1. (1.5 pontos) Dada a equação

$$x^2y' - 3y = 2e^{\frac{1}{x}}, \qquad (x > 0),$$

- (a) (1.0) Encontre a solução geral dessa equação.
- (b) (0.2) Encontre a solução do problema de valor inicial dada pela equação acima e y(1)=0.
- (c) (0.3) Qual é o domínio de validade da solução encontrada em (a)?
- 2. (2.0 pontos) Encontre um fator integrante que transforme

$$(2y^3 + xy^2) dx + (2xy^2 + y^3) dy = 0,$$

numa equação exata e encontre a solução geral.

3. (2.5 pontos) Dada a seguinte equação diferencial:

$$x^2y'' + 4xy' + 2y = \text{sen } x$$
 $(x > 0)$

- (a) (1.0) Encontre a solução complementar da equação acima, isto é, a solução geral da equação homogênea associada.
- (b) (1.5) Usando o método de **variação dos parâmetros**, encontre uma solução particular da equação dada.
- 4. (2.0 pontos) Observe que a equação

$$y^{(6)} - 2y^{(4)} - 7y^{(2)} - 4y = 5x\cos x + 7e^{2x},$$

pode ser escrita como

$$(D^2 + 1)^2(D^2 - 4)y = 5x\cos x + 7e^{2x}.$$

(a) Resolva a equação homogênea associada sabendo que a equação característica é

$$(r^2+1)^2(r^2-4)=0.$$

- (b) Usando o método de coeficientes indeterminados apresente e justifique a forma da solução particular. **Não** calcule os coeficientes!
- 5. (2.0 pontos) Resolva a e.d.o

$$yy'' + (y')^2 = 0$$
, $(y > 0 \text{ e } y' > 0)$.

a)
$$x^{2}y' - 3y = 2e^{1/x}, x > 0$$
 $\Rightarrow y' - \frac{3}{x^{2}}y = \frac{2e^{1/x}}{x^{2}}$
Folor integrant: $\mu(x) = e^{\int -\frac{3}{x^{2}}dx} = e^{3/x} \cdot 0.2$
Multiplicando por $\mu(x) = e^{\int -\frac{3}{x^{2}}dx} = e^{3/x} \cdot 0.2$
 $(e^{3/x}y)' = 2e^{4/x}e^{3/x} = 2e^{4/x} \cdot 0.2$
 $\Rightarrow e^{3/x}y = 2\int \frac{e^{4/x}}{x^{2}}dx$ $u = \frac{4}{x} \Rightarrow du = -\frac{4}{x^{2}}dx$
 $= -\frac{1}{2}\int e^{4/x}(-\frac{4}{x^{2}})dx$ 0.3
 $= -\frac{1}{2}\int e^{4/x}(-\frac{4}{x^{2}})dx$ 0.3
 $= -\frac{1}{2}\int e^{4/x}(-\frac{4}{x^{2}})dx$ 0.3
 $= -\frac{1}{2}\int e^{4/x}(-\frac{4}{x^{2}})dx$ 0.3
 $= -\frac{1}{2}e^{4/x} + ce^{-3/x} = -\frac{1}{2}e^{4/x} + ce^{-3/x}$

b)
$$y(1)=0 \ l=) \ 0=-\frac{1}{2}e+ce^{-3}$$
 $l=) \ ce^{-3}=\frac{1}{2}e^{-3}$
 $l=) \ c=\frac{e^4}{2}$
 $l=0$
 $l=0$

So continuos pora x>0. Sendo a eg. linion, a solución deve exister em Todo o intervolo $I=(0,\infty)$.

