Linear Algebra, Week 2

Jonny Evans

MATH105

Simultaneous equations

Simultaneous equations...

$$x - y = -1$$
$$x + y = 3$$

...in matrix form

$$x - y = -1$$
$$x + y = 3$$

$$\begin{pmatrix} 1 & -1 \\ 1 & 1 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} -1 \\ 3 \end{pmatrix}$$

$$Simultaneous\ equations...$$

...in matrix form

$$x - y = -1$$

$$\begin{pmatrix} 1 & -1 \\ 1 & 1 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} -1 \\ 3 \end{pmatrix}$$

$$x + y = 3$$

$$\begin{pmatrix}
1 & -1 & | & -1 \\
1 & 1 & | & 3
\end{pmatrix}$$

Row operations

Definition (Row operation of type I) Add λ times row j to row i.

$$R_i \mapsto R_i + \lambda R_j$$

Row operations

Definition (Row operation of type I)

Add λ times row j to row i.

$$R_i \mapsto R_i + \lambda R_j$$

Definition (Row operation of type II)

Multiply row i by λ .

$$R_i \mapsto \lambda R_i$$

Row operations

Definition (Row operation of type I)

Add λ times row j to row i.

$$R_i \mapsto R_i + \lambda R_j$$

Definition (Row operation of type II)

Multiply row i by λ .

$$R_i \mapsto \lambda R_i$$

$$\lambda \neq 0$$

$$\begin{pmatrix} 1 & 7 & 2 & 0 & 1 & 13 \\ 0 & 0 & 5 & 2 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 7 \\ 0 & 0 & 0 & 0 & 0 & 0 \end{pmatrix}$$

$$\begin{pmatrix}
1 & 7 & 2 & 0 & 1 & 13 \\
0 & 0 & 5 & 2 & 0 & 1 \\
0 & 0 & 0 & 0 & 0 & 7 \\
0 & 0 & 0 & 0 & 0 & 0
\end{pmatrix}$$

$$\begin{pmatrix}
1 & 7 & 2 & 0 & 1 & 13 \\
0 & 0 & 5 & 2 & 0 & 1 \\
0 & 0 & 0 & 0 & 0 & 7 \\
0 & 0 & 0 & 0 & 0 & 0
\end{pmatrix}$$

$$\begin{pmatrix}
1 & 7 & 2 & 0 & 1 & 13 \\
0 & 0 & 5 & 2 & 0 & 1 \\
0 & 0 & 0 & 0 & 0 & 7 \\
0 & 0 & 0 & 0 & 0 & 0
\end{pmatrix}$$

Leading indices:

$$\begin{pmatrix}
1 & 7 & 2 & 0 & 1 & 13 \\
0 & 0 & 5 & 2 & 0 & 1 \\
0 & 0 & 0 & 0 & 0 & 7 \\
0 & 0 & 0 & 0 & 0 & 0
\end{pmatrix}$$

Leading indices: 1,

$$\begin{pmatrix}
1 & 7 & 2 & 0 & 1 & 13 \\
0 & 0 & 5 & 2 & 0 & 1 \\
0 & 0 & 0 & 0 & 0 & 7 \\
0 & 0 & 0 & 0 & 0 & 0
\end{pmatrix}$$

Leading indices: 1, 3,

$$\begin{pmatrix}
1 & 7 & 2 & 0 & 1 & 13 \\
0 & 0 & 5 & 2 & 0 & 1 \\
0 & 0 & 0 & 0 & 0 & 7 \\
0 & 0 & 0 & 0 & 0 & 0
\end{pmatrix}$$

Leading indices: 1, 3, 6.

$$\begin{pmatrix}
1 & 7 & 2 & 0 & 1 & 13 \\
0 & 0 & \boxed{5} & 2 & 0 & 1 \\
0 & 0 & 0 & 0 & 0 & \boxed{7} \\
0 & 0 & 0 & 0 & 0 & 0
\end{pmatrix}$$

Leading indices: 1, 3, 6.

Definition (Echelon form)

A matrix is in *echelon form* if the sequence of leading indices is *strictly increasing* (and all zero rows are at the bottom).

Leading indices: 1, 3, 6.

Definition (Echelon form)

A matrix is in *echelon form* if the sequence of leading indices is *strictly increasing* (and all zero rows are at the bottom).

$$\begin{pmatrix} 1 & 0 & 0 & -1 & 0 & 13 \\ 0 & 1 & 15 & 221 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 & 0 & 0 \end{pmatrix}$$

$$\begin{pmatrix}
1 & 0 & 0 & -1 & 0 & 13 \\
0 & 1 & 15 & 221 & 0 & 1 \\
0 & 0 & 0 & 0 & 1 & 1 \\
0 & 0 & 0 & 0 & 0 & 0
\end{pmatrix}$$

Definition (Reduced echelon form)

$$\begin{pmatrix} 1 & 0 & 0 & -1 & 0 & 13 \\ 0 & 1 & 15 & 221 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 & 0 & 0 \end{pmatrix}$$

