0.1 La ley exponencial y la suspensión reducida

En la categoría de conjuntos se cumple que:

Ejercicio 1. Sean X, Y y Z conjuntos, entonces:

$$\operatorname{Hom}\left(X\times Z,Y\right)\stackrel{\Phi}{\longrightarrow} \operatorname{Hom}\left(X,\operatorname{Hom}\left(Z,Y\right)\right)$$

$$\left(X\times Z \stackrel{f}{\longrightarrow} Y\right) \longmapsto \left(X \stackrel{\Phi_f}{\longrightarrow} \operatorname{Hom}\left(Z,Y\right)\right)$$

definido por $\Phi_f(x): Z \to Y$ con $\Phi_f(x)(z) = f(x,z)$ es una biyección.

Proof. Doy un inverso de Φ : sea $g \in \text{Hom}(X, \text{Hom}(Z, Y))$ con $g(x) : Z \to Y$ y defino

$$\Psi(g): X \times Z \longrightarrow Y \quad \text{con} \quad \Psi(g)(x, z) = g(x)(z).$$

Para $f \in \text{Hom}(X \times Z, Y)$ calculo:

$$\Psi(\Phi(f))(x,z) = \Psi(\Phi_f)(x,z) = \Phi_f(x)(z) = f(x,z) \implies \Psi(\Phi(f)) = f.$$

Por otro lado si $g \in \text{Hom}(X, \text{Hom}(Z, Y))$ entonces:

$$\Phi(\Psi(g))(x)(z) = \Phi_{\Psi(g)}(x)(z) = \Psi(g)(x,z) = g(x)(z) \implies \Phi(\Psi(g)) = g.$$

Por lo tanto $\Psi = \Phi^{-1}$ y Φ es una biyección.

En la categoría **Top** si sustituimos $\operatorname{Hom}(\cdot,\cdot)$ por $\operatorname{Map}(\cdot,\cdot)$ entonces

$$\Phi: \operatorname{Map}(X \times Z, Y) \longrightarrow \operatorname{Map}(X, \operatorname{Map}(Z \times Y)) \tag{1}$$

no es necesariamente una biyección porque la imagen de alguna $f \in \operatorname{Map}(X \times Z, Y)$ bajo Φ no necesariamente es continua. Pero si le pedimos propiedades adicionales a Z podemos hacer que Φ sea biyectiva:

Teorema 1. Si Z es localmente compacto y Hausdorff, entonces Φ de (??) es biyectiva.

Para este caso particular vamos a hacer Z=I que claramente es localmente compacto (pues es compacto) y Hausdorff, entonces el teorema es válido. Además, si quiero aplicarlo a lazos y al grupo fundamental, es necesario cambiar de categoría a \mathbf{Top}_* e identificar $I \to I/\partial I$. El lado derecho de ?? es fácil cambiarlo pero no es inmediatamente obvio que es lo hay que hacer del lado izquierdo para mantener la biyección:

$$\begin{array}{ccc} \operatorname{Map}(X \times I, Y) & \stackrel{\Phi}{\longrightarrow} \operatorname{Map}(X, \operatorname{Map}(I, Y)) \\ & & & & & \\ & & & & \\ ? & \longleftarrow & \operatorname{Map}_*((X, x_0), \Omega(Y, y_0)) \end{array}$$

Considera $f \in \operatorname{Map}(X \times I, Y)$ arbitrario. Quiero que $\Phi_f(x) \in \Omega(Y, y_0)$, es decir $\Phi_f(x)(0) = f(x, 0) = y_0 = f(x, 1) = \Phi_f(x)(1)$ para toda $x \in X$. Una forma de forzar esto es identificar, en $X \times I$, todos los puntos de la forma (x, 0) ó (x, 1). Entonces el primer paso es hacer:

$$X \times I \longrightarrow X \times I/_{(X \times \{0\}) \cup (X \times \{1\})}$$

También quiero que Φ_f sea un morfismo de espacios basados, es decir que $\Phi_f(x_0)$ es el punto base de $\Omega(Y, y_0)$, ie. el lazo contante e_{y_0} . Esto significa que $\Phi_f(x_0)(t) = e_{y_0}(t) = y_0$ para toda $t \in I$. Similarmente fuerzo esta condición al identificar todo el conjunto $\{x_0\} \times I$ en $X \times I$:

$$X\times I \xrightarrow{} X\times I/_{(X\times\{0\})\cup(X\times\{1\})} \xrightarrow{} X\times I/_{(X\times\{0\})\cup(X\times\{1\})\cup(\{x_0\}\times I)}.$$

Resulta que esto es suficiente para traducir la biyección Φ de $(\ref{eq:parabolic})$ al espacio de lazos. La contrucción anterior tiene un nombre:

Figure 1: Construcción de SS^1 .

