Лабораторная работа 9

Модель «Накорми студентов»

Горяйнова Алёна

Содержание

4	Выводы	13
	3.1 Упражнение	8
3	Выполнение лабораторной работы	6
2	Задание	5
1	Цель работы	4

Список иллюстраций

3.1	Граф сети модели «Накорми студентов»	6
3.2	Декларации модели «Накорми студентов»	7
3.3	Модель «Накорми студентов»	7
3.4	Запуск модели «Накорми студентов»	8
3.5	Пространство состояний для моледи «Накорми студентов»	12

1 Цель работы

Реализовать модель "Накорми студентов" в CPN Tools.

2 Задание

- Реализовать модель "Накорми студентов" в CPN Tools;
- Вычислить пространство состояний, сформировать отчет о нем и построить граф.

3 Выполнение лабораторной работы

Рассмотрим пример студентов, обедающих пирогами. Голодный студент становится сытым после того, как съедает пирог.

Таким образом, имеем: - два типа фишек: «пироги» и «студенты»; - три позиции: «голодный студент», «пирожки», «сытый студент»; - один переход: «съесть пирожок».

Сначала нарисуем граф сети. Для этого с помощью контекстного меню создаём новую сеть, добавляем позиции, переход и дуги (рис. 3.1).

Рис. 3.1: Граф сети модели «Накорми студентов»

В меню задаём новые декларации модели: типы фишек, начальные значения позиций, выражения для дуг. Для этого наведя мышку на меню Standart declarations, правой кнопкой вызываем контекстное меню и выбираем New Decl (рис. 3.2).

```
Procest

Declarations

Standard declarations

colset s = unit with student;

colset p=unit with pasty;

var x:s;

var y:p;

val init_stud = 3` student;

val init_food = 5` pasty;

Monitors
```

Рис. 3.2: Декларации модели «Накорми студентов»

После этого задаем тип s фишкам, относящимся к студентам, тип p — фишкам, относящимся к пирогам, задаём значения переменных x и у для дуг и начальные значения мультимножеств init_stud и init_food. В результате получаем работающую модель (рис. 3.3).

Рис. 3.3: Модель «Накорми студентов»

После запуска фишки типа «пирожки» из позиции «еда» и фишки типа «студен-

ты» из позиции «голодный студент», пройдя через переход «кушать», попадают в позицию «сытый студент» и преобразуются в тип «студенты» (рис. 3.4).

Рис. 3.4: Запуск модели «Накорми студентов»

3.1 Упражнение

Вычислим пространство состояний. Прежде, чем пространство состояний может быть вычислено и проанализировано, необходимо сформировать код пространства состояний. Этот код создается, когда используется инструмент Войти в пространство состояний. Вход в пространство состояний занимает некоторое время. Затем, если ожидается, что пространство состояний будет небольшим, можно просто применить инструмент Вычислить пространство состояний к листу, содержащему страницу сети. Сформируем отчёт о пространстве состояний и проанализируем его. Чтобы сохранить отчет, необходимо применить инструмент Сохранить отчет о пространстве состояний к листу, содержащему страницу сети и ввести имя файла отчета.

Из полученного отчета можно узнать:

• В графе есть 4 узла и 3 дуги (4 состояния и 3 перехода).

- Указаны границы значений для каждого элемента: голодные студенты (максимум 3, минимум 0), сытые студенты (максимум 3, минимум 0), еда (максимум 5, минимум 2, минимальное значение 2, так как в конце симуляции остаются пирожки).
- Также указаны границы мультимножеств.
- Маркировка home равная 4.
- Маркировка dead равная 4.
- В конце указано, что нет бесконечных последовательностей вхождений.

CPN Tools state space report for:

/home/openmodelica/cpn.cpn

Report generated: Tue Apr 1 10:23:40 2025

Statistics

State Space

Nodes: 4

Arcs: 3

Secs: 0

Status: Full

Scc Graph

Nodes: 4

Arcs: 3

Secs: 0

Boundedness Properties

.....

Best Integer Bounds

		Upper	Lower
	nakormi_studenta'food 1	5	2
nakormi_studenta'hungry_student 1			
		3	0
	nakormi_studenta'satisf	ied_student	1
		3	0

Best Upper Multi-set Bounds
 nakormi_studenta'food 1

5`pasty

nakormi_studenta'hungry_student 1

3`student

 ${\tt nakormi_studenta'satisfied_student\ 1}$

3`student

Best Lower Multi-set Bounds

nakormi_studenta'food 1

2`pasty

nakormi_studenta'hungry_student 1

empty

 ${\tt nakormi_studenta'satisfied_student\ 1}$

empty

Home Properties

Home Markings
[4]
Liveness Properties
Dead Markings
[4]
Dead Transition Instances
None
ee
Live Transition Instances
None
Notice
Fairness Properties
No infinite occurrence sequences.
Построим граф пространства состояний:

Рис. 3.5: Пространство состояний для модели «Накорми студентов»

4 Выводы

В процессе выполнения данной лабораторной работы я реализовала модель "Накорми студентов" в CPN Tools.