Frequent Subgraph Mining (FSM)

Introduction

- Frequent subgraphs
 - A (sub)graph is *frequent* if its *support* (occurrence frequency) in a given dataset is no less than a *minimum support* threshold
- Applications of graph pattern mining
 - Mining biochemical structures
 - Program control flow analysis
 - Mining XML structures or Web communities
 - Building blocks for graph classification, clustering, compression, comparison, and correlation analysis

What Makes FSM So Hard?

- Isomorphic graphs have same structural properties even though they may look different.
- Subgraph isomorphism problem: Does a graph contain a subgraph isomorphic to another graph?
- FSM algorithms encounter this problem while buildings graphs.
- This problem is known to be NP-complete!

Example: Frequent Subgraphs

GRAPH DATASET

$$(A) \qquad (B) \qquad (C)$$

FREQUENT PATTERNS (MIN SUPPORT IS 2)

$$(1) \qquad (2) \qquad \sqrt[N]{}$$

EXAMPLE (II)

GRAPH DATASET

Mining Frequent Subgraphs

- Methods for Mining Frequent Subgraphs
- Applications:
 - Graph Indexing
 - Similarity Search
 - Classification and Clustering
- Summary

Frequent Subgraphs Mining Algorithms

- Underlying strategy of both traditional frequent pattern mining and frequent subgraph mining
- General Process:
 - candidate generation: which patterns will be considered? For FSM,
 - candidate pruning: if a candidate is not a viable frequent pattern, can we exploit the pattern to prevent unnecessary work?
 - subgraphs and subsets exponentiate as size increases!
 - support counting: how many of a given pattern exist?
- These algorithms work in a breadth-first or depth-first way.
 - Joins smaller frequent sets into larger ones.
 - Checks the frequency of larger sets.

Frequent Subgraphs Mining Algorithms

- Incomplete beam search Greedy (Subdue)
- Inductive logic programming (WARMR)
- Graph theory-based approaches
 - Apriori-based approach
 - Pattern-growth approach

Frequent Subgraph Mining Approaches

- Apriori-based approach
 - AGM/AcGM: Inokuchi, et al. (PKDD'00)
 - FSG: Kuramochi and Karypis (ICDM'01)
 - PATH#: Vanetik and Gudes (ICDM'02, ICDM'04)
 - FFSM: Huan, et al. (ICDM'03)
- Pattern growth approach
 - MoFa, Borgelt and Berthold (ICDM'02)
 - gSpan: Yan and Han (ICDM'02)
 - Gaston: Nijssen and Kok (KDD'04)

Properties of Graph Mining Algorithms

- Search order
 - breadth vs. depth
- Generation of candidate subgraphs
 - apriori vs. pattern growth
- Elimination of duplicate subgraphs
 - passive vs. active
- Support calculation
 - embedding store or not
- Discover order of patterns
 - path → tree → graph

Apriori-Based Approach

Apriori-Based, Breadth-First Search

Methodology: breadth-search, joining two graphs

- AGM (Inokuchi, et al. PKDD'00)
 - generates new graphs with one more node

- FSG (Kuramochi and Karypis ICDM'01)
 - generates new graphs with one more edge

FFSM (Huan, et al. ICDM'03)

- Represent graphs using canonical adjacency matrix (CAM)
- Join two CAMs or extend a CAM to generate a new graph
- Store the embeddings of CAMs
 - All of the embeddings of a pattern in the database
 - Can derive the embeddings of newly generated CAMs

Graph Pattern Explosion Problem

- If a graph is frequent, all of its subgraphs are frequent — the Apriori property
- An n-edge frequent graph may have 2ⁿ subgraphs
- Among 422 chemical compounds which are confirmed to be active in an AIDS antiviral screen dataset, there are 1,000,000 frequent graph patterns if the minimum support is 5%

Pattern Growth Method

GSPAN (Yan and Han ICDM'02)

