

Intelligent Systems

Excersice 8 – Classification

Simon Reichhuber, Ingo Thomsen February 3, 2021

University of Kiel, Winter Term 2021

TABLE OF CONTENT

- 1. DBSCAN and Outlier Detection
- 2. Classification algorithms

DBSCAN and Outlier Detection

A. Calculate the *Local Outlier Factor* (*LOF*) of the points A_1 and N in the figure

- B. Draw the distribution of ascending minimum *kdists* of every point with k = 1, 2, 3.
- C. How can you estimate the parameter ϵ by given a percentage of noise?
- D. Find parameters $\epsilon > 0$, min_pts $\in \mathbb{N}$ s.t.
 - A_i , i = 1, 2, 3 is clustered as a cluster
 - B_i , j = 1, 2 is clustered as a cluster
 - N is marked as noise.
- E. Find parameters $\epsilon > 0$, min pts $\in \mathbb{N}$, and points C_k s.t.
 - A_i , $i = 1, 2, 3, B_i$, j = 1, 2 is clustered as a cluster.
 - N is marked as noise.

Calculate the *Local Outlier Factor* (*LOF*) of the points A_1 and N in the figure

What exactly is the Local Outlier Factor?

1. A LOF FROM LECTURE

Novelty detection algorithms (11)

LOF - Equations

- k = number of neighbours considered
- kdist(x) = distance to k-th neighbour
- N_k(x) = ordered set of k-nearest neighbours of x
- $reachability_dist_k(x,y) = \max(kdist(y), dist(x,y))$
- $lrd_k(x) = \frac{k}{\sum_{y \in N_k(x)} reachability_dist_k(x,y)} = local reachability density$

•
$$LOF_k(x) = \frac{\sum_{y \in N_k(x)} \frac{lrd_k(y)}{lrd_k(x)}}{k}$$

1. A LOF CALCULATIONS (1)

Metric undefined \rightarrow Choose Euclidean metric $dist(x, y) = ||x - y||_2$ For k = 1 it follows:

$$\begin{split} 1 - \textit{dist}(A_1) &= 1 \\ N_1(A_1) &= \{\textit{first} : A_2\} \\ \textit{Ird}_1(A_1) &= \frac{1}{\sum_{y \in N_1(A_1)} \textit{reachability_dist}_1(A_1, y)} \\ &= \frac{1}{\textit{reachability_dist}_1(A_1, A_2)} = \frac{1}{\textit{max}(1 - \textit{dist}(A_2), \textit{dist}(A_1, A_2))} \\ &= \frac{1}{\textit{max}(1, 1)} = 1 \end{split}$$

Remark:

For k = 1, k - dist is noted as 1 - dist.

1.A LOF CALCULATIONS (2)

$$\begin{split} LOF_{1}(A_{1}) &= \frac{\sum_{y \in N_{1}(A_{1})} \frac{lrd_{1}(y)}{lrd_{1}(A_{1})}}{1} = \frac{1}{\sum_{y \in N_{1}(A_{2})} reachability_dist_{1}(A_{2}, y)} \\ &= \frac{1}{\sum_{y \in \{first:A_{1}\}} reachability_dist_{1}(A_{2}, y)} \\ &= \frac{1}{reachability_dist_{1}(A_{2}, A_{1})} \\ &= \frac{1}{max(1 - dist(A_{1}), dist(A_{2}, A_{1}))} = \frac{1}{max(1, 1)} = 1 \end{split}$$

Remark:

The function $reachability_dist_k(x, y)$ is non-symmetric, because kdist(x, y) is non-symmetric.

1. A LOF CALCULATIONS (3)

$$\begin{split} LOF_{1}(N) &= \frac{\sum_{y \in N_{1}(N)} \frac{Ird_{1}(y)}{Ird_{1}(N)}}{1} \\ &\sum_{y \in \{first: A_{2}\}} \frac{Ird_{1}(y)}{Ird_{1}(N)} \\ \frac{Ird_{1}(A_{2})}{Ird_{1}(N)} &= \frac{\sum_{y \in N_{1}(N)} reachability_dist_{1}(N, y)}{\sum_{y \in N_{1}(A_{2})} reachability_dist_{1}(A_{2}, y)} \\ &= \frac{reachability_dist_{1}(N, A_{2})}{reachability_dist_{1}(A_{2}, A_{1})} \\ &= \frac{max(1 - dist(A_{2}), dist(N, A_{2}))}{max(1 - dist(A_{1}), dist(A_{2}, A_{1}))} \\ &= \frac{max(1, 3)}{max(1, 1)} = 3 \end{split}$$

 \rightarrow Because $LOF_1(A_1) = 1$ and $LOF_1(N) = 3$ it is more likely that N is an outlier.

