Projekt REGE - redukcja nadmiarowości

Pochmara Patryk 320727 Rudnik Jakub 320731 Sarwiński Wojciech 292863

4 kwiecień 2022

Streszczenie

Raport dotyczący redukcji nadmiarowej informacji, stanowiący część projektu stworzenia oprogramowania rozpoznającego płeć w oparciu o nagrania audio. Jest to semestralny projekt z podstaw teorii informacji wykorzystujący narzędzia stworzone w języku Python3. Jego celem jest stworzenie wydajnego algorytmu rozpoznającego płeć, przy użyciu algorytmów opracowanych na podstawie ręcznie przygotowanych danych.

Podział pracy

Pochmara Patryk - Definicja i ekstrakcja informacji Sarwiński Wojciech - Kompresja i porównianie metod kompresji Rudnik Jakub - Własny algorytm kompresujący Cały kod dostępny jest w publicznym repozytorium.

Spis treści

1 Informacja	3
Definicja koncepcyjna	3
Definicja matematyczna	3
Definicja pragmatyczna	4
Informatywność	4
2 Kompresja dźwięku	5
Kompresja bezstratna	5
Kompresja stratna	5
Porównanie wybranych metod kompresji	6
3 Własny algorytm kompresujący	9
Opis sekcji	9
Powód powstania	9
Pierwszy etap algorytmu kompresującego	9
Drugi etap algorytmu kompresującego	13
Trzeci etap algorytmu kompresującego	15
Czwarty etap algorytmu kompresującego	16
Porównanie kompresji kolejnych etapów	17
Podsumowanie algorytmu	19

1 Informacja

Pliki z nagraniami, które zebraliśmy w poprzednim etapie, zawierają wiele nieistotnych lub wręcz niechcianych danych z punktu widzenia analizy, jakiej będziemy je poddawać w późniejszych etapach projektu. Nasz projekt polega na rozpoznawaniu płci mówiącego na podstawie analizy jego głosu. Co za tym idzie dokładny zapis jego wypowiedzi jest zbędny. Poniżej postaram się zdefiniować informacje zawarta w zgromadzonych przez nas próbkach na kilka sposobów.

Definicja koncepcyjna

Z oczywistych przyczyn możemy odrzucić ciche części nagrań jako nie niosące żadnej informacji. Jeśli jednak chodzi o resztę danych ekstrakcja informacji jest bardziej skomplikowana. Najprostszym sposobem na rozpoznanie płci mówiącego jest zaklasyfikowanie go do odpowiedniej kategorii na podstawie częstotliwości jego głosu. Co więcej głos ludzkich składa się z wielu harmonicznych, a do poprawnej klasyfikacji wystarczy tylko pierwsza – najniższa – z nich. Wiąże się to jednak z problemem zakłóceń, które mogą zmylić algorytm, co do częstotliwości pierwszej harmonicznej. Dlatego by wydobyć istotną dla nas informację należy przeanalizować kilka pierwszych odnotowanych częstotliwości, by ustalić, które z nich są harmonicznymi głosu ludzkiego, a które jedynie zakłóceniami.

Definicja matematyczna

Z powyższej definicji wynika, że informacja zawarta jest w widmie częstotliwości nagrania. Matematycznym narzędziem pozwalającym na wydobycie informacji o obecności poszczególnych częstotliwości w fali dźwiękowej jest transformata Fouriera. Co za tym idzie informacją niezbędną informacją na rzecz przeprowadzanej przez nas analizy jest wynik transformaty Fouriera dla nagrania podzielonego na pewną liczbę fragmentów. Ten podział na fragmenty jest konieczny, ponieważ sygnał się zmienia. W terminologii informatycznej obróbki dźwięku nazywa się to "Discrete Short-time Fast Fourier Transform". Do tej pory w celach analizy danych wykorzystywaliśmy implementację DSTFFT z biblioteki librosa w języku Python 3.

