## Introduction to Algorithms: Lecture 5

Xue Chen xuechen1989@ustc.edu.cn 2025 spring in



# Homework & Experiments

- All office hours in April are in 3A103
- Experiment 2 is due on Thursday
- HW 3 will be due on next Wednesday

## **Outline**

- Introduction
- 2 Matrix-Chain Multiplication
- Weighted Interval Scheduling
- 4 Longest Common Sequence
- 5 Optimal Binary Search Tree

### Overview

Next, discuss two powerful techniques in algorithm-design:

- Dynamic programming
- ② Greedy method

Similar to divide & conquer, they optimize the running time.

## Overview

Next, discuss two powerful techniques in algorithm-design:

- Dynamic programming
- @ Greedy method

Similar to divide & conquer, they optimize the running time.



While these three methods have similar ideas, their implementations, analyses, and proofs are quite different.

## Introduction

Dynamic Programming (DP): Divide & Conquer ++

#### Introduction

Dynamic Programming (DP): Divide & Conquer ++

## Recall 3 steps in divide & conquer

- Divide problem into subproblems
- Solve subproblems recursively
- 3 Combine solutions of subproblems

### Introduction

Dynamic Programming (DP): Divide & Conquer ++

## Recall 3 steps in divide & conquer

- Divide problem into subproblems
- Solve subproblems recursively
- 3 Combine solutions of subproblems

Usually, we apply dynamic programming for optimization problems.

- Similar to divide & conquer: Reduce to subproblems.
- ② Differences: (1) division step in DP is more complicated; (2) DP handles subproblems by Memoization

## **Outline**

- Introduction
- 2 Matrix-Chain Multiplication
- 3 Weighted Interval Scheduling
- 4 Longest Common Sequence
- 5 Optimal Binary Search Tree

## Background

Machine learning and data science always need to compute a sequence of matrix multiplications.

Example: linear regression

Given  $A \in \mathbb{R}^{n \times d}$  and  $y \in \mathbb{R}^n$ ,  $\min_{\beta} \|A\beta - y\|_2$  has  $\beta^* = (A^{\top}A)^{-1}A^{\top}y$ .

# Background

Machine learning and data science always need to compute a sequence of matrix multiplications.

Example: linear regression

Given 
$$A \in \mathbb{R}^{n \times d}$$
 and  $y \in \mathbb{R}^n$ ,  $\min_{\beta} ||A\beta - y||_2$  has  $\beta^* = (A^{\top}A)^{-1}A^{\top}y$ .

After computing  $(A^{T}A)^{-1}$ ,

$$(A^{\top}A)^{-1} \cdot (A^{\top} \cdot y)$$
 is faster than  $\left( (A^{\top}A)^{-1} \cdot A^{\top} \right) y$ .

# Background

Machine learning and data science always need to compute a sequence of matrix multiplications.

Example: linear regression

Given 
$$A \in \mathbb{R}^{n \times d}$$
 and  $y \in \mathbb{R}^n$ ,  $\min_{\beta} \|A\beta - y\|_2$  has  $\beta^* = (A^{\top}A)^{-1}A^{\top}y$ .

After computing  $(A^{T}A)^{-1}$ ,

$$(A^{\top}A)^{-1} \cdot (A^{\top} \cdot y)$$
 is faster than  $\left( (A^{\top}A)^{-1} \cdot A^{\top} \right) y$ .

#### Problem

Given dimensions  $p_0, \ldots, p_n$  and matrices  $A_1, \ldots, A_n$  with  $A_i \in \mathbb{R}^{p_{i-1} \times p_i}$ , fully parenthesize product  $A_1 A_2 \cdots A_n$  to minimize the number of scalar multiplications.

#### Problem

Given  $p_0, \ldots, p_n \in \mathbb{Z}^+$  and matrices  $A_1, \ldots, A_n$  with  $A_i \in \mathbb{R}^{p_{i-1} \times p_i}$ , fully parenthesize product  $A_1 A_2 \cdots A_n$  to minimize the number of scalar multiplications.

