		No. 4 - 19 - 110 Date: / /
	4.3. 2 The matrix eta	
\bigcirc	Recall: $e^{x} = 1 + x + \frac{x^{3}}{2!} + \frac{x^{3}}{3!} + \cdots + \frac{x^{n}}{n!} + \cdots$	
	Definition 35: A Muxn (IF)	
\bigcirc	The matrix exponential is defined by	
	$\exp(A) = A = I + A + \frac{(A)^2}{2!} + \frac{(A)^3}{3!} + \cdots + \frac{(A)^n}{n!}$	4
	Remark 36: $exp(5A) \cdot exp(4A) = exp((5+4)A)$	
	$\exp(+A) \cdot \exp(-+A) = I$	
	$\frac{d}{dt} \exp(tA) = A e^{tA}.$	
	Remark 37: If A is diagonalizable	
	\Rightarrow I eigenvector matrix Q and diagonal matrix D s.t. $A = QDQ^{-1}$	
	$\Rightarrow \exp(\theta A) - I + \theta A + \frac{1^2 A^2}{2!} + \cdots + \frac{1^n A^n}{n!} + \cdots$	
	$= QQ^{-1} + QQQ^{-1} + \frac{Q^{2}}{2!} QQ^{2}Q^{-1} + \cdots + \frac{Q^{n}}{n!} QQ^{n}$	2 +
	$= Q \left[I + ID + \frac{I^{2}D^{2}}{2!} + \cdots + \frac{I^{n}D^{n}}{n!} + \cdots + \frac{I}{N} Q^{n} \right]$	
	= 0 e ⁻¹ D 0 ⁻¹	
	重英:	
	$D = \begin{bmatrix} \lambda_1 & \lambda_2 & 0 \\ \lambda_2 & 0 \end{bmatrix} = \begin{bmatrix} e^{\pm \lambda_1} & 0 \\ e^{\pm \lambda_2} & 0 \end{bmatrix}$	
		Pan
	Example 39: A = (-2 1)	
	Example 38: A -	
	Compute eta.	NAN PAO

		Date: / /
	Solution: characteristic polynomial:	
	$\det (A - +I) = \begin{vmatrix} -2 - 4 & 1 \\ 1 & -2 - 4 \end{vmatrix} = +^2 + + 4 + 3$	= (8+1)(4+3)
	\Rightarrow eigenvalues; -3, -1	
0	$\Rightarrow A \text{ is diagonalizable.}$	
	$\mathbb{E}_{-1} = \left\{ \begin{pmatrix} x_1 \\ x_2 \end{pmatrix}, \begin{pmatrix} -1 \\ 1 \end{pmatrix}, \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = 0 \right\} = span \left\{ \begin{pmatrix} x_1 \\ x_2 \end{pmatrix}, \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = 0 \right\}$;) ; ;
	$E_{-3} = \left\{ \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} : \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = 0 \right\} = \varepsilon pan \left\{ \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} : \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} : \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} : \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = 0 \right\}$	-1)}
	$\Rightarrow Q = \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix} \qquad \mathcal{D} = \begin{pmatrix} -1 & 0 \\ 0 & -3 \end{pmatrix}$	
	and $A = QDQ$	
	$\Rightarrow e^{\dagger A} = Q e^{\dagger D} Q^{-1}$	
\bigcirc		~ \
	=	1)
	/ e-+ e->+ \ (-1 -1 \	
	= 3 (e-+ -e-+ / -1 1 /	
	$\left(\frac{1}{2}(e^{-4}+e^{-31})\frac{1}{2}(e^{-4}-e^{-31})\right)$)
	= 1 -30 1 -30 -30	
	(e - e) = (e + e)	'
0		