Κεφάλαιο 28

Πολυπρακτορικά Συστήματα

"There is no such thing as a single agent system".
[Woodridge 2002]

Τεχνητή Νοημοσύνη - Β' Έκδοση Ι. Βλαχάβας, Π. Κεφαλάς, Ν. Βασιλειάδης, Φ. Κόκκορας, Η. Σακελλαρίου

Πολυπρακτορικά Συστήματα

Σύνολο από πράκτορες που δρουν μαζί για να επιλύσουν προβλήματα που είναι πέρα των δυνατοτήτων και της γνώσης ενός μόνο πράκτορα.

- Αποτελούν βασικό τομέα της Κατανεμημένης ΤΝ
- Ένα τέτοιο σύστημα στοχεύει στην:
 - Επίλυση προβλημάτων που είναι πολύ πολύπλοκα για να επιλυθούν αποδοτικά από ένα μόνο πράκτορα
 - Επίλυση προβλημάτων τα οποία είναι από τη φύση τους κατανεμημένα
 - Διασύνδεση και λειτουργία ήδη υπαρχόντων συστημάτων (legacy systems).
- * Κύριο χαρακτηριστικό των συνεργαζόμενων πρακτόρων: Συντονισμός (Coordination)

"Ο συντονισμός είναι η ιδιότητα ενός συστήματος πρακτόρων να φέρουν εις πέρας ενέργειες μέσα σε ένα κοινό περιβάλλον"

- **Φ** Δύο τρόποι συντονισμού:
 - Διαπραγμάτευση-Negotiation
 - **Συνεργασία-Cooperation**

Άλλα Χαρακτηριστικά

- Κανένας πράκτορας δεν έχει πλήρη πληροφορία.
- Δεν υπάρχει κεντρικός έλεγχος στο σύστημα.
- ❖ Τα δεδομένα είναι κατανεμημένα.
- ❖ Οι υπολογισμοί γίνονται με ασύγχρονο τρόπο.

Κρίσιμα σημεία στη σχεδίαση και υλοποίηση

- Επικοινωνία πρακτόρων
 - Ποιες γλώσσες και πρωτόκολλα θα χρησιμοποιηθούν.
 - □ Πότε αυτοί επικοινωνούν και τι πληροφορία ανταλλάσσουν.
 - Με ποιους άλλους πράκτορες επικοινωνούν και ποιο είναι το επιπλέον κόστος.
- ❖ Αλληλεπίδραση πρακτόρων
 - Τυποποίηση, περιγραφή, διαμοιρασμός του προβλήματος και σύνθεση λύσεων, σε μία ομάδα νοημόνων πρακτόρων.
 - Τρόπος συμβιβασμού διαφορετικών απόψεων από πράκτορες, αντιμετώπιση ενδεχόμενων συγκρουόμενων προθέσεων τους και τρόπος διαχείρισης περιορισμένων πόρων.

Επικοινωνία

- ❖ Το σημαντικότερο και πιο κρίσιμο σημείο στην ανάπτυξη συστημάτων.
- **Α**παιτεί την ύπαρξη τριών διαφορετικών επιπέδων.
 - Το κατώτερο επίπεδο (τρόπος διασύνδεσης).
 - Το μεσαίο επίπεδο (σύνταξη και τη μορφή των μηνυμάτων)
 - Το ανώτερο επίπεδο (σημασιολογία)

Μοντέλα Διασύνδεσης

- ❖ Συστήματα μαυροπίνακα (blackboard systems)
- * Συστήματα ανταλλαγής μηνυμάτων (message passing systems).

Συστήματα Μαυροπίνακα (Blackboard)

- Κοινός χώρος εργασίας για όλους τους πράκτορες του συστήματος
 - Προσπελάσιμος από όλους τους πράκτορες που συμμετέχουν στο σύστημα.
 - Ανταλλαγή αποτελεσμάτων ή διαμοιρασμός εργασιών.

Συστήματα Ανταλλαγής Μηνυμάτων (1/2)

- Ανταλλαγή πληροφορίας και συνεργασία μέσω μηνυμάτων
 - Αποστολή μηνυμάτων βάσει συγκεκριμένων γλωσσών υψηλού επιπέδου.
- Επιτρέπουν την υλοποίηση πολύπλοκων μοντέλων συνεργασίας μεταξύ των πρακτόρων
 - Προσφέρουν μεγαλύτερη ευελιξία στην ανταλλαγή πληροφοριών από ότι τα συστήματα μαυροπίνακα.

