Doing things with data frames

Doing things with data frames

Let's go back to our Australian athletes:

```
##
## -- Column specification
## cols(
##
     Sex = col character(),
##
     Sport = col_character(),
##
     RCC = col double(),
##
     WCC = col double(),
##
     Hc = col double(),
     Hg = col double(),
##
##
     Ferr = col double(),
##
     BMI = col double(),
     SSF = col double(),
##
     `%Bfat` = col_double(),
##
##
     LBM = col double(),
     Ht = col double()
##
```

Choosing a column

```
athletes %>% select(Sport)
```

```
Sport
Netball
```

Choosing several columns

athletes %>% select(Sport, Hg, BMI)

Sport	Hg	ВМІ
Netball	13.6	19.16
Netball	12.7	21.15
Netball	12.3	21.40
Netball	12.3	21.03
Netball	12.8	21.77
Netball	11.8	21.38
Netball	12.7	21.47
Netball	12.4	24.45
Netball	12.4	22.63
Netball	14.1	22.80
Netball	12.5	23.58
Netball	12.1	20.06
Netball	12.7	23.01
Doing thin	gs with data	frames

Choosing consecutive columns

athletes %>% select(Sex:WCC)

Sex	Sport	RCC	WCC					
female	Netball	4.56	13.30					
female	Netball	4.15	6.00					
female	Netball	4.16	7.60					
female	Netball	4.32	6.40					
female	Netball	4.06	5.80					
female	Netball	4.12	6.10					
female	Netball	4.17	5.00					
female	Netball	3.80	6.60					
female	Netball	3.96	5.50					
female	Netball	4.44	9.70					
female	Netball	4.27	10.60					
female	Netball	3.90	6.30					
female	Netball	4.02	9.10					
P	Data and to an orbit of the former							

Choosing all-but some columns

athletes %>% select(-(RCC:LBM))

Sex	Sport	Ht	Wt	
female	Netball	176.8	59.90	
female	Netball	172.6	63.00	
female	Netball	176.0	66.30	
female	Netball	169.9	60.70	
female	Netball	183.0	72.90	
female	Netball	178.2	67.90	
female	Netball	177.3	67.50	
female	Netball	174.1	74.10	
female	Netball	173.6	68.20	
female	Netball	173.7	68.80	
female	Netball	178.7	75.30	
female	Netball	183.3	67.40	
female	Netball	174.4	70.00	
	Doing things wit	h data frames		

Select-helpers

Other ways to select columns: those whose name:

- starts_with something
- ends_with something
- contains something
- matches a "regular expression"
- everything() select all the columns

Columns whose names begin with S

athletes %>% select(starts_with("S"))

Sex	Sport	SSF		
female	Netball	49.0		
female	Netball	110.2		
female	Netball	89.0		
female	Netball	98.3		
female	Netball	122.1		
female	Netball	90.4		
female	Netball	106.9		
female	Netball	156.6		
female	Netball	101.1		
female	Netball	126.4		
female	Netball	114.0		
female	Netball	70.0		
female	Netball	77.0		
Datas	form on the first state of	c		

Columns whose names end with C

either uppercase or lowercase:

```
athletes %>% select(ends_with("c"))
```

RCC	WCC	Нс
4.56	13.30	42.2
4.15	6.00	38.0
4.16	7.60	37.5
4.32	6.40	37.7
4.06	5.80	38.7
4.12	6.10	36.6
4.17	5.00	37.4
3.80	6.60	36.5
3.96	5.50	36.3
4.44	9.70	41.4
4.27	10.60	37.7
2 AA Doing th	ょっへ nings with data	つE ハ a frames

Case-sensitive

This works with any of the select-helpers:

```
athletes %>% select(ends_with("C", ignore.case=F))
```

RCC	WCC
4.56	13.30
4.15	6.00
4.16	7.60
4.32	6.40
4.06	5.80
4.12	6.10
4.17	5.00
3.80	6.60
3.96	5.50
4.44	9.70
4.27	10.60
oing things w	vith data frames

Column names containing letter R

athletes %>% select(contains("r"))

