Strong convergence of propagation of chaos for McKean-Vlasov SDEs with singular interactions

Zimo Hao

A joint work with Michael Röckner and Xicheng Zhang

arXiv:2204.07952

15 June, 2022

Bielefeld Stochastic Afternoon

Table of contents

- 1 N-particle systems and propagation of chaos
 - *N*-particle systems and McKean-Vlasov equations
 - Propagation of chaos
 - Moderate case and density dependent SDE
- Well-posedness
 - Motivation
 - \blacksquare Mixed L^p space with permutation
 - Main result for well-posedness
- 3 Main results for propagation of chaos

- 1 N-particle systems and propagation of chaos
 - *N*-particle systems and McKean-Vlasov equations
 - Propagation of chaos
 - Moderate case and density dependent SDE
- 2 Well-posedness
 - Motivation
 - \blacksquare Mixed L^p space with permutation
 - Main result for well-posedness
- 3 Main results for propagation of chaos

N-particle systems

Consider the following *N*-particle systems on \mathbb{R}^d :

$$dX_t^{N,i} = F\left(t, X_t^{N,i}, \frac{1}{N} \sum_{i=1}^N \varphi(X_t^{N,i} - X_t^{N,i})\right) dt + \sigma(t, X_t^{N,i}) dB_t^i, \quad (\mathcal{N})$$

where i = 1, 2, ..., N,

- F: Some nonlinear force;
- B^i : independent Brownian motions on \mathbb{R}^d (random phenomena).

McKean-Vlasov equations

When F, φ and σ are smooth, the solution of the N-particle systems $X^{N,i}$ convergences to the solution of the following McKean-Vlasov SDE, which is also called Distribution Dependent SDE:

$$dX_t = F\left(t, X_t, \int_{\mathbb{R}^d} \varphi(X_t - y) \mu_t(dy) dt\right) + \sigma(t, X_t) dB_t, \qquad (1)$$

where μ_t is the distribution of X_t and B_t is a standard BM.

McKean-Vlasov equations

When F, φ and σ are smooth, the solution of the N-particle systems $X^{N,i}$ convergences to the solution of the following McKean-Vlasov SDE, which is also called Distribution Dependent SDE:

$$dX_t = F\left(t, X_t, \int_{\mathbb{R}^d} \varphi(X_t - y) \mu_t(dy) dt\right) + \sigma(t, X_t) dB_t, \qquad (1)$$

where μ_t is the distribution of X_t and B_t is a standard BM.

- Well-known results for well-posedness
 - Linear growth F and φ: Mishura-Veretennikov (arXiv-16), Lacker (arXiv-21).
 - ii) $L_T^q L^p$ interaction: Röckner-Zhang (Bernoulli-21), Zhao (arXiv-20) $\|f\|_{L_T^q L^p} := \left(\int_0^T \|f(t)\|_p^q dt\right)^{1/q}$

Propagation of chaos

Denote by $P_t^{N,k}$ and P_t the distribution of $(X_t^{N,1},...,X_t^{N,k})$ for k = 1,2,..,N and X_t respectively. It is natural to ask whether we have

$$P_t^{N,k} \to P_t^{\otimes k}$$
, if $P_0^{N,k} \to P_0^{\otimes k}$ (which is called P_0 -chaotic).

This is called propagation of chaos, which originally goes as far back as Maxwell and Boltzmann, and was formalized by Kac in 1950s.

Propagation of chaos

Denote by $P_t^{N,k}$ and P_t the distribution of $(X_t^{N,1},...,X_t^{N,k})$ for k = 1,2,..,N and X_t respectively. It is natural to ask whether we have

$$P_t^{N,k} \to P_t^{\otimes k}$$
, if $P_0^{N,k} \to P_0^{\otimes k}$ (which is called P_0 -chaotic).

This is called propagation of chaos, which originally goes as far back as Maxwell and Boltzmann, and was formalized by Kac in 1950s.

