

STIC Search Report

EIC 2800

STIC Database Tracking Number: 179678

TO: Joshua Zimmerman
Location: JEFF 9D64
Art Unit: 2854
Friday, February 24, 2006
Case Serial Number: 10/523699

From: Michael Obinna
Location: STIC-EIC2800
Jefferson Building RM 4A58
Phone: 571-272-2663
Email: michael.obinna@uspto.gov

Search Notes

RE: Method and device for feeding dampening water in offset printing press

Examiner Zimmerman,

Attached are edited search results from the patent and non-patent databases.

The tagged items are some of the results worth your review. However, I recommend that you browse all the results.

If you would like more searching to be done on this case, or if you have questions or comments, please do not hesitate to contact me.

Respectfully,

A handwritten signature in black ink, appearing to read "Michael Obinna".

Michael Obinna

2/24/2006 1:58:06 PM

2/24/2006 2:19:26 PM

[File 344] Chinese Patents Abs Jan 1985-2006/Jan
 [File 347] JAPIO Nov 1976-2005/Sep(Updated 060103)
 [File 350] Derwent WPIX 1963-2006/UD,UM &UP=200607
 [File 371] French Patents 1961-2002/BOPI 200209

Set Items Description

S1 1065634 S (OFFSET OR DI? ? OR DIGITAL()IMAG?????) (3N) (PRINT????? OR PRESS?????
 OR LITHOGRAPH?????) OR PRINT??????? OR LITHOGRAPH????? OR PHOTOLITHOGRAF????? OR
 RIGHT()READ???? OR DIGITAL(3N)PRINT????

S2 90210 S (DAMP????????? OR WET OR WETTING OR HUMID????? OR MOISTEN????? OR
 SATURAT????? OR SOAK?????) (3N) (SOLUTION? ? OR MIX??? OR MIXTURE? ? OR BLEND????? OR
 DISSOLVENT? ? OR SUSPENSION OR WATER OR FLUID????? OR EMULSION? ? OR COMPOUND? ? OR
 ETCCHANT? ? OR FOUNT?????) OR ETCCHANT? ? OR FOUNT?????

S3 400525 S (DETECT????? OR SENS????? OR VERIF????????? OR DIAG????????? OR
 MONITOR?????) (3N) (VISCOSITY OR SURFACE(3N)TENSION????? OR CAPILLAR?????) OR VISCOSITY
 OR SURFACE(3N)TENSION????? OR CAPILLAR????? OR GLUTINOUS????? OR VISCID????? OR
 CONSISTEN????? OR (LIQUID????? OR FLUID) (3N)FRICTION????? OR VISCO???????

S4 4657991 S TEMPERATURE? ? OR TEMP? ? OR HEAT????? OR THERMAL????? OR DEGREE? ?
 OR HOTNESS OR AMBIEN????

S5 3992227 S WATER OR H2O OR FLUID??? OR LIQUID????? OR (SURFAC????? OR VISCOS?????
 OR CAPILLAR????? OR SURFACE()TENSION?????) (3N) (AGENT OR MEANS OR MEDI??)

S6 1688264 S PH? ? OR PH? ? OR (PH? ? OR PH? ?) () (VALUE OR NUMBER OR CONSTANT? ?)
 OR POTEN????? (2N)HYDROGEN OR (ION OR ACID????? OR ALKALIN?????) (3N)CONCENTRATE????? OR
 ACID????? OR ALKALIN???????

S7 4147035 S TANK??? OR RESERVOIR? ? OR REPOSITORY?? OR CONTAIN????? OR
 RECEPTACLE? ?

S8 412077 S (MEASUR????? OR ADDING OR SUPPLY????? OR PH? ? OR METER????? OR
 TEST????? OR COMPAR?????) (3N) (UNIT? ? OR ASSEMBL????? OR MODUL????? OR COMPONENT? ? OR
 PART??? OR PIEC????? OR ELEMENT?????)

S9 5327 S IC=(B41F-007/00 OR B41F-007/24 OR B41F-007/32 OR B41N-003/00 OR
 B41L-025/00 OR C02B-001/30 OR G05D-021/00 OR G05D-022/00 OR B01D-029/42)

S10	11929	S MC=(S06-C03 OR X25-H03)
S11	4	S S1 AND S2 AND S3 AND S4 AND S5 AND S6 AND S7 AND S8
S12	3	S S11 AND PY<=2002
S13	693	S S1 AND S2 AND S3
S14	14	S S13 AND S7 AND S8
S15	11	S S14 AND PY<=2002
S16	22	S S13 AND S9
S17	2	S S16 AND S10
S18	2811	S S1 AND S3 AND S4 AND S5 AND S6
S19	10	S S18 AND S9
S20	1	S S19 AND S10
S21	7	S S19 AND PY<=2002
S22	2	S S17 NOT S12
S23	0	S S20 NOT (S12 OR S17)
S24	7	S S21 NOT (S12 OR S17 OR S20)
S25	8	S S15 NOT (S12 OR S17 OR S20 OR S21)

24/9/2 (Item 2 from file: 347) [Links](#)

JAPIO

(c) 2006 JPO & JAPIO. All rights reserved.

01197239 SOLUTION FOR CORRECTING SILVER SALT LITHOGRAPHIC PLATE

Pub. No.: 58-134639 [JP 58134639 A]

Published: August 10, 1983 (19830810)

Inventor: UCHIDA TAKU

SAKAMOTO HIDEKAZU

ITO NOBORU

Applicant: KONISHIROKU PHOTO IND CO LTD [000127] (A Japanese Company or Corporation), JP (Japan)

Application No.: 57-016764 [JP 8216764]

Filed: February 03, 1982 (19820203)

International Class: [3] G03F-007/02; B41N-003/00; G03F-007/00; G03F-007/06

JAPIO Class: 29.1 (PRECISION INSTRUMENTS -- Photography & Cinematography); 13.2 (INORGANIC CHEMISTRY -- Inorganic Compounds); 29.4 (PRECISION INSTRUMENTS -- Business Machines)

Journal: Section: P, Section No. 234, Vol. 07, No. 249, Pg. 133, November 05, 1983 (19831105)

ABSTRACT

PURPOSE: To correct the image of a silver salt **lithographic** plate rapidly and exactly, and to obtain a correcting solution superior in **printing** resistance of the corrected image, effective after oleophilicity giving treatment, and storable for a long term, by adding iodine or an inorganic iodine compound

CONSTITUTION: A **viscosity raising agent**, such as carboxymethyl cellulose, is added, when needed, to an aqueous solution of iodine or an inorganic iodine compound such as KI, NaI, or ZnI₂ in order to prevent spreading of a correcting solution beyond a place necessary for correction. The correction solution thus prepared may contain dye or pigment when needed, and in addition, glycerin, glycol, or a **pH controller**. As a result, correction effect does not depend on correction **temperatures**, an image can be corrected rapidly and exactly, and the correction solution is retained effective for correction even after oleophilicity giving treatment. The corrected **printing** plate is good in **printing** resistance.

