Verlinde Bundles

Orlando Marigliano

6.4.2017

Contents

1.	Universal Families of Extensions	1
2.	Verlinde bundles on Lefschetz pencils	3
3.	Specialization	4
Re	eferences	5

1. Universal Families of Extensions

The material of this section is taken from the article [Lan83].

Let X and S be Noetherian schemes over a field k. Let $f: X \longrightarrow S$ be a flat, projective morphism, let \mathcal{F} and \mathcal{G} be coherent \mathcal{O}_X -modules, flat over \mathcal{O}_X .

Recall that an element $\xi \in \operatorname{Ext}^1_X(\mathcal{F}, \mathcal{G})$ corresponds to an equivalence class of short exact sequences of the form

$$0 \longrightarrow \mathcal{G} \longrightarrow \mathcal{E} \longrightarrow \mathcal{F} \longrightarrow 0.$$

where two such sequences are equivalent if there exists an isomorphism between them that induces the identity on \mathcal{F} and \mathcal{G} . The set of these equivalence classes can be given the structure of a $\Gamma(S, \mathcal{O}_S)$ -module, see for example [Wei95, sec. 3.4]. This correspondence is functorial in both arguments, and preserves $\Gamma(S, \mathcal{O}_S)$ -module structure.

Definition 1.1. 1. The *i-th relative Ext module* $\mathcal{E}xt_f^i(\mathcal{F},\mathcal{G})$ is the image of \mathcal{G} under the right-derived functor $R^i(f_*\mathcal{H}om(\mathcal{F},\mathcal{G}))\colon \mathrm{Mod}_{\mathcal{O}_X}\longrightarrow \mathrm{Mod}_{\mathcal{O}_S}$.

2. For $s \in S$, define the homomorphism

$$\Phi_s = \Phi_{s,\mathcal{F},\mathcal{G}} \colon \operatorname{Ext}^1_X(\mathcal{F},\mathcal{G}) \longrightarrow \operatorname{Ext}^1_{X_s}(\mathcal{F}_s,\mathcal{G}_s)$$

by restricting extensions of \mathcal{F} by \mathcal{G} to the fiber X_s . This is possible since \mathcal{F} is flat over S.

3. A family of extensions of \mathcal{F} by \mathcal{G} over S is a family

$$\xi_s \in \operatorname{Ext}^1_{X_s}(\mathcal{F}_s, \mathcal{G}_s) \quad (s \in S)$$

such that there exists an open covering \mathfrak{U} of S and for all $U \in \mathfrak{U}$ an extension $\xi_U \in \operatorname{Ext}_{f^{-1}(U)}^1(\mathcal{F}_U, \mathcal{G}_U)$ with $\Phi_{s,\mathcal{F}_U,\mathcal{G}_U}(\xi_U) = \xi_s$ for all $s \in S$. Such a family is globally defined if we can take $\mathfrak{U} = \{S\}$.

Remark 1.2. If S is affine, then we have $\mathcal{E}xt_f^i(\mathcal{F},\mathcal{G}) = \operatorname{Ext}_X^i(\mathcal{F},\mathcal{G})$.

Proposition 1.3. Let $g: Y \longrightarrow S$ be a morphism of Noetherian schemes. There exists a number $N \geq 0$ dependent on \mathcal{G} such that for all quasi-coherent \mathcal{O}_Y -modules \mathcal{M} , all $i \geq 1$ and $n \geq N$ we have

$$\mathcal{E}xt^i_{f_Y}(\mathcal{O}_{X_Y}(-n),\mathcal{G}\boxtimes\mathcal{M})=0$$

Proposition 1.4. Let $g: Y \longrightarrow S$ be a morphism of Noetherian schemes. For all $i \geq 0$ there exists a canonical base change homomorphism

$$\tau_g^i \colon g^* \mathcal{E} xt_f^i(\mathcal{F}, \mathcal{G}) \longrightarrow \mathcal{E} xt_{f_Y}^i(g_X^* \mathcal{F}, g_X^* \mathcal{G}).$$

Furthermore, if g is flat, then τ_q^i is an isomorphism for all $i \geq 0$.

Definition 1.5. We say that $\mathcal{E}xt_f^i(\mathcal{F},\mathcal{G})$ commutes with base change if for all morphisms of Noetherian schemes $g\colon Y\longrightarrow S$, the base change homomorphism τ_g^i is an isomorphism.

