

UNIVERSIDADES PÚBLICAS DE LA COMUNIDAD DE MADRID PRUEBA DE ACCESO A LAS ENSEÑANZAS UNIVERSITARIAS OFICIALES DE GRADO

Curso 2014-2015

MATERIA: FÍSICA

INSTRUCCIONES Y CRITERIOS GENERALES DE CALIFICACIÓN

Después de leer atentamente todas las preguntas, el alumno deberá escoger **una** de las dos opciones propuestas y responder a las cuestiones de la opción elegida.

CALIFICACIÓN: Cada pregunta se valorará sobre 2 puntos (1 punto cada apartado).

TIEMPO: 90 minutos.

OPCIÓN A

Pregunta 1.- Una nave espacial aterriza en un planeta desconocido. Tras varias mediciones se observa que el planeta tiene forma esférica, la longitud de su circunferencia ecuatorial mide $2 \cdot 10^5$ km y la aceleración de la gravedad en su superficie vale 3 m s⁻².

- a) ¿Qué masa tiene el planeta?
- b) Si la nave se coloca en una órbita circular a 30.000 km sobre la superficie del planeta, ¿cuántas horas tardará en dar una vuelta completa al mismo?

Dato: Constante de Gravitación Universal, $G = 6,67 \cdot 10^{-11} \text{ N m}^2 \text{ kg}^{-2}$.

Pregunta 2.- En un punto situado a igual distancia entre dos fábricas, que emiten como focos puntuales, se percibe un nivel de intensidad sonora de 40 dB proveniente de la primera y de 60 dB de la segunda. Determine:

- a) El valor del cociente entre las potencias de emisión de ambas fábricas.
- b) La distancia a la que habría que situarse respecto de la primera fábrica para que su nivel de intensidad sonora fuese de 60 dB. Suponga en este caso que solo existe esta primera fábrica y que el nivel de intensidad sonora de 40 dB se percibe a una distancia de 100 m.

Dato: Intensidad umbral de audición, I_0 = 10^{-12} \,\mathrm{W m^{-2}}.

Pregunta 3.- Cuatro conductores muy largos y paralelos transportan intensidades de corriente iguales, de valor 5 A. La disposición de los conductores y sus sentidos de circulación de la corriente vienen indicados en la figura (A y B, con cruces, conducen la corriente hacia dentro del papel mientras que C y D, con puntos, lo hacen hacia fuera). El lado del cuadrado mide 0,2 m. Calcule:

b) El vector campo magnético producido por los cuatro conductores en el centro del cuadrado.

Dato: Permeabilidad magnética del vacío, $\mu_0 = 4\pi \cdot 10^{-7} \text{ N A}^{-2}$.

Pregunta 4.- Considere un espejo esférico cóncavo con un radio de curvatura de 60 cm. Se coloca un objeto, de 10 cm de altura, 40 cm delante del espejo. Determine:

- a) La posición de la imagen del objeto e indique si ésta es real o virtual.
- b) La altura de la imagen e indique si ésta es derecha o invertida.

Pregunta 5.- El isótopo ¹⁸F (ampliamente utilizado en la generación de imágenes médicas) tiene una vida media de 110 minutos. Se administran 10 μg a un paciente.

- a) ¿Cuál será la actividad radiactiva inicial?
- b) ¿Cuánto tiempo transcurre hasta que queda sólo un 1% de la cantidad inicial?

Datos: Masa atómica del ¹⁸F, M = 18 u; Número de Avogadro, $N_A = 6.02 \cdot 10^{23}$ mol⁻¹.

OPCIÓN B

Pregunta 1.- El radio de uno de los asteroides, de forma esférica, perteneciente a los anillos de Saturno es de 5 km. Suponiendo que la densidad de dicho asteroide es uniforme y de valor 5,5 g cm⁻³, calcule:

- a) La aceleración de la gravedad en su superficie.
- b) La velocidad de escape desde la superficie del asteroide.

Dato: Constante de Gravitación Universal, $G = 6.67 \cdot 10^{-11} \text{ N m}^2 \text{ kg}^{-2}$.

Pregunta 2.- Un objeto de masa 0,5 kg, unido a un muelle de constante elástica 8 N m⁻¹, oscila horizontalmente sobre una superficie sin rozamiento con un movimiento armónico simple de amplitud 10 cm.

- a) Calcule los módulos de la aceleración y de la velocidad cuando el objeto se encuentra a 6 cm de la posición de equilibrio.
- b) Si el objeto comienza el movimiento desde la posición de equilibrio en sentido positivo, ¿qué tiempo mínimo habrá transcurrido cuando alcance una elongación de 8 cm?

Pregunta 3.- Tres cargas iguales, cada una de 1μC, están situadas en los vértices de un triángulo equilátero de 10 cm de lado. Calcule:

- a) La energía potencial electrostática de cualquiera de las cargas.
- b) El potencial eléctrico en el punto medio de cualquier lado.

Dato: Constante de la Ley de Coulomb, $K = 9.10^9 \text{ N m}^2 \text{ C}^{-2}$.

Pregunta 4.- Un vidrio de índice de refracción n=1,5 tiene depositada encima una capa de aceite cuyo índice de refracción varía con la longitud de onda según $n=1,3+\frac{82}{\lambda}$ (con λ medida en nm).

Al hacer incidir un haz de luz procedente del vidrio sobre la interfase vidrio-aceite, se observa que el ángulo crítico para la reflexión total es de 75°.

- a) ¿Cuánto vale la longitud de onda de dicha luz?
- b) ¿Cuál sería el máximo valor de λ para que ocurra la reflexión total si el haz de luz procede del aceite?

Pregunta 5.-

- a) Un haz de electrones se acelera desde el reposo con una diferencia de potencial de 1000 V. Determine la longitud de onda asociada a los electrones.
- b) Si una determinada radiación electromagnética, cuya longitud de onda vale $\lambda = 0.04$ nm, incide sobre una superficie de platino, cuyo trabajo de extracción equivale a 6,4 eV, ¿qué energía cinética máxima tendrán los electrones extraidos por efecto fotoeléctrico?

Datos: Masa del electrón, $m_e = 9.1 \cdot 10^{-31}$ kg; Valor absoluto de la carga del electrón, $e = 1.6 \cdot 10^{-19}$ C; Velocidad de la luz en el vacío, $c = 3 \cdot 10^8$ m s⁻¹; Constante de Planck, $h = 6.63 \cdot 10^{-34}$ J s.

CRITERIOS ESPECÍFICOS DE CORRECIÓN

FÍSICA

- * Las preguntas deben contestarse razonadamente, valorando en su resolución una adecuada estructuración y el rigor en su desarrollo.
- * Se valorará positivamente la inclusión de pasos detallados, así como la realización de diagramas, dibujos y esquemas.
- * En la corrección de las preguntas se tendrá en cuenta el proceso seguido en la resolución de las mismas, valorándose positivamente la identificación de los principios y leyes físicas involucradas.
- * Se valorará la destreza en la obtención de resultados numéricos y el uso correcto de las unidades en el Sistema Internacional.
- * Cada pregunta, debidamente justificada y razonada con la solución correcta, se calificará con un máximo de 2 puntos.
- * En las preguntas que consten de varios apartados, la calificación máxima será la misma para cada uno de ellos (desglosada en múltiplos de 0,25 puntos).