Right-Most Extension

Theorem: Completeness

The Enumeration of Graphs using Right-most Extension is COMPLETE

DFS Code

Flatten a graph into a sequence using depth first search

DFS Lexicographic Order

Let Z be the set of DFS codes of all graphs. Two DFS codes a and b have the relation a<=b (DFS Lexicographic Order in Z) if and only if one of the following conditions is true. Let</p>

$$\mathbf{a} = (x_0, x_1, ..., x_n)$$
 and $\mathbf{b} = (y_0, y_1, ..., y_n),$

- (i) if there exists t, $0 \le t \le min(m,n)$, $x_k = y_k$ for all k, s.t. k<t, and $x_t < y_t$
- (ii) $x_k = y_k$ for all k, s.t. $0 \le k \le m$ and $m \le n$.

DFS Code Extension

- Let a be the minimum DFS code of a graph G and b be a non-minimum DFS code of G. For any DFS code d generated from b by one right-most extension,
 - (i) **d** is not a minimum DFS code,
 - (ii) min_dfs(d) cannot be extended from b, and
 - (iii) min_dfs(d) is either less than a or can be extended from a.

THEOREM [RIGHT-EXTENSION]
The DFS code of a graph extended from a
Non-minimum DFS code is NOT MINIMUM

Pattern-Growth Approach

- Find a small frequent candidate graph
 - Remove vertices (shadow graph) whose degree is less than the connectivity
 - Decompose it to extract the subgraphs satisfying the connectivity constraint
 - Stop decomposing when the subgraph has been checked before
- Extend this candidate graph by adding new vertices and edges
- Repeat

Closed Frequent Graphs

- Motivation: Handling graph pattern explosion problem
- Closed frequent graph
 - A frequent graph G is closed if there exists no supergraph of G that carries the same support as G
- If some of G's subgraphs have the same support, it is unnecessary to output these subgraphs (nonclosed graphs)
- Lossless compression: still ensures that the mining result is complete

Number of Patterns: Frequent vs. Closed

Runtime: Frequent vs. Closed

Graph Mining

- Methods for Mining Frequent Subgraphs
- Applications:
 - Classification and Clustering
 - Graph Indexing
 - Similarity Search
- Summary

Graph Clustering

- Graph similarity measure
 - Feature-based similarity measure
 - Each graph is represented as a feature vector
 - The similarity is defined by the distance of their corresponding vectors
 - Frequent subgraphs can be used as features
 - Structure-based similarity measure
 - Maximal common subgraph
 - Graph edit distance: insertion, deletion, and relabel
 - Graph alignment distance

Graph Classification

- Local structure based approach
 - Local structures in a graph, e.g., neighbors surrounding a vertex, paths with fixed length
- Graph pattern-based approach
 - Subgraph patterns from domain knowledge
 - Subgraph patterns from data mining
- Kernel-based approach
 - Random walk (Gärtner '02, Kashima et al. '02, ICML'03, Mahé et al. ICML'04)
 - Optimal local assignment (Fröhlich et al. ICML'05)
- Boosting (Kudo et al. NIPS'04)

Graph Pattern-Based Classification

- Subgraph patterns from domain knowledge
 - Molecular descriptors
- Subgraph patterns from data mining
- General idea
 - Each graph is represented as a feature vector \mathbf{x} = $\{x_1, x_2, ..., x_n\}$, where x_i is the frequency of the i-th pattern in that graph
 - Each vector is associated with a class label
 - Classify these vectors in a vector space

Graph Mining

- Methods for Mining Frequent Subgraphs
- Applications:
 - Classification and Clustering
 - Graph Indexing
 - Similarity Search
- Summary

Graph Search

- Querying graph databases:
 - Given a graph database and a query graph, find all the graphs containing this query graph

Scalability Issue

- Sequential scan
 - Disk I/Os
 - Subgraph isomorphism testing
- An indexing mechanism is needed
 - DayLight: Daylight.com (commercial)
 - GraphGrep: Dennis Shasha, et al. PODS'02
 - Grace: Srinath Srinivasa, et al. ICDE'03

Indexing Strategy

Query graph (Q) Graph (G)