Proposition 1.6. Let $s \in S$ be a point such that τ_s^i is surjective. Then there exists an open neighborhood U of s such that $\tau_{s'}^i$ is an isomorphism for all $s' \in U$. Furthermore, the homomorphism τ_s^{i-1} is surjective if and only if $\operatorname{Ext}_f^i(\mathcal{F},\mathcal{G})$ is locally free on an open neighborhood of s.

Remark 1.7. 1. If τ_s^i is an isomorphism for all $s \in S$, then $\mathcal{E}xt_f^i(\mathcal{F},\mathcal{G})$ commutes with base change.

- **2.** We have directly from Proposition 1.6 that if $\mathcal{E}xt_f^i(\mathcal{F},\mathcal{G})$ commutes with base change for i=0,1, then $\mathcal{E}xt_f^1(\mathcal{F},\mathcal{G})$ is locally free.
- **3.** In case S is reduced, if $\mathcal{E}xt_f^1(\mathcal{F},\mathcal{G})$ is locally free then $\mathcal{E}xt_f^i(\mathcal{F},\mathcal{G})$ commutes with base change for i=0,1.

Definition 1.8. Let $u: Y' \longrightarrow Y$ be a morphism of Noetherian S-schemes.

1. We define a functoriality map $H^0(Y, \mathcal{E}xt^1_{f_Y}(\mathcal{F}_Y, \mathcal{G}_Y)) \longrightarrow H^0(Y', \mathcal{E}xt^1_{f_{Y'}}(\mathcal{F}_{Y'}, \mathcal{G}_{Y'}))$ as the composition

$$H^{0}(Y, \mathcal{E}xt^{1}_{f_{Y}}(\mathcal{F}_{Y}, \mathcal{G}_{Y})) \xrightarrow{1 \otimes \mathrm{id}} H^{0}(Y', u^{*}\mathcal{E}xt^{1}_{f_{Y}}(\mathcal{F}_{Y}, \mathcal{G}_{Y}))$$

$$\xrightarrow{H^{0}(\tau^{1}_{u})} H^{0}(Y', \mathcal{E}xt^{1}_{f_{Y'}}(u^{*}_{X_{Y}}\mathcal{F}_{Y'}, u^{*}_{X_{Y}}\mathcal{G}_{Y'})).$$

- **2.** Given a family of extensions $\xi = (\xi_y)_{y \in Y}$ of \mathcal{F}_Y by \mathcal{G}_Y over Y, we set $(u^*\xi)_{y'} := u^*\xi_{u(y')}$ for every $y' \in Y'$. This defines a family $u^*\xi$ of extensions of $\mathcal{F}_{Y'}$ by $\mathcal{G}_{Y'}$ over Y'. Moreover, if the family ξ is globally defined, then so is its pullback $u^*\xi$.
- **3.** We define thus functors

$$E, E' : \{ \text{Noeth. schemes over } S \} \longrightarrow \{ \text{Sets} \};$$

 $E(Y) := H^0(Y, \text{Ext}^1_{f_Y}(\mathcal{F}_Y, \mathcal{G}_Y)),$
 $E'(Y) := \{ \text{families of extensions of } \mathcal{F}_Y \text{ by } \mathcal{G}_Y \text{ over } Y \}.$

Remark 1.9. The spectral sequence $H^p(S, \mathcal{E}xt^q_f(\mathcal{F}, \mathcal{G})) \Rightarrow \operatorname{Ext}_X^{p+q}(\mathcal{F}, \mathcal{G})$ gives an exact sequence

$$0 \longrightarrow H^1(S, f_*\mathcal{H}om(\mathcal{F}, \mathcal{G})) \stackrel{\varepsilon}{\longrightarrow} \operatorname{Ext}^1_X(\mathcal{F}, \mathcal{G}) \stackrel{\mu}{\longrightarrow} H^0(S, \mathcal{E}xt^1_f(\mathcal{F}, \mathcal{G}))$$
$$\stackrel{d_2}{\longrightarrow} H^2(S, f_*\mathcal{H}om(\mathcal{F}, \mathcal{G})).$$

Proposition 1.10. Suppose that S is reduced and $\operatorname{Ext}_f^1(\mathcal{F},\mathcal{G})$ commutes with base change. Restricted to the category of reduced Noetherian S-schemes, the functors E and E' are isomorphic.

