CPT-S 415

Big Data

Yinghui Wu EME B45

CPT-S 415 Big Data

Data stream processing

- ✓ Data stream management: Overview
- Data synopsis in data stream processing
- Incremental query processing

Streams – A Brave New World

- Traditional DBMS: data stored in *finite*, *persistent data sets*
- Data Streams: distributed, continuous, unbounded, rapid, time varying, noisy, . . .
- Data-Stream Management: variety of modern applications
 - Network monitoring and traffic engineering
 - Sensor networks
 - Telecom call-detail records
 - Network security
 - Financial applications
 - Manufacturing processes
 - Web logs and clickstreams
 - Other massive data sets...

Data stream processing and DSMS

The DSMS Research Field

- ✓ Active research field (~ 15 years) derived from the database community
 - Stream algorithms
 - Application and database perspective
- Two syllabus articles:
 - Brian Babcock, Shivnath Babu, Mayur Datar, Rajeev Motwani,
 Jennifer Widom: "Models and issues in data stream systems"
 - Lukasz Golab, M. Tamer Ozsu: "Issues in data stream management"
- ✓ Future: Complex Event Processing (CEP)

Data Streams - Terms

- ✓ A data stream is a (potentially unbounded) sequence of tuples.
- ✓ Each tuple consist of a set of attributes, similar to a row in database table
- ✓ Transactional data streams: log interactions between entities
 - Credit card: purchases by consumers from merchants
 - Telecommunications: phone calls by callers to dialed parties
 - Web: accesses by clients of resources at servers
- ✓ Measurement data streams: monitor evolution of entity states
 - Sensor networks: physical phenomena, road traffic
 - IP network: traffic at router interfaces
 - Earth climate: temperature, moisture at weather stations

Motivation

- Massive data sets:
 - Huge numbers of users, e.g.,
 - AT&T long-distance: ~ 300M calls/day
 - AT&T IP backbone: ~ 10B IP flows/day
 - Highly detailed measurements, e.g.,
 - NOAA: satellite-based measurements of earth geodetics
 - Huge number of measurement points, e.g.,
 - Sensor networks with huge number of sensors
- ✓ Near real-time analysis
 - ISP: controlling service levels
 - NOAA: tornado detection using weather radar
 - Hospital: Patient monitoring
- Traditional data feeds
 - Simple queries (e.g., value lookup) needed in real-time
 - Complex queries (e.g., trend analyses) performed off-line

DBMS vs. DSMS #1

DBMS vs. DSMS #2

Traditional DBMS:

- stored sets of relatively static records with no pre-defined notion of time
- good for applications that require persistent data storage and complex querying

DSMS:

support on-line analysis of rapidly changing data streams data stream: real-time, continuous, ordered (implicitly by arrival time or explicitly by timestamp) sequence of items, too large to store entirely, not ending continuous queries

DBMS vs. DSMS #3

- Persistent relations
- ✓ One-time queries
- Random access
- ✓ "Unbounded" disk store
- Only current state matters
- ✓ Passive repository
- Relatively low update rate
- ✓ No real-time services
- Assume precise data
- Access plan determined by query processor, physical DB design

- Transient streams
- ✓ Continuous queries
- Sequential access
- ✓ Bounded main memory
- History/arrival-order is critical
- Active stores
- Possibly multi-GB arrival rate
- √ Real-time requirements
- Data stale/imprecise
- Unpredictable/variable data arrival and characteristics

DSMS Applications

- ✓ Network security (e.g., iPolicy, NetForensics/Cisco, Niksun)
 - Network packet streams, user session information
 - URL filtering, detecting intrusions & DOS attacks & viruses

Pull-based

- Sensor Networks
 - Network Traffic Analysis
 - Real time analysis of Internet traffic. E.g., Traffic statistics and critical condition detection.
- √ Financial Tickers
 - On-line analysis of stock prices, discover correlations, identify trends.
- ✓ Transaction Log Analysis
 - e.g. Web click streams and telephone calls

Application

- ✓ Stig Støa, Morten Lindeberg and Vera Goebel. Online Analysis of Myocardial Ischemia From Medical Sensor Data Streams with Esper, 2009
- Queries over sensor traces from surgical procedures on pigs performed at IVS, Rikshospitalet, running a open source java system called Esper
- Successful identification of occlusion to the heart (heart attack)

SELECT y, timestamp FROM Accelerometer.win:ext_timed(t, 5 s) HAVING count(y) BETWEEN 2 AND 200

What do we need?

