

# ESCUELA POLITÉCNICA NACIONAL

## FACULTAD DE INGENIERÍA DE SISTEMAS

# Recuperación de la Información

Sistema de Recuperación de Información basado en Reuters-21578

### **INTEGRANTES:**

Allan Adrian Molina Erraez Dylan Santiago Villarroel Celi

Quito, Ecuador

#### Tabla de Ilustraciones

| Ilustración 1 Archivos del Corpus descargados                                       | 4  |
|-------------------------------------------------------------------------------------|----|
| Ilustración 2 Archivos descomprimidos y transformados                               | 4  |
| Ilustración 3 Librerias del preprocesamiento                                        | 4  |
| Ilustración 4 Rutas de los elementos para preprocesamiento                          | 5  |
| Ilustración 5 Función para preprocesamiento                                         | 5  |
| Ilustración 6 Llamada a los archivos y funciones de preprocesamiento                | 6  |
| Ilustración 7 Cargar los Documentos pre-procesados                                  | 7  |
| Ilustración 8 BoW Vectorización                                                     | 7  |
| Ilustración 9 TF-IDF Vectorización                                                  | 8  |
| Ilustración 10 Función Índice Invertido                                             | 9  |
| Ilustración 11 Funcion que guarda el indice invertido                               | 10 |
| Ilustración 12 Función carga el Índice Invertido para usarlo                        |    |
| Ilustración 13 Resultado de TF_IDF                                                  | 12 |
| Ilustración 14 Resultado de BoW                                                     | 13 |
| Ilustración 15 Funciones de Similitud Jaccard y Coseno                              | 13 |
| Ilustración 16 Función de Procesamiento de Query y Función de ranking de resultados | 15 |
| Ilustración 17 Creacion de diccionario a partir del archivo de categorias           | 17 |
| Ilustración 18 Se compara los resultados predichos con las etiquetas reales         | 17 |
| Ilustración 19 Funciones para evaluar los resultados de BoW y TF-IDF                | 18 |
| Ilustración 20 Matriz confusión BoW                                                 | 19 |
| Ilustración 21 Reporte clasificación BoW                                            | 19 |
| Ilustración 22 Matriz confusión TF-IDF                                              | 20 |
| Ilustración 23 Reporte clasificación TF-IDF                                         | 20 |
| Ilustración 24 Librerías para App                                                   | 21 |
| Ilustración 25 Rutas para la App                                                    | 21 |
| Ilustración 26 Carga de Stopwords                                                   | 21 |
| Ilustración 27 Carga de datos pre-procesados                                        | 22 |
| Ilustración 28 Vectorización BoW                                                    | 22 |
| Ilustración 29 Vectorización TF-IDF                                                 | 22 |
| Ilustración 30 Carga Índices Invertidos                                             | 23 |
| Ilustración 31 Preprocesamiento de Querys                                           | 23 |
| Ilustración 32 Función calcula similitud Jaccard                                    | 24 |
| Ilustración 33 Función calcula similitud Coseno                                     | 24 |
| Ilustración 34 Función de búsqueda BoW                                              | 24 |
| Ilustración 35 Función búsqueda TF-IDF                                              | 25 |
| Ilustración 36 Ruta de la página principal                                          | 25 |
| Ilustración 37 Ruta y funciones de la página de Resultados                          | 25 |
| Ilustración 38. Ejecución inicial de la aplicación                                  | 26 |
| Ilustración 39. Documento HTML de la página inicial                                 | 26 |

| Ilustración 40. Documento HTML de la página de resultados | 27 |
|-----------------------------------------------------------|----|
| Ilustración 41.Hoja de estilos de la aplicación web       | 28 |
| Ilustración 42.Página de inicio                           | 29 |
| Ilustración 43.Página de resultados                       | 29 |
| <u>-</u>                                                  |    |

#### 1. Adquisición de Datos Objetivo:

Obtener y preparar el corpus Reuters-21578.

- Se descargó todo el corpus de **Reuters-21578** de la siguiente página: ir24a/proj01/data/reuters.rar at main · ivan-carrera/ir24a (github.com)
- Posterior a la descarga se descomprimió el archivo rar con todas las carpetas necesarias para el proyecto



Ilustración 1 Archivos del Corpus descargados



Ilustración 2 Archivos descomprimidos y transformados

#### 2. Preprocesamiento

Objetivo: Limpiar y preparar los datos para su análisis:

Para esta parte se decidió crear un script aparte para poder guardar todos los documentos ya preprocesados. Este archivo se llama **preprocessing.py.** 

#### Importaciones de Librerías:

El código utiliza las siguientes librerías estándar de Python y de terceros:

```
import os
import re
from nltk.stem import PorterStemmer
```

Ilustración 3 Librerias del preprocesamiento

- os : Para la manipulación de rutas de archivos y creación de directorios.
- re : Para el manejo de expresiones regulares, utilizado en la limpieza de texto.
- PorterStemmer de nltk.stem : Un algoritmo de stemming que reduce palabras a su raíz base.

