

Algebra Relazionale

Argomenti

- **≻**Introduzione
- ➤ Selezione e proiezione
- ➤ Prodotto cartesiano e join
- ➤ Natural join, theta-join e semi-join
- **≻**Outer join
- ➤ Unione e intersezione
- ➤ Differenza e antijoin
- ➤ Divisione e altri operatori

Introduzione

Algebra Relazionale

Algebra relazionale

- Estende l'algebra degli insiemi per il modello relazionale
- Definisce un insieme di operatori che operano su relazioni e producono come risultato una relazione
- Gode della proprietà di chiusura
 - il risultato di qualunque operazione algebrica su relazioni è a sua volta una relazione

Operatori dell'algebra relazionale

- Operatori unari
 - selezione (σ)
 - proiezione (π)
- Operatori binari
 - prodotto cartesiano (×)
 - join ([™])
 - unione (∪)
 - intersezione (∩)
 - differenza (-)
 - divisione (/)

- Operatori insiemistici
 - unione (*∪*)
 - intersezione (∩)
 - differenza (-)
 - prodotto cartesiano (x)
- Operatori relazionali
 - selezione (σ)
 - proiezione (π)
 - join (⋈)
 - divisione (/)

Relazioni d'esempio

Corsi

<u>Codice</u>	NomeCorso	Semestre	MatrDocente
M2170	Informatica 1	1	D102
M4880	Sistemi digitali	2	D104
F1401	Elettronica	1	D104
F0410	Basi di dati	2	D102

Docenti

<u>MatrDocente</u>	NomeDoc	Dipartimento
D102	Verdi	Informatica
D105	Neri	Informatica
D104	Bianchi	Elettronica

Selezione e proiezione

Algebra Relazionale

Selezione

- La selezione estrae un sottoinsieme "orizzontale" della relazione
 - opera una decomposizione orizzontale della relazione

Selezione: esempio

• Trovare i corsi tenuti nel secondo semestre

Corsi

<u>Codice</u>	NomeCorso	Semestre	MatrDocente
M2170	Informatica 1	1	D102
M4880	Sistemi digitali	2	D104
F1401	Elettronica	1	D104
F0410	Basi di dati	2	D102

<u>Codice</u>	NomeCorso	Semestre	MatrDocente
M4880	Sistemi digitali	2	D104
F0410	Basi di dati	2	D102

Selezione: definizione

$$R = \sigma_p A$$

- L'operatore selezione σ_p genera una relazione R
 - avente lo stesso schema di A
 - contenente tutte le tuple della relazione A per cui è vero il predicato p
- Il predicato p è un'espressione booleana (operatori ∧,∨,¬) di espressioni di confronto tra attributi o tra attributi e costanti. Esempi:
 - p: Città='Torino' ∧ Età > 18
 - p: DataRestituzione > DataConsegna + 10

Selezione: esempio

• Trovare i corsi tenuti nel secondo semestre

$$R = \sigma_{Semestre=2} Corsi$$

Corsi

<u>Codice</u>	NomeCorso	Semestre	MatrDocente	
M2170	Informatica 1	1	D102	
M4880	Sistemi digitali	2	D104	
F1401	Elettronica	1	D104	
F0410	Basi di dati	2	D102	

	<u>Codice</u>	NomeCorso	Semestre	MatrDocente
\	M4880	Sistemi digitali	2	D104
	F0410	Basi di dati	2	D102

Proiezione

- La proiezione estrae un sottoinsieme "verticale" della relazione
 - opera una decomposizione verticale della relazione

Proiezione: esempio (n. 1)

• Trovare il nome dei docenti

Docenti

<u>MatrDocente</u>	NomeDoc	Dipartimento
D102	Verdi	Informatica
D105	Neri	Informatica
D104	Bianchi	Elettronica

Proiezione: definizione

$$R = \pi_L A$$

- L'operatore proiezione π_{l} genera una relazione R
 - avente come schema la lista di attributi L (sottoinsieme dello schema di A)
 - contenente tutte le tuple presenti in A
- Sono eliminati gli eventuali duplicati dovuti all'esclusione degli attributi non in L
 - se L include una chiave candidata, non vi sono duplicati

Proiezione: esempio (n. 1)

• Trovare il nome dei docenti

$$R = \pi_{NomeDoc}Docenti$$

Docenti

<u>MatrDocente</u>	NomeDoc	Dipartimento
D102	Verdi	Informatica
D105	Neri	Informatica
D104	Bianchi	Elettronica

NomeDoc

Verdi

Neri

Bianchi

Proiezione: esempio (n. 2)

