The Abstract Domain of Segmented Ranking Functions

Caterina Urban

SAS 2013 Seattle, USA

Introduction

- liveness properties ⇒ "something good eventually happens"
 - termination
- ranking functions¹
 - functions that strictly decrease at each program step...
 - ...and that are bounded from below
- idea: computation of ranking functions by abstract interpretation²
- family of parameterized abstract domains for program termination
 - piecewise-defined ranking functions
 - backward invariance analysis
 - sufficient conditions for termination
- instance based on intervals and affine functions

¹Floyd - Assigning Meanings to Programs (1967)

²Cousot&Cousot - An Abstract Interpretation Framework for Termination (POPL 2012)

Introduction

- liveness properties ⇒ "something good eventually happens"
 - termination
- ranking functions¹
 - functions that strictly decrease at each program step...
 - ...and that are bounded from below
- idea: computation of ranking functions by abstract interpretation²
- family of parameterized abstract domains for program termination
 - piecewise-defined ranking functions
 - backward invariance analysis
 - sufficient conditions for termination
- instance based on intervals and affine functions

¹Floyd - Assigning Meanings to Programs (1967)

^{*}Cousot&Cousot - An Abstract Interpretation Framework for Termination (POPL 2012)

Introduction

- liveness properties ⇒ "something good eventually happens"
 - termination
- ranking functions¹
 - functions that strictly decrease at each program step...
 - ...and that are bounded from below
- idea: computation of ranking functions by abstract interpretation²
- family of parameterized abstract domains for program termination
 - piecewise-defined ranking functions
 - backward invariance analysis
 - sufficient conditions for termination
- instance based on intervals and affine functions

¹Floyd - Assigning Meanings to Programs (1967)

²Cousot&Cousot - An Abstract Interpretation Framework for Termination (POPL 2012)

Our Contribution

- liveness properties ⇒ "something good eventually happens"
 - termination
- ranking functions¹
 - functions that strictly decrease at each program step...
 - ...and that are bounded from below
- idea: computation of ranking functions by abstract interpretation²
- family of parameterized abstract domains for program termination
 - piecewise-defined ranking functions
 - backward invariance analysis
 - sufficient conditions for termination
- instance based on intervals and affine functions

¹Floyd - Assigning Meanings to Programs (1967)

²Cousot&Cousot - An Abstract Interpretation Framework for Termination (POPL 2012)

Our Contribution

- liveness properties ⇒ "something good eventually happens"
 - termination
- ranking functions¹
 - functions that strictly decrease at each program step...
 - ...and that are bounded from below
- idea: computation of ranking functions by abstract interpretation²
- family of parameterized abstract domains for program termination.
 - piecewise-defined ranking functions
 - backward invariance analysis
 - sufficient conditions for termination
- instance based on intervals and affine functions

¹Floyd - Assigning Meanings to Programs (1967)

²Cousot&Cousot - An Abstract Interpretation Framework for Termination (POPL 2012)

int : x while $^{1}(x \ge 0)$ do $^{2}x := -2x + 10$ od 3

$$x := -2x + 10 \left(\begin{array}{c} 1 \\ \downarrow x \ge 0 \\ 2 \end{array} \right)$$

int : x while $^{1}(x \ge 0)$ do

$$^{2}x := -2x + 10$$

int: x

while $^{\mathbf{1}}(x \geq 0)$ do

$$^{2}x := -2x + 10$$
 od³

int : x

while $^{\mathbf{1}}(x \geq 0)$ do

$$^{2}x := -2x + 10$$

we take into account x < 0 and we have now 1 step to termination

Example

int: x

while $^{\mathbf{1}}(x \geq 0)$ do

$$^{2}x := -2x + 10$$

we consider the assignment and we are now at 2 steps to termination

int : x

while $^{\mathbf{1}}(x \geq 0)$ do

$$^{2}x := -2x + 10$$
 od³

int: x

while $^{1}(x \geq 0)$ do

$$^{2}x := -2x + 10$$
 od³

int : x

while $^{\mathbf{1}}(x \geq 0)$ do

$$^{2}x := -2x + 10$$

 od^3

int : x

while $^{\mathbf{1}}(x \geq 0)$ do

$$^{2}x := -2x + 10$$

 od^3

int : x

while $^{\mathbf{1}}(x \geq 0)$ do

$$^{2}x := -2x + 10$$

 od^3

piecewise-defined ranking! function for the program!

