

Markscheme

November 2019

Chemistry

Standard level

Paper 2

No part of this product may be reproduced in any form or by any electronic or mechanical means, including information storage and retrieval systems, without written permission from the IB.

Additionally, the license tied with this product prohibits commercial use of any selected files or extracts from this product. Use by third parties, including but not limited to publishers, private teachers, tutoring or study services, preparatory schools, vendors operating curriculum mapping services or teacher resource digital platforms and app developers, is not permitted and is subject to the IB's prior written consent via a license. More information on how to request a license can be obtained from http://www.ibo.org/contact-the-ib/media-inquiries/for-publishers/guidance-for-third-party-publishers-and-providers/how-to-apply-for-a-license.

Aucune partie de ce produit ne peut être reproduite sous quelque forme ni par quelque moyen que ce soit, électronique ou mécanique, y compris des systèmes de stockage et de récupération d'informations, sans l'autorisation écrite de l'IB.

De plus, la licence associée à ce produit interdit toute utilisation commerciale de tout fichier ou extrait sélectionné dans ce produit. L'utilisation par des tiers, y compris, sans toutefois s'y limiter, des éditeurs, des professeurs particuliers, des services de tutorat ou d'aide aux études, des établissements de préparation à l'enseignement supérieur, des fournisseurs de services de planification des programmes d'études, des gestionnaires de plateformes pédagogiques en ligne, et des développeurs d'applications, n'est pas autorisée et est soumise au consentement écrit préalable de l'IB par l'intermédiaire d'une licence. Pour plus d'informations sur la procédure à suivre pour demander une licence, rendez-vous à l'adresse http://www.ibo.org/fr/contact-the-ib/media-inquiries/for-publishers/guidance-for-third-party-publishers-and-providers/how-to-apply-for-a-license.

No se podrá reproducir ninguna parte de este producto de ninguna forma ni por ningún medio electrónico o mecánico, incluidos los sistemas de almacenamiento y recuperación de información, sin que medie la autorización escrita del IB.

Además, la licencia vinculada a este producto prohíbe el uso con fines comerciales de todo archivo o fragmento seleccionado de este producto. El uso por parte de terceros —lo que incluye, a título enunciativo, editoriales, profesores particulares, servicios de apoyo académico o ayuda para el estudio, colegios preparatorios, desarrolladores de aplicaciones y entidades que presten servicios de planificación curricular u ofrezcan recursos para docentes mediante plataformas digitales— no está permitido y estará sujeto al otorgamiento previo de una licencia escrita por parte del IB. En este enlace encontrará más información sobre cómo solicitar una licencia: http://www.ibo.org/es/contact-the-ib/media-inquiries/for-publishers/guidance-for-third-party-publishers-and-providers/how-to-apply-for-a-license.

Subject details: Chemistry standard level paper 2 markscheme

Candidates are required to answer **ALL** questions. Maximum total = **[50 marks]**.

- **1.** Each row in the "Question" column relates to the smallest subpart of the question.
- **2.** The maximum mark for each question subpart is indicated in the "Total" column.
- 3. Each marking point in the "Answers" column is shown by means of a tick (✓) at the end of the marking point.
- **4.** A question subpart may have more marking points than the total allows. This will be indicated by "**max**" written after the mark in the "Total" column. The related rubric, if necessary, will be outlined in the "Notes" column.
- 5. An alternative word is indicated in the "Answers" column by a slash (/). Either word can be accepted.
- **6.** An alternative answer is indicated in the "Answers" column by "**OR**". Either answer can be accepted.
- 7. An alternative markscheme is indicated in the "Answers" column under heading **ALTERNATIVE 1** *etc*. Either alternative can be accepted.
- **8.** Words inside chevrons **« »** in the "Answers" column are not necessary to gain the mark.
- **9.** Words that are underlined are essential for the mark.
- **10.** The order of marking points does not have to be as in the "Answers" column, unless stated otherwise in the "Notes" column.
- 11. If the candidate's answer has the same "meaning" or can be clearly interpreted as being of equivalent significance, detail and validity as that in the "Answers" column then award the mark. Where this point is considered to be particularly relevant in a question it is emphasized by **OWTTE** (or words to that effect) in the "Notes" column.
- **12.** Remember that many candidates are writing in a second language. Effective communication is more important than grammatical accuracy.
- 13. Occasionally, a part of a question may require an answer that is required for subsequent marking points. If an error is made in the first marking point then it should be penalized. However, if the incorrect answer is used correctly in subsequent marking points then **follow through** marks should be awarded. When marking, indicate this by adding **ECF** (error carried forward) on the script.
- **14.** Do **not** penalize candidates for errors in units or significant figures, **unless** it is specifically referred to in the "Notes" column.
- 15. If a question specifically asks for the name of a substance, do not award a mark for a correct formula unless directed otherwise in the "Notes" column. Similarly, if the formula is specifically asked for, do not award a mark for a correct name unless directed otherwise in the "Notes" column.
- **16.** If a question asks for an equation for a reaction, a balanced symbol equation is usually expected, do not award a mark for a word equation or an unbalanced equation unless directed otherwise in the "Notes" column.
- 17. Ignore missing or incorrect state symbols in an equation unless directed otherwise in the "Notes" column.

