Teoría de la Computación 2022

Lab 02

20.julio.2022

- 1. Construya autómatas finitos no-deterministas (AFN) para los siguientes lenguajes sobre $\Sigma = \{0, 1\}$:
 - i) Cadenas con un 1 en la penúltima posición.
 - ii) Cadenas que contengan (al menos) dos 0's consecutivos o dos 1's consecutivos,
- 2. Construir un autómata finito (determinista o no-determinista) para las cadenas binarias tales que la diferencia (absoluta) entre el número de ceros y de unos no es múltiplo de 3.
- 3. Para cada uno de los autómatas AFN construidos en el Ejercicio 1, construir su AFD equivalente, describiendo de manera formal cada una de sus componentes.
- 4. Usar el algoritmo de McNaughton-Yamada-Thompson para producir autómatas finitos no-deterministas, para cada una de las siguientes expresiones regulares.
 - i) (0|1)*11(0|1)*
 - ii) $a(a \cup ab^*)^*$
 - iii) $a^*b^*c^*$
 - iv) El lenguaje de las cadenas sobre $\Sigma = \{0, 1, 2\}$ que comienzan con 0 y terminan con 2.
- 5. Convertir los AFN del ejercicio anterior a AFD.
- 6. La siguiente figura muestra un ε -AFN que acepta números decimales (con representación finita). En este caso, tenemos

 $M=(K,\Sigma,\delta,s,F)$, con $\Sigma=\{0,1,\ldots,9,.,+,-,\varepsilon\}$, $K=\{q_0,q_1,\ldots,q_5\}$, $s=q_0$, $F=\{q_5\}$. La tabla de transición se resume como.

- (a) Convertir el autómata anterior a su AFD equivalente.
- (b) Implementar en Python el autómata finito determinista. Para ello, debe implementar funciones que hagan lo siguiente:
 - $transition(q, a, \delta)$ la cual devuelve el valor de la transición $\delta(q, a)$, para un estado $q \in K$ y un símbolo $a \in \Sigma$.
 - final_state (q, w, δ) la cual devuelve el estado q obtenido por el autómata después de terminar de leer la cadena $w \in \Sigma^*$.

- $derivation(q, w, \delta)$ la cual derivación de la cadena $w \in \Sigma^*$ desde el estado $q \in K$, esto es, la secuencia ordenada de transiciones obtenidas.
- $accepted(q, w, F, \delta)$ la cual devuelve verdadero si la cadena $w \in \Sigma^*$ es aceptada por el autómata partiendo desde el estado s; y falso en caso contrario.
- (c) Mostrar el resultado de la función derivation para las siguientes cadenas:
 - \bullet +0.1234567
 - 1.61 8081
 - 2022.3.3.3