The Jordan Canonical Form of a Nilpotent Matrix

Math 422

Schur's Triangularization Theorem tells us that every matrix A is unitarily similar to an upper triangular matrix T. However, the only thing certain at this point is that the diagonal entries of T are the eigenvalues of A. The off-diagonal entries of T seem unpredictable and out of control. Recall that the Core-Nilpotent Decomposition of a singular matrix A of index k produces a block diagonal matrix

$$\left[\begin{array}{cc} C & \mathbf{0} \\ \mathbf{0} & L \end{array}\right]$$

similar to A in which C is non-singular, $rank(C) = rank(A^k)$, and L is nilpotent of index k. Is it possible to simplify C and L via similarity transformations and obtain triangular matrices whose off-diagonal entries are predictable? The goal of this lecture is to do exactly this for nilpotent matrices.

Let L be an $n \times n$ nilpotent matrix of index k. Then $L^{k-1} \neq 0$ and $L^k = 0$. Let's compute the eigenvalues of L. Suppose $x \neq 0$ satisfies $Lx = \lambda x$; then $0 = L^k x = L^{k-1}(Lx) = L^{k-1}(\lambda x) = \lambda L^{k-1} x = \lambda L^{k-2}(Lx) = \lambda^2 L^{k-2} x = \cdots = \lambda^k x$; thus $\lambda = 0$ is the only eigenvalue of L.

Now if L is diagonalizable, there is an invertible matrix P and a diagonal matrix D such that $P^{-1}LP = D$. Since the diagonal entries of D are the eigenvalues of L, and $\lambda = 0$ is the only eigenvalue of L, we have D = 0. Solving $P^{-1}LP = 0$ for L gives L = 0. Thus a diagonalizable nilpotent matrix is the zero matrix, or equivalently, a non-zero nilpotent matrix L is not diagonalizable. And indeed, some off-diagonal entries in the "simplified" form of L will be non-zero.

Let L be a non-zero nilpotent matrix. Since L is triangularizable, there exists an invertible P such that

$$P^{-1}LP = \begin{bmatrix} 0 & * & \cdots & * \\ 0 & 0 & \ddots & * \\ \vdots & \vdots & \ddots & * \\ 0 & 0 & \cdots & 0 \end{bmatrix}.$$

The simplification procedure given in this lecture produces a matrix similar to L whose non-zero entries lie exclusively on the superdiagonal of $P^{-1}LP$. An example of this procedure follows below.

Definition 1 Let L be nilpotent of index k and define $L^0 = I$. For p = 1, 2, ..., k, let $x \in \mathbb{C}^n$ such that $y = L^{p-1}x \neq 0$. The <u>Jordan chain on y of length p</u> is the set $\{L^{p-1}x, ..., Lx, x\}$.

Exercise 2 Let L be nilpotent of index k. If $x \in \mathbb{C}^n$ satisfies $L^{k-1}x \neq 0$, prove that $\{L^{k-1}x, \ldots, Lx, x\}$ is linearly independent.

Example 3 Let
$$L = \begin{bmatrix} 0 & 1 & 2 \\ 0 & 0 & 3 \\ 0 & 0 & 0 \end{bmatrix}$$
; then $L^2 = \begin{bmatrix} 0 & 0 & 3 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$ and $L^3 = 0$. Let $x = \begin{bmatrix} a \\ b \\ c \end{bmatrix}$; then

$$Lx = \begin{bmatrix} 0 & 1 & 2 \\ 0 & 0 & 3 \\ 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} a \\ b \\ c \end{bmatrix} = \begin{bmatrix} b+2c \\ 3c \\ 0 \end{bmatrix} \quad and \quad L^2x = \begin{bmatrix} 0 & 0 & 3 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} a \\ b \\ c \end{bmatrix} = \begin{bmatrix} 3c \\ 0 \\ 0 \end{bmatrix}.$$

Note that $\{L^2x, Lx, x\}$ is linearly independent iff $c \neq 0$. Thus if $x = \begin{bmatrix} 1 & 2 & 3 \end{bmatrix}^T$, then $y = L^2x = \begin{bmatrix} 9 & 0 & 0 \end{bmatrix}^T$ and the Jordan chain on y is

$$\left\{ \left[\begin{array}{c} 9\\0\\0 \end{array}\right], \left[\begin{array}{c} 8\\9\\0 \end{array}\right], \left[\begin{array}{c} 1\\2\\3 \end{array}\right] \right\}$$

