Computer Architecture (Fall 2022)

Quantitative Approach

Dr. Duo Liu (刘铎)

Office: Main Building 0626

Email: liuduo@cqu.edu.cn

Computer Architects and Quantitative Approach

- Design ideas and trade-offs are tested by using tools in order to estimate the impact on performance, power and cost (an iterative process)
- analytical reasoning and fundamental design principles
 - equations for basic metrics
 - cost, performance, power...
 - simulations at various levels
 - system level, ISA, micro-architecture, memory, RTL, gate, circuit level
- benchmark programs representing typical workloads

Power and Energy

- Problem: Get power in, get power out
- Thermal Design Power (TDP)
 - Characterizes sustained power consumption
 - Used as target for power supply and cooling system
 - Lower than peak power, higher than average power consumption
- Clock rate can be reduced dynamically to limit power consumption
- Energy per task is often a better measurement

Power and Energy

- Energy
 - measured in Joules
- Power
 - rate of energy consumption
 - [Watts = Joules/sec]
 - instantaneous power P = V * I
 - voltage drop across a component times the current flowing through it
- Example
 - system A
 - higher peak power
 - lower total energy
 - system B
 - lower peak power
 - higher total energy

Power of CMOS Transitor

Dynamic Power

- traditionally dominant component
- dissipated when transitor
 switches (i.e. data dependent)

Static Power

- becoming more important with transitor scaling
- due to "leakege current" that flows even if there is no switching activity
- proportional to the number of transitors on the chip

Challenges

- power is the key limitation to chip design
 - distribute power on-chip
 - remove heat
 - prevent hot spots
 - low power design(clock gating,DVFS)

□ Energy consumed in N cycles, E_N:

$$E_N = C_L \cdot V_{DD}^2 \cdot n_{0 \to 1}$$

 $n_{0\rightarrow 1}$ – number of 0 \rightarrow 1 transitions in N cycles

$$\begin{aligned} P_{avg} &= \lim_{N \to \infty} \frac{E_N}{N} \cdot f = \left(\lim_{N \to \infty} \frac{n_{0 \to 1}}{N} \right) \cdot C_L \cdot V_{DD}^2 \cdot f \\ \alpha_{0 \to 1} &= \lim_{N \to \infty} \frac{n_{0 \to 1}}{N} \cdot f \end{aligned}$$

$$P_{avg} = \alpha_{0 \to 1} \cdot C_L \cdot V_{DD}^2 \cdot f$$