## Relatório 2

Luciano Belo - 3897

02/09/2021

## Introdução

A estatística se refere à matemática e às técnicas com as quais entendemos os dados. Como dito por Mark Twain: "Os fatos são teimosos, mas as estatísticas são mais maleáveis".

A estatística é um ramo de grande importância, já que desenvolve técnicas como a coleta de dados e sua organização, interpretação, análise e representação. O uso da matemática para a tomada de decisões vem acompanhando nossa história desde o início das grandes civilizações.

E como seria se a estatística não existisse? Bom, essa pergunta é muito complexa, apesar da dificuldade em perceber, muitas das decisões que tomamos na vida cotidiana são baseadas em estatísticas.

Desta forma, este relatório tem como objetivo relacionar e analisar dados comuns no nosso dia, neste caso um censo feito com os alunos, com auxílio de ferramentas estatísticas .

```
# Importação do dataframe
df <- readRDS("data/censo.Rds")
```

### Análises

Nesta seção iremos analisar cada uma das variáveis presentes em nosso dataframe ( tabela de uma base de dados, em que cada linha corresponde a um registo - linha - da tabela e cada coluna corresponde às propriedades - campos - a serem armazenadas para cada registo da tabela ).

#### Variáveis

Antes de começar a fazer as análises precisamos a priori, entender o que são variáveis e quais são as suas classificações. Variável é uma característica de interesse que é medida em cada elemento da amostra ou população em estudo. As variáveis podem ter valores numérico ou não podendo ser classificadas da seguinte forma:

#### Variáveis Numéricas ou Quantitativas

- Quantitativas Discretas: Se tratam de características mensuráveis que podem assumir apenas um número finito ou infinito contável de valores e, assim, somente fazem sentido valores inteiros. Geralmente são o resultado de contagens
- Quantitativas Contínuas: Se tratam de características que assumem valores em escala continua (na reta real), para que os valores fracionais (números com virgula) façam sentido. Usualmente devem ser medidas através de algum instrumento

#### Variáveis Categóricas ou Qualitativas

São as características que não possuem valores quantitativos, mas, ao contrário, são definidas por várias categorias, ou seja, representam uma classificação dos indivíduos estudados e são divididas em:

- Qualitativas Nominais: N\u00e3o existe ordena\u00e7\u00e3o dentre as categorias. Exemplos: sexo, cor dos olhos, fumante/n\u00e3o fumante, doente/sadio.
- Qualitativas Ordinais: Existe uma ordenação entre as categorias. Exemplos: escolaridade (1 grau, 2 graus, 3 graus), estágio da doença (inicial, intermediário, terminal), mês de observação (janeiro, fevereiro, dezembro).

#### Gráficos

Gráficos são a tentativa de se expressar visualmente dados ou valores numéricos, de maneiras diferentes, assim facilitando a sua compreensão. Existem vários tipos de gráficos, entretando devemos saber quais são os mais adequados a partir dos tipos de variáveis. No caso deste relatório temos dois tipos de variáveis: Categóricas nominal e Numérica Discreta.

Sendo assim, para as variáveis Categóricas nominal nós usaremos gráficos de barra e gráficos de setores. Já para as variáveis Numéricas discretas usaremos Histograma, Polígono de frequência com histograma e Boxplot.

#### Gráficos de barra

Os gráficos em barras são comumente usados para exibir distribuições de frequências de variáveis qualitativas, como por exemplo a variável "Sexo".

#### Gráficos de setores

O gráfico em setores é comumente utilizado para representar parte de um todo, geralmente em percentagens, e é bastante apropriado para mostrar frequências de ocorrências de variáveis qualitativas.

#### Histograma

O histograma é um gráfico de barras contíguas, e é apropriado para representar distribuições de frequências tando de variáveis quantitativas contínuas como discretas com muitos valores possíveis. Se a variável é quantitativa discreta, mas contém poucos valores possíveis, então os gráficos utilizados para apresentar a distribuição de frequência de variáveis qualitativas podem ser usados para representar sua frequência nos dados observados.

#### Polígono de frequência

Após a construção do histograma, é importante observar tendência de alturas das barras, para isso é interessante construir o polígono de frequência sobre as barras, que é um gráfico de linhas obtido ligando os pontos médios dos topos de cada barra.

