• Answer Sheet for Spring 2023 ECE45 Final Exam Part 1

(Tear this sheet off and turn it in. Do not turn in the rest of the exam.)

NT.	
Name	
UCSD ID Number	
Signature	
	Ozvomid
	Override Answer
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
abcdefghi Jklmno	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
$P5:\bigcirc$	
$P6:\bigcirc$	
abcdefghi Jklmno	
a b c d e f g h i J k l m n o	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
$P10:\bigcirc$	
$P11:\bigcirc$	
$P12 \cdot O \ O $	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
$P15:\bigcirc$	
P16: 0 0 0 0 0 0 0 0 0 0 0 0 0	
a b c d e f g h i J k l m n o P17: \bigcirc	
abcdefghi Jklmno	
P18: 0 0 0 0 0 0 0 0 0 0 0 0 0	

${\bf Problem}\ 1:$

What value of C would make the function $f(t) = \sin(2Ct/\pi)\cos(2Ct/\pi)$ periodic with period 2?

- (a) $\pi^2/4$
- (b) $\pi/4$
- (c) π^2
- (d) $\pi^2/2$
- (e) $2/\pi^2$
- (f) $2/\pi$
- (g) $1/\pi^2$
- (h) $4/\pi^2$
- (i) 1
- (j) 2
- (k) 1/2
- (l) $1/\pi$
- (m) None of these

Problem 2:

The steady-state circuit below has input voltage $v_{in}(t) = \cos(t)$ and output current $i_{out}(t)$. If C = 0.5F, L = 1H, and $R = 2\Omega$, then what is the magnitude of the circuit's frequency response?

- (a) $\sqrt{2}/4$
- (b) $\sqrt{2}/2$
- (c) $\sqrt{2}$
- (d) 1/2
- (e) 2
- (f) $2\sqrt{2}$
- (g) $4\sqrt{2}$
- (h) $\sqrt{5}$
- (i) $2\sqrt{5}$
- (j) 0
- (k) 5/2
- (l) 4
- (m) None of these

Problem 3:

If u(t-2)+1 is the input signal to a linear, time-invariant system with impulse response $e^{-t}u(t)$, then what is the value of the output signal when t=3?

- (a) $2 \frac{1}{e}$
- (b) $2 \frac{2}{e}$
- (c) $1 \frac{1}{e}$
- (d) $1 \frac{2}{e}$
- (e) $\frac{1}{e}$
- (f) $\frac{2}{e}$
- (g) $2 \frac{1}{e^2}$
- (h) $1 \frac{1}{e^2}$
- (i) $\frac{1}{e^2}$
- $(j) \ \frac{2}{e^2}$
- (k) 1
- (1) 0
- (m) None of these

Problem 4:

Consider two systems whose input/output relations are shown below:

(a)
$$x(t) \longrightarrow \frac{\mathrm{d}x(t)}{\mathrm{d}t}$$

(b) $x(t) \longrightarrow tx(t)$

(b)
$$x(t) \longrightarrow tx(t)$$

Which of these statements is true?

- (a) System (a) is linear and time-invariant, System (b) is linear but not time-invariant
- (b) System (a) is linear and time-invariant, System (b) is linear and time-invariant
- (c) System (a) is not linear but time-invariant, System (b) is linear and time-invariant
- (d) System (a) is linear but not time-invariant, System (b) is linear and time-invariant
- (e) System (a) is neither linear nor time-invariant, System (b) is linear and time-invariant
- (f) System (a) is not linear but time-invariant, System (b) is linear but not time-invariant
- (g) System (a) is linear but not time-invariant, System (b) is linear but not time-invariant
- (h) System (a) is linear and time-invariant, System (b) is neither linear nor time-invariant
- (i) System (a) is neither linear nor time-invariant, System (b) is linear but not time-invariant
- (j) System (a) is neither linear nor time-invariant, System (b) is neither linear nor time-invariant
- (k) System (a) is time-invariant but not linear, System (b) is time-invariant but not linear
- (1) System (a) is time-invariant but not linear, System (b) is linear but not time-invariant
- (m) None of these

Problem 5:

What is the inverse Fourier transform of the real-valued function $F(\omega)$ shown below?

