

UNIVERSIDADE FEDERAL DE SANTA CATARINA

Centro de Ciências, Tecnologias e Saúde Departamento de Computação PLANO DE ENSINO

SEMESTRE 2021.2

T.	IDENTIFICA	CÃO DA	DISCIPLINA:
----	------------	--------	-------------

CÓDIGO	NOME DA DISCIPLINA	Nº DE HORAS-AULA SEMANAIS		TOTAL DE HORAS-AULA
		TEÓRICAS	PRÁTICAS	SEMESTRAIS
DEC7545	Circuitos Elétricos para Computação	4	0	72

HORÁRIO

TURMAS TEÓRICAS	TURMAS PRÁTICAS	MODALIDADE
06655 - 3.1620(2) - 5.1620(2)		Remota Assíncrona e Síncrona

II. PROFESSOR(ES) MINISTRANTE(S)

Prof. Lenon Schmitz

Horário de atendimento: Terça-feira das 13:30 às 15:30 (meet.google.com/mhy-tvid-wsi).

E-mail: lenon.schmitz@ufsc.br

III. PRÉ-REQUISITO(S)

CÓDIGO	NOME DA DISCIPLINA		
-	-		

IV. CURSO(S) PARA O(S) QUAL(IS) A DISCIPLINA É OFERECIDA

Graduação em Engenharia de Computação

V. JUSTIFICATIVA

Circuitos Elétricos é um dos pilares da formação do engenheiro da computação, e essa disciplina introduz ao aluno conceitos básicos de circuitos elétricos de corrente contínua e de corrente alternada, bem como dispositivos eletrônicos.

VI. EMENTA

Conceitos básicos, unidades, leis fundamentais; resistência; fontes ideais independentes e dependentes em redes resistivas; amplificador operacional ideal; técnicas de análise de circuitos em corrente contínua, indutância e capacitância; resposta de circuitos RL e RC de primeira ordem; respostas natural e a um degrau de circuitos RLC; circuitos de corrente alternada; introdução a eletrônica; diodos; transistor de efeito de campo; transistor de junção bipolar.

VII. OBJETIVOS

Objetivos Gerais: Esta disciplina deverá abordar aspectos teóricos em circuitos elétricos com enfoque para eletrônica de maneira a cumprir com o perfil do egresso, como também dar ênfase a realização de circuitos através de projetos realizados extraclasse em ambiente de laboratório.

Objetivos Específicos:

- Introduzir conceitos básicos de circuitos elétricos;
- Discutir o conceito de fontes ideais independentes e dependentes em redes resistivas;
- Discutir o conceito de amplificador operacional ideal;
- Discutir técnicas de análise e características de circuitos em corrente contínua;
- Discutir técnicas de análise e características de circuitos de corrente alternada;
- Discutir dispositivos eletrônicos como diodo, transistores de efeito de campo e de junção bipolar.

VIII. CONTEÚDO PROGRAMÁTICO

- Elementos de Circuitos
- Circuitos Resistivos Simples
- Técnicas de análise de circuitos
- Indutância e Capacitância
- Resposta de Circuitos RL e RC de primeira ordem
- Respostas Natural e a um degrau de circuitos RLC
- Análise do Regime permanente senoidal
- Amplificadores operacionais
- Diodos
- Transistor de junção bipolar
- Transistor de efeito de campo

IX. METODOLOGIA DE ENSINO / DESENVOLVIMENTO DO PROGRAMA

- A disciplina será ministrada com aulas expositivas fornecendo os componentes teóricos.
- Material de apoio postado no Moodle.
- Requisitos de infraestrutura necessários para ministrar as aulas:
 - Acesso à Internet;
 - o Ambiente Virtual de Aprendizagem Moodle.

X. COMPETÊNCIAS/HABILIDADES

- Capacidade de equacionar e analisar circuitos elétricos de forma eficiente.
- Compreender os conceitos de resposta transitória, resposta em regime permanente, resposta natural e resposta forçada de circuitos.
- Entender o significado físico e a aplicação das análises no domínio do tempo e no domínio da frequência, assim como a relação existente entre ambas.
- Compreender o funcionamento de dispositivos e circuitos eletrônicos básicos.

XI. METODOLOGIA E INSTRUMENTOS DE AVALIAÇÃO

A verificação do rendimento escolar compreenderá frequência e aproveitamento nos estudos, os quais deverão ser atingidos conjuntamente. Será obrigatória a frequência às atividades correspondentes a cada disciplina, ficando nela reprovado o aluno que não comparecer, no mínimo a 75% das mesmas.

O registro de frequência será efetuado para aulas assíncronas e síncronas. Para as aulas assíncronas a frequência estará vinculada a atividades de fixação de conteúdo que serão disponibilizadas com prazo de entrega de até 72 horas em que, a partir da execução destas, os alunos terão a presença registrada. Para o segundo caso, de aulas síncronas, o registro de presença será realizado ao final de cada aula. Na eventual impossibilidade do aluno estar presente será aplicada a regra da aula assíncrona.

A nota mínima para aprovação na disciplina será 6,0 (seis). (Art. 69 e 72 da Res. n ° 17/Cun/1997).

