Chapter 7
Time Complexity

Contents

CS 341: Foundations of CS II

Marvin K. Nakayama Computer Science Department New Jersey Institute of Technology Newark, NJ 07102

- Time and space as resources
- Big O/little o notation, asymptotics
- Time complexity
- Polynomial time (P)
- Nondeterministic polynomial time (NP)
- NP-completeness

CS 341: Chapter 7

Introduction

- Chapters 3–5 dealt with **computability theory**:
 - "What is and what is not possible to solve with a computer?"
- For the problems that are computable, this leads to the next question:
 - "If we can decide a language A, how easy or hard is it to do so?"
- Complexity theory tries to answer this.

CS 341: Chapter 7

7-3

Counting Resources

7-4

• Two ways of measuring "hardness" of problem:

1. Time Complexity:

How many time-steps are required in the computation of a problem?

2. Space Complexity:

How many bits of memory are required for the computation?

- We will only examine time complexity in this course.
- We will use the Turing machine model.
 - If we measure time complexity in a crude enough way, then results for TMs will also hold for all "reasonable" variants of TMs.

CS 341: Chapter 7

7-5

7-7

7-6

7-8

Example

• Consider language

$$A = \{ 0^k 1^k | k \ge 0 \}.$$

ullet Below is a single-tape Turing machine M_1 that decides A:

 $M_1=$ "On input w, where $w\in\{0,1\}^*$ is a string:

- 1. Scan across tape and *reject* if 0 is found to the right of a 1.
- 2. Repeat the following if both 0s and 1s appear on tape:
 - Scan across tape, crossing off single 0 and single 1.
- 3. If Os still remain after all 1s crossed out, or vice-versa, reject. Otherwise, if all Os and 1s crossed out, accept."

• Question: How much time does TM M_1 need to decide A?

How much time does M_1 need?

• Number of steps may depend on several parameters.

• Example: If input is a graph, this could depend on

- number of nodes
- number of edges
- maximum degree
- all, some, or none of the above

• **Definition:** Complexity is measured as function of length of input string.

■ Worst case: **longest** running time on input of given length.

■ Average case: **average** running time on input of given length.

• We will only consider worst-case complexity.

CS 341: Chapter 7

Running Time

- ullet Let M be a deterministic TM that halts on all inputs.
- We will study the relationship between
 - the length of encoding of a problem instance and
 - the required time complexity of the solution for such an instance (worst case).
- **Definition:** The **running time** or **time complexity** of M is a function $f: \mathcal{N} \to \mathcal{N}$ defined by the maximization:

$$f(n) = \max_{|x|=n}$$
 (number of time steps of M on input x)

- Terminology
 - f(n) is the running time of M.
 - M is an f(n)-time Turing machine.

CS 341: Chapter 7

Running Time

- The exact running time of most algorithms is quite complex.
- Instead use an approximation for large problems.
- Informally, we want to focus only on "important" parts of running time.
- Examples:
 - $6n^3 + 2n^2 + 20n + 45$ has four terms.
 - $6n^3$ most important when n is large.
 - Leading coefficient "6" does not depend on n, so only focus on n^3 .

7-11

7-12

Asymptotic Notation

ullet Consider functions f and g, where

$$f,g:\mathcal{N}\to\mathcal{R}^+$$

• **Definition:** We say that

$$f(n) = O(g(n))$$

if there are two positive constants \emph{c} and \emph{n}_{0} such that

$$f(n) \le c \cdot g(n)$$
 for all $n \ge n_0$.

- We say that:
 - "g(n) is an asymptotic upper bound on f(n)."
 - "f(n) is big-O of g(n)."

Some big-O examples

• Example 1: Show f(n) = O(g(n)) for

$$f(n) = 15n^2 + 7n,$$
 $g(n) = \frac{1}{2}n^3.$

■ Let $n_0 = 16$ and c = 2, so we have $\forall n \ge n_0$:

$$f(n) = 15n^2 + 7n \le 16n^2 \le n^3 = 2 \cdot \frac{1}{2}n^3 = c \cdot g(n).$$

- For first \leq , if $7 \leq n$, then $7n \leq n^2$ by multiplying both sides by n.
- For second \leq , if $16 \leq n$, then $16n^2 \leq n^3$ (mult. by n^2).
- Example 2: $5n^4 + 27n = O(n^4)$.
 - Take $n_0 = 1$ and c = 32. (Also $n_0 = 3$ and c = 6 works.)
 - But $5n^4 + 27n$ is not $O(n^3)$: no values for c and n_0 work.
- Basic idea: ignore constant factor differences:
 - $2n^3 + 52n^2 + 829n + 2193 = O(n^3).$
 - 2 = O(1) and sin(n) + 3 = O(1).

CS 341: Chapter 7

Polynomials vs Exponentials

• For a polynomial

$$p(n) = a_1 n^{k_1} + a_2 n^{k_2} + \dots + a_d n^{k_d},$$

where $k_1 > k_2 > \cdots > k_d \ge 0$, then

- $p(n) = O(n^{k_1}).$
- Also, $p(n) = O(n^r)$ for all $r \ge k_1$, e.g., $7n^3 + 5n^2 = O(n^4)$.
- Exponential fcns like 2^n always eventually "overpower" polynomials.
 - For all constants a and k, polynomial $f(n) = a \cdot n^k + \cdots$ obeys:

$$f(n) = O(2^n).$$

 \blacksquare For functions in n, we have

$$n^k = O(b^n)$$

for all positive constants k, and b > 1.

CS 341: Chapter 7

Big-O for Logarithms

- Let log_b denote logarithm with base b.
- \bullet Recall $c = \log_b n$ if $b^c = n$.
- $\bullet \log_b(x^y) = y \log_b x$ because $x = b^{\log_b x}$ and

$$b^{y\log_b x} = (b^{\log_b x})^y = x^y$$

• Note that $n = 2^{\log_2 n}$ and $\log_b(x^y) = y \log_b x$ imply

$$\log_b n = \log_b(2^{\log_2 n}) = (\log_2 n)(\log_b 2)$$

- \blacksquare Changing base b changes value by only constant factor.
- So when we say $f(n) = O(\log n)$, the base is unimportant.
- Note that $\log n = O(n)$.
- In fact, $\log n = O(n^d)$ for any d > 0.
 - Polynomials overpower logarithms, just like exponentials overpower polynomials.
- Thus, $n \log n = O(n^2)$.

7-15

7-16

Big-O Properties

- $O(n^2) + O(n) = O(n^2)$ and $O(n^2)O(n) = O(n^3)$
- Sometimes we have

$$f(n) = 2^{O(n)}.$$

What does this mean?

- Answer: f(n) has an asymptotic upper bound of 2^{cn} for some constant c.
- What does $f(n) = 2^{O(\log n)}$ mean?
 - Recall the identities:

$$n = 2^{\log_2 n},$$

 $n^c = 2^{c \log_2 n} = 2^{O(\log_2 n)}.$

■ Thus, $2^{O(\log n)}$ means an upper bound of n^c for some constant c.

• Definition:

lacksquare A bound of n^c , where c>0 is a constant, is called **polynomial**.

More Remarks

- A bound of $2^{(n^{\delta})}$, where $\delta > 0$ is a constant, is called **exponential**.
- f(n) = O(f(n)) for all functions f.
- $[\log(n)]^k = O(n)$ for all constants k.
- $n^k = O(2^n)$ for all constants k.
- Because $n = 2^{\log_2 n}$, n is an exponential function of $\log n$.
- If f(n) and g(m) are polynomials, then g(f(n)) is polynomial in n.
 - **Example:** If $f(n) = n^2$ and $g(m) = m^3$, then $g(f(n)) = g(n^2) = (n^2)^3 = n^6$.

CS 341: Chapter 7

Little-o Notation

Definition:

- Let f and g be two functions with $f, g : \mathcal{N} \to \mathcal{R}^+$.
- Then f(n) = o(g(n)) if

$$\lim_{n \to \infty} \frac{f(n)}{g(n)} = 0.$$

Example: If

- $f(n) = 10n^2$
- $q(n) = 2n^3$

then f(n) = o(g(n)) because

$$\frac{f(n)}{g(n)} = \frac{10n^2}{2n^3} = \frac{5}{n} \to 0 \quad \text{as} \quad n \to \infty$$

CS 341: Chapter 7

Remarks

- Big-O notation is about "asymptotically less than or equal to".
- Little-o is about "asymptotically much smaller than".
- Make it clear whether you mean O(q(n)) or o(q(n)).
- Make it clear which variable the function is in:
 - lacksquare $O(x^y)$ can be a polynomial in x or an exponential in y.
- Simplify!
 - Rather than $O(8n^3 + 2n)$, instead use $O(n^3)$.
- Try to keep your big-O as "tight" as possible.
 - Suppose $f(n) = 2n^3 + 8n^2$.
 - Although $f(n) = O(n^5)$, better to write $f(n) = O(n^3)$.

CS 341: Chapter 7 7-17

7-18

7-20

Back to Example of TM M_1 for $A = \{ \, \mathbf{0}^k \mathbf{1}^k \, | \, k \geq \mathbf{0} \, \}$

 $M_1 =$ "On input string $w \in \{0, 1\}^*$:

- 1. Scan across tape and reject if 0 is found to the right of a 1.
- 2. Repeat the following if both Os and 1s appear on tape:
 - Scan across tape, crossing off single 0 and single 1.
- 3. If no 0s or 1s remain, accept; otherwise, reject."

Let's now analyze M_1 's run-time complexity.

- We will examine each stage separately.
- Suppose input string w is of length n.

Analysis:

- Input string w is of length n.
- Scanning requires *n* steps.
- \bullet Repositioning head back to beginning of tape requires n steps.

Analysis of Stage 1

1. Scan across tape and *reject* if 0 is found to the right of a 1.

• Total is 2n = O(n) steps.

CS 341: Chapter 7

Analysis of Stage 2

- 2. Repeat the following if both Os and 1s appear on tape:
 - Scan across tape, crossing off single 0 and single 1.

Analysis:

- Each scan requires O(n) steps.
- Because each scan crosses off two symbols,
 - \blacksquare at most n/2 scans can occur.
- Total is $O(\frac{n}{2}) O(n) = O(n^2)$ steps.

CS 341: Chapter 7

7-19

Analysis of Stage 3 and Overall

3. If no 0s or 1s remain, accept; otherwise, reject.

Analysis:

• Single scan requires O(n) steps.

Total cost for each stage:

- Stage 1: O(n)
- Stage 2: $O(n^2)$
- Stage 3: O(n)

Overall complexity: $O(n) + O(n^2) + O(n) = O(n^2)$

CS 341: Chapter 7

7-21

CS 341: Chapter 7

7-22

7-24

Time Complexity Class

Definition: For a function $t: \mathcal{N} \to \mathcal{N}$,

 $\mathsf{TIME}(t(n)) = \{ L \mid \mathsf{there is a 1-tape TM that decides} \}$ language L in time O(t(n)) }

Remarks:

- TM M_1 decides language $A = \{ 0^k 1^k | k > 0 \}$
 - M_1 has run-time complexity $O(n^2)$.
- Thus, $A \in \mathsf{TIME}(n^2)$.
- Can we do better?

