CATHOLIC UNIV OF AMERICA WASHINGTON DC DEPT OF PHYSICS F/6 20/8 ELECTRONIC STOPPINS POWER CALCULATIONS FOR ALL HEAVY IONS AT LO--ETC(U) JAN 80 J 5 GRENNAN D J LAND WASHINGTON AND MODO14-78-C-0515 AD-A079 643 UNCLASSIFIED TR-2 NL 0F | ©∆ 079643 END

LEVEL

MA 0 79643

DEPARTMENT OF PHYSICS

The Catholic University of America Washington, D.C. 20064

DISTRIBUTION STATEMENT A

Approved for public release; Distribution Unlimited 80 1 18 052

LEVEL

ELECTRONIC STOPPING POWER CALCULATIONS FOR ALL HEAVY IONS AT LOW VELOCITY IN ALL ELEMENTS

J. G. Brennan, The Catholic University of America, Washington, D.C.

md

D. J. Land, Naval Surface Weapons Center, White Oak, Maryland

Performed under contract with Office of Naval Research N00014-78-C-0515

Acces	sion For	
NTIS DDC 1	GRA&I	X
	ounced	H
Justi	fication	·
Ву		
Distr	ibution/	, .~
Avai	lability	Codes
Dist.	Avail an	nd/or
H		ļ

DISTRIBUTION STATEMENT A

Approved for public release; Distribution Unlimited

, T		
	REPORT DOCUMENTATION PAGE	READ INSTRUCTIONS BEFORE COMPLETING FORM
	T. REPORT NUMBER 2. GOVT ACCESSION A	O. 3. RECIPIENT'S CATALOG NUMBER
•	#2 ~	
	d. TITLE (and Sublife)	S.OYPE OF REPORT & PERIOD COVERED
(6	ELECTRONIC STOPPING POWER CALCULATIONS FOR ALL	
	HEAVY IONS AT LOW VELOCITY IN ALL ELEMENTS.	Technical Report In. 1980
,		- PERPORMING ONG. NEPOWT NUMBER
	7. AUTHOR(e)	8. CONTRACT OR GRANT NUMBER(s)
1	Vic bosses and Division	NG0014-78-C-0515 (C)
4JO	J.G. Brennan D.J./Land	1444014-10-0-3010)
		1
	9. PERFORMING ORGANIZATION NAME AND ADDRESS	10. PROGRAM ELEMENT, PROJECT, TASK AREA & WORK UNIT NUMBERS
ļ	The Catholic University of America	
i	Washington, D.C. 20064	NR 020-038/5/11/78 (421)
	11. CONTROLLING OFFICE NAME AND ADDRESS	12. REPORT DATE
	Office of Naval Research, Director, Physics Prog	
	Physical Sciences Division	13. NUMBER OF PAGES
	800 N. Quincy St., Arlington, Va. 22217 14. MONITORING AGENCY NAME & ADDRESS/II different from Controlling Office.	54 15. SECURITY CLASS. (of this report)
	Office of Naval Research, Director, Physics Prog	r[
	Physical Sciences Division	UNCLASSIFIED
	800 N. Quincy St., Arlington, Va. 2217	154. DECLASSIFICATION/DOWNGRADING SCHEDULE
	16. DISTRIBUTION STATEMENT (of this Report)	<u> </u>
	Approved for public release; distribution unlimi	ted
	The control of the con-	(10)=1
	(N) TR-2 /	
		J. J. (1)
	THE THE PARTY OF T	60-
	37 (1 1 2)	J. 650-
	17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, 11 different	reas Report)
	17. DISTRIBUTION STATEMENT (of the electract entered in Block 20, If different in	rem Report)
	17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, 11 different in NA	reas Report)
	NA	reas Report)
		real Report)
	NA 18. SUPPLEMENTARY HOTES	reas Report)
	NA	rean Report)
	NA 19. SUPPLEMENTARY NOTES NA	
	NA 18. SUPPLEMENTARY HOTES	
•	NA 10. SUPPLEMENTARY NOTES NA 13. KEY WORDS (Continuo en reverse side il necessary and identity by block number Stoppelag Doubles Top Taplantation	n)
•	NA 10. SUPPLEMENTARY NOTES NA 13. KEY WORDS (Continuo en reverse side il necessary and identity by block number Stoppelag Doubles Top Taplantation	n)
	NA 10. SUPPLEMENTARY NOTES NA 13. KEY WORDS (Continuo en reverse side il necessary and identity by block number Stoppelag Doubles Top Taplantation	n)
	NA 18. SUPPLEMENTARY NOTES NA 19. KEY WORDS (Continue on reverse elde it necessary and identity by block number Stopping Powers, Ion Implantation C. to THE 2 nd	POWER - h - bar
	NA 19. SUPPLEMENTARY NOTES NA 19. KEY WORDS (Continue on reverse side it necessary and identity by black numbers of the state of the	power - h - bar
	NA 18. SUPPLEMENTARY NOTES NA 19. KEY WORDS (Continue on reverse side it necessary and identity by black numbers) Stopping Powers, Ion Implantation ABSTRACT (Continue on reverse side it necessary and identity by black numbers) 20. ABSTRACT (Continue on reverse side it necessary and identity by black numbers) Values of the electronic stopping power for proj	Power h-bar power
	NA 19. KEY WORDS (Continue on reverse side it necessary and identity by block numbers) Stopping Powers, Ion Implantation 2. THE 2 Mg 2. ABSTRACT (Continue on reverse side it necessary and identity by Mack minute Values of the electronic stopping power for projin elemental targets from bydrogen through the t Bohr velocity. (2) = 6 Mi) are presented in sets	power h-bar pectiles from carbon to uranium ransuranic elements at the of tables. The stopping
	NA 19. KEY WORDS (Continue on reverse side it necessary and identity by block numbers) Stopping Powers, Ion Implantation 26. ABSTRACT (Continue on reverse side it necessary and identity by Mack miniber Values of the electronic stopping power for projin elemental targets from bydrogen through the table Bohr velocity, (0) = (1) are presented in sets powers were calculated within a modified Firsov	power h-bar pectiles from carbon to uranium ransuranic elements at the of tables. The stopping model. An algorithm for
	NA 19. KEY WORDS (Continue on reverse side it necessary and identity by block numbers) Stopping Powers, Ion Implantation 2. THE 2 ^{ng} 20. ABSTRACT (Continue on reverse side it necessary and identity by Mack numbers) Values of the electronic stopping power for projin elemental targets from by drogen through the the Bohr velocity, (a) = e/h) are presented in sets powers were calculated within a modified Firsov determing the stopping power from v = 0 to v = 3	ectiles from carbon to uranium ransuranic elements at the of tables. The stopping model. An algorithm for to $4\sqrt{n}$ is discussed. The
	NA 19. KEY WORDS (Continue on reverse side it necessary and identity by block numbers) Stopping Powers, Ion Implantation 2. THE 2 ^{ng} 20. ABSTRACT (Continue on reverse side it necessary and identity by block numbers) Values of the electronic stopping power for projin elemental targets from hydrogen through the the Bohr velocity, (0) = e/h) are presented in sets powers were calculated within a modified Firsov determing the stopping power from v = 0 to v = 3 stopping powers, as obtained from this algorithm.	ectiles from carbon to uranium ransuranic elements at the of tables. The stopping model. An algorithm for to $4v_0$ is discussed. The are compared with an
	NA 19. KEY WORDS (Continue on reverse elde Il necessary and identify by block numbers) Stopping Powers, Ion Implantation 2. THE 2.29 20. ABSTRACT (Continue on reverse elde Il necessary and identify by block numbers) Values of the electronic stopping power for projin elemental targets from bydrogen through the table bohr velocity, (0) = (1) are presented in sets powers were calculated within a modified Firsov determing the stopping power from v = 0 to v = 3 stopping powers, as obtained from this algorithm extensive collection of experimental data. The	ectiles from carbon to uranium ransuranic elements at the of tables. The stopping model. An algorithm for to $4v_0$ is discussed. The are compared with an
	NA 19. KEY WORDS (Continue on reverse side it necessary and identity by block numbers) Stopping Powers, Ion Implantation 2. THE 2 Mg 20. ABSTRACT (Continue on reverse side it necessary and identity by block numbers) Values of the electronic stopping power for projin elemental targets from bydrogen through the targets from bydrogen through the targets were calculated within a modified Firsov determing the stopping power from v = 0 to v = 3 stopping powers, as obtained from this algorithm extensive collection of experimental data. The series of graphs.	ectiles from carbon to uranium ransuranic elements at the of tables. The stopping model. An algorithm for to $4v_0$ is discussed. The are compared with an
	NA 19. KEY WORDS (Continue on reverse side it necessary and identity by block numbers) Stopping Powers, Ion Implantation 20. ABSTRACT (Continue on reverse side it necessary and identity by black numbers) Values of the electronic stopping power for projin elemental targets from hydrogen through the table bohr velocity, (0) = (1) are presented in sets powers were calculated within a modified Firsov determing the stopping power from v = 0 to v = 3 stopping powers, as obtained from this algorithm extensive collection of experimental data. The series of graphs.	ectiles from carbon to uranium ransuranic elements at the of tables. The stopping model. An algorithm for to $4v_0$ is discussed. The are compared with an
	NA 19. KEY WORDS (Continue on reverse side it necessary and identity by block numbers) Stopping Powers, Ion Implantation 20. ABSTRACT (Continue on reverse side it necessary and identity by block numbers) Values of the electronic stopping power for projin elemental targets from bydrogen through the table bohr velocity, $V_0 = 0$ are presented in sets powers were calculated within a modified Firsov determing the stopping power from $v = 0$ to $v = 3$ stopping powers, as obtained from this algorithm extensive collection of experimental data. The series of graphs. DD 1 PORM 1473 EDITION OF 1 NOV 65 IS OBSOLETE S/N DIOP-LF-014-6601	ectiles from carbon to uranium ransuranic elements at the of tables. The stopping model. An algorithm for to $4v_0$ is discussed. The are compared with an
	NA 19. KEY WORDS (Continue on reverse side it necessary and identity by block numbers) Stopping Powers, Ion Implantation 20. ABSTRACT (Continue on reverse side it necessary and identity by block numbers) Values of the electronic stopping power for projin elemental targets from bydrogen through the table bohr velocity, $V_0 = 0$ are presented in sets powers were calculated within a modified Firsov determing the stopping power from $v = 0$ to $v = 3$ stopping powers, as obtained from this algorithm extensive collection of experimental data. The series of graphs. DD 1 PORM 1473 EDITION OF 1 NOV 65 IS OBSOLETE S/N DIOP-LF-014-6601	ectiles from carbon to uranium ransuranic elements at the of tables. The stopping model. An algorithm for to 400 is discussed. The are compared with an results are presented in a

1

とうしていているとのでは、日本ので

TABLE OF CONTENTS

	•	Page
1.	ABSTRACT	1
2.	INTRODUCTION	2
з.	ANALYSIS	4
4.	RESULTS	11
5.	GENERAL DISCUSSION AND CONCLUSIONS	16
6.	TABLE I	19
7.	TABLE II	20
8.	TABLE III	21
9.	APPENDIX I	35
lo.	APPENDIX II	37
u .	REFERENCES .	53

THE PARTY OF THE P

ABSTRACT

Values of the electronic stopping power for projectiles from carbon to uranium in elemental targets from hydrogen through the transuranic elements at the Bohr velocity, $v_0 = e^2/\hbar$, are presented in sets of tables. The stopping powers were calculated within a modified Firsov model. An algorithm for determining the stopping power from v = 0 to v = 3 to $4v_0$ is discussed. The stopping powers, as obtained from this algorithm, are compared with an extensive collection of experimental data. The results are presented in a series of graphs.

INTRODUCTION

This report presents the results of some theoretical investigations to determine methods of calculating the electronic stopping power of low-velocity, heavy ions in all elemental target materials. Our main result has been to use the Firsov model, modified to employ Hartree-Fock wave functions which reflect the atomic structure of the free atom, in determining S for all projectiles from carbon through uranium in all elemental targets from hydrogen through the transuranic elements. Tables of these values for S_e at $v=v_0$ ($v_0=e^2/\hbar=2.7188 \times 10^8$ cm/sec.) are presented in this report. Part of these results have been previously published2 but are included here for completeness. In the course of our investigations we have tried to apply this basic model, with additional modifications, such as varying the charge states of the projectile, to determine S for all projectile velocities to about v=3 to 4v. But no consistent method which gave results that agreed with experimental data could be found. We have therefore proposed to use the scaling law for stopping powers at higher velocities, v=2 to 3v, the modified Firsov model with S, velocity proportional to apply for v=v, and a straight line extrapolation between. Comparisons have been made of the results of this algorithm with as many data sets, which are in themselves extensive, that were known to us. The results of these comparisons are presented in a series of graphs. Comparisons with the Lindhard-Scharff model for S are also shown. This collection of data is of considerable interest in itself. Our algorithm shows generally good correlation with the

data. The conclusion contains a discussion of some of the theoretical problems associated with this method.

The need to know accurate stopping powers arises in many contexts. Ion implantation has become an important technique for altering the surface of materials in connection with device fabrication and in improving their resistance to wear and corrosion. Another example consists of the study of the radiation damage produced by the interaction of particles with the containment walls of nuclear reactors. A third example concerns the increasing use of ions heavier than helium in surface layer analysis. The present work is intended to provide more accurate values for electronic stopping powers for all projectile and target atoms than is presently available from the low-velocity statistical theories.

ANALYSIS

The electronic stopping power S_e for projectiles with velocity $v \le z_1^{2/3}v_o$ is frequently obtained from the well-known formula of Lindhard and Scharff,

$$S_e = \xi 8\pi e^2 a_o (Z_1 Z_2 / Z) (v / v_o)$$
, (1)

where Z_1 and Z_2 are the atomic numbers of the projectile and target, respectively, $\xi = Z_1^{-1/6}$, $Z = \left(Z_1^{-2/3} + Z_2^{-2/3}\right)^{3/2}$, and a_0 is the Bohr radius $(a_0 = h^2/me^2)$. There is a second result for S_e which is also widely used, first written by Teplova⁴ et. al. and based on a model of Firsov for the average excitation energy as a function of impact parameter in a collision involving heavy ions:

$$S_e = 5.15 \times 10^{-15} (Z_1 + Z_2) (v/v_0)$$
 (2)

This form is restricted to projectile and target combinations whose atomic numbers do not differ by more than a factor of four. Both of these models use the Thomas-Fermi free atom densities. While the Lindhard-Scharff result in particular produces reasonable values for S_e throughout the periodic table, neither form explains certain features of the experimental data. The data show that S_e is a periodic function of either Z₁ or Z₂ for constant projectile velocity, in contrast to the predictions of Eqs.(1) and (2) which indicate a smooth behaviour. The data also shows that, for many projectile-target systems, S_e is not a linear function of velocity in the low-

velocity region, as is predicted by Eqs. (1) and (2). Improvements in the models are required to obtain values for $S_{\rm e}$ of greater accuracy.

The present tables relate mainly to the dependence of S_e on Z₁ or Z_2 . The observed periodic structure of S_e on Z_1 or Z_2 has been attributed to a corresponding periodic structure in the atomic densities. The use of wave functions which incorporate the effects of atomic structure, such as Hartree-Fock wave functions was first suggested by Chesire and Poate and by Bhalla, Bradford, and Reese in calculations of Se within the context of a modified Firsov model 5,6 Good qualitative results pertaining to the \mathbf{Z}_1 dependence were achieved in calculations for differing projectiles in carbon, particularly as regards the positions of the maxima and minima of the stopping-power curves. These data were taken at Aarhus. **second** application relevant to the Z_2 dependence, the modified Firsov model was successfully used to correlate values of $S_{\underline{e}}$ inferred from measurements of range distributions made at the Naval Surface Weapons Center for 800 keV nitrogen ions in a wide variety of target materials $^{6-8}$. Thus the agreement for both a \mathbf{Z}_1 and \mathbf{Z}_2 dependence is quite satisfactory.

With this success it was of interest to apply the modified Firsov model generally throughout the periodic table to obtain improved values of S_e over those predicted by Eqs. (1) or (2). In the present authors view this model has distinct advantages in that the structure of the projectile ion as well as that of the target atom can be taken into account, including the possibility of considering different charge states for the projectile 9 . However

chis model has the disadvantage that its physical basis is somewhat obscure and consequently it is difficult to establish corrections on a fundamental level. Nevertheless, the Firsov model with the Thomas-Fermi atomic densities leads to values for S_e which are close to those predicted by the Lindhard-Scharff result of Eq. (1). If the Firsov model is evaluated with the Firsov plane placed at the potential minimum, reasonable agreement between these models is obtained without a restriction on the projectile and target numbers. Because of this consistency and because of the successful correlation with experimental data, we conclude that the modified Firsov model provides values for S_e which are more accurate than any which are currently available.

