UFES - CENTRO TECNOLÓGICO DEPARTAMENTO DE INFORMÁTICA

Prof. Thomas W. Rauber

$1^{\underline{0}}$ Trabalho de Algoritmos Numéricos (INF09269) 2021/1 Earte

Data de entrega: veja Mural na Sala de Aula

Linguagem de Programação para Implementação Octave/Matlab, preferencialmente código que seja compatível com os dois ambientes Grupo de até três alunos

Aplicações Práticas de Técnicas Numéricas de Solução de Equações Diferenciais Ordinárias.

Problema: Dado um problema de valor inicial (PVI) em uma Equação Diferencial Ordinária (EDO) de primeira ordem,

$$\begin{cases} y'(x) = \frac{dy(x)}{dx} = \mathbf{f}(x, y(x)) \\ y(x_0) = y_0, \end{cases} \tag{1}$$

o objetivo é criar uma sequência de estimativas

$$y_1,\ldots,y_n,\ldots$$

dos valores verdadeiros

$$y(x_1),\ldots,y(x_n),\ldots$$

da função y(x) em pontos equidistantes

$$x_1, \ldots, x_n = x_0 + nh, x_{n+1} = x_n + h, \ldots,$$

separados pelo passo h. Também existem métodos que usam um passo variável, por exemplo, Dormand-Prince com passo adaptativo. O lado esquerdo da EDO, em forma "canônica", contém somente a derivada de primeira ordem dy/dx da função y(x). É fácil ordenar uma EDO para aparecer nesta forma canônica, transportando todos os termos que não aparecem como derivada para o lado direito da equação. O lado direito da EDO é uma expressão f que define uma combinação da variável independente x e da variável dependente y. É um "funcional", informalmente, uma função de função. Não confunda f com a função que nos interessa, a solução do EDO y(x).

Se a variável independente x não está presente do lado direito da equação, a EDO simplifica para um sistema autônomo de primeira ordem [7], da forma

$$y' = f(y). (2)$$

Às vezes a função y(x) é dada adicionalmente para fins de comparação, ou é fácil de "adivinhar", por exemplo para a EDO y'=y sabe se que a solução é a função exponencial $y(x)=C\exp(x)$, com a constante $C\in\mathbb{R}$.

Exemplo: Considere a EDOs

$$y'(x)/y = 2xy + 1.$$

A forma canônica obtém-se por multiplicar os dois lados da ODE por y, portanto

$$y'(x) = y(2xy + 1).$$

O lado direito da EDO seria então

$$f(x, y) = y(2xy + 1).$$

Expandindo a definição, ilustra que isso é uma combinação da variável independente x, e da variável dependente y. A variável y de fato é uma função y(x) que depende de x. Portanto, o lado direito da ODE é mais precisamente o funcional

$$f(x, y(x)) = y(x)(2xy(x) + 1).$$

Este lado direito da ODE é usado nas aproximações numéricas, por exemplo, no método de Euler temos

$$y_{\text{novo}} = y_{\text{antigo}} + h \cdot f(x_{\text{antigo}}, y_{\text{antigo}}).$$

1 Métodos de Resolução numérica de EDO

O método mais simples de gerar a sequência de estimativas y_n é o método de Euler, um método de primeira ordem, como

$$y_{n+1} = y_n + h f(x_n, y_n). (3)$$

É o resultado de expressar o lado direito da EDO f(x, y(x)) por uma aproximação baseada na série de Taylor, ignorando todos os termos acima de ordem um. Métodos de Runge-Kutta de segunda ordem são (entre muitos outros) o método de Euler Aperfeiçoado (Melhorado) ou também chamado o método de Heun

$$y_{n+1} = y_n + \frac{h}{2} \left[f(x_n, y_n) + f(x_{n+1}, y_{n+1}) \right]$$

= $y_n + \frac{h}{2} \left[f(x_n, y_n) + f(x_n + h, y_n + hf(x_n, y_n)) \right],$ (4)

e o método de Euler Modificado

$$y_{n+1} = y_n + hf(x_n + \frac{h}{2}, y_n + \frac{h}{2}f(x_n, y_n)).$$
 (5)