• Trovare i nomi dei dipartimenti in cui è presente almeno un docente

$$R = \pi_{Dipartimento} Docenti$$

Docenti

<u>MatrDocente</u>	NomeDoc	Dipartimento
D102	Verdi	Informatica
D105	Neri	Informatica
D104	Bianchi	Elettronica

R

Dipartimento
Informatica
Elettronica

Selezione+proiezione: esempio

• Selezionare il nome dei corsi nel secondo semestre

Corsi

<u>Codice</u>	NomeCorso	Semestre	MatrDocente
M2170	Informatica 1	1	D102
M4880	Sistemi digitali	2	D104
F1401	Elettronica	1	D104
F0410	Basi di dati	2	D102

Selezione

NomeCorso	Semestre	MatrDocente
Sistemi digitali	2	D104
Basi di dati	2	D102
	Sistemi digitali	Sistemi digitali 2

NomeCorso

Sistemi digitali

Basi di dati

Selezione+proiezione: esempio

• Selezionare il nome dei corsi nel secondo semestre

Corsi

<u>Codice</u>	NomeCorso	Semestre	MatrDocente
M2170	Informatica 1	1	D102
M4880	Sistemi digitali	2	D104
F1401	Elettronica	1	D104
F0410	Basi di dati	2	D102

Selezione

Codice	NomeCorso	Semestre	MatrDocente
M4880	Sistemi digitali	2	D104
F0410	Basi di dati	2	D102

NomeCorso
Sistemi digitali
Basi di dati

Selezione+proiezione: <u>SOLUZIONE ERRATA</u>

• Trovare il nome dei corsi nel secondo semestre

Selezione+proiezione: SOLUZIONE ERRATA

• Trovare il nome dei corsi nel secondo semestre

Corsi

<u>Codice</u>	NomeCorso	Semestre	MatrDocente
M2170	Informatica 1	1	D102
M4880	Sistemi digitali	2	D104
F1401	Elettronica	1	D104
F0410	Basi di dati	2	D102

Proiezione

NomeCorso

Informatica 1

Sistemi digitali

Elettronica

Basi di dati

<u>L'attributo Semestre non è incluso nello schema della</u> <u>relazione risultante:</u> non si può eseguire la successiva operazione di selezione

Prodotto cartesiano e join

Algebra Relazionale

Prodotto cartesiano

• Il prodotto cartesiano di due relazioni A e B genera tutte le coppie formate da una tupla di A e una tupla di B

• Trovare il prodotto cartesiano tra Corsi e Docenti

Corsi

<u>Codice</u>	NomeCorso	Semestre	MatrDocente
M2170	Informatica 1	1	D102
M4880	Sistemi digitali	2	D104
F1401	Elettronica	1	D104
F0410	Basi di dati	2	D102

Docenti

<u>MatrDocente</u>	NomeDoc	Dipartimento
D102	Verdi	Informatica
D105	Neri	Informatica
D104	Bianchi	Elettronica

Corsi. Codice	Corsi. NomeCorso	Corsi. Semestre	Corsi. MatrDocente	Docenti. MatrDocente	Docenti. NomeDoc	Docenti. Dipartimento
M2170	Informatica 1	1	D102	D102	Verdi	Informatica
M2170	Informatica 1	1	D102	D105	Neri	Informatica
M2170	Informatica 1	1	D102	D104	Bianchi	Elettronica

Corsi.	Corsi. NomeCorso	Corsi. Semestre	Corsi. MatrDocente	Docenti. MatrDocente	Docenti. NomeDoc	Docenti. Dipartimento
M2170	Informatica 1	1	D102	D102	Verdi	Informatica
M2170	Informatica 1	1	D102	D105	Neri	Informatica
M2170	Informatica 1	1	D102	D104	Bianchi	Elettronica
M4880	Sistemi digitali	2	D104	D102	Verdi	Informatica
M4880	Sistemi digitali	2	D104	D105	Neri	Informatica
M4880	Sistemi digitali	2	D104	D104	Bianchi	Elettronica

Corsi.	Corsi. NomeCorso	Corsi. Semestre	Corsi. MatrDocente	Docenti. MatrDocente	Docenti. NomeDoc	Docenti. Dipartimento
M2170	Informatica 1	1	D102	D102	Verdi	Informatica
M2170	Informatica 1	1	D102	D105	Neri	Informatica
M2170	Informatica 1	1	D102	D104	Bianchi	Elettronica
M4880	Sistemi digitali	2	D104	D102	Verdi	Informatica
M4880	Sistemi digitali	2	D104	D105	Neri	Informatica
M4880	Sistemi digitali	2	D104	D104	Bianchi	Elettronica
F1401	Elettronica	1	D104	D102	Verdi	Informatica
F1401	Elettronica	1	D104	D105	Neri	Informatica
F1401	Elettronica	1	D104	D104	Bianchi	Elettronica
F0410	Basi di dati	2	D102	D102	Verdi	Informatica
F0410	Basi di dati	2	D102	D105	Neri	Informatica
F0410	Basi di dati	2	D102	D104	Bianchi	Elettronica

