1 Définitions et Appellations:

Définitions: 1.1

Définition 1: Un système linéaire de m équations à n inconnues est un ensemble d'équations de la forme:

(S)
$$\begin{cases} a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n = b_1 \\ a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n = b_2 \\ \vdots \\ a_{m1}x_1 + a_{m2}x_2 + \dots + a_{mn}x_n = b_n \end{cases}$$

 $\begin{cases} a_{m1}x_1 + a_{m2}x_2 + ... + a_{mn}x_n = b_m \\ \text{où les coefficients } a_{ij}, \ i=1,2,...,m, \ j=1,2,...,n \ \text{et } b_i, \ i=1,2,...,m \end{cases}$ sont des réels donnés.

Les a_{ij} sont des coefficients du premier membre et les b_i sont des coefficients du second membre ou termes constants.

Les variables x_i , i = 1, 2, ..., n sont les inconnues du système.

(S)
$$\begin{cases} x_1 - x_2 + x_3 + 2x_4 = 1 \\ x_1 + 2x_2 - x_3 = -1 \\ x_1 + 3x_3 + x_4 = 3 \end{cases}$$

(S) est un système de 3 équations à 4 inconnues x_1, x_2, x_3 et x_4 $a_{11} = 1$, $a_{22} = 2$, $a_{34} = 1$, $b_1 = 1$, $b_2 = -1$ et $b_3 = 3$.

Définition 2: Une solution du système (S) est la donnée de n réels, $x_1, x_2, ..., x_n$ qui vérifie chacune des m équations. On note par S l'ensemble des solutions du système.

Exemple:

$$(\frac{5}{3}, \frac{4}{3})$$
 est solution du système
$$\begin{cases} x+y=3\\ 2x-y=2 \end{cases}$$

$$(\frac{5}{3}, \frac{4}{3})$$
 est solution du système
$$\begin{cases} x + y = 3 \\ 2x - y = 2 \end{cases}$$
 En effet, pour $x = \frac{5}{3}$ et $y = \frac{4}{3}$, on a $\frac{5}{3} + \frac{4}{3} = \frac{9}{3} = 3$ et $2(\frac{5}{3}) - \frac{4}{3} = \frac{10 - 4}{3} = 2$

donc les deux équations du système sont vérifiées.

Par contre (1,2) n'est pas solution du système (S) car pour x=1et y=2 la $2^{\grave{e}me}$ équation n'est pas vérifiée.

L'ensemble des solutions de (S) est: $S = \{(\frac{5}{3}, \frac{4}{3})\}.$

Définition 3: Un système linéaire est dit *compatible* s'il admet au moins une solution (i.e: $S \neq \emptyset$) sinon, on dit qu'il est incompatible ou impossible $(i.e:S=\emptyset).$

$$(S_1)$$
 $\begin{cases} x+2y=1 \\ 0=2 \end{cases}$ est un système incompatible, L'ensemble des solutions: $S=\emptyset$.

$$(S_2) \begin{cases} 2x_1 + 3x_2 + x_3 = 1 \\ x_1 + x_2 + x_3 = 2 \\ 4x_1 + x_2 + x_3 = 3 \end{cases}$$
 est un système compatible
L'ensemble des solutions $S = \{(\frac{1}{3}, \frac{-2}{3}, \frac{7}{3})\}.$

$$(S_3)$$
 $\begin{cases} x+z=-1 \\ y-2z=2 \end{cases}$ est un système compatible.

(-1,2,0) est une solution du système (elle n'est pas unique)

(-6, 12, 5) est aussi solution de (S_3)

L'ensemble des solutions de (S_3) est: $S = \{(-1 - z, 2 + 2z, z), z \in \mathbb{R}\}$

Définition 4:

1/ On dit qu'un système linéaire est homogène si et seulement si $b_1 = b_2 = \dots = b_n = 0.$

2/ Le système homogène associé à (S) est le système (S_h) tel que:

$$(S_h) \begin{cases} a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n = 0 \\ a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n = 0 \\ \vdots \\ a_{m1}x_1 + a_{m2}x_2 + \dots + a_{mn}x_n = 0 \end{cases}$$

 (S_h) est le système (S) en remplaçant les b_i , i = 1, 2, ..., m par 0.