Not in Dampening Soln

X

Maybe

24/9/4 (Item 2 from file: 350) [Links](#)

Derwent WPIX

(c) 2006 Thomson Derwent. All rights reserved.

015702764

WPI Acc No: 2003-764957/**200372**

XRAM Acc No: C03-209925

XRXPX Acc No: N03-612670

Method for dampening lithographic plate, involves applying dampening solution containing aqueous solution of corn hull-derived hemicellulose, to non-image area

Patent Assignee: ANTRIM R L (ANTR-I); BISHOP L E (BISH-I); MCPHERSON R E (MCPH-I); GRAIN PROCESSING CORP (GRAI)

Inventor: ANTRIM R L; BISHOP L E; MCPHERSON R E

Number of Countries: 001 Number of Patents: 002

Patent Family:

Patent No	Kind	Date	Applicat No	Kind	Date	Week
US 20020100383	A1	20020801	US 2000726092	A	20001129	200372 B
US 6488754	B2	20021203	US 2000726092	A	20001129	200372

Priority Applications (No Type Date): US 2000726092 A 20001129

Patent Details:

Patent No	Kind	Lan Pg	Main IPC	Filing Notes
US 20020100383	A1	12	B41F-001/18	
US 6488754	B2		B41N-003/08	

Abstract (Basic): US 20020100383 A1

NOVELTY - A dampening method involves applying a dampening solution containing an aqueous solution of a corn hull-derived hemicellulose, to at least the non-image area of the **lithographic** plate. The hemicellulose is present in the solution in an amount effective to provide sufficient film formability to enhance the ink repellency of the non-image area.

DETAILED DESCRIPTION - An INDEPENDENT CLAIM is included for a dampening solution which contains **water**, enzyme digestion product of a hemicellulose, and a wetting agent. The digestion product is present in an amount effective to provide sufficient film-formability to enhance the ink repellency of the solution, and the wetting agent is present in an amount effective to enhance the wettability of the dampening solution.

USE - For dampening **lithographic printing** plate, deep-edge plate, multi-layer metallic plate, direct-drawing master and **lithographic printing** plate for electrophotography.

ADVANTAGE - The method uses a dampening solution which is applicable to any kind of **printing** plate. The hemicellulose present in the dampening solution has a steady and reliable commercial availability. The enzyme reduces the average molecular size of the xylose polymers in hemicellulose to cause the digestion product to interact more successfully with the **lithographic printing** plate surface to form a hydrophilic surface which repels hydrophobic **lithographic** ink. The preservative retards the growth of

microorganism, such as bacteria, fungi and yeast. The anti-foaming agent retards foaming of the composition.

pp; 12 DwgNo 0/0

Technology Focus:

TECHNOLOGY FOCUS - ORGANIC CHEMISTRY - Preferred Composition: The dampening solution contains (in weight%) hemicellulose (0.1-35, preferably 0.1-5), digestion product (0.1-35, preferably 0.1-5), a preservative in an amount effective to impart a preserving effect and an anti-foaming agent in an amount effective to retard foaming. The digestion product is treated using hydrogen peroxide as bleach, after enzyme digestion.

Extension Abstract:

EXAMPLE - Corn hull hemicellulose (in g) (147) was dissolved in water (1953 ml) at 57degreesC. The pH was adjusted to 4.91 with 5.8N hydrochloric acid. Genecor Enzyme GC-140 xylanase enzyme (12.1) was added to form an enzyme system, and was maintained by stirring for 24 hours. The enzyme was then inactivated by raising the pH to 7.99 with 50% sodium hydroxide and boiling. The temperature was then lowered to 75degreesC and pH was raised to 11.67. The temperature was raised to 88degreesC and the system was gently agitated for 2 hours. The system was then filtered, temperature was lowered to 75degreesC and pH was lowered to 3.95 with 11.6N hydrochloric acid. The final product was a light tan-colored syrup having a viscosity of 47 cP at 25degreesC. The original cellulose, the product after xylanase digestion and product after xylanase digestion and hydrogen peroxide treatment had a molecular weight of 236900, 107500 and 96100, respectively. A dampening solution was prepared by diluting the obtained final product (133) with tap water (3655 ml) containing acetic acid (4 ml). The dampening solution had a pH of 3.9 and a conductivity of 1436 mhos/cm at 25degreesC. The obtained dampening solution had a solid ink density of 1.06, a max dot gain of 23.9, a contrast resolution index of 4.42 and a print contrast of 28.6.

Title Terms: METHOD; DAMP; LITHO; PLATE; APPLY; DAMP; SOLUTION; CONTAIN; AQUEOUS; SOLUTION; CORN; HULL; DERIVATIVE; HEMICELLULOSE; NON; IMAGE; AREA

Derwent Class: A97; G05; P74; P75

International Patent Class (Main): B41F-001/18; B41N-003/08

International Patent Class (Additional): B41F-007/00; C09D-010/00

File Segment: CPI; EngPI

Manual Codes (CPI/A-N): A03-A05; A11-B05D; A12-W07F; G05-A01

25/9/1 (Item 1 from file: 347) [Links](#)

JAPIO

(c) 2006 JPO & JAPIO. All rights reserved.

04108132 **Image available**

DYNAMIC SURFACE TENSION MEASURING DEVICE

Pub. No.: 05-099832 [JP 5099832 A]

Published: April 23, 1993 (19930423)

Inventor: TAKASE MASUMI

HAYAKAWA MIZUKADO

SHIMOKAWA HIDEAKI

Applicant: TOYO INK MFG CO LTD [352425] (A Japanese Company or Corporation), JP (Japan)

Application No.: 03-283908 [JP 91283908]

Filed: October 04, 1991 (19911004)

International Class: [5] G01N-013/02

JAPIO Class: 46.2 (INSTRUMENTATION -- Testing); 29.4 (PRECISION INSTRUMENTS -- Business Machines)

JAPIO Keyword: R002 (LASERS)

Journal: Section: P, Section No. 1593, Vol. 17, No. 445, Pg. 158, August 16, 1993 (19930816)

ABSTRACT

PURPOSE: To obtain a device which can measure a dynamic surface tension of a liquid substance such as a liquid which contains a surface activated substance, a damping water in an offset printing, and a paint.

CONSTITUTION: A measuring device consists of a dynamic surface tension measuring sample formation part A which consists of a reserve tank 1 of a sample liquid 1', determination pumps 2 and 2', an injection nozzle 3, a catch pan, and a circulation device part of liquid to the reserve tank 1, a measuring part B which measures a waveform of a standing wave which is created by a dynamic surface tension measuring sample formation part , and an analysis part C which analyzes a data which is measured by a measuring device which measures an outer diameter of a standing wave of a target by scanning in a direction of a constant axis by a laser light source.

