Analysis of Traffic Fatality Records

This manuscript (<u>permalink</u>) was automatically generated from <u>uiceds/project-team-front-row@b8ae81f</u> on December 1, 2024.

Authors

- Justin Rebholz [™]
 - · irebholz12

Department of Civil and Environmental Engineering, University of Illinois

- Cameron Kimber [™]
 - · C ckimber 2

Department of Civil and Environmental Engineering, University of Illinois

- Hannah Daggett [™]
 - • hed2

Department of Civil and Environmental Engineering, University of Illinois

- Riley Kelch [™]
 - · 🕝 <u>rileykelch</u>

Department of Civil and Environmental Engineering, University of Illinois

■ — Correspondence possible via <u>GitHub Issues</u> or email to Justin Rebholz <rebholz4@illinois.edu>, Cameron Kimber <ckimber2@illinois.edu>, Hannah Daggett <hed2@illinois.edu>, Riley Kelch <rjkelch2@illinois.edu>.

Abstract

Description

The dataset that will be used for this project is the Fatality Analysis Reporting System created by the National Highway Safety Administration. The data will be obtained from the NHTSA's FARS database, which is publicly accessible. The FARS dataset is available in the CSV format. The specific subset data that our project will be focused on is labeled "accidents.csv" and includes 32K+ instances and 52 columns. The columns descriptions are described in the Fatality Analysis Reporting System (FARS) Analytical User's Manual 1975-2015 and in the below table:

Table 1: Abbreviation Legend.

Column	Description
ARR_HOUR	This data element records the hour when emergency services arrived at the scene.
ARR_MIN	This data element records the minute when emergency services arrived at the scene.
CF1, CF2, CF3	These data elements record contributing factors to the crash, such as driver behaviors or environmental conditions.
CITY	This data element identifies the city in which the crash occurred.
COUNTY	This data element identifies the county in which the crash occurred.
DAY	This data element records the day of the month on which the crash occurred.
DAY_WEEK	This data element identifies the day of the week on which the crash occurred.
DRUNK_DR	This data element records whether a driver involved in the crash was suspected of drinking alcohol.
FATALS	This data element records the number of fatalities resulting from the crash.
FUNC_SYS	This data element identifies the functional classification of the trafficway segment where the crash occurred.
HARM_EV	This data element records the first harmful event that occurred in the crash sequence.
HOSP_HR	This data element records the hour when the injured were admitted to the hospital.
HOSP_MN	This data element records the minute when the injured were admitted to the hospital.
HOUR	This data element records the hour when the crash occurred.
LATITUDE	This data element identifies the location of the crash using latitude coordinates.

Column	Description
LGT_COND	This data element identifies the light condition at the time of the crash, such as daylight, dark, or dusk.
LONGITUD	This data element identifies the location of the crash using longitude coordinates.
MAN_COLL	This data element identifies the manner of collision, such as rear-end, head-on, or angle.
MILEPT	This data element records the milepoint nearest to the crash location.
MINUTE	This data element records the minute when the crash occurred.
MONTH	This data element records the month in which the crash occurred.
NHS	This data element identifies whether the crash occurred on a National Highway System (NHS) route.
NOT_HOUR	This data element records the hour when the crash was reported to authorities.
NOT_MIN	This data element records the minute when the crash was reported to authorities.
PEDS	This data element records the number of pedestrians involved in the crash.
PERMVIT	This data element counts the number of persons in motor vehicles in transport (motorists) involved in the crash.
PERNOTMVIT	This data element counts the number of persons not in motor vehicles in transport (non-motorists) involved in the crash.
PERSONS	This data element is a count of the total number of persons involved in the crash.
PVH_INVL	This data element is the number of parked or working vehicles involved in the crash.
RAIL	This data element identifies if the crash involved a rail system or crossing.
RELJCT1	This data element identifies the relationship of the crash to a junction, such as intersection or non-intersection.
RELJCT2	This data element provides additional information about the crash's relationship to the junction.
REL_ROAD	This data element identifies the relationship of the crash to the road, such as on the roadway or off the roadway.
RD_OWNER	This data element identifies the entity responsible for the ownership of the road where the crash occurred.
ROUTE	This data element records the type of route where the crash occurred, such as Interstate, U.S. Highway, or State Highway.

