

Masterarbeit zur Erlangung des akademischen Grades **Master of Arts**

der Philosophischen Fakultät der Universität Zürich

(Titel)

Verfasserin/Verfasser: Jonathan Schaber

Matrikel-Nr: 11-771-359

Referentin/Referent: Dr. Simon Clematide

[Betreuerin/Betreuer: (Titel Vorname Name) [nur falls vom Ref. unterschiedlich]]

Institut für Computerlinguistik

Abgabedatum: (xx.xx.xxxx)

Abstract

This is the place to put the English version of the abstract.

Zusammenfassung

Und hier sollte die Zusammenfassung auf Deutsch erscheinen.

Acknowledgement

I want to thank X, Y and Z for their precious help. And many thanks to whoever for proofreading the present text.

Contents

ΑI	ostract		1
Αd	cknowled	dgement	ii
Co	ontents		iii
Li	st of Fig	ures	V
Li	st of Tab	les	vi
Li	st of Acr	onyms	vii
1	Introdu		1
	1.1 M	otivation	1
	1.2 Re	esearch Questions	1
	1.3 T	nesis Structure	1
2	Seman	tic Roles	2
	2.1 O	verview	2
3	Data So	ets	3
	3.1 W	hy create an own corpus?	3
	3.2 Co	orpora	3
	3.2.	l deISEAR	3
	3.2.5	2 MLQA_V1	3
	3.2.3	B PAWS-X	3
	3.2.4	4 SCARE	3
	3.2.	5 XNLI	3
	3.2.0	5 XQuAD	3
4	Archite		4
	4.1 O	verview	4
	4.2 Se	mantic Role Labeller	4
	4.2.	1 Finding Predicates	4

	4.2.2 DAMESRL	7
	4.3 German BERT	7
5	Results	8
	5.1 BLEU Scores	8
	5.2 Evaluation	8
	5.2.1 More evaluation	8
	5.3 Citations	8
	5.4 Graphics	9
	5.5 Some Linguistics	10
6	Conclusion	11
GI	ossary	12
Re	eferences	13
Le	benslauf	15
A	Tables	16
В	List of something	17

List of Figures

1	Multiple Predicates Dependency Parse Tree	
2	Rosetta	ć

List of Tables

1	ABC BLEU scores														8
2	Some large table .														16

List of Acronyms

BERT Bidirectional Encoder Representations from Transformers

CPOSTAG Coarse-grained Part-Of-Speech tag

LSTM Long Short-Term Memory

ML Machine Learning

NLP Natural Language Processing

POS Part-Of-Speech

POSTAG Fine-grained Part-Of-Speech tag

RNN Recurrent Neural Network

SRL Semantic Role Labelling OR Semantic Role Labeller

STTS Stuttgart-Tübingen-TagSet

1 Introduction

1.1 Motivation

Some words on your motivation would be nice.

1.2 Research Questions

The research questions that shall be answered in this thesis, are:

- 1. What do I do?
- 2. How do I do it?
- 3. And why?

1.3 Thesis Structure

```
In this first chapter ...
Chapter 2 introduces ...
Chapter 3 ...
```

2 Semantic Roles

2.1 Overview

"The main reason computational systems use semantic roles is to act as a shallow meaning representation that can let us make simple inferences that aren't possible from the pure surface string of words, or even from the parse tree." [Jurafsky and Martin, 2019, p. 375]

3 Data Sets

3.1 Why create an own corpus?

3.2 Corpora

3.2.1 delSEAR

As Troiano et al. [2019] write in their

3.2.2 MLQA_V1

Lewis et al. [2019] compiled

3.2.3 PAWS-X

Yang et al. [2019]

3.2.4 SCARE

Sänger et al. [2016]

3.2.5 XNLI

Conneau et al. [2018]

3.2.6 XQuAD

Artetxe et al. [2019]

4 Architecture

4.1 Overview

4.2 Semantic Role Labeller

A Semantic Role Labeller (SRL) is a system, that assigns automatically semantic roles to a given input text.⁰

State-of-the-art semantic role labellers (SRLs) are end-to-end models, nowadays often implementing deep learning techniques, like RNNs or attention, that render tedious feature engineering unnecessary. For my system, I implement the DAMESRL, a model presented by Do et al. [2018]. I use their pre-trained German Character-Attention model which, according to the authors, achieved an F1 score of 73.5 on the CoNLL'09 task [Hajič et al., 2009]. However, their SRL needs as input not only the sentence, but also "its predicate w_p as input" [Do et al., 2018].

"A major advantage of dependency grammars is their ability to deal with languages that are morphologically rich and have a relatively free word order." [Jurafsky and Martin, 2019, p. 274] For extracting predicates, I rely on the dependency tree the ParZu parser Sennrich et al. [2013] generates for a given sentence. Since one sentence can have multiple predicate-argument structures, I need to device an algorithm to extract the relevant predicates in a sentence. This is not as straight forward as it seems on the first look.

4.2.1 Finding Predicates

It is a known problem in the analysis of semantic roles that a proper procedure for predicate identification is a hard to tackle problem, consider e.g. the discussion concerning so called light verbs: Wittenberg [2016].

