# 代数幾何まとめノート

Fefr

2024年6月8日

# 目次

| 第1章  | Scheme                   | 5  |
|------|--------------------------|----|
| 1.1  | Zariski Topology         | 5  |
| 1.2  | Algebraic Sets           | 5  |
| 1.3  | Sheaves                  | 5  |
| 1.4  | Ringed Topological Space | 12 |
| 付録 A | Limit                    | 15 |
| A.1  | Inductive Limit          | 15 |
| 付録B  | Category Theory          | 17 |

# Scheme

第1章

## 1.1 Zariski Topology

atodekakuyo

# 1.2 Algebraic Sets

atodekakuyo

### 1.3 Sheaves

**Definition 1.3.1.** X を位相空間とする.X 上の (P - ベル群の) **前層** (presheaf) F とは次のデータ

- U を任意のXの開集合に対して $\mathcal{F}(U)$  はアーベル群.
- 制限写像 (restriction map) と言われる群準同型  $\rho_{U,V}: \mathcal{F}(U) \to \mathcal{F}(V)$  が任意の開集合  $V \subset U$  に対して存在する.

そして次の条件を満たす.

- (1)  $\rho_{U,U} = \mathrm{id}_{\mathcal{F}(U)}$
- (2) 任意の開集合  $W \subset V \subset U$  に対して  $\rho_{U,W} = \rho_{V,W} \circ \rho_{U,V}$  となる.

 $s \in \mathcal{F}(U)$  を U 上の  $\mathcal{F}$  の切断 (section) という. また, $\rho_{U,V}(s) \in \mathcal{F}(V)$  を  $s|_V$  と書いて s の V

への制限という.

また、単に $\mathcal{F}$ , $\mathcal{G}$ , $\mathcal{H}$ ,... などと書いたら(前)層を表すことや、 $\rho$ と書いたら制限写像を意味する。また、どの(前)層の制限写像かを明示するため、例えば、 $\rho_{UV}^{\mathcal{F}}$ などと書くことがある。

**Definition 1.3.2.** 前層 $\mathcal{F}$ が層(sheaf)とは次の条件を満たすことをいう.

- (4) (Uniqueness) U を X の開集合とし  $\{U_i\}_i$  をその開被覆とする.  $s \in \mathcal{F}(U)$  が任意の i に対して  $s|_{U_i}=0$  ならば s=0
- (5) (Glueing local sections) 上の状況で $s_i \in \mathcal{F}(U_i)$  が $s_i|_{U_i \cap U_j} = s_j|_{U_i \cap U_j}$  を満たすならば $s_i|_{U_i} = s_i$  を満たす $s_i \in \mathcal{F}(U)$  が存在する.

**Remark** .  $\mathcal{F}$  が層ならば  $\mathcal{F}(\emptyset) = 0$  となる.

#### **Example 1.3.1.** *X* を位相空間とする.

 $\mathcal{C}_X^0$  を X の開集合 U に対して  $U \to \mathbf{C}$  なる連続写像全体の集合  $\mathcal{C}_X^0(U)$  を対応させるものとし、制限写像を普通の制限とする. すると、 $\mathcal{C}_X^0$  は X 上の層となる.

**Proof.**  $V \subset U$  なる開集合 U,V に対して U 上の連続写像  $f \in \mathcal{C}_X^0(U)$  を V に制限することによって得られる V 上の連続写像を  $\rho_{U,V}(f)(=f|_V)$  と書く. すると、これは  $\mathbf{C}$  上のベクトル空間 ( $\mathbf{C}$  上の関数空間) の準同型  $\rho_{U,V}:\mathcal{C}_X^0(U) \to \mathcal{C}_X^0(V)$  となる. つまり  $(\mathcal{C}_X^0,\rho)$  は前層となる.

また,(4) を満たすのは明らかで.(5) もすぐに成り立つことがわかる. $\{U_i\}_i$  を U の開被覆とする. $f_i \in \mathcal{C}_X^0(U_i)$  が  $f_i|_{U_i \cap U_j} = f_j|_{U_i \cap U_j}$  を満たすとする. するとそれらを張り合わせた関数を f とすればこれは  $f \in \mathcal{C}_X^0(U)$  であり, $f|_{U_i} = f_i$  となる. よって  $(\mathcal{C}_X^0, \rho)$  は層となる. これを連続写像が成す層という.