There are  $2^{\Omega(n)}$  methods to add parenthesizes on  $A_1 A_2 \cdots A_n$ :

$$(A_1A_2)\cdot(A_3A_4), ((A_1A_2)A_3)\cdot A_4, (A_1(A_2A_3))\cdot A_4, A_1\cdot((A_2A_3)A_4), \dots$$

#### Problem

Given  $p_0, \ldots, p_n \in \mathbb{Z}^+$  and matrices  $A_1, \ldots, A_n$  with  $A_i \in \mathbb{R}^{p_{i-1} \times p_i}$ , fully parenthesize product  $A_1 A_2 \cdots A_n$  to minimize the number of scalar multiplications.

There are  $2^{\Omega(n)}$  methods to add parenthesizes on  $A_1 A_2 \cdots A_n$ :

$$(A_1A_2)\cdot(A_3A_4), ((A_1A_2)A_3)\cdot A_4, (A_1(A_2A_3))\cdot A_4, A_1\cdot((A_2A_3)A_4), \dots$$

#### Problem

Given  $p_0, \ldots, p_n \in \mathbb{Z}^+$  and matrices  $A_1, \ldots, A_n$  with  $A_i \in \mathbb{R}^{p_{i-1} \times p_i}$ , fully parenthesize product  $A_1 A_2 \cdots A_n$  to minimize the number of scalar multiplications.

There are  $2^{\Omega(n)}$  methods to add parenthesizes on  $A_1A_2\cdots A_n$ :

$$(A_1A_2)\cdot (A_3A_4), ((A_1A_2)A_3)\cdot A_4, (A_1(A_2A_3))\cdot A_4, A_1\cdot ((A_2A_3)A_4), \ldots$$

### Basic idea

- The last product · splits them into two independent subproblems.
- ② Global optimal solution ⇔ optimal on the two subproblems.

#### Problem

Given  $p_0, \ldots, p_n \in \mathbb{Z}^+$  and matrices  $A_1, \ldots, A_n$  with  $A_i \in \mathbb{R}^{p_{i-1} \times p_i}$ , fully parenthesize product  $A_1 A_2 \cdots A_n$  to minimize the number of scalar multiplications.

There are  $2^{\Omega(n)}$  methods to add parenthesizes on  $A_1A_2\cdots A_n$ :

$$(A_1A_2)\cdot (A_3A_4), ((A_1A_2)A_3)\cdot A_4, (A_1(A_2A_3))\cdot A_4, A_1\cdot ((A_2A_3)A_4), \ldots$$

### Basic idea

- The last product · splits them into two independent subproblems.
- ② Global optimal solution  $\Leftrightarrow$  optimal on the two subproblems.

Question: How to split them? — Let us try all choices of splits.

```
function CHAINORDER(s, t)
   if s = t then
       Return 0
   else if s+1=t then
       Return p_{s-1} \times p_s \times p_t
   else
       ans = +\infty
       for i \in [s, t] do
                                                     //Enumerate the split
           ans = min \{ans, ChainOrder(s, i) + ChainOrder(i + i)\}
1, t) + p_{s-1} \times p_i \times p_t
       Return ans
```

```
function CHAINORDER(s, t)
   if s = t then
       Return 0
   else if s+1=t then
       Return p_{s-1} \times p_s \times p_t
   else
       ans = +\infty
       for i \in [s, t] do
                                                     //Enumerate the split
           ans = min \{ans, ChainOrder(s, i) + ChainOrder(i + i)\}
1, t) + p_{s-1} \times p_i \times p_t
       Return ans
```

While it does find the answer,  $2^{\Omega(n)}$  calls of ChainOrder. However, there are only  $\binom{n+1}{2}$  pairs (s,t).

#### Solution

Once calculated ChainORDER(s, t), Let f[s, t] record the answer ChainORDER(s, t) for future calls.

```
procedure CHAINM(s, t)

// preprocess s = t and s + 1 = t

if f[s,t] = +\infty then

for i \in [s,t) do

f[s,t] = \min \left\{ f[s,t], \mathsf{CHAINM}(s,i) + \mathsf{CHAINM}(i+1,t) + + p_{s-1} \times p_i \times p_t \right\}

Return f[s,t]
```

#### Solution

Once calculated ChainORDER(s, t), Let f[s, t] record the answer ChainORDER(s, t) for future calls.

```
procedure CHAINM(s,t)

// preprocess s=t and s+1=t

if f[s,t]=+\infty then

for i\in[s,t) do

f[s,t]=\min\left\{f[s,t], \text{CHAINM}(s,i)+\text{CHAINM}(i+1,t)+\right.

+p_{s-1}\times p_i\times p_t

Return f[s,t]
```

Since we start by calling CHAINM(1, n), this is called top-down with memoization.

