Interrupts vs polling

MCU serves to several devices:

- Polling

 MCU monitors the status of every device, when a condition is met it performs a service
- Interrupts → the device notifies to MCU sending a request, then MCU stops and serves to the device.

MCU wastes time by polling device when they do not need service.

Source: "The AVR microcontroller and embedded system". M.Ali Mazidi, S.Naimi

- Interrupts \rightarrow stop the main program to perform Interrupt Service Routine
- Each interrupt have a program vector in the memory
 Interrupt vector table

VectorNo.	Program Address ⁽²⁾	Source	Interrupt Definition
1	0x0000 ⁽¹⁾	RESET	External Pin, Power-on Reset, Brown-out Reset and Watchdog System Reset
2	0x0002	INT0	External Interrupt Request 0
3	0x0004	INT1	External Interrupt Request 1
4	0x0006	PCINT0	Pin Change Interrupt Request 0
5	0x0008	PCINT1	Pin Change Interrupt Request 1
6	0x000A	PCINT2	Pin Change Interrupt Request 2
7	0x000C	WDT	Watchdog Time-out Interrupt
8	0x000E	TIMER2 COMPA	Timer/Counter2 Compare Match A
9	0x0010	TIMER2 COMPB	Timer/Counter2 Compare Match B
10	0x0012	TIMER2 OVF	Timer/Counter2 Overflow
11	0x0014	TIMER1 CAPT	Timer/Counter1 Capture Event
12	0x0016	TIMER1 COMPA	Timer/Counter1 Compare Match A
13	0x0018	TIMER1 COMPB	Timer/Coutner1 Compare Match B
14	0x001A	TIMER1 OVF	Timer/Counter1 Overflow
15	0x001C	TIMERO COMPA	Timer/Counter0 Compare Match A
16	0x001E	TIMER0 COMPB	Timer/Counter0 Compare Match B
17	0x0020	TIMER0 OVF	Timer/Counter0 Overflow
18	0x0022	SPI, STC	SPI Serial Transfer Complete
19	0x0024	USART, RX	USART Rx Complete
20	0x0026	USART, UDRE	USART, Data Register Empty
21	0x0028	USART, TX	USART, Tx Complete
22	0x002A	ADC	ADC Conversion Complete
23	0x002C	EE READY	EEPROM Ready
24	0x002E	ANALOG COMP	Analog Comparator
25	0x0030	TWI	2-wire Serial Interface
26	0x0032	SPM READY	Store Program Memory Ready

Author: Mirian Cifredo

ATmega328P

Vector Number	Interrupt definition	Vector name
2	External Interrupt Request 0	INTO_vect
3	External Interrupt Request 1	INT1_vect
4	Pin Change Interrupt Request 0	PCINTO_vect
5	Pin Change Interrupt Request 1	PCINT1_vect
6	Pin Change Interrupt Request 2	PCINT2_vect
-Z_0	Watchdog Time-out Interrupt	WDT_vect
-8 -	Timer/Counter2 Compare Match A	TIMER2_COMPA_vect
9	Timer/Counter2 Compare Match B	TIMER2_COMPB_vect
10	Timer/Counter2 Overflow	TIMER2_OVF_vect
_11 📜)-	Timer/Counter1 Capture Event	TIMER1_CAPT_vect
12	Timer/Counter1 Compare Match A	TIMER1_COMPA_vect
13	Timer/Counter1 Compare Match B	TIMER1_COMPB_vect
−1 4 □)	Timer/Counter1 Overflow	TIMER1_OVF_vect
15	Timer/Counter0 Compare Match A	TIMER0_COMPA_vect
16	Timer/Counter0 Compare Match B	TIMER0_COMPB_vect
1 7	Timer/Counter0 Overflow	TIMERØ_OVF_vect
18	SPI Serial Transfer Complete	SPI_STC_vect
19	USART Rx Complete	USART_RX_vect
20	USART Data Register Empty	USART_UDRE_vect
21	USART Tx Complete	USART_TX_vect
22	ADC Conversion Complete	ADC_vect
23	EEPROM Ready	EE_READY_vect
24	Analog Comparator	ANALOG_COMP_vect
25	Two-wire Serial Interface	TWI_vect
26	Store Program Memory Read	SPM_READY_vect

Source: Lecturer Shaidatul Sadiah, University of Malasya https://www.youtube.com/watch?v=zViw6mMzEoA&list=PLbnXeqW-iDlnWDkh5uNtHVDV4SqlnxRP9&index=17

- Priority levels -> the lower the address the higher the priority
- When an interrupt occurs:
 - All interrupts are disabled.
 - Program Counter and GPRs to the stack.
 - Program Counter = Interrupt vector
 to directs to the ISR
 - When ISR is completed → returns to the main program
- Interrupt sources:
 - External
 - Internals Peripherals:
 - Timers
 - USART
 - SPI
 - Etc.

