

Chapter 7

Using Transformation in Regression Models

Overview

- Complex models may be changed into linear models thru appropriate transformations
- Use of power transformation
- Transformation of non-linear models
- Box and Cox Transformation
- Importance of checking residuals
- Variance stabilizing transformation
- Some commonly used transformations

7.1 Introduction

Reasons for a transformation of data

 Transformation of data can sometimes reduce complex models to linear ones.

Transforming a non-linear model into a linear model

CYM

Stabilizing the variance

Introduction (Continued)

Some examples of reducing complex models into linear models.

(i) reciprocal transformation

$$y = \beta_0 + \frac{\beta_1}{x_1} + \frac{\beta_2}{x_2} + \epsilon$$

By letting $w_1 = 1/x_1$ and $w_2 = 1/x_2$, then we have $y = \beta_0 + \beta_1 w_1 + \beta_2 w_2 + \varepsilon$

Introduction (Continued)

(ii) logarithm transformation

$$y = \beta_0 + \beta_1 \log(x_1) + \beta_2 \log(x_2) + \varepsilon$$

It can be written as

$$y = \beta_0 + \beta_1 w_1 + \beta_2 w_2 + \varepsilon$$

where $w_1 = \log(x_1)$ and $w_2 = \log(x_2)$.

(Note: it is assumed here that x_1 and x_2 take only positive values.)

7-6

Introduction (Continued)

(iii) square root transformation

$$y = \beta_0 + \beta_1 \sqrt{x_1} + \beta_2 \sqrt{x_2} + \epsilon$$

(x_1 and x_2 take only positive values.)

It can be written as

$$y = \beta_0 + \beta_1 w_1 + \beta_2 w_2 + \varepsilon$$

where $w_1 = \sqrt{x_1}$ and $w_2 = \sqrt{x_2}$

Introduction (Continued)

• There are many other transformations such as higher powers or lower powers of x_i 's and y (x^r is said to be a higher power of x if r > 1 and lower power if r < 1.)

Further examples

(iv)
$$y = \beta_0 + \beta_1 x_1^2 + \beta_2 \log x_2 + \epsilon$$

(v)
$$\sqrt{y} = \beta_0 + \beta_1 x^{-1/3} + \beta_2 x_2^2 + \epsilon$$

7.2 Which Transformation to be Used

• The choice of which transformation to be used (if necessary) is often difficult to decide since we don't know the true model.

• However for the cases that involve only *x* and *y*, then a scatter plot may give some hints on which transformation to be used.

Which Transformation (Continued)

Figure 7-1 Patterns in curvilinear relationships indicating the direction of (power) re-expression for *x* and *y*.

Which Transformation (Continued)

Suggested transformations are

Case	Α	В	С	D
X	H*	L	Н	L
	(and/or)	(and/or)	(and/or)	(and/or)
У	L	L	Н	Н

For example for case A:

• Try $y = \beta_0 + \beta_1 w + \varepsilon$ with $w = x^2$ (i.e. a higher power of x)

• Or $z = \beta_0 + \beta_1 x + \varepsilon$ with $z = y^{1/2}$ or $z = \log(y)$ (i.e. a lower power of y)

7.3 Transformation of Nonlinear Models

 Some nonlinear models are <u>intrinsically linear</u> and by a suitable transformation, such models can be expressed as linear models.

For examples

(i) multiplicative model

$$y = \alpha x_1^{\beta} x_2^{\gamma} x_3^{\delta} \epsilon,$$

where α , β , γ and δ are unknown parameters and ε is a multiplicative random error.

Transformation of Nonlinear Models (Continued)

Taking logarithm on both sides, we have log(y)

```
= \log(\alpha) + \beta \log(x_1) + \gamma \log(x_2) + \delta \log(x_3) + \log(\epsilon),
+ \log(\epsilon),
```

which is the familiar multiple regression model for log(y) on $log(x_1)$, $log(x_2)$ and $log(x_3)$.

