MAYO: Overview + Updates

Ward Beullens

IBM Research Europe - Zurich

NIST PQC seminar 24/09/2024

Part 1: **Short overview** of Multivariate Crypto

Multivariate Quadratic Cryptography

Cryptography based on the hardness of finding solutions to systems of multivariate quadratic equations.

Example: Solve for integers *x* and *y*:

$$x + 5x^{2} + 3xy = 4 \mod 7$$

 $x^{2} + 5xy + 5y^{2} = 1 \mod 7$

Solution: x = 6 and y = 0.

For only 2 variables this is still doable, but for more variables this problem quickly becomes very difficult.

E.g. The current record mod 31 is solving a system of only 22 equations in 22 variables! (\sim 1 core-year of computation effort)

Multivariate Signatures

A taxonomy of multivariate signatures

Pure MQ

- MQDSS/SOFIA
- MUDFiSh
- Mesquite
- MQOM
- Biscuit*
- KuMQuat

Trapdoors

Oil and Vinegarlike

- Oil & Vinegar
- MAYO
- PROV

- QR-UOV
- SNOVA
- TUOV
- VOX

HFE-like

- C* (1988) 廿
- HFE (1996) 廿
- FHEv- (2001) 廿
- .

Multivariate trapdoor signatures

Based on trapdoored multivariate maps.

I.e. quadratic functions $P(x): \mathbb{F}_q^n \to \mathbb{F}_q^m$.

Maps look random (difficult to find preimages), but that have some hidden structure, that allows to compute preimages efficiently.

Full-Domain-Hash signatures (think RSA signatures)

<u>PK:</u> *P*

SK: trapdoor information

Signature: s such that P(s) = H(m), where $H(m) \in \mathbb{F}_q^m$ is a hash digest of message m.

Oil & Vinegar Trapdoor

Public key is a quadratic map: $P = (p_1(x), ..., p_m(x)) : \mathbb{F}_q^n \to \mathbb{F}_q^m$ Trapdoor is a subspace $O \subset \mathbb{F}_q^n$ of dimension m on which P vanishes.

Definition of polar form:

Let $P: \mathbb{F}_q^n \to \mathbb{F}_q^m$, then we define its polar form as:

$$P'(x,y): \mathbb{F}_q^n \times \mathbb{F}_q^n \to \mathbb{F}_q^m: P'(x,y) = P(x+y) - P(x) - P(y)$$

This is symmetric:

$$P'(x,y) = P'(y,x)$$

And bilinear. I.e., for all $\alpha, \beta \in \mathbb{F}_q^n$

$$P'(\alpha x + \beta x', y) = \alpha P'(x, y) + \beta P'(x', y)$$

Using the trapdoor O

Given $P: \mathbb{F}_q^n \to \mathbb{F}_q^m$, $O \subset \mathbb{F}_q^n$, $y \in \mathbb{F}_q^m$. We want to find x s.t. P(x) = y.

- 1. Pick $v \in \mathbb{F}_q^n$ uniformly at random.
- 2. Solve for $o \in O$ s.t. P(v + o) = y.

Using the trapdoor O

Given $P: \mathbb{F}_q^n \to \mathbb{F}_q^m$, $O \subset \mathbb{F}_q^n$, $y \in \mathbb{F}_q^m$. We want to find x s.t. P(x) = y.

- 1. Pick $v \in \mathbb{F}_q^n$ uniformly at random.
- 2. Solve for $o \in O$ s.t. P(v + o) = y.

$$P(v + o) = P(v) + P(o) + P'(o, v) = y$$

Is a linear system of m equations in m variables.

Using the trapdoor O

Given $P: \mathbb{F}_q^n \to \mathbb{F}_q^m$, $O \subset \mathbb{F}_q^n$, $y \in \mathbb{F}_q^m$. We want to find x s.t. P(x) = y.

- 1. Pick $v \in \mathbb{F}_q^n$ uniformly at random.
- 2. Solve for $o \in O$ s.t. P(v + o) = y.

$$P(v + o) = P(v) + P(o) + P'(o, v) = y$$

Is a linear system of m equations in m variables.