# **Bottom-Up Method**

(s, i) and (i + 1, t) in loop are strictly smaller than (s, t) — we can compute f[s, t] from smaller intervals to large ones, called bottom-up method.

```
procedure MAIN

Pre-process f[s,t] where s=t or s+1=t

for \ell=2,\ldots,n-1 do /\!\!/\ell=t-s

for s=1,\ldots,n-\ell do t=s+\ell,\,f[s,t]=+\infty

for i\in[s,t] do f[s,t]=\min\left\{f[s,t],\,f[s,i]+f[i+1,t]+p_{s-1}\times p_i\times p_t\right\}

Return f[1,n]
```

## Bottom-Up Method

(s, i) and (i + 1, t) in loop are strictly smaller than (s, t) — we can compute f[s, t] from smaller intervals to large ones, called bottom-up method.

```
Procedure MAIN

Pre-process f[s,t] where s=t or s+1=t

for \ell=2,\ldots,n-1 do /\!\!/\ell=t-s

for s=1,\ldots,n-\ell do t=s+\ell, f[s,t]=+\infty

for i\in[s,t] do f[s,t]=\min\left\{f[s,t],f[s,i]+f[i+1,t]+p_{s-1}\times p_i\times p_t\right\}

Return f[1,n]
```

We enumerate  $(\ell, s)$  instead of (s, t) to guarantee f[s, i] and f[i + 1, t] have been calculated.

## Discussion

## **Analysis**

- Orrectness follows by an induction proof.
- 2 Running time  $O(n^3)$  3 loops.

Question: How to find the construction?

## Discussion

## **Analysis**

- Ocrrectness follows by an induction proof.
- 2 Running time  $O(n^3)$  3 loops.

Question: How to find the construction?

```
procedure PARENS(s, t)

if s = t then

Print(A_i)

else

Print("(")

Parens(s, d[s, t])

Parens(d[s, t] + 1, t)

Print(")")
```

① Record  $arg min_i$  as d[s, t] in MAIN

## Discussion

## **Analysis**

- Orrectness follows by an induction proof.
- 2 Running time  $O(n^3)$  3 loops.

Question: How to find the construction?

```
procedure PARENS(s, t)

if s = t then

Print(A_i)

else

Print("(")

Parens(s, d[s, t])

Parens(d[s, t] + 1, t)

Print(")")
```

- ① Record  $arg min_i$  as d[s, t] in MAIN
- Print the construction from top-bottom.

# Summary

While dynamic programming utilizes answers from subproblems, two differences between divide & conquer:

- DP enumerates all splits.
- ② DP memorize answers of all subproblems

Usually DP analyzes the problem from top to bottom but implement it from bottom to top (faster).

# Summary

While dynamic programming utilizes answers from subproblems, two differences between divide & conquer:

- DP enumerates all splits.
- ② DP memorize answers of all subproblems

Usually DP analyzes the problem from top to bottom but implement it from bottom to top (faster).

## More examples

- (1) Different problems consider various splits.
- (2) Improve the running time of DP.

## **Outline**

- Introduction
- 2 Matrix-Chain Multiplication
- Weighted Interval Scheduling
- 4 Longest Common Sequence
- 5 Optimal Binary Search Tree

# Interval Scheduling

- ① *n* jobs in [0, *T*]
- ② Job j starts from h(j) and ends at e(j) with weight  $w_j$
- Two jobs are compatible if they don't overlap.
- 4 Goal: find max-weight subset with compatible jobs.



Reduce it to subproblems: max-weight subsets in [0, H] and [H, T]



Reduce it to subproblems: max-weight subsets in [0, H] and [H, T]



## Key point

The optimal solution is optimal again on the two subproblems!

