MAC008 - Introdução ao Método dos Elementos Finitos - Lista 2

Antonio José de Medeiros Filho - 201965502B

Exercício 1

1.1 Enunciado

Seja o seguinte problema de propagação de calor transiente por condução em uma barra (Problema de valor inicial e contorno em um domínio unidimensional):

$$\rho c \frac{\partial T}{\partial t} - \kappa \frac{\partial^2 T}{\partial x^2} = 0$$

Com as seguintes condições iniciais e de contorno:

$$T(x, t = 0) = 200^{\circ} C \frac{\partial T}{\partial x}(x = 0, t) = 0 T(x = L, t) = 0^{\circ} C$$

A solução analítica deste problema é dada por:

$$T(x,t) = \frac{200 \cdot 4}{\pi} \cdot \sum_{n=1}^{m} \frac{(-1)^{n+1}}{2n-1} \cdot \exp\left(-\alpha \lambda_n^2 t\right) \cdot \cos\left(\lambda_n x\right)$$

Onde:

- $\lambda_n = \frac{(2n-1)\cdot\pi}{2L}$ são os autovalores da solução exata. $\alpha = \frac{\kappa}{\rho c}$ é o coeficiente de difusividade térmica.

Consideramos as seguintes propriedades físicas:

- $\kappa = 10 * q \frac{W}{m \cdot K}$ é o coeficiente de condutividade térmica.
- L = 2cm é o comprimento do domínio.
- $\rho c = 10^6 * q \frac{J}{m^3 \cdot K}$ é a capacidade calorífica por unidade de volume do material que constitue a barra.

A variável q é dada por

$$q=10+\frac{N-1}{20}$$

Resolver este problema pelo método dos elementos finitos empregando interpolações lineares utilizando uma discretização espacial com uma malha de 3 elementos de mesmo comprimento. Para a solução no tempo utilize o método da diferença central usando passo de tempo o valor de $\Delta t = 1s$. Compare gráficamente (no mesmo gráfico!) as soluções numéricas com a solução exata para os tempos t = 80s, t = 100s e t = 120s.

1.2 Resolução

1.2.1 Substituindo N

Temos que N=1, logo:

$$q = 10$$

1.2.2 Discretização Espacial

Vamos dividir o domínio (a barra de comprimento L) em 3 elementos de mesmo comprimento. Cada elemento terá dois nós, um em cada extremidade.

1.2.3 Formulação do Método dos Elementos Finitos

Função de Interpolação Para cada elemento, usamos funções de interpolação lineares N_i (x) para representar a temperatura T dentro do elemento:

$$T(x) = \sum_{i=1}^{n} N_i(x)T_i$$

onde n é o número de nós por elemento e T_i é temperatura e no nó i.

Montagem da Equação de Elemento Para cada elemento, aplicamos a equação diferencial. Através da integração por partes (ou método dos resíduos ponderados), obtemos a formulação fraca do problema. Para um elemento genérico, temos:

$$\int_{x_{e-1}}^{x_e} \rho c N_i \rho \frac{\partial T}{\partial t} dx + \int_{x_{e-1}}^{x_e} \kappa \frac{\partial N_i}{\partial x} \frac{\partial T}{\partial x} dx = 0$$

Montagem da Matriz Global As equações dos elementos individuais são então montadas em uma matriz global que representa o sistema inteiro.

Aplicação das Condições de Contorno As condições de contorno são aplicadas na matriz global. A condição $T(x=L,t)=0^{\circ}C$ é uma condição de Dirichlet e é aplicada diretamente na matriz. A condição $\frac{\partial T}{\partial x}(x=0,t)=0$ é uma condição de Neumann e afeta a formulação da equação de elemento do nó correspondente.

1.3 Implementação

(100.0, 10000000.0)

[0.0, 0.00666666666666667, 0.013333333333333333334, 0.02]

1.3.1 Cálculo das Matrizes Globais

As matrizes globais de massa M e rigidez K para o sistema são: Matriz de massa M:

$$\begin{bmatrix} 22222.22 & 11111.11 & 0 & 0 \\ 11111.11 & 44444.44 & 11111.11 & 0 \\ 0 & 11111.11 & 44444.44 & 11111.11 \\ 0 & 0 & 11111.11 & 22222.22 \end{bmatrix}$$

Matriz de rigidez K:

$$\begin{bmatrix} 15000 & -15000 & 0 & 0 \\ -15000 & 30000 & -15000 & 0 \\ 0 & -15000 & 30000 & -15000 \\ 0 & 0 & -15000 & 15000 \end{bmatrix}$$

```
(array([[22222.2222222, 11111.11111111,
                                                                       ],
                                             0.
                                                             0.
        [11111.11111111, 44444.4444444, 11111.11111111,
                                                             0.
                                                                       ],
        , 11111.11111111, 44444.4444444, 11111.1111111],
            0.
        Γ
                                       , 11111.11111111, 22222.222222]]),
            0.
array([[ 15000., -15000.,
                                0.,
                                         0.],
        [-15000., 30000., -15000.,
                                         0.],
             0., -15000., 30000., -15000.],
       0.,
                      0., -15000., 15000.]]))
```

array([199.57444011, 203.50268528, 142.76597144, 107.88824646])

1.4 Resultados

2 Exercício 2

2.1 Enunciado

Para a viga em balanço da figura abaixo tratada como um problema de Estado Plano de Tensões determine a matriz de rigidez e o vetor de forças para as seguintes discretizações:

- a) Com 2 elementos triangulares lineares conforme mostrado nesta figura.
- b) Com 1 elemento retangular com os nós 1,2,3 e 4.

Determine os deslocamentos livres considerando os nós 3 e 4 presos (deslocamentos nulos).

Determine também os valores das tensões, segundo o sistema de eixos indicado nos pontos nodais e nos pontos centrais dos elementos considerados. Considere o carregamento indicado nesta figura com a distribuição de carga onde $p=150^*(N+1)/20$. Adotar E (200.000) e Poisson(0.3) indicados na figura. Atente para trabalhar com unidades coerentes e que a espessura também está dada (t=1). Utilize para as medidas do domínio o valor a=b=4+(N-1)/20

- 2.2 Resolução
- 2.3 Implementação
- 2.4 Resultados