FUNDAMENTOS MATEMÁTICOS

P v ~P? Eis a questão...

Autopsicografia

INFORMAÇÕES

- Componente Curricular: Fundamentos matemáticos da computação
- Código: SUP-CDC-01-FUMAT
- Carga Horário: 60h
- Turma: 2018/01

EMENTA

- Lógica Proposicional e de Predicados.
- Linguagem Proposicional e de Primeira Ordem.
- Sistemas Dedutivos.
- Tabelas Verdade e Estruturas de Primeira Ordem.
- Relações de Consequência.
- Corretude, completude, compacidade e decidibilidade.
- Lowemhein Skolen.
- Prova automática de teoremas.

OBJETIVOS

- Conhecer os principais conceitos da Lógica
 Proposicional e da Lógica de Predicados de modo a compreender suas várias aplicações dentro da computação.
- Entender e aplicar os conhecimentos da Lógica Matemática a diferentes problemas da área de computação.
- Estimular o pensamento lógico-matemático do aluno através da utilização de equivalências e inferências na simplificação de problemas aplicados a ciência da computação.

AVALIAÇÃO

- MLE Média ponderada das listas de exercícios e exercícios em sala - (Peso 3 na média final).
- MAV Média ponderada das avaliações de conhecimento individual - (Peso 7 na média final).

FORMULÁRIO DE DIAGNÓSTICO

https://bit.ly/3a5UJ4U

Eu e a lógica

A lógica apresenta-se de maneira intrínseca em nós e em nosso cotidiano.

INTRODUÇÃO RELAÇÕES DE LÓGICA

RELAÇÕES DE LÓGICA

- Pai, me dá uma bicicleta?
- Mas pra que? Você já tem uma caixa cheia de gravetos.

Desde então o moleque nunca mais tomou suco de laranja.

Duas casas estão voando, uma olha para a outra e fala:

- Olha só casa não voa!
- Mas eu sou um Supermercado!

RELAÇÕES DE LÓGICA

$$0 - 1 - 1 - 2 - 3 - 6 - 8 - 13 - 21 - 34...$$

$$9 - 7 - 8 - 6 - 9 - 5 - 6 - 4...$$

INTRODUÇÃO RELAÇÕES DE LÓGICA

Todo mamífero é um animal.

Todo cavalo é mamífero.

Portanto, todo cavalo é um animal.

RELAÇÕES DE LÓGICA

Considerando a premissa maior "Todos os cavalos são vertebrados" e a conclusão "Logo, Teodoro é vertebrado", assinale a alternativa que apresenta a premissa menor do silogismo válido.

- a) "Os vertebrados são cavalos".
- b) "Os cavalos são seres vivos".
- c) "Teodoro é mortal".
- d) "Os vertebrados são mortais".
- e) "Teodoro é um cavalo".

RELAÇÕES DE LÓGICA

Considerando a premissa maior "Todos os cavalos são vertebrados" e a conclusão "Logo, Teodoro é vertebrado", assinale a alternativa que apresenta a premissa menor do silogismo válido.

- a) "Os vertebrados são cavalos".
- b) "Os cavalos são seres vivos".
- c) "Teodoro é mortal".
- d) "Os vertebrados são mortais".
- e) "Teodoro é um cavalo".

RELAÇÕES DE LÓGICA

Três merendeiras trabalham em uma repartição. A respeito dessas funcionárias, sabe-se que: todas as merendeiras gostam de café; as merendeiras que não gostam de suco também não gostam de café. Dessas informações conclui-se que:

- a) nenhuma merendeira gosta de suco.
- b) alguma merendeira não gosta de café, mas gosta de suco.
- c) alguma merendeira não gosta de suco, mas gosta de café.
- d) alguma merendeira não gosta de suco nem de café.
- e) todas as merendeiras gostam de suco.