Definicja pragmatyczna

Ogółem do poprawnej analizy potrzebna jest informacja dotycząca dwóch aspektów sygnału: jakie częstotliwości składają się na sygnał i jaka jest częstotliwość pierwszej harmonicznej. Warto zauważyć, że informacja o pierwszym aspekcie nie jest konieczna do dalszej analizy, potrzebna jest jedynie by rozróżnić harmoniczne od zakłóceń, a więc de facto umożliwia ona ekstrakcje informacji o drugim aspekcie. Po tym etapie traci ona znaczenie. Dalej ważna jest jedynie informacja o pierwszej harmonicznej.

Informatywność

Nie wszystkie zgromadzone przez nas próbki mają jednakową wartość. Przede wszystkim część z ochotników była przez nas poproszona o mówienie tylko litery 'A' przez kilka sekund, a część mogła mówić dowolnie. Próbki 'A' nie niosą ze sobą wiele informacji, jako że przez całą długość nagrania widmo częstotliwość prawie się nie zmienia. Służą one za to niejako za dane kalibracyjne. Dzięki nim potwierdziliśmy tezę o widocznej różnicy częstotliwości pierwszej harmonicznej głosu męskiego i damskiego. Jednak na potrzeby samej analizy większą wartość posiadają nagrania mowy dowolnej - sygnał zmienia się w czasie (innymi słowy ma znacznie większą entropię) i jest też bardziej podobny do nagrań, które ma docelowo analizować nasz algorytm.

Wykres 1: Porównanie nagrania męskiego 'A' i damskiego gadania

2 Kompresja dźwięku

Kompresja danych to metoda reprezentacji informacji używając mniejszej ilości pamięci komputerowej niż oryginalna reprezentacja. Kompresję możemy podzielić na stratną i bezstratną. Stratna kompresja polega na niedokładnym przybliżeniach i częściowym odrzuceniu danych w celu reprezentacji przybliżenia informacji, podczas bezstratna kompresja pozwala na dokładną rekonstrukcje informacji. W raporcie opisana zostanie kompresja pod kątem reprezentacji dźwięku.

Kompresja bezstratna

Kompresja bezstratna pozwala na dokładną rekonstrukcje kodowanej informacji. Zazwyczaj polega na podzieleniu informacji na powtarzające się symbole i reprezentacji symboli przez słowa kodowe, których reprezentacja binarna jest krótsza dla symboli częściej występujących w kompresowanej informacji i dłuższa dla symboli występujących rzadziej.

Do najbardziej popularnych metod bezstratnej kompresji dźwięku należy Free Lossless Audio Codec (FLAC), Apple Lossless Audio Codec (ALAC) i Windows Media Audio Lossless (WMAL).

Przykładowy algorytm kompresji bezstratne dźwięku na przykładzie metody FLAC:

FLAC jest metodą kompresji specjalnie zaprojektowaną do kompresji dźwięku, więc jest w stanie zmniejszyć rozmiar pliku reprezentującego dźwięk bardziej efektywnie niż uniwersalne algorytmy, których celem jest zmniejszenie rozmiaru pliku nieskompresowanego dźwięku używając np. algorytmu Huffmana. Kodowanie FLAC polega na podzieleniu dźwięku na odcinki czasu, zwane blokami. Algorytm następnie używając interpolacji tworzy wielomian będący przybliżeniem sygnału fali dźwiękowej zawartej w bloku. W końcu różnica pomiędzy sygnałem kodowanym i sygnałem z wielomianu jest otrzymana i zakodowana przy pomocy algorytmu Golomba.

Kompresja stratna

Kompresja stratna w ramach kompresji dźwięku pozwala na znaczne zmniejszenie rozmiaru pliku dźwięku poprzez odrzucenie części danych, otrzymując przybliżenie zakodowanej informacji. Proces odrzucania danych zazwyczaj ma na celu odrzucenie danych mniej krytycznych, czyli sygnał wyjściowy stara się być dla

człowieka percepcyjnie identyczny do sygnału kodowanego. Dziedziną zajmującą się badaniem i opisywaniem związków zachodzących pomiędzy bodźcem w postaci fali dźwiękowej, a odczuwalnym wrażeniem dźwięku, jest psychoakustyka.

