

Notizen		

Outline University of Freiburg					UNI FREIBURG
University of Freiburg				- VIII -	SE.
OpenGL Introduction					
2 Displaying Graphics					
3 Interaction					
4 Notes					
5 Summary					
					()
Matthias Keil	Android and OpenGL	(D) (B)	26. Januar 2015	2 / 24	

Notizen			

OpenGL Introduction University of Freiburg	BURG
	A RE
■ Short for: Open Graphics Library _[4] .	
Enables creation of 2D and 3D graphics.	
Special API for embedded systems available on Android: OpenGL ES API.	

lotizen			

Two important classes: GL	SurfaceView a	and
GLSurfaceView.Renderer.		

4
1

Matthias Keil Android and OpenGL 26. Januar 2015 3/24

OpenGL Introduction

Notizen

GLSurfaceView View to draw and manipulate objects using OpenGL.

GLSurfaceView.Renderer Interface defining methods to draw (render) graphics.

- Add renderer to GLSurfaceView using GLSurface View.set Renderer ().
- Extend GLSurfaceView to capture touch screen events.
- Extend Android manifest when using OpenGL ES 2.0:

```
_{1} < ! -- Tell the system this app requires OpenGL
ES 2.0. --> 2<uses-feature android:g1EsVersion="0x00020000"
    android:required="true" />
```


Matthias Keil Android and OpenGL 26. Januar 2015 4 / 24

OpenGL Introduction


```
1 class MyGLSurfaceView extends GLSurfaceView {
2  public MyGLSurfaceView(Context context){
          super(context);
          setRenderer(new MyRenderer());
// Called when using OpenGL ES 2.0
setEGLContextClientVersion(2);
```


26. Januar 2015 5 / 24

Notizen

OpenGL Introduction

■ Includes three methods to be implemented to draw graphics.

onSurfaceCreated() Called once when creating the

GLSurfaceView.

Should include all actions to do only once.

onDrawFrame() Called on each redraw of GLSurfaceView.

Do all drawing and redrawing of graphic objects here.

onSurfaceChanged() Called when the geometry of

GLSurfaceView changes, for example size screen or orientation.

Add code to respond to those changes.

Matthias Keil Android and OpenGL 26. Januar 2015 6 / 24

Notizen			

OpenGL Introduction

- Two different OpenGL ES API versions available: 1.0 (together with version $1.1\ \mbox{extensions})$ and 2.0.
- Both usable to create high performance graphics for 3D games and visualizations.
- $\hfill \blacksquare$ Grapic programming for one of the versions differs significantly to programming for the other version.
- lacktriangle Version 1.0/1.1 is easier to use as there are more convenience methods available.
- $lue{}$ Version 2.0 provides higher degree of control, enabling creating of effects that are hard to realize in version 1.0/1.1.

26. Januar 2015 7 / 24 Android and OpenGL

Displaying Graphics

- Shapes are graphic objects to be drawn in OpenGL.
- Shapes are defined using three-dimensional coordinates.
- Coordinates get written into ByteBuffer that is passed into the graphics pipeline for processing.
- $\quad \blacksquare \ \, \mathsf{Coordinate} \,\, \mathsf{format:} \,\, [\mathsf{X},\,\mathsf{Y},\,\mathsf{Z}]$
- Examples: Center of view: [0,0,0], top right corner: [1,1,0], bottom left corner: [-1,-1,0].

		١,		
			ı	
		ľ	•	
U	U			

ıcla	ss Triangle	{				
2 p	rivate Float	Buffer ver	texBu	ffer;		
3 p	ublic Triang	le() {				
4	// initiali	ze vertex	byte 1	buffer for	r shape	
	coordina	ites (4 by	tes pe	r coordin	ate)	
5	ByteBuffer	bb = ByteH	Buffer	. allocatel	Direct(
	triangle	Coords.le	ngth *	4);		
6	// use the	device har	dware	's native	byte	
	order					
7	bb.order(By	teOrder.na	ative0:	rder());		
8	// create a	floating	point	buffer		
9	vertexBuffe	r = bb.asI	loatBu	ıffer();		
10	// add the	coordinate	s to	the Float	Buffer	
11	vertexBuffe	r.put(tria	ngleCo	oords);		
12	// set the	buffer to	read	the first		'π
	coordina	ıte				
13	vertexBuffe	r.position	1(0);			(Ye
14 } }				4 D F 4 B F 4 3	5 (8) 8	10 a C+
	Matthias Keil	Android an	d OpenGL	26	i. Januar 2015	9 / 24

ì	á		Š		
				ĺ	
ľ	ι	ı	Г		

1
44
ir.