#### **Example 1.3.2.** *X* を位相空間とする.

Aを自明でないアーベル群とする. $A_X$  を X の空でない開集合 U に対して  $A_X(U) = A$  に、空集合  $\varnothing$  に対して  $A_X(\varnothing) = 0$  に対応させるものとし、制限写像を空でない開集合  $V \subset U$  に対して  $\rho_{U,V} = \operatorname{id}_A$  とし、 $\rho_{U,\varnothing} = 0$  とする.

すると, $(A_X, \rho)$  はX上の前層にはなるが,一般に層とはならない.

**Proof.** 例えば,X が連結でないとすると、非交差な開集合 U,V があって  $X=U\cup V$  とかける. すると  $\{U,V\}$  は X の開被覆となる.  $s_U\in \mathcal{A}_X(U)=A$  が  $s_U|_{U\cap V}=s_U|_{\varnothing}=0=s_V|_{U\cap V}$  を満たすとする. このとき、任意の  $s\in \mathcal{A}_X(X)=A$  で  $s|_U=s|_V=s$  となり層とならない.

#### **Example 1.3.3.** (skyscraper sheaf)

X を位相空間、A をアーベル群とする。 $p\in X$  に対して  $i_p:\{p\}\hookrightarrow X$  を包含写像とする。このとき  $i_{p,*}A$  を

$$i_{p,*}\mathcal{A}(U) = \begin{cases} A & p \in U \\ 1 & p \notin U \end{cases}$$

と定義する。これは層になる。

**Remark** .  $\mathcal{B}$  を位相空間 X の開基で有限交叉で閉じているものとする.(つまり任意の  $U,V\in\mathcal{B}$  に対して  $U\cap V\in\mathcal{B}$ . e.g. Spec A の開基  $\{D(f)\}_f$ ) このとき  $\mathcal{B}$ -前層 ( $\mathcal{B}$ -presheaf)  $\mathcal{F}_0$  とは

- $U \in \mathcal{B}$  に対して  $\mathcal{F}_0(U)$  はアーベル群.
- $V \subset U \in \mathcal{B}$  に対して群準同型  $\rho_{U,V} : \mathcal{F}_0(U) \to \mathcal{F}_0(V)$  が定まる.

としたもの.

 $\mathcal{B}$ -層 ( $\mathcal{B}$ -sheaf) $\mathcal{F}_0$  から X 上の層  $\mathcal{F}$  を作ることができる.

位相空間 X の任意の開集合 U をとり、 $\{U_i\}_i$  をその開被覆とする. $(U_i \in \mathcal{B})$ 

$$\mathcal{F}(U) := \left\{ (s_i)_i \in \prod_i \mathcal{F}_0(U_i) \; \middle| \;$$
任意の  $i,j$  に対して  $s_i|_{U_i \cap U_j} = s_j|_{U_i \cap U_j} 
ight\}$ 

と定義する. するとこれは開被覆によらない. 実際  $\mathcal{F}(U)_{U_i}$  を開被覆  $\{U_i\}_i$  による  $\mathcal{F}(U)$  とし, $\{V_j\}_j$  を別の開被覆とすると,  $\{U_i\cap V_j\}_{i,j}$  はこれら 2 つの細分である. $\mathcal{F}(U)_{U_i}\to \mathcal{F}(U)_{U_i\cap V_j}$  なる群準同型を  $(s_i)_i\mapsto (s_i|_{U_i\cap V_j})_{i,j}$  で定義できる. 実際

$$\begin{aligned} s_{i}|_{U_{i}\cap V_{j}}\Big|_{(U_{i}\cap V_{j})\cap(U_{i'}\cap V_{j'})} &= s_{i}\Big|_{(U_{i}\cap V_{j})\cap(U_{i'}\cap V_{j'})} \\ &= s_{i}|_{U_{i}\cap U_{i'}}\Big|_{(U_{i}\cap V_{j})\cap(U_{i'}\cap V_{j'})} \\ &= s_{i'}|_{U_{i}\cap U_{i'}}\Big|_{(U_{i}\cap V_{j})\cap(U_{i'}\cap V_{j'})} & (\because (s_{i})_{i} \in \mathcal{F}(U)_{U_{i}}) \\ &= s_{i'}\Big|_{(U_{i}\cap V_{j})\cap(U_{i'}\cap V_{j'})} \\ &= s_{i'}|_{U_{i'}\cap V_{j'}}\Big|_{(U_{i}\cap V_{i})\cap(U_{i'}\cap V_{i'})} \end{aligned}$$