Definición 1. Sea (X, x_0) un espacio basado, entonces la suspensión reducida de X es:

$$SX := (X \times I)/_{(X \times \{0\}) \cup (X \times \{1\}) \cup (\{x_0\} \times I)}$$

y también es un espacio basado con base \star , el punto al que se identifica todo el conjunto $(X \times \{0\}) \cup (X \times \{1\}) \cup (\{x_0\} \times I)$.

Nota. A veces es útil definir el paso intermedio que se usó para definir la suspensión reducida. Si defino $A = X \times \{0\} \subset X \times I$ y $B = X \times \{1\} \subset X \times I$, entonces la suspensión no-reducida de X es el cociente:

$$\Sigma X := (X \times I)/_{A,B}.$$

Observa que no estoy identificando $A \cup B$ a un punto. Más bien estoy identificando A a un punto y B a otro punto. La figura ?? ilustra los pasos para construir la suspensión de \mathbb{S}^1 .

Vale la pena mencionar que la figura ?? también funciona para visualizar la construcción de la suspensión reducida del disco; el cilindro del inicio está relleno en este caso y por lo tanto la esfera al final está rellena también, por lo tanto $\mathcal{S}\mathbb{D}^2 \approx B_1(0) \subset \mathbb{R}^3$ la bola de radio 1 con centro en el origen.

Con esta definición, puedo reescribir (??) como:

Ejercicio 2. Sean (X, x_0) y (Y, y_0) espacios basados, entonces:

$$\operatorname{Map}_*\left((\mathcal{S}X,\star),(Y,y_0)\right) \xrightarrow{\Phi} \operatorname{Map}_*\left((X,x_0),(\Omega(Y,y_0),e)\right)$$

$$\left(\mathcal{S}X \stackrel{f}{\longrightarrow} Y\right) \longmapsto \left(X \stackrel{\Phi_f}{\longrightarrow} \Omega(Y, y_0)\right)$$

definido por $\Phi_f(x)(t) = f[x,t]$ es una biyección. Aquí [x,t] es una clase de equivalencia en $\mathcal{S}X$.

Proof. La prueba es muy similar al ejercicio ??; hay unos detalles adicionales que hay que verificar. Para probar que Φ es biyectiva, exhibo un inverso.

Sea $g \in \operatorname{Map}_*((X, x_0), (\Omega(Y, y_0), e)) = \operatorname{Map}_*(X, \Omega)$. Entonces $g(x) : I \to Y$ es un lazo (ie. $g(x)(0) = y_0 = g(x)(1)$ para toda $x \in X$) y $g(x_0) = e_{y_0}$ es el lazo constante. Defino la siguiente función:

$$\Psi(g): \mathcal{S}X \longrightarrow Y \quad \text{con} \quad \Psi(g)[x,t] = g(x)(t).$$

Observa que está bien definido porque:

$$\Psi(g)[x,0] = g(x)(0) = y_0 = g(x)(1) = \Psi(g)[x,1] \quad \forall x \in X$$

у

$$\Psi(g)[x_0, t] = e_{y_0}(t) = y_0 \quad \forall t \in I.$$

Estas últimas dos igualdades implican que $\Psi(g)$ está bien definido sobre SX.

Ahora verifico que $\Psi = \Phi^{-1}$. Para $f \in \operatorname{Map}_*(\mathcal{S}X, Y)$ calculo:

$$\Psi(\Phi(f))[x,t] = \Psi(\Phi_f)[x,t] = \Phi_f(x)(t) = f[x,t] \implies \Psi(\Phi(f)) = f.$$

Por otro lado si $g \in \operatorname{Map}_*(X, \Omega)$ entonces:

$$\Phi(\Psi(g))(x)(t) = \Phi_{\Psi(g)}(x)(t) = \Psi(g)[x,t] = g(x)(t) \quad \Longrightarrow \quad \Phi(\Psi(g)) = g.$$

Por lo tanto $\Psi = \Phi^{-1}$ y Φ es una biyección.

