Optymalizacja lista B1

Zad. 1B.

Udowodnij, że zbiór $\mathcal{D}_x = \{ \|\mathbf{x}\| \leq 1 \}$ jest wypukły.

Zad. 2B.

Korzystając z definicji, zbadaj wypukłość funkcji $f(x) = x^2$

Zad. 3B.

Niech F będzie funkcją wypukłą. Udowodnij, że zbiór $\mathcal{D}_{\alpha} = \left\{ \mathbf{x} \in \mathcal{R}^S : F(\mathbf{x}) \leq \alpha \right\}$ jest wypukły.

Zad. 4B.

Niech funkcje $F_k(\mathbf{x}), k=1,2,\ldots,K$ będą wypukłe. Udowodnij, że ich kombinacja liniowa

$$F(\mathbf{x}) = \sum_{k=1}^{K} \alpha_k F_k(\mathbf{x}),$$

gdzie $\alpha_k\geqslant 0$ jest wypukła.

Zad. 5B.

Niech funkcja g będzie wypukła a funkcja h wypukła i monotonicznie rosnąca. Udowodnij, że ich złożenie $F(\mathbf{x}) = h(g(\mathbf{x}))$ jest funkcją wypukłą.

Zad. 6B.

Zbadaj wypukłość poniższych funkcji, zapisz je w postaci macierzowej

$$F(\mathbf{x}) = \mathbf{x}^T \mathbf{A} \mathbf{x} + \mathbf{b}^T \mathbf{x} + c$$

i zilustruj na wykresach:

a)
$$-2x_1^2 - 3x_2^2 + 4x_1x_2 + 2x_1 + 6x_2$$

b)
$$4x_1^2 + 2x_2^2 - x_1x_2 + 2x_1x_3 - x_1 + x_2$$

c)
$$-x_1^2 - 6x_2^2 + 2x_1x_2 + x_1 - 10x_2$$

d)
$$6x_1^2 + x_2^2 - 4x_1x_2 + 2x_1 - 3x_2$$

e)
$$2x_1^2 + x_2^2 + 4x_1x_2$$

Zad. 7B.

Wyznacz ekstrema funkcji:

a)
$$F(\mathbf{x}) = 5x_1^2 + x_2^2 - 4x_1x_2 - 2x_1 + 3$$

b)
$$F(\mathbf{x}) = x_1^3 + x_2^2 - 6x_1x_2 - 48x_1$$

c)
$$F(\mathbf{x}) = 10x_1^2 + 10x_2^2 + x_3^2 + 2x_1x_2 + 6x_1x_3 + 9x_1 + 3x_3 + 1.25$$

Zad. 8B. – programowanie całkowitoliczbowe

Rozwiąż poniższe zadania programowania całkowitoliczbowego dla zadanej funkcji celu i przy ustalonych ograniczeniach liniowych:

a)
$$F(\mathbf{x}) = x_1 + x_2$$

 $14x_1 + 9x_2 \le 51$
 $-6x_1 + 3x_2 \le 1$
 $x_1 \ge 0, x_2 \ge 0$
 $\mathbf{x} \in Z^2$

b)
$$F(\mathbf{x}) = x_1 + x_2$$

 $x_1 + 2x_2 \le 32$
 $18x_1 + 3x_2 \le 224$
 $x_1 \ge 0, x_2 \ge 0$
 $\mathbf{x} \in \mathbb{Z}^2$

c)
$$F(\mathbf{x}) = -2x_1 - 5x^{(2)}$$

 $2x_1 - x_2 \ge 6$
 $x_1 - 6x_2 \ge -24$
 $x_1 \ge 0, x_2 \ge 0$
 $\mathbf{x} \in Z^2$

d)
$$F(\mathbf{x}) = -3x_1 - 7x_2$$

 $3x_1 + 8x_2 \le 24$
 $2x_1 + 3x_2 \le 12$
 $x_1 \ge 0, x_2 \ge 0$
 $\mathbf{x} \in Z^2$

Zad. 9B.

Znajdź minimum funkcji $F(\mathbf{x})$ przy ograniczeniach $\mathbf{x} \in \mathcal{D}_x$ posługując się metodą Lagrange'a:

a)
$$F(\mathbf{x}) = (x_1 - 4)^2 + (x_2 - 2)^2 + (x_3 - 3)^2$$

$$\mathcal{D}_x = \{ \mathbf{x} \in \mathcal{R}^3 : x_1 + x_2 + x_3 = 9 \}$$

b)
$$F(\mathbf{x}) = 2x_1 + 3x_2$$

$$\mathscr{D}_x = \{ \mathbf{x} \in \mathscr{R}^3 : x_1^2 + x_2^2 = 0 \}$$

c)
$$F(\mathbf{x}) = x_1^2 + x_2^2 + x_3^2$$

$$\mathscr{D}_x = \{ \mathbf{x} \in \mathscr{R}^3 : -x_1 + x_3 = 0 \land -x_1 - x_2 + x_3 = -5 \}$$