In the modified Firsov method the stopping is calculated from the expression,

$$S_{e} = 2/3 \pi^{2} m_{e} v \sum_{i} \sum_{n} \alpha_{i}^{-3} \omega_{i}^{n1} v_{i}^{n1} \times \prod_{i} \sum_{n} \alpha_{i}^{n} v_{i}^{n1} \times \prod_{n} \sum_{n} \alpha_{i}^{n} v_{i}^{n} \times \prod_{n} v_{i}^{n} \times$$

in which the summations are over projectile and target atoms(i) and over the electronic orbitals (nl) of each; $\omega_{\bf i}^{nl}$ is the electron occupation number of the ith orbital, $v_{\bf i}^{nl}$ the electronic velocity, $\rho_{\bf i}^{nl}$ the electronic density, $\alpha_{\bf i}$ the fractional position of the Firsov plane which divides projectile and target atoms, and $b_{\bf o}$ is the minimum impact parameter. The position of the Firsov plane is located at the potential minimum for each projectile-target system when the two particles are at the separation $b_{\bf o}$. The electronic

velocities and densities were obtained for the ground state of the singly ionized atomic projectile in the range $Z \le 54$, from the wave functions given in the tables of Clementi and Roetti¹⁰.

For atoms whose atomic number is greater than 54, relativistic corrections are known to be significant in some applications. We obtained the relativistic wave functions from J. Mann of Los Alamos Scientific Laboratory (LASL) and calculated stopping powers using these functions for target atomic densities, $Z_2 \ge 54$. A comparison of these results with those obtained by using non-relativistic Hermann-Skillman wave functions 11 showed that, although contributions from individual electronic shells might differ by as much as 20%, the stopping power of the target differed by less than 5%. For projectile ions, $Z_1 \ge 55$, we used the Hermann-Skillman wave functions. Stopping power values for such heavy projectiles at low velocity are of less practical importance and would not justify the use of relativistic ionic wave functions which would have required much more computer time. In addition, the uncertainty in the exact nature of the charge-state distributions of the projectile introduces greater uncertainty in the stopping power values than does the absence of relativistic corrections. In summary our tables have been calculated using relativistic atomic wave functions for $Z_2 \ge 54$, but using nonrelativistic ionic wave functions for the entire range of Z_1 .

In order to correlate the model predictions with the data, it is necessary to consider b_o, the minimum impact parameter, as a parameter of the theory. The value of this parameter was chosen to give the best correlation for the nitrogen data and was found to be 2.11 a.u. This is the value used in the calculations reported here.

While generally good agreement of the predicted values of S with experimental values is obtained, systematic discrepancies are noted for light projectiles. For lithium projectiles we require the larger value of 2.7 a.u. to correlate the data, and for incident protons we need a much larger value just to get rough numerical agreement. The functional dependence on \mathbf{Z}_2 in this case is poor. We conclude that this model is not useful for light projectiles and hence we limit the results to projectiles having $Z_1 \ge 6$. For target atoms we do not find a similar restriction. However, recent work at NSWC using nitrogen projectiles on tantalum, gold and lead targets do not seem to be in agreement with the predictions of the theory, especially with the predicted minimum of S_{ρ} for the gold target. It may be found that the theory breaks down for very heavy target atoms but no conclusions can be drawn at this time with so few data points. While there is no reason that b should be constant, as we have assumed here, the correlation with the data, apart from the exceptions noted, suggests that this is a reasonable and useful working hypothesis.

An important consideration concerns the region of projectile velocity and energy for which these results are applicable. While there is experimental evidence that S_e is not velocity-proportional even at low velocity ($v \le v_o$), the data can be correlated reasonably well in this region by assuming a linear dependence on velocity. But for $v > v_o$, sharp breaks from linearity frequently are observed. This is discussed in Ref. (9) in which variable projectile charge states were considered within the modified Firsov model in an attempt to find a model for S_e applicable to a wider velocity region. We concluded that the modified Firsov model in general can produce

reasonable values for S_e only for $v \le v_o$ with the assumption of velocity-proportional stopping.

However, values of S_e at v=v_o which do reflect the observed periodic structure at lower velocities can be used to construct S_e for higher velocities. At sufficiently high velocities the electronic stopping for heavy ions can be related to the stopping for protons by means of the scaling law¹²,

$$S_{e,Z}(v) = (\gamma Z_1/\gamma_p)^2 S_{e,p}(v) , \qquad (4)$$

where $S_{e,p}(v)$ and $S_{e,Z}(v)$ are the stopping powers of incident proton and heavy ion (atomic number Z) projectiles, respectively, at the same velocity and where γ_p and γ are the effective fractional charges of the proton and heavy ion, respectively (both functions of the velocity). This law can be used for velocities higher than some value, say v_c . For velocities between v_o and v_c , the stopping can be obtained by connecting with a straight line the stopping at $v=v_o$ with the stopping given by the scaling law at $v=v_c$. Below $v=v_o$ the stopping is found from the value at v_o assuming velocity proportionality. This simple algorithm generally proves quite useful.

The physical explanation of the scaling law may be viewed as follows. As the velocity of the projectile is increased it loses more electrons. At some velocity v_c above v_o , the projectile has lost all of those electrons which give to S_e a periodic structure at low velocities. Above v_c the ion behaves like a structureless particle with charge (Z_1-n) , where n equals the number of electrons which have been removed. Thus the stopping power may satisfy the

scaling law above v_c . However, there is evidence that the critical velocity, v_c , is Z_1 dependent. We find for the most systems that this algorithm produces reasonable agreement with the experimental data under the assumption that $v_c \approx 2v_o$. However, the data obtained by using uranium projectiles is fitted better by assuming that $v_c \approx 3v_o$.

An explanation of the Z_1 dependence of v_c can be offered. Suppose that the number of outer electrons, n, which are responsible for structure effects and which are removed if the projectile velocity exceeds v, can be quantified as those which make significant contributions to S at v-vo, within the framework of the modified Firsov calculation. To be more specific, we may define, arbitrarily, that these electrons are characterized by the fact that they provide at least 1% of the calculated value of S_e at $v=v_o$. Using this criterion we have determined the number of such outer electrons as shown in Table I. The abrupt changes in n at certain values of Z₁ should not be taken too precisely since a slight change in the arbitrary 1% criterion would shift these transition points. However, if one considers these values as approximately correct, one sees that n increases with Z_1 , but does so in an oscillatory manner. Among the heavy projectiles, uranium is seen to have about twice as large an n value as the other heavier ions for which we have data(halogens). which explains qualitatively why one must choose v to be larger to accomodate the uranium projectile data. Unfortunately there is a scarity of experimental data for $Z_1 \ge 30$, so the model must remain unproven until more data is available.

RESULTS

The values for S_e which have been calculated here are presented in a large set of tables (formally Table III). The electronic stopping power is given at the velocity $v=v_o$. Values are listed in two groups, the first for target atoms with $1 \le Z_2 \le 54$, and the second for targets with $55 \le Z_2 \le 102$. In appendix I we give an example of how to use the algorithm to construct a stopping power curve valid at higher velocities.

In order to compare the results of the theoretical algorithm with experimental data, we present in appendix II a series of graphs showing the data along with theoretical curves representing the modified Firsov prediction joined to the scaling law at higher velocity. The Lindhard-Scharff values of Eq. (1) are also given. These graphs are arranged in a Z_1 versus Z_2 matrix with generally nine to a page and, in total, contain nearly all of the results of systematic studies of low-velocity electronic stopping known to us.

While there is considerable stopping data available, the vast majority relate to a relatively small number of projectiles on a small number of targets. As discussed above, we are not considering the vast amount of data for the lightest projectiles. Extensive data sets exist for projectiles with $Z_1 \leq 20$ in a standard set of elemental targets, which include carbon, aluminum, nickel (and sometimes copper), silver and gold 13. Extensive data also exists for light projectiles $(Z_1 \leq 13)$ in the noble gases 14 (excluding radon) and in nitrogen and air 15. The remaining extensive data sets include the halogen projectiles, chlorine 16, bromine and iodine, and uranium projectiles 17 in the standard solid targets. There is, of course, numerous data

for isolated Z_1 in Z_2 . Data of the Chalk River group (Macdonald, Ormrod and Duckworth)¹⁸ include boron targets. Data from Aarhus includes projectiles up to yttrium in carbon. Data from NSWC for nitrogen projectiles on many solid targets through tellurium is also available.

Recent data from Chalk River (Ward et al.)¹⁹ for projectiles $6 \le Z_1 \le 20$ in the standard solid targets at $v \simeq v_0$ show an interesting phenomenon concerning the Z_1 oscillations: the amplitude, but not the period, of these oscillations depend upon the target material. The present calculations do not display this feature.

The experimental data are presented following the above outline. First we consider light ions incident on the light and heavy solid targets. Next we show the electronic stopping values for the heavy ions, the halogens and uranium, on light and heavy solid targets. The next set of graphs show the light ions incident on gaseous targets. On the next two pages we display the results of nitrogen projectiles on solid targets, the data from NSWC. This is followed by a set of graphs of electronic stopping of a variety of projectiles incident on carbon, the data from Aarhus. The next page contains some miscellaneous results. Finally the last two graphs highlight the Z₁ oscillations in carbon and the Z₂ oscillations of nitrogen projectiles at fixed velocity.

Certain observations and conclusions can be deduced from these graphs.

1. In many cases the Lindhard-Scharff values are close to the modified Firsov values at v=v_o. However, for the great majority of these cases as well as for those cases where the two theoretical values differ significantly, the modified Firsov value is a closer fit to the data than is the Lindhard-Scharff value.

- 2. The extrapolation procedure described previously which joins the modified Firsov value at \mathbf{v}_0 to the scaling law predictions above $2\mathbf{v}_0$ seems, in spite of its ad hoc character, to be a very reasonable way of interpreting the majority of the experimental data.
- (a) This procedure predicts correctly that the stopping power increases less rapidly than a linear dependence on velocity for carbon projectiles, predicts an approximate linear dependence on velocity for the stopping powers of nitrogen and oxygen projectiles and predicts the observed superlinear velocity dependence of the fluorine, neon and aluminum stopping values.
- (b) The method predicts the relationship between the higher velocity stopping values, obtained by Moak and Brown 17 , for halogens and uranium projectiles on the standard solid targets, and the values up to \mathbf{v}_0 for these cases. Unfortunately, low energy data is available for only one of these cases, that of bromine on carbon, but here, the agreement is quite reasonable.
 - 3. The cutoff in velocity for extrapolating from the scaling law behaviour to the region below v_0 is higher for uranium projectiles then is required for the other projectiles for which experiment data are available. To get the best fit to the uranium data, we chose a cutoff of $2.8v_0$ compared to a value of $2v_0$ for all other projectiles that we have shown. As discussed above, it would be very interesting to have data for those projectiles which, like uranium, have a large number of "valence" electrons.
 - 4. The data on aluminum and magnesium ions incident on helium would seem to suggest that these ions are almost entirely doubly

ionized even at a velocity of v_0 . This is also suggested by the data on magnesium ions incident in air.

5. The good agreement between the experimental values of S_e at v=v_o and the theoretical calculations of the modified Firsov model seems to be independent of whether the target is a solid or a gas. There does seem to be a tendency for the velocity dependence of S_e to be generally superlinear for all projectiles in gas targets (except for helium), whereas the velocity dependence for the corresponding projectiles in solid targets varies from sublinear to superlinear depending on the projectile identity.

In order to estimate the improvement obtained with the present modelling for S_e , we consider several data sets and compute the average of the absolute values for the fractional error between the experimental and theoretical values. That is, if t_i and e_i are the corresponding theoretical and experimental values, respectively, we compute the quantity

$$f = \frac{1}{N} \sum_{i=1}^{N} \begin{vmatrix} t_i - e_i \\ e_i \end{vmatrix}$$
 (5)

for each data set. We consider the electronic stopping as obtained from the Thomas-Fermi atomic densities, as implemented by Eq. (1) and as given by the set of values reported here, in which we have made use of the receipt described above where the data extends to velocities $\mathbf{v} > \mathbf{v}_0$. The data sets we have considered along with the fractional errors are listed in Table II. We note that in all cases, the use of Hartree-Fock densities rather than the Thomas-Fermi densities in computing $S_{\mathbf{e}}$ offers improvement in correlating

theoretical values with experimental data. The overall unweighted average of the errors for the six data sets considered is 35% for the Thomas-Fermi density calculations and 17% for the modified Firsov calculations. This, perhaps, may be taken as an indication of the overall error inherent to each model. These data include both solid and gaseous targets. No significant difference in the ability of this model to predict the electronic stopping of solid and gaseous targets can be seen.

GENERAL DISCUSSION AND CONCLUSIONS

This report presents values of the electronic stopping power at the velocity \mathbf{v}_0 calculated from the Firsov model modified to include realistic atomic structure. These values have been used together with the scaling law for S_e appropriate at higher velocities up to 3=4 \mathbf{v}_0 . Comparisons of these stopping power curves with a considerable body of experimental data show generally good consistency. We conclude that the model and predictions presented here are the best approximations to experiment available at this time. However, more experimental data are needed to test this model, especially for heavy atoms, $Z \geq 54$, for which very little data exists, with the exception of uranium as a projectile and gold as a target.

Despite the success of this model in correlating data, it has some significant deficiencies. The physical basis and assumptions from which the model is derived are obscure and, consequently, it seems difficult to improve upon the model on a fundamental level in a systematic way. We had noted earlier that the unmodified Firsov model can produce numerical values that are consistent with the predictions of the Lindhard-Scharff model, which in turn correlates with the data in an average sense, with respect to the Z_1 or Z_2 oscillations. However, in implementing the present approach, there are two significant departures from the original model. The first is the use of the expression for $\left\{\langle T \rangle\right\}^{1/2}$, where T is the kinetic energy operator, from which the atomic orbital velocities are obtained. This procedure gives the root-mean-square value for the velocity rather than the average velocity given by $v_{ave} = f_1 \langle k \rangle /m$. The

other is the use of a non-zero minimum impact parameter, required so that the model does agree with experiment. The root-mean-square formula gives values for the velocity of the outer orbitals which are considerably larger than those obtained from the average velocity. Hence the need for a non-zero b. However, the happy result of these circumstances is that considerable weight is given to the contributions to S from the outer orbitals from which the periodic structure that is observed in the data arises. Thus the present implementation which also corresponds to the work of Chesire et. al. and to Bhalla et al., may be regarded as a physically different model from the original Firsov model. The implications of the use of the average velocity are presently under study by Cruz and his colleagues 20 who are attempting to provide a more concrete physical basis for the Firsov model. A justification for the use of a minimum impact parameter was provided by Denkin 4. This author suggested that atomic orbitals whose velocities exceed the projectile velocity should not contribute to the stopping, similar to the more familiar argument of an adiabatic limit on the distant collisions for high-velocity projectiles.

In the present authors' view future efforts on this problem lie more profitably in exploiting the theory of stopping for a free electron gas developed by Lindhard 24. This model offers several possible treatments of the target, as a free electron gas for conduction electrons in a solid or as a free electron model of the atom, either as free for a gaseous target or as bound for a solid target. It also allows the inclusion of projectile structure.

Initial efforts in this direction by Ritchie and his co-workers 20

applied to date only for light projectiles, p and He, are quite promising. Furthermore, this basic model allows for systematic improvements. Further research in this direction is continuing.