• Jabin-Wang (JFA-16 & Invent-18): Assume φ is bounded (kinetic case) and φ , div $\varphi \in W^{-1,\infty}(\text{in }\mathbb{T}^d)$,

$$\begin{aligned} \mathcal{H}(P_t^{N,N}, P_t^{\otimes N}) &\leq C. \\ \Rightarrow & \|P_t^{N,k} - P_t^{\otimes k}\|_{var} \leq C\sqrt{\frac{k}{N}}. \end{aligned}$$

• Lacker (EJP-18 & arXiv-21) Assume φ is bounded,

$$||P_t^{N,k}-P_t^{\otimes k}||_{var}\leq C\frac{k}{N}.$$

Strong propagation of chaos

Apart from the above convergence results for $P^{N,k}$, assuming that F(t,x,r) = r and φ is Lipschitz, Sznitman in his famous lecture in 1991 showed us the following results:

$$\mathbb{E}\Big(\sup_{t\in[0,T]}|X^{N,i}_t-X^i_t|\Big)\leq C\Big(\sqrt{\frac{1}{N}}+\mathbb{E}|X^{N,i}_0-X^i_0|\Big),$$

where X_t^i is the solution to (1) driven by BM B_t^i .

■ We call this type of convergence the strong convergence of propagation of chaos.

Moderate case

When $\varphi(\cdot) = \varphi_N(\cdot) = \varepsilon_N^{-d} \phi(\varepsilon_N^{-1} \cdot)$, which is called moderately interacting kernel, and $\varepsilon_N \to 0$ as $N \to \infty$, we rewrite our *N*-particle systems as follow:

$$dX_t^{N,i} = F\left(t, X_t^{N,i}, \frac{1}{N} \sum_{j=1}^N \varphi_N(X_t^{N,i} - X_t^{N,j})\right) dt + \sigma(t, X_t^{N,i}) dB_t^i. (\mathcal{M})$$

Moderate case

When $\varphi(\cdot) = \varphi_N(\cdot) = \varepsilon_N^{-d} \phi(\varepsilon_N^{-1} \cdot)$, which is called moderately interacting kernel, and $\varepsilon_N \to 0$ as $N \to \infty$, we rewrite our *N*-particle systems as follow:

$$dX_t^{N,i} = F\left(t, X_t^{N,i}, \frac{1}{N} \sum_{j=1}^N \frac{\varphi_N(X_t^{N,i} - X_t^{N,j})}{\varphi_N(X_t^{N,i} - X_t^{N,j})}\right) dt + \sigma(t, X_t^{N,i}) dB_t^i. (\mathcal{M})$$

At this time, $\varphi_N \to \delta$. We expect that the limit equation is the following Density Dependent SDE (is also called McKean-Vlasov SDE of Nemytskii-type):

$$dX_t = F(t, X_t, \rho_t(X_t))dt + \sigma(t, X_t)dB_t,$$
 (2)

where ρ_t stands for the density of X_t .

Moderate case

When $\varphi(\cdot) = \varphi_N(\cdot) = \varepsilon_N^{-d} \phi(\varepsilon_N^{-1} \cdot)$, which is called moderately interacting kernel, and $\varepsilon_N \to 0$ as $N \to \infty$, we rewrite our *N*-particle systems as follow:

$$dX_t^{N,i} = F\left(t, X_t^{N,i}, \frac{1}{N} \sum_{j=1}^N \frac{\varphi_N(X_t^{N,i} - X_t^{N,j})}{\varphi_N(X_t^{N,i} - X_t^{N,j})}\right) dt + \sigma(t, X_t^{N,i}) dB_t^i. (\mathcal{M})$$

At this time, $\varphi_N \to \delta$. We expect that the limit equation is the following Density Dependent SDE (is also called McKean-Vlasov SDE of Nemytskii-type):

$$dX_t = F(t, X_t, \rho_t(X_t))dt + \sigma(t, X_t)dB_t,$$
 (2)

where ρ_t stands for the density of X_t .

Here ρ_t solves the following nonlinear Fokker-Planck equation:

$$\partial_t \rho_t = \partial_i \partial_j (a_{ij} \rho_t) + \operatorname{div}(F(\rho_t) \rho_t).$$

Barbu-Röckner (AoP-2020), (JFA-2021)......

