AIR FORCE INST OF TECH WRIGHT-PATTERSON AFB OH SCHOOL-ETC F/6 15/7
THE DETERMINATION OF THE ACCESSIBILITY OF POST-ATTACK LAUNCH WI--ETC(U)
SEP 79 D F BALLOG , D B HUTCHINSON
AFIT-LESR-20-798 AD-A076 925 UNCLASSIFIED 1 OF 2

AD A 076925

UNITED STATES AIR FORCE
AIR UNIVERSITY

way of the second secon

AIR FORCE INSTITUTE OF TECHNOLOGY

Wright-Patterson Air Force Base, Ohio

79 19

DISTRIBUTION STATEMENT A

NOV 19 1919

A

Approved for public released
Distribution Unlimited

THE DETERMINATION OF THE ACCESSIBILITY OF POST-ATTACK LAUNCH WINDOWS

Dennis F. Ballog, Captain, USAF Darrell B. Hutchinson, Captain, USAF

LSSR 20-79B

The contents of the document are technically accurate, and no sensitive items, detrimental ideas, or deleterious information are contained therein. Furthermore, the views expressed in the document are those of the author(s) and do not necessarily reflect the views of the School of Systems and Logistics, the Air University, the Air Training Command, the United States Air Force, or the Department of Defense.

AFIT RESEARCH ASSESSMENT

The purpose of this questionnaire is to determine the potential for current and future applications of AFIT thesis research. Please return completed questionnaires to: AFIT/LSH (Thesis Feedback), Wright-Patterson AFB, Ohio 45433.

	0 45		ALTI/	2011 (1110020			5	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
1.	Did	this research	h co	ntribute to a	curr	ent Air Fo	rce pro	ject?	
	a.	Yes	b.	No					
hav	e be	you believe t en researched had not rese	(or	research topic contracted) i ed it?	c is by yo	significan ur organiza	t enough	gh that it we or another a	ould gency
	a.	Yes	ь.	No					
3. The benefits of AFIT research can often be expressed by the equivalent value that your agency received by virtue of AFIT performing the research. Can you estimate what this research would have cost if it had been accomplished under contract or if it had been done in-house in terms of man-power and/or dollars?									
	a.	Man-years _		\$		(Contract)).		
	b.	Man-years _		s		(In-house).		
alt	4. Often it is not possible to attach equivalent dollar values to research, although the results of the research may, in fact, be important. Whether or not you were able to establish an equivalent value for this research (3 above), what is your estimate of its significance?								
	a.	Highly Significant	b.	Significant	c.	Slightly Significan	d. nt	Of No Significan	се
5.	Com	ments:							
Nam	e ar	d Grade	-		Pe	sition			
Org	gani 2	ation			L	ocation			

OFFICIAL BUSINESS PENALTY FOR PRIVATE USE. \$300

NO POSTAGE NECESSARY IF MAILED IN THE UNITED STATES

BUSINESS REPLY MAIL FIRST CLASS PERMIT NO. 73236 WASHINGTON D. C.

POSTAGE WILL BE PAID BY ADDRESSEE

The state of the s

AFIT/LSH (Thesis Feedback) Wright-Patterson AFB OH 45433

The contents of the document are technically accurate, and no sensitive items, detrimental ideas, or deleterious information are contained therein. Furthermore, the views expressed in the document are those of the author(s) and do not necessarily reflect the views of the School of Systems and Logistics, the Air University, the Air Training Command, the United States Air Force, or the Department of Defense.

SECURITY CLASSIFICATION OF THIS PAGE (When Date Entered)

REPORT DOCUMENTATION PAGE	READ INSTRUCTIONS BEFORE COMPLETING FORM
	3. PECIPIENT'S CATALOG NUMBER
LSSR 20-79B	
4. TITLE (and Subtitle)	TYPE OF REPORT & PERIOD COVER
THE DETERMINATION OF THE ACCESSIBILITY OF POST-ATTACK LAUNCH WINDOWS.	Master's Thesis
J. AUTHOR(s)	8. CONTRACT OR GRANT NUMBER(3)
Dennis F./Ballog/Captain, USAF Darrell B./Hutchinson/Captain, USAF	
9. PERFORMING ORGANIZATION NAME AND ADDRESS	10. PROGRAM ELEMENT, PROJECT, TAS
Graduate Education Division	A WORK ONLY NOMBERS
School of Systems and Logistics	
Air Force Institute of Technology, WPAFB OH	
11. CONTROLLING OFFICE NAME AND ADDRESS	September 2979
Department of Communication and Humanities	
AFIT/LSH, WPAFB OH 45433	119
14. MONITORING AGENCY NAME & ADDRESS(II dillerent from Controlling Office)	15. SECURITY CLASS. (of this report)
(2) 43/1	UNCLASSIFIED
(121134)	150. DECLASSIFICATION DOWNGRADING
	SCHEDUCE
Approved for public release; distribution to	unlimited
Approved for public release; distribution to 17. DISTRIBUTION STATEMENT (of the abetract entered in Black 20, 11 different from 19.05 Major, USAF 19.05 1070	
Approved for public release; distribution to 17. DISTRIBUTION STATEMENT (of the abetract entered in Block 20, if different from 17.	
Approved for public release; distribution to the abetract entered in Block 20, 11 different from JOSEPH P. HIPPS, Major DSAF 18 SEP 1979 Director of Information	
Approved for public release; distribution to 17. DISTRIBUTION STATEMENT (of the abetract entered in Block 20, 11 different from JOSEPH P. HIPPS, Major DSAF 18 SEP 1979 Director of Information 18. SUPPLEMENTARY NOTES	om Report)
Approved for public release; distribution to the abstract entered in Block 20, if different from JOSEPH P. HIPPS, Major USAF 18 SEP 1979 Director of Information 18. SUPPLEMENTARY NOTES	om Report)
Approved for public release; distribution to the abstract entered in Block 20, il different from JOSEPH P. HIPPS, Major DSAF 18 SEP 1979 Director of Information 18. Supplementary notes 19. KEY WORDS (Continue on reverse side if necessary and identity by black number AIRBASE DAMAGE ASSESSMENT MODEL (AIDA)	om Report)
Approved for public release; distribution to the abstract entered in Block 20, if different from JOSEPH P. HIPPS, Major USAF 18 SEP 1979 Director of Information 18. SUPPLEMENTARY NOTES	om Report)
Approved for public release; distribution of the abstract entered in Block 20, if different from JOSEPH P. HIPPS, Major, USAF 18 SEP 1979 Director of Information 18. SUPPLEMENTARY NOTES 19. KEY WORDS TEORIFICE on reverse side if necessary and identify by block number AIRBASE DAMAGE ASSESSMENT MODEL (AIDA) AIRBASE SURVIVABILITY	om Report)
Approved for public release; distribution of the abstract entered in Block 20, if different from Joseph P. HIPPS, Major, USAF 18 SEP 1979 Director of Information 18. Supplementary notes 19. KEY WORDS TEORIFICE on reverse side if necessary and identify by block number AIRBASE DAMAGE ASSESSMENT MODEL (AIDA) AIRBASE SURVIVABILITY RUNWAY ACCESSIBILITY BOMB DAMAGE ASSESSMENT POST-ATTACK MINIMUM CLEAR REGION (MCR) ACCE	SSIBILITY
Approved for public release; distribution of the abstract entered in Block 20, il different from Joseph P. HIPPS, Major, USAF 18 SEP 1979 Director of Information 18. Supplementary notes 19. KEY WORDS TEORIFICE on reverse side it necessary and identity by block number AIRBASE DAMAGE ASSESSMENT MODEL (AIDA) AIRBASE SURVIVABILITY RUNWAY ACCESSIBILITY BOMB DAMAGE ASSESSMENT	SSIBILITY
Approved for public release; distribution of the abstract entered in Block 20, if different from Joseph P. HIPPS, Major, USAF 18 SEP 1979 Director of Information 18. Supplementary notes 19. KEY WORDS TEORIFICE on reverse side if necessary and identify by block number AIRBASE DAMAGE ASSESSMENT MODEL (AIDA) AIRBASE SURVIVABILITY RUNWAY ACCESSIBILITY BOMB DAMAGE ASSESSMENT POST-ATTACK MINIMUM CLEAR REGION (MCR) ACCE	SSIBILITY
Approved for public release; distribution of the abstract entered in Block 20, if different from Joseph P. HIPPS, Major, USAF 18 SEP 1979 Director of Information 18. Supplementary notes 19. KEY WORDS TEORIFICE on reverse side if necessary and identify by block number AIRBASE DAMAGE ASSESSMENT MODEL (AIDA) AIRBASE SURVIVABILITY RUNWAY ACCESSIBILITY BOMB DAMAGE ASSESSMENT POST-ATTACK MINIMUM CLEAR REGION (MCR) ACCE	SSIBILITY
Approved for public release; distribution of the abstract entered in Block 20, il different from JOSEPH P. HIPPS, Major USAF 18 SEP 1979 Director of Information 18. Supplementary notes 19. KEY WORDS TEORITHUS ON TOVERS SIDE II DECESSORY and Identify by black number AIRBASE DAMAGE ASSESSMENT MODEL (AIDA) AIRBASE SURVIVABILITY RUNWAY ACCESSIBILITY BOMB DAMAGE ASSESSMENT POST-ATTACK MINIMUM CLEAR REGION (MCR) ACCE 20. ABSTRACT (Continue on reverse side II necessory and identify by block number)	SSIBILITY
Approved for public release; distribution of the abstract entered in Block 20, il different from JOSEPH P. HIPPS, Major USAF 18 SEP 1979 Director of Information 18. Supplementary notes 19. KEY WORDS Continue on reverse side if necessary and identify by black number AIRBASE DAMAGE ASSESSMENT MODEL (AIDA) AIRBASE SURVIVABILITY RUNWAY ACCESSIBILITY BOMB DAMAGE ASSESSMENT POST-ATTACK MINIMUM CLEAR REGION (MCR) ACCE 20. ABSTRACT (Continue on reverse side if necessary and identify by block number)	SSIBILITY , USAF

DD . JAN 73 1473 EDITION OF I NOV 65 IS OBSOLETE

The state of the s

UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE (When Date Entered)

SECURITY CLASSIFICATION OF THIS PAGE(When Data Entered) This study examined the availability and accessibility of postattack launch windows using simulation. The basis for the study was the research and development of the Rand Corporation's Airbase Damage Assessment Model. Prior to this study, damage assessment has always been done from the attacker's point of view, that being how can we do the most damage, given a set resource. This study examined it from a standpoint of survivability specifically starting with a standard airbase configuration, developing the most probable attack scenario, running the model, and examining the data to develop the probability of availability for the various launch windows required by the differently configured U.S. aircraft. Manual inspection of the output allowed the development of the probability of accessibility from the ramp area to the available launch window. Finally, examining two alternate proposed runway configurations and developing their net contribution to the probabilities of accessibility and availability.

was the desired to the second of the second

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE(When Date Entered)

THE DETERMINATION OF THE ACCESSIBILITY OF POST-ATTACK LAUNCH WINDOWS

A Thesis

Presented to the Faculty of the School of Systems and Logistics of the Air Force Institute of Technology

Air University

In Partial Fulfillment of the Requirements for the Degree of Master of Science in Facilities Management

By

Dennis F. Ballog, BSCE Captain, USAF

Darrell B. Hutchinson, BSEE Captain, USAF

September 1979

Approved for public release; distribution unlimited

This thesis, written by

Captain Dennis F. Ballog

and

Captain Darrell B. Hutchinson

has been accepted by the undersigned on behalf of the faculty of the School of Systems and Logistics in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE IN FACILITIES MANAGEMENT

DATE: 7 September 1979

COMMITTEE CHAIRMAN

TABLE OF CONTENTS

												P	age
LIST OF	TABLES												v
LIST OF	FIGURES												vi
Chapter													
I.	INTRODUCTION TO RESEARCH								•				1
	Background												1
	Justification										•		5
	Problem Statement									•			9
	Limitations										8		9
	Objectives and Question	s											11
	Assumptions			•									15
	Summary									•			17
II.	SYSTEM MODEL												19
	Model Description												19
	Input Requirements												23
	Outputs												27
	Summary												37
III.	METHODOLOGY												39
	System Definition						i						39
	Airbase Configuration			•		•	•	•		•			40
			•	•	•	•	•		•	•	•	•	
	Target Location Attack Scenario	٠	•	•	•	•	•	•	•	•	•	•	40
	ALLACK SCENALIO			•							•		43

The way of the second of the s

Chapter																		Page
Weapon Accuracy and Effectiveness								44										
Aircraft Launch Window														45				
System Assumptions									45									
Variable Identification									47									
	Data G	enerat	ion															50
	Data A	nalysi	s															51
IV. A	NALYSIS		•															55
	Initia	l Anal	ysi	s .	•												•	56
	Final 2	Analys	sis					•							۰			64
v. s	UMMARY																	68
	Conclu	sions										•						69
	Recomm	endati	lons												•			71
APPENDIC	ES											•			•			74
A. D	ETAILED	DESCR	RIPT	IOI	1 (OF	AI	DA	I	NPU	JΤ							75
в. м	ISSION	CONFIC	URA!	ric	N	s .						•						90
c. s	YSTEM I	NPUT C	OMP	UTE	ER	CC	DDE				•		•	•		•		97
D. P	ROBABIL	ITY DI	STR	IBU	JT:	101	15				•							109
SELECTED BIBLIOGRAPHY						117												
A. R	EFERENC	ES CIT	ED															118
B. R	ELATED	SOURCE	ES															119

and the second s

LIST OF TABLES

Table		Page
2-1.	Output Control	. 25
3-1.	Launch Window Matrix	46
4-1.	Hand Calculated Runway Closings for 50 Trials	. 57
4-2.	Computer Calculated Runway Closings for 50 Trials	. 58
4-3.	Hand Calculated Alternate Configuration Runway Closings for 50 Trials	. 59
4-4.	Validation of the Concept of Accessibility for the Basic Configuration	. 62
4-5.	Validation of the Concept of Accessibility for the Alternate Configurations	. 66
4-6.	Accessibility Function Validation Data	. 67
B-1.	Bugout	92
B-2.	1500 Foot Groundroll (Launch)	. 93
в-3.	Attack	. 94
B-4.	Lightweight	. 96
B-5.	1500 Foot Groundroll	. 96

LIST OF FIGURES

Figure					I	Page
1-1.	Airbase Survivability Efforts	•				2
1-2.	Categorization of Candidate Programs to Increase the Survivability of NATO Air Operations					4
1-3.	Airbase Survivability Enhancements					6
1-4.	Variable Relationships		•		•	10
1-5.	Causal Loop Diagram			•		12
1-6.	Variable Interrelationships				•	13
2-1.	Target and Attack Layout for AIDA					21
2-2.	Base XYZ					29
2-3.	Input SummaryAll Cases	•				31
2-4.	Target Damage Statistics, Case 1					32
2-5.	Runway Hit Patterns, Case 2					33
2-6.	Taxiway Hit Patterns, Case 2		•	•		34
2-7.	Target Hit Summary, Case 2					35
2-8.	Input Data, Case 4					36
2-9.	Trial-by-Trial Results and Target Damage Statistics, Case 4			•		38
3-1.	Basic Airfield Configuration					41
3-2.	Alternate Runway Configurations					42
3-3.	Variable Interrelationships					48
4-1.	Probability Distributions					60
D-1	Zero Degree Attack Heading Distributions					110

Figure			Page
D-2.	Thirty Degree Attack Heading Distributions		111
D-3.	Sixty Degree Attack Heading Distributions		112
D-4.	Ninety Degree Attack Heading Distributions		113
D-5.	Composite of Distributions		114
D-6.	Probability Distributions for Alternate Configuration 1	•	115
D-7.	Probability Distributions for Alternate Configuration 2	•	116

CHAPTER I

INTRODUCTION TO RESEARCH

In today's world of scarce resources, the Air Staff was faced with the problem of having to allocate those resources to many programs that would enhance the nation's offensive and defensive capabilities. They had to choose a course that would meet the future needs of the United States and satisfy this nation's commitment to our NATO allies of deterring the Warsaw Pact. To satisfy the NATO commitment, assuring the survivability of effective air operations in Europe, after an initial attack, was paramount. There were a variety of actions under consideration to preserve or restore air operations in the NATO theater. Those actions ranged from increasing point defenses to enhance a single base's survivability, to increasing the overall number of aircraft available for employment by the NATO theater commander (shortened to theater commander for the remainder of this thesis).

