Федеральное государственное автономное образовательное учреждение высшего образования «САНКТ-ПЕТЕРБУРГСКИЙ ПОЛИТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ ПЕТРА ВЕЛИКОГО»

Институт компьютерных наук и технологий Кафедра «Компьютерные интеллектуальные технологии»

В.Г. ПАК

ДИСКРЕТНАЯ МАТЕМАТИКА

СЛАЙДЫ ВИДЕОЛЕКЦИЙ ДЛЯ СТУДЕНТОВ II КУРСА ЗАОЧНОГО ОТДЕЛЕНИЯ БАКАЛАВРИАТА НАПРАВЛЕНИЯ ПОДГОТОВКИ «ПРИКЛАДНАЯ ИНФОРМАТИКА»

Санкт-Петербургский политехнический университет Петра Великого 2018

Санкт-Петербургский политехнический университет Петра Великого, 2018 ©

Содержание курса

Введение

- Тема 1. Теория множеств
- Тема 2. Комбинаторика
- Тема 3. Булевы функции
- Тема 4. Минимизация булевых функций
- Тема 5. Реализация булевых функций схемами из функциональных элементов и релейно-контактными схемами
- Тема 6. Основы теории графов

Федеральное государственное автономное образовательное учреждение высшего образования «САНКТ-ПЕТЕРБУРГСКИЙ ПОЛИТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ ПЕТРА ВЕЛИКОГО»

Институт компьютерных наук и технологий Кафедра «Компьютерные интеллектуальные технологии»

ЛЕКЦИЯ №1

ВВЕДЕНИЕ. ПРЕДМЕТ ДИСКРЕТНОЙ МАТЕМАТИКИ. ОСНОВЫ ТЕОРИИ МНОЖЕСТВ. ОТНОШЕНИЯ

СЛАЙДЫ ВИДЕОЛЕКЦИЙ ДЛЯ СТУДЕНТОВ II КУРСА ЗАОЧНОГО ОТДЕЛЕНИЯ БАКАЛАВРИАТА НАПРАВЛЕНИЯ ПОДГОТОВКИ «ПРИКЛАДНАЯ ИНФОРМАТИКА»

Санкт-Петербургский политехнический университет Петра Великого 2018

Санкт-Петербургский политехнический университет Петра Великого, 2018 ⊚

Содержание

Введение

Тема 1. Теория множеств

- §1. Основы теории множеств
 - 1.1. Понятие множества
 - 1.2. Способы задания множеств
 - 1.3. Операции над множествами
 - 1.4. Алгебра множеств

§2. Отношения

- 2.1. Декартово произведение
- 2.2. Бинарные отношения
- 2.3. Функции
- 2.4. Специальные бинарные отношения
- 2.5. Отношения порядка

Введение

Введение

Дискретная математика — раздел фундаментальной математики, в котором исследуются дискретные структуры, т.е. структуры, составленные из пространственно или логически отделённых друг от друга компонентов.

Примеры дискретных структур: графы, конечные и счётные множества, семейства множеств, классические логики.

Разделы дискретной математики:

- 1) теория множеств;
- 2) комбинаторика;
- 3) теория графов;
- 4) математическая логика;
- 5) теория кодирования;
- 6) теория абстрактных алгебраических структур.

Тема 1. Теория множеств

§1. Основы теории множеств

1.1. Понятие множества

Множество – совокупность объектов (элементов), рассматриваемая как единое целое.

Обозначения множеств: $A, B, C, ..., A_1, A_2, ...$. Обозначения элементов множеств: $a, b, c, ..., a_1, a_2, ...$

Элемент a принадлежит множеству $A: a \in A$.

Элемент a не принадлежит множеству A: $a \notin A$.

Определение. Множества A и B называются *равными*, если они содержат одинаковые элементы: A=B.

Определение. Множество A называется *подмножеством* множества B (A включено в B, A содержится в B, B содержит A), если любой элемент A является элементом B: $A \subseteq B \iff \forall a : a \in A \implies a \in B$.