Proposition 1.11. Suppose that $\mathcal{E}xt_f^1(\mathcal{F},\mathcal{G})$ commutes with base change for i=0,1. Then the \mathcal{O}_S -module $\mathcal{E}xt_f^1(\mathcal{F},\mathcal{G})^\vee$ is locally free and the functor E is representable by the S-scheme $\mathbb{V}(\mathcal{E}xt_f^1(\mathcal{F},\mathcal{G})^\vee)$.

Corollary 1.12. Suppose that S is reduced and $\operatorname{Ext}_f^1(\mathcal{F},\mathcal{G})$ commutes with base change for i=0,1. Restricted to the category of reduced Noetherian S-schemes, the functor E' is representable by the S-scheme $\mathbb{V}(\operatorname{Ext}_f^1(\mathcal{F},\mathcal{G})^\vee)$.

Corollary 1.13. Suppose that S is affine and $\operatorname{Ext}_f^1(\mathcal{F},\mathcal{G})$ commutes with base change for i=0,1. The functor

$$Y \longmapsto \operatorname{Ext}_{X_Y}^1(\mathcal{F}_Y, \mathcal{G}_Y) \colon \{ \text{Affine } S \text{-schemes} \} \longrightarrow \{ \text{Sets} \}$$

is representable by the S-scheme $\mathbb{V}(\mathcal{E}xt_f^1(\mathcal{F},\mathcal{G})^{\vee})$.

Corollary 1.14. Finally, let $S = \operatorname{Spec}(k)$, let $V := \mathbb{V}(\operatorname{Ext}_X^1(\mathcal{F}, \mathcal{G})^{\vee})$. On the scheme $X \times V$ there exists an extension

$$\xi_{\text{univ}}: 0 \longrightarrow \operatorname{pr}_1^* \mathcal{F} \longrightarrow \mathcal{E} \longrightarrow \operatorname{pr}_1^* \mathcal{G} \longrightarrow 0$$

which is universal on the category of affine k-schemes. In particular, pulling back ξ_{univ} defines an isomorphism $\text{Hom}(\operatorname{Spec}(k), V) \xrightarrow{\sim} \operatorname{Ext}_X^1(\mathcal{F}, \mathcal{G})$.

Remark 1.15. The article [Lan83] continues on to define a "projectivized" version of the problem, so that over $\operatorname{Spec}(k)$, the scheme $\mathbb{P}(\operatorname{Ext}_X^1(\mathcal{F},\mathcal{G})^{\vee})$ parametrizes the equivalence classes of nonsplit extensions of \mathcal{F} by \mathcal{G} , modulo the action of k^{\times} . See also [HL10, Example 2.1.12].

2. Verlinde bundles on Lefschetz pencils

Denote by $|\mathcal{O}(4)|$ the complete linear system $\mathbb{P}(H^0(\mathbb{P}^3, \mathcal{O}(4)))$ of quartics in \mathbb{P}^3 . Consider the universal family $\mathfrak{X} \longrightarrow |\mathcal{O}(4)|$, given by

$$\mathfrak{X} = \{(x,q) \in \mathbb{P}^3 \times |\mathcal{O}(4)| : x \in q\}.$$

The family \mathfrak{X} is a closed subscheme of $\mathbb{P}^3 \times |\mathcal{O}(4)|$, which can be seen as follows. Let the index I range over the tuples of the form (i_0, i_1, i_2, i_3) with $\sum i_j = 4$, and let Q_I denote the I-th projective coordinate of $|\mathcal{O}(4)|$. For $j = 0, \ldots, 3$, let X_j denote the j-th coordinate of \mathbb{P}^3 . Then the family \mathfrak{X} is cut out by the section $\sum_I Q_I X^I$ of the line bundle $\mathcal{O}(4) \boxtimes \mathcal{O}(1)$ on $\mathbb{P}^3 \times |\mathcal{O}(4)|$.

We define the line bundle \mathcal{L} on \mathfrak{X} as the restriction of $\mathcal{O}(1) \boxtimes \mathcal{O}$ to \mathfrak{X} , in other words as the pullback of $\mathcal{O}(1)$ under the canonical projection $\mathfrak{X} \longrightarrow \mathbb{P}^3$.

