

台指波動

李泓慶 林家緯

名詞複習

- 波動率
 - 概念:波動率
- BS模型
 - 舉例:
 - 簡單概念:平價理論,當下的call價格會等於未來各個價格報酬*機率之總和
 - 假設條件:固定波動率& 股價過程符合對數常態 分配

彩券	獎金	機率
一獎	100元	10%
	10元	40%
三獎	0元	50%
期望值	14元	

名詞複習

然而現實中,股價波動率不固定,即便號稱有預測能力的GARCH或GJR,也是利用給予不同波動率權重,也是利用過去真實波動率去預測未來波動率

隱含波動率則是利用將實際成交價格帶回去BS模型反推而得的波動率,此則反映民眾對未來真實的預期

把價外call put每檔履約價隱波做<mark>加權平均就</mark>得到 常聽到的VIX

因為不同履約價有不同的隱波

- 在BS模型前提假設正確下
- 相同的標的相同真實波動率,竟有不同的預測值與實際值差異

期權微笑

- 理論上,每檔的履約價期標的物都是台指現貨,理當有相同的波動率
- 可能產生原因:投資者往 往高估小概率事件,對 小概率事件賦予過高的 決策權重
- 不同隱波是否有套利空間?

台指選隱波微笑

- 資料:5/23收盤10310點,週選與月選call與put價外各10檔
- X軸:價外檔數;Y軸:隱波
- Call 確實有期權微笑的現象
- PUT愈價外,隱波愈高,且PUT隱波皆大於CALL
- 週選PUT各履約價隱波差異較大,因此採用週選PUT做計算

昨天5/23台指收盤10310

- 10000 PUT隱波為17.03,相對高估
- 10150 PUT隱波為14.97,相對低估
- 剩餘天數6;剩餘交易天數4,選擇後者

台指選擇權現貨 10308.37	s ▼148.85	-1.42%	0 (台服	设指數近月(一	般) 1031	0s ▼169	-1.61%
買權Call			2	019/05W5	*				膏權Put	
成交	隱含波動率%	時間價值	總量	剩餘:7天		成交	隱含波動率%	時間價值	總量	
600s	22	-8.37	1 ∢	9700	-	2.4s	21.77	2	3960	
	66.70		0 1	9800	>	3.8s	20.13	3	6854	
577	60.17	(57.7)	0 ←	9900	•	6.3s	18.54	6	9373	
320s	16.46	11.63	2 (10000	•	11.0s	17.03	11	16115	
234s	16.58	25.63	88 ∢	10100	>	20.0s	15.59	20	15661	
192s	15.92	33.63	328 ∢	10150	-	27.5s	14.97	27	14357	
148s	14.32	39.63	2254 (10200	-	36.5s	14.09	36	23689	
112s	13.75	53.63	9580 ∢	10250	->	50s	13.46	50	25915	
81s	13.30	72.63	14920 (10300	>	68s	12.84	68	35183	
54s	12.63	54	27083 (10350	·	91 s	12.17	49.37	24034	

策略

- 買相對低估的10150 PUT 賣相對高估的10000 PUT
- 但因我資料來源是 沒有過去月份已經結算之OP的歷史資料,只有當期的單一樣本,而我需要的是過去各期不同樣本的資料以求得漲跌機率
- 現在的VIX是16相較過去四年的VIX處於平均水準,加上過去四年的VIX也處於一個區間
- 因此用過去歷史台指資料求波動率密度函數

回到剛剛的策略

- 買10150put,賣10000put
- 當台指在10150以上時
 - 兩者都歸0
 - 會有最大虧損27.5-11=16.5
- 當台指在10000以下時,假設為x
 - 10150put價格=10150-x;獲利等於10150-x-27.5
 - 10000put價格等於10000-x;虧損等於10000-x-11
 - 會有最大獲利[(10150-x)-27.5]-[(10000-x)-11]=133.5
- 損平點:10134
- 是一個波動率大會賺錢的策略
- 因此我們會需要漲跌幅的機率密度函數求得期望值

			台	及指數近月(一	般) 1031	0s ▼169
20	19/05W5					資權Put
	剩餘7天	ſ	成交	隱含波動率%	時間價值	總量
4	9700	•	2.45	21.77	2	3960
•	9800		3.85	20.13	3	6854
4	9900	•	6.35	18.54	6	9373
•	10000	•	11.05	17.03	11	16115
•	10100	•	20.0s	15.59	20	15661
4	10150	•	27.55	14.97	27	14357
•	10200	•	36.55	14.09	36	23689
4	10250	*	50s	13.46	50	25915
4	10300		685	12.84	68	35183
4	10350		915	12.17	49.37	24034

湝

GARCH

- 台指2014~2018日K
- 週選剩餘交易天數為4
- 用GARCH(1,1)求2014~2018內 任意每日第t天與t+4天的報酬率 (間隔為4天的日頻率)的機率密度 函數
- 波動率.0232,均價9666,一個標準 差為224點

Parameters Standard Error t Statistic P-Value Value Parameter 5.3469e-05 5.1188e-06 1.5323e-25 Constant 10.4458 GARCH{1} 0.1783 0.0232 1.6190e-14 ARCH{1} 0.6895 9.4271 4.2166e-21 0.0731

