Class 15: Pertussis mini-project

Youn Soo Na (PID: A1704731)

Background

Pertussis, a.k.a. whooping cough, is a highly infectious launch disease cuased by the bacteria B. Pertussis

The CDC tracks pertussis case numbers per year. Let's have a closer look at this data: We will use the datapasta R package to "scrape" this data into R.

Q1. With the help of the R "addin" package datapasta assign the CDC pertussis case number data to a data frame called cdc and use ggplot to make a plot of cases numbers over time.

```
library(ggplot2)
library(datapasta)
cdc <- data.frame(</pre>
                             Year = c(1922L,
                                       1923L,1924L,1925L,1926L,1927L,1928L,
                                       1929L, 1930L, 1931L, 1932L, 1933L, 1934L, 1935L,
                                       1936L, 1937L, 1938L, 1939L, 1940L, 1941L,
                                       1942L, 1943L, 1944L, 1945L, 1946L, 1947L, 1948L,
                                       1949L,1950L,1951L,1952L,1953L,1954L,
                                       1955L,1956L,1957L,1958L,1959L,1960L,
                                       1961L, 1962L, 1963L, 1964L, 1965L, 1966L, 1967L,
                                       1968L,1969L,1970L,1971L,1972L,1973L,
                                       1974L, 1975L, 1976L, 1977L, 1978L, 1979L, 1980L,
                                       1981L, 1982L, 1983L, 1984L, 1985L, 1986L,
                                       1987L, 1988L, 1989L, 1990L, 1991L, 1992L, 1993L,
                                       1994L, 1995L, 1996L, 1997L, 1998L, 1999L,
                                       2000L,2001L,2002L,2003L,2004L,2005L,
                                       2006L, 2007L, 2008L, 2009L, 2010L, 2011L, 2012L,
                                       2013L,2014L,2015L,2016L,2017L,2018L,
```

```
2019L, 2020L, 2021L, 2022L),
  No..Reported.Pertussis.Cases = c(107473,
                                    164191, 165418, 152003, 202210, 181411,
                                    161799, 197371, 166914, 172559, 215343, 179135,
                                    265269, 180518, 147237, 214652, 227319, 103188,
                                    183866,222202,191383,191890,109873,
                                    133792,109860,156517,74715,69479,120718,
                                    68687,45030,37129,60886,62786,31732,28295,
                                    32148,40005,14809,11468,17749,17135,
                                    13005,6799,7717,9718,4810,3285,4249,
                                    3036,3287,1759,2402,1738,1010,2177,2063,
                                    1623,1730,1248,1895,2463,2276,3589,
                                    4195,2823,3450,4157,4570,2719,4083,6586,
                                    4617,5137,7796,6564,7405,7298,7867,
                                    7580,9771,11647,25827,25616,15632,10454,
                                    13278, 16858, 27550, 18719, 48277, 28639,
                                    32971,20762,17972,18975,15609,18617,6124,
                                    2116,3044)
)
baseplot <- ggplot(cdc, aes(Year, No..Reported.Pertussis.Cases)) +</pre>
  geom_point() +
  geom_line() +
  labs(x="Year", y = "Number of Cases", title = "Number of Pertussis Cases by Year (1922-202)
baseplot
```

Number of Pertussis Cases by Year (1922–2022)

Add some landmark development as annotation to our plot. We include the first whole-cell (wP) vaccine roll-out in 1946.

```
baseplot +
  geom_vline(xintercept = 1946, linetype = "dashed", col = "red") +
  geom_text(aes(x = 1948, y = 1, label = "wP"), color = "red", vjust = -30)
```

Warning in geom_text(aes(x = 1948, y = 1, label = "wP"), color = "red", : All aesthetics have i Please consider using `annotate()` or provide this layer with data containing a single row.

