第十六章 机械波和电磁波

_	冼择题
---	-----

故B正确。

5. 两相干波源 S_1 和 S_2 ,相距为 $\frac{3}{2}$ λ ,其初相位相同,且振幅均为 $1.0 \times 10^{-2} m$,则在波源 S_1 和 S_2 连线的中垂线上任意一点,两列波叠加后的振幅为 ()

B. 1.0×10^{-2} m C. $\sqrt{2} \times 10^{-2}$ m D. 2.0×10^{-2} m

解 $\Delta \varphi = (\varphi_{20} - \varphi_{10}) - \frac{2\pi}{\lambda} (r_2 - r_1)$,因为两波源初相位相同,在波源 S_1 和 S_2 连线

的中垂线上各点到两个波源的距离 $r_1=r_2$,所以 $\Delta \varphi=(\varphi_{20}-\varphi_{10})-\frac{2\pi}{\imath}(r_2-r_1)=0$,两列波

叠加后的振幅 $A = \sqrt{A_1^2 + A_2^2 + 2A_1A_2\cos\Delta\varphi} = \sqrt{A_1^2 + A_2^2 + 2A_1A_2} = A_1 + A_2 = 2.0 \times 10^{-2} \,\mathrm{m}$,故 正确选项为D。

- 6. 波的能量随平面简谐波传播,下列几种说法中正确的是:(
- A. 因简谐波传播到的各介质体积元均作简谐振动, 故其能量守恒
- B. 各介质体积元在平衡位置处的动能,势能最大,总能量最大
- C. 各介质体积元在平衡位置处的动能最大,势能最小
- D. 各介质体积元在最大位移处的势能最大,动能为0

解: 答案选 B

- 7. 一平面简谐波在弹性介质中传播,在介质质元从平衡位置运动到最大位移处的过 程中: ()
 - A. 它的动能转换成势能
 - B. 它的势能转换成动能
 - C. 它把自己的能量传给相邻的一段质元,其能量逐渐增大
 - D. 它把自己的能量传给相邻的一段质元,其能量逐渐减小

解: 答案选 D

8. 在同一介质中两列相干的平面简谐波的强度之比 $I_1/I_2 = 4$,则两列波的振幅之 比 A 1 / A 2 是: ()

B. 2

C. 16

解:波的强度正比于振幅的平方,因 $I_1/I_2=4$,故 $A_1/A_2=2$ 。 所以答案选 B。

9. 某时刻驻波波形曲线如图所示,则 a,b 两点处振动的相位差是: (

Α. π

B. π / 2 C. 0

D. 无法确定

解: a, b 两点位于一个波节的两侧,根据驻波的相位特征,波节两侧各点的振动 相位相反,故相位差是π。

所以答案选 A。

选择题9图

- 10. 在驻波中,两个相邻波节间各质点的振动是:()
- A. 振幅相同,相位相同
- B. 振幅不同,相位相同
- C. 振幅相同,相位不同
- D. 振幅不同,相位不同

解:根据驻波的振幅和相位特征分析。

答案选 B。

11. 设声波在介质中的传播速度为u,声源的频率为v,若声源S不动,而接收器 R 相对于介质以速度 V_R 沿着 S、R 连线向着声源 S 运动,则在 S、R 连线上各介质点的 振动频率为:(

B.
$$\frac{u+V_R}{u}v_S$$

C.
$$\frac{u-V_R}{u}v_S$$

A.
$$v_S$$
 B. $\frac{u+V_R}{u}v_S$ C. $\frac{u-V_R}{u}v_S$ D. $\frac{u}{u-V_R}v_S$

解: 波源不动,介质中波的频率不变。 故答案选 A。

- 12. 电磁波在自由空间传播时,电场强度 E 与磁场强度 H: ()
- A. 在垂直于传播方向上的同一条直线上 B. 朝互相垂直的两个方向传播
- C. 互相垂直, 且都垂直于传播方向 D. 有相位差 π/2

解: 答案选 C。

二 填空题

1. 一平面简谐波沿 x 轴正方向传播,已知 x = 0 处的振动规律为 $y = \cos(\omega t + \alpha_0)$, 波速为u,坐标为 x_1 和 x_2 两点的振动相位差是_____。

