

Automated and Early Detection of Disease Outbreaks

Kasper Schou Telkamp

Section for Dynamical Systems

DTU Compute

Department of Applied Mathematics and Computer Science

Outline

- Shiga- and verotoxin producing E. coli.
 - Data exploration
- State-of-the-art methods
 - Farrington
 - Noufaily
- Novel methods based on general mixed effect models
 - Hierachical Poisson-Normal model
 - Hierachical Poisson-Gamma model
- Comparison of methods
- References
- Appendix

DTU

Data exploration

Date	${\sf ageGroup}$	y_{it}	x_{it}
2008-01-01	<1 year	2	64137
2008-01-01	1-4 years	2	259910
2008-01-01	5-14 years	2	680529
2008-01-01	15-24 years	1	635838
2022-12-01	5-14 years	5	634139
2022-12-01	15-24 years	1	721286
2022-12-01	25-64 years	10	3031374
2022-12-01	65+ years	12	1204892

Shiga- and verotoxin producing E. coli.

DTU

Data exploration

Shiga- and verotoxin producing E. coli.

DTU

Data exploration

Shiga- and verotoxin producing E. coli.

DTU

Data exploration

State-of-the-art methods

State-of-the-art methods

State-of-the-art methods for aberration detection is presented in Salmon, Schumacher, and Höhle 2016 and implemented in the R package **surveillance**. The R package includes methods such as the Farrington method introduced by Farrington et al. 1996 together with the improvements proposed by Noufaily et al. 2013.

State-of-the-art methods

Farrington

State-of-the-art methods

DTU

Noufaily

Novel methods based on general mixed effect models

In the following two novel methods, based on theory presented in Madsen and Thyregod 2011, for aberration detection is presented. Namely, a hierarchical Poisson-Normal model and a hierarchical Poisson-Gamma model.

Hierachical models

It is useful to formulate the model as a hierarchical model containing a first stage model

$$f_{Y|u}(\boldsymbol{y};\boldsymbol{u},\boldsymbol{\beta}) \tag{1}$$

which is a model for the data given the random effects, and a second stage model

$$f_U(\boldsymbol{u}, \boldsymbol{\Psi})$$
 (2)

which is a model for the random effects. The total set of parameters is $m{ heta}=(m{eta}, m{\Psi}).$

Objective

- The objective is to assess the unobserved random effects, u, and determine the critical value, C_{α} , with significance level α .
- If $u_{it} > C_{\alpha}$, the observation is characterized as an outbreak.

NOTE: For this presentation a default of $\alpha=0.05$ is used.

Hierachical Poisson-Normal model

The model can be formulated as a two-level hierarchical model

$$Y|u \sim \text{Pois}(\lambda e^u)$$
 (3a)
 $u \sim \text{N}(\mathbf{0}, \sigma^2)$ (3b)

$$\boldsymbol{u} \sim \mathrm{N}(\mathbf{0}, \sigma^2)$$
 (3b)

Hierachical Poisson-Normal model

- Y|u are assumed to be a Poisson distribution with intensities λ .
- An offset is included to account for the population size, x_{it} .
- Hence, the model for the fixed effect is

$$\log(\lambda_i) = \boldsymbol{X}_i^T \boldsymbol{\beta} + \log(x_{it}) \tag{4}$$

- Here X_i is a p-dimensional vector of covariates, and β contains the corresponding fixed effect parameters.
- The random effects u are assumed to be Gaussian.

$$u_{it} = \epsilon_{it} \tag{5}$$

- Here $\epsilon_{it} \sim N(\mathbf{0}, \sigma^2)$ is a white noise process, and σ is a model parameter.
- The model parameters are estimated in a rolling window of length k.

Results

Results

Threshold calculation

The critical value, C_{α} , is computed from the $1-\alpha$ -quantile of the Normal distribution with the maximum-likelihood estimate for the variance, $\hat{\sigma}$.

$$C_{\alpha} = \mathcal{N}(\mathbf{0}, \hat{\sigma}^2)_{1-\alpha} \tag{6}$$

DTU

Results - Out-of-sample random effects

DTU

Hierachical Poisson-Gamma model

- Y|u are assumed to follow a Poisson distribution.
- The intensities, λ_i , are defined as

$$\log(\lambda_i) = \boldsymbol{X}_i^T \boldsymbol{\beta} + \log(x_{it}) \tag{7}$$

- Here X_i is a p-dimensional vector of covariates, and β contains the corresponding fixed effect parameter.
- ullet The random effects u are assumed to follow a reparametrized Gamma distribution with mean 1.
- The model parameters are estimated in a rolling window of length k.

Hierachical Poisson-Gamma model

Subsequently, the model can be formulated as a two-level hierarchical model

$$Y|u \sim \operatorname{Pois}(\lambda u)$$
 (8a)

$$u \sim \mathrm{G}(1/\phi, \phi)$$
 (8b)

DTU

Probability function for Y

$$P[Y = y_{i}] = g_{Y}(y; \lambda, \phi)$$

$$= \frac{\lambda^{y}}{y!\Gamma(1/\phi)\phi^{1/\phi}} \frac{\phi^{y+1/\phi}\Gamma(y+1/\phi)}{(\lambda\phi+1)^{y+1/\phi}}$$

$$= \frac{\Gamma(y+1/\phi)}{\Gamma(1/\phi)y!} \frac{1}{(\lambda\phi+1)^{1/\phi}} \left(\frac{\lambda\phi}{\lambda\phi+1}\right)^{y}$$

$$= \left(\frac{y+1/\phi-1}{y}\right) \frac{1}{(\lambda\phi+1)^{1/\phi}} \left(\frac{\lambda\phi}{\lambda\phi+1}\right)^{y}, \text{ for } y = 0, 1, 2, ...$$
(9)

where we have used the convention

The marginal distribution of Y is a negative binomial distribution, $Y \sim NB\left(1/\phi, 1/(\lambda\phi + 1)\right)$

