

Winning Space Race with Data Science

Andrés Tasende Caamaño 18/09/2022

Outline

- Executive Summary
- Introduction
- Methodology
- Results
- Conclusion
- Appendix

Executive Summary

- Summary of methodologies
- Summary of all results

Introduction

- Project background and context
- Problems you want to find answers

Methodology

Executive Summary

- Data collection methodology:
 - Describe how data was collected
- Perform data wrangling
 - Describe how data was processed
- Perform exploratory data analysis (EDA) using visualization and SQL
- Perform interactive visual analytics using Folium and Plotly Dash
- Perform predictive analysis using classification models
 - How to build, tune, evaluate classification models

Data Collection

- Describe how data sets were collected.
- You need to present your data collection process use key phrases and flowcharts

Data Collection – SpaceX API

In this part, the data will be downloaded and prepared for further analysis.

URL:

 https://github.com/andrus444/DataScienceCo urse_Public/blob/main/DataScience_Capstone /jupyter-labs-spacex-data-collection-api.ipynb

Data Collection - Scraping

In this part, the data will be downloaded directly from the website.

URL:

 https://github.com/andrus444/DataScienceCourse_ Public/blob/main/DataScience_Capstone/jupyterlabs-webscraping.ipynb

Data Wrangling

 https://github.com/andrus444/DataScienceCourse_Public/blob/main/D ataScience_Capstone/jupyter-spacexdata_wrangling_jupyterlite.jupyterlite.ipynb

EDA with Data Visualization

- Flight Number vs Launch Site
- Flight Number vs Payload Mass
- Success for each orbit type
- Flight Number vs Orbit
- Payload Mass vs Orbit

URL:

• https://github.com/andrus444/DataScienceCourse_Public/blob/main/DataScience_Capstone/jupyter-labs-eda-dataviz.ipynb.jupyterlite.ipynb

EDA with SQL

- select *
- select distinct
- select count
- where

URL:

• https://github.com/andrus444/DataScienceCourse_Public/blob/main/DataScience_Capstone/jupyter-labs-eda-sql-coursera_sqllite.ipynb

Build an Interactive Map with Folium

- Added markers to localize each launch site
- Added markers for each flight in the different sites (through MarkerCluster).
- Added icons to indicate if a flight ended with success or failure.

URL:

https://github.com/andrus444/DataScienceCourse_Public/blob/main/DataScience_Capstone/jupyte
 r-labs launch site location.jupyterlite.ipynb

Build a Dashboard with Plotly Dash

- Summarize what plots/graphs and interactions you have added to a dashboard
- Explain why you added those plots and interactions
- Add the GitHub URL of your completed Plotly Dash lab, as an external reference and peer-review purpose

Predictive Analysis (Classification)

URL:

 https://github.com/andrus444/DataScienceCourse_Public/blob/main/DataScience_Capstone/IBM-DS0321EN-

SkillsNetwork_labs_module_4_SpaceX_Machine_Learning_Prediction_Part_5.jupyterlite.ipynb

Results

- Exploratory data analysis results
- Interactive analytics demo in screenshots
- Predictive analysis results

Flight Number vs. Launch Site

Payload vs. Launch Site

Success Rate vs. Orbit Type

Flight Number vs. Orbit Type

Payload vs. Orbit Type

Launch Success Yearly Trend

All Launch Site Names

Launch Site Names Begin with 'CCA'

Total Payload Mass

Task 3 Display the total payload mass carried by boosters launched by NASA (CRS) In [53]: %sql select sum(PAYLOAD_MASS__KG_) from SPACEXTABLE where Customer like 'NASA (CRS)' * sqlite://my_data1.db Done. Out[53]: sum(PAYLOAD_MASS__KG_) 45596

Average Payload Mass by F9 v1.1

```
Task 4

Display average payload mass carried by booster version F9 v1.1

In [54]: %sql select avg(PAYLOAD_MASS__KG_) from SPACEXTABLE where Booster_Version like 'F9 v1.1'

* sqlite://my_data1.db
Done.

Out[54]: avg(PAYLOAD_MASS__KG_)

2928.4
```

First Successful Ground Landing Date

Successful Drone Ship Landing with Payload between 4000 and 6000

Total Number of Successful and Failure Mission Outcomes

```
Task 7
         List the total number of successful and failure mission outcomes
In [85]:
          success = %sql select count(Mission_Outcome) from SPACEXTABLE where Mission_Outcome='Success'
          print(success)
         * sqlite:///my_data1.db
        Done.
          count(Mission Outcome)
In [87]:
          failure = %sql select count(Mission Outcome) from SPACEXTABLE where Mission Outcome!='Success'
          print(failure)
         * sqlite:///my_data1.db
          count(Mission Outcome)
```

Boosters Carried Maximum Payload

2015 Launch Records

Rank Landing Outcomes Between 2010-06-04 and 2017-03-20

Folium Task 1!

Map

Folium Task 2!

Folium Task 3!

< Dashboard Screenshot 1>

Replace < Dashboard screenshot 1> title with an appropriate title

• Show the screenshot of launch success count for all sites, in a piechart

• Explain the important elements and findings on the screenshot

< Dashboard Screenshot 2>

• Replace < Dashboard screenshot 2> title with an appropriate title

• Show the screenshot of the piechart for the launch site with highest launch success ratio

• Explain the important elements and findings on the screenshot

< Dashboard Screenshot 3>

Replace <Dashboard screenshot 3> title with an appropriate title

• Show screenshots of Payload vs. Launch Outcome scatter plot for all sites, with different payload selected in the range slider

• Explain the important elements and findings on the screenshot, such as which payload range or booster version have the largest success rate, etc.

Classification Accuracy

• Visualize the built model accuracy for all built classification models, in a bar chart

• Find which model has the highest classification accuracy

Confusion Matrix

Conclusions

- Data Science has proved to be fundamental for analyzing raw data and extracted results.
- SQL queries became a powerful tool to interact with data bases.
- Flight Success can be predicted through several variables.
- The main results presented in graphs allow to determine the behavior of the system.

Appendix

