

Estadísticas y soluciones 11 de marzo de 2023

Clasificación de los problemas

Problema	Categoría
A - El bruxeador	Ordenación, voraz
B - IKERobot	Búsqueda, optimización, grafos, heurística
C - Crimen en Villacepé	Grafos, combinatoria
D - El abeXORro	Constructivo, sistemas de ecs linea- les
E - Obras de ingeniería	Programación dinámica
F - Fechas de entrenamiento	Programación dinámica (optimización, geometría, envolvente convexa)
G - El jardín del Edén	Programación dinámica / memoización, restricciones
H - El máximo de diversión	Expresiones, bucle simple
I - Razonamiento numérico	Expresiones, strings, memoización, salida
J - Aviones en guerra	Mapas
K - P=NP	Aritmética modular

Estadísticas

Problema	# casos de prueba	Espacio en disco
A - El bruxeador	36	32M
B - IKERobot	14	112K
C - Crimen en Villacepé	38	32M
D - El abeXORro	44	148M
E - Obras de ingeniería	54	1.1M
F - Fechas de entrenamiento	52	648K
G - El jardín del Edén	3	76K
H - El máximo de diversión	4	1.1M
I - Razonamiento numérico	3	5.8M
J - Aviones en guerra	22	256K
K - P=NP	2	132K
- Total	272	220M

Estadísticas*

Problema	Primer equipo en resolverlo	Tiempo
J - Aviones en guerra	C mas^2 sus PYTHONisas	0:14
H - El máximo de diversión	Teamto de Verano	0:15
K - P=NP	(3 caritas Moai)	0:15
I - Razonamiento numérico	π k2s	0:19
C - Crimen en Villacepé	Big O No	0:32
B - IKERobot	(3 caritas Moai)	1:37
A - El bruxeador	(3 caritas Moai)	2:32
D - El abeXORro		
E - Obras de ingeniería		
F - Fechas de entrenamiento		
G - El jardín del Edén		

^{*}Antes de congelar el marcador.

Estadísticas*

Problema	Envíos	Válidos	% éxito
A - El bruxeador	30	6	20 %
B - IKERobot	16	6	38 %
C - Crimen en Villacepé	8	2	25 %
D - El abeXORro	2	0	0 %
E - Obras de ingeniería	10	0	0 %
F - Fechas de entrenamiento	4	0	0 %
G - El jardín del Edén	0	0	0 %
H - El máximo de diversión	58	42	72 %
I - Razonamiento numérico	74	21	28 %
J - Aviones en guerra	169	32	19 %
K - P=NP	86	14	16 %

^{*}Antes de congelar el marcador.

Estadísticas varias

Estadísticas varias

Estadísticas varias

Envíos	Válidos	% éxito
58	42	72 %

La solución a este problema es trivial, solo hay que tener en cuenta unos pocos detalles relativos a la implementación:

- Utilizar como primer máximo el valor de diversión entre los dos primeros pares o, alternativamente, usar un valor suficientemente pequeño (por ejemplo Long.MIN_VALUE)
- **2** Tener en cuenta que hay n-1 pares para n puntos. Y ajustar las veces que se ejecuta el bucle en consecuencia.

La solución mostrada no guarda todo el circuito en memoria (esta característica de la implementación no era estrictamente necesaria)

Tomando en cuenta lo anterior, podemos calcular el resultado de un caso de la siguiente manera:

```
leer(n)
leer(x1, y1)
leer(x2, y2)
\max := 3 * abs(x2 - x1) + 2 * (y2 - y1)
for i := 2 to n-1
    (x1, y1) \leftarrow (x2, y2)
    leer(x2, y2)
    aux := 3 * abs(x2 - x1) + 2 * (y2 - y1)
    if aux > max
        max := aux
escribir(max)
```

Envíos	Válidos	% éxito
169	32	19 %

Dado un avión, determinar qué zona debemos reforzar teniendo en cuenta los disparos.

Para ello, como el avión volvió a casa. Nos fijaremos en las zonas con menos disparos, estas zonas son las delicadas para reforzar.

En caso de empates devolveremos la solución según la especificación del enunciado.

Algunos errores...

