

ANÁLISE DA RESPOSTA AMORTECIDA DE UMA ASA DE AERONAVE UTILIZANDO MODELO DE UM GRAU DE LIBERDADE

Vibrações de Sistemas Mecânicos Atividade Avaliativa 1

Lucas Pereira Servilha R.A: 2052830 Lennin Ferreira de Souza R.A: 1997904 Marlon dos Santos Tomazini R.A: 2052857 Rafael Batista de Souza R.A: 2101939

> Cornélio Procópio - PR 2022

Sumário

1.	INTRODUÇÃO	3
2.	EQUAÇÃO DO MOVIMENTO POR LAGRANGE	3
3.	DADOS PARA ANÁLISE DA ASA	4
	3.1 Dados de entrada	5
4.	ANÁLISE DA CONDIÇÃO DE VOO COM VARIAÇÃO DE MASSA	5
	4.1 Amplitude do deslocamento da asa com os dados propostos	6
	4.2 Estudo das amplitudes obtidas	9
	4.3 Amplitude do deslocamento após a adequação do projeto	10
5.	EFEITO DE INCERTEZAS	14
6.	CONCLUSÃO	16
7.	ANEXO	17

1. INTRODUÇÃO

O problema proposto foi analisar o comportamento da asa de uma aeronave sujeita a variação de carga no tanque de combustível, onde a mesma pode ser modelada como uma viga engastada e com a massa do combustível toda concentrada na extremidade de sua asa.

Para isso definiu-se a equação do movimento pelo método de Lagrange para um sistema de um grau de liberdade.

Após definir a equação, apresentou-se os dados para o cálculo da amplitude do deslocamento da asa feito no Matlab.

A seguir, analisou-se o peso e capacidade do tanque da aeronave, descobrindo a relação de aumento de peso de combustível no tanque que utilizou-se em cada um dos sete testes de amplitude do deslocamento. Com a relação de aumento de peso definida, plotou-se os gráficos das sete amplitudes utilizando os dados inalterados fornecidos para a primeira análise do problema.

Por fim o projeto sofreu uma adequação após descobrir que com os dados cedidos ocorre falha em manter o deslocamento abaixo de 0,10 metros. Para manter o deslocamento no limite estabelecido, alterou-se o momento de inércia da asa, alterando também sua geometria, fazendo com que a amplitude se mantenha nos limite de 0,10 metros.

2. EQUAÇÃO DO MOVIMENTO POR LAGRANGE

Em primeiro momento deduziu-se a equação do movimento pelo Método de Lagrange necessitou-se das equações da Energia Potencial (T), Energia Cinética (U) e Energia Dissipada no sistema (E_n) :

$$T = \frac{m\dot{x}^2}{2}; \quad (1)$$

$$U = \frac{kx^2}{2} \; ; \qquad (2)$$

$$E_D = \frac{c\dot{x}^2}{2}$$
; (3)

Posteriormente adequou-se a equação de Lagrange para a utilização dos parâmetros $T,\ U$ e E_p .

$$\frac{d}{dt}\left(\frac{\partial T}{\partial \dot{x}}\right) - \frac{\partial T}{\partial x} + \frac{\partial U}{\partial x} + \frac{\partial E_D}{\partial \dot{x}} = 0$$
 (4)

$$\frac{d}{dt}(m\dot{x}) - 0 + kx + c\dot{x} = 0 \quad (5)$$

Assim foi alcançada a equação do Movimento por Lagrange:

$$m\ddot{\mathbf{x}} + k\mathbf{x} + c\dot{\mathbf{x}} = 0 \quad (6)$$

3. DADOS PARA ANÁLISE DA ASA

O problema foi analisado e resolvido considerando a asa de avião como uma viga engastada, os parâmetros utilizados para aferir o comportamento do material foram módulo de elasticidade (E), o momento de inércia (I), a massa (M) e o comprimento (L).

Figura 1: Representação dos parâmetros que atuam na asa.

Fonte: Problema proposto pelo professor, 2022.

3.1 Dados de entrada

Tabela 1: Dados utilizados para análise

Parâmetros	Valores	Unidades	
Momento de Inércia (I)	$6\cdot 10^{-5}$	$[m^4]$	
Módulo de Elasticidade (E)	70 · 10 ⁹	$\left[\frac{N}{m^2}\right]$	
Massa do tanque vazio $(M_{_{_{\!$	40	[kg]	
Massa do tanque cheio (M_c)	700	[kg]	
Massa da estrutura da asa $(M_{_{\it e}})$	160	[kg]	
Comprimento da asa (L)	2, 5	[<i>m</i>]	
Razão de amortecimento (ζ)	0, 015	_	
Velocidade inicial $(V_{_0})$	10	$\left[\frac{m}{s}\right]$	

4. ANÁLISE DA CONDIÇÃO DE VÔO COM VARIAÇÃO DE MASSA

Estudou-se sete condições diferentes para a capacidade de combustível da asa da aeronave, onde essas sete condições foram propostas para o tanque vazio até a sua capacidade máxima de 700 kg. Com um tanque de massa 40 kg obteve-se mais 660 kg para completar o tanque, assim, separamos cada medição em um acréscimo de 132 kg até que alcançasse o limite máximo de combustível.

Com o valor máximo de 0,10 m de amplitude máxima na vibração da asa exigida pelo problema, foi necessário nos atentarmos a resultados inadequados para tal condição. Para os valores que o problema disponibilizou foram calculados os seguintes gráficos.

4.1 Amplitude do deslocamento da asa com os dados propostos

Figura 2: Amplitude da asa antes de se aplicar a mudança.

