150

°C

Maximum Junction Temperature

Maximum Ratings

Parameter	Symbol	Condi	tion	Value	Unit
Bypass FWD					
Repetitive peak reverse voltage	V_{RRM}			600	V
Forward current per FWD	I _{FAV}	DC current	T _h =80°C T _c =80°C	36 49	А
Surge forward current	I _{FSM}	t =10ma	T_25°C	370	А
l2t-value	l ² t	-t _p =10ms	T _j =25°C	360	A ² s
Power dissipation per FWD	P _{tot}	T _j =T _j max	T _h =80°C T _c =80°C	42 63	W
Maximum Junction Temperature	T _j max			150	°C
Input Boost MOSFET					
Drain to source breakdown voltage	V_{DS}			600	V
DC drain current	I _D	T _j =T _j max	T _h =80°C T _c =80°C	30 37	А
Pulsed drain current	I _{Dpulse}	t _p limited by T _j max		230	А
Power dissipation	P _{tot}	T _j =T _j max	T _h =80°C T _c =80°C	92 139	W
Gate-source peak voltage	V _{GS}			±20	V

copyright Vincotech 1 Revision: 6

T_jmax

Maximum Ratings

Parameter	Symbol	Condition		Value	Unit	
Input Boost FWD						
Peak Repetitive Reverse Voltage	V_{RRM}	T _j =25°C		600	V	
DC forward current	I _F	T _j =T _j max	T _h =80°C T _c =80°C	19 23	А	
Repetitive peak forward current	I _{FRM}	t _p limited by T _j max		70	А	
Power dissipation	P _{tot}	T _j =T _j max	T _h =80°C T _c =80°C	41 62	w	
Maximum Junction Temperature	T _j max			175	°C	
Buck FWD						
Peak Repetitive Reverse Voltage	V_{RRM}	T _j =25°C		600	V	
DC forward current	I _F	T _j =T _j max	T _h =80°C T _c =80°C	10 15	А	
Repetitive peak forward current	I _{FRM}	t _p limited by T _j max	T _c =100°C	35	А	
Power dissipation per FWD	P _{tot}	T _j =T _j max	T _h =80°C T _c =80°C	29 44	W	
Maximum Junction Temperature	T _i max			175	°C	
Buck MOSFET						
Drain to source breakdown voltage	V _{DS}			600	V	
DC drain current	I _D	T _j =T _j max	T _h =80°C T _c =80°C	30 37	А	
Pulsed drain current	I _{Dpulse}	t _p limited by T _j max	Tc=25°C	230	А	
Power dissipation	P _{tot}	T _j =T _j max	T _h =80°C T _c =80°C	94 142	W	
Gate-source peak voltage	Vgs		Ü	±20	V	
Maximum Junction Temperature	T _i max			150	°C	
Boost IGBT						
Collector-emitter break down voltage	V _{CE}			600	V	
DC collector current	I _C	T _j =T _j max	T _h =80°C T _c =80°C	40 40	А	
Repetitive peak collector current	I _{Cpuls}	t _p limited by T _j max	0 0	150	А	
Power dissipation per IGBT	P _{tot}	T _j =T _j max	T _h =80°C T _c =80°C	86 131	W	
Gate-emitter peak voltage	V _{GE}		U 5	±20	V	
Short circuit ratings	t _{SC}	T _j ≤150°C V _{GE} =15V		6 360	μs V	
Maximum Junction Temperature	T _i max	V GE - 10 V		175	°C	

Maximum Ratings

Tj=25°C, unless otherwise specified

Parameter	Symbol	Condition	Value	Unit
Thermal Properties				
Storage temperature	T _{stg}		-40+125	°C
Operation temperature under switching condition	T _{op}		-40+(Tjmax - 25)	°C
Insulation Properties				
Insulation voltage	V _{is}	t=2s DC voltage	4000	V
Creepage distance			min 12,7	mm
Clearance			min 12,7	mm

