Name:

- 1. Find the degrees of field extensions, and briefly explain (using polynomials). Then give a basis for each larger field over the smaller field.
 - (a) $[\mathbb{Q}(\sqrt{2}):\mathbb{Q}]$

Solution: The degree is 2. The minimum polynomial for $\sqrt{2}$ over \mathbb{Q} is $x^2 - 2$, which is irreducible and has degree 2. A basis is $\{1, \sqrt{2}\}$.

(b) $[\mathbb{Q}(\sqrt{2}, \sqrt[3]{5 + \sqrt{2}}) : \mathbb{Q}(\sqrt{2})]$

Solution: The degree is 3. A minimum polynomial for $\sqrt[3]{5+\sqrt{2}}$ over $\mathbb{Q}(\sqrt{2})$ is $x^3-5-\sqrt{2}$. To prove this is the minimum polynomial we need to show it is irreducible, which takes a little work.

The basis is $\{1, \sqrt[3]{5 + \sqrt{2}}, \sqrt[3]{5 + \sqrt{2}}^2\}$.

(c) $[\mathbb{Q}(\sqrt{2}, \sqrt[3]{5+\sqrt{2}}) : \mathbb{Q}(\sqrt[3]{5+\sqrt{2}})]$

Solution: The degree is 1. Since $\sqrt[3]{5+\sqrt{2}}^3=5+\sqrt{2}$ and 5 is in \mathbb{Q} , we have that $\sqrt{2}$ is already in $\mathbb{Q}(\sqrt[3]{5+\sqrt{2}})$. The minimum polynomial is $x-\sqrt{2}$. A basis is $\{1\}$

(d) $[\mathbb{Q}(\sqrt[3]{5+\sqrt{2}}):\mathbb{Q}]$

Solution: The degree is 6. Since $\mathbb{Q}(\sqrt[3]{5+\sqrt{2}}) = \mathbb{Q}(\sqrt{2}, \sqrt[3]{5+\sqrt{2}})$ (as seen in part (c)), we can iterate the extensions using parts (a) and (b). In class we prove that [E:F] = [E:L][L:F], so in this case we get the degree to be $2 \cdot 3 = 6$.

The minimum polynomial is $x^6 - 10x^3 + 23$.

A basis is $\{1, \sqrt[3]{5+\sqrt{2}}, \sqrt[3]{5+\sqrt{2}}^2, \sqrt[3]{5+\sqrt{2}}^3, \sqrt[3]{5+\sqrt{2}}^4, \sqrt[3]{5+\sqrt{2}}^5\}.$