Lab #2. Regeneration of optical signal by Erbium Doped Fiber Amplifier (EDFA)

Introduction.

Devices are used in the measurement procedure.

[1] Optical Spectrum analyzer (IQ-203) - instruments that measure the optical power as a function of wavelength or frequency.

[2] EDFA (Erbium Doped Fiber Amplifier) is a kind of fiber optic amplifier which used to re-amplify an attenuated signal without converting the signal into electrical form.

Manipulated parameters

- [1] The laser pump (PUMP Module) of 980 nm controlled by the on/off and rotary element
- [2] Distributed FeedBack (DFB module) laser operating at the wavelength of 1550 nm
- [3] on/off switch

The measurement procedure

1. The current-power characteristic of the DBF laser source:

Measure $P_{dfb1550}$ = $f(I_{dfb1550})$ for $I_{pump980}$ =0

PUMP is swithed off	I _{dfb1550} [mA] current	P[dBm]=f(I _{dfb1550}) power level	
I _{pump980} =0	15	No significant amplification of optical signal. Noise level.	
I _{pump980} =0	17		
I _{pump980} =0	20		
I _{pump980} =0	25	Very small peak is appeared.	

2. The operation range of the EDFA amplification:

Measure P = f (λ) for $I_{pump980} > 0$ and $I_{dfb1550} = 0$

Lab #2. Regeneration of optical signal by Erbium Doped Fiber Amplifier (EDFA)

The spectral characteristic of the custom signal at the wavelength of 1550 nm before and after amplification.

I _{pump980} [mA]	I _{dfb1550} [mA]	P[dBm]=f(λ)	Comments
0	17	<u></u>	Very small peak detected - close to a noise level
50	17		Peak at 1550nm. Point of saturation.
150	17		Higher noise around saturation point. It means after 30-50mA only background amplification is working (uselessness).

3. The current-power characteristic of the regenerated signal

$$P = f(I_{pump980})$$
 and $I_{dfb1550} = 17mA$

I _{pump980} [mA]	I _{dfb1550} [mA]	P[dBm]=f(I _{pump980})	Comments
0	17	-70	No amplification
20	17	-60	SNR 17 dB
40	17	-32	SNR 43 dB
60	17	-27	SNR 44 dB
70	17	-26	SNR 44 dB
80	17	-25	SNR 43 dB

Lab #2. Regeneration of optical signal by Erbium Doped Fiber Amplifier (EDFA)

120 17	-23	SNR 43 dB
--------	-----	-----------

Saturation point is near $I_{pump980}$ =62±3 mA. If it is increasing further, then pumping current gives slightly increment power value. It means too much power for nothing.

EDFA amplifiers advantages and disadvantages.

- + cost effectiveness
- + low noise
- + relative flatness of the top of the gain spectrum
- + useful for long distances (allows eliminate repeater using)
- + high saturation power
- + can be improved by gain-flattening optical filters
- there is always some output even with no signal input (spontaneous noise)
- are not small
- gain saturation effect