ZADANIE 18

Z psychologicznych powodów, czasem wygodniej jest oznaczać ideał pierwszy pierścienia A literami x, y jeśli myślimy o nich jako o punkcie $X = \operatorname{Spec}(A)$. Kiedy myślimy o x jako o ideale pierwszym A, oznaczamy go przez \mathfrak{p}_X (oczywiście jest to ta sama rzecz). Pokaż, że

(i) $zbiór \{x\} jest domknięty w Spec(A) \iff \mathfrak{p}_X jest maksymalny$

 \iff

Jeśli \mathfrak{p}_X jest ideałem maksymalnym, to $\{x\} = V(\mathfrak{p}_X)$, gdyż żaden inny ideał pierwszy nie zawiera \mathfrak{p}_X . My definiowaliśmy V(E) jako zbiory domknięte, więc $\{x\}$ też taki jest.

 \Longrightarrow

Wiem, że {x} jest zbiorem domkniętym. Czyli jest przekrojem pewnej rodziny domkniętych zbiorów bazowych

$$\{x\} = \bigcap_{i \in I} V(E_i) = V\left(\bigcup_{i \in I} (E_i)\right)$$

ale jeśli taka suma zawiera się w jednym, jedynym ideale pierwszym, to jest on maksymalny.

(ii)
$$\overline{\{x\}} = V(p_x)$$

 \subset

Jest raczej prostym zawieraniem: $\overline{\{x\}}$ jest najmniejszym zbiorem domkniętym zawierającym $\{x\}$, a $V(\mathfrak{p}_X)$ z pewnością to spełnia.

 \supseteq

Po pierwsze zauważmy, że

$$V(\mathfrak{p}_X) = \bigcap_{E \subseteq \mathfrak{p}_X} V(E) = V\Big(\bigcup_{E \subseteq \mathfrak{p}_X} V(E)\Big),$$

bo to są wszystkie te ideały pierwsze, które zawierają jakiś podzbiór \mathfrak{p}_X , czyli obcinamy te mniejsze podzbiory \mathfrak{p}_X w trakcie brania przekroju.

Wiemy, że \bigcap V(E) jest zbiorem domkniętym. Wiemy, że $x \in \bigcap$ V(E), czyli dostajemy, że V(\mathfrak{p}_x) jest $E \subseteq \mathfrak{p}_x$ przekrojem wszystkich zbiorów domkniętych zawierających x, czyli jest najmniejszym zbiorem domkniętym zawierającym x, czyli domknięciem x.

$$\textit{(iii)} \ y \in \{\overline{x}\} \iff \mathfrak{p}_X \subseteq \mathfrak{p}_y$$

 \Leftarrow

Niech $x, y \in X$ takie, że $\mathfrak{p}_X \subseteq \mathfrak{p}_y$. Wówczas, $x \in V(E) \implies y \in V(E)$. Ponieważ $\{x\}$ jest przekrojem zbiorów $V(E_i)$, który zawiera x, to w szczególności każdy z tych zbiorów zawiera również y, stąd $y \in \{x\}$.

 \Longrightarrow

Trywialne z (ii).

(iv) X jest T_0 -przestrzenią (jeśli x, y są rozróżnialnymi punktami X, to albo istnieje otoczenie x które nie zawiera y, albo istnieje otocznie y, które nie zawiera x).

Weźmy dowolne punkty $x, y \in X$. Rozważmy dwa przypadki:

1. $\mathfrak{p}_X \subseteq \mathfrak{p}_V$ (lub $\mathfrak{p}_V \subseteq \mathfrak{p}_X$, ale WLOG pierwsza wersja)

Wtedy $x \in X \setminus V(\mathfrak{p}_V)$, które jest zbiorem otwartym takim, że $y \notin X \setminus V(\mathfrak{p}_V)$.

2. $\mathfrak{p}_X \not\subseteq \mathfrak{p}_y$ i $\mathfrak{p}_y \not\subseteq \mathfrak{p}_X$

Wtedy $y \notin \overline{\{x\}}$ i $x \notin \overline{\{y\}}$. Czyli $y \in X \setminus \{x\}$ jest otwartym zbiorem zawierającym y ale niezawierającym x.

ZADANIE 19.

Przestrzeń topologiczna X jest nieredukowalna, jeśli X $\neq \emptyset$ i jeśli każda para niepustych otwartych podzbiorów X się przecina (równoważnie, każdy niepusty podzbiór otwarty jest gęsty w X). Pokaż, że Spec(A) jest nieredukowalny \iff nilradykał A jest ideałem pierwszym.

Chcę mieć punkt, którego dopełnienie jest wszystkim.

Niech r będzie nilradykałem pierścienia A i niech r będzie ideałem pierwszym. Weźmy dowolne \mathfrak{a}_1 , $\mathfrak{a}_2 \triangleleft A$ i rozpatrzmy $U_1 = V(\mathfrak{a}_1)^c$, $U_2 = V(\mathfrak{a}_2)^c$.