Column	Description
RUR_URB	This data element identifies whether the crash occurred in a rural or urban area.
SCH_BUS	This data element identifies if a school bus was involved in the crash.
SP_JUR	This data element identifies if the crash occurred in a special jurisdiction, such as military or Indian reservations.
STATE	This data element identifies the state in which the crash occurred. The codes are from the General Services Administration's (GSA) publication of worldwide Geographic Location Codes (GLC).
ST_CASE	This data element is the unique case number assigned to each crash. It appears on each data file and is used to merge information from the data files together.
TWAY_ID	This data element identifies the primary trafficway on which the crash occurred.
TWAY_ID2	This data element identifies the secondary trafficway associated with the crash, if applicable.
TYP_INT	This data element identifies the type of intersection involved in the crash, if applicable.
VE_FORMS	This data element is a count of all vehicle forms applicable to this crash.
VE_TOTAL	This data element is the number of contact motor vehicles that the officer reported on the PAR as a unit involved in the crash.
WEATHER	This data element identifies additional weather factors at the time of the crash.
WEATHER1	This data element records the primary weather condition at the time of the crash.
WEATHER2	This data element records the secondary weather condition at the time of the crash.
WRK_ZONE	This data element identifies if the crash occurred in a work zone.
YEAR	This data element records the year in which the crash occurred.

Link: https://www.kaggle.com/datasets/nhtsa/2015-traffic-fatalities

Plan and Proposal

Using the FARS dataset, we aim to understand the trends in traffic fatalities in a given year and what factors are affecting those trends. Specifically, we will look to implement safety factors that guard against drunk driving (traffic cameras, sensor systems, DUI checkpoints, etc.) We will also look at how the different variables play a role in the severity of the accident and identify geographic regions that are more prone to accidents. The trends in traffic fatalities found through this project can be used to inform policy makers and ultimately decrease the number of traffic fatalities.

PRJ2.1 Exploratory Data Analysis

Exploratory Data Analysis

The dataset that we have chosen describes the details surrounding motor vehicle crashes in the United States during the year 2015.

From the data, we have interpreted that 32,166 fatal crashes occured in 2015. Out of the total number of crashes, 26.78% of accidents involved an intoxicated driver. In the state of Illinois, 264 of 914 crashes involved a drunk driver (28.9%). More statistics are found in the table below.

Table 2: Misc Statistics.

Data Summary	Statistic
Crashes (US)	32,166
Total Fatalities (US)	35,092
Drunk Driver Crashes (US)	8,617
Drunk Driver Percentage (US)	26.78%
Crashes (IL)	914
Total Fatalities (IL)	998
Drunk Driver Crashes (IL)	264
Drunk Driver Percentage (IL)	28.88%
Most DD Crashes, Dates (US)	03May, 15Aug, 02Aug, 16Aug
Most Crashes, Dates (IL)	07Mar, 27Jun, 17Apr

To understand the trends in the data, we first analyzed the location of accidents and how the location relates to other variables. We looked at a map of the United states to plot the fatal accidents vs the drunk driving fatal accidents, as seen in Figure 1. This visualtion shows hotspots for both categories which are generally in more populous areas and in coastal regions.

Accidents by Location 45 40 Latitude 35 30 Drunk Driving Accident Non-Drunk Driving Accident 25 -110 -100-90 -80 -70-120Longitude

Figure 1: US Map

We then created a scatter plot to visualize the number of accidents and fatalities per accident for the United States. As seen in the figure, most of the crashes result in only one fatality, however, there are a handful of multiple fatality crashes. The scatter plot annotates the amount of crashes for drunk drivers and sober drivers next to the datapoint.

Figure 2: Scatter Plot

The next factor that we analyzed to understand the data was the specific day of accidents. As seen in the figure below, the highest number of accidents occurred on the weekends. On average, 104 accidents occurred on a given day of a weekend whereas 82 accidents occurred per weekday. Monday

and Tuesday have the lowest number of accidents and as the week progresses, the number of accidents increases.

The portion of accidents due to drunk driving by the day of the week follows similar trends. The average ratio of drunk driving accidents to total number of accidents was 37.47% for the weekend and 21.19% for weekdays. This is most likely due to the fact that drinking is more popular on the weekends. Similarly, there is a figure for crashes vs time of day.

Figure 3: Accidents vs Day of Week

Our team also looked at the number of drunk driver accidents per day of the year. See Table 1 for the most popular days for drunk driver accidents. The total number of accidents by hour of the day is the highest at 3 AM and decreases until 8 AM. The number of accidents then gradually increases by the hour.