Background

Actions that could be taken to ensure airbase survivability were subdivided into three phases based on the stage of an attack on the airbase. They were: pre-attack, trans-attack, and post-attack (see Figure 1-1) (1). The

Fig. 1-1. Airbase Survivability Efforts (1)

pre-attack phase refers to the preparation and/or training that has to be accomplished prior to an attack, in order to enhance the airbase survivability and ensure wartime sortic generation capability. The trans-attack efforts were categorized as activities that are meant to lessen the destructive force of the attack against the airbase. Actions in the post-attack phase are those required to return the airbase to an operational status as soon as possible. The examination of alternative programs was done so as to increase NATO's capabilities with the limited funds available while maximizing the total positive efforts that affect the trans- and post-attack capabilities.

Prioritizing among these diverse possibilities was difficult because it required dealing with a host of uncertainties about the program's scopes, costs, capabilities, scenarios and timing. However, a common measure of effectiveness for all these programs had to be formulated before their interaction could be understood by the decision makers. The connecting threat was sortic generation capability (Figure 1-2) (2). The ability to launch and recover aircraft was considered to be the driving force behind airbase survivability. From the theater commander's point of view, the primary value of each proposal to improve airbase survivability is its probable contribution to increasing the number of effective combat sorties which he could employ or recover in the initial stages of a battle

Fig. 1-2. Categorization of Candidate Programs to Increase the Survivability of NATO Air Operations (2)

following an enemy attack on his airbases. The problem, from the Air Staff's point of view, was to determine the priorities for spending in peacetime to help the theater commander achieve his wartime goal. The Air Staff recognized the importance of prioritizing the various programs and charged the Directorate of Concepts and Analysis (DCA) with the primary responsibility to examine each area of concern (Figure 1-3 delineates some of these areas), quantify its contribution to sortie generation enhancement, and recommend a plan of action that will be cost effective as well as functional (1). DCA tasked many Air Force agencies to aid them in the development of this plan of action. Air Force Engineering and Services Center (AFESC) will provide data on the effects of airbase recovery and survivability on the enhancement of sortie generation capabilities in a post-attack scenario (2).

Justification

As a result of the increased emphasis on NATO's ability to survive an attack by the Warsaw Pact, plans are being made for the modification of NATO airbases to increase their survivability (2). Among those plans are ones to modify the configuration of the existing airfields. In order to change the existing configurations, detailed

Airfield shall be construed as the runway, taxiways, ramps, etc. for the remainder of this thesis.

Fig. 1-3. Airbase Survivability Enhancements (1)

the production of the second s

information about which configurations or proposed modifications could best withstand initial air attacks was vital. A number of simulation models were developed for use by the Air Force in the prediction of the damage to an airbase as a result of an air attack. However, they were only used for analyses of the effects of various attack scenarios on the probability of finding launch windows after an attack, and that only on existing airfield configurations (2). The reason for this was that the simulation models and the probability tables derived from them, used to assess airfield damage only checked for the existence of a minimum clear region (MCR) on the runways, taxiways, ramps, etc. that would allow a particularly configured aircraft to launch or recover. Neither the models nor the tables addressed the question of whether or not the MCR or launch window was accessible. The concept of accessibility of a launch window implies that any given launch window is accessible to a specific aircraft if there are no obstacles preventing it from taxiing from its parking area to the launch window. Therefore, any analyses ignoring this prospective problem has a limited usefulness in the real world.

The AFESC decided that the major thrust of its investigations would be limited to those programs that were directly related to the post-attack effort, but that could be accomplished now (9). AFESC's analyses will determine such diverse things as how severe are the effects of

munitions on today's runways, how aircraft react to repaired runways, how fast a cratered runway can be repaired by the Rapid Runway Repair (RRR) teams to provide accessible launch windows and the stabilization of unpaved surfaces adjacent to existing runways in lieu of repairing the runways themselves (9).

This thesis, combined with the efforts of AFESC, will enable Air Staff planners to examine the survivability of each base on a case-by-case basis. The failure to take the probability of having an accessible launch window present after an attack will severely limit the increased utility of airfield design modifications. This was amply demonstrated by the newly constructed contingency runway at Hahn AB. The contingency runway was constructed parallel and in close proximity to the existing runway. Preliminary tests on it have shown that there was no significant increase in the probability of existence of launch windows, much less accessible ones due to the close proximity of the two runways (2). There must be a combined effort to develop a methodology that will enable the optimization of survivability to be incorporated into airfield modifications. As a by-product of this, the local Base Civil Engineer (BCE) will be able to use the damage statistics to estimate how much on-hand material will be required to repair the damage resulting from an initial air attack and to estimate the average number of craters his personnel will have to repair

after an initial air attack. The latter will in turn lead to a reasonable estimate of a "get well" time for the airfield.

Problem Statement

The availability of an accessible launch window for aircraft generation following an air attack on the airfield, will be determined by the pre-attack condition and layout of the airfield and the scenario of the attack mounted against the airfield. An understanding of the relationships between the aforementioned three variables is necessary before any assessment can be made of which airfield design provides the highest probability of having an accessible launch window in existence immediately after an air attack. Without this assessment, the decision on which prospective airfield design modifications are the best, either can not be made or would have had only limited applicability to the real world (see Figure 1-4).

Limitations

Since AFESC is doing the empirical testing on the capabilities of the RRR teams, no attempt was made in this research to derive the nature of the relationship between the capabilities of RRR teams and the creation of launch windows by runway repair. The probable existence of the relationship between mobile catapults and barriers and the probability of launch windows was acknowledged. However,

Legend:	
	indicates relationship to be investigated in this thesis
	indicates relationship not to be investigated in this thesis

I the property of some some and the sound of many

Fig. 1-4. Variable Relationships

this research did not attempt to determine it. The authors acknowledged a relationship between the probability of launch window existence and sortic generation capabilities. This thesis did not, however, attempt to derive that relationship because it involved factors presently being determined by AFESC. Further limitations will be delineated in Chapter III.

Objectives and Questions

Before the objectives of this research could be determined, it was necessary to reaccomplish the system model as shown in Figure 1-4 in greater detail in order to better understand the interactions between the variables. This was done using two basic methods: causal loop diagrams and the delineation of independent, dependent and environmental variable relationships. The causal loop diagram is shown in Figure 1-5. Figure 1-6 depicts the interrelationships of the variable types. One other factor was taken into account in the derivation of the research objectives and questions: the actual simulation model to be used in this research. The model chosen was the Airbase Damage Assessment Model (AIDA) as developed by the Rand Corporation in 1975. The model allowed the modeler to define an airbase and the attack scenario, and then determine the existence of launch windows. As it was written, the model could not handle nuclear weapons or rockets as munitions

Legend:

___ indicates positive influence

Fig. 1-5. Causal Loop Diagram

Fig. 1-6. Variable Interrelationships

The wind of the second of the

delivered in an air attack. This feature was not changed by the authors for this thesis. The model is described in greater detail in Chapter II.

The objectives of this thesis are listed below and together with the associated questions that were investigated to complete each objective. They were derived from the statement of variables shown in Figure 1-6 and are designed to provide as much information as possible about each variable for the definition of the airbase system to be input in the AIDA model.

- 1. Determine the most probable types of attack.
- a. What types of aircraft will compose the attack and how many of each will take part in the attack?
 - b. What will be their weapon configuration?
 - c. What are the most probable attack headings?
- 2. Determine the most probable changes in existing airfield configurations.
 - a. What are the existing configurations?
- b. What are the limitations of any changes to existing airfield configurations?
- c. What changes to the existing airfield configuration would be the most complemental?
- 3. For the existing airfield configuration and a given attack scenario determine the relationship between the probability of finding an existing launch window and the

probability of finding an accessible launch window for various types of USAF aircraft.

- a. Which type of USAF aircraft will be deployed at each NATO airfield?
- b. What is the probability of finding accessible launch windows for each type of USAF aircraft and for each airfield configuration?
- c. What access routes are available for the parked aircraft to reach the runway and taxiways that could serve as secondary runways?
- d. Which launch window sizes have greater than a 75 percent, 50 percent, or 25 percent probability (these probabilities represent arbitrary breakpoints in the expected probability distribution) of existence for each airfield configuration?
- e. Which airfield configurations have a greater than 75 percent, 50 percent, or 25 percent probability of having a given size of launch window in existence after all types of attack?
- f. Can the accessible relationship derived for the existing airfield configuration be applied to the altered configurations?

Assumptions

Several assumptions were necessary to further bound the problem. The assumptions were necessary to establish a

working standard from which AIDA could be operated. The assumptions are:

- 1. The attack consisted of conventional, nonnuclear weapons because the AIDA model was designed for
 only conventional weapons (7). A secondary reason was that
 the use of nuclear weapons would, in all probability, make
 the search for accessible launch windows a moot point.
- 2. Since there are only two basic types of airfields in the NATO theater, the airfields in NATO were considered to be standardized and a representative airfield
 was chosen for this analysis (3:1). This allowed a broader
 application of the information determined by this thesis.
 In turn, this assumption reduced the number of simulations
 that had to be run to obtain the data base necessary for
 determining the probabilities of accessible launch window
 existence. Details of the proposed changes in airfield
 configurations are presented in Chapter III.
- 3. The base had the ability to generate aircraft if accessible launch windows were available. This basically required that those facilities/systems of the airbase designed to maintain, repair, generate and recover aircraft survive to use the available accessible launch window. The ability of these facilities to survive was not investigated.
- 4. The attack on an alternate airfield was concurrent with an attack on the main operating base (MOB) and the attacking aircraft were equally divided between the two

airfields. This ensured the element of surprise in the attack and allowed the number of aircraft attacking both bases to be limited, thus reducing computer time.

- 5. A second attack on the airfield would effectively close any launch windows present at the time of attack. This reduced the time period reviewed by the model to that directly after an initial attack.
- 6. U.S. aircraft, weapons, method of delivery, and probable accuracy could be substituted for Warsaw Pact weaponry. This limited background data on this type of information to the lowest possible security classification.

Summary

Considerable work has been done using simulation models to assess the existence of launch windows on an airfield following an air attack. However, the question of the accessibility of those windows never has been addressed directly. This fact has limited the applicability of the findings derived from those models. The purpose of this thesis is to address the relationship between airfield configurations, attack scenarios, and the accessibility of launch windows.

In the next chapter, the AIDA model will be presented. Its input requirements, available outputs, and some of its unique features will be discussed. Chapter III will delineate the author's plan of attack to identify and

quantify the aforementioned relationship. Included will be the definition of the system that was input into the AIDA model, how the model was exercised, and the analysis plan for the model's output data. The actual analysis of the data will be in Chapter IV with the authors' recommendations and findings in Chapter V.

CHAPTER II

SYSTEM MODEL

In recent years, many models were developed to assess the damage to an airbase resulting from an air attack. The majority of those models were designed from the attacker's point of view. That is, the models were designed for the researcher to vary the attack scenarios to maximize the damage to an airbase. Of those models that could be used successfully by personnel who must repair or design the base, only three models appeared to meet the needs of this thesis. Those models were (1) Airbase Model (5:1); (2) An Effectiveness Model for Multiple Attacks Against an Airbase Complex (6:1); and (3) AIDA: An Airbase Damage Assessment Model (7:1). Only the AIDA model checks for the existence of launch windows and actually plots them (rather the bomb impact points). The others located hits on the runway, but did not print their location in a display of the runway.

Model Description

The AIDA model was developed by the Rand Corporation to permit examination of bombing attacks on a complex set of targets; e.g., on an airbase. The actual bomb impact points are obtained by Monte Carlo procedures and an attack is repeated for several trials to provide statistical

estimates of the average damage and variability of that damage for each of the many targets. Several different sets of problems can be treated by successive cases during a single computer run (7:1).

The target system in the AIDA model can be composed of up to 250 separate targets; e.g., shelters, hangers, maintenance complexes, runways and taxiways (see Figure 2-1). A complete attack can consist of up to 50 distinct weapons delivery passes. Each target must be a rectangle of specific size and orientation. An attack pass is defined by the expected probability of a particular arrival, heading, aiming point, delivery accuracy and dispersion for a stick of weapons. Targets are grouped into a maximum of 20 different vulnerability categories and there were a maximum of 10 types of weapons that could have been dropped in an attack (7:1).

In the basic mode of AIDA, weapons are of two types: point impact weapons (such as general purpose (GP) bombs and precision guided munitions (PGMs)) or area weapons (such as cluster bomb units (CBUs)). A weapon reliability must be specified for each kind of weapon. For each kind of point impact weapon an effective miss distance (EMD) 2 is

¹A stick of weapons is defined as a rack of weapons on the attacking aircraft.