#### **Boxplot**

O Boxplot ou box plot é um diagrama de caixa construído utilizando as referências de valores mínimos e máximos, primeiro e terceiro quartil, mediana e outliers da base de dados. O boxplot tem como objetivo estudar as medidas estatística do conjunto de dados, como propriedades de locação, variabilidade, média, e outliers.

## Análises Dataframe

Agora já definidos os conceitos, iremos iniciar as análises. Dentre as variáveis que serão analisadas temos:

- Curso
- Provedor
- Idade
- Residência
- Estado
- Semestre
- Primeira vez na matéria
- Facilidade em Exatas
- Opinião sobre os períodos remotos
- Turma

#### Curso

Nesta subseção será analisado os dados referentes aos Cursos. Esta coluna é uma variável Categórica nominal, logo, teremos gráficos de barra e gráficos de setores.

## Gráfico de Barras - Cursos



tabela <- table(df\$CURSO)
pie(tabela,col=rainbow(10),cex=0.7, main="Gráfico de setores - Cursos")

## Gráfico de setores - Cursos



É perceptível a partir dos gráficos que o curso de maior expressão é Educação Física e o de menor matemática. É notável também que os cursos de Ciências Biológicas, Agronomia, Engenharia de Alimentos, Ciência da Computação e Administração possuem quantidades bem próximas de alunos.

### Provedor

Nesta subseção será analisado os dados referentes aos Provedores de Email. Esta coluna é uma variável Categórica nominal, logo, teremos gráficos de barra e gráficos de setores.

## Gráfico de Barras - Provedor



#### Provedores

```
tabela <- table(df$PROVEDOR)
pie(tabela,col=rainbow(4),cex=0.5, main="Gráfico de setores - Provedores")</pre>
```

## Gráfico de setores - Provedores



Notamos a partir dos gráficos que os provedores Gmail e UFV são mais expressivos. Vale ressaltar que o gráfico de setores é de grande auxílio quanto a interpretação, já que visualmente conseguimos mensurar os dados como parcelas.

### Idade

Nesta subseção será analisado os dados referentes as Idades. Esta coluna é uma variável Numérica Discreta, logo, teremos Histograma, Polígono de frequência com histograma e Boxplot.

```
hist(df$IDADE,
    main="Histograma - Idades",
    xlab="Idades",
    ylab = "Frequência",
    border="black",
    col=rgb(1,0,0,0.5))
```

# Histograma – Idades



# Polígono de frequência com histograma



```
boxplot(
  df$IDADE,
  main="BoxPlot - Idades",
  xlab="Idades",
  ylab = "Frequência",
  col=rgb(1,0,0,0.5))
```

## **BoxPlot - Idades**



#### Idades

Abaixo temos os resultados obtidos a partir da função summary que é capaz de resumir vários tipos de objetos em uma única função. Dentre esses objetos encontram-se o primeiro e o terceiro quartil, sendo que o segundo quartil é dado indiretamente através da mediana.

```
summary(df$IDADE)

## Min. 1st Qu. Median Mean 3rd Qu. Max. NA's
## 19.00 20.00 22.00 23.34 25.00 56.00 2
```

Podemos notar a partir das informações anteriores, tanto dos gráficos quanto da função summary que as idades são em média 23 anos. Podemos notar também a presença de outliers ( os outliers são dados que se distanciam radicalmente de todos os outros São pontos fora da curva normal, valores que fogem da normalidade e que podem causar desequilíbrio nos resultados obtidos ), ja que possuímos valores acima da soma Q3 + FIQ \* 1,5, em que FIQ = Q3 - Q1. Além disso, podemos notar um valor alto para a amplitude ( diferença entre valores máximo e mínimo ) o que nos indica uma grande dispersão ou variabilidade dos dados para esta variável.