7-23

Why M_2 Halts

- Stage 2.2: Scan across tape, crossing every other 0 and 1.
- On each scan in Stage 2.2,
 - Total number of Os is decreased by (at least) half
 - Same for the 1s

• Example:

CS 341: Chapter 7

- 00000000000000 ■ Start with 13 Os.
- \[\text{\rightarrow} \cdot \text{\rightarrow} After first pass, 6 remaining.
- Ø Ø Ø O Ø Ø Ø O Ø Ø Ø O Ø ■ After second pass, 3 remaining.
- After third pass, 1 remaining.
- After fourth pass, none remaining.

Another TM for $A = \{ 0^k 1^k \mid k \ge 0 \}$

 $M_2 =$ "On input string w:

- 1. Scan across tape and reject if 0 is found to the right of a 1.
- 2. Repeat the following if both 0s and 1s appear on tape:
 - 2.1 Scan across tape, checking whether total number of Os and 1s is even or odd. If odd, reject.
 - 2.2 Scan across tape, crossing off every other O (starting with the leftmost), and every other 1 (starting with the leftmost).
- 3. If no Os or 1s remain, accept; otherwise, reject."

CS 341: Chapter 7

Why M_2 Works

- Consider parity of Os and 1s in Stage 2.1.
- Example: Start with 0¹³ 1¹³
 - Initially, odd-odd (13, 13)
 - Then, even-even (6, 6)
 - Then, odd-odd (3, 3)
 - Then, odd-odd (1, 1)
- Result is 1011, which is reverse of binary representation of 13.
- Each pass checks one binary digit.

7-27

CS 341: Chapter 7

7-26

7-28

 $M_2 =$ "On input string w:

- 1. Scan across tape and *reject* if 0 is found to the right of a 1.
- 2. Repeat the following if both 0s and 1s appear on tape:
 - 2.1 Scan across tape, checking whether total number of 0s and 1s is even or odd. If odd, reject.
 - 2.2 Scan across tape, crossing off every other 0 (starting with the leftmost), and every other 1 (starting with the leftmost).
- 3. If no 0s or 1s remain, accept; otherwise, reject."

Analysis:

- Each stage requires O(n) time.
- Stage 1 and 3 run once each.
- ullet Stage 2.2 eliminates half of 0s and 1s: Stage 2 runs $O(\log_2 n)$ times.
- Total for stage 2 is $O(\log_2 n)O(n) = O(n \log n)$.
- Grand total: $O(n) + O(n \log n) = O(n \log n)$, so language $A \in \mathsf{TIME}(n \log n)$.

2-Tape TM for
$$A = \{ 0^k 1^k | k > 0 \}$$

 $M_3 =$ "On input string w:

- 1. Scan across tape and reject if 0 is found to the right of a 1.
- 2. Scan across 0s to first 1, copying 0s to tape 2.
- 3. Scan across 1s on tape 1 until the end. For each 1 on tape 1, cross off a 0 on tape 2. If no 0s left, reject.
- 4. If any Os left, reject; otherwise, accept."

Can show that running time of M_3 is O(n).

CS 341: Chapter 7

Runtimes of TMs for $A = \{ 0^k 1^k | k \ge 0 \}$

- Runtime depends on computational model:
 - 1-tape TM M_1 : $O(n^2)$
 - 1-tape TM M_2 : $O(n \log n)$
 - 2-tape TM M_3 : O(n).
- For **computability**, all reasonable computational models are equivalent (Church-Turing Thesis).
- For **complexity**, choice of computational model affects time complexity.

CS 341: Chapter 7

k-Tape TM can be Simulated on 1-Tape TM with Polynomial Overhead

Theorem 7.8

- Let t(n) be a function where $t(n) \ge n$.
- Then any t(n)-time multi-tape TM has an equivalent $O(t^2(n))$ -time single-tape TM.

7-31

7-32

Review Thm 3.13: Simulating k-Tape TM M on 1-Tape TM S

On input $w = w_1 \cdots w_n$, the 1-tape TM S does the following:

ullet First S prepares initial string on single tape:

		•				•		•				
1 =	#	w_1	w_2	 $ w_n $	#	1.1	#	1.1	#	1 1	1 1 1	

- ullet For each step of M, TM S scans tape twice
 - 1. Scans its tape from
 - first # (which marks left end of tape) to
 - (k+1)st # (which marks right end of tape) to read symbols under "virtual" heads
 - 2. Rescans to write new symbols and move heads
 - \blacksquare If S tries to move virtual head to the right onto #, then
 - lacktriangle M is trying to move head onto unused blank cell.
 - lacktriangle So S has to write blank on tape and shift rest of tape right one cell.

Complexity of Simulation

- ullet For each step of k-tape TM M, 1-tape TM S performs two scans
 - \blacksquare Length of active portion of S 's tape determines how long S takes to perform each scan.
 - \blacksquare In r steps, TM M can read/write in $\le k \times r$ different cells on its k tapes.
 - As M has t(n) runtime, at any point during M's execution, total # active cells on all of M's tapes $\leq k \times t(n) = O(t(n))$.
 - Thus, each of S's scans requires O(t(n)) time.
- ullet Overall runtime of S
 - Initial tape arrangement: O(n) steps.
 - lacksquare S simulates each of M's t(n) steps using O(t(n)) steps.
 - ▲ Thus, total of $t(n) \times O(t(n)) = O(t^2(n))$ steps.
 - Grand total: $O(n) + O(t^2(n)) = O(t^2(n))$ steps.

CS 341: Chapter 7

Running Time of Nondeterministic TMs

- What about nondeterministic TMs (NTMs)?
- Informally, NTM makes "lucky guesses" during computation.
- In terms of **computability**, no difference between TMs and NTMs.
- For time-complexity, nondeterminism seems to make big difference.

Definition:

- \bullet Let N be NTM that is a decider (no looping).
- \bullet Running time of NTM N is function $f:\mathcal{N}\to\mathcal{N},$ where

$$f(n) = \max_{|x| = n} \left(\text{ height of tree of configs for } N \text{ on input } x \right)$$

- lacktriangle the maximum number of steps that NTM N uses
- on any branch of the computation
- lacksquare on any input x of size n.

CS 341: Chapter 7

Deterministic vs. Nondeterministic TM Runtime

Simulating NTM N on 1-Tape DTM D**Requires Exponential Overhead**

Theorem 7.11

- Let t(n) be a function with t(n) > n.
- Any t(n)-time nondeterministic TM has an equivalent $2^{O(t(n))}$ -time deterministic 1-tape TM.

Proof Idea:

CS 341: Chapter 7

- Suppose N is NTM decider running in t(n) time.
- \bullet On each input w, NTM N's computation is a tree of configurations.
- ullet Simulate N on 3-tape DTM D using BFS of N's computation tree:
 - lacksquare D tries all possible branches.
 - \blacksquare If D finds any accepting configuration, D accepts.
 - \blacksquare If all branches reject, D rejects.

CS 341: Chapter 7

Summary of Simulation Results

- Simulating k-tape DTM on 1-tape DTM
 - increases runtime from t(n) to $O(t^2(n))$
 - i.e., polynomial increase in runtime.
- Simulating NTM on 1-tape DTM
 - increases runtime from t(n) to $2^{O(t(n))}$
 - i.e., **exponential** increase in runtime.

Complexity of Simulating NTM N on 1-Tape DTM D

- Analyze NTM N's computation tree on input w with |w| = n
 - Root is starting configuration.
 - Each node has $\leq b$ children
 - \bullet $b = \max$ number of legal choices given by N's transition fcn δ .
 - Each branch has length < t(n).
 - Total number of leaves $< b^{t(n)}$.
 - Total number of nodes $\leq 2 \times (\text{max number of leaves}) = O(b^{t(n)})$.
 - Time to travel from root to any node is O(t(n)).
- DTM's runtime < time to visit all nodes:

$$O(b^{t(n)}) \times O(t(n)) = 2^{O(t(n))}$$

- Simulating NTM by DTM requires 3 tapes by Theorem 3.16.
- By Theorem 3.13, simulating 3-tape DTM on 1-tape DTM requires $(2^{O(t(n))})^2 = 2^{2 \times O(t(n))} = 2^{O(t(n))}$ steps.

7-35

Polynomial Good, Exponential Bad

10⁶ steps/second

	n						
f(n)	10	20	30	40	50	60	
n	.00001	.00002	.00003	.00004	.00005	.00006	
	seconds	seconds	seconds	seconds	seconds	seconds	
n^2	.0001	.0004	.0009	.0016	.0025	.0036	
	seconds	seconds	seconds	seconds	seconds	seconds	
n^3	.001	.008	.027	.064	.125	.216	
	seconds	seconds	seconds	seconds	seconds	seconds	
n^5	.1	3.2	24.3	1.7	5.2	13	
	seconds	seconds	seconds	minutes	minutes	minutes	
2^n	.001	1.05	17.9	12.7	35.7	366	
	seconds	seconds	minutes	days	years	centuries	
3^n	.059	58	6.5	3855	2×10^{8}	10^{13}	
	seconds	minutes	years	centuries	centuries	centuries	

Strong Church-Turing Thesis

- In general, every "reasonable" variant of DTM (k-tape, r-heads, etc.) can be simulated by a single-tape DTM with only **polynomial** time/space overhead.
 - Any one of these models can simulate another with only polynomial increase in running time or space required.
 - All "reasonable" models of computation are polynomially equivalent.
 - NTM is "unreasonable" variant: it can do $O(b^s)$ work on step s.
- If any version of a DTM can solve a problem in polynomial time, then any other type of DTM can also.
- If we ask if a particular problem is solvable in **linear time** (i.e., O(n)), answer **depends** on computational model used.
- If we ask if a particular problem A is solvable in **polynomial time**, answer is **independent** of deterministic computational model used.

The Class P

Because of polynomial equivalence of DTM models,

• group languages solvable in $O(n^2)$, $O(n \log n)$, O(n), etc., together in the **polynomial-time class**.

Definition: The class of languages that can be decided by a single-tape DTM in polynomial time is denoted by P, where

$$P = \bigcup_{k>0} \mathsf{TIME}(n^k).$$

Remarks:

- If we ask if a particular problem A is solvable in polynomial time (i.e., is $A \in \mathbb{P}$?),
 - answer is independent of deterministic computational model used.
- Class P roughly corresponds to *tractable* (i.e., realistically solvable) problems.

CS 341: Chapter 7 7-39

Encoding of Problems

- \bullet Recall: TM running time defined as fcn of length of encoding $\langle x \rangle$ of input x.
- But for given problem, many ways to encode input x as $\langle x \rangle$.
- For integers
 - binary is good
 - unary is bad (exponentially worse)
 - **Example:** Suppose input to TM is the number 18 in decimal.
 - \blacktriangle if encoding in binary, $\langle 18 \rangle = 10010$
- For graphs
 - list of nodes and edges (good)
 - adjacency matrix (good)

CS 341: Chapter 7 7-40

Example of Problem in P: PATH

• **Decision problem**: Given directed graph G with nodes s and t, does G have a path from s to t?

- Universe $\Omega = \{ \langle G, s, t \rangle \mid G \text{ is directed graph with nodes } s, t \}$ of instances (for a particular encoding scheme).
- \bullet Language of decision problem comprises YES instances:

 $\mathit{PATH} = \{\, \langle G, s, t \rangle \,|\; G \text{ is directed graph with path from } s \text{ to } t \,\} \subseteq \Omega.$

• For graph G above, $\langle G, 1, 5 \rangle \in PATH$, but $\langle G, 2, 1 \rangle \notin PATH$.

$\mathsf{PATH} \in P$

Theorem 7.14

 $PATH \in P$.

