MPI-based data reduction in Mantid

Simon Heybrock

European Spallation Source

2015-09-24

MPI model based on by-spectrum work distribution

- ▶ detectors from all ranks are interleaved ⇒ good load balance
- gathering a workspace in general not feasible in event mode, but can probably be avoided in most scenarios

MPI model (implementation)

- lacktriangleright Workspace StorageMode \Rightarrow Algorithm ExecutionMode
- default implementation for "trivially parallel algorithms" that can run in parallel out of the box

Test

- SNSPowderReduction
 - disabled the existing MPI implementation
 - disabled preserveEvents in DiffractionFocussing
- test with POWGEN (PG3 system test)
 - data file with 17.9 M events
 - vanadium file with 65.8 M events
 - background file with 1.7 M events
- test runs on DMCS workstation and DMSC cluster (12 cores/node, Infiniband)
- MPI runs use only a single thread per rank

16 nodes, DMSC cluster, MPI (no threading)

16 nodes, DMSC cluster, MPI (no threading) ['Load' algorithms excluded from plot]

tcmalloc, 1 node, DMSC workstation, MPI (no threading)

tcmalloc, 1 node, DMSC workstation, MPI (no threading) ['Load' algorithms excluded from plot]

seconds

tcmalloc, 1 node, DMSC workstation, threading

tcmalloc, 1 node, DMSC workstation, threading ['Load' algorithms excluded from plot]

