Yapay Zeka

Ders 11 - Bölüm 2

Doç. Dr. Mehmet Dinçer Erbaş Bolu Abant İzzet Baysal Üniversitesi Mühendislik Fakültesi Bilgisayar Mühendisliği Bölümü

- Önerimsel mantık: iyi ve kötü yanları
 - Önerimsel mantık bildiri mantığı ile çalışır.
 - Sözdizim kuralları ile oluşturulmuş cümleler gerçeklere karşılık gelir ve bu gerçekler kullanılarak yeni gerçeklere ulaşılır.
 - Önerimsel mantık kısmi, ayrışma, birleşme, olumsuz bilgi gibi işlemlere izin verir.
 - Birçok veri yapısı ve veri tabanında bu işlemleri yapmak zordur.
 - Önerimsel mantık birleşik olarak oluşturulur.
 - $B_{1,1}$ \wedge $P_{1,2}$ cümlesinin anlamı $B_{1,1}$ ve $P_{1,2}$ anlamlarından oluşur.
 - Önerimsel mantıkta anlam bağlamdan bağımsızdır.
 - Doğal dillerde ise anlam bağlamdan etkilenir.
 - Önerimsel mantık oldukça sınırlı ifade gücüne sahiptir.
 - Örnek: "Uçurumlar komşu odalarda esintiye sebep olur." cümlesini önerimsel mantık ile söylemenin tek yolu her oda için ayrı ayrı cümleler yazmaktır.
 2 / 15

- Önerimsel mantık: iyi ve kötü yönleri
 - Önerimsel mantık, betimlenen dünyanın gerçekler kümesinden oluştuğunu varsayar.
 - Wumpus dünyası gibi son derece basit bir çevrenin tanımlanması bile oldukça zordur.
 - Örnek: "Eğer bir ilerideki odada Wumpus var ise ileri gitme"
 - Bu kuralı tanımlayabilmek için 64 tane kural tanımlanmalıdır.
 - Daha kolay yoldan bu tür durumları anlatabilmek için birinci-derece mantık kullanılabilir.

- Birinci-derece mantık (BDM) dünyanın şu parçalardan oluştuğunu var sayar:
 - Nesneler: insanlar, evler, sayılar, teoriler, renkler ...
 - İlişkiler:
 - Bunlar tekli ilişki veya özellik olabilir.
 - Kırmızı, sert vb.
 - Daha genel olan n'li ilişki olabilir.
 - Kardeşi, daha büyük, parçası sahiptir vb.
 - Fonksiyonlar
 - Bir fazla, artı vb.
- Doğal dillerdeki isim ve isim tamlamaları nesneleri temsil ederken, fiil ve fiil ifadeleri ilişkileri temsil eder.

- Birinci-derece mantık kullanarak belirtimler (İng: predicate) oluşturulur.
- Belirtimler, fonksiyonlara benzer.
 - Fonksiyonlar bir değer döner.
 - Belirtimler ise true veya false döner.
- Bu şekilde belirtimlerin anlamı oluşturulur.
 - Örnek:
 - Fonksiyon: Babası(Mary) = Bill
 - Belirtim: Babası(Mary,Bill)

Belirtim: "Bir artı iki eşittir üç"

Nesneler: Bir, iki, üç, bir artı iki

İlişkiler: Eşittir.

- Özellikler: -

 Fonksiyonlar: artı (bir ve iki nesnelerine artı fonksiyonu uygulandığında üç nesnesi oluşuyor).

Belirtim: Wumpus'a komşu olan odalar kötü kokar.

Nesneler: Wumpus, oda

– Ilişki: Komşu olmak

Özellik: Kötü kokma

- Fonksiyonlar: -

- BDM için kullanılan sözdizim elemanları nesneler, ilişkiler ve fonksiyonlar için kullanılan sembolleri tanımlar.
 - Üç çeşit sembol çeşidi vardır.
 - Sabit semboller (nesneleri tanımlar): 1, 5, A, B, Ali, Veli ...
 - Belirtim sembolleri (ilişkileri tanımlar): > arkadaş, öğrenci, kolej
 ...
 - Fonksiyon sembolleri (fonksiyonları tanımlar): +, sqrt, Okulu, Öğretmeni, Sınıfı ...
 - Ayrıca:
 - Değişkenler: x, y, z, sonraki, ilk, son
 - Bağlayıcılar: Λ, ν, → , ↔
 - Niceleyiciler: ∀, ∃
 - Eşitlik: =

- Bir terim bir nesneyi anlatan mantıksal ifadedir.
 - Sabit semboller birer terimdir.
- Örnek: İngilizce konuşurken kralın sol kolunu anlatmak için "kralın sol kolu" ifadesini kullanırız.
- Aynı şekilde fonksiyon sembolleri kullanılır: kralın sol kolu diye bir sabit sembol kullanmak yerine SolKol(Kral) ifadesi kullanılır.
- Atomik cümleler, bir belirtim sembolü ve birbirini takip eden (sayısı opsiyonel) terimlerden oluşur.

```
 AtomikCümle → Belirtim | Belirtim(terim, ...) | Terim = Terim
```

Terim → Fonksiyon(Terim, ...) | Sabit | Değişken

Sabit $\rightarrow A \mid X1 \mid Ali \mid ...$

Değişken $\rightarrow a \mid x \mid s \mid ...$

Belirtim → True | False | Sonra | Sever | Yağıyor | ...

