### Red Blood Cell Disorders I:

RBC production and physiology Laboratory investigation and classification of anemia

Elizabeth Rinker, M.D.

rinkere@musc.edu

July 2025

#### Objectives

- Determine which laboratory tests are appropriate for evaluation of anemia
- Understand how to interpret laboratory data during evaluation of anemia
- Know the clinical and pathologic findings associated with the types of anemia discussed
- Form a focused differential diagnosis for an anemic patient

#### Outline

#### **Blood loss**

- I. Acute
- II. Chronic

#### **Increased destruction (hemolytic anemias)**

- Normal hemoglobin produced in normal quantities
  - A. Intravascular/non-autoimmune
    - 1. Mechanical damage
    - 2. Microangiopathic anemias
    - 3. Paroxysmal nocturnal hemoglobinuria (PNH)
    - 4. Glucose-6-phosphate dehydrogenase (G6PD) deficiency
    - 5. Malaria
  - B. Autoimmune
    - 1. Warm
    - 2. Cold
  - C. RBC membrane defects
    - 1. Hereditary spherocytosis
- II. Abnormal hemoglobin production (hemoglobinopathies)
  - A. Hemoglobin S
  - B. Hemoglobin C
  - C. Hemoglobin SC
- III. Normal hemoglobin produced in insufficient quantities
  - A. Thalassemia

#### **Impaired production**

- I. Aplastic anemia
  - A. Fanconi anemia
  - B. Pure red cell aplasia
- II. Macrocytic anemia
  - A. Folate deficiency
  - B. Vitamin B12 deficiency
    - 1. Pernicious anemia
- III. Microcytic anemia
  - A. Iron deficiency
  - B. Anemia of chronic disease
  - C. Sideroblastic anemia
    - 1. Lead toxicity
- IV. Myelophthisic anemia

#### Red blood cell production: Bone marrow

- RBC precursors start large
- Become smaller with maturation
- Cytoplasm and nucleus mature synchronously



#### Red blood cell production: Bone marrow

#### Paraffin-embedded sections, H&E stain

 Aggregates/islands of cells with round, very dark nuclei

#### **Smeared slides, Wright-Giemsa stain**



 Cells with round nuclei, metachromatic cytoplasm

#### RBC's: Peripheral blood smear



- Most common cell in blood
- Biconcave disc
  - Central pallor ~1/3 diameter
- Diameter of 6-8 μm
  - About the size of lymphocyte nucleus
- Specialized cell membrane
- "Little bags of hemoglobin"

### Early RBC's in peripheral blood smear

- Nucleated red blood cell (nRBC)
- Reticulocyte
  - Newly formed RBC that still has some RNA
  - Special stain is required to see RNA
- Polychromatic form = reticulocyte
  - Retained RNA → blue/purple
- Reticulocyte count
  - Adequate bone marrow compensation?





#### Hemoglobin



- Most of iron in body is associated with hemoglobin
- Large protein composed of 4 polypeptide chains each containing one heme group
- Each heme binds to one oxygen molecule
- Adult hemoglobin: HbA
  - 2 alpha globin + 2 beta globin chains

# Hemoglobin development



# Oxygen dissociation curve



#### Oxygen dissociation curve

- Right Shift
  - Releases more oxygen to tissues & opening Hb to accept more CO<sub>2</sub>
- Causes
  - ↓ pH/acidosis
  - 个 2,3-DPG
  - 1 temperature



#### Oxygen dissociation curve



- Left shift
  - Hgb binds oxygen more tightly, reducing the amount of oxygen released
- Causes
  - 个 pH/alkalosis
  - ↓ 2,3-DPG
  - ↓ temperature
  - Methemoglobinemia
  - Carboxyhemoglobinemia

# Methemoglobinemia

- Decreased oxygen-carrying capacity of hemoglobin
  - Conversion of iron from reduced ferrous (Fe2+) state to oxidized ferric (Fe3+) state
  - Ferric iron unable to bind/transport oxygen
- Etiology
  - Acquired
    - More common
    - Exposure to oxidizing agents
      - Benzocaine/prilocaine, nitrates
  - Congenital
    - Defects in cytochrome b5 reductase (CYB5R) enzyme
    - Mutations in globin protein genes

