The Most Dangerous Places in Houston: Crime Analysis on Houston Divisions

Yu-Ting Yeh

1 Abstract

This project aims to better understand the public security in Houston, utilizing data from Houston Police Department (HPD). The findings highlight regions with crime by building poisson-Gamma model to derive criminal rate distributions, then visualize crime status between Division using heat map. Besides, to explore the situation between daytime and night-time, regression model are employed to model the relationship between the cases and time. By offering comprehensive analysis, this project provides insights into public safety across the city of Houston.

2 Motivation

The motivation for this project stems from a personal desire to better understand the safety of the city I live in. Last month, I went on my first road trip to Dallas with friends, where we visited the famous Giant Eyeball tourist attraction. Finding a parking was challenging, so we parked farther away. While walking to the spot, we scared. The streets were eerily empty, except for numerous homeless individuals lying along the sidewalks. At that time, we realize the importance of prioritizing personal safety over simply visiting tourist spots. Therefore, this project becomes one of my approaches I get to know the city I live in.

3 Background

The Houston Police Department's (HPD) Operations division is structured to deliver comprehensive law enforcement services across the city. The division is organized into four patrol regions (North, East, South, and West). Each is managed by an assistant chief responsible for deploying patrol resources. These regions are further divided into patrol divisions, each led by a captain overseeing specific divisions.[1]

The four patrol regions are

Region	Divisions
North	Central, North, Northwest
West	Midwest, South Gessener, Westside
South	Southwest, Clear Lake, South Central, Southeast, Traffic Enforcement
East	Eastside, Kingwood, Northeast, Traffic Enforcement

Table 1: Houston Police Department Patrol Regions and Divisions

HPD supported annual report for public security in October, 2024. [2] Accord to the report, the table shows that aggravated assault dominates the violent category than robbery, sexual assult, kidnapping, murder. As for non-violent category, BMV/TMV (vehicle-related

theft) is the most frequent to Auto Theft, bulgary, theft. In general, HPD summarized that Violent crime totals for year to date October 2024 are trending 1.7% below last year. Non-Violent crime totals for year to date October 2024 are trending 6.6% below last year.

4 Data Sourcing & Processing

HPD updates criminal data monthly, capturing details on common criminal cases under the defined divisions A-K. Now, the date in the most updated data is 09/30/2024. After an incident is reported, officers record key details—offense type, location, and time. They then input them into a centralized system for organized storage and retrieval. To date, the data is publicly accessible on HPD website[3].

I retrieved crime data from 01/2023-09/2024. Every record means a crime happened in the past. Each record has details of time, place, beat, longitude, latitude. Detailed description of data list in table 2.

Variable	Description
Occurrence Date	Date offense occurred.
Occurrence Hour	Hour offense occurred.
NIBRS Description	Offense type.
Offense Count	Number of offenses committed.
Beat	Beat where the offense occurred.
Premise	Type of location where the offense occurred.
Block Range	Hundred block for address where offense occurred.
Street Name	Street name where offense occurred.
Street Type	Identifiers of street names.
Suffix [Streets]	Directional identifiers for streets.

Table 2: HPD dataset description

To streamline the analysis, I aggregated HPD beats (the place that crime happened) into divisions based on the definitions provided by the Houston Police Department (HPD). Figure 1. For example, beats such as "1A10" and "1A20" were grouped into the divisions "Central".

From figure 1, there are two blank regions surrounded by other regions managed by HPD. They are enclaved cities, Bellaire and West University Place.[5] These two places are independent and maintain its own municipal government and services, including police departments. Consequently, they do not fall under the Houston Police Department's authority. Out of the curiosity of enclaved city, I posed a question on reddit [6] and knew a friend working in Houston police station before. Interesting.

Then, I excluded two types of division in my project.

- 1. **Enclaved Cities**: Cities such as Bellaire and Memorial Village, maintain their own independent police departments, while geographically within Houston. Consequently, HPD does not provide criminal data for these areas. This is reflected as blank spaces in Figure 1.
- 2. **IAH and Hobby Airport**: The George Bush Intercontinental and Hobby Airports were excluded due to its minimal residential population (fewer than 100 residents).

The classification of offenses in this project follows the National Incident-Based Reporting System (NIBRS). Offenses are categorized into two groups: Group A and Group B. The details are in Table 3[4].

1. **Group A** (Serious offenses) Group A includes crimes for which law enforcement agencies are required to report all incidents occurring within their jurisdiction, irrespective of whether an arrest was made.

