2 Konvergenz von Folgen

2.1 Einfache Eigenschaften

Definition 2.1. Eine Abbildung $A : \mathbb{N} \to \mathbb{C}$ heißt *Folge*. Man schreibt a_n statt A(n) für $n \in \mathbb{N}$ und $(a_n)_{n \geq 1}$ oder (a_n) statt A. Wenn $a_n \in \mathbb{R} \ \forall n \in \mathbb{N}$, so heißt (a_n) reelle Folge.

Definition 2.2. Seien (a_n) eine Folge und $a \in \mathbb{C}$. (a_n) konvergiert gegen a, wenn es zu jeden $\varepsilon > 0$ ein $N_{\varepsilon} \in \mathbb{N}$ gibt, sodass $|a_n - a| \leq \varepsilon$ für alle $n \geq N_{\varepsilon}$, wobei $n \in \mathbb{N}$, also

$$\forall \varepsilon > 0 \,\exists N_{\varepsilon} \in \mathbb{N} \,\forall n \geq N_{\varepsilon} : |a_n - a| \leq \varepsilon.$$

a heißt dann Grenzwert (oder Limes) von (a_n) und man schreibt " $a = \lim_{n \to \infty} a_n$ " oder " $a_n \to a$ für $n \to \infty$ ". Wenn (a_n) keinen Grenzwert hat, so heißt (a_n) divergent (div.).

Bemerkung. $|a_n - a| \le \varepsilon \iff a_n \in \overline{B}(a, \varepsilon) \iff \text{Abstand von } a_n \text{ und } a \text{ ist kleiner als } \varepsilon$ Bemerkung. Wenn $a_n \to 0$ für $n \to \infty$, dann heißt (a_n) Nullfolge (NF). Somit $a_n \to a$ für $n \to \infty \iff (|a_n - a|)_{n \ge 1}$ ist Nullfolge.

Beispiel 2.3. (Sei stets $n \in \mathbb{N}$)

a) Sei $z \in \mathbb{C}$ und $a_n = z \, \forall n$. Behauptung. $a_n \to z \, (n \to \infty)$.

Beweis. Sei $\varepsilon > 0$ beliebig gegeben. Wähle $N_{\varepsilon} = 1$. Sei $n \geq N_{\varepsilon} = 1$. Dann $|a_n - z| = 0 < \varepsilon$.

b) Sei $p \in \mathbb{Q}$ mit p > 0 und $a_n = n^{-p}$, also $(a_n) = (1, \frac{1}{2^p}, \frac{1}{3^p}, \dots)$. Behauptung. $a_n \to 0 \ (n \to \infty)$ (speziell für p = 1: $\frac{1}{n} \to 0 \ (n \to \infty)$.

Beweis. Sei $\varepsilon > 0$ beliebig gegeben. Wähle $N_{\varepsilon} \in \mathbb{N}$ mit $N_{\varepsilon} \geq \varepsilon^{-\frac{1}{p}}$ (N_{ε} existiert nach Satz 1.20). Sei $n \geq N_{\varepsilon}$. Dann:

$$|a_n - 0| = n^{-p} \stackrel{1.264}{\leq} N_{\varepsilon}^{-p} \stackrel{1.264}{\leq} \left(\varepsilon^{-\frac{1}{p}}\right)^{-p} = \varepsilon.$$

c) Sei $a_n = (-1)^n$. Behauptung. Diese Folge ist divergent. Beweis. Zu zeigen: $\forall a \in \mathbb{C} \exists \varepsilon_a > 0 \, \forall N \in \mathbb{N} \, \exists n = n_{a,N} \geq N : |a_N - a| > \varepsilon_a$.

- 1. Fall: a=1. Wähle $\varepsilon_1=1$. Sei $N\in\mathbb{N}$ gegeben. Sei $n\geq N$ ungerade. Dann $|a_n-a|=|-1-1|=2>1=\varepsilon_1$.
- 2. Fall: a = -1 genauso.
- 3. Fall: $a \in \mathbb{C} \setminus \{-1,1\}$. Wähle $\varepsilon_a = \frac{1}{2} \min\{|1-a|, |-1-a|\} > 0$. Sei $N \in \mathbb{N}$ gegeben. Wähle n = N. Dann

$$|a_n - a| = \begin{cases} |1 - a|, & \text{wenn } n \text{ gerade} \\ |-1 - a|, & \text{wenn } n \text{ ungerade} \end{cases} > \varepsilon_a.$$

Satz 2.4. Die Folge (a_n) konvergiere gegen $a \in \mathbb{C}$. Dann gelten:

- a) (a_n) ist beschränkt, d.h. $\exists M \geq 0 : |a_n| \leq M, \forall n \in \mathbb{N}.$
- b) Wenn $a_n \to b$ für $n \to \infty$ und $b \in \mathbb{C}$, dann a = b.

Beweis. a) Wähle $\varepsilon = 1$. Nach Def. 2.2 gibt es $N \in \mathbb{N}$ mit $|a_n - a| \le 1$, $\forall n \ge N$

$$\implies |a_n| = |a_n - a + a| \stackrel{\triangle\text{-Ungl.}}{\leq} |a_n - a| + |a| \leq 1 + |a|, \forall n \geq N$$
$$\implies |a_n| \leq \max\{1 + |a|, |a_1|, |a_2|, \dots, |a_{N-1}|\} =: M, \forall n \in \mathbb{N}.$$

b) Sei $\varepsilon > 0$ gegeben. Nach Vorraussetzung und Def. 2.2 existieren $N_{\varepsilon,a} \in \mathbb{N}$ und $N_{\varepsilon,b} \in \mathbb{N}$, sodass $|a_n - a| \leq \varepsilon \, \forall n \geq N_{\varepsilon,a}$ und $|a_n - b| \leq \varepsilon \, \forall n \geq N_{\varepsilon,b}$. Setze $N_{\varepsilon} = \max\{N_{\varepsilon,a}, N_{\varepsilon,b}\}$. Dann

$$0 \le |a - b| = |a - a_n + a_n - b| \stackrel{\triangle \text{-Ungl.}}{\le} |a - a_n| + |a_n - b| \le 2\varepsilon$$

(nach obiger Abschätzung). Da $\varepsilon > 0$ beliebig war, folgt |a-b| = 0, also a=b (siehe Satz 1.203)

Beispiel 2.5. Sei $p \in \mathbb{Q}$ mit p > 0 und $a_n = n^p$ für $n \in \mathbb{N}$. Behauptung. (a_n) ist unbeschränkt, also divergent nach Satz 2.41

Beweis. Ann.: Es existiere ein $M \ge 0$ mit $a_n = n^p \le M, \ \forall n \in \mathbb{N} \implies n \le M^{\frac{1}{p}} \ \forall n \in \mathbb{N} \implies \text{\sharp Satz 1.20}$

Bemerkung 2.6. a) Sei $(a_n)_{n\geq 1}$ eine Folge. Es gebe ein $a\in\mathbb{C}$ und eine Konstante c>0, sodass:

$$\forall \varepsilon > 0 \,\exists N_{\varepsilon} \in \mathbb{N} \,\forall n \ge N_{\varepsilon} : |a_n - a| \le c\varepsilon \tag{*}$$

Behauptung. Dann $a_n \to a$ für $n \to \infty$.

