Statistical learning - Regression

Rita Almeida

PhD course 3045, VT 2018

Linear regression

Describes the relationship between an outcome variable Y and a set of predictor variables Xs:

$$Y = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \dots + \beta_p X_p + \epsilon, \quad \epsilon \sim N(0, \sigma^2)$$

This model is usually fitted by using least squares.

Minimizing the residual sum of squares:

RSS =
$$\sum_{i=1}^{n} (y_i - \beta_0 - \sum_{j=1}^{p} \beta_j x_{ij})^2$$

RSS =
$$\sum_{i=1}^{n} (y_i - \beta_0 - \beta_1 x_i)^2$$

Prediction accuracy and interpretability

Alternative fittings can be better.

- Prediction accuracy
 - Bias: if the relations are approximately linear, least squares have low bias.
 - Variance:
 - if $n \gg p$ least squares estimates have low variance;
 - if n not much larger than p least squares estimates can have large variance, leading to overfitting and poor predictions.
 - Methods constraining or shrinking the estimates can perform much better.

Interpretability

- Several Xs might not be associated with Y and just add to the complexity of the model.
- Methods for automatic variable selection can lead to much more interpretable models.

Some alternatives

- Subset selection:
 - 1. Identify a subset of predictor variables.
 - 2. Use least squares on the reduced set of variables.
- Dimension reduction: creating new (fewer) predictors from the original ones.
 - Project the original p predictors to a subspace with dimensions m, with m < p.
 - 2. Use least squares on a model with the new variables.
- Shrinkage or regularization: fitting a model with all p predictors but using a method that shrinks the estimates to 0.
 - Reduces variance of the estimates.
 - Can select variables by shrinking some estimates to 0.

Ridge regression

The least squares procedure estimates the parameters by minimizing the residual sum of squares:

RSS =
$$\sum_{i=1}^{n} (y_i - \beta_0 - \sum_{j=1}^{p} \beta_j x_{ij})^2$$

Ridge regression minimizes the same function plus a shrinkage penalty:

$$\sum_{i=1}^{n} (y_i - \beta_0 - \sum_{j=1}^{p} \beta_j x_{ij})^2 + \lambda \sum_{j=1}^{p} \beta_j^2$$

with tuning parameter $\lambda \geq 0$.

Or in another formulation, minimizing RSS subject to:

$$\sum_{i=1}^p \beta_j^2 \le s$$

Ridge regression

- $\lambda = 0$ least square estimates
- $\lambda \to \infty$ all estimates approach 0
- An appropriate λ has to be set!
 - Cross-validation

Note: use standardized predictors.

$$\widetilde{\mathbf{x}}_{ij} = rac{\mathbf{x}_{ij}}{\sqrt{rac{1}{n}\sum_{i=1}^{n}(\mathbf{x}_{ij} - \bar{\mathbf{x}}_{j})^{2}}}$$

Example:

Ridge regression

- Prediction accuracy:
 - RR results in increased bias but decreased variance.
 - RR works well when least squares estimates have high variance.

Simulation, n = 50, p = 45

Black: squared bias

Green: variance

Pink: test mean squared error Dashed: minimum possible MSE

Figure adapted from James et al.

Interpretability:

- RR indicates important variables and is computationally faster than variable selection.
- However the model always keeps all the p variables!

Lasso

Lasso: least absolute shrinkage and selection operator

- Lasso is similar to RR, but it does variable selection.
 - Some parameters will be shrunk to 0.

Lasso minimizes RSS plus a different shrinkage penalty:

$$\sum_{i=1}^{n} (y_i - \beta_0 - \sum_{j=1}^{p} \beta_j x_{ij})^2 + \lambda \sum_{j=1}^{p} |\beta_j|$$

with tuning parameter $\lambda \geq 0$.

Or in another formulation, minimizing RSS subject to:

$$\sum_{j=1}^p |\beta_j| \le s$$

Ridge regression versus Lasso

- Lasso is expected to be better when a small number of predictors have large effects and the rest has almost no effect.
- Ridge regression is expected to be better when many predictors are all weakly related to the outcome variable.

Contents lists available at ScienceDirect

Schizophrenia Research: Cognition

journal homepage: www.elsevier.com/locate/scog

Research Paper

Model selection and prediction of outcomes in recent onset schizophrenia patients who undergo cognitive training

Ian S. Ramsay^{a, a}, Sisi Ma^b, Melissa Fisher^a, Rachel L. Loewy^c, J. Daniel Ragland^d, Tara Niendam^d, Cameron S. Carter^d, Sophia Vinogradov^a

- a University of Minnesota, Department of Psychiatry, United States
- ^b University of Minnesota, Department of Medicine, United States
- ^c University of California, San Francisco, Department of Psychiatry, United States
- d University of California, Davis, Department of Psychiatry, United States

Example

Question: what are the predictors of training improvements?

- Computerized training:
 - aiming at improving speed and accuracy auditory processing, while performing auditory and verbal working-memory tasks;
 - 8 weeks, 1 hour/day, 5 days/week;
 - adaptive training to 80-85% accuracy.
- ► Subjects: 43 individuals with recent onset of schizophrenia

Example - regression analysis

Predictor variables:

GFR: Global functioning role

GFS: Global functioning social

Strauss: social contact, hospitalizations, engagement in school or work

FSIQ: verbal reasoning

Measure	Linear regression					
	Estimate	Std. error	t-Value	<i>p</i> -Value		
(Intercept)	- 0.84	1.49	- 0.56	0.58		
Global cognition	-0.21	0.13	- 1.67	0.11		
Symptoms	-0.001	0.01	-0.28	0.78		
GFR	-0.02	0.04	- 0.6	0.55		
GFS	- 0.09	0.07	-1.25	0.22		
Strauss	0.06	0.05	1.18	0.25		
Duration	-0.001	0.004	-0.203	0.84		
Age	-0.02	0.03	- 0.56	0.58		
FSIQ	-0.003	0.01	-0.41	0.68		
Gender	0.18	0.16	1.1	0.28		
Education	0.13	0.05	2.53	0.02		

Regression analysis with all the variables - model not significant.

Example - Lasso analysis

- \blacktriangleright λ determined by 10-fold cross validation.
- Reduced and more predictive model.

Measure	A) LASSO	B) Linear regression				
	Coefficient	Estimate	Std. error	t-Value	<i>p</i> -Value	
(Intercept) Global cognition Gender Education	- 0.74 - 0.16 0.05 0.07	- 1.58 - 0.25 0.18 0.12	0.58 0.08 0.13 0.04	- 2.72 - 2.94 1.37 3.05	0.01 0.01* 0.18 0.004*	