Require: $\Gamma = \langle \Lambda, p \rangle, \mathcal{IC}$ **Ensure:** $G = \langle N, E, p_N, \vec{p}_E \rangle$ over Γ and \mathcal{IC} 1: $SN \leftarrow sourceNodes(\Gamma)$ 2: $N \leftarrow SN$

in(Q, n)

3: $\forall n = \langle 0, l, \cdot, \cdot \rangle \in N, p_N(n) \leftarrow p(\langle 0, l \rangle)$

Algorithm 1 Building the conditioned trajectory graph

4:
$$Q \leftarrow \emptyset$$

5: **for all** $\tau \in [0..\tau_f - 1]$ **do**
6: **for all** $n \in N$ s.t. $n[\lambda][time] = \tau$

for all $n \in N$ s.t. $n[\lambda][time] = \tau$ do 7: $S \leftarrow buildSuccessors(n, \Gamma, \mathcal{IC})$

for all $n' \in \mathcal{S}$ do

8: let $n' = \langle \tau + 1, l', \delta', TL' \rangle$ 9: $N \leftarrow N \cup \{n'\}, E \leftarrow E \cup \{\langle n, n' \rangle\}$

10: 11:

 $n.loss = 1 - \sum_{\langle n, n' \rangle \in E} p_E^n(\langle n, n' \rangle)$ 12: 13:

14:

15: 16:

17:

18:

19:

31:

if n.loss > 0 then while Q is not empty do

 $n \leftarrow out(Q)$ if n.loss < 1 then

for all $\langle n, n' \rangle \in E$ do $p_E^n(\langle n, n' \rangle) \leftarrow \frac{p_E^n(\langle n, n' \rangle)}{\langle 1-n, loss \rangle}$ for all $\langle n', n \rangle \in E$ do

20: $old \leftarrow p_E^{n'}(\langle n', n \rangle)$ 21: $n'.loss \leftarrow n'.loss + n.loss \times old$

22:

23: 24: 25:

26: 27: 28:

if n.loss = 1 then 29:

30: for all $n \in (N \cap SN)$ do

32: **return** G consisting of $\langle N, E, p_N, \vec{p}_E \rangle$

 $N \leftarrow N - \{n\}$

 $p_N(n) \leftarrow \frac{p_N(n)}{\sum_{n' \in (N \cap SN)} p_N(n')}$

if $n' \notin Q$ then in(Q, n')

if n.loss = 1 then

 $E \leftarrow E - \{\langle n', n \rangle\}$

 $p_E^n(\langle n, n' \rangle) \leftarrow p(\langle \tau + 1, l' \rangle)$

 $p_E^{n'}(\langle n', n \rangle) \leftarrow p_E^{n'}(\langle n', n \rangle) - n.loss \times old$