MATH-F-307: Syllabus (étudiant) d'exercices

André Madeira Cortes Nikita Marchant

Table des matières

1	Séance 1	3
2	Séance 2	6
3	Séance 3	8
4	Séance 4	10
5	Séance 5	11
6	Séance 6 et 7	13
7	Séance 8 et 9	17
8	Séance 10 et 11	19

Exercice 1. Construisez un graphe simple et connexe sur 8 sommets tel que chaque sommet est contenu dans exactement trois arêtes. Pouvez-vous faire la même chose avec 9 sommets?

Les sommets d'un graphe à un nombre pair de sommets sont de degré impair. Voici donc un exemple pour n=8.

Le nombre d'arêtes est donc de 12 ($\frac{n*d(v)}{2} = \frac{8*3}{2} = 12)$

Pas possible pour n=9 car $\frac{n*d(v)}{2} = \frac{9*3}{2} \mathcal{LN}$

Exercice 2. Dans un groupe de personnes, il y a toujours deux individus qui connaissent exactement le même nombre de membres du groupe.

- 1. Formalisez cette propriété dans le vocabulaire des graphes.
- 2. Démontrez cette propriété (par l'absurde).
- 1. Soit Γ un graphe à n sommets. $\exists u, v \in V(\Gamma)$ to deg(u) = deg(v)
- 2. Par l'absurde : Supposons que Ze₁, e₂ : deg(e₁) = deg(e₂).
 Les degrés sont tous compris entre 0 et n-1 (c'est à dire qu'on a un sommet pour chaque degré). Il existe donc un sommet qui est isolé (celui de degré 0) et un sommet qui est relié à "tous" les autres sommets (celui de degré n-1), ce qui est impossible.

Exercice 3. Soit $n \ge 2$ et soit G un graphe simple avec 2n sommets et $n^2 + 1$ arêtes. Montrez par récurrence que G contient un triangle.

<MISSING>

Exercice 4. Soit G un graphe simple avec 2p sommets. On suppose que le degré de chaque sommet est au moins égal à p. Démontrez que ce graphe est connexe.

Démontrons par l'absurde : Supposons que le graphe ne soit pas connexe.

Soient x et y deux sommets tels qu'il n'existe pas de chemin entre x et y. Vu que $\forall v : deg(v) \ge p$, x a au moins p voisins (et y aussi). Les voisins de x sont différents des voisins de y, sinon il existerait un chemin entre x et y.

Le graphe est donc composé de $\underbrace{1+p}_{\text{x et ses voisins}} + \underbrace{1+p}_{\text{y et ses voisins}} = 2p+2$ sommets. Ceci est impossible, car l'énoncé dit que le graphe est composé de 2p sommets.

Exercice 5. Soit G un graphe simple.

- 1. On suppose que G est connexe et que x est un sommet de G de degré 1. Prouvez que $G \setminus \{x\}$ est connexe.
- 2. Déduisez-en que, si G est connexe et $|V(G)|=n\geq 2$, alors G contient au moins n-1 arêtes.

<MISSING>

Exercice 6. Donnez un graphe simple et connexe sur au moins 5 sommets qui est :

- hamiltonien et eulérien;
- hamiltonien et non eulérien;
- non hamiltonien et eulérien;
- non hamiltonien et non eulérien.

FIGURE 1 – Exemples pour chaque question, de gauche à droite.

Pour le quatrième, tout graphe contentant une feuille est une réponse possible.

Exercice 7. Le graphe de la figure 2 est-il isomorphe à un (ou à plusieurs) des graphes de la figure 3?

FIGURE 2

Figure 3

Le troisième et le sixième.

Exercice 8. Les graphes suivants sont-ils isomorphes? (Ne vous contentez pas d'une justification approximative : essayez de démontrer rigoureusement vos affirmations.)

Figure 4

Non isomorphes.

Figure 5

Non isomorphes (il existe un sommet de degré 2 dans le graphe de gauche, tandis qu'aucun sommet du graphe de droite est de degré 2).

Figure 6

Isomorphes.

