ORGANISATION MONDIALE DE LA PROPRIETE INTELLECTUELLE Bureau international

DEMANDE INTERNATIONALE PUBLIEE EN VERTU DU TRAITE DE COOPERATION EN MATIERE DE BREVETS (PCT)

(51) Classification internationale des brevets⁴:

B01D 11/02

(11) Numéro de publication internationale: WO 89/09639

(43) Date de publication internationale: 19 octobre 1989 (19.10.89)

(21) Numéro de la demande internationale: PCT/FR89/00158

(22) Date de dépôt international: 6 avril 1989 (06.04.89)

(30) Données relatives à la priorité: 88/04765 11 avril 1988 (11.04.88) FR

(71) Déposant (pour tous les Etats désignés sauf US): INSTITUT NATIONAL DE LA RECHERCHE AGRONOMI-QUE (I.N.R.A.) [FR/FR]; 147, rue de l'Université, F-75341 Paris Cédex 07 (FR).

(72) Inventeurs; et
(75) Inventeurs/Déposants (US seulement): ADDA, Jacques [FR/FR]; 6, rue du Marechal-Joffre, F-78000 Versailles (FR). LORNE, Jean-Luc [FR/FR]; 7, rue Martre, F-92110 Clichy (FR).

(74) Mandataire: PHELIP, Bruno; Cabinet Harlé & Phélip, 21, nue de la Rochefoucauld, F-75009 Paris (FR).

(81) Etats désignés: AT (brevet européen), BE (brevet européen), CH (brevet européen), DE (brevet européen), FR (brevet européen), GB (brevet européen), IT (brevet européen), JP, LU (brevet européen), NL (brevet européen), SE (brevet européen), US.

Publiée

Avec rapport de recherche internationale.

(54) Title: METHOD FOR EXTRACTING VOLATILE COMPOUNDS WITH SUPERCRITICAL CARBON DIOXIDE, AND COMPOUNDS SO OBTAINED

(54) Titre: PROCEDE D'EXTRACTION AU DIOXYDE DE CARBONE SUPERCRITIQUE DE COMPOSES VOLA-TILES, ET COMPOSES OBTENUS

(57) Abstract

In the method disclosed, supercritical CO₂ gas is percolated through the starting material and becomes laden with extractible compounds. When the percolation pressure reaches a predetermined value, the pressure in the percolation medium is reduced by bringing said medium into a separation region where the volatile compounds are trapped in the dry ice formed. The compounds are recovered in aqueous solution after sublimation of the CO₂. According to the invention, the extraction is carried out in the separation region in the presence of a trapping medium capable of retaining the volatile compounds, advantageously a medium sparingly soluble in liquid or supercritical CO₂ and capable of dissolving the volatile compounds (glycerol or edible oil) or of complexing them (cyclodextrins). The starting material chosen has a lipid content which is not excessively high (in particular, fruits and derived products). The trapping medium which retains the volatile compounds and the latter, after separation from said medium, are useful as aromas.

(57) Abrégé

Dans ce procédé, on conduit une percolation du gaz supercritique à travers le matériel de départ, le CO₂ se chargeant en composés extractibles, puis lorsque la pression de percolation atteint une valeur prédéterminée, on effectue une détente du milieu de percolation, en amenant ce dernier dans une zone de séparation où les composés volatiles sont piégés dans la carboglace formée, ces composés étant récupérès en solution aqueuse, après sublimation du CO₂. Selon l'invention, l'extraction est conduite, dans la zone de séparation, en présence d'un milieu de piégeage apte à retenir les composés volatiles, avantageusement un milieu très peu soluble dans le CO₂ liquide ou supercritique et ayant une aptitude à dissoudre les composés volatiles (glycérol ou huile alimentaire) ou à complexer ceux-ci (cyclodextrines). Le matériel de départ choisi présente une teneur en lipides qui n'est pas excessivement élevée (notamment, fruits et produits dérivés). Le milieu de piégeage ayant retenu les composés volatiles et ces derniers, après séparation dudit milieu, sont utiles comme arômes.

BEST AVAILABLE COPY

UNIQUEMENT A TITRE D'INFORMATION

Codes utilisés pour identifier les Etats parties au PCT, sur les pages de couverture des brochures publiant des demandes internationales en vertu du PCT.

AT	Autriche	FR	France	ML	Mali	
ΛŪ	Australie	GA	Gabon	MR	Mauritanie	
BB	Barbade	GB	Royaume-Uni	MW	Malawi	
BE	Belgique	HU	Hongrie	NL	Pays-Bas	
BG	Bulgarie	IT	Italia	NO	Norvère	
BJ	Bénin	JР	Japon	RO	Roumanie	
BR	Brésil	KP	République populaire démocratique	SD	Soudan	
CF	République Centrafricaine		de Corée	SE	Suède	
CG		KR	République de Corée	SN	Sénégal	
CE		. II	Liechtenstein	SU		
CM		LK	'Sri Lanka		Union soviétique	
DE		LŪ		TD	Tchad	
DE			Luxembourg	TG	Togo	٠
FI	Finlande	MC	Monaco	US	Etats-Unis d'Amérique	
FL	T.IIIIIIII	MG	Madagascar			

10

15

20

25

30

35

PROCEDE D'EXTRACTION AU DIOXYDE DE CARBONE SUPERCRITIQUE DE COMPOSES VOLATILS, ET COMPOSES OBTENUS.

La présente invention porte sur un procèdé perfectionné d'extraction au dioxyde de carbone de composés volatils, ainsi que sur les composés volatils obtenus par ce procédé.

De façon classique, les deux méthodes physicochimiques les plus importantes pour l'extraction de substances sont la distillation et l'utilisation de solvants.

On sait que l'inconvénient de la distillation est que les mélanges de substances à séparer doivent être chauffés d'autant plus fortement que la tension de vapeur des corps à séparer est plus basse. La distillation atteint ses limites lorsque les substances ne sont plus thermiquement stables. La mise en oeuvre du vide élargit certes le champ d'application de ce procédé de séparation, mais seulement dans un intervalle d'ébullition supplémentaire d'environ 100 à 150°C.

L'extraction par solvants ne peut être utilisée que de façon limitative, car le choix du ou des solvants appropriés présente souvent des difficultés, ou bien il n'existe absolument aucun solvant convenable. Cette méthode atteint ses limites là ou les propriétés de solubilité des constituants du mélange à séparer sont tellement voisines que l'on ne peut plus obtenir un effet séparateur efficace. La présence de solvants résiduels en quantité souvent non négligeable, voire importante, dans les extraits, donc des produits finis parfumés ou alimentaires, a provoqué chez les consommateurs une prise de conscience du danger de tels extraits, d'où des réglementations nationales et internationales de plus en plus restrictives d'emploi de certains solvants.

Tous ces problèmes justifient l'emploi des fluides supercritiques, ceux-ci offrant la plupart des avantages recherchés.

15

20

25

30

35

On sait qu'un gaz est à l'état supercritique lorsqu'il se trouve à une température et à une pression supérieures à celles de son point critique (31°C et 73 x 10⁵ Pa pour le CO₂); cet état, fluide, n'est ni l'état liquide, ni l'état gazeux; son pouvoir solvant dépend beaucoup de la température et de la pression auxquelles il se trouve.

L'extraction par le CO₂ supercritique est une technique aujourd'hui bien établie, qui peut être appliquée avec succès à la récupération de produits volatils responsables de l'arôme. Ainsi, l'extraction s'effectue par percolation du gaz supercritique à travers le matériel de départ, placé sous une forme appropriée, à la suite de quoi la séparation des composés extraits est réalisée, de préférence, par simple diminution de la pression du mélange de percolation, jusqu'à une pression inférieure à la pression critique du CO₂, de préférence, entre 45 et 57 x 10⁵ Pa. On peut, en outre, abaisser la température à une valeur inférieure à la température critique du CO₂; la température, dans les séparateurs, est, par exemple, comprise entre +10°C et +25°C au maximum, alors que la pression ne dépasse généralement pas 64 x 10⁵ Pa.

Un tel procédé d'extraction est rapide.

Malheurcusement, il se produit des pertes en composés les plus volatils, ou les plus polaires, lesquels sont, soit perdus à la détente, lorsque l'appareil est ramené à pression atmosphérique, soit perdus lors de l'évaporation de la neige carbonique qui s'est formée à la détente, soit non récupérés dans le séparateur du fait d'une trop grande solutilité dans le CO2 liquide ou supercritique

Jusqu'ici, diverses techniques ont été proposées pour augmenter la récupération de ces composés : modification de la taille et de la géométrie du séparateur ou barbotage dans un solvant du CO₂ qui se dégage lors de l'évaporation de la neige carbonique. Cependant, ces techniques n'apportent pas d'amélioration suffisante.

10

15

20

25

30

La présente invention vient apporter une solution à ce problème. A cet effet, il est proposé, selon l'Invention, d'ajouter, dans le séparateur d'un extracteur au dioxyde de carbone supercritique, un milieu de piégeage approprié.

La présente invention a donc pour objet un procédé d'extraction au dioxyde de carbone supercritique des composés volatils d'un matériel de départ, suivant lequel on conduit une percolation du gaz supercritique à travers ledit matériel de départ, le dioxyde de carbone se chargeant en composés extractibles, puis lorsque la pression de percolation atteint une valeur prédéterminée, on effectue une détente du milieu de percolation, en amenant ce dernier dans une zone de séparation dans laquelle les composés volatils sont piégés dans la carboglace formée, les composés volatils étant récupérés en solution aqueuse, après sublimation du CO₂, caractérisé par le fait que l'extraction est conduite, dans le zone de séparation, en présence d'un milieu de piégeage, lequel est apte à retenir lesdits composés volatils.

On choisit notamment un milieu de piégeage très peu soluble dans le CO₂ liquide ou supercritique et ayant une aptitude à dissoudre ou à complexer les composés volatils du matériel de départ.

Par ailleurs, on choisit avantageusement un milieu de piegeage directement utilisable dans le domaine agroalimentaire. Il en résulte que la combinaison : milieu de piégeage/composés volatils pourra être utilisée directement, comme arômes, notamment en industrie agro-alimentaire. Il est également possible d'isoler les composés volatils, par des techniques connues, par exemple, par extraction par colvants ou par distillation.

A titre d'exemples de milieu de piégeage selon l'invention, on peut citer le glycérol, les huiles alimentaires, de préférence au goût neutre, comme l'huile d'arachide, de tournesol, de colze, de mais et similaires,

15

20

25

30

35

ŀ

et les cyclodextrines, comme la ß-cyclodextrine. Ces milieux se sont révélés, chacun avec sa spécificité, capables d'amélierer la récupération des composés volatils.

Le glycérol, substance non toxique, est apte à dissoudre de nombreuses molécules organiques, dont celles responsables des arômes. En outre, l'invention tire profit de la propriété particulière du glycérol de se trouver en surfusion, et, par conséquent, de rester liquide, même aux températures très basses d'extraction mises en jeu avec le CO, supercritique.

Les S-cyclodextrines, mises en solution, précipitent sous forme de complexes non volatils, avec de nombreuses molécules dont celles des arômes, et cette propriété est ici mise à profit pour préparer des poudres stables (envers l'évaporation et l'oxydation), lesquelles peuvent ensuite être utilisées dans les préparations alimentaires.

Comme matériel de départ, on peut mentionner les matériels contenant des produits volatils et dont la teneur en lipides n'est pas excessivement élevée, comme c'est le cas notamment des fruits et des boissons.

L'invention est applicable avec le plus d'avantages aux fruits et aux produits dérivés, tels que les jus de fruits et les boissons fermentées ainsi qu'aux matériels végétaux non gras, et contenant des huiles essentielles, c'est-à-dire à l'exclusion des produits oléagineux.

Parmi les fruits, le procédé de l'invention s'applique avantageusement aux petits fruits, tels que fraise, framboise, cerise, cassis, les fruits tropicaux comme la mangue, le fruit de la Passion, la papaye, le kiwi, ct similaires.

L'invention peut également être utilisée pour l'extraction des produits volatils contenus dans des fleurs, telles que lilas, géranium, lavande, rose, ainsi que dans des plantes aromatiques, telles que estragon, cerfeuil, aneth, etc.

10

15

20

25

30

Conformement à une autre caractéristique du procedé conforme à la présente invention, on introduit le milieu de piégeage dans la zone de séparation en une proportion déterminée par rapport au matériel de départ traité. Cette plage doit être adaptée à la nature du matériel de départ traité et au milieu de piégeage choisi. Ainsi, dans le cas des huiles alimentaires ou du glycérol, la gamme à utiliser peut varier de 1 à 10% en poids par rapport au matériel de départ, et, dans le cas des cyclodextrines, on peut préconiser une plage de 0,05 à 0,5% en poids par rapport au matériel de départ. Par ailleurs, l'utilisation de proportions plus importantes de milieu de piègeage reste techniquement possible, mais elle conduit à des produits moins concentrés, ce qui, en règle générale, est moins souhaité.

