4

AMENDMENTS TO THE CLAIMS

The listing of claims below replaces all prior versions, and listings, of claims:

1	1. (Original) A method of controlling access to a shared memory of a multiprocesso				
2	system, the multiprocessor system comprising a first bus and a second bus coupled to the				
3	shared memory, the first bus coupled to a first processor, and the second bus coupled to				
4	second processor, the method comprising the steps of:				
5	requesting exclusive access to a first memory location of the shared memory by				
6	the first processor;				
7	granting exclusive access to the first memory location of the shared memory to				
8	the first processor; and				
9	allowing access to a second memory location of the shared memory to the second				
10	processor while the first processor has exclusive access to the first memory location.				
1	2. (Original) The method of claim 1, the step of requesting exclusive access				
2	comprising the steps of:				
3	asserting a lock signal on the first bus; and				
4	sending a lock request from the first processor to a memory controller coupled to				
5	the first bus, the second bus, and the shared memory.				
1	3. (Original) The method of claim 2, the step of asserting a lock signal further				
2	comprising the step of:				
3	asserting a split lock signal on the first bus, the split lock signal indicating that the				
4	lock request contains two memory address data.				
1	4. (Original) The method of claim 2, the step of requesting exclusive access further				
2	comprising the step of:				
3	forwarding the lock request from the memory controller to a switch; and				

signaling the first processor to retry the lock request.

2

1 5. (Original) The method of claim 4, the step of granting exclusive access 2 comprising the steps of: 3 signaling the memory controller by the switch to retry the lock request; 4 assigning exclusive access to the first memory location by the switch; 5 notifying the memory controller of the exclusive access assigned in the assigning 6 step; and 7 granting exclusive access to the first memory location by the memory controller 8 responsive to a retry of the lock request by the first processor. 6. 1 (Original) The method of claim 5, the step of assigning exclusive access to the 2 memory location by the switch comprising the steps of: 3 determining if the first memory location is currently assigned; 4 saving a lock request information if the first memory locations is not currently 5 assigned; and 6 sending the lock request information to the memory controller. 1 7. (Original) The method of claim 6, the lock request information comprising: 2 a node ID of the first processor; 3 a cycle ID of the first processor; and 4 memory address data for a first memory location. 1 8. (Original) The method of claim 7, the memory address data comprising: 2 a first memory address; and 3 a second memory address, 4 wherein the first memory address can be non-contiguous with the second memory 5 address. 9. (Original) The method of claim 1, further comprising the step of: 1

releasing exclusive access to the first memory location.

- 1 10. (Original) A method of controlling access to memory of a multinodal computer system, the multinodal computer system comprising a plurality of multiprocessor nodes,
- 3 the method comprising the steps of:
- 4 requesting exclusive access to a first memory location of a shared memory by a
- 5 first processor of a first multiprocessor node the plurality of multiprocessor nodes;
- granting exclusive access to the first memory location of the shared memory to
 the first processor; and
- allowing access to a second memory location of the shared memory to a second
 processor of a second multiprocessor node of the plurality of multiprocessor nodes while
- 10 the first processor has exclusive access to the first memory location.
- 1 11. (Original) The method of claim 10, the requesting step comprising:
- 2 asserting a lock signal on a first bus, the first bus coupling the first processor and
- 3 a first memory controller of the first multiprocessor node; and
- 4 sending a lock request to the first memory controller;
- 5 forwarding the lock request from the first memory controller to a switch, the
- 6 switch coupled to each of the plurality of multiprocessor nodes.
- 1 12. (Currently Amended) The method of claim 10, the shared memory comprising:
- a first memory coupled to the first memory controller; and
- a second memory coupled to a second memory controller of a different
- 4 multiprocessor node of the plurality of multiprocessor nodes;
- 1 13. (Original) The method of claim 12, the step of asserting a lock signal comprising
- 2 the step of:
- asserting a split lock signal on the first bus, the split lock signal indicating that the
- 4 lock request contains a first memory address data and a second memory address data.
- 1 14. (Original) The method of claim 13, the first memory address data referencing the
- 2 first memory and the second memory address data referencing the second memory.

- 1 15. (Original) The method of claim 13, the first memory address data referencing the
- 2 second memory and the second memory address data referencing the first memory.
- 1 16. (Currently Amended) The method of claim 10, the step of requesting exclusive
- 2 access further comprising the step of:
- 3 forwarding the lock request form the first memory controller to the switch; and
- 4 signaling the first processor to retry the lock request.
- 1 17. (Original) The method of claim 10, the step of granting exclusive access
- 2 comprising the steps of:
- 3 signaling the first memory controller to retry the lock request;
- 4 assigning exclusive access to the memory location by the switch;
- 5 notifying the memory controller of the exclusive access assigned in the assigning
- 6 step; and
- 7 assigning exclusive access to the first memory location by the first memory
- 8 controller responsive to a retry of the lock request by the first processor.
- 1 18. (Original) The method of claim 17, the step of assigning exclusive access to the
- 2 memory location by the switch comprising the steps of:
- determining if the first memory location is currently assigned;
- 4 saving a lock request information if the first memory location is not current
- 5 assigned; and
- 6 broadcasting the lock request information to each memory controller of each of
- 7 the plurality of multiprocessor nodes.
- 1 19. (Original) The method of claim 18, the lock request information comprising:
- a node ID of the first multiprocessor node;
- a cycle ID of the first processor; and
- 4 a memory address data for the first memory location.
- 1 20. (Original) The method of claim 10, further comprising the step of:

2 releasing exclusive access to the first memory location.

