

Modular Lie Powers and the Solomon descent algebra

Karin Erdmann and Manfred Schocker*

`erdmann@maths.ox.ac.uk` `schocker@maths.ox.ac.uk`

Mathematical Institute
24–29 St. Giles'
Oxford OX1 3LB

MSC 2000: 17B60 (primary), 17B01, 20C20, 20C30, 05E99 (secondary)

*supported by Deutsche Forschungsgemeinschaft (DFG-Scho 799)

Abstract

Let V be an r -dimensional vector space over an infinite field F of prime characteristic p , and let $L_n(V)$ denote the n -th homogeneous component of the free Lie algebra on V . We study the structure of $L_n(V)$ as a module for the general linear group $GL_r(F)$ when $n = pk$ and k is not divisible by p and where $n \geq r$. Our main result is an explicit 1-1 correspondence, multiplicity-preserving, between the indecomposable direct summands of $L_k(V)$ and the indecomposable direct summands of $L_n(V)$ which are not isomorphic to direct summands of $V^{\otimes n}$. The direct summands of $L_k(V)$ have been parametrised earlier, by Donkin and Erdmann. Bryant and Stöhr have considered the case $n = p$ but from a different perspective.

Our approach uses idempotents of the Solomon descent algebras, and in addition a correspondence theorem for permutation modules of symmetric groups.

1 Introduction

Let F be an infinite field of prime characteristic p and let V be an r -dimensional vector space over F . Let $L(V)$ be the free Lie algebra on V and denote its homogeneous component of degree n by $L_n(V)$, for each positive integer n . The group of graded automorphisms of $L(V)$ can be identified with the general linear group $\mathrm{GL}_r(F)$ in such a way that $L_1(V)$ becomes the natural $\mathrm{GL}_r(F)$ -module. In this way, $L_n(V)$ becomes a submodule of the n -fold tensor product $V^{\otimes n}$, called the n th Lie power of V . One would like to know the structure of $L_n(V)$ as a module for $\mathrm{GL}_r(F)$. As is well-known, if p does not divide n then $L_n(V)$ is a direct summand of $V^{\otimes n}$. The direct sum decomposition of $L_n(V)$ when p does not divide n was dealt with in [13], generalising naturally the classical theorems for characteristic zero. Degrees divisible by p , however, have largely been a mystery.

Here we study the module structure of $L_n(V)$ when n is divisible by p but not divisible by p^2 . Our main result is the following:

Theorem 1. *Let $n = pk$ such that k is not divisible by p and assume $r \geq n$. Then there is a 1-1 correspondence, multiplicity-preserving, between the indecomposable direct summands of $L_k(V)$ and the indecomposable direct summands of $L_n(V)$ which are not isomorphic to direct summands of $V^{\otimes n}$.*

The case $k = 1$ was considered in [6].

The Schur functor relates representations of $\mathrm{GL}_r(F)$ with representations of the symmetric group \mathcal{S}_n for $r \geq n$ (see [17, Chapter 6]). The image under the Schur functor of $L_n(V)$ is the Lie module L_n of \mathcal{S}_n over F which can be described as $L_n = \omega_n F\mathcal{S}_n$ where

$$\omega_n = (1 - \zeta_n)(1 - \zeta_{n-1}) \cdots (1 - \zeta_2) \in F\mathcal{S}_n$$

is the Dynkin operator (see, for instance, [4]). Here ζ_k denotes the descending

k -cycle $(k \dots 1) \in \mathcal{S}_n$.

Our main tools come from the Solomon descent algebra, a subalgebra of the group algebra of the symmetric group which contains ω_n (see Section 2). An analogous approach was used in [21] to study Lie powers over fields of characteristic zero.

Let $S^p(L_k)$ be the image under the Schur functor of the p th symmetric power $S^p(L_k(V))$ of $L_k(V)$. In Section 4, we shall show that there is a short exact sequence of \mathcal{S}_n -modules

$$0 \rightarrow L_n \rightarrow e_n F \mathcal{S}_n \rightarrow S^p(L_k) \rightarrow 0$$

where e_n is an idempotent in the Solomon descent algebra.

The middle term is projective, hence the Heller operator Ω gives us a 1-1 correspondence between the non-projective indecomposable direct summands of $S^p(L_k)$ and the non-projective indecomposable direct summands of L_n . The module $S^p(L_k)$ turns out to be a direct summand of a permutation module and can be analysed with modular representation theory tools (see Section 5). As a result, there is a 1-1 correspondence, multiplicity-preserving, between the non-projective indecomposable direct summands of $S^p(L_k)$ and the indecomposable direct summands of L_k . (In fact, this result holds more generally, see Theorem 11.)

This implies:

Theorem 2. *Let k be a positive integer not divisible by p , then there is a 1-1 correspondence, multiplicity-preserving, between the non-projective indecomposable direct summands of L_{pk} and the indecomposable direct summands of L_k .*

For instance, if p is odd then L_{2p} has a unique non-projective indecomposable direct summand, since L_2 has dimension one. A detailed description of this non-projective summand of L_{2p} is given in Theorem 17.

The short exact sequence of \mathcal{S}_n -modules has an analogue on the level of $\mathrm{GL}_r(F)$ -modules, namely

$$0 \rightarrow L_n(V) \rightarrow e_n V^{\otimes n} \rightarrow S^p(L_k(V)) \rightarrow 0.$$

This is shown in Section 6. The modules occurring in this sequence are n -homogeneous polynomial representations of $\mathrm{GL}_r(F)$, that is, they are modules for the Schur algebra $S(r, n)$, see [17, Chapter 2]. For $r \geq n$, the indecomposable direct summands of $V^{\otimes n}$ are precisely the indecomposable modules which are projective and injective as modules for the Schur algebra [12, p. 94]. The middle term, a direct summand of $V^{\otimes n}$, is thus projective and injective as a module for $S(r, n)$. It follows that Ω gives a 1-1 correspondence between the indecomposable direct summands of $S^p(L_k(V))$ which are not projective and injective and the indecomposable direct summands of $L_n(V)$ which are not projective and injective. A 1-1 correspondence between the indecomposable direct summands of $S^p(L_k(V))$ which are not projective and injective and the indecomposable direct summands of $L_k(V)$ is then readily derived and allows us to deduce Theorem 1 (see Proposition 22 and the subsequent remark).

As a further consequence, every indecomposable direct summand of L_{pk} is liftable, hence the formal character of any indecomposable direct summand of $L_{pk}(V)$ is a sum of Schur functions (see Corollary 16).

Using the short exact sequence of $\mathrm{GL}(V)$ -modules mentioned above, we also prove a special case of a conjecture of Bryant [7] on Lie resolvents in the final Section 7.

In what follows we shall simply say “summand” for “direct summand” of a module.

2 The descent algebra

Let n be a positive integer. We summarise properties of the descent algebra of the symmetric group \mathcal{S}_n . For general reference, see [4, 16, 20, 22]. Note that products $\pi\sigma$ of permutations $\pi, \sigma \in \mathcal{S}_n$ are to be read from left to right: first π , then σ .

Let μ be a composition of n , that is, a finite sequence (μ_1, \dots, μ_k) of positive integers with sum n . We then write \mathcal{S}_μ for the usual embedding of the direct product $\mathcal{S}_{\mu_1} \times \dots \times \mathcal{S}_{\mu_k}$ in \mathcal{S}_n .

The length of a permutation π in \mathcal{S}_n is the number of inversions of π . Each right coset of \mathcal{S}_μ in \mathcal{S}_n contains a unique permutation of minimal length. Define X^μ to be the sum in the integral group ring $\mathbb{Z}\mathcal{S}_n$ of all these minimal coset representatives of \mathcal{S}_μ in \mathcal{S}_n . For example, $X^{(n)}$ is the identity of \mathcal{S}_n , while $X^{(1,1,\dots,1)}$ is the sum over all permutations in \mathcal{S}_n . Due to Solomon [24, Theorem 1], the \mathbb{Z} -linear span \mathcal{D}_n of the elements X^μ (μ any composition of n), is a subring of $\mathbb{Z}\mathcal{S}_n$ of rank 2^{n-1} , called the *descent algebra* of \mathcal{S}_n . In fact, the elements X^μ form a \mathbb{Z} -basis of \mathcal{D}_n and there exist nonnegative integers $c_{\lambda\mu\nu}$ such that

$$X^\lambda X^\mu = \sum_\nu c_{\lambda\mu\nu} X^\nu, \quad (1)$$

for all compositions λ, μ of n . It is well-known that $\omega_n \in \mathcal{D}_n$ and a result of Dynkin-Specht-Wever states that $\omega_n^2 = n\omega_n$ (see, for instance, [4, 15]).