²That miss distance at which a weapon is effective and an impact is to be categorized as a hit.

TARGETS

- Reference (westernmost) corner
- L_l Northeasterly heading boundary
- L₂ Southeasterly heading boundary
- 0 Orientation angle

ATTACK PASSES

- * DMPI
- Ø Attack heading
- SL Stick length
- ++ Nominal bomb impacts

Fig. 2-1. Target and Attack Layout for AIDA (7:11)

and the second of the second o

specified for each target (7:2). When this is done, target coverage is computed as that fraction of the target area that was intersected by a circle having a radius of EMD and centered at the impact point. If, for any given hit, the user wants a different radius other than the EMD to be used in the computation of the coverage, it can be specified and the model substitutes that value for the value of EMD (7:3).

The results of each trial include the number of hits by point impact weapons and the fractional coverage by CBUs for each target as well as point impact weapon coverage (FC) and the CBU kill probability (PK). Additionally, for targets that the user has specified (a maximum of 20 targets other than runways and taxiways), the impact points and weapon types are printed up to 25 weapons per target. The results for each target, using multiple trials, included the fraction of trials with at least one hit, the average number of hits and the average CBU coverage, the standard deviation of those two measures, and the average values of FC and PK (7:4).

The user can also specify that certain (up to 12) of the rectangular targets are actually runways or taxiways that are suitable for aircraft operations. The model then checks to see if such operations are possible from those areas; e.g., tests are made to see if the launch window required for operations was available after an attack. In checking for runway availability, only point impact

weapons are considered, and the crater radius is the EMD.

Up to 250 hits can be sorted and examined for each such target. If the runway does not meet the minimum requirements, the user can request an assessment of the minimum number of craters that would need to be repaired to meet runway requirements. The user can also request an approximate plot of the impact points for each runway (7:4).

AIDA has several features designed to simplify its operation and to allow a series of cases to be analyzed during a single computer run. The first feature allows a multi-aircraft attack against the same objective to be specified easily. When two or more attacks have common parameters, e.g., heading, desired mean point of impact (DMPI), circular error probable (CEP), dispersion, or arrival probability, a single entry generates the additional attacks. Other convenience features are based on the use of the REDO card (see discussion of model input requirements). When this card is encountered it acts as a terminator card, ending the input for one case and telling the computer there is another case (7:6).

Input Requirements

There are seven basic types of cards which can be used in operating AIDA, although only three are mandatory. Four card types describe the target and attack characteristics, and the other three are used to control AIDA

operation. The seven card types are:

TGT target data

ATT attacker data

ATT2 alternate attacker data (optional)

EMD weapon data (optional)

CONT control data (optional)

REDO controls sequential cases (optional)

END last card

There may be a maximum of 250 cards, 50 ATT or ATT2 cards, and 10 EMD cards. For a given case there can only be one control card. The order of the cards is immaterial, except that a REDO card or an END card must be used to signify the completion of input for a given case. The targets and attackers are numbered, internally by the computer, in the sequence in which their descriptions were read in. Each target can also have an alphanumeric designator; e.g., facility number. A detailed description of how the data are to be entered on each type of card is presented in Appendix A. The input data is normally printed as the first part of the output for each case and Table 2-1 outlines the output options for the results (7:8). A CONT card would be required if the user wants to take advantage of more than the most basic of AIDA's features. Without this card, AIDA examines only one Monte Carlo sample of attack and provides the actual numbers of all hits on all targets and the stored hit locations for specified targets. More

TABLE 2-1

OUTPUT CONTROL (7:8) (for each trial)

Control I	All Impact Points	All Hits (and Target Corners)	Stored Hit Data	Hit Summary	Runway Results	Multiple Trial Statistics
-2	×	×	×	×	×	×
-1		×	×	×	×	×
0			×	×	×	×
1				×	×	×
2					×	×
е						×
4					ч	×
ſſ				×		×

 $^{\mathrm{b}_{\mathrm{Compact}}}$ listing of hits and required repairs for runways or taxiway.

Compact listing of hits on each target.

specifically, a CONT card is required if (1) more than one trial is required, (2) an alternative output mode is desired, (3) a different mode of operation is desired, or (4) the runway availability features are to be used. The CONT card is used to specify the number of trials, the mode of operations, the output formats, the launch window size, whether or not minimum repair is to be assessed and the distances that the launch window is to be shifted laterally and longitudinally in checking for its existence (7:9).

Figure 2-1 illustrates the nature and measurement of the input data for the TGT and ATT cards. The first step when using the AIDA model is to construct a rectangular coordinate system on a plan view of the airbase.

The target location and target orientation, as well as the attack heading and the intended DPMI, are then specified in that coordinate system, headings are measured clockwise from the Y-axis, or "north," and given in degrees [7:10].

As can be discerned in Figure 2-1, the target location is specified by the westernmost corner and the dimensions are then given for the northeasterly heading target limb and the southeasterly heading target limb. All targets must fall within the first quadrant and the sum of the X and Y coordinates must not be greater than 25,000 (7:10).

The entire attack consists of a set of distinct weapons delivery passes with each pass defined by an ATT or ATT2 card. For each pass it is necessary to specify the heading, the number and type of weapons, the intended DPMI,

with a special point of the special

the probability of arrival on target, and, for the ATT card only, the aiming accuracy of the mean point of impact (the range of error probable (REP) and deflection error probable (DEP)), the ballistic dispersion in range and deflection, and, for a stick of weapons, the stick length. All linear dimensions are entered using feet as the units of length (7:10).

Several special features are available for use with point impact weapons. If a weapon could effectively damage a target when it only falls near but outside the target outline, the EMD for a hit can be entered on the EMD card for 10 (or 20) target types. The appropriate entry in most cases is the radius of a circle whose area is equal to the mean area of effectiveness (MAE) for the corresponding target weapon combination. In the case of hits on runways or taxiways, the appropriate entry is the crater radius. When AIDA checks for the existence of a launch window, each reliable impact is assumed to have a crater radius equal to the EMD (7:12,13).

Outputs

Discussion of the outputs available from the AIDA model can be facilitated by presenting a sample problem.

the state of the s

³For the ATT2 cards the delivery conditions (speed dive angle, release altitude, intervalometer setting, and aiming accuracy mils) replace the stick length and accuracy inputs on the ATT card.

Such a sample was run (7:18). This sample concerns hypothetical attacks on an airbase called XYZ, as shown in Figure 2-2. The base consisted of a 150 x 8000 foot main runway, several taxiways, a parking ramp, eight maintenance support facilities, and a housing area. The attack was made by four medium bombers that dropped 25 bombs each, attempting to cut the runway at two points; two medium bombers targeted on the operations building near the main taxiway; and one medium bomber that was targeted on the electronics shop. Also, one fighter-bomber was assigned to each of the main aircraft maintenance buildings, Bl and B2, and one fighter-bomber was assigned to drop a stick of five CBUs on the housing area (7:18).

put. However, only Cases 1, 2, and 4 apply to the requirements of this research. In Case 1 the model was directed to use the Monte Carlo mode and to print a statistical summary of five replications of the attack. Also, no assessment of runway availability was requested. Case 2 called for a single Monte Carlo attack, but with full printout and with an examination of the availability of a 50 foot x 4000 foot launch window on either the runway or main taxiway. The focus in Case 4 was the availability of launch windows for aircraft operations. This time only the runway and main taxiway were retained as targets (for output purposes), but all attacks were considered. Twenty-five attack trials were

Fig. 2-2. Base XYZ (7:19)

run with the Monte Carlo mode, repair requirements were assessed, and the trial-by-trial runway results were printed along with the statistical summary for the 25 trials (7:22-23).

The very first type of output, which is listed even before the main summary of the input data, displays any trajectory calculations required for this attack. Immediately following this is the summary of input data. This relationship is displayed in Figure 2-3. It should be noted that the targets and the attacks were assigned numbers in the order in which they were located in the input deck (7:23). The target damage statistics for the five Monte Carlo repetitions of the attack for Case 1 are shown in Figure 2-4 (the various annotations are designed to aid in clarifying the nature of the statistics shown). Case 2 called for a full printout of one trial without the display of the input data. Those results are shown in Figures 2-5 through 2-7. The first results shown are the hit patterns on the runway (Figure 2-5) and the main taxiway (Figure 2-6) as well as statements about their status. The target hit summary is displayed in Figure 2-7. The input data for Case 4 represents a trial-by-trial record (top half of Figure 2-8) of the total number of hits and the minimum repair requirements necessary to create a launch window (where there is no entry there were no hits). This yields a distribution of the existence of a launch window and is

Fig. 2-3. Input Summary--All Cases (7:25)

300000 30000

556555

000000

350000

888888

950.000 90.000 90.000

40. 50.606 50.606 60.606

તું જેલું એ ફું લે તું જેલું એ ફું લે

3.350 3.350 3.950

יי ניו

10

(A

·o

S

2

LIFT FEL

3411 mm

TROH COPY THE BEST QUALLYY PRACTICALING

A STATE OF THE PROPERTY OF THE

9156 NO.	RUMLAY MAIN TAX	>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>	رة و ال	HO HIT BE	40 HT 83 405 BS FLECT 67 UFNS ES	777
Ξž	ં કં	ંં		စ်စ်စ်စ်	4000	9.00 0.00 0.00 0.00
AUG. BOMB COVERHGE END OTHER	÷.	2.3	ė	9090 210 310 310	66.65 66.65	\$ 00 o
FIND EIND	0.019	33	9.019	6.155 6.166 0.0	6.0.0 6.0.0 6.0.0 6.0.0	
STD. DEV. COVERAGE	90	56	ė	စ်ဖွဲ့စ်	3033	969
AUG. CBU		99 0		3000	5656 S	9.36 9.36 9.36
573. IEU. 07 HITS	3.51		2.88	6 6	6 6 6 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	စ်စ်စ်
PERIENT AVERAGE ATTACK ATTACK	TVPE # 11.43	TAFIET TYPE	3.62 3.63	7.FE 8. 5. 4. 6. 6. 6. 6. 6. 6. 6. 6. 6. 6. 6. 6. 6.	7.7E # 2.26	3
PERTENT ATTHORS ALT	TARGET 120.3	TAPGET 8.	TARGET 1	1460.4 160.4 60.6	17.P.C.T.	7. 00. 00.
TAPLET INJIDER	-N	₹ 10	7	@roI	ಇಕ್ಕಿಸ್ಟ	155

The state of the s

Fig. 2-4. Target Damage Statistics, Case 1 (7:27)

RUMMAY # 1 IS CLOSED 1 HOLES MUST BE REPAIRED TO MEET RUNWAY MINIMUMS

12

=

9

AT LEAST ONE RUNUAY IS AVAILABLE

Fig. 2-5. Runway Hit Patterns, Case 2 (7:26)

the state of the s

Fig. 2-6. Taxiway Hit Patterns, Case 2 (7:28)

														2 (7:29)
														Case
														Target Hit Summary, Case 2 (7:29)
														Hit
														Target
	BLDG NO.	RUNUAY MAIN TAX	TXUV 81 TXUV 82	RAMP A	AC HT 81 AC HT 42 OPS 84 ENG 86	HC HT 83 AGE B5 ELECT R7 UPNS B8	195							1. 2-7.
	37	•••	••			****	999	D TARGETS						Fig.
œ	BONBS END OTHER	••	••	•	6.681 6.541 6.568	6.801 6.196 6.854	•••	HIT LOCATION AND UPN T'ME FOR SELECTED TARGETS	UPN TYPE	UPN TYPE	UPI TYPE	UPH TYPE		UPN TVPE
TRIAL	END	# · · ·	# 66	9.050	0.057 0.028 0.028 0.374	6.938 6.393 6.393	2000	UPH T'PE	Y-DIM 2042.	V-DIM.	2552. 2997.	7-0118 3118 -0148	36861. 3686. 3684. 3733.	3591. Y-DIM 1820. 1864.
2		-	N)	e	•	v	9	AND	16.	S. L.	E 6.68	1753. 1684. 1784.	2061. 2169. 2181.	132. 530. 636.
SUMMA	w	¥ ¥	* 3dA	* B	* 3dA	₩.	* 3d/	CATIO	1-DIM		1513	•		
TARGET HIT SUMMARY	COVERAGE	RGET T	AT TARGET TYPE	ER TARGET TYP	11 TARGET TVP 0. 0. 0.	11 TARGET TVP 0. 0. 0.	11 TAPGET TYP 8. 0.	HIT LO	E. 6	ER 7	ER 11	ER 13		83
TARGE	NO. HITS	22 0.	# **	5 ts TA	# 51.07	10 0 1 A	2 E		TARGET HUNBER	TARGET HUNBER	TARGET NUMBER	TARGET NUMBER		TARGET NUMBER
	15. T.	~N	+ 0	•	2002	# 6 4 5	129		4	4	Ŧ.	4		=

The state of the s

		11111	HERE BASE COM	COMPLEX NAME	- BASE XVZ	*****								
	NUMBER	MIG-X	TARGET DATA	A LINB	SE LINB	ANGLE	TGT TYPE	STORE	BLDS NO					
	-a	1906.	1350.	5000.	150.	.		••	RUNDAY					
	HUMBER	HBG	ATTACK DATA X-DMPI	V-DMP1	REP	DEP	R-DISP	D-015P	NO UPNS	LENGTH	UPH TYPE		ARPIUAL	
	~ 0€	5.55.55	1775. 650. 1350.	3350. 1850. 2575.	151.	1117.	. 8.88 8.88 8.88 8.88 8.88	* *	င်္က ရောက်	888.			9999	
	₹ ₩ @~@	9 9 9 4 9 9 9 9 9	6250. 6250. 6250.	3875. 3875.			20000		รู้รู้รู้รู้รู้รู้	1588.			00000	
	o <u>s</u>	96.	2600. 1250.	3100.		200.	199.	166.	 	1200.	-0		909.	
36	LPR TYPE	UPN PEL	-	MISS	MISS DISTANCES ALLOUED FOR TARGET TYPES	REGET TYPE	OR EFFECTIVE HITS	E HITS	~	80		a	2	
	- N F	6.956 6.950	က် စုံ ရှိ စုံ စုံ (၂၈ ရှိ စုံ စုံ			50.000 50.000 60.000	141. 56.00@ 56.00@ 6.00@	6 9	****	96994		00000	*****	

the second of th

Input Data, Case 4 (7:34) Fig. 2-8.

more revealing than the statistical summary shown in the bottom half of Figure 2-9 (7:28).

