Formelsammlung fürs Physikum $^{\scriptscriptstyle 1}$

Geschrieben von Niclas Thiebach

¹Das Dokument dient als Veranschaulichung der Formeln und ist lediglich für interne Zwecke gedacht.

1 Grundlegendes

1.1 Abstände im Mathemodus

$$a^{2}+b^{2} = c^{2}$$

$$a^{2} + b^{2} = c^{2}$$

2 Formeln

2.1 Formel für die Lichtgeschwindigkeit

$$c = \lambda \times \nu \left[\frac{\mathbf{m}}{\mathbf{s}} \right] \tag{1}$$

2.2 Proportionalität zwischen Wellenlänge und Frequenz

$$\lambda \times \nu = \text{konstant}$$
 (2)

2.3 Formel für das Wirkungsquantum

$$h = \frac{E}{\nu} \tag{3}$$

3 Griechische Buchstaben

Symbol	Name	Symbol	Name
α	Alpha	ν	Nu
β	Beta	ξ , Ξ	Xi
γ, Γ	Gamma	π , Π	Pi
$\delta, \ \Delta$	Delta	ρ	Rho
ϵ	Epsilon	σ, Σ	Sigma
ζ	Zeta	τ	Tau
η	Eta	v, Υ	Upsilon
θ, Θ	Theta	ϕ, Φ	Phi
ι	Iota	$ \chi $	Chi
κ	Kappa	ψ, Ψ	Psi
$\lambda,~\Lambda$	Lambda	ω, Ω	Omega
μ	Mu	ε	Epsilon (Variante)
ϑ	Theta (Variante)	φ	Phi (Variante)
ϖ	Pi (Variante)	ϱ	Rho (Variante)
ς	Sigma (Variante)		

4 Biochemie FS4

4.1 Verdünnugnsrechnungen

$$Extinktion = Konzentration \times Steigung + Achsenabschnitt$$
 (4)

$$Konzentration = \frac{Extinktion - Achsenabschnitt}{Steigung}$$
 (5)

$$D = P \times A \times \frac{\Delta c}{d} \tag{6}$$

$$p_{\text{osmotisch}} = \sigma \times c \times R \times T \tag{7}$$

$$mL \times kg^{-1} \times min^{-1}$$
 (8)

$$mL \times 100g^{-1} \times min^{-1}$$
 (9)