RSA*Conference2016

San Francisco | February 29 – March 4 | Moscone Center

Breaking Closed Systems with Code-Signing and Mitigation Techniques

Gavin Hill

Director of Threat Intelligence Venafi

Learning Objectives

- Code Signing Overview
 - Common use cases (today & tomorrow)
 - Comparing open systems with closed systems
- Threat Landscape
 - Underground market (Theft & Services)
 - Bypassing security controls
 - The Carbon problem
- Mitigating Code Signing abuse

Why Code Signing?

Can I trust the code?

Has the code been tampered with since it was signed?

Code Signing Process

Hash of code created with hashing algorithm

Private key used to sign hash

Package bundled together with certificate

Common Use Cases

Software distribution

Container Security

Execution of scripts

- Start / Stop services
- Deploy code

Open Systems

- ✓ Software issuers are trusted by default with a vetting process.
- ✓ Users are given the choice to trust a publisher or not


```
Fackage Arch

Controllings

Color of the Col
```


Closed Systems

- ✓ Publisher certs are not trusted, only manufacturer
- ✓ Doesn't provide ways to sideload apps

Legally DMCA prohibits breaking any signature schema

Hackers do it anyway!

- Tesla hack -> Weak encryption
- GM/Chrysler -> Firmware vulnerabilities to bypass validation
- iOS -> Buffer overflow to root / jailbreak devices
- Weak hashing or key length

RSA Conference 2016

Rise of Attacks on Trust

2011

Attackers open

new front with

assault on

Certificate

Authorities

Uping

the ante

COMODO
Creating Trust Online*
Odigicert' DigiNotar

#RSAC 2015

2014

Advanced

• 100%

Responded to Attacks

Broken Trust

 Certificate Price Increase on Underground

 Digitally-signed Malware Doubling Every Quarter

• TLS Used to Hide Activity

MITM Attacks

2013

Mainstream usage as an attack vector

SSH Key Theft

 CA Compromise to Enable "MITM" Attacks

Server Key Theft

Weak Crypto Exploits

 Code Signing Certificate Theft Key and Certificate Theft

SSL & SSH
 Vulnerabilities

 Sold on the Underground Market

Own the Network

Multi-year Campaigns

demonstrate powerful weapon Blueprints

2010

Stuxnet and

Duau

Everyday Attack Method

2012

Can any

kev or certificate

be trusted?

9

RS∧Conference2016

Marketplace for Stolen Certificates

Underground Certificates-as-a-service (CaaS)

Underground Certificates-as-a-service (CaaS)

Blind Trust in Signed Code

Domain Validated (DV) Certificate

- Easily acquired
- Inexpensive or free
- Very little validation performed

Extended Validation (EV) Certificate

- Rigorous process to acquire
- Expensive
- Extensive validation

"Programs signed by an EV code signing certificant immediately establish reputation reputation ourselves up for failure? reputation exists for Are we setting ourselves." Microsoft

Ref: https://blogs.msdn.microsoft.com/ie/2012/08/14/microsoftsmartscreen-extended-validation-ev-code-signing-certificates/)

Signed-Malware Continues to Increase

The Ugly Truth – Revocation Doesn't Work l

- Oct 1, 2015 -> Sign malware with stolen code signing certificate with timestamp Oct 1, 2015
- Nov 1, 2015 -> Code signing certificate revoked
 - Malware can't run on systems that check CRL
- Dec 31, 2015 -> Code signing certificate expires and is removed from CRL
- Jan 1, 2016 -> malware runs again as trusted on systems

Signed Malware

CCSS FORUM

Common Computing Security Standards									
Certificate subscriber	Certificate Issuer	Serial Number	Validity Period	Date Reported	Date Revoked	VirusTotal Link			
PRABHAKAR NARAYAN	SafeScrypt	19 13 22 a0 02 00 f7 93	09/29/2013 to 09/29/2015	02/10/2016		<u>Link</u>			
Dmitrij Emelyanov	Thawte	74 73 d9 54 05 d2 b0 b3 a8 f2 87 85 ce 6e 74 ca	01/07/2016 to 01/07/2017	02/05/2016		<u>Link</u>			
CONESOFT DO BRASIL LTDA ME	Thawte	3d c1 d8 df ae 53 92 16 eb ac 13 54 07 69 8a 38	03/30/2015 to 03/30/2016	02/04/2016		<u>Link</u>			
济南中信达 信息技术有 限公司	WoSign	57 8a f0 ea 0b 0d 05 4c fb 47 74 b1 4d 15 3f ba	12/10/2015 to 01/10/2017	02/04/2016		<u>Link</u>			
Vladimir Ignatev	Thawte	0d 2e	02/21/2014 to 02/22/2014	02/04/2016		<u>Link</u>			
MADERA	DigiCert	04 d6 b8 cc 6d ce 35 3f cf 3a e8 a5 32 be 72 55	12/01/2015 to 12/01/2016	01/12/2016	01/13/2016	<u>Link</u>			

Note the expiration date of the certificates used to sign the malware and when it was discovered

The Carbon Problem

Bypassing Security Controls

Year	Organization	Attack	Source
2012	Adobe	Compromised code signing server used to sign malware	Compromised code signing server
2013	Bit9	Stolen code-signing certificate used to sign malware	Stolen from developer machine
2014	НР	Stolen code-signing certificate used to sign malware	Stolen from developer machine
2015	Dell	Sign fake certificates for MITM attacks or malicious code	eDellRoot self-signed CA installed on all new Dell machines*
2016	SBO Invest	multiple code signing certificates used to sign Spymel	Stolen code signing certificates

Who's Responsible for Protecting the Keys?

Responsible for Management of Code-Signing Certificates

Protecting Against a Compromise

CONTROLS IN PLACE TO ENSURE CODE-SIGNING PROGRAM IS NOT AT RISK OF A COMPROMISE

At least

70% don't have effective controls in place

The Problems with Closed Systems

- Not using signatures at all to validate updates (Automotive, Embedded Devices).
- Signing Keys/Certificates are blindly trusted and can't be revoked in case of CA/key compromise (IoT).
- Closed System CAs are not subjected to the usual public CAs security audits (WebTrust only has an audit criteria for EV Code Signing issuing CA).

How Do Attacks on Closed Systems Happen

- Exploiting the code signing process.
- Exploiting the update/upgrade process:
 - MITM attacks when updates are retrieved (either exploit TLS connection validation issues in existing client libraries)
 - Exploit signature validation vulnerabilities during manual update process
- Exploit another vulnerability in the firmware to get access to the device and then use the upgrade/update path to gain further access.

RS∧°Conference2016

3 Suggested Steps To Mitigating Code Signing Abuse

Mitigating Code Signing Abuse – Step 1

- Find out what signed code you have
- Find out who is performing the code-signing in your organization
- Find out where code-signing certificates are stored and who has access to them

Mitigating Code Signing Abuse – Step 2

TRANSPARENCY

Start publishing code-signing usage

Require CAs to publish code signing certificate issuance

Mitigating Code Signing Abuse – Step 3

- Establish security controls to limit access to code signing certificates
- Identify any misuse or irregularities for code signing practices within your organization
- Validate:
 - ✓ What code is being signed
 - ✓ Who is signing it
 - ✓ Where it is being signed
 - ✓ When it was signed

Gartner

"Certificates can no longer be blindly trusted."

RSA*Conference2016

Questions?

