

Universidade do Minho

Escola de Ciências da Universidade do Minho Departamento de Informática

Mestrado em Matemática e Computação Mestrado Integrado em Engenharia Informática

Redes Neuronais Recorrentes para previsão do fluxo de tráfego rodoviário

Alunos:

Andreia Costa (PG37013) Henrique Faria (A82200) Paulo Barbosa (PG40160) Rui Teixeira (PG37021)

Docentes:

Bruno Fernandes Victor Alves

Unidade Curricular: Classificadores e Sistemas Conexionistas

Maio 2020

Conteúdo

1	Intr	rodução	1
2	Dataset		2
	2.1	Traffic Flow Braga	2
	2.2	Traffic Incidents Braga	3
	2.3	Weather Braga Descriptions	3
	2.4	Weather Braga	4
	2.5	Preparação dos dados	4

1 Introdução

2 Dataset

Aquando da apresentação do presente trabalho foram disponibilizados dados referentes a duas cidades: Braga e Porto, sendo que o grupo escolheu os dados relativos à cidade de Braga para trabalhar.

Os dados encontram-se distribuídos em 4 datasets:

- Traffic Flow Braga Until 20191231;
- Traffic Incidents Braga Until 20191231;
- Weather Braga Descriptions Until 20191231;
- Weather Braga Until 20191231.

Todos os *datasets* contêm dados relativos ao período entre 15 Janeiro 2019 e 31 Dezembro 2019.

2.1 Traffic Flow Braga

O dataset "Traffic Flow Braga" é constituído pelos seguintes atributos:

- $city_name$;
- *road_num*;
- road_name;
- functional_road_class_desc;
- current_speed;
- free_flow_speed;
- $speed_diff$;
- current_travel_time;
- $free_flow_travel_time$;
- $time_diff$;
- \bullet creation_date.

2.2 Traffic Incidents Braga

- \bullet $city_name;$
- \bullet description;
- \bullet cause_of_incident;
- $from_road$;
- *to_road*;
- affected_roads;
- $\bullet \ incident_category_desc;$
- $\bullet \ magnitude_of_delay_desc;$
- length_in_meters;
- \bullet $delay_in_seconds;$
- \bullet incident_date;
- latitude;
- $\bullet \ longitude.$

2.3 Weather Braga Descriptions

- $city_name$;
- cloudiness;
- \bullet atmosphere;
- \bullet snow;
- thunderstorm;
- *rain*;
- sunrise;
- \bullet sunset;
- \bullet creation_date.

2.4 Weather Braga

- $city_name$;
- temperature;
- atmospheric_pressure;
- humidity;
- wind_speed;
- clouds;
- precipitation;
- current_luminosity;
- sunrise;
- sunset;
- \bullet creation_date.

2.5 Preparação dos dados

Após análise dos quatro datasets concluiu-se que, antes de se desenvolver o modelo para a previsão da feature speed_diff, era necessário fazer uma prévia preparação dos dados.

Começou-se por fazer um prévio tratamento do dataset Traffic_Incidents. Para isso, quadriplicou-se esse dataset, com o intuito de atribuir todas as ruas em estudo a todos os incidentes, para que posteriormente fosse possível avaliar a distância entre os incidentes e as ruas em estudo.

Figura 1: Preparação do dataset Traffic_Incidentes.

De seguida, recorrendo à latitude e longitude dos diferentes acontecimentos, calculou-se a distância dos incidentes a cada uma das ruas, para perceber quais os incidentes que podiam influenciar o $speed_diff$ de uma determinada rua.

```
1 import pandas as pd
2 from math import radians, sin, cos, atan2, sqrt
4 df = pd.read_csv('Traffic_Incidents.csv', delimiter = ',',
       error_bad_lines = False, encoding = 'ISO-8859-1')
  def distance(p1, n):
     R = 6371.0
     if n == 1:
     lat2 = radians(41.548331)
     lon2 = radians(-8.421298)
10
     elif n == 2:
11
     lat2 = radians(41.551356)
     lon2 = radians(-8.420001)
     elif n == 3:
14
     lat2 = radians(41.546639)
15
     lon2 = radians(-8.433517)
16
     else:
     lat2 = radians(41.508849)
18
     lon2 = radians(-8.462299)
19
     lat1, lon1 = radians(p1[0]), radians(p1[1])
     dlon = lon2 - lon1
21
     dlat = lat2 - lat1
22
     a = \sin(dlat / 2)**2 + \cos(lat1) * \cos(lat2) * \sin(dlon / 2)**2 + \cos(lat1) * \( \text{cos}(lat2) * \)
```

```
2)**2
c = 2 * atan2(sqrt(a), sqrt(1 - a))
distance = R * c
return distance

df['Distance'] = df.apply(lambda row: distance((row['latitude '],row['longitude']), row['road_num']), axis=1)
```

Após calculadas todas as distâncias fez-se um tratamento estatístico, tendo-se obtido os seguintes resultados:

```
• max = 6313, 251;
```

- min = 0,0228;
- mean = 4,507;
- $standard\ deviation = 81,789.$

Através dos resultados obtidos é possível verificar que existem *outliers*, uma vez que, sendo os dados recolhidos referentes apenas à cidade de Braga era impossível que a distância máxima dos incidentes às ruas fosse de cerca de 6313 km. Devido a este facto, optou-se por remover alguns dados do *dataset*. Uma vez que a distância é medida em linha reta utilizou-se como *threshold*, para remover dados, vários valores, nomeadamente, 0, 5, 1 e 1, 5.