Form the matrix

$$P = [L^2x \mid Lx \mid x] = \begin{bmatrix} 9 & 8 & 1 \\ 0 & 9 & 2 \\ 0 & 0 & 3 \end{bmatrix};$$

then

$$J = P^{-1}LP = \frac{1}{243} \begin{bmatrix} 27 & -24 & 7 \\ 0 & 27 & -18 \\ 0 & 0 & 81 \end{bmatrix} \begin{bmatrix} 0 & 1 & 2 \\ 0 & 0 & 3 \\ 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} 9 & 8 & 1 \\ 0 & 9 & 2 \\ 0 & 0 & 3 \end{bmatrix} = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{bmatrix}$$

is the "Jordan form" of L.

Since $\lambda=0$ is the only eigenvalue of an $n\times n$ non-zero nilpotent L, the eigenvectors of L are exactly the non-zero vectors in N(L). But dim N(L) < n since L is not diagonalizable and possesses an *incomplete* set of linearly independent eigenvectors. So the process by which one constructs the desired similarity transformation $P^{-1}LP$ involves appropriately extending a deficient basis for N(L) to a basis for \mathbb{C}^n . This process has essentially two steps:

- Construct a somewhat special basis \mathcal{B} for N(L).
- Extend \mathcal{B} to a basis for \mathbb{C}^n by building Jordan chains on the elements of \mathcal{B} .

Definition 4 A nilpotent Jordan block is a matrix of the form

$$\begin{bmatrix}
0 & 1 & 0 & \cdots & 0 \\
0 & 0 & 1 & \ddots & 0 \\
0 & 0 & 0 & \ddots & 0 \\
\vdots & \vdots & \vdots & \ddots & 1 \\
0 & 0 & 0 & \cdots & 0
\end{bmatrix}.$$

A nilpotent Jordan matrix is a block diagonal matrix of the form

$$\begin{bmatrix} J_1 & 0 & \cdots & 0 \\ 0 & J_2 & \ddots & 0 \\ \vdots & \vdots & \ddots & 0 \\ 0 & 0 & \cdots & J_m \end{bmatrix}, \tag{1}$$

where each J_i is a nilpotent Jordan block.

When the context is clear we refer to a nilpotent Jordan matrix as a Jordan matrix.

Theorem 5 Every $n \times n$ nilpotent matrix L of index k is similar to an $n \times n$ Jordan matrix J in which

- the number of Jordan blocks is $\dim N(L)$;
- the size of the largest Jordan block is $k \times k$;
- for $1 \le j \le k$, the number of $j \times j$ Jordan blocks is

$$rank\left(L^{j-1}\right)-2rank\left(L^{j}\right)+rank\left(L^{j+1}\right);$$

• the ordering of the J_i 's is arbitrary.

Whereas the essentials of the proof appear in the algorithm below, we omit the details.

Definition 6 If L is a nilpotent matrix, a <u>Jordan form</u> of L is a Jordan matrix $J = P^{-1}LP$. The <u>Jordan structure</u> of L is the number and size of the <u>Jordan blocks</u> in every Jordan form J of L.

Theorem 5 tells us that Jordan form is unique up to ordering of the blocks J_i . Indeed, given any prescribed ordering, there is a Jordan form whose Jordan blocks appear in that prescribed order.

Definition 7 The <u>Jordan Canonical Form</u> (JCF) of a nilpotent matrix L is the Jordan form of L in which the Jordan blocks are distributed along the diagonal in order of decreasing size.

Example 8 Let us determine the Jordan structure and JCF of the nilpotent matrix

the number of Jordan blocks is dim N(L) = 3. Then

has rank 1 and $L^3 = 0$; therefore the index (L) = 3 and the size of the largest Jordan block is 3×3 . Let

$$r_{0} = rank (L^{0}) = 6$$

$$r_{1} = rank (L^{1}) = 3$$

$$r_{2} = rank (L^{2}) = 1 ;$$

$$r_{3} = rank (L^{3}) = 0$$

$$r_{4} = rank (L^{4}) = 0$$

then the number n_i of $i \times i$ Jordan blocks is

$$\begin{array}{lll} n_1 = & r_0 - 2r_1 + r_2 = 1 \\ n_2 = & r_1 - 2r_2 + r_3 = 1 \\ n_3 = & r_2 - 2r_3 + r_4 = 1 \end{array}.$$

Obtain the JCF by distributing these blocks along the diagonal in order of decreasing size. Then the JCF of L is

$$\begin{bmatrix} 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ \hline 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ \hline 0 & 0 & 0 & 0 & 0 & 0 \end{bmatrix}.$$

This leaves us with the task of determining a non-singular matrix P such that $P^{-1}LP$ is the JCF of L. As mentioned above, this process has essentially two steps. A detailed algorithm follows our next definition and a key exercise.