Figure 4: Time of Day

Looking at the total number of DUI related accidents throughout the year, the summer months see higher numbers of accidents.

Figure 5: DUI Crashes by Day (US)

As we conducted our Exploratory Data Analysis, we aimed to focus in on the state of Illinois. Below is the same information as Figure 1, but specific to Illinois for 2015. From this visual, we can see that most crashes are in the areas with larger cities (i.e. Chicago).

Figure 6: Illinois Map

PRJ3.1 Predictive Modeling

Predictive Modeling

Based on the analysis conducted on the provided data, a predictive model utilizing k-means clustering can assist in determining ideal locations for the implementation of DUI checkpoints based on crash sites. Adjustment of k in the clustering algorithm can be done using parameters such as resource allocation towards policing in distinct areas. The k-means clustering process will begin by taking crash data with drinking involved within Illinois and the United States. This data will be clustered based on a predefined k value, representative of a decision made based on resource allocation.

The graph below depicts all of the drunk driving fatalities that occurred in Illinois. Using k-means clustering, the instances were grouped into 5 groups based on their location.

Figure 7: Illinois DD Clusters

Additional k-means clustering models were created to provide insights into potential high-risk zones in regards to drunk driving incidents. The seven plots below illustrate the distribution of drunk driving accidents on a daily basis, revealing notable trends throughout the week. Drunk driving incidents show a clear increase during the weekends, particularly on Fridays and Saturdays.

-100

Longitude

-80

-70

-110

25

-120

Drunk driving incidents across the entire United States were further analyzed, as depicted by the plot below. The visualization demonstrates the spatial distribution of all drunk driving accidents and the resulting clusters identified using k-means analysis, offering insight into nationwide trends.

Figure 8: Drunk Driving Cluster

An additional plot focuses on drunk driving accidents involving at least one fatality, with clusters highlighting regions where such incidents are most prevalent. These centroids can inform targeted

interventions to reduce the frequency and severity of fatal accidents.

Some limitations exist with the k-means modeling process. Running the scripts multiple times often results in different centroid locations with each rerun. In the future, this could be corrected by incorporating a weight system into the clustering. Centroids could be weighted based on factors such as fatality count, whether the incident involved drunk driving, or both. This approach would add consistency to the clustering results and allow the model to better reflect the relative severity and risk associated with each cluster. Additionally, further refinement of the algorithm parameters, such as initializing centroids, could enhance the accuracy and reliability of the model.

Additional consideration was given towards dimensions of time regarding crash likelihood. According to Figure 4, noticeable variation occurs in the amount of accidents occurring at specific times of day, indicating a need to manage resource allocation with time consideration. The implementation of a neural network using the provided data can be applied towards a proposal regarding DUI checkpoint locations or patrol areas in designated areas based on available resources and shift time, therefore optimizing provision of safety from DUI-related incidents.

The model and figures below represent a neural network model that has the potential to be utilized by the Illinois State Police. The inputs to the model consist of day of week, hours of shift, and current weather conditions. The model then predicts which twenty mile radius patrol zones in Illinois will likely yield the highest probability of fatal drunk driving accidents, thus prompting supervisors to direct units to those areas. The model is trained on labeled data, taking into account latitudinal and longitudinal bins of a twenty mile radius in Illinois. The model is a multiple dense-layered, supervised, feedforward neural network. Standardization and component engineering were used in this model.

The figures below represent visualizations with varying input data for specific standard police patrol shifts.

Figure 9: Friday Plot

Lowest to Highest Probability of Drunk Drivers

Figure 10: Saturday Plot

Figure 11: Sunday Plot

Possible further development of the nueral network model includes allowing for more input variables (i.e. month, traffic density, etc), comparing the model to later-year data, and use of advanced regularization. "One-hot coding" is also being explored as an area of interest to reduce impartiality to specific days of the week or times (i.e. 1=Sunday). One-hot coding would ensure the model did not interpret numerical symbols to have a magnitude or significance.

References

National Highway Traffic Safety Administration. "2015 Traffic Fatalities." Kaggle, https://www.kaggle.com/datasets/nhtsa/2015-traffic-fatalities. Accessed 24 Oct. 2024.

National Highway Traffic Safety Administration. Fatality Analysis Reporting System (FARS) Analytical User's Manual 1975-2015. U.S. Department of Transportation, Aug. 2016.