Συστήματα Ανταλλαγής Μηνυμάτων (2/2)

Τύπος Επικοινωνίας (Communication Type)

- ***** Σύγχρονος
- Ασύγχρονος

Βαθμός Επικοινωνίας (Cardinality)

- Ο αριθμός των αποστολέων και αποδεκτών σε μια ανταλλαγή πληροφορίας.
 - \Box 1 $\pi \rho o \varsigma$ 1
 - 1 προς Ν
 - Ν προς Ν

Πρωτόκολλα Επικοινωνίας

Communication Protocols

- Όποιο και αν είναι το μοντέλο διασύνδεσης που υιοθετεί ένα πολυπρακτορικό σύστημα, απαραίτητη προϋπόθεση είναι η ύπαρξη δύο πρωτοκόλλων:
- * Πρωτόκολλο επικοινωνίας (communication protocol)
- ❖ Πρωτόκολλο αλληλεπίδρασης (interaction protocol)
- ***** Καθορίζουν:
 - τύπο και μορφή των μηνυμάτων
 - σημασιολογία των μηνυμάτων
 - 🗖 τρόπο διασύνδεσης των μηνυμάτων
- ❖ KQML (Knowledge and Query Manipulation Language)
 - □ Γλώσσα επικοινωνίας πρακτόρων (Agent Communication Languages).
 - Βασίζεται στη θεωρία πράξεων λόγου (speech acts -Austin 1962)

Θεωρία Πράξεων Λόγου (Speech Acts)

- ❖ Τα μηνύματα που ανταλλάσσονται:
 - Αποτελούν ουσιαστικά πράξεις/ενέργειες
 - Μπορούν να εξεταστούν από τρεις σκοπιές:
 - τη σύνταξη του μηνύματος (locution),
 - τον τύπο του μηνύματος, δηλαδή αν είναι ενημέρωση, προειδοποίηση ή αίτημα (illocution)
 - το αποτέλεσμα του μηνύματος στον παραλήπτη (perlocution).
- ❖ Οι τύποι των μηνυμάτων κατηγοριοποιούνται χρησιμοποιώντας δηλώσεις.

Κατηγορία	Επεξήγηση	Παραδείγματα
Assertives	Δηλώσεις κάποιου γεγονότος, στις οποίες ο ομιλητής δεσμεύεται στην αλήθεια τους.	πληροφορώ, υποθέτω, επιμένω (informing, hypothesizing, insisting)
Directives	Πράξεις τις οποίες απευθύνει ο ομιλητής στον ακροατή με σκοπό ο τελευταίος να κάνει μια ενέργεια.	παρακαλώ, προστάζω (begging, ordering)
Commisives	Δεσμεύσεις του ομιλητή για κάποια μελλο- ντική ενέργεια	υπόσχομαι, αναλαμβάνω (promising, undertaking)
Declaratives	Δηλώσεις γεγονότων που κάνουν αληθές το γεγονός	κηρύσσω πόλεμο, παντρεύομαι (declaring war, marrying)
Expressives	Εκδηλώσεις συναισθημάτων του ομιλητή	ευχαριστώ, καλωσορίζω (thanking, wellcoming)

Ρόλος των Δηλώσεων στην Σημασιολογία του Μηνύματος

- ❖ Η κατηγοριοποίηση βοηθά στο να είναι ξεκάθαρη η πρόθεση (τύπος) του μηνύματος.
- ❖ Για παράδειγμα, έστω ένα μήνυμα: "work (complete)".
- ❖ Οι πιθανές ερμηνείες του μηνύματος βάσει του τύπου είναι:

Δήλωση	Περιεχόμενο	Ερμηνεία
requesting	work(complete)	Αίτηση για την ολοκλήρωση της εργασίας
informing	work(complete)	Πληροφόρηση ότι η εργασία έχει ολοκληρωθεί
promising	work(complete)	Υπόσχεση για την ολοκλήρωση της εργασίας.

- **Φ** Η ύπαρξη του τύπου
 - □ Περιορίζει σημαντικά το εύρος των ερμηνειών.
 - Καθορίζει επίσης σε σημαντικό βαθμό τον τρόπο με τον οποίο θα πρέπει να αντιδράσει ο πράκτορας.
- Η πλήρης κατανόηση του μηνύματος απαιτεί και ορισμό της σημασιολογίας του περιεχομένου του.
- * Τόσο η ΚQML όσο και η FIPA ACL ορίζουν στην σύνταξη τους τον τύπο του μηνύματος.

