LUNDS TEKNISKA HÖGSKOLA **MATEMATIK**

TENTAMENSSKRIVNING Funktionsteori 2013-10-23 kl 8-13

Hjälpmedel: Utdelat formelblad.

Lösningarna skall vara försedda med ordentliga motiveringar.

1. Lös rekursionsekvationen

$$x_{n+2} + 2x_{n+1} - 15x_n = 12n + 8$$

med begynnelsevillkoren $x_0 = 1, x_1 = -4.$

2. En av följande serier är den trigonometriska fourierserien till den periodiska funktionen f(t), vars graf ses nedan. Vilken? Motivera svaret ordentligt!

$$\mathbf{a)} \sum_{k=1}^{\infty} \frac{1}{2^k} \cos 2kt$$

$$\mathbf{b)} \sum_{k=1}^{\infty} \frac{1}{2^k} \cos kt \qquad \mathbf{c)} \sum_{k=1}^{\infty} \frac{1}{2^k} \sin kt$$

$$\mathbf{c}) \sum_{k=1}^{\infty} \frac{1}{2^k} \sin kt$$

d)
$$1 + \sum_{k=1}^{\infty} \frac{1}{2^k} \cos kt$$
 e) $\sum_{k=1}^{\infty} \frac{1}{k} \cos kt$

e)
$$\sum_{k=1}^{\infty} \frac{1}{k} \cos kt$$

3. Bestäm funktionen q så att

$$u(x,y) = (e^y + e^{-y})g(x)$$

blir realdelen av en hel analytisk funktion f sådan att f(0) = 0 och f'(0) = 1. Bestäm också f(z), $d\ddot{a}r \ z = x + iy.$

4. a) Utveckla $\frac{1}{x+2}$ i potensserie kring x=0 och ange konvergensradien.

Vad blir seriens summa för x = 1? (0.5)

b) Bestäm konvergensradien R för potensserien $\sum_{k=1}^{\infty} \frac{(-1)^k}{k^2} z^k$.

Visa att serien konvergerar även för |z| = R. (0.5)

- 5. a) Antag att du har tillgång till en funktion argument som returnerar $\arg(z)$ för principalgrenen. Skapa en funktion logaritm som använder grenen med $-\frac{\pi}{2} < \arg(z) < \frac{3\pi}{2}$ ("texasgrenen"). Du kan skriva i maple-, matlab- eller pseudokod. (0.5)
 - b) Beräkna integralen

där γ ges av $z(t) = \left(\cos(t) + \frac{1}{5}\cos(16t)\right) + i\left(\sin(t) + \frac{1}{5}\sin(16t)\right)$, $0 \le t \le \pi$ enligt figur. Kom ihåg att motivera väl ditt svar väl. (0.5)

6. Beräkna

$$\int_0^\infty \frac{x^{1/4}}{(4+x)^2} \, dx \, .$$

Svaret skall ges i reell form.

LYCKA TILL!