Exemple:

$$(S)$$

$$\begin{cases}
5x + 2y = 4 \\
-x + 3y = -11
\end{cases}$$
Le système homogène assicié à (S) est
$$(S_h)$$

$$\begin{cases}
5x + 2y = 0 \\
-x + 3y = 0
\end{cases}$$

$$(S_h) \begin{cases} 5x + 2y = 0 \\ -x + 3y = 0 \end{cases}$$

Définition 5:

Deux systèmes à n inconnues sont équivalents si et seulement si leurs ensembles de solutions sont les mêmes.

2 Forme matricielle d'un système linéaire:

Le système linéaire (S) peut être sous la forme matricielle AX = B

$$X = \begin{pmatrix} x_1 \\ x2 \\ \vdots \\ \vdots \\ x_n \end{pmatrix} \text{ est la matrice colonne des inconnues}$$

$$B = \begin{pmatrix} b_1 \\ b2 \\ . \\ . \\ . \\ . \\ b_m \end{pmatrix} \text{ est la matrice colonne des termes constants ou bien le second membre du système.}$$

Exemple: Mettre le système suivant sous la forme matricielle:

$$(S) \begin{cases} x_1 - x_2 + x_3 + 2x_4 = 1 \\ x_1 + 2x_2 - x_3 = -1 \\ x_1 + 3x_3 + x_4 = 3 \end{cases}$$

(S) s'écrit sous la forme matricielle AX = B où

$$A = \begin{pmatrix} 1 & -1 & 1 & 2 \\ 1 & 2 & -1 & 0 \\ 1 & 0 & 3 & 1 \end{pmatrix}, X = \begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{pmatrix} \text{ et } B = \begin{pmatrix} 1 \\ -1 \\ 3 \end{pmatrix}.$$

Définition: Le rang d'un système linéaire (S) est le rang de la matrice A associée à (S) (i.e: rg(S) = rg(A))

Exemple: Déterminer le rang du système

(S)
$$\begin{cases} x_1 - x_2 + x_3 + 2x_4 = 1 \\ x_1 + 2x_2 - x_3 = -1 \\ x_1 + 3x_3 + x_4 = 3 \end{cases}$$

On détermine le rang de la matrice associée à (S).

On a
$$(S)$$
: $AX = B$ où $A = \begin{pmatrix} 1 & -1 & 1 & 2 \\ 1 & 2 & -1 & 0 \\ 1 & 0 & 3 & 1 \end{pmatrix}$

$$A = \begin{pmatrix} 1 & -1 & 1 & 2 \\ 1 & 2 & -1 & 0 \\ 1 & 0 & 3 & 1 \end{pmatrix} \xrightarrow{L_2 \leftarrow L_2 - L_1} \begin{pmatrix} 1 & -1 & 1 & 2 \\ 0 & 3 & -2 & -2 \\ 0 & 1 & 2 & -1 \end{pmatrix}$$

$$L_3 \leftarrow L_3 - \frac{1}{3}L_2 \begin{pmatrix} 1 & -1 & 1 & 2 \\ 0 & 3 & -2 & -2 \\ 0 & 0 & \frac{8}{3} & \frac{-1}{3} \end{pmatrix}$$

Donc rg(A) = 3 (le nombre de lignes non nulles aprés échelonnement de A).

d'où
$$rg(S) = 3$$
.

3 Système de Cramer:

3.1 Définition:

Un système linéaire est dit de Cramer si:

- C'est un système de n équations à n inconnues et il admet une solution unique.

Théorème: Soit le système linéaire (S): AX = B

où
$$A \in M_n(\mathbb{R}), B \in M_{n,1}(\mathbb{R})$$
 et $X \in M_{n,1}(\mathbb{R})$

Les propositions suivantes sont équivalentes:

- 1/ Le système (S) est de cramer.
- 2/ Le système homogène associé à (S) n'admet que le vecteur nul comme solution.
- 2/ Le système (S) admet une solution unique.
- **3**/ La matrice A est inversible.
- **4**/ rg(A) = rg(S) = n.
- **5**/ $\det(A) \neq 0$.

