Divide and Conquer

Lecture 2

Timothy Kim GWU CSCI 6212

Quiz

• Prove or disprove $2^{3n} = O(2^n)$

Answer

- Prove or disprove $2^{3n} = O(2^n)$
 - Assume above statement is true, then we need to find c and n_0 such that $2^{3n} \le c \cdot 2^n$ for all $n \ge n_0$
 - $\begin{array}{c} \textbf{Note:} \qquad \frac{2^{3n}}{2^n} \leq \frac{c \cdot 2^n}{2^n} \\ 2^{2n} \leq c \end{array}$
 - n cannot be bounded by c, which is a contradiction
 - Thus $2^{3n} \neq O(2^n)$

Binary Search Trees

- A binary search tree or BST is a binary tree satisfying the following
 - 1. Every node has a key
 - 2. The keys (if any) in the left subtree are smaller than the node
 - 3. The keys (if any) in the right subtree are greater than the node
 - 4. All subtrees are also binary search trees

Examples

One of the above is not a BST!

Height of a BST

 What is the maximum and the minimum height of a BST with n number of keys?

• Max: *n*

• Min: log_2n

Operations

- In-Order-Walk
- Searching
- Min and Max
- Successor and Predecessor
- Insertion and deletion

In-Order-Walk

InOrderWalk(node):
 InOrderWalk(node.left)
 print node.key
 InOrderWalk(node.right)

Running time?

- A. O(1)
- B. O(*n*)
- C. O(h) where h is the height of the tree
- D. $O(\log n)$

Search

```
1. Search(node,k):
2.  if node == null or node.key == k:
3.    return x
4.  if k < node.key:
5.    return Search(node.left, k)
6.    else:
7.    return Search(node.right, k)</pre>
```

Worst case running time?

Min and Max

```
Min(root):
  curr = root
3. while curr.left != null:
4. curr = curr.left
5. return cure
7. Max(root):
8. curr = root
9. while curr.right != null:
10. curr = curr.right
     return curr
```

Successor and Predecessor

```
1. Successor(node):
2.  if node.right != null:
3.    return Min(node.right)
4.    succ = node.parent
5.    curr = node
6.    while succ != null and succ.right == curr:
7.    succ = curr.parent
8.    curr = succ
9.    return succ
```

Successor and Predecessor

Successor and Predecessor

```
1. Predecossor(node):
2.    if node.left != null:
3.       return Max(node.right)
4.    succ = node.parent
5.    curr = node
6.    while succ != null and succ.left == curr:
7.    succ = curr.parent
        curr = succ
9.    return succ
```

Insertion

```
    Insert(Tree, key):
    // Search for key until you hit NULL
    // and place the node in its place
    // Homework
```

Deletion

- Case 1: left subtree is null
- · Case 2: right subtree is null, left subtree is not null
- Case 3: both subtree exists

Deletion

Divide and Conquer

- General Method:
 - 1. Partition the problem into smaller parts of the same type of the original problem.
 - 2. Solve the smaller problem
 - 3. Combine the solutions of the smaller problem into a solution for the whole

Basic Structure

```
    DivideAndConquer(input):
    if input size is small enough:
    return Solve(input) //brute force
    else:
    S<sub>1</sub>, S<sub>2</sub>, ... = Divide(S)
    r<sub>1</sub> = DivideAndConquer(S<sub>1</sub>)
    r<sub>2</sub> = DivideAndConquer(S<sub>2</sub>)
    ...
    return Conquer(r<sub>1</sub>, r<sub>2</sub>, ...)
```

Example

- Recursive MinMax
- Merge Sort
- Quick Sort
- Matrix Multiplication

Recursive MinMax

```
    MaxMin(S<sub>n</sub>):
    if |S| = 2:
    return Max(S[1], S[2]), Min(S[1], S[2])
    else:
    S<sub>1</sub> = S[1] ... S[n/2]
    S<sub>2</sub> = S[n/2 + 1] ... S[n]
    max<sub>1</sub>, min<sub>1</sub> = MaxMin(S<sub>1</sub>)
    max<sub>2</sub>, min<sub>2</sub> = MaxMin(S<sub>2</sub>)
    return Max(max<sub>1</sub>, max<sub>2</sub>), Min(min<sub>1</sub>, min<sub>2</sub>)
```

