EDO Projet

DUQUENOY Cyrile *

Université d'Aix-Marseille 2021-2022

L3 de Mathématiques Premier semestre

Projet, Stabilité des structures

1 Une première équation

On considère tout d'abord l'équation différentielle suivante, avec pour condition initiale x(0) = x'(0) = 0.

$$x''(t) + x(t) = \epsilon \sin(t).$$

1.1 Résolution de l'équation

1.1.1 Équation homogène

L'équation homogène s'écrit x''(t) + x'(t) = 0. On trouve alors $x_h(t) = \gamma \cos(t) + \delta \sin(t)$, γ , $\delta \in \mathbb{R}$.

1.1.2 Equation non homogène

Soit
$$x_p(t) = -\frac{1}{2}\epsilon t\cos(t)$$
.
Alors $x_p'(t) = -\frac{1}{2}\epsilon \cos(t) + \frac{1}{2}\epsilon t\sin(t)$ et $x_p''(t) = \frac{1}{2}\epsilon \sin(t) + \frac{1}{2}\epsilon \sin(t) + \frac{1}{2}\epsilon t\cos(t)$.
Ainsi $x_p''(t) + x_p(t) = \epsilon \sin t(t)$.

1.1.3 Solution générale

$$x(t) = x_h(t) + x_p(t) = \gamma \cos(t) + \delta \sin(t) - \frac{1}{2}\epsilon t \cos(t) \ \gamma, \ \delta \in \mathbb{R}.$$

^{*}Université Aix Marseille

$$x(0) = 0$$
 donne $\gamma = 0$ et $x'(0) = 0$ donne $\delta = \frac{1}{2}\epsilon$.

Ainsi,

$$x(t) = \frac{1}{2}\epsilon(\sin(t) - t\cos(t)).$$

1.2 Explosion de la solution

On dit que la solution explose si il existe t > 0 tel que |x(t)| > 30. Ici, $|x(t)| = \frac{1}{2}\epsilon |(\sin(t) - t\cos(t))| \le \frac{(1-t)\epsilon}{2}$.

La solution explose donc seulement si $\frac{(1-t)\epsilon}{2} > 30$, i.e. $t < 1 - \frac{60}{\epsilon}$. Comme le choix de ϵ est arbitraire, si $\epsilon < 60$, alors t < 0. Or t doit être strictement positif, donc la solution n'explose pas.

1.3 Schéma numérique

1.3.1 Équation du second ordre sous la forme d'un système

On peut mettre l'EDO du second ordre sous la forme d'un système X'(t) = AX(t). On pose pour cela $x_1(t) = x(t)$ et $x_2(t) = x'(t)$.

Alors,
$$x'_1(t) = x'(t) = x_2(t)$$
 et $x'_2(t) = x''(t) = \epsilon \sin(t) - x(t) = \epsilon \sin(t) - x_1(t)$.

On obtient ainsi,
$$X'(t) = AX(t)$$
 où $A = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$ et $X(t) = (x_1(t), x_2(t))^t$

On discrétise alors le système pour avoir une solution approchée par le schéma de Heun (Code python en annexe). Et on obtient les graphes suivants :

1.3.2 Pour $\epsilon = 1$.

Commentaire : La solution approchée ne correspond pas avec la solution exacte, le schéma utilisé ne parait pas approprié. La solution approchée n'explose pas tandis que la solution exacte explose.

Commentaire : La solution approchée épouse les extremums de la solution exacte en terme de formes pour h=0.001. La solution approchée explose. Le schéma utilisé n'est pas approprié.

1.3.3 Pour $\epsilon = 0.05$.

Commentaire : Mêmes remarque que pour $\epsilon=1.$

Commentaire:(h=0.001).