Uma generalização dos métodos de Runge-Kutta [5], [3], [4], de s estágios é a matriz de Butcher

que permite a definição recursiva do cálculo da próxima estimativa y_{n+1} como

$$y_{n+1} = y_n + h \left[b_1 \mathbf{k_1} + b_2 k_2 + \ldots + b_{s-1} \mathbf{k_{s-1}} + b_s \mathbf{k_s} \right], \tag{7}$$

com

$$k_{1} = f(x, y)$$

$$k_{2} = f(x + c_{2}h, y + ha_{2,1}k_{1})$$

$$k_{3} = f(x + c_{3}h, y + h(a_{3,1}k_{1} + a_{3,2}k_{2}))$$
...
$$k_{s} = f(x + c_{s}h, y + h(a_{s,1}k_{1} + a_{s,2}k_{2} + ... + a_{s,s-1}k_{s-1})).$$
(8)

Todas as informações necessárias para montar um método de Runge-Kutta estão armazenados então na matriz triangular inferior $[a_{i,j}]$ com os coeficientes $a_{i,j}$, e nos vetores $(b_1,b_2,\ldots b_s)$ e $(c_1,c_2,\ldots c_s)$. Os campos vazios na matriz $[a_{i,j}]$ têm o valor zero, ou seja, a diagonal da matriz e a parte triangular acima da diagonal $a_{i,j}; i \leq j; i,j = 1,\ldots,s$.

Neste esquema o método de Euler na eq. (3) é de s=1 estágio com a matriz de Butcher

$$\begin{array}{c|c}
0 \\
\hline
 & \\
1
\end{array}$$
(9)

pois temos s=1 estágio, $b_1=1$ e $k_1=f(x,y)$, então

$$y_{n+1} = y_n + h[b_1 \mathbf{k_1}] = y_n + h \cdot 1 \cdot \mathbf{k_1} = y_n + hf(x_n, y_n),$$

o de Euler Melhorado na eq. (4) é de s=2 estágios

$$\begin{array}{c|cccc}
0 \\
1 & 1 \\
\hline
 & 1/2 & 1/2
\end{array}$$
(10)

e o Euler Modificado na eq. (5)

$$\begin{array}{c|cccc}
0 & & & \\
1/2 & 1/2 & & \\
\hline
& 0 & 1 & & \\
\end{array}$$
(11)

O método de segunda ordem de Runge-Kutta genérico (parametrizado com o parâmetro $\alpha \neq 0$) é

$$\begin{array}{c|cccc}
0 & \alpha & \alpha \\
\hline
& 1 - \frac{1}{2\alpha} & \frac{1}{2\alpha}
\end{array}$$
(12)

Essa parametrização tem a origem no desenvolvimento bidimensional do lado direito f(x, y) da EDO usando o Teorema de Taylor com resto de Lagrange. Considerando a tabela de Butcher, três equações com quatro incógnitas impõem as três restrições $b_1 + b_2 = 1$, $b_2c_2 = 1/2$ e $b_2a_{21} = 1/2$, facilmente verificável nesta tabela.

Os métodos adaptativos de Runge-Kutta visam estimar o erro de truncamento de um único passo de x_n para x_{n+1} . A matriz de Butcher é estendida por uma linha adicional abaixo do coeficientes b_k , $i=1,\ldots,s$ com os coeficientes b_k^* , $i=1,\ldots,s$. Os coeficientes b_k representam um método de Runge-Kutta de ordem p e os coeficientes b_k^* representam um método de Runge-Kutta de ordem p-1.

O passo de ordem p-1 estima-se como

$$y_{n+1}^* = y_n + h \left[b_1^* k_1 + b_2^* k_2 + \dots b_s^* k_s \right], \tag{13}$$

em que os parâmetros k são os mesmos da eq. (8).

