Understanding IC3

Aaron R. Bradley

ECEE, CU Boulder &

Summit Middle School

Further Reading

This presentation is based on

Bradley, A. R. "Understanding IC3." In *SAT*, June 2012.

http://theory.stanford.edu/~arbrad

Induction

Foundation of verification for 40+ years (Floyd, Hoare)

To prove that S:(I,T) has safety property P, prove:

Base case (initiation):

$$I \Rightarrow P$$

Inductive case (consecution):

$$P \wedge T \Rightarrow P'$$

P is inductive

When Induction Fails

We present two solutions...

- 1. Use a stronger assertion, or
- 2. Construct an incremental proof, using previously established invariants.

Manna and Pnueli

Temporal Verification of Reactive Systems: Safety

1995

Method 1 = "Monolithic"

Method 2 = "Incremental"

Outline

- 1. Illustration of the two methods
- 2. SAT-based model checkers
- 3. Understanding IC3 as a prover
- 4. Understanding IC3 as a bug finder
- 5. Beyond IC3: Incremental, inductive verification

Two Transition Systems

 S_1 : $\begin{bmatrix} x, & y & := 1, 1 \\ \text{while} & *: \\ x, & y & := x + 1, y + x \end{bmatrix}$

 S_2 : $\begin{array}{c} x, y := 1, 1 \\ \text{while} & *: \\ x, y := x + y, y + x \end{array}$

 $P: y \geq 1$

Induction on System 1

Initiation:

$$\underbrace{x = 1 \land y = 1}_{P} \Rightarrow \underbrace{y \ge 1}_{P}$$
initial condition

Consecution (fails):

$$\underbrace{y \ge 1}_{P} \land \underbrace{x' = x + 1 \land y' = y + x}_{P} \not\Rightarrow \underbrace{y' \ge 1}_{P'}$$
transition relation

Incremental Proof

 S_1 : $\begin{array}{c} x, y := 1, 1 \\ \text{while} & *: \\ x, y := x + 1, y + x \end{array}$

Problem: y decreases if x is negative. But...

$$\varphi_1: x \geq 0$$

Initiation:

$$x = 1 \land y = 1 \Rightarrow x \ge 0$$

Consecution:

$$\underbrace{x \ge 0}_{\varphi_1} \land \underbrace{x' = x + 1 \land y' = y + x}_{\varphi_1} \Rightarrow \underbrace{x' \ge 0}_{\varphi_1'}$$
transition relation

Back to P

 S_1 : $\begin{array}{c} x, y := 1, 1 \\ \text{while} & *: \\ x, y := x + 1, y + x \end{array}$

Consecution:

$$\underbrace{x \ge 0}_{\varphi_1} \land \underbrace{y \ge 1}_{P} \land \underbrace{x' = x + 1 \land y' = y + x}_{P'} \Rightarrow \underbrace{y' \ge 1}_{P'}$$
transition relation

P is inductive relative to φ_1 .

Induction on System 2

$$S_2$$
: $\begin{array}{c} x, y := 1, 1 \\ \text{while} & *: \\ x, y := x + y, y + x \end{array}$

Induction fails for *P* as in System 1. Additionally,

$$x \ge 0 \land x' = x + y \land y' = y + x \not\Rightarrow x' \ge 0$$

x > 0 is not inductive, either.

Monolithic Proof

 S_2 : $\begin{array}{c} x, y := 1, 1 \\ \text{while} & *: \\ x, y := x + y, y + x \end{array}$

Invent strengthening all at once:

$$\widehat{P}: x \ge 0 \land y \ge 1$$

Consecution:

$$\underbrace{x \ge 0 \land y \ge 1}_{\widehat{P}} \land x' = x + y \land y' = y + x \Rightarrow \underbrace{x' \ge 0 \land y' \ge 1}_{\widehat{P}'}$$

Incremental vs. Monolithic Methods

- Incremental: does not always work
- Monolithic: relatively complete
- Incremental: apply induction iteratively ("modular")
- Monolithic: invent one strengthening formula

We strongly recommend its use whenever applicable. Its main advantage is that of modularity.

Manna and Pnueli

Temporal Verification of Reactive Systems: Safety

1995

Finite-state System

Transition system:

$$S: (\overline{i}, \overline{x}, I(\overline{x}), T(\overline{x}, \overline{i}, \overline{x}'))$$

Cube s:

Conjunction of literals, e.g.,

$$x_1 \wedge \neg x_2 \wedge \neg x_3 \wedge x_4 \wedge \cdots$$

Represents set of states (that satisfy it)

Clause: $\neg s$

SAT-Based Backward Model Checking:

1. Search for predecessor *s* to some error state:

$$P \wedge T \Rightarrow P'$$

If none, property holds.