Żeby osiągnąć w ramach kompresji sygnał percepcyjnie identyczny, wykorzystuje się ograniczenia człowieka w percepcji dźwięku. Podstawowym ograniczeniem percepcji człowieka w odbieraniu dźwięku jest zasięg słuchu człowieka zawierający się pomiędzy 20 Hz do 20 kHz, więc dźwięk o częstotliwościach wyższych niż 20 kHz możemy uznać za niekrytyczny. Innym efektem w psychoakustyce jest efekt przysłaniania dźwięków przez inne dźwięki. Dźwięk głośny będzie miał efekt przysłaniania dźwięków cichych w tym samym momencie czasu, ale także zauważono efekt czasowego przysłaniania dźwięków cichych przez dźwięki głośnie, to znaczy, że bezpośrednio przed doświadczeniem głośnego dźwięku, jak i po, człowiek nie postrzega dźwięków cichych. Przysłanianie czasowe jest efektem często wykorzystywanym w kompresji dźwięku.

Porównanie wybranych metod kompresji

W tej sekcji porównane zostaną wybrane metody kompresji plików audio. Do porównania wybrane zostały metoda kompresji bezstratnej FLAC, i dwie metody kompresji stratnej MP3 i WMA (Windows Media Audio). Pliki poddane kompresji były w oryginalnym nieskompresowanym formacie WAV. Do kompresji kodekiem FLAC użyte zostały ustawienia poziomu 6 (poziom 1 - najszybsza kompresja, ale większy rozmiar pliku, poziom 8 - najwolniejsza kompresja, ale mniejszy rozmiar pliku). Przy kompresji przy użyciu kodeka MP3 (MPEG-2 Audio Layer III) wybrany został bit rate na poziomie 145-185 kbps, a przy kompresji używając kodeka FFmpeg do formatu WMA wybrany został bit rate o wymiarze 128 kbps. Poniżej w tabeli przedstawione zostały wyniki porównania rozmiarów plików w kb przed kompresją, przedstawione w kolumnie opisanej WAV, rozmiary plików w kb po kompresji i ilorazy rozmiaru plików po kompresji i przed kompresją.

Nazwa pliku	WAV	FLAC	FLAC/WAV	MP3	MP3/WAV	WMA	WMA/WAV
female-audacity-high-100	224	120	54%	22	10%	23	10%
female-audacity-high-101	332	184	55%	32	10%	35	11%
female-audacity-high-102	246	130	53%	25	10%	26	11%
female-audacity-high-103	212	113	53%	22	10%	23	11%
female-audacity-low-100	273	144	53%	26	10%	29	11%
female-audacity-low-101	304	161	53%	29	10%	32	11%
female-audacity-low-102	205	107	52%	21	10%	23	11%
female-audacity-normal-100	197	104	53%	20	10%	23	12%
female-audacity-normal-101	269	142	53%	26	10%	29	11%
female-audacity-normal-102	404	212	52%	39	10%	42	10%
female-audacity-normal-103	242	126	52%	24	10%	26	11%
female-audacity-normal-104	858	444	52%	82	10%	85	10%
male-audacity-normal-100	172	158	92%	31	18%	32	19%
male-discord-high-0	301	147	49%	27	9%	32	11%
male-discord-high-1	133	56	42%	10	8%	17	13%
male-discord-high-2	263	114	43%	17	6%	29	11%
male-discord-high-3	493	234	47%	47	10%	51	10%
male-discord-low-0	235	111	47%	46	20%	26	11%
male-discord-low-1	398	153	38%	26	7%	42	11%
male-discord-low-2	481	223	46%	47	10%	51	11%
male-discord-low-3	831	386	46%	86	10%	82	10%
male-discord-normal-0	307	107	35%	25	8%	32	10%
male-discord-normal-1	309	123	40%	41	13%	32	10%
male-discord-normal-2	368	142	39%	24	7%	39	11%
male-discord-normal-101	2264	826	36%	201	9%	223	10%
		Średnia:	49%	Średnia:	10%	Średnia:	11%

Wykres 2: Wykres iloczynów rozmiaru skompresowanego pliku do pliku nieskompresowanego używając różnych algorytmów kompresji do rozmiaru pliku nieskompresowanego

Sygnały dźwiękowe wybrane do kompresji stanowiły nagrania ludzkiego głosu. Można było zauważyć, że sygnał otrzymany każdą metodą kompresji był percepcyjne identyczny do sygnału kompresowanego. Metoda kompresji bezstratnej była

w stanie zmniejszyć rozmiary plików średnio o połowę, a obie metody kompresji stratnej były w stanie zmniejszyć rozmiar pliku do ok. 10% ich oryginalnego rozmiaru.