- ✓ Data model and query semantics: order- and time-based operations
 - Selection
 - Nested aggregation
 - Multiplexing and demultiplexing
 - Frequent item queries
 - Joins
 - Windowed queries
- Query processing:
 - Streaming query plans must use non-blocking operators
 - Only single-pass algorithms over data streams
- ✓ Data reduction: approximate summary structures
 - Synopses, digests => no exact answers
- ✓ Real-time reactions for monitoring applications => active mechanisms
- Long-running queries: variable system conditions
- Scalability: shared execution of many continuous queries, monitoring multiple streams

Concepts and issues: Architecture Courtesy (slides adapted) from Vera Goebel

Generic DSMS Architecture

[Golab & Özsu 2003]

A closer look at stream query engine

"Load Shedding techniques for data stream systems, B.Babcock, et.al 2003"

3-Level Architecture

- Reduce tuples through several layered operations (several DSMSs)
- ✓ Store results in static DB for later analysis

Data Models

- ✓ Real-time data stream: sequence of items that arrive in some order and may only be seen once.
- ✓ Stream items: like relational tuples
 - Relation-based: e.g., STREAM, TelegraphCQ and Borealis
 - Object-based: e.g., COUGAR, Tribecca
- Window models
 - Direction of movements of the endpoints: fixed window, sliding window, landmark window
 - Time-based vs. Tuple-based
 - Update interval: eager (for each new arriving), lazy (batch processing), non-overlapping tumbling windows.

- Mechanism for extracting a finite relation from an infinite stream Desirable query semantic; data freshness; blocking operators..
 - Sliding:

window			
	_	_	

Jumping:

window	window	window	window	windov
	· · · · · · · · · · · · · · · · · · ·			

Overlapping

window	winc	dow wind	ow wind	window	window	windo

(adapted from Jarle Søberg)

Timestamps

- ✓ Used for tuple ordering and by the DSMS for defining window sizes (time-based)
- Useful for the user to know when the tuple originated
- Explicit: set by the source of data
- ✓ Implicit: set by DSMS, when it has arrived
- Ordering is an issue
- Distributed systems: no exact notion of time

Stream Queries 22

Queries: DBMS vs DSMS

- ✓ DBMS: one-time (transient) queries DSMS: continuous (persistent) queries
- ✓ DBMS: Arbitrary data access DSMS: one-pass algorithms
- ✓ DBMS: Unbounded memory requirements DSMS: Limited memory/Cache; window techniques
- ✓ DBMS: (mostly) exact query answer
 DSMS: (mostly) approximate query answer
 - We introduced approximate query processing
 - sampling, synopses, sketches, wavelets, histograms, ...
 - apply over data streams?
- ✓ DBMS: fixed query plans optimized at beginning

DSMS: adaptive query operators

Query Optimization

- ✓ DBMS: table based cardinalities used in query optimization
 => Problematic in a streaming environment
- Cost metrics and statistics: accuracy and reporting delay vs. memory usage, output rate, power usage
- Query optimization: query rewriting to minimize cost metric, adaptive query plans, due to changing processing time of operators, selectivity of predicates, and stream arrival rates
- Query optimization techniques
 - stream rate based, resource based, QoS based
- Continuously adaptive optimization
- ✓ Possibility that objectives cannot be met:
 - resource constraints
 - bursty arrivals under limited processing capability

Selections and Projections

- Selections, (duplicate preserving) projections are straightforward
 - Local, per-element operators
 - Duplicate eliminating projection is like grouping
- Projection needs to include ordering attribute
 - No restriction for position ordered streams

SELECT sourceIP, time

FROM Traffic

WHERE length > 512

Joins

- ✓ General case of join operators problematic on streams
 - May need to join arbitrarily far apart stream tuples
 - Equijoin on stream ordering attributes is tractable
- Majority of work focuses on joins between streams with windows specified on each stream

SELECT A.sourceIP, B.sourceIP FROM Traffic1 A [window T1], Traffic2 B [window T2] WHERE A.destIP = B.destIP

Aggregations

- ✓ General form:
 - select G, F1 from S where P group by G having F2 op ϑ
 - G: grouping attributes, F1,F2: aggregate expressions
 - Window techniques are needed
- ✓ Aggregate expressions:
 - distributive: sum, count, min, max
 - algebraic: avg
 - holistic: count-distinct, median

Data Reduction Techniques

- ✓ Aggregation: approximations e.g., mean or median
- ✓ Load Shedding: drop random tuples
- ✓ Sampling: only consider samples from the stream (e.g., random selection). Used in sensor networks.
- ✓ Sketches: summaries of stream that occupy small amount of memory, e.g., randomized sketching
- ✓ Wavelets: hierarchical decomposition
- Histograms: approximate frequency of element values in stream

Holistic Aggregates

- Holistic aggregates need the whole input to compute (no summary suffices)
 - E.g., count distinct, need to remember all distinct items to tell if new item is distinct or not
- So focus on approximating aggregates
 - Adopt ideas from sampling, data reduction, streams etc.
- Aggregate approximation:
 - Sketch summaries
 - Other mergable summaries
 - Building uniform samples, etc...