Exercice 9. Considérez la grille $n \times n$, le graphe obtenu selon la Figure 7, avec n un naturel ≥ 3 . Démontrez que n est pair si et seulement si le graphe est hamiltonien.

Figure 7 – Grille 5×5 .

Nous cherchons à prouver que tout graphe du style de la figure 7 avec un n pair est un graphe hamiltonien. C'est à dire n pair \Leftrightarrow graphe hamiltonien.

 \Rightarrow

 \Leftarrow

<C'est super long, et y'a des couleurs partout. TO DO plus tard.>

Exercice 10. Prouvez que pour tout $n \geq 3$, le graphe complet K_n possède exactement $\frac{1}{2}(n-1)!$ cycles hamiltoniens.

Cas de base n=3, il s'agit d'un triangle. Ce graphe a $\frac{1}{2}(3-1)! = 1$ cycle hamiltonien.

Récurrence Supposons vrai pour K_n . Nous savons donc que K_n possède $\frac{1}{2}(n-1)!$ cycles hamiltoniens.

Pour K_{n+1} , nous construisons n cycles hamiltoniens supplémentaires en ajoutant le nouveau sommet entre 2 sommets quelconques de chaque cycle.

Donc, pour K_{n+1} nous avons $\frac{1}{2}(n-1)!n = \frac{1}{2}n!$ cycles hamiltoniens.

Exercice 11. Combien d'arbres couvrants possèdent les deux graphes de la Figure 8?

FIGURE 8

Graphe de gauche: Il existe 4 arbres couvrants

Graphe de droite : Il existe 40 arbres couvrants. Trop nombreux pour que je les dessine tous.

Exercice 12. Montrez que tous les alcools $C_nH_{2n+1}OH$ sont des molécules dont le graphe est un arbre, en sachant que les valences de C,O et de H sont respectivement 4,2,1.

<TO DO>

Exercice 13. Démontrez que si un graphe hamiltonien G = (V, E) est biparti selon la bipartition $V = A \cup B$, alors |A| = |B|. En déduire que $K_{n,m}$, le graphe biparti complet, est hamiltonien si et seulement si $m = n \ge 2$.

<TO DO>

Exercice 14. Pour chaque graphe de la Figure 9, déterminez si

- 1. le graphe est hamiltonien,
- 2. le graphe est eulérien,
- 3. le graphe est biparti.

Figure 9

Graphe 1:

Graphe 2:

Graphe 3:

Exercice 15. Construisez un code de Gray d'ordre 5 sur base du code de Gray d'ordre 4 cidessous.

0000, 0100, 1100, 1000, 1010, 1110, 0110, 0010, 0011, 0111, 1111, 1011, 1001, 1101, 0101, 0001

Pour consuire le code de Gray d'ordre n+1 à partir du code de Gray d'ordre n, il suffit de rajouter un 0 à chaque élément, dans l'ordre, puis repartir dans le sens inverse en rajoutant des 1.

Donc, le code de Gray d'ordre 5 est :

00000, 01000, 11000, 10000, 10100, 11100, 01100, 00100, 00110, 01110, 11110, 10110, 10010, 11010, 01010, 00010,

 $00011,\ 01011,\ 11011,\ 10011,\ 10111,\ 11111,\ 01111,\ 00111,\ 00101,\ 01101,\ 11101,\ 10101,\ 10001,\ 11001,\ 01001,\ 01001$

Exercice 16. Dans le graphe ci-dessous, on donne un couplage de cardinal maximal. En utilisant la preuve du théorème de König vue au cours, trouvez un transversal de cardinal minimal.

Figure 10

<TO DO>

Exercice 17. Sur \mathbb{R}^2 , on définit les relations suivantes :

$$(x,y)\mathcal{R}(x',y') \Leftrightarrow x \leq x' \text{ et } y \leq y',$$

$$(x,y)\mathcal{S}(x',y') \Leftrightarrow (x < x') \text{ ou } (x = x' \text{ et } y \le y').$$

Est-ce que les relations \mathcal{R} et \mathcal{S} sont des ordres?