Prodotto cartesiano: definizione e proprietà

$$R = A \times B$$

- Il prodotto cartesiano di due relazioni A e B genera una relazione R
 - avente come schema l'unione degli schemi di A e di B
 - contenente tutte le coppie formate da una tupla di A e una tupla di B
- Il prodotto cartesiano è
 - commutativo
 - $A \times B = B \times A$
 - associativo
 - $(A \times B) \times C = A \times (B \times C)$

• Trovare il prodotto cartesiano tra Corsi e Docenti

$$R = Corsi \times Docenti$$

Legame tra attributi

Corsi. Codice	Corsi. NomeCorso	Corsi. Semestre	Corsi. MatrDocente	Docenti. MatrDocente	Docenti. NomeDoc	Docenti. Dipartimento
M2170	Informatica 1	1	D102	D102	Verdi	Informatica
M2170	Informatica 1	1	D102	D105	Neri	Informatica
M2170	Informatica 1	1	D102	D104	Bianchi	Elettronica
M4880	Sistemi digitali	2	D104	D102	Verdi	Informatica
M4880	Sistemi digitali	2	D104	D105	Neri	Informatica
M4880	Sistemi digitali	2	D104	D104	Bianchi	Elettronica
F1401	Elettronica	1	D104	D102	Verdi	Informatica
F1401	Elettronica	1	D104	D105	Neri	Informatica
F1401	Elettronica	1	D104	D104	Bianchi	Elettronica
F0410	Basi di dati	2	D102	D102	Verdi	Informatica
F0410	Basi di dati	2	D102	D105	Neri	Informatica
F0410	Basi di dati	2	D102	D104	Bianchi	Elettronica

Join

• Il join di due relazioni A e B genera tutte le coppie formate da una tupla di A e una tupla di B "semanticamente legate"

Join: esempio

• Trovare le informazioni sui corsi e sui docenti che li tengono

Corsi

<u>Codice</u>	NomeCorso	Semestre	MatrDocente
M2170	Informatica 1	1	D102
M4880	Sistemi digitali	2	D104
F1401	Elettronica	1	D104
F0410	Basi di dati	2	D102

Docenti

<u>MatrDocente</u>	NomeDoc	Dipartimento
D102	Verdi	Informatica
D105	Neri	Informatica
D104	Bianchi	Elettronica

Join: esempio

Corsi. Codice	Corsi. NomeCorso	Corsi. Semestre	Corsi. MatrDocente	Docenti. MatrDocente	Docenti. NomeDoc	Docenti. Dipartimento
M2170	Informatica 1	1	D102	D102	Verdi	Informatica
M2170	Informatica 1	1	D102	D105	Neri	Informatica
M2170	Informatica 1	1	D102	D104	Bianchi	Elettronica
M4880	Sistemi digitali	2	D104	D102	Verdi	Informatica
M4880	Sistemi digitali	2	D104	D105	Neri	Informatica
M4880	Sistemi digitali	2	D104	D104	Bianchi	Elettronica
F1401	Elettronica	1	D104	D102	Verdi	Informatica
F1401	Elettronica	1	D104	D105	Neri	Informatica
F1401	Elettronica	1	D104	D104	Bianchi	Elettronica
F0410	Basi di dati	2	D102	D102	Verdi	Informatica
F0410	Basi di dati	2	D102	D105	Neri	Informatica
F0410	Basi di dati	2	D102	D104	Bianchi	Elettronica

Join: esempio

R

Corsi. Codice	Corsi. NomeCorso	Corsi. Semestre	Corsi. MatrDocente	Docenti. MatrDocente	Docenti. NomeDoc	Docenti. Dipartimento
M2170	Informatica 1	1	D102	D102	Verdi	Informatica
M4880	Sistemi digitali	2	D104	D104	Bianchi	Elettronica
F1401	Elettronica	1	D104	D104	Bianchi	Elettronica
F0410	Basi di dati	2	D102	D102	Verdi	Informatica

• Nota bene: il docente (D105,Neri,Informatica), che non tiene alcun corso, non compare nel risultato del join

Join: definizione

- Il join è un operatore derivato
 - può essere espresso utilizzando gli operatori \times , $\sigma_{\rm p}$, $\pi_{\rm L}$
- Il join è definito separatamente perché esprime sinteticamente molte operazioni ricorrenti nelle interrogazioni
- Esistono diversi tipi di join
 - natural join
 - theta-join (e il suo sottocaso equi-join)
 - semi-join