Definition (Reduced echelon form)

A matrix A is in reduced echelon form if

A is in echelon form

$$\begin{pmatrix}
1 & 0 & 0 & -1 & 0 & 13 \\
0 & 1 & 15 & 221 & 0 & 1 \\
0 & 0 & 0 & 0 & 1 & 1 \\
0 & 0 & 0 & 0 & 0 & 0
\end{pmatrix}$$

Definition (Reduced echelon form)

A matrix A is in reduced echelon form if

► A is in echelon form

$$\begin{pmatrix}
1 & 0 & 0 & -1 & 0 & 13 \\
0 & 1 & 15 & 221 & 0 & 1 \\
0 & 0 & 0 & 0 & 1 & 1 \\
0 & 0 & 0 & 0 & 0 & 0
\end{pmatrix}$$

Definition (Reduced echelon form)

- ► A is in echelon form
- all leading entries are equal to 1

$$\begin{pmatrix}
1 & 0 & 0 & -1 & 0 & 13 \\
0 & 1 & 15 & 221 & 0 & 1 \\
0 & 0 & 0 & 0 & 1 & 1 \\
0 & 0 & 0 & 0 & 0 & 0
\end{pmatrix}$$

Definition (Reduced echelon form)

- ► A is in echelon form
- all leading entries are equal to 1

$$\begin{pmatrix}
1 & 0 & 0 & -1 & 0 & 13 \\
0 & 1 & 15 & 221 & 0 & 1 \\
0 & 0 & 0 & 0 & 1 & 1 \\
0 & 0 & 0 & 0 & 0 & 0
\end{pmatrix}$$

Definition (Reduced echelon form)

- A is in echelon form
- all leading entries are equal to 1

$$\begin{pmatrix}
1 & 0 & 0 & -1 & 0 & 13 \\
0 & 1 & 15 & 221 & 0 & 1 \\
0 & 0 & 0 & 0 & 1 & 1 \\
0 & 0 & 0 & 0 & 0 & 0
\end{pmatrix}$$

Definition (Reduced echelon form)

- ► A is in echelon form
- all leading entries are equal to 1

$$\begin{pmatrix}
1 & 0 & 0 & -1 & 0 & 13 \\
0 & 1 & 15 & 221 & 0 & 1 \\
0 & 0 & 0 & 0 & 1 & 1 \\
0 & 0 & 0 & 0 & 0 & 0
\end{pmatrix}$$

Definition (Reduced echelon form)

- A is in echelon form
- ▶ all leading entries are equal to 1
- in a column containing a leading entry, everything but the leading entry is zero.

Definition (Reduced echelon form)

- A is in echelon form
- ▶ all leading entries are equal to 1
- in a column containing a leading entry, everything but the leading entry is zero.

Definition (Reduced echelon form)

- A is in echelon form
- ▶ all leading entries are equal to 1
- in a column containing a leading entry, everything but the leading entry is zero.

Definition (Reduced echelon form)

- A is in echelon form
- ▶ all leading entries are equal to 1
- in a column containing a leading entry, everything but the leading entry is zero.

Definition (Free indices)

An index $i \in \{1, ..., n\}$ is called *free* if it is not a leading index. Write $F \subset \{1, ..., n\}$ for the set of free indices.

Theorem

If A is m-by-n in reduced echelon form with k nonzero rows and leading indices j_1, \ldots, j_k then the general solution to

$$A\begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix} = \begin{pmatrix} b_1 \\ \vdots \\ b_m \end{pmatrix}$$

exists if and only if $b_{k+1} = \cdots = b_m = 0$, has n - k free variables x_p , $p \in F$, and k dependent variables

$$x_{j_m} = b_i - \sum_{p \in F} A_{ip} x_p.$$

Echelon form theorems

Type I $R_i \mapsto R_i + \lambda R_j$

Type II $R_i \mapsto \lambda R_i$

Theorem (Echelon form theorem)

Any matrix can be put into echelon form using only row operations of type I.

Theorem (Reduced echelon form theorem)

Any matrix can be put into reduced echelon form using row operations of types I and II.

Example

$$\begin{pmatrix}
2 & 0 & 2 & 0 \\
0 & 1 & 1 & 1 \\
2 & 0 & 5 & 0 \\
1 & 1 & 1 & 2
\end{pmatrix}$$

Example

$$\begin{pmatrix} 1 & -1 & 0 & b_1 \\ 1 & 1 & -1 & b_2 \\ 4 & 0 & -2 & b_3 \\ 0 & 2 & -1 & b_4 \end{pmatrix}$$

Type I $R_i \mapsto R_i + \lambda R_j$

Type II $R_i \mapsto \lambda R_i$

Theorem (Echelon form theorem)

Any matrix can be put into echelon form using only row operations of type I.

Theorem (Reduced echelon form theorem)

Any matrix can be put into reduced echelon form using row operations of types I and II.

