Ple	ease pr	int in	pen	•		
Wat	erloo Stu	dent ID	Numb	er:		
Wat	IAM/Que	st Logi	n Useri	d:		

Times: Thursday 2018-06-28 at 19:00 to 20:50 (7 to 8:50PM)

Duration: 1 hour 50 minutes (110 minutes)

Exam ID: 3810482

Sections: CS 350 LEC 001-004

Instructors: Lesley Ann Istead, Zille Huma Kamal

Examination Midterm Spring 2018 CS 350

Closed Book

Candidates may bring no aids (no calculators).

University of Waterloo CS350 Midterm Examination

Spring 2018

Student Name:	

Closed Book Exam No Additional Materials Allowed

CS 350 Spring 2018 Midterm
© 2018 University of Waterloo

Page 1 of 29

1. (18 total marks)

a. (1 marks)

How is concurrency achieved with a single CPU (i.e., P(processors) = 1, C(cores) = 1, and M(multithreading) = 1)?

Please initial:

b. (4 marks)

List the four reasons that context switches occur.

c. ((2	marks)	

How does the implementation of a semaphore differ from the implementation of a lock?

d. (2 marks)

A thread is a sequence of intructions. **thread_fork** creates a new thread. What sequence of instructions does the new thread execute and how does it know which sequence to execute?

e. ((3	marks)
· ·	v	mai ko j

Under what circumstances is it safe to fully delete a process or zombie process?

f. (2 marks)

getppid returns the PID of the current process's parent. What should **getppid** return if the process is an orphan, that is, has no living parent?

ø.	(2	marks)
۶.	_	mai ro

Why are user applications/processes isolated from the kernel?

h. (2 marks)

Give an advantage and disadvantage of dynamic allocation.

2. (9 total marks)

Consider the following pseudocode:

```
int volatile array[10];
Semaphore s = new Semaphore( blah, 0 );
int kernelFunction1( void * data, unsigned long i )
    array[i] = -i;
    thread_fork( "x", null, kernelFunction2, null, i );
}
int kernelFunction2( void * data, unsigned long i )
    array[i] *= -1;
   V(s);
int main()
    for ( int i = 0; i < 10; i ++ )
        thread_fork( "x", null, kernelFunction1, null, i );
    for ( int i = 0; i < 10; i ++ )
       P(s);
    int sum = 0;
    for ( int i = 0; i < 10; i ++ )
     sum += array[i];
  // HERE
```

- a. (1 mark) What is the total number of threads?
- b. (6 marks) Which of the following are possible values for array at position HERE? Clearly indicate Yes or No for each.
 - 0000000000
 - 0123456789
 - 9876543210
 - 1234567890
 - 999999999
 - 1111111111

c. (1 mark) List all of the possible values of sum at the position HERE.

d. (1 mark) Is there a race condition in this code?

3. (12 total marks)

A process calls **open**, a system call to open a file. While executing **sys_open** there is a timer interrupt causing a context switch. Draw the process user and kernel stacks up to and including the point of calling **switchframe**. Recall that timer interrupts are handled by the **timer_interrupt_handler**.

4.	(13 total marks) A system uses 48-bit physical addresses and 32-bit virtual addresses. The page size is 2 ¹² bytes.
a.	(1 mark) How many pages of virtual memory are there?
b.	(1 mark) How many frames of physical memory are there?
c.	(1 mark) How many bits are needed for the page offset?
d.	(1 mark) How many bits are needed for the page number, assuming a single-level page table is used?
e.	(1 mark) How many bits are needed for the frame number?

f. (4 marks) What is the virtual page number of th	e following addresses
0x0000 0000	
0x 0 000 0 ACE	
0x0110 EA5E	
$0x0000\ 00C5$	

g. (4 marks) Suppose an address space uses the first $0 - (2^{13} - 1)$ bytes of virtual memory. Which of the addresses from (f) are valid?

5. (8 marks)

getpid returns the PID of the current process. getpidof(procName) returns the PID of the process with name procName. Assume that process names are unique. Assume there exists a global process table, ProcTable, that is a linked list of all processes, and a lock procTableLock for that table. List the steps, in order, required to implement sys_getpidof. If no process with procName exists, return ENOPROC. Do not give pseudocode.

- 6. (11 total marks)
 - No-hold-and-wait is a method to prevent deadlocks in code. To implement this strategy, a new lock function called **try_acquire** is needed. If the lock is available, **try_acquire** acquires the lock and returns true. If the lock is NOT available, **try_acquire** does not acquire the lock or put the thread the to sleep, instead, it immediately returns false.
- a. (7 marks) List the steps of try_acquire. Do not call lock_acquire.

b. (4 marks) Consider the following pseudocode.

Note that FuncA and FuncB can be executed concurrently. Is there a deadlock in this code? If no, explain why. If yes, correct the code. If there exists any race condition, fix that also.

```
int total = 0;
int account = 0;
lock mutex = lock_create( "mutex" );
void FuncA(int acc)
    lock_acquire( mutex );
        for (i = 0 \text{ to } N)
             total ++;
    lock_acquire( mutex );
    account = acc;
}
void FuncB(int acc, int val)
    for ( i = 0 to N )
    {
        FuncA( acc );
        total = total - val;
    }
}
```

7.	(8 marks)
	A system uses a segmented implementation of virtual memory with 32-bit virtual and physical addresses. Each address space has 4 segments.
a.	(2 marks) How many bits are used for the segment offset and segment number?
b.	(2 marks) For each segment, the MMU has a relocation and limit register. If we wanted to support read-only segments, what changes to the MMU would be required?
c.	(2 marks) How many memory accesses does it take to translate virtual address 0xDEADBEEF to a physical address?
d.	(2 marks) On a context switch between processes, what changes to the MMU must the kernel make?

e. ((BONUS	2	marks'	١
· .	DOLIOD	_	mar is	

On a context switch between threads of the same process, what changes to the MMU must the kerner make?