Estimation of Respondents in Each State Using IPUMS ACS 2022

Jacob Gilbert and Group 99

Invalid Date

1. Introduction

This document uses data from the 2022 American Community Survey (Steven Ruggles and Sobek (2022)) provided by IPUMS to estimate the total number of respondents in each U.S. state who have obtained a doctoral degree as their highest level of educational attainment. Python (Python Software Foundation (2023)) and its pandas (McKinney (2021)) package wer used o manupulate and display the data. We apply the ratio estimator approach of Laplace (Cochran (1977)) to estimate the total number of respondents in each state based on a known total for California, which had 391,171 respondents across all levels of education. The results of this estimation are then compared to the actual number of respondents.

1.1 Data Source

The data used for this analysis comes from IPUMS (Steven Ruggles and Sobek (2022)), specifically the 2022 ACS dataset. To obtain this data, follow these steps:

- 1. Create an account at IPUMS USA.
- 2. Use the data extraction tool and select the 2022 ACS dataset.
- 3. Include the relevant variables:
 - STATEICP: State Code (IPUMS variable for state).
 - EDUC: Educational attainment variable (filtering for doctoral degrees).
- 4. Once the dataset was processed it was downloaded to the data folder

2. Overview of the Ratio Estimators Approach

The ratio estimator approach is a common method in survey sampling that allows us to estimate totals based on known relationships between two variables. In this case, we use the ratio of respondents with a doctoral degree to the total number of respondents in each state. This ratio is then applied to the known total number of respondents in California (391,171) to estimate the total number of respondents in other states.

The ratio estimator is calculated as follows: $\hat{N}_i = \frac{\text{Doctoral Respondents}_i}{\text{Doctoral Respondents}_{CA}} \times \text{Total Respondents}_{CA}$

Where: - (\hat{N}_i) is the estimated total number of respondents in state (i) - (Doctoral Respondents_i) is the number of respondents with doctoral degrees in state (i) - $Total Respondents_{CA}$) \$ is the known total number of respondents in California.

3. Analysis and Results

	state	n	doctoral_count	ratio
$\overline{4}$	California	391171	6336	0.016198

Figure 1 This includes the data for california state exclusively showing approximately 1.6% of respondents have obtained a doctorate.

First lets just look at the state of california, we see her it has a ratio of aproximatly 1.6% of paricipants obtaind a doctoral degre. Using this ratio as an estimators for the other stats yields the results below.

	state	$doctoral_count$	n	ratio	$estimated_count$
0	Alabama	460	51580	0.008918	835.0
1	Alaska	51	6972	0.007315	113.0
2	Arizona	896	74153	0.012083	1201.0
3	Arkansas	251	31288	0.008022	507.0
4	California	6336	391171	0.016198	6336.0
5	Colorado	1031	59841	0.017229	969.0
6	Connecticut	600	37369	0.016056	605.0
7	Delaware	152	9641	0.015766	156.0
8	District of Columbia	311	6718	0.046294	109.0
9	Florida	2731	217799	0.012539	3528.0
10	Georgia	1451	109349	0.013269	1771.0
11	Hawaii	214	14995	0.014271	243.0
12	Idaho	175	19884	0.008801	322.0

	state	doctoral_count	n	ratio	estimated_count
13	Illinois	1457	128046	0.011379	2074.0
14	Indiana	620	69843	0.008877	1131.0
15	Iowa	258	33586	0.007682	544.0
16	Kansas	321	29940	0.010721	485.0
17	Kentucky	448	46605	0.009613	755.0
18	Louisiana	450	45040	0.009991	730.0
19	Maine	165	14523	0.011361	235.0
20	Maryland	1608	62442	0.025752	1011.0
21	Massachusetts	2014	73077	0.027560	1184.0
22	Michigan	991	101512	0.009762	1644.0
23	Minnesota	572	58984	0.009698	955.0
24	Mississippi	263	29796	0.008827	483.0
25	Missouri	621	64551	0.009620	1046.0
26	Montana	113	11116	0.010166	180.0
27	Nebraska	153	19989	0.007654	324.0
28	Nevada	282	30749	0.009171	498.0
29	New Hampshire	244	14077	0.017333	228.0
30	New Jersey	1438	93166	0.015435	1509.0
31	New Mexico	350	20243	0.017290	328.0
32	New York	2829	203891	0.013875	3303.0
33	North Carolina	1421	109230	0.013009	1769.0
34	North Dakota	60	8107	0.007401	131.0
35	Ohio	1213	120666	0.010053	1955.0
36	Oklahoma	281	39445	0.007124	639.0
37	Oregon	647	43708	0.014803	708.0
38	Pennsylvania	1620	132605	0.012217	2148.0
39	Rhode Island	177	10401	0.017018	168.0
40	South Carolina	647	54651	0.011839	885.0
41	South Dakota	71	9296	0.007638	151.0
42	Tennessee	841	72374	0.011620	1172.0
43	Texas	3216	292919	0.010979	4745.0
44	Utah	428	35537	0.012044	576.0
45	Vermont	131	6860	0.019096	111.0
46	Virginia	1531	88761	0.017249	1438.0
47	Washington	1195	80818	0.014786	1309.0
48	West Virginia	159	18135	0.008768	294.0
49	Wisconsin	513	61967	0.008279	1004.0
50	Wyoming	72	5962	0.012076	97.0

4. Discussion of Results

The results show that the ratio estimators approach can provide a reasonable approximation of the total number of respondents in each state based on the number of doctoral degree holders. However, there are some differences between the estimated and actual totals.

These differences can be attributed to a variety of factors:

Sampling Variation: The ratio of doctoral respondents to total respondents may vary between states, leading to estimation errors. State-Specific Factors: States with a large population of highly educated individuals, such as Massachusetts or New York, may have higher ratios of doctoral degree holders, skewing the estimates. Limitations of the Ratio Estimator: The ratio estimator assumes that the relationship between doctoral degree holders and total respondents is constant across all states, which may not be the case in reality.

Refernces

Cochran, William G. 1977. Sampling Techniques. 3rd ed. New York: John Wiley & Sons. McKinney, Wes. 2021. Pandas: Powerful Python Data Analysis Toolkit. https://pandas.pydata.org/.

Python Software Foundation. 2023. Python: A Dynamic, Open Source Programming Language. https://www.python.org/.

Steven Ruggles, Miriam King, Sarah Flood, and Matthew Sobek. 2022. "IPUMS USA: Version 12.0 [dataset]." IPUMS, University of Minnesota. https://usa.ipums.org/usa/.