assignment-4 September 27, 2023

0.1 Assignment - 4

0.2 RAVADAGUNDI SANATH KUMAR

sanathkumar.21bce9610@vitapstudent.ac.in (mailto:sanathkumar.21bce9610@vitapstudent.ac.in)

0.3 • Data Preprocessing.

```
o Import the Libraries.
o Importing the dataset.
o Checking for Null Values.
o Data Visualization.
o Outlier Detection
o Splitting Dependent and Independent variables
o- Encoding
o Feature Scaling.
o Splitting Data into Train and Test.
```

0.3.1 Import the Libraries.

```
In [72]: Import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
```

0.3.2 Importing the dataset.

```
In [73]: ▶ df=pd.read_csv("C:/Users/rsana/Downloads/archive/WA_Fn-UseC_-HR-Employee-Attr
```



```
In [76]: ► df.info()
```

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 1470 entries, 0 to 1469
Data columns (total 35 columns):

#	Column Column	Non-Null Count	Dtype
0	Age	1470 non-null	 int64
1	Attrition	1470 non-null	object
2	BusinessTravel	1470 non-null	object
3	DailyRate	1470 non-null	int64
4	Department	1470 non-null	object
5	DistanceFromHome	1470 non-null	int64
6	Education	1470 non-null	int64
7	EducationField	1470 non-null	object
8	EmployeeCount	1470 non-null	int64
9	EmployeeNumber	1470 non-null	int64
10	EnvironmentSatisfaction	1470 non-null	int64
11	Gender	1470 non-null	object
12	HourlyRate	1470 non-null	int64
13	JobInvolvement	1470 non-null	int64
14	JobLevel	1470 non-null	int64
15	JobRole	1470 non-null	object
16	JobSatisfaction	1470 non-null	int64
17	MaritalStatus	1470 non-null	object
18	MonthlyIncome	1470 non-null	int64
19	MonthlyRate	1470 non-null	int64
20	NumCompaniesWorked	1470 non-null	int64
21	Over18	1470 non-null	object
22	OverTime	1470 non-null	object
23	PercentSalaryHike	1470 non-null	int64
24	PerformanceRating	1470 non-null	int64
25	RelationshipSatisfaction	1470 non-null	int64
26	StandardHours	1470 non-null	int64
27	StockOptionLevel	1470 non-null	int64
28	TotalWorkingYears	1470 non-null	int64
29	TrainingTimesLastYear	1470 non-null	int64
30	WorkLifeBalance	1470 non-null	int64
31	YearsAtCompany	1470 non-null	int64
32	YearsInCurrentRole	1470 non-null	int64
33	YearsSinceLastPromotion	1470 non-null	int64
34	YearsWithCurrManager	1470 non-null	int64
dtype	es: int64(26), object(9)		

dtypes: int64(26), object(9)
memory usage: 402.1+ KB

In [77]: ▶ df.describe()

Out[77]:

	Age	DailyRate	DistanceFromHome	Education	EmployeeCount	EmployeeN
count	1470.000000	1470.000000	1470.000000	1470.000000	1470.0	1470.(
mean	36.923810	802.485714	9.192517	2.912925	1.0	1024.{
std	9.135373	403.509100	8.106864	1.024165	0.0	602.(
min	18.000000	102.000000	1.000000	1.000000	1.0	1.(
25%	30.000000	465.000000	2.000000	2.000000	1.0	491.2
50%	36.000000	802.000000	7.000000	3.000000	1.0	1020.
75%	43.000000	1157.000000	14.000000	4.000000	1.0	1555.7
max	60.000000	1499.000000	29.000000	5.000000	1.0	2068.(

8 rows × 26 columns

0.3.3 Checking for null values

In [78]: df.isnull().any() Out[78]: Age False Attrition False BusinessTravel False DailyRate False Department False DistanceFromHome False Education False EducationField False EmployeeCount False **EmployeeNumber** False **EnvironmentSatisfaction** False Gender False HourlyRate False JobInvolvement False JobLevel False JobRole False JobSatisfaction False MaritalStatus False MonthlyIncome False MonthlyRate False NumCompaniesWorked False Over18 False OverTime False PercentSalaryHike False PerformanceRating False RelationshipSatisfaction False StandardHours False StockOptionLevel False TotalWorkingYears False TrainingTimesLastYear False WorkLifeBalance False YearsAtCompany False YearsInCurrentRole False YearsSinceLastPromotion False YearsWithCurrManager False

