Propositional Logic

Logical Agents continued

CH 7

Slides courtesy of Andrea Thomaz

Overview

- Intro basic Logical Agent Design
- * Wumpus World -- example environment
- Concepts of Logic in General
- * Propositional Logic
- * Inferences with ProLog
- * First-order Logic
- * Inferences with FOL

On the Midterm

Propositional Logic

Syntax, Semantics, Entailment

Propositional logic is the simplest logic—illustrates basic ideas

The proposition symbols P_1 , P_2 etc are sentences

Propositional logic is the simplest logic—illustrates basic ideas

The proposition symbols P_1 , P_2 etc are sentences

If S is a sentence, $\neg S$ is a sentence (negation)

Propositional logic is the simplest logic—illustrates basic ideas

The proposition symbols P_1 , P_2 etc are sentences

If S is a sentence, $\neg S$ is a sentence (negation)

If S_1 and S_2 are sentences, $S_1 \wedge S_2$ is a sentence (conjunction)

Propositional logic is the simplest logic—illustrates basic ideas

The proposition symbols P_1 , P_2 etc are sentences

If S is a sentence, $\neg S$ is a sentence (negation)

If S_1 and S_2 are sentences, $S_1 \wedge S_2$ is a sentence (conjunction)

If S_1 and S_2 are sentences, $S_1 \vee S_2$ is a sentence (disjunction)

Propositional logic is the simplest logic—illustrates basic ideas

The proposition symbols P_1 , P_2 etc are sentences

If S is a sentence, $\neg S$ is a sentence (negation)

If S_1 and S_2 are sentences, $S_1 \wedge S_2$ is a sentence (conjunction)

If S_1 and S_2 are sentences, $S_1 \vee S_2$ is a sentence (disjunction)

If S_1 and S_2 are sentences, $S_1 \Rightarrow S_2$ is a sentence (implication)

Propositional logic is the simplest logic—illustrates basic ideas

The proposition symbols P_1 , P_2 etc are sentences

If S is a sentence, $\neg S$ is a sentence (negation)

If S_1 and S_2 are sentences, $S_1 \wedge S_2$ is a sentence (conjunction)

If S_1 and S_2 are sentences, $S_1 \vee S_2$ is a sentence (disjunction)

If S_1 and S_2 are sentences, $S_1 \Rightarrow S_2$ is a sentence (implication)

If S_1 and S_2 are sentences, $S_1 \Leftrightarrow S_2$ is a sentence (biconditional)

Each model specifies true/false for each proposition symbol

E.g.
$$P_{1,2}$$
 $P_{2,2}$ $P_{3,1}$ $true$ $true$ $false$

(With these symbols, 8 possible models, can be enumerated automatically.)

Each model specifies true/false for each proposition symbol

E.g.
$$P_{1,2}$$
 $P_{2,2}$ $P_{3,1}$ $true$ $true$ $false$

(With these symbols, 8 possible models, can be enumerated automatically.)

Rules for evaluating truth with respect to a model m:

 $\neg S$ is true iff S is false

Each model specifies true/false for each proposition symbol

E.g.
$$P_{1,2}$$
 $P_{2,2}$ $P_{3,1}$ $true$ $true$ $false$

(With these symbols, 8 possible models, can be enumerated automatically.)

$\neg S$	is true iff	S	is false		
$S_1 \wedge S_2$	is true iff	S_1	is true and	S_2	is true

Each model specifies true/false for each proposition symbol

E.g.
$$P_{1,2}$$
 $P_{2,2}$ $P_{3,1}$ $true \ true \ false$

(With these symbols, 8 possible models, can be enumerated automatically.)

$\neg S$	is true iff	S	is false		
$S_1 \wedge S_2$	is true iff	S_1	is true and	S_2	is true
$S_1 \vee S_2$	is true iff	S_1	is true or	S_2	is true

Each model specifies true/false for each proposition symbol

E.g.
$$P_{1,2}$$
 $P_{2,2}$ $P_{3,1}$ $true$ $true$ $false$

(With these symbols, 8 possible models, can be enumerated automatically.)

$\neg S$	is true iff	S	is false		
$S_1 \wedge S_2$	is true iff	S_1	is true and	S_2	is true
$S_1 \vee S_2$	is true iff	S_1	is true or	S_2	is true
$S_1 \Rightarrow S_2$	is true iff	S_1	is false or	S_2	is true
i.e.,	is false iff	S_1	is true and	S_2	is false

Each model specifies true/false for each proposition symbol

E.g.
$$P_{1,2}$$
 $P_{2,2}$ $P_{3,1}$ $true$ $true$ $false$

(With these symbols, 8 possible models, can be enumerated automatically.)

$\neg S$	is true iff	S	is false		
$S_1 \wedge S_2$	is true iff	S_1	is true and	S_2	is true
$S_1 \vee S_2$	is true iff	S_1	is true or	S_2	is true
$S_1 \Rightarrow S_2$	is true iff	S_1	is false or	S_2	is true
i.e.,	is false iff	S_1	is true and	S_2	is false
$S_1 \Leftrightarrow S_2$	is true iff S_1	$\Rightarrow S_2$	is true and S_2	$_2 \Rightarrow S_1$	is true

Model

P	Q	$\neg P$	$P \wedge Q$	$P \lor Q$	$P \Rightarrow Q$	$P \Leftrightarrow Q$
false	false					
false	true					
true	false					
true	true					

\overline{P}	Q	$\neg P$	$P \wedge Q$	$P \lor Q$	$P \Rightarrow Q$	$P \Leftrightarrow Q$
false	false	true			, i	
false	true	true				
true	false	false				
true	true	false				

