COMS 4771 Lecture 22

1. Hidden Markov models

Markov models

Markov model: a stochastic process $\{Y_t\}_{t\in\mathbb{N}}$ where, for each $t\in\mathbb{N}$, the conditional distribution of the next state Y_{t+1} given all previous states $\{Y_{\tau}: \tau \leq t\}$ only depends on the value of the current state Y_t .

MARKOV MODELS

Markov model: a stochastic process $\{Y_t\}_{t\in\mathbb{N}}$ where, for each $t\in\mathbb{N}$, the conditional distribution of the next state Y_{t+1} given all previous states $\{Y_{\tau}: \tau \leq t\}$ only depends on the value of the current state Y_t .

Conditioned on present Y_t , past $\{Y_\tau\}_{\tau < t}$ and future $\{Y_\tau\}_{\tau > t}$ are independent.

$$\cdots \longrightarrow Y_{t-1} \longrightarrow Y_t \longrightarrow Y_{t+1} \longrightarrow \cdots$$

Markov models

Markov model: a stochastic process $\{Y_t\}_{t\in\mathbb{N}}$ where, for each $t\in\mathbb{N}$, the conditional distribution of the next state Y_{t+1} given all previous states $\{Y_{\tau}: \tau \leq t\}$ only depends on the value of the current state Y_t .

Conditioned on present Y_t , past $\{Y_\tau\}_{\tau < t}$ and future $\{Y_\tau\}_{\tau > t}$ are independent.

$$\cdots \longrightarrow Y_{t-1} \longrightarrow Y_t \longrightarrow Y_{t+1} \longrightarrow \cdots$$

Specifying a Markov chain (with discrete state space $[K] = \{1, 2, \dots, K\}$):

▶ Initial state distribution: K-dimensional probability vector π

$$\pi_i = \Pr(Y_1 = i).$$

▶ Transition matrix: $K \times K$ matrix A

$$A_{i,j} = \Pr(Y_{t+1} = j \mid Y_t = i)$$

(rows of A are probability vectors).

Hidden Markov model (HMM): a Markov chain $\{(X_t,Y_t)\}_{t\in\mathbb{N}}$, where

Hidden Markov model (HMM): a Markov chain $\{(X_t, Y_t)\}_{t \in \mathbb{N}}$, where

▶ $\{Y_t\}_{t\in\mathbb{N}}$ is also a Markov chain (with state space $[K] = \{1, 2, ..., K\}$) (hidden state sequence);

Hidden Markov model (HMM): a Markov chain $\{(X_t, Y_t)\}_{t \in \mathbb{N}}$, where

- ▶ $\{Y_t\}_{t\in\mathbb{N}}$ is also a Markov chain (with state space $[K] = \{1, 2, ..., K\}$) (hidden state sequence);
- \blacktriangleright conditioned on Y_t , corresponding X_t is independent of all other variables;

Hidden Markov model (HMM): a Markov chain $\{(X_t, Y_t)\}_{t \in \mathbb{N}}$, where

- ▶ $\{Y_t\}_{t\in\mathbb{N}}$ is also a Markov chain (with state space $[K] = \{1, 2, ..., K\}$) (hidden state sequence);
- \triangleright conditioned on Y_t , corresponding X_t is independent of all other variables;
- ▶ the Y_t are hidden, and the X_t are observed.

Hidden Markov model (HMM): a Markov chain $\{(X_t, Y_t)\}_{t \in \mathbb{N}}$, where

- ▶ $\{Y_t\}_{t\in\mathbb{N}}$ is also a Markov chain (with state space $[K] = \{1, 2, ..., K\}$) (hidden state sequence);
- \triangleright conditioned on Y_t , corresponding X_t is independent of all other variables;
- \blacktriangleright the Y_t are hidden, and the X_t are observed.

Hidden Markov model (HMM): a Markov chain $\{(X_t, Y_t)\}_{t \in \mathbb{N}}$, where

- ▶ $\{Y_t\}_{t\in\mathbb{N}}$ is also a Markov chain (with state space $[K] = \{1, 2, ..., K\}$) (hidden state sequence);
- \triangleright conditioned on Y_t , corresponding X_t is independent of all other variables;
- \blacktriangleright the Y_t are hidden, and the X_t are observed.

$$\begin{array}{cccc}
\cdots \longrightarrow Y_{t-1} \longrightarrow & Y_t & \longrightarrow Y_{t+1} \longrightarrow \cdots \\
\downarrow & \downarrow & \downarrow & \downarrow \\
X_{t-1} & X_t & X_{t+1}
\end{array}$$

Time-homogeneous HMM: conditional distribution of X_t given Y_t does not depend on t. (We'll focus on these.)

Hidden Markov model (HMM): a Markov chain $\{(X_t, Y_t)\}_{t \in \mathbb{N}}$, where

- ▶ $\{Y_t\}_{t\in\mathbb{N}}$ is also a Markov chain (with state space $[K] = \{1, 2, ..., K\}$) (hidden state sequence);
- **•** conditioned on Y_t , corresponding X_t is independent of all other variables;
- \blacktriangleright the Y_t are hidden, and the X_t are observed.

$$\begin{array}{cccc} \cdots \longrightarrow Y_{t-1} \longrightarrow & Y_t & \longrightarrow Y_{t+1} \longrightarrow \cdots \\ & \downarrow & \downarrow & \text{great simplification} \\ & X_{t-1} & X_t & X_{t+1} & \text{not depend on t!!!} \\ & & \text{only care Yt's value} \end{array}$$

Time-homogeneous HMM: conditional distribution of X_t giver Y_t loes not depend on t. (We'll focus on these.)

Useful subscript notation: $Y_{s:t} = (Y_s, Y_{s+1}, \dots, Y_t)$ for $s \leq t$.

HMM PARAMETERS (DISCRETE OBSERVATIONS)

For time-homogeneous HMM where X_t takes values in $[D] = \{1, 2, \dots, D\}$:

HMM parameters (discrete observations)

For time-homogeneous HMM where X_t takes values in $[D] = \{1, 2, \dots, D\}$:

▶ Initial state distribution: K-dimensional probability vector π

$$\pi_i = \Pr(Y_1 = i).$$

HMM PARAMETERS (DISCRETE OBSERVATIONS)

For time-homogeneous HMM where X_t takes values in $[D] = \{1, 2, \dots, D\}$:

▶ Initial state distribution: K-dimensional probability vector π

$$\pi_i = \Pr(Y_1 = i).$$

▶ Transition matrix: $K \times K$ matrix A

$$A_{i,j} = \Pr(Y_{t+1} = j | Y_t = i)$$

(rows of A are probability vectors).

HMM PARAMETERS (DISCRETE OBSERVATIONS)

For time-homogeneous HMM where X_t takes values in $[D] = \{1, 2, ..., D\}$:

▶ Initial state distribution: K-dimensional probability vector π

$$\pi_i = \Pr(Y_1 = i).$$

Transition matrix: $K \times K$ matrix A

underlying thing

$$A_{i,j} = \Pr(Y_{t+1} = j \mid Y_t = i)$$

(rows of A are probability vectors).

► Emission matrix: $K \times D$ matrix B emission thing

$$B_{i,j} = \Pr(X_t = j \mid Y_t = i)$$

(rows of \boldsymbol{B} are probability vectors).

CONNECTIONS TO MIXTURE MODELS

Mixture model

1

 \downarrow

1

 $(Y \text{ is hidden, } \boldsymbol{X} \text{ is observed.})$

Hidden Markov model

$$Y_1 \rightarrow Y_2 \rightarrow \cdots \rightarrow Y_\ell$$

$$\downarrow \qquad \downarrow \qquad \qquad \downarrow \qquad \qquad X_1 \qquad X_2$$

$$(Y_{1:\ell} ext{ is hidden}, X_{1:\ell} ext{ is observed.})$$

CONNECTIONS TO MIXTURE MODELS

Mixture model

 \boldsymbol{X}

(Y is hidden, X is observed.)

For K component mixture model, Y takes values in [K].