The *Young character* φ^μ of \mathcal{S}_n is induced from the trivial character of \mathcal{S}_μ ; that is, $\varphi^\mu(\pi)$ is the number of right cosets of \mathcal{S}_μ in \mathcal{S}_n which are fixed by right multiplication with π , for any $\pi \in \mathcal{S}_n$. The \mathbb{Z} -linear span \mathcal{C}_n of the Young characters φ^μ (μ any composition of n) is a subring of the ring of \mathbb{Z} -valued class functions of \mathcal{S}_n . In fact, the elements φ^μ form a \mathbb{Z} -basis of \mathcal{C}_n .

and products have the form

$$\varphi^\lambda \varphi^\mu = \sum_\nu c_{\lambda\mu\nu} \varphi^\nu \quad (2)$$

for all compositions λ, μ of n , with the same coefficients as in (1). As a consequence, the \mathbb{Z} -linear map $c_n : \mathcal{D}_n \rightarrow \mathcal{C}_n$, defined by

$$X^\mu \longmapsto \varphi^\mu \quad (3)$$

for all compositions μ of n , is an epimorphism of rings. This is the second part of [24, Theorem 1].

Theorem 3. *Let F be a field, then the F -linear span $\mathcal{D}_{n,F}$ of the elements X^μ is a subalgebra of the group algebra $F\mathcal{S}_n$, while the F -linear span $\mathcal{C}_{n,F}$ of the F -valued Young characters*

$$\varphi^{\mu,F} : \mathcal{S}_n \rightarrow F, \pi \mapsto \varphi^\mu(\pi) \cdot 1_F$$

is a subalgebra of the algebra of F -valued class functions of \mathcal{S}_n . The F -linear map

$$c_{n,F} : \mathcal{D}_{n,F} \rightarrow \mathcal{C}_{n,F}$$

sending X^μ to $\varphi^{\mu,F}$ for all compositions μ of n , is an epimorphism of algebras.

Indeed, by definition, there are the product formulae (1) and (2) in $\mathcal{D}_{n,F}$ and $\mathcal{C}_{n,F}$, respectively, where the coefficients $c_{\lambda\mu\nu}$ should be read as $c_{\lambda\mu\nu} \cdot 1_F$.

Theorem 4. $\text{rad } \mathcal{D}_{n,F} = \ker c_{n,F}$.

This is [24, Theorem 3] if F has characteristic zero and [2, Theorem 2] if F has prime characteristic. As a consequence, $\mathcal{D}_{n,F}/\text{rad } \mathcal{D}_{n,F} \cong \mathcal{C}_{n,F}$.

We analyse the algebra $\mathcal{C}_{n,F}$. The conjugacy classes C_λ of \mathcal{S}_n are indexed by partitions λ of n , in a natural way: C_λ consists of all permutations in \mathcal{S}_n of cycle type λ .

Let λ, μ be partitions of n and p be a prime, then λ and μ are p -equivalent if the p -regular parts of π, σ are conjugate in \mathcal{S}_n , for each $\pi \in C_\lambda, \sigma \in C_\mu$. Note that the cycle type ν of the p -regular part of $\pi \in C_\lambda$ is obtained from λ by replacing each entry $\lambda_i = kp^m$ of λ by the sequence (k, \dots, k) of length p^m , where $k \geq 1$ and $m \geq 0$ are so chosen that k is not divisible by p . For example, if $p = 2$ and $\lambda = (6, 3, 2)$, then $\nu = (3, 3, 3, 1, 1)$.

The partition μ is p -regular if no part of μ occurs more than $p - 1$ times in μ . It is convenient to extend these definitions to the case where $p = 0$, by saying that any partition is 0-regular, and 0-equivalent to itself only.

Then the p -regular partitions form a transversal for the p -equivalence classes of partitions, so that each partition λ is p -equivalent to a unique p -regular partition μ .

For the remainder of this section, F is a field of characteristic p (which might be zero or not). Define $C_{\mu,F}$ to be the union of all conjugacy classes C_λ in \mathcal{S}_n such that λ is p -equivalent to μ , for each p -regular partition μ of n . Let $\text{char}_{\mu,F}$ denote the characteristic function $\mathcal{S}_n \rightarrow F$ of $C_{\mu,F}$ (mapping $\pi \in \mathcal{S}_n$ to 1_F or zero according as $\pi \in C_{\mu,F}$ or not).

Proposition 5. $\mathcal{C}_{n,F}$ is split semisimple. The elements $\text{char}_{\mu,F}$, indexed by p -regular partitions μ of n , form a full set of primitive idempotents in $\mathcal{C}_{n,F}$.

(see, for instance, [2, Lemma 2 and its proof]) Combining Proposition 5 with Theorem 4, we obtain the following result.

Corollary 6. $\mathcal{D}_{n,F}$ is a basic algebra with irreducible modules indexed by p -regular partitions of n . In fact, there exists a complete set of mutually orthogonal primitive idempotents

$$\{ e_{\mu,F} \mid \mu \text{ } p\text{-regular} \}$$

in $\mathcal{D}_{n,F}$ such that $c_{n,F}(e_{\mu,F}) = \text{char}_{\mu,F}$ for all μ .

(for the second part, see [14, Theorem 44.3].)

The idempotent $e_n = e_{(n),F}$ will be of crucial importance for our study of the modular Lie representations. This section concludes with two observations on e_n . Choose coefficients $a_\mu \in F$ such that $e_n = \sum_\mu a_\mu X^\mu$, where the sum is over compositions μ of n . The image of e_n is $\text{char}_{(n),F}$, thus maps long cycles $\pi \in C_{(n)}$ to 1_F . But $\varphi^{\mu,F}(\pi) = 0$ for all such π whenever $\mu \neq (n)$, while $\varphi^{(n),F}(\pi) = 1_F$. This implies $a_{(n)} = 1_F$, that is

$$e_n = X^{(n)} + \sum_{\mu \neq (n)} a_\mu X^\mu. \quad (4)$$

The second important property of the idempotent e_n is that

$$\dim e_n F \mathcal{S}_n = |C_{(n),F}|. \quad (5)$$

This is a special case of the following result.

Proposition 7. $\dim e_{\mu,F} F \mathcal{S}_n = |C_{\mu,F}|$, for each p -regular partition μ of n .

Proof. Let $M_{\mu,F}$ denote the (one-dimensional) irreducible $\mathcal{D}_{n,F}$ -module corresponding to $e_{\mu,F}$, for each p -regular partition μ of n . The action of $\alpha \in \mathcal{D}_{n,F}$ on $M_{\mu,F}$ is then scalar multiplication with $c_{n,F}(\alpha)(\pi)$, where $\pi \in C_\mu$. In particular, the family $\{M_{\mu,F}\}$ is defined over \mathbb{Z} , since the Young characters take values in \mathbb{Z} .

The decomposition matrix of $\mathcal{D}_{n,\mathbb{Q}}$ modulo p is very simple; if λ and μ are partitions of n and the characteristic p of F is positive, then $M_{\lambda,F} \cong M_{\lambda,\mathbb{Z}} \otimes F$ and $M_{\mu,F} \cong M_{\mu,\mathbb{Z}} \otimes F$ are isomorphic as $\mathcal{D}_{n,F}$ -modules if and only if λ and μ are p -equivalent. This is due to Atkinson-Pfeiffer-Willigenburg [1, Theorem 4 and Section 4.1] and follows from Theorem 4 and Proposition 5.

If V is an arbitrary $\mathcal{D}_{n,F}$ -left module, then the multiplicity $[V : M_{\mu,F}]$ of $M_{\mu,F}$ in a composition series of V is equal to the dimension of $e_{\mu,F}V$, since

$M_{\mu,F}$ has dimension one. It follows that

$$\dim e_{\mu,F}F\mathcal{S}_n = [F\mathcal{S}_n : M_{\mu,F}] = \sum_{\lambda} [\mathbb{Q}\mathcal{S}_n : M_{\lambda,\mathbb{Q}}] = \sum_{\lambda} \dim e_{\lambda,\mathbb{Q}}\mathbb{Q}\mathcal{S}_n,$$

where both sums are taken over all partitions λ of n which are p -equivalent to μ . However, $\dim e_{\lambda,\mathbb{Q}}\mathbb{Q}\mathcal{S}_n = |C_{\lambda}|$ for all partitions λ of n (see, for instance, [22, Lemma 3.2]). This completes the proof. \square

3 The Lie module in prime degree

Let F be a field of prime characteristic p . To illustrate our approach, we start with studying the Lie module L_p of the symmetric group \mathcal{S}_p (although this will be generalised later). This module has already been analysed in [6, 10].

