Kumpulan Pembahasan Latihan Soal-Soal Mata Kuliah Matematika 2/Kalkulus 2

April 17, 2024

Mohamad Ilham Dwi Firmansyah masilhamath2023@gmail.com

بسم الله الرّحمن الرّحيم

DAFTAR ISI

1.	Fungsi Transenden	3
2.	Teknik Integrasi	24
3.	Integrasi Numerik dan Integral Tak Wajar	58
4.	Aplikasi Integral Tertentu	69
5.	Persamaan Parametrik dan Koordinat Kutub	100
6.	Barisan dan Deret	123

1. Fungsi Transenden

1. (**ETS 2023**) Dapatkan $\frac{dy}{dx}$ dengan diferensial logaritmik dari fungsi

$$y = \frac{x^3\sqrt{6x+5}}{\sin(3x^2+1)e^x}$$

Pembahasan:

Bentuk ln kedua ruas diperoleh

$$\ln y = \ln \left(\frac{x^3 \sqrt{6x+5}}{\sin(3x^2+1)e^x} \right)$$

$$\Leftrightarrow \ln y = \ln(x^3) + \ln \left(\sqrt{6x+5} \right) - \ln \left(\sin(3x^2+1) \right) - \ln(e^x)$$

$$\Leftrightarrow \ln y = 3\ln(x) + \frac{1}{2}\ln(6x+5) - \ln \left(\sin(3x^2+1) \right) - x$$

turunkan kedua ruas terhadap \boldsymbol{x}

$$\Leftrightarrow \frac{d}{dx}(\ln y) = \frac{d}{dx} \left(3\ln(x) + \frac{1}{2}\ln(6x+5) - \ln\left(\sin(3x^2+1)\right) - x \right)$$

$$\Leftrightarrow \frac{1}{y} \frac{dy}{dx} = \frac{3}{x} + \frac{1}{2} \cdot \frac{6}{6x+5} - \frac{6x\cos(3x^2+1)}{\sin(3x^2+1)} - 1$$

$$\Leftrightarrow \frac{dy}{dx} = y\left(\frac{3}{x} + \frac{1}{2} \cdot \frac{6}{6x+5} - \frac{6x\cos(3x^2+1)}{\sin(3x^2+1)} - 1 \right)$$

$$\Leftrightarrow \frac{dy}{dx} = \frac{x^3\sqrt{6x+5}}{\sin(3x^2+1)e^x} \left(\frac{3}{x} + \frac{3}{6x+5} - 3\cot(3x^2+1) - 1 \right)$$

2. (ETS 2022) Selesaikan persamaan

$$\ln\left(\frac{1}{x}\right)^2 + \ln(2x) = \ln(3)$$

Pembahasan:

Dengan menggunakan sifat logaritma natural

$$\ln\left(\frac{1}{x}\right)^2 + \ln(2x) = \ln(3)$$

$$\Leftrightarrow 2\ln\left(\frac{1}{x}\right) + \ln(2) + \ln(x) = \ln(3)$$

$$\Leftrightarrow 2\left(\ln(1) - \ln(x)\right) + \ln(2) + \ln(x) = \ln(3)$$

Kita tahu bahwa ln(1) = 0, sehingga diperoleh

$$\Leftrightarrow -2\ln(x) + \ln(2) + \ln(x) = \ln(3)$$

$$\Leftrightarrow -\ln(x) = \ln(3) - \ln(2)$$

$$\Leftrightarrow -\ln(x) = \ln\left(\frac{3}{2}\right)$$

$$\Leftrightarrow \ln(x) = -\ln\left(\frac{3}{2}\right)$$

$$\Leftrightarrow \ln(x) = \ln\left(\frac{3}{2}\right)^{-1}$$

Sehingga diperoleh

$$x = \left(\frac{3}{2}\right)^{-1} = \frac{2}{3}$$

3. (**ETS 2022**) Dapatkan $\frac{dy}{dx}$ dari

$$y = \sinh(\cos(3x)) + \ln(\cos(2x) + 1)$$

Pembahasan:

Turunkan kedua ruas terhadap x

$$\frac{d}{dx}[y] = \frac{d}{dx}\left[\sinh(\cos(3x)) + \ln(\cos(2x) + 1)\right]
= \frac{d}{dx}\left[\sinh(\cos(3x))\right] + \frac{d}{dx}\left[\ln(\cos(2x) + 1)\right]
= \cosh(\cos(3x))\frac{d}{dx}\left[\cos(3x)\right] + \frac{1}{\cos(2x) + 1}\frac{d}{dx}\left[\cos(2x) + 1\right]
= \cosh(\cos(3x))(-3\sin(3x)) - \frac{2\sin(2x)}{\cos(2x) + 1}
= -3\sin(3x)\cosh(\cos(3x)) - \frac{2\sin(2x)}{\cos(2x) + 1}$$

4. (ETS 2022) Hitung integral berikut:

$$\int \sinh^6 x \cosh x \, dx$$

Pembahasan:

5. (ETS 2022) Hitung integral berikut:

$$\int \frac{\sin 2\theta \cos 2\theta}{\cos^2 2\theta + 1} \, dx$$

Pembahasan:

Misalkan $u=\cos 2\theta \Rightarrow \frac{du}{d\theta}=-2\sin 2\theta\,d\theta \Rightarrow -\frac{1}{2}du=\sin 2\theta\,d\theta.$ Sehingga diperoleh integral yang baru

$$\int \frac{\sin 2\theta \cos 2\theta}{\cos^2 2\theta + 1} dx = -\frac{1}{2} \int \frac{u}{u^2 + 1} du$$

misalkan $t=u^2+1\Rightarrow \frac{dt}{du}=2u\,du\Rightarrow \frac{1}{2}dt=u\,du.$ Sehingga diperoleh

$$-\frac{1}{2} \int \frac{u}{u^2 + 1} \, du = -\frac{1}{4} \int \frac{1}{t} \, dt = -\frac{1}{4} \ln|t| + C$$

Sehingga diperoleh

$$\int \frac{\sin 2\theta \cos 2\theta}{\cos^2 2\theta + 1} dx = -\frac{1}{4} \ln \left| \cos^2 (2\theta) + 1 \right| + C$$

6. (ETS 2022) Hitung integral berikut

$$\int \frac{\sinh(2x)}{5 + 3\cosh(2x)} \, dx$$

Pembahasan:

Misalkan $u=5+3\cosh(2x) \Rightarrow du=6\sinh(2x)\,dx \Rightarrow \frac{1}{6}\,du=\sinh(2x)\,dx$, sehingga diperoleh integral yang baru

$$\int \frac{\sinh(2x)}{5+3\cosh(2x)} dx = \frac{1}{6} \int \frac{1}{u} du = \frac{1}{6} \ln|u| + C = \frac{1}{6} \ln|5+3\cosh(2x)| + C$$

7. (ETS 2022) Hitung integral berikut :

$$\int \frac{e^{4x}}{\sqrt{1+e^{2x}}} \, dx$$

Pembahasan:

Misalkan $u=1+\mathrm{e}^{2x}\Rightarrow \frac{du}{dx}=2\mathrm{e}^{2x}\Rightarrow dx=\frac{1}{2\mathrm{e}^{2x}}\,du\Rightarrow dx=\frac{1}{2(u-1)}\,du$. Perhatikan bahwa $u=1+\mathrm{e}^{2x}\Rightarrow u-1=\mathrm{e}^{2x}$ Sehingga diperoleh intergal yang baru

$$\int \frac{e^{4x}}{\sqrt{1+e^{2x}}} dx = \int \frac{(u-1)^2}{\sqrt{u}} \frac{1}{2(u-1)} du = \int \frac{u-1}{2\sqrt{u}} du = \frac{1}{2} \int \frac{u}{\sqrt{u}} - \frac{1}{\sqrt{u}} du$$

Mohamad Ilham Dwi Firmansyah

$$= \frac{1}{2} \int u^{\frac{1}{2}} - u^{-\frac{1}{2}} du = \frac{1}{2} \left(\frac{2}{3} u \sqrt{u} - 2\sqrt{u} \right) + C = \frac{1}{3} u \sqrt{u} - \sqrt{u} + C$$
$$= \frac{1}{3} (1 + e^{2x}) \sqrt{1 + e^{2x}} - \sqrt{1 + e^{2x}} + C = \frac{(e^{2x} - 2) \sqrt{e^{2x} + 1}}{3} + C$$

8. (ETS 2022) Dapatkan $\frac{dy}{dx}$ dari $y = \sin^{-1}(3x - 1)$.

Pembahasan

Dengan menggunakan sifat invers trigonometri

$$y = \sin^{-1}(3x - 1) \Leftrightarrow \sin y = 3x - 1$$

turunkan kedua ruas terhadap x diperoleh

$$\frac{d}{dx} [\sin y] = \frac{d}{dx} [3x - 1]$$

$$\Leftrightarrow \cos y \frac{dy}{dx} = 3$$

$$\Leftrightarrow \frac{dy}{dx} = \frac{3}{\cos y} = 3 \sec y$$

Dengan menggunakan bantuan segitiga siku-siku dan teorema Pythagoras. Sebelumnya kita tahu bahwa $\sin y = 3x - 1$ dengan demikian diperoleh

dapat dilihat bahwa

$$\cos y = \sqrt{1 - (3x - 1)^2} \Rightarrow \sec y = \frac{1}{1 - (3x - 1)^2}.$$

Dengan demikian diperoleh

$$\frac{dy}{dx} = \frac{3}{\cos y} = 3\sec y = \frac{3}{\sqrt{1 - (3x - 1)^2}}$$

9. **(ETS 2022)** Diberikan $f(x) = 2x^7 + 4x^5 + 3x + 5$. Dapatkan $f^{-1}(x)$.

Mohamad Ilham Dwi Firmansyah

Pembahasan:

Misalkan $y = f^{-1}(x) \Rightarrow x = f(y)$, diperoleh

$$x = 2y^7 + 4y^5 + 3y + 5$$

turunkan semua ruas terhadap x

$$\frac{d}{dx}[x] = \frac{d}{dx} \left[2y^7 + 4y^5 + 3y + 5 \right]$$

$$\Leftrightarrow 1 = \frac{d}{dx} [2y^7] + \frac{d}{dx} [4y^5] + \frac{d}{dx} [3y] + \frac{d}{dx} [5]$$

$$\Leftrightarrow 1 = 14y^6 \frac{dy}{dx} + 20y^4 \frac{dy}{dx} + 3\frac{dy}{dx}$$

$$\Leftrightarrow 1 = \left(14y^6 + 20y^4 + 3 \right) \frac{dy}{dx}$$

$$\Leftrightarrow \frac{dy}{dx} = \frac{1}{14y^6 + 20y^4 + 3}$$

10. (ETS 2023) Hitung integral berikut:

$$\int e^{3x} \sqrt{1 + e^x} \, dx$$

Pembahasan

Misalkan $u=1+\mathrm{e}^x\Rightarrow \frac{du}{dx}=Ee^x\,dx\Rightarrow dx=\frac{1}{\mathrm{e}^x}\,du=\frac{1}{u-1}\,du$. Dan juga karena $u=1+\mathrm{e}^x\Rightarrow u-1=\mathrm{e}^x$. Sehingga diperoleh integral yang baru

$$\int e^{3x} \sqrt{1 + e^x} \, dx = (u - 1)^3 \sqrt{u} \frac{1}{u - 1} \, du = \int (u - 1)^2 \sqrt{u} \, du = \int (u^2 - 2u + 1) \sqrt{u} \, du$$

$$= \frac{2}{7} u^{\frac{7}{2}} - \frac{4}{5} u^{\frac{5}{2}} + \frac{2}{3} u^{\frac{3}{2}} + C = \frac{2}{7} (1 + e^x)^{\frac{7}{2}} - \frac{4}{5} (1 + e^x)^{\frac{5}{2}} + \frac{2}{3} (1 + e^x)^{\frac{3}{2}} + C$$

$$= \frac{(e^x + 1)^{\frac{3}{2}} (30e^{2x} - 24e^x + 16)}{105} + C$$

11. (ETS 2022) Dapatkan $\frac{dy}{dx}$ dari $y = \left(\tanh^{-1}\left(e^{x}\right)\right)^{2}$

Dengan memperhatikan sifat turunan

$$y = (f(x))^n \Rightarrow \frac{dy}{dx} = n(f(x))^{n-1}f'(x)$$

$$y = \tanh^{-1}(f(x)) \Rightarrow \frac{dy}{dx} = \frac{1}{1 - (f(x))^2} \frac{df(x)}{dx}$$

Sehingga didapat

$$\frac{dy}{dx} = 2 \tanh^{-1}(e^x) \left(\frac{1}{1 - e^{2x}}\right) e^x = \frac{2e^x \tanh^{-1}(e^x)}{1 - e^{2x}}$$

Alternatif lain: Dengan menggunakan aturan rantai.

Misalkan $u=\mathrm{e}^x\Rightarrow \frac{du}{dx}=\mathrm{e}^x$, kemudian misalkan $v=\tanh^{-1}(\mathrm{e}^x)=\tanh^{-1}u\Rightarrow \frac{dv}{du}=\frac{1}{1-u^2}$. Sehingga didapat $y=v^2\Rightarrow \frac{dy}{dv}=2v$. Sehingga diperoleh

$$\frac{dy}{dx} = \frac{dy}{dv} \cdot \frac{dv}{du} \cdot \frac{du}{dx}$$
$$= 2v \cdot \frac{1}{1 - u^2} \cdot e^x = \frac{2e^x \tanh^{-1}(e^x)}{1 - e^{2x}}$$

12. (**ETS 2022**) Dapatkan $\frac{dy}{dx}$ dari $y=x^2\cosh^2(\sqrt{x})$

Pembahasan :

Perhatikan bahwa

$$\frac{d}{dx}[u(x)v(x)] = \frac{d}{dx}[u(x)]v(x) + u(x)\frac{d}{dx}[v(x)]$$

misalkan $u(x) = x^2 \Rightarrow \frac{d}{dx}[u(x)] = 2x \text{ dan}$

$$v(x) = \cosh^2(\sqrt{x}) \Rightarrow \frac{d}{dx}[v(x)] = \frac{2\cosh(\sqrt{x})\sinh(\sqrt{x})}{2\sqrt{x}}$$

sehingga diperoleh

$$\frac{dy}{dx} = 2x \cdot \cosh^2(\sqrt{x}) + x^2 \cdot \frac{2\cosh(\sqrt{x})\sinh(\sqrt{x})}{2\sqrt{x}}$$
$$= \cosh(\sqrt{x})\left(\sinh(\sqrt{x})x\sqrt{x} + 2\cosh(\sqrt{x})x\right)$$
$$= x\cosh(\sqrt{x})\left(\sinh(\sqrt{x})\sqrt{x} + 2\cosh(\sqrt{x})\right)$$

13. **(ETS 2022)** Dapatkan $\frac{dy}{dx}$ dari

$$y = \left(\frac{x^2 + 3x + 1}{x^3 + 1}\right)^{\ln x}$$

Pembahasan:

Dengan mengubah kedua ruas menjadi bentuk logaritma natural didapat

$$\ln y = \ln \left(\frac{x^2 + 3x + 1}{x^3 + 1} \right)^{\ln x}$$

$$\ln y = \ln x \cdot \ln \left(\frac{x^2 + 3x + 1}{x^3 + 1} \right)$$

Kemudian turunan kedua ruas

$$\frac{1}{y}\frac{dy}{dx} = \frac{d}{dx}\left(\ln x \cdot \ln\left(\frac{x^2 + 3x + 1}{x^3 + 1}\right)\right)$$

$$\Leftrightarrow \frac{dy}{dx} = y\frac{d}{dx}\left(\ln x \cdot \ln\left(\frac{x^2 + 3x + 1}{x^3 + 1}\right)\right)$$

$$\Leftrightarrow \frac{dy}{dx} = \left(\frac{x^2 + 3x + 1}{x^3 + 1}\right)^{\ln x}\frac{d}{dx}\left(\ln x \cdot \ln\left(\frac{x^2 + 3x + 1}{x^3 + 1}\right)\right)$$

$$\Leftrightarrow \frac{dy}{dx} = \left(\frac{x^2 + 3x + 1}{x^3 + 1}\right)^{\ln x}\left(\frac{d}{dx}\left[\ln x\right] \cdot \ln\left(\frac{x^2 + 3x + 1}{x^3 + 1}\right) + \ln x \cdot \frac{d}{dx}\left[\ln\left(\frac{x^2 + 3x + 1}{x^3 + 1}\right)\right]\right)$$

$$\Leftrightarrow \frac{dy}{dx} = \left(\frac{x^2 + 3x + 1}{x^3 + 1}\right)^{\ln x}\left(\frac{1}{x} \cdot \ln\left(\frac{x^2 + 3x + 1}{x^3 + 1}\right) + \ln x \cdot \frac{x^3 + 1}{x^2 + 3x + 1}\frac{d}{dx}\left[\frac{x^2 + 3x + 1}{x^3 + 1}\right]\right)$$

$$\Leftrightarrow \frac{dy}{dx} = \left(\frac{x^2 + 3x + 1}{x^3 + 1}\right)^{\ln(x)}\left(\frac{\ln\left(\frac{x^2 + 3x + 1}{x^3 + 1}\right) + \left((2x + 3)(x^3 + 1) - 3x^2 \cdot (x^2 + 3x + 1)\right)\ln(x)}{(x^2 + 3x + 1)(x^3 + 1)}\right)$$

$$\Leftrightarrow \frac{dy}{dx} = \left(\frac{x^2 + 3x + 1}{x^3 + 1}\right)^{\ln(x)}\left(\frac{\ln\left(\frac{x^2 + 3x + 1}{x^3 + 1}\right) + \left((2x + 3)(x^3 + 1) - 3x^2 \cdot (x^2 + 3x + 1)\right)\ln(x)}{(x^2 + 3x + 1)(x^3 + 1)}\right)$$

$$\Leftrightarrow \frac{dy}{dx} = \left(\frac{x^2 + 3x + 1}{x^3 + 1}\right)^{\ln(x)}\left(\frac{\ln\left(\frac{x^2 + 3x + 1}{x^3 + 1}\right) + \left(\frac{x^3 + 1}{x^3 + 1}\right)\left(\frac{2x + 3}{x^3 + 1} - \frac{3x^2 \cdot (x^2 + 3x + 1)}{(x^3 + 1)^2}\right)\ln(x)}{x^2 + 3x + 1}\right)$$

14. (ETS 2022) Dapatkan $\frac{dy}{dx}$ dari $y=\tan^{-1}(x\mathrm{e}^{-3x})$

Pembahasan:

Dengan menggunakan aturan rantai. Misalkan

$$u = xe^{-3x} \Rightarrow \frac{du}{dx} = e^{-3x} - 3xe^{-3x} = -(3x - 1)e^{-3x}$$

sehingga $y = \tan^{-1} u \Rightarrow \frac{dy}{du} = \frac{1}{1 + u^2}$ dengan demikian diperoleh

$$\frac{dy}{dx} = \frac{dy}{du} \cdot \frac{du}{dx} = -\frac{(3x-1)e^{-3x}}{1+u^2} = -\frac{(3x-1)e^{3x}}{e^{6x}+x^2}$$

15. (ETS 2022) Dapatkan penyelesaian dari persamaan

$$\ln(e^{-x} - 1) = x$$

Pembahasan:

Perhatikan bahwa

$$\ln(e^{-x} - 1) = x$$

$$\Leftrightarrow e^{-x} - 1 = e^{x}$$

$$\Leftrightarrow \frac{1}{e^{x}} - 1 = e^{x}$$

Misalkann $A = e^x$ diperoleh

$$\frac{1}{A} - 1 = A \Rightarrow 1 - A = A^2 \Rightarrow A^2 + A - 1 = 0$$

dengan menggunakan rumus ABC diperoleh

$$A_{1,2} = \frac{-1 \pm \sqrt{1 - 4(1)(-1)}}{2} = \frac{-1 \pm \sqrt{5}}{2}$$

dipilih
$$A=\frac{-1+\sqrt{5}}{2}$$
 diperoleh $\mathrm{e}^x=\frac{-1+\sqrt{5}}{2}\Rightarrow x=\ln\left(\frac{-1+\sqrt{5}}{2}\right)$
16. (ETS 2020) Dapatkan $\frac{dy}{dx}$ dari $y=\tan^{-1}\left(\frac{1}{1+2x}\right)$
Pembahasan :

Pembahasan:

Diketahui bahwa

$$y = \tan^{-1}\left(\frac{1}{1+2x}\right)$$
$$\Leftrightarrow \left(\frac{1}{1+2x}\right) = \tan(y)$$

Turunkan masing-masing ruas diperoleh

$$\frac{d}{dx}\left[\frac{1}{1+2x}\right] = \frac{d}{dx}\left[\tan(y)\right]$$

$$\Leftrightarrow -\frac{2}{(1+2x)^2} = \sec^2(y)\frac{dy}{dx}$$

Dengan menggunakan identitas trigonometri $1 + \tan^2(a) = \sec^2(a)$ diperoleh

$$\sec^{2}(y) = 1 + \tan^{2}(y) = 1 + \left(\frac{1}{1+2x}\right)^{2} = \frac{4x^{2} + 4x + 2}{(2x+1)^{2}}$$

Sehingga diperoleh

$$\frac{dy}{dx} = -\frac{2}{(1+2x)^2 \sec^2(y)} = -\frac{2(1+2x)^2}{(1+2x)^2(4x^2+4x+2)} = -\frac{2}{4x^2+4x+2}$$

Alternatif lain:

Dengan langsung menggunakan formula

$$\frac{d}{dx}\left[\tan^{-1}(f(x))\right] = \frac{1}{1 + (f(x))^2} \frac{df(x)}{dx}$$

Sehingga diperoleh

$$\frac{d}{dx} \left[\tan^{-1} \left(\frac{1}{1+2x} \right) \right] = \left(\frac{1}{1+\left(\frac{1}{1+2x}\right)^2} \right) \frac{d}{dx} \left[\frac{1}{1+2x} \right]$$

$$= \left(\frac{(1+2x)^2}{1+(1+2x)^2} \right) \left(-\frac{2}{(1+2x)^2} \right)$$

$$= -\frac{2}{4x^2+4x+2}$$

17. (ETS 2020) Dapatkan penyelesaian untuk x pada persamaan $e^{-2x} - e^{-x} = 2$.

Pembahasan:

Misalkan $A = e^{-x}$, dengan demikian diperoleh persamaan kuadrat

$$A^2 - A = 2$$

$$A^{2} - A - 2 = 0 \implies (A+1)(A-2) = 0$$

didapat A=-1 atau A=2. Kembalikan ke pemisalan awal

$$A = e^{-x} = -1$$
 tidak ada solusi x

$$A = e^{-x} = 2 \implies x = \ln\left(\frac{1}{2}\right)$$

18. (**ETS 2020**) Diberikan fungsi $f(x) = \frac{x+1}{x-1}$ untuk x > 1. Dapatkan fungsi invers dari f(x) dan domain funsi inversnya.

Pembahasan:

Untuk mencari bentuk invers dari f(x), jadikan bentuk $y = \frac{x+1}{x-1}$ menjadi bentuk $x = \cdots$.

Perhatikan bahwa

$$y = \frac{x+1}{x-1}$$

$$\Leftrightarrow y(x-1) = (x+1)$$

$$\Leftrightarrow yx - y = x+1$$

$$\Leftrightarrow yx - x = y+1$$

$$\Leftrightarrow x(y-1) = y+1$$

$$\Leftrightarrow x = \frac{y+1}{x+1}$$

sehingga diperoleh

$$f^{-1}(x) = \frac{x+1}{x-1}$$

Secara umum dapat dirumuskan sebagai berikut

$$f(x) = \frac{ax+b}{cx+d}, \ x \neq -\frac{d}{c} \ \Rightarrow \ f^{-1}(x) = \frac{-dx+b}{cx-a}$$

Kemudian untuk menentukan domain dari invers suatu fungsi, perhatikan formula berikut

$$D_f = R_{f^{-1}} \; \mathsf{dan} \; D_{f^{-1}} = R_f$$

dimana D_f dan $D_{f^{-1}}$ menyatakan domain dari fungsi f dan f^{-1} . Sedangkan R_f dan $R_{f^{-1}}$ menyatakan range (daerah hasil) dari fungsi f dan f^{-1} . Perhatikan bahwa kurva dari f(x)

berdasarkan sketsa kurva diperoleh $R_f=\{y\in\mathbb{R}\mid y\neq 1\}$, dengan demikian didapat bahwa domain dari fungsi invers f(x) adalah

$$D_f = \{ x \in \mathbb{R} \mid x \neq 1 \}$$

19. Diketahui fungsi $y=\frac{x+11}{\sqrt{x^3-4}}$, dapatkan $\frac{dy}{dx}$ dengan dua metode.

Pembahasan:

• Cara 1: (Sifat turunan fungsi pecahan) Misalkan $u=x+11 \Rightarrow u'=1$ dan $v=\sqrt{x^3-4} \Rightarrow v'=\frac{3x^2}{2\sqrt{x^3-4}}$. Sehingga diperoleh

$$\frac{dy}{dx} = \frac{u'v - uv'}{(v)^2} = \frac{(1)(\sqrt{x^3 - 4}) - (x + 11)\left(\frac{3x^2}{2\sqrt{x^3 - 4}}\right)}{(\sqrt{x^3 - 4})^2}$$

$$= \frac{2(\sqrt{x^3 - 4})(\sqrt{x^3 - 4}) - (x + 11)(3x^2)}{2(x^3 - 4)\sqrt{x^3 - 4}}$$

$$= \frac{2(x^3 - 4) - 3x^2(x + 11)}{2(x^3 - 4)\sqrt{x^3 - 4}}$$

$$= -\left(\frac{x^3 + 33x^2 + 8}{2(x^3 - 4)\sqrt{x^3 - 4}}\right)$$

• Cara 2:(Differensial logaritmik) Perhatikan bahwa

$$y = \frac{x+11}{\sqrt{x^3 - 4}}$$

$$\Leftrightarrow \ln y = \ln\left(\frac{x+11}{\sqrt{x^3 - 4}}\right)$$

$$\Leftrightarrow \ln y = \ln(x+11) - \ln(x^3 - 4)^{\frac{1}{2}} = \ln(x+11) - \frac{1}{2}\ln(x^3 - 4)$$

$$\Leftrightarrow \frac{1}{y}\frac{dy}{x} = \frac{1}{x+11} - \frac{1}{2} \cdot \frac{3x^2}{x^3 - 4}$$

$$\Leftrightarrow \frac{dy}{dx} = y\left(\frac{1}{x+11} - \frac{3x^2}{x^3 - 4}\right) = \left(\frac{x+11}{\sqrt{x^3 - 4}}\right)\left(\frac{1}{x+11} - \frac{1}{2} \cdot \frac{3x^2}{x^3 - 4}\right)$$

$$\Leftrightarrow \frac{dy}{dx} = -\left(\frac{x^3 + 33x^2 + 8}{2(x^3 - 4)\sqrt{x^3 - 4}}\right)$$

20. Dapatkan $\frac{dy}{dx}$ untuk

(a)
$$y = x^{\cos(2x)}$$

(b)
$$y = \frac{e^x}{\ln x}$$

(c)
$$y = \exp(x \tan x)$$

(d)
$$y = \ln(1 - xe^{-x})$$

(e)
$$y = (x^2 - 3x)^{\ln x}$$

Pembahasan:

(a) Dengan mengambil bentuk logaritma natural dari masing-masing ruas diperoleh

$$\ln(y) = \ln(x^{\cos(2x)})$$

$$\Leftrightarrow \ln(y) = \cos(2x)\ln(x)$$

kemudian turunkan masing-masing ruas diperoleh

$$\frac{d}{dx}(\ln(y)) = \frac{d}{dx}(\cos(2x)\ln(x))$$

$$= \left(\frac{d}{dx}(\cos(2x))\right)\ln(x) + \cos(2x)\left(\frac{d}{dx}(\ln(x))\right)$$

$$\frac{1}{y}\frac{dy}{dx} = -2\sin(2x)\ln(x) + \cos(2x) \cdot \frac{1}{x}$$

$$\Leftrightarrow \frac{dy}{dx} = y\left(-2\sin(2x)\ln(x) + \cos(2x) \cdot \frac{1}{x}\right)$$

$$= x^{\cos(2x)}\left(-2\sin(2x)\ln(x) + \cos(2x) \cdot \frac{1}{x}\right)$$

$$= x^{\cos(2x)}\left(\frac{-2x\sin(2x)\ln(x) + \cos(2x)}{x}\right)$$

Jadi

$$\frac{dy}{dx} = x^{\cos(2x)} \left(\frac{-2x\sin(2x)\ln(x) + \cos(2x)}{x} \right)$$

(b) Dengan menggunakan sifat turunan fungsi percahan

$$f(x) = \frac{u(x)}{v(x)} \implies f'(x) = \frac{u'(x)v(x) - u(x)v'(x)}{[v(x)]^2}$$

Misalkan bahwa

$$u(x) = e^x \implies u'(x) = e^x$$

$$v(x) = \ln(x) \implies v'(x) = \frac{1}{x}$$

dengan demikian diperoleh

$$\frac{dy}{dx} = \frac{u'(x)v(x) - u(x)v'(x)}{[v(x)]^2} = \frac{e^x \ln(x) - e^x \left(\frac{1}{x}\right)}{[\ln(x)]^2} = \frac{e^x x \ln(x) - e^x}{\ln^2(x)}$$

Jadi

$$\frac{dy}{dx} = \frac{e^x(x\ln(x) - 1)}{\ln^2(x)}$$

(c) Perhatikan bahwa

$$y = \exp(x \tan x) = e^{x \tan(x)}$$

dengan menggunakan sifat turunan fungsi eksponen

$$y = e^{f(x)} \Rightarrow y' = f'(x)e^{f(x)}$$

sehingga diperoleh

$$y = e^{f(x)} \Rightarrow y' = f'(x)e^{f(x)}$$

$$\frac{dy}{dx} = \left(\frac{d}{dx}(x\tan(x))\right)e^{x\tan(x)}$$

$$= (\tan(x) + x\sec^2 x)e^{x\tan(x)}$$

(d) Dengan menggunakan sifat turunan fungsi logaritma natural

$$y = \ln(f(x)) \Rightarrow \frac{dy}{dx} = \frac{1}{f(x)} \cdot \frac{d(f(x))}{dx}$$

sehingga diperoleh

$$y = \ln(1 - xe^{-x}) \implies \frac{dy}{dx} = \frac{1}{1 - xe^{-x}} \frac{d}{dx} (1 - xe^{-x})$$
$$\frac{dy}{dx} = \frac{1}{1 - xe^{-x}} \frac{d}{dx} (1 - xe^{-x})$$
$$= \frac{-e^{-x} + xe^{-x}}{1 - xe^{-x}} = \frac{e^{-x}(x - 1)}{1 - xe^{-x}}$$

(e) Dengan mengambil bentuk logaritma dari masing-masing ruas diperoleh

$$\ln(y) = \ln((x^2 - 3x)^{\ln x})$$

$$\Leftrightarrow \ln(y) = (\ln(x)) \ln(x^2 - 3x)$$

Turunkan masing-masing ruas

$$\frac{d}{dx} [\ln(y)] = \frac{d}{dx} [(\ln(x)) \ln(x^2 - 3x)]
= \frac{d}{dx} [\ln(x)] \ln(x^2 - 3x) + \ln(x) \frac{d}{dx} [\ln(x^2 - 3x)]
= \frac{\ln(x^2 - 3x)}{x} + \frac{\ln(x)(2x - 3)}{x^2 - 3x}
\Leftrightarrow \frac{1}{y} \frac{dy}{dx} = \frac{(x^2 - 3x) \ln(x^2 - 3x) + x \ln(x)(2x - 3)}{x(x^2 - 3x)}
\Leftrightarrow \frac{dy}{dx} = y \left(\frac{(x^2 - 3x) \ln(x^2 - 3x) + x \ln(x)(2x - 3)}{x(x^2 - 3x)} \right)
= (x^2 - 3x)^{\ln x} \left(\frac{(x^2 - 3x) \ln(x^2 - 3x) + x \ln(x)(2x - 3)}{x(x^2 - 3x)} \right)$$

Jadi

$$\frac{dy}{dx} = (x^2 - 3x)^{\ln x} \left(\frac{(x^2 - 3x)\ln(x^2 - 3x) + x\ln(x)(2x - 3)}{x(x^2 - 3x)} \right)$$

21. Buktikan bahwa : $\sinh(\ln(x+\sqrt{x^2+1}))=x$.

Pembahasan:

Dengan merujuk definisi dari sinus hiperbolik dan menggunakan sifat logaritma $a^{a\log(b)}=b$ diperoleh bahwa

$$\sinh(\ln(x+\sqrt{x^2+1})) = \frac{e^{\ln(x+\sqrt{x^2+1})} - e^{-\ln(x+\sqrt{x^2+1})}}{2} = \frac{e^{\ln(x+\sqrt{x^2+1})} - e^{\ln(x+\sqrt{x^2+1})^{-1}}}{2}$$

$$= \frac{(x+\sqrt{x^2+1}) - (x+\sqrt{x^2+1})^{-1}}{2} = \frac{(x+\sqrt{x^2+1}) - \frac{1}{x+\sqrt{x^2+1}}}{2}$$

$$= \frac{(x+\sqrt{x^2+1}) - (x+\sqrt{x^2+1})^{-1}}{2} = \frac{(x+\sqrt{x^2+1}) - \frac{1}{x+\sqrt{x^2+1}} \cdot \frac{x-\sqrt{x^2+1}}{x-\sqrt{x^2+1}}}{2}$$

$$= \frac{(x+\sqrt{x^2+1}) - \frac{x-\sqrt{x^2+1}}{x^2-(\sqrt{x^2+1})^2}}{2} = \frac{(x+\sqrt{x^2+1}) - \frac{x-\sqrt{x^2+1}}{-1}}{2}$$

$$= \frac{(x+\sqrt{x^2+1}) + (x-\sqrt{x^2+1})}{2} = \frac{2x}{2} = x$$

(Terbukti.) Dalam hal ini juga menunjukkan bahwa

$$\sinh^{-1}(x) = \ln(x + \sqrt{x^2 + 1})$$

- 22. **(ETS 2017)**Diberikan fungsi $f(x) = x^2 4x 6$ dengan $x \ge 2$.
 - (a) Dapatkan $f^{-1}(x)$.
 - (b) Dapatkan domain $f^{-1}(x)$.

