Espaces vectoriels

ENSIMAG Alternance 1ère année

Hamza Ennaji

Dernière modification: December 25, 2023

Contents

Corps		1
Espace	s véctoriels	étés
2.1	Propriétés	4
2.2	Sous-espaces vectoriels	5
2.3	Intersection de sous-espaces vectoriels	6
2.4	Combinaisons linéaires et sous-espaces vectoriels engendrés	7
2.5	Famille libre, famille liée	9

Corps

Nous avons besoins de rappeler la notion de corps pour préciser l'ensemble où vivent les scalaires.

Définition 1. Un corps $\mathbb K$ est un ensemble muni de deux opérations + et \cdot dites addition et multiplication de scalaires tel que pour tout $\alpha, \beta, \gamma \in \mathbb{K}$:

- α + β = β + α et α · β = β · α
 (α + β) + γ = α + (β + γ) et (α · β) · γ = α · (β · γ).
 0_K + α = α et 1_K · α = α.
- Il existe un élément $-\alpha \in \mathbb{K}$ tel que $\alpha + (-\alpha) = 0_{\mathbb{K}}$. Pour $\alpha \neq 0_K$, il existe un élément $\alpha^{-1} \in \mathbb{K}$ tel que $\alpha \cdot \alpha^{-1} = 1_K$.

 $\alpha \cdot (\beta + \gamma) = \alpha \cdot \beta + \alpha \cdot \gamma.$

Example. • L'ensemble des nombre réels \mathbb{R} est un corps pour l'addition et multiplication usuelles.

• L'ensemble des nombres complexes $\mathbb{C} = \{\alpha + i\beta : \alpha, \beta \in \mathbb{R}\}$ est un corps pour les lois + et · usuelles. On rappelle que pour $z = \alpha + i\beta$ et $z_2 = \gamma + i\delta$:

$$z_1 + z_2 = (\alpha + \gamma) + i(\beta + \delta)$$
 et $z_1 z_2 = (\alpha \beta - \gamma \delta) + i(\alpha \delta + \beta \gamma)$.

- L'ensemble des nombres rationnels $\mathbb{Q} = \{\frac{m}{n} : (m,n) \in \mathbb{Z} \times \mathbb{Z}^*\}$ est un corps pour l'addition et multiplication usuelles.
- L'ensemble $\mathbb{Z}_2 = \{0, 1\}$ muni de l'addition et multiplication définies comme suit:

$$0 + 0 = 1 + 1 \stackrel{\text{def}}{=} 0$$
, $0 + 1 = 1 + 0 \stackrel{\text{def}}{=} 1$, $0 \cdot 0 = 0 \cdot 1 \stackrel{\text{def}}{=} 0$ and $1 \cdot 1 \stackrel{\text{def}}{=} 1$.

Remarque. S'il y'a pas d'ambiguïté, on notera simplement 0 et 1 au lieu de $0_{\mathbb{K}}$ et $1_{\mathbb{K}}$.

Convention Le long du cours le corps \mathbb{K} désigne soit \mathbb{R} soit \mathbb{C} .

Espaces véctoriels

Définition 2. Un espace vectoriel (\mathbb{E} , +, ·) sur \mathbb{K} (ou \mathbb{K} -ev) est un espace muni de deux opérations:

- i) Addition de vecteur: $\forall x, y \in \mathbb{E}$ il existe un élément $x + y \in \mathbb{E}$.
- ii) Multiplication par scalaires: pour tout $\lambda \in \mathbb{K}$ et $x \in \mathbb{E}$, il existe un élément $\lambda \cdot x \in \mathbb{E}$.

Ces opération vérifient les hypothèses suivantes:

A1.
$$x + y = y + x \ \forall x, y \in \mathbb{E}$$
.

A1.
$$x + y = y + x \ \forall x, y \in \mathbb{E}$$
.
A2. $(x + y) + z = x + (y + z) \ \forall x, y, z \in \mathbb{E}$.

A3. il existe un élément $0_{\mathbb{E}} \in \mathbb{E}$ dit élément neutre pour l'addition, tel que $x + 0_{\mathbb{E}} = x$ pour tout $x \in \mathbb{E}$.

