36.4 Thin lenses

- 2) A lens with two spherical surfaces with radii of curvature R_1 and R_2 .
 - → The image formed by one refracting surface serves as the object for the second surface.

$$\boxed{\frac{n_1}{p} + \frac{n_2}{q} = \frac{(n_2 - n_1)}{R}}$$

$$1/f = (n-1) (1/R_1 - 1/R_2)$$

(Lens Makers' Equation)

$$1/p + 1/q = 1/f$$
 (Thin Lens Equation)

• Sign conventions for thin lenses :

	р	q	$R_1 \& R_2$	f
+	real object (front of lens)	real image (back of lens)	C is in back of lens	converging
_	virtual object (back of lens)	virtual image (front of lens)	C is in front of lens	diverging

3) Various lens shapes:

2) A lens with two spherical surfaces with radii of curvature R_1 and R_2 .

$$1/f = (n-1) (1/R_1 - 1/R_2)$$

(Lens Makers' Equation)

$$1/p + 1/q = 1/f$$

(Thin Lens Equation)

	p	q	$R_1 \& R_2$	f
+	real object (front of lens)	real image (back of lens)	C is in back of lens	converging
_	virtual object (back of lens)	virtual image (front of lens)	C is in front of lens	diverging

4) Ray diagrams by using principal rays for convex (and concave) lens.

- (1) a ray passing through the center of the lens continues in a straight line. (*cf.* same for concave lens.)
- (2) a ray initially // to the principal axis passes through f_2 . (cf. appears from f_1 for concave lens.)
- (3) a ray passing through f_1 continues // to the principal axis. (cf. drawn toward f_2 continues // to the principal axis for concave lens.)

(A) Convex lens

(B) Concave lens

(Example 36.10) Images formed by a diverging lens.

- (a) The object is farther from the lens than the focal point.
- (b) The object is at the focal point.
- (c) The object is closer to the lens than the focal point.

5) Combination of thin lenses:

- (1) The image formed by the 1^{st} lens acts as a *real object* for the 2^{nd} lens.
- (2) The image formed by the 1st lens acts as a *virtual object* for the 2nd lens.

$$1/p + 1/q = 1/f$$

(Thin Lens Equation)

	p	q	$R_1 \& R_2$	f
+	real object (front of lens)	real image (back of lens)	C is in back of lens	converging
_	virtual object (back of lens)	virtual image (front of lens)	C is in front of lens	diverging