A. Definicje

- 1. $|z| = \sqrt{z \cdot \bar{z}}, \ z = |z|(\cos \theta + i \sin \theta)$ (argument z każdy kąt θ spełniający tę równość; każde dwa argumenty z różnią się o całkowitą wielokrotność 2π). Ponadto dla $z_n \to z_0 \Leftrightarrow Rez_n \to Rez_0, \ Imz_n \to Imz_0$.
- 2. Formula de Moivre'a: $z_1 \cdot z_2 = |z_1||z_2|(\cos(\theta_1 + \theta_2) + i\sin(\theta_1 + \theta_2))$, w szczególności: $z^n = |z|^n(\cos(n\theta) + i\sin(n\theta))$.
- 3. Eksponenta exp: $\mathbb{C} \to \mathbb{C}$, t. że $expz = e^z = \lim_{n \to \infty} (1 + \frac{z}{n})^n$; $e^{x+iy} = e^x(\cos y + i\sin y)$, $x, y \in \mathbb{R}$.
- 4. Funkcje trygonometryczne, $z \in \mathbb{C}$: $\cos z = \frac{e^{iz} + e^{-iz}}{2}$, $\sin z = \frac{e^{iz} e^{-iz}}{2i}$ $((\cos z)' = -\sin z, (\sin z)' = \cos z)$.
- 5. Funkcja $f: U \to \mathbb{C}$ określona na zb. otw. $U \subset \mathbb{C}$, $z_0 \in U$ ma w z_0 pochodną $f'(z_0 \in \mathbb{C}$, jeśli $\lim_{z \to z_0} \frac{f(z) f(z_0)}{z z_0} = f'(z_0)$ (równoważnie $f(z_0 + h) = f(z_0) + f'(z_0)h + \alpha(h)$, gdzie $\lim_{h \to 0} \frac{|\alpha(h)|}{|h|} = 0$).
- 6. Funkcja $f:U\to\mathbb{C}$ określona na zbiorze zb. otw. $U\subset\mathbb{C}$ jest holomorficzna, jeśli ma pochodną w każdym punkcie zbioru U, tzn. jest różniczkowalna na U.
- 7. Gałąź argumentu w zb. otw. $U \subset \mathbb{C}\setminus\{0\}$ f. ciągła $\varphi: U \to \mathbb{R}$ t. że $z = |z|(\cos\varphi(z) + i\sin\varphi(z))$, dla $z \in U$.
- 8. Gałąź główna argumentu f. $Arg: \mathbb{C}\backslash\mathbb{R}_- \to (-\pi,\pi)$ (gdzie $\mathbb{R}_- = \{t \in \mathbb{R}: t \leq 0\}$ przyporządkowująca liczbie zespolonej $z \notin \mathbb{R}_-$ jedyną liczbę z przedziału $(-\pi,\pi)$, która jest argumentem z, jest ciągła, a więc jest gałęzią argumentu w zbiorze $\mathbb{C}\backslash\mathbb{R}_-$.
- 9. Gałąź logarytmu w zb. otw. $U \subset \mathbb{C} \setminus \{0\}$ f. ciągła $L: U \to \mathbb{C}$ t. że exp(L(z)) = z, dla $z \in U$.
- 10. Gałąź główna logarytmu f. $Log: \mathbb{C}\backslash\mathbb{R}_- \to \mathbb{C}$ określona: Logz = ln|z| + iArgz, gdzie Arg jest gałęzią główną argumentu.
- 11. Gałąź główna potęgi zespolonej o wykładniku w f. określona na $\mathbb{C}\backslash\mathbb{R}_-$ wzorem: $z^w=exp(wLogz)$.
- 12. Całka funkcji $\varphi:[a,b]\to\mathbb{C}$ f. φ jest całkowalna w sensie Riemanna, jeśli obie funkcje $Re\varphi, Im\varphi:[a,b]\to\mathbb{R}$ są całkowalne w sensie Riemanna i całkę określamy wówczas wzorem: $\int_a^b \varphi(t)dt = \int_a^b Re\varphi(t)dt + i \int_a^b Im\varphi(t)dt$.
- 13. Funkcja ciągła $u:[a,b] \to \mathbb{R}$ kawałkami gładka jeśli istnieje podział $a=a_0 < a_1 < \ldots < a_n=b$ przedziału [a,b] t. że wewnątrz każdego przedziału (a_j,a_{j+1}) f. u ma ciągłą pochodną i istnieją skończone granice $\lim_{t\to a_j^+} u'(t)$ oraz $\lim_{t\to a_{j+1}^-} u'(t)$, w szczególności określona jest całka Riemanna $\int_a^b u'(t)dt$.
- 14. Droga kawałkami gładka f. ciągła $\gamma:[a,b]\to\mathbb{C}$, której cz. rzeczywista $Re\gamma:[a,b]\to\mathbb{R}$ i urojona $Im\gamma:[a,b]\to\mathbb{R}$ są kaw. gł. (droga γ pętlą, jeśli $\gamma(a)=\gamma(b)$). Długość drogi kaw. gł. γ określamy: $l(\gamma)=\int_a^b |\gamma'(t)|dt$ ($|\gamma'|=\sqrt{(Re\gamma')^2+(Im\gamma')^2}$ jest funkcją całkowalną w sensie Riemanna).
- 15. Całka ciągłej f. zespolonej $f: \gamma([a,b]) \to \mathbb{C}$ wzdłuż drogi kaw. gł. $\gamma: [a,b] \to \mathbb{C}$: $\int_{\gamma} f(z)dz = \int_{a}^{b} f(\gamma(t)) \cdot \gamma'(t)dt$. (to co pod całką jest całkowalne w sensie Riemanna na [a,b]).
- 16. F. holo. $F:U\to\mathbb{C}$ jest f. pierwotną na U dla $f:U\to\mathbb{C}$ ciągłej na zb. otw. $U\subset\mathbb{C}$, jeśli F'(z)=f(z), dla $z\in U$.
- 17. Pętle $\gamma_0, \, \gamma_1 : [a,b] \to U$ są homotopijne w $U \subset \mathbb{C}$, jeśli istnieje f. ciągła $H : [a,b] \times [0,1] \to U$ t. że $H(s,0) = \gamma_0(s)$, $H(s,1) = \gamma_1(s)$ oraz H(a,t) = H(b,t), dla $t \in [0,1]$ (tzn. każda droga $\gamma_t(s) = H(s,t)$ jest pętlą).
- 18. Ciąg funkcji $f_n: U \to \mathbb{C}$ na zb. otw. $U \subset \mathbb{C}$ jest zbieżny niemal jednostajnie do funkcji $f: U \to \mathbb{C}$, jeśli dla każego zbioru zwartego $K \subset U$ ciąg obcięć $(f_n|K)_{n=1}^{\infty}$ zbiega na K jednostajnie do obcięcia f|K, tzn. $||f_n f||_K = \sup\{|f_n(z) f(z)| : z \in K\} \to 0$. Szereg $\sum_{n=1}^{\infty} f_n$ jest zbieżny niemal jednostajnie, jeśli ciąg sum częściowych jest zbieżny niemal jednostajnie.
- 19. z_0 jest zerem krtoności m funkcji f jeśli f. holo. f określona w otoczeniu z_0 zeruje się w z_0 i $f^{(m)}(z_0)$ jest pierwszą niezerową pochodnąf w z_0 .
- 20. Indeks pętli γ względem punktu z_0 (gdzie $\gamma:[a,b]\to\mathbb{C}\backslash\{z_0\}$ pętla kaw. gł. omijająca z_0) liczba całkowita $Ind(\gamma,z_0)=\frac{1}{2\pi i}\int_{\gamma}\frac{dz}{z-z_0}=\frac{\Delta_{arg}(\gamma-z_0)}{2\pi},$ gdzie $(\gamma-z_0)(t)=\gamma(t)-z_0$. Jeśli kaw. gł. pętle $\gamma_1,\,\gamma_2:[a,b]\to\mathbb{C}\backslash\{z_0\}$ są homotopijne w $\mathbb{C}\backslash\{z_0\},$ to $Ind(\gamma_1,z_0)=Ind(\gamma_2,z_0)$.
- 21. Przekształcenie $f: W_1 \to W_2$ między zbiorami otw. w $\mathbb C$ jest konforemne, jeśli jest holo. i wzajemnie jednoznozne.

