

Introduction

- Objective: Build a sentiment analysis model using supervised learning with vanilla Recurrent Neural Networks and LSTM
- Secondary Objectives:
- 1. Create a database with sentences and the type of sentiment of itself.
- 2. Tokenize the sentences to find a way to build a supervised learning model.
- 3. Implement a DummyClassifier for the model.
- 4. Implement a vanilla RNN sentiment analysis model.
- 5. Implement a LSTM sentiment analysis model.

Methodology

Define the problem

Gather Data

Explore and prepare data

Feature Engineerin

Split the Data

Choose a Model

Train the Model

Evaluate Model

Hyperparameter Tuning

True and false classification True 49.6% 50.4% False

Clasiffication

Token length Distribution

Token length Dispersion

Token Word Cloud always Oreal 50 **Token Word Cloud** actor everything night far suck people eat give cool find Overall lot terrible anyone seen new say year defini low bought know right stupid story dot Men long worked day go going cast waste show ca n't quite avoid d family many camera everytry enough loved

• DummyClassifier DummyClassifier()

Dummy Classifier Implementation

Scores in DummyClassifier

DummyClassifier Hyperparameter Tunning

Mejores hiperparámetros: {'constant': 0, 'strategy': 'most_frequent'}

Cross validation vs Training results

Scores in DummyClassifier With DummyClassifier

ROC curve

Model: "sequential" Layer (type) Output Shape Param # embedding (Embedding) (None, 816, 32) 133440 simple_rnn (SimpleRNN) (None, 32) 2080 dense (Dense) (None, 1) 33

Total params: 135,553

Trainable params: 135,553
Non-trainable params: 0

RNN Model

RNN Model Evaluation

RNN Hyperparameter Tunning

Mejores hiperparámetros: {'batch_size': 32, 'epochs': 10, 'units': 50}

RNN Cross validation

RNN Train Score vs Cross Validation

RNN Cross validation

ROC curve

Model:	"sequenti	lal 9"
		_

Layer (type)	Output Shape	Param #
embedding_9 (Embedding)	(None, 816, 16)	160000
lstm (LSTM)	(None, 816, 50)	13400
dropout (Dropout)	(None, 816, 50)	0
lstm_1 (LSTM)	(None, 50)	20200
dropout_1 (Dropout)	(None, 50)	Ø
dense_9 (Dense)	(None, 8)	408
dense_10 (Dense)	(None, 1)	9

Total params: 194,017 Trainable params: 194,017 Non-trainable params: 0

LSMT Model

RNN Model Evaluation

LSTM Hyperparameter Tunning

Mejores hiperparámetros: {'batch_size': 32, 'epochs': 4}

LMST Cross

validation

Train Score vs Cross Validation

RNN Cross validation

ROC curve

Conclusions

- Conclusions:
- The Dummy Classifier provides a baseline, and any model that cannot outperform its metrics is ineffective.
- The RNN shows significant improvement over the Dummy Classifier, but the LSTM outperforms both in terms of accuracy and overall performance.
- Accuracy and recall are especially high for the LSTM, indicating that it can correctly classify the two classes effectively.

Opportunities for Improvement:

- Explore Other Models
- Hyperparameter Optimization
- Feature Engineering
- Deployment