Emotionally Expressive Motion Controller for Virtual Character Locomotion Animations

Diogo Silva

Coordinated by: Prof. Pedro A. Santos & Prof. João Dias

MOTIVATION

"Neutral"
[The Sims 4, Maxis, 2014]

"Angry"

"Confident"

"Energized"

"Sad"

"Afraid"

PROBLEM

 New Animation for each Emotion

Variants of Baseline

 Repeat Process for each Motion

 Time Consuming & Expensive

SOLUTION

Automatic

Real-Time

 No Additional Data or Training Required

 Works with both Kinematic and Policy-Based Physics-Enabled characters

Emotionally Expressive Motion Controller

RELATED WORK – DeepMimic & Spacetime Bounds

[Bandai-Namco Research Inc., 2022]

[https://youtu.be/GuBEup_90EQ?t=350, 2020]

[DeepMimic, Li-Ke Ma et al., 2021]

[Spacetime Bounds, Xue Bin Peng et al., 2018]

Problems:

- No way to explicitly audit the outcome animation
- No way to tweak a character's motion after training

RELATED WORK – Emotion Control of Dance Movements

	Basic LMA Features f ⁱ		Derived Features f ⁱ			
		Description	max	min	std	mean
Вору	f^1	Left foot-hip distance	f1	f ²	f ³	f ⁴
	f^2	Right foot-hip distance	f ⁵	f ⁶	f ⁷	f ⁸
	f^3	Left hand-shoulder distance	f°9	f 10	f 11	f 12
	f ⁴	Right hand-shoulder distance	\tilde{f}^{13}	\tilde{f}^{14}	f 15	f 16
	f ⁵	Hands distance	\tilde{f}^{17}	\tilde{f}^{18}	f 19	$\hat{f}^{20}; \hat{f}^{1}$
	f ⁶	Left hand-head distance	\tilde{f}^{21}	\tilde{f}^{22}	\tilde{f}^{23}	\tilde{f}^{24}
	f^7	Right hand-head distance	\tilde{f}^{25}	\tilde{f}^{26}	\tilde{f}^{27}	\tilde{f}^{28}
	f ⁸	Left hand-hip distance	f ²⁹	f ³⁰	f ³¹	$\hat{f}^{32}; \hat{f}^{2}$
	f ⁹	Right hand-hip distance	f ³³	Ĵ ³⁴	f 35	$\hat{f}^{36}; \hat{f}^{3}$
	f ¹⁰	Hip-ground distance	f ³⁷	f ³⁸	f ³⁹	$\hat{f}^{40}; \hat{f}^{4}$
	f ¹¹	Hip-ground minus feet-hip	f'41	f*42	f*43	f*44
	f^{12}	Feet distance	f 45	\tilde{f}^{46}	\tilde{f}^{47}	$\tilde{f}^{48}; \hat{f}^{5}$
	f^{13}	Left hand and chest	f 113	f*114	f*115	\tilde{f}^{116} ; \hat{f}^{30}
	f14	Right hand and chest	\tilde{f}^{117}	\tilde{f}^{118}	\tilde{f}^{119}	$\hat{f}^{120}; \hat{f}^{31}$
	f^{15}	Deceleration peaks				$\tilde{f}^{49}; \hat{f}^{6}$
	f ¹⁶	Pelvis velocity	₹50		f ⁵¹	f ⁵² ; f ⁷
	f ¹⁷	Left hand velocity	\tilde{f}^{53}		\tilde{f}^{54}	₹55; £8
	f18	Right hand velocity	₹56		f 57	f ⁵⁸ ; f ⁹
	f 19	Left foot velocity	₹59		₹60	$\hat{f}^{61}; \hat{f}^{10}$
RT	f ²⁰	Right foot velocity	₹61		₹61	f'64; f11
EFFORT	f ²¹	Pelvis acceleration	$\tilde{f}^{65}; \hat{f}^{12}$		766	, ,,
Щ	f ²²	Left hand acceleration	f ⁶⁷ ; f ¹³		₹68	
	f ²³	Right hand acceleration	\tilde{f}^{69} ; \hat{f}^{14}		f70	
	f ²⁴	Left foot acceleration	\hat{f}^{71} ; \hat{f}^{15}		₹72	
	f 25	Right foot acceleration	\tilde{f}^{73} : \hat{f}^{16}		£74	
	f ²⁶	Jerk	f ⁷⁵ ; f ¹⁷		j 76	
	f27	Volume (5 joints)	£77	₹ ⁷⁸	f*79	\tilde{f}^{80} : \hat{f}^{18}
	f 28	Volume (All joints)	₹81	₹82	₹83	f ⁸⁴ ; f ¹⁹
	f ²⁹	Torso height	₹85	₹86	₹87	₹88; Ê20
Æ	f30	Hands level				f89_f91; f21_f23
SHAPE	f31	Volume (upper body)	f*97	f*98	f*99	₹100. £26
On.	f32	Volume (lower body)	f 101	₹102	₹103	f 104; f 27
	f ³³	Volume (right side)	₹105	₹106	₹107	f 108; f 28
	f34	Volume (left side)	f109	₹110	f*111	₹112, £ 29
	f35	Total distance			- /	f ⁹² ; f ²⁴
SPACE	f36	Area per second	£93	₹94	₹95	f ⁹⁶ : f ²⁵
SP.	f ³⁷	Total volume				₹121

