Examenul național de bacalaureat 2022 Proba E. c) Matematică *M_mate-info* BAREM DE EVALUARE ȘI DE NOTARE

Varianta 7

Filiera teoretică, profilul real, specializarea matematică-informatică Filiera vocațională, profilul militar, specializarea matematică-informatică

- Pentru orice soluție corectă, chiar dacă este diferită de cea din barem, se acordă punctajul corespunzător.
- Nu se acordă fracțiuni de punct, dar se pot acorda punctaje intermediare pentru rezolvări parțiale, în limitele punctajului indicat în barem.
- Se acordă zece puncte din oficiu. Nota finală se calculează prin împărțirea la zece a punctajului total acordat pentru lucrare.

SUBIECTUL I (30 de puncte)

1.	$2i(3-i)-6i=6i-2i^2-6i=$	3р
	$= -2 \cdot (-1) = 2$	_
	$=-2\cdot (-1)=2$	2p
2.	f(-1)=1+m, $f(1)=1-m$, unde m este număr real	2p
	1+m=1-m, de unde obţinem $m=0$	3 p
3.	$3^{3x-3} = 3^{2x}$, de unde obţinem $3x - 3 = 2x$	3 p
	x = 3	2 p
4.	Mulțimea numerelor naturale de două cifre are 90 de elemente, deci sunt 90 de cazuri posibile	2p
	În mulțimea numerelor naturale de două cifre sunt $3.4=12$ numere cu cifrele mai mici sau	
	egale cu 3, deci sunt 12 cazuri favorabile, de unde obținem $p = \frac{12}{90} = \frac{2}{15}$	3р
5.	B este mijlocul segmentului AC	3 p
	$\frac{x_C + 3}{2} = 1$ și $\frac{y_C + 2}{2} = -1$, de unde obținem $x_C = -1$ și $y_C = -4$	2p
6.	$\sin\frac{\pi}{2} = 1$, $\tan\frac{\pi}{4} = 1$, $\sin\frac{\pi}{6} = \frac{1}{2}$	3p
	$E\left(\frac{\pi}{4}\right) = 1 - 2 \cdot 1 \cdot \frac{1}{2} = 1 - 1 = 0$	2p

SUBIECTUL al II-lea (30 de puncte)

1.a)	$\begin{pmatrix} 0 & 1 & 1 \end{pmatrix}$ $\begin{pmatrix} 0 & 1 & 1 \end{pmatrix}$	
	$A(0) = \begin{pmatrix} 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \end{pmatrix} \Rightarrow \det(A(0)) = \begin{vmatrix} 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \end{vmatrix} =$	2p
	$\begin{pmatrix} 1 & 1 & 0 \end{pmatrix}$ $\begin{pmatrix} 1 & 1 & 0 \end{pmatrix}$	
	=0+1+1-0-0-0=2	3p
b)	$\begin{pmatrix} 1 & 0 & 1 \end{pmatrix}$ $\begin{pmatrix} x+1 & 2-x & 1 \end{pmatrix}$	
	$A(1) = \begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 1 \\ 1 & 1 & 0 \end{pmatrix} \Rightarrow A(1) \cdot A(x) = \begin{pmatrix} x+1 & 2-x & 1 \\ 2-x & x+1 & 1 \\ 1 & 1 & 2 \end{pmatrix}, \text{ pentru orice număr real } x$	3р
	$\begin{pmatrix} 1 & 1 & 0 \end{pmatrix}$ $\begin{pmatrix} 1 & 1 & 2 \end{pmatrix}$	_
	(x-1 2-x 1) $(2 0 0)$	
	$A(x-1) = \begin{pmatrix} x-1 & 2-x & 1 \\ 2-x & x-1 & 1 \\ 1 & 1 & 0 \end{pmatrix} \Rightarrow A(1) \cdot A(x) - A(x-1) = \begin{pmatrix} 2 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 2 \end{pmatrix} = 2I_3, \text{ pentru orice număr}$	
		2p
	real x	
c)	$A(1) \cdot A(1) \cdot A(x) = A(1) \cdot (A(1) \cdot A(x)) = A(1) \cdot (A(x-1) + 2I_3) = A(x-2) + 2I_3 + 2A(1),$	
		3p
	pentru orice număr real x	
	$A(x-2)+2I_3+2A(1)=3A(1)+2I_3 \Rightarrow A(x-2)=A(1)$, de unde obţinem $x-2=1$, deci	2p
	x=3	F