Well-known results and question

- (Oelschläger, PTRF-85)
 - $F(t,\cdot,\cdot)$ and $r\to rF(r)$ are Lipschitz, $\varphi=W*W$ with some $W\in H^\alpha$
 - \Rightarrow Weak convergence when $\varepsilon_N = N^{\beta/d}$ with $\beta \in (0, 1)$.
- (Jourdain-Méléard, AIHP-98)
 - F, ϕ and σ are smooth \Rightarrow strong convergence rate of propagation of chaos when $\varepsilon_N \simeq (\ln N)^{\delta}$ with some $\delta > 0$.

Well-known results and question

- (Oelschläger, PTRF-85)
 - $F(t,\cdot,\cdot)$ and $r\to rF(r)$ are Lipschitz, $\varphi=W*W$ with some $W\in H^\alpha$
 - \Rightarrow Weak convergence when $\varepsilon_N = N^{\beta/d}$ with $\beta \in (0,1)$.
- (Jourdain-Méléard, AIHP-98) F, ϕ and σ are smooth \Rightarrow strong convergence rate of propagation of chaos when $\varepsilon_N \simeq (\ln N)^{\delta}$ with some $\delta > 0$.
- However, Lipschitz assumptions on F, ϕ and σ are too strong in practice. In fact, many of the interesting physical models have bounded measurable or even singular interaction kernels.
- (Question:) Can we establish the strong convergence of propagation of chaos with singular $(L^{\infty} \text{ and } L_T^q L^p)$ interaction both for classical one (\mathcal{N}) and moderate one (\mathcal{M}) ?

- 1 N-particle systems and propagation of chaos
 - *N*-particle systems and McKean-Vlasov equations
 - Propagation of chaos
 - Moderate case and density dependent SDE
- Well-posedness
 - Motivation
 - Mixed L^p space with permutation
 - Main result for well-posedness
- 3 Main results for propagation of chaos

■ Before consider the strong convergence of propagation of chaos, it is nature to ask whether there is a strong well-posedness for both *N*-particle systems and limit McKean-Vlasov SDE.

- Before consider the strong convergence of propagation of chaos, it is nature to ask whether there is a strong well-posedness for both *N*-particle systems and limit McKean-Vlasov SDE.
- Let F(t, x, r) = r and $\varphi \in L^p$. Consider the following *N*-particle systems:

$$\mathrm{d}X_t^{N,i} = \frac{1}{N} \sum_{j=1}^N \varphi(X_t^{N,i} - X_t^{N,j}) \mathrm{d}t + \mathrm{d}B_t^i.$$

- Before consider the strong convergence of propagation of chaos, it is nature to ask whether there is a strong well-posedness for both *N*-particle systems and limit McKean-Vlasov SDE.
- Let F(t, x, r) = r and $\varphi \in L^p$. Consider the following *N*-particle systems:

$$\mathrm{d}X_t^{N,i} = \frac{1}{N} \sum_{i=1}^N \varphi(X_t^{N,i} - X_t^{N,j}) \mathrm{d}t + \mathrm{d}B_t^i.$$

- **Cépa-Lépingle** (PTRF-1997) : d = 1; $\varphi(x) = \frac{1}{x}$.
- Krylov-Röckner (PTRF-2005) : $\varphi = \nabla V$ with continuously differentiable potential V in $\mathbb{R}^d \setminus \{0\}$.
- Fontbona-Martinez (JSP-2007): d = 2; Biot-Savart law.

• (Question) How to obtain strong well-posedness of *N*-particle systems with general L^p -interaction kernels with p > d.

