

The master method for solving recurrences

CS-6th

Instructor: Dr. Ayesha Enayet

Definition

- A master recurrence describes the running time of a divideand-conquer algorithm that divides a problem of size n into a subproblems, each of size n/b<n.
- For solving algorithmic recurrences of the form:
 - T(n)=aT(n/b)+f(n)
 - Where a>0 and b>1 are constants.
 - Merge Sort Example: $T(n)=2T(n/2)+\Theta(n)$, where a=2 and b=2 and $f(n)=\Theta(n)$

For cases where n is an odd number

• To ensure that the problem sizes are integers, we round one subproblem down to size $\lfloor n/2 \rfloor$ and the other up to size $\lfloor n/2 \rfloor$, so the true recurrence for $T(n)=2T(n/2)+\Theta(n)$, where n is an odd value, is $T(n)=T(\lfloor n/2 \rfloor)+T(\lfloor n/2 \rfloor)+\Theta(n)$.

Master Theorem

- Let a>0 and b>1 be constants, and let f(n) be a driving function that is defined and nonnegative on all sufficiently large reals. Define the recurrence T(n) on n∈N by
 - T(n)=aT(n/b) + f(n),
 - Where aT(n/b) actually means a'T($\lfloor n/b \rfloor$) +a" T($\lfloor n/b \rfloor$) for some constants a'>=0 and a">=0 satisfying a=a'+a". Then the asymptotic behavior of T(n) can be characterized using three cases.

Master Theorem

- 1. If there exists a constant $\epsilon > 0$ such that $f(n) = O(n^{\log_b a \epsilon})$, then $T(n) = \Theta(n^{\log_b a})$.
- 2. If there exists a constant $k \ge 0$ such that $f(n) = \Theta(n^{\log_b a} \lg^k n)$, then $T(n) = \Theta(n^{\log_b a} \lg^{k+1} n)$.
- 3. If there exists a constant $\epsilon > 0$ such that $f(n) = \Omega(n^{\log_b a + \epsilon})$, and if f(n) additionally satisfies the *regularity condition* $af(n/b) \le cf(n)$ for some constant c < 1 and all sufficiently large n, then $T(n) = \Theta(f(n))$.

Simplified

- We can express f(n) as $f(n) = \Theta(n^x l g^y n)$, where x is power of n and y is power of lg
- Case 1: If $lg_ba>x$, then:
 - $T(n) = \Theta(n^{\lg_b a})$.
- Case 2: if $lg_b a = x$:
 - If y>-1 then $T(n)=\Theta(n^x lg^{y+1}n)$
 - If y=-1 then $\Theta(n^x | g | g n)$
 - If y<-1 then $\Theta(n^x)$
- Case 3: if $lg_b a < x$:
 - Y >= 0 then $\Theta(n^x lg^y n)$
 - Y<0 then Θ(n^x)

Simplified steps (Case1: n^{lg_ba} >f(n))

- n^{lg_ba} is watershed function
- In every case we compare the watershed function with f(n)
- Or we compare the power of n in f(n) with lg_ba
- Case1: the watershed function n^{lg_ba} a must be asymptotically larger than the driving function f(n) by at least a factor of $\Theta(n^{\epsilon})$ for some constant $\epsilon>0$. The master theorem then says that the solution is $T(n)=\Theta(n^{lg_ba})$.

Using the master method (Case1)

- T(n)=9.T(n/3)+n
- Lets identify a and b.
- a=9, b=3
- watershed funtion is $n^{lg_ba} = n^{lg_39} = O(n^2)$
- $n^2 > n$
- $T(n) = \Theta(n^2)$

Simplified steps (Case2: $n^{lg_ba} \leq f(n)$)

- The driving function grows similar or faster than the watershed function by a factor of $\Theta(\lg^k n)$, where k>=0. The master theorem says that we tack on an extra $\lg n$ factor to f(n), yielding the solution $T(n) = \Theta(n^{\lg_b a} \lg^{k+1} n)$.
- Most commonly occurs for k=0
- For simplicity this is for the case where the lg_ba is equal to the power of n in f(n).

Using the master method (Case 2)

- T(n)=T(2n/3)+1
- a=1, b=3/2
- watershed funtion is $n^{lg_ba} = n^{lg_{3/2}1} = n^0 = 1$.
- $f(n)=1=n^{lg_ba}$
- $T(n) = \Theta(n^{lg_ba}lg^{0+1}n) = \Theta(lgn)$

Simplified steps (Case3: n^{lg_ba} <f(n)))

- f(n) must be asymptotically larger than the watershed function n^{lg_ba} by at least a factor of $\Theta(n^{\epsilon})$ for some constant $\epsilon>0$.
- The Master's Theorem says that T(n)= Θ(f(n))
- Moreover, the driving function must satisfy the regularity condition that a.f(n/b)<=c.f(n).

Using the master method (Case3)

- T(n)=3T(n/4)+nlgn
- a=3, b=4
- watershed funtion is $n^{lg_b a} = n^{lg_4 3} = O(n^{0.793})$
- f(n)=nlgn
- T(n)= Θ(nlgn)

Exercise (identify the cases)

- T(n)=2T(n/2)+nIgn
- $T(n)=2T(n/2)+\Theta(n)$
- $T(n)=8T(n/2)+\Theta(1)$
- $T(n)=7T(n/2)+\Theta(n^2)$

Exercise (identify the cases)

- $T(n)=2T(n/2)+nlgn \rightarrow Case 2/case 3$
- $T(n)=2T(n/2)+\Theta(n)\rightarrow Case 2$
- $T(n)=8T(n/2)+\Theta(1)\rightarrow Case 1$
- $T(n)=7T(n/2)+\Theta(n^2)\rightarrow Case 1$

- $T(n)=2T(n/2)+nlgn \rightarrow Case 2$
- a=2,b=2, and $n^{lg_22} = n$
- f(n)>watershed function by a factor Ign

- $T(n)=2T(n/2)+\Theta(n)\rightarrow Case 2$
- $f(n) = \Theta(n)$
- Watershed function evaluates to n
- Similar growth

- $T(n)=8T(n/2)+\Theta(1)$
- a=8, b=2, $f(n) = \Theta(1)$ and watershed function evaluates to= n^3
- F(n)< watershed function

- $T(n)=7T(n/2)+\Theta(n^2)\rightarrow Case 1$
- a=7, b=2, $f(n) = \Theta(n^2)$, watershed funtion $n^{lg_ba} = n^{2.807}$

$$T(n)=T(n/2)+2^n$$

- Case 3
- a=1, b=2, $f(n)=2^n$ watershed function evaluates to $n^0=1$
- Solution: Θ(2ⁿ)