- (a) $\frac{5}{\pi} \cdot \operatorname{sinc}(\frac{5t}{2})e^{j5t}$
- (b) $\frac{5}{\pi} \cdot \operatorname{sinc}(\frac{5t}{2})e^{jt}$
- (c) $\frac{5}{2\pi} \cdot \operatorname{sinc}(\frac{5t}{2})e^{j5t}$
- (d) $\frac{10}{\pi} \cdot \operatorname{sinc}(\frac{5t}{2})e^{j5t}$
- (e) $\frac{5}{\pi} \cdot \operatorname{sinc}(\frac{5t}{2})e^{-j5t}$
- (f) $\frac{5}{\pi} \cdot \text{sinc}(5t)e^{j5t}$
- (g) $\frac{5}{2\pi} \cdot \operatorname{sinc}(\frac{5t}{2})e^{-j5t}$
- (h) $\frac{5}{\pi} \cdot \operatorname{sinc}(\frac{5t}{2})$
- (i) $\frac{5}{2\pi} \cdot \operatorname{sinc}(\frac{5t}{2})$
- (j) $\frac{\pi}{5} \cdot \operatorname{sinc}(\frac{5t}{2})e^{j5t}$
- (k) $\frac{5}{2} \cdot \operatorname{sinc}(\frac{5t}{2})e^{j5t}$
- (l) None of these

Problem 6:

If a linear, time-invariant system has frequency response $\frac{8+2j\omega}{4-j\omega}$ and input $3+2e^{j4t}+2e^{-j4t}$, then what is the output of the system ?

- (a) $6 8\sin(4t)$
- (b) $6 + 8\sin(4t)$
- (c) $6 + 8\cos(4t)$
- (d) $6 8\cos(4t)$
- (e) $6 + 2\cos(4t)$
- (f) $3 8\sin(4t)$
- (g) $3 + 4\sin(4t)$
- (h) $3 4\sin(4t)$
- (i) 6
- (j) $8\sin(4t)$
- (k) $8\cos(4t)$
- (1) 0
- (m) None of these

Problem 7:

What is the value of the Fourier transform $X(\omega)$ of

$$x(t) = \begin{cases} e^{-t^2} & t > 0\\ -e^{-t^2} & t < 0\\ 0 & t = 0 \end{cases}$$

when $\omega = 0$?

- (a) 0
- (b) 2π
- (c) -2π
- (d) 1
- (e) -1
- (f) 4π
- (g) -4π
- (h) π
- (i) $\sqrt{\pi}$
- (j) $\sqrt{\pi}/2$
- (k) $1/\sqrt{2\pi}$
- (l) $1/\sqrt{\pi}$
- (m) None of these

Problem 8:

What is the magnitude of the coefficient F_0 of the exponential form of the Fourier Series for the signal $f(t) = (\sin t)^4$?

- (a) 3/8
- (b) 1/4
- (c) 1/16
- (d) 1/8
- (e) 1/2
- (f) 1/32
- (g) 5/8
- (h) 0
- (i) 1
- (j) 8/3
- (k) 8/5
- (1) 2
- (m) None of these

Problem 9:

The block diagram below consists of a multiplier and a linear time-invariant system with inpulse response h(t).

If the Fourier transforms of x(t) and h(t) are

$$X(\omega) = \begin{cases} \omega^2 & -1 \le \omega \le 1 \\ 0 & \text{else} \end{cases} \qquad H(\omega) = \begin{cases} 1 & -3\pi < \omega < 3\pi \\ 0 & \text{else} \end{cases}$$

then which one of the following choices for ω would make the Fourier transform of y(t) non-zero?