Let $l \subseteq |\mathcal{O}(4)|$ be the closed subscheme defined as the image of a linear embedding $\mathbb{P}^1 \longrightarrow |\mathcal{O}(4)|$. We call l a *Lefschetz pencil* of quartics. Its universal family is the scheme $l \times_{|\mathcal{O}(4)|} \mathfrak{X}$, which comes equipped with the pullback line bundle \mathcal{L}_l .

3. Specialization

In this section we collect some facts about specialization phenomena. We say that a vector bundle \mathcal{V} on a k-scheme X specializes to another vector bundle \mathcal{V}' over the same scheme if there exists a vector bundle \mathcal{W} on $\mathbb{A}^1 \times X$ such that $\mathcal{W}|_{0 \times X} \simeq \mathcal{V}'$ and $\mathcal{W}|_{t \times X} \simeq \mathcal{V}$ for all rational $t \in \mathbb{A}^1$.

Remark 3.1. Let

$$0 \longrightarrow \mathcal{F} \xrightarrow{f} \mathcal{E} \xrightarrow{g} \mathcal{G} \longrightarrow 0$$

be a short exact sequence of coherent sheaves over a k-scheme X and let $\xi \in \operatorname{Ext}^1(\mathcal{G}, \mathcal{F})$ be the corresponding element. If $a \in H^0(X, \mathcal{O}_X^{\times})$, then the element $a\xi$ corresponds to the sequence

$$0 \longrightarrow \mathcal{F} \xrightarrow{f} \mathcal{E} \xrightarrow{ag} \mathcal{G} \longrightarrow 0.$$

To see this, consider the two exact sequences

$$0 \longrightarrow \mathcal{F} \xrightarrow{f} \mathcal{E} \xrightarrow{g} \mathcal{G} \longrightarrow 0$$

$$\downarrow a \qquad \qquad \parallel \qquad \parallel \qquad \parallel$$

$$0 \longrightarrow \mathcal{F} \xrightarrow{a^{-1}f} \mathcal{E} \xrightarrow{g} \mathcal{G} \longrightarrow 0.$$

Let $\delta, \delta' \colon \operatorname{Hom}(\mathcal{G}, \mathcal{G}) \longrightarrow \operatorname{Ext}^1(\mathcal{G}, \mathcal{F})$ be the boundary homomorphisms associated to the upper and lower sequence respectively. We have on the one hand $\delta'(\operatorname{id}) = a\delta(\operatorname{id})$ by naturality, and on the other hand $\delta(\operatorname{id}) = \xi$ since this is the way extensions are identified with elements of Ext^1 . But the lower sequence is equivalent to the sequence

$$0 \longrightarrow \mathcal{F} \xrightarrow{f} \mathcal{E} \xrightarrow{ag} \mathcal{G} \longrightarrow 0,$$

hence our claim holds.

Example 3.2. The vector bundle $\mathcal{O}(1) \oplus \mathcal{O}(1)$ on \mathbb{P}^1 specializes to $\mathcal{O} \oplus \mathcal{O}(2)$. This can be seen as follows. Consider $\operatorname{Ext}^1(\mathcal{O}(2),\mathcal{O})$, whose elements correspond to extensions of the form

$$0 \longrightarrow \mathcal{O} \longrightarrow \mathcal{E} \longrightarrow \mathcal{O}(2) \longrightarrow 0$$

up to equivalence, the zero element corresponding to the split extension $\mathcal{E} = \mathcal{O} \oplus \mathcal{O}(2)$. Note that all such extensions must have \mathcal{E} locally free. Considering the formulae for ranks and determinants of the components of the sequence, we see that the non-split extensions must have $\mathcal{E} = \mathcal{O}(1) \oplus \mathcal{O}(1)$. Furthermore, we have $\operatorname{Ext}^1(\mathcal{O}(2), \mathcal{O}) = \operatorname{Ext}^1(\mathcal{O}, \mathcal{O}(-2)) = H^1(\mathcal{O}(-2)) = k$. By Corollary 1.14, there exists an extension of the form

$$0 \longrightarrow \mathcal{O} \boxtimes \mathcal{O}_{\mathbb{A}^1} \longrightarrow \mathcal{E}_{univ} \longrightarrow \mathcal{O}(2) \boxtimes \mathcal{O}_{\mathbb{A}^1} \longrightarrow 0$$

such that for all nonzero rational points $\xi \in \mathbb{A}^1 = \mathbb{V}(\operatorname{Ext}^1(\mathcal{O}(2), \mathcal{O})^{\vee})$ we have $\mathcal{E}_{\operatorname{univ}}|_{\xi \times \mathbb{A}^1} \simeq \mathcal{O}(1) \oplus \mathcal{O}(1)$ and $\mathcal{E}_{\operatorname{univ}}|_{0 \times \mathbb{A}^1} \simeq \mathcal{O} \oplus \mathcal{O}(2)$. Note that $\mathcal{E}_{\operatorname{univ}}$ has to be locally free as the end terms of the sequence are.

