高等数字集成电路作业-第六七章

Author: 文家宝

1. 基础概念问题

1. 请简要描述Mealy状态机与Moore状态机的特性及它们之间的联系?

Moore状态机:输出仅仅与当前状态有关;

Mealy状态机:输出不仅取决于当前状态,还和输入有关;

2. 请简要描述SRAM的特点以及实际应用中与寄存器堆逻辑的优缺点比较?

SRAM的特点是工作速度快,只要电源不撤除,写入SRAM的信息就不会消失,不需要刷新电路,同时在读出时不破坏原来存放的信息,一经写入可多次读出,但集成度较低,功耗较大。

寄存器堆逻辑实现上更为简单,但性能远不如工艺优化后的SRAM。而SRAM性能虽强,但是实现上略微 复杂。

3. 请简要描述门控时钟常见电路结构以及适用范围?

门控时钟电路结构包括直接将控制信号与时钟信号进行与操作(会产生毛刺,因此实际中很少使用)

4. 请简要描述AHB总线与APB总线的基本特性以及在实际SoC系统中它们的适用场合?

AHB(Advanced High-performance Bus), 为高速总线,一般用来连接高速外设。APB (Advanced Peripheral Bus) 为低速总线,一般用来接低速外设。

在SoC系统中,AHB总线会挂载ARM处理器,RAM,DMA控制器等设备,通过AHB2APB Bridge与APB 总线连接,APB上挂在UART,Timer等低速设备。

2. 基于VerilogHDL进行逻辑电路设计

1. 平方根计算

设计一个时序逻辑电路,计算32位非负整数的平方根。对于输入x,计算y = floor(sqrt(x)),即y是平方后不超过x的最大非负整数。例如:

l 输入x = 256,输出y = 16

l输入x = 255,输出y = 15

l 输入x = 2147483648,输出y = 46340

l 输入x = 4294967295,输出y = 65535

顶层模块名为sqrt_u32,输入输出功能定义:

模块输入输出功能定义:

名称	方向	位宽	描述
clk	Input	1	系统时钟
rst_n	Input	1	系统异步复位,低电平有效
vld_in	Input	1	输入数据有效指示
х	Output	32	输入被开方数据
vld_out	Output	1	输出数据有效指示
у	Output	16	输出结果数据

实现思路:

```
always@(posedge clk or negedge rst_n)begin
        if(!rst_n)begin
             D[q\_width] \le 0;
             Q_z[q_width] \ll 0;
             Q_q[q\_width] \le 0;
             valid_flag[q_width] <= 0;</pre>
        end else if(vld_in) begin
             D[q\_width] \le x;
             Q_z[q_width] \le \{1'b1, \{(q_width-1)\{1'b0\}\}\};
             Q_q[q_width] \ll 0;
             valid_flag[q_width] <= 1;</pre>
        end else begin
             D[q\_width] \le 0;
             Q_z[q_width] \ll 0;
             Q_q[q\_width] \leftarrow 0;
             valid_flag[q_width] <= 0;</pre>
        end
    end
generate
genvar i;
    for(i=q_width-1;i>=1;i=i-1)begin:U
```

```
always@(posedge clk or negedge rst_n)begin
             if(!rst_n)begin
                 D[i] <= 0;
                 Q_z[i] \ll 0;
                 Q_q[i] <= 0;
                 valid_flag[i] <= 0;</pre>
             end else if(valid_flag[i+1])begin
                 if(Q_z[i+1]*Q_z[i+1] > D[i+1]) begin
                      Q_z[i] \leftarrow \{Q_q[i+1][q_width-1:i], 1'b1, \{\{i-1\}\{1'b0\}\}\};
                      Q_q[i] \le Q_q[i+1];
                 end else begin
                      Q_z[i] \leftarrow \{Q_z[i+1][q_width-1:i], 1'b1, \{\{i-1\}\{1'b0\}\}\};
                      Q_q[i] \le Q_z[i+1];
                 end
                 D[i] <= D[i+1];
                 valid_flag[i] <= 1;</pre>
             end else begin
                 valid_flag[i] <= 0;</pre>
                 D[i] \ll 0;
                  Q_q[i] \ll 0;
                  Q_z[i] \ll 0;
             end
        end
    end
endgenerate
    always@(posedge clk or negedge rst_n) begin
        if(!rst_n) begin
             y <= 0;
             vld_out <= 0;</pre>
        end else if(valid_flag[1]) begin
             if(Q_z[1]*Q_z[1] > D[1]) begin
                 y \le Q_q[1];
                 vld_out <= 1;
             end else begin
                 y \le \{Q_q[1][q_width-1:1], Q_z[1][0]\};
                 vld_out <= 1;
              end
        end
        else begin
             y <= 0;
             vld_out <= 0;
          end
    end
endmodule
```

仿真截图:

逻辑综合:

