Представяне на подпространства от наредени *n*-торки като решения на хомогенни линейни системи. Теорема на Руше. Връзка между решенията на хомогенна и нехомогенна система.

Твърдение 14.1. Нека $Ax = \mathbb{O}_{m \times 1}$ е хомогенна система линейни уравнения, чиято матрица от коефициенти $A \in M_{m \times n}(F)$ има ранг $\mathrm{rk}(A) = r$. Тогава множеството $U \subseteq M_{n \times 1}(F)$ от решения на $Ax = \mathbb{O}_{m \times 1}$ е подпространство на $M_{n \times 1}(F)$ с размерност $\dim(U) = n - r$.

Доказателство. Ако $u,v\in U\subseteq M_{n\times 1}(F)$ са решения на $Ax=\mathbb{O}_{m\times 1}$ и $\alpha\in F$, то от

$$A(u+v)=Au+Av=\mathbb{O}_{m\times 1}+\mathbb{O}_{m\times 1}=\mathbb{O}_{m\times 1}$$
 и
$$A(\alpha u)=\alpha(Au)=\alpha\mathbb{O}_{m\times 1}=\mathbb{O}_{m\times 1}$$

следва, че $u+v, \alpha u \in U$ са също решения на $Ax=\mathbb{O}_{m\times 1}$ и U е подпространство на $M_{n\times 1}(F)$.

Ако $\mathrm{rk}(A)=0$ и $A=\mathbb{O}_{m\times n}$ е нулевата матрица, то множеството от решенията на $Ax=\mathbb{O}_{m\times 1}$ е $M_{n\times 1}(F)$ с размерност $\dim M_{n\times 1}(F)=n=n-0=n-\mathrm{rk}(A)$. Ако $\mathrm{rk}(A)=r\in\mathbb{N}$, то съществуват r линейно независими реда a_1,\ldots,a_r на A и всички други редове на A принадлежат на $l(a_1,\ldots,a_r)$. Изпускаме уравненията, които са линейни комбинации на първите r линейно независими уравнения и считаме, че матрицата $A\in M_{r\times n}(F)$ се състои от r линейно независими реда a_1,\ldots,a_r . След подходяща пермутация на стълбовете, първите r стълба на A са линейно независими и образуват неособена $(r\times r)$ -матрица. Съществуват елементарни преобразувания по редове, които свеждат първите r стълба на A към единичната матрица E_r . Прилагаме споменатите елементарни преобразувания към пълните вектор-редове $a_1,\ldots,a_r\in M_{1\times n}(F)$ на A и свеждаме разглежданата хомогенна система линейни уравнения към

$$\begin{pmatrix} 1 & 0 & \dots & 0 & 0 & a_{1,r+1} & \dots & a_{1,n} \\ 0 & 1 & \dots & 0 & 0 & a_{2,r+1} & \dots & a_{2,n} \\ \dots & \dots & \dots & \dots & \dots & \dots & \dots \\ 0 & 0 & \dots & 1 & 0 & a_{r-1,r+1} & \dots & a_{r-1,n} \\ 0 & 0 & \dots & 0 & 1 & a_{r,r+1} & \dots & a_{r,n} \end{pmatrix} \begin{pmatrix} x_1 \\ \dots \\ x_i \\ \dots \\ x_n \end{pmatrix} = \mathbb{O}_{r \times 1}.$$

Уравненията на тази система са

$$x_i = -a_{i,r+1}x_{r+1} - \dots - a_{i,n}x_n$$
 sa $1 \le i \le r$ (14.1)

и за произволни x_{r+1}, \ldots, x_n . За всяко $r+1 \le j \le n$ разглеждаме решението

$$c^{(j)} = (c_1^{(j)}, \dots, c_r^{(j)}, 0 \dots, 0, 1, 0, \dots, 0)^t =$$

= $(-a_{1,j}, \dots, -a_{r,j}, 0 \dots, 0, 1, 0, \dots, 0)^t \in U$,

чиято j-та компонента е равна на 1, компонентите с номера $s\in\{r+1,\dots,n\}\setminus\{j\}$ са равни на 0, а $c_1^{(j)},\dots,c_r^{(j)}$ се пресмятат по формулите (14.1). Достатъчно е да проверим, че $c^{(r+1)},\dots,c^{(n)}$ образуват базис на пространството от решения $U\subseteq M_{n\times 1}(F)$, за да установим, че $\dim(U)=n-r$ и да докажем твърдението. За произволни $\lambda_j\in F,\,r+1\le j\le n$ пресмятаме, че

$$\lambda_{r+1}c^{(r+1)} + \ldots + \lambda_jc^{(j)} + \ldots + \lambda_nc^{(n)} = (*, \ldots, *, \lambda_{r+1}, \ldots, \lambda_j, \ldots, \lambda_n)^t.$$