For each positive integer n , we consider the sum s_n in $F\mathcal{S}_n$ of all permutations in \mathcal{S}_n as a linear generator of the trivial \mathcal{S}_n -module F .

Theorem 8. *There is a short exact sequence of \mathcal{S}_p -right modules*

$$0 \longrightarrow L_p \xrightarrow{\alpha} e_p F\mathcal{S}_p \xrightarrow{\beta} F \longrightarrow 0,$$

where α is left multiplication with e_p and β is left multiplication with s_p .

Proof. First let n be an arbitrary positive integer, then a multiplication rule in \mathcal{D}_n (over \mathbb{Z}) is

$$X^{\mu}\omega_n = 0 \text{ whenever } \mu \neq (n) \tag{6}$$

(see [15, §2]), which implies

$$e_n\omega_n = \omega_n + \sum_{\mu \neq (n)} a_{\mu} X^{\mu}\omega_n = \omega_n, \tag{7}$$

by (4). Thus, in particular, α is an inclusion. Furthermore, the image $\omega_p F\mathcal{S}_p$ of α is contained in the kernel of β , since $s_p\omega_p = X^{(1,\dots,1)}\omega_p = 0$, by (6).

If $\mu = (\mu_1, \dots, \mu_l)$ is a composition of p , then the number of summands in X^μ is equal to the number of right cosets of \mathcal{S}_μ in \mathcal{S}_p which is $\binom{p}{\mu_1 \dots \mu_l}$. Hence $s_p X^\mu = 0$ in $F\mathcal{S}_p$ whenever $\mu \neq (p)$. This implies $s_p e_p = s_p$, by (4) again. Thus β is onto.

Finally, $\dim L_p = (p-1)!$ is well-known, while $\dim e_p F\mathcal{S}_p = (p-1)! + 1$ follows from (5). Comparing dimensions, completes the proof. \square

Corollary 9. *L_p has a unique non-projective indecomposable summand, which is isomorphic to the Specht module associated to the partition $(p-1, 1)$.*

Proof. The module $e_p F\mathcal{S}_p$ is projective, since e_p is an idempotent. The trivial \mathcal{S}_p -module is non-projective indecomposable, hence by Theorem 8, the only non-projective indecomposable summand of L_p is isomorphic to the Heller translate $\Omega(F)$ of F (see [3, §1.5]). This is known to be the Specht module mentioned. \square

The character of L_p over \mathbb{Q} is known, and also knowing that L_p is the direct sum of a certain Specht module and a projective module, determines uniquely the projective summand. Details have been worked out in [6, Theorem 6.2]; see also [10].

4 Lie modules in degree not divisible by p^2

With a little more input from the descent algebra we will now extend Theorem 8 to the Lie module L_n of \mathcal{S}_n for arbitrary n divisible by p , but not divisible by p^2 .

Throughout, F is a field of prime characteristic p and $n = kp$ with k not divisible by p . The p th symmetrisation $S^p(L_k)$ of the Lie module for \mathcal{S}_k is a

module for \mathcal{S}_n and is defined as a module induced from the wreath product $\mathcal{S}_k \wr \mathcal{S}_p$, as follows.

For $\alpha \in \mathcal{S}_a$, $\beta \in \mathcal{S}_b$, define $\alpha \# \beta \in \mathcal{S}_{(a,b)} \subseteq \mathcal{S}_{a+b}$ in the natural way: $\alpha \# \beta$ maps i to $i\alpha$ if $i \leq a$, and to $(i-a)\beta + a$ otherwise. If, additionally, $\gamma \in \mathcal{S}_c$, then $(\alpha \# \beta) \# \gamma = \alpha \# (\beta \# \gamma)$, as is readily seen. Using linearity, we define

$$\omega^{(k,\dots,k)} := \omega_k \# \cdots \# \omega_k \in F(\mathcal{S}_k \# \cdots \# \mathcal{S}_k) = F\mathcal{S}_{(k,\dots,k)} \quad (p \text{ factors}).$$

Now assume $\pi \in \mathcal{S}_p$. Let $\pi^{[k]}$ be the element of \mathcal{S}_{kp} which permutes the p successive blocks of size k in $\{1, \dots, kp\}$ according to π . More explicitly, set $(ik - j)\pi^{[k]} = (i\pi)k - j$ for all $i \in \{1, \dots, p\}$ and $j \in \{0, \dots, k-1\}$.

The map $\pi \mapsto \pi^{[k]}$ extends linearly to an embedding of $F\mathcal{S}_p$ in $F\mathcal{S}_{kp}$, since $(\pi\sigma)^{[k]} = \pi^{[k]}\sigma^{[k]}$ for all $\pi, \sigma \in \mathcal{S}_k$. Furthermore, $\mathcal{S}_p^{[k]} \mathcal{S}_{(k,\dots,k)}$ is isomorphic to the wreath product $\mathcal{S}_k \wr \mathcal{S}_p$, since

$$(\alpha_1 \# \cdots \# \alpha_p)(\beta_1 \# \cdots \# \beta_p) = (\alpha_1 \beta_1) \# \cdots \# (\alpha_p \beta_p) \quad (8)$$

and

$$\pi^{[k]}(\alpha_1 \# \cdots \# \alpha_p) = (\alpha_{1\pi} \# \cdots \# \alpha_{p\pi})\pi^{[k]} \quad (9)$$

for all $\pi \in \mathcal{S}_p$ and $\alpha_1, \dots, \alpha_p, \beta_1, \dots, \beta_p \in \mathcal{S}_k$.

We define now the p th symmetrisation of L_k by

$$S^p(L_k) = s_p^{[k]} \omega^{(k,\dots,k)} F\mathcal{S}_n.$$

We shall see after Corollary 20 that this is isomorphic to the image of the p th symmetric power $S^p(L_k(V))$ of $L_k(V)$ under the Schur functor.

The main result of this section is:

Theorem 10. *There is a short exact sequence of \mathcal{S}_n -right modules*

$$0 \longrightarrow L_n \xrightarrow{\alpha} e_n F\mathcal{S}_n \xrightarrow{\beta} S^p(L_k) \longrightarrow 0,$$

where α is left multiplication with e_n and β is left multiplication with $X^{(k,\dots,k)}$.

This reduces to Theorem 8 in case $k = 1$. Note that $\dim S^p(L_k) = |C_{(k,\dots,k)}|$, so that

$$\dim e_n F \mathcal{S}_n = |C_{(n)}| + |C_{(k,\dots,k)}| = \dim L_n + \dim \mathcal{S}_p(L_k),$$

by (5).

From now on, we write κ for the composition (k, \dots, k) of $n = kp$. Before we prove Theorem 10, let us recall some more multiplication rules for the descent algebra.

If $\lambda = (\lambda_1, \dots, \lambda_l)$ and ν are compositions of n , then write $\nu \leq \lambda$ if there is a composition $\nu^{(i)}$ of λ_i for all $i \leq l$ such that ν is equal to the concatenation $(\nu^{(1)}, \dots, \nu^{(l)})$. For example, $(1, 2, 3, 2, 1, 2) \leq (3, 3, 5)$.

Concerning the coefficients $c_{\lambda\mu\nu}$ in (1), there is the restriction

$$c_{\lambda\mu\nu} = 0 \text{ unless } \nu \leq \lambda \quad (10)$$

[2, Lemma 1(i)]. Furthermore, for any composition $\mu = (\mu_1, \dots, \mu_l)$ of n with each part divisible by k ,

$$c_{\kappa\mu\nu} = \binom{p}{\mu_1/k \cdots \mu_l/k}. \quad (11)$$

This follows directly from the combinatorial description of $c_{\lambda\mu\nu}$ given in [2, Eq. (1.1)], for example. Finally,

$$X^\mu \omega^\kappa = 0 \text{ unless } \kappa \leq \mu \quad (12)$$

and

$$X^\kappa \omega^\kappa = s_p^{[k]} \omega^\kappa \quad (13)$$

(see [16, Theorem 2.1]). It should be mentioned that the equations (12) and (13) are much deeper than the equations (10) and (11).

Proof of Theorem 10. We have already seen that $e_n\omega_n = \omega_n$ (see (7)), so α is an inclusion. Furthermore, $X^\kappa\omega_n = 0$ as in the proof of Theorem 8, by (6), so L_n is contained in the kernel of β . It remains to show that $X^\kappa e_n F\mathcal{S}_n$ contains $S^p(L_k)$, for then a comparison of dimensions completes the proof.