Notizen	
Notizen	
Notizeii	
Notizen	
	—

Displaying Graphics Drawing Shapes

REIBURG

Notizen

Notizen

Vertex Shader Contains code for rendering the vertices of a shape.

Fragment Shader Contains code for rendering the face (visible front) of shape with colors or textures.

Program OpenGL ES object containing shaders used.

- At least one vertex shader and one fragment shader needed to draw a shape.
- Both shaders must be compiled and then added to the program.

N

Matthias Keil Android and OpenGL

Displaying Graphics Mapping Coordinates for Drawn Objects University of Freiburg

- Problem: Device screen is no square, but OpenGL assumes thatm.
- The picture shows what happens. Left: How it should look. Right: How it looks in horizontal orientation.
- Solution: Use projection modes and camera views to transform coordinates.

Matthias Keil

4 ロ ト イラ ト イミ ト イミ ト ミ ぞり Q で Android and OpenGL 26. Januar 2015 11 / 24

Displaying Graphics Mapping Coordinates for Drawn Objects

- Create projection matrix and camera view matrix.
- Apply both to the OpenGL rendering pipeline.
- Projection matrix recalculates coordinates of the graphic objects to adjust the screen size.
- Camera view matrix creates transformation that shows object from specific eye position.

		70.		_

		4 D > 4 B/->	485485	E 4)
atthias Keil	Android and OpenGL		26. Januar 2015	12 /

Notizen			

```
Displaying Graphics
Example in OpenGL ES 1.0: Projection Matrix
```

- REIBUR
- Create and use projection matrix in onSurfaceChanged() of the GLSurfaceView.Renderer implementation.
- Use geometry of device seen to recalculate coordinates.

```
ipublic void onSurfaceChanged(GL10 gl, int width
    , int height) {
    gl.glViewport(0, 0, width, height);
    float ratio = (float) width / height;
    // set matrix to projection mode
    gl.glMatrixMode(GL10.GL_PROJECTION);
    // reset the matrix to its default state
    gl.glLoadIdentity();
    // Define and apply the projection matrix
    gl.glFrustumf(-ratio, ratio, -1, 1, 3, 7);
    lo}
```

Matthias Keil Android and OpenGL 26. Januar 2015 13 / 24

UNI FREIBURG

■ Define a projection matrix in terms of six planes.

```
ipublic static void frustumM (float[] m, int
    offset, float left, float right, float
    bottom, float top, float near, float far)
```


Matthias Keil Android and OpenGL 26. Januar 2015 14 / 24

Displaying Graphics Example in OpenGL ES 1.0: Camera Transformation Matrix

- Apply camera view in onDrawFrame() of the GLSurfaceView.Renderer implementation.
- Use GLU.gluLookAt() to create a transformation simulating the camera position.

```
ipublic void onDrawFrame(GL10 gl) {
2    ...
3    // Set GL_MODELVIEW transformation mode
4    gl.glMatrixMode(GL10.GL_MODELVIEW);
5    // reset the matrix to its default state
6    gl.glLoadIdentity();
7    // When using GL_MODELVIEW, you must set the camera view
8    GLU.gluLookAt(gl, 0, 0, -5, 0f, 0f, 0f, 0f, 1.0f, 0.0f);
9    ...
10}
```

Matthias Keil Android and OpenGL 26. Januar 2015 15 / 24

Notizen	
	_
	_
	_
	_
	_
Notizen	
	_
	_
	_
	_
	_

Notizen			

 $\hfill\blacksquare$ Define a transformation in terms of an eye point, a center of view, and an up vector.

```
igluLookAt(GL10 gl, float eyeX, float eyeY,
    float eyeZ, float centerX, float centerY,
    float centerZ, float upX, float upY, float
           upZ)
```


26. Januar 2015 16 / 24

Notizen

Displaying Graphics Example in OpenGL ES 2.0: Steps overvi

- 1 Define a Projection[5].
- Define a Camera View.
- 3 Apply Projection and Camera Transformations on all objects
- Step 1 and 2 very similar to OpenGL ES 1.0.

