Ι

Names: $_$		
1 (011100) =		

Discussion section: ${f D}$ _____ Group number: _____

MATH 257 - WORKSHEET 4: INVERTIBLE MATRICES

1. The basics

the following row operations (in the given order):

- (1) $R_2 \to R_2 + 2R_1$,
- (2) $R_3 \to R_3 R_1$,
- (3) $R_3 \to R_3 + R_2$,
- (4) $R_4 \to R_4 + R_2$.

Find a lower-triangular matrix L that can appear in a LU-decomposition A = LU.

- **2.** Find the inverses of the following invertible matrices:
 - $\begin{array}{ccc}
 (1) \begin{bmatrix} 8 & 6 \\ 5 & 4 \end{bmatrix} \\
 (2) \begin{bmatrix} 1 & 0 & 0 \\ 1 & 1 & 1 \\ 0 & 0 & 1 \end{bmatrix}$

3	Is the sum of two invertible matrices always an invertible matrix? Justify your answer.
3.	Is the sum of two invertible matrices always an invertible matrix? Justify your answer.
3.	Is the sum of two invertible matrices always an invertible matrix? Justify your answer.
3.	Is the sum of two invertible matrices always an invertible matrix? Justify your answer.
3.	Is the sum of two invertible matrices always an invertible matrix? Justify your answer.
3.	Is the sum of two invertible matrices always an invertible matrix? Justify your answer.
3.	Is the sum of two invertible matrices always an invertible matrix? Justify your answer.
3.	Is the sum of two invertible matrices always an invertible matrix? Justify your answer.
3.	Is the sum of two invertible matrices always an invertible matrix? Justify your answer.
3.	Is the sum of two invertible matrices always an invertible matrix? Justify your answer.
3.	Is the sum of two invertible matrices always an invertible matrix? Justify your answer.
3.	Is the sum of two invertible matrices always an invertible matrix? Justify your answer.
3.	Is the sum of two invertible matrices always an invertible matrix? Justify your answer.
3.	Is the sum of two invertible matrices always an invertible matrix? Justify your answer.
3.	Is the sum of two invertible matrices always an invertible matrix? Justify your answer.
3.	Is the sum of two invertible matrices always an invertible matrix? Justify your answer.
3.	Is the sum of two invertible matrices always an invertible matrix? Justify your answer.
3.	Is the sum of two invertible matrices always an invertible matrix? Justify your answer.
3.	Is the sum of two invertible matrices always an invertible matrix? Justify your answer.
	Is the sum of two invertible matrices always an invertible matrix? Justify your answer. If a matrix A is invertible, is the matrix A ² invertible? Justify your answer.

