Arrays:

Linear collection of similar type of data.

 $ar[5] = \frac{0.1234}{13.7810}$

ass [0] + ass [3] =

To of accessing an element \$ 0(1)

de Print all elements of an array with length n.

\$\(\(\text{t+} i : n \times i : 0 = i \text{Fni} \) \(\text{Ci]} \(\text{Fin} \) \(\text{Fnisq} \)

3

Tc: O(n)

On Criven in array elements, count number of clements having at least 1 clement greator than itself. In 21. Values in adday are int.

Note: Sorting is not allowed!

 $\frac{\sum_{1}}{a_{8}} = \frac{1}{2} = \frac{1}{4} = \frac{1}{6} = \frac{1}{6$

Ex2 arr [6] = [1 9 14 22 4 6]

Observation

D Max element would not be included in the count.

Approach: D Find maximum

2) Find forg of maximum

3) are 7 Size of assay - forg of max.

Escudo Code: - ass [0] = Tot. Min 1) Find maximum. 70 int max-val = a 88 [0] / In.). Mm Minimum (or (int i=0 ; i < n ; i ++) & value if (ass [i] > max-val)

max-val = ass[i]; that an int can -lake. 2) Find bequency of maximum ind c = 0; (++i; n > i; 0 = i (-ni) 80 () (add (i] == reax - val) $P \circ (v)$ 3) betvon ars: return (n-c) Tc: O(n)

S(:0(1)

Or Given a array elements, print true if there exists a pair of index idj, where arr [i] + arr [j] - 12.

Note 1) array is not sorted

2) i!=j =

3) return true/false ~

4) Ris given.

Gooding

O(Nogn)

Heshmes

 $\frac{\mathcal{E}_{x1}}{2}$ arr [] = $\frac{1}{2}$ = $\frac{3}{5}$ -1 6 4 3

K=8

Ptruc

 $\frac{2}{2}$ arr[] = $\frac{2}{2}$ 4 3 -2 -73

- Jalse

2-8

Pseudo Code

Sur (int i=0; i < n; i+t)
$$\mathcal{L}$$

$$\int_{0}^{\infty} (int j=0; j < n; j+t) \mathcal{L}$$

	00	10	20	30	40
	01		21	31	41
	02	12	22	32	42
	03	13	23	33	43
-	04	14	24	34	44

$$\int u \delta \left(in + i = 0 ; i < n ; i + + \right) \int dx$$

$$\int o \delta \left(in + j = i + 1 ; j < n ; i + + \right) \int dx$$

$$\int dx \delta \left(ii \right) + a \partial \delta \left(ii \right) = = R$$

$$\partial c \partial u \partial n + \partial u c \partial c$$

$$3$$

retvon Julse:

 $Tc: O(n^2)$ Sc: O(1)

ì	j	total
	[1, 10-1]	D - 1
1	$\left[2, n\cdot\right]$	N-2
2	$\begin{bmatrix} 3, 0-1 \end{bmatrix}$	n-3
		c
		T.
0-1	[] - [] - [

O3 Given an array. Reverse it.
SC should be 0(1).

Exi asx[] = $\begin{cases} 2 & 4 & 1 & 5 & 6 \\ 2 & 4 & 1 & 5 & 6 \\ 4 & 2 & 3 & 4 \\ 4 & 3 & 8 & 6 & 5 & 1 & 4 & 2 & 3 \end{cases}$

Pseudo (ode i=0, j=n-1While (i/j) f

// swapping.

int temp = aso [i];

aso [i] = aso [i];

aso [i] = temp

i+t; j--; Tc:o(n)

