혼자 공부하는 머신러닝 + 딥러닝

Chapter 09. 텍스트를 위한 인공 신경망

순차 데이터(sequential data)

- 순서에 의미가 있는 데이터
- 순서를 유지하며 신경망에 주입해야 함.
- 이전에 입력한 데이터를 기억하는 기능 필요
- ex) 텍스트, 시계열 데이터

순환 신경망 (RNN)

Recurrent Neural Network, RNN

- 스스로를 반복하면서 이전 단계에서 얻은 정보가 지속되도록 함.

순환 신경망 (RNN)

cell (셀)

RNN에서 hidden layer에서 activation function을 통해 출력을 내보내는 역할을 하는 node

= memory cell, RNN cell

hidden state (은닉 상태)

- memory cell이 출력층 방향으로 또는 다음 시점인 t+1의 자신에게 보내는 값
- 네트워크가 시간적인 의존성을 학습하고 과거 정보를 기억하며 데이터를 처리하는 데 사용됨

순환 신경망 (RNN)

- A: 입력으로 Xt를 받아 ht를 출력
- A를 둘러싼 반복(화살표) : 다음 단계에서의 network가 이전 단계의 정보를 받음.
- t 시점의 memory cell은 t-1 시점의 memory cell이 보낸 hidden state 값을 t 시점의 hidden state 계산을 위한 입력값으로 사용함.

순환 신경망 (RNN)

ht

현재 시점 t에서의 은닉상태값

Wx

입력층을 위한 가중치

Wh

이전 시점 t-1의 은닉 상태값인 ht-1을 위한 가중치

식

은닉층 : $h_t = tanh(W_x x_t + W_h h_{t-1} + b)$

출력층 : $y_t = f(W_y h_t + b)$

하이퍼볼릭 탄젠트 함수 (hyperbolic tangent, tanh)

- RNN에서 은닉층의 활성화 함수로 많이 사용함.
- 시그모이드 함수를 일부 보완함.
 - (1) 기울기가 양수, 음수 모두 가능 -> 시그모이드 함수보다 학습 효율성이 뛰어남.
- (2) -1~ 1 사이의 범위를 가짐 -> 범위가 더 넓기 때문에 출력값의 변화폭이 더 크고, 그로 인해기울기 소실 증상이 더 적음.

기울기 소실 (Gradient Vanishing) :

미분 함수에 대하여, 값이 일정 이상 커지는 경우 미분값이 소실되는 현상

순환 신경망 (RNN)의 형태

- 입력과 출력의 길이(Xt와 ht의 개수)를 다르게 설계할 수 있음.
- 다양한 용도로 사용 가능

일 대 다 (one-to-many)

ex) 이미지 캡셔닝

다 대 일 (many-to-one)

ex) 감성 분류, 스팸 메일 분류

다 대 다 (many-to-many)

ex) 챗봇, 번역기

RNN의 한계점

- RNN은 출력 결과가 이전의 계산 결과에 의존함.
- 비교적 짧은 시퀀스에 대해서만 효과를 보임.
- RNN의 time step이 길어질수록 앞의 정보가 뒤로 충분히 전달되지 못하는 현상 발생함.

장단기 메모리 (Long Short-Term Memory, LSTM)

- 은닉층의 메모리 셀에 입력 게이트, 삭제 게이트,
 출력 게이트를 추가하여 불필요한 기억을 지우고,
 기억해야 할 것들을 정함.
- 긴 시퀀스의 입력을 처리하는데 탁월한 성능을 보임.

+ 셀 상태 (cell state) : Ct

- 왼쪽에서 오른쪽으로 가는 굵은 선
- 은닉 상태처럼 이전 시점의 셀 상태가 다음 시점
 의 셀 상태를 구하기 위한 입력으로 사용됨.

LSTM - 입력 게이트

- 현재 정보를 기억하기 위한 게이트
- 현재 시점의 입력을 얼마나 반영할지 결정
- 두 값으로 기억할 정보의 양 정함.

