Exercice 1. Soit $f: x \mapsto \frac{x}{x^2 + x + 1}$.

1. Montrer que f réalise une bijection de [-1,1] sur un intervalle J à expliciter.

- 2. On note g sa réciproque. Donner le domaine de définition de g ainsi que ses variations.
- 3. La fonction g est-elle dérivable en 0? en $\frac{1}{3}$? en $-\frac{2}{3}$? en $\frac{3}{13}$? en -1? Si oui, calculer les dérivées correspondantes.
- 4. Déterminer l'intervalle de dérivabilité de g.
- 5. Tracer dans un même repère C_f et C_g (on admettra que f admet un et un seul point d'inflexion qui vaut -0.35 ± 10^{-2} et on supposera l'équation de la tangente en ce point est y=1,5x, qu'avant ce point, la fonction est convexe, et qu'ensuite, elle est concave).

Exercice 2. Soit $f(x) = x^2 - 6x + 8$.

- 1. Montrer que f réalise une bijection de l'intervalle $[3, +\infty]$ sur un intervalle G à expliciter. On note g sa réciproque.
- 2. Quel est le domaine de définition de g? En quels points g est-elle dérivable ? Calculer g'(0), g'(3) et g'(8).
- 3. Montrer que f réalise une bijection de $[-\infty,3]$ sur un intervalle H à expliciter. On note h sa réciproque.
- 4. Quel est le domaine de définition de h? En quels points h est-elle dérivable ? Calculer h'(0), h'(3) et h'(8).
- 5. Représenter dans un même repère orthonormé C_f, C_g et C_h .

Exercice 3. Soit $f(x) = 6x^3 - 15x^4 + 10x^3 + 1$.

- 1. Montrer que f réalise une bijection de \mathbb{R} sur \mathbb{R} .
- 2. On note g sa réciproque. Quel est le sens de variations de g?

- 3. La fonction g est-elle dérivable sur J tout entier?
- 4. Représenter dans un même repère orthonormé C_f et C_q .

Exercice 4. On considère la fonction définie sur \mathbb{R} par $f(x) = \frac{x^3}{1+x^2}$.

- 1. Montrer que f possède une réciproque f^{-1} et donner $D_{f^{-1}}$.
- 2. Étudier la dérivabilité de f^{-1} sur son domaine de définition.
- 3. Quelle est l'équation de la tangente à C_f au point d'abscisse $\frac{1}{2}$? Quelle est l'équation de la tangente à $C_{f^{-1}}$ au point d'abscisse $\frac{1}{10}$?
- 4. Tracer C_f et $C_{f^{-1}}$.

Exercice 5. Soit f la fonction définie sur \mathbb{R} par : $f(x) = \frac{e^x - 1}{e^x + 1}$.

- 1. Justifier que f est dérivable sur \mathbb{R} , expliciter f'.
- 2. Dresser le tableau de variations de f (limites incluses) et tracer dans un repère orthonormé C_f .
- 3. Montrer que f réalise une bijection de \mathbb{R} sur un intervalle à expliciter.
- 4. En quel points sa réciproque est-elle dérivable ?
- 5. Calculer $(f^{-1})'(0), (f^{-1})'\left(\frac{1}{2}\right)$ et $(f^{-1})'\left(-\frac{1}{4}\right)$.
- 6. Déterminer $(f^{-1})'(x)$ lorsque f^{-1} est dérivable en x.
- 7. Soit $x \in f(\mathbb{R})$. Déterminer son antécédent par f. En déduire f^{-1} .
- 8. Retrouver directement les résultats de la question 4.
- 9. Tracer dans le même repère que la question 4 $C_{f^{-1}}$.

Exercice 6. Soit f la fonction définie $\forall x \in [0, +\infty], f(x) = x \ln x$.

- 1. Étudier les variations de f.
- 2. En déduire que f réalise une bijection de $\left[\frac{1}{e}, +\infty\right]$ sur un intervalle J que l'on explicitera.
- 3. En quel point f^{-1} est-elle dérivable ?
- 4. Calculer $(f^{-1})'(0)$. Calculer f(e) et $f(e^2)$. En déduire $(f^{-1})'(e)$ et $(f^{-1})'(2e^2)$.
- 5. Tracer dans un même repère orthonormé C_f et $C_{f^{-1}}$.