Beweis. Setze
$$\eta = c\varepsilon \iff \varepsilon = \frac{\eta}{c}$$
. Setze $N_{\eta} = N_{\varepsilon}$. Dann liefert (*): $\forall \eta > 0 \,\exists N_{\eta} \in \mathbb{N} \,\forall n \geq N_{\eta} : |a_n - a| \leq \eta$

Vorsicht: c darf nicht von n, ε abhängen!

b) Für $n_0 \in \mathbb{Z}$ setze $J(n_0) = \{n \in \mathbb{Z} : n \geq n_0\}$. Eine Abbildung $A : J(n_0) \to \mathbb{C}$ bezeichnet man auch als Folge. Man schreibt wieder a_n statt A(n) und $(a_n)_{n\geq n_0}$ statt A. Die Konvergenz von $(a_n)_{n\geq n_0}$ definiert man wie in Def. 2.2, wobei man zusätzlich $N_{\varepsilon} \geq n_0$ fordert. Indem man $b_n := a_{n+n_0-1}$ für $n \in \mathbb{N}$ setzt, erhält man eine Folge $(b_n)_{n\geq 1}$ mit Indexbereich $J(n_0)$. Offenbar konvergiert $(a_n)_{n\geq n_0}$ genau dann, wenn $(b_n)_{n\geq 1}$ konvergiert, und die jeweiligen Grenzwerte sind gleich. Somit können wir uns weiterhin auf den Fall $n_0 = 1$ beschränken.

Satz 2.7. Seien $(a_n)_{n\geq 1}$ und $(b_n)_{n\geq 1}$ Folgen und $a,b\in\mathbb{C}$. Es gelte $a_n\to a$ und $b_n\to b$ für $n\to\infty$. Dann:

- $a) \ a_n + b_n \to a + b \ f \ddot{u} r \ n \to \infty$
- b) $a_n \cdot b_n \to ab \ f\ddot{u}r \ n \to \infty \ (speziell \ ab_n \to ab \ f\ddot{u}r \ n \to \infty)$
- c) Wenn $a \neq 0$, dann existiert ein $N \in \mathbb{N}$, sodass $a_n \neq 0$ für alle $n \geq N$ und es gilt $\frac{1}{a_n} \to \frac{1}{a}$ für $n \to \infty$ $(n \geq N)$.

Beweis. Sei $\varepsilon > 0$ (beliebig) gegeben. Nach Voraussetzung:

 $\exists N_{\varepsilon,a} \in \mathbb{N}, N_{\varepsilon,b} \in \mathbb{N}, \text{ sodass } |a_n - a| \le \varepsilon \, \forall n \ge N_{\varepsilon,a} \text{ und } |b_n - b| \le \varepsilon \, \forall n \ge N_{\varepsilon,b} \quad (2.1)$ Setze $N_{\varepsilon} = \max\{N_{\varepsilon,a}, N_{\varepsilon,b}\}$. Sei $n \ge N_{\varepsilon}$.

a)
$$|a_n + b_n - (a+b)| \stackrel{\triangle\text{-Ungl.}}{\leq} |a_n - b| + |b_n - b| \stackrel{(2.1)}{\leq} 2\varepsilon, \forall n \in \mathbb{N} \xrightarrow{\text{Bem 2.6}} \text{Beh. a}$$

b)
$$|a_n b_n - ab| = |(a_n - a)b + a(b_n - b)| \stackrel{\triangle \text{-Ungl., 1.28}}{\leq} |a_n - a| \cdot \underbrace{|b_n|}_{\leq M \text{ nach 2.4}} + |a| \cdot |b_n - b|$$

$$\stackrel{(2.1)}{\leq} (M + |a|) \cdot \varepsilon \quad \forall n \geq N_{\varepsilon} \xrightarrow{\text{Bem 2.6}} \text{Beh. b})$$

c) Sei $\varepsilon_0=\frac{|a|}{2}>0$ (da $a\neq 0$). Sei $N=N_{\varepsilon_0,\,a}\in\mathbb{N}$ aus (2.1). Dann gilt für $n\geq N$:

$$|a_n| = |a + a_n - a| \stackrel{1.288}{\geq} |a| - |a_n - a| \stackrel{(2.1)}{\geq} |a| - \varepsilon_0 = \frac{|a|}{2} > 0 \implies \text{erste Beh.}$$

Setze $\widetilde{N_{\varepsilon}} = \max\{N_{\varepsilon}, N\}$. Sei $n \geq \widetilde{N_{\varepsilon}}$. Dann:

$$\left|\frac{1}{\varepsilon_n} - \frac{1}{a}\right| = \left|\frac{a - a_n}{a_n}\right| \stackrel{1.288}{=} \frac{|a - a_n|}{|a| - |a_n|} \stackrel{(2.1)}{\leq} \frac{\varepsilon}{|a| \cdot \frac{|a|}{2}} \quad (\forall n \geq \widetilde{N_{\varepsilon}}).$$

 \implies Beh. c).

Beispiel 2.8.

$$a_n = \frac{3n^2 + 2n}{5n^2 + 4n + i}$$

Behauptung. $a_n \to \frac{3}{5}$ für $n \to \infty$

Beweis.

$$a_n = \frac{3 + \frac{2}{n}}{5 + \frac{4}{n} + \frac{i}{n^2}}, \quad n \in \mathbb{N}.$$

Nach Bsp. 2.3: $3 \to 3$, $5 \to 5$, $\frac{1}{n} \to 0$, $\frac{1}{n^2} \to 0$ $(n \to \infty)$. Satz 2.7: Zähler $\to 3 + 2 \cdot 0 = 3$, Nenner $\to 5 \neq 0$ $(n \to \infty)$ $\xrightarrow{\text{Satz 2.73}}$ $a_n \to \frac{3}{5}$ für $n \to \infty$

Satz 2.9. Seien $(a_n)_{n\geq 1}$, $(b_n)_{n\geq 1}$, $(c_n)_{n\geq 1}$ reelle Folgen mit $a_n \to a$ und $b_n \to b$ für $n\to\infty$. Dabei sei $a,b\in\mathbb{R}$ (dies gilt stets gemäß Satz 2.11). Sei $n_0\in\mathbb{N}$.