Error Común	Veredicto
Si hay empate no devolver la zona de menor tamaño	WA
Si hay de nuevo empate no devolver el menor identificador	WA
Declarar array de 9 posiciones y no 10	RTE

Tomando en cuenta lo anterior, la lectura y almacenamiento

```
int N,M,x,y;
string matriz[M];
mapa{char,int} piezaAvion;
Para todas las M
    Leer fila de matriz[i]
    Para todas las N
        piezaAvion[matrix[i][j]]++;
int balas:
mapa{char,int} golpeado;
for(auto c:piezaAvion)
    if(c.first!='.')
        golpeado[c.first]=0;
Para todas las balas
    Leer x v
    golpeado[matrix[x][y]]++;
. . .
```

Tomando en cuenta lo anterior, podemos calcular el resultado de la siguiente manera:

```
Para todas las piezas que han sido golpeadas
    si tamañoPiezaActual menor a maxGolpes
        maxGolpes = tamañoPiezaActual;
        maxSize = piezaAvion[piezaActual];
        resultado = piezaActual;
    si en cambio tamañoPiezaActual igual que maxGolpes y
                  maxSize mayor que piezaAvion[piezaActual]
        En caso de empate a golpes, la pieza menor
        maxGolpes = tamañoPiezaActual;
        maxSize = piezaAvion[piezaActual];
        resultado = piezaActual;
    si en cambio tamañoPiezaActual igual que maxGolpes y
                 maxSize igual que piezaAvion[piezaActual]
        En caso de nuevo empate el menor índice
        resultado = mínimo identificador de resultado y piezaActual
```

Imprimir resultado

Envíos	Válidos	% éxito
74	21	28 %

Si se observa con un poco de detenimiento las entradas y salidas se puede encontrar que la solución de:

2 y la de 1231 simplemente combina los dos resultado anteriormente conocidos, es decir, la solución de:

Asi pues:

- el cálculo de r para todos los pares de cifras significan muchas operaciones, pero, en realidad
- 2 sólo hay 81 problemas elementales distintos. Cualquier otro caso se reduce a combinar las soluciones de estos 81. Por otro lado,
- 3 también (o alternativamente) podemos reducir el cálculo del factorial a solo 9 resultados distintos, puesto que el factorial siempre se aplica a una potencia fija de un número entre 1 y 9.
- ② Para calcular el factorial se debe tener en cuenta que: $\mod(a*b) = \mod(a*\mod(b))$

Tomando en cuenta lo anterior, antes de calcular los casos, podemos hacer un cálculo previo dado por:

```
for i := 1 to 9
   for j := 1 to
        solucion[i, j] := string(r(i,i+1))
```

Siendo r una función que resuelva las expresiones correspondientes.

Y resolver cada caso con:

```
leer_linea(str)

for i = 1 to length(str) step 2
    resultado := concat(resultado, solucion[i,j])
escribir(resultado)
```

Envíos	Válidos	% éxito
86	16	16 %

Problema: Calcular para cuántos valores de P se cumple

en un unsigned int de 32 bits con desbordamiento.

Solución trivial:

```
count = 0
for P in range(2**32):
    if P == N*P % (2**32):
        count += 1
print(count)
```

... pero es muy lenta, hay que pensar otra cosa.

Para que se cumpla P=NP en un unsigned de 32 bits con *overflow*, tiene que cumplirse:

$$P = (N \cdot P) \operatorname{mod}(2^{32})$$

Esto es:

$$P = (N \cdot P) - K \cdot 2^{32}$$

$$P \cdot (N-1) = K \cdot 2^{32}$$

Además de P = 0, el mínimo valor de P que cumple esa ecuación es:

$$P_{\min} = \frac{2^{32}}{\text{GCD}(2^{32}, N-1)}$$

Y si se cumple para un valor de P, también se cumplirá para todos sus múltiplos, o sea, un total de $\frac{2^{32}}{P_{\min}}$ casos.

Por lo tanto, la solución del problema es simplemente:

$$GCD(2^{32}, N-1)$$

Solución completa del problema, en Python:

```
from math import gcd

M = 2**32
t = int(input())

for _ in range(t):
    print(gcd(M, int(input())-1))
```

Envíos	Válidos	% éxito
16	6	38 %

Enunciado y condiciones

- Encontrar camino entre dos puntos en un plano reticulado.
- Se dan coordenadas de principio y final.
- Hay obstáculos (coordenadas por las que no se puede pasar).
- Minimizar tiempo.
 - Avanzar entre dos coordenadas: una unidad de tiempo.
 - Girar: cuatro unidades adicionales de tiempo.
 - ¡Camino más corto puede no ser más rápido!
- Máximo de obstáculos, diferencia entre coordenadas.