- (a) -6.1
- (b) -1.5
- (c) 1.5
- (d) 7.5
- (e) -7.5
- (f) 3.2
- (g) -2023
- (h) 2023
- (i) -3.2
- (j) -4
- (k) 4
- (l) 5
- (m) None of these

Problem 10:

What is the output of a linear, time-invariant system whose frequency response is

$$H(\omega) = \begin{cases} 0 & |\omega| \le 2.5 \\ 2 & \text{else} \end{cases}$$

when the input is $(e^{j2t} + 1)(e^{j3t} + 1)$?

- (a) $2e^{j5t} + 2e^{j3t}$
- (b) $e^{j5t} + e^{j3t}$
- (c) $2e^{j2t} + 2$
- (d) $e^{j2t} + 1$
- (e) $2e^{j5t} + 2e^{j3t} + 2e^{j2t} + 2$
- (f) $e^{j5t} + e^{j3t} + e^{j2t} + 1$
- (g) $e^{j2.5t}$
- (h) $2e^{j2.5t}$
- (i) 0
- (j) 2
- (k) $2e^{j3t}$
- (l) $2e^{j5t}$
- (m) None of these

Problem 11:

If $f(t) = \text{sinc}(50t)\cos(10t)$, then what is the smallest B > 0 such that $F(\omega) = 0$ whenever $\omega > B$?

- (a) 60
- (b) $30/\pi$
- (c) $60/\pi$
- (d) $15/\pi$
- (e) $120/\pi$
- (f) 30π
- (g) 30
- (h) 120
- (i) 120π
- (j) 40
- (k) 15
- (l) None of these

Problem 12:

If a linear, time-invariant system has input $e^{-3t}u(t)$ and output $e^{3t}u(-t)$, then what is the impulse response of the system?

- (a) $6e^{3t}u(-t) \delta(t)$
- (b) $6e^{3t}u(-t) + \delta(t)$
- (c) $6e^{-3t}u(-t) \delta(t)$
- (d) $6e^{3t}u(t) \delta(t)$
- (e) $6e^{-3t}u(t) \delta(t)$
- (f) $6e^{-3t}u(-t) + \delta(t)$
- (g) $6e^{3t}u(t) + \delta(t)$
- (h) $6e^{-3t}u(t) + \delta(t)$
- (i) $\delta(t)$
- (j) $-\delta(t)$
- (k) $6e^{3t}u(t)$
- (l) $6e^{-3t}u(-t)$
- (m) None of these

Problem 13:

What is the period of the function $2023\cos(4t) + 2^{2023}(e^{j3t} + e^{-j3t}) - 2023$?

- (a) 2π
- (b) π
- (c) 4π
- (d) 8π
- (e) $2^{2023}\pi$
- (f) $\pi/2$
- (g) $2\pi/3$
- (h) 2
- (i) 1
- (j) 4
- (k) 8
- (1) 2023
- (m) None of these

Problem 14:

The frequency response $H(\omega)$ of an LTI system is $-2 + 2\cos(4\omega)$. If the system has input x(t), then which of the following is the output of the system?

(a)
$$-2x(t) + x(t-4) + x(t+4)$$

(b)
$$-2x(t) - x(t-4) - x(t+4)$$

(c)
$$-2x(t) + x(t-2) + x(t+2)$$

(d)
$$-2x(t) - x(t-2) - x(t+2)$$

(e)
$$-2 + x(t-4) + x(t+4)$$

(f)
$$-2 + x(t-2) + x(t+2)$$

(g)
$$-2x(t) + 2x(t-4) + 2x(t+4)$$

(h)
$$-2x(t) - 2x(t-4) - 2x(t+4)$$

(i)
$$-2x(t) + 2x(t-2) + 2x(t+2)$$

(j)
$$-2x(t) - 2x(t-2) - 2x(t+2)$$

$$(k) -2x(t)$$

(1)
$$x(t-4) + x(t+4)$$

(m) None of these

Problem 15:

If h(t) is the convolution of f(t) and g(t), then what is h(3)?

