Раздел 4. Прямая на плоскости

4.1 Различные виды уравнения прямой

Каждая прямая на плоскости Oxy определяется линейным уравнением первой степени с двумя неизвестными. Обратно: каждое линейное уравнение первого порядка с двумя неизвестными определяет некоторую прямую на плоскости.

- 1. Всякую прямую, не параллельную оси координат, можно представить уравнением вида y=kx+b (4.1), где k угловой коэффициент прямой (то есть тангенс угла α , который прямая образует с положительным направлением оси $Ox,\ k=tg\alpha=tg\angle XLS$), b ордината точки пересечения прямой с осью $Oy,\ b=OK$). Уравнение 4.1 называют уравнением прямой с угловым коэффициентом или уравнением, разрешенным относительно ординаты.
- 2. Уравнение вида Ax + By + C = 0 (4.2) называется *общим уравнением прямой*, где A, B, C постоянные коэффициенты, причем A и B одновременно не обращаются в нуль ($A^2 + B^2 \neq 0$).

Вектор $\vec{n}(A; B)$ называется нормальным вектором прямой (\vec{n} перпендикулярен прямой).

Частные случаи этого уравнения:

Ax + By = 0 (C = 0) – прямая проходит через начало координат;

Ax + C = 0 (B = 0) – прямая параллельна оси Oy;

By + C = 0 (A = 0) - прямая параллельна оси <math>Ox;

Ax = 0 (B = C = 0) – прямая совпадает с осью Oy;

 $By = 0 \ (A = C = 0)$ – прямая совпадает с осью Ox.

- 3. **Уравнение прямой в отрезках**: $\frac{x}{a} + \frac{y}{b} = 1$, (4.3), где a и b длины отрезков (с учетом знаков), отсекаемых прямой на осях Ox и Oy соответственно.
- 4. Уравнение прямой, проходящей через данную точку в данном направлении: $y-y_0=k(x-x_0)$ (4.4), где k угловой коэффициент прямой; $(x_0; y_0)$ координаты данной точки. Уравнение (4.4)

называют также *уравнением пучка прямых* с центром в точке $(x_0; y_0)$. Уравнение пучка прямых, проходящих через точку пересечения двух прямых $A_1x + B_1y + C_1 = 0$ и $A_2x + B_2y + C_2 = 0$ имеет вид:

$$A_1x + B_1y + C_1 + \lambda(A_2x + B_2y + C_2) = 0$$
 (4.5),

где λ — числовой множитель.

5. Уравнение прямой, проходящей через две данные точки $M_1(x_1; y_1)$ и $M_2(x_2; y_2)$, где $x_1 \neq x_2, \ y_1 \neq y_2$ имеет вид $\frac{y-y_1}{y_2-y_1} = \frac{x-x_1}{x_2-x_1}$ (4.6). Угловой коэффициент прямой, проходящей через две

данные точки определяется по формуле $k = \frac{y_2 - y_1}{x_2 - x_1}$.

Если $x_1 = x_2$, то уравнение прямой (4.6) имеет вид $x = x_1$; если $y_1 = y_2$, то: $y = y_1$.

6. **Нормальное уравнение прямой** имеет вид $x\cos\alpha + y\sin\alpha - p = 0$ (4.7), где p — длина перпендикуляра, опущенного из начала координат на прямую, α — угол, который этот перпендикуляр образует с положительным направлением оси Ox.

Общее уравнение прямой (4.2) можно преобразовать в нормальное уравнение (4.7) путём умножения на нормирующий множитель $\lambda = \frac{1}{+\sqrt{\Lambda^2 + R^2}};$ знак перед дробью берётся противоположный знаку

свободного члена С (в общем уравнении прямой).

7. Уравнение прямой в полярных координатах имеет вид $r\cos(\varphi-\alpha)=p$, (4.8), r, φ , α , p — изображены на рисунке (полярная система координат). r — расстояние от начала координат до точки M, φ — угол между полярной осью и OM, p — расстояние от начала координат до искомой прямой, α — угол между полярной осью и перпендикуляром из точки O на прямую.

Пример 4.1. Построить прямую, заданную уравнением

$$2x - y - 4 = 0.$$

1) Для построения прямой достаточно знать координаты двух её произвольных точек. Полагая в уравнении прямой, например, x = 0, получим y = -4. Имеем одну точку A(0; -4). Полагая x = 1,

y 2 2 x -4 x

Рис. 26

Рис. 27

получим y = -2. Отсюда вторая точка B(1; -2). Осталось построить точки A и B и провести через них прямую (рис. 26).