より  $(s_i|_{U_i\cap V_i})_{i,j}\in\mathcal{F}(U)_{U_i\cap V_i}$ 

また、 $(s_{ij})_{ij} \in \mathcal{F}(U)_{U_i \cap V_j}$ を取ると、 $(s_{ij})_{ij} = (s_i|_{U_i \cap V_j})$ と出来るので全射(?????) Kernel を計算すると

$$\begin{aligned} s_i|_{U_i \cap V_j} &= 0 \quad (\forall i, j) \\ s_i|_{U_i} &= s_i = 0 \quad (\forall i) \quad (\because (4)) \end{aligned}$$

よって Kernel が自明なので単射.

**Definition 1.3.3.** 位相空間  $X \perp o$ 前層  $F \wr x \in X$  に対して,x での F の茎 (stalk) $F_x$  という群が定義できる.

$$\mathcal{F}_x = \varinjlim_{U \ni x} \mathcal{F}(U)$$

ただし,U は x の開近傍をすべてを回る.U 上の切断  $s \in \mathcal{F}(U)$  に対して  $x \in U$  の茎  $\mathcal{F}_x$  への自然な群準同型の像を  $s_x$  と書いて,x での s の芽 (germ) という.

Lemma 1.3.4.  $\mathcal F$  を X 上の層とする $.s,t\in\mathcal F(X)$  が任意の  $x\in X$  に対して  $s_x=t_x$  ならば s=t

**Proof.** 差を考えれば t=0 のときを考えればいい. $s_x=0$  ( $\forall x\in X$ ) とすると,x の開近傍  $U_x$  があって  $s|_{U_x}=0$  となる. { $U_x$ } $_{x\in U_x}$  は X の開被覆なので,s=0 となる.

**Definition 1.3.4.**  $X \perp 0$  2 つの前層  $\mathcal{F}, \mathcal{G}$  とする. **前層の射**  $\alpha : \mathcal{F} \rightarrow \mathcal{G}$  とは,X の開集合 U に対して群準同型  $\alpha(U) : \mathcal{F}(U) \rightarrow \mathcal{G}(U)$  があって, 任意の開集合の組  $V \subset U$  に対して  $\alpha(V) \circ \rho_{UV}^{\mathcal{F}} = \rho_{UV}^{\mathcal{G}} \circ \alpha(U)$  を満たすことをいう.

X の任意の開集合 U に対して  $\alpha(U)$  が単射ならば  $\alpha$  は単射であるという.(全射はうまくいかんっぽい?)

 $\alpha: \mathcal{F} \to \mathcal{G}$  を X 上の前層の射とする. 任意の  $x \in X$  に対して  $\alpha$  から自然に誘導される群準同型  $\alpha_x: \mathcal{F}_x \to \mathcal{G}_x$  で  $(\alpha(U)(s))_x = \alpha_x(s_x)$  が X の任意の開集合  $U, s \in \mathcal{F}(U), x \in U$  で成り立つものが取れる.

 $\alpha_x$  が任意の  $x \in X$  で全射なら  $\alpha$  が全射であるという.

**Example 1.3.5.**  $X = \mathbb{C} \setminus \{0\}$  としF をX 上の正則関数がなす層とし,G をX 上の双正則関数のなす層とする. 今,任意の開集合U と任意の $f \in \mathcal{F}(U)$  に対して $\alpha(U)(f) = \exp(f)$  で定義される層の射 $\alpha: \mathcal{F} \to G$  が全射であることはよく知られている. しかし $\alpha(X): \mathcal{F}(X) \to \mathcal{G}(X)$  は全射ではない. 例えば恒等写像は $\exp(f)$  と書けない.