Dessa maneira é possível estimar um erro no passo

$$e_{n+1} := y_{n+1} - y_{n+1}^*$$

$$= h \left[(b_1 - b_1^*)k_1 + (b_2 - b_2^*)k_2 + \dots (b_s - b_s^*)k_s \right], \tag{14}$$

que permite ajustar o passo h que assim deixa de ser estático, ou seja, cada passo em geral é diferente do anterior $(h_{n+1} \neq h_n)$.

A matriz de Butcher para métodos adaptativos de Runge-Kutta então tem a estrutura

O método adaptativo mais simples combina o Euler Melhorado de ordem dois da eq. (4) com o Euler simples de ordem um da eq. (3) na tabela de Butcher

$$\begin{array}{c|cccc}
0 & & & & \\
1 & 1 & & & & \\
\hline
& 1/2 & 1/2 & & \\
& 1 & 0 & & & \\
\end{array}$$
(16)

ou o método de Runge-Kutta-Fehlberg, que combina métodos de ordem cinco e ordem quatro.

Voltando ao desenvolvimento da função procurada y(x) pelo Teorema de Taylor, respectivamente pela séria de Taylor, a ideia é expressar uma função em torno de um ponto a como

$$y(x) = \sum_{k=0}^{\infty} \frac{y^{(k)}(a)}{k!} (x-a)^k = \sum_{k=0}^{n} \frac{y^{(k)}(a)}{k!} (x-a)^k + \frac{y^{(n+1)}(\xi)}{(n+1)!} (x-a)^{(n+1)} = P_n + R_n,$$
 (17)

onde P_n é o polinômio de Taylor de ordem n, e R_n é o resto, sendo ξ um valor no intervalo [x,a]. O resto expressa a diferença entre o verdadeiro valor da função e sua aproximação. A função y(x) tem que ser derivável pelo menos (k+1) vezes, onde a 0-ésima derivada é a própria função y(x). Até a segunda ordem k=2 em torno de um ponto $a=x_n$, tem-se então

$$y(x) = y(x_n) + y'(x_n)(x - x_n) + \frac{y''(x_n)}{2}(x - x_n)^2 + \frac{y'''(\xi)}{3!}(x - x_n)^3 = P_2 + R_2,$$
(18)

e a ordem k=1, a aproximação simplifica para

$$y(x) = y(x_n) + y'(x_n)(x - x_n) + \frac{y''(\xi)}{2}(x - x_n)^2 = P_1 + R_1.$$
(19)

Plugando a definição da EDO y'(x) = f(x, y(x)) da eq. (1) no ponto x_{n+1} no polinômio de Taylor de primeira ordem P_1 na eq. (19), e resolvendo segundo y_{n+1} , obtém-se imediatamente a aproximação de Euler da eq. (3), pois

$$y(x_{n+1}) = y(x_n) + y'(x_n)(x_{n+1} - x_n) = y(x_n) + hy'(x_n) = y(x_n) + hf(x_n, y_n).$$
(20)

Querendo uma aproximação mais exata de y(x), usando um polinômio de Taylor de segunda ordem de eq. (18), a tarefa mais difícil é o cálculo da segunda deriva

$$y''(x) = \frac{dy'(x)}{dx} = \frac{df(x, y(x))}{dx},$$

plugando novamente o lado direito da EDO da eq. (1). O cálculo da expressão $\frac{df(x,y(x))}{dx}$ exige a derivada total de um funcional f que depende de duas variáveis y e x. A variável y nesse funcional na verdade por sua vez é uma função y(x) que define essa dependência entre y e x.