TABLE I. OUTER ELECTRONS VERSUS PROJECTILE ATOMIC NUMBER

<u>z</u> 1	n	z_1	n
21 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 27 28 29 30 31 32 33 34 35 36 37 38 39 40 142 43 44 45	3 4 5 6 7 8 9 10 11 12 13 14 5 6 7 8 9 10 11 12 13 13 13 13 18	2 ₁ 49 50 51 52 545 56 75 59 61 62 645 667 77 78 79 81 82 84 85 86 87 88	12 13 4 5 6 7 8 9 10 11 10 10 10 10 10 10 11 12 13 14 15 16 11 12 13 14 15 16 17 18 19 10 10 10 10 10 10 10 10 10 10 10 10 10
46 47 48	9 . 10 11	89 90 91 92	10 11 12 13

TABLE II. Comparison of the Average of the Fractional Errors between Theoretical and Experimental Values of the Electronic Stopping Power

Group	Ref.	Experiment	Thomas- Fermi*	Hartree- Fock†
NAVSWC	7,8	800 keV $^{14}N^{+}$ in $^{2}(6-52)$	0.26	0.08
Aarhus	13	100-500 keV $z_1(6-39)$ in c	0.16	0.14
Aarhus	. 15	100-500 z_1 (6-12) in He, air, Ne	0.53	0.11
Aarhus	15	100-500 KeV Z ₁ (6-24)in air	0.37	0.29
Cal. Tech.	14	500-1500 keV z_1 (6-13) in noble gases	0.42	0.21
Porat and Ramavataram	13	360-3000 keV Z ₁ (6-10) in C, Al, Ni, Ag, Au	0.17	0.07

*Lindhard-Scharff
†Modified Firsov

TABLE III

ELECTRONIC STOPPING POWER OF IONS

ELECTRONIC STOPPING POWER OF IONS AT VELOCITY VO MODIFIED FIRSOV METHOD STOPPING POWER (1E-13 EV-CM2)

					PROJE	CTILE A	TOMIC N	IUPBER					
TARGET ATOMIC NUMBER	ŧ	7	8	9	10	11	12	13	14	15	16	17	16
MOHOEK	•	•				40	••	.42	.49	.53	.53	.53	.51
1	. 28	. 26	.24	.23	.21	.19	. 33	.39	.46	.49	.49	.49	.47
ż	. 25	. 23	-21	-26	.18	.17	. 31	.98	1,13	1.23	1.27	1.29	1.27
3	.77	.75	.71	. 50	. 65	.61	. 61	1.03	1.19	1.29	1.34	1.3£	1.35
*	.79	.78	.74	.71	.68	.64	. 86 . 86	1.02	1.17	1.26	1.30	1.32	1.3?
5	.76	.75	.72	. 69	.66	.62	• 60	1.00				_	
*						.58	. 82	.98	1.13	1.20	1.23	1.25	1.24
6	.70	.69	.66	.64	.61	.53	.77	.93	1.08	1.14	1.17	1.16	1.17
7	. 65	. 64	.61	.59	.56	.58	.74	.90	1.04	1.11	1,13	1.14	1,13
8	.62	.61	.58	.56	.53	.46	.78	.86	1.00	1.86	1.08	1.09	1.88
9	.59	.57	.54	.52	.49	.43	.66	. 81	.94	1.01	1.02	1.04	1.02
10	. 55	.53	.51	.48	.46	3	•••						1.46
					.77	.73	. 97	1.14	1.31	1.40	1.44	1.46	1.73
11	.87	. 86	.83	.80	.94	.90	1.16	1.35	1.53	1.64	1.70	1.73	2.01
12	1.05	1.14	1.01	-98	1.11	1.06	1.34	1.55	1.75	1.85	1.95	2.00	2.08
13	1.21	1.22	1.19	1.15	1.14	1.09	1.39	1.60	1.81	1.94	2.01	2.07	2.05
14	1.24	1.24	1.51	1.15	1.11	1.07	1.38	1.60	1.81	1.93	1.99	2.04	E + U >
15	1.21	1.21	1.18	7.77		• • • • • • • • • • • • • • • • • • • •	-				- 04	2.06	2.07
			1.18	1.16	1.12	1.67	1.40	1.62	1.84	1.96	2.01	2.00	2.00
16	1.21	1.21	_	1.10	1.06	1.02	1.35	1.58	1.80	1.91	1.96	1.94	1.93
17	1.16	1.16	1.13	1.05	1.01	.96	1.30	1.54	1.75	1.86	1.93	2.28	2.29
18	1.10	1.10	1.07 1.34	1.31	1.27	1.22	1.57	1.81	2.05	2.17	2.23	2.53	2.55
19	1.36	1.37	1.53	1.50	1.46	1.41	1.76	2.01	2.26	2.40	2.47	2470	.,,,
20	1.54	1.56	1170	2020						2.39	2.47	2.52	2.54
	4 54	1.55	1.52	1.FD	1.45	1.40	1.75	2.01	5.26		2.42	2.48	2.49
21	1.54	1.51	1.49	1.46	1.42	1.36	1.72	1.97	2.21	2.35	2.37	2.42	2.44
22	1.50	1.48	1.45	1.42	1.38	1.33	1.67	1.92	2.17	2.30 2.16	2.22	2.27	2.25
23	1.46 1.35	1.36	1.33	1.31	1.26	1.21	1.55	1.80	2.03	2.20	2.26	2.32	2.32
24	1.39	1.40	1.37	1.34	1.30	1.25	1.59	1.83	2.07	C + C V	6.00	• • • •	
25	1.03		••••					4 00	2.84	2.17	2.23	2.28	2.29
94	1.37	1.37	1.35	1.32	1.28	1.23	1.56	1.80	2.00	2.13	2.20	2.25	2.26
2€ 27	1.34	1.35	1.32	1.30	1.25	1.20	1,53	1.77		2.10	2.16	2.21	2.22
	1.32	1.33	1.30	1.27	1.23	1.16	1.50	1.74	1.97	2.00	2.07	2.12	2.12
28 29	1.25	1.25	1.22	1.20	1.15	1.11	1.42	1.65	1.89	2.02	2.08	2.13	2.14
30	1.26	1.27	1.24	1.21	1.17	1.12	1.44	1.67	1,00	2.00			
36	••••	•				4 01	1.56	1.80	2.63	2.17	2.24	5.50	2.31
31	1.38	1.39	1.36	1.33	1.29	1.24	1.63	1.88	2.11	2.25	2.33	2.39	2.43
32	1.44	1.45	1.42	1.39	1.35	1,30	1.67	1.91	2.16	2.30	2.37	2.43	2.45
33	1.46	1.47	1.44	1.42	1.37	1.32	1.71	1.97	2.22	2.36	2.44	2.58	2.51
34	1.49	1.51	1.48	1.45	1.41	1.36	1.73	1.99	2.25	2.39	2.46	2.52	2.53
35	1.49	1.51	1.48	1.45	1.41	1.36	1013	••••					
					1.36	1.33	1.71	1.98	2.24	2.38	2.44	2.50	2.51
36	1.47	1.48	1.45	1.43	1.68	1.63	2.82	2.30	2.59	2.74	2.62	2.90	2.92
37	1.75	1.76	1.75	1.73	1.92	1.86	2.27	2.57	2.86	3.03	3.12	3.21	3.24 3.29
38	1.98	2.01	1.99	1.97 2.80	1.95	1.89	2.30	2.61	2.91	3.08	3.17	3.26	3.28
39	2.01	2.84	2.82	1.99	1.94	1.68	2.30	2.61	2.91	3.08	3.17	3.25	34 20
40	2.00	2.83	2.01								3.02	3.10	3.12
		4 00	1.88	1.85	1.81	1.75	2.17	2.48	2.78	2.94		3.04	3.05
41	1.87	1.85	1.83	1.81	1.76	1.70	2.13	2,43	2.73	2.89	2.95 3.05	3.12	3.15
42	1.83	1.92	1.90	1.87	1.83	1.77	2.19	2.50	2.80	2.97	2.92		3.00
43	1.89	1.80	1.78	1.75	1.71	1.65	2.87	2.38	2.68	2.84	2.86	2.92	
44	1.78	1.76	1.73	1.71	1.66	1.61	2.03	2.33	2.62	2.78	E + 90		
45	2017								2.50	2.65	2.73	2.79	2.89
46	1.63	1.65	1.62	1.60	1.55	1.50	1.91	2.21					
47				1.62	1.57	1.52	1.53						
48		1.72		1.67	1.63	1 .57	1.98	2.26					₹.03
49				1.79	1.75	1.69	2.10	2.48					
50				1.87	1.63	1.77	2.18	2.49	2413				
70							2.24	2.54	2.85	3.02	3.11		
51	1.94				1.88	1.62	2.31						
52													
53		2.07	2.05	2.03		1.92						3.36	3.39
54			2.05	2.63	1.98	1.92	2.30						

ELECTRONIC STOPPING POWER OF IONS AT VELOCITY VO MODIFIED FIRSOV METHOD STOPPING POWER (1E-13 EV-CH2)

					PRO JE	CTILE A	TOMIC N	IUH BER					
TARGET ATOMIC		- •		22	23	24	25	26	27	28	29 ·	30	31
NUMBER	19	20	21	2.5	••					.45	.43	.47	.51
		44	.58	.59	.51	.49	.54	. 53	.46	.43	.41	.45	.49
1	6	.61	.55	.57	. 48	.46	.51	.50	.44	1.11	1.97		1.21
2	. 44	.58 1.39	1.36	1.37			1.27	1.24		1.21	1.18		1.30
3	1.23	1.49		1.47	1.35		1.37	1.34	1.24	1.22	1.19	1.23	1.33
4	1.32	1.46			1.34	1.30	1.27	1.35	1.24		• • • •		
5	1.28	1.40	2000					1.30	1.20	1.18	1.15	1.19	1.26
	4 94	1.42	1.38	1.41	1.26	1.25	1.32		1.14	1.12	1.09	1.13	1.20
6	1.21	1.35	1.31	1.34	1.21	1.18	1.25	1.23	1.11	1.08	1.06	1.13	1.16
7	1.10	1.32	1.28	1.31	1.18	1.14	1.22	1.20	1.05	1.03	1.01	1.05	1.11
8	1.10	1.26	1.22	1.26	1.13	1.09	1.17	1.15	1.60	.98	. 95	.9 9	1.05
9 10	.99	1.20	1.16	1.19	1.87	1.03	1.11	7.03					
10	4 . ,	•••					1.53	1.51	1.40	1.38	1.34	1.38	1.45
11	1.43	1.64	1.60	1.63	1.50	1.46	1.80	1,77	1.66	1.63	1.59	1.63	1.71
12	1.70	1.92	1.88	1.91	1.77	1.73	2.08	2.05	1.93	1.89	1.85	1.89	1.98
13	1.98	2.22	2.17	2.20	2.05	2.00	2.16	2.13	2.01	1.97	1.93	1.9"	2.06
14	2.05	2.30	2.25	2.29	2.14	2.09	2.16	2.13	2.01	1.97	1.93	1.9	2.06
15	2.03	z. 29	2.25	2.29	2.13	2.40	20.50	•••				- 04	2.13
					2 46	2.11	2.20	2.17	2.84	2.01	1.97	2.01	2.05
16	2.04	2.32	2.28	2.32	2.16 2.10	2.05	2.14	2.11	1.99	1.96	1.92	1.96 1.91	1.99
17	1.97	2.27	2.22	2.26	2.03	1.99	2.08	2.05	1.93	1.91	1.87	5.5è	2.34
18	1.90	2.26	2.15	2.20	2.40	2,35	2.45	2.42	2.29	2.25	2.21	2.50	2.59
19	2.26	2.57	2.52	2.57	2.67	2.62	2.71	2.68	2.54	2.51	2.46	2630	(, , ,
20	2.53	2.84	2.79	2.84	2.0.						2.45	2.49	2.59
				2.84	2.66	2.61	2.70	2.67	2.54	2.50	2.49	2.44	2.54
21	2.52	2.83	2.75	2.78	2.61	2.56	2.65	2.62	2.49	2.45	2.35	2.39	2.48
22	2.46	2.78	2.73	2.73	2.55	2.50	2.60	2.56	2.43	2.40	2.29	2.24	2.33
23	2.41	2.73	2.68	2.57	2.40	2.35	2.44	2.41	2.28	2.25	2.24	2.28	2.37
24	2.26	2.57	2.52	2.61	2.44	2.39	2.48	2.45	2.32	2.28	2004		
25	2.30	2.61	2.56	2.01						2.25	2.20	2.25	2.33
			2.52	2.57	2.40	2.35	2.44	2.41	2.28	2.21	2.17	2.21	2.30
26	2.27	2.57	2.49	2.54	2.37	2.32	2.41	2.38	2.25	2.17	2.13	2.17	2.26
27	2.24	2.54	2.45	2.49	2.33	2.28	2.37	2.34	2.21	2,07	2.03	2.07	2.15
28	2.20	2.50	2.34	2.39	2.22	2.17	2.26	2.23	2.10	2.08	2.04	2.08	2.17
29	2.10	2.39 2.40	2.35	2.40	2.23	2.18	2.27	2.24	2.12	2,00	200		
30	2.11	2.40	2.37	•				2.41	2.28	2.25	2.20	2.24	2.33
31	2.26	2.56	2.53	2.57	2.40	2.35	2.44	2.51	2.38	2.34	2.23	2.34	2.43
	2.38		2.63	2.68	2.51	2.45	2.54	2.57	2.43	2.40	2.35	2.39	2.48
32 33			2.69	2.73	2.56	2.51	2.60	2.64	2.51	2.47	2.42	2.46	2.56
34	_		2.76	2.81	2.64	2.58	2.68	2.67	2.54	2.50	2.45	2.49	2.59
35			2.79	2.84	2.66	2.61	2.70	2.01	4.5				
37						2.60	2.70	2.66	2.53	2.49	2.44	2.46	2.58
36	2.49	2.83	2.77	2.63	2.65	-	3.12		2.94	2.90		2.89	2.99
37	-		3.20	3.26	3.08	3.02 3.35	3.46		3.27	3.23		3.21	3.31
36			3.54	3.61	3.41	3.41	3.52		3.33	3.29		3.27	3.37 3.37
39				3.67	3.47	3.41	3.52		3.33	3.29	3.23	3.27	3.3'
40	_		3.60	3.67	3.47	9.71	2				3.07	3.11	3.22
		_			3.30	3.24	3.35	3.32	3.17	3.13		3.06	3.17
41	3.1			3.50 3.45	3.25	3.19	3.30		3.12	3.08		3.15	3.25
48				3.53	3.33	3.28	3.39	3.35		3.16		3.00	3.11
47	3.1	3 3.52		3.38	3.18	3.13	3.24	3.20		3.02		2.94	3.05
41				3.32	3.12	3.07	3.10	3.14	3.00	2.96	2.90	6.00	
4.	5 2.9	2 3.31	3.25	9196	~	*				2.87	2.77	2.80	2.91
		49	3.11	3.16	2.98	2.92	3.03						
41													
•							3.11						
4						3.16							
*			-				3.37	7 3.34	3.19				
5	6 3.1	. 3.7	. 4147					5 3.45	3.26	3.2	2 3.17	3.50	
•	1 3.1	9 3.5	8 3.53	3.60							3 3.27		
	2 3.3			, 3.71			3.5				9 3.3	3.37	
	3 3.3		6 3.70	3.75			- : - :					3.39	3.50
	3.3				3.59	3.54	3.5	, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	''				
•													

ELECTRONIC STOPPING POWER CF IONS AT VELOCITY VO HODIFIED FIRSOV METHOD STOPPING POWER (1E-13 EV-CM2)

