# Chapter 2: Systems of Equations

Liangda Fang

Dept. of Computer Science Jinan University



Conclusions

#### Motivation

Question: Given a nonsingular square matrix A and a vector b, how to solve a linear equation Ax = b?



### Outline

- Introduction
- **Preliminaries**
- Iterative method
  - Jacobi Method
  - Gauss-Seidel Method
  - Successive Over-Relaxation
  - Convergence of iterative methods
- Methods for symmetric positive-definite matrices
  - Symmetric positive-definite matrices
  - Conjugate Gradient Method
  - Preconditioning
- Conclusions



### Outline

Introduction

- **Preliminaries**
- - Jacobi Method
  - Gauss-Seidel Method
  - Successive Over-Relaxation
  - Convergence of iterative methods
- - Symmetric positive-definite matrices
  - Conjugate Gradient Method
  - Preconditioning



Conclusions



### Definition (Vectors)

An *n*-dimensional (column) vector is of the following form

$$u = \begin{bmatrix} u_1 \\ u_2 \\ \vdots \\ u_n \end{bmatrix}.$$

### Definition (Row vectors)

An *n*-dimensional **row vector** is of the following form

$$u = \begin{bmatrix} u_1 & u_2 & \cdots & u_n \end{bmatrix}.$$



### **Matrices**

### Definition (Matrices)

**Preliminaries** 

An  $m \times n$  matrix is of the following form

$$A = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{bmatrix}.$$



# Matrix-matrix multiplication

#### Definition (Matrix-matrix multiplication)

Let A be an  $m \times n$  matrix, and B be  $n \times p$  matrix. Then, AB, which is an  $m \times p$  matrix, is defined as follows:

$$\begin{bmatrix} a_{11} & \cdots & a_{1n} \\ a_{21} & \cdots & a_{2n} \\ \vdots & \ddots & \vdots \\ a_{m1} & \cdots & a_{mn} \end{bmatrix} \begin{bmatrix} b_{11} & b_{12} & \cdots & b_{1p} \\ \vdots & \vdots & \ddots & \vdots \\ b_{n1} & b_{n2} & \cdots & b_{np} \end{bmatrix} = \\ \begin{bmatrix} \sum_{i=1}^n a_{1i}b_{i1} & \sum_{i=1}^n a_{1i}b_{i2} & \cdots & \sum_{i=1}^n a_{1i}b_{ip} \\ \sum_{i=1}^n a_{2i}b_{i1} & \sum_{i=1}^n a_{2i}b_{i2} & \cdots & \sum_{i=1}^n a_{2i}b_{ip} \\ \vdots & \vdots & \ddots & \vdots \\ \sum_{i=1}^n a_{mi}b_{i1} & \sum_{i=1}^n a_{mi}b_{i2} & \cdots & \sum_{i=1}^n a_{mi}b_{ip} \end{bmatrix}.$$



Introduction

#### Conclusions

## Definition (Matrix form)

A system of m linear equations in n unknowns can be written in  $\mathbf{matrix}$  form as

$$\begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix} = \begin{bmatrix} b_1 \\ b_2 \\ \vdots \\ b_n \end{bmatrix}.$$





### Definition (Identity matrix)

The  $n \times n$  identity matrix  $I_n$  is the matrix with  $I_{ii} = 1$  for  $1 \le i \le n$  and  $I_{ij} = 0$  for  $i \ne j$ .

$$\begin{bmatrix} 1 & 0 & \cdots & 0 \\ 0 & 1 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & 1 \end{bmatrix}$$



### Definition (Identity matrix)

The  $n \times n$  identity matrix  $I_n$  is the matrix with  $I_{ii} = 1$  for  $1 \le i \le n$  and  $I_{ij} = 0$  for  $i \ne j$ .

$$\begin{bmatrix} 1 & 0 & \cdots & 0 \\ 0 & 1 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & 1 \end{bmatrix}$$

### Definition (Inverse)

For an  $n \times n$  matrix A, the **inverse**  $A^{-1}$  of A is an  $n \times n$  matrix s.t.  $AA^{-1} = A^{-1}A = I_n$ .



### Definition (Identity matrix)

The  $n \times n$  identity matrix  $I_n$  is the matrix with  $I_{ii} = 1$  for  $1 \le i \le n$  and  $I_{ij} = 0$  for  $i \neq j$ .

$$\begin{bmatrix} 1 & 0 & \cdots & 0 \\ 0 & 1 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & 1 \end{bmatrix}$$

### Definition (Inverse)

For an  $n \times n$  matrix A, the **inverse**  $A^{-1}$  of A is an  $n \times n$  matrix s.t.  $AA^{-1} = A^{-1}A = I_n.$ 

### Definition (Singular)

The  $n \times n$  matrix A is **nonsingular (invertible)**, if it has a inverse  $A^{-1}$ ; otherwise, it is singular (noninvertible).

Introduction

### <u>Definition</u> (Transpose)

The **transpose** of an  $m \times n$  matrix A is the  $n \times m$  matrix  $A^{\top}$  whose entries are  $A_{ii}^{\top} = A_{ji}$ .



Conclusions

### Definition (Transpose)

The **transpose** of an  $m \times n$  matrix A is the  $n \times m$  matrix  $A^{\top}$  whose entries are  $A_{ii}^{\top} = A_{ji}$ .

### Example

Let A be a  $2 \times 3$  matrix as follows:  $\begin{bmatrix} 1 & 1 & 3 \\ 5 & -4 & 2 \end{bmatrix}$ .

Then,  $A^{\top}$  is a  $3 \times 2$  matrix as follows:  $\begin{bmatrix} 1 & 5 \\ 1 & -4 \\ 3 & 2 \end{bmatrix}$ .



#### Definition

Given a vector v,

- **1** p-norm:  $||v||_p = (\sum_{i=1}^n |v_i|^p)^{\frac{1}{p}}$ ;
- 2 Euclidean norm (2-norm):  $||v||_2 = \sqrt{\sum_{i=1}^n |v_i|^2}$ ;
- **3** Infinity norm:  $||v||_{\infty} = \max\{|v_1|, \dots, |v_n|\};$



#### Definition

Introduction

Given a vector v,

- **1** p-norm:  $||v||_p = (\sum_{i=1}^n |v_i|^p)^{\frac{1}{p}};$
- 2 Euclidean norm (2-norm):  $||v||_2 = \sqrt{\sum_{i=1}^n |v_i|^2}$ ;
- Infinity norm:  $||v||_{\infty} = \max\{|v_1|,\ldots,|v_n|\};$

### **Proposition**

- **1** Non-negativity:  $||v||_n \ge 0$ ;
- **2** Absolute scalability:  $||av||_p = |a| ||v||_p$ ;
- Triangle inequality:  $||v+u||_p \leq ||v||_p + ||u||_p$ ;
- **4** Separates points: If  $||v||_p = 0$ , then v = 0.

11/101

**Preliminaries** 

#### Example

Assume that v = (2, -1) and w = (1, 3).

• 
$$||v||_2 = \sqrt{|2|^2 + |-1|^2} = \sqrt{5}$$
 and  $||v||_\infty = \max\{|2|, |-1|\} = 2;$ 

$$\bullet \ \|w\|_2 = \sqrt{|1|^2 + |3|^2} = \sqrt{10} \ \text{and} \ \|w\|_\infty = \max\{|1|, |3|\} = 3;$$



#### Example

Assume that v = (2, -1) and w = (1, 3).

- $||v||_2 = \sqrt{|2|^2 + |-1|^2} = \sqrt{5}$  and  $||v||_{\infty} = \max\{|2|, |-1|\} = 2$ ;
- $||w||_2 = \sqrt{|1|^2 + |3|^2} = \sqrt{10}$  and  $||w||_\infty = \max\{|1|, |3|\} = 3$ ;
- $||2v||_2 = \sqrt{|2 \times 2|^2 + |2 \times (-1)|^2} = 2\sqrt{5}$ ;
- $||3v||_{\infty} = \max\{|3\times 2|, |3\times (-1)|\} = 6 = 3\times 2;$



#### Example

Assume that v = (2, -1) and w = (1, 3).

• 
$$||v||_2 = \sqrt{|2|^2 + |-1|^2} = \sqrt{5}$$
 and  $||v||_\infty = \max\{|2|, |-1|\} = 2;$ 

$$\bullet \ \|w\|_2 = \sqrt{|1|^2 + |3|^2} = \sqrt{10} \ \text{and} \ \|w\|_\infty = \max\{|1|, |3|\} = 3;$$

• 
$$||2v||_2 = \sqrt{|2 \times 2|^2 + |2 \times (-1)|^2} = 2\sqrt{5};$$

• 
$$||3v||_{\infty} = \max\{|3 \times 2|, |3 \times (-1)|\} = 6 = 3 \times 2;$$

• 
$$||v+w||_2 = \sqrt{|2+1|^2 + |-1+3|^2} = \sqrt{13} < \sqrt{5} + \sqrt{10} = ||v||_2 + ||w||_2;$$

• 
$$||v+w||_{\infty} = \max\{|2+1|, |-1+3|\} = 3 < 2+3 = ||v||_{\infty} + ||w||_{\infty};$$



12/101 Liangda Fang

#### Example

Assume that v = (2, -1) and w = (1, 3).

• 
$$||v||_2 = \sqrt{|2|^2 + |-1|^2} = \sqrt{5}$$
 and  $||v||_\infty = \max\{|2|, |-1|\} = 2;$ 

$$\bullet \ \|w\|_2 = \sqrt{|1|^2 + |3|^2} = \sqrt{10} \ \text{and} \ \|w\|_\infty = \max\{|1|, |3|\} = 3;$$

• 
$$||2v||_2 = \sqrt{|2 \times 2|^2 + |2 \times (-1)|^2} = 2\sqrt{5};$$

• 
$$||3v||_{\infty} = \max\{|3 \times 2|, |3 \times (-1)|\} = 6 = 3 \times 2;$$

• 
$$||v+w||_2 = \sqrt{|2+1|^2 + |-1+3|^2} = \sqrt{13} < \sqrt{5} + \sqrt{10} = ||v||_2 + ||w||_2;$$

• 
$$||v+w||_{\infty} = \max\{|2+1|, |-1+3|\} = 3 < 2+3 = ||v||_{\infty} + ||w||_{\infty};$$

•  $||0||_2 = 0$  and  $||0||_{\infty} = 0$ .

12/101 Liangda Fang

Introduction

#### Definition

Let  $v_1, \dots, v_m$  be *n*-dimensional vectors.

The subspace of  $V: \{v_1, \dots, v_m\}$  is  $\{x \mid x = a_1v_1 + \dots + a_mv_m\}$ .

A point  $y \in \mathbb{R}^n$  is in V, if  $y \in V$  (i.e., there is a vector of  $a_1, \dots, a_m$  s.t.

$$y = a_1 v_1 + \dots + a_m v_m.)$$

### Example (Orthonormal sets)

- $\bullet$  {(1,1)} (Figure ??)
- $\{(1,0,0),(0,1,0)\};$  (Figures ??)



Conclusions

Introduction

#### Conclusions

### Definition

Let V and V' be two subspaces. We say V is a subspace of V', denoted by  $V \subseteq V'$ , if every point of V is in V'.



Introduction

#### Definition

Let V and V' be two subspaces. We say V is a subspace of V', denoted by  $V \subseteq V'$ , if every point of V is in V'.

#### Lemma

Let  $V: \{v_1, \dots, v_m\}$  and  $V': \{v'_1, \dots, v'_n\}$  be two subspaces. Then,  $V \subseteq V'$  iff  $v_i \in V'$  for 1 < i < n.



Conclusions



**Preliminaries** 

### Proof.

Introduction

 $(\Leftarrow)$ : Let  $v \in V$ .



Conclusions



#### Proof.

Introduction

$$(\Leftarrow)$$
: Let  $v \in V$ .

Then,  $v = a_1 v_1 + \cdots + a_m v_m$ .



#### Proof.

$$(\Leftarrow)$$
: Let  $v \in V$ .

Then,  $v = a_1 v_1 + \cdots + a_m v_m$ .

By the assumption,  $v_i = b_{1i}v'_1 + \cdots + b_{ni}v'_n$  for  $1 \le i \le m$ .



#### Proof.

$$(\Leftarrow)$$
: Let  $v \in V$ .

Then, 
$$v = a_1 v_1 + \cdots + a_m v_m$$
.

By the assumption,  $v_i = b_{1i}v'_1 + \cdots + b_{ni}v'_n$  for  $1 \le i \le m$ .

$$v = a_1 v_1 + \cdots + a_m v_m$$



#### Proof.

$$(\Leftarrow)$$
: Let  $v \in V$ .

