1. What is a database? Explain with an example on why should we need a database.

A **database** is an organized collection of data that is stored and accessed electronically. Databases allow for the efficient retrieval, insertion, and deletion of data. They are managed by Database Management Systems (DBMS).

Example: Imagine an online bookstore. The store needs to keep track of its inventory, customer orders, and payment details. All this data is stored in a database. If a customer buys a book, the database updates the inventory and records the sale. Without a database, managing and retrieving this information would be inefficient and error-prone.

Why do we need a database?

- Efficiency: Databases allow for efficient data management, making it easy to retrieve, update, and manage large amounts of data.
- Data Integrity: Databases help ensure data is accurate and consistent.
- Security: Sensitive data can be protected through authentication and authorization.
- Scalability: Databases can handle large volumes of data as the system grows.

2. Write a short note on file-based storage system. Explain the major challenges of a file-based storage system.

A **file-based storage system** is a system where data is stored in files within a directory structure. Each file can contain various types of data, and access to the files is managed by the operating system.

Major Challenges:

- 1. **Data Redundancy:** The same data might be stored in multiple files, leading to unnecessary duplication and wasted storage space.
- 2. **Data Inconsistency:** If the same data is stored in multiple places, updating it in one file might not update it in others, leading to inconsistencies.
- 3. **Lack of Data Security:** File-based systems generally lack robust security features. Anyone with access to the files can read, modify, or delete them.
- 4. **Limited Data Sharing:** File-based systems are not designed for easy sharing of data between different users or systems.
- 5. **Difficulty in Accessing Data:** Retrieving specific information from a large number of files can be time-consuming and error-prone.

3. What is DBMS? What was the need for DBMS?

A **Database Management System (DBMS)** is software that interacts with the user, applications, and the database itself to capture and analyze data. A DBMS provides tools for data storage, retrieval, and management.

Need for DBMS:

- To address the limitations of file-based systems, such as data redundancy, inconsistency, and lack of security.
- To manage large volumes of data efficiently.
- To ensure data integrity and consistency across multiple users and applications.
- To support complex queries and data manipulation operations that would be difficult to implement with file-based systems.

4. Explain 5 challenges of the file-based storage system which was tackled by DBMS?

- 1. **Data Redundancy:** DBMS reduces redundancy by normalizing the data, ensuring that each piece of data is stored only once.
- 2. **Data Inconsistency:** DBMS ensures that updates to data are consistent across the system, preventing discrepancies between different data files.
- 3. **Data Security:** DBMS offers advanced security features such as access control, authentication, and encryption to protect data.
- 4. **Data Integrity:** DBMS enforces rules and constraints to maintain the accuracy and consistency of data.
- 5. **Data Sharing:** DBMS allows multiple users to access and manipulate data simultaneously without conflicts, thanks to transaction management.

5. List out the different types of classification in DBMS and explain?

DBMS classifications can be done based on several criteria:

1. Based on Data Model:

- **Hierarchical DBMS:** Data is organized in a tree-like structure.
- Network DBMS: More flexible than hierarchical, allows multiple parentchild relationships.
- **Relational DBMS (RDBMS):** Data is organized in tables (relations). This is the most common type.
- Object-Oriented DBMS: Stores data as objects, similar to object-oriented programming.

2. Based on Number of Users:

- o **Single-user DBMS:** Supports one user at a time.
- o **Multi-user DBMS:** Supports multiple users simultaneously.

3. Based on Distribution:

- o **Centralized DBMS:** All data is stored and managed on a single location.
- o **Distributed DBMS:** Data is distributed across multiple locations but appears as a single database to the user.

4. Based on Usage:

- **OLTP (Online Transaction Processing) DBMS:** Optimized for transactional data.
- OLAP (Online Analytical Processing) DBMS: Optimized for querying and reporting.

6. What is the significance of Data Modelling and explain the types of Data Modelling?

Data Modelling is the process of creating a visual representation of either a whole information system or parts of it to communicate connections between data points and structures.

Significance:

- Clarifies Data Structure: Helps in understanding the relationships and flow of data within the system.
- **Improves Database Design:** Ensures that the database structure is logical and efficient.
- **Facilitates Communication:** Provides a blueprint for developers and stakeholders to discuss and refine.
- **Ensures Data Integrity:** Helps in identifying and implementing constraints and rules for data.

Types of Data Modelling:

- 1. **Conceptual Data Modelling:** High-level model, defines what data should be included in the system. It focuses on the user's view of the data.
- 2. **Logical Data Modelling:** Details the structure of the data elements and relationships between them. It includes entities, attributes, and relationships.
- 3. **Physical Data Modelling:** Describes how the data will be physically stored in the database, including tables, indexes, and partitions.

7. Explain 3 schema architecture along with its advantages?

Three-Schema Architecture is a framework that separates a database system into three levels:

- 1. **Internal Level:** This is the physical storage level where the actual data is stored in the database. It deals with the physical storage of data on devices.
- 2. **Conceptual Level:** This is the logical level where the structure of the entire database is defined. It is independent of any physical considerations and focuses on data models and relationships.
- 3. **External Level:** This is the view level where users interact with the data. It involves user-specific views of the data, customized to their needs.

Advantages:

- **Data Abstraction:** Separates the physical storage from the user's perspective, allowing for flexibility in managing changes.
- **Improved Security:** Each user only accesses the external schema relevant to their role, protecting the underlying data.
- Easier Maintenance: Changes at one level (like the physical storage) do not require changes at the other levels.