25/9/3 (Item 2 from file: 350) Links

Derwent WPIX

(c) 2006 Thomson Derwent. All rights reserved.

012153503 **Image available**

WPI Acc No: 1998-570415/199849

XRPX Acc No: N98-443978

Processing method of fountain solutions used in offset printing - involves oxygen contained in compressed air being added to water to modify its surface tension and to improve its viscosity Thereby use of isopropyl alcohol can be avoided

Patent Assignee: RUPRECHT HANDELS AG (RUPR-N); ZOLLIKOFER AG (ZOLL-N)

Inventor: HUG T; RUPRECHT D

Number of Countries: 025 Number of Patents: 001

Patent Family:

Patent No	Kind	Date	Applicat No	Kind	Date	Week
EP 876910	A1	19981111	EP 98810354	A	19980422	199849 B

Priority Applications (No Type Date): EP 97810275 A 19970501

Patent Details:

Patent No Kind Lan Pg Main IPC Filing Notes

EP 876910 A1 E 13 B41F-007/32

Designated States (Regional): AL AT BE CH CY DE DK ES FI FR GB GR IE IT
LI LT LU LV MC MK NL PT RO SE SI

Abstract (Basic): EP 876910 A

The method comprises oxygen or oxygen contained in the air being added to the water to improve its wetting properties by modifying the surface tension and enhancing its viscosity. The air in fine distribution is blown through the water containing a fountain solution concentrate.

The device comprises damping unit (5) including a scoop roller (10) in a fountain solution tank (11) having a water conduit (24) is arranged ahead of the inking unit (4). The fountain solution tank (11) is provided with an oxygen or oxygen containing air supply unit (15; 26, 27; 32). The air supply unit (15) includes a linkage of bars (16) connected to a hose (17) for compressed air which linkage of bars is connected to a certain number of dipping tubes (18).

ADVANTAGE - Provides improved wetting properties.

Dwg. 2/10

Title Terms: PROCESS; METHOD; FOUNTAIN; SOLUTION; OFFSET;
PRINT; OXYGEN; CONTAIN; COMPRESS; AIR; ADD; WATER; MODIFIED;
SURFACE; TENSION; IMPROVE; VISCOSITY; ISOPROPYL; ALCOHOL; CAN;
AVOID

Derwent Class: P74

International Patent Class (Main): B41F-007/32

International Patent Class (Additional): B41F-007/24

File Segment: EngPI

25/9/5 (Item 4 from file: 350) Links

Derwent WPIX

(c) 2006 Thomson Derwent. All rights reserved.

004531948

WPI Acc No: 1986-035292/**198605**

Related WPI Acc No: 1985-282693

XRAM Acc No: C86-014962

XRPX Acc No: N86-025688

Fountain solns. for lithographic printing - made by diluting concentrate contg. water, polyol, surfactant and poly-carboxylic acid-organic amine buffer salt

Patent Assignee: INMONT CORP (INMO)

Inventor: THIEBAUT B A

Number of Countries: 001 Number of Patents: 001

Patent Family:

Patent No	Kind	Date	Applicat No	Kind	Date	Week
US 4563952	A	19860114	US 85693541	A	19850122	198605 B

Priority Applications (No Type Date): US 85693541 A 19850122; US 83597798 A 19831221

Patent Details:

Patent No	Kind	Lan Pg	Main IPC	Filing Notes
US 4563952	A	5		

Abstract (Basic): US 4563952 A

Web **offset** and **lithographic printing** are carried out using a **fountain** soln. obtd. by mixing 1-6wt.% water-dilutable **fountain** soln. concentrate with water and applying the resulting soln. to a planographic **printing** plate to render the non-image areas hydrophilic. The improved **fountain** soln. concentrate comprises water, a polyol, surfactant and a buffer consisting of at least one salt of (a) a polycarboxylic acid with a pKa of 3-6; and (b) an organic amine with a pKb of 2-9. The **fountain** soln. has pH 4.7-5.3, a **surface tension** of 32-52 x 10 power(-3) Newton/m and sufficient buffer effect such that the pH variation will be less than ca. 1 **pH unit** when 5 cc N/10 HCl is added to 100 cc of the **fountain** soln.

ADVANTAGE - The strongly buffered **fountain** soln. **contains** no alcohol or drastically reduced amts. of alcohol, and gives longer press runs, decreased scumming, decreased ink/water emulsification, decreased linting and defibration, decreased substrate breakage, improved drying, decreased strike-in and improved ink/water balance.

Title Terms: **FOUNTAIN**; SOLUTION; LITHO; **PRINT**; MADE; DILUTE; CONCENTRATE; **CONTAIN**; WATER; POLY; OL; SURFACTANT; POLY; CARBOXYLIC; ACID; ORGANIC; AMINE; BUFFER; SALT

Derwent Class: A97; E19; G02; P75

25/9/8 (Item 7 from file: 350) Links

Derwent WPIX

(c) 2006 Thomson Derwent. All rights reserved.

003885086

WPI Acc No: 1984-030627/**198406**

XRPX Acc No: N84-023129

**Liq.-delivery mechanism to press - has separate drive
mechanism for transfer and application rollers with press stopped**

Patent Assignee: MAN MASCHFAB AUGSBURG-NUERNBERG (MAUG)

Inventor: HUMMEL P; REBEL H

Number of Countries: 003 Number of Patents: 005

Patent Family:

Patent No	Kind	Date	Applicat No	Kind	Date	Week
DE 3221514	A	19840202	DE 3221514	A	19820607	198406 B
GB 2127743	A	19840418	GB 8315647	A	19830607	198416
GB 2127743	B	19850911				198537
DE 3221514	C	19860123				198605
US 4567823	A	19860204	US 84649228	A	19840910	198608

Priority Applications (No Type Date): DE 3221514 A 19820607

Patent Details:

Patent No	Kind	Lan Pg	Main IPC	Filing Notes
DE 3221514	A	13		

Abstract (Basic): GB 2127743 A

A multi-colour rotary **printing** press including means comprising applicator and **fountain** rollers for the application of a liquid to a **printing** unit cylinder, to which the liquid is supplied from a liquid **tank** partially by rollers driven by a **printing** press drive and partially by rollers driven by a separate drive, and including means for throwing the applicator and **fountain** roller on and off wherein the separate drive is provided additionally with transmission components via which a transfer roller and the applicator roller can be driven when the press has been stopped, and wherein the means for throwing the applicator and **fountain** rollers on and off can be operated in such a way that all of the applicator, transfer, **fountain** and optionally a metering roller can remain in contact or can be separated from each other when the applicator roller is thrown off and enabling the applicator roller to be thrown on and off whenever the associated plate cylinder impression is thrown on or off.

DE 3221514 A

The mechanism delivers liqs. onto the **printing** cylinder of a multi-colour **printing** press and from a vessel via rollers driven partly by the press and partly by a separate mechanism. Means for cutting the application and ink-vessel rollers in and out are included.