采用smic180nm工艺库PVT环境为SS工艺角进行综合,时钟最高频率为434Mhz,采用最小面积约束进行综合

```
Vars=============
set RST_NAME
                       rst_n
set CLK_NAME
                       clk
set CLK_PERIOD_I
                       10
set CLK_PERIOD
                       [expr $CLK_PERIOD_I*0.95]
set CLK_SKEW
                       [expr $CLK_PERIOD*0.05]
set CLK_SOURCE_LATENCY
                       [expr $CLK_PERIOD*0.1]
set CLK_NETWORK_LATENCY
                      [expr $CLK_PERIOD*0.1]
                       [expr $CLK_PERIOD*0.01]
set CLK_TRAN
set INPUT_DELAY_MAX
                       [expr $CLK_PERIOD*0.4]
set INPUT_DELAY_MIN
set OUTPUT_DELAY_MAX
                       [expr $CLK_PERIOD*0.4]
set OUTPUT_DELAY_MIN
                         0
set MAX_FANOUT
                      6
set MAX_TRAN
                      5
set MAX_CAP
                      1.5
set ALL_INPUT_EX_CLK [remove_from_collection [all_inputs] [get_ports
$CLK_NAME]]
#======Define Design
Environment==========
#GUIDANCE: use the default
set_max_area 0
#set_max_transition $MAX_TRAN
                             [current_design]
#set_max_fanout $MAX_FANOUT [current_design]
#set_max_capacitance $MAX_CAP
                             [current_design]
#======= Set Design
Constraints===========
#-----Clock and Reset Definition------
set_drive 0 [get_ports $CLK_NAME]
create_clock -name $CLK_NAME -period $CLK_PERIOD [get_ports $CLK_NAME]
```

```
set_dont_touch_network [get_ports $CLK_NAME]
set_clock_uncertainty $CLK_SKEW [get_clocks $CLK_NAME]
set_clock_transition $CLK_TRAN [all_clocks]
set_clock_latency -source $CLK_SOURCE_LATENCY [get_clocks $CLK_NAME]
set_clock_latency -max $CLK_NETWORK_LATENCY [get_clocks $CLK_NAME]
#rst_ports
set_drive 0
                                   [get_ports $RST_NAME]
set_dont_touch_network
                                   [get_ports $RST_NAME]
set_false_path -from
                                  [get_ports $RST_NAME]
set_ideal_network -no_propagate
                                  [get_ports $RST_NAME]
set_input_delay -max $INPUT_DELAY_MAX -clock $CLK_NAME
$ALL_INPUT_EX_CLK
set_input_delay -min $INPUT_DELAY_MIN -clock $CLK_NAME
$ALL_INPUT_EX_CLK -add
set_output_delay -max $OUTPUT_DELAY_MAX -clock $CLK_NAME
                                                           [all_outputs]
set_output_delay -min $0UTPUT_DELAY_MIN -clock $CLK_NAME
                                                           [all_outputs]
-add
set_load 0.2 [all_outputs]
                                                                   Path
 Point
                                                        Incr
 clock clk (rise edge)
                                                        0.00
                                                                   0.00
 clock network delay (ideal)
                                                        1.90
                                                                   1.90
 Q_z_reg_10__10_/CK (DFFRX1M)
                                                                   1.90 r
                                                        0.00
 Q_z_{eg_10_10_2} (DFFRX1M)
                                                        0.76
                                                                   2.66 r
 DP_OP_197_128_6467/I1[10] (top_DP_OP_197_128_6467_0)
                                                        0.00
                                                                   2.66 r
 DP_OP_197_128_6467/U205/Y (AND2X1M)
                                                        0.22
                                                                   2.88 r
 DP_OP_197_128_6467/U144/S (ADDHX1M)
                                                        0.12
                                                                   3.00 r
 DP_OP_197_128_6467/U191/Y (INVXLM)
                                                        0.12
                                                                   3.12 f
 DP_OP_197_128_6467/U238/Y (A0I211X1M)
                                                        0.27
                                                                   3.39 r
 DP_OP_197_128_6467/U193/Y (A0I2BB2XLM)
                                                        0.19
                                                                   3.58 f
 DP_OP_197_128_6467/U237/Y (A0I222XLM)
                                                        0.59
                                                                   4.18 r
 DP_OP_197_128_6467/U236/Y (A0I222XLM)
                                                        0.38
                                                                   4.55 f
 DP_OP_197_128_6467/U235/Y (A0I222XLM)
                                                        0.62
                                                                   5.18 r
 DP_OP_197_128_6467/U234/Y (A0I222XLM)
                                                        0.33
                                                                   5.50 f
 DP_OP_197_128_6467/U233/Y (A0I222XLM)
                                                        0.63
                                                                   6.14 r
 DP_OP_197_128_6467/U232/Y (A0I222XLM)
                                                        0.34
                                                                   6.48 f
 DP_OP_197_128_6467/U231/Y (A0I222XLM)
                                                                   7.09 r
                                                        0.61
 DP_OP_197_128_6467/U230/Y (A0I222XLM)
                                                                   7.43 f
                                                        0.34
 DP_OP_197_128_6467/U229/Y (A0I222XLM)
                                                        0.62
                                                                   8.06 r
 DP_OP_197_128_6467/U227/Y (A0I222XLM)
                                                        0.38
                                                                   8.43 f
 DP_OP_197_128_6467/U226/Y (A0I222XLM)
                                                        0.53
                                                                   8.97 r
 DP_OP_197_128_6467/01 (top_DP_OP_197_128_6467_0)
                                                        0.00
                                                                   8.97 r
 U833/Y (INVXLM)
                                                        0.13
                                                                   9.10 f
 U834/Y (NOR2XLM)
                                                        0.41
                                                                   9.51 r
 U838/Y (A022XLM)
                                                        0.27
                                                                   9.77 r
 Q_z_{eg_9_10_7} (DFFRX1M)
                                                        0.00
                                                                   9.77 r
 data arrival time
                                                                   9.77
```

