

Sensor Modality Fusion

Group members: Nikhitha Radhakrishna Naik and Chenguang Huang

Technische Universität München

Faculty of Informatik

05 November 2019

Contents

- 1. Introduction
- 2. Datasets
- 3. State of the art methods
- 4. Plan for next week

Introduction

Autonomous driving >> Perception >> Decision making

Sensors:

☐ Camera

⊒ Radar

Lidar

Pros:

360 degree view.

Cons:

- Distance calculation
- Poor in low visibility conditions

Pros:

- Speed and location of the object
- Works in low visibility

Cons:

Differentiate between different vehicles

Pros:

- 3D view
- Shape and depth

Cons:

- Expensive
- Limited range

Introduction

Application of perception: 3D Object Detection

- 1. Find the position of the bounding box in 3D
- 2. Classify the contents inside the bounding box

Data used to achieve these goals:

- Monocular image
- 2. Lidar point cloud
- 3. Both image and point cloud

Question: When we use more than one sensor's data, how do we fuse them?

Introduction: Sensor Fusion

Object level fusion

Low-level fusion

- Low-level fusion advantages
 - Expanded content of information
 - Super resolution for sparse sensors
 - Joint probabilities at the pixel level
 - Best overall detection performance
 - Prone to sensor failure?

Datasets

NUSCENES

700 scenes for training,150 scenes for evaluation,150 for testing

KITTI

7481 training images7518 testing imagesand corresponding point cloud

3D Object Detection with point cloud:

1. PointRCNN(CVPR, 2019)

Method	Modality		Car (IoU=0.7)	Ped	estrian (IoU=	:0.5)	Cyclist (IoU=0.5)		
		Easy	Moderate	Hard	Easy	Moderate	Hard	Easy	Moderate	Hard
MV3D [4]	RGB + LiDAR	71.09	62.35	55.12	1-	-	-1	8-	(-)	-
UberATG-ContFuse [17]	RGB + LiDAR	82.54	66.22	64.04	-	-	-	-	-	-
AVOD-FPN [14]	RGB + LiDAR	81.94	71.88	66.38	50.80	42.81	40.88	64.00	52.18	46.61
F-PointNet [25]	RGB + LiDAR	81.20	70.39	62.19	51.21	44.89	40.23	71.96	56.77	50.39
VoxelNet [43]	LiDAR	77.47	65.11	57.73	39.48	33.69	31.51	61.22	48.36	44.37
SECOND [40]	LiDAR	83.13	73.66	66.20	51.07	42.56	37.29	70.51	53.85	46.90
Ours	LiDAR	85.94	75.76	68.32	49.43	41.78	38.63	73.93	59.60	53.59

Table 1. Performance comparison of 3D object detection with previous methods on KITTI *test* split by submitting to official test server. The evaluation metric is Average Precision(AP) with IoU threshold 0.7 for car and 0.5 for pedestrian/cyclist.

3D Object Detection with low level sensor fusion:

2. PointFusion(CVPR, 2018)

extract features of point cloud and image respectively and concatenate them.

3D Object Detection with low level sensor fusion:

2. PointFusion(CVPR, 2018)

more precise bounding box size and orientation

Lidar only

Lidar + RGB

3D Object Detection with low level sensor fusion:

3. Deep Continuous Fusion for Multi-Sensor 3D Object Detection(ECCV,2018)

project image pixel into BEV(Bird Eye View) and adapt Continuous Fusion

Continuous Fusion Layer

3D Object Detection with low level sensor fusion:

4. Multi-Task Multi-Sensor Fusion for 3D Object Detection(CVPR,2019) convert lidar points' height to relative height with respect to ground

3D Object Detection with low level sensor fusion:

4. Multi-Task Multi-Sensor Fusion for 3D Object Detection(CVPR,2019)

use KITTI depth completion dataset to create a dense point cloud

3D Object Detection with low level sensor fusion:

4. Multi-Task Multi-Sensor Fusion for 3D Object Detection(CVPR,2019) use dense point cloud to fuse

3D Object Detection with low level sensor fusion:

4. Multi-Task Multi-Sensor Fusion for 3D Object Detection(CVPR,2019) use dense point cloud to fuse

3D Object Detection with low level sensor fusion:

4. Multi-Task Multi-Sensor Fusion for 3D Object Detection(CVPR,2019)

Detector	Input Data Time		2D AP (%)			3D AP (%)			BEV AP (%)			
	LiDAR	IMG	(ms)	easy	mod.	hard	easy	mod.	hard	easy	mod.	hard
SHJU-HW [35, 7]		√	850	90.81	90.08	79.98	-	=	-	-	-	-
RRC [20]		\checkmark	3600	90.61	90.23	87.44	-	-	-	-	-	-
MV3D [5]	√		240	89.80	79.76	78.61	66.77	52.73	51.31	85.82	77.00	68.94
VoxelNet [36]	✓		220	-	-	-	77.49	65.11	57.73	89.35	79.26	77.39
SECOND [32]	✓		50	90.40	88.40	80.21	83.13	73.66	66.20	88.07	79.37	77.95
PIXOR [34]	✓		35	-	-	-	-	-	-	87.25	81.92	76.01
PIXOR++ [33]	√		35	-	-	-	-	-	-	89.38	83.70	77.97
HDNET [33]	✓		50	-	-	-	-	-	-	89.14	86.57	78.32
MV3D [5]	√	√	360	90.53	89.17	80.16	71.09	62.35	55.12	86.02	76.90	68.49
AVOD [12]	✓	\checkmark	80	89.73	88.08	80.14	73.59	65.78	58.38	86.80	85.44	77.73
ContFuse [13]	✓	\checkmark	60	_	-	-	82.54	66.22	64.04	88.81	85.83	77.33
F-PointNet [17]	√	\checkmark	170	90.78	90.00	80.80	81.20	70.39	62.19	88.72	84.00	75.33
AVOD-FPN [12]	✓	\checkmark	100	89.99	87.44	80.05	81.94	71.88	66.38	88.53	85.70	77.90
Our MMF	√	√	80	91.82	90.17	88.54	86.81	76.75	68.41	89.49	87.47	75.10

Table 1. Evaluation results on the testing set of KITTI 2D, 3D and BEV object detection benchmark (car). We compare with previously published detectors on the leaderboard ranked by Average Precision (AP) in the moderate setting.

Method	Modality		Car (IoU=0.7)	Pedestrian (IoU=0.5)			Cyclist (IoU=0.5)		
		Easy	Moderate	Hard	Easy	Moderate	Hard	Easy	Moderate	Hard
MV3D [4]	RGB + LiDAR	71.09	62.35	55.12	1-	8-8	-/	01 - 0	(=)	
UberATG-ContFuse [17]	RGB + LiDAR	82.54	66.22	64.04	-	-	-	-	-	-
AVOD-FPN [14]	RGB + LiDAR	81.94	71.88	66.38	50.80	42.81	40.88	64.00	52.18	46.61
F-PointNet [25]	RGB + LiDAR	81.20	70.39	62.19	51.21	44.89	40.23	71 96	56.77	50.39
VoxelNet [43]	LiDAR	77.47	65.11	57.73	39.48	33.69	31.51	61.22	48.36	11.27
SECOND [40]	LiDAR	83.13	73.66	66.20	51.07	42.56	37.29	70.51	53.85	46.90
Ours	LiDAR	85.94	75.76	68.32	49.43	41.78	38.63	73.93	59.60	53.59

Table 1. Performance comparison of 3D object detection with previous methods on KITTI *test* split by submitting to official test server. The evaluation metric is Average Precision(AP) with IoU threshold 0.7 for car and 0.5 for pedestrian/cyclist.

MMF (fusion)

PointRCNN (lidar only)

Plan for next few weeks

- Implement some of the available networks like PointRCNN, VoxelNet for 3D
 Object Detection from point clouds in Lidar
- Implement object detection from monocular images from camera
- Implement fusion network
- Compare the performances from all the different networks.

Thank you!