Brute-force algorithm:

- Input is instance $\langle G, s, t \rangle \in \Omega$
 - lacksquare G is directed graph with nodes s and t.
- Let m be number of nodes in G.
 - $\blacksquare \le m^2$ edges.
 - m (or m^2) roughly measures **size** of instance $\langle G, s, t \rangle$.
- ullet Any path from s to t need not repeat nodes.
- \bullet Examine each potential path in G of length $\leq m$.
 - lacktriangle Check if the path goes from s to t.

What is complexity of this algorithm?

Complexity of Brute-Force Algorithm for PATH

Brute-force algorithm:

- Input is $\langle G, s, t \rangle \in \Omega$, where G is directed graph with nodes s and t.
- ullet Any path from s to t need not repeat nodes.
- Examine each potential path in G of length $\leq m$ (= # nodes in G).
 - lacktriangle Check if the path goes from s to t.

Complexity analysis:

- There are roughly m^m potential paths of length $\leq m$.
- For each potential path length k = 2, 3, ..., m, check all k! permutations of k distinct nodes from $\binom{m}{k}$ possibilities.
- $k! = k \times (k-1) \times (k-2) \times \cdots \times 1, \quad {m \choose k} = \frac{m!}{k!(m-k)!}$
- Stirling's approximation: $k! \sim \left(\frac{k}{e}\right)^k \sqrt{2\pi k}$.
- ullet This is exponential in the number m of nodes.
- So brute-force algorithm's runtime is **exponential** in size of input.

CS 341: Chapter 7

A Better Algorithm Shows PATH $\in P$

On input $\langle G, s, t \rangle \in \Omega$, where G is directed graph with nodes s and t:

- 1. Place mark on node s.
- 2. Repeat until no additional nodes marked:
 - \bullet Scan all edges of G.
 - If edge (a, b) found from marked node a to unmarked node b, then mark b.
- 3. If node t is marked, accept; otherwise, reject.

 $\mathsf{Graph}\ G$

 $\langle G, 1, 5 \rangle \in \mathit{PATH}$

 $\langle G, 5, 3 \rangle \in PATH$

 $\langle G, \mathbf{2}, \mathbf{1} \rangle \not\in \mathit{PATH}$

CS 341: Chapter 7 7-44

Complexity of Better Algorithm for PATH

On input $\langle G, s, t \rangle \in \Omega$, where G is a directed graph with nodes s and t:

- 1. Place mark on node s.
- 2. Repeat until no additional nodes marked:
 - ullet Scan all edges of G.
 - If edge (a, b) found from marked node a to unmarked node b, then mark b.
- 3. If node t is marked, accept; otherwise, reject.

Complexity of algorithm: (depends on how $\langle G, s, t \rangle$ is encoded)

- Suppose input graph G has m nodes, so $< m^2$ edges.
- Stage 1 runs only once, running in O(m) time
- ullet Stage 2 runs at most m times
 - Each time (except last), it marks new nodes.
 - Each time requires scanning edges, which runs in $O(m^2)$ steps.
- Stage 3 runs only once, running in O(m) time
- Overall complexity: $O(m) + O(m)O(m^2) + O(m) = O(m^3)$, so $PATH \in \mathbb{P}$.

CS 341: Chapter 7

7-45

7-48

Another Problem in P: RELPRIME

- **Definition:** Two integers x, y are **relatively prime** if 1 is largest integer that divides both; greatest common divisor GCD(x, y) = 1.
- Examples:
 - 10 and 21 are relatively prime.
 - 10 and 25 are not.
- **Decision problem**: Given integers x and y, are x, y relatively prime?
 - Universe $\Omega = \{ \langle x, y \rangle \mid x, y \text{ integers } \}$ of problem instances.
 - Language of decision problem:

 $\textit{RELPRIME} = \{ \langle x, y \rangle \mid x \text{ and } y \text{ are relatively prime} \} \subseteq \Omega.$

■ So $\langle 10, 21 \rangle \in RELPRIME$ and $\langle 10, 25 \rangle \notin RELPRIME$.

Theorem 7.15

 $RELPRIME \in P.$

CS 341: Chapter 7 7-47

A Better Algorithm for RELPRIME

Euclidean Algorithm E:

E= "On input $\langle x,y \rangle$, where x,y are natural numbers encoded in binary:

- 1. Repeat until y = 0
 - Assign $x \leftarrow x \mod y$.
 - ullet Exchange x and y.
- 2. Output x."

Algorithm R below solves RELPRIME, using E as a subroutine:

R = "On input $\langle x, y \rangle$, where x, y are natural numbers encoded in binary:

- 1. Run E on $\langle x, y \rangle$.
- 2. If output of E is 1, accept; otherwise, reject."

Bad Algorithm for RELPRIME

 $RELPRIME = \{ \langle x, y \rangle \mid x \text{ and } y \text{ are relatively prime } \}.$

Bad Idea: Test all possible divisors (i.e., 2 to min(x, y)).

Complexity of algorithm depends on how integers are encoded:

- \bullet If x, y encoded in **unary**, then
 - length of $\langle x \rangle$ is x; length of $\langle y \rangle$ is y.
 - testing min(x, y) values is **polynomial** in length of input $\langle x, y \rangle$.
- If x, y encoded in **binary**, then
 - length of $\langle x \rangle$ is log x; length of $\langle y \rangle$ is log y.
 - testing min(x, y) values is exponential in length of input $\langle x, y \rangle$ because n is an **exponential** function of log n (i.e., $n = 2^{\log_2 n}$).
- This algorithm is pseudo-polynomial.

CS 341: Chapter 7

Complexity of Euclidean Algorithm

Euclidean Algorithm E:

E = "On input $\langle x, y \rangle$, where x, y are natural numbers encoded in binary:

- 1. Repeat until y = 0
 - Assign $x \leftarrow x \mod y$.
 - ullet Exchange x and y.
- 2. Output *x*."

Complexity of E:

- ullet After first step of Stage 1, x < y because of mod.
- Values then swapped, so x > y.
- ullet Can show each subsequent execution of Stage 1 cuts x by at least half.
- # times Stage 1 executed $\leq \min(\log_2 x, \log_2 y)$.
- ullet Thus, total running time of E (and R) is polynomial in $|\langle x,y\rangle|$, so $RELPRIME\in \mathcal{P}.$

CFLs are in P

Theorem 7.16

Every context-free language is in P.

Remarks:

- Will show that each CFL \in TIME (n^3)
 - \blacksquare n is length of input string $w \in \Sigma^*$.
 - In contrast, each regular language \in TIME(n). Why?
- Theorem 4.9 showed that every CFL is decidable, which we now review.
- Convert CFG into **Chomsky normal form**:
 - Each rule has one of the following forms:

$$A \to BC, \qquad A \to x,$$

$$A \to x$$

$$S \to \varepsilon$$

where

A, B, C, S are variables; S is start variable; B, C are not start variable; x is a terminal.

CS 341: Chapter 7

Lemma

If G is in Chomsky normal form and w is string with length n > 0, then w has a derivation with 2n-1 steps.

Recall Previous Algorithm to Decide CFL

Theorem 4.9

Every CFL is a decidable language.

Proof.

- ullet Assume L is a CFL generated by CFG G in Chomsky normal form.
- Theorem 4.7: \exists TM S that decides $A_{\mathsf{CFG}} = \{ \langle G, w \rangle \mid G \text{ is a CFG that generates } w \}.$
- Following TM M_C decides CFL L: $M_G =$ "On input w:
 - 1. Run TM S on input $\langle G, w \rangle$.
 - 2. If S accepts, accept; if S rejects, reject."

CS 341: Chapter 7

Previous Algorithm is Exponential

- Recall that to determine if $\langle G, w \rangle \in A_{CFG}$, TM S tries all derivations with k = 2n - 1 steps, where n = |w|.
 - \blacksquare But number of derivations taking k steps can be **exponential** in k.
 - So we need to use a different algorithm.
- Use dynamic programming (DP)
 - Powerful, general technique.
 - Basic idea: accumulate information about smaller subproblems to solve larger subproblems.
 - Store subproblem solutions in a *table* as they are generated.
 - Look up smaller subproblem solutions as needed when solving larger subproblems.
 - DP for CFGs: Cocke-Younger-Kasami (CYK) algorithm.

CS 341: Chapter 7 7-52

Dynamic Programming

- \bullet Fix CFG G in **Chomsky normal form**.
- Input to DP algorithm is string $w = w_1 w_2 \cdots w_n$ with |w| = n
- In our case of DP, **subproblems** are to determine which variables in G can generate each **substring** of w.
- \bullet Create an $n \times n$ table

7-55

7-56

Dynamic Programming Table

- For $i \leq j$, (i, j)th entry contains those variables that can generate substring $w_i w_{i+1} \cdots w_j$
- For i > j, (i, j)th entry is unused.
- DP starts by filling in all entries for substrings of length 1, then all entries for length 2, then all entries for length 3, etc.
- Idea: Use shorter lengths to determine how to construct longer lengths.

Filling in Dynamic Programming Table

- Suppose s = uv, $B \stackrel{*}{\Rightarrow} u$, $C \stackrel{*}{\Rightarrow} v$, and $\exists \text{ rule } A \to BC$.
 - Then $A \stackrel{*}{\Rightarrow} s$ because $A \Rightarrow BC \stackrel{*}{\Rightarrow} uv = s$.
- ullet Suppose that algorithm has determined which variables generate each substring of length $\leq k$.
- To determine if variable A can generate substring of length k + 1:
 - \blacksquare split substring into 2 non-empty pieces in all possible (k) ways.
 - \blacksquare For each split, algorithm examines rules $A \to BC$
 - ▲ Each piece is shorter than current substring, so table tells how to generate each piece.
 - \blacktriangle Check if B generates first piece.
 - \blacktriangle Check if C generates second piece.
 - lacktriangle If both possible, then add A to table.

CS 341: Chapter 7

Example: CYK Algorithm

Does the following CFG in Chomsky Normal Form generate baaba?

	1	2	3	4	5
1					
2					
3					
4					
5					
string	b	\overline{a}	a	b	\overline{a}

- Build table t so that for $i \leq j$, entry t(i, j) contains variables that can generate substring starting in position i and ending in position j
- Fill in one diagonal at a time.

CS 341: Chapter 7

Ex. (cont.): CYK for Substrings of Length 1

	1	2	3	4	5
1	Y				
2					
3					
4					
5					
string	b	a	a	b	\overline{a}

- t(1,1): substring b starts in position 1 and ends in position 1.
 - CFG has rule $Y \rightarrow b$, so put Y in t(1,1).

Ex. (cont.): CYK for Substrings of Length 1

Chomsky CFG:

$$S \rightarrow XY \mid YZ$$
 $X \rightarrow YX \mid a$
 $Y \rightarrow ZZ \mid b$ $Z \rightarrow XY \mid a$

$$\begin{array}{c} X \to YX \mid a \\ Z \to XY \mid a \end{array}$$

a

	1	2	3	4	5
1	Y				
2		X, Z			
3			X, Z		
4				Y	
5					X, Z

• t(2,2): substring a starts in position 2 and ends in position 2.

a

a

- \blacksquare CFG has rules $X \to a$ and $Z \to a$, so put X, Z in t(2,2).
- Similarly fill in other t(i, i).

