Some Siri-ous Music Shuffler

Data science and Artificial Intelligence Society

Project Proposal

Topic: Machine Learning (Supervised)

Description: Web-scrape musical chord data / Data Preprocessing / Supervised Classification / Match

Expected Duration: 10 weeks

Team Member: Ikgyu Shin, Byunghoon Kwon, Sohyun Park

Digger

Hey Siri

What is my taste?

Chord itself?

Chord Progression

Algo-rhythm

Note	Hz	Note	Hz	Note	Hz	Note	Hz
C1	32.7	C2	65.4	СЗ	130.8	C4	261.6
C#1	34.6	C#2	69.3	C#3	138.6	C#4	277.2
D1	36.7	D2	73.4	D3	146.8	D4	293.7
D#1	38.9	D#2	77.8	D#3	155.6	D#4	311.1
E1	41.2	E2	82.4	E3	164.8	E4	329.6
F1	43.7	F2	87.3	F3	174.6	F4	349.2
F#1	46.2	F#2	92.5	F#3	185.0	F#4	370.0
G1	49.0	G2	98.0	G3	196.0	G4	392.0
G#1	51.9	G#2	103.8	G#3	207.7	G#4	415.3
A1	55.0	A2	110.0	АЗ	220.0	A4	440.0
A#1	58.3	A#2	116.5	A#3	233.1	A#4	466.2
B1	61.7	B2	123.5	В3	246.9	B4	493.9

Note Frequency Chart

				50						
	Octave 0	Octave 1	Octave 2	Octave 3	Octave 4	Octave 5	Octave 6	Octave 7	Octave 8	
С	16.35	32.70	65.41	130.81	261.63	523.25	1046.50	2093.00	4186.01	
C#	17.32	34.65	69.30	138.59	277.18	554.37	1108.73	2217.46	4434.92	
D	18.35	36.71	73.42	146.83	293.66	587.33	1174.66	2349.32	4698.64	
D#	19.45	38.89	77.78	155.56	311.13	622.25	1244.51	2489.02	4978.03	
Е	20.60	41.20	82.41	164.81	329.63	659.26	1318.51	2637.02	5274.04	
F	21.83	43.65	87.31	174.61	349.23	698.46	1396.91	2793.83	5587.65	
F#	23.12	46.25	92.50	185.00	369.99	739.99	1479.98	2959.96	5919.91	
G	24.50	49.00	98.00	196.00	392.00	783.99	1567.98	3135.96	6271.93	
G#	25.96	51.91	103.83	207.65	415.30	830.61	1661.22	3322.44	6644.88	
А	27.50	55.00	110.00	220.00	440.00	880.00	1760.00	3520.00	7040.00	
A#	29.14	58.27	116.54	233.08	466.16	932.33	1864.66	3729.31	7458.62	
В	30.87	61.74	123.47	246.94	493.88	987.77	1975.53	3951.07	7902.13	

E 9.2	Frequencies	of notes	in tempered scal	e	
16 3		C,	130 81	C,	1046 5
	17 324		138 59	-	1108 7
18 3		D_3	146.83	D_{ϵ}	1174.7
	19.445		155 56		1244.5
20.6	02	Ε,	164.81	E6	1318 5
21.8	27	F,	174.61	F ₆	1396 9
	23 125		185.00		1480 0
24 5		G_3	196.00	G_6	1568.0
	25.957		207 65		1661.2
27.5	00	A_1	220.00	A_6	1760 0
	29 135		233.08		1864 7
	68	$\tilde{\mathbf{B}_3}$	246.94	B ₆	1975.5

	03	C_4	261.63	C_{γ}	2093 0
	34 648		277.18		2217 5
	08	D_4	293 66	D_{γ}	2349.3
	38 891		311 13		2489.0
	03	\mathbf{E}_4	329.63	E,	
	54	F.4	349.23	F.,	2793 8
	46.249		369.99		2960 0
	9 9	G_4	392 00	G_{7}	3136.0
	51 913		415 30		3322.4
	00	A_1	440 00	A_7	3520.0
	58 270		466 16		3729.3
	35	B_4	493.88	\mathbf{B}_{γ}	3951 1