int: x

while $^{1}(x \geq 0)$ do

$$^{2}x := -2x + 10$$

Concrete Semantics

$$\begin{split} & v_{\tau} \in \Sigma \not\mapsto \mathbb{O} \\ & v_{\tau} \triangleq \mathsf{lfp} \; \phi_{\tau} \\ & \phi_{\tau}(v) \triangleq \lambda s. \begin{cases} 0 & \text{if } s \in \beta_{\tau} \\ \sup\{v(s') + 1 \mid \langle s, s' \rangle \in \tau\} & \text{if } s \in \widetilde{\mathsf{pre}}(\mathsf{dom}(v)) \end{cases} \end{split}$$

Theorem (Soundness and Completeness)

$$\begin{split} & v_{\tau} \in \Sigma \not\mapsto \mathbb{O} \\ & v_{\tau} \triangleq \mathsf{lfp} \; \phi_{\tau} \\ & \phi_{\tau}(v) \triangleq \lambda s. \begin{cases} 0 & \text{if } s \in \beta_{\tau} \\ \sup\{v(s') + 1 \mid \langle s, s' \rangle \in \tau\} & \text{if } s \in \mathsf{pre}(\mathsf{dom}(v)) \end{cases} \end{split}$$

Theorem (Soundness and Completeness)

$$\begin{array}{c} v_{\tau} \in \Sigma \not \hookrightarrow \mathbb{O} \\ v_{\tau} \triangleq \mathsf{lfp} \ \phi_{\tau} \\ \\ \phi_{\tau}(v) \triangleq \lambda s. \begin{cases} 0 & \mathsf{if} \ s \in \Sigma \mid \forall s' \in \Sigma : \langle s, s' \rangle \in \tau \Rightarrow s' \in X \} \\ \sup \{v(s') + 1 \mid \langle s, s' \rangle \in \tau\} & \mathsf{if} \ s \in \widetilde{\mathsf{pre}}(\mathsf{dom}(v)) \end{cases}$$

Theorem (Soundness and Completeness)

$$\begin{array}{c} v_{\tau} \in \Sigma \not\mapsto \mathbb{O} \\ v_{\tau} \triangleq \mathsf{lfp} \ \phi_{\tau} \\ \\ \phi_{\tau}(v) \triangleq \lambda s. \begin{cases} 0 & \mathsf{if} \ s \in \Sigma \mid \forall s' \in \Sigma : \langle s, s' \rangle \in \tau \Rightarrow s' \in X \} \\ \sup\{v(s') + 1 \mid \langle s, s' \rangle \in \tau\} & \mathsf{if} \ s \in \mathsf{pre}(\mathsf{dom}(v)) \end{cases}$$

Theorem (Soundness and Completeness)

$$\begin{array}{c} v_{\tau} \in \Sigma \not\mapsto \mathbb{O} \\ v_{\tau} \triangleq \mathsf{lfp} \ \phi_{\tau} \\ \\ \phi_{\tau}(v) \triangleq \lambda s. \begin{cases} 0 & \text{if } s \in \Sigma \mid \forall s' \in \Sigma : \langle s, s' \rangle \in \tau \Rightarrow s' \in X \} \\ \sup\{v(s') + 1 \mid \langle s, s' \rangle \in \tau\} & \text{if } s \in \widetilde{\mathsf{pre}}(\mathsf{dom}(v)) \end{cases}$$

Theorem (Soundness and Completeness)

$$\begin{split} & v_{\tau} \in \Sigma \not\mapsto \mathbb{O} \\ & v_{\tau} \triangleq \mathsf{lfp} \; \phi_{\tau} \\ & \phi_{\tau}(v) \triangleq \lambda s. \begin{cases} 0 & \text{if } s \in \beta_{\tau} \\ \sup\{v(s') + 1 \mid \langle s, s' \rangle \in \tau\} & \text{if } s \in \widetilde{\mathsf{pre}}(\mathsf{dom}(v)) \end{cases} \end{split}$$