• Note: $y = \alpha x_1^{\beta} x_2^{\gamma} x_3^{\delta} + \varepsilon$ cannot be transformed into a linear model since taking logarithm on both sides leads to $\log(y) = \log(\alpha x_1^{\beta} x_2^{\gamma} x_3^{\delta} + \varepsilon)$.

CYM

Transformation of Nonlinear Models (Continued)

(ii) exponential model

$$y = e^{\beta_0 + \beta_1 x_1 + \beta_2 x_2} \epsilon$$

Taking logarithm on both sides, we have

$$\log(y) = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \log(\epsilon)$$

(iii) reciprocal model

$$y = \frac{1}{\beta_0 + \beta_1 x_1 + \beta_2 x_2 + \epsilon}$$

Taking reciprocal on both sides, we have

$$\frac{1}{y} = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \epsilon$$

7.4 Examples

Example 1

The following set of data represents the number of days training (x) and performance score (y) for 10 sales trainees in a battery of simulated sales situations in an experiment.

	0.5									
У	43	40	71	74	107	109	158	209	270	341

We first use the simple regression model

$$y = \beta_0 + \beta_1 x + \epsilon$$

• By performing the routine calculations, or using SAS or R, we have the following results.

$$\hat{y} = -23.3906 + 47.4063x$$

ANOVA Table

Source	SS	df	MS	F	p-value
Regression	91084.58	1	91084.58	398.4	< 0.0001
Error	1829.02	8	228.627		
Total	92913.6	9			

$$R^2 = 0.9803$$
.

• Since $F_{\rm obs} = 398.4 > F_{0.05}(1, 8) = 5.32$ (or p-value < 0.05), therefore we reject the null hypothesis that there is no significant model at the 5% level of significance and conclude that there is a significant relationship between y and x.

 Since independent repeat observations are available, we would like to perform the lack of fit test.

X	$\sum_{k=1}^{n_j} (y_{jk} - \bar{y}_j)^2 = \sum_{k=1}^{n_j} y_{jk}^2 - n\bar{y}_j^2$	df
0.5	$43^2 + 40^2 - 83^2/2 = 4.5$	1
1.0	$71^2 + 74^2 - 145^2/2 = 4.5$	1
1.5	$107^2 + 109^2 - 216^2/2 = 2$	1
	SSPE = 11	3

• SSLF = SSE - SSPE= 1829.016 - 11 = 1818.016 with 8 - 3 = 5 d.f.

• $F_L = MSLF / MSPE = 99.16$.

• Since F_L = 99.16 > $F_{0.05}$ (5, 3) = 9.01 (or p-value = 0.001575 < 0.05) therefore we reject the hypothesis that there is no lack of fit and conclude that the simple linear regression model does not provide an adequate fit.

 A scatter plot of y against x shows that the relation between y and x appears to be curvilinear. In fact the plot resembles that shown in Case A.

 Hence a lower power transformation on y is suggested and the following model is used:

$$\sqrt{y} = \beta_0 + \beta_1 x + \epsilon$$

By using SAS or R, we obtain the following results.

The regression equation

$$\widehat{\sqrt{y}} = 4.4617 + 4.0002x$$

ANOVA Table

Source	SS	df	MS	F	p-value
Regression	153.6121	1	153.6121	16183.12	< 0.0001
Error	0.075937	8	0.009492		
Total	153.6880	9			

- $R^2 = 0.999506$.
- Since $F_{\text{obs}} = 16183.12 > F_{0.05}(1, 8) = 5.32$ (or p-value < 0.05), therefore we reject H_0 at the 5% significance level and we conclude that at the 5% level of significance there is a significant relationship between \sqrt{y} and x.

