Kalkulua

Integral Mugatua

Integral mugatuaren propietateak. Goi-muga aldakorreko integral mugatua.

Julen Indias Garcia

April 26, 2017

Aurkibidea

1	Inte	egral mugatuak	1
	1.1	Integral mugatuaren propietateak	1
	1.2	Goi-muga aldakorreko integral mugatua	1
		1.2.1 Barrow-ren formularen erabilera	3

1. Gaia Integral mugatuak

1.1 Integral mugatuaren propietateak

- **1.1. Propietatea.** Izan bitez f(x) eta g(x) funtzio bornatuak [a,b] tartean.
 - 1. Linealtasuna: $\int_a^b (\lambda f(x) + \mu g(x)) dx = \lambda \int_a^b f(x) dx + \mu \int_a^b g(x) dx$.
 - 2. Monotonia: $\forall x \in [a, b] f(x) \le g(x)$ bada, $\int_a^b f(x) dx \le \int_a^b g(x) dx$ izango da.
 - 3. f(x) jarraitua bada, $m = \min_{x \in [a,b]} f(x)$ eta $M = \max_{x \in [a,b]} f(x)$ hartzen baditugu: $m(b-a) \le \int_a^b f(x) \, dx \le M(b-a)$ beteko da.
 - 4. Batez besteko balioaren teorema: f(x) jarraitua bada [a,b] tartean, $\xi \in [a,b]$ balioa existituko da eta $\int_a^b f(x) dx = f(\xi)(b-a)$ beteko da.
 - 5. $\forall a, b, c$ a < c < b bada, $\int_a^b f(x) dx = \int_a^c f(x) dx + \int_c^b f(x) dx$ beteko da.
 - 6. $\int_a^a f(x) dx = 0$ izango da, definizioz.
 - 7. $\int_a^b f(x) dx = -\int_b^a f(x) dx$ izango da.

1.2 Goi-muga aldakorreko integral mugatua

- **1.2. Definizioa.** Izan bedi f(x) funtzio jarraitua [a,b] tartean. $I(x) = \int_a^x f(t) dt$ integral mugatuari funtzio integral deritzo.
- **1.3. Teorema.** Kalkulu integralaren oinarrizko teorema f(x) funtzioa jarraitua bada [a,b] tartean, I(x) funtzio integrala onartuko du jatorrizkotzat.

-1

\bullet Froqa:

I(x) funtzioa f(x) funtzioaren jatorrizkoa izateko, I'(x) = f(x) bete beharko da. Beraz, I(x)-ren deribatua kalkulatu beharko dugu:

$$I'(x) = \lim_{h \to 0} \frac{I(x+h) - I(x)}{h} = \lim_{h \to 0} \frac{1}{h} \left(\int_a^x f(x) \, dx - \int_a^{x+h} f(t) \, dt \right) = \lim_{h \to 0} \frac{1}{h} \int_x^{x+h} f(t) \, dt.$$
Orain, $[x, x+h]$ tartean Batez besteko balioaren teorema aplikatuko dugu:

$$\exists \xi \in [x, x+h] / \int_x^{x+h} f(t) dt = f(\xi) \cdot (x+h-x) = f(\xi) \cdot h \text{ baita.}$$

Orduan,
$$I'(x) = \lim_{h \to 0} \frac{1}{h} f(\xi) \cdot h = \lim_{h \to 0} f(\xi)$$
 eta $x \le \xi \le x + h$ denez

Ordan,
$$[x, x+h]$$
 the team Batez besteke bandaren teorema aphkatuko dugu. $\exists \xi \in [x, x+h] / \int_x^{x+h} f(t) \, dt = f(\xi) \cdot (x+h-x) = f(\xi) \cdot h$ baita. Orduan, $I'(x) = \lim_{h \to 0} \frac{1}{h} f(\xi) \cdot h = \lim_{h \to 0} f(\xi)$ eta $x \le \xi \le x+h$ denez, $\lim_{h \to 0} x \le \lim_{h \to 0} \xi \le \lim_{h \to 0} \xi \le \lim_{h \to 0} \xi = x$, hau da, $\lim_{h \to 0} f(\xi) = x$ Ondorioz, $I(x)$ funtzioa $f(x)$ funtzioaren jatorrizkoa da.

1.4. Teorema. Barrow-ren formula

F(x) bada f(x) funtzioaren jatorrizko bat [a,b] tartean, $\int_a^b f(x) dx = F(b) - F(a)$ izango da.

