Information Gain

Which test is more informative?

Split over whether Balance exceeds 50K

Split over whether applicant is employed

Unemployed

Employed

Information Gain

Impurity/Entropy (informal)

Measures the level of impurity in a group of examples

Impurity

Very impure group

Less impure

Minimum impurity

Entropy: a common way to measure impurity

• Entropy = $\sum_{i} -p_{i} \log_{2} p_{i}$

p_i is the probability of class i

Compute it as the proportion of class i in the set.

```
16/30 are green circles; 14/30 are pink crosses log_2(16/30) = -.9; log_2(14/30) = -1.1
Entropy = -(16/30)(-.9) - (14/30)(-1.1) = .99
```

 Entropy comes from information theory. The higher the entropy the more the information content.

What does that mean for learning from examples?

2-Class Cases:

- What is the entropy of a group in which all examples belong to the same class?
 - entropy = $-1 \log_2 1 = 0$

not a good training set for learning

$$-$$
 entropy = -0.5 $\log_2 0.5 - 0.5 \log_2 0.5 = 1$

good training set for learning

Minimum impurity

Maximum impurity

Information Gain

- We want to determine which attribute in a given set of training feature vectors is most useful for discriminating between the classes to be learned.
- Information gain tells us how important a given attribute of the feature vectors is.
- We will use it to decide the ordering of attributes in the nodes of a decision tree.

Calculating Information Gain

Information Gain = entropy(parent) – [average entropy(children)]

(Weighted) Average Entropy of Children =
$$\left(\frac{17}{30} \cdot 0.787\right) + \left(\frac{13}{30} \cdot 0.391\right) = 0.615$$

Information Gain = 0.996 - 0.615 = 0.38 for this split

Entropy-Based Automatic Decision Tree Construction

Training Set S

$$x_1 = (f_{11}, f_{12}, ..., f_{1m})$$

 $x_2 = (f_{21}, f_{22}, f_{2m})$
 $x_n = (f_{n1}, f_{22}, f_{2m})$

Quinlan suggested information gain in his ID3 system and later the gain ratio, both based on entropy.

Using Information Gain to Construct a **Decision Tree**

Full Training Set S

Attribute A

value.

Construct child nodes for each value of A. Set S' Each has an associated subset of vectors in which A has a particular

$$S' = \{s \in S \mid value(A) = v1\}$$

Choose the attribute A

with highest information

gain for the full training

set at the root of the tree.

repeat recursively till when?

3

Simple Example

Training Set: 3 features and 2 classes

X	Y	Z	C
1	1	1	I
1	1	0	I
0	0	1	II
1	0	0	II

How would you distinguish class I from class II?

X	Y	Z	C
1	1	1	I
1	1	0	I
0	0	1	II
1	0	0	II

Split on attribute X

X=1 II II II X=0 II

If X is the best attribute, this node would be further split.

$$E_{child1} = -(1/3)log_2(1/3)-(2/3)log_2(2/3)$$

= .5284 + .39
= .9184
 $E_{child2} = 0$

$$E_{parent} = 1$$
 $GAIN = 1 - (3/4)(.9184) - (1/4)(0) = .3112$

Split on attribute Y

$$Y=1$$

$$I I$$

$$II II$$

$$X=0$$

$$II$$

$$II$$

$$E_{child2}=0$$

$$E_{parent} = 1$$

 $GAIN = 1 - (1/2) 0 - (1/2)0 = 1$; BEST ONE

Split on attribute Z

$$Z=1 \qquad I \qquad E_{child1}=1$$

$$II \qquad II \qquad E_{child2}=1$$

$$E_{parent} = 1$$

 $GAIN = 1 - (1/2)(1) - (1/2)(1) = 0$ ie. NO GAIN; WORST