La présente invention porte également sur le milieu de piégeage ayant retenu les composés volatils, tel qu'il est obtenu par le procédé qui vient d'être défini, sur les composés volatils séparés de ce milieu, et sur l'application de la combinaison : milieu de piégeage/composés volatils, et des composés volatils séparés, en tant qu'arômes, notamment en industrie agro-alimentaire.

La présente invention sera maintenant décrite plus en détail, en ce qui concerne l'appareillage que l'on peut utiliser, les techniques d'extraction et de séparation des composés volatils. Des exemples et exemples comparatifs sont également présentés pour mieux illustror les résultats et avantages que la présente invention permet d'obtenir. Dans cette partie de la description, il est fait référence au dessin annexé, sur lequel :

- la figure 1 est une représentation schénatique d'un appareil d'extraction que l'on peut utiliser pour la mise en oeuvre du procédé conforme à la présente invention;
- 35 la figure 2 représente le montage utilisé pour le barbotage de la carboglace lors de la sublimation ;

30

- les figures 3 et 4 représentent les montages utilisés pour les distillations respectivement sous vide primaire et sous vide secondaire, dans le cas des extractions menées en présence d'huile dans le séparateur.
- les figures 5 (décomposée en Fig 5a, 5b, 5c, 5d et 5e) et 6 à 10 représentent différents diagrammes ou courbes obtenus dans les expérimentations qui ont été conduites.

I - APPAREILLAGE ET TECHNIQUES D'EXTRACTION

On utilise un appareil d'extraction classique, du type de ceux commercialisés, dont le schéma est représenté sur la Figure 1. La légende de ce schéma est la suivante :

B : bouteille de CO2

15 E : extracteur

S : Séparateur

p, : pompe & CO2

Pa : pompe à liquide

T, : réchauffeur

20 T_a : réfrigérant

T_q : réchauffeur

Vis: vanne de décharge

V₁₁ : vanne de sortie de liquide

PR : mesure de pression

25 TR : mesure de température

FR : mesure de débit

PRC: mesure de pression commandant la vanne de décharge Les autres vannes sont numerotées 1 à 11.

Un filtre à charbon actif est placé à l'entrée de l'appareil d'extraction de façon à piéger les impuretés contenues dans le CO₂.

Le matériel de départ est placé dans l'extracteur E qui est maintenu à la température voulue tout au long de l'extraction par une circulation d'eau dans un chemisage. Toute l'installation est remplie de CO_2 en une quantité sufficante pour que la pression dans l'extracteur atteigne la pression voulue au départ, grâce à la pompe P_1 .

20.

30

35

7

L'anhydride carbonique utilisé est stocké à l'état liquide dans la bouteille B. Le CO₂ présent dans le séparateur S doit se trouver à une température et une pression d'équilibre liquide-vapeur.

Le CO₂ arrive donc sous forme liquide à la pompe P_1 , puis il est porté à la température désirée par l'échangeur thermique T_1 . Le CO₂ pénètre alors dans l'extracteur E; il traverse le matériel en se chargeant en composés extractibles. Dès que la pression dans l'extracteur dépasse la pression affichée, la vanne de décharge V_{12} s'ouvre, le CO₂ est détendu en-deçà de sa valeur critique (73 bars) et il arrive dans le séparateur S. Tandis que l'extrait se dizsout dans le CO₂ liquide, le CO₂ gazeux en excès dans le séparateur s'en échappe, et il est condensé grâce à l'échangeur thermique T_2 , avant d'être recomprimé par la pompe P_1 . Grâce au recyclage continuel du CO_2 , l'appareil peut être isolé de la bouteille E de CO_2 liquide, et il fonctionne sans apport de CO_2 en cours d'extraction.

A la fin de l'extraction, le séparateur est refroidi au voisinage de -10°C. La vanne 4 est ouverte, libérant brusquement tout le CO2 gazeux du séparateur.

La détente d'un gaz réel à haute pression s'accompagne toujours d'un refroidissement. Pour l'anhydride carbonique, on obtient approximativement, pour une mole, une chute de température de l'ordre de 280°C. Le CO₂ se solidifiant à -80°C environ, à la détente il se forme rapidement un bloc de carboglace, emprisonnant l'extrait.

Il faut que le séparateur S soit à demi-rempli de CO₂ liquide. S'il vient à être plein, c'est du CO₂ liquide qui sort du séparateur. Il entraîne avec lui une partie de l'extraît dans les conduites, d'où une perte en extraît. En revanche, s'il ne contient plus de CO₂ liquide, sa température augmente puisqu'il n'y a plus d'évaporation consommatrice de chaleur, et les composés volatils risquent de ressortir du séparateur, le CO₂ liquide n'étant plus là pour jouer le rôle de solvant-piège.

10

15

20

25

30

35

8

Le bloc de carboglace C obtenu après l'extraction va se sublimer à la pression atmosphérique. Pour ralentir le plus possible la sublimation et donc éviter que les vapeurs de CO₂ (V) n'entrainent des volatils, le bloc de carboglace est placé dans un réacteur (voir Figure 2) à -20°C. Le CO₂ dégagé barbote alors dans un solvant S, afin de récupérer les composés les plus volatils qui seraient, malgré tout, entraînés par le CO₂ gazeux. On constate, après analyse, que le solvant de barbotage renferme généralement des quantités faibles de volatils.

Après sublimation du CO₂, on récupère des solutions aqueuses d'un volume généralement compris entre 10 et 20 ml, auxquelles on rajoute de l'eau (100 ml) avec laquelle on a rincé les parois du séparateur. On obtient ainsi une solution aqueuse d'un volume final compris entre 110 et 120 ml. Le pH de l'extrait est amené à 9,5 par ajout de 1,5 ml de Na₂CO₃ à 20% (1,9 M), de façon à n'extraire que la fraction neutre.

Les composés aromatiques obtanus en milieux aqueux par la méthode d'extraction au CO₂ supercritique doivent être extraits au solvant pour les analyses ultérieures. Les solutions aqueuses sont ici extraites une première fois pendant 1 heure avec 50 ml de dichlorométhane qui ont servi, au préalable, à rincer également les parois du séparateur, puis deux fois avec 20 ml de dichlorométhane pendant une demi-heure. Les extractions sont réalisées à 0°C dans un bain de glace fondante. On procède pour cela par agitation magnétique et décantation en ampoule.

La phase organique récupérée est séchée à l'aide de sulfate de sodium.

EXTRACTIONS CONFORMES AU PROCEDE DE L'INVENTION

Mode opératoire nº 1 : Extractions menées en présence de glycérol dans le séparateur

Le glycérol, récupéré également après sublimation de la carboglace, est dilué d'un facteur 2 à l'eau ultra

15

20

30

pure Millipore, et le pil de l'extrait est amené à 9,5 par ajout de 10 ml environ de Ma₂CO₃ à 20%. L'ajout d'eau au glycérol permet de diminuer la viscosité de celui-ci et facilite l'extraction des composés aromatiques. L'extrait est alors réextrait par 100 ml de trichlorofluorométhane (Forane 11) pendant une heure, et deux fois une demi-heure par 50 ml de Forane 11, puis l'extrait est également extrait au dichlorométhane selon un procédé identique.

Mode operatoire n'2 : Extractions menées en présence d'huile d'arachide dans le séparateur.

L'huile choisie dans cette expérimentation est l'huile d'arachide, laquelle se caractérise par une teneur élevée en acide oléique et modérée en acides gras polyinsaturés. L'huile a été préalablement désodorisée par une distillation sous vide de 1,33 x 10⁻³ Pa pendant 24 heures.

A partir d'extractions conduites en présence d'huile dans le séparateur, on obtient, après sublimation de la carboglace, un extrait composé de deux phases : l'une aqueuse, et l'autre lipidique. L'extrait, auquel on ajoute 100 ml d'eau et 50 ml de solvant de rinçage du séparateur, est alors distillé sous vide. Dans un premier temps, l'extrait est soumis à un vide primaire de 1,33 Pa pendant 3 heures ; ensuite, il est maintenu sous un vide secondaire de 1,33 x 10⁻³ Pa pendant 5 heures.

Pour la distillation à 1,33 Pa, on a utilisé le montage schématisé par la Figure 3.

Légende de la Figure 3 :

A : ballon contenant l'échantillon

B : robinets

C : piège droit placé dans l'azote liquide

D : piège en spirale placé dans l'azote liquide

E : connection à la pompe et à la jauge à vide.

Le ballon A de 6 litres contenant l'extrait plonge dans un bain-marie à 35°C. Les produits volatils et l'eau

sont condensés dans le piège C refroidi par de l'azote liquide. Les pièges à spirales D constituent une sécurité pour éviter des pertes en substances les plus volatiles. Le robinet E, maintenu fermé durant le déroulement de la manipulation, n'est ouvert que pour rétablir le vide.

Les distillats récupérés dans les différents pièges sont réunis avant l'extraction au solvant. L'huile résiduelle en fin de distillation dans le ballon A contient encore en partie des composés parce qu'ils sont moins volatils mais également en raison du pouvoir de rétention élevé de l'huile. Pour extraire ces composés, un vide de 1,33 Pa n'est pas suffisant; on a alors appliqué un vide de 1,33 x 10⁻³ Pa et utilisé à cet effet le montage de la Figure 4.

15

20

25

10

Légende de la Figure 4 :

A : ballon contenant l'échantillon

B : doigt de gant rempli d'azote liquide .

C : robinet

D : pièges en spirale placé dans l'azote liquide

E: connection vers la pompe et la jauge à vide.

Le ballon A de 6 litres (le même que pour la première distillation) plonge dans un bain-marie à 40°C. Les composés volatils sont retenus dans les pièges à spirales D. Le montage dispose également d'un doigt de gant B, rempli d'azote liquide. Les substances les moins volatiles vont se pièger sur les parois du doigt de gant sous l'effet du vide poussé et de la proximité de la surface froide, ce qui rapproche ce mode d'extraction d'une distillation moléculaire.

30

35

Une fois celle-ci terminée, les substances à pièger sont récupérées par rinçage du doigt de gant avec le même solvant que celui utilisé pour l'extraction des fractions retenues dans les pièges. Elles sont ajoutées avant concentration au solvant d'extraction des autres fractions.

15

20

25

30

35

L'ensemble des fractions obtenues dans les deux distillations sous vide successives sont réunies et réextraites 1 heure avec 50 ml de Forane 11 et 2 fois une demi-heure avec 20 ml. Puls, l'extrait est également extrait au dichlorométhane dans les mêmes conditions.

Mode opératoire n° 3 : Extractions menées en présence de B-cyclodextrines dans le séparateur

Les ß-cyclodextrines (polymères cycliques de 7 unités glucose), qui sont utilisées, sont caractérisées par leur spectre infrarouge comparable à celui obtenu par VIEDENHOF et al, 1969, "Properties of cyclodextrins part III. Cyclodextrin-epichlorhydrin resins : Preparation and analysis. Die Stärke, 21,119.

Les extractions en présence de cyclodextrines ont été menées parallèlement, de façon classique, et dans le séparateur de l'extracteur E du dispositif de l'invention.

(a) Extraction menée de façon classique :

10 g de β-cyclodextrines sont dissous dans 200 ml d'une solution d'éthanol/eau (1/2) (V/V) à 55°C. 10 ml du materiel de départ (constitué par une solution modèle qui sera décrite ci-après) sont ajoutés à la solution de β-cyclodextrines à 55°C. Le mélange est mis à refroidir lentement (4 heures environ) jusqu'à ce qu'il atteigne une température ambiante de 22-24°C, tout en maintenant une agitation magnétique. Le mélange est alors placé à 4°C pendant 16 heures. Les complexes formés sont récupérés après centrifugation pendant 10 minutes à 16 300 g et filtration du surnageant sur un verre fritté de porosité 4.

(b) Extraction menée à haute pression dans le séparateur :

10 g de β -cyclodextrines sont dissous dans 200 ml d'une solution d'éthanol/eau (1/2) (V/V) à 55°C. La solution est placée dans le séparateur avant extraction.

En fin d'extraction, le séparateur renfermant l'extrait est laissé sous pression une nuit à 4°C, puis il

10

15

20

25

30

est refroidi A -10°C et détendu brutalement. La carboglace obtenue est mise à sublimer et l'extrait obtenu est centrifugé (10 minutes à 16 300 g) et filtré. On obtient un précipité de ß-cyclodextrines et un surnageant, les deux fractions étant fortement aromatiques.

Le précipité (formé des complexes) est remis en suspension dans 100 ml d'eau ultra pure et extrait 2 fois 1 heure avec 50 ml de dichlorométhane, et deux fois une demi-heure avec 20 ml de dichlorométhane avec une agitation magnétique vigoureuse.

En raison de sa forte teneur en alcool (39°C), le surnageant a été dilué avec de l'eau ultra pure de façon à amener son degré alcoolique à 3°C pour éviter de former un mélange ternaire avec le solvant. Il est extrait 1 heure avec 100 ml de dichlorométhane et deux fois une demi-heure avec 50 ml de dichlorométhane.