The separate drive mechanism (6) also has a transmission (8, 8.1 - 8.6) by which a transfer roller (2) and the application roller (1) can be driven with the press stopped. The systems for cutting the rollers (1, 3) in and out are so arranged that, with the application roller cut out, either all rollers (1-4) remain in contact or are partly separated from each other as desired. The application roller can be cut in and out when its respective plate cylinder (5) is cut in or out.

.4/4

Abstract (Equivalent): GB 2127743 B

A multi-colour rotary **printing** press including means comprising applicator and **fountain** rollers for the application of a liquid to a **printing** unit cylinder, to which the liquid is supplied from a liquid **tank** partially by rollers driven by a **printing** press drive and partially by rollers driven by a separate drive, and including means for throwing the applicator and **fountain** roller on and off wherein the separate drive is provided additionally with transmission components via which a transfer roller and the applicator roller can be driven when the press has been stopped, and wherein the means for throwing the applicator and **fountain** rollers on and off can be operated in such a way that all of the applicator, transfer, **fountain** and optionally a metering roller can remain in contact or can be separated from each other when the applicator roller is thrown off and enabling the applicator roller to be thrown on and off whenever the associated plate cylinder impression is thrown on or off.

Abstract (Equivalent): US 4567823 A

The rotary **printing** press **dampening** unit has a **fountain** roller (13) feeding a transfer roller (15) and an applicator roller (16) which are driven by the press drive. When the dampening unit is used as a varnishing unit, clutches are enabled and disabled so that the transfer roller is driven by a separate drive which rotates the **fountain** roller.

The applicator roller is selectively thrown off by pneumatic actuators (32,35) in such a way that all the rollers are connected to each other and can be driven by the separate drive. A third position is also defined where the applicator roller is also selectively thrown off 5/10mm from the transfer roller.

ADVANTAGE - The dampening unit can also **supply** a varnish having an arbitrary **viscosity**.

(7pp

Title Terms: LIQUID; DELIVER; MECHANISM; PRESS; SEPARATE; DRIVE; MECHANISM; TRANSFER; APPLY; ROLL; PRESS; STOP

Derwent Class: P74; P75

International Patent Class (Additional): B41F-007/26; B41F-031/30; B41L-025/16

File Segment: EngPI

10/523699

2/24/2006 12:23:53 PM

2/24/2006 12:52:57 PM

[File 2] INSPEC 1898-2006/Jan W3
[File 6] NTIS 1964-2006/Jan W5
[File 8] Ei Compendex(R) 1970-2006/Jan W5
[File 34] SciSearch(R) Cited Ref Sci 1990-2006/Feb W1
[File 434] SciSearch(R) Cited Ref Sci 1974-1989/Dec
[File 35] Dissertation Abs Online 1861-2006/Jan
[File 65] Inside Conferences 1993-2006/Feb W1
[File 94] JICST-EPlus 1985-2006/Nov W4
[File 99] Wilson Appl. Sci & Tech Abs 1983-2006/Jan
[File 144] Pascal 1973-2006/Jan W3
[File 23] CSA Technology Research Database 1963-2006/Jan
[File 103] Energy SciTec 1974-2006/Jan B2
[File 96] FLUIDDEX 1972-2006/Feb
[File 95] TEMA-Technology & Management 1989-2006/Feb W1
[File 248] PIRA 1975-2006/Jan W3
[File 56] Computer and Information Systems Abstracts 1966-2006/Jan
[File 60] ANTE: Abstracts in New Tech & Engineer 1966-2006/Jan
[File 293] Engineered Materials Abstracts 1966-2006/Jan
[File 239] Mathsci 1940-2006/Mar
[File 256] TECINFO SOURCE 82-2005/DEC

Set Items Description

S1 748209 S (OFFSET OR DI? ? OR DIGITAL()IMAG?????) (3N) (PRINT????? OR PRESS???? OR LITHOGRAPH?????) OR PRINT?????? OR LITHOGRAPH????? OR PHOTOLITHOGRAP????? OR RIGHT()READ???? OR DIGITAL(3N)PRINT????

S2 250659 S (DAMP????????? OR WET OR WETTING OR HUMID???? OR MOISTEN???? OR SATURAT???? OR SOAK????) (3N) (SOLUTION? ? OR MIX??? OR MIXTURE? ? OR BLEND???? OR DISSOLVENT? ? OR SUSPENSION OR WATER OR FLUID???? OR EMULSION? ? OR COMPOUND? ? OR ETCHANT? ? OR FOUNT????) OR ETCHANT? ? OR FOUNT????

S3 2873478 S (DETECT???? OR SENS???? OR VERIF?????? OR DIAG?????? OR MONITOR????) (3N) (VISCOSITY OR SURFACE(3N)TENSION??? OR CAPILLAR?????) OR VISCOSITY OR SURFACE(3N)TENSION???? OR CAPILLAR????? OR GLUTINOUS????? OR VISCID???? OR CONSISTEN????? OR (LIQUID???? OR FLUID) (3N)FRICTION???? OR VISCO???????

S4 14906579 S TEMPERATURE? ? OR TEMP? ? OR HEAT????? OR THERMAL????? OR DEGREE? ? OR HOTNESS OR AMBIEN????

S5 9416802 S WATER OR H2O OR FLUID??? OR LIQUID???? OR (SURFAC???? OR VISCOS???? OR CAPILLAR???? OR SURFACE()TENSION????) (3N) (AGENT OR MEANS OR MEDI??)

S6 5478490 S PH? ? OR PH? ? OR (PH? ? OR PH? ?) () (VALUE OR NUMBER OR CONSTANT? ?) OR POTEN????? (2N)HYDROGEN OR (ION OR ACID???? OR ALKALIN????) (3N)CONCENTRATE????? OR ACID???? OR ALKALIN???????

S7 5000769 S TANK??? OR RESERVOIR? ? OR REPOSITOR??? OR CONTAIN???? OR RECEPTACLE? ?

S8 579814 S (MEASUR???? OR ADDING OR SUPPLY???? OR PH? ? OR METER???? OR TEST???? OR COMPAR????) (3N) (UNIT? ? OR ASSEMBL????? OR MODUL???? OR COMPONENT? ? OR PART??? OR PIEC???? OR ELEMENT????)