Summary

This chapter has described the model that was used in answering the research questions. The model's input requirements have been delineated in detail as has its flexibility. A more in-depth discussion of the input requirements is presented in Appendix A. The available outputs from the model were developed using sample case studies. The next chapter will cover two basic items of this research: (1) the definition of the system that was input into the model and (2) the methods by which the model was exercised in order to obtain the data needed to develop the answers to the research questions in Chapter I.

AT LEAST ONE MINIMUM RUNMAY SECTION WAS OPEN AFTER 64.0 PERCENT OF THE ATTACKS
WHEN ALL RUNMAYS WERE CLOSED, 1.8(0.8) HOLES REQUIRED REPAIR, ON THE AVERAGE, TO PROVIDE A MINIMUM RUNWAY

250	-	N	m	•		-	•	s	-	•			·	0 0	•	11	-	0	•	•		• :	2	c	•	0	~	_	9	0	a	10		a	0		• •	•	10	-	7	9	ď	N	
REPAIRS	EPAIR	EPA 18	EPAIR	EPA18	EPAIR	EPAIR	EPAIR	EPAIR	FPAIR	FPAIR	FPATR	FPATE	10110	K 1		PAIK	PAIR	EPAIR	FPAIR	PATE	0 40		PAIR		H	PAIR	PAIR	EPHIR	EPAIR	EPH IP															
77	2	17	~	=	17		18	s	36	2	17	-		0 9	9	=	16	16	55	-	• •	9	15	25	9	=			6				=		15							13		S	
HITS	:=		=	1	ニ	E	n	n	:	::	::	::	::	=:	=			t	-	:	: :	::	-	£	-	=	5	-	=	-	-	-	-	5	-	-		::	= :		=	-	H	=	
-0	-	-	a	-	-	N	-	N	-		٠,		• 0	٠.	-	N	-	-	-	. a			N	-	n	-	~	-	N	-	-	•	-	n	-	٨	-	• •	v ·	-	ď	-	æ	w	
191				4	0	-	43		ĸ		20	20	3 L	•		15	43	19	1			9 /	13	19	13		10	11	115							10	10	٠.	9 .		(3	(3	(3	. 45	
	• •	m	•	*	w	s	9	9	•	a	a	90	• 0	,	9	10	=	12	2	2	::		=	15	15	16	16	17	17	18	19	0	59	59	51	2	25	10	200	2	23	24	24	25	
TRIAL	•		3	E	E	H	3	2	2		10	10	5	Ξ.	Ξ	프	3	3	2	2		Ξ	Ξ	₹	H	F	4	3	Ā	TRIA	3	TRIA	4	F	3	3	9		= :	5	H	3	ᆵ	E	

and the state of t

	TARGET DAM	TARGET DAMAGE STATISTICS FOR 25 TRIALS	FOR	25 TR	IALS					
TARGET	PERCENT ATTACKS HIT	PERCENT AVERAGE HITS STD. DEV. AVG. CBU STD. DEV. ATTACKS HIT PER ATTACK OF HITS COVERAGE COVERAGE	STD.	DEU.	AUG. CBU	STD. DEU.	AUG. BOM	AUG. BOMB COVERAGE EMD OTHER	B _Y	BLDG NO.
-0	TARGET 96.0	TARGET TYPE # 15.28 76.0 6.40 76.0 6.40		7.96	66 6	••	ં હ	÷	6.5	A I A

Trial-by-Trial Results and Target Damage Statistics, Case 4 (7:35) Fig. 2-9.

CHAPTER III

METHODOLOGY

As was mentioned in the preceding chapter, a large amount of data was required to define the airbase and the attacks on it that would comprise the system which AIDA would analyze. Therefore, the initial task was to obtain this background data and define the system to be tested. The final task was to exercise the model and analyze the data output from AIDA. Reiterating then, the methodology consisted mainly of system definition, data generation and data analysis as is reflected in the research objectives listed in Chapter I.

System Definition

AIDA is a simulation model developed to assist in the analysis of airbase damage after a conventional air strike. The model's operation provides extensive flexibility in terms of attack level and detail of assessment. It provides specific definition of the attack scenario; e.g., number of attacking forces, level of effectiveness, targets to be attacked and the types of munitions used in the attack. As a result, the model provides a detailed damage assessment of the airbase.

Airbase Configuration

The airbase used in the system was the standard NATO MOB. It contained maintenance and operations buildings, support facilities, fuel and munitions storage areas, aircraft shelters and parking areas, and the airfield. The airfield consisted of a main runway, 150 feet by 8000 feet, and associated access taxiways. (See Figure 3-1.) possible modifications, as recommended by DCA, were considered to this basic airfield (3:1). They were: (1) a 100 foot by 6500 foot runway parallel to and within 1000 feet of the main runway, such that collateral damage could result from an attack on the main runway, (2) a 100 foot by 6500 foot runway separated from the main runway, such that separate targeting was required (3:1). This was construed to mean: (1) a parallel runway 900 feet away from the existing runway, and (2) a runway 715 feet away and parallel but not adjacent to the existing runway (see Figure 3-2). It is assumed that the configurations shown can in fact be made.

Target Location

The locations of individual high priority targets (i.e., maintenance hangers, shelters, avionics shops, operations, command posts, navigational aids, etc.) were those of the standard NATO airbase. The model was exercised with varying attack scenarios, with the targeting data (including

Legend:
A, B, C, and D are Access Points.

Fig. 3-1. Basic Airfield Configuration

Alternate 1

Legend:

-- Proposed Runway

Alternate 2

Fig. 3-2. Alternate Runway Configurations

the pre-attack positioning of the aircraft) held constant in order to develop a zero level base from which to measure the benefits of the proposed airfield modifications. The only targets that were actually changed during this research were the airfield (the pre-attack location of the aircraft remained constant) targets. They were reconfigured to reflect the proposed airfield modifications. All other targets and their priorities, relative to the airfield targets, were held constant.

Attack Scenario

The attack scenario consisted of five basic variables: the number of aircraft in the attack, their munitions, the type of aircraft, their heading and the priorities of their targets. There were two types of aircraft employed in each attack scenario and the numbers of aircraft in each attack was held constant. The numbers of each type of attacking aircraft will be specified later in this chapter. The amount of munitions carried by each aircraft was a function of that aircraft's capabilities. Each aircraft was fully loaded with one type of conventional weapons. The delivery characteristics of the aircraft cannot be specified in this thesis but will be constant throughout. The attack headings were limited to runway crossing angles (on the main runway) from 0° to 90°, in 30°

¹This information is not for dissemination to the public.

increments. Any other crossing angles would have duplicated information that was obtained from this range of headings (3:1).

Weapon Accuracy and Effectiveness

The Soviet aircraft and weapon accuracy and effectiveness was available to the authors. While they cannot be specified here, all those values were held constant during the research. Only conventional general purpose (GP) bombs were considered as the probable weapons to be delivered against airfields. It was assumed that precision guided munitions (PGMs) would have been directed against point targets off the airfield and would therefore result in little or no collateral damage to the airfield (per direction from DCA (3:1)).

The weapons were assumed to be carried externally on the fighters and internally on the bombers. Thus, upon release, the weapons would follow a free-fall ballistic trajectory, dependent on release altitude, aircraft speed and dive angle, the release sequence of the weapons, and the ejection characteristics of the weapon racks themselves (5:7). Those values were held constant for a particular matching of aircraft and weapons and were contained in DCA guidance (3:1).

 $^{^{2}\}mathrm{This}$ information is not for dissemination to the public.

Aircraft Launch Window

The model was exercised using seven basic USAF aircraft (either on the ground at the time of the attack or due to be recovered as soon as possible after the attack) in four mission configurations for recovery. (NOTE: There is no relationship between these aircraft and the attacking aircraft.)

Launch Window Decision Matrix. The data on launch and recovery requirements were grouped into the matrix shown in Table 3-1 (3:2). The matrix shows the size of launch window required by each of the seven aircraft and the configurations those aircraft could be in at the time of launch or recovery. See Appendix B for detailed data on the mission configurations for each of the launch and recovery conditions in Table 3-1, as well as the aircraft configurations under each mission configuration.

System Assumptions

Assumptions were placed upon the system to constrain the number of replications necessary to utilize statistical techniques in the analysis. The assumptions were:

- Two basic type of aircraft were studied as attack aircraft, those being fighters and bombers.
- All the attacking aircraft were carrying GP bombs.

TABLE 3-1

LAUNCH WINDOW MATRIX (3:2)

							1
Window	F-4	F-15	F-16	A-10	C-130	C-141	c-5
50'x1500'	L ₂ (R)	L ₃ (R)	L ₃ (R)	L_2R_2	LR	1	1
50'x2500'	L3 (R)	L_3R_1	L_3R_1	L_3R_2	LR	1	1
50'x3500'	L_3R_2	L_3R_1	L_3R_2	L3R2	LR	1	1
50'x4500'	L3R2	L3R2	L_3R_2	L_3R_2	LR	1	1
100'x4500'	L3R2	L3R2	L_3R_2	L_3R_2	LR	LR	1
150'x5500'	L_3R_2	L_3R_2	L_3R_2	L_3R_2	LR	LR	LR
Legend:							
Launch Condition	c.		Recove	Recovery Condition	u)		
L - Only condition possible	tion possibl	e.	R - 0	- Only condition possible	on possible	ø	
L ₁ - Bugout			R ₁ - I	- Lightweight			
L_2 - Max wt. for	r 1500' groundroll	indrol1	$R_2 - M_2$	Max wt. for 1500' groundroll	1500' grow	ndroll	
L ₃ - Basic attack	3k		(R) - U	(R) - Using mobile barrier	barrier		

- The ordinance was limited to MK-82 bombs or their equivalent.
- 4. PGMs were not considered for reasons previously discussed.
- 5. The attacking aircraft under consideration were employed at points of opportunity such as the maintenance hangers, munitions and fuel depots.

Variable Identification

The problem statement mentioned in Chapter I defined the variables used in this research as (DV - dependent variable; IV - independent variable; and EV - environmental variable):

DV = Probability of an accessible launch window

IVl = Pre-attack airfield configuration

IV2 = Attack scenario

base level (control) data for this thesis.

To provide better system definition, these variables were broken down into their specific components as shown in Figure 3-3. This redefinition allowed the determination of the environmental variables which was not provided for in the original identification of variables.

DV. Probability of an accessible launch window for each of the launch window sizes previously mentioned.

EV1. Pre-attack airfield configuration as it presently exists. Attacks on this configuration will provide the

Mary Barre water water

Fig. 3-3. Variable Interrelationships

I will be the state of the stat

- <u>IV1</u>. The proposed modifications to the basic airfield configuration as mentioned previously (two possible configurations).
- EV2. The target priorities were held constant except where necessitated by the proposed modifications of the airfield configuration.
- EV3. The quantity and type of munitions, per aircraft type, were held constant. The type of aircraft used in the attack defined a range of available munitions and their possible quantities. The actual types of munitions per aircraft type and their quantities were determined prior to this research (3:Atch 1).
- IV2. The attack headings were varied from 0° to 90° in 30° intervals. This range provided adequate information about the results of the different crossing angles (3:1). This yielded a total of four possible variable states.

 CONST1. The size of the attacking group was 18 aircraft
- CONST1. The size of the attacking group was 18 aircraft which was considered to be squadron strength.
- CONST2. The ratio of the number of aircraft attacking the airfield, compared to the total number of aircraft attacking the airbase, was held constant (40:60). Also, the ratio of bombers to fighters was held constant (30:70) for each attacking group. These ratios are based on the best available information at the time of this thesis and the experience of the authors.

IV3. The required launch/recovery window sizes were based on the information presented earlier in this chapter.

There were a total of six possible variable states.

EV6. Weapon accuracy and effectiveness was based on the type of munitions employed and their launching platforms (aircraft). Since these were held constant, then accuracy and effectiveness was constant for the research.

Using the system definition just developed, the research questions from objectives one and two were answered. The next two sections will discuss the data generated by the AIDA model and how that data was analyzed.

Data Generation

The standard base configuration chosen for this research was provided by DCA (4:1). It had been developed for recent studies by the Rand Corporation using the AIDA model. A map of the base is shown in Figure 3-1 and the computer code for the base itself is included in Appendix C. The target priorities were those chosen by the Rand Corporation in the above study (4:1). The computer code representing the attacks on each specific target is listed in Appendix C. The printout options chosen were those that provided plots of the bomb hits on the main runway, alternate runways, and taxiways as well as the summary statistics for each run of the model.

Previous sample studies have attempted to draw conclusions on launch window existence from data derived from only 25 repetitions of a particular attack scenario and have failed (7:24). This research used 50 repetitions to develop the data to be analyzed. This number was large enough to allow data to approach normality and still be manageable for the necessary manual work (described in the next section). Each time an independent variable was modified the model was exercised 50 times (hereafter referred to as one run) to get the appropriate data. Individual plots of each trial in a run were used to determine the probability of having an accessible launch window present for all variable combinations on the existing airfield configuration and only for the 0° attack heading runs on the other two airfield configurations. The computer's probability of the existence of launch windows was the only data created for the other variable combinations of the proposed airfield configurations.

Data Analysis

There are two major constraints on the model that affected the way this research was conducted:

 In its search for launch windows on runways, taxiways, and parking ramps, the AIDA model does not take into account launch windows on a diagonal to the runway centerline. Thus, eliminating a number of possible solutions to the launch window problem.

2. The model does not evaluate the accessibility of the launch windows it finds; thereby necessitating a manual inspection of the computer plots and calculation of the accessibility of each launch window for each variation of the independent variables.

As stated in Chapter I the authors felt that the problem created by number 2 above was the most significant and will be investigated in this thesis. Problem one was therefore determined to be insignificant for the purposes of this thesis.

As mentioned previously, manual inspection of all the computer plots was necessary to determine the accessibility of any launch window. The manual inspection only occurred on those plots where the computer indicated a launch window present in its summary analysis. The inspection consisted of a visual analysis by the authors which determined if a parked aircraft (parking areas are indicated in Figure 3-1) had a wide enough path to taxi to either a taxiway or the runway where the launch window occurred. The required paths were determined to be 25 feet wide for fighter aircraft and 75 feet wide for the cargo aircraft. The paths for the cargo aircraft were considered

Mas to Shar was conting to a control of

to start at the recovery window and run to an off-loading ramp (indicated on Figure 3-1).