INTRODUÇÃO RELAÇÕES DE LÓGICA

PROBLEMA DO FAZENDEIRO, O LOBO, O CARNEIRO E A ALFACE

Era uma vez um fazendeiro que foi ao mercado e comprou um lobo, um carneiro e uma alface. No caminho para casa, o fazendeiro chegou à margem de um rio e arrendou um barco. Mas, na travessia do rio por barco, o agricultor poderia levar apenas a si mesmo e uma única de suas compras - o lobo, o carneiro, ou a alface.

Se fossem deixados sozinhos em uma mesma margem, o lobo comeria o carneiro e o carneiro comeria a alface.

O desafio do fazendeiro é atravessar a si mesmo e as suas compras para a margem oposta do rio, deixando cada compra intacta. Como ele fará isso?

INTRODUÇÃO RELAÇÕES DE LÓGICA

PROBLEMA DO FAZENDEIRO, O LOBO, O CARNEIRO E A ALFACE

https://www.transum.org/software/River_Crossing/Level1.asp

https://www.transum.org/software/River_Crossing/

3. LÓGICA SENTENCIAL FORMAL

Proposições, conectivos e tabela-verdade

CONCEITO PROPOSIÇÃO

Todo conjunto de palavras ou símbolos que exprimem um **pensamento de sentido completo.**

As proposições transmitem pensamentos, isto é, **afirmam fatos ou exprimem juízos** que formamos a respeito de determinados entes.

EXEMPLOS PROPOSIÇÃO

- Dez é menor que sete
- Como está você?
- Ela é muito talentosa
- Existe vida em outros planetas

CONCEITO

PRINCÍPIO DA IDENTIDADE

Cada coisa é idêntica a si mesma.

CONCEITO

PRINCÍPIO DO TERCEIRO EXCLUÍDO

Uma proposição

é verdadeira ou

FALSE

TRUE

TAES

falsa.

VALOR LÓGICO

VERDADEIRO OU FALSO

CONCEITO

PRINCÍPIO DA NÃO CONTRADIÇÃO

Uma proposição não pode ser verdadeiro e falsa ao mesmo tempo.

TIPOS

PROPOSIÇÃO

SIMPLES OU COMPOSTA

CONCEITO

PROPOSIÇÃO SIMPLES

- Não contém nenhuma outra proposição como parte integrante de si mesma.
- Geralmente designadas por letras minúsculas (p, q, r, s...)

EXEMPLOS

PROPOSIÇÃO SIMPLES

- Carlos é careca
- Pedro é estudante
- Solicitar exemplo aos alunos
- Fulano é estudioso

CONCEITO

PROPOSIÇÃO COMPOSTA

- Formada pela combinação de duas ou mais proposições.
- Habitualmente designadas por letras maiúsculas (P, Q, R, S...)

EXEMPLOS

PROPOSIÇÃO COMPOSTA

- Carlos é careca e Pedro é estudante
- Carlos é careca ou Pedro é estudante
- Se Carlos é careca, então é infeliz

PERGUNTA REVISÃO

Quantas das frases abaixo podem ser consideradas proposições lógicas:

I.Maria está em casa II.Hoje é domingo de natal? III.Vá logo estudar.IV.Ela veio de manhã e logo foi embora V.A areia da praia é macia.

- a) Apenas uma.
- b) Apenas duas.
- c) Três.
- d) Quatro.
- e) Todas as cinco.

PERGUNTA REVISÃO

Todas as alternativas estão erradas, exceto:

- a) A proposição simples deverá ter apenas um conectivo lógico.
- b) As proposições compostas são sempre formadas por mais de duas proposições simples.
- c) As posições simples podem conter outras proposições simples.
- d) Pelo princípio do terceiro excluído, podemos afirmar que uma proposição simples só poderá ser verdadeira ou falsa.
- e) "João é feliz ou fique onde está" é uma proposição composta.

THE FIM! Let's vamos...

kennedy.araujo@ifc.edu.br

RELAÇÕES DE LÓGICA

TORRE DE HANOI

Objetivo: mover todos os discos para o pino da direita.

Regras: você deve mover um disco de cada vez, sendo que um disco maior nunca pode ficar em cima de um disco menor.