Figure 1: Houston Divisions

2. Group B (Less-serious offenses) Group B requires agencies to report only arrest data.

Table 3: NIBRS Offense Code

Group	Offense Description
	Arson
	Aggravated Assault
	Simple Assault
	Intimidation
Λ	Bribery
A	Burglary/Breaking & Entering
	Counterfeiting/Forgery
	Destruction/Damage/Vandalism of Property
	Drug/Narcotic Violations
	Drug Equipment Violations
	Bad Checks
	Disorderly Conduct
В	Driving Under the Influence
	Drunkenness
	Family Offenses, Nonviolent

5 Method

5.1 Poisson-Gamma model

The Poisson-Gamma model is a Bayesian model commonly used for count data. In the context of crime records, each crime instance is considered a count. Then, the Poisson model is used to determine the distribution of average number of cases over a regular basis.

In this project, I decided to summarize the data on a monthly basis, which means 12 records for each month in a year. The model can be described as follows:

$$Y_i \sim \text{Poisson}(\lambda)$$

$$\lambda \sim \text{Gamma}(\alpha, \beta)$$

$$\lambda \mid Y_i \sim \text{Gamma}(\alpha + Y_i, \beta + 1)$$

The posterior distribution can be updated at a time. Summing over Y_i , the posterior becomes:

$$\lambda \mid Y_i \sim \text{Gamma}\left(\alpha + \sum_{i=1}^n Y_i, \beta + n\right)$$

5.2 Criminal Rate

Evaluating safety solely based on the average number of cases can introduce bias, as areas with higher populations naturally tend to report more cases. In criminal analysis, the criminal rate is a commonly used index to describe the safety of a particular area. The criminal rate scales the average number of cases by the estimated population. The formula of criminal rate is

$$\label{eq:Criminal Rate} \text{Criminal Rate} = \left(\frac{\text{Number of Reported Crimes}}{\text{Total Population}}\right) \times 100,000$$

The scaled average number of cases is defined as:

$$\frac{\lambda_i}{c_i}$$
, where i denotes each region.

where λ_i is the average number of cases, and c_i is the estimated population in the area.

Although the distribution of λ_i/c_i is not Gamma distribution, I can sample from the Gamma distribution for λ_i and then transform the samples to estimate the mean and credential interval of criminal rate. Alternatively, I can take advantage of the normal approximation, given that n (the sample size) is large.

Using the normal approximation, the scaled criminal rate λ_i/c_i follows approximately:

$$\frac{\lambda_i}{c_i} \sim \text{Normal}\left(\mu = \frac{\alpha_i}{c_i \cdot \beta_i}, \sigma^2 = \frac{\alpha_i}{(c_i \cdot \beta_i)^2}\right)$$

5.3 Linear Regression model

Using linear regression model with time predictor allows us to investigates the differences in crime situation between daytime and nighttime. The model in bayesian framework is specified as follows:

$$Y_i = \beta_0 + \beta_1 T_i + \epsilon_i, \quad \epsilon_i \sim \mathcal{N}(0, \sigma^2),$$
 (1)

where:

- Y_i is the observed crime rate for the *i*th observation.
- T_i is a binary indicator variable:

$$T_i = \begin{cases} 0, & \text{if } 6:00 \le \text{time} < 18:00 \text{ (daytime)}, \\ 1, & \text{if } 18:00 \le \text{time} < 6:00 \text{ (nighttime)}. \end{cases}$$

- $\beta_0 \sim \mathcal{N}(\mu_{\beta_0}, \sigma_{\beta_1}^2)$ represents the average crime cases during the daytime $(T_i = 0)$.
- $\beta_1 \sim \mathcal{N}(\mu_{\beta_1}, \sigma_{\beta_0}^2)$ captures the difference in crime rates between nighttime and daytime.
- $\epsilon_i \sim \mathcal{N}(0, \sigma^2)$, where $\sigma^2 \sim \text{Inverse-Gamma}(a, b)$.

The posterior distribution for the parameters β_0 , β_1 , and σ^2 in the Bayesian linear regression model is given by Bayes' theorem:

5.4 Markov chain Monte Carlo (MCMC)

In the setting of linear regression models, MCMC facilitates the approximation of posterior distributions for model parameters by sampling from full conditional posterior distributions.

