

Harris Detector: SomeProperties

Rotation invariance?

Ellipse rotates but its shape (i.e. eigenvalues) remains the same

Corner response R is invariant to image rotation

Harris Detector: Some Properties

Invariance to image intensity change?

Harris Detector: Some Properties

- Partial invariance to additive and multiplicative intensity changes (threshold issue for multiplicative)
 - ✓Only derivatives are used => invariance to intensity shift $I \rightarrow I + b$
 - ✓ Intensity scale: $I \rightarrow a I$

Harris Detector: Some Properties

Invariant to image scale?

Harris Detector: SomeProperties

Not invariant to imagescale:

Quality of Harris detector for different scale changes

IF we want scale invariance...

- Consider regions (e.g. circles) of different sizes around a point
- Regions of corresponding sizes will look the same in both images

Scale Invariant Detection

 The problem: how do we choose corresponding circles independently in each image?

- Solution:
 - Design a function on the region (circle), which is "scale invariant" - not affected by the size but will be the same for "corresponding regions, " even if they are at different sizes/scales.

Example: Average intensity. For corresponding regions (even of different sizes) it will be the same.

Scale Invariant Detection

- Solution:
 - Design a function on the region (circle), which is "scale invariant" (the same for corresponding regions, even if they are at different scales)

Example: average intensity. For corresponding regions (even of different sizes) it will be the same.

For some given point in one image, we can consider it as a function of region size (circle radius)

One method:

- At a point, compute the scale invariant function over different size neighborhoods (different scales).
- Choose the scale for each image at which the function is a maximum

Scale Invariant Detection

One method:

 Important: this scale invariant region size is found in each image independently

 A "good" function for scale detection: has one stable sharp peak

 For usual images: a good function would be a one which responds to contrast (sharp local intensity change)

Function is just application of a kernel: f = Kernel*Image

(Laplacian of Gaussian - LoG)

$$L = \sigma^{2} \left(G_{xx}(x, y, \sigma) + G_{yy}(x, y, \sigma) \right)$$

Scale Invariant Detection

· Functions for determining scale

f = Kernel*Image

Kernels:

$$L = \sigma^{2} \left(G_{xx}(x, y, \sigma) + G_{yy}(x, y, \sigma) \right)$$

(Laplacian)

$$DoG = G(x, y, k\sigma) - G(x, y, \sigma)$$
(Difference of Gaussians)

where Gaussian

$$G(x, y, \sigma) = \frac{1}{\sqrt{2\pi}\sigma} e^{-\frac{x^2 + y^2}{2\sigma^2}}$$

Note: both kernels are invariant to *scale* and *rotation*

Key point localization

 General idea: find robust extremum (maximum or minimum) both in space and in scale.

Key point localization

- SIFT: Scale Invariant Feature Transform
- •Specific suggestion: use DoG pyramid to find maximum values (remember edge detection?) – then eliminate "edges" and pick only corners.

Key point localization

(Each point is compared to its 8 neighbors in the current image and 9 neighbors each in the scales above and below.)

• SIFT (Lowe)1

Find local maximum of:

Difference of Gaussians in space and scale

Harris-Laplacian²

Find local maximum of:

- Harris corner detector in space (image coordinates)
- Laplacian in scale

¹D.Lowe. "Distinctive Image Features from Scale-Invariant Keypoints". IJCV 2004

²K.Mikolajczyk, C.Schmid. "Indexing Based on Scale Invariant Interest Points". ICCV 2001

Scale Invariant Detectors

• SIFT (Lowe)1

Find local maximum of:

Difference of Gaussians in space and scale

Harris-Laplacian²

Find local maximum of:

- Harris corner detector in space (image coordinates)
- Laplacian in scale

¹D.Lowe. "Distinctive Image Features from Scale-Invariant Keypoints". IJCV 2004

²K.Mikolajczyk, C.Schmid. "Indexing Based on Scale Invariant Interest Points". ICCV 2001

Scale Invariant Detection: Summary

- •Given: Two images of the same scene with a *large* scale difference between them
- Goal: Find the same interest points independently in each image
- Solution: Search for maxima of suitable functions in scale and in space (over the image)

Scale Invariant Detection: Summary

- Given: two images of the same scene with a *large* scale difference between them
- Goal: find the same interest points independently in each image
- Solution: search for maxima of suitable functions in scale and in space (over the image)

Methods:

- SIFT[Lowe]: maximize Difference of Gaussians over scale and space
- 2. Harris-Laplacian [Mikolajczyk, Schmid]: maximize Laplacian over scale, Harris' measure of corner response over the image

SIFT descriptor

Objectives

- Features recap:
 - Goal is to find corresponding locations in two images.
 - Last time: find locations that can be accurately located and likely to be found in both images even if photometric or slight geometric changes.
 - This time—find possible (likely?) correspondences between points
 - Next: which of the guessed, plausible correspondences are correct

Point Descriptors

Last time: How to detect interest points

Harris detector

Interest points extracted with Harris (~ 500 points)

Point Descriptors

•Now: How to match them?

Point Descriptors

•We need to describe them – a "descriptor"

Criteria for Point Descriptors

• We want the descriptors to be the (almost) same in both image – *invariant*.

Criteria for Point Descriptors

We also need the descriptors to be distinctive.

Simple solution?

- Harris gives good detection and we also know the scale.
- Why not just use correlation to check the match of the window around the feature in image 1 with every feature in image 2?

Simple solution? Not so good!

