MEDIDA E INTEGRACIÓN

Primera Tarea Semestre Académico 2021-1

Horario: 651

- 1. Sea (X,\mathcal{F}) un espacio medible, pruebe que
 - a) Si $A, B \in \mathcal{F}$, entonces $A \setminus B \in \mathcal{F}$
- b) Si $A, B \in \mathcal{F}$, entonces $A \Delta B \in \mathcal{F}$
- 2. Sea (X,\mathcal{F}) un espacio medible y $E \subset X$, pruebe que
 - a) La colección $\{E \cap F : F \in \mathcal{F}\}\$ es un sigma álgebra sobre E.
 - b) La colección $\sigma(f) = \{f^{-1}(A) : A \in \mathcal{F}\}\$ es un sigma álgebra sobre Y, donde $f: Y \to X$.
 - c) Obtenga el item (a) como consecuencia del item (b).
- 3. Sea X un conjunto, pruebe lo siguiente
 - a) Si $(\mathcal{F}_{\lambda})_{\lambda \in L}$ es una familia arbitraria de sigma álgebras sobre X, entonces $\bigcap_{\lambda \in L} \mathcal{F}_{\lambda}$ es un sigma álgebra sobre X.
 - b) Si $\mathscr{C} \subset 2^X$, existe un sigma álgebra \mathscr{F} sobre X tal que
 - (1) $\mathscr{C} \subset \mathscr{F}$
 - (2) Si \mathcal{G} es un sigma álgebra sobre X tal que $\mathcal{C} \subset \mathcal{G}$, entonces $\mathcal{F} \subset \mathcal{G}$. (Sugerencia: Considere el conjunto de todos los sigma álgebras que incluyan a \mathcal{C})

A este sigma álgebra se le conoce como el sigma álgebra generado por A y se denota como $\sigma(\mathscr{C})$.

- 4. Sea X un conjunto, pruebe lo siguiente
 - a) Si $A_1, A_2, ..., A_n \subset X$ son disjuntos 2 a 2 y $\bigcup_{i=1}^n A_i = X$, entonces $\#\sigma(\{A_1, A_2, ..., A_n\}) = 2^n$.
 - b) Si $A_1, A_2, ..., A_n \subset X$, entonces $\sigma(\{A_1, A_2, ..., A_n\})$ es finito.
- 5. Si \mathcal{F} es un sigma álgebra infinito sobre X, entonces \mathcal{F} no es numerable.
- 6. Sea X un conjunto y $\mathcal{A} \subset 2^X$, pruebe que $\sigma(\mathcal{A}) = \bigcup \{\sigma(\mathcal{C}) : \mathcal{C} \subset \mathcal{A} \text{ con } \mathcal{C} \text{ numerable } \}.$
- 7. Sea (X, \mathcal{F}, μ) un espacio de medida y considere $A, B, (A_n)_{n \in \mathbb{N}}, (B_n)_{n \in \mathbb{N}}$ en \mathcal{F} , pruebe las siguientes afirmaciones:
 - a) Si $A \subset B$, entonces $\mu(A) \leq \mu(B)$.
 - b) Si $A \subset B$ y $\mu(A) < \infty$, entonces $\mu(B \setminus A) = \mu(B) \mu(A)$.
 - c) $\mu(A \cap B) + \mu(A \cap B) = \mu(A) + \mu(B)$.
 - d) Si $B_n \downarrow B$ y $\mu(B_1) < \infty$, entonces $\mu(B) = \inf_{n \in \mathbb{N}} \mu(B_n)$.
 - e) $\mu(\bigcup_{n\in\mathbb{N}}A_n) \leq \sum_{n\in\mathbb{N}}\mu(A_n)$.

- 8. Sea (X, \mathcal{F}, μ) un espacio medible y $(A_n)_{n \in \mathbb{N}}$. Si $\sum_{n \in \mathbb{N}} \mu(A_n) < \infty$, entonces $\mu(\bigcap_{n \in \mathbb{N}} \bigcup_{k \ge n} A_k) = 0$
- 9. Sea (X,\mathcal{F}) un espacio medible y $\mu:\mathcal{F}\to[0,\infty]$. Si μ es aditiva y σ -subaditiva, entonces μ es σ -aditiva.
- 10. Dados (X,\mathcal{F}) , un espacio medible, y una aplicación $\mu:\mathcal{F}\to[0,\infty]$, pruebe que las siguientes afirmaciones son equivalentes:
 - a) (X, \mathcal{F}, μ) es un espacio de medida.
 - b) μ cumple que
 - (1) $\mu(\emptyset) = 0$
 - (2) Si $(A_n)_{n\in\mathbb{N}}$ está en \mathcal{F} y son disjuntos 2 a 2, entonces $\mu(\bigcup_{n\in\mathbb{N}}A_n)=\sum_{n\in\mathbb{N}}\mu(A_n)$.
- 11. Sea (X,\mathcal{F}) un espacio medible, pruebe lo siguiente:
 - a) Si μ y ν son medidas sobre (X,\mathcal{F}) , entonces la aplicación $\rho:\mathcal{F}\to [0,\infty]$ dada por $\rho(A)=\mu(A)+\nu(A)$ también es una medida sobre (X,\mathcal{F}) .
 - b) Si μ es una medidas sobre (X, \mathcal{F}) y k > 0, entonces la aplicación $\rho : \mathcal{F} \to [0, \infty]$ dada por $\rho(A) = k\mu(A)$ también es una medida sobre (X, \mathcal{F}) .
 - c) Si $(\mu_n)_{n\in\mathbb{N}}$ es una familia de medidas sobre (X,\mathcal{F}) y $(k_n)_{n\in\mathbb{N}}$ es una sucesión de reales positivos, entonces la aplicación $\rho: \mathcal{F} \to [0,\infty]$ dada por $\rho(A) = \sum_{n\in\mathbb{N}} k_n \mu_n(A)$ también es una medida sobre (X,\mathcal{F}) .
- 12. Sea (X, \mathcal{F}, μ) un espacio de medida. Si $E \in \mathcal{F}$, entonces la aplicación dada por $v(A) = \mu(A \cap E)$ es una medida sobre (X, \mathcal{F}) .
- 13. Sea (Ω, S, \mathbb{P}) es un espacio de probabilidad y $(A_n)_{n \in \mathbb{N}}$. Si $\mathbb{P}(A_n) = 1$ para todo $n \in \mathbb{N}$, entonces $\mathbb{P}(\bigcap_{n \in \mathbb{N}} A_n) = 1$.

(Un espacio de probabilidad es un espacio de medida (Ω, S, \mathbb{P}) donde $\mathbb{P}(X) = 1$)

San Miguel, 29 de marzo de 2021.