1. A LOF CALCULATIONS (4)

For k = 2 it follows:

$$\begin{split} 2 - \textit{dist}(A_1) &= \sqrt{2} \\ N_2(A_1) &= \{\textit{first} : A_2, \textit{second} : A_3\} \\ \textit{Ird}_2(A_1) &= \frac{2}{\sum_{y \in N_2(A_1)} \textit{reachability_dist}_2(A_1, y)} \\ &= \frac{2}{\sum_{y \in \{\textit{first} : A_2, \textit{second} : A_3\}} \textit{reachability_dist}_2(A_1, y)} \\ &= \frac{2}{\textit{reachability_dist}_2(A_1, A_2) + \textit{reachability_dist}_2(A_1, A_3)} \\ &= \frac{2}{\textit{max}(2 - \textit{dist}(A_2), \textit{dist}(A_1, A_2)) + \textit{max}(2 - \textit{dist}(A_3), \textit{dist}(A_1, A_3))} \\ &= \frac{2}{\textit{max}(1, 1) + \textit{max}(\sqrt{2}, \sqrt{2})} = \frac{2}{1 + \sqrt{2}} \approx 0.828 \end{split}$$

1. A LOF CALCUATIONS (6)

$$\begin{split} & \textit{Ird}_{2}(A_{2}) = \frac{2}{\sum_{y \in N_{2}(A_{2})} \textit{reachability_dist}_{2}(A_{2}, y)} \\ &= \frac{2}{\sum_{y \in \{\textit{first}: A_{1}, \textit{second}: A_{3}\}} \textit{reachability_dist}_{2}(A_{2}, y)} \\ &= \frac{2}{\textit{max}(2 - \textit{dist}(A_{1}), \textit{dist}(A_{2}, A_{1})) + \textit{max}(2 - \textit{dist}(A_{3}), \textit{dist}(A_{2}, A_{3}))} \\ &= \frac{2}{\textit{max}(\sqrt{2}, 1) + \textit{max}(\sqrt{2}, 1)} = \frac{1}{\sqrt{2}} \approx 0.707 \end{split}$$

1. A LOF CALCULATIONS (7)

$$\begin{split} & \textit{Ird}_{2}(A_{3}) = \frac{2}{\sum_{y \in N_{2}(A_{3})} \textit{reachability_dist}_{2}(A_{3}, y)} \\ & \textit{Ird}_{2}(A_{3}) = \frac{2}{\sum_{y \in \{\textit{first:}A_{2}, \textit{second:}A_{1}\}} \textit{reachability_dist}_{2}(A_{3}, y)} \\ & \textit{Ird}_{2}(A_{3}) = \frac{2}{\textit{max}(2 - \textit{dist}(A_{2}), \textit{dist}(A_{3}, A_{2})) + \textit{max}(2 - \textit{dist}(A_{1}), \textit{dist}(A_{3}, A_{1}))} \\ & = \frac{2}{\textit{max}(1, 1) + \textit{max}(\sqrt{2}, \sqrt{2})} = \frac{2}{1 + \sqrt{2}} \approx 0.828 \end{split}$$

1. A LOF CALCULATIONS (8)

$$\begin{split} LOF_2(A_1) &= \frac{\sum_{y \in N_2(A_1)} \frac{lrd_2(y)}{lrd_2(A_1)}}{2} \\ &= \frac{\sum_{y \in \{first: A_2, second: A_3\})} \frac{lrd_2(y)}{lrd_2(A_1)}}{2} \\ &= \frac{\frac{lrd_2(A_2)}{lrd_2(A_1)} + \frac{lrd_2(A_3)}{lrd_2(A_1)}}{2} \\ &= \frac{\frac{0.707}{0.828} + \frac{0.828}{0.828}}{2} \approx 0.439 \end{split}$$

