POTENZMENGE:

Die "Potenzmenge" P(M) einer Menge M ist die Gesamtheit aller Teilmengen von M, einschließlich der leeren Menge und der Menge selbst.

$$P(M) = \{x | x \subseteq M\}$$

MÄCHTIGKEIT EINER MENGE:

Es sei S eine Menge mit endlich vielen Elementen. Die Anzahl der Elemente, auch "Kardinalität" oder "Mächtigkeit" genannt, schreibt man |S|.

VEREINIGUNG ZWEIER MENGEN:

Die "Vereinigung" zweier Mengen S und T ist die Menge aller Elemente, die zu S oder zu T gehören.

$$S \cup T = \{x | x \in S \lor x \in T\}$$

MENGENDIFFERENZ:

Die "Differenz" zweier Mengen S und T ist die Menge aller Elemente von S, die nicht zu T gehören.

$$S \setminus T = \{x | x \in S \land x \notin T\}$$

SYMMETRISCHE DIFFERENZ:

Die "symmetrische Differenz" zweier Mengen S und T ist die Menge aller Elemente, die zu genau einer der beiden Mengen S und T gehören.

$$S\Delta T = \{x | (x \in S \land x \notin T) \lor (x \notin S \land x \in T)\}$$

KARTESISCHES PRODUKT:

Das "Kartesische Produkt" zweier Mengen S und T ist die Menge aller geordneten Paare. $S \times T = \{x | \text{Es gibt } y \in S \text{ und } z \in T \text{, so dass } x = (y, z)\}$

N-TUPEL:

Es seien $x_1, x_2, x_3, \ldots, x_n$ beliebige Objekte. Das geordnete "n-tupel" ist das Objekt $(x_1, x_2, x_3, \ldots, x_n)$. Zwei geordnete n-tupel $(x_1, \ldots, x_n) = (y_1, \ldots, y_n)$ sind gleich, wenn $x_1 = y_1$ und $x_2 = y_2$ und ... und $x_n = y_n$.

Das kartesische Produkt von n Mengen M_1, \ldots, M_n ist definiert durch:

$$M_1 \times M_2 \times \cdots \times M_n = \{(x_1, x_2, \dots, x_n) | x_1 \in M_1 \land x_2 \in M_2 \land \cdots \land x_n \in M_n\}$$

KOMPLEMENT EINER MENGE:

Sei $S\subseteq M$, eine Teilmenge einer festen Grundmenge M (das Universum). Das "Komplement" \overline{S} von S in M ist die Menge aller Elemente von M, die nicht in S liegen.

$$\overline{S} = M \setminus S = \{x | x \in M \text{ und } x \notin S\}$$

GEORDNETE PAARE:

Es seien a_1 und a_2 beliebige Objekte, (a_1, a_2) heißt geordnetes Paar. Zwei geordnete Paare sind gleich:

$$(a_1, a_2) = (b_1, b_2) \Leftrightarrow (a_1 = b_1 \land a_2 = b_2)$$

DURCHSCHNITT ZWEIER MENGEN:

Der "Durchschnitt $S \cap T$ zweier Mengen S,T ist die Menge, die aus allen Elementen besteht, die zu S und zu T gehören.

$$S\cap T=\{x|x\in S\wedge x\in T\}$$

DISJUNKTE MENGEN:

S und T heißen "disjunkt" oder "elementfremd", falls $S \cap T = \emptyset$.

WAHRHEITSWERTE:

In der Aussagenlogik betrachten wir die zwei **aussagenlogischen Konstanten** (Wahrheitswerte) "wahr" und "falsch".

AUSSAGENLOGISCHE AUSSAGE:

Eine aussagenlogische Aussage ist nun ein Konstrukt, in dem die Elementaraussagen "wahr" und "falsch" über Operatoren miteinander verknüpft werden. Solche Operatoren sind die Verknüpfung "und", "oder", "wenn . . ., dann . . ." oder der in der technischen Realisierung wichtige "nand" Operator. Diese Operatoren werden auch als aussagenlogische Junktoren bezeichnet.

BELEGUNGEN:

Sei $\mathbb V$ eine Menge von aussagenlogischen Variablen. Eine **Belegung** b der Variablen ist eine Funktion $b: \mathbb V \to B$, die jeder Variablen einen Wahrheitswert zuordnet.