**Proposition 1.3.6.**  $\alpha: \mathcal{F} \to \mathcal{G}$  を X 上の層の射とする.

 $\alpha$  が同型  $\Leftrightarrow \alpha_x$  が同型  $(\forall x \in X)$ 

**Theorem 1.3.7.** 位相空間 X 上の前層 F に対して, 前層 F の層化 (sheafification) $\mathcal{F}^{\dagger}$  は存在する.

**Proof.** X の開集合U に対して

$$\mathcal{F}^{\dagger}(U) = \left\{ \sigma : U \to \prod_{x \in U} \mathcal{F}_x \, \middle| \, \forall x \in U, x \in \exists V \subset U : \text{open, } \exists s \in \mathcal{F}(V) \text{ s.t. } \sigma(y) = s_y \ (\forall y \in V) \right\}$$

とする. ただし, $\sigma$  は任意の  $x \in U$  に対して  $\sigma(x) \in \mathcal{F}_x$  とする. また, $V \subset U$  なる開集合に対し,

が定義できる. 実際, 任意の  $x \in V$  をとる. $V \subset U$  であり,  $\sigma \in \mathcal{F}^{\dagger}(U)$  より

$$x \in \exists U_0 \subset U$$
:open,  $\exists s \in \mathcal{F}(U_0)$  s.t.  $\sigma(y) = s_y \ (\forall y \in U_0)$ 

 $V_0 = U_0 \cap V$ ,  $t = s|_{V_0}$  とすると任意の  $y \in V_0$  に対して

$$\sigma(y) = \sigma|_V(y) = s_y$$

さらに帰納極限の定義から

$$\sigma|_V(y) = t_y$$

次に  $\mathcal{F}^{\dagger}(U)$  がアーベル群, つまり  $\sigma, \tau \in \mathcal{F}^{\dagger}(U)$  ならば  $\sigma + \tau \in \mathcal{F}^{\dagger}(U)$  を示そう.  $\sigma, \tau \in \mathcal{F}^{\dagger}(U)$  より任意の  $x \in U$  に対して

$$x \in \exists U_0 \subset U : \text{open}, \exists s \in \mathcal{F}(U_0) \text{ s.t. } \sigma(y) = s_y \ (\forall y \in U_0)$$
  
 $x \in \exists V_0 \subset U : \text{open}, \exists t \in \mathcal{F}(V_0) \text{ s.t. } \tau(z) = t_z \ (\forall z \in V_0)$ 

を満たす. いま  $W = U_0 \cap V_0, s' = s|_W, t' = t|_W$  とすると,

$$x \in W \subset U$$
: open,  $s', t' \in \mathcal{F}(W)$  s.t.  $(\sigma + \tau)(y) = \sigma(y) + \tau(y)$   
=  $s_y + t_y$   
=  $(s + t)_y \ (\forall y \in W)$ 

よって $\sigma+\tau\in\mathcal{F}^\dagger(U)$  また明らかに可換. よって $\mathcal{F}^\dagger(U)$  はアーベル群. また, 通常の制限で制限写像を定義しているため, $\mathcal{F}^\dagger$  は前層となる.

更に層となることを示そう.

U を X の開集合とし、 $\{U_i\}_i$  をその開被覆とする。 $\sigma \in \mathcal{F}^\dagger(U)$  が任意の i に対して  $\sigma|_{U_i}=0$  とする. つまり任意の  $x \in U_i$  に対して  $\sigma(x)=0$  とする. $U_i$  は U を被覆するので結局  $\sigma=0$  となる.

