Universidade de Aveiro

Departamento de Electrônica, Telecomunicações e Informática

Compiladores

Exame teorico I intercalar

(Ano letivo de 2022-2023)

17 de majo de 2023

NoMe

1. Sobre o alfabeto $A=\{a,b,c\}$, considere a linguagem L_1 , definida pelo autômato finito M_1 e a linguagem L_2 .

O autômato finito M1

A linguagem regular La

 $L_2 = \{ (ca|b)^n c(bc)^m : n \ge 0, m > 0 \}$

(a) Seja L₃ = L₁ U L₂. Das seguintes afirmações, apenas uma não é verdadeira. Assinale-a. (Se assinalar uma resposta errada, terá uma cotação negativa de 0.4 valores.)

obobe $\in L_3$		eccbe $\in L_3$
eache $\in L_3$	\boxtimes	cacac ∈ L ₃

(b) Das seguintes opções apenas uma é uma expressão regular que representa a linguagem Lo. Assinale-a. (Se assinalar uma resposta errada, terá uma cotação negativa de 0.4

-		The same of the sa	an ord rapidsa
U	$e_0 = (ea b)^*e(bc)^*$	$c_2 = ((ca)^*/b^*)c(bc)^*$	
N	es = (es/p),e(pe),pe	o2 = ((ca), p,)c(pc), pc	
**	THE PARTY OF THE P		

(c) Das seguintes opções apenas uma é uma gramática regular que representa a Enguagem Ly. Assinale-a. (Se assinalar uma responta errada, terá uma cotação negativa de 0.4 valores.)

(d) Chusidare o autómato finito generalizado representado d direita. Indique ce radires das expressões regulares est, est est e est de mede a que represente a mesma Auguspen que o antémate M. Note que este autémate Colontes the dissertant the athures

coac et

[3.0] (e) Obtenha um autômato finito determinista equivalente a M_1 .

 $X_{1,2} = \S 1,2$ $X_{2} = \S 2$ $X_{3} = \S 3$ $X_{0} = \S 2$

1 => > ; 2 => 1 ; 3 a > x 1 b > > ; 2 b > 2 ; 3 b > 1 1 5 > > ; 2 b > 2 ; 3 b > 2 {1,2? a > {1,2} {1,3} b > 2 {1,2} c > 3

[2.0] (f) Obtenha um autómato finito não generalizado que representa a linguagem $L = L_1 \cdot L_4$ (concatenação de L_1 com L_4), sendo L_4 descrita pela gramática regular $S \to aa S \mid bb S \mid c$

14 => 8 -> aa3 16631c =>

atomato generalizado

tarando para antometo finito não serealizado

Pa

Gra

J = J 1. J 4 , loso estado de aceitação Iliga-re ao estado

b () b = J 1. J 4 , loso estado de aceitação Iliga-re ao estado

inicial de J 4

1 = , 9 1 57 = 1

(Note que $L_5 \subset L_1$, sendo L_5 a linguagem regular definida pela expressão regular $c(ba)^+c$. (Note que se trata do subconjunto em sentido estrito (\subset) e não em sentido lato (\subseteq).)

Para que \$5 6 \$1 temaque se respetta Vice \$105 \times \$1 \times \$1 \times \$2 \times \$1 \times \$2 \times \$2

2. Sobre o alfabeto $A = \{a, b, c\}$, considere a linguagem

 $R = \{ \ \omega \in A^* \ : \ |\omega| \geq 1 \ \land \ \#(\mathtt{a},\omega) \ \text{\'e par} \ \land \ \#(\mathtt{b},\omega) < 2 \ \}.$

onde $|\omega|$ representa o número de letras da palavra ω e $\#(\mathbf{x},\omega)$ é uma função que devolve o número de ocorrências da letra x em ω .

(.) Projete um autómato finito, determinista ou não determinista, mas não generalizado, que reconheça a linguagem R.

A linguagen R ten Warhet rempre pelo mener 1 letra,
a letra a aperece rempre se mittaglion de 2 e lo apareça entre 0 ou 1 vezas
e a não ten restições

ten pelo nuna 1 letra to aparele 1 on meso O rose

Walk as in some

and a door a sound wind to 1 th

Det when he self to he a state of the design of the design