Redes Neuronales

Motivación biológica

Sistema nervioso humano: 86.000 millones de neuronas

aproximadamente 10^14 - 10^15 sinapsis

Formulación matemática

Operación lineal (preactivación) + función de activación no lineal

Formulación matemática

Pre activación lineal

$$a(\mathbf{x}) = \sum_{i=1}^{n} w_i x_i + b = \mathbf{w}^T \mathbf{x} + b$$

Activación no lineal

$$h(\mathbf{x}) = g(a(\mathbf{x})) = g\left(\sum_{i=1}^{n} w_i x_i + b\right)$$

Funciones de Activación

Sigmoid

$$\sigma(x) = \frac{1}{1 + e^{-x}}$$

Leaky ReLU max(0.1x, x)

tanh

tanh(x)

Maxout

 $\max(w_1^T x + b_1, w_2^T x + b_2)$

ReLU

 $\max(0, x)$

ELU

 $\begin{cases} x & x \ge 0 \\ \alpha(e^x - 1) & x < 0 \end{cases}$

Red neuronal

Entrada: x

Pre activación:

$$a = W^{(1)T}x + b^{(1)}$$

Activación capa oculta:

$$\mathbf{h}^{(1)}(\mathbf{x}) = g(\mathbf{a}(\mathbf{x}))$$

Capa de Salida:

$$f(\mathbf{x}) = o\left(\mathbf{w}^{(2)T}\mathbf{h}^{(1)} + b^{(2)}\right)$$

W⁽¹⁾ matriz de (n_features, n_hidden) W⁽²⁾ matriz de (n_hidden, 1)

Capacidad de la capa oculta

Cuanto más neuronas, más capacidad de ajuste tiene el modelo

Capacidad: relacionada con cantidad de neuronas

Capacidad de las Redes Neuronales

Aproximación Universal: Una RRNN con una única capa oculta y cantidad finita de Neuronas, puede aproximar cualquier función. Cybenko, 1989; Hornik 1991.

Capacidad de la red neuronal crece exponencialmente con la profundidad, pero polinomial en la cantidad de unidades ocultas. Montufar et al. 2014

Redes Neuronales Profundas

¿Cómo encontrar los pesos?

Definimos una arquitectura de red:

$$f(\mathbf{x};\theta) := f^{(n)} \left(f^{(n-1)} \left(\cdots f^{(2)} \left(f^{(1)} \left(\mathbf{x} \right) \right) \cdots \right) \right)$$

Lo planteamos como un problema de optimización:

$$\hat{\theta} = \underset{\theta}{\operatorname{arg\,min}} \sum_{i=1}^{n} L(f(\mathbf{x}_i; \theta), y_i)$$

Con los parámetros:

$$\theta = [W^{(1)}, W^{(2)}, \dots, W^{(n)}]$$

Función de error a minimizar

Para fijar ideas, supongamos un problema de clasificación binario, se puede definir la siguiente función de error:

$$L(y,\hat{y}) = -\frac{1}{N} \sum_{i=0}^{N} (y * log(\hat{y}_i) + (1 - y) * log(1 - \hat{y}_i))$$

Conocida como binary cross entropy.

Hasta acá, todo lo definido es derivable (o al menos, derivable a trozos)

Utilizar descenso por gradiente!

Descenso por gradientes

Gradiente:

- "derivada primera para funciones multidimensionales"
- Es un vector que indica la dirección en que la función crece más

Actualizar iterativamente:

$$w^{k+1} = w^k - lpha
abla f(w^k).$$

donde lpha se conoce como learning rate

Momentum

Una forma en que podemos acelerar las cosas es agregar un poco de inercia (momentum) al algoritmo:

$$z^{k+1}=eta z^k+
abla f(w^k)$$
 $w^{k+1}=w^k-lpha z^{k+1}$ donde $lpha$ se conoce como learning rate

Otras variantes

Descenso por gradientes estocástico

La función de error a minimizar es la siguiente:

$$\hat{\theta} = \underset{\theta}{\operatorname{arg\,min}} \sum_{i=1}^{n} L(f(\mathbf{x}_i; \theta), y_i)$$

Implica calcular el gradiente para cada uno de los ejemplos entrenamiento.