CM Sketch

- ✓ Count-Min Sketch: can be used for point queries, range queries, quantiles, join size estimation.
- ✓ Model input as a vector x_i of dimension U (U is large)
- ✓ Creates a small summary as an array of w × d in size
- ✓ Use d hash function to map vector entries to [1..w]

Data stream model

Consider the vector $\vec{a}(t) = (a_1(t), \dots, a_i(t), \dots, a_n(t))$

initially $a_i(0) = 0 \quad \forall i$

The tth update (i_t, c_t)

$$a_{i'}(t) = a_{i'}(t-1) \quad \forall i' \neq i_t$$

$$a_{i_t}(t) = a_{i_t}(t-1) + c_t$$

Count-Min Sketch

A Count-Min (CM) Sketch with parameters (ε, δ) is represented by

a two-dimensional array counts with width w and depth d:count[1,1]...count[d,

Given parameters
$$(\varepsilon, \delta)$$
, set $w = \left\lceil \frac{e}{\varepsilon} \right\rceil$ and $d = \left\lceil \ln \frac{1}{\delta} \right\rceil$.

Each entry of the array is initially zero.

d hash functions are chosen uniformly at random from a pairwise independent family

$$h_1, ..., h_d : \{1...n\} \to \{1...w\}$$

Update procedure

When (i_t, c_t) arrives, set $\forall 1 \le j \le d$

$$count[j,h_j(i_t)] \leftarrow count[j,h_j(i_t)] + c_t$$

Approximate Query Answering Using CM Sketches

• point query
$$Q(i)$$
 approx.

$$ullet$$
 range queries $Q(l,r)$ approx. $\sum_{i=l}^r a_i$

• inner product queries approx.
$$Q(\vec{a}, \vec{b}) \Longrightarrow \vec{a} \cdot \vec{b} = \sum_{i=1}^{n} a_i b_i$$

Approximate Query Answering Using CM Sketches

approx.

• point query Q(i) a_i

$$\hat{a}_i = \min_{j} count[j, h_j(i)] \quad \text{and} \quad P[\hat{a}_i > a_i + \varepsilon \|\vec{a}\|_1] \le \delta$$

ullet range queries Q(l,r) approx. $\sum_{i=1}^{r} a_i$

$$=\hat{a}[l,r]$$
 from $2\log_2 n$ point queries

inner product queries

$$Q(\vec{a}, \vec{b}) \Longrightarrow \vec{a} \cdot \vec{b} = \sum_{i=1}^{n} a_i b_i$$

$$(\vec{a} \cdot \vec{b}) = \min_{j} (\vec{a} \cdot \vec{b})_{j}$$
 where $(\vec{a} \cdot \vec{b})_{j} = \sum_{k=1}^{w} count_{\vec{a}}[j,k] * count_{\vec{b}}[j,k]$

Sketch Summary

Sketches	Space	Update Time	Query Time
Count-Min	1/ε ; O(K)	1	1
Bloom Filter	m; Constant	k	k
Count Bloom Filter	mC; O(m)	k	k
Multi Counting Bloom filter	mC; O(m)	k	k
FM	ML O(M)	M	M

C = Number of Bits in the Counter in Bloom Filter
M = Number of Bit Maps used in FM Sketch
L = Number of Bits in FM Sketch
All Notations Described Earlier

Incremental query answering

- ✓ Real-life data is dynamic constant
- 5%/week in Web graphs
- ✓ Re-compute $Q(D \oplus \Delta D)$ starting from cratch:
- ✓ Changes ΔD are typically small Compute Q(D) once, and then incrementally maintain it

Inc Old output y processing:

Input: Q, D, Q(D), ΔD

New output

Changes to the input

- Changes to the output
- ✓ Output: ΔM such that $Q(D \bigoplus \Delta D) = Q(D) \bigoplus \Delta M$

When changes ΔD to the data D are small, typically so are the changes ΔM to the output $Q(D \bigoplus \Delta D)$

Minimizing unnecessary recomputation

Why study incremental query answering?

Incremental query answering

- ✓ Input: Q, D, Q(D), ΔD
- ✓ Output: ΔM such that $Q(D \bigoplus \Delta D) = Q(D) \bigoplus \Delta M$
- E-commerce systems: a fixed set of (parameterized) queries
 - Repeatedly invoked and evaluated
 - ✓ View maintenance: in response to changes to the underlying graph
 - Data synopsis: maintenance in the presence of changes
 - ✓ Indexing structure: 2-hop covers; landmarks...