Characteristic Values

Parameter	Symbol	ol Conditions					Value			Unit
			V _{GE} [V] or V _{GS} [V]	V _r [V] or V _{CE} [V] or V _{DS} [V]	I _C [A] or I _F [A] or I _D [A]	T _j	Min	Тур	Max	
Bypass FWD										
Forward voltage	solar invert	4			15	Tj=25°C Tj=125°C	0,7	1,01 0,93	1,3	V
Threshold voltage (for power loss calc. only)	V _{to}					Tj=25°C Tj=125°C		0,86 0,75		V
Slope resistance (for power loss calc. only)	r _t					Tj=25°C Tj=125°C		0,01 0,01		Ω
Reverse current	I _r			1200		Tj=25°C Tj=125°C		0,01	0,05	mA
Thermal resistance chip to heatsink per chip	R _{thJH}	Thermal grease thickness≤50um λ = 1 W/mK				.,20 0		1,68		K/W
Input Boost MOSFET										
Static drain to source ON resistance	R _{DS(on)}		10		44	Tj=25°C Tj=125°C		0,04 0,09		Ω
Gate threshold voltage	V _{(GS)th}	VGS=VDS			0,003	Tj=25°C Tj=125°C	2,1	3	3,9	V
Gate to Source Leakage Current	I _{gss}		20	0		Tj=125°C Tj=25°C Tj=125°C			200	nA
Zero Gate Voltage Drain Current	I _{dss}		0	600		Tj=125°C Tj=25°C Tj=125°C			25000	nA
Turn On Delay Time	t _{d(ON)}			10 400	15	Tj=25°C Tj=125°C		28 27		ns mWs
Rise Time	t _r	Rgoff=4 Ω Rgon=4 Ω				Tj=25°C Tj=125°C		5 6		
Turn off delay time	t _{d(OFF)}					Tj=25°C Tj=125°C		154 167		
Fall time	t _f		10			Tj=25°C Tj=125°C		10		
Turn-on energy loss per pulse	E _{on}					Tj=25°C Tj=125°C		0,063 0,072		
Turn-off energy loss per pulse	E _{off}					Tj=25°C Tj=125°C		0,025 0,025		
Total gate charge	Qg					Tj=25°C Tj=125°C		150	190	1
Gate to source charge	Q_{gs}	Rgon=4 Ω	10	400	44	Tj=25°C Tj=125°C		34		nC
Gate to drain charge	Q _{gd}					Tj=25°C Tj=125°C		51		1
Input capacitance	C _{iss}					1]=125 C		6800		
Output capacitance	C _{oss}	f=1MHz	0	100		Tj=25°C		320		pF
Reverse transfer capacitance	C _{rss}					ľ		48		1
Thermal resistance chip to heatsink per chip	R _{thJH}	Thermal grease thickness≤50um λ = 1 W/mK						0,76		K/W
Input Boost FWD										
Forward voltage	V_{F}				16	Tj=25°C Tj=150°C	1	1,54 1,71	1,8	V
Reverse leakage current	I _{rm}		10	400	15	Tj=150 C Tj=25°C Tj=150°C		1,,,,	400	μA
Peak recovery current	I _{RRM}					Tj=150 C Tj=25°C Tj=150°C		16,63 14,68		А
Reverse recovery time	t _{rr}	1				Tj=150 C Tj=25°C Tj=150°C		9,3 10,4		ns
Reverse recovery charge	Q _{rr}	Rgon=4 Ω	10	400	15	Tj=150 C Tj=25°C Tj=150°C		0,058 0,064		μC
Reverse recovered energy	E _{rec}					Tj=25°C		0,005		mWs
Peak rate of fall of recovery current	di(rec)max					Tj=150°C Tj=25°C		0,006 4244 2752		A/µs
Thermal resistance chip to heatsink per chip	/dt R _{thJH}	Thermal grease thickness≤50um λ = 1 W/mK				Tj=150°C		2,34		K/W

