数直線[1]

氏名

次の数直線上で,点Aに対応する数を求めなさい。

(1)

答 3

(7

答 1

(2)

答 -2

(8)

答 -5

(3)

答 1.5 または, $\frac{3}{2}$

(9)

答 2.25 または, $\frac{9}{4}$

(4)

(10)

答 -2.5または , $-\frac{5}{2}$

(5)

答 0.3 または $\frac{3}{10}$

(11)

答 0.8 または $,\frac{4}{5}$

(6)

答 -0.6 または , $-\frac{3}{5}$

(12**)**

答 -0.1または , $-\frac{1}{10}$

絶対値[2]

氏名

次の問いに答えなさい。

(1) 絶対値が2以下である整数は全部でいくつあるか。

〔栃木県 2006〕

解答

条件にあてはまる整数は,

$$-2$$
, -1 , 0 , 1 , 2

答 5個

(2) 絶対値が6より小さい整数はいくつあるか。

解答

条件にあてはまる整数は,

$$-5, -4, -3, -2, -1, 0, 1, 2, 3, 4, 5$$

答 11 個

(3) 絶対値が $\frac{13}{4}$ より小さい整数はいくつあるか, 求めなさい

〔和歌山県 1995〕

解答

$$\frac{13}{4}=3.25$$
 なので,条件にあてはまる整数は,
$$-3,\ -2,\ -1,\ 0,\ 1,\ 2,\ 3$$

答 7個

(4) 絶対値が 1 以上で $\frac{13}{5}$ より小さい整数はいく つあるか。

解答

$$\frac{13}{5} = 2.6$$
 なので,条件にあてはまる整数は,
$$-2, -1, 1, 2$$

答 4個

(5) 絶対値が5より大きく8以下である負の整数は いくつあるか。

解答

条件にあてはまる整数は,

$$-8, -7, -6$$

答 3個

(6) 絶対値が 10 以下となる整数は全部で何個あり ますか。

〔佐賀県 1993〕

解答

条件にあてはまる整数は、

$$-10, -9, \cdots, 0, \cdots 9, 10$$

答 21 個

(7) 絶対値が3より小さい整数はいくつあるか。

〔佐賀県 2002〕

解答

条件にあてはまる整数は、

$$-2, -1, 0, 1, 2$$

答 5個

(8) 絶対値が $rac{8}{3}$ より小さい整数はいくつあるか。

解答

 $\frac{8}{3} = 2.66 \cdots$ なので,条件にあてはまる整数は,

答 5個

(9) 絶対値が3より大きく7以下である整数はいく つあるか。

解答

条件にあてはまる整数は、

$$-7$$
, -6 , -5 , -4 , 4 , 5 , 6 , 7

答 8 個

(10) 絶対値が2以上で4より小さい負の整数はいく つあるか。

解答

条件にあてはまる整数は、

$$-3, -2$$

答 2個

1:1 正の数・負の数 [2]正の数・負の数の計算

15

2数の加減[3]

氏名

次の計算をしなさい。

 $(1) \quad 5-7$

[茨城県 1994] (7) 3-8

〔佐賀県 2008〕

解答

与式 =
$$-(7-5)$$
 = -2

解答

与式 =
$$-(8-3)$$
 = -5

(2) 8-15

〔宮崎県 1994〕

(8) 14-23

〔青森県 1996〕

解答

与式 =
$$-(15 - 8)$$

= -7

解答

与式 =
$$-(23 - 14)$$
 = -9

(3) -4+6

[長野県 2002]

(9) -6 + 10

[青森県 2008]

解答

与式 =
$$+(6-4)$$
 = $\mathbf{2}$

解答

与式 =
$$+(10-6)$$
 = **4**

 $(4) \quad -15+9$

〔神奈川県 1996〕

(10) -13+5

〔福島県 1996〕

解答

与式 =
$$-(15-9)$$
 = -6

解答

与式 =
$$-(13-5)$$
 = -8

 $(5) \quad -2-5$

〔高知県 1994〕

 $(11) \quad -6 - 6$

解答

与式 =
$$-(2+5)$$
 = -7

解答

与式 =
$$-(6+6)$$
 = -12

(6) -13-4

〔神奈川県 1994〕

(12) -12-9

解答

与式 =
$$-(13+4)$$
 = -17

与式 =
$$-(12 + 9)$$

= -21

1:1 正の数・負の数

[2]正の数・負の数の計算

22

正の数・負の数の加減[3]

