Organización de Computadoras 2009

Clase 2

Fechas importantes

REGIMEN INGRESANTES

- 15 de MAYO 1^{er} PARCIAL (Prácticas 1, 2 y 3)
 - Para los que NO Aprobaron COC
 - Único Recuperatorio: 03 de JULIO
- 03 de JULIO 2^{do} PARCIAL (Prácticas 4 a 8)
 - Para los que Aprobaron COC ó 1er parcial
 - Recuperatorios: 14 y 21 de JULIO
- Se tomarán en su horario de práctica y con su ayudante.

Fechas importantes (2)

REGIMEN RECURSANTES

EVALUACION

- 02 de JULIO 1er fecha
 - 16 de JULIO Recuperatorio 1
 - 23 de JULIO Recuperatorio 2

Temas de Clase

- Representación de datos
 - Números con signo
- Operaciones aritméticas
- Banderas de condición
- Representación de datos alfanuméricos

Representación en BCS

Con n bits, 1 bit representa al signo y n-1 bits a la magnitud

n-1	n-2		0
SIGNO		MAGNITUD	

- ➤ El bit n-1 (extremo izquierdo) representa sólo al signo
- Los bits 0 a n-2 la magnitud

4

Binario con signo

- Un 0 en el bit de signo indica que el número es positivo
- Un 1 en el bit de signo indica que el número es negativo
- ➤ Los bits 0 n-2 representan el valor absoluto en binario
- ► El rango: $-(2^{n-1} 1) \rightarrow +(2^{n-1} 1)$ con 2 ceros

Binario con signo (2)

Ejemplos
$$+32_{10} = 001000000$$
 $-32_{10} = 101000000$ 32 32 $+7_{10} = 00000111$ $-7_{10} = 10000111$ $+41_{10} = 00101001$ $-41_{10} = 10101001$

Binario con signo (3)

```
➤ Ejemplo: n=8 bits
negativos ... 10000000 - 0 -0 Números 011111111 + (2^{n-1}-1)=+127
positivos { ... 00000000 --- +0
```

4

Binario con signo (4)

Ejemplo con n= 3 bits $111 = -3 = -(2^{n-1} - 1)$ 110 = -2

$$101 = -1$$

$$100 = -0$$

$$011 = +3 = +(2^{n-1} - 1)$$

$$010 = +2$$

$$001 = +1$$

$$000 = +0$$

Resumen: BCS

- ✓ El intervalo es simétrico
- ✓ El primer bit sólo indica el signo
- ✓ Los positivos empiezan con cero (0)
- ✓ Los negativos empiezan con uno (1)
- ✓ Hay dos ceros
- ✓ Números distintos: 2ⁿ

Técnica de Complementos

 El complemento a un número N de un número A (A menor que N) es igual a la cantidad que le falta a A para ser N

Complemento a N de A = N - A

 El complemento a un número N del número (N-A) es igual a A.

Complemento a N de (N-A) = N - (N-A) = A

Técnica de Complementos (2)

En un sistema con n dígitos podemos tener:

- Complemento a la base disminuida
 - si N= baseⁿ 1

En sistema binario es Complemento a 1 ó Ca1

- Complemento a la base
 - si N= baseⁿ

En sistema binario es Complemento a 2 ó Ca2

Representación en Ca1

Los n bits representan al número

Información del signo

- Si el número es positivo, los n bits tienen la representación binaria del número (como siempre)
- ➢ Si el número es negativo, los n bits tienen el Ca1 del valor deseado.
- ➤ El Ca1 de un número en base 2 se obtiene invirtiendo todos los bits