If graph G contains query graph Q, G should contain any substructure of Q

Substructure

Remarks

 Index substructures of a query graph to prune graphs that do not contain these substructures

Indexing Framework

Two steps in processing graph queries

Step 1. Index Construction

 Enumerate structures in the graph database, build an inverted index between structures and graphs

Step 2. Query Processing

- Enumerate structures in the query graph
- Calculate the candidate graphs containing these structures
- Prune the false positive answers by performing subgraph isomorphism test

Cost Analysis

QUERY RESPONSE TIME

$$T_{index} + C_q \times \left(T_{io} + T_{isomorphism_testing}\right)$$
 fetch index
$$\mathbf{number\ of\ candidates}$$

REMARK: make $|C_q|$ as small as possible

gIndex: Indexing Graphs by Data Mining

- Our methodology on graph index:
 - Identify frequent structures in the database, the frequent structures are subgraphs that appear quite often in the graph database
 - Prune redundant frequent structures to maintain a small set of discriminative structures
 - Create an inverted index between discriminative frequent structures and graphs in the database

IDEAS: Indexing with Two Constraints

Why Discriminative Subgraphs?

Sample database

$$(a) \qquad (b) \qquad (c)$$

- All graphs contain structures: C, C-C, C-C-C
- Why bother indexing these redundant frequent structures?
 - Only index structures that provide more information than existing structures

Discriminative Structures

- Pinpoint the most useful frequent structures
 - Given a set of structures f1, f2,...fn and a new structure x, we measure the extra indexing power provided by x,

When P is small enough, x is a discriminative structure and should be included in the index

- Index discriminative frequent structures only
 - Reduce the index size by an order of magnitude

Why Frequent Structures?

- We cannot index (or even search) all of substructures
- Large structures will likely be indexed well by their substructures
- Size-increasing support threshold

Experimental Setting

- The AIDS antiviral screen compound dataset from NCI/NIH, containing 43,905 chemical compounds
- Query graphs are randomly extracted from the dataset
- GraphGrep: maximum length (edges) of paths is set at 10
- gIndex: maximum size (edges) of structures is set at 10

Experiments: Index Size

Experiments: Answer Set Size

Experiments: Incremental Maintenance

Frequent structures are stable to database updating Index can be built based on a small portion of a graph database, but be used for the whole database

Graph Mining

- Methods for Mining Frequent Subgraphs
- Applications:
 - Classification and Clustering
 - Graph Indexing
 - Similarity Search
- Summary ——

Summary: Graph Mining

- Graph mining has wide applications
- Frequent and closed subgraph mining methods
 - gSpan and CloseGraph: pattern-growth depth-first search approach
- Graph indexing techniques
 - Frequent and discriminative subgraphs are high-quality indexing features
- Similarity search in graph databases
 - Indexing and feature-based matching
- Further development and application exploration

References (1)

- T. Asai, et al. "Efficient substructure discovery from large semi-structured data", SDM'02
- C. Borgelt and M. R. Berthold, "Mining molecular fragments: Finding relevant substructures of molecules", ICDM'02
- D. Cai, Z. Shao, X. He, X. Yan, and J. Han, "Community Mining from Multi-Relational Networks", PKDD'05.
- M. Deshpande, M. Kuramochi, and G. Karypis, "Frequent Sub-structure Based Approaches for Classifying Chemical Compounds", ICDM 2003
- M. Deshpande, M. Kuramochi, and G. Karypis. "Automated approaches for classifying structures", BIOKDD'02
- L. Dehaspe, H. Toivonen, and R. King. "Finding frequent substructures in chemical compounds", KDD'98
- C. Faloutsos, K. McCurley, and A. Tomkins, "Fast Discovery of 'Connection Subgraphs",
 KDD'04
- H. Fröhlich, J. Wegner, F. Sieker, and A. Zell, "Optimal Assignment Kernels For Attributed Molecular Graphs", ICML'05
- T. Gärtner, P. Flach, and S. Wrobel, "On Graph Kernels: Hardness Results and Efficient Alternatives", COLT/Kernel'03

