CH-4[A]

NUMBERING SYSTEM AND CODES

Introduction

WHAT IS A BINARY CODES?

• A binary code represents text, computer processor instructions, or any other data using a two-symbol system.

• The two-symbol system used is often "0" and "1".

WHAT IS A NIBBLE?

- Nibble is also a part of the computer storage system.
- Nibble is aggregation (combination) of 4 bits.
- 1 Nibble = 4 Bits and 1 nibble = 0.5 Bytes also.

WHAT IS A BIT?

- A bit (binary digit) is the smallest unit of data that a computer can process and store.
- A bit (short for binary digit) is the smallest unit of data in a computer. A bit has a single binary value, either 0 or 1.

WHAT IS A BYTE?

• A byte is a unit of data that is eight binary digits long.

 \circ 1 byte = 8 bits.

WHAT IS A CARRY BIT?

• The carry bit from the most significant bit of an arithmetic operation.

WHAT IS A PARITY BIT?

- A parity bit is a check bit, which is added to a block of data for error detection purposes.
- It is used to validate the integrity of the data.

WHAT IS A SIGN BIT?

• The sign bit is a bit in a signed number representation that indicates the sign of a number.

MEMORY MEASURE

Units of Computer Memory Measurements

1 Bit = Binary Digit

8 Bit = 1 Byte

1024 Bytes = 1 KB (Kilo Byte)

1024 KB = 1 MB (Mega Byte)

1024 MB = 1 GB (Giga Byte)

1024 GB = 1 TB (Terra Byte)

1024 TB = 1 PB (Peta Byte)

1024 PB = 1 EB (Exa Byte)

1024 EB = 1 ZB (Zetta Byte)

1024 ZB = 1 YB (Yotta Byte)

1024 YB = 1(Bronto Byte)

1024 Brontobyte = 1 (Geop Byte)

Geop Byte is The Highest Memory

Types of Numbering System

Types of Numbering System

The four most common number system types are:

- 1. Binary number system (Base- 2)
- 2. Octal number system (Base-8)
- 3. **Decimal** number system (Base- 10)
- 4. **Hexadecimal** number system (Base- 16)

BINARY NUMBER SYSTEM (BASE- 2)

- A binary number is a number expressed in the base-2 numeral system or binary numeral system, a method of mathematical expression.
- uses only two symbols: "0" and "1".
- o Ex.
 - 0
 - 1

OCTAL NUMBER SYSTEM (BASE- 8)

- The octal numeral system is the base-8 number system, and uses the digits 0 to 7.
- That means there are only 8 symbols or digits (0, 1, 2, 3, 4, 5, 6, 7) used to form other numbers.

o Ex.

- 0
- 1
- 2
- 3
- 4
- 5
- 6
- 7

```
etc ....... 8<sup>3</sup> 8<sup>2</sup> 8<sup>1</sup> 8<sup>0</sup> . 8<sup>-1</sup> 8<sup>-2</sup> 8<sup>-3</sup> ....... etc
```

DECIMAL NUMBER SYSTEM (BASE- 10)

- The **Decimal** numeral system is the base-10 number system, and uses the digits 0 to 9.
- That means there are only 10 symbols or digits (0, 1, 2, 3, 4, 5, 6, 7,8,9) used to form other numbers.
- o Ex.
 - 0
 - 1
 - 2
 - 3
 - 4
 - 5
 - 6
 - 7
 - 8
 - 9

1	10°
10	10 ¹
100	10 ²
1,000	10 ³
10,000	10 ⁴
100,000	10 ⁵
1,000,000	10 ⁶
10,000,000	10 ⁷
100,000,000	10 ⁸
	100 1,000 10,000 100,000 1,000,000

HEXADECIMAL NUMBER SYSTEM (BASE- 16)

- The hexadecimal system contains 16 sequential numbers as base units, including 0.
- The first nine numbers (0 to 9) are the same ones commonly used in the decimal system.
- The next six two-digit numbers (10 to 15) are represented by the letters A through F.
- o Ex.
 - 0 A
 - 1 B
 - 2 C
 - 3 D
 - 4 E
 - 5 F
 - 6
 - 7
 - 8
 - 9

Number Systems						
System Base Digits						
Binary	2	01				
Octal	8	01234567				
Decimal	10	0123456789				
Hexadecimal	16	0123456789ABCDEF				

Numbering System Conversion

Binary Arithmetic Type

Binary Arithmetic Type

- Binary Addition
- 2) Binary Subtraction
 - 1) 1st Compliment method
 - 2) 2nd Compliment method
- 3) Binary Division
- 4) Binary Multiplication

Types of codes

WHAT IS A CODES?

• Most computer do not represent character as pure binary numbers. They use a codes version of true binary to represent letters and special as well as decimal numbers.