- 22. Niech $U \subset \mathbb{C}$ zb. otw. $z_0 \in U$ i niech $f: U \setminus \{z_0\} \to \mathbb{C}$ f. holo. Wówczas: (1) jeśli istnieje granica $\lim_{z \to z_0} f(z) = a$, $a \in \mathbb{C}$, mówimy, że f ma w z_0 osobliwość pozorną; (2) jeśli istnieje granica $\lim_{z \to z_0} |f(z|) = +\infty$, $a \in \mathbb{C}$, mówimy, że f ma w z_0 biegun; (3) jeśli nie zachodzi ani (1) ani (2), mówimy, że f ma w z_0 osobliwość istotną.
- 23. Rząd bieguna z_0 funkcji f l. naturalna $m \ge 1$ t. że $\lim_{z \to z_0} (z z_0)^m f(z) = a \ne 0, a \in \mathbb{C}$. Jeśli m = 1, biegun z_0 nazywamy beigunem prostym.
- 24. F. holo $f:U\setminus B\to\mathbb{C}$ jest meromorficzna na U (gdzie $U\subset\mathbb{C}$ zb. otw., $B\subset U$ zb. nie mający w U punktów skupienia), jeśli w każdym punkcie $b \in B$ ma biegun.
- 25. Residuum funkcji f w punkcie b_0 określamy następująco (gdzie $U \subset \mathbb{C}$ zb. otw.; $B \subset U$ zb. bez punktów skupienia w U; $f: U \setminus B \to \mathbb{C}$ - f. holo): dla dowolnego koła domkniętego $D = \{z: |z-b| \leqslant r\} \subset U, r > 0, D \cap B = \{b\},$ $Res(f,b) = \frac{1}{2\pi i} \int_{\partial D} f(z) dz.$
- 26. Obszar jednospójny w $\mathbb C$ otw. zb. spójny $U\subset \mathbb C$ t. że każda pętla w U jest homotopijna z pętlą stalą.
- 27. F. $u:U\to\mathbb{R}$ jest harmoniczna (gdzie $U\subset\mathbb{C}$), jeśli ma ciągłe pochodne cząstkowe pierwszego i drugiego rzędu i spełnia równanie Laplace'a $\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = 0$.

B. Twierdzenia

- 1. Zał. z = a + ib, a = Rez, b = Imz. <u>Teza</u> $\lim_{n\to\infty} (1+\frac{z}{n})^n = e^a(\cos b + i\sin b).$
- 2. $exp(z_1 + z_2) = expz_1 \cdot expz_2$.
- 3. Tw. Cauchy-Riemanna

 \underline{Zal} . $f:U\to\mathbb{C}$ - f. określona na zb. otw. $U\subset\mathbb{C}$, f(z)=u(z)+iv(z), u=Ref, v=Imf i $u,v:U\to\mathbb{R}$ rozpatrywane jako f. zmiennych rzeczywistych mają na U ciągłe pochodne cząstkowe.

<u>Teza</u> f jest funkcją holo. na U \Leftrightarrow gdy spełnione są równania Cauchy-Riemanna: $\frac{\partial u}{\partial x} = \frac{\partial v}{\partial y}, \frac{\partial u}{\partial y} = -\frac{\partial v}{\partial x}$. Ponadto $f'(z) = \frac{\partial u}{\partial x}(z) - i\frac{\partial u}{\partial y}(z) = \frac{\partial v}{\partial y}(z) + i\frac{\partial v}{\partial x}(z).$

- 4. (expz)' = expz.
- 5. Każda gałąź logarytmu $L: U \to \mathbb{C}$ w zb.otw. $u \subset \mathbb{C} \setminus \{0\}$ jest f. holo. i $L'(z) = \frac{1}{z}$, dla $z \in U$.
- 6. Zał. $f:U\to\mathbb{C}$ f. ciągła na zb. otw. $U\subset\mathbb{C};$ F
 f. pierwotna dla f
 na U <u>Teza</u> Dla każdej drogi kaw. gł. $\gamma:[a,b]\to U$ zachodzi $\int_{\gamma} f(z)dz = F(\gamma(b)) - F(\gamma(a))$.
- 7. Tw. Goursata

 $\underline{\operatorname{Zal.}} f: U \to \mathbb{C}$ - f. holo na zb. otw. $U \subset \mathbb{C}$

<u>Teza</u> Dla każdego trójkąta $T \subset U$, $\int_{\partial T} f(z)dz = 0$.

8. Wzmocnienie tw. Goursata - lemat

<u>Zał.</u> $f: U \to \mathbb{C}$ - f. ciągła na zb. otw. $U \subset \mathbb{C}, z_0 \in U$.

<u>Teza</u> Jeśli dla każdego trójkąta $T \subset U \setminus \{z_0\}$, $\int_{\partial T} f(z) dz = 0$, to także dla dowolnego trójkąta $K \subset U$, $\int_{\partial K} f(z) dz = 0$.

9. Tw. Cauchy'ego

Zał. $f: U \to \mathbb{C}$ - f. holo. na zb. otw. $U \subset \mathbb{C}$, $D = \{z: |z-z_0| \leqslant r\} \subset U$ <u>Teza</u> Dla każdego z z wnętrza koła D: (1) $f(z) = \frac{1}{2\pi i} \int_{\partial D} \frac{f(w)}{w-z} dw$, (2) $f^{(n)}(z) = \frac{n!}{2\pi i} \int_{\partial D} \frac{f(w)}{(w-z)^{n+1}} dw$, n = 1, 2, ... W szczególności f. holo jest różniczkowalna nieskończenie wiele razy.

10. Formula Leibniza - lemat

 $\underline{\mathrm{Zal.}}\ K\subset\mathbb{C}$ - zb. zwarty, $U\subset\mathbb{C}$ - zb. otwarty, $F:K\times U\to\mathbb{C}$ - f. ciągła t. że dla każdego $w\in K$ pochodna cząstkowa $\frac{\partial}{\partial z}F(w,z)$ jest określona na U i f. $\frac{\partial}{\partial z}F:K\times U\to\mathbb{C}$ - ciągła

<u>Teza</u> Dla dowolnej kaw. gł. drogi $\gamma:[a,b]\to K\colon \frac{d}{dz}\int_\gamma F(w,z)dw=\int_\gamma \frac{\partial}{\partial z}F(w,z)dw.$

11. Tw. Morery

 $\underline{\operatorname{Zal.}} f: U \to \mathbb{C}$ - f. ciągła na zb. otw. $U \subset \mathbb{C}$

<u>Teza</u> Jeśli dla każdego trójkąta $T \subset U$, $\int_{\partial T} f(z)dz = 0$, to f jest f. holo.

12. Tw. Weierstrassa

 $\underline{\operatorname{Zal}}. f_n: U \to \mathbb{C}$ - ciąg f. holo. na zb. otw. $U \subset \mathbb{C}$, zbieżny niemal jednostajnie do f. $f: U \to \mathbb{C}$

<u>Teza</u> f jest f. holo. i ciąg pochodnych $f'_n:U\to\mathbb{C}$ jest zbieżny niemal jednostajnie do pochodnej $f':U\to\mathbb{C}$.

13. Tw. Cauchy'ego-Hadamarda

Zał. $\sum_{n=0}^{\infty} a_n (z-z_0)^n$ - szereg potęgowy, $a_n \in \mathbb{C}$ <u>Teza</u> Promień zbieżności $R = \frac{1}{\lim \sqrt[n]{|a_n|}}, 0 \leqslant R \leqslant +\infty$ tego szeregu ma następujące własności: (1) szereg $\sum_{n=0}^{\infty} a_n (z-z_0)^n$ $(z_0)^n$ jest zbieżny niemal jednostajnie w kole otw. $\{z: |z-z_0| < R\}$ i jest rozbieżny w każdym punkcie $|z-z_0| > R$; (2) suma szeregu $f(z) = \sum_{n=0}^{\infty} a_n (z-z_0)^n$ jest f. holo. w kole $\{z : |z-z_0| < R\}$ i $a_n = \frac{f^{(n)}(z_0)}{n!}$, tzn. szereg potęgowy $\sum_{n=0}^{\infty} a_n (z-z_0)^n$ jest szeregiem Taylora dla f. f w tym kole.

- 14. Zał. $f: U \to \mathbb{C}$ f. holo. na zb. otw. $U \subset \mathbb{C}$, $z_0 \in U$, $D = \{z: |z z_0| < r\} \subset U$ <u>Teza</u> $f(z) = \sum_{n=0}^{\infty} \frac{f^{(n)}(z_0)}{n!} (z - z_0)^n$, dla $z \in D$.
- 15. Zasada identyczności lemat pomocniczny

 $\underline{Zal.} f(z) = \sum_{n=0}^{\infty} a_n (z-z_0)^n$ - suma szeregu potęgowego o dodatnim promeiniu zbieżności R, określona w kole $\{z : |z - z_0| < R\}$

<u>Teza</u> Jeśli f nie jest tożsamościowo równa zeru, to istnieje otoczenie V punktu z_0 t. że $f(z) \neq 0$ dla $z \in V \setminus \{z_0\}$.