Solución: minimizar la función en un batch de datos

¿Cómo se calculan los gradientes?

De manera numérica

$$f'(x) = \lim_{h o 0}rac{f(x+h)-f(x)}{h} \qquad \qquad f'(x_0)pproxrac{f(x_0+h)-f(x_0)}{h}$$

De manera analítica: si bien la función que queremos minimizar es compleja, no es más que la composición de funciones sencillas.

Regla de la cadena

Regla de la cadena

Supongamos x es un real, f y g funciones reales:

$$y = g(x), z = f(g(x)) = f(y)$$

Entonces, la regla de la cadena dice:

$$z'(x) = f'(g(x))g'(x)$$

Es decir:

$$\frac{dz}{dx} = \frac{dz}{dy} \cdot \frac{dy}{dx}$$

Grafo computacional

$$f(x,y,z) = \max((x+y)z,0)$$

Composición de funciones elementales:

$$f_{\text{sum}}(x,y) = x + y$$
 \longrightarrow $\frac{\partial f}{\partial x} = 1$ $\frac{\partial f}{\partial y} = 1$
 $f_{\text{prod}}(x,y) = xy$ \longrightarrow $\frac{\partial f}{\partial x} = y$ $\frac{\partial f}{\partial y} = x$
 $f_{\text{max}}(x) = \max(x,0)$ \longrightarrow $\frac{\partial f}{\partial x} = 1_{\{x>0\}}$

Backpropagation: forward

$$f(x,y,z) = \max((x+y)z,0), \quad x = -2, \ y = 3, \ z = 2$$

Pasada hacia delante (Forward pass)

Back propagation: backward

$$f(x,y,z) = \max((x+y)z,0), \quad x = -2, \ y = 3, \ z = 2$$

$$v(x,y) = x + y \qquad \longrightarrow \qquad \frac{\partial v}{\partial x} = 1 \qquad \frac{\partial v}{\partial y} = 1$$

$$u(z,v) = zv \qquad \longrightarrow \qquad \frac{\partial u}{\partial z} = v \qquad \frac{\partial u}{\partial v} = z$$

$$f(u) = \max(u,0) \qquad \longrightarrow \qquad \frac{\partial f}{\partial u} = 1_{\{u>0\}}$$

Back propagation

Gradiente hacia abajo: Regla de la cadena

Resumen

- Una red neuronal consiste en la composición de funciones lineales con no lineales
- El problema está en encontrar los pesos correspondientes a la red
- Para esto, se utiliza descenso por gradiente estocástico, minimizando un error dado
- Para calcular los gradientes se utiliza back propagation

Entrenamiento: evolución del error

Learning rate es uno de los parámetros más importantes

La función de error arroja pistas a la hora de elegirlo

Entrenamiento: evolución del error

Underfit:

Disminuir regularización

Aumentar el modelo

Aumentar regularización

Achicar el modelo

Agregar más datos

Correcto

Early stopping

Detener el entrenamiento cuando para de mejorar

Regularización L1 y L2

Idea sencilla: modificar la función de pérdida para penalizar pesos grandes

$$L(W) = \sum_{i=1}^{n} L_i(W) + \lambda R(W)$$

Donde R usualmente es la norma L1 o L2 de la matriz de pesos W

Drop out

(a) Standard Neural Net

(b) After applying dropout.

Batch Normalization

Tomado de <u>Batch Normalization</u>: <u>Intuition and Implementation</u>

Batch Normalization

Batch Normalization

Normalizar: quitar media y dividir entre la desviación estándar

Hay que estimarlas dinámicamente

Se debe realizar justo antes de la función de activación

Bibliografía / Recursos

curso DLvis, Flng - Udelar https://iie.fing.edu.uy/~mdelbra/DL2018/

curso cs231, Standford http://cs231n.github.io/

Why Momentum Really Works https://distill.pub/2017/momentum/

playground: https://playground.tensorflow.org/

optimizing-gradient-descent http://ruder.io/optimizing-gradient-descent/index.html