S9 0 S S1 AND S2 AND S3 AND S4 AND S5 AND S6 AND S7 AND S8

S10 551 S S1 AND S2 AND S3

S11 375 S S10 AND S5

S12 104 S S11 AND S4

S13 22 S S12 AND S6

S14 3 S S13 AND S7

S15 3 RD (unique items)

S16 7 S S10 AND S8

S17 6 RD (unique items)

S18 5 S S17 AND PY<=2002

S19 7 S S1 AND S2 AND S7 AND S8

S20 6 RD (unique items)

S21 4 S S20 AND PY<=2002

10/523699

2/24/2006 12:23:53 PM

2/24/2006 12:52:57 PM

S22	19794	S S2 AND S3 AND S5
S23	1697	S S22 AND S6
S24	17	S S23 AND S7 AND S8
S25	0	S S24 AND (VALVE? ? OR CONDUIT? ?)
S26	8	S S24 AND S4
S27	5	RD (unique items)
S28	6	S S17 NOT S15
S29	4	S S21 NOT (S15 OR S17)
S30	5	S S27 NOT (S15 OR S17 OR S21)
S31	18	S S13 NOT (S15 OR S17 OR S21 OR S27)
S32	18	RD (unique items)
S33	16	S S32 AND PY<=2002
S34	12	S S24 NOT (S13 OR S15 OR S17 OR S21 OR S27)
S35	7	RD (unique items)
S36	6	S S35 AND PY<=2002

Mayke
10/523699

15/9/3 (Item 1 from file: 248) [Links](#)

Fulltext available through: [USPTO Full Text Retrieval Options](#)

PIRA

(c) 2006 Pira International. All rights reserved.

00235642 **Pira Accession Number:** 10088179 **Pira Abstract Numbers:** 08-91-PT04138

Title: FOUNTS - A TECHNOLOGICAL UPDATE

Authors: Gardner G

Source: Ink Print vol. 9, 1991, pp 8, 10, 11

ISSN: 0263-497X

Publication Year: 1991

Document Type: Journal Article

Language: English

Pira Subfiles: Printing and Publishing (PP); Printing Abstracts (PT)

Journal Announcement: 9112

Abstract: Fountain solutions should offer fast wetting, thin films that permit controlled water take up by ink, stable ink/ water emulsion, good release, wide pH tolerance, no corrosion, reduced piling and linting, safe handling, and assist rapid start-up with low waste. Fountain solutions may contain complexing agents to deactivate hard water salts. Buffering agents are added to stabilise pH, kept at 4.7-5.5 for good wetting. Alcohol and wetting agents in founts impart correct surface tension for adequate wetting of plate non-image areas. Biocides prevent bacteriological contamination. Mixing of fount concentrate with water and isopropanol is performed advantageously with metering systems. Merck's self-contained water test laboratory enables monitoring fount pH, conductivity, surface tension, specific gravity, hardness, biocide and antifoam. Constant temperature working is preferable. The German company offers the Acedin fount range, formulated for different printing processes, dampening systems, and water hardness.

Company Names: MERCK

Trade Names: ACEDIN

Geographic Locations: EUROPE; GERMANY; UNITED KINGDOM

Geographic Codes: EU; EZGER; EZUKM

Descriptors: ALCOHOL; ANTIFOAM; BACTERIOLOGICAL; BIOCIDE; COMPANY; CONDUCTIVITY; CONSTANT; CONTAMINATION; CONTROL; CORRECT; CORROSION; DAMPING; EMULSION; FAST; FILM - LAYER; FOUNT - FOUNTAIN; FOUNTAIN; GRAVITY; HANDLING; HARD; HARDNESS; INK; ISOPROPANOL; LABORATORY; LINTING; LOW; METERING; MIXING; MONITOR; NON-IMAGE; PERMIT; PH; PILING; PLATE ; PRINTING; RANGE; RAPID; RELEASE; REVIEW; SAFE; SALTS; SOLUTION; STABLE; START-UP; SURFACE; SYSTEM; TECHNOLOGICAL; TEMPERATURE; TENSION; TEST; THIN; TOLERANCE; UPDATE; WASTE; WATER; WETTING

Section Headings: Fountain Solutions (8415)

*+
NKS*
10/523699

28/9/2 (Item 2 from file: 8) Links

Ei Compendex(R)

(c) 2006 Elsevier Eng. Info. Inc. All rights reserved.

05176939 E.I. No: EIP98124488594

Title: Viscoelasticity of water/ink emulsions at low and high frequency

Author: Aurenty, P.; Palierne, J.F.; Gandini, A.

Corporate Source: Sun Chemical, Carlstadt, NJ, USA

Conference Title: Proceedings of the 1998 Technical Association of the Graphic Arts, TAGA

Conference Location: Chicago, IL, USA **Conference Date:** 19980426-19980429

E.I. Conference No.: 49328

Source: Proceedings of the Technical Association of the Graphic Arts, TAGA 1998. TAGA, Rochester, NY, USA.

p 638-659

Publication Year: 1998

CODEN: 003154

Language: English

Document Type: CA; (Conference Article) **Treatment:** X; (Experimental)

Journal Announcement: 9901W4

Abstract: The deformation frequencies in a rolling Nip and during cavitation and filamentation correspond to 10^{**3} - 10^{**4} Hz. The **viscoelastic** properties of neat inks have been relatively well characterized only in the range of low frequencies, i.e., less than 50 Hz. On a conventional **printing** press, inks are emulsified with **fountain** solution and the **viscoelastic** parameters of the ensuing emulsions also constitute a relevant information. The rheology of both neat and emulsified inks in the high frequency domain is mostly unexplored because the conventional cone/plate rheometers are not reliable above 50 Hz. An experimental rheometer able to measure **viscoelastic** parameters in the range 0.1 - 10^{**4} Hz was therefore used to characterize model ink/water emulsions. Three distinct rheological responses were obtained at 25 degree C as a function of the frequency range applied, viz.: (i) at low frequencies (0.1-10 Hz), increasing the volume fraction phi of the emulsified droplets drastically enhanced the elastic modulus G prime of the emulsion; (ii) in the 10-100 Hz range, a relaxation plateau, corresponding to the shape relaxation of the droplets, was observed on the G prime modulus; and (iii) at the higher frequencies (100 - 10^{**4} Hz), both the elastic and **viscous moduli** decreased when phi was increased. These trends are discussed and related to the various events related to the history of the emulsified ink on a **printing** press. (Author abstract) 25 Refs.

Descriptors: *Emulsions; Ink; Water; Viscoelasticity; Relaxation processes; **Printing** presses; Rheology; Rheometers; Volume fraction; Elastic moduli

Identifiers: Droplet relaxation

Classification Codes:

745.1.1 (Printing Equipment)

804.2 (Inorganic Components); 931.2 (Physical Properties of Gases, Liquids & Solids); 931.1 (Mechanics); 745.1 (Printing); 943.3 (Special Purpose Instruments)

804 (Chemical Products); 931 (Applied Physics); 745 (Printing & Reprography); 943 (Mechanical & Miscellaneous Measuring Instruments)

80 (CHEMICAL ENGINEERING); 93 (ENGINEERING PHYSICS); 74 (OPTICAL TECHNOLOGY); 94 (INSTRUMENTS & MEASUREMENT)

X

10/523699

28/9/4 (Item 1 from file: 95) Links

Fulltext available through: [USPTO Full Text Retrieval Options](#)

TEME-Technology & Management

(c) 2006 FIZ TECHNIK. All rights reserved.

