EPSY 5261: Introductory Statistical Methods

Day 27
Simple Linear Regression (Continued)

Learning Goals

- At the end of this lesson, you should be able to...
 - Conduct a test for a slope coefficient
 - Interpret results from a test for a slope coefficient

T-test for a slope

- $H_0: \beta_1 = 0$
 - The slope equals 0 (there is no linear relationship between X and Y)
- $H_a: \beta_1 \neq 0$
 - The slope does not equal 0 (there is a linear relationship between X and Y)

Recall: Residuals

- $Residual = y \hat{y}$ (in that order)
- Difference between the observed and predicted values

Residual Plots - what we want:

Random pattern around the line residual = 0

Means your model is not systematically over or under-predicting

Residual Plots - what we don't

want:

Curved pattern: indicates possible quadratic pattern, violates assumption of linearity

Fanning out: Violates assumption of constant variance needed for regression

Assumptions for a Linear Model

- L Pattern is <u>linear</u> (plot your data)
- I Observations are <u>independent</u> from each other (i.e., one observation's Y value does not affect other observations' Y values)
- N Residuals are <u>normally</u> distributed (histogram of residuals is approx. normal)
 - Some also add "no outliers"
- E "Equal variance": Variability is constant (no fanning out of residuals on residual plot)

Summary

- If we want to determine if X is a significant predictor of Y we can do a test for the slope
- A small p-value tells us that there is evidence the slope is different than 0 (i.e. X is a predictor of Y)