import pandas as pd

iris=pd.read_csv('/content/sample_data/Iris.csv')

iris.head()

	Id	SepalLengthCm	SepalWidthCm	${\tt PetalLengthCm}$	PetalWidthCm	Species
0	1	5.1	3.5	1.4	0.2	Iris-setosa
1	2	4.9	3.0	1.4	0.2	Iris-setosa
2	3	4.7	3.2	1.3	0.2	Iris-setosa
3	4	4.6	3.1	1.5	0.2	Iris-setosa
4	5	5.0	3.6	1.4	0.2	Iris-setosa

iris.tail()

Species	PetalWidthCm	PetalLengthCm	SepalWidthCm	SepalLengthCm	Id	
Iris-virginica	2.3	5.2	3.0	6.7	146	145
Iris-virginica	1.9	5.0	2.5	6.3	147	146
Iris-virginica	2.0	5.2	3.0	6.5	148	147
Iris-virginica	2.3	5.4	3.4	6.2	149	148
Iris-virginica	1.8	5.1	3.0	5.9	150	149

#iris=iris[['ID','SepalLengthCm','SepalWidthCm','PetalLengthCm','PetalWidthCm','Species']]
iris.columns=['id','s.length','s.width','p.length','p.width','species']

iris.head()

species	p.width	p.length	s.width	s.length	id	
Iris-setosa	0.2	1.4	3.5	5.1	1	0
Iris-setosa	0.2	1.4	3.0	4.9	2	1
Iris-setosa	0.2	1.3	3.2	4.7	3	2
Iris-setosa	0.2	1.5	3.1	4.6	4	3
Iris-setosa	0.2	1.4	3.6	5.0	5	4

iris[iris['s.width']>4]

	id	s.length	s.width	p.length	p.width	species
15	16	5.7	4.4	1.5	0.4	Iris-setosa
32	33	5.2	4.1	1.5	0.1	Iris-setosa
33	34	5.5	42	14	0.2	Iris-setosa

iris[iris['p.width']>2]

	id	s.length	s.width	p.length	p.width	species
100	101	6.3	3.3	6.0	2.5	Iris-virginica
102	103	7.1	3.0	5.9	2.1	Iris-virginica
104	105	6.5	3.0	5.8	2.2	Iris-virginica
105	106	7.6	3.0	6.6	2.1	Iris-virginica
109	110	7.2	3.6	6.1	2.5	Iris-virginica
112	113	6.8	3.0	5.5	2.1	Iris-virginica
114	115	5.8	2.8	5.1	2.4	Iris-virginica
115	116	6.4	3.2	5.3	2.3	Iris-virginica
117	118	7.7	3.8	6.7	2.2	Iris-virginica
118	119	7.7	2.6	6.9	2.3	Iris-virginica
120	121	6.9	3.2	5.7	2.3	Iris-virginica
124	125	6.7	3.3	5.7	2.1	Iris-virginica
128	129	6.4	2.8	5.6	2.1	Iris-virginica
132	133	6.4	2.8	5.6	2.2	Iris-virginica
135	136	7.7	3.0	6.1	2.3	Iris-virginica

 ${\tt import\ matplotlib.pyplot\ as\ plt}$

import seaborn as sns

sns.scatterplot(x='s.length',y='p.length',data=iris,hue='species')
plt.plot()

y=iris[['s.length']]
x=iris[['s.width']]

from sklearn.model_selection import train_test_split

x_train,x_test,y_train,y_test=train_test_split(x,y,test_size=0.3)

x_train.head()

s.width
2.7
3.6

x_test.head()

	s.width
41	2.3
29	3.2
8	2.9
14	4.0
116	3.0

y_train.head()

	s.length
111	6.4
22	4.6
27	5.2
45	4.8
143	6.8

y_test.head()

	s.length
41	4.5
29	4.7
8	4.4
14	5.8
116	6.5

from sklearn.linear_model import LinearRegression

y_test.head()

	s.length
41	4.5
29	4.7
8	4.4
14	5.8
116	6.5

```
from sklearn.metrics import mean_squared_error
mean_squared_error(y_test,y_pred)
     0.7635070070310014
y=iris[['s.length']]
x=iris[['s.width','p.width']]
x_train,x_test,y_train,y_test=train_test_split(x,y,test_size=0.3)
lr=LinearRegression()
lr.fit(x_train,y_train)
y_pred=lr.predict(x_test)
y_pred[0:5]
     array([[5.40199523],
            [6.64738234],
            [4.71327828],
            [4.78485678],
            [5.69874681]])
y_test.head()
           s.length
      57
                4.9
      105
                7.6
      41
                4.5
      13
                4.3
      82
                5.8
mean_squared_error(y_test,y_pred)
     0.21724296055163858
y=iris[['s.length']]
x=iris[['p.length','p.width']]
x_train,x_test,y_train,y_test=train_test_split(x,y,test_size=0.3)
lr=LinearRegression()
lr.fit(x_train,y_train)
     ▼ LinearRegression
     LinearRegression()
y_pred=lr.predict(x_test)
y_pred[0:5]
     array([[4.89439611],
            [6.1152248],
            [6.31216296],
            [5.90613102],
            [6.19211552]])
y_test.head()
```

```
s.length
       7
                5.0
      68
                6.2
     142
                5.8
      89
                5.5
      56
                6.3
mean_squared_error(y_test,y_pred)
     0.14811724990471348
y=iris[['s.length']]
x=iris[['s.width','p.length','p.width']]
x_train,x_test,y_train,y_test=train_test_split(x,y,test_size=0.3)
lr=LinearRegression()
lr.fit(x_train,y_train)
     ▼ LinearRegression
     LinearRegression()
y_pred=lr.predict(x_test)
y_pred[0:5]
     array([[4.6191772 ],
            [5.39178696],
            [6.09565857],
            [5.48257376],
            [6.701151 ]])
y_test.head()
           s.length
      45
                4.8
      44
                5.1
                6.3
     123
      15
                5.7
     120
                6.9
mean_squared_error(y_pred,y_test)
     0.09266614748755732
                                                              + Code
                                                                          + Text
```

>