ER to Relational schema

Conversion of ER diagram to Tables

- Strong entity sets
- Composite attributes
- Multivalued attributes
- Relationships sets
- Weak entity sets

Components of conversion process

- Three components of conversion process:
 - Specify schema of relation itself
 - Specify primary key on the relation
 - Specify any foreign key references to other relations

Strong entity sets

- Strong entity-set E with simple and single-valued attributes (a_1, a_2, ... a_n)
- Create a relational schema with same name E, and same attributes.
- Primary key of relational schema is same as primary key of entity-set.
- No foreign key references for strong entity-sets

Strong entity sets to Table

Student Table

Roll_id	Name	Gender	Mobile_no	Age

Composite attribute to Table

Student Table

Roll_no	First_name	Last_name	City	Street	House_no

Multivalued attribute

- Separate table for each multivalued attribute
- For multivalued attribute M in entity-set E
 - Create a relation schema R to store M, with attribute A (single valued) corresponding to M
 - Attributes of R are: A U primary_key (E)
 - Primary key of R includes all attributes of R
 - Foreign key constraint from R to E, on primary_key (E) attributes

Multivalued attribute to Table

Rollno	AGE	MOB_NO	EMAILID
1	24	9877249515	Abhay@gmail.com
1	24	7877249515	NULL

WRONG SOLUTION RELATIONAL TABLE

SOLUTION 1	Rolln o	AG E	1
FIND A STUDENT	1	24	ç
WHOSE MOB NO IS: 8877249515	2	22	7
	3	21	7
Age Mob_no	4	21	7

Student

Rolln o	AG E	MOB_N O_1	MOB_N O_2	MOB_N O_3	EMAILID1	EMAILID2
1	24	987724 9515	887724 9515	987724 221 <i>5</i>	Abhay@gmail.c	Abhay@BENNET T.com
2	22	787724 9515	NULL	NULL	ROHAN@gmail.	NULL
3	21	787724 9512	NULL	NULL	ROY@gmail.com	NULL
4	21	787724 9511	NULL	NULL	KRISHIV@gmail.	NULL
5	21	787724 9522	NULL	NULL	NULL	NULL

SOLUTION 2

SIMPLICITY IS
LOST WHILE
PERFORMING,
DELETE,UPDATE
AND SELECT

Rollno	AGE	MOB_NO_1	EMAILID1
1	24	9877249515, 8877249515, 9877242215	Abhay@gmail.com, Abhay@BENNETT.com
2	22	7877249515	ROHAN@gmail.com
3	21	7877249512	ROY@gmail.com
4	21	7877249511	KRISHIV@gmail.com
5	21	7877249522	NULL

Multivalued attribute to Table

Student Table

Roll_no	Age

Mobile Table

Roll_no	Mob no

Email Table

Roll_no	Email id

Relationship set

- Relationship-set R
 - Assume all participating entity-sets are strong entity sets
 - a_1, a_2, ..., a_m is the union of all participating entitysets' primary key attributes
 - b_1, b_2, ..., b_n are descriptive attributes on R (if any)

Relational schema for R is:

- { a1, a 2, ..., a m} U { b1, b 2, ..., b n }
- Primary key of R depends on R's mapping cardinality

Relationship set to Table

Works_in Table

Emp_no	Dept id	since

Task for students

Binary relationship with cardinality ratio

- Case-01: Binary relationship with cardinality ratio m:n
- Case-02: Binary relationship with cardinality ratio n:1
- Case-03: Binary relationship with cardinality ratio 1:n
- Case-04: Binary relationship with cardinality ratio 1:1

Case-01: Binary relationship with cardinality ratio m:n

Tables:

Table 1

A (a1, a2)

Table 2

B (<u>b1</u>, b2)

Table 3

 $R(\underline{a1}, \underline{b1})$

Example on cardinality ratio m:n

Student Table

SID Name S1 Ram S2 David S3 Mohan S4 Shyam S5 John

Enroll Table

SID	CID
S1	C1
S2	C1
S3	C2
S1	C2
S5	C1

Courses Table

<u>CID</u>	C_name
C1	DBMS
C2	OS

After minimization of Tables

Student (SID, Name)
Enroll (SID, CID)
Course (CID, C_name)

Case-02: Binary relationship with cardinality ratio 1:n

Tables:

Table 1

A (a1, a2)

Table 2

BR (a1, <u>b1</u>, b2)

Example on cardinality ratio 1:n

Student Table

SID	Name
S1	Ram
S2	David
S3	Mohan
S4	Shyam
S5	John

Enrolls Table

<u>SID</u>	CID
S1	C1
S2	C3
S1	C2
S2	C4
S3	C5

Courses Table

<u>CID</u>	C_name
C1	DBMS
C2	OS
C3	DS
C4	NS
C5	IMS

After minimization of Tables

Students (SID, Name)
Course_Enroll (CID, SID, C_name)