Sport	RCC	Ferr
Netball	4.56	20
Netball	4.15	59
Netball	4.16	22
Netball	4.32	30
Netball	4.06	78
Netball	4.12	21
Netball	4.17	109
Netball	3.80	102
Netball	3.96	71
Netball	4.44	64
Netball	4.27	68
Netball	3.90	78
Netball	4.02	107
B 1 111	4.4	_

Exactly two characters, ending with T

In regular expression terms, this is ^.t\$:

- neans "start of text"
- means "exactly one character, but could be anything"
- \$ means "end of text".

athletes %>% select(matches("^.t\$"))

Ht	Wt
176.8	59.90
172.6	63.00
176.0	66.30
169.9	60.70
183.0	72.90
178.2	67.90
177.3	67.50
174.1	74.10
Doing things with	data frame

Choosing columns by property

- Use where as with summarizing several columns
- eg, to choose text columns:

athletes %>% select(where(is.character))

Sex	Sport
female	Netball
famala Doing things w	NIA+HAII

Choosing rows by number

athletes %>% slice(16:25)

Netball

Netball

BBall

BBall

3.95

4.03

3.96

4.41

6.6

8.5

7.5

8.3

female

female

female

female

Sex	Sport	RCC	WCC	Нс	Hg	Ferr	BMI	SSF	%Bfat
female	Netball	4.25	10.7	39.5	13.2	127	24.47	156.6	26.50
female	Netball	4.46	10.9	39.7	13.7	102	23.99	115.9	23.01
female	Netball	4.40	9.3	40.4	13.6	86	26.24	181.7	30.10
female	Netball	4.83	8.4	41.8	13.4	40	20.04	71.6	13.93
female	Netball	4.23	6.9	38.3	12.6	50	25.72	143.5	26.65
female	Netball	4.24	8.4	37.6	12.5	58	25.64	200.8	35.52

38.4

37.7

37.5

38.2

12.8

13.0

12.3

12.7

33

51

60

68

19.87

23.35

20.56

20.67

68.9

103.6

109.1

102.8

15.59

19.61

19.75

21.30

Non-consecutive rows

```
athletes %>% slice(10,13,17,42)
```

Sex	Sport	RCC	WCC	Нс	Hg	Ferr	ВМІ	SSF	%Bfat
female	Netball	4.44	9.7	41.4	14.1	64	22.80	126.4	24.97
female	Netball	4.02	9.1	37.7	12.7	107	23.01	77.0	18.14
female	Netball	4.46	10.9	39.7	13.7	102	23.99	115.9	23.01
female	Row	4.37	8.1	41.8	14.3	53	23.47	98.0	21.79

A random sample of rows

athletes %>% slice_sample(n=8)

Sex	Sport	RCC	WCC	Нс	Hg	Ferr	ВМІ	SSF	%Bfat
female	T400m	4.32	6.8	40.6	13.7	46	17.54	54.6	12.16
male	Swim	4.32	4.3	41.6	14.0	177	26.73	35.2	6.46
female	Tennis	4.00	4.2	36.6	12.0	57	25.36	109.0	20.86
female	Field	5.33	9.3	47.0	15.0	62	25.27	102.8	19.51
male	T400m	5.03	6.6	44.7	15.9	191	19.85	30.9	6.53
male	T400m	4.20	4.5	41.2	14.3	58	20.15	31.5	6.82
female	Netball	4.46	10.9	39.7	13.7	102	23.99	115.9	23.01
male	T400m	5.34	7.6	48.3	16.2	91	21.04	44.0	7.35

Rows for which something is true

athletes %>% filter(Sport == "Tennis")

Sex	Sport	RCC	WCC	Нс	Hg	Ferr	ВМІ	SSF	%Bfat	LBM
female	Tennis	4.00	4.2	36.6	12.0	57	25.36	109.0	20.86	56.58
female	Tennis	4.40	4.0	40.8	13.9	73	22.12	98.1	19.64	56.01
female	Tennis	4.38	7.9	39.8	13.5	88	21.25	80.6	17.07	46.52
female	Tennis	4.08	6.6	37.8	12.1	182	20.53	68.3	15.31	51.75
female	Tennis	4.98	6.4	44.8	14.8	80	17.06	47.6	11.07	42.15
female	Tennis	5.16	7.2	44.3	14.5	88	18.29	61.9	12.92	48.76
female	Tennis	4.66	6.4	40.9	13.9	109	18.37	38.2	8.45	41.93
male	Tennis	5.66	8.3	50.2	17.7	38	23.76	56.5	10.05	72.00
male	Tennis	5.03	6.4	42.7	14.3	122	22.01	47.6	8.51	68.00
male	Tennis	4.97	8.8	43.0	14.9	233	22.34	60.4	11.50	63.00
male	Tennis	5.38	6.3	46.0	15.7	32	21.07	34.9	6.26	72.00

