Submission for DGW-HARMONIC

OTIS (internal use)

Michael Middlezong

August 16, 2024

Example (Lemma 4.26 from my book, added by Catherine Xu, $0\clubsuit$). Let $\triangle ABC$ be a triangle, and let the tangents to its circumcircle at B and C meet at point X. Let M be the midpoint of \overline{BC} . Show that AX is the A-symmedian of $\triangle ABC$, meaning that $\angle BAX = \angle MAC$.

EGIMO426

Walkthrough. Let D be the intersection of BC and AX, and let the tangent of the circumcircle of $\triangle ABC$ at A intersect BC at the point Y.

- (a) Show that (BC; DY) = -1.
- (b) Show that the reflection of line \overline{AY} across the $\angle A$ -bisector is parallel to \overline{BC} .
- (c) Take the reflection lines AB, AC, AD, AY in (a) across the $\angle A$ -bisector; these four lines are still harmonic. Use (b) to deduce the problem statement.

Example (IMO 2014/4, 0.). Let P and Q be on segment BC of an acute triangle ABC such that $\angle PAB = \angle BCA$ and $\angle CAQ = \angle ABC$. Let M and N be points on \overline{AP} and \overline{AQ} , respectively, such that P is the midpoint of \overline{AM} and Q is the midpoint of \overline{AN} . Prove that \overline{BM} and \overline{CN} meet on the circumcircle of $\triangle ABC$.

14IM04

Walkthrough. We give a walkthrough for the harmonic bundles solution.

- (a) Show that the tangent to B is parallel to \overline{APM} .
- (b) Find a natural harmonic bundle using the answer to (a).

Let \overline{BM} intersect the circumcircle again at X.

- (c) Projecting the answer to (b) onto the circumcircle gives a harmonic quadrilateral. Which one?
- (d) Deduce that \overline{CN} passes through X as well.

Example (Brazil 2011/5, 04). Let ABC be an acute triangle with orthocenter H and altitudes \overline{BD} , \overline{CE} . The circumcircle of ADE cuts the circumcircle of ABC at $F \neq A$. Prove that the angle bisectors of $\angle BFC$ and $\angle BHC$ concur at a point on \overline{BC} .

11BRA5

Walkthrough. There are two general approaches, one by harmonic quadrilaterals and one by spiral similarity. Both begin the same way.

(a) Show that the condition is equivalent to FB/FC = HB/HC.

If you are working on the harmonic route:

- (b) Let X be the intersection of ray AH with the circumcircle of $\triangle ABC$. Prove that the problem is equivalent to FBXC being harmonic.
- (c) Show that lines AF, DE, BC are concurrent.
- (d) Use (b) and (c) together to solve the problem.

Here is a spiral similarity route:

- (e) Identify F as a Miquel point of a quadrilateral, and write down the two pairs of similar triangles.
- (f) Use this to express FB/FC as a ratio not involving the point F.
- (g) Show that the ratios you found in (f) are equal.

Added bonus: the line FH bisects \overline{BC} and passes through the A-antipode.

Example (IMO 2010/4, 04). Let P be a point interior to triangle ABC (with $CA \neq CB$). The lines AP, BP and CP meet again its circumcircle Γ at K, L, M, respectively. The tangent line at C to Γ meets the line AB at S. Show that from SC = SP follows MK = ML.

Walkthrough. Here is a walkthrough of a projective solution.

Let D denote the other tangency point from S. Let \overline{DP} meet (ABC) again at N.

- (a) Show that KMLN is a harmonic quadrilateral.
- (b) We want to prove MK = ML. What does that suggest should be true about MLNK?

In light of (b), our goal is to show that \overline{MN} is a diameter.

It will make more sense actually to let N' be the antipode of M on Γ , and let D' be the second intersection of N'P with Γ . We will show D' = D.

- (c) Show that (CD'P) is orthogonal to Γ . (Possible hint: "three tangents" lemma in §1 of EGMO.)
- (d) Identify the circumcenter of $\triangle CD'P$.
- (e) Show that $\overline{SD'}$ is tangent to Γ , so D' = D.

So we now know have everything we need: we know both that \overline{MN} is a diameter and \overline{SD} is tangent.

(f) Deduce that KLNM is a kite, and thus NL = NK.