01441108 20000804837

Web treatment - going solventless

(Flexodruckmaschine - Oberflaechenbehandlung von Polymersubstraten mittels Korona-Vorbehandlung)

Greig, S

Sherman Treaters, Thame/Oxon, GB

Coating, v33, n7, pp258-260,262-263 , 2000

Document type: journal article Language: English

Record type: Abstract

ISSN: 0590-8450

Abstract:

One of the problems facing waterborne inks is to ensure a high level of **surface tension** on films when a good adhesion must be obtained. A too low **surface tension** can be overcome by pretreating on the press with an additional piece of equipment such us corona pretreatment. Discussed are: **surface tension measured** in energy units called dynes/cm (mN/m) (dyne level of a material as its surface energy, the use of **wetting solutions** as method to measure the **surface tension** of a substrate **surface**, improving adhesion properties by raising the **surface tension** of plastics substrates), corona discharge treatment used for improving adhesion of various polymer substrates (corona generating, frequencies in the range of 9 kHz to 50 kHz, producing of large ionisation currents by breakdown of the air), reactive power systems (impedance matching, turned circuit, primary inductance of various taps on HT transformers, capacitance via a capacitor bank, fine control, variable frequency of 10 kHz to 25 kHz), criteria to determine the generator power required; covered roll treater station (same watt density, and production of higher dyne levels than bare roll station); discharge mechanism and air gap (distance between backing roll and discharge electrode) as factors that affect the corona efficiency; ozone removal and ozone destruction (removing from the gas stream, levels of <0.1 ppm ozone in the working area).

Descriptors: PRESSWORKING--PRINTING; PRINTING INKS; PRINTING INK PROPERTIES; PIGMENTS; SURFACE PREPARATION; SURFACE TENSION; SURFACE ENERGY; CORONA DISCHARGES; CAPACITANCE; DIELECTRIC CONSTANT; POLYMERS; OZONE; ADHESIVES; FLEXOGRAPHIC PRESSES

Identifiers: Druckrolle; Korona-Behandlung; Druckfarbe; Haftfestigkeit

28/9/5 (Item 1 from file: 248) [Links](#)

X
10/523699

PIRA

(c) 2006 Pira International. All rights reserved.

00385199 **Pira Accession Number:** 20008300

Title: LOW ALCOHOL OFFSET PRINTING WITH NEW CERAMIC ROLLERS IN THE DAMPING UNIT

Authors: Endisch M; Johner G

Source: Print (Zurich) no. 14-15, Apr. 1994, pp 34-39

Publication Year: 1994

Document Type: Journal Article

Language: German

Pira Subfiles: Printing and Publishing (PP); Printing Abstracts (PT)

Journal Announcement: 9407

Abstract: MAN Roland, a leading press manufacturer, and Coatex GmbH, have worked together to develop physical methods to reduce alcohol concentrations in fountain solutions. The construction of different types of damping units, the effect of isopropanol in contact damping units, and measures to reduce alcohol, are explained. Changes in the surface structure of rollers affect the surface tension of the aqueous fountain solutions. Hydrocer ceramic rollers were developed, and many tests have demonstrated their excellent wetting properties. Laboratory and field tests, and results, are described. Hydrocer damping rollers can produce both extremely thin and extremely thick fountain solution films, without tears, and ink-water equilibria are rapidly achieved. Reduction, and even elimination of IPA is possible with ceramic rollers on indirectly-damped printing rollers. (6 fig, 8 ref)

Company Names: COATEX; MAN-ROLAND DRUCKMASCHINEN

Trade Names: HYDROCER

Geographic Locations: EUROPE; GERMANY

Geographic Codes: EU; EZGER

Descriptors: CERAMIC ROLLER; DAMPING; FOUNTAIN SOLUTION; OFFSET - LITHO

Section Headings: Techniques (**Lithography**) (8331); Fountain Solutions (8415)

X
Wk
10/523699

33/9/3 (Item 1 from file: 6) Links

NTIS

(c) 2006 NTIS, Intl Cpyrght All Rights Res. All rights reserved.0516061

N75-27391/2/XAB

NTIS Accession Number:

Theoretical and Experimental Studies on the Two-Way Effects of Process Variables in the Offset Process and Their Affects on Print Quality in Process Optimization Theoretische und Experimentelle Untersuchungen ueber die Gegenseitige Beeinflussung der Prozessvariablen des Offsetverfahrens und Deren Auswirkung Auf die Druckqualitaet als Zielgroesse des Prozesses

(Ph.D. Thesis)

Decker, P.

Technische Universitaet, Munich (West Germany).

27 Jun 74 203p

Journal Announcement: GRAI7522; STAR1318

Language in German. Order this product from NTIS by: phone at 1-800-553-NTIS (U.S. customers); (703)605-6000 (other countries); fax at (703)321-8547; and email at orders@ntis.fedworld.gov. NTIS is located at 5285 Port Royal Road, Springfield, VA, 22161, USA.

NTIS Prices: PC A10/MF A01

Technical and physical aspects of the **offset printing** process are studied for their interaction parameters in process optimization. Emphasis is placed on the rheological properties of ink **emulsions**, effects of press **dampening**, color intensity of **prints** and tone rendering, as well as **temperature** effects on ink layer thickness, ink **viscosity** and wetting agent volume.

Descriptors: *Optimization; *Printing; *Quality control; *Wetting; Inks; Lithography; Moisture; Production engineering; Temperature effects

Identifiers: NTISNASA

Section Headings: 82B (Photography and Recording Devices--Photographic Techniques and Equipment)

33/9/5 (Item 2 from file: 8) [Links](#)

Ei Compendex(R)

(c) 2006 Elsevier Eng. Info. Inc. All rights reserved.

00491373 E.I. Monthly No: EI7511076268 E.I. Yearly No: EI75060959

Title: SURFACE ENERGETICS ANALYSIS OF LITHOGRAPHY.