#### Definición de Rutas y Lectura de Stopwords:

```
# Definir la ruta del corpus y las stopwords en tu sistema local
REUTERS_PATH = "reuters"
STOPWORDS_PATH = os.path.join(REUTERS_PATH, "stopwords.txt")
TRAINING_PATH = os.path.join(REUTERS_PATH, "training")
PROCESSED_PATH = os.path.join(REUTERS_PATH, "processed")

# Leer las stopwords desde el archivo
with open(STOPWORDS_PATH, 'r', encoding='ascii') as file:
    stop_words = set(word.strip() for word in file.readlines())
```

Ilustración 4 Rutas de los elementos para preprocesamiento

Se definen rutas a directorios y archivos relevantes dentro del sistema de archivos local. Además, se lee un archivo de stopwords para su posterior uso en el preprocesamiento de texto.

- REUTERS PATH: Ruta base donde se encuentran los datos de Reuters.
- STOPWORDS\_PATH: Ruta al archivo de stopwords (`stopwords.txt`) dentro de la carpeta `reuters`.
- TRAINING\_PATH: Ruta al directorio que contiene los documentos originales que se van a preprocesar.
- PROCESSED\_PATH: Ruta al directorio donde se guardarán los documentos preprocesados después de aplicar el proceso de limpieza y stemming.
- stop\_words: Conjunto de stopwords cargado desde el archivo `stopwords.txt`
   para su posterior eliminación en el preprocesamiento.

#### Función de Preprocesamiento (`lmp`):

```
# Función de preprocesamiento

def lmp(texto):
    # Normalización
    cleaned_text = re.sub(r'[^\w\s]', '', texto)
    cleaned_text = cleaned_text.lower()
    words = cleaned_text.split()
    # Steaming
    stemmer = PorterStemmer()
    stemmed_words = [stemmer.stem(word) for word in words]
    # Eliminar stopwords
    filtered_words = [word for word in stemmed_words if word not in stop_words]
    cleaned_text = ' '.join(filtered_words)
    return cleaned_text
```

La función `lmp` realiza varias etapas de procesamiento de texto sobre un texto de entrada:

- 1. Normalización: Elimina caracteres no alfanuméricos, convierte el texto a minúsculas y divide en palabras.
- 2. Stemming: Utiliza la librería "PorterStemmer" para reducir cada palabra a su forma base.
- 3. Eliminación de stopwords: Filtra las palabras que están en la lista de stopwords cargada previamente.

#### Preprocesamiento y Guardado de Documentos:

```
# Crear la carpeta si no existe para guardar los documentos preprocesados
if not os.path.exists(PROCESSED_PATH):
    os.makedirs(PROCESSED_PATH)

# Preprocesar y guardar documentos
for filename in os.listdir(TRAINING_PATH):
    input_filepath = os.path.join(TRAINING_PATH, filename)
    output_filepath = os.path.join(PROCESSED_PATH, filename)

with open(input_filepath, 'r', encoding='ascii') as input_file:
    text = input_file.read()
    processed_text = lmp(text)

with open(output_filepath, 'w', encoding='utf-8') as output_file:
    output_file.write(processed_text)

print("Documentos preprocesados y guardados en la carpeta 'processed'.")
```

Ilustración 6 Llamada a los archivos y funciones de preprocesamiento

Este bloque de código crea una carpeta para guardar los documentos preprocesados si no existe, luego itera sobre los archivos en el directorio `TRAINING\_PATH`:

- 1. Creación de Carpeta: Verifica si el directorio "processed" existe; si no, lo crea.
- 2. Iteración sobre Documentos: Para cada archivo en `TRAINING\_PATH`, lee el contenido, aplica la función "Imp" para preprocesar el texto y guarda el texto preprocesado en un archivo nuevo dentro de `PROCESSED\_PATH`.

3. Mensaje de Confirmación: Imprime un mensaje indicando que los documentos han sido preprocesados y guardados exitosamente.

#### Cargar documentos preprocesados:

```
# Cargar documentos preprocesados
documentos = {}
for filename in os.listdir(PROCESSED_PATH):
    filepath = os.path.join(PROCESSED_PATH, filename)
    with open(filepath, 'r', encoding='utf-8') as file:
        text = file.read()
        documentos[filename] = text
```

Ilustración 7 Cargar los Documentos pre-procesados

Este fragmento de código se encuentre dentro de app/app.py

- PROCESSED\_PATH: Ruta al directorio donde se encuentran almacenados los documentos preprocesados.
- documentos: Diccionario que almacenará los textos preprocesados de los documentos.
   Las claves son los nombres de archivo y los valores son los textos preprocesados.

#### 3. Representación de Datos en Espacio Vectorial

Objetivo: Convertir los textos en una forma que los algoritmos puedan procesar

Estos fragmentos de código se encuentran dentro de app/app.py

#### Vectorización Bag of Words (BoW)

```
# Vectorización Bag of Words
corpus = list(documentos.values())
vectorizer_bow = CountVectorizer()
X_bow = vectorizer_bow.fit_transform(corpus)
df_bow = pd.DataFrame(X_bow.toarray(), columns=vectorizer_bow.get_feature_names_out(), index=documentos.keys())
```

#### Ilustración 8 BoW Vectorización

- corpus: Lista de textos preprocesados de los documentos.
- CountVectorizer: Objeto utilizado para convertir una colección de documentos de texto en una matriz de conteo de términos (Bag of Words).
- X\_bow: Matriz de BoW resultante después de aplicar fit\_transform al corpus.
- df\_bow: DataFrame de pandas que contiene la matriz BoW con columnas etiquetadas por nombres de características y filas etiquetadas por nombres de documentos.

