ $=\mathbf{tan}\theta$ (যখন ব্যবর্তন কোণ θ খুব ছোট)

পীড়ন =
$$\frac{F}{A}$$
 ; অসহ পীড়ন = $\frac{\text{অসহ বল}}{\text{ক্ষেত্ৰফল}}$

$$ullet$$
 ইয়ং গুনাঙ্ক, $oldsymbol{Y}=rac{FL}{Al}=rac{MgL}{\pi r^2 l}$ আয়তন গুনাঙ্ক, $oldsymbol{B}=rac{FV}{Av}=oldsymbol{
ho}rac{V}{v}$ দৃঢ়তার গুনাঙ্ক, $oldsymbol{\eta}=rac{F}{A heta}$

- lacktriangle পয়সনের অনুপাত, $\sigma=rac{lpha la}{\hbar}$ বিকৃতি $=rac{Ld}{lD}$; $-1<6<rac{1}{2}$
- একক আয়তনে সঞ্চিত স্থিতিশক্তি $=rac{1}{2} imes$ পীড়ন imes বিকৃতি

lacktriangle দৈর্ঘ্য বিকৃতির ক্ষেত্রে মোট স্থিতিশক্তি, lacktriangle $W=rac{1}{2}.rac{{
m YA}l^2}{L}$

ব্যবর্তন " " " , $W=rac{1}{2}$. $\eta A \delta^2$

আয়তন " " " , $W=rac{1}{2}.rac{Bv^2}{V}$

• $Y = 3B(1-26) = 2\eta(1+6)$

- $\frac{9}{Y} = \frac{3}{\eta} + \frac{1}{B}$
- সংনম্যতা, $\frac{1}{B} = \frac{v}{PV}$

- ullet তাপমাত্রা পরিবর্তনের প্রযুক্ত বল, $oldsymbol{\mathrm{F}} = oldsymbol{\mathrm{YA}} oldsymbol{lpha} igtriangle oldsymbol{ heta}$
- রুদ্ধতাপীয় পরিবর্তনের ক্ষেত্রে, $\mathbf{B} = \mathbf{v} oldsymbol{P_0}$
- ullet পৃষ্ঠটান, $\mathbf{T}=rac{F}{l}$
- ullet পৃষ্ঠশক্তি, $oldsymbol{E}=rac{W}{\Delta A}=T$
- ক্ষেত্রফল পরিবর্তনের জন্য কৃতকাজ, $oldsymbol{W} = igtriangleup oldsymbol{A} imes oldsymbol{T}$
- ullet পানির ফোঁটায় অতিরিক্ত চাপ, $oldsymbol{P}=rac{2T}{r}$ বুদবুদের ফোঁটায় অতিরিক্ত চাপ, $oldsymbol{P}=rac{4T}{r}$
- N সংখ্যক r ব্যাসার্ধের তরলের ফোঁটাকে জোড়া লাগিয়ে R
 ব্যাসার্ধের একটি ফোঁটায় পরিণত করতে

কৃতকাজ
$$W = 4\pi (Nr^2 - R^2) \times T$$

 R ব্যাসার্ধের একটি বড় ফোঁটাকে সমআয়তনের N সংখ্যক ফোঁটায় পরিণত করতে,

কৃতকাজ বা ব্যয়িত শক্তি , $W = E = 4\pi R^2 (N^{\frac{1}{3}} - 1)T$

lacktriangle প্লবতা , f U = অপসারিত তরলের ওজন = f V
ho g

lacktriangle স্টোকাস এর সুত্র, $F=6\pi r\eta v$

$$lacktriangle$$
 সান্দ্র বল, $F=\eta Arac{dv}{dx}$

$$lacktriangle$$
 সান্ত্ৰতা গুণাঙ্ক, $oldsymbol{\eta}=rac{F}{Arac{dv}{dx}}$

সান্দ্রতার উপর তাপমাত্রার প্রভাব :

• গ্যাসের ক্ষেত্রে -

$$\frac{\eta_{\theta}}{\eta_{0}} = \frac{273 + C}{T + C} \left(\frac{T}{273}\right)^{\frac{3}{2}}$$

