Balanced Sparsity for Efficient DNN Inference on GPU

Zhuliang Yao^{1,4,*}, Shijie Cao^{2,4,*}, Wencong Xiao^{3,4}, Chen Zhang⁴, Lanshun Nie²

¹Tsinghua University, ²Harbin Institute of Technology,

³Beihang University, ⁴Microsoft Research Asia

* Equal contribution

Ways to Compress / Speedup DL

- Weight Pruning / Sparsity
- Quantization
- Matrix Factorization (SVD)
- Distilling / Mimic
- Smaller Network / SqueezeNet / MobileNet

What is Pruning / Sparsity

- Why Network Redundancy
 - "Dead" / little activation
 - Uncorrelated with output
 - Correlated with other neurons

• How - Pruning

Related Work

Fine-grained Sparsity

- Random Sparsity
 - Learning both weights and connections (Han et al. 2015)
 - Dynamic Network Surgery (Guo et al. 2016)
 - Net-Trim: Convex Pruning (Alireza et al. 2017)

Coarse-grained Sparsity

- Block/Vector Sparsity
 - Vector-Sparse (Mao et al. 2017)
 - Block-Sparse (Narang et al. 2017)
- Filter/Channel-Level Sparsity
 - Learning Structured Sparsity (Wen et al. 2016)
 - Structured Bayesian Pruning (Neklyudov et al. 2017)

High Accuracy V.S. Practical Speedup

Balanced Sparsity on GPU

We propose a novel fine-grained sparsity pattern – Balanced Sparsity and the corresponding pruning method based on the special architecture design inside GPU.

- Maintain model accuracy
- Achieve significant practical speedup
- Flexible for any kind of networks

Balanced Sparsity

For CNNs, the weights of all kernels in one convolution layer are considered as one weight matrix.

Iterative Pruning

```
tmp_{sparsity}
```

GraduallyIncrease()

```
while{...}do{...}
```

Algorithm 1: Balance-aware Iterative Pruning

```
Input: The matrix to be pruned, M;
          The number of blocks per row, BlockNum;
          The expected sparsity, Sparsity;
   Output: The pruned matrix, M_p;
1 for M_i \in M.rows do
      Divide M_i into block_{i,j} (j = 1 \text{ to } BlockNum);
3 end
4 tmp_{sparsity} = 0;
5 while tmp_{sparsity} < Sparsity do
       tmp_{sparsity} = GraduallyIncrease(tmp_{sparsity});
      for block_{i,j} \in M do
           Sort elements and calculate the block internal
            threshold T_{i,j} based on tmp_{sparsity};
          for each element \in block_{i,j} do
              prune element if |element| < T;
10
11
          end
      end
13 end
14 return the pruned matrix, M_n;
```

Experiments

- Dense Model (baseline) cuBLAS
- Random Sparsity cuSPARSE
- Block Sparsity an open sourced GPU library from OpenAI
- Balanced Sparsity our own GPU implementation
- Vector sparsity only evaluated for accuracy
- Same hyper-parameters and fine-tune techniques

Experiments - Benchmark

- This benchmark uses a matrix size of 16384x8196.
- The ideal inference time:

$$i_time = (d_time - o_time) * (1 - sparsity) + o_time$$

Experiments – Real Workloads VGG16 on ImageNet

	Dense Model		Random Sparsity		Block Sparsity		Balanced Sparsity	
	Inference Time \us	Sparsity	Inference Time \us	Sparsity	Inference Time \us	Sparsity	Inference Time \us	Sparsity
conv1_1	144.0	-	714.7	42%	78.3	31%	254.7	34%
conv1_2	612.5	-	2578.0	88%	949.4	56%	1018.4	68%
conv2_1	393.5	_	1842.5	70%	356.2	41%	474.4	65%
conv2_2	588.2	-	4640.0	71%	639.9	38%	557.0	71%
conv3_1	305.0	-	2668.6	57%	286.2	30%	371.4	45%
conv3_2	584.4	_	3768.9	84%	362.6	56%	396.5	79%
conv3_3	584.4	_	4257.4	71%	490.3	35%	355.7	88%
conv4_1	333.3	-	2005.3	79%	237.8	41%	295.4	86%
conv4_2	623.0	_	3196.0	86%	316.6	57%	366.2	91%
conv4_3	623.0	-	3205.9	85%	500.5	38%	396.5	88%
conv5_1	211.0	-	920.1	88%	170.7	41%	129.9	86%
conv5_2	211.0	-	926.3	91%	132.9	52%	126.4	90%
conv5_3	211.0	-	1053.6	89%	163.8	36%	110.2	95%
fc6	979.9	_	1084.6	93%	841.8	75%	231.1	93%
fc7	265.5	-	251.0	93%	238.6	75%	70.3	93%
fc8	144.5	-	294.5	75%	120.6	60%	58.9	75%
Total*	6814.141	-	33407.4	91.8%	5886.1	71.7%	5213.0	92.0%

Experiments – Real Workloads LSTM on PTB

- A 2-layer LSTM language model with LSTM hidden layer size of 1500.
- Perplexity a metric to quantify language model quality (the lower the better)

Lar	iguage Model / PTB	Inference Time / us	Sparsity
Sparsity	Dense Model Random Sparsity	294.1 370.9	0% 80%
Patterns	Block Sparsity Balanced Sparsity	326.3 120.2	40%* 80%

Experiments – Real Workloads

- TIMIT is a read speech benchmark
- CTC contains a Bi-LSTM cell with a hidden size of 1024

Speech Recognition / TIMIT		Inference Time / us	Sparsity	
Sparsity Patterns	Dense Model Random Sparsity Block Sparsity Balanced Sparsity	117.9 190.5 212.8 83.9	0% 87.5% 70%* 87.5%	

Discussions - Visualization

• Random-selected 64x64 block from the same position of 1500x1500 weight matrix in our LSTM experiment with 90% sparsity ratio.

Discussions - Sensitivity

 Perplexity results on PTB dataset with different block size / balance range settings.

Model		Perplexity on Sparsity			
	60%	70%	80%		
Block	block size: 4*4	80.6	83.2	88.1	
	block size: 8*8	82.4	86.4	95.2	
Sparsity	block size: 16*16	83.7	88.3	99.5	
Balanced	balance range: 25	78.3	78.6	79.4	
	balance range: 50	78.4	78.7	79.2	
Sparsity	balance range: 100	78.4	78.6	79.2	

Conclusion

- We proposed a new fine-grained sparsity pattern to represent weight matrices in deep neural networks.
- Experimental results on a set of neural networks show that our method achieves almost the same model accuracy as random sparsity with various sparsity ratios.
- Our method shows not only the feasibility, but also the high potentials, for widely deployment of sparsity in neural network inference.

Thanks!