§ 6.3 A/D (模/数)转换器

A/D转换器及其连接特性

- 1、A/D转换器的主要参数
 - (1) 分辨率: A/D转换器能够转换成二进制数的位数

A/D转换器可转换成数字量的最小电压(量化阶梯):

如8位ADC满量程为5V,则

分辨率为5000mV/256=20mV

分辨率一般表示式为:

分辨率=V_{ref}/2位数(单极性)

或 分辨率= (V_{+ref}-V_{-ref})/2^{位数}(双极性)

(2) 转换时间: 从输入启动转换信号到转换结束,得到稳定的数字量输出的时间。

常见有:超高速(转换时间<1ns)、高速(转换时间<1µs)、 中速(转换时间<1ms)、 低速(转换时间<1s)等。

如果采集对象是动态连续信号,要求f_采≥2 f_信,即必须在信号的一个周期内采集2个以上的数据,才能保证信号形态被还原(避免出现"假频"),这就是"最小采样"原理。

例如: 若 $f_{\hat{t}}$ =20kHz,则 $f_{\hat{x}}$ > 40kHz, 其转换时间要求 \leq 25 μ s.

15.1.2 A/D转换器的外部特性

ADC的外部特性:外部信号线及其功能定义

ADC的外部信号线不同,则与CPU的连接也不同,因此,ADC的外部特性是设计ADC接口的硬件电路的依据。

芯片	转换启动	转换结束	
ADC 0816 (0809)	START	EOC	
AD570 (571)	$B/\overline{C}=0$	DR	
ADC0804	WR •CS	INTR	
ADC7570	START	BUSY =1	
ADC1131J	CONVCMD	STATUS 下降边	
ADC1210	SC	cc	
AD574	EC• (R/c̄) • c̄s	STS=0	

从外部特性来看,无论是哪种芯片,都必不可少地设置有4种基本外部信号线。

(1) 模拟信号输入线: 单通道输入(1根) 多通道输入(多根)

- (2) 数字量输出线
- (3) 转换启动线(输入)
- (4) 转换结束线(输出)

A/D转换器与微处理器的接口

1 A/D转换器与微处理器的接口

ADC与微处理器的接口包括硬件连接和软件编程,具体来说涉及ADC与CPU的连接、接口电路的形式、数据传输方式、接口控制程序及数据处理等内容。

注意:

- 1、A/D转换器的启动信号
- 2、A/D转换器的输入信号
- 3、A/D转换器的输出信号
- 4、A/D转换器的转换结束信号

- (1) A/D转换启动信号 { 单通道 多通道
- (2) A/D转换输入信号 { 脉冲 电平
- (4) A/D转换结束信号

一、8位A/D

ADC0809 8模入8位逐次逼近型A/D转换器件

1. 原理及工作时序

- a. 输入选择
- b. 启动转换
- c. 报告转换结束
- d. 输出转换结果

P338 图6.20 逻辑结构框图

ADC0809 8模入8位逐次逼近型A/D转换器件

模拟电压 $IN_7 \sim IN_0$: 分时选一转换

ADDC~ADDA 输入地址:控制8选1

ALE: 输入地址锁存信号

START 输入: 正脉冲启动转换,

前沿清除逐次比较寄存器,

后沿启动转换

EOC 输出: =0正在转换, =1转换结束

OE=1 输入: 将转换结果送出,用于读转换结果

 $D_{7\sim 0}$ 数据输出: 平时为三态, OE=1时输出数据

P339 图6.22 ADC0809 工作时序

P343 图6.26 典型的A/D转换器与CPU接口框图

例:

- ① 硬件设计。
- •ADC0809模拟量通道号选择信号
- •启动信号
- •读数据允许信号
- •EOC的中断请求:直接连到系统总线的IRQ4上。

由82C55A接口芯片实现

82C55A的4个端口地址是:

300H(A口)、

301H(B口)、

302H(C口)、

303H(命令口)。

中断方式的ADC接口电路原理

② 软件设计。 本例的程序流程图。 整个程序分主程序和中断服务程序两部分。 程序清单略.

1)若ADDC, ADDB, ADDA接数据线,只需一个地址,设2B0H,假如采集通道为3

程序为: MOV DX,2B0H

MOV AL,03H

OUT DX,AL ; 送通道地址并启动转换

CALL DELAY ; 延时,或中断

IN AL,DX

2)若ADDC, ADDB, ADDA接地址线,则有8个地址,设IN $_0$ – 298H IN $_2$ – 299H, IN $_3$ – 29BH, IN $_7$ – 29FH 假如采集通道 3,

MOV DX,29BH

OUT DX,AL ; 启动

CALL DELAY ;

IN AL.DX

二、12位A/D

AD574/674/774/1674, ADS774系列A/D转换器

AD1674包括宽频带采样保持器、10V基电压源、时钟电路、D/A转换器、SAR寄存器和三态缓冲器等。

① 工作原理

当控制电路发出启动转换命 令时,首先使采样/保持器工作在 保持模式,并使SAR寄存器复零。 一旦转换开始就不能停止或重新 启动A/D转换,此时输出缓冲器的 数据输出无效,逐次逼近寄存器 按时钟顺序从高位到低位进行比 较,以产生转换结果,只要转换 结束,就返回一个转换结束标志 给控制部分,立即禁止时钟输 出,并使采样/保持器工作在采样 模式。与此同时,延迟STS信号下 跳的时间稳定转换数据,以满足 12位的精度。

