Multivariate Analysis Mosaic Plots

Objective

Apply methods of visualizing discrete data values along two axes

Introduction to Mosaic Plots

Graphical display that allows you to examine the relationship among two or more categorical variables

To create:

- Start as a square with length one
- Divide first into horizontal bars whose widths are proportional to the probabilities associated with the first categorical variable
- Next each bar is split vertically by the conditional probability of the second categorical variable

Example: Mortality rates

Adults	Survivors		Non-Survivors	
	Male	Female	Male	Female
1st Class	57	140	118	4
2nd Class	14	80	154	13
3rd Class	75	76	387	89
Crew	192	20	670	3
Children	Survivors		Non-Survivors	
	Male	Female	Male	Female
1st Class	5	1	0	0
2nd Class	11	13	0	0
3rd Class	13	14	35	17
Crew	0	0	0	0

Examples

Mosaic Plots

It is tempting to dismiss mosaic plots because they represent counts as rectangular areas and so provide a distorted perceptual encoding

In fact, the important encoding is the length

At each stage, the comparison of interest is of the length of the sides