EXTREMIDADES DOS CHOQUE TRANSICIONAIS

Cálculos sobre a reta EW de equação $s_o/\mu_o = s_g/\mu_g$.

Sugestão: parametrize a reta EW por s_w , que varia de 0 a 1.

Cálculos preparatórios:

- 01. Armazene as coordenadas dos estados E, W e do ponto umbílico U.
- 02. Calcule os estados E_1 e E_2 (extensões-1 e 2, respectivamente de E) com $\sigma(E, E_1) = \lambda_1(E_1)$ e $\sigma(E, E_2) = \lambda_2(E_2)$. Armazene estes pontos.
- 03. Calcule os estados C_1 e C_2 no contato duplo com $\sigma(C_1, C_2) =$ $\lambda_2(C_1) = \lambda_2(C_2).$ Chame C_1 o estado entre Ee Ue de C_2 o estado entre U e W.

Armazene estes pontos.

Cálculos para a determinação e localização das extremidades do choque transicional sobre a reta EW em função de L e dos pontos armazenados.

- 04. Se $E \leq L \leq U$, então determine as extremidades X_1 e X_2 do segmento de choque de transicional, com $X_1 < X_2$, usando as equações $\sigma(L, X_1) = \lambda_1(X_1), \ \sigma(L, X_2) = \lambda_2(X_2).$ Pesquise X_1 e X_2 satisfazendo $U \leq X_1 \leq E_1$ e $X_1 < X_2 \leq E_2$.
 - Obs. Neste caso X_1 é o ponto de 1-bifurcação secundária de H(L).
- 05. Se $U < L \le C_2$, então determine as extremidades X_1 e X_2 do segmento de choque de transicional, com $X_1 < X_2$, usando as equações $\sigma(L, X_1) = \lambda_1(L), \ \sigma(L, X_2) = \lambda_2(X_2)$. Pesquise X_1 e X_2 satisfazendo $E < X_1 < U$ e $X_1 < X_2 < U$.
 - Obs. Neste caso X_2 é o ponto de 2-bifurcação secundária de H(L).
- 06. Se $C_2 < L \le E_1$, então determine as extremidades X_1 e X_2 do segmento de choque de transicional, com $X_1 < X_2$, usando as equações $\sigma(L, X_1) = \lambda_1(L), \ \sigma(L, X_2) = \lambda_2(L).$ Pesquise X_1 e X_2 satisfazendo $E \leq X_1 < U$ e $X_1 < X_2 < C_1$.

- Obs. A partir deste caso X_2 não é mais o ponto de 2-bifurcação secundária de H(L).
- 07. Se $E_1 < L < E_2$, então fatalmente tem-se que $X_1 = E$ e determine apenas a extremidade X_2 do segmento de choque de transicional, com $X_1 = E < X_2$, usando a equação $\sigma(L, X_2) = \lambda_2(L)$. Pesquise X_2 satisfazendo $E < X_2 < U$.
- 08. Se $E_2 < L \le W$, então não há segmento de choque transicional no interior do triângulo de saturações, sobre a reta EW.

 $x \in E_1 = extensão interior de E,$ familia lunta (λ_1)

*Ez = extensão interior le E, familia rápida (12)

* (C1, C2) = contato duplo, família poipida (d2)

Equações das retas E-W, B-O, D-G: 02821

 $(i) \in -W$: $S_W = 1-S$; $S_0 = \frac{N_0 S}{N_0 + N_g}$, $0 \le s \le 1$

(ii) $B-0: S_{\omega} = \underbrace{M_{\omega} S}_{, \omega + M_{g}}; S_{o} = 1-S, 0 \le s \le 1$

(iii) $D-G: S_{\omega} = \underbrace{N_{\omega}S}_{N\omega+N_0}$, $S_{o} = \underbrace{N_{o}S}_{N\omega+N_0}$, $0 \le S \le 1$

Coordenadas dos prontes E, B, D: norrespondem a S=1

E: Sw = 0, So = Mo/ (Mo+ Mg)

