

Dual Propagation

Accelerating Contrastive Hebbian Learning with Dyadic Neurons

Rasmus Høier, D. Staudt, Christopher Zach

Chalmers University of Technology

Email: hier@chalmers.se

Code repo: github.com/rasmuskh/dual-propagation Slideshow: github.com/rasmuskh/dualprop-slideshow

Motivation

Contrastive Hebbian learning (CHL, Xie and Seung (2003)) and equilibrium propagation (EP, Scellier and Bengio (2017))

- Biological plausibility
- Neuromorphic computing

1

Motivation

Contrastive Hebbian learning (CHL, Xie and Seung (2003)) and equilibrium propagation (EP, Scellier and Bengio (2017))

- · Biological plausibility
- · Neuromorphic computing

However, certain issues limit their usability.

- 1. First order gradient estimate
- 2. Extremely slow inference
- 3. Two globally synchronized inference phases

1

A dyadic objective

Select $\alpha \in [0,1]$

$$\begin{split} \mathcal{L}_{\alpha}(\theta) &:= \min_{z^{+}} \max_{z^{-}} \alpha \ell(z_{L}^{+}) + (1 - \alpha) \ell(z_{L}^{-}) \\ &+ \sum_{k=1}^{L} \frac{1}{\beta_{k}} \left(G_{k}(z_{k}^{+}) - G_{k}(z_{k}^{-}) + (z_{k}^{-} - z_{k}^{+})^{\top} W_{k-1}(\alpha z_{k-1}^{+} + (1 - \alpha) z_{k-1}^{-}) \right) \end{split}$$

Linear units: $G_k = \frac{1}{2} ||\cdot||^2$

ReLU units: $G_k = \frac{1}{2} ||\cdot||^2 + \imath_{\geq 0}(\cdot)$

Softmax layer: $G_k = -H(\cdot)$

Choice of α

- $\alpha = 1$ and $\alpha = 0$:
 - LPOM-like (Li, Fang, and Lin 2019; Zach 2021) pure minimization objectives
 - · In general slow iterative inference

Choice of α

- $\alpha = 1$ and $\alpha = 0$:
 - LPOM-like (Li, Fang, and Lin 2019; Zach 2021) pure minimization objectives
 - · In general slow iterative inference
- $\alpha \in (0,1) \setminus \frac{1}{2}$
 - · Fast inference
 - · Lacks convergence guarantee

Choice of a

- $\alpha = 1$ and $\alpha = 0$:
 - LPOM-like (Li, Fang, and Lin 2019; Zach 2021) pure minimization objectives
 - · In general slow iterative inference
- $\alpha \in (0,1) \setminus \frac{1}{2}$
 - · Fast inference
 - · Lacks convergence guarantee
- $\alpha = 1/2$:
 - · Fast inference
 - · Convergence guarantee (details in paper)

Choice of α

- $\alpha = 1$ and $\alpha = 0$:
 - LPOM-like (Li, Fang, and Lin 2019; Zach 2021) pure minimization objectives
 - · In general slow iterative inference
- $\alpha \in (0,1) \setminus \frac{1}{2}$
 - Fast inference
 - · Lacks convergence guarantee
- $\alpha = 1/2$:
 - Fast inference
 - · Convergence guarantee (details in paper)
- Assume $\alpha = 1/2$ from now on.

Connection to CHL and EP

Defining layerwise costs E_k as in CHL

$$E_k(z_k, z_{k-1}) := G_k(z_k) - z_k^T W_{k-1} z_{k-1}$$

and short-hand notation

$$\bar{z}_k := \frac{1}{2}(z_k^+ + z_k^-)$$

allows rewriting of $\mathcal{L}_{\frac{1}{2}}$:

$$\mathcal{L}_{\frac{1}{2}}(\theta) = \min_{z^{+}} \max_{z^{-}} \frac{1}{2}\ell(z_{L}^{+}) + \frac{1}{2}\ell(z_{L}^{-}) + \sum_{k=1}^{L} \frac{1}{\beta_{k}} \left(E(z_{k}^{+}, \bar{z}_{k-1}) - E(z_{k}^{-}, \bar{z}_{k-1}) \right)$$

Similar to CHL and EP objectives but z_k^+ and z_k^- are inferred simultaneously and "tethered" via \bar{z}_{k-1} .