次 $C, \sigma_i \in \mathcal{F}^{\dagger}(U_i)$  とし,  $\sigma_i|_{U_i \cap U_i} = \sigma_j|_{U_i \cap U_i}$  と仮定すると,

ただし $x \in U_i$ . すると $\sigma$  は  $\sigma_i \in \mathcal{F}^{\dagger}(U_i)$  を張り合わせて作っているのでこれは  $\sigma \in \mathcal{F}(U)$  となることが容易にわかる。よって、 $\mathcal{F}^{\dagger}$  は層になる。  $\blacksquare$ 

Proposition 1.3.8. 層化の射  $\theta: \mathcal{F} \to \mathcal{F}^\dagger$  に対して、その茎の射  $\theta_x: \mathcal{F}_x \to \mathcal{F}_x^\dagger$  は同型である。

**Lemma 1.3.9**.  $\mathcal{F}$  を X 上の層とし、 $\mathcal{F}'$  を  $\mathcal{F}$  の部分層とする。このとき開集合 U を  $\mathcal{F}(U)/\mathcal{F}'(U)$  に対応させるものは前層になる。

**Proof.** この対応をGとおく。 $V \subset U$  なる開集合U,V をとる。制限写像を

とすると、これは well-defined である。また、 $U \subset V \subset W$  なる開集合の組に対して

$$\rho_{U,W}^{\mathcal{G}} = \rho_{V,W}^{\mathcal{G}} \circ \rho_{U,V}^{\mathcal{G}}$$

が成り立つことは制限写像の定義から明らかである。よって*G* は前層。 ■

**Definition 1.3.5.** Lem:??で定義した前層の層化を F/F' と書いて、**商層 (quotient shaef)** という。

**Definition 1.3.6.**  $\alpha: \mathcal{F} \to \mathcal{G}$  を前層の射とする。このとき開集合 U に対して  $U \mapsto \operatorname{Ker}(\alpha(U))$  とするものは  $\mathcal{F}$  の部分層になる。これを  $\operatorname{Ker} \alpha$  と書いて、 $\alpha$  **の核 (kernel of**  $\alpha$ ) という。

更に、 $U \mapsto \operatorname{Im}(\alpha(U))$  は一般には前層となるので、これの層化を  $\operatorname{Im}\alpha$  と書いて、 $\alpha$  **の 像 (image of**  $\alpha$ ) という。

Lemma 1.3.10.  $\mathcal{F},\mathcal{G}$  を X 上の層, $\mathcal{F}'$  を  $\mathcal{F}$  の部分層, $\alpha:\mathcal{F}\to\mathcal{G}$  を前層の射とする。このとき、

$$(\operatorname{Ker} \alpha)_x = \operatorname{Ker} \alpha_x$$
$$(\operatorname{Im} \alpha)_x = \operatorname{Im} \alpha_x$$
$$(\mathcal{F}/\mathcal{F}')_x = \mathcal{F}_x/\mathcal{F}'_x$$

が成り立つ。

**Proof.**  $Q(U) = \mathcal{F}(U)/\mathcal{F}'(U)$  とおく。 このとき、アーベル群の完全列

$$0 \longrightarrow \mathcal{F}'(U) \longrightarrow \mathcal{F}(U) \longrightarrow \mathcal{Q}(U) \longrightarrow 0$$

が作れる。帰納極限は完全列を完全列に移すので、また Prop:??より

$$0 \longrightarrow \underline{\lim} \mathcal{F}'(U) \longrightarrow \underline{\lim} \mathcal{F}(U) \longrightarrow \underline{\lim} \mathcal{Q}(U) \longrightarrow 0$$

を得る。よって

$$0 \longrightarrow \mathcal{F}'_x \longrightarrow \mathcal{F}_x \longrightarrow (\mathcal{F}/\mathcal{F}')_x \longrightarrow 0$$

したがって、

$$\mathcal{F}_x/\mathcal{F}_x'\simeq (\mathcal{F}/\mathcal{F}')_x$$

を得る。

次に

$$(\operatorname{Ker} \alpha)_x = \{ s_x \in \mathcal{F}_x \mid \alpha(U)(s) = 0, x \in U : \operatorname{open}, s \in \mathcal{F}(U) \}$$
$$= \{ s_x \in \mathcal{F}_x \mid \alpha_x(s_x) = 0, x \in U : \operatorname{open}, s \in \mathcal{F}(U) \}$$
$$= \operatorname{Ker} \alpha_x$$