copyright Vincotech 4 Revision: 6

Characteristic Values

Parameter Symbol	Symbol	Conditions				Value			Unit	
			V _{GE} [V] or V _{GS} [V]	V _r [V] or V _{CE} [V] or V _{DS} [V]	I _C [A] or I _F [A] or I _D [A]	Τ _j	Min	Тур	Max	
Buck FWD										
FWD forward voltage	V_{F}				8	Tj=25°C Tj=150°C	1	1,52 1,64	1,8	V
Peak reverse recovery current	I _{RRM}					Tj=25°C Tj=150°C		14 12		Α
Reverse recovery time	t _{rr}					Tj=25°C Tj=150°C		7,8 8,8		ns
Reverse recovered charge	Q _{rr}	Rgon=4 Ω	10	400	15	Tj=25°C Tj=150°C		0,05 0,05		μC
Peak rate of fall of recovery current	di(rec)max /dt					Tj=25°C Tj=150°C		4078 3373		A/µs
Reverse recovered energy	Erec					Tj=25°C Tj=150°C		0,008 0,007		mWs
Thermal resistance chip to heatsink per chip	R _{thJH}	Thermal grease thickness≤50um λ = 1 W/mK				1,7-100-0		3,28		K/W
Buck MOSFET										
Static drain to source ON resistance	R _{ds(on)}		10		44	Tj=25°C Tj=125°C		45 89		mΩ
Gate threshold voltage	$V_{(GS)th}$			V _{DS} =V _{GS}	0,003	Tj=125°C Tj=125°C	2,1	3	3,9	V
Gate to Source Leakage Current	I _{gss}		20	0		Tj=125°C Tj=125°C			200	nA
Zero Gate Voltage Drain Current	I _{dss}		0	600		Tj=25°C Tj=125°C			25000	nA
Turn On Delay Time	t _{d(ON)}					Tj=125°C Tj=125°C		31 30		ns
Rise Time	t _r					Tj=25°C Tj=125°C		5,4 6		
Turn off delay time	t _{d(OFF)}	Rgoff=4 Ω				Tj=25°C Tj=125°C		147 158		
Fall time	t _f	Rgon=4 Ω	10	400 15	15	Tj=125 °C Tj=25 °C Tj=125 °C		13,7 10,3		
Turn-on energy loss per pulse	E _{on}					Tj=125 °C Tj=25 °C Tj=125 °C		0,063 0,067		+
Turn-off energy loss per pulse	E _{off}					Tj=25°C		0,021		mWs
Total gate charge	Q_g					Tj=125°C		0,028 150	190	
Gate to source charge	Q _{gs}	1	10	400	44	Tj=25°C		34		nC
Gate to drain charge	Q_{gd}							51		
Input capacitance	C _{iss}							6800		
Output capacitance	C _{oss}	f=1MHz	0	100		Tj=25°C		320		pF
Reverse transfer capacitance	C _{rss}							48		
Thermal resistance chip to heatsink per chip	R _{thJH}	Thermal grease thickness≤50um λ = 1 W/mK						0,75		K/W

copyright Vincotech 5 Revision: 6

Characteristic Values

Parameter Symbo	Symbol	Conditions				Value			Unit	
			V _{GE} [V] or V _{GS} [V]	V _r [V] or V _{CE} [V] or V _{DS} [V]	I _C [A] or I _F [A] or I _D [A]	Тј	Min	Тур	Max	
Boost IGBT										
Gate emitter threshold voltage	$V_{GE(th)}$	$V_{CE}=V_{GE}$			0,0008	Tj=25°C Tj=150°C	5	5,8	6,5	V
Collector-emitter saturation voltage	V _{CE(sat)}		15		50	Tj=25°C Tj=150°C		1,18 1,21		٧
Collector-emitter cut-off incl FWD	I _{CES}		0	600		Tj=25°C Tj=150°C		1,21	0,2	mA
Gate-emitter leakage current	I _{GES}		20	0		Tj=25°C Tj=150°C			650	nA
Integrated Gate resistor	R _{gint}					.,= .00 0		none		Ω
Input capacitance	C _{ies}							3140		
Output capacitance	C _{oss}	f=1MHz	0	25		Tj=25°C		200		pF
Reverse transfer capacitance	C _{rss}	1						93		1
Gate charge	Q _{Gate}		15	480	50	Tj=25°C		310		nC
Thermal resistance chip to heatsink per chip	R _{thJH}	Thermal grease thickness≤50um λ = 1 W/mK						1,10		K/W
Note: For the Boost IGBT only LF switching allow	wed		1	1	I	1	l	1	<u>I</u>	1
Thermistor										
Rated resistance*	R ₂₅	Tol. ±5%				Tj=25°C	17,5	22 1486	29,0	kΩ Ω
Power dissipation	P	101. 1070				Tj=25°C		210		mW
B-value	B _(25/100)	Tol. ±3%	1			Tj=25°C		4000		К

^{*} see details on Thermistor charts on Figure 2.

copyright Vincotech 6 Revision: 6

 V_{GE} from

Figure 4

4 V to 14 V in steps of 1 V

 $V_{CE} =$

10

٧

MOSFET

Figure 5 Typical switching energy losses as a function of collector current

With an inductive load at

$T_j =$	25/125	°C
$V_{CE} =$	400	V
$V_{GE} =$	10	V
$R_{gon} =$	4	Ω
$R_{noff} =$	4	Ω

