

V2X Motorcycle HUD Weekly Updates

Jacob Nguyen, Ryan Hiser, Jorge Pacheco UCSD MAS WES 14 May 2022

V2X Motorcycle HUD

HUD DISPLAY

Directions

Fuel Warning Indicator

Speed

Range/Speed of Rider 1

Directions

Fuel Warning Indicator

Speed

Range/Speed of Rider 2

Rider 1

Motivation and Goal

• Our goal intends to improve the motorcycle group riding experience, by safely providing more information to the riders.

• Final Demonstration:

- We intend to implement a 2-Node system capable of transmitting various information (range, fuel level, ...) and audio. The audio could eventually be used as a intercom or to stream music from one rider to other (a DJ).
- The system will be able to display that information via a heads-up display.

Overall Progress

- Waveform Description defined (data defined, QPSK modulated)
- Simulink Model of Waveform (full TX/RX, all code gen except demod)
- RX Demod fully designed in HLS/IP Cores (MATLAB -> HLS workflow)
- OLED and wireless link using arduino (WiFi msg integrated with zed)
- FMComms4 + Zedboard integration with PYNQ

Current Progress

Previous Sprint

- Integration
 - Integrate audio files with TX modulator SW
 - Loopback test with TX/RX
- RX
 - Hard decision and store to FIFO
 - Finish verification via Verilog testbench
 - Package RX IP module and integrate to design
 - Integration with PL and RX Baseband software
- HUD
 - Update kernel on Pynq for USB (kernel module created and alternative approach)
 - Verification and Validation (V&V)

The fun continues...

Integration (audio)

- Audio file (in binary format) being read by the TX baseband code
 - 60 seconds of audio sample
 - 6000 frames of 0.01s audio samples
- Investigation on how to play audio on zedboard
 - https://vuheil-horibe.medium.com/zedboard-audi o-hardware-design-b19c3a1bf453
 - Requires zedboard IP core updates in vivado and kernel updates
- Alternatively play audio on the Pynq Z2 board (stream audio from zedboard to Z2)
 - Z2 has some audio support and libraries built in

Zedboard Audio System Block Design

Integration (loopback SW setup)

- Created UIO Kernel Module and modified device tree.
- Added TX/RX threads that interface with AD9361 and UIO
- TX thread periodically sends data to AD9361:
 - HUD data read from config.txt
 - Audio data read from sample_audio.bin
- RX thread periodically checks for data in UIO
 - UIO used instead of DMA to speed up development.

```
v2x sdr xcvr.c
      static void tx thread fn(void* args)
          // Loop init
          printf("TX thread started\n");
          uint32 t loop num = 0;
         // Only run if shorts are used
          int datasize = ((sdr data*) args)->ini->datasize;
          if (datasize == 2)
513 ▼
              int16_t tx_mod_out[TX_MOD_OUT_SYMS * 2];
              ssize t nbytes tx;
              char *p_start;
              // Run loop
              while (!stop)
520 ▼
                  // WRITE: Get pointers to TX buf and write IQ to TX buf port 0
                  p start = iio buffer first(txbuf, tx0 i);
                  load frame txmod(tx mod out);
                  memmove(p start, tx mod out, TX MOD OUT SYMS * 2);
                  // Schecule TX Buffer
                  nbytes tx = iio buffer push(txbuf);
```


RX

- Hard decision was implemented in Verilog.
- The symbols are then converted to bits and stored in a RAM.
- The RAM module was implemented in Vivado HLS with an AXI-lite interface for the ARM (PS) to read.
- All of this was verified using a Verilog
 Simulation (right image):

Received data matched sent data!

- Packaged RX IP module and integrated to Analog Devices HDL Project.
 - Currently using a Virtual Input/Output (VIO) to control.
 - o Internal Logic Analyzer (ILA) was used to verify DAC input data, AGC, and correlation...

Will replace with a custom Axi-lite Interface

Our custom
Demodulator

TX to RX Loopback (Internal Logic Analyzer Output)

TX to RX Loopback V&V (On-going)

• We had to disable the DDS of the axi_ad9361. When you stop filling the DMA it defaults to a DDS tone.

- More debugging required:
 - AD9361 fast-attack AGC seemed to work well for our system.
 - Bad SMA cable or attenuator (stops working if cable gets bumped).
 - TX gain adjustment error needs to be solved to use antennas.

```
* Hardware gain to be set: 15.000000 dB
Failed to set in_voltage0_hardwaregain: -95
--- END OF FMCOMMS4 RX CONFIGURATION ---
```


HUD - Progress since last time

- Created "L" bracket out of metal for robust mounting
- Attached OLED to helmet's sun visor using velcro
- Ran connections through cable sleeve
- Measured clearance so that helmet's visor still clears

HUD - Progress since last time (Cont.)

- Mounted ESP8266 WiFi module to helmet
- Ran longer jumper cables through cable sleeve
- Attached OLED to WiFI module

HUD Cont.

• Final Setup

RX Baseband and HUD - Ran into problems!

- Sourced USB WiFi adapter for Zedboard
- Could not get Kernel modules to recognize USB WiFi controller....

RX Baseband and HUD - Ran into problems!

Desired Setup:

Demo

- Data generated from reading Config.txt
 - Loaded on zedboards for easy data configuration
 - On the fly updates to data bits transmitted
- Audio bits generated from 60 second audio binary file
 - Audio binary file generated from MATLAB reading 4 kHz .wav file
 - Final demo will save received audio data into binary file, and will be converted to .way format in MATLAB
- Confirmed that Zedboard compiles with HUD code (libcurl/libev libraries)

```
Config.txt

1 V2X!
2 32.880100
3 -117.234000
4 60
5 3
6 5.3
```

```
Editor - C:\Users\jacob\Downloads\audio gen.m
  Name A
                                                        audio gen.m × bin to wav.m × play wav.m × +
audio gen.m
                                                               % Script description:
bin to way,m
play_wav.m
                                                                % Generate an audio file for OTA transmission, with the requirements:
                                                               % Single channel
                                                                % 16 bits per sample
                                                                %% Choose desired file
                                                                % Created files using: https://convertio.co/mp3-wav/
                                                                orig wav file = 'latinnova 4000.wav';
                                                                orig_wav_info = audioinfo(orig_wav_file);
                                                                %% Read audio from desired file
                                                                % Choose amount of samples from file
                                                      15
                                                                num sec = 60:
                                                                num samp = orig wav info.SampleRate * num sec;
                                                      17
                                                      18
                                                                if num_samp > orig_wav_info.TotalSamples
                                                      19
                                                                    num_samp = orig_wav_info.TotalSamples;
                                                      20
                                                      21
                                                      22
                                                                [orig y, orig Fs] = audioread(orig wav file, [1, num samp], 'native');
                                                      24
                                                      25
                                                                % Play audio
                                                                if 0
                                                                    sound(orig_y, orig_Fs);
```


Engineering trickery!

Current Setup (while we sort out kernel drivers...):

3. Pynq-Z2 acts as a forward link to grab audio and data packets and send over WiFi to HUD

4. HUD packets are displayed in real time!

1. Zedboard produces data

Future Plans

Gantt (timeline)

Next Sprint

- Debug/V&V RX post correlator.
- V&V with antennas.
- Merge all code TX and RX onto one SD Card
 - O UIO Kernel Module
 - o WIFI/Ethernet code
 - \circ TX
 - \circ RX
- Two-way link
- TDMA protocol investigation and planning
- (Aspirational Tasks) Improve WIFI and Audio approach