Natural join, theta-join, semi-join

Algebra Relazionale

Natural join: definizione e proprietà

$$R = A \bowtie B$$

- Il natural join di due relazioni A e B genera una relazione R
 - avente come schema
 - gli attributi presenti nello schema di A e non presenti nello schema di B
 - gli attributi presenti nello schema di B e non presenti nello schema di A
 - una sola copia degli attributi comuni (con lo stesso nome nello schema di A e di B)
 - contenente tutte le coppie costituite da una tupla di A e una tupla di B per cui il valore degli attributi comuni è uguale
 - Il natural join è commutativo e associativo

Natural join: esempio

• Trovare le informazioni sui corsi e sui docenti che li tengono

R = Corsi ⋈ Docenti

_	_
ı	_
L	_
Г	┪.
	•

Corsi.	Corsi. NomeCorso	Corsi. Semestre	Corsi. MatrDocente	Docenti. NomeDoc	Docenti. Dipartimento
M2170	Informatica 1	1	D102	Verdi	Informatica
M4880	Sistemi digitali	2	D104	Bianchi	Elettronica
F1401	Elettronica	1	D104	Bianchi	Elettronica
F0410	Basi di dati	2	D102	Verdi	Informatica

Nota bene: l'attributo comune MatrDocente è presente una volta sola nello schema della relazione risultante R

Theta-join: definizione e proprietà

$$R = A \bowtie_p B$$

- Il theta-join di due relazioni A e B genera tutte le coppie formate da una tupla di A e una tupla di B che soddisfano una generica "condizione di legame"
- Il theta-join di due relazioni A e B genera una relazione R
 - avente come schema l'unione degli schemi di A e di B
 - contenente tutte le coppie costituite da una tupla di A e una tupla di B per cui è vero il predicato p
- Il predicato p è nella forma $X \theta Y$
 - X è un attributo di A, Y è un attributo di B
 - θ è un operatore di confronto compatibile con i domini di X e di Y
- Il theta-join è commutativo e associativo

Equi-join: definizione

$$R = A \bowtie_p B$$

- Equi-join
 - caso particolare del theta-join in cui θ è l'operatore di uguaglianza (=)

• Trovare la matricola dei docenti che sono titolari di almeno due corsi

Corsi C1

<u>Codice</u>	NomeCorso	Semestre	MatrDocente
M2170	Informatica 1	1	D102
M4880	Sistemi digitali	2	D104
F1401	Elettronica	1	D104
F0410	Basi di dati	2	D102

Corsi C2

<u>Codice</u>	NomeCorso	Semestre	MatrDocente
M2170	Informatica 1	1	D102
M4880	Sistemi digitali	2	D104
F1401	Elettronica	1	D104
F0410	Basi di dati	2	D102

Trovare la matricola dei docenti che sono titolari di almeno due corsi

∧ C1.Codice<>C2.Codice

Corsi C1. Codice	Corsi C1. NomeCorso	Corsi C1. Semestre	Corsi C1. MatrDocente	Corsi C2. Codice	Corsi C2. NomeCorso	Corsi C2. Semestre	Corsi C2. MatrDocente	
M2170	Informatica 1	1	D102	M2170	Informatica 1	1	D102	
M2170	Informatica 1	1	D102	M4880	Sistemi digitali	2	D104	
M2170	Informatica 1	1	D102	F1401	Elettronica	1	D104	
M2170	Informatica 1	1	D102	F0410	Basi di dati	2	D102	
M4880	Sistemi digitali	2	D104	M2170	Informatica 1	1	D102	
M4880	Sistemi digitali	2	D104	M4880	Sistemi digitali	2	D104	
M4880	Sistemi digitali	2	D104	F1401	Elettronica	1	D104	
M4880	Sistemi digitali	2	D104	F0410	Basi di dati	2	D102	
F1401	Elettronica	1	D104	M2170	Informatica 1	1	D102	
F1401	Elettronica	1	D104	M4880	Sistemi digitali	2	D104	
F1401	Elettronica	1	D104	F1401	Elettronica	1	D104	
F1401	Elettronica	1	D104	F0410	Basi di dati	2	D102	
F0410	Basi di dati	2	D102	M2170	Informatica 1	1	D102	
F0410	Basi di dati	2	D102	M4880	Sistemi digitali	2	D104	
F0410	Basi di dati	2	D102	F1401	Elettronica	1	D104	
F0410	Basi di dati	2	D102	F0410	Basi di dati	2	D102	

