

Linear Regression Machine Learning and Pattern Recognition

(Largely based on slides from Andrew Ng)

Prof. Sandra Avila

Institute of Computing (IC/Unicamp)

MC886/MO444, August 11, 2017

\$70 000

\$ 160 000

Linear Regression

Today's Agenda

- ____
- Linear Regression with One Variable
 - Model Representation
 - Cost Function
 - Gradient Descent
- Linear Regression with Multiple Variables
 - Gradient Descent for Multiple Variables
 - Feature Scaling
 - Learning Rate

Model Representation

Housing Prices

Supervised Learning

Given the "right answer" for each example in the data.

Regression Problem

Predict real-valued output

Training set of
housing prices

Size in feet ² (x)	Price (\$) in 1000's (y)	
2104	460	
1416	232	
1534	315	
852	178	

Notation:

m = Number of training examples x's = "input" variable / features y's = "output" variable / "target" variable

Training set

Training set

Learning algorithm

How do we represent h?

How do we represent h?

h maps x's to y's

How do we represent h?

Linear regression with one variable. Univariate linear regression.

Cost Function

Training Set

2104

Size in feet² (x)

460 232

Price (\$) in 1000's (y)

315

178

• • •

852

• • •

Hypothesis:
$$h_{\theta}(x) = \theta_0 + \theta_1 x$$

 θi 's: Parameters

How to choose θi 's?

$$\underset{\theta_0,\theta_1}{\text{minimize}}$$

$$(h_{\theta}(x^{-}) - y^{-})^2$$

$$\underset{\theta_0,\theta_1}{\text{minimize}}$$

$$\sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)})^{2}$$

minimize
$$\frac{1}{2m} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)})^2$$

minimize
$$\frac{1}{2m} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)})^{2}$$

$$h_{\theta}(x) = \theta_{0} + \theta_{1}x$$

minimize
$$\frac{1}{2m} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)})^{2}$$

$$h_{\theta}(x) = \theta_{0} + \theta_{1}x$$

Idea: Choose
$$\theta_0$$
, θ_1 so that $h_{\theta}(x)$ close to y for our training examples (x,y)

$$J(\theta_0,\theta_1) = \frac{1}{2m} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)})^2$$

minimize
$$\frac{1}{2m} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)})^{2}$$

$$h_{\theta}(x) = \theta_{0} + \theta_{1}x$$

 $J(\theta_0, \theta_1) = \frac{1}{2m} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)})^2$

Choose θ_0 , θ_1 so that $h_{\theta}(x)$ close to y for our training examples (x,y)

$$\underset{\theta_0,\theta_1}{\text{minimize } J(\theta_0,\theta_1)}$$

Cost function (Squared error function)

Cost Function Intuition I

Hypothesis:

$$h_{\theta}(x) = \theta_0 + \theta_1 x$$

Parameters:

$$\theta_0, \theta_1$$

Cost Function:

$$J(\theta_0, \theta_1) = \frac{1}{2m} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)})^2$$

Goal:

$$\underset{\theta_0,\theta_1}{\text{minimize}} J(\theta_0,\theta_1)$$

Hypothesis:

$$h_{\theta}(x) = \theta_0 + \theta_1 x$$

Parameters:

$$\theta_0, \theta_1$$

Cost Function:

$$J(\theta_0, \theta_1) = \frac{1}{2m} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)})^2$$

Goal:

$$\underset{\theta_0,\theta_1}{\text{minimize}} J(\theta_0,\theta_1)$$

Simplified

$$h_{\theta}(x) = \theta_1 x$$

h(x)

$$J(\theta_1) = \frac{1}{2m} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)})^2$$

 $\underset{\theta_1}{\text{minimize }} J(\theta_I)$

$h_{\theta}(x)$ $J(\theta_1)$ (for fixed θ_1 , this is a function of x) (function of the parameters θ_1)

(for fixed θ_1 , this is a function of x)

 $J(\theta_1)$

(function of the parameters θ_1)

$$h_{\theta}(x)$$

(for fixed θ_1 , this is a function of x)

$$J(\theta_1) = J(1) = ?$$

 $J(\theta_1)$

(function of the parameters θ_1)

$$h_{\theta}(x)$$

(for fixed θ_1 , this is a function of x)

$$J(\theta_1) = J(1) = 0$$

(for fixed θ_1 , this is a function of x)

