

Grundlagen der Energietechnik Teil 3: Grundlagen der Leistungselektronik

Vorlesung (3)

Prof. Dr.-Ing. Regine Mallwitz Institut für Elektrischen Maschinen, Antriebe und Bahnen - IMAB

Was machen wir heute?

- 1. Einführung in die Leistungselektronik
 - 1.1. Aufgaben und Komponenten der Leistungselektronik
- 2. Leistungshalbleiter
 - 2.1. Bipolare Leistungshalbleiter: PN-Übergang, pn-Diode, Bipolartransistor, Thyristor, GTO
 - 2.2. Feldgesteuerte Leistungshalbleiter: MOSFET, IGBT
- 3. Netzgeführte Stromrichter (Stromrichterschaltungen mit Dioden und Thyristoren)
 - 3.1. Gleichrichter ungesteuert
 - 3.1.1 Mittelpunktschaltungen: M1U, M2U, M3U
 - 3.1.2. Brückenschaltungen: B2U, B6U
 - 3.2. Gleichrichter gesteuert
 - 3.2.1. M1C, M2C, M3C, B2C, B6C
- 4. Selbstgeführte Stromrichter (Stromrichterschaltungen mit MOSFET und IGBT)
 - 4.1. Gleichstromsteller
 - 4.1.1. Tiefsetzsteller
 - 4.1.2. Hochsetzsteller
 - 4.1.3. Zweiquadrantensteller
 - 4.1.4. Vierquadrantensteller (Vollbrücke)
 - 4.2. Umrichter
 - 4.2.1. Umrichter mit Gleichspannungs-Zwischenkreis (ein- und dreiphasig)

Komponenten der Leistungselektronik

- Moderne Leistungshalbleiter:
 - Diode
 - Thyristor
 - GTO
 - IGBT
 - MOSFET
- Treiber für die steuerbaren Halbleiter

> Aktive Komponenten

- Widerstände, NTC-Widerstände, Varistoren
- Kondensatoren
- Drosseln
- Transformatoren, Übertrager
- Filter (EMV, du/dt-, Sinus-Filter)
- Messstellen

Passive Komponenten

Leistungshalbleiter lassen sich nach *Art der Ansteuerung* (*Steuerelektrode*) einteilen:

- (1) keine Steuermöglichkeit über eine Steuerelektrode
 - Diode
- (2) steuerbar *über eine Steuerelektrode*
 - a) nur einschaltbar (und in eine Richtung durchlässig = unidirektional):
 - ▶ gesteuerte Hg-Dampfgleichrichter, ▶ Thyratron,
 - **►** Thyristor
 - b) nur einschaltbar (und in zwei Richtungen durchlässig = bidirektional):
 - ▶ getriggerte Funkenstrecken,
 ▶ Triac
 - c) ein- und ausschaltbar (und in eine Richtung durchlässig = unidirekt.):
 - ► Crossatron,
 - ▶ Bipolartransistor, ▶ GTO-Thyristor (gate turn off), ▶ IGCT (integrated gate commutated thyristor),
 - ► MOSFET (metal oxide silicon field effect transistor), ► IGBT (insulated gate bipolar transistor)

Leistungshalbleiter lassen sich nach <u>Art der Ansteuerung</u> (<u>Spannung</u>, <u>Strom</u>) einteilen:

- → gesteuert durch <u>angelegte Spannung</u> oder <u>eingeprägten Strom</u>:
 - Gleichrichter-Dioden (stromgesteuert)
 - Funkenstrecken, DIAC, TRANZORB (spannungsgesteuert)

pn – Übergang ohne angelegte äußere Spannung

→ beim Ladungstransport, muss eine Potenzialbarriere überwunden werden!

pn – Übergang mit äußerem Feld

Durchlasskennlinie einer Siliziumdiode

Durchlasskennlinie einer Siliziumdiode

U_T ... Schwellenspannung (threshold voltage)

Durchlassverluste

→
$$P_{Vges} = P_{V1} + P_{V2} = U_T \cdot I_{av} + R_f \cdot I_{rms}^2$$

Beispiele für moderne Leistungshalbleiter (eupec/Infineon)