Conceptualización

- De manera natural, un problema de grafos:
 - Coordenadas \longrightarrow nodos.
 - Espacio entre coordenadas → aristas.
- Dijkstra.
- Inconveniente: coste del giro.
 - No se adapta bien a las condiciones de Dijkstra.
- Posible solución: expandir el grafo con nodos y aristas adicionales para modelizar coste de giros.
 - No es necesario crear un nuevo grafo en memoria puede ser "virtual".
- Aplicar Dijkstra.
- Grafo más grande, pero debería entrar con los límites del enunciado.

Más difícil todavía

- Dijkstra ignora la posición exacta de origen y destino.
- Intenta hacer trabajo de más.
- Puede ser demasiado lento en grafos muy grandes.
- Posibilidad: A*.
 - Algoritmo de búsqueda con heurística.
 - Nodos por expandir, ordenados por coste asociado a los mismos.

Coste total Coste acumulado Estimacion del resto
$$\bullet \ \, \text{Coste}: \ \, \overbrace{f(n)} \ \, = \ \, \overbrace{g(n)} \ \, + \ \, \overbrace{h(n)}$$

- h(n): aproximación conservadora.
 - P.e., distancia de Manhattan.
 - (Pero Manhattan + 4 si hay giro: más preciso mucho más rápido).
- Garantiza optimalidad si destino alcanzable.
- Pero puede ser caro si no alcanzable (degenera en Dijkstra).

Aún hay más

 Casos muy grandes con destinos inalcanzables podrían ser infactibles para Djikstra / A*.

(No, no pusimos casos de prueba tan grandes como ese, pero los consideramos).

Aún hay más

 Observación: si hay un camino óptimo no trivial que tiene que evitar obstáculos, hay un camino óptimo que bordea obstáculos.

 Conducir el camino bordeando los obstáculos elimina muchos caminos superfluos.

A. El bruxeador

Envíos	Válidos	% éxito
30	6	20 %

Diferencias consecutivas Se quiere hallar la diferencia entre dos pesas que no tengan ninguna otra con un peso intermedio. La forma más eficiente es ordenar la lista de las pesas.

Diferencias consecutivas Una vez que la lista está ordenada, restar cada par de pesas consecutivo para obtener las diferencias.

El resultado es, cada día, quitar la diferencia más grande de las que quedan. ¿Por qué funciona? Separar entre dos seguidos implica que se quita la diferencia entre los dos del coste total.

Figura:
$$c_1 = (28 - 21) + (21 - 3) = 25$$
 Figura: $c_1 = (28 - 14) + (8 - 3) = 19$

Cada día se quita la diferencia más grande que queda. Al haber quitado las *i* diferencias más grandes, está garantizado que la solución es óptima.

Pseudocódigo

- Ordenar las pesas
- 2 Hallar las diferencias consecutivas
- 3 Ordenar las diferencias (de mayor a menor)
- ◆ Total = Mayor Menor
- **6** Para el día $i, 0 \le i < n$, show(Total), Total -= diff[i].

Complejidad: $\mathcal{O}(n \log n)$

Envíos	Válidos	% éxito
8	2	25 %

Simetría de la acusación El grafo, en realidad, no es dirigido. Solo importa que la arista y un vértice determinan completamente al otro vértice. Cuando la arista es *honesta*:

Cuando la arista es mentira:

Separar en componentes conexas Cada componente es independiente del resto. El grafo tiene tantas configuraciones como el producto del número de configuraciones sus componentes conexas.

En cada componente hay, como máximo, un ciclo.

Analizar los árboles Un árbol con n nodos tiene n-1 aristas, y permite 2^{n-1} configuraciones distintas.

Cualquier configuración de aristas vale, y se pueden asignar los vértices de forma *greedy*.

Analizar los ciclos Un ciclo con n nodos tiene n aristas, y permite 2^{n-1} configuraciones distintas.

Cualquier configuración de n-1 aristas vale, pero la última arista queda fijada.

Resultado El número de configuraciones de cada componente es:

$$v(c) = 2^{ciclo(c)-1} \cdot 2^{|c|-ciclo(c)} = 2^{|c|-1}$$

El resultado para un grafo G es:

$$R(G) = \prod_{c} v(c) = 2^{\sum_{c} |c|-1} = 2^{|G|-\mathsf{num} \ \mathsf{comps}}$$

Complejidad: $\mathcal{O}(n)$

iiiIMPORTANTE!!! siempre calcular el módulo.

Envíos	Válidos	% éxito
10	0	0%

Problema:

- Array de n números p_1, p_2, \ldots, p_n
- Operaciones que cogen un rango de posiciones [a,b] y un número h y cambian todos los números en esas posiciones a h con coste $\sum_{a \le i \le b} |h p_i|$.
- Hacer el array no decreciente usando esas operaciones y minimizando el coste total.