Inverses, I

Theorem

Let
$$A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$$
. If $ad - bc \neq 0$, define

$$A^{-1} = \frac{1}{ad - bc} \begin{pmatrix} d & -b \\ -c & a \end{pmatrix}.$$

Then
$$AA^{-1} = A^{-1}A = I$$
.

Theorem

Let
$$A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$$
. If $ad - bc \neq 0$, define

$$A^{-1} = \frac{1}{ad - bc} \begin{pmatrix} d & -b \\ -c & a \end{pmatrix}.$$

Then $AA^{-1} = A^{-1}A = I$.

Definition

An *n*-by-*n* matrix A is *invertible* if there exists a matrix A^{-1} such that $AA^{-1} = A^{-1}A = I$.

Theorem

Let
$$A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$$
. If $ad - bc \neq 0$, define

$$A^{-1} = \frac{1}{ad - bc} \begin{pmatrix} d & -b \\ -c & a \end{pmatrix}.$$

Then $AA^{-1} = A^{-1}A = I$.

Definition

An *n*-by-*n* matrix *A* is *invertible* if there exists a matrix A^{-1} such that $AA^{-1} = A^{-1}A = I$. Unique if it exists.

Theorem

Let
$$A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$$
. If $ad - bc \neq 0$, define

$$A^{-1} = \frac{1}{ad - bc} \begin{pmatrix} d & -b \\ -c & a \end{pmatrix}.$$

Then $AA^{-1} = A^{-1}A = I$.

Definition

An *n*-by-*n* matrix A is *invertible* if there exists a matrix A^{-1} such that $AA^{-1} = A^{-1}A = I$. Unique if it exists.

Lemma

$$(AB)^{-1} = B^{-1}A^{-1}$$
.

Theorem (Invertibility theorem)
Let A be an n-by-n matrix.

Theorem (Invertibility theorem)

Let A be an n-by-n matrix.

▶ A is invertible if and only if its reduced echelon form is the identity matrix.

Theorem (Invertibility theorem)

Let A be an n-by-n matrix.

- A is invertible if and only if its reduced echelon form is the identity matrix.
- ▶ Suppose A is invertible. The reduced echelon form of the augmented matrix $(A|I_n)$ is $(I_n|A^{-1})$.

Theorem (Invertibility theorem)

Let A be an n-by-n matrix.

- ▶ A is invertible if and only if its reduced echelon form is the identity matrix.
- ▶ Suppose A is invertible. The reduced echelon form of the augmented matrix $(A|I_n)$ is $(I_n|A^{-1})$.

Example

$$\begin{pmatrix}
1 & -1 & 0 & 3 \\
-1 & 2 & 1 & 0 \\
-1 & 1 & 1 & -3 \\
1 & 0 & 1 & 7
\end{pmatrix}$$

Example

$$\begin{pmatrix} -3 & -2 & -4 \\ 2 & 3 & 3 \\ -1 & 4 & -4 \end{pmatrix}$$

Inverses, II

Goal

Theorem (Invertibility theorem)

Let A be an n-by-n matrix.

- ▶ A is invertible if and only if its reduced echelon form is the identity matrix.
- ▶ Suppose A is invertible. The reduced echelon form of the augmented matrix $(A|I_n)$ is $(I_n|A^{-1})$.

Lemma

 $E_{ij}(\lambda)A$ is obtained from A by $R_i \mapsto R_i + \lambda R_j$.

$$E_i(\lambda) = \begin{pmatrix} 1 & \operatorname{col} i & & & \\ & \ddots & \downarrow & & \\ & \operatorname{row} i & \rightarrow & \lambda & & \\ & & \ddots & & \\ & & & 1 & \\ & & & \ddots & \\ & & & & 1 \end{pmatrix}$$

Definition
$$E_i(\lambda) = \begin{pmatrix} 1 & & & & \\ 1 & & \ddots & \downarrow & \\ & \ddots & \downarrow & & \\ & & \ddots & & \\ & & & \ddots & \\ & & & & 1 \end{pmatrix}$$

Lemma

 $E_i(\lambda)A$ is obtained from A by $R_i \mapsto \lambda R_i$.

Proof of invertibility theorem

Theorem (Invertibility theorem)

Let A be an n-by-n matrix.

- ▶ A is invertible if and only if its reduced echelon form is the identity matrix.
- ▶ Suppose A is invertible. The reduced echelon form of the augmented matrix $(A|I_n)$ is $(I_n|A^{-1})$.

Lemma

Any invertible matrix is a product of elementary matrices.

Lemma

Any invertible matrix is a product of elementary matrices.

Lemma

Conversely, any product of elementary matrices is invertible.

Lemma

Any invertible matrix is a product of elementary matrices.

Lemma

Conversely, any product of elementary matrices is invertible.

Proof.

$$(E_{ij}(\lambda))^{-1} = E_{ij}(-\lambda)$$
$$(E_i(\lambda))^{-1} = E_i(1/\lambda)$$

and
$$(M_1 \cdots M_k)^{-1} = M_k^{-1} \cdots M_1^{-1}$$
.