clock clk (rise	edge)		9.50	9.50
clock network de			1.90	11.40
clock uncertaint			-0.47	
Q_z_reg_910_/C	-		0.00	
library setup ti	,		-0.20	
data required ti			0.20	10.72
- data required ti	m o			10 72
data required ti data arrival tim				10.72
				-9.77
- slack (MET)				0.95
, ,				0.00
Total Dynamic Powe	r = 5.3	3822 mW (100%)		
Cell Leakage Power	= 3.4	1383 uW		
	nternal	Switching	Leakage	
Total		Double	Daywaya	
Power Group P		Power	Power	
Power (%)	Attrs			
io_pad		0.0000	0.0000	
0.0000 (0.00%)		0.0000	0.0000	
memory	0.0000	0.0000	0.0000	
0.0000 (0.00%)		010000	010000	
black_box	0.0000	0.0000	0.0000	
0.0000 (0.00%)				
clock_network		0.0000	0.0000	
0.0000 (0.00%)				
register	5.1007	3.7705e-02	9.8882e+05	
5.1394 (95.43%)				
sequential	0.0000	0.0000	0.0000	
0.0000 (0.00%)				
		7.4800e-02	2.4495e+06	
0.2462 (4.57%)				
Total	5.2697 mW	0.1125 mW	3.4383e+06 pW	
5.3856 mW			·	
1				
*****	****	****		
Report : area				
Design : top				
Design : top Version: L-2016.03	-SP1			
		2022		

Library(s) Used:

ss_1v62_125c (File: /opt/PDKs/smic_180/SM00LB501-FE-00000-r0p0-00rel0/aci/sc-m/synopsys/ss_1v62_125c.db)

Number of ports: 641 Number of nets: 4936 Number of cells: 3824 Number of combinational cells: 3080 Number of sequential cells: 732 Number of macros/black boxes: 0 Number of buf/inv: 362 Number of references: 31

Combinational area: 58082.796980
Buf/Inv area: 2383.987164
Noncombinational area: 33575.584755
Macro/Black Box area: 0.000000

Net Interconnect area: undefined (No wire load specified)

Total cell area: 91658.381735

Total area: undefined

2. 数据排序

设计一个时序逻辑电路,对输入32个8位无符号整数从小到大进行排序(若存在多个数据值相等,则不分先 后,见例子)。例如:

l 输入32个数据依次为:31, 29, 27, 25, 23, 21, 19, 17, 15, 13, 11, 9, 7, 5, 3, 1, 2, 2, 4, 4, 4, 4, 8, 16, 8, 16, 32, 32, 0, 10, 20, 30

l 输出32个数据依次为:0, 1, 2, 2, 3, 4, 4, 4, 4, 5, 7, 8, 8, 9, 10, 11, 13, 15, 16, 16, 17, 19, 20, 21, 23, 25, 27, 29, 30, 31, 32, 32

顶层模块名为sort 32 u8,输入输出功能定义:

模块输入输出功能定义:

名称	方向	位宽	描述
clk	Input	1	系统时钟
rst_n	Input	1	系统异步复位,低电平有效
vld_in	Input	1	输入数据有效指示

名称 方向 位宽 描述 输入数据0,输入数据1,, 输入数据31 din_* Input 8 vld_in Output 输出数据有效指示 dout_* Output 8 输出数据0,输出数据1,, 输出数据31

实现思路一:数据排序

```
else if(swap == 1'b1) begin
            if(cnt_i < turn) begin</pre>
                 cnt_i <= cnt_i + 1;
                 if(data_fifo[cnt_i+1] < data_fifo[cnt_i]) begin</pre>
                     data_fifo[cnt_i+1] <= data_fifo[cnt_i];</pre>
                     data_fifo[cnt_i] <= data_fifo[cnt_i+1];</pre>
                 end
            end
            else begin
                 cnt_i <= 1;
                 turn <= turn - 1;
                 if(data_fifo[1] < data_fifo[0]) begin
                     data_fifo[1] <= data_fifo[0];</pre>
                     data_fifo[0] <= data_fifo[1];</pre>
                 end
            end
       end
   end
   always @(cnt_i,cur_state,turn,vld_in) begin
        next_state <= s_rst;</pre>
        case (cur_state)
            s_rst : begin
                 reset <= 1'b1;
                 vld_out <= 1'b0;
                 next_state <= s_load;</pre>
            end
            s_load : begin
                 reset <= 1'b0;
                 if(vld_in == 1'b1) begin
                     load_data <= 1'b1;</pre>
                     vld_out <= 1'b0;
                     next_state <= s_sort;</pre>
                 end
                 else begin
                     next_state <= s_load;</pre>
                 end
```

```
end
         s_sort : begin
             swap <= 1'b1;
             load_data <= 1'b0;</pre>
             if(turn == 1 && cnt_i ==1 ) begin
                  next_state <= s_out;</pre>
                  vld_out <= 1'b1;
             end
             else begin
                 next_state <= s_sort;</pre>
             end
         end
         s_out : begin
             next_state <= s_load;</pre>
             swap <= 1'b0;
         end
         default : begin
             next_state <= s_rst;</pre>
         end
    endcase
end
```

仿真截图:

逻辑综合:

采用smic180nm工艺库PVT环境为SS工艺角进行综合,时钟最高频率为,采用最小面积约束进行综合

```
#=======Env
Vars============
set RST_NAME
                        rst_n
set CLK_NAME
                        clk
set CLK_PERIOD_I
                        2.5
set CLK_PERIOD
                        [expr $CLK_PERIOD_I*0.95]
set CLK_SKEW
                        [expr $CLK_PERIOD*0.05]
set CLK_SOURCE_LATENCY
                        [expr $CLK_PERIOD*0.1]
set CLK_NETWORK_LATENCY
                        [expr $CLK_PERIOD*0.1]
set CLK_TRAN
                        [expr $CLK_PERIOD*0.01]
set INPUT_DELAY_MAX
                        [expr $CLK_PERIOD*0.4]
```

```
set INPUT_DELAY_MIN
set OUTPUT_DELAY_MAX
                         [expr $CLK_PERIOD*0.4]
set OUTPUT_DELAY_MIN
set MAX_FANOUT
                        6
set MAX_TRAN
                        5
set MAX_CAP
                        1.5
set ALL_INPUT_EX_CLK [remove from collection [all_inputs] [get_ports
$CLK_NAME]]
#======Define Design
Environment============
#GUIDANCE: use the default
set_max_area 0
#set_max_transition $MAX_TRAN
                               [current_design]
#set_max_fanout $MAX_FANOUT [current_design]
#set_max_capacitance $MAX_CAP
                                [current_design]
#======= Set Design
Constraints===========
#-----Dock and Reset Definition--------
set_drive 0 [get_ports $CLK_NAME]
create_clock -name $CLK_NAME -period $CLK_PERIOD [get_ports $CLK_NAME]
set_dont_touch_network [get_ports $CLK_NAME]
set_clock_uncertainty $CLK_SKEW [get_clocks $CLK_NAME]
set_clock_transition $CLK_TRAN [all_clocks]
set_clock_latency -source $CLK_SOURCE_LATENCY [get_clocks $CLK_NAME]
set_clock_latency -max $CLK_NETWORK_LATENCY [get_clocks $CLK_NAME]
#rst_ports
set drive 0
                                [get_ports $RST_NAME]
set_dont_touch_network
                                [get_ports $RST_NAME]
set_false_path -from
                                [get_ports $RST_NAME]
set_ideal_network -no_propagate
                               [get_ports $RST_NAME]
#-----I/O Constraint------
set_input_delay -max $INPUT_DELAY_MAX -clock $CLK_NAME
$ALL_INPUT_EX_CLK
set_input_delay -min $INPUT_DELAY_MIN -clock $CLK_NAME
$ALL_INPUT_EX_CLK -add
set_output_delay -max $OUTPUT_DELAY_MAX -clock $CLK_NAME [all_outputs]
set_output_delay -min $OUTPUT_DELAY_MIN -clock $CLK_NAME [all_outputs]
-add
set_load 0.2 [all_outputs]
 Point
                                                              Path
                                                    Incr
 clock clk (rise edge)
                                                    0.00
                                                              0.00
 clock network delay (ideal)
                                                    1.90
                                                              1.90
                                                              1.90 r
 Q_z_reg_10__10_/CK (DFFRX1M)
                                                    0.00
 Q_z_reg_10__10_/Q (DFFRX1M)
                                                     0.76
                                                              2.66 r
```

DD 0D 407 400 0407/T4[40] /bar DD 0D 407 400 0407 0		
DP_OP_197_128_6467/I1[10] (top_DP_OP_197_128_6467_0)		0.00
	0.00	2.66 r
DP_OP_197_128_6467/U205/Y (AND2X1M)	0.22	2.88 r
DP_OP_197_128_6467/U144/S (ADDHX1M)	0.12	3.00 r
DP_OP_197_128_6467/U191/Y (INVXLM)	0.12	3.12 f
DP_OP_197_128_6467/U238/Y (A0I211X1M)	0.27	3.39 r
DP_OP_197_128_6467/U193/Y (A0I2BB2XLM)	0.19	3.58 f
DP_OP_197_128_6467/U237/Y (A0I222XLM)	0.59	4.18 r
DP_OP_197_128_6467/U236/Y (A0I222XLM)	0.38	4.55 f
DP_OP_197_128_6467/U235/Y (A0I222XLM)	0.62	5.18 r
DP_OP_197_128_6467/U234/Y (A0I222XLM)	0.33	5.50 f
DP_OP_197_128_6467/U233/Y (A0I222XLM)	0.63	6.14 r
DP_OP_197_128_6467/U232/Y (A0I222XLM)	0.34	6.48 f
DP_OP_197_128_6467/U231/Y (A0I222XLM)	0.61	7.09 r
DP_OP_197_128_6467/U230/Y (A0I222XLM)	0.34	7.43 f
DP_OP_197_128_6467/U229/Y (A0I222XLM)	0.62	8.06 r
DP_OP_197_128_6467/U227/Y (A0I222XLM)	0.38	8.43 f
DP_OP_197_128_6467/U226/Y (A0I222XLM)	0.53	8.97 r
DP_OP_197_128_6467/01 (top_DP_OP_197_128_6467_0)	0.00	8.97 r
U833/Y (INVXLM)	0.13	9.10 f
U834/Y (NOR2XLM)	0.41	9.51 r
U838/Y (A022XLM)	0.27	9.77 r
<pre>Q_z_reg_910_/D (DFFRX1M)</pre>	0.00	9.77 r
data arrival time		9.77
clock clk (rise edge)	9.50	9.50
clock network delay (ideal)	1.90	11.40
clock uncertainty	-0.47	10.92
Q_z_reg_910_/CK (DFFRX1M)	0.00	10.92 r
library setup time	-0.20	10.72
data required time		10.72
- data required time		10.72
data required time data arrival time		
data arrivat time		-9.77
-		
slack (MET)		0.95