Definition 9 Let E be any row-echelon form of a matrix A. Let c_1, \ldots, c_q index the columns of E containing leading 1's and let y_i denote the c_i^{th} column of A. The columns y_1, \ldots, y_q are called the basic columns of A.

Exercise 10 Let $B = [b_1 \mid \cdots \mid b_p]$ be an $n \times p$ matrix with linearly independent columns. Prove that multiplication by B preserves linear independence, i.e., if $\{v_1, \ldots, v_s\}$ is linearly independent in \mathbb{C}^p , then $\{Bv_1, \ldots, Bv_s\}$ is linearly independent in \mathbb{C}^n .

Nilpotent Reduction to JCF

Given a nilpotent matrix L of index k, set i = k - 1 and let $S_{k-1} = \{y_1, \ldots, y_q\}$ be the basic columns of L^{k-1} .

- 1. Extend $S_{k-1} \cup \cdots \cup S_i$ to a basis for $R(L^{i-1}) \cap N(L)$ in the following way:
 - (a) Let $\{b_1, \ldots, b_p\}$ be the basic columns of L^{i-1} and let $B = [b_1 \mid \cdots \mid b_p]$.
 - (b) Solve LBx = 0 for x and obtain a basis $\{v_1, \ldots, v_s\}$ for N(LB); then $\{Bv_1, \ldots, Bv_s\}$ is a basis for $R(L^{i-1}) \cap N(L)$ by Lemma 11 below.
 - (c) Form the matrix $[y_1 \mid \cdots \mid y_q \mid Bv_1 \mid \cdots \mid Bv_s]$; its basic columns $\{y_1, \ldots, y_q, Bv_{\beta_1}, \ldots, Bv_{\beta_j}\}$ form a basis for $R(L^{i-1}) \cap N(L)$ containing $S_{k-1} \cup \cdots \cup S_i$. Let

$$S_{i-1} = \left\{ Bv_{\beta_1}, \dots, Bv_{\beta_j} \right\}.$$

- (d) Decrement i, let $\{y_1, \ldots, y_q\}$ be the basic columns of L^i , and repeat step 1 until i = 0. Then $S_{k-1} \cup \cdots \cup S_0 = \{b_1, \ldots, b_t\}$ is a basis for N(L).
- 2. For each j, if $b_j \in \mathcal{S}_i$, find a particular solution x_j of $L^i x = b_j$ and build a Jordan chain $\{L^i x_j, \dots, L x_j, x_j\}$. Set

$$p_j = \left[L^i x_j \mid \dots \mid L x_j \mid x_j \right];$$

the desired similarity transformation is defined by the matrix

$$P = [p_1 \mid \cdots \mid p_t].$$

Lemma 11 In the notation of the algorithm above, $\{Bv_1, \ldots, Bv_s\}$ is a basis for $R(L^{i-1}) \cap N(L)$.

Proof. Note that $Bv_j \in R(B)$ and $LBv_j = 0$ implies $Bv_j \in N(L)$. But $R(B) = R(L^{i-1})$ implies that $Bv_j \in R(B) \cap N(L) = \mathcal{M}_{i-1}$ for all j. The set $\{Bv_1, \ldots, Bv_s\}$ is linearly independent by Exercise 10. To show that $\{Bv_1, \ldots, Bv_s\}$ spans \mathcal{M}_{i-1} , let $y \in R(B) \cap N(L)$. Since $y \in R(B)$, there is some $u \in \mathbb{C}^n$ such that y = Bu; since $y \in N(L)$, 0 = Ly = LBu. Thus $u \in N(LB)$ and we may express u in the basis $\{v_1, \ldots, v_s\}$ as $u = c_1v_1 + \cdots + c_sv_s$. Therefore $y = Bu = B(c_1v_1 + \cdots + c_sv_s) = c_1Bv_1 + \cdots + c_sBv_s$ and $\{Bv_1, \ldots, Bv_s\}$ spans. \blacksquare