16. Zasada identyczności

 $\operatorname{Zal} U \subset \mathbb{C}$ - otw. zbiór spójny

<u>Teza</u> Jeśli f. holo. $f,g:U\to\mathbb{C}$ pokrywają się na zbiorze, który ma w U punkt skupienia to f=g.

<u>Zał.</u> $f: U \to \mathbb{C}$ - f. holo. na otw. zb. spójnym U, $f(z_0)=0$ i f nie jest stale równa zeru na U <u>Teza</u> Nie wszystkie pochodne f w z_0 są równe zeru i jeśli $f^{(m)}(z_0)$ jest pierwszą niezerową pochodną f w z_0 , mamy

 $f(z) = (z - z_0)^m g(z)$ i $g(z_0) \neq 0$.

- 18. Zał. $f:U\to\mathbb{C}$ f. holo. na zb. otw. $U\subset\mathbb{C}$, nie zerujaca się na żadnej składowej zb. U, $K\subset U$ zb. zwarty Teza f można zapisać w psotaci $f(z) = (z-z_1)^{m_1} \dots (z-z_k)^{m_k} g(z)$, gdzie $z_1, \dots, z_k \in K$ są zerami f o krotnościach odpowiednio m_1, \ldots, m_k oraz $g: U \to \mathbb{C}$ jest f. holo. nie zerującą się w żadnym punkcie zb. K.
- 19. Lemat

Zał. $\gamma: [a,b] \to \mathbb{C} \setminus \{0\}$ - ciagła droga omijająca 0

<u>Teza</u> Istnieje ciągła droga $\lambda:[a,b]\to\mathbb{C}$ t. że $exp\lambda(t)=\gamma(t)$ dla $t\in[a,b]$. Przy tym, jeśli γ jest kaw. gł., to także λ jest kaw. gł.

20. Lemat

 $\underline{\operatorname{Zal.}}\ \lambda:[a,b]\to\mathbb{C}\backslash\{0\}$ - droga kawłakami gł.

 $\underline{\text{Teza}} \int_{\gamma} \frac{dz}{z} = \ln \left| \frac{\gamma(b)}{\gamma(a)} \right| + i \Delta_{arg}(\gamma) \text{ (jeśli } \gamma \text{ jest pętlą, } \gamma(a) = \gamma(b), \text{ to } \frac{1}{2\pi i} \int_{\gamma} \frac{dz}{z} = \frac{\Delta_{arg}(\gamma)}{2\pi} \text{ jest liczbą całkowitą.)}$

- 21. Zał. $f: U \to \mathbb{C}$ f. holo. w zb. otw. mająca skończenie wiele zer $z_1, \dots z_k$ w U, prz czym m_i jest krotnością zera z_i <u>Teza</u> Dla dowolnej kaw. gł. pętli $\gamma:[a,b] \longrightarrow U \setminus \{z_1,\ldots,z_k\}$, homotopijnej w U z pętlą stałą, mamy $Ind(f \circ \gamma,0) =$ $\frac{1}{2\pi i} \int_{\gamma} \frac{f'(z)}{f(z)} dz = \sum_{j=1}^{k} m_j Ind(\gamma, z_j).$
- 22. Tw. Rouché

 \underline{Zal} . $U \subset \mathbb{C}$ - otw. zb. spójny, $\gamma : [a, b] \to U$ - pętla kaw. gł., homotopijna w U z z pętla stałą; $f, g : U \to \mathbb{C}$ - f. holo.

t. że $|g(\gamma(t)) - f(\gamma(t))| < |f(\gamma(t))|$ dla $t \in [a, b]$ oraz $Ind(\gamma, z) = 1$, jeśli f(z) = 0 lub g(z) = 0

 $\underline{\text{Teza}}\ N_f = N_g$, gdzie N_f i N_g są odpowiednio liczbami zer funkcji f i g, liczonych wraz z krotnościami.

- 23. Zał. $f: U \to \mathbb{C}$ f. holo. w zb. otw. $U \subset \mathbb{C}$, $f(z_0) = w_0$ i z_0 jest zerem krotności n f. $f w_0$ <u>Teza</u> Istnieją r > 0 i d > 0 t. że jeśli $0 < |w - w_0| < d$ to równanie f(z) = w ma w kole $\{z : |z - z_0| < r\}$ dokładnie n pierwiastków, każdy o krotności 1.
- 24. Zał. $U \subset \mathbb{C}$ zb. otw., $z_0 \in U$; $f: U \setminus \{z_0\} \to \mathbb{C}$ f. holo Teza (1) f ma w z_0 osobliwość pozorną \Leftrightarrow gdy $\lim_{z\to z_0}(z-z_0)f(z)=0$; (2) n.w.s.r.: (i) f ma w z_0 biegun; (ii) stnieje wielomian W stopnia $m\geqslant 1$ t. że f. $f(z)-W(\frac{1}{z-z_0})$ ma w z_0 osobliwość pozorną; (3) dla l. naturalnej $m\geqslant 1$ $\lim_{z\to z_0} (z-z_0)^m f(z) = a, \ a \neq 0, \ a \in \mathbb{C}.$
- 25. Szczególny przypadek tw. o resiudach lemat

<u>Zał.</u> W - wielomian; $b \in \mathbb{C}$; $W^{(b)} = W(\frac{1}{z-b})$

 $\underline{\text{Teza}} \text{ Dla każdej pętli kaw. gł. } \gamma: [\alpha,\beta] \xrightarrow{} \mathbb{C} \backslash \{b\}, \ \tfrac{1}{2\pi i} \int_{\gamma} W(\tfrac{1}{z-b}) dz = Res(W^{(b)},b) \cdot Ind(\gamma,b).$

26. Tw. o residuach

 $\underline{\operatorname{Zal}}.\ U\subset\mathbb{C}$ - zb. otw. $B\subset U$ - zb. skończony; $f:U\backslash B\to\mathbb{C}$ - f. mero. w U

<u>Teza</u> Dla każdej pętli kaw. gł. $\gamma: [\alpha, \beta] \to U \setminus B$, homotopijnej w U z pętlą stałą $\frac{1}{2\pi i} \int_{\gamma} f(z) dz = \sum_{b \in B} Res(f, b)$ $Ind(\gamma,b)$.

27. Zasada argumentu (uogólnienie tw. 21)

28. Tw. Casoratiego - Weierstrassa

<u>Zał.</u> $U \subset \mathbb{C}$ - zb. otw., $z_0 \in U$; $f: U \setminus \{z_0\} \to \mathbb{C}$ - f. holo.

<u>Teza</u> Jeśli f
 nie ma w z_0 ani osobliwości pozornej, ani tez bieguna, to dla każdego $w \in \mathbb{C}$ istnie
je ciąg $z_n \in U \setminus \{z_0\}$ t. że $z_n \to z_0$ i $f(z_n) \to w$.

- 29. Funkcja $f: P \to \mathbb{C}$ holo. w pierścieniu $P = \{z: R_1 < |z z_0| < R_2\}, \ 0 \leqslant R_1 < R_2 \leqslant +\infty$, rozwija się w szereg Laurenta $f(z) = \sum_{n=-\infty}^{\infty} a_n (z-z_0)^n = \sum_{n=0}^{\infty} a_n (z-z_0)^n + \sum_{n=1}^{\infty} a_{-n} \frac{1}{(z-z_0)^n}$, gdzie (1) oba szeregi $\sum_{n=0}^{\infty} a_n (z-z_0)^n$ i $\sum_{n=1}^{\infty} a_{-n} \frac{1}{(z-z_0)^n}$ są zbieżne w pierścieniu P niemal jednostajnie; (2) dla każdego $r \in (R_1, R_2)$ oraz koła $D_r = \{z: |z-z_0| < r\}, \ a_n = \frac{1}{2\pi i} \int_{\partial D_r} \frac{f(z)}{(z-z_0)^{n+1}} dz, \ n = 0, \mp 1, \mp 2, \dots$ W szczególności rozwiniecie w szereg Laurenta w pierścieniu P funkcji f jest jednoznaczne.
- 30. Lemat Schwarza

<u>Zał.</u> $f: D \to D$ - f. holo. koła $D = \{z: |z| < 1\}$ w siebie zachowująca zero, f(0) = 0<u>Teza</u> $|f(z)| \le |z|$ dla $z \in D$ i $|f'(0)| \le 1$. Ponadto, jeśli dla pewnego $z_0 \ne 0$, $|f(z_0)| = |z_0|$, lub też |f'(0)| = 1, to istnieje $\theta \in \mathbb{R}$ t. że $f(z) = e^{i\theta}z$, dla $z \in D$.

