Uncertain Data Management Non-relational models: Graphs

Antoine Amarilli¹, **Silviu Maniu**²

¹Télécom ParisTech

²Université Paris-Sud

January 16th, 2017

Credits

- M. Potamias, F. Bonchi, A. Gionis, G. Kolios. k-Nearest Neighbors in Uncertain Graphs. PVLDB 3(1), 2010. (number of samples, median measure, figure in slide 17, algorithm in slide 20)
- M. Ball. Computational Complexity of Network Reliability Analysis: An Overview. IEEE Trans. Reliab. R-35(3), 1986.
- L. Valiant. The Complexity of Enumeration And Reliability Problems. SIAM J. Comput. 8(3), 1979. (complexity of reliability/reachability)

PDFs of the slides available at http://silviu.maniu.info/teaching/

Uncertain Graphs

Graphs: a natural way to represent data in various domains

- transport data: road, air links between locations
- social networks: relationships between humans, citation networks
- interactions between proteins: contacts due to biochemical processes

Uncertain Graphs

Graphs: a natural way to represent data in various domains

- transport data: road, air links between locations
- social networks: relationships between humans, citation networks
- interactions between proteins: contacts due to biochemical processes

For all the above examples, the links are not exact. (Why?)

(Deterministic) Graphs

A graph G = (V, E) is formed of

- a set V of vertices (nodes)
- a set $E \subseteq V \times V$, of edges

Uncertain Graphs

An uncertain graph G = (V, E, p) is formed of

- a set V of vertices (nodes)
- a set $E \subseteq V \times V$, of edges
- a function $p: E \to [0,1]$, representing the probability p_e that the edge $e \in E$ exists or not

What are the possible worlds and their probability for this model?

Uncertain Graphs: Possible Worlds

A possible world of \mathcal{G} , denoted $G \sqsubseteq \mathcal{G}$ is a deterministic graph $G = (V, E_G)$ where each $e \in E_G$ is chosen from E

Uncertain Graphs: Possible Worlds

A possible world of \mathcal{G} , denoted $G \sqsubseteq \mathcal{G}$ is a *deterministic* graph $G = (V, E_G)$ where each $e \in E_G$ is chosen from E

The probability of G is:

$$\Pr[G] = \prod_{e \in E_G} p_e \prod_{e \in E \setminus E_G} (1 - p_e)$$

How many possible worlds are there?

Uncertain Graphs: Other models

Other models are possible:

- each edge is replaced by a distribution of weights instead of choosing if the edge exists or not, a possible world is an instantiation of weights
- each edge has a formula of events, capturing correlations
- probabilities can be on nodes also equivalent to the edge model (Why?)

Generally, the queries we want to answer are distance queries:

 the reachability or reliability query – get the probability that two nodes s and t are connected

Generally, the queries we want to answer are distance queries:

- the reachability or reliability query get the probability that two nodes s and t are connected
- queries on the distance distribution:

$$p_{s,t}(d) = \sum_{G|d_G(s,t)=d} \Pr[G]$$

Generally, the queries we want to answer are distance queries:

- the reachability or reliability query get the probability that two nodes s and t are connected
- queries on the distance distribution:

$$p_{s,t}(d) = \sum_{G|d_G(s,t)=d} \Pr[G]$$

Multiple uses of distance queries:

link prediction, social search, travel estimation

Generally, the queries we want to answer are distance queries:

 the reachability or reliability query – get the probability that two nodes s and t are connected

Generally, the queries we want to answer are distance queries:

- the reachability or reliability query get the probability that two nodes s and t are connected
- queries on the distance distribution:

$$p_{s,t}(d) = \sum_{G|d_G(s,t)=d} \Pr[G]$$

- BFS search (or Dijkstra's algorithms) finds the edge $b \rightarrow a$
- the cost is O(E) (linear in the size of the graph)

What is the distance (in hops) between *b* and *a*?

• the edge b → a does not appear in all possible worlds:

$$p_{b,a}(1) = p(b \rightarrow a)$$

What is the distance (in hops) between b and a?

• the edge $b \rightarrow a$ does not appear in all possible worlds:

$$p_{b,a}(1) = p(b \to a)$$

• there are two possible paths of distance 2 $(b \rightarrow c \rightarrow a)$ and 3 $(b \rightarrow d \rightarrow c \rightarrow a)$

$$p_{b,a}(1) = (1 - p_{b,a}(1)) \times p(b \to c \to a)$$

- the number of paths is exponential in the size of the graph
- specifically, there are 3! paths

Distance query answering in uncertain graphs is at least as hard as in relational databases (*logical formulas* of paths; the number of which can be exponential)

Distance query answering in uncertain graphs is at least as hard as in relational databases (*logical formulas* of paths; the number of which can be exponential)

Computing the reachability probability (i.e, computing the probability of there being a path between a source and a target) is known to be #P hard [Valiant, SIAM J. Comp, 1979]

Computing Answers to Distance Queries on Probabilistic Graphs

Distance estimations in uncertain graphs can be approximated via Monte Carlo sampling

Computing Answers to Distance Queries on Probabilistic Graphs

Distance estimations in uncertain graphs can be approximated via Monte Carlo sampling

- 1. generate sampled graphs for r rounds (is this the optimal way for an s, t distance estimation?)
- compute the desired measure (reachability probability, distance distributions) by averaging results

Computing Answers to Distance Queries on Probabilistic Graphs

Distance estimations in uncertain graphs can be approximated via Monte Carlo sampling

- 1. generate sampled graphs for *r* rounds (is this the optimal way for an *s*, *t* distance estimation?)
- compute the desired measure (reachability probability, distance distributions) by averaging results

Same issue: how many rounds?

