Multiple Comparison Procedures To A Control For AN(C)OVA Models

Statsomat.com

Contributors*

19 Juli 2021

Contents

Basic Information					
Model Information	ę				
Descriptive Plots	5				
Dependent Variable	;				
Dependent Against Categorical Factors	Ę				
Interaction Plot for Factors	7				
Multiple Comparisons of Means to a Control	10				
Dunnet	10				
References	10				

^{*}Denise Welsch, Markus Neuhäuser, Viktoria Daum, Linda Müller, Damian Nink, Simone Schüttler, Daniela Wüller

Basic Information

Automatic statistics for the file:	
	File
	warpbreaks.csv
Your selection for the encoding: UTF-8 Your selection for the decimal character: . Observations (rows with at least one non-missing value): 54 Variables (columns with at least one non-missing value): 3 Variables considered continuous: 1	
	Variables considered continuous breaks
	Dieaks
Variables considered categorical: 2	
	Variables considered categorical
	wool
	tension

Model Information

You defined the following linear model: breaks~wool*tension

You are interested in the factor: tension

You are interested in pairwise comparisons to the control factor level: L

Descriptive Plots

Dependent Variable

Histogram of breaks

Boxplot of breaks

Dependent Against Categorical Factors

Boxplot of breaks ~ wool

Boxplot of breaks ~ tension

Interaction Plot for Factors

Note: The more parallel the lines, the less likely is the significance of the interaction of the factors.

Interaction Plot of wool and tension

Table 4: Parameter Estimates

Variable	Value	Std.Error	t.value	pvalue	sign. level ¹	Significance at 5 percent error
(Intercept)	28.15	1.49	18.91	< 0.001	***	Intercept Significant.
wool1	2.89	1.49	1.94	0.058		Not Significant. No difference between the effect of wool1 and its reference.
tension1	8.24	2.11	3.91	< 0.001	***	Significant. A Difference between the effect of tension1 and its reference.
tension2	-6.48	2.11	-3.08	0.003	**	Significant. A Difference between the effect of tension2 and its reference.
wool1:tension1	5.28	2.11	2.51	0.016	*	Interaction Significant. Effect wool1 vs. reference depends on tension1.
wool1:tension2	0.00	2.11	0.00	1		Interaction not Significant. Effect wool1 vs. reference don't depends on tension2.

¹ '***': sign. to 0.1% error. '**': sign. to 1% error. '*': sign. to 5% error. ' . ': sign. to 10% error. ' ': not sign. ' - ': no statement.

Anova Table (Type III tests)

Response: breaks

Sum Sq Df F value Pr(>F)
(Intercept) 42785 1 357.4672 < 2.2e-16 ***
wool 451 1 3.7653 0.0582130 .
tension 2034 2 8.4980 0.0006926 ***
wool:tension 1003 2 4.1891 0.0210442 *

Residuals 5745 48

Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1

Factor Level Combinations

Multiple Comparisons of Means to a Control

Theoretical background: Testing multiple hypotheses simultaneously and each at the same pre-specified significance level, increases the probability of false positive effects. The probability to commit at least one false positive decision increases with the number of hypotheses. A solution to overcome this problem is given by multiple comparisons procedures. Here, we do not control the per-hypothesis Type I error but the probability of committing at least one Type I error over all hypotheses. Using p-values adjusted for multiplicity, individual hypotheses can be finally compared with the pre-specified significance level.

Dunnet

Test whether the factor level L of the factor tension is different from the other levels. The Null Hypothesis is for example H - L = 0.

Table 5: Multiple Comparison: Dunnet Contrasts

Null Hypothesis	Value	Std.Error	T.value	adjusted P.value	Sign. level ¹	Significance at 5 percent Type I error
H - L = 0	-14.72	3.65	-4.04	< 0.001	***	Significant. Level H of factor tension is significantly different than L ³
M - L = 0	-10.00	3.65	-2.74	0.016	*	Significant. Level M of factor tension is significantly different than L^3

^{1 &#}x27;***': sign. to 0.1% error. '**': sign. to 1% error. '*': sign. to 5% error. '. ': sign. to 10% error. ' ': not sign. ' - ': no statement.

Simultaneous Confidence Intervals which includes the true value of the difference between the reference level L and the other levels of tension

Table 6: Simoultaneous Confidence Intervals: Dunnet Contrasts

Null Hypothesis	Value	Lower bound	Upper bound	Interpretation
H - L = 0	-14.72	-23.03	-6.41	The interval (-23.03, -6.41) traps the true difference H-L with probability 95 percent. ¹
M - L = 0	-10.00	-18.31	-1.69	The interval (-18.31, -1.69) traps the true difference M-L with probability 95 percent. ¹

¹ Remark: Zero is not in the conidence interval.

References

Fox, John, and Sanford Weisberg. 2019. An R Companion to Applied Regression. Third. Thousand Oaks CA: Sage. https://socialsciences.mcmaster.ca/jfox/Books/Companion/.

Gross, Juergen, and Uwe Ligges. 2015. Nortest: Tests for Normality. https://CRAN.R-project.org/package=nortest.

 ${\it Madsen, Jacob~H.~2018.~D} {\it Doutlier:~Distance~\&~Density-Based~Outlier~Detection.~https://CRAN.R-project.org/package=DDoutlier.}$

R Core Team. 2019. R: A Language and Environment for Statistical Computing. Vienna, Austria: R Foundation for Statistical Computing. https://www.R-project.org/.

Zeileis, Achim, and Torsten Hothorn. 2002. "Diagnostic Checking in Regression Relationships." R News 2 (3): 7–10. https://CRAN.R-project.org/doc/Rnews/.

² H1 does not hold significantly.

³ H1 holds significantly.

² Remark: Zero is in the confidence interval.