- 31. Każda f. holo. $f:U\to\mathbb{C}$ w obszarze jednospójnym $U\subset\mathbb{C}$ ma w U funkcję pierwotną.
- 32. Tw. Montela

Z każdego ciągu $f_n:U\to\mathbb{C}$ f. holo., wspólnie ograniczonych na U, $|f_n(z)|\leqslant M$ dla $z\in U,\,n=1,2,\ldots$, można wybrać podciąg zbieżny na U niemal jednostajnie.

33. Tw. Hurwitza

<u>Zał.</u> $f_n: U \to \mathbb{C}$ - ciąg f. holo. zbieżny niemal jednostajnie na otw. zb. spójnym $U \subset \mathbb{C}$ do f. $f_0: U \to \mathbb{C}$ <u>Teza</u> Jeśli wszystkie funkcje $f_n, n = 1, 2, \ldots$ są różnowartościowe, to granica f_0 jest albo stała, albo różnowartościowa.

34. Tw. Riemanna

Dla każdego obszaru jednospójnego $U \subset \mathbb{C}, U \neq \mathbb{C}$ istnieje przekształcenie konforemne $f: U \to D$ na koło $D = \{z: |z| < 1\}$. Ponadto, dla ustalonego $z_0 \in U$, istnieje dokładnie jedno takie przeksztąłcenie konforemne spełniające dodatkowo warunki $f(z_0 = 0 \text{ i } f'(z_0 = Ref'(z_0) > 0.$

35. Lemat pomocniczy

 $\underline{\text{Zal.}}\ U\subset\mathbb{C}\backslash\{c\}$ - obszar jednospójny, $z_0\in U$ i $D=\{z:|z|<1\}$ $\underline{\text{Teza}}\ \text{Istnieje}$ przekształcenie konforemne $g:U\to g(U)$, t. że $g(U)\subset D,\ g(z_0)=0,\ g'(z_0)=Reg'(z_0)>0.$

36. Lemat pomocniczy

Zał. $W \subset D = \{z : |z| < 1\}$ - obszar jednospojny zawierający zero, $a \in D \setminus W$

<u>Teza</u> Istnieje przekształcenie konforemne $\psi: W \to \psi(W) \subset D$ t. że $\psi(0) = 0$ oraz $\psi'(0) = \frac{1+|a|}{2\sqrt{|a|}} > 1$.

37. Zał. $U \subset \mathbb{C}$ - obszar jednospójny

<u>Teza</u> Dla każdej f. harmonicznej $u: U \to \mathbb{R}$ istnieje f. holo. $f: U \to \mathbb{C}$ t. że u = Ref (f. v = Imf nazywa się funkcją harmonicznie sprzężoną z u na zb. U).

38. Tw. o wartości średniej

Zał. $u: U \to \mathbb{R}$ - f. harmoniczna na zb. otw. $U \subset \mathbb{C}$, $D = \{z: |z-a| \leqslant r\} \subset U$ Teza $u(a) = \frac{1}{2\pi} \int_0^{2\pi} u(a + re^{it}) dt$.

C. Wnioski

- 1. Jeśli f. ciągła $f: U \to \mathbb{C}$ ma na U f. pierwotną, to dla każdej kaw. gł. pętli $\gamma: [a,b] \to U$, $\int_{\gamma} f(z)dz = 0$ (np. gdy f wielomianem $W(z) = a_0 + a_1(z) + \dots a_n z^n$; dla pętli $\gamma(t) = e^{it}$, $t \in [0,2\pi]$, $f(z) = \frac{1}{z}$ ma f. pierwotnej w pierścieniu $\{z: \frac{1}{2} < |z| < 2\}$, bo $\int_{\gamma} f(z)dz = 2\pi i$).
- 2. Zał. $W \subset \mathbb{C}$ otw. zb. wypukły, $f: W \to \mathbb{C}$ f. ciągła t. że dla każdego trójkata $T \subset W$, $\int_{\partial T} f(z) dz = 0$ Teza f ma f. pierwotną na W. W szczególności każda f. holo. na W ma na W f. pierwotną.

- 3. Zał. $f: U \to \mathbb{C}$ f. holo na zb. otw. $U \subset \mathbb{C}$ Teza Jeśli kaw. gł. pętle $\gamma_0, \gamma_1: [a,b] \to U$ są homotopijne w U to $\int_{\gamma_0} f(z)dz = \int_{\gamma_1} f(z)dz$.
- 4. Teza poprzedniego wn. pozostaje prawdziwa, jeśli zakłada się jedynie, że $f:U\to\mathbb{C}$ f. ciągła t. że dla pewnego $z_0\in U$, holo. na $U\setminus\{z_0\}$.
- 5. Nierówność Cauchy'ego Jeśli $f: U \to \mathbb{C}$ jest f. holo. na zb. otw. $U \subset \mathbb{C}$, $D = \{z: |z z_0| \le r\} \subset U$ i $M = \sup\{|f(z)|: z \in \partial D\}$, to dla $n = 1, 2, \ldots |f^{(n)}(z_0)| \le \frac{n!}{r^n}M$.
- 6. Tw. Liouville'a Jeśli funkcja holo. $f:\mathbb{C}\to\mathbb{C}$ jest ograniczona to jest stała.
- 7. Zasada maksimum modulu <u>Zał.</u> $f: U \to \mathbb{C}$ - f. holo. na zb. otw. i spójnym $U \subset \mathbb{C}$ <u>Teza</u> Jeśli istnieje $w \in U$ t. że $|f(w)| \ge |f(z)|$ dla $z \in U$, to f. f jest stała.
- 8. Zał. Niech $U \subset \mathbb{C}$ zb. otw. $z_0 \in U$, $f: U \to \mathbb{C}$ f. ciągła Teza Jeśli f jest różniczkowalna w każdym punkcie $z \in U \setminus \{z_0\}$ to jest też różniczkowalna w z_0 .
- 9. Zał. $f: U \to \mathbb{C}$ f. holo., $D = \{z: |z z_0| \leqslant r\} \subset U$, $\gamma(t) = z_0 + re^{it}$, $t \in [0, 2\pi]$, r > 0<u>Teza</u> Jeśli f nie przyjmuje zera na ∂D i N_f jest liczbą zer f w kole otwartym $D \setminus \partial D$, z których każde liczone jest tyle razy, ile wynosi jego krtoność, to $N_f = \frac{1}{2\pi i} \int_{\partial D} \frac{f'(z)}{f(z)} dz = Ind(f \circ \gamma, 0)$.
- 10. F. holo., która nie jest stała na żadnym zb. otw., przekształca zb. otw. na zb. otw.
- 11. Zał. $f: W \to \mathbb{C}$ f. holo. na zb. otw. $W \subset \mathbb{C}$, $z_0 \in W$ i $f'(z_0 \neq 0$ Teza Istnieje otw. otoczenie W_1 punktu z_0 t. że obcięcie $f|W_1:W_1 \to f(W_1)$ jest przekształceniem konforemnym na zb. otw. $f(W_1)$.
- 12. Zał. $f: P \to \mathbb{C}$ f. holo. w pierścieniu $P = \{z: 0 < |z z_0| < R\}$; $f(z) = \sum_{n = -\infty}^{\infty} a_n (z z_0)^n$ rozwinięcie f w szereg Laurenta w tym pierścieniu <u>Teza</u> (1) f ma w z_0 osobliwość pozorną \Leftrightarrow gdy $0 = a_{-1} = a_{-2} = \ldots$; (2) f ma w z_0 biegun rzędu m \Leftrightarrow gdy $a_{-m} \neq 0$ oraz $0 = a_{-m-1} = a_{-m-2} = \ldots$; (3) f ma w z_0 osobliwość istotną \Leftrightarrow gdy $a_{-n} \neq 0$ dla nieskończenie wielu n.
- 13. Każde przekształcenie konforemne $f:D\to D$ koła $D=\{z:|z|<1\}$ na siebie jest postaci $f(z)=e^{i\theta}\varphi_a(z)$, gdzie $\theta\in\mathbb{R}$ i f(a)=0.
- 14. Zał. $U \subset \mathbb{C}$ obszar jednospójny; $f: U \to \mathbb{C}$ f. holo. nie przyjmująca wartości zero Teza Istnieje f. holo. $g: U \to \mathbb{C}$ t. że exp(g) = f.
- 15. W każdym obszarze jednospójnym nie zawierającym zera istnieje gałąź logarytmu $(L: U \to \mathbb{C}, exp(L(z)) = z)$.
- 16. Jeśli $f: U \to \mathbb{C}$ jest f. holo. na zb. jednospójnym U, nie przyjmującą na U wartości zero, to istnieje f. holo. $h: U \to \mathbb{C}$ t. że $f = h^2$.
- 17. Zasada maksimum dla f. harmonicznych Zał. $u:U\to\mathbb{R}$ f. harmoniczna na otw. zb. spójnym, $U\subset\mathbb{C}$ Teza Jeśli dla pewnego $a\in U,\ u(a)\geqslant u(z)$ dla $z\in U,$ to f. u jest stała na U.