- Question)
 How to obtain strong well-posedness of *N*-particle systems with general L^p -interaction kernels with p > d.
- By strong well-posedness results of SDE with general *L*^p drift in Krylov-Röckner (PTRF-05), we need

$$\varphi^i(x) := \frac{1}{N} \sum_{j=1}^N \varphi(x_i - x_j) \in L^p \text{ with } p > Nd.$$

Property of interaction kernel φ^i

Notice that for $\mathbf{p_0} = (p, \infty, \infty, ..., \infty), \varphi^1 \in L^{\mathbf{p_0}}$, where

$$\|f\|_{L^{\mathbf{p}}}:=\Big(\int_{\mathbb{R}^d}\Big(\cdot\cdot(\int_{\mathbb{R}^d}|f(x)|^{p_1}\mathrm{d}x_1)^{p_1/p_2}\cdot\cdot\Big)^{p_N/p_{N-1}}\mathrm{d}x_N\Big)^{1/p_N}.$$

■ Ling-Xie (POTA 2021) Strong well-posedness for the following SDE

$$\mathrm{d}X_t = F(X_t)\mathrm{d}t + \mathrm{d}W_t$$

where
$$F \in L^{\mathbf{p}}$$
 with $\frac{d}{p_1} + \frac{d}{p_2} + \cdots + \frac{d}{p_N} < 1$.

Property of interaction kernel φ^i

Notice that for $\mathbf{p_0} = (p, \infty, \infty, ..., \infty), \varphi^1 \in L^{\mathbf{p_0}}$, where

$$\|f\|_{L^{\mathbf{p}}}:=\Big(\int_{\mathbb{R}^d}\Big(\cdot\cdot(\int_{\mathbb{R}^d}|f(x)|^{p_1}\mathrm{d}x_1)^{p_1/p_2}\cdot\cdot\Big)^{p_N/p_{N-1}}\mathrm{d}x_N\Big)^{1/p_N}.$$

Ling-Xie (POTA 2021) Strong well-posedness for the following SDE

$$dX_t = F(X_t)dt + dW_t$$

where $F \in L^{\mathbf{p}}$ with $\frac{d}{p_1} + \frac{d}{p_2} + \cdots + \frac{d}{p_N} < 1$.

However, notice that $(\varphi^1,...,\varphi^N) \notin L^{\mathbf{p_0}}$ because of permutation. Actually, we only have

$$\sup_{x_i, i \neq i} \left(\int_{\mathbb{R}^d} |\varphi^i(..., x_i, ...)|^p \mathrm{d}x_i \right)^{1/p} < \infty.$$

And $L^{p_1}L^{p_2} \notin L^{p_2}L^{p_1}$.

Mixed L^p space with permutation

For multi-index $\mathbf{p} = (p_1, \dots, p_d) \in [1, \infty]^N$ and any permutation $\mathbf{x} = (x_{i_1}, \dots, x_{i_N})$, the mixed $L_{\mathbf{x}}^{\mathbf{p}}$ -space is defined by

$$||f||_{L_{\mathbf{x}}^{\mathbf{p}}} := \left(\left(\int_{\mathbb{R}^d} \cdots \left(\int_{\mathbb{R}^d} |f(x_1, \cdots, x_d)|^{p_d} \mathrm{d} x_{i_1} \right)^{\frac{p_{d-1}}{p_d}} \cdots \right)^{\frac{p_1}{p_2}} \mathrm{d} x_{i_N} \right)^{\frac{1}{p_1}}.$$

Mixed L^p space with permutation

For multi-index $\mathbf{p} = (p_1, \dots, p_d) \in [1, \infty]^N$ and any permutation $\mathbf{x} = (x_{i_1}, \dots, x_{i_N})$, the mixed $L_{\mathbf{x}}^{\mathbf{p}}$ -space is defined by

$$||f||_{L_{\mathbf{x}}^{\mathbf{p}}} := \left(\left(\int_{\mathbb{R}^d} \cdots \left(\int_{\mathbb{R}^d} |f(x_1, \cdots, x_d)|^{p_d} \mathrm{d} \mathbf{x}_{i_1} \right)^{\frac{p_d - 1}{p_d}} \cdots \right)^{\frac{p_1}{p_2}} \mathrm{d} \mathbf{x}_{i_N} \right)^{\frac{1}{p_1}}.$$

Note that for general $\mathbf{x} \neq \mathbf{x}'$ and $\mathbf{p} \neq \mathbf{p}'$,

$$L_{\mathbf{x}}^{\mathbf{p}'} \neq L_{\mathbf{x}}^{\mathbf{p}} \neq L_{\mathbf{x}'}^{\mathbf{p}}.$$

For multi-indices $\mathbf{p} \in [1, \infty]^N$, we shall use the following notations:

$$\left|\frac{d}{\mathbf{p}}\right| = \sum_{i=1}^{d} \frac{d}{p_i}.$$

 $\varphi^i \in L_{\mathbf{x}_i}^{\mathbf{p_0}}$ with $\mathbf{x}_i = (x_i, x_1, ..., x_N)$.