For the development of the probabilities of accessible launch/recovery windows, the concept of accessibility was considered a 0-1 variable, where 1 denoted accessibility. The probability of having an accessible launch/recovery window was determined by dividing the number of occurrences of accessible windows per run by the total number of possible windows (50) per run. This was accomplished for each combination of independent variables as mentioned earlier. The computer determined the probabilities of finding launch/recovery windows (without regard to accessibility) for each run. The means of each of these probabilities (accessible and existence of launch/recovery windows) were compared using Scheffe's test statistic, at a 95 percent confidence interval.

$$(u_1-u_2) = (x_1-x_2) \pm t_{.025} s_p \sqrt{1/n_1 + 1/n_2}$$

For those combinations of independent variables where there was a statistical difference between the computer's findings and those of the author's, the function

was derived. This was then applied to the 0° attack heading variable combination of each of the proposed runway

configurations. The means of the resultant distributions were then compared against the means derived by hand for the same variable combinations using Scheffe's test statistic. A zero statistical difference was then considered to be adequate validation of the applicability of the derived accessibility function. These results were used to determine the answers to the questions in objective 3 (Chapter I).

the state of the s

CHAPTER IV

ANALYSIS

Before the actual analysis is presented, a short discussion of a few of the problems the authors encountered with AIDA is apropos. The question of accessibility necessitated that a large number of taxiways be investigated for accessibility to the main runway after an attack. The model as written limited the number of runway surfaces to five (5), which in turn limited the number of surfaces for which plots showing the bomb points could be printed to five also. This problem was eliminated by redimensioning variables NRW and HITR in the model to reflect the capability of checking twelve runway surfaces and changing some of the logic to allow the increased quantity of surfaces. The second problem was a little easier to correct. In the generation, it was necessary to obtain plots on runway surfaces that were in fact narrower than the launch window being searched for. When this situation was encountered by the model, it printed an error message and shut itself down entirely. The correction for this was to reroute the program back into itself at a point just after the section where the error was determined. Therefore, not only did the model output an error message as a reminder, but it also plotted the

bomb impact points as was required for determining accessibility. These two basic changes allowed the data to be generated in a format that was congruent with the previously stated analysis procedure.

Initial Analysis

The first step in the analysis was to reduce the reams of computer output obtained in the generation phase to a form that was readily applicable to the stated analysis program. This was accomplished through manual inspection of all the output data to obtain the frequencies of closure of the important runway and taxiway surfaces. The results of this reduction can be found in Table 4-1, Table 4-2, and Table 4-3. The data in the tables depict the number of runway or taxiway closures per run. The run values were then divided by the number of trials per run and subtracted from 1.0 to get a probability of availability. The access taxiway values were treated differently in that they were divided by the number of times that taxiways could have been open when the runway was open and then subtracted from 1.0 to obtain the probability of accessibility. The probability of finding an accessible launch window was then the product of these two values. The probabilities per launch window size were graphed as shown in Figure 4-1 (this figure is a sample, the remainder of the graphs are located in Appendix D). The top graph reflects the probability of finding a

TABLE 4-1
HAND CALCULATED RUNWAY CLOSINGS FOR 50 TRIALS

Launch Window Sizes		1500 X 50	2500 X 50	3500 X 50	4500 X 50	4500 X 50	5500 X 50	
BASIC								
0°	RWY.		0	0	0	3	16	46
	TWY.	1	14	13	15	16	22	NA
		6	14	13	13	16	19	2
		7	25	28	26	26	23	NA
		9	0	0	0	0	0	0
30°	RWY.		0	0	0	2	18	37
	TWY.	1	17	14	33	26	18	NA
		6	18	19	13	10	12	6
		7	22	24	34	25	17	NA
		9	0	0	0	0	0	0
60°	RWY.		0	0	0	4	14	41
	TWY.	1	22	20	22	21	18	NA
		6	6	6	5	7	5	6
		7	18	17	15	11	4	NA
		9	0	0	0	0	0	0
90°	RWY.		0	0	0	2	9	35
	TWY.	1	23	29	21	20	19	NA
		6	7	6	8	7	9	8
		7	8	10	14	9	9	NA
		9	0	0	0	0	0	0

TABLE 4-2
COMPUTER CALCULATED RUNWAY CLOSINGS FOR 50 TRIALS

Launch Window Sizes		1500 X 50	2500 X 50	3500 X 50	4500 X 50	4500 X 100	5500 X 150
ALT. 1							
RUNWAY	0°	0	0	2	3	23	40
	30°	0	0	2	4	18	40
	60°	0	0	0	1	13	42
	90°	0	0	0	0	10	40
ALT. RWY.	0°	0	0	0	0	1	14
	30°	0	0	0	0	1	11
	60°	0	0	0	0	2	18
	90°	0	0	0	0	0	15
ALT. 2							
RUNWAY	0°	0	0	2	3	22	41
	30°	0	0	2	4	20	39
	60°	0	0	0	1	10	41
	90°	0	0	0	0	. 9	40
ALT. RWY.	0°	0 .	0	0	0	0	0
	30°	0	0	0	0	0	0
	60°	0	0	0	0	0	0
	90°	0	0	0	0	0	0

TABLE 4-3

HAND CALCULATED ALTERNATE CONFIGURATION RUNWAY
CLOSINGS FOR 50 TRIALS

Launch Window Size	3500 X 50
0° Heading	
ALT. 1	
RUNWAY	0
ALT. 1	0
TWY. 1	15
6	0
7	0
ALT. TWY. 1	14
2	10
3	10
ALT. 2	
RUNWAY	0
ALT. 1	0
TWY. 1	14
6	0
7	0
ALT. TWY. 1	4
2	7
3	0

I the way the way of the second of the secon

Legend:

A - access pt. A B - access pt. B

A STATE TO SERVICE THE SERVICE SERVICE

C - access pt. C D - access pt. D

Fig. 4-1. Probability Distributions

launch window in existence for a specified configuration and attack heading while the bottom graph depicts the probability of an accessible launch window for the same configuration and attack heading. The data points were connected to accentuate the changes in probabilities from one launch window size to another. If the horizontal scale was measured in square feet, the data would, in fact, be continuous; but as they are presented, the data are discrete.

After the distributions for availability and accessibility were plotted, it was necessary to determine if there really was a significant statistical difference between them. This was done using the difference of means of two populations with unknown variances method (Scheffe's statistic for a single comparison). The pooled sample variance was calculated from:

$$s_p^2 = \frac{1}{n_1 - n_2 - 2} (\hat{z}(x_1 - \bar{x}_1)^2 + \hat{z}(x_2 - \bar{x}_2)^2).$$

The confidence intervals resulting from the difference of means calculations between the availability and the accessibility from a given point are displayed in Table 4-4. Calculations for access point C are not shown because this taxiway was never closed in all the trial runs. The access point with the highest incidence of no statistical significance between availability and accessibility was access

TABLE 4-4

VALIDATION OF THE CONCEPT OF ACCESSIBILITY FOR THE BASIC CONFIGURATION

Heading	MCR	U _x -U _A	U _x -U _B	Ux-UD
.0	5500 X 150	NA	.041.368	NA
	4500 X 100	.441.22	.381.25	.46±.22
	4500 X 50	.32±.167	.32±.167	.521.172
	3500 X 50	.30±.143	.26±.143	.521.155
	2500 X 50	.26±.143	.26±.143	.56±.157
	1500 X 50	.281.14	.281.14	.501.156
30°	5500 x 150	NA	.121.524	NA
	4500 X 100	.36±.248	.241.251	.341.249
	4500 X 50	.52±.167	.20±.141	.501.169
	3500 X 50	.34±.178	.741.202	.321.183
	2500 X 50	.721.205	.621.179	.521.167
	1500 X 50	.661.188	.641.183	.561.17

NOTE: Underlining indicates statistical nonsignificance.

The transfer of the state of th

TABLE 4-4--Continued

Heading	MCR	U _x -U _A	U _x -U _B	qu-xu
.09	5500 X 150	NA	.15±.334	NA
	4500 X 100	.36±.231	.10±.211	.081.207
	4500 X 50	.40±.179	.141.144	.26±.162
	3500 X 50	.44±.155	.12±.093	.36±.144
	2500 X 50	.40±.152	.13±.101	.321.148
	1500 X 50	.44±.155	.12±.101	.281.152
.06	5500 X 150	NA	.141.319	NA
	4500 X 100	.38±.206	.161.189	.181.189
	4500 X 50	.401.166	.121.126	.181.137
	3500 X 50	.42±.153	.15±.114	.301.14
	2500 X 50	.601.153	.14±.101	.211.125
	1500 X 50	.52±.152	.18±.109	.221.115

point B. By studying the dimensions of these two taxiways (as listed in Appendix C) the reason behind this occurrence became clear: when the width of the taxiway was greater than 75 feet, the taxiway was less likely to be closed by only one or two bombs and therefore less likely to affect the accessibility of a given launch window.

Final Analysis

One of the research questions that this thesis wanted to answer was whether or not an accessibility function could be derived that would be applicable to all airfield configurations. In order to validate the use of such an accessibility function derived from attacks on the basic airfield configuration or alternate airfield configurations, it was first necessary to derive the accessibility distributions for the alternate airfield configurations. Only a limited amount of data was collected due to time constraints on the access to the use of the computer. The model was run for a launch window of 3500 feet X 50 feet with an attack heading of 0°. The 3500 foot X 50 foot launch window was chosen because it represented the largest MCR that had 100 percent availability at all attack headings. The 0° attack heading was chosen because the difference of means for a 3500 foot X 50 foot launch window (.26±.143) was close to the mean difference in all the attack headings given that size launch window. Those

results were displayed previously in Table 4-3. Prior to comparing the accessibility distribution of the basic configuration with the probability distributions of the alternate configurations, by way of the accessibility function, it was first necessary to determine if accessibility of the alternate configurations was statistically significant. The statistical significance of each of the accessibility distributions (derived by hand) for the alternate configurations was determined using Scheffe's statistic. The results are shown in Table 4-5. For the most part, accessibility was only a problem for the new taxiways created to connect the old taxiways to the new runways. Only for access point A, was there a statistical difference between availability of a launch window on the existing runway and accessibility to that window for both alternate configurations. However, accessibility through access point B was statistically significant from availability of launch windows on the alternate runways in both alternate configurations.

To validate the application of the accessibility function derived previously, a combination of variables common to both the basic and alternate configuration distributions had to be chosen. It was accessibility from point A to a 3500 X 50 foot launch window on both runways in each alternate configuration and an attack heading of 0°. While this was only a limited validation, it was all

TABLE 4-5

VALIDATION OF THE CONCEPT OF ACCESSIBILITY FOR THE ALTERNATE CONFIGURATIONS

Heading	MCR	v_x-v_A	U _x -U _B	ux-nD
0				
ALT. 1				
RUNWAY	3500 X 50	.30±.143	<u>0 ± 0</u>	<u>0 ± 0</u>
ALT. RWY. 1	3500 X 50	.28±.140	.20±.125	<u>0±0</u>
ALT. 2				
RUNWAY	3500 x 50	.28±.140	<u>0±0</u>	<u>0±0</u>
ALT. RWY. 2	3500 X 50	.08±.085	.14±.108	<u>0±0</u>

NOTE: Underlining indicates statistical non-significance.

that was possible during the limited time available. To properly test this function, the same type of comparisons discussed later in this paragraph must be conducted for each MCR size, each attack heading and for each configuration. Therefore, the function or point of the function became P = .7E; where P was the probability of having an accessible window and E was the probability of having an available window. For the two alternate configurations, the actual hand calculated values of E and P were:

A to Basic Runway: $\frac{ALT. 1}{E=1.0 P=.7} \qquad \frac{ALT. 2}{E=1,0 P=.72}$

A to Alternate Runway: E=1.0 P=.72 E=1.0 P=.92

Comparing these values of P with the projected values of P yielded a difference of means as shown in Table 4-6. There was no statistical difference between the projected and the actual probability of accessibility for alternate configuration 1 (basic or alternate runway). However, for alternate configuration 2 the function could only be applied to the existing runway and not the alternate runway.

TABLE 4-6
ACCESSIBILITY FUNCTION VALIDATION DATA

	Projected -	Actual	2	
	PA	PA	s _{P-A}	U _P -U _A
ALT. 1				
RUNWAY	.7	.7	.214	0.0±.202
ALT. 1	.7	.72	.210	02±.20
ALT. 2				
RUNWAY	.7	.72	.210	02±.200
ALT. 2	.7	.92	.145	22±.166

NOTE: Underlining indicates statistical significance.

CHAPTER V

SUMMARY

Before presenting the conclusions and recommendations, it is necessary to review the basic motives and the justifications that were initially set when this study began. First, it was necessary to define the basic runway configuration that was to be used as the basis for this investigation, from which two alternative runway configurations could be examined for their contributions to providing accessible launch windows. Since the study was to be used in the NATO environment, the initial airfield configuration was similar to those currently in the European theater. Next, it was necessary to select the types and size of attack that the airfield would probably be subjected to. During an initial surprise attack, a squadron strength group consisting of fighters and bombers would attack the airfield and would concentrate its efforts on closing the runways, or denying their use by closing the taxiways, so that an air offense could not be launched against the attacking force. Upon defining the airfield configuration, and the type and size of the attacking force, it was necessary to run the model, varying the attack heading, to provide a broad data base for investigation.

the second of the second second second second second

The results would serve as a base line in the investigation of the two alternative proposals. The data on the basic configuration allowed the derivation of an accessibility function that would predict the probability of accessibility, given the probability of availability of a launch window. This function was applied to the probabilities of availability for the two alternate configurations to see if it would predict accurately for either airfield configurations.

Conclusions

The aforementioned analysis program yielded three basic conclusions about the airfield configuration-attack scenario system that was input in the AIDA model.

- 1. Accessibility was the key factor in determining whether or not a runway was actually open in more cases than was availability. This conclusion was based on the data presented in Table 4-4 (Chapter IV). In 53 of the 64 cases, accessibility was the determining factor (i.e., accessibility was statistically significant from availability) while only 11 of the 64 revealed availability to be key.
- 2. The derived accessibility function, P = .7E, was a statistically significant predictor of the accessibility of launch windows on the main runway in both alternative configurations. However, it was a

statistically significant predictor of the accessibility of launch windows on only one of the two alternate runways. That one being parallel and in close proximity to the main runway. The basis for this statement was in Table 4-6 (Chapter IV) and in the fact that alternative runway 1 used the same access routes as the main runway while alternate survey 2 used what could be considered entirely new access routes. Thus the accessibility function, as it stands, can only be applied to possible alternative runways if they use the same access routes.

wall distance change was to good in a

3. The alternate parallel runway in close proximity to the main runway did not provide an open runway in as many cases as did the other alternate runway. Using Table 4-2 (Chapter IV) as a basis, the authors noted that in 301 of 2400 trials, for alternate runway 1 (parallel and close proximity to the main runway), the runway was closed, while alternate runway 2 was only closed 234 of 2400 trials. This yielded a probability of availability of .9025 for alternate 2 and .8746 for alternate 1. The difference of means test described in Chapter IV revealed that the difference between these probabilities was statistically significant (.0279±.0198).