- (a) 7
- (b) 10
- (c) 4
- (d) 2
- (e) 1
- (f) 0
- (g) 3
- (h) 5
- (i) 6
- (j) 8
- (k) 9
- (l) 15
- (m) None of these

Problem 16:

Which of the following four time signals are bandlimited?

$$v(t) = (\sin(2t))^3 \cdot \frac{\cos(4t)}{t^2}$$
$$x(t) = \text{rect}(t) \cdot \cos(4t)$$
$$y(t) = (\text{rect}(t))^2$$
$$z(t) = (\sin t)^4 + (\cos t)^4$$

- (a) v(t), z(t), not x(t), not y(t)
- (b) v(t), x(t), not y(t), not z(t)
- (c) v(t), y(t), not x(t), not z(t)
- (d) x(t), y(t), not v(t), not z(t)
- (e) x(t), z(t), not v(t), not y(t)
- (f) y(t), z(t), not v(t), not x(t)
- (g) v(t), not x(t), not y(t), not z(t)
- (h) z(t), not v(t), not x(t), not y(t)
- (i) v(t), x(t), z(t), not y(t)
- (j) v(t), x(t), y(t), not z(t)
- (k) v(t), x(t), y(t), z(t)

Problem 17:

The real and imaginary parts of the Fourier transforms of the signals f(t) and g(t) are shown below. If the convolution of these two time signals is z(t) = f(t) * g(t), then what is its Fourier transform $Z(\omega)$ when $\omega = 1$?

- (a) 3j 1
- (b) 3j + 1
- (c) j 1
- (d) j + 1
- (e) 2j 1
- (f) 2j + 1
- (g) 3
- (h) 2
- (i) 9
- (j) -j
- (k) 4
- (l) None of these

Problem 18:

If the impulse response of a linear, time-invariant system is $e^{-t}u(t)$, then what is the system's output when the input is also $e^{-t}u(t)$?

- (a) $te^{-t}u(t)$
- (b) $e^{-t}u(t)$
- (c) $t^2 e^{-t} u(t)$
- $(d) (t e^{-t})u(t)$
- (e) $te^t u(t)$
- (f) $e^{-2t}u(t)$
- (g) $te^{-(t-1)}u(t-1)$
- (h) $e^{-(t-1)}u(t-1)$
- (i) $\delta(t-1)$
- $(j) -e^{-t}u(t)$
- (k) $2e^{-t}u(t)$
- (l) None of these

•	Answer Sheet for Spring 2023 ECE45 Final Exam Part 2
	(Tour this shoot off and turn it in Do not turn in the rost of the even

(Tear this sheet off and turn it in. Do not turn in the rest of the exam.)

Name	
UCSD ID Number	
Signature	
Signature $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Override Answer
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	

Problem 19:

Which of the following signals has a Fourier Series?

- (a) $e^{j2t} + 3\sin(3t)$
- (b) $e^{j2t} + 3\sin(\pi t)$
- (c) $\frac{\sin(t)}{t}$
- (d) $\frac{\cos(t)}{t}$
- (e) rect(t)
- (f) e^{2t}
- (g) u(t)
- (h) $\delta(t)$
- (i) $e^{-|t|}u(t)$
- (j) $\sin(t) + \cos(\pi t)$
- (k) $\sin(t^2)$
- (l) t^2
- (m) $\frac{1}{t}$
- (n) None of these

Problem 20:

What is the impedance of a two Henry inductor when the frequency of a sinusoidal current through the inductor is $\omega = 2$?