Если $A \subseteq B$ и $A \neq B$, то пишут $A \subset B$.

Очевидно, что $A = B \iff A \subseteq B \& B \subseteq A$.

1.1. Понятие множества

Определение. Множество, не содержащее элементов, называется *пустым*: \emptyset . Очевидно, что для любого множества $A \ \emptyset \subseteq A$ и $A \subseteq A$.

Определение. Множества \emptyset и A называются несобственными подмножествами A, все остальные подмножества A называются собственными.

Определение. Универсальным множеством (универсумом) называется множество \mathcal{U} , содержащее любое множество как подмножество.

Круги Эйлера (диаграммы Эйлера-Венна)

1.2. Способы задания множеств

1.2. Способы задания множеств

1. Перечисление элементов.

 $A = \{a; b; t; 4; 12\}, B = \{$ крокодил; удав; бегемот; улитка $\}$.

2. Задание свойства (свойств) элементов.

 $D = \{z \in \mathbb{Z} \mid z = 3k + 1, k \in \mathbb{Z}\}$ (\mathbb{Z} - множество целых чисел).

3. Через операции над множествами.

1.3. Операции над множествами

1. Объединение (сумма) множеств.

Определение. *Объединением* множеств A и B называются множество, содержащее элементы, принадлежащие либо A, либо B: $A \cup B$.

1.3. Операции над множествами

2. Пересечение (произведение) множеств. Определение. Пересечением множеств A и B называются множество,

содержащее элементы, принадлежащие A и B одновременно: $A \cap B$.

3. Разность множеств.

Определение. *Разностью* множеств A и B называются множество, содержащее элементы A, не принадлежащие B: $A \setminus B$.

1.3. Операции над множествами

4. Дополнение (отрицание) множества.

Определение. Дополнением множества A называются множество, содержащее элементы, не принадлежащие A: \bar{A} .

5. Симметрическая разность множеств.

Определение. Симметрической разностью множеств A и B называются множество, содержащее элементы, принадлежащие либо A, либо B, но не

A и B одновременно: A - B.

1.3. Операции над множествами

Замечания.

- 1. Операции объединения и пересечения естественным образом обобщаются на любое конечное число множеств: $A_1 \cup A_2 \cup \cdots \cup A_n$, $A_1 \cap A_2 \cap \cdots \cap A_n$.
- 2. Из определений операций следуют очевидные тождества:
 - a) $A \setminus B = A \cap \overline{B}$;
 - b) $\bar{A} = \mathcal{U} \setminus A$;
 - c) $A B = (A \cup B) \setminus (A \cap B) = (A \setminus B) \cup (B \setminus A)$.

Определение. *Булеаном* множества A называется семейство всех подмножеств A: $\mathcal{P}(A)$.

Множества и введённые операции над ними образуют *алгебру множеств*. Определим формулы этой алгебры следующими рекуррентными правилами.

Определение. *Формулой алгебры множеств* называется последовательность символов, построенная по правилам:

- 1. Любая буква, обозначающая множество, является формулой, символы \mathcal{U} , \emptyset также есть формулы.
- 2. Если \mathcal{A} , \mathcal{B} формулы, то $(\mathcal{A} \cup \mathcal{B})$, $(\mathcal{A} \cap \mathcal{B})$, $(\mathcal{A} \setminus \mathcal{B})$, $(\mathcal{A} \dot{-} \mathcal{B})$, $(\bar{\mathcal{A}})$ также есть формулы.
- 3. Последовательность символов является формулой в том и только том случае, когда она получена по правилам 1 и 2.

Определение. *Подформулой* формулы называется её часть, сама являющаяся формулой.