• তরলের ক্ষেত্রে -

$$\eta = \frac{\eta_0}{1 + \alpha \theta + \beta \theta^2}$$
; α, β দুটি ধ্রুবক

 $heta^\circ$ C তাপমাত্রায় তরলের সান্দ্রতা গুণাঙ্ক = $\eta_ heta$

 $\mathbf{0}^{\circ}$ C তাপমাত্রায় তরলের সান্দ্রতা গুণাঙ্ক = η_{0}

পরম তাপমাত্রা = T

সাদারল্যান্ড ধ্রুবক = C

ullet প্রান্তিক বেগ, $oldsymbol{
u}=rac{2}{9}rac{r^2(
ho_sho_f)g}{\eta}$ পানির মধ্যে বায়ুর বুদবুদের ক্ষেত্রে $oldsymbol{
u}=rac{2}{9}rac{r^2(
ho_fho_s)g}{\eta}$

$$\mathbf{T}_{ heta}=\mathbf{T}_{0}(\mathbf{1} ext{-}lpha heta)$$
 $oldsymbol{ heta}^{\circ}$ $oldsymbol{C}$ তাপমাত্রায় তরলের পৃষ্ঠটান $=\mathbf{T}_{ heta}$
 $oldsymbol{o}^{\circ}$ $oldsymbol{C}$ তাপমাত্রায় তরলের পৃষ্ঠটান $=\mathbf{T}_{0}$
ধ্রুবক $=lpha$

$$T = \frac{r\rho g\left(h + \frac{r}{3}\right)}{2\cos\theta}$$

$$T = \frac{r\rho g\left(h + \frac{r}{3}\right)}{2} \quad \left[\theta = 0^0\right]$$

$$T = \frac{hr\rho g}{2\cos\theta} \quad [r \ll h \, \overline{\varrho}$$
 ে[

$$T = rac{hr
ho g}{2} \; \left[r \ll h \; ext{এবং} \; heta^0 pprox \; 0^0$$
হলে $brace$

কুটীক্স ভাৰত কিডাপ্ৰ

পদার্থবিজ্ঞান ১ম পত্র

সূচিপত্ৰ

(১) সরল ছন্দিত স্পন্দন সম্পন্ন কোনো কণার সুত্রাবলি—

i) সরণ,
$$\mathbf{x} = \mathbf{A}\sin(\omega\mathbf{t} + \mathbf{\delta})$$
 • সর্বোচ্চ সরণ, $x_{max} = \mathbf{A}$

ii) কৌণিক কম্পাঙ্ক,
$$\omega = \sqrt{rac{k}{m}}$$

$${ t iii)}$$
 পর্যায়কাল, ${
m T}=rac{2\pi}{\omega}=2\pi\sqrt{rac{m}{k}}$

iv) বেগ,
$${f v}=\omega{f A}\cos(\omega{f t}+{f \delta})$$
 ্ সর্বোচ্চ বেগ, ${f V}_{max}=\omega{f A}$ $=\omega\sqrt{{f A}^2-x^2}$

v) ত্ববণ,
$$a = -\omega^2 A \sin(\omega t + \delta)$$

 $= -\omega^2 B \cos(\omega t + \delta)$
 $= -\omega^2 x$

সর্বোচ্চ ত্বরণ, $a_{max}=-\omega^2 A$

vi) প্রত্যায়নী বল,
$$F = -kx$$

vii) স্থিতিশক্তি,
$$E_p=rac{1}{2}kA^2sin^2(\omega t+\delta)$$
 $=rac{1}{2}\mathbf{k}x^2$

