ISP's 2050 NEM

Based On 2024 NEM Data

February 2025

Apply the latest Integrated System Plan's (ISP) 'recipe' for 2050 to 2024 generation data...

- Scale Wind and Grid Solar by six
- Scale Rooftop Solar by four
- Scale Hydropower by 83%
- Scale Electricity Demand by 208%
- Provide 49 GW / 646 GWh of dispatchable storage
- Provide 15 GW of gas power and 4GW of other baseload power
- Include additional power system security services

The following generation and consumption graphs tell the story and it doesn't look good! Note the large number of partial blackout periods (in black of course) as the grid doesn't cope.

2024 was an unremarkable year weather-wise. Australia's wind and solar resources are widely dispersed so scaling these resources provides a reliable model as the wind and solar responses to the weather are already baked in to the 2024 data.

According to this model...

Blackouts

Generation is overall 4% shy over the year of what is needed to avoid blackouts which occur mainly in the colder months. The worst time in the model is 6:40 PM on 13th June when the NEM, at 21.5 GW, is over 40 GW short of the 59 GW demand as storage is empty and the 2.5 GW wind just covers NEM grid losses. Clearly far more than 19 GW of dispatchable non-storage generation will in fact be required!

CO_2

Fossil fuel generators provided **132 TWh** of electricity in **2024**. Non-hydro-storage baseload, having 15GW of fossil fuel gas and 4GW of unspecified generation, will produce **93 TWh** of electricity in **2050**. The large number of blackouts will not be tolerated so more wind, solar and storage and/or non-hydro-storage baseload will be added. Adding non-hydro-storage baseload will only increase the 93 TWh generation number. Not much of a transition given the massive investment.

Storage and Spillage

Storage is heavily relied on to absorb daytime solar power to then return it at night. The storage graph shows longer term storage is consumed, when really needed, typically over a week or so.

There is little spillage (wasted oversupply) as the storage fills in late August. Also note, the excess grid power never exceeds storage's ability to absorb it¹.

Background - 2024 Generation Data

AEMO's nemweb.com.au website provides the power output for all NEM-connected generators every five minutes and rooftop solar generation is reported every thirty minutes. All up, over 24 million data points provide an accurate history for the previous 12 months. The NEMWeb project at github.com/jhilton00/NEMWeb is an open-source analysis of this data.

From the 2024 analysis 5-minute interval data for five categories is copied over.

- Hydropower
- Wind
- Grid solar
- Rooftop solar (interpolated from 30-minute data)
- Electricity demand used by factories, businesses and residences

¹ The ISP only includes storage generation output's capacity, not the storage input capacity. The model simply uses the same value.

Methodology

The five categories are scaled to form the corresponding 2050 categories then the power-flow analysis, as presented in the Average NEM Power Flows 2024.pdf² where system losses are calculated, baseload generation is determined and storage responses are included. The 5-minute interval model is then summarized in a daily table that is used to derive the results and graphs.

APPENDIX

The following table is copied from the *Parameters and Results* tab in <u>NEM ISP 2050.xlsx</u>. Anyone can download and adjust these parameters (in orange cells) as they see fit to revise the model.

Name	Value	Notes
Hydro Factor	83%	ISP Page 11 graph, 7.5/9 - as read from graph
		ISP Page 11, bottom dot point, "Triple grid-scale
		variable renewable energy (VRE) by 2030, and increase
Grid Solar Factor	600%	it six-fold by 2050"
		ISP Page 11, bottom dot point, "Triple grid-scale
Wind Factor	600%	variable renewable energy (VRE) by 2030, and increase it six-fold by 2050"
vina i dotoi	00070	ISP Page 12 third dot point, "Support a forecast four-
Rooftop Solar Factor	400%	fold increase in rooftop solar capacity"
·		ISP Page 73 2nd paragraph: "75 GW of firming
		technology"
		ISP Page 65 4th paragraph: "Firming technologies
IOD 0050 Firms in a One as its	75.0\4/	include storage, hydro, gas and other fuelled
ISP 2050 Firming Capacity	75 GW	generation." ISP Page 6 "8.5 GW of hydropower assets in operation
Hydropower 2024	9 GW	across Australia today"
Non-hydro-storage Baseload	19 GW	adroso Adottalia loday
Non hydro ctorage baceteau	10 011	ISP Bottom of page 23, "Future energy consumption
		from the NEM will rise by approximately 108% by
Demand Factor	208%	2050"
		ISP Page 12 second dot point, "This includes 49 GW/
Storage Capacity	646 GWh	646 gigawatt hours (GWh) of dispatchable storage"
Storage Generation Capacity	49 GW	ISP Page 12 second dot point, "This includes 49 GW/ 646 gigawatt hours (GWh) of dispatchable storage"
Storage Generation Capacity	49 0 0	040 gigawatt flours (GWII) of dispatchable storage
UK Average Generation 2024	37 GW	
UK Grid Inertia 2024	220 GWs	
Aus Average Generation 2024	24.7 GW	github.com/jhilton00/NEMWeb
Aus Average Generation 2050	50 GW	
Aus Grid Inertia 2050	297 GWs	Use the UK's ratio to estimate Australia's requirement
SynCon Power Consumption		
Factor	3 MW/GWs	
SynCon Power Consumption	892 MW	
Average Transmission Loss Factor	8%	
Average Dist Network Loss Factor	5%	

 $^{^2\} https://github.com/jhilton00/NEMWeb/blob/master/Average\%20NEM\%20Power\%20Flows\%202024.pdf$

Aluminium Smelters Consumption	2,118	github.com/jhilton00/NEMWeb, Tomago's 960MW has been removed from 2024's consumption
Rooftop to Dist Network Factor Rooftop Local Consumption Factor	95% 5%	The percentage of rooftop solar power put into the distribution network
Baseload Threshhold May to Aug Baseload Threshhold Sep to Apr Storage Threshhold May to Aug Storage Threshhold Sep to Apr	20% 20% 129 GWh 129 GWh	Turn on baseload to try and maintain this amount of storage Turn on baseload to try and maintain this amount of storage
Average Storage Charging 2024 Average Storage Discharging 2024 Storage Turnaround Loss Factor Storage Charging Loss Factor Storage Discharging Loss Factor Starting Storage	182 121 34% 18% 23% 300 GWh	github.com/jhilton00/NEMWeb github.com/jhilton00/NEMWeb
Average Demand Average Non-hydro Baseload Non-hydro Baseload Capacity Factor	47 GW 9 GW 47%	100% 19%
Business and Residential Factor Baseload Factor	95% 115%	The percentage of non-aluminium-smelter demand