Após feito este tratamento procedeu-se à preparação dos dados referentes aos restantes *datasets*, com o intuito de se obter, no final, um único *dataset*.

Começou-se por fazer o tratamento do dataset Weather_Descriptions_Braga, tendo-se removido as colunas: city_name, snow e cloudiness. A coluna snow apresentava apenas missing values, daí se ter optado pela sua remoção. Relativamente à coluna cloudiness, optou-se por fazer a remoção da mesma, uma vez que existe uma coluna que está diretamente relacionada com esta, a coluna cloud, e que não apresenta missing values.

De seguida, procedeu-se à remoção das colunas city_name e precipitation do dataset Weather_Braga. A remoção da coluna precipitation deveu-se ao facto desta apenas apresentar um único valor, o 0.

De modo a unir o resultado da preparação dos dados feita para os datasets anteriores, recorreu-se ao nodo Joiner, e uniram-se os datasets por creation_date, tendo-se efetuado, de seguida, a extração da data e do tempo.

Figura 2: Preparação dos datasets Weather_Descriptions_Braga e Weather_Braga.

De seguida, procedeu-se à preparação do dataset Traffic_Flow_Braga, procedendo-se à remoção das colunas city_name e road_name, seguida da extração da data e hora e agrupamento dos dados por road_num, hora, dia do mês e mês. De modo a juntar este dataset ao obtido anteriormente, recorreu-se ao nodo Joiner, unindo-se os datasets por hora, dia do mês e mês, fazendo-se um Left Outer Join.

Figura 3: Preparação do dataset Traffic_Flow_Braga.

Após a junção dos datasets, eliminou-se a coluna creation_date e transformaram-se os valores "N/A", das colunas rain, thunderstorm e atmosphere, em missing values, recorrendo ao nodo String Manipulation. De seguida, fez-se um merge das colunas rain e thunderstorm, tendo-se alterado alguns dos valores ("trovoada com chuva fraca" \rightarrow "chuva fraca", "trovoada com chuva forte" \rightarrow

"chuva forte" e "trovoada" \to "chuva"), tendo-se removido, no final, a coluna thunderstorm. Por fim, com os valores da coluna clouds construíram-se 6 intervalos:

- 1. céu claro: $] \inf, 17[;$
- 2. céu pouco nublado: [17, 34];
- 3. nuvens dispersas: [34, 51];
- 4. nuvens quebradas: [51, 68];
- 5. nublado: [68, 85];
- 6. muito nublado: $[85, +\inf]$;

Tendo-se, de seguida, eliminado as colunas sunrise, sunset e clouds.

Figura 4: Preparação dos dados.

Por fim, tratou-se o dataset obtido após feito o tratamento do dataset Traffic_Incidents. Procedeu-se à extração do dia e da hora e removeram-se as colunas irrelevantes. Após tratado este dataset, e recorrendo ao nodo Joiner, uniu-se este dataset com o obtido anteriormente por hora, dia do mês, mês e road_num. Deste modo, uniram-se os 4 datasets iniciais num único.

Figura 5: Preparação do dataset resultante do tratamento do dataset Traffic_Incidents_Braga.

Após se ter apenas um dataset eliminaram-se colunas que se acharam irrelevantes, servindo como apoio à decisão o nodo Rank Correlation, e aos valores Undefined da feature descriptions atribui-se o valor Unknown Delay, com o objetivo de diminuir a quantidade de atributos desta feature.

De seguida, e tendo em conta que as colunas *atmosphere* e *rain* apresentam muitos *missing values*, procedeu-se ao tratamento dos mesmos.

Começou-se, então, por tratar os missing values da coluna atmosphere, tendo-se separado o dataset em dois, recorrendo ao nodo Rule-based Row Splitter. Um dataset apresenta a coluna atmosphere apenas com missing values e o outro apresenta a coluna atmosphere com os vários valores. De seguida, utilizaram-se Random Forest para fazer a previsão dos missing values, para isso, particionou-se o dataset que apresentava os valores do atributo atmosphere, tendo-se usado 80% dos dados para treino. Após feita a previsão dos missing values, procedeu-se à previsão dos missing values do atributo rain, tendo-se utilizado o mesmo raciocínio.

Figura 6: Previsão de missing values.

Por fim, recorrendo ao nodo *Duplicate Row Filter*, eliminaram-se linhas repetidas, efetuou-se o *Label Encoding* dos valores que estavam em *string* e trataram-se os *missing values*, substituindo-os por um valor *default*.

Figura 7: Tratamento final.

Para finalizar o tratamento de dados foi ainda necessário perceber quais os dias que estavam com falta de dados, procedendo-se à eliminação destes, com o intuito de se ter um *dataset* sem "buracos". Para isso, implementou-se o seguinte algoritmo:

```
_{1} i=0
2 for i in range(1,13):
    for j in range(1,32):
    L=df[(df['Month (number)']==i)&(df['Day of month']==j)].
     dropna()
    L1=L[['Month (number)', 'Day of month', 'Hour', 'road_num']]
    L1 = L1.drop_duplicates()
    indexNames = df[(df['Month (number)']==i)&(df['Day of month
     ']==j) ].index
    if len(L1)>96:
    if (len(L1) >= 92 \text{ and } len(L1) < 96):
10
      i=i+1
    if len(L1) < 96:</pre>
11
    try:
12
      df.drop(indexNames, inplace=True)
    except:
14
      pass
```

Após feito todo o tratamento acima mencionado, o *dataset* está pronto para ser aplicado a uma rede que permita prever a *feature speed_diff*.