Homework 9 - Math 2568 (Autumn 2022)

Prof. Cueto

Due date: Wednesday November 16, 2022 (in class).

The sections and problem numbers refer to the course's textbook (L.W. Johnson, R.D. Riess, J.T. Arnold: *Introduction to Linear Algebra*, 5th edition, Pearson.)

Section	Assigned Problems	Problems to be turned in
§5.7	12, 13, 14, 15, 19, 25, 26, 27	12, 13, 14, 15, 27
§5.9	1, 2, 3, 4, 6, 7, 8, 9, 11, 13, 14, 17, 19, 23	1, 2, 8, 13, 14, 17
§6.2	1, 7, 11, 13, 17, 19, 21, 29	1, 7, 11, 17
§6.3	1, 5, 7, 9, 13, 17, 19, 20, 21, 22, 23, 24	7, 9, 13, 17, 24

Section 5.7 $V = \begin{bmatrix} a & b \\ c & d \end{bmatrix} \quad T(\begin{bmatrix} a & b \\ c & d \end{bmatrix}) = \begin{bmatrix} a+2d \\ b-c \end{bmatrix}$

$$T(x[ab]) = \begin{bmatrix} xa+2xd \\ xb-xc \end{bmatrix} = \begin{bmatrix} x(a+2d) \\ x(b-c) \end{bmatrix} = xT(\begin{bmatrix} ab \\ cd \end{bmatrix})$$

b)
$$R^2 = \begin{bmatrix} a+2d \\ b-c \end{bmatrix}$$
 $T(v) = R^2$ therefore $T(\theta_v) = \Theta_{R^2}$

$$\begin{array}{c} C) \\ \begin{bmatrix} a+2d \\ b-c \end{bmatrix} \Rightarrow \begin{cases} \begin{bmatrix} -2 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \end{cases}$$

d)
$$rank(T) + nullity(T) = dim(V) = 4$$

 $rank(T) = 2$ $nullity(T) = 2$

e) R(T) has the same dimensions and is a Subspace of R2

f)
$$A = \begin{bmatrix} x & y \\ 0 & 0 \end{bmatrix}$$
 $T(A) = \begin{bmatrix} x \\ y \end{bmatrix}$
 $T(A) = V$ and $V \in R(T)$ so $R(T) = R^2$

(3)
$$T(P) = p''(x)$$
 $T: P_4 \rightarrow P_2$

a)
$$T(1) = \frac{d^2}{dx^2}(1) = 0 \Rightarrow T(x) = \frac{d^2}{dx^2}(x) = 0$$

b)
$$d_{in}(P_{4}) = rank(T) + nullity(T) \rightarrow 5 = 3 + null(T)$$

 $nullity(T) = 2 \neq 0 \rightarrow not one to one$

C)
$$\int p(x)dx = \int (a_0 + a_1x + a_2x^2)dx = a_0x + a_1(\frac{x^2}{2}) + a_2(\frac{x^3}{3}) + C = \Gamma(x)$$

 $T(r(x)) = p(x)$ so $R(T) = P_2$

27)
$$V = \begin{bmatrix} a & 6 \\ c & d \end{bmatrix}$$
 $T: V \rightarrow V$ by $T(A) = A^T$