TARGET					PRO.	JECTILE	ATONIC	NU#BER					
ATOMIC NUMBER	3?	33	34	35	36	37	38	39	41	41	42	43	44
1	.59	. 64	.67	.69	.70	.70	.84	.94	.66	-61	•79	.84	•76
S	.56	.61	.63	- 65	. 66	-65	81	.92	-85	.77	.75	.81	.73
3	1.33	1.43	1.50	1.57	1.61	1.62	1.81	1.95	1.90	1.62	1.79	1.85	1.75
4	1.43	1.53	1.60	1.68	1.72	1.74	1.96	2.12	2.05	1.98	1.94	2.02	1.91
5	1.43	1.52	1.58	1.65	1.69	1.70	1.94	2.12	2.04	1.95	1.92	2.80	1.89
6	1.38	1.47	1.52	1.58	1.61	1.62	1.87	2.06	1.97	1.86	1.84	1.93	1.62
7	1.32	1.40	1.46	1.51	1.54	1.54	1.60	1.99	1.89	1.78	1.76	1.84	1.73
8	1.29	1.37	1.42	1.47	1.50	1.50	1.76	1.96	1.85	1.74	1.72	1.81	1.69
9	1.23	1.31	1.37	1.42	1.44	1.44	1.70	1.89	1.79	1.68	1.65	1.74	1.63
10	1.17	1.25	1.30	1.35	1.37	1.37	1.63	1.82	1.72	1.60	1.56	1.67	1.56
11	1.59	1.68	1.75	1.82	1.86	1.87	2.13	2.33	2.24	2.14	2.11	2.20	2.09
12	1.85	1.96	2.04	2.12	2.17	2.19	2.46	2.67	2.58	2.48	2.46	2.55	2.43
13	2.13	2.25	2.34	2.43	2.49	2.52	2.81	3.03	2.95	2.86	2.83	2.93	2.51
14	2.21	2.33	2.43	2.52	2.58	2.62	2.93	3.16	3.08	2.98	2.95	3. 9 6	2.93
15	2.22	2.34	2.42	2.52	2.58	2.61	2.53	3.17	3.08	2.97	2.95	3.06	2.94
16	2.26	2.38	2.46	2.55	2.61	2.64	2.98	3.23	3.13	3.01	3.03	3.11	2.98
17	2.21	2.33	2.41	2.50	2.55	2.57	2.92	3.18	3.07	2.94	2.92	3.04	2.91
18	2.16	2.28	2.36	2.44	2.48	2.50	2.86	3.13	3.00	2.87	2.85	2.97	2.84
19	2.51	2.64	2.73	2.83	2.89	2.91	3.29	3.57	3.45	3.32	3.30	3.43	3.33
SC	2.77	2.90	3.00	3.11	3.17	3.21	3.59	3.69	3.77	3.64	3.63	3.76	3.62
21	2.76	2.90	3.60	3.10	3.17	3.20	3.59	3.88	3.77	3.63	3.62	3.75	3.62
52	2.71	2.85	2.94	3.04	3.11	3.14	3.53	3.82	3.70	3.57	3.56	3.69	3.55
23	2.66	2.79	2.89	2.99	3.05	3.08	3.46	3.76	3.64	3.50	3.49	3.62	3.48
24	2.50	2.63	2.73	2.82	2.88	2.91	3.29	3.57	3.45	3,32	3.30	3.43	3.30
25	2.54	2.67	2.75	2.86	2.92	2.95	3.33	3.61	3.50	3.36	3.35	3.48	3.34
26	2.51	2.63	2.73	2.82	2.89	2.92	3.29	3.57	3.45	3.32	3.31	3.43	3.30
27	2.47	2.60	2.69	2.78	2.85	2.88	3.24	3.52	3.41	3.28	3.26	3.39	3.25
28	2.43	2.55	2.65	2.74	2.88	2.83	3.20	3.47	3,36	3.23	3.22	3.34	7.21
29	2.32	2.44	2.53	2.63	2.69	2.72	3.07	3.34	3.23	3.11	3.09	3.21	3.08
30	2.33	2.45	2.54	2.64	2.70	2.73	3 - 08	3.35	3.24	3.11	3.10	3.22	3.69
31	2.50	2.63	2.72	2.82	?.88	2.92	3.28	3.55	3.44	3.32	3.31	3.43	3.33
32	2.60	2.73	2.63	2.93	2.99	3.03	3.40	3.68	3.57	3.45	3.43	3.56	3.42
33	2.65	2.79	2.89	2.99	3.06	3.09	3.47	3.75	3.64	3.52	3.51	3.63	3.50
34	2.74	2.87	2.97	3.08	3.15	3.19	3.57	3.86	3.75	3.62	3.61	3.74	3.60
35	2.77	2.90	3.00	3.11	3.18	3.22	3.61	3.91	3.79	3.66	3.65	3.78	3.65
36	2.76	2.90	3.00	3.1G	3.17	3.20	3. E1	3.92	3.79	3.65	3.64	3.76	3.64
37	3.18	3.33	3.44	3.55	3.63	3.68	4.10	4.43	4.31	4.18	4.17	4.31	4.17
36	3.51	3.66	3.78	3.91	3.99	4.05	4.49	4.63	4.71	4.58	4.57	4.72	4.55
39	3.57	3.73	3.65	3.97	4.06	4.12	4.57	4.91	4.79	4.66	4.65	4.81	4.67
40	3.58	3.73	3.85	3.96	4.66	4.11	4.57	4.93	4.80	4.66	4.65	4.61	4.67
41	3.42	3.58	3.69	3.81	3.89	3.94	4.40	4.75	4.62	4.47	4.45	4.62	4.47
42	3.37	3.53	3.64	3.76	3.84	3.88	4.35	4.70	4.56	4.41	4.43	4.56	4.41
43	3.46	3.61	3.73	3.65	3.93	3.98	4.44	4.60	4.66	4.51	4.50	4 - 67	٤.51
44	3.31	3.47	3.58	3.70	3.78	3.62	4.28	4.64	4.50	4.34	4.33	4.49	4.34
45	3.25	3.41	3.52	3.64	3.71	3.75	4.22	4.57	4.43	4.27	4.26	4.42	4.27
46	3.11	3.26	3.37	3.49	3.56	3.60	4.06	4.41	4.27	4.10	4.17	4.26	4.1;
47	3.13	3. ZB	3.39	3.51	3.56	3.61	4.08	4.43	4.28	4.12	4.11	4.27	4.12
48	3.18	3.34	3.45	3.56	3.64	3.68	4.14	4.49	4.35	4.16	4.18	4.34	4.18
49	3.34	3.49	3.60	3.72	3.80	3.84	4.31	4.66	4.52	4.37	4 • 36	4.52	4.37
50	3.44	3.60	3.71	3.84	3.92	3.96	4.43	4.79	4.65	4.49	4.49	4.65	4.50
51	3.51	3.67	3.79	3.92	4.00	4.64	4.51	4.87	4.74	4.58	4.58	4.74	4.59
52	3.62	3.78	3.90	4.03	4.12	4.16	4.64	5.00	4.87	4.72	4.72	4.88	4.73
58	3.69	3.85	3.97	4 - 10	4.19	4.24	4.72	5.19	4.96	4.80	4 - 80	4.97	4.82
54	3.71	3.66	4-63	4.13	4.22	4.27	4.76	5.13	4.99	4.84	4.84	5.01	4.85

ELECTRONIC STOPPING POHER OF IONS AT VELOCITY VO MODIFIED FIRSOV METHOD STOPPING POHER (1E-13 EV-CM2)

TARGET					PRO.	ECTILE	ATONIC	NUM BER		
ATOMIC	_		_							_
NUMBER	45	46	47	48	49	58	51	52	53	54
1	.80	.71	.68	.72	.77	.85	• 51	. 97	1.00	1.03
2	.77	.68	.65	.7:	.74	.82	. 85	.92	• 96	.98
3	1.79	1.67	1.62	1.67	1.73	1.83	1.92	2.0C	2.09	2.16
4	1.96	1.63	1.77	1.82	1.88	1.99	z.09	2.17	2.25	2.33
5	1.95	1.62	1.77	1.82	1-88	5.88	S • 83	2.16	2.24	2.31
6	1.66	1.75	1.70	1.76	1.82	1.93	2.03	2.09	2.17	2.22
7	1.80	1.67	1.62	1.68	1.74	1.86	1.95	2.82	2.09	2.14
6	1.76	1.63	1.58	1.64	1.71	1.83	1.92	1.98	2.06	2.10
9	1.69	1.57	1.52	1.58	1.65	1.76	1.65	1.92	1.99	2.04
10	1.62	1.49	1.45	1.51	1.57	1.69	1.76	1.84	1.91	1.96
11	2.15	2.82	1.96	5.02	2.09	2.21	2.39	2.38	2.46	2,52
12	2.50	2.36	5.30	2.36	2.43	2.55	z.65	2.73	2.82	2.89
13	2.87	2.73	5.66	2.72	2.79	5 • 95	3.02	3.11	3.21	3.29
14	3.00	2.85	2.79	2.85	2.92	3.05	3.16	3.24	3.35	3.43
15	3.01	2.85	2.79	2.65	2.93	3.86	3.17	3.26	3.36	3.44
16	3.05	2.90	2.84	2.90	2.98	3.12	3.23	3.32	3.42	3.50
17	2.99	2.83	2.77	2.84	2.92	3.86	3.18	3.27	3.37	3.44
18	2.92	2.76	2.70	2.77	2.85	3.00	3. 11	3.20	3.31	3.35
19	3.38	3.22	3.15	3.22	3.30	3.45	3.56	3.67	3.76	3.86
20	3.71	3.54	3.47	3.54	3.63	3.7€	3.91	4.01	4.12	4.21
21	3.70	3.53	3.47	3.54	3.62	3.77	3.93	4.03	4.11	4.27
22	3.64	3.47	3.40	3.47	3.56	3.71	3. 24	3.94	4.05	4.14
23	3.57	3.40	3.34	3.41	3.49	3.64	3.77	3.87	3.98	4.07
24	3.38	3.22	3.15	3.22	3.30	3.46	3.58	3.63	3.79	3.87
25	3.42	3.26	3.19	3.26	3 - 35	3.50	3.62	3.72	3.83	3.91
			~ 46				7 50	7 60	7 74	3.87
26	3.38	3.22	3.15	3.22	3.30	3.46	3.58	3.68	3.78	3.82
27	3.34	3.17	3.11 3.86	3.18	3.26 3.21	3.41 3.36	3.53 3.48	3.63 3.58	3.74 3.68	3.76
28	3.29	3.13 3.00	2.93	3.13 3.80	3.08	3.23	3.35	3.44	3.55	3.63
29 30	3.16		2.94	3.81	3.09	3.24	3.36	3.45	3.55	3.63
	3.16	3.01								
31	3.36	3.22	3.15	3.22	3.30	3.44	3.56	3.66	3.77	3.85
32	3.50	3.34	3.27	3.34	3.42	3.57	3.69	3.79	3.90	3.99
33	3.58	3.42	3.35	3.42	3.50	3.65	3.77	3.87	3.98	4.07
34	3.69	3.52	3.45	3.52	3.61	3.76	3.89	3.99	4.10	4.13
35	3.73	3.57	3.50	3.57	3.65	3.81	3.94	4.64	4.15	4.24
36	3.73	3.56	3.49	3.56	3.65	3.61	3.94	4.64	4.16	4.25
37	4.26	4.09	4.02	4.09	4.18	4.34	4.48	4.59	4.71	4.81
38	4.68	4.50	4.42	4.50	4.59	4.76	4.50	5.01	5.14	5.24
39	4.76	4.58	4.51	4.58	4.67	4.85	4.69	5.10	5.23	5.34
* D	4.77	4.58	4.51	4.59	4.68	4 .85	5.00	5.11	5.24	5.35
41	4.57	4.39	4.31	4.39	4.49	4.66	4. 11	4.93	5.06	5.16
42	4.51	4,33	4.25	4.33	4.43	4.61	4.75	4.87	5.00	5.10
43	4.62	4.43	4.35	4.44	4.53	4.71	4.86	4.98	5.11	5.21
44	4.44	4.26	4.18	4.26	· 4.36	4.54	4.69	4.81	4.94	5.84
45	4.37	4.18	4.11	4.19	4.29	4.47	4.62	4.74	4.87	4.97
46	4.20	4.02	3.94	4.03	4.12	4.31	4.45	4.57	4.70	4.80
47	4.22	4.03	3.96	4.84	4.14	4.32	4 . 47	4.58	4.72	4.81
48	4.29	4.10	٠.03	4.11	4.20	4.39	4.53	4.65	4.78	4.88
49	4.47	4.29	4.21	4.29	4.39	4.57	4.72	4.83	4.97	5.07
50	4.60	4.42	4.34	4.42	4.52	4.70	4.85	4.97	5.10	5.20
51	4.76	4.51	4.43	4.51	4.61	4.79	4 . 54	5.06	5.19	5.30
52	4.83	4.65	4.57	4.65	4.75	4.93	5.68	F.20	5.33	5.44
53	4.92	4.73	4.66	4.74	4.84	5.02	5 - 17	5.29	5.43	5.53
54	4,96	4.77	4.69	4.77	4.87	5.06	5. 21	2.33	5.47	5.57

The second secon

ELECTRONIC STOPPING POWER OF IONS AT VELOCITY V8 MODIFIED FIRSOV METHOD STOPPING POWER (1E-13 EV-CM2)

TARGET					PRO.	JECTILE	ATOMIC	NUMBER					
atonic Number	55	56	57	58	59	60	61	62	63	64	65	66	67
1	.99	1.16	1-14	1.12	1.26	1.07	1.20	1.63	1.26	1.84	1-11	1.88	1.67
Z	. 94	1-13	1.89	1.09	1.23	1.64	1.18	1-00	1.24	1.02	1.10	.98	1.05
3	2.12	2.36	2.36	2.30	2. 48	2.23	· 2.40	2.15	2.46	2.18	2 • 25	2.11	2.19
	2.30	2 - 56	2.56	2.50	2.70	2.42	2.62	2.35	2.78	2.38	2.46	2.38	2.39
Ē	2.27	2.55	2.54	2.49	2.71	2.42	2.63	2.35	2.72	2.38	2.48	2.31	2.41
6	2.19	2.48	2.45	2.42	Z- 65	2.35	2.57	2.28	2.66	2.31	2.42	2.25	2.36
7	2.10	2.48	2.36	2.34	2.58	2.28	2.50	2.21	2.59	2.24 2.20	2.35 2.32	2.17 2.14	2.29 2.26
•	2.87 2.88	2.37 2.30	2.33 2.26	2.31 2.24	2.55 2.48	2.24 2.17	2.47 2.40	2.17 2.11	2.56 2.49	2.14	2.26	2.07	2.19
16	1.92	2 - 22	2.17	2.16	2.40	2.69	2.32	2.02	2.41	2.05	2.17	1.99	2.11
11	2.48	2.80	2.77	2.74	2.98	2.66	2.89	2.59	2.99	2.62	2.73	2.55	2.66
12	2.85	3.18	3.16	3.12	3.37	3.84	3.28	2.96	3.36	2.99	3.11	2.92	3.03
13	3.26	3.66	3.59	3.53	3. 60	3.45	3.70	3.37	3.61	3.41	3.52	3.32	3.43
14	3.40	3.75 3.76	3.74 3.76	3.69 3.71	3.97 4.00	3.68 3.63	3.87 3.96	3.52 3.54	3.98 4.01	3.56 3.58	3.67 3.71	3.47 3.49	3.58 3.62
15	3.41												
16	3.47	3.85	3.63	3.76	4.09	3.70	3.98	3.61	4-16	3.65	3.79	3.56 3.51	3.69 3.65
17	3.41	3.81 3.75	3.77 3.71	3.73 3.67	4.04 3.99	3.65 3.59	3.94 3.88	3.56 3.49	4.86 4.81	3.60 3.54	3.74 3.69	3.45	3.68
18 19	3.34 3.83	4-25	4.22	4.17	4.51	4.66	4.39	3.99	4.52	4.83	4.18	3.94	4.09
28	4.17	4.61	4.58	4.53	4.67	4.44	4.76	4.34	4.69	4.39	4.54	4.29	4.44
21	4.17	4-61	4.57	4.53	4.87	4.43	4.76	4.33	4.89	4.38	4.54	4.29	4.44
22	4.19	4.54	4.51	4.45	4.81	4.37	4.69	4.27	4.63	4.32	4.47	4.22	4.37
23	4.83	4-47	4.44	4.39	4.73	4.30	4.62	4.20	4.75	4.25	4.40	4.15	4.38
24	3.84	4.27	4.23	4.19	4.53	4-10	4.42	4.00	4.55	4.85	4.20	3.95	4-10
25	3.88	4.31	4.27	4.23	4.57	4.14	4.46	4.84	4.59	4.89	4.24	3.99	4.14
26	3.43	4.26	4.23	4.18	4.52	4.89	4.41	3.99	4.54	4.84	4.19	3.95	4.69
27	3.79	4.21	4.17	4.13	4.46	4.84	4.35	3.94	4.48	3.99	4.14	3.90	4.04
28	3.73	4 - 15	4.12	4-87	4-40	3.96	4.29	3.69	4.42	3.93	4.08	3.84	3.98
29	3.60	4.81	3.98	3.94	4.26	3.64	4.15	3.75	4.28	3.88	3.94 3.94	3.70 3.71	3.85 3.85
30	3-60	4-81	3.96	3.94	4.26	3.85	4 • 15	3.75	4.28	3.80			
31	3.82	4.23	4.28	4.16	4.48	4.87	4.37	3.97	4.50	4.02	4-16	3.92	4.05
32	3.95	4.37	4.35	4.30	4 - 63	4.21	4.52	4.11	4.65	4.15	4.30	4.06	4.20
33	4.84	4.46	4.44 4.56	4.39 4.52	4.72 4.86	4.30 4.42	4.61	4.20 4.32	4.74 4.88	4.25 4.37	4.39 4.52	4.15 4.27	4.29 4.42
34 35	4.16 4.21	4.66	4.63	4.56	4.93	4.48	4.81	4.38	4.95	4.43	4.59	4.33	4.48
36	4.22	4-67	4.64	4.59	4.95	4.49	4.63	4.39	4.97	4.44	4.60	4.34	4.50
37	4.78	5.25	5.23	5.17	5.54	5.07	5.42	4.96	5.57	5.62	5.18	4.91	5.07
36	5.21	5.78	5.68	5.62	6.00	5.51	5.87	5.40	6.03	5.46	3.62	5.35	5.51
39	5.30	5 - 81	5.76	5.72	6.12	3.62	5.99	5.51	6.14	5.56	5.73	5.45	5.61
48	5.32	5.63	5.88	5.74	6.14	5.63	6.61	5.52	6.17	5.58	5.75	5.47	5.64
61	5.13	5-64	5.61	5.55	5.96	5.45	5.82	5.33	5.98	5.39	5.57	5.28	5.45
42	5.87	5.59	5.55	5.50	5.91	5.39	5.77	5.28	5.93	5.34	5.52	5.23	5.48
43	5.18	5.71	5.67	5.62	6.93	5.51	5.89	5.39	6.06	5.45	5.64	5.34	5.52
44 45	5.81 4.94	5.53 5.46	5.49 5.42	5.66 5.37	5.86 5.78	5.33 5.26	5.72 5.65	5.22 5.15	5.88 5.81	5.28 5.21	5.46 5.39	5.16 5.89	5.34 5.27
46	4.77	5.29	5.25	5.21	5.61	5.19	5.48	4.98 4.99	5.64 5.65	5.84 5.05	5.22 5.24	4.92 4.94	5.11 5.12
46	4.78	5.31 5.37	5.26 5.33	5.22 5.28	5.63 5.69	5.11 5.17	5.49 5.56	5.06	5.72	5.12	5.30	5.00	5.18
.;	5.84	5.56	5.52	5.47	5.88	5.36	5.75	5.25	5.91	5.31	5.49	5.19	5.37
58	5.17	5.70	5.66	5.61	6. 82	5.56	5.88	5.38	6.85	5.44	5.62	5.33	5.51
51	5.27	5.79	5.76	5.70	6.12	5.59	5.90	5.48	6.15	5.54	5.72	5.42	5-60
52	5-41	5.94	5.91	5.65	6.27	5.74	6.13	5.62	6.30	5.68	5.87	5.57	5.74
53	5.50	6.84	6.81	5.95	6.37	5.84	6.23	5.72	6.40	5.78	5.97	5.66	5.64
54	5.54	6-89	6.05	6.11	6.42	5.48	6.28	5.77	6.45	5.63	6.61	5.71	5.89