- Los positivos empiezan con cero (0)
- Los negativos empiezan con uno (1)
- El rango va desde

$$-(2^{n-1}-1)$$
 a $+(2^{n-1}-1)$

con dos ceros

Ejemplos

$$+32_{10} = 00100000 -32_{10} = 11011111 +7_{10} = 00000111 -7_{10} = 11111000 +41_{10} = 00101001 -41_{10} = 11010110$$

```
➤ Ejemplo: n=8 bits
negativos \begin{cases} \dots \\ 10000000 - (2^{n-1}-1) = -127 \end{cases}

Números \begin{cases} 01111111 - (2^{n-1}-1) = +127 \end{cases}
positivos
```

Ejemplo con n= 3 bits

$$111 = -0$$

$$110 = -1$$

$$101 = -2$$

$$100 = -3 = -(2^{n-1} - 1)$$

$$011 = +3 = +(2^{n-1} - 1)$$

$$010 = +2$$

$$001 = +1$$

$$000 = +0$$

Dada una cadena de bits ¿qué número decimal representa si lo interpretamos en Ca1?

Cuando es positivo:

$$01100000 = 1 \times 2^{6} + 1 \times 2^{5} = 64 + 32 = 96$$

Como siempre

- Cuando es negativo, puedo hacer dos cosas:
- ✓ Ca1 del número y obtengo el positivo Ej.

✓ Otro método: el peso que tiene el primer dígito ahora es –(2ⁿ⁻¹ –1) y el resto de los dígitos con pesos positivos como siempre

$$11100000 = -1x(2^7 - 1) + 1x2^6 + 1x2^5 =$$
= -127 + 64 + 32 = -31

O por definición de Complemento a la base disminuida

$$ightharpoonup$$
 Ca1 = (bⁿ-1) - N^o

Resumen Ca1

- El intervalo es simétrico
- Los n bits representan al número
- Los positivos empiezan con cero (0)
- Los negativos empiezan con uno (1)
- Hay dos ceros
- ❖Números distintos 2ⁿ

Representación en Ca2

Los n bits representan al número

Información del signo

Representación en Ca2

- Si el número es positivo, los n bits tienen la representación binaria del número (como siempre)
- Si el número es negativo, los n bits tienen el Ca2 del valor deseado.
- ➤ El Ca2 de un número (en base 2) se obtiene invirtiendo todos los bits (Ca1) y luego sumándole 1.

- Otra forma: "mirando" desde la derecha se escribe el número (base 2) igual hasta el primer "1" uno inclusive y luego se invierten los demás dígitos
- Otra forma: por definición de Complemento a la base

$$\triangleright$$
 Ca2 = bⁿ - N^o

- Los positivos empiezan con cero (0)
- Los negativos empiezan con uno (1)
- El rango es asimétrico y va desde

$$-(2^{n-1}) a + (2^{n-1}-1)$$

Hay un solo cero

Ejemplos

$$-32_{10} = 11100000$$

- ✓ Los dígitos en rojo se copiaron igual
- ✓ Los dígitos en azul se invirtieron

4

Ca2 (otra forma)

$$+32_{10}$$
=00100000
11111
11011111 invierto todos los bits
 $+$ 1 le sumo 1
 -32_{10} =111000000 en Ca2

4

Ca2 (otra forma)

- $Ca2 = b^n N^o = 2^8 32 = 256-32=224$
- Hagamos la cuenta en base 2

```
\begin{array}{c}
0 & 1 & 1 \\
-1101010 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 & 0 \\
-32 & 1 & 1 & 1 & 0 & 0 & 0 & 0 & \leftarrow
\end{array}

en Ca2
```

```
➤ Ejemplo: n=8 bits
Números 11111111 ← -1
negativos
           (10000000 \leftarrow -(2^{n-1}) = -128
Números \int 011111111 - + (2^{n-1} - 1) = +127
positivos <
```

Ejemplo con n= 3 bits

$$111 = -1$$

$$110 = -2$$

$$101 = -3$$

$$100 = -4 = -(2^{n-1})$$

$$011 = +3 = +(2^{n-1} - 1)$$

$$010 = +2$$

$$001 = +1$$

$$000 = +0$$

Dada una cadena de bits ¿qué número decimal representa si lo interpretamos en Ca2?

