Санкт-Петербургский политехнический университет Петра Великого Институт прикладной математики и механики Кафедра «Прикладная математика»

Отчёт по курсовой работе по дисциплине «Математическая статистика»

Выполнил студент: Митенев Александр Владимирович группа: 3630102/70201

Проверил: к.ф.-м.н.,доцент Баженов Александр Николаевич

Санкт-Петербург 2020г.

Содержание

1	Постановка задачи	3
2	Реализация	3
	2.1 Получение и обработка сигнала	. 3
	2.2 Получение данных калибровки	. 3
	2.3 Вычисление	
	2.4 Представление результатов	. 4
3	Результаты	4
	3.1 Обработка сигнала	. 4
	3.2 Значение температуры	. 6
4	Варианты использования	6
5	Обсуждение	10
6	Приложения	11

Список иллюстраций

1	Входной сигнал (sxr 80 mkm)	4
2	Сигнал (sxr 80 mkm) после обработки по умолчанию	5
3	Результаты	6
4	Результаты (по умолчанию)	7
5	Результаты (ROI = True, borders = True, left = 0.14, right =	
	0.2)	8
6	Pезультаты ($ROI = F$ alse, borders $= F$ alse)	9
7	Результаты (ROI = False, borders = True, left = 0.14, right =	
	0.3)	10

1 Постановка задачи

Есть массив данных. Эти данные несут информацию о температуре плазмы. Требуется сопоставить сигналы в 2 каналах и получить температуру объекта (некоторый аналог пирометра на миллионы K).

2 Реализация

2.1 Получение и обработка сигнала

Получением и обработкой сигнала занимается функция make Signals Рассмотрим по этапам:

- 1. Считывание данных
- 2. Выделение области для анализа, если выставлен соответсвующий флагт. Иначе область не будет изменена.
- 3. Установление границ указанных пользователем, так же при присутсвии соответсвующих значений.
- 4. Применение фильтров к сигналу.

Замечание 1. По умолчанию будет произведено выделение области для анализа без ручного указания границ.

Замечание 2. Реализация считывания сигналов и фльтров для работы с ними находится в библиотеке pyglobus.

2.2 Получение данных калибровки

Данные связанные с калибровкой обрабатываются в файле calibration.py. Основыные функциональности:

- Считывание из файла данных о калибровке и создание по ним таблицы калибровки.
- Сопоставление занчений с температурой.

2.3 Вычисление

Pасчеты производятся в функции process Pассмотрим по этапам:

- 1. Два сигнала приводятся к единому промежутку.
- 2. Деление сигналов.
- 3. Получение результатов через таблицу калибровки.

2.4 Представление результатов

Результаты можно увидеть в текстовом файле или же вывести график. Запись в файл происходит всегда, а графическое представление может управлятся пользователем.

3 Результаты

Дальнейшие результаты соответствуют данным из файла sht38515.sht

3.1 Обработка сигнала

Рис. 1: Входной сигнал (sxr 80 mkm)

Рис. 2: Сигнал (sxr 80 mkm) после обработки по умолчанию

3.2 Значение температуры

Рис. 3: Результаты

4 Варианты использования

Этапы описанные в пункте "Реализация" выполняются в функции mainProcess с данной сигнатурой:

$$\label{eq:conditional} \begin{split} & \text{def mainProcess}(\text{shtNum}, \text{nums}, \text{ROI=True}, \text{borders=False}, \text{left=LEFT}, \text{right=RIGHT}, \\ & \text{graphics=False}) \end{split}$$

- \bullet sht Num - номер sht файла (в представленных результатах использовался "38515")
- nums массив с номерами (могут быть 80, 50, 27, 15) из названий сигналов, например, "SXR 80 mkm". Результаты собраны для значений

[80, 50, 15].

- ROI булевская переменная, отвечающая за выделение области для анализа (region of interest) у сигнлов. По умолчанию выставлена в True.
- borders булевская переменная, отвечающая за выставление границ промежутка, указанных в следующих двух переменных. По умолчанию False.
- left значение левой границы промежутка. По умолчанию LEFT=0.14
- right значение правой границы промежутка. По умолчанию RIGHT=0.2
- graphics булевская переменная, отвечающая за вывод графика на экран. По умолчанию False.

Разберем наглядно значение этих переменных.

• ROI = True, borders = False (по умолчанию)

Рис. 4: Результаты (по умолчанию)

Рис. 5: Результаты (ROI = True, borders = True, left = 0.14, right = 0.2)

Заметим, что в данном случае от ROI ничего не зависело, т.к. вручную установленный промежуток полнстью входил в границы области для анализа.

• ROI = False, borders = False

Рис. 6: Результаты (ROI = False, borders = False)

Рис. 7: Результаты (ROI = False, borders = True, left = 0.14, right = 0.3)

Подводя итог, можно сказать, что, если ROI=True, то границы интервала будут выставленны автоматически. borders=True добавляет возможность ручного управления границами с помощью переменных left и right. При использовании комбинации будет выбрана наибольшая левая граница и наименьшая правая.

5 Обсуждение

Полученные результаты совпадают с результатами работы программы globus2018, из чего можно сделать вывод о правильной работы программы.

6 Приложения

- ullet Репозиторий с исходным кодом: https://github.com/mitenevav/Mathematical-statistics/tree/project
- Реализация pyglobus: https://github.com/dev0x13/globus-plasma