	Kod ucznia						ı			
			-			-				
	Dzi	Dzień		Miesiąc			Rok			
pieczątka WKK	DATA URODZENIA UCZNIA									

KONKURS Z MATEMATYKI DLA UCZNIÓW SZKÓŁ PODSTAWOWYCH

ETAP WOJEWÓDZKI

Drogi Uczniu,

witaj na III etapie konkursu z matematyki. Przeczytaj uważnie instrukcję i postaraj się prawidłowo odpowiedzieć na wszystkie pytania.

- Arkusz liczy 16 stron i zawiera 19 zadań. Na stronie 15 znajduje się karta odpowiedzi.
- Przed rozpoczęciem pracy sprawdź, czy Twój arkusz jest kompletny. Jeżeli zauważysz usterki, zgłoś je Komisji Konkursowej.
- Zadania <u>czytaj uważnie</u> i ze zrozumieniem.
- Odpowiedzi wpisuj czarnym lub niebieskim długopisem bądź piórem.
- Dbaj o czytelność pisma i precyzję odpowiedzi.
- Prawidłowe odpowiedzi wskazuj zaznaczając wybraną kratkę w następujący sposób:
- W zadaniach od 1 do 10 prawidłową odpowiedź zaznacz na karcie odpowiedzi wybierając jedną z podanych odpowiedzi i zaznacz kratkę z odpowiadającą jej literą.
- Jeżeli w zadaniach od 1 do 10 się pomylisz, błędne zaznaczenie otocz kółkiem i zamaluj kratkę z inną odpowiedzią.
- Rozwiązania zadań od 11 19 zapisz w wyznaczonych miejscach.
- Oceniane będą tylko te odpowiedzi, które umieścisz w miejscu do tego przeznaczonym.
- Obok każdego numeru zadania podano maksymalną liczbę punktów możliwą do uzyskania za jego rozwiązanie.
- Pracuj samodzielnie.
- Nie używaj kalkulatora.

Powodzenia!

Czas pracy:

90 minut

Liczba punktów możliwych do uzyskania:

40

Zadanie 1. (0-1)

Dana jest dziesięciocyfrowa liczba 65111111a2, która jest podzielna przez 12. Zatem cyfra a jest równa:

- **A.** 9
- **B**. 5
- **C**. 3
- **D**. 2
- **E**. 1

Zadanie 2. (0-1)

Zaokrąglenie liczby $\sqrt{1\frac{1}{3}}:\sqrt{\frac{3}{64}}$ do jedności jest równe:

- **A**. 2
- **B**. 3
- **C**. 4
- **D**. 5
- **E**. 6

Zadanie 3. (0-1)

Wartość wyrażenia $(x - y)^2$ dla $x = 3\sqrt{2}$ i $y = \sqrt{50}$ jest równa:

- **A.**16
- **B**. 10
- **C**. 8
- **D**. 6
- **E**. 4

Zadanie 4. (0-1)

lle różnych dzielników większych od 2 ma liczba 42:

- **A**. 2
- **B**. 4
- **C**. 6
- **D**. 7
- **E**. 8

Zadanie 5. (0-1)

Iloczyn kwadratów odwrotności liczb: $2\frac{5}{6}$ i $\frac{2}{17}$ wynosi:

- **A.** $\frac{1}{9}$
- **B.** $\frac{1}{18}$ **C.** 7
- **D.** 8
- **E.** 9

Zadanie 6. (0-1)

Pole trójkata o bokach równych: 5 cm, 8 cm, 5 cm wynosi:

- **A.** 12 cm²
- **B.** 20 cm² **C.** 12,5 cm² **D.** $\frac{25\sqrt{3}}{4}$ cm² **E.** 40 cm²

Zadanie 7. (0-1)

Początkowe ceny pewnych towarów X i Y były jednakowe. Po pewnym czasie cenę towaru X obniżono o 30% natomiast cenę towaru Y podwyższono o 25%. O ile procent po tych zmianach cena towaru X jest niższa od ceny towaru Y?

- **A.** 30%
- **B.** 33,(3)%
- **C**. 40%
- **D.** 44%
- **E.** 55%

Zadanie 8. (0-1)

Kwadrat podzielono na dwa prostokąty, w których stosunek obwodów wynosi 7:5. Ile jest równy stosunek pól tych prostokątów?.