<TO DO>

Exercice 18. Considérons le graphe biparti (bipartition donnée par une coloration des sommets) ci-dessous. Sur l'ensemble de ses sommets, on définit la relation $u \le v$ pour u, v des sommets tels que u est un sommet rouge et $\{u, v\}$ est une arête. On pose aussi $u \le u$ pour tout sommet u.

- (a) Vérifiez que \leq est un ordre partiel.
- (b) Construisez une partition des sommets par k chaînes et trouvez une antichaîne contenant k éléments.
- (c) Déduisez-en un couplage de cardinalité maximale et un transversal de cardinalité minimale.
- (d) (Bonus) Sur base de ce qui est fait ci-dessus, prouvez que le théorème de König implique le théorème de Dilworth.

FIGURE 11

Exercice 19. L'ensemble $\{2^m|m\in\mathbb{Z}\}$ forme-t-il un groupe lorsqu'il est muni de la multiplication usuelle?

Soit $X = 2^m, m \in \mathbb{Z}$ et (X, .) le groupe à analyser.

 $\forall x,y\in\mathbb{Z}: 2^x*2^y=2^{x+y}\in X$ car $(x+y)\in\mathbb{Z}$. L'ensemble X forme donc bien un groupe lorsqu'il est muni de la multiplication.

Exercice 20. L'ensemble $(\mathbb{Z}/2\mathbb{Z})^n = \{(x_1, x_2, \dots, x_n) | x_1, x_2, \dots, x_n \in \mathbb{Z}/2\mathbb{Z}\}$ avec l'addition définie par

$$(x_1, x_2, \dots, x_n) + (y_1, y_2, \dots, y_n) = (x_1 + y_1, x_2 + y_2, \dots, x_n + y_n)$$

(où $x_i + y_i$ est le résultat d'une addition modulo 2) forme-t-il un groupe?

Il faut tester si les 3 propriétés d'un groupe sont respectées.

1. Associativité : Chaque composante est calculée avec la forme $x_i + y_i, \forall i \in \{1, 2, ..., n\}$. \mathbb{Z}_2 est associatif, l'adition est faite composante par composante, donc \mathbb{Z}_2^n est associatif. Il faut donc à présent montrer que $(x_i + y_i) + z_i = x_i + (y_i + z_i)$.

Exercice 21. En appliquant l'algorithme d'Euclide à a et b ci-dessous, calculer :

- $le\ PGCD(a,b)$,
- x et y tels que ax + by = PGCD(a, b),

Les différentes valeurs de a et b sont :

- (i) a = 12, b = 34,
- (ii) a = 13, b = 34,
- (iii) a = 13, b = 31,

Exercice 22. (i) Trouver un entier x tel que le reste de la division de 50x par 71 donne 1.

- (ii) Trouver un entier x tel que le reste de la division de 50x par 71 donne 63.
- (iii) Trouver un entier x tel que le reste de la division de 43x par 64 donne 1.

Exercice 23. Dans le système RSA, prenons p = 11, q = 13 et e = 7. Que vaut alors s? Si 99 est le message à coder, quel est le message crypté? Vérifier en décriptant le message.

Exercice 24. Montrer le résultat suivant : si $a \equiv b \pmod{n}$ et $c \equiv d \pmod{n}$, alors

$$a + c \equiv b + d \pmod{n}$$
 et $a.c \equiv b.d \pmod{n}$.

$$a \equiv b \pmod{n} \Rightarrow b - a = kn$$
 $c \equiv d \pmod{n} \Rightarrow d - c = ln$

Exercice 25. Montrer que, si $a \equiv b \pmod{n}$, alors

$$a + c \equiv b + c \pmod{n} \ \forall c \in \mathbb{Z}$$

et

$$a.c \equiv b.c \pmod{n} \ \forall c \in \mathbb{Z}.$$

Exercice 26. Prouver que, si $a \equiv b \pmod{n}$, alors $a^k \equiv b^k \pmod{n}$ pour tout entier k > 0.