পর্যায়বৃত গতি

$${f viii)}$$
 গতিশক্তি, $E_k=rac{1}{2}kA^2cos^2(\omega {f t}+\delta)$ $=rac{1}{2}{f k}(A^2-x^2)$

$$ilde{ ilde{I}}$$
 মোট শক্তি, ${m E}_p + {m E}_k = rac{1}{2} k A^2$

(২) স্প্রিং সংক্রান্তঃ

i) দোলনকাল,
$$\mathrm{T}=2\pi\sqrt{rac{m}{k}}=2\pi\sqrt{rac{e}{g}}$$

ii) স্প্রিং এর ভর উপেক্ষনীয় না হলে,

$$\mathbf{T}=2\pi\sqrt{rac{m_1+m_2}{k}}$$
 $m_1=$ স্প্রিং এর ভর $m_2=$ স্প্রিং এ ঝুলানো বস্তুর ভর

পর্যায়বৃত্ত গতি

এক পর্যায়কাল পরিমান সময়ে স্প্রিং এর,

i) গড় গতিশক্তি
$$=rac{1}{4}\,\mathbf{k}A^2$$

ii) গড় স্থিতিশক্তি
$$=rac{1}{6}~{f k}A^2$$

🔹 এক চক্র পরিমান সময়ে স্প্রিং এর,

i) গড় গতিশক্তি
$$=rac{1}{3}\mathbf{k}A^2$$

ii) গড় স্থিতিশক্তি
$$=rac{1}{4}~{
m k}A^2$$

শ্রেণিতে সজ্জিত একাধিক স্প্রিং এর জন্য,

i)
$$\frac{1}{K_s} = \frac{1}{K_1} + \frac{1}{K_2} \dots + \frac{1}{K_n}$$

সমান্তরালে সজ্জিত একাধিক স্প্রিং এর জন্য,

$$K_p = K_1 + K_2 \dots + K_n$$

(৩) সরল দোলক সম্পর্কিতঃ

- i) দোলনকাল, $\mathrm{T}=2\pi\sqrt{rac{L}{g}}$
- ii) লিফটে সরলদোলকের দোলনকাল, $T=2\pi\sqrt{rac{L}{g\pm a}}$

iii)
$$\mathbf{h} = \left[\left(\frac{g}{g'} \right)^{1/2} - 1 \right] \mathbf{R} = \left[\left(\frac{T'}{T} \right) - 1 \right] \mathbf{R}$$

- $extstyle{ iny iv}$) সেকেন্ড দোলকের জন্য, $extstyle{ iny L}=rac{g}{\pi^2}$
- \mathbf{v} ত্রুটিপূর্ণ দোলকের জন্য, $rac{T_2}{T_1} = rac{2 imes 86400}{86400 \pm x}$

যেখানে x হল যতটি দোলন কম বা বেশি দেয়

vi) ভূপৃষ্ঠ হতে
$${f h}$$
 উচ্চতায়, $rac{T_2}{T_1}=\sqrt{rac{g_1}{g_2}}=\sqrt{rac{L_2}{L_1}}=rac{R+h}{R}$

vii) ভূপৃষ্ঠ হতে
$${f h}$$
 গভীরতায়, ${r_2\over r_1}=\sqrt{g_1\over g_2}=\sqrt{L_1\over L_1}=\sqrt{1\over (1-{h\over R})}$

পর্যায়বৃত্ত গতি

 $oldsymbol{viii}$) একই স্থানে দুইটি গোলকের কার্যকরী দৈর্ঘ্য $oldsymbol{L}_{1,}oldsymbol{L}_{2}$ এবং দোলনকাল $oldsymbol{T}_{1,}oldsymbol{T}_{2}$ হলে,