2) Задачу можно решить иначе, используя уравнение прямой в отрезках. Приведём уравнение к виду (4.3). Для этого перенесём свободный член (-4) в правую часть уравнения и обе его части разделим на 4.

Получаем
$$2x - y = 4$$
, $\frac{2x}{4} - \frac{y}{4} = 1$, т.е., $\frac{x}{2} + \frac{y}{-4} = 1$ – уравнение прямой в отрезках на осях. На оси Ox

уравнение прямой в отрезках на осях. На оси Ox отложим 2 единицы вправо (от начала координат); на оси Oy отложим 4 единицы вниз. Получаем две точки

на осях, через которые проводим прямую (рис.27).

Пример 4.2. Уравнение прямой 4x-3y+12=0 представить в различных видах (с угловым коэффициентом, в отрезках, в виде нормального уравнения).

Для получения уравнения прямой с угловым коэффициентом разрешим заданное уравнение относительно у. Получим 3y = 4x + 12 и далее $y = \frac{4}{3}x + 4$ — уравнение прямой с угловым коэффициентом; здесь $k = \frac{4}{3}$, b = 4.

Для получения уравнения прямой в отрезках перенесём свободный член C=12 вправо и разделим обе части уравнения на -12. В результате получим $\frac{x}{-3} + \frac{y}{4} = 1$ — уравнение в отрезках на осях; здесь a=-3, b=4.

Приведём исходное уравнение к нормальному виду (4.7).

Для этого умножим обе части уравнения 4x-3y+12=0 на нормирующий множитель $\lambda=\frac{1}{-\sqrt{4^2+(-3)^2}}$, т.е. $\lambda=-\frac{1}{5}$. Перед корнем взят знак «минус», т.к.свободный член (C=12) имеет

знак «плюс». Получим $-\frac{1}{5}(4x-3y+12)=0$, т.е. $-\frac{4}{5}x+\frac{3}{5}y-\frac{12}{5}=0$; здесь $\cos\alpha=-\frac{4}{5}$, $\sin\alpha=\frac{3}{5}$ ($\cos^2\alpha+\sin^2\alpha=\frac{16}{25}+\frac{9}{25}=1$), $p=\frac{12}{5}$, т.е. расстояние от $O(0;\ 0)$ до прямой равно 2,4.

Пример 4.3. Написать уравнение прямой, проходящей через точки: a) A(0; 2), B(-3; 7); б) A(2; 1), B(4; 1).

Решение: а) Используем уравнение (4.6). Полагая в нём $x_1=0$, $y_1=2$, $x_2=-3$, $y_2=7$, получим $\frac{y-2}{7-2}=\frac{x-0}{-3-0}$, или $\frac{y-2}{5}=\frac{x}{-3}$, т.е. -3y+6=5x или 5x+3y-6=0.

б) Решаем аналогично: $\frac{y-1}{1-1} = \frac{x-2}{4-2}$. Так как $y_1 = y_2$, заключаем, что y-1=0, y=1 есть уравнение прямой, проходящей через точки A и B.

Пример 4.4. Из пучка прямых определяемых уравнением y+3=k(x-2) выделить ту, которая проходит через точку A(-2; 5).

Подставим координаты точки A в уравнение прямой: 5+3=k(-2-2), получим k=8:(-4)=-2. Следовательно, искомое уравнение прямой есть y+3=-2(x-2), т.е. 2x+y-1=0.

Пример 4.5. Составить уравнение прямой в полярных координатах, если

известно, что она проходит через точку
$$M\!\left(2;\,rac{\pi}{3}
ight)$$
 и наклонена к полярной оси под углом $rac{2\pi}{3}$.

Решение: воспользуемся уравнением (4.8). Опустим из точки O перпендикуляр на прямую (см. рис. 29), очевидно, что $\alpha = \frac{\pi}{2} - \left(\pi - \frac{2\pi}{3}\right) = \frac{\pi}{2} - \frac{\pi}{3} = \frac{\pi}{6}.$ Тогда длин перпендикуляра p находим из

прямоугольного треугольника:
$$p = OM \cos \left(\frac{\pi}{3} - \frac{\pi}{6}\right) = 2 \cos \frac{\pi}{6} = 2 \cdot \frac{\sqrt{3}}{2} = \sqrt{3} \; , \qquad \text{т.e.} \qquad p = \sqrt{3} \; .$$
 Следовательно, уравнение искомой прямой есть $r \cos \left(\varphi - \frac{\pi}{6}\right) = \sqrt{3} \; .$

4.2 Угол между двумя прямыми, условия параллельности и перпендикулярности двух прямых, расстояние от данной точки до данной прямой

Под углом между прямыми в плоскости понимают наименьший (острый) из двух смежных углов, образованными этими прямыми.