Observaciones:

- El coste de una operación [a,b] es $\sum_{a\leq i\leq b}|h-p_i|=|h-p_a|+\cdots+|h-p_b|$. Es equivalente hacer b-a+1 operaciones, cada una en un rango de una única posición (mismo coste).
- En cada posición se hará como mucho una operación (cambiar por h_1 y luego por h_2 es lo mismo que directamente cambiar por h_2).
- El orden de las operaciones no importa. Vayamos de 1 a n.
- Array no decreciente: si se cambia la posición i por h, en la posición i-1 puede haber cualquier número menor o igual que $h\Rightarrow \iota$ Coste mínimo para array no decreciente en primeras i-1 posiciones y valores menores o iguales que h?

```
Solución programación dinámica (dp[i][h] = mín coste si se cambia p_i por h):
for i in 1..n:
    for h in 1..mx:
         for prev_h in 1..h-1:
              dp[i][h] = min(dp[i][h], dp[i-1][prev_h] + abs(h-a[i]))
Demasiado lenta: O(n \cdot mx^2). Optimización: la respuesta para dp[i][h] es el
mínimo en un prefijo de dp[i-1][1], dp[i-1][2], \dots, dp[i-1][prev_h] \Rightarrow \mathsf{Calcular}
mínimo de prefijos para dp[i-1] antes de pasar a dp[i].
for i in 1..n:
    for h in 1..mx:
         dp[i][h] = dp[i-1][h] + abs(h-a[i])
    for h in 1..mx:
         dp[i][h] = min(dp[i][h], dp[i][h-1])
Complejidad: O(n \cdot mx)
```

Envíos	Válidos	% éxito
2	0	0 %

Problema:

- Array de n números a_1, a_2, \ldots, a_n y número k.
- Operaciones que cogen dos posiciones distintas i, j y cambian a_i y a_j por x, donde x = a_i ⊕ a_j (el XOR bitwise).
- Hacer todos los números del array iguales a k usando menos de 4n operaciones (o decir que es imposible).

Observaciones:

- El XOR de un número consigo mismo es 0. En general, el XOR de a_i
 consigo mismo un número par de veces es 0 y un número impar de veces
 es a_i.
- Los únicos valores posibles son los que se obtienen como el XOR de un subconjunto de los números iniciales del array.
- Si no hay un subconjunto cuyo XOR sea k, la respuesta es NO. Si lo hay, la respuesta es SI $(n \ge 3)$.

Si tenemos subconjunto $x_{i_1}, x_{i_2}, \dots, x_{i_m}$ con XOR k, construcción:

- Obtener k en una posición: obtener sucesivamente $(x_{i_1} \oplus x_{i_2})$, $(x_{i_1} \oplus x_{i_2} \oplus x_{i_3})$, ..., $(x_{i_1} \oplus x_{i_2} \oplus x_{i_3} \oplus \cdots \oplus x_{i_m} = k)$. Ops $\leq n 1$.
- Hacer 0 en las demás posiciones. Por cada dos posiciones que aún no son 0, hacer dos ops en ellas las pone a $a_i \oplus a_j$ y después a $(a_i \oplus a_j) \oplus (a_i \oplus a_j) = 0$. Dos ops por cada dos posiciones. \Rightarrow Ops $\leq n$.
- Hacer operación con posición con valor k y cada una de las otras (que son 0). Ops ≤ n − 1.

 $_{\rm i}$ Ops totales < 3n!

¿Cómo buscar un subconjunto $x_{i_1}, x_{i_2}, \ldots, x_{i_m}$ con XOR k?

- Generar todos los posibles subconjuntos y comprobar su XOR: $O(n \cdot 2^n)$, TLE para n grande.
- Programación dinámica dp[i][x] = existe o no un subconjunto con XOR x entre los primeros i elementos: $O(n \cdot 2^{maxbits})$, TLE para n grande o máximo valor del array grande.
- ¿Matrices?

