```
# The goal of the first tutorial is to learn how to important Affymetrix data
# into R and to pre-process it appropriately. We are going to be working with
# dataset from the largest repository of microarray data, which is the Gene
# Expression Omnibus (GEO) repository hosted by NCBI.
# We are going to look at a study of the response of Burkitt's lymphoma cells
# to perturbation of the mRNA abundances of two oncogenes: Foxm1 and Myb. This
# study was selected because it is a small cancer dataset that allows for both
# univariate and multivariate statistical analyses. The dataset is small in that
# it contains only 3 experimental conditions, each with three technical
# replicates, for a total of 9 arrays. Further, it uses the relatively old U95Av2
# Affymetrix array, which assays about 12,000 transcripts. Thus there will be
# approximately 100,000 data-points in this dataset.
# All GEO datasets are given an accession number, and the accession for the
# dataset we will be using is GSE17172. The main GEO page for any given dataset
# has a lot of information about the study. For this dataset it is at:
# http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE17172
\ensuremath{\sharp} Normally you would download the supplementary file containing the raw data.
# This file will be named: GSE39277 RAW.tar
# You can decompress this file using an archive-manager (e.g. winzip or 7zip),
# and subsequently decompress the .CEL files it contains. However in this case
# for the purposes of easing the tutorial, we have decompressed and uploaded all
# the data to the CBW wiki:
# bioinformatics.ca/workshop_wiki/index.php/Bioinformatics_for_Cancer_Genomics_2013_Workshop_Wiki
# There are 9 files to download. I recommend storing these files in a new directory
# on your computer, and keeping them separate from the scripts you will develop to
# analyze this dataset. Strict separation of data and code is a fundamental principle
# of good software-engineering that will make your life much, much easier over time!
# Use ReadAffy to load the data into an R object.
# You should have the affy library installed on your computer as part of your
# BioConductor installation. You can very this by typing:
library(affy);
# If this does not succeed, you can install the package by typing:
source("http://bioconductor.org/biocLite.R");
biocLite();
# This will install a series of BioConductor "core" packages
# Now, you will want to learn how to install the data. The function to do this is:
?ReadAffy;
# You will also want to consult the affy package primer on how to use this function.
# On machines with functional PDF processing you can view the primer by typing:
vignette('affy');
```

Sometimes the vignette function fails on machines with improperly-configured PDF # readers. The vignette document is still available in your R program directory,

under the library/affy/ subfolder.

```
# A) Use the expresso() function to pre-process the data with the RMA method.
# Next, you will want to pre-process the data. There are a very large number of
# possible pre-processing methodologies. The affy package provides access to
# these through the function:
?expresso
# Use this function to pre-process the data in two different ways: according to
# the RMA model:
     background correction
                                 RMA
     normalization method
                                 quantile
    pm correction method
                                 pmonly
     summary method
                                 median polish
```