- a) Wenn $a_n \leq b_n$ für $n \geq n_0$, dann $a \leq b$.
- b) Wenn $a_n \le c_n \le b_n$ für $n \ge n_0$ und a = b, dann $c_n \to a$ für $n \to \infty$ ("Sandwich-prinzip").

Beweis. Sei $\varepsilon > 0$ gegeben. Wie in (2.1) existiert ein $N_{\varepsilon} \in \mathbb{N}$, sodass

$$|a_n - a| \le \varepsilon, |b_n - b| \le \varepsilon \text{ für alle } n \ge N_{\varepsilon}$$
 (*)

Sei $n \ge \max\{N_{\varepsilon}, n_o\}$.

a) $a - b = a - a_n + \underbrace{a_n - b_n}_{\leq 0 \text{ (n.V.)}} + b_n - b \leq |a - a_n| + |b - b_n| \stackrel{(*)}{\leq} 2\varepsilon.$

Da $\varepsilon > 0$ beliebig ist, folgt $a-b \le 0$ (Wenn a-b > 0 wäre, dann folgte ξ mit Satz 1.203) $\implies a \le b$.

b)

$$|c_n - a| = \begin{cases} c_n - a & \leq b_n - a \leq |b_n - a| & \text{für } c_n \geq a \\ a - c_n & \leq a - a_n \leq |a_n - a| & \text{für } c_n < a \end{cases}$$

$$\stackrel{(*)}{\leq} \varepsilon \text{ für } n \geq \max\{N_{\varepsilon}, n_0\}, \text{ da } a = b \implies c_n \to a \text{ für } n \to \infty$$

Beispiel 2.10. Behauptung. Sei q > 0. Dann $a_n := q^{\frac{1}{n}} \to 1$ für $n \to \infty$. $(a_n) = (a, \sqrt{a}, \sqrt[3]{a}, \sqrt[4]{a}, \dots)$

Beweis. a) Sei zuerst $q \ge 1$. Dann $a_n \ge$ nach Satz 1.264. Weiter:

$$q = a_n^n = \left(1 + \underbrace{(a_n + 1)}_{>-1}\right)^n \stackrel{\text{Bernoulli-U.}}{\geq} 1 + n\left(a_n - 1\right)$$

$$\implies 0 \le a_n - 1 \le \frac{q - 1}{n} \to 0 \text{ für } n \to \infty$$

(nach Bsp. 2.3, Satz 2.7) \Longrightarrow nach Satz 2.92 $a_n-1\to 0 \implies a_n\to 1$ für $n\to\infty.$

b) Sei nun 0 < q < 1. Dann $\frac{1}{q} > 1$ und $\frac{1}{a_n} = \left(\frac{1}{a}\right)^{\frac{1}{n}} \to 1$ nach Teil a). Nach Satz 2.73 $\Longrightarrow a_n = \left(\frac{1}{a_n}\right)^{-1} \to 1$ für $n \to \infty$.

Satz 2.11. Sei (a_n) eine Folge. Dann:

- a) Sei zusätzlich $a_n \to a$ für $n \to \infty$. Dann gelten $\overline{a_n} \to \overline{a}$, $\operatorname{Re} a_n \to \operatorname{Re} a$, $\operatorname{Im} a_n \to \operatorname{Im} a$, $|a_n| \to |a|$ (jeweils für $n \to \infty$). Wenn zusätzlich (a_n) reell ist, dann ist $a \in \mathbb{R}$.
- b) Es gelte $\operatorname{Re} a_n \to b$ und $\operatorname{Im} a_n \to c$ für $n \to \infty$. Dann $a_n \to b + ic$ für $n \to \infty$.
- Beweis. a) $0 \le |\overline{a_n} \overline{a}| \stackrel{1.28}{=} |\overline{a_n a}| \stackrel{1.28}{=} |a_n a| \to 0$ für $n \to \infty$. Satz $2.92 \Longrightarrow |\overline{a_n} \overline{a}| \to 0 \Longrightarrow \overline{a_n} \to \overline{a}$ für $n \to \infty$. $\Longrightarrow \operatorname{Re} a_n \stackrel{1.28}{=} \frac{1}{2}(a_n + \overline{a_n}) \to \frac{1}{2}(a + \overline{a}) = \operatorname{Re} a$ für $n \to \infty$. Entsprechend $\operatorname{Im} a_n \to \operatorname{Im} a$ (verwende in beiden Fällen Satz 2.7). Ferner $||a_n| |a|| \stackrel{1.28}{\le} |a_n a| \stackrel{\text{n.V.}}{\to} 0$ $(n \to \infty)$. Satz $2.92 \Longrightarrow |a_n| \to |a|$ für $n \to \infty$. Wenn $a_n \in \mathbb{R}$, dann $\operatorname{Im} a_n = 0 \Longrightarrow \operatorname{Im} a = 0$.
 - b) $0 \le |a_n (b + ic)| = |(\operatorname{Re} a_n b) + i(\operatorname{Im} a_n c)| \stackrel{\triangle\text{-Ungl.}}{\le} |\operatorname{Re} a_n b| + |\operatorname{Im} a_n c| \to 0$, n. V. $(n \to \infty)$. Satz 2.92 \Longrightarrow Beh. b)

2.2 Monotone Folgen

Definition 2.12. Sei $(a_n)_{n\geq 1}$ eine reelle Folge.

- a) (a_n) wächst (strikt), wenn $a_{n+1} \ge a_n \ (a_{n+1} > a_n)$ für alle $n \in \mathbb{N}$.
- b) (a_n) fällt (strikt), wenn $a_{n+1} \le a_n \ (a_{n+1} < a_n)$ für alle $n \in \mathbb{N}$.
- c) (a_n) ist (strikt) monoton, wenn (a_n) (strikt) wächst oder (strikt) fällt.

Bemerkung. (a_n) wächst (strikt) \iff $(-a_n)$ fällt (strikt)

Beispiel 2.13. a) Sei $0 . Dann fällt <math>a_n = n^{-p}$ $(n \in \mathbb{N})$ strikt, da $(n+1)^{-p} < n^{-p}$ nach Satz 1.264.

- b) $a_n = \frac{n}{2n+1} = \frac{1}{2} \cdot \frac{2n+1-1}{2n+1} = \frac{1}{2} \frac{1}{2} \cdot \frac{1}{2n+1}$ wächst strikt, da $\frac{1}{2n+1}$ strikt fällt (vgl. a)).
- c) $a_n = (-1)^n$ ist nicht monoton, da $a_{n+1} = 1 > -1 = a_n$ für ungerade n und $a_{n+1} = -1 < 1 = a_n$ für gerade n.

