

Introduction to Data Mining

Jun Huang

Advanced Topics in MLC

Introduction to Data Mining

Advanced Topics in Multi-Label Classification

Jun Huang

Anhui University of Technology

Spring 2018

huangjun_cs@163.com

KDD Process

Data Mining-Core of Knowledge discovery process

Introduction to Data Mining

Jun Huang

Advanced Topics in MLC

Knowledge

Multi-Label Classification

Introduction to Data Mining

Jun Huang

Advanced Topics in MLC

Label Correlation
Missing/Noisy Label
Extream Multi-label
Classification
Discover New Class
Labels
Label-Specific

Feature Learning

Single-label classification: Is this a picture of beach?
 ∈ {yes,no}

- Multi-label classification: Which labels are relevant to this picture?
 - \subseteq {beach, sunset, foliage, field, mountain, urban}
- i.e., each instance can have multiple labels instead of a single one

Advanced Topics in Multi-Label Classification

Introduction to Data Mining

Jun Huang

Advanced

Topics in MLC

Label Correlation

Missing/Noisy Label Extream Multi-label Classification

Discover New Class Labels

Labels Label-Specific Feature Learning

- Label Correlation
- Missing labels
- Extream Multi-label Classification
- Discover New Labels

Binary Relevance (BR): A Probabilistic View

Introduction to Data Mining

Jun Huang

Advanced

Topics in MLC

Missing/Noisy Label Extream Multi-label Classification

Discover New Class Labels

Label-Specific Feature Learning • BR model: $\mathbf{h} = (h_1, h_2, ..., h_L)$

- each $h_i: \mathcal{X} \to \{0,1\}$
- for $\widetilde{\mathbf{x}}$, predict:

$$\hat{y}_j = h_j(\widetilde{\mathbf{x}}) \equiv \arg\max_{y_j \in \{0,1\}} p(y_j | \widetilde{\mathbf{x}})$$

predictions made independently

$$\mathbf{h}(\widetilde{\mathbf{x}}) \equiv [h_1(\widetilde{\mathbf{x}}), h_2(\widetilde{\mathbf{x}}), ..., h_L(\widetilde{\mathbf{x}})]$$

• If labels are independent,...but they are not!

$$p(\mathbf{y}|\mathbf{x}) \neq \Pi_{j=1}^{L} p(y_j|\mathbf{x})$$

Introduction to Data Mining

Jun Huang

Advanced Topics in MLC

Label Correlation

Missing/Noisy Label Extream Multi-label Classification

Discover New Class

Labels Label-Specific Feature Learning In multi-label classification, labels often have correlations with each other

- It has been shown that exploiting label correlations between labels can improve the performances of classifiers
- For example, if one image is annotated with label "sailing boat", it has a high probability to be labeled as "sea water"

Introduction to Data Mining

Jun Huang

Advanced Topics in MLC

Label Correlation

Missing/Noisy Label Extream Multi-label Classification

Discover New Class Labels Label-Specific Feature Learning Existing strategies to label correlations exploitation could among others be roughly categorized into three families, based on the order of correlations that the learning techniques have considered

- First-order strategy: decomposing the multi-label learning problem into a number of independent binary classification problems (one per label)
- Second-order strategy: considering pairwise relations between labels
- High-order strategy: considering high-order relations among labels such as imposing all other labels' influences on each label

Label Correlation First-Order

Introduction to Data Mining

Jun Huang

Advanced

Topics in MLC Label Correlation

Missing/Noisy Label Extream Multi-label Classification Discover New Class

Label-Specific Feature Learning First-order strategy: decomposing the multi-label learning problem into a number of independent binary classification problems (one per label), e.g.,

- Binary Relevance (BR): M. R. Boutell, J. Luo, X. Shen, and C. M. Brown, Learning multi-label scene classification, Pattern Recognit., vol. 37, no. 9, pp. 1757–1771, 2004.
- MLkNN: M. Zhang and Z. Zhou, Ml-knn: A lazy learning approach to multi-label learning, Pattern Recognit., vol. 40, no. 7, pp. 2038–2048, 2007.