Furthermore, we can carry out a lack of fit test:

X	Z _{jk}	$\sum_{k=1}^{n_j} (z_{jk} - \bar{z}_j)^2$	df
0.5	6.5574, 6.3246	0.0270970	1
1.0	8.4261, 8.6023	0.0155232	1
1.5	10.3441, 10.4403	0.0046272	1
	SSPE =	0.0472484	3

where
$$z_{jk} = \sqrt{y_{jk}}$$
 and $\bar{z}_j = \frac{1}{n_j} \sum_{k=1}^{n_j} \sqrt{y_{jk}}$

• SSLF = SSE - SSPE = 0.0759370 - 0.0472484= 0.0286886 with 5 d.f.

•
$$F_L = MSLF / MSPE$$

= $(0.0286886/5)/(0.0472484/3) = 0.36$

• Since $F_L = 0.36 < F_{0.05}(5, 3) = 9.01$ (or p-value = 0.8501 > 0.05) therefore we do not reject the hypothesis that there is no lack of fit and conclude that the model $\sqrt{y} = \beta_0 + \beta_1 x + \epsilon$ is an appropriate model.

Example 2

• The pressure *P* of a gas corresponding to various volumes *V* is recorded as follows:

V (cm³)	50	60	70	90	100
P (kg/cm ²)	64.7	51.3	40.5	25.9	7.8

• The ideal gas law is given by the functional form $PV^{\gamma} = C$, where γ and C are constants.

• Estimate the constants C and γ .

Solution to Example 2

• Since there are random errors in recording the data, therefore an appropriate model should be

$$P_i V_i^{\gamma} = C \epsilon_i$$
, $i = 1, 2, 3, 4, 5$.

• We can take natural logarithm of both sides of the model and a linear model is obtained as follows.

$$\log(P_i) = \alpha + \beta \log(V_i) + \epsilon_i^*, \ i = 1, 2, 3, 4, 5,$$
where $\alpha = \log(C), \beta = -\gamma$ and $\epsilon^* = \log(\epsilon)$.

Solution to Example 2

• By performing the routine calculations or using SAS or R, we have the following results.

$$\widehat{\log P} = 14.759 + 2.6535 \log V$$

• Hence $\hat{C} = e^{14.759} = 2568930$ and $\hat{\gamma} = -2.6535$

Solution to Example 2 (Continued)

ANOVA Table

Source	SS	df	MS	F	p-value
Regression	2.28546	1	2.28546	13.27	0.0357
Error	0.51685	3	0.51685		
Total	2.80231	4			

- $R^2 = 0.8156$.
- Since $F_{\text{obs}} = 13.27 > F_{0.05}(1, 3) = 10.13$ (or p-value < 0.05), we conclude that there is a significant relationship between P and V.

7.5 Box and Cox Transformation

- Suppose that the data $(y_1, y_2, ..., y_n)$ on a response variable y have the following properties.
 - (1) *y* is always positive,
 - (2)

$$\frac{y_{\text{max}}}{y_{\text{min}}} > 10$$

• Then we may consider the possibility of transforming *y*.

CYM

Box and Cox considered the following power transformation

$$w = \begin{cases} (y^{\lambda} - 1)/\lambda, & \text{for } \lambda \neq 0 \\ \log y, & \text{for } \lambda = 0 \end{cases}$$
 (1)

Or a modified form

$$v = \begin{cases} (y^{\lambda} - 1)/(\lambda \tilde{y}^{\lambda - 1}), & \text{for } \lambda \neq 0 \\ \tilde{y} \log y, & \text{for } \lambda = 0 \end{cases}$$
where $\tilde{y} = (y_1 y_2 \cdots y_n)^{1/n}$

• Find the appropriate value of λ such that \underline{w} or \underline{v} satisfies

$$\underline{w} = X\underline{\beta} + \underline{\epsilon},$$
or
$$\underline{v} = X\underline{\beta} + \underline{\epsilon},$$

$$\underline{v} = X\underline{\beta} + \underline{\epsilon},$$
where $\underline{\epsilon} \sim N(\underline{0}, \sigma^2 I)$

• How to find the appropriate value of λ ?