$$\frac{T_2}{T_1} = \sqrt{\frac{L_2}{L_1}}$$

ix) সরল দোলকের কার্যকর দৈর্ঘ্য , L = l+r

সুতার দৈর্ঘ্য = l ববের ব্যাসার্ধ= r

কুটাক্স ভাৰত কিড়াক্স

পদার্থবিজ্ঞান ১ম পত্র

मृिष्ठ

(১) অগ্রগামী তরঙ্গের সমীকরণঃ

(i)
$$y = A \sin(\omega t \pm \varphi)$$

(ii)
$$y = A \sin\left(\omega t \pm \frac{2\pi}{\lambda}x\right)$$

$$(iii)y = A \sin \frac{2\pi}{\lambda} (vt \pm x)$$

(iv)
$$y = A \sin 2\pi \left(\frac{t}{T} \pm \frac{x}{\lambda}\right)$$

- ullet একই মাধ্যমের জন্য, ${m f}_1 {m \lambda}_1 = {m f}_2 {m \lambda}_2$
- $\mathbf{v} = \mathbf{f} \lambda$
- ullet N কম্পনে অতিক্রান্ত দূরত্ব , ${m S}={m N}{m \lambda}$
- lacksquare একই কম্পাঙ্কের তরঙ্গের জন্য , $rac{v_1}{v2}=rac{\lambda_1}{\lambda_2}$
- দশা পার্থক্য $= \frac{2\pi}{\lambda} imes$ পথ পার্থক্য [দশা পার্থক্য 2π বেশি হলে দশা পার্থক্য হতে 2π বিয়োগ করতে হবে]

ত্বরণ ও বেগ সম্পর্কিতঃ-

$$\mathbf{v} = \mathbf{\omega} \sqrt{A^2 - x^2}$$

$$a = \omega^2 \sqrt{A^2 - x^2} = -\omega^2 x$$

$$v_{max} = \omega A$$

$$a_{max} = \omega^2 A$$

স্থির তরঙ্গের সমীকরণ-

$$Y=2acosrac{2\pi x}{\lambda}sinrac{2\pi}{\lambda}vt$$
 $=Asinrac{2\pi}{\lambda}vt$ যেখানে $A=2acosrac{2\pi x}{\lambda}$

 δ দশা পার্থক্য বিশিষ্ট দুইটি তরঙ্গ যদি কোনো বিন্দুতে মিলিত হয় তবে লব্ধি বিস্তার,

$$A = \sqrt{A_1^2 + A_2^2 + 2A_1A_2\cos\theta}$$

- লব্ধি তরঙ্গের কম্পাংক, $f = \frac{1}{2}(f_1 + f_2)$
- বিট সংখ্যা, N = $f_1 \sim f_2$

$$f_1 = f_2 \pm N$$

$$f_2$$
 = জানা কম্পাংক

(২) তীব্ৰতা সম্পৰ্কিতঃ

$$1) I = 2\pi^2 \rho f^2 a^2 V$$

$$2) I = \frac{P}{4\pi r^2}$$

3) তীব্ৰতা লেভেল, $eta = log \quad \left(rac{I}{I_0}
ight)Bel$

যেখানে,
$$I_0=10^{-12}Wm^{-2}$$
 $=10\log\left(rac{I}{I_0}
ight) ext{dB}$

- **4)** ক্ষমতা লেভেল, $\beta = log \left(\frac{P}{P_0}\right) Bel$
- 5) প্রাবল্যের জন্য, $rac{I_1}{I_2} = rac{r_1^2}{r_2^2}$

6)
$$\triangle \beta = 10 \log \left(\frac{I_2}{I_1}\right) dB$$

$$= 10 \log \left(\frac{p_2}{p_1}\right) dB$$

(৩) টানা তার সম্পর্কিত সুত্রাবলিঃ

1) কম্পাঙ্ক,
$$\mathbf{f}=rac{1}{2l}\sqrt{rac{T}{\mu}}=rac{1}{2l}\sqrt{rac{Mg}{\mu}}$$

$$2) \mu = \frac{m}{l} = \pi r^2 p$$

3)
$$V=\sqrt{\frac{T}{\mu}}$$

- ullet এক মুখ বন্ধ হলে, ${m f}_0=rac{artheta}{4l}$; ${m f}_n=(2{
 m n}+1){m f}_0$
- দুই মুখ খোলা হলে, ${f}_0=rac{artheta}{2l}$; ${f}_n=({
 m n}+1){f}_0$
- $\bullet \quad \mathbf{1)} \quad \mathbf{k} = \frac{2\pi}{\lambda} = \frac{\omega}{\vartheta}$
 - **2)** $T = \frac{t}{N} = \frac{1}{f}$
 - 3) $\omega = \frac{2\pi}{T} = 2\pi f$
- বিপরিত দশা সম্পন্ন দুটি কণার মধ্যবর্তী দূরত্ব $=rac{\lambda}{2}$

