北京航空航天大学 2022-2023 学年 第一学期期末

《计量经济学》 考 试 A 卷

任课教师: 马 杰、崔文昊

班 级	学号
姓 名	成 绩

考试日期:2022年12月

班号	学号	姓名	成绩	
<u> </u>	, , <u>, </u>			

《计量经济学》期末考试卷

注意事项:1、所有答案,都请做在答卷纸上;作答时,务必将大/小题号标清楚。
试题:
一、选择题(共 12 题 24 分,2 分/题
1 、半对数模型 $Y_i = \beta_0 + \beta_1 LnX + \mu_i$ 中,参数 β_1 的含义是()
A. Y 关于 X 的弹性
B. X 的绝对量变动,引起 Y 的绝对量变动
C. Y 关于 X 的边际变动
D. X 的相对变动,引起 Y 的期望值绝对量变动
2 、一元线性回归分析中 $Y_i = eta_0 + eta_1 LnX + \mu_i$ 的残差平方和 $\sum_{i=1}^n (\hat{\mu}_i)^2$ 的自由度是
()
A. n B. n-1 C. n-2 D. 1
3、回归分析中使用的距离是点到直线的垂直坐标距离,最小二乘准则是指()
A. $\phi \left \sum_{t=1}^n \left(Y_t - \hat{Y}_t \right) \right $ 达到最小值 B. $\phi \min \left Y_t - \hat{Y}_t \right $ 达到最小值
C. 使 $\max \left Y_t - \hat{Y}_t \right $ 达到最小值 D. 使 $\sum_{t=1}^n \left(Y_t - \hat{Y}_t \right)^2$ 达到最小值
4、设 M 为货币需求量, Y 为收入水平, r 为利率, 流动性偏好函数为
$M = \beta_0 + \beta_1 Y + \beta_2 r + \mu$,又设 $\hat{\beta}_1$ 、 $\hat{\beta}_2$ 分别是 β_1 、 β_2 的估计值,则根据经济理论,
一般来说()
A. \hat{eta}_1 应为正值, \hat{eta}_2 应为负值 B. \hat{eta}_1 应为正值, \hat{eta}_2 应为正值
C. \hat{eta}_1 应为负值, \hat{eta}_2 应为负值 D. \hat{eta}_1 应为负值, \hat{eta}_2 应为正值
5、回归模型 $Y_i = eta_0 + eta_1 L n X + \mu_i$ 估计的残差平方和为 $\sum_{i=1}^n (\hat{\mu}_i)^2 = 800$,样本容量
为 102 ,则随机误差项 u_t 的方差估计量 $\hat{\sigma}^2$ 为()
A. 7.84 B. 7.92 C. 8.00 D. 8.08
6、根据期望的迭代原则(law of iterated expectations),当 $\mathrm{E}[\mathrm{u}_i \mathrm{X}_i] = 0$ 成立时,以下
哪一个条件不成立()
A. $E[u_i] = 0$ B. $E[X_i u_i] = 0$
C. $E[X_i] = 0$ D. $cov(X_i, u_i) = 0$

7、多元线性回归分析中, 当加入一个额外	的解释变量时, R^2 会()
A. 增大	B. 降低
C. 不变	D. 不确定
8、对于多元线性回归模型采用 OLS 估计,	当估计量为 BLUE 时,不需要以下哪
一个假设()	
A. 不存在完全共线性	B. 不存在内生性
C. 不存在异方差	D. 残差项服从正态分布假设
9、设 u, 为随机误差项,则一阶线性自相关	是指()
A. $cov(u_t, u_s) \neq 0 (t \neq s)$	
$C. u_t = \rho_1 u_{t-1} + \rho_2 u_{t-2} + \varepsilon_t$	$D. u_t = \rho^2 u_{t-1} + \varepsilon_t$
10、对一个不含有截距项的计量经济模型,	若某定性因素有3个互斥的类型,为将
其引入模型中,则需要引入虚拟变量个数为	J ()
A. 2 B. 3 C.	4 D. $3 + k$
11、在经济发展发生转折时期,可以通过引	入虚拟变量方法来表示这种变化。例如,
研究中国城镇居民消费函数时。1991年前局	后,城镇居民商品性实际支出 Y 对实际可
支配收入 X 的回归关系明显不同。现	以 1991 年为转折时期,设虚拟变量
$D_{t} = \begin{cases} 1, & 1991$ 年以后 $0, & 1991$ 年以前 , 数据散点图显示 $0, & 1991$ 年以前	消费函数发生了结构性变化:基本消费部
分下降了,边际消费倾向变大了。则城镇	居民线性消费函数的理论方程可以写作
()	
A. $Y_t = \beta_0 + \beta_1 X_t + u_t$ B.	$Y_t = \beta_0 + \beta_1 X_t + \beta_2 D_t X_t + u_t$
C. $Y_{t} = \beta_{0} + \beta_{1}X_{t} + \beta_{2}D_{t} + u_{t}$ D.	
12、在二元离散选择模型的参数估计中:由	3于直接估计原始模型参数存在异方差等
问题,需要利用其相应的效用模型来构造协	及大似然函数,作为 probit 模型的随机误
差项分布假定的是()	
A. 标准正态分布 B. 卡方分	布
C. 逻辑分布 D. 极值分	↑布

