Afternoon

Turing Machine

- Enumerating
- Coding of TM
- Recursive language
- Chomsky Grammar

Enumerating Strings

All $w \in \{0,1\}^*$, in order of the length:

ε, 0,1,00,01,10,11,000,001,010,011,...

1, 10,11,100,101,110,111,1000,1001,1010,1011, ...

To take 1w as a binary integer, where 1w = i, w is called the *i*th string.

Coding of Turing machine

Let TM
$$M = (Q, \{0,1\}, \Gamma, \delta, q_1, B, \{q_2\})$$

Where
$$Q = \{q_1, q_2, ..., q_r\}, \Gamma = \{X_1, X_2, X_3, ..., X_s\}$$

$$X_1: 0, X_2: 1, X_3: B, D_1: \leftarrow, D_2: \rightarrow$$

Coding:

$$\delta(q_i, X_j) = (q_k, X_m, D_n)$$

 \Rightarrow 0ⁱ10^j10^k10^m10ⁿ

$$M \Rightarrow C_1 11 C_2 11 C_3 11 \dots C_{n-1} 11 C_n$$

Example 1 Coding of TM

$$\delta(q_1,0) = (q_3,0,\rightarrow) \Rightarrow 010100010100$$

$$\delta(q_3,1) = (q_3,1,\rightarrow) \Rightarrow 000100100100100$$

$$\delta(q_3,B) = (q_2,B,\to) \Rightarrow 00010001001000100$$

 $TM \Rightarrow 010100010100 11 0001001000100100 11$ 00010001001000100

Example 2 Coding of TM

$$\delta(q_1,0) = (q_3,0,\rightarrow)$$

$$\Rightarrow 010100010100$$

$$\frac{1/1}{q_1}$$

$$0/0 \rightarrow 0/0 \rightarrow 0/0$$

$$\delta(q_1,1) = (q_1,1,\rightarrow) \Rightarrow 010010100100$$

$$\delta(q_3,0) = (q_3,0,\rightarrow) \Rightarrow 00010100010100$$

$$\delta(q_3,1) = (q_2,1,\rightarrow) \Rightarrow 0001001001001$$

$$\delta(q_2,0) = (q_3,0,\rightarrow) \Rightarrow 0010100010100$$

$$\delta(q_2,1) = (q_1,1,\rightarrow) \Rightarrow 0010010100100$$

Not - RecuEnuLang

$$L_d = \{ w_i \mid w_i \notin L(M_i) \}$$

Not - RecuEnuLang

 $TM \Rightarrow 01010001010011010010100110001010001010011$

$$W_i \notin L(M_i)$$

L_d is not RecuEnuLang

Theorem L_d is not a recursively enumerable language. That is there is no TM to accept L_d .

Proof: Suppose L_d were L(M) for some TM M.

 \Rightarrow There is at least one code for M, say i, that M=M_i

Now, ask if w_i is in L_d .

- w_i is in $L_d \Rightarrow M_i$ accepts $w_i \Rightarrow w_i$ is not in L_d
- w_i is not in $L_d \Rightarrow M_i$ does not accept $w_i \Rightarrow w_i$ is in L_d

L is recursive if L=L(M) for some TM M such that

- 1. $w \in L \Rightarrow M$ accepts w and halts
- 2. $w \notin L \Rightarrow M$ eventually halts

If L is recursive language, so is \overline{L} .

Suppose
$$L=L(M)$$
, $M=(Q, \Sigma, \Gamma, \delta, q_0, B, F)$

Let
$$\overline{M}=(Q\cup\{r\},\Sigma,\Gamma,\delta,q_0,B,\{r\})$$
 such that

- 1. r is a new state which is not in Q
- 2. if $\delta(q,a) = \phi$ for any $q \in \mathbb{Q}$ -F and $a \in \Sigma$ then $\delta(q,a) = (r, a, \rightarrow)$

If both L and its complement \overline{L} are RE, then L is recursive.

Suppose
$$M_1 = (Q_1, \Sigma, \Gamma, \delta_1, q_1, B, F_1)$$

 $M_2 = (Q_2, \Sigma, \Gamma, \delta_2, q_2, B, F_2)$
 $M = (Q_1 \times Q_2, \Sigma, \Gamma, \delta, (q_1, q_2), B, F_1 \times (Q_2 - F_2))$
 $\delta((p,q),(a,b)) = (\delta_1(p,a), \delta_2(q,b))$

Universal TM

$$L_{u} = \{ (M,w) \mid w \in L(M) \}$$

Let
$$L(M) = \{0\}\{1\}^*$$

Universal language

Tape 1: 010100010100 11 000100100100100 11

00010001001000100111011

Tape 2: 10100100

Tape 3: 0

Tape 4:

Chomsky Grammar

Type 0: phrase structure grammar(PSG)

$$\alpha \rightarrow \beta$$
; $\alpha \in (V \cup T)^* \lor (V \cup T)^*$, $\beta \in (V \cup T)^*$

Type 1: context sensitive grammar(CSG)

$$\alpha A\beta \rightarrow \alpha \omega \beta$$
; $A \in V$, $\alpha, \omega, \beta \in (V \cup T)^*$

Type 2: context free grammar(CFG)

$$A \rightarrow \omega$$
; $A \in V$, $\omega \in (V \cup T)^*$

Type 3: regular grammar(RG)

$$A \rightarrow \alpha \mid \alpha B$$
; $A,B \in V, \alpha \in T^*$

Phrase Short Grammar

W=aaabbbccc

$$S \rightarrow abc \mid aAbc$$

 $Ab \rightarrow bA$
 $Ac \rightarrow Bbcc$
 $bB \rightarrow Bb$
 $aB \rightarrow aa \mid aaA$

5	
aAbc	$S \rightarrow aAbc$
ab <u>A</u> c	$Ab \rightarrow bA$
ab <mark>B</mark> bcc	$Ac \rightarrow Bbcc$
<u>aB</u> bbcc	$bB \rightarrow Bb$
aa <u>Ab</u> bcc	$aB \rightarrow aaA$
aab <u>Ab</u> cc	$Ab \rightarrow bA$
aabb <u>Ac</u> c	$Ab \rightarrow bA$
aab <u>bB</u> bccc	$Ac \rightarrow Bbcc$
aa <u>bB</u> bbccc	$bB \rightarrow Bb$
a <u>aB</u> bbbccc	$bB \rightarrow Bb$
aaabbbccc	$aB \rightarrow aa$

Context Sensitive Grammar

$S \rightarrow aDc$ $D \rightarrow aDE \mid b$ $bEc \rightarrow bbcc$ bEE → bbFE $FF \rightarrow FF$ $FFc \rightarrow GFc \rightarrow Gcc$ $FG \rightarrow GG$ $bGc \rightarrow bbcc$ bGG → bbHG $HG \rightarrow HH$ $HHC \rightarrow FHC \rightarrow FCC$

HE → FF

W=aaabbbccc

 $\begin{array}{ccc}
S & & & & & & & & & & & \\
a\underline{D}c & & & & & & & & & \\
\end{array}$

aa<u>D</u>Ec

aaa<u>D</u>EEc

aaabEEc $D \rightarrow b$

aaabb<u>FE</u>c

aaabbFFc $FE \rightarrow FF$

aaabb<u>GFc</u>

aaabbGcc $GFc \rightarrow Gcc$

aaabbbccc

 $bGc \rightarrow bbcc$

 $FFc \rightarrow GFc$

bEE → bbFE

17

Right Linear Grammars

A grammar G = (V, T, S, P) is said to be right linear if all productions are of the form

$$A \rightarrow xB$$

$$A \rightarrow X$$

where $A,B \in V$, and $x \in T^*$

Left Linear Grammars

A grammar G = (V, T, S, P) is said to be left linear if all productions are of the form

$$A \rightarrow Bx$$

$$A \rightarrow X$$

where $A,B \in V$, and $x \in T^*$

Example 3

$$G=(\{S\}, \{a, b\}, S, P)$$
 $S \rightarrow abS \mid a$
 $S \rightarrow Sba \mid a$

Example 4

 $L=\{w \mid w \in \{0,1\}^* \text{ and ending with } 01\}$

$$L = \{0, 1\}^* \} \{01\}$$
ie, $S \Rightarrow A01$

$$\Rightarrow A001$$

$$\Rightarrow A0001$$

$$\Rightarrow A10001$$

$$A \rightarrow A0 \mid A1 \mid \epsilon$$

$$\Rightarrow 10001$$

$$G=(\{S,A\},\{0,1\},S,P)$$

What is the right linear grammar for L?

Example 5

 $L=\{w \mid w \in \{0,1\}^* \text{ and } w \text{ contains } 01\}$

L=
$$\{0,1\}^*$$
 $\{01\}$ $\{0,1\}^*$ $\{0,1$

$$G=(\{S,A\},\{0,1\},S,P)$$

P: $S \rightarrow 0S|1S|01A$, $A \rightarrow 0A|1A| \varepsilon$

Linear Bounded Automata

A linear bounded automata is a nondeterministic Turing machine $M = (Q, \Sigma, \Gamma, \delta, q_0, B, F)$

that Σ must contain two special symbols [and], such that $\delta(q_i,[)$ can contain only elements of the $(q_j,[,\to),$ and $\delta(q_i,])$ can contain only elements of the $(q_j,[,\to)$

Good good still day day up

