Autenticação baseada em passwords

Notas para a UC de "Segurança Informática" Inverno de 11/12

Pedro Félix (pedrofelix em cc.isel.ipl.pt)
Instituto Superior de Engenharia de Lisboa

Identificação e Autenticação

- Autenticação é o processo de verificação duma alegada identidade
- Motivação
 - Parâmetro para as decisões de controlo de acessos
 - Parâmetro para as acções de personalização
 - Informação de auditoria
- Exemplo
 - "user" + "password"
 - "user" identificação
 - "password" autenticação

Informação de autenticação

- "Algo" que se conhece
 - "Passwords" e "passphrases"
- "Algo" que se possui
 - Ex.: "tokens" criptográficos, RSA SecurID
- "Algo" que se é
 - Ex.: características biométricas
- "Algo" que se faz
 - Ex.: assinatura manual
- "Onde" se está

Sistema de autenticação

- Formalização [Bishop]
 - Conjunto A de informação de autenticação
 - Conjunto V de informação de validação
 - Função f: A → V
 - Função g: V → A → {true, false}
- Exemplo
 - f(a) = H(a)
 - g(v)(a) = (v = H(a))

"Passwords": ataques de dicionário

- Ataques do tipo 1
 - Entrada: informação de validação v
 - Saída: informação de autenticação
 - 1. Para cada a' pertencente a Dicionário
 - 1. Se **f(a') = v** retornar **a'**
 - 2. Retornar "falha"
- Ataques do tipo 2
 - Entrada: função de autenticação g(v)
 - Saída: informação de autenticação
 - 1. Para cada a' pertencente a Dicionário
 - 1. Se g(v)(a') = true retornar a'
 - 2. Retornar "falha"

Ameaça: pesquisa de "passwords"

- Pesquisa exaustiva testar todas as "passwords" possíveis por ordem arbitrária
- Pesquisa "inteligente" testar primeiro as "passwords" pertencentes mais prováveis
 - Dicionários
 - Palavras
 - Algoritmos
 - Combinação de palavras

Protecção contra ataques de dicionário

- Aumentar a incerteza da "password"
 - Passwords aleatórias
 - Selecção proactiva
 - Verificação offline
- Controlar o acesso à informação de verificação
- Aumentar o tempo de processamento da função f
- Aumentar o tempo de processamento ou limitar o acesso à função g(v)

Geração aleatória de "passwords"

- Geração aleatória de "passwords" maximização do tempo de pesquisa.
- Problema: dificuldade de memorização
 - Escolher e memorizar transformação t: A → A
 - Gerar de forma aleatória e armazenar x
 - Usar t(x) como informação de autenticação

Selecção proactiva de "passwords"

- A "password" é escolhida pelo utilizador, contudo a sua segurança é verificada pelo sistema
- A aceitação da "password" está dependente da verificação realizada pelo sistema
- "Passwords" consideradas inseguras
 - Variantes do nome do utilizador
 - Variantes do nome do computador
 - Palavra presente em dicionários
 - Ao contrário
 - Letras maiúsculas
 - Padrões do teclado
 - Acrónimos
 - Números associados ao utilizador: BI, NC, Matrícula

Verificação offline

- Utilização de ferramentas para a realização de ataques de dicionário
 - Ataque às passwords dos utilizadores do sistema
 - Notificação/bloqueio dos utilizadores com "passwords" atacadas com sucesso
- Exemplos
 - L0phtCrack
 - http://lasecwww.epfl.ch/~oechslin/projects/ophcrack/index.php

Protecção contra ataques tipo 1

- Tornar a execução da função f mais demorada
- Exemplo
 - f = H, onde H é uma função de hash
 - Solução: f = H^R
- Controlar o acesso à informação de verificação

Ataques com pré-computação

- Baseai-se no facto da função f ser igual para todos os utilizadores
- Seja D um dicionário de palavras prováveis e M um array associativo
- Pré-computação
 - Para todos a'_i em D, calcular e armazenar o par (f(a'_i), a'_i) em M (tal que M[f(a'_i)] = a'_i)
- Ataque
 - Dado v, retornar M[v]
- A pré-computação é usada para obter a "password" de qualquer utilizador

Protecção: "salt"

- Protecção contra os ataques de dicionário descritos anteriormente
- Solução: tornar a função f diferente para cada utilizador
- Exemplo: $f_U(a) = H(salt_U \mid a)$, onde
 - f_u é a função associada ao utilizador U
 - salt_U é uma sequência de "bytes" gerada aleatoriamente para cada utilizador
- Neste cenário, a pré-computação depende de salt
 - é específica de cada utilizador do sistema
 - não pode ser utilizada para atacar todos os utilizadores do sistema

Protecção contra ataques tipo 2

- Limitar o acesso à função de autenticação g(v) após a detecção de tentativas de autenticação erradas
- Técnicas
 - Backoff
 - O tempo de execução de g(v) depende do número anterior de tentativas erradas
 - Terminação da ligação
 - Terminação da ligação em caso de erro
 - Bloqueamento
 - Bloqueamento da função **g(v)** após um número de tentativas erradas
 - Jailing
 - Acesso ao serviço com funcionalidade limitada
- Problema: garantir a disponibilidade do serviço

