and B lies in the other half-space determined by H); see Gallier [72] (Chapter 7, Corollary 7.4 and Proposition 7.3). This proof is nontrivial and involves a geometric version of the Hahn–Banach theorem.

Figure 47.1: In \mathbb{R}^3 , the olive green hyperplane H separates the cone C from the orange point a.

The Farkas–Minkowski proposition is Proposition 47.1 applied to a polyhedral cone

$$C = \{\lambda_1 a_1 + \dots + \lambda_n a_n \mid \lambda_i \ge 0, \ i = 1, \dots, n\}$$

where $\{a_1, \ldots, a_n\}$ is a *finite* number of vectors $a_i \in \mathbb{R}^n$. By Proposition 44.2, any polyhedral cone is closed, so Proposition 47.1 applies and we obtain the following separation lemma.

Proposition 47.2. (Farkas–Minkowski) Let $C \subseteq \mathbb{R}^n$ be a nonempty polyhedral cone $C = \text{cone}(\{a_1, \ldots, a_n\})$. For any point $b \in \mathbb{R}^n$, if $b \notin C$, then there is a linear hyperplane H (through 0) such that

- 1. C lies in one of the two half-spaces determined by H.
- 2. $b \notin H$
- 3. b lies in the other half-space determined by H.

Equivalently, there is a nonzero linear form $y \in (\mathbb{R}^n)^*$ such that

- 1. $ya_i \ge 0 \text{ for } i = 1, \dots, n$.
- 2. yb < 0.