Recalage

Module Image – CPE Lyon

Julien Jomier

Kitware

1

Qu'est ce que le recalage?

KKitware

Articles Récents (MICCAI 2020)

- MvMM-RegNet: A new image registration framework based on multivariate mixture model and neural network estimation
- Database Annotation with few Examples: An Atlas-based Framework using Diffeomorphic Registration of 3D trees
- Large Deformation Diffeomorphic Image Registration with Laplacian Pyramid Networks
- Flexible Bayesian Modelling for Nonlinear Image Registration
- Cross-Modality Multi-Atlas Segmentation Using Deep Neural Networks

Kitware

7

Recalage

Technique qui consiste en la **mise en correspondance** d'images (ou modèles) afin de pouvoir les **comparer** ou **combiner** leurs informations respectives.

Kitware

Plan

- · Eléments des algorithmes de recalage
- · Exemples d'utilisation
- TP

KKitware

9

Composants du recalage

- Transformation
- Métrique
- · Optimiseur
- Interpolateur

Kitware

Composants du recalage

- Transformation
- Métrique
- Optimiseur
- Interpolateur

Kitware

13

Transformations

- Translations (déplacements)
 - conserve distances et angles orientés
- Rotations (isométrie)
 - conserve distances et angles
- Homothéties (similitude)
 - conserve les rapports entre les distances
- Affinités
 - conserve le parallélisme
- Non-Linéaires

KKitware

Quelle transformation?

₩Kitware

17

Quelle transformation?

KKitware

Quelle transformation?

₩Kitware

19

Quelle transformation?

KKitware

Transformations Non-Linéaires

- Transformations élastiques ou non-rigides
- Exemples:
 - B-Splines (Combinaison linéaire de Spline)
 - Thin-plate splines

Kitware

Composants du recalage

- Transformation
- Métrique
- Optimiseur
- Interpolateur

Kitware

23

Métriques

- Mesure de similarité(s) entre la cible fixe et la source en mouvement.
- · Recalage géométrique
 - distances
 - Iterative Closest Point
- · Recalage iconique
 - Somme des différences au carré
 - Coefficient de corrélation
 - Information mutuelle

KKitware

Métrique: Iterative Closest Point

· Alignement de surfaces ou de nuages de points

Kitware

25

Métrique: Iterative Closest Point

- · Algorithme simple et rapide
 - Pour chaque point du model on trouve le point le plus proche
 - On calcule la moyenne des distances
 - On transforme le nuage de points
 - On réitère jusqu'à convergence: la moyenne des distance diminue
- · Problèmes?

KKitware

Métrique: SSD

- $\sum_{x,y} (f(x,y) t(x-u,y-v))^2$
- Probleme: les deux images doivent avoir la meme intensites (relation lineaire)

Kitware

27

Métrique: Cross-Corrélation

Convolution sans inverse le signal

$$\frac{1}{n-1} \sum_{x,y} \frac{\left(f(x,y) - \bar{f}\right)(t(x,y) - \bar{t})}{\sigma_f \sigma_t}$$

- \bar{f} = moyenne de f
- σf = ecart type de f
- Relation affine entre les intensités des deux images

Kitware

29

Métrique: Information Mutuelle

- Issue de la théorie de l'information
- · Relation statistique entre les intensités des deux images
- Densité conjointe de probabilité des niveaux de gris
- Calcul d'un histogramme conjoint
- · Mesure d'entropie

Kitware

Métrique: Information Mutuelle

Kitware

Métrique: Information Mutuelle

Soit g(x,y) la valeur de l'histogramme conjoint au point [x,y].

$$p_{1,2}(x,y) = \frac{g(x,y)}{\sum_{a,b} g(a,b)}$$
$$p_1(x) = \sum_b p_{1,2}(x,b)$$
$$p_2(y) = \sum_a p_{1,2}(a,y)$$

$$MI = \sum_{a,b} p_{1,2}(a,b) log_2 \frac{p_{1,2}(a,b)}{p_1(a).p_2(b)}$$

KKitware

35

Métrique: Information Mutuelle

- $\sum_{a,b} g(a,b)$ = nombre de point utilisés pour créer l'histogramme conjoint.
- p_{1,2}(x,y) = histogramme conjoint normalisé. C'est aussi une distribution de probabilité. Probabilité qu'un point pris au hasard dans l'image soit la combinaison de niveau de gris x sur l1 et y sur l2.
- p₁(x)=distribution de probabilité. Pour un x donne = probabilité de que l'on trouve un point de niveau de gris x sur l'image 1.

Kitware

Composants du recalage

- Transformation
- Métrique
- **Optimiseur**
- Interpolateur

Kitware

39

Autres optimiseurs

- Une ou plusieurs valeurs a optimiser
- · Dépend de la métrique
- · Gradient Conjugué
- · Algorithmes génétiques:
 - 1+1 evolutionary
 - Amoeba
- Powell
- LBFGS
- Levenberg Marquardt

Kitware

Composants du recalage

- Transformation
- Métrique
- Optimiseur
- Interpolateur

Kitware

47

Things I will not do...

Kitware

49

Things I will not do...

I will not register images in pixel space

Interpolation

- Plus proche voisin (nearest neighbor)
- Linéaire
- Window Sinc
- BSpline
- ...

₩Kitware

53

Applications Imagerie Médicale

- · Recalage model-image
- · Recalage monomodale
 - Intra patient
 - Inter patient
- · Recalage multimodale
 - Différentes modalités

KKitware

TP

- Python
- Insight Toolkit
 - Transformations: Code/Common
 - Optimiseurs: Code/Numerics
 - Métriques: Code/Algorithms
 - Interpolateurs: Code/Common

Kitware

59

Recalage

Module Image – CPE Lyon

julien.jomier@kitware.com

Kitware