

A Physics-Informed Neural Network for the Calibration of Electromagnetic Navigation Systems

P. Ernst¹, S. Gervasoni^{1,2}, D. Sivakumaran^{1,2}, E. Masina¹, D. Sargent^{1,2}, B. J. Nelson², Q. Boehler²

¹ MagnebotiX AG, Zurich Switzerland

² ETH Zurich, Multi-Scale Robotics Lab, Zurich Switzerland

Introduction

Electromagnetic Navigation Systems enable precise control of microrobots and magnetic tools in biomedicine.

- Accurate field and gradient models are critical for force and torque control.
- Conventional linear models (e.g. Multipole Electromagnet Model) respect physics but do not capture saturation.
- Data-driven models (e.g. ANN, CNN) capture nonlinearities but violate Maxwell's equations, impeding accurate estimation of magnetic gradients.

We introduce a Physics-Informed Neural Network (PINN) that

- Embeds Maxwell's constraints,
- Predicts fields & gradients consistently,
- Enables reliable inverse models,
- Improves open-loop control performance.

Methods

- Forward Model (PINN): promotes $\nabla \cdot \mathbf{B} = 0$ and $\nabla \times \mathbf{B} = \mathbf{0}$.
- Backward Models:
 w/o ∇B; efficient current sets (low norm),
 w/ ∇B; precise force control.
- Consistency: backward models use the trained PINN, ensuring physics compliance.

Results

Prediction Accuracies

Model	RMSE	R ²	Curl (T/m)	Div. (T/m)
Forward Model				
ANN	1.88	0.993	20.9	33.9
PINN	3.24	0.981	12.5	6.1
Backward Model w/o ∇B				
ANN	0.7	0.999		
PINN	0.6	0.999		
Backward Model w/ ∇B				
ANN	0.785	0.884		
PINN	0.567	0.936		

Open-loop Control Experiment

Trained on ANN data

2 mm

Conclusion

- PINN balances accuracy and physics consistency.
- PINN-trained backward model lead to better inverse solution.
- Introduced model leads to improved open-loop control.