- (a) $4e^{j\pi/2}$
- (b) $4e^{-j\pi/2}$
- (c) $2e^{j\pi/2}$
- (d) $e^{j\pi/2}$
- (e) $4e^{j\pi}$
- (f) $4e^{j\pi/4}$
- (g) $4e^{-j\pi/4}$
- (h) $4e^{-j\pi}$
- (i) $\frac{1}{4}e^{j\pi/2}$
- (j) $e^{-j\pi/2}$
- (k) $4e^{j2\pi}$
- (l) None of these

Problem 21:

Suppose two linear, time-invariant systems are cascaded as shown below. The first system has impulse response $e^{-\pi jt/2}$. The second system produces the derivative of its input as its output. If x(t) = u(t-1) - u(t+1), then what is the output y(t) of the cascaded system?

- (a) $2je^{-j\pi t/2}$
- (b) $je^{-j\pi t/2}$
- (c) $2je^{j\pi t/2}$
- (d) $2je^{-j\pi t}$
- (e) $2je^{-2j\pi t}$
- (f) $4je^{-j\pi t/2}$
- (g) $e^{-j\pi t/2}$
- (h) $2e^{-j\pi t}$
- (i) $2je^{j\pi t}$
- (j) $je^{-j\pi t}$
- (k) $2je^{-j\pi t/4}$
- (l) $4je^{-j\pi t/4}$
- (m) None of these

Problem 22:

What is the Fourier transform of the convolution of $e^{-t}u(t)$ and $\cos(2t)$?

(a)
$$\frac{\pi}{1+2j} \cdot \delta(\omega-2) + \frac{\pi}{1-2j} \cdot \delta(\omega+2)$$

(b)
$$\frac{\pi}{1+2i} \cdot \delta(\omega-2) - \frac{\pi}{1-2i} \cdot \delta(\omega+2)$$

(c)
$$\frac{\pi}{1-2j} \cdot \delta(\omega-2) + \frac{\pi}{1+2j} \cdot \delta(\omega+2)$$

(d)
$$\frac{\pi j}{1+2j} \cdot \delta(\omega-2) + \frac{\pi j}{1-2j} \cdot \delta(\omega+2)$$

(e)
$$\frac{2\pi}{1+2j} \cdot \delta(\omega-2) + \frac{2\pi}{1-2j} \cdot \delta(\omega+2)$$

(f)
$$\frac{2\pi}{1-2i} \cdot \delta(\omega-2) + \frac{2\pi}{1+2i} \cdot \delta(\omega+2)$$

(g)
$$\frac{1}{1+2i} \cdot \delta(\omega-2) + \frac{1}{1-2i} \cdot \delta(\omega+2)$$

(h)
$$\frac{1}{1+2j} \cdot \delta(\omega-2) - \frac{1}{1-2j} \cdot \delta(\omega+2)$$

(i)
$$\pi \cdot \delta(\omega - 2) + \pi \cdot \delta(\omega + 2)$$

(j)
$$\frac{\pi}{2} \cdot \delta(\omega - 2) + \frac{\pi}{2} \cdot \delta(\omega + 2)$$

(k)
$$\frac{\pi}{1+j} \cdot \delta(\omega-2) + \frac{\pi}{1-j} \cdot \delta(\omega+2)$$

(l) None of these

Problem 23:

A particular system's input x(t) and output y(t) always satisfy the differential equation

$$\frac{d^2y(t)}{dt^2} + 5\frac{dy(t)}{dt} + 6y(t) = \frac{dx(t)}{dt} + 2x(t).$$

What is the output signal when the input to the system is $\delta(t)$?

- (a) $e^{-3t}u(t)$
- (b) $e^{-2t}u(t)$
- (c) $2e^{-2t}u(t) e^{-3t}u(t)$
- (d) $2e^{-2t}u(t) + e^{-3t}u(t)$
- (e) $-2e^{-2t}u(t) e^{-3t}u(t)$
- (f) $e^{-2t}u(t) 2e^{-3t}u(t)$
- (g) $e^{-2t}u(t) + 2e^{-3t}u(t)$
- (h) $e^{-4t}u(t) e^{-5t}u(t)$
- (i) $2e^{-2t} e^{-3t}$
- (j) $2e^{-2t} + e^{-3t}$
- (k) $2e^{-2t}u(t)$
- (l) u(t)
- (m) None of these

Problem 24:

If $x(t) = \sum_{n=-\infty}^{\infty} \delta(t-2n-1)$ and $X(\omega)$ is the Fourier transform for x(t), then what is $\int_{1}^{7} |X(\omega)| d\omega$?