Hidden Markov model

$$\begin{array}{cccc} Y_1 & \to & Y_2 & \to \cdots & \to & Y_{\ell} \\ \downarrow & & \downarrow & & \downarrow \\ X_1 & & X_2 & & & X_{\ell} \end{array}$$

 $(Y_{1:\ell} \text{ is hidden, } X_{1:\ell} \text{ is observed.})$

CONNECTIONS TO MIXTURE MODELS

Mixture model

X

(Y is hidden, X is observed.)

For K component mixture model, Y takes values in [K].

Hidden Markov model

$$Y_1 \rightarrow Y_2 \rightarrow \cdots \rightarrow Y_\ell$$

$$\downarrow \qquad \qquad \downarrow$$

$$X_1 \qquad X_2 \qquad X_\ell$$

 $(Y_{1:\ell} \text{ is hidden, } X_{1:\ell} \text{ is observed.})$

For sequence of length ℓ , $Y_{1:\ell}$ takes values in $[K]^{\ell}$.

Mixture model

 \boldsymbol{X}

(Y is hidden, X is observed.)

For K component mixture model, Y takes values in [K].

Hidden Markov model

$$\begin{array}{cccc} Y_1 & \to & Y_2 & \to \cdots & \to & Y_{\ell} \\ \downarrow & & \downarrow & & \downarrow \\ X_1 & & X_2 & & & X_{\ell} \end{array}$$

 $(Y_{1:\ell} \text{ is hidden, } X_{1:\ell} \text{ is observed.})$

For sequence of length ℓ , $Y_{1:\ell}$ takes values in $[K]^{\ell}$.

Graphical diagram for HMM correctly suggests that every path—even ignoring arrow directions—is a Markov chain!

Mixture model

 \boldsymbol{X}

(Y is hidden, X is observed.)

For K component mixture model, Y takes values in [K].

Hidden Markov model

$$\begin{array}{cccc} Y_1 & \to & Y_2 & \to \cdots & \to & Y_{\ell} \\ \downarrow & & \downarrow & & \downarrow \\ X_1 & & X_2 & & & X_{\ell} \end{array}$$

 $(Y_{1:\ell} \text{ is hidden, } X_{1:\ell} \text{ is observed.})$

For sequence of length ℓ , $Y_{1:\ell}$ takes values in $[K]^{\ell}$.

Graphical diagram for HMM correctly suggests that every path—even ignoring arrow directions—is a Markov chain!

$$\blacktriangleright Y_1 \to Y_2 \to X_2$$

Mixture model

 \boldsymbol{X}

(Y is hidden, X is observed.)

For K component mixture model, Y takes values in [K].

Hidden Markov model

$$\begin{array}{cccc} Y_1 & \to & Y_2 & \to \cdots & \to & Y_{\ell} \\ \downarrow & & \downarrow & & \downarrow \\ X_1 & & X_2 & & & X_{\ell} \end{array}$$

 $(Y_{1:\ell} \text{ is hidden, } X_{1:\ell} \text{ is observed.})$

For sequence of length ℓ , $Y_{1:\ell}$ takes values in $[K]^{\ell}$.

Graphical diagram for HMM correctly suggests that every path—even ignoring arrow directions—is a Markov chain!

- $\blacktriangleright Y_1 \to Y_2 \to X_2$
- $X_2 \to Y_2 \to Y_3 \to X_3$

Mixture model

 $\begin{array}{cc} \mathsf{sub-} & & Y \\ \mathsf{distribution} & & \downarrow \\ & & X \end{array}$

(Y is hidden, X is observed.)

For K component mixture model, Y takes values in [K].

 $(Y_{1:\ell} ext{ is hidden, } X_{1:\ell} ext{ is observed.})$

For sequence of length ℓ $Y_{1:\ell}$ takes values in $[K]^{\ell}$.

Graphical diagram for HMM correctly suggests that every path—even ignoring arrow directions—is a Markov chain!

- $ightharpoonup Y_1
 ightharpoonup Y_2
 ightharpoonup X_2$
- $X_2 \to Y_2 \to Y_3 \to X_3$
- $ightharpoonup X_1 o Y_1 o Y_{2:\ell} o X_{2:\ell}$
- **.** . .

note the relationship between chain!

EXAMPLE: DISHONEST CASINO

Casino die-rolling game:

Randomly switch between two possible dice: one is fair, the other loaded.

The dice are otherwise indistinguishable!

Example: dishonest casino

Casino die-rolling game:

Randomly switch between two possible dice: one is fair, the other loaded.

The dice are otherwise indistinguishable!

HMM parameters:

and $\pi = (1,0)$ if the casino starts out with the fair die.

EXAMPLE: DISHONEST CASINO

Casino die-rolling game:

Randomly switch between two possible dice: one is fair, the other loaded.

The dice are otherwise indistinguishable!

HMM parameters:

emission matrix

and $\pi = (1,0)$ if the casino starts out with the fair die.

Problem: Based on a sequence of rolls, guess which die was used at each time.

HMM INFERENCE/LEARNING PROBLEMS

Conditional probabilities (e.g., filtering/smoothing)

- ▶ **Given**: parameters $\theta = (\pi, A, B)$, observation sequence $x_{1:\ell} \in [D]^{\ell}$.
- ▶ **Goal**: conditional distribution of $Y_{s:t}$ given $X_{1:\ell} = x_{1:\ell}$ ($1 \le s \le t \le \ell$):

$$\Pr_{\theta}(Y_{s:t} = y_{s:t} \mid X_{1:\ell} = x_{1:\ell}), \text{ for each } y_{s:t} \in [K]^{t-s+1}.$$

HMM INFERENCE/LEARNING PROBLEMS

Conditional probabilities (e.g., filtering/smoothing)

- ▶ **Given**: parameters $\theta = (\pi, A, B)$, observation sequence $x_{1:\ell} \in [D]^{\ell}$.
- ▶ **Goal**: conditional distribution of $Y_{s:t}$ given $X_{1:\ell} = x_{1:\ell}$ ($1 \le s \le t \le \ell$):

$$\Pr_{\theta}(Y_{s:t} = y_{s:t} \mid X_{1:\ell} = x_{1:\ell}), \text{ for each } y_{s:t} \in [K]^{t-s+1}.$$

Most probable state sequence (decoding)

- ▶ **Given**: parameters $\theta = (\pi, A, B)$, observation sequence $x_{1:\ell} \in [D]^{\ell}$.
- ► Goal: $\underset{y_{1:\ell} \in [K]^{\ell}}{\arg \max} \Pr_{\theta} (Y_{1:\ell} = y_{1:\ell} \mid X_{1:\ell} = x_{1:\ell}).$

HMM INFERENCE/LEARNING PROBLEMS

may be the current yt, thus we could predict next

Conditional probabilities (e.g., filtering/smoothing) state

- ▶ **Given**: parameters $\theta = (\pi, A, B)$, observation sequence $x_{1:\ell} \in [D]^{\ell}$.
- ▶ **Goal**: conditional distribution of $Y_{s:t}$ given $X_{1:\ell} = x_{1:\ell}$ ($1 \le s \le t \le \ell$):

$$\Pr_{\theta}(Y_{s:t} = y_{s:t} \mid X_{1:\ell} = x_{1:\ell}), \text{ for each } y_{s:t} \in [K]^{t-s+1}.$$

Most probable state sequence (decoding)

- ▶ Given: parameters $\theta = (\pi, A, B)$, observation sequence $x_{1:\ell} \in [D]^{\ell}$.
- ▶ Goal: $\underset{y_{1:\ell} \in [K]^{\ell}}{\operatorname{arg \, max}} \Pr_{\theta} (Y_{1:\ell} = y_{1:\ell} \mid X_{1:\ell} = x_{1:\ell}).$

Parameter estimation

- ▶ **Given**: n observation sequences $x_{1:\ell}^{(s)}$ for $s \in [n]$.
- ▶ **Goal**: parameter estimates $\hat{\boldsymbol{\theta}} = (\hat{\boldsymbol{\pi}}, \widehat{\boldsymbol{A}}, \widehat{\boldsymbol{B}})$.

