ЛКШ.2021.Август.Параллель 6.Геометрия Россия, Пушкин, «Кочубей-Центр», 16 августа 2021

Задача А. Точка в многоугольнике

Имя входного файла: point.in
Имя выходного файла: point.out
Ограничение по времени: 1 секунда
Ограничение по памяти: 256 мегабайт

Формат входных данных

В первой строке содержится три числа — N ($3 \le N \le 100\,000$) и координаты точки. Последующие N строк содержат координаты углов многоугольника. Координаты — целые, не превосходят 10^6 по модулю.

Формат выходных данных

Одна строка YES, если заданная точка содержится в приведённом многоугольнике или на его границе, и NO в противном случае.

point.in	point.out
3 2 3	YES
1 1	
10 2	
2 8	

Задача В. Теодор Рузвельт

Имя входного файла: stdin
Имя выходного файла: stdout
Ограничение по времени: 2 секунды
Ограничение по памяти: 256 мегабайт

«Теодор Рузвельт» — флагман военно-морского флота Кукуляндии. Заклятые враги кукуляндиев, флатландцы, решили уничтожить его. Они узнали, что «Теодор Рузвельт» представляет собой выпуклый многоугольник из n вершин и узнали его координаты. Затем они выпустили m баллистических ракет и определили координаты точек, где эти ракеты взорвались. По расчётам штаба флатландцев, «Теодор Рузвельт» будет уничтожен, если в него попадёт хотя бы k ракет. Вычислите, удалось ли флатландцам уничтожить корабль.

Формат входных данных

В первой строке через пробел записаны целые числа n, m, k ($3 \le n \le 10^5, 0 \le k \le m \le 10^5$). В последующих n строках записаны координаты вершин многоугольника в порядке обхода против часовой стрелки. В следующих m строках записаны координаты точек. Гарантируется, что все координаты — целые числа, не превосходящие по модулю 10^9 .

Формат выходных данных

Выведите «YES», если в многоугольнике или на его границе лежит по крайней мере k точек, и «NO» в противном случае.

stdin	stdout
5 4 2	YES
1 -1	
1 2	
0 4	
-1 2	
-1 -1	
-2 -1	
1 -1	
0 1	
2 3	

Задача С. Выпуклая оболочка

Имя входного файла: convex.in
Имя выходного файла: convex.out
Ограничение по времени: 2 секунды
Ограничение по памяти: 256 мегабайт

Вам дано множество точек на плоскости. Найдите их выпуклую оболочку.

Формат входных данных

Первая строка входного файла содержит целое число n — количество точек ($3 \le n \le 200\,000$). В следующих n строках описываются точки. iая строка состоит из двух целых чисел — координат iой точки. Координаты не превосходят 10^9 по модулю. Гарантируется, что все точки не лежат на одной прямой. Точки могут совпадать.

Формат выходных данных

В первую строчку выходного файла выведите количество вершин в выпуклой оболочке. Во вторую — номера вершин через пробел, которые ее образуют. Выводите вершины в порядке обхода против часовой стрелки. Никакие два ребра выпуклой оболочки не должны лежать на одной прямой.

В третью строчку выведите периметр оболочки, в четвертую - ее площадь.

Периметр должен быть выведен с абсолютной или относительной погрешностью не больше 10^{-9} . Площадь должна быть выведена абсолютно точно.

convex.in	convex.out
5	4
0 0	3 5 1 4
1 1	6.47213595499958000000
2 2	2.0
1 0	
0 1	

Задача D. Ловушка для Слонопотама

Имя входного файла: piglet.in Имя выходного файла: piglet.out Ограничение по времени: 2 секунды Ограничение по памяти: 256 мегабайт

Пятачок и Винни-Пух каждое утро ходят пить чай в гости к Кролику. Естественно, самым коротким путем.

К сожалению, однажды Винни-Пуху пришла в голову идея вырыть ловушку для Слонопотама. Самое обидное, что они с Пятачком ее даже вырыли. Поэтому теперь каждое утро, идя в гости к Кролику, они боятся в нее провалиться.

Напишите программу, которая посчитает длину самого короткого безопасного пути от домика Винни-Пуха до домика Кролика.

Ловушка для Слонопотама представляет собой яму абсолютно круглой формы. Путь является безопасным, если он не проходит по ловушке (но может проходить по ее границе).

Формат входных данных

Во входном файле записаны сначала координаты домика Винни-Пуха: X_B, Y_B , затем — координаты домика Кролика: X_R, Y_R , а затем — координаты центра и радиус ловушки: X_T, Y_T, R_T . Все координаты — целые числа из диапазона от -32000 до 32000. Радиус ловушки — натуральное число, не превышающее 32000.

Домики Винни-Пуха и Кролика не могут находиться внутри ловушки, но могут находиться на ее границе.