These conclusions must be qualified by saying that any major changes to the type of airfield system, or attack scenario (the type of aircraft and their assigned targets)

input into the AIDA model may invalidate the above conclusions.

Recommendations

A review of the problems incurred during this research as well as the findings of the analysis lent itself to many possibilities for future investigations or actions. These have been reduced to the most significant.

1. In the future when AIDA is used to check for available launch windows, their accessibility should be considered, but to do so it must undergo some significant structural changes. The model must allow the searching of access taxiways to determine their openness without affecting the calculations about the availability of a launch window as is presently the case. The model must be streamlined as it is presently a significant waster of computer CPU time and memory space. Lastly, the output data provided by the model should be restructured so that the relationship between a taxiway to an available launch window is maintained (it is not now) and so that the personnel interpreting the output can tell where all available launch windows are located with regard to the open access taxiways. Consideration should be given to returning the model to the Rand Corporation or to just commissioning the development of a new more efficient and useful model.

2. Analysis of the data for this thesis seemed to point to the conclusion that taxiways of a width less than 75 feet were more susceptible to closing than those of a width greater than 75 feet. The scope of this thesis did not allow the validation of the above statement, but due to its possible significant impact on existing as well as future airfields, it should be investigated thoroughly. Validation of this possible conclusion will ensure that future airfields are designed with at least 75 foot wide taxiways and that existing airfields widen the taxiways at major choke/access points to at least 75 feet.

to conting of the service of the service

3. Recent emphasis by the Air Staff on airbase survival has pointed to the need for quantifying the supplies the BCE can expect to need in the first few days after an air attack to restore his base to an operational status. Models such as AIDA can provide him with a reasonable estimate of the number of craters the RRR team will have to fill to provide available launch windows and the accessibility function can correct that number to reflect repairs to provide an accessible launch window. With the results of the studies presently underway at the AFESC (9) to determine the actual time it takes a RRR team to repair a crater and the time it will take an Explosives Ordinance Disposal (EOD) team to clear the airfield for the BCE operations, a BCE will have a reasonable idea of his "get

well" time given a specific number (and size) of craters to repair.

of the selection of the

- 4. The analysis done by this thesis tended to point out that the derived accessibility function was highly sensitive to changes in airfield configurations (i.e., parallel runways, oblique runways, disjointed runways). However, this could not be supported due to the limited validation. Further research is needed to determine the sensitivity of the function to airfield configuration changes. With the magnitude of the sensitivity known, the function can be corrected and used by managers to determine accessibility with existing computer models, thus saving the time and money of creating and using a more complex model.
- "accessibility is a more important factor than availability," the basic analysis that was accomplished on a particular airfield configuration in this thesis should be duplicated. This is necessitated by the limited validation possible in this thesis. The duplication should discuss not only similar airfield configurations, but different ones as well with different attacking aircraft and targeting assignments. Only if the conclusions reached in this thesis can be achieved in other situations will they affect the attack scenario-damage assessment concept as it is presently employed in the Air Force.

APPENDICES

The state of the s

APPENDIX A

DETAILED DESCRIPTION OF AIDA INPUT

The state of the s

The following pages are taken from Appendix A of the Rand Report on AIDA (7:37-50).

The basic types of input cards employed with AIDA are as noted below:

CONT control card

TGT target card; one per target

ATT attack card; one per weapon delivery pass

(or group of identical passes)

ATT2 alternate attack card

EMD effective miss distance card; one for

each weapon type

REDO controls sequential cases

END terminates overall computation

The ATT2 card is actually two cards in sequence and the EMD card may have up to three supplementary cards. A detailed description of the entries for each type of card is presented on the pages that follow.

The general arrangement of data on all basic card types is similar; the card type-name is placed (left-adjusted) in the first four columns and the data are listed in eleven 6-column fields between Columns 7 and 72. All data are read with a F6.0 format; i.e., they are to be real numbers. If a whole number is to be input, it may be entered (right-adjusted) in the field without a decimal

point; the decimal point is necessary otherwise. Columns 5 and 6 on the ATT, ATT2, and EMD cards are also used, as will be described, and the name of the target complex being studied and a name for each target may be included in Columns 73 through 80 of the CONT and TGT cards, respectively; any alphanumeric names are acceptable.

All linear dimensions should be in consistent units (e.g., feet) and the target orientation and the attack heading entries should be in degrees.

CONT

The CONT card controls the mode of operation, the choice of random number generator, the number of trials (attack replications), and printout options; specifies the minimum clear length (MCL) and minimum clear width (MCW) for runway attack effectiveness calculations; and controls the runway repair assessment.

Columns Data Entry

- 1-4 CONT
- 11-12 When 0, the seed for the random number generator is the same for all runs. If greater than 0, the seed is changed from run to run; if equal to -1, the random number generator is locked out. If equal to -2, the expected-value mode of operation replaces the Monte Carlo mode.

Columns Data Entry

13-18 Desired number of replications. Default is 1.

23-24 Controls printout options as follows. If entry is

- 5 Prints multiple trial statistics plus a condensed listing of hits by trial
- 4 Prints multiple trial statistics plus a condensed listing of runway status by trial
- 3 Prints multiple trial statistics only
- 2 Above plus runway results for each trial
- 1 All above plus hit summary for each trial
- O All above plus stored hit data for each trial
- -1 All above plus all hits and target corners
- -2 All above plus all impact points
- Controls printout of intermediate information for program test purposes; should normally be

 0. If set to greater than 7, the random number generator is locked out. See the program source listing for the effect of other values.
- 31-36 MCL for aircraft operations. (Used to test if the runways are open.)
- 37-42 MCW for aircraft operations. (Used to test if the runways are open.)

Columns	Data Entry
48	When entry is 1, runway results will include
	the minimum number of craters to be repaired
	for the runway to meet the MCL and MCW criteria.
54	When the entry is 1, a plot for all impact
	points will be included for all closed runways
	(if, also, the printout option entry in Col-
	umns 23 and 24 is less than 3); when the entry
	is 2, impact plots are provided for each runway
	whether or not it is closed.
55-60	The distance that the "minimum runway rec-
	tangle" is to be shifted laterally in checking
	for an adequate section; the default value is
	5.
61-66	The distance along the runway that the minimum
	runway rectangle is to be shifted in checking for
	an adequate section; the default value is 250.
73-80	A name can be entered here for the entire tar-
	get complex and it will appear in the heading
	of the output listing.

The state of the s

TGT

Each TGT card designates the location, size, and orientation of a rectangular target.

Columns	Data Entry
1-3	TGT
7-12	The X-coordinate of the westernmost corner of
	the target.
13-18	The Y-coordinate of the westernmost corner of
	the target. If a target boundary runs exactly
	north-south, the X and Y coordinates of the
	southwestern corner should be specified.
19-24	Target dimension along the boundary running
	northeast (or north) from the X and Y coordi-
	nates of the reference corner specified in the
	two previous fields.
25-30	Target dimension along the boundary running
	southeast (or east) from the reference corner.
31-36	Heading in degrees of the northeast (or north)
	heading boundary of the target (along the dimen-
	sion specified in Columns 19 to 24). (Meaning
	varies for target type #21; see below.)
41-24	Target type. Targets may be grouped into up
	to 10 (or 20) different categories with like
	vulnerabilities. This entry is used in con-
	junction with the effective miss distance on
	the EMD card. Target type #1 is restricted to
	runways and taxiways that may be used for
	flight operations; there will be no more than 5
	targets of this type. Entering a 21 for target

Columns Data Entry

41-24 cont'd type actually acts as a signal (but only in conjunction with the expected-value mode) directing that a 17 x 17 grid of hit-density values be tabulated over a square, the southwest corner of which is entered in Columns 7 to 12 and 13 to 18. In this case, entries in the third, fourth, and seventh fields have no meaning. Unless a different value is entered in Columns 31 to 36 (preferably a number divisible by 16), the default dimension of the square is 4000, for a grid increment of 250. There may be one or more target type #21 cards, and they may be intermingled with normal target cards; however, when present, one of the type #21 cards must be the last target card entered for a case.

- If greater than 0, all hit locations will be saved (and printed when entry in Column 24 of the CONT card is 0 or less).
- 73-80 A name or number for the target (any alphanumeric) may be entered here. This name as well as the sequence number that is assigned automatically will appear for target identification in the output listing.

ATT

The ATT card specifies the parameters of each weapon-delivery pass. Inputs required are the attack heading (measured from north in the coordinate system used to specify the targets), the desired mean point of impact (DMPI) for a single weapon or for the middle of a stick of weapons, the aiming error expressed as REP and DEP, the ballistic error of the individual weapons, the number of weapons to be delivered in the pass, the stick length, and the weapon type (related to the effective miss distance on the EMD card).

Columns	Data Entry
1-3	ATT
5-6	Total number of passes with the following
	characteristics; default = 1.
10-12	Attack heading in degrees from north.
13-18	The X-coordinate of the DMPI of a single weapon
	or the middle of a stick of weapons.
19-24	The Y-coordinate of the DMPI as above.
25-30	The REP
31-36	The DEP
37-42	Ballistic dispersion in range of individual
	weapons (R-DISP).
43-48	Ballistic dispersion in deflection of indi-
	vidual weapons (D-DISP). Default value is
	R-DISP.

Columns	Data Entry
49-54	The number of weapons in the stick.
55-60	The length of the stick (the distance between
	the first and last weapon of the stick in the
	absence of dispersion).
61-66	The weapon type (used in effectiveness calcu-
	lations together with EMD and target type).
	An entry is required (an integer from 1 to 10);
	otherwise hits will not be recorded.
67-72	Probability of arrival at target; default = 1.0.

The ATT2 card should be used in place of the ATT card when the user wishes assistance with trajectory calculations. When this card is used the user expresses the attack in terms of speed, altitude, dive angle, intervalometer settings, etc., and a special subroutine converts these inputs to those demanded on the ATT card.

Both ATT and ATT2 type cards may be used in the same run; the order of entry is of no importance. When ATT2 cards are used the input data will be reproduced as submitted, as well as being tabulated in the normal manner, after conversion.

Data input with the ATT2 procedure require two cards. The first card is labeled ATT2 in the first 4 columns and has input similar to that on an ATT card (all fields are read with a F6.0 format); a second unlabeled

card is mandatory following each ATT2 card. The format for both cards follows. When these cards are used, all linear dimensions in the input data will be in feet.

9	Columns	Data Entry
	1-4	ATT2
	5-6	Total number of passes with the following charac-
		teristics; default = 1.
	10-12	Attack heading in degrees from north.
	13-18	The X-coordinate of the DMPI of a single weapon
		or the middle of a stick of weapons.
	19-24	The Y-coordinate of the DMPI as above.
	25-30	The CEP in the normal plane in mils, or, if
		DEP is specified, a constant which, when divided
		by the sin of the impact angle, gives the REP,
		in mils.
	31-36	The DEP in mils (if omitted, CEP controls).
	37-42	Ballistic dispersion in mils.
	49-54	The number of weapons in the stick.
	61-66	The weapon type.
	67-72	Probability of arrival at target; default = 1.0.

The data format for the second card of each ATT2 pair is as noted below (this card is used with a 6F6.0, 3F6.3 format).

Columns	Data Entry		
7-12	Aircraft velocity (kn).		
13-18	Release altitude of last bomb (ft).		
19-24	Dive angle at release (deg).		
25-30	Terminal velocity of weapon (cluster) or first		
	leg of a high-drag bomb (ft/sec).		
31-36	Terminal velocity of a cluster bomblet or a		
	high-drag bomb (ft/sec).		
37-42	Probable error in estimating and correcting		
	for wind effects (ft/sec).		
43-48	Cluster opening time or fin opening time for a		
	high-drag bomb (ms), or cluster/fin opening		
	altitude (ft). (A decimal point is mandatory		
	when altitude is input.)		
49-54	Intervalometer setting (ms).		
55-60	Dispensor intervalometer setting (ms) (0 for		
	clusters).		

EMD

The EMD card is optional and provides information regarding weapon performance against the various types of targets. The entries for this card are different for point-impact weapons, a hit is assessed for any impact within a distance of EMD from the target. For CBU munitions, the EMD card is used to specify the dimensions of the rectangular bomblet pattern.

The methods for expressing weapon coverage also differ for the two types of munitions. For point-impact weapons the EMD is also used as the weapon kill radius, and coverage is determined as that fraction of the target area that is covered by a circle of that radius.

For point-impact weapons (GP bombs or PGMs) the entries are:

Columns	Data Entry			
1-3	EMD			
5	Enter 1 if data are to be entered for 20			
	target types. 1			
6	Enter 1 if data on weapon reliability, p_k , or			
	effective kill radius for this weapon type,			
	are to be entered (on the following card).			
11-12	Weapon type (used in conjunction with Columns			
	61-66 on ATT card).			
13-18	EMD for point-impact weapons versus target			
	type #1.			
19-24	EMD versus target type #2.			
67-72	EMD versus target type #10.			

If the weapons are CBU-type munitions, use the following entries on the EMD card.

When more than 10 target types are involved, the EMD data and, if specified, the supplementary coverage data for target types #11 through #20 are entered in ten 6-column fields from Column 13 to 72 on cards that immediately follow the EMD card (and supplementary card).

Columns	Data Entry		
1-3	EMD		
5	Enter 1 if data are to be entered for 20 target		
	types.		
6	Enter 1 if data on weapon reliability and/or		
	on kill probabilities are to be entered for any		
target type on the following card.			
11-12	Weapon type (used in conjunction with Columns		
	61 to 66 on ATT card).		
13-18	Enter CBU pattern length as a negative entry.		
19-24	Enter CBU pattern width as a positive entry.		