Theorem (Soundness and Completeness)

int : x while ${}^1(x < 10)$ do ${}^2x := x + 1$ od 3

$$x := x + 1$$

$$\begin{cases}
1 & x \ge 10 \\
x < 10 & x \ge 3
\end{cases}$$

int: x

while $^{1}(x < 10)$ do

$$^{2}x := x + 1$$

int : x

while $^{1}(x < 10)$ do

$$^{2}x := x + 1$$

int : x

while $^{1}(x < 10)$ do

$$^{2}x := x + 1$$

 v_{τ} is not computable!

int: x

while $^{1}(x < 10)$ do

$$x^2 := x + 1$$

An Abstract Domain for Termination

Introduction
Concrete Semantics
An Abstract Domain for Termination
Conclusion and Future Work

States Abstract Domain Functions Abstract Domain Segmented Ranking Functions Abstract Domain Abstract Termination Semantics Implementation

States Abstract Domain

• Functions Abstract Domain

)

• Segmented Ranking Functions Abstract Domain

/(E,P)

States Abstract Domain Functions Abstract Domain Segmented Ranking Functions Abstract Domain Abstract Termination Semantics Implementation

• Segmented Ranking Functions Abstract Domain

V(E, P)

• Segmented Affine Ranking Functions Abstract Domain

Intervals Abstract Domain³

$$\bullet \ \mathcal{E}^{\#} \triangleq \{\bot_{\mathsf{E}}\} \cup \{[a,b] \mid a \in \mathbb{I} \cup \{-\infty\}, b \in \mathbb{I} \cup \{+\infty\}\} \qquad \mathbb{I} \in \{\mathbb{Z},\dots\}$$

• join: □_E

meet: □_E

■ widening: ∇_E

backward assignments: ASSIGN_E

tests: FILTER_E

³Cousot&Cousot - Static Determination of Dynamic Properties of Programs (1976)

Affine Functions Abstract Domain

- $\mathcal{F}^{\#} \triangleq \{\bot_{\mathsf{F}}\} \cup \{f^{\#} \mid f^{\#} \in \mathbb{I}^n \mapsto \mathbb{N}\} \cup \{\top_{\mathsf{F}}\}$ where $f^{\#} \equiv y = f(x_1, \dots, x_n) = m_1 x_1 + \dots + m_n x_n + q$
- approximation order: $\langle \rho_1^\#, f_1^\# \rangle \sqsubseteq_{\mathsf{P}} \langle \rho_2^\#, f_2^\# \rangle \triangleq \rho_1^\# \sqsupseteq_{\mathsf{E}} \rho_2^\# \wedge f_1^\# \sqsubseteq_{\mathsf{F}} f_2^\#$ computational order: $\langle \rho_1^\#, f_1^\# \rangle \preccurlyeq_{\mathsf{P}} \langle \rho_2^\#, f_2^\# \rangle \triangleq \rho_1^\# \sqsubseteq_{\mathsf{F}} \rho_2^\# \wedge f_1^\# \sqsubseteq_{\mathsf{F}} f_2^\#$

Affine Functions Abstract Domain

- $\mathcal{F}^{\#} \triangleq \{\bot_{\mathsf{F}}\} \cup \{f^{\#} \mid f^{\#} \in \mathbb{I}^n \mapsto \mathbb{N}\} \cup \{\top_{\mathsf{F}}\}$ where $f^{\#} \equiv y = f(x_1, \dots, x_n) = m_1 x_1 + \dots + m_n x_n + q$
- approximation order: $\langle \rho_1^\#, f_1^\# \rangle \sqsubseteq_{\mathsf{P}} \langle \rho_2^\#, f_2^\# \rangle \triangleq \rho_1^\# \sqsupseteq_{\mathsf{E}} \rho_2^\# \wedge f_1^\# \sqsubseteq_{\mathsf{F}} f_2^\#$ computational order: $\langle \rho_1^\#, f_1^\# \rangle \preccurlyeq_{\mathsf{P}} \langle \rho_2^\#, f_2^\# \rangle \triangleq \rho_1^\# \sqsubseteq_{\mathsf{E}} \rho_2^\# \wedge f_1^\# \sqsubseteq_{\mathsf{F}} f_2^\#$

