Derivation tree (or parse tree)

Observation 1

- CF grammars are used to define languages and implement parsers
- Parsers should generate trees, but derivations are not tree!

Observation 2

- a derivation step is determined by
 - the used production
 - the specific non-terminal symbol which is replaced
- choice 2 does not influence the final string of terminals obtained from the derivation

Intuition

A derivation tree is a generalization of a multi-step derivation such that

- the derived string contains only terminal symbols
- non-terminal symbols are replaced "in parallel"
- the structure of the analyzed sequence of lexemes is made explicit

Examples of derivation trees (in ANTLR)

ANTLR Grammar

```
grammar SimpleExp;
exp : num | exp '*' exp | exp '+' exp | '(' exp ')';
num : '0' | '1';
```

Derivation tree for "1*1+1"

Examples of derivation trees (in ANTLR)

ANTLR Grammar

```
grammar SimpleExp;
exp : num | exp '*' exp | exp '+' exp | '(' exp ')';
num : '0' | '1';
```

Derivation tree for " (1+1) *1"

Derivation tree

Definition of derivation tree in G=(T,N,P)

Derivation tree for $u \in T^*$ starting from $B \in N$:

• if a node is labeled by C and its n children by l_1, \ldots, l_n , then $(C, l_1 \ldots l_n) \in P$ (that is, $(C, l_1 \ldots l_n)$ is a production of G)

- the root is labeled by B
- u is obtained by left-to-right concatenation of all terminal labels (necessarily of leaf nodes)

Derivation tree and generated languages

Equivalent definition of generated language

Language L_B generated from G = (T, N, P) for non-terminal $B \in N$

 all strings u of terminals such that there exists a derivation tree for u starting from B

Ambiguous grammars

ANTLR Grammar

```
grammar SimpleExp;
exp : num | exp '*' exp | exp '+' exp | '(' exp ')';
num : '0' | '1';
```

Two derivation trees for "1*1+1"

6/11

Ambiguous grammars

Definition

Grammar G = (T, N, P) is ambiguous for $B \in N$ if there exist two different derivation trees starting from B for the same string

Reasons for ambiguous grammars

Infix binary operators are intrinsically ambiguous

- Does 1+1+1 mean (1+1)+1 or 1+(1+1)? Is addition left- or right-associative?
- Does 1+1*1 mean (1+1)*1 or 1+(1*1)? Which has higher precedence between addition and multiplication?

A possible solution to ambiguity

Change the syntax!

Use prefix notation

```
Exp ::= Num | '+' Exp Exp | '*' Exp Exp Num ::= '0' | '1'
```

- there is a unique derivation tree for "+1*1 1"
- note the difference between "+1*1 1" and "*+1 1 1"
- parentheses are no longer needed

Use postfix notation

```
Exp ::= Num | Exp Exp '+' | Exp Exp '*'
Num ::= '0' | '1'
```

- there is a unique derivation tree for "1 1 1*+"
- note the difference between "1 1 1*+" and "1 1+1*"
- parentheses are no longer needed

A possible solution to ambiguity

Use functional notation

Similar to the prefix notation, but more verbose!

```
Exp ::= Num | 'add' '('Exp','Exp')' | 'mul' '('Exp','Exp')'
Num ::= '0' | '1'
```

- there is a unique derivation tree for "add(1, mul(1,1))"
- note the difference between "add(1, mul(1,1))" and "mul(add(1,1),1)"

Are there other (possibly better) solutions?

Observation

Although ambiguous, the infix notation is a more intuitive and practical solution!

Elimination of ambiguity of infix notation

- define associativity rules for binary operators
 - addition is left-associative: "1+1+1" means "(1+1)+1"
 - addition is right-associative: "1+1+1" means "1+(1+1)"
- define precedence between operators, use parentheses to override precedence rules
 - multiplication has higher precedence over addition: "1+1*1" means "1+ (1*1)"
 - addition has higher precedence over multiplication: "1*1+1" means "1*(1+1)"

Are there other (possibly better) solutions?

Operators with the same precedence

- binary operators can have the same precedence; in this case they have also the same associativity rule
 - addition and multiplication have the same precedence and are left-associative: "1+1*1" means "(1+1)*1" and "1*1+1" means "(1*1)+1)"
 - addition and multiplication have the same precedence and are right-associative: "1+1*1" means "1+(1*1)" and "1*1+1" means "1*(1+1)"

Remark on associativity rules

Associativity rules resolve ambiguities between binary operators with the same precedence

Operators with different arities

Mixing together operators of different arities (typically 1, 2 and 3) makes elimination of ambiguity more complex!