More complicated selections

athletes %>% filter(Sport == "Tennis", RCC < 5)

Sex	Sport	RCC	WCC	Нс	Hg	Ferr	ВМІ	SSF	%Bfat
female	Tennis	4.00	4.2	36.6	12.0	57	25.36	109.0	20.86
female	Tennis	4.40	4.0	40.8	13.9	73	22.12	98.1	19.64
female	Tennis	4.38	7.9	39.8	13.5	88	21.25	80.6	17.07
female	Tennis	4.08	6.6	37.8	12.1	182	20.53	68.3	15.31
female	Tennis	4.98	6.4	44.8	14.8	80	17.06	47.6	11.07
female	Tennis	4.66	6.4	40.9	13.9	109	18.37	38.2	8.45
male	Tennis	4.97	8.8	43.0	14.9	233	22.34	60.4	11.50

Another way to do "and"

```
athletes %>% filter(Sport == "Tennis") %>%
filter(RCC < 5)</pre>
```

Sex	Sport	RCC	WCC	Нс	Hg	Ferr	ВМІ	SSF	%Bfat
female	Tennis	4.00	4.2	36.6	12.0	57	25.36	109.0	20.86
female	Tennis	4.40	4.0	40.8	13.9	73	22.12	98.1	19.64
female	Tennis	4.38	7.9	39.8	13.5	88	21.25	80.6	17.07
female	Tennis	4.08	6.6	37.8	12.1	182	20.53	68.3	15.31
female	Tennis	4.98	6.4	44.8	14.8	80	17.06	47.6	11.07
female	Tennis	4.66	6.4	40.9	13.9	109	18.37	38.2	8.45
male	Tennis	4.97	8.8	43.0	14.9	233	22.34	60.4	11.50

Either/Or

female

female

female

female

female

female

female

male

male

Tennis

Tennis

Tennis

Tennis

Tennis

Tennis

Tennis

Swim

Swim

athletes %>% filter(Sport == "Tennis" | RCC > 5)

Sex	Sport	RCC	WCC	Нс	Hg	Ferr	BMI	SSF	%Bfat
female	Row	5.02	6.4	44.8	15.2	48	19.76	91.0	19.20
female	T400m	5.31	9.5	47.1	15.9	29	21.35	57.9	11.07
female	Field	5.33	9.3	47.0	15.0	62	25.27	102.8	19.51
female	TSprnt	5.16	8.2	45.3	14.7	34	20.30	46.1	10.15

36.6

40.8

39.8

37.8

44.8

44.3

40.9

46.8

46.6

Doing things with data frames

12.0

13.9

13.5

12.1

14.8

14.5

13.9

15.9

15.9

57

73

88

182

80

88

109

34

55

25.36

22.12

21.25

20.53

17.06

18.29

18.37

22.46

23.68

109.0

98.1

80.6

68.3

47.6

61.9

38.2

44.5

33.7

20.86

19.64

17.07

15.31

11.07

12.92

8.45

8.47

6.16

20 / 41

4.00

4.40

4.38

4.08

4.98

5.16

4.66

5.13

5.09

4.2

4.0

7.9

6.6

6.4

7.2

6.4

7.1

4.7

Sorting into order

Sport

Netball

Netball

Swim

BBall

Sex

female

female

female

athletes %>% arrange(RCC)

female	Netball	3.80	6.60	36.5	12.4	102	24.45	156.6	26.57
female	Netball	3.90	6.30	35.9	12.1	78	20.06	70.0	15.01
female	T400m	3.90	6.00	38.9	13.5	16	19.37	48.4	10.48
female	Row	3.91	7.30	37.6	12.9	43	22.27	125.9	25.16
female	Netball	3.95	6.60	38.4	12.8	33	19.87	68.9	15.59
female	Row	3.95	3.30	36.9	12.5	40	24.54	74.9	16.38