EXAMPLE: DISHONEST CASINO

Conditional probability

Gray bars: Loaded dice used. Blue: $\Pr_{m{ heta}}(Y_t = \mathsf{loaded}|X_{1:\ell} = x_{1:\ell})$

Decoding

Gray bars: Loaded dice used. Blue: Most probable state Z_t .

SOME APPLICATIONS

▶ Bioinformatics

Observations: amino acids in a protein

Hidden states: indicators of evolutionary conservation

SOME APPLICATIONS

▶ Bioinformatics

Observations: amino acids in a protein

Hidden states: indicators of evolutionary conservation

► Natural language processing

Observations: words in a sentence

Hidden states: words' part-of-speech or other word-type semantics

SOME APPLICATIONS

▶ Bioinformatics

Observations: amino acids in a protein

Hidden states: indicators of evolutionary conservation

► Natural language processing

Observations: words in a sentence

Hidden states: words' part-of-speech or other word-type semantics

Speech recognition

Observations: recorded speech at various (discrete) times

Hidden states: phonemes that the speaker intended to vocalize

HMM PROBABILITY COMPUTATIONS

PROBABILITY COMPUTATIONS

HMM can be used for sequences of arbitrary length.

PROBABILITY COMPUTATIONS

HMM can be used for sequences of arbitrary length.

Subtle difficulty: The most straightforward formulae for

- observation sequence probabilities (e.g., $\Pr_{\theta}(X_{1:\ell} = x_{1:\ell})$) and
- ▶ conditional state sequence probabilities (e.g., $\Pr_{\theta}(Y_{\ell} = y_{\ell} \mid X_{1:\ell} = x_{1:\ell})$)

do not suggest efficient algorithms for computation.

PROBABILITY COMPUTATIONS

HMM can be used for sequences of arbitrary length.

Subtle difficulty: The most straightforward formulae for

- observation sequence probabilities (e.g., $\Pr_{\theta}(X_{1:\ell} = x_{1:\ell})$) and
- lacktriangle conditional state sequence probabilities (e.g., $\Pr_{m{\theta}}(Y_\ell=y_\ell\,|\,X_{1:\ell}=x_{1:\ell}))$

do not suggest efficient algorithms for computation.

Need to exploit special structure of HMMs to get efficient algorithms.

Probability of observation sequence $\Pr_{\theta}(X_{1:\ell} = x_{1:\ell})$.

Probability of observation sequence $Pr_{\theta}(X_{1:\ell} = x_{1:\ell})$.

We'll use the fact that conditioned on $Y_{1:\ell}$, the $\{X_t\}_{t\in [\ell]}$ are independent.

Probability of observation sequence $Pr_{\theta}(X_{1:\ell} = x_{1:\ell})$.

We'll use the fact that conditioned on $Y_{1:\ell}$, the $\{X_t\}_{t\in[\ell]}$ are independent.

$$\Pr_{\boldsymbol{\theta}}(X_{1:\ell} = x_{1:\ell}) = \sum_{y_{1:\ell} \in [K]^{\ell}} \Pr_{\boldsymbol{\theta}}(X_{1:\ell} = x_{1:\ell} \land Y_{1:\ell} = y_{1:\ell})$$

Probability of observation sequence $Pr_{\theta}(X_{1:\ell} = x_{1:\ell})$.

We'll use the fact that conditioned on $Y_{1:\ell}$, the $\{X_t\}_{t\in[\ell]}$ are independent.

$$\Pr_{\boldsymbol{\theta}}(X_{1:\ell} = x_{1:\ell}) = \sum_{y_{1:\ell} \in [K]^{\ell}} \Pr_{\boldsymbol{\theta}}(X_{1:\ell} = x_{1:\ell} \land Y_{1:\ell} = y_{1:\ell})
= \sum_{y_{1:\ell} \in [K]^{\ell}} \Pr_{\boldsymbol{\theta}}(Y_{1:\ell} = y_{1:\ell}) \cdot \Pr_{\boldsymbol{\theta}}(X_{1:\ell} = x_{1:\ell} \mid Y_{1:\ell} = y_{1:\ell})$$

Probability of observation sequence $Pr_{\theta}(X_{1:\ell} = x_{1:\ell})$.

We'll use the fact that conditioned on $Y_{1:\ell}$, the $\{X_t\}_{t\in[\ell]}$ are independent.

$$\begin{aligned} \Pr_{\boldsymbol{\theta}}(X_{1:\ell} = x_{1:\ell}) &= \sum_{y_{1:\ell} \in [K]^{\ell}} \Pr_{\boldsymbol{\theta}}(X_{1:\ell} = x_{1:\ell} \wedge Y_{1:\ell} = y_{1:\ell}) \\ &= \sum_{y_{1:\ell} \in [K]^{\ell}} \Pr_{\boldsymbol{\theta}}(Y_{1:\ell} = y_{1:\ell}) \cdot \Pr_{\boldsymbol{\theta}}(X_{1:\ell} = x_{1:\ell} \,|\, Y_{1:\ell} = y_{1:\ell}) \\ &= \sum_{y_{1:\ell} \in [K]^{\ell}} \Pr_{\boldsymbol{\theta}}(Y_{1:\ell} = y_{1:\ell}) \cdot \prod_{t=1}^{\ell} \Pr_{\boldsymbol{\theta}}(X_t = x_t \,|\, Y_t = y_t) \end{aligned}$$

Given Y1:I, {Xt} are independent.

Probability of observation sequence $Pr_{\theta}(X_{1:\ell} = x_{1:\ell})$.

We'll use the fact that conditioned on $Y_{1:\ell}$, the $\{X_t\}_{t\in[\ell]}$ are independent.

$$\begin{array}{lll} \Pr_{\pmb{\theta}}(X_{1:\ell} = x_{1:\ell}) & = & \sum_{y_{1:\ell} \in [K]^\ell} \Pr_{\pmb{\theta}}(X_{1:\ell} = x_{1:\ell} \wedge Y_{1:\ell} = y_{1:\ell}) \\ & = & \sum_{y_{1:\ell} \in [K]^\ell} \Pr_{\pmb{\theta}}(Y_{1:\ell} = y_{1:\ell}) \cdot \Pr_{\pmb{\theta}}\left(X_{1:\ell} = x_{1:\ell} \,|\, Y_{1:\ell} = y_{1:\ell}\right) \\ & \quad \text{this step, assume yt is know for current sequence} \\ & = & \sum_{y_{1:\ell} \in [K]^\ell} \Pr_{\pmb{\theta}}(Y_{1:\ell} = y_{1:\ell}) \cdot \prod_{t=1} \Pr_{\pmb{\theta}}\left(X_t = x_t \,|\, Y_t = y_t\right) \end{array}$$

But summation is over K^ℓ terms—seems intractable for large $\ell.$

Probability of observation sequence $Pr_{\theta}(X_{1:\ell} = x_{1:\ell})$.

We'll use the fact that conditioned on $Y_{1:\ell}$, the $\{X_t\}_{t\in [\ell]}$ are independent.

$$\begin{array}{ll} \Pr_{\pmb{\theta}}(X_{1:\ell} = x_{1:\ell}) &= \sum_{\pmb{y}_{1:\ell} \in [K]^{\ell}} \Pr_{\pmb{\theta}}(X_{1:\ell} = x_{1:\ell} \wedge Y_{1:\ell} = y_{1:\ell}) \\ &= \sum_{\pmb{y}_{1:\ell} \in [K]^{\ell}} \Pr_{\pmb{\theta}}(Y_{1:\ell} = y_{1:\ell}) \cdot \Pr_{\pmb{\theta}}\left(X_{1:\ell} = x_{1:\ell} \,|\, Y_{1:\ell} = y_{1:\ell}\right) \\ &= \sum_{\pmb{y}_{1:\ell} \in [K]^{\ell}} \Pr_{\pmb{\theta}}(Y_{1:\ell} = y_{1:\ell}) \cdot \prod_{t=1}^{\ell} \Pr_{\pmb{\theta}}\left(X_t = x_t \,|\, Y_t = y_t\right) \\ &\text{marigina} \end{array}$$

But summation is over K^ℓ terms—seems intractable for large ℓ .