Правила удаления лишних скобок:

- 1. Внешние скобки можно опускать.
- 2. Если формула содержит вхождения только одной из операций ∪, ∩ или ∸, то в ней можно опустить все скобки, операции выполняются слева направо.
- 3. Внешние скобки в формуле вида $(\bar{\mathcal{A}})$, где \mathcal{A} формула, можно опустить.
- 4. Можно опускать пары скобок, без которых возможно восстановление исходной формулы по следующим правилам. Каждое вхождение символа ∩ связывает наименьшие окружающие его подформулы. После расстановки скобок, относящихся к ∩, каждое вхождение ∪ относится к наименьшим подформулам слева и справа от него. Далее подобным образом расставляются скобки, относящиеся к символам \ и ∸.

Таким образом, вводится следующий приоритет операций (по убыванию): дополнение, ∩, ∪, \, ∸ (последние три равноприоритетны). Идущие подряд равноприоритетные операции выполняются слева направо.

Приведём основные законы и правила алгебры множеств.

- I. Законы коммутативности:
 - а) $A \cup B = B \cup A$ (коммутативность объединения);
 - b) $A \cap B = B \cap A$ (коммутативность пересечения);
 - c) A B = B A (коммутативность симметрической разности).
- II. Законы ассоциативности:
 - а) $A \cup (B \cup C) = (A \cup B) \cup C$ (ассоциативность объединения);
 - b) $A \cap (B \cap C) = (A \cap B) \cap C$ (ассоциативность пересечения);
 - c) $A \div (B \div C) = (A \div B) \div C$ (ассоциативность симметрической разности).

Замечание. Законы ассоциативности фактически уже заложены правилом 2 опускания лишних скобок.

- III. Законы дистрибутивности:
 - а) $A \cap (B \cup C) = A \cap B \cup A \cap C$ (дистрибутивность пересечения относительно объединения);
 - b) $A \cup B \cap C = (A \cup B) \cap (A \cup C)$ (дистрибутивность объединения относительно пересечения).
- IV. Законы идемпотентности:
 - а) $A \cup A = A$ (идемпотентность объединения);
 - b) $A \cap A = A$ (идемпотентность пересечения).

- V. Закон исключённого третьего: $A \cup \bar{A} = \mathcal{U}$.
- VI. Закон противоречия: $A \cap \bar{A} = \emptyset$.
- VII.Закон двойного отрицания: $\bar{A} = A$.
- VIII.Законы двойственности де Моргана:
 - a) $\overline{A \cup B} = \overline{A} \cap \overline{B}$;
 - b) $\overline{A \cap B} = \overline{A} \cup \overline{B}$.
- IX. Правила поглощения:
 - a) $A \cup A \cap B = A$;
 - b) $A \cap (A \cup B) = A$.
- Х. Правила склеивания:
 - a) $A \cap B \cup A \cap \overline{B} = A$;
 - b) $(A \cup B) \cap (A \cup \overline{B}) = A$.
- XI. $A \cup \overline{A} \cap B = A \cup B$.

2.1. Декартово произведение

§2. Отношения

2.1. Декартово произведение

Определение. Вектором (кортежем) длины (размерности) n называется упорядоченная последовательность элементов: $\langle a_1, a_2, ..., a_n \rangle$.

Таким образом, два вектора равны тогда и только тогда, когда у них на соответствующих позициях находятся одинаковые элементы.

Определение. Декартовым (прямым) произведением множеств $A_1, A_2, ..., A_n$ называется множество $A_1 \times A_2 \times \cdots \times A_n$ всех векторов $\langle a_1, a_2, ..., a_n \rangle$, в которых $a_1 \in A_1, a_2 \in A_2, ..., a_n \in A_n$: $A_1 \times A_2 \times \cdots \times A_n = \{\langle a_1, ..., a_n \rangle | a_1 \in A_1, ..., a_n \in A_n\}$. Если $A_1 = \cdots = A_n = A$, то $A_1 \times \cdots \times A_n = A^n$ - декартова (прямая) степень

множества \overline{A} .

Ниже приведены свойства декартова произведения.

- 1. Дистрибутивность относительно объединения справа и слева:
 - a) $(A \cup B) \times C = (A \times C) \cup (B \times C)$;
 - b) $A \times (B \cup C) = (A \times B) \cup (A \times C)$.
- 2. Дистрибутивность относительно пересечения справа и слева:
 - a) $(A \cap B) \times C = (A \times C) \cap (B \times C)$;
 - b) $A \times (B \cap C) = (A \times B) \cap (A \times C)$.