#### Vectorización TF-IDF

```
# Vectorización TF-IDF
vectorizer_tfidf = TfidfVectorizer()
X_tfidf = vectorizer_tfidf.fit_transform(corpus)
df_tf_idf = pd.DataFrame(X_tfidf.toarray(), columns=vectorizer_tfidf.get_feature_names_out(), index=documentos.keys())
```

#### Ilustración 9 TF-IDF Vectorización

- TfidfVectorizer: Objeto utilizado para convertir una colección de documentos de texto en una matriz TF-IDF (Term Frequency-Inverse Document Frequency).
- X\_tfidf: Matriz TF-IDF resultante después de aplicar fit\_transform al corpus.
- df\_tf\_idf: DataFrame de pandas que contiene la matriz TF-IDF con columnas etiquetadas por nombres de características y filas etiquetadas por nombres de documentos.

#### Evaluación de los métodos de Vectorización

Para evaluar ambos métodos de vectorización se utiliza 2 métricas esenciales las cuales son tiempo de ejecución y peso computacional.

Bag of Words (BoW): Tuvo un tiempo de ejecución bajo de 1 segundo, y su peso computacionalmente hablando es bajo.

Sin embargo, no considera la importancia de las palabras en el corpus y puede dar mucho peso a palabras muy comunes, pero poco informativas.

**TF-IDF:** El tiempo de ejecución fue mayor al de BoW siendo de 6 segundos, y el peso computacional también es mayor al de BoW.

Al contrario de BoW, TF-IDF pondera las palabras menos comunes que pueden ser más significativas y reduce el peso de palabras comunes.

#### 4. Indexación

Objetivo: Crear un índice que permita búsquedas eficientes.

Estos fragmentos de código se encuentran dentro de Proyecto RI.ipynb

#### Función indice inver:

```
def indice_inver(df):
    indice_invertido = {}
    for columna in df.columns:
        for index, value in df[columna].items():
            if value != 0:
                if columna not in indice_invertido:
                      indice_invertido[columna] = []
                      indice_invertido[columna].append((index, value))
    return indice_invertido
```

Ilustración 10 Función Índice Invertido

Esta función guarda un diccionario de índice invertido en un archivo de texto estructurado.

#### Argumentos:

- indice\_invertido: Diccionario que contiene el índice invertido a guardar.
- directory: Ruta del directorio donde se guardará el archivo.
- filename: Nombre del archivo donde se guardará el índice invertido.

#### Funcionamiento:

- Verifica si el directorio especificado (directory) existe. Si no existe, lo crea utilizando os.makedirs(directory).
- Construye el camino completo al archivo utilizando os.path.join(directory, filename).
- Abre el archivo en modo escritura ('w') y escribe cada término (termino) del diccionario indice\_invertido.
- Para cada término, escribe cada documento (documento) y su frecuencia (frecuencia) asociada en líneas separadas.
- Incluye una línea en blanco después de cada conjunto de documentos asociados a un término para una mejor legibilidad del archivo guardado.

#### Función save\_ind\_inver

```
def save_ind_inver(indice_invertido, directory, filename):
    if not os.path.exists(directory):
        os.makedirs(directory)
    filepath = os.path.join(directory, filename)
    with open(filepath, 'w') as file:
        for termino, documentos in indice_invertido.items():
            file.write(f"Termino: {termino}\n")
            for documento, frecuencia in documentos:
                file.write(f"Documento: {documento}, Frecuencia: {frecuencia}\n")
            file.write("\n")
```

Ilustración 11 Funcion que guarda el indice invertido

Esta función guarda un diccionario de índice invertido en un archivo de texto estructurado.

#### Argumentos:

- indice\_invertido: Diccionario que contiene el índice invertido a guardar.
- directory: Ruta del directorio donde se guardará el archivo.
- filename: Nombre del archivo donde se guardará el índice invertido.

#### Funcionamiento:

- Verifica si el directorio especificado (directory) existe. Si no existe, lo crea utilizando os.makedirs(directory).
- Construye el camino completo al archivo utilizando os.path.join(directory, filename).
- Abre el archivo en modo escritura ('w') y escribe cada término (termino) del diccionario indice\_invertido.
- Para cada término, escribe cada documento (documento) y su frecuencia (frecuencia) asociada en líneas separadas.
- Incluye una línea en blanco después de cada conjunto de documentos asociados a un término para una mejor legibilidad del archivo guardado.