Silizium-Scheibe (auch: Wafer,

max. Ø heute: 450mm)

Scheibenzellen für große Leistungen (Dioden, Thyristoren bis 9kV, 6kA)

Aus den Scheiben prozessierte viereckige Chips für kleine Leistungen (max. bis. ca. 14 mm x 14 mm /

Bipolarer Transistor (BJT, bipolar junction transistor)

Ersatzschaltbild eines npn-Transistors:

→ Im Schaltbetrieb muss der Basisstrom genügend groß sein, damit der Transistor nicht strombegrenzend mit hohen Spannungsabfällen wirkt!

Bipolarer Transistor: Betrieb mit Last und Kennlinien

"analoger" Betrieb

- (1) Linearer (oder "analoger") Bereich
- (2) Quasi-Sättigung
- (3) Sättigung

"Schaltbetrieb" Stromverstärkung für Leistungstransistoren I_{cmax}>5A:

B = 1...30

Bipolare Transistoren in der Leistungselektronik

- relativ hohe Ansteuerleistung
- hohe Speicherzeiten durch Sättigung
- geringe Sättigungsspannung (0,3...0,5V pro Transistor)
- empfindlich gegenüber Überströmen
- Einsatz nur noch bei kleineren
 Spannungen und kleineren
 Leistungen von bis zu einigen 100W
 mit weiter fallender Tendenz

Thyristor:

Ein 4-Schicht-Bauelement

Bauform: Scheibenthyristoren

(für hohe Spannungen bis ca. 8kV und Ströme bis ca. 6kA, bis ca. 180mm Durchmesser)

Quelle: ABB

Der Thyristor

$$I_{C1}=B_1*(I_{G1}+I_{C2})$$

$$I_{C1} + I_{C2} - I_{A} = 0$$
 $I_{C1} - I_{C2}^* B_{NPN} = I_{G}^* B_{NPN}$
 $I_{C1}^* B_{PNP} - I_{C2} = ca. 0$

$$I_{A} = I_{G1}^{*} \frac{(B_{NPN} + B_{PNP}^{*} B_{NPN})}{(1 - B_{PNP}^{*} B_{NPN})}$$

Thyristor: Haltestrom

Überschlägige Erfüllung der Bedingung B_{NPN}*B_{PNP}≥1 bei U_{BE}=0,7V

→ minimaler Strom für stabilen eingeschalteten Zustand:

Haltestrom: $I_H=0.7V/R_{be}$

Thyristor: Kennlinie

GTO – Thyristor (Gate Turn Off)

Aus der Ersatzschaltung ergibt sich auch die Möglichkeit des Abschaltens bei $I_G = -I_A$

→ Erfordert eine feine Gatestruktur zum Erreichen der gesamten aktiven Fläche

Die Driftgeschwindigkeit von Ladungsträgern in Festkörpern ist gering:

Daher ist das Gate -

fein und verzweigt strukturiert.

Kathode

MOSFET (Metal-Oxide-Semiconductor Field-Effect Transistor)

Ausbildung eines leitfähigen Kanals beim MOSFET

→ der Strom durchfließt nur Bereiche eines Trägertyps

Ausgangskennlinie eines MOSFET

MOSFET's verhalten sich im eingeschalteten Zustand wie Widerstände!

Vertikale Struktur eines n-Kanal-Leistungs-MOSFET's

Eigenschaften von MOSFETs

- Im Durchlass ist der MOSFET durch eine Widerstandscharakteristik bestimmt. Der Durchlasswiderstand R_{DSon} bestimmt den Spannungsabfall und damit die Verluste des MOSFETs.
- Die Steuerung erfolgt stromlos. Die Spannung U_{GE} zwischen Gate und Source ist im statischen Betrieb konstant und es fließt nahezu kein Strom über die Gate-Source-Strecke.
- Der MOSFET zeichnet sich durch im Vergleich zu Bipolartransistoren und IGBTs sehr geringe Schaltzeiten und geringe Schaltverluste aus.
- Der MOSFET besitzt strukturbedingt eine inhärente Diode.
- (Silizium-)MOSFETs sind verfügbar für einen breiten Leistungsbereich bis zu maximalen Sperrspannungen von ca. 1.000V. Dies ist geringer als bei Bipolartransistoren und IGBTs.
- MOSFETs werden eingesetzt in selbstgeführten Schaltungen und sind die heute üblichen Leistungsschalter, z.B. in Schaltnetzteilen, Batterieladegeräten, Wechselrichtern bzw. Umrichter kleinerer bis mittlerer Leistung.