Pembahasan:

(a) Perhatikan sketsa grafik $f(x) = x^2 - 4x - 6$

Berdasarkan gambar diatas dapat dilihat bahwa f(x) tidak punya invers pada domain $(-\infty,+\infty)$ karena f(x) bukan fungsi yang bijektif(korespondensi satu-satu) pada domain tersebut. Karena pada soal domain f(x) dibatasi menjadi $[2,+\infty)$ maka berdasarkan gambar diatas dapat dilihat fungsi f(x) merupakan fungsi yang bijektif (korespondensi satu-satu) maka f(x) mempunyai invers pada domain tersebut. Misalkan $y=x^2-4x-6$ Dengan menukar variabel x dan y kemudian menentukan penyelesaiannya, diperoleh

$$x = y^{2} - 4y - 6$$

$$\Rightarrow x + 10 = y^{2} - 4y + 4$$

$$\Rightarrow x + 10 = (y - 2)^{2}$$

$$\Rightarrow \pm \sqrt{x + 10} = y - 2$$

$$\Rightarrow y = 2 \pm \sqrt{x + 10}$$

Berdasarkan sifat

$$\boxed{D_f = R_{f^{-1}} \text{ dan } D_{f^{-1}} = R_f}$$

sehingga haruslah

$$f^{-1}(x) = 2 + \sqrt{x+10}$$

(b) Dapat dengan jelas dilihat pada gambar, bahwa untuk $x\geq 2$ didapat $R_f=\{y\in\mathbb{R}\mid y\geq 10\}$ sehingga $D_{f^{-1}}=R_f$ jadi

$$D_{f^{-1}} = \{x \in \mathbb{R} \mid x \ge -10\} = [-10, +\infty).$$

23. Hitung integral-integral tak tentu yang diberikan

(a)
$$\int \pi^{\sin x} \cos x \, dx$$

(b)
$$\int \frac{\mathrm{e}^x}{9 + \mathrm{e}^x} \, dx$$

(c)
$$\int \frac{e^{\sqrt{x}}}{\sqrt{x}} dx$$

(d)
$$\int \frac{e^{2x}}{e^x + 3} dx$$

Pembahasan:

(a) Dengan menggunakan teknik integral subtitusi.

Misalkan $u = \sin(x) \Rightarrow \frac{du}{dx} = \cos(x) \Rightarrow du = \cos(x)dx$. Sehingga diperoleh

$$\int \pi^{\sin x} \cos x \, dx = \int \pi^u \, du = \int e^{\ln(\pi^u)} \, du = \int e^{u \ln(\pi)} \, du.$$

Perhatikan bahwa

$$\int e^{ax+b} dx = \frac{e^{ax+b}}{a} + C$$

dengan demikian diperoleh

$$\int \pi^{\sin x} \cos x \, dx = \int e^{u \ln(\pi)} \, du = \frac{e^{u \ln(\pi)}}{\ln(\pi)} + C$$

jadi

$$\int \pi^{\sin x} \cos x \, dx = \frac{e^{\sin(x)\ln(\pi)}}{\ln(\pi)} + C$$

(b) Misalkan $u = e^x \Rightarrow \frac{du}{dx} = e^x \Rightarrow du = e^x dx$. Sehingga diperoleh

$$\int \frac{\mathrm{e}^x}{9 + \mathrm{e}^x} \, dx = \int \frac{1}{9 + u} \, du$$

Perhatikan bahwa formula

$$\int \frac{1}{ax+b} \, dx = \frac{1}{a} \ln|ax+b| + C$$

dengan demikian diperoleh

$$\int \frac{e^x}{9 + e^x} dx = \int \frac{1}{9 + u} du = \ln|u + 9| + C$$

jadi

$$\int \frac{e^x}{9 + e^x} \, dx = \ln|e^x + 9| + C$$

(c) Dengan menggunakan teknik integral subtitusi.

Misalkan $u = \sqrt{x} \implies \frac{du}{dx} = \frac{1}{2\sqrt{x}} \implies 2du = \frac{1}{\sqrt{x}}dx$. Sehingga diperoleh

$$\int \frac{e^{\sqrt{x}}}{\sqrt{x}} dx = \int e^u 2du = 2 \int e^u du = 2e^u + C$$

jadi

$$\int \frac{e^{\sqrt{x}}}{\sqrt{x}} \, dx = 2e^{\sqrt{x}} + C$$

 $\int \frac{\mathrm{e}^{\sqrt{x}}}{\sqrt{x}} \, dx = 2\mathrm{e}^{\sqrt{x}} + C$ $\Rightarrow \frac{du}{dx} = \mathrm{e}^x \ \Rightarrow \ du = \mathrm{e}^x \, dx \ \Rightarrow \ \frac{1}{u} \, du = dx. \text{ Sehingga diperoleh}$

$$\int \frac{e^{2x}}{e^x + 3} dx = \int \frac{u^2}{u + 3} \cdot \frac{1}{u} du = \int \frac{u}{u + 3} du = \int 1 - \frac{3}{u + 3} du$$
$$= \int 1 du - \int \frac{3}{u + 3} du = u - 3 \ln|u + 3| + C$$
$$= e^x - 3 \ln|e^x + 3| + C$$

24. Dengan differensial implisit, dapatkan $\frac{dy}{dx}$ dari fungsi berikut.

$$y + \ln(xy) = \frac{1}{2}x^2$$

Pembahasan:

Diketahui bahwa

$$y + \ln(xy) = \frac{1}{2}x^2$$

Dengan menggunakan differensial implisit diperoleh

$$\frac{d}{dx} [y + \ln(xy)] = \frac{d}{dx} \left[\frac{1}{2} x^2 \right]$$

$$\Leftrightarrow \frac{d}{dx} [y] + \frac{d}{dx} [\ln(xy)] = \frac{d}{dx} \left[\frac{1}{2} x^2 \right]$$

$$\Leftrightarrow \frac{dy}{dx} + \frac{1}{xy} \left(y + x \frac{dy}{dx} \right) = x$$

$$\Leftrightarrow \frac{dy}{dx} + \frac{1}{x} + \frac{1}{y} \frac{dy}{dx} = x$$

$$\Leftrightarrow \frac{dy}{dx} \left(1 + \frac{1}{y} \right) = x - \frac{1}{x} = \frac{x^2 - 1}{x}$$

$$\Leftrightarrow \frac{dy}{dx} = \left(\frac{x^2 - 1}{x} \right) \left(\frac{y^2 + 1}{y} \right)$$

Jadi turunana implisit $\frac{dy}{dx}$ dari bentuk pada soal adalah

$$\frac{dy}{dx} = \left(\frac{x^2 - 1}{x}\right) \left(\frac{y^2 + 1}{y}\right) = \frac{y(x^2 - 1)}{x(1 + y)}$$

25. Dapatkan $\frac{dy}{dx}$ dari

$$y = \tan^{-1}\left(\frac{x}{1-x^2}\right)$$

Pembahasan:

Perhatikan bahwa

$$\frac{d}{dx} \left[\tan^{-1} u \right] = \frac{1}{u^2 + 1} \cdot \frac{du}{dx}$$

Sehingga diperoleh

$$\frac{dy}{dx} = \frac{d}{dx} \left[\tan^{-1} \left(\frac{x}{1 - x^2} \right) \right] = \frac{1}{\left(\frac{x}{1 - x^2} \right)^2 + 1} \cdot \frac{d}{dx} \left[\frac{x}{1 - x^2} \right]$$

$$= \frac{(1-x^2)^2}{x^2 + (1-x^2)^2} \cdot \frac{(1)(1-x^2) - x(-2x)}{(1-x^2)^2} = \frac{1+x^2}{x^2 + (1-x^2)^2} = \frac{1+x^2}{x^4 - x^2 + 1}$$

26. Dapatkan $\frac{dy}{dx}$ dari $y=x^{\sin x}$

Pembahasan:

Perhatikan bahwa

$$y = x^{\sin x}$$

$$\Leftrightarrow \ln y = \ln(x^{\sin x})$$

$$\Leftrightarrow \ln y = \sin x \cdot \ln(x)$$

$$\Leftrightarrow \frac{d}{dx} [\ln(y)] = \frac{d}{dx} [\sin x \cdot \ln(x)]$$

$$\Leftrightarrow \frac{1}{y} \cdot \frac{dy}{dx} = \cos x \cdot \ln(x) + \frac{\sin x}{x}$$

$$\Leftrightarrow \frac{dy}{dx} = y \left(\cos x \cdot \ln(x) + \frac{\sin x}{x}\right)$$

$$\Leftrightarrow \frac{dy}{dx} = x^{\sin x} \left(\frac{x \cos x \ln x + \sin x}{x}\right) = x^{\sin x - 1} (x \cos x \ln x + \sin x)$$

27. Hitunglah

$$\int \frac{e^{5/x^2}}{x^3} \, dx$$

Pembahasan:

Dengan integral subtitusi, misalkan $u = \frac{5}{x^2} = 5x^{-2}$ diperleh

$$du = -\frac{10}{x^3} dx \Leftrightarrow -\frac{1}{10} du = \frac{1}{x^3} dx$$

Sehingga diperoleh

$$\int \frac{e^{5/x^2}}{x^3} dx = -\frac{1}{10} \int e^u du = -\frac{e^u}{10} + C = -\frac{e^{5/x^2}}{10} + C.$$

28. Gambarkanlah grafik dari

$$f(x) = \ln\left(\frac{1}{4x^2 - 12x + 9}\right)$$

Pembahasan:

Perhatikan bahwa

$$f(x) = \ln\left(\frac{1}{4x^2 - 12x + 9}\right) = \ln(1) - \ln(4x^2 - 12x + 9) = -\ln(2x - 3)^2 = -2\ln(2x - 3)$$

Perhatikan untuk fungsi dasar $f(x) = \ln x$

selanjutnya grafik $y=-\ln x$ merupakan pencerminan grafik $y=\ln x$ terhadap sumbu x

selanjutnya grafik $y=-\ln(2x)$ berpotongan dengan sumbu x di $x=\frac{1}{2}$ sedangkan untuk $y=-\ln x$ di x=1.

selanjutnya grafik $y=-\ln(2x-3)$ merupakan pergeseran grafik $y=-\ln(2x)$ ke kanan sebesar 3 satuan

selanjutnya grafik $y=-2\ln(2x-3)$ merupakan pembesaran dengan skala 2 dari grafik $y=-\ln(2x-3)$

2. Teknik Integrasi

1. (ETS 2022) Selesaikan integral berikut

$$\int x \tan^2 x \, dx$$

Pembahasan:

Dengan menggunakan metode integral parsial.

Mislakan

$$u = x \Rightarrow \frac{du}{dx} = 1 \Rightarrow du = dx$$

$$dv = \tan^2 x \, dx \Rightarrow v = \int \tan^2 x \, dx$$

Kita tahu bahwa $1 + \tan^2 x = \sec^2 x \Rightarrow \tan^2 x = \sec^2 x - 1$ diperoleh

$$v = \int \tan^2 x \, dx = \int \sec^2 x - 1 \, dx = \tan x - x$$

Sehingga dengan rumus integral parsial

$$\int u \, dv = uv - \int v \, du$$

$$\int \tan^2 x \, dx = x(\tan x - x) - \int \tan x - x \, dx = x(\tan x - x) - \int \tan x \, dx + \int x \, dx$$
$$= x(\tan x - x) - (-\ln|\cos x|) + \frac{1}{2}x^2 + C = \ln(|\cos(x)|) + x \tan(x) - \frac{x^2}{2}$$

2. (ETS 2023) Hitung integral berikut:

$$\int \frac{x}{(1-x)^{\frac{1}{4}} + 1} \, dx$$

Pembahasan:

Misalkan $u^4=1-x\Rightarrow x=1-u^4$, dan juga $u^4=1-x\Rightarrow 4u^3\frac{du}{dx}=-1\Rightarrow -4u^3\,du=dx$. Sehingga diperoleh integral baru yaitu

$$\int \frac{x}{(1-x)^{\frac{1}{4}}+1} dx = \int \frac{1-u^4}{u+1} (-4u^3) du = \int \frac{4u^3(u^4-1)}{u+1} du$$

$$= \int \frac{4u^3(u^2+1)(u^2-1)}{u+1} du = \int \frac{4u^3(u^2+1)(u-1)(u+1)}{u+1} du = \int 4u^3(u^2+1)(u-1) du$$

$$= \int 4u^6 - 4u^5 + 4u^4 - 4u^3 du = \frac{4}{7}u^7 - \frac{2}{3}u^6 + \frac{4}{5}u^5 - u^4 + C$$
$$= \frac{4}{7}(1-x)^{\frac{7}{4}} - \frac{2}{3}(1-x)^{\frac{3}{2}} + \frac{4}{5}(1-x)^{\frac{5}{4}} - (1-x) + C$$

Jadi diperoleh

$$\int \frac{x}{(1-x)^{\frac{1}{4}}+1} dx = \frac{4}{7}(1-x)^{\frac{7}{4}} - \frac{2}{3}(1-x)^{\frac{3}{2}} + \frac{4}{5}(1-x)^{\frac{5}{4}} - (1-x) + C$$

3. (ETS 2022) Hitung integral berikut

$$\int_{1}^{e} x^{2} \ln x \, dx$$

Pembahasan:

Dengan menggunakan integral parsial:

Misalkan $u=\ln x\Rightarrow \frac{du}{dx}=\frac{1}{x}\Rightarrow du=\frac{1}{x}dx$ dan $dv=x^2\,dx\Rightarrow v=\int x^2\,dx=\frac{1}{3}x^3$. Sehingga didapat

$$\int x^2 \ln x \, dx = \frac{x^3 \ln x}{3} - \int \frac{1}{3} x^3 \cdot \frac{1}{x} \, dx = \frac{x^3 \ln x}{3} - \frac{1}{3} \int x^2 \, dx = \frac{x^3 \ln x}{3} - \frac{1}{9} x^3 + C$$
 Dengan demikian diperoleh

$$\int_{1}^{e} x^{2} \ln x \, dx = \frac{x^{3} \ln x}{3} - \frac{1}{9} x^{3} + C \Big|_{1}^{e} = \left(\frac{(e)^{3} \ln e}{3} - \frac{1}{9} (e)^{3} \right) - \left(\frac{x^{3} \ln 1}{3} - \frac{1}{9} (1)^{3} \right) = \frac{2e^{3} + 1}{9}$$

4. (ETS 2022) Hitung integral berikut

$$\int \frac{3}{x + \sqrt{x+2}} \, dx$$

Pembahasan:

Misalkan $u=\sqrt{x+2} \Rightarrow u^2=x+2 \Rightarrow 2u\frac{du}{dx}=1 \Rightarrow 2u\,du=dx$. Perhatikan bahwa karena $u^2=x+2\Rightarrow x=u^2-2$. Sehingga diperoleh integral yang baru yaitu

$$\int \frac{3}{x + \sqrt{x + 2}} \, dx = \int \frac{6u}{u^2 - 2 + u} \, du = \int \frac{6u}{u^2 + u - 2} \, du = \int \frac{6u}{(u - 1)(u + 2)} \, du$$

Dengan menggunakan metode pecahan parsial

$$\frac{6u}{(u-1)(u+2)} = \frac{A}{u-1} + \frac{B}{u+2} = \frac{A(u+2) + B(u-1)}{(u-1)(u+2)}$$

diperoleh persamaan 6u = A(u+2) + B(u-1)

• misal
$$u = 1 \Rightarrow 6(1) = A(1+2) + B(1-1) \Rightarrow 6 = 3A \Rightarrow A = 2$$

• misal
$$u = -2 \Rightarrow 6(-2) = A(2 + (-2)) + B((-2) - 1) \Rightarrow -12 = -3B \Rightarrow B = 4$$

Sehingga diperoleh

$$\int \frac{6u}{(u-1)(u+2)} \, du = \int \frac{2}{u-1} + \frac{4}{u+2} \, du = 2\ln|u-1| + 4\ln|u+2| + C$$

Dengan demikian diperoleh

$$\int \frac{3}{x + \sqrt{x+2}} \, dx = 2\ln|\sqrt{x+2} - 1| + 4\ln|\sqrt{x+2} + 2| + C$$

5. (ETS 2022) Hitung integral berikut:

$$\int \frac{x^3}{x^2 - 3x + 2} dx$$

Pembahasan:

Dengan menggunakan pembagian susun

$$\begin{array}{r}
x+3 \\
x^2 - 3x + 2 \overline{\smash)} \quad x^3 \\
\underline{-x^3 + 3x^2 - 2x} \\
3x^2 - 2x \\
\underline{-3x^2 + 9x - 6} \\
7x - 6
\end{array}$$

Sehingga dapat dituliskan

$$\frac{x^3}{x^2 - 3x + 2} = (x+3) + \frac{7x - 6}{x^2 - 3x + 2}$$

Dengan metode pecahan parsial

$$\frac{7x-6}{x^2-3x+2} = \frac{7x-6}{(x-1)(x-2)} = \frac{A}{x-1} + \frac{B}{x-2} = \frac{A(x-2) + B(x-1)}{(x-1)(x-2)}$$

diperoleh

$$7x - 6 = A(x - 2) + B(x - 1)$$

• untuk $x=1\Rightarrow 7(1)-6=A(1-2)+B(1-1)\Rightarrow 1=A(-1)\Rightarrow A=-1$

Mohamad Ilham Dwi Firmansyah

$$\bullet \ \ \mathrm{untuk} \ x=2 \Rightarrow 7(2)-6 = A(2-2) + B(2-1) \Rightarrow B=8$$

Dengan demikian diperoleh

$$\frac{x^3}{x^2 - 3x + 2} = (x+3) + \frac{7x - 6}{x^2 - 3x + 2} = x + 3 + \frac{8}{x - 2} - \frac{1}{x - 1}$$

sehingga didapat

$$\int \frac{x^3}{x^2 - 3x + 2} dx = \int x + 3 + \frac{8}{x - 2} - \frac{1}{x - 1} dx$$
$$= \frac{1}{2}x^2 + 3x + 8\ln|x - 2| - \ln|x - 1| + C$$

6. (ETS 2022) Hitung integral berikut:

$$\int \sin^{1/3} t \cos^3 t \, dt$$

Pembahasan:

Perhatikan bahwa

$$\int \sin^{1/3} t \cos^3 t \, dt = \int \sin^{1/3} t \cos^2 t \cos t \, dt = \int \sin^{1/3} t (1 - \sin^2 t) \cos t \, dt$$

Misalkan $u = \sin t \Rightarrow du = \cos t \, dt$ sehingga diperoleh

$$\int \sin^{1/3}t (1-\sin^2t)\cos t\,dt = \int u^{1/3} (1-u^2)\,du = \int u^{1/3} - u^{7/3}\,du = \frac{3}{4}u^{4/3} - \frac{3}{10}u^{10/3} + C$$

kembali ke pemisalan diperoleh

$$\int \sin^{1/3} t \cos^3 t \, dt = \frac{3}{4} (\sin t)^{4/3} - \frac{3}{10} (\sin t)^{10/3} + C = -\frac{6 \sin^{\frac{10}{3}} (x) - 15 \sin^{\frac{4}{3}} (x)}{20} + C$$
$$= -\frac{3 \sin^{\frac{4}{3}} (x) \left(2 \sin^2 (x) - 5\right)}{20} + C = \frac{3 \sin^{\frac{4}{3}} (x) \left(\cos (2x) + 4\right)}{20} + C$$

7. (ETS 2016) Selesaikan integral berikut

$$\int \frac{2x-3}{x^2-8x+16} \, dx$$

Pembahasan:

• Alternatif 1:

Perhatikan bahwa

$$\int \frac{2x-3}{x^2-8x+16} \, dx = \int \frac{2x-3}{(x-4)^2} \, dx$$

Dengan menggunakanteknik integral subtitusi. Misalkan $u=x-4 \Rightarrow du=dx$, sehingga

$$\int \frac{2x-3}{(x-4)^2} dx = \int \frac{2(u+4)-3}{u^2} du = \int \frac{2u+5}{u^2} du = \int \frac{2}{u} du + \int \frac{5}{u^2} du$$

$$\Leftrightarrow \int \frac{2x-3}{(x-4)^2} dx = \int \frac{2}{u} du + \int \frac{5}{u^2} du = 2\ln|u| - \frac{5}{u} + C$$

kembalikan ke pemisalan u=x-4 diperoleh bahwa

$$\int \frac{2x-3}{x^2-8x+16} \, dx = 2\ln|x-4| - \frac{5}{x-4} + C$$

Alternatif 2:

Dengan menggunakan metode integral pecahan parsial, perhatikan bahwa

$$\frac{2x-3}{x^2-8x+16} = \frac{2x-3}{(x-4)^2} = \frac{A}{x-4} + \frac{B}{(x-4)^2} = \frac{A(x-4)+B}{(x-4)^2} = \frac{Ax+B-4A}{(x-4)^2}$$

diperoleh persamaan 2x-3=Ax+B-4A. Jelas bahwa jika A=2 maka B-4A=-3 \Rightarrow B=4A-3=4(2)-3=5, sehingga diperoleh

$$\frac{2x-3}{x^2-8x+16} = \frac{2x-3}{(x-4)^2} = \frac{2}{x-4} + \frac{5}{(x-4)^2}.$$

Dengan demikian diperoleh bahwa

$$\int \frac{2x-3}{x^2 - 8x + 16} dx = \int \frac{2x-3}{(x-4)^2} = \frac{2}{x-4} + \frac{5}{(x-4)^2} dx$$
$$= \int \frac{2}{x-4} dx + \int \frac{5}{(x-4)^2} dx$$
$$= 2\ln|x-4| - \frac{5}{x-4} + C$$

8. Nilai dari

$$\int \frac{1-3x}{2x^2+7x+3} \, dx = \cdots$$

Pembahasan:

Dengan teknik integral pecahan parsial diperoleh

$$\int \frac{1-3x}{2x^2+7x+3} \, dx = \int \frac{1-3x}{(2x+1)(x+3)} \, dx$$

Mohamad Ilham Dwi Firmansyah

perhatikan bahwa

$$\frac{1-3x}{(2x+1)(x+3)} = \frac{A}{(2x+1)} + \frac{B}{(x+3)} = \frac{A(x+3) + B(2x+1)}{(2x+1)(x+3)}$$

Sehingga diperoleh (1-3x) = A(x+3) + B(2x+1)

• untuk
$$x = -3$$
 dipeorleh $1 - 3(-3) = B(2(-3) + 1) \Rightarrow B = -2$

• untuk
$$x=-\frac{1}{2}$$
 dipeorleh $1-3\left(-\frac{1}{2}\right)=A(-\frac{1}{2}+3)\Rightarrow A=1$

Dengan demikian dapat dituliskan

$$\int \frac{1-3x}{2x^2+7x+3} dx = \int \frac{1}{2x+1} - \frac{2}{x+3} dx = \ln|2x+1| - 2\ln|x+3| + C$$
$$= \ln\left|\frac{2x+1}{(x+3)^2}\right| + C$$

9. Selesaikan

$$\int \frac{4(x^2 + x + 1)}{x^3 + 2x^2} \, dx = \cdots$$

Pembahasan:

Dengan teknik integral pecahan parsial diperoleh

$$\frac{4(x^2+x+1)}{x^3+2x^2} = \frac{4(x^2+x+1)}{x^2(x+2)} = \frac{A}{x} + \frac{B}{x^2} + \frac{C}{x+2} = \frac{Ax(x+2) + B(x+2) + Cx^2}{x^2(x+2)}.$$

Sehingga diperoleh $4(x^2 + x + 1) = Ax(x + 2) + B(x + 2) + Cx^2$

- $\bullet \ \, \text{untuk} \,\, x=0 \,\, \text{diperoleh} \,\, 4=B(0+2) \Rightarrow B=2$
- \bullet untuk x=-2 diperoleh $4((-2)^2+(-2)+4)=C(-2)^2\Rightarrow C=3$
- untuk x=1 diperoleh $4(1^2+1+1)=A(1)(1+2)+B(1+2)+C(1)^2=3A+2(1+2)+3(1^2) \Rightarrow A=1$

Dengan demikian diperoleh

$$\int \frac{4(x^2+x+1)}{x^3+2x^2} \, dx = \int \frac{1}{x} + \frac{2}{x^2} + \frac{3}{x+2} \, dx = \ln|x| - \frac{2}{x} + 3\ln|x+2| + C$$

10. Selesaikan

$$\int (x^2 - 1)\cos x \, dx = \cdots$$

Pembahasan:

Dengan menggunakan metode integral parsial.

Mohamad Ilham Dwi Firmansyah

$$\int u \, dv = uv - \int v \, du$$

Misalkan $u=(x^2-1)\Rightarrow du=2x\,dx$ dan $dv=\cos x\,dx\Rightarrow v=\int\cos x\,dx=\sin x.$ Sehingga diperoleh

$$\int (x^2 - 1)\cos x \, dx = (x^2 - 1)\sin x - 2 \int x(\sin x) \, dx$$

Kemudian dengan cara yang sama menggunakan integral parsial untuk menyelesaikan

$$\int x \sin x \, dx$$

Misalkan $a=x\Rightarrow da=dx$ dan $db=\sin x\,dx\Rightarrow b=\int\sin x\,dx=-\cos x.$ Sehingga didapat

$$\int x \sin x \, dx = ab - \int b \, da$$

$$= -x\cos x - \int -\cos x \, dx = -x\cos x + \sin x + C$$

Dengan demikian diperoleh

$$\int (x^2 - 1)\cos x \, dx = (x^2 - 1)\sin x - 2 \int x(\sin x) \, dx$$
$$= (x^2 - 1)\sin x - 2 \left[-x\cos x + \sin x \right] + C$$
$$= (x^2 - 3)\sin x + 2x\cos x + C$$

11. Selesaiakan

$$\int e^x \sin(2x) \, dx = \cdots$$

Pembahasan:

Dengan teknik integral parsial.

Misalkan $u=\mathrm{e}^x\Rightarrow du=\mathrm{e}^x\,dx$ dan $dv=\sin(2x)\,dx\Rightarrow v=\int\sin(2x)\,dx=-\frac{1}{2}\cos(2x).$ Sehingga diperoleh

$$\int e^x \sin(2x) \, dx = -\frac{e^x \cos(2x)}{2} + \frac{1}{2} \int e^x \cos(2x) \, dx$$

Kemudian dengan cara menggunakan integral parsial untuk menyelesaikan $\int \mathrm{e}^x \cos(2x) \, dx$.

Diperoleh

$$\int e^x \cos(2x) dx = \frac{e^x \sin(2x)}{2} - \frac{1}{2} \int e^x \sin(2x) dx$$

Dengan demikian diperoleh

$$\int e^{x} \sin(2x) dx = -\frac{e^{x} \cos(2x)}{2} + \frac{1}{2} \int e^{x} \cos(2x) dx$$

$$= -\frac{e^{x} \cos(2x)}{2} + \frac{1}{2} \left[\frac{e^{x} \sin(2x)}{2} - \frac{1}{2} \int e^{x} \sin(2x) dx \right]$$

$$= -\frac{e^{x} \cos(2x)}{2} + \frac{e^{x} \sin(2x)}{4} - \frac{1}{4} \int e^{x} \sin(2x) dx$$

$$\frac{5}{4} \int e^{x} \sin(2x) dx = -\frac{e^{x} \cos(2x)}{2} + \frac{e^{x} \sin(2x)}{4}$$

$$\int e^{x} \sin(2x) dx = \frac{e^{x} (-2 \cos(2x) + \sin(2x))}{5} + C$$

12. Dapatkan:

$$\int t^7 \sin(2t^4) \, dt$$

Pembahasan:

Integral pada soal dapat dituliskan

$$\int t^7 \sin(2t^4) \, dt = \int (t^4)(t^3) \sin(2t^4) \, dt$$

Misalkan $w=2t^4\Rightarrow dw=8t^3\,dt\Rightarrow \frac{1}{8}\,dw=t^3\,dt$. Sehingga diperoleh integral yang baru

$$\int t^7 \sin(2t^4) dt = \frac{1}{16} \int w \sin(w) dw$$

Gunakan integral parsial, misalkan $u=w\Rightarrow du=dw$ dan $dv=\sin w\,dw\Rightarrow v=\int\sin w\,dw=-\cos w.$ Sehingga diperoleh

$$\frac{1}{16} \int w \sin(w) \, dw = \frac{1}{16} \left[-w \cos w - \int -\cos w \, dw \right] = \frac{1}{16} \left[-w \cos w + \sin w \right] + C$$

dengan demikian didapat

$$\int t^7 \sin(2t^4) dt = \frac{\sin(2t^4) - 2t^4 \cos(2t^4)}{16} + C$$

13. Selesaikan

$$\int x^2 \sqrt{1 - x^2} \, dx = \cdots$$

Pembahasan:

Misalkan $x = \sin t \Rightarrow dx = \cos t \, dt$. Sehingga diperoleh

$$\int x^2 \sqrt{1 - x^2} \, dx = \int \sin^2 t \sqrt{1 - \sin^2 t} \cos t \, dt = \int \sin^2 t \cos^2 t \, dt$$

$$\int \left(\frac{1 - \cos 2t}{2}\right) \left(\frac{1 + \cos 2t}{2}\right) \, dt = \int \frac{1 - \cos^2 2t}{4} \, dt = \frac{1}{4} \int \sin^2 2t \, dt$$

misalkan $u=2t\Rightarrow \frac{1}{2}du=dt$ sehingga diperoleh

$$\frac{1}{4} \int \sin^2 2t \, dt = \frac{1}{8} \int \sin^2 u \, du$$

Perhatikan bahwa

$$\int \sin^{n} x = -\frac{1}{n} \sin^{n-1} x \cos x + \frac{n-1}{n} \int \sin^{n-2} x \, dx$$

Dengan demikian diperoleh

$$\int x^2 \sqrt{1 - x^2} \, dx = \frac{1}{8} \int \sin^2 u \, du = \frac{1}{8} \left[-\frac{1}{2} \sin u \cos u + \frac{1}{2} \int \, du \right]$$
$$= -\frac{1}{16} \sin u \cos u + \frac{u}{8} = -\frac{\sin(2t) \cos(2t) + 2t}{2t}$$
$$= \frac{\arcsin(x)}{8} - \frac{x (1 - x^2)^{\frac{3}{2}}}{4} + \frac{x \sqrt{1 - x^2}}{8} + C$$

14. Selesaiakan

$$\int \frac{x^3}{\sqrt{4-x^2}} \, dx = \cdots$$

Pembahasan:

Misalkan $x = 2\sin t \Rightarrow dx = 2\cos t \, dt$, didapat

$$\int \frac{x^3}{\sqrt{4-x^2}} \, dx = \int \frac{\sin^3 t}{\sqrt{4-4\sin^2 t}} \cdot 2\cos t \, dt = \int \sin^3 t \, dt$$

Perhatikan bahwa

$$\int \sin^3 t \, dt = \int \sin^2 t \cdot \sin t \, dt = \int (1 - \cos^2 t) \cdot \sin t \, dt$$

Misalkan $u = \cos t \Rightarrow du = -\sin t \, dt$ sehingga didapat

$$\int (1 - \cos^2 t) \cdot \sin t \, dt = -\int (1 - u^2) \, du = \int u^2 - 1 \, du = \frac{1}{3} u^3 - \frac{1}{2} u^2 + C$$

$$= \frac{1}{3} \cos^3 t - \frac{1}{2} \cos^2 t + C$$

$$= \frac{1}{3} \cos^3 \left(\arcsin\left(\frac{x}{2}\right) \right) - \frac{1}{2} \cos^2 \left(\arcsin\left(\frac{x}{2}\right) \right) + C$$

atau dalam bentuk lain karena $\frac{x}{2} = \sin t$ maka $\cos t = \frac{\sqrt{4-x^2}}{2}$ sehingga

$$\int (1 - \cos^2 t) \cdot \sin t \, dt = \frac{1}{6} (4 - x^2)^{3/2} - \frac{1}{4} (4 - x^2) + C$$

15. Selesaikan

$$\int \frac{1}{(1-x^2)^{3/2}} \, dx = \cdots$$

Pembahasan:

Dengan subtitusi trigonometri, misalkan $x = \sin t$ diperoleh $dx = \cos t \, dt$. Sehingga

$$\int \frac{1}{(1-x^2)^{3/2}} dx = \int \frac{1}{(1-\sin^2 t)^{3/2}} \cdot \cos t \, dt = \int \frac{1}{\cos^2 t} \, dt = \int \sec^2 t \, dt = \tan t + C$$

Sehingga dengan bantuan segitiga siku-siku, karena $\sin t = x$ maka $\cos t = \sqrt{1-x^2}$ oleh karena itu

$$\tan t = \frac{\sin t}{\cos t} = \frac{x}{\sqrt{1 - x^2}}$$

jadi diperoleh

$$\int \frac{1}{(1-x^2)^{3/2}} \, dx = \frac{x}{\sqrt{1-x^2}} + c$$

16. Selesaikan

$$\int \cos(\ln x) \, dx = \cdots$$

Pembahasan:

Dengan teknik integral parsial. Misalkan $u=\cos(\ln x)\Rightarrow du=-\frac{\sin(\ln x)}{x}\,dx$ dan $dv=dx\Rightarrow v=x$. Diperoleh

$$\int \cos(\ln x) \, dx = x \cos(\ln x) + \int x \cdot \frac{\sin(\ln x)}{x} \, dx = x \sin(\ln x) + \int \sin(\ln x) \, dx$$

Dengan cara yang sama menggunakan integral parsial didapat bahwa

$$\int \sin(\ln x) \, dx = x \cos(\ln x) - \int \cos(\ln x) \, dx$$

Sehingga diperoleh

$$\int \cos(\ln x) \, dx = x \sin(\ln x) + \int \sin(\ln x) \, dx$$

$$= x \sin(\ln x) + x \cos(\ln x) - \int \cos(\ln x) \, dx$$

$$2 \int \cos(\ln x) \, dx = x \sin(\ln x) + x \cos(\ln x)$$

$$\int \cos(\ln x) \, dx = \frac{x(\sin(\ln x) + \cos(\ln x))}{2} + C$$

17. Selesaikan integral berikut : $\int t \ln t \, dt$.

Pembahasan:

Dengan teknik integral parsial. Misalkan $u=\ln t \Rightarrow du = \frac{1}{t}dt \ \mathrm{dan} \ dv = tdt \Rightarrow v = \int t^2 \, dt = \frac{1}{2}t^2.$ Sehingga didapat $\int t \ln t \, dt = \frac{t^2 \ln t}{2} - \frac{1}{2} \int t^2 \cdot \frac{1}{t} \, dt = \frac{t^2 \ln t}{2} - \frac{1}{2} \int t \, dt = \frac{t^2 \ln t}{2} - \frac{t^2}{4} + C$

$$\int t \ln t \, dt = \frac{t^2 \ln t}{2} - \frac{1}{2} \int t^2 \cdot \frac{1}{t} \, dt = \frac{t^2 \ln t}{2} - \frac{1}{2} \int t \, dt = \frac{t^2 \ln t}{2} - \frac{t^2}{4} + C$$

$$= \frac{t^2 (2 \ln t - 1)}{4} + C$$

18. Tuliskan bentuk dekomposisi pecahan parsial dari : $\frac{x^5 + 2x^2 + 1}{x^3 + x}$

Pemabahsan:

Perhatikan karena derajat pembilang lebih besar dari derajat penyebut, dengan pembagian susun diperoleh

Sehingga diperoleh

$$\frac{x^5 + 2x^2 + 1}{x^3 + x} = x^2 - 1 + \frac{2x^2 + x + 1}{x^3 + x}$$

Kemudian perhatikan

$$\frac{2x^2 + x + 1}{x^3 + x} = \frac{2x^2x + 1}{x(x^2 + 1)} = \frac{A}{x} + \frac{Bx + C}{x^2 + 1} = \frac{A(x^2 + 1) + x(Bx + C)}{x(x^2 + 1)}$$