First-order algorithms are simple and efficient, these algorithms could be less effective due to the ignorance of label correlations

Label Correlation Second-Order

Introduction to Data Mining

Jun Huang

Advanced

Topics in MLC

Missing/Noisy Label

Discover New Class

Discover New Class Labels

Label-Specific Feature Learning

Second-order approaches exploit pairwise relationships between labels

- The most popular way to model pairwise relationship is to exploit the interaction between any pair of labels
- There are several methods for calculating the correlations between class labels, such as
 - Pearson correlation coefficients
 - hamming distance
 - jaccard similarity
 - cosine similarity
 - ...
- Some approaches:
 - CLR¹, LLSF², ML-TLLT...

¹Multi- label classification via calibrated label ranking,2008

²Learning label specific features for multi-label classification,ICDM2015 a c

Label Correlation Second-Order

Introduction to Data Mining

Jun Huang

Advanced Topics in MLC

Label Correlation

Missing/Noisy Label Extream Multi-label Classification

Discover New Class Labels

Labels Label-Specific Feature Learning Second-order approaches exploit pairwise relationships between labels

- Another way is to incorporate the criterion of ranking loss into the objective function to be optimized when learning the classification models
 - RankSVM³, BP-MLL⁴, RELIAB⁵, ...

³A kernel method for multi-labelled classification, NIPS2001

⁴Multilabel neural networks with applications to functional genomics and text categorization, TKDE2006

⁵Leveraging implicit relative labeling-importance information for effective multi-label learning, ICDM2015 ← □ → ← ② → ← ② → ← ② → → ② → ○ ② ← ○

Label Correlation High-Order

Introduction to Data Mining

Jun Huang

Advanced Topics in MLC

Label Correlation

Missing/Noisy Label Extream Multi-label Classification

Discover New Class Labels

Label-Specific Feature Learning High-order approaches tackle the multi-label learning problem by mining relationship among all the class labels or a subset of class labels

- Problem transformation approaches
 - LP⁶, RAkEL⁷, EPS⁸, Classifier Chains (CC)⁹...

⁶Mining multi-label data,2010

 $^{^7}$ Random k-labelsets: An ensemble method for multilabel classification, ECML2007

⁸Multi-label classification using ensembles of pruned sets,ICDM2008

High-Order Approaches: Classifier Chains (CC)

Introduction to Data Mining

Jun Huang

Advanced

Topics in MLC Label Correlation

Missing/Noisy Label Extream Multi-label Classification

Discover New Class

Label-Specific Feature Learning

 \cancel{y}

$$ullet$$
 and, for any $\widetilde{\mathbf{x}}$, predict

$$\hat{y}_j = h_j(\widetilde{\mathbf{x}}, \hat{y}_1, ..., \hat{y}_{j-1}) \equiv \arg\max_{y_j \in \{0,1\}} p(y_j | \widetilde{\mathbf{x}}, \hat{y}_1, ..., \hat{y}_{j-1})$$

models label correlations

$$\mathbf{h}(\widetilde{\mathbf{x}}) \equiv [h_1(\widetilde{\mathbf{x}}), h_2(\widetilde{\mathbf{x}}, \hat{\mathbf{y}}_1), ..., h_L(\widetilde{\mathbf{x}}, \hat{\mathbf{y}}_1, ..., \hat{\mathbf{y}}_{L-1})]$$

Inspiration from the chain rule (a greedy approximation):

$$p(\mathbf{y}|\mathbf{x}) = p(y_1|\mathbf{x})\Pi_{j=2}^{L}p(y_j|\mathbf{x}, y_1, y_2, ..., y_{j-1})$$

High-Order Approaches: Classifier Chains (CC)

Introduction to Data Mining

Jun Huang

Advanced Topics in MLC

Label Correlation

Missing/Noisy Label Extream Multi-label Classification

Discover New Class Lahels

Label-Specific Feature Learning

$$\hat{\mathbf{y}} = \mathbf{h}(\tilde{\mathbf{x}}) = [?,?,?]$$

High-Order Approaches: Classifier Chains (CC)

Introduction to Data Mining

Jun Huang

Advanced Topics in MLC

Label Correlation

Missing/Noisy Label Extream Multi-label Classification

Discover New Class Lahels

Label-Specific Feature Learning

Example

$$\hat{y}_1 = h_1(\tilde{\mathbf{x}}) = 1$$

$$\hat{\mathbf{y}} = \mathbf{h}(\tilde{\mathbf{x}}) = [\frac{1}{2}, ?, ?]$$

High-Order Approaches: Classifier Chains (CC)

