Allen Brain Atlas

Hands-on session by Boudewijn Lelieveldt and Linda Dib

Gian Jutz, Manos Karpathiotakis, Razvan Marinescu, Aljaž Osojnik, Mirjana Pavlovic & Anne Ruef

What is the norm?

What is normal and abnormal weight and height development?

WHO child growth standards

What is the norm?

What is normal and abnormal brain development?

HBP/Allen brain genes expression standards

A clinical example

Genes, Brain and Autism

- 444 genes differently expressed in autism brain
- Mostly located in frontal and temporal cortices

What about Schizophrenia, Alzheimer's Disease and other brain disorders?

Hypotheses

We know that:

Single genes are not working alone!

Genes turn on and off together!

Working hypotheses

- Normal trajectories of multiple gene expressions in specific areas of the brain are stable for healthy people
- Correlations between gene expressions change in time

Methods

- Tracking of pairwise correlations of gene expressions throughout the lifespan → correlation matrix through time
- Data mining for frequent itemsets (Apriori) to identify gene dependencies with more than a pair of genes

Expected results

Changes in correlation

Might happen due to old age and not disease

 Disprove previous studies that assume static correlations

constant correlation

Area-specific correlation

 Calculate the correlation for specific areas of the brain

 Use gene pair correlations as biomarkers in a disease progression model

 20,000 x 20,000 biomarkers → need to reduce complexity

Conclusions

 Can compute correlation profile across age

 Ability to distinguish disease from normal ageing

 Can also be used in future studies for finding disease onset