Inference on individual group means

Consider the hierarchical Poisson-Gamma model in (8), and assume that a value Y=y has been observed. Then the conditional distribution of u for given Y=y is a Gamma distribution,

$$u|Y = y \sim G\left(y + 1/\phi, \phi/(\lambda\phi + 1)\right) \tag{11}$$

with mean

$$E[u|Y=y] = \frac{y\phi + 1}{\lambda\phi + 1} \tag{12}$$

and variance

$$V[u|Y = y] = \frac{(y\phi^2 + \phi)}{(\lambda\phi + 1)^2}$$
 (13)

Results

Results

Threshold calculation

The critical value, C_{α} , is computed from the $1-\alpha$ -quantile of the reparametrized Gamma distribution with the maximum-likelihood estimate for the variance, $\hat{\phi}$.

$$C_{\alpha} = G(1/\hat{\phi}, \hat{\phi})_{1-\alpha} \tag{14}$$

Results - Out-of-sample random effects

Comparison of methods

Comparison of methods

References

- Farrington, C. P. et al. (1996). "A Statistical Algorithm for the Early Detection of Outbreaks of Infectious Disease". In: *Journal of the Royal Statistical Society. Series A (Statistics in Society)* 159.3, pp. 547–563. ISSN: 09641998, 1467985X. URL: http://www.jstor.org/stable/2983331 (visited on 01/27/2023).
- Madsen, Henrik and Poul Thyregod (2011). *Introduction to general and generalized linear models*. English. Texts in statistical science. CRC Press. ISBN: 9781420091557.
- Noufaily, Angela et al. (2013). "An Improved Algorithm for Outbreak Detection in Multiple Surveillance Systems". en. In: *Online Journal of Public Health Informatics* 32.7, pp. 1206–1222.
- Salmon, Maëlle, Dirk Schumacher, and Michael Höhle (2016). "Monitoring Count Time Series in R: Aberration Detection in Public Health Surveillance". In: *Journal of Statistical Software* 70.10, pp. 1–35. DOI: 10.18637/jss.v070.i10. URL:

https://www.jstatsoft.org/index.php/jss/article/view/v070i10.

Proof - Probability function for Y

The probability function for the conditional distribution of Y for given u

$$f_{Y|u}(y;\lambda,u) = \frac{(\lambda u)^y}{y!} \exp(-\lambda u)$$
(15)

and the probability density function for the distribution of u is

$$f_u(u;\phi) = \frac{1}{\phi\Gamma(1/\phi)} \left(\frac{u}{\phi}\right)^{1/\phi - 1} \exp(-u/\phi)$$
 (16)

Proof - Probability function for Y

Given (15) and (16), the probability function for the marginal distribution of Y is determined from

$$g_Y(y;\lambda,\phi) = \int_{u=0}^{\infty} f_{Y|u}(y;\lambda,u) f_u(u;\phi) du$$

$$= \int_{u=0}^{\infty} \frac{(\lambda u)^y}{y!} \exp(-\lambda u) \frac{1}{\phi \Gamma(1/\phi)} \left(\frac{u}{\phi}\right)^{1/\phi - 1} \exp(-u/\phi) du$$

$$= \frac{\lambda^y}{y! \Gamma(1/\phi) \phi^{1/\phi}} \int_{u=0}^{\infty} u^{y+1/\phi - 1} \exp\left(-u(\lambda \phi + 1)/\phi\right) du$$
(17)

Proof - Probability function for Y

In (17) it is noted that the integrand is the *kernel* in the probability density function for a Gamma distribution, $G\left(y+1/\phi,\phi/(\lambda\phi+1)\right)$. As the integral of the density shall equal one, we find by adjusting the norming constant that

$$\int_{u=0}^{\infty} u^{y+1/\phi-1} \exp\left(-u/\left(\phi/(\lambda\phi+1)\right)\right) du = \frac{\phi^{y+1/\phi}\Gamma(y+1/\phi)}{(\lambda\phi+1)^{y+1/\phi}}$$
(18)

and then (9) follows

Proof - Conditional distribution of Y

The conditional distribution is found using Bayes Theorem

$$g_{u}(u|Y=y) = \frac{f_{y,u}(y,u)}{g_{Y}(y;\lambda,\phi)}$$

$$= \frac{f_{y|u}(y;u)g_{u}(u)}{g_{Y}(y;\lambda,\phi)}$$

$$= \frac{1}{g_{Y}(y;\lambda,\phi)} \left(\frac{(\lambda u)^{y}}{y!} \exp(-\lambda u) \frac{1}{\phi\Gamma(1/\phi)} \left(\frac{u}{\phi}\right)^{1/\phi-1} \exp(-u/\phi)\right)$$

$$\propto u^{y+1/\phi-1} \exp\left(-u(\lambda\phi+1)/\phi\right)$$
(19)

We identify the *kernel* of the probability density function

$$u^{y+1/\phi-1}\exp(-u(\lambda\phi+1)/\phi) \tag{20}$$

as the kernel of a Gamma distribution, $G(y+1/\phi,\phi/(\lambda\phi+1))$