Lista 1

Liczby zespolone

Zadanie 1 Wykonaj działania i sprowadź do postaci algebraicznej:

$$2+3i+\sqrt{2}+5i$$
, $(1+3i)\cdot(\sqrt{3}+7i)$, $(2+5i)\cdot\frac{2+i}{1+2i}$

Zadanie 2 Porównując części rzeczywiste i urojone, rozwiąż równanie:

$$\bar{z} = (3+i)z$$
, $z^2 + 8 = 0$, $(2_3i)\bar{z} = (4-2i)z$, $z^3 = 1$.

.

Zadanie 3 Narysuj następujace zbiory:

$$\{z \in \mathbb{C} : |z-1+3i| < 1\}, \{z \in \mathbb{C} : |z+2-4i| \ge |z+3-i|\}, \{z \in \mathbb{C} : |i\bar{z}+2-i| \le |z+7-i|\},$$

$$\left\{z \in \mathbb{C}: \ \left|\frac{z+i}{z+2-4i}\right| < 1\right\}, \ \left\{z \in \mathbb{C}: \ |z-i| \le |z+2-i| \le 5\right\}.$$

Zadanie 4 Stosując wzór de'Moivre'a sprowadź do postaci algebraicznej dane wyrażenie:

$$\left(\frac{1}{2} - i\frac{\sqrt{3}}{2}\right)^7$$
, $(-2 + \sqrt{12})^8$, $(-1 + \sqrt{3}i)^{12}$, $\left(\frac{i - \sqrt{3}}{1 + i}\right)^{33}$

.

Zadanie 5 Wyznacz i narysuj zbiory pierwiastków z podanych liczb:

$$\sqrt[4]{-16}$$
, $\sqrt[3]{27i}$, $\sqrt[4]{(2-i)^8}$, $\sqrt[6]{8}$.

Zadanie 6 Wyznacz rozwiązania podanych równań w zbiorze liczb zespolonych:

$$2z^2 - 10z + 1 = 0$$
, $z^2 + 3iz - 4 = 0$, $z^4 + 3z^2 - 1 = 0$, $z^6 = (1-i)^{12}$, $(z+i)^4 = (z-i)^4$.

Zadanie 7 Stosując wzór de Moivre'a zapisz podane niżej wyrażenie za pomocą $\sin \alpha$ oraz $\cos \alpha$:

$$\sin(3\alpha)$$
, $\cos(3\alpha)$, $\sin(n\alpha)$, $\cos(n\alpha)$.

dla dowolnej dodatniej liczby naturalnej.

Zadanie 8 Korzystając ze wzoru de Moivre'a wyraź $\cos(4t)$ poprzez $\cos(t)$. Wywnioskuj, że:

$$\cos\frac{\pi}{8} = \sqrt{\frac{2+\sqrt{2}}{4}}, \quad \cos\frac{3\pi}{8} = \sqrt{\frac{2-\sqrt{2}}{4}}$$

Zadanie 9 Wyznacz następujące pierwiastki:

$$\sqrt[4]{-1}$$
, $\sqrt[4]{i}$, $\sqrt[4]{8(\sqrt{3}-i)}$, $\sqrt[3]{i}$, $\sqrt{1+i}$.

Zadanie 10 Dla podanych liczb zespolonych, wyznacz moduły i argumenty główne:

$$\frac{(1+i)^{10}}{(\sqrt{3}+i)^8}, \quad \frac{(1+i\sqrt{3})^{10}}{(1-i)^8}.$$

Zadanie 11 Wyznacz zbiór

$$\{z \in \mathbb{C}: z^5 = 1 \land z^7 = 1\}.$$

Zadanie 12 Oblicz sumę:

$$1 + (1+i) + (1+i)^2 + \ldots + (1+i)^{10}$$
.

Zadanie 13 Dla liczb zespolonych $z_1, z_2 \in \mathbb{C}$ udowodnij, że:

- 1. $\overline{z_1 + z_2} = \overline{z_1} + \overline{z_2}$,
- $2. \ \overline{z_1 \cdot z_2} = \overline{z_1} \cdot \overline{z_2},$
- 3. $z_1 \cdot \overline{z_1} = |z_1|^2$.

Zadanie 14 Pokaż, że jeśli |z| = 1, to $z^{-1} = \overline{z}$.

Zadanie 15 Pokaż, że jeśli |z| = 1, to $z + z^{-1} \in \mathbb{R}$.

Zadanie 16 Wyznacz następujące zbiory:

- 1. $\{z \in \mathbb{C} : Im(z^4) < 0\},\$
- 2. $\{z \in \mathbb{C} : Re(z^3) > 0\},\$
- 3. $\{z \in \mathbb{C} : z^2 \in \mathbb{R}\},$
- $4. \{z \in \mathbb{C} : Re(z) \cdot Im(z) > 0\}.$

Zadanie 17 Udowodnij, że dla dowolnych liczb $z_1, z_2 \in \mathbb{C}$ zachodzi równość:

$$|z_1 + z_2|^2 + |z_1 - z_2|^2 = 2(|z_1|^2 + |z_2|^2).$$

Zadanie 18 Załóżmy, że |z|=1 i $z\notin\mathbb{R}$. Udowodnij, że liczba $\frac{z-1}{z+1}$ jest czysto urojona.

Zadanie 19 * Na wszystkich bokach równoległoboku zbudowano zewnętrzne kwadraty. Udowodnij, że środki tych kwadratów tworzą kwadrat.

Robert Rałowski