Our goal is to derive the Gibbs sampling updates for the parameters β_0 , β_1 , and σ^2 . The likelihood and prior distributions lead to the following conditional posterior distributions:

The conditional posterior distribution of β_0 is:

$$\beta_0 \mid \beta_1, \sigma^2, \mathbf{Y} \sim \mathcal{N}(\mu_{\beta_0}, \sigma_{\beta_0}^2),$$

where:

$$\mu_{\beta_0} = \frac{\frac{1}{\sigma^2} \sum_{i=1}^n (Y_i - \beta_1 T_i) + \frac{1}{\sigma_{\beta_0}^2} \mu_{\beta_0}^{\text{prior}}}{\frac{n}{\sigma^2} + \frac{1}{\sigma_{\beta_0}^2}}, \sigma_{\beta_0}^2 = \left(\frac{n}{\sigma^2} + \frac{1}{\sigma_{\beta_0}^2}\right)^{-1}.$$

The conditional posterior distribution of β_1 is:

$$\beta_1 \mid \beta_0, \sigma^2, \mathbf{Y} \sim \mathcal{N}(\mu_{\beta_1}, \sigma_{\beta_1}^2),$$

where:

$$\mu_{\beta_1} = \frac{\frac{1}{\sigma^2} \sum_{i=1}^n T_i(Y_i - \beta_0) + \frac{1}{\sigma_{\beta_1}^2} \mu_{\beta_1}^{\text{prior}}}{\frac{1}{\sigma^2} \sum_{i=1}^n T_i^2 + \frac{1}{\sigma_{\beta_1}^2}}, \sigma_{\beta_1}^2 = \left(\frac{1}{\sigma^2} \sum_{i=1}^n T_i^2 + \frac{1}{\sigma_{\beta_1}^2}\right)^{-1}.$$

The conditional posterior distribution of σ^2 is:

$$\sigma^2 \mid \beta_0, \beta_1, \mathbf{Y} \sim \text{Inverse-Gamma}\left(\alpha + \frac{n}{2}, \beta + \frac{1}{2} \sum_{i=1}^n (Y_i - \beta_0 - \beta_1 T_i)^2\right),$$

6 Result

6.1 The type and number of Crime

From 01/2023 to 09/2024, there are 21 months in total. Table 4 and Table 5 present the distribution of cases across all data points. Over the two years, the overall number of cases remains relatively stable. However, February consistently exhibits fewer reported cases in the year. I think it is because there are less days in February (28 days) as the average daily cases in February 2023 is higher than the average in December 2023.

When examining the data by groups, it is evident that in any given month, Group A consistently reports more cases than Group B. This suggests that more serious offenses are reported at a higher frequency compared to less serious ones.

Table 4: 2023 criminal data

Group	01	02	03	04	05	06	07	08	09	10	11	12
Group A	20303	18343	20514	20203	21129	20139	20618	20157	19578	19403	18924	19147
Group B	17651	15779	17727	17378	18285	17345	17849	17445	16929	16797	16494	16640
All	37954	34122	38241	37581	39414	37484	38467	37602	36507	36200	35418	35787

In Houston, there are 56 types of crimes recorded by HPD. Whenever police recorded a crime in their system, the case would be labeled. From 2023 to 2024, I drew two pie charts of Group A and Group B to display the distribution of crime types. Based on the 2, the most common specified crime in Group A is "Vehicle Theft" (12.7%), followed by "Simple Assault" (11.1%), "Damage/Vandalism" (9.92%), and "Intimidation" (8.8%). In group B, "Trespass Property" (27.7%) constitutes a highest proportion (46.9%) in specified crimes, followed by "Trespass Property" (27.7%), "Driving DUI" (17%) and "Disorderly Conduct" (8.44%).

Table 5: 2024 criminal data

Group	01	02	03	04	05	06	07	08	09
Group A	18858	18119	19354	20025	20704	19788	19296	19310	18009
Group B	16274	15524	16541	17354	17957	16954	16641	16539	15502
All	35132	33643	35895	37379	38661	36742	35937	35849	33511

(a) The types of crime in Group A

(b) The types of crime in Group B

Figure 2: Comparison of the types of crime in Groups A and B

6.2 Crime Situation Comparison between Divisions

Before employing poisson-gamma models, I retrieve the parameters of prior distribution from the historic data. I used the monthly averaged number of crime cases from 2021 to 2022 as λ_{prior} .

After applying poisson-gamma models on overall group (including group A and group B), I got posterior distributions for each divisions λ_i . I then sampled from posterior distributions and applied transformation to derive the monthly criminal rate distribution. Before scaling by population, the mean number of criminal cases has broader range from 1,000 to 7,000. After scaling, the criminal rate has narrower range from 1000 to 2000, reflecting a more consistent comparison across the divisions.