4.2 Estudo das amplitudes obtidas

Tabela 2: Amplitude do deslocamento para cada variação de massa

Massa de combustível [kg]	40	132	264	396	528	660	700
Amplitude do deslocamento [m]	0,08572	0,14126	0,18868	0,22632	0,25854	0,28716	0,29530
Desvio [%]	-	41,26%	88,68%	126,32%	158,54%	187,16%	195,30%

A partir da análise dos gráficos montou-se a Tabela 3 onde foi possível observar que apenas em condição de tanque vazia é atendido o requisito de 0,10 m de amplitude máxima. Logo fez-se necessário fazer uma adequação no projeto.

4.3 Amplitude do deslocamento após a adequação do projeto

Após fazer uma análise nos parâmetros de entrada foi possível observar que alterar o Momento de Inércia é a solução mais viável pois é a maneira que fará menor alteração no projeto inicial. Para tal, alterou-se a geometria da asa fazendo que o Momento de Inércia sofreu um aumento de 10 vezes, passando de $6\cdot 10^{-5}$ m^4 para $60\cdot 10^{-5}m^4$.

Como observado na Tabela 3, em condição de tanque cheio foi onde ocorreu o maior deslocamento da amplitude, sendo este de 0,29530 m, logo essa foi a condição que analisou-se após fazer a adequação.

Figura 4: Tanque levando 132 kg com I alterado

Figura 5: Tanque levando 264 kg com I alterado

Figura 6: Tanque levando 396 kg com I alterado

Figura 7: Tanque levando 528 kg com I alterado

Figura 8: Tanque levando 660kg com I alterado

Após a adequação, analisou-se que os valores de deslocamento mantiveram-se dentro da margem estipulada de 0,1 metro, assim o projeto tornou-se seguro para fabricação. A seguir distribuiu-se os valores obtidos na tabela 4, a fim de contribuir para o entendimento dos resultados.

Tabela 4: Amplitude do deslocamento após alteração do momento de inércia

Massa de combustível [kg]	40	132	264	396	528	660	700
Amplitude do deslocamento [m]	0,031716	0,046836	0,0628781	0,0754308	0,0861318	0,0956874	0,0983766

5. EFEITO DE INCERTEZAS

Como todo experimento físico exige uma confiabilidade em seus valores obtidos por conta dos instrumentos de medições terem uma limitação, é necessário fazer análise de incerteza para os valores encontrados, além de se levar em consideração tolerâncias de fabricação.

No caso estudado utilizou-se uma incerteza de $\pm 10\%$ do valor do momento de inércia (I) após sua adequação, e com essas variações avistou-se que a asa suportará essa possível mudança crítica no momento de inércia de 10%, como pode-se ver abaixo na tabela 3.

Tabela 3: Testes de amplitude de deformação para incerteza de ±10%

		Massas utilizadas em cada teste						
Variações da incerteza para (I)	Teste 1 (40 kg)	Teste 2 (132 kg)	Teste 3 (264 kg)	Teste 4 (396 kg)	Teste 5 (528 kg)	Teste 6 (660 kg)	Teste 7 (700 kg)	Unidade de medida
+10%	0,02837	0,04253	0,05686	0,06821	0,07783	0,08655	0,08901	[m]
Nominal padrão	0,03002	0,04465	0,05945	0,07145	0,08175	0,09069	0,09337	[m]
-10%	0,03171	0,04683	0,06287	0,07543	0,08613	0,09569	0,09838	[m]

Para deixar mais claro como a asa vai se comportar em uma situação crítica, demonstrou-se no gráfico a seguir como fica a amplitude do deslocamento na pior situação possível estudada, tendo uma diminuição de 10% no momento de inércia e com o tanque com 100% da capacidade preenchida.

Figura 10: Amplitude do deslocamento para momento de inércia 10% menor que o ideal.

6. CONCLUSÃO

Pela observação dos aspectos analisados, a análise do procedimento da asa que apresentava-se a alteração de carga no tanque de combustível, verificou-se que com adequações nas equações da Energia Potencial, energia cinética e energia dissipada é possível determinar a equação do movimento pelo método de Lagrange.

A partir dos resultados, foi possível observar que ao aumentar a massa de combustível (de vazio a 660 kg), a amplitude de deslocamento da asa do avião também aumenta (de 0,08572 m à 0,29530 m), sendo estes proporcionais.

Outra análise atribuída foi o Momento de Inércia é inversamente proporcional à amplitude de deslocamento, ou seja, quando se aumentou o momento de inércia passando de $6*10^{-5}\,m^4$ para $6*10^{-4}\,m^4$ diminuiu a amplitude de $0,29530\,m$ para $0,09337\,m$, no caso mais crítico.

A fim de evitar problemas devido a variação no momento de inércia, considerou-se incerteza de 10% no momento de inércia, para que mesmo que haja alteração no valor do momento de inércia a amplitude de deslocamento ainda esteja dentro do limite máximo estabelecido.

7. ANEXO

```
%% Dados
I = 54e-5;
E = 70e9;
Mtanque = 700;
%%
Mestrut = 160;
zeta = 0.015;
1 = 2.5;
v0 = 10;
%% Rigidez equivalente
keq = 3*I*E/(1^3);
%% Massa equivalente
meq = Mtanque + (0.23*Mestrut);
```

```
%% Frequencia natural
wn = sqrt (keq/meq);
%% C critico
CC = 2*meq*wn;
c = zeta*CC;
plot(out.tout,out.deslocamento);
ylabel('Deslocamento [m]');
xlabel('Tempo [s]');
title('Deslocamento x Tempo');
```