- **A.** 2:1
- **B.** 3:1
- **C.** 4:1
- **D.** 3:2
- **E.** 7:5

Zadanie 9. (0-1)

Dany jest graniastosłup prawidłowy siedmiokatny, którego każda ściana boczna jest kwadratem o obwodzie 12 cm oraz czworościan foremny o polu podstawy równej $9\sqrt{3}$ cm². Ile wynosi łączna długość wszystkich krawędzi obu tych graniastosłupów?

A. $36 + 18\sqrt{3}$ cm **B.** $36 + 36\sqrt{3}$ cm **C.** 72 cm **D.** 99 cm **E.** 122 cm

Zadanie 10. (0-1)

Sześcian oraz ostrosłup prawidłowy czworokątny o krawędzi podstawy równej 3 cm i wysokości trzykrotnie dłuższej mają równe objętości. Ile wynosi pole powierzchni sześcianu?

A. 54 cm²

B. 52 cm² **C.** 36 cm² **D.** 30 cm² **E.** 27 cm²

Zadanie 11. (0-2)

Wykaż, że dla dowolnej wartości zmiennej x wartość wyrażenia: (7x - 1)(x + 2) - 7(x + 1)(x - 2) - 20x jest liczbą dodatnią.

Zapisz obliczenia.

Zadanie 12. (0-3)

Na tablicy zapisano 5 liczb. Pierwsza była równa $3\sqrt{3}$, druga była o $\sqrt{7}$ od niej większa, trzecia o $\sqrt{7}$ większa od drugiej, czwarta o $\sqrt{7}$ większa od trzeciej, a piąta o $\sqrt{7}$ większa od czwartej.

Uzasadnij, że średnia arytmetyczna tych liczb jest równa trzeciej liczbie. Zapisz obliczenia.

Zadanie 13. (0-3) Wykaż, że liczba $\frac{\sqrt{6}+\sqrt{5}}{\sqrt{6}-\sqrt{5}}+\frac{\sqrt{6}-\sqrt{5}}{\sqrt{6}+\sqrt{5}}$ jest liczbą parzystą.

Zapisz obliczenia.

Zadanie 14. (0-3)

Mała beczka pełna miodu waży 1,64 kg. Duża pusta beczka o pojemności 4 litrów waży 1,8 kg, a mała pusta beczka o pojemności 0,7 litra waży 0,8 kg. lle waży duża beczka pełna miodu?

Zapisz obliczenia i odpowiedź.

Duża beczka pełna miodu waży:

Zadanie 15. (0-4)

Dany jest trójkąt prostokątny, w którym długości boków są równe: 12, x + 1, x -7 (rysunek).

Oblicz pole tego trójkąta oraz długość najkrótszej wysokości.

Zapisz obliczenia i odpowiedź.

Pole trójkąta = Długość najkrótszej wysokości =

Zadanie 16. (0-4)Oblicz pole sześciokąta foremnego przedstawionego na rysunku.

Zapisz obliczenia i odpowiedź.

Pole sześciokąta =

Zadanie 17. (0-4)

W prostokątnym układzie współrzędnych zaznacz wszystkie punkty, których współrzędne x i y są liczbami naturalnymi spełniającymi równocześnie dwa warunki: NWW(x, y) = 12 oraz NWD(x, y) = 1. Połącz te punkty w taki sposób,

aby otrzymać wielokąt i oblicz jego pole.

Zapisz obliczenia i odpowiedź.

Pole wielokąta =

Zadanie 18. (0-4)

Dane są dwie figury: A i B (rysunek).

Przyjmując, że bok jednej kratki ma 1 oblicz ich pola.

Pole figury A = Pole figury B =

Zadanie 19. (0-3)

Do zbudowania ostrosłupa prawidłowego użyto tylko dwóch rodzajów figur: trójkątów równobocznych oraz kwadratu. Pole jednego trójkąta równobocznego jest równe $64\sqrt{3}$ cm². Oblicz objętość tego ostrosłupa. Zapisz obliczenia i odpowiedź.

Objętość ostrosłupa =

KARTA ODPOWIEDZI

Zadanie	Α	В	С	D	E
1.					
2.					
3.					
4.					
5.					
6.					
7.					
8.					
9.					
10.					

WYPEŁNIA KOMISJA

Zadanie	Liczba punktów
11.	
12.	
13.	
14.	
15.	
16.	
17.	
18.	
19.	

Liczba uzyskanych punktów za wszystkie zadania.	
---	--