Sehingga $2x^2 + x + 1 = A(x^2 + 1) + x(Bx + C)$

- untuk x = 0 diperoleh $2(0)^2 + 0 + 1 = A(0^2 + 1) + 0(B(0) + C) \Rightarrow A = 1$
- unruk x=1 diperoleh $2(1)^2+1+1=A(1^2+1)+(1)(B(1)+C) \Rightarrow 4=2+B+C \Rightarrow B+C=2$
- untuk x=-1 diperooleh $2(-1)^2+(-1)+1=A((-1)^2+1)+(-1)(B(-1)+C)\Rightarrow B-C=0$

Karena B+C=2 dan B-C=0 diperoleh B=1 dan C=1. Dengan demikian didapat

$$\frac{2x^2 + x + 1}{x^3 + x} = x^2 - 1 + \frac{1}{x} + \frac{x + 1}{x^2 + 1},$$
entegral berikut :

19. (ETS 2022) Selesaikan integral berikut :

$$\int \frac{\cos x}{\sin^2 x + 4\sin x - 5} \, dx$$

Pembahasan:

Misalkan $u = \sin x \Rightarrow du = \cos x \, dx$, sehingga diperoleh

$$\int \frac{\cos x}{\sin^2 x + 4\sin x - 5} \, dx = \int \frac{1}{u^2 + 4u - 5} \, du = \int \frac{1}{(u - 1)(u + 5)} \, du$$

Dengan menggunakan metode integral pecahan parsial.

$$\frac{1}{(u-1)(u+5)} = \frac{A}{u-1} + \frac{B}{u+5} = \frac{A(u+5) + B(u-1)}{(u-1)(u+5)}$$

Perhatikan bahwa 1 = A(u-1) + B(u+5)

- untuk u=1 diperoleh $1=A(6)\Rightarrow A=\frac{1}{6}$
- untuk u=-5 diperoleh $1=B(-6)\Rightarrow B=-\frac{1}{6}$

dengan demikian diperoleh

$$\int \frac{1}{(u-1)(u+5)} du = \int \frac{1}{6(u-1)} - \frac{1}{6(u+5)} du = \frac{\ln|u-1| - \ln|u+5|}{6} + C$$

Sehinggan diperoleh

$$\int \frac{\cos x}{\sin^2 x + 4\sin x - 5} dx = \frac{\ln|\sin x - 1| - \ln|\sin x + 5|}{6} + C$$
$$= \frac{1}{6} \ln \left| \frac{\sin x - 1}{\sin x + 5} \right| + C$$

20. Dapatkan:

$$\int \frac{x^4 + 2}{x^3 + 9x} \, dx$$

Pembahasan:

Dengan menggunakan pembagian susun

$$\begin{array}{c|c}
x \\
x^{3} + 9x \\
\hline
 x^{4} + 2 \\
-x^{4} - 9x^{2} \\
\hline
 -9x^{2} + 2
\end{array}$$

sehingga integral pada soal dapat dituliskan

$$\int \frac{x^4 + 2}{x^3 + 9x} \, dx = \int x + \frac{2 - 9x^2}{x^3 + 9x} \, dx$$

Dengan metode pecahan parsial diperoleh

$$\frac{2-9x^2}{x^3+9x} = \frac{2-9x^2}{x(x^2+9)} = \frac{A}{x} + \frac{Bx+C}{x^2+9} = \frac{A(x^2+9)+(Bx+C)x}{x(x^2+9)}$$

didapat

$$2 - 9x^2 = A(x^2 + 9) + (Bx + C)x$$

- misalkan $x = 0 \Rightarrow 2 9(0)^2 = A((0)^2 + 9) + (B(0) + C)(0) \Rightarrow A = \frac{2}{9}$
- $\bullet \ \ \text{misalkan} \ x = 1 \Rightarrow 2 9(1)^2 = \left(\frac{2}{9}\right)((1)^2 + 9) + (B(1) + C)(1) \Rightarrow B + C = -\frac{83}{9}$
- misalkan $x = -1 \Rightarrow 2 9(-1)^2 = \left(\frac{2}{9}\right)((-1)^2 + 9) + (B(-1) + C)(-1) \Rightarrow -B + C = \frac{83}{9}$

Dari $B+C=-\frac{83}{9}$ dan $-B+C=\frac{83}{9}$, diperoleh $B=-\frac{83}{9}$ dan C=0. Sehingga integral

$$\int \frac{x^4 + 2}{x^3 + 9x} dx = \int x + \frac{2}{9x} - \frac{83x}{9(x^2 + 9)}, dx = \frac{1}{2}x^2 + \frac{2}{9}\ln|x| - \frac{83}{18}\ln|x^2 + 9| + C$$

21. Selesaikan integral berikut :

$$\int \frac{1}{t^2 \sqrt{4 - 9t^2}} \, dt$$

Misalkan $t = \frac{2}{3}\sin\theta \Rightarrow dt = \frac{2}{3}\cos\theta \,d\theta$. Diperoleh

$$\int \frac{1}{t^2 \sqrt{4 - 9t^2}} dt = \int \frac{1}{\left(\frac{4}{9}\right) \sin^2 \theta \sqrt{4 - 9\left(\frac{4}{9}\sin^2 \theta\right)}} \frac{2}{3} \cos \theta d\theta$$

$$=\int \frac{1}{\left(\frac{4}{9}\right)\sin^2\theta \cdot 2\cos\theta} \frac{2}{3}\cos\theta \, d\theta = \frac{3}{4}\int \csc^2\theta \, d\theta = -\frac{3}{4}\cot\theta + C$$
 Karena $\sin\theta = \frac{3t}{2}$ maka $\cos\theta = \frac{\sqrt{4-9t^2}}{2}$ dengan demikian
$$\cot\theta = \frac{\cos\theta}{\sin\theta} = \frac{\frac{2}{3t}}{\frac{3t}{3}} = \frac{\sqrt{4-9t^2}}{3t}$$

$$\cot \theta = \frac{\cos \theta}{\sin \theta} = \frac{\sqrt{4 - 9t^2}}{\frac{3t}{2}} = \frac{\sqrt{4 - 9t^2}}{3t}$$

Sehingga diperoleh

$$\int \frac{1}{t^2 \sqrt{4 - 9t^2}} dt = -\frac{3}{4} \left(\frac{\sqrt{4 - 9t^2}}{3t} \right) + C = -\frac{\sqrt{4 - 9t^2}}{4t} + C$$

22. Selesaikan

$$\int e^x \sin x \, dx$$

Pembahasan:

Gunakan cara integrasi parsial $\int u \, dv = uv - \int v \, du$

 $\mathsf{Misalkan}: u = \mathrm{e}^x \, \mathsf{dan} \, dv = \sin x \, dx$

$$du = e^x dx \operatorname{dan} v = \int \sin x dx = -\cos x$$

Maka,

$$\int e^x \sin x \, dx = -e^x \cos x + \int e^x \cos x \, dx$$

Mohamad Ilham Dwi Firmansyah

Dengan cara yang sama dengan menggunakan metode integral parsial

$$\int e^x \cos x \, dx = e^x \sin x - \int e^x \sin x \, dx$$

Sehingga diperoleh

$$\int e^x \sin x \, dx = -e^x \cos x + e^x \sin x - \int e^x \sin x \, dx$$

$$\Leftrightarrow 2 \int e^x \sin x \, dx = -e \cos x + e^x \sin x$$

$$\Leftrightarrow \int e^x \sin x \, dx = \frac{-e^x \cos x + e^x \sin x}{2} + C$$

23. (ETS 2018) Hitunglah nilai integral dibawah ini

$$\int_0^{\frac{\pi}{2}} \cos^3 x \sin^3 x \, dx$$

Pembahasan :

nbahasan :
$$\int_0^{\frac{\pi}{2}} \cos^3 x \sin^3 x \, dx = \int_0^{\frac{\pi}{2}} \cos x \cos^2 x \sin^3 x \, dx = \int_0^{\frac{\pi}{2}} \cos x (1 - \sin^2 x) \sin^3 x \, dx$$

Misalkan $u=\sin x => du=\cos x\, dx$ sehingga dengan menggunakan metode substitusi

$$\int_0^{\frac{\pi}{2}} \cos^3 x \sin^3 x \, dx = \int_0^{\frac{\pi}{2}} (1 - u^2) u^3 \, du = \int_0^{\frac{\pi}{2}} u^3 - u^5 \, du = \left(\frac{1}{4}u^4 - \frac{1}{6}u^6\right) \Big|_0^{\frac{\pi}{2}}$$

Sehingga

$$\int_0^{\frac{\pi}{2}} \cos^3 x \sin^3 x \, dx = \left(\frac{1}{4} \sin^4 x - \frac{1}{6} \sin^6 x \right) \Big|_0^{\frac{\pi}{2}}$$

$$= \left(\frac{1}{4} \sin^4 \frac{\pi}{2} - \frac{1}{6} \sin^6 \frac{\pi}{2} \right) - \left(\frac{1}{4} \sin^4 0 - \frac{1}{6} \sin^6 0 \right)$$

$$= \left(\frac{1}{4} - \frac{1}{6} \right) - (0 - 0)$$

$$= \frac{1}{12}$$

24. (ETS 2020) Selesaikan integral tak tentu

$$\int \frac{2x+3}{(x-1)(x+2)(x^2+1)} \, dx$$

Pembahasan:

Dengan teknik pecahan parsial perhatikan bahwa

$$\frac{2x+3}{(x-1)(x+2)(x^2+1)} = \frac{A}{x-1} + \frac{B}{x+2} + \frac{Cx+D}{x^2+1}$$
$$= \frac{A(x+2)(x^2+1) + B(x-1)(x^2+1) + (x-1)(x+2)(Cx+D)}{(x-1)(x+2)(x^2+1)}$$

Diperoleh persamaan

$$2x + 3 = A(x+2)(x^2+1) + B(x-1)(x^2+1) + (x-1)(x+2)(Cx+D)$$

selanjutnya dicari nilai A, B, C, dan D. Perhatikan bahwa

• Untuk x = 1 diperoleh

$$2(1) + 3 = A(1+2)(1^2+1) \implies A = \frac{5}{6}$$

• Untuk
$$x=-2$$
 diperoleh
$$2(-2)+3=B(-2-1)((-2)^2+1) \ \Rightarrow \ B=\frac{1}{15}$$

• Untuk x = 0 diperoleh

$$2(0) + 3 = A(0+2)(0^{2}+1) + B(0-1)(0^{2}+1) + (0-1)(0+2)(C(0)+D)$$

$$\Leftrightarrow 3 = 2A - B - 2D$$

$$\Leftrightarrow 3 = 2\left(\frac{5}{6}\right) - \left(\frac{1}{15}\right) - 2D$$

$$\Leftrightarrow D = -\frac{7}{10}$$

• Untuk x = 2 diperoleh

$$2(2) + 3 = A(2+2)(2^{2}+1) + B(2-1)(2^{2}+1) + (2-1)(2+2)(C(2)+D)$$

$$\Leftrightarrow 7 = 20A + 5B + 4(2C+D)$$

$$\Leftrightarrow 7 = 20\left(\frac{5}{6}\right) + 5\left(\frac{1}{15}\right) + 4\left(2C + \left(\frac{-7}{10}\right)\right)$$

$$\Leftrightarrow C = -\frac{9}{10}$$

Sehingga diperoleh

$$\frac{2x+3}{(x-1)(x+2)(x^2+1)} = \frac{5}{6(x-1)} + \frac{1}{15(x+2)} + \frac{-9x-7}{10(x^2+1)}$$

Oleh karena itu didapat

$$\int \frac{2x+3}{(x-1)(x+2)(x^2+1)} dx = \int \frac{5}{6(x-1)} + \frac{1}{15(x+2)} + \frac{-9x-7}{10(x^2+1)} dx$$

$$= \int \frac{5}{6(x-1)} dx + \int \frac{1}{15(x+2)} dx - \int \frac{9x}{10(x^2+1)} dx - \int \frac{7}{10(x^2+1)} dx$$

$$= \frac{5}{6} \ln|x-1| + \frac{1}{15} \ln|x+2| - \frac{9}{20} \ln|x^2+1| - \frac{7}{10} \tan^{-1} x + C$$

$$= -\frac{-4 \ln(|x+2|) + 27 \ln(x^2+1) + 42 \arctan(x) - 50 \ln(|x-1|)}{60} + C$$

25. (ETS 2020) Selesaikan bentuk integral tak tentu

$$\int (x - A) \ln(Bx) \, dx$$

untuk sembarang A dan B bilangan real positif.

Pembahasan:

Dengan menggunakan teknik integral parsial. Misalkan $u=\ln(Bx) \Rightarrow \frac{du}{dx}=\frac{1}{x} \Rightarrow du=\frac{1}{x}dx$ dan $dv=(x-A)\,dx \Rightarrow v=\int x-A\,dx=\frac{1}{2}x^2-Ax$. Sehingga diperoleh

$$\int (x - A) \ln(Bx) dx = \ln(Bx) \left(\frac{1}{2}x^2 - Ax\right) - \int \left(\frac{1}{2}x^2 - Ax\right) \frac{1}{x} dx$$
$$= \ln(Bx) \left(\frac{1}{2}x^2 - Ax\right) - \int \left(\frac{1}{2}x - A\right) dx$$
$$= \ln(Bx) \left(\frac{1}{2}x^2 - Ax\right) - \frac{1}{4}x^2 + Ax + C$$

Jadi

$$\int (x - A) \ln(Bx) \, dx = \ln(Bx) \left(\frac{1}{2}x^2 - Ax\right) - \frac{1}{4}x^2 + Ax + C$$

26. (ETS 2019) Selesaikan integral dibawah ini

$$\int \frac{2x^2 - 2x - 1}{x^3 + x^2} \, dx$$

Pembahasan:

Dengan teknik pecahan parsial perhatikan bahwa

$$\frac{2x^2 - 2x - 1}{x^3 + x^2} = \frac{2x^2 - 2x - 1}{x^2(x+1)} = \frac{A}{x} + \frac{B}{x^2} + \frac{C}{x+1}$$

$$= \frac{A(x^2)(x+1) + B(x)(x+1) + C(x)(x^2)}{x^3(x+1)}$$

$$= \frac{A(x)(x+1) + B(x+1) + C(x^2)}{x^2(x+1)}$$

dengan demikian diperoleh

$$2x^{2} - 2x - 1 = A(x)(x+1) + B(x+1) + C(x^{2})$$

Langkah selanjutnya adalah mencari nilai A, B, dan C dengan mensubtitusi beberapa nilai x tertentu yang **mempermudah perhitungan**.

• Untuk x = 0 diperoleh

$$2(0)^{2} - 2(0) - 1 = A(0)(0+1) + B(0+1) + C((0)^{2})$$

$$\Leftrightarrow B = -1$$

$$\Leftrightarrow B=-1$$
 • Untuk $x=-1$ diperoleh
$$2(-1)^2-2(-1)-1=A(-1)(-1+1)+B(-1+1)+C((-1)^2)$$

$$\Leftrightarrow C=3$$

• Untuk x = 1 diperoleh

$$2(1)^{2} - 2(1) - 1 = A(1)(1+1) + B(1+1) + C((1)^{2})$$
$$2(1)^{2} - 2(1) - 1 = A(1)(1+1) + (-1)(1+1) + (3)(1)^{2}$$
$$\Leftrightarrow A = -1$$

Dengan demikian diperoleh bahwa

$$\frac{2x^2 - 2x - 1}{x^3 + x^2} = -\frac{1}{x} - \frac{1}{x^2} + \frac{3}{x+1}$$

sehingga

$$\int \frac{2x^2 - 2x - 1}{x^3 + x^2} dx = \int -\frac{1}{x} - \frac{1}{x^2} + \frac{3}{x + 1} dx$$

$$= -\int \frac{1}{x} dx - \int \frac{1}{x^2} dx + 3 \int \frac{1}{x + 1} dx$$

$$= -\ln|x| + \frac{1}{x} + 3\ln|x + 1| + C$$

$$= \ln\left|\frac{(x + 1)^3}{x}\right| + \frac{1}{x} + C$$

Jadi

$$\int \frac{2x^2 - 2x - 1}{x^3 + x^2} dx = \ln \left| \frac{(x+1)^3}{x} \right| + \frac{1}{x} + C$$

27. Selesaikan

$$\int \frac{x}{x^2 + 6x \pm 3} \, dx = \cdots$$

Pembahasan:

Perhatikan bahwa

$$\int \frac{x}{x^2 + 6x + 3} \, dx = \cdots$$
Finally, the problem of the second series of the problem of the

Sekarang selesaikan $\int \frac{x+3}{x^2+6x+3} dx$

Misalkan $u = x^2 + 6x + 3 \Rightarrow du = 2(x+3) \Rightarrow \frac{1}{2}du = dx$. Diperoleh

$$\int \frac{x+3}{x^2+6x+3} dx = \frac{1}{2} \int \frac{1}{u} du = \frac{1}{2} \ln|u| + C = \frac{1}{2} \ln|x^2+6x+3| + C.$$

Selanjutnya selesaikan $\int \frac{1}{x^2 + 6x + 3} dx$

Dengan menggunakan teknik integral parsial

$$\int \frac{1}{x^2 + 6x + 3} \, dx = \int \frac{1}{(x - (-3 + \sqrt{6}))(x - (-3 - \sqrt{6}))} \, dx \text{(Gunakan Rumus ABC)}$$

$$= \int \frac{1}{2\sqrt{6}(x - (-3 + \sqrt{6}))} - \frac{1}{2\sqrt{6}(x - (-3 - \sqrt{6}))} \, dx$$

$$= \frac{1}{2\sqrt{6}} \ln|x - (-3 + \sqrt{6})| - \frac{1}{2\sqrt{6}} \ln|x - (-3 - \sqrt{6})| + C$$
$$= \frac{1}{2\sqrt{6}} \ln|x - \sqrt{6} + 3| - \frac{1}{2\sqrt{6}} \ln|x + 3 + \sqrt{6}| + C$$

Sehingga diperoleh

$$\int \frac{x}{x^2 + 6x + 3} dx = \frac{1}{2} \ln|x^2 + 6x + 3| - \frac{3}{2\sqrt{6}} \ln|x - \sqrt{6} + 3| + \frac{3}{2\sqrt{6}} \ln|x + 3 + \sqrt{6}| + C$$

$$= \frac{2 \ln(|x^2 + 6x + 3|) + \sqrt{6} \left(\ln(|x + \sqrt{6} + 3|) - \ln(|x - \sqrt{6} + 3|)\right)}{4} + C$$

28. Selesaikan

$$\int \frac{1}{\sin x + \cos x} \, dx = \cdots$$

Pembahasan:

Misalkan

$$u = \tan\left(\frac{x}{2}\right) \Rightarrow du = \frac{1}{2}\sec^2\left(\frac{x}{2}\right)dx \Rightarrow dx = 2\cos^2\left(\frac{x}{2}\right)du$$

Dengan menggunakan bantuan segitiga siku-siku diperoleh

$$\cos\left(\frac{x}{2}\right) = \frac{1}{\sqrt{u^2 + 1}}, \quad \operatorname{dan} \quad \sin\left(\frac{x}{2}\right) = \frac{u}{\sqrt{u^2 + 1}}$$

akibatnya

$$dx = 2\cos^2 x \, du = 2\left(\frac{1}{\sqrt{u^2 + 1}}\right)^2 \, du = \frac{2}{u^2 + 1} \, du$$

$$\sin x = 2\sin x \cos x = 2\left(\frac{u}{\sqrt{u^2 + 1}}\right)\left(\frac{1}{\sqrt{u^2 + 1}}\right) = \frac{2u}{u^2 + 1}$$

$$\cos x = 2\cos^2\left(\frac{x}{2}\right) - 1 = 2\left(\frac{1}{\sqrt{u^2 + 1}}\right)^2 - 1 = \frac{1 - u^2}{u^2 + 1}$$

Maka dengan menggunakan metode subtitusi

$$\int \frac{1}{\sin x + \cos x} dx = \int \frac{1}{\frac{2u}{u^2 + 1} + \frac{1 - u^2}{u^2 + 1}} \cdot \frac{2}{u^2 + 1} du = \int \frac{2}{2u - u^2 + 1} du =$$
$$= -2 \int \frac{1}{u^2 - 2u - 1} du$$

Dengan menggunakan pecahan parsial diperoleh

$$\int \frac{1}{u^2 - 2u - 1} du = \int \frac{1}{(u - \sqrt{2} - 1)(u + \sqrt{2} - 1)} du$$

$$= \int \frac{1}{\sqrt[3]{4}(u - \sqrt{2} - 1)} - \frac{1}{\sqrt[3]{4}(u + \sqrt{2} - 1)} du$$

$$= \frac{1}{\sqrt[3]{4}} \left(\int \frac{1}{u - \sqrt{2} - 1} du - \int \frac{1}{u + \sqrt{2} - 1} du \right)$$

$$= \frac{1}{\sqrt[3]{4}} \left(\ln|u - \sqrt{2} - 1| - \ln|u + \sqrt{2} - 1| \right) + C$$

Sehingga dipeorleh

dipeorleh
$$\int \frac{1}{\sin x + \cos x} dx = -\frac{2}{\sqrt[3]{4}} \left(\ln|u - \sqrt{2} - 1| - \ln|u + \sqrt{2} - 1| \right) + C$$

$$= \frac{\ln\left(\left| \tan\left(\frac{x}{2}\right) + \sqrt{2} - 1 \right| \right) - \ln\left(\left| \tan\left(\frac{x}{2}\right) - \sqrt{2} - 1 \right| \right)}{\sqrt{2}} + C$$

29. **(ETS 2016)**Dengan menggunakan subtitusi $u = 2 \tan x$, selesaikan integral berikut :

$$\int \frac{1}{4\sin^2 x + \cos^2 x} \, dx$$

Pembahasan:

Misalkan
$$u=2\tan x \Rightarrow du=2\sec^2 x\,dx \Rightarrow \tan x=\frac{u}{2} \Rightarrow dx=\frac{1}{2}\cos^2 x\,du$$

Dengan menggunakan bantuan segitiga siku-siku

diperoleh

$$\sin x = \frac{u}{\sqrt{u^2 + 4}}, \quad \cos x = \frac{2}{\sqrt{u^2 + 4}}$$

dengan demikian

$$\sin^2 x = \left(\frac{u}{\sqrt{u^2 + 4}}\right) \left(\frac{u}{\sqrt{u^2 + 4}}\right) = \frac{u^2}{u^2 + 4}$$
$$\cos^2 x = \left(\frac{2}{u^2 + 4}\right) \left(\frac{2}{u^2 + 4}\right) = \frac{4}{u^2 + 4}$$

Sehingga subitusikan ke integral pada soal

$$\int \frac{1}{4\sin^2 x + \cos^2 x} \, dx = \int \frac{1}{4\left(\frac{u^2}{u^2 + 4}\right) + \left(\frac{4}{u^2 + 4}\right)} \frac{1}{2} \frac{4}{u^2 + 4} \, du = \frac{1}{2} \int \frac{\frac{4}{u^2 + 4}}{4\left(\frac{u^2 + 1}{u^2 + 4}\right)} \, du$$

$$\Rightarrow \frac{1}{2} \int \frac{4}{u^2 + 4} \times \frac{u^2 + 4}{4(u^2 + 1)} \, du = \frac{1}{2} \int \frac{1}{u^2 + 1} \, du = \frac{1}{2} \arctan u + C = \frac{1}{2} = \arctan (2 \tan x) + C$$

$$\text{Jadi}$$

$$\int \frac{1}{4 \sin^2 x + \cos^2 x} \, dx = \arctan (2 \tan x) + C$$

30. Selesaikan integral dibawah ini

$$\int \frac{1}{\sin x + \cos x + 1} \, dx$$

Pembahasan:

Misalkan

$$u = \tan\left(\frac{x}{2}\right) \Rightarrow du = \frac{1}{2}\sec^2\left(\frac{x}{2}\right) dx \Rightarrow dx = 2\cos^2\left(\frac{x}{2}\right) du$$

Dengan menggunakan bantuan segitiga siku-siku diperoleh

$$\cos\left(\frac{x}{2}\right) = \frac{1}{\sqrt{u^2 + 1}}, \quad \operatorname{dan} \quad \sin\left(\frac{x}{2}\right) = \frac{u}{\sqrt{u^2 + 1}}$$

akibatnya

$$dx = 2\cos^2 x \, du = 2\left(\frac{1}{\sqrt{u^2 + 1}}\right)^2 \, du = \frac{2}{u^2 + 1} \, du$$

$$\sin x = 2\sin x \cos x = 2\left(\frac{u}{\sqrt{u^2 + 1}}\right)\left(\frac{1}{\sqrt{u^2 + 1}}\right) = \frac{2u}{u^2 + 1}$$

$$\cos x = 2\cos^2\left(\frac{x}{2}\right) - 1 = 2\left(\frac{1}{\sqrt{u^2 + 1}}\right)^2 - 1 = \frac{1 - u^2}{u^2 + 1}$$

Maka dengan menggunakan metode subtitusi

$$\begin{aligned} &\int \frac{1}{\sin x + \cos x + 1} dx = \int \frac{1}{\left(\frac{2u}{u^2 + 1}\right) + \left(\frac{1 - u^2}{u^2 + 1}\right) + 1} \frac{2}{u^2 + 1} du \\ &= \int \frac{u^2 + 1}{2u + 1 - u^2 + u^2 + 1} \times \frac{2}{u^2 + 1} du = \int \frac{2}{2u + 2} du = \int \frac{1}{u + 1} du = \ln|u + 1| + C \\ &\Leftrightarrow \int \frac{1}{\sin x + \cos x + 1} dx = \ln|u + 1| + C = \ln\left|\tan\left(\frac{x}{2}\right) + 1\right| + C \end{aligned}$$

Jadi

$$\int \frac{1}{\sin x + \cos x + 1} dx = \ln \left| \tan \left(\frac{x}{2} \right) + 1 \right| + C$$

Selesaikan

$$\int \frac{\cos x}{\sin^2 x - 2\sin x - 8} \, dx = \cdots$$

Pembahasan:

Misalkan $u = \sin x \Rightarrow du = \cos x \, dx$, sehingga diperoleh

$$\int \frac{\cos x}{\sin^2 x - 2\sin x - 8} \, dx = \int \frac{1}{u^2 - 2u - 8} \, du = \int \frac{1}{(u+2)(u-4)} \, du$$

Dengan menggunakan metode integral pecahan parsial.

$$\frac{1}{(u+2)(u-4)} = \frac{A}{u+2} + \frac{B}{u-4} = \frac{A(u-4) + B(u+2)}{(u+2)(u-4)}$$

 ${\sf Perhatikan\ bahwa\ } 1 = A(u-4) + B(u+2)$

- untuk u=-2 diperoleh $1=A(-6)\Rightarrow A=-\frac{1}{6}$
- untuk u=4 diperoleh $1=B(6)\Rightarrow B=\frac{1}{6}$

dengan demikian diperoleh

$$\int \frac{1}{(u+2)(u-4)} du = \int -\frac{1}{6(u+2)} + \frac{1}{6(u-4)} du = \frac{-\ln|u+2| + \ln|u-4|}{6} + C$$

Sehinggan diperoleh

$$\int \frac{\cos x}{\sin^2 x - 2\sin x - 8} \, dx = \frac{-\ln|\sin x + 2| + \ln|\sin x - 4|}{6} + C$$

$$= \frac{1}{6} \ln \left| \frac{\sin x - 4}{\sin x + 2} \right| + C$$

32. Hitunglah

$$\int \frac{\mathrm{e}^x}{\mathrm{e}^{2x} + 2\mathrm{e}^x + 1} \, dx = \dots$$

Pembahasan:

Misalkan $u = e^x \Rightarrow du = e^x dx$, diperoleh

$$\int \frac{\mathrm{e}^x}{\mathrm{e}^{2x} + 2\mathrm{e}^x + 1} \, dx = \int \frac{1}{u^2 + 2u + 1} \, du = \int \frac{1}{(u+1)^2} \, du = -\frac{1}{u+2} + C$$

kembalikan kepemisalan awal didapat

$$\int \frac{e^x}{e^{2x} + 2e^x + 1} dx = -\frac{1}{e^x + 1} + C$$

33. Hitunglah

$$\int t \tan^{-1} t \, dt = \cdots$$

Pembahasan:

Dengan menggunakan integral parsial. Misalkan $u=\tan^{-1}x \Rightarrow du=\frac{1}{1+t^2}dt$ dan

$$\begin{split} dv &= t dt \Rightarrow v = \int t \, dt = \frac{1}{2} t^2. \text{ Diperoleh} \\ &\int t \tan^{-1} t \, dt = \frac{t^2 \tan^{-1} t}{2} - \frac{1}{2} \int \frac{t^2}{1+t^2} \, dt = \frac{t^2 \tan^{-1} t}{2} - \frac{1}{2} \int 1 - \frac{1}{1+t^2} \, dt \\ &= \frac{t^2 \tan^{-1} t}{2} - \frac{1}{2} \left(t - \tan^{-1} t \right) + C = \frac{(t^2+1) \tan^{-1} t}{2} - \frac{t}{2} + C \end{split}$$

34. Hitunglah

$$\int t^2 \ln t \, dt = \cdots$$

Pembahasan:

Dengan teknik integral parsial. Misalkan $u=\ln t \Rightarrow du=\frac{1}{t}dt$ dan $dv=t^2dt \Rightarrow v=\int t^2\,dt=\frac{1}{3}t^3$. Sehingga didapat

$$\int t^2 \ln t \, dt = \frac{t^3 \ln t}{3} - \frac{1}{3} \int t^3 \cdot \frac{1}{t} \, dt = \frac{t^3 \ln t}{3} - \frac{1}{3} \int t^2 \, dt = \frac{t^3 \ln t}{3} - \frac{t^3}{9} + C$$

$$= \frac{t^3 (3 \ln t - 1)}{9} + C$$

35. Hitunglah

$$\int \frac{1}{2 - \sin x} dx = \cdots$$

Pembahasan:

Misalkan

$$u = \tan\left(\frac{x}{2}\right) \Rightarrow du = \frac{1}{2}\sec^2\left(\frac{x}{2}\right) dx \Rightarrow dx = 2\cos^2\left(\frac{x}{2}\right) du$$

Dengan menggunakan bantuan segitiga siku-siku diperoleh

$$\cos\left(\frac{x}{2}\right) = \frac{1}{\sqrt{u^2 + 1}}, \quad \operatorname{dan} \quad \sin\left(\frac{x}{2}\right) = \frac{u}{\sqrt{u^2 + 1}}$$

akibatnya

$$dx = 2\cos^2 x \, du = 2\left(\frac{1}{\sqrt{u^2 + 1}}\right)^2 \, du = \frac{2}{u^2 + 1} \, du$$

$$\sin x = 2\sin x \cos x = 2\left(\frac{u}{\sqrt{u^2 + 1}}\right)\left(\frac{1}{\sqrt{u^2 + 1}}\right) = \frac{2u}{u^2 + 1}$$

$$\cos x = 2\cos^2\left(\frac{x}{2}\right) - 1 = 2\left(\frac{1}{\sqrt{u^2 + 1}}\right)^2 - 1 = \frac{1 - u^2}{u^2 + 1}$$

Maka dengan menggunakan metode subtitusi

$$\int \frac{1}{2 - \sin x} \, dx = \int \frac{1}{2 - \frac{2u}{u^2 + 1}} \cdot \frac{2}{u^2 + 1} \, du = \int \frac{1}{u^2 - u + 1} \, du$$

Dengan menggunakan metode pelengkap kuadrat sempurna didapat

$$\int \frac{1}{u^2 - u + 1} du = \int \frac{1}{\left(u - \frac{1}{2}\right)^2 + \frac{3}{4}} du = \int \frac{1}{\left(u - \frac{1}{2}\right)^2 + \left(\frac{1}{2}\sqrt{3}\right)^2} du$$

$$= \frac{2}{\sqrt{3}} \arctan\left(\frac{2u - 1}{\sqrt{3}}\right) + C = \frac{2}{\sqrt{3}} \arctan\left(\frac{2\tan\left(\frac{x}{2}\right) - 1}{\sqrt{3}}\right) + C$$
ah

36. Hitunglah

$$\int \frac{\mathrm{e}^{2x} + 1}{\mathrm{e}^{2x} + 1} \, dx = \cdots$$

Pembahasan:

Misalkan $u=\mathrm{e}^x\Rightarrow du=\mathrm{e}^x\,dx.$ Sehingga diperoleh

$$\int \frac{e^x}{e^{2x} + 1} \, dx = \int \frac{1}{u^2 + 1} \, du$$

Perhatikan bahwa

$$\int \frac{1}{u^2 + a^2} du = \frac{1}{a} \arctan\left(\frac{u}{a}\right) + C$$

Sehingga diperoleh

$$\int \frac{e^x}{e^{2x} + 1} dx = \int \frac{1}{u^2 + 1} du = \arctan(u) + C = \arctan(e^x) + C.$$

37. Hitunglah

$$\int \frac{6x^2 + 22x + 18}{(x+1)(x+2)(x+3)} \, dx = \cdots$$

Pembahasan:

Dengan menggunakan teknik integral pecahan parsial

$$\int \frac{6x^2 + 22x + 18}{(x+1)(x+2)(x+3)} dx = \int \frac{A}{x+1} + \frac{B}{x+2} + \frac{C}{x+3} dx$$
$$= \int \frac{A(x+2)(x+3) + B(x+1)(x+3) + C(x+1)(x+2)}{(x+1)(x+2)(x+3)} dx$$

Sehingga diperoleh $6x^2 + 22x + 18 = A(x+2)(x+3) + B(x+1)(x+3) + C(x+1)(x+2)$

- untuk x=-1 diperoleh $6(-1)^2+22(-1)+18=A(-1+2)(-1+3)\Rightarrow 2=2A\Rightarrow A=1$
- untuk x = -2 diperoleh $6(-2)^2 + 22(-2) + 18 = B(-2+1)(-2+3) \Rightarrow -2 = -B \Rightarrow B = 2$
- untuk x=-3 diperoleh $6(-3)^2+22(-3)+18=C(-3+1)(-3+2)\Rightarrow 6=2C\Rightarrow C=3$

Sehingga didapat

$$\int \frac{6x^2 + 22x + 18}{(x+1)(x+2)(x+3)} dx = \int \frac{1}{x+1} + \frac{2}{x+2} + \frac{3}{x+3} dx$$

$$= \ln|x+1| + 2\ln|x+2| + 3\ln|x+3| + C$$

$$= \ln|(x+1)(x+2)^2(x+3^2)| + C$$

38. Hitunglah

$$\int \frac{1}{1 + \cos x} \, dx = \cdots$$

Pembahasan:

Misalkan

$$u = \tan\left(\frac{x}{2}\right) \Rightarrow du = \frac{1}{2}\sec^2\left(\frac{x}{2}\right) dx \Rightarrow dx = 2\cos^2\left(\frac{x}{2}\right) du$$

Dengan menggunakan bantuan segitiga siku-siku diperoleh

$$\cos\left(\frac{x}{2}\right) = \frac{1}{\sqrt{u^2 + 1}}, \quad \operatorname{dan} \quad \sin\left(\frac{x}{2}\right) = \frac{u}{\sqrt{u^2 + 1}}$$

akibatnya

$$dx = 2\cos^2 x \, du = 2\left(\frac{1}{\sqrt{u^2 + 1}}\right)^2 \, du = \frac{2}{u^2 + 1} \, du$$

$$\sin x = 2\sin x \cos x = 2\left(\frac{u}{\sqrt{u^2 + 1}}\right)\left(\frac{1}{\sqrt{u^2 + 1}}\right) = \frac{2u}{u^2 + 1}$$

$$\cos x = 2\cos^2\left(\frac{x}{2}\right) - 1 = 2\left(\frac{1}{\sqrt{u^2 + 1}}\right)^2 - 1 = \frac{1 - u^2}{u^2 + 1}$$