ELECTRONIC STOPPING POWER OF IONS AT VELOCITY VO HODIFIED FIRSOV NETHOD STOPPING POWER (1E-13 EV-CM2)

TARGET					PROJ	ECTILE (ATOMIC	NUMBER					
ATOMIC NUMBER	68	69	70	71	72	73	74	75	76	77	76	79	80
WO11-02-11						4 44	1.03	1.03	1.82	.93	. 64	.82	. 87
1	1.05	1.04	1.02	1.00	1.02	1.83	1.81	1.61	.99	.98	.81	.79	- 84
2	1.84	1.03	1.01	.99	1.81 2.18		2.14	2.14	2.14	2.82	1.91	1.66	1.94
3	2.15	2.12	2.89	2.86 2.25	2.38	2.32	2.34	2.34	2.33	2.21	2.18	2.87	2.13
4	2.35 2.37	2.32	2.29 2.31	2.28	2.32	2.34	2.35	2.35	2.34	2.22	2.16	2.67	2-14
5	2031	F 404								- 45	2.83	2.00	2.67
6	2.32	2.29	2.26	2.24	2.27	2.29	2.29	2.29	2. Z4	2.15 2.07	1.95	1.92	1.99
Ť	2.26	2.23	2.28	2-17	2.20	2.22	2.22	2.22	2.2 0 2.17	2.83	1.91	1.88	1.95
6	2.23	2.28	2.17	2.14	2.17	2.19	2.19	2.18	2.10	1.97	1.84	1.61	1.88
9	2.16	2.13	2.18	2.88	2.11	2.12	2.12 2.84	2.12 2.84	2.62	1.68	1.76	1.73	1.60
10	2.08	2.85	2.02	1.99	2.02	2.84		2004		•••			
11	2.63	2.59	2.56	2.53	2.57	2.59	2.65	2.60	2.59	2.45	2.32	2.29	2.37 2.74
12	2.99	2.95	2.92	2.66	2.92	2 - 9 5	2.96	2.97	2.96	2.82	2.69	2.66	3.15
13	3.39	3.35	3.31	3.27	3.32	3.35	3.37	3.38	3.37	3.23	3.18	3.07 3.21	3.29
14	3.54	3.50	3.46	3.42	3.47	3.51	3.52	3.53	3.52	3.36	3.25 3.26	3.23	3.31
15	3.57	3.53	3.49	3.45	3.50	3.53	3.55	3.55	3.55	3.40	3020	0000	••••
		- 44	3.57	3.53	3.58	3.61	3.62	3.63	3.62	3.46	3.32	3.29	3.38
16	3.65	3.61 3.57	3.52	3.49	3.53	3.56	3.57	3.57	3.57	3.48	3.26	3.23	3.31
17	3.61	3.51	3.47	3.43	3.48	3.50	3.51	3.51	3.50	3.33	3.19	3.15	3.24
18	3.55 4.04	4.00	3.95	3.91	3.96	3.99	4.01	4.01	4.00	3.83	3.68	3.65	3.74
19 20	4.39	4.34	4.30	4.25	4.30	4.34	4.36	4.37	4.36	4.19	4.84	4-01	4.10
•					. 70	4.34	4.35	4.36	4.36	4.18	4.03	4.80	4.09
21	4.39	4.34	4.29	4.25	4.30 4.24	4.27	4.29	4.36	4.29	4.12	3.96	3,93	4.83
22	4.32	4.28	4.23	4.19 4.12	4.17	4.20	4.22	4.22	4.22	4.64	3.69	3.86	3.95
23	4.25	4.21	4.16 3.97	3.92	3.97	4.80	4.02	4.02	4.02	3.84	3.69	3.66	3.75
24	4.86	4.81 4.85	4.01	3.96	4.01	4.05	4.06	4.07	4.06	3.89	3.73	3.78	3.79
25	4.10	4.87	4.02	0020	****								3.75
26	4.85	4.00	3.96	3.91	3.97	4.80	4.01	4.02	4.01	3.84	3.69	3.65 3.61	3.70
27	4.00	3.95	3.91	3.86	3.91	3.95	3.96	3.97	3.96	3.79	3.64 3.59	3.55	3.64
28	3.94	3.59	3.85	3.81	3.66	3.89	3.91	3.91	3.90	3.74	3.45	3.42	3.51
29	3.88	3.76	3.71	3.67	3.72	3.75	3.77	3.77	3.76 3.77	3.60 3.60	3.45	3.42	3.51
36	3.80	3.76	3.72	3.67	3.72	3.75	3.77	3.77	3.11	3101	0045	••••	
		3.97	3.93	3.88	3.94	3.97	3.99	3.99	3.99	3.82	3.68	3.64	3.73
31	4.02 4.15	4.11	4.06	4.82	4. 07	4.11	4.13	4.13	4.13	3.96	3.82	3.78	3.67
32	4.24	4.20	4.15	4.11	4.16	4.20	4.22	4.22	4.22	4.85	3.98	3.87	3.96
33 34	4.37	4.32	4.27	4.23	4.28	4.32	4.34	4.35	4.34	4.17	4.02	3.99	4.89
35	4.43	4.36	4.34	4.29	4.35	4.38	4.40	4-41	4.40	4.23	4.08	4.04	4.14
							4.41	4.42	4.41	4.23	4.08	4.84	4.14
36	4.45	4.40	4.35	4.38	4.36	4.39 4.96	4.99	5.80	5.00	4.82	4.66	4.63	4.73
37	5.01	4.96	4.91	4.86 5.29	4.92 5.36	5.48	5.43	5.44	5.44	5.26	5.10	5.07	5.18
36	5.45	5.40	5.34 5.45	5.39	5.46	5.58	5.53	5.55	5.55	5.36	5.28	5.17	5.28
39 40	5.56 5.58	5.5Q 5.52	5.47	5.41	5.48	5.52	5.55	5.56	5.56	5.37	5.21	5.18	5.29
70	2020								5.37	5.17	5.01	4.97	5.08
41	5.46	5.34	5.29	\$.23	5.30	5.34	\$.36 5. 31	5.37 5.32	5.31	5.12	4.95	4.91	5.02
42	5.35	5.29	5.24	5.16	5.25	5.29 5.40	5.42	5.43	5.43	5.23	5.15	5.82	5.14
43	5.46	5.40	5.35	5.30	5.36 5.19	5.23	5.25	5.26	5.25	5.05	4.88	4.84	4.95
• •	5.29	5.23	5.18	5.13 5.86	5.12	5.16	5.14	5.16	5.18	4.98	4.88	4.77	4.88
45	5.22	5.16	5.11	2.20	24 AL	, , ,							
46	5.85	5.00	4.94	4.69	4.95	4.99	5.61	5.81	5.81	4.80 4.82	4.63 4.64	4.59 4.51	4.70 4.72
47	5.86		4.95	4.90	4.96	5.00	5.62	5.03	5.12 5.19	4.89	4.71	4.68	4.79
48	5.13		5.02	4.97	5.03	5.87	5.09	5.09	5.28	5.08	4.91	4.47	4.99
49	5.32		5.51	5.15	5.21	5.25	5.28	5.29 5.42	5.42	5.22	5.45	5.81	5.13
58	5.45	5.39	5.34	5.24	5.35	5.39	5.41	2176					
51	5.54	5.49	5.43	5.34	5.44	5.48	5.51	5.52	5.52	5.32	5.14	3.11	3.22
52 52			5.57	5.52	5.58	5.63	5.65		5.66	5.47	5.29	5.26	5.37
53				5.61	5.68	5.72	5.75	5.76	5.76	5.56	5.39		5.47 5.52
54	·			5.66	5.72	5.77	5.88	5.81	5.81	5.61	5.43	5.40	7076

ELECTRONIC STOPPING POWER OF IONS AT VELOCITY VS MODIFIED FIRSDY METHOD STOPPING POWER (1E-13 EV-GM2)

TARGET					PRO.	JEGTILE	ATOMIC	NUMBER				
ATONIC	•			-								92
NUMBER	61	82	83	84	85	86	67	88	89	98	91	76
1	.92	1.81	1.66	1.13	1.18	1.21	1.24	1.43	1.68	1.65	1.67	1.53
ž	. 66.	.96	1.85	1.11	1.15	1.17	1.19	1.40	1.58	1.62	1.64	1.50
3	2.81	2.13	2.23	2.33	2.41	2.48	2.54	2.60	3.04	3.12	3.18	2.95
,	2.21	2.33	2.44	2.53	2.62	2.69	2.76	3.95	3.30	3.39	3.46	3.21
5	2.21	2.35	2.46	2.55	2.62	2.69	2.75	3.85	3.32	3.41	3.47	1.23
6	2.15	2.20	2.39	2.48	2.56	2.62	S • 66	2.98	3.26	3.34	3.39	3.16
7	2.17	2.21	2.32	2.41	2.48	2.53	2.58	2.90	3.19	3.26	3.31	3.66
	2.03	2.17	2.28	2.37	2.44	2.58	2.54	2.87	3.17	3,24	3.28	3.86
9	1.96	2-10	2.22	2.31 2.22	2.36 2.29	2.43 2.34	2.47 2.38	2.68 2.71	3.18 3.91	3.17 3.67	3.21 3.11	2.99
10	1.66	2 -82	2.13	2.66	4067	E + 37	2.00	E . / L	3.51	2001	3122	2.07
11	2.45	2.59	2.71	2.81	2.69	2.95	3.60	3.35	3.65	3.73	3.79	3.54
15	2.02	2.97	3.19	3.20	3.28	3.36	3.42	3.77	4.19	4.18	4.24	3.98
13	3.24	3.39	3.52	3.63	3.72	3.80	3.87	4.24	4.58	4.68	4.75	4.47
14	3.39	3.55	3.68	3.11	3.69	3.98	4.05	4.43	4.78	4.86	4.96	4.67
15	3.41	3.58	3.71	3.83	3.93	4.01	4.88	4.47	4.83	4.94	5.81	4.72
15	3.48	3.65	3.79	3.91	4. 61	4.09	4.16	4.57	4.94	5.15	5.12	4.83
17	3.41	3.59	3.74	3.86	3.95	4.84	4.10	4.53	4.90	5.81	5.88	4.78
18	3.34	3.53	3.67	3.79	3.89	3.97	4.04	4-47	4.86	4.96	5.03	5.73
19	3.85	4.84	4.19	4.32	4.43	4.51	4.59	5.84	5.44	5.55	5.63	5.31 5.73
20	4.21	4.48	4.56	4.70	4-81	4.98	4.98	5.44	5.46	5.96	6.86	3413
21	4.20	4.40	4.56	4.59	4.80	4.96	4.97	5.44	5.86	5.98	6.87	5.73
55	4.14	4.33	4.49	4.62	4.73	4.63	4.90	5.37	5.79	5.91	6.00	5.66
23	4.86	4.26	4.42	4.55	4 - 66	4.75	4.83	5.29	5.71	5.63	5.91	5.58
24	3.86	4.45	4.21	4.34	4.45	4.54	4 - 61	5.00	5.49	5.61	5.69	5.36
25	3.90	4.10	4.25	4.38	4.49	4.56	4.65	5.12	5.53	5.65	5.73	5.40
26	3.86	4.05	4.20	4.33	4.44	4.53	4.60	5.16	5.48	5.59	5.67	5.35
27	3.81	4.00	4.15	4.28	4.39	4.48	4.55	5.41	5.41	5.53	5.61	5.29
28	3.75	3.94	4.09	4.22	4.33	4.41	4.49	4.94	5.34	5.46	5.54	3.22
29	3.61	3.80	3 - 95	4.08	4.18	4.27	4.34	4.76	5.18	5.30	5.38	5.86
30	3.62	3.60	3.95	4.88	4.18	4.27	4.34	4.78	5.14	5.29	5.37	5.85
•4	* **		4.18	4.38	4.41	4.50	4.57	5.02	5.42	5.54	5.62	5.38
31	3.84 3.98	4.83 4.17	4.32	4.45	4.56	4.65	4.72	5.17	5.58	5.70	5.78	5.46
32 33	4.07	4.26	4.42	4.55	4.66	4.75	4.82	5.28	5.69	5.81	5.98	5.57
34	4.20	4.39	4.55	4.68	4.79	4.49	4.97	5.43	5.85	5.97	6.86	5.73
35	4.25	4.45	4.61	4.75	4.86	4.96	5.14	5.51	5.94	6.06	6.15	5.81
•		7000	****	*****				•				
36	4.26	4 . 45	4.62	4.76	4.87	4.97	5.05	5.53	5.97	6.89	6.18	5.84
37	4.85	3.86	5.23	5.37	5.49	5.60	5.68	6.19	6-54	6.77	6.47	6.51
38	5.34	5.52	5.69	5.84	5.97	6.88	6.17	6.69	7.16	7.30	7.48	7.03
39	5.41	5.62	5.81	5.96	6.09	6.20	6.29	6.82	7.30	7.44	7.55	7-17
48	5.42	5.64	5.82	5.97	6.11	6.22	6.31	6.85	7.33	7.48	7.54	7.26
	8.44		E 49	6.77	E . 04	4.84	4.44	4.48	7.14	7.28	7.38	7.00
41	5.21 5.15	5.44 5.38	5.62 5.57	5.77 5.72	5.91 5.85	6.81 3.96	6.11 6. 0 5	6.65 6.60	7.10	7.24	7.34	4.95
42 43	5.27	5.56	5.69	5.84	3.97	6.88	6.18	6.73	7.23	7.38	7.46	7.09
44	5.19	5.32	5.58	5.55	5.79	5.98	5.99	6.55	7.85	7.19	7.29	6.98
45	5.81	5.24	5.43	5.58	5.72	5.63	5.92	6.46	6.98	7.12	7.22	6.83
	-											
46	4.64	5.47	5.25	5.41	5.54	5.65	5.74	6.30	6.60	6.94	7.84	6.64
47	4.85	5.46	5.27	5.42	5.55	5.66	5.75	6.31	6.81	6.95	7.15	6.66
48	4.92	5.15	5.33	5.49	5 - 62	5.73	5.62	6.36	6.68	7.82	7.12	6.73
49	5.12	5.35	5.54	5.59	3.82	5.93	6.63	6.59	7.69	7.23	7.34	6.94
54	5.26	5.49	5.64	5.03	5.97	6.85	6.17	6.73	7.24	7.36	7.49	7.69
	E 94		2 74	2 . 24	4.44		4 0=	4 44	7.35	7.49	7.60	7.28
51 52	5.36 5.51	5.59 5.74	5.76 5.93	5.94 6.19	6.47 6.23	6.16 6.34	6.28 6.44	6.64 7.00	7.51	7.66	7.77	7.36
5 3	5.61	5.64	6.64	6.28	6.33	6.45	6.54	7.11	7.63	7.78	7.89	7.48
54	5.65	3.09	6.08	6.25	6.38	6.58	6.60	7.17	7.69	7.84	7.95	7.54

 \prod_{j}

ELECTRONIC STOPPING POHER CF IONS AT VELOCITY V3 MODIFIED FIRSOV NETHOD STOPPING POHER (1E-13 EV-CM2)