3.2 Méthodes de résolution d'un système de Cramer:

Soit un système (S): AX = B, un système de cramer écrit sous sa forme matricielle.

Résoudre le système (S) revient à résoudre l'équation AX=B.

(Donc déterminer l'unique solution X^* de l'équation AX = B)

3.2.1 Méthode en utilisant l'inverse de A :

(S) est un système de cramer, donc la matrice A est inversible. On a $AA^{-1} = A^{-1}A = I_n$, où A^{-1} est la matrice inverse de A.

On a
$$AX = B....(*)$$

En multipliant à gauche les deux membres de l'équation (*), on obtient:

$$A^{-1}(AX) = A^{-1}B \iff (A^{-1}A)X = A^{-1}B \text{ (car (.) est associative)}$$

 $\iff I_nX = A^{-1}B \text{ (car } A^{-1}A = I_n)$
 $\iff X = A^{-1}B \text{ (car } I_n \text{ est l'élément neutre)}$

Donc l'unique solution du système (S) est $X^* = A^{-1}B$.

Exemple: Résoudre le système suivant en utilisant la matrice inverse.

(S)
$$\begin{cases} x - 2y + 3z = 5\\ 2x - 4y + z = 5\\ 3x - 5y + 2z = 8 \end{cases}$$

Forme matricielle du système (S):

$$(S): AX = B \text{ où } A = \begin{pmatrix} 1 & -2 & 3 \\ 2 & -4 & 1 \\ 3 & -5 & 2 \end{pmatrix}, X = \begin{pmatrix} x \\ y \\ z \end{pmatrix} \text{ et } B = \begin{pmatrix} 5 \\ 5 \\ 8 \end{pmatrix}$$

Le système (S) est-il de cramer?

Calculons le déterminant de A suivant la $1^{\grave{e}re}$ colonne

$$\det A = \left| \begin{array}{ccc} 1 & -2 & 3 \\ 2 & -4 & 1 \\ 3 & -5 & 2 \end{array} \right| = \left| \begin{array}{ccc} -4 & 1 \\ -5 & 2 \end{array} \right| - 2 \left| \begin{array}{ccc} -2 & 3 \\ -5 & 2 \end{array} \right| + 3 \left| \begin{array}{ccc} -2 & 3 \\ -4 & 1 \end{array} \right|$$

$$\det A = (-8+5) - 2(-4+15) + 3(-2+12)$$

= -3 - 2(11) + 3(10) = 5

 $\det A = 5 \neq 0$ donc (S) est un système de cramer, il admet donc

une unique solution
$$X^* = \begin{pmatrix} x^* \\ y^* \\ z^* \end{pmatrix}$$

On a det $A \neq 0$ donc A est inversible $(A^{-1}$ existe)

$$AX = B \Leftrightarrow X = A^{-1}B.$$

Déterminons la matrice A^{-1} .

$$A^{-1} = \frac{1}{\det A}^t(ComA)$$

$$ComA = \begin{pmatrix} c_{11} & c_{12} & c_{13} \\ c_{21} & c_{22} & c_{23} \\ c_{31} & c_{32} & c_{33} \end{pmatrix}$$

avec
$$c_{11} = + \begin{vmatrix} -4 & 1 \\ -5 & 2 \end{vmatrix} = -3, c_{12} = - \begin{vmatrix} 2 & 1 \\ 3 & 2 \end{vmatrix} = -1,$$

$$c_{13} = + \begin{vmatrix} 2 & -4 \\ 3 & -5 \end{vmatrix} = 2, c_{21} = - \begin{vmatrix} -2 & 3 \\ -5 & 2 \end{vmatrix} = -11,$$

$$c_{22} = + \begin{vmatrix} 1 & 3 \\ 3 & 2 \end{vmatrix} = -7, c_{23} = - \begin{vmatrix} 1 & -2 \\ 3 & -5 \end{vmatrix} = -1$$