Table 6: Poisson-Gamma model table

divisions	Mean	Mean Credible Interval	Criminal Rate	Criminal Rate Credible Interval
Central	4490.94	(4456.19, 4525.95)	2205.52	(2188.45, 2222.71)
Clear Lake	1633.75	(1611.16, 1656.20)	1051.80	(1037.26, 1066.26)
Eastside	1098.38	(1080.77, 1117.59)	1203.41	(1184.12, 1224.46)
North	3538.17	(3503.84, 3572.55)	1367.10	(1353.84, 1380.39)
Northeast	4093.01	(4056.99, 4129.25)	2011.80	(1994.10, 2029.62)
Northwest	2132.63	(2106.69, 2158.40)	1359.04	(1342.51, 1375.46)
South Central	2248.31	(2220.38, 2275.68)	2339.36	(2310.30, 2367.84)
South Gessener	2083.33	(2058.33, 2109.79)	1352.43	(1336.20, 1369.60)
Southeast	2975.93	(2944.96, 3007.77)	1681.97	(1664.47, 1699.97)
Southwest	2554.49	(2530.05, 2582.77)	1174.79	(1163.54, 1187.79)
Westside	7391.35	(7342.39, 7441.44)	2168.46	(2154.10, 2183.15)

By drawing the posterior distributions of ciminal rate each divisions 3, it is evident that Houston' criminal rates could be classfied into three class. divisions with higher criminal rates (≥ 2000) include South Central, Central, Westside, and Northeast. The divisions with an average criminal rate (1500 - 2000) is Southeast. divisions with lower criminal rates(≤ 1500)are Clear Lake, Eastside, Northwest, South Gessner, and Southwest.

The heatmap 4 reveals that the highest crime rates are concentrated in the central and western parts of Houston, followed by the northern areas. In contrast, the southern regions of Houston appear relatively safer.

Figure 3: Posterior distributions of criminal rates

Figure 4: Houston's Heatmap

Then, I applied the pipeline to group A and group B data again, and generated Table 7 and Table 8. The dataset consists of Group A and Group B. The variation in criminal rates between divisions is significantly larger in Group A compared to Group B. The range of criminal rate in Group A is 1000 to 2000. Specifically, the range of criminal rates in Group A spans from 1,000 to 2,000, whereas the range for Group B is below 500. This indicates that the overall variation in divisions' results primarily originates from Group A.

Table 7: Poisson-Gamma model table for Group A

Beat Class	Mean	Mean Credible Interval	Criminal Rate	Criminal Rate Credible Interval
Central	3852.33	(3818.58, 3887.34)	1891.89	(1875.32, 1909.09)
Clear Lake	1434.53	(1413.76, 1454.43)	923.55	(910.18, 936.36)
Eastside	898.62	(881.94, 915.86)	984.56	(966.27, 1003.44)
North	3000.06	(2969.50, 3028.93)	1159.18	(1147.38, 1170.34)
Northeast	3466.84	(3433.73, 3500.90)	1704.02	(1687.75, 1720.77)
Northwest	1879.00	(1854.95, 1905.42)	1197.41	(1182.08, 1214.25)
South Central	1916.75	(1893.06, 1940.76)	1994.37	(1969.72, 2019.35)
South Gessner	1826.23	(1802.70, 1850.83)	1185.52	(1170.25, 1201.49)
Southeast	2514.33	(2486.43, 2544.12)	1421.08	(1405.31, 1437.92)
Southwest	2281.93	(2257.38, 2310.38)	1049.44	(1038.15, 1062.52)
Westside	6497.09	(6452.42, 6541.74)	1906.10	(1893.00, 1919.20)

Table 8: Poisson-Gamma model table for Group B

Beat Class	Mean	Mean Credible Interval	Criminal Rate	Criminal Rate Credible Interval
Central	654.91	(640.57, 669.27)	321.63	(314.58, 328.68)
Clear Lake	215.18	(206.81, 223.17)	138.54	(133.14, 143.67)
Eastside	215.69	(207.57, 223.69)	236.32	(227.42, 245.08)
North	555.58	(542.59, 569.19)	214.67	(209.65, 219.93)
Northeast	641.67	(627.85, 655.23)	315.39	(308.60, 322.06)
Northwest	269.71	(260.75, 279.27)	171.88	(166.17, 177.97)
South Central	347.64	(337.08, 358.37)	361.72	(350.73, 372.88)
South Gessner	273.26	(264.43, 283.44)	177.39	(171.66, 184.00)
Southeast	477.09	(464.46, 489.35)	269.65	(262.51, 276.58)
Southwest	289.36	(279.61, 298.47)	133.07	(128.59, 137.26)
Westside	909.10	(892.25, 924.76)	266.71	(261.77, 271.30)