)6	C_5	523.25	C_8	4186.0
	69 296		554 37		4434.9
	16	D_5	587 33	D_8	4698 6
	77.782		622.25		4978 0
)7	E_{s}	659.26	E_8	5274.0
)7	\mathbf{F}_{5}	698 46	F_8	5587.7
	92 499		739 99		5919 9
	19	G_s	783 99	G_8	6271 9
	103.83		830.61		6644 9
	00	A_5	880.00	A_8	7040.0
	116 54		932 33		7458.6
	17	B_s	987.77	$\mathbf{B}_{\mathbf{v}}$	7902 1

Data

In [42]:	merged						
	mer gea			1			
Out[42]:	url		name	decade	genre	chords	uuid
	0	https://tabs.ultimate- guitar.com/tab/10000_man	Dont Talk	1980s	Folk	['D', 'Dmaj7', 'D', 'Dmaj7', 'D', 'Dmaj7', 'D'	c639eb23-fefd-4263-af20- 3f78f110edcd
	1	https://tabs.ultimate- guitar.com/tab/10000_man	Whats The Matter Here	1980s	Folk%%Folk	['G', 'G', 'C', 'D', 'G', 'G', 'G', 'G', 'G', 'G',	828ba8e4-d791-4403-a4cc- 5ca4a1c0cc1a
	2	https://tabs.ultimate- guitar.com/tab/1002296	Limón Y Sal (ver 2)	2000s	Pop%%Folk	['F', 'G', 'Am', 'G', 'C', 'F', 'F', 'G', 'Am'	bd5b9396-8d6a-49ee-a738- 6577cf310783
	3	https://tabs.ultimate- guitar.com/tab/1054759	Snälla Bli Min	2010s	Electronic	['Asus4', 'G', 'Bm7/A', 'Bm', 'D/F#', 'A', 'As	ef979fca-e68a-4d8f-bd27- 3d048516dc76
	4	https://tabs.ultimate- guitar.com/tab/1055161	Time To Say Goodbye Con Te Partirò	1990s	Pop%%Classical%%Pop	['G', 'D', 'Em', 'C', 'G', 'D', 'Em', 'C', 'G'	d42333bf-e925-4ad1-a4b9- bfe2e2df209e
	14109	https://tabs.ultimate- guitar.com/tab/ziggy_mar	Personal Revolution	2010s	Reggae	['Bm', 'A', 'Bm', 'A', 'Bm', 'A', 'Em', 'G', '	089f0438-4e4d-44dd-83e5- 5dd929753f0f
	14110	https://tabs.ultimate- guitar.com/tab/ziggy_mar	Shalom Salaam	2000s	Reggae	['Gm', 'Bb', 'F', 'Gm', 'Gm', 'Bb', 'F', 'Gm',	149bb9e5-fb06-4d73-a69b- b5d9573d2993
	14111	https://tabs.ultimate- guitar.com/tab/ziggy_mar	True To Myself	2000s	Reggae%%Reggae%%Reggae	['A', 'E', 'Bm', 'D', 'A', 'E', 'Bm', 'D', 'A'	c0d75c52-ae53-4b47-bc8e- a723ba542d00
	14112	https://tabs.ultimate- guitar.com/tab/ziggy_mar	True To Myself (ver 2)	2000s	Reggae	['A', 'E', 'Bm', 'A', 'E', 'Bm', 'A', 'E', 'Bm	29047e58-5391-4875-ab94- 3a5a7fdbcd0e
	14113	https://tabs.ultimate- guitar.com/tab/ziggy_mar	Wild And Free	2010s	Reggae	['G', 'A', 'E', 'B', 'E', 'B', 'E', 'B', 'E',	06c24412-8cf2-43bb-b0d5- 5f3980270a14

BUT...

Analysis based on Musical Chord (obtained through web scraping & appliances in invented logic)

→ Cannot fully grasp complexity of music

Then recognized two useful libraries "librosa" & "spotipy"

Digger

Hey Siri

What is my taste?