SUPPLEMENTAL CARD FOR WEAPON RELIABILITY AND COVERAGE FACTORS

If a 1 is entered in Column 6 of an EMD card, a supplemental card must be included next with the weapon reliablity and a set of entries for the several target types. Note that this card is not identified, but one must follow each EMD card that has an entry in Column 6. If a 1 is entered in Column 5 of an EMD card, as well as in Column 6, a second supplementary card is required for target types #11 through #20; this card is the fourth of four.

All entries on these cards are optional; the default value for reliability is 1.0. If an entry is made in any of the last 10 (20) fields and it is not greater than unity, it is taken as the user estimate of the p_k for that particular weapon-target combination for either

point-impact weapons or CBU munitions. For point-impact weapons, an entry that exceeds unity is taken as an additional kill radius and another coverage fraction is determined as that fraction of the target area that is covered by a circle of that radius, given a hit within EMD of the target. Thus, when there are entries on the supplemental card for certain target types, coverage fractions are computed both for the corresponding value of EMD as well as for the value on the supplemental card.

Columns	Data Entry
7-12	Reliability of this weapon type; default = 1.0.
13-18	p_k or kill radius ³ for this weapon versus
	target type #1.
19-24	$\mathbf{p}_{\mathbf{k}}$ or kill radius for this weapon versus
	target type #2.

67-72 p_k of this type weapon versus target type #10.

Entries for target types #11 through #20 on a second supplemental card will be in the ten 6-column fields between Column 13 and Column 72.

²Since these entries are read with an F6.0 format, the decimal point must be included.

³ Only for point impact weapons.

REDO

The REDO card is used to terminate the input for one case and initiate a new case with some or all of the previous inputs, as described earlier.

Columns	Data Entry
1-4	REDO
7-12	Number of prior targets to be retained. All
	will be retained if there is no entry. Use a
	negative entry if none are to be retained.
13-18	Number of prior attacks to be retained. All
	will be retained if there is no entry. Use a
	negative entry if none are to be retained.
19-24	An entry of unity suppresses the input listings
	for targets and/or for attacks and weapons if
	no changes have been made in these data sets
	from the prior case.

END

An END must be included at the end of all data entry cards.

Columns	Data Entry	
1-3	END	

APPENDIX B
MISSION CONFIGURATIONS

Three launch mission configurations are listed below; the fourth is no different than normal day-to-day operations and is not shown.

- 1. Bugout (Table B-1)
 - a. Basic aircraft configuration
 - b. Fuel:

Engine start

20 minute taxi

Takeoff/climb/cruise for 550 miles
(mil.pwr.)

20 minutes at 10K feet reserve

2. 1500 ft. Groundroll (Table B-2)

Maximum weight configuration for a 1500 ft. ground roll

- 3. Attack (Table B-3)
 - a. Basic aircraft configuration
 - b. Stores and ammo
 - c. Fuel:

Engine start

20 minute taxi

Takeoff/climb/cruise for 30 minuts @ m=.8

20 minutes at 10K feet reserve

TABLE B-1
BUGOUT (2)

A/C	Configuration	TOGW (lbs.)	Fuel Wt. (lbs.)	Groundroll (feet)
F-4E	Full ammo	42,356	8,983	1600
A-10	No ammo	32,700	5,547	1500
F-15	4-AIM-7F	37,011	6,923	740
	Full ammo			
F-16	2-AIM-9	18,562	3,340	700
	Full ammo			

The way of the sound of the state of the sound of the

TABLE B-2
1500 FOOT GROUNDROLL (LAUNCH) (2)

A/C	Configuration	TOGW (1bs.)	Fuel Wt. (lbs.)	Groundroll (feet)
F-4E	Basic +	41,270	6,898	1500
	1-600 gal tank empty			
	2-370 gal tanks empty			
A-10	Basic +	32,750	2,487	1500
	2100 lbs ammo			
	2 MK-82			
F-15	Basic +	49,500	11,635 (int 4,327 (ext	1500 t)
	4 Aim-7F			
	4 Aim-9L			
	2 610 gal tanks (67%)			
F-16	Basic +	25,500	7,529	1500
	4 Aim-9L or 6 MK-82			

I was to the state of the state

TABLE B-3
ATTACK (2)

A/C	Configuration	TOGW (lbs.)	Fuel Wt. (lbs.)	Groundroll (feet)
F-4E	(A to G)	49,860	8,959	2300
	Basic +			
	12-MK-82 LDGP			
	2-370 gal tanks			
A-10	(A to G)	39,900	2,654	2350
	Basic +			
	18-MK-82			
	1350 rounds 30 mm ammo			
	Flack/Chaff			
F-15	(A to A)	37,859	5,961	780
	Basic +			
	4 Aim-7F			
	4 Aim-96			
F-16	(A to A)	19,063	2,875	800
	Basic +			
	2-370 gal tanks			

The way of the sound of the state of the sta

Two recovery mission configurations are shown below. Normal day-to-day recovery configurations are not shown nor is the configuration for barrier recovery shown. Barrier recovery is not shown because the aircraft could be returning in a number of configurations and still take the barrier.

- Lightweight (Table B-4)
 - a. Basic aircraft (no ammo or stores)
 - b. Fuel:

20 minutes at 10K feet

- 2. 1500 ft. Groundroll (Table B-5)
 - a. Maximum weight at which a 1500 ft. groundroll is possible

TABLE B-4
LIGHTWEIGHT (2)

A/C	Landing Wt. (lbs.)	Landing Speed (knts)	Landing Distance (ft)
F-4E	34,517	146	2,800
A-10	25,600	100-140	1,150
F-15	28,599	125	2,588
F-16	15,379	108	2,050

TABLE B-5
1500 FOOT GROUNDROLL (2)

A/C	Landing Wt. (lbs.)	Landing Speed (knts)	Landing Distance (ft)
F-4E	40,800	157	3,300
A-10	32,750	100-140	1,400
F-15	49,500	173	4,370
F-16	25,500	140	3,200

the way of the board of the boa

APPENDIX C
SYSTEM INPUT COMPUTER CODE

A STATE OF THE PARTY OF THE PAR

9199CONT		25	2		3500	56	2
9119BASIC							
0120TGT	1399	675	159	11200	8	1	
0130RUNWAY							
9149TCT	2350	1499	2690	50	74	1	
BISSTWY 1							
9249TGT	4919	2258	2825	58	87	2	
9259TWY 2							
0260TGT	7718	2368	50	2628	17	2	
9278THY 3							
9289TGT	10230	1689	859	56	55	2	
9299TWY 4							
9399TCT	16928	2129	59	2575		2	
0310TWY 5							
#32#TGT	7828	825	1150	85	9	1	
9339TWY 6							
Ø34ØTGT	11966	1979	59	1280	66	1	
0350TWY 7					-		
Ø36ØTGT	12349	1895	145#	58	76	1	
0379TWY 8		••••				•	
Ø38ØTGT	19293	825	869	75	8	1	
0390TWY 9		***	•••			-	
BASSTGT	2350	829	665	58	6	1	
6416TWY 11	2005	VLD	000	. 00		•	
8428TCT	13438	2169	56	658	79	2	
6438TWY 18			~~	002			
8448TCT	4175	1789	58	55∌	58	16	
9459TWY 21							
846BTGT	4459	2580	56	458	89	16	
8478TWY 22			~		••		
0480TGT	4889	2249	769	50	9	16	
8498THY 23	1009	LETO	100	00			
9509TGT	4888	2198	59	600	73	16	
8518THY 24	1009	2110	4	000	13	10	
9529TGT	5188	2268	446	58	29	16	
9539TWY 25	3100	LLUB	779	30	LU	10	
8548TGT	5898	2219	59	1915	49	16	
8558TWY 26	3010	2210	JB	1813	70	10	
8568TGT	5915	2268	56	500	55	16	
0570TWY 27	3713	LLOD	3	300	33	10	
9589TGT	8979	2578	56	366	05	16	
9599TWY 28		7318	22	300	85	10	
9699TGT	7588	2966	50	659	39	16	
8618TWY 29	1.000	2700	30	039	39	10	
8628TGT	0475	2575	154	54	12	.,	
	8979	2575	45#	50	49	16	
8638TWY 38							

9649TGT	7929	1996	346	56	45	16
SACSTUY 31	8496	2165	866	50	26	16
6679THY 32		2103	000	39	20	10
6680TCT	8450	1550	558	58	15	16
6696THY 33						
6766TGT	8930	2030	796	50	29	16
6716THY 34	9696	1566	466	56	15	16
6736TUY 35		1300	***	39	10	10
9749TGT	9350	1966	458	58	25	16
9750TWY 36						
9769TGT	11478	2165	45#	5#	25	16
9779TWY 37	12176	2150	459	58		16
6796THY 38		LIJE	709	39	•	10
DESPOTET	12999	2858	50	559	36	16
9819TWY 39						
9829TGT	12465	2179	609	59	35	16
9839THY 49	12886	1729	488	59		16
9859TUY TA		LILD	799	39	•	10
9869TCT	13350	2935	259	50	69	16
9879TWY T4	-					
9889TCT	5619	2598	785	366	87	3
9898RAMP 1	-Z 6715	2846	438	498	87	3
6918RAMP 3		2019	439	470	81	3
8928TGT	7999	2388	625	358	87	3
8938RAMP 4	A					
8948TGT	7649	2020	316	229	87	3
8958RAMP 4	B 11896	1074	154	100		.,
9779RAMP R		1978	15#	130	•	16
6986TCT	7396	2789	86	56	15	4
6996B 3627						
1000TCT	7689	2699	56	89	32	4
1616B 3626 1629TCT	7600	2960	56	86	36	
10398 3028		2700	39	89	39	•
1040TGT	788	2789	86	50	36	4
1858B 3829						
1060TCT	8110	2948	120	50	42	4
10768 3038 1080TCT	8149	2569	125	58		
1898B 3832		7308	123	30	46	+
.0100 0002						

the state of the s

118STCT	8179	2666	86	59	45	4
1110B 3634						
1129TGT	8456	1989	85	50	15	4
11308 3038						
1140TGT	87##	2400	88	50	15	4
1150B 3037						
1160TGT	8715	1840	8	50	15	4
1170B 3646						
1189TGT	8919	2379	89	50	38	4
1198B 3841						
1288TGT	8999	1879	50	86	15	4
12108 3645						
1229TGT	896#	1525	50	88	9	4
123ØB 3Ø46						
1249TCT	9139	2179	5#	89	29	4
1250B 3644						
126ØTGT	9265	2478	59	58	8	4
1270B 3043						
1289TCT	9279	1619	89	50	12	4
1299B 3947						
1300TCT	9599	2386	86	89	45	4
1316B 3549						
1329TGT	9669	2898	59	58	34	4
13308 3050						
1349TGT	9645	1599	89	86	45	4
1359B 3951	0505					
1360TGT	8585	1599	50	58	84	4
13798 3052						
138ØTCT	10730	1649	89	88	66	4
13968 3653	10175	1000				
1499TCT	19675	1899	59	89	69	4
1410B 3654						
1429TGT	10919	1959	50	88	60	4
1439B 3055		***				
1449TCT	10985	2359	56	88	86	4
1459B 3956		1000				
1460TGT	11160	1939	50	50	•	4
1470B 3057		***				
1489TCT	11369	2358	86	56	36	4
1490B 3658	11100				^-	
1599TGT	11650	2619	89	50	30	4
1510B 3059	11100	2215	0.0			
1529TGT 1530B 3660	11625	2249	88	50	38	4
1549TGT	11777	1700	^*			
	11779	1798	89	59	65	4
1550B 3661						

1560TGT	11865	1615	8#	50	73	4
1576B 3662 1586TCT	12000	2254		0.0		
1590B 3663	12000	2250	56	88		4
1699TGT	11998	2465	58	85	4	4
1618B 3865	11770	2400	30	99		•
162ØTGT	12388	2588	59	126	87	4
1639B 3667		2000	••		٠.	,
164ØTGT	12079	1936	50	86	45	4
1650B 3068						
166ØTGT	12419	1619	88	50	7	4
1679B 3669						
168ØTGT	12466	1946	56	86	45	4
16998 3979						
1766TGT	12415	2416	129	88	35	4
1716B 3671						
172ØTGT	12595	2685	5#	86	35	4
1730B 3072						
1748TGT	12836	2498	86	50	35	4
1750B 3674						
1769TGT	12665	2275	59	86	35	4
1770B 3975						
178ØTGT	12675	1899	89	59	8	4
17908 3676						
1800TGT	12949	1798	89	58		4
1810B 3078	10005	0004				
1820TGT 1836B 3679	12929	2289	88	56	25	4
1840TCT	13825	2446	86	ca.	24	
1856B 3681	13823	2440	99	50	36	4
1868TCT	13396	2350	50	86		4
1870B 3082	77.5	2338	10	0	•	•
1889TCT	13416	1886	86	56	36	4
1896B 3684		LOOP	4	30	35	•
1900TGT	13649	2198	86	50	63	4
19188 3886				•••	••	•
192ØTCT	13759	1970	86	56	33	4
19388 3685						•
1940TGT	3466	1689	79	126	76	4
19508 1					-	
1960TGT	3336	1950	125	76	76	4
1970B 2						
1980TCT	4488	1866	70	129	66	4
1990B 3						
2000TGT	4499	1988	129	70	60	4
2818B 4						

2020TCT 2030B 5	4800	1736	126	70	60	4
2040TGT 2050B 6	4350	2150	126	76	•	4
2969TGT 29768 7	4450	2560	120	78		4
2080TGT 2090B 8	4788	2569	126	76	•	4
2199TCT	4629	2329	79	120	•	4
2116B 9 2126TGT	5000	2928	76	120	•	4
2138B 18 2148TGT	5959	2550	129	78	€.	4
2158B 11 2168TGT	5399	2688	129	76	36	4
2170B 12 2180TCT	5288	1699	78	128		4
2190B 13 2200TGT	5399	1869	75	120	36	4
2219B 14 2229TGT	5466	2198	78	128	30	4
2239B 15 2249TGT	5886	2150	76	129	50	4
225ØB 16 226ØTGT	5988	1796	120	78	46	4
2270B 17 2280TCT	1459	649	299	.2	6	11
mental and a	12350	646	200	.2		11
2310NE MA1A 2320TGT	2466	649	286	.2	6	11
	11998	649	288	.2	6	11
2350NE BAK-	6520	1350	50	56	8	12
2379GCA 2388TGT	7399	150	26	29	•	12
2390TACAN 2400TGT	4475	2935	76	36	45	5
2410SQ 0PS14 2420TGT	4688	2998	100	78	52	5
24305Q OPS15 2440TGT	41 <i>98</i>	2668	44	44		13
2450JP-4 17 2460TGT 2470SQ OPS18	5145	3140	35	65	ø	5