Ejemplo $a=[6,4,1]=[110_2,100_2,001_2]$. Obtener $k=2=010_2$. Representamos $(x_1x_2x_3)$ donde $x_i=1$ si se coge a_i en el XOR, 0 si no.

$$\begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix} = x_1 \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix} + x_2 \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} + x_3 \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} = \begin{pmatrix} 1 \cdot x_1 + 1 \cdot x_2 + 0 \cdot x_3 \\ 1 \cdot x_1 + 0 \cdot x_2 + 0 \cdot x_3 \\ 0 \cdot x_1 + 0 \cdot x_2 + 1 \cdot x_3 \end{pmatrix} = \begin{pmatrix} 1 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix}$$

¡Resolver un sistema de ecuaciones mód 2! Eliminación de Gauss, $O(m \cdot n \cdot \min(n,m))$, $m = \log(\max a) \Rightarrow O(n \cdot \log^2(\max a))$.

Bonus álgebra lineal: otra forma de encontrar el subconjunto.

- Se pueden ver los números del array como vectores de un espacio vectorial con coordenadas mód 2.
- Si se obtiene una base del espacio vectorial generado por todos los números del array, se puede representar cualquier número (vector) como combinación lineal de la base.
- Ir procesando números de a_1 a a_n . Mantener una base del espacio generado por a_1, \ldots, a_{i-1} y para cada vector de la base, un conjunto de posiciones del array inicial cuyo XOR sea ese vector. Si a_i se puede expresar en esa base no aporta nada, y si no, se añade a la base. Observación: la base no tendrá más de 31 vectores.
- Tenemos la base. Obtener k como combinación de los números iniciales.
- Ops $< \min(3n, 2n + 30)$. Complejidad $O(n \cdot \log^2(\max a))$.

F. Fechas de entrenamiento

Envíos	Válidos	% éxito
4	0	0 %

F. Fechas de entrenamiento

F. Fechas de entrenamiento

Problema:

- Se tienen dos arreglos D y P con números positivos de tamaño N, y un entero K.
- Hay que encontrar K enteros f_1, \ldots, f_k que minimicen la suma $s = \sum_{i < N} P[i] \cdot (f_{m(i)} D[i])$ donde $m(i) = min\{j : f_j \ge D[i]\}.$

Ejemplo:

- N = 7 y K = 3
- D = [1, 3, 5, 6, 8, 9, 10]
- P = [8, 13, 14, 9, 12, 5, 11]

Solución:

- F = [3, 6, 10]
- $s = 8 \cdot (3-1) + 13 \cdot (3-3) + 14 \cdot (6-5) + 9 \cdot (6-6) + 12 \cdot (10-8) + 5 \cdot (10-9) + 11 \cdot (10-10) = 59$

Observaciones:

- No es óptimo si f_i no coincide con algún D[i].
- Si se toma $f_j = D[i]$ entonces nos queda resolver el mismo problema en los sufijos D[i+1...] y P[i+1...] con K-1.

Solución programación dinámica (dp[i][k]: mínimo costo para resolver todos los problemas a partir del día D[i] si se pueden juntar en k fechas):

$$dp[i][k] = \min_{1 \le j \le N} (dp[j+1][k-1] + \sum_{1 \le h \le j} (P[h] \cdot (D[j] - D[h]))$$

Complejidad: $\overline{\mathcal{O}}(N \cdot K \cdot N \cdot N)$. Muy lento.

Vamos a trabajarla...

$$\begin{array}{l} dp[i][k] = \min_{i \leq j} (dp[j+1][k-1] + (\sum_{i \leq h \leq j} P[h]) \cdot D[j] - (\sum_{i \leq h \leq j} (P[h] \cdot D[h]))) \\ dp[i][k] = \min_{i \leq j} (dp[j+1][k-1] + (accP[j] - accP[i]) \cdot D[j] - (accPD[j] - accPD[i])) \\ \text{donde: } accP[i+1] = accP[i] + P[i] \text{ y } accPD[i+1] = accPD[i] + P[i] \cdot D[i] \end{array}$$

Observaciones:

- No es óptimo si f_i no coincide con algún D[i].
- Si se toma $f_j = D[i]$ entonces nos queda resolver el mismo problema en los sufijos D[i+1...] y P[i+1...] con K-1.

Solución programación dinámica (dp[i][k]: mínimo costo para resolver todos los problemas a partir del día D[i] si se pueden juntar en k fechas):

$$dp[i][k] = \min_{1 \le j \le N} (dp[j+1][k-1] + \sum_{1 \le h \le j} (P[h] \cdot (D[j] - D[h]))$$

Complejidad: $\overline{\mathcal{O}}(N \cdot K \cdot N \cdot N)$. Muy lento.