Main result

Assumptions

- Let indices (q_i, \mathbf{p}_i) , i = 0, 1, ..., N satisfy $\frac{2}{q_i} + \left| \frac{d}{\mathbf{p}_i} \right| < 1$.
- Suppose that $\nabla \sigma \in L_T^{q_0}(L_{\mathbf{x}_0}^{\mathbf{p}_0})$,

$$\kappa_0^{-1}|\xi| \leq |\sigma(t,x)\xi| \leq \kappa_0|\xi|, \quad \forall x, \xi \in \mathbb{R}^d$$

For any T > 0 and $i = 1, \dots, N$, there are permutations \mathbf{x}_i such that

$$\sup_{\mu \in C([0,T];\mathcal{P}(\mathbb{R}^d))} \|\sup_{r\geqslant 0} |b^i(\cdot,\cdot,r,\mu_\cdot)|\|_{L^{q_i}_T(L^{\mathbf{p}_i}_{\mathbf{x}_i})} \leqslant \kappa_1,$$

and for some $h_i \in L_T^{q_i}(L_{\mathbf{x}_i}^{\mathbf{p}_i})$ and for all $t, x \in [0, T] \times \mathbb{R}^d$, $r, r' \geqslant 0$ and $\mu, \nu \in \mathcal{P}(\mathbb{R}^d)$,

$$|b^{i}(t,x,r,\mu)-b^{i}(t,x,r',\nu)| \leq h_{i}(t,x)(|r-r'|+||\mu-\nu||_{\mathrm{var}}).$$

Theorem 1 (H., Röckner and Zhang)

Under the assumptions, for any probability measure $\mu_0(\mathrm{d}x) = \rho_0(x)\mathrm{d}x$ with $\rho_0 \in L^\infty$, there is a unique strong solution to the following dDDSDE with initial distribution μ_0

$$dX_t = b(t, X_t, \rho_t(X_t), \mu_t)dt + \sigma(t, X_t)dW_t,$$

where $\rho_t(x)$ and μ_t are the density and dietribution of X_t respectively and $b(t, x, r, \mu) = (b^1, ..., b^N) : \mathbb{R}_+ \times \mathbb{R}^{Nd} \times \mathbb{R}_+ \times \mathcal{P}(\mathbb{R}^d) \to \mathbb{R}^{Nd}$.

If b does not depend on the density variable, then we can drop the assumption $\mu_0(dx) = \rho_0(x)dx$.

Theorem 1 (H., Röckner and Zhang)

Under the assumptions, for any probability measure $\mu_0(\mathrm{d}x) = \rho_0(x)\mathrm{d}x$ with $\rho_0 \in L^\infty$, there is a unique strong solution to the following dDDSDE with initial distribution μ_0

$$dX_t = b(t, X_t, \rho_t(X_t), \mu_t)dt + \sigma(t, X_t)dW_t,$$

where $\rho_t(x)$ and μ_t are the density and dietribution of X_t respectively and $b(t, x, r, \mu) = (b^1, ..., b^N) : \mathbb{R}_+ \times \mathbb{R}^{Nd} \times \mathbb{R}_+ \times \mathcal{P}(\mathbb{R}^d) \to \mathbb{R}^{Nd}$.

If b does not depend on the density variable, then we can drop the assumption $\mu_0(dx) = \rho_0(x)dx$.

- Strong well-posedness for N-particle systems for some $L_T^q L^p$ interaction kernels.
- Strong well-posedness for limit equation (both distribution dependent case and density dependent case) by taking N=1. This extends the results in H.-Röckner-Zhang (JDE 2021) and Wang (arXiv-2021).

