Dynamic Linear Models

FISH 507 – Applied Time Series Analysis

Mark Scheuerell 5 Feb 2019

Topics for today

Univariate response

- Stochastic level & growth
- · Dynamic Regression
- · Dynamic Regression with fixed season
- Forecasting with a DLM
- Model diagnostics

Multivariate response

Simple linear regression

Let's begin with a linear regression model

$$y_i = \hat{x}_i + e_i \text{ with } e_i \sim N(0, 2)$$

The index i has no explicit meaning in that shuffling (y_i, x_i) pairs has no effect on parameter estimation

Simple linear regression

We can write the model in matrix form

$$y_{i} = \hat{} + \hat{} x_{i} + e_{i}$$

$$\downarrow \downarrow$$

$$y_{i} = \begin{bmatrix} 1 & x_{i} \end{bmatrix} \begin{bmatrix} \hat{} \\ \end{pmatrix} + e_{i}$$

Simple linear regression

We can write the model in matrix form

$$y_{i} = \hat{x}_{i} + e_{i}$$

$$\downarrow \downarrow$$

$$y_{i} = \begin{bmatrix} 1 & x_{i} \end{bmatrix} \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix} + e_{i}$$

$$\downarrow \downarrow$$

$$y_{i} = \mathbf{X}_{i}^{\mathsf{p}} + e_{i}$$

with

$$\mathbf{X}_{\mathrm{i}}^{\mathsf{T}} = \begin{bmatrix} 1 & \mathrm{x}_{\mathrm{i}} \end{bmatrix}$$
 and $\mathbf{x}_{\mathrm{i}} = \begin{bmatrix} 1 & \mathrm{x}_{\mathrm{i}} \end{bmatrix}^{\mathsf{T}}$

Dynamic linear model (DLM)

In a *dynamic* linear model, the regression parameters change over time, so we write

$$y_i = X_i^{\overline{p}} + e_i$$
 (static)

as

$$y_t = X_t^{\overline{p}} + e_t$$
 (dynamic)

Dynamic linear model (DLM)

There are 2 important points here:

$$\mathbf{y}_{\boxed{t}} = \mathbf{X}_{t}^{\overline{p}} \mathbf{t} + \mathbf{e}_{t}$$

1. Subscript t explicitly acknowledges implicit info in the time ordering of the data in y

Dynamic linear model (DLM)

There are 2 important points here:

$$y_t = \mathbf{X}_t^{\overline{p}} + e_t$$

- 1. Subscript t explicitly acknowledges implicit info in the time ordering of the data in y
- 2. The relationship between y and X is unique for every t

Close examination of the DLM reveals an apparent problem for parameter estimation

$$y_t = \mathbf{X}_t^{\overline{p}} \ _t + e_t$$

Close examination of the DLM reveals an apparent problem for parameter estimation

$$y_t = \mathbf{X}_t^{\overline{p}} \ _t + e_t$$

We only have 1 data point per time step (ie, y_t is a scalar)

Thus, we can only estimate 1 parameter (with no uncertainty)!

To address this issue, we'll constrain the regression parameters to be dependent from t to t+1

$$\mathbf{r}_{t} = \mathbf{G}_{t-t-1}^{2} + \mathbf{w}_{t} \text{ with } \mathbf{w}_{t} \sim \text{MVN}(\mathbf{0}, \mathbf{Q})$$

In practice, we often make G_t time invariant

$$_{t}^{\circ} = \mathbf{G}_{t-1} + \mathbf{w}_{t}$$

or assume G_t is an $m \times m$ identity matrix I_m

$$\mathbf{f}_{t} = \mathbf{I}_{m}^{2} \mathbf{f}_{t-1} + \mathbf{w}_{t}$$

$$= \mathbf{f}_{t-1}^{2} + \mathbf{w}_{t}$$

In the latter case, the parameters follow a random walk over time

DLM in state-space form

Observation model relates covariates to data

$$y_t = \mathbf{X}_t^{\overline{p}} t + e_t$$

State model determines how parameters "evolve" over time

$$\dot{\mathbf{r}}_{t} = \mathbf{G}_{t-1} + \mathbf{W}_{t}$$

DLM in MARSS notation

Full state-space form

$$y_{t} = \mathbf{X}_{t-1}^{\overline{p}} + e_{t}$$

$$\uparrow_{t} = \mathbf{G}_{t-1} + \mathbf{w}_{t}$$

$$\downarrow_{t}$$

$$y_{t} = \mathbf{Z}_{t} \mathbf{x}_{t} + v_{t}$$

$$\mathbf{x}_{t} = \mathbf{B} \mathbf{x}_{t-1} + \mathbf{w}_{t}$$

Contrast in covariate effects

Note: DLMs include covariate effect in the observation eqn much differently than other forms of MARSS models

