DISCRETE MATHEMATICS MATH 381

Basic concepts and examples explaining the fundamentals of Discrete Mathematics.

By Mansi Sakarvadia

 $\begin{tabular}{ll} The \ University \ of \ North \ Carolina \\ Chapel \ Hill \end{tabular}$

Contents

1	Febr	ebruary 17, 2020											1						
	1.1	Restriction of Domain $$.																	1
	1.2	Restriction of Codomain																	2
	1.3	Arithmetic of functions																	2

1 February 17, 2020

Recall:

- Functions f: $A \rightarrow B$
- Image Im(f) = f(a)

If f(a) = b, say "a is a preimage of b"

- $Gr(f) = \{(a,b)|f(a) = b\} \subseteq AxB$
- $Gr(f) = \{(a, f(a)) | a \in A\}$

Graph Gr(f) is a relation between A and B

Which binary relations (subsets of AxB) are graphs of functions?

- A subset $s \subseteq AxB$ is the graph of a function if for every element $a \in A$, there is a unique element $b \in B$ such that $(a, b) \in S$.
- key Can't have (a, b_1) and $(a, b_2) \in S$ where $b_1! = b_2$ and expect S to be a graph
- (abstraction of "straight line test" about graphs $f: \mathbb{R} \to \mathbb{R}$)

1.1 Restriction of Domain

suppose $f: A \to B$ Consider $A' \subseteq A$

DEFINITION: the restriction of f to A' is $f|_{A'}: A' \to B$ defined by $(f|_{A'}) = f(a), a \in A$

KEY POINT: What does it mean for 2 functions $f:A\to B$ and $g:C\to D$ to be equal?

• NEED: A=C, B=D, and $f(a) = g(a)a \in A$

Mansi Sakarvadia Page 1

1.2 Restriction of Codomain

If B' is a set with $Im(f)\subseteq B'\subseteq B$, then we consider: $f':A\to B'$ defined by $f'(a)=f(a)foralla\in A$

EX.
$$Im(f|_{A'}) = f(A')$$

- $Im(f|_{A'}) \leftarrow \text{image of the restriction of f to A'}$
- $f(A') \leftarrow \text{image of the subset } A' \subseteq A \text{ under } f \bullet$

1.3 Arithmetic of functions

- A function is called <u>real-valued</u> if its codomain is $\in \mathbb{R}$
- A function is called inter-valued if its codomain is $\in \mathbb{Z}$
- DEFINITION: Suppose that f_1 and f_2 are two real-valued function both w/ domain A. Then we have $f_1 + f_2$ and $f_1 f_2$ (the sum and product), two real-valued functions on A, defined by:

$$- f_1 + f_2(x) = f_1(x) + f_2(x)$$

$$- f_1 f_2(x) = f_1(x) * f_2(x)$$

Mansi Sakarvadia Page 2