- Not so good because:
 - Correlation is not rotation invariant why do we want this?
 - Correlation is sensitive to photometric changes.
 - Normalized correlation is sensitive to non-linear photometric changes and even slight geometric ones.
 - Could be slow check all features against all features

SIFT: Scale Invariant Feature Detection

- Motivation: The Harris operator was not invariant to scale and correlation was not invariant to rotation.
- For better image matching, Lowe's goals were:
 - To develop an interest operator a *detecto*r that is invariant to scale and rotation.
 - Also: create a descriptor that was robust to the variations corresponding to typical viewing conditions. The descriptor is the most-used part of SIFT.

Idea of SIFT

 Image content is represented by a constellation of local features that are invariant to translation, rotation, scale, and other imaging parameters

Another version of the problem...

Want to find

...in here

Another version of the problem...

Another version of the problem...

Want to find

Overall SIFT Procedure

- Scale-space extrema detection
- Keypoint localization

- Orientation assignment
- Keypoint description

Overall Procedure at a High Level

- Scale-space extrema detection
 - Search over multiple scales and image locations
- Keypoint localization
 - Define a model to determine location and scale.
 Select keypoints based on a measure of stability.

Use Harris-Laplace or other method

- Orientation assignment
 - · Compute best orientation(s) for each keypoint region.
- Keypoint description
 - Use local image gradients at selected scale and rotation
 - · to describe each keypoint region.

Example of keypoint detection

- (a) 233x189 image
- (b) 832 DOG extrema

Overall SIFT Procedure

- 1.Scale-space extrema detection
- 2. Keypoint localization
- 3. Orientation assignment

Compute best orientation(s) for each keypoint region.

4. Keypoint description
Use local image gradients at selected scale and rotation to describe each keypoint region.

Descriptors Invariant to Rotation

 Find the dominant direction of gradient –that is the base orientation.

Compute image derivatives relative to this orientation

Orientation assignment

 Create histogram of local gradient directions at selected scale – 36 bins

Orientation assignment

 Assign canonical orientation at peak of smoothed histogram

Orientation assignment

 Each keypoint now specifies stable 2D coordinates (x, y, scale, orientation) – invariant to those.

4. Keypoint Descriptors

- Next is to compute a descriptor for the local image region about each keypoint that is:
 - Highly distinctive
 - As invariant as possible to variations such as changes in viewpoint and illumination

But first... normalization

- Rotate the window to standard orientation
- Scale the window size based on the scale at which the point was found.

SIFT vector formation

Compute a feature vector based upon:

histograms of gradients

SIFT vector formation

Compute a feature vector based upon:

Gradient weighted by a centered Gaussian,

SIFT vector formation

- 4x4 array of gradient orientation histograms over 4x4 pixels
 - · not really histogram, weighted by magnitude
- 8 orientations x 4x4 array = 128 dimensions
- Motivation: some sensitivity to spatial layout, but not too much.

showing only 2x2 here but is 4x4

Ensure smoothness

Reduce effect of illumination

- 128-dim vector normalized to magnitude 1.0
- Threshold gradient magnitudes to avoid excessive influence of high gradients
 - after rotation normalization, clamp gradients >0.2

Evaluating the SIFT descriptors

- Database images were subjected to rotation, scaling, affine stretch, brightness and contrast changes, and added noise.
- Feature point detectors and descriptors were compared before and after the distortions.
- Mostly looking for stability with respect to change.

Sensitivity to number of histogram orientations

Figure 8: This graph shows the percent of keypoints giving the correct match to a database of 40,000 keypoints as a function of width of the $n \times n$ keypoint descriptor and the number of orientations in each histogram. The graph is computed for images with affine viewpoint change of 50 degrees and addition of 4% noise.

Feature stability to noise

- Match features after random change in image scale & orientation, with differing levels of image noise
- Find nearest neighbor in database of 30,000 features

Experimental results - summary

Image transformation	Location and scale match	Orientation match
Decrease constrast by 1.2	89.0 %	86.6 %
Decrease intensity by 0.2	88.5 %	85.9 %
Rotate by 20°	85.4 %	81.0 %
Scale by 0.7	85.1 %	80.3 %
Stretch by 1.2	83.5 %	76.1 %
Stretch by 1.5	77.7 %	65.0 %
Add 10% pixel noise	90.3 %	88.4 %
All previous	78.6 %	71.8 %

Experimental results

Original image

Keypoints on image after rotation (15°), scaling (90%), horizontal stretching (110%), change of brightness (-10%) and contrast (90%), and addition of pixel noise

SIFT matching object pieces (for location)

SIFT matching object pieces (for location)

Matching feature points (a little)

Feature Points

We know how to detect points

Feature Points

•We know how to describe them

Feature Points

•Next question: How to match them?

How to match feature points?

- Could just do nearest-neighbor search
 - -Youwill!
- But that's really expensive...SIFT tests have 10,000's of points!

How to match feature points?

- Other methods
 - k-D tree and
 - Best Bin First (BBF)
 - Haar wavelet
 - Hashing
- Result: Can give speedup by factor of 100-1000 while finding nearest neighbor (of interest) 95% of the time

3D Object Recognition

Train:

- Extract outlines with background subtraction
- Compute
 "keypoints" –
 interest points
 and descriptors.

3D Object Recognition

Test:

- 1. Find possible matches.
- Search for consistent solution

 such as affine.
 (How many points?!?!?)

Results

Recognition under occlusion

Recognition under occlusion

Locating object pieces

(From last lesson)

SIFTin Sony Aibo (Evolution Robotics)

SIFT usage:

- Recognize charging station
- Communicate with visual cards

AIBO® Entertainment Robot
Official U.S. Resources and Online Destinations

ERS-7 with:
Wireless LAH
AIBO MIND Joffware
Energy Station
AIBO@ Entertainment Rebot AIBO

Battery & AC Adapter

3 rd Generation
Pre-order Now I

http://www.sony-aibo.com/aibo-models/sony-aibo-ers-7/