10/25/18 > MASTER THEOREM: $T(n) = 3T(^{n}/4) + n \log n$ $a'' \qquad || \qquad \qquad f(n)$ f(n) vis nlogba nlogn Case(3) \Longrightarrow $f(n) = \Omega(n^{\log_b \alpha + \varepsilon})$ for $\varepsilon = 0.2$ for some c<1, af(1/6) & cf(n) 3 n logn < n logn > C= \Rightarrow T(n) = $\Theta(n\log n)$ what does polynomic | Larger mean? | | Say n² & n²+E wit | then n²+E is polynom T(n) = 2T(n/2) + nlogn $a \qquad b \qquad f(n)$ Larger Chan n2V f(n) VIS nlogba nlogn vis n Doesn't quite fit with case 3 because stricter rule need to have polynomially larger value.

	Used a lot in al Geone Computational Geone
	Computati
	DIVIDE AND CONQUER: CLOSEST PATH OF POINTS
	CLOSEST PATH OF POINTS
5	Given n points, find the pair of points with the smallest distance between them.
P.	the smallest distance between them.
	Naive solution: go through every pair -> $\Theta(n^2)$
	10.
	Sort, compute distances between consecutive
V	(Sort, compute autances occurred to smallest one
(Modr)	Listerest print will be immediate Solar
7	boints recalibarating the smallest one. Sclosest point will be immediate so(n) neighbour (left or right)
	1
A STREET	O(nlogn)
0	Can't be applied to 2-D "
	Can't be applied to 2-0 1/2 right away. So we use Divide & Conquer!
	Divide space such that
	e 3d Side
	dy points on cacor and
	- Find closest pair in
	each side recursively

*- Find closest pair with one point on each side - Return the best of the three solutions. > Doesn't this reduce to companing all points? Check in a smaller region -> 8 regions. $S = \min(S_L, S_R)$ Only need to consider set S of points within $S = \min(S_L, S_R)$ of dividing line. -> Can we do better? Sort S by y coordinate to get Sy. Computing distances between consecutive points i Sy doesn't work closer Instead, compute distances to points within 8 positions in Sy

Key Observation: There is at most one point in every be closer than 8 and our 8 wouldn't be 8 (contradiction) If 78 positions apart >> >2 rows apart ° Complexity ⇒ 2T(n/2) +O(n) = T(n) = O(nlogn)