একই দশা সম্পন্ন দুটি কণার মধ্যবর্তী দূরত্ব= λ

একটি সুস্পন্দ বিন্দু ও একটি নিস্পন্দ বিন্দুর মধ্যবর্তী দূরত্ব $=rac{\lambda}{4}$

পরপর দুটি সুস্পন্দ বিন্দুর দূরত্ব $=rac{\lambda}{2}$

সিবেক এর সাইরেনের কম্পাঙ্ক $\mathbf{f} = \mathbf{m} \times \mathbf{n}$

যেখানে, $\mathbf{m}=$ ছিদ্র সংখ্যা, $\mathbf{n}=$ প্রতি সেকেন্ডে ঘূর্ণন

ullet অর্গান নলে মুলসরের কম্পাঙ্ক f_0 ,

তরঙ্গদৈর্ঘ্য λ_0 এবং

নলের দৈর্ঘ্য । হলে,

i)
$$l = \frac{\lambda_0}{4}$$
 ii) $f_0 = \frac{V}{\lambda_0} = \frac{V}{4l}$

- lacktriangle বিট শুনতে পাওয়ার শর্ত $-rac{1}{f_1 \sim f_2}$
- $oldsymbol{t}^0 C$ তাপমাত্রায় শব্দের বেগ, $oldsymbol{artheta}=332+0.6 {
 m t}$

কুটীক্স অব কিডাগ্র

পদার্থবিজ্ঞান ১ম পত্র

সূচিপত্ৰ

(a)
$$n = \frac{N}{N_A} = \frac{W}{M}$$

(২) • বয়েলের সূত্রঃ
$$P_1 v_1 = P_2 v_2 = P_3 v_3 = ...$$
 ... = ধ্রুবক

• চার্লসের সূত্রঃ
$$\frac{V_1}{T_1} = \frac{V_2}{T_2} = ...$$
 ... = ধ্রুবক

• বয়েল চার্লসের সমন্বিত রূপঃ
$$\frac{P_1 \, v_1}{T_1} = \frac{P_2 \, v_2}{T_2}$$

• গে-লুস্যাকের সুত্রঃ
$$\frac{P_2}{T_1}=\frac{P_2}{T_2}$$

• অ্যাভোগেড্রো সুত্রঃ
$$\frac{V_1}{n_1} = \frac{V_2}{n_2}$$

(৩) ঘনত্ব তাপমাত্রা চাপঃ

(৪) আদর্শ গ্যাস সূত্রঃ

- PV = nRT
- $R = 8.314 \text{ J mol}^{-1} \text{ k}^{-1}$
- $R = 0.0821 L atm mol^{-1}k^{-1}$
- $R = 8.314 \times 10^7$ dyne cm mol⁻¹ k⁻¹
- $R = 1.987 \text{ cal mol}^{-1} \text{ k}^{-1}$
- R = 2783.63 ft. Ib mol⁻¹ k⁻¹

(৫) আদর্শ গ্যাস সূত্রের ব্যবহারঃ (M = Kg mol-1 একক ভরে)

- গ্যাসের ঘনত্ব নির্ণয়েঃ $d = \frac{PM}{RT}$
- গ্যাসের আণবিক ভর নির্ণয়েঃ $M = \frac{WRT}{PV}$

(b) • PV =
$$\frac{1}{3} \text{ MC}^2_{\text{rms}} = \frac{1}{3} \text{mNC}^2_{\text{rms}}$$