B) Re-preprocess the data using an alternative CDF

- # When you initially loaded the CEL files from it into R, it is likely that your R # session automatically went to download the default Affymetrix CDF file. This file # was probably taken from the BioConductor web-site directly
- # Fortunately ReadAffy() can easily accept alternative CDF files (and thus
 # alternative Probe mappings) using the cdfname argument. Your first challenge
 # is to re-run the analyses from the first tutorial using an alternative
 # mapping. To get the mapping you will go to:
 # http://brainarray.mbni.med.umich.edu/Brainarray/Database/CustomCDF/CDF_download.asp
 # You will need to download the latest Entrez Gene ID CDFs for this microarray
 # platform (U95Av2)and install them into R (using standard package-installation
 # techniques -- ask for help if you get stuck here).
- # Once you have the package installed, re-load the data using ?ReadAffy and then # repreprocess with the alternative CDF (again using RMA).

```
# A) Make histograms or density curves of the raw and pre-processed data
# B) Make a heatmap of the correlation matrix from the entire experiment
# Once your data has been pre-processed you will want to determine if it is
# of sufficient quality to actually do any meaningful analysis. There are a
# large number of EDA (exploratory data analysis) plots that can be constructed
# to help in this, and several are already implemented in R/BioConductor, mostly
# in the affy package.
\# Many of the QA/QC plots you might wish to make are directly available from
# within the affy package itself. To make histograms of the raw data you can
# simply use hist on an object of class Affybatch. For example
raw.data <- ReadAffy();</pre>
hist(raw.data);
# To make density curves of the normalized data:
eset.rma <- expresso(raw.data, ...);
?plotDensity
# And to make a heatmap of the inter-sample correlations you will need to:
# a) use ?cor to generate a n x n correlation matrix (n = the sample-number)
# b) use ?heatmap to create a mapping of samples
# Consider changing the default scale parameter in heatmap -- can you see why?
```

```
### Question #4 -- Univariate statistical analysis ##################################
# A) assess differential expression for each gene in the Foxm1 vs. NT comparison
# B) assess differential expression for each gene in the Myb vs. NT comparison
# Once we are convinced of data-quality, the next step is to do a detailed
# statistical analysis to assess which genes are being changed in this experiment.
# This study involves knock-down of two genes via siRNA, with a non-specific siRNA
# (non-targeting, NT) used as a control. There are some interesting multivariate
# statistical approaches viable here, but we can start with some straight-forward
# univariate analyses.
# The first step to doing this is to annotate the Affymetrix data with the
# sample classifications. This can be done using the *phenodata* slot. To
# achieve this you will want to create a tab-delimited text file that identifies
# the filename of each sample (first column) and which experimental group it
# belongs to (second column). You can read this phenodata directly into R
# by using the phenoData parameter in ?ReadAffy
# Next, you will want to use standard univariate statistical techniques. It is
# controversial whether a parametric approach (i.e. a student's t-test):
?t.test
# or a non-parametric test (i.e. Wilcoxon rank-sum test; u-test):
?wilcox.test
# is more appropriate. With very low n studies, in general a t-test will be superior
# You can use a for-loop to run a t-test or a u-test on each ProbeSet. Save these
# values as a vector for later use. Repeat this procedure for both comparisons.
# C) adjust for multiple-testing
# Any experiment of this magnitude will generate a large number of false positives by
# chance alone. If we select a 5% significance threshold and use a microarray platform
\# containing 10,000 genes, then we will have 0.05 x 10000 = 500 false-positives by
# chance alone.
# To control for this large effect, we can use a multiple-testing adjustment. There
# are several types, but by far the most common for genomics studies is the false-
# discovery rate adjustment (FDR). FDR adjustment slightly changes the interpretation
# of a p-value: instead of giving the chance of a false-positive (i.e. of type I
# error) on a single test, an FDR-adjusted p-value gives the fraction of all
# statistically-significant tests that will be false-positives (i.e. it gives the
# type I error rate amongst statistically-significant hits).
# It is easy to adjust for multiple-testing using the function:
?p.adjust
# Create a plot comparing the naive and the multiple-testing-adjusted p-values.
# Create a histogram showing the distributions of naive & adjusted p-values.
```

D) repeat these analyses for both default and alternative CDFs

```
### Question #5 -- Compare the two experimental conditions #######################
# Another experimental question one might ask is: how similar are the genes
# affected by knock-down of Myb to those affected by knock-down of Foxml. There
# are two basic classes of techniques to look at this.
# A) Make plot(s) to compare and contrast all p-values between the two conditions
# The most direct way to compare these two experiments is simply to plot the
# p-values from one study against the p-values from the other (i.e. a scatterplot).
# The R function ?plot can do this.
# However a plot like this can miss the most interesting genes, which will be
\# clustered around the origin (i.e. close to p = 0). One solution to this problem
# is to plot the data in log10-space rather than in normal-space.
# Compare the two plots: which is clearer? Do they give different information?
# B) Make plot(s) to compare statistically-significant hits between the conditions
# The other basic approach is to compare only those genes that are statistically
# significant. If a gene does not have a reasonably small p-value in at least
\ensuremath{\sharp} one of the two experiments, then it is unlikely to be of significant interest
# in follow-up studies. It is therefore biologically reasonable to focus only on
# statistically-significant results.
# The most common plot for doing that comparison is a Venn diagram. There are a
# few different Venn diagram packages in R, and we will use the VennDiagram package
# here. If necessary install the package and then load it using:
library(VennDiagram);
# You can then directly compare two vectors using:
vector1 <- 1:150;</pre>
vector2 <- 121:170;</pre>
venn.diagram(
      list(
             A = vector1,
             B = vector2
             ),
       filename = "Venn test.tiff"
```

