INSTRUCTION DIVISION SECOND SEMESTER 2018-2019

Course Handout Part II

In addition to part-I (General Handout for all courses appended to the time table) this portion gives further specific details regarding the course.

Course No. : MATH F343

Course Title : Partial Differential Equations
Instructor-in-Charge : Sumit Kumar Vishwakarma

Instructor : Anil Nemili

Scope and Objective of the Course:

Enables one to understand the nature of partial differential equations, find solutions to these equations along with some applications in the field of Science and Engineering.

Textbooks:

T1. Tyn Myint-U and Lokenath Debnath, Linear Partial Differential Equations for Scientists and Engineers, Birkhauser, 4th Edition.

Reference books

- R1. Ian N. Sneddon, Elements of Partial Differential Equations, International Series in Pure and Applied Mathematics.
- R2. T. Amarnath, An Elementary Course in Partial Differential Equations, Narosa Publishing House, 2nd Edition.
- R3. K. Sankara Rao, Introduction to Partial Differential Equations, PHI Learning Private Limited, 3rd Edition.

Course Plan:

Lectur e No.	Learning objectives	Topics to be covered	Chapter in the Text Book
1-3	Motivation for studying partial differential equations	Introduction of Partial differential equations	1.1-1.6
4-6	Introduction and overview of first order partial differential equations	Introduction, First order linear equations	2.1-2.4
7-12	Geometrical interpretation of first order PDEs, Canonical form of first order linear equations, To Find solutions of first order PDEs	Methods of Characteristics, Canonical Form, Method of Separation of variables, Charpit's Method, Jacobi Method	2.5-2.7, R1-2.10-2.14
13	Introduction of second order partial differential equations	Second order equations in two variables	4.1
14-16	To convert the second order differential equations into the standard form Characterization of 2nd order PDE's and its solutions	Canonical Form	4.2

17-18	To convert the second order differential equations into the standard form	Equations with constant Coefficients	4.3, R1-3.4
19	Difference between general solution of ODEs and PDEs	General solution	4.4
20-25	Solution of Homogeneous and inhomogeneous wave equations, D'Almbert Principle, Duhamel Principle, Spherical and cylindrical wave equations	Wave equation	5.1-5.2, 5.3-5.6, 5.10-5.11
26-29	To obtain the maximum and the minimum of solutions of PDEs	Maximum-minimum principles	9.1-9.9
30-32	Solution of Laplace equations in different domains with homogeneous boundary condition	Laplace Equation	10.1-10.4
33-35	Analysis and behavior of solutions of heat and wave equations in two and three dimensions	Heat and Wave Equations	10.5-10.9
36-37	Solution of PDEs in terms of Green's functions	Green's Functions	11.1-11.5
38-40	Use of Fourier techniques in finding the solutions of PDEs	Fourier Transform	12.2-12.6
41-42	Use of Laplace techniques in finding the solutions of PDEs	Laplace Transform	12.8-12.10

Evaluation Scheme:

•	on otheric.								
	Component	Duration	Weightage (%)	Date & Time	Nature of Component				
	Quizzes (2 quizzes each of 5%)		10	To announced in the class	Closed book				
	Assignments (4 assignment each of 5%)		20	To be announced in the class	Open Book				
	Mid-semester	90 mins	30		Closed Book				
	Comprehensive Exam	3 hr	40		Closed Book				

Chamber Consultation Hour: To be announced in the class.

Notices: All notices about the course will be put only on CMS/Mathematics Notice Board.

Make-up Policy: Make up of evaluation components will be granted only in genuine cases. Permission must be taken in advance except in extreme cases.

INSTRUCTOR-IN-CHARGE