	Central Pagional de l'Ontrel și Evaluare în Educație	
2.a)	$1*3 = \frac{1 \cdot 3(1+3)}{1 \cdot 3 + 1} =$	3p
	$=\frac{3\cdot 4}{4}=3$	2p
b)	$x*1 = \frac{x \cdot 1 \cdot (x+1)}{x \cdot 1 + 1} = \frac{x(x+1)}{x+1} = x$, pentru orice $x \in M$	2p
	$1*x = \frac{1 \cdot x \cdot (1+x)}{1 \cdot x + 1} = \frac{x(x+1)}{x+1} = x$, pentru orice $x \in M$, deci $e = 1$ este elementul neutru al legii de compoziție, **	3p
c)	$\frac{1}{m} * \frac{1}{n} = \frac{m+n}{mn(mn+1)}; \frac{1}{16} \cdot (m*n) = \frac{1}{16} \cdot \frac{mn(m+n)}{mn+1}, \text{ pentru orice numere naturale nenule } m \text{ si } n$	3 p
	$m^2n^2 = 16$ şi, cum m şi n sunt numere naturale nenule, cu $m \le n$, obținem perechile (1,4) şi (2,2)	2p

SUBIECTUL al III-lea

(30 de puncte)

4 \	,	
1.a)	$f'(x) = \frac{(2x-3)e^x - (x^2 - 3x + 1)e^x}{(e^x)^2} =$	3 p
	$= \frac{-x^2 + 5x - 4}{e^x} = \frac{(x - 1)(4 - x)}{e^x}, \ x \in \mathbb{R}$	2p
b)	$\lim_{x \to +\infty} f(x) = \lim_{x \to +\infty} \frac{x^2 - 3x + 1}{e^x} = \lim_{x \to +\infty} \frac{2x - 3}{e^x} = \lim_{x \to +\infty} \frac{2}{e^x} = 0$	3 p
	Dreapta de ecuație $y = 0$, adică axa Ox , este asimptota orizontală spre $+\infty$ la graficul lui f	2p
c)	$f'(x) = 0 \Leftrightarrow x = 1 \text{ sau } x = 4$; pentru orice $x \in (-\infty, 1)$, $f'(x) < 0 \Rightarrow f$ este strict	
	descrescătoare pe $(-\infty,1)$, pentru orice $x \in (1,4)$, $f'(x) > 0 \Rightarrow f$ este strict crescătoare pe	3p
	(1,4) și pentru orice $x \in (4,+\infty)$, $f'(x) < 0 \Rightarrow f$ este strict descrescătoare pe $(4,+\infty)$	•
	Cum $\lim_{x \to -\infty} f(x) = +\infty$, $f(4) = \frac{5}{e^4} < 1$ și funcția f este continuă, obținem că ecuația	2 p
	f(x) = n are soluție unică, pentru orice număr natural nenul n	
2.a)	$\int_{0}^{2} \frac{f(x)}{\sqrt{x^{2} + 4}} dx = \int_{0}^{2} x dx = \frac{x^{2}}{2} \Big _{0}^{2} =$	3p
	$=\frac{4}{2}-0=2$	2p
b)	$= \frac{4}{2} - 0 = 2$ $\int_{0}^{\sqrt{5}} f(x) dx = \frac{1}{2} \int_{0}^{\sqrt{5}} (x^{2} + 4)' \sqrt{x^{2} + 4} dx = \frac{1}{3} (x^{2} + 4) \sqrt{x^{2} + 4} \Big _{0}^{\sqrt{5}} =$	3p
	$=\frac{1}{3}(27-8)=\frac{19}{3}$	2p
c)	$I_n = \int_1^2 \frac{x^n}{x^2 \left(x^2 + 4\right)} dx = \int_1^2 \frac{x^{n-2}}{x^2 + 4} dx$, pentru orice număr natural $n, n \ge 2$	2p
	$I_{n+2} + 4I_n = \int_{1}^{2} \frac{x^{n-2}(x^2 + 4)}{x^2 + 4} dx = \frac{x^{n-1}}{n-1} \Big _{1}^{2} = \frac{2^{n-1} - 1}{n-1} , \text{ deci } \frac{2^{n-1} - 1}{n-1} = \frac{3}{n-1} , \text{ de unde obţinem}$	3 p
	$2^{n-1} = 4$, deci $n = 3$, care convine	