Hc

Hg

12.4

12.3

13.3

Ferr

BMI

22.63

20.56

20.42

female 3.96 7.50 female 4.00 4.20 36.6 12.0 Tennis female Netball 4.02 9.10 37.7 12.7 female Netball 4.03 8.50 37.7

4.06

4.07

3.96

RCC

WCC

5.50

5.90

13.0 5.80 38.7 12.8

39.5

Doing things with data frames

36.3

37.5

57 107 51 78

25

71

60

25.36 109.0 23.01 77.0 23.35 103.6 21.77 122.1

101.1

109.1

SSF

%Bfat

17.93

19.75

20.86

18.14 19.61 23.11 54.6 11.4721 / 41

Breaking ties by another variable

RCC

WCC

athletes %>% arrange(RCC, BMI)

Sport

Sex

female	Netball	3.80	6.60	36.5	12.4	102	24.45	156.6	26.57
female	T400m	3.90	6.00	38.9	13.5	16	19.37	48.4	10.48
female	Netball	3.90	6.30	35.9	12.1	78	20.06	70.0	15.01
female	Row	3.91	7.30	37.6	12.9	43	22.27	125.9	25.16
female	Netball	3.95	6.60	38.4	12.8	33	19.87	68.9	15.59

Hc

Hg

Ferr

40

60

female Row 3.95 3.30 36.9 12.5 **BBall** female 3.96 7.50 37.5 12.3

female Netball 3.96 5.50 36.3 12.4 Tennis 4.00 4.20 36.6

> 37.7 38.7

17.93 20.86 18.14

22 / 41

16.38

19.75

%Bfat

71 22.63 101.1 female 12.0 57 25.36 109.0 female Netball 4.02 9.10 37.7 12.7 107 23.01 77.0 Netball 4.03 8.50 13.0 51 23.35 103.6

13.3

24.54

20.56

BMI

SSF

74.9

109.1

female 19.61 female Netball 4.06 5.80 12.8 78 21.77 122.1 23.11 25 20.42 54.6 11.47

female Swim 4.07 5.90 39.5 Doing things with data frames

Descending order

Field

Field

Field

WPolo

WPolo

Field

Field

male

female

female

male

male

male female

athletes %>% arrange(desc(BMI))

Jex	Sport	NCC	VVCC	TIC	ı ıg	1 611	DIVII	221	/0DIat
male	Field	5.48	6.20	48.2	16.3	94	34.42	82.7	13.91
male	Field	4.96	8.30	45.3	15.7	141	33.73	113.5	17.41
male	Field	5.48	4.60	49.4	18.0	132	32.52	55.7	8.51
female	Field	4.75	7.50	43.8	15.2	90	31.93	131.9	23.01
male	Field	5.01	8.90	46.0	15.9	212	30.18	112.5	19.94
male	Field	5.01	8.90	46.0	15.9	212	30.18	96.9	18.08

46.3

42.1

39.7

49.8

45.6

48.2

42.7

Doing things with data frames

Hσ

15.4

14.7

14.3

17.2

16.0

16.7

15.3

Forr

44

164

36

143

90

103

50

RMI

29.97

28.57

28.13

27.79

27.56

27.39

26.95

SSF

71.1

109.6

136.3

75.7

67.2

65.9

98.5

%Rfat

13.97

21.30

24.88

13.49

11.79

11.66

20.10

23 / 41

Sev RCC**W/CC** Sport $H_{\mathcal{C}}$

5.09

4.58

4.51

5.34

4.90

5.11

4.81

8.90

5.80

9.00

6.20

7.60

9.60

6.80

"The top ones"

```
athletes %>%
  arrange(desc(Wt)) %>%
  slice(1:7) %>%
  select(Sport, Wt)
```

Sport	Wt
Field	123.2
BBall	113.7
Field	111.3
Field	108.2
Field	102.7
WPolo	101.0
BBall	100.2

Another way

```
athletes %>%
  slice_max(order_by = Wt, n=7) %>%
  select(Sport, Wt)
```

Sport	Wt
Field	123.2
BBall	113.7
Field	111.3
Field	108.2
Field	102.7
WPolo	101.0
BBall	100.2

