1. Charakterystyka oprogramowania

a. Nazwa skrócona:

Porównywarka modeli

b. Nazwa pełna:

Analiza porównawcza wybranych modeli uczenia maszynowego

c. Krótki opis:

Aplikacja wykorzystuje trzy różne zbiory danych związane z medycyną, aby wspierać diagnozowanie chorób. Po udzieleniu odpowiedzi na pytania przez użytkownika, program analizuje informacje i prezentuje prawdopodobieństwo wystąpienia danej choroby (raka płuc, cukrzycy, choroby serca). Wyniki są obliczane w oparciu o trzy wybrane modele uczenia maszynowego: regresję logistyczną, drzewo decyzyjne oraz las losowy.

2. Prawa autorskie

- a. Autorzy:
- Adam Wrzałek
- Bartosz Deptuła
- Mikołaj Mazur
- b. Warunki licencyjne do oprogramowania wytworzonego przez grupę
 MIT License

Copyright (c) [2025] [Adam Wrzałek, Bartosz Deptuła, Mikołaj Mazur]

Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

3. Specyfikacja wymagań

Identyfikator	Nazwa	Opis	Priorytet	Kategoria
	Model1: Drzewo	Podzielenie dostępnych danych na coraz mniejsze		
I01	ol decyzyjne podzbiory na podstawie wartości wybranych cech.		Wymagane	funkcjonalne
		Tworzenie wielu drzew decyzyjnych na losowych		
	Model2: Las	podzbiorach danych, a następnie łączenie ich		
102	losowy	wyników	Wymagane	funkcjonalne
	Model3:			
	Regresja	Metoda pozwalająca na modelowanie szansy		
103	Logistyczna	i prawdopodobieństwa wystąpienia zdarzenia.	Wymagane	funkcjonalne
		Aplikacja zbudowana w frameworku Flask,		
		odpowiedzialna za realizację funkcjonalności		
		związanych z przetwarzaniem danych i prezentacją		
104	Aplikacja	wyników działania modeli.	Wymagane	funkcjonalne
		Dobranie trzech zbiorów danych dotyczących		
105	Dane	zagadnień związanych z medycyną	Wymagane	funkcjonalne
		Graficzny interfejs użytkownika zapewniający		
	Interfejs	intuicyjną obsługę aplikacji, z wizualizacją danych i		
107	Graficzny	wyników działania modeli.	Przydatne	funkcjonalne
	Porównywanie	Możliwość porównania modeli na przestrzeni różnych		
108	danych	danych	Przydatne	funkcjonalne
	Zapisywanie	Zapisywanie otrzymanych prawdopodobieństw dla		
109	prób	każdej próby	Przydatne	funkcjonalne
	Rejestracja oraz	Możliwość rejestracji kont oraz późniejsza możliwość		-
l10	logowanie	zalogowania się do nich	Opcjonalne	funkcjonalne
	Model4:			
	Klasteryzacja K-	Podział zbioru danych na k klastrów przy		
l11	średnich	wykorzystaniu centroidy	Opcjonalne	funkcjonalne

4. Architektura systemu/oprogramowania

Aplikacja opiera się na architekturze klient-serwer z trzema głównymi komponentami: frontendem (HTML, CSS), backendem (Flask Framework) oraz modelami uczenia maszynowego (las losowy, regresja logistyczna, drzewo decyzyjne). Jako główny język programowania został wykorzystany Python.

Frontend umożliwia użytkownikowi interakcję z systemem poprzez formularze wprowadzania danych, wyniki predykcji oraz historię poprzednich analiz.

Backend przetwarza dane użytkownika, obsługuje logikę aplikacji oraz komunikuje się z modelami uczenia maszynowego, które są dynamicznie wczytywane na podstawie wybranego zbioru danych (np. choroby serca, cukrzyca, rak płuc). Dane wejściowe są odpowiednio skalowane, a wyniki predykcji są zwracane i zapisywane.

Aplikacja korzysta z bazy danych do przechowywania użytkowników, wprowadzonych danych oraz wyników predykcji poprzez wykorzystanie SQLalchemy.

Architektura aplikacji wspiera filtrowanie wyników (np. wyświetlanie historii na podstawie zbioru danych), zarządzanie predykcjami (np. usuwanie wybranych analiz), a także prezentację wyników w sposób przejrzysty i zrozumiały dla użytkownika. Dzięki modułowej budowie, system można łatwo rozszerzać o nowe modele predykcyjne lub dodatkowe funkcjonalności.

Biblioteki użyte w aplikacji:

Biblioteka	Wersja	Opis	Użyte funkcje
Flask	3.1.0	Tworzenie aplikacji	Flask, render_template, request, redirect,
		webowej	url_for, flash, Blueprint,
Flask-Login	0.6.3	Zarządzanie sesjami	LoginManager, login_required, current_user,
		użytkowników i	login_user, logout_user, login_required,
		autoryzacją	UserMixin
Flask-	3.1.1	Prosta konfiguracja	SQLAlchemy
SQLAlchemy		bazy danych w	
		aplikacji Flask	
DateTime	5.5	Obsługa dat i czasu	datetime
joblib	1.2.0	Ładowanie modeli	joblib.load, joblib.dump
		uczenia	
		maszynowego	
Werkzeug	3.1.3	Haszowanie haseł	generate_password_hash,
			check_password_hash
scikit-learn	1.3.0	Klasyfikacja, regresja,	RandomForestClassifier,
		podział danych,	DecisionTreeClassifier, LogisticRegression,
		ocena modeli	train_test_split, StandardScaler,
			classification_report
Pandas	2.0.3	Wczytywanie danych	pd.read_csv
		z plików csv	