$$a^k \equiv b^k \pmod{n} \Rightarrow b^k - a^k = xn \Leftrightarrow \ln(b^k - a^k) = \ln(xn) \Leftrightarrow \frac{\ln(b^k)}{\ln(a^k)} = \ln(xn) \Leftrightarrow \frac{\cancel{k}\ln(b)}{\cancel{k}\ln(a)} = \ln(xn) \Leftrightarrow \ln(b) - \ln(a) = \ln(xn) \Leftrightarrow b - a = xn \Rightarrow a \equiv b \pmod{n}$$

Exercice 27. Trouver toutes les solutions aux congruences suivantes :

- $2x \equiv 3 \pmod{4}$ avec $x \in \mathbb{Z}/4\mathbb{Z}$;
- $2x \equiv 2 \pmod{4}$ avec $x \in \mathbb{Z}/4\mathbb{Z}$;
- $2x \equiv 3 \pmod{5}$ avec $x \in \mathbb{Z}/5\mathbb{Z}$.

Que pouvez-vous en déduire?

Exercice 28. Soient a, b deux entiers. Montrer que

$$a\mathbb{Z} \cap b\mathbb{Z} = ppcm(a, b)\mathbb{Z}$$

et

$$a\mathbb{Z} + b\mathbb{Z} = pgcd(a, b)\mathbb{Z}.$$

Sous-question 1:

Soit m = ppcm(a, b). Nous pouvons en déduire 3 propriétés :

- 1. $\frac{a}{m}$
- $2. \frac{b}{m}$
- 3. si $\frac{a}{z}$ et $\frac{b}{z}$, alors $\frac{m}{z}$

Nous voulons donc prouver que $a\mathbb{Z} \cap b\mathbb{Z} = m\mathbb{Z}$. Pour ce faire, nous devons montrer que l'un est inclus dans l'autre, et vice-versa.

(
$$\subseteq$$
) Soit $z \in a\mathbb{Z} \cap b\mathbb{Z}$, i.e. $\exists k, k' \in \mathbb{Z}$ $z = ak = bk' \Leftrightarrow \frac{a}{z}$ et $\frac{b}{z}$

Montrer que $z \in m\mathbb{Z}$.

Par la propriété 3, $\frac{m}{z} \Leftrightarrow z \in m\mathbb{Z}$

(\supseteq) Soit $z \in m\mathbb{Z}$, i.e. $\frac{m}{z}$

Montrer que $z \in a\mathbb{Z} \cap b\mathbb{Z}$, i.e. $\frac{a}{z}$ et $\frac{b}{z}$.

Par la propriété 1, $\frac{a}{m}$ Par la propriété 2, $\frac{b}{m}$

 $\frac{m}{z} \Rightarrow \frac{a}{z}$ et $\frac{b}{z}$

Sous-question 2:

Exercice 29. Montrer que

 $\mathbb{Z}/3\mathbb{Z} \times \mathbb{Z}/3\mathbb{Z} \ncong \mathbb{Z}/9\mathbb{Z}$

mais que

 $\mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/3\mathbb{Z} \cong \mathbb{Z}/6\mathbb{Z}.$

6 Séance 6 et 7

Exercice 30. Soient A et B deux ensembles finis avec |A| = a et |B| = b $(a, b \in \mathbb{N})$. Que valent :

- (i) $|A \times B|$,
- (ii) $|B^A|$ où $B^A := \{f : A \to B\},\$
- (iii) $|\{f: A \to B: f \text{ est une injection de } A \text{ dans } B\}|$
- (iv) |Sym A| où Sym A est l'ensemble des permutations de A.
- (i) $a \cdot b$
- (ii) b^a
- (iii) Si #B < #A pas d'injection possible, donc vaut zéro. Sinon, $(b-a+1) \cdot \ldots \cdot (b-a) \cdot b = \frac{b!}{(b-a)!}$
- (iv) a!

