ECE 65: Components & Circuits Lab

Lecture 10

Bipolar Junction Transistor (BJT) Introduction

Reference notes: section 3.1

Sedra & Smith (7th Ed): sections 6.1,6.2

Saharnaz Baghdadchi

Course map

3. Bipolar Junction Transistor (BJT)

A BJT consists of three regions

Simplified physical structure

NPN transistor

Device construction is NOT symmetric

- "Thin" base region (between E & C)
- Heavily doped emitter
- Large area collector

PNP transistor

An implementation on an IC (NPN)

NPN BJT iv parameters

NPN transistor

Circuit symbol and Convention for current directions

KCL:
$$i_E = i_C + i_B$$

KVL:
$$v_{BC} = v_{BE} - v_{CE}$$

Note:

$$v_{CE} = v_C - v_E$$

BJT iv characteristics is the relationship among (i_{B} , i_{C} , v_{BE} , and v_{CE})

PNP BJT i v parameters

PNP transistor

Compared to a NPN:

- 1) Current directions are reversed
- 2) Voltage subscripts switched

KCL:
$$i_E = i_C + i_B$$

$$\mathsf{KVL:}\ v_{\mathit{CB}} = v_{\mathit{EB}} - v_{\mathit{EC}}$$

Note:

$$v_{EC} = v_E - v_C$$

BJT modes of operation and applications

Cut-off

Saturation

Active

BJT operation in the cut-off mode

Operation of a BJT requires the presence of emittergenerated electrons near the BC junction (thus, the BE junction should be forward biased).

A BJT is called to be in "cut-off" if the BE junction is NOT forward biased.

In this case, $i_B = 0$ and $i_C = 0$ regardless of any voltage applied to the BC junction.

Cut-off mode:

$$i_B = 0$$

$$i_C = 0$$

$$i_E = 0$$

BJT operation in the active mode

BE junction is forward biased: $v_{BE} = V_{D0}$

BC junction is reverse biased: $v_{BC} \leq 0$

Since
$$v_{BC} = v_{BE} - v_{CE} \rightarrow$$

$$v_{CE} \ge V_{D0}$$

A BJT operates in active mode when $v_{CE} \geq V_{D0}$ and $v_{BE} = V_{D0}$

$$i_B \ge 0$$

$$v_{BE} = V_{D0}$$

$$i_C = \beta i_B$$

$$v_{CE} \ge V_{D0}$$

$$i_{B} \geq 0$$
 $v_{BE} = V_{D0}$
 $i_{C} = \beta i_{B}$
 $v_{CE} \geq V_{D0}$
 $v_{CE} \geq V_{D0}$

BJT operation in the saturation mode

BE junction is forward biased: $v_{BE} = V_{D0}$

In soft saturation:

BC junction is forward biased and $0 < v_{BC} \le 0.4 \ V$ (for Si)

Since
$$v_{BC} = v_{BE} - v_{CE} \rightarrow 0.3 V \le v_{CE} < 0.7 V$$

In deep saturation:

BC junction is forward biased and $v_{BC}>0.4\ V$ (for Si)

Since
$$v_{BC} = v_{BE} - v_{CE} \rightarrow 0.1V < v_{CE} < 0.3 V$$

We will use $v_{CE} \approx 0.2 \text{ V} = V_{sat}$ for Si

Deep saturation or saturation mode:

$$i_B \geq 0$$

$$v_{BE} = V_{D0}$$

$$i_C < \beta i_B$$

$$v_{CE} = V_{sat}$$

Transistor operates like a valve:

Controller part:

Circuit connected to BE sets i_B

Cut-off (
$$i_B = 0$$
):

$$i_C = 0$$

Active
$$(i_B > 0)$$
:

Valve partially open
$$i_C = \beta i_B$$

Saturation
$$(i_B > 0)$$
:

$$i_C < \beta i_B$$

 i_{C} is limited by circuit connected to CE terminals, increasing i_{B}

does not increase $i_{\it C}$

NPN BJT iv equations

Cut-off:
BE is reverse biased

Active:
BE is forward biased
BC is reverse biased

(Deep) Saturation: BE is forward biased BC is foward biased "Linear" model*

$$i_B = 0, \quad i_C = 0$$
$$v_{BE} < V_{D0}$$

$$v_{BE} = V_{D0}, \quad i_B \ge 0$$

$$i_C = \beta i_B, \quad v_{CE} \ge V_{D0}$$

$$v_{BE} = V_{D0}, \quad i_B \ge 0$$
 $v_{CE} = V_{sat}, \quad i_C < \beta i_B$

For Si,
$$V_{D0} = 0.7 \text{ V}$$
, $V_{sat} = 0.2 \text{ V}$

BJT Linear model is based on a diode "constant-voltage drop" model for the BE junction and ignores Early effect.

PNP BJT iv equations

"Linear" model

Cut-off:

EB is reverse biased

$$i_B = 0, \quad i_C = 0$$

$$v_{EB} < V_{D0}$$

Active:

EB is forward biased CB is reverse biased

$$v_{EB} = V_{D0}, \quad i_B \ge 0$$

$$i_C = \beta i_B, \quad v_{EC} \ge V_{D0}$$

(Deep) Saturation: EB is forward biased CB is foward biased

$$v_{EB} = V_{D0}, \quad i_B \ge 0$$

$$v_{EC} = V_{sat}, \quad i_C < \beta i_B$$

For Si,
$$V_{D0} = 0.7 \text{ V}$$
, $V_{sat} = 0.2 \text{ V}$

BJT Linear model is based on a diode "constant-voltage drop" model for the BE junction and ignores Early effect.

