Matemáticas/ Ingeniería Informática-Matemáticas

TEORÍA DE GALOIS

Hoja 5. Aplicaciones.

- 1. Decimos que una extensión E/K es abeliana si E/K es de Galois y $\operatorname{Gal}(E/K)$ es un grupo abeliano. Demuestra que si E/K es abeliana y $K \subseteq L \subseteq E$ es un subcuerpo intermedio, entonces E/L y L/K son abelianas.
- **2.** Sea E/K una extensión y $K \subset L, M \subset E$ subcuerpos intermedios. Se define $\langle L, M \rangle$ como la intersección de todos los subcuerpos de E que contienen a L y M.
 - a) Prueba que $Gal(E/L) \cap Gal(E/M) = Gal(E/\langle L, M \rangle)$.
- b) Supongamos que $E = \langle L, M \rangle$ y sea $F = L \cap M$. Si M/K es Galois, desmuestra que E/L es Galois y que la restricción $\operatorname{Gal}(E/L) \to \operatorname{Gal}(M/F)$ es un isomorfismo de grupos. Sugerencia: Prueba que E/L es Galois. La restricción $\Theta \colon \operatorname{Gal}(E/L) \to \operatorname{Gal}(M/F)$ definida por $\tau \mapsto \tau_M$ es un homomorfismo de grupos, usando que M/F es una subextensión normal de E/F. Demuestra que Θ es inyectiva y sobreyectiva usando el apartado (a).

Extensiones ciclotómicas. Si ξ es una raíz primitiva n-ésima de la unidad, entonces la extensión $\mathbb{Q}(\xi)/\mathbb{Q}$ es la n-ésima extensión ciclotómica de \mathbb{Q}

- 3. Sea ξ una raíz primitiva n-ésima de la unidad, y sea $\mathbb{Q}(\xi)/\mathbb{Q}$ la n-ésima extensión ciclotómica de \mathbb{Q} .
 - a) Prueba que $\mathbb{Q}(\xi)/\mathbb{Q}$ es Galois
- **b)** Demuestra que $\operatorname{Gal}(\mathbb{Q}(\xi)/\mathbb{Q})$ es abeliano. ¿Es $\operatorname{Gal}(\mathbb{Q}(\xi)/\mathbb{Q})$ siempre cíclico? Sugerencia: Calcula la octava extensión ciclotómica de \mathbb{Q} .
- **4.** Sea $\omega \in \mathbb{C}$ una raíz primitiva novena de la unidad, $E = \mathbb{Q}(\omega)$ y $\Omega = \{\omega^j \mid 0 \le j \le 8\} \subset E$ el conjunto de raíces del polinomio $x^9 1$:
 - a) Calcula el polinomio mínimo de ω sobre \mathbb{Q} .
 - **b)** Determina $Gal(E/\mathbb{Q})$.
- c) Encuentra elementos $u, v \in E$ expresados como combinación lineal de potencias de ω de modo que $|\mathbb{Q}(u):\mathbb{Q}|=3$ y $|\mathbb{Q}(v):\mathbb{Q}|=2$.
 - d) Determina las órbitas que la acción de G define sobre Ω .
- **5.** Prueba que la extensión $\mathbb{Q}(\sqrt{2+\sqrt{2}}, \sqrt[3]{3}i)/\mathbb{Q}$ es radical.
- **6.** Sea G un grupo finito. Demuestra que:
 - a) Si G es resoluble y $H \leq G$, entonces H es resoluble.
- b) Si $N \triangleleft G$, entonces G es resoluble si, y solo si, G/N y N son resolubles. Sugerencia: utiliza el "Segundo Teorema de isomorfía para grupos": Sea G un grupo, sea L < G y sea $N \triangleleft G$; entonces (i) LN < G; (ii) $L \cap N \triangleleft L$; (iii) $LN/N \simeq L/L \cap N$.
- 7. Demuestra que S_4 es resoluble. Demuestra que S_n no es resoluble para todo $n \geq 5$.
- 8. Demuestra que el polinomio $x^5 6x + 3 \in \mathbb{Q}[x]$ no es resoluble por radicales.
- **9.** Sea p un primo y sea $q(x) \in \mathbb{Q}[x]$ un polinomio irreducible de grado p. Supongamos que q(x) tiene exactamente dos raíces complejas no reales. Demuestra que entonces el grupo de Galois de q(x) sobre \mathbb{Q} es S_p . Sugerencia: Utiliza que S_p está generado por (12) y (12...p).