2 A velocidade v(t) de uma partícula que executa um MHS é mostrada no gráfico da Fig. 15-20b. A partícula está momentaneamente em repouso, está se deslocando em direção a $-x_m$ ou está se deslocando em direção a $+x_m$ (a) no ponto

A do gráfico e (b) no ponto B do gráfico? A partícula está em $-x_m$, em $+x_m$, em 0, entre $-x_m$ e 0, ou entre 0 e $+x_m$ quando sua velocidade é representada (c) pelo ponto A e (d) pelo ponto B? A velocidade da partícula está aumentando ou diminuindo (e) no ponto A e (f) no ponto B?

$$\kappa(t) = \kappa_m \cos(\omega t + \phi), \quad \omega = \frac{2\pi}{T}$$

$$w(t) = \frac{dw}{dt} = -wxm \sin(wt + \phi)$$

Ponto A:
$$\alpha_A > 0$$
; $\kappa_A < 0$.

 $\alpha_B > 0$; $\kappa_B < 0$.

$$\alpha(t) = \frac{dv}{dt} = -w^2 r_m \cos(wt + \phi) = -w^2 \kappa(t).$$

Velocidade aumenta pois a>0, mas seu módulo diminui pois velocidade e aceleração têm sentidos contrários.

Velocidade aumenta pois a>0, e seu módulo também, pois velocidade e aceleração têm mesmo sentido.

3 O gráfico da Fig. 15-21 mostra a aceleração a(t) de uma partícula que executa um MHS. (a) Qual dos pontos indicados corresponde à partícula na posição $-x_m$? (b) No ponto 4, a velocidade da partícula é positiva, negativa ou nula? (c) No ponto 5, a partícula está em $-x_m$, em $+x_m$, em 0, entre $-x_m$ e 0, ou entre 0 e $+x_m$?

or) T

$$\alpha(t) = -\omega^2 \kappa(t) \Rightarrow \alpha(\kappa = -\kappa_m) = \omega^2 \kappa_m = \alpha_m$$

c)
$$\alpha_5 < 0 \Rightarrow \kappa_5 > 0$$
.

$$b) a_4 = 0 \Rightarrow x_4 = 0.$$

5 Você deve completar a Fig. 15-22a desenhando o eixo vertical para que a curva seja o gráfico da velocidade v em função do tempo t do oscilador bloco-mola cuja posição no instante t=0 é a que aparece na Fig. 15-22b. (a) Em qual dos pontos indicados por letras na Fig. 15-22a ou em que intervalo entre os pontos indicados por letras o eixo v (vertical) deve interceptar o eixo t? (Por exemplo, o eixo vertical deve interceptar o eixo t no ponto t=A, ou, talvez, no intervalo A < t < B?) (b) Se a velocidade do bloco é dada por $v=-v_m$ sen($\omega t+\phi$), qual é o valor de ϕ ? Suponha que ϕ seja positivo, e se não puder especificar um valor (como $+\pi/2$ rad), especifique um intervalo (como $0 < \phi < \pi/2$).

$$x(t=0)>0$$
 $y(t=0)>0$
 $a(t=0)<0$ $x(t=0)=x_{m}\cos\phi>0$
 $y(t)=-y_{m}\sin(y_{m}t_{m}+\phi) \Rightarrow -y_{m}\sin\phi>0$

$$\sin \phi < 0 \implies 3\pi < \phi < 2\pi$$
 $\cos \phi > 0$

Convenção: [0,211)