Cuando es positivo:

$$01100000=1 \times 2^{6} + 1 \times 2^{5} = 64+32=96$$

Como siempre

Ca₂

- Cuando es negativo, puedo hacer dos cosas:
- ✓ Ca2 el número y obtengo el positivo Εj.

11100000

 \rightarrow 00100000 = +32

✓ Otro método: el peso que tiene el primer dígito ahora es –(2ⁿ⁻¹) y el resto de los dígitos con pesos positivos *como siempre*

$$111000000 = -1x(2^7) + 1x2^6 + 1x2^5$$
$$= -128 + 64 + 32 = -32$$

Resumen Ca2

- El intervalo es asimétrico, hay un más
- Los n bits representan al número
- Los positivos empiezan con cero (0)
- Los negativos empiezan con uno (1)
- Hay un solo cero
- ❖Números distintos 2ⁿ

Técnica del Exceso

 La representación de un número A es la que corresponde a la SUMA del mismo y un valor constante E (o exceso).

Exceso E de
$$A = A + E$$

 Dado un valor, el número representado se obtiene RESTANDO el valor del exceso.

$$A = (Exceso E de A) - E$$

- El signo del número A resulta de una resta
 - En binario, NO sigue la regla del bit mas significativo

Exceso 2ⁿ⁻¹

Rango

Números en punto fijo (1)

- Se considera que todos los números a representar tienen exactamente la misma cantidad de dígitos y la coma fraccionaria está siempre ubicada en el mismo lugar.
- En sistema decimal: 0,23 ó 5,12 ó 9,11
 - En los ejemplos cada número tiene tres dígitos, y la coma está a la derecha del mas significativo

Números en punto fijo (2)

- En sistema binario: $11,10 (3,5)_{10} \acute{o} 01,10 (1,5)_{10} \acute{o} 00,11 (0,75)_{10}$
 - ➤ Hay 4 dígitos y la coma está entre el 2^{do} y 3^{er} dígito.
- La diferencia principal entre la representación en el papel y su almacenamiento en computadora, es que no se guarda coma alguna, se supone que está en un lugar determinado.

4

Punto Fijo: Rango y Resolución

Rango: diferencia entre el número mayor y el menor

Resolución: diferencia entre dos números consecutivos

 Para el ejemplo anterior en sistema decimal Rango es de 0,00 a 9,99 ó [0,00...9,99]
 Resolución es 0,01

$$2,32 - 2,31 = 0,01$$
 o $9,99 - 9,98 = 0,01$

Rango y Resolución(2)

- Notar que hay un compromiso entre rango y resolución.
- Si mantenemos tres dígitos y desplazamos la coma dos lugares a la derecha, el rango pasa a ser [0,..,999] y la resolución valdrá 1.

En cualquiera de los casos hay 10³ números distintos

Ejemplo en BSS con 4 bits

4 parte ent. y 0 parte frac.

- - - -

Resolución $0001 - 0000 = 0001_2 = 1_{10}$

Decimal
0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15

Decimal

Binario

Ejemplo en ... (1)

3 parte ent. y 1 parte frac.

- - - , -

Resolución

$$000,1 - 000,0 = 000,1_2 = 0,5_{10}$$

Dillalio	Decimal
0,000	0
000,1	0,5
0,100	1
001,1	1,5
010,0	2
010,1	2,5
011,0	3
011,1	3,5
100,0	4
100,1	4,5
101,0	5
101,1	5,5
110,0	6
110,1	6,5
111,0	7
111,1	7,5

Decimal

Rinario

Ejemplo en ... (2)

2	parte	ent.	v 2	parte	frac.
_	parto		, –	parto	11 40.

