

BATCH

LESSON

DATE

B106 Data Science

Data Visualization

SUBJECT: Intro-Matplotlib

ZOOM GİRİŞLERİNİZİ LÜTFEN **LMS** SİSTEMİ ÜZERİNDEN YAPINIZ

Data Visualization With Python

Eğitim Programı

- Data Visualization introsu
- Matplotlib
- Seaborn
- Plotly
- Visualization project

Kursun Kapsamı

Kursun Kapsamı

import matplotlib.pyplot as plt

import seaborn as sns

import pandas as pd

Create figure, axes, subplots

Built on matplotlib and can be used together with it

No need to import matplotlib or seaborn

Matplotlib & Seaborn

- Python'da veriyi görselleştirmek için kullanılır.
- 2002 yılında John Hunter tarafından matlap tarzında bir arayüz oluşturmak amacıyla bir proje olarak başlatıldı.
- İlk sürümü 2003 yılında yayınlandı.
- Geliştirilerek seaborn kütüphanesi ortaya çıkmıştır.

Matplotlib & Seaborn

FEATURES	MATPLOTLIB	SEABORN
Functionality	It is utilized for making basic graphs. Datasets are visualised with graphs styles. Bar graphs, Histograms, Pie charts, Scatter plots, Lines and so on.	Seaborn contains a number of patterns and plots for data visualization. It uses fascinating themes. It helps in compiling whole data into a single plot.
Syntax	It uses comparatively complex and lengthy syntax.	It uses comparatively simple syntax which is easier to learn and understand.

Two Methods

Functional Method

```
plt.plot(age, salary)
plt.xlabel("age")
plt.ylabel("salary")
plt.title("Salary by Age")

plt.show()
```


Object Oriented

```
fig, ax = plt.subplots()
ax.plot(age, salary, "r")
ax.set_xlabel("Age")
ax.set_ylabel("Salary")
ax.set_title("Salary by Age")
```


Axis - Axes - Figure ?

How do you describe figure & axes?

Scatter Plot

Bar Chart

```
import matplotlib.pyplot as plt
import numpy as np

x = np.array(["A", "B", "C", "D"])
y = np.array([3, 8, 1, 10])

plt.bar(x,y)
plt.show()
```


Histogram

```
import matplotlib.pyplot as plt
import numpy as np
x = np.random.normal(170, 10, 250)
plt.hist(x)
plt.show()
```


Box Plot

```
import matplotlib.pyplot as plt
import numpy as np

x = np.random.normal(170, 10, 250)

plt.boxplot(x,)
plt.show()
```


Box Plot

A box plot is a method for graphically depicting groups of numerical data through their quartiles.

A box plot generally shows **median**, **25th and 75th percentiles**, **and outliers**.

Q1: Quartile 1, or median of the left data subset after dividing the original data set into 2 subsets via the median (25% of the data points fall below this threshold)

Q3: Quartile 3, median of the right data subset (75% of the data points fall below this threshold)

IQR: Interquartile-range, Q3 - Q1

Outliers: Data points are considered to be outliers if value < Q1 - 1.5 x IQR or

value > $Q3 + 1.5 \times IQR$

Pie Chart

- Often used with nominal and ordinal variables.
- Circle cut into "pie slices" that add up to 100%.
- Each pie slice represents an attribute for the variable.

Seaborn Plot Types

Distributions Plots

- kdeplot
- rugplot
- displot
- histplot

Categorical Plots

- barplot
- countplot
- boxplot
- swarmplot
- violinplot

Comparison Plots

- jointplot
- pairplot
- catplot
- matrix plot
- grid plot

Distribution Plots - rugplot

```
import seaborn as sns
tips = sns.load_dataset("tips")
sns.rugplot(x='total_bill',
data=tips)
sns.rugplot(tips['total_bill'])
```

	total_bill	tip	sex	smoker	day	time	size
0	16.99	1.01	Female	No	Sun	Dinner	2
1	10.34	1.66	Male	No	Sun	Dinner	3
2	21.01	3.50	Male	No	Sun	Dinner	3
3	23.68	3.31	Male	No	Sun	Dinner	2
4	24.59	3.61	Female	No	Sun	Dinner	4

