Northeastern University, Department of Mathematics

MATH 5110: Applied Linear Algebra and Matrix Analysis.

• Instructor: He Wang Email: he.wang@northeastern.edu

§5. Coordinate and matrix of a transformation

Contents

$$\sqrt{\frac{1}{2}} = \left\{ a_0 + a_1 + a_1 + a_1 \right\}$$
The coordinates $B = \left\{ 1, t, t^2 \right\}$

Theorem 1 (Unique Representation Theorem). Let
$$\mathscr{B} = \{\vec{b}_1, \dots, \vec{b}_n\}$$
 be a basis for an every space V . Then,

$$\vec{V} = c_i \vec{b}_i + c_i \vec{b}_v + \cdots + c_i \vec{b}_n$$

$$(C_1 - d_1) \vec{b}_1 + \cdots + (C_n - d_n) \vec{b}_n = \vec{0}$$

Definition 2 (Coordinates Relative to a Basis). Let $\mathcal{B} \neq \{\vec{b}_1, \dots, \vec{b}_n\}$ be a basis for an vector space V. Then, The coordinates of $\vec{v} \in V$ relative to \mathscr{B}

$$\begin{bmatrix} \vec{r} \\ \vec{r} \end{bmatrix}_{\mathbf{B}} := \begin{bmatrix} \vec{c}_1 \\ \vec{c}_2 \\ \vdots \\ \vec{c}_n \end{bmatrix} \in \mathbb{R}^n$$

Example 3. [The standard basis for \mathbb{R}^n]

$$\left[\overrightarrow{U}\right]_{E} = \begin{bmatrix} 2\\ 1\\ 4 \end{bmatrix} = \overrightarrow{U}$$

Definition 4. Let $\mathscr{B} = \{\vec{b}_1, \dots, \vec{b}_n\}$ be a basis for an \mathbb{R} -vector space V. The coordinate map is

$$\vec{\chi} \longrightarrow [\vec{\chi}]_{\mathbf{Q}}$$

Theorem 5. For any choice of basis \mathscr{B} of the vector space V, the associated coordinate map is an isomorphism from V to \mathbb{F}^n .

Answered Classificour of all finite-din Ventor Spens

(x+y) = (x), +(y),

Example 6. The standard basis for the vector space $\mathbb{C}^{2\times 2}$ of all 2×2 matrices is

$$\left\{E_1 = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}, E_2 = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}, E_3 = \begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix}, E_4 = \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}\right\}.$$

$$T: \mathbb{R}^{2\times 2} \longrightarrow \mathbb{R}^{\varphi}$$

Example 7. Let V be the vector space of all polynomials of degree $\leq \mathcal{U}$.

$$\overline{V} = \overline{A} + \overline{A} + \overline{A} = \overline{A} = \overline{A} + \overline{A} = \overline{A} = \overline{A} + \overline{A} = \overline{A} =$$

Example 8. Consider a basis $\mathscr{B} = \{\vec{b}_1 = \begin{bmatrix} 1 \\ 1 \end{bmatrix}, \vec{b}_2 = \begin{bmatrix} -1 \\ 2 \end{bmatrix} \}$ for \mathbb{R}^2 .

(1) Suppose
$$\vec{x} = \begin{bmatrix} -5 \\ 1 \end{bmatrix}$$
. Find the coordinate vector $[\vec{x}]_{\mathscr{B}} = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$

(2) Suppose
$$\vec{x} \in \mathbb{R}^2$$
 has the coordinate vector $[\vec{x}]_{\mathscr{F}} = \begin{bmatrix} -3 \\ 2 \end{bmatrix}$. Find \vec{x} .

$$= \begin{bmatrix} -3 \\ 2 \end{bmatrix}. \text{ Find } \vec{x} = -7 \begin{bmatrix} 1 \\ 2 \end{bmatrix} + 2 \begin{bmatrix} -1 \\ 2 \end{bmatrix}$$

$$= \left(\left(\left(\frac{1}{2} \right) \left(\frac{1}{2} \right) \right) \left(\frac{1}{2} \right)$$

Thm:
$$\chi = \frac{1}{8}$$

$$\overline{\chi} = c_1 \overline{b} + \cdots + c_n \overline{b}_n$$

$$= [\overline{b}, \cdots, \overline{b},] [\overline{c}]$$
Page:

Theorem 10. With assumptions in Definition \mathbb{Q} , for any $\vec{x} \in V$,

$$[T(\vec{x})]_{\mathscr{C}} = C \cdot [\vec{x}]_{\mathscr{B}}$$

$$\overrightarrow{x} = x_1 \overrightarrow{b_1} + x_1 \overrightarrow{b_1} + \dots + x_n \overrightarrow{b_n}$$

$$(\overrightarrow{x})_{B} = (\overrightarrow{x_1})_{A} + \dots + x_n \overrightarrow{b_n}$$

$$(\overrightarrow{x})_{B} = (\overrightarrow{x_1})_{A} + \dots + x_n \overrightarrow{b_n}$$

$$(\overrightarrow{x})_{B} = (\overrightarrow{x_1})_{A}$$

$$(\overrightarrow{x})_{B} = (\overrightarrow{x_1})_{A}$$

$$(\overrightarrow{x})_{B} = (\overrightarrow{x_1})_{A}$$

$$(\overrightarrow{x})_{B} = (\overrightarrow{x_1})_{A}$$

$$(\overrightarrow{x})_{B} + x_1 \overrightarrow{b_n}$$

$$(\overrightarrow{x})_{B} +$$

Page 4

Definition 11 The rank of the linear transformation T is defined to be the rank of the B-C-matrix of T.