⁰This may be one or multiple sentences.

"First, the predicates which assign semantic roles to the constituents are identified prior to semantic role labelling proper. They are usually identified as the main verbs which head clauses." [Samardzic, 2013, p. 74]

Following Foth [2006]

- (4.1) Die Keita-Dynastie regierte das vorkaiserliche und kaiserliche Mali vom 12. Jahrhundert bis Anfang des 17. Jahrhunderts.
- (4.2) Im tibetischen Buddhismus werden die Dharma-Lehrer/innen gewöhnlich als Lama bezeichnet.
- (4.3) Die Klage wurde abgewiesen, was als Sieg beschrieben werden kann.

whose dependency parse tree is shown in Figure 1: This sentence has five verbs in it, wurde, abgewiesen, beschrieben, werden, and kann (POS-tag "V" in the second row), but only two of them are relevant predicates, i.e. predicates that carry "true" semantics.

Figure 1: Example dependency parse tree for a sentence with multiple predicates.

I propose the following algorithm 1 deciding whether a verb in a sentence is or isn't a predicate using a heuristic, relying on the token's POS tag that the parser predicts. The ParZu parser's default output follows the CoNLL scheme [Buchholz and Marsi, 2006] which means that there are two levels of POS tagging: coarse-grained (CPOSTAG) and fine-grained (POSTAG), where the POSTAG corresponds to the token's STTS tag [Schiller et al., 1999].

The condition on line 9, that only tokens in the respective subclause are considered, is ensured by making sure that if a token u's POS is "V" and it points to its head

Algorithm 1 Predicate finding algorithm

```
1: for all token t \in \text{sentence do}
       if CPOSTAG t \neq 'V' then
 2:
          t \leftarrow \text{NOT\_PRED}
 3:
       else
 4:
          if POSTAG t = \text{'VVFIN'} then
 5:
             t \leftarrow \text{PRED}
 6:
          else
 7:
             FLAG \leftarrow True
 8:
             for all token u \neq t \in \text{subclause where } t \in \text{subclause do}
 9:
               if CPOSTAG u = V' \wedge u dependent on t then
10:
11:
                   t \leftarrow \text{NOT\_PRED}
12:
                   FLAG \leftarrow False
                   break
13:
                end if
14:
             end for
15:
             if FLAG = True then
16:
                t \leftarrow \text{PRED}
17:
             end if
18:
          end if
19:
       end if
20:
21: end for
```

t, that it is not itself the head of a subclause — i.e. its dependency relation is e.g. "relative clause". If that is the case the token u is considered to belong to another subclause and therefore not preventing token t from getting labelled as a predicate. Consider again the example 4.2.1: Let's say we are in the for-loop at the token weitergeleitet. Because it is a verb but not a finite full-verb, we enter the else-clause on line 7. If we were now to loop through all token of sentence 4.2.1 we would find that token $f\ddot{u}hrt$ is a verb that points to our primary token. Without the above outlined constraint that only verbs in the same subclause pointing to our original verb are preventing it from being labelled a predicate, weitergeleitet would be labelled as non-predicate. This is obviously false. Taking into account the above considerations, we see that although $f\ddot{u}hrt$ points to weitergeleitet, its edge label is rel — which means that it's the head of a relative subclause — therefore it is not anymore in the same subclause and weitergeleitet gets labelled as predicate.

4.2.2 DAMESRL

4.3 German BERT

Since its publishing two years ago, BERT [Devlin et al., 2018] has often been called a "turning-point" in ML in NLP.

I use the bert-base-german-cased model from deepset which is available in py-Torch through the hugging face library⁰.

 $^{{}^0{\}tt https://huggingface.co/bert-base-german-cased},\ accessed:\ 22.07.2020.$

5 Results

5.1 BLEU Scores

Table 1 shows how to use the predefined tab command to have it listed.

language pair	ABC	YYY					
EN→DE	20.56	32.53					
$DE {\rightarrow} EN$	43.35	52.53					

Table 1: BLEU scores of different MT systems

And we can reference the large table in the appendix as Table 2

5.2 Evaluation

We saw in section 5.1

We will see in subsection 5.2.1 some more evaluations.

5.2.1 More evaluation

5.3 Citations

Although BLEU scores should be taken with caution (see ?) or if you prefer to cite like this: [?] ...

to cite: [?, 30-31]

to cite within parentheses/brackets: [?], [?, 30-32]

to cite within the text: ?, ?, 37

only the author(s): ?

only the year: ?

5.4 Graphics

To include a graphic that appears in the list of figures, use the predefined fig command:

Figure 2: The Rosetta Stone

And then reference it as Figure 2 is easy.

5.5 Some Linguistics

(With the package 'covington')

Gloss:

(5.1) The cat sits on the table. die Katze sitzt auf dem Tisch 'Die Katze sitzt auf dem Tisch.'

Gloss with morphology:

(5.2) La gata duerm -e en la cama. Art.Fem.Sg Katze schlaf -3.Sg in Art.Fem.Sg Bett 'Die Katze schläft im Bett.'

6 Conclusion

In this project we have done so much. 1

We could show that \dots

Future research is needed.