Fortunately, the summation can be computed iteratively in time linear in ℓ .

HMM parameters:

$$\pi_y = \Pr(Y_1 = y); \ A_{y,z} = \Pr(Y_{t+1} = z \mid Y_t = y); \ B_{y,x} = \Pr(X_t = x \mid Y_t = y).$$

$$\Pr_{\boldsymbol{\theta}}(X_{1:3} = x_{1:3})$$

HMM parameters:

$$\pi_y = \Pr(Y_1 = y); \ A_{y,z} = \Pr(Y_{t+1} = z \mid Y_t = y); \ B_{y,x} = \Pr(X_t = x \mid Y_t = y).$$

$$\Pr_{\theta}(X_{1:3} = x_{1:3}) = \sum_{y_{1:3} \in [K]^3} \Pr_{\theta}(Y_{1:3} = y_{1:3}) \cdot \prod_{t=1}^3 \Pr_{\theta}(X_t = x_t \mid Y_t = y_t)$$

HMM parameters:

$$\pi y = \Pr(Y_1 = y); \ A_{y,z} = \Pr(Y_{t+1} = z \mid Y_t = y); \ B_{y,x} = \Pr(X_t = x \mid Y_t = y).$$

$$\begin{split} & \Pr_{\pmb{\theta}}(X_{1:3} = x_{1:3}) \\ & = \sum_{y_{1:3} \in [K]^3} \Pr_{\pmb{\theta}}(Y_{1:3} = y_{1:3}) \cdot \prod_{t=1}^3 \Pr_{\pmb{\theta}}\left(X_t = x_t \mid Y_t = y_t\right) \\ & = \sum_{y_{1:3} \in [K]^3} \underbrace{\left(\pi y_1 \cdot A y_1, y_2 \cdot A y_2, y_3\right)}_{\text{Markov chain probabilities}} \cdot \underbrace{\left(B y_1, x_1 \cdot B y_2, x_2 \cdot B y_3, x_3\right)}_{\text{emission probabilities}} \end{split}$$

HMM parameters:

$$\pi y = \Pr(Y_1 = y); \ A_{y,z} = \Pr(Y_{t+1} = z \mid Y_t = y); \ B_{y,x} = \Pr(X_t = x \mid Y_t = y).$$

$$\begin{split} &\Pr_{\pmb{\theta}}\big(X_{1:3} = x_{1:3}\big) \\ &= \sum_{y_{1:3} \in [K]^3} \Pr_{\pmb{\theta}}\big(Y_{1:3} = y_{1:3}\big) \cdot \prod_{t=1}^3 \Pr_{\pmb{\theta}}\big(X_t = x_t \mid Y_t = y_t\big) \\ &= \sum_{y_{1:3} \in [K]^3} \underbrace{\left(\pi y_1 \cdot A y_1, y_2 \cdot A y_2, y_3\right) \cdot \left(B y_1, x_1 \cdot B y_2, x_2 \cdot B y_3, x_3\right)}_{\text{Markov chain probabilities}} \\ &= \underbrace{\sum_{y_1 \in [K]} \pi y_1 \cdot B y_1, x_1}_{y_2 \in [K]} A y_1, y_2 \cdot B y_2, x_2}_{y_3 \in [K]} A y_2, y_3 \cdot B y_3, x_3}_{O(K) \text{ time}} \\ &= \underbrace{\sum_{y_1 \in [K]} \pi y_1 \cdot B y_1, x_1}_{O(K) \text{ time for each } y_1 \in [K]} A y_1, y_2 \cdot B y_2, x_2}_{y_3 \in [K]} A y_2, y_3 \cdot B y_3, x_3} \\ &= \underbrace{\sum_{y_1 \in [K]} \pi y_1 \cdot B y_1, x_1}_{O(K) \text{ time for each } y_1 \in [K]} A y_1, y_2 \cdot B y_2, x_2}_{O(K) \text{ time for each } y_1 \in [K]} A y_2, y_3 \cdot B y_3, x_3} \\ &= \underbrace{\sum_{y_1 \in [K]} \pi y_1 \cdot B y_1, x_1}_{O(K) \text{ time for each } y_1 \in [K]} A y_2, y_3 \cdot B y_3, x_3}_{O(K) \text{ time for each } y_1 \in [K]} A y_2, y_3 \cdot B y_3, x_3} \\ &= \underbrace{\sum_{y_1 \in [K]} \pi y_1 \cdot B y_1, x_1}_{O(K) \text{ time for each } y_1 \in [K]} A y_1, y_2 \cdot B y_2, x_2}_{O(K) \text{ time for each } y_1 \in [K]} A y_2, y_3 \cdot B y_3, x_3} \\ &= \underbrace{\sum_{y_1 \in [K]} \pi y_1 \cdot B y_1, x_1}_{O(K) \text{ time for each } y_1 \in [K]} A y_1, y_2 \cdot B y_2, x_2}_{O(K) \text{ time for each } y_2 \in [K]} A y_1, y_2 \cdot B y_2, x_3} \\ &= \underbrace{\sum_{y_1 \in [K]} \pi y_1 \cdot B y_1, x_1}_{O(K) \text{ time for each } y_1 \in [K]} A y_2, y_3 \cdot B y_3, x_3}_{O(K) \text{ time for each } y_2 \in [K]} A y_2, y_3 \cdot B y_3, x_3} \\ &= \underbrace{\sum_{y_1 \in [K]} \pi y_1 \cdot B y_1, x_1}_{O(K) \text{ time for each } y_1 \in [K]} A y_2, y_3 \cdot B y_3, x_3}_{O(K) \text{ time for each } y_2 \in [K]} A y_3, y_3 \cdot B y_3, x_3} \\ &= \underbrace{\sum_{y_1 \in [K]} \pi y_1 \cdot B y_1, x_1}_{O(K) \text{ time for each } y_1 \in [K]} A y_2, y_3 \cdot B y_3, x_3}_{O(K) \text{ time for each } y_2 \in [K]} A y_3, y_3 \cdot B y_3, x_3} A y_3, y_3 \cdot B y_3, x_3} A y_3, y_3 \cdot B y_3, x_3} A y_3, y_3 \cdot B y_3, x_3}_{O(K) \text{ time for each } y_2 \in [K]} A y_3, y_3 \cdot B y_3, x_3}_{O(K) \text{ time for each } y_2 \in [K]} A y_3, y_3 \cdot B y_3, x_3}_{O(K) \text{ time for each } y_2 \in [K]} A y_3, y_3 \cdot B y_3, x_3}_{O(K) \text{ time for each } y_2 \in [K]}$$

HMM parameters:

$$\pi_y = \Pr(Y_1 = y); \ A_{y,z} = \Pr(Y_{t+1} = z \mid Y_t = y); \ B_{y,x} = \Pr(X_t = x \mid Y_t = y).$$

Example: probability of observation triplet $x_{1:3} \in [D]^3$

$$\Pr_{\boldsymbol{\theta}}(X_{1:3} = x_{1:3}) \qquad \qquad \text{transformation from any i to any j}$$

$$= \sum_{y_{1:3} \in [K]^3} \Pr_{\boldsymbol{\theta}}(Y_{1:3} = y_{1:3}) \cdot \prod_{t=1}^3 \Pr_{\boldsymbol{\theta}}\left(X_t = x_t \mid Y_t = y_t \text{ thus we could reduce through following form}\right)$$
 note the x is fixed!!!
$$= \sum_{y_{1:3} \in [K]^3} \underbrace{\left(\pi y_1 \cdot A y_1, y_2 \cdot A y_2, y_3\right)}_{\text{Markov chain probabilities}} \cdot \underbrace{\left(B y_1, x_1 \cdot B y_2, x_2 \cdot B y_3, x_3\right)}_{\text{emission probabilities}}$$

$$= \underbrace{\sum_{y_1 \in [K]} \pi y_1 \cdot B y_1, x_1}_{y_2 \in [K]} \underbrace{\sum_{y_2 \in [K]} A y_1, y_2 \cdot B y_2, x_2}_{y_3 \in [K]} \underbrace{\sum_{y_3 \in [K]} A y_2, y_3 \cdot B y_3, x_3}_{y_3 \in [K]}$$

