

Marc Klinger, Andrew Taylor, Walter Winter, Donggeun Tak, Sylvia Zhu 27.10.2021

marc.klinger@desy.de

Standard model: Long GRB

massive star rotating

 $\sigma(10^{10}cm)$

compact object $\sigma(10km \sim 10^6 cm)$

supernova

jet

relativistic plasma shell $\sigma(10^{16}cm\sim0.01lyr)$

Simple Box Assumption

- Homogeneous shell of electrons/positrons and photons
- relativistic shock
 - \rightarrow injection of non-thermal particles (ε_e, ζ_e)

- \rightarrow turbulent magnetic fields (ε_B)
- particles cool
- photons escape

see e.g. Piran 2005 for a detailed review

GRB 190114C - Afterglow

- triggered:
 - → Swift satellite (**BAT**, XRT)
 - → Fermi satellite (**GBM**, LAT)
- rapid follow up by MAGIC
 - → VHE afterglow observed up to 40 minutes
- intermediate redshift z = 0.42

Characteristic values of blast wave parameters

energy conservation:

ram pressure (SRF):

$$\rightarrow p_{ram} = m_p c^2 n_{up} \beta^2 \Gamma^2$$

magnetic field?

$$\rightarrow \frac{B^2}{8\pi} = \varepsilon_B \; p_{ram}$$

$$\rightarrow \varepsilon_B \sim 10^{-4} \rightarrow B(t_{obs} = 86s, n_{ISM} = 1cm^{-3}) \sim 0.1G$$

$$\rightarrow \varepsilon_B \sim 10^{-2} \rightarrow B(t_{obs} = 86s, n_{ISM} = 1cm^{-3}) \sim 1G$$

Electron spectrum

 smoothly broken power law, slow cooling:

$$\rightarrow \frac{\mathrm{d}N}{\mathrm{d}E} \propto \left(\frac{E}{E_0}\right)^{-p} \left[1 + \left(\frac{E}{E_0}\right)^{S}\right]^{-\frac{1}{S}} e^{-\frac{E}{E_{\mathrm{max}}} - \left(\frac{E_{\mathrm{min}}}{E}\right)^{\chi_{\mathrm{on}}}}$$

•
$$E_{\rm b} = \frac{9}{8\pi} \frac{h}{\alpha} \left(\frac{B_{\rm c}}{B}\right)^2 \frac{1}{\tau_{\rm adi}}$$

→ weak accelerating magnetic field required to fit synchrotron break

•
$$E_{\text{max}} = \left(\frac{9}{4} \frac{1}{\alpha} \frac{1}{\eta} \frac{B_c}{B}\right)^{1/2} m_e c^2 \sim 1 \text{TeV}$$

acceleration efficiency

Photon spectrum: 2 types of solutions

→ synchrotron self-Compton spectrum

1. double hump solution:

- → predicts dip: does this dip exist?
- \rightarrow is $\eta = 1000$ plausible?
- → naturalness of similar heights?

2. single hump solution (syn. only)

- → predicts no dip
- → syn. burn off limit requires 2 field strengths, is this plausible?

see also GRB 190829A

→ LAT data crucial to distinguish! Are statistics good enough?

LAT photons – peculiar binning?

→ unlucky temporal binning?

How many LAT photons do we expect?

 \rightarrow LAT data follows a power law with index $\alpha = -1.22$

How many LAT photons do we expect?

 \rightarrow LAT data follows a power law with index $\alpha = -1.22$

→ underfluctuation!

Conclusions

- 2 types of solutions
 - → LAT data crucial to distinguish
 - → statistics will decide

 large underfluctuation of LAT data in first time bin of MAGIC analysis

Thank you for your attention!