Number of Pertussis Cases by Year (1922–2022)

Let's add the switch to acellular vaccine (aP). > Q2. Using the ggplot geom_vline() function add lines to your previous plot for the 1946 introduction of the wP vaccine and the 1996 switch to aP vaccine (see example in the hint below). What do you notice?

```
baseplot +
  geom_vline(xintercept = 1946, linetype = "dashed", col = "red") +
  geom_vline(xintercept = 1996, linetype = "dashed", col = "blue") +
  geom_text(aes(x = 1998, y = 1, label = "aP"), color = "blue", vjust = -30)+
  geom_text(aes(x = 1948, y = 1, label = "wP"), color = "red", vjust = -30) +
  theme_test()
```

Warning in geom_text(aes(x = 1998, y = 1, label = "aP"), color = "blue", : All aesthetics has i Please consider using `annotate()` or provide this layer with data containing a single row.

Warning in geom_text(aes(x = 1948, y = 1, label = "wP"), color = "red", : All aesthetics have i Please consider using `annotate()` or provide this layer with data containing a single row.

Number of Pertussis Cases by Year (1922–2022)

Q3. Describe what happened after the introduction of the aP vaccine? Do you have a possible explanation for the observed trend?

We went from $\sim 200,000$ cases pre-wP vaccine to $\sim 1,000$ cases in 1976.

The US switched to the aP vaccine in 1995. We start to see a big increase in 2004 to \sim 26,000 cases.

There is a ~10 year lag from aP roll-out to increasing case numbers. This holds true of other countries like Japan, UK, etc. It seems that something about the aP vaccine that has a immune response that does not last as long as the wP vaccine.

Key Question: Why does the aP vaccine induced immunity wane faster than that of the wP vaccine?

CMI-PB

The CMI-PB (Computation Models of Immunity Pertussis Boost) makes available lost of data about the immune response to Pertussis booster vaccination.

Critically, it tracks wP and aP individuals over time to see how their immune response changes.

CMI-PB make all their data freely available via JSON format tables from their databas.

Let's read the first one of these tables:

```
library(jsonlite)
subject <- read_json("https://www.cmi-pb.org/api/v5/subject", simplifyVector = T)
head(subject)</pre>
```

```
subject_id infancy_vac biological_sex
                                                      ethnicity race
1
           1
                      wP
                                  Female Not Hispanic or Latino White
           2
2
                      wP
                                  Female Not Hispanic or Latino White
3
           3
                      wΡ
                                  Female
                                                         Unknown White
4
           4
                      wP
                                    Male Not Hispanic or Latino Asian
5
           5
                      wP
                                    Male Not Hispanic or Latino Asian
6
           6
                      wP
                                  Female Not Hispanic or Latino White
 year_of_birth date_of_boost
                                    dataset
     1986-01-01
                   2016-09-12 2020_dataset
                   2019-01-28 2020_dataset
2
     1968-01-01
3
     1983-01-01
                   2016-10-10 2020_dataset
4
    1988-01-01
                   2016-08-29 2020_dataset
     1991-01-01
                   2016-08-29 2020_dataset
5
6
     1988-01-01
                   2016-10-10 2020_dataset
```

Q1. How many subjects are there in this dataset?

```
nrow(subject)
```

[1] 172

Q4. How many aP and wP infancy vaccinated subjects are in the dataset?

```
table(subject$infancy_vac)
```

aP wP 87 85

Q5. How many Male and Female subjects/patients are in the dataset?

```
table(subject$biological_sex)
```

Female Male 112 60

Q6. What is the breakdown of race and biological sex (e.g. number of Asian females, White males etc...)?

table(subject\$race, subject\$biological_sex)

	${\tt Female}$	Male
American Indian/Alaska Native	0	1
Asian	32	12
Black or African American	2	3
More Than One Race	15	4
Native Hawaiian or Other Pacific Islander	1	1
Unknown or Not Reported	14	7
White	48	32

Q. Does this do a good job of representing the US populus?

No way

Let's get more data from CMI-PB, this time about the specimens collected.

```
specimen <- read_json("https://cmi-pb.org/api/v5/specimen", simplifyVector = T)</pre>
```

Now we can join (merge) these two tables subject and specimen to make one new meta table with the combined data.

