Twitter in the Parliament - A Text-based Analysis of German Political Entities

Patrick Schulze, Simon Wiegrebe

Supervisors:

Prof. Dr. Christian Heumann, Prof. Dr. Paul W. Thurner

7. Juli 2020

Overview

- Explore estimated topical structure with respect to different dimensions, e.g. membership in political party, time, ...
- Precisely: examine relationship between document-level prevalence covariates x_d and topic proportions θ_d
- Natural idea: regress topic proportions on prevalence covariates
 - In standard regression analysis, dependent variable is realization of random variable
 - ullet In STM, however, we have access to posterior of topic proportions $heta_d$
 - If we "naïvely" use mean/mode of this posterior as dependent variable of regression, much information is lost
 - Solution: perform sampling technique known as "method of composition" in social sciences
- Alternatively: direct assessment of logistic normal distribution with estimated topical prevalence parameters $\hat{\Gamma}$ and $\hat{\Sigma}$

Method of Composition: Usage within R Package stm

- Let $\theta_{(k)} := (\theta_{1,k}, \dots, \theta_{D,k})^T \in [0,1]^D$ denote proportion of k-th topic for all D documents
- Method of Composition (repeat m times):

 - ① Sample $\theta_{(k)}^*$ from (variational) posterior of $\theta_{(k)}$ estimated by STM ② Run regression model with response $\theta_{(k)}^*$ and covariates \boldsymbol{X} to obtain estimates of regression coefficients $\hat{m{\xi}}^*$ and covariance of $\hat{m{\xi}}^*$, $\hat{m{V}}_{\xi}^*$
 - 3 Sample $\tilde{\boldsymbol{\xi}}^*$ from $F(\hat{\boldsymbol{\xi}}^*, \hat{\boldsymbol{V}}_{\varepsilon}^*)$, where F is asymptotic distribution of $\hat{\boldsymbol{\xi}}^*$.
- ullet Idea: samples $ilde{oldsymbol{\xi}}^*$ take into account uncertainty in $heta_{(k)}$
- Visualization of topic-metadata relationship: For observation x_{pred} , plot \mathbf{x}_{pred} vs. predicted response with $\mathbf{x}_{\text{pred}}^T \tilde{\boldsymbol{\xi}}^*$ as linear predictor

Problems

- In STM, regression model in step 2 is OLS; however OLS not appropriate to model proportions
- Mixing of Bayesian and frequentist approach questionable! From Bayesian perspective $\tilde{\boldsymbol{\xi}}^*$ can only be considered sample from posterior of $\boldsymbol{\xi}$ in certain bayesian regression models with questionable (uniform) prior assumptions.
- 3 Using $\mathbf{x}_{\text{pred}}^T \tilde{\mathbf{\xi}}^*$ as linear predictor does *not* yield sample of posterior predictive distribution
- Separate modeling of topic proportions neglects dependence among variables

Method of Composition: Usage within R Package stm

- Notation:
 - $\theta_{(k)} := (\theta_{1,k}, \dots, \theta_{D,k})^T \in [0,1]^D$: proportion of k-th topic for all D documents
 - $q(heta_{(k)}|m{X},m{W})$: approximate variational posterior of $m{ heta}_{(k)}$
 - $q(\hat{\boldsymbol{\xi}}|\boldsymbol{X}, \boldsymbol{\theta}_{(k)})$: (normal) distribution of estimated regression coefficients $\hat{\boldsymbol{\xi}}$ from OLS regression $\boldsymbol{\theta}_{(k)} = \boldsymbol{X}\boldsymbol{\xi} + \boldsymbol{\epsilon}$, where $\boldsymbol{\epsilon} \sim \mathcal{N}(0, \sigma^2 \boldsymbol{I})$
- Method of composition:
 - 1) Draw $\boldsymbol{\theta}_{(k)}^* \sim q(\boldsymbol{\theta}_{(k)}|\boldsymbol{X}, \boldsymbol{W})$.
 - 2) Draw $\hat{\boldsymbol{\xi}}^* \sim q(\hat{\boldsymbol{\xi}}|\boldsymbol{X}, \boldsymbol{\theta}^*_{(k)})$.
- It then holds that $\hat{\xi}_1^*, \dots, \hat{\xi}_m^*$ is an i.i.d. sample from the marginal posterior of regression coefficients

$$q(m{\xi}|m{X},m{W}) = \int_{m{ heta}_{(k)}} q(m{\xi}|m{X},m{ heta}_{(k)}) q(m{ heta}_{(k)}|m{X},m{W}) \mathrm{d}m{ heta}_{(k)}$$

Method of Composition: Usage within R Package stm

- Problem: OLS regression not suitable for (sampled) proportions,
 which are restricted to interval (0,1)
- \Rightarrow Estimated relationship between proportions and prevalence covariates might involve negative estimated proportions

Figure: Emprical mean and 95% credible intervals for topics 1 and 6 over time, estimated using estimateEffect from the stm package.

Method of Composition: Extension of existing approach

- Instead of OLS regression, we can use a beta regression or a quasibinomial GLM (both with logit-link) to adequately model proportions
- In this case, regression coefficients are asymptotically normally distributed

Figure: Empirical mean and 95% credible intervals, obtained using a quasibinomial GLM.

Problem: Univariate Modeling of Proportions

- Remember, by assumption: $\theta_d \sim \text{LogisticNormal}(\mathbf{\Gamma}^T \mathbf{x}_d^T, \mathbf{\Sigma})$
- Logistic normal distribution assumes high dependence among individual components
- However, regression within method of composition uses univariate k-th topic proportion as dependant variable
- Problem with this approach: dependence among components neglected ⇒ especially uncertainty estimates are unrealistic

Multivariate Modeling via Logistic Normal Distribution

- \bullet Inference within STM involves finding estimates $\hat{\Gamma}$ and $\hat{\Sigma}$
- Idea: plug estimates into logistic normal distribution \Rightarrow for a given covariate value \mathbf{x}_d^* , "predict" topic proportion as $\theta_d^* \sim \text{LogisticNormal}(\hat{\mathbf{\Gamma}}^T(\mathbf{x}_d^*)^T, \hat{\mathbf{\Sigma}})$
- Ideally, we would apply fully Bayesian approach and sample from (variational) posterior of Γ (and update Σ , which is obtained via MLE) \Rightarrow "Predictive Posterior" of topic proportions
- However, output obtained using R package stm does not allow for simple implementation of such a procedure (i.e., sampling from variational posterior of Γ and updating Σ); yet, possible in theory!

Multivariate Modeling via Logistic Normal Distribution

- Still, our results suggest a high discrepancy between:
 - Distribution of topic proportions assumed in generative process of STM
 - Impression we gain of this distribution via separate modeling of topics.
- Fully Bayesian approach would most likely yield even higher uncertainty

Figure: Smooth effects without credible intervals (left) and smooth effects with credible intervals (right)

Bibliography