Integral Manifolds

Thomas Cohn

1/11/19

Throwback to 11/21/18...

Recall $\int_{Y_{\alpha}} f \, dV$, where Y_{α} is a parameterized k-manifold. We also want to know what $\int_{M} f \, dV$, where M is a k-manifold.

For now, we will focus on the case where M is compact and f is continuous.

Special case: Assume supp $f \subset V$ with $\alpha: U \to V \subset M$ coordinate patch. Then define $\int_M f \, dV = \int_{V_0} f \, dV = \int_U (f \circ \alpha) V(D\alpha)$. This is guaranteed to exist "in the ordinary sense".

Prop: This does not depend on our choice of coordinate patch. Proof: Suppose we also have $\tilde{\alpha}:\tilde{U}\to \tilde{V}\subset M$. We can replace V and \tilde{V} with $V\cap \tilde{V}$, so we may assume $V=\tilde{V}.$ $\tilde{\alpha}=\alpha\circ(\alpha^{-1}\circ\tilde{\alpha}),$ and $\alpha^{-1}\circ\tilde{\alpha}$ is a transition map, so from a result we proved on 11/21/18, $\int_{V_{\alpha}}f\,dV=\int_{V_{\tilde{\alpha}}}f\,dV.$

But, what if we require multiple cooridnate patches to cover supp f?

Choose coordinate patches $\alpha_j: U_j \to V_j \subset M$ for $j \in \{1, 2, \dots, N\}$, with $M = V_1 \cup \dots \cup V_N$ (we can assume there are a finite number of V_i because M is compact). Write $V_j = M \cap E_j$ with $E_j^{\text{open}} \subseteq \mathbb{R}^n$.

We can write $1 = \varphi_1 + \cdots + \varphi_N$ on $E_1 \cup \cdots \cup E_N$ with supp $\varphi_j \subset E_j$ and $(\text{supp }\varphi_j) \cap M \subset V_j$. So $f = f\varphi_1 + \cdots + f\varphi_N$. Thus, we define

Defn:
$$\int\limits_{M} f \, dV = \int\limits_{M} f \varphi_1 \, dV + \dots + \int\limits_{M} f \varphi_N \, dV$$

Of course, we need to check that we get the same result using $1 = \tilde{\varphi}_1 + \cdots + \tilde{\varphi}_n$.

$$\sum_{j} \int f \varphi_{j} dV \qquad \stackrel{?}{=} \qquad \sum_{k} \int f \tilde{\varphi}_{k} dV$$

$$\sum_{j} \int f \varphi_{j} \left(\sum_{k} \tilde{\varphi}_{k}\right) dV \qquad \sum_{k} \int f \tilde{\varphi}_{k} \left(\sum_{j} \varphi_{j}\right) dV$$

$$\sum_{j} \sum_{k} \int f \varphi_{j} \tilde{\varphi}_{k} dV \qquad = \qquad \sum_{j} \sum_{k} \int f \varphi_{j} \tilde{\varphi}_{k} dV$$

Integral Manifolds

Consider ω , a 1-form on $A^{\text{open}} \subseteq \mathbb{R}^n$.

Then $\omega: A \to (\mathbb{R}^n)^* = \operatorname{Hom}(\mathbb{R}^n, \mathbb{R})$, and $\omega(\vec{p}): \mathbb{R}^n \to \mathbb{R}$ is a linear map.

Usually, $\dim(\ker(\omega(\vec{p}))) = n - 1$, but sometimes it's n. Consider $\vec{p} + \ker(\omega(\vec{p}))$, an affine set.

Exer: (HW 1 #3) Prove for a k-manifold $M \subset A$ that the following are equivalent:

- (a) $\mathcal{T}_p M \subset \ker(\omega(\vec{p})), \forall \vec{p} \in M$
- (b) $\alpha^*\omega = 0$, $\forall \alpha$ coordinate patch for M
- (c) $\int_C \omega = 0, \forall C^{1\text{-mfd}} \subset M$

Defn: If M satisfies these conditions, we say that M is an integral manifold for ω .