But, for each composition μ of n , (12) yields $X^\mu\omega^\kappa = 0$ unless $\kappa \leq \mu$ (that is, unless each part of μ is divisible by k). In this case,

$$\begin{aligned} X^\kappa X^\mu \omega^\kappa &= \sum_{\nu \leq \kappa} c_{\kappa\mu\nu} X^\nu \omega^\kappa, \quad \text{by (1), (10)} \\ &= c_{\kappa\mu\kappa} X^\kappa \omega^\kappa, \quad \text{by (12)} \\ &= \binom{p}{\mu_1/k \cdots \mu_l/k} X^\kappa \omega^\kappa, \quad \text{by (11).} \end{aligned}$$

As a consequence, $X^\kappa e_n \omega^\kappa = X^\kappa \omega^\kappa = s_p^{[k]} \omega^\kappa$ in $F\mathcal{S}_n$, by (4) and (13), which implies $X^\kappa e_n F\mathcal{S}_n \supseteq X^\kappa e_n \omega^\kappa F\mathcal{S}_n = s_p^{[k]} \omega^\kappa F\mathcal{S}_n = S^p(L_k)$, and we are done.

□

As in the special case where $k = 1$, Theorem 10 gives the 1-1 correspondence $U \mapsto \Omega(U)$ between the non-projective indecomposable summands of $S^p(L_k)$ and those of L_n , since $e_n F\mathcal{S}_n$ is a projective \mathcal{S}_n -module.

5 Non-projective indecomposable summands of symmetrised modules

Let F be a field of prime characteristic p and k a positive integer not divisible by p . Bearing in mind Theorem 10, we are aiming at a parametrisation of the non-projective indecomposable summands of $S^p(L_k)$.

We shall consider, more generally, an arbitrary idempotent $e \in F\mathcal{S}_k$ (instead of $\frac{1}{k}\omega_k$) and the corresponding right ideal $U = eF\mathcal{S}_k$ of $F\mathcal{S}_k$. Let $n = kp$.

Generalising the definition of $S^p(L_k)$ in Section 4, we let the p th symmetrisation of U be the $F\mathcal{S}_n$ -module

$$S^p(U) = s_p^{[k]} e^{\#p} F\mathcal{S}_n,$$

where $e^{\#p} = e \# \cdots \# e$ (p factors). The aim is to prove

Theorem 11. *There is a 1-1 correspondence, multiplicity-preserving, between the non-projective indecomposable summands of $S^p(U)$ and the indecomposable summands of U .*

We write $H = \mathcal{S}_k \wr \mathcal{S}_p$ (which is taken as the subgroup $\mathcal{S}_p^{[k]} \mathcal{S}_{(k, \dots, k)}$ of \mathcal{S}_n).

A crucial step towards a proof of Theorem 11 is the following observation.

Proposition 12. *We have $S^p(U) \cong (F \otimes_{F\mathcal{S}_p} e^{\#p} FH) \otimes_{FH} F\mathcal{S}_n$. In particular, $S^p(U)$ is a summand of a permutation module of \mathcal{S}_n .*

Proof. The element $e^{\#p}$ is an idempotent in H , by (8), which commutes with every element of $\mathcal{S}_p \subseteq H$, by (9). So $FH = e^{\#p} FH \oplus (1 - e^{\#p}) FH$ as a $(F\mathcal{S}_p, FH)$ bimodule. Hence $F \otimes_{F\mathcal{S}_p} e^{\#p} FH$ is a summand of $F \otimes_{F\mathcal{S}_p} FH$, which is a permutation module of H , and therefore $(F \otimes_{F\mathcal{S}_p} e^{\#p} FH) \otimes_{FH} F\mathcal{S}_n$ is a summand of a permutation module of \mathcal{S}_n . We want to identify this summand with $S^p(U)$.

In general, for a subgroup Y of a finite group X and an idempotent f of FX which commutes with all elements of Y we have

$$gFY \otimes_{FY} fFX \cong gfFX$$

for all $g \in FY$, since fFX is a projective left FY -module. We apply this twice, the first time with $Y = \mathcal{S}_p$, $X = H$, $f = e^{\#p}$ and $g = s_p^{[k]}$ and the second time with $Y = H$, $X = \mathcal{S}_n$, $f = 1$ and $g = s_p^{[k]} e^{\#p}$. This yields

$$(F \otimes_{F\mathcal{S}_p} e^{\#p} FH) \otimes_{FH} F\mathcal{S}_n \cong s_p^{[k]} e^{\#p} FH \otimes_{FH} F\mathcal{S}_n \cong s_p^{[k]} e^{\#p} F\mathcal{S}_n = S^p(U)$$

as asserted. \square

For an arbitrary finite group X , an X -module W is said to be a *p -permutation module* if, for every p -subgroup P of X , there is a P -invariant basis of W . Equivalently, W is a summand of a permutation module of X .

The above proposition implies that $S^p(U)$ is a p -permutation module for \mathcal{S}_n . In order to parametrise the non-projective indecomposable summands of $S^p(U)$, it is natural to use their vertices.

Recall that for a finite group X , any indecomposable FX -module Q has a vertex. This is, by definition, a subgroup Y of X such that Q is Y -projective and which is minimal with this property. (A module is Y -projective if it is a summand of $S \otimes_{FY} FX$ for some FY -module S). Any two vertices are conjugate in X , and moreover they are p -subgroups [3, Proposition 3.10.2]. The modules with vertex $\{1\}$ are precisely the projective modules.

By Proposition 12, $S^p(U)$ is \mathcal{S}_p -projective. A Sylow p -subgroup D of \mathcal{S}_p is cyclic of order p . Hence an indecomposable summand of $S^p(U)$ is non-projective if and only if it has vertex D .

Lemma 13. *There is a 1-1 correspondence, multiplicity-preserving, between the indecomposable summands of $S^p(U)$ with vertex D and the indecomposable summands of M with vertex D where*

$$M = F \otimes_{F\mathcal{S}_p} e^{\#p} FH.$$

Proof. Recall that $S^p(U) \cong M \otimes_{FH} F\mathcal{S}_n$ where $H = \mathcal{S}_k \wr \mathcal{S}_p$. To prove the statement it is sufficient to establish the following.

If X is an indecomposable summand of M with vertex D then $X \otimes_{FH} F\mathcal{S}_n$ has a unique indecomposable summand \tilde{X} with vertex D ; and moreover $X \mapsto \tilde{X}$ is a 1-1 correspondence.

Let $N_1 = N_H(D)$ and $N = N_{\mathcal{S}_n}(D)$. The Green correspondence [3, Theorem 3.12.2] provides us with a 1-1 correspondence between the indecompos-

able FH -modules (or $F\mathcal{S}_n$ -modules) with vertex D and the indecomposable FN_1 -modules (or FN -modules) with vertex D . So we are done if we can show that if Q is the Green correspondent of X in N_1 then $Q \otimes_{FN_1} FN$ is indecomposable, and that non-isomorphic Green correspondents induce to non-isomorphic FN -modules. (The module $Q \otimes_{FN_1} FN$ has then automatically vertex D .)

Since X is a p -permutation module with vertex D , one knows that D acts trivially on Q and moreover Q is indecomposable projective as a module for N_1/D . Then $Q \otimes_{FN_1} FN$ is still trivial as a module for D , and it is projective as a module for N/D . To complete the proof we exploit the general fact that indecomposable projective modules are in 1-1 correspondence with their simple quotients.

Analysing the groups N_1 and N we will show below (in the following Lemma) that

$$N = N_1 B$$

where B is a p -group which is normal in N .

Recall that a normal p -subgroup acts trivially on all simple modules, therefore we have a 1-1 correspondence between simple modules of N and simple modules of N_1 , by restriction. By Frobenius reciprocity, it follows that

$$\text{Hom}_N(Q \otimes_{FN_1} FN, L) \cong \text{Hom}_{N_1}(Q, L)$$

for any simple N -module L and this is F precisely if L is the simple quotient of Q , and zero otherwise. \square

Lemma 14. *Let $N_1 = N_H(D)$ and $N = N_{\mathcal{S}_n}(D)$. Then $N = N_1 B$ where B is a p -group which is normal in N . Moreover N_1/D is isomorphic to the direct product of \mathcal{S}_k with a cyclic group of order $p - 1$.*

Proof. Observe first that the centraliser $C_H(D)$ of D in H is isomorphic to a direct product $\mathcal{S}_k \times D$. We view this in two ways,

- (i) as a subgroup of $\mathcal{S}_k \wr \mathcal{S}_p$ where the first factor of the above direct product is the diagonal $\Delta(\mathcal{S}_k)$ in the base group; and
- (ii) as a subgroup of $N_{\mathcal{S}_p}(C_p) \wr \mathcal{S}_k$ where the second factor of the direct product above is contained in the diagonal of the base group.

