Agência Veritatis

UC de Bases de Dados (Agência de Detetives)

Ana Cerqueira A104188
Humberto Gomes A104348
Ivo Vieira A103999
José Lopes A104541
José Matos A100612

Departamento de Informática – Escola de Engenharia – Univerisidade do Minho Licenciatura em Engenharia Informática

31 de maio de 2024

Índice

- Definição de Sistema e Requisitos, Modelações Concetual e Lógica
- Implementação Física
- Utilizadores e Privilégios
- Povoamento da Base de Dados
- Cálculo do Espaço da Base de Dados
- Vistas de Utilização
- Tradução de Interrogações
- Indexação
- Procedimentos, Funções e Gatilhos
- Conclusão

Implementação Física - Ordenação

Depois da criação do esquema (CREATE DATABASE ...) ...

Problema

Determinar a ordem de criação de tabelas, visto que chaves estrangeiras exigem que a tabela referenciada já tenha sido criada.

Solução

Criar as tabelas de acordo com uma ordem topológica do grafo abaixo:

Grafo de dependências de criação entre tabelas

Implementação Física – Exemplo


```
CREATE TABLE Procedimento(
    Id INT NOT NULL AUTO_INCREMENT,
    Tipo INT NOT NULL,
    Notas TEXT NULL,
    Data DATE NOT NULL,
    CustoAgencia DECIMAL (5,2) NOT NULL DEFAULT 0 CHECK (CustoAgencia >= 0),
    CustoCliente DECIMAL (5,2) NOT NULL DEFAULT 0 CHECK (CustoCliente >= 0),
    Caso INT NOT NULL,

PRIMARY KEY (Id),
    FOREIGN KEY (Tipo) REFERENCES TipoProcedimento (Id),
    FOREIGN KEY (Caso) REFERENCES Caso (Id)
);
```

Utilizadores e Privilégios – Criação de papéis

- Os privilégios de um utilizador estão associados ao seu cargo na empresa (conclusão da leitura dos requisitos de controlo);
- Criaram-se papeis (roles), conjuntos de privilégios possivelmente atribuídos a mais do que um utilizador.

CREATE ROLE

```
'administrativo'@'localhost',
'detetive'@'localhost',
'administrador'@'localhost';
```

Utilizadores e Privilégios - Atribuição de privilégios

- Foram atribuídos dos privilégios (INSERT, UPDATE, SELECT e DELETE) conforme os requisitos de manipulação (todos os utilizadores) e de controlo (utilizadores em particular).
- Para interrogações, foram consultados, nas expressões de álgebra relacional desenvolvidas, os atributos de consulta necessária.

```
Exemplo (RM7):
```

```
\tau_{\text{DataInicio asc}}\left(\pi_{\text{Id, Designacao, DataInicio}}\left(\sigma_{\text{Cliente}}=?\left(\textit{Caso}\right)\right)\right)
\text{GRANT SELECT(Id, Designacao, DataInicio, Cliente) ON Caso TO}
\text{'administrativo'@'localhost',}
\text{'detetive'@'localhost',}
\text{'administrador'@'localhost';}
```

Utilizadores e Privilégios - Criação de utilizadores

```
Foram criados os utilizadores . . .
CREATE USER
    'elias.ribeiro'@'localhost'
                                   IDENTIFIED BY 'donodistotudo',
    'orlando.feio'@'localhost'
                                   IDENTIFIED BY 'alterego',
    'jacinto.fonseca'@'localhost' IDENTIFIED BY 'fonmolhada';
...e foram-lhes atribuídos os papeis:
GRANT 'administrador'@'localhost' TO 'elias.ribeiro'@'localhost';
SET DEFAULT ROLE 'administrador'@'localhost' TO
    'elias.ribeiro'@'localhost';
GRANT 'detetive'@'localhost' TO 'orlando.feio'@'localhost':
SET DEFAULT ROLE 'detetive'@'localhost' TO
    'orlando.feio'@'localhost':
GRANT 'administrativo'@'localhost' TO 'jacinto.fonseca'@'localhost';
SET DEFAULT ROLE 'administrative'0'localhost' TO
    'jacinto.fonseca'@'localhost';
```

Povoamento da Base de Dados – Linguagem de Manipulação de Dados

Várias operações de inserção pela ordem de criação das tabelas, para não se referenciarem registos inexistentes:

```
INSERT INTO Funcao(Id, Designacao) VALUES
  (1, 'Gestor financeiro'),
  (2, 'Gestor de recursos humanos'),
  (3, 'Administrativo'),
  (4, 'Detetive'),
  (5, 'Assistente operacional');
```

Povoamento da Base de Dados – Programa Externo ao SGBD

- Especificação um formato de dados da BD, que contém também metadados (nomes dos atributos e ordem de povoamento de relações).
- Especificação e implementação de um programa que lê dados no formato especificado, que se conecta ao MySQL e executa as operações de inserção descritas anteriormente.

