Física Computacional Actividad 10 La Ecuación de Duffing

Antonio José López Moreno 26 de Mayo de 2019

Introducción

En esta actividad resolveremos la ecucación de Duffing, para diferentes valores de omega, para ser mas especificos de 0 a 2.5. La ecuación es la siguiente

$$\ddot{x} + \delta \dot{x} + \alpha x + \beta x^3 = \gamma \cos(\omega t)$$

Las constantes representan las siguientes cantidades.

 $\alpha: Rigidez$

 $\beta: No-Linealidad$

 $\gamma: Amplitudad - del - Forzamiento$

 δ : Amortiguamiento

 $\omega: Frecuencia - de - Forzamiento$

Función ode de SciPy

Utilizaremos la función ode de SciPy para reproducir la figura que aparece al inicio de esta actividad en el caso de que $\alpha=\gamma=1.0$ y amortiguamiento $\delta=0.1$. En la actividad anterior hemos utilizado la función odeint. La función ode utiliza el metodo de Runge-Kutta de orden 4 para resolución de la ecuación difencial.

Solución con las siguientes condiciones inciales

$$\alpha = \gamma = 1.0$$

$$\delta = 0.1$$

$$\beta = 0.04$$

$$\omega = 2.5$$

Figura 1: Caption

Analisis de la amplitud con la varaición de la ω

Usaremos las condicioens anteriores, y variaremos los valores de ω de 0 a 2.5, partiremos este intevarlo en 100 partes, y en cada parte. Gráficaremos los valores ω contra amplitud maxima que se encuentra en cada iteración con los diferentes valos de omega y con los siguientes valores de β .

$$\beta = 0.01$$

$$\beta = -0.003$$

$$\beta = 0.0$$

$$\beta = 0.04$$

El fenomenoe es muy visible en estas gráficas cunado $\beta = 0.04$ por que se

puede ver que cuando ω es aproximadamente igual a 1.3, la amplitud sufre un decaimiento muy crítico.

Analisis de la amplitud con la varaición de la ω con condiciones iniciales dependientes de la iteración anterior

Para generar la gráfica anteror se usaron las mismos valores de las constantes

anteiores, con $\beta=0.04$, pero la condición inicial, de cada iteración de ω sera velocidad inicial igual a cero y como posición inicial la amplitud maxima anterior. Los puntos azules son cuando la ω corre a de 0 a 2.5 y los puntos anaranjados son cuando la ω corre de 2.5 a 0. Lo que podemos analizar de esta gráfica es que hay cierto punto de condición inicial, en el que la función se vuelve inestable, al correr la resolución analítica por ambos lados.