Algoritmica Grafurilor

Secvențe de Grade

Secvențe de Grade

- Dată o secvenţă de numere s, se poate construi un graf neorientat având secvenţa gradelor s?
- Dar un multigraf neorientat?
- Dar un arbore?

- Condiţii necesare
- Condiţii suficiente

Construcția de grafuri neorientate cu secvența gradelor dată.

Algoritmul Havel-Hakimi

Construcția de grafuri neorientate cu secvența gradelor dată.

Problemă:

Fie $s_0 = \{d_1, ..., d_n\}$ o secvență de numere naturale.

Să se construiască, dacă se poate, un graf neorientat G cu

$$\mathbf{s}(\mathbf{G}) = \mathbf{s}_0.$$

Condiții necesare pentru existența lui G:

$$\circ d_1 + \dots + d_n - num \check{a}r par 0 \le d_i \le n - 1$$

Pentru $s_0 = \{3, 3, 1, 1\}$ - nu există G

condițiile nu sunt și suficiente

Construcția de grafuri neorientate cu secvența gradelor dată. Algoritm.

Idee algoritm de construcție a unui graf G cu $s(G) = s_0$

- începem construcția de la vârful cu gradul cel mai mare
- îi alegem ca vecini vârfurile cu gradele cele mai mari
- actualizăm secvența s₀ și reluăm până când
 - **secvența conține doar** $0 \Rightarrow G$

sau

■ secvența conține numere negative ⇒

G nu se poate construi prin acest procedeu

Fie
$$S_0 = \{ 3, 4, 2, 1, 3, 4, 1, 2 \}$$

etichetele nodurilor x_1 x_2 x_3 x_4 x_5 x_6 x_7 x_8

- **Pasul 1 -** construim muchii pentru vârful de gradul maxim = x_2
 - alegem ca vecini următoarele vârfuri cu cele mai mari grade
- \Rightarrow ar fi utilă sortarea descrescătoare a elementelor lui s_0

$$S_0 = \{ 4, 4, 3, 3, 2, 2, 1, 1 \}$$
 etichete noduri x_2 x_6 x_1 x_5 x_3 x_8 x_4 x_7

Exemplu algoritm Havel-Hakimi Pasul 1.

$$s_0 = \{ 4, 4, 3, 3, 2, 2, 1, 1 \}$$
 etichete vârfuri x_2 x_6 x_1 x_5 x_3 x_8 x_4 x_7

Muchii construite: x_2x_6 , x_2x_1 , x_2x_5 , x_2x_3

Exemplu algoritm Havel-Hakimi

Exemplu algoritm Havel-Hakimi Pasul 1.

$$s_0 = \{ \ 4, \ 4, \ 3, \ 3, \ 2, \ 2, \ 1, \ 1 \}$$
 etichete vârfuri x_2 x_6 x_1 x_5 x_3 x_8 x_4 x_7

- Muchii construite: x_2x_6 , x_2x_1 , x_2x_5 , x_2x_3
- Secvenţa rămasă:

$$s'_0 = \{$$
 3, 2, 2, 1, 2, 1, 1} etichete vârfuri $x_6 x_1 x_5 x_3 x_8 x_4 x_7$

Secvența rămasă ordonată descrescător:

$$s'_0 = \{$$
 3, 2, 2, 2, 1, 1, 1} etichete vârfuri $x_6 x_1 x_5 x_8 x_3 x_4 x_7$

Exemplu algoritm Havel-Hakimi Pasul 2.

$$s'_0 = \{$$
 3, 2, 2, 2, 1, 1, 1} etichete vârfuri x_6 x_1 x_5 x_8 x_3 x_4 x_7

- Muchii construite: x_6x_1, x_6x_5, x_6x_8
- Secvenţa rămasă:

$$s"_0 = \{ & 1, 1, 1, 1, 1, 1 \}$$
 etichete vârfuri
$$x_1 x_5 x_8 x_3 x_4 x_7$$

(este ordonată descrescător)

Pasul 3.

$$s_0^* = \{ 1, 1, 1, 1, 1, 1 \}$$
 etichete vârfuri $x_1 x_5 x_8 x_3 x_4 x_7$

- Muchii construite: x₁x₅
- Secvenţa rămasă:

$$s'''_{0} = \{ & 0, 1, 1, 1, 1 \}$$
 etichete vârfuri
$$x_{5} x_{8} x_{3} x_{4} x_{7}$$

Secvența rămasă ordonată descrescător:

$$s'''_{0} = \{ & 1, 1, 1, 1, 0 \}$$
 etichete vârfuri
$$x_{7} x_{3} x_{4} x_{8} x_{5}$$

Pasul 4.

$$s'''_0 = {$$

1, 1, 1, 1, 0}

etichete vârfuri

$$x_7 x_3 x_4 x_8 x_5$$

- Muchii construite: x₇x₃
- Secvenţa rămasă:

$$s^{iv}_0 = \{$$

0, 1, 1, 0}

etichete vârfuri

 X_3 X_4 X_8 X_5

Secvența rămasă ordonată descrescător:

$$s'''_0 = {$$

1, 1, 0, 0}

etichete vârfuri

 X_4 X_8 X_3 X_5

Pasul 5.

$$s^{iv}_{0} = \{$$
 1, 1, 0, 0} etichete vârfuri x_{4} x_{8} x_{3} x_{5}

- Muchii construite: x₄x₈
- Secvenţa rămasă:

$$s^{iv}{}_0 = \{ \\ 0, 0, 0 \}$$
 etichete vârfuri
$$x_8 x_3 x_5$$

STOP

Algoritmul Havel-Hakimi

- 1. Dacă $d_1+...+d_n$ este impar sau există în s_0 un $d_i>n-1$, atunci scrie NU, STOP.
- 2. cât timp s₀ conține valori nenule execută alege dk cel mai mare număr din secvența s₀ elimină dk din s₀ fie d₁, ..., d₁, cele mai mari dk numere din s₀ pentru j ∈ ⟨i₁, ..., i₂k⟩ execută: adaugă la G muchia xkxj înlocuiește dj în secvența s₀ cu dj − 1 dacă di − 1 <0, atunci scrie NU, STOP.</p>

Observație. Pentru a determina ușor care este cel mai mare număr din secvență și care sunt cele mai mari valori care îi urmează, este util ca pe parcursul algoritmului secvența s₀ să fie ordonată descrescător.