Author: Kaelble, David H.; Dynes, Paul J.; Pav, Darrell

Corporate Source: Rockwell Int, Thousand Oaks, Calif

Source: American Chemical Society, Division of Organic Coatings and Plastics Chemistry, Preprints v 35 n 2 1975, for Meet, Chicago, Ill, Aug 25-29 1975 p 139-145

Publication Year: 1975

CODEN: ACOCAO **ISSN:** 0096-512X

Language: ENGLISH

Journal Announcement: 7511

Abstract: This paper discusses the surface energy analysis of **lithography** by isolating the (London-d) dispersion and (Keesom-p) polar components of **ambient surface tension** for **lithographic** plates, roll surfaces, **printing ink**, and **fountain** solutions. These data are then utilized in an extended surface-energetics (S-E) and fracture-mechanics (F-M) model which predicts **ink/fountain** solution interaction on the **lithographic** plate surface. The analysis indicates that ink will bond to image areas and **fountain** solution to non-image areas of the **lithographic** plate when the control condition (**BETA //2//m/i/n** LESS THAN EQUIVALENT TO **BETA** LESS THAN EQUIVALENT TO (**BETA //2//m/a/x**, which defines upper and lower bounds for the polar part of **fountain** solution **surface tension**, is maintained. For the **fountain** solution studies **pH** and **BETA //2 = (GAMMA //L/V**p)** 1/2** correlate so that **pH** measurement and control of **fountain** solution concentration can be applied to aid in the control ink-image formation. The model applied to this discussion is specifically addressed to defining bonding and failure criteria at adsorption interfaces. The general analysis of adhesion also describes the kinetic aspects of both adsorption and interdiffusion bonding in which case primary valence structure extends through the interface. 19 refs.

Descriptors: *PRINTING PLATES--*Plastic; SURFACE PHENOMENA--Physical Chemistry;

LIQUIDS--Surface Tension; MATHEMATICAL TECHNIQUES

Identifiers: LITHOGRAPHY; SURFACE ENERGETICS

Classification Codes:

745 (Printing & Reprography); 801 (Chemical Analysis & Physical Chemistry); 817 (Plastics, Products & Applications); 921 (Applied Mathematics); 931 (Applied Physics)

74 (OPTICAL TECHNOLOGY); 80 (CHEMICAL ENGINEERING); 81 (CHEMICAL PROCESS INDUSTRIES); 92 (ENGINEERING MATHEMATICS); 93 (ENGINEERING PHYSICS)

 10/523699

33/9/8 (Item 2 from file: 248) [Links](#)

Fulltext available through: [USPTO Full Text Retrieval Options](#)

PIRA

(c) 2006 Pira International. All rights reserved.

00475853 **Pira Accession Number:** 20077929

Title: Effect of printing ink binder composition on emulsification of fountain solutions

Authors: Wickman M; Hallstensson K; Strom G

Source: J. Pulp Pap. Sci. vol. 23, no. 4, Apr. 1997, pp J167-J173 (C, K, P, S)

ISSN: 0317-882X

Publication Year: 1997

Document Type: Journal Article

Language: English

Pira Subfiles: Paperbase (PB); Printing and Publishing (PP); Printing Abstracts (PT)

Journal Announcement: 9707

Abstract: Research was undertaken by the Swedish Institute for Surface Chemistry on the influence of alkyd resin properties on ink-fountain solution relationships as regards interfacial tension and the droplet size of water in oil emulsions. The interfacial tension was calculated at 20 deg C using a pendant drop measuring instrument and the water droplet size was measured with a laser diffraction instrument. It was found that the polarity of the alkyd resins directly influenced the interfacial tension between the fountain solution and the printing ink oil and alkyd resins. Interfacial tension decreased when the alkyd resins had high acidic and hydroxylic values. Alkyd resins with high acidic and hydroxylic values should be used for stable lithographic emulsions. The droplet size is determined by the properties of the alkyd resins and not the surface tension of the water stage. Alkyd resins stabilised water in oil emulsions during offset printing. (9 fig, 2 tab, 24 ref)

Descriptors: BINDER; DIMENSION; DROPLET; EMULSIFICATION; FOUNTAIN SOLUTION; HEATSET INK; OIL; POLYALKYD; PRINTING INK; SURFACE TENSION

Section Headings: Paper and board printing technology (1259); Drying and Curing (8416)

J *Ink* 10/523699

33/9/9 (Item 3 from file: 248) **Links**

Fulltext available through: [USPTO Full Text Retrieval Options](#)

PIRA

(c) 2006 Pira International. All rights reserved.

00451951 Pira Accession Number: 20056055

Title: On color, on time

Authors: Williams C

Source: Package Print. Converting vol. 43, no. 4, Apr. 1996, pp 52-53, 56, 59

ISSN: 0163-9234

Publication Year: 1996

Document Type: Journal Article

Language: English

Pira Subfiles: Printing and Publishing (PP); Printing Abstracts (PT)

Journal Announcement: 9608

Abstract: Measuring ink viscosity with efflux cups is inadequate. Ink viscosity changes during its journey on the press; this can affect colour consistency and intensity, ink transfer and drying, and waste. Ink viscosity varies with temperature, and is impacted by change in fountain solution temperature. Efflux cups ignore temperature variations. Ink colour concentration control takes temperature into account. It monitors ink temperature, then compensating viscosity to maintain colour consistency. It can be automatically self-cleaning, and control pH of water based inks. Single-station controllers are installed at each printing deck, or at a centralised location; alternatively a computer can control several presses. Closed-loop systems, with spectrophotometers monitor and control webs. (3 fig)

Geographic Locations: North America; USA

Geographic Codes: NA; NAUSA

Descriptors: INK; MEASUREMENT; TECHNOLOGY TRENDS; VISCOSITY

Section Headings: Ink Properties (8413)

33/9/11 (Item 5 from file: 248) [Links](#)

Fulltext available through: [USPTO Full Text Retrieval Options](#)

PIRA

(c) 2006 Pira International. All rights reserved.

00403643 **Pira Accession Number:** 20025664

Title: PRINTING WITHOUT ALCOHOL

Authors: Sander H

Source: Druckspiegel vol. 50, no. 2, Feb. 1995, pp 153-155

ISSN: 0012-6500

Publication Year: 1995

Document Type: Journal Article

Language: German

Pira Subfiles: Printing and Publishing (PP); Printing Abstracts (PT)

Journal Announcement: 9506

Abstract: Conventional damping units can work without alcohol, but ink/water equilibria are difficult to maintain, and fabric coated damping rollers become clogged with ink. Film damping units were developed to overcome these problems, but a 5 to 15% concentration of alcohol is needed to lower the surface tension of the fountain solution to ensure even films on the smooth rubber rollers. A large heat-set rotary press can use 100l alcohol daily. Advantages and disadvantages of alcohol use are discussed and the mechanism of water transport in damping units, and its relationship to viscosity explained. The physical structure of water, and fountain solution temperature and pH also affect transport efficiency. DS Druckerei Service GmbH has worked successfully for two years, using alcohol substitutes, in several sectors, especially continuous stationery printing. Results are described. Alcohol substitutes offer several advantages, including lower ink consumption and lower costs. (2 fig, 2 tab, 5 ref)

Descriptors: ALCOHOL; DAMPING; FOUNTAIN SOLUTION

Section Headings: Inking and Damping Systems (8414)

33/9/12 (Item 6 from file: 248) [Links](#)

Fulltext available through: [USPTO Full Text Retrieval Options](#)

PIRA

(c) 2006 Pira International. All rights reserved.