Standardbsp. für divergente Folgen:

- a) $a_n = (-1)^n$ nicht monoton, aber beschränkt
- b) $a_n = n$ monoton, aber nicht beschränkt

Theorem 2.14. Sei $(a_n)_{n\geq 1}$ eine reelle Folge. Dann gelten:

a) Wenn (a_n) wächst und nach oben beschränkt ist, dann existiert

$$\lim_{n \to \infty} a_n = \sup_{n > 1} a_n := \sup \{ a_n : n \in \mathbb{N} \}$$

b) Wenn (a_n) fällt und nach unten beschränkt ist, dann existiert

$$\lim_{n \to \infty} a_n = \inf_{n > 1} a_n := \inf \left\{ a_n : n \in \mathbb{N} \right\}$$

Beweis. a) n. V. $\exists a := \sup_{n \ge 1} a_n$. Sei $\varepsilon > 0$ beliebig gegeben. Satz 1.18 $\Longrightarrow \exists N_{\varepsilon} \in \mathbb{N}$ mit $a - \varepsilon < a_{N_{\varepsilon}} \le a$. Sei $n \ge N_{\varepsilon}$. Da (a_n) wächst und $a = \sup a_n$ gilt:

$$a - \varepsilon < a_{N_{\varepsilon}} < a_n \implies a_n - a < \varepsilon \quad \forall n > N_{\varepsilon}$$

b) Betrachte $-a_n$ und verwende Teil a) und Satz 1.232

Beispiel 2.15 (Heron-Verfahren zur Quadratwurzelbestimmung). Sei x>0 gegeben. Definiere rekursiv $a_1=1$ und $a_{n+1}=\frac{1}{2}(a_n+\frac{x}{a_n})$ für $n\in\mathbb{N}$. (Beachte: $a_1>0$. Wenn $a_n>0$, dann $a_{n+1}>0$ $\xrightarrow{\operatorname{Indukt.}} a_k>0$ für alle $k\in\mathbb{N}$. Behauptung. $a_n\to\sqrt{x}$ $(n\to\infty)$

Beweis. 1. Schritt: Zeige Konvergenz mit Thm. 2.14. Sei $n\in\mathbb{N}.$ Dann

$$a_{n+1} - a_n \stackrel{\text{Def.}}{=} \frac{a_n}{2} + \frac{x}{2a_n} - a_n = \underbrace{\frac{1}{2a_n}}_{\text{Vorzeichen?}} \underbrace{\left(x - a_n^2\right)}_{\text{Vorzeichen?}} \tag{*}$$

Sei $n \geq 2$. Dann

$$a_n^2 - x \stackrel{\text{Def.}}{=} \frac{1}{4} \left(a_{n-1} + \frac{x}{a_{n-1}} \right)^2 - x = \frac{1}{4} \left(a_{n-1}^2 + 2x + \frac{x^2}{a_{n-1}^2} - 4x \right) - y$$
$$= \frac{1}{4} \left(a_{n+1} - \frac{x}{a_{n-1}} \right)^2 \ge 0 \quad (**)$$

$$\xrightarrow[**]{(*)} a_{n+1} - a_n \le 0 \text{ und } a_n^2 \ge x \xrightarrow{1.26} a_n \ge \sqrt{x} \text{ (für } n \ge 2).$$

Thm. 2.14 $\Longrightarrow \exists a := \lim_{n \to \infty} a_n$.

2. Schritt: Berechne a mit Hilfe der Rekursion. Satz 2.9: $a \ge \sqrt{x} > 0$.

Ferner: $\underbrace{a_{n+1}}_{\to a} = \underbrace{\frac{1}{2} \left(a_n + \frac{x}{a_n} \right)}_{\to \frac{1}{2} \left(a + \frac{x}{a} \right)}$ für $n \to \infty$ (nach Satz 2.7, $a \neq 0$). Nach Satz 2.4:

$$a = \frac{1}{2}\left(a + \frac{x}{a}\right) \iff a = \frac{x}{a} \iff x = a^2 \iff a = \sqrt{x}$$

Beispiel 2.16 (Die Eulersche Zahl e). Sei $x \in \mathbb{N}$,

$$a_n = \left(1 + \frac{1}{n}\right)^n$$
, $b_n = \sum_{j=0}^n \frac{1}{j!} = 1 + 1 + \frac{1}{2} + \frac{1}{6} + \dots + \frac{1}{n!}$

Behauptung. $\exists \lim_{n\to\infty} a_n = \lim_{n\to\infty} b_n =: e \approx 2,71828...$

Beweis. Überblick:

Beh. a) (a_n) wächst strikt

Beh. b) $a_n \le b_n < 3 \,\forall n \in \mathbb{N}$

$$\implies \begin{cases} a) + b) + Thm. \ 2.14 & \implies \exists \lim_{n \to \infty} a_n =: a, \lim_{n \to \infty} b_n =: b \\ b) + Satz \ 2.91 & \implies a \le b \end{cases}$$
 (*)

Beh. c) $a \ge b$

Beachte: (b_n) wächst strikt.

 \Longrightarrow Beh.

a) Sei $n \in \mathbb{N}$. Dann

$$\frac{a_{n+1}}{a_n} = \left(1 + \frac{1}{n+1}\right) \frac{\left(1 + \frac{1}{n+1}\right)^n}{\left(1 + \frac{1}{n}\right)^n} = \frac{n+2}{n+1} \left(\frac{\frac{n+2}{n+1}}{\frac{n+1}{n}}\right)^n = \frac{n+2}{n+1} \left(\frac{(n+1)^2 - 1}{(n+1)^2}\right)^n$$

$$= \underbrace{\frac{n+2}{n+1}}_{>0} \left(1 - \underbrace{\frac{1}{(1+n)^2}}_{>-1}\right)^n \stackrel{1.8}{\geq} \frac{n+2}{n+1} \left(1 - \frac{n}{(1+n)^2}\right) = \frac{n+2}{n+1} \cdot \frac{1+n+n^2}{(1+n)}$$

$$= \frac{n^3 + 3n^2 + 3n + 2}{(1+n)^3} \stackrel{\text{Bsp. 0.3}}{=} \frac{(n+1)^3 + 1}{(n+1)^3} > 1$$

 (b_n) wächst offensichtlich

$$a_n \stackrel{\text{Bsp. 0.3}}{=} \sum_{j=0}^n \binom{n}{j} \left(\frac{1}{n}\right)^j$$

Für $1 \le j \le n$ ist

$$\binom{n}{j} \frac{1}{n^{j}} = \frac{1}{j!} \cdot \frac{n!}{(n-j)!} \cdot \frac{1}{n^{j}} = \frac{1}{j!} \cdot \underbrace{\frac{n}{n}}_{=1} \cdot \underbrace{\frac{n-1}{n}}_{\in (0,1)} \cdot \underbrace{\frac{n-2}{n}}_{\in (0,1)} \cdots \underbrace{\frac{n-j+1}{n}}_{\in (0,1)} \le \frac{1}{j!} \le \frac{1}{2^{j-1}}$$

$$(+)$$

Behauptung. $2^{n-1} \leq n! \forall \in \mathbb{N}$

Beweis. (per vollst. Ind.)