d)
$$F(\mathbf{x}) = x^{(1)} + x^{(2)}$$

$$\mathcal{D}_x = \{ \mathbf{x} \in \mathcal{R}^3 : x_1^2 + x_2^2 + x_3^2 = 2 \land x_1^2 + x_2^2 - 2x_3 = 3 \}$$

e)
$$F(\mathbf{x}) = x_1 x_2$$

$$\mathscr{D}_x = \left\{ \mathbf{x} \in \mathscr{R}^2 : (x_1 - 1)^2 + x_2^2 = 1 \right\}$$

f)
$$F(\mathbf{x}) = x_1^2 + x_2^2 + x_3^2$$

$$\mathcal{D}_x = \{ \mathbf{x} \in \mathcal{R}^3 : x_1 + x_2 + x_3 = 1 \land x_1 - x_2 + x_3 = 7 \}$$

g)
$$F(\mathbf{x}) = -x_1x_2 - x_2x_3 - x_1x_3$$

$$\mathscr{D}_x = \left\{ \mathbf{x} \in \mathscr{R}^3 : \ x_1 + x_2 + x_3 = 3 \right\}$$

Dodatek

Zbiór wypukły

Jeżeli dla dowolnych dwóch punktów \mathbf{x}_1 , \mathbf{x}_2 ze zbioru \mathcal{D}_x punkt \mathbf{x} zadany wzorem

$$\mathbf{x} = \lambda \mathbf{x}_1 + (1 - \lambda)\mathbf{x}_2$$

również należy do zbioru \mathcal{D}_x , wówczas zbiór ten nazywamy wypukłym.

Funkcja wypukła

Jeżeli dla dowolnych dwóch punktów $\mathbf{x}_1, \, \mathbf{x}_2$ ze zbioru \mathcal{D}_x oraz funkcji $F: \mathcal{D}_x \to \mathcal{R}$ określonej na tym zbiorze zachodzi nierówność

$$F(\lambda \mathbf{x}_1 + (1 - \lambda)\mathbf{x}_2) \leq \lambda F(\mathbf{x}_1) + (1 - \lambda)F(\mathbf{x}_2),$$

wówczas funkcję F nazywamy wypukłą.

Forma kwadratowa

Formą kwadratową nazywamy funkcję $Q(\mathbf{x}): \mathcal{R}^S \to \mathcal{R}$ o postaci $Q(\mathbf{x}) = \mathbf{x}^T A \mathbf{x}$ gdzie $\mathbf{x} \in \mathcal{R}^S$ oraz $\mathbf{A} \in \mathcal{R}^{S \times S}$ jest macierzą symetryczną.

Macierz kwadratowa **A** jest **dodatnio (ujemnie) określona**, gdy dla dowolnego niezerowego wektora **x** zachodzi $\mathbf{x}^T A \mathbf{x} > 0$ ($\mathbf{x}^T A \mathbf{x} < 0$).

Macierz kwadratowa **A** jest **dodatnio (ujemnie) półokreślona**, gdy dla dowolnego niezerowego wektora **x** zachodzi $\mathbf{x}^T A \mathbf{x} \ge 0$ ($\mathbf{x}^T A \mathbf{x} \le 0$).

Macierz kwadratowa **A** jest **dodatnio określona** wtedy i tylko wtedy, gdy wszystkie jej wiodące minory główne są większe od zera.

Macierz kwadratowa **A** jest **dodatnio półokreślona** wtedy i tylko wtedy, gdy wszystkie jej minory główne są nieujemne.

Macierz kwadratowa \mathbf{A} jest **ujemnie określona(półokreślona)** wtedy i tylko wtedy, gdy macierz $-\mathbf{A}$ jest dodatnio określona (półokreślona).

Gradient i Hesjan

Gradientem $\nabla_x F(\mathbf{x})$ funkcji $F: \mathscr{R}^S \to \mathscr{R}$ nazywamy S-wymiarowy wektor pochodnych cząstkowych po wszystkich zmiennych funkcji F, natomiast Hesjanem nazywamy macierz $H(\mathbf{x})$ pochodnych cząstkowych drugiego rzędu o wymiarach $S \times S$:

$$\nabla_{x}F(\mathbf{x}) = \begin{bmatrix} \frac{\partial F}{\partial x_{1}} \\ \frac{\partial F}{\partial x_{2}} \\ \vdots \\ \frac{\partial F}{\partial x_{S}} \end{bmatrix}, \qquad H(\mathbf{x}) = \begin{bmatrix} \frac{\partial^{2}F}{\partial x_{1}\partial x_{1}} & \frac{\partial^{2}F}{\partial x_{1}\partial x_{2}} & \cdots & \frac{\partial^{2}F}{\partial x_{1}\partial x_{S}} \\ \frac{\partial^{2}F}{\partial x_{2}\partial x_{1}} & \frac{\partial^{2}F}{\partial x_{2}\partial x_{2}} & \cdots & \frac{\partial^{2}F}{\partial x_{2}\partial x_{S}} \\ \vdots & \vdots & \ddots & \vdots \\ \frac{\partial^{2}F}{\partial x_{S}\partial x_{1}} & \frac{\partial^{2}F}{\partial x_{S}\partial x_{2}} & \cdots & \frac{\partial^{2}F}{\partial x_{S}\partial x_{S}} \end{bmatrix}$$

Warunek wystarczający na istnienie ekstremum w punkcie \mathbf{x}^* Załóżmy, że $\nabla_x F(\mathbf{x}^*) = 0$. Wówczas:

- \bullet jeżeli macierz $H(\mathbf{x}^*)$ jest dodatnio określona, to F ma minimum loklane w punkcie \mathbf{x}^*
- Jeżeli macierz $H(\mathbf{x}^*)$ jest ujemnie określona, to F ma maksimum loklane w punkcie \mathbf{x}^*
- Jeżeli macierz $H(\mathbf{x}^*)$ nie jest ani ujemnie, ani dodatnio półokreślona, to F nie ma ekstremum w punkcie \mathbf{x}^*

Uwaga: jeżeli macierz $H(\mathbf{x}^*)$ jest tylko dodatnio (ujemnie) półokreślona, to nie jest możliwe ustalenie, czy funkcja F ma ekstremum loklane w punkcie \mathbf{x}^* czy też nie ma (obie sytuacje mogą mieć miejsce).

Forma kwadratowa jest wypukła (wklęsła) jeżeli jest dodatnio (ujemnie) określona.

Optymalizacja z ograniczeniami równościowymi - funkcja Lagrange'a

Dana jest funkcja $F(\mathbf{x})$, gdzie $\mathbf{x} \in \mathcal{R}^N$ oraz M ograniczeń równościowych $\varphi_m(\mathbf{x}) = 0$; m = 1, 2, ..., M. Zadanie optymalizacji z ograniczeniami można sprowadzić do zadania optymalizacji bez ograniczeń funkcji Lagrange'a:

$$L(\mathbf{x}, \boldsymbol{\lambda}) = F(\mathbf{x}) + \sum_{m=1}^{M} \lambda_m \varphi_m(\mathbf{x}),$$

gdzie $\lambda = \begin{bmatrix} \lambda_1 & \lambda_2 & \dots & \lambda_M \end{bmatrix}^T$, jest wektorem tzw. mnożników Lagrange'a. Punkt optymalny jest wówczas rozwiązaniem następującego układu równań:

$$\nabla_x L(\mathbf{x}, \boldsymbol{\lambda}) = \mathbf{0},$$

$$\nabla_{\lambda} L(\mathbf{x}, \boldsymbol{\lambda}) = \mathbf{0}.$$

Jeżeli zachodzi podejrzenie o istnieniu rozwiązań nieregularnych, można je wyznaczyć z tego samego układu równań, z tym, że funkcja Lagrange'a ma wówczas postać:

$$L(\mathbf{x}, \boldsymbol{\lambda}) = \sum_{m=1}^{M} \lambda_m \varphi_m(\mathbf{x}).$$

Optymalizacja z ograniczeniami nierównościowymi - warunki Kuhna-Tuckera Dana jest funkcja $F(\mathbf{x})$, gdzie $\mathbf{x} \in \mathcal{R}^N$ oraz M ograniczeń $\psi_m(\mathbf{x}) \leq 0$; m = 1, 2, ..., M. Zadanie optymalizacji z ograniczeniami można sprowadzić do zadania optymalizacji bez ograniczeń funkcji Lagrange'a:

$$L(\mathbf{x}, \boldsymbol{\mu}) = F(\mathbf{x}) + \sum_{m=1}^{M} \mu_i \psi_m(\mathbf{x}),$$

gdzie $\mu = \begin{bmatrix} \mu_1 & \mu_2 & \dots & \mu_M \end{bmatrix}^T$, jest wektorem tzw. mnożników Lagrange'a. Punkt optymalny jest wówczas rozwiązaniem następującego układu:

$$\nabla_x L(\mathbf{x}, \boldsymbol{\mu}) = \mathbf{0},$$

$$\nabla_{\boldsymbol{\mu}} L(\mathbf{x}, \boldsymbol{\mu}) \leq \mathbf{0},$$

$$\mu_m \psi_m(x) = 0, \quad m = 1, 2, \dots, M,$$

$$\mu_m \geqslant 0, \quad m = 1, 2, \dots, M.$$