Then, 
$$v = a_1 v_1 + \cdots + a_m v_m$$
.

By the assumption,  $v_i = b_{1i}v'_1 + \cdots + b_{ni}v'_n$  for  $1 \le i \le m$ .

$$v = a_1 v_1 + \dots + a_m v_m$$
  
=  $a_1 (b_{11} v'_1 + \dots + b_{n1} v'_n) + \dots + a_m (b_{1m} v'_1 + \dots + b_{nm} v'_n)$ 



#### Proof.

Introduction

$$(\Leftarrow)$$
: Let  $v \in V$ .

Then, 
$$v = a_1 v_1 + \cdots + a_m v_m$$
.

By the assumption,  $v_i = b_{1i}v'_1 + \cdots + b_{ni}v'_n$  for  $1 \le i \le m$ .

$$v = a_1 v_1 + \dots + a_m v_m$$
  
=  $a_1 (b_{11} v'_1 + \dots + b_{n1} v'_n) + \dots + a_m (b_{1m} v'_1 + \dots + b_{nm} v'_n)$   
=  $[\sum_{i=1}^m (a_i \cdot b_{1i}) v'_1] + \dots + [\sum_{i=1}^m (a_i \cdot b_{1n}) v'_n].$ 



Conclusions

#### Proof.

Introduction

 $(\Leftarrow)$ : Let  $v \in V$ .

Then,  $v = a_1 v_1 + \cdots + a_m v_m$ .

By the assumption,  $v_i = b_{1i}v'_1 + \cdots + b_{ni}v'_n$  for  $1 \le i \le m$ .

$$v = a_1 v_1 + \dots + a_m v_m$$
  
=  $a_1 (b_{11} v'_1 + \dots + b_{n1} v'_n) + \dots + a_m (b_{1m} v'_1 + \dots + b_{nm} v'_n)$   
=  $[\sum_{i=1}^m (a_i \cdot b_{1i}) v'_1] + \dots + [\sum_{i=1}^m (a_i \cdot b_{1n}) v'_n].$ 

 $(\Rightarrow)$ : Each  $v_i$  is also a point of V. By the assumption that  $V\subseteq V'$ , we get that  $v_i\in V'$ .



Conclusions

### Orthonormal sets

#### Definition

A **unit** vector is a vector whose Euclidean norm is 1, i.e.,  $\sum\limits_{i=1}^n v_i^2=1.$ 



### Orthonormal sets

#### Definition

A unit vector is a vector whose Euclidean norm is 1, i.e.,  $\sum_{i=1}^{\infty} v_i^2 = 1$ .

#### Definition

Two vectors v and w are **orthogonal** if  $v^{\top}w=0$ , i.e.,  $\sum_{i=1}^{n}v_{i}w_{i}=0$ .



### Definition

A unit vector is a vector whose Euclidean norm is 1, i.e.,  $\sum_{i=1}^{n} v_i^2 = 1$ .

#### Definition

Two vectors v and w are **orthogonal** if  $v^{\top}w=0$ , i.e.,  $\sum_{i=1}^{n}v_{i}w_{i}=0$ .

### Definition

A set of vectors is **orthonormal** if the elements of the set are unit vectors that are pairwise orthogonal.



### Orthonormal sets

**Preliminaries** 

#### Definition

A unit vector is a vector whose Euclidean norm is 1, i.e.,  $\sum v_i^2 = 1$ .

### Definition

Two vectors v and w are **orthogonal** if  $v^{\top}w=0$ , i.e.,  $\sum_{i=1}^{\infty}v_{i}w_{i}=0$ .

### Definition

A set of vectors is orthonormal if the elements of the set are unit vectors that are pairwise orthogonal.

### Example (Orthonormal sets)

- $\bullet$  {(1,0,0), (0,1,0), (0,0,1)};
- **2**  $\{(\frac{\sqrt{2}}{2}, \frac{\sqrt{2}}{2}), (\frac{\sqrt{2}}{2}, -\frac{\sqrt{2}}{2})\}.$



# Properties of orthonormal sets

#### Lemma

Introduction

If  $\{v_1, v_2, \dots, v_n\}$  is an orthonormal set, then

$$(a_1v_1 + \dots + a_nv_n)^{\top}(b_1v_1 + \dots + b_nv_n) = \sum_{i=1}^n a_ib_i.$$



Conclusions

## Properties of orthonormal sets

#### Lemma

If  $\{v_1, v_2, \dots, v_n\}$  is an orthonormal set, then  $(a_1v_1 + \dots + a_nv_n)^{\top}(b_1v_1 + \dots + b_nv_n) = \sum_{i=1}^n a_ib_i.$ 

#### Proof.

Let 
$$v_i = [v_{i1}, \ldots, v_{im}]^\top$$
.



# Properties of orthonormal sets

#### Lemma

If  $\{v_1, v_2, \dots, v_n\}$  is an orthonormal set, then  $(a_1v_1 + \dots + a_nv_n)^{\top}(b_1v_1 + \dots + b_nv_n) = \sum_{i=1}^{n} a_ib_i.$ 

#### Proof.

Let 
$$v_i = [v_{i1}, \dots, v_{im}]^{\top}$$
.  
 $(a_1 v_1 + \dots + a_n v_n)^{\top} (b_1 v_1 + \dots + b_n v_n)^{\top}$   
 $= \left[\sum_{i=1}^n a_i v_{i1} \dots \sum_{i=1}^n a_i v_{im}\right] \left[\sum_{j=1}^n b_j v_{j1}\right]^{\top}$   
 $\vdots$   
 $\sum_{i=1}^n b_j v_{jm}$ 



#### Lemma

If  $\{v_1, v_2, \dots, v_n\}$  is an orthonormal set, then  $(a_1v_1 + \dots + a_nv_n)^{\top}(b_1v_1 + \dots + b_nv_n) = \sum_{i=1}^{n} a_ib_i.$ 

#### Proof.

Let 
$$v_i = [v_{i1}, \dots, v_{im}]^{\top}$$
.  
 $(a_1 v_1 + \dots + a_n v_n)^{\top} (b_1 v_1 + \dots + b_n v_n)$   
 $= \left[\sum_{i=1}^n a_i v_{i1} \dots \sum_{i=1}^n a_i v_{im}\right] \begin{bmatrix} \sum_{j=1}^n b_j v_{j1} \\ \vdots \\ \sum_{j=1}^n b_j v_{jm} \end{bmatrix}$   
 $= \sum_{k=1}^m (\sum_{i=1}^n a_i v_{ik}) \cdot (\sum_{i=1}^n b_j v_{jk})$ 



Liangda Fang 17/101

### Proof.

$$= \sum_{k=1}^{m} \sum_{i=1}^{n} \sum_{j=1}^{n} (a_i b_j v_{ik} v_{jk})$$



18/101 Liangda Fang



#### Proof.

$$= \sum_{k=1}^{m} \sum_{i=1}^{n} \sum_{j=1}^{n} (a_i b_j v_{ik} v_{jk})$$
$$= \sum_{i=1}^{n} \sum_{j=1}^{n} [(a_i b_j) \cdot \sum_{k=1}^{m} (v_{ik} v_{jk})]$$



Liangda Fang 18/101

#### Proof.

$$= \sum_{k=1}^{m} \sum_{i=1}^{n} \sum_{j=1}^{n} (a_i b_j v_{ik} v_{jk})$$

$$= \sum_{i=1}^{n} \sum_{j=1}^{n} [(a_i b_j) \cdot \sum_{k=1}^{m} (v_{ik} v_{jk})]$$

If 
$$i \neq j$$
, then  $\sum_{k=1}^{m} v_{ik} v_{jk} = v_i^{\top} v_j = 0$ .

Ow, 
$$\sum\limits_{k=1}^{m}v_{ik}v_{jk}=v_{i}^{\top}v_{j}=1.$$



18/101 Liangda Fang

#### Proof.

$$= \sum_{k=1}^{m} \sum_{i=1}^{n} \sum_{j=1}^{n} (a_i b_j v_{ik} v_{jk})$$
  
= 
$$\sum_{i=1}^{n} \sum_{j=1}^{n} [(a_i b_j) \cdot \sum_{k=1}^{m} (v_{ik} v_{jk})]$$

$$i=1 \ j=1 \qquad \qquad k=1$$
 If  $i \neq j$ , then  $\sum\limits_{k=1}^m v_{ik}v_{jk} = v_i^\top v_j = 0$ .

Ow, 
$$\sum\limits_{k=1}^m v_{ik}v_{jk}=v_i^{\intercal}v_j=1.$$

We get 
$$\sum_{i=1}^{n} a_i b_i$$



18/101 Liangda Fang

# Outline

- Iterative method
  - Jacobi Method
  - Gauss-Seidel Method
  - Successive Over-Relaxation
  - Convergence of iterative methods
- - Symmetric positive-definite matrices
  - Conjugate Gradient Method
  - Preconditioning



Liangda Fang 19/101

### Example

A linear equation is as follows:

$$3u + v = 5$$
$$u + 2v = 5.$$

We have:

$$u = \frac{5-v}{3}$$
$$v = \frac{5-u}{2}.$$



Liangda Fang 20/101

## Example (Iteration process)

$$\bullet \begin{bmatrix} u_0 \\ v_0 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

**5** The process converges to the solution, which is [1, 2].

Liangda Fang 21/101

# Jacobi Method

#### Example

A linear equation is as follows:

$$u + 2v = 5$$

$$3u + v = 5.$$

We have:

$$u = 5 - 2v$$

$$v = 5 - 3u.$$



Liangda Fang 22/101

### Jacobi method

### Example (Iteration process)

$$\bullet \begin{bmatrix} u_0 \\ v_0 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

The process tends to diverge.



Liangda Fang 23/101

Introduction

Question: What is the condition under which Jabobi method does work?



Conclusions

Liangda Fang 24/ 101

Question: What is the condition under which Jabobi method does work?

#### Definition

The  $n \times n$  matrix  $A = (a_{ij})$  is **strictly diagonally dominant**, if for each  $1 \le i \le n$ ,  $|a_{ii}| > \sum_{j \ne i} |a_{ij}|$ .

### Example

$$\begin{bmatrix} 3 & 1 & -1 \\ 2 & -5 & 2 \\ 1 & 6 & 8 \end{bmatrix}$$
 is strictly diagonally dominant.

- |3| > |1| + |-1|;
- | -5 | > |2| + |2|;
- |8| > |1| + |6|.



Liangda Fang 24/101

#### Example

$$\begin{bmatrix} 3 & 2 & 6 \\ 1 & 8 & 1 \end{bmatrix}$$

 $\begin{bmatrix} 3 & 2 & 6 \\ 1 & 8 & 1 \\ 9 & 2 & -2 \end{bmatrix} \text{ is not strictly diagonally dominant.}$ 

$$9 \ 2 \ -2$$

$$| -2 | < |9| + |2|.$$



Liangda Fang 25/101

### Example

$$\begin{bmatrix} 3 & 2 & 6 \\ 1 & 8 & 1 \\ 9 & 2 & -2 \end{bmatrix}$$
 is not strictly diagonally dominant.

$$|-2| < |9| + |2|.$$

But 
$$\begin{bmatrix} 9 & 2 & -2 \\ 1 & 8 & 1 \\ 3 & 2 & 6 \end{bmatrix}$$
 is strictly diagonally dominant.

$$|9| > |2| + |-2|;$$

$$|8| > |1| + |1|$$
;

$$|6| > |3| + |2|$$
.



25/101 Liangda Fang

#### Theorem

Introduction

If the  $n \times n$  matrix A is strictly diagonally dominant, then

- A is a nonsingular matrix;
- ② for every vector b and every starting guess, the Jacobi Method applied to Ax = b converges to the unique solution.



Conclusions

Liangda Fang 26/ 101

#### Definition

Introduction

Suppose that A is a matrix.

- D: the main diagonal of A;
- L: the lower triangle of A;
- U: the upper triangle of A.