Figure 6 Typical switching energy losses as a function of gate resistor

 $E = f(R_G)$

With an inductive load at

$T_j =$	25/125	°C
$V_{CE} =$	400	V
$V_{GE} =$	10	V
1	15	۸

Typical reverse recovery energy loss as a function of collector current

 $E_{rec} = f(I_c)$

With an inductive load at

$T_j =$	25/125	°C
$V_{CE} =$	400	V
$V_{GE} =$	10	V
R _{oon} =	4	Ω

Typical reverse recovery energy loss

as a function of gate resistor

 $E_{rec} = f(R_G)$

With an inductive load at

$T_j =$	25/125	°C
$V_{CE} =$	400	V
$V_{GE} =$	10	V
$I_C =$	15	Α

Figure 9
Typical switching times as a function of collector current

 $t = f(I_C)$

With an inductive load at

$T_j =$	125	°C
$V_{CE} =$	400	V
$V_{GE} =$	10	V
$R_{gon} =$	4	Ω
R _{goff} =	4	Ω

Figure 11

5050

Typical reverse recovery time as a function of collector current

 $\begin{array}{lllll} \mbox{\bf At} & & & & & & \\ T_{j} = & & 25/125 & & ^{\circ}\mbox{\bf C} \\ V_{\text{CE}} = & & 400 & & V \\ V_{\text{GE}} = & & 10 & & V \\ R_{\text{gon}} = & & 4 & & \Omega \end{array}$

Figure 10 MOSFE

Typical switching times as a function of gate resistor

 $t = f(R_G)$

With an inductive load at

$T_j =$	125	°C
$V_{CE} =$	400	V
$V_{GE} =$	10	V
I _C =	15	Α

Figure 12
Typical reverse recovery time as a function of IGBT turn on gate resistor

 $t_{rr} = f(R_{gon})$

Revision: 6

 $Q_{rr} = f(I_C)$

Αt

$T_j =$	25/125	°C
$V_{CE} =$	400	V
$V_{GE} =$	10	V
_		_

Ω

Figure 14 Typical reverse recovery charge as a function of IGBT turn on gate resistor

 $Q_{rr} = f(R_{gon})$

Αt

$T_j =$	25/125	°C
$V_R =$	400	V
$I_F =$	15	Α
$V_{GE} =$	10	V

FRED Figure 15

Typical reverse recovery current as a function of collector current

 $I_{RRM} = f(I_C)$

$T_j =$	25/125	°C
$V_{CE} =$	400	V
$V_{GE} =$	10	V
$R_{gon} =$	4	Ω

Figure 16 Typical reverse recovery current as a

function of IGBT turn on gate resistor

 $I_{RRM} = f(R_{gon})$

Αt

$T_j =$	25/125	°C
$V_R =$	400	V
$I_F =$	15	Α
$V_{GE} =$	10	V

Figure 17 Typical rate of fall of forward and reverse recovery current as a function of collector current

 $dI_0/dt, dI_{rec}/dt = f(Ic)$

4

Figure 18 Typical rate of fall of forward and reverse recovery current as a function of IGBT turn on gate resistor

At		
$T_j =$	25/125	°C
$V_R =$	400	V
$I_F =$	15	Α
V _{GE} =	10	V

Figure 19

IGBT transient thermal impedance as a function of pulse width

Ω

R_{gon} =

RthJH =	0,75	K٨
IGBT ther	mal model	values

 t_p/T

K/W

D =

R (C/W)	Tau (s)
0,03	9,3E+00
0,12	1,2E+00
0,41	1,6E-01
0,11	3,8E-02
0,03	5,2E-03
0.04	3.7E-04

Figure 20

FRED transient thermal impedance as a function of pulse width

At		
D =	t_p / T	
R _{th.IH} =	3.28	K/W

FRED thermal model values

R (C/W)	Tau (s)
0,17	9,7E-01
1,04	8,5E-02
1,34	1,6E-02
0,65	2,5E-03
0,08	3,2E-04

°C

150

 $T_j =$

Boost

 $I_C = f(V_{CE})$

Αt

250 $t_p =$ 25

 $T_j =$ 7 V to 17 V in steps of 1 V V_{GE} from

μs

٥С

Figure 2 Typical output characteristics

Αt

 $t_p =$ 250 μs

 $T_j =$ 125 °C

 V_{GE} from 7 V to 17 V in steps of 1 V

Typical transfer characteristics

 $I_C = f(V_{GE})$

IGBT transient thermal impedance

as a function of pulse width

At

D= tp/T

 $R_{thJH} =$ 1,10 K/W

250

10

 $V_{CE} =$

μs

Boost

 $I_D = f(V_{DS})$

At t_p =

250

) µs

$$\begin{split} T_j = & 25 & ^{\circ}C \\ V_{GS} \text{ from } & 4 \text{ V to 14 V in steps of 1 V} \end{split}$$