We get from (i) that $N_1 \cong \Delta(\mathcal{S}_k) \times N_{\mathcal{S}_p}(D)$. Moreover, we get from (ii) that $C_{\mathcal{S}_n}(D)$ is the semi-direct product of B with \mathcal{S}_k where B is the base group of $C_p \wr \mathcal{S}_k$, and that N is generated by $C_{\mathcal{S}_n}(D)$ and $N_{\mathcal{S}_p}(D)$ (contained in the base group) which acts diagonally. Hence B is normal in N and $N = BN_1$.

The description of N_1 implies directly the statement on N_1/D . \square

We will apply Broué's correspondence theorem for p -permutation modules which is described now; here X can be an arbitrary finite group again. Assume W is a p -permutation module of X and P is a p -subgroup of X . Set

$$W(P) := W^P / \sum_{Q < P} \text{Tr}_Q^P(W^Q),$$

where W^R denotes the space of fixed points in W of any subgroup R of X and where Tr_Q^P is defined as $\text{Tr}_Q^P(m) = \sum_i mg_i$, the sum taken over a transversal of Q in P . Then $W(P)$ is a module for $N_G(P)$ on which P acts trivially, and hence is a module for the factor group $N_G(P)/P$. As a vector space, $W(P)$ is isomorphic to the span of the fixed points of P in a given permutation basis.

In [5], Broué proved that there is a 1-1 correspondence, multiplicity-preserving, between the indecomposable summands of W with vertex P and the indecomposable summands of $W(P)$ which are projective as $N_G(P)/P$ -modules.

Applied to the p -permutation module M of H and combined with Lemma 13, this result implies that there is a 1-1 correspondence between non-projective indecomposable summands of $S^p(U)$ and the indecomposable summands of $M(D)$ which are projective as $N_H(D)/D$ -modules. This group is isomorphic to the direct product of \mathcal{S}_k with a cyclic group of order $p - 1$ whose group

algebra over F is semi-simple with 1-dimensional simple modules. The proof of Theorem 11 can thus be completed using the following result.

Lemma 15. *The N_1/D -module $M(D)$ is isomorphic to U as an \mathcal{S}_k -module. Moreover, the cyclic group of order $p - 1$ acts trivially on $M(D)$.*

Proof. Let B and B' be bases of $U = eF\mathcal{S}_k$ and $(1 - e)F\mathcal{S}_k$, respectively, so that $B \cup B'$ is a basis of $F\mathcal{S}_k$. Then the induced module $F \otimes_{F\mathcal{S}_p} FH$ has basis $\{ s_p \otimes (v_1 \# \dots \# v_p) \mid v_1, \dots, v_p \in B \cup B' \}$. It follows that

$$\{ s_p \otimes (b_1 \# \dots \# b_p) \mid b_1, \dots, b_p \in B \}$$

is a basis of M where $M = F \otimes_{F\mathcal{S}_p} e^{\#p} FH$. This is a permutation basis under the action of \mathcal{S}_p .

If, in particular, $\zeta \in D$ is a p -cycle which in its action on kp points permutes the supports of the factors cyclically, then

$$(s_p \otimes (b_1 \# b_2 \# \dots \# b_p)) \zeta = s_p \otimes (b_p \# b_1 \# \dots \# b_{p-1})$$

for all $b_1, \dots, b_p \in B$. We deduce that a basis vector of M is fixed by D if and only if it is of the form $s_p \otimes (b \# b \# \dots \# b)$ for some $b \in B$. Such element is also fixed under the cyclic group of order $p - 1$ normalising D in \mathcal{S}_p (which proves the last part of the Lemma).

As a consequence, there is an obvious vector space isomorphism $\psi : U \rightarrow M(D)$ taking b to the coset of $s_p \otimes (b \# b \# \dots \# b)$ for all $b \in B$. We want to compare the actions of \mathcal{S}_k . On the one hand, we have for $\pi \in \mathcal{S}_k$

$$\psi(b\pi) = \psi\left(\sum_{b' \in B} c(b, b') b'\right) = \sum_{b' \in B} c(b, b') \psi(b')$$

with coefficients $c(b, b') \in F$. On the other hand,

$$\psi(b)\pi = s_p \otimes (b\pi \# b\pi \# \dots \# b\pi) = \sum_{b' \in B} c(b, b')^p s_p \otimes (b' \# \dots \# b') + (*)$$

where $(*)$ belongs to the span of orbit sums with orbits of size > 1 and which is zero in $M(D)$.

So $M(D)$ is isomorphic to the Frobenius twist of U , obtained by composing the corresponding matrix representation with the map

$$\left(c(b, b') \right) \mapsto \left(c(b, b')^p \right).$$

But since all projective modules for symmetric groups are defined over the prime field, for any projective module P , its Frobenius twist is isomorphic to P . So the Lemma is proved. \square

Combining Theorem 11 with Theorem 10 and applying the Heller operator, yields Theorem 2 mentioned in the introduction.

Recall that an $F\mathcal{S}_n$ -module M is *liftable* if there exists an indecomposable $\mathcal{O}\mathcal{S}_n$ -module \tilde{M} whose reduction modulo p is M ; here \mathcal{O} is a complete discrete valuation ring with residue field F . The above considerations also have the following consequence.

Corollary 16. *Let k be a positive integer not divisible by p , then any non-projective indecomposable summand of L_{pk} is liftable and has an associated complex character.*

Proof. Any p -permutation module is liftable, by Scott's theorem [3, 3.11.3], hence every indecomposable summand of $S^p(L_k)$ is liftable. Furthermore, an Ω -translate of a liftable module is liftable, by a standard argument. The claim follows from Theorem 10 and Proposition 12. \square

In concluding this section, we give a more detailed account on the Lie module L_{2p} , for any odd prime p . This is a case where the modular representation theory of the symmetric group is sufficiently well understood, and we have a complete description of $S^p(L_2)$.

Theorem 17. *Let p be an odd prime, then L_{2p} has a unique non-projective indecomposable summand. It belongs to the principal block and has character*

$$\begin{aligned} & \chi^{(2,1^{2p-2})} + \chi^{(3,2^{p-2},1)} \\ & + \sum_{i=2}^{(p-1)/2} \left(\chi^{(2i+1,2i,2^{p-2i-1},1)} + \chi^{((2i-1)^2,2^{p-2i+1})} + \chi^{(2i,2i-1,2^{p-2i},1)} \right), \end{aligned}$$

where χ^μ denotes the irreducible character of S_{2p} corresponding to μ , for any partition μ of $2p$.

Since the character of L_{2p} is known, one knows the character of the projective part of L_{2p} as well. Since a projective module is determined by its character one can deduce the complete direct sum decomposition of L_{2p} , at least in principle.

The proof of Theorem 17 builds on the following result on $S^p(L_2)$.

Proposition 18. *Let p be an odd prime, then $S^p(L_2)$ has a unique non-projective indecomposable summand Q , namely its principal block component. The character of Q is*

$$\chi^{(1^{2p})} + \sum_{i=1}^{(p-1)/2} \chi^{((2i+1)^2,2^{p-2i+1})}.$$

Proof. Let $H = S_2 \wr S_p$ and $M = F \otimes_{F\mathcal{S}_p} \omega^{(2,\dots,2)} FH$. We denote the sign representation of $F\mathcal{S}_{2p}$ by sgn , then M is isomorphic to the sign representation $\text{sgn}|_{FH}$ of FH , since the idempotent $\frac{1}{2}\omega_2$ generates the sign representation of S_2 . Applying Proposition 12 and the tensor identity, it follows that

$$S^p(L_2) \otimes \text{sgn} \cong (M \otimes \text{sgn}|_{FH}) \otimes_{FH} F\mathcal{S}_n = F \otimes_{FH} F\mathcal{S}_n.$$

By definition, H is the centraliser of a fixed point free involution, τ say, hence the module $S^p(L_2) \otimes \text{sgn}$ is isomorphic to the permutation module of the symmetric group \mathcal{S}_{2p} on the conjugacy class of τ .

This module was studied in detail by Wildon [25, Chapter 5]. The component in the principal block is indecomposable, and this is preserved by tensoring with the sign representation. However, by Theorem 11, $S^p(L_2)$ has a unique non-projective indecomposable summand Q . Its Green correspondent belongs to the principal block, hence so does Q . This proves the first claim.

The character of $S^p(L_2)$ is $\sum \chi^\mu$, where the sum is taken over all μ such that the multiplicity of each part of μ is even (see, for example, [25, Theorem 4.1.1]). In order to determine its principal block component, it is convenient to use abacus notation for characters (see [19, p. 78], or [23]). Any partition λ of $2p$ can be represented on an abacus with p runners and with $2p$ beads. Then λ lies in the principal block if and only if the abacus display has two gaps (counting the gaps on each runner which are above the last bead). We write $\langle i, j \rangle$ if the gaps are on runner(s) i, j and write $\langle i \rangle$ if there is a gap of size 2 on runner i . These give a complete list of partitions whose character belongs to the principal block.