Reduce it to subproblems: max-weight subsets in [0, H] and [H, T]



## Key point

The optimal solution is optimal again on the two subproblems!

How to choose H to divide them?

Reduce it to subproblems: max-weight subsets in [0, H] and [H, T]



## Key point

The optimal solution is optimal again on the two subproblems!

How to choose H to divide them?

We do not know the optimal solutions yet — enumerate *H* 

## Subproblem

Let OPT(s, t) denote the max-weight of compatible subsets from time s to t.



Enumerate the split *H* of optimal solutions:

$$OPT(s, t) = \max_{H \in (s, t)} \left\{ OPT(s, H) + OPT(H, t) \right\}.$$

# Bottom-Up method

```
procedure Main
   for \ell = 1, \ldots, T do
       for s = 0, \dots, T - s do
           t = s + \ell, opt[s, t] = 0
           for j = 1, ..., n do // solution with one interval in [s, t]
               if [h[j], e[j]] \subseteq [s, t] then
                   opt[s, t] = max{opt[s, t], w[j]}
           for H = s + 1, \dots, t - 1 do // solutions with \ge 2 intervals
               opt[s, t] = max{opt[s, t], opt[s, H] + opt[H, t]}
```

Return opt[0, T]

While it works, it is really slow —  $O(T^3)$ .

#### Question

How to improve it?

# Improve the running time

1 In the compatible subsets, the order doesn't matter — enumerate the last interval *j* instead of *H*.

## Improve the running time

- In the compatible subsets, the order doesn't matter enumerate the last interval j instead of H.
- 2 cases depend on whether last interval j ends at time t or not:

$$f[0, t] = \max \left\{ f[0, t-1], w(j) + f[0, h(j)] \text{ for all } j : e(j) = t \right\}$$

# Improve the running time

- In the compatible subsets, the order doesn't matter enumerate the last interval j instead of H.
- 2 cases depend on whether last interval j ends at time t or not:

$$f[0, t] = \max \left\{ f[0, t-1], w(j) + f[0, h(j)] \text{ for all } j : e(j) = t \right\}$$

3 Each j only appears once when t = e(j) — just consider end points  $T = e(1), \ldots, e(n)$ 

# Improve the running time

- 1 In the compatible subsets, the order doesn't matter enumerate the last interval *j* instead of *H*.
- 2 cases depend on whether last interval *j* ends at time *t* or not:

$$f[0, t] = \max \left\{ f[0, t-1], w(j) + f[0, h(j)] \text{ for all } j : e(j) = t \right\}$$

3 Each j only appears once when t = e(j) — just consider end points  $T = e(1), \ldots, e(n)$ 

### procedure MAIN(n, h, e)

Sort *n* intervals s.t.  $e(1) \le e(2) \le ... \le e(n)$ 

Compute the last compatible interval  $p(1), \ldots, p(n)$  for each j, i.e.,

$$p(j) = \max_{i:e(i) \leqslant h(j)} \{i\}$$
 $g[0] = 0$ 
 $for j = 1, \ldots, n do$ 
 $g(j) = \max \left\{ g[j-1], w(j) + g[p(j)] \right\}$ 

- Correctness follows from the above discussion.
- ② Running time is  $O(n \log n)$  but how to compute p? Use a BST or

- Orrectness follows from the above discussion.
- ② Running time is  $O(n \log n)$  but how to compute p? Use a BST or
  - Given  $e(1) \le e(2) \le \cdots \le e(n)$ , compute the order of h s.t.  $h(rank(1)) \le h(rank(2)) \le \cdots \le h(rank(n))$

- Orrectness follows from the above discussion.
- ② Running time is  $O(n \log n)$  but how to compute p? Use a BST or
  - ① Given  $e(1) \le e(2) \le \cdots \le e(n)$ , compute the order of h s.t.  $h(rank(1)) \le h(rank(2)) \le \cdots \le h(rank(n))$
  - ② Compute p(rank(1)), ..., p(rank(n)) by moving an index on  $e(1) \le e(2) \le ... \le e(n)$

