Estimation of all-cause excess mortality by age-specific mortality patterns of COVID-19 pandemic in Peru in 2020

Peter Lloyd-Sherlock¹

Ramón Martínez²

Shah Ebrahim³

Martin McKee⁴

Enrique Acosta⁵

Lucas Sempé⁶

30 March 2021

Summary

Background

All-cause excess mortality is a comprehensive measure of the combined direct and indirect effects of COVID-19 on mortality. Estimates are usually derived from Civil Registration and Vital Statistics (CRVS) systems, but these do not include non-registered deaths, which may be affected by changes in vital registration coverage over time.

Methods

We use quasi-Poisson models to estimate excess registered mortality in Peru during the first wave of the COVID-19 pandemic during 2020. We use logistic mixed-effects

¹ University of East Anglia

 $^{^{2}}$ Pan American Health Organisation

³ London School of Hygiene and Tropical Medicine

⁴ London School of Hygiene and Tropical Medicine

 $^{^{\}rm 5}$ Max Planck Institute for Demographich Research

⁶ University of East Anglia - email:l.sempe@uea.ac.uk

models to estimate the completeness of the new online registration system (SINADEF) at this time.

Findings

We estimate that registered mortality nationally underestimates mortality by $30\cdot1\%$ (95% CI $28\cdot9\%$ - $32\cdot7\%$). We estimate total all-cause excess mortality during the period of analysis at 142,875 (95% CI 127,163 - 155,739) of which 99,814 (95% CI 85,605 - 110,738) were captured by the vital registration system. Deaths at age 60 and over accounted for $74\cdot9\%$ (95% CI $74\cdot9\%$ - $75\cdot0\%$) of total excess deaths, while there were fewer deaths than expected in younger age groups. Lima region, on the Pacific coast and including the national capital, accounts for 76,158 (95% CI 72,740 - 79,212) excess deaths, while the regions of Apurimac and Pasco account for less than 300 excess deaths.

Interpretation

Estimating excess mortality in low- and middle-income countries (LMICs) such as Peru must take under-registration of mortality into account. Combining demographic trends with data from administrative registries reduces uncertainty and measurement errors. In countries like Peru, this is likely to produce significantly higher estimates of excess mortality than studies that do not take these effects into account.

Funding

None.

Research in context

Evidence before this study

We searched PubMed, Google Scholar, medRxiv, and SocArXiv for studies published up to December 08, 2020, using the key words "excess mortality" and "underregistration" or "subregistration," combined with "coronavirus" or "SARS-CoV-2" or "COVID-19." We found studies estimating cumulative mortality in high-income countries in Europe and North America solely based on official death counts. We found few studies computing overall COVID-19 mortality in LMICs. Prior research shows a significant percentage of under-registration of deaths in LMICs.

Added value of this study

To our knowledge, we provide the first estimate of excess mortality associated with COVID-19 in a LMIC accounting for both registered and unregistered deaths. We develop an analytical strategy to address common challenges faced by LMICs, such as low completion rates of death certificates, missing data, and inconsistency and variability of data across regions and age groups.

Implications of all the available evidence

Our approach shows the importance of accounting for unregistered deaths based on demographic trends to generate robust estimates of excess mortality associated with COVID-19. It suggests that previous reports of COVID-19 related mortality in Peru were substantial underestimates.

Introduction

Monitoring mortality is an essential part of the public health response to the COVID-19 pandemic. In many countries, accurate COVID-19 mortality monitoring has been hindered by failure to capture all deaths and to attribute causes of deaths to those that are recorded.¹ Disentangling the contribution of COVID-19 to overall mortality is especially challenging, as many people who die from COVID-19 have other conditions, such as cardiovascular disease and diabetes.² A further complication is the decision of some countries to apply an arbitrary maximum cut-off time between a positive COVID-19 test and death when deciding whether to attribute mortality to this cause.³ Also, it is widely documented that the pandemic has led to large numbers of deaths not directly attributable to COVID-19 (either exclusively or in part), due to the wider impacts of responses, including reduced access to treatment for other conditions.⁴,5 Conversely, there is evidence that the pandemic has, to a limited extent, reduced expected rates of mortality from causes such as road traffic injuries and homicides during lockdowns.6

In the absence of good data on these different mortality effects, robust estimation of all-cause excess mortality offers the most complete and reliable approach for gauging the overall impact of the pandemic on mortality in a defined population over a fixed period of time. Excess mortality refers to the number of additional deaths occurring over a time period when specific conditions apply (in this case, the presence of COVID-19), compared to the number of deaths we might reasonably expect over the same period based on historical data. It captures deaths directly and indirectly attributed to COVID-19 and corresponding responses, to provide an estimate of the overall mortality effect of the pandemic as it unfolds.

Excess mortality estimates have been computed for high-income countries based on registered deaths by surveillance agencies^{9,10}, academia¹¹⁻¹⁴ and news agencies.¹⁵⁻¹⁸ However, these types of data are often incomplete or inaccurate, especially in many low and middle-income countries (LMICs). The Global Burden Disease (GBD) project estimates that only 64% of global deaths were registered in 2015.¹⁹ In most LMICs, responsibility for mortality data is often divided between different national and subnational agencies.²⁰ This can cause extended delays in national reporting and discrepancies between different sources.^{12,21} Disaggregation of summary data by different geographical areas or demographic groups is usually very limited.²² These shortcomings in mortality data explain a lack of published studies of excess mortality in LMICs.^{23,24}

We analyse excess mortality associated with the COVID-19 pandemic in Peru during 2020. This country is well-suited to our analytical approach. Like much of Latin America, Peru has experienced high levels of COVID-19 mortality. Official sources report 37,723 deaths directly caused by COVID-19 between 18 March and December 31 2020. However, these only include cases with positive COVID-19 test results and rates of testing in Peru have been low compared to other Latin American countries. Also, many tests have used low sensitivity devices, potentially generating false negatives. On the other hand, Peru does place anonymised individual level data on mortality and COVID-19 in the public domain. Also, the progressive implementation of electronic registration of deaths in recent years enables comparisons of spatial and temporal trends in death registration. Other studies show that unregistered mortality tends to be more prevalent among older people and in poorer regions. Other studies are not report sub-national data disaggregated by age.

Potentially, our analytical design could be applied to other countries where mortality registration and cause of death data are incomplete. It may offer a valuable contribution towards assessing the true global impact of the COVID-19 pandemic.

Data and methods

Data

We combine several demographic data sources to forecast mortality rates. These sources are (i) population projections from Peru's National Institute of Statistics and Information (INEI, for its acronym in Spanish) for 2020 disaggregated by region and age group (the most recent census was in 2017); (ii) crude mortality rate estimates disaggregated by region and year from 2015 to 2020 from INEI; (iii) individual-level registered deaths by region and age since 2017 from the Sistema Informático Nacional de Defunciones (SINADEF); and (iv) individual-level registered COVID-19 deaths by region and age in 2020 from the Ministry of Health (MoH).

Excess mortality methods

Our approach to estimate excess mortality decomposes into three terms, namely 1) excess registered deaths, 2) excess unregistered deaths, 3) unregistered COVID-19 deaths. Figure 1 summarises data sources used (squares), analysis performed (diamonds) and different outputs (circles).

Figure 1: Flowchart: Data, analysis and outputs

To estimate the first term, excess registered deaths, we fit quasi-Poisson regressions to weekly deaths since 2017 by age-groups and region, as follows:

$$(1)log(\text{Deaths}_i) = \beta_0 + \beta_1 \text{COVID-19} + \beta_2 \epsilon_{t-1} + \sum \beta_k \phi_k(\text{Week}) + \log(\text{Pop}) + \epsilon_t$$

where we fit a natural cubic B-spline function $\phi_k(\text{Week})$ on weeks to address long-term trends and seasonality. Additionally, we use lagged residuals ϵ_{t-1} and the log of population in 2020 as an offset. Finally, we compute a dichotomous variable COVID-19 starting in the week corresponding to March 15 2020 as the first registered death of COVID-19 in the country.

Secondly, we compute the population attributable fraction³¹ based on the relative risk RR from parameter β_1 in equation (1), as follows:

$$(2)\widehat{\text{Excess}}_{\text{Reg}} = (RR - 1)/RR * n$$

where n is the weekly number of deaths,³² computed cumulatively over time. To estimate our second term, we predict the logit of death registration completeness for years 2017 and 2019 (years for which data are available).²⁹ We exploit variability in mortality rates, population aged 60 years and over and rurality to address potential differences in terms of registration completeness. We model random-effects regressions by region using the equation:

$$\begin{aligned} & \operatorname{logit}(\operatorname{Reg\ complete}_{jk}) = \beta_0 + \beta_1 * \operatorname{RegCDR} + \beta_2 * \operatorname{RegCDR}^2 + \\ & \beta_3 * \operatorname{complete} < 5 + \beta_4 * \operatorname{P}_{60+} + \beta_5 * \operatorname{log}(5\operatorname{q0}) + \beta_6 * \operatorname{LPG} + \beta_7 * \operatorname{k} + \epsilon_{jk} + \gamma_j \end{aligned}$$

where RegCDR and RegCDR² are the Crude Death Rates based on the Registration System, complete < 5 is the completeness registration rate for infants, log(5q0) is the

logarithm under-five mortality rate and P_{60+} represents the fraction of the population at 60 years and over. LPG is the share of households that use liquefied petroleum gas (LPG) for cooking, which is an acceptable proxy for rurality in Peru, where 81.8% of rural households primarily use solid fuel compared to 9.8% of urban households, who typically cook with LPG.³³ Rurality is an important factor to explain delays and underregistration of deaths as the system requires access to internet and computers. Additionally, ϵ_{ik} in the error term and γ_i is the region-level random effect.

Then, we compute the completeness of deaths registration, Completeness using the inverse logit of the predicted values from equation (3) and $Excess_{Reg}$ from equation (2), as follows:

$$(4)\hat{\mu}_{\text{Deaths}_{\text{Not reg}}} = (1 - \text{Completeness}) * \sum \widehat{\text{Excess}}_{\text{Reg}}$$

The third term, unregistered COVID-19 deaths, is computed to correct for situations where the proportion of cumulative cases of COVID-19 exceeds registered deaths for that period. It follows a deterministic approach conditional on excess registered deaths being lower than officially registered COVID-19 deaths for each region and specific age-group as follows:

$$(5)\hat{\mu}_{\text{Deaths}_{\text{COVID not reg}}} = \begin{cases} & \hat{\mu}_{\text{Deaths}_{\text{COVID Reg}}} - \hat{\mu}_{\text{Excess}_{\text{Reg}}} & \text{if } \hat{\mu}_{\text{Deaths}_{\text{COVID Reg}}} > \hat{\mu}_{\text{Excess}_{\text{Reg}}}, \\ & & \text{if } \hat{\mu}_{\text{Deaths}_{\text{COVID Reg}}} < \hat{\mu}_{\text{Excess}_{\text{Reg}}}. \end{cases}$$

Finally, we estimate total excess deaths for different scenarios.

A first scenario is when there is no solid evidence suggesting under-registration of deaths for some regions or age groups and, therefore, no scope to expand registration over time. This usually occurs in areas and age groups with very small populations. In those cases $\hat{\mu}_{\mathrm{Deaths}_{\mathrm{Not\,reg}}}$ is set to 0 as, if not, they would add negative values to the sum. A second scenario is related to younger age groups in some regions that have not be significantly affected by COVID-19 mortality. This case corresponds to when β_1 in equation (1) is not statistically significant and therefore we set $\mathrm{Excess}_{\mathrm{Reg}} = 0$. A third scenario is when some groups have fewer deaths than expected, due to effects such as reduced road traffic injuries caused by lockdowns. In these groups $\mathrm{Excess}_{\mathrm{Reg}} \leq 0$ and $\hat{\mu}_{\mathrm{Deaths}_{\mathrm{Not\,reg}}} = 0$ are taken account of in our final estimation. A fourth scenario is when models underestimate the official number of deaths such as COVID $\mathrm{Reg} > \mathrm{Excess}_{\mathrm{Reg}}$. In this case, we use the first as registered deaths. Equation (6) summarises the estimation of $\mathrm{Excess}_{\mathrm{T_{min/mean/max}}}$ as follows:

$$(6)\widehat{\text{Excess}}_{\text{T}_{\text{min/mean/max}}} = \widehat{\text{Excess}}_{\text{Reg}_{\text{min/mean/max}}} + \hat{\mu}_{\text{Deaths}_{\text{Not reg}}} + \text{Deaths}_{\text{COVID Not Reg}}$$

Finally, we estimate total mortality during 2020 by adding $\widehat{\text{Excess}}_{T_{\text{min/mean/max}}}$ from equation (6) and the counterfactual difference of SINADEF deaths during 2020 and $\widehat{\text{Excess}}_{\text{Reg}_{\text{min/mean/max}}}$, adjusted by Completeness as follows:

$$(7) \text{Total}_{\widehat{Mortality} \ 2020} = \widehat{\text{Excess}}_{\text{T}_{\min/\text{mean/max}}} + ((\sum_{week=1}^{52} \text{SINADEF}_{2020} - \widehat{\text{Excess}}_{\text{Reg}_{\min/\text{mean/max}}}) * (1 + (\sum_{week=1}^{52} \text{SINADEF}_{2020} - \widehat{\text{Excess}}_{\text{Reg}_{\min/\text{mean/max}}})$$

To address the relative magnitude of mortality in 2020, we compute all cause age-standardised death rates per 1,000 people derived from the estimated total excess deaths. We use the direct standardization methods³⁴ based on population INEI population estimates by region and age-group for 2020 as the standard population.³⁵

As a robustness check for excess mortality estimates, we estimated a mortality baseline for each age group fitting a Generalised Linear Model with Poisson or Negative binomial distributions, depending on the data's overdispersion. The model includes natural splines and sinusoidal components to account for secular changes and seasonality in mortality, as well as interpolated weekly exposures to control for changes in age structure over time. 95% prediction intervals were estimated using 2,000 bootstrapping iterations. Excess mortality is computed as the difference between observed mortality and the baseline, only including weeks in which observed mortality was above the upper prediction interval.

Results

Estimates of completeness of registration derived from our logistic regression model fit the data according to marginal and conditional R² and Root Mean Square of Errors parameters. Model fit and goodness-of-fit are presented in Appendix 1. Figure 2 shows important variations in regional completeness rates: Amazonas and Loreto (in Amazonia), Lambayeque (on the coast), and Cajamarca and Pasco (in the Andes) show estimated completion at below 40%, while Ica (coast) and Madre De Dios (Peru's least populated regions in Amazonia) appear to have complete registration (see Appendix 1).

Figure 2: Completeness of registration

Table 1 summarises our estimates of excess mortality. The quasi-Poisson models show a good fit for our first term (weekly excess registered deaths) across models. Excess registered mortality is estimated to be 99,814 (95% CI 85,605 - 110,738), of which 37,724 are reported as COVID-19 deaths. This represents an increase of 165 % (95% CI 127 % - 194 %) compared to MoH data. See Appendix 2 for results and comparison with robustness analysis.

Table 1: Summary of estimations, Peru, 2020.

