SE01 Documentation

Month 6:

Total: 8

For simplicity, we can think of 3-week intervals as a "month". Given N=6, we will have:

Month 0: Month 4:

no mice
pair 3 born (from pair 1)
pair 6 born (from pair 1)
pair 7 born (from pair 2)
receive pair 1
pair 2 mates
pair 8 born (from pair 3)

Total: 1Total: 3- pair 1 matesMonth 2:Month 5:- pair 2 mates- pair 1 mates- pair 4 born (from pair 1)- pair 3 matesTotal: 1- pair 5 born (from pair 2)- pair 4 matesMonth 3:- pair 1 mates- pair 5 mates

- pair 2 mates

- pair 1 mates- pair 3 matesTotal: 5

At N=6, we can notice a pattern arise: no. of newborn = no. of pairs mating in the previous month no. of mating = total no. of pairs in the previous month **Total pairs =** no. of newborn + no. of mating

Extending for larger N in tabular form:

- pair 2 born (from pair 1)

	"Month"												
	0	1	2	3	4	5	6	7	8	9	10	11	12
# of newborns	0	1	0	1	1	2	3	5	8	13	21	34	55
# of mating	0	0	1	1	2	3	5	8	13	21	34	55	89
Total	0	1	1	2	3	5	8	13	21	34	55	89	144

We can see that to compute the total pairs (f_n) , we need to add the previous 2 previous totals $(f_{n-1} + f_{n-2})$. This sequence is exactly the Fibonacci sequence with the formula to find the nth term given by: $f_n = f_{n-1} + f_{n-2}$

Common algorithms to solve this would be using the iterative approach and recursion. But recursion is slow and iterative approach is O(n) at best. I used an implementation that will use direct computation using Binet's formula. Given by:

$$F_N = \frac{1}{\sqrt{5}} \left(\left(\frac{1 + \sqrt{5}}{2} \right)^N - \left(\frac{1 - \sqrt{5}}{2} \right)^N \right)$$

With no loops and need for recursion, the main breedingSimulator function (below) will only have a time complexity of O(1).