2.1. Декартово произведение

- 3. Дистрибутивность относительно разности справа и слева:
 - a) $(A \setminus B) \times C = (A \times C) \setminus (B \times C)$;
 - b) $A \times (B \setminus C) = (A \times B) \setminus (A \times C)$.

Замечания.

- 1. Свойства 1-2 естественным образом обобщаются на любые конечные объединения и пересечения.
- 2. В общем случае декартово произведение некоммутативно и неассоциативно.

2.2. Бинарные отношения

2.2. Бинарные отношения

Определение. Отношением арности n (n-арным отношением) на множествах $A_1, A_2, ..., A_n$ называется подмножество декартова произведения $A_1 \times A_2 \times \cdots \times A_n$; n-арным отношением на множестве A называется подмножество декартовой степени A^n .

Отношение арности 3 называется *тернарным*, арности 2 — *бинарным*. **Определение.** *Бинарным отношением* на множествах A, B называется подмножество декартова произведения $A \times B$.

Обозначение: $\langle a; b \rangle \in R \iff aRb$.

Определение. Областью определения бинарного отношения $R \subseteq A \times B$ называется множество δ_R элементов $a \in A$, для которых aRb при некотором $b \in B$:

$$\delta_R = \{a \in A \mid aRb \text{ при некотором } b \in B\}.$$

Определение. Областью значений бинарного отношения $R \subseteq A \times B$ называется множество ρ_R элементов $b \in B$, для которых aRb при некотором $a \in A$:

$$\rho_R = \{b \in B \mid aRb \text{ при некотором } a \in A\}.$$

2.2. Бинарные отношения

Определение. Обратным к бинарному отношению R называется бинарное отношение $R^{-1} = \{\langle a; b \rangle \mid bRa \}$.

Определение. Дополнением бинарного отношения $R \subseteq A \times B$ называется бинарное отношение $-R = (A \times B) \setminus R$.

Определение. Образом множества $X \subseteq \delta_R$ при бинарном отношении $R \subseteq A \times B$ называется множество R(X) элементов $b \in B$, для которых aRb при некотором $a \in X$:

$$R(X) = \{b \in B | aRb$$
 при некотором $a \in X\}.$

Определение. Прообразом множества $Y \subseteq \rho_R$ при бинарном отношении $R \subseteq A \times B$ называется множество $R^{-1}(Y)$:

$$R^{-1}(Y) = \{a \in A \mid bR^{-1}a \text{ при некотором } b \in Y\} = \{a \in A \mid aRb \text{ при некотором } b \in Y\}.$$

Определение. Композицией бинарных отношений $R_1 \subseteq A \times B$ и $R_2 \subseteq B \times C$ называется бинарное отношение

$$R_1 \circ R_2 = \{ \langle a; b \rangle \mid aR_1c \& cR_2b$$
 при некотором $c \in \rho_{R_1} \cap \delta_{R_2} \}.$

2.2. Бинарные отношения

Свойства бинарных отношений:

- 1. $(R^{-1})^{-1} = R$;
- 2. 1) $(R \cup S)^{-1} = R^{-1} \cup S^{-1}$;
 - 2) $(R \cap S)^{-1} = R^{-1} \cap S^{-1}$;
- 3. $-R^{-1} = (-R)^{-1}$;
- 4. $R \circ (S \circ T) = (R \circ S) \circ T$, где $R \subseteq A \times B$, $S \subseteq B \times C$, $T \subseteq C \times D$;
- 5. $(R \circ S)^{-1} = S^{-1} \circ R^{-1}$, где $R \subseteq A \times B$, $S \subseteq B \times C$;
- 6. $(R \circ S)(X) = S(R(X))$, где $R \subseteq A \times B$, $S \subseteq B \times C$, $X \subseteq A$;
- 7. 1) $(R \cup S) \circ T = R \circ T \cup S \circ T$, где $R, S \subseteq A \times B$, $T \subseteq B \times C$;
 - 2) $R \circ (S \cup T) = R \circ S \cup R \circ T$, где $R \subseteq A \times B$, $S, T \subseteq B \times C$;
- 8. 1) $(R \cap S) \circ T \subseteq R \circ T \cap S \circ T$, где $R, S \subseteq A \times B$, $T \subseteq B \times C$;
 - 2) $R \circ (S \cap T) \subseteq R \circ S \cap R \circ T$, где $R \subseteq A \times B$, $S, T \subseteq B \times C$;
- 9. 1) $\delta_{R^{-1}} = \rho_R$;
 - 2) $\rho_{R^{-1}} = \delta_{R}$.