2480TGT 5250 2490COMM 19	3965	166	35	87	5
2500TGT 5430 2510CON 1020	3285	15	88	6	5
2520TGT 5340 2530NG NG 23	3025	230	46	87	5
2546TGT 5266 2556TELE 24	2988	36	110	47	5
2560TGT 5440 2576AC SHP27	2685	68	29	15	6
2580TGT 5670 2590PRCHT 32	3865	45	166	18	6
2600TGT 5600 2610PRCHT 33	2838	125	45	18	6
2620TGT 5710 2630HTG 34	2845	75	75	18	9
2649TGT 5635 2659HNGR 35	2745	23#	146	87	6
2660TGT 5915 2670HNGR 36	2760	235	148	87	6
2680TGT 5570 2690ELECT 37	2725	29	68	87	9
2799TGT 6185	2748	115	115	87	6
2718AC 41 2728TGT 6348	3999	46	128	75	6
2738AV 43 2748TGT 6458	3929	55	138	75	7
2758AV 44 2768TGT 6355	1995	29	166	ø	12
277#RAPCON45 278#TGT 642#	1916	59	266	6	5
2799BS OPS47 2896TGT 6569	2718	86	75	ø	6
2810CONT 48 2820TGT 6575	2495	75	45		19
2830CONT 49 - 2840TGT 4240	2829	44	44		13
285ØJP-4 59 286ØTGT 338Ø	2548	46	46	•	15
287ØELECT 62 288ØTGT 634Ø	2769	59	75	87	6
2890ENGSHP81 2900TGT 3610	2918	76	48	75	6
29100RGL 82 2920TGT 3965 2930HAZ 83	2996	75	40	75	19

2948TGT 5428 2958AC SHP86	2558	68	26	15	6
2969TGT 5535	2619	68	28	87	6
2970AC SHP87 2980TGT 5535	2650	68	28	87	6
2996AC SHP88 3606TGT 4666	1849	75	48	75	19
3010HAZ 89 3020TGT 4560	1558	46	78	52	19
3838HAZ 91 3848TGT 4289	2288	15	48	30	9
3050POLADM92 3060TGT 6335	2760	75	50	87	1
3878WPNSHP96 3888TGT 6725	2860	148	196	87	6
3696CALIB191 3166TCT 7266	3169	96	580	8	16
31100RGL 103					
3120TGT 7970 3130F00D 105	3150	46	158	9	19
3140TGT 8530 3150SQ 0P108	2799	75	75	25	5
3169TGT 8535 3179SQ 0P199	2920	12	75	25	5
3180TGT 8580 3190AUTO 110	3149	95	269	60	19
3290TCT 8790 3210AUTO 111	2979	39	50 .	68	10
3220TGT 9050 3230BSENG115	2695	65	38	65	16
3240TGT 8840 3259SHP 118A	2846	25	200	65	9
3260TGT 8830 3270SHP 118B	2615	219	25	65	9
3290TGT 8935	2825	30	85	65	9
3290BSENG119 3300TGT 8920	3166	85	499	65	16
3310BSENG128 3320TGT 10750	2560	66	360	9	19
3339HOSP 137 3349TCT 19329	2268	46	46	68	5
3350COMM 143 3360TCT 10180	2559	69	48	8	15
3370HTG 145 3380TGT 7595 3390WPN 157	2125	145	199	87	1

3488TGT 7428	1869	36	79	87	7
3419WPN 159					
3429TGT 7465	1798	79	38	87	6
3438AGE 168					
344ØTGT 7925	3925	60	195	9	19
34500RGL 166					
3468TCT 9375	2600	59	86	9	9
3470HQ GP167					
348ØTGT 835Ø	3375	100	35	9	9
349@REPL 168					
3500TCT 9550	3360	38	29	9	5
3510COMM 173					
3529TCT 8289	3466	66	98		19
3530WHSE 179		-			•
3549TGT 7469	1895	58	78	87	6
3559AGE 184				•	
3560TGT 7555	1966	56	78	87	6
357ØAGE 185		0.0		•	·
3589TGT 8389	2458	85	56	6	6
359ØORGL 187	LTUD	00	OP	•	۰
3600TGT 9100	3599	189	185		16
3616WHSE 199	3300	100	109		,
3629TGT 8399	2899	68	15	35	9
3639PWR 201	7000	90	45	33	7
	1705	254	,,	07	,
	1795	25#	69	87	6
3659AGE 294	****				
3650TCT 6889	2899	75	25	87	6
367ØORGL 296					
368ØTGT 69ØØ	2975	59	180	9	10
36900RGL 257					
3796TGT 12646	2579	59	75	6	9
3719BEPAV339					
3729TGT 12379	2655	39	135	Ø	19
3730BEPAV360					
374ØTGT 1334Ø	2490	189	98	8	6
3750DOCK 364					
3760TGT 11820	2650	45	45	8	15
3770WATER366					
3780TCT 11715	2425	75	59	25	7
3799WPN 371					
3888TCT 12525	1719	59	72	8	19
3819BEPAV382					
3829TGT 12549	1898	72	59	58	19
383@BEPAV384		() ()	3.00		
3848TGT 12678	1695	72	58	77	18
385ØBEPAV385					

TO BESTANDE

good to the second of the second seco

3869TGT 12889	1689	50	72	8	19				
3870BEPAV386									
3880TGT 13030	1930	56	72	6	10				
389ØBEPAV388	1014	05	75						
3900TGT 13175 3910RDY 389	1949	85	75	8	5				
3920TGT 13300	1938	189	18	9	5				
393ØRDY 391	1750	109	10	v	,				
3940TGT 19620	-480	45	45	9	13				
395#JP-4 62#	105	10	,,						
3966TGT 18956	-360	45	45		13				
3978JP-4 622									
398ØTCT 1829	-199	29	60	20	7				
3998HPNS 784									
4999TGT 3199	-859	46	68	76	8				
49191GL00719									
4920TCT 3390	-769	49	69	78	8				
40301GL00720									
4949TGT 3589	-700	46	68	79	8				
40501GL00721									
4969TGT 3799	-649	49	60	78	8				
49791GL00722	200	24	159	9	8				
4680TCT 3780 4090CUBIC736	-299	3₽	128	9	8				
4106TGT 5400	-100	39	28	0	12				
4118NAV 767	-100	39	20		12				
4120TGT 6100	-259	16	19	9	12				
413ØRADAR AN	-45	••	••		•-				
4148EMD 11 1	25	25	50	58	78	28	69	69	89
4159									
4169 .95									
4179	39	3₽	100		60	25			
4189 .95									
4198EMD 11 2	25	25	50	50	79	28	69	68	88
4298									
4210 .95									
4220	30	39	168		60	25			
423# .95					••				
4248ATT 1 38	2999	759	151	117	28	23	6	150	2
4250 4240ATT 1 20	2054	754		117	20	00		150	•
4260ATT 1 30 4270	2950	75#	151	117	28	23	6	150	2
428ØATT 1 3Ø	6559	759	151	117	28	23	6	158	2
4290	0118	138	131	117	20	23	•	130	-
4388ATT 1 38	7489	759	151	117	28	23	6	158	2
4318	1100	130	.51	,		23		100	-

4328ATT	1	39	9650	759	151	117	28	23	6	158	2
433Ø 434ØATT	1	39	19659	75#	151	117	28	23	6	158	2
4359											
4360ATT 4370	1	30	11739	758	151	117	28	23	6	158	2
438ØATT	1	38	12356	1636	151	117	28	23	6	86	2
4398											
4400ATT 4410	1	30	12389	1989	151	117	28	23	4	86	2
442BATT	1	38	19249	1999	151	117	28	23	6	86	2
4439		-									
444BATT	1	36	7976	1995	151	117	28	23	6	86	2
4458 4468ATT	1	39	7878	1839	151	117	28	23	6	86	2
4476	•	39	1010	1007	131	117	20	23	•	00	_
448ØATT	1	39	2389	1500	151	117	28	23	6	86	2
4496		-						-			_
4588ATT	1	39	4198	2885	151	117	28	23	6	86	2
4518											
452ØATT	1	39	3329	1759	151	117	28	23	6	86	2
4539		00	1000	2004			20	20	,	•	•
454ØATT 455Ø	1	38	4900	2236	151	117	28	23	6	86	2
4569ATT	1	38	5946	228#	151	117	28	23	6	88	2
4579		UD	3119	LLUS	101		24		•	00	
4589ATT	1	38	8136	2250	151	117	28	23	6	86	2
4598											
469GATT	1	38	18238	1623	151	117	28	23	6	86	2
4618		24	11000	1074		447	20	22	,	01	•
4629ATT 4639	1	39	11928	1976	151	117	28	23	6	86	2
464BATT	1	36	5120	2236	151	117	28	23	6	86	2
4650											
466BATT	1	30	5739	2650	151	117	28	23	6	86	2
4670		*									
468ØATT	1	38	3030	268	151	117	28	23	6	88	2
4698 4708ATT		24	2425	2174			20	20	,	01	•
4719	1	39	3025	2679	151	117	28	23	6	86	2
4728ATT	1	38	8100	2139	151	117	28	23	6	86	2
4739	•	00	3.00	2108		,				00	
4748ATT	1	39	8998	2579	151	117	28	23	6	86	2
4759											
4760ATT 4779	1	39	8580	1933	151	117	28	23	6	86	2

The state of the s

4789ATT 4798	1	39	11539	2266	151	117	28	23	6	86	2	
4899ATT 4819	1	39	12189	2270	151	117	28	23	6	86	2	
4828ATT	1	30	12250	1939	151	117	28	23	6	86	2	
484ØATT 485Ø	1	39	8480	1939	499	200	59	36	6	1050	1	
4869ATT	1	39	9148	1649	499	299	58	38	6	1656	1	
4889ATT	1	39	9399	1649	499	200	50	39	6	1050	1	
4988ATT 4918	1	35	11678	1649	400	299	59	36	6	1958	1	
4928ATT 4938	1	39	12848	2279	466	266	58	36	6	1959	1	
494ØATT 495Ø	1	39	12199	1939	498	288	56	38	6	1959	1	
4969ATT 4978	1	38	12448	1939	499	299	58	36	6	1959	1	
498ØATT 499Ø	1	39	12799	1930	400	200	58	38	6	1050	1	
5000ATT 5010	1	38	12499	2439	466	299	58	38	6	1050	1	
5929ATT 5938	1	38	12629	2350	499	200	58	38	6	1959	1	
5040ATT 5050	1	39	12719	2279	489	299	58	30	6	1958	1	
5868ATT 5878	1	39	13440	1989	400	200	50	30	6	1958	1	
5888ATT 5898	1	30	13550	1939	499	299	50	30	6	1056	1	
5160ATT 5105 5430END 5440	1	38	13790	1985	499	299	50	36	6	1050	1	

the state of the s

APPENDIX D
PROBABILITY DISTRIBUTIONS

A, B, C, D - Access Points

Fig. D-1. Zero Degree Attack Heading Distributions

A, B, C, D - Access Points

Fig. D-2. Thirty Degree Attack Heading Distributions

A, B, C, D - Access Points

Fig. D-3. Sixty Degree Attack Heading Distributions

A, B, C, D - Access Points

Fig. D-4. Ninety Degree Attack Heading Distributions

way of the second secon

Fig. D-5. Composite of Distributions

Legend: 0° -0 30° -△ 60° -□ 90° -×

Fig. D-6. Probability Distributions for Alternate Configuration 1

Manufacture and many many

Legend: 0° - 0 30° - △ 60° - □ 90° - X

60° - Attack Headings

Fig. D-7. Probability Distributions for Alternate Configuration 2

A STATE OF THE STA

SELECTED BIBLIOGRAPHY

A. REFERENCES CITED

- Atkins, Major Jerome A., USAF. SABER WARRIOR Study Group, Directorate of Concepts and Analyses, HQ USAF/SAGF. Letter, subject: Airbase Survivability, to Lieutenant Dennis Ballog, 16 October 1978.
- SABER WARRIOR Study Group, Directorate of Concepts and Analyses, HQ USAF/SAGF. Personal interview and brochure on aircraft data, 6 November 1978.
- 3. SABER WARRIOR Study Group, Directorate of Concepts and Analyses, HQ USAF/SAGF. Letter, subject: Thesis Proposal, to Captain Darrell Hutchinson, 28 March 1979.
- SABER WARRIOR Study Group, Directorate of Concepts and Analyses, UQ USAF/SAGF. Brochure, subject: Standard NATO Airbase, to Captain Dennis Ballog, 6 July 1979.
- 5. Budde, E. W. Attacks of Airfield Targets--Use of
 Air-to-Ground Weapons Against Runways. DDC Document No. AD-A017-195. Washington: Government
 Printing Office, April 1975.
- Kearny, Inc. <u>Airbase Model</u>. DDC Document No. AD-B030201. <u>Washington</u>: Government Printing Office, March 1978.
- 7. Rand Corporation. AIDA: An Airbase Damage Assessment Model. Rand Document R-1872-PR, Santa Monica CA, September 1976.
- 8. An Effectiveness Model for Multiple Attacks

 Against an Airbase Area Complex. Rand Document
 R-1639-PR, Santa Monita CA, September 1975.
- Van Orman, James R. Readiness Group, Air Force Engineering and Services Center, Tyndall AFB FL. Telephone interview. 19 January 1979.

Block the things of a service of

B. RELATED SOURCES

to be distance the many of a construction of

and spring words

- Computer Science Corporation. Global Model Documentation. DDC Document No. AD-914234, Fort Leavenworth KA, 1973.
- Green, Hugh L. "Usage of Landing Mat as Overlay on Asphalt Runways During Field Exercises." Unpublished research report, No. S-76-24, Soils and Pavements Laboratory, U.S. Army Engineer Waterways Experiment Station, Vicksburg MS, December 1976.
- Pierce, W. L. <u>Air Strike Evaluator Model--Technical and Programmers Manual</u>. DDC Document No. AD-488675. Washington: Government Printing Office, August 1966.
- Pyrz, Major Anthony P., USAF. "Emergency Runway Selection and Unexploded Ordinance Considerations in Runway Repair." Unpublished research report, unnumbered, Air Command and Staff College, Maxwell AFB AL, May 1977.
- Tatum, Lieutenant Colonel Charles C., USAF. "TOTAL: Tactical Operations and Training at Large." Unpublished research report No. 6080, Air War College, Maxwell AFB AL, April 1976.