VEKTORIANALYYSI / CALCULUS OF SEVERAL VARIABLES

1. välikoe / exam 1

14.10.2013

1. Määritellään funktio $g: \mathbb{R}^2 \setminus \{(0,0)\} \to \mathbb{R}$,

$$g(x,y) = \frac{4x^3 + y^2}{x^2 + y^2}.$$

Onko mahdollista määritellä arvoa g(0,0) siten, että funktiosta g tulee jatkuva koko tasossa?

- 2. Muodosta yhdistetyn kuvauksen $f = h \circ g$ lauseke, kun $h : \mathbb{R}^2 \to \mathbb{R}$, $h(\bar{x}) = e^{-x_2} \sin(\pi(x_1 + x_2)/2)$, sekä $g : \mathbb{R}^3 \to \mathbb{R}^2$, $g(x, y, z) = (x + z y^2, y^2)$. Laske osittaisderivaatat $\partial_1 f$, $\partial_2 f$ ja $\partial_3 f$ (max. 4 pistettä). Onko funktiolla f lokaalia maksimia pisteessä (1, 2, 0)? (max. 2 pistettä)?
- 3. Laske funktion $f: \mathbb{R}^2 \to \mathbb{R}$,

$$f(x,y) = 3y - y^3 - 3x^2y$$

kriittiset pisteet ja tutki, ovatko ne lokaaleja ääriarvopisteitä.

4. Määritellään tason (kompakti) osajoukko $A_0 := \{(x,y) : x^2 + xy + y^2 = 1\}$. Tehtäväsi on etsiä ne A_0 :n pisteet, joiden etäisyys origosta (0,0) on pienin ja suurin mahdollinen.

1. We define the function $g: \mathbb{R}^2 \setminus \{(0,0)\} \to \mathbb{R}$ by

$$g(x,y) = \frac{4x^3 + y^2}{x^2 + y^2}.$$

Is it possible to define the value g(0,0) such that the function g becomes continuous in the entire plane?

- 2. Write the expression of the composed function $f = h \circ g$, where $h : \mathbb{R}^2 \to \mathbb{R}$, $h(\bar{x}) = e^{-x_2} \sin(\pi(x_1 + x_2)/2)$ and $g : \mathbb{R}^3 \to \mathbb{R}^2$, $g(x, y, z) = (x + z y^2, y^2)$. Calculate the partial derivatives $\partial_1 f$, $\partial_2 f$ and $\partial_3 f$ (max. 4 points). Does the function f have a local maximum at (1, 2, 0)? (max. 2 points)?
- 3. Determine the critical points of the function $f: \mathbb{R}^2 \to \mathbb{R}$,

$$f(x,y) = 3y - y^3 - 3x^2y$$

and find out, if they are local extrema.

4. We define the (compact) subset of the plane $A_0 := \{(x, y) : x^2 + xy + y^2 = 1\}$. You are asked to find those points of A_0 having he largest and smallest possible distances to the origin (0,0).

1