Conclusions

Liangda Fang 27/ 101

### Example

$$\bullet \ A = \begin{bmatrix} 3 & 1 \\ 1 & 2 \end{bmatrix}$$

$$\bullet \ L = \begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix}$$

$$\bullet \ \ U = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}$$



Liangda Fang 28/101

$$Ax = b$$

$$(D + L + U)x = b$$

$$Dx = b - (L + U)x$$

$$Dx_{k+1} = b - (L + U)x_k$$

$$x_{k+1} = D^{-1}(b - (L + U)x_k).$$



Liangda Fang 29/101

$$Ax = b$$

$$(D + L + U)x = b$$

$$Dx = b - (L + U)x$$

$$Dx_{k+1} = b - (L + U)x_k$$

$$x_{k+1} = D^{-1}(b - (L + U)x_k).$$

Jacobi Method is as follows:

$$\begin{array}{rcl} x_0 & = & \text{initial vector} \\ x_{k+1} & = & D^{-1}(b-(L+U)x_k) \\ x_{k+1,i} & = & \frac{1}{a_{ii}}(b_i-\sum_{j\neq i}a_{ij}x_{k,j}) \text{ for } 1\leq i\leq n. \end{array}$$



Liangda Fang 29/101

### Example

$$\bullet \begin{bmatrix} 3 & 1 \\ 1 & 2 \end{bmatrix} \begin{bmatrix} u \\ v \end{bmatrix} = \begin{bmatrix} 5 \\ 5 \end{bmatrix},$$

• 
$$x_{k+1} = \begin{bmatrix} u_{k+1} \\ v_{k+1} \end{bmatrix} = D^{-1}(b - (L+U)x_k)$$
  

$$= \begin{bmatrix} \frac{1}{3} & 0 \\ 0 & \frac{1}{2} \end{bmatrix} (\begin{bmatrix} 5 \\ 5 \end{bmatrix} - \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} u_k \\ v_k \end{bmatrix})$$

$$= \begin{bmatrix} \frac{5-v_k}{5-u_k} \\ \frac{5-u_k}{2} \end{bmatrix}.$$



30/101 Liangda Fang

#### Outline

- Iterative method
  - Jacobi Method
  - Gauss-Seidel Method
  - Successive Over-Relaxation
  - Convergence of iterative methods
- - Symmetric positive-definite matrices
  - Conjugate Gradient Method
  - Preconditioning



Liangda Fang 31/101

## Gauss-Seidel Method

Question: Are there some methods converging faster than the Jacobi Method?



Liangda Fang 32/101

### Gauss-Seidel Method

Introduction

Question: Are there some methods converging faster than the Jacobi Method?

Answer: Yes! The Gauss-Seidel Method.



Conclusions

Liangda Fang 32/101

Methods for symmetric positive-definite matrices

# Gauss-Seidel Method

### Example

- The definition of  $v_{k+1}$  uses  $u_{k+1}$  instead of  $u_k$ ;
- $\bullet \quad \begin{vmatrix} u_{k+1} \\ v_{k+1} \end{vmatrix} = \begin{bmatrix} \frac{5-v_k}{3} \\ \frac{5-u_{k+1}}{3} \end{bmatrix}.$
- $\mathbf{0} \quad \begin{bmatrix} u_0 \\ v_0 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$



Liangda Fang 33/101

# Gauss-Seidel Method

Introduction

**Preliminaries** 

| Times | Jacobi Gauss-Seidel |        |
|-------|---------------------|--------|
| 1     | 0.8333              | 0.7454 |
| 2     | 0.3727              | 0.1242 |
| 3     | 0.1389              | 0.0207 |

After 3 iterations, Gauss-Seidel converges faster than Jacobi.



Conclusions

Liangda Fang 34/ 101

### The matrix form of Gauss-Seidel Method

Introduction

**Preliminaries** 

$$Ax = b$$

$$(D + L + U)x = b$$

$$(D + L)x = b - Ux$$

$$(D + L)x_{k+1} = b - Ux_k$$

For computation:

$$x_{k+1} = D^{-1}(b - Ux_k - Lx_{k+1})$$

For the proof of convergence:

$$x_{k+1} = (D + L)^{-1}(b - Ux_k).$$



Conclusions

Liangda Fang 35/ 101

### The matrix form of Gauss-Seidel Method

$$Ax = b$$

$$(D + L + U)x = b$$

$$(D + L)x = b - Ux$$

$$(D + L)x_{k+1} = b - Ux_k$$

For computation:

$$x_{k+1} = D^{-1}(b - Ux_k - Lx_{k+1})$$

For the proof of convergence:

$$x_{k+1} = (D + L)^{-1}(b - Ux_k).$$

Gauss-Seidel Method is as follows:

$$\begin{array}{rcl} x_0 & = & \text{initial vector} \\ x_{k+1} & = & D^{-1}(b- {\color{red} U}x_k - {\color{blue} L}x_{k+1}) \\ x_{k+1,i} & = & \frac{1}{a_{ii}}(b_i - \sum_{j>i} {\color{blue} a_{ij}}x_{k,j} - \sum_{j< i} {\color{blue} a_{ij}}x_{k+1,j}) \text{ for } 1 \leq i \leq n \end{array}$$

Liangda Fang 35 / 101

## The matrix form of Gauss-Seidel Method

#### Example

$$\bullet \begin{bmatrix} 3 & 1 \\ 1 & 2 \end{bmatrix} \begin{bmatrix} u \\ v \end{bmatrix} = \begin{bmatrix} 5 \\ 5 \end{bmatrix},$$



Liangda Fang 36/101

# Convergence of Gauss-Seidel Method

#### Theorem

Introduction

If the  $n \times n$  matrix A is strictly diagonally dominant, then

- A is a nonsingular matrix;
- ② for every vector b and every starting guess, the Gauss-Seidel Method applied to Ax = b converges to the unique solution.



Conclusions

Liangda Fang 37/101

- Iterative method
  - Jacobi Method
  - Gauss-Seidel Method
  - Successive Over-Relaxation
  - Convergence of iterative methods
- - Symmetric positive-definite matrices
  - Conjugate Gradient Method
  - Preconditioning



Liangda Fang 38/101



### Successive Over-Relaxation

Introduction

Question: Are there some methods converging faster than the Gauss-Seidel Method?



Conclusions

Liangda Fang 39/101

### Successive Over-Relaxation

Introduction

Question: Are there some methods converging faster than the Gauss-Seidel Method?

Answer: Yes! Successive Over-Relaxation, a variant of the Gauss-Seidel Method



Conclusions

Liangda Fang 39/101

# Relaxation parameter

#### Example

• Relaxation parameter  $\omega$ : used to define each component of the new guess  $x_{k+1}$  as  $\omega$  times, and  $1-\omega$  times the current guess  $x_k$ ;

$$\bullet \begin{bmatrix} u_{k+1} \\ v_{k+1} \end{bmatrix} = \begin{bmatrix} (1-\omega)u_k + \omega \frac{5-v_k}{3} \\ (1-\omega)v_k + \omega \frac{5-u_{k+1}}{2} \end{bmatrix}.$$



Liangda Fang 40/ 101

# Relaxation parameter

### Example



Liangda Fang 41/101

## Successive Over-Relaxation

| Times | Jacobi | Gauss-Seidel | $SOR(\omega = \frac{11}{10})$ |
|-------|--------|--------------|-------------------------------|
| 1     | 0.8333 | 0.7454       | 0.8724                        |
| 2     | 0.3727 | 0.1242       | 0.0227                        |
| 3     | 0.1389 | 0.0207       | 0.0087                        |

After 3 iterations, SOR converges faster than Jacobi and Gauss-Seidel.



Liangda Fang 42/101 **Preliminaries** 

Introduction

- The Gauss-Seidel Method:  $\omega = 1$ ;
- Under-relaxation:  $\omega < 1$ .



Conclusions

Liangda Fang 43/101

# Different relaxation parameters lead to different convergence speeds

Introduction

|   | Times | Jacobi | Gauss-Seidel | $SOR(\omega = \frac{11}{10})$ | $SOR(\omega = \frac{6}{5})$ |
|---|-------|--------|--------------|-------------------------------|-----------------------------|
| Г | 1     | 0.8333 | 0.7454       | 0.8724                        | 1.0198                      |
|   | 2     | 0.3727 | 0.1242       | 0.0227                        | 0.1641                      |
|   | 3     | 0.1389 | 0.0207       | 0.0087                        | 0.0230                      |

SOR with parameter  $\frac{6}{5}$  converges faster than Jacobi, but slower than Gauss-Seidel.



Conclusions

#### The matrix form of Successive Over-Relaxation

Introduction

$$Ax = b$$

$$\omega Ax = \omega b$$

$$(\omega D + \omega L + \omega U)x = \omega b$$

$$(D + \omega L)x = \omega b - \omega Ux + (1 - \omega)Dx$$

$$(D + \omega L)x_{k+1} = \omega b - \omega Ux_k + (1 - \omega)Dx_k$$

$$Dx_{k+1} = \omega b + (1 - \omega)Dx_k - \omega Ux_k - \omega Lx_{k+1}$$

$$x_{k+1} = (1 - \omega)x_k + D^{-1}(\omega b - \omega Ux_k - \omega Lx_{k+1})$$



Conclusions

#### The matrix form of Successive Over-Relaxation

$$Ax = b$$

$$\omega Ax = \omega b$$

$$(\omega D + \omega L + \omega U)x = \omega b$$

$$(D + \omega L)x = \omega b - \omega Ux + (1 - \omega)Dx$$

$$(D + \omega L)x_{k+1} = \omega b - \omega Ux_k + (1 - \omega)Dx_k$$

$$Dx_{k+1} = \omega b + (1 - \omega)Dx_k - \omega Ux_k - \omega Lx_{k+1}$$

$$x_{k+1} = (1 - \omega)x_k + D^{-1}(\omega b - \omega Ux_k - \omega Lx_{k+1})$$

Successive Over-Relaxation is as follows:

$$\begin{array}{rcl} x_0 & = & \text{initial vector} \\ x_{k+1} & = & (1-\omega)x_k + D^{-1}(\omega b - \omega \ensuremath{U} x_k - \omega \ensuremath{L} x_{k+1}) \\ x_{k+1,i} & = & (1-\omega)x_{k,i} + \frac{\omega}{a_{ii}}(b_i - \sum_{j>i} a_{ij}x_{k,j} - \sum_{j$$

# Outline

- Introduction
- 2 Preliminaries
- Iterative method
  - Jacobi Method
  - Gauss-Seidel Method
  - Successive Over-Relaxation
  - Convergence of iterative methods
- 4 Methods for symmetric positive-definite matrices
  - Symmetric positive-definite matrices
  - Conjugate Gradient Method
  - Preconditioning
- Conclusions



Conclusions

## Eigenvalues and eigenvectors

#### Definition (Eigenvalues and eigenvectors)

- A: an  $n \times n$  matrix;
- $\lambda$ : a real number;

Introduction

• v: a nonzero n-dimensional real vector.

If  $Av = \lambda v$ , then  $\lambda$  is called an **eigenvalue** of A, and v is its corresponding **eigenvector**.



Conclusions

## Eigenvalues and eigenvectors

#### Definition (Eigenvalues and eigenvectors)

- A: an  $n \times n$  matrix;
- $\lambda$ : a real number;
- v: a nonzero n-dimensional real vector.

If  $Av = \lambda v$ , then  $\lambda$  is called an **eigenvalue** of A, and v is its corresponding **eigenvector**.

#### **Proposition**

Introduction

Eigenvalues are the roots of the **characteristic polynomial**  $det(A - \lambda I) = 0$ .



Conclusions

#### Definition (Eigenvalues and eigenvectors)

- A: an  $n \times n$  matrix;
- $\lambda$ : a real number;
- v: a nonzero n-dimensional real vector.

If  $Av = \lambda v$ , then  $\lambda$  is called an **eigenvalue** of A, and v is its corresponding **eigenvector**.

#### **Proposition**

Eigenvalues are the roots of the **characteristic polynomial**  $det(A - \lambda I) = 0$ .

## Proposition

Suppose that A is an  $n \times n$  matrix,  $\lambda$  is an eigenvalue of A, v is the eigenvector of A w.r.t.  $\lambda$ .

Then,  $A^m v = \lambda^m v$ .