- (a) 2π
- (b) 4π
- (c) 6π
- (d) 6
- (e) 4
- (f) 2
- (g) π
- (h) 1
- (i) 0
- (j) $7/\pi$
- (k) 7
- (l) 14π
- (m) 14
- (n) None of these

Problem 25:

Which of the following is $\underline{\mathbf{not}}$ a periodic function of t?

- (a) $\frac{1}{1+\sin|t|}$
- (b) $(\sin t)^{\cos t}$
- (c) $\sum_{n=-\infty}^{\infty} \operatorname{rect}\left(t n\sqrt{2}\right)$
- (d) $e^{j(\cos(3t)+\sqrt{2}\sin(2t))}$
- (e) $e^{\cos(3t)+\sqrt{2}\sin(2t)}$
- (f) $\cos(\cos(\cos(\cos t)))$
- (g) $\frac{1}{1+\cos t}$
- $(h) \ \frac{1}{1+|\sin t|}$
- (i) $e^{e^{\sin t}}$
- (j) rect $(10\cos(t\sqrt{2}))$
- (k) $\operatorname{sinc}(\cos t)$
- (l) $e^{-(\tan t)^2}$
- (m) All are periodic

Problem 26:

What is the bilateral Laplace transform of $u(t) + e^t u(-t)$ and its region of convergence (ROC)?

- (a) $\frac{1}{s-s^2}$, ROC: 0 < Re(s) < 1
- (b) $\frac{1}{s-s^2}$, ROC: Re(s) < 0
- (c) $\frac{1}{s-s^2}$, ROC: Re(s) > 1
- (d) $\frac{1}{1-s}$, ROC: $0 < \operatorname{Re}(s) < 1$
- (e) $\frac{1}{1-s}$, ROC: Re(s) < 1
- (f) $\frac{1}{1-s}$, ROC: Re(s) > 1 (g) $\frac{1-2s}{s-s^2}$, ROC: 0 < Re(s) < 1(h) $\frac{1-2s}{s-s^2}$, ROC: Re(s) < 0
- (i) $\frac{1-2s}{s-s^2}$, ROC: Re(s) > 1
- (j) $\frac{1}{s}$, ROC: Re(s) < 0
- (k) $\frac{1}{s}$, ROC: Re(s) > 0
- (l) None of these

Problem 27:

Suppose a linear, time-invariant system has frequency response $\frac{2+j\omega}{3+j\omega}$, and the input to this system is a periodic function with Fourier series $\sum_{n=-\infty}^{\infty} \frac{n}{1+n^2} \cdot e^{-jn4t}$. If the Fourier series of the output of the system is $\sum_{n=-\infty}^{\infty} Y_n e^{-jn4t}$, then what is the magnitude of Y_1 ?

- (a) $\frac{\sqrt{5}}{5}$
- (b) $\frac{2\sqrt{5}}{5}$
- (c) $\sqrt{2}/2$
- (d) $\sqrt{2}/4$
- (e) 1/4
- (f) 1/2
- (g) 1
- (h) $\sqrt{2}$
- (i) $\sqrt{5}$
- (j) 2
- (k) 0
- (l) 4
- (m) None of these

Problem 28:

If the Fourier transform of f(t) is $F(\omega)$, then what is the Fourier transform of (t-2)f(t)?