$$c_{22} = + \begin{vmatrix} 1 & 3 \\ 3 & 2 \end{vmatrix} = -7, c_{23} = - \begin{vmatrix} 1 & -2 \\ 3 & -5 \end{vmatrix} = -6$$

$$c_{31} = + \begin{vmatrix} -2 & 3 \\ -4 & 1 \end{vmatrix} = 10, c_{32} = - \begin{vmatrix} 1 & 3 \\ 2 & 1 \end{vmatrix} = 5, c_{33} = + \begin{vmatrix} 1 & -2 \\ 2 & -4 \end{vmatrix} = 0$$

donc
$$ComA = \begin{pmatrix} -3 & -1 & 2 \\ -11 & -7 & -1 \\ 10 & 5 & 0 \end{pmatrix}$$

donc
$$^{t}(ComA) = \begin{pmatrix} -3 & -11 & 10 \\ -1 & -7 & 5 \\ 2 & -1 & 0 \end{pmatrix}$$

alors
$$A^{-1} = \frac{1}{5} \begin{pmatrix} -3 & -11 & 10 \\ -1 & -7 & 5 \\ 2 & -1 & 0 \end{pmatrix} = \begin{pmatrix} \frac{-3}{5} & \frac{-11}{5} & 2 \\ \frac{-1}{5} & \frac{-7}{5} & 1 \\ \frac{2}{5} & \frac{-1}{5} & 0 \end{pmatrix}$$

D'où
$$X^* = A^{-1}B = \begin{pmatrix} \frac{-3}{5} & \frac{-11}{5} & 2\\ \frac{-1}{5} & \frac{-7}{5} & 1\\ \frac{2}{5} & \frac{-1}{5} & 0 \end{pmatrix} \begin{pmatrix} 5\\ 5\\ 8 \end{pmatrix} = \begin{pmatrix} 2\\ 0\\ 1 \end{pmatrix}$$

alors l'ensemble des solutions $S = \{(2,0,1)\}.$

3.2.2Méthode des déterminants:

Soit le système de cramer:

$$(S) \left\{ \begin{array}{l} a_{11}x_1 + a_{12}x_2 + \ldots + a_{1n}x_n = b_1 \\ a_{21}x_1 + a_{22}x_2 + \ldots + a_{2n}x_n = b_2 \\ & \cdot \\ & \cdot \\ & \cdot \\ a_{n1}x_1 + a_{n2}x_2 + \ldots + a_{nn}x_n = b_n \end{array} \right.$$

(S) s'écrit sous la forme matricielle AX = B.

Le système (S) admet une solution unique $X^* = \begin{pmatrix} x^* \\ y^* \\ \vdots \end{pmatrix}$

définie par:

$$x_i = \frac{\det A_i}{\det A}, i = 1, 2, ..., n$$
 (La Formule de cramer)

où A_i est la matrice obtenue à partir de A, en remplaçant sa $i^{\grave{e}me}$ colonne par le vecteur B.

Exemple: Résoudre le système précédent en utilisant la méthode

(S)
$$\begin{cases} x - 2y + 3z = 5\\ 2x - 4y + z = 5\\ 3x - 5y + 2z = 8 \end{cases}$$

des déterminants.
$$(S) \begin{cases} x - 2y + 3z = 5 \\ 2x - 4y + z = 5 \\ 3x - 5y + 2z = 8 \end{cases}$$

$$(S) : AX = B \text{ où } A = \begin{pmatrix} 1 & -2 & 3 \\ 2 & -4 & 1 \\ 3 & -5 & 2 \end{pmatrix}, X = \begin{pmatrix} x \\ y \\ z \end{pmatrix} \text{ et } B = \begin{pmatrix} 5 \\ 5 \\ 8 \end{pmatrix}$$
La système (S) est de gramer (déià fait) done l'appique solution