library(dplyr)

```
Attaching package: 'dplyr'

The following objects are masked from 'package:stats':

filter, lag

The following objects are masked from 'package:base':

intersect, setdiff, setequal, union
```

meta <- inner_join(subject, specimen)</pre>

Joining with `by = join_by(subject_id)`

head(meta)

```
subject_id infancy_vac biological_sex
                                                       ethnicity race
1
           1
                      wP
                                  Female Not Hispanic or Latino White
2
           1
                      wP
                                  Female Not Hispanic or Latino White
3
           1
                      wΡ
                                  Female Not Hispanic or Latino White
           1
4
                      wP
                                  Female Not Hispanic or Latino White
5
           1
                      wP
                                  Female Not Hispanic or Latino White
           1
                      wP
                                  Female Not Hispanic or Latino White
                                    dataset specimen_id
 year_of_birth date_of_boost
     1986-01-01
                   2016-09-12 2020_dataset
                                                       1
1
2
                   2016-09-12 2020_dataset
                                                       2
     1986-01-01
3
     1986-01-01
                   2016-09-12 2020_dataset
                                                       3
                                                       4
4
     1986-01-01
                   2016-09-12 2020 dataset
                   2016-09-12 2020_dataset
                                                       5
5
     1986-01-01
     1986-01-01
                   2016-09-12 2020_dataset
 actual_day_relative_to_boost planned_day_relative_to_boost specimen_type
1
                             -3
                                                             0
                                                                        Blood
2
                              1
                                                             1
                                                                        Blood
3
                              3
                                                             3
                                                                        Blood
4
                              7
                                                             7
                                                                        Blood
5
                             11
                                                            14
                                                                        Blood
6
                             32
                                                            30
                                                                        Blood
 visit
1
      1
2
      2
3
      3
4
      4
5
      5
6
      6
```

Now read an "experiment data" table from CMI-PB

```
abdata <- read_json("https://www.cmi-pb.org/api/v5/plasma_ab_titer", simplifyVector = T)
head(abdata)</pre>
```

```
specimen_id isotype is_antigen_specific antigen
                                                            MFI MFI_normalised
                                      FALSE
                                                                       2.493425
1
            1
                   IgE
                                              Total 1110.21154
            1
2
                                      FALSE
                                              Total 2708.91616
                                                                       2.493425
                   IgE
3
            1
                   IgG
                                       TRUE
                                                  PT
                                                       68.56614
                                                                       3.736992
4
            1
                   IgG
                                       TRUE
                                                 PRN
                                                      332.12718
                                                                       2.602350
5
            1
                   IgG
                                       TRUE
                                                 FHA 1887.12263
                                                                      34.050956
                   IgE
                                       TRUE
                                                 ACT
                                                        0.10000
                                                                       1.000000
   unit lower_limit_of_detection
1 UG/ML
                         2.096133
2 IU/ML
                        29.170000
3 IU/ML
                         0.530000
4 IU/ML
                         6.205949
5 IU/ML
                         4.679535
6 IU/ML
                         2.816431
```

Q. What are the different \$dataset values in abdata and what do you notice about the number of rows for the most "recent" dataset?

str(abdata)

```
52576 obs. of 8 variables:
'data.frame':
$ specimen id
                                  1 1 1 1 1 1 1 1 1 1 ...
                           : int
                                  "IgE" "IgE" "IgG" "IgG" ...
$ isotype
                           : chr
                           : logi FALSE FALSE TRUE TRUE TRUE TRUE ...
$ is_antigen_specific
                                  "Total" "Total" "PT" "PRN" ...
$ antigen
                           : chr
$ MFI
                                  1110.2 2708.9 68.6 332.1 1887.1 ...
                           : num
$ MFI_normalised
                                  2.49 2.49 3.74 2.6 34.05 ...
                           : num
$ unit
                                  "UG/ML" "IU/ML" "IU/ML" "IU/ML" ...
                             chr
$ lower_limit_of_detection: num
                                  2.1 29.17 0.53 6.21 4.68 ...
```

table(abdata\$specimen_id)

1	2	3	4	5	6	7	19	20	21	22	23	24	25	27	28
80	80	80	80	80	80	80	80	80	80	80	80	80	80	80	80
29	30	31	32	33	37	38	39	40	41	42	43	45	46	47	48
80	80	80	80	80	80	80	80	80	80	80	80	80	80	80	80
49	50	51	55	56	57	58	59	60	61	70	71	72	73	74	75
80	80	80	80	80	80	80	80	80	80	80	80	80	80	80	80
76	77	78	79	80	81	82	87	88	89	90	91	92	93	96	97
80	80	80	80	80	80	80	80	80	80	80	80	80	80	80	80