La suspensión reducida es un funtor $S: \mathbf{Top}_* \to \mathbf{Top}_*$. En efecto, si $f: (X, x_0) \to (Y, y_0)$ es un morfismo, entonces la función continua $(f \times \mathrm{Id}_I): X \times I \to Y \times I$ se factoriza a través de SX, es decir:

 $\begin{array}{ccc} X \times I & \xrightarrow{f \times \mathrm{Id}_I} & Y \times I \\ \downarrow & & \downarrow & \\ \mathcal{S}X & \xrightarrow{\mathcal{S}f} & \mathcal{S}Y \end{array}$

Esto sucede porque

$$(f \times \mathrm{Id}_I)(x,0) = (f(x),0)$$
, $(f \times \mathrm{Id}_I)(x,1) = (f(x),1)$, $(f \times \mathrm{Id}_I)(x_o,t) = (y_0,t)$ $\forall x \in X, t \in I$,

es decir que el conjunto en $X \times I$ que se identifica a un punto se manda, bajo $f \times \mathrm{Id}_I$, al conjunto de $Y \times I$ que se identifica a un punto.

Además claramente tengo que $\mathcal{S} \operatorname{Id}_X = \operatorname{Id}_{\mathcal{S}X}$ porque $\mathcal{S} \operatorname{Id}_X$ es inducido por $\operatorname{Id}_X \times \operatorname{Id}_I = \operatorname{Id}_{X \times I}$ y por último, si $(X, x_0) \xrightarrow{f} (Y, y_0) \xrightarrow{g} (Z, z_0)$, entonces $(g \circ f) \times \operatorname{Id}_I = (g \times \operatorname{Id}_I) \circ (f \times \operatorname{Id}_I)$ y así $\mathcal{S}(g \circ f) = \mathcal{S}g \circ \mathcal{S}f$. Por lo tanto he probado que:

Proposición 1. La suspensión reducida es un funtor (covariante) $S: \mathbf{Top}_* \to \mathbf{Top}_*$.

Podemos juntar esta proposición con la proposición ?? y el ejercicio ?? para deducir:

Corolario 2. Los funtores $S: \mathbf{Top}_* \to \mathbf{Top}_* \ y \ \Omega: \mathbf{Top}_* \to \mathbf{Top}_* \ son \ funtores \ adjuntos, \ más \ precisamente S \ es \ adjunto \ izquierdo \ de \ \Omega \ y \ \Omega \ es \ adjunto \ derecho \ de \ S:$

$$Hom(\mathcal{S}X,Y) \longleftrightarrow Hom(X,\Omega Y)$$

donde he sustituido $Map_*(\cdot,\cdot)$ por la notación categórica.

Más que Map_* , me interesa las clases de equivalencia módulo homotopía. Resulta que la función Φ del ejercicio ?? se factoriza a través de las clases de homotopía. Más precisamente:

Ejercicio 3. Sean (X, x_0) y (Y, y_0) espacios basados, entonces la función inducida por Φ del ejercicio ??:

$$\left[(\mathcal{S}X, \star), (Y, y_0) \right] \longleftrightarrow \left[(X, x_0), (\Omega(Y, y_0), e) \right]$$

es una biyección.

Proof. Usaré la misma notación que el ejercicio?? y todos los espacios son basados.

