${\rm TMA947}$ Assignment Exercises 6

Edoardo Mangia

October 2024

Contents

1	1 HW 6.1	1
2	2 E 5.11	3
3	3 E 6.5	6
4	4 E 6.6	10

1 HW 6.1

Problem Statement

Consider the optimization problem:

$$Minimize - x_1 (6.1) (1)$$

Subject to
$$(x_1+1)^2 + x_2^2 \le 1$$
 (6.2)

$$x_1^2 + x_2^2 \le 1 \quad (6.3)$$

Lagrangian Relaxation of Constraint (6.2)

Constraint (6.2) is relaxed by introducing a dual variable $\lambda \geq 0$. The Lagrangian $L(x,\lambda)$ is defined as:

$$L(x,\lambda) = -x_1 + \lambda \left((x_1 + 1)^2 + x_2^2 - 1 \right)$$

Dual Function $q(\lambda)$

The dual function is defined by:

$$q(\lambda) = \inf\{L(x,\lambda) \mid x_1^2 + x_2^2 \le 1\}$$

Expanding the Lagrangian:

$$q(\lambda) = \inf \left\{ -x_1 + \lambda \left(x_1^2 + 2x_1 + 1 + x_2^2 - 1 \right) \mid x_1^2 + x_2^2 \le 1 \right\}$$

= \inf \left\{ \lambda x_1^2 + \lambda x_2^2 + (2\lambda - 1)x_1 \left| x_1^2 + x_2^2 \leq 1 \right\}
= \inf \left\{ \lambda (x_1^2 + x_2^2) + (2\lambda - 1)x_1 \left| x_1^2 + x_2^2 \leq 1 \right\}

Determining the Dual Function $q(\lambda)$

Case 1: $\lambda \geq \frac{1}{4}$

In this case, the stationary point is feasible. Minimizing the Lagrangian yields:

$$q(\lambda) = -\frac{(2\lambda - 1)^2}{4\lambda}$$

Case 2: $\lambda < \frac{1}{4}$

Here, the minimum occurs on the boundary $x_1^2 + x_2^2 = 1$. Evaluating at $x_1 = 1$ gives:

$$q(\lambda) = 3\lambda - 1$$

Summary of the Dual Function

Combining both cases, the dual function is:

$$q(\lambda) = \begin{cases} 3\lambda - 1 & \text{if } \lambda < \frac{1}{4}, \\ -\frac{(2\lambda - 1)^2}{4\lambda} & \text{if } \lambda \ge \frac{1}{4}. \end{cases}$$

Subdifferential of $q(\lambda)$ at $\lambda = \frac{1}{4}$

The subdifferential $\partial q(\lambda)$ at $\lambda = \frac{1}{4}$ consists of all possible subgradients (slopes of supporting lines) at that point.

Left Derivative

Approaching $\lambda = \frac{1}{4}$ from below:

$$\frac{d}{d\lambda}(3\lambda - 1) = 3$$

Right Derivative

Approaching $\lambda = \frac{1}{4}$ from above:

$$\left. \frac{d}{d\lambda} \left(-\frac{(2\lambda - 1)^2}{4\lambda} \right) \right|_{\lambda = \frac{1}{4}} = 3$$

Conclusion

Since both the left and right derivatives at $\lambda=\frac{1}{4}$ are equal to 3, the function $q(\lambda)$ is differentiable at this point. Therefore, the subdifferential at $\lambda=\frac{1}{4}$ is the singleton set containing only the value 3.

$$\partial q \left(\frac{1}{4}\right) = \{3\}$$

2 E 5.11

Convex Optimization Problem

Consider the unconstrained optimization problem:

$$\min_{x \in \mathbb{R}^2} f(x)$$

where f is a convex function.

Part (a)

Given:

- Point $\bar{x} = \begin{pmatrix} 2 \\ 1 \end{pmatrix}$
- $f(\bar{x}) = 2$
- Subgradient at \bar{x} : $g = \begin{pmatrix} 1 \\ -1 \end{pmatrix}$

Objective: Determine the optimal value f^* and the minimizer x^* .