If the system does not have solutions, try again with new \emph{v}

Parameters (NIST SL 1)

2 constraints:

- Finding oil space O should be hard
- It should be hard to solve P(x) = y without O

Attacks:

Exponential in n-2m

Exponential in m

	UOV-lp	UOV-Is
# Variables $oldsymbol{n}$	112	160
# Equations $m{m}$	44	64
Finite Field	GF(256)	GF(16)
Pk size	44 KB	67 KB
Signature size	128 B	96 B

Pros and Cons of Oil and Vinegar

Advantages:

- Old and well studied (1997)
- Small signatures (96B)
- Fast (100 Kcyc sign, 150 Kcyc verify)

Limitations:

 Somewhat large public keys (44KB)

Classification of variants of Oil and Vinegar

Part 2: MAYO in a nutshell

Oil and Vinegar Public Key

MAYO Public Key

Making 0 smaller has 2 benefits:

- We can use smaller n (key recovery attack exponential in n-2o)
- Public key becomes smaller: $O(o^2m)$ instead of $O(m^3)$

MAYO Public Key

But, if dim(0) < m the signing algorithm fails:

$$P(v+o)=P(v)+P'(o,v)=t\in\mathbb{F}_q^m$$
: m equations, $\dim(O)$ variables.

A little oil can go a long way

Whip map $P: \mathbb{F}_q^n \to \mathbb{F}_q^m$ with small space O up to a larger map $P^*: \mathbb{F}_q^{kn} \to \mathbb{F}_q^m$, that vanishes on a larger oil space O^k .

Whipping Oil-and-Vinegar: Attempt 1

Let
$$P^*(x_1, ..., x_k) = P(x_1) + P(x_2) + ... + P(x_k)$$
.

Then P^* : $\mathbb{F}_q^{kn} \to \mathbb{F}_q^m$ vanishes on a large oil space

$$O^k = \{ (o_1, ..., o_k) \mid o_1, ..., o_k \in O \}$$

So, if $\dim(O^k) = ko \ge m$, then we can sample preimages for P^* .

Bonus slide: Why $P^*(x_1, x_2) = P(x_1) + P(x_2)$ is not preimage resistant.

We want to solve $P(x_1) + P(x_2) = t$ for $x_1, x_2 \in \mathbb{F}_q^n$, given arbitrary $t \in \mathbb{F}_q^m$ (e.g., t = H(M))

For simplicity, assume $-1 = \alpha^2$ is a square, and P is homogeneous.

Set $x_2 := \alpha x_1 + r$ for random $r \in \mathbb{F}_q^m$

$$P(x_1) + P(\alpha x_1 + r) = t$$

$$P(x_1) + P(\alpha x_1) + P(r) + P'(\alpha x_1, r) = t$$

$$P(r) + P'(\alpha x_1, r) = t$$

Is just a system of linear equations.

Whipping Oil-and-Vinegar: Attempt 2

Choose matrices $E_{i,j}$ for all $0 \le i \le j \le k$ and set

$$P^{*}(x_{1},...,x_{k}) = \sum_{i} E_{ii}P(x_{i}) + \sum_{i < j} E_{ij}P'(x_{i},x_{j})$$

New hardness assumption:

Systems P^* of this form are preimage resistant when P is uniformly random.

Security Analysis

Assume that:

- 1) Oil-and-Vinegar maps P are indistinguishable from random \bigcirc MQ maps.
- 2) Whipping up a random map P, results in a (multi-target) preimage resistant MQ map P^* .

Then the MAYO signature scheme is EUF-CMA secure. (for appropriately chosen parameters)

In particular, we proved that signatures do not leak information about the secret key.

MAYO parameters

	Oil & Vinegar GF(16)	Oil & Vinegar GF(256)	MAYO 1 $o=8$	$\begin{array}{c} MAYO2 \\ o = 18 \end{array}$
# Variables	160	112	66 x 9	66 x 16
# Equations	64	44	64	69
Finite Field	GF(16)	GF(256)	GF(16)	GF(16)
Pk size	67 KB	44 KB	1.1 KB	5.4 KB
Signature size	96 B	128 B	321 B	180 B

Size of O gives a trade-off between signature size and pk size.

