- 1. Dimostrare che
 - a) 3n + 5 = O(n)
 - b) n = O(3n + 5)
- 2. Dimostrare che
 - a) 3n 5 = O(n)
 - b) n = O(3n 5)
- 3. Sapreste dimostrare che, comunque scelgo due costanti a e b positive, valgono le due affermazioni seguenti?
 - i) an + b = O(n)
 - ii) n = O(an + b)
- 4. i) E' vero che $7n = O(n^2)$?
 - ii) E' vero che $n^2 = O(7n)$?

In entrambi i casi e' necessario giustificare la risposta.

- 5. Dimostrare che
 - i) $n^2 3n + 5 = O(n^2)$
 - ii) $n^2 = O(n^2 3n + 5)$
- 6. Dimostrare che
 - i) $n^2 + 3n + 5 = O(n^2)$
 - ii) $n^2 = O(n^2 + 3n + 5)$
- 7. Si dimostri che
 - a) $4\sqrt{n}\log n + 7n = \Theta(n)$
 - b) $n^{\log n} = O(n^n + 2^n)$
- 8. Si considerino le seguenti funzioni: $4\sqrt{n} + \log n$, $\log \log n$, 2^n , $n^{\log n}$, $13n^3$, n+15.
 - a) Si ordinino le funzioni scrivendole da sinistra a destra, in modo tale che la funzione f(n) sia posta a sinistra di g(n) se f(n) = O(g(n)).
 - b) Si dimostri formalmente (cioe' fornendo le costanti) almeno due (a scelta) dei confronti affermati al punto a). In altre parole se l'ordine proposto e': $f_1(n)$, $f_2(n)$, $f_3(n)$, $f_4(n)$, $f_5(n)$, $f_6(n)$, allora occorre dimostrare che $f_i(n) = O(f_{i+1}(n))$ per almeno due diversi indici i.
- 9. Si supponga di avere due algoritmi A ed A' che risolvono il medesimo problema in tempo $T_A(n)$ e $T_{A'}(n)$ rispettivamente. Se $T_A(n) = n \log^2 n + 11n$ e $T_{A'}(n) = \sqrt{(n^3)logn} + 54$, quale dei due algoritmi e' asintoticamente piu' efficiente in termini di tempo? E' necessario giustificare la risposta.