TECHNIQUE COMPARATIVE : Extraction liquide-liquide

La méthode d'extraction de comparaison choisie est l'extraction liquide-liquide. Le solvant est recyclé après avoir traversé le matériel de départ, ce qui limite la quantité de solvant utilisé. Le matériel (solution modèle de framboise décrite ci-après) est extrait 4 heures avec 200 ml de dichlorométhane ou 200 ml de Forane 11. Ces opérations sont réalisées dans une pièce climatisée à 15°C.

II - MATERIEL DE DEPART

Matériel nº 1 : Solution modèle de framboise :

Una solution a été préparée à partir de composés identifiés dans le jus de framboise, ces composés étant regroupes dans le Tableau 1 ci-après :

S 9 .

10

20

Tableau 1: Composition de la solution modèle de framboise

Composés	Quantités en mg
Acctate d'isoamyle a-pinène Octen-1 ol-3 Heptanol Acétate d'hexyle Y-hexalactone Linalol Phényl-2 éthanol Géraniol Y-octalactone Damascénone Acétate de menthyle a-ionone Frambinone	39,0 34,4 32,5 32,5 40,5 33,4 29,6 35,2 36,3 36,3 27,3 64,3

Parmi ces composés, la p-hydroxy-phényl-1

butanone-3 (ou frambinone) présente une odeur et une saveur

caractéristiques de la framboise.

Matériel n° 2 : Solution modèle de composés très volatils (STV) :

Cette solution comprend 13 composés parmi ceux qui ont les points d'ébullition les plus bas at qui participent à l'arôme de framboise. La solution conçue comprend un nombre important de terpènes ainsi que l'acétaté de butyle, l'ester le plus volatil retrouvé dans le jus de framboise. La solution contient également des composés polaires tels que les alcools et les lactones parmi les plus volatils (Tableau 2).

30

25

1.0

15

20

25

30

35

Tableau 2 : Solution modèle de composés volatils (STV)

Comp	osús	Quantite	en mg
llexa Acét Méth Cis- Hexa Hept Y-bu α-pi Camp Myrc α-ph	none-2 ate de butyle yl-4 pentanol hexen-3 ol-1 nol anone-2 tyrolactone nène hène	33, 47,	95997693674
	rpinène	41	=

Les solutions n° 1 et n° 2 ont été préalablement diluées dans 20 ml d'éthanol distillé. Pour chaque extraction au CO₂ supercritique, 500 µl de chacune de ces solutions préliminaires sont dilués dans 1 litre d'eau ultra pure. Les concentrations dans chacune des solutions s'approchent de celles d'un véritable jus de framboise.

Matariel nº 3 : Jus de framboise :

On a utilisé des framboises de la variété "Rose de Côte d'Or" (Rubus Idaeus), considérée comme étant une des plus aromatiques.

Les framboises, partiellement décongelées, et maintenues à une température inférieure à 4°C, sont broyées jusqu'à l'obtention d'une purée homogène. Le jus est obtenu en centrifugeant le broyat à 16300 g pendant 20 minutes.- On obtient environ 640 ml de jus pour 1 kg de framboises. Avant l'extraction au CO₂ supercritique, on ajoute un antimousse, le polypropylène glycol, au jus de framboise à une concentration de 0,1/1000.

Les exemples suivants illustrent l'invention.

Exemple 1 : Mode opératoire n°2 et matériel n°2

Les résultats obtenus figurent dans le Tableau 3.

30

35

Tableau 2: Extraction de la solution modèle (STV) au CO₂ supercritique (P = 150 bars et T = 36°C) en présence ou non d'huile alimentaire dans le séparateur.

5	Composés	Quantité dans la	Témoin :	sans huile	avec 200	actions ml d'huile
·		solution en mg	· <u>x</u>	· cv	X	CY .
н	eranone-2	. 0,8	40.	96	75	11
0 Ac	étate de butyle	0,9	15	25	73	1 12
	thyl-4 pentanol	0,8	56	10	68	l 9
1	s-hemen-3 ol-1	0,8	71	20	77	l 8
не	xanol	0,8	64	20	76	1 7
	ptanone-2	0,8	42	90	78	ľ 7
1	butyrolactone	1,0	67		44	1 21
	pinène	0,8	3,5	83	29	1 36
)	mphène	0,8	3	150	32	1 40
i	rcène	0,8	3	147	34	1 38
1 -	phellandrène	0,3	1	173	42	1 23
_ 1	etate d'hexyle	0,9	28	20	78	1 6
1	-cerpindne	0,8	4	132	41	l 35

X: moyenne des rendements (en pourcentage)
CV: coefficient de variation (en pourcentage)

On observe que les teneurs en hexanone-2 et heptanone-2 sont doublées si l'huile est présente. De même que les esters voient leurs rendements plus que doublés, l'acétate de butyle, par exemple, a un rendement qui est quintuplé.

En ce qui concerne les alcools, ainsi que la lactone, on observe une augmentation de leurs taux d'extraction dasn les extraits obtenus en présence d'huile, bien que cette augmentation soit modérée et la moins importante de l'ensemble des classes chimiques.

15 .

20

25

Etude des différents procédés de récupération de l'extrait

Au cours des extractions menées avec le CO_2 supercritique, le CO_2 est maintenu à l'équilibre liquide-vapeur dans le séparateur, le CO_2 liquide servant à retenir les composés extraits. La présence simultanée dans le séparateur de CO_2 liquide et d'huile doit conduire à l'apparition d'une seule phase en raison des propriétés de miscibilité entre les deux corps.

On a cherché à savoir si la capæité de l'huile à retenir les composés serait meilleure, égale ou moindre en absence de CO2 liquide dans le séparateur.

On a donc mené des extractions en absence de CO₂ liquide dans le séparateur. La suppression du CO₂ liquide dans le séparateur présente au moins le double avantage de rendre plus aisée la conduite des extractions et de réduire le temps de détente du séparateur. La détente est un phénomène très violent au cours duquel se produisent les principales pertes en composés volatils.

En absence de CO₂ liquide dans le séparateur, on a été amené à remettre en question le procédé de récupération de l'extrait, la quantité réduite de CO₂ dans le séparateur ne permet que très peu ou pas de formation de carboglace. On a donc retenu les deux procédés possibles de récupération de l'extrait, d'une part le soutirage de l'extrait en fin d'extraction alors que le séparateur est encore sous pression, d'autre part on a gardé le refroidissement du séparateur par détente brutale. Les résultats obtenus figurent dans le Tableau 4 :

30

35

BRIGOCOLO JAIO DONNESONA I -

Tableau 4: Extraction de la solution modèle (STV) au CO₂ supercritique (P = 150 bars et T = 36°C)

Etude de différentes conduites de l'extraction au niveau du séparateur.

5	AU IIIV	Suparate CO2 li huile Recupera l'extrai Refroidi	EDE 1 ur : quide + + tion de	Sépara CO ₂ huil	iration de rait :	Séparate CO ₂ 1 huile Récupér: 1'extra Refroid	iquide — + + ation de
10	Composés	<u>x</u>	CV	<u>x</u>	cv	x	cv
	Hexanone-2	75	11	38	10	50	14
	Acétate de butyle	73	12	37	10	51	14
15	Nethyl-4 pentanol	68	9	43	. 10	61	3
15	Cis-hemen-3 ol-1	77	8	49	9	70	2
	Heptanone-2	76	7	45	10	71	3
,	2-heptanone	78	. 7	45	11	62	. 8
	y-butyrolactone	44	21	21	3	39	22
20	a-pinène	29	36	15	26	20	12
20	Camphine	32	40	16	19	24	11
	Myrcine	34	38	16	12	25	14
	a-phellandrène	42	28	17	32 -	39	28
•	Acétate d'hemyle	75	2	35	· 18	46	- 16
25	γ-terpinène	41	35 .	16	. 9	32	16

X : moyenne des rendements (en pourcentage)
CV : coefficient de variation (en pourcentage)

Les cétones présentent des rendements élevés. surtout en présence de CO_2 liquide et quand l'extrait est récupéré sous forme de carboglace (Procédé 1) et leurs taux sont deux fois plus élevés que ceux obtenus en absence de CO_2 liquide et par soutirage (Procédé 2). Les rendements de ces composés sont également significativement plus importants que ceux obtenus en absence de CO_2 liquide et avec de la carboglace (Procédé 3).

On a également retrouvé l'acétate de butyle dans l'huile. Pour ce composé, le meilleur des trois procédés est le procédé 1. Quand on applique les autres procédés, la teneur en acétate de butyle de l'extrait chute, spécialement dans le cas du procédé 3.

Les teneurs en alcools sont plus élevées quand on applique le procédé 1 ou le procédé 3 qu'avec le procédé 2. En revanche, la présence ou l'absence de CO2 liquide n'a pratiquement pas d'effet sur les rendements des alcools; on observe, en effet, aucune différence entre les procédés 1 et 3 pour ces composés. Les alcools extraits sont solubilisés dans la fraction aqueuse présente, dans le séparateur. Les quantités d'alcools récupérées vont alors dépendre du refroidissement et de la détente brutale qui induisent une prise en glace de l'eau qui emprisonnera les alcools.

La Y-butyrolactone est également mieux récupérée. surtout avec les procédés 1 et 3, le procédé 2 donne le rendement le plus médiocre. En raison de la polarité de la lactone, son comportement suit celui des alcools.

Parmi les hydrocarbures extraits, on ne note pas de différence entre les procédés 1 et 3, sauf pour l'a-pinène pour lequel les rendements sont comparables quel que soit le mode de récupération de l'extrait. Les extraits obtenus avec le procédé 2 montrent une diminution de la teneur en hydrocarbures terpéniques.

L'emploi de l'huile alimentaire ne permet pas de s'afiranchir de la présence de CO₂ liquide dans le séparateur. Le mélange (CO₂ liquide + huile) présente des propriétés différentes et plus avantageuses que l'huile scule puisque le procédé 1 offre les meilleurs rendements des trois procédés.

La réfrigération du séparateur suivie d'une détente brutale est également préférable, les rendements obtenus, par cette méthode, sont, dans leur majorité, supérieurs à ceux obtenus par soutirage.

10

15

Example 2 : Mode operatoire n°2 et matériel n°2

On vise à retenir les composés volatils extraits par le CO₂ supercritique à l'aide de glycérol bidistille rajouté dans le séparateur de façon à produire du glycérol aromatisé.

L'ajout de glycérol dans le séparateur se traduit par l'apparition d'une nouvelle phase dans le séparateur, le glycérol est en effet très peu soluble dans le CO2 liquide (la solubilité du glycérol dans le CO2 liquide est de 0,05% (p/p).

Λ - Comparaison de l'extraction avec et sans glycérol les données sont rapportées dans le Tableau 5 ci-après :

Tableau 5: Extraction de la solution modèle (STV) au CO₂ supercritique (P = 50 bars et T = 36°C) en présence ou non de glycérol dans le séparateur.

20	Composés	Quantités dans la solution (en mg)		ooin ;lycérol ;cv	Extrac avec 200 ml	
25	Hexanol Heptanone-2 y-butyrolactone a-pinene	0,8 0,9 0,8 0,8 0,8 0,8 0,8 0,8	40 15 56 71 64 42 67 3,5 3	96 25 10 20 24 90 0 83 150 147 173	75 62,5 82,5 76 83 72 55 26 35 28,5 12,5	19 23 11 5 3 11 8 16 15 22 39
	Acétate d'hexyle	0,9	28	1 132	65 29	9

X: moyenne des rendements (en pourcentage)
CV: coefficient de variation (en pourcentage)

5 .

10

15

20

25

Hormis la Y-butyrolactone, les composés extraits ont de meilleurs rendements d'extraction en présence de glycérol dans le séparateur. Les alcools ont de bons rendements d'extraction situés autour de 80%. hydrocarbures présentent des rendements d'extraction: de l'ordre de 30%, excepté l'α-phellandrène dont la valeur est plus faible (de moitié environ). Néanmoins, en raison des faibles taux de récupération des hydrocarbures en absence de glycérol, la moindre amélioration des rendements devient importante pour ces composés. Les cétones présentent également, avec le glycérol, des rendements d'extraction supérieurs. Le facteur multiplicatif est de l'ordre de 2 pour cos composés. Les deux composés suivent pratiquement la mame évolution, la longueur de la chaîne carbonée ne joue apparemment aucun rôle. L'acétate de butyle et l'acétate d'hexyle sont, de même, mieux récupérés en présence de glycérol, les rendements augmentent de 2 à 3 fois.

Les cétones et les esters ont donc de très bons rendements dans le glycérol et sont les deux classes chimiques qui se prétent le mieux à l'extraction en présence de glycérol. Les alcools étant déjà bien extraits sans glycérol. l'intérêt du glycérol reste moindre pour ces composés.

De plus, tous les résultats montrent que la reproductibilité de cette technique d'extraction croît par ajout de glycérol dans le séparateur.

B - Accumulation des composés volatils dans le glycérol

Des expériences de multiplication de la charge de composés volatils dans l'extracteur ont été menées, afin d'évaluer s'il est possible d'obtenir du glycérol aromatisé avec un degré de concentration plus élévé.