Vamos a trabajarla...

$$\begin{array}{l} dp[i][k] = \min_{i \leq j} (dp[j+1][k-1] + (\sum_{i \leq h \leq j} P[h]) \cdot D[j] - (\sum_{i \leq h \leq j} (P[h] \cdot D[h]))) \\ dp[i][k] = \min_{i \leq j} (dp[j+1][k-1] + (accP[j] - accP[i]) \cdot D[j] - (accPD[j] - accPD[i])) \\ \text{donde: } accP[i+1] = accP[i] + P[i] \text{ y } accPD[i+1] = accPD[i] + P[i] \cdot D[i] \end{array}$$

Observaciones:

- No es óptimo si f_i no coincide con algún D[i].
- Si se toma $f_j = D[i]$ entonces nos queda resolver el mismo problema en los sufijos D[i+1...] y P[i+1...] con K-1.

Solución programación dinámica (dp[i][k]: mínimo costo para resolver todos los problemas a partir del día D[i] si se pueden juntar en k fechas):

$$dp[i][k] = \min_{i \le j < N} (dp[j+1][k-1] + \sum_{i \le h \le j} (P[h] \cdot (D[j] - D[h]))$$

Complejidad: $\overline{\mathcal{O}}(N \cdot K \cdot N \cdot N)$. Muy lento.

Vamos a trabajarla...

$$\begin{array}{l} dp[i][k] = \min_{i \leq j} (dp[j+1][k-1] + (\sum_{i \leq h \leq j} P[h]) \cdot D[j] - (\sum_{i \leq h \leq j} (P[h] \cdot D[h]))) \\ dp[i][k] = \min_{i \leq j} (dp[j+1][k-1] + (accP[j] - accP[i]) \cdot D[j] - (accPD[j] - accPD[i])) \\ \text{donde: } accP[i+1] = accP[i] + P[i] \text{ y } accPD[i+1] = accPD[i] + P[i] \cdot D[i] \end{array}$$

Observaciones:

- No es óptimo si f_i no coincide con algún D[i].
- Si se toma $f_j = D[i]$ entonces nos queda resolver el mismo problema en los sufijos D[i+1...] y P[i+1...] con K-1.

Solución programación dinámica (dp[i][k]: mínimo costo para resolver todos los problemas a partir del día D[i] si se pueden juntar en k fechas):

$$dp[i][k] = \min_{i \le j < N} (dp[j+1][k-1] + \sum_{i \le h \le j} (P[h] \cdot (D[j] - D[h]))$$

Complejidad: $\overline{\mathcal{O}}(N \cdot K \cdot N \cdot N)$. Muy lento.

Vamos a trabajarla...

$$\begin{array}{l} dp[i][k] = \min_{i \leq j} (dp[j+1][k-1] + (\sum_{i \leq h \leq j} P[h]) \cdot D[j] - (\sum_{i \leq h \leq j} (P[h] \cdot D[h]))) \\ dp[i][k] = \min_{i \leq j} (dp[j+1][k-1] + (accP[j] - accP[i]) \cdot D[j] - (accPD[j] - accPD[i])) \\ \text{donde: } accP[i+1] = accP[i] + P[i] \text{ y } accPD[i+1] = accPD[i] + P[i] \cdot D[i] \end{array}$$

Observaciones:

- No es óptimo si f_i no coincide con algún D[i].
- Si se toma $f_j = D[i]$ entonces nos queda resolver el mismo problema en los sufijos D[i+1...] y P[i+1...] con K-1.

Solución programación dinámica (dp[i][k]: mínimo costo para resolver todos los problemas a partir del día D[i] si se pueden juntar en k fechas):

$$dp[i][k] = \min_{i \le j < N} (dp[j+1][k-1] + \sum_{i \le h \le j} (P[h] \cdot (D[j] - D[h]))$$

Complejidad: $\overline{\mathcal{O}}(N \cdot K \cdot N \cdot N)$. Muy lento.

Vamos a trabajarla...

$$\begin{array}{l} dp[i][k] = \min_{i \leq j} (dp[j+1][k-1] + (\sum_{i \leq h \leq j} P[h]) \cdot D[j] - (\sum_{i \leq h \leq j} (P[h] \cdot D[h]))) \\ dp[i][k] = \min_{i \leq j} (dp[j+1][k-1] + (accP[j] - accP[i]) \cdot D[j] - (accPD[j] - accPD[i])) \\ \text{donde: } accP[i+1] = accP[i] + P[i] \text{ y } accPD[i+1] = accPD[i] + P[i] \cdot D[i] \end{array}$$

Observaciones:

- No es óptimo si f_i no coincide con algún D[i].
- Si se toma $f_j = D[i]$ entonces nos queda resolver el mismo problema en los sufijos D[i+1...] y P[i+1...] con K-1.

