EE450: Midterm Solutions

1. T, F, F, T, T, T, F, F, T, T, T, T, T, F, F, F, T, T, T, F, F, F, F

2. 1.3x10⁵m, 4.3x10⁵bps, 4KHz, 10111110111111, 20Ksec, 40bits/frame, 1Mbps, 25K frames/sec, 500K slots/sec, 294.1Kbps, 9bits, 10bits, 200Kbps, 4.82x10⁴ bps, 1.6022 sec, 1.2022 sec, 1.2022 sec, 1.0022sec, 2-Sockets, 7-Sockets

3.

- a. FCS bits, 011, Transmitted pattern: 101110011. The red bits are the FCS bits.
- b. Received sequence = 101110011 ⊕ 110010100 = 011100111. Receiver will divide this pattern by the generator pattern and observe a zero remainder. The receiver was **NOT** able to detect the error. According to the receiver, the transmitted sequence was indeed 011100111 and hence he will decode the message sequence as 011100. Of course, he is wrong. **Note the receiver does NOT know the error sequence. He only observes the received sequence.**
- c. Received sequence = 110010101. When we divide this sequence by the generator pattern, the reminder is 1 which is **NOT** 0 and hence the receiver is able to detect the error (The receiver does not know how many errors or where are they located). There were 5 errors in the received sequence.

4.

Throughput = 5000/11 = 454.4 bps Link Utilization = 5/11 = 45.4%

Time	Action @ Transmitter	Action @ Receiver	Time
0	F₀ is transmitted		0
1	F ₁ is transmitted. This frame is Lost		1
2	F ₂ is transmitted	F ₀ is received (No errors), ACK ₁ is returned	2
3	ACK ₁ is received. Window slides by one unit and F ₃ is transmitted	returned	3
4	Sender window is closed	F_2 is received. It is out of order (R/x was expecting F_1), hence dropped	4
5	F ₁ is timed out and is retransmitted.	F ₃ is received. It is out of order (R/x was expecting F ₁), hence dropped	5
6	F ₂ is retransmitted		6
7	F ₃ is retransmitted	F ₁ is received and ACK ₂ is returned	7
8	ACK ₂ is received. Sender window slides by one unit. F ₀ (the new one) is transmitted.	F ₂ is received and ACK ₃ is returned. This ACK is lost in the channel	8
9	T/x ran out of frames	F ₃ is received and ACK ₀ is returned	9
10	ACK ₀ is received	F ₀ is received and ACK ₁ is returned	10
11	ACK ₁ is received. The End!		11

Step	Action	Delay (sec)
	Client DNS contact the Local DNS server to obtain	0
1	address of Web Server	
	Local DNS server contact the RNS for the requested	1
2	IP address (Round Trip)	
	Local DNS server contact the TLD for the requested	1
3	IP address (Round Trip)	
	Local DNS server contact the Authoritative for the	0.2
4	requested IP address (Round Trip)	
	Local DNS server caches the IPO address and return	0
5	to Client	
	Client set TCP connection (Hand Shaking) with the	0
6	HTTP cache and send the request for the HTML file	
	The HTTP cache set up a TCP connection (Hand	0.2
7	Shaking) with the real HTTP server. Here the HTTP	
	cache is acting as a client on behalf of the real client.	
	HTTP requests the downloading of the HTML file	0.1
8		
	Downloading: 1G/1G + 1G/1M + 1G/1G + 0.1	1002.1
9		
	HTTP Caches the HTML file and send the file to the	1
10	Client (1G/1G)	
	Total	1005.6
11		
	The end-to-end throughput in this case is ~ 1 Mbps	
	(which is the bottleneck) or more precisely =	
	1G/1005.6 = 0.9944 Mbps	
	For m2.a.com, it will take only 1 sec to download	
12	the same HTML file since both the IP address and	
	the HTML file has been cached in Local DNS server	
	and the Local HTTP cache. The End the end	
	throughput in this case is 1 Gbps (since the	
	propagation delay inside the LAN is negligible.	