

Figure 3-12 Standing-wave patterns for a reactively terminated line with $Z_L = +jZ_0$. ($\alpha = 0$.)

reflections occur. For $R_L > Z_0$, Γ_L is positive and a voltage maximum (current minimum) exists at the load. In this case,

SWR =
$$\frac{R_L}{Z_0}$$
 since $|\Gamma_L| = \frac{R_L - Z_0}{R_L + Z_0}$

For $R_L < Z_0$, Γ_L is negative and a voltage minimum (current maximum) exists at the load. In this case,

SWR =
$$\frac{Z_0}{R_L}$$
 since $|\Gamma_L| = \frac{Z_0 - R_L}{Z_0 + R_L}$

Thus if Z_L is purely resistive,

SWR =
$$\frac{R_L}{Z_0}$$
 or $\frac{Z_0}{R_L}$ whichever is greater than unity. (3-55)

For any finite value of R_L , SWR is finite and $|\Gamma_L| < 1$. This means that some of the incident power is absorbed by the load.

3-4c Power Flow Along Terminated Lines

The general problem of power flow along a terminated transmission line will now be discussed. Figure 3–10 shows a line of length l driven by an ac source and terminated in a load Z_L . V_G is the open-circuit voltage of the generator and Z_G is its internal impedance. From ac theory, the average power flow into an impedance Z is given by

$$P = \text{Re} (VI^*) = VI \cos \theta_{\text{pf}}$$
 (3-56)

where V and I are rms values, $\theta_{\rm pf}$ is the power-factor angle and * denotes the complex conjugate. This equation also applies to the average power flow at any point along a transmission line, the direction of flow being from the generator toward the load. The voltage and current on the line are given by Eqs. (3–14) and (3–16). With $V^+ = I^+ Z_0$ and $V^- = \Gamma V^+$, they may be rewritten as

$$V = V^{+}(1 + \Gamma)$$
 and $I = \frac{V^{+}}{Z_{0}}(1 - \Gamma)$ (3-57)