FOR POWER-EFFICIENT DIGITAL SIGNAL PROCESSING IN EMBEDDED PROCESSORS

Rooju Chokshi¹, Krzysztof S. Berezowski^{2,3}, Aviral Shrivastava², Stanisław J. Piestrak⁴

¹Microsoft Corporation, Redmond, WA, USA ²CSE Dept, Arizona State University, Tempe, AZ, USA ³TIMA Laboratory, 38031 Grenoble, France ⁴LICM, University of Metz, 57070 Metz, France

FOR THE IMPATIENT

Standard Embedded Processor (ARM)

+

Residue Number System (2ⁿ+1, 2^k, 2ⁿ-1)

+

Compiler-aware Architectural Design (exposition of RNS advantages and overheads)

+

Compilation Techniques

(appropriate instruction selection and scheduling)

Significant improvements in power-efficiency of DSP-intensive embedded applications

MOTIVATION

- digital signal processing (DSP) dominates workload of portable embedded processors (communicat. & multimedia)
- portable devices quickly become amazingly feature-rich
- power efficiency is insufficient battery demands determine volume, shape factor, weight, charging frequency, lifetime...

personal experience:
iPod Touch (fully charged)
allows for ~45 mins
of a Skype conversation
what about a video call?
and the gap increases...

closing the gap requires breaking the current trends

RNS? WHY BOTHER?

non-positional number system where a value

$$X \in [0, M)$$

is represented as a set of residues

$$\{x_1, ..., x_l : \forall_{i=1}^l x_i = |X|_{P_i}\}$$

modulo respective co-prime integers (moduli)

$$P = \{P_1, ..., P_l\}$$

as a result $\circ \in \{+, -, \times\}$ on residues are inherently parallel:

$$X \circ Y = \{|x_1 \circ y_1|_{P_1}, ..., |x_l \circ y_l|_{P_l}\}$$

where
$$X = \{x_1, ..., x_l\}$$
 $Y = \{x_1, ..., x_l\}$

THERE IS NO FREE LUNCH...

- ono support for division nor magnitude comparison
- interaction with 2's complement system requires conversions:
 - forward (computation of residue)
 - ereverse Chinese Remainder Theorem (CRT):

$$X = x_1 + P_1 \cdot \left| m_1(x_2 - x_1) + \sum_{i=2}^{l-1} m_i (\prod_{j=2}^{i} P_j)(x_{i+1} - x_i) \right|_{\prod_{j=2}^{l} P_j}$$

where

$$|m_1 P_1|_{P_2 P_3 \dots P_l} \equiv 1, \dots, |m_{l-1} P_1 P_2 \dots P_{l-1}|_{P_l} \equiv 1$$

hardware (under some assumptions):

both forward and reverse = multi-operand modulo addition

QUICK EXAMPLE

$$X = 13, Y = 22 P_1 = 8, P_2 = 9, P_3 = 7$$

$$x_1 = |13|_8 = 5, x_2 = |13|_9 = 4, x_3 = |13|_7 = 6$$

$$y_1 = |22|_8 = 6, y_2 = |22|_9 = 4, y_3 = |22|_7 = 1$$

$$x_1 + y_1 = |5 + 6|_8 = 3 x_1 \cdot y_1 = |5 \cdot 6|_8 = 6$$

$$x_2 + y_2 = |4 + 4|_9 = 8 x_2 \cdot y_2 = |4 \cdot 4|_9 = 7$$

$$x_3 + y_3 = |6 + 1|_7 = 0 x_3 \cdot y_3 = |6 \cdot 1|_7 = 6$$

$$X = z_1 + P_1 \cdot |m_1(z_2 - z_1) + m_2 P_2(z_3 - z_2)|_{P_2 P_3}$$

$$m_1 = 8, m_2 = 4$$

$$X + Y = 3 + 8 \cdot |8 \cdot 5 + 4 \cdot 9 \cdot (-8)|_{63} = 3 + 8 \cdot |-248|_{63} = 35$$

 $X \cdot Y = 6 + 8 \cdot |8 \cdot 1 + 4 \cdot 9 \cdot (-1)|_{63} = 6 + 8 \cdot |-28|_{63} = 286$

IMPACT ON HARDWARE (+)

carry propagation is either power-efficient but slow...

or fast but hardware intensive.

RNS partitions the DP - reduces propagation chain width

IMPACT ON HARDWARE (*)

Sum of squares is less than square of sum!

						y ₅	y_4	y_3	y ₂	y ₁	y_0
						X ₅	X_4	X_3	X_2	X ₁	X_0
						x_0y_5	$x_0^{}y_4^{}$	x_0y_3	x_0y_2	x_0y_1	$x_0^{}y_0^{}$
					x_1y_5	$x_1 y_4$	x_1y_3	$x_1 y_2$	x_1y_1	$x_1 y_0$	
				x_2y_5	x_2y_4	x_2y_3	x_2y_2	x_2y_1	$x_2 y_0$		
			$x_3 y_5$	x_3y_4	x_3y_3	x_3y_2	x_3y_1	x_3y_0			
		$x_4 y_5$	$X_4 Y_4$	x_4y_3	x_4y_2	x_4y_1	$x_4 y_0$				
	x_5y_5	x_5y_4	x_5y_3	x_5y_2	x_5y_1	$x_5 y_0$					
p ₁₁	p ₁₀	p_9	p_8	p_7	p_6	p_5	p_4	p_3	p_2	p_1	p_0

number of partial products:

1024 PP to reduce

9 4095, 4096, 4097 RNS: 121+66+144 = 331 PP to reduce!

both size AND depth of the carry-save addition (CSA) reduces

HOW TO REAP THE BENEFITS?