- - , - -

Resolución

$$00,01 - 00,00 = 00,01$$

Decimal
0
0,25
0,5
0,75
1
1,25
1,5
1,75
2
2,25
2,5
2,75
3
3,25
3,5
3,75

Decimal

Binario

Notas de Clase 2 - 2009

Ejemplo en ... (3)

1 parte ent. y 3 parte frac.

- , - - -

Resolución

$$0.001 - 0.000 = 0.001_2 = 0.125_{10}$$

Dillalio	Decimal
0,000	0
0,001	0,125
0,010	0,25
0,011	0,375
0,100	0,5
0,101	0,625
0,110	0,75
0,111	0,875
1,000	1
1,001	1,125
1,010	1,25
1,011	1,375
1,100	1,5
1,101	1,625
1,110	1,75
1,111	1,875

Rinario

Decimal

Ejemplo en ... (4)

parte ent. y 4 parte frac.

, - - - -

Resolución $0001 - 0000 = 00001_{2} = 000025_{10}$

Diriario	Dedimai
,0000	0
,0001	0,0625
,0010	0,125
,0011	0,1875
,0100	0,25
,0101	0,3125
,0110	0,375
,0111	0,4375
,1000	0,5
,1001	0,5625
,1010	0,625
,1011	0,6875
,1100	0,75
,1101	0,8125
,1110	0,875
,1111	0,9375

Decimal

Binario

Representación y error

- Al convertir un número decimal a sistema binario tendremos 2 casos:
 - Sin restricción en la cantidad de bits a usar
 - \bullet 3,125₁₀ = 11,001₂
 - Con restricción, por ejemplo 3 bits para parte entera y 4 bits para parte fraccionaria
 - \bullet 3,125₁₀ = 011,0010₂

No cometemos error

4

Representación y error (2)

- Convertir 3,2₁₀ con distintas restricciones
 - 3 bits para parte fraccionaria: 011,001₂ = 3,125₁₀
 - Error = 3.2 3.125 = 0.075
 - 4 bits para parte fraccionaria: 011,0011₂ = 3,1875₁₀
 - Error = 3.2 3.1875 = 0.0125
 - 5 bits para parte fraccionaria: 011,00111₂ = 3,21875₁₀
 - Error = 3.2 3.21875 = -0.01875
- El error más pequeño es 0,0125 entonces 3,1875 es la representación más cercana a 3,2 y podría utilizar sólo 4 bits para la parte fraccionaria.

Bits de condición (banderas)

- ✓ Son bits que el procesador establece de modo automático acorde al resultado de cada operación realizada.
- ✓ Sus valores permitirán tomar decisiones como:
 - ✓ Realizar o no una transferencia de control.
 - ✓ Determinar relaciones entre números (mayor, menor, igual).

Banderas aritméticas

- Z (cero): vale 1 si el resultado de la operación son todos bits 0.
- C (carry): en la suma vale 1 si hay acarreo del bit más significativo; en la resta vale 1 si hay 'borrow' hacia el bit más significativo.
 - Cuando la operación involucra números sin signo, C=1 indica una condición fuera de rango.

Banderas aritméticas

- N (negativo): igual al bit más significativo del resultado.
 - Es 1 si el resultado es negativo
- ❖ V (overflow): en 1 indica una condición de fuera de rango (desborde) en Ca2.
 - El resultado no se puede expresar con el número de bits utilizado.

Suma en Ca2

- Para sumar dos números en Ca2 se suman los n bits directamente.
- Si sumamos dos números + y el resultado es ó si sumamos dos – y el resultado es + hay overflow, en otro caso no lo hay.
- ➤ Si los Nos son de distinto signo nunca puede haber overflow.

Resta en Ca2

- Para restar dos números en Ca2, se restan los n bits directamente. También se puede Ca2 el sustraendo y transformar la resta en suma.
- Si a un Nº + le restamos un Nº − y el resultado es − ó si a un Nº − le restamos un + y el resultado es + hay overflow en la resta.
- > Si son del mismo signo nunca hay overflow

Operación NZVC

Ca2

Sin signo

$$+ \frac{0100}{0010}$$

✓ Los dos resultados son correctos.