Terms	Estimates (95% CI)
Excess registered deaths	99,814 (85,605 – 110,738)
Completeness of CRVS deaths registration	30·1 % (28·9 % - 32·7 %)
Excess TOTAL mortality	142,875 (127,163 – 155,739)
Counterfactual estimated deaths in 2020	111,835 (100,911 – 126,044)
Total estimated deaths in 2020	292,230 (262,000 – 324,023)

Table 2 shows estimates by region. Lima, which includes the capital, accounts for 76,158 (95% CI 72,740 – 79,212) total excess deaths, and Apurimac and Pasco show the lowest numbers. Table 3 shows excess mortality estimates by age group. Deaths among people aged 60 years and over accounts for 74.9% of total excess mortality. There was negative excess registered mortality for the youngest three age groups: under 10, 10 to 19 and 20 to 29.

Table 2: Estimated total excess deaths by region

					ER -		Exces
	Total	TE -	TE -	Excess	Lower	ER -	S
Dogion	excess	Lower 95% CI	Upper 95% CI	registere	95% CI	Upper 95% CI	Covid -19
Region AMAZONAS	(TE) 417	256	588.3	d (ER) 163.4	12.14	260.6	
							136
ANCASH	4,136	3,376	4,764	3,553	2,887	4,096	54
APURIMAC	159	159	159	-70.63	-166.2	-13.74	230
AREQUIPA	4,547	3,390	5,500	4,070	2,688	5,149	254
AYACUCHO	378	378	378	-126.7	-282.4	-34.52	505
CAJAMARCA	2,105	825.9	3,012	1,069	221.3	1,694	191
CALLAO	7,911	7,317	8,392	6,442	5,952	6,830	19
CUSCO	533	533	533	-133.3	-306.4	-20.73	666
HUANCAVELIC A	627.2	367.9	814.8	471.4	256.8	622.5	51
HUANUCO	1,128	612.7	1,527	624	279.4	881.9	170
ICA	4,032	3427	4,518	3,929	3,279	4,434	97
JUNIN	2,415	1,328	3,359	1,867	698.1	2,787	193
LA LIBERTAD	6,229	5,010	7,239	5,121	4,097	5,961	105
LAMBAYEQUE	8,532	8,214	8,749	4,533	4,352	4,645	5
LIMA	76,158	72,740	79,212	53,480	51,06 9	55,626	220
LORETO	4,795	4,309	5,151	2,576	2,061	2,936	294
MADRE DE DIOS	347.9	191.2	453.6	314.3	154.9	414.1	31
MOQUEGUA	833.1	454.5	1085	700.2	368.8	909.2	8
PASCO	342.1	213.8	430.8	125.6	-22.94	221.5	116
PIURA	10,618	9,639	11,412	6,883	6,061	7,521	183
PUNO	711.2	403	997.6	123.6	-285.4	439.4	477
SAN MARTIN	1,847	1,011	2,578	1,068	253.5	1,654	198
TACNA	693	271	1,030	524	102.9	788.8	35
TUMBES	1,074	827.3	1259	931.2	706.5	1,086	3
UCAYALI	2,308	1909	2597	1575	1,169	1,849	102
Total	142,87 5	127,16 3	155,73 9	99,814	85,60 5	110,73 8	4,343

Table 3: Estimated total excess deaths by age-group

	Total	TE -	TE -	Excess	ER -	ER -	Excess
Age	excess	Lower	Upper	registered	Lower	Upper	Covid-
range	(TE)	95% CI	95% CI	(ER)	95% CI	95% CI	19
< 9	132	136	136	-1344	-2882	-335.1	1,476
10-19	120.7	121.7	124.5	-21.47	-64.67	4.304	141
20-29	433.2	388	468.6	-177.3	-500.2	33.75	578
30-39	3,197	2,616	3,644	1,942	1,530	2,249	375
40-49	10,012	8,770	10,977	6,981	5,897	7,766	332
50-59	22,030	19,903	23,655	15,740	14,078	16,962	280
60-69	35,736	32,696	38,107	25,587	23,275	27,343	377
70-79	35,740	31,820	38,964	25,700	22,654	28,123	341
> 80	35,473	30,712	39,663	25,408	21,618	28,592	443
Total	142,875	127,163	155,739	99,814	85,605	110,738	4,343

Our second term, excess unregistered deaths, is estimated to be 38,718 deaths (95% CI 40,657 - 37,214). This represents 30.1 % (95% CI 22·0% - 40·1%) of our estimate of the total registered and unregistered deaths. Coastal regions show the highest values where Lima accounts for 22,678 additional deaths, followed by Piura (3,999) and Lambayeque (3,735). Our third term adds 4,343 deaths corresponding to cases when reported COVID-19 deaths exceed our estimate of adjusted excess registered mortality. This mainly occurs for some smaller groups at younger ages. The regions with the highest under reported COVID-19 values are the Andean regions of Ayacucho (505), Cusco (666) and Puno (477).

Combining all these terms, our estimate of total excess deaths during 2020 is 142,875 (95% CI 127,163 - 155,739) and our estimate of total deaths for 2020 is 292,230 (95% CI 262,000 - 324,023). This is 27.8 % (95% CI $13\cdot4\%$ - $41\cdot6\%$) more than the number of deaths projected by INEI for 2020.

Figure 3 shows all cause age-standardised death rates. We find that Moquegua, Callao, and Lima (CI 95% ranging from 9.11 to 11.5) present the highest rates, ranging from 9.55 to 11.4, while regions of Amazonas, Ayacucho, and Cusco show the lowest rates ranging from 4.82 to 7.26 (CI 95% ranging from 4.62 to 7.41) (left). Figure 3 (right) shows differences deaths per 1000 in comparison to INEI's projections for 2020. We find excess mortality rates in all cases but Amazonas, which shows -1.36 suggesting that INEI overestimates mortality rates projections for 2020 and there is lower use of the CRVS system than expected.

Figure 3: Age-standardised mortality rates

Discussion

The COVID-19 pandemic has underscored the need for methodological advances in population health measurement, research, critical data quality assessment and improvement of health information systems to obtain reliable information on the impact of the pandemic from multiple data sources linked to COVID-19. In this regards, our study provides a framework, tools and analytical strategy to estimate the excess mortality caused by the COVID-19 pandemic in Peru and, potentially, other countries where the quality of mortality data is medium to low.³⁶ The scope for applying a similar approach will vary between countries. In countries such as India, where mortality and cause of death data are of considerably lower quality than in Peru, achieving robust estimates by any method will be hugely challenging.³⁷ In other countries, such as Colombia, data quality is similar to Peru's and a recent reform of its CRVS system is likely to have boosted registration rates in the past recent years.³⁸

Other published studies of excess COVID-19 mortality fall into two categories. Some studies provide estimates for countries where mortality data are relatively complete and reliable.^{39–42} As such, they do not apply specific methods to address data gaps. Studies of excess COVID-19 mortality for countries with less complete data do not take account of unregistered deaths.^{43–46}

We estimate that overall excess mortality in Peru was 279 % (95% CI 237 % - 313 %) higher than the level officially attributed to COVID-19. Registered excess mortality was 165 % (95% CI 127 % - 194 %) higher. This is a larger differential than reported by studies for high-income countries. For example, separate studies of the USA show differentials of between 28 and 33%. 11,12 Our estimates are higher than those previously published for Peru, which are only based on registered deaths, and which apply simpler methods. 47,48 Our estimates of regional variations in excess mortality are in line with, 47 who speculate that they may be in part attributable to the effect of altitude of COVID-19 case fatality.

Despite making up a relatively low share of Peru's population (12.5% in 2020), people aged 60 or more accounted for 74.9% of excess mortality. No other published study in Peru provides data disaggregated by age groups. A study of registered excess mortality in six Brazilian cities reports that people aged 60 and over accounted for 71.1% of the total.⁴⁴ An analysis of European countries reports that 91% of excess COVID-19 deaths occurred among people aged 65 or more.⁴¹ This reflects a higher proportion of population aged 60 or more in Europe (25.5% in 2020) than in Peru.

Limitations

Our analysis assumes that comparison between years is not invalidated by specific time-bound mortality events such as additional disease outbreaks or other major external shocks. Our estimates of registration completeness assume no variation across age groups, which may not be the case. We do not take into account changes in registration over time as our estimates are based on provisional data, which are incomplete and continue to be fatalities due to COVID-19. Finally, we present a conservative scenario, allowing for the existence of negative as well as positive excess deaths.

Conclusion

There is an evident need for robust estimates of the direct and indirect mortality effects of the COVID-19 pandemic. To date, much of the data for LMICs in the public domain rely on officially-registered deaths. Inaccurate attribution of cause of death can, to some degree, be resolved by generating excess mortality estimates based on temporal comparisons of all-cause mortality. Also, these approaches do not include deaths that are not officially registered. This paper develops and applies a method to obtain robust estimates of excess mortality for both registered and unregistered deaths.

Our study indicates that official data under-represent the overall mortality impact of the COVID-19 pandemic in Peru. This gap is considerably greater than those reported for high-income countries. It is plausible that under-estimation of excess mortality in other countries with low quality mortality data will be comparable to Peru. In that case, LMICs would account for a much larger share of the global distribution of excess

mortality associated with the COVID-19 pandemic than indicated by official data sources.

Contributors

LS conceived and initiated the study, did the statistical analysis and visualisations and drafted the manuscript.

PLS conceived and supervised the study, drafted the manuscript and led the editing process of the manuscript.

MM and SE supervised the study and engaged in the draft review & editing

RM contributed in the data curation and methodology process and reviewed & edited the draft.

EA contributed in data curation, methodology and statistical analysis.

LS and EA had access to all the data. All authors approved the manuscript and are responsible for the decision to submit for publication.

Declaration of interests

RM is a staff member of the Pan American Health Organization. The author alone is responsible for the views expressed in this publication, and they do not necessarily represent the decisions or policies of the Pan American Health Organization.

All other authors declare no competing interests.

Data sharing

Data presented in this manuscript are made publicly available at https://github.com/lsempe77/excess

Acknowledgments

Any?

References

1. Kung S, Doppen M, Black M, Braithwaite I, Kearns C, Weatherall M, et al. Underestimation of COVID-19 mortality during the pandemic. ERJ Open Research [Internet]. 2020 Dec;00766–2020. Available from:

http://openres.ersjournals.com/lookup/doi/10.1183/23120541.00766-2020

- 2. Vincent JL, Taccone FS. Understanding pathways to death in patients with COVID-19 [Internet]. Vol. 8. Lancet Publishing Group; 2020. p. 430–2. Available from: https://doi.org/10.1016/
- 3. Griffin S. Covid-19: England comes into line with rest of UK on recording deaths. BMJ (Clinical research ed) [Internet]. 2020 Aug;370:m3220. Available from: http://dx.doi.org/10.1136/bmj.m3220
- 4. Douglas M, Katikireddi SV, Taulbut M, McKee M, McCartney G. Mitigating the wider health effects of covid-19 pandemic response. The BMJ [Internet]. 2020 Apr;369. Available from: http://www.heal
- 5. Dyer O. Covid-19: Excess deaths point to hidden toll in South Africa as cases surge. BMJ [Internet]. 2020; Available from: http://dx.doi.org/10.1136/bmj.m3038
- 6. Calderon-Anyosa RJC, Kaufman JS. Impact of COVID-19 lockdown policy on homicide, suicide, and motor vehicle deaths in Peru. Preventive Medicine. 2021 Feb;143:106331.
- 7. Beaney T, Clarke JM, Jain V, Kataria Golestaneh A, Lyons G, Salman D, et al. Excess mortality: the gold standard in measuring the impact of COVID-19 worldwide?
- 8. Leon DA, Shkolnikov VM, Smeeth L, Magnus P, Pechholdová M, Jarvis CI. COVID-19: a need for real-time monitoring of weekly excess deaths. The Lancet. 2020;395(10234):e81.
- 9. Vestergaard LS, Nielsen J, Richter L, Schmid D, Bustos N, Braeye T, et al. Excess all-cause mortality during the COVID-19 pandemic in Europe preliminary pooled estimates from the EuroMOMO network, March to April 2020. Eurosurveillance [Internet]. 2020 Jul;25(26):2001214. Available from: https://www.eurosurveillance.org/content/10.2807/1560-7917.ES.2020.25.26.2001214
- 10. Rossen LM, Branum AM, Ahmad FB, Sutton P, Anderson RN. Excess Deaths Associated with COVID-19, by Age and Race and Ethnicity United States, January 26–October 3, 2020. MMWR Morbidity and Mortality Weekly Report [Internet]. 2020 Oct;69(42):1522–7. Available from:

http://www.cdc.gov/mmwr/volumes/69/wr/mm6942e2.htm?s_cid=mm6942e2_w

- 11. Woolf SH, Chapman DA, Sabo RT, Weinberger DM, Hill L. Excess Deaths from COVID-19 and Other Causes, March-April 2020. JAMA Journal of the American Medical Association. 2020;324(5):E1–3.
- 12. Weinberger DM, Chen J, Cohen T, Crawford FW, Mostashari F, Olson D, et al. Estimation of Excess Deaths Associated with the COVID-19 Pandemic in the United States, March to May 2020. JAMA Internal Medicine. 2020;06520(May):E1–9.
- 13. Vandoros S. Excess mortality during the Covid-19 pandemic: Early evidence from England and Wales. Social Science and Medicine. 2020 Aug;258:113101.

