SFJK-200 可燃气体控制器 MODBUS 通讯协议 V1.0

1. 概述

本规约采用 MODBUS-RTU 协议,为主从问答连接(即半双工).主站(如 DCS 系统)发送包含地址的信息,从站(SFJK-200 可燃气体控制器)识别主站发来的消息,决定产生何种行为。如需回应,从站将产生反馈信息并用本规约发出。

1.1 RS485/MODBUS-RTU 通讯方式

- ●通讯接口: RS485:
- ●通讯接线方式: 二线制 A、B, 屏蔽双绞线;
- ●通讯工作方式: 异步串行半双工;
- ●字格式: 1 位起始位、8 位数据位、无奇偶校验位、1 位停止位;
- ●通讯速率: 9600bps;

★ DOS 系统或用户主机以下称主站, SFJK-200 可燃气体控制器称从站

2. 通讯协议

2.1 传输方式

信息传输方式为异步方式,并以字节为单位,在主站与从站之间传输的通讯信息是 10 位字格式,包含一位起始位、8 位数据位、无奇偶校验位、1 位停止位。

2.2 通讯报文格式

地址码	功能码	数据码	校验码
1个字节	1个字节	N个字节	2个字节

- 2.2.1 地址码: 帧的开始部分, 由一个字节 (8 位二进制)组成, 十进制 0-255, 在我们的系统中只使用 1-30 号地址, 其他保留。
- 2.2.2 功能码: 功能码是通讯信息帧传送的第二个字节。范围为 1-127。作为主站请求发送,通过功能码告知从站应执行什么行为。作为从站响应。而在我们的系统中只使用 03H 功能码

功能码	定义	操作
03H	读取数据寄存器 (单个或多个)	获得一个或多个寄存器的当前值

- 2.2.3 数据区:数据区包括需要从机返送何种信息或执行什么动作。
- 2.2.4 校验码(CRC 校验) 本协议采用 CRC (冗余循环码) 校验, 包含 2 个字节, 即 16 位二进制, CRC 码由发送设备计算, 放置于发送信息帧的尾部。接收信息的设备再重新计算接收到的信息 CRC, 比较计算得到的 CRC 是否与接收到的相符合,如果收到不相符合,则错误。

说明: CRC 计算方法

- ●置16位寄存器全为1;
- ●将报文数据的高字节异或寄存器的低8位, 存入寄存器;
- ●右移寄存器, 最高位置 0, 移出的低位存入标志位
- ●如标志是 1,则用 0xa001 异或寄存器;如果标志位为 0 则在进行步骤 3;
- ●重复步骤3和4,直到移位8次;
- ●异或下一位字节与寄存器;
- ●重复步骤3~5,直到所有报文数据均与寄存器异或并移位8次;
- ●此时寄存器中即为 CRC 校验码;

2.2.5 详细报文格式

功能码 0x03:读取定值内容(不支持广播命令)

主站	发送	数据格式	从站应答		数	据格式
从站	地址	01H	从站地址	011		Н
功能	码	03H	功能码	功能码		Н
起始寄存	高位地址	00Н	数据长度		2*	N
器地址	低位地址	00Н	数据 1	高字	节	xxH
读寄存器	高字节	00Н		低字	节	xxH
数量	低字节	01H~64H	•••••	•••••	•	•••••
校验码	高字节	xxH	数据N	高字	节	xxH
	低字节	xxH		低字节		xxH
			校验码	高字节		xxH
				低字	节	xxH

★注意事项

- 数据传输统一采用 16 进制码;
- ●主站读取从站寄存器数量最大一次为 100 个;
- ●主站读取从站数据间隔大于等于1秒;

