FUNDAMENTOS LÓGICOS DE LA PROGRAMACIÓN

Convocatoria Junio 2012

Alumno:	DNI:

(05/07/2012)

I. Informática

I.T.I. Gestión

I.T.I. Sistemas

Ejercicio 1. ¿Cuál de las siguientes interpretaciones

1.
$$I(a) = 1$$
, $I(b) = 1$, $I(c) = 0$, $I(d) = 0$,

2.
$$I(a) = 0$$
, $I(b) = 1$, $I(c) = 0$, $I(d) = 1$,

3.
$$I(a) = 1$$
, $I(b) = 0$, $I(c) = 0$, $I(d) = 0$,

4.
$$I(a) = 0$$
, $I(b) = 1$, $I(c) = 1$, $I(d) = 0$,

nos muestra que la implicación

$$\{(a \lor d) \to (\neg b \lor c); \neg a \leftrightarrow (b \lor (c \land \neg d)); \neg (a \to d) \land (b \leftrightarrow c)\} \models ((b \to \neg a) \to \neg c) \land d\}$$

es falsa?

Ejercicio 2. Sea γ la fórmula $((\alpha \to \beta) \land \neg \beta) \to \neg \alpha$. Entonces:

- a) γ es tautología.
- b) γ es satisfacible y refutable.
- c) γ es una contradicción.
- d) $\gamma \wedge \alpha$ es tautología.

Ejercicio 3. Sea $\alpha = \neg \alpha \lor b \to (\alpha \leftrightarrow c)$ y $\beta = \neg (b \land (\alpha \to \neg c))$. Entonces, para cualquier interpretación I se tiene que $I(\alpha \land \beta)$ vale:

a)
$$1 + I(b) \cdot I(c) + I(a) \cdot I(b)$$
.

b)
$$I(a) + I(b) + I(a) \cdot I(b) \cdot I(c)$$
.

c)
$$1 + I(a) + I(c) + I(a) \cdot I(b) \cdot I(c)$$
.

d)
$$1 + I(b) + I(c) + I(a) \cdot I(c) + I(b) \cdot I(c)$$
.

Ejercicio 4. Sean $\alpha = \forall x (P(x) \rightarrow \exists y (Q(y, \alpha) \land Q(f(y), x)))$, y sean las estructuras:

■ Estructura 1:

Dominio: N.

Constantes: a = 1.

Functiones: f(x) = 2x.

Predicados: $P(x) \equiv x$ es primo, $Q(x, y) \equiv x$ es múltiplo de y.

■ Estructura 2:

Dominio: \mathbb{Z}_5 .

Constantes: a = 2.

Functiones: $f(x) = x^2 + x$.

Predicados: $P(x) \equiv x^2 = 1$, $Q(x, y) \equiv x^2 + y = 3$.

Entonces:

- 1. α se interpreta como cierta en las dos estructuras.
- 2. α se interpreta como cierta en la primera estructura y como falsa en la segunda.
- 3. α se interpreta como falsa en la primera estructura y como cierta en la primera.
- 4. α se interpreta como falsa en las dos estructuras.

Ejercicio 5. Sean $\alpha = \forall x (P(x, \alpha) \to \exists y Q(x, g(y))) \ y \ \beta = \forall x (P(x, \alpha) \to Q(x, g(f(x))))$. Entonces:

- 1. $\alpha \models \beta$.
- 2. $\beta \models \alpha$.
- 3. $\beta \rightarrow \alpha$ es satisfacible y refutable.
- 4. α y β son lógicamente equivalentes.

Ejercicio 6. La fórmula $\alpha = \forall x P(x) \rightarrow \neg \forall y \exists x \neg Q(x, y)$ es equivalente a:

- 1. $\exists x \forall y (P(x) \rightarrow Q(y, x)).$
- 2. $\exists x \forall z \exists y (P(x) \rightarrow Q(z, y)).$
- 3. $\exists x \forall y (P(x) \rightarrow Q(x,y)).$
- 4. $\forall y (P(a) \rightarrow Q(y, b)).$

Ejercicio 7. Dado el conjunto de cláusulas

$$\{P(x, f(x)) \lor \neg Q(f(\alpha)); \neg P(x, b) \lor Q(f(\alpha)) \lor \neg R(f(x), x); \neg Q(f(x))\}$$

- 1. $f(f(\alpha))$ pertenece al universo de Herbrand, y $\neg Q(f(\alpha))$ pertenece a la base de Herbrand.
- 2. $P(b, f(b)) \vee \neg Q(f(a))$ pertenece al sistema de Herbrand y P(f(b), b) a la base de Herbrand.
- 3. $\neg Q(f(\alpha))$ pertenece tanto a la base como al sistema de Herbrand.
- 4. $\neg P(a,b) \lor Q(f(a)) \lor \neg R(f(b),b)$ pertenece al sistema de Herbrand.

Ejercicio 8. ¿Cuál de los siguientes conjuntos de cláusulas es satisfacible?

(a)
$$\{P(x,y,z); \neg P(x,f(\alpha),g(f(x))) \lor \neg P(f(x),g(b),f(x))\}.$$

- (b) $\{P(x, f(x), y); \neg P(f(x), y, y) \lor \neg P(z, y, g(z))\}.$
- (c) $\{P(x, f(x), g(x)); \neg P(x, f(x), y) \lor \neg P(z, y, g(z))\}.$
- (d) $\{P(x, a, f(x)); \neg P(b, x, f(b)) \lor \neg P(x, x, f(a))\}.$

Ejercicio 9. Dado el conjunto de cláusulas

$$\{P(x,f(x))\lor Q(x)\lor \neg R(x);\ S(f(x))\lor Q(x)\lor \neg R(x);\ T(\alpha);\ R(\alpha);\ T(x)\lor \neg P(\alpha,x);\ \neg Q(x)\lor \neg T(x);\ \neg T(x)\lor \neg S(x)\}$$

- 1. Es insatisfacible, pero no hay una deducción lineal-input de la cláusula vacía por no ser un conjunto de Horn.
- 2. No es un conjunto de Horn, pero puede transformarse en un conjunto de Horn, y es insatisfacible.
- 3. No es un conjunto de Horn, pero puede transformarse en un conjunto de Horn, y es satisfacible.
- 4. No es un conjunto de Horn ni puede transformarse en un conjunto de Horn, luego es satisfacible.

(2) 5 de Julio de 2012