Distribution Plots - displot

```
import seaborn as sns

tips = sns.load_dataset("tips")

# Don't use distplot

sns.displot(x='total_bill',
   data=tips)
sns.displot(tips['total_bill'])
```

	total_bill	tip	sex	smoker	day	time	size
0	16.99	1.01	Female	No	Sun	Dinner	2
1	10.34	1.66	Male	No	Sun	Dinner	3
2	21.01	3.50	Male	No	Sun	Dinner	3
3	23.68	3.31	Male	No	Sun	Dinner	2
4	24.59	3.61	Female	No	Sun	Dinner	4

Distribution Plots - histplot

```
import seaborn as sns

tips = sns.load_dataset("tips")
sns.histplot(x='total_bill',
data=tips, kde=True)
sns.histplot(tips['total_bill'])
```

	total_bill	tip	sex	smoker	day	time	size
0	16.99	1.01	Female	No	Sun	Dinner	2
1	10.34	1.66	Male	No	Sun	Dinner	3
2	21.01	3.50	Male	No	Sun	Dinner	3
3	23.68	3.31	Male	No	Sun	Dinner	2
4	24.59	3.61	Female	No	Sun	Dinner	4

Distribution Plots - kde

```
import seaborn as sns
tips = sns.load_dataset("tips")
sns.kdeplot(x='total_bill',
data=tips)
sns.kdetplot(tips['total_bill'])
```

	total_bill	tip	sex	smoker	day	time	size
0	16.99	1.01	Female	No	Sun	Dinner	2
1	10.34	1.66	Male	No	Sun	Dinner	3
2	21.01	3.50	Male	No	Sun	Dinner	3
3	23.68	3.31	Male	No	Sun	Dinner	2
4	24.59	3.61	Female	No	Sun	Dinner	4

Categorical Plots

barplot

countplot

boxplot

Categorical Plots - countplot

import seaborn as sns
tips = sns.load_dataset("tips")
sns.countplot(x='day',data=tips)
sns.countplot(tips['day'])

	total_bill	tip	sex	smoker	day	time	size
0	16.99	1.01	Female	No	Sun	Dinner	2
1	10.34	1.66	Male	No	Sun	Dinner	3
2	21.01	3.50	Male	No	Sun	Dinner	3
3	23.68	3.31	Male	No	Sun	Dinner	2
4	24.59	3.61	Female	No	Sun	Dinner	4

Categorical Plots - barplot

```
import seaborn as sns

tips = sns.load_dataset("tips")

sns.barplot(x='day', y="total_bill",
data=tips)

sns.barplot(x='day', y="total_bill",
data=tips, hue='sex')
```

	total_bill	tip	sex	smoker	day	time	size
0	16.99	1.01	Female	No	Sun	Dinner	2
1	10.34	1.66	Male	No	Sun	Dinner	3
2	21.01	3.50	Male	No	Sun	Dinner	3
3	23.68	3.31	Male	No	Sun	Dinner	2
4	24.59	3.61	Female	No	Sun	Dinner	4

Categorical Plots - boxplot

import seaborn as sns
tips = sns.load_dataset("tips")
sns.boxplot(x='day',
y="total_bill", data=tips)

	total_bill	tip	sex	smoker	day	time	size
0	16.99	1.01	Female	No	Sun	Dinner	2
1	10.34	1.66	Male	No	Sun	Dinner	3
2	21.01	3.50	Male	No	Sun	Dinner	3
3	23.68	3.31	Male	No	Sun	Dinner	2
4	24.59	3.61	Female	No	Sun	Dinner	4

Comparison Plots - pairplot

```
import seaborn as sns
tips = sns.load_dataset("tips")
sns.pairplot(tips,hue="smoker")
# corner=True
```


Grids

PairGrid

```
import seaborn as sns
tips = sns.load_dataset("tips")
g = sns.PairGrid(tips)
# g = g.map(sns.scatterplot)
g = g.map_upper(sns.scatterplot)
g = g.map_diag(sns.histplot)
g = g.map_lower(sns.kdeplot)
```


Grids

FacetGrid

```
import seaborn as sns
tips =
sns.load_dataset("tips")

g=sns.FacetGrid( data = tips,
col="time", row="smoker")

g=g.map(plt.hist,"total_bill")
```


Matrix Plots

heatmap

import seaborn as sns

sns.heatmap(df.corr())