[Emotion Control of Unstructured Dance Movements, Andreas Aristidou et al., 2017]

Problems:

- Does not work with learned Policy-Based Physics-Enabled Controllers
- Changes take time to apply
- Focuses on non-generic dance animations

RELATED WORK – Emotion Control of Dance Movements

[DeepMimic, Li-Ke Ma et al., 2021]

[Spacetime Bounds, Xue Bin Peng et al., 2018]

RCM Emotional Model

[Emotion Control of Unstructured Dance Movements, Andreas Aristidou et al., 2017]

PAD Emotional Model

[Joost Broekens et al., 2004]

unpleasant, highly unaroused, and moderately submissive state.

Problems:

- Does not work with learned Policy-Based Physics-Enabled Controllers
- Changes take time to apply
- Focuses on non-generic dance animations

EMOTIONALLY EXPRESSIVE MOTION CONTROLLER

DATASET

 Various Motions in different Emotional Styles

Only Locomotion Animations were kept

 78551 LMA Feature Sets in 14 different Emotional Styles

LMA FEATURE EXTRACTOR

LMA Feature	f	LMA Category
Max Hand Distance	f_1	Body
Avg. Left Hand - Hip Distance	f_2	Body
Avg. Right Hand - Hip Distance	f_3	Body
Max Stride Length	f_4	Body
Avg. Left Hand - Chest Distance	f_5	Body
Avg. Right Hand - Chest Distance	f_6	Body
Avg. Left Elbow - Hip Distance	f_7	Body
Avg. Right Elbow - Hip Distance	f_8	Body
Avg. Chest - Pelvis Distance	f_9	Body
Avg. Neck - Chest Distance	f_{10}	Body
Avg. Total Body Volume	f_{11}	Shape
Avg. Lower Body Volume	f_{12}	Shape
Avg. Upper Body Volume	f_{13}	Shape
Avg. Area between Hands and Neck	f_{14}	Shape
Avg. Area between Feet and Hip	f_{15}	Shape
Left Hand Speed	f_{16}	Effort
Right Hand Speed	f_{17}	Effort
Left Foot Speed	f_{18}	Effort
Right Foot Speed	f_{19}	Effort
Neck Speed	f_{20}	Effort
Left Hand Acceleration Magnitude	f_{21}	Effort
Right Hand Acceleration Magnitude	f_{22}	Effort
Left Foot Acceleration Magnitude	f_{23}	Effort
Right Foot Acceleration Magnitude	f_{24}	Effort
Neck Acceleration Magnitude	f_{25}	Effort

```
"frame_counter": index of the frame at which LMA features were computed,
"label": PAD Emotional Coordinates (3D),
"lma_features": [
     max hand_distance (1D),
     average l_hand_hip_distance (1D),
average r_hand_hip_distance (1D),
max stride length (distance between left and right foot) (1D),
      average l_hand_chest_distance (1D),
     average r_hand_chest_distance (1D),
average l_elbow_hip_distance (1D),
average r_elbow_hip_distance (1D),
     average chest_pelvis_distance (1D),
     average neck_chest_distance (1D),
     average total_body_volume (1D),
average lower_body_volume (1D),
average upper_body_volume (1D),
triangle area between hands and neck (1D),
      triangle area between feet and root (1D),
     1_hand speed (1D),
r_hand speed (1D),
1_foot_speed (1D),
      r_foot_speed (1D),
      neck speed (1D),
     l_hand acceleration magnitude (1D),
r_hand acceleration magnitude (1D),
l_foot acceleration magnitude (1D),
      r_foot acceleration magnitude (1D),
     neck acceleration magnitude (1D)
```

