Legyen $R, S \subseteq \mathbb{R} \times \mathbb{R}$. Határozza meg az $S \circ R$ és $R \circ S$ kompozíciót.

$$R = \{(x,y) \in \mathbb{R} \times \mathbb{R} \mid \frac{1}{x} = y^2\} \text{ és } S = \{(x,y) \in \mathbb{R} \times \mathbb{R} \mid \sqrt{x-2} = 3y\}$$

$$R \circ S = \{(x,z) \mid \exists y : (x,y) \in S, (y,z) \in R\} = \{(x,z) \mid \exists y : \sqrt[2]{x-2} = 3y \land 1/y = z^2\}$$

$$= \{(x,z) \mid \sqrt[2]{x-2} = 3/z^2\}$$

$$S \circ R = \{(x,z) \mid \exists y : (x,y) \in R, (y,z) \in S\} = \{(x,z) \mid \exists y : 1/x = y^2 \land \sqrt[2]{y-2} = 3z\}$$

$$= \{(x,z) \mid \sqrt[2]{\pm (1/x) - 2} = 3z\}$$

Legyen $R, S \subseteq \mathbb{R} \times \mathbb{R}$. Határozza meg az $S \circ R$ és $R \circ S$ kompozíciót.

$$R = \{(x,y) \in \mathbb{R} \times \mathbb{R} \mid x^2 - 6x + 5 = y\} \text{ és } S = \{(x,y) \in \mathbb{R} \times \mathbb{R} \mid x^2 = y \land 2y = x\}$$

$$R \circ S = \{(x,z) \mid \exists y : (x,y) \in S, (y,z) \in R\}$$

$$= \{(x,z) \mid \exists y : x^2 = y \land 2y = x \land y^2 - 6y + 5 = z\}$$

$$= \{(x,z) \mid 2y = x \land x^4 - 6x^2 + 5 = z = x^2/4 - 3x + 5\}$$

$$S \circ R = \{(x,z) \mid \exists y : (x,y) \in R, (y,z) \in S\}$$

$$= \{(x,z) \mid \exists y : x^2 - 6x + 5 = y \land y^2 = z \land 2z = y\}$$

$$= \{(x,z) \mid x^2 - 6x + 5 = 2z = \pm \sqrt{z}\}$$

Legyen $A = \{$ olyan egyenlőszárú háromszögek, amelyeknek az alaphoz tartozó magasságuk egyenlő egy rögzített m>0 számmal $\}$, $B=\{y\in\mathbb{R}\mid y>0\}$. Definiáljuk az $R\subseteq A\times B$ relációt a következőképpen: $aRb, a\in A, b\in B$, ha az a háromszög területe b. Mutassuk meg, hogy R függvény, és vizsgáljuk ennek a függvénynek a tulajdonságait (fennálnak-e a következők: szürjektív, injektív, bijektív).

Ha R függvény A×B-n, akkor $\forall x, y, y_0 : (x, y) \in f \land (x, y_0) \in f \Rightarrow y = y_0$, ahol x egy egyenlő szárú háromszög rögzített magassággal, y és y_0 pedig x területe. Mivel bármely (egyenlő szárú) háromszög (x) területe rögzített, így ahhoz mindig csak egyféle területérték (y) tartozik, vagyis ez egy egyértelmű hozzárendelés, így R függvény.

Az m magasság rögzített A-ban és a háromszög területe a rögzített m-től függ, azaz két különböző háromszögben is ugyanazok a magasságértékek, így nem állhat elő olyan állapot, hogy egy területérték többféle háromszöghöz is tartozhat, mert ehhez a magasságnak is változnia kéne, így R injektív. Ami a szürjektivitást illeti, bármilyen 0-nál nagyobb szám lehet így háromszög területértéke, így a teljes B halmaz adja ki R értékkészletét. Így R szürjektív is.

Mivel R szürjektív és injektív, így R bijektív is.

Legyen $g: \mathbb{R} \to \mathbb{R}, g(x) := 3 - |x|$. Bizonyítsa be, hogy a függvény se nem injektív, se nem szürjektív.

Legyenek $R, S \subseteq A \times A$ szimmetrikus relációk. Bizonyítsuk be, hogy $R \circ S$ szimmetrikus akkor és csak akkor, ha $R \circ S = S \circ R$.

 $R \circ S = \{(x,z) \mid \exists y : (x,y) \in S, (y,z) \in R\}; \ S \circ R = \{(x,z) \mid \exists y : (x,y) \in R, (y,z) \in S\}$ Ha az $R \circ S$ szimmetrikus, akkor ha a kompozícióban jelen van az (x,z) pár, akkor jelen kell lennie (z,x) párnak. Ez alapján x és z egyenlő kell, hogy legyen, ami csak úgy lehetséges, ha R és S ugyanazokat a számpárokat tartalmazza. Vagyis $R \circ S = \{(x,z) \mid \exists y : (x,y) \in S, (y,z) \in R\} = \{(x,z) \mid \exists y : (x,y) \in R, (y,z) \in S\}$. Ha a fenti teljesül, akkor $R \circ S = S \circ R$.

Nyilván, ha az $R \circ S = S \circ R$ állításból indulunk ki, akkor is világos, hogy a két kompozíció akkor lehet azonos, ha S és R azonos számpárokat tartalmaz, vagyis az $R \circ S$ tartalmaz (x, z) és (z, x) számpárokat is. Ekkor az $R \circ S$ szimmetrikus.

Döntsük el, hogy az alábbi relációk közül melyek függvények.