References (2)

- L. Holder, D. Cook, and S. Djoko. "Substructure discovery in the subdue system",
 KDD'94
- J. Huan, W. Wang, D. Bandyopadhyay, J. Snoeyink, J. Prins, and A. Tropsha. "Mining spatial motifs from protein structure graphs", RECOMB'04
- J. Huan, W. Wang, and J. Prins. "Efficient mining of frequent subgraph in the presence of isomorphism", ICDM'03
- H. Hu, X. Yan, Yu, J. Han and X. J. Zhou, "Mining Coherent Dense Subgraphs across Massive Biological Networks for Functional Discovery", ISMB'05
- A. Inokuchi, T. Washio, and H. Motoda. "An apriori-based algorithm for mining frequent substructures from graph data", PKDD'00
- C. James, D. Weininger, and J. Delany. "Daylight Theory Manual Daylight Version 4.82".
 Daylight Chemical Information Systems, Inc., 2003.
- G. Jeh, and J. Widom, "Mining the Space of Graph Properties", KDD'04
- H. Kashima, K. Tsuda, and A. Inokuchi, "Marginalized Kernels Between Labeled Graphs",
 ICML'03

References (3)

- M. Koyuturk, A. Grama, and W. Szpankowski. "An efficient algorithm for detecting frequent subgraphs in biological networks", Bioinformatics, 20:I200--I207, 2004.
- T. Kudo, E. Maeda, and Y. Matsumoto, "An Application of Boosting to Graph Classification", NIPS'04
- M. Kuramochi and G. Karypis. "Frequent subgraph discovery", ICDM'01
- M. Kuramochi and G. Karypis, "GREW: A Scalable Frequent Subgraph Discovery Algorithm", ICDM'04
- C. Liu, X. Yan, H. Yu, J. Han, and P. S. Yu, "Mining Behavior Graphs for 'Backtrace" of Noncrashing Bugs", SDM'05
- P. Mahé, N. Ueda, T. Akutsu, J. Perret, and J. Vert, "Extensions of Marginalized Graph Kernels", ICML'04
- B. McKay. Practical graph isomorphism. Congressus Numerantium, 30:45--87, 1981.
- S. Nijssen and J. Kok. A quickstart in frequent structure mining can make a difference.
 KDD'04
- J. Prins, J. Yang, J. Huan, and W. Wang. "Spin: Mining maximal frequent subgraphs from graph databases". KDD'04

References (4)

- D. Shasha, J. T.-L. Wang, and R. Giugno. "Algorithmics and applications of tree and graph searching", PODS'02
- J. R. Ullmann. "An algorithm for subgraph isomorphism", J. ACM, 23:31--42, 1976.
- N. Vanetik, E. Gudes, and S. E. Shimony. "Computing frequent graph patterns from semistructured data", ICDM'02
- C. Wang, W. Wang, J. Pei, Y. Zhu, and B. Shi. "Scalable mining of large disk-base graph databases", KDD'04
- T. Washio and H. Motoda, "State of the art of graph-based data mining", SIGKDD Explorations, 5:59-68, 2003
- X. Yan and J. Han, "gSpan: Graph-Based Substructure Pattern Mining", ICDM'02
- X. Yan and J. Han, "CloseGraph: Mining Closed Frequent Graph Patterns", KDD'03
- X. Yan, P. S. Yu, and J. Han, "Graph Indexing: A Frequent Structure-based Approach", SIGMOD'04
- X. Yan, X. J. Zhou, and J. Han, "Mining Closed Relational Graphs with Connectivity Constraints", KDD'05
- X. Yan, P. S. Yu, and J. Han, "Substructure Similarity Search in Graph Databases", SIGMOD'05
- X. Yan, F. Zhu, J. Han, and P. S. Yu, "Searching Substructures with Superimposed Distance", ICDE'06
- M. J. Zaki. "Efficiently mining frequent trees in a forest", KDD'02