

Course Description and Outcome Form

Department of Computer Science and Engineering School of Engineering and Computer Science BRAC University

A. Course General Information:

Course Code:	CSE360	
	CSE360L	
Course Title:	Computer Interfacing	
	Computer Interfacing Laboratory	
Credit Hours (Theory+Lab):	3+0	
Contact Hours (Theory+Lab):	3 + 1.5	
Category:	Hardware	
Type:	Required	
Prerequisites:	CSE341 Microprocessors	
Co-requisites:	None	

B. Course Catalog Description (Content):

This course will give overview of computer interface components and their characteristics. It will cover details discussion on some programmable interfacing ICs, sensor, hardware, and software calibration on sensor interfacing, some processing devices which can interface computer with the real world and some output devices. This course also includes high power interface devices, LED, LCD, Seven segment display, transducers, stepper motors and peripheral devices. In addition, it will also introduce some software simulation tools to develop an interfacing system. Some advanced topics like Human Computer Interface (HCI), Brain Computer Interface (BCI) would be also discussed with some case studies.

C. Course Objective:

- a) Introduce with basic Interfacing, Interfacing Components and their characteristics.
- **b**) Outline the working mechanism of different types of sensors, sensing devices, hall-effect sensing, and real life application of some sensors.
- c) Describe various I/O interfacing including GPIO using MCU/MPU development board and how Programmable Peripheral Interface (PPI) 82C55 works.
- **d**) Explain the working mechanism of Disk, Drum, Motors and Printers and their real life application.
- e) Describe the types and formats of communication protocols like I2C, SPI, UART, USART, and USB.
- f) Explain LCD, LED, Seven- segment display, Keyboard, Mouse work and interface with their interfacing principal
- **g)** Discuss some advanced interfacing concept like BCI, HCI.

D. Course Outcomes (COs):

Upon successful completion of this course, students will be able to

SI.	CO Description	Weightage (%)
CO1	Recall interfacing, interfacing components and their characteristics, high-end and low-end interfacing with necessary block diagrams.	05
CO2	Understand different types of sensors, sensing devices, piezoelectricity, hall-effect sensing, and real life application of some sensors.	10
CO3	Demonstrate various I/O interfacing including GPIO using MCU/MPU development board and Programmable Peripheral Interface (PPI) – 82C55.	15
CO4	Inspect Disk, Drum, Motors and Printers and their working mechanism.	10
CO5	Illustrate some computer interfacing and communication standard using I2C, SPI, UART, USART, and USB for better communication between processor and sensor ICs, handled with interrupt.	10
CO6	Investigate different display devices – LCD, LED, Seven- segment display, Keyboard, Mouse and their interfacing with their interfacing principal.	10
CO7	Adapt some advanced interfacing concept like BCI, HCI to develop a computer interfacing project for real life problem solving.	10

E. Mapping of CO-PO-Taxonomy Domain & Level- Delivery-Assessment Tool:

SI.	CO Description	POs	Bloom's taxonomy domain/level	Delivery methods and activities	Assessment tools
CO1	Explain the interface of various sensors, sensing devices, piezoelectricity, hall-effect sensing in real life application.	a	Cognitive/Under stand	Lecture	Quiz, Lab Experiment, Exam, Assignment
CO2	Demonstrate various I/O interfacing including GPIO using MCU/MPU development board and Programmable Peripheral Interface (PPI) – 82C55	e	Cognitive/ Apply Psychomotor/ Precision	T/L	Lab Experiment, Exam
CO3	Illustrate working mechanism of various peripheral devices such as Disk, Drum, Motors and Printers	a	Cognitive/ Understand	Lecture	Quiz and assignment, Exam
CO4	Describe computer interfacing and communication standards using I2C, SPI, UART, USART, and USB for better communication between processor and sensor ICs, handled with interrupt.	a	Cognitive/ Understand	Т	Quiz, and Final.
CO5	Design digital system using various interface modules, sensors, display devices such as LCD, LED, Seven- segment display, Keyboard, Mouse etc.	С	Cognitive/Create	Lecture, Labo	Project
CO6	Adapt some advanced interfacing concept like BCI, HCI to develop a computer interfacing project for real life problem solving.				Quiz, assignment and Final

F. Course Materials:

i. Text and Reference Books:

SI	Title	Author(s)	Publication Year	Edition	Publisher	ISBN
1	Microprocessor Architecture Programming and Applications with the 8085	Ramesh S. Gaonkar	1984	5th	Penram International Publishing Private Limited	81-87972-09-2
2	"Introduction to ARM(R) Cortex Microcontroller"	Jonathan Valvano,	2014	5th	Createspace (2012)	978-1477508992
3	Embedded Microcomputer Systems: Real Time Interfacing	Jonathan Valvano	2014	3rd	Cengage learning	13-978-1-111-42625- 5

ii. Other materials (if any)