Если прямые l_1 и l_2 заданы уравнениями с угловыми коэффициентами $y=k_1x+b_1$ и $y=k_2x+b_2$, то угол φ между ними вычисляется по формуле: $tg\varphi=\frac{k_2-k_1}{1+k_1k_2}$ (4.9).

Условие параллельности прямых l_1 и l_2 имеет вид $k_1=k_2$ (4.10), а условие их перпендикулярности $k_1=-\frac{1}{k_2}$ (4.11) (или $k_1k_2=-1$).

Если прямые l_1 и l_2 заданы общими уравнениями $A_1x+B_1y+C_1=0$ и $A_2x+B_2y+C_2=0$,то величина φ угла между ними вычисляется по формуле: $tg\varphi=\left|\frac{A_1B_2-A_2B_1}{A_1A_2+B_1B_2}\right|$ (4.12). Условие их параллельности $\frac{A_1}{A_2}=\frac{B_1}{B_2}$ (или $A_1B_2-A_2B_1=0$ (4.13). Условие их перпендикулярности $A_1A_2+B_2B_1=0$ (4.14).

Для нахождения общих точек прямых l_1 и l_2 необходимо решить систему уравнений

$$\begin{cases} A_1x + B_1y + C_1 = 0, \\ A_2x + B_2y + C_2 = 0, \end{cases}$$
 или
$$\begin{cases} y = k_1x + b_1, \\ y = k_2x + b_2. \end{cases}$$
 (4.15)

 Π ри этом:

Если $\frac{A_{\rm l}}{A_{\rm 2}} \neq \frac{B_{\rm l}}{B_{\rm 2}}$, то имеется единственная точка пересечения прямых.

Если $\frac{A_1}{A_2} = \frac{B_1}{B_2} \neq \frac{C_1}{C_2}$ — прямые l_1 и l_2 не имеют общей точки, т.е. параллельны.

Если $\frac{A_1}{A_2} = \frac{B_1}{B_2} = \frac{C_1}{C_2}$ — прямые имеют бесконечное множество общих точек, т.е. совпадают.

Расстоянием d от точки $M_0(x_0; y_0)$ до прямой Ax + By + C = 0 называется длина перпендикуляра, опущенного из этой точки на прямую.

Расстояние d определяется по формуле: $d = \frac{\left|Ax_0 + By_0 + C\right|}{\sqrt{A^2 + B^2}}$ (4.16)

Расстояние от точки $M_0 (x_0; y_0)$ до прямой $x \cos \alpha + y \sin \alpha - p = 0$ вычисляется по формуле $d = |x_0 \cos \alpha + y_0 \sin \alpha - p|$ (4.17).

Пример 4.6. Найти угол между прямыми: 1) y = 2x - 3 и $y = \frac{1}{2}x + 5$; 2) 2x - 3y + 10 = 0 и 5x - y + 4 = 0; 3) $y = \frac{3}{4}x - 2$ и 8x + 6y + 5 = 0; 4) y = 5x + 1 и y = 5x - 2.

Решение:

$$tg\varphi = \left| \frac{\frac{1}{2} - 2}{1 + 2 \cdot \frac{1}{2}} \right| = \left| \frac{-\frac{3}{2}}{2} \right| = \frac{3}{4}, \ \varphi = arctg\frac{3}{4} \ (\varphi \approx 37^{\circ}).$$

- 2) Подставим значения $A_1=2$, $B_1=-3$, $A_2=5$, $B_2=-1$ в формулу (4.12): $tg\varphi=\left|\frac{2\cdot(-1)-5\cdot(-3)}{2\cdot 5+(-3)\cdot(-1)}\right|=\left|\frac{-2+15}{10+3}\right|=1,\; \varphi=\frac{\pi}{4}\;;$
- 3) Здесь $k_1=\frac{3}{4}$, найдём k_2 . Для этого перейдём от 6y=-8x-5 к эквивалентному равенству $y=-\frac{4}{3}-\frac{5}{6}$. Здесь $k_2=-\frac{4}{3}$. Так как $k_1k_2=-1$,то данные прямые (см.(4.11)) перпендикулярны. По формуле (4.9) получаем $\varphi=\frac{\pi}{2}$.
- 4) $k_1 = 5$, $k_2 = 5$, следовательно, прямые параллельны (см. (4.10)) и $\varphi = 0$.