Complexitate?

Algoritmul Havel-Hakimi - Corectitudine

Teorema Havel-Hakimi

O secvență de $n \ge 2$ numere naturale

$$s_0 = \{d_1 \ge \ldots \ge d_n\}$$

cu $d_1 \le n-1$ este secvența gradelor unui graf neorientat (cu n vârfuri)

⇔ secvența

$$s'_0 = \{d_2 - 1, \dots, d_{d_1+1} - 1, d_{d_1+2}, \dots, d_n\}$$

este secvența gradelor unui graf neorientat (cu n-1 vârfuri).

Observație: Secvența $s_0' = \{d_2 - 1, ..., d_{d_1+1} - 1, d_{d_1+2}, ..., d_n\}$ se obține din s_0 eliminând primul element (adică d_1) și scăzând 1 din primele d_1 elemente rămase – acestea au indicii 2, 3, ..., d_1+1

Algoritmul Havel-Hakimi - Corectitudine

 Cu ajutorul transformării t pe pătrat putem obține pornind de la un graf G toate grafurile cu secvența gradelor s(G)
(și mulțimea vârfurilor V(G))

Algoritmul Havel-Hakimi - Corectitudine - Demonstrație

Algoritmul Havel-Hakimi - Corectitudine

Teorema Havel-Hakimi

Unde intervine în demonstrație faptul că d₁ este maxim?

Se poate renunța la această ipoteză ⇒

Extindere a Teoremei Havel-Hakimi

Fie $s_0 = \{d_1, ..., d_n\}$ o secvență de $n \ge 2$ numere naturale cu mai mici sau egale cu n-1 și fie $i \in \{1,...,n\}$ fixat. Fie secvența obținută din s_0 astfel:

- eliminăm elementul di
- scădem o unitate din primele d_i componente în ordine descrescătoare ale secvenței rămase.

Are loc echivalenta:

s₀ este secvența gradelor unui graf neorientat ⇔ este secvența gradelor unui graf neorientat

Secventa de grade

Teorema Erdös - Gallai (suplimentar)

O secvență de $n \ge 2$ numere naturale $s_0 = \{d_1 \ge ... \ge d_n\}$ este secvența gradelor unui graf neorientat \Leftrightarrow

$$d_1 + ... + d_n$$
 par si

$$d_1 + ... + d_k \le k(k-1) + \sum_{i=k+1}^n \min\{d_i, k\}, \ \forall 1 \le k \le n$$

Leme

 Orice arbore T cu n>1 are cel puţin două vârfuri terminale (de grad 1)

Fie P un lanțelementar maxim în T

Extremitățile lui P sunt vârfuri terminale, altfel:

- putem extinde lanțul cu o muchie

sau

- se închide un ciclu în T

Leme

Fie T un arbore cu n>1 vârfuri și v un vârf terminal în T.
Atunci T - v este arbore.

Leme

3. Un arbore cu n vârfuri are n-1 muchii.

Inducție după n

- Dacă T este un arbore cu n vârfuri și v este vârf terminal în T, atunci T v este arbore cu n-1 vârfuri și |E(T-v)| = |E(T)|-1
- Aplicăm ipoteza de inducție pentru T-v

Observație

Fie G un graf neorientat conex și C un ciclu in G.

Fie $e \in E(C)$ o muchie din ciclul C.

Atunci G-e este tot un graf conex.

Definiții echivalente

Fie T un graf neorientat cu n>1 vârfuri.

Următoarele afirmații sunt echivalente.

- 1.T este arbore (conex și aciclic)
- 2.T este conex muchie-minimal
- 3.T este aciclic muchie-maximal
- 4.T este conex și are n-1 muchii
- 5.T este aciclic și are n-1 muchii
- 6.Între oricare două vârfuri din T există un unic lanț elementar.

Construcția de arbori cu secvența gradelor dată

Fie
$$\mathbf{s}_0 = \{d_1, \dots, d_n\}$$
.

Condiții necesare pentru ca s_0 să fie secvența gradelor unui arbore?

$$d_1 + ... + d_n = 2(n-1)$$

Consecințe:

Construcția de arbori cu secvența gradelor dată

Fie
$$\mathbf{s}_0 = \{d_1, \dots, d_n\}$$
.

Teorema:

Exista T - un arbore cu *n* noduri astfel încât $S(T)=s_0$ dacă și numai dacă $d_1 + ... + d_n = 2(n-1)$

Implicația directă - evident Implicația inversă - inducție

Construcția de arbori cu secvența gradelor dată

Algoritm - Pseudocod

- 1. Dacă $d_1 + ... + d_n \neq 2(n-1)$, atunci scrie NU, STOP.
- 2. Cât timp s_0 conține valori mai mari decât 1 execută //pentru i=1,n-2
 - alege un număr $d_k > 1$ și un număr $d_t = 1$ din secvență s_0
 - adaugă la T muchia $x_k x_t$.
 - elimină d_t din s₀
 - înlocuiește d_k în secvența s_0 cu d_k-1
- 3. fie d_k , d_t unicele elemente nenule (egale cu 1) din s_0 ; adaugă la T muchia $x_k x_t$