Το Πρωτόκολλο KQML

- Τρία διαφορετικά επίπεδα.
 - □ Το επίπεδο περιεχομένου (content layer)
 - □ Το επίπεδο μηνύματος (message layer)
 - □ Το επίπεδο επικοινωνίας (communication layer).

Τα μηνύματα στο ΚΩΜL έχουν την ακόλουθη μορφή:

Κατηγορίες Δηλώσεων (performative) στην ΚΩΜL

Χαρακτηρίζουν τον τύπο του μεταδιδόμενου μηνύματος

Κατηγορία Δηλώσεων	Διαθέσιμες Δηλώσεις
Βασική Ερώτηση (Basic Query)	evaluate, ask-if, ask-about, ask-one, ask-all
Ερώτηση πολλαπλών απαντήσεων (Multi-response query)	stream-about, stream-all, eos
Απάντηση (Response):	reply, sorry
Γενική Πληροφόρηση (Generic Informational)	tell, achieve, cancel, untell, unachieved
Γεννήτρια (Generator):	standby, ready, next, rest, discard, generator
Ορισμός Ικανοτήτων (Capability Definition)	advertise, subscribe, monitor, import, export
Δικτύωση (Networking)	register, unregister, forward, broadcast, route

Τα πεδία language και ontology

- ❖ Το πεδίο language δηλώνει τη γλώσσα στην οποία έχει κωδικοποιηθεί το μήνυμα.
 - □ Για παράδειγμα PROLOG, LISP, SQL,
 - Ανάπτυξη μιας γλώσσας η οποία θα επιτρέψει την ανταλλαγή γνώσης μεταξύ των πρακτόρων.
 - Γλώσσα KIF (Knowledge Interchange Format)
- ❖ Το πεδίο **ontology** καθορίζει το λεξιλόγιο που χρησιμοποιείται
 - 🗖 Βοηθά στο να αποδίδονται στις λέξεις η ίδια σημασία.
 - Για παράδειγμα, η λέξη ποντίκι.

Παράδειγμα Μηνύματος KQML

- Μήνυμα-ερώτηση για την τιμή της μετοχής της εταιρίας IBM στο χρηματιστήριο.
- ❖ Ο πράκτορας που ρωτά ονομάζεται stock-client
- ❖ Ο πράκτορας που απαντά stock-server
- ❖ Η γλώσσα στην οποία είναι κωδικοποιημένο το μήνυμα είναι η Prolog,
- Το λεξιλόγιο (ontology) που θα χρησιμοποιηθεί αφορά το χρηματιστήριο της Ν.
 Υόρκης (NYSE-TICKS)

```
(ask
  :sender stock-client
  :receiver stock-server
  :language standard Prolog
  :ontology NYSE-TICKS
  :content price("IBM", Price)
)
```


Παραδείγμα Άμεσης Επικοινωνίας

```
(tell
  :sender AgentA
  :receiver AgentB
  :language Prolog
  :ontology path-finding
  :content obstacle at(roomA, (5,5) )
                   Υπάρχει ένα εμπόδιο στο δωμάτιο roomA
                                                             AgentA αναφέρεται στο
                                                              σενάριο της εύρεσης
                          στις συντεταγμένες (5,5)
                                                                 διαδρομής
       AGENT A
                                          AGENT B
                                                                Το μήνυμα είναι σε
                                                                    PROLOG
```


Παράδειγμα Έμμεσης Επικοινωνίας

```
**
(forward
  :from AgentA
                                                                Το μήνυμα είναι σε
                                                                                     AGENT C
                                Προώθησε στον AgentC το μήνυμα ότι
  :to AgentC
                                                                   KQML
                                 υπάρχει ένα εμπόδιο στο roomA στις
                                     συντεταγμένες (5,5)
  :sender AgentA
  :receiver AgentB
                                                                           Ο AgentA θέλει να στείλω το
                                                                             μήνυμα στον AgentC
  :language KQML
  :ontology
                   KQML-
                              AGENT A
                                                    AGENT B
ontology
  :content
    (tell
    :sender AgentA
    :receiver AgentC
    :language Prolog
    :ontology path-finding
    :content obstacle at(roomA, (5,5))
```


