Log IU

Textbook: Ross

FRED YUAN

Fall 2024

Work from LogIU project from the IU math dept. Mentor: Max N. This will be problem writeups.

simulations can be found at https://github.com/zeegy99/Log-iu-

Contents

1 8/26/2024 3

1 8/26/2024

Exercise 1.1 (Exercise 1). We have i.i.d random variables X_n with $\begin{cases} P(X_n = 1) = \frac{1}{2} \\ P(X_n = -1) = \frac{1}{2} \end{cases}$

Denote $S_n := X_1 + X_2...X_n$ and stopping time τ to be $\inf(l: S_l = 0)$ or 20) Let $a_k := k$ starting dollars.

What is the expected time to ruin from a_5 ?

 $Simulation: \verb|https://github.com/zeegy99/Log-iu-/blob/main/ranodm/main.| \\ py$

Proof. Specific Case P = .5:

$$a_2 - a_1 = a_1 - 2$$
, and generally, $a_k - a_{k-1} = a_1 - (k-1)2$
 $a_{19} - a_{18} = a_1 - 36$, and adding $a_{19} - a_{18}$ with $a_{18} - a_{17} ... a_2 - a_1$ gives $a_{19} - a_1 = 18a_1 - (2 + 4 + 6 + ... 36) = 18a_1 - (18 \times 19)$

By symmetry, we can note that $a_{19} = a_1$ which finally gives $a_1 = 19$. Finally, using the same trick we can write $a_k - a_1 = (k-1)a_1 - (k)(k-1)$. (Proof by induction)

This gives our final equation to be $a_k = k(a_1 + 1 - k) = k(20 - k)$

Proof. General Case: We know $a_k = Pa_{k+1} + Qa_{k-1} + 1$ where P = P, Q = 1-P. In our question specifically, P = .5, but assume $P = \frac{x}{y}$ where $x \le y$. So $Q = \frac{y-x}{y}$

Then

$$a_{1} = \frac{x}{y}a_{2} + 1, \implies ya_{1} = xa_{2} + y \implies a_{2} = \frac{ya_{1} - y}{x}$$

$$a_{2} - a_{1} = \frac{ya_{1} - y}{x} - a_{1} = \frac{(y - x)a_{1} - y}{x}$$

$$a_{2} = \frac{y - x}{y}a_{1} + \frac{x}{y}a_{3} + 1 \implies ya_{2} = (y - x)a_{1} + xa_{3} + y$$

$$a_{3} = \frac{ya_{2} - ya_{1} + xa_{1} - y}{x}$$

$$a_{3} - a_{2} = \frac{ya_{2} - ya_{1} + xa_{1} - y}{x} - \frac{ya_{1} - y}{x} = \frac{ya_{2} - 2ya_{1} + xa_{1}}{x}$$

Solving this through Martingales: Our definitions were

- $X_n :=$ value of our i.i.d random variable at timestep n.
- $S_n := \text{total value of money at time step n.}$

We will use this martingale: $S_n^2 - n$. To see if this is a martingale we need to show

$$E[S_{n+1}^2 - (n+1)|\mathcal{F}_n] = S_n^2 - n$$

Distributing:

$$= E[(M_n + X_{n+1})^2 = E[(M_n)^2 + 2M_n X_{n+1} + (X_{n+1})^2 - (n+1)|\mathcal{F}_n]$$

Breaking up the expectations we verify that this holds.

$$= (M_n)^2 + 0 + 1 - n - 1 = S_n^2 - n$$

By the Optional Stopping Theorem (OST), we know:

$$E[M_{\tau}] = E[M_0].$$

At n = 0, $S_0 = 5$, so:

$$E[M_0] = S_0^2 - 0 = 25.$$

At the stopping time τ , the gambler either reaches 0 or 20, so:

$$E[M_{\tau}] = \frac{1}{4}(400 - \tau) + \frac{3}{4}(0 - \tau),$$

where $\frac{1}{4}$ is the probability of reaching 20, and $\frac{3}{4}$ is the probability of ruin at 0. Setting $E[M_{\tau}] = 25$ gives:

$$\frac{1}{4}(400-\tau) + \frac{3}{4}(-\tau) = 25.$$

Simplifying:

$$100 - \tau = 25$$
,

which leads to:

$$\tau = 75$$
.

Thus, the expected time to ruin or reach 20 is $\tau = 75$, as intended.

Exercise 1.2 (Exercise 2). Percolation Question: Assume we have a $n \times m$ grid. Each node will have edges connecting it to its neighbors. These edges will be uniformly distributed N(0,1). Fix $p \in (0, 1)$ and remove all edges with values smaller than p.

Proof. https://github.com/zeegy99/Log-iu-/blob/main/ranodm/problem_2.py