1.3.4 Euler Explicite

Commentaire : La solution approchée donnée par le schéma d'Euler Explicite correspond avec la solution exacte. (ici h=0.001 et $\epsilon=0.05$)

2 Une seconde equation

On change l'EDO par l'équation différentielle suivante, avec pour condition initiale x(0) = x'(0) = 0.

$$x''(t) + sin(x(t)) = \epsilon sin(t).$$

En mettant l'EDO sous forme d'un système on a : $x_1'(t) = x_2(t)$ et $x_2'(t) = x''(t) = \epsilon sin(t) - sin(x_1(t))$.

On approche les solutions du système par le schéma d'Euler Explicite dont le graphe des solutions est donné ci-dessous.

2.1 $\epsilon = 0.05$

Commentaire : Pour $\epsilon=0.05$ et h=0.001, la solution approchée est périodique, elle n'explose pas.

2.2 $\epsilon = 1$

Commentaires : Le graphe de gauche (resp. droite) correspond à $\epsilon=1$ et h=0.01 (resp. h=0.001). Les deux graphiques donnent des approximations "contre-intuitives", dû par ϵ qui est trop grand. Ça ne correspond pas aux attentes qui sont que la solution ne doit pas exploser.

3 Un autre système différentiel

On considère maintenant le système différentiel suivant :

$$x''(t) + \sin(x(t)) = \frac{5}{100}\sin(t)$$
(3.1)

$$y''(t) + y(t) = x(t) (3.2)$$

$$x(0) = x'(0) = 0 (3.3)$$

$$y(0) = y'(0) = 0 (3.4)$$

On peut mettre ce système sous une autre forme en posant $x_1 = x$, $x'_1 = x_2$ et $y_1 = y$, $y'_1 = y_2$.

$$x_1'(t) = x_2(t) (3.5)$$

$$x_2'(t) = \frac{5}{100}\sin(t) - \sin(x_1(t)) \tag{3.6}$$

$$y_1'(t) = y_2(t) (3.7)$$

$$y_2'(t) = x_1(t) - y_1(t) (3.8)$$

On approche les solutions du système par le schéma d'Euler Explicite dont le graphe des solutions est donné ci-dessous.

3.1 h = 0.001

Commentaires : x_1 et x_2 ne bougent pas par rapport au point (2.1). C'est la même EDO. La solution approchée de y explose, on peut remarquer une certaine "périodicité", un schéma qui se répète avec une amplitude de plus en plus haute. La solution approchée de y explose.

3.2 h = 0.01

Commentaires : x_1 et y_1 se suivent, de même que x_2 et y_2 . Il est clair que la solution approchée explose. Le pas de temps n'est pas assez petit.

4 Un dernier système différentiel

Soit le système suivant (avec $\mu > 0$ donné) :

$$x''(t) + \sin(x(t)) = \frac{5}{100}\sin(t) \tag{4.1}$$

$$y''(t) + \sin(y(t)) = \mu x(t) \tag{4.2}$$

$$x(0) = x'(0) = 0 (4.3)$$

$$y(0) = y'(0) = 0 (4.4)$$

On peut mettre ce système sous une autre forme en posant $x_1 = x$, $x'_1 = x_2$ et $y_1 = y$, $y'_1 = y_2$.

$$x_1'(t) = x_2(t) (4.5)$$

$$x_2'(t) = \frac{5}{100}\sin(t) - \sin(x_1(t)) \tag{4.6}$$

$$y_1'(t) = y_2(t) (4.7)$$

$$y_2'(t) = \mu x_1(t) - \sin(y_1(t)) \tag{4.8}$$

On approche les solutions du système par le schéma d'Euler Explicite dont le graphe des solutions est donné ci-dessous. On prend un pas de temps h=0.001

4.1 $\mu = 0.05$

Commentaires : x_1 et x_2 ne bougent pas par rapport au point (2.1). C'est la même EDO. La solution approchée de y n'explose pas, elle est périodique. La non linéarité sauve le pont de Tacoma.

4.2 $\mu = 1$

Commentaires : x_1 et x_2 ne bougent pas par rapport au point (2.1). C'est la même EDO. La solution approchée de y explose, μ est trop grand. Le pont de Tacoma s'effondre.