In particular, suppose L is an $n \times n$ nilpotent matrix of index n. Choose a non-zero vector x_1 such that $L^{n-1}x_1 \neq 0$. Then

$$x_{1} \in N(L^{n}) \setminus N(L^{n-1})$$

$$x_{2} = L^{n-1}x_{1} \Rightarrow x_{2} \in N(L)$$

$$x_{3} = L^{n-2}x_{1} \Rightarrow x_{3} \in N(L^{2}) \setminus N(L)$$

$$\vdots$$

$$x_{n} = Lx_{1} \Rightarrow x_{n} \in N(L^{n-1}) \setminus N(L^{n-2}).$$

Thus $\{x_2,\ldots,x_n,x_1\}=\{L^{n-1}x_1,\ldots,Lx_1,x_1\}$ is linearly independent in C^n and $\{x_2\}$ is a basis for the 1-dimensional subspace N(L). Thus $\{L^{n-1}x_1,\ldots,Lx_1,x_1\}$ is a Jordan chain on x_2 of length n and the Jordan form of L consists of one $n\times n$ Jordan block J. Let $P=[L^{n-1}x_1\mid\cdots\mid Lx_1\mid x_1]$; then

$$J = P^{-1}LP = \begin{bmatrix} 0 & 1 & 0 & \cdots & 0 \\ 0 & 0 & 1 & \cdots & 0 \\ 0 & 0 & 0 & \ddots & \vdots \\ \vdots & \vdots & \vdots & \ddots & 1 \\ 0 & 0 & 0 & \cdots & 0 \end{bmatrix}.$$

Example 12 Let

$$L = \left[\begin{array}{cccc} 0 & 1 & 2 & 3 \\ 0 & 0 & 4 & 5 \\ 0 & 0 & 0 & 6 \\ 0 & 0 & 0 & 0 \end{array} \right].$$

Then

and L is nilpotent of index 4. Let $x_1 = \mathbf{e}_4$; then

$$L^{3}x_{1} = [24, 0, 0, 0]^{T}$$

$$L^{2}x_{1} = [17, 24, 0, 0]^{T}$$

$$Lx_{1} = [3, 5, 6, 0]^{T}$$

and $\{L^3x_1, L^2x_1, Lx_1, x_1\}$ is a Jordan chain on $y = L^3x_1$. Form the matrix

$$P = \left[L^3 x_1 | L^2 x_1 | L x_1 | x_1 \right] = \begin{bmatrix} 24 & 17 & 3 & 0 \\ 0 & 24 & 5 & 0 \\ 0 & 0 & 6 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix};$$

Then

$$J = P^{-1}LP = \begin{bmatrix} 24 & 17 & 3 & 0 \\ 0 & 24 & 5 & 0 \\ 0 & 0 & 6 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}^{-1} \begin{bmatrix} 0 & 1 & 2 & 3 \\ 0 & 0 & 4 & 5 \\ 0 & 0 & 0 & 6 \\ 0 & 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} 24 & 17 & 3 & 0 \\ 0 & 24 & 5 & 0 \\ 0 & 0 & 6 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \end{bmatrix}.$$

Example 13 Let's construct the matrix P that produces the Jordan form of L in Example 8. Since L has index 3, we row-reduce L^2 and find one basic column

$$y_1 = [6, -6, 0, 0, -6, -6]^T$$
.

Then $S_2 = \{y_1\}$ contains the basic column of $R(L^2)$; set i = 2.

- 1. Extend S_2 to a basis for $R(L) \cap N(L)$:
 - (a) Row-reducing, we find that the basic columns of L are its first three columns. Thus we let

$$B = \begin{bmatrix} 1 & 1 & -2 \\ 3 & 1 & 5 \\ -2 & -1 & 0 \\ 2 & 1 & 0 \\ -5 & -3 & -1 \\ -3 & -2 & -1 \end{bmatrix}.$$

(b) Compute LB and solve LBx = 0 to obtain a basis for N(LB):

$$LB = \begin{bmatrix} 1 & 1 & -2 & 0 & 1 & -1 \\ 3 & 1 & 5 & 1 & -1 & 3 \\ -2 & -1 & 0 & 0 & -1 & 0 \\ 2 & 1 & 0 & 0 & 1 & 0 \\ -5 & -3 & -1 & -1 & -1 & -1 \\ -3 & -2 & -1 & -1 & 0 & -1 \end{bmatrix} \begin{bmatrix} 1 & 1 & -2 \\ 3 & 1 & 5 \\ -2 & -1 & 0 \\ 2 & 1 & 0 \\ -5 & -3 & -1 \\ -3 & -2 & -1 \end{bmatrix} = \begin{bmatrix} 6 & 3 & 3 \\ -6 & -3 & -3 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ -6 & -3 & -3 \\ -6 & -3 & -3 \end{bmatrix}$$

5

Then $\left\{ Bv_{1} = \begin{bmatrix} 1 & -1 & 0 & 0 & -1 & -1 \end{bmatrix}^{T}, Bv_{2} = \begin{bmatrix} -5 & 7 & 2 & -2 & 3 & 1 \end{bmatrix}^{T} \right\}$ is a basis for $R(L) \cap N(L)$.