ZADANIE 20

Niech X będzie przestrzenią topologiczną

(i) Jeśli Y jest nieredukowalną podprzestrzenią X, wtedy domknięcie \overline{Y} w X jest nieredukowalne.

Załóżmy nie wprost, że \overline{Y} nie jest nieredukowalna. Wtedy istnieją $U, V \subseteq \overline{Y}$ takie, że $U \cap V = \emptyset$. Ale zbiór $U \cap Y$ jest albo pusty albo jest zbiorem otwartym w Y. Tak samo dla $V \cap Y$. To znaczy, że $(U \cap Y) \cap (V \cap Y) = \emptyset$ co jest sprzeczne z nieredukowalnością Y.

(ii) Każda nieredukowalna podprzestrzeń X jest zawarta w pewnej nieredukowalnej podprzestrzeni X.

Niech S będzie zbiorem nieredukowalnych podprzestrzeni X. Rozważmy łańcuch

$$Y_1\subseteq Y_2\subseteq ...$$

podprzestrzeni z S. Niech Y = $\bigcup Y_i$. Musimy pokazać, że Y \in S, czyli Y jest nieredukowalny.

Niech U, $V \subseteq Y$. Wtedy istnieje i takie, że U, $V \subseteq Y_i$. Ponieważ Y_i jest nieredukowalna, to U \cap V \neq \emptyset . W takim razie każde dwa zbiory otwarte z Y tną się niepusto, a więc Y jest nieredukowalne.

Wystarczy użyć lematu Zorna dla zbioru $S_A = \{Y \subseteq X : Y \text{ nieredukowalna i } A \subseteq Y\}.$

(iii) Maksymalne nieredukowalne podprzestrzenie X są domknięte i pokrywają X. Nazywamy je składowe nieredukowalne X. Jakie są składowe nieredukowalne przestrzeni Hausdorffa?

Niech $M\subseteq X$ będzie maksymalną podprzestrzenią nieredukowalną X. Domkniętość M wynika wprost z (ii). Gdyby M nie było domknięte, to $M\subseteq \overline{M}$, a \overline{M} też jest nieredukowalne i mamy sprzeczność z maksymalnością M.

Dlaczego pokrywają? Bo dla każdego $\{x\}$, $x \in X$ możemy rozpatrzeć zbiór wszystkich nieredukowalnych zbiorów takich, że $\{x\} \subseteq A$ i w ten sposób znajdziemy maksymalne zbiory nieredukowalne zawierające każdy element X, czyli pokrywające X.

W Hausdorffie możemy każde dwa punkty oddzielić dwoma rozłącznymi otwartymi otoczeniami, więc maksymalne nieredukowalne podprzestrzenie to singletony. I to właśnie przypadek, który mnie natchnął do wytłumaczenia jak pokryć X.

(iv) Jeśli A jest pierścieniem i X = Spec(A), wtedy składowe nieredukowalne X to zbiory domknięte $V(\mathfrak{p})$, qdzie \mathfrak{p} to najmniejsza zbiory pierwsze A.

ZADANIE 21

Niech $\phi: A \to B$ będzie homomorfizmem pierścieni. Niech X = Spec(A) i Y = Spec(B). Jeśli $q \in Y$, to $\phi^{-1}(q)$ jest ideałem pierwszym w A, w szczególności punktem X. Z tego powodu ϕ indukuje przekształcenie $\phi^*: Y \to X$. Pokaż, że

(i) Jeśli $f \in A$, wtedy $\phi^{*-1}(X_f) = Y_{\phi(f)}$ i dlatego ϕ^* jest ciągłe.

$$\phi^{*-1}(X_f) = \{ y \in Y \ : \ (f) \subsetneq \phi^*(y) \} = \{ y \in Y \ : \ (f) \subsetneq \phi^{-1}(y) \} = \{ y \in Y \ : \ \phi(f) \subseteq y \} = Y_{\phi(f)}$$

(ii) Jeśli $\mathfrak a$ jest ideałem A, wtedy $\phi^{*-1}(V(\mathfrak a)) = V(\mathfrak a^{\mathfrak e})$

 $\mathfrak{a}^{\mathsf{e}}$ to rozszerzenie obrazy $\phi(\mathfrak{a})$ do ideału w B.

$$\phi^{*-1}(\mathsf{V}(\mathfrak{a})) = \{ \mathsf{y} \in \mathsf{Y} \ : \ \mathfrak{a} \subseteq \phi^*(\mathsf{y}) \} = \{ \mathsf{y} \in \mathsf{Y} \ : \ \mathfrak{a} \subseteq \phi^{-1}(\mathsf{y}) \} = \{ \mathsf{y} \in \mathsf{Y} \ : \ \phi(\mathfrak{a}) \subseteq \mathsf{y} \} = \mathsf{V}(\phi(\mathfrak{a})) = \mathsf{V}(\mathfrak{a}^e)$$

Ta ostatnia równość z jakiegoś poprzedniego zadanka, bo wtedy mam, że V(E) = V((E)) i to jest to samo.