Следователно от $\lambda_{r+1}c^{(r+1)}+\ldots+\lambda_nc^{(n)}=\mathbb{O}_{n\times 1}$ следва $\lambda_{r+1}=\ldots=\lambda_n=0$ и решенията $c^{(r+1)},\ldots,c^{(n)}\in U$ са линейно независими. За произволно решение $u=(u_1,\ldots,u_n)^t\in U$ забелязваме, че

$$u' = u - u_{r+1}c^{(r+1)} - \dots - u_nc^{(n)} =$$

$$= (u_1, \dots, u_r, u_{r+1}, \dots, u_n)^t + (*, \dots, *, -u_{r+1}, \dots, -u_n)^t =$$

$$= (u'_1, \dots, u'_r, 0, \dots, 0)^t \in U$$

има анулиращи се компоненти с номера между r+1 и n. Първите r компоненти на u' изпълняват уравненията (14.1) и също трябва да се анулират. В резултат, $u'=\mathbb{O}_{n\times 1}$ и $u=u_{r+1}c^{(r+1)}+\ldots+u_nc^{(n)}$ е линейна комбинация на $c^{(r+1)},\ldots,c^{(n)}$. Това доказва, че $l(c^{(r+1)},\ldots,c^{(n)})=U$ и $c^{(r+1)},\ldots,c^{(n)}$ е базис на U.

Определение 14.2. Произволен базис на пространството от решения на хомогенна система линейни уравнения $Ax = \mathbb{O}_{m \times 1}$ се нарича фундаментална система решения на $Ax = \mathbb{O}_{m \times 1}$.

Твърдение 14.3. За всяко подпространство $U \subseteq M_{n \times 1}(F)$ от наредени n-торки съществува хомогенна система линейни уравнения c пространство от решения U.

Доказателство. Ако $U = \{\mathbb{O}_{n \times 1}\}$ е нулевото пространство, то U съвпада с пространството от решения на хомогенната линейна система

$$\begin{vmatrix} x_1 &=0\\ \dots & \dots\\ x_n &=0 \end{vmatrix}$$

Отсега нататък $U \neq \{\mathbb{O}_{n\times 1}\}$, $\dim U = k \in \mathbb{N}$ и съществува базис $a_1,\dots,a_k \in M_{n\times 1}(F)$ на U. Нека

$$\begin{pmatrix} a_1^t \\ \dots \\ a_i^t \\ \dots \\ a_k^t \end{pmatrix} \begin{pmatrix} x_1 \\ \dots \\ x_n \end{pmatrix} = \mathbb{O}_{k \times 1}$$
 (14.2)

е хомогенната система линейни уравнения, чиято матрица от коефициенти е образувана по редове от векторите $a_1^t, \ldots, a_k^t \in M_{1 \times n}(F)$. Пространството от решения $U_1 \subseteq M_{n \times 1}(F)$ на (14.2) е с размерност n-k. Нека $b_1, \ldots, b_{n-k} \in$

 $M_{n\times 1}(F)$ е базис на U_1 . Твърдим, че U е пространството от решения на хомогенната система линейни уравнения

$$\begin{pmatrix} b_1^t \\ \dots \\ b_j^t \\ \dots \\ b_{n-k}^t \end{pmatrix} \begin{pmatrix} x_1 \\ \dots \\ x_n \end{pmatrix} = \mathbb{O}_{(n-k)\times 1}, \tag{14.3}$$

чиято матрица от коефициенти е образувана по редове от векторите $b_1^t,\ldots,b_{n-k}^t\in M_{n\times 1}(F)$. Пространството от решения $U_2\subseteq M_{n\times 1}(F)$ на (14.3) е с размерност $\dim(U_2)=n-(n-k)=k$, защото матрицата от коефициенти на (14.3) е от ранг n-k. Достатъчно е да докажем, че $U\subseteq U_2$, за да приложим Следствие 5.13 и да получим че $U=U_2$. Векторите $b_j\in M_{n\times 1}(F)$ са решения на (14.2), така че

$$a_i^t b_j = 0$$
 за всички $1 \le i \le k$ и $1 \le j \le n-k$.

Транспонирайки това равенство получаваме

$$0 = 0^t = (a_i^t b_j)^t = b_j^t (a_i^t)^t = b_j^t a_i.$$

Следователно $a_i \in M_{n \times 1}(F)$ са решения на (14.3) за всички $1 \le i \le k$ и $a_i \in U_2$. Оттук, $U = l(a_1, \ldots, a_k) \subseteq U_2$ и $U = U_2$, съгласно Следствие 5.13 и $\dim(U) = k = \dim(U_2)$. Това завършва доказателството на твърдението.