Report : area		
Design : top Version: L-2016.03-SP1		
Date : Sun Nov 13 17:30:43 2022		
vale . Suii NOV 13 17.30.43 2022		
Library(s) Used:		
ss_1v62_125c (File: /opt/PDKs/smic_180/SM00LB501-F 00rel0/aci/sc-m/synopsys/ss_1v62_125c.db)	E-00000-r0p	0 -
Number of ports: 641		

Number of note:	
Number of nets: 4936	
Number of cells: 3824	
Number of combinational cells: 3080	
Number of sequential cells: 732	
Number of macros/black boxes: 0	
Number of buf/inv: 362	
Number of references: 31	
Combinational area: 58082.796980	
Buf/Inv area: 2383.987164	
Noncombinational area: 33575.584755	
Macro/Black Box area: 0.000000	
Net Interconnect area: undefined (No wire load specified)	
not interiormed arear and interior (No wire tout specifica)	
Total cell area: 91658.381735	
Total area: undefined	
No other transfer and the	
Number of ports: 276	
Number of nets: 453	
Number of cells: 230	
Number of combinational cells: 154	
Number of sequential cells: 51	
Number of macros/black boxes: 0	
Number of buf/inv: 21	
Number of references: 7	
Combinational area: 3055.718386	
Buf/Inv area: 155.859198	
Noncombinational area: 3178.649651	
Macro/Black Box area: 0.000000	
Net Interconnect area: undefined (No wire load specified)	
Cell Internal Power = 2.5221 mW (85%)	
Net Switching Power = 453.6257 uW (15%)	
Net Switching Power = 455.0257 dw (15%)	
Total Dynamic Poyer - 2 0750 ml/ (100%)	
Total Dynamic Power = 2.9758 mW (100%)	
Cell Leakage Power = 936.2150 nW	
Internal Switching Leakage	
Total	
Power Group Power Power Power	
Power (%) Attrs	
io_pad 0.0000 0.0000 0.0000	
0.0000 (0.00%)	
memory 0.0000 0.0000 0.0000	
0.0000 (0.00%)	
black_box 0.0000 0.0000 0.0000	
0.0000 (0.00%)	
clock_network 0.0000 0.0000 0.0000	
0.0000 (0.00%)	

register 2.6970 (90	2.3858	0.3107	4.7881e+05
sequential 1.8349e-03 (1.3972e-03	4.3273e-04	4.9753e+03
combinational	,	0.1425	4.5243e+05
Total 2.9767 mW 1	2.5221 mW	0.4536 mW	9.3622e+05 pW

3. 矩阵扫描

设计一个时序逻辑电路,对输入64个整数(按照行优先方式构成8x8的矩阵块)按照ZigZag扫描方式依次输出。例如:

l 输入64个数据依次为:1, 2, 3, 4, ..., 61, 62, 63, 64

l 输出64个数据依次为:1, 2, 9, 17, 10, 3, ..., 62, 55, 48, 56, 63, 64

顶层模块名为mat_scan,输入输出功能定义:

模块输入输出功能定义:

名称	方向	位宽	描述
clk	Input	1	系统时钟
rst_n	Input	1	系统异步复位,低电平有效
vld_in	Input	1	输入数据有效指示
din_*	Input	10	输入数据
vld_in	Output	1	输出数据有效指示
dout_*	Output	10	输出数据