31 de majo de 2024

Cálculo do Espaço da Base de Dados - Método teórico

- Foi consultado o tamanho de todos os tipos de dados usados nos atributos;
- Para cada relação, foi calculado o tamanho de um registo (soma dos tamanhos dos atributos);
- Sabendo o número de registos por tabela, foi calculado o tamanho de cada relação;
- Foi calculado o tamanho da base de dados (soma dos tamanhos das tabelas).

.. Os requisitos de armazenamento são baixos, mesmo quando se considera o tamanho da base de dados após alguns anos a crescer.

Cálculo do Espaço da Base de Dados - Método prático

O método teórico tem problemas como:

- Não contabiliza o tamanho ocupado pelos índices;
- Não tem em conta o formato de armazenamento dos registos.

Devido à grande complexidade do InnoDB, um método prático foi adotado: a inserção de milhares de registos e o cálculo do tamanho médio por registo com base no tamanho da base de dados medido.

Cálculo do Espaço da Base de Dados – Método prático

O tamanho da base de dados e os requisitos de armazenamento, mesmo maiores, mantêm-se baixos:

Relação	Tamanho do registo	Número de registos	Tamanho
Funcao	41.8	5	209.0
Funcionario	175.3	4	702.1
:	<u>:</u>	:	:
Provas	3454.5	6	20727.0
			Total: 59.9 kB

Vistas de Utilização – Um uso possível

- Não se viu a necessidade de implementação de vistas de utilização, mas requisitos hipotéticos poderiam exigir o seu uso.
- Se um detetive apenas pudesse aceder a alguns atributos dos seus próprios casos:

```
CREATE VIEW vwCasosDetetive2 AS

SELECT Id,

Designacao,

DataInicio,

DataTermino,

Cliente,

Detetive

FROM Caso

WHERE Detetive = 2;

GRANT SELECT ON vwCasosDetetive2 TO 'orlando.feio'@'localhost';
```

Tradução de Interrogações

Trata-se de uma mera mudança da sintaxe da linguagem de álgebra relacional para SQL. Exemplo (RM2, listagem de clientes com casos atualmente em aberto):

Nova adição – cores nas árvores de expressões de álgebra relacional.

```
SELECT Cliente.Id,
Cliente.Nome,
Caso.Id,
Caso.Designacao,
Caso.DataInicio
FROM Caso INNER JOIN Cliente
ON Caso.Cliente = Cliente.Id
WHERE Caso.DataTermino IS NULL
ORDER BY Cliente.Nome ASC;
```

Indexação

- Não foi necessária, devido ao bom desempenho resultante do baixo número de registos;
- Foram desenvolvidos índices que ajudariam o desempenho de algumas interrogações, caso a base de dados aumentasse muito de tamanho. Exemplo (RM2):

```
Caso INNER JOIN Cliente ON Caso.Cliente = Cliente.Id

$\square$
CREATE INDEX idxCasoCliente ON Caso(Cliente);
```

 Melhoraria o desempenho porque, para cada cliente, se procuram identificar os casos com base no valor do atributo "Cliente";

Procedimentos, Funções e Gatilhos - Procedimento

Inserção de milhares de registos na base de dados:

```
DELIMITER $$
CREATE PROCEDURE EncheBD(IN nrRegistos INT)
REGIN
    DECLARE dt DATE DEFAULT CURDATE();
    START TRANSACTION:
    REPEAT
        INSERT INTO Funcao(Id, Designacao) VALUES
            (nrRegistos, REPEAT('A', 20)):
        INSERT INTO Funcionario (Id. Nome. NIF. Salario, Seguro Vida, Email, Telefone) VALUES
            (nrRegistos, REPEAT ('A', 30), 100000000 + nrRegistos, 0000.00, 1111111111,
            LPAD(nrRegistos, 30, '0'), LPAD(nrRegistos, 9, '0'));
        IF nrRegistos % 10 = 0 THEN
            INSERT INTO TipoProcedimento
                (Id. Designacao, CustoAgencia, CustoCliente, Descricao) VALUES
                (nrRegistos, REPEAT('A', 20), 000.00, 000.00, REPEAT('A', 2000));
        END IF:
        SET nrRegistos = nrRegistos - 1;
    UNTIL nrRegistos = 0
    END REPEAT:
    COMMIT;
END $$
DELIMITER :
```

Conclusão

- Realizou-se com correção a maioria do ciclo de uma base de dados, restando apenas a monitorização;
- As tarefas originalmente planificadas não coincidem com as tarefas realizadas. No entanto, nesta fase, foi possível realizar mais tarefas em paralelo do que na fase anterior:

 Algumas decisões tomadas durante a implementação física deveriam ter acontecido anteriormente.

Agência Veritatis

UC de Bases de Dados (Agência de Detetives)

Ana Cerqueira A104188
Humberto Gomes A104348
Ivo Vieira A103999
José Lopes A104541
José Matos A100612

Departamento de Informática – Escola de Engenharia – Univerisidade do Minho Licenciatura em Engenharia Informática

31 de maio de 2024