- Let's start with "age", , see if the entropy gets smaller after using age to split the data.
- Step 1: calculate the entropy of the entire training data set S, which contains 9 positive examples and 5 negative examples.

age	income	student	credit_rating	buys_computer
<=30	high	no	fair	no
<=30	high	no	excellent	no
3140	high	no	fair	yes
>40	medium	no	fair	yes
>40	low	yes	fair	yes
>40	low	yes	excellent	no
3140	low	yes	excellent	yes
<=30	medium	no	fair	no
<=30	low	yes	fair	yes
>40	medium	yes	fair	yes
<=30	medium	yes	excellent	yes
3140	medium	no	excellent	yes
3140	high	yes	fair	yes
>40	medium	no	excellent	no

- Let's start with "age", , see if the entropy gets smaller after using age to split the data.
- Step 1: calculate the entropy of the entire training data set S, which contains 9 positive examples and 5 negative examples.

$$Entropy(S) = I(9,5)$$
= $\frac{9}{14} \log_2(\frac{9}{14}) \quad \frac{5}{14} \log_2(\frac{5}{14})$
= 0.940

age	income	student	credit_rating	buys_computer
<=30	high	no	fair	no
<=30	high	no	excellent	no
3140	high	no	fair	yes
>40	medium	no	fair	yes
>40	low	yes	fair	yes
>40	low	yes	excellent	no
3140	low	yes	excellent	yes
<=30	medium	no	fair	no
<=30	low	yes	fair	yes
>40	medium	yes	fair	yes
<=30	medium	yes	excellent	yes
3140	medium	no	excellent	yes
3140	high	yes	fair	yes
>40	medium	no	excellent	no

- Step 2: count the numbers of positive examples (column p_i) and negative examples (column n_i) in each subset, and then calculate the entropy for each subset, $I(p_i, n_i)$.
- For example, for the " ≤ 30 " subset S_1 ,

Entropy(
$$S_1$$
) = $I(2,3)$
= $\frac{2}{5}\log_2(\frac{2}{5}) = \frac{3}{5}\log_2(\frac{3}{5})$
= 0.971

age	p _i	n _i	I(p _i , n _i)
<=30	2	3	0.971
3140	4	0	0
>40	3	2	0.971

Similarly,

Entropy(
$$S_2$$
) =0;

$$Entropy(S_3) = Entropy(S_1) = 0.971$$

• Step 3: calculate the weighted average entropy after using age to split the data into three subsets "<=30", "31..40", and ">40".

Entropy(age, S) =
$$\frac{5}{14}I(2,3) + \frac{4}{14}I(4,0) + \frac{5}{14}I(3,2)$$

$$= \frac{5}{14} \cdot 0.971 + \frac{4}{14} \cdot 0 + \frac{5}{14} \cdot 0.971$$

$$= 0.694$$

age	p _i	n _i	I(p _i , n _i)
<=30	2	3	0.971
3140	4	0	0
>40	3	2	0.971

- Class P: buys computer = "yes"
- Class N: buys_computer = "no"

• Step 4: calculate the information gain of using age to split the data into three subsets "<=30", "31..40", and ">40".

$$Gain(age) = Entropy(S)$$
 $Entropy(age, S)$
= 0.940 0.694 = 0.246

age	p _i	n _i	I(p _i , n _i)
<=30	2	3	0.971
3140	4	0	0
>40	3	2	0.971

- Class P: buys_computer = "yes"
- Class N: buys_computer = "no"

Which attribute should be the first node?

• Step 5: repeat the process for each attribute, and then pick the attribute with highest IG as the first node.

$$Gain(age) = 0.246$$

$$Gain(income) = 0.029$$

$$Gain(student) = 0.151$$

$$Gain(credit_rating) = 0.048$$

• The DT now hass one leaf node
And two subsets that needs
To be further split.

(2,3)

(9,5)

age
(9,5)

31..40

(4,0)

(3,2)

What's the next step?

- Repeat the prior steps for the subsets (2,3) and (3,2).
 - For subset (2,3), calculate IG for each attribute, pick the attribute with highest IG to replace the question mark.
 - Do the same thing to the subset (3,2)
- Until all nodes are "pure" with all positive examples, or all negative examples.