- 2. Reduce cube s to \bar{s} :
 - Expand to others with bad successors [McMillan 2002], [Lu et al. 2005]
 - If $P \land \neg s \land T \Rightarrow \neg s'$, reduce by implication graph [Lu et al. 2005]
 - Apply inductive generalization [Bradley 2007]
- 3. $P := P \wedge \neg \bar{s}$

Inductive Generalization

Given: cube s

Find: $c \subseteq \neg s$ such that

Initiation:

$$I \Rightarrow c$$

Consecution (relative to information P):

$$P \wedge c \wedge T \Rightarrow c'$$

No strict subclause of c is inductive relative to P

Analysis of Backward Search

Strengths:

- Easy SAT queries, low memory
- Property focused
- Some are approximating, computing neither strongest nor weakest strengthening

Weaknesses:

- Essentially undirected search (bad for bug finding)
- Ignore initial states

Analysis of FSIS [Bradley 2007]

Strengths (essentially, great when it works):

- Can significantly reduce backward search
- Can find strong lemmas with induction

Weaknesses:

Like others when inductive generalization fails

BMC [Biere et al. 1999]

Compared to backward search:

- Considers initial and final states
- Requires solving hard SAT queries
- Practically incomplete (UNSAT case)

$$I \wedge \bigwedge_{i=0}^{k-1} (P^{(i)} \wedge T^{(i)}) \wedge \neg P^{(k)}$$

k-Induction [Sheeran et al. 2000]

Addresses practical incompleteness of BMC:

- Initiation: BMC
- Consecution:

$$\bigwedge_{i=0}^{k-1} (P^{(i)} \wedge T^{(i)}) \Rightarrow P^{(k)}$$

(plus extra constraints to consider loop-free paths)

ITP [McMillan 2003]

Property-focused over-approximating post-image:

$$F_i \wedge \bigwedge_{i=0}^{k-1} (P^{(i)} \wedge T^{(i)}) \Rightarrow P^{(k)}$$

- {states $\leq i$ steps from initial states} $\subseteq F_i$
- If holds, finds interpolant F_{i+1} :

$$F_i \wedge T \Rightarrow F'_{i+1} \qquad F'_{i+1} \wedge \bigwedge_{i=1}^{k-1} (P^{(i)} \wedge T^{(i)}) \Rightarrow P^{(k)}$$

• If fails, increases *k*

BMC $\rightarrow k$ -Induction \rightarrow ITP

- Completeness from unrolling transition relation
- Evolution: reduce max k in practice (UNSAT case)
- Monolithic:
 - hard SAT queries
 - induction at top-level only
- Consider both initial and final states

Best of Both?

Desire:

- Stable behavior (backward search)
 - Low memory, reasonable queries
 - Can just let it run
- Consideration of initial and final states (BMC)
- Modular reasoning (incremental method)

Avoid:

- Blind search (backward search)
- Queries that overwhelm the SAT solver (BMC)

IC3: A Prover

Stepwise sets $F_0, F_1, \ldots, F_k, F_{k+1}$ (CNF):

- {states $\leq i$ steps from initial states} $\subseteq F_i$
- $F_i \subseteq \{ \text{states} \ge k i + 1 \text{ steps from error} \}$

Four invariants:

- $F_0 = I$
- $F_i \Rightarrow F_{i+1}$
- $F_i \wedge T \Rightarrow F'_{i+1}$
- Except F_{k+1} , $F_i \Rightarrow P$
- \therefore if ever $F_i = F_{i+1}$, F_i is inductive & P is invariant

Induction at Top Level

Is P inductive relative to F_k ?

$$F_k \wedge T \Rightarrow P'$$

(Recall: $F_k \Rightarrow P$)

- Possibility #1: Yes
- Conclusion: P is inductive relative to F_k

Induction at Top Level

Monolithic behavior (predicate abstraction):

• For i from 1 to k: find largest $C \subseteq F_i$ s.t.

$$F_i \wedge T \Rightarrow C'$$

$$F_{i+1} := F_{i+1} \wedge C$$

- $F_{k+1} := F_{k+1} \wedge P$
- New frontier: F_{k+1}

If ever $F_i = F_{i+1}$, done: P is invariant.

Counterexample To Induction (CTI)

$$F_k \wedge T \Rightarrow P'$$

- Possibility #2: No
- Conclusion: $\exists F_k$ -state s with error successor
- If s is an initial state, done: P is not invariant
- Otherwise...

Induction at Low Level

Inductive Generalization in IC3

- Given: cube s
- Find: $c \subseteq \neg s$ such that
 - Initiation:

$$I \Rightarrow c$$

• Consecution (relative to F_i):

$$F_i \wedge c \wedge T \Rightarrow c'$$

• No strict subclause of c is inductive relative to F_i

Addressing CTI s

Find highest i such that

$$F_i \wedge \neg s \wedge T \Rightarrow \neg s'$$

Apply inductive generalization:

$$c \subseteq \neg s \qquad I \Rightarrow c \qquad F_i \land c \land T \Rightarrow c'$$

- $:: F_{i+1} := F_{i+1} \wedge c$ (also update F_j , $j \leq i$)
- If i < k, new proof obligation:

$$(s, i+1)$$

"Inductively generalize s relative to F_{i+1} "

Addressing Proof Obligation (t, j)

SAT query:

$$F_j \wedge \neg t \wedge T \Rightarrow \neg t'$$

If UNSAT:

Inductive generalization must succeed:

$$c \subseteq \neg t \qquad I \Rightarrow c \qquad F_j \land c \land T \Rightarrow c'$$

- $F_{j+1} := F_{j+1} \wedge c$
- Updated proof obligation (if j < k): (t, j + 1)

Addressing Proof Obligation (t, j)

SAT query:

$$F_j \wedge \neg t \wedge T \Rightarrow \neg t'$$

If SAT: New CTI u, treat as before

- Find highest i s.t. $\neg u$ is inductive relative to F_i
- Inductively generalize ($c \subseteq \neg u$): $F_{i+1} := F_{i+1} \land c$
- New proof obligation (if i < k): (u, i + 1)

One of IC3's Insights

- Suppose CTI s was inductively generalized at F_i
 - $F_{i+1} := F_{i+1} \wedge c$
 - Removed s and some predecessors from F_{i+1}
 - Updated proof obligation: (s, i+1)

One of IC3's Insights

- Suppose CTI s was inductively generalized at F_i
 - $F_{i+1} := F_{i+1} \wedge c$
 - Removed s and some predecessors from F_{i+1}
 - Updated proof obligation: (s, i+1)
- Suppose $F_{i+1} \wedge \neg s \wedge T \not\Rightarrow \neg s'$
 - $\exists s$ -predecessor F_{i+1} -state t
 - But t was not a F_i -state
 - t is a relevant predecessor: the difference between F_i and F_{i+1}

Inductive generalization at F_i focuses IC3's choice of predecessors at F_{i+1} .

Meeting Obligations

IC3 pursues proof obligation (t, j) until j = k — even if the original CTI has been addressed. Why?

- Supporting lemmas for this frontier can be useful at next
- During "predicate abstraction" phase, supporting clauses propagate forward together
- Allows IC3 to find mutually (relatively) inductive lemmas, addressing a key weakness of FSIS
- More...

IC3: A Prover

- Based on CTIs from frontier and predecessors,
 IC3 generates stepwise-relative inductive clauses.
- IC3 propagates clauses forward in preparing a new frontier.
 - Some clauses may be too specific.
 - Their loss can break mutual support.
- But as the frontier advances, IC3 considers ever more general situations.
- It eventually finds the real reasons (as truly inductive clauses) that *P* is invariant.

IC3: A Bug Finder

Suppose:

- $u \to t \to s \to \mathsf{Error}$
- Proof obligations:

$$\{(s, k-1), (t, k-2), (u, k-1)\}$$

That is,

- s must be inductively generalize relative to F_{k-1}
- t must be inductively generalize relative to F_{k-2}
- u must be inductively generalize relative to F_{k-1}

Which proof obligation should IC3 address next?

Guided Search

Two observations:

u is the "deepest" of the states

$$u \to t \to s \to \mathsf{Error}$$

 t is the state that IC3 considers as likeliest to be closest to an initial state.

$$\{(s, k-1), (t, k-2), (u, k-1)\}$$

"Proximity metric"

Conclusion: Pursue (t, k-2) next.

(It also happens to be the correct choice [Bradley 2011].)

IC3: A Bug Finder

IC3 executes a guided search.

- Proximity metric: j of (t, j)
- IC3 pursues obligation with minimal proximity
- A new clause updates the proximity metric for many states
- Same conclusion as proof perspective:
 - Pursue all proof obligations (t, j) until j = k
 - Now: To gain important heuristic information
 - Additionally: Allows IC3 to search deeply even for small k

Incremental, Inductive Verification

IIV Algorithm:

- Constructs concrete hypotheses
- Generates intermediate lemmas incrementally
- Applies induction many times
- Generalizes from hypotheses to strong lemmas

After IC3

- FAIR [Bradley et al. 2011]
 - For ω -regular properties, e.g., LTL
 - Insight: SCC-closed regions can be characterized inductively
- IICTL [Hassan et al. 2012]
 - For CTL properties
 - Insight: EX (SAT), EU (IC3), EG (FAIR)
 - Standard traversal of CTL property's parse tree
 - Over- and under-approximating sets
 - Task state-driven refinement

FAIR: Reachable Fair Cycles

Reduce search for reachable fair cycle to a set of safety problems:

Skeleton:

Together satisfy all fairness constraints.

Task: Connect states to form lasso.

Reach Queries

Each connection task is a reach query.

Stem query: Connect initial condition to a state:

Cycle query: Connect one state to another:

(To itself if skeleton has only one state.)

Hypothesis	CTI	"lasso" skeleton	task state
Lemma	clause	barrier	refinement
Induction	†	↑	EU (IC3), EG (FAIR)
Generalization	MIC	proof improvement	
			trace generalization

FAIR

IC3

IICTL

Conclusions

- Attempted to explain why IC3 works:
 - As a compromise between the incremental and monolithic strategies
 - In terms of best and worst qualities of previous SAT-based model checkers
 - As a prover
 - As a bug finder
- Other IIV algorithms:
 - FAIR and IICTL
 - An indication that IC3's characteristics work in other contexts