Maka dengan menggunakan metode subtitusi

$$\int \frac{1}{1+\cos x} \, dx = \int \frac{1}{1+\frac{1-u^2}{u^2+1}} \cdot \frac{2}{u^2+1} \, du = \int du = u + C = \tan\left(\frac{x}{2}\right) + C$$

39. Hitunglah

$$\int \frac{\mathrm{e}^x}{\sqrt{1 - \mathrm{e}^{2x}}} \, dx = \cdots$$

Pembahasan:

Misalkan $u = e^x \Rightarrow du = e^x dx$, sehingga

$$\int \frac{e^x}{\sqrt{1 - e^{2x}}} \, dx = \frac{1}{\sqrt{1 - u^2}} \, du$$

Misalkan $u = \sin \theta \Rightarrow du = \cos \theta \, d\theta$

$$\int \frac{1}{\sqrt{1-u^2}} du = \int \frac{1}{\sqrt{1-\sin^2\theta}} \cos\theta \, d\theta = \int d\theta = \theta + C = \sin^{-1}(e^x) + C$$

40. Hitunglah

$$\int \frac{1}{x^2 \sqrt{x^2 + 1}} \, dx = \cdots$$

Pembahasan:

Misalkan $x = \tan \theta \Rightarrow dx = \sec^2 \theta \, d\theta$. Sehingga didapat

$$\int \frac{1}{x^2 \sqrt{x^2 + 1}} dx = \int \frac{1}{\tan^2 \theta \sqrt{1 + \tan^2 \theta}} \sec^2 \theta d\theta = \int \frac{\sec \theta}{\tan^2 \theta} d\theta$$
$$= \int \frac{1}{\cos \theta} \cdot \frac{\cos^2 \theta}{\sin^2 \theta} d\theta = \int \frac{\cos \theta}{\sin^2 \theta} d\theta$$

Misalkan $a = \sin \theta$ maka $da = \cos \theta \, d\theta$, diperoleh

$$\int \frac{\cos \theta}{\sin^2 \theta} d\theta = \int \frac{1}{a^2} da = -\frac{1}{a} + C = -\frac{1}{\sin \theta} + C = -\frac{1}{\sin(\arctan x)} + C$$

Alternatif bentuk lain:

Karena $\tan \theta = a$ maka $\sin \theta = \frac{x}{\sqrt{x^2 + 1}}$. Sehingga diperoleh

$$\int \frac{1}{x^2 \sqrt{x^2 + 1}} \, dx = -\frac{1}{\sin \theta} + C = -\frac{\sqrt{1 + x^2}}{x} + C$$

 $\int \frac{1}{x^2\sqrt{x^2+1}}\,dx = -\frac{1}{\sin\theta} + C = -\frac{\sqrt{1+x^2}}{x} + C$ 41. **(ETS 2021)**Dengan subtitusi trigonometri selesaikan $\int \frac{\sqrt{1-\ln^2 x}}{x}\,dx = \cdots$

Misalkan $u = \ln x$, diperoleh $du = \frac{1}{x} dx$. Sehingga integral yang baru menjadi

$$\int \frac{\sqrt{1 - \ln^2 x}}{x} \, dx = \int \sqrt{1 - u^2} \, du$$

Misalkan $u = \sin t \Rightarrow du = \cos t \, dt$ sehingga didapat

$$\int \sqrt{1 - u^2} \, du = \int \sqrt{1 - \sin^2 t} \cos t \, dt = \int \cos^2 t \, dt = \int \frac{\cos 2t + 1}{2} \, dt = \frac{1}{4} \sin 2t + \frac{1}{2} t + C$$

Kembalikan ke pemisalan awal

$$\int \frac{\sqrt{1 - \ln^2 x}}{x} dx = \frac{1}{4} \sin 2t + \frac{1}{2} t + C$$
$$= \frac{1}{4} \sin(2 \sin^{-1}(\ln x)) + \frac{1}{2} \sin^{-1}(\ln x) + C$$

Alternatif bentuk lain:

Karena $\sin t = u$ maka $\cos t = \sqrt{1-u^2}$ sehingga didapat

$$\sin 2t = 2\sin t \cos t = 2u\sqrt{1 - u^2} = 2\ln x\sqrt{1 - \ln^2 x}$$

Sehingga diperoleh

$$\int \frac{\sqrt{1 - \ln^2 x}}{x} dx = \frac{1}{4} \sin 2t + \frac{1}{2}t + C$$
$$= \frac{\ln x \sqrt{1 - \ln^2 x} + \sin^{-1}(\ln x)}{2} + C$$

42. hitunglah

$$\int \frac{\cos x}{2 - \cos x} \, dx = \cdots$$

Pembahasan:

Misalkan

$$u = \tan\left(\frac{x}{2}\right) \Rightarrow du = \frac{1}{2}\sec^2\left(\frac{x}{2}\right) dx \Rightarrow dx = 2\cos^2\left(\frac{x}{2}\right) du$$

Dengan menggunakan bantuan segitiga siku-siku diperoleh

$$\cos\left(\frac{x}{2}\right) = \frac{1}{\sqrt{u^2 + 1}}, \quad \operatorname{dan} \quad \sin\left(\frac{x}{2}\right) = \frac{u}{\sqrt{u^2 + 1}}$$

akibatnya

$$dx = 2\cos^2 x \, du = 2\left(\frac{1}{\sqrt{u^2 + 1}}\right)^2 \, du = \frac{2}{u^2 + 1} \, du$$

$$\sin x = 2\sin x \cos x = 2\left(\frac{u}{\sqrt{u^2 + 1}}\right)\left(\frac{1}{\sqrt{u^2 + 1}}\right) = \frac{2u}{u^2 + 1}$$

$$\cos x = 2\cos^2\left(\frac{x}{2}\right) - 1 = 2\left(\frac{1}{\sqrt{u^2 + 1}}\right)^2 - 1 = \frac{1 - u^2}{u^2 + 1}$$

Maka dengan menggunakan metode subtitusi

$$\int \frac{\cos x}{2 - \cos x} \, dx = -\int \frac{\cos x - 2 + 2}{\cos x - 2} \, dx = -\int dx + \int \frac{2}{2 - \cos x} \, dx$$

$$= -x + \int \frac{2}{2 - \frac{1 - u^2}{u^2 + 1}} \cdot \frac{2}{u^2 + 1} \, du = -x + 4 \int \frac{1}{3u^2 + 1} \, dx$$

$$= -x + \frac{4 \arctan(\sqrt{3}u)}{\sqrt{3}} + C = -x + \frac{4 \arctan(\sqrt{3}\tan(\frac{x}{2}))}{\sqrt{3}} + C$$

43. Milai

$$\int \frac{x+1}{x^2 - 5x - 14} \, dx = \cdots$$

Pemabahasan:

Perhatikan bahwa dengan teknik integral pecahan parsial

$$\int \frac{x+1}{x^2 - 5x - 14} dx = \int \frac{x+1}{(x+2)(x-7)} = \int \frac{A}{x+2} + \frac{B}{x-7} dx$$

$$= \int \frac{A(x-7) + B(x+2)}{(x+2)(x-7)} dx$$
sehingga didapat $x+1 = A(x-7) + B(x+2)$

- untuk x=7 didapat $7+1=B(7+2)\Rightarrow B=\frac{8}{9}$
- untuk x = -2 didapat $-2 + 1 = A(-2 7) \Rightarrow A = \frac{1}{6}$

dengan demikian diperoleh

$$\int \frac{x+1}{x^2 - 5x - 14} \, dx = \int \frac{1}{9(x+2)} + \frac{8}{9(x-7)} \, dx = \frac{\ln|x+2| + 8\ln|x-7|}{9} + C$$

44. Selesaikan

$$\int \frac{2x^3 + 11x^2 + 22x + 18}{x^2 + 5x + 6} \, dx$$

Pembahasan:

Perhatikan karena derajat pembilang lebih besar dari derajat penyebut, dengan pembagian susun diperoleh

$$\begin{array}{r}
2x + 1 \\
x^2 + 5x + 6) \overline{)2x^3 + 11x^2 + 22x + 18} \\
\underline{-2x^3 - 10x^2 - 12x} \\
x^2 + 10x + 18 \\
\underline{-x^2 - 5x - 6} \\
5x + 12
\end{array}$$

Sehingga diperoleh

$$\frac{2x^3 + 11x^2 + 22x + 18}{x^2 + 5x + 6} = 2x + 1 + \frac{5x + 12}{x^2 + 5x + 6} = 2x + 1 + \frac{5x + 12}{(x + 2)(x + 3)}$$

Demikian didapat

$$\int \frac{2x^3 + 11x^2 + 22x + 18}{x^2 + 5x + 6} \, dx = \int 2x + 1 + \frac{5x + 12}{(x+2)(x+3)} \, dx$$

Dengan menggunakan teknik integral pecahan parsial diperoleh

$$\int \frac{2x^3 + 11x^2 + 22x + 18}{x^2 + 5x + 6} dx = \int 2x + 1 + \frac{2}{x + 2} + \frac{3}{x + 3} dx$$

$$= x^2 + x + 2\ln|x + 2| + 3\ln|x + 3| + C$$
an nilai dari

45. Tentukan nilai dari

$$\int_0^{\pi/2} \frac{\sec x}{\csc x + \sec x} \, dx = \cdots$$

Pembahasan:

Perhatikan bahwa

$$\frac{\sec x}{\csc x + \sec x} = \frac{\frac{1}{\cos x}}{\frac{1}{\sin x} + \frac{1}{\cos x}} = \frac{\sin x}{\sin x + \cos x}$$

Sehingga

$$\int_0^{\pi/2} \frac{\sec x}{\csc x + \sec x} \, dx = \int_0^{\pi/2} \frac{\sin x}{\sin x + \cos x} \, dx$$

Misalkan

$$I = \int_0^{\pi/2} \frac{\sin x}{\sin x + \cos x} \, dx$$

kemudian misalkan $u=\frac{\pi}{2}-x$ maka du=-dx. Ubah batas : jika x=0 diperoleh $u=\frac{\pi}{2}$

dan $x=\frac{\pi}{2}$ diperoleh u=0 maka diperoleh integral yang baru

$$I = \int_0^{\pi/2} \frac{\sin x}{\sin x + \cos x} dx = -\int_{\pi/2}^0 \frac{\sin\left(\frac{\pi}{2} - x\right)}{\sin\left(\frac{\pi}{2} - x\right) + \cos\left(\frac{\pi}{2} - x\right)} dx$$
$$= \int_0^{\pi/2} \frac{\cos x}{\cos x + \sin x} = I$$

Oleh karena itu, perhatikan bahwa

$$2I = I + I = \int_0^{\pi/2} \frac{\sin x}{\sin x + \cos x} dx + \int_0^{\pi/2} \frac{\cos x}{\sin x + \cos x} dx = \int_0^{\pi/2} dx = \frac{\pi}{2} \Rightarrow I = \frac{\pi}{4}$$

Sehingga

$$\int_0^{\pi/2} \frac{\sec x}{\csc x + \sec x} \, dx = \frac{\pi}{4}$$

46. Tentukan Nilai dari

$$\int_0^1 \frac{\arctan x}{x+1} \ dx$$

Pembahasan : Misalkan $u = \arctan x \Rightarrow du = \frac{1}{x^2 + 1}$

Maka dengan menggunakan metode integral parsial diperoleh

$$\int_0^1 \frac{\arctan x}{x+1} \ dx = \arctan x \ln(x+1) \Big|_0^1 - \int_0^1 \frac{\ln(x+1)}{x^2+1} \ dx$$

Maka kita tinggal mencari nilai dari

$$\int_0^1 \frac{\ln(x+1)}{x^2+1} \ dx$$

Misalkan $x=\tan\theta\Rightarrow dx=\sec^2\theta\ d\theta$ untuk $x=1\Rightarrow\theta=\frac{\pi}{4}$ untuk $x=0\Rightarrow\theta=0$

maka dengan menggunakan integral subtitusi

$$\int_0^1 \frac{\ln(x+1)}{x^2+1} dx = \int_0^{\frac{\pi}{4}} \frac{\ln(\tan\theta+1)}{\tan^2\theta+1} \sec^2\theta d\theta = \int_0^{\frac{\pi}{4}} \frac{\ln(\tan\theta+1)}{\sec^2\theta} \sec^2\theta d\theta$$
$$= \int_0^{\frac{\pi}{4}} \frac{\ln(\tan\theta+1)}{\ln(\tan\theta+1)} d\theta$$

inget sifat integral tentu

$$\int_0^a f(x) \ dx = \int_0^a f(a-x) \ dx$$

Misalkan

$$I = \int_0^{\frac{\pi}{4}} \ln(\tan\theta + 1) \ d\theta = \int_0^{\frac{\pi}{4}} \ln\left(\tan\left(\frac{\pi}{4} - \theta\right) + 1\right) \ d\theta$$

kita tahu bahwa

$$\tan\left(\frac{\pi}{4} - \theta\right) = \frac{\tan\frac{\pi}{4} - \tan\theta}{1 + \tan\frac{\pi}{4}\tan\theta} = \frac{1 - \tan\theta}{1 + \tan\theta}$$

sehingga diperoleh

diperoleh
$$I = \int_0^{\frac{\pi}{4}} \ln\left(\tan\left(\frac{\pi}{4} - \theta\right) + 1\right) d\theta = \int_0^{\frac{\pi}{4}} \ln\left(\frac{1 - \tan\theta}{1 + \tan\theta} + 1\right) d\theta$$

$$I = \int_0^{\frac{\pi}{4}} \ln\left(\frac{1 - \tan\theta + 1 + \tan\theta}{1 + \tan\theta}\right) d\theta = \int_0^{\frac{\pi}{4}} \ln\left(\frac{2}{1 + \tan\theta}\right) d\theta$$

$$= \int_0^{\frac{\pi}{4}} \ln(2) - \ln(\tan\theta + 1) d\theta$$

$$I = \ln 2 - I \Rightarrow I = \frac{\ln 2}{2}$$

Maka

$$\int_0^1 \frac{\ln(x+1)}{x^2+1} \ dx = \frac{\ln 2}{2}$$

Kembali ke persamaan awal

$$\int_0^1 \frac{\arctan x}{x+1} \ dx = \arctan x \ln(x+1) \Big|_0^1 - \int_0^1 \frac{\ln(x+1)}{x^2+1} \ dx = \frac{\ln 2}{4} - \frac{\ln 2}{2} = -\frac{\ln 2}{4}$$

3. Integrasi Numerik dan Integral Tak Wajar

1. (ETS 2023) Hitung

$$\int_0^{+\infty} \frac{1}{x^2 + 3x + 2} \, dx$$

Pembahasan:

Dengan metode pecahan parsial

$$\frac{1}{x^2 + 3x + 2} = \frac{1}{(x+1)(x+2)} = \frac{A}{x+1} + \frac{B}{x+2} = \frac{A(x+2) + B(x+1)}{(x+1)(x+2)}$$

didapat

$$1 = A(x+2) + B(x+1)$$

- untuk $x = -2 \Rightarrow 1 = A((-2) + 2) + B((-2) + 1) \Rightarrow 1 = B(-1) \Rightarrow B = -1$
- $\bullet \ \ \mathrm{untuk} \ x = -1 \Rightarrow 1 = A((-1) + 2) + B((-1) + 1) \Rightarrow 1 = A(1) \Rightarrow A = 1$

Sehingga diperoleh

$$\int_{0}^{+\infty} \frac{1}{x^{2} + 3x + 2} dx = \int_{0}^{+\infty} \frac{1}{x + 1} - \frac{1}{x + 2} dx$$

$$= \lim_{t \to +\infty} \int_{0}^{t} \frac{1}{x + 1} - \frac{1}{x + 2} dx = \lim_{t \to +\infty} \left(\ln|x + 1| - \ln|x + 2| \Big|_{0}^{t} \right)$$

$$= \lim_{t \to +\infty} \left(\ln|0 + 1| - \ln|0 + 2| \right) - \left(\ln|t + 1| - \ln|t + 2| \right)$$

$$= \ln(2) + \lim_{t \to +\infty} \ln\left| \frac{x + 1}{x + 2} \right| = \ln(2) + \ln(1) = \ln(2)$$

jadi integral tak wajar tersebut konvergen.

2. (ETS 2023) Hitung limit berikut

$$\lim_{x \to 2} (2 - x) \tan\left(\frac{x\pi}{4}\right)$$

Pembahasan:

Dapat dilihat bahwa

$$\lim_{x\to 2} (2-x) \tan\left(\frac{x\pi}{4}\right) = 0 \cdot \infty \text{ (bentuk tak tentu)}$$

Sehingga gunakan cara lain untuk mencari limitnya. Perhatikan bahwa

$$\lim_{x \to 2} (2 - x) \tan\left(\frac{x\pi}{4}\right) = \lim_{x \to 2} \frac{2 - x}{\cot\left(\frac{x\pi}{4}\right)} = \frac{0}{0}$$

Gunakan dalil L'Hopital, didapat

$$\lim_{x \to 2} \frac{2 - x}{\cot\left(\frac{x\pi}{4}\right)} = \lim_{x \to 2} \frac{-1}{-\frac{\pi}{4}\csc^2\left(\frac{x\pi}{4}\right)} = \lim_{x \to 2} \frac{4}{\pi} \cdot \sin^2\left(\frac{x\pi}{4}\right) = \frac{4}{\pi} \cdot \sin^2\left(\frac{\pi}{2}\right) = \frac{4}{\pi}$$

3. (ETS 2023) Hitung integral berikut

$$\int_0^{+\infty} \frac{1}{4x^2 + 9} \, dx$$

Pembahasan : Misalkan $x=\frac{3}{2}\tan\theta\Rightarrow dx=\frac{3}{2}\sec^2\theta\,d\theta$. Sehingga didapat

$$\int \frac{1}{4x^2 + 9} dx = \int \frac{1}{4\left(\frac{3}{2}\tan\theta\right)^2 + 9} \frac{3}{2}\sec^2\theta \, d\theta = \int \frac{1}{9\tan^2\theta + 9} \frac{3}{2}\sec^2\theta \, d\theta$$

$$\int \frac{1}{4x^2 + 9} dx = \int \frac{1}{4\left(\frac{3}{2}\tan\theta\right)^2 + 9} \frac{3}{2}\sec^2\theta \, d\theta = \int \frac{1}{9\tan^2\theta + 9} \frac{3}{2}\sec^2\theta \, d\theta$$

$$= \frac{1}{9} \int \frac{1}{\tan^2\theta + 1} \frac{3}{2}\sec^2\theta \, d\theta = \frac{1}{9} \int \frac{1}{\sec^2\theta} \frac{3}{2}\sec^2\theta \, d\theta = \frac{1}{6} \int d\theta = \frac{\theta}{6} + C = \frac{\arctan\left(\frac{2}{3}x\right)}{6} + C$$

Dengan demikian dapat dituliskan

$$\int_0^{+\infty} \frac{1}{4x^2 + 9} dx = \lim_{t \to +\infty} \int_0^t \frac{1}{4x^2 + 9} dx$$

$$= \lim_{t \to +\infty} \left(\frac{1}{6} \arctan\left(\frac{2x}{3}\right) \Big|_0^t \right) = \lim_{t \to +\infty} \left(\frac{1}{6} \arctan\left(\frac{2t}{3}\right) \right) - \left(\frac{1}{6} \arctan\left(\frac{2(0)}{3}\right) \right)$$

$$= \lim_{t \to +\infty} \left(\frac{1}{6} \arctan\left(\frac{2t}{3}\right) \right) - 0 = -\frac{1}{6} \left(\frac{\pi}{2}\right) - 0 = \frac{\pi}{12}$$

jadi integral tak wajar tersebut konvergen.

4. (ETS 2023) Hitung

$$\lim_{x \to 1} \left(\frac{1}{x - 1} - \frac{1}{1 + \cos(\pi x)} \right)$$

Pembahasan:

Perhatikan bahwa

$$\lim_{x \to 1} \left(\frac{1}{x - 1} - \frac{1}{1 + \cos(\pi x)} \right) = \infty - \infty$$

bentuk tersebut merupakan bentuk tak tentu, sehingga diperlukan cara lain untuk menghitung limit pada soal

$$\lim_{x \to 1} \left(\frac{1}{x - 1} - \frac{1}{1 + \cos(\pi x)} \right) = \lim_{x \to 1} \left(\frac{(1 + \cos(\pi x)) - (x - 1)}{(x - 1)(1 + \cos(\pi x))} \right)$$
$$= \lim_{x \to 1} \left(\frac{2 + \cos(\pi x) - x}{(x - 1)(1 + \cos(\pi x))} \right) = \frac{0}{0}$$

Gunakan dalil L'Hopital

$$= \lim_{x \to 1} \left(\frac{2 + \cos(\pi x) - x}{(x - 1)(1 + \cos(\pi x))} \right)$$

$$= \lim_{x \to 1} \left(\frac{-\pi \sin(\pi x) - 1}{(1)(1 + \cos(\pi x)) + (x - 1)(-\pi \sin(\pi x))} \right) = -\frac{1}{0 + 0} = -\infty$$

5. (ETS 2020) Tentukan nilai dari

$$\int_0^1 \ln(x) \, dx$$

Pembahasan:

Terlebih dahulu mencari penyelesaian integral tak tentu dari bentuk

$$\int \ln(x) \, dx$$

dengan menggunakan metode integral parsial.

$$\int u \, dv = uv - \int v \, du$$

Misalkan $u=\ln(x) \ \Rightarrow \ du=\frac{1}{x}\,dx$ dan $dv=dx \ \Rightarrow \ v=x$, diperoleh bahwa

$$\int \ln(x) dx = x \ln(x) - \int x \cdot \frac{1}{x} dx = x \ln(x) - \int dx = x \ln(x) - x + C$$

Karena untuk x=0 bentuk $\ln(x)$ tidak terdefinisi, dengan demikian diperoleh

$$\int_0^1 \ln(x) \, dx = \lim_{t \to 0^+} \int_t^1 \ln(x) \, dx = \lim_{t \to 0^+} \left(x \ln(x) - x \Big|_t^1 \right) = \lim_{t \to 0^+} (1 \ln(1) - 1) - (t \ln(t) - t)$$

$$= \lim_{t \to 0^+} (0 - 1) - (t \ln(t) - 0) = -1$$

Jadi

$$\int_0^1 \ln(x) \, dx = -1$$

konvergen.

6. (ETS 2018) Periksa kekonvergenan dari integral dibawah ini

$$\int_{-\infty}^{\infty} x^3 \, dx$$

Pembahasan:

Pecah integralnya menjadi

$$\int_{-\infty}^{\infty} x^3 dx = \int_{-\infty}^{0} x^3 dx + \int_{0}^{\infty} x^3 dx$$
$$= \lim_{p \to -\infty} \int_{p}^{0} x^3 dx + \lim_{p \to \infty} \int_{0}^{p} x^3 dx$$

Tinjau

Karena didapat untuk $\int_{-\infty}^0 x^3\,dx$ sudah divergen maka dapat disimpulkan $\int_{-\infty}^\infty x^3\,dx$ Divergen

7. Tentukan apakah integral berikut konvergen atau divergen

$$\int_0^3 \frac{1}{x-2} \, dx$$

Pembahasan:

Karena pada batas integral terdapat titik diskontinu yaitu di x=2, maka

$$\int_0^3 \frac{1}{x-2} dx = \int_0^2 \frac{1}{x-2} dx + \int_2^3 \frac{1}{x-2} dx$$
$$= \lim_{p \to 2^-} \int_0^p \frac{1}{x-2} dx + \lim_{p \to 2^+} \int_p^3 \frac{1}{x-2} dx$$

Tinjau

$$\int_{0}^{2} \frac{1}{x - 2} dx = \lim_{p \to 2^{-}} \int_{0}^{t} \frac{1}{x - 2} dx$$

$$= \lim_{p \to 2^{-}} \ln|x - 2|_{0}^{t}$$

$$= \lim_{p \to 2^{-}} \ln|t - 2| - \ln 2$$

$$= -\infty (\text{ diverge})$$

Karena $\int_0^2 \frac{1}{x-2} dx$ sudah divergen, maka $\int_0^3 \frac{1}{x-2} dx$ pasti divergen.

8. (ETS 2020) Selesaikan integral berikut ini:

$$\int_{-\infty}^{0} \frac{x}{(x+2)^2} \, dx$$

Pembahasan:

Terlebih dahulu menyelesaikan integral tak tentu

$$\int \frac{x}{(x+2)^2} \, dx$$

Misalkan
$$u=x+2 \Rightarrow du=dx$$
, sehingga diperoleh
$$\int \frac{x}{(x+2)^2} \, dx = \int \frac{u-2}{u^2} \, du = \int u^{-1} - 2u^{-2} \, du = \ln|u| + \frac{2}{u} + C$$

jadi

$$\int \frac{x}{(x+2)^2} dx = \ln|x+2| + \frac{2}{x+1} + C$$

Sehingga dengan menggunakan batas integrasinya diperoleh

$$\begin{split} \int_{-\infty}^{0} \frac{x}{(x+2)^{2}} \, dx &= \lim_{t \to -\infty} \int_{t}^{0} \frac{x}{(x+2)^{2}} \, dx \\ &= \lim_{t \to -\infty} \left(\ln|x+2| + \frac{2}{x+1} \right) \Big|_{t}^{0} \\ &= \lim_{t \to -\infty} \left(\left[\ln|0+2| + \frac{2}{0+1} \right] - \left[\ln|t+2| + \frac{2}{t+1} \right] \right) \\ &= \ln 2 + 2 - \lim_{t \to -\infty} \left[\ln|t+2| + \frac{2}{t+1} \right] = +\infty \end{split}$$

sehingga integral tersebut divergen.

9. (ETS 2019) Hitunglah dan periksalah kekonvergenan dari integral dibawah ini

$$\int_{-\infty}^{+\infty} x \mathrm{e}^{-x^2} \, dx$$

Pembahasan:

Terlebih dahulu menyelesaikan integral tak tentu

$$\int x e^{-x^2} dx$$

misalkan $u=-x^2 \ \Rightarrow \ \frac{du}{dx}=-2x \ \Rightarrow \ -\frac{1}{2}du=x\,dx.$ Sehingga diperoleh

$$\int x e^{-x^2} dx = -\frac{1}{2} \int e^u du = -\frac{1}{2} e^u + C$$

jadi

$$\int xe^{-x^2} dx = -\frac{1}{2}e^{-x^2} + C$$

Sehingga dengan menggunakan batas integrasinya diperoleh

$$\int_{-\infty}^{+\infty} x e^{-x^2} dx = \lim_{t \to +\infty} \int_{-t}^{t} x e^{-x^2} dx = \lim_{t \to +\infty} \left[-\frac{1}{2} e^{-x^2} \right]_{-t}^{t} = 0$$

sehingga integral tersebut konvergen.

10. Tentukan nilai dari

$$\lim_{x \to 0^+} x \ln(x) = \cdots$$

Pembahasan:

Perhatikan bahwa

$$\lim_{x\to 0^+} x \ln(x) = 0 \cdot (-\infty) \text{ (bentuk tak tentu)}$$

sehingga diperlukan cara lain untuk mencari nilai limit tersebut. Perhatikan bahwa

$$\lim_{x \to 0^+} x \ln(x) = \lim_{x \to 0^+} \frac{\ln(x)}{\frac{1}{x}}$$

dengan menggunakan dalil L'Hopital diperoleh

$$\lim_{x \to 0^+} x \ln(x) = \lim_{x \to 0^+} \frac{\ln(x)}{\frac{1}{x}} = \lim_{x \to 0^+} \frac{\frac{1}{x}}{-\frac{1}{x^2}} = \lim_{x \to 0^+} -x = 0$$

Jadi

$$\lim_{x \to 0^+} x \ln(x) = 0$$

11. (ETS 2022) Selesaikan limit

$$\lim_{x \to +\infty} (e^x + x)^{5/x}$$

Pembahasan:

Pehatikan bahwa dengan subtitusi

$$\lim_{x \to +\infty} (e^x + x)^{5/x} = (+\infty)^0$$

merupakan bentuk tak-tentu. Oleh karena itu dilakukan cara lain. Misalkan

$$y = \lim_{x \to +\infty} (e^x + x)^{5/x}$$

$$\ln y = \ln \left(\lim_{x \to +\infty} (e^x + x)^{5/x} \right)$$

$$\ln y = \lim_{x \to +\infty} \ln (e^x + x)^{5/x}$$

$$\ln y = \lim_{x \to +\infty} \frac{5 \ln (e^x + x)}{x} = \frac{\infty}{\infty}$$

Terdapat bentuk tak tentu, gunakan dalil L'Hopital untuk menyelesaikan limit tersebut.

$$\ln y = \lim_{x \to +\infty} \frac{5 \ln (e^x + x)}{x}$$

$$= \lim_{x \to +\infty} \frac{\frac{5(e^x + 1)}{e^x + x}}{1} = \lim_{x \to +\infty} \frac{5(e^x + 1)}{e^x + x} = \frac{\infty}{\infty}$$

masih dalam bentuk tak tentu, gunakan dalil L'Hopital untuk menyelesaikan limit tersebut.

$$\ln y = \lim_{x \to +\infty} \frac{5(e^x + 1)}{e^x + x}$$
$$= \lim_{x \to +\infty} \frac{5(e^x)}{e^x + 1} = \frac{\infty}{\infty}$$
$$= \lim_{x \to +\infty} \frac{5(e^x)}{e^x} = 5$$

Karena untuk $\ln(y) \to 5$ untuk $x \to +\infty$, hal tersebut ekivalen dengan $y \to \mathrm{e}^5$ untuk $x \to +\infty$. Sehingga diperoleh nilai limit

$$\lim_{x \to +\infty} (e^x + x)^{5/x} = e^5$$

12. Hitunglah nilai limit berikut

$$\lim_{x \to 0^+} x^x = \cdots$$

Pembahasan:

Misalkan $y=\lim_{x\to 0^+}x^x$, karena fungsi logaritma natural kontinu pada $(0,+\infty)$ dengan demikian didapat

$$y = \lim_{x \to 0^+} x^x$$

$$\Leftrightarrow \ln(y) = \ln\left(\lim_{x \to 0^+} x^x\right)$$

$$\Leftrightarrow \ln(y) = \lim_{x \to 0^+} \ln(x^x) = \lim_{x \to 0^+} x \ln(x) = 0 \cdot \infty$$

Bentuk tersebut adalah bentuk tak tentu. Agar limit dapat diselesaikan ubah dalam betuk bentuk limit yang dapat diselesaikan dengan metode **Dalil L'Hopital**

$$\ln(y) = \lim_{x \to 0^+} x \ln(x) = \lim_{x \to 0^+} \left(\frac{\ln(x)}{\frac{1}{x}}\right) = -\frac{\infty}{\infty}$$

sehingga limit tersebut dapat diselesaikan dengan metode Dalil L'Hopital

$$\ln(y) = \lim_{x \to 0^+} \left(\frac{\ln(x)}{x}\right) = \lim_{x \to 0^+} \left(\frac{\frac{1}{x}}{-\frac{1}{x^2}}\right) = \lim_{x \to 0^+} -x = 0.$$

Karena untuk $\ln(y) \to 0$ untuk $x \to 0^+$, hal tersebut ekivalen dengan $y \to 1$ untuk $x \to 0^+$. Sehingga diperoleh nilai limit

$$\lim_{x \to 0^+} x^x = 1$$

13. Tentukan nilai dari

$$\lim_{x \to +\infty} (\ln(x))^{1/x}$$

Pembahasan:

Misalkan $y=\lim_{x\to +\infty} (\ln(x))^{1/x}$, karena fungsi logaritma natural kontinu pada $(0,+\infty)$ dengan demikian didapat

$$\ln(y) = \ln\left(\lim_{x \to +\infty} (\ln(x))^{1/x}\right)$$

$$\Leftrightarrow \ln(y) = \lim_{x \to \infty} \left(\ln(\ln(x))^{1/x}\right) = \lim_{x \to +\infty} \frac{\ln(\ln(x))}{x} = \frac{+\infty}{+\infty}$$

Bentuk tersebut adalah bentuk tak tentu. Sehingga bentuk limit tersebut dapat diselesaikan dengan metode **Dalil L'Hopital**

$$\ln(y) = \lim_{x \to +\infty} \frac{\ln(\ln(x))}{x} = \lim_{x \to +\infty} \frac{\frac{1}{\ln(x)} \cdot \frac{1}{x}}{1} = \lim_{x \to +\infty} \frac{1}{x \ln(x)} = 0.$$

Karena untuk $\ln(y) \to 0$ untuk $x \to +\infty$, hal tersebut ekivalen dengan $y \to 1$ untuk $x \to +\infty$. Sehingga diperoleh nilai limit

$$\lim_{x \to +\infty} \left(\ln(x) \right)^{1/x} = 1$$

14. Dapatkan nilai dari

$$\lim \left(\frac{\sin x}{x}\right)^{\frac{1}{1-\cos x}}$$

Pembahasan:

Perhatikan bahwa

$$\lim_{x \to 0} \left(\frac{\sin x}{x} \right)^{\frac{1}{1 - \cos x}} = 1^{\infty}$$

bentuk diatas merupakan bentuk tak tentu. Gunakan metode lain untuk mencari nilai limit tersebut. Misalkan

$$y = \lim_{x \to 0} \left(\frac{\sin x}{x} \right)^{\frac{2}{1 - \cos x}}$$

Karena fugsi \ln kontinu pada $(0, +\infty)$ diperoleh

$$\ln y = \ln \left(\lim_{x \to 0} \left(\frac{\sin x}{x} \right)^{\frac{1}{1 - \cos x}} \right)$$

$$\Leftrightarrow \ln y = \lim_{x \to 0} \left(\ln \left(\frac{\sin x}{x} \right)^{\frac{1}{1 - \cos x}} \right)$$

$$\Leftrightarrow \ln y = \lim_{x \to 0} \left(\frac{\ln \left(\frac{\sin x}{x} \right)}{1 - \cos x} \right) = \frac{0}{0}$$

Karena masih bentuk tak tentu maka gunakan dalil L'Hopital

$$\ln y = \lim_{x \to 0} \left(\frac{\frac{x}{\sin x} \left(\frac{x \cos x - \sin x}{x^2} \right)}{\sin x} \right)$$

$$\Leftrightarrow \ln y = \lim_{x \to 0} \left(\frac{x \cos x - \sin x}{x \sin^2 x} \right) = \frac{0}{0}$$

masih dalam bentuk tak tentu, gunakan kembali dalil L'Hopital

$$\ln y = \lim_{x \to 0} \left(\frac{\cos x - x \sin x - \cos x}{\sin^2 x + x \sin 2x} \right) = \lim_{x \to 0} \left(\frac{-x \sin x}{\sin^2 + x \sin 2x} \right) = \frac{0}{0}$$

masih dalam bentuk tak tentu, gunakan kembali dalil L'Hopital

$$\ln y = \lim_{x \to 0} \left(\frac{-\sin x - x \cos x}{\sin 2x + \sin 2x + 2x \cos 2x} \right) = \lim_{x \to 0} \left(\frac{-\sin x - x \cos x}{2 \sin 2x + 2x \cos 2x} \right) = \frac{0}{0}$$

masih dalam bentuk tak tentu, gunakan kembali dalil L'Hopital

$$\ln y = \lim_{x \to 0} \left(\frac{-\cos x - \cos x + x \sin x}{4\cos 2x + 2\cos 2x - 4x \sin 2x} \right) = -\frac{2}{6} = -\frac{1}{3}$$

Karena untuk $\ln(y) \to -\frac{1}{3}$ untuk $x \to 0$, hal tersebut ekivalen dengan $y \to \mathrm{e}^{-\frac{1}{3}}$ untuk $x \to 0$. Sehingga diperoleh nilai limit

$$\lim_{x \to 0} \left(\frac{\sin x}{x} \right)^{\frac{1}{1 - \cos x}} = \frac{1}{\sqrt[3]{e}}$$

15. Carilah nilai dari

$$\lim_{x \to 0^+} (\sin x)^{\frac{3}{\ln x}}$$

Solusi:

Perhatikan bahwa

$$\lim_{x \to 0^+} (\sin x)^{\frac{3}{\ln x}} = 0^0$$

bentuk diatas merupakan bentuk tak tentu, maka gunakan metode lain untuk mencari

limitnya.

$$y = \lim_{x \to 0^{+}} (\sin x)^{\frac{3}{\ln x}}$$

$$\Leftrightarrow \ln y = \ln \left(\lim_{t \to 0^{+}} (\sin x)^{\frac{3}{\ln x}} \right)$$

$$\Leftrightarrow \ln y = \lim_{x \to 0^{+}} \left(\ln (\sin x)^{\frac{3}{\ln x}} \right)$$

$$\Leftrightarrow \ln y = \lim_{x \to 0^{+}} \left(\frac{3 \ln(\sin x)}{\ln x} \right)$$

$$\Leftrightarrow \ln(y) = \lim_{x \to 0^{+}} \left(\frac{\frac{3 \cos x}{\sin x}}{\frac{1}{x}} \right)$$

$$\Leftrightarrow \ln(y) = \lim_{x \to 0^{+}} \left(\frac{3x \cos x}{\sin x} \right) = \lim_{x \to 0^{+}} \left(\frac{x}{\sin x} \right) \lim_{x \to 0^{+}} (3 \cos x) = 3$$

Gunakan metode L'Hopital untuk mencari limitnya

Karena untuk $\ln(y) \to 3$ untuk $x \to 0^+$, hal tersebut ekivalen dengan $y \to \mathrm{e}^3$ untuk $x \to 0^+$. Sehingga diperoleh nilai limit

$$\lim_{x \to 0^+} (\sin x)^{\frac{3}{\ln x}} = e^3$$

4. Aplikasi Integral Tertentu

1. (ETS 2023) Dapatkan luas daerah yang dibatasi ole kurva $y=\sin x$, $y=\frac{1}{2}\sqrt{3}$, x=0, dan $x=\frac{3}{4}\pi$. Sketsa grafiknya.