解:
$$\frac{\omega}{u}(x_2-x_1)$$

2. 一平面简谐机械波沿 x 轴正方向传播,波动方程为 $y = 0.2 \cos(\pi t - \pi x/2) m$,则 x = -3m 处介质质点的振动加速度 a 的表达式为

解:
$$a = \frac{\partial^2 y}{\partial t^2} = -0.2\pi^2 \cos(\pi t + \frac{3}{2}\pi) \text{ m/s}^2$$

3. 一个余弦横波以速度 u 沿 x 轴正向传播, t 时刻 波形曲线如图所示。试分别指出图中 A, B, C 各点处介 质质元在该时刻的运动方向: A、_____; B、_____;

解: 向下: 向上: 向上。

填空题3图

4. 一平面简谐机械波在介质中传播时,若一介质质元在 t 时刻的能量是 10J,则在 (t+T) (T 是波的周期)时刻该介质质元的振动动能是。

解: 5J

5. 强度为I的平面简谐波沿着波速u的方向通过一面积为S的平面,波速u与该平 面的法线 n_0 的夹角为 θ ,则通过该平面的平均能流是

解: $IS\cos\theta$

6. 一平面简谐波在截面面积为 3.00×10⁻²m² 的空气管中传播,设空气中声速为 330m/s。若在 10s 内通过截面的能量为 2.70×10⁻²J,则波的平均能流密度为______。

解: (1) 平均能流 $\overline{P} = E/t = 2.7 \times 10^{-3}$ J. s⁻¹,平均能流密度 $I = \frac{\overline{P}}{S} = 9.00 \times 10^{-2}$ J s⁻¹m⁻² 。

(2)
$$I = \overline{w}.u$$
, $\overline{w} = I/u = 2.73 \times 10^{-4} \text{ J. m}^{-3}$.

7. 能够引起听觉的声强级范围为____。

解: 0~120 dB。

8. 如图 P 点距波源 S_1 和 S_2 的距离分别为 3λ 和 $10\lambda/3$, λ 为两列波在介质中的波长,若 P 点的合振幅总是极大值,则两波源应满足的条件是

解:首先两列波必须是相干波,即振动方向相同、频率相同。两波同时传到P点时的相位差

$$\Delta \varphi = (\varphi_2 - \varphi_1) - \frac{2\pi}{\lambda} (r_2 - r_1)$$

$$= (\varphi_2 - \varphi_1) - \frac{2\pi}{\lambda} (10\lambda/3 - 3\lambda) = (\varphi_2 - \varphi_1) - 2\pi/3$$

填空题8图

若 P 点的合振幅总是极大值,则由 $\Delta \varphi = 0$,解出 $(\varphi_2 - \varphi_1) = 2\pi/3$ 。即要求 S_2 相位比 S_1 相位超前 $2\pi/3$ 。

因此两波源应满足的条件是:振动方向相同、频率相同、 S_2 的相位比 S_1 的相位超前 $2\pi/3$ 。

- 9. 设反射波的表达式是 $y_2 = 0.15 \cos [100 \pi (t-x/200) + \pi/2]$ m, 波在 x=0 处发生反射,反射点为自由端,则形成的驻波的表达式为
- **解**: 在反射点 x=0 处反射波引起的振动是 y_2 = 0.15 $\cos(100\pi t + \pi/2)$,由于反射点为自由端,所以在反射点入射波和反射波同相,入射波的方程为 y_1 = 0.15 $\cos[100\pi(t+x/200) + \pi/2]$ m,形成的驻波的表达式

$$y = y_1 + y_2 = 0.30\cos\frac{\pi}{2}x\cos(100\pi t + \frac{\pi}{2})$$
 m

10. 一驻波表达式为 $y = 4.00 \times 10^{-2} (\cos 2 \pi x) \cos 400t$ (m) 在 x=1/6 m 处的质元的振幅为________。

 \mathbf{m} : $2 \times 10^{-2} \,\mathrm{m}$. $v = -8 \sin 400 t$

- - 解: 观察者不动, 在机车前方听到的频率为 $v_R = \frac{u}{u V_S} v_S = \frac{330}{330 30} \times 600 = 660$ Hz。

观察者不动,在机车后方听到的频率为 $v_R = \frac{u}{u + V_S} v_S = \frac{330}{330 + 30} \times 600 = 550$ Hz。