it: 현재 시점 t의 x값과 입력 게이트로 이어지는
가중치를 곱한 값과 이전 시점 t-1의 은닉 상태가
입력 게이트로 이어지는 가중치를 곱한 값을 더하
여 시그모이드 함수를 지난 값

$$i_t = \sigma(W_{xi}x_t + W_{hi}h_{t-1} + b_i)$$

gt: 현재 시점 t의 x값과 입력 게이트로 이어지는
가중치를 곱한 값과 이전 시점 t-1의 은닉 상태가
입력 게이트로 이어지는 가중치를 곱한 값을 더하
여 하이퍼보릭탄젠트 함수를 지난 값

$$g_t = tanh(W_{xg}x_t + W_{hg}h_{t-1} + b_g)$$

LSTM - 삭제 게이트

- 기억을 삭제하기 위한 게이트
- 이전 시점의 입력을 얼마나 반영할지 의미함. _

ft: 현재 시점 t의 x값과 이전 시점 t-1의 은닉 상태가 시그모이드 함수를 지난 값

$$f_t = \sigma(W_{xf}x_t + W_{hf}h_{t-1} + b_f)$$

 f_t - 0과 1 사이의 값

- 삭제 과정을 거친 정보의 양
- 0에 가까울수록 -> 정보가 많이 삭제됨.
- 1에 가까울수록 -> 정보를 기억함.

LSTM - 셀 상태 구하기

$i_t \circ g_t$

- 입력 게이트에서 구한 두 값에 대한 원소별 곱
- 기억할 값

$$C_t = f_t \circ C_{t-1} + i_t \circ g_t$$

- 입력 게이트에서 선택된 기억을 삭제 게이트
 의 결과값에 더함.
- 현재 시점 t의 셀 상태
- 다음 t+1 시점의 LSTM 셀로 넘겨짐.

LSTM - 출력 게이트 / 은닉 상태 구하기

· ot:

현재 시점 t의 x값과 이전 시점 t-1의 은닉 상태가 시그모이드 함수를 지난 값

 $o_t = \sigma(W_{xo}x_t + W_{ho}h_{t-1} + b_o)$ 현재 시점 t의 은닉 상태를 결정하는 데 쓰임.

 $h_t = o_t \circ tanh(c_t)$

- ht : 셀 상태의 값이 tanh 함수를 지나 -1과 1 사이의 값이 되고, 해당 값은 출력 게이트의 값과 연산되면서, 값이 걸러지는 효과가 발생하여 은닉상태가 됨.

게이트 순환 유닛 (Gated Recuurent Unit, GRU)

GRU란?

LSTM의 장기 의존성 문제에 대한 해결책을 유지하면서,
 은닉 상태를 업데이트하는 계산을 줄인 것

LSTM과의 차이점

- 업데이트 게이트, 리셋 게이트 두 가지 게이트만 존재함.
- 가중치가 적어 계산량이 적음. (but 성능은 비슷)

$$egin{aligned} r_t &= \sigma(W_{xr}x_t + W_{hr}h_{t-1} + b_r) \ z_t &= \sigma(W_{xz}x_t + W_{hz}h_{t-1} + b_z) \ g_t &= tanh(W_{hg}(r_t \circ h_{t-1}) + W_{xg}x_t + b_g) \ h_t &= (1 - z_t) \circ g_t + z_t \circ h_{t-1} \end{aligned}$$

NLP에서의 문자 -> 숫자 변형 방법

원-핫 인코딩 (One-Hot Encoding)

1st) 단어 집합 만들기

단어 집합: 텍스트의 모든 단어를 중복 허용 없이 모아 놓은 것

2nd) 단어 집합에 고유한 정수 부여 (정수 인코딩)

각 단어에 고유한 정수 인덱스를 부여함.

3rd) 숫자로 바뀐 단어들을 벡터로 다루기

- 표현하고 싶은 단어의 고유한 정수를 인덱스로 간주하고 해당 위치에 1을 부여하고, 다른 단어의 인덱스의 위치에는 0을 부여함.

희소 표현

(Sparse Representation)

- 벡터 또는 행렬의 값이 대부분이 0으로 표현되는 방법
- 원 핫 벡터는 희소 벡터임.
- 문제점: 단어의 개수가 늘어나면 벡터의 차원이 한없 이 커짐, 공간적 낭비, 단어의 의미 표현 불가

NLP에서의 문자 -> 숫자 변형 방법

밀집 표현

(Dense Representation)

- 0과 1 x -> 실수 값 가짐.
- 벡터의 차원 : 단어 집합의 크기 x -> 사용자 설정값
- 벡터의 차원이 조밀해짐 -> 밀집 벡터

워드 임베딩 (Word Embedding)

단어를 밀집 벡터(dense vector)의 형태로 표현하는 방법

	원-핫 벡터	임베딩 벡터	
차원	고차원(단어 집합의 크기)	저차원	
다른 표현	희소 벡터의 일종	밀집 벡터의 일종	
표현 방법	수동	훈련 데이터로부터 학습함	
값의 타입	1과 0	실수	

0.2 0.1 1.3 0.8 0.2 0.4 1.1 0.9 0.2 0.1

워드 임베딩 방법론 : LSA, Word2Vec, FastText, Glove 등