1. A LOF CALCULATIONS (9)

$$\begin{split} 2 - \textit{dist}(N) &= 3 \\ N_2(N) &= \{\textit{first} : A_2, \textit{second} : B_1 \} \\ \textit{Ird}_2(N) &= \frac{2}{\sum_{y \in N_2(N)} \textit{reachability_dist}(N, y)} \\ &= \frac{2}{\sum_{y \in \{\textit{first} : A_2, \textit{second} : B_1 \}} \textit{reachability_dist}_2(N, y)} \\ &= \frac{2}{\textit{max}(2 - \textit{dist}(A_2), \textit{dist}(N, A_2)) + \textit{max}(2 - \textit{dist}(B_1), \textit{dist}(N, B_1))} \\ &= \frac{2}{\textit{max}(1, 3) + \textit{max}(3, 3)} = \frac{1}{3} \end{split}$$

1. A LOF CALCULATIONS (10)

$$\begin{split} & \textit{Ird}_{2}(A_{2}) \approx 0.707 \\ & \textit{Ird}_{2}(B_{1}) = \frac{2}{\sum_{y \in N_{2}(B_{1}) \textit{reachability_dist}_{2}(B_{1},y)}} \\ &= \frac{2}{\sum_{y \in \{\textit{first}: B_{2}, \textit{second}: N\}} \textit{reachability_dist}(B_{1},y)} \\ &= \frac{2}{\textit{max}(2 - \textit{dist}(B_{2}), \textit{dist}(B_{1}, B_{2})) + \textit{max}(2 - \textit{dist}(N), \textit{dist}(B_{1}, N))} \\ &= \frac{2}{\textit{max}(4,1) + \textit{max}(3,3)} = \frac{2}{7} \end{split}$$

1. A LOF CALCULATIONS (11)

$$\begin{split} LOF_{2}(N) &= \frac{\sum_{y \in N_{2}(N)} \frac{Ird_{2}(y)}{Ird_{2}(N)}}{2} \\ &= \frac{\sum_{y \in \{first: A_{2}, second: B_{1}\}} \frac{Ird_{2}(y)}{Ird_{2}(N)}}{2} \\ &= \frac{\frac{0.707}{\frac{1}{3} + \frac{7}{1}}}{2} \approx 1.489 \end{split}$$

 \rightarrow $LOF_2(A_1)$ < $LOF_2(N)$, i.e. 0.439 < 1.489, hence N is more likely an outlier.

1. A LOF VISUALISATIONS

Choosing Euclidean distance metric:

1. A LOF VISUALISATIONS

Choosing Euclidean distance metric:

- A. Calculate the *Local Outlier Factor* (*LOF*) of the points A_1 and N in the figure
- **B.** Draw the distribution of ascending minimum *kdists* of every point with k = 1, 2, 3.
- C. How can you estimate the parameter ϵ by given a percentage of noise?
- D. Find parameters $\epsilon > 0$, min_pts $\in \mathbb{N}$ s.t.
 - A_i , i = 1, 2, 3 is clustered as a cluster
 - B_i , j = 1, 2 is clustered as a cluster
 - N is marked as noise.
- E. Find parameters $\epsilon > 0$, min_pts $\in \mathbb{N}$, and points C_k s.t.
 - A_i , $i = 1, 2, 3, B_i$, j = 1, 2 is clustered as a cluster.
 - N is marked as noise.

1. B K-DISTANCES

Draw the distribution of ascending minimum *kdists*

$$min_y(kdist(x, y)),$$

of every point with k = 1, 2, 3.

1. B 1-DISTANCES

Find the proportion of noise by using the ellbow method.

1. B 2-DISTANCES

1. B 3-DISTANCES

- A. Calculate the *Local Outlier Factor* (*LOF*) of the points A_1 and N in the figure
- B. Draw the distribution of ascending minimum *kdists* of every point with k = 1, 2, 3.
- C. How can you estimate the parameter ϵ by given a percentage of noise?
- D. Find parameters $\epsilon > 0$, min_pts $\in \mathbb{N}$ s.t.
 - A_i , i = 1, 2, 3 is clustered as a cluster
 - B_i , j = 1, 2 is clustered as a cluster
 - N is marked as noise.
- E. Find parameters $\epsilon > 0$, min pts $\in \mathbb{N}$, and points C_k s.t.
 - A_i , $i = 1, 2, 3, B_i$, j = 1, 2 is clustered as a cluster.
 - N is marked as noise.