98	99	100	101	102	103	104	105	106	107	108	109	110	111	112	113
80	80	80	80	80	80	80	80	80	80	80	80	80	80	80	80
114	115	116	117	118	119	120	121	122	123	124	125	126	127	131	132
80	80	80	80	80	80	80	80	80	80	80	80	80	80	80	80
133	134	135	136	137	138	139	140	141	142	143	144	146	147	148	149
80	80	80	80	80	80	80	80	80	80	80	80	80	80	80	80
150	151	152	153	154	155	156	157	158	159	160	161	162	163	164	165
80	80	80	80	80	80	80	80	80	80	80	80	80	80	80	80
166	167	168	169	170	171	172	173	174	175	176	177	178	179	180	181
80	80	80	80	80	80	80	80	80	80	80	80	80	80	80	80
182	183	184	185	186	187	191	192	193	194	195	196	197	201	202	203
80	80	80	80	80	80	80	80	80	80	80	80	80	80	80	80
204	205	206	207	208	209	210	211	212	213	214	216	217	218	219	220
80	80	80	80	80	80	80	80	80	80	80	80	80	80	80	80
221	222	223	224	225	226	227	228	229	232	233	234	235	236	237	238
80	80	80	80	80	80	80	80	80	80	80	80	80	80	80	80
241	242	243	244	245	246	247	248	249	250	251	252	253	254	255	256
80	80	80	80	80	80	80	80	80	80	80	80	80	80	80	80
257	258	259	260	261	266	267	268	269	270	271	272	274	275	276	277
80	80	80	80	80	80	80	80	80	80	80	80	80	80	80	80
278	279	280	281	282	283	284	285	286	288	289	290	291	292	293	294
80	80	80	80	80	80	80	80	80	80	80	80	80	80	80	80
295	296	297	298	299	300	301	302	303	304	305	306	310	311	312	313
80	80	80	80	80	80	80	80	80	80	80	80	80	80	80	80
314	315	316	317	318	319	320	321	322	323	324	325	326	327	328	329
80	80	80	80	80	80	80	80	80	80	80	80	80	80	80	80
330	332	333	334	335	336	337	338	342	343	344	345	346	347	348	349
80	80	80	80	80	80	80	80	80	80	80	80	80	80	80	80
350	351	352	353	354	355	356	357	358	359	360	361	362	363	364	365
80	80	80	80	80	80	80	80	80	80	80	80	80	80	80	80
366	369	370	371	372	373	374	375	376	377	378	379	380	381	382	385
80	80	80	80	80	80	80	80	80	80	80	80	80	80	80	80 401
386	387	388	389	390	391	392	393	394	395	396	397	398	399	400	
80	80	80 40E	80	80 407	80	80	80	80	80	80	80	80	80	80	80
402	403	405	406	407	408	409	410	411	412	413	414	415	416	417	418
80	80 420	80	80	80	80	80 425	80	80	80	80 430	80 431	80	80	80 434	80
419 80	80	421 80	422 80	423 80	424 80	425 80	427 80	428	429 80	430 80	80	432 80	433 80	80	435
436	437	438	439	440	441	442	443	80 444	445	446	447	450	451	452	80 453
	80	80	80	80		80	80			80	80	80	80	80	
80 454	455	456		459	80 460	461		80 463	80 464			470			80 473
454 80			458 80				462	463		468	469		471 35	472	473
80 474	80 475	80 476	80 477	80 479	80 470	80	80	80	80	35 495	35 486	35 497	35	35	35
474	475	476	477	478	479	480	481	483	484	485	486	487	488	489	490