- Four types in codes
 - 1. BCD
 - 2. ASCII
 - 3. EBCDIC
 - 4. Unicode

BCD CODES

- BCD (Binary-Coded Decimal) code:
- Four-bit code that represents one of the ten decimal digits from 0 to 9.
- Thus BCD code requires more bits than straight binary code.
- Still it is suitable for input and output operations in digital systems.
- Note: 1010, 1011, 1100, 1101, 1110, and 1111 are INVALID CODE in BCD code.

Decimal	0	1	2	3	4	5	6	7	8	9
BCD	0000	0001	0010	0011	0100	0101	0110	0111	1000	1001

ASCII

- ASCII (American Standard Code Information Interchange) code:
- It is 7-bit or 8-bit alphanumeric code.
- 7-bit code is standard ASCII supports 127 characters.
- 8-bit code is extended ASCII supports 256 symbols where special graphics and math's symbols are added.

ASCII Table

Dec	Hex	0ct	Char	Dec	Hex	0ct	Char	Dec	Hex	0ct	Char	Dec	Hex	0ct	Char
0	0	0		32	20	40	[space]	64	40	100	@	96	60	140	
1	1	1		33	21	41	1	65	41	101	A	97	61	141	a
2	2	2		34	22	42		66	42	102	В	98	62	142	b
3	3	3		35	23	43	#	67	43	103	C	99	63	143	C
4	4	4		36	24	44	\$	68	44	104	D	100	64	144	d
5	5	5		37	25	45	%	69	45	105	E	101	65	145	е
6	6	6		38	26	46	&	70	46	106	F	102	66	146	f
7	7	7		39	27	47		71	47	107	G	103	67	147	9
8	8	10		40	28	50	(72	48	110	Н	104	68	150	h
9	9	11		41	29	51)	73	49	111	1	105	69	151	1
10	Α	12		42	2A	52		74	4A	112		106	6A	152	1
11	В	13		43	2B	53	+	75	4B	113	K	107	6B	153	k
12	C	14		44	2C	54		76	4C	114	L	108	6C	154	
13	D	15		45	2D	55		77	4D	115	M	109	6D	155	m
14	E	16		46	2E	56		78	4E	116	N	110	6E	156	n
15	F	17		47	2F	57	1	79	4F	117	0	111	6F	157	0
16	10	20		48	30	60	0	80	50	120	Р	112	70	160	р
17	11	21		49	31	61	1	81	51	121	Q	113	71	161	q
18	12	22		50	32	62	2	82	52	122	R	114	72	162	r
19	13	23		51	33	63	3	83	53	123	S	115	73	163	S
20	14	24		52	34	64	4	84	54	124	T	116	74	164	t
21	15	25		53	35	65	5	85	55	125	U	117	75	165	u
22	16	26		54	36	66	6	86	56	126	V	118	76	166	V
23	17	27		55	37	67	7	87	57	127	W	119	77	167	w
24	18	30		56	38	70	8	88	58	130	X	120	78	170	×
25	19	31		57	39	71	9	89	59	131	Y	121	79	171	У
26	1A	32		58	3A	72		90	5A	132	Z	122	7A	172	z
27	18	33		59	3B	73		91	5B	133	1	123	7B	173	{
28	1C	34		60	3C	74	<	92	5C	134	Ň	124	7C	174	
29	1D	35		61	3D	75		93	5D	135	1	125	7D	175	1
30	1E	36		62	3E	76	>	94	5E	136	^	126	7E	176	~
31	1F	37		63	3F	77	?	95	5F	137		127	7F	177	

EBCDIC

- EBCDIC (Extended Binary Coded Decimal Interchange Code) code
- 8-bit alphanumeric code developed by IBM, supports 256 symbols.
- It was mainly used in IBM mainframe computers.

Special	EBCDIC	Conto				
characters	LBODIO	Alphabetic	EBCDIC			
<	01001011	Α	11000001			
(01001100	В	11000010			
+	01001101	С	11000011			
1	01001110	D	11000100			
&	01010000	E	11000101			
:	01111011	F	11000110			
#	01111011	G	11000111			
@	01111100	Н	11001000			
4	01111101	l a	11001001			
=	01111110	J	11010001			
ш	01111111	K	11010010			
	01101011	L	11010011			
%	01101100	M	11010100			
itena ⊛0	01101101	N	11010101			
>	01101110	0	11010110			
		P	11010111			

UNICODE

- Unicode is a provides a unique number for every character.
- No matter what the platform
- No matter what the program
- No matter what the language

PARITY CHECK

WHAT IS A PARITY BIT?

- A parity bit, also known as a check bit, is a single bit that can be appended to a binary string.
- It is set to either 1 or 0 to make the total number of 1-bits either even ("even **parity**") or odd ("odd **parity**"). ... **Parity checks** can help detect some of these errors.
- They are two types:
 - 1. Event Parity System
 - 2. Odd Parity System

Original Data	Even Parity	Odd Parity
0000000	0	1
01011011	1	0
01010101	0	1
11111111	0	1
10000000	1	0
01001001	1	0

THE END?