3. 通讯寄存器地址映射表及说明(支持 03H 功能码读取规则) 16 进制编制

寄存器地址	内容说明	单位说明	寄存器数
0x00	读1、2回路配置点数		0x01
0x01	读3、4回路配置点数		0x01
0x0002-0x00f9	1回路 1-248 点位的属性单位	μmol/mol、%LEL、%V/V	0x010x64
0x00fa-0x01f1	2回路 1-248 点位的属性单位	μmol/mol、%LEL、%V/V	0x010x64
0x01f20x02e9	3回路1-248点位的属性单位	μmol/mol、%LEL、%V/V V	0x010x64
0x02ea-0x03e1	4回路 1-248 点位的属性单位	μmol/mol、%LEL、%V/V	0x010x64
0x03e2-0x04d9	1 回路 1-248 点位的低限报警值	μmol/mol、%LEL、%V/V	0x010x64
0x04da-0x05d1	2回路 1-248 点位的低限报警值	μmol/mol、%LEL、%V/V	0x010x64
0x05d2—0x06c9	3回路1-248点位的低限报警值	μmol/mol、%LEL、%V/V	0x010x64
0x06ca-0x07c1	4回路 1-248 点位的低限报警值	μmol/mol、%LEL、%V/V	0x010x64
0x07c2—0x08b9	1回路1-248点位的探测器状态	μmol/mol、%LEL、%V/V	0x010x64
0x08ba-0x09b1	2回路1-248点位的探测器状态	μmol/mol、%LEL、%V/V	0x010x64
0x09b2-0x0aa9	3回路1-248点位的探测器状态	μmol/mol、%LEL、%V/V	0x010x64
0x0aaa—0x0ba1	4回路1-248点位的探测器状态	μmol/mol、%LEL、%V/V	0x010x64
0x0ba2-0x0c99	1 回路 1-248 点位的探测器浓度	μmol/mol、%LEL、%V/V	0x010x64
0x0c9a-0x0d91	2 回路 1-248 点位的探测器浓度	μmol/mol、%LEL、%V/V	0x010x64
0x0d92-0x0e89	3回路1-248点位的探测器浓度	μmol/mol、%LEL、%V/V	0x010x64

0x0e8a-0x0f81	4回路1-248点位的探测器浓度	μmol/mol、%LEL、%V/V	0x010x64
0x0f82—0x0f83	1回路外控电源状态		0x02
0x0f84—0x0f85	2 回路外控电源状态		0x02
0x0f86—0x0f87	3 回路外控电源状态		0x02
0x0f88—0x0f89	4回路外控电源状态		0x02
0x0f8a	控制状态		0x01

说明

单位定义:

0: μ mo l/mo l (有毒气体, 大量程浓度无小数点)

1: %LEL(可燃气体)

2: %V/V(如氧气、氮气)

3: μmol/mol(有毒气体,小量程浓度有小数点)

探测器状态定义

数据位号	数据位说明	数据位号	数据位说明
Bit7—Bit6	预留	Bit5	是否发生反馈 1:是 0:否
Bit4	是否启动 1: 是 0: 否	Bit3	是否屏蔽或预留 1: 是 0: 否
Bit2	是否发生故障 1: 是 0: 否	Bit1	是否高限报警 1:是 0:否
Bit0	是否低限报警 1: 是 0: 否		

外控电源状态定义

- 1 10 0 747 1 - 10 7 C - 0					
数据定义说明	外控正常	外控断路	数据定义说明	外控正常	外控断路
主电正常、备电正常	0x30	0x70	主电欠压、备电正常	0x20	0x60
主电正常、备电开路	0x33	0x73	主电欠压、备电开路	0x23	0x63
主电正常、备电短路	0x31	0x71	主电欠压、备电短路	0x21	0x61
主电关闭、备电正常	0x10	0x50	主电关闭、备电欠压	0x11	0x51

控制器状态定义(数据位为1为发生相应故障,数据位为0正常状态)

数据位号	数据位说明	数据位号	数据位说明
Bit15	4回路主从通讯故障	Bit14	4回路短路故障
Bit13	4回路开路故障	Bit12	3回路主从通讯故障
Bit11	3回路短路故障	Bit10	3回路开路故障
Bit9	2回路主从通讯故障	Bit8	2回路短路故障
Bit7	2回路开路故障	Bit6	1回路主从通讯故障
Bit5	1回路短路故障	Bit4	1回路开路故障
Bit3	网络通讯故障	Bit2	预留串口故障
Bit1	CRT 连接故障	Bit0	CANBUS 联网故障