Función load\_inverted\_index\_from\_txt:

```
def load_inverted_index_from_txt(filepath):
    inverted_index = {}
    with open(filepath, 'r', encoding='utf-8') as file:
        current_term = None
        for line in file:
            line = line.strip()
            if line.startswith("Termino:"):
                 current_term = line.split("Termino: ")[1]
                  inverted_index[current_term] = []
            ellif line.startswith("Documento:"):
                  doc_info = line.split("Documento: ")[1]
                  dor_name, weight = doc_info.split(", Frecuencia: ")
                  inverted_index[current_term].append((doc_name, float(weight)))
    return inverted_index

inverted_index_bow_loaded = load_inverted_index_from_txt('/content/drive/MyDrive/reuters/bow/indice_invertido_bow.txt')
inverted_index_tf_idf_loaded = load_inverted_index_from_txt('/content/drive/MyDrive/reuters/tf_idf/indice_invertido_tf_idf.txt')
```

Ilustración 12 Función carga el Índice Invertido para usarlo

Esta función carga un índice invertido desde un archivo de texto previamente guardado.

#### Argumentos:

• filepath: Ruta del archivo de texto que contiene el índice invertido.

#### Funcionamiento:

- Abre el archivo especificado (filepath) en modo lectura ('r') con codificación UTF-8.
- Itera sobre cada línea (line) en el archivo.
- Elimina los espacios en blanco iniciales y finales de cada línea utilizando strip().
- Si la línea comienza con "Término:", extrae el término actual (current\_term) de la línea
  y lo establece como clave en el diccionario inverted\_index, inicializando una lista vacía
  como valor asociado.
- Si la línea comienza con "Documento:", extrae la información del documento (doc\_info), que contiene el nombre del documento (doc\_name) y su frecuencia (weight). Divide esta información para obtener el nombre del documento y la frecuencia, convirtiendo la frecuencia a tipo float.
- Agrega el par (documento, frecuencia) a la lista asociada al término actual (current\_term)
   en el diccionario inverted\_index.
- Retorna el diccionario inverted\_index completo una vez que se ha procesado todo el archivo.

#### Resultados de las funciones:



Ilustración 13 Resultado de TF\_IDF



Ilustración 14 Resultado de BoW

#### 5. Diseño del Motor de Búsqueda

Implementar algoritmos de similitud como similitud coseno o Jaccard.

```
def jaccard_similarity(query_tokens, document_tokens):
   intersection = len(set(query_tokens) & set(document_tokens))
   union = len(set(query_tokens) | set(document_tokens))
   return intersection / union if union != 0 else 0 # Avoid division by zero

def cosine_similarity_score(vector1, vector2):
   return cosine_similarity([vector1], [vector2])[0][0]
```

Ilustración 15 Funciones de Similitud Jaccard y Coseno

La **función jaccard\_similarity** mide la similitud entre dos conjuntos de tokens (palabras o términos) utilizando el coeficiente de Jaccard.

#### **Proceso:**

• Intersección: Calcula el número de elementos comunes entre query\_tokens y document\_tokens utilizando la operación de intersección de conjuntos (&).

- Unión: Calcula el número total de elementos únicos presentes en cualquiera de los dos conjuntos utilizando la operación de unión de conjuntos (|).
- Coeficiente de Jaccard: Divide el tamaño de la intersección por el tamaño de la unión para obtener el coeficiente de Jaccard. Si la unión es cero, la función devuelve 0 para evitar la división por cero.

#### Salida:

Un valor entre 0 y 1 que indica la similitud entre los dos conjuntos de tokens. Un valor de 1 indica que los conjuntos son idénticos, mientras que un valor de 0 indica que no tienen elementos en común.

La **función cosine\_similarity\_score** mide la similitud entre dos vectores utilizando la similitud del coseno.

#### **Proceso:**

- **Similitud del Coseno**: Utiliza la función cosine\_similarity de sklearn.metrics.pairwise para calcular la similitud del coseno entre los dos vectores.
- **Formato de Entrada**: La función cosine\_similarity espera una lista de vectores como entrada, por lo que se envuelven vector1 y vector2 en listas.
- Extracción del Resultado: La función devuelve un valor entre -1 y 1, donde 1 indica que los vectores son idénticos, 0 indica que no tienen correlación y -1 indica que son diametralmente opuestos.

#### Salida:

Un valor entre -1 y 1 que indica la similitud entre los dos vectores. Un valor cercano a 1 indica una alta similitud, mientras que un valor cercano a 0 indica baja similitud.

Desarrollo de la lógica para procesar consultas de usuarios y un algoritmo de ranking para ordenar los resultados

```
def process_query(query):
   cleaned_query = lmp(query)
    return cleaned_query.split()
def search_with_bow(query, inverted_index_bow, documents):
    query tokens = process query(query)
   doc_tokens = {doc_id: documents[doc_id].split() for doc_id in documents}
    scores = {}
    for doc_id in doc_tokens:
        score = jaccard_similarity(query_tokens, doc_tokens[doc_id])
       if score > 0:
           scores[doc_id] = score
    ranked_results = sorted(scores.items(), key=lambda x: x[1], reverse=True)
    return ranked results
def search_with_tfidf(query, tfidf_matrix, vectorizer_tfidf, documents):
    query tokens = process_query(query)
   query_vector = vectorizer_tfidf.transform([' '.join(query_tokens)]).toarray()[0]
    scores = {}
    for idx, doc id in enumerate(documents.keys()):
        doc_vector = tfidf_matrix[idx].toarray()[0]
       score = cosine_similarity_score(query_vector, doc_vector)
       if score > 0:
            scores[doc_id] = score
    ranked results = sorted(scores.items(), key=lambda x: x[1], reverse=True)
    return ranked results
```

Ilustración 16 Función de Procesamiento de Query y Función de ranking de resultados

El siguiente código implementa dos funciones de búsqueda, search\_with\_bow y search\_with\_tfidf, que utilizan Bag of Words (BoW) y TF-IDF, respectivamente, para encontrar documentos relevantes basados en una consulta de texto. Ambas funciones emplean process\_query para limpiar y tokenizar la consulta, convirtiéndola en una lista de tokens.