1906 NIVERS

## Example

$$\bullet \ \ A = \begin{bmatrix} 1 & 3 \\ 2 & 2 \end{bmatrix};$$



## Example

$$\bullet \ \ A = \begin{bmatrix} 1 & 3 \\ 2 & 2 \end{bmatrix};$$

• 
$$\det(A-\lambda I) = \begin{vmatrix} 1-\lambda & 3\\ 2 & 2-\lambda \end{vmatrix} = (1-\lambda)(2-\lambda)-6 = (\lambda-4)(\lambda+1);$$

• The eigenvalues: 4 and -1;



**Preliminaries** 

## Example

- $\bullet \ A = \begin{bmatrix} 1 & 3 \\ 2 & 2 \end{bmatrix};$
- $\bullet \det(A \lambda I) = \begin{vmatrix} 1 \lambda & 3 \\ 2 & 2 \lambda \end{vmatrix} = (1 \lambda)(2 \lambda) 6 = (\lambda 4)(\lambda + 1);$
- The eigenvalues: 4 and -1;
- $(A-4I)x = 0 \Rightarrow \begin{bmatrix} -3 & 3 \\ 2 & -2 \end{bmatrix} x = 0 \Rightarrow -3x_1 + 3x_2 = 0 \Rightarrow x_1 = x_2;$
- The eigenvectors wrt  $\lambda=4$ : all nonzero multiples of  $\begin{bmatrix} 1 & 1 \end{bmatrix}^{\top}$ ;



## Eigenvalues and eigenvectors

#### Example

- $\bullet \ A = \begin{bmatrix} 1 & 3 \\ 2 & 2 \end{bmatrix};$
- $\bullet \det(A \lambda I) = \begin{vmatrix} 1 \lambda & 3 \\ 2 & 2 \lambda \end{vmatrix} = (1 \lambda)(2 \lambda) 6 = (\lambda 4)(\lambda + 1);$
- The eigenvalues: 4 and -1:
- $(A-4I)x = 0 \Rightarrow \begin{bmatrix} -3 & 3 \\ 2 & -2 \end{bmatrix} x = 0 \Rightarrow -3x_1 + 3x_2 = 0 \Rightarrow x_1 = x_2;$
- The eigenvectors wrt  $\lambda=4$ : all nonzero multiples of  $\begin{bmatrix} 1 & 1 \end{bmatrix}^{\top}$ ;
- $(A+I)x = 0 \Rightarrow \begin{bmatrix} 2 & 3 \\ 2 & 3 \end{bmatrix} x = 0 \Rightarrow 2x_1 + 3x_2 = 0 \Rightarrow x_1 = -\frac{3}{2}x_2;$
- The eigenvectors wrt  $\lambda = -1$ : all nonzero multiples of  $\begin{bmatrix} 3 & -2 \end{bmatrix}^{\top}$ ;

#### Definition (Similarity)

Two  $n \times n$  matrices  $A_1$  and  $A_2$  are **similar**, denoted by  $A_1 \sim A_2$ , if there exists a nonsingular  $n \times n$  matrix S s.t.  $A_1 = SA_2S^{-1}$ .

#### Definition (Diagonal matrix)

The  $n \times n$  diagonal matrix  $D_n$  is the matrix with  $I_{ii} \neq 0$  for 1 < i < n.

$$\begin{bmatrix} 1 & 0 & 0 \\ 0 & 4 & 0 \\ 0 & 0 & -2 \end{bmatrix}$$

## Definition (Diagonalizable matrix)

An  $n \times n$  matrix A is **diagonalizable**, if it is similar to a diagonal matrix B.

#### **Proposition**

- A: an  $n \times n$  matrix;
- $\lambda_1, \lambda_2, \dots, \lambda_n$ : the eigenvalues of A;
- $v_i$ : the eigenvector of A wrt  $\lambda_i$ ;

$$\bullet \ S = \begin{bmatrix} v_1 & v_2 & \dots & v_n \end{bmatrix};$$

$$\bullet B = \begin{bmatrix} \lambda_1 & 0 & \dots & 0 \\ 0 & \lambda_2 & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & \lambda_n \end{bmatrix}.$$

Then,  $A = SBS^{-1}$ .



50/101 Liangda Fang

Introduction

## Example

$$\bullet \ A = \begin{bmatrix} 1 & 3 \\ 2 & 2 \end{bmatrix};$$

• The eigenvalues: 4 and -1;



Liangda Fang 51/101

Introduction

## Example

- $\bullet \ A = \begin{bmatrix} 1 & 3 \\ 2 & 2 \end{bmatrix};$
- The eigenvalues: 4 and -1;

$$\bullet \ B = \begin{bmatrix} 4 & 0 \\ 0 & -1 \end{bmatrix};$$



Liangda Fang 51/101 Introduction

## Example

- $\bullet \ A = \begin{bmatrix} 1 & 3 \\ 2 & 2 \end{bmatrix};$
- The eigenvalues: 4 and -1;
- $\bullet \ B = \begin{bmatrix} 4 & 0 \\ 0 & -1 \end{bmatrix};$
- ullet An eigenvector wrt  $\lambda_1=4$ :  $\begin{bmatrix}1\\1\end{bmatrix}$ ;
- An eigenvector wrt  $\lambda_2 = -1$ :  $\begin{bmatrix} 3 \\ -2 \end{bmatrix}$ ;



Liangda Fang 51/ 101

Introduction

## Example

- $\bullet \ A = \begin{bmatrix} 1 & 3 \\ 2 & 2 \end{bmatrix};$
- The eigenvalues: 4 and -1;
- $\bullet \ B = \begin{bmatrix} 4 & 0 \\ 0 & -1 \end{bmatrix};$
- An eigenvector wrt  $\lambda_1 = 4$ :  $\begin{bmatrix} 1 \\ 1 \end{bmatrix}$ ;
- An eigenvector wrt  $\lambda_2 = -1$ :  $\begin{bmatrix} 3 \\ -2 \end{bmatrix}$ ;
- $S = \begin{bmatrix} 1 & 3 \\ 1 & -2 \end{bmatrix}$ ;



Liangda Fang 51/101

Introduction

## Example

- $\bullet \ A = \begin{bmatrix} 1 & 3 \\ 2 & 2 \end{bmatrix};$
- The eigenvalues: 4 and -1;
- $\bullet \ B = \begin{bmatrix} 4 & 0 \\ 0 & -1 \end{bmatrix};$
- An eigenvector wrt  $\lambda_1 = 4$ :  $\begin{bmatrix} 1 \\ 1 \end{bmatrix}$ ;
- An eigenvector wrt  $\lambda_2 = -1$ :  $\begin{bmatrix} 3 \\ -2 \end{bmatrix}$ ;
- $\bullet \ S = \begin{bmatrix} 1 & 3 \\ 1 & -2 \end{bmatrix};$
- $\bullet \begin{bmatrix} 1 & 3 \\ 2 & 2 \end{bmatrix} = \begin{bmatrix} 1 & 3 \\ 1 & -2 \end{bmatrix} \begin{bmatrix} 4 & 0 \\ 0 & -1 \end{bmatrix} \begin{bmatrix} 1 & 3 \\ 1 & -2 \end{bmatrix}^{-1}.$

Liangda Fang 51/101

## Spectral radius

#### Definition

Let A be an  $n \times n$  matrix and  $\lambda_1, \ldots, \lambda_n$  be the eigenvalues of A. The **spectral radius**  $\rho(A)$  is defined as  $\max\{|\lambda_1|,\ldots,|\lambda_n|\}$ .

The spectral radius: the upper bound of  $\frac{||Ax||_2}{||x||_2}$ .



Liangda Fang 52/101 **Preliminaries** 

Introduction

#### Conclusions

#### Definition

Let A be an  $n \times n$  matrix and  $\lambda_1, \ldots, \lambda_n$  be the eigenvalues of A. The **spectral radius**  $\rho(A)$  is defined as  $\max\{|\lambda_1|,\ldots,|\lambda_n|\}$ .

The spectral radius: the upper bound of  $\frac{||Ax||_2}{||x||_2}$ .

#### Example

- $\bullet \ A = \begin{bmatrix} 1 & 3 \\ 2 & 2 \end{bmatrix};$
- The eigenvalues: 4 and -1;



Liangda Fang 52/101 Introduction

#### Theorem

- A: an  $n \times n$  matrix with spectral radius  $\rho(A) < 1$ ;
- b: an vector.

**Preliminaries** 

For any initial vector  $x_0$ , the iteration  $x_{k+1} = Ax_k + b$  converges, i.e., there exists a unique  $x_*$  s.t.  $\lim_{k \to \infty} x_k = x_*$  and  $x_* = Ax_* + b$ .



Liangda Fang 53/ 101

## Proof of the convergence of Jacobi Method

#### Proof.

- Matrix form:  $x_{k+1} = -D^{-1}(L+U)x_k + D^{-1}b$ ;
- Reduce the proof of convergence to that of  $\rho(D^{-1}(L+U)) < 1$ ;
- Let  $\lambda$  be any eigenvalue of  $D^{-1}(L+U)$  with corresponding eigenvector v;
- m: the index such that  $|v_m| \ge |v_i|$  for  $1 \le i \ne m < n$ ;
- $D^{-1}(L+U)v = \lambda v \Rightarrow (L+U)v = \lambda Dv$ .



## Proof of the convergence of Jacobi Method

#### Proof.

• Take absolute values of the *m*th component of this vector equation:

$$|\lambda||v_m||a_{mm}| = |\lambda a_{mm}v_m|$$

$$= |\sum_{i \neq m} a_{mi}v_i|$$

$$\leq |v_m|\sum_{i \neq m} |a_{mi}|$$

$$< |v_m||a_{mm}|.$$

- Hence,  $|\lambda| < 1$ .
- Since  $\lambda$  is an arbitrary eigenvalue, we have that  $\rho(D^{-1}(L+U)) < 1$ .

Liangda Fang 55/101

## Proof of the convergence of Gauss-Seidel Method

#### Proof.

- Matrix form:  $x_{k+1} = -(L+D)^{-1}Ux_k + (L+D)^{-1}b$
- Reduce the proof of convergence to that of  $\rho((L+D)^{-1}U) < 1$ ;
- Let  $\lambda$  be any eigenvalue of  $(L+D)^{-1}U$  with corresponding eigenvector v;
- m: the index such that  $|v_m| \ge |v_i|$  for  $1 \le i \ne m \le n$ ;
- $(L+D)^{-1}Uv = \lambda v \Rightarrow Uv = \lambda(D+L)v$ .



Liangda Fang 56/101

## Proof of the convergence of Gauss-Seidel Method

Iterative method

#### Proof.

•

$$\begin{aligned} |\lambda||v_m| \cdot \sum_{i>m} |a_{mi}| &< |\lambda||v_m| \cdot (|a_{mm}| - \sum_{i< m} |a_{mi}|) \\ &\leq |\lambda| \cdot (|a_{mm}v_m| - \sum_{i< m} |a_{mi}v_i|) \\ &\leq |\lambda| \cdot |a_{mm}v_m + \sum_{i< m} a_{mi}v_i| \\ &= |\sum_{i>m} a_{mi}v_i| \\ &\leq |v_m| \sum |a_{mi}| \end{aligned}$$

- Hence, |λ| < 1.</li>
- Since  $\lambda$  is arbitrary, we have that  $\rho((L+D)^{-1}U) < 1$ .

Liangda Fang 57/101

#### Outline

- Introduction
- 2 Preliminaries
- 3 Iterative method
  - Jacobi Method
  - Gauss-Seidel Method
  - Successive Over-Relaxation
  - Convergence of iterative methods
- Methods for symmetric positive-definite matrices
  - Symmetric positive-definite matrices
  - Conjugate Gradient Method
  - Preconditioning
- Conclusions



## Methods for symmetric positive-definite matrices

Sometimes, we handle some special matrices, e.g., symmetric and positive-definite.

Question: For this type of matrices, are there some methods converging faster?





**Preliminaries** 

## Methods for symmetric positive-definite matrices

Sometimes, we handle some special matrices, e.g., symmetric and positive-definite.

Question: For this type of matrices, are there some methods converging faster?

Answer: Yes! Conjugate Gradient Method.



Liangda Fang 59/101

## Symmetric positive-definite matrices

#### Definition

Introduction

The  $n \times n$  matrix A is

- symmetric:  $A^{\top} = A$ ;
- positive-definite:  $x^{T}Ax > 0$  for all vectors  $x \neq 0$ .

#### Example

$$A = \begin{bmatrix} 2 & 2 \\ 2 & 5 \end{bmatrix}$$
 is symmetric positive-definite.

• symmetric:  $A^{\top} = \begin{bmatrix} 2 & 2 \\ 2 & 5 \end{bmatrix} = A;$ 

• positive-definite: 
$$x^{T}Ax = \begin{bmatrix} x_1 & x_2 \end{bmatrix} \begin{bmatrix} 2 & 2 \\ 2 & 5 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$$

$$= 2x_1^2 + 4x_1x_2 + 5x_2^2$$

$$= 2(x_1 + x_2)^2 + 3x_2^2$$

$$> 0 \text{ if } x_1, x_2 > 0$$



Conclusions

Liangda Fang 60/ 101

#### Example

$$A = \begin{bmatrix} 2 & 4 \\ 4 & 5 \end{bmatrix}$$
 is not positive-definite.

$$x^{T} A x = \begin{bmatrix} x_{1} & x_{2} \end{bmatrix} \begin{bmatrix} 2 & 4 \\ 4 & 5 \end{bmatrix} \begin{bmatrix} x_{1} \\ x_{2} \end{bmatrix}$$

$$= 2x_{1}^{2} + 8x_{1}x_{2} + 5x_{2}^{2}$$

$$= 2(x_{1} + 2x_{2})^{2} - 3x_{2}^{2}$$

$$= 2(-2 + 2 \cdot 1)^{2} - 3 \cdot 1^{2} \quad (x_{1} = -2, x_{2} = 1)$$

$$= -3$$

$$< 0$$

Liangda Fang 61/ 101

## Properties of positive-definite matrices

#### Lemma

A matrix is nonsingular iff Ax = 0 implies that x = 0.