- (a) $j \frac{dF(\omega)}{d\omega} 2F(\omega)$
- (b) $(\omega 2)F(\omega)$
- (c) $\frac{dF(\omega)}{d\omega} 2F(\omega)$
- (d) $-j\frac{dF(\omega)}{d\omega} 2F(\omega)$
- (e) $j \frac{dF(\omega)}{d\omega}$
- (f) $-j\frac{dF(\omega)}{d\omega}$
- (g) $\frac{dF(\omega)}{d\omega}$
- (h) $-\frac{dF(\omega)}{d\omega}$
- (i) $j \frac{dF(\omega-2)}{d\omega}$
- (j) $-j\frac{dF(\omega-2)}{d\omega}$
- (k) $\frac{dF(\omega-2)}{d\omega}$
- (l) $-\frac{dF(\omega-2)}{d\omega}$
- (m) None of these

Problem 29:

For each input x(t), a system creates the output $e^{x(t)}$. Which of the following properties must the system have?

- (a) Nonlinear, time-invariant, causal, BIBO stable
- (b) Nonlinear, time-invariant, causal, not BIBO stable
- (c) Linear, time-invariant, causal, BIBO stable
- (d) Linear, time-invariant, causal, not BIBO stable
- (e) Linear, time-invariant, non-causal, BIBO stable
- (f) Linear, time-invariant, non-causal, not BIBO stable
- (g) Nonlinear, time-invariant, non-causal, BIBO stable
- (h) Nonlinear, time-invariant, non-causal, not BIBO nstable
- (i) Nonlinear, not time-invariant, non-causal, BIBO stable
- (j) Nonlinear, not time-invariant, non-causal, not BIBO stable
- (k) Nonlinear, not time-invariant, causal, not BIBO stable
- (1) Nonlinear, not time-invariant, causal, BIBO stable
- (m) None of these

Problem 30:

Suppose rect $(\omega - \frac{1}{2})$ is the Fourier transform of the input signal to an LTI system whose frequency response is $H(\omega)$. The real and imaginary parts of $H(\omega)$ are plotted below. If $Y(\omega)$ is the Fourier transform of the output signal, then what is the value of $\int_0^2 |Y(\omega)|^2 d\omega$?

- (a) 8/3
- (b) 4/3
- (c) 8
- (d) 4
- (e) 1/3
- (f) 2/3
- (g) 2
- (h) 5/3
- (i) 1/9
- (j) 1/6
- (k) 5/6
- (l) None of these

Problem 31:

In the circuit below, the three resistors each have resistance 2/3 Ohm. The voltage v(t) is sinusoidal with frequency $\omega=2$ and its phasor value is $V=2j+3e^{-j\pi/6}$. What is the current i(t)?

(a)
$$2\cos(2t+\frac{\pi}{2})+3\cos(2t-\frac{\pi}{6})$$

(b)
$$2\cos(2t) + 3\cos(2t - \frac{\pi}{6})$$

(c)
$$2 + 3\cos(2t - \frac{\pi}{6})$$

(d)
$$2\sin(2t + \frac{\pi}{2}) + 3\sin(2t - \frac{\pi}{6})$$

(e)
$$2 + 3\sin(2t - \frac{\pi}{6})$$

(f)
$$2\sin(2t - \frac{\pi}{2}) + 3\sin(2t - \frac{\pi}{6})$$

(g)
$$3\sin(2t - \frac{\pi}{6})$$

(h)
$$-2\cos(2t + \frac{\pi}{2}) + 3\cos(2t - \frac{\pi}{6})$$

(i)
$$-2\sin(2t-\frac{\pi}{2})+3\sin(2t-\frac{\pi}{6})$$

(j)
$$-2 + 3\sin(2t - \frac{\pi}{6})$$

(k)
$$-2 + 3\cos(2t - \frac{\pi}{6})$$

(1)
$$2\cos(2\pi t + \frac{\pi}{2}) + 3\cos(4\pi t - \frac{\pi}{6})$$

(m) None of these

Problem 32:

Suppose x(t) is an even function and x(t)=u(t-1)-u(t-2) for all $t\geq 0$. If $X(\omega)$ is the Fourier transform of x(t), then what is the value of $\int_{-\infty}^{\infty}|X(\omega)|^2d\omega$?