- Orrectness follows from the above discussion.
- ② Running time is  $O(n \log n)$  but how to compute p? Use a BST or
  - ① Given  $e(1) \le e(2) \le \cdots \le e(n)$ , compute the order of h s.t.  $h(rank(1)) \le h(rank(2)) \le \cdots \le h(rank(n))$
  - ② Compute p(rank(1)), ..., p(rank(n)) by moving an index on  $e(1) \le e(2) \le ... \le e(n)$

### Improve the running time

- ①  $O(T^3)$  time DP at first
- 2 Realize f[s, t] could be reduce to g(j) where j = 1, ..., n
- 3 Furthermore, consider job j with e(j) = t instead of enumerating H

- Orrectness follows from the above discussion.
- ② Running time is  $O(n \log n)$  but how to compute p? Use a BST or
  - ① Given  $e(1) \le e(2) \le \cdots \le e(n)$ , compute the order of h s.t.  $h(rank(1)) \le h(rank(2)) \le \cdots \le h(rank(n))$
  - ② Compute p(rank(1)), ..., p(rank(n)) by moving an index on  $e(1) \le e(2) \le ... \le e(n)$

### Improve the running time

- ①  $O(T^3)$  time DP at first
- 2 Realize f[s, t] could be reduce to g(j) where j = 1, ..., n
- 3 Furthermore, consider job j with e(j) = t instead of enumerating H

We can find solution again by memorizing all decisions.

A rough blue-print to apply dynamic programming:

The solution has lots of decisions (e.g., every chosen job in scheduling and the order of matrix multiplications)

A rough blue-print to apply dynamic programming:

- The solution has lots of decisions (e.g., every chosen job in scheduling and the order of matrix multiplications)
- ② Consider the optimal one and enumerate one choice to split the problem into subproblems

### A rough blue-print to apply dynamic programming:

- The solution has lots of decisions (e.g., every chosen job in scheduling and the order of matrix multiplications)
- ② Consider the optimal one and enumerate one choice to split the problem into subproblems
- Prove that
  - ⇒ Optimal solution is optimal on subproblems.
  - Subproblems are independent s.t. any optimal solutions of them could be combined to a global optimal solution

#### A rough blue-print to apply dynamic programming:

- The solution has lots of decisions (e.g., every chosen job in scheduling and the order of matrix multiplications)
- ② Consider the optimal one and enumerate one choice to split the problem into subproblems
- Prove that
  - ⇒ Optimal solution is optimal on subproblems.
  - Subproblems are independent s.t. any optimal solutions of them could be combined to a global optimal solution

Different from divide & conquer: The last two proofs could be tricky.

# Summary (II)

#### To design DP,

- ① Figure out the space of subproblems, i.e., define OPT[s,t]
- Follow a bottom-up order
- 3 Enumerate the choice and combine solutions of subproblems

# Summary (II)

#### To design DP,

- ① Figure out the space of subproblems, i.e., define OPT[s,t]
- 2 Follow a bottom-up order
- 3 Enumerate the choice and combine solutions of subproblems

Roughly, running time is  $O(\text{size(space)} \times \#\text{choices})$ 

— Optimizing the running time is highly non-trivial!

### **Outline**

- Introduction
- 2 Matrix-Chain Multiplication
- 3 Weighted Interval Scheduling
- 4 Longest Common Sequence
- 5 Optimal Binary Search Tree

Given two sequences  $X = (x_1, \dots, x_m)$  and  $Y = (Y_1, \dots, Y_n)$ , find the longest common sequence.



Formally,  $Z = (z_1, ..., z_k)$  is a common sequence of X if  $\exists$  strictly increasing seq  $i_1 < ... < i_k$  of indices of X s.t.  $z_j = X_{i_j}$  for  $j \in [k]$ .

Given two sequences  $X = (x_1, \dots, x_m)$  and  $Y = (Y_1, \dots, Y_n)$ , find the longest common sequence.



Formally,  $Z = (z_1, ..., z_k)$  is a common sequence of X if  $\exists$  strictly increasing seq  $i_1 < ... < i_k$  of indices of X s.t.  $z_j = X_{i_j}$  for  $j \in [k]$ .