D. Uwagi

- 1. Formula Eulera: $e^{i\pi} = -1$.
- 2. Liczby zespolone z spełniające warunek $e^z = w$, gdzie $w \neq 0$ są opisane: $z = ln|w| + i\theta$, gdzie θ jest argumentem w (w różnią się o całkowitą wielokotność $2\pi i$.
- 3. Utożsamiając liczby zespolone z punktami \mathbb{R}^2 możemy rozpatrywać $f: U \to \mathbb{R}^2$. Pochodna f w $z_0 \in U$ w sensie rzeczywistym jest przekształceniem liniowym $df(z_0): \mathbb{R}^2 \to \mathbb{R}^2$. Istnienie pochodnej zespolonej znacza różniczkowalność w sensie rzeczywistym i dodatkowo warunek, że przekształcenie liniowe $df(z_0)$ jest operacją mnożenia przez liczbę zespoloną: $df(z_0)(h) = f'(z_0) \cdot h$, gdzie $f'(z_0) = a + ib$, $h = h_1 + ih_2$.
- 4. Reguły różniczkowania funkcji zespolonych są analogiczne do reguł różniczkowania funkcji rzeczywistych: $(f+g)'(z_0) = f'(z_0) + g'(z_0); (f \cdot g)'(z_0) = f'(z_0) \cdot g(z_0) + f(z_0) \cdot g'(z_0); (\frac{f}{g})'(z_0) = \frac{f'(z_0) \cdot g(z_0) f(z_0) \cdot g'(z_0)}{g^2(z_0)}; (f \circ g)'(z_0) = f'(g(z_0)) \cdot g(z_0).$ Ponadto, jeśli $f: U \to \mathbb{C}$ holo. w zb. otw. $U \subset \mathbb{C}$ i $\varphi: (a,b) \to U$ jest f. różniczkowalną zmiennej rzeczywistej, $\varphi'(t) = (Re\varphi)'(t) = i(Im\varphi)'(t)$, to: $(f \circ \varphi)'(t) = f'(\varphi(t)) \cdot \varphi'(t)$.

- 5. W pierścieniu
u $U=\{z:\frac{1}{2}<|z|<2\}$ nie istnieje gałąź argumentu.
- 6. Jeśli $\varphi: U \to \mathbb{R}$ jest gałęzią argumentu, to $L(z) = \ln|z| + i\varphi(z)$ jest gałęzią logarytmu w U.
- 7. Jeśli $\varphi_1, \varphi_2 : [a, b] \to \mathbb{R}$ są całkowalne w sensie Riemanna i $w \in \mathbb{C}$, to: $\int_a^b (\varphi_1(t) + w\varphi_2(t))dt = \int_a^b \varphi_1(t)dt + w \int_a^b \varphi_2(t)dt$ oraz $|\int_a^b \varphi(t)dt| \leqslant \int_a^b |\varphi(t)|dt$.
- 8. Jeśli $T:[c,d] \to [a,b]$ jest kaw. gł. homeomorfizmem, to droga $\gamma \circ \tau:[c,d] \to \mathbb{C}$ jest kaw. gł. i $\int_{\gamma \circ \tau} f(z) dz = (*) = \int_{\gamma} f(z) dz$, jeśli τ nie zmienia orientacji albo $(*) = \int_{\gamma} f(z) dz$ wpp.
- 9. Całka wzdłuż zorientowanej łamanej w \mathbb{C} ($\gamma(t) = z_0 + t(z_1 z_0)$, $t \in [0, 1]$ standardowa parametryzacja odcinka $[z_0, z_1] \subset \mathbb{C}$ i przyjmujemy $\int_{[z_0, z_1]} f(z) dz = \int_{\gamma} f(z) dz = (z_1 z_0) \int_0^1 f(z_0 + t(z_1 z_0)) dt$, gdzie $f : [z_0, z_1] \to \mathbb{C}$, f ciągła).
- 10. Całka wzdłuż zorientowanego brzegu koła w \mathbb{C} ($\gamma(t)=z_0+re^{it},\ t\in[0,2\pi]$ standardowa parametryzacja okręgu $\partial D=\{z:|z-z_0=r\}$ i przyjmujemy $\int_{\partial D}f(z)dz=\int_{\gamma}f(z)dz=ir\int_0^{2\pi}f(z_0+re^{it})e^{it}dt$, gdzie $f:\partial D\to\mathbb{C}$, f ciągła; w szczególności $\int_{\partial D}\frac{dz}{z-z_0}=2\pi i$).
- 11. Niech $\gamma:[a,b]\to\mathbb{C}$ droga kaw. gł. i $f:\gamma([a,b])\to\mathbb{C}$ f. ciągła. Wówczas $|\int_{\gamma}f(z)dz|\leqslant l(\gamma)\cdot\sup\{|f(z)|:z\in\gamma([a,b])\}$.
- 12. Z tw. Liouville'a wynika natychmiast zasadnicze tw. algebry.
- 13. Zał. $f_n: U \to \mathbb{C}$ ciąg f. ciągłych zbieżny niemal jednostajnie do $f: U \to \mathbb{C}$, U -zb. otw. w \mathbb{C} Teza (1) f jest f. ciągłą; (2) dla każdej kaw. gł. drogi $\gamma: [a,b] \to U$, $\int_{\gamma_n} f(z)dz \to \int_{\gamma} f(z)dz$.
- 14. M-test Weierstrassa Jeśli dla ciągu $f_n: K \to \mathbb{C}$ f. ogarniczonych szereg $\sum_n ||f_n||_K$ norm $||f_n||_K = \sup\{|f_n(z)| : z \in K\}$ jest zbieżny, to szereg funkcyjny $\sum_n f_n$ jest zbieżny jednostajnie na K.
- 15. Rozwinięcia w szereg, $z \in \mathbb{C}$: $expz = 1 + \frac{z}{1!} + \frac{z^2}{2!} + \dots = \sum_{n=0}^{\infty} \frac{z^n}{n!}$; $\cos z = 1 \frac{z^2}{2!} + \frac{z^4}{4!} \dots = \sum_{n=0}^{\infty} (-1)^n \frac{z^{2n}}{(2n)!}$; $\sin z = z \frac{z^3}{3!} + \frac{z^5}{5!} \dots = \sum_{n=0}^{\infty} (-1)^n \frac{z^{2n+1}}{(2n+1)!}$. W kole |z-1| < 1, gałęzi głównej logarytmu: $Log(1+z) = z \frac{z^2}{2} + \frac{z^3}{3} \dots = \sum_{n=1}^{\infty} (-1)^{n+1} \frac{z^n}{(n)}, |z| < 1$.
- 16. Niech $\gamma:[a,b]\to\mathbb{C}\setminus\{0\}$, $\lambda:[a,b]\to\mathbb{C}$ drogi opisane w tw. 19, $\gamma=exp\lambda=e^{Re\lambda}\cdot e^{iIm\lambda}$. Wówczas $Re\lambda=ln|\gamma|$ oraz dla każdego $t\in[a,b]$ $Im\gamma(t)$ jest argumentem liczby zespolonej $\gamma(t)$. Liczbę rzeczywistą $\Delta_{arg}(\gamma)=Im\lambda(b)-Im\lambda(a)$ nazywać będziemy przyrostem argumentu wzdłuż drogi γ . Zauważmy, że $\Delta_{arg}(\gamma)$ nie zależy od wyboru λ oraz, że jeśli $\gamma_1, \gamma_2: [a,b]\to\mathbb{C}\setminus\{0\}$, są drogami, $\lambda_1, \lambda_2: [a,b]\to\mathbb{C}$ i $\gamma_j=exp\lambda_j$, to $\gamma_1\cdot\gamma_2=exp(\lambda_1+\lambda_2)$, więc otrzymujemy: $\Delta_{arg}(\gamma_1\cdot\gamma_2)=\Delta_{arg}(\gamma_1)+\Delta_{arg}(\gamma_2)$.
- 17. Założenie $|g \circ \gamma f \circ \gamma| < |f \circ \gamma|$ zapewnia, że pętla γ nie przechodzi przez żadne zero funkcji f lub g. Ponadto, f i g mają tylko skończenie wiele zer.
- 18. Jeśli f. f holo. w otoczeniu z_0 ma w z_0 zero krotności n, to istnieje otoczenie W punktu z_0 t. że dla każdego $z \in W \setminus \{z_0\}$, $f(z) \neq 0$ i $f'(z) \neq 0$.
- 19. Zał. $f: W_1 \to W_2$ przekształcenie konforemne między zb. otw. $W_1, W_2 \subset \mathbb{C}$ Teza (1) z Wn. 10 wynika, że f jest homeomorfizmem W_1 na W_2 ; (2) z tw. 24 wynika, że $f'(z) \neq 0$ dla $z \in W_1$; (3) przekształcenie odwrotne $f^{-1}: W_2 \to W_1$ jest konforemne.
- 20. (1) Jeśli f ma w b biegun rzędu m, to $Res(f,b) = \frac{1}{(m-1)!} \lim_{z \to b} \frac{d^{m-1}}{dz^{m-1}} ((z-b)^m \cdot f(z));$ (2) niech $f(z) = \frac{g(z)}{h(z)}$, gdzie g i h są holo. w otoczeniu b, $g(b) \neq 0$ i h ma w b zero krotności m. Wówczas f ma w b biegun rzędu m; (3) jeśli w (2), h ma w b zero jednokrotne, $h'(b) \neq 0$, to w b jest biegunem prostym f oraz $Res(f,b) = \frac{g(b)}{h'(b)}$.
- 21. Przykład osobliwości istotnej f. $exp(\frac{1}{z})$ w zerze: dla $t \in \mathbb{R}$ mamy $\lim_{t\to 0^+} exp(\frac{1}{t}) = +\infty$ oraz $|exp(\frac{1}{it})| = |exp(-i\frac{1}{t})| = 1$, a więc f nie ma w zerze ani osobliwości pozornej, ani też bieguna.
- 22. $\underline{\text{Zat.}}\ D = \{z : |z| < 1\}; \text{ dla } a \in D\ \varphi_a(z) = \frac{z-a}{1-\bar{a}z},\ z \neq \frac{1}{a}$ $\underline{\text{Teza}}\ (1)\ \text{f.}\ \varphi_a\ \text{jest holo.}\ \text{w kole}\ \{z : |z| < \frac{1}{|a|}\}\ \text{zawierającym}\ \bar{D};\ (2)\varphi_a(D) = D,\ \varphi_a(\partial D) = \partial D,\ \varphi_a(a) = 0,\ \varphi_a(0) = -a;$ $(3)\ \varphi_a : D \to D\ \text{jest przekształceniem konforemnym i}\ (\varphi_a)^{-1} = \varphi_{-a}|D;\ (4)\varphi_a'(0) = 1 |a|^2,\ \varphi_a'(a) = \frac{1}{1-|a|^2}.$
- 23. Zał. $U \subset \mathbb{C}$ obszar jednospójny <u>Teza</u> Dla dowolnej f. holo. $f: U \to \mathbb{C}$ i $\gamma_1, \gamma_2: [c, d] \to U$ dróg kaw. gł. o wspólnym początku i końcu $(\gamma_1(c) = \gamma_2(c), \gamma_1(d) = \gamma_2(d)$ mamy $\int_{\gamma_1} f(z) dz = \int_{\gamma_2} f(z) dz$.
- 24. Jeśli $f:U\to\mathbb{C}$ jest f. holo., to z równań Cauchy-Riemanna wynika, że obie f. Ref i Imf są harmoniczne.