3. Change of coordinates

Applications of Theorem ? in \mathbb{P}^{n} .

(II) When $V = W = \mathbb{Z}^n$ with $T: V \to W$ the identity map. Use basis $\mathscr{B} = \{\vec{b}_1, \dots, \vec{b}_n\}$ for $V = \mathbb{R}^n$ and use standard basis for $W = \mathbb{R}^n$.

$$\begin{array}{c}
\text{(id)}_{\text{BE}} \\
\text{(id)}_{\text{E}} \\
\text{(id)}_{\text{E}}$$

Proposition 12. Let $\mathscr{B} = \{\vec{b}_1, \dots, \vec{b}_n\}$ be a basis for \mathbb{R}^n . Let $P_{\mathscr{B}}$ be the $n \times n$ matrix

Then,

$$\left[\overline{x}\right]_{\beta} = C'\left[\overline{x}\right]_{E}$$

Definition 13. The matrix $P_{\mathscr{B}}$ from the previous theorem is called the **change-of-coordinates matrix** from the basis \mathscr{B} to the standard basis $\mathscr{E} = \{\vec{e}_1, \dots, \vec{e}_n\}$.

Proposition 14. The change-of-coordinates matrix $P_{\mathscr{B}}$ is always **invertible**, and

$$[\vec{x}]_{\mathscr{B}} = P_{\mathscr{B}}^{-1} \cdot \vec{x}.$$

(III) The third particular case of Theorem [0] is when $V = W = \mathbb{R}^n$ with basis $\mathscr{B} = \{\vec{b}_1, \dots, \vec{b}_n\}$.

Proposition 15. Let $\mathscr{B} = \{\vec{b}_1, \dots, \vec{b}_n\}$ be a basis for \mathbb{R}^n . Let T be a linear transformation from \mathbb{R}^n to \mathbb{R}^n . There is an $n \times n$ matrix (called \mathscr{B} -matrix) C such that

$$(\underline{[T(\underline{\vec{x}})]_{\mathscr{B}}} = C[\vec{x}]_{\mathscr{B}})$$

$$\overrightarrow{P} A \overrightarrow{x} = \overrightarrow{C} \overrightarrow{P} \overrightarrow{x}$$

$$P^{T}A = CP^{T}$$

Example 17. Consider a basis $\mathscr{B} = \{\vec{b}_1, \vec{b}_2\}$ for \mathbb{R}^2 where $\vec{b}_1 = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$ and $\vec{b}_2 = \begin{bmatrix} -1 \\ 2 \end{bmatrix}$. Suppose a transformation T is defined by matrix $A = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$. What is the matrix C of the transformation T respect to basis \mathscr{B} ? (Find the \mathscr{B} -matrix of T.)

$$T(x) = Ax$$

$$C = p'Ap$$

$$C = (T(b))_{g} (T(b))_{g}$$

Example 18. Let T be the projection transformation onto a line $L = \text{Span}\left\{\begin{bmatrix} 1\\2\\3 \end{bmatrix}\right\} \mathbb{R}^3$.

Find a basis \mathscr{B} for \mathbb{R}^3 such that the \mathscr{B} -matrix of the T is diagonal.

$$A[\vec{h},\vec{h},\vec{h}] = [\vec{h},\vec{h},\vec{h}] \begin{bmatrix} c \\ c \end{bmatrix}$$

$$\begin{bmatrix} Ab_1 & Ab_2 & Ab_3 \end{bmatrix} = \begin{bmatrix} C_1b_1 & C_2b_2 & C_3b_3 \end{bmatrix}$$

 \mathcal{B} \mathcal{R}^3 $\xrightarrow{T=P^{n}}$ \mathcal{R}^3 \mathcal{B}

P=[5, 5]

$$T\left(\begin{bmatrix} \frac{2}{3} \\ \frac{2}{3} \end{bmatrix}\right) = I\begin{bmatrix} \frac{1}{2} \\ \frac{2}{3} \end{bmatrix}$$

$$T\left(\begin{bmatrix} \frac{2}{3} \\ \frac{2}{3} \end{bmatrix}\right) = O\begin{bmatrix} \frac{2}{3} \\ \frac{2}{3} \end{bmatrix}$$

$$T\left(\begin{bmatrix} \frac{3}{3} \\ \frac{2}{3} \end{bmatrix}\right) = O\begin{bmatrix} \frac{2}{3} \\ \frac{2}{3} \end{bmatrix}$$

$$T(\begin{bmatrix} 3 \\ 0 \end{bmatrix}) = \vec{0} = o\begin{bmatrix} 3 \\ 0 \end{bmatrix}$$

$$C=\begin{bmatrix} & & & & \\ & & & & \\ & & & & \end{bmatrix}$$