Solución programación dinámica (dp[i][k]: mínimo costo para resolver todos los problemas a partir del día D[i] si se pueden juntar en k fechas):

$$dp[i][k] = \min_{1 \le j < N} (dp[j+1][k-1] + \sum_{1 \le h \le j} (P[h] \cdot (D[j] - D[h])))$$

Complejidad: $\overline{\mathcal{O}}(N \cdot K \cdot N \cdot N)$. Muy lento.

Vamos a trabajarla...

$$\begin{array}{l} dp[i][k] = \min_{i \leq j} (dp[j+1][k-1] + (\sum_{i \leq h \leq j} P[h]) \cdot D[j] - (\sum_{i \leq h \leq j} (P[h] \cdot D[h]))) \\ dp[i][k] = \min_{i \leq j} (dp[j+1][k-1] + (accP[j] - accP[i]) \cdot D[j] - (accPD[j] - accPD[i])) \\ \text{donde: } accP[i+1] = accP[i] + P[i] \text{ y } accPD[i+1] = accPD[i] + P[i] \cdot D[i] \end{array}$$

F. Fechas de entrenamiento: Solución con optimización D&C

Queremos calcular:

$$dp[i][k] = \min_{i \leq j} (dp[j+1][k-1] + (accP[j] - accP[i]) \cdot D[j] - (accPD[j] - accPD[i]))$$

- Sea opt[i][k] el mínimo j tal que dp[i][k] = dp[j+1][k-1] + C[i][j]. Entonces, $opt[0][k] \le opt[1][k] \le \dots \le opt[N-1][k]$.
- Podemos aplicar Divide and Conquer: Si tenemos calculado dp[i][k-1] para todo i, podemos computar dp[N/2][k] junto con opt[N/2][k]. Luego, cuando computamos $dp[0][k]\dots dp[N/2-1][k]$ sabemos que el j debe estar entre 1 y opt[N/2][k] mientras que para $dp[N/2+1][k]\dots dp[N-1][k]$ estará entre opt[N/2][k] y N-1.

```
calcuar(k,L,R,optL,optR):
   caso base: L == R
   Sea M = (L+R)/2 calculamos dp[k][M] y
   opt[k][M] recorriendo los valores entre optL y optR
   calcular(k,L,M-1,optL,opt[k][M])
   calcular(k,M+1,R,opt[k][M],optR)
```

- profundidad: $\mathcal{O}(\log(N))$
- operaciones por nivel: 2N

Complejidad: $\mathcal{O}(N \cdot K \cdot \log(N))$

F. Fechas de entrenamiento: Solución con optimización D&C

Queremos calcular:

$$dp[i][k] = \min_{i \le j < N} (dp[j+1][k-1] + C[i][j])$$

- Sea opt[i][k] el mínimo j tal que dp[i][k] = dp[j+1][k-1] + C[i][j]. Entonces, $opt[0][k] \le opt[1][k] \le \dots \le opt[N-1][k]$.
- Podemos aplicar Divide and Conquer: Si tenemos calculado dp[i][k-1] para todo i, podemos computar dp[N/2][k] junto con opt[N/2][k]. Luego, cuando computamos $dp[0][k]\dots dp[N/2-1][k]$ sabemos que el j debe estar entre 1 y opt[N/2][k] mientras que para $dp[N/2+1][k]\dots dp[N-1][k]$ estará entre opt[N/2][k] y N-1.

```
calcuar(k,L,R,optL,optR):
   caso base: L == R
   Sea M = (L+R)/2 calculamos dp[k][M] y
   opt[k][M] recorriendo los valores entre optL y optR
   calcular(k,L,M-1,optL,opt[k][M])
   calcular(k,M+1,R,opt[k][M],optR)
```

- profundidad: $\mathcal{O}(\log(N))$
- operaciones por nivel: 2N

Complejidad: $\mathcal{O}(N \cdot K \cdot \log(N))$

F. Fechas de entrenamiento: Solución con optimización Convex Hull Trick

Queremos calcular

$$\begin{array}{l} dp[i][k] = \min_{i \leq j}(dp[j+1][k-1] + (accP[j] - accP[i]) \cdot D[j] - (accPD[j] - accPD[i])) \\ = accPD[i] + \min_{i \leq j}(dp[j+1][k-1] + accP[j] \cdot D[j] - accPD[j] - accPD[i] \cdot D[j]) = \\ accPD[i] + \min_{i \leq j}(h_{k-1}[j] + x[i] \cdot m[j]) \end{array}$$

Podemos usar la estructura Convex Hull Trick!

convexHullTrick:

add(m,h) agrega la linea m*x+h manteniendo la Convex Hull.

query(x): devuelve mínimo y = m*x+h.