At

 $t_p =$

250 μs

$$\begin{split} T_{j} = & 126 & ^{\circ}C \\ V_{GS} \text{ from } & 4 \text{ V to 14 V in steps of 1 V} \end{split}$$

Figure 3 BOOST MOSFET
Typical transfer characteristics

 $I_D = f(V_{DS})$

 $\begin{array}{lll} \textbf{At} & & & \\ \textbf{t}_{p} = & 250 & \quad \mu \text{s} \\ \textbf{V}_{DS} = & 10 & \quad \textbf{V} \end{array}$

Typical diode forward current as a function of forward voltage

a function of forward voltage $I_F = f(V_F)$

 $\begin{array}{ll} \textbf{At} \\ t_p = & 250 & \mu s \end{array}$

Figure 5
Typical switching energy losses
as a function of collector current

With an inductive load at

$T_j =$	25/125	°C
$V_{DS} =$	400	V
$V_{GS} =$	10	V
$R_{gon} =$	4	Ω
R _{goff} =	4	Ω

Figure 7 BOOST MOSFET

Typical reverse recovery energy loss as a function of collector (drain) current

With an inductive load at

$T_j =$	25/125	°C
$V_{DS} =$	400	V
$V_{GS} =$	10	V
$R_{gon} =$	4	Ω
$R_{goff} =$	4	Ω

Figure 6 BOOST MOSFET
Typical switching energy losses

as a function of gate resistor

With an inductive load at

$T_j =$	25/125	°C
$V_{DS} =$	400	V
$V_{GS} =$	10	V
l ₂ =	15	Δ

Figure 8 BOOST MOSFET

Typical reverse recovery energy loss as a function of gate resistor

$E_{rec} = f(R_G)$

With an inductive load at

$T_j =$	25/125	°C
$V_{DS} =$	400	V
$V_{GS} =$	10	V
$I_D =$	15	Α

BOOST MOSFET Figure 9 Typical switching times as a

function of collector current

 $t = f(I_D)$

With an inductive load at

$T_j =$	125	°C
$V_{DS} =$	400	V
$V_{GS} =$	10	V
$R_{gon} =$	4	Ω
$R_{goff} =$	4	Ω

Typical reverse recovery time as a

function of collector current

25/125

°C ٧ 400 $V_{GE} =$ 10 ٧

Ω

Typical switching times as a function of gate resistor

 $t = f(R_G)$

With an inductive load at

$T_j =$	125	°C
$V_{DS} =$	400	V
$V_{GS} =$	10	V
lo =	15	Α

Figure 12

Typical reverse recovery time as a

function of IGBT turn on gate resistor

 $t_{rr} = f(\underline{R}_{gon})$ 0.03 t ,, (µs) t_{rr Low T} 0,02 0,015 0,005 $R_{Gon}(\Omega)$ 20 12 8

l		
At		
$T_j =$	25/125	°C
$V_R =$	400	V
$I_F =$	15	Α
$V_{GS} =$	10	V

 $Q_{\text{rr Low T}}$

 $R_{Gon}(\Omega)$

INPUT BOOST

Figure 14

 $Q_{rr} = f(R_{gon})$

 $Q_{rr}(\mu C)$

0,08

0,06

Typical reverse recovery charge as a function of IGBT turn on gate resistor

 $Q_{rr} = f(I_C)$

$T_j =$	25/125	°C
$V_{CE} =$	400	V
$V_{GE} =$	10	V
$R_{gon} =$	4	Ω

0.04

At

0,02

Tj =	25/125	°C
VR =	400	V
lf=	15	Α
Vgs=	10	V

Figure 15 BOOST FRED

Typical reverse recovery current as a function of collector current

$T_j =$	25/125	°C
$V_{CE} =$	400	V
$V_{GE} =$	10	V
$R_{gon} =$	4	Ω

Figure 16 BOOST FR

12

Typical reverse recovery current as a function of IGBT turn on gate resistor

 $I_{RRM} = f(R_{gon})$

At

$T_j =$	25/125	°C
$V_R =$	400	V
I _F =	15	Α
Vcc=	10	V

Figure 17

Typical rate of fall of forward and reverse recovery current as a function of collector current