E.Dowody

• Tw. 3 Cauchy-Riemanna

Istnienie ciągłych pochodnych cząstkowych gwarantuje istnienie pochodnej rzeczywistej df(z) w każdym punkcie $z \in U$. Istnienie pochodnej $\begin{bmatrix} \frac{\partial u}{\partial x}(z) & \frac{\partial u}{\partial y}(z) \\ \frac{\partial v}{\partial x}(z) & \frac{\partial v}{\partial y}(z) \end{bmatrix} = \begin{bmatrix} a & -b \\ b & a \end{bmatrix}$, co jest równoważne równaniom C-R. Ponieważ $f'(z_0) = a + ib$, to mamy drugą cz. tezy.

• Tw. 7 Goursata

Lemat: Dla każdego trójkąta $K \subset U$ można wybrać trójkąt $L \subset K$ t. że. $l(\partial L) = \frac{1}{2}l(\partial K)$ oraz $|\int_{\partial L} f(z)dz| \ge \frac{1}{4}|\int_{\partial K} f(z)dz|$.

Łącząc środki boków trójkąta K odcinkami dostajemy 4 przystające trójkąty K_1 , K_2 , K_3 , K_4 , t. że $l(\partial K_j = \frac{1}{2}l(\partial K))$ oraz $\int_{\partial K} f(z)dz = \sum_{j=1}^4 \int_{K_j} f(z)dz$. Dla pewnego wskaźnika j mamy $|\int_{\partial K_j} f(z)dz| \geqslant \frac{1}{4}|\int_{\partial K} f(z)dz|$ i wybieramy $L = K_j$.

Z lematu można wybrać ciąg trójkątów $T=T_0\supset T_1\supset T_2\supset\ldots$ t. że dla $j=0,1,\ldots l(\partial T_{j+1})=\frac{1}{2}l(\partial T_j)$ (1), $|\int_{\partial T_{j+1}}f(z)dz|\geqslant \frac{1}{4}|\int_{\partial T_j}f(z)dz|$. Zwartość trójkąta T gwarantuje istnienie $z_0\in\bigcap_{j=0}^\infty T_j$ (2). $f(z)=f(z_0)+f'(z_0)(z-z_0)+\alpha(z)$ (3), $\lim_{z\to z_0}\frac{|\alpha(z)|}{|z-z_0|}=0$. Ponieważ całka wielomianu po brzegu trójkąta znika dla $j=0,1,\ldots$ dostajemy $\int_{\partial T_j}f(z)dz=\int_{\partial T_j}\alpha(z)dz$ (4). Z (1) dla $j=0,1,\ldots$ $l(\partial T_j)=(\frac{1}{2})^jl(\partial T),$ $|\int_{\partial T}f(z)dz|\leqslant 4^j|\int_{\partial T_j}f(z)dz|$ (5). Ustalmy teraz dowolne $\epsilon>0$ i korzystając z (3) wybierzmy $\delta>0$ t. że $|\alpha(z)|\leqslant\epsilon|z-z_0|$, jeśli $|z-z_0|<\delta$. Wybierzmy następnie j t. że. $l(\delta T_j)<\delta$. Wówczas z (2) i (6): $|\alpha(z)|\leqslant\epsilon\cdot l(\delta T_j)$ dla $z\in\partial T_j$. Z (4), (5), (7) dostajemy $|\int_{\partial T}f(z)dz|\leqslant4^j|\int_{\partial T_j}f(z)dz|\leqslant4^j|\int_{\partial T_j}f(z)dz|$

• Tw. 9 Cauchy'ego

Wzmocnimy najpierw Uw. 9, pokazując, że $\forall z \in D \setminus \partial D$ $\int_{\partial D} \frac{dw}{w-z} = 2\pi i$. W tym celu wybierzmy koło $K = \{w : |w-z| \leq d\} \subset D \setminus \partial D$. Niech $\gamma_0(s) = z_0 + re^{is}$, $s \in [0, 2\pi]$ i niech $\gamma_1(s)$ będzie punktem na okręgu ∂K leżącym na odcinku $[z, \gamma_0(s)]$. Pętle γ_0 i γ_1 są homotopijne w $U \setminus \{z\}$ i f. $w \to \frac{1}{w-z}$ jest holo. w tym zb., zatem z Wn. 2 $\int_{\partial D} \frac{dw}{w-z} = \int_{\partial \gamma_0} \frac{dw}{w-z} = \int_{\partial \gamma_0} \frac{dw}{w-z} = \int_{\partial K} \frac{dw}{w-z} = 2\pi i$.

 $\int_{\partial D} \frac{dw}{w-z} = \int_{\partial \gamma_0} \frac{dw}{w-z} = \int_{\partial \gamma_1} \frac{dw}{w-z} = \int_{\partial K} \frac{dw}{w-z} = 2\pi i.$ Teraz wybierzmy R > r t. że koło otw. $W = \{w : |z_0 - w| < R\}$ jest zawarte w U. Ustalmy punkt $z \in D \setminus \partial D$ i rozpatrzmy f. $g : W \to \mathbb{C}$: $g(w) = \frac{f(w) - f(z)}{w - z}$ jeśli $w \neq z$ i g(w) = f'(z) wpp. Funkcja g jest ciągła w kole W i holo. na $W \setminus \{z\}$. Zgodnie z Tw. 8, Wn. 2 i Wn. 1 $\int_{\partial D} g(w) dw = 0$. Zatem $\int_{\partial D} \frac{f(w)}{w-z} dz = f(z) \int_{\partial D} \frac{dw}{dw-z} = 2\pi i f(z)$ (1).