#### Función search\_with\_bow

La función search\_with\_bow busca documentos utilizando el modelo Bag of Words. Primero, tokeniza la consulta y los documentos. Luego, calcula la similitud de Jaccard entre los tokens de la consulta y los tokens de cada documento. Los documentos con similitud mayor a cero se guardan con sus puntuaciones en un diccionario, que posteriormente se ordena en orden descendente para devolver los documentos más relevantes.

#### Función search\_with\_tfidf

La función search\_with\_tfidf busca documentos utilizando el modelo TF-IDF. Primero, tokeniza la consulta y la convierte en un vector TF-IDF. Luego, calcula la similitud del coseno entre el vector de la consulta y los vectores TF-IDF de cada documento. Los documentos con una similitud mayor a cero se guardan con sus puntuaciones en un diccionario, que posteriormente se ordena en orden descendente para devolver los documentos más relevantes.

6. Evaluación del Sistema

Objetivo: Medir la efectividad del sistema.

Definir un conjunto de métricas de evaluación: Las métricas de evaluación que se

utilizarán son:

Precisión (Precisión)

Exhaustividad (Recall)

• F1-score

Realizar pruebas utilizando el conjunto de prueba del corpus: Utilizaremos un conjunto

de documentos categorizados para evaluar el rendimiento del sistema de recuperación de

información basado en Bag of Words (BoW) y TF-IDF.

Comparar el rendimiento de diferentes configuraciones del sistema: Compararemos el

rendimiento del sistema utilizando BoW y TF-IDF.

Los resultados de las evaluaciones se documentarán mediante matrices de confusión y

reportes de clasificación.

Crea dos diccionarios a partir de un archivo de categorías, uno que mapea categorías a

documentos y otro que mapea documentos a categorías.

```
def crear_diccionario_categorias(archivo):
   # Creamos un diccionario para almacenar las categorías y sus documentos
   categorias = collections.defaultdict(list)
   with open(archivo, 'r') as file:
       for linea in file:
           # Separamos la línea en la ruta del documento y las categorías
           ruta, *cats = linea.strip().split()
           # Extraemos el número del documento de la ruta
           numero_documento = ruta.split('/')[1]
           # Añadimos el número del documento a cada categoría correspondiente
           for cat in cats:
                categorias[cat].append(numero_documento)
   # Crear un diccionario de documentos a categorías (invirtiendo el anterior)
   documentos_categorias = collections.defaultdict(list)
   for categoria, docs in categorias.items():
        for doc in docs:
           documentos_categorias[doc].append(categoria)
   return documentos_categorias, list(categorias.keys())
```

Ilustración 17 Creacion de diccionario a partir del archivo de categorias

Generan las etiquetas verdaderas y predichas necesarias para la evaluación del rendimiento del modelo.

```
def obtener_etiquetas_verdaderas(documentos, query_categoria):
    etiquetas_verdaderas = []
    for doc_id in documentos:
        if query_categoria in documentos_categorias[doc_id]:
            etiquetas_verdaderas.append(0)
        else:
            etiquetas_verdaderas.append(1)
        return etiquetas_verdaderas

def obtener_etiquetas_predichas(resultados):
    return [0 if score > 0 else 1 for _, score in resultados]
```

Ilustración 18 Se compara los resultados predichos con las etiquetas reales

Evalúan el sistema utilizando BoW y TF-IDF respectivamente, devolviendo las etiquetas verdaderas y predichas.

```
def evaluar_bow(query, query_categoria, inverted_index_bow, documentos):
    resultados = search_with_bow(query, inverted_index_bow, documentos)
    documentos_resultados = [doc_id for doc_id, _ in resultados]
    etiquetas_verdaderas = obtener_etiquetas_verdaderas(documentos_resultados, query_categoria)
    etiquetas_predichas = obtener_etiquetas_predichas(resultados)
    return etiquetas_verdaderas, etiquetas_predichas

def evaluar_tfidf(query, query_categoria, tfidf_matrix, vectorizer_tfidf, documentos):
    resultados = search_with_tfidf(query, tfidf_matrix, vectorizer_tfidf, documentos)
    documentos_resultados = [doc_id for doc_id, _ in resultados]
    etiquetas_verdaderas = obtener_etiquetas_verdaderas(documentos_resultados, query_categoria)
    etiquetas_predichas = obtener_etiquetas_predichas(resultados)
    return etiquetas_verdaderas, etiquetas_predichas
```

Ilustración 19 Funciones para evaluar los resultados de BoW y TF-IDF

#### Proceso de Evaluación:

- Para cada categoría, se realiza una búsqueda con BoW y TF-IDF.
- Las etiquetas verdaderas y predichas se almacenan para su posterior análisis.