35	35	35	35	35	35	35	35	35	35	35	35	35	35	35	35
491	492	493	494	495	496	498	499	500	501	502	503	504	506	507	508
35	35	35	35	35	35	35	35	35	35	35	35	35	35	35	35
509	510	511	512	513	514	515	516	517	518	519	521	522	523	524	525
35	35	35	35	35	35	35	35	35	35	35	35	35	35	35	35
526	527	529	530	531	532	533	534	535	537	538	539	540	541	542	543
35	35	35	35	35	35	35	35	35	35	35	35	35	35	35	35
546	547	548	549	550	551	552	554	555	556	557	558	559	560	562	563
35	35	35	35	35	35	35	35	35	35	35	35	35	35	35	35
564	565	566	567	568	569	570	571	572	573	574	575	577	578	579	580
35	35	35	35	35	35	35	35	35	35	35	35	35	35	35	35
581	582	583	585	586	587	588	589	590	591	593	594	595	596	597	598
35	35	35	35	35	35	35	35	35	35	35	35	35	35	35	35
599	601	602	603	604	605	606	607	608	609	610	611	612	613	614	616
35	35	35	35	35	35	35	35	35	35	35	35	35	35	35	35
617	618	619	620	621	622	623	624	625	626	627	628	629	636	637	638
35	35	35	35	35	35	35	35	35	35	35	35	35	35	35	35
639	640	641	642	643	644	645	646	647	648	649	650	651	652	653	654
35	35	35	35	35	35	35	35	35	35	35	35	35	35	35	35
655	656	657	658	659	660	661	662	663	674	675	676	677	678	679	680
35	35	35	35	35	35	35	35	35	35	35	35	35	35	35	35
681	682	683	684	685	686	687	688	689	690	691	692	693	694	695	696
35	35	35	35	35	35	35	35	35	35	35	35	35	35	35	35
697	698	699	700	701	702	703	704	705	706	707	708	709	710	711	712
35	35	35	35	35	35	35	35	35	35	35	35	35	35	35	35
713	714	715	716	717	718	719	720	721	722	723	724	725	726	727	728
35	35	35	35	35	35	35	35	35	35	35	35	35	35	35	35
729	730	731	732	733	734	735	736	737	738	739	740	741	742	743	744
35	35	35	35	35	35	35	35	35	35	35	35	35	35	35	35
745	746	747	748	749	750	751	752	753	754	755	756	757	758	759	760
35	35	35	35	35	35	35	35	35	35	35	35	35	35	35	35
761	762	763	764	765	766	767	768	769	770	771	772	773	774	775	776
35	35	35	35	35	35	35	35	35	35	35	35	35	35	35	35
777	778	779	780	781	782	783	784	785	786	787	788	789	790	791	792
35	35	35	35	35	35	35	35	35	35	35	35	35	35	35	35
793	794	795	796	797	798	799	800	801	802	803	804	805	806	807	808
35	35	35	35	35	35	35	35	35	35	35	35	35	35	35	35
809	810	811	812	813	814	815	816	817	818	820	821	822	823	824	825
35	35	35	35	35	35	35	35	35	35	35	35	35	35	35	35
826	827	828	829	830	831	832	833	834	835	836	837	838	839	840	841
35	35	35	35	35	35	35	35	35	35	35	35	35	35	35	35
842	843	844	845	846	847	848	849	850	851	852	853	854	855	856	857
35	35	35	35	35	35	35	35	35	35	35	35	35	35	35	35

```
858
       859
            860
                  861
                        862
                              863
                                    864
                                          865
                                               866
                                                     867
                                                           868
                                                                 869
                                                                       870
                                                                             871
                                                                                   872
                                                                                        873
        35
                   35
                         35
                               35
                                           35
                                                 35
                                                       35
                                                                  35
                                                                        35
                                                                              35
                                                                                    35
  35
             35
                                     35
                                                            35
                                                                                          35
 874
      875
            876
                  877
                        878
                              879
                                    880
                                          881
                                               882
                                                     883
                                                           884
                                                                 885
                                                                       886
                                                                             887
                                                                                   888
                                                                                        889
  35
        35
             35
                   35
                         35
                               35
                                     35
                                           35
                                                 35
                                                       35
                                                            35
                                                                  35
                                                                        35
                                                                              35
                                                                                    35
                                                                                          35
            892
                        894
       891
                  893
                              895
                                          897
                                                           900
                                                                 901
                                                                                   904
 890
                                    896
                                               898
                                                     899
                                                                       902
                                                                             903
                                                                                        905
        35
                   35
                                                                  35
                                                                              35
                                                                                    35
                                                                                          35
  35
             35
                         35
                               35
                                     35
                                           35
                                                 35
                                                       35
                                                            35
                                                                        35
 906
       907
            908
                  909
                        910
                              911
                                    912
                                          913
                                               914
                                                     915
                                                           916
                                                                 917
                                                                       918
                                                                             919
                                                                                   920
                                                                                        921
  35
        35
             35
                   35
                         35
                               35
                                     35
                                           35
                                                 35
                                                       35
                                                            35
                                                                  35
                                                                        35
                                                                              35
                                                                                    35
                                                                                          35
 922
       923
            924
                  925
                        926
                              927
                                    928
                                          929
                                               930
                                                     931
                                                           932
                                                                 933
                                                                       934
                                                                             935
                                                                                   936
                                                                                        937
  35
        35
             35
                   35
                         35
                               35
                                     35
                                           35
                                                 35
                                                       35
                                                            35
                                                                  35
                                                                        35
                                                                              35
                                                                                    35
                                                                                          35
       939
                  942
                        943
                              955
                                          957
                                               962
                                                                 973