10IMO4

Practice problems

Instructions: Solve $[45\clubsuit]$. If you have time, solve $[55\clubsuit]$.

Given three statements, two of them are equivalent.

Boris Alexeev, MOP 2003

Required Problem 1 (Useful in later problems, 24)

Let A, X, B, Y be points on a line in this order. Let M be the midpoint of \overline{AB} . Show that the following are equivalent:

- (AB; XY) = -1.
- $MA^2 = MX \cdot MY$ and AX > XB.
- $YA \cdot YB = YX \cdot YM$.

(Try to find "synthetic" solutions involving circles. This is a useful lemma in many problems, so keep it in mind!)

Let ω be the circle with diameter \overline{AB} , and let γ be the circle with diameter \overline{XY} .

The first condition is equivalent to X mapping to Y under inversion around ω . This means the circles are orthogonal, and thus,

$$MA^2 = MP^2 = MX \cdot MY.$$

Also, we have

$$YA \cdot YB = YM^2 - MA^2 = YM^2 - XM \cdot YM = YM(YM - XM) = YM \cdot YX,$$

as desired.

Problem 2 (EGMO Lemma 9.27: Self-Polar Orthogonality, 2♣)

Let ω be a circle and suppose P and Q are points such that P lies on the polar of Q (and hence Q lies on the polar of P). Prove that the circle γ with diameter \overline{PQ} is orthogonal to ω .

Let D be the foot of the perpendicular from P to line OQ. Notice that since $\triangle DPQ$ is right, D must lie on circle γ . Moreover, an inversion around ω takes D to Q, since DP is the polar of Q. Thus, γ maps to itself under this inversion, so it is orthogonal to ω .

Problem 3 (Canada 1994, 2♣)

Let \overline{ABC} be an acute triangle. Let \overline{AD} be the altitude on \overline{BC} , and let H be any interior point on \overline{AD} . Lines BH and CH, when extended, intersect \overline{AC} , \overline{AB} at E and F respectively.

Prove that $\angle EDH = \angle FDH$.

Intersect line EF with line BC, and the problem becomes trivial using the right angles and bisectors lemma.

Z79810E7

EGIMO927

94CAN5

Problem 4 (PAGMO 2022/3, 2♣)

Let ABC be an acute triangle with AB < AC. Denote by P and Q points on the segment BC such that $\angle BAP = \angle CAQ < \frac{\angle BAC}{2}$. Point B_1 lies on segment AC, and BB_1 intersects AP and AQ at P_1 and Q_1 , respectively. The angle bisectors of $\angle BAC$ and $\angle CBB_1$ intersect at M. If $PQ_1 \perp AC$ and $QP_1 \perp AB$, prove that AQ_1MPB is cyclic.

22PAGMO3

Required Problem 5 (ELMO SL 2012 G3, 34)

Let \overline{ABC} be a triangle with incenter I. The foot of the perpendicular from I to \overline{BC} is D, and the foot of the perpendicular from I to \overline{AD} is P. Prove that $\angle BPD = \angle DPC$.

12ESLG3

If AB = AC, then we are done by symmetry. Otherwise, let K be the intersection point of lines IP and BC. Notice that K is the inverse of P with respect to the incircle, and thus, A lies on the polar of K. By La Hire's theorem, we know that K lies on the polar of A. In other words, if E and F are the contact points of the incircle with sides AC and AB, respectively, then K lies on line EF.

It is well known that the cevians AD, BE, and CF concur, so we can use the concurrent cevians lemma to deduce that (ED; BC) = -1. Finally, since $\angle EPD = 90$, the right angles and bisectors lemma tells us that $\angle BPD = \angle DPC$.

Problem 6 (JMO 2011/5, 2♣)

Points A, B, C, D, E lie on a circle ω and point P lies outside the circle. The given points are such that (i) lines PB and PD are tangent to ω , (ii) P, A, C are collinear, and (iii) $\overline{DE} \parallel \overline{AC}$. Prove that \overline{BE} bisects \overline{AC} .

11JM05

Letting $M = \overline{BE} \cap \overline{AC}$ and F be the second intersection point of line DM with ω , we have

$$-1 = (CA; DB) \stackrel{M}{=} (AC; FE) \stackrel{D}{=} (AC; M\infty),$$

and thus, M is the midpoint of AC.