Case-03: Binary relationship with cardinality ratio m:1

Tables:

Table 1 AR (<u>a1</u>, b1, a2)

Table 2 B (<u>b1</u>, b2)

Example on cardinality ratio m:1

Student Table

Enroll Table

Course Table

After minimization of Tables

SID	Name
S1	Ram
S2	David
S3	Mohan
S4	Shyam
S5	John

SID	CID
S1	C1
S2	C1
S3	C2
S4	C1
S5	C2

<u>CID</u>	C_name
C1	DBMS
C2	OS

Student_Enroll (SID, CID, Name)
Course (CID, C_name)

Case-04: Binary relationship with cardinality ratio 1:1

Tables:

Table 1

AR (<u>a1</u>, b1, a2)

Table 2

B (<u>b1</u>, b2)

Or

Table 1

A (a1, a2)

Table 2

BR (a1, <u>b1</u>, b2)

Example on cardinality ratio 1:1

Enroll Table

Student Table

<u>SID</u> <u>SID</u> CID Name S1 C1 **S1** Ram S2 C3 S2 David S3 C2 S3 Mohan **S4** C5 **S4** Shyam S5 C4 S5 John

Course Table

<u>CID</u>	C_name
C1	DBMS
C2	OS
C3	DS
C4	NS
C5	IMS

After minimization of Tables

Student_Enroll (SID, CID, Name)
Course (CID, C_name)

Or

Student (SID, Name)
Course_Enroll (CID, SID C_name)

One to One relationship with total participation at one end

- A1 and B1 are primary keys of E1 and E2 respectively.
- Since E1 is in total participation, each entry in E1 is related to only one entry in E2, but not all entries in E2 are related to an entry in E1.
- The primary key of E1 should be allowed as the primary key of the reduced table, since if the primary key of E2 is used, it might have null values for many of its entries in the reduced table.

One to One relationship with total participation at both end

Only one table is required.

• ARB (<u>a1</u>, a2, <u>b1</u>, b2)

one to many relationship with total participation at many end

- Weak entity set always appears in association with identifying relationship with total participation constraint
- Here, two tables will be required-
 - 1. $A(\underline{a1}, a2)$
 - 2. BR (<u>a1</u>, <u>b1</u>, b2)

Weak entity set

- Weak entity-sets depend on at least one strong entity-set
 - Identifying entity-set, or owner entity-set
 - Relationship between the two called the identifying relationship
- Weak entity-set A owned by strong entity-set B
 - Attributes of A are { a_1, a_2, ..., a_m }
 - primary_key (B) = $\{b_1, b_2, ..., b_n\}$
 - Relational schema for A: { a_1,a_2,..., a_m} U { b1,b 2,..., b n }
 - Primary key of A is discriminator(A) U primary_key (B)
 - A has foreign key constraint on primary_key (B)

Identifying Relationship

- Identifying relationship is many-to-one, with no descriptive attributes
- Relational schema for weak entity-set includes primary key for strong entityset
 - Foreign key constraint imposed, too
 - No need to create relational schema for identifying relationship.

Weak entity set to table

account (account_number, balance)
check (account_number, check_number, check_data, recipient, amount, memo)

Weak entity set to table contd...

student (<u>username</u>)
assignment (<u>shortname</u>, due_date, url)
submission (<u>username</u>, <u>version</u>, <u>shortname</u>, submit_date, data)

What is the min and max number of tables required to convert an ER diagram with 2 entities and 1 relationship between them with partial participation constraints of both entities?

- Min 1 and Max 2
- Min 1 and Max 3
- Min 2 and Max 3
- Min 2 and Max 2

What is the min and max number of tables required to convert an ER diagram with 2 entities and 1 relationship between them with partial participation constraints of both entities?

- Min 1 and Max 2
- Min 1 and Max 3
- Min 2 and Max 3
- Min 2 and Max 2

- Which of the following possible relations will not hold if the ERD is mapped into a relation model?
 - Person (NID, Name)
 - Qualification (NID, ExamID, QualifiedDate)
 - Exam (ExamID, NID, ExamName)

Which of the following possible relations will not hold if the ERD is mapped into a relation model?

- Person (NID, Name)
- Qualification (NID, ExamID, QualifiedDate)
- Exam (ExamID, NID, ExamName)

Over to You

• Minimum number of tables needed to represent the entity relationship diagram is _____.

• Find the attribute sets of the minimized table.

• Find the minimum number of tables required to represent the given ER diagram in relational model

- https://www.gatevidyalay.com/er-diagrams-to-tables-practice-problems/
- https://www.gatevidyalay.com/er-diagrams-to-tables-practice-problems/
- http://homepages.inf.ed.ac.uk/libkin/teach/dbs14/ER-lecture.pdf
- https://www.geeksforgeeks.org/mapping-from-er-model-to-relational-model/