4. 应用举例

4.1 读取 SFJK-200 控制器配置点数(未配置点数时,返回回路 x 的值为 0x00)所有请求数据 及响应数据均以16 进制数据进行交换

主站请	求	数据格式(16 进制)	从站响应		数据格式(16进制)	
从站地	址	01H	从站地址	01H		Н
功能码		03H	功能码	03H		H
起始寄存器	高位地址	00H	数据长度	04		Н
地址	低位地址	00H	数据1(回路1、2	高字	节	3FH (1 回路)
读寄存器数	高字节	00H	配置点数)	低字	节	00H (2 回路)
里里	低字节	02H	数据 2 (回路 3、4	高字	节	00H (3 回路)
CRC 校验码	高字节	C4H	配置点数)	低字节		00H (4 回路)
	低字节	ОВН	CRC 校验码	高字节		F6H
				低字	节	27H

数据解析:数据 1 的高字节为 3FH,转换成 10 进制为 63,低字节为 0.数据 2 的高字节、低字节均为 0,所以从站返回的内容为 1 回路点数为 63。2、3、4 回路未配置点数

4.2 读取探测器属性及单位 (读取1回路1号点探测的浓度及属性,根据寄存器地址映射表查到,1号探测器对应寄存器地址为0002H)数据高字节代表单位,低字节代表属性。

主站请	求	数据格式(16 进制)	从站响	应	数据格式(16进制)
从站地	址	01H	从站地	址	01H
功能码		03H	功能码	功能码 03H	
起始寄存器	高位地址	00H	数据长	度	02H
地址	低位地址	02H	数据 1 (1 号	高字节	01H(单位%LEL)
读寄存器数	高字节	00H	探测器)	低字节	OAH(属性为天然气)
里里	低字节	01H	CR 校验码	高字节	39H
CRC 校验码	高字节	25H		低字节	D3H
	低字节	CAH			

数据解析:数据 1 高字节为 01H,对应单位为%LEL。低字节 0AH 转换成 10 进制为 10,对应属性为天然气(具体气体属性详见气体属性表)

4.3 连续读取1回路3、4、5、6号探测器属性及单位。(根据寄存器地址映射表查到3号探测器从0004H地址开始)

主站请.	求	数据格式(16 进制)	从站响应		数据格式(16 进制)
从站地址 01H 从站地址			01H		
功能码		03H	功能码		03H
起始寄存器	高位地址	ООН	数据长户	度	08H
地址	低位地址	04H	数据1(3号	高字节	01H(单位%LEL)
读寄存器数	高字节	00H	探测器)	低字节	OAH(属性为天然气)
里	低字节	04H	数据2(4号	高字节	01H(单位%LEL)
CRC 校验码	高字节	05H	探测器)	低字节	ODH(属性为甲烷)
	低字节	C8H	数据2(5号	高字节	00H(单位 μmol/mol)
			探测器)	低字节	81H(属性为一氧化碳)
			数据2(6号	高字节	02H(单位%V/V)
			探测器)	低字节	82H(属性为氧气)
			CRC 校验码	高字节	03H
				低字节	22H

4.4读取1回路1号探测器的低限报警值(假设1号探测器属性为甲烷,单位为%LEL.根据寄存器地址映射表查到,1号探测器对应寄存器地址为03E2H)

主站请	求	数据格式(16 进制)	从站响应		数据格式(16进制)		
从站地址		01H	从站地址		01H		
功能码		03H	功能码		功能码 03H		03H
起始寄存器	高位地址	03H	数据长度		02H		
地址	低位地址	E2H	数据1(1号	高字节	00H		
读寄存器数	高字节	00H	探测器)	低字节	FAH (25%LEL)		
里里	低字节	01H	CR 校验码	高字节	38H		
CRC 校验码	高字节	24H	低字节		07H		
	低字节	78H					