(c) Form the matrix

columns 1 and 3 are its basic columns, hence $\{y_1, y_2 = Bv_2\}$ is a basis for $R(L) \cap N(L)$ containing S_2 . Let

$$S_1 = \left\{ \begin{bmatrix} -5 & 7 & 2 & -2 & 3 & 1 \end{bmatrix}^T \right\}$$

and decrement i; then i = 1.

- 2. Extend $S_2 \cup S_1 = \{y_1, y_2\}$ to a basis for $R(L^0) \cap N(L) = N(L)$:
 - (a) Since $L^0 = I$, we let B = I.
 - (b) Since LB = L, we find a basis for N(LB) = N(L):

$$\left\{ v_1 = \begin{bmatrix} 2 \\ -4 \\ -1 \\ 3 \\ 0 \\ 0 \end{bmatrix}, \ v_2 = \begin{bmatrix} -4 \\ 5 \\ 2 \\ 0 \\ 3 \\ 0 \end{bmatrix}, \ v_3 = \begin{bmatrix} 1 \\ -2 \\ -2 \\ 0 \\ 0 \\ 3 \end{bmatrix} \right\}.$$

Then a basis for \mathcal{M}_0 is

$$\{Bv_1, Bv_2, Bv_3\} = \{v_1, v_2, v_3\}.$$

(c) Form the matrix

columns 1,2, and 3 are its basic columns, hence $\{y_1, y_2, v_1\}$ is a a basis for N(L) containing $S_2 \cup S_1$. Let

$$S_0 = \left\{ \begin{bmatrix} 2 & -4 & -1 & 3 & 0 & 0 \end{bmatrix}^T \right\}$$

and decrement i; then i = 0 and the process terminates having produced the basis $S_2 \cup S_1 \cup S_0$ for N(L).

3. Let $S_2 = \{b_1\}$, $S_1 = \{b_2\}$, and $S_0 = \{b_3\}$. For j = 1, 2, 3, build a Jordan chain on $b_j \in S_i$ of length i + 1 by finding a particular solution x_j of $L^i x = b_j$. When j = 1 we see by inspection that $L^2 e_1 = b_1$. Thus

$$p_1 = \left[L^2e_1 \mid Le_1 \mid e_1
ight] = \left[egin{array}{cccc} 6 & 1 & 1 \ -6 & 3 & 0 \ 0 & -2 & 0 \ 0 & 2 & 0 \ -6 & -5 & 0 \ -6 & -3 & 0 \end{array}
ight].$$

When j = 2 we solve $Lx = b_2$:

$$\begin{bmatrix} 1 & 1 & -2 & 0 & 1 & -1 & | & -5 \\ 3 & 1 & 5 & 1 & -1 & 3 & | & 7 \\ -2 & -1 & 0 & 0 & -1 & 0 & | & 2 \\ 2 & 1 & 0 & 0 & 1 & 0 & | & -2 \\ -5 & -3 & -1 & -1 & -1 & -1 & | & 3 \\ -3 & -2 & -1 & -1 & 0 & -1 & | & 1 \end{bmatrix} \xrightarrow{row_reduce} \begin{bmatrix} 1 & 0 & 0 & -\frac{2}{3} & \frac{4}{3} & -\frac{1}{3} & | & -1 \\ 0 & 1 & 0 & \frac{4}{3} & -\frac{5}{3} & \frac{2}{3} & | & 0 \\ 0 & 0 & 1 & \frac{1}{3} & -\frac{2}{3} & \frac{2}{3} & | & 2 \\ 0 & 0 & 0 & 0 & 0 & 0 & | & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & | & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & | & 0 \end{bmatrix}.$$

A particular solution is $x_2 = \begin{bmatrix} -1 & 0 & 2 & 0 & 0 & 0 \end{bmatrix}^T$; hence

$$p_2 = [Lx_2 \mid x_2] = \left[egin{array}{ccc} -5 & -1 \ 7 & 0 \ 2 & 2 \ -2 & 0 \ 3 & 0 \ 1 & 0 \end{array}
ight].$$

