Cálculo diferencial e integral 2/Seminario 3

	Nombre:	
C1)	$Sea \ f(x,y) = \begin{cases} x^2y + 3x - y + 2 & \text{si } x \geq y, \\ \frac{\alpha x + \beta y + 2}{1 - x + 2y} & \text{si } x < y. \end{cases}$ β Para qué valores de α y β la función es diferenciable en el origen? $a) \ \alpha = -3, \ \beta = 3.$ $b) \ \alpha = -1, \ \beta = 1.$	
	c) $\alpha = 1, \beta = 3.$	
	d) No es diferenciable en el origen.	
C2)	Sea la función $f(x,y,z) = \begin{cases} \frac{xy^2z}{x^4 + y^4 + z^4} & si\ (x,y,z) \neq (0,0,0) \\ 0 & si\ (x,y,z) = (0,0,0). \end{cases}$ ¿Cuáles de las guientes afirmaciones son ciertas?	si-
	a) Existen $D_1 f(0,0,0)$, $D_2 f(0,0,0)$ y $D_3 f(0,0,0)$.	
	b) f es diferenciable en el origen.	
	c) f es continua en \mathbb{R}^3 .	
C3)	Sea la función $f(x,y) = \frac{\alpha x^3 y^2 + \beta x y^2 - y^4}{x^2 + y^4}$, si $(x,y) \neq (0,0)$, $f(0,0) = 0$. Si $u(\cos \pi/3, \sin \pi/3)$, ¿para qué valores de α y β se verifica que $f'_u(0,0) = 1$?	=
	$a) \ \alpha = -1, \ \beta = 1.$	
	b) $\alpha = -3, \ \beta = 3.$	
	c) $\alpha = 1$ $y \beta = 3$.	
	d) Ninguna de las anteriores.	

C4)	Dados $h, k > 0$, definimos la función $f(x, y) = \frac{xy(x^a + y^b)}{x^2 + y^2}$, si $(x, y) \neq (0, 0)$, $f(0, 0)$ 0. ¿Cuáles de las siguientes afirmaciones son ciertas?) =
	a) Si $a = 1/2$ y $b = 3/2$, existe $df(0,0)$.	
	b) Si $a = 1$ y $b = 1$, existe $df(0,0)$.	
	c) Si $a = 1$ y $b = 3/2$, existe $df(0,0)$.	
	d) No es cierta ninguna de las anteriores.	
C5)	Sea $f(x,y) = \frac{x^3}{x^2 + y^2}$, si $(x,y) \neq (0,0)$, $f(0,0) = 0$. ¿Cuáles de las siguientes afir ciones son ciertas?	ma-
	a) No existe $\frac{\partial f}{\partial x}(0,0)$.	
	b) Existe $\frac{\partial f}{\partial x}(0,0)$ pero no existe $\lim_{(x,y)\to(0,0)} \frac{\partial f}{\partial x}(x,y)$.	
	c) $\frac{\partial f}{\partial x}$ es continua en $(0,0)$.	
	d) No es cierta ninguna de las anteriores.	
C6)	Sea $f(x,y) = \frac{x y }{ x + y }$, si $(x,y) \neq (0,0)$, $f(0,0) = 0$. ¿Cuáles de las siguientes afir ciones son ciertas?	ma-
	a) Existen $f'_x(0,1)$ y $f'_y(0,1)$.	
	b) Existen $f'_x(0,0)$ y $f'_y(0,0)$.	
	c) f es diferenciable en $(0,1)$.	
	d) f es diferenciable en $(0,0)$.	