(for fixed θ_1 , this is a function of x)

Cost Function Intuition II

(function of the parameters $heta_0$, $heta_1$)

 $J(\theta_0,\theta_1)$

 $J(\theta_0,\theta_1)$

 $h_{\theta}(x)$ (for fixed θ_0, θ_1 , this is a function of x)

 $J(\theta_0,\!\theta_1)$ (function of the parameters $\theta_0,\!\theta_1$)

 $h_{\theta}(x)$ (for fixed θ_0, θ_1 , this is a function of x)

 $J(\theta_0,\!\theta_1)$ (function of the parameters $\theta_0,\!\theta_1$)

 $h_{\theta}(x)$ (for fixed θ_0, θ_1 , this is a function of x)

 $J(\theta_0,\!\theta_1)$ (function of the parameters $\theta_0,\!\theta_1)$

 $h_{\theta}(x)$ (for fixed θ_0, θ_1 , this is a function of x)

 $J(\theta_0,\!\theta_1)$ (function of the parameters $\theta_0,\!\theta_1$)

Gradient Descent

Have some function $J(\theta_0, \theta_1)$

Want minimize
$$J(\theta_0, \theta_1)$$

Outline:

- Start with some θ_0 , θ_1
- Keep changing θ_0 , θ_1 to reduce $J(\theta_0,\theta_1)$ until we hopefully end up at a minimum

repeat until convergence {

$$\theta_j := \theta_j - \alpha \frac{\partial}{\partial \theta_j} J(\theta_0, \theta_1) \qquad \text{(simultaneously update)}$$

$$j = 0 \text{ and } j = 1)$$

repeat until convergence {

$$\theta_j := \theta_j - \alpha \frac{\partial}{\partial \theta_j} J(\theta_0, \theta_1) \qquad \text{(simultaneously update } j = 0 \text{ and } j = 1\text{)}$$
 Learning rate
$$Derivative \text{ term}$$

$$j = 0 \text{ and } j = 1)$$

Derivative term

repeat until convergence {
$$\theta_j:=\theta_j-\alpha\frac{\partial}{\partial\theta_j}J(\theta_0,\!\theta_1)\quad (\text{for }j=0 \text{ and }j=1)$$
 }

Correct: Simultaneous update

$$temp0 := \theta_0 - \alpha \frac{\partial}{\partial \theta_0} J(\theta_0, \theta_1)$$

$$\begin{aligned} \text{temp0} &:= \ \theta_0 - \alpha \frac{\partial}{\partial \theta_0} J(\theta_0, \theta_1) \\ \text{temp1} &:= \ \theta_1 - \alpha \frac{\partial}{\partial \theta_1} J(\theta_0, \theta_1) \\ \theta_0 &:= \ \text{temp0} \end{aligned}$$

repeat until convergence {
$$\theta_j:=\theta_j-\alpha\frac{\partial}{\partial\theta_j}J(\theta_0,\!\theta_1)\quad (\text{for }j=0 \text{ and }j=1)$$
 }

Correct: Simultaneous update

temp0 :=
$$\theta_0 - \alpha \frac{\partial}{\partial \theta_0} J(\theta_0, \theta_1)$$

temp1 := $\theta_1 - \alpha \frac{\partial}{\partial \theta_1} J(\theta_0, \theta_1)$

$$temp1 := \theta_1 - \alpha \frac{\partial}{\partial \theta_1}$$
$$\theta_0 := temp0$$

temp0 := $\theta_0 - \alpha \frac{\partial}{\partial \theta_0} J(\theta_0, \theta_1)$

temp0 := $\theta_0 - \alpha \frac{\partial}{\partial \theta_0} J(\theta_0, \theta_1)$

$$\theta_0 := \text{temp0}$$

$$\text{temp1} := \theta_1 - \alpha \frac{\partial}{\partial \theta_1} J(\theta_0, \theta_1)$$