Corsi C1. Codice	Corsi C1. NomeCorso	Corsi C1. Semestre	Corsi C1. MatrDocente	Corsi C2. Codice	Corsi C2. NomeCorso	Corsi C2. Semestre	Corsi C2. MatrDocente
M2170	Informatica 1	1	D102	F0410	Basi di dati	2	D102
M4880	Sistemi digitali	2	D104	F1401	Elettronica	1	D104
F1401	Elettronica	1	D104	M4880	Sistemi digitali	2	D104
F0410	Basi di dati	2	D102	M2170	Informatica 1	1	D102

Proiezione

Corsi C1.
MatrDocente

D104

Semi-join: definizione e proprietà

$$R = A \bowtie_p B$$

- Il semi-join di due relazioni A e B seleziona tutte le tuple di A "semanticamente legate" ad almeno una tupla di B
 - le informazioni di B non compaiono nel risultato
- Il semi-join di due relazioni A e B genera una relazione R
 - avente lo stesso schema di A
 - contenente tutte le tuple di A per cui è vero il predicato specificato da p
- Il predicato p è espresso nella stessa forma del theta-join (confronto tra attributi di A e di B)

Semi-join: definizione e proprietà

 Il semi-join può essere espresso in funzione del theta-join

$$A \bowtie_{p} B = \pi_{schema(A)}(A \bowtie_{p} B)$$

Il semi-join non gode della proprietà commutativa

• Trovare le informazioni relative ai docenti titolari di almeno un corso

Docenti

<u>MatrDocente</u>	NomeDoc	Dipartimento
D102	Verdi	Informatica
D105	Neri	Informatica
D104	Bianchi	Elettronica

Corsi

<u>Codice</u>	NomeCorso	Semestre	MatrDocente
M2170	Informatica 1	1	D102
M4880	Sistemi digitali	2	D104
F1401	Elettronica	1	D104
F0410	Basi di dati	2	D102

Docenti. MatrDocente	Docenti. NomeDoc	Docenti. Dipartimento	Corsi. Codice	Corsi. NomeCorso	Corsi. Semestre	Corsi. MatrDocente
D102	Verdi	Informatica	M2170	Informatica 1	1	D102
D102	Verdi	Informatica	M4880	Sistemi digitali	2	D104
D102	Verdi	Informatica	F1401	Elettronica	1	D104
D102	Verdi	Informatica	F0410	Basi di dati	2	D102
D105	Neri	Informatica	M2170	Informatica 1	1	D102
D105	Neri	Informatica	M4880	Sistemi digitali	2	D104
D105	Neri	Informatica	F1401	Elettronica	1	D104
D105	Neri	Informatica	F0410	Basi di dati	2	D102
D104	Bianchi	Elettronica	M2170	Informatica 1	1	D102
D104	Bianchi	Elettronica	M4880	Sistemi digitali	2	D104
D104	Bianchi	Elettronica	F1401	Elettronica	1	D104
D104	Bianchi	Elettronica	F0410	Basi di dati	2	D102

Docenti. MatrDocente	Docenti. NomeDoc	Docenti. Dipartimento	Corsi. Codice	Corsi. NomeCorso	Corsi. Semestre	Corsi. MatrDocente
D102	Verdi	Informatica	M2170	Informatica 1	1	D102
D102	Verdi	Informatica	F0410	Basi di dati	2	D102
D104	Bianchi	Elettronica	M4880	Sistemi digitali	2	D104
D104	Bianchi	Elettronica	F1401	Elettronica	1	D104

Docenti. MatrDocente	Docenti. NomeDoc	Docenti. Dipartimento
D102	Verdi	Informatica
D104	Bianchi	Elettronica

• Trovare le informazioni relative ai docenti titolari di almeno un corso

p: Docenti.MatrDocente=Corsi.MatrDocente

Docenti.	Docenti.	Docenti.
MatrDocente	NomeDoc	Dipartimento
D102	Verdi	Informatica
D104	Bianchi	Elettronica

Outer-join

Algebra Relazionale

Outer-join

- Variante del join che permette di conservare l'informazione relativa alle tuple non semanticamente legate dal predicato di join
 - completa con valori nulli le tuple prive di controparte
- Esistono tre tipi di outer-join
 - left: sono completate solo le tuple del primo operando
 - right: sono completate solo le tuple del secondo operando
 - full: sono completate le tuple di entrambi gli operandi

Left outer-join

- Il left outer-join di due relazioni A e B genera le coppie formate da
 - una tupla di A e una di B "semanticamente legate"

+

 una tupla di A "non semanticamente legata" a tuple di B completata con valori nulli per tutti gli attributi di B

• Trovare le informazioni sui docenti e sui corsi che tengono

Docenti

<u>MatrDocente</u>	NomeDoc	Dipartimento
D102	Verdi	Informatica
D105	Neri	Informatica
D104	Bianchi	Elettronica