Παράδειγμα Δήλωσης Ικανότητας

```
(advertise
                                                                         AgentA αναφέρεται
 :sender AgentA
                                        Μπορώ να κάνω αναζήτηση
                                                                          στην εύρεση
                                      επαναληπτικής εμβάνθυσης (ID) σε
:receiver Supervisor
                                                                           διαδρομής
                                               Prolog
  :language KQML
                                                                                  ontology
  :ontology
                   KOML-
 :content
                                                      SUPERVISOR
                              AGENT A
    (ask-one
                                                                        Μπορώ να του ζητήσω να
                                                                         κάνει ΙD αναζήτηση,εάν
    :sender Supervisor
                                                                             χρειαστεί.
    :receiver AgentA
    :in-reply-to message1
    :language Prolog
    :ontology path-finding
    :content goid(AgentA, IS, FS, Route)
```


Μήνυμα για Αναζήτηση Διαδρομής

```
(ask-one
 :sender Supervisor
 :receiver AgentA
 :in-reply-to message1
 :reply-with message2
 :language Prolog
 :ontology path-finding
 :content goid(AgentA, (3,3), (5,5), Route))
                Εφάρμοσε Iterative Deepening για να βρεις την
                      διαδρομή από το (3,3) στο (5,5)
                                                    SUPERVISOR
          AGENT A
```


Μήνυμα Αποτελεσμάτων της Διαδρομής

```
(tell
 :sender AgentA
 :receiver Supervisor
 :in-reply-to message2
 :language Prolog
 :ontology path-finding
 :content [(3,3), (3,4), (4,4), (4,5), (5,5)]
                                    Η διαδρομή από το (3,3) στο (5,5) είναι:
                                        [(3,3), (3,4), (4,4), (4,5), (5,5)]
               AGENT A
                                                  SUPERVISOR
```


Αρχιτεκτονική Πράκτορα με το πρωτόκολλο ΚΩΜL

- Απαιτείται η ύπαρξη δύο στοιχείων (components):
 - □ Διεπαφής (interface) ανάμεσα στην ΚQML και στη γλώσσα συστήματος του πράκτορα
 - Δρομολογητή (router) ο οποίος αναλαμβάνει τη διαχείριση όλων των χαμηλού επιπέδου λειτουργιών επικοινωνίας.
- Ο τρόπος επικοινωνίας μεταξύ των πρακτόρων είναι ένα από τα πιο ενεργά ερευνητικά πεδία.

<u>_</u>
<u> </u>
1

Επιτυχία και Κριτική της KQML

- ❖ Η γλώσσα KQML αποτέλεσε την πρώτη επιτυχημένη προσπάθεια
 - Έτυχε ευρείας αποδοχής.
 - Υπάρχει πληθώρα συστημάτων τα οποία χρησιμοποίησαν την KQML.
- ❖ Η κύρια κριτική στην KQML
 - Οι δηλώσεις της γλώσσας (performatives) δεν είχαν σαφώς καθορισμένη σημασιολογία.
 - Το σύνολο των δηλώσεων της γλώσσας είναι ανοικτό.
- Το πρόβλημα ορισμού της σημασιολογίας της KQML αντιμετωπίστηκε σε ένα βαθμό από μερικούς ερευνητές
- ❖ Η αρχική έλλειψη αυστηρά καθορισμένης σημασιολογίας οδήγησε στην FIPA ACL.

Η γλώσσα επικοινωνίας FIPA ACL

- ❖ Η FIPA ACL παρουσιάζει σημαντικές ομοιότητες με την KQML.
 - Ακολουθεί παρόμοια μορφή μηνυμάτων.
 - Χρησιμοποιεί δηλώσεις για τον καθορισμό της επικοινωνιακής πράξης του κάθε μηνύματος.
 - Υπάρχει πλήρης απουσία καθορισμού της γλώσσας στην οποία εκφράζεται το περιεχόμενο του μηνύματος.

(inform

:sender agentI

:receiver agentJ

:content "direction(west, speed(34))"

:language Prolog)

❖ Η FIPA ACL παρέχει:

- ένα κλειστό σύνολο είκοσι δύο επικοινωνιακών πράξεων /δηλώσεων
- οι δηλώσεις έχουν σαφή αυστηρά καθορισμένη σημασιολογία.