B: $S\omega = \mu\omega/(\mu\omega + \mu_g)$, So = 0

D: Sw = Nw / (Nw + No), So = No / (Nw+ No)

- OBS: Ez e' a extensão interior le E com relação à familia respida (12).
 - As wordenadas sau calculadas com an formulas (i), (ii), (iii) da p.g. ① em termos do valor de $S(E_1) \equiv S_{*}$:

(i)
$$E-W$$
: $S_{*} = \sqrt{\frac{M_0 + M_g}{M_{tot}}}$, $M_{tot} = \frac{M_0 + M_w}{M_{tot}} + \frac{M_g}{M_{tot}}$

(iii)
$$B-0$$
: $S_{*} = \sqrt{\frac{\mu_{w} + \mu_{g}}{\mu_{tot}}}$

(iii)
$$D-G:$$
 $S_{*} = \sqrt{\frac{uw + uo}{utot}}$

*B-D (Hugariot do E):
$$S_{\omega} = \mu_{\omega} S + \mu_{\omega} (1-5)$$

$$\mu_{\omega} + \mu_{g} \qquad \mu_{\omega} + \mu_{o}$$

$$S_{\delta} = 1$$

$$D = S_{\delta} = 0$$

$$S_{\delta} = \mu_{\delta} (1-5)$$

$$S_{\omega} = \mu_{\delta} (1-5)$$

$$S_{\omega} = \mu_{\delta} (1-5)$$

$$S_{\omega} = \mu_{\delta} (1-5)$$

$$S_{\omega} = \mu_{\delta} (1-5)$$

$$S_0 = \frac{\mu_0}{\mu_0 + \mu_0} \left(1 - S\right) \qquad 0 \leq S \leq \frac{1}{2}$$

* D-E (Hugoniot de B):
$$S_{\omega} = M_{\omega} S$$
 0 = 5 = 1
 $M_{\omega} + \mu_{o}$ $S_{o} = M_{o} S + M_{o} (1-S)$
 $M_{\omega} + \mu_{o}$ $M_{o} + \mu_{g}$

$$\left(\begin{array}{c}
\mathcal{D} \Leftrightarrow S = 1 \\
\mathcal{E} \Leftrightarrow S = 0
\right)$$

$$S_0 = \underbrace{M_0}_{M_0 + M_0} S + \underbrace{M_0}_{M_0 + M_0} (1-S)$$

* E-B (Hagoniot dl D):
$$S_{\omega} = \underbrace{\mu_{\omega}}_{\mu_{\omega} + \mu_{g}} (1-s)$$

$$(E \rightleftharpoons S = 1)$$

$$B \rightleftharpoons S = 0$$

$$S_{\omega} = \underbrace{\mu_{\omega}}_{\mu_{\omega} + \mu_{g}} (1-s)$$

$$S_{\omega} = \underbrace{\mu_{\omega}}_{\mu_{\omega} + \mu_{g}} (1-s)$$

$$S_{\omega} = \underbrace{\mu_{\omega}}_{\mu_{\omega} + \mu_{g}} (1-s)$$

$$\frac{1}{100} + \frac{1}{100} = \frac{1$$

$$4 \lambda_{\perp}(s) = \frac{2s / \mu_{AB}}{M(s)}, \quad M(s) = \frac{s^{2} + (1-s)^{2}}{M_{AB}}$$

6

* Nomenclatura:
$$\hat{\chi} \equiv S(C_1), \hat{L} \equiv S(C_2)$$

$$(1-\hat{L})[r^2\hat{L}^2 + r(2(1-r)\hat{L}^2 + 5r\hat{L} - 3r)^2]$$

$$-\left[2(1-r)^{2}+6r^{2}-3r\right]\left[2^{2}+r(1-2)^{2}\right]^{2}=0$$

(ii) Calade
$$\hat{x} = \frac{r\hat{L}}{2(1-r)\hat{L}^2 + 6r\hat{L} - 3r}$$
 a partir do valor de \hat{L}

calculado un (i).

