Arithmetic for Computers

Binary Representation

Unsigned:

• The binary number

represents the quantity $0\times 2^{31}+1\times 2^{30}+\cdots+1\times 2^0$

 \bullet A 32-bit word can represent $\,2^{32}$ numbers between 0 $\,$ and $\,2^{32}\,-1$ Numbers are always positive

Binary Representation

2's Complement:

32 bits can only represent 2^{32} numbers – if we wish to also represent negative numbers, we can represent 2^{31} positive numbers (incl zero) and 2^{31} negative numbers

```
\begin{array}{c} 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\
```

```
Each number represents the quantity -2^{31} x_{31} + x_{30} 2^{30} + x_{29} 2^{29} + ... + x_1 2^1 + x_0 2^0
```

Why is this representation favorable?

Consider the sum of 1 and -2 we get -1 Consider the sum of 2 and -1 we get +1 This format can directly undergo addition without any conversions!

Binary Representation

2's Complement:

```
\begin{array}{c} 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\
```

Note that the sum of a number x and its inverted representation x' always equals a string of 1s (-1)

```
x + x' = -1

x' + 1 = -x ... hence, can compute the negative of a number by -x = x' + 1 inverting all bits and adding 1
```

Similarly, the sum of x and -x gives us all zeroes, with a carry of 1 In reality, $x + (-x) = 2^n$... hence the name 2's complement

Unsigned Multiplication

Unsigned multiplication:

•	•		
C 0	M 1101 0000 A	Q 1011	Initialization
0	1101	1011	q0 = 1 → Add
0	0110	1101	Shift right
1 0	0011	1011	$q0 = 1 \rightarrow Add$ Shift right
0	1001	1110 1111	$q0 = 0 \rightarrow No Add$ Shift right
1 0	0001	1111 1111	$q0 = 1 \rightarrow Add$ Shift right

Signed Multiplication

- Recall grade school trick
 - When multiplying by 9:
 - Multiply by 10 (shift digits left)
 - Subtract once
 - E.g., 12345 x 9 = 12345 x (10 1) = 123450 - 12345
- Booth's algorithm applies same principle
 - Except no '9' in binary, just '1' and '0'
- Search for a run of '1' bits in the multiplier
 - E.g. '0110' has a run of 2 '1' bits in the middle
 - Multiplying by '0110' (6 in decimal) is equivalent to multiplying by 8 and subtracting twice, since $6 \times m = (8-2) \times m = 8m 2m$

Booth's encoding:

Current bit	Bit to right	Explanation	Example	Operation
1	0	Begins run of '1'	0000111 <mark>10</mark> 0	Subtract
1	1	Middle of run of '1'	0000111100	Nothing
0	1	End of a run of '1'	000 <mark>01</mark> 11100	Add
0	0	Middle of a run of '0'	0000111100	Nothing

Booth's Algorithm

Example: 2 x -3 = -6, or 0010 x 1101 = 1111 1010

Current bit	Bit to right	Operation
1	0	Subtract
1	1	Nothing
0	1	Add
0	0	Nothing

Why Booth's Algorithm Works?

Note: $-a_i \times 2^i + a_i \times 2^{i+1} = a_i \times 2^i$ and $a_{-1} = 0$

Assume a be the multiplier and b be the multiplicand

Booth's algorithm can be written as

$$(a_{-1} - a_0) \times b \times 2^0$$

$$+\left(a_{0}-a_{1}\right) \times b\times 2^{1}$$

$$+ (a_1 - a_2) \times b \times 2^2$$

+
$$(a_{29} - a_{30}) \times b \times 2^{30}$$

+
$$(a_{30} - a_{31}) \times b \times 2^{31}$$

...

a_i	a_{i-1}	Operation
1	0	Subtract
1	1	Nothing
0	1	Add
0	0	Nothing

 $\begin{array}{l} a_{i-1}-a_i=0 \quad \text{Nothing} \\ a_{i-1}-a_i=-1 \quad \text{Add} \\ a_{i-1}-a_i=1 \quad \text{Subtract} \end{array}$