How can you estimate the parameter ϵ by given a percentage of noise?

The parameter ϵ can be determined by using the the sorted k-distances. Points with $k-distance > \epsilon$ will be treated as noise. In the following the noise proportion is set to 1/6

k=1:

 $\epsilon = 2$

k=2:

 $\epsilon = 3.5$

k=3:

 $\epsilon = 6.5$

- A. Calculate the *Local Outlier Factor* (*LOF*) of the points *A*₁ and *N* in the figure
- B. Draw the distribution of ascending minimum *kdists* of every point with k = 1, 2, 3.
- C. How can you estimate the parameter ϵ by given a percentage of noise?
- D. Find parameters $\epsilon > 0$, min_pts $\in \mathbb{N}$ s.t.
 - A_i , i = 1, 2, 3 is clustered as a cluster
 - B_i , j = 1, 2 is clustered as a cluster
 - N is marked as noise.
- E. Find parameters $\epsilon > 0$, min_pts $\in \mathbb{N}$, and points C_k s.t.
 - A_i , $i = 1, 2, 3, B_i$, j = 1, 2 is clustered as a cluster.
 - N is marked as noise.

Find parameters $\epsilon > 0$, min_pts $\in \mathbb{N}$ s.t. Cluster_A = $\{A_1, A_2, A_3\}$, Cluster_B = $\{B_1, B_2\}$, and N is marked as noise.

Choose Euclidean metric, $min_pts = 1, \epsilon = 1$

- A. Calculate the *Local Outlier Factor* (*LOF*) of the points A_1 and N in the figure
- B. Draw the distribution of ascending minimum *kdists* of every point with k = 1, 2, 3.
- C. How can you estimate the parameter ϵ by given a percentage of noise?
- D. Find parameters $\epsilon > 0$, min_pts $\in \mathbb{N}$ s.t.
 - A_i , i = 1, 2, 3 is clustered as a cluster
 - B_i , j = 1, 2 is clustered as a cluster
 - N is marked as noise.
- E. Find parameters $\epsilon > 0$, min_pts $\in \mathbb{N}$, and points C_k s.t.
 - A_i , $i = 1, 2, 3, B_i$, j = 1, 2 is clustered as a cluster.
 - N is marked as noise.

Find parameters $\epsilon > 0$, min_pts $\in \mathbb{N}$, and points $C_k \in \mathbb{R}^2$ s.t. $Cluster = \{A_1, A_2, A_3, B_1, B_2\}$, and N is marked as noise.

Choose Euclidean metric, $min_pts = 2, \epsilon = 2$

Classification algorithms

- A. Observe the data set in the table. First, create a 1-R Classifier that is able to predict whether a person is going to visit the party this evening by using the information of his/her amount of money, whether he/she writes an exam tomorrow, or if his/her heartthrob will come to the party.
- B. Extend your 1-R Classifier to a Decision Tree. Which features should be placed on higher levels of the tree?
- C. Apply the Naïve Bayes Classifier on the same data set. Calculate also the probabilities P(Yes|E1) and P(No|E6).

Observe the data set in the table. First, create a 1-R Classifier that is able to predict whether a person is going to visit the party this evening by using the information of his/her amount of money, whether he/she writes an exam tomorrow, or if his/her heartthrob will come to the party.

Sample	Money	Exam	Heartthrob	Party
E1	10	Yes	Yes	Yes
E2	13	No	Yes	Yes
E3	11	Yes	No	No
E4	12	No	No	Yes
E5	7	Yes	Yes	Yes
E6	5	Yes	No	No
E7	6	No	Yes	Yes
E8	8	No	No	No

Table 1: Party Datensatz

2. A BINARY FEATURE VALUES

Sample	Manifestation	Yes	No
Money	>9	3	1
Money	<=9	2	2
Exam	Ja	2	2
Exam	Nein	3	1
Heartthrob	Ja	4	0
Heartthrob	Nein	1	3

Table 2: 1R Feature selection

2. A BINARY FEATURE VALUES

Money	>9	3	1
Money	<=9	2	2
Exam	Ja	2	2
Exam	Nein	3	1
Heartthrob	Ja	4	0
Heartthrob	Nein	1	3

Table 3: 1R Feature selection

The feature Heartthrob produces a minimal number of prediction errors (1).

