Practice Problems II - 03

Practice problems are supposed to help you digest the content of the lecture. It is important that you manage to <u>solve</u> them <u>on your own</u>. Before you write your solutions, you may of course ask questions, and discuss things. In order to prepare for the exam, already now, try to explicitly write down your solutions – <u>clearly and easy to read</u>. Apply <u>definitions</u> properly, and give <u>explanations</u> for what you are doing. That will help you to understand them later when you prepare for the final exam.

I. Transfer Functions

- a) Write the transfer function H(s) of the system shown on the left.
- b) For parameter values M=1 kg, $f_v=5\frac{Ns}{m}$, and $K=100\frac{N}{m}$ find the magnitude of $|H(j\omega)|$

- c) Is there a "resonance" peak? If so, find its position... where?
- d) What happens for $f_v \to 0$?

II. Modeling in Frequency Domain

a) Write the frequency domain model for the system to the right. Avoid the detour through the time domain – write it directly in frequency domain and in terms of the 3×3 force-displacement impedance matrix $\mathbf{Z}(s)$, the displacement vector $\mathbf{X}(s)$, and the force vector $\mathbf{F}(s)$:

$$\mathbf{Z} \cdot \begin{pmatrix} X_1(s) \\ X_2(s) \\ X_3(s) \end{pmatrix} = \begin{pmatrix} F_1(s) \\ F_2(s) \\ F_3(s) \end{pmatrix}$$

Do not get confused, here: $F_1(s)$ and $F_3(s)$ are zero in our case.

b) You can use Matlab's symbolic toolbox in order to invert the equation from above:

$$\begin{pmatrix} X_1(s) \\ X_2(s) \\ X_3(s) \end{pmatrix} = \mathbf{Z}^{-1} \begin{pmatrix} F_1(s) \\ F_2(s) \\ F_3(s) \end{pmatrix} = \mathbf{T} \begin{pmatrix} F_1(s) \\ F_2(s) \\ F_3(s) \end{pmatrix}$$

In our case, we have $F_1(s) = 0$, and $F_3(s) = 0$. Hence, $X_1(s) = T_{12}(s)F_2(s)$, and $X_2(s) = T_{22}(s)F_2(s)$. Find these factors $T_{12}(s)$, and $T_{22}(s)$ from the matrix T, above.

III. Modeling in Frequency Domain

Write the frequency domain model for the system to the right. Avoid the detour through the time domain – write it directly in frequency domain and in terms of the 3×3 voltage-current impedance matrix $\mathbf{Z}(s)$, the displacement vector $\mathbf{I}(s)$, and the voltage-source vector $\mathbf{V}(s)$:

$$\mathbf{Z} \cdot \begin{pmatrix} \mathbf{I}_{1}(s) \\ \mathbf{I}_{2}(s) \\ \mathbf{I}_{3}(s) \end{pmatrix} = \begin{pmatrix} V_{1}(s) \\ V_{2}(s) \\ V_{3}(s) \end{pmatrix}$$

Mind: Before you write anything, think about the meshes you want to consider, and draw their orientation ... you don't want to get confused later on.