

The NIR Corn Data Set

Hongwei PENG

Supervisor: Prof Tom Fearn
Department of Statistical Science
University College London

Department of Statistical Science

September 2, 2019

Datasets

Corn data is the most readily available high-dimensional Near-infrared spectral data. This data was published on the Internet (http://www.eigenvector.com/data/Corn/index.html) by Eigenvector Research, Inc. in 2005. The data consisted of 80 corn samples measured on three different NIR spectrometers named m5, mp5 and mp6. The spectral wavelength range is $1100\sim2498$ nm with an interval of 2nm. Hence there are 700 channels for each spectrum in each sample. Figure is the plot of spectra on m5 and mp5.

≜UCL

Paper	Data Pre-		Calibration	Number of	Moisture		PLS in papers		Developed method	
	set	treatment	set	Components	RMSECV	RMSEP	RMSECV	RMSEP	RMSECV	RMSEP
1	mp6	None	60(LOO)	10		0.148(0.0213)		0.159		0.139
2	m_5	None	64(5-fold)	10	0.0152(0.000739)	0.0202(0.00319)	0.0149	0.0201	0.00026	0.00035
3	m_5	Scale	40(LOO)	12		0.0231(0.00443)		0.3506		0.3485
3	mp5	Scale	40(LOO)	12		0.159(0.0178)		0.3506		0.3485
4	mp5	Scale	40(LOO)	10		0.405(0.0467)		0.357		0.265
5	m_5	SG(1,2,13)*	60(3-fold)	5		0.0547(0.00942)		0.040		0.012
6	m_5	SG(1,2,21)*	60(LOO)	6		0.0396(0.00625)		0.045		0.019
8	m_5	Delete 75, 77	52(LOO)	10	0.0221(0.0018)	0.0194(0.00298)	0.0124	0.0157	0.0047	0.0056

Compare with papers

Paper	Prediction	RMSEP of PLS in	RMSEP of developed	F value	Significant F statistic	
ι αρει	set		•			
		papers	method		(0.05)	
1	20	0.159	0.139	1.31	2.124155	
2	16	0.0201	0.00035	3298.04	2.333484	
3	40	0.3506	0.3485	1.01	1.692797	
4	40	0.357	0.265	1.81	1.692797	
5	20	0.040	0.012	11.11	2.124155	
6	20	0.045	0.019	5.61	2.124155	
8	26	0.0157	0.0056	7.86	1.929213	

Table 1: F-test on regression of moisture.

Compare with papers

In section, although we calculated the difference between PLS and the developed method, there is no evaluation index to evaluate whether there is a significant difference between the two method. Because RMSEP does not obey the common distribution, which is why it is difficult to test, this section gives an approximate test method. This method is true when the model's bias is much smaller than the variance. According to section, RMSEP is calculated as follows, it can be divided into two parts, variance and bias.

$$RMSEP^{2} = \frac{1}{m} \sum_{i=1}^{m} (\hat{y}_{i} - y_{i})^{2} = Var(\hat{y}) + Bias(\hat{y}, y)^{2} \approx Var(\hat{y})$$
(1)

Here, if the model's bias is much smaller than the variance, then the BIOS can be ignored. Thus, RMSEP obeys the χ^2 distribution.

6/6