を得る。同様に

$$(\operatorname{Im} \alpha)_{x} = \{t_{x} \in \mathcal{G}_{x} \mid x \in \exists U : \operatorname{open}, \exists s \in \mathcal{F}(U) \text{ s.t } t = \alpha(U)(s)\}$$

$$= \{(\alpha(U)(s))_{x} \in \mathcal{G}_{x} \mid x \in U : \operatorname{open}, s \in \mathcal{F}(U)\}$$

$$= \{\alpha_{x}(s_{x}) \in \mathcal{G}_{x} \mid s_{x} \in \mathcal{F}_{x}\}$$

$$= \operatorname{Im} \alpha_{x}$$

Definition 1.3.7. 層の列

$$\mathcal{F} \stackrel{\alpha}{\longrightarrow} \mathcal{G} \stackrel{\beta}{\longrightarrow} \mathcal{H}$$

が完全とは、 $\operatorname{Im} \alpha = \operatorname{Ker} \beta$  が成り立つことをいう。

Proposition 1.3.11. 層の列に対して次が成り立つ。

$$\mathcal{F} \longrightarrow \mathcal{G} \longrightarrow \mathcal{H}$$
 が完全  $\iff$  任意の  $x \in X$  に対して  $\mathcal{F}_x \longrightarrow \mathcal{G}_x \longrightarrow \mathcal{H}_x$ が完全

Proof. 明らか。 ■

**Definition 1.3.8.** X,Y を位相空間, $f:X\to Y$  を連続写像とする。このとき、X 上の層  $\mathcal{F},Y$  上の層  $\mathcal{G}$  に対して、新たな Y 上の層  $f_*\mathcal{F}$  が

$$V \mapsto \mathcal{F}(f^{-1}(V))$$

によって定義できる。これをFの順像 (direct image of F) という。また、

$$U \mapsto \varinjlim_{V \supset f(U)} \mathcal{G}(V)$$

で定義できる新たな X 上の前層の層化  $f^{-1}\mathcal{G}$  を  $\mathcal{G}$  **の逆像 (inverse image of**  $\mathcal{G}$ ) という。

#### Proposition 1.3.12. 上の状況で

$$(f^{-1}\mathcal{G})_x = \mathcal{G}_{f(x)} \qquad \forall x \in X$$

Proof. 後で書く。 ■

**Remark** . V を Y の 開集合とする。このとき自然な 単射  $i: V \to Y$  に対して

$$i^{-1}\mathcal{G} = \mathcal{G}|_{V}$$

が成り立つ。

### 1.4 Ringed Topological Space

Definition 1.4.1. 局所環付き空間とは位相空間 X と X 上の環の層  $\mathcal{O}_X$  の組  $(X,\mathcal{O}_X)$  で、任意の  $x \in X$  に対して $\mathcal{O}_{X,x}$  が局所環となるものをいう。また、この $\mathcal{O}_X$  を  $(X,\mathcal{O}_X)$  の構造層 (structure sheaf) という。また  $(X,\mathcal{O}_X)$  を単に $\mathcal{O}_X$  と書くことがある。また、 $\mathcal{O}_{X,x}$  の唯一の極大イデアル  $\mathfrak{m}_x$  に対してその剰余体  $\mathcal{O}_{X,x}/\mathfrak{m}_x$  を X の点 x での剰余体 (residue field of X at x) といって k(x) と書く。

Definition 1.4.2. 局所環付き空間の射とは

$$(f, f^{\#}): (X, \mathcal{O}_X) \to (Y, \mathcal{O}_Y)$$

とは連続写像  $f:X\to Y$  と環の層の射  $f^\#:\mathcal{O}_Y\to f_*\mathcal{O}_X$  の組  $(f,f^\#)$  で、任意の  $x\in X$  に対して  $f_x^\#:\mathcal{O}_{Y,f(x)}\to\mathcal{O}_{X,x}$  は局所射となるものをいう。

Definition 1.4.3. 射  $(f, f^{\#})$  :  $(X, \mathcal{O}_X) \rightarrow (Y, \mathcal{O}_Y)$  が開はめ込み (open immersion) (resp. 閉はめ込み (closed immersion)) とは連続写像 f が開はめ込み (resp. 閉はめ込み) aでかつ任意の  $x \in X$  に対して  $f_x^{\#}$  が同型 (resp. 全射) のときをいう。

 $<sup>^{</sup>a}f:X\to Y$  が (位相的) 開 (閉) はめ込みとは X と f(X) が同相で f(X) が開 (閉) 集合のときをいう。