Introduction to Data Mining

Jun Huang

Advanced Topics in MLC

Label Correlation

Missing/Noisy Label Extream Multi-label Classification

Discover New Class Labels

Labels Label-Specific Feature Learning

$$\hat{y}_1 = h_1(\tilde{x}) = 1$$

$$\hat{y}_2 = h_2(\tilde{\mathbf{x}}, \hat{y}_1) = 0$$

$$\mathbf{\hat{y}} = \mathbf{h}(\mathbf{\tilde{x}}) = [1, \textcolor{red}{\mathbf{0}}, ?]$$

Example

High-Order Approaches: Classifier Chains (CC)

Introduction to Data Mining

Jun Huang

Advanced Topics in MLC

Label Correlation

Missing/Noisy Label Extream Multi-label Classification

Discover New Class

Labels
Label-Specific
Feature Learning

$$\hat{y}_1 = h_1(\tilde{x}) = 1$$

②
$$\hat{y}_2 = h_2(\tilde{\mathbf{x}}, \hat{y}_1) = 0$$

$$\hat{y}_3 = h_3(\tilde{\mathbf{x}}, \hat{y}_1, \hat{y}_2) = 1$$

$$\mathbf{\hat{y}} = \mathbf{h}(\mathbf{\tilde{x}}) = [1, 0, \mathbf{1}]$$

High-Order Approaches: Classifier Chains (CC)

Introduction to Data Mining

Jun Huang

Advanced Topics in MLC

Label Correlation

Missing/Noisy Label Extream Multi-label Classification

Discover New Class Labels

Label-Specific Feature Learning

Advantages of CC:

- similar time complexity to BR in practice (if L < D)
- better performance than BR
- can improve (a lot) with Bagging Ensembles of CC (ECC):
 - ullet M CC models, each with a random chain and sample of $\mathcal{D}.$

Issues with CC:

- Error Propagation: errors may be propagated down the chain
- It may be inappropriate that each class label is dependent on the previous ones in the chain

High-Order Approaches: Classifier Chains (CC)

Introduction to Data Mining

Jun Huang

Advanced Topics in MLC

Label Correlation

Missing/Noisy Label Extream Multi-label Classification

Discover New Class Labels

Labels Label-Specific Feature Learning

Extentions of CC:

- Bayes Optimal Probabilistic Classifier Chains¹⁰ (PCC)
- Monte-Carlo search for Classifier Chains¹¹ (MCC)
- Conditional Dependency Networks¹² (CDN)
- Prudent¹³
- ...

¹⁰Bayes optimal multilabel classification via probabilistic classifier chains, ICMI 2010

¹¹Efficient monte carlo methods for multi-dimensional learning with classifier chains, Pattern Recognition, 2014

 $^{^{12}\}mbox{Multi-Label Classification Using Conditional Dependency Networks, IJCAI2011}$

¹³Prudent: A pruned and confident stacking approach for multi- label classification, TKDE2015

Label Correlation High-Order Approaches

Introduction to Data Mining

Jun Huang

Advanced Topics in MLC

Label Correlation

Missing/Noisy Label Extream Multi-label Classification

Discover New Class

Labels Label-Specific Feature Learning In CC, each class label is dependent on the previous ones in the chain, it may be inappropriate

- Exploit the label correlation between class label by mining their dependent structures, e.g.,
 - Tree structure 14
 - Bayesian Networks 15
 - ..

¹⁴Bayesian chain classifiers for multidimensional classification,IJCAI2011

¹⁵Multi-label learning by exploiting label dependency, KDD2010

Introduction to Data Mining

Jun Huang

Advanced Topics in MLC Label Correlation

Missing/Noisy Label Extream Multi-label Classification

Discover New Class

Label-Specific Feature Learning

- Noisy Label: The set of labels assigned to each example may not be fully valid, e.g. some labels may be wrongly assigned due to mistakes of human labellers
- Missing/Weak Label: The absence of some labels do not necessarily mean they are invalid for the example, e.g. only a "partial" set of proper labels is assigned by the human labeller

Introduction to Data Mining

Jun Huang

Advanced Topics in MLC

Missing/Noisy Label

Classification

Discover New Class

Label-Specific
Feature Learning

labels?