- 14. Michelozzi P, De'Donato F, Scortichini M, Pezzotti P, Stafoggia M, De Sario M, et al. Temporal dynamics in total excess mortality and COVID-19 deaths in Italian cities. BMC public health. 2020;20(1):1238.
- 15. Roser M, Ritchie H, Ortiz-Ospina E, Hasell J. Excess mortality during the Coronavirus pandemic (COVID-19) [Internet]. 2020 [cited 2020 Dec 3]. Available from: https://ourworldindata.org/excess-mortality-covid
- 16. Financial Times. Coronavirus tracker: the latest figures as countries fight Covid-19 resurgence [Internet]. 2020 [cited 2020 Dec 3]. Available from: https://www.ft.com/content/a2901ce8-5eb7-4633-b89c-cbdf5b386938
- 17. Wu J, McCann A, Katz J, Peltier E, Deep Singh K. 412,000 Missing Deaths: Tracking the True Toll of the Coronavirus Outbreak The New York Times [Internet]. 2020 [cited 2020 Dec 3]. Available from: https://www.nytimes.com/interactive/2020/04/21/world/coronavirus-missing-deaths.html
- 18. The Economist. Covid-19 data Tracking covid-19 excess deaths across countries [Internet]. 2020 [cited 2020 Dec 3]. Available from: https://www.economist.com/graphic-detail/2020/07/15/tracking-covid-19-excess-deaths-across-countries
- 19. Dicker D, Nguyen G, Abate D, Abate KH, Abay SM, Abbafati C, et al. Global, regional, and national age-sex-specific mortality and life expectancy, 1950-2017: A systematic analysis for the Global Burden of Disease Study 2017. The Lancet. 2018;392(10159):1684–735.
- 20. Cobos Muñoz D, De Savigny D, Sorchik R, Bo KS, Hart J, Kwa V, et al. Better data for better outcomes: The importance of process mapping and management in CRVS systems. BMC Medicine [Internet]. 2020 Mar;18(1):67. Available from: https://bmcmedicine.biomedcentral.com/articles/10.1186/s12916-020-01522-z
- 21. Iburg KM, Mikkelsen L, Adair T, Lopez AD. Are cause of death data fit for purpose? evidence from 20 countries at different levels of socio-economic development. PLoS ONE [Internet]. 2020;15(8 August 2020):1–8. Available from: http://dx.doi.org/10.1371/journal.pone.0237539
- 22. Adair T, Rajasekhar M, Bo KS, Hart J, Kwa V, Mukut MAA, et al. Where there is no hospital: Improving the notification of community deaths. BMC Medicine [Internet]. 2020 Mar;18(1):65. Available from: https://bmcmedicine.biomedcentral.com/articles/10.1186/s12916-020-01524-x
- 23. Jha P. Reliable direct measurement of causes of death in low- and middle-income countries. BMC Medicine [Internet]. 2014 Feb;12(1):19. Available from: http://bmcmedicine.biomedcentral.com/articles/10.1186/1741-7015-12-19
- 24. Setel P, Abouzahr C, Atuheire EB, Bratschi M, Cercone E, Chinganya O, et al. Mortality surveillance during the COVID-19 pandemic [Internet]. Vol. 98. World

Health Organization; 2020. p. 374. Available from: https://pubmed.ncbi.nlm.nih.gov/32514207/https://pubmed.ncbi.nlm.nih.gov/32514207/?dopt=Abstract

- 25. Benítez MA, Velasco C, Sequeira AR, Henríquez J, Menezes FM, Paolucci F. Responses to COVID-19 in five Latin American countries. Health Policy and Technology. 2020 Dec;9(4):525–59.
- 26. Yañez J, Alvarez-Risco A, Delgado-Zegarra A. Does Peru really have that high number of COVID-19 confirmed cases? The deception of combining RT-PCR and rapid test results | The BMJ. BMJ [Internet]. 2020;369(m2518). Available from: https://www.bmj.com/content/369/bmj.m2518/rr-4
- 27. Peru Implementation Working Group. Peru: An exceptional example of CRVS system advancement. CRVS country reports. Melbourne, Australia: The University of Melbourne; Civil Registration; Vital Statistics Improvement, Bloomberg Philanthropies Data for Health Initiative; 2018. Report No.: March.
- 28. Lloyd-Sherlock P, Sempe L, McKee M, Guntupalli A. Problems of Data Availability and Quality for COVID-19 and Older People in Low- and Middle-Income Countries. The Gerontologist [Internet]. 2020 Oct;XX:1–4. Available from: https://academic.oup.com/gerontologist/advance-article/doi/10.1093/geront/gnaa153/5918111
- 29. Adair T, Lopez AD. Estimating the completeness of death registration: An empirical method. PLoS ONE. 2018;13(5):e0197047.
- 30. Currie ID, Durban M, Eilers PH. Smoothing and forecasting mortality rates. Statistical Modelling. 2004;4(4):279–98.
- 31. Steenland K, Armstrong B. An overview of methods for calculating the burden of disease due to specific risk factors. Epidemiology. 2006;17(5):512–9.
- 32. Gasparrini A, Leone M. Attributable risk from distributed lag models [Internet]. Vol. 14. 2014 p. 55. Available from: http://www.biomedcentral.com/1471-2288/14/55
- 33. Pollard SL, Williams KN, O'Brien CJ, Winiker A, Puzzolo E, Kephart JL, et al. An evaluation of the Fondo de Inclusión Social Energético program to promote access to liquefied petroleum gas in Peru. Energy for Sustainable Development. 2018 Oct;46:82–93.
- 34. Curtin LR, Klein RJ. Direct standardization (age-adjusted death rates). US Department of Health; Human Services, Public Health Service, Centers for Disease Control; Prevention, National Center for Health Statistics; 1995. Report No.: 6.
- 35. INEI. PERÚ: Estimaciones y Proyecciones de Edad 1995-2025. Boletín de Análisis Demográfico N 37 [Internet]. INEI; 2009. Available from: http://www.hsr.gob.pe/epidemiologia/pdf/interes_5.pdf

- 36. Mikkelsen L, Phillips DE, Abouzahr C, Setel PW, De Savigny D, Lozano R, et al. A global assessment of civil registration and vital statistics systems: Monitoring data quality and progress. Vol. 386. Lancet Publishing Group; 2015. p. 1395–406.
- 37. Gupta M, Rao C, Lakshmi PVM, Prinja S, Kumar R. Estimating mortality using data from civil registration: a cross-sectional study in India. Bulletin of the World Health Organization [Internet]. 2016 Jan;94(1):10–21. Available from: /pmc/articles/PMC4709797/?report=abstract https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4709797/
- 38. McLaughlin D, Lopez AD. Strengthening mortality data for health policy and planning: The bloomberg data for health initiative in Latin America [Internet]. Vol. 22. Assocaicao Brasileira de Pos, Gradacao em Saude Coletiva; 2019. Available from: http://www.scielo.br/scielo.php?script=sci_arttext&pid=S1415-790X2019000400802&lng=en&nrm=iso&tlng=en http://www.scielo.br/scielo.php?script=sci_abstract&pid=S1415-790X2019000400802&lng=en&nrm=iso&tlng=en
- 39. Banerjee A, Pasea L, Harris S, Gonzalez-Izquierdo A, Torralbo A, Shallcross L, et al. Estimating excess 1-year mortality associated with the COVID-19 pandemic according to underlying conditions and age: a population-based cohort study. The Lancet [Internet]. 2020 May;395(10238):1715–25. Available from: www.caliberresearch.
- 40. Kontis V, Bennett JE, Rashid T, Parks RM, Pearson-Stuttard J, Guillot M, et al. Magnitude, demographics and dynamics of the effect of the first wave of the COVID-19 pandemic on all-cause mortality in 21 industrialized countries. Nature Medicine [Internet]. 2020 Dec;26(12):1919–28. Available from: https://doi.org/10.1038/s41591-020-1112-0
- 41. Vestergaard LS, Nielsen J, Richter L, Schmid D, Bustos N, Braeye T, et al. Excess all-cause mortality during the COVID-19 pandemic in Europe preliminary pooled estimates from the EuroMOMO network, March to April 2020. Eurosurveillance [Internet]. 2020 Jul;25(26):2001214. Available from: https://www.eurosurveillance.org/content/10.2807/1560-7917.ES.2020.25.26.2001214
- 42. Rivera R, Rosenbaum JE, Quispe W. Excess mortality in the united states during the first three months of the COVID-19 pandemic. Epidemiology and Infection. 2020;
- 43. Tadbiri H, Moradi-Lakeh M, Naghavi M. All-cause excess mortality and COVID-19-related deaths in Iran. Medical journal of the Islamic Republic of Iran [Internet]. 2020;34. Available from: https://pubmed.ncbi.nlm.nih.gov/33306040/
- 44. Freitas ARR, Medeiros NM de, Frutuoso LCV, Beckedorff OA, Martin LMA de, Coelho MM de M, et al. Tracking excess deaths associated with the COVID-19 epidemic as an epidemiological surveillance strategy-preliminary results of the evaluation of six

Brazilian capitals. Revista da Sociedade Brasileira de Medicina Tropical [Internet]. 2020;53:e20200558. Available from: www.scielo.br/rsbmtIwww.rsbmt.org.br

- 45. Cevallos-Valdiviezo H, Vergara-Montesdeoca A, Zambrano-Zambrano G. Measuring the impact of the COVID-19 outbreak in Ecuador using preliminary estimates of excess mortality, March 17–October 22, 2020. International Journal of Infectious Diseases [Internet]. 2020 Dec; Available from: https://linkinghub.elsevier.com/retrieve/pii/S1201971220325674
- 46. Cuéllar L, Torres I, Romero-Severson E, Mahesh R, Ortega N, Pungitore S, et al. Excess deaths reveal the true spatial, temporal, and demographic impact of COVID-19 on mortality in Ecuador. medRxiv: the preprint server for health sciences [Internet]. 2021 Mar; Available from: http://www.ncbi.nlm.nih.gov/pubmed/33688690 http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=PMC7941667
- 47. Quevedo-Ramirez A, Al-kassab-Córdova A, Mendez-Guerra C, Cornejo-Venegas G, Alva-Chavez KP. Altitude and excess mortality during COVID-19 pandemic in Peru. Respiratory Physiology and Neurobiology. 2020 Oct;281.
- 48. Brown PE, Greenwald ZR, Salinas LE, Martens GA, Newcombe L, Gelband H, et al. Mortality from COVID in Colombia and Peru: Analyses of Mortality Data and Statistical Forecasts. medRxiv [Internet]. 2020 Nov;2020.08.24.20181016. Available from: https://doi.org/10.1101/2020.08.24.20181016
- 49. Hernández-Vásquez A, Gamboa-Unsihuay JE, Vargas-Fernández R, Azañedo D. Exceso de mortalidad en Lima Metropolitana durante la pandemia de COVID-19: comparación a nivel distrital. Medwave [Internet]. 2020 Sep;20(8):e8031. Available from: https://pubmed.ncbi.nlm.nih.gov/33017383/

Appendices

Appendix 1: Model fit registration completeness

Table 4: Model fit Mixed-effect logistic regression

R2m	R2c	RMSE.normalised	RMSE
0.7438	0.8694	0.05282	0.2403

Quasi-Poisson models

Table 5: Model fit Quasi-Poisson

			df.		A	В	devi	df.re	n		dif.		
Departa	ran	null.de	nul	log	I	I	anc	sidua	0		de	d	
mento	ge	viance	l	Lik	C	C	e	l	bs	fit	V	f	p
AMAZO	a0.	62.27	13	NA	N	N	54.2	118	1	0.1	7.9	1	0.967
NAS	9		5		A	Α	9		3	282	8	7	
									6				

AMAZO NAS	a1 0.1 9	23.19	76	NA	N A	N A	20.0	59	7 7	0.1 35	3.1 32	1 7	0.999 9
AMAZO NAS	a2 0.2 9	26.94	10 9	NA	N A	N A	22.1 7	92	1 1 0	0.1 769	4.7 65	1 7	0.998 4
AMAZO NAS	a3 0.3 9	42.37	12 2	NA	N A	N A	30.5 6	105	1 2 3	0.2 786	11. 81	1 7	0.811
AMAZO NAS	a4 0.4 9	73.94	15 4	NA	N A	N A	67.0 4	137	1 5 5	0.0 933 1	6.9	1 7	0.984 8
AMAZO NAS	a5 0.5 9	135.5	17 3	NA	N A	N A	106. 3	156	1 7 4	0.2 16	29. 27	1 7	0.032 09
AMAZO NAS	a6 0.6 9	266.4	18 1	NA	N A	N A	160. 6	164	1 8 2	0.3 972	10 5.8	1 7	7.357 e-15
AMAZO NAS	a7 0.7 9	229.6	19 8	NA	N A	N A	210.	181	1 9 9	0.0 839 3	19. 27	1 7	0.313
AMAZO NAS	a8 0	256.4	20 3	NA	N A	N A	230. 3	186	2 0 4	0.1 019	26. 13	1 7	0.072 12
ANCAS H	a0. 9	220.7	20 4	NA	N A	N A	198. 6	187	2 0 5	0.1 002	22. 1	1 7	0.180
ANCAS H	a1 0.1 9	101.8	17 6	NA	N A	N A	96.1	159	1 7 7	0.0 56	5.7 01	1 7	0.995
ANCAS H	a2 0.2 9	159.5	19 6	NA	N A	N A	140. 5	179	1 9 7	0.1 191	19	1 7	0.328 7
ANCAS H	a3 0.3 9	191.9	20 0	NA	N A	N A	168. 6	183	2 0 1	0.1 213	23. 27	1 7	0.140 6
ANCAS H	a4 0.4 9	357.4	20 5	NA	N A	N A	245. 3	188	2 0 6	0.3 135	11 2	1 7	5.009 e-16
ANCAS H	a5 0.5 9	767.2	20 6	NA	N A	N A	318. 1	189	2 0 7	0.5 853	44 9.1	1 7	9.752 e-85

ANCAS H	a6 0.6 9	1100	20 6	NA	N A	N A	268. 2	189	2 0 7	0.7 561	83 1.5	1 7	8.869 e-166
ANCAS H	a7 0.7 9	1088	20 6	NA	N A	N A	302. 2	189	2 0 7	0.7 222	78 5.5	1 7	5.527 e-156
ANCAS H	a8 0	748.4	20 6	NA	N A	N A	268	189	2 0 7	0.6 419	48 0.4	1 7	2.505 e-91
APURIM AC	a0. 9	102.6	17 0	NA	N A	N A	88.4 9	153	1 7 1	0.1 374	14. 1	1 7	0.660
APURIM AC	a1 0.1 9	20.66	99	NA	N A	N A	15.8 1	82	1 0 0	0.2 347	4.8 5	1 7	0.998
APURIM AC	a2 0.2 9	50.37	12 8	NA	N A	N A	42.9 3	111	1 2 9	0.1 477	7.4 39	1 7	0.977 1
APURIM AC	a3 0.3 9	76.68	14 8	NA	N A	N A	66.9 5	131	1 4 9	0.1 269	9.7 3	1 7	0.914 6
APURIM AC	a4 0.4 9	114.6	16 4	NA	N A	N A	94.1 6	147	1 6 5	0.1 784	20. 45	1 7	0.251 9
APURIM AC	a5 0.5 9	185.8	19 0	NA	N A	N A	146	173	1 9 1	0.2 141	39. 78	1 7	0.001 392
APURIM AC	a6 0.6 9	292	19 9	NA	N A	N A	221. 9	182	2 0 0	0.2 402	70. 16	1 7	2.027 e-08
APURIM AC	a7 0.7 9	263.7	20 6	NA	N A	N A	208. 6	189	2 0 7	0.2 091	55. 14	1 7	6.504 e-06
APURIM AC	a8 0	372.9	20 6	NA	N A	N A	230. 9	189	2 0 7	0.3 807	14 2	1 7	9.024 e-22
AREQUI PA	a0. 9	242.8	20 2	NA	N A	N A	211	185	2 0 3	0.1 311	31. 83	1 7	0.015
AREQUI PA	a1 0.1 9	106.2	16 7	NA	N A	N A	94.3 3	150	1 6 8	0.1 119	11. 89	1 7	0.806