P	Q	$\neg P$	$P \wedge Q$	$P \lor Q$	$P \Rightarrow Q$	$P \Leftrightarrow Q$
false	false	true	false			
false	true	true	false			
true	false	false	false			
true	true	false	true			

\overline{P}	Q	$\neg P$	$P \wedge Q$	$P \lor Q$	$P \Rightarrow Q$	$P \Leftrightarrow Q$
false	false	true	false	false		
false	true	true	false	true		
true	false	false	false	true		
true	true	false	true	true		

\overline{P}	Q	$\neg P$	$P \wedge Q$	$P \lor Q$	$P \Rightarrow Q$	$P \Leftrightarrow Q$
false	false	true	false	false	true	
false	true	true	false	true	true	
true	false	false	false	true	false	
true	true	false	true	true	true	

Model

\overline{P}	Q	$\neg P$	$P \wedge Q$	$P \lor Q$	$P \Rightarrow Q$	$P \Leftrightarrow Q$
false	false	true	false	false	true	true
false	true	true	false	true	true	false
true	false	false	false	true	false	false
true	true	false	true	true	true	true

Let $P_{i,j}$ be true if there is a pit in [i, j]. Let $B_{i,j}$ be true if there is a breeze in [i, j].


```
Let P_{i,j} be true if there is a pit in [i, j].
Let B_{i,j} be true if there is a breeze in [i, j].
```

$$\neg P_{1,1}$$

 $\neg B_{1,1}$
 $B_{2,1}$

Let $P_{i,j}$ be true if there is a pit in [i, j]. Let $B_{i,j}$ be true if there is a breeze in [i, j].

$$\neg P_{1,1}$$

 $\neg B_{1,1}$
 $B_{2,1}$

"Pits cause breezes in adjacent squares"

$$B_{1,1} \Leftrightarrow (P_{1,2} \vee P_{2,1})$$

 $B_{2,1} \Leftrightarrow (P_{1,1} \vee P_{2,2} \vee P_{3,1})$

"A square is breezy if and only if there is an adjacent pit"

```
Let P_{i,j} be true if there is a pit in [i,j].

Let B_{i,j} be true if there is a breeze in [i,j].

\neg P_{1,1}

\neg B_{1,1}

B_{2,1}
```

"Pits cause breezes in adjacent squares"

$$B_{1,1} \Leftrightarrow (P_{1,2} \vee P_{2,1})$$

 $B_{2,1} \Leftrightarrow (P_{1,1} \vee P_{2,2} \vee P_{3,1})$

"A square is breezy if and only if there is an adjacent pit"

We want to infer hidden state past the info in our KB

Let $P_{i,j}$ be true if there is a pit in [i, j]. Let $B_{i,j}$ be true if there is a breeze in [i, j].

$$\neg P_{1,1}$$

 $\neg B_{1,1}$
 $B_{2,1}$

"Pits cause breezes in adjacent squares"

$$B_{1,1} \Leftrightarrow (P_{1,2} \vee P_{2,1})$$

 $B_{2,1} \Leftrightarrow (P_{1,1} \vee P_{2,2} \vee P_{3,1})$

"A square is breezy if and only if there is an adjacent pit"

EX: Does our KB imply that there is a Pit in [2,2]?

Truth Tables for Inference

Model

KB sentences

$B_{1,1}$	$B_{2,1}$	$P_{1,1}$	$P_{1,2}$	$P_{2,1}$	$P_{2,2}$	$P_{3,1}$	R_1	R_2	R_3	R_4	R_5	KB
false	true	true	true	true	false	false						
false	false	false	false	false	false	true	true	true	false	true	false	false
- :	÷	i i	÷	:	- :	ŧ	ŧ	÷				i i
false	true	false	false	false	false	false	true	true	false	true	true	false
false	true	false	false	false	false	true	true	true	true	true	true	true
false	true	false	false	false	true	false	true	true	true	true	true	true
false	true	false	false	false	true	true	true	true	true	true	true	true
false	true	false	false	true	false	false	true	false	false	true	true	false
:	÷	:	:	:	:	÷	:	:	:	:	:	:
true	false	true	true	false	true	false						

Inference by Enumeration:

For all models where KB is true, check if query is T

 $\neg P_{1,2}$: is entailed by our KB $\neg P_{2,2}$: is not...

¬P_{2,1}: is entailed by our KB

Inference by Enumeration

```
function TT-ENTAILS? (KB, \alpha) returns true or false
   inputs: KB, the knowledge base, a sentence in propositional logic
            \alpha, the query, a sentence in propositional logic
   symbols \leftarrow a list of the proposition symbols in KB and \alpha
   return TT-CHECK-ALL(KB, α, symbols, [])
function TT-Check-All(KB, \alpha, symbols, model) returns true or false
   if Empty?(symbols) then
        if PL-True?(KB, model) then return PL-True?(\alpha, model)
       else return true
   else do
        P \leftarrow \text{First}(symbols); rest \leftarrow \text{Rest}(symbols)
       return TT-CHECK-ALL(KB, \alpha, rest, Extend(P, true, model)) and
                  TT-CHECK-ALL(KB, \alpha, rest, EXTEND(P, false, model))
```

- DFS enumeration of all symbols
- Checking if query T everywhere KB is T

Inference by Enumeration

- * Sound: Yes, if says entailed it is
- Complete: Yes, enumerating everything so will find all entailed sentences
- Complexity: O(2ⁿ), n=#symbols.... exponential in size of input!