A4. Pour tout $x \in \mathbb{E}$ il existe $y \in \mathbb{E}$ tel que $x + y = 0_{\mathbb{E}}$.

A5. $1_{\mathbb{K}} \cdot x = x$ pour tout $x \in E$.

A6. $\alpha \cdot (\beta \cdot x) = (\alpha \cdot \beta) \cdot x$ pour tout $\alpha, \beta \in \mathbb{K}$ et $x \in E$.

A7. $\alpha \cdot (x + y) = \alpha \cdot x + \alpha \cdot y$ pour tout $\alpha \in \mathbb{K}$ et $x, y \in \mathbb{E}$.

A8. $(\alpha + \beta) \cdot x = \alpha \cdot x + \beta \cdot x$ pour tout $\alpha, \beta \in \mathbb{K}$ et $x \in \mathbb{E}$.

Remarque. Les hypothèses (A1-A2-A3-A4) expriment le fait que $(\mathbb{E}, +)$ est un group commutatif (ou abélien). Autrement dit, $(\mathbb{E}, +, \cdot)$ est un espace vectoriel sit (\mathbb{E} , +) est un group abélien et que les hypothèses (A5-A6-A7-A8) sont vérifiées.

Example. • Exemple trivial: $\mathbb{E} = \{0\}$.

- $\mathbb{E} = \mathbb{K}^n = \{(x_1, \dots, x_n) : x_i \in \mathbb{K} \ \forall i = 1, \dots, n\}.$
- $\mathbb{E} = \mathbb{K}[X]$ l'ensemble des polynômes à coefficients dans \mathbb{K} . Un élément Pde E s'écrit de la forme

$$P(X) = \sum_{i=0}^{n} a_i X^i,$$

où les $a_i \in \mathbb{K}$ et $n \in \mathbb{N}$. L'entier n s'appelle le degré de P et on écrit $n = \deg(P)$. Pour un $\lambda \in \mathbb{K}$, on définit λP par

$$(\lambda \cdot P)(X) \stackrel{\text{def}}{=} \lambda \cdot P(X) = \sum_{i=0}^{n} \lambda \cdot a_i X^i.$$

Soit maintenant $Q(X) = \sum_{i=0}^{m} b_i X^i$ un autre polynôme à coefficients dans \mathbb{K} . Sans perte de généralité, on peut supposer que Q est de même degré que P. On définit alors P + Q par

$$(P+Q)(X) \stackrel{\text{def}}{=} P(X) + Q(X) = \sum_{i=1}^{n} (a_i + b_i) X^i.$$

• Soient E_1, \ldots, E_n n espaces vectoriels sur \mathbb{K} . Alors

$$\mathbb{E} \stackrel{\text{def}}{=} \Pi_{i=1}^n E_i = E_1 \times \cdots E_n$$

est un \mathbb{K} -espace vectoriel.

• Soit $\mathcal{M}_{2,2}(\mathbb{R})$ l'ensemble des matrices de taille 2×2 à coefficients réels. Soient $\lambda \in \mathbb{R}$ et $M, N \in \mathcal{M}_{2,2}(R)$ avec Plus généralement, $\mathcal{M}_{m,n}(\mathbb{R})$ est un espace vectoriel.

2.1 Propriétés

Proposition 1. Soit \mathbb{E} un \mathbb{K} -e.v et $x, y, z \in \mathbb{E}$. On a

- i) Si x + z = y + z alors x = y.
- ii) Si z + x = z + y alors x = y.
- iii) $0_{\mathbb{E}}$ est unique: s'il existe $0' \in \mathbb{E}$ tel que $x + 0_{\mathbb{E}} = x$ et x + 0' = x alors $0_{\mathbb{E}} = 0'$.

Preuve. i) D'après Définition-2-(A4), il existe $z' \in \mathbb{E}$ tel que: $z + z' = 0_{\mathbb{E}}$. On a donc

$$x = x + 0_{\mathbb{E}} = x + (z + z') = (x + z) + z' = (y + z) + z' = y + (z + z') = y + 0_{\mathbb{E}} = y.$$

- ii) Si z + x = z + y alors par commutativité (Définition-2-(A1)) x + z = y + z et on conllut d'après i) que x = y.
- iii) On a $x = x + 0_{\mathbb{E}} = x + 0'$ donc $0_{\mathbb{E}} = 0'$ toujours d'après i).

