CSCI 340 Data Structures and Algorithm Analysis

(Height) Balanced Binary Search Tree and Balancing a Binary Search Tree

What is height (of a tree)

- Depth of a node
 - The number of edges from the root to the node
- Height of a node
 - The number of edges from the node to the deepest leaf
- Level of a node
 - 1+depth of the node

Height (of a tree)

- The height of tree is the height of the root
 - Maximum depth of a tree
 - An empty tree has height -1
 - A tree of a single node has height 0

(height) balanced B.S.T.

- A binary tree is (height-)balanced if the difference in heights of both subtrees of any node in the tree is 0, -1, or 1.
- A balanced B.S.T. is a B.S.T. that is (height) balanced.
- The height of a balanced binary tree is O(lgn) of the size of the tree, where n is size
 - ==> The search in balanced B.S.T. is also $O(\lg n)$

Examples

More examples

 Height balanced B.S.T.

 Non-height balanced B.S.T.

Perfectly balanced B.S.T.

- A tree is perfectly balanced if
 - It is (height-)balanced, and
 - All leaves are to be found on one or two levels

The DSW Algorithm

- Devised and improved by Colin <u>Day</u>, Quentin F. <u>Stout</u>, and Bette <u>Warren</u>.
- Transform from any arbitrary B.S.T. to a perfectly balanced B.S.T.
- Rebalance the tree globally
- Two basic operations:
 - Right rotation
 - Left rotation
 - They are symmetric

Right rotation of node Ch about its parent Par

Gr: Grand parent of *Ch*.

R, P, Q are subtrees.

If Par is not root

Gr becomes parent of *Ch*.

Q becomes left subtree of *Par*.

Ch acquires
Par as its
right child.

Right rotation

If *par* is not the *root* of the tree

Grandparent *Gr* of child *Ch* becomes *Ch*'s parent

Right subtree of *Ch* becomes left subtree of *Ch*'s parent *Par*Node *Ch* acquires *Par* as its right child

(Old parent becomes new right child of Ch.)

• Left rotation of node *Ch* about its parent *Par*

Gr: Grand parent of *Ch*.

L, P, Q are subtrees.

If Par is not root

Gr becomes parent of *Ch*.

P becomes right subtree of Par.

Ch acquires
Par as its left
child.

Left rotation

If *par* is not the *root* of the tree

Grandparent *Gr* of child *Ch* becomes *Ch*'s parent

Left subtree of *Ch* becomes right subtree of *Ch*'s parent *Par*Node *Ch* acquires *Par* as its left child

- (Old parent becomes new left child of Ch.)

DSW algorithm

- Two major steps
 - Transform an arbitrary B.S.T. into a linked-list-like tree backbone (very skewed)
 - CreateBackBone (root)
 - This backbone is then transformed into a perfectly balanced B.S.T.
 - CreatePerfectlyBalancedTree (n)

```
CreateBackbone ( root )
  tmp <-- root
  while tmp is not empty
   if tmp has a left child Ch
      right rotate Ch about tmp
      tmp <-- Ch
   else
      tmp <-- tmp's right child</pre>
```


Minmei Hou, Ph.D., Dept. Computer Science, NIU

```
CreatePerfectlyBalancedTree (n)
      m < -- 2^floor(lg(n+1)) - 1
      make n-m left rotations starting from the
   top of the backbone (every 2<sup>nd</sup> node)
      while (m is greater than 1)
         m < -- m/2
         make m left rotations starting from the
   top of the backbone (every 2<sup>nd</sup> node)
                  15 23
                              5 15 23 30
n = 9
                                                   23 28
                                              5 15
m=7
                                 m=3/2=1
                   m=7/2=3
```

The DSW algorithm

- Consider the time complexity
 - The first step: O(n)
 - The second step: O(n)
 - Overall: O(n)

Balancing algorithms

- DSW algorithm rebalance the tree globally
 - Every node could involve in rebalancing
- AVL-trees
 - Rebalancing is done locally
 - Only portion of the tree is affected when a node is inserted or deleted from the tree

- Proposed by <u>A</u>del'son-<u>V</u>el'skii and <u>L</u>andis
- Definition of AVL-tree:
 - The height of left and right subtrees of every node differ by at most one.
 - Balance factor
 - = height(right-subtree) height(left-subtree)
 - AVL-tree's balance factors must be -1, 0, or 1
- Note that AVL-tree is not necessarily a perfectly balanced tree

Examples

Above is an AVL-tree, but not a perfectly balanced tree.

