Newton's Divided Difference

Learning Outcomes

At the end of this session, the students should be able to:

- 1. discuss the concept of interpolation;
- 2. compute for the polynomial that will fit a set of data points using Newton's Divided Difference; and
- 3. create an R script that will implement Newton's Divided Difference.

Content

- I. Polynomial Interpolation
- II. Newton's Divided Difference
 - A. Linear
 - B. Quadratic
 - C. General Form

Polynomial Interpolation

- \rightarrow used to determine the n^{th} order polynomial that fits n+1 data points
- → the polynomial should pass through all the points of the discrete set of known points.
- → the polynomial provides a formula to compute intermediate values
- \rightarrow for a set of n+1 data points, there is one and only one polynomial of order n that will fit all the points, the general form of this polynomial is as follows:

$$f(x) = a_0 + a_1 x + a_2 x^2 + a_3 x^3 + \dots + a_n x^n$$

Newton's Divided Difference

Linear Interpolation

- → simplest form of interpolation
- → connects two points using a straight line (first order polynomial)
- \rightarrow to find the first order polynomial that will fit the two data points $(x_0, f(x_0))$ and $(x_1, f(x_1))$, similar triangles can be used

$$\frac{f_1(x) - f(x_0)}{x - x_0} = \frac{f(x_1) - f(x_0)}{x_1 - x_0}$$

$$f_1(x) = f(x_0) + \frac{f(x_1) - f(x_0)}{x_1 - x_0}(x - x_0)$$

- \rightarrow the $f_1(x)$ denotes that this is a first order interpolating polynomial
- \rightarrow the term $[f(x_1) f(x_0)]/(x_1 x_0)$ is a finite-divided-difference

Quadratic Interpolation

→ connects three points using a parabola (second order polynomial)

→ the form of the second order polynomial that will be used is as follows:

$$f_2(x) = b_0 + b_1(x - x_0) + b_2(x - x_0)(x - x_1)$$

$$b_0 = f(x_0)$$

$$b_1 = \frac{f(x_1) - f(x_0)}{x_1 - x_0}$$

$$b_2 = \frac{\frac{f(x_2) - f(x_1)}{x_2 - x_1} - \frac{f(x_1) - f(x_0)}{x_1 - x_0}}{x_2 - x_0}$$

General Form

The general form of the n^{th} order polynomial that will fit a set of n+1 data points is as follows:

$$f_n(x) = b_0 + b_1(x - x_0) + \dots + b_n(x - x_0)(x - x_1)\dots(x - x_{n-1})$$

To evaluate the coefficients, n+1 data points and the following equations will be used:

$$b_0 = f(x_0)$$

$$b_1 = f[x_1, x_0]$$

$$b_2 = f[x_2, x_1, x_0]$$

$$b_n = f[x_n, x_{n-1}, ..., x_1, x_0]$$

where the bracketed function evaluations are finite divided differences. The first finite divided difference is expressed as:

$$f[x_i, x_j] = \frac{f(x_i) - f(x_j)}{x_i - x_j}$$

The second divided difference is expressed as:

$$f[x_i, x_j, x_k] = \frac{f[x_i, x_j] - f[x_j, x_k]}{x_i - x_k}$$

Generally, the nth finite divided difference is expressed as:

$$f[x_n, x_{n-1}, ..., x_1, x_0] = \frac{f[x_n, x_{n-1}, ..., x_1] - f[x_{n-1}, x_{n-1}, ..., x_0]}{x_n - x_0}$$

Example: Given four data points, the third order polynomial can be obtained by computing for the following coefficients.

i	X	f(x)		First Order		Second Order		Third Order
0	x_0	$f(x_0)$		$f[x_1, x_0]$		$f[x_2, x_1, x_0]$		$f[x_3, x_2, x_1, x_0]$
1	x_1	$f(x_1)$	4	$f[x_2, x_1]$	\angle	$f[x_3, x_2, x_1]$	/	
2	x_2	$f(x_2)$	4	$f[x_3, x_2]$	/			
3	x_3	$f(x_3)$	/					

Figure 1: Graphical depiction of the recursive nature of finite divided differences

The interpolating polynomial is expressed as:

$$f_3(x) = f(x_0) + (x - x_0)f[x_1, x_0] + (x - x_0)(x - x_1)f[x_2, x_1, x_0] + (x - x_0)(x - x_1)(x - x_2)f[x_3, x_2, x_1, x_0]$$

Notes

- → It is not necessary for the data points to be equally spaced.
- → It is also not necessary for the abscissa values to be in ascending order

Example

Given the following values of \log_{10} , estimate the value of $\log_{10}10$ by using the interpolating polynomial.

х	f(x)
8	0.9031
9	0.9542
11	1.0414
12	1.0792

Solution:

х	f(x)	First Order	Second Order	Third Order
8	0.9031	$f[x_1, x_0] = 0.0511$	$f[x_2, x_1, x_0] = -0.0025$	$f[x_3, x_2, x_1, x_0] = 0.0001416667$
9	0.9542	$f[x_2, x_1] = 0.0436$	$f[x_3, x_2, x_1] = -0.001933$	
11	1.0414	$f[x_3, x_2] = 0.0378$		
12	1.0792			

Newton's Interpolating Polynomial:

$$f_3(x) = 0.9031 + (x - 8)(0.0511) + (x - 8)(x - 9)(-0.0025) + (x - 8)(x - 9)(x - 11)(0.0001416667)$$

Evaluating $f_3(10)$ will yield 1.000017 (The true value of $log_{10}10$ is 1).

Figure 2: Plot of the $log_{10}x$ (red) and the interpolating polynomial (blue)

Learning Experiences

- 1. Students will manually compute for the interpolating polynomial that will fit a given data points using *Newton's Divided Difference*.
- 2. Students will create their own R script that will solve for the *interpolating polynomial* of the given data points using Newton's Divided Difference.
- 3. Students will attempt to accomplish *sample exercises for self-learning* provided below.

Sample Exercises for Self-learning

Required Competencies: Regression, Interpolation
 The following data define the sea-level concentration of dissolved oxygen for fresh water as a function of temperature:

T°C	0	8	16	24	32	40
o, mg/L	14.621	11.843	9.870	8.418	7.305	6.413

- a. Solve for the function that will model the data using linear regression.
- b. Solve for the function that will model the data using polynomial regression of degree five.
- c. Solve for the function that will model the data using Newton's divided difference
- d. Estimate o(27°C) using the three functions.
- e. Plot the three functions and the data points in a graph.
- f. Compare the three functions using the graph.

Assessment Tool

A *programming exercise* on the implementation of Newton's Divided Difference written as an *R script*.

References

- [1] Chapra, S. C., & Canale, R. P. (2015). *Numerical methods for engineers* (7th ed.). Boston; New Delhi: McGraw-Hill Higher Education.
- [2] Rick Jason Obrero. (2015). *Interpolation: Newton's Divided Difference*. CMSC 150 Handout 5.