6.3 Crime Situation Comparison between Day and Night

This analysis focuses on crime cases in Group A, specifically exploring the differences in crime patterns between day and night. For the choice of priors, the parameters μ_{β_0} , $\sigma_{\beta_0}^2$, μ_{β_1} , $\sigma_{\beta_1}^2$, α_{σ^2} , β_{σ^2} were derived from the 2021 2022 crime data as follows:

$$\mu_{\beta_0} = \text{monthly averaged cases in day},$$
 $\mu_{\beta_1} = \text{monthly averaged cases at night - monthly averaged cases in day},$
 $\sigma_{\beta_1} = \sigma_{\beta_0} = 100,$

$$\alpha_{\sigma^2} = 2, \beta_{\sigma^2} = \frac{\text{Var}(\text{monthly averaged cases})}{2}.$$

Using Gibbs sampling, I obtained the posterior distributions of β_1 for each division. These results are summarized in Table 9 and visualized in Figure 6.

From the posterior distributions of β_1 shown in Figure 6, it is evident that there is no consistent pattern in crime rates between day and night across all divisions. $\beta_1 = 0$ indicates no significant difference in crime situation between day and night. $\beta_1 > 0$ suggest that crime

Figure 5: Comparison of Posterior Distributions and Heatmaps for Group A and Group B

situation are worse at night compared to the day. $\beta_1 < 0$ indicates that crime situation are worse during the day compared to the night.

- Neutral Divisions: Divisions like Northwest and Southeast have β_1 distributions centered around zero.
- **Night-Dominant Divisions:** Divisions such as Central and South Central show dangerous nighttime with positive β_1 values.
- Day-Dominant Divisions: Divisions such as Westside and Northeast exhibit dangerous daytime with negative β_1 values.

7 Conclusion

This project provides a overview of crime situation in Houston. In EDA part, there are 30,000 crimes happened monthly in Houston. 20,000 comes from serious offense and 10,000 comes from less serious offense. Among all, Vehicle Theft and assaults are most common cases in Houston. This result is consistent to the report from HPD. [2]

People generally want to avoid the crime type in serious offense (Group A). Based on the insight of my project, the most dangerous places in Houston is from South central, Central to Westside, followed by northern Houston, then southern Houston. To know the exact dangerous places, I should keep collecting the data from the enclaved city, drawing cases location on the maps to check clustering, or looking into the details in group A. Overall, the model has explained the different crime situation in Houston Divisions. In this city, criminal rates can vary significantly based on where you are, potentially by as much as a factor of two.

Regarding safety between day and night, the results are surprising—nighttime cases do not always outnumber daytime cases. Instead, the data reveals that half of divisions are more dangerous during the day, while half of divisions are riskier at night.

The Bayesian framework offers a clear and detailed method for comparing parameters, allowing differences between locations to be assessed based on the degree of overlap in their

Table 9: Table of β_1 for Different Division

Division	Mean	$\mathbf{P}(\beta_1 < 0)$
Northwest	9.6911	0.2022
South Central	89.2058	0
Southeast	13.2457	0.1583
North	-76.4107	1
Clear Lake	-69.8242	1
South Gessner	48.3353	0.0004
Westside	-151.6715	0.9999
Central	91.7775	0
Northeast	-104.5458	1
Southwest	-23.9947	0.9185
Eastside	38.9363	0.0001

Figure 6: Posterior distributions of criminal rates

distributions. This approach eventually and effectively provides persuasive, data-driven evidence to understand Houston's crime situation.

After I search on the internet, the area near Giant eyeball in Dallas are relatively safe. But, who knows? Ignorance leads to fear. So, It is never a bad thing to get to know things around us.

References

- [1] https://www.houstontx.gov/police/organization/operations/field_operations
- [2] https://www.houstontx.gov/police/department_reports/Crimeby_CouncilDistrict/Crimeby_CouncilDistrict.pdf
- [3] https://www.houstontx.gov/police/cs/Monthly_Crime_Data_by_Street_and_ Police_Beat.htm

- [4] https://ucr.fbi.gov/nibrs/2011/resources/nibrs-offense-codes/view
- [5] https://www.houstonchronicle.com/neighborhood/bellaire/article/houston-suburbs-bellaire-memorial-18642830.php?utm_source=chatgpt.com
- [6] https://www.reddit.com/r/houston/comments/1gt63rb/some_places_are_not_in_ police_districts/