Factoring out b from each term: $b \times \left(\left(a_{31} \times -2^{31}\right) + \left(a_{30} \times 2^{30}\right) + \dots + \left(a_{1} \times 2^{1}\right) + \left(a_{0} \times 2^{0}\right)\right)$

2's complement of a

Unsigned Division

Restoring division:

Do the following n times

 $q_0 \leftarrow 1$

- 1. Shift A and Q left one bit
- 2. $A \leftarrow A M$
- 3. If the sign of A is 1 i.e., $a_n=1$ $q_0 \leftarrow 0$ $A \leftarrow A + M \text{ //Restore}$ else

Example: Divisor: 11 Dividend: 1000

Remainder Quotient

After

After division n-bit quotient is in Q and the remainder is in A

Unsigned Division

	_		
A 00000	Q 1000	00011	Initialization
00001	000?		Shift left AQ
11101	000?		Subtract $A \leftarrow A - M$
00001	0000		$q_0 \leftarrow 0, A \leftarrow A + M$
00010	000?		Shift left AQ
11111	000?		Subtract $A \leftarrow A - M$
00010	0000		$q_0 \leftarrow 0, A \leftarrow A + M$
00100	000?		Shift left AQ
00001	000?		Subtract $A \leftarrow A - M$
00001	0001		$q_0 \leftarrow 1$
00010	001?		Shift left AQ
11111	001?		Subtract $A \leftarrow A - M$
00010	0 0 1 0		$q_0 \leftarrow 0, A \leftarrow A + M$

Do the following n times

- 1. Shift A and Q left one bit
- 2. $A \leftarrow A M$
- 3. If the sign of A is 1 i.e., $a_n=1$ $q_0 \leftarrow 0$ $A \leftarrow A + M \text{ //Restore}$

else

 $q_0 \leftarrow 1$

Signed Division

Simplest solution: Use unsigned division and negate the quotient if signs of divisor and dividend disagree.

Q. What should be the sign of remainder?

Note: The equation $Dividend = Quotient \times Divisor + Remainder$ must always hold

Example:
$$-7 \div 2$$
: Quotient = -3 ,
Remainder = Dividend - Quotient \times Divisor = $-7 - (-3 \times 2) = -1$

Note: -4 as quotient also satisfies the formula i.e., $Remainder = -7 - (-4 \times 2) = 1$. However, the absolute value of the quotient would change depending on the sign of the divisor and the dividend. Here, $-(x \div y) \ne (-x) \div y$, which is problematic!

Example:
$$7 \div -2$$
: Quotient = -3 ,
Remainder = Dividend - Quotient \times Divisor = $7 - (-3 \times -2) = 1$

Example:
$$-7 \div -2$$
: Quotient = 3,
Remainder = Dividend - Quotient \times Divisor = $-7 - (3 \times -2) = -1$

Rule: Negate the quotient if the sign of divisor and dividend are opposite. Sign of non-zero remainder matches the dividend.

MIPS Multiplication and Division

Multiplication:

- Two 32-bit registers for product
 - HI: most-significant 32 bits
 - LO: least-significant 32-bits
- Instructions
 - mult rs, rt / multu rs, rt
 - 64-bit product in HI/LO
 - mfhi rd / mflo rd
 - Move from HI/LO to rd
 - Can test HI value to see if product overflows 32 bits

Division:

- · Use HI/LO registers for result
 - HI: 32-bit remainder
 - LO: 32-bit quotient
- Instructions
 - div rs, rt / divu rs, rt
 - · No overflow or divide-by-0 checking
 - If divisor is 0, result is unpredictable
 - Software must perform checks if required
 - Use mfhi, mflo to access result

Floating Point Numbers

Normalized scientific notation: single non-zero digit to the left of the decimal (binary) point

- example: 3.5 x 10⁹

Floating-point standard:

- Defined by IEEE Std 754-1985
- Developed in response to divergence of representations
 - · Portability issues for scientific code
- · Now almost universally adopted
- Two representations
 - Single precision (32-bit)
 - Double precision (64-bit)