Κατηγορία	Επικοινωνιακή Πράξη (communicative act)	
Μετάδοση Πληροφορίας (Information passing)	confirm, disconfirm, inform, inform-if, inform-ref	
Αίτηση για Πληροφορία (Requesting information)	query-if, query-ref, subscribe	
Διαπραγμάτευση (Negotiation)	accept-proposal, cfp, propose, reject-proposal	
Εκτέλεση Ενεργειών (Action performing)	agree, cancel, refuse, request, request-when, request-whenever	
Μηνύματα Λάθους (Error handling)	failure, not-understood	

Σημασιολογία FIPA ACL

- Η σημασιολογία των δηλώσεων της γλώσσας ορίζεται χρησιμοποιώντας την γλώσσα SL.
- Για κάθε επικοινωνιακή πράξη ορίζονται χρησιμοποιώντας τύπους της SL
 - Ποιες είναι οι προϋποθέσεις (feasibility conditions FP)
 - □ Ποιο είναι το αναμενόμενο αποτέλεσμα (rational effect RE).
- Για παράδειγμα για την επικοινωνιακή πράξη inform (πληροφορώ), οι προϋποθέσεις είναι (περιεχόμενο μηνύματος πρόταση φ):
 - **υ** να πιστεύει ότι η πρόταση φ είναι αληθής.
 - να έχει την πρόθεση ο παραλήπτης να αποκτήσει την πεποίθηση ότι η φ είναι αληθής.
 - να μην πιστεύει ότι ο παραλήπτης έχει κάποια γνώση για την φ.

P

Εκφράζοντας σημασιολογία σε SL

- ❖ Θεωρώντας ότι
 - i είναι ο αποστολέας του μηνύματος
 - j είναι ο παραλήπτης,
 - \Box $B_i \varphi$ και $B_j \varphi$ σημαίνουν ότι οι πράκτορες i και j πιστεύουν αντίστοιχα τη φ ως αληθή.
 - \Box $Bif_j \varphi$ σημαίνει ότι ο πράκτορας \dot{j} είτε πιστεύει την $\dot{\varphi}$ είτε την άρνηση της, δηλαδή $Bif_j \dot{\varphi} \equiv B_i \phi \vee B_j \neg \phi$.
 - \Box $Uif_j \varphi$ σημαίνει ότι ο πράκτορας έχει αβέβαιη γνώση για την αλήθεια της φ , δηλαδή $Uif_j \varphi$ $\equiv U_j \varphi \vee U_j \neg \varphi$.
- ❖ Ο τύπος της γλώσσα SL που εκφράζει τα παραπάνω είναι ο ακόλουθος.

<i, INFORM $(j, \phi)>$

FP: $B_i \phi \wedge \neg B_i (Bif_j \phi \vee Uif_j \phi)$

 $RE: B_i \phi$

- ❖ Το πρότυπο ορίζει με αρκετή αυστηρότητα την χρήση κάθε επικοινωνιακής πράξης.
 - Πώς θα επαληθευτεί ότι ο πράκτορας ακολουθεί την συγκεκριμένη σημασιολογία (conformance testing);
- ❖ Η γλώσσα SL μπορεί να χρησιμοποιηθεί και για κωδικοποίηση περιεχομένου του μηνύματος.

Πρωτόκολλα Αλληλεπίδρασης

 Δίνουν τη δυνατότητα στους πράκτορες να ανταλλάσσουν ακολουθίες μηνυμάτων, (συζητήσεις - conversations).

Συντονισμός

Ο συντονισμός στα πολυπρακτορικά συστήματα είναι η διαδικασία μέσω της οποίας επιτυγχάνεται η λογικά συνεπής λειτουργία ολόκληρου του συστήματος.

- Είναι απαραίτητη για:
 - Την αποφυγή καταστάσεων χάους.
 - Την ικανοποίηση καθολικών περιορισμών.
 - Την εκμετάλλευση κατανεμημένης εμπειρογνωμοσύνης.
 - Την αύξηση της αποδοτικότητας.
- ❖ Ο συντονισμός μεταξύ πρακτόρων:
 - με κοινό στόχο αναφέρεται ως συνεργασία (cooperation),
 - με αλληλοσυγκρουόμενους προσωπικούς στόχους ως διαπραγμάτευση (negotiation) ή ανταγωνισμός (competition).
 - Κοινό χαρακτηριστικό: απαιτείται η εξασφάλιση της λογικά συνεπούς λειτουργίας του συστήματος.