#### **Proposition**

A positive-definite matrix is nonsingular.

#### Proof.

We want to prove that x = 0 when A is positive-definite and Ax = 0.

Since  $y^{\top}Ay > 0$  for every nonzero vector y, we have  $Ay \neq 0$ . Hence, x must be zero vector.

So A is nonsingular.



Liangda Fang 62/101

## Properties of symmetric matrices

#### Theorem (The finite-dimensional spectral theorem)

Let A be a symmetric  $n \times n$  matrix. Then the set of unit eigenvectors of A is an orthonormal set  $\{v_1, \ldots, v_n\}$  forming a basis of  $\mathbb{R}^n$ .



Liangda Fang 63/101

#### Theorem (The finite-dimensional spectral theorem)

Let A be a symmetric  $n \times n$  matrix. Then the set of unit eigenvectors of A is an orthonormal set  $\{v_1, \ldots, v_n\}$  forming a basis of  $\mathbb{R}^n$ .

#### Example

$$\bullet \ \ A = \begin{bmatrix} 2 & 2 \\ 2 & 5 \end{bmatrix};$$



Liangda Fang 63/101

#### Theorem (The finite-dimensional spectral theorem)

Let A be a symmetric  $n \times n$  matrix. Then the set of unit eigenvectors of A is an orthonormal set  $\{v_1, \ldots, v_n\}$  forming a basis of  $R^n$ .

#### Example

$$\bullet \ \ A = \begin{bmatrix} 2 & 2 \\ 2 & 5 \end{bmatrix};$$

$$\bullet \ \det(A-\lambda I) = \left| \begin{array}{cc} 2-\lambda & 2 \\ 2 & 5-\lambda \end{array} \right| = (2-\lambda)(5-\lambda)-4 = (\lambda-6)(\lambda-1);$$

• The eigenvalues: 6 and 1.



Liangda Fang 63/101

## Properties of symmetric matrices

### Example

• 
$$(A - 6I)x = 0 \Rightarrow \begin{bmatrix} -4 & 2 \\ 2 & -1 \end{bmatrix} x = 0 \Rightarrow 2x_1 - x_2 = 0 \Rightarrow x_1 = \frac{1}{2}x_2;$$

- An eigenvector wrt  $\lambda = 6$ :  $\begin{bmatrix} 1 & 2 \end{bmatrix}^{\top}$ ;
- The unit eigenvector wrt  $\lambda=6$  via normalization:

$$\begin{bmatrix} \frac{v_1}{\|v\|_2} & \frac{v_2}{\|v\|_2} \end{bmatrix}^{\top} = \begin{bmatrix} \frac{1}{\sqrt{2^2 + 1^2}} & \frac{2}{\sqrt{2^2 + 1^2}} \end{bmatrix}^{\top} = \begin{bmatrix} \frac{\sqrt{5}}{5} & \frac{2\sqrt{5}}{5} \end{bmatrix}^{\top};$$



## Properties of symmetric matrices

### Example

• 
$$(A - 6I)x = 0 \Rightarrow \begin{bmatrix} -4 & 2 \\ 2 & -1 \end{bmatrix} x = 0 \Rightarrow 2x_1 - x_2 = 0 \Rightarrow x_1 = \frac{1}{2}x_2;$$

- An eigenvector wrt  $\lambda = 6$ :  $\begin{bmatrix} 1 & 2 \end{bmatrix}^{\top}$ ;
- The unit eigenvector wrt  $\lambda=6$  via normalization:

$$\begin{bmatrix} \frac{v_1}{\|v\|_2} & \frac{v_2}{\|v\|_2} \end{bmatrix}^\top = \begin{bmatrix} \frac{1}{\sqrt{2^2 + 1^2}} & \frac{2}{\sqrt{2^2 + 1^2}} \end{bmatrix}^\top = \begin{bmatrix} \frac{\sqrt{5}}{5} & \frac{2\sqrt{5}}{5} \end{bmatrix}^\top;$$

• 
$$(A - I)x = 0 \Rightarrow \begin{bmatrix} 1 & 2 \\ 2 & 4 \end{bmatrix} x = 0 \Rightarrow x_1 + 2x_2 = 0 \Rightarrow x_1 = -2x_2;$$

- An eigenvector wrt  $\lambda = 1$ :  $\begin{bmatrix} 2 & -1 \end{bmatrix}^{\top}$ ;
- The unit eigenvector wrt  $\lambda = 1$  via normalization:

$$\begin{bmatrix} \frac{v_1}{\|v\|_2} & \frac{v_2}{\|v\|_2} \end{bmatrix}^\top = \begin{bmatrix} \frac{2}{\sqrt{2^2 + (-1)^2}} & -\frac{1}{\sqrt{2^2 + (-1)^2}} \end{bmatrix}^\top = \begin{bmatrix} \frac{2\sqrt{5}}{5} & -\frac{\sqrt{5}}{5} \end{bmatrix}^\top;$$

SOS E

# Properties of symmetric matrices

### Example

• 
$$(A - 6I)x = 0 \Rightarrow \begin{bmatrix} -4 & 2 \\ 2 & -1 \end{bmatrix} x = 0 \Rightarrow 2x_1 - x_2 = 0 \Rightarrow x_1 = \frac{1}{2}x_2;$$

- An eigenvector wrt  $\lambda = 6$ :  $\begin{bmatrix} 1 & 2 \end{bmatrix}^{\top}$ ;
- The unit eigenvector wrt  $\lambda = 6$  via normalization:

$$\begin{bmatrix} \frac{v_1}{\|v\|_2} & \frac{v_2}{\|v\|_2} \end{bmatrix}^\top = \begin{bmatrix} \frac{1}{\sqrt{2^2 + 1^2}} & \frac{2}{\sqrt{2^2 + 1^2}} \end{bmatrix}^\top = \begin{bmatrix} \frac{\sqrt{5}}{5} & \frac{2\sqrt{5}}{5} \end{bmatrix}^\top;$$

$$\bullet (A - I)x = 0 \Rightarrow \begin{bmatrix} 1 & 2 \\ 2 & 4 \end{bmatrix} x = 0 \Rightarrow x_1 + 2x_2 = 0 \Rightarrow x_1 = -2x_2;$$

- An eigenvector wrt  $\lambda = 1$ :  $\begin{bmatrix} 2 & -1 \end{bmatrix}^{\top}$ ;
- The unit eigenvector wrt  $\lambda = 1$  via normalization:

$$\begin{bmatrix} \frac{v_1}{\|v\|_2} & \frac{v_2}{\|v\|_2} \end{bmatrix}^\top = \begin{bmatrix} \frac{2}{\sqrt{2^2 + (-1)^2}} & -\frac{1}{\sqrt{2^2 + (-1)^2}} \end{bmatrix}^\top = \begin{bmatrix} \frac{2\sqrt{5}}{5} & -\frac{\sqrt{5}}{5} \end{bmatrix}^\top;$$

•  $\left\{ \begin{bmatrix} \sqrt{5} & \frac{2\sqrt{5}}{5} \end{bmatrix}^{\top}, \begin{bmatrix} \frac{2\sqrt{5}}{5} & -\frac{\sqrt{5}}{5} \end{bmatrix}^{\top} \right\}$  are an orthonormal set of  $R^2$ .



### **Proposition**

Suppose that the  $n \times n$  matrix A is symmetric.

Then, A is positive-definite iff all of its eigenvalues are positive.

#### Proof.

 $(\Longrightarrow)$  A is positive-definite and  $Av = \lambda v$  for any nonzero vector v.

 $0 < v^{\top} A v = v^{\top} \lambda v = \lambda ||v||_2^2.$ 

Since  $||v||_2^2 > 0$ ,  $\lambda > 0$ .



Liangda Fang 65/101

Conclusions

## Properties of symmetric positive-definite matrices

Iterative method

#### Proof.

 $(\Leftarrow)$  By the finite-dimensional spectral theorem, any nonzero vector xcan be represented by

$$x = c_1 v_1 + \ldots + c_n v_n$$

where  $v_1, \ldots, v_n$  are the eigenvectors of A and not all  $c_i$  are zero.

$$x^{\top} A x = (c_1 v_1 + \ldots + c_n v_n)^{\top} A (c_1 v_1 + \ldots + c_n v_n)$$

$$= (c_1 v_1 + \ldots + c_n v_n)^{\top} (\lambda_1 c_1 v_1 + \ldots + \lambda_n c_n v_n)$$

$$= \lambda_1 c_1^2 + \ldots + \lambda_n c_n^2$$



66/101 Liangda Fang

## Properties of symmetric positive-definite matrices

#### Definition

A principal submatrix of a square matrix A is a square submatrix whose diagonal entries are diagonal entries of A.

### **Proposition**

Any principal submatrix of a symmetric positive-definite matrix is symmetric positive-definite.

### Example

$$\mathsf{If} \begin{bmatrix} a_{11} & a_{12} & a_{13} & a_{14} \\ a_{21} & a_{22} & a_{23} & a_{24} \\ a_{31} & a_{32} & a_{33} & a_{34} \\ a_{41} & a_{42} & a_{43} & a_{44} \end{bmatrix}$$

is symmetric positive-definite,

then so is  $\begin{bmatrix} a_{22} & a_{23} \\ a_{32} & a_{33} \end{bmatrix}$ .



Liangda Fang 67/ 101

- - Jacobi Method
  - Gauss-Seidel Method
  - Successive Over-Relaxation
  - Convergence of iterative methods
- Methods for symmetric positive-definite matrices

Iterative method

- Symmetric positive-definite matrices
- Conjugate Gradient Method
- Preconditioning



## A-Conjugate

Assume we have a symmetric positive-definite  $n \times n$  matrix A.

#### Definition

For two *n*-vectors v and w, define the A-inner product as  $(v, w)_A = v^{\mathsf{T}} A w.$ 





Liangda Fang 69/101 Assume we have a symmetric positive-definite  $n \times n$  matrix A.

#### Definition

For two *n*-vectors v and w, define the A-inner product as  $(v, w)_A = v^\top A w$ .

The vectors v and w are A-conjugate if  $(v, w)_A = 0$ .

### Proposition

- *Symmetry:*  $(v, w)_A = (w, v)_A$ ;
- Linearity:  $(\alpha v, w)_A = \alpha(v, w)_A$  and  $(v, \alpha w)_A = \alpha(v, w)_A$ ;
- Positive-definiteness:  $(v, v)_A > 0$  if  $v \neq 0$ ;
- Classical inner-product:  $(v, w) = (v, w)_I$ .

Liangda Fang 69/ 101

# Conjugate Gradient Method

#### Lemma

Let  $D = \{d_1, \dots, d_n\}$  a set of n mutually conjugate vectors wrt to A. Then D forms a basis for  $\mathbb{R}^n$ .



Liangda Fang 70/101

## Conjugate Gradient Method

#### Lemma

Let  $D = \{d_1, \dots, d_n\}$  a set of n mutually conjugate vectors wrt to A. Then D forms a basis for  $\mathbb{R}^n$ .

### **Proposition**

The solution  $x^*$  of Ax = b can be represented by

$$x^* = \sum_{k=1}^n \alpha_k d_k.$$



Liangda Fang 70/101 Introduction



Conclusions



## Some notations of Conjugate Gradient Method

- **1**  $d_k$ : the k-th mutually conjugate vector;
- $\alpha_k$ : the coefficient of  $d_k$  for  $x^*$  ensuring  $(d_k, r_{k+1}) = 0$ ;
- 3  $x_k$ : the approximate solution at step k;
  - the projection of  $x^*$  onto  $\{d_1,\ldots,d_{k-1}\}$ , i.e.,  $\sum_{i=1}^{k-1}\alpha_i d_i$ ;



# Some notations of Conjugate Gradient Method

- **1**  $d_k$ : the k-th mutually conjugate vector;
- $\alpha_k$ : the coefficient of  $d_k$  for  $x^*$  ensuring  $(d_k, r_{k+1}) = 0$ ;
- **3**  $x_k$ : the approximate solution at step k;
  - the projection of  $x^*$  onto  $\{d_1,\ldots,d_{k-1}\}$ , i.e.,  $\sum_{i=1}^{k-1}\alpha_i d_i$ ;
- $r_k$ : the residual of  $x_k$  at step k, i.e.,  $b Ax_k$ ;
  - $(r_i, r_k) = 0$  for 0 < i < k:
- **5**  $\beta_k$ : the coefficient ensuring  $(d_k, d_{k+1})_A = 0$ .