Corsi

<u>Codice</u>	NomeCorso	Semestre	MatrDocente
M2170	Informatica 1	1	D102
M4880	Sistemi digitali	2	D104
F1401	Elettronica	1	D104
F0410	Basi di dati	2	D102

Docenti.	Docenti.	Docenti.	Corsi.	Corsi.	Corsi.	Corsi.
MatrDocente	NomeDoc	Dipartimento	Codice	NomeCorso	Semestre	MatrDocente
D102	Verdi	Informatica	M2170	Informatica 1	1	D102
D102	Verdi	Informatica	F0410	Basi di dati	2	D102
D104	Bianchi	Elettronica	M4880	Sistemi digitali	2	D104
D104	Bianchi	Elettronica	F1401	Elettronica	1	D104

R Docenti. Docenti. Corsi. Corsi. Corsi. Corsi. Docenti. NomeCorso MatrDocente MatrDocente NomeDoc Dipartimento Codice Semestre M2170 D102 D102 Verdi Informatica Informatica 1 D102 D102 Verdi Informatica F0410 Basi di dati D104 M4880 Sistemi digitali D104 Bianchi Elettronica D104 Bianchi Elettronica F1401 Elettronica D104 D105 Neri *Informatica* null null null null

Left outer-join: definizione e proprietà

$$R = A \gg_p B$$

- Il left outer-join di due relazioni A e B genera una relazione R
 - avente come schema l'unione degli schemi di A e di B
 - contenente le coppie formate da
 - una tupla di A e una tupla di B per cui è vero il predicato p
 - una tupla di A che non è correlata mediante il predicato p a tuple di B completata con valori nulli per tutti gli attributi di B
- Il left outer-join *non è* commutativo

• Trovare le informazioni sui docenti e sui corsi che tengono

p: Docenti.MatrDocente=Corsi.MatrDocente

Docenti. MatrDocente	Docenti. NomeDoc	Docenti. Dipartimento	Corsi.	Corsi. NomeCorso	Corsi. Semestre	Corsi. MatrDocente
D102	Verdi	Informatica	M2170	Informatica 1	1	D102
D102	Verdi	Informatica	F0410	Basi di dati	2	D102
D104	Bianchi	Elettronica	M4880	Sistemi digitali	2	D104
D104	Bianchi	Elettronica	F1401	Elettronica	1	D104
D105	Neri	Informatica	null	null	null	null

Right outer-join: definizione e proprietà

$$R = A \bowtie_{p} B$$

- Il right outer-join di due relazioni A e B genera una relazione R
 - avente come schema l'unione degli schemi di A e di B
 - contenente le coppie formate da
 - una tupla di A e una tupla di B per cui è vero il predicato p
 - una tupla di B che non è correlata mediante il predicato p a tuple di A completata con valori nulli per tutti gli attributi di A
- Il right outer-join non è commutativo

Full outer-join: definizione e proprietà

$$R = A \bowtie_p B$$

- Il full outer-join di due relazioni A e B genera una relazione R
 - avente come schema l'unione degli schemi di A e di B
 - contenente le coppie formate da
 - una tupla di A e una tupla di B per cui è vero il predicato p
 - una tupla di A che non è correlata mediante il predicato p a tuple di B completata con valori nulli per tutti gli attributi di B
 - una tupla di B che non è correlata mediante il predicato p a tuple di A completata con valori nulli per tutti gli attributi di A
 - Il full outer-join è commutativo

Unione e intersezione

Algebra Relazionale

Unione

• L'unione di due relazioni A e B seleziona tutte le tuple presenti in almeno una delle due relazioni

Unione: esempio

• Trovare le informazioni relative ai docenti dei corsi di laurea o di master

DocentiLaurea

<u>MatrDocente</u>	NomeDoc	Dipartimento
D102	Verdi	Informatica
D105	Neri	Informatica
D104	Bianchi	Elettronica

DocentiMaster

<u>MatrDocente</u>	NomeDoc	Dipartimento
D102	Verdi	Informatica
D101	Rossi	Elettrica

Unione: esempio

• Trovare le informazioni relative ai docenti dei corsi di laurea o di master

DocentiLaurea

<u>MatrDocente</u>	NomeDoc	Dipartimento
D102	Verdi	Informatica
D105	Neri	Informatica
D104	Bianchi	Elettronica

<u>MatrDocente</u>	NomeDoc	Dipartimento
D102	Verdi	Informatica
D101	Rossi	Elettrica

<u>MatrDocente</u>	NomeDoc	Dipartimento
D102	Verdi	Informatica
D105	Neri	Informatica
D104	Bianchi	Elettronica
D101	Rossi	Elettrica