■ (SDE) For $b(t, x, r, \mu) = b(t, x)$, establish the Krylov's type estimate. Consider the following PDE and construct Zvonkin's transformation

$$\partial_t u = a_{ij}\partial_i\partial_j u - \lambda u + b \cdot \nabla u + f, \quad u(0) = 0.$$
 (3)

■ (SDE) For $b(t, x, r, \mu) = b(t, x)$, establish the Krylov's type estimate. Consider the following PDE and construct Zvonkin's transformation

$$\partial_t u = a_{ij}\partial_i\partial_j u - \lambda u + b \cdot \nabla u + f, \quad u(0) = 0.$$
 (3)

- There are mainly two difficulties here.
 - I The solution space. Since b^i are in different $L^{\mathbf{p}_i}$ spaces, the second order generalized derivative of u stays in a direct sum space of mixed L^p -spaces.

■ (SDE) For $b(t, x, r, \mu) = b(t, x)$, establish the Krylov's type estimate. Consider the following PDE and construct Zvonkin's transformation

$$\partial_t u = a_{ij}\partial_i\partial_j u - \lambda u + b \cdot \nabla u + f, \quad u(0) = 0.$$
 (3)

- There are mainly two difficulties here.
 - 11 The solution space. Since b^i are in different $L^{\mathbf{p}_i}$ spaces, the second order generalized derivative of u stays in a direct sum space of mixed L^p -spaces.
 - 2 The Krylov estimates. We can not obtain the maximal L_q^p estimate for PDE (3) for 2/q + d/p < 2. The results hold only when 2/q + d/p < 1. Hence, the Krylov estimates can not be directly from the estimates of PDE here.

We use Zvonkin's transform and heat kernel estimates here.

■ (SDE) For $b(t, x, r, \mu) = b(t, x)$, establish the Krylov's type estimate. Consider the following PDE and construct Zvonkin's transformation

$$\partial_t u = a_{ii} \partial_i \partial_i u - \lambda u + b \cdot \nabla u + f, \quad u(0) = 0. \tag{3}$$

- There are mainly two difficulties here.
 - 11 The solution space. Since b^i are in different $L^{\mathbf{p}_i}$ spaces, the second order generalized derivative of u stays in a direct sum space of mixed L^p -spaces.
 - 2 The Krylov estimates. We can not obtain the maximal L_q^p estimate for PDE (3) for 2/q + d/p < 2. The results hold only when 2/q + d/p < 1. Hence, the Krylov estimates can not be directly from the estimates of PDE here.

We use Zvonkin's transform and heat kernel estimates here.

■ (dDDSDE) Girsaonv' Theorem and Picard-iteration.

- 1 N-particle systems and propagation of chaos
 - *N*-particle systems and McKean-Vlasov equations
 - Propagation of chaos
 - Moderate case and density dependent SDE
- 2 Well-posedness
 - Motivation
 - \blacksquare Mixed L^p space with permutation
 - Main result for well-posedness
- 3 Main results for propagation of chaos

Assumptions

- Let $\frac{2}{q} + \frac{d}{p} < 2$.
- **(H** $^{\sigma}$) There are $\kappa_0 \geqslant 1$ and $\gamma_0 \in (0, 1]$ such that,

$$\kappa_0^{-1}|\xi| \leqslant |\sigma(t,x)\xi| \leqslant \kappa_0|\xi|, \ \|\sigma(t,x) - \sigma(t,x')\|_{HS} \leqslant \kappa_0|x - x'|^{\gamma_0},$$

where $\|\cdot\|_{HS}$ is the usual Hilbert-Schmidt norm of a matrix. Moreover, $\nabla \sigma \in L^q_T L^p$.