1	21. (Currently Amended) A computer system for utilizing a shared memory, the			
2	computer system comprising:			
3	a first multiprocessor node, comprising:			
4	a first process bus;			
5	a first processor, coupled to the first processor bus, the first processor			
6	comprising:			
7	circuitry to generate an exclusive access request for a first memory			
8	location to the first memory controller;			
9	a second processor bus;			
10	a second processor, coupled to the second processor bus, the second processor			
11	adapted to perform the step of:			
12	requesting request access to a second memory location;			
13	a first memory;			
14	a first memory controller, coupled to the first processor bus, the second processor			
15	bus, and the first memory, the first memory controller adapted to perform the steps of:			
16	allowing allow exclusive access to the first memory location by the first			
17	processor; and			
18	allowing allow access to the second memory location by the second			
19	processor while the first processor has exclusive access to the first memory location.			
1	22. (Currently Amended) The computer system of claim 21, further comprising:			
2	a second multiprocessor node, comprising:			
3	a third process bus;			
4	a third processor, coupled to the third processor bus, the third processor			
5	adapted to perform the executable step of:			
6	requesting request access to a third memory location;			
7`	a second memory;			
8	a second memory controller, coupled to the third processor bus, and the			
9	first memory, the second memory controller adapted to perform the steps of:			

10		allowing allow exclusive access to the first memory location by the				
11	first processor;					
12		allowing allow access to the second memory location by the				
13	secon	second processor while the first processor has exclusive access to the first memory				
14	locati	location; and				
15		allowing allow access to the third memory location by the third				
16	proce	processor while the first processor has exclusive access to the first memory location; and				
17		a switch, coupled to the first memory controller and the second memory				
18	contr	controller, for switching transactions between the first multiprocessor node and the				
19	second multiprocessor node.					
1	23.	(Original) The computer system of claim 22, the first memory location				
2	comp	rising:				
3		a first portion in the first memory; and				
4		a second portion in the second memory.				
1	24.	(Original) The computer system of claim 22,				
2		wherein the first memory location is in the first memory, and				
3		wherein the second memory location is in the first memory.				
1	25.	(Original) The computer system of claim 22,				
2		wherein the first memory location is in the first memory, and				
3		wherein the third memory location is in the first memory.				
1	26.	(Original) The computer system of claim 22,				
2		wherein the first memory location is in the second memory, and				
3		wherein the third memory location is in the second memory.				
1	27.	(Original) The computer system of claim 22,				
2		wherein the first memory location is in the second memory, and				
3		wherein the third memory location is in the first memory.				

1	28.	(Original) The computer system of claim 22, the switch comprising:			
2		a lock register for storing a lock control information.			
1	29.	(Original) The computer system of claim 28, the lock control information			
2	comprising:				
3		a node ID corresponding to the first processor;			
4		a cycle ID corresponding to the first processor; and			
5		a first memory address corresponding to the first memory location.			
1	30.	The computer system of claim 29, the lock control information further			
2	comprising:				
3		a second memory address corresponding to the first memory location.			
1	31.	(Currently Amended) The computer system of claim 29, the switch comprising:			
2		circuitry to signal the first memory controller to retry the step of allowing			
3	exclusive access to the first memory location by the first processor;				
4	•	circuitry to arbitrate among requests for exclusive access to the first memory			
5	location;				
6		circuitry to broadcast the lock control information to the first memory controller			
7	and th	ne second memory controller.			
1	32.	(Original) The computer system of claim 31, the first memory controller further			
2	comprising:				
3		circuitry to signal the first processor to retry the exclusive access request;			
4		circuitry to shadow the lock control information broadcast by the switch; and			
5		the second memory controller further comprising:			
6		circuitry to shadow the lock control information broadcast by the switch.			

- 1 33. (Original) The computer system of claim 30, wherein the first memory address
- 2 can be in either the first memory or the second memory, and
- 3 wherein the second memory address can be in either the first memory or the
- 4 second memory.
- 1 34. (New) The method of claim 1, wherein requesting exclusive access comprises:
- 2 sending a lock request from the first processor to a first memory controller
- 3 coupled to the shared memory;
- 4 forwarding the lock request from the memory controller to a switch; and
- 5 the switch broadcasting lock request information to the first memory controller
- 6 and at least another memory controller.
- 1 35. (New) The method of claim 34, further comprising:
- 2 each of the first memory controller and at least another memory controller storing
- 3 the lock request information.
- 1 36. (New) The method of claim 35, further comprising the switch storing the lock
- 2 request information in a register in the switch,
- 3 wherein the memory controllers also store the switch request information in
- 4 respective registers in the memory controllers.