Теория и решение примеров Шага 5, Ступени 1

Содержание

1	§Oc:	§Основные правила комбинаторики															2									
	1.1	Задание	1																					•		3
	1.2	Задание	2																							4
	1.3	Задание	3																							5
	1.4	Задание	4																							6
	1.5	Задание	5																							7
	1.6	Задание	6																							8
	1.7	Задание	7																							9
	1.8	Задание	8																							10
	1.9	Задание	9				٠			٠							٠							•		11
	1.10	Залание	10)																						12

1 §Основные правила комбинаторики

Теория отлично дана в книге, поэтому сюда я ее не переписывал. Условия тоже не переписываются.

1.1 Задание 1

Тут надо знать, что 000 для цифр быть не может

Способ решения является следствием из правила умножения. У нас есть 3 позиции одного типа(для цифр) и 3 позиции другого типа(для букв). Для первого типа количетво всех возможных значений равно 10, для второго - 12. В учебнике аналогичный пример, только количество позиций каждого типа равно 1. В любом случае, в таких ситуациях количество всех возможных значений - это основание, а количество позиций - это степень.

Слеовательно, всех вариантов с цифрами может быть:

 $10^3 - 1 = 999$

Для букв:

 12^{3}

Правильный ответ (по правилу умножения):

 $12^3 * 999 = 1726272$

1.2 Задание 2

Тут все просто, 4 позиции, количество всех возможных значений 10. $10^4 = 10000$

1.3 Задание 3

Тут нужно понять, сколько видов бутеров у нас получается и составить решение по правилу умножения для каждого типа.

Первый тип, когда в бутере есть все компоненты.

Хлеб: 1 позиция, 3 вида хлеба = 3 в степени 1 = 3.

Колбаса: 5.

Масло: 1.

Количество всех возможных вариантов для первого типа бутеров:

 $3 \cdot 5 \cdot 1 = 15$

Второй тип, когда в бутере нет колбасы.

Хлеб:3.

Масло: 1.

Количество всех возможных вариантов для второго типа бутеров:

 $3 \cdot 1 = 3$

Третий тип, когда в бутере нет масла.

Хлеб:3.

Колбаса: 5.

Количество всех возможных вариантов для третьего типа бутеров:

 $3 \cdot 5 = 15$

Для всех типов:

15 + 15 + 3 = 33

1.4 Задание 4

От А до К, исключая Ё и Й будет 10 букв. Цифр тоже 10. 1 позиция для букв, 3 для цифр: $10(\text{букв})\cdot 10(\text{цифр})\cdot 10(\text{цифр})\cdot 10(\text{цифр})=10000$

1.5 Задание 5

Тут подвох в том, что правильных ответа 3. Ведь один и тот же человек может решить все хадачи(правило умножения), любые 4 человека могут быть выбраны из 20(порядок не важен - правило сочетаний) и каждая задача может быть предначертана преподом конкретному студенту(порядок важен - правило размещений).

Поэтому:

по правилу умножения:

 20^{4}

по правилу сочетаний

$$C_n^k = \frac{20 \cdot 19 \cdot 18 \cdot 17}{1 \cdot 2 \cdot 3 \cdot 4} = 4845$$

по правилу размещений

$$A_n^k = 20 \cdot 19 \cdot 18 \cdot 17 = 116280$$

1.6 Задание 6

$$n=36, k=3$$

Иногда проще решать задачу наоборот. Вытащим всех тузов из колоды - количетсво всех неинтересующих нас случаев:

$$C_{32}^{3}$$

Количество вообще всех случаев:

$$C_{36}^{3}$$

Тогда проще вычесть из всех неинтересующие случаи, тогда получим только интересющие!

$$C_{36}^3 - C_{32}^3$$

1.7 Задание 7

 C_{10}^{3}

1.8 Задание 8

- а) 16!, потому что нужно составить все возможные варианты очередей (правило перестановок)
- б) A_{16}^3

1.9 Задание 9

$$n = 2^6 = 64$$

Исключаем вариант "все решки"и все варианты "1 орла": 64-1-6=57

1.10 Задание 10

 $n_1 = 20$

 $n_2 = 3$ $C_{20}^5 \cdot 3$