Le mode opératoire est tel que la charge de composés volatils utilisée soit d'environ 10 fois plus élevée que la charge précédente, d'une expérience à l'autre.

OS

Par ailleurs, pour s'affranchir de l'influence du temps d'extraction, on extrait toutes les solutions pendant 12 heures. Tous les résidus analysés en fin d'extraction ne contiennent que moins de 1% de chacun des composés, à l'exception de l'Y-butyrolactone dont la teneur résiduelle fluctue entre 2 et 5%.

Les résultats figurent dans le Tobleau 6.

Tableau 6 : Extraction de la solution modèle (STV) au CO₂ supercritique (P = 150 bars et T = 36°C) en présence de glycérol avec différentes charges en composés volatils.

5	Composés		I	
	COMPOSES	Charge en mg	Quantité récupérée (en mg)	Coefficient de variation en %
10	Hexanone-2 Acetate de butyle Methyl-4 pentanol Cis-hexen-3 ol-1 Hexanol Heptanone-2 %-butyrolactone %-pinène Camphène	0,8 0,9 0,8 0,8 0,8 0,8 1,0	0,6 0,6 0,7 0,6 0,7 0,6 0,55 0,2	19 23 11 5 3 11 8 16
15	Myrcène X-phellandrène Acétate d'hexyle X-terpinène	0,8 0,8 0,9 0,8	0,2 0,1 0,6 0,2	22 39 13 9

Composés	II				
	Charge en mg	Quantité récupérée (en mg)	Coefficient de variation en %		
Hexanone-2 Acétate de butyle Méthyl-4 pentanol Cis-hexen-3 ol-1 Hexanol Heptanone-2 8-butyrolactone	7,0 7,4 6,8 6,8 6,2 9,6	5,7 5,5 6,2 6,0 5,0	12 13 9 - 9 12 10 31		
X-pinène Camphène Myrcène X-phellandrène Acétate d'hexyle X-terpinène	7,2 7,3 6,8 7,1 7,2 7,8	1,3 1,5 1,4 1,0 4,2 1,8	19 15 48 13 13		

Tableau 6 (suite) :

	Composés	III		
5	Composes	Charge en mg	Quantité récupérée (en mg)	Coefficient de variation en %
10	Hexanone-2 Acétate de butyle Méthyl-4 pentanol Cis-hexen-3 ol-1 Hexanol Heptanone-2 Y-butyrolactone X-pinène Camphène Myrcène K-phellandrène Acétate d'hexyle Y-terpinène	70 74 68 - 68 62 96 72 73 68 71 72,5	47,0 44,4 53,7 51,0 42,2 61,4 46,1 56,9 44,2 43,3 50,0	6 14 14 - 13 12 17 24 9 13 23 8

10

15

20

25

30

Les deux cétones suivent la même évolution en fonction de la charge admise dans l'extracteur. On constate que la quantité de ces composés retenue dans le glycérol augmente avec la charge de départ. Cette quantité reste proportionnelle à la teneur en cétone de la solution.

Les quantités d'alcools récupérées dans le glycérol sont également élevées, aussi bien à partir d'une charge de 7 mg que de 70 mg.

Pour les esters, les quantités récupérées augmentent avec la charge admise dans l'extracteur. Lorsque la charge s'élève à 70 mg environ, le glycérol peut retenir jusqu'à 50 mg d'hexyle.

De meme, on observe que la quantité de Y-butyrolactone retenue dans le glycérol augmente.

Lorsque la charge admise est de 0.7 ou 7 mg environ, les quantités d'hydrocarbures retenues sont les plus faibles et se situent respectivement entre 0,1 et 0,3 mg ou 1,3 et 1,8 mg, ce qui situe les rendements de ces composés approximativement entre 12 et 28% dans les deux cas. En revanche, lorsque la charge appliquée est de l'ordre de 70 mg, les quantités retenues augmentent de façon importante, en moyenne 50 mg de chacun des hydrocarbures sans distinction. Ainsi, les rendements, pour ces composés, s'élèvent à 65 % environ, étant alors largement plus importants qu'avec les deux premières charges.

D'une manière générale, le glycérol retiendra d'autant plus les composés que la concentration de ceux-ci dans la solution modèle sora élevée.

Les quantités de composés utilisées dans ces expériences de multiplication de la charge sont telles qu'il a paru nécessaire de comparer les extractions menées avec des charges de 7 et 70 mg à des extractions témoins avec des charges comparables réalisées sans ajout de glycérol. La Figure 5 illustre ces expériences.

Légende de la Figure 5 : Histogrammes des rendements des différentes classes chimiques en présence ou non de glycérol

Témoin

Clycérol

10

15

20

25 -

30

35

Il apparaît, en premier lieu, que si la charge admise influence la quantité récupérée en présence de glycérol, c'est évidemment vrai avec les témoins.

Il ressort de ces expériences que, pour les cétones, l'ajout de glycérol apporte une amélioration certaine par rapport au témoin ; il en est de même pour les esters.

En ce qui concerne les alcools, la charge de 7 mg met en évidence un effet avantageux du glycérol.

Pour les hydrocarbures terpéniques, l'ajout de glycerol paraît tout à fait bénéfique, quelle que soit la charge appliquée. Chez le témoin, les rendements obtenus avec une charge de 70 mg augmentent mais restent très largement inférieurs à ceux obtenus en présence de glycérol.

Il apparaît donc qu'en présence de glycérol dans le séparateur, le taux de récupération augmente. Une fraction au moins des composés, normalement dissous dans le CO₂ liquide, se retrouve dans le glycérol dans des proportions dépendantes du coefficient de partage de chaque composé entre les deux phases. Ce coefficient de partage reflète la capacité du glycérol à retenir les composés volatils.

Example 3 (a) : Mode opératoire n°3 et matériel n°2

Les cyclodextrines sont des oligosaccharides cycliques comprenant 6,7 ou 8 unités glucopyranoses. La β -cyclodextrine (β -CD), la plus importante et la plus utilisée du groupe, comprend 7 unités glucopyranoses :

efuille de Templacement

La p-syclodextrine est noluble dans l'eau, tous les groupements hydroxyle se trouvent à la surface externe du cycle, la cavité interne est légèrement apolaire.

(a) Formation de complexes dans les conditions classiques :

Dans un premier temps, on mesure la capacité des composés à former des complexes avec les β-CD dans les conditions classiques d'utilisation de ces agents complexants. Les résultats obtenus figurent dans le Tableau 7.

Tableau 7: Formation classique de complexes entre la solution modèle (STV) et les \$-cyclodextrines

		dans les BCD	variation %	Rendement en Z	des ECD = A+[100-(A+5) (en Z)
Hexanone-2 Acútata de butyle Aúthyl-4 pentanol Eis-hexen-3 ol-1 Hexanol Heptanone-2 Y-butyrolactone G-pindne Camphüne Myrcüne G-phellandrüne Acútate d'hexyle	0,8 0,9 0,8 0,8 0,8 1,0 0,8 0,8 0,8	40 56 37 36 37,5 60 4 73 72 78 73	16 24 21 18 19 20 13 10 11 5 8	50 33,5 61 53 50 28 88 2,5 3 3	50 66,5 39 47 50 72 10 97,5 97 97 96 96

25 En première analyse, on se rend compte que le taux de complexes formés est variable et dépend de la nature du composé mis en jou.

10

Il apparaît que le taux de complexes formés pour les hydrosarbures sont les plus élevés (de l'ordre de 75%). Le total (surnegeant + β-CD) est inférieur à 100%, il manque environ 20% de chaque hydrosarbure, dûs à l'extraction imparfaite des composés inclus dans les β-CD par le dichlorométhane. Les taux de complexes de ces composés doivent se situer autour de 95% comme l'indique la dernière colonne du Tableau 7.

(b) Comparaison d'extractions au ${\it CO}_2$ supercritique menées avec et sans eta-cyclodextrines.

Les résultats des expériences menées sont rassemblés dans le Tableau 8.

15 Tableau &: Extractions de la solution modèle (STV) au CO₂ supercritique (P = 150 bars et T = 36°C) en présence de β-cyclodextrines

	Composés	Quantités dans la solution	Tcm sans β-cyc	oin lodextrines	Extractions avec 10 g de 8CD		
0	Compases	moděle en mg	$\overline{\mathbf{x}}$	CV	X	CV	
-		0,8	40	96	19] 30	
	Hexanone-2	0,9	15	25	20	17	
	Machyl-4 pencanol	0,8	56	10	17	12	
	Cis-hexen-3 ol-1	0,8	71	20	19	32	
	• •	0,8	64	20	25	24	
	Hexanol	0,8	42	90	18	. 25	
	Heptenone-2	1,0	67	1 0	, з	45	
١	Y-bucyrolactone	0,8	3,5	83	19	34	
\circ	a-pinène	0,8	3	150	19	30	
	Camphine	0,8	3	147	. 26	38	
	Hyrcune	0,8	1	173	. 4	1 13	
	a-phellandrène	0,9	28	20	38	35	
5	Acetate d'hemyle	0,8	4	132	15	27	

 \vec{X} : moyenne des rendements (en pourcentage) CV: coefficient de variation (en pourcentage)

10

15

20

La plupart des composés ont des taux de formation de complexe de l'ordre de 20%. On obtient un extrait dont le profil chromatographique est équilibré.

La Y-butyrolactone est le seul composé à avoir un rendement très faible, formant très peu de complexe avec les β -CD. Ce phénomène rejoint celui observé lors des expériences effectuées dans les conditions classiques d'utilisation des β -CD

La répétabilité de la méthode d'extraction est améliorée en présence des β-CD puisque les coefficients de variation sont tous inférieurs à 36%. Ceci est particulièrement vrai pour les hydrocarbures dont la variabilité a fortement baissé par rapport au témoin.

En raison de la quantité de composés volatils présents dans la solution modèle, inférieure à celle des β -CD, le pool de cyclodextrines ne peut pas être saturé en composés volatils et un bon nombre de β -CD n'est pas sous forme de complexes avec les composés volatils. On a alors augmenté la quantité des composés volatils extraits pour mesurer l'influence de la teneur en composés volatils de la solution modèle sur la quantité de complexes formés et évaluer les limites des β -CD.

(c) Accumulation des composés volatils dans les β -cyclodextrines

Les données de l'accumulation sont rassemblées dans le Tableau 9.

30

25

Tableau 9 : Extraction de la solution modèle (STV) au CO₂ supercritique (P = 150 bars et T = 36°C) en présence de ß-cyclodextrines, avec différentes charges en composés volatils.

5 .		•	I			II	
	Composés	Charge en mg	x	cv	Charge en mg	x	cv
	Hexanone-2	0,8	19 (0,15 mg)	30	7,0	43 (3,0 mg)	18
10	Acétate de butyle	0,9	20 (0,2 mg)	17	7,4	56 (4,1 mg)	11
	Méthyl-4 pentanol	0,8	17 (0,13 mg)	12	6,8	42 (2,8 mg)	9
	Cis-hexen-3 ol-1	0,8	19 (0,15 mg)	32	-	-	-
15 .	Hexanol	0,8	25 (0,2 mg)	24	6,8	(3,4 mg)	10
•	Heptanone-2	0,8	18 (0,15 mg)	25	6,2	(3,6 mg)	8
	%-butyrolactone	1,0	4 (0,04 mg	43	9,6	(0,6 mg)	57
20 .	X-pinène	0,8	19 (0,15 mg	34	7,2	(2,9 mg)	23
	Camphène	0,8	19 (0,15 mg	30	7,3	(3,0 mg)	22
	Myrcene	0,8	26 (0,2 mg)	38	6,8	(3,2 mg)	15
25	d-phellandrene	0,8	(0,03 mg	13	7,1	(2,7 mg)	21
	Acetate d'hexyle	0,9	38 (0,3 mg)	35	7,2	66 (4,7 mg)	11
	%-terpinene	0,8	15 (0,12 mg	27 3)	7,8	(2,9 mg)	27

 \bar{X} : moyenne des rendements (en pourcentage)

CV : coefficient de variation (en pourcentage)

15

20

25

30

Tableau 9 (suite) :

Composés	III			IV		
. 1	Charge en mg	x	cv	Charge en mg	x	cv
Hexanone-2	70	25 (17,5 mg)	3	682	16 (109,1 mg)	17
Acétate de butyle	74	31,5 (23,3 mg)	7	772	21 (162,1 mg)	.7
Méthyl-4 pentanol	68	39 (26,5 mg)	5 .	589	24 (141,3 mg)	12
Cis-hexen-3 ol-1	-	- '	-	-	-	-
Hexanol	68	50 (34,0 mg)	3	698	23 (160 mg)	ď
Heptanone-2	62	34 (21,0 mg)	3	696	24 (167 mg)	9
X-butyrolactone	96	(7,7 mg)	25	820	7 (57 mg)	15
d-pinène	72	50 (36,0 mg)	7	814	41 (333 mg)	1
Camphène	73	52 (38,0 mg)	11	741	42 (311 mg)	
Myrcène	68	57 (38,7 mg)	6	726	40 (290,4 mg)	1
<pre>←phellandrène</pre>	71	53 (37,6 mg)	8	735	51 (374 mg)	1
Acétate d'hexyle	72,5	54 (39,1 mg)	20	754	38 (286 mg)	1
%-terpinène	78	55 (42,9 mg)	5	779	(303 mg)	1

 $\bar{\mathbf{X}}$: moyenne des rendements (en pourcentage)

CV : coefficient de variation (en pourcentage)

31

Tableau 9 (suite) :

	Composés	٧ .			
5		Charge en g	\$	cv	
	Hexanone-2	2,96	5,7 (168,7 mg)	6	
	Acétate de butyle	3,21	6 (192,1 mg)	11	
10	Méthyl-4 pentanol	-	_	-	
	Cis-hexen-3 ol-1	-	-	-	
	Hexanol	2,94	7 (205 mg)	10	
15	Heptanone-2	3,02	7 (211,4 mg)	20	
	X-butyrolcatone	4,10	2,5 (102,5 mg)	28	
	<pre></pre>	3,17	9,5 (301 mg)	14	
20	Camphène	3,17	11 (348 mg)	6	
	Myrcène	2,99	10 (299 mg)	14	
	<pre><-phellandrene</pre>	3,10	11 (341 mg)	6	
25 .	Acétate d'hexyle	3,19	11 (350 mg)	0	
·	%-terpinène	3,12	9 (280 mg)	15	

 \bar{X} : moyenne des rendements (en pourcentage)

CV : coefficient de variation (en pourcentage)

10 .