Le système (S) est de cramer (déjà fait) donc l'unique solution du système est définie par:

$$x = \frac{\det A_1}{\det A}, y = \frac{\det A_2}{\det A} \text{ et } z = \frac{\det A_3}{\det A} \text{ où}$$

$$A_1 = \begin{pmatrix} 5 & -2 & 3 \\ 5 & -4 & 1 \\ 8 & -5 & 2 \end{pmatrix}, A_2 = \begin{pmatrix} 1 & 5 & 3 \\ 2 & 5 & 1 \\ 3 & 8 & 2 \end{pmatrix} \text{ et}$$

$$A_3 = \begin{pmatrix} 1 & -2 & 5 \\ 2 & -4 & 5 \\ 3 & -5 & 8 \end{pmatrix}$$

 $A_1,\,A_2$ et A_3 sont les matrices obtenue à partir de A, en remplaçant sa $1^{\grave{e}me}$, $2^{\grave{e}me}$ et $3^{\grave{e}me}$ colonne réspectivement par le vecteur B.

$$\det A_1 = \begin{vmatrix} 5 & -2 & 3 \\ 5 & -4 & 1 \\ 8 & -5 & 2 \end{vmatrix} = 5 \begin{vmatrix} -4 & 1 \\ -5 & 2 \end{vmatrix} - 5 \begin{vmatrix} -2 & 3 \\ -5 & 2 \end{vmatrix} + 8 \begin{vmatrix} -2 & 3 \\ -4 & 1 \end{vmatrix}$$

suivant la $1^{\grave{e}re}$ colonne

$$\det A_1 = 5(-8+5) - 5(-4+15) + 8(-2+12)$$

$$\det A_1 = 5(-3) - 5(11) + 8(10) = 10$$

donc
$$x = \frac{\det A_1}{\det A} = \frac{10}{5} = 2 \Longrightarrow x = 2$$

$$\det A_2 = \begin{vmatrix} 1 & 5 & 3 \\ 2 & 5 & 1 \\ 3 & 8 & 2 \end{vmatrix} = \begin{vmatrix} 5 & 1 \\ 8 & 2 \end{vmatrix} - 2 \begin{vmatrix} 5 & 3 \\ 8 & 2 \end{vmatrix} + 3 \begin{vmatrix} 5 & 3 \\ 5 & 1 \end{vmatrix}$$
suivant la 1^{ère} colonne
$$\det A_2 = (10 - 8) - 2(10 - 24) + 3(5 - 15)$$

$$\det A_2 = 2 - 2(-14) + 3(-10) = 0$$

$$\det A_2 = \frac{\det A_2}{\det A} = \frac{0}{5} = 0 \Longrightarrow y = 0$$

$$\det A_3 = \begin{vmatrix} 1 & -2 & 5 \\ 2 & -4 & 5 \\ 3 & -5 & 8 \end{vmatrix} = \begin{vmatrix} -4 & 5 \\ -5 & 8 \end{vmatrix} - 2 \begin{vmatrix} -2 & 5 \\ -5 & 8 \end{vmatrix} + 3 \begin{vmatrix} -2 & 5 \\ -4 & 5 \end{vmatrix}$$
suivant la 1^{ère} colonne
$$\det A_3 = (-32 + 25) - 2(-16 + 25) + 3(-10 + 20)$$

det
$$A_3 = (-32 + 25) - 2(-16 + 25) + 3(-10 + 20)$$

det $A_3 = -7 - 2(9) + 3(10) = 5$
donc $z = \frac{\det A_3}{\det A} = \frac{5}{5} = 1 \Longrightarrow z = 1$

d'où
$$X^* = \begin{pmatrix} 2 \\ 0 \\ 1 \end{pmatrix}$$
.

3.2.3Méthode de Gauss (Echelonnement):

Soit le système (S) écrit sous la forme matricielle

$$(S): AX = B$$

La méthode de Gauss consiste à:

- 1/ Former la matrice (A|B). (elle possède n lignes et (n+1) colonnes)
- 2/ Transformer la matrice (A|B) en $(\hat{A}|\hat{B})$ où \hat{A} est la matrice échelonnée de la matrice A (en appliquant une suite d'opérations élémentaires sur les lignes de A et B).
- 3/ Former le système linéaire (S'): AX = B.
- 4/ Résoudre le système (S').
 - (S) et (S') sont équivalents (ont le même ensemble de solutions).