Fonksiyon → Annesi | SolKol | ...

Örnekler: Okulu(Ali), İşArkadaşı(Öğretmeni(Ali), Öğretmeni(Veli)), ErkekKardeş(Ali, Veli), 8 / 15
 Evli(Babası(Ali), Annesi(Ali)).

- Karmaşık cümleler atomik cümlelerin mantıksal birleştiricilerle birleştirilmesinden oluşur.
- Cümle → AtomikCümle | KarmaşıkCümle
- KarmaşıkCümle → (Cümle) | [Cümle]
 - → ¬ Cümle
 - → Cümle ∧ Cümle
 - → Cümle v Cümle
 - → Cümle ⇒ Cümle
 - → Cümle ⇔ Cümle
 - → Niceleyici Değişken, ... Cümle
- Niceleyici → ∀ | ∃
- İşlemci önceliği: ¬, =, Λ, V, ⇒, ⇔

- Niceleyiciler
 - Belli bir cümlenin bir topluluktaki tüm nesneler için söylemek istediğimizde niceleyici kullanabiliriz.
 - Örnek: Her Bilgisayar mühendisliği öğrencisi akılldır.
 - Örnek: Bu sınıfta biri uyuyor.
 - Evrensel niceleyici (Her): ∀
 - Valık niceleyici (Ваzı): ∃

- Evrensel niceleyici (Her): ∀
- ∀ <değişkenler> <cümle>
- Yapay zeka dersindeki her öğrenci zekidir.
 - ∀ x Dersinde(x, Yapay Zeka) => Zeki(x)
- ∀ P, P' nin örneklendirmelerinin birleşimidir.
 - (Dersinde(Ali, YapayZeka) => Zeki(Ali)) Λ
 (Dersinde(Veli, YapayZeka) => Zeki(Veli)) Λ
 ...
 (Dersinde(Ayşe, YapayZeka) => Zeki(Ayşe))
- Değişkenler küçük harfler ile gösterilir.

- ∀ genellikle => ile birlikte kullanılır
 - Dikkat: ∀ ile ∧ kullanıldığında ortaya çıkan cümlenin anlamına dikkat edilmelidir.
 - Örnek: ∀ x Dersinde(x, YapayZeka) ∧ Zeki(x)
 - Anlamı: Herkes yapay zeka dersinde ve herkes zeki

- Varlık niceleyici (Ваzı): ∃
- ∃ <değişkenler> <cümle>
- Yapay zeka dersindeki bir kişi zekidir.
 - ∃ x Dersinde(x, YapayZeka) ∧ Zeki(x)
- ∃ P, P'nin örneklendirmelerinin ayrışmasıdır.
 - (Dersinde(Ali, YapayZeka) Λ Zeki(Ali)) ν
 (Dersinde(Veli, YapayZeka) Λ Zeki(Veli)) ν
 ...
 (Dersinde(Ayşe, YapayZeka) Λ Zeki(Ayşe))

- ∃ ile birlikte genellikle ∧ kullanılır
 - Dikkat: ∃ ile => kullanıldığında ortaya çıkan cümlenin anlamına dikkat edilmelidir.
 - Örnek: ∃ x Dersinde(x, YapayZeka) => Zeki(x)
 - Yukarıdaki cümleyi Yapay Zeka dersinde olmayan biri doğru yapar.
 - false => true her zaman doğrudur.
 - Not: ∀ ile birlikte ∧ kullanıldığında daha kuvvetli bir ifade ortaya çıkar.
 - Not 2: ∃ ile birlikte => kullanıldığında daha kuvvetsiz bir ifade ortaya çıkar.

- İçiçe niceleyiciler
 - $\forall x \forall y \text{ ile } \forall y \forall x \text{ aynı anlama gelir.}$
 - ∃x∃yile∃y∃x aynı anlama gelir.
 - $\exists x \forall y \text{ ile } \forall x \exists y \text{ aynı anlama gelmez!}$
 - $\exists x \forall y Sever(x,y)$
 - Bazı insanlar dünyadaki herkesi sever.
 - \forall y \exists x Sever(x,y)
 - Dünyadaki her insanı seven birileri vardır.
 - \forall x Sever(x, Dondurma) \equiv ¬ (\exists x ¬ Sever(x, Dondurma))
 - \exists x Sever(x, Brokoli) \equiv ¬ (\forall x ¬ Sever(x, Brokoli))