# An iterative framework for Conjugate Gradient Method

### **Algorithm 1:** Conjugate Gradient Method

1  $x_0$  = initial guess

$$d_0 = r_0 = b - Ax_0$$

3 for  $k = 0, 1, 2, \dots, n-1$  do

if  $r_k$  is sufficiently small then

return  $x_k$ 5

Compute the parameters  $\alpha_k, x_{k+1}, r_{k+1}, \beta_k$  and  $d_{k+1}$ .



Liangda Fang 73/101

## An iterative framework for Conjugate Gradient Method

### **Algorithm 2:** Conjugate Gradient Method

- 1  $x_0$  = initial guess
- 2  $d_0 = r_0 = b Ax_0$
- 3 for  $k = 0, 1, 2, \dots, n-1$  do
- if  $r_k$  is sufficiently small then
- return  $x_k$ 
  - Compute the parameters  $\alpha_k, x_{k+1}, r_{k+1}, \beta_k$  and  $d_{k+1}$ .
    - $(r_i, r_k) = 0$  for  $0 \le i < k$  implies the method ends in niterations.
    - To achieve this, we need  $(r_{k+1}, d_k) = 0$  for each iteration.
    - In addition,  $(d_k, d_{k+1})_A = 0$  is guaranteed for each iteration.



Liangda Fang 73/101

# Computation of $x_{k+1}$ , $r_{k+1}$ and $d_{k+1}$

By definition:

$$x_{k+1} = x_k + \alpha_k d_k$$

$$b - Ax_{k+1} = b - Ax_k - \alpha_k A d_k$$

$$r_{k+1} = r_k - \alpha_k A d_k$$

Update  $d_{k+1}$  by  $r_{k+1}$  and  $d_k$ :

$$d_{k+1} = r_{k+1} + \beta_k d_k.$$



Liangda Fang 74/ 101

# Computation of $\alpha_k$

Choose 
$$\alpha_k$$
 s.t.  $r_{k+1}^{\top} d_k = 0$ :



Liangda Fang 75/ 101

# Computation of $\alpha_k$

Choose  $\alpha_k$  s.t.  $r_{k+1}^{\top} d_k = 0$ :

$$r_{k+1} = r_k - \alpha_k A d_k$$

$$0 = d_k^{\top} r_{k+1} = d_k^{\top} r_k - \alpha_k d_k^{\top} A d_k$$

$$\alpha_k = \frac{d_k^{\top} r_k}{d_k^{\top} A d_k}$$



Liangda Fang 75/101

# Computation of $\alpha_k$

Choose  $\alpha_k$  s.t.  $r_{k+1}^{\top} d_k = 0$ :

$$r_{k+1} = r_k - \alpha_k A d_k$$

$$0 = d_k^{\top} r_{k+1} = d_k^{\top} r_k - \alpha_k d_k^{\top} A d_k$$

$$\alpha_k = \frac{d_k^{\top} r_k}{d_k^{\top} A d_k}$$

 $\alpha_k$  can be transformed as  $\frac{r_k^{\top} r_k}{d_k^{\top} A d_k}$  because the following

$$\begin{array}{rcl} d_k - r_k & = & \beta_{k-1} d_{k-1} \\ r_k^\top d_k - r_k^\top r_k & = & 0 & (r_k^\top d_{k-1} = 0) \end{array}$$



Liangda Fang 75/101

# Computation of $\beta_k$

Choose 
$$\beta_k$$
 s.t.  $d_k^{\top} A d_{k+1} = 0$ :



76/101 Liangda Fang

# Computation of $\beta_k$

Choose  $\beta_k$  s.t.  $d_k^{\top} A d_{k+1} = 0$ :

$$d_{k+1} = r_{k+1} + \beta_k d_k$$

$$0 = d_k^{\top} A d_{k+1} = d_k^{\top} A r_{k+1} + \beta_k d_k^{\top} A d_k$$

$$\beta_k = -\frac{d_k^{\top} A r_{k+1}}{d_k^{\top} A d_k}.$$



Liangda Fang 76/101 Choose  $\beta_k$  s.t.  $d_k^{\top} A d_{k+1} = 0$ :

$$d_{k+1} = r_{k+1} + \beta_k d_k 0 = d_k^{\top} A d_{k+1} = d_k^{\top} A r_{k+1} + \beta_k d_k^{\top} A d_k \beta_k = -\frac{d_k^{\top} A r_{k+1}}{d_k^{\top} A d_k}.$$

 $\beta_k$  can be simplified as  $\frac{r_{k+1}^{\top}r_{k+1}}{r_{k}^{\top}r_{k}}$  because the following

- $d_k^{\top} A r_{k+1} = \frac{1}{\alpha_k} (r_k r_{k+1})^{\top} r_{k+1} = -\frac{1}{\alpha_k} r_{k+1}^{\top} r_{k+1};$
- $d_k^{\top} A d_k = (r_k + \beta_{k-1} d_{k-1})^{\top} A d_k = \frac{1}{\alpha_k} r_k^{\top} (r_k r_{k+1}) = \frac{1}{\alpha_k} r_k^{\top} r_k$ .



Liangda Fang 76/ 101

# Conjugate Gradient Method

### Algorithm 3: Conjugate Gradient Method

- 1  $x_0 = initial guess$
- 2  $d_0 = r_0 = b Ax_0$
- 3 for  $k = 0, 1, 2, \dots, n-1$  do
- 4 if  $r_k$  is sufficiently small then
- $return x_k$
- $\mathbf{6} \quad \alpha_k = \frac{r_k^\top r_k}{d_k^\top A d_k}$
- $r_{k+1} = r_k \alpha_k A d_k$
- $\boldsymbol{9} \quad \boldsymbol{\beta}_k = \frac{\boldsymbol{r}_{k+1}^\top \boldsymbol{r}_{k+1}}{\boldsymbol{r}_k^\top \boldsymbol{r}_k}$
- 10  $d_{k+1} = r_{k+1} + \beta_k d_k$



Liangda Fang 77/101

## Example

### Example (Initialize $x_0$ , $d_0$ and $r_0$ )

Solve  $\begin{bmatrix} 2 & 2 \\ 2 & 5 \end{bmatrix} \begin{bmatrix} u \\ v \end{bmatrix} = \begin{bmatrix} 6 \\ 3 \end{bmatrix}$  using the Conjugate Gradient Method. .

• 
$$x_0 = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$
;

$$\bullet \ r_0 = d_0 = \begin{bmatrix} 6 \\ 3 \end{bmatrix}.$$



78/101 Liangda Fang

### Example (1st step)

• 
$$\alpha_0 = \frac{\begin{bmatrix} 6 & 3 \end{bmatrix} \begin{bmatrix} 6 \\ 3 \end{bmatrix}}{\begin{bmatrix} 6 & 3 \end{bmatrix} \begin{bmatrix} 2 & 2 \\ 2 & 5 \end{bmatrix} \begin{bmatrix} 6 \\ 3 \end{bmatrix}} = \frac{45}{6 \cdot 18 + 3 \cdot 27} = \frac{5}{21};$$

• 
$$x_1 = \begin{bmatrix} 0 \\ 0 \end{bmatrix} + \frac{5}{21} \begin{bmatrix} 6 \\ 3 \end{bmatrix} = \begin{bmatrix} \frac{10}{7} \\ \frac{5}{7} \end{bmatrix};$$

• 
$$r_1 = \begin{bmatrix} 6 \\ 3 \end{bmatrix} - \frac{5}{21} \begin{bmatrix} 18 \\ 27 \end{bmatrix} = 12 \begin{bmatrix} \frac{1}{7} \\ -\frac{2}{7} \end{bmatrix};$$

$$\bullet$$
  $\beta_0 = \frac{144 \cdot 5/49}{36 + 9} = \frac{16}{49}$ ;

• 
$$d_1 = 12 \begin{bmatrix} \frac{1}{7} \\ -\frac{2}{7} \end{bmatrix} + \frac{16}{49} \begin{bmatrix} 6 \\ 3 \end{bmatrix} = \begin{bmatrix} \frac{180}{49} \\ -\frac{120}{49} \end{bmatrix}$$
.



Liangda Fang 79/101

## Example (2nd step)

$$\bullet \ \alpha_1 = \frac{\begin{bmatrix} \frac{12}{7} & -\frac{24}{7} \end{bmatrix} \begin{bmatrix} \frac{12}{7} \\ -\frac{24}{7} \end{bmatrix}}{\begin{bmatrix} \frac{180}{49} & -\frac{120}{49} \end{bmatrix} \begin{bmatrix} 2 & 2 \\ 2 & 5 \end{bmatrix} \begin{bmatrix} \frac{180}{49} \\ -\frac{120}{49} \end{bmatrix}} = \frac{7}{10};$$

• 
$$x_2 = \begin{bmatrix} \frac{10}{7} \\ \frac{7}{5} \end{bmatrix} + \frac{7}{10} \begin{bmatrix} \frac{180}{49} \\ -\frac{120}{49} \end{bmatrix} = \begin{bmatrix} 4 \\ -1 \end{bmatrix};$$

• 
$$r_2 = 12 \begin{bmatrix} \frac{1}{7} \\ -\frac{2}{7} \end{bmatrix} - \frac{7}{10} \begin{bmatrix} 2 & 2 \\ 2 & 5 \end{bmatrix} \begin{bmatrix} \frac{180}{49} \\ -\frac{120}{49} \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix};$$

• The solution is  $x_2 = \begin{bmatrix} u \\ v \end{bmatrix} = \begin{bmatrix} 4 \\ -1 \end{bmatrix}$  since  $r_2 = 0$ .

### Theorem (Main theorem)

Let  $b \neq 0$ ,  $x_0 = 0$ , and  $r_k \neq 0$  for k < n. Then for each  $1 \leq k \leq n$ ,

• the following three subspaces of  $\mathbb{R}^n$  are equal:

$$(x_1,\ldots,x_k)=(r_0,\ldots,r_{k-1})=(d_0,\ldots,d_{k-1});$$

distinct residuals are pairwise orthogonal:

$$r_k^{\top} r_j = 0$$
 for  $j < k$ ;

**3** distinct vectors of a subspace span are pairwise A-conjugate:

$$d_k^{\top} A d_j = 0$$
 for  $j < k$ .



### Proof of 1st item

#### Proof.

• Base case (k = 1):  $(x_1) = (r_0) = (d_0)$  since  $x_1 = x_0 + \alpha d_0 = \alpha_0 d_0 = \alpha_0 r_0$ .



### Proof.

• Base case (k = 1):  $(x_1) = (r_0) = (d_0)$  since  $x_1 = x_0 + \alpha d_0 = \alpha_0 d_0 = \alpha_0 r_0.$ 

Iterative method

• Inductive step (k > 1): Suppose that the k - 1 case hold.



### Proof of 1st item

### Proof.

- Base case (k = 1):  $(x_1) = (r_0) = (d_0)$  since  $x_1 = x_0 + \alpha d_0 = \alpha_0 d_0 = \alpha_0 r_0$ .
- Inductive step (k > 1): Suppose that the k 1 case hold.



### Proof of 1st item

#### Proof.

- Base case (k = 1):  $(x_1) = (r_0) = (d_0)$  since  $x_1 = x_0 + \alpha d_0 = \alpha_0 d_0 = \alpha_0 r_0$ .
- Inductive step (k > 1): Suppose that the k 1 case hold.
  - **1**  $(x_1,\ldots,x_k)\subseteq (d_0,\ldots,d_{k-1}): x_k=\sum_{i=0}^{k-1}\alpha_i d_i;$
  - $(x_1, \dots, x_k) \supseteq (d_0, \dots, d_{k-1}):$   $x_k = x_{k-1} + \alpha_{k-1} d_{k-1} \Rightarrow d_{k-1} = \frac{1}{\alpha_{k-1}} x_k \frac{1}{\alpha_{k-1}} x_{k-1}.$



### Proof.

- Base case (k = 1):  $(x_1) = (r_0) = (d_0)$  since  $x_1 = x_0 + \alpha d_0 = \alpha_0 d_0 = \alpha_0 r_0$ .
- Inductive step (k > 1): Suppose that the k 1 case hold.

$$(x_1, \ldots, x_k) \subseteq (d_0, \ldots, d_{k-1}): x_k = \sum_{i=0}^{k-1} \alpha_i d_i;$$

② 
$$(x_1,\ldots,x_k) \supseteq (d_0,\ldots,d_{k-1}):$$
  
 $x_k = x_{k-1} + \alpha_{k-1}d_{k-1} \Rightarrow d_{k-1} = \frac{1}{\alpha_{k-1}}x_k - \frac{1}{\alpha_{k-1}}x_{k-1}.$ 

$$(r_0, \dots, r_{k-1}) \subseteq (d_0, \dots, d_{k-1}):$$

$$d_{k-1} = r_{k-1} + \beta_{k-2} d_{k-2} \Rightarrow r_{k-1} = d_{k-1} - \beta_{k-2} d_{k-2};$$



#### Proof.

- Base case (k = 1):  $(x_1) = (r_0) = (d_0)$  since  $x_1 = x_0 + \alpha d_0 = \alpha_0 d_0 = \alpha_0 r_0$ .
- Inductive step (k > 1): Suppose that the k 1 case hold.

