

Aplicação de Microprocessadores I

Prática 5
Automação com
Esteira Transportadora

Prof. Marcelo Andrade da Costa Vieira

Automação com Esteira Transportadora

- Objetivos:
 - Aprendizado do microcontrolador PIC18F45k22
 - Uso do Compilador Mikro C Pro for PIC
 - Linguagem C
 - Estudo das bibliotecas do Mikro C
 - Uso de interrupções e sensores para controle de processos de automação digital em uma esteira transportadora

Esteira Transportadora

• Prática:

- Usar a esteira do laboratório para controlar a distribuição de peças (Madeira e Metal) e separar por tipo.
- Usar um botão para definir qual peça será aceita e qual será rejeitada (Madeira ou Metal);
- Usar o display de LCD para mostrar a opção selecionada (Madeira ou Metal) e a contagem de peças que foram separadas (Madeira e Metal).

Esteira Transportadora

Figura 1 – Esquema de sensores e atuadores da esteira.

Funcionamento dos Atuadores

- 1) Motor: Pode ficar parado ou transportar a peça para o lado esquerdo ou direito;
- 2) Cilindro Pneumático: Pode ser recolhido para deixar a peça passar ou ser acionado para rejeitar a peça.

Funcionamento dos Sensores

- 1) Sensor Óptico: Sensor de fim de curso;
- 2) Sensor Indutivo: Sensor de detecção de peças metálicas;
- 3) Sensor Capacitivo: Sensor de detecção de qualquer peça.

Comandos da Esteira

Bit	Comando	
0	Sensor Óptico	
1	Sensor Capacitivo	
2	Sensor Indutivo	
3	N.C.	
4	Retorna Cilindro Pneumático	
5	Aciona Cilindro Pneumático	
6	Motor Esquerda	
7	Motor Direita	

Sinais de Entrada do Microcontrolador

Operação dos Sensores					
Tipo	Objeto detectado	Bit	Interrupção (PortB)		
Óptico	Qualquer	0	Int0		
Capacitivo	Qualquer	1	Int1		
Indutivo	Metal	2	Int2		

Ausência de objeto no sensor → 1

Presença de objeto no sensor → 0

Sinais de Saída do Microcontrolador

Bit 7	Bit 6	Direção da Esteira
0	0	Parada
0	1	Esquerda
1	0	Direita
1	1	Parada

Bit 5	Bit 4	Cilindro Pneumático
0	0	Não Permitido
0	1	Retorna
1	0	Rejeita
1	1	Não Permitido

Interface de Controle da Esteira

Interface de controle da Esteira.

Prática 5

- 1. O motor da esteira deve começar ligado com o transporte para o lado esquerdo;
- O usuário deve definir qual peça será aceita (Madeira ou Metal) usando dois botões. A opção selecionada deve ser mostrada na primeira linha do Display LCD;
- 3. Uma peça deve ser colocada na esteira (apenas uma por vez);
- 4. Ao chegar no sensor de fim de curso, a peça deve ficar parada por 2s e o motor deve inverter o sentido de transporte (para o lado direito);
- Ao passar pelos dois sensores (indutivo e capacitivo), o sistema deve reconhecer qual peça está na esteira e indicar no display de LCD (segunda linha);

Prática 5

- Em seguida, o sistema deve aceitar ou rejeitar a peça da esteira utilizando o cilindro pneumático;
- 7. Logo após a peça ser aceita ou rejeitada, o cilindro deve ser recolhido (em caso de rejeição) e o motor da esteira deve inverter de sentido novamente (para o lado esquerdo), quando uma próxima peça pode ser colocar na esteira;
- 8. O display de LCD deve mostrar o número total de peças metálicas e de madeira que foram separadas;
- A seleção de qual peça será aceita/rejeitada pode ser feita a qualquer momento.

Prática 5

- Grupo de no máximo 2 pessoas.
- A prática deve ser feita no Micro C Pro for PIC
 - Programa em C
 - Compilar e Simular (debugger)
- Gravar o circuito no Kit EasyPIC v.7 da sua bancada
 - Habilitar as chaves necessárias (Display, Botões);
 - Carregar o programa no PIC;
 - Simular: usar osciloscópio e display LCD para simular a ação da esteira;
- Testar na esteira
 - Carregar o programa no Kit ligado à esteira;
 - Validar: fazer a esteira rejeitar ou aceitar diferentes tipos de peças, contar, e verificar se o valor está correto no LCD.
 - Não alterar o código usando o computador ligado à esteira!

Relatório Prática 5

- Colocar introdução, objetivos, resultados, conclusões, etc.
 consultar as normas para confecção de relatórios no site da disciplina.
- Colocar o esquemático do hardware utilizado (Proteus, Orcad ou similar).
- Colocar trechos do programa desenvolvido (comentado).
- Colocar os resultados da validação e tabela com os valores e erros.

Envio do Relatório

- Além do relatório em PDF, enviar também os arquivos do projeto gerados pelo compilador (código em C);
- Mostrar o circuito funcionando para o professor na aula do dia 12/07/2023;
- Enviar os arquivos (*.zip) pelo site do e-Disciplinas até a data definida pelo professor (17/07/2023 – 23:59h).