Agenda

- Function Object
- Conversion Function
- Streams
- File IO
- Nested and Local Class
- Singleton class

Overloading Call / Function Call operator:

• If we want to consider any object as a function then we should overload function call operator.

```
class Complex
private:
    int real;
    int imag;
public:
    Complex(int real = ∅, int imag = ∅)
        this->real = real;
        this->imag = imag;
    void operator()(int real, int imag)
        this->real = real;
        this->imag = imag;
    void printRecord(void)
        cout << "Real Number :" << this->real << endl;</pre>
        cout << "Imag Number :" << this->imag << endl;</pre>
};
int main(void)
    Complex c1;
    c1(10, 20); // c1.operator()( 10, 20 );
    c1.printRecord();
    return 0;
}
```

- If we use any object as a function then such object is called function object or functor.
- In above code, c1 is function object.

Conversion Function

It is a member function of a class which is used to convert state of object of fundamental type into user defined type or vice versa. Following are conversion functions in C++

1. Single Parameter Constructor

```
int main( void )
{
int number = 10;
Complex c1 = number; //Complex c1( number );
c1.printRecord();
return 0;
}
```

- In above code, single parameter constructor is responsible for converting state of number into c1 object. Hence single parameter constructor is called conversion function.
- 2. Assignment operator function

```
int main( void )
{
  int number = 10;
  Complex c1;
  c1 = number;//c1 = Complex( number );
  //c1.operator=( Complex( number ) );
  c1.printRecord();
  return 0;
}
```

- In above code, assignment operator function is responsible for converting state of number into c1 object hence it is considered as converion function.
- If we want to put restriction on automatic instantiation then we should declare single parameter constructor explicit.
- "explicit" is a keyword in C++.
- We can use it with any constructor but it is designed to use with single parameter constructor.
- 3. Type conversion operator function.

```
int main( void )
{
Complex c1(10,20);
int real = c1; //real = c1.operator int( )
cout<<"Real Number : "<<real<<endl;
return 0;
}</pre>
```

• In above code, type conversion operator function is responsible for converting state of c1 into integer variable(real). Hence it is considered as conversion function.

Stream

- We give input to the executing program and the execution program gives back the output.
- The sequence of bytes given as input to the executing program and the sequence of bytes that comes as output from the executing program are called stream.
- In other words, streams are nothing but the flow of data in a sequence.
- The input and output operation between the executing program and the devices like keyboard and monitor are known as "console I/O operation".
- The input and output operation between the executing program and files are known as "disk I/O operation".
- The I/O system of C++ contains a set of classes which define the file handling methods
- These include ifstream, ofstream and fstream classes. These classes are derived from fstream and from the corresponding iostream class.
- These classes are designed to manage the disk files, are declared in fstream and therefore we must include this file in any program that uses files.
- Standard Stream Objects of C++ associated with console:
 - 1. cin -> Associated with Keyboard
 - 2. cout -> Associated with Monitor
 - 3. cerr -> Error Stream
 - 4. clog -> Logger Stream
- ifstearm is a derived class of istream class which is declared in std namespace. It is used to read record from file.
- ofstearm is a derived class of ostream class which is declared in std namespace. It is used to write record inside file.
- fstream is derived class of iostream class which is declared in std namespace. It is used to read/write record to/from file.

Classes for File stream operations

- ios:
 - o ios stands for input output stream.
 - This class is the base class for other classes in this class hierarchy.
 - This class contains the necessary facilities that are used by all the other derived classes for input and output operations.

istream :

- o istream stands for input stream.
- This class is derived from the class 'ios'.
- This class handle input stream.
- The extraction operator(>>) is overloaded in this class to handle input streams from files to the program execution.
- This class declares input functions such as get(), getline() and read().

• ostream:

- o ostream stands for output stream.
- This class is derived from the class 'ios'.
- o This class handle output stream.
- The insertion operator(<<) is overloaded in this class to handle output streams to files from the program execution.
- This class declares output functions such as put() and write().

ifstream :

- This class provides input operations.
- It contains open() function with default input mode.
- o Inherits the functions get(), getline(), read(), seekg() and tellg() functions from the istream.

ofstream:

- This class provides output operations.
- o It contains open() function with default output mode.
- o Inherits the functions put(), write(), seekp() and tellp() functions from the ostream.

fstream :

- This class provides support for simultaneous input and output operations.
- Inherits all the functions from istream and ostream classes through iostream.

File Handling

- A variable is a temporary container, which is used to store record in RAM.
- A file is permanent container which is used to store record on secondry storage.
- File is operating system resource.
- Types of file:
 - 1. Text File

2. Binary File

1. Text File

- 1. Example: .txt,.doc, .docx, .rtf, .c, .cpp etc
- 2. We can read text file using any text editor.
- 3. Since it requires more processing, it is slower in performance.
- 4. If we want to save data in human readable format then we should create text file.

2. Binary File

- 1. Example:.mp3, .jpg, .obj, .class
- 2. We can read binary file using specific program/application.
- 3. Since it requires less processing, it is faster in performance.
- 4. It doesn't save data in human readable format.

File Modes in C++

- "w" mode
 - o ios_base::out:
 - o ios_base::out | ios_base::trunc
- "r" mode
 - o ios base::in
- "a" mode
 - o ios_base::out | ios_base::app
 - o ios_base::app
- "r+" mode
 - o ios_base::in | ios_base::out
- "w+" mode
 - o ios_base::in | ios_base::out | ios_base::trunc
- "a+" mode
 - o ios_base::in | ios_base::out | ios_base::app
 - o ios_base::in | ios_base::app:
- In case of binary use "ios_base::binary"
- In C++, files are mainly dealt by using three classes fstream, ifstream, ofstream available in fstream headerfile.
- ofstream: Stream class to write on files
- ifstream: Stream class to read from files

• fstream: Stream class to both read and write from/to files.

Serilization and DeSerilization in binary Files

- When working with string data types or other derived data types (like objects or pointers) in a class and writing or reading the data to/from a binary file, you need to handle serialization and deserialization properly.
- Directly reading or writing the object's memory representation as binary data may not work correctly for derived/user defined data types due to issues like memory layout, internal pointers, and dynamic memory allocation.
- To handle string data types (and other derived data types) correctly when reading or writing binary files, you should implement custom serialization and deserialization functions in your class.
- These functions should convert your object's data into a binary representation (serialization) and reconstruct the object from binary data (deserialization).

```
// Seralizing employee class with datamembers int id, string name, double salary.
void seralize(ofstream &fout)
{
    fout.write(reinterpret_cast<const char *>(&empid), sizeof(int));
    size_t length = name.size();
    fout.write(reinterpret_cast<const char *>(&length), sizeof(size_t));
    fout.write(name.c_str(), length);
    fout.write(reinterpret_cast<const char *>(&salary), sizeof(double));
}
//Deseralizing employee class
void deseralize(ifstream &fin)
 fin.read(reinterpret cast<char *>(&empid), sizeof(int));
  size_t length;
 fin.read(reinterpret_cast<char *>(&length), sizeof(size_t));
 char *buffer = new char[length + 1];
 fin.read(buffer, length);
 buffer[length] = '\0';
 name = buffer;
 delete[] buffer;
 fin.read(reinterpret_cast<char *>(&salary), sizeof(double));
}
```