STAT 500

Wilcoxon Rank-Sum Test: Non-Parametric Test for Two Samples

- Assumptions
 - Independence
- Null hypothesis: two populations have the same distribution
 - Distribution is not required to be normal.
 - Implies equal medians, percentiles, means and variances

- Combine the data from the two groups into a single data set
- ullet Order the n_1+n_2 observations from smallest to largest
- Assign ranks
 - The smallest observation gets rank=1, the second smallest gets rank=2, etc...
 - For tied observations, average the ranks
- Compute the sum of the ranks for one group (call it W)

 Assuming the null hypothesis of equivalent distributions is true, compute the expectation and variance of W (for group 1)

$$E_0(W) = rac{n_1(n_1+n_2+1)}{2}$$

$$V_0(W) = rac{n_1 n_2 (n_1 + n_2 + 1)}{12}$$

• Large sample Z-test:

$$z = rac{|W - E_0(W)| - 0.5}{\sqrt{V_0(W)}}$$

ullet Approximate p-value =2*P(Z>|z|)

- Can also test against a one-sided alternative
- Can compute "exact" p-values based on the null distribution of the ranks

Small Example

Randomized experiment with two treatments

- Animals A, B, and C receive a standard drug: observations are 3,8,4
- Animals D, E, and F receive the new drug: observations are 7,9,11

Null Hypothesis: Distribution of response variable is the same for both groups.

Alternative Hypothesis: Distribution of response variable is different between the two groups.

Small Example

Order the combined sample:

Observation	Animal	Treatment	
Y	ID	group	rank
3	Α	standard	1
4	C	standard	2
7	D	new drug	3
8	В	standard	4
9	E	new drug	5
11	F	new drug	6

ullet Test statistic: W=3+5+6=14

Small Example

$$ullet E_0(W) = (3)(7)/2 = 10.5 \ V_0(W) = (3)(3)(7)/12 = 5.25$$

•
$$z = \frac{|14 - 10.5| - 0.5}{\sqrt{5.25}} = 1.31$$

- ullet Approximate p-value is 2*P(Z>1.31)=0.19
- Fail to reject the null hypothesis
- We do not have significant evidence that the response distributions for the new drug and the standard drug are different.

Exact P-value

- There are $\binom{6}{3}=20$ ways to choose 3 units out of 6 to assign to the treatment group.
- The observed set of ranks for the members of the treatment group are 3, 5, 6
- ullet There is only one other random assignment that could produce a larger value of W: subjects with ranks 4, 5, 6 are assigned to the treatment group

Exact P-value

- Two other random assignments are equally extreme in the other direction
 - ranks 1, 2, 4 (observed)
 - ranks 1, 2, 3 (more extreme than observed)
- The exact two-sided p-value is

$$= 4/20 = 0.20$$

Creative Writing Study

The NPAR1WAY Procedure

Wilcoxon Scores (Rank Sums) for Variable y Classified by Variable trt						
trt	N	Sum of Scores	Expected Under H0			
1	24	704.50	576.0	46.973057	29.354167	
2	23	423.50	552.0	46.973057	18.413043	
Average scores were used for ties.						

Wilcoxon Two-Sample Test		
Statistic (S)	423.5000	
Normal Approximation		
Z	-2.7250	
One-Sided Pr < Z	0.0032	
Two-Sided Pr > Z	0.0064	
t Approximation		
One-Sided Pr < Z	0.0045	
Two-Sided Pr > Z	0.0091	
Z includes a continuity correction of 0.5.		

The NPAR1WAY Procedure

Monte Carlo Estimates for the Exact Test		
One-Sided Pr <= S		
Estimate	0.0029	
95% Lower Conf Limit	0.0021	
95% Upper Conf Limit	0.0036	
Two-Sided Pr >= S - Mean		
Estimate	0.0051	
95% Lower Conf Limit	0.0041	
95% Upper Conf Limit	0.0060	
Number of Samples	20000	
Initial Seed	7892441	

Kruskal-Wallis Test		
Chi-Square	7.4836	
DF	1	
Pr > Chi-Square	0.0062	

The NPAR1WAY Procedure