- Signs and symptoms
  - Hypoxemia refractory to supplemental oxygen
  - "Chocolate brown blood"
  - 10% methemoglobin: dyspnea, yanosis/pallor
  - 20%: anxiety, light-headedness, headache
  - 30-50%: tachypnea, confusion, loss of consciousness
    - · Risk for metabolic acidosis, coma, death
- Treatment
  - Removal of causative agent
  - Methylene blue
    - Reduced to leukomethylene blue → acts as electron donor to reduce methemoglobin to hemoglobin
  - Supplemental oxygen



### Clearance of hemoglobin



- Lab tests:
  - Haptoglobin
  - LDH
  - Bilirubin
    - Un-conjugated
    - Conjugated
  - Urine free hemoglobin

# Anemia

#### What is anemia?

Reduction of the oxygen-transporting capacity of the blood, which usually stems from a reduction in the total circulating red cell mass below normal amounts.

### Signs and symptoms of anemia

- Fatigue
- Weakness
- Dizziness
- Headache
- Shortness of breath
- Tachycardia
- Pallor
- Pale mucous membranes

- May be asymptomatic
  - Compensation





# Laboratory investigation of anemia

# Complete blood count (CBC)

- One of the most common lab tests ordered
- Often ordered along with a white blood cell differential count
- Provides valuable information for benign/reactive and malignant disease processes

| Component             | Value    | Range & Units      |
|-----------------------|----------|--------------------|
| CBC PROFILE           | RESULTS: |                    |
| WBC                   | 8.7      | 4.5 - 11.0 10/3/UL |
| Red Blood Cell Count  | 4.81     | 4.5 - 5.9 10/6/UL  |
| Hemoglobin            | 15.2     | 13.5 - 17.5 GM/DL  |
| Hematocrit            | 44.1     | 40 - 51 %          |
| MCV                   | 91.6     | 80 - 100 FL        |
| MCH                   | 31.6     | 26 - 34 PG         |
| MCHC                  | 34.5     | 31 - 37 G/DL       |
| RDW                   | 13.3     | 11.5 - 14.5 %      |
| Platelet Cnt          | 188      | 130 - 400 10^3/UL  |
| MPV                   | 9.2      | 7.4 - 10.4 FL      |
| DIFFERENTAL           | RESULTS: |                    |
| Differential Type     | AUTO     |                    |
| Neutrophils Absolute  | 4.4      | 1.8 - 8.0 10^3/UL  |
| Lymphocytes Absolute  | 3.5      | 1.1 - 5.0 10/3/UL  |
| Monocytes Absolute    | 0.7      | 0.2 - 1.1 10/3/UL  |
| Eosinophils Absolute  | 0.1      | 0.0 - 0.6 10^3/UL  |
| Basophils Absolute    | 0.0      | 0.0 - 0.2 10/3/UL  |
| Neutrophils Relatives | 51       | %                  |
| Lymphocytes Relative  | 40       | %                  |
| Monocytes Relative    | 8        | %                  |
| Eosinophils Relative  | 1        | %                  |
| Basophils Relative    | 0        | %                  |

#### CBC: Red blood cell indices

- Red blood cell count
  - Concentration of RBC's (million/uL)
- Hemoglobin
  - Concentration of Hgb (g/dL)
- Hematocrit
  - Relative volume of packed RBCs (%)
- Mean Cell Volume (MCV)
  - Average size of RBCs (fL)





#### CBC: Red blood cell indices

- Mean Cell Hemoglobin (MCH)
  - Average amount of Hgb in each RBC (pg)
  - Calculated: Hb (g/dL) / RBC (M/uL) x10
- Mean Cell Hemoglobin Concentration (MCHC)
  - Average amount of Hgb per a certain concentration of RBC's (g/dL)
  - Calculated: Hb (g/dL) / hematocrit (%)
- Red Cell Distribution Width (RDW):
  - Amount of RBC size variability (%)
  - Higher = more variability