Ex. (cont.): CYK for Substrings of Length 2

Chomsky CFG:

$$S \rightarrow XY \mid YZ$$

 $Y \rightarrow ZZ \mid b$

$$\begin{array}{c} X \to YX \mid a \\ Z \to XY \mid a \end{array}$$

	1	2	3	4	5
1	Y	S, X			
2		X, Z			
3			X, Z		
4				Y	
5					X, Z
string	b	a	a	b	\overline{a}

- t(1,2): substring ba starts in position 1 and ends in position 2.
 - \blacksquare split ba = ba:

$$Y \stackrel{*}{\Rightarrow} b$$
 by $t(1,1)$; $X,Z \stackrel{*}{\Rightarrow} a$ by $t(2,2)$.

■ If a rule has YX or YZ on RHS, then LHS $\stackrel{*}{\Rightarrow} ba$:

$$X \Rightarrow YX \stackrel{*}{\Rightarrow} ba, \qquad S \Rightarrow YZ \stackrel{*}{\Rightarrow} ba$$

CS 341: Chapter 7

string

Ex. (cont.): CYK for Substrings of Length 2

Chomsky CFG:

$$S \rightarrow XY \mid YZ$$

$$S \rightarrow XY \mid YZ$$
 $X \rightarrow YX \mid a$
 $Y \rightarrow ZZ \mid b$ $Z \rightarrow XY \mid a$

	1	2	3	4	5
1	Y	S, X			
2		X, Z	Y		
3			X, Z		
4				Y	
5					X, Z
string	b	a	a	b	\overline{a}

- t(2,3): substring aa starts in position 2 and ends in position 3.
 - \blacksquare split aa = aa:

 $X, Z \stackrel{*}{\Rightarrow} a$ by t(2,2); $X, Z \stackrel{*}{\Rightarrow} a$ by t(3,3).

■ If rule has XX, XZ, ZX, or ZZ on RHS, then LHS $\stackrel{*}{\Rightarrow} aa$:

$$Y \Rightarrow ZZ \stackrel{*}{\Rightarrow} aa$$

CS 341: Chapter 7

Ex. (cont.): CYK for Substrings of Length 2

Chomsky CFG:

 $S \rightarrow XY \mid YZ$ $Y \rightarrow ZZ \mid b$ $Z \rightarrow XY \mid a$

 $X \rightarrow YX \mid a$

7-60

	1	2	3	4	5
1	Y	S, X			
2		X, Z	Y		
3			X, Z	S, Z	
4				Y	S, X
5					X, Z
string	b	\overline{a}	a	b	\overline{a}

- t(3,4): substring ab starts in position 3 and ends in position 4.
 - split ab = ab: $X, Z \stackrel{*}{\Rightarrow} a$ by t(3,3); $Y \stackrel{*}{\Rightarrow} b$ by t(4,4).
 - If rule has XY or ZY on RHS, then LHS $\stackrel{*}{\Rightarrow} ab$:

$$S \Rightarrow XY \stackrel{*}{\Rightarrow} ab, \qquad Z \Rightarrow XY \stackrel{*}{\Rightarrow} ab$$

• t(4,5): similarly handle substring $ba \dots$

CS 341: Chapter 7

7-64

Ex. (cont.): CYK for Substrings of Length 3

Chomsky CFG:

$$S \ \to \ XY \mid YZ$$

$$X \rightarrow YX \mid a$$

,				
	Y	\rightarrow	ZZ	$\mid b$

$$Z \rightarrow XY \mid a$$

	1	2	3	4	5
1	Y	S, X	_		
2		X, Z	Y		
3			X, Z	S, Z	
4				Y	S, X
5					X, Z
string	b	a	a	b	\overline{a}

- t(1,3): substring baa starts in position 1 and ends in position 3.
 - split baa = b aa: $Y \stackrel{*}{\Rightarrow} b$ by t(1,1); $Y \stackrel{*}{\Rightarrow} aa$ by t(2,3); so if rule has RHS YY, then LHS $\stackrel{*}{\Rightarrow} baa$.
 - split baa = baa: $S, X \stackrel{*}{\Rightarrow} ba$ by t(1,2); $X, Z \stackrel{*}{\Rightarrow} a$ by t(3,3); so if rule has RHS SX, SZ, XX, or XZ, then LHS $\stackrel{*}{\Rightarrow} baa$.

Ex. (cont.): CYK for Substrings of Length 3

Chomsky CFG:

$$S \to XY \mid YZ$$
$$Y \to ZZ \mid b$$

$$\begin{array}{c} X \to YX \mid a \\ Z \to XY \mid a \end{array}$$

	1	2	3	4	5
1	Y	S, X			
2		X, Z	Y	Y	
3			X, Z	S, Z	Y
4				Y	S, X
5					X, Z
string	b	a	a	b	\overline{a}

- t(2,4): substring aab starts in position 2 and ends in position 4.
 - split aab = aab: $X, Z \stackrel{*}{\Rightarrow} a$ by t(2,2); $S, Z \stackrel{*}{\Rightarrow} ab$ by t(3,4); so if rule has RHS XS, XZ, ZS, or ZZ, then LHS $\stackrel{*}{\Rightarrow} aab$:

$$Y \Rightarrow ZZ \stackrel{*}{\Rightarrow} a \, ab$$

■ split aab = aab: $Y \stackrel{*}{\Rightarrow} aa$ by t(2,3); $Y \stackrel{*}{\Rightarrow} b$ by t(4,4); so if rule has RHS YY, then LHS $\stackrel{*}{\Rightarrow} aab$.

Ex. (cont.): CYK for Substrings of Length 4

Chomsky CFG:

CS 341: Chapter 7

$$S \rightarrow XY \mid YZ$$
$$Y \rightarrow ZZ \mid b$$

$$\begin{array}{c} X \to YX \mid a \\ Z \to XY \mid a \end{array}$$

		- /	22 0	- '	11 1 W
	1	2	3	4	5
1	Y	S, X		_	
2		X, Z	Y	Y	
3			X, Z	S, Z	Y
4				Y	S, X
5					X, Z
string	b	a	a	b	\overline{a}

- t(1,4): substring baab starts in position 1 and ends in position 4.
 - split $b \ aab$: $Y \stackrel{*}{\Rightarrow} b$ by t(1,1); $Y \stackrel{*}{\Rightarrow} aab$ by t(2,4); so if rule has RHS YY, then LHS $\stackrel{*}{\Rightarrow} baab$.
 - split $ba\ ab$: $S, X \stackrel{*}{\Rightarrow} ba\ by\ t(1,2);$ $S, Z \stackrel{*}{\Rightarrow} ab\ by\ t(3,4);$ so if rule has RHS SS, SZ, XS, or XZ, then LHS $\stackrel{*}{\Rightarrow} baab$.
 - split baab: Nothing $\stackrel{*}{\Rightarrow} baa$ as $t(1,3) = \emptyset$; $Y \stackrel{*}{\Rightarrow} b$ by t(4,4).

Ex. (cont.): CYK for Substrings of Length 4

Chomsky CFG: $S \rightarrow XY \mid YZ$ $X \rightarrow YX \mid a$ $Y \rightarrow ZZ \mid b$ $Z \rightarrow XY \mid a$

		1 , 22 0		_ , ,	
	1	2	3	4	5
1	Y	S, X	_	_	
2		X, Z	Y	Y	S, X, Z
3			X, Z	S, Z	Y
4				Y	S, X
5					X, Z
string	b	a	a	b	a

- t(2,5): substring aaba starts in position 2 and ends in position 5.
 - split $a \, aba$: $X, Z \stackrel{*}{\Rightarrow} a \, \text{by} \, t(2,2)$; $Y \stackrel{*}{\Rightarrow} aba \, \text{by} \, t(3,5)$; so if rule has RHS XY or ZY, then LHS $\stackrel{*}{\Rightarrow} aaba$:

$$S \Rightarrow XY \stackrel{*}{\Rightarrow} a \, aba, \qquad Z \Rightarrow XY \stackrel{*}{\Rightarrow} a \, aba$$

■ split aa ba: $Y \stackrel{*}{\Rightarrow} aa$ by t(2,3); $S, X \stackrel{*}{\Rightarrow} ba$ by t(4,5); so if rule has RHS YS or YX, then LHS $\stackrel{*}{\Rightarrow} aaba$:

$$X \Rightarrow YX \stackrel{*}{\Rightarrow} aa ba$$

■ split $aab\ a$: $Y \stackrel{*}{\Rightarrow} aab\$ by t(2,4); $X,Z \stackrel{*}{\Rightarrow} a\$ by t(5,5); so if rule has RHS YX or YZ, then LHS $\stackrel{*}{\Rightarrow} aaba$: $X \Rightarrow YX \stackrel{*}{\Rightarrow} aab\ a$

Ex. (cont.): CYK for Substrings of Length 5

Does the following CFG in Chomsky Normal Form generate baaba?

$$S \rightarrow XY \mid YZ$$
 $X \rightarrow YX \mid a$
 $Y \rightarrow ZZ \mid b$ $Z \rightarrow XY \mid a$

	1	2	3	4	5
1	Y	S, X	_	_	S, X, Z
2		X, Z	Y	Y	S, X, Z
3			X, Z	S, Z	Y
4				Y	S, X
5					X, Z
string	b	a	a	b	a

- t(1,5): substring baaba starts in position 1 and ends in position 5.
- Answer is **YES** iff start variable $S \in t(1,5)$.

7-67

Complexity of CYK Algorithm

- Each stage runs in polynomial time.
- Examine stages 2–5:
 - 2. For i = 1 to n, [examine each substring of length 1]
 - 3. For each variable A,
 - 4. Test whether $A \to b$ is a rule, where $b = w_i$.
 - 5. If so, put A in table(i, i).

Analysis:

CS 341: Chapter 7

- lacksquare Stage 2 runs n times
- \blacksquare Each time stage 2 runs, stage 3 runs v times, where
 - lack v is number of variables in G
 - ightharpoonup v is independent of n.
- Thus, stages 4 and 5 run at most nv times, which is O(n) because v is independent of n.

Overall CYK Algorithm to show every $\text{CFL} \in P$

D = "On input string $w = w_1 w_2 \cdots w_n$:

- 1. For $w = \varepsilon$, if $S \to \varepsilon$ is a rule, accept; else reject. $[w = \varepsilon \text{ case}]$
- 2. For i = 1 to n, [examine each substring of length 1]
- 3. For each variable A,
- 4. Test whether $A \to b$ is a rule, where $b = w_i$.
- 5. If so, put A in table(i, i).
- 6. For $\ell = 2$ to n, $[\ell]$ is length of substring
- 7. For i=1 to $n-\ell+1$, [i is start position of substring]
- 8. Let $j = i + \ell 1$, [j is end position of substring]
- 9. For k = i to j 1, [k is split position]
- 10. For each rule $A \to BC$,
- 11. If table(i, k) contains B and table(k + 1, j) contains C, put A in table(i, j).
- 12. If S is in table(1, n), accept; else, reject."

CS 341: Chapter 7

Complexity (cont)

- 6. For $\ell=2$ to n, $[\ell]$ is length of substring
- 7. For i=1 to $n-\ell+1$, [i is start position of substring]
- 8. Let $j=i+\ell-1$, [j] is end position of substring
- 9. For k = i to j 1, [k is split position]
- 10. For each rule $A \to BC$,
- 11. If table(i, k) contains B and table(k + 1, j) contains C, put A in table(i, j).
- 12. If S is in table(1, n), accept. Otherwise, reject.