二、判断改错题················(共 5 小题 20 分,每小题 4 分) 1、经典线性回归模型(CLRM)中的干扰项不服从正态分布的,OLS 估计量将有偏的。

- 2、当做关于估计的参数的假设检验时,一定要假设线性回归模型中的干扰项是服从 正态分布的。
- 3、假定个人服装支出同收入水平和性别有关,由于性别是具有两种属性(男、女)的定性因素,因此,分析性别对服装支出的影响时,当存在截距项的情况下,只需要引入一个虚拟变量。
- 4、对于存在异方差的多元线性回归模型,若运用多元线性回归的 OLS 法估计、可以得到 BLUE 估计量。
- 5、对于被解释变量为 0-1 变量的二元离散选择模型, 若运用多元线性回归的 OLS 法估计、无法再得到 BLUE 估计量。
- 三、论述题………(共1题18分)
- 1、(18分)请详细说明:变量内生性的概念、产生的可能根源或出现的情景、导致的后果以及对变量内生性问题修正的方法。
- 四、计算、推断与证明题……(共3小题38分,分值为12、12、14分)考试中,可能用到的最接近的临界值、或累积概率为:
- 1)标准正态分布: a)分位点函数 $z_{0.95}=1.65$, $z_{0.975}=1.96$, $z_{0.99}=2.58$; b)分布函数为: $\Phi(-0.98)=0.16$, $\Phi(-0.392)=0.35$, $\Phi(0.656)=0.74$, $\Phi(0.784)=0.78$, $\Phi(1.568)=0.94$
- 2) t 分布: $t_{0.95, 10} = 1.81$, $t_{0.975, 10} = 2.23$, $t_{0.95, 12} = 1.78$, $t_{0.975, 12} = 2.12$, $t_{0.95, 16} = 1.75$, $t_{0.975, 16} = 2.12$, $t_{0.99, 16} = 2.58$, $t_{0.994, 16} = 2.83$, $t_{0.995, 16} = 2.92$, $t_{0.996, 16} = 3.03$, $t_{0.975, 25} = 2.06$, $t_{0.975, 26} = 2.056$, $t_{0.95, 25} = 1.708$, $t_{0.95, 26} = 1.706$
- 3) F分布: $F_{0.975}(18, 22)=2.43$, $F_{0.975}(17, 21)=2.48$, $F_{0.975}(22, 18)=2.53$, $F_{0.975}(21, 17)=2.6$
- 1、(12 分)某公司想决定在何处建造一个新的百货店,对已有的 30 个百货店的销售额作为其所处地理位置特征的函数进行回归分析,并且用该回归方程作为新百货店的不同位置的可能销售额,估计得出(括号内为估计的标准差)

$$\hat{Y}_{t} = 30 + 0.1 \times X_{1t} + 0.01 \times X_{2t} + 10.0 \times X_{3t} + 3.0 \times X_{4t}$$

$$(0.02) \qquad (0.01) \qquad (6.8) \qquad (1.0)$$

其中: $Y_i = \hat{\pi}^i$ 个百货店的日均销售额 (美元);

 $X_{li} = \hat{\mathbf{x}}^i$ 个百货店前每小时通过的汽车数量(辆);

 X_{2i} =第i个百货店所处区域内的人均收入(美元);

 $X_{3i} =$ 第i个百货店内所有的桌子数量:

 X_{4i} =第i个百货店所处地区竞争店面的数量。

请回答以下问题:

- (1) 说出本方程中系数 0.1 和 0.01 的经济含义。
- (2) 各个变量前参数估计的符号是否与经济理论期望的符号一致?
- (3) 在 $\alpha = 0.05$ 的显著性水平下检验变量 X_{1t} 、 X_{3t} 的显著性。

2、(12分)考虑以下不含有截距项的线性模型:

$$Y_i = \beta_2 X_{2i} + u_i$$

在不知道真实模型的情况下,你错误的将截距项加入到了回归方程之中,并采用 OLS 估计了下列模型:

$$Y_i = \beta_1 + \beta_2 X_{2i} + u_i$$

- 1) 计算所估计回归系数 $\hat{\beta}_2$ 的期望,该估计量是否具有无偏性?
- 2) 计算所估计回归系数 $\hat{\beta}_1$ 的期望,该估计量是否具有无偏性?
- 3. (14分) 考虑以下不含有截距项并且残差项不存在异方差的线性模型:
- $Y_i = \beta_2 X_{2i} + u_i$,其中 u_i 的方差为 σ^2 。
 - 1) 计算回归系数 $\hat{\beta}_2$ 的方差。
- 2) 在不知道真实模型的情况下,你错误的将截距项加入到了回归方程之中, 并采用 OLS 估计了下列模型:

$$Y_i = \beta_1 + \beta_2 X_{2i} + u_i$$

计算在估计错误模型的情况下回归系数 $\widetilde{eta_2}$ 的方差

3)比较 \hat{eta}_2 和 \widetilde{eta}_2 的方差,当模型之中加入多余的解释变量时,估计量的有效性是否会受到影响?