	5. Let A be an invertible $n \times n$ -matrix and b be a vector in \mathbb{R}^n . How many solution does $A\mathbf{x} = \mathbf{b}$ have? Explain why!
Note that $A = LU$. Let A_i be the submatrix obtained by taking the first i rows and the first i columns of A , for $i = 1, 2, 3$, i.e., $A_3 = \begin{bmatrix} 2 & -1 & 0 \\ -1 & 2 & -1 \\ 0 & -1 & 2 \end{bmatrix}, A_2 = \begin{bmatrix} 2 & -1 \\ -1 & 2 \end{bmatrix}, and A_1 = \begin{bmatrix} 2 \end{bmatrix}.$	
Note that $A = LU$. Let A_i be the submatrix obtained by taking the first i rows and the first i columns of A , for $i = 1, 2, 3$, i.e., $A_3 = \begin{bmatrix} 2 & -1 & 0 \\ -1 & 2 & -1 \\ 0 & -1 & 2 \end{bmatrix}, A_2 = \begin{bmatrix} 2 & -1 \\ -1 & 2 \end{bmatrix}, and A_1 = \begin{bmatrix} 2 \end{bmatrix}.$	
Note that $A = LU$. Let A_i be the submatrix obtained by taking the first i rows and the first i columns of A , for $i = 1, 2, 3$, i.e., $A_3 = \begin{bmatrix} 2 & -1 & 0 \\ -1 & 2 & -1 \\ 0 & -1 & 2 \end{bmatrix}, A_2 = \begin{bmatrix} 2 & -1 \\ -1 & 2 \end{bmatrix}, and A_1 = \begin{bmatrix} 2 \end{bmatrix}.$	
Note that $A = LU$. Let A_i be the submatrix obtained by taking the first i rows and the first i columns of A , for $i = 1, 2, 3$, i.e., $A_3 = \begin{bmatrix} 2 & -1 & 0 \\ -1 & 2 & -1 \\ 0 & -1 & 2 \end{bmatrix}, A_2 = \begin{bmatrix} 2 & -1 \\ -1 & 2 \end{bmatrix}, and A_1 = \begin{bmatrix} 2 \end{bmatrix}.$	
Note that $A = LU$. Let A_i be the submatrix obtained by taking the first i rows and the first i columns of A , for $i = 1, 2, 3$, i.e., $A_3 = \begin{bmatrix} 2 & -1 & 0 \\ -1 & 2 & -1 \\ 0 & -1 & 2 \end{bmatrix}, A_2 = \begin{bmatrix} 2 & -1 \\ -1 & 2 \end{bmatrix}, and A_1 = \begin{bmatrix} 2 \end{bmatrix}.$	
Note that $A = LU$. Let A_i be the submatrix obtained by taking the first i rows and the first i columns of A , for $i = 1, 2, 3$, i.e., $A_3 = \begin{bmatrix} 2 & -1 & 0 \\ -1 & 2 & -1 \\ 0 & -1 & 2 \end{bmatrix}, A_2 = \begin{bmatrix} 2 & -1 \\ -1 & 2 \end{bmatrix}, and A_1 = \begin{bmatrix} 2 \end{bmatrix}.$	
Note that $A = LU$. Let A_i be the submatrix obtained by taking the first i rows and the first i columns of A , for $i = 1, 2, 3$, i.e., $A_3 = \begin{bmatrix} 2 & -1 & 0 \\ -1 & 2 & -1 \\ 0 & -1 & 2 \end{bmatrix}, A_2 = \begin{bmatrix} 2 & -1 \\ -1 & 2 \end{bmatrix}, and A_1 = \begin{bmatrix} 2 \end{bmatrix}.$	
columns of A, for $i = 1, 2, 3$, i.e., $A_3 = \begin{bmatrix} 2 & -1 & 0 \\ -1 & 2 & -1 \\ 0 & -1 & 2 \end{bmatrix}, A_2 = \begin{bmatrix} 2 & -1 \\ -1 & 2 \end{bmatrix}, and A_1 = \begin{bmatrix} 2 \end{bmatrix}.$	
Note that $A = LU$. Let A_i be the submatrix obtained by taking the first i rows and the first i columns of A , for $i = 1, 2, 3$, i.e., $A_3 = \begin{bmatrix} 2 & -1 & 0 \\ -1 & 2 & -1 \\ 0 & -1 & 2 \end{bmatrix}, A_2 = \begin{bmatrix} 2 & -1 \\ -1 & 2 \end{bmatrix}, and A_1 = \begin{bmatrix} 2 \end{bmatrix}.$	$\begin{bmatrix} 2 & -1 & 0 & 0 \end{bmatrix} \qquad \begin{bmatrix} 1 & 0 & 0 & 0 \end{bmatrix} \qquad \begin{bmatrix} 2 & -1 & 0 & 0 \end{bmatrix}$
Note that $A = LU$. Let A_i be the submatrix obtained by taking the first i rows and the first i columns of A , for $i = 1, 2, 3$, i.e., $A_3 = \begin{bmatrix} 2 & -1 & 0 \\ -1 & 2 & -1 \\ 0 & -1 & 2 \end{bmatrix}, A_2 = \begin{bmatrix} 2 & -1 \\ -1 & 2 \end{bmatrix}, and A_1 = \begin{bmatrix} 2 \end{bmatrix}.$	6. Let $A = \begin{bmatrix} -1 & 2 & -1 & 0 \\ 0 & -1 & 2 & -1 \end{bmatrix}$, $L = \begin{bmatrix} -\frac{1}{2} & 1 & 0 & 0 \\ 0 & -\frac{2}{3} & 1 & 0 \end{bmatrix}$, and $U = \begin{bmatrix} 0 & \frac{3}{2} & -1 & 0 \\ 0 & 0 & \frac{4}{3} & -1 \end{bmatrix}$.
columns of A, for $i = 1, 2, 3$, i.e., $A_3 = \begin{bmatrix} 2 & -1 & 0 \\ -1 & 2 & -1 \\ 0 & -1 & 2 \end{bmatrix}, A_2 = \begin{bmatrix} 2 & -1 \\ -1 & 2 \end{bmatrix}, and A_1 = \begin{bmatrix} 2 \end{bmatrix}.$	
	$\begin{bmatrix} 2 & -1 & 0 \\ 1 & 2 & 1 \end{bmatrix} \qquad \begin{bmatrix} 2 & -1 \end{bmatrix} \qquad \begin{bmatrix} 4 & 52 \end{bmatrix}$
What is an LU-decomposition of A_i , for $i = 1, 2, 3$?	$A_3 = \begin{bmatrix} -1 & 2 & -1 \\ 0 & -1 & 2 \end{bmatrix}, A_2 = \begin{bmatrix} -1 & 2 \end{bmatrix}, and A_1 = \begin{bmatrix} 2 \end{bmatrix}.$
	What is an LU-decomposition of A_i , for $i = 1, 2, 3$?

7. Let A be an $n \times n$ -matrix such that A^2 is the zero matrix. Is $A - I$ invertible? If so, what is the inverse of this matrix?
8. The objective of this exercise is to study the question: Do all matrices have an LU decomposition?
(a) Explain why any triangular matrix (upper or lower triangular) T has an LU decomposition
(b) Let $A = \begin{bmatrix} 0 & 1 \\ 1 & 1 \end{bmatrix}$. Verify that A has no LU decomposition (Hint: Suppose that there exists two matrices L and U such that $A = LU$. Eventually you will get a contradiction!)