Pembahasan:

Perhatikan sketsa kurva pada soal

Berdasarkan gambar untuk mencari luasan yang dibatasi ole kurva $y=\sin x,\ y=\frac{1}{2}\sqrt{3},$ x=0, dan $x=\frac{3}{4}\pi$ perlu dibagi menjadi tiga luasan yaitu L_1,L_2 , dan L_3 . Selanjutnya mencari titik potong kurva $y=\sin x$ dan $y=\frac{1}{2}\sqrt{3}$.

$$\sin x = \frac{1}{2}\sqrt{3}$$

diperoleh $x=\frac{\pi}{3},\frac{2\pi}{3}.$ Sehingga masing-masing luas L_1,L_2 , dan L_3 adalah

$$L_1 = \int_0^{\frac{\pi}{3}} \frac{1}{2} \sqrt{3} - \sin x \, dx = \frac{x}{2} \sqrt{3} + \cos x \Big|_0^{\frac{\pi}{3}} = \frac{\pi \sqrt{3} - 3}{6}$$

$$L_2 = \int_{\frac{\pi}{2}}^{\frac{2\pi}{3}} \sin x - \frac{1}{2}\sqrt{3} \, dx = -\cos x - \frac{x}{2}\sqrt{3} \Big|_{\frac{\pi}{3}}^{\frac{2\pi}{3}} = \frac{6 - \sqrt{3} \, \pi}{6}$$

$$L_3 = \int_{\frac{2\pi}{2}}^{\frac{3\pi}{4}} \frac{1}{2} \sqrt{3} - \sin x \, dx = \frac{x}{2} \sqrt{3} + \cos x \Big|_{\frac{2\pi}{3}}^{\frac{3\pi}{4}} = \frac{\sqrt{3}\pi - 12\sqrt{2} + 12}{24}$$

Sehingga luas total daerah yang dibatasi oleh dua kurva tersebut adalah

$$L = \frac{\pi\sqrt{3} - 3}{6} + \frac{6 - \sqrt{3}\,\pi}{6} + \frac{\sqrt{3}\,\pi - 12\sqrt{2} + 12}{24} = \frac{\sqrt{3}\pi - 12\sqrt{2} + 24}{24} \text{ satuan luas}.$$

2. **(ETS 2023)** Dapatkan luas daerah yang dibatasi oleh kurva $y=x^2$, sumbu-y, garis y=1 dan y=4 pada kuadran I dan sketsa gambarnya.

Pembahasan:

Perhatikan sketsa yang dimaksud pada soal

Berdasarkan gambar diatas, lebih cocok menggunakan integral terhadap variabel y.

$$y = x^2 \Rightarrow x = \pm \sqrt{y}$$

karena luasan terletak pada kuadran I artinya $x=\sqrt{y}$. Sehingga diperoleh luasan tersebut

$$L = \int_{1}^{4} \sqrt{y} \, dy = \int_{1}^{4} y^{\frac{1}{2}} \, dy = \frac{2}{3} y^{\frac{3}{2}} \Big|_{1}^{4} = \frac{2}{3} \left[(4)^{\frac{3}{2}} - (1)^{\frac{3}{2}} \right] = \frac{2}{3} \left[8 - 1 \right] = \frac{14}{3}$$

3. **(ETS 2023)** Dapatkan luas daerah yang dibatasi oleh kurva y=x, $x=\frac{1}{y^2}$ dan garis y=2. Sketsa grafiknya.

Pembahsan:

Perhatikan sketsa yang dimaksud pada soal

Berdasarkan gambar untuk mencari luasan yang dibatasi ole kurva $x=\frac{1}{y}$, x=0, y=1 dan garis y=e. perlu dibagi menjadi tiga luasan yaitu L_1 dan L_2 . Selanjutnya mencari titik potong kurva.

$$ullet$$
 titik potong kurva $y=2$ dengan $x=rac{1}{y^2}$

$$x = \frac{1}{2^2} = \frac{1}{4}$$

- ullet titik potong kurva y=2 dengan x=y adalah x=2.
- $\bullet \ \, {\rm titik\ potong\ kurva}\ \, x = \frac{1}{y^2}\ \, {\rm dengan}\ \, x = y$

$$y = \frac{1}{v^2} \Rightarrow y^3 = 1 \Rightarrow y = 1 \Rightarrow x = 1$$

Sehingga diperoleh

$$L_{1} = \int_{\frac{1}{4}}^{1} 2 - \left(\sqrt{\frac{1}{x}}\right) d = \int_{\frac{1}{4}}^{1} 2 - \frac{1}{\sqrt{x}} dx = 2x - 2x^{\frac{1}{2}} \Big|_{\frac{1}{4}}^{1}$$

$$= \left(2(1) - 2(1)^{\frac{1}{2}}\right) - \left(2\left(\frac{1}{4}\right) - 2\left(\frac{1}{4}\right)^{\frac{1}{2}}\right) = \frac{1}{2}$$

$$L_{2} = \int_{1}^{2} 2 - x dx = 2x - \frac{1}{2}x^{2} \Big|_{1}^{2} = \left(2(2) - \frac{1}{2}(2)^{2}\right) - \left(2(1) - \frac{1}{2}(1)^{2}\right) = \frac{1}{2}$$

Sehingga luas total daerah yang dibatasi oleh dua kurva tersebut adalah

$$L = L_1 + L_2 = \frac{1}{2} + \frac{1}{2} = 1$$

4. **(ETS 2023)** Dapatkan luas daerah yang dibatasi oleh kurva $y=x,\ y=4x$,dan garis y=2-x. Sketsa grafiknya.

Pembahsan:

Perhatikan sketsa yang dimaksud pada soal

Berdasarkan gambar untuk mencari luasan yang dibatasi ole kurva $x=\frac{1}{y}, x=0, y=1$ dan garis $y=\mathrm{e.}$ perlu dibagi menjadi tiga luasan yaitu L_1 dan L_2 . Selanjutnya mencari titik potong kurva.

- Titik potong $y = x \operatorname{dan} y = 4x \operatorname{dan} y = x \operatorname{diperoleh} x = 0 \operatorname{dan} y = 0.$
- $\bullet \ \ {\rm Titik \ potong} \ y=4x \ {\rm dan} \ y=2-x \ {\rm diperoleh}$

$$4x = 2 - x \Rightarrow 5x = 2 \Rightarrow x = \frac{2}{5}$$

 $\bullet \ \ {\rm Titik \ potong} \ y=x \ {\rm dan} \ y=2-x \ {\rm diperoleh}$

$$x = 2 - x \Rightarrow 2x = 2 \Rightarrow x = 1$$

Sehingga diperoleh

$$L_1 = \int_0^{\frac{2}{5}} 4x - x \, dx = \int_0^{\frac{2}{5}} 3x \, dx = \frac{3}{2} x^2 \Big|_0^{\frac{2}{5}} = \frac{3}{2} \left[\left(\frac{2}{5} \right)^2 - (0)^2 \right] = \frac{3}{2} \cdot \frac{4}{25} = \frac{12}{50} = \frac{6}{25}$$

73

$$L_2 = \int_{\frac{2}{5}}^{1} (2-x) - (x) \, dx = \int_{\frac{2}{5}}^{1} 2 - 2x \, dx = 2x - x^2 \Big|_{\frac{2}{5}}^{1} = \left((1) - (1)^2 \right) - \left(\left(\frac{2}{5} \right) - \left(\frac{2}{5} \right)^2 \right) = \frac{9}{25}$$

Sehingga luas total daerah yang dibatasi oleh dua kurva tersebut adalah

$$L = L_1 + L_2 = \frac{6}{25} + \frac{9}{25} = \frac{15}{25} = \frac{3}{5}$$

5. **(ETS 2023)** Dapatkan luas daerah yang dibatasi oleh kurva $x=y^2-1$,dan garis $x=1-y^2$. Sketsa grafiknya.

Pembahsan:

Perhatikan sketsa yang dimaksud pada soal

Berdasarkan gambar diatas, lebih cocok menggunakan integral terhadap variabel y. Terlebih dahulu dicari titik potong kedua kurva

$$1 - y^2 = y^2 - 1 \Rightarrow 2y^2 = 2 \Rightarrow y^2 = 1 \Rightarrow y = \pm 1$$

Sehingga diperoleh

$$\int_{-1}^{1} (1 - y^2) - (y^2 - 1) \, dy = \int_{-1}^{1} 2 - 2y^2 \, dy = 2y - \frac{2}{3}y^3 \Big|_{-1}^{1}$$

Mohamad Ilham Dwi Firmansyah

$$= \left(2(1) - \frac{2}{3}(1)^3\right) - \left(2(-1) - \frac{2}{3}(-1)^3\right) = 2 - \frac{2}{3} + 2 - \frac{2}{3} = \frac{8}{3}$$

6. (ETS 2022) Dapatkan luas daerah yang dibatas oleh kurva $y=\sqrt{x+2},\ y=\sqrt{2-x}$, dan y=0 dan sketsa daerahnya.

Pembahasan:

Perhatikan sketsa kurva

Perhatikan bahwa daerah yang dihasilkan simetri terhadap sumbu-y. Sehingga $L_1=L_2$, oleh karena itu diperoleh

$$L = 2L_1 = 2\int_0^2 \sqrt{2 - x} \, dx = 2\left[\frac{2}{3}(2 - x)^{3/2}\Big|_0^2\right] = \frac{8\sqrt{2}}{3}.$$

7. **(ETS 2023)** Dapatkan luas daerah yang dibatasi oleh kurva $x=\frac{1}{y},\ x=0,\ y=1$ dan garis $y=\mathrm{e}.$ Sketsa grafiknya.

Perhatikan sketsa yang dimaksud pada soal

Pembahsan:

Berdasarkan gambar diatas, lebih cocok menggunakan integral terhadap variabel y.

$$L = \int_{1}^{e} \frac{1}{y} dy = \ln|y| \Big|_{1}^{e} = \ln|e| - \ln|1| = \ln|e| = 1.$$

- 8. (ETS 2022) Diberikan daerah yang dibatasi oleh $y=4x-x^2$, y=4-x
 - (a) Sketsa daerah tersebut
 - (b) Dapatkan luas daerah tersebut.

Pembahasan:

(a) Sketsa gambar

(b) Mencari titik potong $y = 4x - x^2 \operatorname{dan} y = 4 - x$

$$4x - x^2 = 4 - x$$

$$x^2 - 5x + 4 = 0$$

$$(x-1)(x-4) = 0$$

 ${\rm didapat}\ x=1\ {\rm dan}\ x=2.\ {\rm Sehingga}\ {\rm diperoleh}$

$$L = \int_{1}^{4} (4x - x^{2}) - (4 - x) dx = \int_{1}^{4} -x^{2} + 5x - 4 dx = -\frac{1}{3}x^{3} + \frac{5}{2}x^{2} - 4x \Big|_{1}^{4} = \frac{9}{2}.$$

9. (ETS 2022)Sketsa gambar yang dibatas oleh $y=x,\ y=\frac{1}{x},\ x=2$, dan y=0 Pembahasan :

Perhatikan sketsa daerah yang dihasilkan

Perhatikan bahwa untuk mencari luas daerah tersebut perlu dibagi menjadi dua daerah seperti pada gambar. Untuk L_1 daerah dibahwa kurva $y=\frac{1}{x}$ dan untuk L_2 kurva dibawah kurva y=x. Terlebih dahulu mencari titik potong kurva $y=\frac{1}{x}$ dengan y=x diperoleh $\frac{1}{x}=x \Rightarrow x^2=1 \Rightarrow x=\pm 1$ Sehingga diperoleh

$$L_1 = \int_1^2 \frac{1}{x} dx = \ln|x| \Big|_1^2 = +\ln(2)$$

dan

$$L_2 = \int_0^1 x \, dx = \frac{1}{x} \Big|_0^1 = \frac{1}{2}$$

Dengan demikian, luas daerah yang dimaksud adalah

$$L_1 + L_2 = \ln(2) + \frac{1}{2}$$

10. (**ETS 2020**)Dapatkan luas daerah yang dibatasi oleh kurva $y=x;\;x+y=2$ dan 3y+2x-6=0. Lengkapi jawaban dengan sketsa luas bidang tersebut.

Pembahasan:

Perhatikan sketsa dibawah ini

Perhatikan bahwa titik potong kurva y=x dan x+y=2 adalah (1,1) dan titk potong kurva y=x dan 3y+2x-6=0 adalah $\left(\frac{6}{5},\frac{6}{5}\right)$. Sehingga diperoleh luas daerah dengan menggunakan integral

$$\begin{split} L &= \int_0^1 \left(\frac{6-2x}{3}\right) - (2-x) \, dx + \int_1^{\frac{6}{5}} \left(\frac{6-2x}{3}\right) - x \, dx \\ &= \left. \frac{x^2}{6} \right|_0^1 + 2x - \frac{5x^2}{6} \right|_1^{\frac{6}{5}} = \frac{1}{6} + \frac{1}{30} = \frac{6}{30} = \frac{1}{5} \text{ satuan luas} \end{split}$$

11. (ETS 2020) Hitunglah volume benda putar jika daerah yang dibatasi oleh $y=x^2$ dan $y=6x-x^2$ diputar mengelilingi garis x=3.

Pembahasan:

Sketsa kurva

Titik potong $y = x^2 \operatorname{dan} y = 6x - x^2$

$$x^{2} = 6x - x^{2}$$

$$\Leftrightarrow 2x^{2} - 6x = 0$$

$$\Leftrightarrow 2x(x - 3) = 0$$

jadi titik potong kurva di x=0 dan x=3. Sehingga dengan metode cinci silinder untuk mencari volume benda diputar terhadap poros x=3 diperoleh

$$V = 2\pi \int_0^3 (3-x) \left[\left(6x - x^2 \right) - (x^2) \right] dx$$
$$= 2\pi \int_0^3 \left(18x - 12x^2 + 2x^3 \right) dx$$
$$= 2\pi \left[9x^2 - 4x^3 + \frac{x^4}{2} \right]_0^3 = 27\pi$$

12. **(ETS 2019)** Tentukan luas daerah yang dibatasi oleh kurva $y = \sin(x), \ y = \cos(x), \ y = \frac{\pi}{2}$ dan sumbu y.

Pembahasan:

Sketsa kurva

titik potong kurva $y=\sin x$ dan $y=\cos x$ di kuadran I yaitu $x=\frac{\pi}{4}$. Sehingga luas daerah yang diperoleh

$$L=\int_{\frac{\pi}{4}}^{\frac{\pi}{2}}\sin x-\cos x\,dx=-\cos x-\sin x\bigg|_{\frac{\pi}{4}}^{\frac{\pi}{2}}=\sqrt{2}-1 \text{ satuan luas }$$

13. Tentukan luas daerah yang dibatasi kurva x+3y=10, 2x-3y=-7, dan y=0.

Pembahasan:

Sketsa daerah kurva-kurva pada soal.

Perhatikan bahwa untuk menghitung luas daerah kurva harus dibagi menjadi dua daerah yaitu daerah L_1 dan L_2 seperti pada gambar. Perhatikan juga bahwa garis x+3y=10 dan 2x-5y=-7 mempunyai titik potong di (1,3). Untuk kurva $x+3y=10 \Rightarrow y=\frac{10-x}{3}$ sehingga diperoleh untuk L_1

$$L_1 = \int_1^{10} \frac{10 - x}{3} dx = \frac{10}{3} x - \frac{1}{6} x^2 \Big|_1^{10} = \left(\frac{10}{3} (10) - \frac{1}{6} (10)^2\right) - \left(\frac{10}{3} (1) - \frac{1}{6} (1)^2\right) = \frac{27}{2}.$$

Sedangkan untuk $2x - 3y = -7 \Rightarrow y = \frac{2x + 7}{3}$ sehingga diperoleh

$$L_2 = \int_{-4}^{1} \frac{2x+7}{3} dx = \frac{1}{3}x^2 + \frac{7}{3}x\Big|_{-4}^{1} = \left(\frac{1}{3}(1)^2 + \frac{7}{3}(1)\right) - \left(\frac{1}{3}(-4)^2 + \frac{7}{3}(-4)\right) = 70$$

Dengan demikian luas daerah yang dimaksud adalah

$$L_1 + L_2 = \frac{27}{2} + 70 = \frac{167}{2}$$
 satuan luas

14. Tentukan luas daerah yang dibatasi kurva x+3y=10, 2x-3y=-7, dan y=0 di kuadran 1.

Pembahasan:

Sketsa daerah kurva-kurva pada soal.

Perhatikan bahwa untuk menghitung luas daerah kurva harus dibagi menjadi dua daerah yaitu daerah L_1 dan L_2 seperti pada gambar. Perhatikan juga bahwa garis x+3y=10 dan 2x-5y=-7 mempunyai titik potong di (1,3). Untuk kurva $x+3y=10 \Rightarrow y=\frac{10-x}{3}$ sehingga diperoleh untuk L_1

$$L_1 = \int_1^{10} \frac{10 - x}{3} dx = \frac{10}{3}x - \frac{1}{6}x^2 \Big|_1^{10} = \left(\frac{10}{3}(10) - \frac{1}{6}(10)^2\right) - \left(\frac{10}{3}(1) - \frac{1}{6}(1)^2\right) = \frac{27}{2}.$$

Sedangkan untuk $2x - 3y = -7 \Rightarrow y = \frac{2x + 7}{3}$ sehingga diperoleh

$$L_2 = \int_0^1 \frac{2x+7}{3} dx = \frac{1}{3}x^2 + \frac{7}{3}x\Big|_0^1 = \left(\frac{1}{3}(1)^2 + \frac{7}{3}(1)\right) - \left(\frac{1}{3}(0)^2 + \frac{7}{3}(0)\right) = \frac{8}{3}$$

Dengan demikian luas daerah yang dimaksud adalah

$$L_1 + L_2 = \frac{27}{2} + \frac{8}{3} = \frac{97}{6}$$
 satuan luas

15. Tentukan luas daerah kurva yang dibatasi $y = x^2 - 3x - 18$ dan y = x - 6.

Pembahasan:

Perhatikan sketsa daerah yang dibatasi kurva

Titik potong kurva $y = x^2 - 3x - 18 \operatorname{dan} y = x - 6$

$$x^{2} - 3x - 18 = x - 6$$

$$x^{2} - 4x - 12 = 0 \Leftrightarrow (x + 2)(x - 6) = 0$$

diperoleh x=-2 dan x=6. Sehingga luasan daerah yang dimaksud diperoleh

$$L = \int_{-2}^{6} (x - 6) - (x^2 - 3x - 18) \, dx = \int_{-2}^{6} -x^2 + 4x + 12 \, dx = \left| -\frac{1}{3}x^3 + 2x^2 + 12x \right|_{-2}^{6} = \frac{256}{3}.$$

- 16. Dapatkan luas daerah yang dibatasi oleh $y^2 = x$ dan y = x 6.
 - (a) Integral terhadap \boldsymbol{x}
 - (b) Intgeral terhadap y

Pembahasan:

(a) Perhatikan gambar sketsa daerah yang dibatasi kurva pada soal dengan oritentasi sumbu-x

Perhatikan bahwa untuk menghitung luas daerah kurva harus dibagi menjadi dua daerah yaitu daerah L_1 dan L_2 seperti pada gambar. Perhatikan untuk L_1 , pertama mencari titik potong kurva $y^2=x$ dan y=x-6 didapat

$$(x-6)^{2} = x$$

$$x^{2} - 12x + 36 = x$$

$$x^{2} - 13x + 36 = 0$$

$$(x-4)(x-9) = 0$$

diperoleh x=4 dan x=9. Sehingga didapat

$$L_1 = \int_4^9 \sqrt{x} - (x - 6) \, dx = \frac{2}{3} x \sqrt{x} - \frac{1}{2} x^2 + 6 \Big|_4^9 = \frac{61}{6}$$

Untuk L_2 dapat dilihat bahwa daerah simetris terhadap sumbu-x, oleh karena itu diperoleh

$$L_2 = 2 \int_0^4 \sqrt{x} \, dx = 2 \left[\frac{2}{3} x \sqrt{x} \Big|_0^4 \right] = \frac{32}{3}$$

Sehingga luas daerah yang dibatasi kurva $y^2=x$ dan y=x-6 didapat

$$L_1 + L_2 = \frac{61}{6} + \frac{32}{3} = \frac{125}{6}$$
 satuan luas

(b) Perhatikan gambar sketsa daerah yang dibatasi kurva pada soal dengan orientasi sumbu-y

pertama mencari titik potong kurva $y^2=x$ dan y=x-6 terhadap variabel y didapat

$$y^{2} = y + 6$$
$$y^{2} - y - 6 = 0$$
$$(y + 2)(y - 3) = 0$$

diperoleh y=-2 dan y=3. Sehingga didapat

$$L_2 = \int_{-2}^{3} y + 6 - y^2 \, dy = \frac{1}{2} y^2 + 6y - \frac{1}{3} y^3 \Big|_{-2}^{3}$$
$$= \left(\frac{1}{2}(-2)^2 + 6(-2) - \frac{1}{3}(-2)^3\right) - \left(\frac{1}{2}(3)^2 + 6(3) - \frac{1}{3}(3)^3\right) = \frac{125}{6}$$

17. Tentukan luas daerah yang dibatas kurva $y=x^2$ dan y=x+12 pada kuadran I, dengan pengintegralan terhadap variabel y.

Pembahasan:

Perhatikan sketsa yang dihasilkan

Perhatikan bahwa untuk menghitung luas daerah kurva harus dibagi menjadi dua daerah yaitu daerah L_1 dan L_2 seperti pada gambar. Terlebih dahulu mencari titik potong kurva terhadap variabel y.

$$y = (y - 12)^{2}$$

$$y = y^{2} - 24y + 144$$

$$y^{2} - 25y + 144 = 0$$

$$(y - 16)(y - 9) = 0$$

diperoleh y=16 dan y=9. Dapat dilihat juga bahwa y=x+12 di y=12. Sehingga untuk L_1

$$L_1 = \int_{12}^{16} \sqrt{y} - (y - 12) \, dy = \frac{2}{3} y^{3/2} - \frac{1}{2} y^2 + 12 \Big|_{12}^{16} = \frac{104 - 48\sqrt{3}}{3}$$

Sedangkan untuk L_2

$$L_2 = \int_0^{12} \sqrt{y} \, dy = \frac{2}{3} y^{3/2} \Big|_0^{12} = 16\sqrt{3}$$

Dengan demikian luas yang diperoleh adalah

$$L_1 + L_2 = \frac{104 - 48\sqrt{3}}{3} + 16\sqrt{3} = \frac{104}{3}$$

18. **(ETS 2018)** Tentukan volume benda yang di batasi oleh lingkaran $x^2 + y^2 = 4$, selang $-2 \le x \le 2$ dan diputar mengelilingi sumbu X.

Pembahasan:

Figure 1: Grafik

Dengan menggunakan metode cakram berorientasi sumbu-y

$$V = \pi \int_{a_{2}}^{b} y^{2} dx$$

$$= \pi \int_{-2}^{2} 4 - x^{2} dx$$

$$= \pi \left[4x - \frac{1}{3}x^{3} \right]_{-2}^{2}$$

$$= \pi \left(8 - \frac{8}{3} \right) - \left(-8 + \frac{8}{3} \right)$$

$$= \pi \left[8 - \frac{8}{3} + 8 - \frac{8}{3} \right]$$

$$= \frac{32}{3} \pi \text{satuan volume}$$

Jadi volume benda yang di batasi lingkaran pada selang $-2 \le x \le 2$ adalah $\frac{32}{3}\pi$ satuan volume.

19. (ETS 2019) Dapatkan volume benda padat yang dihasilkan bila daerah yang dibatasi oleh y=4x dan parabola $y=4x^2$ diputar terhadap sumbu y.

Pemabahasan:

Perhatikan sketsa kurva

Titik potong $y=4x^2 \, \mathrm{dan} \; y=4x$

$$4x^{2} = 4x$$

$$\Leftrightarrow 4x^{2} - 4x = 0$$

$$\Leftrightarrow 4x(x - 1) = 0$$

jadi titik potong kurva di x=0 dan x=1. Sehingga dengan metode cinci silinder untuk mencari volume benda diputar terhadap poros sumbu-y diperoleh

$$V = 2\pi \int_0^1 x \left[(4x) - (4x^2) \right] dx$$
$$= 2\pi \int_0^1 \left(4x^2 - 4x^3 \right) dx$$
$$= 2\pi \left[\frac{4}{3} x^3 - x^4 \right]_0^1 = \frac{2}{3} \pi$$

20. **(ETS 2018)** Dapatkan volume benda padat yang dihasilkan bila daerah yang dibatasi oleh $x=-\sqrt{y}$ dan y=4 diputar terhadap garis y=4

Pembahasan:

Sketsa grafik

Berdasarkan gambar diatas, gunakan metode cincin cincin silinder berorientasi sumbu \boldsymbol{y} diperoleh volumenya

$$V = \int_0^4 2\pi (4-y) (0-(-\sqrt{y})) \, dy = 2\pi \int_0^4 4\sqrt{y} - y\sqrt{y} \, dy = \frac{256}{15} \pi \text{satuan volume}$$

21. Diberikan daerah S yang dibatasi antara kurva $y=x^2$ dan y=4. Jika daerah tersebut dilintasi suatu garis y=a. Tentukan nilai a sedemikian hingga garis y=a membagi daerah S menjadi dua daerah yang memiliki luas yang sama !

Pembahasan: Perhatikan sketsa kurva

Perhatikan gambar disamping garis y=a membagi daerah S menjadi luasan yang sama jika dan hanya jika

$$L_1 = L_2$$

Perhatikan bahwa

$$L_1 = \int_a^4 \sqrt{y} \, dy = \frac{2}{3} y^{\frac{3}{2}} \Big|_a^4 = \frac{16}{3} - \frac{2}{3} a^{\frac{3}{2}}$$
$$L_2 = \int_0^a \sqrt{y} \, dy = \frac{2}{3} y^{\frac{3}{2}} \Big|_0^a = \frac{2}{3} a^{\frac{3}{2}}$$

Sehingga diperoleh

$$\frac{16}{3} - \frac{2}{3}a^{\frac{3}{2}} = \frac{2}{3}a^{\frac{3}{2}} \iff a = 4^{\frac{2}{3}} = \sqrt[3]{4^2} = \sqrt[3]{16}$$

22. Jika $f(x)=(x-2)^2-4$ dan g(x)=-f(x), maka luas daerah yang di batasi kurva f dan g adalah...

Pembahasan:

$$f(x) = g(x)$$
$$(x-2)^2 - 4 = -(x-2)^2 + 4$$
$$x^2 - 4x = -x^2 + 4x$$

Sehingga di dapat x=0, dan x=4

$$L = \int_0^4 g(x) - f(x) dx$$

$$= \int_0^4 4x - x^2 - x^2 + 4x dx$$

$$= \int_0^4 8x - 2x^2 dx$$

$$= \left[4x^2 - \frac{2}{3}x^3\right]_0^4$$

$$= \left(64 - \frac{2}{3}.64\right) - (0 - 0)$$

$$= \frac{64}{3} \text{ satuan luas}$$

Jadi luas daerah yang di batasi kurva f dan g adalah $\frac{64}{3}$ satuan luas

23. **(ETS 2018)** Tentukan volume benda putar yang terbentuk, jika suatu daerah yang di batasi oleh kurva y=2x, y=x, x=1, x=3 di putar mengelilingi sumbu X.

Pembahasan:

Berdasarkan soal diperoleh sketsa sebagai berikut

Volume =
$$\pi \int_{1}^{3} (f^{2}(x) - g^{2}(x)) dx$$

= $\pi \int_{1}^{3} (2x)^{2} - (x)^{2} dx$
= $\pi \int_{1}^{3} 3x^{2} dx$
= $\pi (27 - 1)$
= 26π satuan volume

Jadi volume benda putar yang terbentuk adalah 26π satuan volume

24. Dengan menggunakan metode cakram tentukan volume sebuah bola dengan jari-jari \boldsymbol{r}

Pembahasan:

Misalkan diberikan persamaan suatu lingkaran bagian atas $y=\sqrt{r^2-x^2}$ dengan sketsa seperti dibawah ini

dengan menggunakan metode cakram, diperoleh volume benda putar

$$\begin{split} V &= \pi \int_{-r}^{r} \left(\sqrt{r^2 - x^2} \right)^2 \, dx = \pi \int_{-r}^{r} r^2 - x^2 \, dx = \pi \left[x r^2 - \frac{1}{3} x^3 \right]_{-r}^{r} \\ &= \pi \left[\left(r^3 - \frac{1}{3} r^3 \right) - \left(-r^3 + \frac{1}{3} r^3 \right) \right] = \pi \left[2 r^3 - \frac{2}{3} r^3 \right] = \frac{4}{3} \pi r^3 \text{satuan volume} \end{split}$$

25. Perhatikan derah yang dibatasi sumbu-x dan kurva $y=\mathrm{e}^{-x}$ untuk $x\geq 0$, diputar terhadap sumbu-x. Tentukan volume benda padat yang dihasilkan.

Pembahasan:

Perhatikan sketsa $y = e^{-x}$

Sehingga berdasarkan gambar diatas, maka luasan dari $y=\mathrm{e}^{-x}$ untuk $x\geq 0$ dan sumbu x

dengan metode cakram diperoleh

$$V = \pi \int_0^{+\infty} (e^{-x})^2 dx = \pi \lim_{t \to +\infty} \int_0^t e^{-2x} dx = \pi \lim_{t \to +\infty} \left[-\frac{1}{2} e^{-2x} \Big|_0^t \right] = \frac{\pi}{2}$$

26. **(EAS 2021)** Dapatkan volume benda putar daerah yang dibatasi oleh kurva $y=9-x^2$ dan y-x-7=0 jika diputar terhadap garis x=2.

Pembahasan: Perhatikan sketsa gambar kurva pada soal

Terlebih dahulu mencari titik potong kurva y=x+7 dengan $y=9-x^2$

$$x + 7 = 9 - x^{2}$$

$$x^{2} + x - 2 = 0$$

$$(x - 1)(x + 2) = 0$$

didapat x=-2 dan x=1. Jarak sumbu putar x=2 dengan sembarang partisi luas sebesar (2-x) Dengan menggunakan metode cincin silinder untuk menghitung volume benda putar diperoleh

$$V = \int_{-2}^{1} 2\pi (2-x)(9-x^2-(x+7)) dx$$

$$= \pi \int_{-2}^{1} 2x^3 - 2x^2 - 8x + 8 dx$$

$$= \pi \left[\frac{x^4}{x^2} - \frac{2x^3}{3} - 4x^2 + 8x \right]_{-2}^{1}$$

$$= \frac{45}{2}\pi \text{ satuan volume}$$

27. **(EAS 2020)** Dapatkan panjang busur kurva $y=\frac{1}{8}x^4+\frac{1}{4}x^{-2}$ dari x=2 dan x=4. **Pembahasan :**

Panjang busur kurva f(x) yang kontinu pada interval tertutup $a \leq x \leq b$ dapat dihitung dengan formula berikut

$$S = \int_{a}^{b} \sqrt{1 + \left(\frac{df(x)}{dx}\right)^{2}} dx$$

Pada soal diberikan $f(x)=\frac{1}{8}x^4+\frac{1}{4}x^{-2}$ pada interval $2\leq x\leq 4$. Perhatikan bahwa

$$\frac{df(x)}{dx} = \frac{1}{2}x^3 - \frac{1}{2}x^{-3}.$$

Sehingga panjan kurva $f(x) = \frac{1}{8} x^4 + \frac{1}{4} x^{-2}$ pada interval $2 \leq x \leq 4$ adalah

$$\begin{split} S &= \int_{2}^{4} \sqrt{1 + \left(\frac{1}{2}x^{3} - \frac{1}{2}x^{-3}\right)^{2}} \, dx \\ &= \int_{2}^{4} \sqrt{1 + \frac{1}{4}x^{6} + \frac{1}{4x^{6}} - \frac{1}{2}} \, dx \\ &= \int_{2}^{4} \sqrt{\frac{1}{2} + \frac{1}{4}x^{6} + \frac{1}{4x^{6}}} \, dx \\ &= \int_{2}^{4} \sqrt{\frac{x^{12} + 2x^{6} + 1}{4x^{6}}} \, dx \\ &= \int_{2}^{4} \sqrt{\frac{(x^{6} + 1)^{2}}{(2x^{3})^{2}}} \, dx \\ &= \int_{2}^{4} \frac{(x^{6} + 1)}{(2x^{3})} \, dx = \int_{2}^{4} \frac{1}{2}x^{3} + \frac{1}{2}x^{-3} \, dx = \frac{1923}{64} \text{ satuan panjang} \end{split}$$

28. **(EAS 2020)** Dapatkan luas permukaan yang diperoleh dari perputaran kurve $x=\sqrt[3]{y}$, $1\leq y\leq 8$ diputar terhadap sumbu x.

