Let $U = \{u \in V : u = Pv \text{ for some } v \in V\}$. The fact that this is a subspace of v follows from the linearity of P. We also know $V = U^{\perp} \oplus U$. First, let's show Pu = u for all $u \in U$.

$$Pv = u$$

$$PPv = Pu$$

$$Pv = Pu$$

$$u = Pu$$

as desired. Now, take $w \in U^{\perp}$. Assume by contradiction that $Pw \neq 0$. Then, since $Pw \in U$, $\frac{4||w||^2}{||Pw||^2}Pw \in U$. Then, let $v = \frac{4||w||^2}{||Pw||^2}Pw + w$. Call the first term u. We know that since $u \in U$ that u and w are orthogonal. Since everything involved is positive, $||Pv|| \leq ||v||^2 \leq ||v||^2$. So, we know

$$\langle Pv, Pv \rangle \leq \langle u + v, u + v \rangle \\ = u^2 + w^2 \\ \Longrightarrow ||u||^2 + \langle u, Pw \rangle + \langle Pw, u \rangle + ||Pw||^2 \leq ||u||^2 + ||w||^2 \\ \frac{4||w||^2}{||Pw||^2} \langle Pw, Pw \rangle + \frac{4||w||^2}{||Pw||^2} \langle Pw, Pw \rangle + ||Pw||^2 \leq ||w||^2$$
 Since $\frac{4||w||^2}{||Pw||^2}$ is positive and real $4||w||^2 + 4||w||^2 + ||Pw||^2 \leq ||w||^2$

This is a contradiction, so that means $\nexists w \in U^{\perp} : Pw = 0$, or, in other words, $\forall w \in U^{\perp}, Pw = 0$. And, since we know that every $v \in V$ can be written as a sum of a $U \in u$ and a $w \in U^{\perp}$, we have Pv = Pw + Pu = 0 + u = u. This is the definition of P_U . QED.