Computer Graphics (CS 4731) Texture Mapping

Joshua Cuneo

Computer Science Dept. Worcester Polytechnic Institute (WPI)

- Although graphics cards can render over 10 million polygons per second
- Many phenomena even more detailed
 - Clouds
 - Grass
 - Terrain
 - Skin
- Images: Computationally inexpensive way to add details

Image complexity does not affect the complexity of geometry processing (transformation, clipping...)

From Computer Desktop Encyclopedia Reproduced with permission. © 2001 Intergraph Computer Systems

Types of Texturing

1. geometric model

2. texture mapped Paste image (marble) onto polygon

1. Define texture position on geometry

Texturing

Texture Coordinates

Texture Mapping

 Map? Each (x,y,z) point on object, has corresponding (s, t) point in texture

$$s = s(x,y,z)$$
$$t = t(x,y,z)$$

Color Interpolation

```
\lambda_1 + \lambda_2 + \lambda_3 = 1
and
0 \le \lambda_x \le 1
```


Texture Coord Interpolation

$$\lambda_1 + \lambda_2 + \lambda_3 = 1$$
and
 $0 \le \lambda_x \le 1$

$$(0.15,0.1) \cdot \lambda_1 +$$

$$(0.6,0.2) \bullet \lambda_2 +$$

$$(0.6,0.9) \bullet \lambda_3 +$$

(0.5, 0.6)

Phong Interpolation

Where to apply the lighting model?

Bui Tuong Phong

Normals supplied per vertex

Normals interpolated across face

Color & lighting calculated per pixel

Bump Mapping

Where to apply the lighting model?

Normals supplied per pixel

Normals obtained from bump map

Color & lighting calculated per pixel

Bump Mapping

Where to apply the lighting model?

Normals supplied per pixel
Normals obtained from bump map
Color & lighting calculated per pixel

Types of Texturing

3. Bump mapping Simulate surface roughness (dimples)

4. Environment mapping Picture of sky/environment over object