Math de l'ingénieur

Florent Gerbaud

October 2022

Table des matières

1	Calcul différentiel				
	1.1	Dérivé	e]	
		1.1.1	Définition Dérivée]	
		1.1.2	Proposition	2	
		1.1.3	Théorème dérivation des fonctions composées	2	
	1.2	Dérivé	e Partielle	2	
2	Espaces vectorielles normés				

1 Calcul différentiel

1.1 Dérivée

1.1.1 Définition Dérivée

Soit
$$\Omega$$
 un ouvert, Soit $f : \mathbb{R}^n \longrightarrow \mathbb{R}^m$

$$f(x) = \begin{pmatrix} f_1(x) \\ f_2(x) \\ \vdots \\ f_m(x) \end{pmatrix} = f(x_1, x_2, ..., x_m)$$

On dit que f est dérivable, (ou différentiable) en un point $x \in \Omega$ s'il éxiste une AL $L(x) : \mathbb{R}^n \longrightarrow \mathbb{R}^m$ tel que :

 $\forall h\in\mathbb{R}^n, x+h\in\Omega,\ f(x+h)=f(x)+L(x).h+o(|h|_{\mathbb{R}^n})$ et tel que $L(x)\in M_{m\times n}$ la dérivée est L(x)

1.1.2 Proposition

f dérivable \Longrightarrow f continue ATTENTION LA RECIPROQUE EST FAUSSE

1.1.3 Théorème dérivation des fonctions composées

Soit
$$f: \mathbb{R}^n \longrightarrow \mathbb{R}^m$$

Soit $g: \mathbb{R}^m \longrightarrow \mathbb{R}^p$

Deux fonctions dérivables. Alors :

$$g\circ f:\mathbb{R}^n\longrightarrow\mathbb{R}^p$$
 est dérivable et $(g\circ f)'(x)=g'(f(x))f'(x)$

- 1.2 Dérivée Partielle
- 2 Espaces vectorielles normés