DLM: **Z** is covariates, **x** is parameters

$$y_t = \boxed{\mathbf{Z}_t \mathbf{x}_t} + v_t$$

Others: **d** is covariates, **D** is parameters

$$y_t = \mathbf{Z}_t \mathbf{x}_t + \boxed{\mathbf{D} \mathbf{d}_t} + v_t$$

Other forms of DLMs

The regression model is but one type

Others include:

- stochastic "level" (intercept)
- stochastic "growth" (trend, bias)
- seasonal effects (fixed, harmonic)

The most simple DLM

Stochastic level

$$y_t = \hat{t} + e_t$$

$$\hat{t} = \hat{t} + w_t$$

The most simple DLM

Stochastic level = random walk with obs error

$$y_{t} = \hat{t} + e_{t}$$

$$\uparrow_{t} = \hat{t} + w_{t}$$

$$\downarrow_{t}$$

$$y_{t} = x_{t} + v_{t}$$

$$x_{t} = x_{t-1} + w_{t}$$

Ex of stochastic level model

Ex of stochastic level model

Stochastic "level" t with deterministic "growth"

$$y_t = \hat{t} + e_t$$

$$\hat{t} = \hat{t} + w_t$$

Stochastic "level" t with deterministic "growth"

$$y_{t} = \hat{t} + e_{t}$$

$$\uparrow_{t} = \hat{t} + w_{t}$$

$$\downarrow_{t}$$

$$y_{t} = x_{t} + v_{t}$$

$$x_{t} = x_{t-1} + u + w_{t}$$

This is just a random walk with bias u

Stochastic "level" t with stochastic "growth" t

$$y_t = t + e_t$$
 $t = t_{-1} + t_{-1} + w_{,t}$
 $t = t_{-1} + w_{,t}$

Now the "growth" term t evolves as well

Evolution of t and t

Evolution of t and t

Observation model for stochastic "level" & stochastic "growth"

$$y_{t} = \underbrace{1}_{t} + v_{t}$$

$$y_{t} = \underbrace{1}_{t} + \underbrace{0}_{t} + v_{t}$$

$$\downarrow \qquad \qquad \downarrow$$

$$y_{t} = \underbrace{\left[1}_{X_{t}^{\top}} \underbrace{0\right]}_{\uparrow} \underbrace{\left[1}_{t} + v_{t}\right]}_{\uparrow} + v_{t}$$

Univariate DLM for regression

Stochastic intercept and slope

Univariate DLM for regression

Parameter evolution follows a random walk

Dynamic linear regression with fixed seasonal effect

$$y_{t} = \hat{t} + \hat{t} +$$

$$y_{t} = \hat{x}_{t} + \hat{x}_{t} + e_{t}$$

$$\downarrow \qquad \qquad \downarrow$$

$$y_{t} = \begin{bmatrix} 1 & x_{t} & 1 \end{bmatrix} \begin{bmatrix} \hat{x}_{t} & + e_{t} \\ \hat{x}_{t} & - e_{t} \end{bmatrix} + e_{t}$$

$$y_{t} = \begin{bmatrix} 1 & x_{t} & 1 \end{bmatrix} \begin{bmatrix} \hat{r} & t \\ \hat{r} & t \\ -qtr \end{bmatrix} + e_{t}$$

$$\begin{bmatrix} \hat{r} & t \\ \hat{r} & t \\ -qtr \end{bmatrix} = \begin{bmatrix} \hat{r} & t-1 \\ \hat{r} & t-1 \\ \hat{r} & t \end{bmatrix} + \begin{bmatrix} \hat{w} & t \\ \hat{w} & t \\ \hat{v} & t \end{bmatrix}$$

How should we model the fixed effect of $_{qtr}$?

$$y_{t} = \begin{bmatrix} 1 & x_{t} & 1 \end{bmatrix} \begin{bmatrix} \hat{c} & t \\ \hat{c} & t \\ -qtr \end{bmatrix} + e_{t}$$

$$\begin{bmatrix} \hat{c} & t \\ \hat{c} & t \\ -qtr \end{bmatrix} = \begin{bmatrix} \hat{c} & t-1 \\ \hat{c} & t-1 \\ -qtr \end{bmatrix} + \begin{bmatrix} w & t \\ w & t \\ 0 \end{bmatrix}$$