$$\theta_1 := \text{temp1}$$

$$\theta_1 \subseteq \mathbb{R}$$

$$\theta_1 := \theta_1 - \alpha \frac{d}{d\theta_1} J(\theta_1)$$

$$\theta_1 \subseteq \mathbb{R}$$

$$\theta_1 := \theta_1 - \alpha \frac{d}{d\theta_1} J(\theta_1)$$

$$\theta_1 \subseteq \mathbb{R}$$

$$\theta_1 := \theta_1 - \alpha \frac{d}{d\theta_1} J(\theta_1)$$
 ≥ 0

$$\theta_1 := \theta_1 - \alpha \cdot \text{(positive number)}$$

$$\theta_1 \subseteq \mathbb{R}$$

$$\theta_1 := \theta_1 - \alpha \cdot \text{(positive number)}$$

$$\theta_1 \subseteq \mathbb{R}$$

$$\theta_1$$

$$\theta_1 := \theta_1 - \alpha \frac{d}{d\theta_1} J(\theta_1)$$

$$\theta_1 := \theta_1 - \alpha \cdot \text{(positive number)}$$

$$heta_1 \in \mathbb{R}$$

$$\theta_1$$

$$\theta_1 := \theta_1 - \alpha \frac{d}{d\theta_1} J(\theta_1)$$
 ≥ 0

$$\theta_1 := \theta_1 - \alpha \frac{d}{d\theta_1} J(\theta_1)$$

$$\theta_1 := \theta_1 - \alpha \cdot \text{(positive number)}$$

 $\theta_1 := \theta_1 - \alpha \cdot \text{(negative number)}$

$$heta_1 \in \mathbb{R}$$

$$\theta_1$$

$$\theta_1 := \theta_1 - \alpha \frac{d}{d\theta_1} J(\theta_1)$$
 ≥ 0

$$\theta_1 := \theta_1 - \alpha \frac{d}{d\theta_1} J(\theta_1)$$

$$\theta_1 := \theta_1 - \alpha \cdot \text{(positive number)}$$

 $\theta_1 := \theta_1 - \alpha \cdot \text{(negative number)}$

$$\theta_1 := \theta_1 - \alpha \frac{\partial}{\partial \theta_1} J(\theta_1)$$

$$\theta_1 := \theta_1 - \alpha \frac{\partial}{\partial \theta_1} J(\theta_1)$$

$$\theta_1 := \theta_1 - \alpha \frac{\partial}{\partial \theta_1} J(\theta_1)$$

$$\theta_1 := \theta_1 - \alpha \frac{\partial}{\partial \theta_1} J(\theta_1)$$

$$\theta_1 := \theta_1 - \alpha \frac{\partial}{\partial \theta_1} J(\theta_1)$$

$$\theta_1 := \theta_1 - \alpha \frac{\partial}{\partial \theta_1} J(\theta_1)$$

$$\theta_1 := \theta_1 - \alpha \frac{\partial}{\partial \theta_1} J(\theta_1)$$

$$\theta_1 := \theta_1 - \alpha \frac{\partial}{\partial \theta_1} J(\theta_1)$$

$$\theta_1 := \theta_1 - \alpha \frac{\partial}{\partial \theta_1} J(\theta_1)$$

If α is too large, gradient descent can be ...

$$\theta_1 := \theta_1 - \alpha \frac{\partial}{\partial \theta_1} J(\theta_1)$$

If α is too large, gradient descent can be ...

$$\theta_1 := \theta_1 - \alpha \frac{\partial}{\partial \theta_1} J(\theta_1)$$

$$\theta_1 := \theta_1 - \alpha \frac{\partial}{\partial \theta_1} J(\theta_1)$$

$$\theta_1 := \theta_1 - \alpha \frac{\partial}{\partial \theta_1} J(\theta_1)$$

$$\theta_1 := \theta_1 - \alpha \frac{\partial}{\partial \theta_1} J(\theta_1)$$

What will one step of gradient descent $\theta_1 := \theta_1 - \alpha \frac{d}{d\theta_1} J(\theta_1)$ do?

