VICTORIA UNIVERSITY OF WELLINGTON Te Whare Wananga o te Upoko o te Ika a Maui

School of Engineering and Computer Science

COMP 307 — Lecture 14

Uncertainty and Probability 2

Bayes Rules and Classification by Naive Bayes

Dr Bing Xue

bing.xue@ecs.vuw.ac.nz

COMP307

NB: 2

Outline

- Rules from last lecture
- Bayes Rules
- Naive Bayes
 - Assumption
 - Deal with zero count
- Summary

COMP307

Last Lecture

• Product Rule:

$$P(X,Y)=P(X)*P(Y|X)$$

• Sum Rule:

$$P(X) = \sum_{y} P(X, Y)$$

Normalisation:

$$\sum_{x} P(X)=1$$

$$\sum_{x} P(X/Y) = 1$$

• Independence

$$- \leftrightarrow P(X|Y) = P(X)$$

$$- \leftrightarrow P(X, Y) = P(X) * P(Y)$$

COMP307

NB: 3

NB: 4

Bayes Rules

- P(A,B) = P(A|B) P(B)
- We can also get:P(A,B)= P(B|A) P(A)
- Bayes Rules:

$$P(A|B) = \frac{P(B|A) P(A)}{P(B)}$$

More variables

$$P(Y|X_1,...,X_n) = \frac{P(X_1,...,X_n|Y)P(Y)}{P(X_1,...,X_n)}$$

Thomas Bayes (/berz/; c. 1701 – 7 April 1761)

COMP307

NB: 5

Example (Training) Data Set

	Job	Deposit	Family	Class
А	true	low	single	Approve
В	true	low	couple	Approve
С	true	low	single	Approve
D	true	high	single	Approve
Е	false	high	couple	Approve
1	true	low	couple	Reject
2	false	low	couple	Reject
3	true	low	children	Reject
4	false	low	single	Reject
5	false	high	children	Reject

COMP307

Naive Bayes: Example Classification Task

- Determine whether to approve a mortgage application, given data/features about the client:
- Whether they have a job (true or false)
- The level of their deposit (low or high)
- Their family status (single, couple[but no kids], children)
- Classification: either Approve or Reject
- Given a set of data about past clients and the classification by the Banks experts
- Construct a classifier that will output the right answer (class) when given a new (unseen) client (instance)

COMP307

NB: 7

Bayes Rules for Classification

- Very simple probability-based technique
- Computes *P(class*|instance data),
 - Choose the class with the *highest* probability.
- Problem: Hard to measure *P(class|data)*
 - e.g. P(Reject|job=true & dep = high & fam=children)
 - Needs lots of examples of (job=true & dep=high & fam=children)
 - Then count the fraction that are Reject.
- Use Bayes Rule!
- Classification:
 - Given features X1,X2,...,Xn $P(Y|X_1,...,X_n) = \frac{P(X_1,...,X_n|Y)P(Y)}{P(X_1,...,X_n)}$
 - Predict the class label Y

COMP307

NB: 8

Bayes Rules for Classification

• Solution: First use Bayes' Law/Rules, calculate the probability of given instance belong to a class:

$$P(clas | data) = \frac{P(data | class) * P(class)}{P(data)}$$

For example:

$$P(Reject \mid job = true \& dep = high \& fam = children)$$

$$= \frac{P(job = true \ \& \ dep = high \ \& \ fam = children | Reject) * P(Reject)}{P(job = true \ \& \ dep = high \ \& \ fam = children)}$$

P(**Reject**|job=true & dep = high & fam=children)

P(**Accept**|job=true & dep = high & fam=children)

Choose the highest probability

Bayes: Measuring Probabilities

- We can measure P(class)
 - P(Approve) = ?
 - P(Reject) = ?
- We can measure P(feature|class)
 - P (job=true|Approve) = ?
 - P (job=true|Reject) = ?
 - P (dep=high|Approve) =?
- But, how do we measure
 - P(job=true & dep = high & fam=children)
 - P(job=true & dep = high & fam=children|Reject)

COMP307

Naive Bayes

- Assume that the attributes are conditionally independent (Almost always wrong!) :
 - Assume that all features are independent given the class label Y

$$P(X_1,\ldots,X_n|Y) = \prod_{i=1}^n P(X_i|Y)$$

- P (job=true & dep=high & fam=children|Reject)
 = P(job = true|Reject)*P(dep = high|Reject) *p(fam = children|Reject)
- Measure each of these probabilities by counting
 - There is usually enough data for this.
 - Problem: careful about dealing with 0 probabilities!
- Given an instance, use the table to compute probabilities of each class

COMP307 NB: 11

Computing Probabilities: Counting Occurrences

	Approve	Reject
class	5	5
job=true	4	2
job=false	1	3
dep=low	3	4
dep=high	2	1
fam=single	3	1
fam=couple	2	2
fam=children	0	2

