2025 Vill. Mat A3 – 1. gyakorlat (1-2 hét)

(Szeparábilis differenciálegyenlet, kezdeti érték probléma.)

Szeparábilis (szétválaszható változójú): $g(y) \cdot y' = f(x)$. A megoldás: $\int g(y) dy = \int f(x) dx \rightsquigarrow \Psi(y) = \Phi(x) + C$.

1. Oldja meg az alábbi differenciálegyenleteket!

(Azaz keressen olyan F(x,y) = C függvényegyenletet-sereget, amely ekvivalens a d.e.-tel!)

a)
$$y^4y' = \sin x$$
, b) $(2xy + 2x)y' = \ln x$, c) $x^2y' = 1 + y^2$

2. Oldja meg az alábbi kezdeti érték problémákat!

(Azaz keressen olyan F(x,y) = 0 függvényegyenletet, amely ekvivalnes a d.e.-tel azzal a kezdeti feltétellel, hogy adott x_0, y_0 -ra $F(x_0, y_0) = 0$)

a)
$$y' = x^4 \cos^2 y$$
 a1) $y(0) = \frac{\pi}{4}$, a2) $y(0) = \frac{\pi}{2}$,

b)
$$y' = (y^2 - 1)\sin x$$
 $b1$) $y(0) = 2$, $b2$) $y(0) = 1$

(Egzakt differenciálegyenlet)

P(x,y) + Q(x,y)y' = 0 (vagy archaikus jelöléssel: P(x,y)dx + Q(x,y)dy = 0) egzakt, ha van olyan F(x,y) = C egyenlet, amelyre az teljesül, hogy $\partial_x F = P$ és $\partial_y F = Q$. Ekkor F(x,y) = C megoldása az egyenletnek. (Az egzaktság szükséges és elégséges feltétele egy egyszeresen összefüggő tartományon, hogy ott $\partial_x Q \equiv \partial_y P$ teljesüljön, de az alábbiak mind egzaktak és ezért elég az előbbi parciális differenciál-egyenlet-rendszer alapján megkeresni a megoldásukat.)

3. Oldja meg az alábbi differenciálegyenleteket!

a)
$$(2xy + e^x)dx + \left(x^2 + \frac{1}{y}\right)dy = 0$$
, b) $(7x^6y^5 - \sin x)dx + \left(5x^7y^4 + \frac{1}{y^2 + 1}\right)dy = 0$

4. Oldja meg az alábbi kezdeti érték problémákat!

a)
$$3x^2 + 2xy^2 + 2x^2yy' = 0$$
, $y(1) = 1$

b)
$$x^3 + y^3y' = 0$$
 $b1$) $y(0) = 1$, $b2$) $y(0) = -1$

iMSc. Oldja meg az $y' = \sqrt[3]{y}$, y(0) = 0 kezdeti érték problémát! Hány megoldáa van?