Convolutional Neural Networks

Rodrigo Gonzalez, PhD

Hello!

I am Rodrigo Gonzalez, PhD

You can find me at rodrigo.gonzalez@ingenieria.uncuyo.edu.ar

Summary

- 1. A little of history
- 2. Main ideas
- 3. Basic CNN architecture
- 4. Padding and stride
- 5. CNN example
- 6. CNN in Keras
- 7. The book

A little of history The goals of a CNN

A little of history

- 1. Computer vision is the earliest and biggest success story of deep learning.
- 2. 1998, LeNet-5 (Yann LeCunn et al., 1989)
- 3. 2011, Dan Ciresan wins the ICDAR 2011 Chinese character recognition competition and the IJCNN 2011 German traffic signs recognition competition
- 4. 2012, AlexNet (Alex Krizhevsky et al., 2012). Hinton's group winning the high-profile ImageNet large-scale visual recognition challenge.
- 5. In 2013 and 2014, deep learning still faced intense skepticism from many senior
- 6. computer vision researchers.
- 7. It was only in 2016 that it finally became dominant.

Main ideas The goals of a CNN

Common neural network approach

Dense layers learn **global** patterns in their input feature space

CNN approach

Convolution layers learn **local** patterns—in the case of images, patterns found in small 2D windows of the inputs

Locality

Translation invariance

Translation invariance

Spatial hierarchies of patterns

- A first convolution layer will learn small local patterns such as edges
- A second convolution layer will learn larger patterns made of the features of the first layers, and so on

3. Basic CNN architecture

Kernel and pooling

Basic CNN architecture

Convolution

2D convolution is a **dot product** between an image (nxn matrix) and a **kernel** (3x3)

30	3,	22	1	0
02	02	1_{o}	3	1
30	1,	22	2	3
2	0	0	2	2
2	0	0	0	1

12.0	12.0	17.0
10.0	17.0	19.0
9.0	6.0	14.0

Convolution

2D convolution is a **dot product** between an image (nxn matrix) and a **kernel** (3x3)

12.0	12.0	17.0
10.0	17.0	19.0
9.0	6.0	14.0

Edge detector

K	ernel			
ı	-1	-1	-1	l
ı	-1	8	-1	l
l	-1	-1	-1	l

Sharpening

Kernel		
-1	-1	-1
-1	9	-1
-1	-1	-1

Gaussian

Kernel 1 2 3 2 1 2 4 5 4 2 3 5 6 5 3 2 4 5 4 2 1 2 3 2 1

Smoothing

H	Kerne	el		
ı	1	1	1	l
ı	1	2	1	l
	1	1	1	١

Smoothing

Don't worry! The CNN will learn the kernels!

 $n_h \times n_w$

 $k_h \times k_w$

27 numbers

A Convolution Layer

Basic CNN architecture

Pooling

Pooling

Pooling

- Pooling is image compression
- Reduce computation

Max pooling and Average pooling

No need to learn a Max Pooling

3	13	17	11
5	3	1	23
7	1	2	3
11	17	1	4

Max Pooling

Avergae Pooling

6	13
9	2.5

Padding

In general, a 2D convolution reduces the size of the image

30	3,	22	1	0
02	02	1_{o}	3	1
30	1,	22	2	3
2	0	0	2	2
2	0	0	0	1

12.0	12.0	17.0
10.0	17.0	19.0
9.0	6.0	14.0

Padding

In general, a 2D convolution reduces the size of the image

Stride

Stride is the number of rows and columns traversed per slide. In general, a 2D convolution the kernel moves 1 row at a time in both directions.

30	3,	22	1	0
02	02	1_{o}	3	1
30	1,	22	2	3
2	0	0	2	2
2	0	0	0	1

12.0	12.0	17.0
10.0	17.0	19.0
9.0	6.0	14.0

Stride

Stride of 2 vertically and 2 horizontally.

- Computational efficiency
- Downsampling

CNN example

AlexNet

AlexNet

Input Layer

AlexNet takes images of the Input size of 227x227x3 RGB Pixels.

Convolutional Layers

- 1. First Layer: The first layer uses 96 kernels of size 11×11 with a stride of 4, activates them with the ReLU activation function, and then performs a Max Pooling operation.
- 2. Second Layer: The second layer takes the output of the first layer as the input, with 256 kernels of size 5x5x48.
- 3. Third Layer: 384 kernels of size 3x3x256. No pooling or normalization operations are performed on the third, fourth, and fifth layers.
- 4. Fourth Layer: 384 kernels of size 3x3x192.
- 5. Fifth Layer: 256 kernels of size 3x3x192.

Fully Connected Layers

The fully connected layers have 4096 neurons each.

Output Layer

The output layer is a SoftMax layer that outputs probabilities of the 1000 class labels.

CNN in Keras

Keras

Listing 8.1 Instantiating a small convnet

```
from tensorflow import keras
from tensorflow.keras import layers
inputs = keras.Input(shape=(28, 28, 1))
x = layers.Conv2D(filters=32, kernel_size=3, activation="relu")(inputs)
x = layers.MaxPooling2D(pool_size=2)(x)
x = layers.Conv2D(filters=64, kernel_size=3, activation="relu")(x)
x = layers.MaxPooling2D(pool_size=2)(x)
x = layers.Conv2D(filters=128, kernel_size=3, activation="relu")(x)
x = layers.Flatten()(x)
outputs = layers.Dense(10, activation="softmax")(x)
model = keras.Model(inputs=inputs, outputs=outputs)
```


The book

Deep Learning with Python, 2nd Ed. by Francois Chollet

O Chapter 8