• in custom logic it is easy to dilute the overheads in benefits a lot of efficient RNS computations happens before conversion

in a programmable processor it is easy to make the overheads overshade the benefits...

but the compiler manages the pipeline, so let it know!

SYNERGISTIC ARCHITECTURE

HOW TO DESIGN HARDWARE

- $\ ^{\circ}$ some odd numbers P (moduli) enjoy **periodicity property**, i.e. the series of residues of the $\left|2^{i}\right|_{P}$ series is periodic
- for certain moduli (certain odd numbers), it happens so that these series of residues are consecutive powers of 2 (at least their absolute values)

2^i	2^0	2^1	2^2	2^3	• • •	2^{n-1}	2^n	• • •	2^{2n-1}	2^{2n}	• • •
$\left[\left 2^{i} \right _{2^{n}-1} \right]$	2^0	2^1	2^2	2^3	• • •	2^{n-1}	2^0	• • •	2^{n-1}	2^0	• • •
$\left 2^i \right _{2^n+1}$	2^0	2^1	2^2	2^3		2^{n-1}	-2^{0}	• • •	-2^{n-1}	2^0	• • •

promotes the usage of **n-bit wide end-around-carry CSA** for the implementation of most of the RNS hardware

END-AROUND CARRY CSA

since:
$$-\sum_{i=0}^k 2^i b_i = \sum_{i=0}^k 2^i \overline{b}_i - \sum_{i=0}^k 2^i$$
 for neg. weights invert & correct!

PERIODICITY IMPLICATIONS

essentially EAC-CSA produces a two vectors C and S such that to compute a residue in the channel we need to compute

$$r = |2C + S|_{\mathsf{P}}$$

reducing 2C+S to r is costly - takes 2-operand modulo adders (usually some parallel-prefix adder with EAC embedded)

obviously, by definition, 2C+S is congruent to r. we can compute on congruences as easily as on residues and due to EAC in periodic moduli **DP-width never grows!**

use pair (S,C) for internal representation work with congruences using EAC-CSA trees

IMPLICATIONS TO HARDWARE

- adders/forward converters (FC) are just standard CSA-EAC
- 2 layers for two-operand ADD or single forward converter
- 9 4 layers for three-operand ADD or double forward converter

depth of EAC-CSA is independent of DP-path width

in multiplier and reverse converter initial reduction is done but again (in the multiplier) we can work with congruences

COMPILATION

discover subgraphs of Data-Flow Graph (DFG) that can be profitably mapped to RNS operators

RNS Eligible Nodes (+, -, *)

RNS Eligible Subgraphs (RES) (contain only RNS Eligible Nodes

Maximal RNS Eligible Subgraph (MRES) RES that is not properly contained in any other RES

FINDING MRES

starting from any RNS Eligible Node expand on undirected graph through breadth-first search till no more nodes can be included

If mapping MRES to RNS turns out profitable - map it

Profit measure (cycles):

□ 1 RC - an overhead of 2c.

93-operand RADD - profit of 1c.

2-operand RMUL - profit of 1c.

SCHEDULING FC IN LOOPS

without scheduling

with scheduling

Move FC out of the loop only if:

- eregister is not being written in the loop
- eregister is being written only in the same MRES as the FC

ADDITION PAIRING

fast RNS hardware allowed us to implement 3-operand addition

in general case ternary tree of additions should be built for a single set of RNS resources linearizing is enough

EXPERIMENTAL SETUP

- hardware components were designed in RTL Verilog synthesized using Cadence RC Compiler and OSU 0.18um lib
- SimpleScalar ARM was extended to support RNS instructions RNS values are stored in floating point registers
- GCC was extended to implement the ISA extension and the compilation techniques
- a collection of DSP and image processing kernels were run:
 - without extension
 - with extension hand-optimized code
 - with extension basic technique (instruction selection only)
 - with extension extended technique (selection & scheduling)
 - performance (no. cycles) and power numbers were collected

RESULTS (PERFORMANCE)

instruction selection: +12% performance on average selection & scheduling: +20% performance on average manual optimizations: +30% performance on average

RESULTS (HAND-OPT)

hand-optimized code:

+30% average performance -57% power on average

DESIGN SPACE EXPLORATION

DCT - Power vs Performance

- R woR S
- A R with R S

Execution Cycles

Power [mW]

CONCLUSIONS

- Promoting RNS idiosyncrasies to the ISA level is an efficient way to use RNS in the programmable CPU
 - → effectively creates custom RNS pipeline using software
- Compiler was able to extract as much as
 - **21% improvement in performance** (30% hand-opt), and
 - 9 52% improvement in power dissipation (57% hand-opt)
- if you plan to add second resource set to your embedded CPU consider RNS over regular Integer set.
- if you plan to use only single resource set...

 think again → add RNS. saves power and boosts performance

interestingly, unlike in application-specific hardware in a CPU its forward conversions that define the bottleneck

FUTURE WORK

- more aggressive ISA optimizations:
 - integrating loads/stores and conversions
 - support for arithmetic shifts
 - sign detection for magnitude comparison
 - moving conversions into memory interface?
- compilation techniques for super- and hyper-block level
- code annotation for direct interaction between programmer and compiler

FOR POWER-EFFICIENT DIGITAL SIGNAL PROCESSING IN EMBEDDED PROCESSORS Thank you for your attention!

Rooju Chokshi¹, Krzysztof S. Berezowski^{2,3}, Aviral Shrivastava², Stanisław J. Piestrak⁴

¹Microsoft Corporation, Redmond, WA, USA ²CSE Dept, Arizona State University, Tempe, AZ, USA ³TIMA Laboratory, 38031 Grenoble, France ⁴LICM, University of Metz, 57070 Metz, France