Corollaire. Soit $x \in \mathbb{E}$ alors l'élément $y \in \mathbb{E}$ dans Définition-2 vérifiant (A4) est unique, i.e., si $y, y' \in \mathbb{E}$ vérifient $x + y = x + y' = 0_{\mathbb{E}}$ alors y = y'. On note y = -x.

Example. • Dans $\mathbb{E} = \mathbb{R}^n$, $0_{\mathbb{R}^n} = (0, \dots, 0)$.

• Dans $\mathbb{E} = \mathcal{M}_{2,2}(\mathbb{R})$, on a $0_{2\times 2} = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$.

Figure 1: La Figure-1a montre un sous ensemble F du plan qui n'est stable ni pas addition de vecteurs ni par multiplications par scalaires. Tandis que Figure-?? montre une partie du plan, dite droite vectorielle, qui est pas addition de vecteurs et par multiplications par des scalaires.

Dans $\mathbb{E} = \mathbb{R}[X]$ alors $0_{\mathbb{R}[X]} = 0$ est le polynôme nul.

2.2 Sous-espaces vectoriels

Définition 3. Soit \mathbb{E} un \mathbb{K} -ev. Un ensemble $F \subset \mathbb{E}$ est un sous-espace vectoriel de $\mathbb E$ s'il est lui même un espace vectoriel sur $\mathbb K$ par rapport à l'addition de vecteurs et multiplications de scalaires définies sur E. Autrement dit, si $(F, +_{\mathbb{E}}, \cdot_{\mathbb{E}})$ vérifie (A1-A8).

Example. Examples de sous-espaces vectoriels

- $F = \{0_{\mathbb{E}}\} \subset \mathbb{E}, \text{ où } \mathbb{E} \text{ est un } \mathbb{K}\text{-ev.}$ $\bullet \quad F = \{(x_1, \cdots, x_{n-1}, 0), x_i \in \mathbb{R}\} \subset \mathbb{R}^n.$ $\bullet \quad F = \mathbb{K}_n[X] \stackrel{\text{def}}{=} \{p \in \mathbb{K}[X] : \deg(p) \leq n\} \subset \mathbb{K}[X].$

Le résultat suivant fourni "un test" pour vérifier si un ensemble est oui ou non un sousespace vectoriel d'un e.v donné.

Proposition 2 (Tests de sous-ev). Soit $\mathbb E$ un $\mathbb K$ -ev et $F \subset \mathbb E$. Alors F est un sous-espace vectoriel de $\mathbb E$ si et seulement si

- 0_E ∈ F.
 Si x, y ∈ F alors x + y ∈ F.
 Si x ∈ F et λ ∈ K alors λx ∈ F.

Figure 2: Illustration de l'intersection entre deux sous espaces vectoriels de \mathbb{R}^3 (ici, deux plans vectoriels), leur intersection est une droite vectorielle.

Cela est équivalent à dire

$$\lambda x + y \in F$$

pour tout $\lambda \in \mathbb{K}$ et $x, y \in F$.

Exercise

Vérifier si les ensembles suivant sont des sous-espaces vectoriels de \mathbb{R}^3 .

- $F = \{(x, y, z) \in \mathbb{R}^3 : x + y + z = 1\}.$
- $F = \{(x, y, z) \in \mathbb{R}^3 : x + y + z \ge 0\}.$
- $F = \{(x, y, z) \in \mathbb{R}^3 : x + y + z = 01\}.$
- $F = \{(x, y, z) \in \mathbb{R}^3 : x^2 + 2y^2 = 0\}.$

2.3 Intersection de sous-espaces vectoriels

Définition 4. Soit \mathbb{E} un \mathbb{K} -ev et $(F_i)_{i\in I}$ une famille de sous-espaces vectoriels de \mathbb{E} . Alors $F \stackrel{\text{def}}{=} \cap_{i\in I} F_i$ est aussi un sous-espace vectoriel.

