참 가 번 호 313

가디언즈 오브 에너지 - GOE (Guardians Of Energy)

팀 명: 두뇌는 국산이지만 언어는 수입입니다.

팀구성원

No.	구분	성명	역할
1	팀대표	남승우	AI 모델링 및 프로젝트 리더
2	팀원	김나연	하드웨어 개발, 데이터 베이스 연동
3	팀원	김강훈	애플리케이션 개발

2019. 10. 30

□ 목차

- 1. 개요
 - 1.1. 작품명
 - 1.2. 작품 개요
 - 1.3. 목적/목표
- 2. 작품 설명
 - 2.1. 시스템 구성
 - 2.2. 작품제작 핵심기술
 - 2.3. 시스템 구성도
 - 2.4. 시스템 기능
 - 2.5. 소프트웨어 개발환경
- 3. 소프트웨어 설명
 - 3.1. Database 구조 및 파일 구성도
 - 3.2. 소프트웨어 개발 규모
- 4. 응용 분야
 - 4.1. 활용방안
 - 4.2. 기대 효과
- 5. 작품제작팀
- 6. 작품 제작 주요일정 및 단계별 성과

1. 개요

1.1. 작품 명: 가디언즈 오브 에너지(Guardians of energy)

1.2. 작품 개요

- Guardians of energy는 집안 전력 사용 데이터를 받아와 AI를 이용해 날씨, 온도 등을 분석하여 한 달 적정 에너지 사용량을 알려주고 이 번달 예측 전기세를 알려주는 앱 서비스 이다.
- 앱 서비스를 통해 전기 사용량을 하루하루 알 수 있으며 불필요하게 사용되고 있는 전기 사용을 사용자에게 직접 알려준다.

1.3. 목적/목표

- 한 달 적정 에너지 사용량을 알려주어 사용자가 자신의 전기 사용량 과 직접 비교할 수 있어 에너지 절약의 경각심을 일깨워준다.
- AI시스템을 통해 날씨와 온도 등을 분석하여 예상 한 달 전기세를 좀 더 디테일하게 알 수 있도록 한다.

2. 작품 설명

2.1) 시스템 구성

가) APP

사용자가 보게 되는 실질적 결과로써 각종 인터페이스 제공 및 알림 시스템 으로 사용자에게 실시간으로 값의 결과를 알려주고, 각 시스템들을 연결해주 는 역할

나) Al(Python)

과거 데이터를 바탕으로 사용자의 가전 제품 사용 패턴을 예측 하는 모델과 이를 바탕으로 한달 전기세를 예측하여 이에 맞는 솔루션을 제공하는 모델

다) Rasp

현 생활하고있는 집의 모델에 설치하여 실질적 데이터 값을 실시간으로 보 내주는 모델

라) Server(Firebase)

시스템의 서버로써 각 데이터들을 보관 및 통신을 통해 전달 받고, 전해 주 는 역할

2.2) 작품제작 핵심 기술

GOE 주요 핵심 기술

IOT

실시간 데이터 전송 및 처리 가전제품 조종 및 관리

AI

사용자 별 가전제품 사용 패턴 분석 및 월별 전기세 예측

2.3) 시스템 구성도

2.4) 시스템 기능

가) APP

- -사용자와의 정보 매개체 기능
- -서버 통신 기능
- -AI 및 RASP 통신 기능
- -사용자 인터페이스 기능
- -그래프 출력 기능
- -워격 가전제품 조작 기능

나) AI

- -가전제품 사용 패턴 예측 기능
- -이상치 측정 기능
- -전기 사용 패턴 학습기능
- -실시간 전기세 예측

다) RASP

- -실시간 데이터 처리 기능
- -실시간 통신 기능
- -원격 조작을 이용한 가전제품 조작 기능

2.5) 소프트웨어 개발 환경

가) AI

언어: Python

프레임워크: tensorflow, bs4, Selenium 개발도구: VS code, google Colaboratory

나) APP

언어: kotlin

서버: firebase

개발 툴: Android Studio

다) Rasp

언어: C, Python

개발환경: Linux, Rasp

3. 소프트웨어 설명

3.1) DataBase 구조 및 파일 구성도

가) DB 구조도

나) 파일 구성도

3.2) 소프트웨어 개발 규모

- 3명의 인원으로 약 1달 동안 개발
- 앱 서버1, 데이터베이스 서버1

4. 응용 분야

4.1) 활용방안

- 출근이나 일정 등으로 집을 비웠을때, 학습한 패턴과 차이가 큰 이상치(Ex. 에어컨을 가동하고 외출 등)가 측정됐을 때 이를 알리고 원격으로 전원을 켜고 끌 수 있으므로 전기세 누수를 막을 수 있다.
- 저장된 가전제품 사용 현황과 예측을 혼합함으로써 월별 전기세를 예측하고 이를 줄이기 위한 솔루션을 상황에 따라 제공함으로써 각 상황에 맞게 대응해 전기세를 절약할 수 있다.
- 상용화된다면 비슷한 환경인 가정을 카테고리별로 묶어 더욱 정확도 높은 예측을 실시할 수 있다.

4.2) 기대효과

- 한 눈에 보기 쉽게 전기 사용량과 적정 사용량을 비교하여 보여주어 사용자들이 전기세를 예측/관리할 수 있도록 한다.
- 날씨와 온도 분석을 하여 주간별 전기세를 절감할 수 있는 기사나 방법 들을 알려주어 사용자들이 실생활에서 에너지를 아낄 수 있도록 한다.
- 대규모 스마트 농장을 구축하여 편리한 관리가 가능하다.

5. 작품 제작 팀

No.	구분	성명	소속(학교)	부서(학과)	입학년도	관심분야		
1	학생	김강훈	광주소프트웨어마이스터고	SW 개발과	2018	앱 개발		
2	학생	김나연	광주소프트웨어마이스터고	SW 개발과	2018	AI 및 빅데이터		
3	학생	남승우	광주소프트웨어마이스터고	SW 개발과	2018	딥러닝		

6. 작품 제작 주요일정 및 단계별 성과

일 정	8월	~	~	9월	~	~	10월	2	~	11월	~	~	2
요구사항 분석													
팀 구성													
주제 선정													
세부 조건 설정													
자료 조사													
계 획													
시나리오													
소프트웨어 설계													
하드웨어 설계													
				구	현								
DB 설계													
프런트엔드 개발													
DB 구현													
백엔드 개발													
디버깅													
디자인													
하드웨어 제작													