• *Froga* :

$$f(x)$$
 jarraitua denez $[a,b]$ tartean, $I(x)$ funtzio integrala bere jatorrizko bat da. (13.T) $F(x) = I(x) + K$ izango da, $F(x)$ eta $I(x)f(x)$ -ren jatorrizkoak direlako. (4. gaiko 2.P) $F(b) = I(b) + K = (\int_a^b f(x) dx) + K$ $F(a) = I(a) + K = (\int_a^a f(x) dx) + K = 0 + K$ $= \int_a^b f(x) dx$

1.5. Adibidea.

$$f(x) = \begin{cases} 1+x & x \in [0,1] \\ 1-x & x \in [1,2] \end{cases}$$

 $\int_{0}^{2} f(x) dx$ kalkulatuko dugu:

$$\int_0^2 f(x) \, dx = \int_0^1 f(x) \, dx + \int_1^2 f(x) \, dx \; ; \qquad F(x) = \begin{cases} \frac{(1+x)^2}{2} & x \in [0,1) \\ -\frac{(1-x)^2}{2} & x \in [1,2] \end{cases}$$

 $\int_0^2 f(x) dx = F(2) - F(0) = \frac{-1}{2} - \frac{1}{2} = -1$ Ikusten dugunez, funtzioa ez denez jarritua, eta horregatik -1 balioa lortzen dugu.

Barrow-en formula etenunetan erabiliz honako emaitza hau lortuko dugu:

$$\int_0^2 f(x) dx = F(2) - F(0) - (F(1^+) - F(1^-)) = (-\frac{1}{2}) - \frac{1}{2} - (0 - 2) = 1$$

1.2.1 Barrow-ren formularen erabilera

$$\int_{a}^{b} f(x) dx = \begin{bmatrix} x = \phi(t) \\ dx = \phi'(t) dt \\ a = \phi(\alpha) \\ b = \phi(\beta) \end{bmatrix} = \int_{\alpha}^{\beta} f(\phi(t)) \phi'(t) dt.$$

2. Zatikako integrazioa :
$$\int_a^b f(x) dx = \int_a^b u(x) dv(x) = u(x)v(x) \Big|_a^b - \int_a^b v(x) du(x).$$

$$c \in [a, b]$$
 puntua etenune bat bada, honako hau beteko da:

$$\int_a^b f(x) dx = F(b) - F(a) - (F(c^+) - F(c^-)).$$

• Ariketak:

1. 5) $y = x^2 + 1$ eta $y = 5 - \frac{x^2}{2}$ parabolek mugatzen duten eremuaren azalera kalkulatuko dugu:

Lehenik bi funtzioen ebaki-puntua edo puntuak bilatuko ditugu.:

$$\begin{cases} y = x^2 + 1 \\ y = 5 - \frac{x^2}{2} \end{cases}; \ x^2 + 1 = 5 - \frac{x^2}{2} \Rightarrow x^2 + \frac{x^2}{2} = 4 \Rightarrow 3x^2 = 8 \Rightarrow x = \pm \sqrt{\frac{8}{3}} \end{cases}$$

$$A = \int_{-\sqrt{\frac{8}{3}}}^{\sqrt{\frac{8}{3}}} (5 - \frac{x^{2}}{2}) dx - \int_{-\sqrt{\frac{8}{3}}}^{\sqrt{\frac{8}{3}}} (x^{2} + 1) dx = \int_{-\sqrt{\frac{8}{3}}}^{\sqrt{\frac{8}{3}}} 5 dx - \int_{-\sqrt{\frac{8}{3}}}^{\sqrt{\frac{8}{3}}} \frac{x^{2}}{2} dx - \int_{-\sqrt{\frac{8}{3}}}^{\sqrt{\frac{8}{3}}} x^{2} dx - \int_{-\sqrt{\frac{8}{3}}}^{\sqrt{\frac{8}{3}}} dx = [5x - \frac{x^{3}}{6}]_{-\sqrt{\frac{8}{3}}}^{\sqrt{\frac{8}{3}}} - [\frac{x^{3}}{3} + x]_{-\sqrt{\frac{8}{3}}}^{\sqrt{\frac{8}{3}}} = (7,43 - (-7,43)) - (3,07 - (-3,07)) = 14,86 - 6,14 = 8,72 u^{2}$$

8. 5) $y = \sin^2 x$ funtzioak biratzean osatzen duen gorputzaren bolumena kalkulatuko dugu $[0, \pi]$ tartean:

$$V = \pi \int_a^b f^2(x) dx = \pi \int_0^{\pi} \sin^4 x dx = \pi \left[\frac{3x - \sin 2x}{4} + \frac{\sin 4x}{8} \right]_0^{\pi} = \pi \left((2, 36 + 0) - (0 + 0) \right) = 7,41 \, u^3$$

$$I_1 = \int \sin^4 x \, dx = \int (\frac{1 - \cos 2x}{2})^2 \, dx = \int \frac{1 - 2\cos 2x + \cos^2 2x}{4} \, dx = \int \frac{1}{4} \, dx - \int \frac{\cos 2x}{2} \, dx + \int \frac{\cos^2 2x}{4} \, dx = \frac{x}{4} - \frac{1}{4} \sin 2x + \frac{1}{4} \int \cos^2 2x \, dx = \frac{x}{4} - \frac{1}{4} \sin 2x + \frac{x}{2} + \frac{\sin 4x}{8} = \frac{3x - \sin 2x}{4} + \frac{\sin 4x}{8}$$

$$\int \cos^2 2x \, dx = \int \frac{1 + \cos 4x}{2} \, dx = \frac{x}{2} + \frac{1}{8} \int 4 \cos 4x \, dx = \frac{x}{2} + \frac{\sin 4x}{8}$$