Analysis

1. Subgradient Condition for Optimality:

For a convex function f, a point \bar{x} is a minimizer if and only if the zero vector is a subgradient at \bar{x} , i.e., $0 \in \partial f(\bar{x})$.

Here, the given subgradient $g = \begin{pmatrix} 1 \\ -1 \end{pmatrix} \neq 0$, which implies that \bar{x} is **not** a minimizer.

2. Lower Bound on f(x):

Using the subgradient g, for any $x \in \mathbb{R}^2$:

$$f(x) \ge f(\bar{x}) + g^T(x - \bar{x})$$

Substituting the given values:

$$f(x) \ge 2 + (1 - 1) \begin{pmatrix} x_1 - 2 \\ x_2 - 1 \end{pmatrix} = 2 + (x_1 - 2) - (x_2 - 1) = x_1 - x_2 + 1$$

3. Implications for the Optimal Value f^* :

The inequality $f(x) \ge x_1 - x_2 + 1$ suggests that f(x) is bounded below by the linear function $x_1 - x_2 + 1$. However, since x_1 and x_2 can take any real values, the expression $x_1 - x_2 + 1$ can be made arbitrarily negative by choosing $x_1 - x_2$ sufficiently negative. Therefore, the infimum of f(x) is $-\infty$, i.e., $f^* = -\infty$.

4. Existence of a Minimizer x^* :

Since the infimum of f(x) is $-\infty$, there is **no finite minimizer** x^* in \mathbb{R}^2 .

Conclusion for Part (a)

 $f^* = -\infty$ and there is no minimizer x^* in \mathbb{R}^2 .

Part (b)

Given:

- Point $\tilde{x} = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$
- $f(\tilde{x}) = -1$
- Subgradients at \tilde{x} :

$$g_1 = \begin{pmatrix} -1 \\ 0 \end{pmatrix}, \quad g_2 = \begin{pmatrix} 1 \\ 2 \end{pmatrix}, \quad g_3 = \begin{pmatrix} 1 \\ -1 \end{pmatrix}$$

Objective: Determine the optimal value f^* and the minimizer x^* .

Analysis

1. Subgradient Condition for Optimality:

For a convex function f, \tilde{x} is a minimizer if and only if $0 \in \partial f(\tilde{x})$, where $\partial f(\tilde{x})$ is the convex hull of all subgradients at \tilde{x} .

2. Determining if Zero is in the Subgradient Set:

It must be checked whether there exist non-negative scalars $\lambda_1, \lambda_2, \lambda_3$ such that:

$$\lambda_1 + \lambda_2 + \lambda_3 = 1$$

and

$$\lambda_1 g_1 + \lambda_2 g_2 + \lambda_3 g_3 = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$$

Substituting the given subgradients:

$$\lambda_1 \begin{pmatrix} -1 \\ 0 \end{pmatrix} + \lambda_2 \begin{pmatrix} 1 \\ 2 \end{pmatrix} + \lambda_3 \begin{pmatrix} 1 \\ -1 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$$

This yields the system of equations:

$$-\lambda_1 + \lambda_2 + \lambda_3 = 0 \quad (1)$$

$$2\lambda_2 - \lambda_3 = 0 \quad (2)$$

$$\lambda_1 + \lambda_2 + \lambda_3 = 1 \quad (3)$$

3. Solving the System:

From equation (2):

$$\lambda_3 = 2\lambda_2$$

Substituting $\lambda_3 = 2\lambda_2$ into equation (1):

$$-\lambda_1 + \lambda_2 + 2\lambda_2 = 0 \quad \Rightarrow \quad \lambda_1 = 3\lambda_2$$

Substituting $\lambda_1 = 3\lambda_2$ and $\lambda_3 = 2\lambda_2$ into equation (3):

$$3\lambda_2 + \lambda_2 + 2\lambda_2 = 6\lambda_2 = 1 \quad \Rightarrow \quad \lambda_2 = \frac{1}{6}$$

Therefore:

$$\lambda_1 = \frac{1}{2}, \quad \lambda_3 = \frac{1}{3}$$

All λ_i are non-negative and sum to 1, satisfying the convex combination condition.