AREQUI PA	a2 0.2 9	171.4	19 9	NA	N A	N A	149	182	2 0 0	0.1 305	22. 37	1 7	0.171
AREQUI PA	a3 0.3 9	236.7	20 2	NA	N A	N A	204. 6	185	2 0 3	0.1 354	32. 05	1 7	0.014 84
AREQUI PA	a4 0.4 9	599.7	20 4	NA	N A	N A	278. 4	187	2 0 5	0.5 357	32 1.3	1 7	4.543 e-58
AREQUI PA	a5 0.5 9	1486	20 6	NA	N A	N A	313. 8	189	2 0 7	0.7 888	11 72	1 7	1.261 e-238
AREQUI PA	a6 0.6 9	2417	20 6	NA	N A	N A	337. 9	189	2 0 7	0.8 602	20 79	1 7	0
AREQUI PA	a7 0.7 9	2435	20 6	NA	N A	N A	329	189	2 0 7	0.8 649	21 06	1 7	0
AREQUI PA	a8 0	2587	20 6	NA	N A	N A	326. 9	189	2 0 7	0.8 736	22 60	1 7	0
AYACUC HO	a0. 9	165.6	17 0	NA	N A	N A	117. 5	153	1 7 1	0.2 908	48. 15	1 7	0.000 0813 5
AYACUC HO	a1 0.1 9	55.2	12 4	NA	N A	N A	48.8 6	107	1 2 5	0.1 148	6.3 39	1 7	0.990 6
AYACUC HO	a2 0.2 9	103.6	17 0	NA	N A	N A	89.0 6	153	1 7 1	0.1 403	14. 53	1 7	0.629
AYACUC HO	a3 0.3 9	92.51	15 9	NA	N A	N A	78.7 4	142	1 6 0	0.1 488	13. 77	1 7	0.683 6
AYACUC HO	a4 0.4 9	153.3	17 1	NA	N A	N A	127. 7	154	1 7 2	0.1 671	25. 62	1 7	0.081 66
AYACUC HO	a5 0.5 9	212.8	19 0	NA	N A	N A	168. 9	173	1 9 1	0.2 064	43. 93	1 7	0.000 3502
AYACUC HO	a6 0.6 9	316.1	20 0	NA	N A	N A	181. 8	183	2 0 1	0.4 248	13 4.3	1 7	2.795 e-20

AYACUC HO	a7 0.7 9	443.8	20 3	NA	N A	N A	229. 2	186	2 0 4	0.4 835	21 4.6	1 7	3.297 e-36
AYACUC HO	a8 0	431.4	20 5	NA	N A	N A	199. 2	188	2 0 6	0.5 384	23 2.2	1 7	8.658 e-40
CAJAMA RCA	a0. 9	264.3	20 4	NA	N A	N A	224. 2	187	2 0 5	0.1 515	40. 04	1 7	0.001 276
CAJAMA RCA	a1 0.1 9	58.14	14 1	NA	N A	N A	52.7 7	124	1 4 2	0.0 923 2	5.3 67	1 7	0.996 5
CAJAMA RCA	a2 0.2 9	118.3	17 8	NA	N A	N A	102. 7	161	1 7 9	0.1 317	15. 58	1 7	0.553 8
CAJAMA RCA	a3 0.3 9	199.4	19 2	NA	N A	N A	162. 3	175	1 9 3	0.1 86	37. 09	1 7	0.003 276
CAJAMA RCA	a4 0.4 9	221	20 0	NA	N A	N A	162. 4	183	2 0 1	0.2 653	58. 63	1 7	1.768 e-06
CAJAMA RCA	a5 0.5 9	532.6	20 5	NA	N A	N A	259. 4	188	2 0 6	0.5 131	27 3.3	1 7	3.594 e-48
CAJAMA RCA	a6 0.6 9	865.8	20 6	NA	N A	N A	340. 5	189	2 0 7	0.6 068	52 5.4	1 7	8.453 e-101
CAJAMA RCA	a7 0.7 9	691.9	20 6	NA	N A	N A	287. 6	189	2 0 7	0.5 843	40 4.3	1 7	2.356 e-75
CAJAMA RCA	a8 0	531.5	20 6	NA	N A	N A	238. 7	189	2 0 7	0.5 508	29 2.8	1 7	3.505 e-52
CALLAO	a0. 9	225.1	19 4	NA	N A	N A	201. 8	177	1 9 5	0.1 035	23. 28	1 7	0.140
CALLAO	a1 0.1 9	56.25	13 3	NA	N A	N A	49.2 2	116	1 3 4	0.1 25	7.0 28	1 7	0.983
CALLAO	a2 0.2 9	191.4	19 4	NA	N A	N A	171. 9	177	1 9 5	0.1 02	19. 53	1 7	0.298 9

CALLAO	a3 0.3 9	252.6	20 1	NA	N A	N A	186. 6	184	2 0 2	0.2 612	65. 98	1 7	1.051 e-07
CALLAO	a4 0.4 9	713.4	20 5	NA	N A	N A	245. 7	188	2 0 6	0.6 556	46 7.7	1 7	1.168 e-88
CALLAO	a5 0.5 9	1458	20 6	NA	N A	N A	289. 3	189	2 0 7	0.8 015	11 68	1 7	8.475 e-238
CALLAO	a6 0.6 9	2350	20 6	NA	N A	N A	330. 7	189	2 0 7	0.8 593	20 20	1 7	0
CALLAO	a7 0.7 9	1970	20 6	NA	N A	N A	374	189	2 0 7	0.8 102	15 96	1 7	0
CALLAO	a8 0	1412	20 6	NA	N A	N A	358	189	2 0 7	0.7 466	10 54	1 7	1.991 e-213
CUSCO	a0. 9	284.1	20 6	NA	N A	N A	216. 1	189	2 0 7	0.2 393	68	1 7	4.747 e-08
CUSCO	a1 0.1 9	162.2	19 8	NA	N A	N A	152. 1	181	1 9 9	0.0 626 1	10. 16	1 7	0.896 9
CUSCO	a2 0.2 9	247.8	20 3	NA	N A	N A	211. 9	186	2 0 4	0.1 449	35. 9	1 7	0.004 733
CUSCO	a3 0.3 9	194.3	20 3	NA	N A	N A	164. 2	186	2 0 4	0.1 55	30. 13	1 7	0.025 44
CUSCO	a4 0.4 9	369	20 6	NA	N A	N A	279. 7	189	2 0 7	0.2 419	89. 27	1 7	
CUSCO	a5 0.5 9	456.4	20 6	NA	N A	N A	282. 3	189	2 0 7	0.3 814	17 4.1	1 7	
CUSCO	a6 0.6 9	813.6	20 6	NA	N A	N A	345. 8	189	2 0 7	0.5 75	46 7.8	1 7	1.133 e-88
CUSCO	a7 0.7 9	663	20 6	NA	N A	N A	295. 9	189	2 0 7	0.5 538	36 7.2	1 7	1.305 e-67

CUSCO	a8 0	829.8	20 6	NA	N A	N A	309	189	2 0 7	0.6 276	52 0.8	1 7	7.665 e-100
HUANC AVELIC A	a0. 9	174.5	19 7	NA	N A	N A	157. 9	180	1 9 8	0.0 95	16. 57	1 7	0.483 7
HUANC AVELIC A	a1 0.1 9	69.99	12 8	NA	N A	N A	54.4 1	111	1 2 9	0.2 225	15. 57	1 7	0.554 5
HUANC AVELIC A	a2 0.2 9	73.45	14 6	NA	N A	N A	63.6	129	1 4 7	0.1 342	9.8 57	1 7	0.909 5
HUANC AVELIC A	a3 0.3 9	85.91	16 4	NA	N A	N A	76.3 5	147	1 6 5	0.1 112	9.5 55	1 7	0.921
HUANC AVELIC A	a4 0.4 9	162.6	17 7	NA	N A	N A	139. 6	160	1 7 8	0.1 415	23	1 7	0.149
HUANC AVELIC A	a5 0.5 9	199.9	19 5	NA	N A	N A	154. 3	178	1 9 6	0.2 281	45. 59	1 7	0.000 1987
HUANC AVELIC A	a6 0.6 9	294.9	20 4	NA	N A	N A	231. 5	187	2 0 5	0.2 149	63. 38	1 7	2.88e -07
HUANC AVELIC A	a7 0.7 9	352.3	20 5	NA	N A	N A	253. 4	188	2 0 6	0.2 808	98. 95	1 7	1.392 e-13
HUANC AVELIC A	a8 0	260.7	20 6	NA	N A	N A	203. 7	189	2 0 7	0.2 186	56. 99	1 7	3.266 e-06
HUANU CO	a0. 9	195.8	20 4	NA	N A	N A	175. 8	187	2 0 5	0.1 019	19. 95	1 7	0.276 8
HUANU CO	a1 0.1 9	93.14	15 5	NA	N A	N A	78.0 1	138	1 5 6	0.1 624	15. 12	1 7	0.586 7
HUANU CO	a2 0.2 9	132	19 3	NA	N A	N A	123. 1	176	1 9 4	0.0 675 5	8.9 18	1 7	0.942 8
HUANU CO	a3 0.3 9	156.4	19 1	NA	N A	N A	140. 5	174	1 9 2	0.1 016	15. 89	1 7	0.531 9

HUANU CO	a4 0.4 9	227.2	20 0	NA	N A	N A	180. 8	183	2 0 1	0.2 043	46. 43	1 7	0.000 1485
HUANU CO	a5 0.5 9	329.1	20 6	NA	N A	N A	265	189	2 0 7	0.1 945	64. 02	1 7	2.25e -07
HUANU CO	a6 0.6 9	421.4	20 6	NA	N A	N A	210. 9	189	2 0 7	0.4 996	21 0.6	1 7	2.141 e-35
HUANU CO	a7 0.7 9	363.2	20 6	NA	N A	N A	233. 5	189	2 0 7	0.3 572	12 9.7	1 7	2.115 e-19
HUANU CO	a8 0	359.2	20 6	NA	N A	N A	253. 9	189	2 0 7	0.2 931	10 5.3	1 7	9.331 e-15
ICA	a0. 9	157.3	20 0	NA	N A	N A	141. 7	183	2 0 1	0.0 987 8	15. 53	1 7	0.557 1
ICA	a1 0.1 9	44.47	13 4	NA	N A	N A	35.3 5	117	1 3 5	0.2 051	9.1 19	1 7	0.936 5
ICA	a2 0.2 9	158.7	18 6	NA	N A	N A	142. 4	169	1 8 7	0.1 025	16. 27	1 7	0.505
ICA	a3 0.3 9	236.1	19 5	NA	N A	N A	200. 6	178	1 9 6	0.1 502	35. 47	1 7	0.005 402
ICA	a4 0.4 9	556.1	20 5	NA	N A	N A	253. 1	188	2 0 6	0.5 448	30 3	1 7	2.707 e-54
ICA	a5 0.5 9	1030	20 6	NA	N A	N A	295. 2	189	2 0 7	0.7 134	73 4.8	1 7	
ICA	a6 0.6 9	1669	20 6	NA	N A	N A	316. 4	189	2 0 7	0.8 104	13 52	1 7	
ICA	a7 0.7 9	1128	20 6	NA	N A	N A	319. 6	189	2 0 7	0.7 165	80 7.9	1 7	
ICA	a8 0	932.6	20 6	NA	N A	N A	373. 4	189	2 0 7	0.5 996	55 9.2	1 7	

JUNIN	a0. 9	229.1	20 5	NA	N A	N A	202. 2	188	2 0 6	0.1 175	26. 92	1 7	0.059 32
JUNIN	a1 0.1 9	145.9	18 7	NA	N A	N A	134. 8	170	1 8 8	0.0 761	11. 1	1 7	0.851
JUNIN	a2 0.2 9	198.7	20 5	NA	N A	N A	185. 1	188	2 0 6	0.0 680 5	13. 52	1 7	0.700 8
JUNIN	a3 0.3 9	268.4	20 5	NA	N A	N A	245. 1	188	2 0 6	0.0 865 3	23. 22	1 7	0.142
JUNIN	a4 0.4 9	426.1	20 5	NA	N A	N A	270. 4	188	2 0 6	0.3 654	15 5.7	1 7	1.883 e-24
JUNIN	a5 0.5 9	814	20 6	NA	N A	N A	311. 5	189	2 0 7	0.6 173	50 2.5	1 7	5.607 e-96
JUNIN	a6 0.6 9	1019	20 6	NA	N A	N A	325. 3	189	2 0 7	0.6 806	69 3.3	1 7	2.32e -136
JUNIN	a7 0.7 9	827.1	20 6	NA	N A	N A	277. 2	189	2 0 7	0.6 648	54 9.9	1 7	5.625 e-106
JUNIN	a8 0	730.8	20 6	NA	N A	N A	265. 3	189	2 0 7	0.6 37	46 5.6	1 7	3.353 e-88
LA LIBERT AD	a0. 9	249.4	20 6	NA	N A	N A	213. 8	189	2 0 7	0.1 425	35. 54	1 7	0.005 28
LA LIBERT AD	a1 0.1 9	182.7	19 0	NA	N A	N A	173. 4	173	1 9 1	0.0 508 1	9.2 81	1 7	0.931
LA LIBERT AD	a2 0.2 9	251.2	20 4	NA	N A	N A	227. 5	187	2 0 5	0.0 943	23. 69	1 7	0.128
LA LIBERT AD	a3 0.3 9	281.8	20 6	NA	N A	N A	241	189	2 0 7	0.1 448	40. 81	1 7	0.000 9931
LA LIBERT AD	a4 0.4 9	524.4	20 6	NA	N A	N A	253. 8	189	2 0 7	0.5 16	27 0.6	1 7	1.276 e-47

LA LIBERT AD	a5 0.5 9	1406	20 6	NA	N A	N A	325	189	2 0 7	0.7 689	10 81	1 7	3.763 e-219
LA LIBERT AD	a6 0.6 9	2229	20 6	NA	N A	N A	354. 1	189	2 0 7	0.8 411	18 74	1 7	0
LA LIBERT AD	a7 0.7 9	1934	20 6	NA	N A	N A	403. 1	189	2 0 7	0.7 916	15 31	1 7	9.19e -316
LA LIBERT AD	a8 0	1272	20 6	NA	N A	N A	372. 8	189	2 0 7	0.7 068	89 8.9	1 7	3.59e -180
LAMBA YEQUE	a0. 9	340.7	18 1	NA	N A	N A	148. 6	164	1 8 2	0.5 639	19 2.1	1 7	1.089 e-31
LAMBA YEQUE	a1 0.1 9	57.98	11 8	NA	N A	N A	43.1 8	101	1 1 9	0.2 553	14. 8	1 7	0.609 6
LAMBA YEQUE	a2 0.2 9	153.8	15 9	NA	N A	N A	91.6 6	142	1 6 0	0.4 041	62. 15	1 7	4.615 e-07
LAMBA YEQUE	a3 0.3 9	207	17 3	NA	N A	N A	147. 9	156	1 7 4	0.2 854	59. 08	1 7	1.49e -06
LAMBA YEQUE	a4 0.4 9	581.6	18 2	NA	N A	N A	277. 2	165	1 8 3	0.5 234	30 4.4	1 7	1.371 e-54
LAMBA YEQUE	a5 0.5 9	1082	18 4	NA	N A	N A	284	167	1 8 5	0.7 375	79 8	1 7	1.197 e-158
LAMBA YEQUE	a6 0.6 9	1985	19 3	NA	N A	N A	427. 7	176	1 9 4	0.7 846	15 58	1 7	2.016 e-321
LAMBA YEQUE	a7 0.7 9	2114	19 9	NA	N A	N A	385. 4	182	2 0 0	0.8 177	17 29	1 7	0
LAMBA YEQUE	a8 0	3676	20 2	NA	N A	N A	610. 7	185	2 0 3	0.8 339	30 65	1 7	0
LIMA	a0. 9	348.6	20 6	NA	N A	N A	275	189	2 0 7	0.2 112	73. 64	1 7	5.054 e-09

