PSQF 4143: Section 10

Brandon LeBeau

Dichotomous Populations

 $X_i = 1$, if Democrat

 $X_i = 0$, if **not** Democrat

X_i is called a **dichotomous** score, because it can have only two different values

 ϕ = the proportion of Democrats in the population

Figure 1:

Dichotomous Populations 2

$$\phi = \frac{\text{of Democrats}}{N}$$

$$\phi = \frac{\sum X_i}{N}$$

- Thus, ϕ is the mean of the population of dichotomous scores
- More simply, $\phi = \mu$

Dichotomous Populations 3

• Recall: $\sigma^2 = \frac{\sum X_i^2}{N} - \mu^2$ • Now: because X_i is dichotomous, $X_i^2 = X_i$

• Therefore:

$$\sigma^{2} = \frac{\sum X_{i}}{N} - \mu^{2}$$
$$\sigma^{2} = \phi - \phi^{2}$$
$$\sigma^{2} = \phi(1 - \phi)$$

The sampling distribution of the proportion

Figure 2:

The sampling distribution of the proportion 2

- Definition:
 - Given an infinite dichotomous population, the elements of which are assigned a score of 1 if they belong to Class A and a score of 0 if they do not belong to Class A, the sampling distribution of the proportion p in random samples of size n taken from this population, approaches the normal distribution with:

2

Sampling disribution of the proportion 3

• Mean: $\mu_p = \phi$

• Variance: $\sigma_p^2 = \frac{\phi(1-\phi)}{n}$ • SD: $\sigma_p = \sqrt{\frac{\phi(1-\phi)}{n}}$

as n increases: - Variance: $\sigma_{\bar{X}}^2=\frac{\sigma_X^2}{n}$ - SD: $\sigma_{\bar{X}}=\frac{\sigma_X}{\sqrt{n}}$

• Note:

- This approximation (to the normal distribution) improves as n gets larger, and the closer ϕ is to 0.5.
- The farther away ϕ is away from 0.5, and the smaller n, the worse the approximation to the normal distribution.

Normal Approximation Example (n = 5; p = 0.5)

Figure 3:

• These probabilities can be looked up from the binomial table in the course packet.

Sampling distribution of the proportion 4

- The sampling distribution of the proportion follows the binomial distribution
- It is known that the normal distribution provides a good approximation to the binomial distribution when n is large
- Here, we have chosen the normal distribution as an approximation to the sampling distribution of proportion, rather than using its true binomial sampling distribution

Sampling distribution of the proportion 5

- There are three reasons for doing this:
 - 1. p is a special case of $\bar{X}|X_i=0$ or 1
 - As such, a sampling theory for p is easily derived from a sampling theory for the mean
 - 2. The normal distribution is a commonly used probability model.
 - 3. Based on the assumption of large samples.

Example 1

- A few days before the 2008 presidential election, an ABC News/Washington Post tracking poll surveyed a national random sample of 2,172 likely voters including landline and cell-phone-only respondents
- 1,173 of those surveyed said they would vote for Barack Obama -Conduct a hypothesis test at the a = .05 level of significance to determine whether a majority of the population of likely voters would vote for Barack Obama

Example 2

- A news reporter wants to investigate the advertising claim that a particular speed reading course will "help to improve reading comprehension"
- She decides to conduct the following experiment:
 - 1. Select 200 freshman at random from all UI freshman. What is the EAP? What is the TP?
 - 2. Form 100 matched pairs (using ACT Reading scores).
 - 3. Randomly assign one member of each pair to the speed reading course (assume all students will participate).
 - 4. After the course is completed, administer a reading achievement test to all 200 students.
 - 5. For each pair of students, subtract the reading score of the control student from that of the experimental student.
 - 6. For these 100 difference scores, calculate the proportion (p) that are positive (greater than 0). This proportion is the outcome (statistic) of interest.

Example 2 continued

- After completing the experiment, the news reporter found that 65% (p = 0.65) of the difference scores were positive
- Conduct a hypothesis test at the $\alpha = .10$ level of significance to determine whether the speed reading course was effective in increasing reading comprehension in the population of UI freshman
 - What is the interpretation of $\alpha = .10$?

Calculating a confidence interval

• Suppose we wanted to calculate a 95% confidence interval for ϕ of the 2008 presidential election data.

$$-n = 2172, p = 0.54$$

Calculating a confidence interval - specifics

$$\hat{\sigma}_p = \sqrt{\frac{p(1-p)}{n-1}}$$

$$CI = p \pm z_{crit} * \hat{\sigma}_p$$

where z_{crit} is based on the level of confidence or $1 - \alpha$.

Interpretting a confidence interval

- How is the confidence interval: $c(0.52 \le \phi \le 0.56) = .95$ interpretted?
 - Does ϕ fall in the interval?
 - Is there a 95% chance that ϕ falls in this interval?
 - Do we know if ϕ falls in the interval?
 - If we construct 100 such intervals, how many would contain ϕ ?
 - If we were to construct an infinite number of intervals, how many would contain ϕ ?

Using Confidence interval to do hypothesis testing

- You can use a 95% confidence interval to conduct a two-tailed test of any null hypothesis at the specificied α level.
- If the hypothesized value falls within the confidence interval, fail to reject H_0 (retain H_0).
- If the hypothesized value falls outside the confidence interval, reject H_0 .
- Example:
 - $-H_0: \phi = 0.5$
 - $H_1: \phi \neq 0.5$
 - $-c(0.52 \le \phi \le 0.56) = .95, \alpha = 0.05$
 - -0.5 lies outside of 95% confidence interval, therefore, reject H_0

Summary of one-sample hypothesis tests

H_0	Standard Error	Test Statistic	Confidence Interval
$\mu = constant; \sigma_x \text{ known}$	$\sigma_{ar{X}} = \frac{\sigma_X}{\sqrt{n}}$		$\bar{X} \pm \sigma_{\bar{X}} * z_{crit}$
$\mu = constant; \sigma_x$ unknown	$\hat{\sigma}_{\bar{X}} = \frac{s_X}{\sqrt{n-1}}; df = n-1$		$\bar{X} \pm \hat{\sigma}_{\bar{X}} * t_{crit(n-1)}$
$\phi = constant$	$\sigma_p = \sqrt{rac{\phi_0(1-\phi_0)}{n}}$	$z = \frac{p - \phi_0}{\sigma_p}$	$p \pm \hat{\sigma}_p * z_{crit}; \hat{\sigma}_p = \sqrt{\frac{p(1-p)}{n-1}}$