C	Question	Answers	Notes	Total
1.	а	ö=ö, ö=ö-ö:√	Coordinate bond may be represented by an arrow.	2
			Do not accept delocalized structure for ozone.	
1.	b	resonance «structures» OR delocalization of the «double/pi bond» electrons ✓ 121 «pm» < length < 148 «pm» ✓	Accept any length between these two values.	2
1.	С	«UV» shorter wavelength <i>AND</i> higher energy «than visible» ✓		1
1.	d	 «bond» in O₂ stronger than in O₃ ✓ ozone absorbs lower frequency/energy «radiation than oxygen» OR ozone absorbs longer wavelength «radiation than oxygen» ✓ 	Accept ozone «layer» absorbs a range of frequencies.	2

C	uesti	on	Answers	Notes	Total
2.	а	i 4:1 ✓			1
2.	а	ii	$n_{S_2O_3^{2-}} = \text{@}0.0258 dm^3 \times 0.010 mol dm^{-3} = \text{@} 2.58 \times 10^{-4} \text{@}mol \text{@} \checkmark$		2
			$\frac{\sqrt{2.58 \times 10^{-4} \text{ mol}}}{4} = 6.45 \times 10^{-5} \text{ «mol} $	Award [2] for correct final answer.	
2.	а	iii	«difference in moles per dm³ = $(6.45 \times 10^{-5} - 5.03 \times 10^{-5}) \times \frac{1000}{300.0}$ =» 4.73 × 10 ⁻⁵ «mol dm ⁻³ » ✓ «convert to mg per dm³: 4.73 × 10 ⁻⁵ mol dm ⁻³ × 32.00 g mol ⁻¹ × 1000 mg g ⁻¹ = » 1.51 «ppm/mg dm ⁻³ » ✓	Award [2] for correct final answer.	2
2.	b	i	$\frac{\sqrt{100 \times 0.1 \text{ cm}^3}}{20.1 \text{ cm}^3} = 0.5 \text{ %}$		1
2.	b	ii	repetition / take several samples «and average» ✓		1

C	Questi	on	Answers	Notes	Total
3.	а		«electrophilic» addition ✓	Do not accept "nucleophilic addition" or "free radical addition". Do not accept "halogenation".	1
3.	b		$CH_3CH_2Cl\left(g\right) + OH^-\left(aq\right) \rightarrow CH_3CH_2OH\left(aq\right) + Cl^-\left(aq\right)$ \textit{OR} $CH_3CH_2Cl\left(g\right) + NaOH\left(aq\right) \rightarrow CH_3CH_2OH\left(aq\right) + NaCl\left(aq\right)$	Do not accept management.	1
3.	С	i	$\begin{split} &C_{2}H_{6}O\left(g\right)+3O_{2}\left(g\right)\to2CO_{2}\left(g\right)+3H_{2}O\left(g\right)\\ &\textit{OR}\\ &CH_{3}CH_{2}OH\left(g\right)+3O_{2}\left(g\right)\to2CO_{2}\left(g\right)+3H_{2}O\left(g\right)\checkmark \end{split}$		1
3.	С	ii	bonds broken: $5(C-H) + C-C + C-O + O-H + 3(O=O)$ OR $5(414\text{wkJ mol}^{-1}\text{w}) + 346\text{wkJ mol}^{-1}\text{w} + 358\text{wkJ mol}^{-1}\text{w} + 463\text{wkJ mol}^{-1}\text{w} + 3(498\text{wkJ mol}^{-1}\text{w}) / 4731\text{wkJ}\text{w} \checkmark$ bonds formed: $4(C=O) + 6(O-H)$ OR $4(804\text{wkJ mol}^{-1}\text{w}) + 6(463\text{wkJ mol}^{-1}\text{w}) / 5994\text{wkJ}\text{w} \checkmark$ 4 4 4 4 4 4 bonds broken – bonds formed = 4731 – 5994 = 4 – 1263 wkJ mol $\text{$^{-1}$}$ w	Award [3] for correct final answer.	3