Problem 7 (MOP 2013, 2♣)

Let ABC be an acute scalene triangle, and let H be a point inside it such that $\overline{AH} \perp \overline{BC}$. Rays BH and CH meet \overline{AC} and \overline{AB} at E, F. Prove that if quadrilateral BFEC is cyclic then H is in fact the orthocenter of ABC.

13MOPHWR8

Let X be the intersection point of line EF with line BC. Let M be the center of (BFEC). Brocard's theorem tells us that M is the orthocenter of triangle AXH. This means that $\overline{XM} \perp \overline{AD}$, and thus, M must be the midpoint of BC. The desired result easily follows from here.

Problem 8 (PAGMO 2021/6, 3♣)

Let ABC be a triangle with incenter I, and A-excircle Γ . Let A_1 , B_1 , C_1 be the points of tangency of Γ with BC, AC and AB, respectively. Suppose IA_1 , IB_1 and IC_1 intersect Γ for the second time at points A_2 , B_2 , C_2 , respectively. M is the midpoint of segment AA_1 . If the intersection of A_1B_1 and A_2B_2 is X, and the intersection of A_1C_1 and A_2C_2 is Y, prove that MX = MY.

21PAGMO6

Required Problem 9 (ELMO Shortlist 2019 G1, added by Kevin Wang, 54)

Let ABC be an acute triangle with orthocenter H and circumcircle Γ . Let BH intersect AC at E, and let CH intersect AB at F. Let AH intersect Γ again at $P \neq A$. Let PE intersect Γ again at $Q \neq P$. Prove that BQ bisects segment \overline{EF} .

19ESLG1

Let D be the foot of the altitude from A to BC, let $M = \overline{BQ} \cap \overline{EF}$, let S be the second intersection of (AEF) with Γ , let $X = \overline{EF} \cap \overline{BC}$, let R be the second intersection of line BE and Γ , and let K be the point on Γ satisfying $\overline{BK} \parallel \overline{EF}$.

First, we show S, E, K are collinear. This is trivial by angle chasing:

$$\angle ASE = \angle AFE = \angle ABK = \angle ASK.$$

Now, notice that A, S, and X are collinear. This is well known and the proof is by radical axis. Finally,

$$-1 = (XD; BC) \stackrel{A}{=} (SP; BC) \stackrel{E}{=} (KQ; RA) \stackrel{B}{=} (\infty M; EF),$$

and we are done.

Problem 10 (Taiwan TST 2014/1J/3, 3♣)

In $\triangle ABC$ with incenter I, the incircle is tangent to \overline{CA} , \overline{AB} at E, F. The reflections of E, F across I are G, H. Let Q be the intersection of \overline{GH} and \overline{BC} , and let M be the midpoint of \overline{BC} . Prove that \overline{IQ} and \overline{IM} are perpendicular.

14TWNTST1J3

Let D be the contact point of the incircle with BC, let Q' be the intersection of lines QI and EF, and let D' be the antipode of D.

By symmetry, $\overline{Q'D'} \parallel \overline{BC}$, and thus, $\overline{Q'D'}$ is tangent to the incircle. Then, by La Hire's theorem, Q' is the pole of line AD'. Finish by noticing that $\overline{AD} \parallel \overline{IM}$ (well-known; proof is by homothety).

Required Problem 11 (Sloth blocking ruler, 34)

You have a large sheet of paper in which three marked points A, B, C are collinear in that order. You want to construct line ABC with your straightedge, but a cute sloth is sleeping peacefully on the paper and obstructing the segment BC. Determine how to extend ray AB past C without disturbing the sloth (with straightedge alone).

Z8AF8A34

First, if $AB \leq BC$, we can extend ray BA and move point A so that AB > BC. Draw point D not on line ABC. Draw lines DA, DB, and DC. Pick a point P on DB. Now, we create the Ceva/Menelaus configuration as follows:

Extend ray AP to hit DC at E and ray CP to hit DA at F. Notice that the intersection point with line EF and line AC, which we want, is just the harmonic conjugate of $\overline{DB} \cap \overline{EF}$ with respect to EF. However, this line is actaully accessible to us, so we can just repeat this configuration again to obtain the desired point.