Maximum Likelihood Method!!

Maximum Likelihood Method of Estimating λ

- Choose a value of λ from a selected range.
 - Usually we look at λ 's in the range of (-1, 1), or perhaps even (-2, 2), at first, and modify the range later.
- For each chosen λ value, evaluate <u>v</u> using Equation
 (2).
- Next we fit the model in (3) and record $S(\lambda, \nu)$, the residual sum of squares for the regression.

<u>Maximum Likelihood Method of Estimating λ</u>

- Plot $S(\lambda, \nu)$ versus λ .
- Draw a smooth curve through the plotted points, and find out at what value of λ , the lowest point of the curve lies. That value, $\hat{\lambda}$, is the maximum likelihood estimate of λ .

Note:

 In regression models with normal random error, maximizing the likelihood function is equivalent to minimizing the residual sum of squares

Remarks

- 1. The fact that the "best λ " has been selected does not necessarily guarantee an equation useful in practice. The final equation must be evaluated in the usual ways on its own merits.
- 2. To allow for the fact that λ has been estimated, some statisticians remove one degree of freedom from SST and SSE for estimating $\hat{\lambda}$ in the ANOVA table in the subsequent analysis. However the reduction is optional.

Example 3

• The following table shows the Mooney Viscosity at 100°C as a function of filler level and oil level.

• A model $V = \beta_0 + \beta_1 f + \beta_2 p + \epsilon$ is fitted to the data, where f is the filler level and p is the oil level.

	Filter, f							
Oil, p	0	12	24	36	48	60		
0	26	38	50	76	108	157		
10	17	26	37	53	83	124		
20	13	20	27	37	57	87		
30	-	15	22	27	41	63		

- Note that the response data range from 13 to 157, a ratio of 157/13 = 12.1.
- The geometric mean is $\tilde{y} = 41.5461$
- The following table shows the selected values of $S(\lambda, \nu)$ for various λ .

λ	-1.0	-0.8	-0.6	-0.4	-0.2	-0.15	-0.10
S(λ, <u>v</u>)	2456	1453	779.1	354.1	131.7	104.5	88.3
1	-0.08	_0.06	_0.05	_0.04	_0 02	_0 00	0.05
^	-0.00	-0.00	-0.03	-0.04	-0.02	-0.00	0.05
S(λ, <u>v</u>)	84.9	83.3	83.2	83.5	85.5	89.3	106.7
λ	0.10	0.2	0.4	0.6	8.0	1.0	
S(λ, <u>v</u>)	135.9	231.1	588.0	1222	2243	3821	

- A smooth curve through these points is plotted in the figure below.
- We see that the minimum of $S(\lambda, \underline{v})$ occurs at about $\lambda = -0.05$.

• We see that the minimum of $S(\lambda, \underline{v})$ occurs at about $\lambda = -0.05$. This is close to zero, suggesting that the transformation

$$v = \tilde{y} \log y$$

or more simply log(y), might be suitable for this set of data.

Plot of $S(\lambda, y)$ against λ

Residual plot against the fitted values

(a) Model:
$$y = \beta_0 + \beta_1 f + \beta_2 p + \epsilon$$

Residual plot against the fitted values

(b) Model:
$$log(y) = \beta_0 + \beta_1 f + \beta_2 p + \epsilon$$

7.6 Importance of Checking Residuals

- Transformation on the response variable affects the distribution errors.
- The assumptions that the errors are independent and follow a normal distribution with mean zero and variance σ^2 apply to the transformed data.
- Hence it is important to study the residuals from the model fitted, to see if those assumptions still hold.
- We shall discuss how to check residuals in Chapter 10.