2. A 1R-CLASSIFIER

Rule: If Heartthrob == "Yes" then Party, elsif Heartthrob == "No" then no Party.

- A. Observe the data set in the table. First, create a 1-R Classifier that is able to predict whether a person is going to visit the party this evening by using the information of his/her amount of money, whether he/she writes an exam tomorrow, or if his/her heartthrob will come to the party.
- B. Extend your 1-R Classifier to a Decision Tree. Which features should be placed on higher levels of the tree?
- C. Apply the Naïve Bayes Classifier on the same data set. Calculate also the probabilities P(Yes|E1) and P(No|E6).

Extend your 1-R Classifier to a Decision Tree. Which features should be placed on higher levels of the tree?

2. B DECISION TREES

- A. Observe the data set in the table. First, create a 1-R Classifier that is able to predict whether a person is going to visit the party this evening by using the information of his/her amount of money, whether he/she writes an exam tomorrow, or if his/her heartthrob will come to the party.
- B. Extend your 1-R Classifier to a Decision Tree. Which features should be placed on higher levels of the tree?
- C. Apply the Naïve Bayes Classifier on the same data set. Calculate also the probabilities P(Yes|E1) and P(No|E6).

Apply the Naïve Bayes Classifier on the same data set. Calculate also the probabilities P(Yes|E1) and P(No|E6).

2. C Naive Bayes

Apply Bayes Rule on P(Ja|E1)=

$$\bullet \frac{P(E1|Yes)*P(Yes)}{P(E1)} = \underbrace{\frac{P(Money=Viel|Yes)*P(Exam=Yes|Yes)*P(Heartthrob=Yes|Yes)*P(Yes)}{P(E1|Yes)*P(Yes)+P(E1|No)*P(No)} }$$

•
$$\frac{\frac{3}{5} * \frac{2}{5} * \frac{4}{5} * \frac{5}{8}}{P(E1|Yes) + P(E1|No) * P(No)}$$

•
$$\frac{\frac{3}{25}}{\frac{3}{25} + P(E1|No) * P(No)}$$

And for P(No|E1) =

$$\frac{\frac{1}{3} * \frac{2}{3} * \frac{0}{3} * \frac{5}{8}}{\frac{3}{25} + P(E1|No) * P(No)}$$

Zero Frequency Problem: If any manifestation is missing in the data, we virtually add an artificial value to it and assume that it occurs at least one time. Usually, the value is one.

2. C Naive Bayes

Again, use Bayes rule: P(Yes|E1) =

$$\bullet \quad \frac{\frac{3+1}{5+1}*\frac{2+1}{5+1}*\frac{4+1}{5+1}*\frac{5}{8}}{P(E1|\mathit{Yes})*P(\mathit{Yes})+P(E1|\mathit{No})*P(\mathit{No})}$$

$$\bullet \ \ \frac{\frac{25}{144}}{\frac{25}{144} + \frac{9}{256}} = 0.832$$

And for P(No|E1) =

$$\bullet \quad \frac{\frac{1+1}{3+1} * \frac{2+1}{3+1} * \frac{0+1}{3+1} * \frac{3}{8}}{\frac{25}{144} + P(E1|No) * P(No)}$$

$$\bullet \ \frac{\frac{9}{256}}{\frac{25}{144} + \frac{9}{256}} = 0.168$$

C) - NAIVE BAYES

Use Bayes rule: P(No|E6) =

$$\bullet \quad \frac{\frac{2+1}{3+1}*\frac{1+1}{3+1}*\frac{3+1}{3+1}*\frac{3}{8}}{P(E6|No)*P(No)+P(E6|Yes)*P(Yes)}$$

$$\bullet \ \ \frac{\frac{9}{64}}{\frac{9}{64} + \frac{5}{96}} = 0.73$$

And for P(Yes|E6) =

$$\bullet \quad \frac{\frac{2+1}{5+1} * \frac{2+1}{5+1} * \frac{1+1}{5+1} * \frac{5}{8}}{\frac{9}{64} + P(E1 | Yes) * P(Yes)}$$

$$\bullet \ \ \frac{\frac{5}{96}}{\frac{9}{64} + \frac{5}{96}} = 0.27$$