Make Venn diagrams that compare genes that are statistically significant at a

reasonable range of p-value thresholds.

adjusted or not) as a measure of how interesting a gene is. However a gene # could conceivably be upregulated by Myb and down-regulated by Foxm1. Genes # showing this type of divergent behaviour are being treated the same as genes # showing convergent behaviour. We therefore need to consider effect-size.

In statistics, looking at raw p-values is never sufficient. Instead one always
needs to assess how large the effect being studied is -- is it sufficiently
large to be of interest? With sufficient replication even very small effects
can become statistically significant, but this does not necessarily make them
biologically or clinically important.

The most common measure of effect-size is the fold-change. Because RMA data is
in log-space, fold-changes are simply calculated as:
mean(treated-samples) - mean(control-samples)
If we were in normal-space this would instead be:
mean(treated-samples) / mean(control-samples)

Calculate a fold-change for every gene in each experiment. Look at the distribution # of effect-sizes using a histogram (?hist): can you see the advantage of log-# transforming the data?

B) Create volcano plots

The most common way to visualize the relationship between effect-size and # statistical significance is called a volcano plot. This is a scatter-plot with # the -log10 of the p-value on the y-axis (i.e. a measure of statistical # significance, with larger values being more significant) and the effect-size # (in our case fold-change) on the x-axis. Create this plot for each experiment.

C) Compare effect-sizes between experiments

In question #5 you saw how to compare either all genes or only statistically-# significant ones between the experiments. You can now do the same using fold-# change cutoffs, or using combined cutoffs. For example, try this comparison: # genes with effect-sizes of at least 25% and unadjusted p-values below 0.05

Question #7 -- Compare the experiments using effect size

- # So far all of our analysis has been done using the RMA pre-processing # technique. What happens if you repeat these studies using MAS5? How much do
- # the specific results change?

A) Repeat pre-processing with MAS5 using the ?expresso function again

B) Compare the results of the two methods overall

- # To compare the results of the two methods you will want to get access to the
 # "expression matrix". This can be accessed using the function:
 ?exprs
- # You will notice that the MAS5 data is in normal-space and the RMA data is in # log2-space, so you will want to bring them to a common-space for plotting ?log2
- # You will also want to see how correlated the results of the two analyses are.
- # Calculate the correlation between the MAS5 and RMA preprocessed results

C) How many genes change ordering between the two pre-processing techniques?

- # How many of the ProbeSets on the array change ordering between the two pre-
- # processing methods. That is, ask if the ranks of samples are the same between
- # the two expression matrices for each row, and count the number of rows that are
- # altered. This can be easily visualized with a histogram.
- # This turns out to being equivalent to asking if the Spearman correlation is
- # exactly 1.0, so this question can be reduced to calculating that correlation
- # between every row of the two matrices. The key function is:

D) Repeat your univariate statistical analysis with MAS5-processed data

- $\ensuremath{\sharp}$ Do you get similar or different gene-lists using MAS5-processed data instead
- # of RMA processed data. Repeat the gene-list comparison techniques (p-values,
- # effect-sizes, and Venn diagrams) you learned above to compare the two
- # methods.
- # Does it matter significantly how the data is pre-processed?