Ausführungsbeispiel

Planare, vertikale MOSFET-Struktur – Schnitt durch einen Chip

source: R. Bayerer, Infineon

SiC – MOSFET (Chip)

source: Rohm

TO 220 – Gehäuse

IGBT

<u>I</u>nsulated <u>G</u>ate <u>B</u>ipolar <u>T</u>ransistor

→ Feldgesteuertes
Bauelement mit bipolarer
Struktur

→ Strom von Elektronen und Löcher

n-Source-Breite ca. 1,5μm, p-Body-Breite ca. 7 μm

Ausgangskennlinie eines IGBT

Figure 5. **Typical output characteristic** (T_{vi} =150°C)

- Die Kennlinien entsprechen denen eines bipolaren Bauelements wie Diode oder Bipolartransistor.
- Der Collector-Strom wird über die Gate-Emitter-Spannung gesteuert.

- Typische Werte für die Durchlassspannung bei Nennstrom liegen bei ca. 1,5 V bis 3 V.
 Im Beispiel mit dem Nennstrom 40A sind es 1,7V.
 - → Diese hohe Werte machen IGBTs für niedrige Einsatzspannungen uninteressant.

Beispiel: Aufbau eines Hochstrom-IGBT-Moduls

source: Infineon AG

 Leistungsmodule zur Erhöhung der Stromtragfähigkeit (bis ca. 3kA)

Eigenschaften von IGBTs

Durchlassverhalten wie ein Bipolartransistors

Die Durchlassverluste sind bei hohen Strömen kleiner gegenüber vergleichbaren MOSFETs mit hohen Sperrspannungen.

- Im Vergleich zum MOSFET treten höhere Schaltverluste auf.
 Zwei Arten von Ladungsträgern führen den Strom, was beim Abschalten zu einem Tailstrom führt.
- Geringe Ansteuerverluste:
 Der IGBT wird wie ein (MOS)FET spannungsgesteuert.
- Hohe Spannungs- und Stromgrenzen:
 Sperrspannungen 600V bis 6500 V
 Ströme bis 200A (Einzelchip) / 4.000A (Modul)
- Rückwärts-Sperrfähigkeit nur begrenzt gegeben
 Verwendung einer (zusätzlichen) Freilaufdiode mit kurzen
 Schaltzeiten zwischen Emitter und Kollektor, die in
 Rückwärtsrichtung leitet, notwendig.

 Einsatz: IGBTs werden wie MOSFETs eingesetzt in selbstgeführten Schaltungen. Sie sind die heute üblichen Leistungsschalter, z.B. in Antriebs- und Wechselrichtern größerer Leistungen, Backto-Back-Konvertern in Windenergieanlagen und der Hochspannungsgleichstromübertragung, ...

Grenzen leistungselektronischer Schalter

Einsatzbereiche von Leistungshalbleitern

Was haben wir heute gemacht?

- Leistungshalbleiter
 - Bipolare Leistungshalbleiter: Diode, Bipolartransistor, Thyristor, GTO
 - Feldgesteuerte Leistungshalbleiter: MOSFET, IGBT

Was kommt in der nächsten Vorlesung?

- Gesteuerte Gleichrichter
 - M1C, M2C und M3C

Leistungselektronik @ Institut für Elektrische Maschinen, Antriebe und Bahnen

Prof. Dr.-Ing. Regine Mallwitz (Leistungselektronik)

M: r.mallwitz@tu-braunschweig.de

T.: +49 (0)531 3913901

M.Sc. Robert Keilmann

 $M: \ \underline{r.keilmann@tu-braunschweig.de}$

T.: +49 (0)531 3917910

www.imab.de

