

planetmath.org

Math for the people, by the people.

Yoneda lemma

Canonical name YonedaLemma

Date of creation 2013-03-22 12:15:19 Last modified on 2013-03-22 12:15:19

Owner rspuzio (6075) Last modified by rspuzio (6075)

Numerical id 13

Author rspuzio (6075) Entry type Theorem Classification msc 18A25

Synonym Yoneda's Lemma Related topic ConcreteCategory Defines Yoneda embedding If \mathcal{C} is a category, write $\hat{\mathcal{C}}$ for the category of contravariant functors from \mathcal{C} to **Sets**, the category of sets. The morphisms in $\hat{\mathcal{C}}$ are natural transformations of functors.

(To avoid set theoretical concerns, one can take a universe $\mathcal U$ and take all categories to be $\mathcal U$ -small.)

For any object X of \mathcal{C} , $h_X = \operatorname{Hom}(-, X)$ is a contravariant functor from \mathcal{C} to **Sets**, and therefore is an object of $\hat{\mathcal{C}}$.

Yoneda Lemma says that $X \mapsto h_X$ is a covariant functor $\mathcal{C} \to \hat{\mathcal{C}}$, which embeds \mathcal{C} faithfully as a full subcategory of $\hat{\mathcal{C}}$. This embedding is called the Yoneda embedding.