3 Własny algorytm kompresujący

Opis sekcji

W tej części raportu opiszę proces tworzenia własnego algorytmu kompresującego. Następnie porównam jego wyniki w różnych stadiach rozwoju oraz z innymi algorytmami. Należy zauważyć, że jest to algorytm stratny i użyteczny wyłącznie, gdy określamy częstotliwość pierwszej harmonicznej. Traci on na tyle dużo danych, że chociażby odsłuchanie pliku dźwiękowego staje się niemożliwe.

Powód powstania

Podczas gromadzenia danych zauważyłem, że potrzebna jest tylko niewielka cześć danych z zebranych próbek. Pozostała część nie wnosi żadnej informacji. Wtedy powstał pomysł stworzenia własnego algorytmu kompresującego wyłącznie na nasz użytek, który w znacznym zmniejsza redundancję.

Pierwszy etap algorytmu kompresującego

Podczas części, gdzie zbieramy dane zdecydowaliśmy się na magazynowanie plików dźwiękowych o rozszerzeniu wave. Jego zaletą jest bezstratna jakość, wiąże się to z większą objętością zbioru danych. Plik wave jest w zasadzie wektorem danych, które układają się na kształt sinusoidalny. Nasz algorytm tworzący spektrogram używa szybkiej transformaty Furiera w celu rozbicia sinusoidy na kolejne częstotliwości harmoniczne. Częstotliwość głosu człowieka, praktycznie nigdy nie przekracza 500 Hz, dlatego wystarczy użyć próbkowania o częstotliwości 1000 Hz [1]. W tej części algorytmu zmieniam próbkowanie na 1000 Hz. Jako sposobu gromadzenia informacji, nie używam formatu wave. Został on zastąpiony rozszerzeniem .npy, gdzie trzymam już dwuwymiarową tablice wartości dźwięku (spektrogram).

Wykres 3: Sinusoidalny wykres odczytanego pliku wave (cały)

Wykres 4: Sinusoidalny wykres odczytanego pliku wave (od 0.2 do 0.22 sekundy)

Wykres 5: Spektrogram o próbkowaniu 22050 Hz, całe pasmo

Wykres 6: Spektrogram o próbkowaniu 22050 Hz, przycięty do 2000 Hz

Wykres 7: Spektrogram o próbkowaniu 22050 Hz, przycięty do 500 Hz

Wykres 8: Spektrogram o próbkowaniu 1000 Hz

Drugi etap algorytmu kompresującego

Na spektrogramie cisza nie ma wartości 0 DB. Są to wartości ujemne, które nie reprezentują żadnej informacji (w rozumieniu naszego projektu). Obcinam zatem zakres wartości dolną granicą równą 0. Następnie zauważyłem, że wszelkie szmery również stanowią nadmiarową redundancję. Między kolejnymi harmonicznymi znajduje się dużo bladych punktów. Sprawdzam jaka jest maksymalna wartość dźwięku i usuwam wszystkie wartości, które są poniżej 1/3 tej wartości. Taki parametr uznałem za najlepszy po dużej liczbie testów. Szukałem jak największej wartości, która nie zakłamuje danych. Mam teraz zakres wartości od 1/3 MAX_DB do MAX_DB. Aby wyzerować sporą część wykresu odejmuję od jego każdego punktu 1/3 MAX_DB. Końcowy zakres wartości jaki używałem mieści się między 0, a 2/3 MAX_DB. Należy zauważyć, że w dwuwymiarowej macierzy znajduje się bardzo dużo zer. Znacząco obniży to zajmowane miejsce w czasie kompresji ZIP. O tym napiszę w innej części raportu. Wartości dźwięku mieszą się między 0, a kilkudziesięcioma decybelami. Są one zapisane jako typ double. Zajmuje on 8 bajtów pamięci. Jest to duże marnotrawstwo pamięci. Zamieniłem tym danych w macierzy na bajtowe liczby całkowite typu unsigned (tylko wartości nieujemne). Dzięki zmianie typu zmiennych zaoszczędziłem 8-krotnie więcej pamięci.