Sean
$$f, f' \in \operatorname{Map}_*(\mathcal{S}X, Y)$$
 y $g, g' \in \operatorname{Map}_*(X, \Omega Y)$. Si pruebo que

$$f \simeq f' \quad \Longrightarrow \quad \Phi(f) \simeq \Phi(f') \quad , \quad g \simeq g' \quad \Longrightarrow \quad \Psi(g) \simeq \Psi(g')$$

entonces Φ y Ψ se factorizan naturalmente a través de los espacios cocientes, es decir que existen únicos:

$$\operatorname{Map}_{*}(\mathcal{S}X,Y) \xrightarrow{\Phi} \operatorname{Map}_{*}(X,\Omega Y) \qquad \operatorname{Map}_{*}(X,\Omega Y) \xrightarrow{\Psi} \operatorname{Map}_{*}(\mathcal{S}X,Y)
\downarrow \qquad \qquad \qquad \downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow \qquad \qquad \qquad \downarrow \qquad \qquad \qquad \downarrow \qquad$$

que hacen conmutar los diagramas, es decir que $\Phi = \bar{\Phi} \circ \pi_1$ y $\Psi = \bar{\Psi} \circ \pi_2$. He denotado por π_i la función cociente. Observa que por definición $\bar{\Phi}([f]) = \Phi(f)$.

Supongo que $f \simeq f'$ mediante la homotopía $F : \mathcal{S}X \times I \to Y$. Para un parámetro fijo $t \in I$ tengo que $F_t \in \operatorname{Map}_*(\mathcal{S}X, Y)$ entonces $\Phi(F_t) \in \operatorname{Map}_*(X, \Omega Y)$ tiene sentido y es una función continua. Con esto defino $F' : X \times I \to \Omega Y$ con:

$$F'(x,t) := \Phi(F_t)(x)$$

que es continua porque cada $\Phi(F_t)$ lo es. Observa que $F'(x,0) = \Phi(F_0)(x) = \Phi(f)(x)$ y $F'(x,1) = \Phi(F_1)(x) = \Phi(f')(x)$ entonces F' es una homotopía entre $\Phi(f)$ y $\Phi(f')$, es decir $\Phi(f) \simeq \Phi(f')$.

Por otro lado supongo que $g \simeq_G g'$ con $G: X \times I \to \Omega Y$ una homotopía. Observa que para todo parámetro $G_t \in \operatorname{Map}_*(X, \Omega Y)$ y así $\Psi(G_t) \in \operatorname{Map}_*(\mathcal{S}X, Y)$ y es continua. Similarmente defino:

$$G'([x, s], t) := \Psi(G_t)[x, s]$$

donde $[x,s] \in \mathcal{S}X$. Observa que como cada $\Psi(G_t)$ es continua entonces G' también lo es. Además $G'([x,s],0) = \Psi(G_0)[x,s] = \Psi(g)[x,s]$ y $G'([x,s],1) = \Psi(G_1)[x,s] = \Psi(g')[x,s]$. Por lo tanto $\Psi(g) \simeq_{G'} \Psi(g')$.

Como Id = $\Psi \circ \Phi$, entonces:

$$\Phi(f) \simeq \Phi(f') \implies \Psi(\Phi(f)) = f \simeq f' = \Psi(\Phi(f'))$$

y así:

$$f \simeq f' \iff \Phi(f) \simeq \Phi(f')$$

o equivalentement:

$$[f] = [f'] \quad \Longleftrightarrow \quad \left[\Phi(f)\right] = \left[\Phi(f')\right].$$

Si uso la notación de los diagramas conmutativos en (??), la equivalencia anterior quiere decir que la función

$$(\pi_2 \circ \bar{\Phi}) : [\mathcal{S}X, Y] \longrightarrow [X, \Omega Y]$$

es inyectiva porque

$$(\pi_2 \circ \bar{\Phi})\big([f]\big) = \pi_2\Big(\bar{\Phi}\big([f]\big)\Big) = \pi_2\big(\Phi(f)\big) = \big[\Phi(f)\big].$$

Admeás, si $[g] \in [X, \Omega Y]$ entonces:

$$(\pi_2 \circ \bar{\Phi}) \big([\Psi(g)] \big) = \pi_2 \Big(\bar{\Phi} \big(\Psi(g) \big) \Big) = \pi_2 \Big(\Phi \big(\Psi(g) \big) \Big) \big[\Phi(\Psi(g)) \big] = [g]$$

y así $\pi_2 \circ \bar{\Phi}$ es sobreyectiva. Por lo tanto ésta es la biyección

$$[\mathcal{S}X,Y]\longleftrightarrow [X,\Omega Y].$$

Intuitivamente, el ejercicio ?? dice que la propiedad adjunta de los funtores S y Ω se preserva bajo homotopías.