For example, if $p = 5$, then $\langle 1, 3 \rangle$ denotes the abacus display

$$\begin{pmatrix} \bullet & \bullet & \bullet & \bullet & \bullet \\ . & \bullet & . & \bullet & \bullet \\ \bullet & . & \bullet & . & . \end{pmatrix}.$$

This represents the partition $\lambda = (3, 2, 2, 2, 1)$ (count the number of gaps before each bead, reading row-wise from top to bottom).

By a straightforward case-by-case analysis one now shows that the character of Q is

$$\langle 1, 1 \rangle + \sum_{i=1}^{(p-1)/2} \langle 2i, 2i+1 \rangle \quad (14)$$

and this translates directly into the statement. \square

Proof of Theorem 17. By Theorem 10 and Proposition 18, the Lie module L_{2p} has a unique non-projective indecomposable summand which belongs to the principal block, namely the Heller translate of Q .

We use abacus notation for characters and irreducible modules in the principal block component again. From [25], Q has top composition factors

$$\bigoplus_{i=1}^{p-1/2} D(\langle 2i+1, 2i, \rangle).$$

The decomposition matrix of the block is known [19]. The projective cover of $D(\langle 2i+1, 2i, \rangle)$ has character

$$\langle 2i+1, 2i \rangle + \langle 2i+1, 2i-1 \rangle + \langle 2i-1, 2i-2 \rangle + \langle 2i, 2i-2 \rangle$$

if $i \geq 2$, and $\langle 3, 2 \rangle + \langle 3, 1 \rangle + \langle 2, 2 \rangle + \langle 1, 1 \rangle$ if $i = 1$. Comparison with the character of Q as given in (14), shows that the character of the non-projective indecomposable summand of L_{2p} is

$$\langle 2, 2 \rangle + \langle 3, 1 \rangle + \sum_{i=2}^{(p-1)/2} \left(\langle 2i+1, 2i-1 \rangle + \langle 2i-1, 2i-2 \rangle + \langle 2i, 2i-2 \rangle \right),$$

which readily translates into the claim. \square

For general $n = kp$ with $k > 2$ not divisible by p , one does not know the representation theory of symmetric group and the character of $S^p(L_k)$ in sufficient detail in order to derive a result like Theorem 17 in this way.

6 Lie powers in degrees not divisible by p^2

Let F be an infinite field of prime characteristic p and let V be an r -dimensional vector space over F . In this section, we consider Lie powers $L_{pk}(V)$ of V where k is not divisible by p .

If n is an arbitrary positive integer, then $V^{\otimes n}$ is an $(\mathcal{S}_n, \mathrm{GL}(V))$ bimodule. The action of $\mathrm{GL}(V)$ from the right is the diagonal action, while for the \mathcal{S}_n -action from the left, we have

$$\pi(v_1 \otimes \cdots \otimes v_n) = v_{1\pi} \otimes \cdots \otimes v_{n\pi}$$

for all $\pi \in \mathcal{S}_n$ and $v_1, \dots, v_n \in V$.

For $r \geq n$, the Schur algebra $S(r, n)$ contains an idempotent ξ such that the algebra $\xi S(r, n)\xi$ is canonically isomorphic to the group algebra $F\mathcal{S}_n$ and we identify these algebras [17, (6.1d)]¹. The Schur functor (denoted by f in [17]) takes an $S(r, n)$ -module M to the $F\mathcal{S}_n$ -module $M\xi$. The tensor space $V^{\otimes n}$ is isomorphic to $\xi S(r, n)$ as an $(F\mathcal{S}_n, S(r, n))$ bimodule [17, (6.4f)]. Hence the left adjoint of the Schur functor (which we denote by g_\otimes) takes a right $F\mathcal{S}_n$ -module U to $U \otimes_{F\mathcal{S}_n} V^{\otimes n}$.

The functor g_\otimes is right exact but not exact. However, it is possible to lift the short exact sequence of \mathcal{S}_n -modules given in Theorem 10 to a short exact sequence of $\mathrm{GL}(V)$ -modules and to parametrise the indecomposable summands of $L_{pk}(V)$ which are not summands of $V^{\otimes n}$ accordingly.

We will use the following tool, to translate between the symmetric group and the general linear group.

Lemma 19. *Let n be a positive integer and assume that*

$$0 \longrightarrow fF\mathcal{S}_n \xrightarrow{\alpha} eF\mathcal{S}_n \longrightarrow U \longrightarrow 0$$

is a short exact sequence of \mathcal{S}_n -right modules, where $e, f \in F\mathcal{S}_n$ satisfy $ef = f$ and $e^2 = e$, and where α is left multiplication with e . Then there is a short exact sequence of $\mathrm{GL}(V)$ -modules

$$0 \longrightarrow fV^{\otimes n} \longrightarrow e \otimes_{F\mathcal{S}_n} V^{\otimes n} \longrightarrow U \otimes_{F\mathcal{S}_n} V^{\otimes n} \longrightarrow 0.$$

¹Note that the roles of r and n here and left and right action are exchanged in comparison with [17].

Proof. There is an embedding of $\mathrm{GL}(V)$ -modules $\alpha' : fV^{\otimes n} \rightarrow eV^{\otimes n}$ provided by left action of e . Furthermore, application of g_{\otimes} to the short exact sequence of \mathcal{S}_n -modules gives the exact sequence

$$f \otimes_{F\mathcal{S}_n} V^{\otimes n} \xrightarrow{\gamma} e \otimes_{F\mathcal{S}_n} V^{\otimes n} \longrightarrow U \otimes_{F\mathcal{S}_n} V^{\otimes n} \longrightarrow 0$$

of $\mathrm{GL}(V)$ -modules. The multiplication map $F\mathcal{S}_n \otimes_{F\mathcal{S}_n} V^{\otimes n} \rightarrow F\mathcal{S}_n V^{\otimes n}$ restricts to epimorphisms $\beta : f \otimes_{F\mathcal{S}_n} V^{\otimes n} \rightarrow fV^{\otimes n}$ and $\delta : e \otimes_{F\mathcal{S}_n} V^{\otimes n} \rightarrow eV^{\otimes n}$ and gives rise to a commutative diagram

$$\begin{array}{ccccccc} f \otimes_{F\mathcal{S}_n} V^{\otimes n} & \xrightarrow{\gamma} & e \otimes_{F\mathcal{S}_n} V^{\otimes n} & \longrightarrow & U \otimes_{F\mathcal{S}_n} V^{\otimes n} & \longrightarrow & 0 \\ \beta \downarrow & & \delta \downarrow & & & & \\ 0 & \longrightarrow & fV^{\otimes n} & \xrightarrow{\alpha'} & eV^{\otimes n} & & \end{array}$$

But δ is an isomorphism, since e is an idempotent. It follows that $\ker \gamma = \ker \beta$ and that $\delta^{-1}\alpha'$ is an embedding of $fV^{\otimes n}$ into $e \otimes_{F\mathcal{S}_n} V^{\otimes n}$ such that $\delta^{-1}\alpha'\beta = \gamma$. \square

Corollary 20. *If $n = pk$ such that k is not divisible by p , then there is a short exact sequence of $\mathrm{GL}(V)$ -modules*

$$0 \longrightarrow L_n(V) \longrightarrow e_n \otimes_{F\mathcal{S}_n} V^{\otimes n} \longrightarrow S^p(L_k(V)) \longrightarrow 0,$$

where $S^p(L_k(V))$ denotes the p -th symmetric power of $L_k(V)$.

Proof. This follows from Theorem 10 and Lemma 19, applied to $f = \omega_n$, $e = e_n$ and $U = S^p(L_k)$, we just have to identify the cokernel. Let $H = \mathcal{S}_k \wr \mathcal{S}_p$, then $\omega^{(k, \dots, k)}$ is (up to the factor $1/k^p$) an idempotent in FH . Hence, by Proposition 12,

$$\begin{aligned} S^p(L_k) \otimes_{F\mathcal{S}_n} V^{\otimes n} &\cong \left((F \otimes_{F\mathcal{S}_p} \omega^{(k, \dots, k)} FH) \otimes_{FH} F\mathcal{S}_n \right) \otimes_{F\mathcal{S}_n} V^{\otimes n} \\ &\cong (F \otimes_{F\mathcal{S}_p} \omega^{(k, \dots, k)} F\mathcal{S}_n) \otimes_{F\mathcal{S}_n} V^{\otimes n} \end{aligned}$$

$$\begin{aligned}
&\cong F \otimes_{F\mathcal{S}_p} \omega^{(k,\dots,k)} V^{\otimes n} \\
&\cong F \otimes_{F\mathcal{S}_p} L_k(V)^{\otimes p} \\
&\cong S^p(L_k(V))
\end{aligned}$$

as desired. \square

Note that, as the proof shows, the image under g_\otimes of $S^p(L_k)$ is isomorphic to $S^p(L_k(V))$. Therefore the image under the Schur functor f of $S^p(L_k(V))$ is isomorphic to $S^p(L_k)$, since $f \circ g_\otimes$ is naturally equivalent to the identity.