Create new variables from old ones

```
athletes %>%
  mutate(wt_lb = Wt * 2.2) %>%
  select(Sport, Sex, Wt, wt_lb) %>%
  arrange(Wt)
```

Sport	Sex	Wt	wt_lb
Gym	female	37.80	83.16
Gym	female	43.80	96.36
Gym	female	45.10	99.22
Tennis	female	45.80	100.76
Tennis	female	47.40	104.28
Gym	female	47.80	105.16
T400m	female	49.20	108.24
Row	female	49.80	109.56
T400m	female	50.90	111.98
Netball	female	51.90	114.18
	Doing things wit	th data frames	

Turning the result into a number

Output is always data frame unless you explicitly turn it into something else, eg. the weight of the heaviest athlete, as a number:

```
athletes %>% arrange(desc(Wt)) %>% pluck("Wt", 1)
```

```
## [1] 123.2
```

Or the 20 heaviest weights in descending order:

```
athletes %>%
  arrange(desc(Wt)) %>%
  slice(1:20) %>%
  pluck("Wt")
```

```
## [1] 123.20 113.70 111.30 108.20 102.70 101.00

## [7] 100.20 98.00 97.90 97.90 97.00 96.90

## [13] 96.30 94.80 94.80 94.70 94.70 94.60

## [19] 94.25 94.20
```

Another way to do the last one

```
athletes %>%
arrange(desc(Wt)) %>%
slice(1:20) %>%
pull("Wt")
```

```
## [1] 123.20 113.70 111.30 108.20 102.70 101.00

## [7] 100.20 98.00 97.90 97.90 97.00 96.90

## [13] 96.30 94.80 94.80 94.70 94.70 94.60

## [19] 94.25 94.20
```

pull grabs the column you name as a vector (of whatever it contains).

To find the mean height of the women athletes

Two ways:

```
athletes %>% group_by(Sex) %>% summarize(m = mean(Ht))
```

```
        Sex
        m

        female
        174.5940

        male
        185.5059
```

```
athletes %>%
  filter(Sex == "female") %>%
  summarize(m = mean(Ht))
```

m 174.594

Summary of data selection/arrangement "verbs"

Verb	Purpose
select	Choose columns
print	Display non-default # of rows/columns
slice	Choose rows by number
${\tt sample_n}$	Choose random rows
filter	Choose rows satisfying conditions
arrange	Sort in order by column(s)
mutate	Create new variables
group_by	Create groups to summarize by
summarize	Calculate summary statistics (by groups if defined)
pluck	Extract items from data frame
pull	Extract a single column from a data frame as a vector

Looking things up in another data frame

• Suppose you are working in the nails department of a hardware store and you find that you have sold these items:

```
my_url <- "http://ritsokiguess.site/datafiles/nail_sales.csv"
sales <- read_csv(my_url)
sales</pre>
```

product_code	sales
061-5344-6	10
161-0090-0	6
061-5388-2	2
161-0199-4	8
061-5375-2	5
061-4525-2	3

Product descriptions and prices

- but you don't remember what these product codes are, and you would like to know the total revenue from these sales.
- Fortunately you found a list of product descriptions and prices:

```
my_url <- "http://ritsokiguess.site/datafiles/nail_desc.csv"
desc <- read_csv(my_url)
desc</pre>
```

product_code	description	size	qty	price
061-4525-2	spike nail	10"	1	1.49
061-5329-4	masonry nail	1.5"	112	8.19
061-5344-6	finishing nail	1"	1298	6.99
061-5375-2	roofing nail	1.25"	192	6.99
061-5388-2	framing nail	4"	25	8.19
161-0090-0	wood nail	1"	25	2.39
161-0199-4	panel nail	1-5/8"	20	4.69

The lookup

- How do you "look up" the product codes to find the product descriptions and prices?
- left_join.

```
sales %>% left_join(desc)
```

sales	description	size	qty	price
10	finishing nail	1"	1298	6.99
6	wood nail	1"	25	2.39
2	framing nail	4"	25	8.19
8	panel nail	1-5/8"	20	4.69
5	roofing nail	1.25"	192	6.99
3	spike nail	10"	1	1.49
	10 6 2 8 5	10 finishing nail 6 wood nail 2 framing nail 8 panel nail 5 roofing nail	10 finishing nail 1" 6 wood nail 1" 2 framing nail 4" 8 panel nail 1-5/8" 5 roofing nail 1.25"	10 finishing nail 1" 1298 6 wood nail 1" 25 2 framing nail 4" 25 8 panel nail 1-5/8" 20 5 roofing nail 1.25" 192

What we have

- this looks up all the rows in the *first* dataframe that are also in the *second*.
- by default matches all columns with same name in two dataframes (product_code here)
- get all columns in both dataframes. The rows are the ones for that product_code.

