Acceleration Practice

- 1 Is it accelerating? How did you decide?
 - (a) A cat running north at a steady speed.
- (c) A cyclist turning a corner.
- (b) An aeroplane just after it lands.
- (d) A cow standing in a field.
- A train speeds up after passing a signal. The velocities (speeds away from the signal) are in the table below, but one is missing.

Time (s)	0	5	10	15	20
Velocity (m/s)	5	11	17		29

- (a) Is it accelerating? How can you tell?
- (b) What is the missing velocity?
- (c) If it keeps accelerating like this, when will the velocity be 65 m/s?
- (d) What is the acceleration in m/s²?
- 3 A bus slows down as it approaches a bus stop.

Time (s)	0	1	2	3
Velocity (m/s)	12	9		3

- (a) Is the bus accelerating? How can you tell?
- (b) What is the missing velocity?
- (c) If it keeps decelerating like this, when will it stop?
- (d) How much does the velocity change each second?

4	An express train accelerates at 0.5 m/s^2 .						
	(a) Complete the sentence: The velocity gets m/s greater every second.						
	(b) Work out the velocity change in fifteen seconds using an equation.						
	velocity change $(m/s) = acceleration (m/s^2) \times time (s)$						
	= 0.5 ×						
	(c) Work out the velocity change in 60 s using an equation.						
	velocity change $(m/s) = acceleration (m/s^2) \times time (s)$						
	= 0.5 ×						
	(d) Work out the velocity change in two minutes.						
5	A passenger jet accelerates at 2.5 m/s ² down a runway.						
	(a) Complete the sentence: The jet gets m/s faster every second.						
	(b) Work out how much time it will take to gain 25 m/s using an equation.						
	velocity change $(m/s) = acceleration (m/s2) \times time (s)$						
	= 2.5 ×						
	(c) Work out how much time it will take to gain 50 m/s using an equation.						
	$velocity change (m/s) = acceleration (m/s2) \times time (s)$						
	_ = 2.5 ×						
	(d) Work out the time taken for the jet to reach its take off speed of 75 m/s from rest.						
6	A falling basketball on Mars reaches 21 m/s in 7 s from rest.						
	(a) Velocity gained in one second = : m/s						
	(b) Complete the sentence: The netball's acceleration (in m/s^2) is $\ratheref{lem:sentence:}$						
	(c) A diving eagle gains 80 m/s in 5 s. Work out its acceleration using an equation.						
	velocity gain (m/s) = acceleration $(m/s^2) \times time(s)$						
	= × 5						

(d) Work out the acceleration of a tractor which gains $15\ \mathrm{m/s}$ in $5\ \mathrm{s}$.

7	Complete the word equations. (a) acceleration =
	(b) velocity change =
	(c) time taken =
8	A minibus starts at rest and accelerates at $1.5~\mathrm{m/s^2}$.
	(a) How fast will it be going after 6 s?
	(b) How much time does it take to reach 15 m/s?
9	A cheetah sighting prey starts at $6\mathrm{m/s}$ and accelerates to $26\mathrm{m/s}$ in $4\mathrm{s}$.
	(a) How much velocity does it gain each second?
	(b) What is its acceleration in m/s ² ?
10	A motorcycle starts at rest and accelerates at 6 m/s^2 .
	(a) How fast will it be going after 4 s?
	(b) How much time does it take to reach 30 m/s?
11	A red car goes from $0-24$ m/s in 4 s. A blue car goes from $0-35$ m/s in 5 s.
	(a) Calculate the acceleration of the red car.
	(b) Calculate the acceleration of the blue car.
	(c) Which car has the greater acceleration?