Spring 2018 MAE3134: Final Exam

10 May 2018

Resources allowed: 2 sid	: 2 sided note sheet,	calculator, rule	er. No computers or	mobile devices.
Name:		GW	TID:	

	Prob. 1	Prob. 2	Prob. 3	Prob. 4	Prob. 5	Total
ŀ	20	10	30	30	10	100
	20	10	30	30	10	100

Problem 1 Elon Musk, CEO of SpaceX and Tesla Motors, has a background in physics but unfortunately has never passed a Linear Dynamics course. His newest space vehicle must satisfy the following second order time response specifications for a unit step input:

- Percent Overshoot must be less than 5%,
- Rise time less than 1s,
- Settling Time less than 5 s.

Elon needs your help to choose a set of poles which will satisfy the specifications and save humanity from impending disaster.

- 1. On the s-plane, or complex plane, map out the acceptable regions where you could locate poles and meet the requirements.
- 2. Label the specifications lines and show your work.
- 3. Choose a set of poles that will meet the requirements.
- 4. Write the transfer function relating the input C(s) to the output R(s) for this system.
- 5. Draw an electrical circuit which will physically represent your system.

Problem 2 The frequency response of two systems are shown in Fig. 1. Using the plots, circle the correct descriptions:

Figure 1: Frequency Response

- 1. Which of the following statements are true about the damping ratios of the two systems?
 - (a) The damping coefficients are the same.
 - (b) The damping coefficient of G_1 is greater than the damping coefficient of G_2 .
 - (c) The damping coefficient of G_2 is greater than the damping coefficient of G_1 .
 - (d) Not enough information to make any statements about the damping ratio.
- 2. Which of the following statements are true about the general form of G_1 ?
 - (a) It is a first order system.
 - (b) It must have two free s terms in the denominator since the phase ends at 180° .
 - (c) It must have two free s terms in the numerator since the final magnitude slope is 40 dB per decade.
 - (d) None of the above.

Problem 3 A transfer function is defined as

$$G(s) = \frac{500(s+100)(s+20)}{s(s^2+8s+25)}.$$

- $1.\ \,$ Draw the asymptotic Bode plots for this system.
- 2. What is the steady state output for an input of $u = 5 \sin 25t$?

Problem 4 Consider a linear system

$$\dot{x} = Ax$$

with \boldsymbol{A} defined as

$$\boldsymbol{A} = \begin{bmatrix} 1 & 1 \\ 0 & -1 \end{bmatrix}.$$

- 1. Find the state transition matrix for this system.
- 2. Find $\boldsymbol{x}(t)$ for $\boldsymbol{x}(0) = \begin{bmatrix} 1 & 2 \end{bmatrix}^T$.

Problem 5 Consider the translational mechanical system defined by the following differential equation

$$\ddot{y} + 3\dot{y} + 2y = \dot{u} - u.$$

- 1. Draw a mechanical model of this system.
- 2. Determine a state space representation for this system.
- 3. Is there a nonzero input u which does not decay to zero but, for all initial conditions on y and \dot{y} , results in an output which decays to zero? If the answer is yes, then give an example of such an input.

LAPLACE TRANSFORM TABLE

Time Function	LaPlace Transform		
	1		
δ (t)	· -		
	1		
u(t)	$\frac{1}{2}$		
	S		
t	1		
	s ²		
2	1		
t ²			
t ² / ₂ t ^{k-1}	$ \frac{\frac{1}{s^2}}{\frac{1}{s^3}} $ $ \frac{(k-1)!}{s^k} $		
_k−1	(k-1)!		
, ·	- k		
	1		
e ^{-at}			
	1 s+a 1		
te ^{-at}			
	$(s+a)^2$		
	$\frac{(s+a)^2}{\frac{(k-1)!}{(s+a)^k}}$		
t ^{k-1} e-at	(K-1):		
	(s + a) ^k		
1-e ^{-at}	a		
1-6	${s(s+a)}$		
$t-\frac{1-e^{-at}}{}$	<u>a</u>		
t	$\frac{1}{s^2(s+a)}$		
	a ²		
$1-(1+at)e^{-at}$			
	$s(s+a)^2$		
e ^{-at} -e ^{-bt}	b-a		
e ** -e **	$\overline{(s+a)(s+b)}$		
sin bt	<u>b</u>		
	$\frac{\overline{s^2+b^2}}{}$		
cos bt	s		
	$\overline{s^2+b^2}$		
	S TU		
t sin bt	<u> </u>		
	$\frac{2bs}{(s^2+b^2)^2}$		
t cos bt	s^2-b^2		
1 000 01			
*	$\sqrt{(s^2+b^2)^2}$		
-at	b		
e ^{-at} sin bt	$\frac{(s+a)^2+b^2}{(s+a)^2+b^2}$		
	(s+a)2+b2		
e ^{-at} cos bt	s+a		
e COS DI	$\frac{s+a}{(s+a)^2+b^2}$		
·	(S+a) +U		