# Capstone Report

**New York Yankees Tourists** 

### Contents

- Business Problem
- Data
- Data Exploration
- Modeling
- Results
- Discussion
- Conclusion

### **Business Problem**

Travel provider with special offer:
Book trip to visit NY + attend a NY Yankees home match

Neighborhoods in Bronx & Manhattan are well suited

- Idea: Cluster neighborhoods with regard to similar venues
  - → Improve customer satisfaction

#### Data

- JSON-file from <a href="https://ibm.box.com/shared/static/fbpwbovar7lf8p5sgddm06cgipa2rxpe.json">https://ibm.box.com/shared/static/fbpwbovar7lf8p5sgddm06cgipa2rxpe.json</a>
  - → Geometric coordinates for all NY neighborhoods
- Remove all neighborhoods that are not in Bronx or Manhattan
- Venues are requested via Foursquare API
- Example:

## Data Exploration

- Neighborhoods stored in dataframe  $\rightarrow$
- Visualized on folium map ↓



|   | Borough | Neighborhood | Latitude  | Longitude  |
|---|---------|--------------|-----------|------------|
| 0 | Bronx   | Wakefield    | 40.894705 | -73.847201 |
| 1 | Bronx   | Co-op City   | 40.874294 | -73.829939 |
| 2 | Bronx   | Eastchester  | 40.887556 | -73.827806 |
| 3 | Bronx   | Fieldston    | 40.895437 | -73.905643 |
| 4 | Bronx   | Riverdale    | 40.890834 | -73.912585 |

## Data Exploration

#### • Add venues from Foursquare:

|   | Neighborhood | Neighborhood Latitude | Neighborhood Longitude | Venue                | Venue Latitude | Venue Longitude | Venue Category |
|---|--------------|-----------------------|------------------------|----------------------|----------------|-----------------|----------------|
| 0 | Wakefield    | 40.894705             | -73.847201             | Lollipops Gelato     | 40.894123      | -73.845892      | Dessert Shop   |
| 1 | Wakefield    | 40.894705             | -73.847201             | Rite Aid             | 40.896521      | -73.844680      | Pharmacy       |
| 2 | Wakefield    | 40.894705             | -73.847201             | Carvel Ice Cream     | 40.890487      | -73.848568      | Ice Cream Shop |
| 3 | Wakefield    | 40.894705             | -73.847201             | <b>Dunkin Donuts</b> | 40.890631      | -73.849027      | Donut Shop     |
| 4 | Wakefield    | 40.894705             | -73.847201             | SUBWAY               | 40.890656      | -73.849192      | Sandwich Place |

#### • Calculate frequency of occurence for each venue and each neighborhood:

|   | Neighborhood         | Accessories<br>Store | Adult<br>Boutique | Afghan<br>Restaurant | African<br>Restaurant | Airport<br>Tram | American<br>Restaurant | Animal<br>Shelter | Antiqu<br>Sho |
|---|----------------------|----------------------|-------------------|----------------------|-----------------------|-----------------|------------------------|-------------------|---------------|
| 0 | Allerton             | 0.000000             | 0.00              | 0.00                 | 0.000000              | 0.000000        | 0.034483               | 0.00              | 0.0           |
| 1 | Battery Park<br>City | 0.000000             | 0.00              | 0.00                 | 0.000000              | 0.000000        | 0.010000               | 0.00              | 0.0           |
| 2 | Baychester           | 0.000000             | 0.00              | 0.00                 | 0.000000              | 0.000000        | 0.100000               | 0.00              | 0.0           |
| 3 | Bedford Park         | 0.000000             | 0.00              | 0.00                 | 0.000000              | 0.000000        | 0.000000               | 0.00              | 0.0           |
| 4 | Belmont              | 0.000000             | 0.00              | 0.00                 | 0.000000              | 0.000000        | 0.010526               | 0.00              | 0.0           |

## Modeling

- Cluster task  $\rightarrow$  k-means algorithm
- Try to find appropriate k via elbow method  $\rightarrow$
- Unfortunately, curve doesn't follow elbow shape
- Try out different values for *k*
- For *k*>3, always at least one cluster with only one single neighborhood
  - → Senseless
  - $\rightarrow$  Choose k=3



- Cluster 0: 03 neighborhoods
- Cluster 1: 39 neighborhoods
- Cluster 2: 50 neighborhoods



#### • Cluster 0:

| Rank | Venue category     | Relative occurence |
|------|--------------------|--------------------|
| 1    | Pizza Place        | 6.7 %              |
| 2    | Sandwich Place     | 6.7 %              |
| 3    | Chinese Restaurant | 6.7 %              |
| 4    | Cocktail Bar       | 6.7 %              |
| 5    | Shoe Store         | 3.3 %              |

#### • Cluster 1:

| Rank | Venue category     | Relative occurence |
|------|--------------------|--------------------|
| 1    | Deli / Bodega      | 4.6 %              |
| 2    | Pizza Place        | 4.4 %              |
| 3    | Sandwich Place     | 3.6 %              |
| 4    | Italian Restaurant | 3.6 %              |
| 5    | Coffee Shop        | 3.3 %              |

#### • Cluster 2:

| Rank | Venue category     | Relative occurence |  |
|------|--------------------|--------------------|--|
| 1    | Pizza Place        | 4.8 %              |  |
| 2    | Italian Restaurant | 4.2 %              |  |
| 3    | Coffee Shop        | 4.0 %              |  |
| 4    | Park               | 3.0 %              |  |
| 5    | Grocery Store      | 2.8 %              |  |

### Discussion

- All clusters have pizza place on rank 1 or 2
- Cluster 1&2 Italian restaurant vs. cluster 0 Chinese restaurant
- Cluster 1&2 coffee shop vs. cluster 0 cocktail bar
- Cluster 1&2 bodega/grocery store → suited for self-catering guests
- Cluster 2 parks

### Conclusion

- Location data were loaded into dataframe from publicly available JSON-file
- For each neighborhoods top 100 venues within 500m radius requested via Foursquare API
- Neighborhoods divided into 3 clusters with k-means algorithm, with regard to similar venues
- → Travel provider can better satisfy his customers' needs