What will one step of gradient descent $\theta_1 := \theta_1 - \alpha \frac{d}{d\theta_1} J(\theta_1)$ do?

$$\theta_1 := \theta_1 - \alpha \frac{d}{d\theta_1} J(\theta_1)$$

$$\theta_1 := \theta_1 - \alpha \frac{d}{d\theta_1} J(\theta_1)$$

$$\theta_1 := \theta_1 - \alpha \frac{d}{d\theta_1} J(\theta_1)$$

$$\theta_1 := \theta_1 - \alpha \frac{d}{d\theta_1} J(\theta_1)$$

$$\theta_1 := \theta_1 - \alpha \frac{d}{d\theta_1} J(\theta_1)$$

$$\theta_1 := \theta_1 - \alpha \frac{d}{d\theta_1} J(\theta_1)$$

Gradient Descent algorithm

repeat until convergence
$$\{$$

$$\theta_j := \theta_j - \alpha \frac{\sigma}{\partial \theta_j} J(\theta_0)$$
(for $i = 0$ and $i = 1$)

(for
$$j = 0$$
 and $j = 1$)

$$\theta_j := \theta_j - \alpha \frac{\partial}{\partial \theta_j} J(\theta_0, \theta_1)$$

Linear Regression Model

$$h_{\theta}(x) = \theta_0 + \theta_1 x$$

$$(a, a) = \frac{1}{2} \sum_{i=1}^{m} (a_i a_i)^{-1}$$

$$J(\theta_0, \theta_1) = \frac{1}{2m} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)})^2$$

Gradient Descent algorithm

repeat until convergence {

$$\theta_j := \theta_j - \alpha \frac{\partial}{\partial \theta_j} J(\theta_0, \theta_1)$$

(for j = 0 and j = 1)

Linear Regression Model

$$h_{\theta}(x) = \theta_0 + \theta_1 x$$

$$J(\theta_0, \theta_1) = \frac{1}{2m} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)})^2$$

$$\underset{\theta_0,\theta_1}{\text{minimize}} J(\theta_0,\theta_1)$$

$$\frac{\partial}{\partial \theta_j} J(\theta_0, \theta_1)$$

$$\frac{\partial}{\partial \theta_j} J(\theta_0, \theta_1) = \frac{\partial}{\partial \theta_j} \cdot \frac{1}{2m} \sum_{i=1}^m (h_{\theta}(x^{(i)}) - y^{(i)})^2$$

$$\frac{\partial}{\partial \theta_j} J(\theta_0, \theta_1) = \frac{\partial}{\partial \theta_j} \cdot \frac{1}{2m} \sum_{i=1}^m (h_{\theta}(x^{(i)}) - y^{(i)})^2$$

$$= \frac{\partial}{\partial \theta_j} \cdot \frac{1}{2m} \sum_{i=1}^m (\theta_0 + \theta_1 x^{(i)} - y^{(i)})^2$$

 $\frac{\partial}{\partial \theta_j} J(\theta_0, \theta_1) = \frac{\partial}{\partial \theta_j} \cdot \frac{1}{2m} \sum_{i=1}^m (h_{\theta}(x^{(i)}) - y^{(i)})^2$ $= \frac{\partial}{\partial \theta_j} \cdot \frac{1}{2m} \sum_{i=1}^m (\theta_0 + \theta_1 x^{(i)} - y^{(i)})^2$

$$j = 0: \frac{\partial}{\partial \theta_0} J(\theta_0, \theta_1) = \frac{1}{m} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)})$$

$$j = 1: \frac{\partial}{\partial \theta_1} J(\theta_0, \theta_1) = \frac{1}{m} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)}) x^{(i)}$$

 $\frac{\partial}{\partial \theta_j} J(\theta_0, \theta_1) = \frac{\partial}{\partial \theta_j} \cdot \frac{1}{2m} \sum_{i=1}^m (h_{\theta}(x^{(i)}) - y^{(i)})^2$ $= \frac{\partial}{\partial \theta_j} \cdot \frac{1}{2m} \sum_{i=1}^m (\theta_0 + \theta_1 x^{(i)} - y^{(i)})^2$

$$j = 0: \frac{\partial}{\partial \theta_0} J(\theta_0, \theta_1) = \frac{1}{m} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)})$$

$$j = 1: \frac{\partial}{\partial \theta_1} J(\theta_0, \theta_1) = \frac{1}{m} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)}) x^{(i)}$$