The show must go on.

 $^{^{1}}$ Thanks to many people that helped me.

Glossary

Of course there are plenty of glossaries out there! One (not too serious) example is the online MT glossary of Kevin Knight ² in which MT itself is defined as

techniques for allowing construction workers and architects from all over the world to communicate better with each other so they can get back to work on that really tall tower.

accuracy A basic score for evaluating automatic **annotation tools** such as **parsers** or **part-of-speech taggers**. It is equal to the number of **tokens** correctly tagged, divided by the total number of tokens. [...]. (See **precision and recall**.)

clitic A morpheme that has the syntactic characteristics of a word, but is phonologically and lexically bound to another word, for example n't in the word hasn't. Possessive forms can also be clitics, e.g. The dog's dinner. When **part-of-speech tagging** is carried out on a corpus, clitics are often separated from the word they are joined to.

²Machine Translation Glossary (Kevin Knight): http://www.isi.edu/natural-language/people/dvl.html

References

- M. Artetxe, S. Ruder, and D. Yogatama. On the cross-lingual transferability of monolingual representations. arXiv preprint arXiv:1910.11856, 2019.
- S. Buchholz and E. Marsi. Conll-x shared task on multilingual dependency parsing. In *Proceedings of the tenth conference on computational natural language learning (CoNLL-X)*, pages 149–164, 2006.
- A. Conneau, G. Lample, R. Rinott, A. Williams, S. R. Bowman, H. Schwenk, and V. Stoyanov. Xnli: Evaluating cross-lingual sentence representations. arXiv preprint arXiv:1809.05053, 2018.
- J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805, 2018.
- Q. N. T. Do, A. Leeuwenberg, G. Heyman, and M. F. Moens. A flexible and easy-to-use semantic role labeling framework for different languages. In *Proceedings of the 27th International Conference on Computational Linguistics:* System Demonstrations, pages 161–165, 2018.
- K. A. Foth. Eine umfassende constraint-dependenz-grammatik des deutschen. 2006.
- J. Hajič, M. Ciaramita, R. Johansson, D. Kawahara, M. A. Martí, L. Màrquez, A. Meyers, J. Nivre, S. Padó, J. Štepánek, et al. The conll-2009 shared task: Syntactic and semantic dependencies in multiple languages. 2009.
- D. Jurafsky and J. H. Martin. Speech and language processing (draft). october 2019. *URL https://web. stanford. edu/~ jurafsky/slp3*, 2019.
- P. Lewis, B. Oğuz, R. Rinott, S. Riedel, and H. Schwenk. Mlqa: Evaluating cross-lingual extractive question answering. arXiv preprint arXiv:1910.07475, 2019.

- T. Samardzic. Dynamics, causation, duration in the predicate-argument structure of verbs: a computational approach based on parallel corpora. PhD thesis, University of Geneva, 2013.
- M. Sänger, U. Leser, S. Kemmerer, P. Adolphs, and R. Klinger. Scare—the sentiment corpus of app reviews with fine-grained annotations in german. In *Proceedings of the Tenth International Conference on Language Resources and Evaluation (LREC'16)*, pages 1114–1121, 2016.
- A. Schiller, S. Teufel, C. Stöckert, and C. Thielen. Guidelines für das tagging deutscher textcorpora. *University of Stuttgart/University of Tübingen*, 1999.
- R. Sennrich, M. Volk, and G. Schneider. Exploiting synergies between open resources for german dependency parsing, pos-tagging, and morphological analysis. In *Proceedings of the International Conference Recent Advances in Natural Language Processing RANLP 2013*, pages 601–609, 2013.
- E. Troiano, S. Padó, and R. Klinger. Crowdsourcing and validating event-focused emotion corpora for german and english. arXiv preprint arXiv:1905.13618, 2019.
- E. Wittenberg. With light verb constructions from syntax to concepts, volume 7. Universitätsverlag Potsdam, 2016.
- Y. Yang, Y. Zhang, C. Tar, and J. Baldridge. Paws-x: A cross-lingual adversarial dataset for paraphrase identification. arXiv preprint arXiv:1908.11828, 2019.

Lebenslauf

Persönliche Angaben

Ich Persönlich Meinestrasse Nr PLZ Wohnort ichpersoenlich@uzh.ch

Schulbildung

2012-2014 Bachelor-Studium Computerlinguistik und Sprachtechnologie

an der Universität Zürich

seit 2014 Master

Berufliche und nebenberufliche Tätigkeiten

2012–2013 Tutorate PCL I+II

A Tables

			number of labels
Part of speech	POS type	POS	in my corpus
14	DET	35	280
14	DET	35	280
14	DET	35	280
14	DET	35	280
14	DET	35	280
14	DET	35	280
14	DET	35	280
14	DET	35	280
14	DET	35	280
14	DET	35	280
14	DET	35	280
14	DET	35	280
14	DET	35	280

Table 2: Some very large table in the appendix $\,$

DET

Total

B List of something

This appendix contains a list of things I used for my work.

- apples
 - export2someformat
- bananas
- oranges
 - bleu4orange
 - rouge2orange