- (a) 4π
- (b) 2π
- (c) π
- (d) 4
- (e) 2
- (f) 1
- (g) 0
- (h) 1/2
- (i) $\pi/2$
- (j) 8π
- (k) 8
- (l) 16π
- (m) None of these

Problem 33:

If $F(\omega)$ is the Fourier transform of the signal $f(t) = \sum_{n=-\infty}^{\infty} \frac{1}{1+|n|} e^{jn2t}$, then what is $\int_{-3}^{3} F(\omega) d\omega$?

- (a) 4π
- (b) 2π
- (c) π
- (d) $\frac{10\pi}{3}$
- (e) 4
- (f) 2
- (g) 1
- (h) $\frac{5}{3}$
- (i) 3π
- $(j) \ \frac{1}{2}$
- (k) $\frac{\pi}{2}$
- (l) 3
- (m) None of these

Problem 34:

If the impulse response of a linear, time-invariant system is $\delta(t-1) + \delta(t+1)$, then what is the output of this system when the input is $\delta(t-2) + \delta(t+2)$?

- (a) $\delta(t-3) + \delta(t+3) + \delta(t+1) + \delta(t-1)$
- (b) $\delta(t-2) + \delta(t+2) + \delta(t+1) + \delta(t-1)$
- (c) $2\delta(t) + \delta(t+1) + \delta(t-1)$
- (d) $2\delta(t-3) + 2\delta(t-1)$
- (e) $2\delta(t+3) + 2\delta(t+3)$
- (f) $2\delta(t-3) + 2\delta(t+1)$
- (g) $2\delta(t+3) + 2\delta(t-1)$
- (h) $2\delta(t)$
- (i) $2\delta(t-3)$
- (j) $2\delta(t-1)$
- (k) $2\delta(t+1)$
- (1) $2\delta(t+3)$
- (m) None of these

Problem 35:

What is the inverse bilateral Laplace transform of $\frac{1}{(s-1)(s+2)}$ if the bilateral Laplace transform exists when $s=e^{j3\pi/2}$?

(a)
$$-\frac{1}{3} \left(u(-t)e^t + u(t)e^{-2t} \right)$$

(b)
$$\frac{1}{3} \left(u(-t)e^t + u(t)e^{-2t} \right)$$

(c)
$$-\frac{1}{3} \left(u(t)e^t + u(t)e^{-2t} \right)$$

(d)
$$-\frac{1}{3}\left(-u(-t)e^t + u(t)e^{-2t}\right)$$

(e)
$$-\frac{1}{3}\left(-u(t)e^t + u(t)e^{-2t}\right)$$

(f)
$$-\frac{1}{3}\left(-u(t)e^{-t} + u(t)e^{-2t}\right)$$

(g)
$$\frac{1}{3} \left(u(-t)e^{-t} + u(t)e^{-2t} \right)$$

(h)
$$-\frac{1}{3} \left(u(-t)e^t - u(t)e^{-2t} \right)$$

(i)
$$-\frac{1}{3} \left(u(t)e^t + u(-t)e^{2t} \right)$$

(j)
$$u(-t)e^t + u(t)e^{-2t}$$

(k)
$$u(-t)e^t - u(t)e^{-2t}$$

(1)
$$e^t + e^{-2t}$$

Problem 36:

What is the convolution of cos(20t) and cos(30t)?

- (a) 0
- (b) $\cos(50t)$
- (c) $\cos(10t)$
- (d) $\sin(50t)$
- (e) $\sin(10t)$
- $(f) \frac{\cos(50t) + \cos(10t)}{2}$
- $(g) \frac{\cos(50t) \cos(10t)}{2}$
- $(h) \frac{\sin(50t) + \sin(10t)}{2}$
- $(i) \frac{\sin(50t) \sin(10t)}{2}$
- (j) $\delta(t)$
- (k) u(t)
- (l) $\cos(25t)$
- (m) None of these