- (1) Basen von Topologien I:
 - (a) Es sei (X, \mathcal{T}) ein topologischer Raum und $\mathcal{B} \subset \mathcal{T}$ eine Basis der Topologie. Zeigen Sie, dass \mathcal{B} die folgenden Eigenschaften hat:
 - i. $\bigcup_{B \in \mathcal{B}} B = X$
 - ii. Für alle Mengen $B_1, B_2 \in \mathcal{B}$ und alle $x \in B_1 \cap B_2$ existiert eine Menge $B_3 \in \mathcal{B}$ mit $x \in B_3 \subset B_1 \cap B_2$.
 - (b) Es sei X eine Menge und $\mathcal{B} \subset 2^X$ ein Mengensystem mit den Eigenschaften (i) und (ii) aus (a). Zeigen Sie, dass eine eindeutige Topologie \mathcal{T} auf X existiert, für die \mathcal{B} eine Basis ist.
- (2) Basen von Topologien II:
 - (a) Es sei (X, \mathcal{T}) ein topologischer Raum und $\mathcal{B} \subset \mathcal{T}$. Zeigen Sie, dass \mathcal{B} genau dann eine Basis der Topologie ist wenn zu jedem $x \in X$ und jedem $x \in \mathcal{T}$ mit $x \in \mathcal{B}$ ein $x \in \mathcal{B}$ mit $x \in \mathcal{B} \subset \mathcal{A}$ existiert.
 - (b) Es sei (X, \mathcal{T}) ein topologischer Raum und $\mathcal{B} \subset \mathcal{T}$. Zeigen Sie, dass \mathcal{B} genau dann eine Basis der Topologie ist wenn zu jedem $x \in X$ das Mengensystem $\{U \in \mathcal{B} : x \in U\}$ eine Umgebungsbasis von x ist.
- (3) STETIGE FUNKTIONEN: Beweisen Sie folgende Aussagen:
 - (a) Sind (X, \mathcal{T}_X) , (Y, \mathcal{T}_Y) und (Z, \mathcal{T}_Z) topologische Räume, $f: X \to Y$ und $g: Y \to Z$ stetige Funktionen, so ist die Hintereinanderausführung $g \circ f: X \to Z$ ebenfalls stetig.
 - (b) Eine Abbildung $f:X\to Y$ zwischen topologischen Räumen ist genau dann stetig, wenn für jede Teilmenge $A\subset X$ gilt $f(\overline{A})\subset \overline{f(A)}.$
- (4) Offene und abgeschlossene Mengen: Beweisen Sie die Aussagen in Bemerkung 2.23.
- (5) Sei (X, \mathcal{T}) ein topologischer Raum. Seien $A, B \subset X$ Teilmengen. Beweisen Sie folgende Aussagen:
 - (a) ∂A ist abgeschlossen.
 - (b) $(X \setminus A)^{\circ} = X \setminus \overline{A}, \overline{X \setminus A} = X \setminus \mathring{A} \text{ und } \partial(X \setminus A) = \partial A.$
 - (c) $(A \cap B)^{\circ} = \mathring{A} \cap \mathring{B}$ und $\mathring{A} \cup \mathring{B} \subset (A \cup B)^{\circ}$.
 - (d) $\overline{A \cup B} = \overline{A} \cup \overline{B}$ und $\overline{A \cap B} \subset \overline{A} \cap \overline{B}$.
 - (e) Gilt $A \subset B$, so folgt $\overline{A} \subset \overline{B}$ und $\mathring{A} \subset \mathring{B}$.