- Complete the Label Matrix before learning
- Combine the learning step with label matrix completion

How to solve multi-label classification with Missing/Noisy class

 Calculate classification loss without considering the Missing values

Introduction to Data Mining

Jun Huang

Advanced Topics in MLC Label Correlation

Missing/Noisy Label Extream Multi-label Classification

Discover New Class

Label-Specific Feature Learning

Combine the learning step with label matrix completion

- Given a training set with n samples $\mathbf{X} = [\mathbf{x}_1, \mathbf{x}_2, ..., \mathbf{x}_n]^T$
- The Label Matrix: $\mathbf{Y} = [\mathbf{y}_1, \mathbf{y}_2, ..., \mathbf{y}_n]^T$
- $y_{ij} = 1$ or 0 means \mathbf{x}_i belongs to y_i or not, and $y_{ij} = ?$ indicates the value is missing

$$J(\Theta) = \sum_{(i,j)} \ell(y_{ij}, f_j(\mathbf{x}_i, \Theta)) + \lambda \mathcal{R}(\Theta)$$

s.t.
$$Y = Y + E$$
 or $Y = YS + E$ or $Y = CD + E$ and other constraints

• where Θ indicates the training data with known labels

Introduction to Data Mining

Jun Huang

Advanced Topics in MLC

Missing/Noisy Label Extream Multi-label Classification Discover New Class Labels

Label-Specific Feature Learning

values

ullet Given a training set with n samples $\mathbf{X} = [\mathbf{x}_1, \mathbf{x}_2, ..., \mathbf{x}_n]^T$

Calculate classification loss without considering the Missing

- ullet The Label Matrix: $\mathbf{Y} = [\mathbf{y}_1, \mathbf{y}_2, ..., \mathbf{y}_n]^T$
- $y_{ij} = 1$ or 0 means \mathbf{x}_i belongs to y_j or not, and $y_{ij} = ?$ indicates the value is missing

$$J(\mathbf{W}) = \sum_{(i,j) \in \Omega} \ell(y_{ij}, f_j(\mathbf{x}_i, \mathbf{W})) + \lambda \mathcal{R}(\mathbf{W})$$

ullet where Ω indicates the training data with known labels

Introduction to Data Mining

Jun Huang

Advanced Topics in MLC Label Correlation

Missing/Noisy Label Extream Multi-label Classification Discover New Class Labels

Label-Specific Feature Learning

Important Literatures

- Multi-label learning with weak label, AAAI2010
- Large-scale Multi-label Learning with Missing Labels, ICML, 2014
- Learning low-rank label correlations for multi-label classification with missing labels, ICDM2014
- Multilabel classification with label correlations and missing labels, AAAI2014
- MI-mg: Multi-label learning with missing labels using a mixed graph, ICCV2015
- Semi-supervised multi-label learning with incomplete labels, IJCAl2015
- Improving multi-label learning with missing labels by structured semantic correlations. ECCV2016
- Learning from Semi-Supervised Weak-Label Data, AAAI2018

Introduction to Data Mining

Jun Huang

Advanced Topics in MLC Label Correlation

Missing/Noisy Label Extream Multi-label Classification

Discover New Class

Label-Specific Feature Learning

- Most existing MLL algorithms will fail when the label space is large, e.g. L > 50, especially for the second-order and high-order approaches.
- The number of class labels is so high in many applications
- http://manikvarma.org/downloads/XC/ XMLRepository.html
- The labeling sparsity and structures should be exploited

Introduction to Data Mining

Jun Huang

Advanced Topics in MLC

Label Correlation

Missing/Noisy Label Extream Multi-label

Classification Discover New Class

Lahels

Label-Specific Feature Learning

Dataset	Download	Feature Dimensionality	Label Dimensionality	Number of Train Points	Number of Test Points	Avg. Points per Label	Avg. Labels per Point
Mediamill	Download	120	101	30993	12914	1902.15	4.38
Bibtex	Download	1836	159	4880	2515	111.71	2.40
Delicious	Download	500	983	12920	3185	311.61	19.03
RCV1-2K	Download	47236	2456	623847	155962	1218.56	4.79
EURLex-4K	Download	5000	3993	15539	3809	25.73	5.31
AmazonCat-13K	Download Dataset Download Feature & Label Meta-data Download Raw Text for Deep Learning	203882	13330	1186239	306782	448.57	5.04
AmazonCat-14K	Download Dataset Download Feature & Label Meta-data Download Raw Text for Deep Learning	597540	14588	4398050	1099725	1330.1	3.53
Wiki10-31K	Download Dataset Download Feature & Label Meta-data Download Raw Text for Deep Learning	101938	30938	14146	6616	8.52	18.64
Delicious-200K	Download	782585	205443	196606	100095	72.29	75.54
VikiLSHTC-325K	Download	1617899	325056	1778351	587084	17.46	3.19
Wikipedia-500K	Download Dataest Download Feature & Label Meta-data	2381304	501070	1813391	783743	24.75	4.77
Amazon-670K	Download Dataset Download Feature & Label Meta-data Download Raw Text for Deep Learning	135909	670091	490449	153025	3.99	5.45
Ads-1M	-	164592	1082898	3917928	1563137	7.07	1.95
Amazon-3M	Download Dataset Download Feature & Label Meta-data Download Raw Text for Deep Learning	337067	2812281	1717899	742507	31.64	36.17
Ads-9M	_	2082698	8838461	70455530	22629136	14.32	1.79