波動的機率密度函數

- 可求得PDF與CDF
- 台指到10000點以下需跌310點,約1.38個標準差
- 台指在10150以上需不可跌超過160點,約0.71個標準差

情況	機率	期望值
賺134	7.8%	10.45
賠16.5	76%	-14.26
賺58.5	16.2%	9.47
4向 廿日亡夕 /古		F 66
總期望值		5.66
總 別 全 相 除 手 續 費	25元單邊,兩口剛好1點	4.66
	25元單邊,兩口剛好1點 單邊1檔(0.5),兩口剛好一點	

- 介於10000~10150,取平均值10075點時賺58.5
- 總期望值為3點,勒式保證金=兩者相差點數
- 換算月期望報酬為2%*4=8%

本買進賣遠的策略獲利會隨波動提 升

小結

在剩餘時間方面選擇了交易天數4 天而非總天數6,較短的時間會有比 較低的波動率

在GARCH與ARCH也選擇波動較 低的GARCH,所以已經算是保守的 一個估計

0.8 0.6 0.4 0.2

小結-賺的是誰的錢?

- 展望理論中的權重函數
 - 人們對比較大客觀機率會發生的事情給予 比較小主觀機率的評價
 - 並且對比較小機率發生的事情給予比較大機率的評價
- 賺的是誰的錢?
 - 猜測1:高估小機率事件或是賭博心態購買 過度價外PUT的投資者
 - 猜測2:想做賣方又怕大虧於是又去買深度價外避險的人

補充

BS複習

• Black Scholes歐式買權公式: $C_0 = S_0 \times e^{-qt} N(d_1) - K e^{-rt} N(d_2)$

•
$$d_1 = \frac{\ln(\frac{s_0}{K}) + (r - q + \frac{\sigma^2}{2})T}{\sigma\sqrt{T}}$$
 ; $d_2 = \frac{\ln(\frac{s_0}{K}) + (r - q - \frac{\sigma^2}{2})T}{\sigma\sqrt{T}} = d_1 - \sigma\sqrt{T}$

- C_0 :為買權的目前價格
- S_0 :為標的資產目前價格
- K:為買權履約價格
- r:為無風險利率(以年為單位)
- σ:為股票報酬率的波動度(亦即標準差)(以年為單位)
- T: 為距到期日的時間長度(以年單位)
- q:年度化股利率

EWMA

由于 MA 只看了前面 n 天的回报,而且所有的回报都取得相同的权重,不够多,不够反映现状,所以我们有了 EWMA 模型:

这里需要注意, EWMA 模型不再假设 return 在 n 天内是独立同分布的了。

$$\widehat{\sigma}_{\Delta}^{2}(t) = \sum_{i=1}^{+\infty} \alpha_{i} (r_{t-i\Delta,t-(i-1)\Delta} - \widehat{r}(t,n))^{2}$$

$$\alpha_i = \frac{\lambda^{i-1}}{\sum_{i=1}^{+\infty} \lambda^{i-1}} , \lambda \in (0,1)$$

根据级数原理,

http://blog.csdn.net/huiwuhuiwu

$$1 = \sum_{i=1}^{+\infty} \alpha_i$$

所以,在EWMA下,对于波动率的估计就是:

$$\widehat{\sigma}^2(t) = \frac{1}{\Lambda} \widehat{\sigma}_{\Delta}^2(t)$$

若GARCH(6天)

- 台指2014~2018日K
- 週選剩餘交易天數為6
- 用GARCH(1,1)求2014~2018內 第每個第t天到t+6天的報酬率(間 隔為6天的日頻率)的機率密度函 數
- 波動率.0375,均價9666,一個標準 差為362點

Parameter	Value	Standard Error	t Statistic	P-Value
Constant	8.1493e-05	7.1179e-06	11.4490	2.3794e-30
GARCH{1}	0.0357	0.0375	0.9517	0.3413
ARCH(1)	0.7414	0.0744	9.9605	2.2684e-23

波動的機率密度函數

- 可求得PDF與CDF
- 台指到10000點以下需跌310點,約0.85個標準差
- 台指在10150以上需跌不超過160點,約0.44個標準差

附錄的附錄

台指期4/8~5/10價格圖

價差(實際-預測)10800,10900

台指期4/8~5/10價格圖

初步結論

- 這邊的每張圖預測值都是用台指作標的,原始VIX,落後一期,用現貨效果不太好
- 愈價內,實際價格愈符合預測值,不同履約價的波動率不同,是否可以跟VIX套利?
- 在P3比較價內的部分可以看到在時間點5677台指反轉下跌時價差明顯縮小
- 在比較價外的call 價差走勢不一致,

檢定結論

- 意外的沒有東西能預測台指,台指也不領先OP(在分K下,秒K不知)
- OP也不領先台指(陰謀論X)
- 預測值領先實際格(這合理嗎?)

Chart Title

小波降躁,參數D4,level5

小波

日波動轉其它周期波動

• 前提假設:日波動為獨立同分布的隨機變量