•
$$P = \frac{1}{3} mnc^2_{rms} = \frac{1}{3} \rho C^2_{rms}$$

(৭) গতিতত্ত্ব সূত্রঃ

• Crms =
$$\sqrt{\frac{3 \text{ PV}}{M}} = \sqrt{\frac{3 \text{ RT}}{M}} = \sqrt{\frac{3 \text{ KT}}{m}} = \sqrt{\frac{3 \text{ P}}{\rho}}$$
[$m = \frac{M}{N_{\Delta}} =$ একটি অণুর ভর]

$$K = 1.38 \times 10-23 \text{ J molecule-1 K}^{-1}$$

$$K = 1.36 \times 10^{-25} L atm K^{-1} mol^{-1}$$

$$K =$$
 বোল্টজম্যান ধ্রুবক $= \frac{R}{NA}$

T তাপমাত্রায় কোন গ্যাসের অণুর গড় গতিশক্তি

$$\bar{\mathbf{E}} = \frac{3}{2} \mathbf{K} \mathbf{T}$$

• গ্যাসের গতিশক্তি,

$$E_{k} = \frac{1}{2} W (C_{rms})^{2}$$

$$= \frac{1}{2} mN (C_{rms})^{2}$$

$$= \frac{3}{2} PV$$

$$= \frac{3}{2} KT$$

$$= \frac{3}{2} nRT$$

(**৮) সংকোচনশীলতা গুনা**ङ्कः

•
$$Z = \frac{PV_{real gas}}{nRT} = \frac{V_{real gas}}{V_{ideal gas}} = \frac{V_{r}}{V_{i}}$$

z < 1 হলে সংকুচিত বাস্তব গ্যাস

z>1 হলে প্রসারিত বাস্তব গ্যাস

z=1 হলে আদর্শ গ্যাস

• আদর্শ গ্যাস হতে বিচ্যুতির মাত্রা = [z-1]

(৯) গড় মুক্ত পথ বা গড় নির্বোধ পথ(Means Free Path):

- ক্লসিয়াসের সমীকরণঃ $\lambda=rac{1}{n\pi\sigma^2}$
- বোল্টম্যানের সমীকরণঃ $\lambda=rac{3}{4\pi\;\sigma^2{
 m n}}$
- ম্যাক্সওয়েলের সমীকরণঃ $\lambda = \frac{1}{\sqrt{2}\pi\sigma^2 n}$

n = অণুর সংখ্যা একক আয়তনে

σ = প্রতিটি অণুর ব্যাস

(১০) স্বাধীনতার মাত্রাঃ

• f = 3 A-B

A = অণুতে পরমাণু সংখ্যা

B = পরমাণুগুলোর বন্ধন সংখ্যা

(১১) গ্যাসের নাম উল্লেখ থাকলে, স্বাধীনতার মাত্রা বিবেচনা করে,

• গতিশক্তি, $E_k = \frac{f}{2} KT$

(১২) আপেক্ষিক আর্দ্রতাঃ

• $R = \frac{f}{F} \times 100\%$

f = শিশিরাঙ্কে সম্পৃক্ত জলীয়বাঙ্গের চাপ

F = বায়ুর তাপমাত্রায় সম্পৃক্ত জলীয়বাষ্পের চাপ

(১৩) জলীয় বাষ্পের চাপ ও বায়ুর চাপের সম্পর্ক :

•
$$f = P - \frac{\rho_a T}{\rho_o T_o} p_o$$

(১৪) শিশিরাস্কঃ

• $\theta_{\text{dewpoint}} = \theta_1 - G (\theta_1 - \theta_2)$

 $\theta_1 =$ শুষ্ক বাল্বের তাপমাত্রা

 $\theta_2=$ সিক্ত বাল্বের তাপমাত্রা

 $G= heta_1$ এর জন্য গ্লেসিয়ারের উৎপাদক

টেকটিকস অব ফিড্যক্স

পদার্থবিজ্ঞান ১ম পত্র

एकिंकिम व्यव किंकिक्य १ व मर्श्नृर्ण পদार्थविष्डां २ ४ म श्व निर्वेष्ठित्व एक्ये वरेराव मकल मूज्व निर्मानीम गर्वे ष्ठिकम वराराष्ट्र। १ वरेष्ठि मर्श्नूर्ण मर्श्नामनी कत्वाक् **मालिकिউतिक विश्व।**

ABOUT US

SCAN US

मालिक उतिक (तश्व) मृलण १कि विकास विकास विश्व मृलण १कि विकास विवास विवास विकास विवास विवास