Exemple: Résoudre le système (S) en utilisant la méthode de Gauss.

$$(S) \begin{cases} x - 2y + 3z = 5 \\ 2x - 4y + z = 5 \\ 3x - 5y + 2z = 8 \end{cases}$$

$$(S): AX = B \text{ où } A = \begin{pmatrix} 1 & -2 & 3 \\ 2 & -4 & 1 \\ 3 & -5 & 2 \end{pmatrix}, X = \begin{pmatrix} x \\ y \\ z \end{pmatrix} \text{ et } B = \begin{pmatrix} 5 \\ 5 \\ 8 \end{pmatrix}$$

$$(A|B) = \begin{pmatrix} 1 & -2 & 3 & 5 \\ 2 & -4 & 1 & 5 \\ 3 & -5 & 2 & 8 \end{pmatrix} \xrightarrow[L_3 \leftarrow L_3 - 3L_1]{} \begin{pmatrix} 1 & -2 & 3 & 5 \\ 0 & 0 & -5 & -5 \\ 0 & 1 & -7 & -7 \end{pmatrix}$$

$$\begin{array}{c|cccc} L_2 \underset{\sim}{\leftrightarrow} L_3 & \begin{pmatrix} 1 & -2 & 3 & | & 5 \\ 0 & 1 & -7 & | & -7 \\ 0 & 0 & -5 & | & -5 \end{pmatrix} = (\tilde{A} \mid \tilde{B}) \\ \text{où } \tilde{A} = \begin{pmatrix} 1 & -2 & 3 \\ 0 & 1 & -7 \\ 0 & 0 & -5 \end{pmatrix} \text{ et } \tilde{B} = \begin{pmatrix} 5 \\ -7 \\ -5 \end{pmatrix}$$

Résoudre le système (S): AX = B revient à résoudre le système (S'): AX = B.

Résolvons le système (S'): AX = B

$$\tilde{A}X = \tilde{B} \iff (S \begin{cases} x - 2y + 3z = 5....(1) \\ y - 7z = -7.....(2) \\ -5z = -5......(3) \end{cases}$$

de l'équation (3) : $-5z = -5 \Longrightarrow z$

On remplace la valeur de z dans l'équation (2), on trouve:

$$y - 7(1) = -7 \Longrightarrow y = -7 + 7 = 0 \text{ donc } y = 0$$

Dans l'équation (1) on pose y = 0 et z = 1, on obtient:

$$x - 2(0) + 3(1) = 5 \Longrightarrow x = 5 - 3 + 0 = 2 \text{ donc } x = 2.$$

$$\text{d'où } X^* = \left(\begin{array}{c} 2\\0\\1 \end{array}\right)$$

Remarque: (Cas général)

Soit (S) un système linéaire écrit sous la forme matricielle $(S): AX = B \text{ avec } A \in M_{n,p}(\mathbb{R}), X \in M_{p,1}(\mathbb{R}) \text{ et } B \in M_{n,1}(\mathbb{R})$ On résoud ce type de système par la méthode de Gauss.

Exemples: Résoudre les systèmes d'équations linéaires suivants:

$$\begin{array}{l}
1/\left(S_{1}\right) \begin{cases}
x + 2y - z = 4 \\
2x - y + 3z = 3 \\
3x + y + 2z = 7
\end{cases}$$
Le système (S_{1}) s'écrit sous la forme matricielle $A_{1}X = B_{1}$

où
$$A_1 = \begin{pmatrix} 1 & 2 & -1 \\ 2 & -1 & 3 \\ 3 & 1 & 2 \end{pmatrix}, X = \begin{pmatrix} x \\ y \\ z \end{pmatrix} \text{ et } B_1 = \begin{pmatrix} 4 \\ 3 \\ 7 \end{pmatrix}$$

- (S_1) est-il de cramer

$$\det A_1 = \begin{vmatrix} 1 & 2 & -1 \\ 2 & -1 & 3 \\ 3 & 1 & 2 \end{vmatrix} = \begin{vmatrix} -1 & 3 \\ 1 & 2 \end{vmatrix} - 2 \begin{vmatrix} 2 & -1 \\ 1 & 2 \end{vmatrix} + 3 \begin{vmatrix} 2 & -1 \\ -1 & 3 \end{vmatrix}$$
$$= (-2 - 3) - 2(4 + 1) + 3(6 - 1)$$

$$\det A_1 = -5 - 10 + 15 = 0$$

On a det $A_1 = 0$ donc le système (S_1) n'est pas de cramer, on va le résoudre par la méthode de Gauss (Les deux autres méthodes: des déterminants et la matrice inverse ne sont pas valables pour ce type de système).