Introduction to Data Mining

Jun Huang

Advanced Topics in MLC Label Correlation

Missing/Noisy Label Extream Multi-label

Extream Multi-label Classification

Discover New Class Labels Label-Specific Feature Learning How to solve multi-label classification with extream number of class labels?

- LSDR: Label Space Dimension Reduction
- Exploit the Structures of Class Labels
- Parallel and Distributed Computing

Introduction to Data Mining

Jun Huang

Advanced Topics in MLC Label Correlation

Missing/Noisy Label Extream Multi-label Classification

Discover New Class Labels Label-Specific Feature Learning To tackle a multi-label classification problem with many classes, recently label space dimension reduction (LSDR) is proposed.

- It encodes the original label space to a low-dimensional latent space by P
- ullet And uses a decoding process ${\mathcal Q}$ for recovery

Introduction to Data Mining

Jun Huang

Advanced Topics in MLC Label Correlation Missing/Noisy Label

Extream Multi-label Classification Discover New Class

Labels
Label-Specific
Feature Learning

Important Literatures

- Multi-Label Learning with Millions of Labels: Recommending Advertiser Bid Phrases for Web Pages, WWW, 2013.
- FastXML: A Fast, Accurate and Stable Tree-classifier for eXtreme Multi-label Learning, KDD, 2014
- Multi-label Classification via Feature-aware Implicit Label Space Encoding, ICML, 2014
- Sparse Local Embeddings for Extreme Multi-label Classification, NIPS, 2015
- PD-Sparse: A Primal and Dual Sparse Approach to Extreme Multiclass and Multilabel Classification, ICML, 2016
- PPDSparse: A Parallel Primal-Dual Sparse Method for Extreme Classification, ICML, 2017
- DiSMEC-Distributed Sparse Machines for Extreme Multi-label Classification, WSDM, 2017

Discover New Class Labels

Introduction to Data Mining

Jun Huang

Advanced
Topics in MLC
Label Correlation
Missing/Noisy Label
Extream Multi-label
Classification

Discover New Class Labels

Label-Specific Feature Learning

- Previous works on multi-label classification focused on a fixed set of class labels
- In many application, the environment is open and new concepts may emerge with previously unseen instances
- For example, in birdsong recognition, experts label long audio intervals with a fix set of bird species. Other categories of sound such as rain or car sound are not included in the labeling process. Yet, such sounds are present in the data
- Another example is image annotation, the annotator considers only a fixed set of tags and ignores "grass" as it is not included in the tag set.

Discover New Class Labels

Introduction to Data Mining

Jun Huang

Advanced Topics in MLC Label Correlation

Missing/Noisy Label Extream Multi-label Classification

Discover New Class Labels

Label-Specific Feature Learning How to deal with multi-label data with new class labels?

- Offline Learning
 - ullet Assume their are k number of new labels hidden in the data
 - Construct the model to discover these labels
- Online Learning
 - Detect new class labels
 - Update old classfication models
 - Learn new models for new class labels

Discover New Class Labels

Introduction to Data Mining

Jun Huang

Advanced Topics in MLC Label Correlation Missing/Noisy Label Extream Multi-label Classification

Discover New Class Labels

Label-Specific Feature Learning

Important Literatures

- Online multi-label active annotation: Towards large-scale contentbased video search, ACM MM, 2008
- ullet From n to n+1: Multiclass transfer incremental learning, CVPR2013
- Multi-instance multi-label learning in the presence of novel class instances, ICML2015
- Multi-label learning with emerging new labels, ICDM2016
- Discovermultiplenove(labelsinmulti-instance)multi-label learning, AAAI2017