When j=3 we have $L^0=I$, and the unique solution of $L^0x=b_3$ is $x=b_3\in\mathcal{S}_0$. Thus the Jordan chain on b_3 consists only of b_3 and we have $p_3=\begin{bmatrix}2-4&-1&3&0&0\end{bmatrix}^T$. Finally, we form the matrix

$$P = [p_1 \mid p_2 \mid p_3] = \begin{bmatrix} 6 & 1 & 1 & -5 & -1 & 2 \\ -6 & 3 & 0 & 7 & 0 & -4 \\ 0 & -2 & 0 & 2 & 2 & -1 \\ 0 & 2 & 0 & -2 & 0 & 3 \\ -6 & -5 & 0 & 3 & 0 & 0 \\ -6 & -3 & 0 & 1 & 0 & 0 \end{bmatrix}.$$

Then as expected, the JCF of L is

$$J = P^{-1}LP = \begin{bmatrix} 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ \hline 0 & 0 & 0 & 0 & 0 & 0 \\ \hline 0 & 0 & 0 & 0 & 0 & 0 \\ \hline 0 & 0 & 0 & 0 & 0 & 0 \end{bmatrix}.$$

Exercise 14 A Hessenberg matrix H and a Jordan matrix J appear below. Find an invertible matrix P such that $J = P^{-1}HP$. (Note: Some texts define the JCF with 1's below the main diagonal as in H.)

$$H = \left[egin{array}{cccc} 0 & 0 & 0 & 0 & 0 \ 1 & 0 & 0 & 0 \ 0 & 1 & 0 & 0 \ 0 & 0 & 1 & 0 \end{array}
ight] \; ; \; \; J = \left[egin{array}{cccc} 0 & 1 & 0 & 0 \ 0 & 0 & 1 & 0 \ 0 & 0 & 0 & 1 \ 0 & 0 & 0 & 0 \end{array}
ight] \; .$$

Exercise 15 Prove that the Jordan matrices

$$J_1 = \left[egin{array}{cccc} 0 & 1 & 0 & 0 \ 0 & 0 & 1 & 0 \ 0 & 0 & 0 & 1 \ 0 & 0 & 0 & 0 \end{array}
ight], \quad J_2 = \left[egin{array}{cccc} 0 & 1 & 0 & 0 \ 0 & 0 & 1 & 0 \ 0 & 0 & 0 & 0 \ 0 & 0 & 0 & 0 \end{array}
ight]$$

are not similar. (Hint: Show that if $P = (p_{ij})$ is a 4×4 matrix such that $PJ_1 = J_2P$, then P is not invertible.)

Exercise 16 A 4×4 nilpotent matrix L is given below. Find matrices P and J such that $P^{-1}LP = J$ has Jordan form:

$$L = \left[\begin{array}{rrrr} 3 & 3 & 2 & 1 \\ -2 & -1 & -1 & -1 \\ 1 & -1 & 0 & 1 \\ -5 & -4 & -3 & -2 \end{array} \right].$$

Exercise 17 Consider the 5×5 matrix:

$$L = \left[\begin{array}{ccccc} 2 & 1 & 2 & 0 & -1 \\ 3 & 1 & 3 & -1 & 1 \\ -3 & -1 & -2 & 0 & 2 \\ 3 & 2 & 4 & 0 & -1 \\ 2 & 1 & 2 & 0 & -1 \end{array} \right].$$

- a. Show that L is nilpotent and determine its index of nilpotency.
- b. Find the Jordan Form J of L.
- c. Find an invertible matrix P such that $J = P^{-1}LP$.

Exercise 18 Determine the Jordan structure of the following 8×8 nilpotent matrix:

$$L = \begin{bmatrix} 41 & 30 & 15 & 7 & 4 & 6 & 1 & 3 \\ -54 & -39 & -19 & -9 & -6 & -8 & -2 & -4 \\ 9 & 6 & 2 & 1 & 2 & 1 & 0 & 1 \\ -6 & -5 & -3 & -2 & 1 & -1 & 0 & 0 \\ -32 & -24 & -13 & -6 & -2 & -5 & -1 & -2 \\ -10 & -7 & -2 & 0 & -3 & 0 & 3 & -2 \\ -4 & -3 & -2 & -1 & 0 & -1 & -1 & 0 \\ 17 & 12 & 6 & 3 & 2 & 3 & 2 & 1 \end{bmatrix}$$

12-7-10