dtype: bool

```
df.isnull().sum()
In [79]:
   Out[79]: Age
                                           0
              Attrition
                                           0
              BusinessTravel
                                           0
              DailyRate
                                           0
              Department
                                           0
              DistanceFromHome
                                           0
                                           0
              Education
              EducationField
                                           0
              EmployeeCount
                                           0
              EmployeeNumber
                                           0
              EnvironmentSatisfaction
                                           0
              Gender
                                           0
             HourlyRate
                                           0
              JobInvolvement
                                           0
              JobLevel
                                           0
              JobRole
                                           0
              JobSatisfaction
                                           0
             MaritalStatus
                                           0
             MonthlyIncome
                                           0
             MonthlyRate
                                           0
              NumCompaniesWorked
                                           0
              Over18
                                           0
             OverTime
                                           0
              PercentSalaryHike
                                           0
              PerformanceRating
                                           0
              RelationshipSatisfaction
                                           0
              StandardHours
                                           0
              StockOptionLevel
                                           0
              TotalWorkingYears
                                           0
              TrainingTimesLastYear
                                           0
             WorkLifeBalance
                                           0
              YearsAtCompany
                                           0
                                           0
             YearsInCurrentRole
              YearsSinceLastPromotion
                                           0
              YearsWithCurrManager
                                           0
              dtype: int64
In [80]:

    import warnings

              # Ignore the specified warnings globally
             warnings.filterwarnings("ignore", category=FutureWarning)
```

warnings.filterwarnings("ignore", category=UserWarning)

0.3.4 Data Visualization


```
In [82]:
            categorical vars = df.select dtypes(include=['object']).columns.tolist()
            # Create bar plots for the selected categorical variables
            fig, axes = plt.subplots(nrows=3, ncols=3, figsize=(18, 12))
            fig.suptitle('Distribution of Categorical Variables', fontsize=16)
            for ax, var in zip(axes.flatten(), categorical vars):
             sns.countplot(data=df, x=var, ax=ax)
             ax.set_title(var)
             ax.set xlabel('')
             ax.set ylabel('Count')
             ax.set xticklabels(ax.get xticklabels(), rotation=45, ha='right')
            # Remove the empty subplots
            for ax in axes.flatten()[len(categorical vars):]:
             fig.delaxes(ax)
            plt.tight_layout()
            plt.subplots_adjust(top=0.95)
            plt.show()
```


In [84]: numerical vars to compare = df.select dtypes(include=['int64', 'float64']).cd # Create box plots for the selected numerical variables grouped by Attrition fig, axes = plt.subplots(nrows=9, ncols=3, figsize=(18, 30)) fig.suptitle('Distribution of Numerical Variables by Attrition', fontsize=16) for ax, var in zip(axes.flatten(), numerical_vars_to_compare): sns.boxplot(data=df, x='Attrition', y=var, ax=ax) ax.set title(var) ax.set_xlabel('Attrition') ax.set_ylabel('') # Remove the empty subplot fig.delaxes(axes.flatten()[-1]) plt.tight_layout() plt.subplots_adjust(top=0.9) plt.show()

0.3.5 Splitting Dependent and Independent variables

```
In [85]:

    | x = df.drop(columns=['Attrition'],axis=1)

             y = df['Attrition']
In [86]:
              x.shape,y.shape
   Out[86]: ((1470, 34), (1470,))
In [87]:
             y.head()
   Out[87]: 0
                   Yes
                    No
                   Yes
              3
                    No
                    No
              Name: Attrition, dtype: object
         0.3.6 Encoding
In [88]:
             from sklearn.preprocessing import LabelEncoder
              le=LabelEncoder()

    y=le.fit_transform(y)

In [89]:

  | x["BusinessTravel"]=le.fit transform(x["BusinessTravel"])
```

In [91]: ▶ x.head()

Out[91]:

		Age	BusinessTravel	DailyRate	Department	DistanceFromHome	Education	EducationField
•	0	41	2	1102	2	1	2	1
	1	49	1	279	1	8	1	1
	2	37	2	1373	1	2	2	4
	3	33	1	1392	1	3	4	1
	4	27	2	591	1	2	1	3

5 rows × 34 columns

0.3.7 Feature Scaling

Out[93]:

	Age	BusinessTravel	DailyRate	Department	DistanceFromHome	Education	EducationF
0	0.547619	1.0	0.715820	1.0	0.000000	0.25	
1	0.738095	0.5	0.126700	0.5	0.250000	0.00	
2	0.452381	1.0	0.909807	0.5	0.035714	0.25	
3	0.357143	0.5	0.923407	0.5	0.071429	0.75	
4	0.214286	1.0	0.350036	0.5	0.035714	0.00	