**1** 
$$(x_1, \ldots, x_k) \subseteq (d_0, \ldots, d_{k-1}): x_k = \sum_{i=0}^{k-1} \alpha_i d_i;$$

$$(x_1, \dots, x_k) \supseteq (d_0, \dots, d_{k-1}):$$

$$x_k = x_{k-1} + \alpha_{k-1} d_{k-1} \Rightarrow d_{k-1} = \frac{1}{\alpha_{k-1}} x_k - \frac{1}{\alpha_{k-1}} x_{k-1}.$$

$$(r_0, \dots, r_{k-1}) \subseteq (d_0, \dots, d_{k-1}):$$

$$d_{k-1} = r_{k-1} + \beta_{k-2} d_{k-2} \Rightarrow r_{k-1} = d_{k-1} - \beta_{k-2} d_{k-2};$$

$$(r_0, \dots, r_{k-1}) \supseteq (d_0, \dots, d_{k-1}):$$

$$d_{k-2} = \sum_{i=0}^{k-2} \gamma_i r_i \Rightarrow$$

$$d_{k-1} = r_{k-1} + \beta_{k-2} d_{k-2} = r_{k-1} + \sum_{i=0}^{k-2} (\beta_{k-2} \gamma_i) r_i.$$

\$000 NIVE 15

### Lemmas of the 2nd and 3rd items

#### Lemma

Introduction

$$(r_j, d_k)_A = 0$$
 for  $0 \le j < k$  or  $0 \le k < j + 1$ .



Conclusions

### Lemma

Introduction

$$(r_i, d_k)_A = 0$$
 for  $0 \le j < k$  or  $0 \le k < j + 1$ .

### Proof.

Here we only prove the case that  $0 \le j < k$ .

If 
$$j=0$$
, then  $d_k^{\top}Ar_0=d_k^{\top}Ad_0=0$ ;



Conclusions

### Lemmas of the 2nd and 3rd items

#### Lemma

$$(r_j, d_k)_A = 0$$
 for  $0 \le j < k$  or  $0 \le k < j + 1$ .

#### Proof.

Here we only prove the case that  $0 \le i \le k$ .

If j = 0, then  $d_k^{\top} A r_0 = d_k^{\top} A d_0 = 0$ ;

Otherwise.

$$d_k^{\top} A r_j = d_k^{\top} A (d_j - \beta_{j-1} d_{j-1}) = d_k^{\top} A d_j - \beta_{j-1} d_k^{\top} A d_{j-1} = 0.$$



#### Lemma

 $(r_i, d_k)_A = 0$  for 0 < i < k or 0 < k < i + 1.

### Proof.

Here we only prove the case that  $0 \le i \le k$ .

If j = 0, then  $d_h^{\top} A r_0 = d_h^{\top} A d_0 = 0$ ;

Otherwise.

$$d_k^{\top} A r_j = d_k^{\top} A (d_j - \beta_{j-1} d_{j-1}) = d_k^{\top} A d_j - \beta_{j-1} d_k^{\top} A d_{j-1} = 0.$$

### Lemma

$$d_k^{\top} A d_k = r_k^{\top} A d_k.$$



#### Lemma

 $(r_i, d_k)_A = 0$  for 0 < i < k or 0 < k < i + 1.

## Proof.

Here we only prove the case that  $0 \le i \le k$ .

If 
$$j = 0$$
, then  $d_k^{\top} A r_0 = d_k^{\top} A d_0 = 0$ ;

Otherwise.

$$d_k^{\top} A r_j = d_k^{\top} A (d_j - \beta_{j-1} d_{j-1}) = d_k^{\top} A d_j - \beta_{j-1} d_k^{\top} A d_{j-1} = 0.$$

### Lemma

$$d_k^{\top} A d_k = r_k^{\top} A d_k.$$

## Proof.

$$d_{k}^{\top} A d_{k} = r_{k}^{\top} A d_{k} + \beta_{k-1} d_{k-1}^{\top} A d_{k} = r_{k}^{\top} A d_{k}.$$



Base case (k = 1):

$$\bullet \quad r_0^{\top} r_1 = r_0^{\top} r_0 - \alpha_0 r_0^{\top} A d_0 = r_0^{\top} r_0 - \frac{r_0^{\top} r_0}{d_0^{\top} A d_0} d_0^{\top} A d_0 = 0;$$



Base case (k = 1):

$$\bullet \ r_0^\top r_1 = r_0^\top r_0 - \alpha_0 r_0^\top A d_0 = r_0^\top r_0 - \frac{r_0^\top r_0}{d_0^\top A d_0} d_0^\top A d_0 = 0;$$

$$\beta_0 = -\frac{r_1^\top A d_0}{d_0^\top A d_0};$$



Base case (k=1):

$$\beta_0 = -\frac{r_1^\top A d_0}{d_0^\top A d_0};$$

$$\bullet \ d_0^\top A d_1 = d_0^\top A r_1 + \beta_0 d_0^\top A d_0 = d_0^\top A r_1 - \frac{r_1^\top A d_0}{d_0^\top A d_0} d_0^\top A d_0 = 0.$$



Inductive step (k > 1): Suppose that the k - 1 case hold.

The 2nd item:



Inductive step (k > 1): Suppose that the k - 1 case hold.

The 2nd item:

2 If 
$$j < k-1$$
, then  $r_i^{\top} r_k = 0$ ;



Inductive step (k > 1): Suppose that the k - 1 case hold.

The 2nd item:

$$\mathbf{0} \ r_i^{\top} r_k = r_i^{\top} r_{k-1} - \alpha_{k-1} r_i^{\top} A d_{k-1};$$

② If 
$$j < k-1$$
, then  $r_j^\top r_k = 0$ ;

$$\textbf{ 3} \ \, \text{If} \, \, j = k-1, \, \text{then} \, \, \alpha_{k-1} = \frac{r_{k-1}^\top r_{k-1}}{d_{k-1}^\top A d_{k-1}};$$



Inductive step (k > 1): Suppose that the k - 1 case hold.

The 2nd item:

$$\mathbf{0} \ r_j^{\top} r_k = r_j^{\top} r_{k-1} - \alpha_{k-1} r_j^{\top} A d_{k-1};$$

② If 
$$j < k-1$$
, then  $r_j^\top r_k = 0$ ;

$$\textbf{ If } j = k-1 \text{, then } \alpha_{k-1} = \frac{r_{k-1}^{\top} r_{k-1}}{d_{k-1}^{\top} A d_{k-1}};$$

$$\begin{array}{l} \bullet \quad r_{k-1}^\top r_k = r_{k-1}^\top r_{k-1} - \alpha_{k-1} r_{k-1}^\top A \, d_{k-1} \\ = r_{k-1}^\top r_{k-1} - \frac{r_{k-1}^\top r_{k-1}}{d_{k-1}^\top A \, d_{k-1}} \, d_{k-1}^\top A \, d_{k-1} = 0. \end{array}$$



Inductive step (k > 1): Suppose that the k - 1 case hold. The 3rd item:



#### Proof.

Inductive step (k > 1): Suppose that the k - 1 case hold. The 3rd item:

- ② If j < k-1, then  $Ad_j = \frac{r_j r_{j+1}}{\alpha_j}$  is orthogonal to  $r_k$ , *i.e.*,  $d_j^\top A r_k = 0$ ;



00/101

#### Proof.

Inductive step (k > 1): Suppose that the k - 1 case hold. The 3rd item:

- $\mathbf{0} \ d_j^{\top} A d_k = d_j^{\top} A r_k + \beta_{k-1} d_j^{\top} A d_{k-1};$
- ② If j < k-1, then  $Ad_j = \frac{r_j r_{j+1}}{\alpha_j}$  is orthogonal to  $r_k$ , *i.e.*,  $d_j^\top A r_k = 0$ ;
- $oldsymbol{\mathbf{So}} d_i^{\top} A d_k = 0.$



#### Proof.

Inductive step (k > 1): Suppose that the k - 1 case hold. The 3rd item:

- ② If j < k-1, then  $Ad_j = \frac{r_j r_{j+1}}{\alpha_j}$  is orthogonal to  $r_k$ , *i.e.*,  $d_j^\top A r_k = 0$ ;
- $\bullet \ \, \text{If} \, \, j = k-1, \, \text{then} \, \, \beta_{k-1} = -\frac{r_k^{\mathsf{T}} A \, d_{k-1}}{d_{k-1}^{\mathsf{T}} \, A \, d_{k-1}}.$



#### Proof.

Inductive step (k > 1): Suppose that the k - 1 case hold. The 3rd item:

- ② If j < k-1, then  $Ad_j = \frac{r_j r_{j+1}}{\alpha_j}$  is orthogonal to  $r_k$ , *i.e.*,  $d_j^\top A r_k = 0$ ;
- $\textbf{ If } j=k-1 \text{, then } \beta_{k-1}=-\frac{r_k^\intercal A d_{k-1}}{d_{k-1}^\intercal A d_{k-1}}.$
- $\begin{array}{l} \textbf{ 5} \text{ So } d_{k-1}^{\intercal}Ad_k = d_{k-1}^{\intercal}Ar_k + \beta_{k-1}d_{k-1}^{\intercal}Ad_{k-1} \\ &= d_{k-1}^{\intercal}Ar_k \frac{r_k^{\intercal}Ad_{k-1}}{d_{k-1}^{\intercal}Ad_{k-1}}d_{k-1}^{\intercal}Ad_{k-1} = 0. \end{array}$



## Outline

- Introduction
- 2 Preliminaries
- 3 Iterative method
  - Jacobi Method
  - Gauss-Seidel Method
  - Successive Over-Relaxation
  - Convergence of iterative methods
- Methods for symmetric positive-definite matrices
  - Symmetric positive-definite matrices
  - Conjugate Gradient Method
  - Preconditioning
- Conclusions



- Suppose that Ax = b is a linear system.
- Condition number of A: a bound on how inaccurate the solution x will be after approximation.
- ullet A is ill-conditioned: the condition number of A is very large.
- A is ill-conditioned  $\Rightarrow$  Conjugate Gradient Method fails.



# Motivation of Preconditioning

- Suppose that Ax = b is a linear system.
- Condition number of A: a bound on how inaccurate the solution x will be after approximation.
- ullet A is ill-conditioned: the condition number of A is very large.
- A is ill-conditioned  $\Rightarrow$  Conjugate Gradient Method fails.
- Questions: Is it possible to handle the ill-conditioned matrix?
- Answer: Precondition.



# Motivation of Preconditioning

#### Definition

Suppose  $M=M_1M_2$  is nonsingular and Ax=b is a linear system. Let  $\tilde{A}\tilde{x} = \tilde{b}$  be the linear system where

- $\tilde{A} = M_1^{-1} A M_2^{-1}$ :
- $\tilde{x} = M_2 x$ ;
- $\tilde{b} = M_1^{-1} b$ .

The matrix M is called a **preconditioner**.



# Motivation of Preconditioning

#### Definition

Suppose  $M = M_1 M_2$  is nonsingular and Ax = b is a linear system. Let  $\tilde{A}\tilde{x} = \tilde{b}$  be the linear system where

- $\tilde{A} = M_1^{-1} A M_2^{-1}$ :
- $\tilde{x} = M_2 x$ ;
- $\tilde{b} = M_1^{-1} b$ .

The matrix M is called a **preconditioner**.

- An effective preconditioner reduces the condition number, *i.e.*,  $cond(M_1^{-1}AM_2^{-1})$  is small.
- Two criterion of choosing *M*:
  - $\bullet$  M as close to A:
  - M is simple to invert.



Let 
$$A = L + D + L^{\top}$$
.

- **1** Jacobi preconditioner: M = D;
- **②** Gauss-Seidel preconditioner:  $M = (D+L)D^{-1}(D+L)^{\top}$ ;
- **3 SSOR preconditioner**:  $M = (D + \omega L)D^{-1}(D + \omega L)^{\top}$  where  $0 < \omega < 2$ .



Liangda Fang 90/ 101

## Lemma

Let M be symmetric positive-definite matrix. Then, there exists a unique symmetric positive-definite matrix C s.t.  $M = C^2$ .