Soluçõe:

Note que
$$N = 3xy^2 + y^3$$
 a $M = 3y^3 + xy^2$ e

 $Nx = 3y^2$ a $My = 6y^2 + 3xy$

Leago $Nx \neq My$ \Rightarrow a equação não é $(0,2)$

Exata

Mas

$$\frac{Nx - My}{M} = \frac{-4y^2 - 3xy}{3y^3 + xy^2} = \frac{-2}{y} \Rightarrow \text{depende somente}, (0,2)$$
de ende seque que existe um fator intequante que depende somente de y tal que

$$\frac{dy}{dy} = -\frac{2}{y} Hy;$$

$$\Rightarrow M(y) = e^{-2\ln y} = y^{-2} \qquad (0,3)$$
. Hulliphicando a equação por M(y) obtemos

$$(3y + x) dx + (2x + y) dy = 0$$
que é exato pois ente caso (0,3)

$$Nx = 2 = My.$$
. Issim, existe uma função $y(x,y)$ tal que

$$\frac{dy}{dx} = 0 \Rightarrow y(x,y) = C$$

$$M = 4x + 4y = 4y$$

$$= 2xy + \frac{x^2}{2} + 9(y) = \frac{y^2}{2} + C.$$
Assim, $y(x,y) = 2xy + \frac{x^2}{2} + \frac{y^2}{2} + C.$
Assim, $y(x,y) = 2xy + \frac{x^2}{2} + \frac{y^2}{2} + C.$
Assim, $y(x,y) = 2xy + \frac{x^2}{2} + \frac{y^2}{2} + C.$
Assim, $y(x,y) = 2xy + \frac{x^2}{2} + \frac{y^2}{2} + C.$
Assim, $y(x,y) = 2xy + \frac{x^2}{2} + \frac{y^2}{2} + C.$
Assim, $y(x,y) = 2xy + \frac{x^2}{2} + \frac{y^2}{2} + C.$

de onde seque que a soluções y da eq satisfaz $2xy + \frac{x^2}{2} + \frac{y^2}{2} = C \qquad (0.12).$

austro 3 stem 1 22 y" + 42 y + 2 y = Sen 21 $y' = \chi^n \Rightarrow y' = \pi \chi^{n-1} ; y'' = \pi(n-1) \chi^{n-2}$ x2y"+4xy'+2y= x2 (R/N-1)+4x+2)=0; x =0 =) $n^2+3n+2=0$, Palinamia Caracteristica - ou (outre manera) Para equação homogênea. $h=\ln x \Rightarrow y_1 = y(h(n))$, orde $an^2y'' + bny' + cy=0$ i equivalents an ay'' + (a-b)y' + cy=0y" + (4-1) y + 2y = 0, Logo Yh + 3 1/2 + 24 = 0 => カ2+3カ+2=0 no item (1) Oti agmi 0,5 Parta => 1 = CX => y= CX + CX $R = -\frac{3 \pm (9 - 8)^{\frac{1}{2}}}{2} < -\frac{2}{3}$ 72: 62×2 - ou (outre maneira) y'' = c, eh ; h=hx => y, = c, xi'

y'' = Ge y = Ge x'' $N = -\frac{3 \pm (9 - 8)^{\frac{1}{2}}}{2} \left(-\frac{2}{1} \right)$ 7 = C2 x - 2 4= Gx + C2 x 2 aqui ganharia or 0,5 restants da questão (1)

)
$$x^{2}y^{11} + 4xy^{11} + 2y = Sen \times 1$$
 $4y^{11} + 4xy^{11} + 2y = \frac{1}{x^{2}}y^{2} =$

Oueslan 4. Eq. conact. (r2+1) a (r2-4) = 0 tem raizes r= ± i mult 2 + (0.1) 4c = (C1+(2x) cosx + (c3+(4x) sen x (0.2) (0,2) $+ \frac{c_5e^{2x}}{0.2} + \frac{c_6e^{-2x}}{0.2}$ $y_p = x^S ((A+Bx)\cos x + (C+Dx)senx) + (0.2)$

+ x 3 [Ee2x] S=2 (0.3) plevelor deplicace $\overline{S}=1$ (0.3) of terms on 4c

ou reconhecer que c eq. $\tilde{\epsilon}$; (yy')'=0.