15

20

25

30

35

tout comme pour les esters et les alcools.

Il ressort que l'augmentation de la charge moyenne à 7 mg environ pour chacun des composés favorise la formation des complexes. Les pourcentages de complexes d'inclusion augmentent pour tous les composés.

L'augmentation la plus forte concerne le groupe des hydrocarbures terpéniques. En ce qui concerne les cétones, le pourcentage de complexes formés avec la β-CD a doublé

Ces augmentations peuvent s'expliquer par une meilleure probabilité de rencontre entre les β -CD et les composés volatils.

Si la charge de chaque composé est encore multipliée par 10, les pourcentages obtenus restent élevés. L'analyse de Fisher ne met pas en évidence dans l'ensemble de variations significatives des rendements par rapport à la précèdente expérience. Les hydrocarbures terpéniques forment des complexes dans des proportions intéressantes qui, pour ces composés, améliorent notablement leurs rendements et montre l'intérêt d'employer les β-CD pour retenir ces composés très volatils. Environ 50% des hydrocarbures sont ainsi récupérés malgré l'étape de la décompression brusque.

On a enfin mené des extractions avec des teneurs moyennes de 3 g pour chacun des composés. Les rendements obtenus présentent une baisse significative pour l'ensemble des composés. Les taux de complexes formés se situent entre 6 et 11%, hormis la Y-butyrolactone. Ces résultats confirment la saturation des \$-CD. Si l'on suit le rapport molaire global en fonction de la quantité totale des composés présents dans l'extracteur (Figure 6), on constate l'apparition d'un plateau lorsque le rapport atteint la valeur 2,4 environ. L'ajout de composés volatils ne modifie pas significativement le rapport molaire.

Légende da la Figure 6 : Abscisses: Quantité totale de composés volatils Q (en mg) ; Ordonnées: Rapport molaire R (molos de composés/moles de β-CD).

15

20

25

30

35

On a également analysé l'évolution du rendement d'un composé de chaque classe chimique en fonction de sa quantité dans la solution modèle (Figures 7 pour l'hexanol, 3 pour l'a-pinène, 9 pour l'acétate de butyle et 10 pour l'heptanone-2).

Légende des Figures 7 à 10 :

Abscisses : Charge C en composé (en mg) ; Ordonnées : Quantité Q retenue dans 10 mg de B-CD.

Quelle que soit la classe chimique, tous les composés retenus suivent un processus comparable à l'évolution de la teneur globale, c'est-à-dire une augmentation régulière du taux de complexes formés jusqu'à l'obtention d'un plateau plus ou moins élevé selon le composé.

Exemple 3 (b) : Mode opératoire n° 1 à 3 et matériel n°3

Dans l'étude de l'extraction au CO₂ supercritique des jus de framboise, le Forane 11 a été préféré au dichlorométhane. Les raisons de ce choix sont liées à l'étape supplémentaire de concentrations de 1 ml à 100 µl des extraits obtenus au CO₂ supercritique. On a extrait les concentrés d'arômes récupérés par extraction au CO₂ supercritique dans un premier temps avec du Forane 11, puis dans un deuxième temps par une extraction au dichlorométhane. Cette extraction complémentaire permet de doser les composés qui ne sont pas ou peu entraînés par le Forane 11, tels que la frambinone.

Les extractions ont été menées sur 300 g de framboises et également sur 2 kg de fruits de façon à mesurer l'influence de la charge sur les rendements d'extraction.

En présence d'hulle ou de glycérol

A partir de 300 g de fruits

a) Fractions Forage 11 (Tableau 10) :

Tableau 10: Extraction au CO_2 supercritique (P = 150 bars et T = 36°C) du jus de framboise. Constituants volatils neutres identifiés.

公平 公益	témin		Extractions avec 200 ml de glycérol		Extractions avec 200 ml d'huile	
	χ (pg)	CV (%)	X (ba)	CV (*)	X (b3)	CY (%)
HYDROCARBURFS			•			
a-pinène	_		1,5	13	4,2	40
Hyroine	-	•	_	·	2	29
p-Cymène	_		1,8	25	2,2	20
β-phéllandrène	-		•	••	2,6	24
Caryophyllène .	-		- '	-	1,8	17
a-primitere	n.d.		n.d.	n.d.	n.d.	
स्मास्ड .						•
Acétate d'éthyle	n.d.		n.d.	n.d.		
Acétate d'iscomyle	_		-	-	1,2	20
Acétate d'isopenté-	3.4	18	5,8	14	5,6	20
nyle						
licrancate d'éthyle	1,3	17	2,3	5	5	29
Acétate de cis-hexen-l	3,5	51	_		4,7	11
yle-1			•			
Acétate d'hexyle	0.7	71	0,8	2	1	43
Hydramy-5 octanoate	n.d.		n.d.		n.d.	
d'éthyle						
Acttate de mentyle	7, 6	18	10,3	10	12,6	14
Hydrony-5 décanoate	n.d.		n.d.		n.đ.	
d'éthyle		•	,,,,,,,	, •		
ALDENDES						
Pentanal	n.d.		n.d.	n.d.	n.d.	
licanal	102	89	116,7	47	77	24
lieptanal	2,6.	91	2,7	19	11	4
Benzaldéhyde	£,0.		±, '		·2,1	25
-	4,2	54	6,8	14	9	18
Octanal	13,3	69	28,5	27	19,4	20
Nonanal	· ·	03	-	41	n.d.	
Dicanal	n.d.	~ 4	n.d.	24	******	
Céranial	1,3	7,4	1,5	24	n.d.	
Nonadien-2,4 al	n.d.		n.d.		*****	

	Tableau 10	(suite)			•		
	<u>टानाव्यस्य</u>						
	181		•	2.0	G .	3,2	19
	lieptanone-2	1,4	37	2,8		n.d.	•
	Cyclohexanone	n.d.		n.d.		n.d.	
	Nonanone-2	n.d.		n.d.	20	2,1	25
	Dihydro-a-ionone	1,7	36	1,9	20 3	19,8	19
	a-ionone	7,7	11	19,6	8 .	28,5	13
	β-ionone	10,2	28	26,8		2,8	66
•	Gimérone	6,9		5,1	24	2,0	•
	MICCORT .						****
		•				· n.d.	
	Pentanol .	n.d.		n.d.		n.d.	
	Méthyl-3 butanol	n.d.	•	n.d.	•	n.d.	
	Kethyl-3 buten-2	n.d.		. n.d. '		11.4.	
	01-1				20	5,9	26
	cis-heven-3 ol-1	. 8,5	45	12,3	15	B,5	23
	Heranol	3,8	20	. 6,7	28	8,9	25
	Heptanol-2	5,5	25	9,8	20	1,2	39
	Heptanol -	1,7	31	-	39	2,7	23
	Octanol	2	41	3,1	16	4,8	19
	Linalol	3,5	13	, 5,1	10	n.d.	
	Phényl-2 éthanol	n.d.		n.d.		n.d.	
	Yenthérol .	· n.d.		n.d.		n.d.	
	Nonanol	n.d.	•	n.d.		5,4	28
	Terpinen-4 ol ·	4,4	11	5,7	. 15	1	28
	p-cymen-8 ol	1,3	13	1,5	28	3,5	21
	a-terpincol	2,4	22	5,7	15	درد	21
	Myrténol	1	47	-	•	0,8	28
	Pipéritol	0,9	23	4,8	8	3,1	33
	Nérol	2,8	15	3,7	16	353,3	26
	Géraniol	350	17	358,3	11	22.2	20
	TYCLOUEZ					•	
		n.d.		n.d.	•	n.d.	
	Y -butyrolactone	13,1	22	17.1	29	10,3	45
	y -hexilactore	6,2	65	10,6	22	3,6	. 45
	y -octalactore	40,4	26	49	5	48	53
	5-∞talactone	5,1	65	10,3	20	7,4	32
	y -nonalactone	62,2	29	92	23	153,1	21
	8-decalactone		23	n.d.		n.d.	•
	Dihydrosctinidiolide	: 11.44.				•	
	ភាពន					•	
						1,5	22
	Cincole	1,5	8	1,6	15		

 \vec{X} = moyenne des quantités obtenues CV = coefficient de variation n.d. = composé non dosé

FEUILLE DE REMPLACEMENT

L'analyse des extraits obtenus à partir de 800 g de fruits montre qu'on ne retrouve pas d'hydrocarbures dans l'extrait témoin. Ces composés, déjà très difficiles à retenir dans le séparateur, sont plus faiblement concentrés dans le jus de framboise. C'est d'ailleurs pour cette raison que ces composés furent parmi les derniers à être mis en évidence dans la framboise. Dans le glycérol, on ne récupère qu'une partie des hydrocarbures, mais c'est surtout dans l'huile que les teneurs en hydrocarbures sont les meilleures.

Le glycérol permet, malgré l'absence d'acétate de cis-hexen-3 yle, une bonne récupération des esters.

Toutefois, c'est avec l'huile que les rendements sont les plus élevés pour ces composés. Par ailleurs, l'huile est le seul milieu de piégeage à renfermer de l'acétate d'isoamyle.

Il faut également relever dans les extraits la présence d'hydroxy-5 octanoate d'éthyle et d'hydroxy-5 décanoate d'éthyle, deux esters très odorants mis en évidence pour la première fois dans la framboise par extraction au solvant, puis par extraction au CO2 supercritique. Compte tenu de l'instabilité attribuée à ces composés. l'extraction au CO2 supercritique apparaît comme une méthode suffisamment douce pour éviter la transformation de ces composés en lactones.

En revanche, pour la récupération des aldhéydes, le glycérol apparaît supérieur à l'huile qui donne même Zlobalement des rendements inférieurs à ceux obtenus avec le témoin. Il faut noter cependant que le benzaldéhyde n'est présent que dans l'extrait obtenu en présence d'huile. A signaler également, la présence dans les extraits de nonadiène-2,4 al (non dosé) qui, à la connaissance des inventeurs, n'a jamais été mentionné auparavant dans l'arème de framboise. Ce composé possède une note odorante «vert» avec un seuil de perception très bas (2.5 x 10 7 mg/l).

35

RNSDOCID - WO RODGESOAT I

30

10

15

20

25

10

15

20

25

Pour les cétones, les améliorations apportées par le glycérol et l'huile sont importantes, notamment en présence de ces deux milieux, on améliore de façon importante la quantité d'α-ionone récupérée. D'après les études menées précédemment avec les solutions modèles, les taux de récupération de l'α-ionone sont très élevés et ne nécessitent pas l'aide supplémentaire d'un milieu de rétention. Pourtant les résultats obtenus à partir du jus de framboise montrent que la présence d'un milieu de piegeage permet de doubler la quantité d'α-ionone récupérée. L'explication réside dans les différences de quantités $d'\alpha$ -ionone présentes dans la solution mobile et dans le jus de framboise. Les pertes en α-ionones mesurées lors des essais avec la solution modèle sont moins conséquentes que celles observées lors de l'extraction du jus de framboise. En effet, la concentration en α -ionone est au moins 20 fois plus faible dans ce jus que dans la solution modèle.

La récupération des lactones présente également un amélioration très nette en présence des milieux de piégeage. Le composé le plus remarquable est la 5-décalactone, autre composé majeur de l'extrait, qui possède une odeur typique de noix de coco. Ce composé est mieux récupéré dans l'huile, qui vis-à-vis des lactones à chaîne latérale peu importante, se montre donc plus efficace.

b) Fraction dichloromathane :

30

35

BNSDOCID- -WA GODGGGG ! !