#### RBC vocabulary

- Microcytic Small RBCs, ↓ MCV
- Normocytic Normal MCV
- Macrocytic Large RBCs, 
  <sup>↑</sup> MCV
- Hypochromia ↓ Decreased Hb in RBCs (↓ MCHC)
  - Central pallor >1/3 diameter
- Anisocytosis Variation in cell size (↑ RDW)
- Poikilocytosis Variation in cell shape
- Polychromasia Bluish color in some cells (due to RNA in reticulocytes)



#### Other useful lab tests

- Complete Metabolic Panel
- Lactate dehydrogenase (LDH)
- Vitamin levels (B12, folate, etc.)
- Direct antiglobulin test (DAT)
- Erythropoietin level
- Haptoglobin
- Iron Studies



#### Classification of anemia

- MCV: microcytic vs. macrocytic
- Hemolytic vs. non-hemolytic
- Congenital vs. acquired
- Underlying mechanism

• Key for evaluation: CBC + peripheral blood smear review

#### Anemia classification based on MCV



#### Anemia classification based on mechanism

- 1. Blood loss
- Increased destruction
- 3. Impaired production

# Table 12-1. CLASSIFICATION OF ANEMIA ACCORDING TO MECHANISM OF PRODUCTION

- I. Blood Loss
  - A. Acute: trauma
  - B. Chronic: lesions of gastrointestinal tract, gynecologic disturbances
- II. Increased Rate of Destruction (Hemolytic Anemias)
  - A. Intrinsic (intracorpuscular) abnormalities of RBCs
    - 1. Hereditary
      - a. Disorders of RBC membrane cytoskeleton (e.g., spherocytosis, elliptocytosis)
      - b. RBC enzyme deficiencies
        - 1) Glycolytic enzymes: pyruvate kinase, hexokinase
        - Enzymes of hexose monophosphate shunt: glucose-6-phosphate dehydrogenase, glutathione synthetase
      - c. Disorders of hemoglobin synthesis
        - 1) Deficient globin synthesis: thalassemia syndromes
        - Structurally abnormal globin synthesis (hemoglobinopathies): sickle cell anemia, unstable hemoglobins
    - 2. Acquired
      - a. Membrane defect: paroxysmal nocturnal hemoglobinuria

- B. Extrinsic (extracorpuscular) abnormalities
  - 1. Antibody mediated
    - a. Isohemagglutinins; transfusion reactions, erythroblastosis fetalis (Rh disease of the newborn)
    - Autoantibodies: idiopathic (primary), drug-associated, systemic lupus erythematosus
  - 2. Mechanical trauma to RBCs
    - a. Microangiopathic hemolytic anemias: thrombotic thrombocytopenic purpura, disseminated intravascular coagulation
  - 3. Infections: malaria

#### III. Impaired Red Cell Production

- A. Disturbance of proliferation and differentiation of stem cells: aplastic anemia, pure RBC aplasia, anemia of renal failure, anemia of endocrine disorders
- B. Disturbance of proliferation and maturation of erythroblasts
  - Defective DNA synthesis: deficiency or impaired utilization of vitamin B<sub>12</sub> and folic acid (megaloblastic anemias)
  - 2. Defective hemoglobin synthesis
  - a. Deficient heme synthesis: iron deficiency
  - b. Deficient globin synthesis: thalassemias
  - Unknown or multiple mechanisms: sideroblastic anemia, anemia of chronic inflammation, myelophthisic anemias due to marrow infiltrations

#### Blood loss

- Acute/traumatic
  - 1. Hypovolemia/shock  $\rightarrow$  fluid shift
    - Loss of all blood elements (RBCs, WBCs, platelets)
  - 2. Hemodilution
    - Normochromic
    - Normocytic
  - 3. Reticulocytosis
    - ~5 days later

- Chronic
  - Often results in iron deficiency anemia
  - Common sources: Gl, gynecologic tract

# Questions?