O(K) time O(K) time for each $y_1 \in [K]$ O(K) time for each $y_2 \in [K]$

Computing sums from right-to-left: total time is $O(K^2\ell)$ for length ℓ .

note the complexity: constrain to its own component now!!!

the beautiful part

there is a

$$\textbf{A simple case} : \operatorname{Pr}_{\boldsymbol{\theta}} \left(Y_{\ell} = y_{\ell} \, | \, X_{1:\ell} = x_{1:\ell} \right) \ = \ \frac{\operatorname{Pr}_{\boldsymbol{\theta}} (X_{1:\ell} = x_{1:\ell} \, \wedge \, Y_{\ell} = y_{\ell})}{\operatorname{Pr}_{\boldsymbol{\theta}} (X_{1:\ell} = x_{1:\ell})} .$$

 $y_{\ell-1} \in [K]$

$$\begin{array}{l} \textbf{A simple case: } \Pr_{\pmb{\theta}} \big(Y_{\ell} = y_{\ell} \, \big| \, X_{1:\ell} = x_{1:\ell} \big) \ = \ \frac{\Pr_{\pmb{\theta}} \big(X_{1:\ell} = x_{1:\ell} \, \wedge \, Y_{\ell} = y_{\ell} \big)}{\Pr_{\pmb{\theta}} \big(X_{1:\ell} = x_{1:\ell} \big)}. \\ \\ \Pr_{\pmb{\theta}} \big(X_{1:\ell} = x_{1:\ell} \big) \\ \\ = \ \sum_{y_1 \in [K]} \pi y_1 \cdot B y_1, x_1 \sum_{y_2 \in [K]} A y_1, y_2 \cdot B y_2, x_2 \cdots \\ \\ \cdots \ \sum \ A y_{\ell-2}, y_{\ell-1} \cdot B y_{\ell-1}, x_{\ell-1} \ \sum \ A y_{\ell-1}, y_{\ell} \cdot B y_{\ell}, x_{\ell}. \end{array}$$

 $y_{\ell-1} \in [K]$

$$\begin{array}{l} \textbf{A simple case: } \Pr_{\pmb{\theta}} \big(Y_{\ell} = y_{\ell} \, \big| \, X_{1:\ell} = x_{1:\ell} \big) \ = \ \frac{\Pr_{\pmb{\theta}} \big(X_{1:\ell} = x_{1:\ell} \, \wedge \, Y_{\ell} = y_{\ell} \big)}{\Pr_{\pmb{\theta}} \big(X_{1:\ell} = x_{1:\ell} \big)}. \\ \\ \Pr_{\pmb{\theta}} \big(X_{1:\ell} = x_{1:\ell} \, \wedge \, \underbrace{Y_{\ell} = y_{\ell}} \big) \\ \\ = \ \sum_{y_{1} \in [K]} \pi y_{1} \cdot B y_{1}, x_{1} \sum_{y_{2} \in [K]} A y_{1}, y_{2} \cdot B y_{2}, x_{2} \cdots \\ \\ \cdots \ \sum_{x_{\ell} \in [K]} A y_{\ell-2}, y_{\ell-1} \cdot B y_{\ell-1}, x_{\ell-1} \qquad A y_{\ell-1}, y_{\ell} \cdot B y_{\ell}, x_{\ell}. \end{array}$$

A simple case:
$$\Pr_{\boldsymbol{\theta}}\left(Y_{\ell} = y_{\ell} \mid X_{1:\ell} = x_{1:\ell}\right) = \frac{\Pr_{\boldsymbol{\theta}}\left(X_{1:\ell} = x_{1:\ell} \land Y_{\ell} = y_{\ell}\right)}{\Pr_{\boldsymbol{\theta}}\left(X_{1:\ell} = x_{1:\ell}\right)}.$$

$$\begin{split} \Pr_{\boldsymbol{\theta}}(X_{1:\ell} &= x_{1:\ell} \, \wedge \, \underbrace{Y_{\ell} = y_{\ell}}) \\ &= \sum_{y_{1} \in [K]} \pi y_{1} \cdot By_{1}, x_{1} \sum_{y_{2} \in [K]} Ay_{1}, y_{2} \cdot By_{2}, x_{2} \cdots \\ &\cdots \sum_{y_{\ell-1} \in [K]} Ay_{\ell-2}, y_{\ell-1} \cdot By_{\ell-1}, x_{\ell-1} \qquad Ay_{\ell-1}, y_{\ell} \cdot By_{\ell}, x_{\ell}. \end{split}$$

Forward inductive computation:

Keep track of $\alpha_t(y_t) := \Pr_{\theta}(X_{1:t} = x_{1:t} \land Y_t = y_t)$ for each $y_t \in [K]$.

A simple case:
$$\Pr_{\theta}(Y_{\ell} = y_{\ell} \mid X_{1:\ell} = x_{1:\ell}) = \frac{\Pr_{\theta}(X_{1:\ell} = x_{1:\ell} \land Y_{\ell} = y_{\ell})}{\Pr_{\theta}(X_{1:\ell} = x_{1:\ell})}$$
.

$$\begin{split} \Pr_{\theta}(X_{1:\ell} &= x_{1:\ell} \wedge \underbrace{Y_{\ell} = y_{\ell}}) \\ &= \sum_{y_1 \in [K]} \pi y_1 \cdot B y_1, x_1 \sum_{y_2 \in [K]} A y_1, y_2 \cdot B y_2, x_2 \cdots \text{ note here, yl is fixed!} \\ &\cdots \sum_{y_{\ell-1} \in [K]} A y_{\ell-2}, y_{\ell-1} \cdot B y_{\ell-1}, x_{\ell-1} \end{split}$$

Forward inductive computation:

Keep track of
$$\alpha_t(y_t) := \Pr_{\pmb{\theta}}(X_{1:t} = x_{1:t} \land Y_t = y_t)$$
 for each $y_t \in [K]$. Compute α_{t+1} using α_t in $O(K^2)$ time: something amazing is happening!

$$\alpha_{t+1}(y_{t+1}) \ = \ \left(\sum_{y_t \in [K]} \alpha_t(y_t) \cdot Ay_t, y_{t+1} \right) \cdot By_{t+1}, x_{t+1} \quad \text{for each } y_{t+1} \in [K].$$

actually, need to compute for each y(t +1), thus the cost is O(k^2)

powerful! each pair from yt to yt+1

For any
$$1 \leq t < \ell$$
,
$$\Pr_{\boldsymbol{\theta}} \left(Y_t = y_t \mid X_{1:\ell} = x_{1:\ell} \right)$$

$$= \frac{\Pr_{\boldsymbol{\theta}} (X_{1:t} = x_{1:t} \land Y_t = y_t) \cdot \Pr_{\boldsymbol{\theta}} \left(X_{t+1:\ell} = x_{t+1:\ell} \mid Y_t = y_t \right)}{\Pr_{\boldsymbol{\theta}} (X_{1:\ell} = x_{1:\ell})}$$
 (since $X_{t+1:\ell}$ is conditionally independent of $X_{1:t}$ given Y_t)

For any
$$1 \leq t < \ell$$
,

$$\Pr_{\boldsymbol{\theta}}\left(Y_{t} = y_{t} \mid X_{1:\ell} = x_{1:\ell}\right)$$

$$= \frac{\Pr_{\boldsymbol{\theta}}\left(X_{1:t} = x_{1:t} \land Y_{t} = y_{t}\right) \cdot \Pr_{\boldsymbol{\theta}}\left(X_{t+1:\ell} = x_{t+1:\ell} \mid Y_{t} = y_{t}\right)}{\Pr_{\boldsymbol{\theta}}\left(X_{1:\ell} = x_{1:\ell}\right)}$$

