Project Development Phase Model Performance Test

Date	9 November 2023
Team ID	593076
Project Name	Project - Disease Prediction using Machine
	Learning
Maximum Marks	10 Marks

Model Performance Testing:

Project team shall fill the following information in the model performance testing template.

S.No.	Param eter	Values	Screenshot		
1.	Metric s	Classification Model: Accuray Score - 0.9523 & Classification Report	<pre>[] y_pred = knn_new.predict(X1_val) yt_pred = knn_new.predict(X1_train) y_pred1 = knn_new.predict(X1_test) print('The Training Accuracy of the algorithm is ', accuracy_score(y1_train, yt_pred)) print('The Validation Accuracy of the algorithm is ', accuracy_score(y1_val, y_pred)) print('The Testing Accuracy of the algorithm is ', accuracy_score(y1_test, y_pred)) The Training Accuracy of the algorithm is 0.9639227642276422 The Validation Accuracy of the algorithm is 0.9613821138211383 The Testing Accuracy of the algorithm is 0.9523809523809523</pre>		
			precision recall f1-score support		
			(vertigo) Paroymsal Positional Vertigo 1.00 1		
			Urinary tract infection 1.00 1.00 1.00 1 Varicose veins 1.00 1.00 1 hepatitis A 1.00 1.00 1		
			accuracy 0.98 42 macro avg 0.96 0.98 0.97 42 weighted avg 0.96 0.98 0.97 42		

2. Hyperparameter Tune rfc_results = [] knn_results = [] the Tuning - As the Model accuracies are to_drop = []
for i,j in zip(feat_imp.keys(),feat_imp.values()): already so high, we need not do hyperparameter X_new = X.drop(to_drop,axis = 1) tuning for the X1_train, X1_val, y1_train, y1_val = train_test_split(X_new, y_new, test_size=0.2)
X1_test = X_test.drop(to_drop,axis = 1)
y1_test = y_test models. Validation Method rfc new = RandomForestClassifier() rfc_new.fit(X1_train, y1_train)
temp1 = model_evaluation1(X1_train.shape[1], rfc_new) knn_new = KNeighborsClassifier() knn_new.fit(X1_train, y1_train)
temp2 = model_evaluation1(X1_train.shape[1],knn_new) Number of features Training Accuracy Testing Accuracy 0.357143 0.880952 0.884909 to drop = [] for i,j in zip(feat imp.keys(),feat imp.values()): if j < 0.01: to drop.append(i) [] len(to_drop) 43 X_new = X.drop(to_drop,axis = 1) $y_new = y$