4

Inference

- · Neurons within layers are not coupled.
- Fully optimize $\mathcal{L}_{\frac{1}{2}}$ with respect to z_k^+ and z_k^- in a single block-coordinate descent step!

$$z_k^{\pm} \leftarrow f_k \left(\underbrace{\frac{1}{2} W_{k-1} (z_{k-1}^+ + z_{k-1}^-)}_{=W_{k-1} \bar{z}_{k-1}} \pm \frac{\beta_k}{2\beta_{k+1}} W_k^{\top} (z_{k+1}^+ - z_{k+1}^-) \right)$$

Same runtime as BP and >100X faster than EP and CHL.

Learning

Fully local contrastive Hebbian gradient

$$\begin{split} \frac{\partial}{\partial W_{k-1}} \mathcal{L}_{\frac{1}{2}} &= \frac{1}{\beta_k} \Big(\frac{\partial E(z_k^+, \bar{z}_{k-1})}{\partial W_{k-1}} - \frac{\partial E(z_k^-, \bar{z}_{k-1})}{\partial W_{k-1}} \Big) \\ &= \frac{1}{\beta_k} \left(z_k^- - z_k^+ \right) \bar{z}_{k-1}^\intercal. \end{split}$$

- · Second order gradient estimate
- Discounting not needed ($\beta_k = 1 \ \forall \ k \ \text{employed in experiments}$)
- · Excellent gradient alignment between BP and DP

Experiments: MLP¹ (MNIST)

- DP: runtime-efficient (forwards + backwards)
- MS-DP: Multiple steps of inference and weight updates per datapoint
- L-DP: "Lazily" let old states persist providing potentially harmful feedback.
- · P-DP: parallel neuron updates
- · R-DP-100: Random sequence of 100 layer-wise updates

Method	BP	DP	MS-DP	L-DP	P-DP	R-DP-100
Test	98.45	98.43	98.40	98.42	98.47	98.48
acc (%)	± 0.04	± 0.03	± 0.02	± 0.07	± 0.04	± 0.11

¹MLP architecture: 784-1000-1000-1000-10

Experiments: VGG16

DP matches back-propagation both in terms of runtime and accuracy.

Method		BP	DP	KP-DP [†]	EP*	DTP*
CIFAR10	Top-1	92.26 ± 0.23	92.30 ± 0.11	91.84 ± 0.11	88.6 ± 0.2	89.38 ± 0.20
CIFAR100	Top-1	69.63 ± 0.24	69.57 ± 0.51	70.40 ± 0.25	61.6 ± 0.1	_
	Top-5	88.13 ± 0.22	88.36 ± 0.13	88.57 ± 0.15	86.0 ± 0.1	_
ImageNet32x32	Top-1	41.28 ± 0.19	41.48 ± 0.19	_	36.5 ± 0.3	36.81
	Top-5	64.89 ± 0.11	64.90 ± 0.13	_	60.8 ± 0.4	60.54

- (†) Dual propagation with Kolen-Pollack learning of feedback weights.
- (*) High computational costs limit EP (Laborieux and Zenke 2022) and DTP (Ernoult et al. 2022) to 6-7 layer VGG-like networks.

Conclusion

- DP matches BP both in terms of accuracy and runtime.
 - · However, unlike BP neurons can operate asynchronously
 - · Parallel and random update schemes viable
- Unlike previous CHL methods DP computes errors across compartments rather than across time.
 - · Single phase CHL
 - Layerwise closed-form inference
 - · Second order gradient estimate

Future work: Continuous inference and learning in a streaming setting.