#### Residência

Nesta subseção será analisado os dados referentes as Residências. Esta coluna é uma variável Categórica nominal, logo, teremos gráficos de barra e gráficos de setores.

```
df$RESIDENCIA <- stringr::str_trim(df$RESIDENCIA)

residencia <- df %>%
  group_by(RESIDENCIA) %>%
  summarise(Total=n())
```

## Gráfico de Barras - Residências







Nesta seção foram feitos gráficos de barras, sendo que o primeiro contém todas as residências da coluna e o segundo residências com valores superiores a 2. Como nesta variável há uma quantidade expressiva de dados distintas, percebe-se que o primeiro gráfico torna-se de difícil leitura, já o segundo como foi feita a filtragem, é mais agradável de ser visto. Notamos também, que as cidades de Florestal e Pará de Minas possuem os maiores valores.

20

Quantidade por Residência

30

40

10

#### Estado

0

Nesta subseção será analisado os dados referentes aos Estados. Esta coluna é uma variável Categórica nominal, logo, teremos gráficos de barra e gráficos de setores.

```
estado <- df %>%
  group_by(ESTADO) %>%
  summarise(Total=n())

estado %>% ggplot(aes(reorder(ESTADO,Total), Total, fill=ESTADO)) +
  geom_col(show.legend = FALSE) +
  geom_text(aes(label=Total), vjust=-0.5)+
  ylim(0,140)+
  theme_gray()+
  xlab("Estados")+
  ylab("Quantidade por Estado")+
  ggtitle("Gráfico de Barras - Estados")+
```



## Gráfico de Barras - Estados



```
tabela <- table(df$ESTADO)
pie(tabela,col=rainbow(6),cex=0.6, main="Gráfico de setores - Estados")</pre>
```

## Gráfico de setores - Estados



Notamos a partir dos gráficos que Minas Gerais é o estado mais expressivo. Vale ressaltar que assim como o gráfico de setores para a variável de Provedores, neste caso também é de grande auxílio quanto a interpretação,

já que visualmente conseguimos mensurar os dados como parcelas.

#### Semestre

Nesta subseção será analisado os dados referentes aos Semestres. Esta coluna é uma variável Numérica Discreta, logo, teremos Histograma, Polígono de frequência com histograma e Boxplot.

```
hist(df$SEMESTRE,
    main="Histograma - Semestres",
    xlab="Semestres",
    ylab = "Frequência",
    border="black",
    col="bisque")
```

# Histograma - Semestres



```
h=hist(df$SEMESTRE,
    main="Polígono de frequência com histograma",
    xlab="Semestres",
    ylab="Frequência",
    border="black",
    col="bisque")
lines(c(min(h$breaks), h$mids, max(h$breaks)), c(0,h$counts, 0), type = "l")
```

# Polígono de frequência com histograma



```
boxplot(
  df$SEMESTRE,
  main="BoxPlot - Semestres",
  xlab="Semestres",
  ylab = "Frequência",
  col="bisque")
```

## **BoxPlot - Semestres**



#### Semestres

Abaixo temos os resultados obtidos a partir da função summary que como explicado anteriormente, encontramse o primeiro e o terceiro quartil, sendo que o segundo quartil é dado indiretamente através da mediana.

```
summary(df$SEMESTRE)
```

```
## Min. 1st Qu. Median Mean 3rd Qu. Max. NA's
## 2.000 3.000 5.000 5.401 7.000 11.000 4
```

Podemos notar a partir das informações anteriores, tanto dos gráficos quanto da função summary que as pessoas estão em média no  $5^{\circ}$  semestre. Podemos notar também que ao contrário da variável Idades não há presença de outliers, mostrando então melhor precisão.

#### Primeira vez na matéria

Nesta subseção será analisado os dados referentes as vezes em que a matéria foi cursada. Esta coluna é uma variável Categórica nominal, logo, teremos gráficos de barra e gráficos de setores.

```
primeira_vez <- df %>%
   group_by(PRIMEIRAVEZ) %>%
   summarise(Total=n())

primeira_vez %>% ggplot(aes(reorder(PRIMEIRAVEZ,Total), Total, fill=PRIMEIRAVEZ)) +
   geom_col(show.legend = FALSE) +
   geom_text(aes(label=Total), vjust=-0.5)+
   ylim(0,125)+
   theme_gray()+
   xlab("Vezes em que foi feita a disciplina")+
   ylab("Quantidade por vez")+
```

```
ggtitle("Gráfico de Barras - Vezes em que foi feita a disciplina")+
theme(axis.text.x = element_text(angle = 45, hjust = 1),
    plot.title = element_text(hjust = 0.5))
```

120 -

## Gráfico de Barras - Vezes em que foi feita a disciplina

118



## Gráfico de setores - Vezes em que foi feita a disciplina



Notamos a partir dos gráficos que a quantidade mais expressiva é de alunos que estão fazendo a disciplina

pela primeira vez. Vale ressaltar que assim como o gráfico de setores para a variável de Provedores e Estados, neste caso também é de grande auxílio quanto a interpretação.