LIMA	a1 0.1 9	253.8	20 6	NA	N A	N A	209. 4	189	2 0 7	0.1 752	44. 47	1 7	0.000 2917
LIMA	a2 0.2 9	410.1	20 6	NA	N A	N A	309. 5	189	2 0 7	0.2 452	10 0.6	1 7	6.992 e-14
LIMA	a3 0.3 9	1254	20 6	NA	N A	N A	263. 1	189	2 0 7	0.7 902	99 1.2	1 7	6.901 e-200
LIMA	a4 0.4 9	4855	20 6	NA	N A	N A	443. 6	189	2 0 7	0.9 086	44 11	1 7	0
LIMA	a5 0.5 9	12239	20 6	NA	N A	N A	740. 1	189	2 0 7	0.9 395	11 49 9	1 7	0
LIMA	a6 0.6 9	20219	20 6	NA	N A	N A	109 3	189	2 0 7	0.9 459	19 12 6	1 7	0
LIMA	a7 0.7 9	17310	20 6	NA	N A	N A	100 1	189	2 0 7	0.9 422	16 30 9	1 7	0
LIMA	a8 0	14400	20 6	NA	N A	N A	720	189	2 0 7	0.9 5	13 68 0	1 7	0
LORET O	a0. 9	225.3	20 4	NA	N A	N A	200. 7	187	2 0 5	0.1 091	24. 59	1 7	0.104 4
LORET O	a1 0.1 9	84.68	15 0	NA	N A	N A	67.9 6	133	1 5 1	0.1 974	16. 72	1 7	0.473 5
LORET O	a2 0.2 9	148	19 0	NA	N A	N A	135. 8	173	1 9 1	0.0 822 5	12. 17	1 7	0.789 6
LORET O	a3 0.3 9	234.6	19 9	NA	N A	N A	171. 9	182	2 0 0	0.2 669	62. 62	1 7	3.866 e-07
LORET O	a4 0.4 9	412.2	20 2	NA	N A	N A	194. 7	185	2 0 3	0.5 277	21 7.5	1 7	8.322 e-37
LORET O	a5 0.5 9	806.8	20 4	NA	N A	N A	268. 4	187	2 0 5	0.6 673	53 8.4	1 7	

LORET O	a6 0.6 9	1591	20 4	NA	N A	N A	394	187	2 0 5	0.7 524	11 97	1 7	5.069 e-244
LORET O	a7 0.7 9	1357	20 5	NA	N A	N A	397. 5	188	2 0 6	0.7 071	95 9.6	1 7	3.915 e-193
LORET O	a8 0	806.5	20 6	NA	N A	N A	326. 9	189	2 0 7	0.5 947	47 9.6	1 7	3.8e- 91
MADRE DE DIOS	a0. 9	78.23	13 0	NA	N A	N A	64.3 6	113	1 3 1	0.1 773	13. 87	1 7	0.676 5
MADRE DE DIOS	a1 0.1 9	16.24	78	NA	N A	N A	12.7 5	61	7 9	0.2 148	3.4 87	1 7	0.999 8
MADRE DE DIOS	a2 0.2 9	75.72	15 1	NA	N A	N A	69.8 9	134	1 5 2	0.0 769 5	5.8 26	1 7	0.994
MADRE DE DIOS	a3 0.3 9	72.37	13 9	NA	N A	N A	63.1 9	122	1 4 0	0.1 269	9.1 81	1 7	0.934 4
MADRE DE DIOS	a4 0.4 9	99.54	14 9	NA	N A	N A	80.3	132	1 5 0	0.1 927	19. 18	1 7	0.318
MADRE DE DIOS	a5 0.5 9	205.3	16 2	NA	N A	N A	108. 6	145	1 6 3	0.4 71	96. 68	1 7	3.656 e-13
MADRE DE DIOS	a6 0.6 9	251.4	17 0	NA	N A	N A	119. 3	153	1 7 1	0.5 254	13 2.1	1 7	7.428 e-20
MADRE DE DIOS	a7 0.7 9	197	16 8	NA	N A	N A	119. 4	151	1 6 9	0.3 937	77. 56	1 7	1.038 e-09
MADRE DE DIOS	a8 0	159.4	16 6	NA	N A	N A	96.9 3	149	1 6 7	0.3 919	62. 48	1 7	4.071 e-07
MOQUE GUA	a0. 9	20.19	78	NA	N A	N A	14.5 3	61	7 9	0.2 804	5.6 61	1 7	0.995 2
MOQUE GUA	a1 0.1 9	6.284	37	NA	N A	N A	1.48	20	3	0.7 64	4.8 01	1 7	0.998

MOQUE GUA	a2 0.2 9	16.63	82	NA	N A	N A	12.4 3	65	8	0.2 526	4.2 01	1 7	0.999
MOQUE GUA	a3 0.3 9	16.13	81	NA	N A	N A	11.1 2	64	8 2	0.3 108	5.0 13	1 7	0.997 7
MOQUE GUA	a4 0.4 9	93.28	12 3	NA	N A	N A	52.9 6	106	1 2 4	0.4 322	40. 31	1 7	0.001 17
MOQUE GUA	a5 0.5 9	242.7	15 1	NA	N A	N A	79.8 8	134	1 5 2	0.6 709	16 2.9	1 7	7.281 e-26
MOQUE GUA	a6 0.6 9	550.9	18 4	NA	N A	N A	174. 3	167	1 8 5	0.6 835	37 6.5	1 7	1.488 e-69
MOQUE GUA	a7 0.7 9	699.7	19 8	NA	N A	N A	253. 6	181	1 9 9	0.6 376	44 6.1	1 7	4.058 e-84
MOQUE GUA	a8 0	509.4	20 5	NA	N A	N A	233. 6	188	2 0 6	0.5 414	27 5.8	1 7	1.1e- 48
PASCO	a0. 9	67.77	14 1	NA	N A	N A	57.4	124	1 4 2	0.1 531	10. 38	1 7	0.887
PASCO	a1 0.1 9	14.81	61	NA	N A	N A	8.65 7	44	6 2	0.4 156	6.1 56	1 7	0.992
PASCO	a2 0.2 9	26.91	10 4	NA	N A	N A	22.9 6	87	1 0 5	0.1 465	3.9 43	1 7	0.999 5
PASCO	a3 0.3 9	51.29	10 6	NA	N A	N A	39.4 5	89	1 0 7	0.2 308	11. 84	1 7	0.809
PASCO	a4 0.4 9	61.74	13 0	NA	N A	N A	42.0 5	113	1 3 1	0.3 189	19. 69	1 7	0.290 6
PASCO	a5 0.5 9	138.8	15 6	NA	N A	N A	89.3 4	139	1 5 7	0.3 563	49. 45	1 7	0.000 0514 7
PASCO	a6 0.6 9	192.3	16 6	NA	N A	N A	99.8 5	149	1 6 7	0.4 807	92. 43	1 7	2.196 e-12

PASCO	a7 0.7 9	225.4	18 8	NA	N A	N A	150. 5	171	1 8 9	0.3 324	74. 93	1 7	3.01e -09
PASCO	a8 0	273.9	19 4	NA	N A	N A	199. 2	177	1 9 5	0.2 728	74. 72	1 7	3.276 e-09
PIURA	a0. 9	246	20 6	NA	N A	N A	199. 7	189	2 0 7	0.1 882	46. 31	1 7	0.000 155
PIURA	a1 0.1 9	120.1	17 0	NA	N A	N A	104. 6	153	1 7 1	0.1 289	15. 48	1 7	0.561
PIURA	a2 0.2 9	208.1	19 7	NA	N A	N A	176. 1	180	1 9 8	0.1 539	32. 01	1 7	0.014 98
PIURA	a3 0.3 9	353	20 3	NA	N A	N A	202. 9	186	2 0 4	0.4 254	15 0.2	1 7	2.269 e-23
PIURA	a4 0.4 9	899.9	20 3	NA	N A	N A	314	186	2 0 4	0.6 51	58 5.9	1 7	1.383 e-113
PIURA	a5 0.5 9	1575	20 6	NA	N A	N A	311	189	2 0 7	0.8 025	12 63	1 7	3.151 e-258
PIURA	a6 0.6 9	3123	20 6	NA	N A	N A	398. 1	189	2 0 7	0.8 725	27 25	1 7	0
PIURA	a7 0.7 9	2392	20 6	NA	N A	N A	420. 1	189	2 0 7	0.8 244	19 72	1 7	0
PIURA	a8 0	1749	20 6	NA	N A	N A	423. 6	189	2 0 7	0.7 578	13 25	1 7	1.728 e-271
PUNO	a0. 9	225.3	20 5	NA	N A	N A	164. 4	188	2 0 6	0.2 704	60. 93	1 7	7.387 e-07
PUNO	a1 0.1 9	126.6	18 0	NA	N A	N A	115. 1	163	1 8 1	0.0 907 6	11. 49	1 7	0.830
PUNO	a2 0.2 9	191.2	20	NA	N A	N A	172. 9	185	2 0 3	0.0 958 2	18. 32	1 7	0.368 9

PUNO	a3 0.3 9	295	20 6	NA	N A	N A	272	189	2 0 7	0.0 779 4	22. 99	1 7	0.149 6
PUNO	a4 0.4 9	370.5	20 6	NA	N A	N A	246. 3	189	2 0 7	0.3 351	12 4.1	1 7	2.49e -18
PUNO	a5 0.5 9	730.5	20 6	NA	N A	N A	323. 8	189	2 0 7	0.5 568	40 6.7	1 7	7.225 e-76
PUNO	a6 0.6 9	959.1	20 6	NA	N A	N A	288. 5	189	2 0 7	0.6 992	67 0.7	1 7	1.484 e-131
PUNO	a7 0.7 9	863.2	20 6	NA	N A	N A	289. 2	189	2 0 7	0.6 65	57 4	1 7	4.525 e-111
PUNO	a8 0	703.8	20 6	NA	N A	N A	312. 5	189	2 0 7	0.5 56	39 1.3	1 7	1.203 e-72
SAN MARTI N	a0. 9	239.4	20 3	NA	N A	N A	191. 9	186	2 0 4	0.1 986	47. 55	1 7	0.000 1007
SAN MARTI N	a1 0.1 9	95.83	14 9	NA	N A	N A	70.9 7	132	1 5 0	0.2 594	24. 86	1 7	0.097 81
SAN MARTI N	a2 0.2 9	125.7	19 1	NA	N A	N A	106. 8	174	1 9 2	0.1 509	18. 98	1 7	0.329 9
SAN MARTI N	a3 0.3 9	204.8	19 8	NA	N A	N A	166. 7	181	1 9 9	0.1 858	38. 05	1 7	0.002 418
SAN MARTI N	a4 0.4 9	313.7	20 5	NA	N A	N A	207. 5	188	2 0 6	0.3 384	10 6.2	1 7	6.318 e-15
SAN MARTI N	a5 0.5 9	487.4	20 4	NA	N A	N A	253. 8	187	2 0 5	0.4 794	23 3.6	1 7	4.51e -40
SAN MARTI N	a6 0.6 9	763.5	20 6	NA	N A	N A	284. 1	189	2 0 7	0.6 279	47 9.3	1 7	4.211 e-91
SAN MARTI N	a7 0.7 9	566.7	20 5	NA	N A	N A	255. 3	188	2 0 6	0.5 496	31 1.5	1 7	4.821 e-56

SAN MARTI N	a8 0	743.5	20 6	NA	N A	N A	316. 8	189	2 0 7	0.5 739	42 6.7	1 7	4.739 e-80
TACNA	a0. 9	54.54	12 4	NA	N A	N A	43.2 9	107	1 2 5	0.2 063	11. 25	1 7	0.843
TACNA	a1 0.1 9	6.653	61	NA	N A	N A	4.69 8	44	6 2	0.2 939	1.9 55	1 7	1
TACNA	a2 0.2 9	47.05	11 5	NA	N A	N A	40.7	98	1 1 6	0.1 344	6.3 22	1 7	0.990 7
TACNA	a3 0.3 9	83.11	15 4	NA	N A	N A	74.5 6	137	1 5 5	0.1 029	8.5 55	1 7	0.953
TACNA	a4 0.4 9	156.1	17 2	NA	N A	N A	109. 6	155	1 7 3	0.2 98	46. 52	1 7	0.000 1442
TACNA	a5 0.5 9	329.6	18 6	NA	N A	N A	210	169	1 8 7	0.3 628	11 9.6	1 7	1.863 e-17
TACNA	a6 0.6 9	610.7	20 1	NA	N A	N A	263. 6	184	2 0 2	0.5 684	34 7.1	1 7	2e-63
TACNA	a7 0.7 9	464.9	20 4	NA	N A	N A	287. 4	187	2 0 5	0.3 818	17 7.5	1 7	9.067 e-29
TACNA	a8 0	358.3	20 6	NA	N A	N A	306. 6	189	2 0 7	0.1 443	51. 7	1 7	0.000 0228 8
TUMBE S	a0. 9	53.94	13 3	NA	N A	N A	46.3	116	1 3 4	0.1 416	7.6 4	1 7	0.973 7
TUMBE S	a1 0.1 9	5.624	57	NA	N A	N A	4.23 9	40	5 8	0.2 462	1.3 85	1 7	1
TUMBE S	a2 0.2 9	26.32	10 7	NA	N A	N A	22.2 9	90	1 0 8	0.1 531	4.0 29	1 7	0.999 5
TUMBE S	a3 0.3 9	52.44	13 6	NA	N A	N A	42.6	119	1 3 7	0.1 871	9.8 12	1 7	0.911

TUMBE S	a4 0.4 9	93.67	15 2	NA	N A	N A	68.0 8	135	1 5 3	0.2 732	25. 59	1 7	0.082 16
TUMBE S	a5 0.5 9	267.8	17 4	NA	N A	N A	130. 7	157	1 7 5	0.5 118	13 7	1 7	8.15e -21
TUMBE S	a6 0.6 9	491.9	19 5	NA	N A	N A	198. 8	178	1 9 6	0.5 957	29 3	1 7	3.091 e-52
TUMBE S	a7 0.7 9	368.9	19 5	NA	N A	N A	196. 5	178	1 9 6	0.4 673	17 2.4	1 7	9.323 e-28
TUMBE S	a8 0	384.6	20 5	NA	N A	N A	235. 3	188	2 0 6	0.3 88	14 9.2	1 7	3.464 e-23
UCAYAL I	a0. 9	199.1	19 2	NA	N A	N A	155. 9	175	1 9 3	0.2 173	43. 27	1 7	0.000 4387
UCAYAL I	a1 0.1 9	45.36	12 3	NA	N A	N A	38.5 4	106	1 2 4	0.1 504	6.8 24	1 7	0.985 7
UCAYAL I	a2 0.2 9	167.7	17 6	NA	N A	N A	147. 8	159	1 7 7	0.1 186	19. 9	1 7	0.279 6
UCAYAL I	a3 0.3 9	173.3	17 6	NA	N A	N A	133. 6	159	1 7 7	0.2 292	39. 72	1 7	0.001 416
UCAYAL I	a4 0.4 9	242	19 8	NA	N A	N A	187. 2	181	1 9 9	0.2 266	54. 85	1 7	7.247 e-06
UCAYAL I	a5 0.5 9	483.2	20 0	NA	N A	N A	247. 9	183	2 0 1	0.4 87	23 5.3		2.07e -40
UCAYAL I	a6 0.6 9	701.2	20 6	NA	N A	N A	254. 1	189	2 0 7	0.6 377		1 7	
UCAYAL I	a7 0.7 9	915.9	20 3	NA	N A	N A	316. 5	186	2 0 4	0.6 545	59 9.5	1 7	
UCAYAL I	a8 0	613.5	20 5	NA	N A	N A	313. 2	188	2 0 6	0.4 895	30 0.3		9.699 e-54