Pembahasan:

Luas permukaan yang diakibatjab oleh busur kurva f(x) yang kontinu pada interval tertutup $a \le x \le b$ dapat dihitung dengan formula berikut

$$K = \int_{a}^{b} 2\pi f(x) \sqrt{1 + \left(\frac{df(x)}{dx}\right)^{2}} dx$$

Perhatikan gambar sketsa kurva pada soal

Karena kurva diputar terhadap sumbu-x maka batas integrasi terhadap variabel x. Untuk nilai $1 \le y \le 8$ ekivalen dengan nilai $1 \le x \le 2$ terhadap fungsi $x = \sqrt[3]{y}$. Sehingga luas permukaan yang diakibatkan busur $x = \sqrt[3]{y} \Rightarrow y = x^3$ (kurva warna hijau) untuk $0 \le x \le 2$ diputar terhadap sumbu-x adalah

$$K = \int_{1}^{2} 2\pi (x^{3}) \sqrt{1 + \left(\frac{d[x^{3}]}{dx}\right)^{2}} dx = \int_{1}^{2} 2\pi (x^{3}) \sqrt{1 + (3x^{2})^{2}} dx$$
$$= \int_{1}^{2} 2\pi (x^{3}) \sqrt{1 + 9x^{4}} dx$$

Dengan mengggunakan metode integral subtitusi, misalkan $u=1+9x^4\Rightarrow \frac{du}{dx}=36x^3\Rightarrow \frac{1}{36}du=x^3\,dx$. Ubah batas integrasi, untuk $x=1\Rightarrow u=10$ sedangkan untuk $x=2\Rightarrow u=145$. Sehingga diperoleh integral yang baru yaitu

$$K = \int_{10}^{145} 2\pi \left(\frac{1}{36}\right) \sqrt{u} \, du = \frac{\left(145^{\frac{3}{2}} - 10^{\frac{3}{2}}\right)\pi}{27} = 2\left(\frac{145^{\frac{3}{2}}}{54} - \frac{5\sqrt{10}}{27}\right)\pi \text{ satuan luas}$$

29. (EAS 2022) Dapatkan panjang busur Kurva $24xy = x^4 + 48$ dari x = 2 sampai x = 4 Pembahasan :

Perhatikan bahwa

$$y = \frac{x^4 + 48}{24x} = \frac{x^3}{24} + \frac{2}{x}$$

Sehingga panjang kurva yang diperoleh

$$S = \int_{2}^{4} \sqrt{1 + (y')^{2}} \, dx = \int_{2}^{4} \sqrt{1 + \left(\frac{x^{2}}{8} - \frac{2}{x^{2}}\right)^{2}} \, dx$$

$$\begin{split} &= \int_{2}^{4} \sqrt{1 + \frac{x^4}{64} + \frac{4}{x^4} - \frac{1}{2}} \, dx = \int_{2}^{4} \sqrt{\frac{1}{2} + \frac{x^4}{64} + \frac{4}{x^4}} \, dx = \int_{2}^{4} \sqrt{\frac{x^8 + 32x^4 + 256}{64x^4}} \, dx \\ &= \int_{2}^{4} \frac{1}{8x^2} \sqrt{x^8 + 32x^4 + 256} \, dx = \int_{2}^{4} \frac{1}{8x^2} \sqrt{(x^4 + 16)^2} \, dx = \int_{2}^{4} \frac{1}{8x^2} \left(x^4 + 16\right) \, dx \\ &= \int_{2}^{4} \frac{1}{8}x^2 + \frac{2}{x^2} \, dx = \left(\frac{1}{24}x^3 - \frac{2}{x}\right) \Big|_{2}^{4} = \frac{68}{24} = \frac{17}{6} \text{ satuan panjang} \end{split}$$

- 30. **(EAS 2022)** Diberikan daerah yang dibatasi oleh kurva $y=\sqrt{16-x^2}$ dan sumbu x
 - (a) Sketsa daerah tersebut
 - (b) Dapatkan titik berat daerah tersebut
 - (c) Dapatkan volume benda putar daerah tersebut jika diputar terhadap garis y=x-5

Pembahasan:

(a) Sketsa grafik merupakan setengan lingkaran dengan pusat (0,0) jari-jari 4

(b) Perhatikan bahwa pada sketsa grafik, derah tersebut simetris terhadap sumbu-y sehingga didapat $\bar{x}=0$. Sehingga cukup mencari \bar{y} . Perhatikan bahwa

$$M = \frac{1}{2}(2\pi r) = \frac{1}{2}(2\pi)4 = 8\pi$$

$$M_y = \int_{-4}^4 \frac{1}{2} \left(\sqrt{16 - x^2}\right)^2 dx = \int_{-4}^4 \frac{1}{2} \left(16 - x^2\right) dx$$

$$= \int_{-4}^4 8 - \frac{1}{2}x^2 dx = 8x - \frac{1}{6}x^3\Big|_{-4}^4 = \frac{128}{3}$$

Sehingga diperoleh $\bar{y}=\frac{M_y}{M}=\frac{\frac{128}{3}}{8\pi}=\frac{16}{3\pi}$ jadi titik berat daerah tersebut adalah $\left(0,\frac{16}{3\pi}\right)$.

(c) Dengan menggunakan dalil Guldin I. Volume putar yang dimaksud diperoleh dengan

$$V = 2\pi \cdot d \cdot L$$

dengan d adalah jarak titik pusat ke garis putar x-y-5=0 dan L adalah luasan daerah. Perhatikan bahwa

$$d = \left| \frac{1(0) - 1\left(\frac{16}{3\pi}\right) - 5}{\sqrt{1^2 + (-1)^2}} \right| = \frac{16 + 15\pi}{3\sqrt{2}\pi}$$

Dengan demikian dengan dalil Guldin I, volume benda putar yang diperoleh

$$V=2\pi\left(\frac{16+15\pi}{3\sqrt{2}\pi}\right)8\pi=\frac{16\pi(16+15\pi)}{3\sqrt{2}} \text{ satuan volume}$$

31. (EAS 2020) Dapatkan titik berat benda homogen yang dibatasi kurva $y=x^3$, x=0 dan y=8.

Pembahasan :

Titik berat daerah yang dibatas oleh fungsi f(x)(fungsi atas) dan g(x)(fungsi bawah) pada interval $a \le x \le b$ adalah (\bar{x}, \bar{y}) dengan

$$\bar{x} = \frac{M_y}{M} = \frac{\int_a^b x \left[f(x) - g(x) \right] \, dx}{\int_a^b \left[f(x) - g(x) \right] \, dx} \, \operatorname{dan} \, \bar{y} = \frac{M_x}{M} = \frac{\int_a^b \frac{1}{2} \left[f^2(x) - g^2(x) \right] \, dx}{\int_a^b \left[f(x) - g(x) \right] \, dx}$$

dimana M_y merupakan momen statis terhadap sumbu y dan M_x merupakan momen statis terhadap sumbu x. Perhatikan sketa daerah pada soal

Sehingga diperoleh

$$M = \int_0^2 8 - x^3 dx = 8x - \frac{1}{4}x^4 \Big|_0^2 = 12$$

$$M_y = \int_0^2 x(8 - x^3) dx = \int_0^2 8x - x^4 dx = 4x^2 - \frac{1}{5}x^5 \Big|_0^2 = \frac{48}{5}$$

$$M_y = \int_0^2 \frac{1}{2}(8^2 - x^6) dx = \int_0^2 \frac{1}{2}64 - x^6 dx = \frac{1}{2}\left(64x - \frac{1}{7}x^7\right) \Big|_0^2 = \frac{384}{7}$$

Sehingga diperoleh

$$\bar{x} = \frac{\frac{48}{5}}{2} = \frac{4}{5} \text{ dan } \bar{y} = \frac{\frac{384}{7}}{12} = \frac{32}{7}$$

Dengan demikian titk berat daerah didapat $(\bar{x},\bar{y})=\left(\frac{4}{5},\frac{32}{7}\right)$. Dapat dilihat pada ilustrasi gambar dibawah ini

32. **(EAS 2020)** Dengan dalil Guldin dapatkan volume benda putar yang diperoleh dengan perputaran daerah yang dibatasi y=2x-2, y=6, y=0, dan x=0 diputar terhadap y=2x-4.

Pembahasan:

(Lihat pembahasan tentang dalil Guldin 1 pada bagian akhir bab) Perhatikan sketsa gambar pada soal

Mencari luas daerah

$$L = \int_0^1 6 \, dx + \int_1^4 6 - (2x - 2) \, dx = 6x \Big|_0^1 + 8x - x^2 \Big|_1^4 = 6 + (32 - 16) - (8 - 1) = 15$$

Mencari titik berat luasan

$$L = \int_0^1 6 \, dx + \int_1^4 6 - (2x - 2) \, dx = 6x \Big|_0^1 + 8x - x^2 \Big|_1^4 = 6 + (32 - 16) - (8 - 1) = 15$$
 Mencari titik berat luasan
$$M = \int_0^1 6 \, dx + \int_1^4 6 - (2x - 2) \, dx = 6x \Big|_0^1 + 8x - x^2 \Big|_1^4 = 6 + (32 - 16) - (8 - 1) = 15$$

$$M_y = \int_0^1 6x \, dx + \int_1^4 x (6 - (2x - 2)) \, dx = \int_0^1 6x \, dx + \int_1^4 (8x - 2x^2) \, dx = 3 + 18 = 21$$

$$M_x = \frac{1}{2} \int_0^1 6^2 \, dx + \frac{1}{2} \int_1^4 (6^2 - (2x - 2)^2) \, dx = 12 + 36 = 48$$

Sehingga diperoleh titik berat

$$\bar{x} = \frac{M_y}{M} = \frac{21}{15} = \frac{7}{5} \text{ dan } \bar{y} = \frac{M_x}{M} = \frac{48}{15} = \frac{16}{5}$$

Dengan demikian titk berat daerah didapat $(\bar{x}, \bar{y}) = \left(\frac{7}{5}, \frac{16}{5}\right)$.

Mencari jarak titik pusat ke garis sumbu putar.

Jarak titik
$$(\bar{x}, \bar{y}) = \left(\frac{7}{5}, \frac{16}{5}\right)$$
 ke $2x - y - 4 = 0$

$$d = \left| \frac{2\left(\frac{7}{5}\right) - 1\left(\frac{16}{5}\right) - 4}{\sqrt{2^2 + (-1)^2}} \right| = \frac{22\sqrt{5}}{25}$$

Sehingga dengan dalil Guldin 1 diperoleh volume benda putar yang dihasilkan adalah

$$V=2\pi\cdot d\cdot L=2\pi\left(\frac{22\sqrt{5}}{25}\right)15=\frac{132\sqrt{5}}{5} \text{ satuan volume}$$

DALIL GULDIN 1:

Misalkan diberikan luasan daerah seperti pada gambar dibawah ini

Jika diketahui luas daerah tersebut memiliki luas L, memiliki titik berat luasan di (\bar{x}, \bar{y}) , dan jarak titik berat tersebut ke suatu garis Ax + By + C = 0 adalah d dengan

$$d = \left| \frac{A\bar{x} + B\bar{y} + C}{\sqrt{A^2 + B^2}} \right|$$

maka menurut dalil **Guldin 1**, volume benda putar yang dihasilkan dari perputaran daerah L

Mohamad Ilham Dwi Firmansyah

terhadap garis Ax + By + C = 0 dapat dihitung dengan

$$V = 2\pi \cdot d \cdot L$$

DALIL GULDIN 2:

Misalkan diberikan suatu panjang busur f(x) pada suatu interval tertentu seperti pada gambar dibawah ini

Jika diketahui panjang busur tersebu adalah S, kemudian memiliki titik berat panjang bususr di (\bar{x}, \bar{y}) , dan jarak titik berat tersebut ke suatu garis Ax + By + C = 0 adalah d dengan

$$d = \left| \frac{A\bar{x} + B\bar{y} + C}{\sqrt{A^2 + B^2}} \right|$$

maka menurut dalil **Guldin 2**, luas kulit benda putar yang dihasilkan dari perputaran panjang busur S terhadap garis Ax + By + C = 0 dapat dihitung dengan

$$V = 2\pi \cdot d \cdot S$$

5. Persamaan Parametrik dan Koordinat Kutub

1. (EAS 2020)Diberikan pergerakan suatu titik dengan lintasan menurut kurva

$$\begin{cases} x = t + 3 \\ y = \sqrt{9 - t^2} \end{cases}$$

mulai t = -3 sampai t = 0

- (a) Tentukan garis singgung pada t = -1.
- (b) Tentukan panjang kurva tersebut dan sketsa dengan arah lintasannya.

Pembahasan:

(a) Dengan mengubah dari persamaan parametrik menjadi persamaan kartesius diperoleh

$$y = \sqrt{9 - (x - 3)^2}$$

dengan ketika t=-3 samapai t=0 sama halnya dengan x=0 sampai x=3. Dengan demikian kurva seperempat lingkaran diatas sumbu x dengan pusat (3,0) berjari-jari 3. Ketika t=-1 diperoleh x=2 dan $y=2\sqrt{2}$. Perhatikan turunan pertama dari $y=\sqrt{9-(x-3)^2}$ adalah

$$y' = -\frac{x-3}{\sqrt{9 - (x-3)^2}}$$

Sehingga gradien garis singgung kurva $y=\sqrt{9-(x-3)^2}$ di titik $(2,2\sqrt{2})$ adalah

$$m = y'(2) = -\frac{2-3}{\sqrt{9-(2-3)^2}} = \frac{1}{2\sqrt{2}} = \frac{1}{4}\sqrt{2}.$$

Jadi persamaan garis singgung di titik $(2,2\sqrt{2})$ dengan gradien $m=rac{1}{4}\sqrt{2}$ yaitu

$$y - 2\sqrt{2} = \frac{1}{4}\sqrt{2}(x-2) \Leftrightarrow \sqrt{2}x - 4y + 6\sqrt{2} = 0$$

Berikut diberikan sketsa kurva beserta garis singgung di titik $(2,2\sqrt{2})$

(b) Perhatikan sketsa kurva dibawah ini beserta arah kurva

Dengan panjang kurva

$$S = \int_{-3}^{0} \sqrt{\left(\frac{dx}{dt}\right)^{2} + \left(\frac{dy}{dt}\right)^{2}} dt$$

$$= \int_{-3}^{0} \sqrt{\left(\frac{d[3+t]}{dt}\right)^{2} + \left(\frac{d[\sqrt{9-t^{2}}]}{dt}\right)^{2}} dt = \int_{-3}^{0} \sqrt{1 + \left(-\frac{t}{\sqrt{9-t^{2}}}\right)^{2}} dt$$

$$= \int_{-3}^{0} \sqrt{1 + \frac{t^{2}}{9-t^{2}}} dt = \int_{-3}^{0} \frac{3}{\sqrt{9-t^{2}}} dt$$

Dengan subtitusi trigonometri, misalkan $t=3\sin\theta \Rightarrow dt=3\cos\theta$. Ubah batas :

 $t=-3\Rightarrow \theta=-rac{\pi}{2}$ dan $t=0\Rightarrow \theta=0.$ Sehingga diperoleh

$$\int_{-3}^{0} \frac{3}{\sqrt{9 - t^2}} dt = \int_{-\frac{\pi}{2}}^{0} \frac{3}{\sqrt{9 - 9\sin^2 \theta}} 3\cos\theta \, d\theta = \int_{-\frac{\pi}{2}}^{0} 3 \, d\theta = \frac{3\pi}{2}.$$

Sehingga panjang kurva adalah $\frac{3\pi}{2}$ satuan panjang. Sebagai tambahan, berdasarkan sketsa gambar yang menunjukkan seperempat lingkaran maka cara lain mencari panjang kurva dapat memanfaatkan rumus keliling lingkaran.

$$S = \frac{1}{4} \cdot 2\pi \cdot r = \frac{1}{4} \cdot 2\pi \cdot 3 = \frac{3\pi}{2} \text{ satuan panjang}$$

- 2. **(EAS 2020)** Diketahui persamaan parametrik : $x = \sin t$, $y = \sin 2t$, $(0 \le t \le 2\pi)$
 - (a) Nyatakan persamaan parametrik diatas ke persamaan dalam koordinat kartesian, beserta domainnya.
 - (b) Dapatkan kedua persamaan garis singgung di titik (0,0)
 - (c) Sketsa grafik kurva beserta garis singgungnya

Pembahasan:

(a) Diketahui bahwa $\sin t = x$ artinya $\cos t = \pm \sqrt{1-x^2}$ untuk $0 \le t \le 2\pi$. Sehingga didapat

$$y = \sin 2t = 2\sin t \cos t = \pm 2x\sqrt{1 - x^2}$$

Dengan domain fungsinya adalah

$$D_f = \{x \in \mathbb{R} : 1 - x^2 \ge 0\} = \{x \in \mathbb{R} : -1 \le x \le 1\}$$

(b) Untuk $y = x\sqrt{1-x^2}$ diperoleh turunan pertama

$$y' = 2\sqrt{1 - x^2} - 2x \cdot \frac{x^2}{\sqrt{1 - x^2}} = -\frac{4x^2 - 2}{\sqrt{1 - x^2}}$$

Sehingga gradien garis singgung kurva $y=x\sqrt{1-x^2}$ di titik (0,0) adalah

$$m = y'(0) = -\frac{4(0)^2 - 2}{\sqrt{1 - (0)^2}} = 2$$

Jadi persamaan garis singgung di titik (0,0) dengan gradien m=2 yaitu y=2x. Sedangkan untuk $y=-x\sqrt{1-x^2}$ dengan cara yang sama diperoleh gradiennya di

titik (0,0) adalah m=-2 sehingga persamaan garis singgung di titik (0,0) dengan gradien m=-2 adalah y=-2x.

(c) Sketsa grafik kurva beserta garis singgungnya

3. (EAS 2022) Diberikan partikel bergerak sepanjang kurva

$$\begin{cases} x = 1 - t \\ y = \sqrt{8 + 2t - t^2} \end{cases}$$

 $\mathrm{dengan} \ -2 \leq t \leq 1$

- (a) Nyatakan dalam persamaan kutub $r=f(\theta)$ dengan lintasan θ
- (b) Tentukan panjang lintasan kurva tersebut.
- (c) Sketsa persamaan kurva tersebut dan arah lintasanya.

Pembahasan:

(a) Perhatikan bahwa $x = 1 - t \Rightarrow t = 1 - x$ sehingga

$$y = \sqrt{8 + 2(1 - x) - (1 - x)^2} = \sqrt{9 - x^2}$$

Ubah ke dalam koordinat kutub, misalkan $x = r \cos \theta$ dan $y = r \sin \theta$, diperoleh bahwa

$$r\sin\theta = \sqrt{9 - r^2\cos^2\theta} \Rightarrow r^2\sin^2\theta + r^2\sin^2\theta = 9 \Rightarrow r = 3$$

Untuk perubahan batas parameter, untuk nilai $t=-2\Rightarrow x=r\cos\theta=3\cos\theta=1-(-2)\Rightarrow\cos\theta=1\Rightarrow\theta=0$ sedangkan untuk t=1 $x=r\cos\theta=3\cos\theta=1-(1)\Rightarrow\cos\theta=0\Rightarrow\theta=\frac{\pi}{2}$ Jadi persamaan kutub (r,θ) dari persamaan parametrik pada soal adalah r=3 untuk $0\leq\theta\leq\frac{\pi}{2}$.

(b) Panjang kurva persamaan kutub $r=f(\theta)$ dengan $a\leq \theta \leq b$ dapat dihitung dengan

$$S = \int_{a}^{b} \sqrt{r^2 + \left(\frac{dr}{d\theta}\right)^2} \, d\theta$$

Sehingga pada soal panjang busur r=3 untuk $0 \leq \theta \leq \frac{\pi}{2}$ adalah

$$S = \int_0^{\frac{\pi}{2}} \sqrt{3^2 + \left(\frac{d[3]}{x}\right)^2} d\theta = S = \int_0^{\frac{\pi}{2}} \sqrt{3^2 + 0^2} d\theta$$

$$=\int_0^{\frac{\pi}{2}} 3\,d heta = 3 heta \Big|_0^{\frac{\pi}{2}} = rac{3}{2}\pi$$
 satuan panjang

(c) Persamaan r=3 untuk $0 \le \theta \le \frac{\pi}{2}$ merupakan seperempat lingkaran dengan pusat (0,0) berjari-jari tiga terletak pada kuadran satu. Sehingga sketsa kurva dan arah lintasannya diberikan sebagai berikut

- 4. **(EAS 2022)** Misalkan posisi suatu partikel pada saat t diberikan dalam dua fungsi parametrik $x=\ln t-1$ dan $y=\frac{t}{t-1}$
 - (a) Nyatakan posisi partikel tersebut ke dalam bentuk koordinat kartesius

(b) Gambarkan grafik lintasan partikel untuk $t \geq 2$.

Pembahasan:

- (a) Perhatikan bahwa $x=\ln t-1\Rightarrow \ln t=x+1\Rightarrow t=\mathrm{e}^{x+1}$ Sehingga didapat $y=\frac{t}{t-1}=\frac{\mathrm{e}^{x+1}}{\mathrm{e}^{x+1}-1}$ dengan demikian fungsi gerak partikel dalam persamaan kartesius adalah $f(x)=\frac{\mathrm{e}^{x+1}}{\mathrm{e}^{x+1}-1}$
- (b) Ketika t=2 maka $x=\ln(2)-1$ sehingga grafik fungsi f(x) ketika $x\geq \ln(2)-1$ adalah

- 5. **(EAS 2022)** Suatu partikel bergerak dengan lintasan mengikuti persamaan $y={\rm e}^{-3t}-1$ dan $x={\rm e}^{-2t}$
 - (a) Dapatkan $\frac{dy}{dx}$
 - (b) Dapatkan persamaan garis singgung kurva lintasan tersebut di $t=\ln 5$.

Pembahasan:

(a) Perhatikan bahwa

$$\frac{dy}{dx} = \frac{\frac{dy}{dt}}{\frac{dt}{dt}} = \frac{\frac{d}{dt} \left[e^{-3t} - 1 \right]}{\frac{d}{dt} \left[e^{-2t} \right]} = \frac{3}{2} e^{-t}$$

(b) Gradie garis singgung kurva parametrik di $t=\ln 5$

$$m = \frac{dy}{dx}\Big|_{t=\ln 5} = \frac{3}{2}e^{-\ln 5} = \frac{3}{10}$$

Ketikan $t=\ln 5$ maka $y={\rm e}^{-3\cdot\ln 5}-1=-\frac{124}{125}$ dan $x={\rm e}^{-2\cdot\ln 5}=\frac{1}{25}$ Sehingga persamaan garis singgungnya adalah

$$y + \frac{124}{125} = \frac{3}{10}\left(x - \frac{1}{25}\right) \Leftrightarrow y = \frac{3}{10}x - \frac{251}{250}$$

106

Berikut diberikan ilustari gambar kurva dengan garis singgungnya

6. (EAS 2022) Buatlah sketsa dan dapatkan panjang kurva yang dibentuk oleh kurva

$$r = \frac{2a}{1+\cos\theta} \text{ dan } r = 2a(1+\cos\theta)$$

$$\begin{array}{l} \text{di } 0 \leq \theta \leq \frac{\pi}{2} \\ \textbf{Pembahasan} \end{array}$$

• Kurva
$$r(\theta) = \frac{2a}{1 + \cos \theta}$$

Panjang kurva diperoleh

$$S = \int_0^{\pi/2} \sqrt{r^2 + \left(\frac{dr}{d\theta}\right)^2} \, d\theta$$

$$= \int_0^{\pi/2} \sqrt{\left(\frac{2a}{1 + \cos \theta}\right)^2 + \left(\frac{d}{d\theta} \left[\frac{2a}{1 + \cos \theta}\right]\right)^2} \, d\theta$$

$$= \int_0^{\pi/2} \sqrt{\left(\frac{2a}{1 + \cos \theta}\right)^2 + \left(\frac{2a\sin(\theta)}{(\cos(\theta) + 1)^2}\right)^2} \, d\theta$$

$$= \int_0^{\pi/2} \frac{2a}{1 + \cos \theta} \sqrt{1 + \frac{\sin^2 \theta}{(1 + \cos(\theta))^2}} \, d\theta$$

$$= \int_0^{\pi/2} \frac{2a}{1 + \cos \theta} \sqrt{\frac{(1 + \cos \theta)^2 + \sin^2 \theta}{(1 + \cos \theta)^2}} \, d\theta = \int_0^{\pi/2} \frac{2a}{1 + \cos \theta} \sqrt{\frac{2}{1 + \cos \theta}} \, d\theta$$

$$= 2\sqrt{2}a \int_0^{\pi/2} \frac{1}{(1 + \cos \theta)^{\frac{3}{2}}} \, d\theta$$

Perhatikan bahwa $1+\cos\theta=2\cos^2\left(\frac{\theta}{2}\right)$ sehingga didapat

$$= 2\sqrt{2}a \int_0^{\pi/2} \frac{1}{(1+\cos\theta)^{\frac{3}{2}}} d\theta = 2\sqrt{2}a \int_0^{\pi/2} \frac{1}{2^{3/2}\cos^3\left(\frac{\theta}{2}\right)} d\theta = a \int_0^{\pi/2} \sec^3\left(\frac{\theta}{2}\right) d\theta$$

Misalkan $u=\frac{\theta}{2}\Rightarrow 2du=d\theta$, ubah batas untuk $\theta=0$ maka u=0, untuk $\theta=\frac{\pi}{2}$ maka $u=\frac{\pi}{4}$. Sehingga integral menjadi

$$a \int_0^{\pi/2} \sec^3\left(\frac{\theta}{2}\right) d\theta = 4a \int_0^{\pi/4} \sec^3\left(u\right) d\theta$$

Dengan menggunakan rumus induksi integral secan

$$\int \sec^{n} x \, dx = \frac{n-2}{n-1} \int \sec^{n-2} x \, dx + \frac{\sec^{n-2} x \tan x}{n-1}$$

diperoleh

$$4a \int \sec^3(u) \ d\theta = 4a \left[\frac{1}{2} \int \sec x \, dx + \frac{\sec x \tan x}{2} \right]$$

$$=4a\cdot\left(\frac{\ln\left(\sin\left(x\right)+1\right)}{4}-\frac{\ln\left(1-\sin\left(x\right)\right)}{4}-\frac{\sin\left(x\right)}{2\sin^{2}\left(x\right)-2}\right)\Big|_{0}^{\pi/4}$$

$$=4a\left(\frac{\ln\left(\frac{\sqrt{2}+2}{2}\right)}{4}-\frac{\ln\left(1-\frac{1}{\sqrt{2}}\right)}{4}+\frac{1}{\sqrt{2}}\right) \text{ satuan panjang}$$

• Kurva $r(\theta) = 2a(1 + \cos \theta)$

Panjang kurva diperoleh

$$S = \int_0^{\pi/2} \sqrt{r^2 + \left(\frac{dr}{d\theta}\right)^2} d\theta$$

$$= \int_0^{\pi/2} \sqrt{(2a(1+\cos\theta))^2 + \left(\frac{d}{d\theta}\left[2a(1+\cos\theta)\right]\right)^2} d\theta$$

$$= \int_0^{\pi/2} \sqrt{(2a(1+\cos\theta))^2 + (-2a\sin\theta)^2} d\theta$$

$$= \int_0^{\pi/2} 2a\sqrt{1+2\cos\theta + \cos^2\theta + \sin^2\theta} d\theta = 2\sqrt{2}a\int_0^{\pi/2} \sqrt{1+\cos\theta} d\theta$$

$$2\sqrt{2}a\int_0^{\pi/2} \sqrt{\cos^2\theta} d\theta = 2\sqrt{2}a\int_0^{\pi/2} \cos\theta d\theta = 8a\sin\left(\frac{x}{2}\right)\Big|_0^{\pi/2} = 4\sqrt{2}a \text{ satuan luas}$$

7. (EAS 2022)

(a) Buatlah sketsa kurva dari persamaan parametrik

$$x = 1 + \cos t, \ y = 3 - \sin t, \ 0 \le t \le 2\pi$$

- (b) Dapatkan panjang busur dari kurva tersebut
- (c) Dapatkan semua nilai parameter t yang menyebabkan kurva tersebut mempunyai garis singgung vertikal.

Pembahasan:

(a) Perhatikan bahwa $x=1+\cos t\Rightarrow \cos t=x-1$ dan $y=3-\sin t\Rightarrow \sin t=3-y$, didapat

$$\cos^2 t + \sin^2 t = (x - 1)^2 + (3 - y)^2 = 1$$

Sehingga persamaan parametrik pada soal mempunyai persamaan kartesius $(x-1)^2 + (y-3)^2 = 1$ yang merupakan lingkaran berpusat (1,3) dan berjari-jari 1.

(b) Panjang busur berdasarkan keliling lingkaran adalah $S=2\pi r=2\pi$. Panjang busur dicari menggunakan intergal didapat

$$S = \int_0^{2\pi} \sqrt{\left(\frac{dx}{dt}\right)^2 + \left(\frac{dy}{dt}\right)^2} dt = \int_0^{2\pi} \sqrt{(-\sin t)^2 + (-\cos t)^2} dt = \int_0^{2\pi} dt = 2\pi$$

(c) Garis singgung vertikal terjadi ketika $\frac{dx}{dt} = 0$ sehingga

$$\frac{d}{dt}(1+\cos t) = -\sin t = 0 \Rightarrow \sin t = 0$$

diperoleh nilai $t = 0, \pi, 2\pi$

8. **(EAS 2022)** Sketsa grafik di dalam kurva kutub $r=6\sin\theta$ dan di luar kurva kutub $r=2+2\sin\theta$, selanjutnya hitung luas daerah tersebut.

Pembahasan:

Perhatikan gambar sketsa pada soal

Terlebih dahulu mencari titik potong kedua kurva kutub $r=6\sin\theta$ dan $r=2+2\sin\theta$

$$6\sin\theta = 2 + 2\sin\theta \Rightarrow \sin\theta = \frac{1}{2} \Rightarrow \theta = \frac{\pi}{6}, \frac{5\pi}{6}$$

Dapat dilihat bahwa daerah arsiran simetri terhadap sumbu-y sehingga untuk mencari luasan daerah dapat dilakukan dengan cara mencari luasan disebelah kanan sumbu-y kemudian dikalikan dua, seperti berikut

$$L = 2 \int_{\pi/6}^{\pi/2} \frac{1}{2} \left[(6\sin\theta)^2 - (2 + 2\sin\theta)^2 \right] d\theta = \int_{\pi/6}^{\pi/2} 36\sin^2\theta - (4 + 8\sin\theta + 4\sin^2\theta) d\theta$$

$$= \int_{\pi/6}^{\pi/2} 32\sin^2\theta - 8\sin\theta - 4d\theta = 4 \left[\int_{\pi/6}^{\pi/2} 8\sin^2\theta - 2\sin\theta - 1d\theta \right]$$

$$= 4 \left[\int_{\pi/6}^{\pi/2} 8 \left(\frac{1 - \cos 2\theta}{2} \right) - 2\sin\theta - 1d\theta \right] = 4 \left[\int_{\pi/6}^{\pi/2} 4(1 - \cos 2\theta) - 2\sin\theta - 1d\theta \right]$$

$$= 4 \left[\int_{\pi/6}^{\pi/2} -4\cos 2\theta - 2\sin\theta + 3d\theta \right] = -8\sin(2\theta) + 8\cos(\theta) + 12\theta \Big|_{\pi/6}^{\pi/2} = 4\pi \text{ satuan luas}$$

9. **(EAS 2022)** Sketsa grafik irisan kurva kutub $r=2-2\sin\theta$ dankurva kutub $r=2+2\sin\theta$,

selanjutnya hitung luas daerah tersebut.

Pembahasan:

Perhatikan gambar sketsa pada soal

Terlebih dahulu mencari titik potong kedua kurva kutub $r=2-2\sin\theta$ dan $r=2+2\sin\theta$

$$2 - 2\sin\theta = 2 + 2\sin\theta \Rightarrow \sin\theta = 0 \Rightarrow \theta = 0, \pi$$

Dapat dilihat bahwa daerah arsiran simetri terhadap sumbu-y dan sumbu-x sehingga untuk mencari luasan daerah dapat dilakukan dengan cara mencari luasan kuadran I, kemudian dikalikan 4 seperti berikut

$$L = 4 \int_0^{\pi/2} \frac{1}{2} (2 - 2\sin\theta)^2 d\theta = 2 \int_0^{\pi/2} (2 - 2\sin\theta)^2 d\theta = 8 \int_0^{\pi/2} (1 - \sin\theta)^2 d\theta$$

$$= 8 \int_0^{\pi/2} 1 - 2\sin\theta + \sin^2\theta d\theta = 8 \int_0^{\pi/2} 1 - 2\sin\theta + \left(\frac{1 - \cos 2\theta}{2}\right) d\theta$$

$$= \int_0^{\pi/2} 8 - 16\sin\theta + 4(1 - \cos 2\theta) d\theta = \int_0^{\pi/2} 12 - 16\sin\theta - 4\cos 2\theta d\theta$$

$$= -2\sin(2\theta) + 16\cos(\theta) + 12\theta \Big|_0^{\pi/2} = 6\pi - 16 \text{ satuan luas}$$

10. **(EAS 2022)** Sketsa grafik di dalam kurva kutub $r = 2 - 2\cos\theta$ dan di luar kurva kutub r = 3, selanjutnya hitung luas daerah tersebut.

Pembahasan:

Perhatikan gambar sketsa pada soal

Terlebih dahulu mencari titik potong kedua kurva kutub $r=2-2\cos\theta$ dan r=3

$$2 - 2\cos\theta = 3 \Rightarrow \cos\theta = -\frac{1}{2} \Rightarrow \theta = \frac{2\pi}{3}, \frac{4\pi}{3}$$

Dapat dilihat bahwa daerah arsiran simetri terhadap sumbu-x sehingga untuk mencari luasan daerah dapat dilakukan dengan cara mencari luasan disebelah atas sumbu-x kemudian dikalikan dua, seperti berikut

$$L = 2 \int_{2\pi/3}^{\pi} \frac{1}{2} \left[(2 - 2\cos\theta)^2 - (3)^2 \right] d\theta = \int_{2\pi/3}^{\pi} \left[(2 - 2\cos\theta)^2 - (3)^2 \right] d\theta$$

$$= \int_{2\pi/3}^{\pi} 4 - 8\cos\theta + 4\cos^2\theta - 9d\theta = \int_{2\pi/3}^{\pi} 4\cos^2\theta - 8\cos\theta - 5d\theta$$

$$= \int_{2\pi/3}^{\pi} 4\left(\frac{\cos 2\theta + 1}{2}\right) - 8\cos\theta - 5d\theta = \int_{2\pi/3}^{\pi} 2\left(\cos 2\theta + 1\right) - 8\cos\theta - 5d\theta$$

$$= \int_{2\pi/3}^{\pi} 2\cos 2\theta - 8\cos\theta - 3d\theta = \sin(2\theta) - 8\sin(\theta) - 3\theta \Big|_{2\pi/3}^{\pi} = \frac{9\sqrt{3} - 2\pi}{2} \text{ satuan luas}$$

11. **(EAS 2020)** Gambarkan dan dapatkan luas irisan dari $r = \sin 2\theta$ dan $r = \cos \theta$.