Advantages:

Short signatures (180B)

Short keys (1.1KB)

• Fast $(111\mu s \text{ signing, } 30\mu s \text{ verify})$

Limitations:

 New hardness assumption (2021)

Update 1:

New representation of public key for faster implementations

Bitsliced vs. Nibblesliced representations

How to represent matrices over GF(16)? Representation is irrelevant for security, but important for interoperability and efficient implementation.

$a_0 + a_1 x + a_2 x^2 + a_3 x^3$	$d_0 + d_1 x + d_2 x^2 + d_3 x^3$	$g_0 + g_1 x + g_2 x^2 + g_3 x^3$
$b_0 + b_1 x + b_2 x^2 + b_3 x^3$	$e_0 + e_1 x + e_2 x^2 + e_3 x^3$	$h_0 + h_1 x + h_2 x^2 + h_3 x^3$
$c_0 + c_1 x + c_2 x^2 + c_3 x^3$	$f_0 + f_1 x + f_2 x^2 + f_3 x^3$	$i_0 + i_1 x + i_2 x^2 + i_3 x^3$

(Column major) bitsliced representation:

$$a_0b_0c_0$$
 $a_1b_1c_1$ $a_2b_2c_2$ $a_3b_3c_3$...

(Column major) nibblesliced representation:

$$a_0a_1a_2a_3$$
 $b_0b_1b_2b_3$ $c_0c_1c_2c_3$...

Good for bitsliced arithmetic on embedded platforms.

Good for AVX2 shuffle-based arithmetic on "big" CPUs and table-lookup-based multiplication on embedded platforms.

Ice Lake performance MAYO 1

AVX2 + AESNI Bitsliced | Nibble-sliced implementation

Dilithium2: KeyGen 81 k, Sign 219 k, Verify 79 k

Ice Lake performance MAYO 1

AVX2 + AESNI Bitsliced | Nibble-sliced implementation

Cortex-M4 performance MAYO 1

ST NUCLEO-L4R5ZI @ 20 MHz Bitsliced | Nibble-sliced

Dilithium2: KeyGen 1.6 M, Sign 4.0 M, Verify 1.6 M

Work in progress: ARM Neon

Nibble-sliced

Dilithium2: KeyGen 71 k, Sign 224 k, Verify 69 k

Update 2:New parameters

Why new parameters?

Improved method for solving underdetermined systems by Hashimoto (2023) reduced security margin by between 14 bits (MAYO1) and 2 bits (MAYO2)

Add more security margin against generic system solving attacks.

Parameters with o > n - m mean that the P(x) = 0 variety has a larger dimension than generic varieties. Related to new Minrank attack of Furue and Ikematsu (2023)

Pick parameters with $o \le n - m$.

Side effect: we get much more security against known key-recovery attacks.

Restart probability 2^{-36} makes it hard to cover all corner cases of implementation with KATs.

Increase restart probability

Side effect: Small reduction in key sizes

New (tentative) MAYO parameters

	MAY01	MAY02	MAY03	MAY05
Security Level	1	1	3	5
(n,m,o,k)	(86,78,8,10)	(81,64,17,4)	(117, 107, 10, 11)	(153,141,12,12)
Signature size	454 B	186 B	676 B	958 B
Pk size	1420 B	4912 B	2959 B	5515 B

New (tentative) MAYO parameters

	MAY01	MAY02	MAY03	MAY05
Security Level	1	1	3	5
(n,m,o,k)	(86,78,8,10)	(81,64,17,4)	(117, 107, 10, 11)	(153,141,12,12)
Signature size	454 B	186 B	676 B	958 B
Pk size	1420 B	4912 B	2959 B	5515 B
Restart Prob	2^{-12}	2^{-20}	2^{-16}	2^{-16}
Forgery Attacks	156	155*	222	295
Key Recovery	197	167	260	332

^{*}ignoring an attack on hash function collision with bit cost $\sim 2^{143}$

Work in progress

- Implementing new parameter sets
- Low-memory implementation
- Formally verified security proof
- Formally verified implementation
- Thresholdized signing for MAYO
- MAYO ...