IEEE Floating Point Format

single: 8 bits single: 23 bits double: 11 bits double: 52 bits

S Exponent Fraction

 $x = (-1)^{S} \times (1 + Fraction) \times 2^{(Exponent-Bias)}$

- S: sign bit (0 ⇒ non-negative, 1 ⇒ negative)
- Normalize significand: 1.0 ≤ |significand| < 2.0
 - · Always has a leading pre-binary-point 1 bit, so no need to represent it explicitly (hidden bit)
 - Significand is Fraction with the "1." restored
- Exponent: excess representation: actual exponent + Bias
 - · Ensures exponent is unsigned
 - Single: Bias = 127; Double: Bias = 1203

Q. Why excess-127 representation for exponent is used?

Note: More exponent bits → wider range of numbers More fraction bits → higher precision

Example

- Represent 0.75
 - $0.75 = 1.1_2 \times 2^{-1}$
 - S = 0
 - Fraction = $1000...00_2$
 - Exponent = -1 + Bias
 - Single: $-1 + 127 = 126 = 011111110_2$
- Single: 0011111101000...00
- Q. Represent 0.5
- Q. How to represent 0?
- A. Exponent 00...0, Fraction: 00...0

±Infinity: Exponent = 111...1, Fraction = 000...0

NAN: Exponent = 111...1, Fraction ≠ 000...0 Indicates illegal or undefined result e.g., 0.0/0.0 What number is represented by the singleprecision float

11000000101000...00

- S = 1
- Fraction = 01000...00₂
- Exponent = $10000001_2 = 129$

•
$$x = (-1)^1 \times (1 + 01_2) \times 2^{(129 - 127)}$$

= $(-1) \times 1.25 \times 2^2$
= -5.0

Single p	precision	Object represented
Exponent	Fraction	
0	0	0
0	Nonzero	± denormalized number
1-254	Anything	± floating-point number
255	0	± infinity
255	Nonzero	NaN (Not a Number)

Floating Point Numbers

Single Precision Range:

• Exponents 00000000 and 11111111 reserved

Smallest value

Exponent: 00000001

 \Rightarrow actual exponent = 1 – 127 = –126 Fraction: 000...00 \Rightarrow significand = 1.0

 $\pm 1.0 \times 2^{-126} \approx \pm 1.2 \times 10^{-38}$

Largest value

exponent: 11111110

 \Rightarrow actual exponent = 254 – 127 = +127 Fraction: 111...11 \Rightarrow significand \approx 2.0

 $\pm 2.0 \times 2^{+127} \approx \pm 3.4 \times 10^{+38}$

Double Precision Range:

- Exponents 0000...00 and 1111...11 reserved
- Smallest value

• Exponent: 00000000001

 \Rightarrow actual exponent = 1 – 1023 = –1022

• Fraction: 000...00 ⇒ significand = 1.0

• $\pm 1.0 \times 2^{-1022} \approx \pm 2.2 \times 10^{-308}$

Largest value

• Exponent: 11111111110

 \Rightarrow actual exponent = 2046 – 1023 = +1023

• Fraction: 111...11 ⇒ significand ≈ 2.0

• $\pm 2.0 \times 2^{+1023} \approx \pm 1.8 \times 10^{+308}$

Floating Point Multiplication

- Consider a 4-digit binary example
 - $1.000_2 \times 2^{-1} \times -1.110_2 \times 2^{-2} (0.5 \times -0.4375)$
- 1. Add exponents
 - Unbiased: -1 + -2 = -3
 - Biased: (-1 + 127) + (-2 + 127) = -3 + 254 127 = -3 + 127
- 2. Multiply significands
 - $1.000_2 \times 1.110_2 = 1.1102 \implies 1.110_2 \times 2^{-3}$
- 3. Normalize result & check for over/underflow
 - $1.110_2 \times 2^{-3}$ (no change) with no over/underflow
- 4. Round and renormalize if necessary
 - $1.110_2 \times 2^{-3}$ (no change)
- 5. Determine sign: +ve × −ve ⇒ −ve
 - $-1.110_2 \times 2^{-3} = -0.21875$