La méthode de Gauss

$$(A_1 | B_1) = \begin{pmatrix} 1 & 2 & -1 & | & 4 \\ 2 & -1 & 3 & | & 3 \\ 3 & 1 & 2 & | & 7 \end{pmatrix} \xrightarrow{L_2 \leftarrow L_2 - 2L_1} \begin{pmatrix} 1 & -2 & 3 & | & 5 \\ 0 & -5 & 5 & | & -5 \\ 0 & -5 & 5 & | & -5 \end{pmatrix}$$

$$\stackrel{L_3 \leftrightarrow L_3 - L_2}{\sim} \begin{pmatrix} 1 & -2 & 3 & | & 5 \\ 0 & -5 & 5 & | & -5 \\ 0 & 0 & 0 & | & 0 \end{pmatrix} = (\tilde{A}_1 | \tilde{B}_1)$$
où $\tilde{A}_1 = \begin{pmatrix} 1 & -2 & 3 \\ 0 & -5 & 5 \\ 0 & 0 & 0 \end{pmatrix}$ et $\tilde{B}_1 = \begin{pmatrix} 5 \\ -5 \\ 0 \end{pmatrix}$

Résoudre le système $(S_1): A_1X = B_1$ revient à résoudre le système

$$\tilde{A}_1 X = \tilde{B}_1 \iff \begin{cases} x - 2y + 3z = 5....(1) \\ -5y + 5z = -5.....(2) \\ 0 = 0......(3) \end{cases}$$

Le système (S'_1) de 2 équations à 3 inconnues, il admet donc une infinité de solutions

De l'équation (2):
$$-5y + 5z = -5 \Longrightarrow -5y = -5 - 5z$$

 $\Longrightarrow y = \frac{-1}{5}(-5 - 5z) = 1 + z$

On remplace dans (1) on obtient:

$$x - 2y + 3z = 5 \Longrightarrow x = 5 + 2y - 3z$$

donc
$$x = 5 + 2(1+z) - 3z = 5 + 2 + 2z - 3z = 7 - z$$

d'où l'ensemble des solutions $\{(7-z, 1+z, z), z \in \mathbb{R}\}$

(ou bien, de (2),
$$z = \frac{1}{5}(-5 + 5y) = -1 + y$$
, on remplace dans (1):

x = 8 - y, d'où l'ensemble des solutions $\{(8 - y, y, -1 + y), y \in \mathbb{R}\}$ Donc l'ensemble des solutions de (S_1) est $S = \{(7-z, 1+z, z), z \in \mathbb{R}\}.$

$$2/(S_2) \begin{cases} x-y + t = 2 \\ x-3y-z+4t = 2 \\ x+y+z-2t = 1 \end{cases}$$

Remarque: Le système (S_2) n'est pas de cramer (puisque le nombre $d'équations \neq nombre d'inconnues$

 (S_2) s'écrit sous la forme matricielle: $A_2X = B_2$

où
$$A_2 = \begin{pmatrix} 1 & -1 & 0 & 1 \\ 1 & -3 & -1 & 4 \\ 1 & 1 & 1 & -2 \end{pmatrix}, X = \begin{pmatrix} x \\ y \\ z \\ t \end{pmatrix} \text{ et } B_2 = \begin{pmatrix} 2 \\ 2 \\ 1 \end{pmatrix}$$