Gradient Descent algorithm

repeat until convergence {

$$\theta_0 := \theta_0 - \alpha \frac{1}{m} \sum_{i=1}^m (h_\theta(x^{(i)}) - y^{(i)})$$

$$\theta_1 := \theta_1 - \alpha \frac{1}{m} \sum_{i=1}^m (h_\theta(x^{(i)}) - y^{(i)}) x^{(i)}$$
 update θ_0 and θ_1 simultaneously

 $h_{\theta}(x)$ (for fixed θ_0, θ_1 , this is a function of x)

 $J(\theta_0,\!\theta_1)$ (function of the parameters $\theta_0,\!\theta_1)$

 $h_{\theta}(x)$ (for fixed θ_0, θ_1 , this is a function of x)

 $J(\theta_0,\!\theta_1)$ (function of the parameters $\theta_0,\!\theta_1$)

 $h_{\theta}(x)$ (for fixed θ_0, θ_1 , this is a function of x)

 $J(\theta_0,\!\theta_1)$ (function of the parameters $\theta_0,\!\theta_1)$

 $h_{\theta}(x)$ (for fixed θ_0, θ_1 , this is a function of x)

 $J(\theta_0, \theta_1)$ (function of the parameters θ_0, θ_1)

 $h_{\theta}(x)$ (for fixed θ_0, θ_1 , this is a function of x)

 $J(\theta_0,\!\theta_1)$ (function of the parameters $\theta_0,\!\theta_1$)

 $h_{\theta}(x)$ (for fixed θ_0, θ_1 , this is a function of x)

 $J(\theta_0,\!\theta_1)$ (function of the parameters $\theta_0,\!\theta_1)$

 $h_{\theta}(x)$ (for fixed θ_0, θ_1 , this is a function of x)

 $J(\theta_0,\!\theta_1)$ (function of the parameters $\theta_0,\!\theta_1)$

"Batch" Gradient Descent

"Batch": Each step of gradient descent uses all the training examples.

Linear Regression with multiple variables

Multiple Variables Features

Size in feet ² (x)	Price (\$) in 1000's (y)
2104	460
1416	232
1534	315
852	178
•••	

$$h_{\theta}(x) = \theta_0 + \theta_1 x$$

Multiple Variables Features

Size in feet ² x_I	Number of bedrooms x_2	Number of floors x_3	Age of home (years) x_4	Price (\$) in 1000's
2104	5	1	45	460
1416	3	2	40	232
1534	3	2	30	315
852	2	2	36	178
•••				

Notation:

```
n = number of features x^{(i)} = input (features) of i^{th} training example x_i^{(i)} = value of features j in i^{th} training example
```

Hypothesis

Previously:
$$h_{\theta}(x) = \theta_0 + \theta_1 x$$

Hypothesis

Previously:
$$h_{\theta}(x) = \theta_0 + \theta_1 x$$

$$h_{\theta}(x) = \theta_0 + \theta_1 x_1 + \theta_2 x_2 + \theta_3 x_3 + \theta_4 x_4$$

Hypothesis

Previously:
$$h_{\theta}(x) = \theta_0 + \theta_1 x$$

$$h_{\theta}(x) = \theta_0 + \theta_1 x_1 + \theta_2 x_2 + \theta_3 x_3 + \theta_4 x_4$$

$$h_{\theta}(x) = 80 + 0.1x_1 + 10x_2 + 3x_3 - 2x_4$$

$$h_{\theta}(x) = \theta_0 + \theta_1 x_1 + \theta_2 x_2 + \dots + \theta_n x_n$$

$$h_{\theta}(x) = \theta_0 + \theta_1 x_1 + \theta_2 x_2 + \dots + \theta_n x_n$$

$$h_{\theta}(x) = \theta_0 + \theta_1 x_1 + \theta_2 x_2 + \dots + \theta_n x_n$$

$$x = \begin{bmatrix} x_0 \\ x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix} \in \mathbb{R}^{n+1} \quad \theta = \begin{bmatrix} \theta_0 \\ \theta_1 \\ \theta_2 \\ \vdots \\ \theta_n \end{bmatrix} \in \mathbb{R}^{n+1}$$

