Process Dynamics & Control

Quadruple Tank problem

Quadruple Tank problem (Dynamic Model)

$$\frac{dh_1}{dt} = -\frac{a_1}{A_1}\sqrt{2gh_1} + \frac{a_3}{A_1}\sqrt{2gh_3} + \frac{\gamma_1k_1}{A_1}v_1$$

$$\frac{dh_2}{dt} = -\frac{a_2}{A_2}\sqrt{2gh_2} + \frac{a_4}{A_2}\sqrt{2gh_4} + \frac{\gamma_2k_2}{A_2}v_2 \quad \begin{vmatrix} \mathbf{A_1, A_3 = 28\ cm^2} \\ \mathbf{A_2, A_4 = 32\ cm^2} \end{vmatrix}$$

$$\frac{dh_3}{dt} = -\frac{a_3}{A_3}\sqrt{2gh_3} + \frac{(1-\gamma_2)k_2}{A_3}v_2$$

$$\frac{dh_4}{dt} = -\frac{a_4}{A_4} \sqrt{2gh_4} + \frac{(1-\gamma_1)k_1}{A_4} v_1$$

Data for simulation:

$$A_1$$
, $A_3 = 28 \text{ cm}^2$

$$A_2$$
, A_4 = 32 cm²

$$a_1$$
, a_3 = 0.071 cm²

$$a_2$$
, a_4 = 0.057 cm²

$$k_1$$
, k_2 = 3.33, 3.35

$$v_1$$
, v_2 = 3.0, 3.0

$$\gamma_1, \gamma_2 = 0.7, 0.6$$

Jacketed heated stirred tank

Assumptions:

Constant hold-up in tank and jacket Constant heat capacities and densities Incompressible flow

$$\frac{dV}{dt} = F_0 - F = 0$$

$$\frac{dT}{dt} = \frac{F}{V}(T_0 - T) + \frac{UA}{\rho C_P V}(T_j - T)$$

$$\frac{dT_j}{dt} = \frac{F_j}{V_j} (T_{ji} - T_j) - \frac{UA}{\rho_j C_{Pj} V_j} (T_j - T)$$

Control Objective

Control T by manipulating F_i

Parameter and Steady State Values

F = 30 l/min;
$$F_j^s$$
 = 50 l/min; T_0 = 15°C; T_{Jin} = 93°C; V = 300 l; V_j = 30 l; ρC_p = 1 Kcal/K l; $\rho_j C_{pj}$ = 1.384 ; UA = 100 Kcal/min K; T^s = 60°C ; T_J = 73.5 °C

Continuous Stirred Tank Reactor

Assumption:

- 1. Exit Condition = Reactor Condition
- 2. Isothermal Reaction
- 3. Constant volume, i.e, $F_{in} = F_{out} = F$
- 4. Only reactant A in feed is consumed, i.e, other reactant is in large excess. No product in the feed

Continuous Stirred Tank Reactor (model)

Constant volume : dV/dt = 0

Dynamic model

$$\bullet \frac{dC_A}{dt} = \frac{F}{V} \left(C_{Af} - C_A \right) - k_1 C_A - k_3 C_A^2$$

$$\bullet \frac{dC_B}{dt} = -\frac{F}{V}C_B + k_1C_A - k_2C_B$$

$$\bullet \frac{dC_C}{dt} = -\frac{F}{V}C_C + k_2C_B$$

$$\bullet \frac{dC_D}{dt} = -\frac{F}{V}C_D + \frac{1}{2}k_3C_A^2$$

Data for the CSTR

$$k_1 = 5/6$$
; $k_2 = 5/3$

$$K_3 = 1/6$$
; $C_{af} = 10$

Since our objective is to control C_B, the reduced order model should be

•
$$\frac{dC_A}{dt} = \frac{F}{V} (C_{Af} - C_A) - k_1 C_A - k_3 C_A^2 = f_1(C_A, C_B, F/V)$$

$$\frac{dC_B}{dt} = -\frac{F}{V}C_B + k_1C_A - k_2C_B = f_2(C_A, C_B, F/V)$$

Continuous Stirred Tank Reactor

Find Maximum C_B with respect to F/V

•
$$\frac{dC_A}{dt} = \frac{F}{V}(C_{Af} - C_A) - k_1 C_A - k_3 C_A^2 = 0$$

$$\bullet \frac{dC_B}{dt} = -\frac{F}{V}C_B + k_1C_A - k_2C_B = 0$$

•
$$C_A = \frac{-\left(k_1 + \frac{F}{V}\right) + \sqrt{\left(k_1 + \frac{F}{V}\right)^2 + 4k_3\frac{F}{V}C_{Af}}}{2k_3}$$
 since, C_A can not be negative.