To prove Theorem 1, we will use the following general observations on the functor g_\otimes .

Proposition 21. *Let n be a positive integer such that $r \geq n$. Then*

1. *If M is an indecomposable $F\mathcal{S}_n$ -module, then $M \otimes_{F\mathcal{S}_n} V^{\otimes n}$ is indecomposable.*
2. *If M_1 and M_2 are indecomposable $F\mathcal{S}_n$ -modules which are not isomorphic, then $M_1 \otimes_{F\mathcal{S}_n} V^{\otimes n}$ and $M_2 \otimes_{F\mathcal{S}_n} V^{\otimes n}$ are not isomorphic.*

Proof. Let $S = S(r, n)$ be the Schur algebra and let f be the Schur functor. Recall that g_\otimes is left adjoint to f and that this functor followed by the Schur functor is naturally equivalent to the identity. So

$$\text{Hom}_S(g_\otimes M, g_\otimes M) \cong \text{Hom}_{F\mathcal{S}_n}(M, f \circ g_\otimes M) \cong \text{Hom}_{F\mathcal{S}_n}(M, M),$$

by adjointness, even an isomorphism of algebras. It follows that M is indecomposable if and only if $g_\otimes M$ is indecomposable.

To prove the second part, let M_1 and M_2 so that $g_\otimes M_1$ and $g_\otimes M_2$ are isomorphic, then also $M_1 \cong f \circ g_\otimes M_1 \cong f \circ g_\otimes M_2 \cong M_2$. \square

For $r \geq n$, any summand of the tensor space $V^{\otimes n}$ is projective and injective as a module for the Schur algebra $S(r, n)$ (see, for example, [12, p. 94]). As a consequence, the Heller operator Ω gives a 1-1 correspondence between indecomposable non-projective quotients of $V^{\otimes n}$ and indecomposable non-injective submodules of $V^{\otimes n}$.

Furthermore, if M is a quotient of $V^{\otimes n}$ then M is not projective if and only if it is not projective and injective. One direction is clear. For the converse, assume M is projective then it is a summand of $V^{\otimes n}$ and hence is also injective. Similarly, a submodule of $V^{\otimes n}$ is not injective if and only if it is not projective and injective.

Proposition 22. *Let $n = pk$ such that k is not divisible by p and assume $r \geq n$.*

1. *The functor g_{\otimes} gives a 1-1 correspondence, multiplicity-preserving, between the non-projective indecomposable summands of the $F\mathcal{S}_n$ -module $S^p(L_k)$ and the indecomposable summands of the $S(r, n)$ -module $S^p(L_k(V))$ which are not projective and injective.*
2. *The Heller operator Ω gives a 1-1 correspondence, multiplicity-preserving, between the indecomposable summands of $S^p(L_k(V))$ which are not projective and injective and the indecomposable summands of $L_n(V)$ which are not projective and injective, both as modules for $S(r, n)$.*

Proof. 1. By the preceding proposition we get the 1-1 correspondence between indecomposable summands of $S^p(L_k)$ and $S^p(L_k(V))$. Moreover, an indecomposable $F\mathcal{S}_n$ -module M is projective if and only if $g_{\otimes}M$ is an indecomposable summand of $V^{\otimes n}$ since g_{\otimes} takes $F\mathcal{S}_n$ to $V^{\otimes n}$. This completes the proof of the first part.

2. Consider the short exact sequence

$$0 \rightarrow L_n(V) \rightarrow e_n F\mathcal{S}_n \otimes V^{\otimes n} \rightarrow S^p(L_k(V)) \rightarrow 0.$$

The middle is isomorphic to a summand of $V^{\otimes n}$. As explained above, Ω induces a 1-1 correspondence as stated in the second part. \square

It was shown in [13] that there is a 1-1 correspondence between the indecomposable summands of L_k and those of $L_k(V)$. Explicitly, for k not divisible by p , the module $L_k(V)$ is a summand of $V^{\otimes k}$. The indecomposable summands of $V^{\otimes k}$ are parametrised by p -regular partitions λ of k , as $T(\lambda)$, where $T(\lambda)$ has highest weight λ and is also known as tilting module. Via the Schur functor, $T(\lambda)$ corresponds to the projective \mathcal{S}_k -module $P(\lambda)$ with simple quotient D^λ labelled by the partition λ .

Theorem 1 is now an immediate consequence of Proposition 22 and Theorem 11, applied to $U = L_k$.

Remark 23. We have assumed that the dimension r of V should be $\geq pk$. One might ask what can be deduced by truncating the exact sequence

$$0 \rightarrow L_{pk}(V) \rightarrow e_n \otimes_{F\mathcal{S}_n} V^{\otimes n} \rightarrow S^p(L_k(V)) \rightarrow 0.$$

See [17, Section 6.5] for details on truncation. Take $d < r$ and take a subspace E of V of dimension d (with basis a subset of the canonical basis of V). There is an idempotent $\zeta \in S(r, n)$ such that $\zeta S(r, n)\zeta \cong S(d, n)$. The functor $(-)\zeta$ is exact. It takes $V^{\otimes n}$ to $E^{\otimes n}$ and $L_{pk}(V)$ to $L_{pk}(E)$. So we get an exact sequence

$$0 \rightarrow L_{pk}(E) \rightarrow e_n \otimes_{F\mathcal{S}_n} E^{\otimes n} \rightarrow S^p(L_k(V))\zeta \rightarrow 0.$$

However, $E^{\otimes n}$ is not projective and injective in general as a module for $S(d, n)$. Moreover, the kernel of this sequence can sometimes be isomorphic to an indecomposable summand of $E^{\otimes n}$.

For example, let $p = 3 = n$ and $r = 2$. As mentioned in [13, Example 3.6], the module $L_3(E)$ is isomorphic to $L_2(E) \otimes E$ and is therefore isomorphic to a summand of $E^{\otimes 3}$. (In fact, one can show that this summand is neither projective nor injective as a module for the Schur algebra $S(2, 3)$.)

In concluding this section, we recover a result of Bryant and Stöhr on the p th Lie power.

Let $L(V)''$ denote the second derived algebra of $L(V)$, then the quotient $M(V) = L(V)/L(V)''$ is a free metabelian Lie algebra. It was shown in [11] that

$$L_p(V) \cong B_p(V) \oplus M_p(V),$$

where $B_p(V) = L(V)'' \cap V^{\otimes p}$ and $M_p(V) = (L_p(V) + L(V)'')/L(V)''$.

Corollary 24 ([6, Theorem 3.1]). *$B_p(V)$ is a summand of $V^{\otimes p}$.*

Proof. Assume first that $r \geq p$ and consider the short exact sequence

$$0 \rightarrow M_p(V) \rightarrow V \otimes S^{p-1}(V) \rightarrow S^p(V) \rightarrow 0.$$

(see, for instance, [18]) This is non-split since, for example, the Schur functor takes the middle to the natural permutation module of \mathcal{S}_p which is indecomposable. Therefore $M_p(V)$ is not injective.

By Theorem 1, we know that $L_p(V)$ has a unique indecomposable summand which is not projective and injective. It follows that $B_p(V)$ is injective, hence is a summand of $V^{\otimes p}$.

For $r < p$, apply the truncation method as described in the previous remark. □

7 Factorisation of Lie resolvents

Let G be a group and F be a field. The Green ring R_{FG} of G over F has basis the isomorphism classes of finite-dimensional indecomposable FG -modules with addition and multiplication arising from direct sums and tensor products. If V is a finite-dimensional FG -module, we also write V for the corresponding element in R_{FG} . So, for instance, $V^n \in R_{FG}$ is the isomorphism class of the n th tensor power of V .

