Exercise 41

Let us define the metric d(x,y) = |x-y|. Then $B = \{x \in \mathbb{R}^m : d(x,0) \leq 1\}$. For any convergent sequence $(a_n)_n \in B$ with limit a, we have that $a \in B$ since if $d(a,0) = 1+\epsilon$ then for any N > 0 and n > N we have that $d(a_n,a) \leq d(a_n,0) + d(a,0) \Rightarrow d(a_n,a) - d(a_n,0) \geq d(a,0)$ so $d(a_n,a) \geq \epsilon$ which cotradicts convergence. Thus B is closed. B is clearly bounded since $d(x,0) \leq 1 \forall x \in B$. Thus since B is closed, bounded, and a subset of \mathbb{R}^m , it is compact.

Exercise 42

The problem is that it is not necessarily true that the convergent subsequences in $(a_n)_n$ and $(b_n)_n$ will have the same indicies. So we dont necessarily have that (a_{n_k}, b_{n_k}) exists as a convergent subsequence of (a_n, b_n)

Exercise 43

For any sequences $(a_n)_n \in A$, $(b_n)_n \in B$, since $A \times B$ is compact we have that the sequence (a_n, b_n) has a convergent subsequence (a_{n_k}, b_{n_k}) . We know that a sequence in $M \times N$ converges iff the components in M and N converge. Therefore a_{n_k} and b_{n_k} are convergent subsequences for $(a_n)_n, (b_n)_n$ respectively. Thus A, B are compact.

Exercise 44

- (a) For any convergent sequence $(m_n, y_n)_n \in G$, $m_n \in M$, $y_n \in \mathbb{R}$ where G is the graph of f with the limit $(m_n, y_n) \to (m, y)$, we have that $y_n = f(m_n)$. Thus since f is continuous we have that f(m) = f(y) and thus $(y, m) \in G$, so G is closed
- (b) For any sequence $(m_n, y_n)_n \in G, m_n \in M, y_n \in \mathbb{R}$, since M is compact, there exists a convergent subsequence (m_{n_k}) of $(m_n)_n$, and thus $(m_{n_k}, y_{n_k}) \to (m, y)$, we have that $y_n = f(m_n)$. Thus since f is continuous we have that f(m) = f(y) and thus $(y, m) \in G$, so G is compact
- (c) Suppose for contradiction there is a convergent sequence $m_n \in M$ with limit m where $f(m_n)$ does not converge. Thus there exists a $\epsilon > 0$ where we can choose a subsequence $y_{n_k} = f(m_{n_k})$ such that $d(y_{n_k}, f(m)) > \epsilon$. However no subsequence of (m_{n_k}, y_{n_k}) converges since we know that $m_{n_k} \to m$ so Thus we contradict compactness.
- (d) We can define the discontinuous function

$$f(x) = \begin{cases} 0 & x = 0\\ \frac{1}{x} & x \neq 0 \end{cases}$$

We have the graph is the union of three closed sets in \mathbb{R}^2 the singleton $\{0\}$, and two curves $\{(x,y):y=\frac{1}{x},x>0\}$ and $\{(x,y):y=\frac{1}{x},x<0\}$ which are closed, thus the graph is closed.

Exercise 46

We have that $A \times B$ is the product of compact sets and thus compact. We know that the

distance function d is continuous, and thus $d: A \times B \to \mathbb{R}$ maps to a compact set. Thus $d(A \times B)$ is compact so it contains its smallest value. Thus we have that $\exists (a,b) \in A \times B$ with $d(a,b) \leq d(a_0,b_0)$ for all $(a_0,b_0) \in A \times B$

Exercise 53

This is true. For each K_n choose two points points $a_n, b_n \in K_n$ where $d(a_n, b_n) = \operatorname{diam} K_n$. We have the sequence $(a_n, b_n)_n \in K_1^2$. Since K_1 is compact we know that there exists a subsequence $(a_{n_k}, b_{n_k})_k$ which converges to (a, b). We have the limits for the components (since a sequence converges iff its components converge) $a, b \in K$ since each K_i contains the tail of the subsequences a_{n_k}, b_{n_k} for $n_k > i$ (which has the same limit) and since each K_i is closed, it must contain the limit thus each K_i contians a, b. Now we have that $d(a_{n_k}, b_{n_k})$ is a convergent sequence converging to d(a, b) since d is continuous. Since $d(a_{n_k}, b_{n_k}) \ge \mu$ we know that its limit $d(a, b) \ge \mu$. Thus diam $K \ge \mu$

Exercise 55

(a) If p is a limit, then we have a sequence $(p_n)_n \in S$ where for each $\epsilon > 0$ we can choose a p_n where $d(p_n, p) < \epsilon$ and the $\inf\{d(p_n, p)\} = 0$ we have $\inf\{d(p_n, p)\} \ge \operatorname{dist}(S, p) \ge 0$, thus $\operatorname{dist}(S, p) = 0$. Conversely if $\operatorname{dist}(S, p) = 0$ then for $\epsilon = \frac{1}{n}$ we can choose $p_n \in S$ such that $d(p_n, p) < \epsilon$. Thus we have that the sequence $(p_n)_n$ converges to p.

Exercise Additional Problem 1

Exercise Additional Problem 2