(**H**^b) Suppose that $\varphi(0) = 0$ and for some measurable $h : \mathbb{R}_+ \times \mathbb{R}^d \to \mathbb{R}_+$ and $\kappa_1 > 0$,

$$|F(t,x,r)| \le h(t,x) + \kappa_1 |r|, |F(t,x,r) - F(t,x,r')| \le \kappa_1 |r - r'|,$$

and for some $p_0 > d$

$$||h||_{L^q_T L^p} + ||\varphi||_{p_0} \leqslant \kappa_1.$$

Main results

Theorem 2 (Strong convergence)

Let T > 0. Under above assumptions, suppose that $P_0^{N,N}$ is symmetric and P_0 -chaotic, and

$$\lim_{N \to \infty} \mathbb{E} |X_0^{N,1} - X_0|^2 = 0,$$

then for any $\gamma \in (0,1)$,

$$\lim_{N\to\infty} \mathbb{E}\left(\sup_{t\in[0,T]} |X_t^{N,1} - X_t|^{2\gamma}\right) = 0.$$

Main results

Theorem 3 (Strong convergence rate)

Let T > 0. Assume the same assumptions as the above theorem. Let

$$\kappa_2 := \sup_{N} \mathcal{H}\left(P_0^{N,N} | P_0^{\otimes N}\right) < \infty. \tag{4}$$

Also assume that h and φ are bounded measurable. Then for any $\gamma \in (0,1)$, there is a constant C > 0 such that

$$\mathbb{E}\left(\sup_{t\in[0,T]}|X_t^{N,1}-X_t|^{2\gamma}\right)\leqslant C\left(\mathbb{E}|X_0^{N,1}-X_0|^2+\frac{\kappa_2+1}{N}\right)^{\gamma}.$$

Strong convergence for moderately case

Theorem 4

Let T > 0. Suppose that (\mathbf{H}^{σ}) holds, and

$$|F(t,x,r)| \le \kappa_1, |F(t,x,r) - F(t,x,r')| \le \kappa_1 |r - r'|,$$

and

$$\varphi(x) = \varphi_{\varepsilon_N}(x) = \varepsilon_N^{-d} \phi(x/\varepsilon_N),$$

where ϕ is a bounded probability density function in \mathbb{R}^d with support in the unit ball. Under (4), for any T > 0, $\beta \in (0, \gamma_0)$ and $\gamma \in (0, 1)$, there is a constant C > 0 such that for all N,

$$\mathbb{E}\left(\sup_{t\in[0,T]}|X_t^{N,1}-X_t|^{2\gamma}\right)\leqslant C\mathrm{e}^{C\varepsilon_N^{-2d}}\left(\mathbb{E}|X_0^{N,1}-X_0|^2+\frac{\kappa_2+1}{N}\right)^{\gamma}+C\varepsilon_N^{2\beta\gamma}.$$

Remarks

Suppose that for some C > 0,

$$\mathbb{E}|X_0^{N,1}-X_0|^2\leqslant C/N.$$

If one chooses $\varepsilon_N = (\ln N)^{-1/(2d)}$, then for some C > 0,

$$\mathbb{E}\left(\sup_{t\in[0,T]}|X_t^{N,1}-X_t|^{2\gamma}\right)\leqslant \frac{C}{(\ln N)^{(\beta\gamma)/d}}.$$

Remarks

Suppose that for some C > 0,

$$\mathbb{E}|X_0^{N,1}-X_0|^2\leqslant C/N.$$

If one chooses $\varepsilon_N = (\ln N)^{-1/(2d)}$, then for some C > 0,

$$\mathbb{E}\left(\sup_{t\in[0,T]}|X_t^{N,1}-X_t|^{2\gamma}\right)\leqslant \frac{C}{(\ln N)^{(\beta\gamma)/d}}.$$

■ Although we assume *F* is bounded, once we can establish the existence of bounded solutions to Fokker-Planck equation under linear growth assumption of *F* on *r*, then the boundedness of *F* is no longer a restriction. We illustrate this by the following example.

Example

Consider the following special case:

$$\partial_t \rho = \Delta \rho + \operatorname{div}(F(\rho)\rho),$$
 (5)

where $F: \mathbb{R}_+ \to \mathbb{R}^d$ satisfies $\sum_{i=1}^d |F_i'(r)| \leqslant \kappa_1$.

Example

Consider the following special case:

$$\partial_t \rho = \Delta \rho + \operatorname{div}(F(\rho)\rho),$$
 (5)

where $F: \mathbb{R}_+ \to \mathbb{R}^d$ satisfies $\sum_{i=1}^d |F_i'(r)| \leqslant \kappa_1$.