За да намерим базис на сечението $U\cap W$ на подпространств U,W на F^n представяме U и W като пространства от решения на хомогенни системи линейни уравнения. Обединявайки уравненията на U и W получаваме хомогенна система линейни уравнения с пространство от решения $U\cap W$. Произволна фундаментална система решения на тази система е базис на $U\cap W$. Нека

$$Ax = b (14.4)$$

е система линейни уравнения, чиято матрица от коефициенти

$$A = (c_1 \quad c_2 \quad \dots \quad c_n)$$

има вектор-стълбове $c_1, \ldots, c_n \in M_{m \times 1}(F)$,

$$c_i = \begin{pmatrix} a_{1,i} \\ a_{2,i} \\ \dots \\ a_{m-1,i} \\ a_{m,i} \end{pmatrix}.$$

В такъв случай,

$$s = \left(\begin{array}{c} s_1 \\ \dots \\ s_n \end{array}\right) \in M_{n \times 1}(F)$$

е решение на (14.4) тогава и само тогава, когато

$$As = \begin{pmatrix} c_1 & c_2 & \dots & c_n \end{pmatrix} \begin{pmatrix} s_1 \\ s_2 \\ \dots \\ s_n \end{pmatrix} = s_1c_1 + \dots + s_nc_n = b.$$

Следователно, системата (14.4) е съвместима точно когато $b \in l(c_1, \ldots, c_n)$. Съгласно $l(c_1, \ldots, c_n) \subseteq l(c_1, \ldots, c_n, b)$, условието $b \in l(c_1, \ldots, c_n)$ е еквивалентно на $l(c_1, \ldots, c_n, b) \subseteq l(c_1, \ldots, c_n)$, а оттам и на

$$l(c_1,\ldots,c_n)=l(c_1,\ldots,c_n,b).$$

Пак поради $l(c_1,\ldots,c_n)\subseteq l(c_1,\ldots,c_n,b)$, условието $l(c_1,\ldots,c_n)=l(c_1,\ldots,c_n,b)$ е еквивалентно на $\dim l(c_1,\ldots,c_n)=\dim l(c_1,\ldots,c_n,b)$, съгласно Следствие 5.13. Съгласно Твърдение 13.1 и Твърдение 13.3 имаме

$$rk(A) = rk(c_1, ..., c_n) = \dim l(c_1, ..., c_n)$$
 u
 $rk(A|b) = rk(c_1, ..., c_n, b) = \dim l(c_1, ..., c_n, b).$

С това доказваме следното

Твърдение 14.4. (Теорема на Руше:) Система линейни уравнения Ax = b е съвместима тогава и само тогава, когато $\operatorname{rk}(A) = \operatorname{rk}(A|b)$.

Твърдение 14.5. (Алтернатива на Фредхолм:) Нека $v \in M_{n \times 1}(F)$ е едно решение на система линейни уравнения Ax = b, а $U \subseteq M_{n \times 1}(F)$ е пространството от решения на хомогенната система линейни уравнения $Ax = \mathbb{O}_{m \times 1}$ със същата матрица от коефициенти $A \in M_{m \times n}(F)$. Тогава множеството от решения на Ax = b е

$$v + U = \{v + u \mid \forall u \in U\}.$$

Доказателство. Нека $S \subseteq M_{n \times 1}(F)$ е множеството от решения на системата линейни уравнения Ax = b. Тогава за всяко $w \in S$ е в сила

$$A(w-v) = Aw - Av = b - b = \mathbb{O}_{m \times 1}$$

и $w-v=u\in U$ е решение на хомогенната система линейни уравнения $Ax=\mathbb{O}_{m\times 1}.$ Оттук, $w=v+u\in v+U$ и $S\subseteq v+U.$ Обратно, ако $w=v+u\in v+U$, то

$$Aw = A(v + u) = Av + Au = b + \mathbb{O}_{m \times 1} = b,$$

откъдето $w \in S$ и $v+U \subseteq S$. От включванията $S \subseteq v+U$ и $v+U \subseteq S$ следва S=v+U.

Следствие 14.6. (i) Система линейни уравнения Ax = b с n неизвестни e определена тогава u само тогава, когато $\mathrm{rk}(A) = \mathrm{rk}(A|b) = n$. (ii) Система линейни уравнения Ax = b с n неизвестни e неопределена тогава u само тогава, когато $\mathrm{rk}(A) = \mathrm{rk}(A|b) < n$.

Доказателство. (i) Съгласно Твърдение 14.5, съвместима система линейни уравнения Ax=b има единствено решение тогава и само тогава, когато нейното множество от решения S=v+U се състои от единствена точка. Това е в сила точно когато пространството $U\subset M_{n\times 1}(F)$ от решенията на $Ax=\mathbb{O}_{m\times 1}$ се състои от нулевия вектор и $\dim U=n-\mathrm{rk}(A)=0$, вземайки предвид Твърдение 14.1. Комбинирайки с Теоремата на Руше - Твърдение 14.4 получаваме, че системата Ax=b е определена тогава и само тогава, когато $\mathrm{rk}(A|b)=\mathrm{rk}(A)=n$.

(ii) От Твърдение 14.5 следва, че съвместима система линейни уравнения Ax = b е неопределена тогава и само тогава, когато множеството S = v + U на нейните

решения съдържа повече от една точка. Това е в сила точно когато пространството $U \subset M_{n \times 1}(F)$ от решенията на $Ax = \mathbb{O}_{m \times 1}$ съдържа ненулев вектор и $\dim U = n - \mathrm{rk}(A) > 0$, съгласно Твърдение 14.1. Вземайки предвид Теоремата на Руше - Твърдение 14.4, стигаме до извода, че Ax = b е неопределена точно тогава, когато $\mathrm{rk}(A|b) = \mathrm{rk}(A) < n$.