2.3. Функции

Определение. Бинарное отношение $f \subseteq A \times B$ называется функцией из $A \in B$, если $\delta_f = A$, $\rho_f \subseteq B$ и для всех $x \in \delta_f$, y_1 , $y_2 \in \rho_f$ из xfy_1 и xfy_2 следует $y_1 = y_2$.

Функцию f из A в B будем обозначать $f: A \to B$. Вместо xfy пишем y = f(x), где x – аргумент, y – значение функции.

Определение. Функция f называется *инъекцией* ((1-1)-функцией) из A в B, если из $x_1 \neq x_2$ следует $f(x_1) \neq f(x_2)$.

Определение. Функция $f: A \to B$ называется *сюръекцией* A на B, если $\rho_f = B$.

Определение. Функция $f: A \to B$, являющаяся и инъекцией, и сюръекцей называется биекцией (взаимно-однозначным соответствием) между A и B.

Определение. Биекция $f: A \to A$ называется *подстановкой* множества A.

Свойства функций:

- 1. $f(A \cup B) = f(A) \cup f(B)$, где $A, B \subseteq \delta_f$;
- 2. $f(A \cap B) \subseteq f(A) \cap f(B)$, где $A, B \subseteq \delta_f$;
- 3. $f(A)\backslash f(B)\subseteq f(A\backslash B)$, где $A,B\subseteq \delta_f$;
- 4. $f^{-1}(A \cup B) = f^{-1}(A) \cup f^{-1}(B)$, где $A, B \subseteq \rho_f$;

2.3. Функции

- 5. $f^{-1}(A \cap B) = f^{-1}(A) \cap f^{-1}(B)$, где $A, B \subseteq \rho_f$;
- 6. $f^{-1}(A \setminus B) = f^{-1}(A) \setminus f^{-1}(B)$, где $A, B \subseteq \rho_f$.

Лемма 2.1. Если f — функция из A в B, то f^{-1} является функцией из $\rho_f \subseteq B$ в A тогда и только тогда, когда f — инъекция.

Следствие. Если функция f является инъекцией, то $f(A \cap B) = f(A) \cap f(B)$, $f(A \setminus B) = f(A) \setminus f(B)$, где $A, B \subseteq \delta_f$.

Лемма 2.2. Функция f является взаимно-однозначным соответствием между A и B тогда и только тогда, когда f^{-1} также является взаимно-однозначным соответствием.

Следствие. Функция f является подстановкой множества A тогда и только тогда, когда f^{-1} также является подстановкой A.

Лемма 2.3. Если f — функция из A в B, g — функция из $\rho_f \subseteq B$ в C, то $f \circ g$ — функция из A в C.

2.4. Специальные бинарные отношения

2.4. Специальные бинарные отношения

Начиная с этого пункта, рассматриваются бинарные отношения R на множестве A, т.е. подмножества A^2 . Считаем, что $\delta_R = A$.

Определение. Бинарное отношение $R \subseteq A^2$ называется *рефлексивным* (*иррефлексивным*), если для всех $a \in A \ aRa$ (неверно, что aRa).

Определение. Бинарное отношение R называется *симметричным*, если для всех $a, b \in A$ из aRb следует bRa.

