Instituto Superior de Engenharia de Lisboa

BEng in Computer Science and Engineering System Virtualization Techniques, Autumn/Winter 2024/2025

Third coursework assignment

For this assignment, we provide you with a minimal web application developed using Node.js, with data stored in Elasticsearch. The application supports running multiple instances simultaneously on different ports, anticipating the use of a reverse proxy with load balancing to distribute requests across these instances.

You will create a *systemd* service that receives control instructions on a Unix domain socket to:

- Launch one or more new instances of the Node.js application and add them to the reverse proxy.
- Terminate one or more instances of the Node.js application and remove them from the reverse proxy.
- Deactivate the application in the reverse proxy, stopping all instances while keeping the configuration.
- (Re)launch all application instances and (re)activate the application in the reverse proxy.

Setup

Ensure that solutions for the first assignment are stored in the cw1 directory of your repository, and that solutions for the **second** assignment are in cw2. If not, move the files now, then commit and push the changes.

Place tvs-2425-1 cw3.tgz in the cw3 directory of your repository and execute: tar xzvf tvs-2425-1 cw3.tgz

After the extraction, delete tvs-2425-1 cw3.tgz, then commit and push the extracted files and directories.

Before starting this assignment, install additional packages in your Ubuntu 24.04 environment, by executing:

```
sudo apt update
sudo apt install npm nodejs nginx
```

Finally, download and install elasticsearch (choose the appropriate version for your CPU):

```
x86-64 ⇒ wget https://artifacts.elastic.co/downloads/elasticsearch/elasticsearch-8.15.3-amd64.deb
 arm64 ⇒ wget <a href="https://artifacts.elastic.co/downloads/elasticsearch/elasticsearch-8.15.3-arm64.deb">https://artifacts.elastic.co/downloads/elasticsearch/elasticsearch-8.15.3-arm64.deb</a>
            sudo dpkg -i elasticsearch-8.15.3-*.deb
            sudo nano /etc/elasticsearch/elasticsearch.yml
                 xpack.security.enabled: false
```

<<< edit this configuration line

Preparation

- i. Confirm the proper operation of the provided web application:
 - a. Install the project's dependencies: cd cw3/tvsapp/app npm install
 - b. Launch only the web application, without the database: NODE_PORT=43210 npm start
 - c. Use the browser to access http://localhost:43210 (you should see PORT: 43210 and database unavailable)
 - d. Start elasticsearch: sudo systemctl start elasticsearch
 - e. Use the browser again to access http://localhost:43210 (you should see PORT: 43210 and a counter that increments with each new request made)
 - Terminate the web application (Ctrl-C), but keep elasticsearch running
- ii. Copy the web application from cw3/tvsapp/app to /opt/isel/tvs/tvsapp/app and set it up as a service. Then, start 4 instances in ports 43211, 43212, 43213, and 43214. NOTE: see cw3/tvsapp/etc/service/ and Service Templates.

iii. Add a configuration for a new site (tvsapp) to /etc/nginx/sites-available listening on port 44444 and operating as a load balancer for the 4 local instances on ports 43211 to 43214. Activate the new configuration in /etc/nginx/sites-enabled along with the existing one (default). Use the browser to access http://localhost:44444 and check the load balancer's operation (PORT changes on refresh). NOTE: see cw3/tvsctl-srv/etc/nginx/sites-available/ and nginx Configuration Control

Exercises

- 1. Write the following bash scripts to manage the configuration and operation of the proposed solution:
 - tvsapp-reset.sh arguments: scale (default = 1), base (default = 35000)
 Force an initial stopped configuration with scale instances in consecutive ports starting at base
 - tvsapp-inc.sh arguments: delta (default = 1)
 Add delta instances of Node.js running the web application, using more consecutive ports
 - tvsapp-dec.sh arguments: delta (default = 1)
 Remove delta instances of Node.js with the highest ports in use, leaving at least 1
 - tvsapp-stop.sh arguments: -db (optional)
 Deactivate the site from nginx and stop web app instances. If -db, also stop elasticsearch.
 - tvsapp-start.sh
 Start elasticsearch, all web app instances and (re)activate the site in nginx
 - tvsapp-status.sh
 Write a summary with the solution status, with one line per element (nginx, web apps, db)

You may use the following command to confirm that the load balancer is distributing the requests:

```
seq 32 | xargs -I{} curl -s http://localhost:44444/ | grep "PORT" |
sed "s/<\/\?[a-z]\+>//g" | sed "s/^[[:space:]]*//" | sort | uniq -c
```

Tag this exercise on the GitHub repository with: **CW3-1** [Reference date: November 18th, 2024]

2. Using the C language, build a *systemd* service (tvsctld) to receive instructions on a Unix domain socket, to be placed in /run/isel/tvsctld/request, and a client program (tvsctl) with the following operations:

```
    tvsctl reset [scale [base]]
    tvsctl inc [delta].
    tvsctl dec [delta]
    tvsctl start
    tvsctl status
```

The tvsctld service is <u>socket activated</u> and runs with *root* privileges. Both the socket and the client (tvsctl) will only be available to *root* and members of group tvsgrp. to which user isel will belong.

The client program (tvsct1) is non-interactive and its first instruction must be close(0). For each execution of the client program, a request is sent to the service (tvsctld) through the socket. The service *daemon* will then invoke the appropriate script (from exercise 1) to perform the requested action.

Write a script (cw3/install-all.sh) to copy all the files needed to run the solution from the repository folders to their final location (/opt/isel/tvs/...) and set up all permissions appropriately.

Tag this exercise on the GitHub repository with: CW3-2

ISEL, November 10th, 2024

Submission last date: November 28th, 2024