三 计算题

1. 如图为一平面简谐波在 t=0 时刻的波形图,试写出 P 处质点与 Q 处质点的振动方程,并画出 P 处质点与 Q 处质点的振动曲线,其中波速 u=20 m / s。

计算题1图

解:如图所示,振幅 A=0.02m,波长 λ =40m,周期 T= λ / u = 40 / 20 = 2 (s),波动方程为 y = Acos [2 π (t / T-x/ λ) + π /2]= 0.02cos [2 π (t /2-x/40) + π /2]。

P处(x=20)质点的振动方程

$$y_P = 0.20\cos(\pi t - \pi/2) \text{ m}$$

O 处 (x=30) 质点的振动方程

$$y_0 = 0.20\cos(\pi t - \pi) \text{ m}$$

P处质点与Q处质点的振动曲线如下图所示。

P 处质点的振动曲线

0 处质点的振动曲线

2. 如图所示,一平面简谐波沿 ox 轴正向传播,波速大小为 u,若 P 处质点振动方程为 $y_P = A\cos(\omega t + \varphi)$ 。求:(1)o 处质点的振动方程;(2)该波的波动方程。

 \mathbf{m} : (1) O 处质点振动的相位比 P 处质点振动的相位超前 $\omega L/u$,因此 O 处质点振动方程为

$$y_0 = A \cos \left[\omega t + \omega L / u + \varphi \right] = A \cos \left[\omega \left(t + L / u \right) + \varphi \right]$$

(2) 根据 O 处质点振动方程,可写出波动方程

$$y = A \cos \{ \omega (t-x/u) + \omega L/u + \varphi \}$$

= $A \cos \{ \omega [t - (x-L)/u] + \varphi \}$

3. 一平面简谐波沿 x 轴正向传播,其振幅和圆频率分别为 A 和 ω ,波速为 u,设 t=0 时的波形曲线如图所示。(1) 写出此波的波动方程;(2) 求距 O 点分别为 λ /8 和 3λ /8 两处质点的振动方程;(3) 求距 o 点分别为 λ /8 和

计算题3图

 $3\lambda/8$ 两处的质点在 t=0 时的振动速度。

解: (1) 以 O 点为坐标原点,设 O 点处的振动方程为 $y_0 = A \cos(\omega t + \varphi)$ 。由图可知,初始条件为

$$y_0 = A \operatorname{cos} \varphi = 0$$
, $v_0 = -A \omega \sin \varphi < 0$

所以φ=π/2。故波动方程为

$$y = A \cos[\omega t - (\omega x/u) + \pi/2]$$

(2) $x = \lambda / 8$ 处质点的振动方程为:

$$y = A c o s [\omega_t - 2 \pi \lambda / (8\lambda) + \pi / 2]$$
$$= A cos (\omega_t + \pi / 4)$$

 $x=3\lambda/8$ 处质点的振动方程为:

$$y = A \cos \left[\omega t - 2 \pi \times 3\lambda / (8\lambda) + \pi / 2 \right]$$
$$= A \cos \left(\omega t - \pi / 4 \right)$$

(3) 质点的振动速度

$$v = \partial y / \partial t = -\omega A \sin(\omega t - 2\pi x / \lambda + \pi / 2)$$

当 t=0 时, $x=\lambda/8$ 处质点的振动速度

$$v = -\omega A \sin \left[-2\pi \lambda / (8\lambda) + \pi / 2\right] = -\sqrt{2}A\omega / 2$$

当 t=0 时, $x=3\lambda/8$ 处质点的振动速度

$$v = -\omega A \sin \left[-2\pi \times 3\lambda / (8\lambda) + \pi / 2\right] = \sqrt{2}A\omega / 2$$

4. 沿x轴负方向传播的平面简谐波在t=2s时刻的波形曲线如图所示,设波速u=0.5m·s⁻¹,求原点处的振动方程。

解: 由题图可知波长 λ = 2 m ,由 u = 0.5 m·s⁻¹ 可求 出频率

$$v = u / \lambda = 1/4$$
 Hz

故周期 T=4 s。 题图中 t=2 s = T/2。

设原点的振动方程为

$$y = 0.5 \cos (\pi t/2 + \varphi_0)$$

由于 t=2 s 时,O 点位移是 y=0,且朝正 y 轴方向运动,根据如下所示的振动旋转矢量表示图,可看出此刻 O 点振动的相位为 $\varphi=3$ $\pi/2$ 。即

$$\pi \times 2/2 + \varphi_0 = 3\pi/2$$
 或 $-\pi/2$ $\varphi_0 = \pi/2$ 或 $-3\pi/2$