Pembahasan:

Perhatikan gambar sketsa pada soal

Terlebih dahulu mencari titik potong kedua kurva kutub $r = \sin 2\theta$ dan $r = \cos \theta$

$$\sin 2\theta = \cos \theta \Rightarrow 2\sin \theta \cos \theta = \cos \theta \Rightarrow 2\sin \theta \cos \theta - \cos \theta = 0 \Rightarrow \cos \theta (2\sin \theta - 1) = 0$$

Ketika $\cos\theta=0\Rightarrow\theta=\frac{\pi}{2},\frac{3\pi}{2}$, sedangkan ketika $\sin\theta=\frac{1}{2}\Rightarrow\theta=\frac{\pi}{6},\frac{5\pi}{6}$ Dapat dilihat bahwa daerah arsiran simetri terhadap sumbu-x sehingga untuk mencari luasan daerah dapat dilakukan dengan cara mencari luasan disebelah atas sumbu-x kemudian dikalikan dua. Perhatikan bahwa

Sehingga didapat bahwa $L = 2(L_1 + L_2)$.

$$L_{1} = \int_{\pi/6}^{\pi/2} \frac{1}{2} \cos^{2} \theta \, d\theta = \int_{\pi/6}^{\pi/2} \frac{1}{2} \left(\frac{\cos 2\theta + 1}{2} \right) \, d\theta = \frac{1}{4} \int_{\pi/6}^{\pi/2} \cos 2\theta + 1 \, d\theta = \frac{\cos(\theta) \sin(\theta) + \theta}{4} \Big|_{\pi/6}^{\pi/2}$$

$$= \left(\frac{\cos\left(\frac{\pi}{2}\right) \sin\left(\frac{\pi}{2}\right) + \frac{\pi}{2}}{4} \right) - \left(\frac{\cos\left(\frac{\pi}{6}\right) \sin\left(\frac{\pi}{6}\right) + \frac{\pi}{6}}{4} \right) = \frac{4\pi - 3\sqrt{3}}{48}$$

sedangkan untuk L_2

$$L_2 = \int_0^{\pi/6} \frac{1}{2} \sin^2 2\theta \, d\theta = \int_0^{\pi/6} \frac{1}{2} \left(\frac{1 - \cos 4\theta}{2} \right) \, d\theta = \frac{1}{4} \int_0^{\pi/6} 1 - \cos 4\theta \, d\theta$$
$$= -\frac{\sin (4x) - 4x}{16} \Big|_0^{\pi/6} = \left(-\frac{\sin (4(0)) - 4(0)}{16} \right) - \left(-\frac{\sin \left(4\left(\frac{\pi}{2}\right)\right) - 4\left(\frac{\pi}{2}\right)}{16} \right) = \frac{4\pi - 3\sqrt{3}}{96}$$

Jadi luas daerah yang diarsir adalah

$$L = 2(L_1 + L_2) = 2\left(\frac{4\pi - 3\sqrt{3}}{48} + \frac{4\pi - 3\sqrt{3}}{96}\right) = \frac{12\pi - 9\sqrt{3}}{48} \text{ satuan luas}$$

12. **(EAS 2020)** Dapatkan panjang busur kurva $x = e^t \cos t$, $y = e^t \sin t$ di $0 \le t \le \frac{\pi}{2}$. **Pembahasan :**

Panjang kurva yang dihasilkan adalah

$$S = \int_{a}^{b} \sqrt{\left(\frac{dx}{dt}\right)^{2} + \left(\frac{dy}{dt}\right)^{2}} \, dt = \int_{0}^{\pi/2} \sqrt{\left(\frac{d}{dt}[e^{t}\cos t]\right)^{2} + \left(\frac{d}{dt}[e^{t}\sin t]\right)^{2}} \, dt$$

$$= \int_{0}^{\pi/2} \sqrt{(-e^{t}\left(\sin\left(t\right) - \cos\left(t\right)\right))^{2} + (e^{t}\left(\sin\left(t\right) + \cos\left(t\right)\right))^{2}} \, dt$$

$$= \int_{0}^{\pi/2} \sqrt{e^{2t}\sin^{2}t + e^{2t}\cos^{2}t - 2e^{2t}\sin t\cos t + e^{2t}\sin^{2}t + e^{2t}\cos^{2}t + 2e^{2t}\sin t\cos t} \, dt$$

$$= \int_{0}^{\pi/2} \sqrt{2e^{2t}} \, dt = \int_{0}^{\pi/2} e^{t} \sqrt{2} \, dt = \sqrt{2} \int_{0}^{\pi/2} e^{t} \, dt = \sqrt{2}e^{t} \Big|_{0}^{\pi/2} = \sqrt{2}(e^{\pi/2} - 1) \text{ satuan panjang}$$

13. **(EAS 2020)** Dapatkan kemirinagn garis singgung kurva $r = a \sec 2\theta$ di titik dengan $\theta = \frac{\pi}{6}$. **Pembahasan :**

Turunan pertama dari kurva kutub $r(\theta) = a \sec \theta$

$$\frac{dy}{dx} = \frac{\frac{dy}{d\theta}}{\frac{dx}{d\theta}} = \frac{r\cos\theta + \sin\theta\frac{dr}{d\theta}}{-r\sin\theta + \cos\theta\frac{dr}{d\theta}}$$

$$\frac{dy}{dx} = \frac{a \sec 2\theta \cos \theta + \sin \theta \frac{d}{d\theta} [a \sec 2\theta]}{-a \sec \theta \sin \theta + \cos \theta \frac{d}{d\theta} [a \sec \theta]} = \frac{a \sec 2\theta \cos \theta + 2a \sin \theta \sec 2\theta \tan 2\theta}{-a \sec 2\theta \sin \theta + 2a \cos \theta \sec 2\theta \tan 2\theta}$$

$$=\frac{\sec 2\theta \cos \theta + 2\sin \theta \sec 2\theta \tan 2\theta}{-\sec 2\theta \sin \theta + 2\cos \theta \sec 2\theta \tan 2\theta} = \frac{3\cos \theta - \cos 3\theta}{\sin \theta + 3\sin 3\theta}$$

Sehingga kemirian garis singgung kurva pada $\theta=\frac{\pi}{6}$ adalah

$$m = \frac{dy}{dx}\Big|_{\theta = \pi/6} = \frac{3\cos\theta - \cos 3\theta}{\sin\theta + 3\sin 3\theta}\Big|_{\theta = \pi/6} = \frac{3\cos(\pi/6) - \cos(3\pi/6)}{\sin(\pi/6) + 3\sin(3\pi/6)} = \frac{3\sqrt{3}}{7}$$

14. **(EAS 2022)** Dapatkan panjang busur dari kurva $r = a\cos\theta + b\sin\theta$. (Berikan gambar sketsa kurvanya)

Perhatikan: bilangan b dan a dalam soal ini adalah dua digit terakhir NRP anda. Misalkan NRP anda adalah 06111940000076 maka b=7 dan a=6, jika a atau b adalah 0 ganti dengan angka 10.

Pembahasan:

Pada pembahasan ini akan diselesaikan secara umum untuk sembarang a dan b tak nol. Perhatikan bahwa

$$r = a\cos\theta + b\sin\theta \Rightarrow r^2 = r(a\cos\theta + b\sin\theta) = ar\cos\theta + br\sin\theta$$

dengan transformasi koordinat kutub $x = r \cos \theta$ dan $y = r \sin \theta$ diperoleh

$$r^{2} = ar \cos \theta + br \sin \theta \Rightarrow x^{2} + y^{2} = ax + by \Rightarrow x^{2} - ax + y^{2} - by = 0$$

$$\Rightarrow x^{2} - ax + \frac{1}{4}a^{2} + y^{2} - by + \frac{1}{4}b^{2} = \frac{1}{4}a^{2} + \frac{1}{4}b^{2} \Rightarrow \left(x - \frac{1}{2}a\right)^{2} + \left(y - \frac{1}{2}b\right)^{2} = \frac{1}{4}a^{2} + \frac{1}{4}b^{2}$$

Persamaan

$$\left(x - \frac{1}{2}a\right)^2 + \left(y - \frac{1}{2}b\right)^2 = \frac{1}{4}a^2 + \frac{1}{4}b^2$$

merupakan lingkaran dengan pusat $\left(\frac{a}{2},\frac{b}{2}\right)$ dengan jari-jari $r=\sqrt{\frac{1}{4}a^2+\frac{1}{4}b^2}$. Sehingg panjang kurva yang diperoleh adalah keliling lingkaran tersebut yaitu

$$S=2\pi r=2\pi\sqrt{rac{1}{4}a^2+rac{1}{4}b^2}$$
 satuan panjang

- 15. **(EAS 2022)** Diberikan kurva kutub $r=2(1+\cos\theta)$, $0\leq\theta\leq2\pi$
 - (a) Dapatkan kemiringan garis singgung pada kurva tersebut di titik $\theta=\frac{\pi}{2}$
 - (b) Dapatkan semua titik (r, θ) pada kurva kutub tersebut dimana garis singgungnya vertikal.

Pembahasan:

(a) Turunan pertama dari kurva kutub $r(\theta) = 2(1 + \cos \theta)$

$$\frac{dy}{dx} = \frac{\frac{dy}{d\theta}}{\frac{d\theta}{d\theta}} = \frac{r\cos\theta + \sin\theta\frac{dr}{d\theta}}{-r\sin\theta + \cos\theta\frac{dr}{d\theta}}$$

$$\frac{dy}{dx} = \frac{2(1+\cos\theta)\cos\theta + \sin\theta \frac{d}{d\theta}[2(1+\cos\theta)]}{-2(1+\cos\theta)\sin\theta + \cos\theta \frac{d}{d\theta}[2(1+\cos\theta)]} = \frac{2\cos\theta + 2\cos^2\theta - 2\sin^2\theta}{-2(1+\cos\theta)\sin\theta - 2\cos\theta\sin\theta}$$
$$= \frac{\cos\theta + \cos^2\theta - \sin^2\theta}{-(1+\cos\theta)\sin\theta - \cos\theta\sin\theta} = -\frac{(\cos\theta + \cos2\theta)\csc\theta}{2\cos\theta + 1}$$

Sehingga kemirian garis singgung kurva pada $\theta=\frac{\pi}{2}$ adalah

$$m = \frac{dy}{dx}\Big|_{\theta = \pi/2} = -\frac{(\cos\theta + \cos 2\theta)\csc\theta}{2\cos\theta + 1}\Big|_{\theta = \pi/6} = -\frac{(\cos(\pi/2) + \cos(2\pi/2)\csc(\pi/2)}{2\cos(\pi/2) + 1} = 1$$

(b) Garis singgung vertikal terjadi ketika

$$\frac{dx}{d\theta} = -r\sin\theta + \cos\theta \frac{dr}{d\theta} = 0$$

Sehingga diperoleh

$$\frac{dx}{d\theta} = -r\sin\theta + \cos\theta \frac{dr}{d\theta} = -2(1+\cos\theta)\sin\theta + \cos\theta \frac{d}{d\theta}[2(1+\cos\theta)]$$
$$= -2(1+\cos\theta)\sin\theta - 2\cos\theta\sin\theta$$
$$= -2\sin\theta(2\cos\theta + 1) = 0$$

solusi persamaan tersebut ketika $\sin\theta=0$ diperoleh $\theta=0,\pi,2\pi$ dan ketika $\cos\theta=-\frac{1}{2}$ diperoleh $\theta=\frac{2\pi}{3},\frac{5\pi}{3}$ Jadi semua nilai θ sehingga kurva kutub $r=2(1+\cos\theta)$ mempunyai garis singgung vertikal adalah $0,\frac{\pi}{3},\pi,\frac{5\pi}{3},2\pi$.

16. **(EAS 2020)** Dapatkan kemiringan garis singgung kurva $r=3\sin3\theta$ di $\theta=\frac{\pi}{6}$ **Pembahasan :**

Turunan pertama dari kurva kutub $r(\theta) = 3\sin 3\theta$

$$\frac{dy}{dx} = \frac{\frac{dy}{d\theta}}{\frac{dx}{d\theta}} = \frac{r\cos\theta + \sin\theta\frac{dr}{d\theta}}{-r\sin\theta + \cos\theta\frac{dr}{d\theta}} = \frac{3\sin3\theta\cos\theta + \sin\theta\frac{d}{d\theta}[3\sin3\theta]}{-3\sin3\theta\sin\theta + \cos\theta\frac{d}{d\theta}[3\sin3\theta]}$$

$$=\frac{3\sin 3\theta\cos \theta+3\sin \theta\cos 3\theta}{-3\sin 3\theta\sin \theta+3\cos \theta\cos 3\theta}=\frac{\sin 3\theta\cos \theta+\sin \theta\cos 3\theta}{-\sin 3\theta\sin \theta+\cos \theta\cos 3\theta}$$

Sehingga kemirian garis singgung kurva pada $\theta=\frac{\pi}{6}$ adalah

$$m = \frac{dy}{dx}\Big|_{\theta = \pi/6} = \frac{\sin 3\theta \cos \theta + \sin \theta \cos 3\theta}{-\sin 3\theta \sin \theta + \cos \theta \cos 3\theta}\Big|_{\theta = \pi/6}$$

$$= \frac{\sin(3\pi/6)\cos(\pi/6) + \sin(\pi/6)\cos(3\pi/6)}{-\sin(3\pi/6)\sin(\pi/6) + \cos(\pi/6)\cos(3\pi/6)} = -\sqrt{3}$$

17. **(EAS 2020)** Hitung luas daerah yang dibatasi oleh parabola $r=\frac{6}{1+\cos\theta}$ yang berada di kuadran pertama (sertakan sketsa gambar geometrinya dan arsir luasannya)

Pembahasan:

Perhatikan gambar sketsa pada soal

Karena yang diminta adalah luasan pada kuadran I artinya nilai $0 \le \theta \le \frac{\pi}{2}$. Sehingga diperoleh

$$L = \frac{1}{2} \int_0^{\pi/2} r^2 d\theta = \frac{1}{2} \int_0^{\pi/2} \left(\frac{6}{1 + \cos \theta} \right)^2 d\theta = 18 \int_0^{\pi/2} \left(\frac{1}{1 + \cos \theta} \right)^2 d\theta$$

$$= 18 \int_0^{\pi/2} \left(\frac{1}{1 + \left(2\cos^2\left(\frac{\theta}{2}\right) - 1 \right)} \right)^2 d\theta = \frac{9}{2} \int_0^{\pi/2} \sec^4\left(\frac{\theta}{2}\right) d\theta$$

Perhatikan bahwa

$$\frac{9}{2} \int_0^{\pi/2} \sec^4\left(\frac{\theta}{2}\right) d\theta = \frac{9}{2} \int_0^{\pi/2} \sec^2\left(\frac{\theta}{2}\right) \left(\tan^2\left(\frac{\theta}{2}\right) + 1\right) d\theta$$

misalkan $u=\tan\left(\frac{\theta}{2}\right)$ didapat $du=\frac{1}{2}\sec^2\left(\frac{\theta}{2}\right)d\theta$. Ubah batas jika $\theta=0$ maka u=0, jika $\theta=\frac{\pi}{2}$ maka u=1. Sehingga dengan integral subtitusi diperoleh

$$\frac{9}{2} \int_0^{\pi/2} \sec^4 \left(\frac{\theta}{2} \right) \, d\theta = 9 \int_0^1 (u^2 + 1) \, d = 9 \left(\frac{1}{3} + 1 \right) = 12 \text{ satuan luas }$$

18. Dapatkan semua nilai t yang menyebabkan kurva parametrik $x=2t^3+15t^2+24t+7$ dan $y = t^2 + t + 1$ mempunyai garis singgung vertikal.

Pembahasan:

Garis singgung vertikal terjadi ketika
$$\frac{dx}{dt}=0$$
 sehingga
$$\frac{dx}{dt}=6t^2+30t+24=0 \Rightarrow t^2+5t+6=0 \Rightarrow (t-2)(t-3)=0$$

jadi semua nilai t yang mengakibatkan garis singgung kurva pada soal vertikal adalah t=2dant = 3.

- 19. Diberikan kurva parametrik $\begin{cases} x=\frac{1}{3}t^3 & \\ & \text{dengan } -1 \leq t \leq 0 \\ & \\ x=\frac{1}{t^2} \end{cases}$
 - (a) Nyatakan persamaan parametrik diatas ke persamaan dalam koordinat kartesian, beserta domainnya.
 - (b) Dapatkan panjang kurva tersebut

Pembahasan:

(a) Perhatikan bahwa $x = \frac{1}{3}t^3 \Rightarrow t = \sqrt[3]{3x}$ sehingga diperoleh

$$y = \frac{1}{2}t^2 = \frac{1}{2}\left(\sqrt[3]{3x}\right)^2 = \frac{1}{2}(3x)^{\frac{3}{2}}$$

(b) Dengan integral panjang kurva yang diperoleh

$$\int_{-1}^{0} \sqrt{\left(\frac{dx}{dt}\right)^{2} + \left(\frac{dy}{dt}\right)^{2}} dt = \int_{-1}^{0} \sqrt{\left(\frac{d}{dt}\left(\frac{1}{3}t^{3}\right)\right)^{2} + \left(\frac{d}{dt}\left[\frac{1}{2}t^{2}\right]\right)^{2}} dt$$
$$= \int_{-1}^{0} \sqrt{(t^{2})^{2} + (t)^{2}} dt = \int_{-1}^{0} \sqrt{t^{4} + t^{2}} dt = \int_{-1}^{0} t\sqrt{t^{2} + 1} dt$$

misalkan $u=t^2+1\Rightarrow \frac{du}{dt}=2t\Rightarrow \frac{1}{2}du=t\,dt.$ Ubah batas: jika t=-1 maka u=2, jika t=0 maka u=1

Sehingga integral menjadi

$$\int_{1}^{2} \frac{1}{2} \sqrt{u} \, du = \frac{2\sqrt{2} - 1}{3} \text{ satuan panjang}$$

- 20. Diberikan kurva parametrik $\begin{cases} x=t-3\\ y=t^2-3 \end{cases}$
 - (a) Nyatakan persamaan parametrik diatas ke persamaan dalam koordinat kartesian, beserta domainnya.
 - (b) Dapatkan persamaan garis singgung di titik $t=1\,$

Pembahasan:

(a) Perhatikan bahwa $x = t - 3 \Rightarrow t = x + 3$ sehingga didapat

$$y = t^2 - 3 = (x+3)^2 - 3.$$

dengan demikian fungsi kartesian dari persamaan karakteristik $f(x)=(x+3)^2-3$. Doman dari fungsi tersebut $D_f=\{x\in\mathbb{R}\}$.

(b) Gradien garis singgung kurva di t=1

$$m = \frac{dy}{dx}\Big|_{t=1} = \frac{\frac{dy}{dt}}{\frac{dx}{dt}} = \frac{2t}{1} = 2t\Big|_{t=1} = 2.$$

ketika t=1 didapat x=y=-2. Sehingga persamaan garis singgung kurva di titik (-2,-2) dengan gradien m=2 adalah

$$y - (-2) = 2(x - (-2)) \Rightarrow y = 2x + 2$$

21. Luas daerah diluar kardioda $r=2-2\cos\theta$ dan didalam lingkaran r=4

Pembahasan:

Perhatikan sketsa gambar dibawah ini

Dapat dilihat bahwa daerah arsiran simetri terhadap sumbu-x sehingga untuk mencari luasan daerah dapat dilakukan dengan cara mencari luasan disebelah atas sumbu-x kemudian dikalikan dua. Sehingga $L_1=L_2$ artinya $L=2L_1$.

Dapat dilihat bahwa untuk mencari \mathcal{L}_1 diperoeh dengan cara luas seperempat lingkaran

dikurangi dengan luas daerah arsiran merah, dapat dilihat pada gambar diatas.

$$L_{\text{merah}} = \int_0^{\pi/2} \frac{1}{2} (2 - 2\cos\theta)^2 d\theta = \int_0^{\pi/2} 2(1 - 1\cos\theta)^2 d\theta = 2 \int_0^{\pi/2} \cos^2 - 2\cos\theta + 1 d\theta$$
$$= 2 \int_0^{\pi/2} \left(\frac{1 + \cos 2\theta}{2} \right) - 2\cos\theta + 1 d\theta = \int_0^{\pi/2} (1 + \cos 2\theta) - 4\cos\theta + 2 d\theta$$
$$= \int_0^{\pi/2} \cos 2\theta - 4\cos\theta + 3 d\theta = 2\sin 2\theta - 4\sin\theta + 3\theta \Big|_0^{\pi/2} = \frac{3\pi - 8}{2}.$$

Sehingga $L_1=rac{1}{4}\cdot 2\pi\cdot 4-rac{3\pi-8}{2}=rac{8+\pi}{2}$, jadi luas daerah yang diarsir biru adalah

$$L = 2L_1 = 2\left(\frac{8+\pi}{2}\right) = 8+\pi$$

22. Luas daerah loop-loop limacon $r = \frac{1}{2} + \cos \theta$.

Pembahasan:

Perhatikan sketsa gambar pada soal dibawah ini

Dapat dilihat bahwa daerah arsiran simetri terhadap sumbu-x sehingga untuk mencari luasan daerah dapat dilakukan dengan cara mencari luasan disebelah atas sumbu-x kemudian dikalikan dua. Sehingga $L_1=L_2$ artinya $L=2L_1$. Perhatikan bahwa ketika

 $\theta=\frac{\pi}{3}$ didapat r=0 dan ketika $\theta=\pi$ maka r=-1. Sehingga

$$L_2 = \int_{\pi/3}^{\pi} \frac{1}{2} \left(\frac{1}{2} + \cos \theta \right)^2 d\theta = \int_{\pi/3}^{\pi} \frac{1}{2} \left(\frac{1}{4} + \cos \theta + \cos^2 \theta \right) d\theta$$

$$= \int_{\pi/3}^{\pi} \frac{1}{8} + \frac{\cos \theta}{2} + \frac{1}{2} \left(\frac{1 + \cos 2\theta}{2} \right) d\theta = \int_{\pi/3}^{\pi} \frac{3}{8} + \frac{\cos \theta}{2} + \left(\frac{\cos 2\theta}{4} \right) d\theta$$

$$= \frac{\sin(2x) + 4\sin(x) + 3x}{8} \Big|_{\pi/3}^{\mathcal{P}} = \frac{12\pi - 15\sqrt{3}}{48}$$

Sehingga luas derah yang dimaksud di soal adalah

$$L = 2L_2 = 2\left(\frac{12\pi - 15\sqrt{3}}{48}\right) = \frac{12\pi - 15\sqrt{3}}{24}$$

23. Dapatkan luasan daerah yang tersapu oleh garis radial dari titik asal ke kurva $r=\mathrm{e}^{-2\theta}$ untuk θ yang bergerak $0\leq\theta\leq2\pi$.

Pembahasan:

Perhatikan sketsa kurva pada soal

Sehingga luas yanh dihasilkan adalah

$$L = \int_0^{2\pi} \frac{1}{2} \left(\mathrm{e}^{-2\theta} \right)^2 \, d\theta = \int_0^{2\pi} \frac{1}{2} \cdot \mathrm{e}^{-4\theta} \, d\theta = -\frac{\mathrm{e}^{-4}}{8} \Big|_0^{2\pi} = \frac{\frac{1}{4} - \frac{\mathrm{e}^{-8\pi}}{4}}{2} = \frac{1 - \mathrm{e}^{-8\pi}}{8} \text{ satuan luas}$$

6. Barisan dan Deret

1. Tentukan apakah barisan dibawah ini konvergen atau tidak jika iya dapatkan limit konvergensinya.

(a)
$$\left\{ \frac{3n^3 + n - 1}{n^4 + 2n - 7} \right\}_{n=1}^{\infty}$$

(b)
$$\left\{ \frac{5n^5 + 3n^2 - n}{n^5 + 0.5n + 10} \right\}_{n=1}^{\infty}$$

(c)
$$\left\{\frac{n!}{3^{n-1}}\right\}_{n=1}^{\infty}$$

(d)
$$\left\{ (-1)^n \frac{n^4 + n^3 + n + 1}{n^4 + 8} \right\}_{n=1}^{\infty}$$

(e)
$$\{n!e^{-n}\}_{n=1}^{\infty}$$

Pembahasan:

(a) Perhatikan bahwa

$$\lim_{n \to \infty} \frac{3n^3 + n - 1}{n^4 + 2n - 7} = \lim_{n \to \infty} = \frac{\frac{3}{n} + \frac{1}{n^3} - \frac{1}{n^4}}{1 + \frac{2}{n^3} - \frac{7}{n^4}} = \frac{0 + 0 - 0}{1 + 0 - 0} = 0$$

Jadi barisan $\left\{ \frac{3n^3+n-1}{n^4+2n-7} \right\}_{n=1}^{\infty}$ konvergen ke 0.

(b) Perhatikan bahwa

$$\lim_{n \to \infty} \frac{5n^5 + 3n^2 - n}{n^5 + 0.5n + 10} = \lim_{n \to \infty} \frac{5 + \frac{3}{n^3} - \frac{1}{n^4}}{1 + \frac{0.5}{n^4} + \frac{10}{n^5}} = \frac{5 + 0 - 0}{1 + 0 + 0} = 5$$

Jadi barisan $\left\{ \frac{5n^5+3n^2-n}{n^5+0.5n+10} \right\}_{n=1}^{\infty}$ konvergen ke $5n^5+10$

(c) Perhatikan bahwa $n!>3^{n-1}$ untuk nilai $n\geq 5$ dan secara pergerakan grafik, grafik $y=3^{n-1}$ jauh lebih lambat dari y=n! sehingga dapat disimpulkan

$$\lim_{n \to \infty} \frac{n!}{3^{n-1}} = +\infty$$

Jadi barisan $\left\{\frac{n!}{3^{n-1}}\right\}_{n=1}^{\infty}$ divergen.

(d) Perhatikan bahwa

$$\lim_{n \to \infty} \frac{n^4 + n^3 + n + 1}{n^4 + 8} = \lim_{n \to \infty} \frac{1 + \frac{1}{n} + \frac{1}{n^3} + \frac{1}{n^4}}{1 + \frac{8}{n^4}} = \frac{1 + 0 + 0 + 0}{1 + 0} = 1$$

dan untuk nilai n genap barisan tersebut konvergen ke 1 sedangkan untuk nilai n ganjil barisan tersebut konvergen ke -1 artinya tidak ada nilai yang didekati untuk setiap nilai n sehingga barisan

$$\left\{ (-1)^n \frac{n^4 + n^3 + n + 1}{n^4 + 8} \right\}_{n=1}^{\infty}$$

divergen.

(e) Perhatikan bahwa $n! > e^n$ untuk nilai $n \ge 5$ dan secara pergerakan grafik, $y = e^{n-1}$ jauh lebih lambat dari y = n! sehingga dapat disimpulkan

$$\lim_{n \to \infty} \frac{n!}{e^n} = +\infty$$

Jadi barisan $\{n!e^{-n}\}$ divergen.

2. Dapatkan limit barisan $\{(3^n+7^n)^{1/n}\}_{n=1}^{\infty}$

Pembahasan:

Tinjau limit barisan pada soal. Misalkan

$$y = \lim_{n \to \infty} (3^n + 7^n)^{1/n}$$

$$\ln y = \ln \left(\lim_{n \to \infty} (3^n + 7^n)^{1/n} \right)$$

$$\ln y = \lim_{n \to \infty} \left(\ln (3^n + 7^n)^{1/n} \right)$$

$$\ln y = \lim_{n \to \infty} \left(\frac{\ln (3^n + 7^n)}{n} \right)$$

Dengan dalil L'Hopital didapat

$$\ln y = \lim_{n \to \infty} \left(\frac{3^n \ln 3 + 7^n \ln 7}{3^n + 7^n} \right) = \lim_{n \to \infty} \left(\frac{\left(\frac{3}{7}\right)^n \ln 3 + \ln 7}{\left(\frac{3}{7}\right)^n + 1} \right)$$

Karena $\lim_{n \to \infty} \left(\frac{3}{7}\right)^n = 0$ akibatnya diperoleh

$$\ln y = \lim_{n \to \infty} \left(\frac{3^n \ln 3 + 7^n \ln 7}{3^n + 7^n} \right) = \ln 7.$$

Karena $\ln y = \ln 7$ akibatnya y = 7 untuk nilai $n \to \infty$. Sehingga barisan $\{(3^n + 7^n)^{1/n}\}_{n=1}^{\infty}$ konvergen ke 7.

3. Klasifikasikan barisan-barisan berikut apakah monoton naik atau turun

(a)
$$\left\{ \frac{n!}{3^{n-1}} \right\}_{n=1}^{\infty}$$

(b) $\left\{ 3 - \frac{1}{n^2 + 1} \right\}_{n=1}^{\infty}$

(c)
$$\left\{\frac{3^n}{1+3^n}\right\}_{n=1}^{\infty}$$

Pembahasan:

(a) Perhatikan bahwa

$$\frac{a_{n+1}}{a_n} = \frac{\frac{(n+1)!}{3^{(n+1)-1}}}{\frac{n!}{3^{n-1}}} = \frac{(n+1)!}{3^{(n+1)-1}} \cdot \frac{3^{n-1}}{n!} = \frac{(n+1)n!}{3^n} \cdot \frac{3^{n-1}}{n!} = \frac{n+1}{3} > 1$$

untuk n>2. Sehingga untuk nilai n>2 diperoleh $\frac{a_{n+1}}{a_n}>1$ atau $a_{n+1}>a_n$ jadi barisan pada soal adalah barisan monoton naik di akhir.

(b) Perhatikan bahwa

$$a_{n+1} - a_n = \left(3 - \frac{1}{(n+1)^2 + 1}\right) - \left(3 - \frac{1}{n^2 + 1}\right) = \frac{1}{n^2 + 1} - \frac{1}{(n+1)^2 + 1}$$
$$= \frac{2n+1}{(n^2 + 1)(n^2 + 2n + 2)} > 0$$

dapat dilihat bahwa $a_{n+1}-a_n>0$ atau $a_{n+1}>a_n$ untuk semua nilai n. Sehingga barisan $\left\{3-\frac{1}{n^2+1}\right\}_{n=1}^\infty$ adalah barisan monoton naik.

(c) Perhatikan bahwa

$$\frac{a_{n+1}}{a_n} = \frac{\frac{3^{n+1}}{1+3^{n+1}}}{\frac{3^n}{1+3^n}} = \frac{3^{n+1}}{1+3^{n+1}} \cdot \frac{1+3^n}{3^n} = 3\left(\frac{1+3^n}{1+3^{n+1}}\right) > 1$$

Diperoleh $\frac{a_{n+1}}{a_n}>1$ atau $a_{n+1}>a_n$ jadi barisan pada soal adalah barisan monoton naik.

4. Tentukan nilai konvergensi dari deret-deret berikut

(a)
$$\sum_{n=1}^{\infty} \left(\frac{7}{2^n} - \frac{4}{6^n} \right)$$

(b)
$$\sum_{n=1}^{\infty} \left(\frac{1}{n^2 + 11n + 30} \right)$$

Pembahasan:

(a) Dengan menggunakan sifat notasi sigma

$$\sum_{n=1}^{\infty} \left(\frac{7}{2^n} - \frac{4}{6^n} \right) = \sum_{n=1}^{\infty} \left(\frac{7}{2^n} \right) - \sum_{n=1}^{\infty} \left(\frac{4}{6^n} \right)$$

dapat dilihat bahwa masing-masing deret merupakan deret geometri tak hingga dengan rasio berada pada -1 < r < 1. Perhatikan bahwa

$$\sum_{n=1}^{\infty} \left(\frac{7}{2^n} \right) = \frac{7}{2} + \frac{7}{4} + \frac{7}{8} + \dots = \frac{\frac{7}{2}}{1 - \frac{1}{2}} = 7$$

$$\sum_{n=1}^{\infty} \left(\frac{4}{6^n} \right) = \frac{4}{6} + \frac{4}{36} + \frac{4}{216} + \dots = \frac{\frac{4}{6}}{1 - \frac{1}{6}} = \frac{4}{5}$$

Sehingga diperoleh

$$\sum_{n=1}^{\infty} \left(\frac{7}{2^n} - \frac{4}{6^n} \right) = \sum_{n=1}^{\infty} \left(\frac{7}{2^n} \right) - \sum_{n=1}^{\infty} \left(\frac{4}{6^n} \right) = 7 - \frac{4}{5} = \frac{31}{5}$$

(b) Dengan menggunakan dekomposisi pecahan parsial diperoleh (BAB 2)

$$\frac{1}{n^2 + 11n + 30} = \frac{1}{(n+5)(n+6)} = \frac{1}{n+5} - \frac{1}{n+6}$$

Perhatikan bahwa

$$\sum_{n=1}^{N} \left(\frac{1}{n^2 + 11n + 30} \right) = \sum_{n=1}^{N} \left(\frac{1}{n+5} - \frac{1}{n+6} \right)$$

$$= \left(\frac{1}{6} - \frac{1}{7}\right) + \left(\frac{1}{7} - \frac{1}{8}\right) + \left(\frac{1}{8} - \frac{1}{9}\right) + \dots + \left(\frac{1}{N+5} - \frac{1}{N+6}\right) = \frac{1}{6} - \frac{1}{N+6}$$

untuk nilai $N \to \infty$ diperoleh

$$\sum_{n=1}^{\infty} \left(\frac{1}{n^2 + 11n + 30} \right) = \frac{1}{6}$$

5. Dengan uji yang sesuai tentukan apakah deret-deret berikut konvergen atau tidak.

(a)
$$\sum_{k=1}^{\infty} \left(\frac{k^2}{3k^3 + 1} \right)$$

(b)
$$\sum_{k=1}^{\infty} \left(\frac{4^k}{k^4} \right)$$

(c)
$$\sum_{k=1}^{\infty} \left(\frac{\ln k}{k^2} \right)$$

Pembahasan:

(a) Dengan menggunakan uji integral, menghitung integral

$$\int_{1}^{+\infty} \frac{k^2}{3k^3 + 1} \, dk = \cdots$$

misalkan $u=3k^3+1\Rightarrow \frac{du}{dk}=9k^2\Rightarrow \frac{1}{9}du=k^2\,dk$. Ubah batas: untuk $k=1\Rightarrow u=4$, untuk $k=+\infty\Rightarrow u=+\infty$ sehingga didapat

$$\int_{1}^{+\infty} \frac{k^2}{3k^3 + 1} = \frac{1}{9} \int_{4}^{+\infty} \frac{1}{u} du = \lim_{t \to +\infty} \frac{1}{9} \ln|u| + C \Big|_{4}^{t} = +\infty$$

karena hasil uji intergal divergen artinya deret merupakan deret yang divergen.