A derivada total de uma função de duas variáveis x e y, onde ainda por cima y depende de x como y(x) é

$$\frac{df(x,y)}{dx} = \frac{\partial f}{\partial x} + \frac{\partial f}{\partial y} \frac{dy}{dx}.$$
 (21)

Pela eq. (21), a derivada total do lado direito da EDO f(x, y) pode ser calculada. Consequentemente, a aproximação explícita pelo polinômio de Taylor até a segunda ordem é

$$y(x_{n+1}) = y(x_n) + hf(x_n, y_n) + \frac{h^2}{2} \frac{df(x, y(x))}{dx}.$$
 (22)

Como exemplo considere a EDO xy'=x-y. Na forma canônica y'=f(x,y) temos y'=1-y/x, então o lado direito da EDO é f(x,y)=1-y/x. As derivadas parciais são $\frac{\partial f}{\partial x}=y/x^2$ e $\frac{\partial f}{\partial y}=-1/x$. Na eq. (21), a derivada $\frac{dy}{dx}$ é o lado esquerdo da EDO e então é equivalente ao lado direito f(x,y) da EDO. Portanto, a derivada total completa é

$$\frac{df(x,y)}{dx} = \frac{\partial f}{\partial x} + \frac{\partial f}{\partial y}f(x,y) = y/x^2 - 1/x \left[1 - y/x\right] = \frac{-x + 2y}{x^2},$$

e finalmente o desenvolvimento de Taylor de segunda ordem em torno do ponto x_n segundo a eq. (22) é

$$y_{n+1} = y_n - \frac{h^2}{2x_n} + \frac{h^2 y_n}{x_n^2} + h - \frac{hy_n}{x_n}.$$
 (23)

A solução analítica da EDO y' = f(x, y) é (sem prova)

$$y(x) = \frac{\text{const}}{x} + \frac{x}{2}.$$

Com a condição inicial $y(x_0 = 2) = 2$, torna-se um PVI, e a solução analítica é

$$y(x) = \frac{2}{x} + \frac{x}{2},$$

permitindo calcular o erro de aproximação $e_n = y(x_n) - y_n$ entre o valor verdadeiro $y(x_n)$ da função em x_n , e o valor estimado y_n em x_n pelo polinômio de Taylor até a segunda ordem.

2 Equações Diferenciais Ordinárias

Considere os seguintes PVI

- a) $\{y'/y = \ln(x+1), y(x_0) = y_0\}, \text{ com } x_0 = 0, y_0 = 1\}$
- b) $\{y'/y = x^2 1, y(x_0) = y_0\}, \text{ com } x_0 = 0, y_0 = 1\}$
- c) $\{ y' = 1 y/x, y(x_0) = y_0 \}$, com $x_0 = 1, y_0 = 1$

Tarefas:

- 1. Determine a solução analítica y(x) de cada PVI. Ajuda: Para facilitar o cálculo, pode usar o pacote simbólico do Octave. Veja o exemplos na pasta edo do software, especialmente o script EulerGraficamente.m que ilustra a definição simbólica de um PVI, a obtenção analítica da solução y(x), a apresentação em tabela dos valores exatos e aproximados pelo método de Euler.
- 2. Converta a solução em uma função não-simbólica. Veja o exemplo que usa matlabFunction.
- 3. Discretize a variável independente a partir de x_0 , calcule o valor da função analítica e desenhe. O número de passos deve ser n=10 e o passo deve ser h=1/10. O intervalo de discretização do eixo x do desenho deve ser mais fino que o passo h para evitar efeitos de discretização, por exemplo $\Delta x = h/10$. Veja o exemplo.
- 4. Calcule as aproximações da solução analítica, usando os seguintes métodos:
 - Euler
 - Euler Melhorado
 - Euler Modificado
 - Fehlberg RK(1) 2
 - Fehlberg RK(4) 5
 - Dormand-Prince com passo fixo
 - Dormand-Prince com passo adaptativo

Recomenda-se colocar os resultados de cada método y_0, \ldots, y_n em uma coluna de uma matriz (linha= x_i , coluna= y_i do método), exceto métodos de passo adaptativo que não têm um x_i bem definido a priori.

- 5. Insira os pontos (x_i, y_i) de cada método no gráfico junto com a função verdadeira y(x). Veja o gráfico na fig. 1.
- 6. Gere um no gráfico de erros de cada método relativo à função verdadeira y(x), com eixo y logarítmico, (função Octave semilogy em vez de plot). Veja o gráfico na fig. 2.
- 7. Mostre uma tabela com os valores de cada método (exceto os com passo adaptativo) Veja a fig. 3.
- 8. Mostre uma tabela com os erros de cada método (exceto os com passo adaptativo) Veja a fig. 3. Ajuda: Considere o script de exemplo plot_e_tabela_demo.m que gera uma tabela.