LMA TO PAD REGRESSION

EMOTIONAL CLASSIFICATION

PAD TO LMA REGRESSION

MOTION SYNTHESIS

- Compute new desired positions/rotations for core joints
- 6 Heuristic Rules

 Coefficients to represent the difference between Baseline's and Generated LMA Features

$$\sum_{t} \| \hat{f} - f_t c \|^2$$

Rule	Associated LMA Features
g1: Modifies Hip Height Raises or lowers the character's Hip, changing the body volume.	Avg. Chest-Pelvis Distance (f_8) ; Avg. Total Body Volume (f_{10}) ; Avg. Lower Body Volume (f_{11}) ; Avg. Area Feet-Hips Triangle (f_{14}) ;
g2: Modifies the Chest's Position Raises or lowers the character's Chest, making their back appear slumped over or straight.	Avg. Chest-Pelvis Distance (f_8) ; Avg. Total Body Volume (f_{10}) ; Avg. Upper Body Volume (f_{12}) ;
g3: Modifies the Hands' Positions Pulls each Hand towards or away from the character's body. Also raises or lowers each Hand towards the character's chest.	Max Hand Distance (f_0) ; Avg. Left Hand-Hip Distance (f_1) ; Avg. Right Hand-Hip Distance (f_2) ; Avg. Left Hand-Chest Distance (f_4) ; Avg. Right Hand-Chest Distance (f_5) ; Avg. Total Body Volume (f_{10}) ; Avg. Upper Body Volume (f_{12}) ; Avg. Area Hands-Neck Triangle (f_{13}) ;
g4: Modifies Elbows Positions Pulls each Elbow towards or away from the character's body, changing their upper volume.	Avg. Left Elbow-Hip Distance (f_6) ; Avg. Right Elbow-Hip Distance (f_7) ; Avg. Total Body Volume (f_{10}) ; Avg. Upper Body Volume (f_{12}) ;
g5: Modifies the Feets' Positions Increases or decreases the distance between each Foot, changing the stride length.	Max Stride Length (f_3) ; Avg. Total Body Volume (f_{10}) ; Avg. Lower Body Volume (f_{11}) ; Avg. Area Feet-Hips Triangle (f_{14}) ;
g6: Modifies Neck Tilt Tilts the character's Neck towards or away from their chest.	Avg. Neck-Chest Distance (f_9) ; Avg. Total Body Volume (f_{10}) ; Avg. Upper Body Volume (f_{12}) ;

NVERSE KINEMATICS

EMOTIONALLY EXPRESSIVE MOTION CONTROLLER

USER TESTS

Emotional Selection Task

Primed Emotional Agreement Task

CONCLUSION

- Automatic System for Emotionally Expressive Motion Synthesis of Locomotion Animations
- Works with both Kinematic and Policy-Based Physics-Enabled Character Controllers
- Emotions specified using the PAD Model
- Emotional Prediction and Motion Synthesis in Real Time
- No need for extra data or training
- Quality of synthesized motions validated through User Tests
- Work accepted for publishing in IEEE ISM 2022

Thank you for listening!

NDEX

- Motivation
- Related Work
- Emotionally Expressive Motion Controller
- User Testing
- Conclusion

BACKGROUND – Computer Animation

[Bandai-Namco Research Inc., 2022]

[https://youtu.be/z93e5_7P54g, 2020]

Kinematic Controllers

[Blender, 2022]

[https://youtu.be/GuBEup_90EQ?t=350, 2020]

[DeepMimic, Li-Ke Ma et al., 2021]

[Spacetime Bounds, Xue Bin Peng et al., 2018]

BACKGROUND – Emotional Models & Laban Movement Analysis

PAD Emotional Model

The emotional state "angry" is a highly unpleasant, highly aroused, and moderately dominant emotional state. The "bored" state implies a highly unpleasant, highly unaroused, and moderately submissive state.

[Joost Broekens et al., 2004]

Feature	Category
Hands Distance	Body
Hip-Ground Distance	Body
Left Foot Velocity	Effort
Pelvis Acceleration	Effort
Volume (All joints)	Shape
Torso Height	Shape
Total Distance	Space
Area Per Second	Space