• Nota bene: i duplicati sono eliminati

Unione: definizione e proprietà

$$R = A \cup B$$

- L'unione di due relazioni A e B genera una relazione R
 - avente lo stesso schema di A e B
 - contenente tutte le tuple appartenenti ad A e tutte le tuple appartenenti a B (o a entrambi)
- Compatibilità
 - le relazioni A e B devono avere lo stesso schema (numero e tipo degli attributi)
- Le tuple duplicate sono eliminate
- L'unione è commutativa e associativa

Unione: esempio

• Trovare le informazioni relative ai docenti dei corsi di laurea o di master

R = DocentiLaurea \cup DocentiMaster

MatrDocente	NomeDoc	Dipartimento
D102	Verdi	Informatica
D105	Neri	Informatica
D104	Bianchi	Elettronica
D101	Rossi	Elettrica

Intersezione

• L'intersezione di due relazioni A e B seleziona tutte le tuple presenti in entrambe le relazioni

Intersezione: esempio

 Trovare le informazioni relative ai docenti sia di corsi di laurea, sia di master

DocentiLaurea

<u>MatrDocente</u>	NomeDoc	Dipartimento
D102	Verdi	Informatica
D105	Neri	Informatica
D104	Bianchi	Elettronica

DocentiMaster

<u>MatrDocente</u>	NomeDoc	Dipartimento
D102	Verdi	Informatica
D101	Rossi	Elettrica

MatrDocente	NomeDoc	Dipartimento
D102	Verdi	Informatica

Intersezione: definizione e proprietà

$$R = A \cap B$$

- L'intersezione di due relazioni A e B genera una relazione R
 - avente lo stesso schema di A e B
 - contenente tutte le tuple appartenenti sia ad A sia a B
- Compatibilità
 - le relazioni A e B devono avere lo stesso schema (numero e tipo degli attributi)
- L'intersezione è commutativa e associativa

Intersezione: esempio

• Trovare le informazioni relative ai docenti sia di corsi di laurea, sia di master

R = DocentiLaurea ∩ DocentiMaster

MatrDocente	NomeDoc	Dipartimento
D102	Verdi	Informatica

Differenza e anti-join

Algebra Relazionale

Differenza

• La differenza di due relazioni A e B seleziona tutte le tuple presenti esclusivamente in A

Differenza: esempio (n.1)

• Trovare i docenti di corsi di laurea ma non di master

DocentiLaurea

<u>MatrDocente</u>	NomeDoc	Dipartimento
D102	Verdi	Informatica
D105	Neri	Informatica
D104	Bianchi	Elettronica

DocentiMaster

<u>MatrDocente</u>	NomeDoc	Dipartimento
D102	Verdi	Informatica
D101	Rossi	Elettrica

MatrDocente	NomeDoc	Dipartimento
D105	Neri	Informatica
D104	Bianchi	Elettronica

Differenza: definizione e proprietà

$$R = A - B$$

- La differenza di due relazioni A e B genera una relazione R
 - avente lo stesso schema di A e di B
 - contenente tutte le tuple appartenenti ad A che non appartengono a B
- Compatibilità
 - le relazioni A e B devono avere lo stesso schema (numero e tipo degli attributi)
- La differenza non gode né della proprietà commutativa, né della proprietà associativa

Differenza: esempio (n.1)

• Trovare i docenti di corsi di laurea ma non di master

R = DocentiLaurea - DocentiMaster

R	MatrDocente	NomeDoc	Dipartimento
	D105	Neri	Informatica
	D104	Bianchi	Elettronica

Differenza: esempio (n. 2)

Trovare i docenti di corsi di master ma non di laurea

R = DocentiMaster - DocentiLaurea

DocentiMaster

<u>MatrDocente</u>	NomeDoc	Dipartimento
D102	Verdi	Informatica
D101	Rossi	Elettrica

DocentiLaurea

<u>MatrDocente</u>	NomeDoc	Dipartimento
D102	Verdi	Informatica
D105	Neri	Informatica
D104	Bianchi	Elettronica

MatrDocente	NomeDoc	Dipartimento
D101	Rossi	Elettrica

Differenza: esempio (n. 3)

• Trovare Matricola, Nome e Dipartimento dei docenti che non tengono corsi

Proiezione Matricole dei docenti

Corsi

<u>Codice</u>	NomeCorso	Semestre	MatrDocente
M2170	Informatica 1	1	D102
M4880	Sistemi digitali	2	D104
F1401	Elettronica	1	D104
F0410	Basi di dati	2	D102

Proiezione

Matricole dei docenti che tengono almeno un corso

Differenza: esempio (n. 3)

MatrDocente

D102

D105

D104

MatrDocente

D102

D104

Differenza

MatrDocente

D105

Docenti

<u>MatrDocente</u>	NomeDoc	Dipartimento
D102	Verdi	Informatica
D105	Neri	Informatica
D104	Bianchi	Elettronica