氏名

次の計算をしなさい。

(1) 5-(8+2)

[秋田県 2007] (7) 6-(2-7)

〔山形県 2005〕

解答

与式 = 5 - 10= -5

解答

与式 = 6 - (-5)= 11

(2) 3-(5-8)

〔山形県 2004〕

 $(8) \quad 5 - (3 - 6)$

〔山形県 2002〕

解答

与式 = 3 - (-3)= 6

解答

与式 = 5 - (-3)

= 8

 $(3) \quad -4 + (8 - 20)$

[鳥取県 2004]

(9) 4-(2-5)

〔山形県 2008〕

解答

与式 = -4 + (-12)= -16

解答

与式 = 4 - (-3)

= 7

(4) $4 - \{3 - (-2)\}$

〔愛知県 1996〕

(10) $2 - \{3 - (-1)\}$

〔愛知県 2000〕

解答

与式 = 4 - 5=-1

解答

与式 = 2 - 4

= -2

(5) $3 - \{-2 - (-5)\}$

(11) $5 - \{2 - (-2)\}$

解答

与式 = 3 - 3= 0

解答

与式 =5-4

= 1

(6) $-7 - \{1 - (-1)\}$

 $(12) -1 - \{-5 - (-4)\}$

〔愛知県 1999〕

解答

与式 = -7 - 2= -9

解答

与式 = -1 - (-1)

= 0

正の数・負の数の乗除[5]

氏名

次の計算をしなさい。

$$(1)$$
 $16 \times \left(-\frac{1}{4}\right)$

〔山梨県 1998〕

$$(7)$$
 $18 \times \left(-\frac{1}{2}\right)$

与式 =
$$-\left(16 \times \frac{1}{4}\right)$$

= -4

与式 = $-\left(18 \times \frac{1}{2}\right)$

$$(2) 8 \times \left(-\frac{5}{4}\right)$$

〔高知県 2009〕

$$(8) \qquad 6 \times \left(-\frac{2}{3}\right)$$

[高知県 2007]

与式 =
$$-\left(8 \times \frac{5}{4}\right)$$

= $-\mathbf{10}$

与式 $=-\left(6 imesrac{2}{3}
ight)$

$$(3) \quad (-8) \times \frac{3}{4}$$

[高知県 2000]

$$(9) \quad (-12) \times \frac{1}{3}$$

[山梨県 1995]

解答
与式 =
$$-\left(12 \times \frac{1}{3}\right)$$

 $(4) \qquad -6 \times \left(-\frac{7}{3}\right)$

〔和歌山県 1998〕

(10) $-15 \times \left(-\frac{3}{5}\right)$

与式 =
$$+\left(6 \times \frac{7}{3}\right)$$

= 14

与式 =
$$+\left(15 \times \frac{3}{5}\right)$$

 $(5) \quad (-16) \times \frac{5}{12}$

〔青森県 2000〕

(11) $-6 \times \left(-\frac{5}{3}\right)$

[青森県 2005]

解答
与式 =
$$-\left(16 \times \frac{5}{12}\right)$$

= $-\frac{20}{3}$

与式 =
$$+\left(6 \times \frac{5}{3}\right)$$
 = 10

(6) $\left(-\frac{2}{5}\right) \times (-10)$

(12) $\frac{3}{8} \times (-6)$

解答
与式 =
$$+\left(\frac{2}{5} \times 10\right)$$

= $\mathbf{4}$

与式 =
$$-\left(\frac{3}{8} \times 6\right)$$

= $-\frac{9}{4}$

乗除混合[4]

氏名

次の計算をしなさい。

$$(1) -5 \times 3 \times (-2)^2$$

解答

与式 =
$$-5 \times 3 \times 4$$

= $-(5 \times 3 \times 4) = -60$

$$(2) 12 \times 6 \div (-3^2)$$

解答

与式 =
$$12 \times 6 \div (-9)$$

= $-\left(12 \times 6 \times \frac{1}{9}\right) = -8$

$$(3) \quad (-3)^2 \times 8 \div (-2^3)$$

[岩手県 1998]

解答

与式 =
$$9 \times 8 \div (-8)$$

= $-\left(9 \times 8 \times \frac{1}{8}\right) = -9$

$$(4) \quad (-9) \div 6 \times (-2^2)$$

[北海道 2002]