FEUILLE DE DEMPLACEMENT

Tableau 11: Extraction au CO_2 supercritique (P = 150 bars et T = 30°C) du jus de framboise. Constituants volatils neutres identifiés.

ಯಾನಾವ	tć	min	Extractions a de glyc	ivec 200 ml	Extractions d'h	avec 200 mi uile
	χ (pg)	.CY (%)	χ (μg)	CY (%)	X (hà)	CV (%)
ESTERS		•	•			
Acétate de mentyle	n.d.		n.d.		n.d.	
<u> ZEDTAGGIA</u>	•		•	•		
Hermal Heptanal	11 n.d. 14	72 80	16 n.d. 19	34 50	n.d.	12
Pkmanal Phonadien-2,4 al	n.d.		n.d.		n.d.	
ट्याप्राक्य			•		•	
c-ionone β-ionone	1,5 1,3 8,5	23 65 30	1 4,1 26	28 31 10	1,6 3,5 18	39 38 4
Frambinone Gingérone	2,5	2	8,6	26	6,6	11
प्राच्छार				• ,	•	
Néthyl-3 buten-2	n.d.		n.d.		n.d.	•
ol-1 cis hexen-1 ol-1 Hexanol	3,9 0,7 1,7	61 2 25	4,3 1,1 3,3	41 10 14	4,1 1,4 2,1	11 19 10
Alcool benzylique Phényl-2 éthanol Céraniol	1 8	48 44	2,7 3,4	9 34	1. 0,3	49 28
DACTORS .		• •				
Y-butyrolactone Y-hexalactone	5,1 13	43 45	6,3 13	28 19	5 13,8 n.d.	31 32
5-cctalactone 5-décalactone	n.d. 7,8	56	n.d. 8,1	18	0,9	10

X = moyenne dos quantités obtenues
CV = coefficient de variation
n.d. = composé non dosé

Dans la fraction obtenue avec le dichlorométhane, c'est principalement le cas de la frambinone qui est intéressant. Pour ce composé, important pour l'arôme de framboise, l'ajout de glycérol ou d'huile dans le séparateur permet d'augmenter de façon considérable les quantités récupérées. On signale que, pour deux alcools faiblement extraits par le Forane 11, l'alcool benzylique et le phényl-2 éthanol, l'ajout de glycérol améliore les taux de récupération, alors que l'huile n'influences pratiquement pas les rendements de ces deux composés.

D'après le Tableau 12 ci-après, dans lequel figurent les gains apportés à la récupération des différentes classes chimiques par les milieux de piégeage, il ressort que la classe chimique pour laquelle les gains sont les plus élevés est celle des cétones. La polarité moyenne de ces composés doit expliquer, au moins en partie, la similitude de leurs rendements dans le glycérol et dans l'huile.

Tableau 12 : Extraction au CO₂ supercritique de jus de framboise

20

15

5

Gains obtenus = Quantité (milieu de piégeage) - quantité (témoin) x 100

	CLASSES	duriques	INDROCARDURES		LDEMDES	टावस्य	ALCOOLS	LYCICIES
5	FATR				-			
	800 g	glycérol	>>100 %	16 %	29 %	130 %	7 %	35 %
0	de fruits	huile	>>100 \$	82 ኣ	-17 %	105 %	1 %	58 %
	2 kg	glycérol	>>100 %	28 %	14 %	40 %	38 %	145 %
5	de (ruits	huile	>>100 %	30 %	-1 %	7 *	8 %	89 %

FEUILLE DE LEMPLACEMENT

<u>A partir de 2 kg de fruits</u>

a) Fraction Foranc 11. (Tableau 13)

Tableau 13: Extraction au CO_2 supercritique (P = 150 bars et T = 36°C) du jus de frambolse. Constituants volatils neutres identifiés.

COLPOSES	t	منصا	Extractions de gly			avec 200 ml nuile
	χ (μg)	CV (%)	X (hā)	CY (%)	, X (µg)	CY (%)
IT/DROCLARBURES						
a-pinène ·	0,1	173	2,8	43	4,8	11 12
Myreine	-		. - .	-	2,1	
ביקשקטם	-		-	-	0,6	29 6
ß-phéllandrène	-		4,1	27	3,9	22
Caryophyllène	0.7	56	. 1,4	38	3,9	22
a-humulène	n.d.		n.d.	n.d.	n.d.	
<u>क्रात्य</u>				•		
Acétate d'éthyle	n.d.		n.d.	n.d.	n.d.	
Acétate d'isomyle	_		0,9	40	1,9	34
Acétate d'isopenté	30,7	69	42	19	42	28
nyle		70		20	4,6	19
Nomboste d'éthyle	2,7	79 50	5,2 7	· 10	. 8,7	24
Acétate de cis hexen-J yle-1	5,7	3 υ .		10		
llydroxy-5 octanoate d'éthyle	n.d.		. n.d		n.d.	
Acitate de mentyle	60	. 45	· 72	10	72	37
llydramy-5 décanoate	n.d.		n.d.		n.d.	•
d'éthyle	••••			• .		
			~	•		
ALDEINDES			•		•	
Pentanal	n.d.		n.d.		n.d.	
Ilexanal .	253	33	270,5	31	229,8	38
Neptaral	2,9	51	4,6	13	9 .	11
Benzaldéhyde	_		_	-	2,9	12
Octanal	3,4	61	4	. 9	5,5	36
Nanal	20	39	37	19	31	27
Dicanal -	n.đ.		n.d.	•	· n.d.	
Céranial	n.d.		n.d.		-	•
Nonadien-2,4 al	n.d.		n.d.		n.d.	

Tableau 13 (suite)

•						
<u> </u>		·		Ġ	7,9	13
	5,8	61 .	10,2	16	n.d.	**
Neptanone-2	n.d.		n.d.			
Cyclohexanche		•	n.d.		n.d.	24
Nonanone-2	n.d.	19	3,8	21	3,3	
Dihydro a-ionone	3,1	39	57,6	· 3	46	23
a-ionone	46	45	87	3	82	20
0-ionone	76,5 ·		21,6	22	19	19
Cingérone	21,2	29	21,0			
0219010110			•	••	•	
MICCOLS	•					
MICOLD		•	•		n.d.	
Pentanol	n.d.		n.d.		n.d.	
Acutanor	n.d.		n.d.		n.d.	
Kéthyl-3 butanol	n.d.		n.d.			
Methyl-3 buten-2				•	12,4	33
0]-1	17,5	41	19	8	6,9	21
cis heren-3 ol-1	4,4	33	8,3	13		-6
Heranol.	23,4	42	36	18	29	27
Neptanol-2	2,8	45	3,6	18	3	17
Heptanol		53	4,3	. 9	3,6	
Octanol	. 3	49	61,6	7	56,7	31
Linalol	44,2	3	20	25	11	27
Phényl-2 éthanol	15	3	n.d.		n.d.	
Henthénol	n.d.		n.d.	•	n.d.	
Monanol	n.d.	<u>-</u>	39,4	14	30	11
Terpinen-4 ol	24,5	37		13	2,9	33
b-chucu-g of	-		6,2	9	18	15
a-terpineol	13,4	44	20,4	16	1	25
	0,6	39	1,1		2,1	18
Hyrtonol	1,5	44	1,9	27	27	5
Pipiritol	25,3	40	35,4	16	716,1	27
Hérol	700,2	5	941,2	18	110,1	
<u> Céraniol</u>	10012					
DICTORES		•			n.d.	
	n.d.	n.d.	n.d.			7
y-butyrolactone	41,3	28	51,5	16	34	31
Theralactone		49	18	29	12	
)—∞talactone	5,1	15	323,3	30	213	51
δ-∞talactone	117,2	41	7,3	20	5,5	22
-nonalactone	5,9	6	316	18	302,5	37
2003actone	135,6	n.d.	n.d.		n.d.	
Dihydroactinidiolide	. n.d.	n.a.	11.4.			
##II						
ETITES	.•					
<u> </u>	•		4	14	- 5,5	79
Cincole	2,6	20 .	4			

X = moyenne des quantités obtenues

CV = coefficient de variation

n.d. = composé non dosé

FEUILLE DE CEMPLACEMENT

10

15

20

25

30

35

framboise.

En partant de 2 kg de framboises, on ne récupère dans le temoin qu'une partie des hydrocarbures, principalement la caryophyllène.

Dans le glycérol et l'huile, on obtient de meilleurs rendements pour ces composés. Four le glycérol, les taux de récupération avec 2 kg de frambolses sont meilleurs qu'avec 800 g, alors qu'avec l'huile les rendements entre les deux expériences évoluent peu. Pour les esters, les deux milieux de piègeage sont comparables. Les teneurs en acétate d'isopentyle et en acétate de menthyle augmentent énormément, plus que ne pouvait le laisser prévoir l'augmentation de la charge en jus de

En ce qui concerne les aldéhydes, l'évolution reste comparable à celle obtenue précédemment, à savoir une meilleure rétention de ces composés dans le glycérol et des rendements inférieurs au témoin avec l'huile. Le benzaldéhyde n'est retenu dans le séparateur que par l'huile.

Les cétones présentent une amélioration, mais celle-ci est moins importante que celle obtenue à partir des 800 g de framboises. La meilleure récupération des α et β -ionones dans le témoin explique en grande partie la chute des gains observés.

En revanche, pour les alcools, l'amélioration est plus importante à partir de 2 kg de framboises qu'avec 800 g et ce résultat tient essentiellement à un enrichissement des extraits en géraniol, linalol et terpinàn-4 ol, surtout en présence de glycèrol.

Pour les lactones, les taux de récupération s'élèvent énormément en présence d'huile ou de glycérol et cela est dù aux teneurs en 6-décalactone qui ont doublé en présence de milieux de piégeage.

b) Fraction dichloromethane (Tableau 14) :

Tableau 14: Extraction au CO_2 supercritique (P = 150 bars et T = 36°C) du jus de framboise.

Conctituonts volatils neutres identifiés.

COT. ELOSTES	té	oin	Extractions de gly	avec 200 ml		s avec 200 m nuile
	X (bg)	CY (%)	. X (pg)	CY (%)	X (hà)	CV (%)
ESTERS						
Acétate de mentyle	n.d.	•	n.d.		n.d.	
אנטמיוהמטא			•			
Hommal Heptanal Homanal	1,9 n.d. 8	63 15	2,8 n.d. 12	9 25	2,2 n.d. 5 n.d.	65 18
Nonadien-2,4 al	n.d.		n.d.		n.d.	•
<u>टावस्त्र</u>						
e-ionone β-ionone Frambinone Gingérone	1,5 1,3 35,1 8,9	23 65 43 42	0,8 6,5 64,4 25,2	30 52 20 5	2,1 2,1 40 11	44 10 48 10
MCCOLS			•	•		
Methyl-3 buten-2	n.d.		n.d.	• .	n.d.	•
ol-1 as hexen-3 ol-1	2,5	33	9,7 -	. 16	8,9 1,5	19 40
Nexanol Alcool benzylique Phényl-2 éthanol Géraniol	0,3 0,7 0,5	15 48 40	6,1 3,9 1,3	21 25 7	4,5 3 9,8	19 27 35
עאכזיםוני						
Y-butyrolactone Y-hexalactone	0,7 17,7	34 35	6,5 59 n.d.	27 26	1,5 39,3 n.d.	20 21
ŏ-octalactone ŏ-decalactone	n.d. 0,6	20	12,5	35	6,6	14

X = moyenne des quantités obtenues
CV = coefficient de variation
n.d. = composé non dosé

FEUILLE DE REMPLACEMENT

10

15

20

Dans la fraction dichlorométhane, la teneur des extraits en frambinone augmente nettement en présence de milieux de piégeage, particulièrement avec le glycérol. L'alcool benzylique et le phényl-2 éthanol sont également mieux récupérés avec le glycérol ou l'huile dans le séparateur.

Le Tableau 12 met en évidence une évolution des gains. Lorsque la charge en jus de framboise augmente, on observe une amélioration plus importante pour les composés polaires (lactones et alcools) et une baisse sensible des gains obtenus pour les cétones en présence de glycérol et de l'huile.

En présence de β-cyclodextrines (β-CD)

Conformément au protocole expérimental, les \$-CD dans lequelles sont inclus les composés volatils de framboise ont été extraites d'abord par le Forane 11, puis par le dichlorométhane. L'extraction par le Forane 11 n'a donné que des résultats quantitativement moyens. Les deux extraits ont été par la suite réunis. Ce regroupement permet de réduire le nombre d'analyse et d'améliorer la précision du dosage des pics en CPG.

Les résultats obtenus sont représentes dans le Tableau 15.

25

30

35

Tableau 15: Extraction au CO_2 supercritique (P = 150 bars et T = 30°C) du jus de framboise en présence de β -cyclodextrines.

Constituants volatils neutres identifiés.