数据解析:数据 1 高字节为 0x00, 低字节为 FAH, FA 换算为十进制 =250, 转换成低限报警值= (高字节*256+低字节) /10 = (0x00*256+250) /10 = 25, 所以读到的低限报警值为 25% LEL,单位为 0 的算法不需要除 10, 如读到一氧化碳高字节为 00H,低字节为 FAH,则转换成低限报警浓度=(高字节*256+低字节) =00*256+250=250。那此时读到的低限报警值就为 250μ mol/mol

4.5 读取 1 回路 3、4、5、6 号探测器的低限报警值(3 号点属性为天然气,单位为%LEL . 4 号点为甲烷,单位为%LEL . 5 号点属性为一氧化碳,单位为 μ mol/mol, 6 号点为氧气,单位为%V/V)根据寄存器地址映射表查到,3 号探测器对应寄存器地址为03E4H

主站请求		数据格式(16 进制)	从站响应		数据格式(16 进制)	
从站地址		01H	从站地址		01H	
功能码		03H	功能码		03H	
起始寄存器	高位地址	03H	数据长度		08H	
地址	低位地址	E4H	数据1(3号	高字节	00H	
读寄存器数	高字节	00H	探测器)	低字节	64H 报警点为 10.0%LEL	
里里	低字节	04H	数据2(4号	高字节	00H	
CRC 校验码	高字节	07H	探测器)	低字节	96H 报警点为 15.0%LEL	
	低字节	7AH	数据2(5号	高字节	00H	
			探测器)	低字节	78H 报警点为 120μmol/mol	
			数据2(6号	高字节	00H	
		探测器)	低字节	BDH 报警值为 18.9 %V/V		
			CRC 校验码	高字节	В8Н	
			低字节	64H		

数据解析同 4.4 方法

4.5 读取单个探测器状态(状态参考探测器状态定义)根据寄存器地址映射表查到,1号探测器 对应寄存器地址为0702H

主站请求		数据格式(16 进制)	从站响应		数据格式(16进制)
从站地址		01H	从站地址		01H
功能码		03H	功能码		03H
起始寄存器	高位地址	07H	数据长度		02H
地址	低位地址	C2H	数据1(1号 高字节		00H(预留默认 00H)
读寄存器数	高字节	00H	探测器)	低字节	01H
里里	低字节	01H	CR 校验码	高字节	79H
CRC 校验码	高字节	24H	低字节		8EH
	低字节	82H			

4.6 读取 1 回路 3、4、5、6 号探测器的状态(根据寄存器地址映射表查到, 3 号探测器对应寄存器地址为 07C4H)

主站请求		数据格式(16进制)	从站响应		数据格式(16进制)
从站地址		01H	从站地址		01H
功能码		03H	功能码		03H
起始寄存器	高位地址	07H	数据长度		08H
地址	低位地址	C4H	数据1(3号	高字节	00H(预留默认 00H)
读寄存器数	高字节	00H	探测器)	低字节	01H
里里	低字节	04H	数据2(4号	高字节	00H(预留默认 00H)
CRC 校验码	高字节	04H	探测器)	低字节	03H
	低字节	80H	数据2(5号	高字节	00H(预留默认 00H)
			探测器)	低字节	04H
				高字节	00H(预留默认 00H)
			探测器)	低字节	08H
			CRC 校验码	高字节	81H
			低字节	10H	

数据解析:根据探测器状态定义表得到3号探测器为低限报警、4号探测器为低限报警与高限报警同时存在,5号探测器为故障,6号探测器为预留或屏蔽

4.7 读取 1 回路 1 号点探测器的当前浓度值(根据寄存器地址映射表查到, 1 号探测器对应寄存器地址为 0BA2H)