#### Facilidade em Exatas

Nesta subseção será analisado os dados referentes a Facilidade em Exatadas. Esta coluna é uma variável Categórica nominal, logo, teremos gráficos de barra e gráficos de setores.

### Gráfico de Barras – Facilidade com Exatas



tabela <- table(df\$FACILIDADEEXATAS)
pie(tabela,col=rainbow(2),cex=0.9, main="Gráfico de setores - Facilidade com Exatas")

## Gráfico de setores - Facilidade com Exatas



Notamos a partir dos gráficos que a quantidade mais expressiva é de alunos que não possuem facilidade em exatas, sendo que estes valores chegam a ser mais de 60% do valor total.

## Opinião sobre os períodos remotos

Nesta subseção será analisado os dados referentes as opiniões sobre os períodos remotos. Esta coluna é uma variável Categórica nominal, logo, teremos gráficos de barra e gráficos de setores.

```
opiniao_periodos_remotos <- df %>%
 group_by(OPINIAOPERIODOSREMOTOS) %>%
  summarise(Total=n())
opiniao_periodos_remotos %>% ggplot(
    aes(reorder(OPINIAOPERIODOSREMOTOS,Total),
        fill=OPINIAOPERIODOSREMOTOS)
   ) +
  geom_col(show.legend = FALSE) +
  geom_text(aes(label=Total), vjust=-0.5)+
  ylim(0,78) +
  theme gray()+
  xlab("Opinião sobre o Período Remoto")+
  ylab("Quantidade por Opinião")+
  ggtitle("Gráfico de Barras - Opinião sobre o Período Remoto")+
  theme(axis.text.x = element_text(angle = 45, hjust = 1),
        plot.title = element_text(hjust = 0.5))
```





Opinião sobre o Período Remoto

tabela <- table(df\$OPINIAOPERIODOSREMOTOS)
pie(tabela,col=rainbow(5),cex=0.9, main="Gráfico de setores - Opinião sobre o Período Remoto")

# Gráfico de setores - Opinião sobre o Período Remoto



Podemos interpretar a partir das informações anteriores, que os alunos de modo geral preferem as aulas presenciais, enquanto a quantidade de alunis que preferem o ensino remoto é a menor.

#### Turma

Nesta subseção será analisado os dados referentes as Turmas. Esta coluna é uma variável Categórica nominal, logo, teremos gráficos de barra e gráficos de setores.

## Gráfico de Barras - Turmas



```
tabela <- table(df$TURMA)
pie(tabela,col=rainbow(3),cex=0.9, main="Gráfico de setores - Turmas")</pre>
```

## Gráfico de setores - Turmas



Podemos interpretar a partir das informações anteriores, que os valores de cada turma são bem próximos e em contraste a disciplina de MAF105 tanto da turma 1 quanto a 2 a disciplina de MAF160 é a de menor expressão.

## Conclusão

Conclui-se que este relátorio apresentou resultados muito interessantes, por relacionar os tipos de variáveis e os mais variados tipos de gráficos. Por conseguinte podemos ressaltar que a linguagem R nos permite criar gráficos interativos a partir dos resultados das análises de dados. Os gráficos podem ser usados para obter insights significativos durante todo o processo de análise de dados ou podem ser exportados em um relatório como neste caso.

A análise de dados permite, ao mesmo tempo, ter um panorama geral do dataframe e riqueza de detalhes em cada variável. Ademais, a junção de análise e uso de gráficos, corrobora para melhor entendimento da disciplina de Estatística, sendo assim, conseguimos ter um melhor aprendizado da matéria.

## Referências

O que é a Estatística

Importância da Estatística

O que é um Dataframe

Variáveis e Classificação

Gráficos

Quando usar determinado Gráfico

Boxplot