Пример 4.7. Через точку пересечения прямых 3x-2y+5=0, x+2y-9=0 проведена прямая, параллельная прямой 2x+y+6=0. Составить её уравнение.

Решение: найдём сначала точку M пересечения данных прямых. Для этого решим систему уравнений: $\begin{cases} 3x-2y+5=0,\\ x+2y-9=0. \end{cases}$

Отсюда 4x = 4. И далее, x = 1, y = 4, т.е. M(1; 4). Угловой коэффициент прямой 2x + y + 6 = 0 есть k = -2. Следовательно, угловой коэффициент k прямой параллельной данной, есть k = -2 (см.

(4.10)). По направлению прямой (k=-2) и точке M(1;4), ей принадлежащей, запишем уравнение искомой прямой: y-4=-2(x-1), т.е. 2x+y-6=0.

Пример 4.8. Найти координаты точки M_2 , симметричной точке $M_1(-3;\ 4)$ относительно прямой 4x-y-1=0.

Решение: точки M_1 и M_2 лежат на прямой M_1M_2 , перпендикулярной прямой 4x-y-1=0, и одинаково удалены от этой прямой (см. рис. 30). Найдём уравнение прямой M_1M_2 . Так как угловой коэффициент k_1 данной прямой равен 4, то угловой коэффициент k прямой M_1M_2 определяется равенствами

 $k=-rac{1}{k_1}=-rac{1}{4}$. Поэтому уравнение прямой M_1M_2 есть $y-4=-rac{1}{4}(x+3)$, т.е. x+4y-13=0 . Найдём

координаты точки M – точка пересечения прямой M_1M_2 и данной прямой: $\begin{cases} x+4y-13=0,\\ 4x-y-1=0. \end{cases}$

Отсюда x=1, y=3, т.е. M(1;3). Точка M(1;3) делит отрезок M_1M_2 пополам. Из соотношений $1=\frac{-3+x}{2}$ и $3=\frac{4+y}{2}$ находим координаты x и y искомой точки M_2 : x=5, y=2 и $M_2(5;2)$.

Пример 4.9. Написать уравнение прямой l_2 , проходящей через точку $A(0;\ 2)$ под углом $\frac{\pi}{4}$ к прямой $l_1: x-2y+3=0$.

Решение: угловой коэффициент прямой l_1 равен $\frac{1}{2}$, т.е. $k_1 = \frac{1}{2}$. Обозначим через k угловой

коэффициент прямой l_2 . Тогда по формуле (4.9) имеем $tg\frac{\pi}{4}=1=\frac{k-\frac{1}{2}}{1+\frac{1}{2}k}$. Из этого уравнения находим

 $k_2=3$ и $k_3=-\frac{1}{3}$. Задача имеет два решения. Для каждого случая напишем уравнения прямой, проходящей через точку A в заданном уравнении: y-2=3(x-0) и $y-2=-\frac{1}{3}(x-0)$, т.е.

3x - y + 2 = 0 и x + 3y - 6 = 0.

Пример 4.10. Найти расстояние между параллельными прямыми 3x + 4y - 20 = 0 и 6x + 8y + 5 = 0.

Решение: Возьмём на первой прямой произвольную точку A. Пусть, например, x=0, тогда y=5, т.е. $A(0;\,5)$. По формуле (4.16) находим расстояние d от точки A до второй прямой: $d=\frac{\left|6\cdot 0+8\cdot 5+5\right|}{\sqrt{6^2+8^2}}=\frac{45}{10}=4,5\,.$

Вопросы для контроля

- 1. Понятие уравнения прямой на плоскости.
- 2. Уравнение прямой с угловым коэффициентом и его компоненты.
- 3. Общее уравнение прямой и его виды.
- 4. Уравнение прямой в отрезках.
- 5. Уравнение прямой, проходящей через данную точку в данном направлении и его компоненты.
- 6. Уравнение прямой, проходящей через две данные точки.
- 7. Нормальное уравнение прямой и его компоненты.
- 8. Угол между двумя прямыми.
- 9. Условия параллельности и перпендикулярности двух прямых.
- 10. Расстояние от точки до прямой.