O aluno com frequência suficiente (FS) e média das notas de avaliações do semestre entre 3,0 e 5,5 terá direito a uma nova avaliação no final do semestre (REC), exceto as atividades constantes no art.70,§2°. A nota final (NF) será calculada por meio da média aritmética entre a média das notas das avaliações parciais (MF) e a nota obtida na nova avaliação (REC). (Art. 70 e 71 da Res. n \circ 17/CUn/1997).

$$NF = \frac{MF + REC}{2}$$

Ao aluno que não efetuar as avaliações ou não apresentar trabalhos no prazo estabelecido, será atribuída nota 0 (zero). (Art. 70, §4 ° da Res. n ° 17/Cun/1997)

Cálculo da média Semestral (MF):

Primeira avaliação teórica: P1

• Segunda avaliação teórica: P2

• Terceira avaliação teórica: P3

Avaliações: As avaliações serão postadas no Moodle no horário da aula, na data prevista no cronograma. O aluno terá 24 horas para resolver, digitalizar e fazer o upload do arquivo no Moodle. Não será aceito o envio por e-mail.

$$MF = \frac{P1 + P2 + P3}{3}$$

Nova avaliação:

O aluno que, por motivo de força maior e plenamente justificado, deixar de realizar atividades avaliativas previstas no plano de ensino, deverá formalizar pedido à Chefia do Departamento de Ensino ao qual a disciplina pertence, dentro do prazo de 3 (três) dias úteis, apresentando documentação comprobatória na SID (Secretaria Integrada de Departamentos).

XI. CRONOGRAMA

Semana	Data	Conteúdo
1	26/10/21	Introdução
1	28/10/21	Dia não letivo
2	02/11/21	Dia não letivo
2	04/11/21	Variáveis elétricas e elementos de circuitos
2	09/11/21	Circuitos resistivos simples
3	11/11/21	Técnicas de análise de circuitos
4	16/11/21	Técnicas de análise de circuitos
4	18/11/21	Técnicas de análise de circuitos
5	23/11/21	Revisão (síncrona)
3	25/11/21	Prova P1 (assíncrona)
6	30/11/21	Resposta de circuitos de RL e RC
0	02/12/21	Resposta de circuitos de RL e RC
7	07/12/21	Resposta de Circuitos RLC
/	09/12/21	Resposta de Circuitos RLC
8	14/12/21	Análise em regime permanente senoidal
0	16/12/21	Análise em regime permanente senoidal
9	01/02/22	Amplificadores operacionais
9	03/02/22	Amplificadores operacionais
10	08/02/22	Revisão (síncrona)
10	10/02/22	Prova P2 (assíncrona)
11	15/02/22	Diodos
11	17/02/22	Diodos
12	22/02/22	Transistores de junção bipolar
12	24/02/22	Transistores de junção bipolar
13	01/03/22	Dia não letivo
13	03/03/22	Transistores de efeito de campo

1.4	08/03/22	Transistores de efeito de campo
14	10/03/22	Revisão (síncrona)
15	15/03/22	Prova P3 (assíncrona)
15	17/03/22	Revisão (síncrona)
16	22/03/22	Prova de Recuperação (assíncrona)
16	24/03/22	Divulgação das notas (assíncrona)

Obs: O calendário está sujeito a pequenos ajustes de acordo com as necessidades das atividades desenvolvidas.

XII. FERIADOS PREVISTOS PARA O SEMESTRE 2021.1:

DATA	FERIADO	
28/10/2021	Dia do Servidor Público (Lei nº 8.112 – art. 236)	
02/11/2021	Finados	
15/11/2021	Proclamação da República	
28/02/2022	Carnaval (Ponto Facultativo)	
01/03/2022	Carnaval	

XIII. BIBLIOGRAFIA BÁSICA

- 1. Circuitos Elétricos 8a. edição, James W. Nilsson e Susan A. Riedel, Pearson, 2009
- 2. Microeletrônica 5a. edição, Smith Sedra, Pearson, 2007.

XIV. BIBLIOGRAFIA COMPLEMENTAR:

- Fundamentos de Circuitos Elétricos 5a. edição, Charles K. Alexander e Matthew Sadiku, McGraw-Hill, 2013
- 2. Dispositivos Eletrônicos e Teoria de Circuitos 11a. edição, Robert L. Boylestad e Louis Naschelsky, Prentice-Hall, 2013
- 3. Engineering Circuit Analysis 5a. edição, William H. Hayt e Jack E. Kemmerly, McGraw-Hill, 1993
- 4. Electric Circuit Analysis 2nd Edition, D. E. Johnson, J. R. Johnson & J. L. Hilburn, Prentice-Hall, 1992
- 5. Network Analysis 3rd Edition, M. E. Van Valkenburg, Prentice-Hall, 1974
- 6. Analysis of Linear Circuits, C. R. Paul, McGraw-Hill, 1989
- 7. Introduction to Electric Circuits 9th Edition, R. C. Dorf, John Wiley, 2013
- 8. An Introduction to Circuit Analysis: A Systems Approach, D. E. Scott, McGraw-Hill, 1987
- 9. Microelectronic Circuit Design, Jaeger, McGraw-Hill, 2010.
- 10. Microelectronic Circuits and Devices, Horenstein, Prentice Hall, 1991.

_	Professor da Disciplina
Aprovado na Reunião do Colegiado do Curso em:	
-	Coordenador do Curso