(since $X_{t+1:\ell}$ is conditionally independent of $X_{1:t}$ given Y_t)

$$= \frac{\alpha_t(y_t) \cdot \beta_t(y_t)}{\text{normalization term}}$$

where

$$\alpha_t(y_t) := \Pr_{\theta}(X_{1:t} = x_{1:t} \land Y_t = y_t),$$

 $\beta_t(y_t) := \Pr_{\theta}(X_{t+1:\ell} = x_{t+1:\ell} | Y_t = y_t).$

For any $1 \leq t < \ell$,

$$\Pr_{\boldsymbol{\theta}}\left(Y_{t} = y_{t} \mid X_{1:\ell} = x_{1:\ell}\right)$$

$$= \frac{\Pr_{\boldsymbol{\theta}}\left(X_{1:t} = x_{1:t} \land Y_{t} = y_{t}\right) \cdot \Pr_{\boldsymbol{\theta}}\left(X_{t+1:\ell} = x_{t+1:\ell} \mid Y_{t} = y_{t}\right)}{\Pr_{\boldsymbol{\theta}}\left(X_{1:\ell} = x_{1:\ell}\right)}$$

(since $X_{t+1:\ell}$ is conditionally independent of $X_{1:t}$ given Y_t)

$$= \frac{lpha_t(y_t) \cdot eta_t(y_t)}{\text{normalization term}}$$

where

$$\alpha_t(y_t) := \Pr_{\theta}(X_{1:t} = x_{1:t} \land Y_t = y_t),$$

 $\beta_t(y_t) := \Pr_{\theta}(X_{t+1:\ell} = x_{t+1:\ell} | Y_t = y_t).$

We already saw how to compute $\alpha_t(y_t)$ for each $y_t \in [K]$.

$$\beta_t(y_t) = \Pr_{\theta}(X_{t+1:\ell} = x_{t+1:\ell} | Y_t = y_t)$$

$$\beta_{t}(y_{t}) = \Pr_{\theta} (X_{t+1:\ell} = x_{t+1:\ell} | Y_{t} = y_{t})$$

$$= \sum_{y_{t+1} \in [K]} \Pr_{\theta} (X_{t+1:\ell} = x_{t+1:\ell} \wedge Y_{t+1} = y_{t+1} | Y_{t} = y_{t})$$

$$\beta_{t}(y_{t}) = \operatorname{Pr}_{\theta}(X_{t+1:\ell} = x_{t+1:\ell} | Y_{t} = y_{t})$$

$$= \sum_{y_{t+1} \in [K]} \operatorname{Pr}_{\theta}(X_{t+1:\ell} = x_{t+1:\ell} \wedge Y_{t+1} = y_{t+1} | Y_{t} = y_{t})$$

$$= \sum_{y_{t+1} \in [K]} \operatorname{Pr}_{\theta}(Y_{t+1} = y_{t+1} | Y_{t} = y_{t})$$

$$\cdot \operatorname{Pr}_{\theta}(X_{t+1:\ell} = x_{t+1:\ell} | Y_{t+1} = y_{t+1})$$

$$\beta_{t}(y_{t}) = \operatorname{Pr}_{\theta}(X_{t+1:\ell} = x_{t+1:\ell} | Y_{t} = y_{t})$$

$$= \sum_{y_{t+1} \in [K]} \operatorname{Pr}_{\theta}(X_{t+1:\ell} = x_{t+1:\ell} \wedge Y_{t+1} = y_{t+1} | Y_{t} = y_{t})$$

$$= \sum_{y_{t+1} \in [K]} \operatorname{Pr}_{\theta}(Y_{t+1} = y_{t+1} | Y_{t} = y_{t})$$

$$\cdot \operatorname{Pr}_{\theta}(X_{t+1:\ell} = x_{t+1:\ell} | Y_{t+1} = y_{t+1})$$

$$= \sum_{y_{t+1} \in [K]} \operatorname{Pr}_{\theta}(Y_{t+1} = y_{t+1} | Y_{t} = y_{t})$$

$$\cdot \operatorname{Pr}_{\theta}(X_{t+1} = x_{t+1} | Y_{t+1} = y_{t+1}) \cdot \operatorname{Pr}_{\theta}(X_{t+2:\ell} = x_{t+2:\ell} | Y_{t+1} = y_{t+1})$$

$$\beta_{t}(y_{t}) = \Pr_{\theta} (X_{t+1:\ell} = x_{t+1:\ell} | Y_{t} = y_{t})$$

$$= \sum_{y_{t+1} \in [K]} \Pr_{\theta} (X_{t+1:\ell} = x_{t+1:\ell} \wedge Y_{t+1} = y_{t+1} | Y_{t} = y_{t})$$

$$= \sum_{y_{t+1} \in [K]} \Pr_{\theta} (Y_{t+1} = y_{t+1} | Y_{t} = y_{t})$$

$$\cdot \Pr_{\theta} (X_{t+1:\ell} = x_{t+1:\ell} | Y_{t+1} = y_{t+1})$$

$$= \sum_{y_{t+1} \in [K]} \Pr_{\theta} (Y_{t+1} = y_{t+1} | Y_{t} = y_{t})$$

$$\cdot \Pr_{\theta} (X_{t+1} = x_{t+1} | Y_{t+1} = y_{t+1}) \cdot \Pr_{\theta} (X_{t+2:\ell} = x_{t+2:\ell} | Y_{t+1} = y_{t+1})$$

$$= \sum_{y_{t+1} \in [K]} Ay_{t}, y_{t+1} \cdot By_{t+1}, x_{t+1} \cdot \beta_{t+1} (y_{t+1}).$$

$$\begin{split} \beta_{t}(y_{t}) &= & \Pr_{\theta} \left(X_{t+1:\ell} = x_{t+1:\ell} \, | \, Y_{t} = y_{t} \right) \\ &= & \sum_{y_{t+1} \in [K]} \Pr_{\theta} \left(X_{t+1:\ell} = x_{t+1:\ell} \wedge Y_{t+1} = y_{t+1} \, | \, Y_{t} = y_{t} \right) \\ &= & \sum_{y_{t+1} \in [K]} \Pr_{\theta} \left(Y_{t+1} = y_{t+1} \, | \, Y_{t} = y_{t} \right) & \text{Keep in mind, xt+1 is known! it could be emissioned by any yt+1} \\ & & \cdot \Pr_{\theta} \left(X_{t+1:\ell} = x_{t+1:\ell} \, | \, Y_{t+1} = y_{t+1} \right) \\ &= & \sum_{y_{t+1} \in [K]} \Pr_{\theta} \left(Y_{t+1} = y_{t+1} \, | \, Y_{t} = y_{t} \right) \\ & & \cdot \Pr_{\theta} \left(X_{t+1} = x_{t+1} \, | \, Y_{t+1} = y_{t+1} \right) \cdot \Pr_{\theta} \left(X_{t+2:\ell} = x_{t+2:\ell} \, | \, Y_{t+1} = y_{t+1} \right) \\ &= & \sum_{y_{t+1} \in [K]} A_{y_{t}, y_{t+1}} \cdot B_{y_{t+1}, x_{t+1}} \cdot \beta_{t+1}(y_{t+1}). \end{split}$$

Backward inductive computation: Compute β_t using β_{t+1} in $O(K^2)$ time.