RELAÇÕES DE LÓGICA

https://www.somatematica.com.br/jogos/hanoi/

Contra - Contraposição: P → Q::~P → ~Q

$$P \rightarrow Q, \sim P \rightarrow R : \sim R \rightarrow Q$$

REGRAS EQUIVALÊNCIA Implicação - Imp

 $P \rightarrow Q :: \sim P \vee Q \mid \sim P \rightarrow Q :: P \vee Q$

Se a queda é alta, então o estrago é grande A queda não é alta ou o estrago é grande

Imp - Implicação:

 $P \rightarrow Q :: \sim P \vee Q$

 $P \rightarrow Q, P \vee R : Q \vee R$

Exportação - Exp

$$P \rightarrow (Q \rightarrow R) :: (P \land Q) \rightarrow R$$

Se eu tiver dinheiro, então se eu for ao shopping, compro roupa nova Se eu tiver dinheiro e for ao shopping, então compro uma calça nova

Exp - Exportação:
$$P \rightarrow (Q \rightarrow R) :: (P \land Q) \rightarrow R$$

$$(P ^ Q) \rightarrow R, \sim R \vee S, P : Q \rightarrow S$$

Comutação - Comm

P^Q::Q^P | PvQ::QvP

Comm - Comutação: PvQ::QvP

 $P ^(\sim Q \rightarrow R) : (R \vee Q) ^P$

Associação - Assoc

```
P^{(Q^R)} :: (P^Q)^R | (P^Q)^R :: P^Q(Q^R)
```


Assoc – Associação: (PvQ)vR::Pv(QvR)

 $(P \rightarrow Q) \vee R : Q \vee (R \vee \sim P)$

Distribuição - Dist

 $P^{(Q \vee R)} :: (P^{Q}) \vee (P^{R}) | P \vee (Q^{R}) :: (P \vee Q)^{(P \vee R)}$

Dist – Distribuição: P^(Q v R) :: (P^Q) v (P^R)

 $Q \vee R$, $\sim (P \wedge Q)$, P : R

Lei de DeMorgan - DeM

```
~(P^Q)::~Pv~Q | ~(PvQ)::~P^~Q
```

- O cachorro é verde e a cadela é azul
- O cachorro não é verde ou a cadela não é azul

DeM – Lei de DeMorgan: ~ (P ^ Q) :: ~P v ~Q

 $Q \vee R$, $\sim (P \wedge Q)$, P : R

Tautologia - Taut

P^P::P | PvP::P

Taut - Tautologia: PvP::P

 $P \rightarrow \sim P : \sim P$

Equivalência - Equiv

```
P \mapsto Q :: (P \rightarrow Q) \land (Q \rightarrow P)

P \mapsto Q :: (P \land Q) \lor (\sim P \land \sim Q)
```


Equiv - Equivalência: $P \rightarrow Q :: (P \rightarrow Q) \land (Q \rightarrow P)$

 $P \mapsto (Q \land R), Q : P \lor \sim R$

Cálculo Proposicional

- a) $P \rightarrow (Q ^R), P : P ^R$
- b) $\sim P \rightarrow (Q \rightarrow (R \rightarrow \sim T)), \sim P, Q, R : \sim T$
- c) $P ^Q, (P \vee R) \rightarrow S : P ^S$
- d) $(P \vee Q) \rightarrow R$, $(R \vee Q) \rightarrow (P \rightarrow (S \rightarrow T))$, $P \wedge S$: $S \rightarrow T$
- e) $(P \land Q) \rightarrow R, R \rightarrow S, T \rightarrow \sim U, T, \sim S \lor U : \sim P \lor \sim Q$
- f) $P \rightarrow Q, Q \rightarrow R, \sim R \vee P : P \hookrightarrow Q$

a) $P \rightarrow (Q ^R), P : P ^R$

b)
$$\sim P \rightarrow (Q \rightarrow (R \rightarrow \sim T)), \sim P, Q, R : \sim T$$

c) $P ^ Q, (P \vee R) \rightarrow S : P ^ S$

d)
$$(P \lor Q) \rightarrow R$$
, $(R \lor Q) \rightarrow (P \rightarrow (S \rightarrow T))$, $P \land S: S \rightarrow T$

e) $(P \land Q) \rightarrow R, R \rightarrow S, T \rightarrow \sim U, T, \sim S \lor U : \sim P \lor \sim Q$

f) $P \rightarrow Q$, $Q \rightarrow R$, $\sim R \lor P : P \bigoplus Q$

Instructions for use

Open this document in Google Slides (if you are at slidescarnival.com use the button below this presentation)

You have to be signed in to your Google account

EDIT IN GOOGLE SLIDES

Go to the *File* menu and select *Make a copy*.