#### Matriz de Confusión y Reporte de Clasificación:

Se generan matrices de confusión y reportes de clasificación para visualizar y evaluar el rendimiento global del sistema.

Los resultados de usar BoW:

#### Matriz de Confusión Global



Ilustración 20 Matriz confusión BoW

| Reporte de c | lasificación | global pa | ra Bag of | Words:  |
|--------------|--------------|-----------|-----------|---------|
|              | precision    | recall    | f1-score  | support |
| Relevante    | 0.28         | 0.30      | 0.29      | 9584    |
| No Relevante | 0.99         | 0.99      | 0.99      | 689626  |
| accuracy     |              |           | 0.98      | 699210  |
| macro avg    | 0.63         | 0.64      | 0.64      | 699210  |
| weighted avg | 0.98         | 0.98      | 0.98      | 699210  |

Ilustración 21 Reporte clasificación BoW

#### Los resultados de usar TF-IDF:



Ilustración 22 Matriz confusión TF-IDF

| Reporte de c | lasificación<br>precision | •    | ra TF-IDF:<br>f1-score | support |
|--------------|---------------------------|------|------------------------|---------|
|              | -                         |      |                        |         |
| Relevante    | 0.28                      | 0.30 | 0.29                   | 9584    |
| No Relevante | 0.99                      | 0.99 | 0.99                   | 689626  |
|              |                           |      |                        |         |
| accuracy     |                           |      | 0.98                   | 699210  |
| macro avg    | 0.63                      | 0.64 | 0.64                   | 699210  |
| weighted avg | 0.98                      | 0.98 | 0.98                   | 699210  |
|              |                           |      |                        |         |

Ilustración 23 Reporte clasificación TF-IDF

#### 7. Interfaz Web de Usuario

Objetivo: Crear una interfaz para interactuar con el sistema

#### API para la página Web:

Todos los archivos se encuentran en app/app.py

#### Importaciones y Configuración Inicial

```
from flask import Flask, request, render_template
import os
import re
import pandas as pd
from nltk.stem import PorterStemmer
from sklearn.feature_extraction.text import TfidfVectorizer, CountVectorizer
from sklearn.metrics.pairwise import cosine_similarity
```

Ilustración 24 Librerías para App

- Flask: Framework web para crear aplicaciones web.
- os, re, pandas: Módulos estándar de Python para operaciones del sistema, expresiones regulares y manipulación de datos.
- nltk, sklearn: Librerías para procesamiento de lenguaje natural y aprendizaje automático.

#### Rutas del sistema

```
app = Flask(__name__)

# Paths

CORPUS_PATH = "reuters/training"

PROCESSED_PATH = "reuters/processed"

STOPWORDS_PATH = "reuters/stopwords"

BOW_INDEX_PATH = "reuters/bow/indice_invertido_bow.txt"

TFIDF_INDEX_PATH = "reuters/tf_idf/indice_invertido_tf_idf.txt"
```

Ilustración 25 Rutas para la App

Variables que almacenan las rutas a los archivos y directorios necesarios.

#### Carga de Stopwords

```
# Load stopwords
with open(STOPWORDS_PATH, 'r', encoding='ascii') as file:
    stop_words = set(word.strip() for word in file.readlines())
```

Ilustración 26 Carga de Stopwords

• Lee las stopwords desde un archivo y las almacena en un conjunto para eliminar palabras irrelevantes durante el procesamiento de texto.

#### Carga de Documentos Preprocesados

```
# Load preprocessed documents
documentos = {}
for filename in os.listdir(PROCESSED_PATH):
    filepath = os.path.join(PROCESSED_PATH, filename)
    with open(filepath, 'r', encoding='ascii') as file:
        cleaned_text = file.read()
        documentos[filename] = cleaned_text
```

Ilustración 27 Carga de datos pre-procesados

 Carga los documentos ya preprocesados desde un directorio y los almacena en un diccionario.

#### Vectorización de Documentos

• Vectorización Bag of Words (BOW)

```
corpus = list(documentos.values())
vectorizer_bow = CountVectorizer()
X_bow = vectorizer_bow.fit_transform(corpus)
df_bow = pd.DataFrame(X_bow.toarray(), columns=vectorizer_bow.get_feature_names_out(), index=documentos.keys())
```

Ilustración 28 Vectorización BoW

- CountVectorizer: Convierte la colección de documentos de texto en una matriz de tokens contados.
- o df\_bow: DataFrame que contiene la matriz de BOW.
- Vectorización TF-IDF

```
vectorizer_tfidf = TfidfVectorizer()
X_tfidf = vectorizer_tfidf.fit_transform(corpus)
df_tf_idf = pd.DataFrame(X_tfidf.toarray(), columns=vectorizer_tfidf.get_feature_names_out(), index=documentos.keys())
```

Ilustración 29 Vectorización TF-IDF

- o TfidfVectorizer: Convierte la colección de documentos en una matriz TF-IDF.
- o df\_tf\_idf: DataFrame que contiene la matriz TF-IDF.