#### Goal

Find the longest sequence Z that is common in both X and Y.

Each red line denotes one choice.



Each red line denotes one choice.



① Similar to the interval scheduling problem, consider the last line in the optimal solution say  $x_i \leftrightarrow y_j$ 

Each red line denotes one choice.



- ① Similar to the interval scheduling problem, consider the last line in the optimal solution say  $x_i \leftrightarrow y_j$
- ② The optimal solution must be optimal on subproblems  $(x_1, \ldots, x_{i-1})$  and  $(y_1, \ldots, y_{j-1})$

Each red line denotes one choice.



- ① Similar to the interval scheduling problem, consider the last line in the optimal solution say  $x_i \leftrightarrow y_j$
- 2 The optimal solution must be optimal on subproblems  $(x_1, \ldots, x_{i-1})$  and  $(y_1, \ldots, y_{i-1})$
- Moreover any optimal solution on the subproblem is good.

Each red line denotes one choice.



- ① Similar to the interval scheduling problem, consider the last line in the optimal solution say  $x_i \leftrightarrow y_j$
- ② The optimal solution must be optimal on subproblems  $(x_1, \ldots, x_{i-1})$  and  $(y_1, \ldots, y_{i-1})$
- Moreover any optimal solution on the subproblem is good.

So the space of subproblems is  $[1, ..., i] \times [1..., j]$  for all  $i \in [n]$  and  $j \in [m]$ .

# **Formal Description**

Let  $c[k, \ell]$  be the length of the longest common sequence between  $(x_1, \ldots, x_k)$  and  $(y_1, \ldots, y_\ell)$ .

# Formal Description

Let  $c[k, \ell]$  be the length of the longest common sequence between  $(x_1, \ldots, x_k)$  and  $(y_1, \ldots, y_\ell)$ .



① To compute it, try enumerating the position of the last line  $x_i \leftrightarrow y_j$ :

$$c[k,\ell] = \max_{i \leqslant k, j \leqslant \ell: x_i = y_j} \{c[i-1,j-1] + 1\}$$

# Formal Description

Let  $c[k, \ell]$  be the length of the longest common sequence between  $(x_1, \ldots, x_k)$  and  $(y_1, \ldots, y_\ell)$ .



① To compute it, try enumerating the position of the last line  $x_i \leftrightarrow y_j$ :

$$c[k, \ell] = \max_{i \leq k, j \leq \ell: x_i = y_j} \{c[i-1, j-1] + 1\}$$

- ② While it is correct, running time is relatively slow  $O(m^2n^2)$ .
- 3 Can we do better?

### Improvement

Key OBS: Only need to check  $x_k = y_j$  or not.

### Theorem (15.1 in CLRS)

Let  $Z = (z_1, \ldots, z_k)$  be any LCS of  $(x_1, \ldots, x_m)$  and  $(y_1, \ldots, y_n)$ .

- ①  $x_m = y_n$ :  $z_k = x_m = y_n$  and  $Z_{k-1}$  is an LCS of  $X_{m-1}$  and  $Y_{n-1}$ .
- ②  $x_m \neq y_n$ : If  $z_k \neq x_m$ , Z must be an LCS of  $X_{m-1}$  and  $Y_n$ .
- 3  $x_m \neq y_n$ : If  $z_k \neq y_n$ , Z must be an LCS of  $X_m$  and  $Y_{n-1}$ .

### Faster DP

While we do not know Z to apply the THM, it still tells there are only 3 cases:

$$c[i,j] = \begin{cases} 0 & \text{if } i = 0 \text{ and } j = 0 \\ c[i-1,j-1] + 1 & \text{if } x_i = y_j \\ \max \left\{ c[i-1,j], c[i,j-1] \right\} & o.w. \end{cases}$$

The running time becomes O(nm)  $\odot$ 

#### Faster DP

While we do not know Z to apply the THM, it still tells there are only 3 cases:

$$c[i,j] = \begin{cases} 0 & \text{if } i = 0 \text{ and } j = 0 \\ c[i-1,j-1] + 1 & \text{if } x_i = y_j \\ \max \left\{ c[i-1,j], c[i,j-1] \right\} & o.w. \end{cases}$$

The running time becomes O(nm)  $\odot$ 

### Constructing LCS

Remember where does c[i, j] come from (called the decision) and trace back to output the sequence

Usually it is highly non-trivial to improve the running time of DP.

