Reward Machine Construction Writeup

Maximilian Stollmayer

Basic Definitions

Definition. Propositional symbols are statements that are either true or false. Formulas over propositional symbols consist of combinations of them with operations \neg , \wedge , \vee , \Longrightarrow and \Longleftrightarrow . We say a formula ψ provable from a formula φ , if ψ can be derived from φ and write $\varphi \vdash \psi$.

In the following we will suppose that we are in a reinforcement learning setting with a finite set of states S, with s_0 being the initial state, a set $T \subseteq S$ of terminal states and a finite set of actions A. Furthermore we suppose that we have a finite set of propositional symbols \mathcal{P} .

Definition. A labeling function $L: S \times A \times S \to 2^{\mathcal{P}}$ maps experiences to truth assignments over propositional symbols \mathcal{P} .

Definition. A Non-Markovian Reward Decision Process (NMRDP) is a tuple $(S, A, s_0, T, R, \gamma)$, where S, A, s_0, T and γ are defined as in a regular MDP and $R: (S \times A)^+ \times S \to \mathbb{R}$ is a non-Markovian reward function that maps finite state-action histories into a real value. Note that $X^+ := \bigcup_{n=1}^{\infty} X^n$ represents all non-empty finite sequences of a set X.

Reward Machines

Definition. A Mealy machine is a tuple $(U, u_0, \Sigma, \mathcal{R}, \delta, \rho)$, where

- U is a finite set of states
- $u_0 \in U$ is the initial state
- Σ is a finite input alphabet
- R is a finite output alphabet
- $\delta: U \times \Sigma \to U$ is the transition function
- $\rho: U \times \Sigma \to \mathcal{R}$ is the output function

Definition. A reward machine (RM) is a Mealy machine $(U, u_0, \Sigma = 2^{\mathcal{P}}, \mathcal{R}, \delta, \rho)$, where \mathcal{R} is a finite set of reward functions $S \times A \times S \to \mathbb{R}$.

Definition. The non-Markovian reward function R induced by an RM $(U, u_0, 2^{\mathcal{P}}, \mathcal{R}, \delta, \rho)$ is

$$R: (S \times A)^{+} \times S \to \mathbb{R}$$

$$(s_{0}, a_{0}), \dots, (s_{n}, a_{n}), s_{n+1} \mapsto \rho(u_{n}, L(s_{n}, a_{n}, s_{n+1}))(s_{n}, a_{n}, s_{n+1})$$

$$R((s_{0}, a_{0}), \dots, (s_{n}, a_{n}), s_{n+1}) = r(s_{n}, a_{n}, s_{n+1})$$

where $u_n = \delta(u_{n-1}, L(s_{n-1}, a_{n-1}, s_n))$ is defined recursively with the base case being the initial state u_0 .

Logics and Automata

ltl & co, dfa, dfa construction theorem and proof (source?)

Definition. A deterministic finite automaton (DFA) is a tuple $(U, u_0, \Sigma, \delta, F)$, where

- U is a finite set of states
- $u_0 \in U$ is the initial state
- Σ is a finite input alphabet
- $\delta: U \times \Sigma \to U$ is the transition function
- $F \subseteq U$ is a set of accepting states

Reward Specifications

Definition. A reward specification is a set $R = \{(r_1, \varphi_1), \dots, (r_N, \varphi_N)\}$, where each $r_i \in \mathbb{R}$ and φ_i is a formula over the propositional symbols \mathcal{P} expressed in some regular language.

Definition. Let $\tau = ((s_0, a_0), \dots, (s_n, a_n), s_{n+1}) \in (S \times A)^+ \times S$ be a trace of experiences. We say that the projection of the experiences of τ by L entails a formula φ , and write $\tau \vdash_L \varphi$, if $L(s_0, a_0, s_1) \dots L(s_n, a_n, s_{n+1}) \vdash \varphi$.

Definition. The non-Markovian reward function \hat{R} induced by the reward specification $R = \{(r_1, \varphi_1), \dots, (r_n, \varphi_n)\}$ assigns reward $\hat{R}(\tau) := \sum_{k=1}^{N} \mathbb{1}(\tau \vdash_L \varphi_k)$ to a trace $\tau = ((s_0, a_0), \dots, (s_n, a_n), s_{n+1}) \in (S \times A)^+ \times S$.

Construction Theorem

Theorem.

There exists a reward machine that induces the same non-Markovian reward function as a given reward specification $R = \{(r_1, \varphi_1), \dots, (r_N, \varphi_N)\}.$

Proof.

Let...

Corollary.

Example

go through the construction of a very simple formula to reward machine