3 Problema Prático

O objetivo do circuito da fig. 4 é providenciar uma fonte de corrente elétrica contínua (DC), a partir de uma fonte primária de corrente elétrica alternada (AC). A descrição original encontra-se em [2] (anexado a esta especificação do trabalho).

O primeiro passo é a redução da voltagem original de 120 V para níveis mais razoáveis, por exemplo para 12 V, porém ainda como AC, uma curva senoidal com valores positivos e negativos.

A tensão (em volts [V]) original pode ser modelada por

$$V_{\rm AC}^{\rm orig}(t) = V_{\rm max}\cos(2\pi\nu t + \phi),\tag{24}$$

Figura 1: Função verdadeira y(x) e valores aproximados pelos métodos de solução de EDO.

Figura 2: Erros de cada método em relação à função verdadeira y(x).

Figura 3: Tabelas comparativas com os valores aproximados e erro dos métodos.

PVI: ==> Funcao: $y(x) = exp(x .* (x .^2 - 3) / 3)$

x	Valor Exato	Euler		Euler Mel.	1	Euler Mod.		Fehlb12		Fehlb45	I	ODE45 fixo
0.000000	1.000000	1.000000	1	1.000000	I	1.000000	I	1.000000	Ī	1.000000	I	1.000000
0.100000	0.905139	0.900000		0.905450	ı	0.905238		0.905237	1	0.908590		0.905139
0.200000	0.820917	0.810900	1	0.821471		0.821131		0.821130	1	0.827121	1	0.820917
0.300000	0.747516	0.733054	1	0.748252		0.747845		0.747844	1	0.755855	1	0.747516
0.400000	0.684774	0.666346	1	0.685640		0.685207		0.685206	1	0.694719	1	0.684774
0.500000	0.632337	0.610373	1	0.633291		0.632857		0.632855	1	0.643455	1	0.632337
0.600000	0.589783	0.564595		0.590797		0.590371	1	0.590368	1	0.601727	1	0.589783
0.700000	0.556735	0.528461		0.557791	I	0.557368	1	0.557365	1	0.569235		0.556735
0.800000	0.532947	0.501509	1	0.534039		0.533605		0.533602	1	0.545798	1	0.532947
0.900000	0.518404	0.483455	1	0.519535		0.519064		0.519061	1	0.531446	1	0.518404
1.000000	0.513417	0.474269		0.514600		0.514051	1	0.514048	1	0.526521	1	0.513417
Erros												
0.000000	0.000000e+00	0.00000e+00	(0.000000e+00	I	0.000000e+00	1	0.000000e+00	1	0.000000e+00	1	0.000000e+00
0.100000	0.000000e+00	5.139081e-03	1 :	3.109192e-04		9.841922e-05	1	9.824053e-05	1	3.450729e-03	1	1.104874e-08
0.200000	0.000000e+00	1.001695e-02	{	5.543747e-04		2.136905e-04	1	2.130767e-04	1	6.204416e-03	1.3	9.989167e-09
0.300000	0.000000e+00	1.446208e-02	1 7	7.362634e-04		3.290516e-04	1	3.278898e-04	1	8.338909e-03	1 3	8.692792e-09
0.400000	0.000000e+00	1.842811e-02	8	8.658829e-04		4.333856e-04	1	4.316679e-04	1	9.945591e-03	Ι.	7.492382e-09
0.500000	0.000000e+00	2.196398e-02	9	9.544610e-04	I	5.203819e-04	1	5.181708e-04	1	1.111799e-02	1.7	6.638539e-09
0.600000	0.000000e+00	2.518863e-02	1 :	1.013931e-03		5.872244e-04	1	5.846269e-04	1	1.194392e-02	1 /	6.351588e-09
0.700000	0.000000e+00	2.827391e-02	1 :	1.056044e-03		6.331040e-04	1	6.302558e-04	1	1.250043e-02	1 /	6.876483e-09
0.800000	0.000000e+00	3.143781e-02	1 :	1.091805e-03	I	6.576822e-04	1	6.547428e-04	1	1.285076e-02	1.3	8.549943e-09
0.900000	0.000000e+00	3.494937e-02	1:	1.131143e-03	I	6.594523e-04	1	6.566132e-04	1	1.304216e-02	1	1.190032e-08
1.000000	0.000000e+00	3.914792e-02	1 :	1.182655e-03	I	6.337574e-04	1	6.312649e-04	I	1.310377e-02		1.123154e-09