Sc:o(1)

i < 1/2Even assay

[2 4 6 7 1 8] i < 2 i < 3 i < 5 i < 5 i < 5 i < 5 i < 5 i < 5 i < 5 i < 5 i < 5 i < 5 i < 5 i < 5 i < 5 i < 5 i < 5 i < 5 i < 5 i < 5 i < 5 i < 5 i < 5 i < 5 i < 5 i < 5 i < 5 i < 5 i < 5 i < 5 i < 5 i < 5 i < 5 i < 5 i < 5 i < 5 i < 5 i < 5 i < 5 i < 5 i < 5 i < 5 i < 5 i < 5 i < 5 i < 5 i < 5 i < 5 i < 5 i < 5 i < 5 i < 5 i < 5 i < 5 i < 5 i < 5 i < 5 i < 5 i < 5 i < 5 i < 5 i < 5 i < 5 i < 5 i < 5 i < 5 i < 5 i < 5 i < 5 i < 5 i < 5 i < 5 i < 5 i < 5 i < 5 i < 5 i < 5 i < 5 i < 5 i < 5 i < 5 i < 5 i < 5 i < 5 i < 5 i < 5 i < 5 i < 5 i < 5 i < 5 i < 5 i < 5 i < 5 i < 5 i < 5 i < 5 i < 5 i < 5 i < 5 i < 5 i < 5 i < 5 i < 5 i < 5 i < 5 i < 5 i < 5 i < 5 i < 5 i < 5 i < 5 i < 5 i < 5 i < 5 i < 5 i < 5 i < 5 i < 5 i < 5 i < 5 i < 5 i < 5 i < 5 i < 5 i < 5 i < 5 i < 5 i < 5 i < 5 i < 5 i < 5 i < 5 i < 5 i < 5 i < 5 i < 5 i < 5 i < 5 i < 5 i < 5 i < 5 i < 5 i < 5 i < 5 i < 5 i < 5 i < 5 i < 5 i < 5 i < 5 i < 5 i < 5 i < 5 i < 5 i < 5 i < 5 i < 5 i < 5 i < 5 i < 5 i < 5 i < 5 i < 5 i < 5 i < 5 i < 5 i < 5 i < 5 i < 5 i < 5 i < 5 i < 5 i < 5 i < 5 i < 5 i < 5 i < 5 i < 5 i < 5 i < 5 i < 5 i < 5 i < 5 i < 5 i < 5 i < 5 i < 5 i < 5 i < 5 i < 5 i < 5 i < 5 i < 5 i < 5 i < 5 i < 5 i < 5 i < 5 i < 5 i < 5 i < 5 i < 5 i < 5 i < 5 i < 5 i < 5 i < 5 i < 5 i < 5 i < 5 i < 5 i < 5 i < 5 i < 5 i < 5 i < 5 i < 5 i < 5 i < 5 i < 5 i < 5 i < 5 i < 5

125

An Reverse the assay from start to end.

Destart & end are assay indices and will given as input

Start & end.

2x1 : add [] = 2 - 2 + 6 - 7 + 5 6 Start = 2 end = 5

2-24187653

Void reverse (int start, int end, int arx 17) \mathcal{L} int i = start; int j = end;

while (iz) \mathcal{L} 1/2 wap

Sc: O(1)

1/4+; j--;

7

Os Given a array elements, voilable the array from last to first R times.

GC should be O(1).

221.

 $\begin{cases} 2 & 3 & 4 & 5 & 6 \\ 2 & 3 & -1 & 6 & 1 & 2 \\ 2 & 3 & -1 & 6 & 1 & 2 \\ 2 & 5 & 2 & 3 & -1 & 6 & 1 \\$

azz [5] = 9, 92 93 94 95

$$k = 0, 5, 10$$
 $k = 1, 6, 11$
 $k = 2, 7, 12$
 $k = 3, 8, 13$
 $k = 4, 9, 14$

a, a₂ a₃ a₄ a₅
a₅ a₁ a₂ a₃ a₄
a₅ a₁ a₂ a₃ a₄
a₄ a₅ a₁ a₂ a₃
a₃ a₄ a₅ a₁ a₂
a₃ a₄ a₅ a₁ a₂
a₂ a₃ a₄ a₅ a₁

Static Arrays: Size is fixed int ass [5]; Dynamic Arrays & Size is not lived. Pseudo lode # Tc of list Lint 7 l; accessing 1. push (10); an dement 1. push (11); 70(1)

C+1 \$\rightarrow\$ vector

Java \$\rightarrow\$ Array list

C \$\rightarrow\$ Change

There.

Python \$\rightarrow\$ list

C# \$\rightarrow\$ Array list

Algo

Over flow
Issues

Find test (ses for Which your algo fails.

(nlugn)

200

(6-7 assure)

744 = (28/30)