



# **Motivation**

Eric Eager
Data Scientist at Pro Football Focus



#### Data - The Atom of Data Science

```
height weight forty vertical bench broad_jump three_cone shuttle
                                                     6.71
    71
          192
              4.38
                        35.0
                                 14
                                           127
                                                             3.98
          298
               5.34
                        26.5
                                27
                                                     7.81
                                                             4.71
                        31.0
          256
              4.67
                                17
                                           113
                                                     7.34
                                                             4.38
                        41.0
                                           131
                                                     6.56
                                                             4.03
         198
              4.34
                                16
    76
         257
              4.87
                        30.0
                                20
                                           118
                                                     7.12
                                                             4.23
    78
          262 4.60
                        38.5
                                18
                                           128
                                                     7.53
                                                             4.48
```



### Vectors - Storing Univariate Data

$$\vec{x} = \begin{pmatrix} 1 \\ 5 \\ -2 \\ 4 \end{pmatrix}$$

$$\vec{y} = \begin{pmatrix} 11 & -7 & 12 & 14 & 21 \end{pmatrix}$$

$$\vec{x}^T = \begin{pmatrix} 1 & 5 & -2 & 4 \end{pmatrix}$$

$$\vec{y} = \begin{pmatrix} 11 & -7 & 12 & 14 & 21 \end{pmatrix} \qquad \qquad \vec{y}^T = \begin{pmatrix} 11 \\ -7 \\ 12 \\ 14 \\ 21 \end{pmatrix}$$



## Vectors - Storing Univariate Data

```
> x <- rep(1, 4)
[1] 1 1 1 1
> y < - seq(2, 8, by = 2)
> y
[1] 2 4 6 8
> z < -c(1, 5, -2, 4)
[1] 1 5 -2 4
> z[3] <- 7
[1] 1 5 7 4
```



# Matrices - Storing Tables of Data

$$A = \begin{pmatrix} -2 & -4 \\ -1 & -2 \\ 0 & 0 \\ 1 & 2 \\ 2 & 4 \end{pmatrix}$$



# Matrices - Storing Tables of Data

| Case         | Variable 1 | Variable 2 |
|--------------|------------|------------|
| A            | -2         | -4         |
| В            | -1         | -2         |
| $^{\rm C}$   | 0          | 0          |
| D            | 1          | 2          |
| $\mathbf{F}$ | 2          | 4          |



### Matrices - Storing Tables of Data

```
> matrix(2, 3, 2)
      [,1] [,2]

      [1,]
      2
      2

      [2,]
      2
      2

      [3,]
      2
      2

> matrix(c(1, -1, 2, 3, 2, -2), nrow = 2, ncol = 3, byrow = TRUE)
[1,] 1 -1 2
[2,] 3 2 -2
> matrix(c(1, -1, 2, 3, 2, -2), nrow = 2, ncol = 3, byrow = FALSE)
      [,1] [,2] [,3]
[1,] 1 2 2
[2,] -1 3 -2
```





# Let's practice!





# **Matrix-Vector Operations**

Eric Eager
Data Scientist at Pro Football Focus



$$A\vec{x} = \begin{pmatrix}
1 & -1 \\
2 & 1 \\
4 & -2
\end{pmatrix} \times \begin{pmatrix}
1 \\
2
\end{pmatrix} = \begin{pmatrix}
1 \times 1 & + & (-1) \times 2 \\
2 \times 1 & + & 1 \times 2 \\
4 \times 1 & + & (-2) \times 2
\end{pmatrix} = \begin{pmatrix}
-1 \\
4 \\
0
\end{pmatrix}$$
3x2
3x1







```
> A
      [,1] [,2]
[1,]      1      -1
[2,]      2      1
[3,]      4      -2
> b
[1] 1 2
```

```
> A%*%b
[,1]
[1,] -1
[2,] 4
[3,] 0
```









# Matrix-Vector Multiplication Motivation

| Teams         | Johns Hopkins | F & M         | Gettysburg  | Dickinson  | McDaniel  |
|---------------|---------------|---------------|-------------|------------|-----------|
| Johns Hopkins | _             | Loss, 12 - 14 | Win 49-35   | Win 49-0   | Win 49-7  |
| F & M         | Win, 14 - 12  | -             | Loss, 31-38 | Win 36-28  | Win 35-10 |
| Gettsyburg    | Loss 35-49    | Win, 38-31    | -           | Loss 13-23 | Win 35-3  |
| Dickinson     | Loss 0-49     | Loss 28-36    | Win 23-13   | -          | Win 38-31 |
| McDaniel      | Loss 7-49     | Loss 10-35    | Loss 3-35   | Loss 31-38 | -         |



#### Matrix-Vector Multiplication Motivation





# Let's practice!





#### **Matrix-Matrix Calculations**

Data Scientist at Pro Football Focus
Instructor



# Matrix-Matrix Multiplication Motivations





### How Matrix Multiplication Works





# How Matrix Multiplication Works

```
> A%*%B
[,1] [,2]
[1,] 2 5
[2,] 1 4
```

```
> B%*%A

[,1] [,2]

[1,] 2 1

[2,] 5 4
```

```
> A*B
    [,1] [,2]
[1,]    0    2
[2,]    2    2
```



# The Identity Matrix

$$I_3 = \left(\begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{array}\right)$$



# The Identity Matrix

```
[2,]
> I <- diag(2)
[2,]
> I%*%A
[2,]
> A%*%I
[1,]
[2,]
```



## Additional Importance Concepts for Matrices

- 1. Square Matrices
- 2. The Matrix Inverse
- 3. Singular Matrices
- 4. Diagonal and Triangular Matrices





# Let's practice!