• join: □P

• backward assignments: ASSIGN_P

Example

join: ⊔_P

 \bullet backward assignments: $\mathrm{ASSIGN}_{\mathsf{P}}$

Example x := x + 1 $3 \quad 9$ f(x) = x - 2 f(x) = x + 1 - 2 + 1 = x

Segmented Affine Ranking Functions Domain

- $\mathcal{V}^{\#} \triangleq \{(\mathcal{E}^{\#} \times \mathcal{F}^{\#})^k \mid k \geq 0\}$
- segmentation unification

Segmented Affine Ranking Functions Domain

- $\mathcal{V}^{\#} \triangleq \{ (\mathcal{E}^{\#} \times \mathcal{F}^{\#})^k \mid k \geq 0 \}$
- segmentation unification

approximation order: ⊆_V computational order: ≼_V

• join: □_V

widening: ∇√

Example

approximation order: ⊆_V computational order: ≼_V

• join: □_V

ullet widening: ∇_V

approximation order: ⊆_V computational order: ≼_V

join: □V

ullet widening: ∇_V

Example $\nabla_{\mathbf{V}}$ 6 11 6

• approximation order: \sqsubseteq_V computational order: \preccurlyeq_V

• join: □_V

ullet widening: ∇_V

• approximation order: \sqsubseteq_V computational order: \preccurlyeq_V

• join: □_V

ullet widening: ∇_V

• backward assignments: ASSIGN_V

• tests: FILTER_V

• backward assignments: ASSIGN_V

• tests: FILTER_V

 \bullet backward assignments: ASSIGN_{V}

• tests: FILTER_V

where $\phi^{\#} \triangleq \lambda x$. FILTER_V $(\neg B, v) \curlyvee_{V}$ FILTER_V $(B, \mathcal{S}^{\#} \llbracket S \rrbracket x)$

Theorem (Soundness)

$\mathbf{v}_{\tau}^{\#}$ is **sound** to prove the termination of programs

 $S^{\#}[S_1 ; S_2]v \triangleq S^{\#}[S_1](S^{\#}[S_2]v)$

Example

int : xwhile $^{1}(x < 10)$ do $^{2}x := x + 1$ od³

Example

int : x

while $^{1}(x < 10)$ do

$$^{2}x := x + 1$$

States Abstract Domain Functions Abstract Domain Segmented Ranking Functions Abstract Domain Abstract Termination Semantics Implementation

Example

int : x

while $^{1}(x < 10)$ do

$$^{2}x := x + 1$$

States Abstract Domain Functions Abstract Domain Segmented Ranking Functions Abstract Domain Abstract Termination Semantics Implementation

Example

int : x

while $^{1}(x < 10)$ do

$$^{2}x := x + 1$$

States Abstract Domain Functions Abstract Domain Segmented Ranking Functions Abstract Domain Abstract Termination Semantics Implementation

Example

int : x

while $^{1}(x < 10)$ do

$$^{2}x := x + 1$$

States Abstract Domain Functions Abstract Domain Segmented Ranking Functions Abstract Domain Abstract Termination Semantics Implementation

Example

int : x

while $^{1}(x < 10)$ do

$$^{2}x := x + 1$$

Example

int : x

while $^{1}(x < 10)$ do

$$x^2 := x + 1$$

Alias&Darte&Feautrier&Gonnord -Multi-Dimensional Rankings, Program Termination, and Complexity Bounds of Flowchart Programs (SAS 2010)

Example

 od^3

int : x while $^1(x < 10)$ do $^2x := x + 1$

Berdine&al. - Variance Analyses from Invariance Analyses (POPL 2007)

Simple Loops

Example

```
int: x_1, x_2 while {}^1(x_1 \ge 0 \land x_2 \ge 0) do if {}^2(?) then {}^3x_1 := x_1 - 1 else {}^4x_2 := x_2 - 1 fi od<sup>5</sup>
```


