AED 3

Segunda lista de exercícios

- Se atualizarmos um campo que não é chave (ex: endereço, idade, etc.) de um registro de tamanho variável de um arquivo indexado, haverá alguma situação em que o índice também deverá ser atualizado? Justifique.
- 2. Cite duas vantagens e duas desvantagens dos arquivos indexados sobre os arquivos sequenciais.
- 3. Crie uma árvore B de ordem 3 vazia e, em seguida,
 - a. Acrescente a ela as seguintes chaves: A, L, G, O, R, I, T, H, M, e S.
 - b. Remova, da árvore resultante, as seguintes chaves: L, G, H, I, R e A.
- 4. Crie uma árvore B+ de ordem 5 vazia e, em seguida,
 - a. Acrescente a ela as seguintes chaves: 9, 5, 1, 7, 11, 13, 8, 6, 12, 3, 10, 2, 0, 15, 4 e 14.
 - b. Remova, da árvore resultante, as seguintes chaves: 7, 9, 3, 2 e 5. Priorize as fusões com e as cessões de chaves de irmãos esquerdos.
- 5. Se uma página que não é folha de uma árvore B possui 7 chaves, quantos filhos ela possui? Justifique a sua resposta.
- 6. Em uma árvore B de ordem 30, qual é o número mínimo e o número máximo de elementos em cada página da árvore? Esse valor é válido para todos as páginas sem exceção? Caso negativo, justifique.
- 7. Considere uma tabela *hash* com 17 endereços. Considere a função de dispersão h(k) = k mod 17. Acrescente as chaves 20, 25, 13, 9, 14, 22, 39, 19, 6, 7 e 33, nesta ordem, considerando o tratamento de colisões por *double hashing*, considerando como segunda função de dispersão h₂(k) = (k² mod 16) + 1.
- 8. Crie uma tabela *hash* dinâmica com *buckets* de tamanho 3 e acrescente a ela as chaves 20, 25, 13, 9, 14, 22, 39, 19, 6, 7, 33.
- 9. Cite uma estrutura de dados adequada para armazenamento de listas invertidas em disco. Justifique.
- 10. Usando um dicionário cujos índices (ou posições) são representados com apenas 6 bits e considerando que o conjunto de símbolos é composto apenas 26 caracteres de A a Z, calcule quanto bits são necessários para a seguinte mensagem compactada com LZW:

ABBBAABACDBBBAABCDDDAABCDBBA

11. Crie a árvore de Huffman para a mensagem abaixo e informe quantos bits são necessários para compactar essa mensagem.

ABBBAABACDBBBAABCDDDAABCDBBA

GABARITO

Questão 1

A alteração de campos que não são chave apenas elimina a necessidade de um índice de chave primária. Assim, se esse campo for usado em um índice secundário, então apenas esse índice precisará ser atualizado.

Se, na alteração, o registro mudar de tamanho, é importante considerar se esse registro (ou qualquer outro) precisará ser reposicionado. Isso geralmente acontece quando a alteração resulta em aumento do tamanho do registro. Nesse caso, qualquer índice direto, especialmente o baseado na chave primária, precisará ser alterado.

Questão 2

VANTAGENS:

- Os arquivos indexados, por meio de vários índices, permitem a busca rápida por diferentes campos.
- Uma alteração em um registro, não implicará em movimentação de outros registros.

DESVANTAGENS:

- O processamento sequencial em arquivos indexados é mais lento, pois os registros serão localizados no arquivo de dados individualmente (a partir da ordenação dada pelo índice).
- É necessário manter vários arquivos: um de dados e outro para cada índice.

Questão 3

Questão 4

• → • 5 • 6 • • • → • 7 • 8 • 9 • 10 • → • 11 • 12 • • • → • 13 • 14 • 15 •

b)

Questão 5

8. O número de filhos em páginas que não são folhas (exceto a raiz) é sempre o número de chaves + 1.

Questão 6

Em uma árvore B de ordem 30, o número máximo de filhos é 30. Assim, o número máximo de elementos é 29 (ordem — 1) e o número mínimo é 14 (a metade inteira do número máximo). A raiz é a única exceção, em que o número mínimo de chaves é 1.

Questão 7

k	h(k)	$h_2(k)$	Tentativas de endereços
20	3	1	3
25	8	2	8
13	13	10	13
9	9	2	9
14	14	5	14
22	5	5	5
39	5	2	5 - 7
19	2	10	4 - 19
6	6	5	6
7	7	2	7 - 9 - 11
33	16	2	33

	Tab. Hash
0	
1	
2	19
2 3 4	20
5 6 7	22
6	6
7	39
8	25
9	9
10	
11	7
12	
13	13
14	14
15	
16	33

Questão 8

ESTADO INICIAL

	Diretório			
	p=1			
0	0			
1	1			

	Buckets					
	p'	n	0	1	2	
0	1	0				
1	1	0		•		

APÓS INCLUSÃO DE 20, 25, 13, 9, 14 E 22

[Diretório				
	p=1				
0	0				
1	1				

	Buckets					
	p'	n	0	1	2	
0	1	3	14	20	22	
1	1	3	9	13	25	

APÓS INCLUSÃO DE 39 E 19

	Diretório				
	p=2				
0	0				
1	1				
2	0				
3	2				

	Buckets					
	p'	n	0	1	2	
0	1	3	14	20	22	
1	2	3	9	13	25	
2	2	2	19	39		

APÓS INCLUSÃO DE 6 E 7

D	Diretório				
	p=2				
0	0				
1	1				
2	3				
3	2				

Buckets						
p'	n	0	1	2		
2	1	20				
2	3	9	13	25		
2	3	7	19	39		
2	3	6	14	22		
	2 2 2	p' n 2 1 2 3 2 3	p' n 0 2 1 20 2 3 9 2 3 7	p' n 0 1 2 1 20 2 3 9 13 2 3 7 19		

APÓS INCLUSÃO DE 33

C	Diretório				
	p=3				
0	0				
1	1				
2	3				
3	2				
4	0				
5	4				
6	3				
7	2				

	Buckets						
	p'	n	0	1	2		
0	2	1	20				
1	3	3	9	25	33		
2	2	3	7	19	39		
3	2	3	6	14	22		
4	3	1	13				

Questão 9

Uma possível estrutura para armazenamento das listas invertidas é uma uma combinação de uma tabela hash como dicionário e um arquivo contendo múltiplas listas invertidas, como mostra a figura abaixo:

ARQUIVO DE DADOS

Registros				
1	Java Web Services			
2	Web Design Responsivo			
3	Web Services em PHP			
4	Programação Java para a Web			
5	Desenvolvimento Web Java			

•	TAB	ELA	HASH

termos	endereço
а	13
desenvolvimento	15
design	4
em	8
java	0
para	12
php	9
programação	10
responsivo	5
services	2
web	1

LISTAS

End.	Registro	Próximo
0	1	11
1	1	3
2	1	7
3	2	6
4	2	-1
5	2	-1
6	3	14
7	3	-1
8	3	-1
9	3	-1
10	4	-1
11	4	17
12	4	-1
13	4	-1
14	4	16
15	5	-1
16	5	-1
17	5	-1

Questão 10

Serão 18 índices na saída, de 6 bits cada, totalizando 108 bits de mensagem.

Questão 11

Serão necessários 53 bits para compactar a mensagem, sem considerar o armazenamento da árvore ou da tabela.