- Running time = Space of subproblems × enumeration
- Many ways to improve the running time

Usually it is highly non-trivial to improve the running time of DP.

- Running time = Space of subproblems × enumeration
- Many ways to improve the running time
- 3 Reduce the space
- 4 Use data structure or powerful lemmas to reduce the enumeration

Usually it is highly non-trivial to improve the running time of DP.

- Running time = Space of subproblems × enumeration
- 2 Many ways to improve the running time
- 3 Reduce the space
- Use data structure or powerful lemmas to reduce the enumeration

#### Next

All previous DP algorithms are on lines/sequences. There are DP on trees (graphs) and matrices.

### **Outline**

- Introduction
- 2 Matrix-Chain Multiplication
- 3 Weighted Interval Scheduling
- 4 Longest Common Sequence
- 5 Optimal Binary Search Tree

Build a binary search tree to minimize the search time.

① There are n keys  $k_1, \ldots, k_n$  and n+1 dummy keys  $d_0, \ldots, d_n$  s.t.  $d_0 < k_1 < d_1 < k_2 < \cdots < k_n < d_n$ .

Build a binary search tree to minimize the search time.

- 1 There are n keys  $k_1, \ldots, k_n$  and n+1 dummy keys  $d_0, \ldots, d_n$  s.t.  $d_0 < k_1 < d_1 < k_2 < \cdots < k_n < d_n$ .
- ② Each  $k_i$  appears with prob.  $p_i$ ; each  $d_i$  appears with prob.  $q_i$

Build a binary search tree to minimize the search time.

- 1 There are n keys  $k_1, \ldots, k_n$  and n+1 dummy keys  $d_0, \ldots, d_n$  s.t.  $d_0 < k_1 < d_1 < k_2 < \cdots < k_n < d_n$ .
- ② Each  $k_i$  appears with prob.  $p_i$ ; each  $d_i$  appears with prob.  $q_i$
- Design a BST T s.t. (1) Internal nodes are keys; (2) Leaves are dummy keys; (3) Minimize the expected cost of a search in T:

$$\mathbb{E}[\text{search cost in } T] := \underset{\textit{key} \sim \{d_0, \dots, d_n, k_1, \dots, k_n\}}{\mathbb{E}}[\text{depth}(\textit{key}) \text{ in } T].$$

### Example

Figure 15.9 Two binary search trees for a set of n = 5 keys with the following probabilities:

|       | 0    |      |      |      |      |      |
|-------|------|------|------|------|------|------|
| $p_i$ |      | 0.15 | 0.10 | 0.05 | 0.10 | 0.20 |
| $q_i$ | 0.05 | 0.10 | 0.05 | 0.05 | 0.05 | 0.10 |

### Two binary search trees with expected cost 2.8 and 2.75 separately:



# Step 1: Reduce to subproblems



① Say the optimal BST has root  $k_2$  — consider its left/right subtrees.

## Step 1: Reduce to subproblems



- ① Say the optimal BST has root  $k_2$  consider its left/right subtrees.
- ② Various possible subtrees with roots  $k_3$ ,  $k_4$ ,  $k_5$  separately.

# Step 1: Reduce to subproblems



- ① Say the optimal BST has root  $k_2$  consider its left/right subtrees.
- ② Various possible subtrees with roots  $k_3$ ,  $k_4$ ,  $k_5$  separately.
- 3 In the optimal BST, this subtree must be optimal among  $k_3$ ,  $k_4$ ,  $k_5$  and  $d_2$ , ...,  $d_5$ .
- Vice versa any optimal subtree could be plugged into the optimal BST to give one optimal construction

### Step: Recursive Formula

The subtree could contain any section of  $k_1, \ldots, k_n$ .

① Consider e[i, j] as the min-expected-cost BST with keys  $k_i, \ldots, k_j$  and  $d_{i-1}, \ldots, d_i$ .

## Step: Recursive Formula

The subtree could contain any section of  $k_1, \ldots, k_n$ .