Number of Samples: Median Distance

Median distance:

$$d_{M}(s,t) = \arg\max_{D} \left\{ \sum_{d=0}^{D} p_{s,t}(d) \leqslant \frac{1}{2} \right\}$$

Number of Samples: Median Distance

Median distance:

$$d_{M}(s,t) = \arg\max_{D} \left\{ \sum_{d=0}^{D} p_{s,t}(d) \leqslant \frac{1}{2} \right\}$$

Let μ be the real median, and α and β values $\pm \epsilon {\it N}$ away from $\mu.$ Then for:

$$r > \frac{c}{\epsilon^2} \log(\frac{2}{\delta})$$

and a good choice of c:

$$\Pr(\hat{\mu} \in [\alpha, \beta]) > 1 - \delta$$

Number of Samples: Expected Distance

Expected reliable distance (generalization of reliability):

$$d_{\mathsf{ER}}(s,t) = \sum_{d|d < \infty} d \cdot \frac{p_{s,t}(d)}{1 - p_{s,t}(\infty)}$$

Number of Samples: Expected Distance

Expected reliable distance (generalization of reliability):

$$d_{\mathsf{ER}}(s,t) = \sum_{d|d < \infty} d \cdot \frac{p_{s,t}(d)}{1 - p_{s,t}(\infty)}$$

By estimating the connectivity ρ , we need to sample at least:

$$r \geqslant \max\left\{\frac{3}{\epsilon^2\rho}, \frac{(n-1)^2}{2\epsilon^2}\right\} \cdot \log\left(\frac{2}{\delta}\right)$$

for an (ϵ, δ) approximation.

Number of Samples In Reality

The number of needed samples can be surprisingly low (but it depends on the actual probabilities)

Sampling Graphs

Generating the entirety of the graph G_i for each round i < r is not optimal

Sampling Graphs

Generating the entirety of the graph G_i for each round i < r is not optimal

- we do not need to estimate the entire graph G_i
- we can start from s and do a BFS or Dijkstra search by sampling only the outgoing edges
- based on the generated outgoing edges, we re-do the computation for each generated outgoing node, until we find t

k-NN (k nearest neighbours) – finding the k nodes from s the "closest" by some measure

• let us consider the median distance (reminder: it is the highest distance in the distribution that has mass less or equal to 0.5)

k-NN (k nearest neighbours) – finding the k nodes from s the "closest" by some measure

 let us consider the median distance (reminder: it is the highest distance in the distribution that has mass less or equal to 0.5)

We only care about the top-k nodes, and not their values, and we do not want to evaluate all the graph if possible

we can evaluate a truncated distribution up to a distance D

$$p_{D,s,t}(d) = \begin{cases} p_{s,t}(d) & \text{if} \quad d < D\\ \sum_{x=D}^{\infty} p_{s,t}(x) & \text{if} \quad d = D\\ 0 & \text{if} \quad d > D \end{cases}$$

• for any two nodes t_1 , t_2 , $d_{D,M}(s,t_1) < d_{D,M}(s,t_2)$ implies $d_M(s,t_1) < d_M(d,t_2)$

```
Input: Probabilistic graph G = (V, E, P, W), node s \in V,
    number of samples r, number k, distance increment \gamma
Ouput: T_k, a result set of k nodes for the k-NN query

 T<sub>t</sub> ← ∅: D ← 0

 2: Initiate r executions of Dijkstra from s
 3: while |T_k| < k do
       D \leftarrow D + \gamma
 5: for i \leftarrow 1 : r do
          Continue visiting nodes in the i-th execution
          of Dijkstra until reaching distance D
          For each node t \in V visited
          update the distribution \tilde{\mathbf{p}}_{D,s,t} {Create the distribu-
          tion \tilde{\mathbf{p}}_{D,s,t} if t has never been visited before
       end for
       for all nodes t \notin T_k for which \tilde{\mathbf{p}}_{D,s,t} exists do
10.
          if median(\tilde{\mathbf{p}}_{D,s,t}) < D then
             T_k \leftarrow T_k \cup \{t\}
12.
          end if
       end for
14: end while
```

- start from a small distance D
- decide whether there are nodes to add to the k-NN set
- increase the distance, and "re-start" each sampled graph from the new distance

The algorithm does not need to visit all nodes