4. Conclusion on Optimality:

Since $0 \in \partial f(\tilde{x})$, \tilde{x} is a **minimizer** of f.

Optimal Value and Minimizer:

$$f^* = f(\tilde{x}) = -1$$

$$x^* = \tilde{x} = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$$

Conclusion for Part (b)

$$f^* = -1$$
 and $x^* = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$

This is established by verifying that the zero vector lies within the subgradient set at \tilde{x} , fulfilling the optimality condition for convex optimization.

3 E 6.5

Optimization Problem

Consider the following optimization problem:

Minimize
$$f(\mathbf{x}) = (x_1 - 1)^2 + \left(x_2 - \frac{1}{2}\right)^2$$

Subject to $0 \le x_1 \le 1$,
 $0 \le x_2 \le 1$.

Frank-Wolfe Algorithm Iterates

The Frank-Wolfe algorithm is applied starting from the initial point $\mathbf{x}_0 = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$. Below are the first five iterates generated by the algorithm.

1. Initial Point (\mathbf{x}_0)

$$\mathbf{x}_0 = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$$

Gradient at x_0 :

$$\nabla f(\mathbf{x}_0) = \begin{pmatrix} -2\\ -1 \end{pmatrix}$$

Linear Minimization Oracle (s_0) :

$$\mathbf{s}_0 = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$$

Step Size (γ_0) :

$$\gamma_0 = 1$$

Next Iterate (x_1) :

$$\mathbf{x}_1 = (1 - \gamma_0)\mathbf{x}_0 + \gamma_0\mathbf{s}_0 = \begin{pmatrix} 1\\1 \end{pmatrix}$$

2. First Iteration (x_1)

$$\mathbf{x}_1 = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$$

Gradient at x_1 :

$$\nabla f(\mathbf{x}_1) = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$$

Linear Minimization Oracle (s_1) :

$$\mathbf{s}_1 = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$$

Step Size (γ_1) :

$$\gamma_1 = \frac{2}{3}$$

Next Iterate (x_2) :

$$\mathbf{x}_2 = \frac{1}{3}\mathbf{x}_1 + \frac{2}{3}\mathbf{s}_1 = \begin{pmatrix} \frac{1}{3} \\ \frac{1}{3} \end{pmatrix}$$

3. Second Iteration (x_2)

$$\mathbf{x}_2 = \begin{pmatrix} \frac{1}{3} \\ \frac{1}{3} \end{pmatrix}$$

Gradient at x_2 :

$$\nabla f(\mathbf{x}_2) = \begin{pmatrix} -\frac{4}{3} \\ -\frac{1}{3} \end{pmatrix}$$

Linear Minimization Oracle (s_2) :

$$\mathbf{s}_2 = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$$

Step Size (γ_2) :

$$\gamma_2 = \frac{1}{2}$$

Next Iterate
$$(x_3)$$
:

$$\mathbf{x}_3 = \frac{1}{2}\mathbf{x}_2 + \frac{1}{2}\mathbf{s}_2 = \begin{pmatrix} \frac{2}{3} \\ \frac{2}{3} \end{pmatrix}$$

4. Third Iteration (x_3)

$$\mathbf{x}_3 = \begin{pmatrix} \frac{2}{3} \\ \frac{2}{3} \end{pmatrix}$$

Gradient at x_3 :

$$\nabla f(\mathbf{x}_3) = \begin{pmatrix} -\frac{2}{3} \\ \frac{1}{3} \end{pmatrix}$$

Linear Minimization Oracle (s_3) :

$$\mathbf{s}_3 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

Step Size (γ_3) :

$$\gamma_3 = \frac{2}{5}$$

Next Iterate (x_4) :

$$\mathbf{x}_4 = \frac{3}{5}\mathbf{x}_3 + \frac{2}{5}\mathbf{s}_3 = \begin{pmatrix} 0.8\\0.4 \end{pmatrix}$$

