Introduction to Machine Learning

Random Forest Feature Importance

Learning goals

- Understand that the goal of feature importance is to enhance interpretability of RF
- Understand FI based on feature permutation
- Understand FI based on improvement in splits

PERMUTATION FEATURE IMPORTANCE

RFs improve accuracy by aggregating multiple decision trees but **lose interpretability** compared to a single tree. **Feature importance** mitigates this problem.

- How much does performance decrease, if feature is removed / rendered useless?
- We permute values of considered feature
- Removes association between feature and target, keeps marginal distribution
- Can obtain GE of RF (without and with permuted features) by predicting OOB data, to efficiently compute FI during training
- Avoids not only new models (if feature would be removed) but can already use "OOB test data" during training

1 yellow round domestic 1 2 brown oblong imported 11 3 green oblong imported 19	/ no
	, 110
3 green oblong imported 19	yes
	yes
4 yellow oblong domestic /4	yes

PERMUTATION IMPORTANCE

- 1: Calculate $\widehat{\mathrm{GE}}_{\mathrm{OOB}}$ using set-based metric ho
- 2: **for** features x_i , $j = 1 \rightarrow p$ **do**
- 3: for Some statistical repetitions do
 - Distort feature-target relation: permute x_i with ψ_i
- 5: Compute all n OOB-predictions for permuted feature data, obtain all $\hat{t}_{\mathrm{OOB},\psi_{\hat{l}}}^{(i)}$
- 6: Arrange predictions in $\hat{\mathbf{F}}_{\text{OOB},\psi_i}$; Compute $\widehat{\text{GE}}_{\text{OOB},j} = \rho(\mathbf{y}, \hat{\mathbf{F}}_{\text{OOB},\psi_i})$
- 7: Estimate importance of *j*-th feature: $\widehat{\mathsf{FI}_i} = \widehat{\mathrm{GE}}_{\mathrm{OOB},i} \widehat{\mathrm{GE}}_{\mathrm{OOB}}$
- 8: end for
- 9: Average obtained \widehat{FI}_i values over reps
- 10: end for

4:

IMPURITY IMPORTANCE

Alternative: Add up all *improvements* in splits where feature x_i is used.

- 1: **for** features x_j , $j = 1 \rightarrow p$ **do** 2: **for** all models $\hat{b}^{[m]}$, $m = 1 \rightarrow M$ **do**
- Find all splits in $\hat{b}^{[m]}$ on x_i 3:
- Extract improvement / risk reduction for these splits 4:
- 5: Sum them up
- 6: end for
- 7: Add up improvements over all trees for FI of x_i
- 8: end for

IN PRACTICE / OUTLOOK

Let's compare both FI variants on mtcars:

- Both methods are biased toward features with more levels (i.e., continuous or categoricals with many categories)
- More advanced versions exist
- PFI and FI have been generalized, see our lecture on IML!