P

Κεντρικός Ρόλος Δεσμεύσεων και Συμβάσεων

- * Συντονισμός: Σύνολο δεσμεύσεων (commitments) και συμβάσεων (convention).
 - 🗖 Δεσμεύσεις: αναλήψεις εργασιών από ένα πράκτορα ως "υπόσχεση" προς κάποιον άλλο.
 - **ανάληψη μιας εργασίας από μια ομάδα πρακτόρων (joint commitments).**
 - Συμβάσεις: τρόπος διαχείρισης και εποπτείας των δεσμεύσεων.
- Υπόθεση του "κεντρικού ρόλου των δεσμεύσεων και συμβάσεων" (centrality of commitments and conventions hypothesis) N. Jennings:

"όλοι οι μηχανισμοί συντονισμού μπορούν να αναχθούν σε (κοινές) δεσμεύσεις και τις αντίστοιχες τους (κοινωνικές) συμβάσεις".

Κατηγορίες Τεχνικών

- ❖ Κατηγορίες τεχνικών για το συντονισμό μεταξύ των πρακτόρων
 - Τεχνικές βασισμένες στην οργάνωση (organizational structure)
 - □ Τεχνικές σύναψης συμβολαίων (contracting net)
 - □ Τεχνικές πολυπρακτορικού σχεδιασμού (multiagent planning)
 - □ Τεχνικές διαπραγμάτευσης (negotiation)

Τεχνικές Βασισμένες στην Οργάνωση

- ❖ Προϋποθέτουν μια οργανωτική δομή των πρακτόρων.
- ❖ Κάθε πράκτορας έχει:
 - Συγκεκριμένο ρόλο
 - Υπευθυνότητες
 - Ικανότητες.
- Αρχιτεκτονική κατανομής εργασίας (master-slave) η οποία μπορεί να υλοποιηθεί με τους ακόλουθους δύο τρόπους:
 - □ Ένας **κεντρικός πράκτορας** αναλαμβάνει το χωρισμό του προβλήματος σε υποπροβλήματα
 - Μέσω ενός συστήματος μαυροπίνακα. Συντονισμός μεταξύ των πρακτόρων επιτυγχάνεται είτε:
 - μέσω ενός πράκτορα (scheduling agent)
 - ή έχοντας καθορίσει σαφώς ποιες είναι οι αρμοδιότητες του κάθε πράκτορα

Τεχνικές Σύναψης Συμβολαίων

- ❖ Δημιουργία ενός δικτύου σύναψης συμβολαίων (contract net).
- Στο μοντέλο αυτό κάθε πράκτορας μπορεί να αναλάβει δύο ρόλους:
 - διαχειριστής (manager)
 - □ εργολάβος (contractor)
- ❖ Ο Διαχειριστής
 - Χωρίζει το πρόβλημα σε υποπροβλήματα.
 - □ Αναλαμβάνει να τα αναθέσει στους εργολάβους (contractors).
 - Επιβλέπει την πορεία της λύσης
- Ο Εργολάβος
 - Αναλαμβάνει να λύσει ένα υποπρόβλημα.
 - Οι εργολάβοι μπορούν να χωρίσουν το υποπρόβλημα σε περισσότερα υποπροβλήματα και να το αναθέσουν σε άλλους.
- ❖ Κάθε πράκτορας μπορεί να είναι ταυτόχρονα διαχειριστής και εργολάβος.

Διαδικασία Ανάθεσης

- ❖ Η διαδικασία ανάθεσης των υποπροβλημάτων περιλαμβάνει:
- * Τη δημοσιοποίηση τους (announcement).
- Αξιολόγηση από τους αποδέκτες των δημοσιοποιήσεων των υποπροβλημάτων
- ❖ Αποστολή από τους αποδέκτες στο διαχειριστή
 - προσφορών (bids) ή
 - □ απορρίψεων (declination)
- * Συλλογή από τον διαχειριστή των προσφορών (bids)
- Αξιολόγηση των προσφορών
- ❖ Κατάλληλες αναθέσεις (awards).

Ανάθεση προβλημάτων (1/2)

Από την πλευρά του διαχειριστή

Ανάθεση προβλημάτων (2/2)

Αποδοχή (α) και απόρριψη (β) μιας δημοσιοποίησης από ένα πράκτορα.

¥

**

Σύναψη Συμβολαίων σε FIPA ACL

- Η τεχνική ανάθεσης συμβολαίων αποτελεί ίσως το πλέον διαδεδομένο πρωτόκολλο αλληλεπίδρασης πρακτόρων για
- Προδιαγραφές του πρωτοκόλλου χρησιμοποιώντας στην γλώσσα FIPA ACL.

διαμοιρασμό προβλημάτων.