Given parameters $oldsymbol{ heta} = (oldsymbol{\pi}, oldsymbol{A}, oldsymbol{B})$ and sequence $x_{1:\ell} \in [D]^\ell$:

Given parameters $\boldsymbol{\theta} = (\boldsymbol{\pi}, \boldsymbol{A}, \boldsymbol{B})$ and sequence $x_{1:\ell} \in [D]^{\ell}$:

► (Forward pass)

Starting with $\alpha_1(y_1) = \pi y_1 \cdot B y_1, x_1$ for each $y_1 \in [K]$,

$$\alpha_{t+1}(y_{t+1}) \ = \ \left(\sum_{y_t \in [K]} \alpha_t(y_t) \cdot Ay_t, y_{t+1}\right) \cdot By_{t+1}, x_{t+1} \quad \text{ for each } y_{t+1} \in [K].$$

Given parameters $\boldsymbol{\theta} = (\boldsymbol{\pi}, \boldsymbol{A}, \boldsymbol{B})$ and sequence $x_{1:\ell} \in [D]^{\ell}$:

► (Forward pass)

Starting with
$$\alpha_1(y_1) = \pi y_1 \cdot B y_1, x_1$$
 for each $y_1 \in [K]$,

$$\alpha_{t+1}(y_{t+1}) \ = \ \left(\sum_{y_t \in [K]} \alpha_t(y_t) \cdot Ay_t, y_{t+1} \right) \cdot By_{t+1}, x_{t+1} \quad \text{ for each } y_{t+1} \in [K].$$

► (Backward pass)

Starting with $\beta_{\ell}(y_{\ell}) = 1$ for each $y_{\ell} \in [K]$,

$$\beta_{t-1}(y_{t-1}) = \sum_{y_t \in [K]} Ay_{t-1}, y_t \cdot By_t, x_t \cdot \beta_t(y_t)$$
 for each $y_{t-1} \in [K]$.

Given parameters $\boldsymbol{\theta} = (\boldsymbol{\pi}, \boldsymbol{A}, \boldsymbol{B})$ and sequence $x_{1:\ell} \in [D]^{\ell}$:

► (Forward pass)

Starting with
$$\alpha_1(y_1) = \pi y_1 \cdot By_1, x_1$$
 for each $y_1 \in [K]$,

$$\alpha_{t+1}(y_{t+1}) \ = \ \left(\sum_{y_t \in [K]} \alpha_t(y_t) \cdot A_{y_t, \, y_{t+1}} \right) \cdot B_{y_{t+1}, \, x_{t+1}} \quad \text{ for each } y_{t+1} \in [K].$$

► (Backward pass)

Starting with $\beta_{\ell}(y_{\ell}) = 1$ for each $y_{\ell} \in [K]$,

$$\beta_{t-1}(y_{t-1}) = \sum_{y_t \in [K]} Ay_{t-1}, y_t \cdot By_t, x_t \cdot \beta_t(y_t)$$
 for each $y_{t-1} \in [K]$.

► (Also in backward pass)

Compute conditional probabilities:

$$\Pr_{\theta}\left(Y_t = y_t \mid X_{1:\ell} = x_{1:\ell}\right) = \frac{\alpha_t(y_t) \cdot \beta_t(y_t)}{\text{normalization term}} \quad \text{for each } y_t \in [K].$$

Can also compute

$$\Pr_{\theta}\big(Y_{t:t+1}=y_{t:t+1}\,|\,X_{1:\ell}=x_{1:\ell}\big)\quad\text{for each }y_{t:t+1}\in [K]^2$$
 using forward-backward.

Can also compute

$$\Pr_{\theta}(Y_{t:t+1} = y_{t:t+1} \mid X_{1:\ell} = x_{1:\ell})$$
 for each $y_{t:t+1} \in [K]^2$

using forward-backward.

Using Markov property, can string together these probabilities to get

$$\Pr_{\theta}(Y_{s:t} = y_{s:t} \mid X_{1:\ell} = x_{1:\ell})$$
 for each $y_{s:t} \in [K]^{t-s+1}$.

Can also compute

$$\Pr_{\theta}(Y_{t:t+1} = y_{t:t+1} \mid X_{1:\ell} = x_{1:\ell})$$
 for each $y_{t:t+1} \in [K]^2$

using forward-backward.

Using Markov property, can string together these probabilities to get

$$\Pr_{\theta}(Y_{s:t} = y_{s:t} \mid X_{1:\ell} = x_{1:\ell})$$
 for each $y_{s:t} \in [K]^{t-s+1}$.

Similar procedure for computing most likely state sequence:

$$\arg \max_{y_{1:\ell} \in [K]^{\ell}} \Pr_{\theta} (Y_{1:\ell} = y_{1:\ell} \mid X_{1:\ell} = x_{1:\ell})$$

(Viterbi algorithm).

Can also compute

$$\Pr_{\theta}(Y_{t:t+1} = y_{t:t+1} \mid X_{1:\ell} = x_{1:\ell})$$
 for each $y_{t:t+1} \in [K]^2$

using forward-backward.

Using Markov property, can string together these probabilities to get

$$\Pr_{\theta}(Y_{s:t} = y_{s:t} \mid X_{1:\ell} = x_{1:\ell})$$
 for each $y_{s:t} \in [K]^{t-s+1}$.

Similar procedure for computing most likely state sequence:

$$\underset{y_{1:\ell} \in [K]^{\ell}}{\operatorname{arg \, max}} \operatorname{Pr}_{\boldsymbol{\theta}} \left(Y_{1:\ell} = y_{1:\ell} \, | \, X_{1:\ell} = x_{1:\ell} \right)$$

(Viterbi algorithm).

See Rabiner's tutorial for details.

HMM parameter estimation

PARAMETER ESTIMATION

Parameter estimation problem:

- ▶ **Given**: n observation sequences $x_{1:\ell}^{(s)}$ for $s \in [n]$.
- $lackbox{ Goal:} \;\; \mathsf{parameter} \; \mathsf{estimates} \; \hat{\pmb{ heta}} = (\hat{\pmb{\pi}}, \widehat{\pmb{A}}, \widehat{\pmb{B}}).$

PARAMETER ESTIMATION

Parameter estimation problem:

- ▶ **Given**: n observation sequences $x_{1:\ell}^{(s)}$ for $s \in [n]$.
- ▶ **Goal**: parameter estimates $\hat{\boldsymbol{\theta}} = (\hat{\boldsymbol{\pi}}, \widehat{\boldsymbol{A}}, \widehat{\boldsymbol{B}})$.

As is the case for mixture models, MLE for HMMs is generally intractable.

PARAMETER ESTIMATION

Parameter estimation problem:

- ▶ **Given**: n observation sequences $x_{1:\ell}^{(s)}$ for $s \in [n]$.
- ▶ **Goal**: parameter estimates $\hat{\boldsymbol{\theta}} = (\hat{\boldsymbol{\pi}}, \widehat{\boldsymbol{A}}, \widehat{\boldsymbol{B}})$.

As is the case for mixture models, MLE for HMMs is generally intractable.

Nevertheless, we can use **Expectation-Maximization** to find a local maximizer of the likelihood function. (Called the **Baum-Welch** algorithm in this context.)

Suppose we have current guess for parameters $\hat{\pmb{\theta}} = (\hat{\pi}, \widehat{\pmb{A}}, \widehat{\pmb{B}}).$

Suppose we have current guess for parameters $\hat{\pmb{ heta}} = (\hat{\pmb{\pi}}, \widehat{\pmb{A}}, \widehat{\pmb{B}}).$

Compute, for each training sequence $x_{1:\ell}^{(s)}$,

$$\begin{split} \gamma_t^{(s)}(y_t) &:= & \Pr_{\hat{\theta}} \Big(Y_t = y_t \, | \, X_{1:\ell} = x_{1:\ell}^{(s)} \Big) \quad \text{for all } y_t \in [K] \\ \xi_t^{(s)}(y_{t-1}, y_t) &:= & \Pr_{\hat{\theta}} \Big(Y_{t-1:t} = y_{t-1:t} \, | \, X_{1:\ell} = x_{1:\ell}^{(s)} \Big) \quad \text{for all } y_{t-1:t} \in [K]^2 \end{split}$$

using Forward-Backward (see Rabiner tutorial for full details).

Suppose we have current guess for parameters $\hat{\pmb{\theta}} = (\hat{\pmb{\pi}}, \widehat{\pmb{A}}, \widehat{\pmb{B}}).$

Compute, for each training sequence $\boldsymbol{x}_{1:\ell}^{(s)}$,

$$\begin{split} \gamma_t^{(s)}(y_t) &:= & \text{Pr}_{\hat{\theta}}\Big(Y_t = y_t \,|\, X_{1:\ell} = x_{1:\ell}^{(s)}\Big) \quad \text{for all } y_t \in [K] \\ \xi_t^{(s)}(y_{t-1}, y_t) &:= & \text{Pr}_{\hat{\theta}}\Big(Y_{t-1:t} = y_{t-1:t} \,|\, X_{1:\ell} = x_{1:\ell}^{(s)}\Big) \quad \text{for all } y_{t-1:t} \in [K]^2 \end{split}$$

using Forward-Backward (see Rabiner tutorial for full details).