IA: n = 1 ist klar.

IS: Beh. gelte für ein $n \in \mathbb{N}$ (IV).

$$\implies 2^n \stackrel{\text{IV}}{\leq} 2n! \leq (n+1)n! = (n+1)!$$

$$\implies a_n = 1 + \sum_{j=1}^n \binom{n}{j} \frac{1}{n^j} \stackrel{(+)}{\le} 1 + \sum_{j=1}^n \frac{1}{j!} = b_n$$

$$\le 1 + \sum_{j=1}^n \frac{1}{2^{j-1}} \stackrel{k:=j-1}{=} 1 + \sum_{k=0}^{n-1} \left(\frac{1}{2}\right)^k \stackrel{0.2}{=} 1 + \frac{1 - \left(\frac{1}{2}\right)^n}{1 - \frac{1}{2}} < 1 + \frac{1}{\frac{1}{2}} = 3$$

c) Sei $m \in \mathbb{N}$ und $n \ge m$, m fest. Wie in b):

$$a_{n} = 1 + \sum_{j=1}^{n} \underbrace{\frac{1}{j!} \cdot \frac{n}{n} \cdot \frac{n-1}{n} \cdot \frac{n-2}{n} \cdots \frac{n-j+1}{n}}_{>0}$$

$$\geq 1 + \sum_{j=1}^{n} \underbrace{\frac{1}{j!} \underbrace{\left(1 - \frac{1}{n}\right)}_{\rightarrow 1(n \to \infty)} \cdots \underbrace{\left(1 - \frac{j-1}{n}\right)}_{\rightarrow 1(n \to \infty)} =: c_{mn} \quad (++)$$

nach Bsp. 2.3, Satz 2.7 $\Longrightarrow c_{mn} \to 1 + \sum_{j=1}^{m} \frac{1}{j!} = b_m$ für $n \to \infty$, m fest. Lasse $n \to \infty$ gehen in (++). Dann liefern (*) und Satz 2.9, dass $a \ge b_m$ für $m \in \mathbb{N}$. Mit $m \to \infty$, (*), Satz 2.9 folgt $a \ge b$.

2.3 Teilfolgen und Vollständigkeit

Motivation. $(a_n) = ((-1)^n) = (-1, 1, -1, 1, \dots)$ ist divergent, enthält aber konvergente "Teile".

Definition 2.17. Sei $(a_n)_{n\geq 1}$ eine Folge und $\varphi: \mathbb{N} \to \mathbb{N}$ eine strikt wachsende Funktion (d.h. $\varphi(n+1) > \varphi(n) \, \forall n \in \mathbb{N}$). Setze $b_j = a_{\varphi(j)}, j \in \mathbb{N}$. Dann heißt die Folge $(b_j)j_{j\geq 1}$ Teilfolge von $(a_n)_{n\geq 1}$ (TF). Man schreibt meist $(a_{n_j})_{j\geq 1}$ statt $(b_j)_{j\geq 1}$.

Beispiel. a) (a_n) ist Teilfolge von sich selbst, wähle $\varphi(j) = j \, \forall j \in \mathbb{N}$

- b) Sei $a_n = (-1)^n$. Wähle $\varphi(j) = 2j$ für $j \in \mathbb{N}$. Dann ist $b_j := a_{2j} = 1 \,\forall j \in \mathbb{N}$.
- c) Sei $a_n = \begin{cases} \frac{1}{n^2} & \text{wenn } n \text{ Primzahl} \\ 1 & \text{sonst} \end{cases}, n \in \mathbb{N}. (a_n) = (1, \frac{1}{4}, \frac{1}{9}, 1, \frac{1}{25}, 1, \cdots)$

Setze $\varphi(j) = j$ -te Primzahl, $j \in \mathbb{N}$. $\Longrightarrow (b_j) = (a_{\varphi(j)}) = (\frac{1}{4}, \frac{1}{9}, \frac{1}{25}, \cdots)$

Bemerkung. $a_n \to a \ (n \to \infty) \implies a_{n_j} \to a \ (j \to \infty)$ für jede Teilfolge.

Definition 2.18. Sei (a_n) eine Folge und $a \in \mathbb{C}$. Dann heißt a Häufungspunkt (HP) von (a_n) , wenn für jedes $\varepsilon > 0$ für unendlich viele n die Ungleichung $|a - a_n| \le \varepsilon$ gilt.

Beispiel. a) $(-1)^n$ hat HP +1 und -1, da $a_n \in \overline{B}(1, \varepsilon)$ für alle $\varepsilon > 0$ und alle geraden $n \in \mathbb{N}$, sowie $a_n \in \overline{B}(-1, \varepsilon)$ für alle $\varepsilon > 0$ und alle ungeraden $n \in \mathbb{N}$.

b) Die Folge $a_n = n$ hat keinen HP, da $|a_n - a_m| \ge 1$, $n \ne m$. Also liegt in einer Kugel $\overline{B}(a, \frac{1}{2})$ höchstens ein a_n .

Satz 2.19. Sei (a_n) eine Folge und $a \in \mathbb{C}$. Dann:

$$a \text{ ist } HP \iff \exists TF \text{ mit } a_{n_j} \to a \ (j \to \infty)$$

Beweis. " \Rightarrow " Sei a HP. Wir definieren rekursiv eine TF (a_{n_j}) mit $\left|a-a_{n_j}\right| \leq \frac{1}{j} \, \forall j \in \mathbb{N}$. $\Longrightarrow a_{n_j} \to a$ nach Satz 2.9 (für $j \to \infty$). Wähle $n_1 \in \mathbb{N}$ mit $|a_{n_1} - a| \leq 1$ (verwende Voraussetzung mit $\varepsilon = 1$). Sei n_{j-1} mit $n_{j-1} > n_{j-2}$ und $\left|a_{n_{j-1}} - a\right| \leq \frac{1}{j-1}$ gewählt. Nach Voraussetzung gibt es unendlich viele a_n in $\overline{B}(a, \frac{1}{j})$. Da $\{1, \ldots, n_{j-1}\}$ endlich ist, existiert ein $n_j > n_{j-1}$ mit $\left|a_{n_j} - a\right| \leq \frac{1}{j}$. Induktionsprinzip liefert gewünschte TF $a_{n_j} \to a$.