You will get a copy of this document on your Google Drive and will be able to edit, add or delete slides.

EDIT IN POWERPOINT®

Go to the *File* menu and select *Download as Microsoft PowerPoint*. You will get a .pptx file that you can edit in PowerPoint.

Remember to download and install the fonts used in this presentation (you'll find the links to the font files needed in the <u>Presentation</u> design slide)

More info on how to use this template at www.slidescarnival.com/help-use-presentation-template

This template is free to use under <u>Creative Commons Attribution license</u>. You can keep the Credits slide or mention SlidesCarnival and other resources used in a slide footer.

Hello! I am Jayden Smith

I am here because I love to give presentations.

You can find me at: @username

1. TRANSITION HEADLINE

Let's start with the first set of slides

This is a slide title

- >Here you have a list of items
- >And some text

You audience will listen to you or read the content, but won't do both.

Big concept

Bring the attention of your audience over a key concept using icons or illustrations

You can also split your content

White

Is the color of milk and fresh snow, the color produced by the combination of all the colors of the visible spectrum.

Black

Is the color of coal, ebony, and of outer space. It is the darkest color, the result of the absence of or complete absorption of light.

In two or three columns

Yellow

Is the color of gold, butter and ripe lemons. In the spectrum of visible light, yellow is found between green and orange.

Blue

Is the colour of the clear sky and the deep sea. It is located between violet and green on the optical spectrum.

Red

Is the color of blood, and because of this it has historically been associated with sacrifice, danger and courage.

A picture is worth a thousand words

A complex idea can be conveyed with just a single still image, namely making it possible to absorb large amounts of data quickly.

Want big impact?

Use big image.

Use charts to explain your ideas

And tables to compare data

	А	В	С
Yellow	10	20	7
Blue	30	15	10
Orange	5	24	16

Maps

89,526,124

Whoa! That's a big number, aren't you proud?

That's a lot of money

185,244 users

And a lot of users

Total success!

Our process is easy

Let's review some concepts

Yellow

Is the color of gold, butter and ripe lemons. In the spectrum of visible light, yellow is found between green and orange.

Blue

Is the colour of the clear sky and the deep sea. It is located between violet and green on the optical spectrum.

Red

Is the color of blood, and because of this it has historically been associated with sacrifice, danger and courage.

Yellow

Is the color of gold, butter and ripe lemons. In the spectrum of visible light, yellow is found between green and orange.

Blue

Is the colour of the clear sky and the deep sea. It is located between violet and green on the optical spectrum.

Red

Is the color of blood, and because of this it has historically been associated with sacrifice, danger and courage.

Android project

iPhone project

Tablet project

Desktop project

Thanks! Any questions?

You can find me at: @username user@mail.me

Credits

Special thanks to all the people who made and released these awesome resources for free:

- Presentation template by <u>SlidesCarnival</u>
- ▷ Photographs by <u>Unsplash</u>

Presentation design

This presentations uses the following typographies and colors:

You can download the fonts on this page:

https://www.google.com/fonts#UsePlace:use/Collection:Lato:400,700,400italic,

700italic|Raleway:400,700

Click on the "arrow button" that appears on the top right

- Dark blue #2185c5
- ▷ Light blue #7ecefd
- ∀ellow #ff9715
- Dark gray #677480
- Light gray #97abbc

Now you can use any emoji as an icon!

And of course it resizes without losing quality and you can change the color.

How? Follow Google instructions https://twitter.com/googledocs/status/730087240156643328