Analysis:

- ullet Stage 6 runs at most n times
- \bullet Each time stage 6 runs, stage 7 runs at most n times
- \bullet Each time stage 7 runs, stage 9 runs at most n times
- Each time stage 9 runs, stage 10 runs r times (r = # rules = constant)
- Thus, stage 8 runs $O(n^2)$ times, and stage 11 runs $O(n^3)$ times

Grand total: $O(n^3)$

CS 341: Chapter 7

7-69

Hamiltonian Path

- **Definition:** A **Hamiltonian path** in a directed graph G visits each node exactly once, e.g., $1 \rightarrow 3 \rightarrow 5 \rightarrow 4 \rightarrow 2 \rightarrow 6 \rightarrow 7 \rightarrow 8$.
- **Decision problem:** Given a directed graph G with nodes s and t, does G have a Hamiltonian path from s to t?
- \bullet Universe $\Omega = \{\, \langle G, s, t \rangle \mid \text{directed graph } G \text{ with nodes } s, t \,\},$ and language is

 $\mathit{HAMPATH} = \{\, \langle G, s, t \rangle \mid G \text{ is a directed graph with a} \\ \mathsf{Hamiltonian\ path\ from}\ s\ \mathsf{to}\ t \,\} \subseteq \Omega.$

• If G is above graph, $\langle G, 1, 8 \rangle \in HAMPATH$, $\langle G, 2, 8 \rangle \notin HAMPATH$.

Hamiltonian Path

 $\textit{HAMPATH} = \{ \langle G, s, t \rangle \mid G \text{ is a directed graph with a}$ Hamiltonian path from $s \text{ to } t \}$

- **Question:** How hard is it to decide *HAMPATH*?
- ullet Suppose graph G has m nodes.
- Easy to come up with (exponential) brute-force algorithm
 - Generate each of the (m-2)! potential paths.
 - Check if any of these is Hamiltonian.
- Currently **unknown** if *HAMPATH* is **solvable** in polynomial time.

CS 341: Chapter 7 7-71

Hamiltonian Path

- But *HAMPATH* has feature known as **polynomial verifiability**.
- A claimed Hamiltonian path can be **verified** in **polynomial time**.
 - Consider $\langle G, s, t \rangle \in HAMPATH$, where graph G has m nodes.
 - Then (# edges in G) $\leq m(m-1) = O(m^2)$.
 - \blacksquare Suppose G encoded as list of nodes followed by list of edges.
 - Suppose given list p_1, p_2, \ldots, p_m of nodes that is claimed to be Hamiltonian path in G from s to t.
 - Can verify claim by checking
 - 1. if each node in G appears exactly once in claimed path, which takes $O(m^2)$ time,
 - 2. if each pair (p_i, p_{i+1}) is edge in G, which takes $O(m^3)$ time.
 - So **verification** takes time $O(m^3)$, which is polynomial in m.
- Thus, **verifying** a given path is Hamiltonian **may be** easier than **determining** its existence.

CS 341: Chapter 7 7-72

Composite Numbers

Definition: A natural number is **composite** if it is the product of two integers greater than one

- a composite number is not prime.
- **Decision problem:** Given natural number x, is x composite?
- Universe $\Omega = \{ \langle x \rangle \mid \text{natural number } x \}$, and language is $COMPOSITES = \{ \langle x \rangle \mid x = pq, \text{ for integers } p, q > 1 \} \subset \Omega.$

Remarks:

- Can easily verify that a number is composite.
 - If someone claims a number x is composite and provides a divisor p, just need to verify that x is divisible by p.
- In 2002, Agrawal, Kayal and Sexena proved that $PRIMES \in P$.
 - But $COMPOSITES = \overline{PRIMES}$, so $COMPOSITES \in P$.

7-73 *CS 341: Chapter 7*

7-74

7-76

Verifiability

- Some problems may not be polynomially verifiable.
 - Consider HAMPATH, which is complement of HAMPATH.
 - No known way to verify $\langle G, s, t \rangle \in \overline{HAMPATH}$ in polynomial time.
- ullet **Definition: Verifier** for language A is (deterministic) algorithm V, where

 $A = \{ w \mid V \text{ accepts } \langle w, c \rangle \text{ for some string } c \}$

- ullet String c used to verify string $w \in A$
 - lacksquare c is called a **certificate**, or **proof**, of membership in A.
 - Certificate is only for YES instance, not for NO instance.
- ullet We measure verifier runtime only in terms of length of w.
- ullet A **polynomial-time verifier** runs in (deterministic) time that is polynomial in |w|.
- Language is **polynomially verifiable** if it has polynomial-time verifier.

Examples of Verifiers and Certificates

• For HAMPATH, a certificate for

$$\langle G, s, t \rangle \in \mathit{HAMPATH}$$

is simply the Hamiltonian path from s to t.

- lacksquare Can verify in time polynomial in $|\langle G,s,t\rangle|$ if path is Hamiltonian.
- For COMPOSITES, a certificate for

$$\langle x \rangle \in \textit{COMPOSITES}$$

is simply one of its divisors.

- Can verify in time polynomial in $|\langle x \rangle|$ that the given divisor actually divides x
- ullet Remark: Certificate c is only for YES instance, not for NO instance.

CS 341: Chapter 7

7-75

Class NP

Definition: NP is the class of languages that have polynomial-time verifiers.

Remarks:

- \bullet Class NP important because it contains many problems of practical interest
 - HAMPATH
 - Travelling salesman
 - All of P
- The term NP comes from nondeterministic polynomial time.
 - Can define NP in terms of nondeterministic polynomial-time TMs.
- Recall: a nondeterministic TM (NTM) makes "lucky guesses" in computation.

CS 341: Chapter 7

NTM N_1 for HAMPATH

 $N_1 =$ "On input $\langle G, s, t \rangle \subseteq \Omega$, for directed graph G with nodes s, t:

- 1. Write list of m numbers p_1, p_2, \ldots, p_m , where m is # of nodes in G. Each number in list selected **nondeterministically** between 1 and m.
- 2. Check for repetitions in list. If any found, reject.
- 3. Check whether $p_1 = s$ and $p_m = t$. If either fails, reject.
- 4. For i = 1 to m 1, check whether (p_i, p_{i+1}) is an edge of G. If any is not, reject. Otherwise, accept."

Complexity of N_1 (when G encoded as list of nodes and list of edges):

- Stage 1 takes **nondeterministic** polynomial time: O(m).
- Stages 2 and 3 are simple deterministic poly-time checks: $O(m^2)$.
- Stage 4 runs in deterministic polynomial time: $O(m^3)$.

CS 341: Chapter 7

Equivalent Definition of NP

Theorem 7.20

A language is in NP if and only if it is decided by some polynomial-time nondeterministic TM.

Proof Idea:

- Recall language in NP has (deterministic) poly-time verifier.
- ullet Given a poly-time verifier, build NTM that guesses the certificate c and then runs verifier using c.
 - NTM runs in nondeterministic polynomial time.
- ullet Given a poly-time NTM, build verifier with certificate c that tells NTM which is accepting branch.
 - Verifier runs in deterministic polynomial time.

Proof: " $A \in NP$ " \Rightarrow "A Decided by Poly-time NTM"

- Let V be polynomial-time verifier for A.
 - lacksquare Assume V is DTM with n^k runtime, where n is length of input w.
- ullet Using V as subroutine, construct NTM N as follows:

N = "On input w of length n:

- 1. Nondeterministically select string c of length at most n^k .
- 2. Run V on input $\langle w, c \rangle$.
- 3. If V accepts, accept; otherwise, reject."
- ullet NTM N runs in nondeterministic polynomial time.
 - Verifier V runs in time n^k , so certificate c must have length $\leq n^k$; otherwise. V can't even read entire certificate.
 - Stage 1 of NTM N takes $O(n^k)$ nondeterministic time.

CS 341: Chapter 7 7-79

Proof: "A Decided by Poly-time NTM" \Rightarrow "A \in NP"

- ullet Assume A decided by polynomial-time NTM N.
- ullet Use N to construct polynomial-time verifier V as follows:

V = "On input $\langle w, c \rangle$, where w and c are strings:

- 1. Simulate N on input w, treating each symbol of c as a description of each step's nondeterministic choice.
- 2. If this branch of N's computation accepts, accept; otherwise, reject."
- $\bullet V$ runs in deterministic polynomial time.
 - NTM N originally runs in nondeterministic polynomial time.
 - lacktriangle Certificate c tells NTM N how to compute, eliminating nondeterminism in N's computation.

CS 341: Chapter 7 7-80

NTIME(t(n)) and NP

Definition:

$$\mathsf{NTIME}(t(n)) = \{ L \mid L \text{ is a language decided} \\ \mathsf{by an } O(t(n)) \text{-time NTM } \}$$

Corollary 7.22

$$NP = \bigcup_{k \ge 0} \mathsf{NTIME}(n^k).$$

Remark:

- NP is insensitive to choice of "reasonable" nondeterministic computational model.
 - This is because all such models are polynomially equivalent.

7-81 *CS 341: Chapter 7*

7-82

7-84

Example: CLIQUE

- **Definition:** A **clique** in a graph is a subgraph in which every two nodes are connected by an edge, i.e., clique is **complete subgraph**.
- **Definition:** A k-clique is a clique of size k.
- **Decision problem**: Given graph G and integer k, does G have k-clique?
 - Universe $\Omega = \{ \langle G, k \rangle \mid G \text{ is undirected graph, } k \text{ integer} \}$
 - Language of decision problem

 $\mathit{CLIQUE} = \{ \langle G, k \rangle \mid G \text{ is undirected graph with } k\text{-clique} \} \subseteq \Omega.$

■ For graph G above, $\langle G, 5 \rangle \in CLIQUE$, but $\langle G, 6 \rangle \notin CLIQUE$.

$\textbf{CLIQUE} \in \mathrm{NP}$

Theorem 7.24

 $CLIQUE \in NP.$

Proof.

- \bullet The clique is the certificate c.
- Here is a verifier for CLIQUE:

V = "On input $\langle \langle G, k \rangle, c \rangle$:

- 1. Test whether c is a set of k different nodes in G.
- 2. Test whether G contains all edges connecting nodes in c.
- 3. If both tests pass, accept; otherwise, reject."
- ullet If graph G (encoded as list of nodes and edges) has m nodes, then
 - Stage 1 takes O(k)O(m) = O(km) time.
 - Stage 2 takes $O(k^2)O(m^2) = O(k^2m^2)$ time.

CS 341: Chapter 7

Example: SUBSET-SUM

• Decision problem: Given

- \blacksquare collection S of numbers x_1, \ldots, x_k
- \blacksquare target number t

does some subcollection of S add up to t?

- Universe $\Omega = \{\langle S, t \rangle \mid \text{ collection } S = \{x_1, \dots, x_k\}, \text{ target } t \}.$
- Language

 $\begin{array}{ll} \textit{SUBSET-SUM} &=& \{\, \langle S,t \rangle \mid S = \{x_1,\ldots,x_k\} \text{ and } \exists \\ &\quad \{y_1,\ldots,y_\ell\} \subseteq \{x_1,\ldots,x_k\} \\ &\quad \text{with } \Sigma_{i=1}^\ell \, y_i = t \,\} \subseteq \Omega \end{array}$

Example:

- $\langle \{4, 11, 16, 21, 27\}, 32 \rangle \in SUBSET\text{-}SUM \text{ as } 11 + 21 = 32.$
- $\langle \{4, 11, 16, 21, 27\}, 17 \rangle \notin SUBSET-SUM$.