We don't want the effect of quarter to evolve

$$y_{t} = \begin{bmatrix} 1 & x_{t} & 1 \end{bmatrix} \begin{bmatrix} \hat{c} & t \\ \hat{c} & t \\ -qtr \end{bmatrix} + e_{t}$$

$$\begin{bmatrix} \hat{c} & t \\ \hat{c} & t \\ -qtr \end{bmatrix} = \begin{bmatrix} \hat{c} & t-1 \\ \hat{c} & t-1 \\ -qtr \end{bmatrix} + \begin{bmatrix} \hat{w} & t \\ \hat{w} & t \\ 0 \end{bmatrix}$$

OK, but how do we select the right quarterly effect?

Let's separate out the quarterly effects

But how do we select only the current quarter?

We can set some values in x_t to 0 (qtr = 1)

$$y_{t} = \begin{bmatrix} 1 & x_{t} & 1 & 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} \hat{1} & t \\ -1 & 1 \\ -2 & 3 \\ -3 & -4 \end{bmatrix}$$

$$y_{t} = \hat{1} + \hat{1} + e_{t}$$

We can set some values in x_t to 0 (qtr = 2)

$$y_{t} = \begin{bmatrix} 1 & x_{t} & 0 & 1 & 0 & 0 \end{bmatrix} \begin{bmatrix} \hat{1} & t \\ -1 & 1 \\ -2 & 3 \\ -3 & -4 \end{bmatrix}$$

$$y_{t} = \hat{1} + \hat{$$

But *how* would we set the correct 0/1 values?

$$\mathbf{X}_{t}^{\top} = \begin{bmatrix} 1 & x_{t} & ? & ? & ? \end{bmatrix}$$

We could instead reorder the $_{i}$ within $_{t}$ (qtr = 1)

$$y_{t} = \begin{bmatrix} 1 & x_{t} & 1 & 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} \hat{1} & t \\ & t \\ & 1 \\ & 2 \\ & 3 \\ & 4 \end{bmatrix}$$

$$y_{t} = \hat{1} + \hat{1} + e_{t}$$

We could instead reorder the $_{i}$ within $_{t}$ (qtr = 2)

$$y_{t} = \begin{bmatrix} 1 & x_{t} & 1 & 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} \hat{1} & t \\ \hat{2} & 1 \\ -3 & -4 \\ -1 & 1 \end{bmatrix}$$

$$y_{t} = \hat{1} t + \hat{1} t x_{t} + \hat{1} 2 + e_{t}$$

But *how* would we shift the i within t?

$$\mathbf{r}_{t} = \begin{bmatrix} \mathbf{r}_{t} \\ \mathbf{r}_{t$$

Example of non-diagonal G

We can use a non-diagonal G to get the correct quarter effect

$$\mathbf{G} = \begin{bmatrix} 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 & 0 & 0 \end{bmatrix}$$

Evolving parameters

$$\begin{bmatrix} t \\ t \\ -2 \\ -3 \\ -4 \\ -1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} t-1 \\ t-1 \\ -1 \\ -2 \\ -3 \\ -4 \end{bmatrix} + \begin{bmatrix} w & t \\ w & t \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \end{bmatrix}$$

Evolving parameters

$$\begin{bmatrix} c & t \\ c & t \\ c & 3 \\ c & 4 \\ c & 1 \\ c & 2 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} c & t-1 \\ t-1 \\ c & 2 \\ c & 3 \\ c & 4 \\ c & 1 \end{bmatrix} + \begin{bmatrix} w & t \\ w & t \\ w & t \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \end{bmatrix}$$

DLMs are often used in a forecasting context where we want a prediction for time t based on the data up through time t-1

Pseudo-code

- 1. get estimate of today's parameters from yesterday's
- 2. make prediction based on today's parameters & covariates
- 3. get observation for today
- 4. update parameters and repeat

1. Define the parameters at time t=0

$$|\mathbf{y}_0| = \mathbf{w}_1 \text{ with } \mathbf{w}_1 \sim \text{MVN}(\mathbf{0}, \mathbf{\Lambda})$$

