Волков Е.А Домашнее задание №2

Задание №1

Перевести из 10 в 16 систему 12345678, 1000000

Ответ:

$$\boxed{12345678_{10} = BC614E_{16}} \boxed{1000000_{10} = F4240_{16}}$$

Задание №2

Перевести из 16 в 10 систему 12345678, 1000000

Решение:

$$12345678_{16} = 8 \cdot 16^{0} + 7 \cdot 16^{1} + 6 \cdot 16^{2} + 5 \cdot 16^{3} + 4 \cdot 16^{4} + 3 \cdot 16^{5} + 2 \cdot 16^{6} + 1 \cdot 16^{7} = \boxed{305419896_{10}}$$
$$1000000_{16} = 1 \cdot 16^{6} = \boxed{16777216_{10}}$$

Задание №3

Записать в виде логического выражение ответ Винни Пуха: "Сгущенного молока и меда и можно без хлеба"

Пусть:

$${
m C}$$
гущеное молоко $={
m A}$ ${
m M}$ ёд $={
m B}$ ${
m X}$ леб $={
m C}$ ${
m O}$ твет $={
m X}$

Тогда:

Ответ:
$$X = A \wedge B \wedge \neg C$$

Задание №4

Доказать тождества:

$$A \to B = \neg A \lor B$$

$$A \leftrightarrow B = (A \land B) \lor (\neg A \land \neg B)$$

В качестве доказательства приведем таблицы истинности и сравним их:

$A \to B = \neg A \lor B$						
A	В	$\neg A$	$A \rightarrow B$	$\neg A \lor B$		
0	0	1	1	1		
0	1	1	1	1		
1	0	0	0	0		
1	1	0	1	1		

	$A \leftrightarrow B = (A \land B) \lor (\neg A \land \neg B)$							
A	В	$\neg A$	$\neg B$	$A \wedge B$	$(\neg A \land \neg B)$	$A \rightarrow B$	$(A \land B) \lor (\neg A \land \neg B)$	
0	0	1	1	0	1	1	1	
0	1	1	0	0	0	0	0	
1	0	0	1	0	0	0	0	
1	1	0	0	1	0	1	1	

Ответ:

$$\boxed{ \Phi \text{АЛ } A \leftrightarrow B \text{ и } (A \land B) \lor (\neg A \land \neg B) \text{ тождественны}}$$

$$\boxed{ \Phi \text{АЛ } A \to B \text{ и } \neg A \lor B \text{ тождественны}}$$

Задание №5

Найти эквивалент для: \oplus

Решение:

Так как операция \oplus имеет следующее представление в базисе $(\neg, \wedge, \vee) = (\neg A \wedge B) \vee (A \wedge \neg B)$. Составим таблицу истинности и проверим соотвествие:

	$\oplus = (\neg A \land B) \lor (A \land \neg B)$							
A	В	$\neg A$	$\neg B$	$\neg A \wedge B$	$A \wedge \neg B$	$A \oplus B$	$(\neg A \land B) \lor (A \land \neg B)$	
0	0	1	1	0	0	0	0	
0	1	1	0	1	0	1	1	
1	0	0	1	0	1	1	1	
1	1	0	0	0	0	0	0	

Ответ:

$$\Phi A \Pi \oplus \mathsf{u}(\neg A \wedge B) \lor (A \wedge \neg B)$$
 эквивалентны

Задание №6

Упростить выражение: $(B \to A) \land \overline{(A \lor B)} \land (A \to C)$

Решение:

 Так как $B \to A = \neg B \lor A$, а в свою очередь по правилу Де-Моргана $\overline{(A \lor B)} = (\neg A \land \neg B)$ имеем:

$$(B \to A) \wedge \overline{(A \vee B)} \wedge (A \to C) =$$

$$(\neg B \vee A) \vee (\neg A \wedge \neg B) \vee (\neg A \vee C) = (\neg A \wedge \neg B) \wedge (\neg A \vee C) =$$

$$(\neg A \wedge \neg B \wedge \neg A) \vee (\neg A \wedge \neg B \wedge C) = \neg A \wedge \neg B$$
 Otbet:
$$\boxed{(B \to A) \wedge \overline{(A \vee B)} \wedge (A \to C) = \neg A \wedge \neg B}$$