TARGET ATOMIC					PRO	JECTILE	ATOMIC	NU- BER					
NUMBER	£	7	8	9	10	11	12	13	14	15	1€	17	19
5:	ź. 33	2.37	2.36	2.34	2.29	2.23	83.5	3.02	3.36	3.55	3.65	3.76	3.83
56	2.57	2.62	2.61	2.59	2.54	2.48	2.94	3.29	3.65	3.86	3.98	4.09	4.14
57	2.64	2.69	2.69	2.67	2.62	2.55	3.03	3.38	3.74	3.96	4.08	4.19	4.25
56	2.60	2.65	2.64	2.63	2.58	2.51	8, 5	3.34	3.70	3.91	4.03	4.1-	4.19
59	2.48	2.53	2.52	2.50	2.45	2.38	2.85	3.20	3.55	3.75	3.87	3.98	4.03
		2.49	2.43	2.46	2.41	2.35	2.81	3.15	3.50	3.71	3.82	3.93	₹.97
60	2.44	2.47	2.43	6.40	2.41	E . 93	6461	3.17	3,50	3 7	3.02	3.73	1691
61	7.41	2.46	2.44	2.42	2.37	2.31	2.77	3.11	3.46	3.66	3.77	3.86	7.92
62	2.37	2.42	2.41	2.39	2.34	2.27	2.73	3.07	3.41	3.61	3.73	3.83	8-
63	2.34	2.38	2.37	2.35	2.30	2.23	2.69	3.03	3.37	3.57	3.68	3.73	3.82
54	Z.36	2.43	2.42	Z.40	2.35	2.28	2.74	3.08	3.43	3.63	3.74	3.6-	7.59
65	2 • 27	2.32	2.31	2.28	5.53	2.17	5.65	2.95	3.28	3.48	3.59	3.69	3.73
66	2.24	2.29	2.27	2.25	2.20	2.14	2.58	2.91	3.24	3.44	3.55	3.65	3.69
67	2.22	2.26	2.24	2.22	2.17	2.11	2.55	2.88	3.21	3.43	3.51	3.61	3.5
68	2.19	2.23	2.22	2.19	2.15	2.08	2.52	2.64	3.17	3.36	3.47	3.57	7.51
69	2.16	2.21	2.19	2.17	2.12	2.65	2.49	2.81	3.13	3.32	3.43	3.53	3.57
7 6	2.14	2.18	2.15	2.14	2.09	2.03	2.46	2.78	3.10	3.29	3.43	3.40	3.53
• •	6124				(,	2			4120	312,	0143	004.	,
71	2.21	2.26	2.24	2.22	2.17	2.10	2.54	2.86	3.19	3.38	3.43	3.59	3.63
72	2.23	2.28	2.26	2.24	2.19	2.12	2.56	2.89	3.22	3.41	3.52	3.62	7.66
73	2.23	2.27	2.26	2.24	2.19	2.12	2.57	2.89	3.22	3.42	3.53	3.62	3.66
74	2.22	2.26	2.25	2.22	2,18	2.11	2.56	2.89	3.22	3.41	3.52	3.61	3.65
75	2.20	2.24	5.55	5.50	2.15	2.09	2.54	2.87	3.20	3.39	3.50	3.59	3.53
76	2.17	2.21	2.19	2.17	2.12	2.06	2.51	2.85	3.18	3.37	3.47	3.56	3.50
77	2.14	2.17	2.15	2.14	2.09	2.03	2.48	2.81	3.15	3.34	3.44	3,53	7.56
78	2.05	2.06	2.07	2.04	2.60	1.93	2.39	2.72	3.05	3.24	3.33	3.42	3.45
79	2.00	2.04	2.02	2.00	1.95	1.89	2.34	2.57	3.00	3.19	3.25	3.36	3.39
60	2.62	2.05	2.03	2.01	1.96	1.90	2.36	2.69	3.02	3.21	3.73	3.38	31
_													
81	2.15	2.18	2.17	2.14	2.10	2.03	2.49	2.83	3.17	3.36	36	3.54	7.58
82	2.24	2.28	2.26	2.24	2.19	2.13	2.59	2.93	3.26	3.47	3.57	3.67	3.75
83	2.30	2.35	2.34	2.32	Z.27	2.20	2.67	3.02	3.36	3.56	3.67	3.76	7.63
84	2.42	2.47	2.46	2.44	2.39	2.32	2.80	3.16	3.51	3.72	3.83	3.93	7.98
85	5.39	2.43	2.42	2.40	2.36	2.29	2.77	3.13	3.48	3.69	3.6:	3.90	3.94
86	2.43	2.45	2.43	2.42	2.37	2.30	2.79	3.15	3.51	3.72	3.83	3.93	7.97
87	2.73	2.79	2,79	2.77	2.72	2.65	3.15	3.53	3.91	4.13	4.26	4.37	4.43
88	2.99	3.06	3.06	3.65	3.00	2.93	3.44	3.82	4.21	4.45	4.59	4.72	4.79
89	3.11	3.19	3.19	3.18	3.13	3.06	3.58	3.97	4.37	4.62	4.76	4.98	4.07
90	3.17	3.25	3.26	3.25	3.20	3.15	3.65	4.05	4.46	4.71	4.86	4.99	5.27
70	3.11	3.63	34 66	34 63	34 64	3116	0162	4.47	4.40	~•••	4105	4.33	2001
91	3.67	3.14	3.14	3,13	3.08	3.01	3.54	3.93	4.34	4.56	4.72	4.85	4.92
92	3.03	3.10	3.10	3.89	3.04	2.97	3.49	3.89	4.29	4.53	4.67	4.80	4.57
93	2.98	3.05	3.05	3.84	2.99	2.92	3.45	3.84	4.25	4.48	4.62	4.75	4.81
94	2.67	2.93	2.93	2.92	2.87	2.80	3.32	3.70	4.10	34	4.47	4.59	4.65
95	2.61	2.88	2.57	2.66	2.81	2.74	3.26	3.64	4.64	4.27	4.40	4.52	4.56
84							• ••		,		,		
36	2.65	2.91	2.91	2.98	2.85	2.78	3.30	3.69	4.08	4.71	4.45	4.57	4.63
97	2.71	2.77	2.77	2.75	2.78	2.63	3. 14	3.52	3.91	4.14	4.26	4.36	4.44
98	2.66	2.72	2.72	2.70	2.65	2.58	3.09	3.47	3.25	4.08	4.23	4.32	37
99	2.62	88.5	2.67	2.65	2.60	2.53	3.04	3.41	3.79	4.01	4.14	4.25	4.37
100	2.57	2.63	2.62	2.61	2.56	2.49	2.99	3.36	3.73	3.95	4.35	4.19	L. 24
101	2.53	2.59	2.58	2.58	2,51	2.44	2.94	3.30	3.66	3.69	4.02	4.13	15
132	2.49	2.55	2.54	2.52	2.47	2.40	2.89	3.26	3.62	3.84	3.95	4.07	4.12

ELECTRONIC STOPPING POWER OF ICNS AT VELOCITY VO MODIFIED FIRSOV METHOD STOPPING POWER (1E-13 EV-CM2)

TARGET					PRO.	JECTILE	ATOMIC	NUMBER					
NUMBER	19	20	21	22	23	24	25	5€	27	28	29	30	31
SF	3.80	4.22	4.17	4.24	4.03	3.97	4.09	4.04	3.89	3.84	3.77	3.61	3.92
56	4.14	4.58	4.53	4.61	4.40	-	4 45	4.40	4.24	4.19	4-12	4.16	4.27
57	4.25	4.70	4.65	4.73	4.52	4.45	4.57	4.52	4.36	4.31	4.24	4.27	38
58	4.2G	4.64	4.59	4.67	4.46	4.39	4.51	4.47	4.30	4.25	4.18	4.22	4.33
59	4.03	4.46	4.41	4.49	4.28	4.21	4.33	4.29	4.12	4.07	4.01	4.04	4.15
60	3.97	4.41	4.36	4.44	4.22	4.16	4.27	4.23	4.07	4.02	3.96	3.99	4.10
90					4.15								
61	3.92	4.35	4.30	4.38	4.17	4.11	4.22	4.18	4.02	3.97	3.90	3.54	4.05
62	3.87	4.30	4.25	4.33	4.11	4.05	4.17	4.12	3.96	3.91	3.85	3.89	3.99
63	3.82	4.25	4.19	4.27	4.06	4.96	4.11	4.07	3.91	3.86	3.80	3.8~	3.94
64	3.88	4.31	4.26	4.34	4.13	4.67	4.16	4.14	3.98	3.93	3.86	3.98	4.31
65	3.73	4.15	4.09	4.17	3.96	3.90	4.01	3.97	3.61	3.77	3.70	3.74	3.85
66	3.68	4.10	4.05	4.12	3.91	3.85	3.97	3.93	3.77	3.72	3.66	3.69	7.80
67	3.64	4.86	4.60	4.00	3.67	3.61	3.92	3.66	3.72	3.67	3.61	3.65	3.75
68	3.60	4.01	3.96	4.03	3.63	3.77	3.66	3.64	3.68	3.63	3.57	3.61	3.71
69	3.56	3.97	3.92	3.99	3.78	3.72	3.63	3.79	3.64	3.59	3.53	3.56	3.67
70	3.52	3,93	3.88	3.95	3.74	3.60	3.79	3.75	3.60	3.55	3.49	3.52	3.63
71	3.62	4.63	3.98	4.05	3.85	3.7€	3.69	3.85	3.70	3.65	3.59	3.62	3.73
72	3.65	4.06	4.01	4.05	3.66	3.62	3.93	3.69	3.73	3.68	3.62	3.6€	3.76
73	3.65	4.07	4.82	4.09	3.88	3.83	3.54	3.90	3.74	3.69	3.63	3.67	7.77
74	3.64	4.06	4.01	4.09	3.88	3.82	3.53	3.89	3.73	3.68	3.62	3.66	3.77
75	3.62	4.04	3.99	4 - 67	3.65	3.60	3.91	3.87	3.71	3.67	3.63	3.64	3.75
76	3.59	4.01	3.96	4.6-	3.62	3.76	3. 68	3.84	3.68	3.64	3.55	3.61	3.72
77	3.55	3.98	3.92	4.00	3.78	3.73	3. 64	3.89	3.65	3.50	3.5+	3.56	3.69
78	3.43	3.86	3.63	3.68	3.67	3.61	3.73	3.69	3.53	3.+9	3.43	3.47	7.58
79	3.37	3.64	3.74	3.62	3.61	3.55	3.67	3.63	3.47	3.43	3.37	3.41	3.52
8.0	3.39	3.82	3.76	3.64	3.63	3.57	3.59	3.65	3.50	3.45	3.39	3.43	3.54
61	3.56	4.80	3.94	4.02	3.01	3.75	3.67	3.87	3.67	3.62	3.56	3.6	3.71
82	3.69	4.13	4.07	4 - 15	3.94	3.88	4.00	3.96	3.60	3.75	3.69	3.73	3.84
83	3.79	4.24	4.18	4.26	4.05	3.99	4.10	4.06	3.93	3.86	3.79	3.63	3.9L
84	3.97	4.43	4.37	4.45	4.24	4.17	4.29	4.25	4.09	4.04	3.95	4.61	4.12
85	3.93	4.39	4.33	4.41	4.19	4.13	4.25	4.21	4.05	4.00	3.94	3.97	09
86	3.96	4.42	4.35	4.45	4.23	4.17	4.29	4.25	4.09	4.94	3.97	4.01	4.12
67	4.43	4.91	4.86	4.95	4.72	4.66	4.78	4.74	4.57	4.52	4.45	4.48	4.59
86	4.60	5.29	5.24	5.33	5.11	5.04	5.17	5.12	4.95	4.89	4.82	4.85	96
89	4.99	5.49	5.44	5.53	5.31	5.24	5.36	5.32	5.14	5.05	5.01	5.64	5.16
90	5.58	5.59	5.54	5.65	5.41	5.35	5.47	5.43	5.25	5.19	5.12	5.13	5.25
91	4.94	5.44	5.39	5.49	5.26	5.19	5.32	5.27	5.10	5.04	4.97	5 . C &	5.12
92	4.88	5.39	5.34	5.44	5.20	5.14	5.27	5.22	5.04	4.99	4.92	4.95	F.36
93	4.62	5.33	5-27	5.37	5.14	5.08	5.21	5.16	4.98	4.93	4.85	4.89	5.31
94	4.66	5.16	5.10	5.20	4.97	4.91	5.C3	4.99	4.82	4.76	4.69	4.72	4.84
95	4.58	5.08	5.03	5.12	4.89	4.83	4. 96	4.91	4.74	4.69	4.61	4.65	4.76
96	4.63	5.13	5.08	5.18	4.94	4.88	5.01	4.96	4.79	4.7-	4.66	4.7t	4.81
97	4.44	4.93	4.87	4.97	4.74	4.68	4.80	4.76	4,59	4.54	4.47	4.50	4.62
98	4.37	4.86	4.80	4.90	4.67	4.61	4.73	4.69	4,52	4.47	4.43	4.43	55
99	4.30	4.79	4.73	4.83	4.60	4.54	4.66	4.62	4.45	4.40	4.33	4.36	4.48
100	4.24	4.72	4.66	4.76	4.53	4.47	4.59	4.55	4.38	4.33	4.26	4.36	4.61
101	4.17	4.65	4.60	4.69	4.46	4.40	4.52	4.48	4.31	4.26	4.13	4.23	54
	4-12						4.46			4.23			4.28

ELECTEONIC STOPPING POWER OF IONS AT VELOCITY VO MODIFIED FIRSOV METHOD STOPPING POWER (1E-17 EV-CH2)

					PROJE	CTILE A	TOMIC N	IU4BER					
TARGET ATOMIC	••	33	34	35	36	37	38	39	 €	-1	42	43	44
NUMBER	32	33	•				5.25	5.64	5.51	5.36	5.37	5.54	5.39
55	i. 14	4.31	4.44	4.58	4.68	4.75	5.66	6.06	5.94	5.60	5.81	5.99	F.84
56	4.49	4.67	4.81	4.95	5.07	5.14	5.80	6.21	6.09	5.95	5.95	6.15	5.99 5.92
57	4.61	4.79	4.93	5.09	5.20	5.27 5.21	5.74	6.15	6.02	5.88	5.63	6.00	5.77
58	4.56	4.74	4.65	5.83	5.14	5.01	5.53	5.94	5.81	5.67	5.67	5.85	5.64
59	4.38	4.55	4.69	4.84	4.95	4.96	5.47	5.87	5.75	5.50	5.61	5.79	5.04
60	32	4.50	4.64	4.78	4.89	4.70						5.72	5.57
34					4.83	4.90	5.41	5.81	5.68	F . 54	5.54	5.66	5.51
61	4.27	4.44	4.58	4.73	4.77	4.84	5.35	5.75	5.62	5.47	5.48 5.42	5.55	5.4.
62	~.22	4.39	4.53	4.67	4.72	4.78	5 . 29	5.69	5.56	5.41	5.50	5.67	5.52
63	16	4.34	4.47	4.69	4.79	4.85	5.37	5.77	5.64	5.49	5.30	5.47	5.32
64	4.23	4.41	4.54	4.51	4.61	4.67	5.18	5.57	5.44	5.29	3.34		
65	4.85	4.24	4.37	4.31	7000	-				5.24	5.24	5.41	5.26
	_		4.32	4.45	4.56	4.62	5.12	5.51	5.38	5.18	5.19	5.36	5.21
66	4.02	4.19	4.27	4.41	4.51	4.57	5.67	5.45	5.33	5.13	5.13	5.30	5.15
67	3.97	4.14	4.23	4.37	4.46	4.52	5.02	5.40	5.27 5.22	5.08	5.08	5.2:	5.17
68	3.93	4.10	4.18	4.32	4.42	4.48	4.97	5.35	5.17	5.03	5.03	5.20	5.05
69	3.66	4.05	4.14	4.28	4.37	4.43	4.92	5.30	3 . 2 .	2	-		
75	3.64	4.01	40.4					- 14	5.29	5.15	5.15	5.32	5.17
		4.11	4.24	4.38	4.48	4.54	5.03	F.41	5.33	5.18	5.19	5.36	5.21
71	3.94	4.15	4.28	4.42	4.52	4.58	5.07	5.46 5.47	5.34	5.20	5.20	5.37	5.22
72	3.98 3.99	4.16	4.29	4.43	4.53	4.59	5.09	5.47	5.34	5.19	5.19	5.37	F.21
73 74	3.98	4.16	4.29	4.43	4.52	4.58	5.08 5.07	5.46	5.32	5.17	5.17	5.35	= .19
75	3.97	4.14	4.27	4.41	4.50	4.56	5.17	5.40	• • • • • • • • • • • • • • • • • • • •				- 46
12	3.91	400-			_		5.04	5.43	5.29	5.14	5.14	5.32	5.16
76	3.94	L.11	4.24	4.38	4.48	4.53	5.00	5.40	5.26	5.09	5.13	5.28	5.12
77	3.91	4.88	4.21	4.34	4.44	4.49 4.37	4. 88	5.27	5.13	4.96	4.97	5.14	4.99 4.92
78	3.60	3.97	4.89	4.23	4.32	4.31	4.82	5.21	5.06	4.93	4.01	5.68	4.94
79	3.74	3.91	4.03	4.17	26	4.33	4.85	5.24	5.09	4.92	4.93	5.11	
80	3.76	3.93	4.05	4.19	4.26	4.33	4.43					5.31	5.15
•			_	. =.	4.47	4.52	5.04	5.44	5.30	5.13	5.13	5.47	5.31
81	3.93	4.11	4.24	4.38	4.61	4.66	5.19	5.59	5.45	5.28	5.29	5.60	5.44
58		4.24	4.37	4.51	4.72	4.78	5.31	5.72	5.58	5.41	5.42	5.8-	5.65
83			4.48	4.62	4.93	4.99	5.53	5.95	5.81	5.64	5.65 5.63	5.79	F.63
84			4.67	4.62	4.85	4.95	5.48	5.90	5.76	5.59	2.01	2	•
85	4.32	4.50	4.63	4.78	44.00					- 6	5.65	5.8-	5.68
			. 47	4.82	4.93	4.99	5.53	5.95	5.81	5.64 6.22	6.24	6.43	€.28
86				5.33	5.44	5,52	6.08		6.38	6.68		6.90	6.74
87				5.72	5.64	5.93	6.51			6.91	I	7.14	6.99
80				5.93	6.06		6.73			7.05		7.29	7.13
89				6.04	6.17	6.26	6.86	7.33	1.20	,,,,			
91	5.51	5.71	9.07	• • • • • • • • • • • • • • • • • • • •		_		- 46	7.62	6.87	6.89	7.10	ۥa7
_	1 5.30	5.56	5.72	5.89	6.02							7.0-	
9:	- : : -		·	5.84			6.64						
9				5.77								6.77	
9					5.72							6.68	6.51
9					5.64	5.71	6.33	, 61.0	, 0.00				
9	y > • •		-				6.30	6.82	6.67	6.51			
•	6 5.0	6 5.21	6 5.41							6.27			
	7 4.8		5 5.20							6.1			
	8 4.7	9 4.9	8 5.13			1				6.13			
	9 4.7	2 4.9	1 5.05							6.0	2 6.0	6.24	, 6.00
10				5.10	7.2	, ,		-				5 6.19	: .99
•	-				7 5.1	5 . 2	5 5.6	2 6.2				-	
. 10		4 4 . 7							6 5.0	5.5	7 7.0		,
	12 6.	2 4.7	1 4.6	5.0	. 704								

