System Identification and Controller Design for SBMHS System from Perturbation Data

Course Project: CL686

Submitted By:

Bharat Bohara

Roll No: 173172001

Submission Date: 2018/04/24

Brief Introduction of the Project

- Single Board Multi-Heater System (SBMHS) consists of a rectangular metal plate on which four heating elements are mounted in the middle of the four edges of the plate.
- Five temperature sensors are attached at different location on the metal plate and a small cooling fan is fixed underneath the plate to introduce the disturbances.
- The Arduino Board is further interfaced to a PC through combination of LabView and MATLAB to faciliate as ADC and DAC.

Project work Description

The project was overall subdivided into following work division:

- MIMO System Identification: Development of ARMAX / OE Models using PRBS data and their comparison was done.
- The order of the system was chosen based on their stability observed via cross and auto correlation.
- Linear Quadratic Optimal Control (LQOC) Design and Implementation
- Model Predictive Control (MPC) Design

System Identification Work Description

- 2500 perturbation data were collected from temperature sensor T0 and T2 fixed under the plate heater section H1 and H3.
- In heater H1, perturbation amplitude of 2 was given along with the steady-state input value of 10. Similarly, perturbation amplitude of 3 was given to the heater H3.
- ARMAX and OE model was designed using MATLAB system identification toolbox for the MISO-I and MISO-II system individually, and later combined both models to formulate the single MIMO model of the system.

System Identification Models Results – MISO-I

 Detailed information of the models designed via MATLAB system identification toolbox are listed below:

ARMAX Model - I

- Order = 4×4
- Delay = [2 5]
- Fitness = 91.21 %
- MSE = 0.06337

OE Model - I

- Order = 2×2
- Delay = [2 5]
- Fitness = 87.46 %
- MSE = 0.129

System Identification Models Results – MISO-II

 Detailed information of the models designed via MATLAB system identification toolbox are listed below:

ARMAX Model - II

- Order = 4×4
- Delay = [7 3]
- Fitness = 88.29 %
- MSE = 0.03994

OE Model - II

- Order = 2×2
- Delay = [7 3]
- Fitness = 70.68 %
- MSE = 0.2504

SBMHS: Measurement and Manipulated Inputs Data

SBMHS: System Identification of MISO-I and MISO-II systems

SBMHS: Residue Auto / Cross Correlation – MISO I & II

SBMHS: Model Validation - MISO - I

SBMHS: Model Validation - MISO - II

SBMHS: Model Validation – MIMO

Step Response of ARMAX and OE Models

Nyquist Diagram of ARMAX and OE Models

Linear Quadratic Optimal Controller Design and Implementation in the real Plant

Results and Plottings

SetPoint_1 Vs. Measurement (Y_1(k)) Plot

SetPoint_2 Vs. Measurement (Y_2(k)) Plot

Controller Inputs Uk_1 and Uk_2

Plant-Model Mismatch (ek_1 and ek_2)

Disturbances employed during LQOC Implementation

Initial Conditions

- Fan Speed: 60
- H1=H2=H3=H4 = 10

Set point employed

- Set_point_1 = 60
- Set point 2 = 40

At different sampling instants

•
$$K = 400$$
 Fan-speed = 70

•
$$K = 500$$
 Fan-speed = 90

•
$$K = 600$$
 $H2 = 0, H4 = 0$

&
$$H2 = 0$$
, $H4 = 0$

$$H2 = 20, H4 = 20$$

$$H2 = 5, H4 = 5$$

Setpoint_1 and Yk_1 against various disturbances

Setpoint_2 and Yk_2 against various disturbances

Model Predictive Control (MPC) Design

Results and Plottings

Plotting of MPC Controller Inputs Uk_1 (Volts) and Uk_2(Volts)

Plottings of Plant Outputs Yk_1 and Yk_2 after MPC Implementation