Under-registration rates

Table 6: Under-registration rates

Departamento	sub.mean
ICA	99.85
MADRE DE DIOS	99.17
AREQUIPA	94.81
ANCASH	85.12
TUMBES	85.04
JUNIN	82.32
MOQUEGUA	82.15
CUSCO	80.81
LA LIBERTAD	80.42
HUANCAVELICA	77.77
CALLAO	77.49
TACNA	74.44
PUNO	62.28
UCAYALI	61.8
LIMA	58.01
APURIMAC	57
SAN MARTIN	51.53
AYACUCHO	50.53
PIURA	49.41
HUANUCO	46.54
PASCO	40.6
LORETO	32.09
CAJAMARCA	28.41
AMAZONAS	27.99
LAMBAYEQUE	11.89

Age-standardised deaths rates

Table 7: Age-standardised deaths rates

Departamento	adj.rate	lci	uci	crude.rate	2010	2015	Difference
AMAZONAS	4.824	4.618	5.037	4.828	6.05	6.19	-1.362
ANCASH	8.412	8.247	8.579	8.387	6.09	6.15	2.237
APURIMAC	7.258	7.016	7.506	7.881	6.76	6.61	1.271
AREQUIPA	9.123	8.963	9.285	8.274	5.53	5.8	2.474
AYACUCHO	5.977	5.8	6.157	6.49	6.15	5.91	0.5802

CAJAMARCA	5.831	5.711	5.952	6.194	5.39	5.5	0.6941
CALLAO	11.01	10.81	11.21	10.54	4.91	5.27	5.267
CUSCO	7.262	7.119	7.407	7.238	6.88	6.97	0.2676
HUANCAVELICA	5.889	5.68	6.103	8.25	5.83	5.54	2.71
HUANUCO	7.167	6.992	7.345	8.379	5.94	5.98	2.399
ICA	9.541	9.331	9.754	8.072	4.99	5.29	2.782
JUNIN	7.316	7.175	7.459	7.514	6.17	6.24	1.274
LA LIBERTAD	7.7	7.578	7.823	7.534	5.24	5.39	2.144
LAMBAYEQUE	7.469	7.322	7.619	7.463	5.25	5.55	1.913
LIMA	11.44	11.38	11.51	11.42	5.13	5.4	6.023
LORETO	7.304	7.144	7.467	7.715	4.92	5.07	2.645
MADRE DE DIOS	7.299	6.877	7.74	6.432	4.4	4.54	1.892
MOQUEGUA	9.547	9.112	9.997	9.396	5.49	5.86	3.536
PASCO	6.606	6.325	6.896	7.645	5.54	5.54	2.105
PIURA	9.029	8.895	9.165	8.44	5.36	5.5	2.94
PUNO	6.87	6.737	7.004	8.242	7.01	6.86	1.382
SAN MARTIN	7.28	7.104	7.459	7.239	5.47	5.63	1.609
TACNA	6.175	5.922	6.436	6.031	5.09	5.4	0.631
TUMBES	8.139	7.79	8.499	8.134	4.7	4.94	3.194
UCAYALI	8.261	8.016	8.511	7.335	5.68	5.93	1.405

Counterfacutual and total deaths 2020

Table 8: Counterfacutual and total deaths 2020

Depar	ra	sin	exc	ex	exc	exc	exce	exce	со	СО	СО			tot
tamen	ng	ad	ess	ce	ess	ess.	ss.r	ss.re	un	un	un	tot	tot	al.
to	e	ef	T.	ss.l	.u	reg	eg.l	g.u	t	t.l	t.u	al	al.l	u
AMAZ ONAS	a0 .9	60	0	1	1	0	0	0	60	60	60	10 3.2	10 4.2	10 4.2
AMAZ ONAS	a1 0. 19	22	0	1	1	0	0	0	22	22	22	37. 84	38. 84	38. 84
AMAZ ONAS	a2 0. 29	36	5	5	5	0	0	0	36	36	36	66. 92	66. 92	66. 92
AMAZ ONAS	a3 0. 39	60	11	11	11	0	0	0	60	60	60	11 4.2	11 4.2	11 4.2

AMAZ ONAS	a4 0. 49	83	15	15	15	0	0	0	83	83	83	15 7.8	15 7.8	15 7.8
AMAZ ONAS	a5 0. 59	12 3	41	41	41	0	0	0	12 3	12 3	12 3	25 2.6	25 2.6	25 2.6
AMAZ ONAS	a6 0. 69	19 9	12 3.1	60	19 6	71. 59	0.01 299	113. 4	12 7.4	85. 62	19 9	34 2.3	20 7.3	53 8.3
AMAZ ONAS	a7 0. 79	19 9	64	64	64	0	0	0	19 9	19 9	19 9	40 6.3	40 6.3	40 6.3
AMAZ ONAS	a8 0	33 7	15 7.9	58	25 4.2	91. 79	12.1 3	147. 2	24 5.2	18 9.8	32 4.9	57 9.7	38 4.5	81 3.1
ANCA SH	a0 .9	24 3	3	3	3	0	0	0	24 3	24 3	24 3	28 2.2	28 2.2	28 2.2
ANCA SH	a1 0. 19	10 1	2	2	2	0	0	0	10 1	10 1	10 1	11 8	11 8	11 8
ANCA SH	a2 0. 29	16 3	12	12	12	0	0	0	16 3	16 3	16 3	19 9.3	19 9.3	19 9.3
ANCA SH	a3 0. 39	22 4	37	37	37	0	0	0	22 4	22 4	22 4	29 4.3	29 4.3	29 4.3
ANCA SH	a4 0. 49	47 1	26 8	18 6.7	32 7.7	233	161. 6	284. 4	23 7.8	18 6.6	30 9.4	54 1.1	40 1.1	68 3.1
ANCA SH	a5 0. 59	89 0	56 8.8	45 0	65 9.4	495 .1	390. 8	573. 1	39 4.9	31 6.9	49 9.2	10 22	81 4.1	12 33
ANCA SH	a6 0. 69	13 90	10 14	90 3.1	11 04	882 .4	785. 2	959. 9	50 7.6	43 0.1	60 4.8	15 97	13 97	17 99
ANCA SH	a7 0. 79	19 60	12 45	10 84	13 79	108 4	942. 6	120 0	87 6.5	76 0.4	10 17	22 52	19 57	25 48
ANCA SH	a8 0	31 30	98 6.2	69 7.9	12 40	858 .5	606. 7	107 9	22 72	20 51	25 23	35 96	30 55	41 39
APURI MAC	a0 .9	10 0	2	2	2	- 70. 63	- 166. 2	- 13.7 4	17 0.6	11 3.7	26 6.2	24 6	16 4.6	38 2.6

APURI MAC	a1 0. 19	51	3	3	3	0	0	0	51	51	51	75. 93	75. 93	75. 93
APURI MAC	a2 0. 29	64	7	7	7	0	0	0	64	64	64	98. 52	98. 52	98. 52
APURI MAC	a3 0. 39	73	5	5	5	0	0	0	73	73	73	10 9.4	10 9.4	10 9.4
APURI MAC	a4 0. 49	11 9	11	11	11	0	0	0	11 9	11 9	11 9	18 1.2	18 1.2	18 1.2
APURI MAC	a5 0. 59	20 0	26	26	26	0	0	0	20 0	20 0	20 0	31 2	31 2	31 2
APURI MAC	a6 0. 69	27 5	23	23	23	0	0	0	27 5	27 5	27 5	41 6.2	41 6.2	41 6.2
APURI MAC	a7 0. 79	44 7	39	39	39	0	0	0	44 7	44 7	44 7	67 8.2	67 8.2	67 8.2
APURI MAC	a8 0	86 3	43	43	43	0	0	0	86 3	86 3	86 3	12 77	12 77	12 77
AREQ UIPA	a0 .9	21 6	4	4	4	- 120 .1	- 271. 9	- 22.5 4	33 6.1	23 8.5	48 7.9	35 7.6	25 4.9	51 7.3
AREQ UIPA	a1 0. 19	98	8	8	8	0	0	0	98	98	98	11 1.1	11 1.1	11 1.1
AREQ UIPA	a2 0. 29	23 2	12	12	12	- 81. 27	- 197. 8	- 1.14	31 3.3	23 3.1	42 9.8	34 1.5	25 7.2	46 4.2
AREQ UIPA	a3 0. 39	32 9	29	29	29	0	0	0	32 9	32 9	32 9	37 5.1	37 5.1	37 5.1
AREQ UIPA	a4 0. 49	66 2	25 1.3	12 4	35 2.7	238 .9	106. 6	334. 4	42 3.1	32 7.6	55 5.4	69 6.4	46 8.6	93 7
AREQ UIPA	a5 0. 59	12 13	66 6.6	50 8	78 7.5	633 .7	482	747. 6	57 9.3		73 1	12 76	99 7.5	15 56

AREQ UIPA	a6 0. 69	19 90	11 02	88 7.9	12 73	104 8	843. 2	120 9	94 2.1	78 0.5	11 47	20 93	17 09	24 80
AREQ UIPA	a7 0. 79	24 80	11 19	85 2.7	13 39	106 4	809. 7	127 2	14 16	12 08	16 70	26 09	21 23	30 96
AREQ UIPA	a8 0	43 07	13 54	96 4.7	16 94	128 7	916. 2	160 9	30 20	26 98	33 91	45 31	38 02	52 61
AYAC UCHO	a0 .9	12 2	1	1	1	- 126 .7	- 282. 4	- 34.5 2	24 8.7	15 6.5	40 4.4	37 2.7	23 5	60 5.4
AYAC UCHO	a1 0. 19	62	3	3	3	0	0	0	62	62	62	95. 67	95. 67	95. 67
AYAC UCHO	a2 0. 29	94	3	3	3	0	0	0	94	94	94	14 3.5	14 3.5	14 3.5
AYAC UCHO	a3 0. 39	10 0	11	11	11	0	0	0	10 0	10 0	10 0	16 0.5	16 0.5	16 0.5
AYAC UCHO	a4 0. 49	16 1	24	24	24	0	0	0	16 1	16 1	16 1	26 4.6	26 4.6	26 4.6
AYAC UCHO	a5 0. 59	21 4	51	51	51	0	0	0	21 4	21 4	21 4	37 0.9	37 0.9	37 0.9
AYAC UCHO	a6 0. 69	37 3	10 1	10 1	10 1	0	0	0	37 3	37 3	37 3	65 8.5	65 8.5	65 8.5
AYAC UCHO	a7 0. 79	55 4	10 6	10 6	10 6	0	0	0	55 4	55 4	55 4	93 4	93 4	93 4
AYAC UCHO	a8 0	84 2	78	78	78	0	0	0	84 2	84 2	84 2	13 37	13 37	13 37
CAJA MARC A	a0 .9	23 1	2	2	2	- 110 .3	- 266. 3	- 11.1 5	34 1.3	24 2.1	49 7.3	58 7.7	41 7.5	85 5.3
CAJA MARC A	a1 0. 19	75	3	3	3	0	0	0	75	75	75	13 1.7	13 1.7	13 1.7

CAJA MARC	a2 0.	12 8	6	6	6	0	0	0	12 8	12 8	12 8	22 5.6	22 5.6	22 5.6
Α	29													
CAJA MARC A	a3 0. 39	20 7	24	24	24	0	0	0	20 7	20 7	20 7	37 9.2	37 9.2	37 9.2
CAJA MARC A	a4 0. 49	29 4	46	46	46	0	0	0	29 4	29 4	29 4	55 0.5	55 0.5	55 0.5
CAJA MARC A	a5 0. 59	53 8	36 4.4	17 4.7	49 8.3	212 .4	101. 2	289. 8	32 5.6	24 8.2	43 6.8	92 3.2	60 0.5	12 48
CAJA MARC A	a6 0. 69	79 2	46 5.8	15 2	68 9.2	271 .4	86.6 7	401. 1	52 0.6	39 0.9	70 5.3	13 59	82 2.8	19 00
CAJA MARC A	a7 0. 79	10 72	55 9.6	15 4	79 7.8	326 .1	146. 3	464. 4	74 5.9	60 7.6	92 5.7	18 39	11 97	23 86
CAJA MARC A	a8 0	17 53	63 3.9	26 4.3	94 5.3	369 .4	153. 4	550. 3	13 84	12 03	16 00	30 08	23 28	36 90
CALL AO	a0 .9	15 6	3	3	3	0	0	0	15 6	15 6	15 6	19 4.1	19 4.1	19 4.1
CALL AO	a1 0. 19	49	1	1	1	0	0	0	49	49	49	61. 03	61. 03	61. 03
CALL AO	a2 0. 29	18 5	15	15	15	0	0	0	18 5	18 5	18 5	24 1.7	24 1.7	24 1.7
CALL AO	a3 0. 39	31 9	16 1.4	85. 81	21 4.7	131 .8	69.2 3		18 7.2		24 9.8	39 0.8	26 2.9	52 0.7
CALL AO	a4 0. 49	63 9	58 7.7	53 6	62 6.7	479 .7	436. 7	510. 7	15 9.3		20 2.3	78 2.9	69 3.2	87 4.6
CALL AO	a5 0. 59	11 92	11 93	11 41	12 34	973 .6	930. 2	100 7	21 8.4		26 1.8	14 60	13 68	15 55
CALL AO	a6 0. 69	19 60	18 75	17 90	19 44	153 0	146 0		42 9.8	37 4	49 9.7	24 01	22 48	25 56

CALL AO	a7 0. 79	22 20	19 46	18 16	20 52	158 8	148 2	167 4	63 2	54 6.1	73 8.2	27 20	24 85	29 56
CALL AO	a8 0	29 82	21 30	19 29	23 01	173 8	157 3	187 8	12 44	11 04	14 09	36 53	32 81	40 27
CUSC O	a0 .9	35 4	4	4	4	0	0	0	35 4	35 4	35 4	42 5.9	42 5.9	42 5.9
CUSC O	a1 0. 19	17 7	3	3	3	0	0	0	17 7	17 7	17 7	21 4	21 4	21 4
CUSC O	a2 0. 29	24 7	8	8	8	- 133 .3	- 306. 4	20.7 3	38 0.3	26 7.7	55 3.4	46 1.3	32 7.1	66 7.6
CUSC O	a3 0. 39	31 9	18	18	18	0	0	0	31 9	31 9	31 9	39 8.2	39 8.2	39 8.2
CUSC O	a4 0. 49	51 9	35	35	35	0	0	0	51 9	51 9	51 9	65 3.6	65 3.6	65 3.6
CUSC O	a5 0. 59	78 9	89	89	89	0	0	0	78 9	78 9	78 9	10 29	10 29	10 29
CUSC O	a6 0. 69	11 92	14 6	14 6	14 6	0	0	0	11 92	11 92	11 92	15 67	15 67	15 67
CUSC O	a7 0. 79	16 10	11 0	11 0	11 0	0	0	0	16 10	16 10	16 10	20 29	20 29	20 29
CUSC O	a8 0	24 53	12 0	12 0	12 0	0	0	0	24 53	24 53	24 53	30 44	30 44	30 44
HUAN CAVE LICA	a0 .9	14 1	1	1	1	0	0	0	14 1	14 1	14 1	17 3.3	17 3.3	17 3.3
HUAN CAVE LICA	a1 0. 19	60	2	2	2	0	0	0	60	60	60	75. 34	75. 34	75. 34
HUAN CAVE LICA	a2 0. 29	76	2	2	2	0	0	0	76	76	76	94. 89	94. 89	94. 89
HUAN CAVE LICA	a3 0. 39	79	7	7	7	0	0	0	79	79	79	10 3.6	10 3.6	10 3.6