                                                                       976
                                                                             977
 938
            940
                                    956
                                                     965
                                                           966
                                                                                   984
                                                                                        986
        21
                   35
                         35
                               35
                                     35
                                           35
                                                       35
                                                            35
                                                                  35
                                                                              35
                                                                                    35
  35
              35
                                                 35
                                                                        35
                                                                                          35
       994
 987
            996
                  997
                       1004
                             1006
                                  1007
                                        1014 1017
                                                    1018 1025
                                                               1028 1029
                                                                           1036 1037
                                                                                       1038
  35
        35
              35
                   35
                         35
                               35
                                     35
                                           35
                                                 35
                                                       35
                                                            35
                                                                  35
                                                                        35
                                                                              35
                                                                                    35
                                                                                          35
1045 1048 1049 1056 1057 1058 1064 1066 1067 1074 1077 1078 1085 1088 1089 1096
  35
        35
              35
                   35
                         35
                               35
                                     35
                                           35
                                                 35
                                                       35
                                                            35
                                                                  35
                                                                        35
                                                                              35
                                                                                    35
                                                                                          35
1097 1098 1105 1107 1108 1115 1118 1119 1126 1129 1130 1137 1140 1141 1148
                                                                                       1151
  35
        35
              35
                   35
                         35
                               35
                                     35
                                           35
                                                 35
                                                       35
                                                            35
                                                                  35
                                                                        35
                                                                              35
                                                                                    35
                                                                                          35
1152 1159 1162 1163 1170 1173 1174 1181 1183 1184 1191 1194 1195 1202 1205 1206
  35
        35
              35
                   35
                         35
                               35
                                     35
                                           35
                                                 35
                                                       35
                                                            35
                                                                  35
                                                                        35
                                                                              35
                                                                                    35
                                                                                          35
                 1224 1226 1227 1234
                                                    1245 1247
1213 1216 1217
                                        1237 1238
                                                                1248 1255
                                                                           1257 1258
                                                                                       1265
        35
                   35
                               35
                                           35
                                                       35
                                                            35
                                                                  35
                                                                              35
                                                                                    35
  35
              35
                         35
                                     35
                                                 35
                                                                        35
                                                                                          35
1268 1269 1276 1278 1279 1286 1289 1290 1297 1299 1300 1307 1310 1311 1318 1321
  35
        35
              35
                   35
                         35
                               35
                                     35
                                           35
                                                 35
                                                       35
                                                            35
                                                                  35
                                                                        35
                                                                              35
                                                                                    35
                                                                                          35
1322 1329 1331 1332 1339 1342 1343 1350 1351 1352 1359 1362 1363 1370 1373 1374
        35
                               35
                                           35
                                                 35
                                                       35
                                                                  35
                                                                        35
                                                                              35
                                                                                    35
  35
              35
                   35
                         35
                                     35
                                                            35
                                                                                          35
1381 1384 1385
                 1392 1395
                            1396 1403
                                        1406 1407 1414 1416
                                                               1417 1424
                                                                           1426 1427
                                                                                       1434
        35
                               35
                                     35
                                           35
                                                 35
                                                       35
                                                            35
                                                                  35
                                                                        35
                                                                              35
                                                                                    35
  35
              35
                   35
                         35
                                                                                          35
1436 1437 1444 1446 1447 1454 1456 1457 1464 1466 1467 1474 1476 1477 1484
                                                                                       1486
  35
        35
              35
                   35
                         35
                               35
                                     35
                                           35
                                                 35
                                                       35
                                                            35
                                                                  35
                                                                        35
                                                                              35
                                                                                    35
                                                                                          35
1487
     1494 1496
                 1497
  35
        35
              35
                   35
```