"Password" aging

- Limitar o tempo de utilização duma password
 - Tornar o tempo de utilização menor que o tempo médio de pesquisa
- Aspectos de implementação/parametrização
 - Memorização das "passwords" anteriores
 - Tempo mínimo de utilização das "passwords"
 - Tempo máximo para o utilizador proceder à mudança da "password"

Exemplo: Windows XP

- Local Security Policy/Security Settings/Account Policies/Password Policy
 - "Enforce password history" impedir a reutilização de "passwords"
 - "maximum password age" tempo de vida máximo da "password"
 - "minimum password age" tempo de vida mínimo da "password"
 - "password must meet complexity requirements" selecção proactiva
 - Não pode conter parte do nome do utilizador
 - Dimensão mínima de 6 caracteres
 - Conter caracteres de 3 de 4 conjuntos: A-Z, a-z,0-9 e alfanumérico (\$,!,#,%)

Exemplo: Windows XP - filtros de "passwords"

- Um filtro é uma DLL exportando as seguintes funções
 - Iniciação
 BOOLEAN InitializeChangeNotify(void);
 - Verificação
 BOOLEAN PasswordFilter(PUNICODE_STRING AccountName,
 PUNICODE_STRING FullName, PUNICODE_STRING Password,
 BOOLEAN SetOperation);
 - Notificação
 NTSTATUS PasswordChangeNotify(PUNICODE_STRING
 UserName, ULONG Relativeld, PUNICODE_STRING NewPassword);
- Instalação
 - Colocar referência à DLL em "HKEY_LOCAL_MACHINE\ SYSTEM\CurrentControlSet\Control\Lsa\Notification Packages"

Exemplo: Windows XP

- .../Account Lockout Policy
 - "Account lockout duration" período em que o acesso é impedido após um determinado número de tentativas falhadas
 - "Account lockout threshould" número de tentativas falhadas que resultam no impedimento do acesso
 - "Reset account lockout counter" período de tempo após o qual é reiniciado o contador de tentativas falhadas
- Local Security Policy/Security Settings/Local Policies/Audit Policy
 - "Audit logon events"

Exemplo: Unix - Crypt

- char *crypt(const char *key, const char *salt);
- O Unix usa função de hash Crypt baseada na primitiva DES
 - A permutação de expansão E depende de salt
 - Entrada é usada como chave
 - Bloco inicial é 0x00...00
 - Processo repetido 25 vezes
- O ficheiro etc/passwd
 - Contém o hash da "password" de cada utilizador
 - Controla os acessos de escrita
- Novas "versões" do Unix usam métodos diferentes
 - etc/shadow apenas "root" tem acesso de leitura
 - PAM (Pluggable Authentication Module)

Exemplo: Windows NT

- LAN Manager
 - H(pw) = E(pw1)(C1) | E(pw2)(C2)
 - E é a função de cifra da primitiva DES
 - C1 e C2 são constantes
 - pw1 e pw2 são duas chaves obtidas a partir da extensão/truncamento de pw, previamente convertida para "uppercase"
- NT
 - H(pw) = MD4(pwuc)
 - pwuc é a codificação de pw em unicode
- Exemplo (obtido através do utilitário pwdump2)
 - tuser1:1028:91c7ae7122196b5eaad3b435b51404ee:22315d6ed1a7d5f8a7c98c40e9fa2dec::
 - tuser2:1029:91c7ae7122196b5eaad3b435b51404ee:61ba88d2bfe9b2e0fcff869e2fb5265c:::
- Local Security Settings/... / ... Do not store LAN Manager hash value on next password change

Ameaça: spoofing attacks

- Obtenção da "password" através da simulação da interface de autenticação ou intercepção desta
- Prevenção
 - "Trusted path" (ex. Secure Attention Sequence no Windows)
 - Autenticação mútua
- Detecção
 - Registo e apresentação do número e data das autenticações falhadas

Protocolos Desafio-Resposta

- Conjunto C de desafios
- Função de resposta r: A x C → A
- Função de autenticação g: V x C → A → {true, false}

"Passwords" de utilização única

- S/Key
- Dado uma semente K₀ e uma função de hash H
 - $K_i = H(K_{i-1})$
 - $P_i = K_{n-i+1}$
 - Desafio: índice i (crescente e usado apenas uma vez)
 - Resposta: P_i

Sistemas biométricos

- Usados para identificação e autenticação
- Exemplos:
 - Face, geometria da mão, íris, voz, impressão digital, ...
- Caracterização
 - Universalidade
 - Capacidade de distinção
 - Permanência
 - Recolha
 - Desempenho
 - Aceitabilidade
 - Falsificação
- Erros
 - Identificação
 - Falsa aceitação
 - Falsa rejeição

Comparação

	Universalidade	Distinção	Permanência	Recolha	Desempenho	Aceitabilidade	Falsificação
Face	Н	L	М	Н	L	Н	Н
Impressão Digital	М	Н	Н	M	Н	M	М
Geometria da mão	М	М	М	Н	М	M	М
Íris	Н	Н	Н	М	Н	L	L
Retina	Н	Н	M	L	Н	L	L
Voz	М	L	L	M	L	Н	Н

Adaptado de: D. Maltoni et al, "Handbook of Fingerprint Recognition", Springer, 2003