"⇐" Sei $a_{n_j} \to a \ (j \to \infty)$. Sei $\varepsilon > 0$ beliebig gegeben. Dann $\exists J_{\varepsilon} \in \mathbb{N} : \forall j \geq J_{\varepsilon} : |a_{n_j} - a| \leq \varepsilon$. Also $\#\{a_{n_j} : j \geq J_{\varepsilon}\} = \#\{j \in \mathbb{N} : j \geq J_{\varepsilon}\} = \infty$ nach Satz 1.22.

Korollar 2.20. Wenn $\exists \lim_{n\to\infty} a_n = a$, dann ist a der einzige Häufungspunkt von (a_n) .

Beweis. Satz 2.19 $\Longrightarrow a$ ist HP, da es der Limes ist. Sei b ein weiterer HP von (a_n) . Nach Satz 2.19 \exists TF $a_{n_j} \to b$ $(j \to \infty)$. Dann gilt aber auch $a_{n_j} \to a$ $(j \to \infty)$. Satz 2.4 $\Longrightarrow a = b$.

Sei (a_n) eine reelle beschränkte Folge. Setze $A_n = \{a_j : j \geq n\}$ für $n \in \mathbb{N}$. Beachte $A_{n+1} \subset A_n$, A_n ist beschränkt für alle $n \in \mathbb{N}$.

$$\implies \exists b_n := \sup A_n, c_n := \inf A_n, \text{ wobei } b_n \ge a_j \ge c_n \ \forall j \ge n$$
 (2.2)

Satz 1.231a liefert $b_1 \ge b_n \ge b_{n+1} \ge c_{n+1} \ge c_n \ge c_1 \ (\forall n \in \mathbb{N}. \text{ Nach Thm. 2.14 existieren}$

$$\lim_{n \to \infty} b_n = \inf_{n \in \mathbb{N}} b_n = \inf_{n \in \mathbb{N}} \sup_{j \ge n} a_j =: \overline{\lim}_{n \to \infty} a_n = \limsup_{n \to \infty} a_n \text{ ("Limes superior")}$$

$$\text{und } \lim_{n \to \infty} c_n = \sup_{n \in \mathbb{N}} c_n = \sup_{n \in \mathbb{N}} \inf_{j \ge n} a_j =: \underline{\lim}_{n \to \infty} a_n = \liminf_{n \to \infty} a_n \text{ ("Limes inferior")}$$

$$(2.3)$$

(2.2), Satz $2.9 \implies$

$$\underline{\lim_{n \to \infty}} a_n \le \overline{\lim_{n \to \infty}} a_n \tag{2.4}$$

Beispiel. $\overline{\lim}_{n\to\infty} (-1)^n = 1$, $\underline{\lim}_{n\to\infty} (-1)^n = -1$, da in A_n nur +1 und -1 stehen.

Theorem 2.21 (Satz von Bolzano-Weierstrass). Jede beschränkte Folge $(a_n)_{n\geq 1}$ hat eine konvergente Teilfolge und damit einen Häufungspunkt. Wenn die Folge außerdem reell ist, dann ist $\overline{\lim}_{n\to\infty} a_n$ das Maximum aller Häufungspunkte und $\underline{\lim}_{n\to\infty} a_n$ das Minimum aller Häufungspunkte.

Beweis. a) Sei (a_n) reell und beschränkt. Setze $\bar{a} = \overline{\lim}_{n \to \infty} a_n$. Suche TF $a_{n_j} \to \bar{a}$ $(j \to \infty)$. Wir wissen aus (2.2) und (2.3): $b_n = \sup_{j \ge n} a_j$ konvergiert gegen \bar{a} für $n \to \infty$. b_n muss nicht ein Folgeglied sein.

Definiere rekursiv die gewünschte TF (a_{n_j}) : wähle $N_1 \in \mathbb{N}$ mit $|\bar{a} - b_{N_1}| \leq \frac{1}{2}$. Da $b_{N_1} = \sup_{j \geq N_1} a_j$ ist, existiert nach Satz 1.18 ein $n_1 > N_1$ mit $|b_{N_1} - a_{n_1}| \leq \frac{1}{2} \implies |\bar{a} - a_{n_1}| \leq |\bar{a} - b_{N_1}| + |b_{N_1} - a_{n_1}| \leq 1$. Es $n_{j-1} > n_{j-2}$ konstruiert mit $|\bar{a} - a_{n_{j-1}}| \leq \frac{1}{j-1}$. Wähle $N_j > n_{j-1}$ mit $|\bar{a} - b_{N_j}| \leq \frac{1}{2j}$ (verwende (2.3)). Da $b_{N_j} = \sup_{k \geq N_j} a_k$ existiert nach Satz 1.18 ein $n_j \geq N_j > n_{j-1}$ mit $|b_{N_j} - a_{n_j}| \leq \frac{1}{2j}$ $\implies |\bar{a} - a_{n_j}| \leq |\bar{a} - b_{N_j}| + |b_{N_j} - a_{n_j}| \leq \frac{1}{j}$. Erhalten induktiv TF $a_{n_j} \to \bar{a}$. Insbesondere ist \bar{a} ein HP von (a_n) nach Satz 2.19. Entsprechend sieht man, dass $\underline{\lim}_{n \to \infty} a_n$ ist ein HP von (a_n) . Sei (a_{n_l}) eine weitere TF mit Grenzwert a.

$$\xrightarrow{2.19} \underbrace{c_{n_l}}_{0 \to \underline{\lim}} \underbrace{c_{n_l}}_{0 \to a_n} \le \underbrace{a_{n_l}}_{0 \to a_n} \le \underbrace{b_{n_l}}_{0 \to \underline{\lim}} \underbrace{a_{n_l}}_{0 \to \infty} \underbrace{b_{n_l}}_{0 \to \infty}$$

b) Sei (a_n) eine beschränkte Folge (in \mathbb{C}). Sei $x_n = \operatorname{Re} a_n$, $y_n = \operatorname{Im} a_n$. Dann ist (nach Satz 1.28) $(x_n)_n$ beschränkt $\stackrel{\text{a}}{\Longrightarrow} \exists \operatorname{TF} x_{n_l} \to x \in \mathbb{R} \ (l \to \infty)$. Weiter ist $(y_{n_l})_l$ beschränkt $\stackrel{\text{a}}{\Longrightarrow} \exists \operatorname{TF} y_{n_{l_i}} \to y \in \mathbb{R} \ (j \to \infty)$. Damit gilt:

$$a_{n_{l_j}} = x_{n_{l_j}} + iy_{n_{l_j}} \to x + iy \ (j \to \infty).$$

Lemma 2.22. Sei (a_n) eine Folge mit den Häufungspunkten $\alpha_1, \ldots, \alpha_m$ und den zugehörigen Teilfolgen $a_{\varphi_1(j)} \to \alpha_1, \ldots, a_{\varphi_m(j)} \to \alpha_m$ $(j \to \infty)$. Jedes a_n liege in (mindestens) einer Teilfolge. Dann hat (a_n) keine weiteren Häufungspunkte.