5 rows × 34 columns

0.3.8 Spliting into Training and Testing dataset

```
In [94]: ▶ from sklearn.model_selection import train_test_split
```

```
In [96]:
          ▶ print(x_train1.shape)
             print(x test1.shape)
             print(y_train1.shape)
             print(y_test1.shape)
             (1029, 34)
             (441, 34)
             (1029,)
             (441,)
In [97]:
          | x_train2, x_test2, y_train2, y_test2 = train_test_split(x_scaled, y,
             test_size = 0.3, random_state = 0)
In [98]:
          ▶ print(x_train2.shape)
             print(x test2.shape)
             print(y_train2.shape)
             print(y_test2.shape)
             (1029, 34)
             (441, 34)
             (1029,)
             (441,)
```

0.4 Model Building

```
1.Import the model building Libraries
2.Initializing the model
3.Training and testing the model
4.Evaluation of Model
5.Save the Model
```

0.4.1 Logistic Regression

```
In [102]:

➡ from sklearn.metrics import accuracy_score, confusion_matrix,classification_r

In [103]:
               accuracy_score(y_test2,predlr)
   Out[103]: 0.8866213151927438
In [104]:

    | confusion_matrix(y_test2,predlr)
   Out[104]: array([[368,
                              3],
                      [ 47,
                            23]], dtype=int64)
              pd.crosstab(y_test2,predlr)
In [105]:
   Out[105]:
                col_0
                           1
               row_0
                      368
                       47 23
                   1

▶ | print(classification_report(y_test2,predlr))
In [106]:
                                           recall f1-score
                             precision
                                                               support
                          0
                                   0.89
                                             0.99
                                                        0.94
                                                                   371
                          1
                                   0.88
                                             0.33
                                                       0.48
                                                                    70
                                                       0.89
                                                                   441
                   accuracy
                                  0.89
                  macro avg
                                             0.66
                                                       0.71
                                                                   441
               weighted avg
                                   0.89
                                             0.89
                                                       0.86
                                                                   441
In [107]:
            ▶ roc_auc_score(y_test2,predlr)
   Out[107]: 0.6602425876010781
In [108]:
              prob1 = lrmodel.predict proba(x test2)[:,1]
               fpr1, tpr1, thres1 = roc_curve( y_test2, prob1)
```


0.4.2 Decision Tree

```
In [114]:
   Out[114]: array([[315,
                           56],
                    [ 48,
                          22]], dtype=int64)
In [115]:
             pd.crosstab(y_test1,preddt)
   Out[115]:
               col_0
              row_0
                  0
                    315 56
                     48 22
In [116]:
             print(classification_report(y_test1,preddt))
                                                          support
                           precision
                                        recall f1-score
                        0
                                0.87
                                          0.85
                                                   0.86
                                                              371
                                0.28
                                                               70
                        1
                                          0.31
                                                   0.30
                                                   0.76
                                                              441
                 accuracy
                                                   0.58
                                                              441
                macro avg
                                0.57
                                          0.58
             weighted avg
                                0.77
                                          0.76
                                                   0.77
                                                              441
In [117]:

    | roc_auc_score(y_test1, preddt)
   Out[117]: 0.5816711590296496
In [118]:
           prob2 = dtmodel.predict_proba(x_test1)[:,1]
             fpr2, tpr2, thres2 = roc_curve( y_test1, prob2)
```

```
In [119]: 
plt.plot(fpr2, tpr2)
plt.xlabel("FPR")
plt.ylabel("TPR")
plt.title("ROC Curve")
plt.show()
```


0.4.3 Random Forest

```
In [123]:
               confusion_matrix(y_test1,predrf)
   Out[123]: array([[367,
                              4],
                      [ 57, 13]], dtype=int64)
              pd.crosstab(y_test1,predrf)
In [124]:
   Out[124]:
                col_0
               row 0
                   0 367
                      57 13
In [125]:
              print(classification_report(y_test1,predrf))
                                           recall f1-score
                             precision
                                                              support
                          0
                                  0.87
                                             0.99
                                                       0.92
                                                                   371
                                                                   70
                          1
                                  0.76
                                             0.19
                                                       0.30
                                                       0.86
                                                                   441
                   accuracy
                 macro avg
                                  0.82
                                             0.59
                                                       0.61
                                                                   441
              weighted avg
                                  0.85
                                             0.86
                                                       0.82
                                                                   441
```

0.4.4 Accuracy of All Three Models