Algebra and Number Theory Individual

This test has 5 problems and is worth 100 points. Carefully justify your answers.

Problem 1 (20 points).

- (a) (6 points) Show that if $2^k 1$ is a prime for some integer $k \ge 1$, then k is a prime.
- (b) (6 points) Show that if $2^k + 1$ is a prime for some integer $k \ge 1$, then k is a power of 2.
- (c) (8 points) Prove the following theorem of Goldbach: for integers $i, j \ge 0$ with $i \ne j$, the integers $2^{2^i} + 1$ and $2^{2^j} + 1$ are coprime.

Problem 2 (20 points). Let $K = \mathbb{Q}(\sqrt[3]{5})$ and let L be the Galois closure of K.

- (a) (6 points) Prove that L has a unique subfield M satisfying $[M : \mathbb{Q}] = 2$. Prove that every prime number $p \equiv 1 \pmod{3}$ splits in M.
- (b) (6 points) Determine all prime numbers which are ramified in L.
- (c) (8 points) Let $p \geq 7$ be a prime number. Let f_p be the inertia degree of a prime ideal of the ring of integers \mathcal{O}_L of L above p. Recall that 5 is called a *cubic residue* mod p if $x^3 \equiv 5 \pmod{p}$ has a solution in \mathbb{F}_p . Prove the following decomposition law in L.
 - (i) If $p \equiv 1 \pmod{3}$ and 5 is a cubic residue mod p, then p splits completely in L.
 - (ii) If $p \equiv 1 \pmod{3}$ and 5 is not a cubic residue mod p, then $f_p = 3$.
 - (iii) If $p \equiv 2 \pmod{3}$, then 5 is a cubic residue and $f_p = 2$.

Problem 3 (20 points). Prove that every group of order 99 is abelian.

Problem 4 (20 points). Let K be a field and let V be a finite-dimensional K-vector space.

- (a) (6 points) Assume that K is infinite. Show that V is not the union of finitely many proper linear K-subspaces.
- (b) (6 points) Assume that K is finite and V is non-zero. Let S be the set of affine hyperplanes of V. Let $g: V \to \mathbb{R}$ be a function. The Radon transform $Rg: S \to \mathbb{R}$ is defined by $(Rg)(\xi) = \sum_{x \in \xi} g(x)$ for $\xi \in S$. Show that Rg = 0 implies g = 0.
- (c) (8 points) Let $v_1, \ldots, v_n, w_1, \ldots, w_n \in V$. Assume that for every K-linear map $f: V \to K$, $(f(v_1), \ldots, f(v_n))$ and $(f(w_1), \ldots, f(w_n))$ coincide up to permutation of the indices. Deduce that (v_1, \ldots, v_n) and (w_1, \ldots, w_n) coincide up to permutation of the indices. Here we make no assumptions on K.

Problem 5 (20 points). Let p be a prime number and let $v_p(\cdot)$ denote the p-adic valuation on \mathbb{Q}_p . Let $A = (a_{ij})_{1 \leq i,j \leq n} \in \mathrm{M}_n(\mathbb{Q}_p)$ be an $n \times n$ matrix with entries in \mathbb{Q}_p . Assume that we know the following:

- (1) $A^2 = p^{n+1} \cdot I_{n \times n}$;
- (2) $v_n(a_{ij}) \ge i$ for all i, j.

Prove that $v_p(a_{ij}) \ge \max\{i, n+1-j\}$ and $a_{i,n+1-i} \in p^i \mathbb{Z}_p^{\times}$, i.e.

$$A \in \begin{pmatrix} p^{n}\mathbb{Z}_{p} & p^{n-1}\mathbb{Z}_{p} & p^{n-2}\mathbb{Z}_{p} & \cdots & p^{3}\mathbb{Z}_{p} & p^{2}\mathbb{Z}_{p} & p\mathbb{Z}_{p}^{\times} \\ p^{n}\mathbb{Z}_{p} & p^{n-1}\mathbb{Z}_{p} & p^{n-2}\mathbb{Z}_{p} & \cdots & p^{3}\mathbb{Z}_{p} & p^{2}\mathbb{Z}_{p}^{\times} & p^{2}\mathbb{Z}_{p} \\ p^{n}\mathbb{Z}_{p} & p^{n-1}\mathbb{Z}_{p} & p^{n-2}\mathbb{Z}_{p} & \cdots & p^{3}\mathbb{Z}_{p}^{\times} & p^{3}\mathbb{Z}_{p} & p^{3}\mathbb{Z}_{p} \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots & \vdots \\ p^{n}\mathbb{Z}_{p} & p^{n-1}\mathbb{Z}_{p} & p^{n-2}\mathbb{Z}_{p}^{\times} & \cdots & p^{n-2}\mathbb{Z}_{p} & p^{n-2}\mathbb{Z}_{p} & p^{n-2}\mathbb{Z}_{p} \\ p^{n}\mathbb{Z}_{p} & p^{n-1}\mathbb{Z}_{p}^{\times} & p^{n-1}\mathbb{Z}_{p} & \cdots & p^{n-1}\mathbb{Z}_{p} & p^{n-1}\mathbb{Z}_{p} & p^{n-1}\mathbb{Z}_{p} \\ p^{n}\mathbb{Z}_{p}^{\times} & p^{n}\mathbb{Z}_{p} & p^{n}\mathbb{Z}_{p} & \cdots & p^{n}\mathbb{Z}_{p} & p^{n}\mathbb{Z}_{p} & p^{n}\mathbb{Z}_{p} \end{pmatrix}.$$

Hint. Consider the antidiagonal matrix

$$J = \begin{pmatrix} 0 & 0 & \cdots & 0 & p \\ 0 & 0 & \cdots & p^2 & 0 \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & p^{n-1} & \cdots & 0 & 0 \\ p^n & 0 & \cdots & 0 & 0 \end{pmatrix}.$$