Beweis. Annahme: Sei $\alpha \in \mathbb{C}$ ein weiterer HP. Satz $2.19 \Longrightarrow \exists \text{ TF } a_{n_l} \to \alpha \ (l \to \infty)$. Sei $\varepsilon_0 = \frac{1}{3} \min \{ |\alpha - \alpha_1|, |\alpha - \alpha_2|, \dots, |\alpha - \alpha_m| \} > 0$. Ferner existiert $L \in \mathbb{N} \min |a_{n_l} - \alpha| \le \varepsilon_0 \ \forall l \ge L$. $\Longrightarrow \text{Für } l \ge L, \ j \in \{1, \dots, m\} \text{ gilt } |a_{n_l} - \alpha_j| \ge |\alpha_j - \alpha| - |\alpha - a_{n_l}| \ge 3\varepsilon_0 - \varepsilon_0 = 2\varepsilon_0 \Longrightarrow a_{n_l} \notin B(\alpha_j, \varepsilon_0) \ \forall l \ge L, \ j \in \{1, \dots, m\}$. Andererseits liegen die a_{n_l} in mindestens einer TF die gegen ein α_j konvergiert $\Longrightarrow f$

Beispiel 2.23.

$$a_n = \begin{cases} (-1)^{\frac{n}{2}} \frac{1}{n} &, n \text{ gerade} \\ (-1)^{\frac{n+1}{2}} \frac{2n^2 + 3}{3n^2 - 1} &, n \text{ ungerade} \end{cases}$$

 \exists konv. TF:

$$b_k = a_{2k} = (-1)^k \cdot \frac{1}{2k} \to 0 \ (k \to \infty)$$

$$c_k = a_{4k+1} = \underbrace{(-1)^{2k+1}}_{=-1} \cdot \frac{2(4k+1)^2 + 3}{3(4k+1)^2 - 1} \to -\frac{2}{3} \ (k \to \infty)$$

$$d_k = a_{4k+3} = \underbrace{(-1)^{2k+2}}_{=-1} \cdot \frac{2(4k+3)^2 + 3}{3(4k+3)^2 - 1} \to \frac{2}{3} \ (k \to \infty)$$

 $\Longrightarrow \exists$ HP $-\frac{2}{3}$, 0, $\frac{2}{3}$. Nach Lemma 2.22 sind das alle HP der Folge. $\Longrightarrow \lim_{n\to\infty} a_n = \frac{2}{3}$, $\varprojlim_{n\to\infty} a_n = -\frac{2}{3}$.

Korollar 2.24. Sei (a_n) beschränkt und $a \in \mathbb{C}$. Dann gelten:

- a) $a_n \to a \ (n \to \infty) \iff (a_n)$ besitzt genau einen HP und dieser ist a
- b) Sei (a_n) reell. Dann konvergiert (a_n) genau dann, wenn $\underline{\lim}_{n\to\infty} a_n = \overline{\lim}_{n\to\infty} a_n$. In diesem Fall gilt $\lim_{n\to\infty} a_n = \underline{\lim}_{n\to\infty} a_n = \overline{\lim}_{n\to\infty} a_n$.

Beweis. a) " \Rightarrow " Kor. 2.20.

- "\epsilon" Sei a der einzige HP von (a_n) . Annahme: $a_n \not\to a$ $(n \to \infty)$. Das heißt $\exists \varepsilon_0 > 0 : \forall N \in \mathbb{N} : \exists n \geq N : |a_n a| > \varepsilon_0$. Wir erhalten induktiv eine TF $(a_{n_l})_l$ mit $|a_{n_l} a| > \varepsilon_0 \, \forall l \in \mathbb{N}$ (vgl. Beweis von Satz 2.19). Andererseits: Da $(a_{n_l})_l$ beschränkt ist, liefert Thm. 2.21 eine konvergente TF $(a_{n_{l_j}})_j$. Nach Satz 2.19 und der Voraussetzung gilt $a_{n_{l_j}} \to a \not$
- b) Sei nun (a_n) reell. Dann zeigt Thm. 2.21 $\exists !$ HP von $(a_n) \iff \underline{\lim}_{n \to \infty} a_n = \overline{\lim}_{n \to \infty} a_n \stackrel{a)}{\Longrightarrow}$ Beh.

Bemerkung.

$$a_n = \begin{cases} 1 & , n \text{ gerade,} \\ n & , n \text{ ungerade,} \end{cases}$$

hat genau einen HP (= 1), ist aber unbeschränkt, also divergent.

⇒ in 2.24 muss man Beschränktheit voraussetzen!

Definition 2.25. Eine Folge (a_n) heißt CAUCHY-Folge (CF), wenn es für jedes $\varepsilon > 0$ ein $N_{\varepsilon} \in \mathbb{N}$ gibt, sodass $|a_n - a_m| \leq \varepsilon$ für alle $n, m \geq N_{\varepsilon}$, d.h.

$$\forall \varepsilon > 0 \,\exists N_{\varepsilon} \in \mathbb{N} \,\forall n, m > N_{\varepsilon} : |a_n - a_m| < \varepsilon$$

Theorem 2.26. Eine Folge (a_n) konvergiert genau dann, wenn sie eine CAUCHY-Folge ist. (Man sagt, dass \mathbb{C} (und damit \mathbb{R}) vollständig sind.)

Beweis. " \Rightarrow " Sei $a_n \to a \ (n \to \infty)$. Für $\varepsilon > 0$ existiert also ein $N_{\varepsilon} \in \mathbb{N}$ mit $|a_k - a| \le \varepsilon$ für alle $k \ge N_{\varepsilon}$. Damit $|a_n - a_m| \le |a_n - a| + |a - a_m| \le 2\varepsilon$ für alle $n, m \ge N_{\varepsilon}$.

" \Leftarrow " Sei (a_n) eine CF. Nach Def. 2.25 mit $\varepsilon=1$ existiert ein $N_1\in\mathbb{N}$ mit $|a_n-a_{N_1}|\leq 1$ für alle $n\geq N_1$. $\Longrightarrow |a_n|\leq |a_n-a_{N_1}|+|a_{N_1}|\leq 1+|a_{N_1}|$ $(\forall n\geq N_1)$ $\Longrightarrow (a_n)$ ist beschränkt. Thm 2.21 \Longrightarrow existiert TF $a_{n_j}\to a$ $(j\to\infty)$. Sei $\varepsilon>0$ gegeben. Dann existiert ein $J_\varepsilon\in\mathbb{N}$ mit

$$\left| a_{n_j} - a \right| \le \varepsilon \ \forall j \ge J_{\varepsilon} \tag{*}$$

Sei ferner N_{ε} aus Def. 2.25. Wähle $n \geq N_{\varepsilon}$ Dann existiert ein $n_{j} \geq N_{\varepsilon}$ mit $j \geq J_{\varepsilon}$. Somit $|a_{n} - a| \leq |a_{n} - a_{n_{j}}| + |a_{n_{j}} - a| \leq \varepsilon + \varepsilon = 2\varepsilon$

Bemerkung. a) CAUCHY-Folgen haben also (in \mathbb{R} und \mathbb{C}) dieselben Eigenschaften wie konvergente Folgen (kann man auch direkt zeigen).