 If the balance factor of any node in an AVL-tree becomes less than -1 or greater than 1, the tree has to be rebalanced

After deletion, the balance factor of root becomes 2.

Insertions

• In some cases, an insertion requires no height rebalancing.

Insertions

- There are 4 cases when an AVL-tree may become out of balance after insertion
 - Two are symmetric
 - We only discuss two of them
 - Assume the operations start with an AVL-tree

Insertion case I

A node is to be inserted into the right subtree of Q.

Note: circles are nodes; triangles are subtrees.

P is the nearest ancestor node which becomes unbalanced.

A rotation is necessary here.

After rotation, this portion of tree becomes balanced. Height is also the same as before.

Insertion case II

A node is to be inserted into the left subtree of Q. P is the nearest ancestor node which becomes unbalanced

Double rotations are necessary.

After rotation, this portion of tree becomes balanced. Height is also the same as before.

Insertion

• An example where *P* is not at the root

Insertion

Observation:

- Height of the (sub)tree after rebalancing is the same as the height before insertion.
 - ==>The balance factors of the nodes in other portions of the tree, including ancestors, are not affected.
 - ==>Once the node that is out of balance is rebalanced, the entire AVL-tree is rebalanced.

Insertion

Rebalancing algorithm:

For node *n* from the newly inserted node up to the root

```
f <-- update n's balance factor
if f is 2 or -2
    rebalance n
    stop</pre>
```

Deletion

• In some cases, a deletion requires no height rebalancing.

Deletions

- Assume DeleteByCopying
- 4 cases (there are 4 other symmetric cases)
- Assume a node in the left subtree of *P* will be removed.

Deletion case I

The b.f. of *Q* is 0. A node in left subtree of *P* will be deleted.

P needs rebalancing.

A rotation is necessary.

After rebalancing, the height of this portion of the tree is not changed.

Deletion case II

The b.f. of *Q* is 1. A node in left subtree of *P* will be deleted.

P needs rebalancing.

A rotation is necessary.

Note that the height of this portion of the tree is reduced.

Deletion case III

The b.f. of *Q* is -1. A node in left subtree of *P* will be deleted.

For case III, the b.f. of Q's left child is -1.

After a node in left subtree of *P* is deleted, *P* needs rebalancing.

Two rotations are necessary.

Deletion case III (cont.)

The 2nd rotation.

Note that the height of this portion of the tree is reduced.

Deletion case IV

The b.f. of *Q* is 0. A node in left subtree of *P* will be deleted.

For case IV, the b.f. of Q's left child is 1.

After a node in left subtree of *P* is deleted, *P* needs rebalancing.

Two rotations are necessary.

Deletion case IV (cont.)

The 2nd rotation.

Note that the height of this portion of the tree is reduced.

Deletion

Observation:

- Height of the (sub)tree after rebalancing may be different from the height before deletion.
 - ==>The balance factors of the ancestors may be affected.
 - ==>It may be necessary to rebalance all ancestors of the parent node of the deleted node.

Deletion

Rebalancing algorithm:

For node *n* from the parent of the removed node up to the root

f <-- update n's balance factor

if *f* is 2 or -2

rebalance n

- Consider the time complexity.
- Note that the height (h) of an AVL-tree:

$$\lg (n+1) \le h \le 1.44 \lg (n+2) - 0.328$$

- Insertion $\sim O(lgn)$
- Deletion $\sim O(\lg n)$
- Search $\sim O(\lg n)$

Another global technique to create balanced tree

Given a sorted array data[]:

```
balance ( data, first, last )
  if first is less than last
    middle <-- (first+last)/2
    b.s.t.-insert ( data[ middle ] )
    balance (data, first, middle - 1)
  balance (data, middle+1, last)</pre>
```