Metody Numeryczne

Zad 1. Metody Bisekcji, Siecznych (02B)

1. Wstęp

Zadanie zostało wykonane przy użyciu języka **Python3**, do sporządzenia wykresów użyliśmy biblioteki **matplotlib**, biblioteka **numPy** została wykorzystana do efektywnego obliczania funkcji sin, cos, exp(), przekazywania wartosci do funkcji rysujących wykresy.

2. Ogólny opis algorytmu

- 1. Sprawdzana jest sensowność danych wejściowych oraz warunek f(a) $f(b) \le 0$
- 2. Ustawiamy określoną ilość iteracji/dokładność ε
- 3. Znajdujemy punkty zerowy przy uzyciu metody bisekcji oraz siecznych
- 4. Wyświetlamy uzyskane dwa uzyskane punkty (w przypadku gdy metoda siecznych da wynik)

3. Wyniki

Tabela 1. Wyniki dla podanej dokładności obliczeń ε = 0.0004,

funkcja	przedział	X _b	f _b (x)	$\Psi_{\rm b}$	X _s	f _s (x)	$\Psi_{\rm s}$
$x^3 - 2x^2 + 3x - 1$	< -50, 50>	0,4303	0,0003	14	0,4303	0,0002	7
sin x + cos x	< -2,35; 0,785>	-0,7856	-0,0002	9	-0,7854	0,0000	3
$2^x - \frac{1}{e}$	<-6, 6>	-1,4414	0.0003	9	-1,4430	-0,0001	155770
$e^x \sin 2x + e^x - 3$	<2.35;3.8>	2.6823	0,0001	14	2.6823	0,0000	10

Legenda: Ψ – ilość iteracji

Tabela 1. Wyniki dla podanej ilosci iteracji Ψ = 5

funkcja	przedział	X _b	$f_b(x)$	X _s	f _s (x)
$x^3 - 2x^2 + 3x - 1$	< -50, 50>	3,125	19,3613	0,2080	0,5480
sin x +cos x	< -2,35; 0,785>	-0,8805	-0,1342	-0,7854	0,0000
$2^x - \frac{1}{e}$	< -6, 6>	-1,1250	0.0906	-5,8684	-0,3508
$e^x \sin 2x + e^x - 3$	<2.35;3.8>	2.6672	-0,3033	2,5620	-1,9175

Legenda: Ψ – ilość iteracji

Rys 1. Miejsca zerowe znalezione gdy założenie o stałym znaku pochodnych na przedziale nie jest spełnione, możliwe jest wtedy istnienie wielu miejsc zerowych co oznacza że metody mogą dać różne rozwiązania.

4. Wnioski

- 1. Metoda siecznych jest szybsza od metody bisekcji co pokazują mniejsze wartosci wykonanych iteracji.
- 2. Metoda siecznych jest dokładniejsza od metody bisekcji jednak nie zawsze gwarantuje uzyskanie odpowiedniego wyniku (przy spełnionych założeniach). nie mniej jednak obie metody dają zbliżone wyniki.
- 3. W przypadku gdy założenie o stałym znaku pochodnych w przedziale nie jest spełnione możliwe jest otrzymanie różnych wyników od poszczególnych metod jest to spowodowane możliwością istnienia wielu miejsc zerowych, co obrazuje Rys 1.