Exercice 31. Quels sont les ensembles F non vides ayant la propriété suivante :

- (i) pour tout ensemble X, $|F^X| = 1$?
- (ii) pour tout ensemble Y, $|Y^F| = 1$?
- (i) |F| = 1
- (ii) Ensemble vide (mais pas possible par énoncé)

Exercice 32. Soient $f: A \to B$ et $g: B \to C$ deux fonctions. Démontrer :

- (i) $g \circ f$ injective $\Rightarrow f$ injective;
- (ii) $g \circ f$ surjective $\Rightarrow g$ surjective;
- (iii) $g \circ f$ bijective \Rightarrow (f injective et g surjective).
 - (i) Si f non injective, deux éléments a_1 et a_2 différents de A vont être envoyés par f sur un élément b de B. De plus, ces deux éléments vont être envoyés par g o f sur un même élément c de C, car g (f (a_1)) = g(b) = c = g(b) = g (f (a_2))
- (ii) On sait que $\forall c \in C, \exists a \in A$ tel que g o f (a) = c. On veut montrer que g est surjective. C'est à dire que $\forall c \in C, \exists b \in B$ tel que g (b) = c. Ceci est vérifié en prenant b = f(a).
- (iii) Implication de (i) et (ii)

Exercice 33. Donner une preuve bijective de l'identité de somme parallèle $\binom{k}{k} + \binom{k+1}{k} + \cdots + \binom{m}{k} = \binom{m+1}{k+1}$.

Voir syllabus année passée page 8.

Exercice 34. Donner deux démonstrations de

$$\sum_{k=0}^{n} \binom{n}{k} = 2^{n} .$$

Première démonstration :

Via le Binôme de Newton, on sait que

$$(x+y)^n = \sum_{k=0}^n \binom{n}{k} x^{n-k} y^k$$

13

Si on pose x=1 et y=1, on a:

$$(1+1)^n = \sum_{k=0}^n \binom{n}{k} \cdot \underbrace{1^{n-k}}_{=1} \cdot \underbrace{1^k}_{=1} 2^n \qquad = \sum_{k=0}^n \binom{n}{k}$$

Deuxième démonstration :

 $\binom{n}{k}$ est le nombre de sous-ensembles à k éléments d'un ensemble à n éléments.

$$|\{0,1\}^n| = 2^n$$

Exercice 35. Qu'obtient-on comme identité sur les coefficients binomiaux en écrivant

$$(x+y)^{2n} = (x+y)^n (x+y)^n$$
?

(Voir avec assistants)

Exercice 36. Qu'obtient-on en dérivant la formule du binôme?

(Voir avec assistants)

Exercice 37. Trouver le nombre de solutions de l'équation x+y+z+w=15, dans les naturels.

$$\binom{s+d-1}{d-1} = \binom{15+4-1}{4-1} = \binom{18}{3}$$

Exercice 38. Combien l'équation

$$x + y + z + t + u = 60$$

possède-t-elle de solutions entières (x, y, z, t, u) telles que

$$x > 0$$
, $y \geqslant 9$, $z > -2$, $t \geqslant 0$ et $u > 10$?

On doit procéder à un changement de variables.

$$x' = x - 1 \Leftrightarrow x = x' + 1 \qquad y' = y - 9 \Leftrightarrow y = y' + 9 \qquad z' = z + 1 \Leftrightarrow z = z' - 1$$

$$t' = t \qquad u' = u - 11 \Leftrightarrow u = u' + 11$$

$$x' + y' + z' + t' + u' = 60 - 1 - 9 + 1 - 11 = 40$$

$$\binom{s+d-1}{d-1} = \binom{40+5-1}{5-1} = \binom{44}{4}$$

Exercice 39. Trouver le nombre de solutions de l'inéquation

$$x + y + z + t \leqslant 6$$

- (i) dans les naturels;
- (ii) dans les entiers > 0;
- (iii) dans les entiers, avec comme contraintes supplémentaires x > 2, y > -2, z > 0 et t > -3.

Même chose que les exos précédents (réponse dans un prochain épisode...).

Exercice 40. Avec les lettres du mot MISSISSIPPI, combien peut-on écrire de mots différents de 11 lettres?