Music Sample Load

```
In [70]: import librosa
         y, sr = librosa.load('/Users/mac/Desktop/DAIS VS/crush sometimes.wav', duration=60.0)
In [72]: pathAudio = "/Users/mac/Desktop/DAIS_VS/"
         files = librosa.util.find_files(pathAudio, ext=['wav'])
         #files = np.array(files)
         # for y in files:
               data = librosa.load(y, sr = 16000, mono = True)
               data = data[0]
             librosa.display.waveplot(data)
In [73]: import os
         path, filename = os.path.split(files[0])
         root, ext = os.path.splitext(filename)
         what_i_want, the_rest = root.rsplit("_", 1)
         #what i want = os.path.splitext(os.path.split("/my/path/to/Planning Group 20180108.ind")[1])
         [0].rsplit("_", 1)
         tada = []
         tada.append(what i want)
         tada.append(the rest)
         # what i want
         # the rest
         tada
Out[73]: ['crush', 'sometimes']
```

Music sample default output

```
print(y)
print(len(y))
print('Sampling rate (Hz): %d' %sr)
print('Audio length (seconds): %.2f' % (len(y) / sr)) #음악의 길이(초) = 음파의 길이/sampling rate

[0. 0. 0. 0. 0.18545943 0.15676436 0.17183484]
1323000
Sampling rate (Hz): 22050
Audio length (seconds): 60.00
```

y (amplitude of the audio) = numeric

Audio length = amplitude / sr

2D wave plot

```
import matplotlib.pyplot as plt
import librosa.display

plt.figure(figsize =(50,10))
librosa.display.waveshow(y=y,sr=sr)
```

librosa.display.AdaptiveWaveplot at 0x7fd1f65b7ca0>

Fourier Transform

Conversion of Time-domain graph into frequency-domain graph

Many sin graphs of frequencies are yielded through Fourier Transformation

X-axis: Frequency, Y-axis: Amplitude → Easier + Sophisticated analysis

Spectogram (Sonographs|Voiceprints|Voicegrams)

Mel Spectogram

Conversion of Spectogram's y-axis into Mel Scale (human-readable format) → Non-linear Transformation

(Sample) Classical music's Mel Spectogram

Tempo & Zero Crossing Rate Extraction

The rate at which a sound wave converts from positive to negative or from negative to positive.

Often used for speech recognition or music analysis, and easy to analyze **Percussive feature**

Harmonic & Percussives

Harmonic: Characteristics that cannot be distinguished by the human ear = the color of music

Blue: Harmonics | Red: Percussives

Spectral Centroid

Calculates the weighted average of frequencies from the sound expressed in frequency and tells where the **[center of gravity of the sound]** is.

Blues music: the center of gravity is centered Metal music: the center of gravity is centered at the end \rightarrow metal music runs at the end

Chroma Frequencies

Easy to recognize chords

Bases on the music theory that human hearing recognizes two sounds with frequencies with an octave difference as similar sounds

Feature Extraction & Save

```
from librosa import feature
fn list i = [
feature.chroma stft,
 feature.spectral centroid,
feature.spectral bandwidth,
feature.spectral rolloff
fn list ii = [
feature.rms,
 feature.zero crossing rate
def get feature vector(y,sr):
  feat vect i = [ np.mean(funct(y,sr)) for funct in fn list i]
  feat vect ii = [ np.mean(funct(y)) for funct in fn list ii]
  feature vector = feat vect i + feat vect ii
  return feature vector
feature vector = get feature vector(y, sr)
tada.extend(feature vector)
print(tada)
```

```
import csv
header =[
 'song',
 'artist',
 'chroma stft',
 'spectral centroid',
 'spectral bandwidth',
 'spectral rolloff',
 'rmse',
 'zero crossing rate'
with open('sample.csv','w') as f:
 csv writer = csv.writer(f, delimiter = ',')
 csv writer.writerow(header)
 csv_writer.writerow(tada)
```

Spoti-py?

```
{'acousticness': 0.446,
'analysis_url': 'https://api.spotify.com/v1/audio-analysis/6y0igZArWVi6Iz0rj35c1Y',
'danceability': 0.54,
'duration_ms': 234910,
'energy': 0.59,
'id': '6y0igZArWVi6Iz0rj35c1Y',
'instrumentalness': 0,
'key': 0,
'liveness': 0.14,
'loudness': -4.359,
'mode': 1,
'speechiness': 0.0528,
'tempo': 119.878,
'time_signature': 4,
'track_href': 'https://api.spotify.com/v1/tracks/6y0igZArWVi6Iz0rj35c1Y',
'type': 'audio_features',
'uri': 'spotify:track:6y0igZArWVi6Iz0rj35c1Y',
'valence': 0.267}
```