Code repo: github.com/rasmuskh/dual-propagation Slideshow: github.com/rasmuskh/dualprop-slideshow Extra slides

Dvadic neurons

$$z_{k}^{\pm} \leftarrow f_{k} \left(\underbrace{\frac{1}{2} W_{k-1} (z_{k-1}^{+} + z_{k-1}^{-})}_{\text{FF in}} \pm \underbrace{\frac{\beta_{k}}{2\beta_{k+1}} W_{k}^{\top} (z_{k+1}^{+} - z_{k+1}^{-})}_{\text{FB in}} \right)$$

$$\text{FF out} = \frac{1}{2} (z_{k,i}^{+} + z_{k,i}^{-}) = \bar{z}_{k,i}$$

$$\text{FB out} = \frac{1}{2} (z_{k,i}^{+} - z_{k,i}^{-})$$

Comparisson of contrastive objectives

Dual propagation

$$\mathcal{L}_{\frac{1}{2}}(\theta) = \min_{z^{+}} \max_{z^{-}} \frac{1}{2}\ell(z_{L}^{+}) + \frac{1}{2}\ell(z_{L}^{-}) + \sum_{k=1}^{L} \frac{1}{\beta_{k}} \left(E_{k}(z_{k}^{+}, \bar{z}_{k-1}) - E_{k}(z_{k}^{-}, \bar{z}_{k-1}) \right)$$

Contrastive Hebbian learning (Xie and Seung 2003)

$$\mathcal{L}_{CHL}(\theta) = \min_{\hat{z}} \max_{\hat{z}} \sum_{k=1}^{L} \gamma^{k-L} (E_k(\hat{z}_k, \hat{z}_{k-1}) - E_k(\check{z}_k, \check{z}_{k-1}))$$

Equilibrium propagation (Scellier and Bengio 2017)

$$\mathcal{L}_{EP}(\theta) = \min_{z^{\beta}} \max_{z^{0}} \beta \ell(z_{L}^{+}) + \sum_{k=1}^{L} \left(E_{k}(z_{k}^{\beta}, z_{k-1}^{\beta}) - E_{k}(z_{k}^{0}, z_{k-1}^{0}) \right)$$

Back-of-the-envelope runtime comparisson

- CIFAR10 runtime per epoch in seconds for different implementations.
- Estimates based on numbers from supplemental material of (Laborieux and Zenke 2022) and (Ernoult et al. 2022).

Method	DP	H-EP	DTP
Seconds/epoch	3.5	1700	240
Layers	16	7	6

• Differences in hardware, software frameworks, model size and batch size make this comparison indicative only.

References

- Ernoult, Maxence M et al. (2022). "Towards scaling difference target propagation by learning backprop targets". In: *International Conference on Machine Learning*. PMLR, pp. 5968–5987.
- Laborieux, Axel and Friedemann Zenke (2022). "Holomorphic Equilibrium Propagation Computes Exact Gradients Through Finite Size Oscillations". In: arXiv preprint arXiv:2209.00530.
- Li, Jia, Cong Fang, and Zhouchen Lin (2019). "Lifted proximal operator machines". In: Proceedings of the AAAI Conference on Artificial Intelligence. Vol. 33, pp. 4181–4188.
- Scellier, Benjamin and Yoshua Bengio (2017). "Equilibrium propagation: Bridging the gap between energy-based models and backpropagation". In: Frontiers in computational neuroscience 11, p. 24.
- Xie, Xiaohui and H Sebastian Seung (2003). "Equivalence of backpropagation and contrastive Hebbian learning in a layered network". In: *Neural computation* 15.2, pp. 441–454.
- Zach, Christopher (2021). "Bilevel Programs Meet Deep Learning: A Unifying View on Inference Learning Methods". In: arXiv preprint arXiv:2105.07231.