Remark 3.3. If \mathcal{V} specializes to \mathcal{V}' and \mathcal{W} specializes to \mathcal{W}' , then $\mathcal{V} \oplus \mathcal{W}$ specializes to $\mathcal{V}' \oplus \mathcal{W}'$.

Remark 3.4. Let b_1, \ldots, b_m be non-negative numbers, let $a := \sum b_i$. The sequence

$$0 \longrightarrow \mathcal{O}^{m-1} \xrightarrow{f} \mathcal{O}(b_1) \oplus \cdots \oplus \mathcal{O}(b_m) \xrightarrow{g} \mathcal{O}(a) \longrightarrow 0$$

with

$$f = \begin{pmatrix} s^{b_1} \\ t^{b_2} & s^{b_2} \\ & t^{b_3} & \ddots \\ & & \ddots \\ & & & s^{b_{m-1}} \\ & & & t^{b_m} \end{pmatrix}$$

and

$$g = \begin{pmatrix} -t^{a-b_1} & s^{b_1}t^{a-b_1-b_2} & \cdots & (-1)^m s^{b_1+\cdots+b_{m-1}}t^{a-b_1-\cdots-b_m} \end{pmatrix}$$

is exact.

Proposition 3.5. Let b_1, \ldots, b_m be non-negative numbers and π a partition of the set $\{1, \ldots, m\}$. For a set of indices $I \in \pi$, let $b'_I := \sum_{i \in I} b_i$. Then the vector bundle $\bigoplus_{i=1}^m \mathcal{O}(b_i)$ on \mathbb{P}^1 specializes to $\bigoplus_{I \in \pi} \mathcal{O}(b'_I) \oplus \mathcal{O}^{\oplus m-|\pi|}$.

Proof. By Remark 3.3 it suffices to prove the special case $\pi = \{\{1, \ldots, m\}\}$. In other words, we prove that if $a = \sum b_i$, then $\bigoplus \mathcal{O}(b_i)$ specializes to $\mathcal{O}(n) \oplus \mathcal{O}^{m-1}$. By Remark 3.4, there exists a representative $\xi \in \operatorname{Ext}^1(\mathcal{O}(a), \mathcal{O}^{\oplus m-1})$ of an exact sequence of the form

$$0 \longrightarrow \mathcal{O}^{m-1} \longrightarrow \mathcal{O}(b_1) \oplus \cdots \oplus \mathcal{O}(b_m) \longrightarrow \mathcal{O}(a) \longrightarrow 0.$$

By Remark 3.1, scalar multiplication by $\lambda \neq 0$ does not change the isomorphism class of the middle term of the sequence, hence there exists a one-dimensional subspace $k \hookrightarrow \operatorname{Ext}^1(\mathcal{O}(a), \mathcal{O}^{\oplus m-1})$ such that each nonzero element corresponds to an exact sequence of the same form. Consider the associated closed embedding $\alpha \colon \mathbb{A}^1 \longrightarrow \mathbb{V}(\operatorname{Ext}^1(\mathcal{O}(a), \mathcal{O}^{\oplus m-1})^\vee)$ and let \mathcal{E} be the universal extension from Corollary 1.14. Then, the vector bundle $(\operatorname{id}_{\mathbb{P}^1} \times \alpha)^* \mathcal{E}$ on $\mathbb{P}^1 \times \mathbb{A}^1$ realizes the required specialization. \square

References

- [HL10] Daniel Huybrechts and Manfred Lehn. The geometry of moduli spaces of sheaves. Cambridge University Press, 2010.
- [Lan83] Herbert Lange. "Universal families of extensions". In: *Journal of Algebra* 83.1 (1983), pp. 101–112.
- [Wei95] Charles A Weibel. An introduction to homological algebra. 38. Cambridge university press, 1995.