If V is a finite-dimensional FG -module, then the n th Lie power $L_n(V)$ may be regarded as a module for FG in a natural way. Recently, Bryant [7, 8, 9] introduced the *Lie resolvents* $\phi_{FG}^n : R_{FG} \rightarrow R_{FG}$, $n \geq 1$, to study the structure of $L_n(V)$. These can be described by

$$\phi_{FG}^n(V) = \sum_{d|n} \mu(n/d) d L_d(V^{n/d})$$

for all n and V , where μ denotes the Möbius function. By Möbius inversion, this is equivalent to

$$L_n(V) = \frac{1}{n} \sum_{d|n} \phi_{FG}^d(V^{n/d})$$

for all n and all modules V . Thus complete knowledge of the Lie resolvents ϕ_{FG}^n yields a description of $L_n(V)$ for each V , up to isomorphism.

Most strikingly, the Lie resolvents are *linear endomorphisms* of R_{FG} (see [8, Corollary 3.3]). Let p denote the characteristic of F (which may or may not be zero), then $\phi_{FG}^{k'k} = \phi_{FG}^{k'} \circ \phi_{FG}^k$ for all coprime positive integers k, k' not divisible by p (see Theorem 5.4 and Corollary 6.2 in [8]). If the characteristic p of F is positive and G is finite with Sylow p -subgroups of order p , then there is also the identity

$$\phi_{FG}^{p^m k} = \phi_{FG}^{p^m} \circ \phi_{FG}^k$$

for all positive integers m, k such that k is not divisible by p (see [7, Corollary 1.2]). The question was raised in [7] whether such factorisation rule

might hold for arbitrary groups G .

We shall give here an answer in case $m = 1$.

Theorem 25. *Let G be a group and F be a field of prime characteristic p . Then, for any positive integer k not divisible by p ,*

$$\phi_{FG}^{pk} = \phi_{FG}^p \circ \phi_{FG}^k.$$

Proof. Let $n = pk$. It suffices to prove

$$\phi_{FG}^{pk}(V) = \phi_{FG}^p(\phi_{FG}^k(V)) \quad (15)$$

for any finite-dimensional FG -module V , by linearity. In fact, it suffices to consider the case where F is infinite, $G = \mathrm{GL}(V)$ and V has dimension $r \geq n$, by [7, Lemma 2.4] and arguments completely analogous to those given in the proof of [8, Theorem 5.4]. We write ϕ for ϕ_{FG} .

The equality (15) holds if F has characteristic zero, by Corollary 6.2 and Theorem 5.4 in [8]. In particular, $\phi^{pk}(V)$ and $\phi^p(\phi^k(V))$ have the same formal character.

We shall now show (15) for all V of dimension $r \geq n$, by induction on k . For $k = 1$, this follows from $\phi^1(V) = L_1(V) = V$. Let $k > 1$, then inductively

$$\begin{aligned} nL_n(V) &= \sum_{d|k} (\phi^{pd}(V^{k/d}) + \phi^d(V^{pk/d})) \\ &= \phi^{pk}(V) + \phi^k(V^p) + \sum_{d|k, d \neq k} (\phi^{pd}(V^{k/d}) + \phi^d(V^{pk/d})) \\ &= \phi^{pk}(V) - \phi^p(\phi^k(V)) + \phi^p \left(\sum_{d|k} \phi^d(V^{k/d}) \right) + \sum_{d|k} \phi^d(V^{pk/d}) \\ &= \phi^{pk}(V) - \phi^p(\phi^k(V)) + nL_p(L_k(V)) - kL_k(V)^p + kL_k(V^p). \end{aligned}$$

As a consequence, $\phi^{pk}(V) - \phi^p(\phi^k(V))$ is a linear combination of $L_n(V) - L_p(L_k(V))$, $L_k(V^p)$ and $L_k(V)^p$ in R_{FG} . The last two are summands of $V^{\otimes n}$ since p does not divide k .

Concerning the first one, note that $L_p(L_k(V))$ embeds naturally into $L_n(V)$. By Theorem 20, there are the two short exact sequences of $\mathrm{GL}(V)$ -modules

$$0 \longrightarrow L_p(L_k(V)) \longrightarrow T_1 \longrightarrow S^p(L_k(V)) \longrightarrow 0$$

and

$$0 \longrightarrow L_n(V) \longrightarrow T_2 \longrightarrow S^p(L_k(V)) \longrightarrow 0,$$

where $T_1 = e_p \otimes_{F\mathcal{S}_p} (L_k(V))^{\otimes p}$ and $T_2 = e_n \otimes_{F\mathcal{S}_n} V^{\otimes n}$. The modules T_1 and T_2 are summands of $V^{\otimes n}$, thus they are projective as modules for the Schur algebra $S(r, n)$. Applying Schanuel's Lemma, we have $L_p(L_k(V)) + T_2 = T_1 + L_n(V)$ in R_{FG} .

This shows that $\phi^{pk}(V) - \phi^p(\phi^k(V))$ is an integer linear combination of summands of $V^{\otimes n}$, which allows us to deduce (15) from the equality of the corresponding characters [13]. \square

References

- [1] M. D. Atkinson, G. Pfeiffer, and S. van Willigenburg. The p -modular descent algebra. *Algebr. Represent. Theory*, 5:101–113, 2002.
- [2] M. D. Atkinson and S. van Willigenburg. The p -modular descent algebra of the symmetric group. *Bull. London Math. Soc.*, 29:407–414, 1997.
- [3] D. J. Benson. *Representations and cohomology I*, volume 30 of *Cambridge studies in advanced mathematics*. Cambridge University Press, 1998.
- [4] D. Blessenohl and H. Laue. Algebraic combinatorics related to the free Lie algebra. In *Publ. I.R.M.A Strasbourg*, Actes 29^e Séminaire Lotharingien, pages 1–21, 1993.

- [5] M. Broué. On Scott modules and p -permutation modules. An approach through the Brauer morphism. *Proc. Amer. Math. Soc.*, 93(3):401–408, 1985.
- [6] R. Bryant and R. Stöhr. Lie powers in prime degree. Preprint 2003.
- [7] R. M. Bryant. Modular Lie representations of finite groups. *J. Austral. Math. Soc.* (to appear).
- [8] R. M. Bryant. Free Lie algebras and Adams operations. *J. London Math. Soc.*, 68(2):355–370, 2003.
- [9] R. M. Bryant. Modular Lie representations of groups of prime order. *Math. Z.*, 246:603–617, 2004.
- [10] R. M. Bryant, L. G. Kovács, and R. Stöhr. Free Lie algebras as modules for symmetric groups. *J. Austral. Math. Soc.*, 67:143–156, 1999.
- [11] R. M. Bryant and R. Stöhr. On the module structure of free Lie algebras. *Trans. Amer. Math. Soc.*, 352:901–934, 2000.
- [12] S. Donkin. *The q -Schur algebra*, volume 253 of *Lecture Notes Series*. London Mathematical Society, 1998.
- [13] S. Donkin and K. Erdmann. Tilting modules, symmetric functions and the module structure of the free Lie algebra. *J. Algebra*, 203:69–90, 1998.
- [14] L. Dornhoff. *Group representation theory, Part B*. Marcel Dekker, New York, 1972.
- [15] A. M. Garsia. Combinatorics of the free Lie algebra and the symmetric group. In *Analysis, et cetera*, pages 309–382. P.H. Rabinowitz, E.Zehnder (Eds.), New York, London, 1989.

- [16] A. M. Garsia and C. Reutenauer. A decomposition of Solomon's descent algebra. *Adv. in Math.*, 77:189–262, 1989.
- [17] J. A. Green. *Polynomial representations of GL_n* , volume 830 of *Lecture Notes in Mathematics*. Springer, Berlin-New York, 1980.
- [18] T. Hannebauer and R. Stöhr. Homology of groups with coefficients in free metabelian Lie powers and exterior powers of relation modules and applications to group theory. In *Proc. Sec. Internat. Group Theory Conf., Bressanone, 1989*, pages 77–113. Rend. Circ. Mat. Palermo (2) Suppl. 23, 1990.
- [19] S. Martin. Projective indecomposable modules for symmetric groups. *Quart. J. Math. Oxford Ser. (2)*, 44(173):87–99, 1993.
- [20] C. Reutenauer. *Free Lie Algebras*, volume 7 of *London Mathematical Society monographs, new series*. Oxford University Press, 1993.
- [21] M. Schocker. Über die höheren Lie-Darstellungen der symmetrischen Gruppen. *Bayreuth. Math. Schr.*, 63:103–263, 2001.
- [22] M. Schocker. The descent algebra of the symmetric group. *Fields Inst. Comm.*, 40:145–161, 2004.
- [23] J. Scopes. Cartan matrices and Morita equivalence for blocks of the symmetric groups. *J. Algebra*, 142(2):441–455, 1991.
- [24] L. Solomon. A Mackey formula in the group ring of a Coxeter group. *J. Algebra*, 41:255–268, 1976.
- [25] M. Wildon. Modular representations of symmetric groups. Ph.D. thesis, Oxford, 2004.