#### Función para Cargar Índices Invertidos

```
# Functions for loading indices and searching
def load inverted index from txt(filepath):
    inverted index = {}
    with open(filepath, 'r', encoding='utf-8') as file:
       current_term = None
        for line in file:
            line = line.strip()
            if line.startswith("Termino:"):
                current_term = line.split("Termino: ")[1]
               inverted_index[current_term] = []
            elif line.startswith("Documento:"):
               doc info = line.split("Documento: ")[1]
                doc name, weight = doc info.split(", Frecuencia: ")
                inverted_index[current_term].append((doc_name, float(weight)))
   return inverted_index
inverted index bow loaded = load inverted index from txt(BOW INDEX PATH)
inverted_index_tfidf_loaded = load_inverted_index_from_txt(TFIDF_INDEX_PATH)
```

Ilustración 30 Carga Índices Invertidos

- Carga un índice invertido desde un archivo de texto. El diccionario resultante tiene términos como claves y listas de tuplas (documento, frecuencia) como valores.
- Utiliza la función definida para cargar los índices invertidos de BOW y TF-IDF.
- filepath (str): Ruta al archivo de texto que contiene el índice invertido.

#### Procesamiento de Consultas

```
# Funciones de búsqueda
def process_query(query):
    cleaned_query = re.sub(r'[^\w\s]', '', query.lower())
    words = cleaned_query.split()
    stemmer = PorterStemmer()
    stemmed_words = [stemmer.stem(word) for word in words]
    filtered_words = [word for word in stemmed_words if word not in stop_words]
    return filtered_words
```

Ilustración 31 Preprocesamiento de Querys

- Normaliza, aplica stemming y filtra stopwords de una consulta de búsqueda.
- query (str): La consulta de búsqueda ingresada por el usuario.
- filtered\_words (list): Lista de palabras de la consulta procesada.

#### Cálculo de Similitud

• Similitud Jaccard

```
def jaccard_similarity(query_tokens, document_tokens):
   intersection = len(set(query_tokens) & set(document_tokens))
   union = len(set(query_tokens) | set(document_tokens))
   return intersection / union if union != 0 else 0
```

Ilustración 32 Función calcula similitud Jaccard

- Calcula la similitud Jaccard entre los tokens de la consulta y los tokens del documento realizando la intersección y unión de conjuntos.
- o query\_tokens (list): Lista de tokens de la consulta.
- o document\_tokens (list): Lista de tokens del documento.

#### Similitud Coseno

```
def cosine_similarity_score(vector1, vector2):
    return cosine_similarity([vector1], [vector2])[0][0]
```

Ilustración 33 Función calcula similitud Coseno

- o Calcula la similitud coseno entre dos vectores.
- o vector1 (ndarray): Primer vector.
- o vector2 (ndarray): Segundo vector.

#### Búsqueda con BOW

```
def search_with_bow(query, inverted_index_bow, documents):
    query_tokens = process_query(query)
    doc_tokens = {doc_id: documentos[doc_id].split() for doc_id in documentos}
    scores = {}
    for doc_id in doc_tokens:
        scores[doc_id] = jaccard_similarity(query_tokens, doc_tokens[doc_id])
    ranked_results = sorted(scores.items(), key=lambda x: x[1], reverse=True)
    return [doc_id for doc_id, score in ranked_results]
```

Ilustración 34 Función de búsqueda BoW

- Realiza una búsqueda utilizando el modelo BOW y devuelve una lista de IDs de documentos ordenados por relevancia basada en la similitud Jaccard.
- query (str): La consulta de búsqueda.
- inverted\_index\_bow (dict): El índice invertido BOW.
- documents (dict): Diccionario de documentos preprocesados.

#### Búsqueda con TF-IDF

```
def search_with_tfidf(query, tfidf_matrix, vectorizer_tfidf, documents):
    query_tokens = process_query(query)
    query_vector = vectorizer_tfidf.transform([' '.join(query_tokens)]).toarray()[0]
    scores = {}
    for idx, doc_id in enumerate(documents.keys()):
        doc_vector = tfidf_matrix[idx].toarray()[0]
        scores[doc_id] = cosine_similarity_score(query_vector, doc_vector)
    ranked_results = sorted(scores.items(), key=lambda x: x[1], reverse=True)
    return [doc_id for doc_id, score in ranked_results]
```

Ilustración 35 Función búsqueda TF-IDF

- Realiza una búsqueda utilizando el modelo TF-IDF y devuelve una lista de IDs de documentos ordenados por relevancia basada en la similitud coseno.
- query (str): La consulta de búsqueda.
- tfidf\_matrix (sparse matrix): Matriz TF-IDF de los documentos.
- vectorizer\_tfidf (TfidfVectorizer): El vectorizador TF-IDF.
- documents (dict): Diccionario de documentos preprocesados.

