LFC 2021, sessione 1

Nel seguito, dato lo stato P di un automa deterministico A, si indica con $P[Y_1 ... Y_n]$ lo stato di A che si raggiunge da P tramite il cammino $Y_1 ... Y_n$.

Si assumono inoltre le seguenti definizioni.

 \mathcal{N}_1 : Sia \mathcal{N}_1 lo NFA con stato iniziale A, stato finale E e con la seguente funzione di transizione

	ϵ	a	b
\overline{A}	$\{B, E\}$	Ø	Ø
\overline{B}	$\{C\}$	Ø	$\{E\}$
C	Ø	$\{D\}$	Ø
\overline{D}	$\{E\}$	Ø	$\{B\}$
\overline{E}	Ø	$\{E\}$	$\{A\}$

 \mathcal{D}_1 : Sia \mathcal{D}_1 il DFA con stato iniziale A, stato finale D e con la seguente funzione di transizione

	a	b
\overline{A}	B	
\overline{B}	D	C
C	D	
D		B

 \mathcal{G}_1 : Sia \mathcal{G}_1 la seguente grammatica:

$$\begin{array}{ccc} S & \rightarrow & AB \mid b \\ A & \rightarrow & AaBS \mid \epsilon \\ B & \rightarrow & b \mid \epsilon \end{array}$$

 \mathcal{V}_1 : Sia \mathcal{V}_1 il seguente SDD:

Esercizio 1

Se $\{a^nb^na^nb^n \mid n \leq 3\}$ è un linguaggio regolare rispondere "SI", altrimenti rispondere "NO".

Esercizio 2

Se la seguente affermazione è vera rispondere "VERO", altrimenti rispondere "FALSO": "Se una grammatica non è ambigua allora è LL(1)."

Esercizio 3

Sia $r = b^* \mid b^*a(\epsilon \mid a \mid b)^* \mid b^*$ e sia \mathcal{D} il DFA minimo per il riconoscimento di $\mathcal{L}(r)$. Dire quanti stati ha \mathcal{D} e quanti di questi stati sono finali.

Esercizio 4

Se la seguente affermazione è vera rispondere "VERO", altrimenti rispondere "FALSO": "Per qualunque grammatica l'automa caratteristico per il parsing LR(1) ha un numero maggiore di stati dell'automa caratteristico per il parsing LALR(1)."

Esercizio 5

Chiamiamo \mathcal{D} il DFA ottenuto da \mathcal{N}_1 per subset construction. Dire quanti stati ha \mathcal{D} e quanti di questi stati sono finali.

Esercizio 6

Chiamiamo \mathcal{D}_m il DFA ottenuto per minimizzazione di \mathcal{D}_1 e P lo stato iniziale di \mathcal{D}_m . Dire a quale sottoinsieme degli stati di \mathcal{D}_1 corrisponde P[abab].

Esercizio 7

Scrivere l'intera riga della tabella di parsing LL(1) per \mathcal{G}_1 relativa al non-terminale S.

Esercizio 8

Chiamiamo \mathcal{A} l'automa caratteristico per il parsing LR(1) di \mathcal{G}_1 e I lo stato iniziale di \mathcal{A} . Elencare gli item che appartengono a I[Aab].

Esercizio 9

Chiamiamo \mathcal{A} l'automa caratteristico per il parsing LR(1) di \mathcal{G}_1 , J lo stato iniziale di \mathcal{A} , T la tabella di parsing LR(1) per \mathcal{G}_1 . Se T non contiene alcun conflitto nello stato J[AaBA], rispondere "NO CONFLICT". Altrimenti, per ciascuna X tale che T[J[AaBA], X] contiene un conflitto, dire, specificando a quale X si fa riferimento: (i) di che tipo di conflitto si tratta; (ii) quale/i riduzione/i sono coinvolte.

Esercizio 10

Chiamiamo \mathcal{A} l'automa caratteristico per il parsing LALR(1) di \mathcal{G}_1 , H lo stato iniziale di \mathcal{A} , T la tabella di parsing LALR(1) per \mathcal{G}_1 . Se non ci sono conflitti nello stato $H[\![A]\!]$ di T, rispondere "NO CONFLICT". Altrimenti, per ciascuna X tale che $T[H[\![A]\!],X]$ contiene un conflitto, dire, specificando a quale X si fa riferimento: (i) di che tipo di conflitto si tratta; (ii) quale/i riduzione/i sono coinvolte.

Esercizio 11

Sia P lo stato iniziale del parser LALR(1) per la grammatica dello SDD \mathcal{V}_1 . Il parser ha 4 conflitti shift/reduce. Indicare in quali entry [stato, simbolo] del parser si trovano tali conflitti. Per identificare la prima componente delle entry, usare la notazione $P[\![\alpha]\!]$ definita nel preambolo del presente documento.

Esercizio 12

Sia P lo stato iniziale del parser LALR(1) per la grammatica dello SDD \mathcal{V}_1 . Il parser ha 4 conflitti shift/reduce. Si supponga che tutti questi conflitti siano risolti a favore di "reduce". Si supponga inoltre che l'attributo n.lexval del terminale n sia il numero intero rappresentato da n. Se l'input 3b2a2 non è riconosciuto, rispondere "ERROR". Altrimenti dire quale valore viene valutato per S.v su input 3b2a2.

Esercizio 13

Sia \mathcal{G} la seguente grammatica per espressioni regolari sull'alfabeto $\{a,b\}$ con operatore di alternativa (operatore +), concatenazione (resa tramite giustapposizione di espressioni regolari), Kleene star (operatore *) e parentesi:

$$R \rightarrow R + R \mid RR \mid R* \mid (R) \mid a \mid b$$

- 1. Fornire una grammatica LALR(1) \mathcal{G}' per la generazione di $\mathcal{L}(\mathcal{G})$ che risolve l'ambiguità di \mathcal{G} secondo le seguenti usuali convenzioni di precedenza degli operatori e di associatività degli operatori binari: alternativa e concatenazione associano a sinistra; la Kleene star ha precedenza massima (cioè ha precedenza sia su concatenazione che su alternativa); la concatenazione ha precedenza sull'alternativa.
- 2. Mostrare l'albero di derivazione di a+b*a ottenuto utilizzando \mathcal{G}' .
- 3. Progettare un SDD S-attribuito basato su \mathcal{G}' per la generazione, in fase di analisi dell'espressione regolare r, di un automa a stati finiti per il riconoscimento di $\mathcal{L}(r)$.