On résoud le système par la méthode de Gauss:
$$(A_2 \mid B_2) = \begin{pmatrix} 1 & -1 & 0 & 1 & 2 \\ 1 & -3 & -1 & 4 & 2 \\ 1 & 1 & 1 & -2 & 1 \end{pmatrix} \xrightarrow{L_2 \leftarrow L_2 - L_1} \begin{pmatrix} 1 & -1 & 0 & 1 & 2 \\ 0 & -2 & -1 & 3 & 0 \\ 0 & 2 & 1 & -3 & -1 \end{pmatrix}$$

$$\xrightarrow{L_3 \leftrightarrow L_3 + L_2} \begin{pmatrix} 1 & -1 & 0 & 1 & 2 \\ 0 & -2 & -1 & 3 & 0 \\ 0 & 0 & 0 & 0 & -1 \end{pmatrix} = (\tilde{A}_2 \mid \tilde{B}_2)$$

Où
$$\tilde{A}_2 = \begin{pmatrix} 1 & -1 & 0 & 1 \\ 0 & -2 & -1 & 3 \\ 0 & 0 & 0 & 0 \end{pmatrix}$$
 et $\tilde{B}_2 = \begin{pmatrix} 2 \\ 0 \\ -1 \end{pmatrix}$

 $(S_2'): A_2X = B_2.$

$$\tilde{A}_2 X = \tilde{B}_2 \iff \begin{pmatrix} x - y + t = 2....(1) \\ -2 y - z + 3t = 0....(2) \\ 0 = -1...(3) \end{pmatrix}$$

C'est un système impossible (d'aprés l'équation (3)), donc le système (S_2) est impossible

alors l'ensemnle des solutions du système (S_2) est $S = \emptyset$.

3/
$$(S_3)$$

$$\begin{cases} x + 3y + 3z = 1 \\ -2x - 3y - 2z = 1 \\ 3x + 3y + z = 3 \end{cases}$$

La forme matricielle de
$$(S_3)$$
: $A_3X = B_3$
avec $A_3 = \begin{pmatrix} 1 & 3 & 3 \\ -2 & -3 & -2 \\ 3 & 3 & 1 \end{pmatrix}$, $X = \begin{pmatrix} x \\ y \\ z \end{pmatrix}$ et $B_3 = \begin{pmatrix} 1 \\ 1 \\ 3 \end{pmatrix}$

$$\det A_3 = \begin{vmatrix} 1 & 3 & 3 \\ -2 & -3 & -2 \\ 3 & 3 & 1 \end{vmatrix} = 0, \text{ donc } (S_3) \text{ n'est pas de cramer soit il admet}$$

une infinité de solutions, soit il n'admet aucune solution.

On résoud ce système par la méthode de Gauss

$$(A_3 | B_3) = \begin{pmatrix} 1 & 3 & 3 & 1 \\ -2 & -3 & -2 & 1 \\ 3 & 3 & 1 & 3 \end{pmatrix} \xrightarrow{L_2 \leftarrow L_2 + 2L_1} \begin{pmatrix} 1 & 3 & 3 & 1 \\ 0 & 3 & 4 & 3 \\ 0 & -6 & -8 & 0 \end{pmatrix}$$

$$\stackrel{L_3 \leftarrow L_3 + 2L_2}{\sim} \begin{pmatrix} 1 & 3 & 3 & 1 \\ 0 & 3 & 4 & 3 \\ 0 & 0 & 0 & 6 \end{pmatrix} = (\tilde{A}_3 | \tilde{B}_3)$$
où $\tilde{A}_3 = \begin{pmatrix} 1 & 3 & 3 \\ 0 & 3 & 4 \\ 0 & 0 & 0 \end{pmatrix}$ et $\tilde{B}_3 = \begin{pmatrix} 1 \\ 3 \\ 6 \end{pmatrix}$

Résoudre le système $(S_3): A_3X = B_3$ revient à résoudre le système

$$(S_3): A_3X = B_3.$$

$$\tilde{A}_3X = \tilde{B}_3 \iff \begin{cases} x + 3y + 3z = 1....(1) \\ 3y + 4z = 3.....(2) \\ 0 = 6......(3) \end{cases}$$

C'est un système impossible (d'aprés l'équation (3)), donc le système (S_3) est impossible

alors l'ensemnle des solutions $S = \emptyset$.