Introduction to Data Mining

Jun Huang

Advanced Topics in MLC Label Correlation Missing/Noisy Label Extream Multi-label Classification Discover New Class Labels

Label-Specific Feature Learning

- Existing approaches learn from multi-label data by manipulating with identical feature set
- Each class label might be determined by some specific characteristics of its own
 - For example, in text categorization, features related to word terms such as government, national security and presidential election would be informative in discriminating political and non-political documents
 - While features related to word terms such as GDP, tax reduction and stock markets would be informative in discriminating economic and non-economic documents

Introduction to Data Mining

Jun Huang

Advanced Topics in MLC Label Correlation Missing/Noisy Label Extream Multi-label Classification Discover New Class

Label-Specific Feature Learning How to learn label-specific features of it own?

- Feature transformation
- Feature selection
- Label correlation between labels should be considered

Introduction to Data Mining

Jun Huang

Advanced Topics in MLC Label Correlation Missing/Noisy Label Extream Multi-label Classification Discover New Class Labels

Label-Specific Feature Learning

LIFT: Multi-label learning with label-specific features

- ullet Given a training data set $\mathcal{D} = \{(\mathbf{x}_i, Y_i)\}_{i=1}^m$
- ullet For each label l_k , define the positive training instances \mathcal{P}_k and negative training instances \mathcal{N}_k

$$\mathcal{P}_k = \{\mathbf{x}_i | (\mathbf{x}_i, Y_i) \in \mathcal{D}, l_k \in Y_i\}$$

$$\mathcal{N}_k = \{\mathbf{x}_i | (\mathbf{x}_i, Y_i) \in \mathcal{D}, l_k \notin Y_i\}$$

- Clustering the positive and negative training instances into m_k^- and m_k^- disjoint clusters respectively
- \bullet The centers are denoted as $\{{\bf p}_1^k,{\bf p}_2^k,...,{\bf p}_{m_k^+}^k\}$ and $\{{\bf n}_1^k,{\bf n}_2^k,...,{\bf n}_{m_-}^k\}$

Introduction to Data Mining

Jun Huang

Advanced Topics in MLC Label Correlation Missing/Noisy Label Extream Multi-label Classification Discover New Class

Label-Specific Feature Learning

- LIFT set $m_k^+ = m_k^- = m_k$, and $m_k = \lceil r \cdot \min(|\mathcal{P}_k|, |\mathcal{N}_k|) \rceil$
- where parameter $r \in [0, 1]$
- $\begin{aligned} & \bullet \text{ Mapping function} \\ & \phi_k(\mathbf{x}) = [d(\mathbf{x}, \mathbf{p}_1^k), ..., d(\mathbf{x}, \mathbf{p}_{m_k}^k), d(\mathbf{x}, \mathbf{n}_1^k), ..., d(\mathbf{x}, \mathbf{n}_{m_k}^k)] \end{aligned}$

Introduction to Data Mining

Jun Huang

Advanced
Topics in MLC
Label Correlation
Missing/Noisy Label
Extream Multi-label
Classification
Discover New Class
Labels

Label-Specific Feature Learning • A new binary training set \mathcal{B}_k with m examples is created from the original multi-label trainingg set \mathcal{D} by the mapping function ϕ_k

$$\mathcal{B}_k = \{ (\phi_k(\mathbf{x}_i), Y_i(k)) | (\mathbf{x}_i, Y_i) \in \mathcal{D} \}$$

- where $Y_i(k) = +1$ if $l_k \in Y_i$; otherwise, $Y_i(k) = -1$
- Based on \mathcal{B}_k , any binary learner \Im can be applied to induce a classification model: $g_k : \mathcal{Z}_k \to \mathbb{R}$ for l_k
- ullet Given an unseen example \mathbf{x}_t , its can be predicted as

$$Y = \{l_k | g_k(\phi_k(\mathbf{x}_t)) > 0, 1 \le k \le q\}$$

Introduction to Data Mining

Jun Huang

Advanced Topics in MLC Label Correlation

Missing/Noisy Label Extream Multi-label Classification Discover New Class

Label-Specific Feature Learning

Important Literatures

- Lift: Multi-label learning with label-specific features, TPAMI2015
- Multi-label learning with label-specific features, ICDM2015
- A dirty model for multi-task learning, NIPS2010
- A multivariate regression approach to association analysis of a quantitative trait network, Bioinformatics 2009
- Task sensitive feature exploration and learning for multitask graph classification, TCYB, 2016.