主站请求		数据格式(16进制)	从站响应		数据格式(16进制)
从站地址		01H	从站地址		01H
功能码		03H	功能码		03H
起始寄存器	高位地址	OBH	数据长度		02H
地址	低位地址	A2H	数据1(1号	高字节	01H
读寄存器数	高字节	00H	探测器)	低字节	5AH (34. 6%LEL)
里	低字节	01H	CR校验码	高字节	39H
CRC 校验码	高字节	27H		低字节	EFH
	低字节	ССН			

数据解析:数据 1 高字节为 0x01, 低字节为 5AH, 高字节 01 换算为十进制 =01, 低字节 5A 换算为十进制 =90。 转换成相应浓度值=(高字节*256+低字节)/10 = (1*256+90)/10 = 34.6, 所以读到的浓度值为 34.6%LEL, 单位为 0 的算法不需要除 10, 如读到一氧化碳高字节为 01H, 低字节为 5AH, 则转换成浓度=(高字节*256+低字节) =01*256+90=346。那此时当前的浓度值就为 346μmol/mol。

4.8 读取 1 回路 3、4、5、6 号探测器的低限报警值(3 号点属性为天然气,单位为%LEL . 4 号点为甲烷,单位为%LEL . 5 号点属性为一氧化碳,单位为 μ mol/mol, 6 号点为氧气,单位为%V/V)根据寄存器地址映射表查到,3 号探测器对应寄存器地址为 0BA4H

主站请求		数据格式(16 进制)	从站响应		数据格式(16进制)	
从站地址		01H	从站地址		01H	
功能码		03H	功能码		03H	
起始寄存器	高位地址	03H	数据长度		08H	
地址	低位地址	E4H	数据1(3号	高字节	00H	
读寄存器数	高字节	00H	探测器)	低字节	64H (10. 0%LEL)	
里里	低字节	04H	数据2(4号	高字节	00H	
CRC 校验码	高字节	07H	探测器)	低字节	96H (15. 0%LEL)	
	低字节	7AH	数据2(5号	高字节	01H	
			探测器)	低字节	40H (320μmol/mol)	
			数据2(6号	高字节	00H	
			探测器)	低字节	D1H (20.9%V/V)	
			CRC 校验码	高字节	38H	
				低字节	78H	

数据解析同 4.7 方法

4.9 读取 SFJK-200 外控电源状态(外控电源状态请参考外控电压状态定义表)1 回路外控电源对应寄存器地址为 0f82H)

主站请求		数据格式(16 进制)	从站响应		数据格式(16 进制)
从站地址		01H	从站地址		01H
功能码		03H	功能码		03H
起始寄存器	高位地址	OFH	数据长度		04H
地址	低位地址	82H	数据1	高字节	30H 主机自身电源
读寄存器数	高字节	00H	→ 数据 I	低字节	30H 外控电源 1
里	低字节	02H	— 数据 2	高字节	30H 外控电源 2
CRC 校验码	高字节	E7H	────────────────────────────────────	低字节	30H 外控电源 3
	低字节	35H	─ CRC 校验码	高字节	E1H
		UNU 水型料	低字节	28H	

注意,回路 2、3、4 可以带 4 个外控制电源,而回路 1 带 3 个外控电源,因为回路 1 将主机自身电源计算成一个电源。具体定义参阅外控制电源状态定义表。

4.10 读取 SFJK-200 控制器状态 (SFJK-200 控制器状态参考控制器状态定义表) 根据寄存器地址映射表查到,对应寄存器地址为 0F8AH

主站请求		数据格式(16 进制)	从站响应		数据格式(16 进制)
从站地址		01H	从站地址		01H
功能码		03H	功能码		03H
起始寄存器	高位地址	OFH	数据长度		02H
地址	低位地址	8AH	数据1	高字节	00H
读寄存器数	高字节	00Н		低字节	01H
里里	低字节	01H	CR 校验码	高字节	79H
CRC 校验码	高字节	А6Н		低字节	8EH
	低字节	F4H			

数据解析参阅控制器状态表