$$E-W: r = (M_g + M_o)/M_w$$

(i) Sobre
$$E-W$$
:
$$\int_{\omega} S_{\omega} = \int_{\omega} S_{\omega} + \int_{\omega} S_{\omega} + \int_{\omega} S_{\omega} = \int_{\omega} S_{\omega} + \int_{\omega} S_{\omega$$

$$S_0 = \underbrace{M_0}_{M_W + M_0} (1-5)$$

(iii) Sobre
$$D-G=$$
 $S_{\omega}=\frac{\mu_{\omega}}{\mu_{\omega}+\mu_{g}}$ (1-5) $S_{\omega}=\frac{\mu_{\omega}}{\mu_{\omega}+\mu_{g}}$ $S_{\omega}=\frac{\mu_{\omega}}{\mu_{\omega}+\mu_{g}}$

$$50 = \frac{\mu_0}{\mu_0 + \mu_{\alpha}}$$

(iii) Sobre B-0:
$$S_{\omega} = \underbrace{M_{\omega}}_{M_{\omega} + M_{0}} S$$

$$S_{0} = \underbrace{M_{0}}_{M_{\omega} + M_{0}} S + \underbrace{M_{0}}_{M_{0} + M_{0}} (1-S)$$

$$M_{\omega} + M_{0} \qquad M_{0} + M_{0}$$

$$s = (\mu_{\omega} + \mu_{o}) / (\mu_{tot} + \mu_{o})$$

Extremidados dos chaques transicionais: seguindo documento 6)
preparado por Cido. Intervalo [Se, Sr] no parametro S. Movamente, o valor de r depende da neta: E-W: r= (Mg+Mo)/Mw; B-O: r= (Mw+Mg)/Mo D-G: r= (/w+/o)/Mg Valor do parametro S no pto. umbilico: E-w: x=g, p=0 $E-W: X=g, \beta=0$ $B-0: X=W, \beta=g$ Casos (dominento Cido) $\frac{S(U) = Mx + \mu_B}{Su}$ D-6: X=W, B=0 08. Lentre Ez e W: intervalo é vazio. 07. L'entre E, e Ez: S, = 1 veste casa; Se é a raiz no intervalo [Su, 1], onde Su e o valor de S no pto. empílico, do polinomio quadrático em x abaixo: $\sigma = \frac{2\hat{L}(1-\hat{L})}{r\left[\hat{F}^2 + (1-\hat{L})^2\right]^2}$ $\hat{L} \equiv S(L)$; $-\sigma \left[\hat{1}^{2} + r(1-\hat{1})^{2} \right] \left[x^{2} - r(1-x)^{2} \right] + r(\hat{1}+x) - 2r\hat{1}x = 0$ (*)

7

Intervalo [Se, Sr] no parâmetro S:

$$\star$$
 Cálculo de S_{Γ} : $\hat{I} = S(L)$, $\sigma = \frac{2\hat{I}}{r\left[\frac{\hat{I}^2}{r} + (1-\hat{I})^2\right]}$

$$-\sigma \left[\hat{L}^{2} + r \left(1 - \hat{L} \right)^{2} \right] \left[x^{2} - r \left(1 - x \right)^{2} \right] + r \left(\hat{L} + x \right) - 2r \hat{L} x = 0$$

$$(+ x)$$

Sr e'a piz em [0,1] do poliviouro quadrático em X

05. L'entre
$$U \in C_z$$
 (inclusive): $\widehat{L} \equiv S(L)$

$$-2x[2^{2}+r(1-2)^{2}]+r(2+x)-2r[x=0.$$

04. Lentre E (inclusive) e U (inclusive)

$$\hat{L} = S(L)$$

* l'alulo de Se: raiz em [0,1] de politionie cubico em X

$$(1+r)(1-21)x^3+(1-r)^2(1+2^2)x^2-[r+z(1+r)^2]x+r^2=0$$

* Calulo de Sr: solução do polinômio linear em X

$$-2x[2^{2}+r(1-2)^{2}]+r(2+x)-2r2x=0.$$