这样就得到原点处的振动方程

$$y = 0.5 \cos(\pi t/2 + \pi/2)$$
 或 $y = 0.5 \cos(\pi t/2 - 3\pi/2)$

5. 一弹性波在介质中传播的速度 $u=10^3$ m/s,振幅 $A=1.0\times10^{-4}$ m,频率 $v=10^3$ Hz,介质的密度为 $\rho=800$ kg/m³。求:(1)波的平均能流密度;(2)一分钟内垂直通过一面积 $S=4.0\times10^{-4}$ m² 的总能量。

解: (1) 波的平均能流密度

$$I = \frac{1}{2} \rho A^2 \omega^2 u = \frac{1}{2} \rho A^2 (2\pi v)^2 u$$

= $\frac{1}{2} \times 800 \times (1.0 \times 10^{-4})^2 \times (2\pi \times 10^3)^2 \times 10^3 = 1.6 \times 10^5 \,\text{W/m}^2$

(2) 一分钟内垂直通过面积S的总能量

$$E = IS\Delta t = 1.6 \times 10^5 \times 4 \times 10^{-4} \times 60 = 3.8 \times 10^3 \text{ J}$$

6. 一线波源发射柱面波,设介质为不吸收能量的各向同性的均匀介质,试求波的 平均能流密度以及振幅与离开波源的距离有何关系?

解:根据能量守恒定律可知,通过以线波源为轴的长度同为 l 而半径分别为 r_1 和 r_2 的两个圆柱面的能流应相等,即

$$2\pi r_1 l I_1 = 2\pi r_2 l I_2$$

由此得

$$I_1 r_1 = I_2 r_2$$

即波的强度与 r 成反比。又因 I 和 A^2 成正比,所以振幅 A 应与 \sqrt{r} 成反比。

7. 有一个面向街道打开的面积为 4m² 的窗户,若窗口处噪音的声强级为 70dB,试求进入窗户的噪音功率。

解:
$$L_I = 10 \lg \frac{I}{I_0}$$
, $I_0 = 10^{-12} \,\mathrm{w \cdot m^{-2}}$ 。 故声强 $I = I_0 \times 10^{\frac{L_I}{10}} = I_0 \times 10^7 = 10^{-5} \,\mathrm{w \cdot m^{-2}}$ 。
进入窗户的噪音功率 $P = IS = 10^{-5} \,\mathrm{w \cdot m^{-2}} \times 4 \mathrm{m^2} = 4 \times 10^{-5} \mathrm{W}$ 。

8. 如图所示,两相干波源 S_1 和 S_2 相距 $\frac{3\lambda}{4}$, λ 为波长,设两波在 S_1 S_2 连线上传播时,它们的振幅都是 A,并且不随距离变化。已知在该直线上在 S_1 左侧各点的合成波强度为其中一个波强度的 4 倍,求两波源的初相位差是多少?

解 两相干波源传到 S_1 左侧某点,它们在该点

振动的相位差为

$$\Delta \varphi = (\varphi_2 - \varphi_1) - \frac{2\pi}{\lambda} (r_2 - r_1)$$
$$= (\varphi_2 - \varphi_1) - \frac{2\pi}{\lambda} \times \frac{3\lambda}{4} = (\varphi_2 - \varphi_1) - \frac{3\pi}{2}$$

 S_1 S_2 \longrightarrow 3λ \longrightarrow 计算题 8 图

在 S_1 左侧各点干涉极大,故

$$(\varphi_2 - \varphi_1) - \frac{3\pi}{2} = 0$$

即两波源的初相位差为

$$(\varphi_2 - \varphi_1) = \frac{3\pi}{2}$$

9. 如图所示,三个同频率,振动方向相同(垂直 纸面)的简谐波,在传播过程中在 O 点相遇。若三个

计算题 9 图

简谐波各自单独在 S_1 、 S_2 和 S_3 等处的振动方程分别为 $y_1 = A \cos(\omega t + \pi/2)$, $y_2 = A \cos(\omega t + \pi/2)$ ωt 和 $y_3 = 2 A \cos(\omega t - \pi/2)$,且 $S_2O = 4\lambda$, $S_1O = S_3 O = 5\lambda$ (λ 为波长),求 O 点的 合振动方程。(设传播过程中各波振幅不变)