② 引脚及功能

引脚	信号	<u>说</u> 明			
1	+5V	逻辑电源+5V			
2	12/8	12/8=1,12位输出;12/8=0,8位输出			
3	CS	片选信号,低电平有效			
4	AO	在转换期间: A0=0表示ADC进行12位转换,在读出期间: A0=0表示高8位数据有效; A0=1表示低4位的数据有效			
5	R/C	R/C=1 允许读数据; R/C=0, 允许启动A/D转换			
6	CE	启动转换信号,高电平有效			
7/11	VCC/VEE	模拟部分正负电源			
8	REFOUT	10V内部参考电压输出			
10	REFIN	参考电压输入			
13/14	10VIN/20VIN	模拟量10V及20V量程的输入端口,信号另一端接AGND			
15	DGND	数字公共地			
9	AGND	模拟公共地			
16~27	DB0~DB11	数字量输出			
28	STS	转换开始变高,转换过程为高电平;转换完成后变为低电涨17			

AD1674 的功能真值表 (P342 表6.5)

CE	CS	R/C	$12/\overline{8}$	AO	工作状态
0	×	×	×	×	禁止
×	1	×	×	×	禁止
1	0	0	×	0	启动12位转换
1	0	0	×	1	启动8位转换
1	0	1	接1脚(+5V)	×	12位并行输出有效
1	0	1	接地	0	高8位并行输出有效
1	0	1	接地	1	低4位加上尾随4个0有效

操作方式

启动有12位/8位两种(取决于 A_0) 输出有三种(取决于 $12/\overline{8}$ 和 A_0 两个信号): $12/\overline{8}$ 接+5V: 12位输出 $12/\overline{8}$ 接地: 高8位/低4位输出(取决于 A_0) A_0 =0 由 D_{11} ~ D_4 输出高8位(D_3 ~ D_0 高阻)

 $A_0=0$ 由 $D_{11}\sim D_4$ 输出高8位($D_3\sim D_0$ 高阻) $A_0=1$ 由 $D_3\sim D_0$ 输出低4位

(D₇~D₄全0、D₁₁~D₈高阻)

R/C=0 启动转换,**R/C=1** 读转换结果 **STS=1** 正在转换,**STS=0** 转换完成

③ 时序

启动转换时序

读取数据时序

AD1674与8088CPU接口框图 (P345 图6.29接口举例)

74LS245 双向8缓冲:输出地址到下面373锁存 从两个8缓冲244输入数据

地址译码: DR₀接R/C, 启动 DR₁接上244, 读转换高4位数据 DR₂接中244, 读转换低8位数据 DR₃读STS, 查询状态

AD1674 12/8接+5v,A₀接地, 12位转换,12位输出,双极性, 20v模拟量输入

图6.29接口电路的查询方式下转换程序 (P346)

Start: mov DX, DR0 out DX, AL ; 使R/C=0, 启动A/D转换 mov DX, DR3 Stest: in AL, DX ;读STS状态 and AL, 80H :未转换完,再测试 Stest jnz mov DX, DR1 ;转换完,读入高4位 AL, DX in **;BH←高4位** mov BH, AL mov DX, DR2 ;读入低8位 AL, DX in ;BL←低8位,得BX←转换结果 mov BL, AL

§ 6.4多路开关(MUX)

从多路模拟电压中选一与公共端接通 被传送的是模拟电压,由数字信号控制 与计算机的接口都是数字接口

双向开关(CD4051B)

控制信号INH=0 时, C、B、A选中的通道和

公共端接通

(如CBA=011, 通道3),

模拟电压可以

双向传送

P351 图6.35 CD4051B功能管脚图

§ 6.5 采样保持器 (S/H)

一. 功能 有时断开/有时接通

采样(S):输出跟随输入电压连续变化

保持(H):输出电压跟输入断开,保持不变

P353 图6.36 采样保持器的基本组成电路

P354 图6.37 通用型芯片LF398的原理框图

P354 图6.38 LF398的典型接法

接口及驱动程序 (习题集P40附录四 AD574应用举例)

实现对模拟电压IN₁一次转换的程序段

```
mov AL, 00000000B; INH = 0, CBA = 000B
          DX, 212 ; 选IN<sub>1</sub>
       mov
          DX, AL
       out
       mov DX, 210H ; An=0, 进行12位转换
       out DX, AL ; 启动
       mov DX, 214H
           AL, DX ; 查询STS
Check:
      in
       and AL, 1
                     ;未完成 STS=1
      jnz Check
       mov DX, 210H; A_0=0
                     :读高8位
           AL, DX
       in
            AH, AL
       mov
            DX
       inc
                     ; A_0=1
            AL, DX : 读低4位
       in
```