ERFÜLLBARKEITSPROBLEM:

Gegeben eine Menge von aussagenlogischen Variablen $\mathbb V$ und eine aussagenlogische Aussageform α . Gibt es eine Belegung $b:\mathbb V\to \mathbf B$, so dass α wahr wird?

FOLGERUNG:

Sei α eine aussagenlogische Aussageform und $\mathbb A$ eine Menge von aussagenlogischen Aussageformen.

 α lässt sich aus \mathbb{A} **folgern**, wenn für jede zu \mathbb{A} konsistente Belegung b gilt: $b(\alpha) = wahr$. Wir schreiben dazu: $A \models \alpha$.

PRÄDIKAT:

Ein n-stelliges Prädikat ordnet jedem n-tupel von Objekten unserer Anschauung oder unseres Denkens einen Wahrheitswert zu.

KONSISTENTE MENGEN VON AUSSAGEFORMEN:

Sei $\mathbb A$ eine Menge von aussagenlogischen Aussageformen über der Variablenmenge $\mathbb V.$

Eine Belegung $b: \mathbb{V} \to \mathbf{B}$ heißt **konsistent** zu \mathbb{A} , wenn für alle $\alpha \in \mathbb{A}$ gilt $b(\alpha) = wahr$.

Eine Menge A von aussagenlogischen Aussageformen heißt **konsistent**, wenn es eine zu A konsistente Belegung gibt.

TAUTOLOGIE, KONTRADIKTION UND ERFÜLLBARKEIT:

Sei $\mathbb V$ eine Variablenmenge und α eine aussagenlogische Aussageform. α heißt

- eine **Tautologie**, falls für jede Belegung $b : \mathbb{V} \to \mathbf{B} \ b(\alpha) = wahr$ ist.
- eine Kontradiktion, falls für jede Belegung b: $b: \mathbb{V} \to \mathbf{B} \ b(\alpha) = falsch$ ist.
- **erfüllbar**, falls es eine Belegung $b : \mathbb{V} \to \mathbf{B}$ gibt, für die $b(\alpha) = wahr$ ist.

AUSSAGENLOGISCHE AUSSAGEFORM:

Eine aussagengenlogische Aussageform (über den Variablen x_1, \ldots, x_n) ist nun ein sprachliches Konstrukt, in dem Wahrheitswerte (wahr, falsch) und aussagenlogische Variablen x_1, \ldots, x_n über aussagenlogische Junktoren miteinander verknüpft werden.

Durch Einsetzen von Wahrheitswerten für die aussagenlogischen Variablen x_1, \ldots, x_n erhält man eine aussagenlogische Aussage.

Ergibt sich aus einer aussagenlogischen Aussageform über den Variablen x_1, \ldots, x_n unabhängig von den für die Variablen eingesetzten Wahrheitswerte eine wahre (falsche) Aussage, so heißt die Aussageform eine **Tautologie** (**Kontradiktion**).

N

FORMALE DEFINITION VON AUSSAGENLOGISCHEN AUSSAGEFORMEN:

Sei $\mathbb V$ eine Menge von aussagenlogischen Variablen mit $\mathbb V\cap\{(,),\wedge,\vee,\neg,\Rightarrow,\Leftrightarrow\}=\emptyset$.

Aussagenlogische Aussageformen über \mathbb{V} sind Zeichenketten über $\mathbb{V} \cup \{(,),\wedge,\vee,\neg,\Rightarrow,\Leftrightarrow\}$, die auf folgende Weise gebildet werden können:

- 1. Jede aussagenlogische Variable $x \in \mathbb{V}$ sowie die Konstanten wahr und falsch sind aussagenlogische Aussageformen.
- 2. Ist α eine aussagenlogische Aussageform, dann ist auch $(\neg \alpha)$ eine aussagenlogische Aussageform.
- 3. Sind α , β aussagenlogische Aussageformen, dann sind auch $(\alpha \land \beta)$ und $(\alpha \lor \beta)$ und $(\alpha \Rightarrow \beta)$ und $(\alpha \Leftrightarrow \beta)$ aussagenlogische Aussageformen.
- 4. Nur Zeichenketten, die durch endlich häufiges Anwenden der Regeln 1-3 gebildet werden, sind aussagenlogische Aussageformen.