 $dI_0/dt, dI_{rec}/dt = f(Ic)$

$T_j =$	25/125	°C
$V_{CE} =$	400	V
V ₀₅ =	10	V

Ω R_{gon} =

Figure 19 **BOOST MOSFET**

IGBT/MOSFET transient thermal impedance as a function of pulse width

D =	t _p / T	
R _{th IH} =	0.76	K/W

IGBT thermal model values

R (C/W)	Tau (s)
0,03247	9,971
0,1223	1,22
0,4264	0,1797
0,1173	0,04698
0,03103	0,005891
0,03298	0,0004038

Figure 18

Typical rate of fall of forward and reverse recovery current as a function of IGBT turn on gate resistor

F	۱t	
_		

1]=	25/125	-0
Vr=	400	V
lf=	15	Α
Vgs=	10	V

Figure 20 FRED transient thermal impedance

as a function of pulse width

Αt

D =	t_p / T	
$R_{th,IH} =$	2,34	K/W

FRED thermal model values

R (C/W)	Tau (s)
0,1024	2,885
0,495	0,3437
0,9886	0,07039
0,4865	0,01004
0,2673	0,001614

175

 $T_j =$

٥С

150

٥С

 $T_j =$

function of heatsink temperature

 $\begin{array}{cccc} T_h = & 80 & ^{\circ}C \\ V_{GS} = & 10 & V \\ T_j = & T_{jmax} & ^{\circ}C \end{array}$

0.000

Αt

250

μs

Bypass Diode

Thermistor

Figure 1 Thermistor
Typical NTC characteristic

as a function of temperature $R_T = f(T)$

Figure 2 Thermistor

Typical NTC resistance values

$$R(T) = R_{25} \cdot e^{\left(B_{25/100}\left(\frac{1}{T} - \frac{1}{T_{25}}\right)\right)} \quad [\Omega]$$

Т	R _{nom}	R _{min}	R _{max}	△R/R
[°C]	[Ω]	[Ω]	[Ω]	[±%]
-55	2089434,5	1506495,4	2672373,6	27,9
0	71804,2	59724,4	83884	16,8
10	43780,4	37094,4	50466,5	15,3
20	27484,6	23684,6	31284,7	13,8
25	22000	19109,3	24890,7	13,1
30	17723,3	15512,2	19934,4	12,5
60	5467,9	4980,6	5955,1	8,9
70	3848,6	3546	4151,1	7,9
80	2757,7	2568,2	2947,1	6,9
90	2008,9	1889,7	2128,2	5,9
100	1486,1	1411,8	1560,4	5
150	400,2	364,8	435,7	8,8

Switching Definitions BUCK MOSFET

General conditions

Tj	=	125 °C
R_{gon}	=	4 Ω
R_{goff}	=	4 Ω

Figure 2

μs

μs

0,16

0,17

 $t_{doff} =$

 $t_{Eoff} =$

Switching Definitions BUCK MOSFET

Switching Definitions BUCK MOSFET

Measurement circuits

Ordering Code and Marking - Outline - Pinout

Ordering Code & Marking			
	Ordering Code	in DataMatrix as	in packaging barcode as
vithout thermal paste 12mm housing	10-FZ06BIA045FH-P897E	P897E	P897E

PRODUCT STATUS DEFINITIONS

Datasheet Status	Product Status	Definition
Target	Formative or In Design	This datasheet contains the design specifications for product development. Specifications may change in any manner without notice. The data contained is exclusively intended for technically trained staff.
Preliminary	First Production	This datasheet contains preliminary data, and supplementary data may be published at a later date. Vincotech reserves the right to make changes at any time without notice in order to improve design. The data contained is exclusively intended for technically trained staff.
Final		This datasheet contains final specifications. Vincotech reserves the right to make changes at any time without notice in order to improve design. The data contained is exclusively intended for technically trained staff.

DISCLAIMER

The information given in this datasheet describes the type of component and does not represent assured characteristics. For tested values please contact Vincotech. Vincotech reserves the right to make changes without further notice to any products herein to improve reliability, function or design. Vincotech does not assume any liability arising out of the application or use of any product or circuit described herein; neither does it convey any license under its patent rights, nor the rights of others.

LIFE SUPPORT POLICY

Vincotech products are not authorised for use as critical components in life support devices or systems without the express written approval of Vincotech.

As used herein:

- Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in labelling can be reasonably expected to result in significant injury to the user.
- 2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.