I

ELECTRONIC STOPPING POWER CF IONS AT VELOCITY VO HODIFIED FIRSOV METHOD STOPPING POWER (1E-13 EV-CM2)

					PROJ	ECTILE	AT OHIC	NU4 BER		
TARGET ATOMIC NUMBER	45	46	47	4.6	49	50	51	52	53	54
					5.41	5.60	5.75	5.88	6.02	6.13
55	5.50	5.31	5.23	5.31 5.76	5.86	6.05	6.21	€.33	6.48	6.60
56	5.95	5.76	5.68	5.92	6.02	6.21	6.37	€.50	6.65	6.77
57	6.11	5.92	5.83	5.85	5.95	6.14	6.30	E.43	6.58	6.70
58	6.04	5.85	5.77	5.63	5.73	5 .92	6.07	£.20	6.35	6.46
59	5.42	5.62	5.54	5.56	5.66	5.85	6.01	E.13	6.26	6.40
60	5.75	5.56	5.48	3.90	,,,,,					
		F 4.0	5.41	5.49	5.59	5.78	5.94	E.07	6.21	6.33
61	5.68	5.49 5.43	5.35	5.43	5.53	5.72	5.87	6.00	6.14	6.26
62	5.62	5.36	5.28	5.37	5.47	5 . 65	5.61	5.93	6.68	6.19
63	5.55	5.44	5.35	5.45	5.55	5.74	5.89	E.02	6.16	6.28
64	5.63 5.43	5.24	5.15	5.24	5.34	5.53	5.68	5.81	5.95	6.05
65	9.40	7.64	••••	-					5.89	6.00
66	5.37	5.18	5.10	5.15	5 • 28	5.47	5.62	5.75	5.83	5.94
67	5.32	5.13	5.05	5.13	5.23	5.41	5.56	5.69 5.63	5.77	5.88
68	5.26	5.87	4.99	5.87	5.17	5.36	5.51	5.58	5.72	5.83
69	5.21	5.02	4.94	5.02	5.12	5.30	5.45 5.40	5.52	5.66	5.77
70	5.16	4.97	4.89	4.97	5.07	5.25	5.40	5.76		
	_				= 40	5.37	5.52	5.64	5.79	5.90
71	5.28	5.09	5.01	5.09	5.19	5.41	5.56	5.69	5.83	5.94
72	5.32	5.13	5.05	5.13	5.23 5.24	5.43	5.58	5.70	5.85	5.95
73	5.33	5.14	5.05	5.14	5.24	5.42	5.58	5.70	5.85	5.96
74	5.32	5.13	5.05	5.14	5.22	5.41	5.56	5.69	5.83	5.94
75	5.30	5.11	5.03	5.12	3.55	J •				
		5.06	5.00	5.88	5.19	5.38	5.53	5.66	5.80	5.91
76	5.27	5.04	4.96	5.84	5.15	5.34	5.50	5.62	5.77	5.83
77	5.23	4.90	4.82	4.91	5.01	5.21	5.37	5.49	5.64	5.75
76	5.10	4.83	4.75	4.64	4.95	5.14	5.33	5.42	5.57	5.68
79 58	5.C3 5.06	4.86	4.78	4.27	4.97	5.17	5.33	5.46	5.60	5.71
36	7.00	4						5.67	5.81	5.93
81	5.27	5.07	4.99	5.08	5.18	5.38	5.70	5.63	5.98	€.09
82	5.43	5.23	5.15	5.24	5 • 34	F .54	5.63	5.96	6.11	6.23
83	5.56	5.36	5.28	5.37	5.48	5.67 5.92	6.38	6.21	6.37	F.48
84	5.80	5.60	5.52	5.61	5.72	5.87	€.03	6.16	6.31	5.43
85	5.75	5.55	5.47	5.56	5.67	2.01	0.00	••		
		- 40	5.52	5.61	5.72	5.92	6.58	6.22		6.49
86	5.88	5.60	6.12	6.21	5.31	6.52	6.68	€.82		7.13
67	6.40	6.20 6.67	6.59	6.68	6.78	6.99	7.16	7.33	7.46	7.59
66	6.67	6.92	6.83	6.92	7.03	7.24		7.55	7.71	7.85 8.00
89	7.12 7.26	7.96	6.97	7.07	7.18	7.39	7.56	7.70	7.87	C • M 1
90	7420	,,,,,	••••					7 59	7.68	7.81
91	7.08	6.87	6.79	6.68	6.99	7.20			_	
92			6.72	6.82						
93			6.65	6.75		7.07				_
94			6.45	6.54		6 . 87	7.04	7.09		
95		6.44	6.35	6.45	6.56	€.77	6.77	7.03	, ,,,	
3.0					5.62	6.63	7.61	7.15	7.31	
96			6.41	6.51					7.06	7.19
97			6.17	6.27 6.18					6.97	
98			6.09	6.19	2.2			6.72		
99			5.92						6.80	€.92
100	6.20	4.00	34 76	3.47	2.20					6.53
101	6.12	5.92	5.83	5.93	6.04					
102					5.96	6.17	6.34	6.47	5,03	·

ELECTRONIC STOPPING POWER OF IONS AT VELOCITY VB HODIFIED FIRSOV METHOD STOPPING POWER (1E-13 EV-CM2)

TARGET					PROJ	ECTILE	DINOTA	NUMBER					
AT DAIC NUMBER	55	56	57	58	59	68	61	62	63	64	65	66	67
797067	••	••				6.45	6.86	6.33	7.03	6.40	6.58	6.27	6.45
55	6.10	6.66	6.63	6.57	7.00		7.35	6.80	7.53	6.87	7.06	6.74	6.93
56	6.57	7.13	7.12	7.05	7.49	6.93	7.53	6.98	7.71	7.05	7.24	6.92	7.10
57	6.74	7.31	7.29	7.22	7.68	7.10 7.03	7.46	6.91	7.64	6.98	7.17	6.85	7.03
58	6.67	7.24	7.22	7.15	7 - 61		7.21	6.67	7.39	6.74	6.93	6.61	6.79
59	6.43	7.00	6.98	6.91	7.36	6.79		6.60	7.32	6.67	6.86	6.54	6.73
61	6.37	6.93	6.91	6.64	7.29	6.73	7.14	0.0 0		••••		_	
	6.30	6.46	6.64	6.77	7.22	6.66	7.07	6.53	7.25	6.68	6.79	6.47 6.40	6.66 6.59
61	6.23	6.79	6.77	6.78	7.15	£.59	7.00	6.46	7.18	6.53	6.72	6.34	6.52
62		6.72	6.78	6.63	7.88	6.52	6.93	6.39	7.11	6.46	6.65	6.42	6.61
63	6.16	6.61	6.79	6.72	7.17	£.61	7.02	6.48	7.20	6.55	6.74		6.39
64 65	6.25 6.25	6.59	6.57	6.50	6.94	6.39	6.79	6.26	6.97	6.33	6.52	6.21	0.07
				4 1.4.	6.87	6.32	6.73	6.20	6.90	6.27	6.45	6.14	6.32
66	5.97	6.53	6.50	6.44	6.81	6.26	6.66	6.14	6.84	6.21	6.39	6.08	6.26
67	5.91	6.46	6.44	6.37	6.75	£.20	6.60	6.88	6.78	6.15	6.33	6.82	6.20
68	5.45	6.40	6.30	6.31		6.14	6.54	6.82	6.72	6.09	6.27	5.97	6.14
69	5.40	6.34	6.32	6.26	6.68	6.09	6.48	5.97	6.66	6.03	6.21	5.91	6.09
70	5.74	6.29	6.26	6.28	6.63	6.03	4.40	2000					£ 24
			6.39	6.32	6.75	6.21	6.61	6.09	6.79	6.16	6.34	6.03	6.21
71	5.87	6.41	6.44	6.37	6.80	6.26	6.66	6.14	6.83	6.20	6.39	6.88	6.26
72	5.91	6.46	6.46	6.39	6.63	6.28	6.68	6.16	6.86	6.22	6.41	6.10	6.28
73	5.93	6.48	6.46	6.39	6.83	6.28	6.69	6.16	6.66	6.22	6.41	6.10	5.28
74	5.93	6.40		6.38	6.82	£.27	6.68	6.14	6.85	6.21	6.40	6.09	6.27
75	5.91	6.47	6.44	0.00	••••						6.38	6.0E	6.25
76	5.89	6.45	6.42	6.36	6.80	6.24	6.65	6.12	6.83	6.18	6.34	6.02	6.21
77	5.45	6.41	6.38	6.32	6.77	£.21	6.62	6.08	5.86	6.15	6.21	5.89	6.08
76	5.72	6.29	6.25	6.19	6.64	E.08	6.49	5.95	6.67	5.02	6.15	5.83	6.62
79	5.65	6.22	6.16	6.13	6.57	6.01	6.43	5.89	6.61	5.95		5.86	6.05
80	5.66	6.26	6.22	6.10	6.61	6.04	6.46	5.92	6.64	5.98	6.18	3.00	••••
		_				6.26	5.69	6.14	6.87	6.20	6.49	6.06	6.27
81	5.96	6.48	6.44	6.38	6.84		5.86	6.31	7.04	6.37	6.57	6.25	6.44
62	6.06	6.65	6.61	6.55	7.01	6.43 6.57	7.00	6.45	7.19	6.51	6.71	6.39	6.58
83	6.26	6.79	6.76	6.69	7 - 15	6.84	7.27	6.71	7.46	6.78	6.98	6.64	6.84
64	6.45	7.85	7.62	6.96	7.43	6.78	7.22	6.65	7.41	6.72	6.92	6.59	6.79
85	6.46	7.00	6.97	6.90	7.37	9.70	,	0.02					6.85
		7.95	7.03	6.96	7.44	£.84	7.28	6.71	7.47	6.74	6.99	6.65	7.47
46	6.46	7.68	7.66	7.59	8.07	7.47	7.92	7.33	8.11	7.41	7.61	7.27	7.96
87	7.97	8.18	8.16	6.89	8.58	7.96	8.42	7.82	8.62	7.90	8-11	7.76	8.22
6.5	7.56	8.45	6.43	8.35	8.85	8.23	8.69	8.09	8.89	8.17	6.37	8.02	
99	7.81 7.97	8.61	8.59	8.51	9.02	6.38	8.85	8.24	9.06	8.33	8.53	8.16	6.36
	•			4 73	8.83	8.20	8.67	8.06	8.87	8.14	8.35	7.99	8.20
91	7.74	8.42	6.48	6.32	8.77	8.14	8.61	8.00	6.61	8.06	8.29	7.93	8.14
92	7.72	1.36	8.34	8.26 05.8	8.70	6.07	6.54	7.93	6.74	8.01	8.22	7.86	8.07
93	7.65	8.29	0.27	7.94	8.49	7.66	8.32	7.72	8.53	7.80	8.01	7.65	7.86
94	7.44	8.66	8.06		6.39	7.76	8.23	7.62	8.43	7.70	7.91	7.56	7.76
95	7.35	7.99	7.96	7.89		,.,,					7 0-	7 4 2	7.63
96	7.41	8.05	8.03	7.95	6.46	7.83	8.30	7.69	8.50	7.77	7.98 7.72	7.62 7.37	7.57
97	7.16		7.77	7.70	8.20	7.57	8.04	7.43	8.24	7.51 7.42	7.63	7.28	7.48
91	7.07		7.68	7.61	8.10	7.48	7.94	7.34	8.14		7.54	7.19	7.39
99	6.98		7.58	7.51	8. 81	7.39		7.25	8.65	7.33 7.23	7.45	7.18	7.30
166	6.49		7.49	7.42	7.92	7.30	7.75	7.16	7.95	1.53			
484	6.80	7.43	7.40	7.33	7.82	7.20	7.66		7.86	7.14	7.35	7.81	7.21
101				7.25				6.99	7.77	7.06	7.27	6.93	7.13
102	4.46		, , , , ,										

ELECTRONIC STOPPING POWER OF IONS AT VELOCITY VG MODIFIED FIRSOV NETHOD STOPPING POWER (1E-13 EV-CM2)

