Bakalářské zkoušky (příklady otázek z matematiky)

léto 2021

1 Derivace (3 body)

- 1. Nechť $f: \mathbb{R} \to \mathbb{R}$ je funkce a r je reálné číslo. Napište definici derivace funkce f v bodě r.
- 2. Nechť $f: \mathbb{R} \to \mathbb{R}$ je funkce, která pro každé $x \in \mathbb{R}$ splní $0 \le f(x) \le x^2$. Plyne z těchto předpokladů, že f má v bodě x = 0 derivaci? Plyne z těchto předpokladů, že f'(0) = 0?
- 3. Definujme funkci $q: \mathbb{R} \to \mathbb{R}$ předpisem

$$q(x) = \begin{cases} (\sin x)^2 \cdot \left| \sin \left(\frac{1}{x} \right) \right| & \text{pro } x \neq 0, \\ 0 & \text{pro } x = 0. \end{cases}$$

Má funkce q derivaci v bodě 0, a pokud ano, čemu se rovná?

2 Primitivní funkce (3 body)

- 1. Napište definici pojmu primitivni funkce k funkci f na otevřeném intervalu I.
- 2. Najděte primitivní funkci k funkci $f(x) = x^2 \ln x$ na intervalu $(0, +\infty)$, kde $\ln x$ označuje přirozený logaritmus.
- 3. Nechť k a ℓ jsou nezáporná celá čísla. Uvažme funkci $f_{k,\ell}(x) = x^k (\ln x)^\ell$ definovanou na intervalu $I = (0, +\infty)$. Dokažte, že $f_{k,\ell}$ má na intervalu I primitivní funkci $F_{k,\ell}$. Dokažte dále, že tuto primitivní funkci $F_{k,\ell}$ lze vyjádřit vzorečkem pomocí konstant, funkce x, funkce $\ln x$ a operací sčítání, odčítání, násobení, dělení a umocňování.

3 Soustavy lineárních rovnic (3 body)

Uvažujme matici

$$A = \begin{pmatrix} 1 & 1 & 2 \\ -1 & 1 & 1 \\ 0 & 2 & 3 \end{pmatrix}.$$

- 1. Rozhodněte, zda existuje $b \in \mathbb{R}^3$ takové, že soustava Ax = b má právě jedno řešení.
- 2. Rozhodněte, zda existuje $k \ge 1$ takové, že soustava $(A^k)x = b$ má alespoň jedno řešení pro všechna $b \in \mathbb{R}^3$.

4 Ortogonální projekce (3 body)

Buď $P \in \mathbb{R}^{n \times n}$ matice ortogonální projekce na podprostor reálného vektorového prostoru.

- 1. Zjednodušte výraz $P P^2 + P^3 P^4 + \ldots + (-1)^{n+1}P^n$.
- 2. Dokažte, že pro každé $x \in \mathbb{R}^n$ platí:

$$||Px|| = ||x|| \Leftrightarrow Px = x.$$

5 Determinanty matic (3 body)

1. Zformulujte Laplaceův rozvoj determinantu matice $A \in \mathbb{R}^{9 \times 9}$ podle druhého sloupce.

2. Rozhodněte, zda pro čtvercové matice téhož řádu platí

$$\det(A+B) = \det(A) + \det(B).$$

Odpověď zdůvodněte (dokažte nebo uveďte protipříklad).

6 Stromy (3 body)

Nechť G = (V, E) je graf s neprázdnou množinou hran. Rozhodněte, které z následujících podmínek jsou ekvivalentní tomu, že G je strom.

- a) G je souvislý a každé dvě kostry G jsou si navzájem izomorfní,
- b) G nemá kružnice, minimální stupeň vrcholu je 1 a |E| > |V| 2,
- c) G je souvislý a má alespoň dva vrcholy stupně 1 (tzv. listy),
- d) G obsahuje nesouvislý podgraf, dokonce každá vlastní podmnožina hran $F \subset E$ tvoří nesouvislý graf (V, F) a přitom mezi každými dvěma vrcholy existuje v G tah,
- e) v G neexistuje podmnožina $W \subseteq V$ vrcholů, která by indukovala podgraf s |W| hranami a přitom pro každou neprázdnou $W \subsetneq V$ existuje hrana $\{u, v\}$ mezi W a doplňkem W ve V.

Své rozhodnutí zdůvodněte.

7 Kombinační čísla (3 body)

- 1. Definujte kombinační číslo (binomický koeficient) a stručně popište Pascalův trojúhelník.
- 2. Rozhodněte, zdali pro každé přirozené n platí mezi následujícími dvěma výrazy stejná nerovnost a pokud ano, určete jakým směrem.

$$\binom{n}{n} + \binom{n+1}{n} + \binom{n+2}{n} + \dots + \binom{2n-1}{n}$$
 a $\binom{2n}{n}$.

Své rozhodnutí zdůvodněte. (Nápověda: zkuste využít vztahů mezi dvěma sousedními čísly v Pascalově trojúhelníku.)

8 Střední hodnota (3 body)

- 1. Definujte pojem $st\check{r}edn\acute{\iota}\ hodnota$ reálné náhodné veličiny na konečném pravdě
podobnostním prostoru $\Omega.$
- 2. Mějme běžnou šestistěnnou kostku se stěnami označenými čísly 1,2...,6, přičemž každé z čísel padne se stejnou pravděpodobností. Určete střední hodnotu náhodné veličiny definované jako druhá mocnina hozeného čísla.
- 3. Pro $n \in \mathbb{N}$ uvažujme S_n množinu všech permutací množiny $\{1, 2, ..., n\}$. Pevný bod permutace $q \in S_n$ je takové $k \in \{1, 2, ..., n\}$, pro které je q(k) = k. Určete střední hodnotu počtu pevných bodů v náhodně vybrané permutaci (každá permutace je vybrána se stejnou pravděpodobností).

9 Logika (3 body)

- 1. Uveď te definici, kdy je teorie T jazyka L_T jednoduchou kompletní extenzí teorie S jazyka L_S (v predikátové logice).
- 2. Nechť $S = \{(\forall x)(\forall y)(\forall z)((U(x) \land U(y) \land U(z)) \rightarrow (x = y \lor y = z \lor x = z))\}$ je teorie jazyka $L = \langle U \rangle$ s rovností, kde U je unární relační symbol. Napište dvě (neekvivalentní) jednoduché kompletní extenze T_1, T_2 teorie S.
- 3. Zdůvodněte, proč jsou T_1, T_2 kompletní.