Πολυπρακτορικός Σχεδιασμός

- Οι πράκτορες συντάσσουν ένα πλάνο ενεργειών, βάσει του οποίου θα επιλύσουν το πρόβλημα.
- **Φ** Δύο τύποι πολυπρακτορικού σχεδιασμού:
 - Κεντρικός πολυπρακτορικός σχεδιασμός
 - Κατανεμημένος πολυπρακτορικός σχεδιασμός

Διαπραγμάτευση

Η διαπραγμάτευση (negotiation) αφορά το πώς πράκτορες με προσωπικούς, πιθανά αλληλοσυγκρουόμενους/ανταγωνιστικούς στόχους θα φτάσουν σε κοινά ωφέλιμες συμφωνίες.

- Μεγάλος αριθμός μεθόδων για διαπραγμάτευση:
 - Μέθοδοι που βασίζονται στη θεωρία παιχνιδιών (game theory based negotiation),
 - □ Μέθοδοι που βασίζονται σε δημιουργία πλάνων
 - Μέθοδοι που βασίζονται στην κατανεμημένη ικανοποίηση περιορισμών (distributed constraint satisfaction).

Πρωτόκολλα πλειστηριασμού

- Οι πλειστηριασμοί (auctions) αποτελούν πρωτόκολλα μέσω των οποίων διακινούνται αγαθά.
 - Στόχος: Καθορισμός τιμής αγαθού και σε ποιον πράκτορα θα διατεθεί.
- Σε ένα πλειστηριασμό υπάρχουν δύο εμπλεκόμενα μέρη:
 - ο εκπλειστηριαστής (auctioneer)
 - **u** οι πλειοδότες (bidders).
- Οι πλειοδότες κάνουν μια ή περισσότερες προσφορές (bids) και το αγαθό διατίθεται στον πράκτορα που έδωσε την μεγαλύτερη προσφορά.
- Οι μηχανισμοί με τους οποίους καθορίζεται ο τελικός πλειοδότης διαφέρουν στα ακόλουθα σημεία:
 - Aν οι προσφορές είναι ανοικτές (open cry) ή κλειστές (sealed bid)
 - Αν γίνεται μόνο ένας κύκλος προσφορών (one shot) ή περισσότεροι.
 - Η τιμή των προσφορών σε κάθε κύκλο μπορεί να αυξάνεται (ascending) ή να μειώνεται (descending).
 - Ο τρόπος με τον οποίο καθορίζεται η τελική τιμή του αγαθού.

Είδη Πλειστηριασμών

*	Υπ	πάρχουν τέσσερα είδη πλειστηριασμών:		
		Πλειστηριασμοί κλειστών προσφορών ενός κύκλου (one shot sealed bid auctions),		
		Πλειστηριασμοί Αγγλικού τύπου (English auctions),		
		Πλειστηριασμοί Ολλανδικού τύπου (Dutch Auctions)		
		Πλειστηριασμοί Vickrey (Vickrey auctions).		
		Πλειστηριασμοί κλειστών προσφορών ενός κύκλου.		
		Αποτελούν την απλούστερη μορφή πλειστηριασμών.		
		Κλειστές προσφορές.		
		Ένας κύκλος		
		Το αγαθό διατίθεται στον πράκτορα με τη μέγιστη προσφορά στην τιμή που προσέφερε.		
		Πλειστηριασμοί Αγγλικού τύπου		
		Ανοικτές προσφορές		
		Περισσότερουι κύκλοι.		
		Οι προσφορές ξεκινούν από μια χαμηλή τιμή και αυξάνονται.		
		 Κάποια στιγμή οι προσφορές σταματούν. 		
		Ο νικητής του πλειστηριασμού: εκείνος με την μεγαλύτερη προσφορά και καλείται να καταβάλλει το αντίστοιχο τίμημα που προσέφερε.		

Είδη Πλειστηριασμών

Πλειστηριασμοί Ολλανδικού τύπου

- Παρόμοιοι με τους πλειστηριασμούς Αγγλικού τύπου.
- Διαφορά: ο εκπλειστηριαστής ξεκινά την διαδικασία από μια αρκετά υψηλή τιμή.
- Σε περίπτωση κανένας από τους πλειοδότες δεν προχωρήσει σε προσφορά, τότε ο εκπλειστηριαστής μειώνει την τιμή.
- Το αγαθό διατίθεται σε εκείνον που κάνει την πρώτη προσφορά.