Preuve. On utilise la Proposition-2. Dans un premier temps, comme les F_i sont des sous-espaces vectoriels de $\mathbb E$ on sait que $0_{\mathbb E} \in F$. Maintenant pour $x,y\in F$ et $\lambda\in\mathbb K$, alors $x,y\in F_i$ pour tout $i\in I$. Cela donne que $\lambda x+y\in F_i$ pour tout $i\in I$. On en déduit que $\lambda x+y\in \cap F_i$. D'où le résultat. \square

Example. On considère les deux sous-espaces vectoriels de \mathbb{R}^2 :

$$F_1 = \{(x, 0), x \in \mathbb{R}\} \text{ et } F_2 = \{(0, x), x \in \mathbb{R}\}.$$

 $F_1=\{(x,0),\ x\in\mathbb{R}\}\ \text{et}\ F_2=\{(0,x),\ x\in\mathbb{R}\}.$ On vérifie facilement que $F_1\cap F_2=\{(0,0)\}$ est un sous-espace vectoriel de

2.4 Combinaisons linéaires et sous-espaces vectoriels engendrés

Définition 5. Soit \mathbb{E} un \mathbb{K} -ev et $S \subset \mathbb{E}$. Un vecteur $x \in \mathbb{E}$ est une combinaison linéaire d'éléments de S s'il existe $n \in \mathbb{N}$, des vecteurs $v_1, \dots, v_n \in S$ et des scalaires $\lambda_1, \cdots, \lambda_n \in \mathbb{K}$ tels que

$$x = \sum_{i=1}^{n} \lambda_i v_i.$$

À partir d'une partie S de \mathbb{E} , on peut définir un sous-espace vectoriel de \mathbb{E} avec les combinaisons linéaires des vecteurs de S.

Définition 6. Soit $S \subset \mathbb{E}$ un sous-ensemble non vide. On note par Vect(S)l'ensemble de toutes les combinaisons linéaires de vecteurs de S, i.e.,

$$\operatorname{Vect}(S) = \Big\{ \sum_{i=1}^{n} a_i v_i : n \in \mathbb{N}, \ a_i \in \mathbb{K}, \ v_i \in S \Big\}.$$

Remarque. • Par convention $Vect(\emptyset) = \{0\}$.

• On remarque facilement que $S \subset \mathrm{Vect}(S)$. En effet, on a $v = 1_{\mathbb{K}} \cdot v$ pour

Theorem 1. Soit $S \subset \mathbb{E}$, alors:

- Vect(S) est un sous-espace vectoriel de E.
 S ⊂ Vect(S).
 Si F est un sous-espace vectoriel de E tel que S ⊂ F, alors S ⊂ Vect(S) ⊂ F

Figure 3: Deux vecteurs non-colinéaires u et v. Le sous-espace vectoriel $Vect(\{u,v\})$ est le plan vectoriel qui les contient.

Définition 7. Une famille $S \subset \mathbb{E}$ est dite génératrice de \mathbb{E} si $\text{Vect}(S) = \mathbb{E}$.

Example. • La famille $(e_i)_{i=1,...,n}$ avec

$$e_1 = (1, 0, \dots, 0), e_2 = (0, 1, 0, \dots, 0), \dots, e_n = (0, \dots, 0, 1),$$

est une famille génératrice de \mathbb{R}^n . En effet, tout vecteur $x = (x_1, \dots, x_n) \in \mathbb{R}^n$ s'écrit:

$$(x_1,\ldots,x_n)=x_1(1,\ldots,0)+x_2(0,1,\ldots,0)+\cdots+x_n(0,\cdots,1).$$

- Le \mathbb{R} -espace vectoriel \mathbb{C} des nombres complexes est engendré par $\{1, i\}$ car tout nombre complexe $z \in \mathbb{C}$ s'écrit $z = x \cdot 1 + y \cdot i$ avec $x, y \in \mathbb{R}$.
- L'espace vectoriel $\mathcal{M}_{2,2}(\mathbb{R})$ est engendré par la famille $(M_i)_{i=1,2,3,4}$ des matrices dites élémentaires avec

$$M_1 = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$$
, $M_2 = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$, $M_3 = \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}$, $M_4 = \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}$.

