Tuesday Reading Assessment: Chapters 6-1 through 6-6

Prof. Jordan C. Hanson March 5, 2024

TABLE 6-1 Half-adder truth table.			
A	В	Cout	Σ
0	0	0	0
0	1	0	1
1	0	0	1
1	1	1	0
$\Sigma = :$	sum		
$C_{\text{out}} =$	output carr	У	
A and	B = input v	ariables (operan	ds)

Figure 1: (Left) Symbol for a *half-adder*, that adds two bits and produces the sum and carry bits. (Right) The truth table for the sum and carry bits in terms of the input bits A and B.

1 Functions of Combinatorial Logic: Adders

- 1. Examine the Σ (sum) output in the truth table in Fig. 1 (right). What gate accurately describes Σ in terms of the inputs A and B?
- 2. Examine the C_{out} (carry) output in the truth table in Fig. 1 (right). What gate accurately describes C_{out} in terms of the inputs A and B?
- 3. Create a logic circuit schematic in the space below that functions like the component in Fig. 1 (left), producing the truth table in Fig. 1 (right).

2 Functions of Combinatorial Logic: Comparators

1. (a) Write down the truth table for an XOR gate, but inverted (XNOR). (b) Use this truth table to create a circuit that is HIGH if two 2-bit binary numbers are equal.