(b) Dengan menggunakan uji rasio, perhatikan bahwa

$$\rho = \lim_{n \to \infty} \frac{a_{n+1}}{a_n} = \lim_{n \to \infty} \frac{\frac{4^{n+1}}{(n+1)^4}}{\frac{4^n}{n^4}} = \lim_{n \to \infty} \frac{4^{n+1}}{(n+1)^4} \frac{n^4}{4^n} = \lim_{n \to \infty} 4\left(\frac{n}{n+1}\right)^4 = 4$$

karena didapat $\rho > 1$ artinya deret tersebut merupakan deret divergen.

(c) Dengan menggunakan uji integral, menghitung integral

$$\int_{1}^{+\infty} \frac{\ln k}{k^2} \, dk = \cdots$$

Dengan menggunakan metode integral parsial. Misalkan $u=\ln k \Rightarrow du=\frac{1}{k}\,dk$ dan $dv=\frac{1}{k^2}\,dk \Rightarrow v=-\frac{1}{k}.$ Sehingga diperoleh

$$\int \frac{\ln k}{k^2} \, dk = -\frac{\ln k}{k} - \int -\frac{1}{k} \, dk = -\frac{\ln k}{k} + \int \frac{1}{k^2} \, dk = -\left(\frac{\ln k + 1}{k}\right) + C$$

Dengan demikian didapat

$$\int_{1}^{+\infty} \frac{\ln k}{k^2} dk = \lim_{t \to +\infty} \int_{1}^{t} \frac{\ln k}{k^2} dk = \lim_{t \to +\infty} -\left(\frac{\ln k + 1}{k}\right) \Big|_{1}^{t} = 1$$

karena hasil uji intergal konvergen artinya deret tersebut merupakan deret yang konvergen.

- 6. **(EAS 2022)**Diberikan fungsi $f(x) = \frac{1}{x^2}$
 - (a) Dapatkan polinomial Taylor derajat 5 dari fungsi tersebut di sekitar x=-1
 - (b) Dapatkan deret Taylor fungsi tersebut di sekitar x=-1 dan nyatakan dalam notasi sigma

Pembahasan:

(a) Perhatikan bahwa

$$f(-1) = \frac{1}{(-1)^2} = 1$$

$$f'(x) = -\frac{2}{x^3} \Rightarrow f'(-1) = -\frac{2}{(-1)^3} = 2$$

$$f''(x) = \frac{6}{x^4} \Rightarrow f''(-1) = \frac{6}{(-1)^4} = 6$$

$$f'''(x) = -\frac{24}{x^5} \Rightarrow f'''(-1) = -\frac{24}{(-1)^5} = 24$$

$$f''''(x) = \frac{120}{x^6} \Rightarrow f''''(-1) = \frac{120}{(-1)^6} = 120$$

$$f'''''(x) = -\frac{720}{x^7} \Rightarrow f'''''(-1) = -\frac{720}{(-1)^7} = 720$$

Polinomial Taylor derajat 5 dari fungsi tersebut di sekitar x = -1

$$p_5(x) = f(-1) + \frac{f'(-1)}{1!}(x - (-1)) + \frac{f''(-1)}{2!}(x - (-1))^2 + \frac{f'''(-1)}{3!}(x - (-1))^3 + \frac{f''''(-1)}{4!}(x - (-1))^4 + \frac{f'''''(-1)}{5!}(x - (-1))^5$$

$$p_{5}(x) = f(-1) + \frac{f'(-1)}{1!}(x+1) + \frac{f''(-1)}{2!}(x+1)^{2} + \frac{f'''(-1)}{3!}(x+1)^{3} + \frac{f''''(-1)}{4!}(x+1)^{4} + \frac{f''''(-1)}{5!}(x+1)^{5}$$

$$= 1 + \frac{2}{1!}(x+1) + \frac{6}{2!}(x+1)^{2} + \frac{24}{3!}(x+1)^{3} + \frac{120}{4!}(x+1)^{4} + \frac{720}{5!}(x+1)^{5}$$

$$= 1 + 2(x+1) + 3(x+1)^{2} + 4(x+1)^{3} + 5(x+1)^{4} + 6(x+1)^{5}$$

(b) Perhatikan bahwa

$$f(-1) = \frac{1}{(-1)^2} = 1$$

$$f'(x) = -\frac{2}{x^3} \Rightarrow f'(-1) = -\frac{2}{(-1)^3} = 2$$

$$f''(x) = \frac{6}{x^4} \Rightarrow f''(-1) = \frac{6}{(-1)^4} = 6$$

$$f'''(x) = -\frac{24}{x^5} \Rightarrow f'''(-1) = -\frac{24}{(-1)^5} = 24$$

$$f''''(x) = \frac{120}{x^6} \Rightarrow f''''(-1) = \frac{120}{(-1)^6} = 120$$

$$f'''''(x) = -\frac{720}{x^7} \Rightarrow f'''''(-1) = -\frac{720}{(-1)^7} = 720$$

$$\vdots$$

$$f^n(x) = (-1)^n \frac{(n+1)!}{x^{n+2}} \Rightarrow f(-1) = (n+1)!$$

Deret Taylor untuk $f(x) = \frac{1}{x^2}$ di x = -1 adalah

$$p_{\infty}(x) = f(-1) + \frac{f'(-1)}{1!}(x+1) + \frac{f''(-1)}{2!}(x+1)^2 + \frac{f'''(-1)}{3!}(x+1)^3 + \frac{f''''(-1)}{4!}(x+1)^4 + \frac{f''''(-1)}{5!}(x+1)^5 + \cdots$$

$$= 1 + \frac{2}{1!}(x+1) + \frac{6}{2!}(x+1)^2 + \frac{24}{3!}(x+1)^3 + \frac{120}{4!}(x+1)^4 + \frac{720}{5!}(x+1)^5 + \cdots$$

$$= 1 + 2(x+1) + 3(x+1)^2 + 4(x+1)^3 + 5(x+1)^4 + 6(x+1)^5 + \cdots$$

$$= \sum_{n=0}^{\infty} (n+1)(x+1)^n$$

- 7. **(EAS 2022)** Diberikan fungsi $f(x) = \frac{1}{1+x}$
 - (a) Dapatkan polinomial Taylor derajat 5 dari fungsi tersebut di sekitar x=-2
 - (b) Dapatkan deret Taylor fungsi tersebut di sekitar x=-2 dan nyatakan dalam notasi sigma

Pembahasan:

(a) Perhatikan bahwa

$$f(x) = \frac{1}{1+x} \Rightarrow f(-2) = \frac{1}{1+(-2)} = -1$$

$$f'(x) = -\frac{1}{(1+x)^2} \Rightarrow f'(-2) = -\frac{1}{(1+(-2))^2} = -1$$

$$f''(x) = \frac{2}{(1+x)^3} \Rightarrow f''(-2) = \frac{2}{(1+(-2))^3} = -2$$

$$f'''(x) = -\frac{6}{(1+x)^4} \Rightarrow f'''(-2) = -\frac{6}{(1+(-2))^4} = -6$$

$$f''''(x) = \frac{24}{(1+x)^5} \Rightarrow f''''(-2) = \frac{24}{(1+(-2))^5} = -24$$

$$f'''''(x) = -\frac{120}{(1+x)^6} \Rightarrow f'''''(-2) = -\frac{120}{(1+(-2))^6} = -120$$

Polinomial Taylor derajat 5 dari fungsi tersebut di sekitar x=-2

$$p_{5}(x) = f(-2) + \frac{f'(-2)}{1!}(x - (-2)) + \frac{f''(-2)}{2!}(x - (-2))^{2} + \frac{f'''(-2)}{3!}(x - (-2))^{3} + \frac{f''''(-2)}{4!}(x - (-2))^{4} + \frac{f'''''(-2)}{5!}(x - (-2))^{5}$$

$$p_{5}(x) = -1 + \frac{(-1)}{1!}(x - (-2)) + \frac{(-2)}{2!}(x - (-2))^{2} + \frac{(-6)}{3!}(x - (-2))^{3} + \frac{(-24)}{4!}(x - (-2))^{4} + \frac{(-120)}{5!}(x - (-2))^{5}$$

$$= -1 - (x + 2) - (x + 2)^{2} - (x + 2)^{3} - (x + 2)^{4} - (x + 2)^{5}$$

(b) Perhatikan bahwa

$$f(x) = \frac{1}{1+x} \Rightarrow f(-2) = \frac{1}{1+(-2)} = -1$$

$$f'(x) = -\frac{1}{(1+x)^2} \Rightarrow f'(-2) = -\frac{1}{(1+(-2))^2} = -1$$

$$f''(x) = \frac{2}{(1+x)^3} \Rightarrow f''(-2) = \frac{2}{(1+(-2))^3} = -2$$

$$f'''(x) = -\frac{6}{(1+x)^4} \Rightarrow f'''(-2) = -\frac{6}{(1+(-2))^4} = -6$$

$$f''''(x) = \frac{24}{(1+x)^5} \Rightarrow f''''(-2) = \frac{24}{(1+(-2))^5} = -24$$

$$f'''''(x) = -\frac{120}{(1+x)^6} \Rightarrow f'''''(-2) = -\frac{120}{(1+(-2))^6} = -120$$

:

$$f^{n}(x) = (-1)^{n} \frac{n!}{(1+x)^{n+1}} \Rightarrow f^{n}(-2) = (-1)^{n} \frac{n!}{(1+(-2))^{n+1}} = -n!$$

Deret Taylor untuk $f(x) = \frac{1}{x^2} \ \mathrm{di} \ x = -1 \ \mathrm{adalah}$

$$p_{\infty}(x) = f(-2) + \frac{f'(-2)}{1!}(x+2) + \frac{f''(-2)}{2!}(x+2)^2 + \frac{f'''(-2)}{3!}(x+2)^3 + \frac{f''''(-2)}{4!}(x+2)^4 + \frac{f'''''(-2)}{5!}(x+2)^5 + \cdots$$

$$= 1 - \frac{1!}{1!}(x+2) - \frac{2!}{2!}(x+2)^2 - \frac{3!}{3!}(x+2)^3 - \frac{4!}{4!}(x+2)^4 - \frac{5!}{5!}(x+2)^5 + \cdots$$

$$= -1 - (x+2) - (x+2)^2 - (x+2)^3 - (x+2)^4 - (x+2)^5 + \cdots$$

$$= -\sum_{n=0}^{\infty} (x+2)^n$$

- 8. **(EAS 2022)** Diberikan fungsi $f(x) = e^{-x}$
 - (a) Dapatkan polinomial Maclaurin derajat 5 dari fungsi tersebut.
 - (b) Dapatkan deret Maclaurin fungsi tersebut dan nyatakan dalam notasi sigma

Pembahasan:

(a) Perhatikan bahwa

$$f(x) = e^{x} \Rightarrow f(0) = e^{0} = 1$$

$$f'(x) = -e^{-x} \Rightarrow f'(0) = e^{0} = -1$$

$$f''(x) = e^{x} \Rightarrow f''(0) = e^{0} = 1$$

$$f'''(x) = -e^{-x} \Rightarrow f'''(0) = e^{0} = -1$$

$$f''''(x) = e^{x} \Rightarrow f''''(0) = e^{0} = 1$$

$$f'''''(x) = -e^{-x} \Rightarrow f'''''(0) = e^{0} = -1$$

Polinomial Macalurin derajat 5 dari fungsi tersebut

$$p_{5}(x) = f(0) - \frac{f'(0)}{1!}(x - (0)) + \frac{f''(0)}{2!}(x - (0))^{2} - \frac{f'''(0)}{3!}(x - (0))^{3} + \frac{f''''(0)}{4!}(x - (0))^{4} - \frac{f''''(0)}{5!}(x - (0))^{5}$$

$$= 1 - x + \frac{x^{2}}{2!} - \frac{x^{3}}{3!} + \frac{x^{4}}{4!} - \frac{x^{5}}{5!}$$

(b) Perhatikan bahwa

$$f(x) = e^{x} \Rightarrow f(0) = e^{0} = 1$$

$$f'(x) = -e^{-x} \Rightarrow f'(0) = -e^{0} = -1$$

$$f''(x) = e^{x} \Rightarrow f''(0) = e^{0} = 1$$

$$f'''(x) = -e^{-x} \Rightarrow f'''(0) = -e^{0} = -1$$

$$f''''(x) = e^{x} \Rightarrow f''''(0) = e^{0} = 1$$

$$f'''''(x) = -e^{-x} \Rightarrow f'''''(0) = -e^{0} = -1$$

$$\vdots$$

$$f^{n}(x) = (-1)^{n}e^{x} \Rightarrow f^{n}(0) = e^{0} = (-1)^{n}$$

Polinomial Macalurin dari fungsi tersebut

$$p_{\infty}(x) = f(0) - \frac{f'(0)}{1!}(x - (0)) + \frac{f''(0)}{2!}(x - (0))^{2} - \frac{f'''(0)}{3!}(x - (0))^{3}$$

$$+ \frac{f''''(0)}{4!}(x - (0))^{4} - \frac{f''''(0)}{5!}(x - (0))^{5} + \cdots$$

$$= 1 - x + \frac{x^{2}}{2!} - \frac{x^{3}}{3!} + \frac{x^{4}}{4!} - \frac{x^{5}}{5!} + \cdots = \sum_{n=0}^{\infty} (-1)^{n} \frac{x^{n}}{n!}$$

- 9. (EAS 2021)
 - (a) Gunakan uji yang sesuai untuk menentukan apakah deret

$$\sum_{n=1}^{\infty} \frac{4}{3^n + 1}$$

konvergen atau divergen

(b) Dapatkan jumlahan deret

$$\sum_{k=1}^{\infty} \left[\frac{7}{3^k} + \frac{6}{(k+3)(k+4)} \right]$$

Pembahasan:

(a) Dengan menggunakan uji perbandingan limit, perhatikan bahwa

$$\sum_{n=1}^{\infty} \frac{4}{3^n + 1} \le \sum_{n=1}^{\infty} \frac{4}{3^n}$$

> dapat dilihat bahwa deret pada ruas kanan merupakan deret geometri tak hingga dengan rasio $r=\frac{1}{3}$ yang artinya deret tersebut konvergen. Dengan demikian, berdasarkan uji perbandingan limit, deret $\sum_{n=0}^{\infty} \frac{4}{3^n+1}$ merupakan deret yang konvergen.

(b) Berdasarkan sifat sigma

$$\sum_{k=1}^{\infty} \left[\frac{7}{3^k} + \frac{6}{(k+3)(k+4)} \right] = \sum_{k=1}^{\infty} \left(\frac{7}{3^k} \right) + \sum_{k=1}^{\infty} \left(\frac{6}{(k+3)(k+4)} \right)$$

Perhatikan bahwa

$$\sum_{k=1}^{\infty} \left(\frac{7}{3^k} \right) = \frac{7}{3} + \frac{7}{9} + \frac{7}{27} + \dots = \frac{\frac{7}{3}}{1 - \frac{1}{3}} = \frac{7}{2}$$

dan

$$\sum_{k=1}^{\infty} \left(\frac{6}{(k+3)(k+4)} \right) = \sum_{k=1}^{\infty} \left(\frac{6}{k+3} - \frac{6}{k+4} \right)$$

$$= \left(\frac{6}{4} - \frac{6}{5} \right) + \left(\frac{6}{5} - \frac{6}{6} \right) + \left(\frac{6}{6} - \frac{6}{7} \right) + \left(\frac{6}{8} - \frac{6}{9} \right) + \dots = \frac{6}{4} = \frac{3}{2}$$
a didapat

$$\sum_{k=1}^{\infty} \left[\frac{7}{3^k} + \frac{6}{(k+3)(k+4)} \right] = \frac{7}{2} + \frac{3}{2} = 5$$

10. **(EAS 2021)**

- (a) Tentukan konvergensi barisan $\left\{n\sin\left(\frac{\pi}{n}\right)\right\}_{n=1}^{\infty}$. Dari jawaban tersebut, tentukan konvergensi $\left\{\frac{n^2}{2n+1}\sin\left(\frac{\pi}{n}\right)\right\}^{\infty}$
- (b) Dengan uji perbandingan, tentukan deret berikut konvergen atau divergen

$$\sum_{n=0}^{\infty} \frac{2^n \sin^2(5n)}{4^n + \cos^2 n}$$

Pembahasan:

(a) Perhatikan bahwa

$$\lim_{n \to \infty} n \sin\left(\frac{\pi}{n}\right) = \lim_{n \to \infty} \frac{\sin\left(\frac{\pi}{n}\right)}{\frac{1}{n}}$$

misalkan $a=\frac{1}{n}$ artinya jika $n\to\infty$ maka $a\to0$ sehingga diperoleh

$$\lim_{n \to \infty} n \sin\left(\frac{\pi}{n}\right) = \lim_{n \to \infty} \frac{\sin\left(\frac{\pi}{n}\right)}{\frac{1}{n}} = \lim_{a \to 0} \frac{\sin(\pi a)}{a} = \pi.$$

Jadi barisan $\left\{n\sin\left(\frac{\pi}{n}\right)\right\}_{n=1}^{\infty}$ adalah barisan konvergen ke π . Sedangkan untuk

$$\lim_{n \to \infty} \frac{n^2}{2n+1} \sin\left(\frac{\pi}{n}\right) = \lim_{n \to \infty} \left(\frac{n}{2n+1} \cdot n \sin\left(\frac{\pi}{n}\right)\right)$$
$$= \lim_{n \to \infty} \left(\frac{n}{2n+1}\right) \cdot \lim_{n \to \infty} \left(n \sin\left(\frac{\pi}{n}\right)\right) = \frac{1}{2} \cdot \pi = \frac{\pi}{2}$$

(b) Perhatikan bahwa

$$\sum_{n=0}^{\infty} \frac{2^n \sin^2(5n)}{4^n + \cos^2 n} \le \sum_{n=0}^{\infty} \frac{2^n \sin^2(5n)}{4^n}$$

dengan menggunakan fakta bahwa $\sin^2(5n) \le 1$ akibatnya didapat

$$\sum_{n=0}^{\infty} \frac{2^n \sin^2(5n)}{4^n + \cos^2 n} \le \sum_{n=0}^{\infty} \frac{2^n \sin^2(5n)}{4^n} \le \sum_{n=0}^{\infty} \frac{2^n}{4^n} = \sum_{n=0}^{\infty} \frac{1}{2^n}$$

dapat dilihat bahwa deret $\sum_{n=0}^{\infty} \frac{1}{2^n}$ merupakan deret geometri dengan rasio $r=\frac{1}{2}$ artinya deret tersebut konvergen. Sehingga berdasarkan uji perbandingan limit, deret $\sum_{n=0}^{\infty} \frac{2^n \sin^2(5n)}{4^n + \cos^2 n}$ merupakan deret konvergen.

11. (EAS 2021) Buktikan deret

$$\sum_{k=2}^{\infty} \frac{1}{k(\ln k)^p}$$

konvergen jika p > 1

Pembahasan:

Dengan menggunakan uji integral, hitung integral

$$\int_{2}^{+\infty} \frac{1}{k(\ln k)^{p}} \, dk = \cdots$$

Misalkan $u=\ln k \Rightarrow du=\frac{1}{k}\,dk$, ubah batas: jika k=2 maka $u=\ln 2$, jika $k=+\infty$ maka $u=+\infty$. Sehingga integral menjadi

$$\int_{2}^{+\infty} \frac{1}{k(\ln k)^{p}} dk = \int_{\ln 2}^{+\infty} \frac{1}{u^{p}} du = \lim_{t \to \infty} \int_{\ln 2}^{t} \frac{1}{u^{p}} du = \lim_{t \to \infty} \left(\frac{1}{-p+1} u^{-p+1} \right) \Big|_{\ln 2}^{t}$$
$$= \lim_{t \to \infty} \left(\frac{1}{-p+1} t^{-p+1} \right) - \left(\frac{1}{-p+1} (\ln 2)^{-p+1} \right)$$

agar integral tersebut konvergen maka haruslah -p+1<0 sehingga p>1

- 12. **(EAS 2021)** Diketahui fungsi $f(x) = \frac{1}{1-ax}$
 - (a) Dapatkan deret Maclaurin dari f(x) (Nyatakan dalam notasi Sigma).
 - (b) Gunakan hasil dari (a) untuk mendapatkan deret Maclaurin dari fungsi $f(x) = \frac{1}{(1-ax)^2}$

Pembahasan:

(a) Perhatikan bahwa

$$f(x) = \frac{1}{1 - ax} \Rightarrow f(0) = \frac{1}{1 - a(0)} = 1$$

$$f'(x) = \frac{a}{(1 - ax)^2} \Rightarrow f'(0) = \frac{a}{(1 - a(0))^2} = a$$

$$f''(x) = \frac{2a^2}{(1 - ax)^3} \Rightarrow f''(0) = \frac{2a^2}{(1 - a(0))^3} = 2a^2$$

$$f'''(x) = \frac{6a^3}{(1 - ax)^4} \Rightarrow f'''(0) = \frac{6a^3}{(1 - a(0))^4} = 6a^3$$

$$f''''(x) = \frac{24a^4}{(1 - ax)^5} \Rightarrow f''''(0) = \frac{24a^4}{(1 - a(0))^5} = 24a^4$$

$$f'''''(x) = \frac{120a^5}{(1 - ax)^6} \Rightarrow f'''''(0) = \frac{120a^5}{(1 - a(0))^6} = 120a^5$$

$$\vdots$$

$$f^n(x) = \frac{n!a^n}{(1 - ax)^{n+1}} \Rightarrow f^n(0) = \frac{n!a^n}{(1 - a(0))^{n+1}} = n!a^n$$

Mohamad Ilham Dwi Firmansyah

Polinomial Macalurin dari fungsi tersebut

$$p_{\infty}(x) = f(0) - \frac{f'(0)}{1!}(x - (0)) + \frac{f''(0)}{2!}(x - (0))^2 - \frac{f'''(0)}{3!}(x - (0))^3 + \frac{f''''(0)}{4!}(x - (0))^4 - \frac{f''''(0)}{5!}(x - (0))^5 + \cdots$$

$$= 1 + \frac{a}{1!}(x - (0)) + \frac{2a^2}{2!}(x - (0))^2 + \frac{6a^3}{3!}(x - (0))^3 + \frac{24a^4}{4!}(x - (0))^4 + \frac{120a^5}{5!}(x - (0))^5 + \cdots$$

$$= 1 + ax + a^2x^2 + a^3x^3 + a^4x^4 + a^5x^5 + \cdots = \sum_{n=0}^{\infty} a^nx^n$$

(b) Perhatikan bahwa dengan hasil dari (a)

$$f(x) = \frac{1}{1 - ax} = 1 + ax + a^2x^2 + a^3x^3 + a^4x^4 + a^5x^5 + \dots = \sum_{n=0}^{\infty} a^n x^n$$

turunan pertama dari f(x)

$$f'(x) = \frac{a}{(1 - ax)^2} = a + 2a^2x + 3a^3x^2 + 4a^4x^3 + 5a^5x^4 + 6a^6x^5 + \cdots$$

 $f'(x)=\frac{a}{(1-ax)^2}=a+2a^2x+3a^3x^2+4a^4x^3+5a^5x^4+6a^6x^5+\cdots$ masing-masing ruas dibagi a, sehingga deret Maclaurin dari $f(x)=\frac{1}{(1-ax)^2}$ adalah

$$\frac{1}{(1-ax)^2} = 1 + 2ax + 3a^2x^2 + 4a^3x^3 + 5a^4x^4 + 6a^5x^5 + \dots = \sum_{n=0}^{\infty} (n+1)a^nx^n$$

13. **(EAS 2016)**

(a) Tuliskan lima suku pertama dari barisan berikut

$$\left\{\frac{4n^2+2}{n^2+3n-1}\right\}_{n=1}^{\infty}$$

- (b) Selidiki apakah barisan berikut merupakan barisan monoton?
- (c) Selidiki barisan tersebut konvergen?

Pembahasan:

(a) Berikut lima suku pertama dari barisan pada soal

$$a_1 = \frac{4(1)^2 + 2}{(1)^2 + 3(1) - 1} = 2$$

$$a_2 = \frac{4(2)^2 + 2}{(2)^2 + 3(2) - 1} = 2$$

$$a_3 = \frac{4(3)^2 + 2}{(3)^2 + 3(3) - 1} = \frac{38}{17}$$

$$a_4 = \frac{4(4)^2 + 2}{(4)^2 + 3(4) - 1} = \frac{22}{9}$$

$$a_5 = \frac{4(5)^2 + 2}{(5)^2 + 3(5) - 1} = \frac{34}{13}$$

137

(b) Perhatikan bahwa

$$a_{n+1} - a_n = \left(\frac{4(n+1)^2 + 2}{(n+1)^2 + 3(n+1) - 1}\right) - \left(\frac{4n^2 + 2}{n^2 + 3n - 1}\right)$$
$$= \frac{6(2n^2 - 2)}{(n^2 + 3n - 1)(n^2 + 5n + 3)} > 0$$

dapat dilihat bahwa $a_{n+1}-a_n>0$ atau $a_{n+1}>a_n$ untuk semua nilai n bilangan asli. Sehingga barisan $\left\{\frac{4n^2+2}{n^2+3n-1}\right\}_{n=1}^{\infty}$ adalah barisan monoton naik.

(c) Perhatikan bahwa

$$\lim_{n \to \infty} \frac{4n^2 + 2}{n^2 + 3n - 1} = \lim_{n \to \infty} = \frac{4 + \frac{2}{n}}{1 + \frac{3}{n} - \frac{1}{n^2}} = \frac{4 + 0}{1 + 0 - 0} = 4$$

Jadi barisan $\left\{\frac{4n^2+2}{n^2+3n-1}\right\}_{n=1}^{\infty}$ konvergen ke 4.

14. **(EAS 2021)** Diberikan $\{a_n\}_{n=1}^{\infty}$ dengan

$$a_n = \frac{1}{n^2} + \frac{3}{n^2} + \frac{5}{n^2} + \dots + \frac{2n-1}{n^2}$$

Tuliskan lima suku pertama dari barisan tersebut, dan daptkan $\lim_{n \to \infty} a_n$.

Pembahasan:

Lima suku pertama dari $\{a_n\}$ adalah

$$a_1 = \frac{1}{1^2} = 1$$

$$a_2 = \frac{1}{2^2} + \frac{3}{2^2} = \frac{4}{2^2} = 1$$

$$a_3 = \frac{1}{3^2} + \frac{3}{3^2} + \frac{5}{3^2} = \frac{9}{3^2} = 1$$

$$a_4 = \frac{1}{4^2} + \frac{3}{4^2} + \frac{5}{4^2} + \frac{7}{4^2} = \frac{16}{4^2} = 1$$

$$a_5 = \frac{1}{5^2} + \frac{3}{5^2} + \frac{5}{5^2} + \frac{7}{5^2} + \frac{9}{5^2} = \frac{25}{5^2} = 1$$

Perhatikan bahwa secara umum untuk sembarang nilai n bilangan asli.

$$a_n = \frac{1}{n^2} + \frac{3}{n^2} + \frac{5}{n^2} + \dots + \frac{2n-1}{n^2} = \sum_{k=1}^n \frac{2k-1}{n^2} = \frac{1}{n^2} \sum_{k=1}^n 2k - 1 = \frac{1}{n^2} (n^2) = 1$$

sehingga

$$\lim_{n\to\infty} a_n = 1$$

jadi barisan $\{a_n\}_{n=1}^{\infty}$ konvergen ke 1.

15. Diberikan $\{a_n\}_{n=1}^{\infty}$ dengan

$$a_n = \frac{1^2}{n^3} + \frac{2^2}{n^3} + \frac{3^2}{n^3} + \dots + \frac{n^2}{n^3}$$

Tuliskan lima suku pertama dari barisan tersebut, dan daptkan $\lim a_n$.

Pembahasan:

Pembahasan : Lima suku pertama dari
$$\{a_n\}$$

$$a_1 = \frac{1^2}{1^3} = 1$$

$$a_2 = \frac{1^2}{2^3} + \frac{2^2}{2^3} = \frac{5}{2^3} = \frac{5}{8}$$

$$a_3 = \frac{1^2}{3^3} + \frac{2^2}{3^3} + \frac{3^2}{3^3} = \frac{14}{3^3} = \frac{14}{27}$$

$$a_4 = \frac{1^2}{4^3} + \frac{2^2}{4^3} + \frac{3^2}{4^3} + \frac{4^2}{4^3} = \frac{30}{4^3} = \frac{30}{64}$$

$$a_5 = \frac{1^2}{5^3} + \frac{2^2}{5^3} + \frac{3^2}{5^3} + \frac{4^2}{5^3} + \frac{5^2}{5^3} = \frac{55}{5^3} = \frac{55}{125} = \frac{11}{25}$$

Perhatikan bahwa untuk sembarang nilai n

$$a_n = \frac{1^2}{n^3} + \frac{2^2}{n^3} + \frac{3^2}{n^3} + \dots + \frac{n^2}{n^3} = \sum_{k=1}^n \frac{k^2}{n^3} = \frac{1}{n^3} \sum_{k=1}^n k^2 = \frac{1}{n^3} \left[\frac{n(n+1)(2n+1)}{6} \right]$$

Sehingga

$$\lim_{n \to \infty} a_n = \lim_{n \to \infty} \left(\frac{1}{n^3} \left[\frac{n(n+1)(2n+1)}{6} \right] \right) = \lim_{n \to \infty} \left(\frac{1}{3} + \frac{1}{6n^2} + \frac{1}{2n} \right) = \frac{1}{3}$$

jadi barisan $\{a_n\}_{n=1}^{\infty}$ konvergen ke $\frac{1}{3}$.

16. Dapatkan nilai deret tak hinggga dari deret-deret berikut :

(a)
$$\frac{1}{3 \times 5} + \frac{1}{5 \times 7} + \frac{1}{7 \times 9} + \frac{1}{9 \times 11} + \dots = \dots$$

(b)
$$\frac{1}{1\times 3} + \frac{1}{2\times 4} + \frac{1}{3\times 5} + \frac{1}{4\times 6} + \cdots = \cdots$$

Pembahasan:

(a) Perhatikan bahwa dengan dekomposisi pecahan parsial diperoleh

$$\frac{1}{n(n+2)} = \frac{1}{2} \left(\frac{1}{n} - \frac{1}{n+2} \right)$$

sehingga diperoleh

$$\frac{1}{3\times 5} + \frac{1}{5\times 7} + \frac{1}{7\times 9} + \frac{1}{9\times 11} + \dots + \frac{1}{N(N+2)}$$

$$= \frac{1}{2}\left(\frac{1}{3} - \frac{1}{5}\right) + \frac{1}{2}\left(\frac{1}{5} - \frac{1}{7}\right) + \frac{1}{2}\left(\frac{1}{7} - \frac{1}{9}\right) + \dots + \frac{1}{2}\left(\frac{1}{N} - \frac{1}{N+2}\right)$$

$$= \frac{1}{2}\left[\left(\frac{1}{3} - \frac{1}{5}\right) + \left(\frac{1}{5} - \frac{1}{7}\right) + \left(\frac{1}{7} - \frac{1}{9}\right) + \dots + \left(\frac{1}{N} - \frac{1}{N+2}\right)\right] = \frac{1}{2}\left[\frac{1}{3} - \frac{1}{N+2}\right]$$
untuk nilai $N \to \infty$ didapat
$$\frac{1}{3\times 5} + \frac{1}{5\times 7} + \frac{1}{7\times 9} + \frac{1}{9\times 11} + \dots = \frac{1}{2}\cdot \frac{1}{3} = \frac{1}{6}$$

(b) Perhatikan bahwa deret pada soal dibagi menjadi dua deret seperti berikut

$$\frac{1}{1 \times 3} + \frac{1}{2 \times 4} + \frac{1}{3 \times 5} + \frac{1}{4 \times 6} + \dots = \dots$$

$$= \left(\frac{1}{1 \times 3} + \frac{1}{3 \times 5} + \frac{1}{5 \times 7} + \dots\right) + \left(\frac{1}{2 \times 4} + \frac{1}{4 \times 6} + \frac{1}{6 \times 8} + \dots\right)$$

Dengan dekomposisi pecahan parsial diperoleh

$$\frac{1}{n(n+2)} = \frac{1}{2} \left(\frac{1}{n} - \frac{1}{n+2} \right)$$

Perhatikan untuk deret pertama diperoleh

$$\frac{1}{1\times 3} + \frac{1}{3\times 5} + \frac{1}{5\times 7} + \frac{1}{7\times 9} + \dots + \frac{1}{N(N+2)}$$

$$= \frac{1}{2} \left(\frac{1}{1} - \frac{1}{3} \right) + \frac{1}{2} \left(\frac{1}{3} - \frac{1}{5} \right) + \frac{1}{2} \left(\frac{1}{5} - \frac{1}{7} \right) + \dots + \frac{1}{2} \left(\frac{1}{N} - \frac{1}{N+2} \right)$$

$$= \frac{1}{2} \left[\left(\frac{1}{1} - \frac{1}{3} \right) + \left(\frac{1}{3} - \frac{1}{5} \right) + \left(\frac{1}{5} - \frac{1}{7} \right) + \dots + \left(\frac{1}{N} - \frac{1}{N+2} \right) \right] = \frac{1}{2} \left[\frac{1}{1} - \frac{1}{N+2} \right]$$

untuk nilai $N \to \infty$ didapat

$$\frac{1}{1\times 3} + \frac{1}{3\times 5} + \frac{1}{5\times 7} + \frac{1}{7\times 9} + \frac{1}{9\times 11} + \dots = \frac{1}{2} \cdot 1 = \frac{1}{2}$$

Sedangkan untuk deret kedua diperoleh

$$\frac{1}{2 \times 4} + \frac{1}{4 \times 6} + \frac{1}{6 \times 8} + \frac{1}{8 \times 10} + \dots + \frac{1}{N(N+2)}$$

$$= \frac{1}{2} \left(\frac{1}{2} - \frac{1}{4} \right) + \frac{1}{2} \left(\frac{1}{4} - \frac{1}{6} \right) + \frac{1}{2} \left(\frac{1}{6} - \frac{1}{8} \right) + \dots + \frac{1}{2} \left(\frac{1}{N} - \frac{1}{N+2} \right)$$

$$= \frac{1}{2} \left[\left(\frac{1}{2} - \frac{1}{4} \right) + \left(\frac{1}{4} - \frac{1}{6} \right) + \left(\frac{1}{6} - \frac{1}{8} \right) + \dots + \left(\frac{1}{N} - \frac{1}{N+2} \right) \right] = \frac{1}{2} \left[\frac{1}{2} - \frac{1}{N+2} \right]$$

untuk nilai $N \to \infty$ didapat

$$\frac{1}{2 \times 4} + \frac{1}{4 \times 6} + \frac{1}{6 \times 8} + \frac{1}{8 \times 10} + \frac{1}{10 \times 12} + \dots = \frac{1}{2} \cdot \frac{1}{2} = \frac{1}{4}$$

Jadi

Jadi
$$\frac{1}{1 \times 3} + \frac{1}{2 \times 4} + \frac{1}{3 \times 5} + \frac{1}{5 \times 7} + \cdots$$

$$= \left(\frac{1}{1 \times 3} + \frac{1}{3 \times 5} + \frac{1}{5 \times 7} + \cdots\right) + \left(\frac{1}{2 \times 4} + \frac{1}{4 \times 6} + \frac{1}{6 \times 8} + \cdots\right) = \frac{1}{2} + \frac{1}{4} = \frac{3}{4}$$

REFERENSI

[1] Buku Ajar Matematika 2. Departemen Matematika ITS.