HUAN CAVE LICA	a4 0. 49	15 2	19	19	19	0	0	0	15 2	15 2	15 2	20 4.8	20 4.8	20 4.8
HUAN CAVE LICA	a5 0. 59	23 2	11 7.5	58. 58	15 8.8	96. 17	47.1 1	129. 1	13 5.8	10 2.9	18 4.9	28 3.6	18 4.4	38 4.7
HUAN CAVE LICA	a6 0. 69	35 4	21 0.6	13 5.4	26 4.3	172 .3	110	215. 4	18 1.7	13 8.6	24 4	43 2.7	30 4.8	56 2.6
HUAN CAVE LICA	a7 0. 79	54 8	24 8	12 2.9	34 0.8	202 .9	99.7 2	278	34 5.1	27 0	44 8.3	66 9.8	45 2.9	88 8.7
HUAN CAVE LICA	a8 0	78 2	20	20	20	0	0	0	78 2	78 2	78 2	97 5.8	97 5.8	97 5.8
HUAN UCO	a0 .9	18 7	0	1	1	0	0	0	18 7	18 7	18 7	28 7	28 8	28 8
HUAN UCO	a1 0. 19	71	4	4	4	0	0	0	71	71	71	11 3	11 3	11 3
HUAN UCO	a2 0. 29	12 5	10	10	10	0	0	0	12 5	12 5	12 5	20 1.8	20 1.8	20 1.8
HUAN UCO	a3 0. 39	16 7	18	18	18	0	0	0	16 7	16 7	16 7	27 4.3	27 4.3	27 4.3
HUAN UCO	a4 0. 49	26 8	35	35	35	0	0	0	26 8	26 8	26 8	44 6.3	44 6.3	44 6.3
HUAN UCO	a5 0. 59	41 1	22 7	83	32 6.2	147 .9	54.1 8	211. 9	26 3.1	19 9.1	35 6.8	63 0.7	38 8.6	87 3.8
HUAN UCO	a6 0. 69	67 0	39 0.4	23 1.7	51 2.5	254 .4	150. 3	333. 3	41 5.6	33 6.7	51 9.7	10 28	74 8.4	13 10
HUAN UCO	a7 0. 79	90 9	34 0.2	12 7	51 7.7	.7 .7	74.9 2	336. 7	68 7.3	57 2.3	83 4.1	13 95	10 05	17 98
HUAN UCO	a8 0	12 32	10 3	10 3	10 3	0	0	0	12 32	12 32	12 32	19 94	19 94	19 94
ICA	a0 .9	17 0	3	3	3	0	0	0	17 0	17 0	17 0	17 3.2	17 3.2	17 3.2

ICA	a1 0. 19	52	2	2	2	- 26. 27	- 67.8 2	- 1.19	78. 27	53. 19	11 9.8	80. 38	55. 27	12 2
ICA	a2 0. 29	16 4	15	15	15	0	0	0	16 4	16 4	16 4	17 9.2	17 9.2	17 9.2
ICA	a3 0. 39	25 6	51	51	51	0	0	0	25 6	25 6	25 6	30 7.4	30 7.4	30 7.4
ICA	a4 0. 49	52 7	30 0.7	23 0.3	35 1.3	300	229	349. 8	22 6.8	17 7.2	29 8	52 7.8	40 7.8	64 9.7
ICA	a5 0. 59	96 8	60 4.4	51 6.4	67 1.7	603 .5	514. 7	669. 7	36 4.5	29 8.3	45 3.3	96 9.4	81 5.2	11 26
ICA	a6 0. 69	14 68	10 54	96 2.9	11 26	105 2	960. 5	112 3	41 5.7	34 4.7	50 7.5	14 70	13 08	16 34
ICA	a7 0. 79	16 38	90 3.1	76 7.6	10 13	901 .8	765. 4	101 1	73 6.2	62 7.4	87 2.6	16 40	13 96	18 87
ICA	a8 0	25 20	11 00	87 9.2	12 85	109 8	877	128 2	14 22	12 38	16 43	25 24	21 19	29 30
JUNIN	a0 .9	37 2	7	7	7	- 142 .7	- 313. 6	- 20.3 7	51 4.7	39 2.4	68 5.6	61 2.7	46 8.8	81 3.8
JUNIN	a1 0. 19	15 1	5	5	5	0	0	0	15 1	15 1	15 1	18 2.7	18 2.7	18 2.7
JUNIN	a2 0. 29	21 9	13	13	13	0	0	0	21 9	21 9	21 9	27 0.7	27 0.7	27 0.7
JUNIN	a3 0. 39	32 2	25	25	25	0	0	0	32 2	32 2	32 2	40 3.9	40 3.9	40 3.9
JUNIN	a4 0. 49	55 4	22 0.1	91	32 4	187	64.6 9	274. 5	36 7	27 9.5	48 9.3	65 2	41 9.9	89 9.9
JUNIN	a5 0. 59	94 7	43 7.6	24 9.8	57 9.1	371 .9	211. 4	491. 3	57 5.1		73 5.6	11 14	78 6.1	14 45

JUNIN	a6 0. 69	13 93	60 8.5	36 6.2	79 7.8	517 .1	310. 3	677	87 5.9	71 6	10 83	16 39	12 09	20 72
JUNIN	a7 0. 79	18 05	65 5.7	40 6.7	86 3.2	557 .2	344. 7	732. 6	12 48	10 72	14 60	21 24	16 69	25 82
JUNIN	a8 0	27 45	44 3	16 4	74 5	376 .4	80.6 1	632. 2	23 69	21 13	26 64	32 30	26 50	38 81
LA LIBER TAD	a0 .9	33 4	5	5	5	0	0	0	33 4	33 4	33 4	40 4.4	40 4.4	40 4.4
LA LIBER TAD	a1 0. 19	14 3	7	7	7	0	0	0	14 3	14 3	14 3	17 8	17 8	17 8
LA LIBER TAD	a2 0. 29	29 7	26	26	26	0	0	0	29 7	29 7	29 7	38 1.2	38 1.2	38 1.2
LA LIBER TAD	a3 0. 39	40 9	67	67	67	0	0	0	40 9	40 9	40 9	55 6.1	55 6.1	55 6.1
LA LIBER TAD	a4 0. 49	74 3	37 9.1	24 3.9	48 2.1	317	203. 1	402. 3	42 6	34 0.7	53 9.9	88 8.5	65 1.3	11 28
LA LIBER TAD	a5 0. 59	14 41	10 17	86 0	11 40	850 .6	718. 3	952. 6	59 0.4	48 8.4	72 2.7	17 23	14 44	20 04
LA LIBER TAD	a6 0. 69	23 22	16 51	14 46	18 18	138 0	120 9	151 9	94 1.6	80 2.8	11 13	27 77	24 06	31 49
LA LIBER TAD	a7 0. 79	28 75	18 10	15 39	20 36	151 4	128 6	170 1	13 61	11 74	15 89	34 38	29 42	39 36
LA LIBER TAD	a8 0	40 55	12 67	81 6.2	16 58	106 0	681. 7	138 6	29 95	26 69	33 73	48 49	40 08	56 92
LAMB AYEQ UE	a0 .9	81	3	3	3	0	0	0	81	81	81	15 5.4	15 5.4	15 5.4
LAMB AYEQ UE	a1 0. 19	29	2	2	2	0	0	0	29	29	29	56. 55	56. 55	56. 55

LAMD	- 2	00	70	25	10	27	4.00		F 2	24	0.5	1.0	00	26
LAMB AYEQ UE	a2 0. 29	90	70. 23	25	10 5.6	37. 33	4.08	55.6 3	52. 67	34. 37	85. 92	16 9.3	89. 66	26 7.3
LAMB AYEQ UE	a3 0. 39	17 6	22 1.8	17 9.6	24 8.9	117 .9	94.9 7	131. 8	58. 09	44. 22	81. 03	33 1.1	26 2.8	40 1.3
LAMB AYEQ UE	a4 0. 49	36 7	61 4.7	58 1.7	63 4.4	326 .8	308. 7	336. 7	40. 24	30. 27	58. 3	69 0.4	63 8.6	74 4.1
LAMB AYEQ UE	a5 0. 59	73 4	12 87	12 59	13 06	684 .2	668. 9	693. 8	49. 83	40. 25	65. 06	13 81	13 35	14 28
LAMB AYEQ UE	a6 0. 69	12 30	21 38	20 95	21 67	113 6	111 3	115 1	93. 66	78. 56	11 7	23 14	22 42	23 87
LAMB AYEQ UE	a7 0. 79	11 93	20 78	20 36	21 07	110 5	108 2	112 0	88. 47	73. 43	11 1.2	22 44	21 74	23 16
LAMB AYEQ UE	a8 0	12 98	21 18	20 33	21 75	112 6	108 0	115 6	17 1.8	14 2.4	21 7.8	24 42	23 01	25 85
LIMA	a0 .9	13 73	44	44	44	0	0	0	13 73	13 73	13 73	19 94	19 94	19 94
LIMA	a1 0. 19	48 2	34	34	34	0	0	0	48 2	48 2	48 2	71 8.4	71 8.4	71 8.4
LIMA	a2 0. 29	12 97	14 2	14 2	14 2	0	0	0	12 97	12 97	12 97	19 84	19 84	19 84
LIMA	a3 0. 39	26 32	18 17	15 84	20 18	127 9	111 5	142 1	13 53	12 11	15 17	37 37	33 04	41 72
LIMA	a4 0. 49	54 21	54 17	51 57	56 42	381 5	363 1	397 3	16 06	14 48	17 90	76 97	72 13	81 84
LIMA	a5 0. 59	10 55 4	11 49 7	11 12 2	11 82 2	809 7	783 2	832 5	24 57	22 29	27 22	14 98 6	14 28 7	15 68 7
LIMA	a6 0. 69	17 12 6	18 59 0	18 00 2	19 10 4	130 92	126 78	134 53	40 34	36 73	44 48	24 31 8	23 21 8	25 42 0

LIMA	a7 0. 79	19 32 5	18 62 5	17 82 5	19 33 8	131 17	125 52	136 18	62 08	57 07	67 73	27 44 0	25 92 8	28 95 4
LIMA	a8 0	27 13 9	19 99 3	18 83 0	21 06 8	140 80	132 60	148 36	13 05 9	12 30 3	13 87 9	38 53 6	36 29 9	40 77 5
LORE TO	a0 .9	27 5	6	6	6	- 257 .4	- 479. 2	- 106. 7	53 2.4	38 1.7	75 4.2	89 9.9	64 7	12 72
LORE TO	a1 0. 19	85	11	11	11	0	0	0	85	85	85	15 3.7	15 3.7	15 3.7
LORE TO	a2 0. 29	15 2	20	20	20	0	0	0	15 2	15 2	15 2	27 5.2	27 5.2	27 5.2
LORE TO	a3 0. 39	25 3	18 7.1	10 7.9	24 2.1	111 .4	63.6 5	143. 6	14 1.6	10 9.4	18 9.4	42 4.8	29 1.6	56 0.1
LORE TO	a4 0. 49	38 9	39 3.1	31 9.9	44 7	234 .1	189. 9	265. 6	15 4.9	12 3.4	19 9.1	65 3.2	52 7.1	78 1.3
LORE TO	a5 0. 59	61 5	78 7.8	72 9.6	83 1.3	469 .2	433. 9	494. 5	14 5.8	12 0.5	18 1.1	10 33	93 1.9	11 35
LORE TO	a6 0. 69	95 8	13 22	12 52	13 73	787 .3	744. 8	817. 3	17 0.7	14 0.7	21 3.2	16 09	14 88	17 31
LORE TO	a7 0. 79	93 2	12 05	11 15	12 71	717 .5	663. 4	756. 2	21 4.5	17 5.8	26 8.6	15 65	14 10	17 22
LORE TO	a8 0	78 3	86 3.5	74 7.9	94 9.8	514 .3	444. 8	565. 1	26 8.7	21 7.9	33 8.2	13 15	11 14	15 18
MADR E DE DIOS	a0 .9	92	1	1	1	0	0	0	92	92	92	93. 76	93. 76	93. 76
MADR E DE DIOS	a1 0. 19	21	0	1	1	0	0	0	21	21	21	21. 17	22. 17	22. 17
MADR E DE DIOS	a2 0. 29	79	2	2	2	0	0	0	79	79	79	81. 65	81. 65	81. 65

MADR E DE DIOS	a3 0. 39	92	7	7	7	0	0	0	92	92	92	99. 76	99. 76	99. 76
MADR E DE DIOS	a4 0. 49	11 7	21	21	21	0	0	0	11 7	11 7	11 7	13 9	13 9	13 9
MADR E DE DIOS	a5 0. 59	17 2	77. 29	36. 72	10 4.6	76. 66	35.4 3	102. 8	95. 34	69. 21	13 6.6	17 3.4	10 6.5	24 2.3
MADR E DE DIOS	a6 0. 69	19 1	87. 3	42	11 6.8	86. 59	41.6 7	114. 9	10 4.4	76. 13	14 9.3	19 2.6	11 8.8	26 7.4
MADR E DE DIOS	a7 0. 79	16 8	78. 26	36. 29	10 5.7	77. 62	35	103. 9	90. 38	64. 12	13 3	16 9.4	10 0.9	23 9.8
MADR E DE DIOS	a8 0	14 6	73. 99	44. 17	94. 35	73. 39	42.8	92.5 8	72. 61	53. 42	10 3.2	14 7.2	98. 03	19 8.4
MOQU EGUA	a0 .9	21	2	2	2	0	0	0	21	21	21	26. 75	26. 75	26. 75
MOQU EGUA	a1 0. 19	10	5.6 54	4.7 06	7.4 74	4.7 98	3.14 5	5.49 4	5.2 02	4.5 06	6.8 55	11. 78	10. 02	15. 55
MOQU EGUA	a2 0. 29	39	2	2	2	0	0	0	39	39	39	47. 96	47. 96	47. 96
MOQU EGUA	a3 0. 39	33	4	4	4	0	0	0	33	33	33	42. 89	42. 89	42. 89
MOQU EGUA	a4 0. 49	90	60. 11	34. 77	75. 52	51. 01	28.6 6	63.2	38. 99	26. 77	61. 34	10 6.1	66. 32	14 7.8
MOQU EGUA	a5 0. 59	17 3	13 5.9	10 1.2	15 8.1	115 .3	85.0 2	133. 3	57. 72	39. 68	87. 98	20 3.9	14 8	26 1.8
MOQU EGUA	a6 0. 69	27 8	20 1	12 8.3	24 5.2	170 .6	108	207.	10 7.4	70. 8	17 0	32 7.6	21 1.7	44 5.5
MOQU EGUA	a7 0. 79	38 0	23 6.9	12 5.5		201 .1	105. 6	258. 3	17 8.9	12 1.7	27 4.4	44 7.8	26 8.9	62 8.7