Change of Plans

- 1. Decided to let go of **Spotipy**
 - 1. Features are not fully substantiated
- 2. **NO DROPS** considering **collinearity**
 - 1. K-means does not get BADLY affected

Genre Classification

song	artist	chroma_stft	spectral_centroid	spectral_bandwidth	spectral_rolloff	rmse	zero_crossing_rate
crush	sometimes	0.39172086	1853.81969	2189.910806	3960.317719	0.27187797	0.070059856

Masterplan

	song	artist	chroma_stft	spectral_centroid	spectral_bandwidth	spectral_rolloff	rmse	zero_crossing_rate
Ī	crush	sometimes	0.39172086	1853.81969	2189.910806	3960.317719	0.27187797	0.070059856

1. Data Cleaning

- a. Drop unnecessary features (duplicate audio representation)
- b. sklearn minmaxscaler

2. Model

- a. K-means clustering
- b. sklearn.metrics.pairwise cosine_similarity

MinMaxScale

WHY: To deal with wide range of variables

- Preserves the shape of the original distribution
- Doesn't meaningfully change the information embedded in the original data
- Doesn't reduce the importance of outliers

HOW:

- Transform features by scaling each feature to a given range e.g. 0-1, 0-5

chroma_stft	spectral_centr	spectral_band	spectral_rollof	rms	zero_crossing	chroma_cens	spectral_contr	feature.mfcc	tempo
0.2647821	1307.3975	1841.24819	2865.7035	0.04887787	0.04442093	0.1872992	26.8413823	28.61816	103.359375
0.36767906	2850.43686	2654.35582	5998.95123	0.25452292	0.13377376	0.22510704	23.9193165	25.890448	129.199219
0.37814575	2131.03199	2361.64153	4791.12936	0.28312698	0.07083272	0.21760835	24.6722008	26.276594	99.3840144
0.44611198	2659.93974	2604.08014	5592.72868	0.31960315	0.11514311	0.22204307	22.143348	26.012596	89.1029095
0.2670146	2763.07473	2805.6133	6118.45467	0.12314584	0.11456129	0.17611174	27.2105459	27.691204	143.554688
0.29396346	2207.28426	2491.53302	4934.66183	0.22963063	0.09115119	0.20759115	27.1111021	26.148813	129.199219
0.2871341	661.930205	1111.47938	1032.38959	0.0858389	0.03012642	0.18684089	28.9984281	26.267736	107.666016

K-Means

WHY: Cluster musics with similar audio features

- Unsupervised learning that groups data with similar properties into a certain number of clusters
- It is characterized in that it is not possible to know how many clusters it will be divided into from the point of view of analysis.
- It is used when there is no correct answer for the independent variable and divides the data by attribute.

HOW:

- Find optimal number of group (k)
- Assign each data to the cluster corresponding to the nearest centroid

Cosine Similarity

WHY: Check how close and similar the values of the variables that make up the song

- Used as a metric to measure distance when the magnitude of the vector is not important.
- Meaning of similarity between two vectors that can be obtained using the cosine angle between the two vectors

HOW:

- If the directions of two vectors are exactly the same, it is 1, if it forms an angle of 90°, it is 0, if it has an opposite direction, it has a value of -1.
- That is, the range is greater than or equal to -1 and less than or equal to 1, and the closer the value is to 1, the higher the degree of similarity is judged.


```
def find_similar_songs_(name, n=10):
    series = sim_ST[name].sort_values(ascending=False)
    series = series.drop(name)
    return series.head(n).to_frame()

#find_similar_songs(0)
names.loc[list(find_similar_songs_(0).index)]
```

song	artist	
AYA	MAMAMOO	781
Short Hair	AOA	41
NoNoNo	Apink	78
Love	CNBLUE	212
Seethru	Primary, Gaeko, Zion.T	928
Me Gustas Tu	GFRIEND	436
BTD (Before The Dawn)	INFINITE	525
DDD	EXID	373
Oasis	Crush, ZICO	274
Clap Your Hands (박수처)	2NE1	11

