Corso di Laurea in Informatica

Architettura degli Elaboratori B - Laboratorio

Esercitazione 1: cambiamenti di base e aritmetica binaria

Esercizio 1

Un elaboratore esprime gli interi su 16 bit. Scrivere le rappresentazioni in binario puro dei numeri 256_{10} , 10_{10} , 27_{10} , 32768_{10} e 65536_{10} . Sono tutti rappresentabili su 16 bit ?

Esercizio 2

Convertire i seguente numeri binari, in esadecimale ed in ottale rispettivamente:

- 1. 101101100010;
- 2. 1011101010101101111.

Esercizio 3

Convertire il seguente numero esadecimale in binario:

AE8F.

Esercizio 4

Convertire il seguente numero decimale, in binario: 234, 2. È un numero finito?

Esercizio 5

Sia dato il numero binario frazionario 101110000,101. Convertirlo in base 8, in base 16 e in base 10.

Esercizio 6

Consideriamo le basi 2, 8, 10 e 16. Dati i seguenti numeri (in una base) convertirli in tutte le altre basi.

- 26.5_{10}
- 253.2₈
- 1*A*.8₁₆
- 10111.11₂

Esercizio 7

Una calcolatrice esprime gli interi su 8 bit utilizzando la rappresentazione in binario puro. Scrivere le rappresentazioni di A=102 e B=76 ed eseguire in binario la somma A+B, segnalando l'eventuale overflow.

Esercizio 8

Considerare la rappresentazione di numeri interi in binario puro su 9 bit. Scrivere le rappresentazioni di A=328 e B=202 ed eseguire in binario la somma A+B, segnalando l'eventuale overflow.

Esercizio 9

Indicare quali delle seguenti affermazioni sono vere. Con 8 bit è possibile rappresentare:

1. tutti gli interi non negativi minori o uguali a 255 in binario puro;

- 2. tutti gli interi non negativi minori o uguali a 255 in modulo e segno;
- 3. tutti gli interi compresi nell'intervallo [-256, +255] in complemento a due;
- 4. tutti gli interi compresi nell'intervallo [-127, +127] in complemento a uno.

Esercizio 10

Definire gli intervalli di rappresentazione, il min e max numero relativo rappresentabile su 16 bit considerando le seguenti codifiche:

- in modulo e segno
- in complemento a uno
- in complemento a due
- in eccesso 2^{15}

Esercizio 11

Indicare quanti sono i bit necessari per rappresentare in complemento a due i numeri $A = +129_{10}$ e $B = (-271_{10})$. Riportare la codifica in binario dei due numeri utilizzando lo stesso numero minimo di bit.

Esercizio 12

Un elaboratore esprime gli interi su 8 bit. Scrivere le rappresentazioni dei numeri 12, -10, -128 e 127:

- 1. in modulo e segno
- 2. in complemento a uno
- 3. in complemento a due
- 4. in eccesso 2^7