Complexity of incremental problems

Incremental query answering

✓ Input: Q, D, Q(D), ΔD

G. Ramalingam, Thomas W. Reps: *On the Computational Complexity of Dynamic Graph Problems*. TCS 158(1&2), 1996

✓ Output: ΔM such that $Q(D \oplus \Delta D) = Q(D) \oplus \Delta M$

The cost of query processing: a function of |D| and |Q|

- ✓ incremental algorithms: |CHANGED|, the size of changes in
 - the input: ∆G, and

The updating cost that is inherent to the incremental problem itself

- the output: ∆M
- ✓ Bounded: the cost is expressible as f(|CHANGED|, |Q|)?
- ✓ Optimal: in O(|CHANGED| + |Q|)? The amount of work absolutely necessary to perform

Complexity analysis in terms of the size of changes

Incremental graph pattern matching

Complexity of incremental algorithms

- Result graphs
 - Union of isomorphic subgraphs for subgraph isomorphism
 - A graph Gr = (Vr, Er) for (bounded) simulation
 - Vr : the nodes in G matching pattern nodes in Gp
 - Er: the paths in G matching edges in Gp
- Affected Area (F)
 - differences the tower of the composition of the differences the tower of the composition of the composition
 - Gy espective ge-path relation

- ✓ Optimal, bounded and unbounded problem Pat, DB Pat, DB Bill, Bio Mat, Bio
 - expressible by f(|CHANGED|)?

Measure the complexity with the size of changes

Incremental simulation matching

- \checkmark Input: Q, G, Q(G), \triangle G
- ✓ Output: ΔM such that $Q(G \oplus \Delta G) = Q(G) \oplus \Delta M$
- ✓ Incremental simulation is in

Batch updates

 $O(|\Delta G|(|Q||AFF| + |AFF|^2))$ time

in O(|AFF|) time

unbounded

- Optimal for
 - single-edge deletions and general patterns
 - single-edge insertions and DAG patterns

General patterns and graphs; batch updates

2 times faster than its batch counterpart for changes up to 10%

Semi-boundedness

- ✓ Semi-bounded: the cost is a PTME function f(|CHANGED|, |Q|)
 - ✓ Incremental simulation is in

| Q | is small

 $O(|\Delta G|(|Q||AFF| + |AFF|^2))$ time

for batch updates and general patterns

Independent of | G |

Independent of | G |

Semi-boundedness is good enough!

Complexity of incremental algorithms (cont)

Insert e₁

Insert e₃

Insert e4

Insert e5

ΔG

Incremental Simulation matching

- ✓ Problem statement
 - Input: Gp, G, Gr, ∆G
 - − Output: $\triangle Gr$, the updates to Gr s.t. $Msim(G \oplus \triangle G) = M(Gp,G) \oplus \triangle M$
- ✓ Complexity
 - unbounded even for unit updates and general patterns
 - bounded for single-edge deletions and general patterns
 - bounded for single-edge insertions and DAG patterns, within optimal time O(|AFF|)
 - In O(|∆G|(|Gp||AFF| + |AFF|²)) for batch updates and general

Measure the complexity with the size of changes

Incremental Simulation: optimal results

Incremental Simulation: optimal results

Incremental subgraph isomorphism

- ✓ Incremental subgraph isomorphism matching:
 - Input: Gp, G, Gr, ∆G
 - Output: \triangle Gr, the updates to Gr s.t. Miso(G $\oplus \triangle$ G) = M_{iso}(Gp,G) $\oplus \triangle$ M
- Incremental subgraph isomorphism:
 - Input: Gp, G, Gr, ∆G
 - Output: true if there is a subgraph in G⊕∆G that is isomorphi
 = M_{iso}(Gp,G)⊕∆M
- Complexity
 - InclsoMatch is unbounded even for unit updates over DAG graphs for path patterns
 - Inclso is NP-complete even for path pattern and unit update

Incremental subgraph isomorphism

- ✓ Input: Q, G, $M_{iso}(Q, G)$, ΔG
- ✓ Output: ΔM such that $M_{iso}(Q, G \oplus \Delta G) = M_{iso}(Q, G) \oplus \Delta M$
- Boundedness and complexity
 - Incremental matching via subgraph isomorphism is unbounded even for unit updates over DAG graphs for path patterns
 - Incremental subgraph isomorphism is NP-complete even when
 G is fixed
 not semi-bounded unless P = NP
 - ✓ Input: Q, G, M(Q, G), ΔG
 - ✓ Question: whether there exists a subgraph in G⊕∆G that is isomorphic to Q What should we do?

Summary

- Data stream processing: Overview
- ✓ Incremental query processing
- Data synopsis in data stream processing

How to make big data small

- ✓ Input: A class Q of queries
- ✓ Question: Can we effectively find, given queries $Q \in \mathbb{Q}$ and any (possibly big) data D, a small D_Q such that
 - \checkmark Q(D) = Q(D_O)?

Much smaller than D

- ✓ Data synopsis
- ✓ Boundedly evaluable queries
- ✓ Query answering using views
- ✓ Incremental evaluation
- ✓ Distributed query processing