26. Januar 2015 17 / 24

Notizen

Displaying Graphics
Example in OpenGL ES 2.0: Step 3
University of Freiburg

- Apply Projection and Camera Transformations on all objects to draw.
- Edit *draw* method of a shape:

```
1 public void draw(float[] mvpMatrix) {...
  myphacta, 0,
// Draw the shape
GLES20.glDrawArrays(GLES20.GL_TRIANGLES, 0,
vertexCount);
8
9 }
```

à	b	
		Ш

		 167167	e -74
Matthias Keil	Android and OpenGL	26. Januar 2015	18 / 24

Notizen			

Displaying Graphics

- Rotation can be simply added using OpenGL ES 2.0
- Create rotation matrix and combine it with projection and camera view transformation matrices.
- Extend onDrawFrame method.

26. Januar 2015 19 / 24

Displaying Graphics Adding Motion Example

Notizen

Notizen

```
float[] mRotationMatrix = new float[16];
// Create a rotation transformation for the
triangle long time = SystemClock.uptimeMillis() % 4000
L;
float angle = 0.090f * ((int) time);
Matrix.setRotateM(mRotationMatrix, 0, mAngle,
0, 0, -1.0f);

// Combine the rotation matrix with the projection and camera view
Matrix.multiplyMM(mMVPMatrix, 0,
mRotationMatrix, 0, mMVPMatrix, 0);
// Draw shape
mTriangle.draw(mMVPMatrix);
```


Matthias Keil Android and OpenGL

Touch Screen Interaction

- Can be implemented by overriding the method onTouchEvent(MotionEvent) of the class View.
- *MotionEvent* gives you various information about where the event happened and how.
- Example: long MotionEvent.getDownTime() returns the time in ms when user started to press down.
- Also possible to recover *historical*/old coordinates of the event[3].
- Easy simulation in the emulator possible: Click, hold and move the mouse.

d			Ĺ		
				Ì	
٦	Ü	U	ľ		

		401481481481	€ 990
Matthias Keil	Android and OpenGL	26. Januar 2015	21 / 24

- Class Random can produce a random number_[6].
- Class Sensor is used to access sensors of the cellphone, e.g. the gyroscope[8].
- Class *MediaPlayer* enables playing of sounds_[2].
- Usage: Put a sound file into folder res/raw/.
- Supported file formats include ogg vorbis, wav, mp3 and

1 MediaPlayer mediaPlayer = MediaPlayer.create(context, R.raw.soundfile);
2mediaPlayer.start();

26. Januar 2015 22 / 24 Android and OpenGL

Summary

- Drawing with OpenGL takes place on GLSurfaceView.
- GLSurfaceView.Renderer is responsile to draw the shapes.
- Important to decide which OpenGL ES version to take.
- Shapes are defined using three-dimensional coordinates.
- Different shaders needed to draw a shape.
- Projection matrix is used to adjust graphics to the device screen.
- Camera transformation matrix is used to simulate a camera position.
- Rotation motion can be added using an additional matrix.
- \blacksquare Touch screen interaction can be implemented overriding $method\ \textit{on}\ \textit{TouchEvent}.$

	401401	421421	₹ 900
Android and OpenGL		26. Januar 2015	23 / 24

Notizen

Notizen

Bibliography

Matthias Keil

ANDROID DEVELOPERS.
Mapping Coordinates for Drawn Objects.
http://developer.android.com/guide/
ANDROID DEVELOPERS.
Media Playback.
http://developer.android.com/guide/
ANDROID DEVELOPERS.
MotionEvent.
http://developer.android.com/refere

Android Developers.

OpenGL.

http://developer.andr

Android Developers.

OpenGL ES 2.0: Applying Projection and Camera Views http://developer.android.com/training/graphics/

Android Developers.

Random.
http://developer.android.com/reference/java/util/Random.html

Android Developers.

Using the Gyroscope.

Matthias Keil Android and OpenGL 26. Januar 2015 24 / 24

N	otizen
I V	Otizeii