Problem 12 (Iran 2002, 5♣)

Let ABC be a triangle. The incircle of triangle ABC touches the side BC at A', and the line AA' meets the incircle again at a point P. Let the lines CP and BP meet the incircle of triangle ABC again at N and M, respectively. Prove that the lines AA', BN and CM are concurrent.

02IRN

Let B' and C' be the other two incircle contact points, and let X be the intersection point of line B'C' and line BC. It is well known that X is the pole of line PA', and thus, line XP is tangent to the incircle.

Notice that by the Ceva/Menelaus configuration, the problem is equivalent to showing that X, M, and N are collinear. Let Y be the intersection point of the tangents to the incircle at M and N. By La Hire's theorem, it suffices to prove that P, A', and Y are collinear. We have

$$-1 = (XA'; BC) \stackrel{P}{=} (PA'; MN),$$

so by the symmedian config, line PY intersects the incircle at A', so we are done.

Problem 13 (Kazakhstan 2011/9.5, 3♣)

Given a non-degenerate triangle ABC, let A_1 , B_1 , C_1 be the points of tangency of the incircle to the sides BC, CA, AB. Let Q and L be the intersection of the segment AA_1 with the incircle and the segment B_1C_1 respectively. Let M be the midpoint of B_1C_1 . Let T be the point of intersection of BC and B_1C_1 . Let P be the foot of the perpendicular from the point L on the line AT. Prove that the points A_1, M, Q, P lie on a circle.

11KAZ95

Problem 14 (TSTST 2015/2, 5♣)

Let ABC be a scalene triangle. Let K_a , L_a , and M_a be the respective intersections with BC of the internal angle bisector, external angle bisector, and the median from A. The circumcircle of AK_aL_a intersects AM_a a second time at a point X_a different from A. Define X_b and X_c analogously. Prove that the circumcenter of $X_aX_bX_c$ lies on the Euler line of ABC.

15TSTST2

Problem 15 (Shortlist 2017 G4, 5♣)

Let ABC be a triangle and let ω be the A-excircle, tangent to \overline{BC} , \overline{CA} , \overline{AB} at D, E, F. The circumcircle of $\triangle AEF$ intersects line BC at P and Q. Let M be the midpoint of \overline{AD} . Prove that the circumcircle of $\triangle MPQ$ is tangent to ω .

17SLG4

Let W be the center of ω , let K be the intersection of lines EF and BC, and let T be the second intersection of line AD with ω . We claim that T is the desired point of tangency.

First, notice that FDET is harmonic, so line KT is tangent to ω .

Let N be the midpoint of DT. Notice that W lies on (AEF) by angle chasing, and N lies on (AEF) because $WN \perp AN$.

Also, T lies on (MPQ) because $DT \cdot DM = DN \cdot DA = DP \cdot DQ$. Finally, we have

$$KP \cdot KQ = KF \cdot KE = KT^2$$
,

so by power of a point, we are done.

Problem 16 (Iran Geo Olympiad 2019, added by Tilek Askerbekov, 3♣)

Circles ω_1 and ω_2 have centers O_1 and O_2 , respectively. These two circles intersect at points X and Y. Line AB is a common tangent of these two circles such that A lies on ω_1 and B lies on ω_2 . Let the tangents to ω_1 and ω_2 at X intersect O_1O_2 at points K and L, respectively. Suppose that line BL intersects ω_2 again at M and AK intersects ω_1 again at N. Prove that AM, BN and O_1O_2 concur.

19IGOA3

Problem 17 (Sharygin 2018, added by Kevin Wang, 3♣)

Let scalene triangle ABC have intouch triangle XYZ. The A-excircle touches the side BC at point N. Let T be the common point of AN and the incircle, closest to N, and $K = \overline{YZ} \cap \overline{XT}$. Prove that $\overline{AK} \parallel \overline{BC}$.

18SHRG20

Problem 18 (South Africa 2005/4, 2♣)

The inscribed circle of triangle ABC touches the sides BC, CA and AB at D, E and F respectively. Let Q denote the other point of intersection of AD and the inscribed circle. Prove that EQ extended passes through the midpoint of AF if and only if AC = BC.

