1 Problem II

Lemma 1.1

If T is diagonalisable and $W\subseteq V$ is a T-invariant subspace, then the restriction $T|_W$ is also diagonalisable.

Proof.

Since T is diagonalisable, the characteristic polynomial of T splits.

Let f(t) be a characteristic polynomial of T. By Cayley-Hamilton Theorem, f(T) = 0. Therefore, we obtain that $f(T)|_{W} = 0$, which by homogeneity of T and from the fact that W is T-invariant means that $f(T)|_{W} = 0 = g(T)$. Since f(T) splits, the characteristic polynomial of $T|_{W}$ also splits.

We now show that for every eigenvalue μ of $T|_W$, the condition $E_{\mu}|_W = K_{\mu}|_W$ must hold, where $E_{\mu}|_W$ is an eigenspace and $K_{\mu}|_W$ is a generalised eigenspace corresponding to the eigenvalue μ of $T|_W$.

Consider an eigenvalue μ of $T|_W$. Since g(T) splits, at least one μ and a corresponding eigenvector $v_{\mu} \in E_{\mu}$ exist.

Since $K_{\mu}|_{W} = \{v \mid v \in \ker(T|_{W} - \mu I)^{m} \text{ for some } m \in \mathbb{Z}^{+}\}$, then $E_{\mu}|_{W} \subseteq K_{\mu}|_{W}$ by definition.

Suppose now $w \in K_{\mu}|_{W}$. Note that $K_{\mu}|_{W} = K_{\mu} \cap W$, and thus $w \in K_{\mu}$ and $w \in W$. Since f(T) splits, then $K_{\mu} = E_{\mu}$. Therefore, $w \in E_{\mu}$. Since W is T-invariant, then $w \in E_{\mu} \cap W = E_{\mu}|_{W}$. Thus, $K_{\mu}|_{W} \subseteq E_{\mu}|_{W}$, and hence $K_{\mu}|_{W} = E_{\mu}|_{W}$. Because g(T) splits, we conclude that $T|_{W}$ is diagonalisable.