1. Define the parameters at time t=0

'
$$_{0}|\mathbf{y}_{0}=^{\hat{}}+\mathbf{w}_{1}$$
 with $\mathbf{w}_{1}\sim\mathrm{MVN}(\mathbf{0},\mathbf{\Lambda})$
 $\downarrow\downarrow$
 $\mathrm{E}(_{0})=^{\hat{}}$
 $\mathrm{Var}(_{0})=\mathbf{\Lambda}$
 $\downarrow\downarrow$

' $_{0}|\mathbf{y}_{0}\sim\mathrm{MVN}(_{0},\mathbf{\Lambda})$

1. Define the parameters at time t = 1

$$|\mathbf{y}_0| = \mathbf{G}_{0} + \mathbf{w}_1 \text{ with } \mathbf{w}_1 \sim \text{MVN}(\mathbf{0}, \mathbf{Q})$$

1. Define the parameters at time t=1

$$|\mathbf{y}_{0}| = \mathbf{G}_{0} + \mathbf{w}_{1} \text{ with } \mathbf{w}_{1} \sim \text{MVN}(\mathbf{0}, \mathbf{Q})$$

$$|\mathbf{E}(\mathbf{1})| = \mathbf{G}_{0}$$

$$|\mathbf{E}(\mathbf{1})| = \mathbf{G}_{0}$$
and
$$|\mathbf{Var}(\mathbf{1})| = \mathbf{G} \text{Var}(\mathbf{0}) \mathbf{G}^{\top} + \mathbf{Q}$$

$$|\mathbf{Var}(\mathbf{1})| = \mathbf{G} \mathbf{\Lambda} \mathbf{G}^{\top} + \mathbf{Q}$$

$$|\mathbf{Var}(\mathbf{1})| = \mathbf{G} \mathbf{\Lambda} \mathbf{G}^{\top} + \mathbf{Q}$$

$$|\mathbf{Var}(\mathbf{0}, \mathbf{G} \mathbf{\Lambda} \mathbf{G}^{\top} + \mathbf{Q})$$

1. Make a forecast of y_t at time t = 1

$$y_{1} | y_{0} = \mathbf{X}_{1}^{\overline{p}} |_{1} + e_{1} \text{ with } e_{1} \sim N(0, R)$$

$$\downarrow \downarrow$$

$$E(y_{1}) = \mathbf{X}_{1}^{\overline{p}} |_{1}$$

$$E(y_{1}) = \mathbf{X}_{1}^{T} [\mathbf{G}]$$

$$\text{and}$$

$$Var(y_{1}) = \mathbf{X}_{1}^{T} Var(_{1}) \mathbf{X}_{1} + R$$

$$Var(y_{1}) = \mathbf{X}_{1}^{T} [\mathbf{G} \Lambda \mathbf{G}^{T} + \mathbf{Q}] \mathbf{X}_{1} + R$$

$$\downarrow \downarrow$$

$$y_{1} | y_{0} \sim N(\mathbf{X}_{1}^{T} [\mathbf{G}], \mathbf{X}_{1}^{T} [\mathbf{G} \Lambda \mathbf{G}^{T} + \mathbf{Q}] \mathbf{X}_{1} + R)$$

Putting it all together

Putting it all together

Using MARSS() will make this easy to do

Diagnostics for DLMs

Just as with other models, we'd like to know if our fitted DLM meets its underlying assumptions

We can calcuate the forecast error e_t as

$$e_t = y_t - \hat{y}_t$$

and check if

(1)
$$e_t \sim N(0,)$$

(2)
$$Cov(e_t, e_{t-1}) = 0$$

with a QQ-plot (1) and an ACF (2)

MULTIVARIATE DLMs

The most simple multivariate DLM

Multiple observations of a stochastic level

$$\mathbf{y}_{t} = \mathbf{Z}_{t} + \mathbf{v}_{t}$$
 $\mathbf{y}_{t} \text{ is } n \times 1$
 $\hat{\mathbf{y}}_{t} = \hat{\mathbf{y}}_{t-1} + \mathbf{w}_{t}$ $\hat{\mathbf{y}}_{t} \text{ is } 1 \times 1$

with

$$\mathbf{Z} = \begin{bmatrix} 1 \\ 1 \\ \vdots \\ 1 \end{bmatrix}$$

Another simple multivariate DLM

Multiple observations of multiple levels

$$\mathbf{y}_{t} = \mathbf{Z}_{t} + \mathbf{v}_{t}$$
 $\mathbf{y}_{t} \text{ is } n \times 1$
 $\hat{\mathbf{y}}_{t} = \hat{\mathbf{v}}_{t-1} + \mathbf{w}_{t}$ $\hat{\mathbf{v}}_{t} \text{ is } n \times 1$

with

$$\mathbf{Z} = \mathbf{I}_{n} = \begin{bmatrix} 1 & 0 & \dots & 0 \\ 0 & 1 & \ddots & 0 \\ \vdots & \ddots & \ddots & 0 \\ 0 & \dots & 0 & 1 \end{bmatrix}$$