实现思路

```
case (addr)
            6'b11_1111 : addr <= 6'b00_0000;
            6'b00_0000 : addr <= 6'b00_0001;
            6'b00_0001 : addr <= 6'b00_1000;
            6'b00_1000 : addr <= 6'b01_0000;
            6'b01_0000 : addr <= 6'b00_1001;
            6'b00_1001 : addr <= 6'b00_0010;
            6'b00_0010 : addr <= 6'b00_0011;
            6'b00_0011 : addr <= 6'b00_1010;
            6'b00_1010 : addr <= 6'b01_0001;
            6'b01_0001 : addr <= 6'b01_1000;
            6'b01_1000 : addr <= 6'b10_0000;
            6'b10_0000 : addr <= 6'b01_1001;
            6'b01_1001 : addr <= 6'b01_0010;
            6'b01_0010 : addr <= 6'b00_1011;
            6'b00_1011 : addr <= 6'b00_0100;
            6'b00_0100 : addr <= 6'b00_0101;
            6'b00_0101 : addr <= 6'b00_1100;
            6'b00_1100 : addr <= 6'b01_0011;
            6'b01_0011 : addr <= 6'b01_1010;
            6'b01_1010 : addr <= 6'b10_0001;
            6'b10_0001 : addr <= 6'b10_1000;
            6'b10_1000 : addr <= 6'b11_0000;
            6'b11_0000 : addr <= 6'b10_1001;
            6'b10_1001 : addr <= 6'b10_0010;
            6'b10_0010 : addr <= 6'b01_1011;
            6'b01_1011 : addr <= 6'b01_0100;
            6'b01_0100 : addr <= 6'b00_1101;
            6'b00_1101 : addr <= 6'b00_0110;
            6'b00_0110 : addr <= 6'b00_0111;
            6'b00 0111 : addr <= 6'b00 1110;
            6'b00_1110 : addr <= 6'b01_0101;
            6'b01_0101 : addr <= 6'b01_1100;
            6'b01_1100 : addr <= 6'b10_0011;
            6'b10_0011 : addr <= 6'b10_1010;
            6'b10_1010 : addr <= 6'b11_0001;
            6'b11_0001 : addr <= 6'b11_1000;
            6'b11_1000 : addr <= 6'b11_1001;
            6'b11_1001 : addr <= 6'b11_0010;
            6'b11_0010 : addr <= 6'b10_1011;
            6'b10_1011 : addr <= 6'b10_0100;
            6'b10_0100 : addr <= 6'b01_1101;
            6'b01_1101 : addr <= 6'b01_0110;
            6'b01_0110 : addr <= 6'b00_1111;
            6'b00_1111 : addr <= 6'b01_0111;
            6'b01_0111 : addr <= 6'b01_1110;
            6'b01_1110 : addr <= 6'b10_0101;
            6'b10_0101 : addr <= 6'b10_1100;
            6'b10_1100 : addr <= 6'b11_0011;
            6'b11_0011 : addr <= 6'b11_1010;
            6'b11_1010 : addr <= 6'b11_1011;
            6'b11_1011 : addr <= 6'b11_0100;
            6'b11_0100 : addr <= 6'b10_1101;
```

```
6'b10_1101 : addr <= 6'b10_0110;
6'b10_0110 : addr <= 6'b01_1111;
6'b01_1111 : addr <= 6'b10_0111;
6'b10_0111 : addr <= 6'b10_1110;
6'b10_1110 : addr <= 6'b11_0101;
6'b11_0101 : addr <= 6'b11_1100;
6'b11_1100 : addr <= 6'b11_1101;
6'b11_1101 : addr <= 6'b11_0110;
6'b11_0110 : addr <= 6'b10_1111;
6'b10_1111 : addr <= 6'b11_0111;
6'b11_0111 : addr <= 6'b11_1110;
6'b11_0111 : addr <= 6'b11_1111;
e'b11_0111 : addr <= 6'b11_1111;
endcase
```

仿真截图:

逻辑综合:

采用smic180nm工艺库PVT环境为SS工艺角进行综合,时钟最高频率为200Mhz,采用最小面积约束进行综合

```
#=======Env
set RST_NAME
                        rst_n
                        clk
set CLK_NAME
set CLK_PERIOD_I
                        10
set CLK_PERIOD
                         [expr $CLK_PERIOD_I*0.95]
set CLK_SKEW
                         [expr $CLK_PERIOD*0.05]
set CLK_SOURCE_LATENCY
                         [expr $CLK_PERIOD*0.1]
set CLK_NETWORK_LATENCY
                         [expr $CLK_PERIOD*0.1]
set CLK_TRAN
                         [expr $CLK_PERIOD*0.01]
set INPUT_DELAY_MAX
                         [expr $CLK_PERIOD*0.4]
set INPUT_DELAY_MIN
                          (-)
set OUTPUT_DELAY_MAX
                         [expr $CLK_PERIOD*0.4]
set OUTPUT_DELAY_MIN
set MAX_FANOUT
                        6
set MAX_TRAN
                        5
                        1.5
set MAX_CAP
```

```
set ALL_INPUT_EX_CLK [remove_from_collection [all_inputs] [get_ports
$CLK_NAME]]
#======Define Design
Environment============
#GUIDANCE: use the default
set_max_area 0
#set_max_transition $MAX_TRAN
                               [current_design]
#set_max_fanout $MAX_FANOUT [current_design]
#set_max_capacitance $MAX_CAP
                               [current_design]
#======== Set Design
Constraints============
#-----Clock and Reset Definition-------
set_drive 0 [get_ports $CLK_NAME]
create_clock -name $CLK_NAME -period $CLK_PERIOD [get_ports $CLK_NAME]
set_dont_touch_network [get_ports $CLK_NAME]
set_clock_uncertainty $CLK_SKEW [get_clocks $CLK_NAME]
set_clock_transition $CLK_TRAN [all_clocks]
set_clock_latency -source $CLK_SOURCE_LATENCY [get_clocks $CLK_NAME]
set_clock_latency -max $CLK_NETWORK_LATENCY [get_clocks $CLK_NAME]
#rst_ports
set_drive 0
                                [get_ports $RST_NAME]
set_dont_touch_network
                               [get_ports $RST_NAME]
set_false_path -from
                               [get_ports $RST_NAME]
set_ideal_network -no_propagate [get_ports $RST_NAME]
set_input_delay -max $INPUT_DELAY_MAX -clock $CLK_NAME
$ALL_INPUT_EX_CLK
set_input_delay -min $INPUT_DELAY_MIN -clock $CLK_NAME
$ALL_INPUT_EX_CLK -add
set_output_delay -max $OUTPUT_DELAY_MAX -clock $CLK_NAME [all_outputs]
set_output_delay -min $OUTPUT_DELAY_MIN -clock $CLK_NAME [all_outputs]
set_load 0.2 [all_outputs]
 Point
                                                    Incr
                                                            Path
 clock clk (rise edge)
                                                    0.00
                                                             0.00
 clock network delay (ideal)
                                                    1.90
                                                             1.90
 u_sram/dout_reg_0_/CK (DFFRQX1M)
                                                    0.00
                                                             1.90 r
 u_sram/dout_reg_0_/Q (DFFRQX1M)
                                                    1.75
                                                             3.65 r
 u_sram/dout[0] (sram_ADDR_DEPTH6_DATA_WIDTH10_DATA_DEPTH64)
                                                    0.00
                                                             3.65 r
 dout[0] (out)
                                                    0.00
                                                             3.65 r
 data arrival time
                                                             3.65
 clock clk (rise edge)
                                                    9.50
                                                             9.50
```