Approve Reject P(class) 5/10 5/10 P(job=true|class) 4/5 2/5 1/5 3/5 P(iob=false|class) P(dep=low|class) 3/5 4/5 P(dep=high|class) 1/5 2/5 P(fam=single|class) 3/5 1/5 2/5 2/5 P(fam=couple|class) 0/5 P(fam=children|class) 2/5

(Counting Occurrences)

(Computing Probabilities)

COMP307 NB: 12

Using Naive Bayes Classifier

• Classify a new case: (job=true & dep = high & fam=children)

P(**Reject**|job=true & dep = high & fam=children)

$$\frac{0.4 \times 0.2 \times 0.4 \times 0.5}{\text{P(job=true & dep = high & fam=children)}}$$

NB: 15

NB: 16

Using Naive Bayes Classifier

• Classify a new case: (job=true & dep = high & fam=children)

P(**Accept**|job=true & dep = high & fam=children)

P(job=true & dep = high & fam=children|
$$Accept$$
) ×P($Accept$)

P(job=true & dep = high & fam=children)

$$= \frac{P(\text{job=true}|Accept) \times P(\text{dep=high}|Accept) \times P(\text{fam=children}|Accept)}{P(\text{fob=true}|Accept) \times P(\text{fob=true}|Accept)} \times P(\text{fob=true}|Accept) \times P(\text{fob=true}|Accept) \times P(\text{fob=true}|Accept) \times P(\text{fob=true}|Accept)) \times P(\text{fob=true}|Accept) \times P(\text{fob=true}|Accept)) \times P(\text{fob=true}|Accept) \times P(\text{fob=true}|Accept)) \times P(\text{fob=true}|Accept)$$

P(job=true & dep = high & fam=children)

$$0.8 \times 0.4 \times 0 \times 0.5$$

P(job=true & dep = high & fam=children)

0

Dealing with Zero Counts

- Initialise table to contain small constant, e.g. 1
- This is not quite sound, but reasonable in practice

	Approve	Reject
	FF	
class	6	6
job=true	5	3
job=false	2	4
dep=low	4	5
dep=high	3	2
fam=single	4	2
fam=couple	3	3
fam=children	1	3
1.00		

	Approve	Reject		
P(class)	6/12	6/12		
P(job=true class)	5/7	3/7		
P(job=false class)	2/7	4/7		
P(dep=low class)	4/7	5/7		
P(dep=high class)	3/7	2/7		
P(fam=single class)	4/8	2/8		
P(fam=couple class)	3/8	3/8		
P(fam=children class)	1/8	3/8		
(Commuting Prohabilities)				

(Counting Occurrences)

(Computing Probabilities)

Compared with previous table, tricks here : **job and dep:** 5+2=7; **fam has** 5+3=8;

COMP307

Using Naive Bayes Classifier

P(**Reject**|job=true & dep = high & fam=children)

P(job=true & dep = high & fam=children|Reject) ×P(Reject)

P(job=true & dep = high & fam=children)

 $= \frac{P (job=true|Reject) \times P (dep=high|Reject) \times P (fam=children|Reject) \times P (Reject)}{P (job=true \& dep=high \& fam=children)}$

 $= \frac{3/7 \times 2/7 \times 3/8 \times 1/2}{????} = \frac{18/784}{????}$

P(Accept|job=true & dep = high & fam=children)

 $P(job=true \& dep = high \& fam=children|Accept) \times P(Accept)$

P(job=true & dep = high & fam=children)

 $= \frac{P (job=true|Accept) \times P (dep=high|Accept) \times P (fam=children|Accept) \times P(Accept)}{P(job=true \& dep=high \& fam=children)}$

 $= \frac{5/7 \times 3/7 \times 1/8 \times 1/2}{2777} = \frac{15/784}{2777}$

COMP307

COMP307

Summary

1. Bayes Rules: $P(A|B) = \frac{P(B|A) P(A)}{P(B)}$ $P(Y|X_1,...,X_n) = \frac{P(X_1,...,X_n|Y) P(Y)}{P(X_1,...,X_n)}$

2. Classification: If Y is class label X1 ... Xn features, the probability of an instance belong to a class is

 $P(Y|X_1,...,X_n) = \underbrace{P(X_1,...,X_n|Y)P(Y)}_{P(X_1,...,X_n)}$ Too Hard

2. Assume features are conditionally independent: given Y, X1 .. Xn are independent to each other:

$$P(X_1, ..., X_n | Y) = \prod_{i=1}^n P(X_i | Y)$$

$$P(clas | data) = \frac{P(data | class) * P(class)}{P(data)}$$
 Naive Bayes

Chose the highest probability/Score