MatrDocente	NomeDoc	Dipartimento
D105	Neri	Informatica

Differenza: esempio (n. 3)

• Trovare Matricola, Nome e Dipartimento dei docenti che non tengono corsi

R = Docenti
$$\bowtie$$
 (($\pi_{MatrDocente}$ Docenti) $-$ ($\pi_{MatrDocente}$ Corsi))

Anti-join: definizione e proprietà

$$R = A _{p} B$$

- L'anti-join tra due relazioni A e B seleziona tutte le tuple di A "semanticamente non legate" a tuple di B
 - le informazioni di B non compaiono nel risultato
- L'anti-join di due relazioni A e B genera una relazione R
 - avente lo stesso schema di A
 - contenente tutte le tuple di A per cui non esiste nessuna tupla in B per cui è vero il predicato p
- Il predicato p è espresso nella stessa forma del theta-join e del semi-join
- L'anti-join non gode né della proprietà commutativa, né della proprietà associativa

Anti-join: esempio

• Trovare Matricola, Nome e Dipartimento dei docenti che non tengono corsi

Docenti

<u>MatrDocente</u>	NomeDoc	Dipartimento
D102	Verdi	Informatica
D105	Neri	Informatica
D104	Bianchi	Elettronica

Corsi

<u>Codice</u>	NomeCorso	Semestre	MatrDocente
M2170	Informatica 1	1	D102
M4880	Sistemi digitali	2	D104
F1401	Elettronica	1	D104
F0410	Basi di dati	2	D102

MatrDocente	NomeDoc	Dipartimento
D105	Neri	Informatica

Anti-join: esempio

• Trovare Matricola, Nome e Dipartimento dei docenti che non tengono corsi

R = Docenti
$$\overline{\triangleright}_p$$
Corsi

p: Docenti.MatrDocente=Corsi.MatrDocente

MatrDocente	NomeDoc	Dipartimento
D105	Neri	Informatica

Divisione e altri operatori

Algebra Relazionale

<u>MatrStudente</u>	<u>CodCorso</u>
S1	C1
S1	C2
S1	C3
S1	C4
S1	C5
S1	C6
S2	C1
S2	C2
S3	C2
S4	C2
S4	C4
S4	C5

<u>MatrStudente</u>	<u>CodCorso</u>		<u>CodCorso</u>		
S1	C1		C1		
S1	C2				
S1	C3				
S1	C4				
S1	C5				
S1	C6				
S2	C1				
S2	C2				
S3	C2				
S4	C2				
S4	C4				
S4	C5				

<u>MatrStudente</u>	<u>CodCorso</u>	<u>CodCorso</u>	=	
S1	C1	C1		
S1	C2		!	
S1	C3			
S1	C4			
S1	C5			\
S1	C6			R
S2	C1			MatrStudente
S2	C2			S1
S3	C2			S2
S4	C2			
S4	C4			
S4	C5			

Divisione: esempio (n. 2)

•				
<u>MatrStudente</u>	CodCorso	<u>CodCorso</u>		
S1	C1	C2	=	
S1	C2	C4		
S1	C3		-	
S1	C4			
S1	C5			
S1	C6			
S2	C1			₹
S2	C2			MatrStudente
S3	C2			S1
S4	C2			S4
S4	C4			
S4	C5			

Divisione: esempio (n. 3)

		_		
Ma	atrStudente	CodCorso	L	CodCor
	S1	C1		C1
	S1	C2		C2
	S1	C3		C3
	S1	C4		C4
	S1	C5		C5
	S1	C6		C6
	S2	C1		
	S2	C2		
	S3	C2		
	S4	C2		
	S4	C4		
	S4	C5		

Divisione: definizione e proprietà

$$R = A / B$$

- La divisione della relazione A per la relazione B genera una relazione R
 - avente come schema schema(A) schema(B)
 - contenente tutte le tuple di A tali che per ogni tupla (Y:y) presente in B esiste una tupla (X:x, Y:y) in A
- La divisione non gode né della proprietà commutativa, né della proprietà associativa

• Trovare gli studenti che hanno superato l'esame di tutti i corsi del primo anno

R = EsamiSuperati / CorsiPrimoAnno

Altri operatori

- Sono stati proposti numerosi altri operatori per estendere il potere espressivo dell'algebra relazionale
 - estensione con un nuovo attributo, definito da un'espressione scalare
 - PESO_LORDO=PESO_NETTO+TARA
 - calcolo di funzioni aggregate
 - max, min, avg, count, sum
 - eventualmente con la definizione di sottoinsiemi in cui raggruppare i dati (GROUP BY di SQL)