解:每一波传播的距离都是波长的整数倍,所以三个波在O点的振动方程仍可写成

$$y_1 = A_1 \cos (\omega t + \pi/2)$$

$$y_2 = A_2 \cos \omega t$$

$$y_3 = A_3 \cos (\omega t - \pi/2)$$

$$= A_2 = A_1 \quad A_3 = 2A_1 \quad a_2$$

其中 $A_1 = A_2 = A$, $A_3 = 2A$ 。

在O点,三个简谐振动叠加,利用简谐振动的旋转矢 量表示法,可以画出 $t=2k\pi$ 时刻的振幅矢量图(如图)。根据矢量多边形的加法,可得 0 点合振动方程

$$y = \sqrt{2}A\cos(\omega t - \pi/4)$$

10. 两个波在一根很长的细绳上传播,它们的方程分别为 $y_1 = 0.06 \cos \pi (x - 4t)$, y_2 $= 0.06 \cos \pi (x + 4 t)$ $(x, y \cup m + t)$ $(x, y \cup m + t)$ (x + 4 t) (x + 4 t)播方向;(2)证明这细绳实际上是作驻波式振动,求波节位置和波腹位置;(3)波腹处 的振幅多大? 在x = 1.2 m 处振幅多大?

解: (1) 将波动方程与标准波动方程 $y = A \cos 2\pi (vt - x/\lambda)$ 对比可得两个波的频 率、波长、波速

波长
$$\lambda = 2 \text{ m}$$

频率 $\nu = 2 \text{ H z}$
波速 $u = \lambda \nu = 4 \text{ m} \cdot \text{s}^{-1}$

第一个波动向 x 轴正向传播, 第二波向-x 方向传播。

(2) 细绳上的波是上述两个波叠加形成的波

$$y = y_1 + y_2 = 0.12 \cos \pi x \cos 4 \pi t$$

显然上式表示的驻波方程。所以细绳作驻波式振动。

波点: 由 $\cos x = 0$ 即 $\pi x = (2k+1)$ $\pi/2$ 求出波节位置

$$x = (k + 0.5)$$
 (m) $(k = 0,1,2,\cdots)$

波腹: 由 $\cos x = 1$ 即 $\pi x = k \pi$ 求出波腹位置

$$x = k$$
 (m) $(k = 0,1,2\cdots)$

(3) 波腹处的振幅 A = 0.12 m,

x = 1.2 m 处 振幅 $A = 0.12 \cos(1.2 \pi) = 0.097 \text{ m}$ 。

- 11. 设入射波的方程式为 $y_1 = A\cos 2\pi (\frac{x}{\lambda} + \frac{t}{T})$, 在 x = 0 处发生反射, 反射点为一固 定端,设反射时无能量损失,求:(1)反射波的方程;(2)合成的驻波的方程;(3)波腹 和波节位置。
 - 解: (1) 反射点是固定端, 所以反射时有"半波损失", 因反射时无能量损失, 故

反射波的振幅为A, 因此反射波的方程为:

$$y_2 = A\cos [2\pi (t/T - x/\lambda) + \pi]$$

(2) 驻波的表达式是

$$y = y_1 + y_2$$

= 2 Acos (2 \pi x/\lambda + \pi / 2) cos (2 \pi t / T - \pi / 2)

(3) 波腹位置由下式确定:

$$2\pi x/\lambda + \pi/2 = n\pi$$

即 $x = (2n-1)\lambda/4$ $n = 1, 2, 3, 4, \cdots$
波节位置由下式确定:

 $2 \pi x / \lambda + \pi / 2 = n \pi + \pi / 2$

- 12. 一弦上的驻波方程为: $y = 3.00 \times 10^{-2} (\cos 1.6 \pi x) \cos 550 \pi t$ (m)。(1)若将此驻波看作传播方向相反的两列波叠加而成,求两波的振幅和波速;(2)求相邻波节间的距离;(3)求 $t = 3.00 \times 10^{-3}$ s 时,位于 x = 0.625 m 处质点的振动速度。
 - 解:(1)将题中驻波方程

$$y = 3.00 \times 10^{-2} \cos 1.6 \pi x \cos 550 \pi t$$

与标准驻波方程 $y = 2A \cos(2\pi x/\lambda) \cos 2\pi vt$ 相比可知:

$$A = 1.50 \times 10^{-2} \text{ m}$$
, $\lambda = 1.25 \text{ m}$, $\nu = 275 \text{ Hz}$ 波速 $u = \lambda \nu = 343.8 \text{ m/s}$

(2) 相邻波节点之间距离

$$\Delta x = \lambda / 2 = 0.625 \text{ m}$$

(3) 质点的振动速度

$$v = \frac{\partial y}{\partial t} = -3.00 \times 10^{-2} \times 550\pi \cos 1.6\pi x \sin 550\pi t$$

将 $t = 3.00 \times 10^{-3}$ s, x = 0.625 m 代入上式, 得到此刻该点的振动速度

$$v = -46.2 \text{ m/s}$$

13. 一声源的频率为 1080Hz,相对地面以 30m/s 的速率向右运动。设空气中声速为 331m/s。求在声源运动的前方和后方,地面上的观察者接收到的声波波长。

解: 在声源运动的前方, 地面上的观察者接收到的声波波长

$$\lambda_b = (u - V_S) / v_S = (331 - 30) / 1080 = 0.279 \text{m}$$

在声源运动的后方,地面上的观察者接收到的声波波长则是

$$\lambda_a = (u + V_S) / v_S = (331 + 30) / 1080 = 0.334$$
m

14. 设有一平面电磁波在真空中传播,电磁波通过某点时,该点的 E=50V/m。试求该时刻该点的 B 和 H 的大小,以及电磁场能量密度 w 和能流密度 S 的大小。

解: 由
$$B = \mu_0 H$$
 和 $\sqrt{\varepsilon_0} E = \sqrt{\mu_0} H$ 以及 $c = \frac{1}{\sqrt{\varepsilon_0 \mu_0}}$ 得

$$B = \frac{E}{c} = \frac{50}{3 \times 10^8} = 1.67 \times 10^{-7} \,\text{T}$$

$$H = \frac{B}{\mu_0} = \frac{1.67 \times 10^{-7}}{4\pi \times 10^{-7}} \,\text{A/m} = 0.134 \,\text{A/m}$$

电磁场能量密度

$$w = \frac{1}{2} (\varepsilon E^2 + \mu H^2) = \varepsilon_0 E^2 = 8.85 \times 10^{-12} \times 50^2 \,\text{J} \cdot \text{m}^{-3} = 2.21 \times 10^{-8} \,\text{J} \cdot \text{m}^{-3}$$

能流密度的大小

$$S = EH = 50 \times 0.134 \text{ J/(m}^2 \cdot \text{s}) = 6.7 \text{ J/(m}^2 \cdot \text{s})$$

15. 用于打孔的激光束截面直径为 60μm, 功率为 300kW。求此激光束的波印亭矢量的大小,以及激光束中电场强度和磁感应强度的振幅。

解:
$$S = \frac{P}{\pi R^2} = \frac{300 \times 10^3}{\pi \times (30 \times 10^{-6})^2} = 1.06 \times 10^{14} \text{ W/m}^2$$

 $E = \sqrt{S/(c\varepsilon_0)} = 2.0 \times 10^8 \text{ V/m}$, $B = E/c = 0.67\text{T}$

- 16. 一均匀平面电磁波在真空中传播,其电场强度 $E = 100 \,\mathrm{cos}(\omega t az)i$ 。求: (1) 波的传播方向; (2) 磁场强度的表达式。
- 解:(1) 把 E 表达式与平面波的标准式 $E = E_0 \cos \omega (t \frac{r}{u})$ 比较可得电磁波沿 z 轴方向传播。
 - (2) \mathbf{E} 在 \mathbf{E} 正方向,由电磁波性质知, \mathbf{H} 在 \mathbf{V} 轴正方向与 \mathbf{E} 同频率同相位