Πλειστηριασμοί Vickrey

- Αποτελούν ίσως το πλέον ενδιαφέρον (και σπάνιο) είδος πλειστηριασμών.
- Είναι πλειστηριασμοί ενός κύκλου, κλειστού τύπου όπου ο νικητής είναι εκείνος που κατέθεσε την μεγαλύτερη προσφορά
- Ο νικητής καλείται να καταβάλλει το τίμημα της δεύτερης μεγαλύτερης προσφοράς.
- Εξασφαλίζουν ότι οι πράκτορες θα προσφέρουν την μέγιστη δυνατή τους τιμή για το αγαθό.

Γιατί οι πράκτορες δίνουν την πραγματική τους τιμή στους Πλειστηριασμούς Vickrey

Περίπτωση (α): Ο πράκτορας χάνει τον πλειστηριασμό ενώ μπορούσε να τον κερδίσει.

Περίπτωση (β): Ο πράκτορας καλείται να πληρώσει μεγαλύτερη τιμή από εκείνη την οποία ήταν διατεθειμένος να πληρώσει.

καταβάλλει ο πράκτορας.

Περίπτωση (γ): Ο πράκτορας κερδίζει την δημοπρασία με την μικρότερη δυνατή τιμή.

Εφαρμογές Πρακτόρων

Πλήθος βιομηχανικών και εμπορικών εφαρμογών, όπως ο έλεγχος μεταφοράς ηλεκτρικής ενέργειας, ο έλεγχος γραμμών παραγωγής.

Έλεγχος εναέριας κυκλοφορίας

- Το σύστημα OASIS είναι ένα πολυπρακτορικό σύστημα στο οποίο
 - Τα αεροσκάφη όσο και τα διάφορα συστήματα ελέγχου αναπαρίστανται από πράκτορες.
 - Σε κάθε αεροσκάφος που μπαίνει στην επιχειρησιακή ζώνη του αεροδρομίου ανατίθεται ένας πράκτορας
 - Αποκτά τους στόχους και γνωρίζει όλες τις πληροφορίες που αφορούν το αεροσκάφος, (αεροδρόμιο προορισμού, τύπος αφους, κλπ.)
 - Οι πράκτορες οι οποίοι αντιστοιχούν στα συστήματα ελέγχου εναέριας κυκλοφορίας είναι υπεύθυνοι για το συντονισμό και τη διαχείριση ολόκληρου του συστήματος.
- ❖ Οι πράκτορες του Oasis έχουν αναπτυχθεί βάσει του μοντέλου BDI
- ❖ Όλο σύστημα δοκιμάζεται σε πραγματικές συνθήκες στο αεροδρόμιο του Σίδνεϋ.

Εφαρμογές Πρακτόρων

Πράκτορες διαδικτύου/πληροφοριών

- ❖ Διευκολύνουν το χρήστη στην ανεύρεση της χρήσιμης πληροφορίας στο διαδίκτυο.
- **Φ** Στόχοι τους είναι:
 - Να φιλτράρουν την εισερχόμενη μέσω newsgroups ή mailing lists πληροφορία
 - Να αναζητούν στο διαδίκτυο πληροφορίες που αφορούν ειδικότερα ενδιαφέροντα του χρήστη.
- ❖ Μαθαίνουν τις προτιμήσεις και τα ενδιαφέροντα του κάθε χρήστη χρησιμοποιώντας μεθόδους μηχανικής μάθησης.
 - Παρατηρούν τις επιλογές του (σύστημα MAXIMS)
 - Μέσω παραδειγμάτων (σύστημα NEWT)

Ç

Εφαρμογές Πρακτόρων

Πράκτορες διεπαφής

- Αποτελούν προσωπικούς βοηθούς (personal assistants) του χρήστη
 - □ Μαθαίνουν τις ιδιαίτερες προτιμήσεις του
 - Τον βοηθούν στη χρήση προγραμμάτων.
- Παραδείγματα
 - Ο γνωστός συνδετήρας του προγράμματος WORD.
 - Πράκτορες οι οποίοι βοηθούν τους χρήστες να κανονίσουν το ημερήσιο πρόγραμμα τους
 - CALENDAR AGENT, CALENDAR APRENTICE

Άλλες Εφαρμογές

- ❖ Παρακολούθηση ασθενών
- Παιχνίδια
- Προσομοίωση
- Ηλεκτρονικό εμπόριο, κλπ.

Είναι βέβαιο ότι η τεχνολογία των πρακτόρων θα επηρεάσει σε πολύ μεγάλο βαθμό όλα τα πεδία εφαρμογής της πληροφορικής στις επόμενες δεκαετίες.