**Definition 1.4.4.**  $(X, \mathcal{O}_X)$  を局所環付き空間とする。 $\mathcal{J}$  が $\mathcal{O}_X$  の**イデアル層 (sheaf of ideals of**  $\mathcal{O}_X$ ) とは任意の開集合 U に対して  $\mathcal{J}(U)$  が $\mathcal{O}_X(U)$  のイデアルになっているときをいう。

Lemma  ${f 1.4.1.}$   $(X,\mathcal{O}_X)$  を局所環付き空間とする。 $\mathcal J$  を  $\mathcal O_X$  のイデアル層とする。そして、

$$V(\mathcal{J}) = \{ x \in X \mid \mathcal{J}_x \neq \mathcal{O}_{X,x} \}$$

とおく。(ちなみに上の諸々から  $\mathcal{J}_x\subset\mathcal{O}_{X,x}$  が分かる。) $j:V(\mathcal{J})\hookrightarrow X$  を包含写像とする。すると

- V(J) は X の閉集合
- $--(V(\mathcal{J}),j^{-1}(\mathcal{O}_X/\mathcal{J}))$  は局所環付き空間
- j<sup>#</sup> は自然な全射

$$\mathcal{O}_X \longrightarrow \mathcal{O}_X/\mathcal{J} = j_*(j^{-1}(\mathcal{O}_X/\mathcal{J}))$$

で $(j,j^{\#}):(V(\mathcal{J}),j^{-1}(\mathcal{O}_X/\mathcal{J})) \to (X,\mathcal{O}_X)$ は閉はめ込みである。

Proof.  $x \in X \setminus V(\mathcal{J}) = \{x \in X \mid \mathcal{J}_x = \mathcal{O}_{X,x}\}$  に対して  $f_x = 1$  なる x の開近傍 U と  $f \in \mathcal{J}(U)$  をとる。つまり  $f|_V = 1|_V = 1$  なる x の開近傍  $V \subset U$  がある。すると  $V \subset X \setminus V(\mathcal{J})$  となって  $X \setminus V(\mathcal{J})$  が開であることがわかる。

また、任意の $x \in V(\mathcal{J})$ に対して

$$(j^{-1}(\mathcal{O}_X/\mathcal{J}))_x = (\mathcal{O}_X/\mathcal{J})_x = \mathcal{O}_{X,x}/\mathcal{J}_x$$

は局所環。残りは自明。■

Proposition 1.4.2. f:Y o X を局所環付き空間の閉はめ込みとする。Z を局所環付き空間  $V(\mathcal{J})$  とする。ただし、 $\mathcal{J}=\mathrm{Ker}\,f^\#\subset\mathcal{O}_X$ . すると  $Y\simeq Z$  を始域の制限による自然な閉はめ込み  $f|_Z:Z o X$  から得る。

**Proof.** f(Y) は X の閉集合であることから

$$(f_*\mathcal{O}_Y)_x = \begin{cases} 0 & x \in X \setminus f(Y) \\ \mathcal{O}_{Y,y} & x = f(y) \end{cases}$$

を得る。次の完全列と Prop:??から

$$0 \longrightarrow \mathcal{J} \longrightarrow \mathcal{O}_X \longrightarrow f_*\mathcal{O}_X \longrightarrow 0$$

 $V(\mathcal{J}) = f(Y)$  から

$$X \setminus V(\mathcal{J}) = X \setminus f(Y)$$

なので、 $j:Z\hookrightarrow X$  を包含写像とすると、f から誘導される同相写像  $g:Y\to Z$  に対して

$$f = j \circ g$$

# Limit

第A章

### **A.1** Inductive Limit

とりあえず、帰納極限だけ述べる.射影極限は双対概念なのでまぁ頑張って.