clock uncerta output extern data required	al delay		-0.47 -3.80	7.12
data required	e			7.12
-				
data required				7.12
data arrival				-3.65
-				
slack (MET)				3.47
	Tutana 1	Ouitabia	Laskana	
Total	Internal	Switching	Leakage	
Power Group	Power	Power	Power	
Power (%				
 io_pad		0.0000	0.0000	
0.0000 (0.0		0.0000	0.0000	
memory		0.0000	0.0000	
0.0000 (0.0				
black_box		0.0000	0.0000	
0.0000 (0.0	,			
clock_network		0.0000	0.0000	
0.0000 (0.0	•	2 42000 02	7 10050105	
register 4.5709 (97.3		2.4306e-02	7.1985e+05	
sequential		0.0000	0.0000	
0.0000 (0.0				
•	,	6.2308e-02	8.3966e+05	
0.1249 (2.6	•			
		8.6614e-02 mW	1.5595e+06 pW	
4.6958 mW			·	
1				
***	****			
Report : area				
Design : top				
Version: L-2016	0.03-SP1			
Date : Sun No	v 13 17:29:34 2	2022		
* * * * * * * * * * * * * * *	*****	*****		
Library(s) Used	l:			
cc 1v60 10E	(C (Eilo: /ont/	DDKe/emio 100/eMagu	2501_EE 00000 505	0-
	oc (File: /opl/F n/synopsys/ss_1v	PDKs/smic_180/SM00L 162 125c.db)	2291-EE-00000-10P	0-
	JJJJJJJ 105_IV			
Number of ports	3:	55		
Number of nets:		2212		

```
Number of cells:
                                       2165
Number of combinational cells:
                                       1504
Number of sequential cells:
                                        660
Number of macros/black boxes:
                                          0
Number of buf/inv:
                                         19
Number of references:
                                         17
Combinational area:
                               22911.302050
Buf/Inv area:
                                 125.126398
Noncombinational area:
                               30425.472794
Macro/Black Box area:
                                   0.000000
Net Interconnect area: undefined (No wire load specified)
Total cell area:
                                53336.774843
Total area:
                          undefined
1
```

4. AHB-SRAM控制器

设计一个基于AHB从接口的单端口SRAM控制器,实现SRAM存储器与AHB总线的数据信息交换,将AHB总线上的读写操作转换成标准SRAM读写操作。

SRAM大小为4096x32-bit,AHB接口数据大小固定为32-bit,AHB接口地址范围为0x00000000 – 0x00003FFC。AHB接口能够实现单次或突发模式的数据读写操作。

实现思路

```
else begin
             sram_wen <= hwrite & htrans[1];</pre>
             sram_a <= haddr[13:2];</pre>
             case (hsize[1:0])
                 2'b10: hwdata_mask <= 32'hFFFFFFF;</pre>
                                                                          // Word
write
                 2'b01: hwdata_mask <= (32'h0000FFFF << (16 * haddr[1]));
// Halfword write
                 2'b00: hwdata_mask <= (32'h000000FF << (8 * haddr[1:0]));
// Byte write
                 default: hwdata_mask <= 32'hFFFFFFF;</pre>
             sram_d <= (hwdata & hwdata_mask) | (hrdata & ~hwdata_mask);</pre>
             hrdata <= sram_q;</pre>
        end
    end
```

仿真截图:

逻辑综合:

采用smic180nm工艺库PVT环境为SS工艺角进行综合,时钟最高频率为200Mhz,采用最小面积约束进行综合

```
Vars=============
set RST_NAME
                        rst_n
set CLK_NAME
                         clk
set CLK_PERIOD_I
                         10
set CLK_PERIOD
                         [expr $CLK_PERIOD_I*0.95]
set CLK_SKEW
                         [expr $CLK_PERIOD*0.05]
set CLK_SOURCE_LATENCY
set CLK_SOURCE_LATENCY [expr $CLK_PERIOD*0.1] set CLK_NETWORK_LATENCY [expr $CLK_PERIOD*0.1]
                         [expr $CLK_PERIOD*0.1]
set CLK_TRAN
                         [expr $CLK_PERIOD*0.01]
set INPUT_DELAY_MAX
                         [expr $CLK_PERIOD*0.4]
set INPUT_DELAY_MIN
set OUTPUT_DELAY_MAX
                         [expr $CLK_PERIOD*0.4]
set OUTPUT_DELAY_MIN
set MAX_FANOUT
                        6
set MAX_TRAN
                        5
set MAX_CAP
                        1.5
set ALL_INPUT_EX_CLK [remove_from_collection [all_inputs] [get_ports
$CLK_NAME]]
#======Define Design
Environment==========
#GUIDANCE: use the default
set_max_area 0
#set_max_transition $MAX_TRAN
                               [current_design]
#set_max_fanout $MAX_FANOUT [current_design]
#set_max_capacitance $MAX_CAP [current_design]
#======= Set Design
Constraints============
#-----Clock and Reset Definition--------
_ _ _ _ _ _ _ _ _ _ _ _ _ _
set_drive 0 [get_ports $CLK_NAME]
create_clock -name $CLK_NAME -period $CLK_PERIOD [get_ports $CLK_NAME]
set_dont_touch_network [get_ports $CLK_NAME]
```

```
set_clock_uncertainty $CLK_SKEW [get_clocks $CLK_NAME]
set_clock_transition $CLK_TRAN [all_clocks]
set_clock_latency -source $CLK_SOURCE_LATENCY [get_clocks $CLK_NAME]
set_clock_latency -max $CLK_NETWORK_LATENCY [get_clocks $CLK_NAME]
#rst_ports
set_drive 0
                              [get_ports $RST_NAME]
set_dont_touch_network
                              [get_ports $RST_NAME]
set_false_path -from
                              [get_ports $RST_NAME]
set_ideal_network -no_propagate [get_ports $RST_NAME]
set_input_delay -max $INPUT_DELAY_MAX -clock $CLK_NAME
$ALL_INPUT_EX_CLK
set_input_delay -min $INPUT_DELAY_MIN -clock $CLK_NAME
$ALL_INPUT_EX_CLK -add
set_output_delay -max $OUTPUT_DELAY_MAX -clock $CLK_NAME [all_outputs]
set_output_delay -min $OUTPUT_DELAY_MIN -clock $CLK_NAME [all_outputs]
-add
set_load 0.2 [all_outputs]
Report : timing
      -path full
      -delay max
      -max_paths 1
Design : top
Version: L-2016.03-SP1
Date : Sun Nov 13 17:28:42 2022
Operating Conditions: ss_1v62_125c Library: ss_1v62_125c
Wire Load Model Mode: top
 Startpoint: hsize[0] (input port clocked by hclk)
 Endpoint: hwdata_mask_reg_1_
          (rising edge-triggered flip-flop clocked by hclk)
 Path Group: hclk
 Path Type: max
                                     Incr Path
 Point
 ______
 clock hclk (rise edge)
                                     0.00
                                              0.00
 clock network delay (ideal)
                                              1.90
                                     1.90
 input external delay
                                     3.80
                                              5.70 f
 hsize[0] (in)
                                     0.00
                                              5.70 f
 U86/Y (AND2X1M)
                                              5.87 f
                                     0.17
 U72/Y (NOR2X1M)
                                     1.87
                                               7.75 r
 U46/Y (CLKNAND2X2M)
                                    0.30
                                              8.05 f
 hwdata_mask_reg_1_/D (DFFRQX1M)
                                    0.00
                                              8.05 f
 data arrival time
                                               8.05
```

clock hclk (rise edge)		9.50	
clock network delay (ideal)	1.90		
clock uncertainty	-0.47		
hwdata_mask_reg_1_/CK (DFFRQX1M)			
library setup time	-0.12	10.81	
data required time		10.81	
data required time		10.81	
data arrival time		-8.05	
slack (MET)		2.76	
Total Dynamic Power = 1.0396 m	NW (100%)		
Cell Leakage Power = 211.6468 r	W		
Internal S	Switching	Leakage	
Total Power Group Power F	Power	Power	
Power (%) Attrs	rower	Power	
is not	0.0000	0.0000	
io_pad 0.0000 0.0000 (0.00%)	0.0000	0.0000	
memory 0.0000	0.0000	0.0000	
0.0000 (0.00%) black_box	0.0000	0.0000	
0.0000 (0.00%)			
clock_network	0.0000	0.0000	
register 0.7955	0.2056	1.3162e+05	
1.0012 (96.29%)			
sequential 0.0000	0.0000	0.0000	
0.0000 (0.00%) combinational 2.6185e-02 1.	2351e-02	8.0032e+04	
3.8616e-02 (3.71%)	20010 02	0100020.01	
 Total 0.8216 mW	0.2179 mlv/	2.1165e+05 nW	
1.0398 mW	O. Z.Z. I O IIIVV	2.111000.00 ρW	
1			
1			
**************************************	. * * * *		
Report : area			
Design : top			
Version: L-2016.03-SP1			
Date : Sun Nov 13 17:30:43 2022	****		
Library(s) Used:			
00 1V62 1250 (File: /ont/PDVc/s	emio 100/CM0015	2E01 FE 00000 **0	20
ss_1v62_125c (File: /opt/PDKs/s	PIIITC_T80/2M00FF	201-FE-00000-T0	ρ ω -

00rel0/aci/sc-m/synopsys/ss_1v62_125c.db)

Number of ports: 641 Number of nets: 4936 Number of cells: 3824 Number of combinational cells: 3080 Number of sequential cells: 732 Number of macros/black boxes: 0 Number of buf/inv: 362 Number of references: 31

Combinational area: 58082.796980
Buf/Inv area: 2383.987164
Noncombinational area: 33575.584755
Macro/Black Box area: 0.000000

Net Interconnect area: undefined (No wire load specified)

Total cell area: 91658.381735

Total area: undefined

1