Clustering

> Clustering aims to find classes in data

- > Different algorithms exist :
 - K-Means
 - ❖ Mean-Shift
 - ***** Expectation-Maximization using Gaussian Mixture Models
 - **❖** Etc ...

Clustering: K-Means

- > K-Means is the **most famous** Clustering algorithm
- > K-Means is composed of the following steps:
 - Select a number of classes and randomly initialize their center points
 - Classify each data by computing the distance between that data and each group center points
 - Recompute group center points by taking the mean of data in each class
 - Repeat the steps 2 and 3 for n iterations or until group center points do not change much

→ Drawbacks :

- ✓ Choose the number of classes
- ✓ Start with a random choice so can yield to different clustering results

Clustering: K-Means example

Clustering: Mean-Shift

- Mean-Shift is composed of the following steps:
 - Select a random set of points and a window size (windows will be centered on each point)
 - !teratively:
 - Compute center points by taking the mean of data in each window
 - Move windows on these new center points
 - Once windows do not move anymore, remove overlap windows by keeping the one with the most data
 - Classify each data by computing the distance between that data and each center points

→Advantage:

✓ Do not choose the number of classes

→ Drawbacks :

- ✓ Choose the window size
- ✓ Start with a random choice so can yield to different clustering results

Clustering : Mean-Shift example

Clustering: Expectation-Maximization using GMMs

- ➤ Gaussian Mixture Models (GMMs) assume that data points are Gaussian distributed
 - → This is less restrictive assumption than saying data are circular

- Expectation-Maximization is composed of the same steps than K-Means:
 - Select a number of classes and randomly initialize the Gaussian distribution parameters
 - Classify each data by computing the probability that data belongs to each cluster
 - * Recompute the Gaussian distribution parameters for each cluster
 - ❖ Repeat the steps 2 and 3 for n iterations or until **Gaussian distribution** parameters do not change much