Lettres du mot: 1 M, 4 I, 4 S, 2 P

Mots de 11 lettres : $\frac{11!}{(4!)(4!)(2!)(1!)}$

Exercice 41. Avec les lettres du mot

HUMUHUMUNUKUNUKUAPUAA

("poisson" en hawaïen), combien peut-on écrire de mots différents de 21 lettres ne comprenant pas deux lettres U côte à côte?

Faire mots de 12 lettres sans U. Rajouter probabilité de mettre les U dans les 13 places qui restent pour faire des mots de 21 lettres. Donc, $\binom{13}{9}$

Exercice 42. $Si\ 0 \leq m \leq n$, que vaut

$$\sum_{k=m}^{n} \binom{k}{m} \binom{n}{k} ?$$

(Hint: essayer une preuve bijective.)

Preuve version "étudiant" :

$$\sum_{k=m}^{n} \binom{k}{m} \binom{n}{k} = \sum_{k=m}^{n} \frac{\cancel{k}!}{m!(k-m)!} \frac{n!}{\cancel{k}!(n-k)!} = \sum_{k=m}^{n} \frac{n!}{m!(k-m)!(n-k)!} = \sum_{k=m}^{n} \frac{n!}{m!(k-m)!(n-k)!} \frac{(n-m)!}{(n-m)!} = \sum_{k=m}^{n} \frac{n!}{m!(n-k)!} \frac{(n-m)!}{(n-m)!} = \sum_{k=m}^{n} \frac{n!}{m!(n-k)!} \frac{(n-m)!}{(n-m)!} \frac{(n-m)!}{(n-m)!} = \sum_{k=m}^{n} \frac{n!}{m!(n-k)!} \frac{(n-m)!}{(n-m)!} \frac{$$

Preuve bijective version assistants:

Fixons $0 \le m \le n$ Comptons de 2 manières différentes le nombre de triples (M, K, N) où $M \subseteq K \subseteq N$ et $|\mathbf{M}| = \mathbf{m}$, $|\mathbf{N}| = \mathbf{n}$, $|\mathbf{K}| = \mathbf{k}$

- 1. On choisit un ensemble de taille m dans N : il y a $\binom{n}{m}$ façons de choisir
- 2. K peut avoir m éléments, m+1, ..., n éléments

1. On choisit un ensemble de taille m dans N : il y a $\binom{n}{m}$ façons de choisir

Ensuite, nous complétons cet ensemble M pour obtenir K, c'est à dire il y a

$$\sum_{k=0}^{n-m} \binom{n-m}{k} = 2^{n-m} \quad \text{choix}$$

Donc au total il y a $\binom{n}{m} 2^{n-m}$ choix.

2. K peut avoir m éléments, m+1, ..., n éléments

- 1. S'il y en a m : on choisit m éléments parmi n et m éléments parmi ces m éléments, c'est à dire $\binom{m}{m}\binom{n}{m}$
- 2. S'il y en a m+1 : on choisit m+1 éléments parmi n et m éléments parmi ces m+1 éléments, c'est à dire $\binom{m+1}{m}\binom{n}{m+1}$
- 3. S'il y en a n : on choisit n éléments parmi n et m éléments parmi ces n éléments, c'est à dire $\binom{n}{m}\binom{n}{n}$

Il suffit de tout sommer (car "ou exclusif"). Donc :

$$\sum_{k=m}^{n} \binom{k}{m} \binom{n}{k} = \binom{n}{m} 2^{(n-m)}$$

Exercice 43. Si on jette simultanément n dès identiques, combien de résultats différents peut-on obtenir? (Deux résultats sont considérés comme équivalents s'ils ont le même nombre de 1, le même nombre de 2, ..., le même nombre de 6.)

(Voir avec assistants)

Séance 8 et 9 7

Exercice 44. De combien de façons différentes peut-on monter un escalier de 30 marches, si on monte à chaque pas soit d'une seule marche soit de deux marches à la fois?