Regression model

Our univariate model

$$y_t = \mathbf{X}_t^{\overline{p}} + e_t \text{ with } e_t \sim N(0, R)$$

becomes

$$\mathbf{y}_{t} = (\mathbf{X}_{t}^{\top} \otimes \mathbf{I}_{n})^{\dagger} + \mathbf{e}_{t} \text{ with } \mathbf{e}_{t} \sim \text{MVN}(\mathbf{0}, \mathbf{R})$$

Kronecker products

If A is an $m \times n$ matrix and B is a $p \times q$ matrix

then $A \otimes B$ will be an mp \times nq matrix

$$\mathbf{A} \otimes \mathbf{B} = \begin{bmatrix} \mathbf{a}_{11} \mathbf{B} & \dots & \mathbf{a}_{1n} \mathbf{B} \\ \vdots & \ddots & \vdots \\ \mathbf{a}_{m1} \mathbf{B} & \dots & \mathbf{a}_{mn} \mathbf{B} \end{bmatrix}$$

Kronecker products

For example

$$\mathbf{A} = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} \text{ and } \mathbf{B} = \begin{bmatrix} 2 & 4 \\ 6 & 8 \end{bmatrix}$$

SO

$$\mathbf{A} \otimes \mathbf{B} = \begin{bmatrix} 1 \begin{bmatrix} 2 & 4 \\ 6 & 8 \end{bmatrix} & 2 \begin{bmatrix} 2 & 4 \\ 6 & 8 \end{bmatrix} \\ 3 \begin{bmatrix} 2 & 4 \\ 6 & 8 \end{bmatrix} & 4 \begin{bmatrix} 2 & 4 \\ 6 & 8 \end{bmatrix} \end{bmatrix} = \begin{bmatrix} 2 & 4 & 4 & 8 \\ 6 & 8 & 12 & 16 \\ 6 & 12 & 8 & 16 \\ 18 & 24 & 24 & 32 \end{bmatrix}$$

Regression model with n = 2

$$\mathbf{y}_{t} = (\mathbf{X}_{t}^{\mathsf{T}} \otimes \mathbf{I}_{n})^{\mathsf{t}} + \mathbf{e}_{t}$$

$$\begin{bmatrix} y_{1,t} \\ y_{2,t} \end{bmatrix} = \left(\begin{bmatrix} 1 & x_{t} \end{bmatrix} \otimes \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \right) \begin{bmatrix} 1,t \\ 2,t \\ 1,t \\ 2,t \end{bmatrix} + \begin{bmatrix} e_{1,t} \\ e_{2,t} \end{bmatrix}$$

$$\begin{bmatrix} y_{1,t} \\ y_{2,t} \end{bmatrix} = \begin{pmatrix} \begin{bmatrix} 1 & x_t \end{bmatrix} \otimes \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \end{pmatrix} \begin{bmatrix} 1,t \\ 2,t \\ 1,t \\ 2,t \end{bmatrix} + \begin{bmatrix} e_{1,t} \\ e_{2,t} \end{bmatrix}$$

$$\downarrow \downarrow$$

$$\begin{bmatrix} y_{1,t} \\ y_{2,t} \end{bmatrix} = \begin{bmatrix} 1 & 0 & x_t & 0 \\ 0 & 1 & 0 & x_t \end{bmatrix} \begin{bmatrix} 1,t \\ 2,t \\ 1,t \\ 2,t \end{bmatrix} + \begin{bmatrix} e_{1,t} \\ e_{2,t} \end{bmatrix}$$

Covariance of observation errors

Parameter evolution

$$\dot{r}_t = \mathbf{G}_{t-1} + \mathbf{w}_t \text{ with } \mathbf{w}_t \sim \text{MVN}(\mathbf{0}, \mathbf{Q})$$

becomes

$$\mathbf{r}_{t} = (\mathbf{G} \otimes \mathbf{I}_{n})^{2} + \mathbf{w}_{t} \text{ with } \mathbf{w}_{t} \sim \text{MVN}(\mathbf{0}, \mathbf{Q})$$

