Proceedings of the International Conference on Groupoids, Semigroups and Automata University of Kerala, Thiruvananthapuram, 2010, pp. 137–140

Semiprime Accessible Rings

C. Jaya Subba Reddy¹, D. Prabhakara Reddy²
Department of Mathematics
S. V. University
Tirupati - 517502, A. P., India.
praney2007@yahoo.co.in¹, cjsreddysvu@gmail.com²

Abstract

In this paper we see that accessible rings satisfy the identity ((w,x,y),z)=0, i.e., the associator commutes with all elements of the ring. Also we prove that the associator is in the nucleus of an accessible ring. Using this property, we prove that a semiprime accessible ring of characteristic $\neq 2,3$ is associative.

Key words: Nonassociative ring, Accessible ring, Prime ring, Semiprime ring, Nucleus, Characteristic and Associator.

1 Introduction

Albert [1] defined standard ring. Kleinfeld obtained some identities of standard and accessible rings [2] and proved that simple accessible rings are either associative or commutative. Thedy [3] studied the rings, in which the associator commutes with all elements of the ring, i.e., ((w,x,y),z)=0. He proved that simple nonassociative rings satisfying this identity are either associative or commutative. In this section we see that accessible rings satisfy the identity ((w,x,y),z)=0. Also we prove that the associator is in the nucleus of an accessible ring. Using this property, we prove that a semiprime accessible ring of char. $\neq 2,3$ is associative.

2 Preliminaries

Let R be a nonassociative ring. We shall denote the commutator and the associator by (x,y)=xy-yx and (x,y,z)=(xy)z-x(yz) for all x,y,z in R respectively. The nucleus N of a ring R is defined as $N=\{n\in R/(n,R,R)=1\}$