实验八: 测量金属的杨氏模量 实验报告

钱思天 1600011388 No.8

2017年12月5日

1 实验数据与处理

1.1 多次测量物理量数据处理

1.1.1 利用 CCD 测量金属的杨氏模量

表 1: 所用砝码组质量

表 2: 所测金属丝直径

所测直径 d_1 d_2 d_3 d_4 d_5 d_6 d_7 d_8 d_9 d_{10} 读数 d_i/mm 0.325 0.326 0.322 0.326 0.322 0.325 0.326 0.325 0.326 0.327

表 3: 逐个依次添加砝码所得横线位置

次数 i	增加砝码质量 $\Delta m_i/g$	砝码总质量 m_i/g	增添位置 r/mm	减少位置 r'/mm	平均位置 \bar{r}/mm	逐差长度 $\delta L/mm$
0	99.97	99.97	2.86	2.87	2.87	0.60
1	199.94	299.91	2.97	2.98	2.98	0.60
2	200.00	499.91	3.09	3.1	3.10	0.59
3	199.98	699.89	3.23	3.23	3.23	0.58
4	199.98	899.87	3.36	3.35	3.36	0.57
5	199.91	1099.78	3.47	3.46	3.47	_
6	199.92	1299.70	3.57	3.58	3.58	_
7	200.05	1499.75	3.68	3.69	3.69	_
8	199.50	1699.25	3.80	3.81	3.81	-
9	200.07	1899.32	3.92	3.92	3.92	_

1.1.2 利用光杠杆法测量杨氏模量

表 4: 所用砝码组质量

 砝码编号 i 1
 2
 3
 4
 5
 6
 7
 8
 9
 10

 砝码质量 $\Delta m_i/g$ 195.46
 200.26
 199.72
 199.65
 199.71
 199.83
 199.88
 199.80
 199.86
 200.03

表 5: 所测金属丝直径

所测直径 d_1 d_2 d_3 d_4 d_5 d_6 d_7 d_8 d_9 d_{10} 读数 d_i/mm 0.325 0.320 0.321 0.320 0.318 0.317 0.319 0.317 0.316 0.314

表 6: 逐个依次添加砝码所得卡丝位置

次数 i	本次添加砝码质量 $\Delta m_i/g$	砝码总重量 m_i/g	正向位置 r/cm	反向位置 r'/cm	平均位置 \bar{r}/cm	逐差长度 $\delta L/cm$
0	99.97	99.97	2.86	2.87	2.87	0.60
1	199.94	299.91	2.97	2.98	2.98	0.60
2	200.00	499.91	3.09	3.1	3.10	0.59
3	199.98	699.89	3.23	3.23	3.23	0.58
4	199.98	899.87	3.36	3.35	3.36	0.57
5	199.91	1099.78	3.47	3.46	3.47	-
6	199.92	1299.70	3.57	3.58	3.58	-
7	200.05	1499.75	3.68	3.69	3.69	-
8	199.50	1699.25	3.80	3.81	3.81	-
9	200.07	1899.32	3.92	3.92	3.92	_

1.1.3 梁的弯曲测量杨氏模量

表 7: 实验所用砝码组

砝码编号 i 1 2 3 4 5 6 砝码质量 $\Delta m_i/g$ 200.11 200.81 200.03 200.11 200.57 200.14

表 8: 梁的宽度

宽度 a_i/mm a_1 a_2 a_3 a_4 a_5 a_6 读数 9.94 9.92 9.90 9.84 9.86 9.84

表 9: 梁的厚度

厚度 h_i/mm h_1 h_2 h_3 h_4 h_5 h_6 读数 1.499 1.521 1.532 1.519 1.541 1.539

#	10	135 /	ヘルカル	ニー・カー・ナー・ナー・ナー・ナー・ナー・ナー・ナー・ナー・ナー・ナー・ナー・ナー・ナー	60/14 14 15 15
$\overline{}$	111.	7/1/	$\Gamma \mathcal{W} \mathcal{V} \mathcal{V} \mathcal{W} \mathcal{V}$	5 川川和大和島	所得挠度值