C	Questi	on	Answers	Notes	Total
3.	d	i	K ₂ Cr ₂ O ₇ /Cr ₂ O ₇ ²⁻ /«potassium» dichromate «(VI)» <i>AND</i> acidified/H ⁺ <i>OR</i> «acidified potassium» manganate(VII) / «H ⁺ » KMnO ₄ / «H ⁺ » MnO ₄ ⁻ ✓	Accept "H ₂ SO ₄ " or "H ₃ PO ₄ " for "H ⁺ ". Do not accept "HCl". Accept "permanganate" for "manganate(VII)".	2
			distil ✓		
3.	d	ii	C ₂ H ₆ O/ethanol: hydrogen-bonding AND C ₂ H ₄ O/ethanal: no hydrogen-bonding/«only» dipole–dipole forces ✓ hydrogen bonding stronger «than dipole–dipole» ✓		2
3.	е		H H H H —C—C—C—C—	Continuation bonds must be shown. Ignore square brackets and "n".	1

C	uesti	on		Answers		Notes	Total
4.	а	i	C ₆ H ₈ O ₇ AND C ₆ H ₇ OR H ₂ O AND H ₃ O ⁺ ✓				1
4.	а	ii	weak acid <i>AND</i> pa <i>OR</i> weak acid <i>AND</i> ed <i>OR</i> weak acid <i>AND</i> Ka	quilibrium lies to left			1
4.	а	iii	Effect on [H ⁺] increases ✓	Effect on equilibrium constant			2
4.	b		pH AND citric acid titrate with strong add reactive meta effervescence/fast titration AND volumentate with strong neutralisation of cit	base <i>AND</i> pH at equivalence I/carbonate/hydrogen carbonate ter reaction with HCl ✓ me of alkali for complete neutbbase <i>AND</i> more than one equ	ralisation greater for citric acid ✓ ivalence point for complete	Accept "add universal indicator AND HCl more red/pink". Accept any acid reaction AND HCl greater rise in temperature. Accept specific examples throughout. Do not accept "smell" or "taste".	1 max

C	Questi	on	Answers	Notes	Total
5.	а	i	[Ar] 3d ¹⁰ OR 1s ² 2s ² 2p ⁶ 3s ² 3p ⁶ 3d ¹⁰ ✓		1
5.	а	ii	$\Delta H^{\ominus} = \sum \Delta H^{\ominus}_{f} \text{ (products)} - \sum \Delta H^{\ominus}_{f} \text{ (reactants)} \checkmark$ $\Delta H^{\ominus} = 2(-241.8 \text{ «kJ mol}^{-1}\text{»}) - 4(-92.3 \text{ «kJ mol}^{-1}\text{»}) = -114.4 \text{ «kJ»} \checkmark$	Award [2] for correct final answer.	2
5.	а	iii	Segmond of the left of E_a (cat) to the left of E_a (cat) $E_$		2
5.	а	iv	«catalyst provides an» alternative pathway \checkmark «with» lower E_a OR higher proportion of/more particles with «kinetic» $E \ge E_{a(cat)}$ «than E_a » \checkmark		2

Q	uesti	on	Answers	Notes	Total
5.	5. b		«mass of H_2O = 18.360 g − 17.917 g =» 0.443 «g» AND «mass of $CuCl_2$ = 17.917 g − 16.221 g =» 1.696 «g» ✓	Award [3] for correct final answer.	
			moles of $H_2O = \frac{0.443 \text{g}}{18.02 \text{g mol}^{-1}} = 0.0246 \text{mol}$		
			OR moles of CuCl ₂ = « $\frac{1.696 \mathrm{g}}{134.45 \mathrm{g} \mathrm{mol}^{-1}}$ = » 0.0126 «mol» ✓		3
			<pre>«water : copper(II) chloride = 1.95 : 1»</pre> <pre>«x =» 2 ✓</pre>	Accept «x =» 1.95.	
_			LAG:	πουρί (π. – π. 1.30.	
5.	С	i	Wires: «delocalized» electrons «flow» ✓		2
			Electrolyte: «mobile» ions «flow» ✓		2
5.	С	ii	$2Cl^- \rightarrow Cl_2(g) + 2e^-$ <i>OR</i>	Accept e for e⁻.	
			$Cl^- ightarrow rac{1}{2}Cl_2(g) + e^- \checkmark$		1

C	uesti	on	Answers	Notes	Total	
6.	а	i	$C(NH_2)_3NO_3(s) \rightarrow 2N_2(g) + 3H_2O(g) + C(s)$		1	
6.	а	ii	moles of gas = $< 5 \times \frac{10.0 \text{ g}}{122.11 \text{ g mol}^{-1}} = > 0.409 \text{ «mol} > \checkmark$		1	
6.	а	iii				
6.	а	iv	Any two of: nitrogen non-polar/London/dispersion forces AND water polar/H-bonding ✓ water has «much» stronger intermolecular forces ✓ water molecules attract/condense/occupy smaller volume «and therefore deviate from ideal behaviour» ✓		2 max	
6.	b		2Na (s) + 2H ₂ O (l) → 2NaOH (aq) + H ₂ (g) ✓ hydrogen explosive OR highly exothermic reaction OR sodium reacts violently with water OR forms strong alkali ✓	Accept the equation of combustion of hydrogen. Do not accept just "sodium is reactive/dangerous".	2	