Operación NZVC Ca2 Sin signo

✓ Ca2 incorrecto, sin signo correcto.

Operación NZVC Ca2 Sin signo

✓ Ca2 correcto, sin signo incorrecto.

Operación NZVC Ca2 Sin signo

✓ Los dos resultados son incorrectos.

Operación NZVC Ca2 Sin signo

✓ Ca2 correcto, sin signo incorrecto.

Operación NZVC Ca2 Sin signo

✓ Ca2 incorrecto, sin signo correcto.

Suma en BCS

Para pensar.

Representación alfanumérica

- Letras (mayúsculas y minúsculas)
- Dígitos decimales (0, ..., 9)
- Signos de puntuación
- Caracteres especiales
- "Caracteres" u órdenes de control

Ejemplo

A cada símbolo un código en binario

```
Ejemplo: x, y, \alpha, \beta, #, @, [, ]
```

```
Ocho símbolos
                      ¿Cuántos bits? ¿Por qué?
         000
                      @
               X
         001
               У
         010
             \alpha
         011
               #
         100
         101
             @
         110
         111
```

4

Algunos códigos

FIELDATA

- 26 letras mayúsculas + 10 dígitos + 28 caracteres especiales
- Total 64 combinaciones ⇒ Código de 6 bits

ASCII

American Standard Code for Information Interchange

- FIELDATA + minúsculas + ctrl
- Total 128 combinaciones ⇒ Código de 7 bits

4

Algunos códigos (2)

- ASCII extendido
 - ASCII + multinacional + semigráficos + matemática
 - Código de 8 bits
- EBCDIC Extended BCD Interchange Code
 - similar al ASCII pero de IBM
 - Código de 8 bits

Tabla ASCII

Dec	Нх О	ct Cha	r	Dec	Нх	Oct	Html	Chr	Dec	Нх	Oct	Html	Chr	Dec	: Hx	Oct	Html Cl	<u>nr</u>
0	0 00	OO NUL	(null)	32	20	040	a#32;	Space	64	40	100	<u>@</u> #64;	0	96	60	140	& # 96;	8
1	1 00	01 SOH	(start of heading)	33	21	041	@#33;	1	65	41	101	A ;	A	97	61	141	a	a
2	2 00	2 STX	(start of text)	34	22	042	@#3 4 ;	rr	66	42	102	B ;	В	98	62	142	b	b
3	3 00	3 ETX	(end of text)	35	23	043	# ;	#	67	43	103	%#67 ;	С	99	63	143	c	C
4	4 00	04 EOT	(end of transmission)	ı			\$					D					d	
5			(enquiry)	ı			a#37;					E					e	
6			(acknowledge)				&					a#70;					f	
7			(bell)	39	27	047	'	1				G					g	
8		LO BS	(backspace)				a#40;					6#72;					4 ;	
9		ll TAB		ı)	-				a#73;					i	
10		2 LF	(NL line feed, new line)				a#42;					a#74;					j	
11		L3 VT	(vertical tab)	ı			a#43;					a#75;					k	
12		4 FF	(NP form feed, new page)				a#44;					a#76;					l	
13		.5 CR	(carriage return)				a#45;					6#77;					m	
14		.6 S 0	(shift out)	ı			a#46;					a#78;					n	
15		.7 SI	(shift in)				a#47;					6#79;					o	
			(data link escape) 📗				a#48;					6#8O;					p	
			(device control 1)				a#49;					Q	_				q	
			(device control 2)				a#50;					6#82;					r	
			(device control 3)				a#51;					6#83;					s	
			(device control 4)				6#52;					a#84;					t	
			(negative acknowledge)				a#53;					a#85;					u	
			(synchronous idle)				a#54;					4#86 ;					v	
			(end of trans. block)				6#55;					6#87;					w	
			(cancel)				a#56;					4#88; 488;					x	
		31 EM	(end of medium)	ı			a#57;					4#89;					y	
		32 SUB	(substitute)	ı			6#58 ;					Z					z	
			(escape)				6#59;	_				[_	ı			{	
		34 FS	(file separator)				<					6#92;						
		35 GS	(group separator)				=					۵#93;					}	
		86 RS	(record separator)				«#62;					a#94;					~	
31	1F 03	37 US	(unit separator)	63	3F	077	?	?	95	5F	137	_	-	127	7F	177	a#127;	DEL