Exercice 45. Que vaut le déterminant de la matrice $n \times n$

$$\begin{pmatrix}
1 & -1 & 0 & 0 & \cdots & 0 & 0 & 0 \\
1 & 1 & -1 & 0 & \cdots & 0 & 0 & 0 \\
0 & 1 & 1 & -1 & \cdots & 0 & 0 & 0 \\
\vdots & \vdots \\
0 & 0 & 0 & 0 & \cdots & 1 & 1 & -1 \\
0 & 0 & 0 & 0 & \cdots & 0 & 1 & 1
\end{pmatrix}$$

Soit M_n la matrice de dimension $n \times n$ de l'exercice.

Si on calcule le déterminant selon la première ligne, on a

$$|M_n| = \underbrace{1 \cdot (-1)^{1+1} \cdot |M_{n-1}|}_{\text{En enlevant première ligne, première colonne}} + \underbrace{(-1) \cdot (-1)^{1+2} \cdot |X|}_{\text{En enlevant première ligne, deuxième colonne}} = |M_{n-1}| + |X|$$

(X étant la sous-matrice de M_n à laquelle on a enlevé la première ligne et première colonne (DESSIN). Nous pouvons voir que pour calculer le déterminant de X, en appliquant la même méthode on a $1 \cdot (-1)^{1+1} \cdot |M_{n-2}| = |M_{n-2}|$.

Maintenant qu'on a le déterminant de X, nous pouvons le remplacer dans la première formule :

$$|M_n| = |M_{n-1}| + |M_{n-2}|$$

On retombe sur Fibo.

Exercice 46. Que vaut

$$\lim_{n \to \infty} \frac{F_{n+1}}{F_n} \quad ?$$

Exercice 47. Prouver que, pour tout entier $n \ge 1$,

$$\varphi^n = F_n \cdot \varphi + F_{n-1} ,$$

 $où \varphi := \frac{1+\sqrt{5}}{2}$ est le nombre d'or.

Exercice 48. Résoudre les récurrences

(i)
$$a_n = \frac{1}{2}a_{n-1} + 1 \text{ pour } n \geqslant 1$$
,

$$a_0 = 1$$

(ii)
$$a_n = 5a_{n-1} - 6a_{n-2} \text{ pour } n \ge 2,$$

$$a_0 = -1, \quad a_1 = 1$$

(iii)
$$a_n = 6a_{n-1} - 9a_{n-2} \text{ pour } n \ge 2,$$

$$a_0 = 1, \quad a_1 = 9$$

Exercice 49. Résoudre les récurrences

(i)
$$a_{n+3} = 3a_{n+1} - 2a_n \text{ pour } n \ge 0$$
,

$$a_0 = 1, \quad a_1 = 0, \quad a_2 = 0$$

(ii)
$$a_{n+3} + 3a_{n+2} + 3a_{n+1} + a_n = 0$$

Exercice 50. Résoudre la récurrence

$$a_{n+2} - (2\cos\alpha)a_{n+1} + a_n = 0 \quad \forall n \geqslant 0$$

 $a_1 = \cos\alpha, \quad a_2 = \cos 2\alpha$

Exercice 51. Résoudre les récurrences

(i)
$$a_n + 2a_{n-1} = n + 3 \text{ pour } n \ge 1$$

$$a_0 = 3$$

(ii)
$$a_{n+2} + 8a_{n+1} - 9a_n = 8 \cdot 3^{n+1} \text{ pour } n \ge 0$$

$$a_0 = 2, \quad a_1 = -6$$

(iii)
$$a_{n+2} - 6a_{n+1} + 9a_n = 2^n + n \text{ pour } n \ge 0$$

Exercice 52. Avec l'alphabet $\{A, B, C\}$, combien peut-on écrire de mots de n lettres dans lesquels on ne trouve pas

- (i) deux lettres A côte-à-côte?
- (ii) deux lettres A ni deux lettres B côte-à-côte ?
- (iii) deux lettres A ni deux lettres B ni deux lettres C côte-à-côte?
 - (i)
- (ii) a_n mots qui finissent par A, b_n mots qui finissent par B, c_n mots qui finissent par C.
- (iii)