5. Fourth Iteration (x_4)

$$\mathbf{x}_4 = \begin{pmatrix} 0.8\\ 0.4 \end{pmatrix}$$

Gradient at x_4 :

$$\nabla f(\mathbf{x}_4) = \begin{pmatrix} -0.4\\ -0.2 \end{pmatrix}$$

Linear Minimization Oracle (s_4) :

$$\mathbf{s}_4 = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$$

Step Size (γ_4) :

$$\gamma_4 = \frac{1}{3}$$

Next Iterate (x_5) :

$$\mathbf{x}_5 \approx \frac{2}{3}\mathbf{x}_4 + \frac{1}{3}\mathbf{s}_4 = \begin{pmatrix} 0.8667\\ 0.6 \end{pmatrix}$$

Summary of Iterates

$$\mathbf{x}_{0} = \begin{pmatrix} 0 \\ 0 \end{pmatrix},$$

$$\mathbf{x}_{1} = \begin{pmatrix} 1 \\ 1 \end{pmatrix},$$

$$\mathbf{x}_{2} = \begin{pmatrix} \frac{1}{3} \\ \frac{1}{3} \end{pmatrix},$$

$$\mathbf{x}_{3} = \begin{pmatrix} \frac{2}{3} \\ \frac{2}{3} \end{pmatrix},$$

$$\mathbf{x}_{4} = \begin{pmatrix} 0.8 \\ 0.4 \end{pmatrix},$$

$$\mathbf{x}_{5} \approx \begin{pmatrix} 0.8667 \\ 0.6 \end{pmatrix}.$$

Behavior of the Frank-Wolfe Algorithm

- 1. Oscillatory Movement Towards Optimum: The iterates oscillate between boundary points (e.g., (1,1) and (1,0)) and interior points within the feasible region. This oscillatory behavior is characteristic of the Frank-Wolfe algorithm, especially in problems with multiple constraints.
- 2. Convergence Towards the Optimal Solution: Despite the oscillations, the iterates progressively approach the optimal solution. For this problem, the unconstrained minimum is at $\mathbf{x}^* = \begin{pmatrix} 1 \\ \frac{1}{2} \end{pmatrix}$. The iterates are converging towards this point while respecting the constraints $0 \le x_1 \le 1$ and $0 \le x_2 \le 1$.
- 3. Convex Combination of Extreme Points: Each new iterate is constructed as a convex combination of the current point and a vertex of the feasible set determined by the linear minimization oracle. This ensures that all iterates remain within the feasible region.
- 4. Step Size Influence: The chosen step sizes γ_k decrease over iterations, allowing the algorithm to make smaller adjustments as it homes in on the optimal solution. This balances exploration of the feasible region with convergence.
- 5. Efficiency in Smooth Convex Problems: For smooth convex problems like the one presented, the Frank-Wolfe algorithm efficiently navigates towards the minimum by leveraging gradient information and the structure of the feasible set.

4 E 6.6

Optimization Problem

Consider the following optimization problem:

Minimize
$$f(\mathbf{x}) = (x_1 - 1)^2 + \left(x_2 - \frac{1}{2}\right)^2$$

Subject to $0 \le x_1 \le 1$,
 $0 \le x_2 \le 1$.

Simplicial Decomposition Algorithm Iterates

The Simplicial Decomposition Algorithm is applied starting from the initial point $\mathbf{x}_0 = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$. Below are the first five iterates generated by the algorithm.