- 1) Presentation slides
- 2) Word Files
- 3) Book Chapter pdf
- 4) Videos and links

G. Lesson Plan:

No	Topic	Week/Lecture#	Related CO (if any)
1	Introduction to Computer interfacing:		CO1
	a) Introduction to Digital Systems		
	b) Introduction to Computer Architecture	Week 1	
	c) Block Diagram of input output Interfacing	, , con 1	
	d) Introduction to the system bus		
	e) Introduction to low level program execution		
2	Sensing techniques and sensors		CO2
	a) Necessity and applications of sensor		
	b) Physical properties of sensing (optics,		
	sound, temperature, encoder etc.)		
	c) Types of sensors (active, passive, simple,	Week 2, 3	
	complex etc.)	, , , , , , , , , , , , , , , , , , ,	
	d) Sensor fusion		
	e) Sensor circuit and hardware calibration		
	f) Integration and software calibration of sensor		
	g) Advance sensors		
3	Computer interfacing ICs:		CO3
	a) Basic I/O (Memory mapper and Isolated)		
	and diagrams.	Week 4, 5	
	b) Introduction to 82C55 programmable	, , , , , , , , , , , , , , , , , , ,	
	interfacing IC		
	c) Pin configuration and Block diagram		

	d) Control word of 82C55		
	e) Time diagram of handshaking input and		
	output		
4	Processing devices:		CO3
	a) Introduction to Microprocessor, Micro-		
	Controller, Arduino, Raspberry-PI, FPGA.		
	b) Processor architectures	Week 6	
	c) Digital IO, Analog Input, PWM, GPIO	WEEK U	
	d) Programmable IO, Interrupt driven IO,		
	DMA		
5	Output devices:		CO4
	a) Different types of Motor Characteristics		
	b) Different types of Actuator Characteristics		
	c) Working mechanism of Disk	Week 7, 8	
	d) Working mechanism of Printer		
	e) Device Driver Circuits		
	f) Direct Memory Access (DMA)		
6	Interfacing and communication standards:		CO5
	β		
	a) DIIC Interferon CCCI IICD CCCI 1204		
	a) BUS Interface: SCSI, USB, SCSI, 1394,	Week 8, 9	
	ATA, SATA, PCI		
	b) Communication standards: RS-232, Wi-Fi,		
	Bluetooth, RF, IR, GPS, GPRS, and GSM.		
7	Display devices:		CO6
	a) LED and interfacing		
	b) LCD and interfacing	Week 10	
	c) 7 segment display and interfacing	week 10	
	d) multiple 7 segment display and interfacing		
8	Advanced researches on Interfacing:		CO7
	a) Brain Computer Interface		(0)
	b) Neural Network	Week 11, 12	
	c) Artificial Intelligence		
			007
9	Introduce software and hardware tools for interfacing		CO7
	systems:		
	a) Understanding Datasheet, PCB design, 3D		
	printing		
	b) Integrate Hardware and prototyping: Input,		
	Output, Processor, Communication and	Week 12, 13	
	Power		
	c)Case Study		
	d) Step of developing a interfacing project		
	e) Documentation, Demonstration, Presentation		
	and Publication		

H. Assessment Tools:

Assessment Tools	Weightage (%)
1. Participation in class / Pop Quizzes	5 %
2. Quizzes 15 %	
3. Mid Term Examination	20 %
4. Group assignments on project	10 %
5. Final	35%
6. Lab	15%
Total	100 %

I. CO Assessment Plan:

Assessment Tools	Course Outcomes						
	CO1	CO2	CO3	CO4	CO5	CO6	CO7
Homework		X		X			
Quizzes	X	X	X	X	X	X	X
Examinations	X	X	X	X	X	X	X
Project and Term Paper							

J. CO Attainment Policy:

As per Department of CSE Course Outcome Attainment Policy

K. Grading policy:

Student's grades are assigned according to the grading scale of the BRAC University Undergraduate Study and Examinations Regulations. In addition, the faculty are allowed to take into consideration the class average and standard deviation to reflect the actual class performance for student grade assignment. The grades at the university will be indicated in the following manner:

Marks	Grades
90-100	A (4.0)
85-<90	A- (3.7)
80- <85	B+ (3.3)
75- <80	B (3.0)
70- <75	B- (2.7)
65-<70	C+ (2.3)
60-<65	C (2.0)
57-<60	C- (1.7)
55- < 57	D+ (1.3)
52- < 55	D (1.0)
50- <52	D- (0.7)
< 50	F (0.0)
P	Pass
I	Incomplete
W	Withdrawal
R	Retaken

L. Course Coordinator:

Nazmus Sakeef