Ha a reláció függvény, döntsük el, hogy injektív, szürjektív, bijektív-e illetve ha nem függvény, akkor reflexív, szimmetrikus, tranzitív-e.

(a)
$$f_1 = \{(x, y) \in \mathbb{R} \times \mathbb{R} \mid 7x = y^2\} \subseteq \mathbb{R} \times \mathbb{R}$$

(b)
$$f_2 = \{(x, y) \in \mathbb{R} \times \mathbb{R} \mid x = y^2 + 6y\} \subseteq \mathbb{R} \times \mathbb{R}$$

(c)
$$f_3 = \{(x, y) \in \mathbb{R} \times \mathbb{R} \mid 7x^2 - 6 = y\} \subseteq \mathbb{R} \times \mathbb{R}$$

(d)
$$f_4 = \{(x, y) \in \mathbb{R} \times \mathbb{R}_0^+ \mid y = |x|\} \subseteq \mathbb{R} \times \mathbb{R}_0^+$$

(e)
$$f_5 = \{(x, y) \in \mathbb{R} \times \mathbb{R} \mid y = (x+4)^2\} \subseteq \mathbb{R} \times \mathbb{R}$$

(f)
$$f_6 = \{(x, y) \in \mathbb{R} \times \mathbb{R}_0^+ \mid 2y = \sqrt{x}\} \subseteq \mathbb{R} \times \mathbb{R}_0^+$$

(g)
$$f_7 = \{(x, y) \in \mathbb{Z} \times \mathbb{Z} \mid 7 \mid x - y\} \subseteq \mathbb{Z} \times \mathbb{Z}$$

(h)
$$f_8 = \{(x, y) \in (\mathbb{R} \setminus \{0\}) \times (\mathbb{R} \setminus \{0\}) \mid xy = 1\} \subseteq (\mathbb{R} \setminus \{0\}) \times (\mathbb{R} \setminus \{0\})$$

(i)
$$f_9 = \{(x, y) \in \mathbb{R} \times \mathbb{R} \mid xy = 1\} \subseteq \mathbb{R} \times \mathbb{R}$$

(j)
$$f_{10} = \{(x, y) \in \mathbb{Z} \times \mathbb{Z} \mid |x - y| \le 3\} \subseteq \mathbb{Z} \times \mathbb{Z}$$

(k)
$$f_{11} = \{(x, y) \in \mathbb{R} \times \mathbb{R} \mid y(1 - x^2) = x - 1\} \subseteq \mathbb{R} \times \mathbb{R}$$

(1)
$$f_{12} = \{(x,y) \in (\mathbb{R} \setminus \{1,-1\}) \times (\mathbb{R} \setminus \{1,-1\}) \mid y(1-x^2) = x-1\} \subseteq (\mathbb{R} \setminus \{1,-1\}) \times (\mathbb{R} \setminus \{1,-1\})$$

	Ha függvény, akkor			Ha nem függvény, akkor		
	injektív-e	szürjektív-e	bijektív-e	reflexív-e	szimmetrikus-e	tranzitív-e
a)				nem	nem	nem
b)				nem	nem	nem
c)	nem	nem	nem			
d)				igen	nem	igen
e)	nem	nem	nem			
f)	igen	igen	igen			
g)				igen	igen	igen
h)	igen	nem	nem			
i)	igen	nem	nem			
j)	igen	nem	nem			
k)				nem	nem	nem
1)	igen	nem	nem			

Bizonyítsa be, hogy a \mathbb{N} halmazon \leq részbenrendezési reláció, ahol \leq definíciója: $n, m \in \mathbb{N}, n \leq m \iff \exists k \in \mathbb{N}(n+k=m)$

Az IN halmazon értelmezett reflexív, tranzitív és antiszimmetrikus relációt részbenrendezésnek nevezzük. Lássuk be, hogy a három tulajdonság teljesül! A relációnk reflexív, hisz a definíció alapján lehet olyan eset, hogy n = m (ahol k = 0 természetes szám), így a reláció minden természetes számhoz társítja önmagát.

A relációnk antiszimmetrikus, mert nincs olyan m és n különböző természetes szám, amire az igaz, hogy n \leq m és m \leq n, így az (m, m) és (n, n) párok mellett vagy (n, m)-típusú vagy (m, n)-típusú pár lesz a relációban.

A relációnk tranzitív, hiszen tetszőleges I, m, n természetes számok esetén, ha $I \le m$ és $m \le n$, akkor $I \le n$ is igaz lesz.

Mivel a részbenrendezés mindhárom tulajdonsága egyidőben igaz, ezért a ≤ reláció részbenrendezési reláció.

Döntse el a következő reláció ról, hogy részbenrendezési relációk-e az adott halmazon. $R \subseteq \mathbb{R}^2 \times \mathbb{R}^2$, $xRy \iff$ az x vektor hossza kisebb-egyenlő mint az y vektor hossza

- R reflexív, mert a szabály alapján az x vektor hossza lehet egyenlő y vektor hosszával, így a reflexív elemek megengedettek R-ben.
- R tranzitív, hiszen tetszőleges x, y, z vektorokra igaz, hogy |x| ≤ |y| és |y| ≤ |z| esetén |x| ≤ |z| is teljesül.
- R antiszimmetrikus, hiszen nem teljesülhet egyszerre az, hogy |x| ≤ |y| és |y| ≤ |x|, csak ha |x| = |y|.

A fenti három tulajdonság egyidejű teljesülése miatt R részbenrendezési reláció.