It takes 4 clk cycles

ATMega 328: External Interrupts (INT)

- Two types:
 - External INTO and INT1 pins (PD2 and PD3)
 - Triggered by a falling or rising edge or a low level.
 - Pin change (PCINT0-PCINT23) → whatever pin
 - PCINT2 → PCINT[23:16] pin toggles.
 - PCINT1 → PCINT[14:8] pin toggles
 - PCINT0 → PCINT[7:0] pin toggles

VectorNo.	Program Address ⁽²⁾	Source	Interrupt Definition
2	0x0002	INT0	External Interrupt Request 0
3	0x0004	INT1	External Interrupt Request 1
4	0x0006	PCINT0	Pin Change Interrupt Request 0
5	0x0008	PCINT1	Pin Change Interrupt Request 1
6	0x000A	PCINT2	Pin Change Interrupt Request 2

- > Synchronously (a clk is required, event) or asynchronously (level triggered).
- ➤ Asynchronously (Pin change) → waking the device from sleep modes

Registers

SREG - AVR Status Register

The AVR Status Register – SREG – is defined as:

Bit	7	6	5	4	3	2	1	0	
0x3F (0x5F)		T	Н	S	V	N	Z	С	SREG
Read/Write	R/W	•							
Initial Value	0	0	0	0	0	0	0	0	

• Bit 7 – I: Global Interrupt Enable

The Global Interrupt Enable bit must be set for the interrupts to be enabled. The individual interrupt enable control is then performed in separate control registers. If the Global Interrupt Enable Register is cleared, none of the interrupts are enabled independent of the individual interrupt enable settings. The I-bit is cleared by hardware after an interrupt has occurred, and is set by the RETI instruction to enable subsequent interrupts. The I-bit can also be set and cleared by the application with the SEI and CLI instructions, as described in the instruction set reference.

'1' → Enable '0' → Disable

Registers

EICRA – External Interrupt Control Register A

The External Interrupt Control Register A contains control bits for interrupt sense control.

ISC01	ISC00	Description
0	0	The low level of INT0 generates an interrupt request.
0	1	Any logical change on INT0 generates an interrupt request.
1	0	The falling edge of INT0 generates an interrupt request.
1	1	The rising edge of INT0 generates an interrupt request.

Registers to setup INTO and INT1

EIMSK – External Interrupt Mask Register

EIFR – External Interrupt Flag Register

Bit	7	6	5	4	3	2	1	0	
0x1C (0x3C)	-	_	_	_	_	_	INTF1	INTF0	EIFR
Read/Write	R	R	R	R	R	R	R/W	R/W	•
Initial Value	0	0	0	0	0	0	0	0	

ATMega 328: External Interrupts (PCINT)

Registers to setup PCINT

PCICR – Pin Change Interrupt Control Register

PCIFR – Pin Change Interrupt Flag Register

Bit	7	6	5	4	3	2	1	0	_
0x1B (0x3B)	-	_	1	-	-	PCIF2	PCIF1	PCIF0	PCIFR
Read/Write	R	R	R	R	R	R/W	R/W	R/W	
Initial Value	0	0	0	0	0	0	0	0	

Registers to setup PCINT

PCMSK2 - Pin Change Mask Register 2

Bit	7	6	5	. 4	3	. 2	1	. 0	_
(0x6D)	PCINT23	PCINT22	PCINT21	PCINT20	PCINT19	PCINT18	PCINT17	PCINT16	PCMSK2
Read/Write	R/W	1							
Initial Value	0	0	0	0	0	0	0	0	

Bit 7:0 – PCINT[23:16]: Pin Change Enable Mask 23...16

Each PCINT[23:16]-bit selects whether pin change interrupt is enabled on the corresponding I/O pin. If PCINT[23:16] is set and the PCIE2 bit in PCICR is set, pin change interrupt is enabled on the corresponding I/O pin. If PCINT[23:16] is cleared, pin change interrupt on the corresponding I/O pin is disabled.

PCMSK1 - Pin Change Mask Register 1

Bit	7	6	5	4	3	2	1	0	
(0x6C)	-	PCINT14	PCINT13	PCINT12	PCINT11	PCINT10	PCINT9	PCINT8	PCMSK1
Read/Write	R	R/W	R/W	R/W	R/W	R/W	R/W	R/W	
Initial Value	0	0	0	0	0	0	0	0	

PCMSK0 - Pin Change Mask Register 0

Bit	7	6	5	4	3	2	1	0	_
(0x6B)	PCINT7	PCINT6	PCINT5	PCINT4	PCINT3	PCINT2	PCINT1	PCINT0	PCMSK0
Read/Write	R/W								
Initial Value	0	0	0	0	0	0	0	0	