$$h_{\theta}(x) = \theta_0 + \theta_1 x_1 + \theta_2 x_2 + \cdots + \theta_n x_n$$

$$x = \begin{bmatrix} x_0 \\ x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix} \in \mathbb{R}^{n+1} \ \theta = \begin{bmatrix} \theta_0 \\ \theta_1 \\ \theta_2 \\ \vdots \\ \theta_n \end{bmatrix} \in \mathbb{R}^{n+1} \quad \begin{bmatrix} \theta_0 & \theta_1 & \cdots & \theta_n \end{bmatrix} \begin{bmatrix} x_0 \\ x_1 \\ \vdots \\ x_n \end{bmatrix}$$

$$h_{\theta}(x) = \theta_0 + \theta_1 x_1 + \theta_2 x_2 + \dots + \theta_n x_n$$

$$x = \begin{bmatrix} x_0 \\ x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix} \in \mathbb{R}^{n+1} \ \theta = \begin{bmatrix} \theta_0 \\ \theta_1 \\ \theta_2 \\ \vdots \\ \theta_n \end{bmatrix} \in \mathbb{R}^{n+1} \quad \begin{bmatrix} \theta_0 & \theta_1 & \cdots & \theta_n \end{bmatrix} \begin{bmatrix} x_0 \\ x_1 \\ \vdots \\ x_n \end{bmatrix}$$

$$h_{\theta}(x) = \theta^T x \leftarrow \begin{bmatrix} x_0 \\ x_1 \\ \vdots \\ x_n \end{bmatrix}$$

Multivariate linear regression.

Parameters: $\theta_0, \theta_1, \ldots, \theta_n$ Cost Function: $J(\theta_0, \theta_1, \ldots, \theta_n) = \frac{1}{2m} \sum_{i=1}^m (h_\theta(x^{(i)}) - y^{(i)})^2$

Hypothesis: $h_{\theta}(x) = \theta^T x = \theta_0 x_0 + \theta_1 x_1 + \theta_2 x_2 + \dots + \theta_n x_n$

 $\theta_j := \theta_j - \alpha \frac{\partial}{\partial \theta_j} J(\theta_0, \theta_1, ..., \theta_n)$ (simultaneously update for every j = 0, 1, ..., n)

Previously (n = 1):

repeat {

$$\theta_0 := \theta_0 - \alpha \frac{1}{m} \sum_{i=1}^m (h_{\theta}(x^{(i)}) - y^{(i)})$$

$$\theta_1 := \theta_1 - \alpha \frac{1}{m} \sum_{i=1}^m (h_{\theta}(x^{(i)}) - y^{(i)}) x^{(i)}$$

(simultaneously update θ_0 , θ_1)

Previously (n = 1):

repeat {

 $\theta_0 := \theta_0 - \alpha \frac{1}{m} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)})$

 $\theta_1 := \theta_1 - \alpha \frac{1}{m} \sum_{i=1}^m (h_{\theta}(x^{(i)}) - y^{(i)}) x^{(i)}$

(simultaneously update θ_0 , θ_1)

repeat {

New Algorithm $(n \ge 1)$:

 $\theta_j := \theta_j - \alpha \frac{1}{m} \sum_{i=1}^m (h_{\theta}(x^{(i)}) - y^{(i)}) x_j^{(i)}$ (simultaneously update θ_j for j = 0, 1, ..., n)

$$\theta_0 := \theta_0 - \alpha \frac{1}{m} \sum_{i=1}^m (h_{\theta}(x^{(i)}) - y^{(i)})$$

$$\theta_1 := \theta_1 - \alpha \frac{1}{m}$$

$$\theta_1 := \theta_1 - \alpha \frac{1}{m} \sum_{i=1}^m (h_{\theta}(x^{(i)}) - y^{(i)}) x^{(i)}$$

$$\frac{1}{n} \sum_{i=1}^{n} (h_{\theta}(x^{(i)}) - y^{(i)}) x^{(i)}$$
Itaneously update θ_0, θ_1