Una extensión al ASCII

129 $\ddot{\mathbf{u}}$ 145 $\ddot{\mathbf{z}}$ 161 $\dot{\mathbf{f}}$ 177 $\ddot{\mathbf{z}}$ 194 $_{\mathbf{T}}$ 210 $_{\mathbf{T}}$ 226 $_{\mathbf{T}}$ 242 130 $\dot{\mathbf{e}}$ 146 $\ddot{\mathbf{E}}$ 162 $\dot{\mathbf{o}}$ 178 $\ddot{\mathbf{z}}$ 195 $_{\mathbf{F}}$ 211 $_{\mathbf{L}}$ 227 $_{\mathbf{T}}$ 243 131 $\ddot{\mathbf{a}}$ 147 $\ddot{\mathbf{o}}$ 163 $\ddot{\mathbf{u}}$ 179 $_{\mathbf{F}}$ 196 $_{\mathbf{C}}$ 212 $_{\mathbf{E}}$ 228 $_{\mathbf{Z}}$ 244 132 $\ddot{\mathbf{a}}$ 148 $\ddot{\mathbf{o}}$ 164 $\ddot{\mathbf{n}}$ 180 $_{\mathbf{F}}$ 197 $_{\mathbf{F}}$ 213 $_{\mathbf{F}}$ 229 $_{\mathbf{C}}$ 245	±
131 â 147 ô 163 ú 179 196 — 212 ┗ 228 ∑ 244	∖≥
	≤
132 ä 148 ö 164 ñ 180 d 197 d 213 ∈ 229 σ 245	(
	J
133 <mark>à</mark> 149 ò 165 Ñ 181 ╡ 198 ╞ 214 _m 230 μ 246	÷
134 <mark>å</mark> 150 û 166 ° 182 ∦ 199 ∦ 215 ∦ 231 τ 247	83
135 ç 151 û 167 ° 183 _∏ 200 ╚ 216 ‡ 232 Φ 248	۰
136 <mark>ê</mark> 152 <u></u> 168 ¿ 184 <mark>च</mark> 201 <u>⊫</u> 217 ^J 233 ⊙ 249	
137 ĕ 153 Ö 169 _ 185 ╣ 202 ╩ 218 ┏ 234 Ω 250	
138 è 154 Ü 170 → 186 ∥ 203 ╦ 219 📕 235 💍 251	$\neg \forall$
139 ĭ 156 € 171 ½ 187 ╗ 204 ⊫ 220 = 236 ∞ 252	_
140 \hat{i} 157 $\frac{3}{4}$ 172 $\frac{14}{4}$ 188 $\frac{11}{4}$ 205 = 221 $\frac{1}{4}$ 237 $\frac{1}{4}$ 253	2
141 i 158 _ 173 _j 189 ⁴ 206 # 222 238 æ 254	
142 Å 159 f 174 « 190 d 207 d 223 d 239 d 255	
143 Å 192 └ 175 » 191 ₁ 208 [⊥] 224 <mark>α</mark> 240 <u>≡</u>	

mayor información ...

- Capítulo 8: Aritmética del computador (8.1., 8.2., 8.3.)
 - Stallings, 5ta Ed.
- Sistemas enteros y Punto fijo
 - Apunte 1 de Cátedra
- Capítulo 3: Lógica digital y representación numérica
 - Apuntes COC Ingreso 2009