Wykres 9: Spektrogram o uciętych wartościach

Wykres 10: Spektrogram o całkowitych wartościach

Trzeci etap algorytmu kompresującego

Kolejne harmoniczne spektrogramu nie są pojedynczymi liniami. Są one rozciągnięte wzdłuż osi OY. Wynika to specyfiki sprzętu nagrywającego. Człowiek tworzy dźwięki o konkretnej częstotliwości, lecz podczas próbkowania zniekształca się rozciągając na szersze spektrum. Stworzyłem algorytm ściskający potencjalną częstotliwość harmoniczną. Sprawdza on czy nie natrafił na ciąg liczb niezerowych. Sprawdza ich średnią arytmetyczną i nadpisuje środkowy wyraz wynikiem, zerując pozostałe. Dzięki takiemu uszczupleniu zbędne rozciągnięcie jest usuwane.

Wykres 11: Spektrogram o ściśniętych harmonicznych

Czwarty etap algorytmu kompresującego

Macierz danych ma niezwykle dużo zer (dzięki poprzednim etapom). Możemy wykorzystać tą informację i zastosować algorytm kompresujący. Zbędne jest trzymanie zera na całym bajcie. Użyję tutaj algorytmu kompresującego ZIP, który pobiera moją dwuwymiarową macierz i zapisuje ją w sposób zoptymalizowany. Aby zobrazować część jego działania posłużę się przykładem. Załóżmy, że mamy macierz

$$\begin{bmatrix} 4 & 9 & 7 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 3 & 5 \end{bmatrix}$$

Zamiast trzymania wszystkich danych, możemy zapamiętać tylko pierwszy i ostatni rząd. Wiemy, że pozostałe są zerowe. Taka kompresja przy naszej dwuwymiarowej tablicy, gdzie większość danych się wyzerowała jest idealnym wyborem. Na tym etapie kończy się działanie algorytmu kompresującego.

Wykres 12: Spektrogram o po archiwizacji ZIP (niezmieniony)

Porównanie kompresji kolejnych etapów

W tej sekcji porównam ilość zaoszczędzonego miejsca, między kolejnymi etapami kompresji. Własnego algorytmu kompresującego nie porównam z innymi algorytmami kompresującymi pliki dźwiękowe, gdyż takowe nie ma sensu. Jest to nieuczciwe spojrzenie na informację, dającą mi zasadniczą przewagę. Patrząc na plik dźwiękowy uniwersalnie, moja kompresja praktycznie całkowicie usuwa informację. Nie można chociażby otworzyć z niej pliku dźwiękowego. Służy on wyłącznie w celu uzyskaniu kolejnych harmonicznych. Należy jednak podkreślić, że nie trzymam surowej pierwszej harmonicznej. Powstały wykres jest nadal tym samym spektrogramem, lecz z mniejszą ilością danych, które były zbędne. Wszystkie dane liczbowe podane są w bajtach.