Recursive MinMax Analysis

Running Time:

$$T(n) = 2T(\frac{n}{2}) + 5 = \frac{3}{2}n - 2 = O(n)$$

Merge Sort

```
T(n)
1. MergeSort(A):
2. \quad n = |A|
3. if (n < 2):
4. return A
5. S_1 = MergeSort(A[1 ... n/2])
                                            T(n/2)
S_2 = MergeSort(A[n/2+1 ... n])
                                            T(n/2)
  return Merge(S_1, S_2)
                                            5n + 3
                                            5n + 3
9. Merge(A,B):
10. C = New Empty Array of size |A| + |B|
11. i = 1, j = 1, k = 1
12. while (k \le |C|):
13. if A[i] < B[j]:
14. C[k] = A[i]; i++
15. else:
      C[k] = B[j]; j++
16.
17.
      k++
     return C
18.
```

Merge Sort Analysis

Recurrence Relation:

$$T(n) = 2T(\frac{n}{2}) + 5n + 4$$

Since:

$$5n+4 \leq 6n$$

Therefore:

$$T(n) \le 2T(\frac{n}{2}) + 6n$$

Recurrence Tree

- Each circle represents call to the Merge() subroutine
- How high is the tree? k = ?
- How many calls to Merge() are made at level r_k?
- How big is the input size at r₁?
- How big is the input size at r_k?
- At level r_j, how many calls to Merge() is made?
- At level r_j, how big is the input size of Merge()?

Merge Sort Analysis

- Given a level j
 - # of subproblems = 2^{j}
 - size of input = $\frac{n}{2^j}$
- Running time each node = $6\frac{n}{2^{j}}$

• Running time at r_j

$$\leq 2^{j} \cdot 6 \frac{n}{2^{j}} = 2^{j} \cdot 6 \frac{n}{2^{j}} = 6n$$

Running time at all levels

$$= \sum_{j=0}^{\log_2 n} 6n$$

$$= 6n \cdot (\log_2 n + 1)$$

$$= O(n \cdot \log n)$$

Master Method

If

$$T(n) \le a \cdot T(\frac{n}{b}) + O(n^d)$$

Then

$$T(n) = O(n^d \log n)$$
 if $a = b^d$
 $T(n) = O(n^d)$ if $a < b^d$
 $T(n) = O(n^{\log_b a})$ if $a > b^d$

Merge Sort Application

• Merge Sort Running Time $T(n) \leq 2T(\frac{n}{2}) + 6n$ $\leq 2T(\frac{n}{2}) + O(n)$

Master Method

$$T(n) \le a \cdot T(\frac{n}{b}) + O(n^d)$$

$$a = 2$$

 $b = 2$
 $d = 1$
 $a = b^d$ $T(n) = O(n \log n)$

Example

Given the following recurrence form find the big O equivalent:

•
$$T(n) = 4T(n/3) + n^2 = O(???)$$

Master Method Proof

If

$$T(n) \le a \cdot T(\frac{n}{b}) + O(n^d)$$

Then

$$T(n) = O(n^d \log n)$$
 if $a = b^d$
 $T(n) = O(n^d)$ if $a < b^d$
 $T(n) = O(n^{\log_b a})$ if $a > b^d$

Assumption to make our proof simpler

Assume

$$T(1) \le c$$

$$T(n) \le aT(\frac{n}{b}) + cn^d$$

$$n = b^k$$

High Level Idea

 r_0

 r_1

 r_2

- How deep is the tree?
- At any level how many sub problems are there?
- How big is the input size for each sub problem?

Running time at a single level

- Given a level j
 - # of subproblems = a^{\jmath}
 - size of input = $\frac{n}{b^{j}}$
- Running time each node:
 - Recall $T(n) \leq aT(\frac{n}{b}) + cn^d$
 - Thus running time $\leq c(\frac{n}{h^j})^d$

• Running time at ri

$$\leq a^{j} \cdot c \left(\frac{n}{b^{j}}\right)^{d} = cn^{d} \cdot \left(\frac{a}{b^{d}}\right)^{j}$$

Running time at all levels

$$j = 1, 2, ..., \log_b n$$

$$\leq cn^d \cdot \sum_{j=0}^{\log_b n} \left(\frac{a}{b^d}\right)^j$$

What does that mean?

