SCHEMA REFINEMENT AND NORMAL FORMS

Exercise 19.1 Briefly answer the following questions:

- 1. Define the term functional dependency.
- 2. Why are some functional dependencies called trivial?
- 3. Give a set of FDs for the relation schema R(A,B,C,D) with primary key AB under which R is in 1NF but not in 2NF.
- 4. Give a set of FDs for the relation schema R(A,B,C,D) with primary key AB under which R is in 2NF but not in 3NF.
- 5. Consider the relation schema R(A,B,C), which has the FD $B \to C$. If A is a candidate key for R, is it possible for R to be in BCNF? If so, under what conditions? If not, explain why not.
- 6. Suppose we have a relation schema R(A,B,C) representing a relationship between two entity sets with keys A and B, respectively, and suppose that R has (among others) the FDs $A \to B$ and $B \to A$. Explain what such a pair of dependencies means (i.e., what they imply about the relationship that the relation models).

Answer 19.1

1. Let R be a relational schema and let X and Y be two subsets of the set of all attributes of R. We say Y is functionally dependent on X, written $X \to Y$, if the Y-values are determined by the X-values. More precisely, for any two tuples r_1 and r_2 in (any instance of) R

$$\pi_X(r_1) = \pi_X(r_2) \quad \Rightarrow \quad \pi_Y(r_1) = \pi_Y(r_2)$$

2. Some functional dependencies are considered trivial because they contain superfluous attributes that do not need to be listed. Consider the FD: $A \to AB$. By reflexivity, A always implies A, so that the A on the right hand side is not necessary and can be dropped. The proper form, without the trivial dependency would then be $A \to B$.

Schema Refinement and Normal Forms

- 3. Consider the set of FD: $AB \to CD$ and $B \to C$. AB is obviously a key for this relation since $AB \to CD$ implies $AB \to ABCD$. It is a primary key since there are no smaller subsets of keys that hold over R(A,B,C,D). The FD: $B \to C$ violates 2NF since:
 - \blacksquare $C \in B$ is false; that is, it is not a trivial FD
 - B is not a superkey
 - \blacksquare C is not part of some key for R
 - \blacksquare B is a proper subset of the key AB (transitive dependency)
- 4. Consider the set of FD: $AB \to CD$ and $C \to D$. AB is obviously a key for this relation since $AB \to CD$ implies $AB \to ABCD$. It is a primary key since there are no smaller subsets of keys that hold over R(A,B,C,D). The FD: $C \to D$ violates 3NF but not 2NF since:
 - $D \in C$ is false; that is, it is not a trivial FD
 - \blacksquare C is not a superkey
 - \blacksquare D is not part of some key for R
- 5. The only way R could be in BCNF is if B includes a key, *i.e.* B is a key for R.
- 6. It means that the relationship is one to one. That is, each A entity corresponds to at most one B entity and vice-versa. (In addition, we have the dependency $AB \rightarrow C$, from the semantics of a relationship set.)

Exercise 19.2 Consider a relation R with five attributes ABCDE. You are given the following dependencies: $A \to B$, $BC \to E$, and $ED \to A$.

- 1. List all keys for R.
- 2. Is R in 3NF?
- 3. Is R in BCNF?

Answer 19.2

- 1. CDE, ACD, BCD
- 2. R is in 3NF because B, E and A are all parts of keys.
- 3. R is not in BCNF because none of A, BC and ED contain a key.

Schema Refinement and Normal Forms

The projection of the FD's of R onto ABC gives us: $AB \to C$, $AC \to B$ and $BC \to A$. The projection of the FD's of R onto ACDE gives us: $AD \to E$ and The projection of the FD's of R onto ADG gives us: $AD \to G$ (by transitivity) The closure of this set of dependencies does not contain $E \to G$ nor does it contain $B \to D$. So this decomposition is not dependency preserving.

Exercise 19.10 Suppose you are given a relation R(A,B,C,D). For each of the following sets of FDs, assuming they are the only dependencies that hold for R, do the following: (a) Identify the candidate key(s) for R. (b) State whether or not the proposed decomposition of R into smaller relations is a good decomposition and briefly explain why or why not.

- 1. $B \to C$, $D \to A$; decompose into BC and AD.
- 2. $AB \rightarrow C$, $C \rightarrow A$, $C \rightarrow D$; decompose into ACD and BC.
- 3. $A \rightarrow BC$, $C \rightarrow AD$; decompose into ABC and AD.
- 4. $A \rightarrow B$, $B \rightarrow C$, $C \rightarrow D$; decompose into AB and ACD.

5. $A \to B$, $B \to C$, $C \to D$; decompose into AB, AD and CD.

Answer 19.10

- 1. Candidate key(s): BD. The decomposition into BC and AD is unsatisfactory because it is lossy (the join of BC and AD is the cartesian product which could be much bigger than ABCD)
- 2. Candidate key(s): AB, BC. The decomposition into ACD and BC is lossless since ACD ∩ BC (which is C) → ACD. The projection of the FD's on ACD include C → D, C → A (so C is a key for ACD) and the projection of FD on BC produces no nontrivial dependencies. In particular this is a BCNF decomposition (check that R is not!). However, it is not dependency preserving since the dependency AB → C is not preserved. So to enforce preservation of this dependency (if we do not want to use a join) we need to add ABC which introduces redundancy. So implicitly there is some redundancy across relations (although none inside ACD and BC).
- 3. Candidate key(s): A, C. Since A and C are both candidate keys for R, it is already in BCNF. So from a normalization standpoint it makes no sense to decompose R. Further more, the decompose is not dependency-preserving since $C \to AD$ can no longer be enforced.
- 4. Candidate key(s): A. The projection of the dependencies on AB are: $A \to B$ and those on ACD are: $A \to C$ and $C \to D$ (rest follow from these). The scheme ACD is not even in 3NF, since C is not a superkey, and D is not part of a key. This is a lossless-join decomposition (since A is a key), but not dependency preserving, since $B \to C$ is not preserved.
- 5. Candidate key(s): A (just as before) This is a lossless BCNF decomposition (easy to check!) This is, however, not dependency preserving (B consider \rightarrow C). So it is not free of (implied) redundancy. This is not the best decomposition (the decomposition AB, BC, CD is better.)