Tabela wyników

Nazwa pliku	Oryginał [B]	Etap 1 [B]	Etap 2 [B]	Etap 3 [B]	Etap 4 [B]	Wskaźnik
male-discord-normal-103.wav	215108	10388	2693	2693	283	99.87
male-discord-high-2.wav	268840	12440	3206	3206	340	99.87
male-twitch-normal-0.wav	1121212	51428	12953	12953	350	99.97
female-iphone-normal-102.wav	186518	18596	4745	4745	326	99.83
male-youtube-normal-0.wav	354016	16544	4232	4232	584	99.84
male-discord-normal-1.wav	315436	14492	3719	3719	365	99.88
male-discord-low-2.wav	491672	22700	5771	5771	367	99.93
male-discord-normal-0.wav	313388	14492	3719	3719	414	99.87
female-audacity-high-101.wav	339904	16544	4232	4232	293	99.91
female-audacity-low-102.wav	209848	10388	2693	2693	279	99.87
female-iphone-normal-103.wav	388028	37064	9362	9362	427	99.89
male-discord-low-3.wav	850072	39116	9875	9875	419	99.95
female-audacity-normal-104.wav	878124	41168	10388	10388	435	99.95
female-discord-low-100.wav	150560	8336	2180	2180	278	99.82
male-discord-normal-101.way	2317940	106832	26804	26804	329	99.99
female-iphone-normal-101.wav	160838	16544	4232	4232	315	99.8
female-iphone-high-100.wav	246190	22700	5771	5771	375	99.85
female-twitch-normal-0.wav	915500	43220	10901	10901	280	99.97
female-audacity-normal-100.wav	201716	10388	2693	2693	297	99.85
male-discord-high-0.wav	307244	14492	3719	3719	308	99.9
male-discord-high-3.wav	504472	24752	6284	6284	370	99.93
male-audacity-normal-100.wav	310352	14492	3719	3719	324	99.9
male-discord-normal-2.wav	376728	18596	4745	4745	361	99.9
female-audacity-normal-101.way	275168	14492	3719	3719	322	99.88
female-twitch-normal-1.wav	1140468	53480	13466	13466	397	99.97
female-iphone-low-101.wav	89824	8336	2180	2180	300	99.67
female-audacity-high-100.wav	228944	12440	3206	3206	290	99.87
female-discord-normal-100.wav	107960	6284	1667	1667	272	99.75
	311272	14492	3719	3719	345	99.75
female-audacity-low-101.wav	175168	8336	2180	2180	260	99.85
female-discord-high-100.wav						99.85
female-iphone-normal-100.wav	122192	12440	3206	3206	299	
male-discord-low-1.wav	406672	20648	5258	5258	425	99.9
male-discord-normal-102.wav	1245328	57584	14492	14492	340	99.97
male-discord-normal-4.wav	425936	20648	5258	5258	503	99.88
male-iphone-normal-100.wav	247786	22700	5771	5771	595	99.76
female-iphone-high-102.wav	221334	20648	5258	5258	302	99.86
female-iphone-high-101.wav	336022	30908	7823	7823	329	99.9
female-audacity-high-103.wav	216796	10388	2693	2693	281	99.87
female-audacity-normal-103.wav	247364	12440	3206	3206	292	99.88
male-discord-normal-3.wav	441388	20648	5258	5258	309	99.93
male-discord-low-100.wav	235920	12440	3206	3206	277	99.88
male-discord-high-1.wav	135212	6284	1667	1667	258	99.81
female-iphone-normal-104.wav	209046	20648	5258	5258	366	99.82
female-iphone-low-100.wav	139728	14492	3719	3719	310	99.78
female-audacity-normal-102.wav	412708	20648	5258	5258	335	99.92
male-youtube-normal-4.wav	629288	28856	7310	7310	324	99.95
female-audacity-high-102.wav	251528	12440	3206	3206	286	99.89
male-iphone-normal-101.wav	198806	18596	4745	4745	450	99.77
male-discord-low-0.wav	239660	12440	3206	3206	289	99.88
female-audacity-low-100.wav	279360	14492	3719	3719	322	99.88
					Średnia	99.87

Podsumowanie algorytmu

Należy podkreślić mimo tego, że etap drugi i trzeci mają taki sam rozmiar, etap trzeci wpływa na wynik etapu czwartego. Zmniejszenie ilości danych nie zmienia sposobu w jaki biblioteka numpy zapisuje dane. Zerowy punkt w macierzy cały czas zajmuje bajt miejsca. Natomiast kompresja ZIP wykorzystuje już te zero, zmniejszając jego redundancję. Gdyby usunąć trzeci etap, miejsce zajmowane po całej kompresji zwiększyłoby się.

Końcowy wynik jest ponad zadowalający. Kompresja na poziomie wskaźnika 99.87 jest niemożliwa do osiągnięcia dla innych algorytmów kompresujących dźwięk. Zostały one opisane w sekcji dotyczącej porównania różnych kompresji dźwięku.

Bibliografia

[1] Wikipedia. Artykul o aliasingu dla plików dźwiękowych. URL: https://en.wikipedia.org/wiki/Aliasing#Audio_example.