#### Rutas de Flask

• Ruta Principal

```
@app.route('/')
def index():
    return render_template('index.html')
```

Ilustración 36 Ruta de la página principal

- o Renderiza la página principal del sitio web.
- Ruta de Búsqueda

```
@app.route('/search', methods=['POST'])
def search():
    query = request.form['query']
    search_type = request.form['search_type']

if search_type == 'bow':
    results_bow = search_with_bow(query, inverted_index_bow_loaded, documentos)
    return render_template('resultados.html', results_bow=results_bow[:5], results_tfidf=[])
elif search_type == 'tfidf':
    results_tfidf = search_with_tfidf(query, X_tfidf, vectorizer_tfidf, documentos)
    return render_template('resultados.html', results_bow=[], results_tfidf=results_tfidf[:5])
```

Ilustración 37 Ruta y funciones de la página de Resultados

- Maneja las solicitudes de búsqueda. Realiza una búsqueda utilizando BOW o TF-IDF en función del tipo de búsqueda seleccionado y renderiza los resultados en la plantilla resultados.html.
- Ejecución de la Aplicación

```
if __name__ == '__main__':
    app.run(debug=True)
```

Ilustración 38. Ejecución inicial de la aplicación

o Inicia la aplicación Flask en modo de depuración.

#### **Front End:**

#### • Templates:

#### Index.html

Ilustración 39. Documento HTML de la página inicial

- Estructura del Documento:
  - o Declara el tipo de documento HTML5 y establece el idioma del contenido.
  - Define la cabecera del documento con meta-información y enlaces a archivos
     CSS de Bootstrap y un archivo CSS personalizado.
- Cuerpo del Documento:
  - Contiene un título principal "Buscar en documentos" dentro de un contenedor.
  - Un formulario que permite al usuario ingresar una consulta de búsqueda y elegir entre dos métodos de búsqueda (BOW o TF-IDF).
  - Incluye botones estilizados con Bootstrap para enviar la consulta.
- Inclusión de Scripts:
  - Añade scripts para jQuery, Popper.js, y Bootstrap para proporcionar funcionalidad interactiva y estilos.
- Funcionalidad

Formulario de Búsqueda:

- O Un campo de entrada de texto para la consulta del usuario.
- Dos botones de envío que determinan si la búsqueda se realizará usando Bag of Words (BOW) o TF-IDF.
- El formulario se envía a la ruta /search del servidor mediante el método POST.

#### Resultados.html

```
<html lang="en"
   <meta charset="UTF-8":</pre>
   <title>Resultados de búsqueda</title>
   <link rel="stylesheet" type="text/css" href="{{ url_for('static', filename='style.css') }}">
   <div class="header":
      <h1>Resultados de búsqueda</h1>
   <div class="container">
      <h2>Resultados con Bag of Words:</h2>
         {% for result in results_bow %}
          Documento: {{ result }}
         {% endfor %}
      <h2>Resultados con TF-IDF:</h2>
         {% for result in results tfidf %}
          Documento: {{ result }}
         {% endfor %}
      <a href="/" class="btn btn-primary">Nueva búsqueda</a>
   <script src="https://cdn.jsdelivr.net/npm/@popperjs/core@2.9.2/dist/umd/popper.min.js"></script>
   <script src="https://stackpath.bootstrapcdn.com/bootstrap/4.5.2/js/bootstrap.min.js"\times/script\)</pre>
```

Ilustración 40. Documento HTML de la página de resultados

- Estructura del Documento
  - o Se define el tipo de documento como HTML5 y el idioma como inglés.
  - La cabecera incluye meta-información y enlaces a hojas de estilo CSS de Bootstrap y un archivo CSS personalizado.
- Cuerpo del Documento
  - o Contiene un encabezado principal "Resultados de búsqueda".
  - Sección de resultados con dos listas:
  - o Resultados obtenidos mediante Bag of Words (BOW).
  - o Resultados obtenidos mediante TF IDF.
  - o Un enlace para regresar a la página principal y realizar una nueva búsqueda.

- Inclusión de Scripts
  - Scripts para jQuery, Popper.js y Bootstrap para funcionalidades interactivas y estilos.
- Funcionalidad
  - Muestra resultados de búsqueda separados en dos listas:
  - o Una lista para los resultados usando Bag of Words (BOW).
  - Otra lista para los resultados usando TF IDF.
  - o Cada elemento de la lista muestra el nombre del documento encontrado.

#### • Static

#### **Style.css**

```
padding-top: 20px;
.header {
   background-color: #007bff;
   color: ■white;
    padding: 10px 0;
    text-align: center;
.container {
   max-width: 600px;
   margin: auto;
    padding: 20px;
    box-shadow: 0 0 10px □rgba(0,0,0,0.1);
    border-radius: 10px;
    background-color: #f8f9fa;
h2 {
    margin-top: 30px;
ul {
    padding-left: 20px;
a {
    display: block;
    text-align: center;
    margin-top: 20px;
.form-group {
    margin-bottom: 20px;
```

Ilustración 41. Hoja de estilos de la aplicación web

Estilos para el diseño de las páginas

#### **Resultados:**

#### **Buscar en documentos**



Ilustración 42. Página de inicio

# Resultados de búsqueda

# Resultados con Bag of Words:

Documento: 12008.txt
Documento: 1910.txt
Documento: 13242.txt
Documento: 2954.txt
Documento: 9265.txt

### **Resultados con TF-IDF:**

Nueva búsqueda

Ilustración 43. Página de resultados