There are 1497 specimen ids each have 35 or 80 rows.

One more join to do of meta and abdata to associate all the metadata about the individual and their race, biological sex, and infancy vaccination status together with Antibody levels...

```
ab <- inner_join(abdata, meta)</pre>
```

Joining with `by = join_by(specimen_id)`

head(ab)

```
specimen_id isotype is_antigen_specific antigen
                                                             MFI MFI_normalised
1
            1
                   IgE
                                      FALSE
                                               Total 1110.21154
                                                                        2.493425
2
            1
                                      FALSE
                                               Total 2708.91616
                   IgE
                                                                        2.493425
3
            1
                   IgG
                                       TRUE
                                                  PΤ
                                                        68.56614
                                                                        3.736992
4
            1
                   IgG
                                       TRUE
                                                 PRN
                                                      332.12718
                                                                        2.602350
5
            1
                   IgG
                                       TRUE
                                                 FHA 1887.12263
                                                                       34.050956
6
            1
                   IgE
                                       TRUE
                                                 ACT
                                                         0.10000
                                                                        1.000000
   unit lower limit_of_detection subject_id infancy_vac biological_sex
1 UG/ML
                         2.096133
                                             1
                                                         wP
                                                                    Female
2 IU/ML
                                             1
                        29.170000
                                                         wΡ
                                                                    Female
3 IU/ML
                                             1
                         0.530000
                                                         wP
                                                                    Female
4 IU/ML
                         6.205949
                                             1
                                                         wΡ
                                                                    Female
5 IU/ML
                         4.679535
                                             1
                                                         wΡ
                                                                    Female
6 IU/ML
                         2.816431
                                             1
                                                         wΡ
                                                                    Female
                ethnicity race year_of_birth date_of_boost
                                                                    dataset
1 Not Hispanic or Latino White
                                    1986-01-01
                                                   2016-09-12 2020_dataset
2 Not Hispanic or Latino White
                                    1986-01-01
                                                   2016-09-12 2020 dataset
                                                   2016-09-12 2020_dataset
3 Not Hispanic or Latino White
                                    1986-01-01
4 Not Hispanic or Latino White
                                    1986-01-01
                                                   2016-09-12 2020 dataset
5 Not Hispanic or Latino White
                                    1986-01-01
                                                   2016-09-12 2020_dataset
6 Not Hispanic or Latino White
                                    1986-01-01
                                                   2016-09-12 2020_dataset
  actual_day_relative_to_boost planned_day_relative_to_boost specimen_type
                              -3
                                                               0
1
                                                                          Blood
2
                              -3
                                                               0
                                                                          Blood
3
                              -3
                                                               0
                                                                          Blood
4
                              -3
                                                               0
                                                                          Blood
5
                              -3
                                                               0
                                                                          Blood
6
                              -3
                                                                          Blood
  visit
1
      1
2
      1
3
      1
4
      1
5
      1
```

Q. Hwo many Ab measurements do we have?

nrow(ab)

[1] 52576

How many isotypes

table(ab\$isotype)

```
IgE IgG IgG1 IgG2 IgG3 IgG4
6698 5389 10117 10124 10124 10124
```

How many antigens?

table(ab\$antigen)

ACT	BETV1	DT	FELD1	FHA	FIM2/3	LOLP1	LOS	Measles	AVO
1970	1970	4978	1970	5372	4978	1970	1970	1970	4978
PD1	PRN	PT	PTM	Total	TT				
1970	5372	5372	1970	788	4978				