Формат выходных данных

Выведите в выходной файл одно число — длину самого короткого безопасного пути от домика Винни-Пуха до домика Кролика с точностью не менее 4 знака после запятой.

piglet.in	piglet.out
0 0 0 1	1.000000
10 10 1	
5 0 0 5	7.853982
0 0 5	
-5 0 5 0	11.861007
0 0 3	

Задача Е. Пусти козла в огород - 8

Имя входного файла: goat8.in
Имя выходного файла: goat8.out
Ограничение по времени: 1 секунда
Ограничение по памяти: 256 мегабайт

В огород пустили двух козлов, каждого привязав верёвкой к своему колышку. Каждый козёл движется по окружности, растягивая верёвку на максимальную длину. Найдите все точки, в которых они могут встретиться.

Формат входных данных

В первых двух строках находятся по три числа — координаты колышка, к которому привязан каждый козёл, и длина верёвки, которой он привязан. Все числа — целые, не превосходящие по модулю 10000, длины веревок — положительные.

Формат выходных данных

В первой строке выходного файла выведите количество точек пересечения (0, 1, 2) или (0, 1

goat8.in	goat8.out
3 4 5	0
11 4 2	
3 4 5	2
9 4 2	7.7500000000 2.4387505004
	7.7500000000 5.5612494996

Задача F. Разрезание торта

Имя входного файла: cut.in
Имя выходного файла: cut.out
Ограничение по времени: 1 секунда
Ограничение по памяти: 256 мегабайт

Мама купила Пете на день рождения торт в виде выпуклого многоугольника. Торт большой и вкусный, и Петя хочет разделить его с мамой поровну. Для этого он хочет сделать один прямолинейный разрез, причем ему будет удобнее, если этот разрез будет параллелен оси Oy. Помогите Пете определить, как ему разрезать торт.

Формат входных данных

В первой строке записано целое число N ($3 \le N \le 10000$) — количество вершин многоугольника. В последующих N строках записаны координаты вершин многоугольника в порядке обхода. Гарантируется, что все координаты — целые числа, не превосходящие по модулю 10^3 .

Формат выходных данных

Выведите x-координату точки, через которую необходимо провести разрез, с точностью не менее 10^{-6} .

cut.in	cut.out
4	1.00000000
0 0	
0 2	
2 2	
2 0	

Задача G. Великая стена

Имя входного файла: стандартный ввод Имя выходного файла: стандартный вывод

Ограничение по времени: 3 секунды Ограничение по памяти: 64 мегабайта

У короля Людовика двое сыновей. Они ненавидят друг друга, и король боится, что после его смерти страна будет уничтожена страшными войнами. Поэтому Людовик решил разделить свою страну на две части, в каждой из которых будет властвовать один из его сыновей. Он посадил их на трон в города A и B, и хочет построить минимально возможное количество фрагментов стены таким образом, чтобы не существовало пути из города A в город B.

Страну, в которой властвует Людовик, можно упрощенно представить в виде прямоугольника $m \times n$. В некоторых клетках этого прямоугольника расположены горы, по остальным же можно свободно перемещаться. Кроме этого, ландшафт в некоторых клетках удобен для строительства стены, в остальных же строительство невозможно.

При поездках по стране можно перемещаться из клетки в соседнюю по стороне, только если ни одна из этих клеток не содержит горы или построенного фрагмента стены.

Формат входных данных

В первой строке входного файла содержатся числа m и n ($1 \le m, n \le 50$). Во второй строке заданы числа k и l, где $0 \le k, l, k+l \le mn-2, k$ — количество клеток, на которых расположены горы, а l — количество клеток, на которых можно строить стену. Естественно, что на горах строить стену нельзя. Следующие k строк содержат координаты клеток с горами x_i и y_i , а за ними следуют l строк, содержащие координаты клеток, на которых можно построить стену — x_j и y_j . Последние две строки содержат координаты городов A (x_A и y_A) и B (x_B и y_B) соответственно. Среди клеток, описанных в этих k+l+2 строках, нет двух совпадающих. Гарантируется, что $1 \le x_i, x_j, x_A, x_B \le m$ и $1 \le y_i, y_i, y_A, y_B \le n$.

Формат выходных данных

В первой строке выходного файла должно быть выведено минимальное количество фрагментов стены F, которые необходимо построить. В последующих F строках необходимо вывести один из возможных вариантов застройки.

Если невозможно произвести требуемую застройку, то необходимо вывести в выходной файл единственное число -1.

стандартный ввод	стандартный вывод
5 5	3
3 8	1 3
3 2	2 3
2 4	3 1
3 4	
3 1	
1 3	
2 3	
3 3	
4 3	
5 3	
1 4	
1 5	
2 1	
5 5	