CORPOSES	دلاء	oin	Ditraction av	
	X (pg)	CV (%)	X (ha)	CV (%)
			•	
HYDROCKRBURFS				
Dim/thyl-1,3 benzene	-		2,6	10 14
o-pinèna	30,5	64	80	18
Camphène	39,4	94	96	10
b-Churue	8,4	53	15	30
Limonène	_		2,9	19
y-terpinène .	11,6	46	. 31	20
Caryophyllène*	30.7	37	40	20
CITAObilAttene		•		
<u> ह्या गढ</u>			_	
Acétate d'éthyle	n.d.		n.d.	
Acétate d'isopenté	37,8	47	38	25
	•.,-	•		
nyle	3,3	53	13	22
Hexanoate d'éthyle		29	47	17
Acétate de cis-hexen-3	24			
ylc-1	16.7	38	22	11
Acétate d'hexyle	2,5	41	2	0
Nydrony-5 octanoate	2,3			
d'éthyle	46,4	31	50	14
Acétate de mentyle*		33	9,5	31
Nydroxy-5 décanoate	9,8	33	•	
d'éthyle				
ALDEMNES				
Pentanal	n.d.		n.d. 38	24
Horanal	51,6	44		- 6
trans-hexen-2 al	19	25	2	`
lieptanal	n.d.		n.d.	38
Penzaldéhyde	_		8,0	•
Neuzaraenyae	6,8	45	13	24
Octanal	18,3	22	G,5	:
Homanal	n.d.		n.d.	
Dicanal	3,4	35	4,4	(
Géranial*	ړ. ړ د			

Tableau 15 (suite)

CETCUES				,
Heptanone—2 Cyclohexanone	12,8 3,5	29 35	18	16
Réthyl-6 hepten-5 one-2	2,8	28		13
a-ionone*	66,4	35	- 84	27
ß-ionone*	88	42	106	38
Frambinone .	22	19	3,5	6
Cingérone	30 .	12	4,3	ŭ
M.corz	·		•	
Pentanol	n.d.		n.d.	
Kéthyl-3 butanol .	n.d.		n.d.	
Methyl-3 buten-2	n.d.		n.d.	
cis-heren-1 ol-1	103,3	49	19	35
Necessol.	64,7	30	26,5	24
Heptanol-2	25	45	8,4	26 ,
Alcool benzylique	n.d.		n.d.	
Octanol	13,7	18	2	30
Linalol	136,9	26	115	9
Phinyl-2 éthanol.	_		1	30
Menthénol	12,3	17	5,2	10
Terpinen-4 ol*	27	17	25,4	5.
p-cymen-8 ol*	7,4	53	1,7	30
a-terpincol*	17,4	42	9,8	20
Myrténol*	_	-	1,6	8
Hérol*	27,9	47	19	20
Géraniol*	723,6	17	560	7 6
Dihydro ß-ionol	9,7	28	5,6	•
<u> v.crairs</u>			•	
Y -butyrolactone	34,1	55	-	
Y -hexlactone	់ 67,1	25	3,9	40
γ −octalactone	1,6	45		
δ-octalactone	265,6	38	90	24
δ-decalactone	302,9	39	185	21
Dihydroactinidiolide	4,2	60	4,5	32
<u>ज्ञाचार</u>				
Cînéole	48,7	45	53	22
Théaspirane	1,9	• 72	2,9	· \$
	•	•		

X = moyenne des quantités obtenues

CV = coefficient de variation

n.d. = composé non dosé

10

15

20

25 .

30

35

DISCOOLS AND AMORANA I .

L'analyse des chromatogrammes a permis de mettre en évidence deux groupes de composés : un premier groupe, dont les quantités récupérées dans les β -CD sont supérieures à celles de ces mêmes composés chez le témoin et un deuxième groupe de composés dont les quantités récupérées dans les β -CD sont inférieures à celles du témoin. Dans ce deuxième groupe, on a procédé à des mesures de coefficients d'extraction (entre le solvant et les β -CD) sur certains composés (que l'on ne retrouve pas du reste dans le surnageant.)

Les quantités corrigées obtenues pour ces composés sont plus proches de la réalité et sont signalées par des astérisques dans le Tableau 15.

En ce qui concerne la classe chimique des hydrocarburcs, les résultats obtenus sont probants. Pour les monoterpènes, les quantités sont multipliées par 2, quant au caryophyllène, son augmentation est également importante.

On constate aussi la présence de limonène. Les B-CD peuvent au moins en partie retenir ce composé qui par son odeur de citron agréable et son seuil de perception très bas (1 ppb) peut modifier la qualité odorante de l'extrait.

La presence de telles quantités d'hydrocarbures dans le témoin peut s'expliquer par une différence d'ensoleillement et de pluviométrie entre les années de récoltes.

Il y a également présence de m-xylène dans l'extrait récupéré avec les β-cyclodextrines. Dans la classe chimique des esters, l'apport des β-CD paraît bénéfique pour la plupart des composés bien que les gains observés n'atteignent pas ceux obtenus pour les hydrocarbures. Les deux esters pour lesquels l'apport des β-CD est négatif sont l'hydroxy-5 octanoate d'éthyle et l'hydroxy-5 décanoate d'éthyle, tous deux ayant un groupement hydroxyle dans leur structure. Pour les aldéhydes, les β-CD ne semblent pas adaptées. La plupart

10

15

20

25

30

des composés ont des rendements inférieurs à ceux du témoin. Les aldehydes qui font exception à cette remarque sont l'octanal, le benzaldéhyde et le géranial. Le géranial possède un seuil de perception très bas 3 x 10 ppm et participe à l'arôme de la framboise. Quant au benzaldéhyde, la plupart des composés, qui comme lui, possèdent un noyau benzenique peuvent aisément former des complexes avec les β-CD (phényl-2 éthanol, m-xylène, etc...). La variété «Rose de Côte d'Or» est riche en α et β-ionones, composés qui participent à l'arôme de framboise. Tant l'lpha-ionone que la β-ionone sont retenues de façon importante par les β-CD. A l'opposé, la frambinone et la gingérone ne sont que modérément retenues par les B-CD, l'essentiel de ces composés se trouve dans le surnageant hydroalcoolique. Les composés quantitativement majeurs de l'arôme de framboise sont le géraniol et la S-décalactone qui font partie des classes chimiques (respectivement les alcools et les lactones) les moins fortement retenues par les β -CD. raison de cette sélectivité, l'extrait β-CD apparaît clairement comme ayant une odeur de framboise plus typée que le témoin. Cette observation peut être corrélée aux données chromatographiques qui montrent que les B-CD favorisent la récuperation de plusieurs composés volatils dont certains qui sont présents dans le fruit à l'état de trace. Certains de ces composés, ayant des seuils de perception suffisamment bas, peuvent participer à l'arôme de framboise. Par ailleurs, l'extrait B-CD maintient un meilleur équilibre entre les composés. C'est ainsi que les proportions en alcools terpéniques et en 6-décalactone sont réduites et induisent une déformation plus limitée de l'arôme du fruit. Par ailleurs, des résultats corroborant ceux rapportés ci-dessus ont été obtenus avec le matériel n°1.

35

10

15

20

25

30

35

REVENDICATIONS

l - Procédé d'extraction au dioxyde de carbone supercritique des composés volatils d'un matériel de départ, suivant lequel on conduit une percolation du gaz supercritique à travers ledit matériel de départ, le dioxyde de carbone se chargeant en composés extractibles, puis lorsque la pression de percolation atteint une valeur prédéterminée, on effectue une détente du milieu de percolation, en amenant ce dernier dans une zone de séparation dans laquelle les composés volatils sont piégés dans la carboglace formée, les composés volatils étant récupérés en solution aqueuse, après sublimation du CO₂, caractérise par le fait que l'extraction est conduite, dans la zone de séparation, en présence d'un milieu de piégeage, lequel est apte à retenir lesdits composés volatils.

2 - Procédé selon la revendication 1, caractérisé par le fait qu'on choisit un milieu de piégeage très peu soluble dans le CO₂ liquide ou supercritique et ayant une aptitude à dissoudre ou à complexer les composés volatils du matériel de départ.

3 - Procédé selon la revendication 2. caractérisé par le fait qu'on choisit un milieu de piégeage capable de dissoudre les composés volatils.

4 - Procédé selon la revendication 2, caractérisé par le fait qu'on choisit un milieu de piégeage apte à complexer les composés volatils du matériel de départ.

5 - Procédé selon l'une des revendications l à 4, caractérisé par le fait qu'on choisit, comme milieu de piégeage, un milieu directement utilisable dans le domaine agro-alimentaire.

6 - Procédé selon l'une des revendications 3 et 5, caractérisé par le fait qu'on choisit, comme milieu de piégeage, le glycérol ou une huile alimentaire.

7 - Procédé selon la revendication 6, caractérisé par le fait qu'on introduit le milieu de piégeage à raison de 1 à 10% en poids par rapport au matériel de départ.

- 8 Procédé selon l'une des revendications 4 et 5. caractérisé par le fait qu'on choisit, comme milieu de piégeage, une cyclodextrine, notamment la ß-cyclodextrine.
- par le fait qu'on introduit le milieu de piégeage à raison de 0.05 à 0.5% en poids par rapport au matériel de départ.
- 10 Procédé selon l'une des revendications 1 à 9, caractérisé par le fait qu'on travaille sur un matériel de départ choisi parmi les matériels contenant des produits volatils et dont la teneur en lipides n'est pas excessivement élevée.
- 11 Procédé selon la revendication 10. caractérisé par le fait qu'on choisit les matériels de départ, parmi les fruits et produits dérivés, et les matériels végétaux non gras et contenant des huiles essentielles.
- 12 Milieu de piégeage ayant retenu les composes volatils, tel qu'il est obtenu par le procédé selon l'une des revendications 1 à 11.
- 13 Composés volatils obtenus après séparation du milleu de piézeage résultant du procédé tel que défini à l'une des revendications 1 à 11.
- 14 Application du milieu et des composés tels que définis aux revendications respectivement 12 et 13. comma arômes, notamment en industrie agro-alimentaire.

3.0

25

10

15

20

35

10

15

20

ಲ	_	Proc	ಈವಹ ಆ	elon I	l'une	des	reve	ndi	cation	5 4	e t	5
caracterisé	pa	r le	fait	qu' ai	a cho.	isit',	CON	min .	milieu	de		
niéreare. Ul	ne	cycl	odext	rine,	nota	nme n t	la	Bec	yclode	ktr:	ine.	

- 9 Procédé selon la revendication 8, caractérisé par le fait qu'on introduit le milieu de piégeage à raison de 0,05 à 0,5% en poids par rapport au matériel de départ.
- 10 Procédé selon l'une des revendications 1 à 9, caractérisé par le fait qu'on travaille sur un matériel de départ choisi parmi les matériels contenant des produits volatils et dont la teneur en lipides n'est pas excessivement élevée.

11 - Procédé selon la revendication 10, caractérisé par le fait qu'on choisit les matériels de départ, parmi les fruits et produits dérivés, et les matériels végétaux non gras et contenant des huiles essantielles.

12 - Milieu de piégeage ayant retenu les composés volatils, tel qu'il est obtenu par le procédé selon l'une des revendications 1 à 11.

13 - Composés volatils obtenus après séparation du milieu de piégeage résultant du procédé tel que défini à l'une des revendications 1 à 11.

14 - Application du milieu et des composés tels que définis aux revendications respectivement 12 et 13. compe arômes, notamment en industrie agro-alimentaire.

30

25

35

FEUILLE DE REMPLACEMENT

Fig. 2

FEUILLE DE REMPLACEMENT

Fig. 3

Fig. 4

FEUILLE DE REMPLACEMENT

Fig. 5.