7.7 Variance Stabilizing Transformation

- Another reason for transforming the data is to stabilize the variance when the assumption of constant variance is violated.
- Suppose that the variance of the un-transformed data y, σ_y^2 say, is a function $g(\eta)$ of the mean value, $\eta = E(y)$.
- We can then obtain an appropriate transformation by using the transformed variable h(y) where

$$\frac{\partial h(y)}{\partial y} \propto \frac{1}{\sqrt{g(y)}}$$

Variance Stabilizing Transformation (Continued)

Since

$$\frac{\partial h(y)}{\partial y} \propto \frac{1}{\sqrt{g(y)}}$$

therefore,

$$h(y) \propto \int \frac{1}{\sqrt{g(y)}} dy$$

Variance Stabilizing Transformation (Continued)

• For example,

If
$$\sigma_y^2 \propto E(y)^2$$
, then

[i.e.
$$g(\eta) = \eta^2$$
]

$$h(y) = \int \frac{1}{v} dy = \log(y)$$

Some Commonly Used Transformations

Nature of Dependence $\sigma_y^2 \propto g(\eta), \ \eta = E(y)$	Variance Stabilizing Transformation
$\sigma_y^2 \propto \eta$	\sqrt{y}
$\sigma_y^2 \propto \eta^2$	$\log(y)$
$\sigma_y^2 \propto \eta^3$	$y^{-1/2}$
$\sigma_y^2 \propto \eta^{-1}$	$y^{3/2}$
$\sigma_y^2 \propto \eta^k$	$y^{1-k/2}$
$\sigma_y^2 \propto \eta (1 - \eta)$	$\sin^{-1}(\sqrt{y})$

Example 4

 The average monthly income from food sales and the corresponding annual advertising expenses for 30 restaurants are shown below:

							126574	
X	3000	3150	3085	5225	5350	6090	8925	9015

y	115814	123181	131434	10564	151352	146926	130963	144630
X	8885	8950	9000	11345	12275	12400	12525	12310

У	147041	179021	162000	180732	178187	185304	155931	172579
X	13700	15000	15175	14995	15050	15200	15150	16800

У	188851	192424	203112	192482	218715	214317
X	16500	17830	19500	19200	19000	19350

y: income, x: advertising expense

• A first order model is fitted to the data and the following results were obtained:

The regression equation is given by

$$\hat{y} = 49507.4958 + 8.03162x$$

$$F_{\text{obs}} = MSR/MSE = 588.89 > F_{0.05}(1, 28) = 4.20$$
 and

$$R^2 = 0.954611$$
.

• Although the model is significant at the 5% level ($F = 588.89 > F_{0.05}(1, 28) = 4.20$) and the value of the coefficient of determination is high ($R^2 = 0.954611$), a residual plot against \hat{y} indicates that the residuals are more spread out when \hat{y} increases, hence the assumption of constant variance is not valid.

Note: \hat{y} is an estimate of $\mu_{Y|x}$

- Hence the residual plot indicates to some extent that σ_y^2 increases as $\mu_{Y|x}$ increases
- That is, $\sigma_y^2 \propto \mu^k$, k: any number ≥ 1
- Let us assume $\sigma_v^2 \propto \mu$
- Hence the corresponding variance stabilizing transformation is $y^* = \sqrt{y}$
- A model is fitted to the transformed data and the following results are obtained.

$$\widehat{y^*} = 246.9852 + 0.01090x$$

ANOVA Table

Source	SS	df	MS	F	p-value
Regression	90244.71	1	90244.71	673.34	< 0.0001
Error	3752.72	28	134.026		
Total	93997.43	29			

- $R^2 = 0.960076$.
- Since $F_{\rm obs}$ = 673.34 > $F_{0.05}(1, 28)$ = 4.20 (or p-value < 0.05), we reject H_0 at the 5% significance level conclude that there is a significant relationship
- Hence, we conclude that there is a significant linear relationship between y^* and x

• The residual plot with e against $\widehat{y^*}$ shows no serious violation of the assumption of constant variance. Therefore, the model $\sqrt{y} = \beta_0 + \beta_1 x + \epsilon$ is adequate.