En effet, toute matrice $M = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \mathcal{M}_{2,2}(\mathbb{R})$ s'écrit:

$$M = a \cdot M_1 + b \cdot M_2 + c \cdot M_3 + d \cdot M_4.$$

• La famille de monômes $\{1, X, \dots, X^n\}$ engendre $\mathbb{R}_n[X]$. En effet, tout polynôme P de $\mathbb{R}_n[X]$ s'écrit

$$P(X) = a_0 \cdot 1 + a_1 \cdot X + \dots + a_n \cdot X^n.$$

8

2.5 Famille libre, famille liée

Étant donnée une famille génératrice $S = \{v_1, \dots, v_n\}$ de \mathbb{E} , on remarque que $0_{\mathbb{E}}$ se réalise de façon **trivial** comme combinaison linéaire des v_i , i.e.,

$$0_{\mathbb{E}} = 0 \cdot v_1 + \dots + 0 \cdot v_n.$$

Néanmoins, on peut avoir un réalisation **non-triviale** de $0_{\mathbb{E}}$ comme combinaison linéaire des v_i , dans le sens où on peut trouver des scalaires $a_1, \dots, a_n \in \mathbb{K}$ tels que

$$0_{\mathbb{E}} = a_1 \cdot v_1 + \cdots + a_n \cdot v_n.$$

Cela motive la définition suivante

Définition 8. • Une famille $S = \{v_1, \dots, v_n\}$ de vecteurs de \mathbb{E} est dite libre si

$$\sum_{i=1}^{n} \lambda_i v_i = 0_{\mathbb{E}} \Longrightarrow \lambda_i = 0 \,\forall i.$$

Autrement dit la seule façon d'écrire $0_{\mathbb{E}}$ comme combinaison linéaire des v_i est la combinaison triviale.

• Une famille S qui n'est pas libre est liée. Cela revient à dire qu'il existe des scalaires $\lambda_1, \dots, \lambda_n$ non tous nuls tels que

$$\sum_{i=1}^{n} \lambda_i v_i = 0_{\mathbb{E}}.$$

Figure 4: La Figure-4a illustre une famille libre de \mathbb{R}^2 , $S = \{e_1, e_2\}$. La Figure-4b illustre une famille $S = \{v_1, v_2, v_3\}$ qui est liée avec $v_1 = (1, 0), v_2 = (1, 1), v_3 = (0, -2)$.

Proposition 3. Soit \mathbb{E} un \mathbb{K} -ev et $S_1 \subset S_2 \subset \mathbb{E}$ deux ensembles. Alors:

- Si S₁ est liée alors S₂ est liée.
 Si S₂ est libre alors S₁ est libre.

Exercise

Soient $E, F \subset \mathbb{R}^3$ définies par

$$E = \{(x, y, z) \in \mathbb{R}^3 : y - x = 0 \text{ et } z - y - 2x = 0\}$$
$$F = \{(x, y, z) \in \mathbb{R}^3 : 2x - 3y + z = 0\}$$

- 1) Montrer que E est un sous-espace vectoriel de \mathbb{R}^3 .
- 2) Soit $S_1 = \{u_1\}$ avec $u_1 = (1, 1, 3)$.
 - b) En déduire que $Vect(L_1) \subset E$.
 - c) Justifier que $E = Vect(L_1)$.
- 3) Soit $S_2 = (u_2, u_3)$ avec $u_2 = (3, 2, 0)$ et $u_3 = (1, 1, 1)$.
 - b) Montrer que tout vecteur de F est combinaison linéaire des vecteurs de S_2 .
 - c) Justifier que $F = Vect(S_2)$.
 - *d)* La partie F est-elle un sous-espace vectoriel de \mathbb{R}^3 ?
- 4) La famille $S = (u_1, u_2, u_3)$ est-elle libre ou liée ? Que peut-on en déduire pour S_1 et S_2 ?