Problem Set 1: Exterior algebras and the Koszul complex

Let R be a commutative ring, V a free R-module with basis e_1, \ldots, e_n , and $f_1, \ldots, f_n \in R$. Recall that the Koszul complex on f_1, \ldots, f_n , denoted $K(f_1, \ldots, f_n)$, is the complex

$$0 \leftarrow \Lambda_R^0 V \stackrel{\partial_1}{\leftarrow} \Lambda_R^1 V \stackrel{\partial_2}{\leftarrow} \cdots \stackrel{\partial_n}{\leftarrow} \Lambda_R^n V \leftarrow 0$$

with differential

$$\partial_j(e_{i_1}\cdots e_{i_j}) = \sum_{\ell=1}^j (-1)^{\ell-1} f_{i_\ell} e_{i_1} \cdots \widehat{e_{i_\ell}} \cdots e_{i_j}.$$

- 1. (Short exercise) Compute $K(f_1, f_2, f_3)$.
- **2.** Prove that $\partial_{j-1}\partial_j=0$ for all j.
- **3.** Given two complexes C and D of R-modules with differentials d_C and d_D , their tensor product $C \otimes_R D$ has terms $(C \otimes D)_m = \bigoplus_{i+j=m} C_i \otimes_R D_j$ and differential that sends an element $c \otimes d \in C_i \otimes D_j \subseteq (C \otimes D)_m$ to $d_C(c) \otimes d + (-1)^i c \otimes d_D(d)$. Prove that, for all $n \geq 1$, there is an isomorphism

$$K(f_1,\ldots,f_n)\cong K(f_1)\otimes_R\cdots\otimes_R K(f_n).$$

- **4.** Recall that T(V) denotes the tensor algebra on V, and the exterior algebra $\Lambda_R(V)$ is the quotient of T(V) by the two-sided ideal I generated by v^2 for all $v \in V$. Prove that, when $2 \in R$ is invertible, we have $\Lambda_R(V) \cong T(V)/J$, where J is the two-sided ideal generated by vw + wv for $v, w \in V$.
- **5.** Suppose R is a field, which we will denote by k. Assume n=1, so that $\Lambda_k(V)$ is isomorphic to $k[x]/(x^2)$. Prove that this ring has the following property: every finitely generated $\Lambda_k(V)$ -module is either free or has infinite projective dimension.

Hint: use the structure theorem for finitely generated modules over PID's.

In fact, this is true for any exterior algebra over a field. If you want a more challenging exercise, try and prove this. Hint: as we will see later, E is injective as an E-module; you can take this fact for granted for now. It follows that the functor $\text{Hom}_E(-, E)$ is exact. Therefore, given a finite length free resolution F of a finitely generated E-module N, we have that $\text{Hom}_E(F, E)$ is exact. Prove that this forces N to be free.