Music input: HANN by G-IDLE

Interpretation

	chron	na_stft spectra	al_centroid sp	ectral_bandwidth s	pectral_rolloff	rms	
k_cl	k_cluster						
	1 0.3	356622 26	678.399002	2624.642919	5671.808134	0.179894	
	artist	song	chroma_stft	spectral_centroid	spectral_ba	ndwidth	
8	2NE1, BIGBANG	Lollipop	0.440014	2686.520394	2554	1.849526	
15	3LAU, Bright Lights	How You Love Me	0.326211	3227.416737	2902	2.293836	
19	4Minute	Volume Up	0.345895	2744.915879	2461	.621953	
35	ADORA, EUNHA	MAKE U DANCE	0.358085	2494.736007	2387	7.220661	
42	APRIL	LALALILALA	0.297457	2789.300312	2697	.416208	

```
Cluster #1 are grouped by k-pop (idols) Nice!
```

```
print("What you want?: ")
x = int(input())
y = librosa MM.iloc[x]['k cluster']
print("Your pick is: " + names.iat[x,0] +"
print(librosa MM[librosa MM['k cluster']==
rosa_MM[librosa_MM['k_cluster']==y]['artis
#print(group MM.get group(1)['playlist'].v
What you want?:
119
Your pick is: BLACKPINK - Kill This Love
0
                HANN (Alone) - (G) I-DLE
                      LATATA - (G)I-DLE
                     Kiss (Dara) - 2NE1
      Please Don't Go (CL&Minzy) - 2NE1
11
          Clap Your Hands (박수쳐) - 2NE1
13
                     10 Out of 10 - 2PM
14
                        Heartbeat - 2PM
dtype: object
```

Clusters are grouped by k-pop (idols)
Which is apparently similar to that of the input!

Interpretation

	song	chroma_stft	spectral_centroid	spectral_bandwidth
17	['Can_I_LovefeatyouraMeego', '']	0.316272	1381.886737	1719.168721
21	['Easy']	0.419281	1225.363550	1630.064616
44	['Lucky_To_Be', 'Me']	0.353904	1323.944487	2024.150064
46	['Make_Me', 'Rainbows']	0.362804	967.686955	1690.989140
56	['On_a_Clear_DayYou_Can_See_Forever', '']	0.310390	1190.620190	1908.142794
63	['Regent_s', 'Park']	0.323171	973.677270	1386.411235
92	['When_I_fall_in', 'love']	0.358840	1538.971293	1850.365694

	song	chroma_stft	spectral_centroid
2	['AUTOMATIC']	0.378146	2131.031992
13	['Bon_voyagefeat_Beenzino', '']	0.427799	1769.541419
35	['Johnny']	0.374517	1986.597325
37	['Kiss_Me_MorefeatSZA', '']	0.328921	2007.317403
39	['LOVE']	0.340032	2041.087579
42	['Light', 'Switch']	0.411422	1763.400659
45	['MERRY-GO-ROUND_Feat_Zion_T_WonsteinPro	0.401210	1867.283693
47	['Manila']	0.419320	1879.571839
50	['Nerdy', 'Love']	0.367930	2081.391252
53	['No_Make', 'Up']	0.332375	1921.996173
60	['Peaches_feat_Daniel_CaesarGiveon', '']	0.353197	1870.755405
65	['Roses']	0.350775	2166.848208
79	['Sometimes']	0.390291	1863.375333
86	['Too', 'Good']	0.384841	1916.251260

Songs do actually have similar musical trait!

Limitation

- 1. Lack of understanding in audio features → attempted to many research papers & articles
- 2. Lack of data's credibility & accessibility
 - a. Spotipy's subjectivity
 - b. **Spotipy**'s lack in user friendliness limitation in crawling, etc
- 3. Lack of preciseness & accuracy test on model output
 - a. The only way to know whether the model is successful or not is to let one individual to "**listen**" which, perhaps, yields extreme subjective result.
- 4. Lack of time in finding appropriate computation methods
 - a. Graph image Deep Learning (CNN)
 - i. Mean & SD can not fully substantiate the overall trend of a music

Thank You!

Data science and Artificial Intelligence Society