MOQU EGUA PASC	a8 0 a0	50 6 91	18 5.6 1	52 1	28 5.8 1	157 .5 0	38.2 7 0	241. 7 0	34 8.5 91	26 4.3 91	46 7.7 91	59 6.3 14	36 3.5 14	83 7 14
O PASC O	.9 a1 0. 19	28	1	1	1	0	0	0	28	28	28	6.145.63	6.145.63	6.1 45. 63
PASC O	a2 0. 29	45	5	5	5	0	0	0	45	45	45	76. 73	76. 73	76. 73
PASC O	a3 0. 39	58	5	5	5	0	0	0	58	58	58	97. 45	97. 45	97. 45
PASC O	a4 0. 49	83	11	11	11	- 43. 2	110	- 1.74 5	12 6.2	84. 74	19 3	21 2.2	14 6.1	31 8.7
PASC O	a5 0. 59	15 2	12 6.8	76. 45	16 0.9	79. 57	47.3 3	100. 3	72. 43	51. 66	10 4.7	24 2.3	15 8.8	32 7.8
PASC O	a6 0. 69	22 0	14 2.3	64. 38	19 6.9	89. 26	39.7 6	122. 9	13 0.7	97. 12	18 0.2	35 0.7	21 9.2	48 4.2
PASC O	a7 0. 79	24 5	22	22	22	0	0	0	24 5	24 5	24 5	41 2.5	41 2.5	41 2.5
PASC O	a8 0	29 3	28	28	28	0	0	0	29 3	29 3	29 3	49 5.1	49 5.1	49 5.1
PIURA	a0 .9	30 1	17	17	17	- 139 .7	307. 6	- 24.3 5	44 0.7	32 5.3	60 8.6	68 0.6	50 6.9	93 3.4
PIURA	a1 0. 19	91	9	9	9	0	0	0	91	91	91	14 6	14 6	14 6
PIURA	a2 0. 29	21 9	17	17	17	0	0	0	21 9	21 9	21 9	34 6.8		34 6.8
PIURA	a3 0. 39	36 2	29 9.9	21 8.5	35 8	199 .1	144. 4	237. 1	16 2.9	12 4.9	21 7.6	54 5.1		68 5.7
PIURA	a4 0. 49	74 2	83 6.1	75 6.2	89 5.1	555 .2	501. 5	593. 8	18 6.8	14 8.2	24 0.5	11 17	97 9.4	12 57

PIURA	a5 0. 59	13 86	15 99	15 00	16 78	106 2	995. 6	111 4	32 4	27 2.2	39 0.4	20 87	19 10	22 66
PIURA	a6 0. 69	24 46	27 89	26 28	29 21	185 2	174 5	193 9	59 3.6	50 6.9	70 1.2	36 83	33 92	39 77
PIURA	a7 0. 79	25 12	26 13	24 14	27 76	173 5	160 3	184 3	77 7	66 9.4	90 9.4	37 83	34 22	41 45
PIURA	a8 0	32 51	24 37	20 78	27 41	161 9	138 0	181 9	16 32	14 32	18 71	48 96	42 34	55 59
PUNO	a0 .9	29 0	4	4	4	- 169 .9	320. 3	- 61.3 1	45 9.9	35 1.3	61 0.3	63 7.4	48 7.8	84 4.5
PUNO	a1 0. 19	12 9	2	2	2	0	0	0	12 9	12 9	12 9	17 9.7	17 9.7	17 9.7
PUNO	a2 0. 29	23 0	12	12	12	0	0	0	23 0	23 0	23 0	32 8.8	32 8.8	32 8.8
PUNO	a3 0. 39	28 2	10	10	10	0	0	0	28 2	28 2	28 2	39 8.4	39 8.4	39 8.4
PUNO	a4 0. 49	48 6	48	48	48	0	0	0	48 6	48 6	48 6	71 7.3	71 7.3	71 7.3
PUNO	a5 0. 59	78 8	73	73	73	0	0	0	78 8	78 8	78 8	11 58	11 58	11 58
PUNO	a6 0. 69	11 28	10 7	10 7	10 7	0	0	0	11 28	11 28	11 28	16 60	16 60	16 60
PUNO	a7 0. 79	15 50	40 4.2	96	69 0.6	293 .5	34.9 5	500. 7	12 57	10 49	15 15	21 35	15 41	27 77
PUNO	a8 0	21 33	51	51	51	0	0	0	21 33	21 33	21 33	29 89	29 89	29 89
SAN MART IN	a0 .9	19 0	10	10	10	131	- 286	33.6 3	32 1	22 3.6	47 6	48 6.6	34	71 6.7

SAN MART IN	a1 0. 19	69	3	3	3	0	0	0	69	69	69	10 5.4	10 5.4	10 5.4
SAN MART IN	a2 0. 29	15 3	14	14	14	0	0	0	15 3	15 3	15 3	24 1.2	24 1.2	24 1.2
SAN MART IN	a3 0. 39	20 7	40	40	40	0	0	0	20 7	20 7	20 7	34 7.3	34 7.3	34 7.3
SAN MART IN	a4 0. 49	32 2	17 8.7	83	25 7.2	120 .3	43.9 8	172. 6	20 1.7	14 9.4	27 8	47 8.1	30 4.8	67 0
SAN MART IN	a5 0. 59	52 2	38 0.4	25 3.3	47 1.6	256 .2	170	316. 9	26 5.8	20 5.1	35 2	77 5	55 7.8	99 4.2
SAN MART IN	a6 0. 69	74 4	48 9	30 4.7	62 4.2	329 .3	204. 6	419. 8	41 4.7	32 4.2	53 9.4	11 05	78 6.1	14 25
SAN MART IN	a7 0. 79	79 6	30 8.1	14 6	48 3.4	207 .5	51.8 6	324. 9	58 8.5	47 1.1	74 4.1	11 82	84 5.4	15 88
SAN MART IN	a8 0	12 07	42 4	15 7	67 4.1	285 .6	69.0 6	453. 4	92 1.4	75 3.6	11 38	17 92	12 76	23 64
TACN A	a0 .9	39	0	1	1	0	0	0	39	39	39	48. 97	49. 97	49. 97
TACN A	a1 0. 19	18	1	1	1	0	0	0	18	18	18	23. 6	23. 6	23. 6
TACN A	a2 0. 29	49	4	4	4	0	0	0	49	49	49	65. 53	65. 53	65. 53
TACN A	a3 0. 39	77	6	6	6	0	0	0	77	77	77	10 2.7	10 2.7	10 2.7
TACN A	a4 0. 49	13 1	24	24	24	0	0	0	13 1	13 1	13 1	18 8.5	18 8.5	18 8.5
TACN A	a5 0. 59	22 5	11 8.7	45	18 0.3	94. 51	7.48 2	142. 8	13 0.5	82. 2	21 7.5	28 2.5	14 8.2	45 3.4

TACN A	a6 0. 69	37 5	22 2	73	30 4	176 .8	70.8	241. 3	19 8.2	13 3.7	30 4.2	47 0.9	24 0.8	68 5.9
TACN A	a7 0. 79	39 6	16 3.4	75	25 8	130 .1	15.6 7	204. 7	26 5.9	19 1.3	38 0.3	49 7.2	31 5.2	73 5.5
TACN A	a8 0	44 4	15 4	42	25 2.2	122 .6	8.91 7	200. 1	32 1.4	24 3.9	43 5.1	55 7.5	34 8.3	79 8.5
TUMB ES	a0 .9	58	0	1	1	0	0	0	58	58	58	66. 68	67. 68	67. 68
TUMB ES	a1 0. 19	20	2	2	2	0	0	0	20	20	20	24. 99	24. 99	24. 99
TUMB ES	a2 0. 29	47	1	1	1	0	0	0	47	47	47	55. 03	55. 03	55. 03
TUMB ES	a3 0. 39	80	31. 38	12	48. 73	27. 3	5.14	41.5 2	52. 7	38. 48	74. 86	91. 97	56. 23	13 4.8
TUMB ES	a4 0. 49	11 6	60. 49	31. 38	81. 02	52. 62	26.4	69.6 1	63. 38	46. 39	89. 57	13 3.4	84. 7	18 4
TUMB ES	a5 0. 59	23 1	18 5	15 7.6	20 4.9	160 .9	136. 2	177. 3	70. 1	53. 67	94. 79	26 5.6	21 9.3	31 3.8
TUMB ES	a6 0. 69	36 6	31 3.9	28 2.8	33 6.7	273 .1	245. 1	292. 1	92. 91	73. 94	12 0.9	42 0.7	36 7.8	47 5.7
TUMB ES	a7 0. 79	35 4	22 6.2	16 9.4	26 7.5	196 .8	146. 5	231. 8	15 7.2	12 2.2	20 7.5	40 7	30 9.8	50 6.1
TUMB ES	a8 0	50 5	25 3.5	17 0.2	31 6.1	220 .5	147. 1	274. 1	28 4.5	23 0.9	35 7.9	58 0.5	43 5.6	72 7.4
UCAY ALI	a0 .9	13 7	9	9	9	-76	- 188. 7	- 6.83 7	21 3	14 3.8	32 5.7	30 3.4	20 7.8	45 9.1
UCAY ALI	a1 0. 19	57	7	7	7	0	0	0	57	57	57	85. 77	85. 77	85. 77
UCAY ALI	a2 0. 29	13 5	10	10	10	0	0	0	13 5	13 5	13 5	19 6.6	19 6.6	19 6.6

UCAY ALI	a3 0. 39	17 0	10 4	53. 17	13 8.7	75. 23	37.7 5	99.6 2	94. 77	70. 38	13 2.2	23 4.9	15 0.4	32 1.4
UCAY ALI	a4 0. 49	21 3	15 6	10 4.8	19 0.6	112 .9	75.1 3	137. 2	10 0.1	75. 79	13 7.9	29 4.4	20 9.6	38 1.2
UCAY ALI	a5 0. 59	42 2	35 9	30 0	40 1.4	259 .8	216. 3	289. 7	16 2.2	13 2.3	20 5.7	58 3.2	48 2.8	68 5.6
UCAY ALI	a6 0. 69	59 6	57 1.2	51 1.4	61 6.5	413	369. 4	445. 4	18 2.7	15 0.6	22 6.6	82 3.7	71 9.6	92 9.7
UCAY ALI	a7 0. 79	65 3	63 5.6	57 1.7	68 2.7	459 .9	413	493. 3	19 3.1	15 9.7	24 0	90 2.4	79 2.4	10 14
UCAY ALI	a8 0	64 9	45 5.8	34 1.5	54 1.1	329 .8	246. 4	390. 8	31 9.2	25 8.2	40 2.6	89 6.9	69 8.3	10 98
Total	-	21 16 49	14 28 75	12 71 63	15 57 39	998 14	856 05	110 738	11 18 35	10 09 11	12 60 44	29 22 30	26 20 00	32 40 23

Proportion total excess deaths per region
Table 8: Proportion total excess deaths per region

Departamento	suma	prop
AMAZONAS	NA	NA
ANCASH	4136	4.05
APURIMAC	159	0.1557
AREQUIPA	4547	4.453
AYACUCHO	378	0.3702
CAJAMARCA	2105	2.061
CALLAO	7911	7.748
CUSCO	533	0.522
HUANCAVELICA	627.2	0.6143
HUANUCO	NA	NA
ICA	4032	3.949
JUNIN	2415	2.365
LA LIBERTAD	6229	6.101
LAMBAYEQUE	8532	8.356
LIMA	76158	74.58

LORETO	4795	4.696
MADRE DE DIOS	NA	NA
MOQUEGUA	833.1	0.8159
PASCO	342.1	0.3351
PIURA	10618	10.4
PUNO	711.2	0.6965
SAN MARTIN	1847	1.809
TACNA	NA	NA
TUMBES	NA	NA
UCAYALI	2308	2.26

Population 2020 per region *Table 8: Population 2020 per region*

Departamento	pop.INEI
MADRE DE DIOS	153164
MOQUEGUA	189701
TUMBES	251363
PASCO	314677
TACNA	362331
AMAZONAS	427202
APURIMAC	467707
HUANCAVELICA	511794
UCAYALI	523086
AYACUCHO	725649
ICA	825042
HUANUCO	888845
SAN MARTIN	894564
CALLAO	1081491
LORETO	1085375
ANCASH	1177080
LAMBAYEQUE	1309731
CUSCO	1352476
AREQUIPA	1358108
JUNIN	1398361
PUNO	1485328
CAJAMARCA	1544325
PIURA	1914346

LA LIBERTAD 1973446 LIMA 10609166

Appendix 2

Estimations based on mortality baselines and differences - robustness check

The overall excess mortality estimates obtained from the baseline-approach model are 9.78% below the estimates obtained using the PAF model. The age distribution of mortality is highly consistent in both models. However, most differences between both estimates are concentrated in the oldest age groups. Differences between both approaches are mainly due to the inclusion of the upper confidence interval are in the final count.

Table 8: Estimations based on mortality baselines and differences

Age.group	Epi-weeks	Positive-Excess	All-Excess
0-9	0	72.85	-519.6
10-19	19.01	174.3	108.5
20-29	49.87	207.7	-135.3
30-39	1591	1719	1595
40-49	6792	6834	6803
50-59	14059	14130	14085
60-69	23561	23623	23611
70-79	22807	22912	22885
+08	21169	21357	21357
Grand Total	90048	91030	89790

Note: Epi-weeks (column 2) includes excess deaths during periods in which the observed mortality was above the upper uncertainty interval; Positive-Excess (column 3) includes excess in which the observed mortality was above the baseline; and All-Excess (column 4) includes both positive and negative excess deaths.

Appendix 3

Comparison with other studies in Peru

A simple comparison of registered deaths in Peru for months April to June of 2020 and corresponding periods in 2017-19 estimates 36,322 excess deaths.⁴⁷ It does not include non-registered deaths or take improvements in data registration into account. Applying our approach to this time period gives an estimate of 35,461 (CI 95% 32,425-37,803) registered deaths which climbs to 49,648 (CI 95% 48,037-51,034). A similar comparison between 1 January to 12 July 2020 and the corresponding periods in 2017-19 shows excess 46,863 deaths, compared to 50,534 (CI 95% 44,448-55,582), applying our approach to the same period.⁴⁸ This second study includes 2,000 excess

deaths before March 2020, which cannot be attributed to the COVID-19 pandemic. A study of Lima metropolitan region finds an excess of 20,093 non-violent deaths for the first 24 weeks of 2020.⁴⁹ This is above to our own estimate based on registered deaths in Lima over the same period: 14,659 (CI 95% 13,579 – 15,609). Adding unregistered deaths increases this to 20149 (CI 95% 18,839-21,323).