- b) In Bsp. 2.15 mit x=2 und $a_1=1$ ist $a_{n+1}=\frac{1}{2}\left(a_n+\frac{2}{a_n}\right)\in\mathbb{Q}$ (Beweis per Induktion). Ferner gilt $a_n\to\sqrt{2}$. Nach Bsp 1.16 gilt $\sqrt{2}\notin\mathbb{Q}\implies\mathbb{Q}$ ist nicht vollständig
- c) Bsp. $a_n = \sqrt{a_n}$. Folge ist unbeschränkt \implies divergent \implies keine CF. Andererseits: $0 \le \sqrt{n+1} \sqrt{n} = \frac{1}{\sqrt{n+1} + \sqrt{n}} \to 0 \ (n \to \infty)$. Also: Def 2.25 gilt für m = n+1, aber (a_n) ist keine CAUCHY-Folge.

Lemma 2.27. Sei (a_n) eine beschränkte und reelle Folge und $\varepsilon > 0$. Dann

$$\exists J_{\varepsilon} \in \mathbb{N} \ mit \ -\varepsilon + \varliminf_{n \to \infty} a_n \le a_j \le \varepsilon + \varlimsup_{n \to \infty} a_n \ \forall j \ge J_{\varepsilon}.$$

Beweis. Nach Satz 1.18 $\exists \overline{J_{\varepsilon}} \in \mathbb{N}$ mit

$$\varepsilon + \varlimsup_{n \to \infty} a_n \stackrel{2.3}{=} \varepsilon + \inf_{n \in \mathbb{N}} \sup_{j \ge n} a_j \stackrel{1.18}{\ge} \sup_{j \ge \overline{J_{\varepsilon}}} a_j \ge a_j \ \forall j \ge \overline{J_{\varepsilon}}.$$

Entprechend: $\exists \underline{J_{\varepsilon}} \in \mathbb{N} \text{ mit } a_j \geq -\varepsilon + \underline{\lim}_{n \to \infty} a_n \ \forall j \geq \underline{J_{\varepsilon}}. \implies \text{Beh. mit } J_{\varepsilon} = \max \{\overline{J_{\varepsilon}}, \underline{J_{\varepsilon}}\}.$

Satz 2.28. Seien (a_n) , (b_n) beschränkte reelle Folgen. Dann gelten:

$$\underline{\lim}_{n \to \infty} a_n = -\overline{\lim}_{n \to \infty} (-a_n)$$

b) Wenn $a_n \leq b_n$ für alle $n \in \mathbb{N}$, dann

$$\underline{\lim}_{n \to \infty} a_n \le \underline{\lim}_{n \to \infty} b_n, \ \overline{\lim}_{n \to \infty} a_n \le \overline{\lim}_{n \to \infty} b_n$$

c)

$$\frac{\lim_{n \to \infty} (a_n + b_n) \ge \underline{\lim}_{n \to \infty} a_n + \underline{\lim}_{n \to \infty} b_n}{\overline{\lim}_{n \to \infty} (a_n + b_n) \le \overline{\lim}_{n \to \infty} a_n + \overline{\lim}_{n \to \infty} b_n}$$

d) Seien $a_n, b_n \geq 0$ für alle $n \in \mathbb{N}$. Dann:

$$\overline{\lim}_{n \to \infty} (a_n \cdot b_n) \le \overline{\lim}_{n \to \infty} a_n \cdot \overline{\lim}_{n \to \infty} b_n$$

$$\underline{\lim}_{n \to \infty} (a_n \cdot b_n) \ge \underline{\lim}_{n \to \infty} a_n \cdot \underline{\lim}_{n \to \infty} b_n$$

e) Wenn in 3 oder 4 eine der beiden Folgen konvergiert, dann gilt "=" in den Aussagen.

Bemerkung. In 3 oder 4 kann "<" bzw. ">" gelten. Bsp.: $a_n = (-1)^n$, $b_n = (-1)^{n+1}$ $\Longrightarrow a_n + b_n = 0 \implies \overline{\lim}_{n \to \infty} a_n + b_n = 0$, $\overline{\lim}_{n \to \infty} a_n = \overline{\lim}_{n \to \infty} b_n = 1$.

Beweis. a)

$$\underline{\lim}_{n \to \infty} a_n \stackrel{(2.3)}{=} \sup_{n \in \mathbb{N}} \inf_{j \ge n} a_j \stackrel{1.23}{=} \sup_{n \in \mathbb{N}} \left(-\sup_{j \ge n} \left(-a_j \right) \right) \stackrel{1.23}{=} -\inf_{n \in \mathbb{N}} \sup_{j \ge n} \left(-a_j \right) \stackrel{(2.3)}{=} -\overline{\lim}_{n \to \infty} \left(-a_n \right)$$

b) Sei $a_j \leq b_j \, \forall j$. Nach Def. ?? des Supremums $\sup_{j \geq n} a_j \leq \sup_{j \geq n} n_j \, \forall n \in \mathbb{N}$. Def. des Infimums liefert

$$\underbrace{\inf_{n \in \mathbb{N}} \sup_{j \ge n} a_j}_{= \overline{\lim_{n \to \infty}} a_n} \le \underbrace{\inf_{n \in \mathbb{N}} \sup_{j \ge n} b_j}_{= \overline{\lim_{n \to \infty}} b_n}$$

c) Sei $\varepsilon>0.$ Nach Lemma 1.18 $\exists N_{\varepsilon}\in\mathbb{N},$ sodass

$$a_{j} \leq \varepsilon + \overline{\lim}_{n \to \infty} a_{n}, b_{j} \leq \varepsilon + \overline{\lim}_{n \to \infty} b_{n} \ \forall j \geq N_{\varepsilon}.$$

$$\implies \overline{\lim}_{n \to \infty} (a_{n} + b_{n}) \stackrel{\text{Def.}}{\leq} \sup_{j \geq N_{\varepsilon}} (a_{j} + b_{j}) \geq 2\varepsilon + \overline{\lim}_{n \to \infty} a_{n} + \overline{\lim}_{n \to \infty} b_{n}.$$

Da $\varepsilon > 0$ beliebig ist, folgt Beh. c1). Andere Behauptungen zeigt man ähnlich.