#### Definition A.1.1.(帰納系の定義)

 $(\Lambda, \leq)$  を順序集合、 $\mathscr{C}$  を圏とする. 各  $\lambda \in \Lambda$  に対し、 $X_{\lambda} \in \mathrm{Ob}(\mathscr{C})$  が与えられ、 $\lambda \leq \mu$  に対して射  $\varphi_{\mu,\lambda}: X_{\lambda} \to X_{\mu}$  があって次を満たすとき、 $\{X_{\lambda}, \varphi_{\mu,\lambda}\}$  を順系 (direct system) または帰納系 (inductive system) という. しばし  $\varphi_{\mu,\lambda}$  を省略して  $\{X_{\lambda}\}_{\lambda \in \Lambda}$  や  $\{X_{\lambda}\}_{\lambda}$  で表す.

- 任意の $\lambda \in \Lambda$  に他逸して $\varphi_{\lambda,\lambda} = \mathrm{id}_{X_{\lambda}}$
- $\lambda \leq \mu \leq \nu$  なる任意の  $\lambda, \mu, \nu \in \Lambda$  に対して  $\varphi_{\nu,\lambda} = \varphi_{\nu,\mu} \circ \varphi_{\mu,\lambda}$

#### **Example A.1.1.** 位相空間 X の開集合族 $\{U\}_U$ に対して

$$U \leq V \stackrel{\mathrm{def}}{\equiv} V \subset U$$

と定義する. そして, $\mathbf{AGrp}$  をアーベル群の成す圏,F を X 上の前層とする. すると, 各開集合 U に対し, $F(U) \in \mathrm{Ob}(\mathbf{AGrp})$  で, 前層の定義からアーベル群と制限写像との組 $\{F(U), \rho_{U,V}\}$  は帰納系となる. 前層の定義は Def:1.3.1 を参照.

#### Definition A.1.2.(帰納系の射の定義)

 $\Lambda$  を順序集合. $\{X_{\lambda}, \varphi_{\lambda,\mu}\}, \{Y_{\lambda}, \psi_{\lambda,\mu}\}$  を  $\Lambda$  上の圏  $\mathscr C$  における帰納系とする. このとき  $\{X_{\lambda}\}$  から  $\{Y_{\lambda}\}$  への射とは  $f_{\lambda}: X_{\lambda} \to Y_{\lambda}$  なる射の族  $\{f_{\lambda}\}$  で, 任意の  $\lambda \leq \mu$  に対して  $\psi_{\lambda,\mu} \circ f_{\mu} = f_{\lambda} \circ \varphi_{\lambda,\mu}$  となるものを言う.

16 付録 A. LIMIT



**Definition A.1.3.**  $\mathscr{C}$  を圏とし, $\Lambda$  を順序集合とする. $\{X_{\lambda}, \varphi_{\mu,\lambda}\}$  を $\mathscr{C}$  の帰納系とする. このとき  $\{X_{\lambda}, \varphi_{\mu,\lambda}\}$  の順極限 (direct limit) または帰納的極限 (inductive limit) または帰納極限とは、 $\mathscr{C}$  の対象  $\lim_{\lambda \in \Lambda} X_{\lambda} \in \mathrm{Ob}(\mathscr{C})$  と射の族  $\{\varphi_{\lambda}: X_{\lambda} \to \lim_{\lambda \in \Lambda} X_{\lambda}\}_{\lambda \in \Lambda}$  の組 $\{\lim_{\lambda \in \Lambda} X_{\lambda}, \varphi_{\lambda}\}$  で、次の条件を満たすものをいう.

- $-\lambda \leq \mu$  に対して  $\varphi_{\mu} \circ \varphi_{\mu,\lambda} = \varphi_{\lambda}$
- $\lambda \leq \mu$  に対して  $f_{\mu} \circ \varphi_{\mu,\lambda} = f_{\lambda}$  を満たす任意の射の族  $\{f_{\lambda}: X_{\lambda} \to Y\}_{\lambda \in \Lambda}$  に対して,  $f: \lim_{\lambda \in \Lambda} X_{\lambda} \to Y$  が一意に存在して

$$f \circ \varphi_{\lambda} = f_{\lambda} \quad (\forall \lambda \in \Lambda)$$

を満たす.

Remark. 一般の圏では帰納極限や射影極限は存在するとは限らない. しかし, 存在するとすれば, 同型を除いて一意である.

Proposition A.1.2. 帰納極限は存在すれば,同型を除いて一意である.

Proof. 証明は後で書く. ■

Category Theory

第B章