解答

与式 =
$$(-9) \div 6 \times (-4)$$

= $+\left(9 \times \frac{1}{6} \times 4\right) = \mathbf{6}$

$$(5)$$
 $(-2^3) \div (-4)^2 \times 6$

解答

与式 =
$$(-8) \div 16 \times 6$$

= $-\left(8 \times \frac{1}{16} \times 6\right) = -3$

$$(6)$$
 $(-6)^2 \div 2 \div (-9)$

解答

与式 =
$$36 \div 2 \div (-9)$$

= $-\left(36 \times \frac{1}{2} \times \frac{1}{9}\right) = -2$

$$(7) 4 \times (-1)^3 \times (-7)$$

解答

与式 =
$$4 \times (-1) \times (-7)$$

= $+(4 \times 1 \times 7) = 28$

$$(8) 10 \times (-3)^2 \div (-6)$$

解答

与式 =
$$10 \times 9 \div (-6)$$

= $-\left(10 \times 9 \times \frac{1}{6}\right) = -15$

$$(9) -2^3 \times (-6) \div (-4)^2$$

解答

与式 =
$$-8 \times (-6) \div 16$$

= $+\left(8 \times 6 \times \frac{1}{16}\right) = 3$

(10)
$$(-6)^2 \div 9 \times 2$$

[長野県 2000]

解答

与式 =
$$36 \div 9 \times 2$$

= $+\left(36 \times \frac{1}{9} \times 2\right) = 8$

(11)
$$(-2)^4 \div (-2^3) \times (-3)$$

解答

与式 =
$$16 \div (-8) \times (-3)$$

= $+\left(16 \times \frac{1}{8} \times 3\right) = 6$

(12)
$$-24 \div (-2^3) \div 3$$

与式 =
$$-24 \div (-8) \div 3$$

= $\left(24 \times \frac{1}{8} \times \frac{1}{3}\right) = \mathbf{1}$

1:1 正の数・負の数 [2]正の数・負の数の計算

43

四則混合「4]

氏名

次の計算をしなさい。

(1) $4+2\times(3-5)$

(2) $8+5\times(4-6)$

[神奈川県 2001] (7) $1+2\times(3-8)$

解答

〔神奈川県 2009〕

解答

与式 =
$$4 + 2 \times (-2)$$

= $4 + (-4)$
= 0

〔神奈川県 2005〕

〔神奈川県 1995〕

〔島根県 1996〕

〔神奈川県 2002〕

[神奈川県 1994]

与式 = $1+2\times(-5)$ =-1+(-10)= -9

 $(8) 9 + 2 \times (4-7)$

 $(9) 3 + 5 \times (2 - 3)$

解答

解答

[神奈川県 1999]

[解答]

与式 =
$$8 + 5 \times (-2)$$

= $8 + (-10)$
= -2

 $(3) -9 + 4 \times (2 - 5)$

与式 = $9 + 2 \times (-3)$ =9+(-6)= 3

[島根県 2000]

解答

与式 =
$$-9 + 4 \times (-3)$$

= $-9 + (-12)$
= -21

 $(4) 2-3\times (4-7)$

=3+(-5)= -2

(10) $-7+2\times(3-5)$

与式 = $3 + 5 \times (-1)$

〔神奈川県 1993〕

解答

与式 =
$$2 - 3 \times (-3)$$

= $2 - (-9)$
= 11

 $(5) 7-5\times(1-3)$

解答 与式 = $-7 + 2 \times (-2)$ = -7 + (-4)= -11

与式 = $5 - 4 \times (-2)$

(11) $5-4\times(1-3)$ 〔神奈川県 1996〕

解答

与式 =
$$7 - 5 \times (-2)$$

= $7 - (-10)$
= 17

(6) $3-2\times(1-4)$

=5-(-8)=13

> (12) $3-4\times(6-8)$ [神奈川県 2000]

解答

与式 =
$$3 - 2 \times (-3)$$

= $3 - (-6)$
= 9

解答

与式 =
$$3 - 4 \times (-2)$$

= $3 - (-8)$
= 11

四則混合[11]