1. Initial Point (\mathbf{x}_0)

$$\mathbf{x}_0 = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$$

Gradient at x_0 :

$$\nabla f(\mathbf{x}_0) = \begin{pmatrix} -2\\ -1 \end{pmatrix}$$

Active Set (S_0) :

$$\mathcal{S}_0 = \{\mathbf{x}_0\}$$

Search Direction:

$$\mathbf{d}_0 = \mathbf{x}^* - \mathbf{x}_0 = \begin{pmatrix} 1 \\ \frac{1}{2} \end{pmatrix}$$

Step Size (γ_0) :

$$\gamma_0 = 1$$

Next Iterate (x_1) :

$$\mathbf{x}_1 = \mathbf{x}_0 + \gamma_0 \mathbf{d}_0 = \begin{pmatrix} 1\\ \frac{1}{2} \end{pmatrix}$$

2. First Iteration (x_1)

$$\mathbf{x}_1 = \begin{pmatrix} 1 \\ \frac{1}{2} \end{pmatrix}$$

Gradient at x_1 :

$$\nabla f(\mathbf{x}_1) = \begin{pmatrix} 0\\1 \end{pmatrix}$$

Active Set
$$(S_1)$$
:

$$\mathcal{S}_1 = \{\mathbf{x}_0, \mathbf{x}_1\}$$

Search Direction:

$$\mathbf{d}_1 = \mathbf{x}^* - \mathbf{x}_1 = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$$

Step Size (γ_1) :

 $\gamma_1 = 0$ (Termination Condition Met)

Next Iterate (x_2) :

$$\mathbf{x}_2 = \mathbf{x}_1 = \begin{pmatrix} 1 \\ \frac{1}{2} \end{pmatrix}$$

3. Second Iteration (x_2)

Since the search direction $\mathbf{d}_1 = \mathbf{0}$, the algorithm has converged to the optimal solution.

$$\mathbf{x}_2 = \mathbf{x}_1 = \begin{pmatrix} 1 \\ \frac{1}{2} \end{pmatrix}$$

Algorithm Terminates.

Summary of Iterates

$$\mathbf{x}_0 = \begin{pmatrix} 0 \\ 0 \end{pmatrix},$$

$$\mathbf{x}_1 = \begin{pmatrix} 1 \\ \frac{1}{2} \end{pmatrix},$$

$$\mathbf{x}_2 = \begin{pmatrix} 1 \\ \frac{1}{2} \end{pmatrix}.$$

Behavior of the Simplicial Decomposition Algorithm

- 1. **Rapid Convergence:** The algorithm converges to the optimal solution in just two iterations. This is due to the simplicity of the feasible set and the objective function being quadratic and convex.
- 2. Building the Active Set: The active set S_k grows by adding new points that improve the approximation of the feasible region. In this case, the algorithm identifies the optimal vertex quickly.
- 3. **Exact Optimality in Few Steps:** For problems where the optimal solution lies at a vertex of the feasible set, the simplicial decomposition algorithm can find the solution in a minimal number of iterations.
- 4. Efficient Utilization of Gradient Information: The algorithm effectively uses gradient information to identify promising directions towards the optimum.

Comparison to Frank-Wolfe Algorithm

1. Number of Iterations:

- Frank-Wolfe: Took five iterations to approach the optimal solution.
- Simplicial Decomposition: Converged in two iterations.

2. Convergence Behavior:

- Frank-Wolfe: Exhibited oscillatory behavior, alternating between boundary points and interior points, gradually approaching the optimal solution.
- Simplicial Decomposition: Directly identified and moved towards the optimal vertex without oscillation.

3. Active Set Management:

- Frank-Wolfe: Does not explicitly maintain an active set of vertices; each iterate is a convex combination based on the current gradient.
- Simplicial Decomposition: Actively builds and updates an active set of vertices that form a simplex approximating the feasible region.

4. Applicability:

- Frank-Wolfe: More suitable for large-scale problems where maintaining a simplex is computationally expensive.
- **Simplicial Decomposition:** Can be more efficient for smaller problems or when rapid convergence is desired.

5. Solution Path:

- Frank-Wolfe: Iterates move within the feasible region, often requiring multiple steps to hone in on the optimum.
- **Simplicial Decomposition:** Quickly converges by selecting vertices that span the simplex towards the optimal solution.