Early Effect modifies iv characteristics in the active mode

 i_{C} is NOT constant in the active region.

Early Effect: Lines of i_C vs v_{CE} for different i_B (or v_{BE}) coincide at

$$v_{CE} = -V_A$$

$$i_C = I_S e^{v_{BE}/V_T} \left(1 + \frac{v_{CE}}{V_A} \right)$$

Solving BJT circuits

(State of BJT is unknown before solving the circuit)

Assume BJT is in cut-off mode:

Assumption was not correct. BJT is ON.

Assume BJT is in active mode.

$$i_{B} = \frac{4V - 0.7}{40k} = 82.5 \text{ MA}$$

KVL 2

Note:

In the BJT and MOSFET circuits, to differentiate the applied node voltages from the measured node voltages:

We will show the measured node voltages in **blue color** and the DC or AC voltage sources connected to different nodes in **black color**.

Lecture 10 reading quiz

Find the transistor parameters in this BJT circuit. ($\beta = 100, V_{D0} = 0.7V$).

Lecture 10 reading quiz

Find the transistor parameters in this BJT circuit. ($\beta = 100, V_{D0} = 0.7V$).

CE kVI:
$$5 = 0.5 \text{Knx ict}^{\text{VCE}}$$
, $i_{\text{C}} = 5 \text{ ib}$, $i_{\text{B}} = \frac{5 \text{V} - 0.7 \text{V}}{100 \text{ kn}}$

$$\frac{i_{B} = 43 \text{ MA}}{100 \text{ ks}}$$

$$\frac{i_{B} = 43 \text{ MA}}{100 \text{ ks}}$$

$$\frac{i_{C} = 100 \times 43 \text{ MA}}{100 \times 100 \times 100}$$

Clicker question 1.

What is the region of the operation of this transistor? (Assume Si BJT with β = 100, V_{sat} = 0.2 V)

Find i_B and v_{CE} .

- A. Saturation
- B. Active
- C. Cut Off

Cut-off:

$$i_B = 0, \quad i_C = 0$$

$$v_{BE} < V_{D0}$$

Active:

$$v_{BE} = V_{D0}, \quad i_B \ge 0$$

$$i_C = \beta i_B, \quad v_{CE} \ge V_{D0}$$

Saturation:

$$v_{BE} = V_{D0}, \quad i_B \ge 0$$

$$v_{CE} = V_{sat}, \quad i_C < \beta i_B$$

Clicker question 2.

What is the collector current in this BJT circuit. ($\beta = 100, V_{D0} = 0.7V$,

$$V_{sat}=0.2 V).$$

A.
$$i_C = 4.3 \ mA$$

B.
$$i_C = 2.4 \, mA$$

C.
$$i_C = 2 mA$$

D.
$$i_C = 2.15 \, mA$$

$$i_{D} = \frac{5 - 0.7}{100 \, k} = 43 \, \text{MA}$$

Assume active mode of

operation:

Cut-off:

$$i_B = 0, \quad i_C = 0$$

$$v_{BE} = V_{D0}, \quad i_B \ge 0$$

$$i_C = \beta i_B, \quad v_{CE} \ge V_{D0}$$

Saturation:

$$v_{BE} = V_{D0}, \quad i_B \ge 0$$
 $v_{CE} = V_{sat}, \quad i_C < \beta i_B$

Clicker question 2.

What is the collector current in this BJT circuit. ($\beta = 100, V_{D0} = 0.7V$,

$$V_{sat} = 0.2 V$$
).

A.
$$i_C = 4.3 \ mA$$

$$\begin{array}{c}
\hline
B. & i_C = 2.4 \ mA
\end{array}$$

C.
$$i_C = 2 mA$$

D.
$$i_C = 2.15 \, mA$$

$$i_{D} = \frac{5 - 0.7}{100 \, k} = 43 \, \text{MA}$$

Assume Sat. _s
$$V_{CE} = V_{Sat} = 0.2V$$
 $V_{BE} - \frac{1}{2}$

Cut-off:

$$i_B = 0, \quad i_C = 0$$
 $v_{PC} < V_{PO}$

Active:

$$v_{BE} = V_{D0}, \quad i_B \ge 0$$
 $i_C = \beta i_B, \quad v_{CE} \ge V_{D0}$

Saturation:

$$v_{BE} = V_{D0}, \quad i_{B} \ge 0$$
 $v_{CE} = V_{sat}, \quad i_{C} < \beta i_{B}$

Discussion question 1.

Find the value of voltage V_{BB} that results in the transistor operating in the active region with $V_C = 5V$.

(Assume Si transistor with $\beta=100$ and $V_{sat} = 0.2 V$).

$$V_{CE} = V_{C} - V_{E} = V_{C} - 0 = V_{C}$$

$$CE \ KVL : 10 = 1 K \times i_{C} + V_{CE} \longrightarrow i_{C} = 5 \text{ m A}$$

$$i_{O} = 50 \text{ MA}$$

BE KUL:
$$V_{BB} = 10 \, \text{k} \times i_{B} + \underbrace{V_{BE}}_{0.7 \, \text{V}} \longrightarrow V_{0B} = 1.2 \, \text{V}$$