氏名

次の計算をしなさい。

$$(1) \quad (-6)^2 \div 9 - 5$$

〔青森県 2011〕

$$(7) \quad (-4)^2 \div 2 - 5$$

〔青森県 2010〕

解答

与式 =
$$36 \div 9 - 5$$

= $4 - 5 = -1$

与式 =
$$16 \div 2 - 5$$

= $8 - 5 = 3$

$$(2) (-2)^3 \div 4 + 3$$

$$(8) \quad (-6)^2 \div 4 + (-8)$$

解答

与式 =
$$-8 \div 4 + 3$$

= $-2 + 3 = 1$

与式 =
$$36 \div 4 - 8$$

= $9 - 8 = 1$

$$(3)$$
 $(-3^2) \div (-9) - 2$

$$(9) \quad -4^2 \div 8 - (-5)$$

〔石川県 2000〕

解答

与式 =
$$-9 \div (-9) - 2$$

= $1 - 2 = -1$

与式 =
$$-16 \div 8 + 5$$

= $-2 + 5 = 3$

$$(4) -7 + (-6)^2 \div 9$$

〔石川県 2004〕 (10) $-7 + (-4)^2 \div 2$

〔石川県 2006〕

解答

与式 =
$$-7 + 36 \div 9$$

= $-7 + 4 = -3$

与式 =
$$-7 + 16 \div 2$$

= $-7 + 8 = 1$

(5) $5-(-2)^2 \div (-4)$

(11)
$$2 - (-3)^2 \div 9$$

〔千葉県 2005〕

解答

与式 =
$$5 - 4 \div (-4)$$

= $5 - (-1) = 6$

解答

与式 =
$$2 - 9 \div 9$$

= $2 - 1 = 1$

(6) $4+18 \div (-3)^2$

[石川県 2012] (12)
$$9+18\div(-3^2)$$

〔佐賀県 1994〕

与式 =
$$4 + 18 \div 9$$

= $4 + 2 = 6$

与式 =
$$9 + 18 \div (-9)$$

= $9 + (-2) = 7$

四則混合[18]

氏名

次の計算をしなさい。

$$(1)$$
 $\frac{6}{5} \div \frac{9}{5} - \frac{1}{4}$

〔鹿児島県 1999〕

与武 =
$$\frac{6}{5} \times \frac{5}{9} - \frac{1}{4} = \frac{2}{3} - \frac{1}{4}$$

$$= \frac{8}{12} - \frac{3}{12} = \frac{5}{12}$$

$$(2) \quad -\frac{3}{4} \div \frac{3}{2} + \frac{1}{3}$$

〔山形県 1997〕

解签

与武 =
$$-\frac{3}{4} \times \frac{2}{3} + \frac{1}{3} = -\frac{1}{2} + \frac{1}{3}$$

= $-\frac{3}{6} + \frac{2}{6} = -\frac{1}{6}$

$$(3)$$
 $\frac{2}{5} \div \left(-\frac{2}{3}\right) + \frac{1}{3}$

〔山形県 2006

解答

与式 =
$$\frac{2}{5} \times \left(-\frac{3}{2}\right) + \frac{1}{3} = -\frac{3}{5} + \frac{1}{3}$$
$$= -\frac{9}{15} + \frac{5}{15} = -\frac{4}{15}$$

$$(4) \quad -\frac{1}{2} + \frac{6}{7} \div 3$$

〔長野県 2003

解签

与式 =
$$-\frac{1}{2} + \frac{6}{7} \times \frac{1}{3} = -\frac{1}{2} + \frac{2}{7}$$

= $-\frac{7}{14} + \frac{4}{14} = -\frac{3}{14}$

$$(5)$$
 $\frac{5}{8} + \left(-\frac{7}{6}\right) \div \frac{14}{3}$

〔茨城県 2001

解签

与武 =
$$\frac{5}{8} + \left(-\frac{7}{6}\right) \times \frac{3}{14} = \frac{5}{8} + \left(-\frac{1}{4}\right)$$

= $\frac{5}{8} - \frac{2}{8} = \frac{3}{8}$

(6)
$$\frac{5}{2} - \left(-\frac{3}{2}\right) \div \frac{3}{4}$$

〔茨城県 2004〕

解答

$$(7)$$
 $\frac{1}{3} \div \frac{2}{5} - \frac{7}{18}$

〔鹿児島県 2007〕

解悠

与式 =
$$\frac{1}{3} \times \frac{5}{2} - \frac{7}{18} = \frac{5}{6} - \frac{7}{18}$$

= $\frac{15}{18} - \frac{7}{18} = \frac{8}{18} = \frac{4}{9}$

$$(8) \quad \frac{3}{5} \div \left(-\frac{3}{10}\right) + \frac{4}{7}$$

〔茨城県 2007〕

解答

与式 =
$$\frac{3}{5} \times \left(-\frac{10}{3}\right) + \frac{4}{7} = -2 + \frac{4}{7}$$
$$= -\frac{14}{7} + \frac{4}{7} = -\frac{10}{7}$$

