Machine Learning Course - CS-433 K-Means Clustering

Nov 22, 2023 Martin Jaggi Last updated on: November 20, 2023 credits to Mohammad Emtiyaz Khan & Rüdiger Urbanke EPFL

Clustering

Clusters are groups of points whose inter-point distances are small compared to the distances outside the cluster.

The goal is to find "prototype" points $\mu_1, \mu_2, \dots, \mu_K$ and cluster assignments $z_n \in \{1, 2, \dots, K\}$ for all $n = 1, 2, \dots, N$ data vectors $\mathbf{x}_n \in \mathbb{R}^D$.

K-means clustering

Assume K is known.

$$\min_{\mathbf{z}, \boldsymbol{\mu}} \mathcal{L}(\mathbf{z}, \boldsymbol{\mu}) = \sum_{n=1}^{N} \sum_{k=1}^{K} z_{nk} \left\| \mathbf{x}_n - \boldsymbol{\mu}_k \right\|_2^2$$

s.t.
$$\boldsymbol{\mu}_k \in \mathbb{R}^D, z_{nk} \in \{0, 1\}, \sum_{k=1}^K z_{nk} = 1,$$

where $\mathbf{z}_n = [z_{n1}, z_{n2}, \dots, z_{nK}]^{\top}$

$$\mathbf{z} = \left[\mathbf{z}_1, \mathbf{z}_2, \dots, \mathbf{z}_N
ight]^{ op} \ oldsymbol{\mu} = \left[oldsymbol{\mu}_1, oldsymbol{\mu}_2, \dots, oldsymbol{\mu}_K
ight]^{ op}$$

Is this optimization problem easy? Algorithm: Initialize $\mu_k \forall k$, then iterate:

- 1. For all n, compute \mathbf{z}_n given $\boldsymbol{\mu}$.
- 2. For all k, compute μ_k given \mathbf{z} .

Step 1: For all
$$n$$
, compute \mathbf{z}_n given $\boldsymbol{\mu}$.

$$z_{nk} = \begin{cases} 1 \text{ if } k = \arg\min_{j=1,2,...K} \|\mathbf{x}_n - \boldsymbol{\mu}_j\|_2^2 \\ 0 \text{ otherwise} \end{cases}$$
Step 2: For all k , compute $\boldsymbol{\mu}_k$ given \mathbf{z} .

Take derivative w.r.t. $\boldsymbol{\mu}_k$ to get:

$$\mu_{k} = \frac{\sum_{n=1}^{N} z_{nk} \mathbf{x}_{n}}{\sum_{n=1}^{N} z_{nk}}$$

$$\begin{bmatrix} \mathbf{b} \\ \mathbf{x} \\ -2 \end{bmatrix} \begin{bmatrix} \mathbf{c} \\ \mathbf{c} \\ -2 \end{bmatrix} \begin{bmatrix} \mathbf{c} \\$$

Hence, the name 'K-means'.

Summary of K-means

Initialize $\mu_k \forall k$, then iterate:

1. For all n, compute \mathbf{z}_n given $\boldsymbol{\mu}$.

$$z_{nk} = \begin{cases} 1 \text{ if } k = \arg\min_{j} \|\mathbf{x}_{n} - \boldsymbol{\mu}_{j}\|_{2}^{2} \\ 0 \text{ otherwise} \end{cases}$$

2. For all k, compute μ_k given \mathbf{z} .

$$\boldsymbol{\mu}_k = \frac{\sum_{n=1}^N z_{nk} \mathbf{x}_n}{\sum_{n=1}^N z_{nk}}$$

Convergence to a local optimum is assured since each step decreases the cost (see Bishop, Exercise 9.1).

Coordinate descent

K-means is a coordinate descent algorithm, where, to find $\min_{\mathbf{z}, \boldsymbol{\mu}} \mathcal{L}(\mathbf{z}, \boldsymbol{\mu})$, we start with some $\boldsymbol{\mu}^{(0)}$ and repeat the following: $\mathbf{z}^{(t+1)} := \arg\min_{\mathbf{z}} \mathcal{L}\left(\mathbf{z}, \boldsymbol{\mu}^{(t)}\right)$ $\boldsymbol{\mu}^{(t+1)} := \arg\min_{\boldsymbol{\mu}} \mathcal{L}\left(\mathbf{z}^{(t+1)}, \boldsymbol{\mu}\right)$

$$\mathbf{z}^{(t+1)} := rg \min_{oldsymbol{z}} \mathcal{L}\left(\mathbf{z}, oldsymbol{\mu}^{(t)}
ight) \ = rg \min_{oldsymbol{\mu}} \mathcal{L}\left(\mathbf{z}^{(t+1)}, oldsymbol{\mu}
ight)$$

Examples

K-means for the "old-faithful" dataset (Bishop's Figure 9.1)

(e) Iteration 0

(h) Iteration 2

(f) Iteration 1

(i) Iteration 2

(l) Iteration 4

(g) Iteration 1

(j) Iteration 3

(m) Iteration 4 Data compression for images (this is also known as vector quantization).

Probabilistic model for K-means

K-means as a Matrix Factorization

Recall the objective

$$\min_{\mathbf{z}, \boldsymbol{\mu}} \mathcal{L}(\mathbf{z}, \boldsymbol{\mu}) = \sum_{n=1}^{N} \sum_{k=1}^{K} z_{nk} \|\mathbf{x}_{n} - \boldsymbol{\mu}_{k}\|_{2}^{2}$$
$$= \|\mathbf{X}^{\top} - \mathbf{M}\mathbf{Z}^{\top}\|_{\text{Frob}}^{2}$$
s.t. $\boldsymbol{\mu}_{k} \in \mathbb{R}^{D}$,

$$z_{nk} \in \{0, 1\}, \sum_{k=1}^{K} z_{nk} = 1$$

Issues with K-means

- 1. Computation can be heavy for large N, D and K.
- $2. \,$ Clusters are forced to be spherical (e.g. cannot be elliptical).
- 3. Each example can belong to only one cluster ("hard" cluster assignments).