So now can work out how much the total revenue was:

```
sales %>% left_join(desc) %>%
  mutate(product_revenue = sales*price) %>%
  summarize(total_revenue = sum(product_revenue))
```

```
## Joining, by = "product_code"
```

total_revenue

177.56

More comments

- if any product codes are not matched, you get NA in the added columns
- anything in the second dataframe that was not in the first does not appear (here, any products that were not sold)
- other variations (examples follow):
 - if there are two columns with the same name in the two dataframes, and you only want to match on one, use by with one column name
 - if the columns you want to look up have different names in the two dataframes, use by with a "named list"

Matching on only some matching names

• Suppose the sales dataframe *also* had a column qty (which was the quantity sold):

```
sales %>% rename("qty"="sales") -> sales1
sales1
```

product_code	qty
061-5344-6	10
161-0090-0	6
061-5388-2	2
161-0199-4	8
061-5375-2	5
061-4525-2	3

 The qty in sales1 is the quantity sold, but the qty in desc is the number of nails in a package. These should not be matched: they are different things.

Matching only on product code

```
sales1 %>%
left_join(desc, by = "product_code")
```

qty.x	description	size	qty.y	price
10	finishing nail	1"	1298	6.99
6	wood nail	1"	25	2.39
2	framing nail	4"	25	8.19
8	panel nail	1-5/8"	20	4.69
5	roofing nail	1.25"	192	6.99
3	spike nail	10"	1	1.49
	10 6 2 8 5	10 finishing nail 6 wood nail 2 framing nail 8 panel nail 5 roofing nail	10 finishing nail 1" 6 wood nail 1" 2 framing nail 4" 8 panel nail 1-5/8" 5 roofing nail 1.25"	10 finishing nail 1" 1298 6 wood nail 1" 25 2 framing nail 4" 25 8 panel nail 1-5/8" 20 5 roofing nail 1.25" 192

• Get qty.x (from sales1) and qty.y (from desc).

Matching on different names 1/2

Suppose the product code in sales was just code:

```
sales %>% rename("code" = "product_code") -> sales2
sales2
```

code	sales
061-5344-6	10
161-0090-0	6
061-5388-2	2
161-0199-4	8
061-5375-2	5
061-4525-2	3

• How to match the two product codes that have different names?

Matching on different names 2/2

Use by, but like this:

```
sales2 %>%
left_join(desc, by = c("code"="product_code"))
```

code	sales	description	size	qty	price
061-5344-6	10	finishing nail	1"	1298	6.99
161-0090-0	6	wood nail	1"	25	2.39
061-5388-2	2	framing nail	4"	25	8.19
161-0199-4	8	panel nail	1-5/8"	20	4.69
061-5375-2	5	roofing nail	1.25"	192	6.99
061-4525-2	3	spike nail	10"	1	1.49

Other types of join

- right_join: interchanges roles, looking up keys from second dataframe in first.
- anti_join: give me all the rows in the first dataframe that are not in the second. (Use this eg. to see whether the product descriptions are incomplete.)
- full_join: give me all the rows in both dataframes, with missings as needed.

Full join here

```
sales %>% full_join(desc)
```

```
## Joining, by = "product_code"
```

product_code	sales	description	size	qty	price
061-5344-6	10	finishing nail	1"	1298	6.99
161-0090-0	6	wood nail	1"	25	2.39
061-5388-2	2	framing nail	4"	25	8.19
161-0199-4	8	panel nail	1-5/8"	20	4.69
061-5375-2	5	roofing nail	1.25"	192	6.99
061-4525-2	3	spike nail	10"	1	1.49
061-5329-4	NA	masonry nail	1.5"	112	8.19

 The missing sales for masonry nail says that it was in the lookup table, but we didn't sell any.