(9)
$$\frac{5}{12} \div \left(-\frac{5}{6}\right) - \frac{1}{3}$$

〔茨城県 2005〕

解答

与武 =
$$\frac{5}{12} \times \left(-\frac{6}{5}\right) - \frac{1}{3} = -\frac{1}{2} - \frac{1}{3}$$

$$= -\frac{3}{6} - \frac{2}{6} = -\frac{5}{6}$$

(10)
$$\frac{9}{10} - \frac{1}{2} \div (-5)$$

〔和歌山県 2009〕

韶悠

与式 =
$$\frac{9}{10} - \frac{1}{2} \times \left(-\frac{1}{5}\right) = \frac{9}{10} - \left(-\frac{1}{10}\right)$$

= $\frac{9}{10} + \frac{1}{10} = 1$

(11)
$$\frac{1}{2} + \frac{3}{8} \div \left(-\frac{3}{7}\right)$$

〔山形県 2010〕

解答

与式 =
$$\frac{1}{2} + \frac{3}{8} \times \left(-\frac{7}{3}\right) = \frac{1}{2} + \left(-\frac{7}{8}\right)$$

= $\frac{4}{8} - \frac{7}{8} = -\frac{3}{8}$

(12)
$$\frac{3}{4} + \frac{1}{4} \div \left(-\frac{1}{2}\right)$$

[佐賀県 1995]

| ਤੱਧ =
$$\frac{3}{4} + \frac{1}{4} \times \left(-\frac{2}{1}\right) = \frac{3}{4} + \left(-\frac{1}{2}\right)$$

$$= \frac{3}{4} - \frac{2}{4} = \frac{1}{4}$$

魔法陣

氏名

次の問いに答えなさい。

(1) 下の図の9つのマスに数を1つずつ入れ,縦,横,斜めそれぞれの3つの数の和が6になるようにします。このとき,Aにあてはまる数を求めなさい。

[岩手県 2006]

Y	-2	A
4		
X	6	1

解答

一番下の行において

$$X+6+1=6$$
 より, $X=6-(6+1)=-1$

一番左の列において

$$Y+4+(-1)=6$$
 より , $Y=6-\{4+(-1)\}=3$

一番上の行において

$$A+(-2)+3=6$$
 より $A=6-\{(-2)+3\}=5$

(2) 下の表の $a \sim e$ に数をあてはめて,縦,横,な なめにならんだ三つの数の和がすべて等しくなる ようにする。c にあてはまる数を書きなさい。

〔大阪府 1995〕

а	b	-1
С	0	d
1	е	-3

解答

左下から右上へのななめの3つの数の和は

$$1+0+(-1)=0$$

一番右の列において

$$d + (-1) + (-3) = 0$$
 より,

$$d = 0 - \{(-1) + (-3)\} = 4$$

中央の行において

$$c+0+4=0$$
 より , $c=0-(0+4)=-4$

(3) 下の表の a~e に数をあてはめて,縦,横,斜めのそれぞれの3つの数の和が,どれも等しくなるようにする。d にあてはまる数を求めなさい。

〔愛媛県 1996〕

a	-2	5
b	c	0
d	e	1

解答

- 一番右の列の3つの数の和は 5+0+1=6
- 一番上の行において

$$a+(-2)+5=6$$
 より , $a=6-\{(-2)+5\}=3$

左上から右下への斜めの3つの数において

$$c + 3 + 1 = 6 \text{ LU}, c = 6 - (3 + 1) = 2$$

左下から右上への斜めの3つの数において

$$d+2+5=6$$
 LU, $d=6-(2+5)=-1$

(4) 下の表のア~カに数をあてはめて,どの縦,横, 斜めの4つの数を加えても,和が等しくなるよう にしたい。イにあてはまる数を求めなさい。

〔徳島県 1999〕

-6	ア	1	8
7	ウ	0	-3
I	-3	7	オ
2	6	カ	3

解答

左下から右上へのななめの4つの数の和は

$$2 + (-3) + 0 + 8 = 7$$

一番下の行において

カ+2+6+3 = 7より ,カ = 7-(2+6+3) = -4

右から2番目の列において

$$\mathbf{1} + 0 + 7 + (-4) = 7$$
 より,
 $\mathbf{1} = 7 - \{0 + 7 + (-4)\} = 4$