次数 i	本次添加砝码质量 $\Delta m_i/g$	砝码总重量 m_i/g	正向挠度 λ/cm	反向挠度 λ'/cm	平均挠度 λ/cm	逐差长度 $\delta\Lambda/cm$
1	200.11	200.11	37.585	37.460	37.523	-2.458
2	200.81	400.92	36.770	36.692	36.731	-2.503
3	200.03	600.95	35.932	35.827	35.880	-2.503
4	200.11	801.06	35.111	35.018	35.065	_
5	200.57	1001.63	34.271	34.185	34.228	_
6	200.14	1201.77	33.422	33.332	33.377	_

1.2 一次测量物理量测量数值及其不确定度

1.2.1 利用 CCD 测量金属的杨氏模量

在本实验中,一次测量物理量分别是铁丝的长度,以及螺旋测微计的 零点位置。利用公式:

$$\sigma = \frac{e}{\sqrt{3}}$$

及实际测量数据可得下表:

表 11: 本实验中一次测量物理量及其不确定度 物理量 铁丝长度 $L\pm\sigma_L/cm$ 螺旋测微计零点读数 $d_0\pm\sigma_d/mm$ 值 80.41 \pm 0.06 -0.003 ± 0.002

1.2.2 利用光杠杆测量金属的杨氏模量

在本实验中,一次测量物理量分别是铁丝的长度,螺旋测微计的零点位置,光杠杆臂长以及望远镜的工作距离。利用公式:

$$\sigma = \frac{e}{\sqrt{3}}$$

及实际测量数据可得下表:

表 12: 本实验中一次测量物理量及其不确定度

物理量 铁丝长度 $L\pm\sigma_L/cm$ 螺旋測微计零点读数 $d_0\pm\sigma_d/mm$ 工作距离 $R\pm\sigma_R/cm$ 光杠杆臂长 $D\pm\sigma_D/cm$ 数值 77.60 ± 0.06 -0.003 ± 0.002 136.49 ± 0.06 9.20 ± 0.01

1.2.3 梁的弯曲测量杨氏模量

在本实验中,一次测量物理量分别是金属梁的有效长度及螺旋测微计的零点位置。利用公式:

$$\sigma = \frac{e}{\sqrt{3}}$$

及实际测量数据可得下表:

表 13: 本实验中一次测量物理量及其不确定度 物理量 金属梁有效长度 $L\pm\sigma_L/cm$ 螺旋测微计零点读数 $h_0\pm\sigma_h/mm$ 数值 23.32 ±0.01 -0.021 ± 0.02

1.3 用逐差法和最小二乘法处理数据

1.3.1 利用 CCD 测量金属的杨氏模量

根据前文所展示的实验数据,可作 \bar{r} 与 m 关系图如下:

图 1: 本实验中 \bar{r} 与 m 数据图

从图中可以看出, \bar{r} 与 m 成基本呈线性关系,计算得 $r \approx 0.999$,故确实存在线性关系,下面分别用逐差法和最小二乘法进行数据处理。

逐差法 之前的数据处理中已经计算了各次逐差的值,列表如下:

表 14: 逐差结果数据表 逐差次数
$$\bar{r}_5 - \bar{r}_0$$
 $\bar{r}_6 - \bar{r}_1$ $\bar{r}_7 - \bar{r}_2$ $\bar{r}_8 - \bar{r}_3$ $\bar{r}_9 - \bar{r}_4$ 逐差长度 $\delta L_i/mm$ 0.60 0.60 0.59 0.58 0.57

利用公式,有:

$$\delta L = \frac{1}{5} \sum_{i=1}^{5} \delta L_i = 0.588(mm)$$

下计算不确定度: A 类:

$$\sigma_{\overline{L}} = \sqrt{\frac{\sum_{i=1}^{5} (\delta L_i - \overline{\delta L})^2}{5 \times 4}} = 0.006(mm)$$