Remark: Collections are **multisets**: repetitions allowed.

If number x appears r times in S, then sum can include $\leq r$ copies of x.

CS 341: Chapter 7

7-83

 $SUBSET-SUM \in NP$

Theorem 7.25

SUBSET- $SUM \in NP$.

Proof.

- \bullet The subset is the certificate c.
- Here is a verifier V for SUBSET-SUM:

V = "On input $\langle \langle S, t \rangle, c \rangle$:

- 1. Test whether c is a collection of numbers that sum to t.
- 2. Test whether every number in c belongs to S.
- 3. If both tests pass, accept; otherwise, reject."
- When |S| = k,
 - $|c| \le k$, so V takes $O(k^2)$ time.

Class coNP

- ullet The complements $\overline{\textit{CLIQUE}}$ and $\overline{\textit{SUBSET-SUM}}$ are not obviously members of NP.
 - $\overline{CLIQUE} = \{ \langle G, k \rangle \mid \text{ undirected graph } G \text{ does } \mathbf{not} \text{ have } k\text{-clique} \}$
 - Not clear how to define certificates so that we can verify in polynomial time.
- It **seems** harder to verify that something does **not** exist.

Definition: The class coNP consists of languages whose complements belong to $\mathrm{NP}.$

• Language $A \in \text{coNP}$ iff $\overline{A} \in \text{NP}$.

Remark: Currently not known if coNP is different from NP.

CS 341: Chapter 7 7-87

Remarks on P vs. NP Question

- If $P \neq NP$, then
 - languages in P are **tractable** (i.e., solvable in polynomial time)
 - languages in NP P are **intractable** (i.e., polynomial-time solution doesn't exist).

- If any NP language $A \notin P$, then $P \neq NP$.
 - Nobody has been able to (dis)prove \exists language \in NP P.

P vs. NP Question

- Language in P has polynomial-time **decider**.
- Language in NP has polynomial-time **verifier** (or poly-time NTM).
- \bullet $P\subseteq NP$ because each poly-time DTM is also poly-time NTM.

- ullet Answering question whether P=NP or not is one of the great unsolved mysteries in computer science and mathematics.
 - Most computer scientists believe $P \neq NP$; e.g., jigsaw puzzle.
 - Clay Math Institute (www.claymath.org) has \$1,000,000 prize to anyone who can prove either P = NP or $P \neq NP$.

CS 341: Chapter 7 7-88

NP-Complete

Informally, the class NP-Complete comprise languages that are

- "hardest" languages in NP
- "least likely" to be in P
- If any NP-Complete language $A \in P$, then P = NP.
 - If $P \neq NP$, then every NP-Complete language $A \notin P$.
- Because NP-Complete \subseteq NP,
 - if any NP-Complete language $A \notin P$, then $P \neq NP$.

We will give a formal definition of NP-Complete later.

7-91

7-92

Satisfiability Problem

- A **Boolean variable** is a variable that can take on only the values TRUE (1) and FALSE (0).
- Boolean operations
- AND: ∧
- OR: ∨
- NOT: \neg or overbar ($\overline{x} = \neg x$)
- Examples

$$0 \land 1 = 0$$
$$0 \lor 1 = 1$$
$$\overline{0} = 1$$

Satisfiability Problem

• A **Boolean formula** (or function) is an expression involving Boolean variables and operations, e.g.,

$$\phi_1 = (\overline{x} \wedge y) \vee (x \wedge \overline{z})$$

- **Definition:** A formula is **satisfiable** if some assignment of Os and 1s to the variables makes the formula evaluate to 1.
 - **Example:** ϕ_1 above is satisfiable by (x, y, z) = (0, 1, 0). This assignment satisfies ϕ_1 .
 - **Example:** The following formula is not satisfiable:

$$\phi_2 = (\overline{x} \vee y) \wedge (z \wedge \overline{z}) \wedge (y \vee x)$$

- **Decision problem** *SAT*: Given Boolean fcn ϕ , is ϕ satisfiable?
 - Universe $\Omega = \{ \langle \phi \rangle \mid \phi \text{ is a Boolean fcn } \}$
 - Language of satisfiability problem:

 $SAT = \{ \langle \phi \rangle \mid \phi \text{ is a satisfiable Boolean function } \} \subseteq \Omega$ so $\langle \phi_1 \rangle \in SAT$ and $\langle \phi_2 \rangle \not\in SAT$.

CS 341: Chapter 7

More Definitions Related to Satisfiability

- A **literal** is a variable or negated variable: x or \overline{x}
- A **clause** is several literals joined by ORs (\vee): $(x_1 \vee \overline{x_3} \vee \overline{x_7})$
 - Clause is TRUE iff at least one of its literals is TRUE.
- A Boolean function is in **conjunctive normal form**, called a **cnf-formula**, if it comprises several clauses connected with ANDs (\wedge): $(x_1 \lor \overline{x_2} \lor \overline{x_3} \lor x_4) \land (x_3 \lor \overline{x_5} \lor x_6) \land (x_3 \lor \overline{x_6})$

• 3cnf-formula has all clauses with 3 literals:

 $(x_1 \vee \overline{x_2} \vee \overline{x_3}) \wedge (x_3 \vee \overline{x_5} \vee x_6) \wedge (x_3 \vee \overline{x_6} \vee x_4) \wedge (x_2 \vee x_1 \vee x_5)$

- **Decision problem** 3SAT: Given a 3cnf-formula ϕ , is ϕ satisfiable?
 - Universe $\Omega = \{ \langle \phi \rangle \mid \phi \text{ is 3cnf-formula } \}$
 - Language of decision problem:

 $3SAT = \{ \langle \phi \rangle \mid \phi \text{ is a satisfiable } 3cnf-function } \subset \Omega.$

ullet $\langle \phi \rangle \in \textit{3SAT}$ iff each clause in ϕ has at least one literal assigned 1.

CS 341: Chapter 7

Polynomial-Time Computable Functions

Definition: A polynomial-time computable function is

$$f: \Sigma_1^* \to \Sigma_2^*$$

if ∃ Turing machine that

- ullet starts with input $w \in \Sigma_1^*$,
- ullet halts with only $f(w) \in \Sigma_2^*$ on the tape, and
- ullet has runtime that is polynomial in |w| for $w\in \Sigma_1^*$.

Polynomial-Time Mapping Reducible

Consider

- language A defined over alphabet Σ_1 ; i.e., universe $\Omega_1 = \Sigma_1^*$.
- language B defined over alphabet Σ_2 ; i.e., universe $\Omega_2 = \Sigma_2^*$.

Definition: A is polynomial-time mapping reducible to B, written

$$A \leq_{\mathsf{P}} B$$

if there is a polynomial-time computable function

$$f: \Sigma_1^* \to \Sigma_2^*$$

such that, for every string $w \in \Sigma_1^*$,

$$w \in A \iff f(w) \in B$$
.

Polynomial-Time Mapping Reducible

 $w \in A \iff$

 $f(w) \in B$

YES instance for problem $A \iff YES$ instance for problem B

- ullet converts questions about membership in A to membership in B
- conversion is done **efficiently** (i.e., in polynomial time).

CS 341: Chapter 7

Polynomial-Time Mapping Reducible

Theorem 7.31

If $A \leq_{\mathsf{P}} B$ and $B \in \mathsf{P}$, then $A \in \mathsf{P}$.

Proof.

- $B \in \mathbb{P} \Rightarrow \exists \mathsf{TM} \ M$ that is polynomial-time decider for B.
- $A \leq_{\mathsf{P}} B \Rightarrow \exists$ function f that reduces A to B in polynomial time.
- ullet Define TM N that decides A as follows:

N = "On input w,

- 1. Compute f(w).
- 2. Run M on input f(w) and output whatever M outputs."
- Analysis of Time Complexity of TM N:
 - Each stage runs once.
 - Stage 1 is polynomial because f is polynomial-time function.
 - lacktriangle Stage 2 is polynomial because M is polynomial-time decider for B.

CS 341: Chapter 7

7-95

 $\Omega_2 = \Sigma_2^*$

$3SAT \leq_{P} CLIQUE$

Theorem 7.32

3SAT is polynomial-time mapping reducible to CLIQUE.

Proof Idea: Convert instance ϕ of *3SAT* problem with k clauses into instance $\langle G, k \rangle$ of clique problem: $\langle \phi \rangle \in \textit{3SAT}$ iff $\langle G, k \rangle \in \textit{CLIQUE}$.

Recall

$$\begin{array}{l} \textit{3SAT} \ = \ \{\ \langle \phi \rangle \ | \ \mathsf{3cnf\text{-}fcn} \ \phi \ \mathsf{is} \ \mathsf{satisfiable} \ \} \\ \ \subseteq \ \{\ \langle \phi \rangle \ | \ \mathsf{3cnf\text{-}fcn} \ \phi \ \} \ \equiv \ \Omega_3, \\ \textit{CLIQUE} \ = \ \{\ \langle G, k \rangle \ | \ \mathsf{undirected} \ \mathsf{graph} \ G \ \mathsf{has} \ k\text{-}\mathsf{clique} \ \} \\ \ \subseteq \ \{\ \langle G, k \rangle \ | \ \mathsf{undirected} \ \mathsf{graph} \ G, \ \mathsf{integer} \ k \ \} \ \equiv \ \Omega_C. \end{array}$$

• Need poly-time reducing function $f: \Omega_3 \to \Omega_C$

3SAT is Mapping Reducible to CLIQUE

Proof Idea: Convert instance ϕ of *3SAT* problem with k clauses into instance $\langle G, k \rangle$ of clique problem: $\langle \phi \rangle \in \textit{3SAT}$ iff $\langle G, k \rangle \in \textit{CLIQUE}$.

ullet Suppose ϕ is a 3cnf-function with k clauses, e.g.,

$$\phi = (x_1 \vee \overline{x_2} \vee \overline{x_3}) \wedge (x_3 \vee \overline{x_5} \vee x_6) \wedge (x_3 \vee \overline{x_6} \vee x_4) \wedge (x_2 \vee x_1 \vee x_5)$$

- \bullet Convert ϕ into a graph G as follows:
 - Each literal in ϕ corresponds to a node in G.
 - Nodes in G are organized into k triples t_1, t_2, \ldots, t_k .
 - Triple t_i corresponds to the *i*th clause in ϕ .
 - Add edges between each pair of nodes, except
 - ▲ within same triple
 - \blacktriangle between contradictory literals, e.g., x_1 and $\overline{x_1}$

3SAT is Mapping Reducible to CLIQUE

Example: 3cnf-function with k = 3 clauses and m = 2 variables:

$$\phi = (x_1 \vee x_1 \vee x_2) \wedge (\overline{x_1} \vee \overline{x_2} \vee \overline{x_2}) \wedge (\overline{x_1} \vee x_2 \vee x_2)$$

Corresponding Graph:

CS 341: Chapter 7 7-99

3SAT is Mapping Reducible to CLIQUE

ullet 3cnf-formula with k=3 clauses and m=2 variables

$$\phi = (x_1 \vee x_1 \vee x_2) \wedge (\overline{x_1} \vee \overline{x_2} \vee \overline{x_2}) \wedge (\overline{x_1} \vee x_2 \vee x_2)$$

is satisfiable by assignment $x_1 = 0$, $x_2 = 1$.

• Corresponding graph has k-clique:

CS 341: Chapter 7 7-100

3SAT is Mapping Reducible to CLIQUE

Need to show 3cnf-fcn ϕ with k clauses is satisfiable iff G has a k-clique.