00376933 **Pira Accession Number:** 10383440 **Pira Abstract Numbers:** 08-94-PT00624

Title: INKS OF THE ENVELOPE WORLD

Authors: Dammrich E

Source: Flexo vol. 18, no. 10, Oct. 1993, pp 12-13

ISSN: 0734-6980

Publication Year: 1993

Document Type: Journal Article

Language: English

Pira Subfiles: Printing and Publishing (PP); Printing Abstracts (PT)

Journal Announcement: 9402

Abstract: Traditionally envelope **printers** have used **lithography**; or flexography for Just-In-Time operation. Presses were designed for easily rewetting solvent inks. **Water-based** inks are now used, requiring changing pressroom equipment and habits. They set slowly, causing more dot gain and strike-thorough, and make uncoated paper curl. Their resins are only **water-soluble** in an **alkaline pH**, obtained by adding ammonia and amines. **Water** must be added to adjust **viscosity**. An ink **fountain** cover, reducing evaporation, helps maintain ink stability. Dry ink on press rollers may not rewet; newer presses maintain roller movement to prevent this, older machines requiring modification. Drying should provide little **heat** and plenty of air flow. Close cooperation with **water-based** ink suppliers is advantageous.

Geographic Locations: NORTH AMERICA; USA

Geographic Codes: NA; NAUSA

Descriptors: ALKALINE; AMINE; AMMONIA; CURL; DOT GAIN; DRYING; ENVELOPE; EVAPORATION; FLEXOGRAPHY; FOUNTAIN; GUIDELINE; INK; JUST-IN-TIME; LITHOGRAPHY; MODIFICATION; PAPER; PH; PRESS; PRESSROOM; PRINTER; RESIN; REWETTING; SOLVENT; SUPPLIER; UNCOATED; VISCOSITY; WATER; WATER-BASED; WATER-BASED INK; WATER-SOLUBLE

Section Headings: Ink Properties (8413); Techniques (**Lithography**) (8331); Business Forms (8611)

33/9/15 (Item 9 from file: 248) [Links](#)

PIRA

(c) 2006 Pira International. All rights reserved.

00212456 Pira Accession Number: 9526282 Pira Abstract Numbers: 02-90-03884

Title: CONTROLLING BEHAVIOURAL CHARACTERISTICS OF NEWSINKS

Authors: Norgate C D

Source: Newspap. Tech. July-Aug. 1990, pp 20, 22

ISSN: 0019-333X

Publication Year: 1990

Document Type: Journal Article

Language: English

Pira Subfiles: Printing Abstracts (PR)

Journal Announcement: 9011

Abstract: The newspaper **printer** needs ink that offers **printability**, productivity, rub resistance and cost benefit. He should discuss his halftone, dot sharpness, setting, trapping and density targets with the **inkmaker**. Keyless inking systems provide improved productivity over conventional ones. Ink formulation is affected by press speed and **print** run length, feed system and setting time. Stable ink and **water** emulsions must be formed rapidly, the ink must have good flow and **viscosity**, be responsive to **fount** changes, not cause tinting or scumming in non-image areas, and transfer well. Modern high-speed presses generate **heat**, necessitating careful formulation to avoid misting. **Water** hardness, **pH**, and conductivity affect ink runnability. Newsprint surface, porosity, and surface fibre strength vary setting and rub resistance levels. Plate and blanket changes influence ink behaviour. **Printers** and suppliers must work together, and **inkmakers** must employ quality control.

Geographic Locations: EUROPE; UNITED KINGDOM

Geographic Codes: EU; EZUKM

Descriptors: BEHAVIOUR; BENEFIT; BLANKET; CONDUCTIVITY; CONTROL; COST; DENSITY; DOT; EMULSION; FEED; FIBRE; FLOW; FORMING; FORMULATION; **FOUNT - FOUNTAIN**; HALFTONE; HARDNESS; **HEAT**; HIGH-SPEED; INK; INK FORMULATION; INK MANUFACTURE; KEYLESS INKING; LENGTH; MISTING; NEWSINK; NEWSPAPER; NEWSPRINT; NON-IMAGE; **PH**; PLATE; POROSITY; PRESS; **PRINT**; **PRINTABILITY**; **PRINTER**; PRODUCTIVITY; QUALITY CONTROL; RESISTANCE; RUB; RUB RESISTANCE; RUN; RUNNABILITY; SCUMMING; SHARPNESS; SPEED; STABLE; STRENGTH; SUPPLIER; SURFACE; SYSTEM; TIME; TINTING; TRANSFER; TRAPPING; VISCOSITY; WATER

Section Headings: Inks inking and drying systems (2360)

[Handwritten signature]

10/523699

33/9/16 (Item 10 from file: 248) Links

Fulltext available through: USPTO Full Text Retrieval Options

PIRA

(c) 2006 Pira International. All rights reserved.

00172874 Pira Accession Number: 8126802 Pira Abstract Numbers: 02-88-01998

Title: BASIC CHANGES IN INK FORMULATION

Authors: Funk E T

Source: Am. Ink Maker vol. 66, no. 3, Mar. 1988, pp 52, 54

ISSN: 0002-8916

Publication Year: 1988

Document Type: Journal Article

Language: English

Pira Subfiles: Printing Abstracts (PR)

Journal Announcement: 8807

Abstract: Heatset web offset presses will achieve speeds over 2,500 feet per minute by the end of the 1980s although efficiency will also be measured in terms of productivity and waste reduction. Productivity can be defined as excellent press runnability and ink printability coupled with minimum downtime. Ink performance is affected by paper, fountain solution, plant water, solvent, plates, blankets, rollers etc. Coated paper applications have grown considerably but not apace with the growth of insert printing on uncoated paper - 33% from 1981- 1986. The characteristics of coated paper which demand attention concern absorptivity, roughness, surface strength, brightness, wet strength, caliper, pH, conductivity and sheet formation. The other variables which must be considered are dampening system, fountain solution, conductivity and, most importantly, ink rheology, notably tack, viscosity and yield value.

Geographic Locations: NORTH AMERICA; USA

Geographic Codes: NA; NAUSA

Descriptors: ABSORBENCY; APPLICATIONS; BASIC; BLANKET; BRIGHTNESS; CALIPER; COATED; CONDUCTIVITY; COUPLED; DAMPING; DEMAND; DOWNTIME; EFFICIENCY; FORMATION; FOUNTAIN; FOUNTAIN SOLUTION; GROWN; GROWTH; HEATSET; INK; INK FORMULATION; INSERT; MINIMUM; PAPER; PH; PLANT; PLATE; PRESS; PRINTABILITY; PRINTING; PRODUCTIVITY; RHEOLOGY; ROLLER ; ROUGHNESS; RUNNABILITY; SHEET; SOLUTION; SOLVENT; STRENGTH; SURFACE; SYSTEM; TACK; UNCOATED; VISCOSITY; WASTE; WATER; WEB OFFSET; WET; YIELD

Section Headings: Inks inking and drying systems (2360)