DISTRIBUTED RESEARCH ON EMERGING APPLICATIONS & MACHINES

dream-lab.in | Indian Institute of Science, Bangalore

Presented By Abhilash Sharma

Overview

- Need for Graph Processing Systems
- Overview of Pregel
 - Bulk Synchronous Parallel
 - Pregel
 - Giraph Architecture

Need for Graph processing system

- Graphs are everywhere
 - Web and Social Graph, eg. twitter,facebook
 - Internet of Things
 - CyberSecurity
- Algorithms on Graphs
 - Traversals
 - Clustering
 - Centrality
- Scale of Graphs
 - Graphs are large
 - Clueweb12(978,408,098 V/42,574,107,469 E)
 - fb-2011(562,368,789 V/95,057,125,765 E)

Challenges

- Graphs don't fit on memory of a single machine
- Graph algorithms are computationally expensive

Overview of Pregel

- Vertex-centric Model for writing Graph algorithms
 - Scalability
 - Expressibility in writing algorithms
 - Fault-tolerance
- Uses Bulk Synchronous parallel abstraction for communication and synchronization
- Apache Giraph is an open-source implementation of pregel

Bulk Synchronous Parallel

- Computations consist of a sequence of iterations, called supersteps
 - Concurrent computation
 - Communication
 - Barrier synchronisation

Pregel Abstraction

- Algorithm written from a perspective of a vertex
 - Think like a vertex paradigm

Figure 1: Vertex State Machine

HPDC' 15

Vertex-centric Computation Model

- Think like a vertex
- vertex_scatter(vertex v)
 - send updates over outgoing edges of v
- vertex_gather(vertex v)
 - apply updates from inbound edges of v

- for all vertices v
 - vertex_scatter(v)
- for all vertices v
 - vertex_gather(v)

7/28/15

Giraph API

- void compute(Iterator<IntWritable> msgs)
 - getSuperstep()
 - getVertexValue()
 - edges = iterator() //list of edges
 - sendMsg(edge, value)
 - sendMsgToAllEdges(value)
 - VoteToHalt()
- Messages Passing
 - Message ordering not guaranteed
 - Can send messages to any node
 - Message is delivered exactly once

Max Vertex-value

Figure 2: Maximum Value Example. Dotted lines are messages. Shaded vertices have voted to halt.

Single Source shortest path

SSSP:Code

```
public void compute(Iterable<DoubleWritable> messages)
    double minDist = Double.MAX VALUE;
    for (DoubleWritable message : messages) {
      minDist = Math.min(minDist, message.get());
    if (minDist < getValue().get()) {</pre>
      setValue(new DoubleWritable(minDist));
      for (Edge<LongWritable, FloatWritable> edge :
qetEdges()) {
        double distance = minDist +
edge.getValue().get();
        sendMessage(edge.getTargetVertexId(), new
DoubleWritable(distance));
    voteToHalt();
```


Giraph Architecture

Architecture

Giraph Architecture

- Master/Coordinator
 - Assigns partitions to workers, Synchronization
- Zookeeper
 - Keeps track of the computation state
- Netty
 - Java library used for messaging
- Workers
 - Operates on set of vertices called partitions
 - Invokes active vertices, sends/receive and assign messages
- Message Inbox: Messages received
- Message Outbox: Messages to be sent
- HDFS: Distributed file system reading initial graph

Giraph job lifetime

References

- Pregel: a system for large-scale graph processing, SIGMOD 2010
- Apache Giraph: Large Scale Graph Processing on Hadoop, Hadoop Summit 2014
- Distributed Graph Processing, SE256
 http://cds.iisc.ac.in/wp-content/uploads/L12.Pregel.pdf