Trig Final (TEST v653)

• You should have a calculator (like Desmos) and a unit-circle reference sheet.

Question 1

In the figure below, we see a circle and a central angle that subtends an arc. The arc length is 51 meters. The angle measure is 1.4 radians. How long is the radius in meters?

Question 2

Consider angles $\frac{8\pi}{3}$ and $\frac{-11\pi}{4}$. For each angle, use a spiral with an arrow head to \mathbf{mark} the angle on a circle below in standard position. Then, find \mathbf{exact} expressions for $\sin\left(\frac{8\pi}{3}\right)$ and $\cos\left(\frac{-11\pi}{4}\right)$ by using a unit circle (provided separately).

Find $sin(8\pi/3)$

Find $\cos(-11\pi/4)$

Question 3

If $\tan(\theta) = \frac{-77}{36}$, and θ is in quadrant IV, determine an exact value for $\sin(\theta)$.

Question 4

A mass-spring system oscillates vertically with an amplitude of 4.3 meters, a midline at y = 7.37 meters, and a frequency of 8.39 Hz. At t = 0, the mass is at the midline and moving down. Write an equation to model the height (y in meters) as a function of time (t in seconds).