- **Key Idea:** $\langle \phi \rangle \in 3SAT$ iff each clause in ϕ has ≥ 1 true literal.
- Recall: G has node triples corresponding to clauses in ϕ .
- Add edges between each pair of nodes, except
 - within same triple
 - between contradictory literals, e.g., x_1 and $\overline{x_1}$
- If $\langle \phi \rangle \in 3SAT$, then choose node corresponding to satisfied literal in each clause to get k-clique in G.
- If $\langle G, k \rangle \in CLIQUE$, then literals corresponding to k-clique satisfy ϕ .

Conclusion: $\langle \phi \rangle \in \mathit{3SAT}$ iff $\langle G, k \rangle \in \mathit{CLIQUE}$, so $\mathit{3SAT} \leq_{\mathsf{m}} \mathit{CLIQUE}$.

7-104

Reducing 3SAT to CLIQUE Takes Polynomial Time

Claim: The mapping $\phi \to \langle G, k \rangle$ is polynomial-time computable.

Proof.

- ullet Size of given 3cnf-function ϕ
 - k clauses
 - *m* variables.
- ullet Constructed graph G of $\langle G,k \rangle$ has
 - \blacksquare 3k nodes
 - (# of edges in G) $< {3k \choose 2} = \frac{3k(3k-1)}{2} = O(k^2)$
 - Size of graph G is polynomial in size of 3cnf-function ϕ .

Remarks:

CS 341: Chapter 7

1. $B \in NP$, and

• NP-Complete problems are the most difficult problems in NP.

NP-Complete

 A_5

Definition: Language B is NP-Complete if

2. For every language $A \in NP$, we have $A \leq_P B$.

NP

• **Definition:** Language *B* is **NP-Hard** if *B* satisfies part 2 of NP-Complete.

CS 341: Chapter 7

NP-Complete and P vs. NP Question

Theorem 7.35

If there is an NP-Complete language B and $B \in P$, then P = NP.

Proof.

- \bullet Consider any language $A \in {\rm NP}.$
- As $A \in NP$, defn of NP-completeness implies $A \leq_P B$.

- ullet Recall Theorem 7.31: If $A \leq_{\mathsf{P}} B$ and $B \in \mathsf{P}$, then $A \in \mathsf{P}$.
- \bullet Because $B \in {\bf P}$, it follows that also $A \in {\bf P}$ by Theorem 7.31.

CS 341: Chapter 7

Identifying New NP-Complete Problems from Known Ones

Theorem 7.36

If B is NP-Complete and $B \leq_{\mathsf{P}} C$ for $C \in \mathsf{NP}$, then C is NP-Complete.

CS 341: Chapter 7

7-106

7-108

Identifying New NP-Complete Problems from Known Ones

Recall Theorem 7.36:

If B is NP-Complete and $B \leq_{\mathsf{P}} C$ for $C \in \mathsf{NP}$, then C is NP-Complete.

Proof.

- Assume that $C \in NP$.
- Must show that every $A \in NP$ satisfies $A \leq_P C$.
- ullet Because B is NP-Complete,
 - \blacksquare every language in NP is polynomial-time reducible to B.
 - Thus, $A \leq_{\mathsf{P}} B$ when $A \in \mathsf{NP}$.
- ullet By assumption, B is polynomial-time reducible to C.
 - Hence, $B \leq_{\mathsf{P}} C$.
- But polynomial-time reductions compose.
 - So $A \leq_{\mathsf{P}} B$ and $B \leq_{\mathsf{P}} C$ imply $A \leq_{\mathsf{P}} C$.

But identifying the first NP-Complete problem requires some effort.
Recall satisfiability problem:

• Once we have one NP-Complete problem.

 $SAT = \{ \langle \phi \rangle \mid \phi \text{ is a satisfiable Boolean function } \}$

Cook-Levin Theorem

can identify others by using polynomial-time reduction (Theorem 7.36).

Theorem 7.37

SAT is NP-Complete.

Proof Idea:

CS 341: Chapter 7

- $SAT \in NP$ because a polynomial-time NTM can guess assignment to formula ϕ and accept if assignment satisfies ϕ .
- Show that SAT is NP-Hard: $A \leq_{P} SAT$ for every language $A \in NP$.

CS 341: Chapter 7

7-107

Proof Outline of Cook-Levin Theorem

- Let $A \subseteq \Sigma_1^*$ be a language in NP.
- Need to show that $A \leq_{\mathsf{P}} \mathsf{SAT}$.
- ullet For every $w\in \Sigma_1^*$, we want a (CNF) formula ϕ such that
 - $w \in A \text{ iff } \langle \phi \rangle \in SAT$
 - lacktriangle polynomial-time reduction that constructs ϕ from w.
- Let N be poly-time NTM that decides A in time at most n^k for input w with |w| = n.
- Basic approach:

 $w \in A \iff \mathsf{NTM}\ N$ accepts input w $\iff \exists$ accepting computation history of N on w $\iff \exists$ Boolean function ϕ and variables x_1,\ldots,x_m with $\phi(x_1,\ldots,x_m)=\mathsf{TRUE}$

Proof Outline of Cook-Levin Theorem

Idea: "Satisfying assignments of ϕ " \leftrightarrow "accepting computation history of NTM N on w"

Step 1: Describe computations of NTM N on w by Boolean variables.

- Any computation history of $N = (Q, \Sigma, \Gamma, \delta, q_0, q_A, q_R)$ on w with |w| = n has $< n^k$ configurations since assumed N runs in time n^k .
- Each configuration is an element of $C^{(n^k)}$, where $C = Q \cup \Gamma \cup \{\#\}$ (mark left and right ends with #, where $\# \notin \Gamma$).
- ullet Computation described by $n^k \times n^k$ "tableau"
 - Each row of tableau represents one configuration.
 - \blacksquare Each cell in tableau contains one element of C.
- \bullet Represent contents of cell (i,j) by |C| Boolean variables $\{\,x_{i,j,s}\,|\,\,s\in C\,\}$
- $x_{i,j,s} = 1$ means "cell (i,j) contains s" (variable is "on")

7-109 *CS 341: Chapter 7*

7-110

7-112

Tableau is an $n^k \times n^k$ table of configurations

Proof Outline of Cook-Levin Theorem

Step 2: Express conditions for an accepting sequence of configurations of NTM N on w by Boolean formulas:

$$\begin{split} \phi_{\text{cell}} &= \text{``for each cell } (i,j) \text{, exactly one } s \in C \text{ with } x_{i,j,s} = 1\text{''}, \\ \phi_{\text{start}} &= \text{``first row of tableau is the starting configuration of } N \text{ on } w\text{''}, \\ \phi_{\text{accept}} &= \text{``last row of tableau is an accepting configuration of } N \text{ on } w\text{''}, \\ \phi_{\text{move}} &= \text{``every } 2 \times 3 \text{ window is consistent with } N\text{'s transition fcn''}. \end{split}$$

For example,

$$\phi_{\text{cell}} = \bigwedge_{\substack{\underline{1 \leq i, j \leq n^k} \\ \text{for each cell } (i, j),}} \left[\underbrace{(\bigvee_{s \in C} x_{i, j, s})}_{s \in C} \wedge (\bigwedge_{\substack{s, t \in C \\ s \neq t}} (\overline{x_{i, j, s}} \vee \overline{x_{i, j, t}})) \right].$$

Step 3: Show that each of the above formulas can be

- expressed by a formula of size $O((n^k)^2) = O(n^{2k})$
- \bullet constructed from w in time polynomial in n = |w|.

CS 341: Chapter 7

7-111

Proof Outline of Cook-Levin Theorem

Step 4: Show that N has an accepting computation history on w iff

$$\phi = \phi_{\text{cell}} \wedge \phi_{\text{start}} \wedge \phi_{\text{accept}} \wedge \phi_{\text{move}}$$

has a satisfying assignment of the $x_{i,j,s}$ variables.

Thus, we constructed ϕ using a polynomial-time reduction from A to SAT:

$$A \leq_{\mathsf{P}} SAT$$

Because construction holds for every $A \in NP$, SAT is then NP-Complete.

CS 341: Chapter 7

3SAT is NP-Complete

Recall

$$3SAT = \{ \langle \phi \rangle \mid \phi \text{ is a satisfiable 3cnf-function } \}$$

Corollary 7.42

3SAT is NP-Complete.

Proof Idea:

Can modify proof that SAT is NP-Complete (Theorem 7.37) so that resulting Boolean function is a 3cnf-function.

Proving NP-Completeness

- ullet Tedious to prove a language C is NP-Complete using definition:
 - 1. $C \in NP$, and
 - 2. C is NP-Hard: For every language $A \in NP$, we have $A \leq_P C$.
- Recall Theorem 7.36: If B is NP-Complete and $B \leq_{\mathsf{P}} C$ for $C \in \mathsf{NP}$, then C is NP-Complete.

7-115

- ullet Typically prove a language C is NP-Complete by applying Thm 7.36
 - 1. Prove that language $C \in NP$.
 - 2. Reduce a known NP-Complete problem B to C.
 - At this point, have shown that *SAT* and *3SAT* are NP-Complete.
 - 3. Show that reduction takes polynomial time.

CLIQUE is NP-Complete

 $CLIQUE = \{ \langle G, k \rangle \mid G \text{ is an undirected graph with a } k\text{-clique} \}$

Corollary 7.43

CLIQUE is NP-Complete.

Proof.

- Theorem 7.24: $CLIQUE \in NP$.
- Corollary 7.42: *3SAT* is NP-Complete.
- Theorem 7.32: $3SAT <_{P} CLIQUE$.
- Thus, Theorem 7.36 implies *CLIQUE* is NP-Complete.

CS 341: Chapter 7

Integer Linear Programming

Definition: An integer linear program (ILP) is

- set of variables y_1, y_2, \ldots, y_n , which must take integer values.
- ullet set of m linear inequalities:

$$a_{11} y_1 + a_{12} y_2 + \dots + a_{1n} y_n \le b_1$$

$$a_{21} y_1 + a_{22} y_2 + \dots + a_{2n} y_n \le b_2$$

$$\vdots \qquad \vdots \qquad \vdots$$

$$a_{m1} y_1 + a_{m2} y_2 + \dots + a_{mn} y_n \le b_m$$

where the a_{ij} and b_i are given constants.