FEUILLE DE REMPLACEMENT

charge en mg

BNBDCCID: AND BOORSON 1 -

Fig. 6

FFUILLE DE REMPLACEMENT

Fig. 7

FEUILLE DE REMPLACEMENT

Fig. 8

FEUILLE DE REMPLACEMENT

Fig. 9

ESTITUTE DE REMPLACEMENT

Fig. 10

PRINCE DE REMPLACEMENT

INTERNATIONAL SEARCH REPORT

International Application No PCT/FR 89/00158

		temational Application No	
	FICATION OF SUBJECT MATTER (If several classificat		
ccording t	nternational Patent Classification (IPC) or to both Nationa	Classification and IPC	
Int Cl	⁴ : B 01 D 11/02		
	SEARCHED		
	Minimum Documentati	on Searched 7	
assification	System Class	ssification Symbols	
	A 23 F 5/20, A 23 F 5/22, A	23 L 1/221,	
Int.Cl	B 01 D 11/00, B 01 D 11/02, C 11 B 1/10, C 11 B 7/00	B 01 D 11/04	<u> </u>
_	Documentation Searched other than to the Extent that such Documents are	Minimum Documentation included in the Fields Searched 6	
			·
III DOCU	MENTS CONSIDERED TO BE RELEVANT		
stagory *	Citation of Document, 11 with indication, where approp	mate, of the relevant passages 12	Relevant to Claim No. 18
ī	EP,A1,0010665 (HAG) 14 May 1980,		1,5,6,10,
A	page 3,line 22 - page 4, line 6-15,17-28	ne 4; page 4,lines	11,14
A	EP,A2,0234932 (SUNTORY) 02 Septem 1,4,7-9	ber 1987, see claims	1-3,5,6,8,10 12
A ·	DE,A1,2727191 (HAG) 21 December 1 7,8; page 7,paragraph 2	.978, see claims 1-3,	1-6
A	DE,B2,2106133 (STUDIENGESELLSCHAF 1978, see claims; column 2,	TT KOHLE) 13 April lines 23-24	1-5,10-14
A	EP,Al,0062893 (HENKEL) 20 October 1-3,7	1982, see claims	1-5,8,10-14
Α .	GB,A,2081065 (SATO SHOKUHIN KOGYO	K.K.) 17 February	1,3-5,8,10,
A ·	Patent Abstracts of Japan, Vol.9	,No.112,	8
•	16 May 1985, page 131 C 281 & JP,A,606174(HASEGAWA KORYO	O K.K.)12 January 1985	
A	DE,A,1929059 (O.KUNZ)18 December		6
"A" do co "E" ea fill	al categories of cited documents: 10 cument defining the general state of the art which is not nesdered to be of particular relevance riller document but published on or after the international ng date cument which may throw doubts on promity claim(s) or	"T" later document published after or phonty date and not in conficient to understand the principal invention of particular relevance cannot be considered novel of involve an inventive step	ile or theory underlying the nce: the claimed invention r cannot be considered to
cit "O" de ot	sich is cited to establish the publication date of another atten or other special reason (as specified) cument referring to an oral disclosure, use, exhibition or her means	"Y" document of particular releva cannot be considered to involve document is combined with on ments, such combination being in the art.	a or more other such docu obvious to a person skilled
la	cument published prior to the international filing date but ler than the pnority date claimed	"A" document member of the same	patent family
	TIFICATION he Actual Completion of the International Search	Date of Mailing of this International	Search Report
		•	
	une 1989 (16.06.89)	19 July 1989 (19.07	.03/
	onal Searching Authority	Signature of Wanterstan A	
EUROP	EAN PATENT OFFICE		·

ANNEX TO THE INTERNATIONAL SEARCH REPORT ON INTERNATIONAL PATENT APPLICATION NO.

FR 8900158 \$A 28113

This annex lists the patent family members relating to the patent documents cited in the above-mentioned international search report. The members are as contained in the European Patent Office EDP file on 12/07/89

The European Patent Office is in no way liable for these particulars which are merely given for the purpose of information.

Patent document cited in search report	Publication date	Patent family inember(s)	Publication date
EP-A- 0010665	14-05-80	DE-A- 2844781 AT-T- 413 CA-A- 1130988 JP-A- 55054003	24-04-80 15-12-81 07-09-82 21-04-80
EP-A- 0234932	02-09-87	JP-A- 62201828	05-09-87
DE-A- 2727191	21-12-78	AT-B- 359814 BE-A- 868203 CA-A- 1109324 CH-A- 634202 FR-A,B 2394547 GB-A- 1596364 JP-A- 54036299 LU-A- 79810 NL-A- 7806406 US-A- 4255458	10-12-80 16-10-78 22-09-81 31-01-83 12-01-79 26-08-81 16-03-79 20-07-79 19-12-78 10-03-81
DE-B- 2106133	31-08-72	DE-A,B,C 2106133 AT-B- 321086 BE-A- 778292 CH-A- 568019 FR-A,B 2124358 NL-A- 7201574 SE-B- 377651 US-A- 4328255	31-08-72 10-03-75 20-07-72 31-10-75 22-09-72 14-08-72 21-07-75 04-05-82
EP-A- 0062893	20-10-82	DE-A- 3115157	11-11-82
GB-A- 2081065	17-02-82	JP-A- 57118756 JP-A- 57033545 AU-B- 544564 AU-A- 7305181 CA-A- 1173288 CH-B- 648991 FR-A,B 2488106 US-A- 4560571 US-A- 4474822	23-07-82 23-02-82 06-06-85 23-09-82 28-08-84 30-04-85 12-02-82 24-12-85 02-10-84

ANNEX TO THE INTERNATIONAL SEARCH REPORT ON INTERNATIONAL PATENT APPLICATION NO.

FR 8900158

SA 28113

This annex lists the patent family members relating to the patent documents cited in the above-mentioned international search report. The members are as contained in the European Patent Office EDP file on 12/07/89

The European Patent Office is in no way liable for these particulars which are merely given for the purpose of information.

Patent document cited in search report	Publication date	Patent family member(s)	Publication date
DE-A- 1929059	18-12-69	CH-A- 490809 FR-A- 2011936 GB-A- 1237042	31-05-70 13-03-70 30-06-71
 		-	
			,

RAPPORT DE RECHERCHE INTERNATIONALE

		Demande internationale N° PCT/F				
	MENT DE L'INVENTION (si plusieurs symboles de		r tous; 7			
Selon la classification internationale des brevets (CIB) ou à la fois selon la classification nationale et la CIB						
CI3 ⁴ : B 01 D 11/02						
II. DOMAI	II. DOMAINES SUR LESQUELS LA RECHERCHE A PORTE					
	Documentation m	inimale consultée *				
. Système d	e classification	Sympoles de classification				
CIB	A 23 F 5/20, A 23 F 5/22, A 23 L 1/221, B 01 D 11/00, B 01 D 11/02, B 01 D 11/04, C 11 B 1/10, C 11 B 7/00					
	Documentation consultee autre que la où de tels documents font parie des doi	documentation minimale dans la mesure maines sur lesquelà la recnerche a porté °				
}						
, III. DOCU	MENTS CONSIDÉRÉS COMME PERTINENTS 10					
Catégorie *	identification des documents cités. 11 ave des passages pertin	e indication, si necessaire. ents 18	N° des revendications visées 13			
A	EP, A1,0010665 (HAG) 14 mai 1980 voir revendications ligne 22 - page 4, 1 page 4, lignes 6-15,	igne 4;	1,5,6,10,			
A	EP, A2, 0234932 (SUNTORY) 2 septembre 1987 voir revendications	1,4,7-9	1-3,5,6,8,10,12			
A	DE, A1,2727191 (HAG) 21 décembre 1978 voir revendications alinéa 2	1-3,7,8; page 7,	1-6			
A	DE, B2, 2106133 (STUDIEN KOHLE) 13 avril 1978 voir revendications; lignes 23-24		1-5,10-14			
* Catégories spéciales r « A » document définir at général de la technique, non considéré comme. « E » document antèrie. « L » document antèrie. « L » document pouvant jater un doute sur une revendication de priorité ou cité pour determiner la date de publication d'une autre citation ou pour une raison spéciale (telle qu'indiquée) « O » document pouvant jater un doute sur une revendication d'une autre citation ou pour une raison spéciale (telle qu'indiquée) « O » document perférant à une divulgation orale, à un usage, à une exposition ou tous autres moyens (P » document publié avant la date de priorité revendiquee IV. CERTIFICATION Date à laquelle la recherche internationale a été effectivement 16 juin 1989 Administration chargée de la recherche internationale * T » document ultérieur publié postérieurement à la date de priorite et n'apparienant pas la date de priorite et n'apparienant pas la fetta de la tecnnique pertinent international de la fetta de la tecnnique pertinent international particulièrement perticulièrement perticulièrement perticulièrement perticulièrement perticulièrement perticulièrement perticulièrement perticulièrement perticulière considérée comme nouvelle ou comme du document particulièrement perticulièrement perticulièrement perticulière nouvelle ou comme du document particulièrement perticulière considérée comme nouvelle ou comme diquee ne peut être considérée comme impliquant une activité inventive lorsque le cocument est associé a un ou plusieurs autres document qui fait panie de la memo famille de brevets IV. CERTIFICATION Date d'expedition du présent rappon de recherche internationale 3 juil 1989 Administration chargée de la recherche internationale Signature du fonctionnaire autorisé						
OFFICE EUROPEEN DES BREVETS						

Oes Dassages Pertinents , viseus	III. DOCUM	ENTS CONSIDÉRÉS COMME PERTINENTS DEUXIÈME FEUILLE)	INDIQUÉS SUR LA
20 octobre 1982 voir revendications 1-3,7 A GB, A, 2081065 (SATO SHOKUHIN KOGYO K.K.) 1,3-5,8, 17 février 1982 voir revendication 1 A Patent Abstracts of Japan, vol. 9, no. 8 112, 16 mai 1985, page 131 c 281, 2 JP, A, 606174 (HASEGAWA KORYO K.K.) 12 janvier 1985 A DE, A, 1929059 (O. KUNZ) 18 décembre 1969 voir revendication 1	Catégoria *		Nº des revendications
17 février 1982 voir revendication 1 A Patent Abstracts of Japan, vol. 9, no. 8 112, 16 mai 1985, page 131 C 281, & JP, A, 606174 (HASEGAWA KORYO K.K.) 12 janvier 1985 A DE, A, 1929059 (O. KUNZ) 18 décembre 1969 voir revendication 1	A	20 octobre 1982	1-5,8,10-
112, 16 mai 1985, page 131 C 281, & JP, A, 606174 (HASEGAWA KORYO K.K.) 12 janvier 1985 A DE, A, 1929059 (O. KUNZ) 18 décembre 1969 voir revendication 1	A	17 février 1982	
18 décembre 1969 voir revendication 1	A	112, 16 mai 1985, page 131 C 281, & JP, A, 606174 (HASEGAWA KORYO K.K.)	8
	A	18 décembre 1969	6
	:	:	
			:
	٠		
	:		
	;		
	· · ·		:
			!
	:	*-	

ANNEXE AU RAPPORT DE RECHERCHE INTERNATIONALE RELATIF A LA DEMANDE INTERNATIONALE NO.

FR 8900158 SA 28113

La présente annexe indique les membres de la famille de brevets relatifs aux documents brevets cités dans le rapport de recherche internationale visé ci-dessus.

Lesdits membres sont contenus au fichier informatique de l'Office européen des brevets à la date du 12/07/89 Les renseignements fournis sont donnés à titre indicatif et n'engagent pas la responsabilité de l'Office européen des brevets.

Date de Membre(s) de la Document brevet cité Date de publication au rapport de recherche publication famille de brevet(s) 24-04-80 DE-A-2844781 EP-A- 0010665 . 14-05-80 15-12-81 AT-T-413 CA-A-1130988 07-09-82 JP-A-55054003 21-04-80 05-09-87 02-09-87 JP-A-62201828 EP-A- 0234932 DE-A- 2727191 AT-B-359814 10-12-80 21-12-78 BE-A-868203 16-10-78 CA-A-1109324 22-09-81 634202 31-01-83 CH-A-2394547 12-01-79 FR-A,B GB-A-1596364 26-08-81 16-03-79 JP-A-54036299 LU-A-79810 20-07-79 7806406 19-12-78 NL-A-10-03-81 4255458 US-A-DE-B- 2106133 DE-A,B,C 2106133 31-08-72 31-08-72 AT-B-321086 10~03-75 BE-A-778292 20-07-72 31-10-75 CH-A-568019 FR-A, B 2124358 22-09-72 14-08-72 NL-A-7201574 21-07-75 SE-B-377651 04-05-82 US-A-4328255 11-11-82 EP-A- 0062893 20-10-82 DE-A-3115157 23-07-82 GB-A- 2081065 17-02-82 JP-A-57118756 23-02-82 JP-A-57033545 AU-B-544564 06-06-85 23-09-82 AU-A-7305181 28-08-84 CA-A-1173288 CH-B-648991 30-04-85 FR-A,B 2488106 12-02-82 US-A-4560571 24-12-85 US-A-02-10-84

ANNEXE AU RAPPORT DE RECHERCHE INTERNATIONALE RELATIF A LA DEMANDE INTERNATIONALE NO.

FR 8900158

SA 28113

La présente annexe indique les membres de la famille de brevets relatifs aux documents brevets cités dans le rapport de recherche internationale visé ci-dessus.

Les dits membres sont contenus au fichier informatique de l'Office européen des brevets à la date du 12/07/89

Les renseignements fournis sont donnés à titre indicatif et n'engagent pas la responsabilité de l'Office européen des brevets.

Document brevet cité	Date de publication	Membre(s) de la	Date de
au rapport de recherche		famille de brevet(s)	publication
DE-A- 1929059	18-12-69	CH-A- 490809 FR-A- 2011936 GB-A- 1237042	13-03-70

This Page is inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

×	BLACK BORDERS
×	IMAGE CUT OFF AT TOP, BOTTOM OR SIDES
×	FADED TEXT OR DRAWING
	BLURED OR ILLEGIBLE TEXT OR DRAWING
.0	SKEWED/SLANTED IMAGES
×	COLORED OR BLACK AND WHITE PHOTOGRAPHS
	GRAY SCALE DOCUMENTS
	LINES OR MARKS ON ORIGINAL DOCUMENT
	REPERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY
	OTHER:

IMAGES ARE BEST AVAILABLE COPY.
As rescanning documents will not correct images problems checked, please do not report the problems to the IFW Image Problem Mailbox