- ① Consider e[i, j] as the min-expected-cost BST with keys  $k_i, \ldots, k_j$  and  $d_{i-1}, \ldots, d_i$ .
- ② If j = i 1, BST only has  $d_{i-1}$ :  $e[i, j] = q_{i-1}$

# Step: Recursive Formula

The subtree could contain any section of  $k_1, \ldots, k_n$ .

- ① Consider e[i, j] as the min-expected-cost BST with keys  $k_i, \ldots, k_j$  and  $d_{i-1}, \ldots, d_j$ .
- ② If j = i 1, BST only has  $d_{i-1}$ :  $e[i, j] = q_{i-1}$
- 3 Otherwise, enumerate the root r:

$$e[i,j] = \min_{r \in [i,j]} \{e[i,r-1] + e[r+1,j] + \text{ one more depth on them}\}$$

Note the last term:= 
$$p_i + \cdots + p_j + q_{i-1} + \cdots + q_j$$
.

define the sum as  $w[i,j]$ 

```
OPTIMAL-BST(p,q,n)
    let e[1..n + 1, 0..n], w[1..n + 1, 0..n],
            and root[1..n, 1..n] be new tables
    for i = 1 to n + 1
   e[i, i-1] = q_{i-1}
   w[i, i-1] = q_{i-1}
   for l = 1 to n
        for i = 1 to n - l + 1
            j = i + l - 1
 8
            e[i,j] = \infty
 9
            w[i, j] = w[i, j-1] + p_i + q_i
10
            for r = i to j
                 t = e[i, r-1] + e[r+1, j] + w[i, j]
11
12
                 if t < e[i, j]
13
                     e[i, j] = t
14
                     root[i, j] = r
15
    return e and root
```

```
OPTIMAL-BST (p, q, n)
    let e[1..n + 1, 0..n], w[1..n + 1, 0..n],
             and root[1..n, 1..n] be new tables
   for i = 1 to n + 1
   e[i, i-1] = q_{i-1}
 4 	 w[i, i-1] = q_{i-1}
 5 for l = 1 to n
        for i = 1 to n - l + 1
            i = i + l - 1
 8
            e[i,j] = \infty
             w[i, j] = w[i, j-1] + p_i + q_i
10
             for r = i to j
                 t = e[i, r-1] + e[r+1, j] + w[i, j]
11
12
                 if t < e[i, j]
13
                     e[i,j] = t
14
                     root[i, j] = r
15
    return e and root
```

#### **Running Time**

①  $O(n^3)$  because of the 3 loops

```
OPTIMAL-BST(p,q,n)
    let e[1..n + 1, 0..n], w[1..n + 1, 0..n],
            and root[1..n, 1..n] be new tables
   for i = 1 to n + 1
   e[i, i-1] = q_{i-1}
   w[i, i-1] = q_{i-1}
 5 for l = 1 to n
        for i = 1 to n - l + 1
            i = i + l - 1
8
            e[i,j] = \infty
            w[i, j] = w[i, j-1] + p_i + q_i
10
            for r = i to j
11
                 t = e[i, r-1] + e[r+1, j] + w[i, j]
12
                 if t < e[i, i]
13
                     e[i,j] = t
14
                     root[i, j] = r
15
    return e and root
```

#### **Running Time**

- ①  $O(n^3)$  because of the 3 loops
- ② Improve it to  $O(n^2)$ :  $root[i, j-1] \leqslant root[i, j] \leqslant root[i+1, j]$  by Knuth

## Summary

- ① DP extends the methods of divide & conquer to optimization problems.
- ② Key structure: Optimal solutions of subproblems ⇔ optimal solution

# Summary

- ① DP extends the methods of divide & conquer to optimization problems.
- Key structure: Optimal solutions of subproblems 
   ⇔ optimal solution
- 3 Running time: Space of subproblems × enumerate

# Summary

- ① DP extends the methods of divide & conquer to optimization problems.
- ② Key structure: Optimal solutions of subproblems ⇔ optimal solution
- 3 Running time: Space of subproblems  $\times$  enumerate
- Optimizing running time could be challenging.

# Questions?