(simultaneously update θ_0 , θ_1)

repeat {

(simultaneously update
$$\theta_j$$
 for $j = 0, 1, ..., n$)
$$\therefore \quad \theta_j = \alpha_j \frac{1}{n} \sum_{i=1}^{m} (h_i(x^{(i)}) - y^{(i)}) x^{(i)}$$

$$\theta_0 := \theta_0 - \alpha \frac{1}{m} \sum_{i=0}^{m} (h_{\theta}(x^{(i)}) - y^{(i)}) x_0^{(i)}$$

New Algorithm $(n \ge 1)$:

$$\alpha \frac{1}{m} \sum_{i=1}^{m} x_i$$

$$\frac{1}{n}\sum_{i=1}^{m}$$

 $\theta_1 := \theta_1 - \alpha \frac{1}{m} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)}) x_1^{(i)}$

 $\theta_2 := \theta_2 - \alpha \frac{1}{m} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)}) x_2^{(i)}$

posite
$$\theta_j$$
 in

$$\prod_{i=1}^{n} (n_{ heta^i})$$

$$\sum_{i=1}^{m} (h_{\theta}(x^{(i)}))$$

$$\sum_{i=0}^{n} (h_{\theta}(x^{(i)}) -$$

$$\theta_j := \theta_j - \alpha \frac{1}{m} \sum_{i=1}^m (h_{\theta}(x^{(i)}) - y^{(i)}) x_j^{(i)}$$

$$\sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y$$

Idea: Make sure features are on similar scale.

E.g.
$$x_1$$
= size (0-2000 feet²)
 x_2 = number of bedrooms (1-5)

Idea: Make sure features are on similar scale.

E.g.
$$x_1$$
= size (0–2000 feet²)
 x_2 = number of bedrooms (1–5)

$$x_1 = \frac{\text{size (feet}^2)}{2000}$$

$$x_2 = \frac{\text{number of bedrooms}}{5}$$

Idea: Make sure features are on similar scale.

E.g.
$$x_1$$
= size (0–2000 feet²)
 x_2 = number of bedrooms (1–5)

Get every feature into approximately a $-1 \le x_i \le 1$ range.

Mean Normalization

Replace x_i with $x_i - \mu_i$ to make features have approximately zero mean (do not apply to $x_0 = 1$).

E.g.
$$x_1 = \frac{\text{size} - 1000}{2000}$$
 $\longrightarrow -0.5 \le x_1 \le 0.5$ $x_2 = \frac{\text{\#bedrooms} - 2.5}{5}$ $\longrightarrow -0.5 \le x_2 \le 0.5$

Mean Normalization

Replace x_i with $x_i - \mu_i$ to make features have approximately zero mean (do not apply to $x_0 = 1$).

E.g.
$$x_1 = \frac{\text{size} - 1000}{2000}$$
 $\longrightarrow -0.5 \le x_1 \le 0.5$ $x_2 = \frac{\text{\#bedrooms} - 2.5}{5}$ $\longrightarrow -0.5 \le x_2 \le 0.5$

$$x_1 = \frac{x_1 - \mu_1}{s_1} \qquad x_2 = \frac{x_2 - \mu_2}{s_2}$$

Learning Rate

$$\theta_{j} := \theta_{j} - \alpha \frac{\partial}{\partial \theta_{j}} J(\theta)$$

- "Debugging": How to make sure gradient descent is working correctly.
- How to choose learning rate α .

Example automatic convergence test:

Declare convergence if $J(\theta)$ decreases by less than 10^{-3} in one iteration.

Gradient descent not working. Use smaller α .

Gradient descent not working. Use smaller α .

Gradient descent not working. Use smaller α .

- For sufficiently small α , $J(\theta)$ should decrease on every iteration.
- But if lpha is too small, gradient descent can be slow to converge.

Summary

- If lpha is too small: slow convergence.
- If α is too large: $J(\theta)$ may not decrease on every iteration; may not converge.

To choose α , try ..., 0.001, ..., 0.1, ..., 1, ...

References

Machine Learning Books

- Hands-On Machine Learning with Scikit-Learn and TensorFlow, Chap. 2 & 4
- Pattern Recognition and Machine Learning, Chap. 3
- Machine Learning: a Probabilistic Perspective, Chap. 7

Machine Learning Courses

https://www.coursera.org/learn/machine-learning, Week 1 & 2