 $W\backslash\{z\}. \text{ Zgodnie z Tw. 8, Wn. 2 i Wn. 1} \int_{\partial D} g(w)dw = 0. \text{ Zatem} \int_{\partial D} \frac{f(w)}{w-z}dz = f(z) \int_{\partial D} \frac{dw}{w-z} = 2\pi i f(z) \text{ (1)}.$ Zastosujemy formułę Leibniza (Tw. 10) do f. $F_n(w,z) = \frac{f(w)}{(w-z)^n}, \ (w,z) \in \partial D \times (D\backslash\partial D), \ n=1,2,\dots \text{ Mamy}$ $\frac{d}{dz} \int_{\partial D} \frac{f(w)}{w-z}dw = \frac{d}{dz} \int_{\partial D} F_1(w,z)dw = \int_{\partial D} \frac{\partial}{\partial z} F_1(w,z)dw = \int_{\partial D} \frac{f(w)}{(w-z)^2}dw, \text{ czyli z (1)} \ f'(z) = \frac{1}{2\pi i} \int_{\partial D} \frac{f(w)}{(w-z)^2}dw.$

• Tw. 11 Morery

Niech $z_0 \in U$ i $W = \{z : |z - z0| \le r\} \subset U$, r > 0. Z Wn. 2 f ma f. pierwotną na W, tzn. \exists f. holo. $F : W \to \mathbb{C}$ t. że f = F'. Z tw.9 F jest różniczkowalna nieskończenie wiele razy, w szczególności F" jest pochodną f na W. Tak więc f. f jest różniczkowalna w z_0

• Tw. 12 Weierstrassa

Holo. f wynika natychmiast z Tw. 11 i Uw. 13: dla dowolnego trójkąta $T \subset U$, $0 = \int_{\partial T} f_n(z) dz \rightarrow \int_{\partial T} f(z) dz$, a więc $\int_{\delta T} f(z) dz = 0$.

Ustalmy dowolny zb. zwarty $K \subset U$ i niech $d = \inf\{|z-w| : z \in K, w \notin U\} > 0$ (1). Zb. zwarty K można pokryć skończenie wieloma kołami o środkach leżych w K i promieniu $\frac{d}{3}$, $K \subset \bigcup_{j=1}^n C_j$, $C_j = \{z : |z-z_j| < \frac{d}{3}\}$, $z_j \in K$ (2) i niech $D_j = \{z : |z-z_j| \le \frac{2}{3}d\}$, $E = D_1 \ldots \cup D_n$. Wówczas $C_j \subset D_j$ i $E \subset U$. Ze wzoru Cauchy'ego $\forall z \in C_j$ mamy:

 $|f'(z) - f'_n(z)| = \frac{1}{2\pi} |\int_{\partial D_j} \frac{f(w)}{(w-z)^2} dw - \int_{\partial D_j} \frac{f_n(w)}{(w-z)^2} dw| \leqslant \frac{1}{2\pi} \int_{\partial D_j} \frac{|f(w) - f_n(w)|}{|w-z|^2} dw \leqslant \frac{1}{2\pi} \frac{||f - f_n||_{D_j}}{(\frac{1}{3}d)^2} (2\pi \frac{2}{3}d). \text{ Zatem z (2)},$ $(3): ||f' - f'_n||_K \leqslant \frac{6}{d} ||f - f_n||_E, \text{ a ponieważ E jest zwarty } ||f - f_n||_E \to 0, \text{ a więc } ||f' - f'_n||_K \to 0.$

• Tw. 16 Zasada identyczności

Niech h = f - g i niech $E = \{z \in U : \text{h zeruje się w pewnym otoczeniu punktu z}\}$ (1). Zauważmy, że jeśli $h(z_n = 0, z_n \to z_0, z_0 \in U, z_n \neq z_0 \text{ dla } n \neq 0, \text{ to } z_0 \in E$ (2). Istatnie, h jest f. holo. na U, rozwija się, więc wokół z_0 w szereg potęgowy (Tw. 14), zatem zgodnie z Tw. 15, zeruje się w pewnym otoczeniu z_0 . Stąd i zał. wynika także, że $E \neq \emptyset$. Z (2) wynika, że zbiór E zawiera wszystkie swoje punkty skupienia należące do U, a więc jest relatywnie domknięty w U. Jednocześnie z (1) E jest zbiorem otw., więc ze spójności U wnosimy, że U = E.

• Tw. 22 Rouché Z założeń i Tw. 21 wynika, że $N_f = Ind(f \circ \gamma, 0), N_g = Ind(g \circ \gamma, 0)$. Pozostaje spr., że pętle $f \circ \gamma$ i $g \circ \gamma$ są homotopijne

w \{0}. Przyjmijmy $\gamma_0 = f \circ \gamma$, $\gamma_1 = g \circ \gamma$ i niech $H(s,t) = \gamma_0(s) + t(\gamma_1(s) - \gamma_0(s))$, $(s,t) \in [a,b] \times [0,1]$. Wówczas $|H(s,t) \ge |\gamma_0(s)| - t|\gamma_1(s) - \gamma_0(s)| > |\gamma_0(s)| - t|\gamma_0(s)| \ge 0$, a więc H jest homotopią w $\mathbb{C} \setminus \{0\}$ między γ_0 i γ_1 .

• Tw. 26 o residuach

Zgodnie z Tw. 25 $\forall b \in B$ można wskazać wielomian $W_b(z)$ t. że f. $f(z) - W_b(\frac{1}{z-b})$ ma w b osobliwość pozorną. Wówczas $g(z) = f(z) - \sum_{b \in B} W_b(\frac{1}{z-b})$ ma w każdym punkcie $b \in B$ osobliwość pozorną i g można rozszeryć na U do f. holo. przyjmując $g(b) = \lim_{z \to b} g(z)$. Ponieważ γ jest w U homotopijna z pętlą stała, więc $\int_{\gamma} g(z)dz = 0$ i z def. residuum i Tw. 26 wnosimy, że $\frac{1}{2\pi i} \int_{\gamma} f(z)dz = \sum_{b \in B} \frac{1}{2\pi i} \int_{\gamma} W_b(\frac{1}{z-b})dz = \sum_{b \in B} Res(W^{(b)}, b) \cdot Ind(\gamma, b)$. Stosując ten wzór do pętli $t \to b + re^{it}$, $t \in [0, 2\pi]$, obiegającej brzeg koła $D = \{z : |z - b| \le r\} \subset U$ rozłącznego z $B \setminus \{b\}$ mamy też $Res(f, b) = Res(W^{(b)}, b)$. Stąd wynika tw. o residuach.

• Tw. 27 Zasada argumentu

Tak jak w dowodzie Tw. 26 $\forall b \in B$ można znaleźć wielomian $W_b(z)$ stopnia m(b) t. że f. $g(z) = f(z) - \sum_{b \in B} W_b(\frac{1}{z-b})$ (1) ma w każdym punkcie $b \in B$ osobobliwość pozorną i przyjmując $g(b) = \lim_{z \to b} g(z)$, rozszerzamyy g do f. holo na U. Formułę (1) można zapisać w postaci $f(z) = \frac{h(z)}{\prod_{b \in B} (z-b)^{m(b)}}$ (2), gdzie $h: U \to \mathbb{C}$ - f. holo (przy czym $h(b) \neq 0$ dla $b \in B$, bo inaczej f miałoby w b biegum rzędu niższego niż m(b), Def. 23). Ponieważ h i f mają identyczne zera, z takimi samymi krotnościami $h(z) = \prod_{a \in Z} (z-a)^{n(a)} \varphi(z)$ (3), gdzie $\varphi: U \to \mathbb{C}$ jest f. holo na U, nie zerującą się w żadnym punkcie U (Tw. 18). Z (2) i (3) mamy więc $f(z) = (\prod_{a \in Z} (z-a)^{n(a)})(\prod_{b \in B} (z-b)^{m(b)})\varphi(z)$. Zatem na zbiorze $U \setminus (B \cup Z)$, $\frac{f'(z)}{f(z)} = \sum_{a \in Z} \frac{n(a)}{z-a} - \sum_{b \in B} \frac{m(b)}{z-b} + \frac{\varphi'(z)}{\varphi(z)}$ (4). Ponieważ γ jest homotopijna ze stałą w U i $\frac{\varphi'(z)}{\varphi(z)}$ jest holo. na U, $\int_{\gamma} \frac{\varphi'(z)}{\varphi(z)} dz = 0$, zatem z (4) dostajemy $\frac{1}{2\pi i} \int_{\gamma} \frac{f'(z)}{f(z)} dz = \sum_{a \in Z} n(a) Ind(\gamma, a) - \sum_{b \in B} m(b) Ind(\gamma, b)$. Pozostaje przypomnieć, że $\frac{1}{2\pi i} \int_{\gamma} \frac{f'(z)}{f(z)} dz = Ind(f \circ \gamma, 0)$.

