Real Analysis Homework 7

Yueh-Chou Lee

November 28, 2018

1. (Exercise 6.1)

- (a) Let E be a measurable subset of \mathbb{R}^2 such that for almost every $x \in \mathbb{R}^1$, $\{y : (x,y) \in E\}$ has \mathbb{R}^1 -measure zero. Show that E has measure zero and that for almost every $y \in \mathbb{R}^1$, $\{x : (x,y) \in E\}$ has measure zero.
- (b) Let f(x,y) be nonnegative and measurable in \mathbb{R}^2 . Suppose that for almost every $x \in \mathbb{R}^1$, f(x,y) is finite for almost every y. Show that for almost every $yin\mathbb{R}^1$, f(x,y) is finite for almost every x.

Proof.

(a) Since $\chi_E(x,y)$ is nonnegative, measurable in \mathbb{R}^2 (E is a measurable subset of \mathbb{R}^2) and $\{y:(x,y)\in E\}$ has \mathbb{R}^1 -measure zero, $\int_{\mathbb{R}^1}\chi_E(x,y)dx=0$, by Tonelli's Theorem, we have

$$|E| = \int \int_{\mathbb{R}^2} \chi_E(x, y) dx dy$$
$$= \int_{\mathbb{R}^1} \left[\int_{\mathbb{R}^1} \chi_E(x, y) dy \right] dx$$
$$= \int_{\mathbb{R}^1} |\{y : (x, y) \in E\}| dx$$
$$= 0$$

So |E| has measure zero.

$$|E| = \int \int_{\mathbb{R}^2} \chi_E(x, y) dx dy$$

$$= \int_{\mathbb{R}^1} \left[\int_{\mathbb{R}^1} \chi_E(x, y) dx \right] dy$$

$$= \int_{\mathbb{R}^1} |\{x : (x, y) \in E\}| dy$$

$$= 0$$

So $\{x:(x,y)\in E\}$ has measure zero almost every y.

(b) Since for almost every $x \in \mathbb{R}^1$, f(x,y) is finite for almost every y, then $\{y|f(x,y)=\infty\}$ has measure zero.

Let $Z = \{(x,y)|f(x,y) = \infty\}$, $Z_1 = \{x|f(x,y) = \infty\}$ and $Z_2 = \{y|f(x,y) = \infty\}$, then $Z = Z_1 \times Z_2$.

Since f(x,y) is nonnegative function and measurable in \mathbb{R}^2 , $\int_{Z_2} dy = |Z_2| = 0$, by Tonelli's theorem, we have

$$\int \int_{Z} dx dy = \int_{Z_2} \left[\int_{Z_1} dx \right] dy = \int_{Z_1} \left[\int_{Z_2} dy \right] dx = 0$$

Hence $\int_{Z_1} dx = 0$ for almost every y, then $Z_1 = \{x | f(x, y) = \infty\}$ has also measure zero. So f(x, y) is finite for almost every x.

2. (Exercise 6.3)

Let f be measurable and finite a.e. on [0,1]. If f(x) - f(y) is integrable over the square $0 \le x \le 1, 0 \le y \le 1$, show that $f \in L[0,1]$.

Proof.

Let $I_1 = (0,1)$ and $I_2 = (0,2)$ such that $I = I_1 \times I_2$.

Since $g(x, y) = f(x) - f(y) \in L(I)$, by Fubini's Theorem, we know that for almost every $x \in I_1$, g(x, y) is measurable and integrable on I_2 as a function of y.

Pick any $x_0 \in (0,1)$ then $g(x_0,y) = f(x_0) - f(y)$ is measurable and integrable on I_2 , that is f(y) is integrable on (0,1).

Hence $f \in L(I_2) = L(0, 1)$.

3. (Exercise 6.5)

- (a) If f is nonnegative and measurable on E and $\omega(y)=|\{x\in E: f(x)>y\}|, y>0$, use Tonelli's theroem to prove that $\int_E f=\int_0^\infty \omega(y)dy$. (By definition of the integral, $\int_E f=|R(f,E)|=\int\int_{R(f,E)}dxdy$. Use the observation in the proof of Theroem 6.11 that $\{x\in E: f(x)\geq y\}=\{x: (x,y)\in R(f,E)\}$, and recall that $\omega(y)=|\{x\in E: f(x)\geq y\}|$ unless y is a point of discontinuity of ω .)
- (b) Deduce from this special case the general formula

$$\int_{E} f^{p} = p \int_{0}^{\infty} y^{p-1} \omega(y) dy \quad (f \ge 0, \ 0$$

Proof.

(a) By definition of the integral and using the observation in the proof of Theorem 6.11 that $\{x \in E : f(x) \ge y\} = \{x : (x,y) \in R(f,E)\}$, we have

$$\int_{E} f = |R(f, E)| = \int \int_{R(f, E)} dx dy$$

$$= \int_{0}^{\infty} \left[\int_{\{x:(x,y) \in R(f, E)\}} dx \right] dy$$

$$= \int_{0}^{\infty} \left[\int_{0}^{\infty} \chi_{\{x \in E: f(x) \ge y\}} dx \right] dy$$

$$= \int_{0}^{\infty} \omega(y) dy$$

(b) The truth that

$$f^{p}(x) = \int_{0}^{f(x)} p \cdot y^{p-1} dy$$

for all $x \in E$.