Se pueden implementar en $\mathcal{O}(1)$ si \underline{m} y \underline{x} . están ordenados, respectivamente.

Complejidad: $\mathcal{O}(N \cdot K)$

G. El jardín del Edén

Envíos	Válidos	% éxito
0	0	0%

Enunciado y condiciones

Autómata celular lineal: células vivas o muertas.

Transiciones: células viven o mueren de acuerdo con reglas.

- Para un estado E y una regla dada, ¿hay otro estado distinto de E que evolucione a E un paso?
 - Sí: Jardin del Edén
- Estado autómata, reglas: representado con bits.
- Límites: estado autómata ≤ 30 células (bits).

Primera opción

Probar estados a ver si son el antecesor de otro dado.

```
for (int posPrev = 0; posPrev < (1 << nCells); posPrev++)
  if (posPrev != posGOE) {
    int next = 0, padded_conf = posPrev << 1;
    for (int cell = 0; cell < nCells; cell++) {
        next |= (1 & (rNumber >>> (padded_conf & 7))) << cell;
        padded_conf >>>= 1;
    }
    if (next == posGOE)
        return false;
    }
return true;
```

• Pequeño problema: enumerar hasta 2³⁰ estados.

Reconstrucción del pasado

- Idea: encontrar qué configuración/es pueden haber dado *E*.
- Verificar que hay alguna que no es *E*.
- Búsqueda con algunas restricciones.
- Decidir si se repite configuración inicial: llevar testigo de cambios en cualquier caso, comprobar al final.

• Sigue siendo problemático: complejidad caso peor 2^n .

Reconstrucción del pasado++

Reconstrucción del pasado++

Mucho trabajo: selección de patrones aplicables en el siguiente paso.

 Búsqueda (dcha. a izqda.): identificar patrón admisible a la izquierda de uno ya fijado.

Reconstrucción del pasado++

- Búsqueda (dcha. a izqda.): identificar patrón admisible a la izquierda de uno ya fijado.
- Precalcular selección, eliminar patrones "no productivos" (no tienen sucesor o antecesor).

Reconstrucción del pasado++

- Búsqueda (dcha. a izqda.): identificar patrón admisible a la izquierda de uno ya fijado.
- Precalcular selección, eliminar patrones "no productivos" (no tienen sucesor o antecesor).

Reconstrucción del pasado++

- Búsqueda (dcha. a izqda.): identificar patrón admisible a la izquierda de uno ya fijado.
- Precalcular selección, eliminar patrones "no productivos" (no tienen sucesor o antecesor).

Reconstrucción del pasado++

- Búsqueda (dcha. a izqda.): identificar patrón admisible a la izquierda de uno ya fijado.
- Precalcular selección, eliminar patrones "no productivos" (no tienen sucesor o antecesor).

Reconstrucción del pasado++

- Búsqueda (dcha. a izqda.): identificar patrón admisible a la izquierda de uno ya fijado.
- Precalcular selección, eliminar patrones "no productivos" (no tienen sucesor o antecesor).

Reconstrucción del pasado++

- Búsqueda (dcha. a izqda.): identificar patrón admisible a la izquierda de uno ya fijado.
- Precalcular selección, eliminar patrones "no productivos" (no tienen sucesor o antecesor).

Reconstrucción del pasado++

- Búsqueda (dcha. a izqda.): identificar patrón admisible a la izquierda de uno ya fijado.
- Precalcular selección, eliminar patrones "no productivos" (no tienen sucesor o antecesor).
- Grandes potenciales reducciones de candidatos en cada paso.

Resultados reducidos

- Reducción de no-determinismo.
- En algunos casos, eliminación completa de alternativas → eliminación de búsqueda.

Otro enfoque: programación dinámica / memorización

- Para realizar la búsqueda en cada célula se tiene en cuenta:
 - Estado de la célula (dos posibilidades: viva o muerta).
 - Patrones que pueden dar esa célula (ocho posibles máximo ocho bits).
 - Filtrados por patrón anterior aplicado (ocho).
- Puede memorizarse cada vez que se determina si lleva a un resultado positivo o negativo.
- ¡No es necesario continuar la búsqueda a partir de este momento!