• Tw. 28 Casoratiego-Weierstrassa

Zał. że dla pewnego $w_0 \in \mathbb{C}$ nie istnieje ciąg $z_n \to z_0$ t. że $f(z_n) \to w_0$. To oznacza, że dla pewnych liczb dodatnich d,r, (1) jeśli $0 < |z - z_0| < r$, to $|f(z) - w_0| \geqslant d$. Rozpatrzmy koło $D = \{z : |z - z_0| < r\}$ i funkcję $h : D \setminus \{z_0 \to \mathbb{C} \text{ określoną formulą } h(z) = \frac{1}{f(z) - w_0}$ (2), $z \in D \setminus \{z_0\}$. F. h jest ograniczona, więc $\lim_{z \to z_0} (z - z_0)h(z) = 0$ i zgodnie z Tw. 24 (1), ha ma w z - 0 osobliwość pozorną, $\lim_{z \to z_0} h(z) = a$. Jeśli $a \neq 0$, mamy z (2), $\lim_{z \to z_0} f(z) = \frac{1}{a} + w_0$, a więc f ma w z_0 osobliwość pozorną. Jeśli a = 0, $\lim_{z \to z_0} |f(z)| = \infty$, a więc f ma w z_0 biegun.

• Tw. 32 Montela

Spr., że rodzina f. f_n , $n=1,2,\ldots$ jest jednakowo ciągła w każdym punkcie $z-0\in U$, tzn. $\forall \epsilon>0\exists \delta>0 \forall z\in U\forall n|z-z_0|<\delta$, to $|f_n(z)-f_n(z_0)|<\epsilon$ (1). W tym celu rozpatrzmy koło $D_r=\{z:|z-z_0|\leqslant r\}\subset U,\,r>0$. Jeśli $|z-z_0|<\frac{r}{2}$, mamy $|f_n(z)-f_n(z_0)|=|\frac{1}{2\pi i}\int_{\partial D_r}\frac{f_n(w)}{w-z}dw-\frac{1}{2\pi i}\int_{\partial D_r}\frac{f_n(w)}{w-z_0}dw|=\frac{1}{2\pi}|\int_{\partial D_r}\frac{f_n(w)(z-z_0)}{(w-z_0)(w-z_0)}dw|\leqslant \frac{2\pi rM|z-z_0|}{2\pi(\frac{r}{2})^2}=\frac{4M}{r}|z-z_0|$. Tak więc, dla zadanego $\epsilon>0$, $\delta=\min(\frac{r}{2},\frac{\epsilon r}{4M})$ spełnia (1), dla $z\in U$ i $n=1,2,\ldots$ Niech $K_p=\{z\in U:|z|\leqslant p\text{ i }|z-w|\geqslant \frac{1}{p}\text{ dla }w\notin U$. Zbiory K_p są zwarte, $K_1\subset K_2\subset\ldots\subset U$ i każdy zbiór zwarty leżący w U jest zawarty w pewnym zb. K_p . Twierdzenie Ascoliego-Arzeli, warunek (1) i wspólna ogarniczoność rodziny f_n , $n=1,2,\ldots$ zapewniają, że można kolejno wybrać ciągi $f_{11},f_{12},f_{13},\ldots$ (wiersz 1), $f_{21},f_{22},f_{23},\ldots$ (wiersz 2) ..., tak że f_{11},f_{12},\ldots jest podciągiem ciągu $f_1,f_2,\ldots,f_{p+1,1},f_{p+1,2},\ldots$ jest podciągiem ciągu f_1,f_2,\ldots zbieżnym niemal jednostajnie na K_p . Wówczas ciąg przekątniowy f_{11},f_{22},\ldots jest podciągiem ciągu f_1,f_2,\ldots zbieżnym niemal jednostajnie na U.

• Tw. 33 Hurwitza

Zał. że f. f_0 nie jest stała na U i niech $z_0, z_1 \in U, z_0 \neq z_1, w_0 = f_0(z_0), w_n = f_n(z_0), n = 1, 2 \dots$ (2). Ponieważ f_0 nie jest stała, z_1 nie jest punktem skupienia zbioru $f_0^{-1}(w_0)$, można zatem wybrać koło $D = \{: |z - z_1| \leq r\} \subset U, \partial D \cap f_0^{-1}(w_0) = \emptyset$ (3), $z_0 \notin \bar{D}$. Niech $d = \inf\{|w_0 - f_0(z)| : z \in \partial D\} > 0$ (4). Ustalmy $n \geqslant 1$ t. że (zob. 2) $||f_n - f_0||_{\bar{D}} < \frac{d}{3}, |w - 0 - w_n| < \frac{d}{3}$. Dla $z \in \partial D$ mamy wówczas (zob. (2), (3), (4)) $|(f_n(z) - w_n) - (f_0(z) - w_0)| \leq |f_n(z) - f_0(z)| + |w_n - w_0| < d \leq |f_0(z) - w_0|$, a więc z tw. Roucheé, $f_0 - w_0$ ma w kole D tyle samo zer (z uwzględnieniem krotności), co f. $f_n - w_n$. Ponieważ z zał., f_n jest f. różnowartościową i $z - 0 \notin \bar{D}$ (zob. (3)), zatem $f_n(z_0) = w_n \notin f_n(\bar{D})$, czyli $f_n - w_n$ nie zeruje się na \bar{D} . Tak więc $f_0 - w_0$ nie zeruje się na \bar{D} i w szczególności, $f_0(z_1) \neq w_0 = f_0(z_0, \text{zob.}$ (2).

• Wn. 5 Nierówność Cauchy'ego Z Tw. 9 i Uw. 11: $|f^{(n)}(z_0)| \leq \frac{n!}{2\pi} \int_{\partial D} \frac{|f(w)|}{|w-z_0|^{n+1}} dw \leq \frac{n!}{2\pi} 2\pi r \frac{M}{r^{n+1}} = \frac{n!}{r^n} M$.

• Wn. 6 Tw. Liouville'a

Niech $|f(z)| \leq M$ dla $z \in \mathbb{C}$. Ustalmy dowolne $z_0 \in \mathbb{C}$. Z Wn.5 $\forall r > 0$, rozpatrując koło $\{z : |z - z_0| \leq r\}$ otrzymujemy nierówność $|f'(z_0)| \leq \frac{M}{r}$. Wobec dowolności r, $f'(z_0 = 0)$. Tak więc pochodna f' zeruje się na \mathbb{C} i f jest f. stałą.

- Wn. 7 Zasada maksimum modułu Zbiór $E = \{U \in U : |f(z)| = |f(w)|\}$ (1) jest relatywnie domknięty w U (tzn. $\bar{E} \cap U = E$). Pokażemy, że jest też otw. Niech $z_0 \in E$ i $D = \{z : |z z_0| \leq R\} \subset U$. $\forall r \in (0, R]$ i koła $D_r\{z : |z z_0| \leq r\}$, z Tw. 9 (1) i (1) mamy $2\pi |f(w)| = 2\pi |f(z_0)| = |\int_{\partial_r} \frac{f(z)}{z-z_0} dz| \leq \int_{\partial D_r} \frac{|f(z)|}{z-z_0} dz = \frac{1}{r} \int_{\partial D_r} |f(z)| dz$. Ponieważ $2\pi |f(w)| = \frac{1}{r} \int_{\partial D_r} |f(w)| dz$ (f(w) jest stałą) oraz $|f(w)| \geq |f(z)|$, dla $z \in D_r$, wynika stąd, że całka f. nieujemnej $\int_{\partial D_r} (|f(w)| |f(z)|) dz$ jest zerem, a więc f. pod całką zeruje się na ∂D_r . Pokazaliśmy, że |f(z)| = |f(w)|, jeśli $|z z_0| \leq R$, a więc $D \subset U$ (zob. (1)). Ze spójności U wnosimy, że E = U, a więc moduł |F| jest f. stałą na U. to oznacza, że f przekształca zb. otw. U w pewien okrąg, zatem pochodna rzeczywista $df(z) : \mathbb{R}^2 \to \mathbb{R}^2$ nie może być izomorfizmem liniowym w żadnym punkcie $z \in U$, czyli f'(z) = 0 dla $z \in U$, a więc f. f jest stała.
- Inne: Tw. 30 Lemat Schwarza, Tw. 34 Riemanna