B 类:

$$e_L = \sum_{i=1}^{5} \frac{e+e}{5} = 0.02(mm) \Rightarrow \sigma = \frac{e}{\sqrt{3}} = 0.012(mm)$$

总不确定度:

$$\sigma_L = \sqrt{\sigma^2 + \sigma_{\bar{L}}^2} = 0.013(mm)$$

综上,得;

$$\delta L \pm \sigma_L = 0.588 \pm 0.013 (mm)$$

最小二乘法 设

$$\delta L = k \times m + b$$

考虑到需要计算的物理量,我们对截距进行分析:

$$k = \frac{\sum_{i=0}^{9} (\bar{r}_i - \bar{r})(i - \bar{m})}{\sum_{i=0}^{9} (i - \bar{m})^2} = 5.88 \times 10^{-4} (mm/g)$$

下计算不确定度: 首先计算 \bar{r} 的不确定度: A 类:

$$\sigma_r = \sqrt{\frac{1-r^2}{10-2} \sum_{i=0}^{9} (\bar{r}_i - \bar{r})^2} = 0.009(mm)$$

B 类:

$$\sigma = \frac{e+e}{\sqrt{3}} = 0.012(mm)$$

总不确定度:

$$\sigma_{\bar{r}} = \sqrt{\sigma^2 + \sigma_r^2} = 0.015(mm)$$

得 k 的不确定度:

$$\sigma_k = \frac{\sigma}{\sqrt{\sum_{i=0}^{9} (m_i - \bar{m})^2}} = 6 \times 10^{-6} (mm/g)$$

故:

$$k \pm \sigma_k = (5.88 \pm 6) \times 10^{-4} (mm/g)$$

1.3.2 利用光杠杆测量金属的杨氏模量

根据前文所展示的实验数据,可作 \bar{r} 与 m 关系图如下:

图 2: 本实验中 \bar{r} 与 m 数据图

从图中可以看出, \bar{r} 与 m 成基本呈线性关系,计算得 $r \approx 0.999$,故确实存在线性关系,下面分别用逐差法和最小二乘法进行数据处理。

逐差法 之前的数据处理中已经计算了各次逐差的值,列表如下:

利用公式,有:

$$\delta L = \sum_{i=1}^{5} \delta L_i = 1.540(cm)$$

下计算不确定度: A 类:

$$\sigma_{\bar{L}} = \sqrt{\frac{\sum_{i=1}^{5} (\delta L_i - \overline{\delta L})^2}{5 \times 4}} = 0.011(cm)$$

B 类:

$$e_L = \sum_{i=1}^{5} \frac{e+e}{5} = 0.02(cm) \Rightarrow \sigma = \frac{e}{\sqrt{3}} = 0.012(cm)$$

总不确定度:

$$\sigma_L = \sqrt{\sigma^2 + \sigma_{\bar{L}}^2} = 0.016(cm)$$

综上,得;

$$\delta L \pm \sigma_L = 1.540 \pm 0.016(cm)$$

最小二乘法 设

$$\delta L = k \times m + b$$

考虑到需要计算的物理量,我们对截距进行分析:

$$k = \frac{\sum_{i=0}^{9} (\bar{r}_i - \bar{r})(i - \bar{m})}{\sum_{i=0}^{9} (i - \bar{m})^2} = 1.545 \times 10^{-3} (cm/g)$$

下计算不确定度: 首先计算 \bar{r} 的不确定度: A 类:

$$\sigma_r = \sqrt{\frac{1-r^2}{10-2} \sum_{i=0}^{9} (\bar{r}_i - \bar{r})^2} = 0.016(cm)$$

B 类:

$$\sigma = \frac{e+e}{\sqrt{3}} = 0.012(cm)$$

总不确定度:

$$\sigma_{\bar{r}} = \sqrt{\sigma^2 + \sigma_r^2} = 0.020(cm)$$

得 k 的不确定度:

$$\sigma_k = \frac{\sigma}{\sqrt{\sum_{i=0}^{9} (m_i - \bar{m})^2}} = 1.1 \times 10^{-5} (cm/g)$$