- What does a represent?
- What does b represent?
- What does b^d represent?

$$\leq cn^d \cdot \sum_{j=0}^{\log_b n} \left(\frac{a}{b^d}\right)^j$$

What does THAT mean?

 r_2

 r_j

Three cases:

$$a < b^d$$

$$a = b^d$$

$$a > b^d$$

Intuition

- If a = b⁴d then amount of the work each level is the same
- If a < b¹d then less work as you go down the tree, most of the work is done at the root
- If a > b^d then more work as you go down the tree, most of the work is done the leaf

$$T(n) = O(n^d \log n)$$
 if $a = b^d$
 $T(n) = O(n^d)$ if $a < b^d$
 $T(n) = O(n^{\log_b a})$ if $a > b^d$

Master Method Proof

If

$$T(n) \le a \cdot T(\frac{n}{b}) + O(n^d)$$

Then

$$T(n) = O(n^d \log n)$$
 if $a = b^d$
 $T(n) = O(n^d)$ if $a < b^d$
 $T(n) = O(n^{\log_b a})$ if $a > b^d$

$$\hbox{- Case 1} \quad a=b^d \qquad \qquad T(n)=O(n^d\cdot \log n)=cn^d\cdot \sum_{j=0}^{\log_b n} \left(\frac{a}{b^d}\right)^j$$

$$\hbox{- Note: } \frac{a}{b^d}=1$$

$$cn^{d} \cdot \sum_{j=0}^{\log_{b} n} 1^{j} = cn^{d} \cdot \sum_{j=0}^{\log_{b} n} 1$$
$$= cn^{d} \cdot (\log_{b} n + 1)$$
$$= O(n^{d} \cdot \log n)$$

Master Method Proof

If

$$T(n) \le a \cdot T(\frac{n}{b}) + O(n^d)$$

Then

$$T(n) = O(n^d \log n)$$
 if $a = b^d$
 $T(n) = O(n^d)$ if $a < b^d$
 $T(n) = O(n^{\log_b a})$ if $a > b^d$

Lemma

Given the following geometric sum:

$$r \neq 1$$

$$1 + r + r^2 + \dots + r^k = \frac{r^{k+1} - 1}{r-1}$$

Note:

. If
$$r < 1 oup \frac{r^{k+1}-1}{r-1} \le \frac{1}{1-r}$$
 (bounded by some constant) (dominated by the first term)

$$\cdot \text{ If } r>1 \to \frac{r^{k+1}-1}{r-1} \leq r^k \cdot \left(1+\frac{1}{1-r}\right)$$

(dominated by the last term)

- · Case 2 $a < b^d$ $T(n) = O(n^d) = cn^d \cdot \sum_{j=0}^{\log_b n} \left(\frac{a}{b^d}\right)^j$
- Note: $\frac{a}{b^d} < 1$

$$cn^d \cdot \sum_{j=0}^{\log_b n} r^j | r < 1$$

$$= cn^d \cdot c' = O(n^d)$$

· Case 3
$$a>b^d$$

$$T(n)=O(n^{\log_b a})=cn^d\cdot\sum_{j=0}^{\log_b n}\left(\tfrac{a}{b^d}\right)^j$$

• Note:
$$r = \frac{a}{b^d} > 1$$

$$cn^d \cdot \sum_{j=0}^{\log_b n} r^j | r > 1$$

$$\leq cn^d \cdot \left(\frac{a}{b^d}\right)^{\log_b n} \cdot c' = O(n^d \cdot \left(\frac{a}{b^d}\right)^{\log_b n})$$

$$= O(n^{d} \cdot \left(\frac{a}{b^{d}}\right)^{\log_{b} n})$$

$$= O(n^{d} \cdot a^{\log_{b} n} \cdot (b^{d})^{-\log_{b} n})$$

$$= O(n^{d} \cdot a^{\log_{b} n} \cdot (b^{\log_{b} n})^{-d})$$

$$= O(n^{d} \cdot a^{\log_{b} n} \cdot n^{-d})$$

$$= O(n^{d} \cdot \frac{a^{\log_{b} n}}{n^{d}})$$

$$= O(a^{\log_{b} n})$$

$$= O(n^{\log_{b} n})$$

Master Case Implication

If

$$T(n) \le a \cdot T(\frac{n}{b}) + O(n^d)$$

Then

$$T(n) = O(n^d \log n)$$
 if $a = b^d$
 $T(n) = O(n^d)$ if $a < b^d$
 $T(n) = O(n^{\log_b a})$ if $a > b^d$

Example Question

• Given $T(n) = 2T(n/4) + n^3$ find the asymptotic running time of the recurrence.