• In matrix notation, $Ay \leq b$, with matrix A and vectors y, b:

$$A = \begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{pmatrix}, \quad y = \begin{pmatrix} y_1 \\ y_2 \\ \vdots \\ y_n \end{pmatrix}, \quad b = \begin{pmatrix} b_1 \\ b_2 \\ \vdots \\ b_m \end{pmatrix}.$$

CS 341: Chapter 7 7-116

Integer Linear Programming

Example: Can transform \geq and = relations into \leq relations:

$$5y_1 - 2y_2 + y_3 \le 7$$

 $y_1 \ge 2 \longleftrightarrow -y_1 \le -2$
 $y_2 + 2y_3 = 8 \longleftrightarrow y_2 + 2y_3 \le 8 \& y_2 + 2y_3 \ge 8$

becomes ILP

$$5y_1 - 2y_2 + 1y_3 \le 7$$

$$-1y_1 + 0y_2 + 0y_3 \le -2$$

$$0y_1 + 1y_2 + 2y_3 \le 8$$

$$0y_1 - 1y_2 - 2y_3 \le -8$$

SC

$$A = \begin{pmatrix} 5 & -2 & 1 \\ -1 & 0 & 0 \\ 0 & 1 & 2 \\ 0 & -1 & -2 \end{pmatrix}, \quad y = \begin{pmatrix} y_1 \\ y_2 \\ y_3 \end{pmatrix}, \quad b = \begin{pmatrix} 7 \\ -2 \\ 8 \\ -8 \end{pmatrix}.$$

ILP is NP-Complete

• **Decision problem:** Given matrix A and vector b, is there an **integer** vector y such that $Ay \leq b$?

$$\begin{split} \textit{ILP} &= \{\, \langle A,b \rangle \mid \text{matrix } A \text{ and vector } b \text{ satisfy } Ay \leq b \\ & \text{with } y \text{ an integer vector} \,\} \\ &\subseteq \{\, \langle A,b \rangle \mid \text{matrix } A, \text{ vector } b \,\} \equiv \Omega_I \end{split}$$

• **Example:** The instance $\langle A, b \rangle \in \Omega_I$, where

$$A = \begin{pmatrix} 1 & 2 \\ 2 & 4 \end{pmatrix}, \quad b = \begin{pmatrix} 3 \\ 7 \end{pmatrix},$$

satisfies $Ay \leq b$ for $y = (1, 1)^{\top}$, so $\langle A, b \rangle \in ILP$.

• **Example:** The instance $\langle C, d \rangle \in \Omega_I$, where

$$C = \begin{pmatrix} 2 & 0 \\ -2 & 0 \end{pmatrix}, \quad d = \begin{pmatrix} 3 \\ -3 \end{pmatrix},$$

requires $2y_1 \le 3 \& -2y_1 \le -3$, which means $2y_1 = 3$, so only non-integer solutions $y = (3/2, y_2)^{\top}$ for any y_2 ; thus, $\langle C, d \rangle \notin ILP$.

• **Theorem:** *ILP* is NP-Complete.

 $\mathsf{ILP} \in \mathbf{NP}$

Proof.

CS 341: Chapter 7

- The certificate c is an integer vector satisfying $Ac \leq b$.
- Here is a verifier for *ILP*:

$$V =$$
 "On input $\langle \langle A, b \rangle, c \rangle$:

- 1. Test whether c is a vector of all integers.
- 2. Test whether Ac < b.
- 3. If both tests pass, accept; otherwise, reject."
- ullet If $Ay \leq b$ has m inequalities and n variables, then
 - Stage 1 takes O(n) time
 - lacksquare Stage 2 takes O(mn) time
 - lacksquare So verifier V runs in O(mn), which is polynomial in size of problem.

Now prove *ILP* is NP-Hard by showing $3SAT <_P ILP$.

CS 341: Chapter 7

3SAT <_m ILP

• Reducing fcn $f: \Omega_3 \to \Omega_I$

• $\langle \phi \rangle \in 3SAT$ iff $f(\langle \phi \rangle) = \langle A, b \rangle \in ILP$

7-119

 \bullet Consider 3cnf-formula with m=4 variables and k=3 clauses:

$$\phi = (x_1 \lor x_2 \lor \overline{x_3}) \land (\overline{x_1} \lor \overline{x_2} \lor x_4) \land (\overline{x_2} \lor \overline{x_4} \lor \overline{x_3})$$

- Define integer linear program with
 - **2** m = 8 variables $y_1, y'_1, y_2, y'_2, y_3, y'_3, y_4, y'_4$
 - \mathbf{A} y_i corresponds to x_i
 - \blacktriangle y_i' corresponds to $\overline{x_i}$
 - 3 sets of inequalities for each of pair y_i, y_i' , which must be integers:

$$0 \le y_1 \le 1, \qquad 0 \le y_1' \le 1, \qquad y_1 + y_1' = 1$$

$$0 \le y_2 \le 1, \qquad 0 \le y_2' \le 1, \qquad y_2 + y_2' = 1$$

$$0 \le y_3 \le 1, \qquad 0 \le y_3' \le 1, \qquad y_3 + y_3' = 1$$

$$0 \le y_4 \le 1, \qquad 0 \le y_4' \le 1, \qquad y_4 + y_4' = 1$$

which guarantee that exactly one of y_i and y'_i is 1, and other is 0.

CS 341: Chapter 7

3SAT ≤_m ILP

 \bullet Recall 3cnf-formula with m=4 variables and k=3 clauses:

$$\phi = (x_1 \lor x_2 \lor \overline{x_3}) \land (\overline{x_1} \lor \overline{x_2} \lor x_4) \land (\overline{x_2} \lor \overline{x_4} \lor \overline{x_3})$$

- \bullet ϕ satisfiable iff each clause evaluates to 1.
- A clause evaluates to 1 iff at least one literal in the clause equals 1.
- For each clause $(x_i \vee \overline{x_j} \vee x_\ell)$, create inequality $y_i + y'_j + y_\ell \ge 1$.
- For our example, ILP has k = 3 inequalities of this type:

$$y_1 + y_2 + y_3' \ge 1$$

 $y_1' + y_2' + y_4 \ge 1$
 $y_2' + y_4' + y_3' \ge 1$

which guarantee that each clause evaluates to 1.

$3SAT \leq_m ILP$

• Given 3cnf-formula:

$$\phi = (x_1 \lor x_2 \lor \overline{x_3}) \land (\overline{x_1} \lor \overline{x_2} \lor x_4) \land (\overline{x_2} \lor \overline{x_4} \lor \overline{x_3})$$

• Constructed ILP:

$$0 \le y_1 \le 1, \qquad 0 \le y_1' \le 1, \qquad y_1 + y_1' = 1$$

$$0 \le y_2 \le 1, \qquad 0 \le y_2' \le 1, \qquad y_2 + y_2' = 1$$

$$0 \le y_3 \le 1, \qquad 0 \le y_3' \le 1, \qquad y_3 + y_3' = 1$$

$$0 \le y_4 \le 1, \qquad 0 \le y_4' \le 1, \qquad y_4 + y_4' = 1$$

$$y_1 + y_2 + y_3' \ge 1$$

$$y_1' + y_2' + y_4 \ge 1$$

$$y_2' + y_4' + y_3' \ge 1$$

• Note that:

$$\phi$$
 satisfiable \iff constructed ILP has solution (with values of variables $\in \{0, 1\}$)

Reducing 3SAT to ILP Takes Polynomial Time

- ullet Given 3cnf-formula ϕ with
 - \blacksquare m variables: x_1, x_2, \ldots, x_m
 - k clauses
- Constructed ILP has
 - 2m (integer) variables: $y_1, y'_1, y_2, y'_2, \dots, y_m, y'_m$
 - 6m + k inequalities:
 - \blacktriangle 3 sets of inequalities for each pair y_i, y_i' :

$$0 \le y_i \le 1$$
, $0 \le y_i' \le 1$, $y_i + y_i' = 1$,

so total of 6m inequalities of this type (convert = into $\leq \& \geq$)

 \blacktriangle For each clause in ϕ , ILP has corresponding inequality, e.g.,

$$(x_1 \lor x_2 \lor \overline{x_3}) \longleftrightarrow y_1 + y_2 + y_3' \ge 1,$$

so total of k inequalities of this type.

 \blacksquare Thus, size of ILP is polynomial in m and k.

CS 341: Chapter 7

Many Other NP-Complete Problems

- HAMPATH, SUBSET-SUM, ...
- Travelling Salesman Problem (TSP): Given a graph G with weighted edges and a threshold value d, is there a tour that visits each node once and has total length at most d?
- Long-Path Problem: Given a graph G with weighted edges, two nodes s and t in G, and a threshold value d, is there a path from s to t with length at least d?
- Scheduling Final Exams: Is there a way to schedule final exams in a d-day period so no student is scheduled to take 2 exams at same time?
- Minesweeper, Sudoku, Tetris
- See Garey and Johnson (1979), Computers and Intractability: A Guide to the Theory of NP-Completeness, for many reductions.

CS 341: Chapter 7 7-124

NP-Hard Optimization Problems

- Decision problems have YES/NO answers.
- Many decision problems have corresponding **optimization** version.
- Optimization version of NP-Complete problems are NP-Hard.

Problem	Decision Version	Optimization Version	
CLIQUE	Does a graph G have	Find largest clique	
	a clique of size k ?		
ILP	Does \exists integer vector y	Find integer vector y to	
	such that $Ay \leq b$?	$\max d^{\top} y \text{s.t. } Ay \leq b$	
TSP	Does a graph G have tour	Find min length tour	
	of length $\leq d$?		
Scheduling	Given set of tasks and constraints,	Find min time schedule	
	can we finish all tasks in time d ?		

7-125 *CS 341: Chapter 7*

7-127

7-128

Why are NP-Complete and NP-Hard Important?

- Suppose you are faced with a problem and you can't come up with an efficient algorithm for it.
- If you can prove the problem is NP-Complete or NP-Hard, then there is no known efficient algorithm to solve it.
 - No known polynomial-time algorithms for NP-Complete and NP-Hard problems.
- How to deal with an NP-Complete or NP-Hard problem?
 - Approximation algorithm
 - Probabilistic algorithm
 - Special cases
 - Heuristic

CS 341: Chapter 7

- Class P comprises problems that can be **solved** in polynomial time
 - P includes PATH, RELPRIME, CFLs (using dynamic programming)
- Class NP: problems that can be **verified** in deterministic polynomial time (equivalently, **solved** in **nondeterministic polynomial** time).
 - NP includes all of P and HAMPATH, CLIQUE, SUBSET-SUM, 3SAT, ILP
- P vs. NP problem:
 - Know $P \subseteq NP$: poly-time DTM is also poly-time NTM.
 - Unknown if P = NP or $P \neq NP$.

Summary of Chapter 7

- ullet Time complexity: In terms of size n of input w, how many time steps are required by TM to solve problem?
- Big-O notation: f(n) = O(g(n))
 - $f(n) \le c \cdot g(n) \text{ for all } n \ge n_0.$
 - \bullet g(n) is an asymptotic upper bound on f(n).
 - Polynomials $a_k n^k + a_{k-1} n^{k-1} + \cdots = O(n^k)$.
 - $Polynomial = O(n^c) \text{ for constant } c \geq 0$
 - Exponential = $O(2^{n^{\delta}})$ for constant $\delta > 0$
 - Exponentials are asymptotically much bigger than any polynomial
- t(n)-time k-tape TM has equivalent $O(t^2(n))$ -time 1-tape TM.
- t(n)-time NTM has equivalent $2^{O(t(n))}$ -time 1-tape DTM.
- Strong Church-Turing Thesis: all reasonable variants of DTM are polynomial-time equivalent.

CS 341: Chapter 7

ullet Polynomial-time mapping reducible: $A \leq_{\mathrm{P}} B$ if \exists polynomial-time computable function f such that

$$w \in A \iff f(w) \in B.$$

- Defn: language B is NP-Complete if $B \in \text{NP}$ and $A \leq_{\text{P}} B$ for all $A \in \text{NP}$.
 - If any NP-Complete language B is in P, then P = NP.
 - If any NP language B is **not** in P, then $P \neq NP$.
- If B is NP-Complete and $B \leq_{\mathsf{P}} C$ for $C \in \mathsf{NP}$, then C is NP-Complete.
- Cook-Levin Theorem: *SAT* is NP-Complete.
- 3SAT, CLIQUE, ILP, SUBSET-SUM, HAMPATH, etc. are all NP-Complete