Parameter evolution

If we have 2 regression parameters and n = 2, then

$$\mathbf{f}_{t} = \begin{bmatrix} \hat{1}_{t} \\ \hat{2}_{t} \\ \hat{1}_{t} \\ \hat{2}_{t} \end{bmatrix} \text{ and } \mathbf{G} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} = \mathbf{I}_{2}$$

Parameter evolution

$$\mathbf{j}_{t} = (\mathbf{G} \otimes \mathbf{I}_{n})^{2} \mathbf{j}_{t-1} + \mathbf{w}_{t}$$

$$\mathbf{j}_{t} = (\mathbf{I}_{2} \otimes \mathbf{I}_{2})^{2} \mathbf{j}_{t-1} + \mathbf{w}_{t}$$

$$\mathbf{I}_{\mathrm{m}} \otimes \mathbf{I}_{\mathrm{n}} = \mathbf{I}_{\mathrm{mn}}$$

$$\mathbf{I}_{2} \otimes \mathbf{I}_{2} = \begin{bmatrix} 1 \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} & 0 \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \\ 0 \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} & 1 \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \end{bmatrix}$$
$$= \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

Parameter evolution

Evolution variance

$$\dot{t} = v_{t-1} + \mathbf{w}_t \text{ with } \mathbf{w}_t \sim \text{MVN}(\mathbf{0}, \mathbf{Q})$$

What form should we choose for **Q**?

Evolution variance

$$\begin{bmatrix} t \\ t \end{bmatrix} \sim \text{MVN} \begin{pmatrix} \begin{bmatrix} \mathbf{0} \\ \mathbf{0} \end{bmatrix}, \begin{bmatrix} \mathbf{Q} & \mathbf{0} \\ \mathbf{0} & \mathbf{Q} \end{bmatrix} \end{pmatrix}$$
$$\mathbf{Q}_{(\cdot)} = \begin{bmatrix} q_{(\cdot)} & 0 & \dots & 0 \\ 0 & q_{(\cdot)} & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & q_{(\cdot)} \end{bmatrix}$$

Diagonal and equal (IID)

Evolution variance

$$\begin{bmatrix} t \\ t \end{bmatrix} \sim MVN \begin{pmatrix} \begin{bmatrix} \mathbf{0} \\ \mathbf{0} \end{bmatrix}, \begin{bmatrix} \mathbf{Q} & \mathbf{0} \\ \mathbf{0} & \mathbf{Q} \end{bmatrix} \end{pmatrix}$$
$$\mathbf{Q}_{(\cdot)} = \begin{bmatrix} q_{(\cdot)1} & 0 & \dots & 0 \\ 0 & q_{(\cdot)2} & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & q_{(\cdot)n} \end{bmatrix}$$

Diagonal and unequal

Evolution variance

$$\begin{bmatrix} t \\ t \end{bmatrix} \sim MVN \begin{pmatrix} \begin{bmatrix} \mathbf{0} \\ \mathbf{0} \end{bmatrix}, \begin{bmatrix} \mathbf{Q} & \mathbf{0} \\ \mathbf{0} & \mathbf{Q} \end{bmatrix} \end{pmatrix}$$

$$\mathbf{Q}_{(\cdot)} = \begin{bmatrix} q_{(\cdot)1,1} & q_{(\cdot)1,2} & \dots & q_{(\cdot)1,n} \\ q_{(\cdot)2,1} & q_{(\cdot)2,2} & \dots & q_{(\cdot)2,n} \\ \vdots & \vdots & \ddots & \vdots \\ q_{(\cdot)n,1} & q_{(\cdot)n,2} & \dots & q_{(\cdot)n,n} \end{bmatrix}$$

Unconstrained

Evolution variance

$$\begin{bmatrix} t \\ t \end{bmatrix} \sim MVN \begin{pmatrix} \begin{bmatrix} \mathbf{0} \\ \mathbf{0} \end{bmatrix}, \begin{bmatrix} \mathbf{Q} & \mathbf{0} \\ \mathbf{0} & \mathbf{Q} \end{bmatrix} \end{pmatrix}$$

Topics for today

Univariate response

- Stochastic level & growth
- · Dynamic Regression
- Dynamic Regression with fixed season
- Forecasting with a DLM
- Model diagnostics

Multivariate response

In practice, keep Q as simple as possible