

Development of the

FDM Baseband Feedback

I. BBFB Transfer Function

Amin Aminaei, 07 September 2020

SRON

Refs

[1]. SRON Report, A. Nieuwenhuizen et al., 2008

[2]. SRON Presentation, Transition Edge Sensors, P. de Korte

BBFB Transfer Function

 $H(\omega) = Gain.exp(-j(\omega T_d-\phi)/(1+j(\omega - \omega_c)\tau)[1]$

Nominal Values

Signal Delay

 $T_d = 8m \times 7.7 \times 2 \text{ (roundtrip)} + PCB \text{ delay}$

PCB delay= \sim 33/sqr.(ϵ_r) ps/cm

 $T_d = 150 ns$

 ϕ = phase shift (ADC, de/remodulator) $\pi/8$?

 $\omega_{c} = 2.\pi.(1MHz-4MHz)$

 τ (electrothermal response time)=0.2 ms?

Gain=5000

Impact of T_{eff}

70

60

50

Abs [H(w)], dB 30

20

10

- $\tau_{\rm eff}$ = 0.2ms [2] Ignore Td for now.~0.
- 125 x 24KHz
- 1MHz-4MHz

1.00

1.05

Frequency, MHz

• $\tau_{\text{eff}} = 1\text{e-5s}$

The phase effect (phase of $H(\omega)$)

Phase margin 170 (?)degree for A)150ns delay: $\Delta f/2.11$: 11.4KHz gain bandwidth around this carrier (worst case) for 24KHz separation.

Phase margin 100 degree for B)1500ns: 6.7KHz GBW.

Phase Shift (To be Investigated)

BaseBand Feedback Electronics board

After [2]

Transfer function of the second order:

With
$$L_0 = \frac{\alpha . P}{G.T}$$
 the electro-thermal loop gain and $\tau_{e\!f\!f} = \tau_0 / L_0 - 1$

This equation shows one pole (fall time) at : $\tau_{fall} = \frac{C}{G} \frac{1}{1 + L_0/(1 + \alpha_I)}$

And a 2nd pole (rise time) at : $\tau_{el} = L/(R_{th} + R_0(1 + \alpha_I))$

After [2]

(To be studied)

