Support vector machines I: Maximum-margin linear classifiers

Sanjoy Dasgupta

University of California, San Diego

Topics we'll cover

- 1 The margin of a linear classifier
- 2 Maximizing the margin
- 3 A convex optimization problem
- 4 Support vectors

Improving upon the Perceptron

For a linearly separable data set, there are in general many possible separating hyperplanes, and Perceptron is guaranteed to find one of them.

Is there a better, more systematic choice of separator? The one with the most buffer around it, for instance?

The learning problem

Given: training data $(x^{(1)}, y^{(1)}), \dots, (x^{(n)}, y^{(n)}) \in \mathbb{R}^d \times \{-1, +1\}.$

Find: $w \in \mathbb{R}^d$ and $b \in \mathbb{R}$ such that $y^{(i)}(w \cdot x^{(i)} + b) > 0$ for all i.

By scaling w, b, can equivalently ask for

$$y^{(i)}(w \cdot x^{(i)} + b) \ge 1$$
 for all i

Maximizing the margin

Given: training data $(x^{(1)}, y^{(1)}), \ldots, (x^{(n)}, y^{(n)}) \in \mathbb{R}^d \times \{-1, +1\}$. Find: $w \in \mathbb{R}^d$ and $b \in \mathbb{R}$ such that

$$y^{(i)}(w \cdot x^{(i)} + b) \ge 1$$
 for all i .

Maximize the margin γ .

A formula for the margin

Close-up of a point z on the positive boundary.

A quick calculation shows that $\gamma = 1/\|w\|$.

In short: to maximize the margin, minimize ||w||.

Maximum-margin linear classifier

• Given $(x^{(1)}, y^{(1)}), \dots, (x^{(n)}, y^{(n)}) \in \mathbb{R}^d \times \{-1, +1\}$

$$\min_{w \in \mathbb{R}^d, b \in \mathbb{R}} \|w\|^2$$
s.t.: $y^{(i)}(w \cdot x^{(i)} + b) \ge 1$ for all $i = 1, 2, \dots, n$

- This is a convex optimization problem:
 - Convex objective function
 - Linear constraints
- This means that:
 - the optimal solution can be found efficiently
 - duality gives us information about the solution

Support vectors

Support vectors: training points right on the margin, i.e. $y^{(i)}(w \cdot x^{(i)} + b) = 1$.

 $w = \sum_{i=1}^{n} \alpha_i y^{(i)} x^{(i)}$ is a function of just the support vectors.

Small example: Iris data set

Fisher's iris data

150 data points from three classes:

- iris setosa
- iris versicolor
- iris virginica

Four measurements: petal width/length, sepal width/length

Small example: Iris data set

Two features: sepal width, petal width.

Two classes: setosa (red circles), versicolor (black triangles)

