IST ID: Nome (1º e último):	
-----------------------------	--

Introdução à Arquitetura de Computadores Licenciatura em Engenharia Informática e de Computadores

Ana lativa 2022/24 2º MARAE Tosta Tin

Duração: 45 minutos Proibido o uso de calculadora. Pode consultar a reference card do RISC-V 32, fornecida pelos docentes.
Representação em linguagem máquina MIPS.
Represente em linguagem máquina RISC-V 32 bits as seguintes instruções assembly:
a) add t0, a1, s3
Resultado (em hexa):
Cálculos:
b) addi t3, t3,16
Resultado (em hexa):
Cálculos:
Calculos.
c) lui s0, 0x1bcde
Resultado (em hexa):
Cálculos:
d) Qual o intervalo de distâncias, em Bytes, que podem ser cobertos por uma instrução "branch"? Mostre o
cálculos que efetuar.
Resultado (em decimal):
Cálculos:
2. Circuitos lógicos combinatórios

Pretende-se projetar um circuito lógico que soma um número de 2 bits (a₁ a₀) com outro número de 1 bit (b₀) com um resultado de 3 bits. Ambas parcelas e o resultado estão representados em binário sem sinal.

a) Determine a tabela de verdade das funções f2, f1, f0, correspondentes aos bits da saída do circuito (do mais significativo ao menos significativo):

a1	a0	b0	f2	f1	f0
0	0	0			
0	0	1			
0	1	0			
0	1	1			
1	0	0			
1	0	1			
1	1	0			
1	1	1			

b)	·	-	=	-	orodutos, em que cada parcela dessa n ou não estar negadas).
Result	ado (expressão lógica):				
Cálculos:					
c)	Determine um circuito le número arbitrário de po		ma) para a fu	nção f0 usan	do apenas um descodificador e um
d)	Simplifique o máximo p	ossível a exp	ressão $aar bar c$ +	$ab\bar{c} + abc$	
Result	ado (expressão lógica):				
Cálculos:					
Preenc preenc		le um Latch S ndica o valor			as portas NOR), em que, no para os instantes imediatamente
		S	R	Q(n)]
		0	0		
		0	1		
		1	0		-
	nceitos fundamentais se a seguinte afirmação	1 e é verdadeira	1 a ou falsa, e ju	I Istifique em 3	J 0 palavras ou menos:
				-	ı circuito lógico (em que o desempenho de as entradas até às saídas)"
ou pen	ormance e determinado	pelo allaso II	<u>a propagação</u>	do sinai desi	de as entradas até as saidas)

Resolução

1.a) 0x 013582b3

Cálculos:

Opcode 0110011, funct3: 000, funct7: 0000000, ra: 01011 (a1 = x11), rb: 10011 (s3 = x19), rd: 00101 (t0 = x5) Combinando tudo: 0000000 10011 01011 000 00101 0110011 (base 2)

1.b) 0x 010e0e13

Cálculos:

Opcode: 0010011, Funct3: 000, Imm: 000000010000, ra: 11100 (x28 = t3), rd: 11100 (x28 = t3)

Combinando tudo: 000000010000 11100 000 11100 0010011 (base 2)

1.c) 0x 1bcde437

Cálculos:

Opcode: 0110111, rd: 01000 (x8 = s0), imm: 0x1bcde

1.d) [-4096, 4094]

Cálculos:

- 12 bits para imediato com sinal (em complemento de 2) => valores entre [-211, 211-1] = [-2048, 2047]

- Cada valor endereça uma half-word (2 bytes), logo a instrução permite cobrir endereços relativos (em bytes) entre [-2048x2, 2047x2] = [-4096, 4094]

2.a)

a1	a0	b0	f2	f1	f0
0	0	0	0	0	0
0	0	1	0	0	1
0	1	0	0	0	1
0	1	1	0	1	0
1	0	0	0	1	0
1	0	1	0	1	1
1	1	0	0	1	1
1	1	1	1	0	0

2.b)
$$(\overline{a1} \ a0 \ b0) + (a1 \ \overline{a0} \ \overline{b0}) + + (a1 \ \overline{a0} \ b0) + (a1 \ a0 \ \overline{b0})$$

2.c)

2.d)
$$a\bar{b}\bar{c} + ab\bar{c} + ab\bar{c} = a(\bar{b} + b)\bar{c} + ab\bar{c} = a\bar{c} + ab\bar{c} = a(\bar{c} + b\bar{c}) = a((\bar{c} + b)(\bar{c} + c)) = a(\bar{c} + b) = a\bar{c} + ab\bar{c}$$

S	R	Q(n)
0	0	Q(n-1)
0	1	0
1	0	1
1	1	0

4. Verdade. Por exemplo, se somarmos N bits encadeando N somadores de 1 bit, o resultado do bit mais significativo terá de aguardar pela propagação dos resultados por todos os somadores anteriores.