Tutorial 3

- 1.1 How many email address(es) are involved in the SMTP protocol?
- * Two email addresses. One is the sender and one is the receiver.

1.2 Does SMTP require any password?

No. Sending emails to a receiver doesn't need to know the receiver's password. No authentication on sender either.

1.3 Does POP3/IMAP require any password?

1.4 Who can read the email sent from the sender to the receiver?

1.5 How to send an email **ANONYMOUSLY** to a receiver?

Email Protocols (SMTP)

Bob's mail server (SMTP client) SMTP commands and replies

Alice's mail server (SMTP server)

- 1- Send an EHLO message
- 3- Identify the sender to Alice's SMTP server
- 5- Identify the recipient to Alice's SMTP server
- 7- I am about to send you the email message, ready?
- 9- Send message one line at a time.

 Terminate with a "."
 - 11- Terminate this session

- 2- Receive an EHLO message and respond appropriately
- 4- This sender is OK with me
- 6- This recipient is OK with me
- 8- I am ready. Send message, end with "." on a line by itself
- 10- I accept the message for delivery

12- Closing connection

- 1.6 Sender (Alice) and Receiver (Bob) share a secret key K. How to send an email to Bob such that
- Bob knows that the email is from Alice
- Bob's email server doesn't know who sent that email.

2. Email Security

Sign Then Encrypt

- A has a pair of keys (d, e), where d is private and e is public
- B has a pair of keys (d', e'), where d' is private and e' is public

 $A \rightarrow B: E_{e'}(A, M, Sign_d(M))$

- B believes that A sent the message, if the message and signature can be verified with e.
- A believes that only B can receive the signed M
- It provides authentication, non-repudiation, confidentiality and sender anonymity

Encrypt-then-Sign

- A has a pair of keys (d, e), where d is private and e is public
- B has a pair of keys (d', e'), where d' is private and e' is public

 $A \rightarrow B: E_{e'}(A, M), Sign_d(E_{e'}(A, M))$

Is there any problem with this approach?

PGP uses the web of trust to manage public keys.

- Owner Trust: Do YOU trust all the public keys certified by this user?
- **Key Legitimacy**: Do YOU believe that this is the public key of this user?
- Signatures: All "certificates" for this public key issued by PGP users, collected by YOU.
- Signature Trust(s): Do YOU trust all these "certificates"?

According to the info given by the figure below, complete the blank cells in the form. Here we assume that a public key is also trusted if it has been certified by at least two partially trusted users.

- U: Untrusted or Undefined
- P: Partially trusted
- T: Trusted
- Sign(PRa, PUb||IDb): User A signs (or certifies) B's public key.

Public Key Ring of YOU

User	Public	Owner	Key	Signatures	Signature	•••
ID	Key	Trust	Legitimacy		Trusts	
A	PKa					•••
С	PKc					•••
D	PKd					•••
Е	PKe					•••
J	PKj					•••
L	PK1					•••
N	PKn					•••
P	PKp					•••
•••	•••	•••	•••	•••	•••	•••

Public Key Ring of YOU

User ID	Public Key	Owner Trust	Key Legitimacy	Signatures	Signature Trusts	•••
A	PKa	P	T	Sign(PRyou, PUa IDa)	T	•••
С	PKc					•••
D	PKd					•••
Е	PKe					•••
J	PKj					•••
L	PK1					•••
N	PKn					•••
P	PKp					•••
•••	•••	•••	•••	•••	•••	•••