Let's focus in on IgG - one of the main antibody types responsive to bacteria or virial infections

```
igg <- filter(ab, isotype == "IgG")
head(igg)</pre>
```

```
specimen_id isotype is_antigen_specific antigen
                                                            MFI MFI_normalised
1
            1
                   IgG
                                       TRUE
                                                 PT
                                                       68.56614
                                                                       3.736992
2
            1
                                                 PRN
                                                      332.12718
                   IgG
                                       TRUE
                                                                       2.602350
3
            1
                   IgG
                                       TRUE
                                                 FHA 1887.12263
                                                                      34.050956
           19
                                                 PT
                                                       20.11607
                                                                       1.096366
4
                   IgG
                                       TRUE
5
           19
                   IgG
                                       TRUE
                                                 PRN
                                                      976.67419
                                                                       7.652635
           19
                                       TRUE
                                                 FHA
                                                       60.76626
                                                                       1.096457
                   IgG
   unit lower_limit_of_detection subject_id infancy_vac biological_sex
1 IU/ML
                         0.530000
                                            1
                                                        wΡ
                                                                    Female
2 IU/ML
                         6.205949
                                            1
                                                        wP
                                                                    Female
3 IU/ML
                         4.679535
                                            1
                                                        wP
                                                                    Female
```

```
4 IU/ML
                         0.530000
                                             3
                                                        wP
                                                                    Female
5 IU/ML
                         6.205949
                                             3
                                                        wP
                                                                    Female
                                             3
6 IU/ML
                         4.679535
                                                        wΡ
                                                                    Female
                ethnicity race year_of_birth date_of_boost
                                                                    dataset
1 Not Hispanic or Latino White
                                    1986-01-01
                                                   2016-09-12 2020_dataset
2 Not Hispanic or Latino White
                                    1986-01-01
                                                   2016-09-12 2020_dataset
3 Not Hispanic or Latino White
                                    1986-01-01
                                                   2016-09-12 2020_dataset
4
                  Unknown White
                                    1983-01-01
                                                   2016-10-10 2020_dataset
5
                  Unknown White
                                    1983-01-01
                                                   2016-10-10 2020_dataset
6
                  Unknown White
                                                   2016-10-10 2020_dataset
                                    1983-01-01
  actual_day_relative_to_boost planned_day_relative_to_boost specimen_type
                             -3
                                                              0
                                                                         Blood
1
2
                             -3
                                                              0
                                                                         Blood
3
                             -3
                                                              0
                                                                         Blood
                             -3
                                                              0
4
                                                                         Blood
5
                             -3
                                                              0
                                                                         Blood
6
                             -3
                                                              0
                                                                         Blood
  visit
      1
1
2
      1
3
      1
4
      1
5
      1
6
      1
```

Make a first plot of MFI (Mean Flourescence Intensity - a measure of how much is detected) for each antigen.

```
ggplot(igg, aes(MFI_normalised, antigen, col = infancy_vac)) +
  geom_boxplot()
```


Q13. Complete the following code to make a summary boxplot of Ab titer levels for all antigens:

```
ggplot(igg, aes(MFI_normalised, antigen, col = infancy_vac)) +
  geom_boxplot() +
  facet_wrap(~visit)
```


Q14. What antigens show differences in the level of IgG1 antibody titers recognizing them over time? Why these and not others?

Antigens PT, PRN, FIM2/3, and FHA show differences in the level of IgG antibody titers (MFI) over time. The Terminology search function is still under development. But, I can guess that these four antigens are more influential to the main pertussis toxin.

```
table(igg$visit)
```

Exclude visits 8~12. Focus on the first 7 visits. Looks like we don't have data yet for all subjects in terms of visits 8 onwards. So let's exclude these.

1 2 3 4 5 6 7 902 902 930 559 559 540 525

Let's try a different plot. First focus on one antigen, start with PT (Pertussis Toxin) and plot visit or time on the x-axis and MFI_normalised on the y-axis.

```
igg_7 %>%
filter(antigen == "PT", dataset == "2020_dataset") %>%
ggplot() +
aes(planned_day_relative_to_boost, MFI_normalised, group = subject_id) +
geom_point() +
geom_line(alpha = 0.2)
```


Must filter to a single year.

2021 dataset IgG PT Dashed lines indicate day 0 (pre-boost) and 14 (apparent peak levels)

Let's finish here for today. We are beginning to see some interesting differences between aP and wP individuals. There is likely lots of other interesting things to find in this dataset...

library(lubridate)