•
$$C_B = \frac{k_1 C_A}{\frac{F}{V} + k_2} = \frac{-k_1 \left(k_1 + \frac{F}{V}\right) + k_1 \sqrt{\left(k_1 + \frac{F}{V}\right)^2 + 4k_3 \frac{F}{V} C_{Af}}}{2k_3 \left(\frac{F}{V} + k_2\right)}$$

•
$$\frac{dC_B}{d\frac{F}{V}} = 0$$
 will give $\frac{F}{V_{opt}}$

Steady State plot of Van-De-Vusse Reactor

Biochemical Reactor

 x_1 is mass of cells per unit volume in the reactor x_2 is mass of substrate per unit volume in the reactor

x_{2f} is mass of substrate per unit volume in the feed stream

Assumption:

- 1. Exit Condition = Reactor Condition
- 2. Isothermal Reaction
- 3. Constant volume, i.e, $F_{in} = F_{out} = F$
- 4. No cell/biomass is present in the feed stream.

Biochemical Reactor (Dynamic Model)

Dynamic Model

$$\frac{dx_1}{dt} = -\frac{F}{V}x_1 + \mu x_1 = (\mu - D)x_1$$

$$\frac{dx_2}{dt} = D(x_{2f} - x_2) - \frac{\mu x_1}{Y}$$

Where yield, $Y = \frac{mass\ of\ cells\ produced}{mass\ of\ substrate\ consumed}$ and μ is specific growth rate coefficient for cell mass which is not constant but function of substrate concentration. The most common functions are:

Monod model:
$$\mu = \frac{\mu_{max} x_2}{k_m + x_2}$$
 Substrate inhibition model:
$$\mu = \frac{\mu_{max} x_2}{k_m + x_2 + k_1 x_2^2}$$

Biochemical Reactor

Steady State equations:

$$\frac{dx_1}{dt} = 0 = -\frac{F}{V}x_1 + \mu x_1 = (\mu - D)x_1 = (\frac{\mu_{max} x_2}{k_m + x_2} - D)x_1$$
 if, $x_1 \neq 0$, then $x_2 = \frac{DK_m}{\mu_{max} - D}$

 $\frac{dx_2}{dt} = 0 = D(x_{2f} - x_2) - \frac{\mu x_1}{Y} \Big|_{3}^{3.5}$ So, $x_1 = Y(x_{2f} - \frac{DK_m}{\mu_{max} - D})$ $Dx_1 \text{ is the rate of cell}$ Production per unit reactor Volume.

Biochemical Reactor

We need to find optimum dilution rate to maximize Dx_1 . so,

$$Dx_1 = Y(Dx_{2f} - \frac{D^2 K_m}{\mu_{max} - D})$$

$$\frac{d(\frac{Dx_1}{Y})}{dD} = x_{2f} - \frac{(\mu_{max} - D)2Dk_m - D^2K_m(-1)}{(\mu_{max} - D)^2} = 0$$

Or,
$$D^2(x_{2f} + k_m) - 2D\mu_{max}(x_{2f} + k_m) + x_{2f}\mu_{max}^2 = 0$$

Adding $K_m \mu_{max}^2$ both sides, we get

$$(D - \mu_{max})^2 = \frac{K_m \mu_{max}^2}{x_{2f} + K_m}$$

Or
$$D_{opt} = \mu_{max} \left(1 - \sqrt{\frac{K_m}{x_{2f} + K_m}} \right)$$
 since D can not be greater than μ_{max}

Non-Isothermal Jacketed CSTR

parameter	case 1	case 2	case 3
F/V, hr-1	1	1	1
k ₀ , hr-1	14,825*3600	9,703*3600	18,194*3600
$(-\Delta H)$, kcal/kgmol	5215	5960	8195
E, kcal/kgmol	11,843	11,843	11,843
ρcp, kcal/(m³ °C)	500	500	500
T _f , °C	25	25	25
C _{Af} , kgmol/m3	10	10	10
UA/V, kcal/(m³ °C hr)	250	150	750
T _C , °C	25	25	25

Styrene Polymerization Reactor

$$\begin{array}{ll} \dot{x_1} &= \frac{(F_i\,C_{ia} - F_o\,x_1)}{V} - k_d\,x_1 & x_2 \; \text{Monomer Conc} \\ \dot{x_2} &= \frac{(F_m\,C_{ma} - F_o\,x_2)}{V} - k_p\,x_2\,\mathcal{R} \\ \dot{x_3} &= \frac{F_o\,(T_a - x_3)}{V} - \frac{\Delta H}{\rho\,C_p}\,k_p\,x_2\,\mathcal{R} - \frac{UA}{\rho\,C_p\,V}\,(x_3 - x_4) \\ \dot{x_4} &= \frac{F_j(T_{j,in} - x_4)}{V_j} + \frac{UA}{\rho_j\,C_{pj}\,V_j}\,(x_3 - x_4) \end{array}$$

The chain concentration of growing polymer is equal to

$$\mathcal{R} = (2 f k_d x_1 / k_t)^{0.5}$$

 x_1 Initiator Conc

The dissociation, propagation and termination Rate constants follow Arrhenius law:

$$k_i = k_{i0} e^{-\frac{E_i}{RT}}$$
 for I =d, p or t

 $F_o = F_i + F_m + F_s$

Steady State Heat Power vs Reactor Temperature

Phase Portrait