By using the result of part (a), Tonelli's Theorem and the above truth, then we have

$$\int_{E} f^{p}(x)dx = \int_{E} \int_{0}^{f(x)} p \cdot y^{p-1} dy dx$$

$$= \int_{R(f,E)} \int p \cdot y^{p-1} dy dx$$

$$= \int_{0}^{\infty} \left[\int_{\{x \in E: f(x) \ge y\}} p \cdot y^{p-1} dx \right] dy$$

$$= p \int_{0}^{\infty} y^{p-1} \left[\int_{\{x \in E: f(x) \ge y\}} dx \right] dy$$

$$= p \int_{0}^{\infty} y^{p-1} \omega(y) dy$$

4. (Exercise 6.10)

Let v_n be the volume of the unit ball in \mathbb{R}^n . Show by using Fubini's theroem that

$$v_n = 2v_{n-1} \int_0^1 (1 - t^2)^{(n-1)/2} dt$$

(We also observe that by setting $w=t^2$, the integral is a multiple of a classical β -function and so can be expressed in terms of the Γ -function: $\Gamma(s)=\int_0^\infty e^{-t}t^{s-1}dt,\ s>0.$)

Proof.

Using the induction to prove this formula.

Let $v_1 = 2$, that is the length of the interval [-1, 1].

If $n=2, v_2$ will be the area of the unit circle, then $v_2=\pi$. Moreover

$$2v_1 \int_0^1 (1-t^2)^{1/2} dt = 2 \cdot 2 \cdot \frac{\pi}{4} = \pi = v_2$$

So it's ture when n=2.

Suppose the formula holds for n-1 and let

$$B_n = \{x \in \mathbb{R}^n : x_1^2 + \dots + x_n^2 \le 1\}$$

be the unit ball in \mathbb{R}^n .

Using Tonelli's Theorem, then we have

$$\begin{split} v_n &= \int \dots \int_{B_n} 1 \\ &= \int \dots \int_{\{x_1^2 + \dots + x_n^2 \le 1\}} 1 \ dx_1 \dots dx_n \\ &= \int_{-1}^1 \left(\int \dots \int_{\{x_2^2 + \dots x_n^2 \le 1 - x_1^2\}} 1 \ dx_2 \dots dx_n \right) \ dx_1 \end{split}$$

Let
$$u_j = \frac{x_j}{\sqrt{1-x_1^2}}$$
 for $j = 2, ..., n$, then $\frac{du_j}{dx_j} = \frac{1}{\sqrt{1-x_1^2}}$.

Hence

$$\begin{aligned} v_n &= \int_{-1}^1 \left(\int \dots \int_{\{x_2^2 + \dots x_n^2 \le 1 - x_1^2\}} 1 \ dx_2 \dots dx_n \right) \ dx_1 \\ &= \int_{-1}^1 \left(\int \dots \int_{\{u_1^2 + \dots + u_n^2 \le 1\}} (1 - x_1^2)^{\frac{n-1}{2}} \ du_2 \dots du_n \right) \ dx_1 \\ &= \int_{-1}^1 \left(\int \dots \int_{\{u_1^2 + \dots + u_n^2 \le 1\}} \ du_2 \dots du_n \right) (1 - x_1^2)^{\frac{n-1}{2}} \ dx_1 \\ &= \int_{-1}^1 (v_{n-1}) (1 - x_1^2)^{\frac{n-1}{2}} \ dx_1 \\ &= v_{n-1} \int_{-1}^1 (1 - x_1^2)^{\frac{n-1}{2}} \ dx_1 \\ &= 2v_{n-1} \int_0^1 (1 - x_1^2)^{\frac{n-1}{2}} \ dx_1 \\ &= 2v_{n-1} \int_0^1 (1 - t^2)^{(n-1)/2} \ dt \end{aligned}$$

5. (Exercise 6.11)

Use Fubini's theorem to prove that

$$\int_{\mathbb{R}^n} e^{-|x|^2} dx = \pi^{n/2}$$

(For n=1, write $\left(\int_{-\infty}^{+\infty}e^{-x^2}dx\right)^2=\int_{-\infty}^{+\infty}\int_{-\infty}^{+\infty}e^{-x^2-y^2}dxdy$ and use polar coordinates. For n>1, use the formula $e^{-|x|^2}=e^{-x_1^2}...e^{-x_n^2}$ and Fubini's theorem to reduce to the case n=1.)

Proof.

By Fubini's Theorem, we know that

$$\int_{\mathbb{R}^{n}} e^{|x|^{2}} dx = \int \dots \int_{\mathbb{R}^{n}} e^{-x_{1}^{2}} \dots e^{-x_{n}^{2}} dx_{1} \dots dx_{n}$$

$$= \int_{0}^{\infty} \left[\int \dots \int_{\mathbb{R}^{n-1}} e^{-x_{1}^{2}} \dots e^{-x_{n}^{2}} dx_{2} \dots dx_{n} \right] dx_{1}$$

$$= \int_{0}^{\infty} e^{-x_{1}^{2}} dx_{1} \left[\int \dots \int_{\mathbb{R}^{n-1}} e^{-x_{2}^{2}} \dots e^{-x_{n}^{2}} dx_{2} \dots dx_{n} \right]$$

$$= \dots$$

$$= \int_{0}^{\infty} e^{-x_{1}^{2}} dx_{1} \cdot \dots \cdot \int_{0}^{\infty} e^{-x_{n}^{2}} dx_{n}$$

$$= \sqrt{\pi} \cdot \dots \cdot \sqrt{\pi}$$

$$= \pi^{n/2}$$