TARGET					PRO.	JECTILE	ATOMIC	NUMBER					
NUMBER	68	69	70	71	72	73	74	75	76	77	78	79	80
55	6.39	6.33	6.27	6.21	6.28	€.33	6.36	6.38	6.39	6.19	6.82	5.99	6.11
56	6.86	6.80	6.73	6.67	6.75	6.80	6.84	6.86	6.87	6.67	6.50	6.48	6.60
57	7.03	6.97	6.91	6.84	6.92	6.98	7.01	7.04	7.05	6.85	6.68	6.65	6.78
54	6.97	6.93	6.84	6.78	6.85	6.91	6.95	6.97	6.98	6.78	6.60	6.58	6.70
59	6.73	6.66	6.60	6.54	6.62	6.67	6.71	6.73	6.73	6.53	6.36	6.33	6.46
60	6.66	6.60	6.54	6.48	6.55	6.68	6.64	6.66	6.66	6.47	6.29	5.26	6.39
	0.00			0.75	0.33		0.07	0.00		0.47	0.27		0.07
61	6.59	6.53	6.47	6.41	6.48	6.53	6.57	6.59	6.59	6.40	6.22	6.19	6.32
62	6.52	6.46	6.40	6.34	6.41	6.46	6.50	6.52	6.52	6.33	6.15	6.12	6.25
63	6.45	5.39	6.33	6.27	6.34	6.40	6.43	6.45	6.45	6.26	6.08	6.05	6.18
64	6.54	6.48	6.42	6.36	6.43	6.48	6.52	6.54	6.54	6.34	6.17	6.14	6.26
65	6.32	6.26	6.20	6.14	6.21	6.26	6.30	6.32	6.32	6.12	5 . 95	5.92	6.04
66	€.26	6.20	6.14	6.88	6.15	6.20	6.23	6.25	6.26	6.06	5.89	5.86	5.98
67	6.20	6.14	6.08	6.82	6.09	6.14	6.17	6.19	6.19	6.00	5.53	5.80	5.92
68	6.14	6.08	6.02	5.96	6.03	6.08	6.11	6.13	6.13	5.94	5.77	5.74	5.86
69	6.08	6.02	5.96	5.90	5.97	6.02	6.05	6.07	6.08	5.88	5.71	5.68	5.80
70	6.02	5.96	5.90	5.85	5.92	5.97	6.00	6.82	6.82	5.63	5.66	5.62	5.74
71	6.15	6.89	6.83	5.97	6.04	6.09	6.12	6.14	6.15	5.95	5.78	5.75	5.87
72	£.20	6.13	6.07	6.02	6.09	E.14	6.17	6.19	6.19	6.00	5.82	5.79	5.91
73	6.22	6.15	6.18	6.04	6.11	6.16	6.19	6.21	6.21	6.01	5.84	5.81	5.93
74	6.22	6.16	6.10	6.04	6.11	6.16	6.19	6.21	6.21	6.01	5.84	5.81	5.93
75	6.21	5.15	6.09	6.03	6.10	6.15	6.18	6.19	6.20	5.99	5.82	5.79	5.91
76	6.18	6.12	6.06	6.01	6.47	6.12	6.15	6.17	6.17	5.96	5.79	5.76	5.88
77	6.15	6.89	6.03	5.97	6.04	6.09	6.12	6.13	6.13	5.92	5.74	5.71	5.84
76	6.32	5.96	5.90	5.84	5.91	5.96	5.99	6.00	6.00	5.79	5.61	5.57	5.70
79	5.96	5.90	5.64	5.78	5.65	5.89	5.92	5.93	5.93	5.72	5.53	5.50	5.62
66	5.99	5.93	5.67	5.81	5.88	5.93	5.95	5.96	5.96	5.75	5.57	5.53	5.66
• •	6 24			6 07		£ 44			6 40	5 AZ	E 70	E 74	E 44
81	€.21	6.15	6.69	6.03	6.10	6.14	6.17	6.19	6.19	5.97	5.79	5.76	5.88
82	6.38	6.31	6.25	6.19	6.26	6.31	6.34	6.36	6.36	6.15	5.96	5.93	6.C6
83	6.51	6 - 45	6.39	6.33	6.40	6.45	6.48	6.50	6.50	6.29	6.10	6.07	6.20
64	6.77	6.71	6.65	6.58	6.66	6.71	6.74	6.76	6.77	6.55	6.37	6.34	6.47
85	6.72	6.66	6.59	6.53	6.61	€.66	6.69	6.71	6.71	6.50	6.31	6.28	6.41
86	€.76	6.72	6.65	6.59	6.67	6.72	6.75	6.77	6.77	6.56	6.37	6.34	6.47
87	7.40	7.33	7.26	7.20	7.28	7.34	7.37	7.40	7.41	7.20	7.01	6.99	7.12
5.6	7.69	7.82	7.75	7.68	7.76	7.83	7.87	7.95	7.91	7.70	7.52	7.50	7.63
89	6.15	8.08	8.01	7.94	8.02	8.09	8.14	8.17	8.18	7.97	7.79	7.77	7.91
90	8.31	8.23	8.16	8.09	8.18	8.25	8.29	8.32	8.34	6.13	7.95	7.93	8.07
91	e.12	8.05	7.98	7.91	8.00	5.06	8.10	8.13	8.15	7.93	7.75	7.73	7.87
92	8.06	7.99	7.92	7.85	7.94	8.00	8.05	8.07	8.69	7.87	7.69	7.66	7.80
93	8.00	7.92	7.85	7.79	7.87	7.93	7.98	8.00	8.01	7.6C	7.61	7.59	7.73
94	7.79	7.71	7.65	7.58	7.66	7.72	7.76	7.79	7.80	7.58	7.40	7.37	7.51
95	7.69	7.62	7.55	7.49	7.57	7.63	7.67	7.69	7.70	7.48	7.30	7.27	7.41
96	7.76	7.69	7.62	7.55	7.63	7.69	7.73	7.76	7.77	7.55	7.36	7.34	7.48
97	7.50	7.43	7.37	7.30	7.38	7.44	7.48	7.50	7.51	7.29	7.10	7.07	7.21
96		7.34		7.21	7.29				7.42		7.01		
99	7.41 7.32	7.25	7 - 27		7.29	7.35	7.39	7.41 7.32		7.26		6.96	7.12
			7.18	7.12		7.26	7.29		7.32	7.10	6.92	6.89	7.02
100	7.23	7 • 16	7.49	7.03	7.11	7.16	7.20	7.22	7.23	7.01	6.83	6.8G	6.93
101	7.14	7.07	7.01	6.94	7.02	7.07	7.11	7.13	7.14	6.92	6.73	6.71	6.84
162	7.36	6.99	6.92	6.86	6 • 94	6.99	7.03	7.05	7.06	6.84	6.65	6.62	6.76

ELECTRONIC STOPPING POWER OF IONS AT VELOCITY VO MODIFIED FIRSOV METHOD STOPPING POWER (1E-13 EV-CM2)

TARGET					PRO	JECTILE	ATOMIC	NUMBER				
NUMBER	81	82	63	64	85	46	87	85	89	90	91	92
55	6.25	6.49	6.69	6.85	7.00	7.12	7.22	7.81	8.33	8.49	8.61	6.19
56	6.74	6.99	7.19	7.36	7.51	7.64	7.75	8.34	8.88	9.05	9.18	8.74
57	6.92	7.17	7.38	7.55	7.70	7.83	7.94	8.54	9.09	9.26	9.39	8.96
56	6.85	7.10	7.30	7.48	7.62	7.75	7.86	8.47	9.02	9.19	9.31	8.66
				7.22	7.37				8.74		9.03	8.66
59	6.60	6 - 85	7 - 05	_		7.49	7.60	8.20		8.91	_	
60	6.53	6.78	6.98	7.15	7.29	7.42	7.53	8.13	8.67	8.83	8.95	8.52
61	6.46	6.70	6 - 91	7.08	7 - 22	7.35	7.45	6.05	8.59	8.75	8 - 87	8.45
62	6.39	6.63	6.83	7.00	7.15	7.27	7.38	7.97	8.51	4.67	8.79	8.37
63	6.32	6.56	6.76	6.93	7.87	7.20	7.30	7.90	8.43	8.59	8.72	8.29
54	6.41	6 - 65	6.85	7-02	7.17	7.29	7.4û	8.00	8.54	8.70	8-82	8.39
65	6.18	6.42	6.62	6.79	6.93	7.06	7.16	7.75	8.28	8.44	8.56	8.14
6 t	6.12	6.36	6.56	6.72	6.87	6.99	7.09	7.66	8.20	8.36	6.48	8.06
67	6.86	6.29	6.49	6.56	6.60	6.92	7.02	7.61	8.13	8.29	8.41	7.99
68	5.99	6.23	6.43	6.59	6.73	6.86	6.96	7.54	4.06	8.22	8.34	7.92
69	5.94	6.17	6.37	6.53	6.67	€.79	6.90	7.47	7.99	8.15	8.27	7.85
76	5.88	6.11	6.31	6.47	6-61	6.73	6.83	7.41	7.93	8.08	8.20	7.79
71	6.81	6.24	6.44	6.50	6.74	6.87	6.97	7.55	8.07	8.23	8.34	7.93
72	6.05	6.29	6.49	6.65	6.79	6.91	7.02	7.60	8.12	8.28	5-40	7.98
73	6.07	6.31	6.51	6.67	6.82	6.94	7.64	7.62	8.15	8.31	6.43	8.01
74	6.37	6.31	6.51	6.68	6.82	6.94	7.84	7.63	8.16	6.32	8.44	8.02
75	6.05	6.29	6.49	6.66	6.80	6.93	7.03	7.62	8.16	8.32	8.44	6.01
76	6.02	6 . 26	6.47	6.64	6.78	6.90	7.01	7.60	6.14	6.30	8.42	7.99
77	5.96	6.22	6.43	6.60	6.74	6.46	6.97	7.57	5.11	8.27	8.39	7.96
78	5.84	6.89	6.29	6.45	6.60	6.73	6.63	7.43	7.98	6.14	8.25	7.82
79	5.77	6.02	6.22	6.39	6.53	€.66	6.76	7.36	7.91	8.07	8.18	7.75
68	5.80	6.05	6.26	6.43	6.57	6.69	6.80	7.41	7.95	8.11	8.23	7.80
81	6.33	6.28	6.49	6.66	6.81	6.93	7.04	7.65	8.20	8.37	6.48	8.05
82	6.20	6.46	6.65	6.84	6.99	7.11	7.22	7.54	6.39	8.56	8.58	8.24
83	6.35	6.60	6.81	6.99	7.14	7.26	7.37	7.99	8.55	8.72	8.85	8.46
84	6.62	6.88	7.09	7.27	7.42	7.55	7.66	8.29	8.86	9.03	9.16	8.71
85	6.56	6.82	7.03	7.21	7.36	7.49	7.60	8.23	8.88	8.97	9.10	8.65
86	6.62	6.88	7.10	7.27	7.43	7.56	7.67	8.36	3.88	9.05	9.18	8.72
87	7.28	7.54	7.76	7.94	6.10	8.24	8.35	9.00	9.58	9.76	9.93	9.43
86	7.79	8.06	8.28	6.47	8.63	6.77	8.89	9.55	10.14	10.33	10.47	10.0G
69	8.87	8.34	8.57	4.76	8.92	9.16	9.19	9.85	10.45	10.64	13.79	10.31
90	8.23	8.51	6.73	6.93	9.89	9.24	9.36	10.03	10.64	10.83	10.98	10.56
91	6.03	8.31	8.53	8.73	8.89	9.04	9.16	9.83	10.44	10.63	10.77	10.29
92	7.97	8.24	8.47	8.66	8.83	8.97	9.10	9.77	10.38	10.57	10.71	10.23
93	7.69	8.17	8.40	8.59	8.76	8.90	9.02	9.76	10.30	10.49	10.64	10.16
94	7.67	7.95	8.17	8.37	8.53	6.67	8.79	9.46	10.07	18.26	10.40	9.92
95	7.57	7.45	8.07	8.26	8.43	8.57	8.69	9.36	9.97	10.15	16.30	9.61
96	7.64	7.91	8.14	8.33	8.50	e 41.	8.76	9.44	10.04	10.23	10.37	9.89
97	7.37	7.65	7.87	8.86	8.23	6.64			9.76			9.65
	7.28		7.78			6.37	8.49	9 • 15		9.94	10.08	
98		7.55		7.97	8.13	8.27	8.39	9.05	9.65	9.84		9.50
99	7.18	7.46	7.68	7 - 87	8.03	6.17	8.29	8.95	9.55	9.73	9.87	9.39
180	7.09	7.36	7.58	7.77	7.93	6.07	8.19	8.85	9.45	9.63	9.77	9.29
101	7.00	7 . 27	7.49	7.68	7.84	7.97	8.69	8.75	9.34	9.52	9.66	9.19
192	6.91	7.10	7.48	7.59	7.75	7.86	8.00	8.65	9.24	9.43	9.56	9.09

APPENDIX I

USE OF TABLE III TO CONSTRUCT STOPPING-POWER CURVES

Table III gives stopping-power values at the velocity v_0 . For velocities below v_0 , the stopping power can be taken to be proportional to the velocity:

$$S_{\epsilon}(v) = \left(\frac{v}{v_{o}}\right) S_{\epsilon}(v_{o}).$$

For velocities above v_0 the stopping must be obtained by some other method such as the scaling law of Eq.(4) of the text. To interpolate between a minimum value of velocity for which such a method is applicable and the velocity v_0 , a straight line is suggested.

Two examples are presented, carbon in carbon and for nitrogen in zirconium. The stopping at $v = v_0$ as found from the tables is 0.70×10^{-13} and 2.03×10^{-13} eV-cm², respectively. For velocities above $2v_0$, S_e is obtained from a semi-empirical method developed by Ziegler²² in which the stopping $S_z(v,Z_2)$ for any projectile Z having velocity v in a target Z_2 is related to the proton stopping $S_p(v,Z_2)$ by a universal reduced stopping $\langle S \rangle$:

$$\langle s \rangle = \frac{s_z(v, z_2)}{z^2 s_p(v, z_2)}.$$

The proton stopping is taken from Andersen and Ziegler²³. The data are from Refs. 10, 16, and 19.

APPENDIX II

GRAPHS

31.10(a.k.

The state of the s

ELECTRONIC STOPPING POWER S_E [10⁻¹⁴EV-CM²]

REFERENCES

- 1. O. B. Firsov, Zh. Eksp. Teor. Fiz. 36, 1517 (1959) [Sov. Phys.-JETP 36, 1076 (1959)].
- 2. D. J. Land and J. G. Brennan, Atomic Data and Nuclear Data Tables 22, 235(1978).
- 3. J. Lindhard and M. Scharff, Phys. Rev. <u>124</u>, 128(1961).
- 4. A. Teplova, V. S. Nikolaev, I. S. Dmitriev, and L. N. Fateeva, Zh. Eksp. Teor. Fiz. 42, 44(1961) [Sov. Phys.-JETP 15, 31 (1962)].
- I. M. Cheshire and J. M. Poate, in Atomic Collision Phenomena in Solids, edited by D. W. Palmer, M. W. Thompson, and P. D. Townsend (North-Holland Amsterdam, 1970), p.351;
 C. P. Bhalla, J. N. Bradford, and G. Reese, ibid, p. 361.
- 6. D. J. Land and J. G. Brennan, Nucl. Instrum. Methods 132, 89(1976).
- 7. D. J. Land, J. G. Brennan, D. G. Simons, and M. D. Brown, Phys. Rev. A <u>16</u>, 492(1977).
- 8. D. G. Simons, D. J. Land, J. G. Brennan, and M. D. Brown, Phys. Rev. A 12, 2383(1975).
- 9. J. G. Brennan, D. J. Land, M. D. Brown, and D. G. Simons, Nucl. Instrum. Methods 149, 143(1978).
- 10. E. Clementi and C. Roetti, Atomic Data and Nuclear Data Tables 14, 177(1974).
- 11. F. Herman, S. Skillman, "ATOMIC STRUCTURE CALCULATIONS", (Prentice Hall Inc., Englewood Cliff, New Jersey, 1963).
- . 12. L. C. Northcliffe and R. F. Schilling, Nuclear Data A 7, 233;(1970).
 - 13. B. Fastrup, P. Hvelplund, and C. A. Sautter, K. Dan. Vidensk. Selsk. Mat.-Fys. Medd. 35, No. 10 (1966); P. Hvelplund and B. Fastrup, Phys. Rev. 165, 408(1968). D. I. Porat and K. Ramavataram, Proc. Phys. Soc. Lond. 77, 97(1960); Proc. Phys. Soc. Lond. 78, 1135(1961) J. H. Ormrod and H. E. Duckworth, Can. J. Phys. 41, 1424(1963); J. H. Ormrod, J. R. MacDonald and H. E. Duckworth, ibid. 43, 275(1965).
 - 14. N. M. Denkin, Ph.D. dissertation, California Institute of Technology (1976).

- 15. P. Hvelplund, K. Dan. Vidensk. Selsk. Mat.-Fys. Medd. 38, No. 4(1971). B. Fastrup, A. Borup, and P. Hvelplund, Can. J. Phys. 46, 489(1968).
- 16. W. Booth and I. S. Grant, Nuclear Physics 63, 481(1965).
- 17. C. D. Moak and M. D. Brown, Phys. Rev. Letters, 11, 284(1963);
 C. D. Moak and M. D. Brown, Phys. Rev. 149, 244(1966); and
 M. D. Brown and C. D. Moak, Phys. Rev. B 6, 90(1972).
- 18. J. R. MacDonald, J. H. Ormrod and H. E. Duckworth, Z. Naturforsck. Teil A 27, 130(1966).
- 19. D. Ward et.al., Can. J. Phys. 57, 645(1979).
- 20. S. A. Cruz, C. Vargas and D. K. Brice, 8th International Conference on Atomic Collisions in Solids Hamilton, Canada(1979).
- 21. T. L. Ferrell and R. H. Ritchie, Phys. Rev. B 16, 115(1977).
- 22. J. F. Ziegler, Appl. Phys. Lett. 31, 544(1977).
- 23. H. H. Andersen and J. F. Ziegler, "Hydrogen-Stopping Powers in All Elements" (Pergamon, New York, 1977).
- 24. J. Lindhard, K. Dan. Vidensk. Selsk. Mat.-Fys. Medd. 28, No. 8 (1954).