Определение. Бинарное отношение R называется *антисимметричным*, если для всех $a, b \in A$ из aRb & bRa следует a = b.

Определение. Бинарное отношение R называется *транзитивным*, если для всех $a, b, c \in A$ из aRb & bRc следует aRc.

Определение. Рефлексивное, симметричное и транзитивное бинарное отношение называется *эквивалентностью*.

Лемма 2.4. Симметричное и антисимметричное бинарное отношение является транзитивным.

Лемма 2.5. Если бинарные отношения R, S симметричны, то $R \circ S$ симметрично тогда и только тогда, когда $R \circ S = S \circ R$.

2.4. Специальные бинарные отношения

Лемма 2.6. Бинарное отношение R транзитивно тогда и только тогда, когда $R \circ R \subseteq R$.

Лемма 2.7. Если бинарные отношения R, S - эквивалентности, то $R \circ S$ является эквивалентностью тогда и только тогда, когда $R \circ S = S \circ R$.

Лемма 2.8. Бинарное отношение R является эквивалентностью тогда и только тогда, когда R^{-1} - также эквивалентность.

Пусть на множестве A задана эквивалентность R.

Определение. *Классом эквивалентности* элемента $a \in A$ по R называется множество a/R всех элементов A, находящихся в отношении R с a:

$$a/R = \{b \in A | bRa\}.$$

Определение. Множество классов эквивалентности элементов A по R называется фактор-множеством A / R: $A/R = \{a / R | a \in A\}$.

Теорема 2.1. Классы эквивалентности попарно не пересекаются, и их объединение равно A.

Определение. *Разбиением множества* A называется система попарно не пересекающихся подмножеств A, объединение которых равно A.

Теорема 2.1 утверждает, что фактор-множество является разбиением A.

2.5. Отношения порядка

2.5. Отношения порядка

Определение. Бинарное отношение $R \subseteq A^2$ называется *предпорядком* (*квазипорядком*) на A, если оно рефлексивно и транзитивно.

Определение. Бинарное отношение R называется *частичным порядком*, если оно рефлексивно, транзитивно и антисимметрично. Обозначается \leq .

Определение. Бинарное отношение \leq^{-1} называется *двойственным к порядку* \leq . Обозначается \geq .

Лемма 2.9. Порядок, двойственный к частичному, является частичным.

Определение. Частичный порядок \leq называется *линейным*, если для любых $a, b \in A$ либо $a \leq b$, либо $b \leq a$.

Определение. Множество, на котором задан частичный (линейный) порядок, называется *частично* (*линейно*) *упорядоченным*.

Определение. Элемент a частично упорядоченного множества называется максимальным (минимальным), если из $a \le x$ ($x \le a$) следует a = x.

Определение. Элемент a частично упорядоченного множества A называется наибольшим (наименьшим), если $x \le a$ ($a \le x$) для всех $x \in A$.

Лемма 2.10. Частично упорядоченное множество имеет не более одного наибольшего (наименьшего) элемента.

2.5. Отношения порядка

Лемма 2.11. Наибольший (наименьший) элемент является единственным максимальным (минимальным).

Замечание. Обратное утверждение в общем случае неверно, т.е. максимальный (минимальный) элемент может не быть наибольшим (наименьшим).

Лемма 2.12. В линейно упорядоченном множестве элемент является наибольшим (наименьшим) тогда и только тогда, когда он максимален (минимален).

Определение. Верхней (нижней) гранью подмножества B частично упорядоченного множества A называется такой элемент $a \in A$, что для любого $b \in B$ $b \le a$ $(a \le b)$.

Определение. Точной верхней (точной нижней) гранью подмножества B частично упорядоченного множества A называется наименьшая верхняя (наибольшая нижняя) грань B.

Обозначается $\sup B$ ($\inf B$).

Определение. Линейный порядок на множестве A называется *полным*, если каждое непустое подмножество A имеет наименьший элемент.

Определение. Множество, на котором задан полный порядок, называется вполне упорядоченным.