Expected complete log likelihood of $\theta = (\pi, A, B)$:

$$\sum_{s=1}^{n} \left\{ \sum_{y_{1} \in [K]} \gamma_{1}^{(s)}(y_{1}) \ln \pi_{y_{1}} + \sum_{t=2}^{\ell} \sum_{y_{t-1} \in [K]} \sum_{y_{t} \in [K]} \xi_{t}^{(s)}(y_{t-1}, y_{t}) \ln A_{y_{t-1}, y_{t}} + \sum_{t=1}^{\ell} \sum_{y_{t} \in [K]} \gamma_{t}^{(s)}(y_{t}) \sum_{j=1}^{D} \mathbb{1} \{ x_{t}^{(s)} = j \} \ln B_{y_{t}, j} \right\}.$$

Suppose we have current guess for parameters $\hat{\pmb{\theta}} = (\hat{\pmb{\pi}}, \widehat{\pmb{A}}, \widehat{\pmb{B}}).$

Compute, for each training sequence $x_{1:\ell}^{(s)}$,

$$\begin{array}{rcl} \gamma_t^{(s)}(y_t) &:=& \Pr_{\hat{\theta}}\Big(Y_t = y_t \,|\, X_{1:\ell} = x_{1:\ell}^{(s)}\Big) & \text{for all } y_t \in [K] \\ \xi_t^{(s)}(y_{t-1}, y_t) &:=& \Pr_{\hat{\theta}}\Big(Y_{t-1:t} = y_{t-1:t} \,|\, X_{1:\ell} = x_{1:\ell}^{(s)}\Big) & \text{for all } y_{t-1:t} \in [K]^2 \end{array}$$

using Forward-Backward (see Rabiner tutorial for full details).

Expected complete log likelihood of $\theta = (\pi, A, B)$:

$$\sum_{s=1}^{n} \left\{ \sum_{y_{1} \in [K]} \gamma_{1}^{(s)}(y_{1}) \ln \pi_{y_{1}} + \sum_{t=2}^{\ell} \sum_{y_{t-1} \in [K]} \sum_{y_{t} \in [K]} \xi_{t}^{(s)}(y_{t-1}, y_{t}) \ln A_{y_{t-1}, y_{t}} + \sum_{t=1}^{\ell} \sum_{y_{t} \in [K]} \gamma_{t}^{(s)}(y_{t}) \sum_{j=1}^{D} \mathbb{1} \{x_{t}^{(s)} = j\} \ln B_{y_{t}, j} \right\}.$$

Can easily find maximizing parameters θ (subject to constraints that π and rows of A and B are probability distributions).

Input: n observation sequences $x_{1:\ell}^{(s)}$ for $s \in [n]$. Initialize $\theta = (\pi, A, B)$ somehow.

Input: n observation sequences $x_{1:\ell}^{(s)}$ for $s \in [n]$. Initialize $\theta = (\pi, A, B)$ somehow. Then repeat:

▶ **E** step: For each $s \in [n]$, compute

$$\gamma_t^{(s)}(y_t) := \Pr_{\boldsymbol{\theta}} \left(Y_t = y_t \, | \, X_{1:\ell} = x_{1:\ell}^{(s)} \right)
\xi_t^{(s)}(y_{t-1}, y_t) := \Pr_{\boldsymbol{\theta}} \left(Y_{t-1:t} = y_{t-1:t} \, | \, X_{1:\ell} = x_{1:\ell}^{(s)} \right).$$

using Forward-Backward.

Input: n observation sequences $x_{1:\ell}^{(s)}$ for $s \in [n]$. Initialize $\theta = (\pi, A, B)$ somehow. Then repeat:

▶ **E** step: For each $s \in [n]$, compute

$$\gamma_t^{(s)}(y_t) := \Pr_{\theta} \left(Y_t = y_t \,|\, X_{1:\ell} = x_{1:\ell}^{(s)} \right)
\xi_t^{(s)}(y_{t-1}, y_t) := \Pr_{\theta} \left(Y_{t-1:t} = y_{t-1:t} \,|\, X_{1:\ell} = x_{1:\ell}^{(s)} \right).$$

using Forward-Backward.

► M step: Update parameters

$$\pi_{i} := \frac{\sum_{s=1}^{n} \gamma_{1}^{(s)}(i)}{\sum_{s=1}^{n} \sum_{j \in [K]} \gamma_{1}^{(s)}(j)}$$

$$A_{i,j} := \frac{\sum_{s=1}^{n} \sum_{t=2}^{\ell} \xi_{t}^{(s)}(i,j)}{\sum_{s=1}^{n} \sum_{t=2}^{\ell} \sum_{k \in [K]} \xi_{t}^{(s)}(i,k)}$$

$$B_{i,j} := \frac{\sum_{s=1}^{n} \sum_{t=1}^{\ell} \gamma_{t}^{(s)}(i) \cdot \mathbb{1}\{x_{t}^{(s)} = j\}}{\sum_{s=1}^{n} \sum_{t=1}^{\ell} \gamma_{t}^{(s)}(i)}.$$

Can have HMMs with continuous observations X_t , say, taking values in \mathbb{R}^d .

Can have HMMs with continuous observations X_t , say, taking values in \mathbb{R}^d .

Specify conditional densities p_i of \boldsymbol{X}_t given $Y_t=i$ for each $i\in[K]$ (e.g., Gaussians $\mathrm{N}(\boldsymbol{\mu}_i,\boldsymbol{\Sigma}_i)$).

Can have HMMs with continuous observations X_t , say, taking values in \mathbb{R}^d .

Specify conditional densities p_i of \boldsymbol{X}_t given $Y_t = i$ for each $i \in [K]$ (e.g., Gaussians $N(\boldsymbol{\mu}_i, \boldsymbol{\Sigma}_i)$).

▶ Forward-Backward remains the same, except with By_t, x_t replaced by density value $p_{ut}(x_t)$.

Can have HMMs with continuous observations \boldsymbol{X}_t , say, taking values in \mathbb{R}^d .

Specify conditional densities p_i of \boldsymbol{X}_t given $Y_t = i$ for each $i \in [K]$ (e.g., Gaussians $N(\boldsymbol{\mu}_i, \boldsymbol{\Sigma}_i)$).

- ▶ Forward-Backward remains the same, except with By_t, x_t replaced by density value $p_{y_t}(x_t)$.
- "M step" in E-M maximizes expected complete log likelihood of conditional density parameters (e.g., μ_i and Σ_i for Gaussian densities).

$$\sum_{s=1}^{n} \left\{ \sum_{y_{1} \in [K]} \gamma_{1}^{(s)}(y_{1}) \ln \pi_{y_{1}} + \sum_{t=2}^{\ell} \sum_{y_{t-1} \in [K]} \sum_{y_{t} \in [K]} \xi_{t}^{(s)}(y_{t-1}, y_{t}) \ln A_{y_{t-1}, y_{t}} + \sum_{t=1}^{\ell} \sum_{y_{t} \in [K]} \gamma_{t}^{(s)}(y_{t}) \ln p_{y_{t}}(x_{t}^{(s)}) \right\}.$$

RECAP

- ▶ HMM = Markov chain $\{(X_t,Y_t)\}_{t\in\mathbb{N}}$ where hidden state sequence $\{Y_t\}_{t\in\mathbb{N}}$ is a discrete Markov chain; and conditioned on Y_t , observation X_t is independent of everything else.
- Computing sequence probabilities and hidden state conditional probabilities avoids exponential computation due to Markov chain structure.
- Key algorithms: Forward-Backward algorithm (computing conditional probabilities), Viterbi (for most probably hidden state sequence), Baum-Welch (same as E-M for HMMs).
- Many applications: heavily used in speech recognition, bioinformatics, natural language processing, etc.