Simple Loops

Example

```
int: x_1, x_2

while {}^1(x_1 \ge 0 \land x_2 \ge 0) do

if {}^2(?) then

{}^3x_1 := x_1 - 1

else

{}^4x_2 := x_2 - 1

fi

od<sup>5</sup>
```

Cook&Podelski&Rybalchenko - Terminator: Beyond Safety (CAV 2006)

Sufficient Preconditions for Termination

Example

int : xwhile $^{1}(x < 10)$ do $^{2}x := 2 * x$ od³

$$f(x) = \begin{cases} 3 & 5 \le x \le 9 \\ 1 & 10 \le x \end{cases}$$

$$f(x) = \begin{cases} 9 & x = 1 \\ 7 & x = 2 \\ 5 & 3 \le x \le 4 \\ 3 & 5 \le x \le 9 \\ 1 & 10 \le x \end{cases}$$

Sufficient Preconditions for Termination

Example

int :
$$x$$

while $^{1}(x < 10)$ do $^{2}x := 2 * x$
od³

$$f(x) = \begin{cases} 3 & 5 \le x \le 9\\ 1 & 10 \le x \end{cases}$$

$$f(x) = \begin{cases} 9 & x = 1 \\ 7 & x = 2 \\ 5 & 3 \le x \le 4 \\ 3 & 5 \le x \le 9 \\ 1 & 10 \le x \end{cases}$$

Sufficient Preconditions for Termination

Example

int : xwhile $^{1}(x < 10)$ do $^{2}x := 2 * x$ od³

$$f(x) = \begin{cases} 3 & 5 \le x \le 9 \\ 1 & 10 \le x \end{cases}$$

$$f(x) = \begin{cases} 9 & x = 1 \\ 7 & x = 2 \\ 5 & 3 \le x \le 4 \\ 3 & 5 \le x \le 9 \\ 1 & 10 < x \end{cases}$$

http://www.di.ens.fr/~urban/FuncTion.html

- written in OCaml
- implemented on top of Apron⁴
- forward reachability analysis to improve precision

Example $int : x_1, x_2$ ${}^1x_2 := 1$ $while {}^2(x_1 < 10) do$ ${}^3x_1 := x_1 + x_2$ od^4

⁴http://apron.cri.ensmp.fr/library/

http://www.di.ens.fr/~urban/FuncTion.html

- written in OCaml
- implemented on top of Apron⁴
- forward reachability analysis to improve precision

Example

int:
$$x_1, x_2$$
 ${}^1x_2 := 1$

while ${}^2(x_1 < 10)$ do

 ${}^3x_1 := x_1 + x_2$

od⁴

⁴http://apron.cri.ensmp.fr/library/

Conclusions

- family of parameterized abstract domains for program termination
 - piecewise-defined ranking functions
 - backward invariance analysis
- instance based on intervals and affine functions
 - segmentation overcomes non-existence of linear ranking functions
 - analysis not limited to simple loops
 - sufficient conditions for termination

Future Work

- more abstract domains (e.g. non-linear functions)
- other liveness properties
- cost analysis
- non-termination

Conclusions

- family of parameterized abstract domains for program termination
 - piecewise-defined ranking functions
 - backward invariance analysis
- instance based on intervals and affine functions
 - segmentation overcomes non-existence of linear ranking functions
 - analysis not limited to simple loops
 - · sufficient conditions for termination

Future Work

- more abstract domains (e.g. non-linear functions)
- other liveness properties
- cost analysis
- non-termination

Conclusions

- family of parameterized abstract domains for program termination
 - piecewise-defined ranking functions
 - backward invariance analysis
- instance based on intervals and affine functions
 - segmentation overcomes non-existence of linear ranking functions
 - analysis not limited to simple loops
 - · sufficient conditions for termination

Future Work

- more abstract domains (e.g. non-linear functions)
- other liveness properties
- cost analysis
- non-termination

Questions?

"... the purpose of abstraction is not to be vague, but to create a new semantic level in which one can be absolutely precise." (Edsger Dijkstra)