Liangda Fang 91/101

#### Lemma

Let M be symmetric positive-definite matrix. Then, there exists a unique symmetric positive-definite matrix C s.t.  $M = C^2$ .

Since A is symmetric positive-definite, we choose a symmetric positive-definite preconditioner M.

#### Definition

Suppose  $M=C^2$  is symmetric positive-definite and Ax=b is a linear system. Let  $\tilde{A}\tilde{x}=\tilde{b}$  be the linear system where

- $\tilde{A} = C^{-1}AC^{-1}$ :
- $\tilde{x} = Cx$ :
- $\tilde{b} = C^{-1}b$

The matrix M is called a **preconditioner**.

1905 C

Liangda Fang 91/ 101

# Some notations of Conjugate Gradient Method to preconditioned linear system

We use the Conjugate Gradient method to solve

$$\tilde{A}\tilde{x} = \tilde{b}$$
.

- $\tilde{d}_k$ : the k-th mutually conjugate vector wrt  $C^{-1}AC^{-1}$ ;
- 2  $\tilde{\alpha}_k$ : the coefficient of  $\tilde{d}_k$  for  $\tilde{x}^*$ ;
- **3**  $\tilde{x}_k$ : the approximate solution to  $\tilde{x}^*$  at step k;
- $\tilde{r}_k$ : the residual of  $\tilde{x}_k$  of preconditioned system at step k, i.e.,  $\tilde{b} - \tilde{A}\tilde{x}_k = C^{-1}(b - Ax_k) = C^{-1}r_k$
- **5**  $\tilde{\beta}_k$ : the coefficient ensuring  $(\tilde{d}_k, \tilde{d}_{k+1})_{\tilde{A}} = 0$ .



Liangda Fang 92/101

# Computation of the forementioned notations

$$\tilde{x}_{k+1} = \tilde{x}_k + \tilde{\alpha}_k \tilde{d}_k;$$

$$\tilde{r}_{k+1} = \tilde{r}_k - \tilde{\alpha}_k \tilde{A} \tilde{d}_k;$$

$$\tilde{\beta}_k = \frac{\tilde{r}_{k+1}^\top \tilde{r}_{k+1}}{\tilde{r}_k^\top \tilde{r}_k};$$

$$\tilde{d}_{k+1} = \tilde{r}_{k+1} + \tilde{\beta}_k \tilde{d}_k.$$



Liangda Fang 93/101

## Conclusions

# The Extra Computation of Direct Usage of CGM

- Decompose M as  $C \cdot C$ ;
- 2 Compute  $C^{-1}$ ;

**Preliminaries** 

Introduction

- **3** Compute  $\tilde{A} = C^{-1}AC^{-1}$ ;
- Ompute  $\tilde{b} = C^{-1}b$ ;
- **5** Compute  $x_k = C^{-1}\tilde{x}_k$ .



Liangda Fang 94/101

# The Extra Computation of Direct Usage of CGM

- Decompose M as  $C \cdot C$ ;
- 2 Compute  $C^{-1}$ ;
- **3** Compute  $\tilde{A} = C^{-1}AC^{-1}$ ;
- **5** Compute  $x_k = C^{-1}\tilde{x}_k$ .

To reduce the extra computations, we incorporate the above computations into CGM.



Liangda Fang 94/ 101

- **1** Let  $z_k = M^{-1} r_k$ ;
- $\hspace{-0.5cm} \bullet \hspace{-0.5cm} \tilde{r}_k^\top \tilde{r}_k = r_k^\top (C^{-1})^\top C^{-1} r_k = r_k^\top M^{-1} r_k = r_k^\top z_k;$
- **3** Let  $d_k = C^{-1}\tilde{d}_k$ ;
- $\bullet \quad \tilde{d}_k^\top \tilde{A} \tilde{d}_k = d_k^\top C^\top C^{-1} A C^{-1} C d_k = d_k^\top A d_k.$



Liangda Fang 95/101



$$\bullet \quad \tilde{\alpha}_k = \frac{\tilde{r}_k^\top \tilde{r}_k}{\tilde{d}_k^\top \tilde{A} \tilde{d}_k} = \frac{r_k^\top z_k}{d_k^\top A d_k};$$

② 
$$\tilde{x}_{k+1} = \tilde{x}_k + \tilde{\alpha}_k \tilde{d}_k \Rightarrow Cx_{k+1} = Cx_k + \tilde{\alpha}_k Cd_k \Rightarrow Cx_{k+1} = C(x_k + \tilde{\alpha}_k d_k) \Rightarrow x_{k+1} = x_k + \tilde{\alpha}_k d_k;$$



$$\bullet \quad \tilde{\alpha}_k = \frac{\tilde{r}_k^\top \tilde{r}_k}{\tilde{d}_k^\top \tilde{A} \tilde{d}_k} = \frac{r_k^\top z_k}{d_k^\top A d_k};$$

② 
$$\tilde{x}_{k+1} = \tilde{x}_k + \tilde{\alpha}_k \tilde{d}_k \Rightarrow Cx_{k+1} = Cx_k + \tilde{\alpha}_k Cd_k \Rightarrow Cx_{k+1} = C(x_k + \tilde{\alpha}_k d_k) \Rightarrow x_{k+1} = x_k + \tilde{\alpha}_k d_k;$$

$$\tilde{r}_{k+1} = \tilde{r}_k - \tilde{\alpha}_k \tilde{A} \tilde{d}_k \Rightarrow 
C^{-1} r_{k+1} = C^{-1} r_k - \tilde{\alpha}_k C^{-1} A C^{-1} C d_k \Rightarrow 
C^{-1} r_{k+1} = C^{-1} (r_k - \tilde{\alpha}_k A d_k) \Rightarrow 
r_{k+1} = r_k + \tilde{\alpha}_k A d_k;$$



$$\bullet \quad \tilde{\alpha}_k = \frac{\tilde{r}_k^\top \tilde{r}_k}{\tilde{d}_k^\top \tilde{A} \tilde{d}_k} = \frac{r_k^\top z_k}{d_k^\top A d_k};$$

- ②  $\tilde{x}_{k+1} = \tilde{x}_k + \tilde{\alpha}_k \tilde{d}_k \Rightarrow Cx_{k+1} = Cx_k + \tilde{\alpha}_k Cd_k \Rightarrow Cx_{k+1} = C(x_k + \tilde{\alpha}_k d_k) \Rightarrow x_{k+1} = x_k + \tilde{\alpha}_k d_k;$
- $\tilde{r}_{k+1} = \tilde{r}_k \tilde{\alpha}_k \tilde{A} d_k \Rightarrow \\ C^{-1} r_{k+1} = C^{-1} r_k \tilde{\alpha}_k C^{-1} A C^{-1} C d_k \Rightarrow \\ C^{-1} r_{k+1} = C^{-1} (r_k \tilde{\alpha}_k A d_k) \Rightarrow \\ r_{k+1} = r_k + \tilde{\alpha}_k A d_k;$



$$\bullet \quad \tilde{\alpha}_k = \frac{\tilde{r}_k^\top \tilde{r}_k}{\tilde{d}_k^\top \tilde{A} \tilde{d}_k} = \frac{r_k^\top z_k}{d_k^\top A d_k};$$

- ②  $\tilde{x}_{k+1} = \tilde{x}_k + \tilde{\alpha}_k \tilde{d}_k \Rightarrow Cx_{k+1} = Cx_k + \tilde{\alpha}_k Cd_k \Rightarrow Cx_{k+1} = C(x_k + \tilde{\alpha}_k d_k) \Rightarrow x_{k+1} = x_k + \tilde{\alpha}_k d_k;$
- $\tilde{r}_{k+1} = \tilde{r}_k \tilde{\alpha}_k \tilde{A} d_k \Rightarrow$  $C^{-1} r_{k+1} = C^{-1} r_k - \tilde{\alpha}_k C^{-1} A C^{-1} C d_k \Rightarrow$  $C^{-1} r_{k+1} = C^{-1} (r_k - \tilde{\alpha}_k A d_k) \Rightarrow$  $r_{k+1} = r_k + \tilde{\alpha}_k A d_k;$
- $\tilde{\beta}_k = \frac{\tilde{r}_{k+1}^\top \tilde{r}_{k+1}}{\tilde{r}_k^\top \tilde{r}_k} = \frac{r_{k+1}^\top z_{k+1}}{r_k^\top z_k};$



$$\bullet \quad \tilde{\alpha}_k = \frac{\tilde{r}_k^\top \tilde{r}_k}{\tilde{d}_k^\top \tilde{A} \tilde{d}_k} = \frac{r_k^\top z_k}{d_k^\top A d_k};$$

$$\tilde{x}_{k+1} = \tilde{x}_k + \tilde{\alpha}_k \tilde{d}_k \Rightarrow Cx_{k+1} = Cx_k + \tilde{\alpha}_k Cd_k \Rightarrow Cx_{k+1} = C(x_k + \tilde{\alpha}_k d_k) \Rightarrow x_{k+1} = x_k + \tilde{\alpha}_k d_k;$$

$$\tilde{r}_{k+1} = \tilde{r}_k - \tilde{\alpha}_k \tilde{A} d_k \Rightarrow \\ C^{-1} r_{k+1} = C^{-1} r_k - \tilde{\alpha}_k C^{-1} A C^{-1} C d_k \Rightarrow \\ C^{-1} r_{k+1} = C^{-1} (r_k - \tilde{\alpha}_k A d_k) \Rightarrow \\ r_{k+1} = r_k + \tilde{\alpha}_k A d_k;$$

$$z_{k+1} = M^{-1} r_{k+1};$$

$$\tilde{\beta}_k = \frac{\tilde{r}_{k+1}^\top \tilde{r}_{k+1}}{\tilde{r}_k^\top \tilde{r}_k} = \frac{r_{k+1}^\top z_{k+1}}{r_k^\top z_k};$$

$$\tilde{d}_{k+1} = \tilde{r}_{k+1} + \tilde{\beta}_k \tilde{d}_k \Rightarrow C d_{k+1} = C^{-1} r_{k+1} + \tilde{\beta}_k C d_k \Rightarrow d_{k+1} = M^{-1} r_{k+1} + \tilde{\beta}_k d_k \Rightarrow d_{k+1} = z_{k+1} + \tilde{\beta}_k d_k.$$



# Some notations of preconditioned Conjugate Gradient Method

- $\mathbf{0}$   $d_k$ : the k-th mutually conjugate vector wrt A;
- 2  $z_k$ : the auxiliary vector instead of  $\tilde{r}_k$ ;
- **3**  $\tilde{\alpha}_k$ : the coefficient of  $\tilde{d}_k$  for  $\tilde{x}^*$ :
- $x_k$ : the approximate solution to  $x^*$  at step k;
- **5**  $r_k$ : the residual of  $x_k$  of original system at step k;
- $\tilde{\beta}_k$ : the coefficient ensuring  $(\tilde{d}_k, \tilde{d}_{k+1})_{\tilde{A}} = 0$ .



Liangda Fang 97/101

# Preconditioned Conjugate Gradient Method

#### Algorithm 4: Preconditioned Conjugate Gradient Method

```
1 x_0 = initial guess
 r_0 = b - Ax_0
 3 d_0 = z_0 = M^{-1}r_0
 4 for k = 0, 1, 2, \dots, n-1 do
            if r_k is sufficiently small then
 5
                   return x_k
 6
           \tilde{\alpha}_k = \frac{r_k^{\top} z_k}{d^{\top} A d_k}
            x_{k\perp 1} = x_k + \tilde{\alpha}_k d_k
 8
            r_{k+1} = r_k - \tilde{\alpha}_k A d_k
 g
            z_{k \perp 1} = M^{-1} r_{k \perp 1}
10
           \tilde{\beta}_k = \frac{r_{k+1}^\top z_{k+1}}{r_{k}^\top z_k}
11
           d_{k+1} = z_{k+1} + \tilde{\beta}_k d_k
12
```



## Outline

- - Jacobi Method
  - Gauss-Seidel Method
  - Successive Over-Relaxation
  - Convergence of iterative methods
- - Symmetric positive-definite matrices
  - Conjugate Gradient Method
  - Preconditioning
- Conclusions



Liangda Fang 99/101

- Three iterative methods for strictly diagonally dominant matrix
  - Jacobi Method
  - @ Gauss-Seidel Method
  - Successive Over-Relaxation



Liangda Fang 100/ 101

- Three iterative methods for strictly diagonally dominant matrix
  - Jacobi Method
  - Gauss-Seidel Method
  - Successive Over-Relaxation
- Two iterative methods for symmetric positive-definite matrix
  - Conjugate Gradient Method
  - 2 Preconditioned Conjugate Gradient Method



Liangda Fang 100/101

Introduction



Conclusions

Liangda Fang