Die Menge aller aussagenlogischen Aussageformen über $\mathbb V$ bezeichne ich mit $T_{\mathbb V}.$

ALLQUANTOR:

Sei $Q(x_1, ..., x_n)$ eine prädikatenlogische Aussageforn mit n freien Variablen $x_1, ..., x_n$, unter denen x_i eine ist. Dann bezeichnet

$$\forall x_i : Q(x_1, \ldots, x_n)$$

eine prädikatenlogische Aussageform mit n-1 Variablen. Im Spezialfall n=1 erhalten wir eine prädikatenlogische Aussage, die genau dann wahr ist, wenn $Q(x_1)$ für alle Dinge unserer Anschauung oder unseres Denkens wahr ist.

EINGESCHRÄNKTER EXISTENZQUANTOR:

Sei Q(x) eine prädikatenlogische Aussageform, in der die freie Variable x vorkommt und M eine beliebige Menge.

$$\exists x \in M : Q(x)$$

ist äquivalent zu:

 $\exists x : x \in M \land Q(x)$

B

FAKULTÄT:

Wir definieren für alle $n \in \mathbb{N}_0$ den Wert n! (sprich: n Fakultät) durch:

- 1. 0! = 1
- 2. $\forall n \in \mathbb{N}_0 : (n+1)! = (n+1) \cdot n!$

INVERSE RELATION:

Es seien M,N beliebige Mengen und $R\subseteq M\times N$ eine Relation. Die inverse Relation $R^{-1}\subseteq N\times M$ ist:

$$R^{-1} = \{(y, x) | (x, y) \in R\}$$

PEANO AXIOME:

Unter den natürlichen Zahlen verstehen wir eine Menge \mathbb{N} , für die eine Nachfolgeroperation definiert ist, und die die folgenden Eigenschaften hat:

- P1) 1 ist eine natürliche Zahl.
- P2) Jede natürliche Zahl $n \in \mathbb{N}$ hat genau einen Nachfolger $n' \in \mathbb{N}$.
- P3) Jede natürliche Zahl ist Nachfolger höchstens einer natürlichen Zahl.
- P4) $1 \in \mathbb{N}$ ist nicht Nachfolger einer natürlichen Zahl.
- P5) Sei P eine beliebige Eigenschaft von natürlichen Zahlen.

Wenn die folgenden zwei Aussagen wahr sind:

- (a) Induktionsanfang: P(1) ist wahr.
- (b) Induktionsschluss: $\forall n \in \mathbb{N} : P(n) \Rightarrow P(n')$

Dann gilt: $\forall n \in \mathbb{N} : P(n)$

RELATION:

Eine (binäre) Relation R zwischen zwei Mengen M und N ist eine beliebige Teilmenge des kartesischen Produkts $M \times N$ (siehe Mengenlehre).

$$R \subseteq M \times N$$

EINGESCHRÄNKTER ALLQUANTOR:

Sei Q(x) eine prädikatenlogische Aussageform, in der die freie Variable x vorkommt und M eine beliebige Menge.

$$\forall x \in M : Q(x)$$

ist äquivalent zu:

$$\forall x : x \in M \Rightarrow Q(x)$$

EXISTENZQUANTOR:

Sei $Q(x_1, ..., x_n)$ eine prädikatenlogische Aussageform mit n freien Variablen $x_1, ..., x_n$, unter denen x_i eine ist. Dann bezeichnet

$$\exists x_i : Q(x_1, \dots, x_n)$$

eine prädikatenlogische Aussageform mit n-1 Variablen. Im Spezialfall n=1 erhalten wir eine prädikatenlogische Aussage, die genau dann wahr ist, wenn $Q(x_1)$ für wenigstens ein Ding unserer Anschauung oder unseres Denkens wahr ist.

GLEICHHEIT VON MENGEN (EXTENSIONALITÄTSPRINZIP):

Zwei Mengen M_1 und M_2 heißen "gleich", (genau dann) wenn sie die gleichen Elemente enthalten.

Mit anderen Worten:

1. Jedes Element von M_1 ist Element von M_2 .

und

2. Jedes Element von M_2 ist Element von M_1 .

TEILMENGE:

Eine Menge M_1 heißt "Teilmenge" der Menge M_2 , wenn jedes Element von M_1 auch Element von M_2 ist. Man schreibt dann:

$$M_1 \subseteq M_2$$
.

Die Tatsache, dass M_1 nicht Teilmenge von M_2 ist, wird durch

$$M_1 \not\subseteq M_2$$

ausgedrückt.

Falls $M_1 \subseteq M_2$ und $M_1 \neq M_2$ heißt M_1 "echte Teilmenge" von M_2 . Man verwendet hierfür die Schreibweise

$$M_1 \subset M_2$$