Notice that this equation can be written as the following transport form:

$$\partial_t \rho = \Delta \rho + (F(\rho) + F'(\rho)\rho) \cdot \nabla \rho. \tag{6}$$

Example

Consider the following special case:

$$\partial_t \rho = \Delta \rho + \operatorname{div}(F(\rho)\rho),$$
 (5)

where $F: \mathbb{R}_+ \to \mathbb{R}^d$ satisfies $\sum_{i=1}^d |F_i'(r)| \leqslant \kappa_1$.

Notice that this equation can be written as the following transport form:

$$\partial_t \rho = \Delta \rho + (F(\rho) + F'(\rho)\rho) \cdot \nabla \rho. \tag{6}$$

Assume that there is a unique strong solution ρ and

$$n_0 := \|\rho_0\|_{\infty} < \infty.$$

Let $G(x) := F(\eta(x))$ where $\eta \in C_h^{\infty}$ and

$$\eta(x) = x, \quad x \in [-2n_0, 2n_0].$$

Then, $\sup_{x \in \mathbb{R}} |G(x)| \le C ||\eta||_{\infty} < \infty$.

■ Let $G(x) := F(\eta(x))$ where $\eta \in C_b^{\infty}$ and

$$\eta(x) = x, \quad x \in [-2n_0, 2n_0].$$

Then, $\sup_{x \in \mathbb{R}} |G(x)| \le C \|\eta\|_{\infty} < \infty$.

It is well-known that there is a solution $\tilde{\rho}$ to nonlinear F-P equation (5) when F = G. Moreover,

$$\sup_{t\in[0,T]}\|\tilde{\rho}_t\|_{\infty}\leq C_T\|\rho_0\|_{\infty},$$

which implies that $G'(\tilde{\rho})\tilde{\rho} \in L^{\infty}$.

■ Let $G(x) := F(\eta(x))$ where $\eta \in C_b^{\infty}$ and

$$\eta(x) = x, \quad x \in [-2n_0, 2n_0].$$

Then, $\sup_{x \in \mathbb{R}} |G(x)| \le C \|\eta\|_{\infty} < \infty$.

It is well-known that there is a solution $\tilde{\rho}$ to nonlinear F-P equation (5) when F = G. Moreover,

$$\sup_{t\in[0,T]}\|\tilde{\rho}_t\|_{\infty}\leq C_T\|\rho_0\|_{\infty},$$

which implies that $G'(\tilde{\rho})\tilde{\rho} \in L^{\infty}$.

■ By the maximum principle, we have

$$\|\tilde{\rho}_t\|_{\infty} \leqslant \|\rho_0\|_{\infty} = n_0,$$

which implies that $G(\tilde{\rho}) = F(\tilde{\rho})$.

■ By uniqueness, we know that

$$\rho = \tilde{\rho} \quad \Rightarrow \|\rho_t\|_{\infty} \leq n_0.$$

■ Then, we have

$$\partial_t \rho = \Delta \rho + \operatorname{div}(G(\rho)\rho),$$

where *G* is bounded.

■ Then, we have

$$\partial_t \rho = \Delta \rho + \operatorname{div}(G(\rho)\rho),$$

where G is bounded.

Numerical experiment of Burgers equation)
Consider d=1 and F(r)=r and take $\phi(x)=1_{[-1,1]}(x)/2$:

$$\frac{1}{N}\sum_{i=1}^N \varphi_N(X_t^{N,i} - X_t^{N,j}) = \frac{1}{2N\varepsilon_N}\sum_{i=1}^N 1_{|X_t^{N,i} - X_t^{N,j}| \leqslant \varepsilon_N}.$$

This form is useful for numerical experiments.

Recall

$$\mathrm{d}X_t^{N,i} = \frac{1}{N} \sum_{j=1}^N \varphi_N(X_t^{N,i} - X_t^{N,j}) \mathrm{d}t + \mathrm{d}B_t^i.$$

$$dX_t^i = \rho_t(X_t^i)dt + dB_t^i.$$

Thank you!

Danke!