05SAF4

Note that (EF; DQ) = -1. The problem is finished by considering the projection at E onto line AB.

Problem 19 (Shortlist 2005 G6, 5♣)

Let ABC be a triangle, and M the midpoint of its side BC. Let γ be the incircle of triangle ABC. The median AM of triangle ABC intersects the incircle γ at two points K and L. Let the lines passing through K and L, parallel to \overline{BC} , intersect the incircle γ again in two points K and K. Let the lines K and K and K intersect K again at the points K and K intersect K again at the points K and K intersect K again at the points K and K intersect K again at the points K and K intersect K again at the points K and K intersect K and K intersect K again at the points K and K intersect K in K intersect K in K in K in K intersect K in K

05SLG6

Problem 20 (China Southeast MO 2018, 5♣)

Let ABC be an isosceles triangle with AB = AC. A circle Γ centered at the midpoint M of \overline{BC} is tangent to lines AB and AC at F and E, respectively. Point G is chosen on Γ with $\angle AGE = 90^{\circ}$. The tangents to Γ at G and F meet at K. Prove that \overline{CK} bisects \overline{EF} .

18CSM06

Problem 21 (Added by William Zhao, 3♣)

Let ABC be a right triangle with $\angle A = 90^{\circ}$, and let D be a point lying on the side AC. Denote by E reflection of A into the line BD, and by F the intersection point of CE with the perpendicular in D to the line BC. Prove that AF, DE and BC are concurrent.

ZD5935DF

Problem 22 (Added by Krishna Pothapragada, 3♣)

In $\triangle ABC$ with incenter I and A-excenter I_A , let G be the centroid of $\triangle BIC$. Define $E = \overline{BI} \cap \overline{AC}$ and $F = \overline{CI} \cap \overline{AB}$. Prove that $\angle BGC + \angle EI_AF = 180^\circ$.

H2648084

Problem 23 (USA TST 2017, Danielle Wang, 9♣)

Let ABC be a triangle with altitude \overline{AE} . The A-excircle touches \overline{BC} at D, and intersects the circumcircle at two points F and G. Prove that one can select points V and N on lines DG and DF such that quadrilateral EVAN is a rhombus.

17USATST5

Problem 24 (HMMT 2018, added by Ram Goel, 5♣)

Let ABC be an equilateral triangle with side length 8. Let X be on side AB so that AX = 5 and Y be on side AC so that AY = 3. Let Z be on side BC so that AZ, BY, CX are concurrent. Let ZX, ZY intersect the circumcircle of AXY again at P, Q respectively. Let XQ and YP intersect at K. Show that $KX \cdot KQ$ is an integer and determine its value.

18HMMTG8

Required Problem 25 (Taiwan TST Quiz 2015, by me, 94)

In scalene triangle ABC with incenter I, the incircle is tangent to sides CA and AB at points E and F. The tangents to the circumcircle of $\triangle AEF$ at E and F meet at S. Lines EF and BC intersect at T. Prove that the circle with diameter \overline{ST} is orthogonal to the nine-point circle of triangle BIC.

15TWNQ3J6

By the self-polar orthogonality lemma, it suffices to show that S lies on the polar of T with respect to the nine-point circle.

To complete the nine-point circle configuration, let H be the orthocenter of $\triangle BIC$, let D be the remaining intouch point, and let M be the midpoint of BC. Note that D and M lie on the nine-point circle, and I is the orthocenter of $\triangle HBC$.

Let V and W be the feet of the perpendiculars from C and B to their respective sides. By the Iran lemma (proof: angle chasing), V and W lie on line EF. Also, V and W lie on the nine-point circle.

Now, let K be the intersection of lines ID and EF, let N be the midpoint of EF, and let X and Y be the points of tangency of T with the nine-point circle. We want to show that X, Y, and S are collinear.

First, we have

$$-1 = (TD; BC) \stackrel{I}{=} (TK; WV),$$

so K lies on line XY. Also, K lies on line AM by an incircle concurrency lemma. So then,

$$-1 = (AI; NS) \stackrel{K}{=} (M, D; T, \overline{KS} \cap \overline{BC}),$$

which means $\overline{KS} \cap \overline{BC}$ is on the polar of T. Thus, S is collinear with two points on the polar of T, so S must be on the polar of T, and we are done.