Figura 4: Circuito para implementar uma corrente elétrica contínua.

onde $V_{\rm max}$ é a amplitude, ν é a frequência, e ϕ o ângulo de fase no instante t=0.

A parte negativa de uma meia onda de um período completo é convertida para valores positivos por um retificador de onda completa ou um retificador em ponte [6], veja a fig. 5.

Os diodos são modelados por uma fonte DC com a voltagem V_d e uma resistência seguinte R_d , veja a fig. 6.

Após a retificação, a tensão da eq. (24) é

$$V_c(t) \le V_{\rm AC}(t) - 2V_d,\tag{25}$$

onde V_c é tensão do capacitor, V_{AC} é a tensão AC após a retificação da eq. (24), e V_d a resistência do modelo dos diodos

Mesmo assim, a onda ainda não é constante, portanto, o circuito precisa mais componentes. Um capacitor (português brasileiro) ou condensador (português europeu) [1] é definido pela sua capacitância ou capacidade (C), com a unidade farad. A sua tarefa é armazenar carga em caso de fornecimento excessivo do retificador, acima do limite mínimo exigido, e, em compensação, providenciar tensão armazenada de volta para o sistema de controle de

Figura 5: Retificador de onda completa.

Figura 6: Modelo de diodo como fonte e resistência.

voltagem constante, em caso a tensão caindo abaixo do limite. A componente final é o regulador de voltagem que fornece o DC com a tensão desejada. No circuito é o LM78XX que fornece 5 V. Para poder operar normalmente, o seu Input precisa ficar acima deste valor, 2.5 V neste caso. Consequentemente, o circuito tem duas fases distintas de operação:

• Fase 1: Carregamento do capacitor

Quando a voltagem retificada ficar acima da voltagem V_c do capacitor, o retificador fornece uma corrente para o capacitor e regulador de voltagem, o capacitor carrega. Neste caso temos

$$V_c(t) \le V_{\rm AC}(t) - 2V_d. \tag{26}$$

• Fase 2: Descarregamento do capacitor Quando a voltagem retificada cai abaixo do valor V_c , o capacitor fornece a corrente, pois a corrente saindo dos diodos do retificador deixa de existir. Um efeito colateral é que a voltagem do capacitor diminui continuamente. Neste caso temos

$$V_c(t) > V_{\rm AC}(t) - 2V_d. \tag{27}$$

• Modelo de Carga

Basta considerar o cenário mais pessimista em relação à carga que o circuito tem que fornecer, neste caso $I_{\text{max}} = 100 mA$.

• Modelos de Circuitos

Considerando a fase 1 de carregamento e fase 2 de descarregamento, podemos identificar dois modelos de circuito distintos.

Os dois modelos são mostrados na fig. 7, (a) para a fase de carregamento, (b) para a fase de descarregamento.

Figura 7: Modelo de circuito em dois modos de operação.