Exercice 53. Donner le comportement asymptotique des suites T(n) pour chacune des récurrences suivantes :

(i)
$$T(n) = 2T(\lceil n/2 \rceil) + n^2$$

(ii)
$$T(n) = 16T(\lceil n/4 \rceil) + n^2$$

(iii)
$$T(n) = 7T(\lceil n/2 \rceil) + n^2$$

(iv)
$$T(n) = T(n-1) + n$$

Exercice 54. Résoudre la récurrence

$$\begin{array}{ll} a_n = \sqrt{a_{n-1}a_{n-2}} & \forall n \geqslant 2 \\ a_0 = 1, & a_1 = 2 \end{array}$$

Exercice 55. (Examen août 2011.) Combien y a-t-il de matrices $2 \times n$ à coefficients entiers vérifiant les deux conditions suivantes?

- Dans chacune des deux lignes, chacun des entiers 1, 2, ..., n apparaît une et une seule fois.
- Dans chacune des n colonnes, les deux coefficients diffèrent d'au plus 1.

8 Séance 10 et 11

Exercice 56. Que vaut

$$\sum_{n=0}^{\infty} H_n \frac{1}{10^n} ?$$

 $(Rappel: H_n \ est \ le \ n-\`eme \ nombre \ harmonique.)$

Nous savons que

$$C(x) = \sum_{n=0}^{\infty} H_n x^n = \frac{1}{1-x} ln(\frac{1}{1-x})$$

Donc

$$\sum_{n=0}^{\infty} H_n \frac{1}{10^n} = \frac{1}{1 - \frac{1}{10}} ln(\frac{1}{1 - \frac{1}{10}}) = \frac{10}{9} ln(\frac{10}{9}) = \frac{10}{9} (ln(10) - ln(9))$$

Exercice 57. Trouver la fonction génératrice ordinaire de $(2^n + 3^n)_{n \in \mathbb{N}}$, en forme close.

Exercice 58. (Examen janvier 2011.) Calculer la somme de chacune des séries suivantes.

a)
$$\sum_{n=0}^{\infty} \frac{H_n}{2^n}$$

$$b) \sum_{n=0}^{\infty} \binom{n}{2} \frac{1}{10^n}$$

- a) Il s'agit de la FGO de $\frac{1}{1-\frac{1}{2}}*ln(\frac{1}{1-\frac{1}{2}})=2*ln(2)$.
- b) Nous savons que

Exercice 59. (Examen août 2011.) Calculer la somme de chacune des séries suivantes.

$$a) \sum_{n=1}^{\infty} \frac{1}{2^n}$$

b)
$$\sum_{n=1}^{\infty} \frac{n}{2^n}$$

$$c) \sum_{n=1}^{\infty} \frac{1}{n2^n}$$

ATTENTION: n=1 dans chaque exercice!

a)
$$\sum_{n=1}^{\infty} \frac{1}{2^n} = \sum_{n=0}^{\infty} \frac{1}{2^n} - 1 = \frac{1}{1 - \frac{1}{2}} - 1 = 2 - 1 = 1$$

b)
$$\sum_{n=1}^{\infty} \frac{n}{2^n}$$

c)
$$\sum_{n=1}^{\infty} \frac{1}{n2^n}$$

Exercice 60. Quelle est la FGO de $(1, 1 + 3, 1 + 3 + 3^2, 1 + 3 + 3^2 + 3^3, \ldots)$?

Exercice 61. (Examen septembre 2015.) Résolvez par la méthode des fonctions génératrices l'équation de récurrence

$$a_n - 3a_{n-1} = 4^n$$
 avec $a_0 = 1$.

Exercice 62. Un collectionneur excentrique rafolle des pavages de rectangles $2 \times n$ par des dominos verticaux 2×1 et horizontaux 1×2 . Il paye sans hésiter $4 \in$ par domino vertical et $1 \in$ par domino horizontal. Pour combien de pavages sera-t-il prêt à payer $n \in ?$