故:

$$k \pm \sigma_k = (1.545 \pm 0.011) \times 10^{-3} (cm/g)$$

1.3.3 梁的弯曲测量金属的杨氏模量

根据前文所展示的实验数据,可作 \bar{r} 与 m 关系图如下:

图 3: 本实验中 \bar{r} 与 m 数据图

从图中可以看出, \bar{r} 与 m 成基本呈线性关系,计算得 $r \approx 0.999$,故确实存在线性关系,下面分别用逐差法和最小二乘法进行数据处理。

逐差法 之前的数据处理中已经计算了各次逐差的值,列表如下:

利用公式,有:

$$\delta L = \frac{1}{5} \sum_{i=1}^{5} \delta L_i = 0.588(mm)$$

下计算不确定度: A 类:

$$\sigma_{\overline{L}} = \sqrt{\frac{\sum_{i=1}^{5} (\delta L_i - \overline{\delta L})^2}{5 \times 4}} = 0.006(mm)$$

B 类:

$$e_L = \sum_{i=1}^{5} \frac{e+e}{5} = 0.02(mm) \Rightarrow \sigma = \frac{e}{\sqrt{3}} = 0.012(mm)$$

总不确定度:

$$\sigma_L = \sqrt{\sigma^2 + \sigma_{\bar{L}}^2} = 0.013(mm)$$

综上,得;

$$\delta L \pm \sigma_L = 0.588 \pm 0.013 (mm)$$

最小二乘法 设

$$\delta L = k \times m + b$$

考虑到需要计算的物理量,我们对截距进行分析:

$$k = \frac{\sum_{i=0}^{9} (\bar{r}_i - \bar{r})(i - \bar{m})}{\sum_{i=0}^{9} (i - \bar{m})^2} = 5.88 \times 10^{-4} (mm/g)$$

下计算不确定度: 首先计算 \bar{r} 的不确定度: A 类:

$$\sigma_r = \sqrt{\frac{1 - r^2}{10 - 2} \sum_{i=0}^{9} (\bar{r}_i - \bar{r})^2} = 0.009(mm)$$

B 类:

$$\sigma = \frac{e+e}{\sqrt{3}} = 0.012(mm)$$

总不确定度:

$$\sigma_{\bar{r}} = \sqrt{\sigma^2 + \sigma_r^2} = 0.015(mm)$$

得 k 的不确定度:

$$\sigma_k = \frac{\sigma}{\sqrt{\sum_{i=0}^{9} (m_i - \bar{m})^2}} = 6 \times 10^{-6} (mm/g)$$

故:

$$k \pm \sigma_k = (5.88 \pm 6) \times 10^{-4} (mm/g)$$

2 收获和感想 11

1.4 分析与讨论

1.4.1 Δr 偏大

考虑到开始时钢丝没有拉直,因此,最初的一两个砝码会将金属丝拉直,而在这过程中,相应的 Δr 也会偏大。

1.4.2 Δr 偏小

若开始时,装置的调节未做好,使得下端圆柱与限转螺丝存在摩擦,则最初时刻的 Δr 会因存有摩擦力而较小。

2 收获和感想

在课下准备本次实验的时候,我其实并没有感到非常紧张。一来,室 友已做过这个实验,可以向他取经;二来,我自己在高中也做过这个实验。

但是,真正实际操作的时候,我却并没有像想象中那般轻松。

一来,进行实验的时候,有一些长度的测量对"身材"提出了要求; 二来,我的 CCD 似乎对我有一些意见······

当然了,结束实验进行总结时,我不由的感叹实验设计的精妙。

在我看来,测量杨氏模量的重要一环,在于将微小的形变放大。无论 是搭配了显微镜的 CCD,光杆杆还是读数显微镜,都是为了完成这一目 标。推而广之,许多实验中,实验设计里都存在着这些将不可观测量转化 为可观测量的精妙构想。

在实验课程的学习中,我也要培养自己的实验设计能力,培养自己设计将无法直接测量的物理量进行转化,将低精度测量量转化为高精度的测量量的能力。