Vamos começar a análise pela equação da corrente do capacitor

$$I_c(t) = C \frac{dV_c(t)}{dt}. (28)$$

A 1ª Lei de Kirchhoff (Lei das Correntes ou Leis dos Nós) constata um valor nulo $\sum_k I_k = 0$ de todas as correntes envolvidas em um circuito. Assim, na fase de carregamento temos o balanço

$$C\frac{dV_c(t)}{dt} + I_{\text{max}} = \frac{V_{\text{AC}}(t) - 2V_d - 2V_c}{2R_d}.$$
 (29)

Na fase de descarregamento, então temos

$$C\frac{dV_c(t)}{dt} + I_{\text{max}} = 0. (30)$$

Tarefa: Use todos os métodos de resolução de uma EDO da parte teórica deste trabalho para determinar a tensão $V_c(t)$. Considere somente um único passo do instante de tempo t_n para o próximo instante de tempo t_{n+1} para estimar $V_c(t_{n+1})$, dados a tensão atual $V_c(t_n)$.

O resultado, usando Euler modificado, é apresentado na figura 8, além de Dormand-Prince.

Os parâmetros devem ser

$$\begin{split} \phi &= 0 \\ V_{\text{max}} &= 18V \\ \nu &= 60Hz \\ V_d &= 1.0V \\ R_d &= 0.02\Omega \\ C &= 100\mu F \\ I_{\text{max}} &= 100mA \end{split}$$

Figura 8: Evolução temporal estimada da tensão V_c .

Referências

[1] Capacitor. Capacitor — Wikipédia, a enciclopédia livre. https://pt.wikipedia.org/wiki/Capacitor, 2021. [Online; acessado 10-July-2021].

- [2] A. Kaw and E.E. Kalu. Numerical Methods with Applications: Abridged. Lulu.com, 2009. https://books.google.de/books?id=bCl_AgAAQBAJ.
- [3] Lista de Métodos de Runge-Kutta. Lista de métodos de Runge-Kutta Wikipédia, a enciclopédia livre. https://pt.wikipedia.org/wiki/Lista_de_m%C3%A9todos_Runge-Kutta, 2021. [Online; acessado 10-July-2021].
- [4] Lista de Métodos de Runge-Kutta (em inglês). Lista de métodos de Runge-Kutta (em inglês) Wikipédia, a enciclopédia livre. https://en.wikipedia.org/wiki/List_of_Runge%E2%80%93Kutta_methods, 2021. [Online; acessado 10-July-2021].
- [5] Métodos de Runge-Kutta. Métodos de Runge-Kutta Wikipédia, a enciclopédia livre. https://pt.wikipedia.org/wiki/M%C3%A9todo_de_Runge-Kutta, 2021. [Online; acessado 10-July-2021].
- [6] Retificador de onda completa. Retificador de onda completa Wikipédia, a enciclopédia livre. https://pt.wikipedia.org/wiki/Retificador_de_onda_completa, 2021. [Online; acessado 10-July-2021].
- [7] Sistema Autônomo. Sistema autônomo Wikipédia, a enciclopédia livre. https://pt.wikipedia.org/wiki/Sistema_aut%C3%B4nomo_%28matem%C3%A1tica%29, 2021. [Online; acessado 10-July-2021].

Elaboração: O resultado deve ser código em Octave que produz as tabelas e gráficos para o problema apresentado. O usuário (neste caso o professor) não deve ter o trabalho de digitar nada, além da linha de comando no Octave que executa o programa principal. Este script principal deve ter o nome main.m.

O produto final deve ser um arquivo no formato zip com a seguinte sintaxe: aluno1+aluno2+aluno3.zip, a ser submetido como resposta por um dos autores. O arquivo aluno1+aluno2+aluno3.zip deve conter uma única pasta. Duas subpastas devem conter o código fonte e a documentação do projeto.

A documentação deve ser em forma de descrição de projeto, preferencialmente gerado por LATEX, (ou LibreOffice) contendo os seguintes tópicos:

- Capa do Projeto
 - Título
 - Autoria
 - Data
 - Resumo
- Introdução
- Objetivos
- Metodologia
- Resultados e Avaliação
- Referências Bibliográficas

Qualquer dúvida, ou descobriu um erro no texto? Não hesite em me contactar por E-mail institucional thomas.rauber@ufes.br ou na aula (preferencialmente no início, ou no final).

Última atualização: 11 de agosto de 2021, 16:05

Bom trabalho!