P1:	ВЕ	3P										
2020年	₹1月24	日 金田	翟日	午後	0:31							

							_							
Solving/Analyzing a spacecraft dynamics problem														
requires														
1. Construction (numerous o														
 Using principles of mechanics to formulate equations of motion that govern the quantities appearing in the 														
-> critica	winematical representation > critical - no use for #3 if step 2 incorrect													
3. Extracting u														
Since every problem in spacecraft dynamics analysis requires														
	the use of various kinematical relationships (some important only since the space age)													
Here	Here we start!!													

Rotational Kinematics

To investigate spacecraft attitude, we need effective ways to describe attitude / orientation; rigid bodies

Begin with the most basic concept

Simple Rotation

How to describe orientation of a rigid body B relative to some reference orientation?

Note: Description is mathematical and for analysis

NOT necessarily how the attitude is achieved

ANY Change in orientation is mathematically accomplished via a simple rotation

Define:

Coordinate frame A, B

A may be inertial

B is body-fixed

Simple rotation of B in A:

There exists a line L (axis of rotation)

whose orientation relative to both

A and B remains fixed

To visualize the rotation

Define: $L_A \perp L$

vector basis $\hat{\alpha}_1,\hat{\alpha}_2,\hat{\lambda}$ fixed in A

Define: $L_B \perp L$

Petine: $L_B \perp L$ vector basis $\hat{\beta}_1$, $\hat{\beta}_2$, $\hat{\lambda}$ fixed in B

such that initially $\hat{\beta}_1 = \hat{\gamma}_1$ $\hat{\beta}_2 = \hat{\gamma}_2$ Rotate B about $L(\hat{\lambda})$ through θ to achieve the above orientation

Note: $\hat{\lambda}$ is fixed in both A and B

Orientation of B in A is understood by knowing L $(\hat{\lambda})$ and θ

Add an arbitrary vector \overline{a} fixed in A; define \overline{b} such that $\overline{b} = \overline{a}$ initially

$$\overline{a} = p \; \hat{\alpha}_1 + q \; \hat{\alpha}_2 + r \; \hat{\lambda}$$

$$b = p\hat{\beta}_1 + q\hat{\beta}_2 + r\hat{\lambda}$$

 $\overline{a} = p \, \hat{\alpha}_1 + q \, \hat{\alpha}_2 + r \, \hat{\lambda}$ From the way the unit vectors are defined $D = p \, \hat{\beta}_1 + q \, \hat{\beta}_2 + r \, \hat{\lambda}$ be a func. of initial cond. $\alpha + \beta_1 + \beta_2 + r \, \hat{\lambda}$ of the rotation

Describe \bar{b} as a function of \bar{a} (its initial value) and the "rotation parameters" $\hat{\lambda}, \theta$

Proof: LHS (write \overline{b} in terms of $\hat{\alpha}_i$'s)

$$\bar{b} = p \, \hat{\beta}_1 + q \, \hat{\beta}_2 + r \, \hat{\lambda}$$

$$= \ell \left(C_{\theta} \, \hat{Q}_1 + S_{\theta} \, \hat{Q}_2 \right) + \ell \left(-S_{\theta} \, \hat{Q}_1 + C_{\theta} \, \hat{Q}_2 \right) + r \, \hat{\lambda}$$

$$= \left(\ell C_{\theta} - \ell S_{\theta} \right) \hat{Q}_1 + \left(\ell S_{\theta} + \ell C_{\theta} \right) \hat{a}_2 + r \, \hat{\lambda}$$

RHS (perform operations)

$$\overline{b} = (p \,\hat{\alpha}_1 + q \,\hat{\alpha}_2 + r \,\hat{\lambda})\cos\theta$$

$$-(p \,\hat{\alpha}_1 + q \,\hat{\alpha}_2 + r \,\hat{\lambda}) \times \hat{\lambda}\sin\theta$$

$$+(p \,\hat{\alpha}_1 + q \,\hat{\alpha}_2 + r \,\hat{\lambda}) \cdot \hat{\lambda}\hat{\lambda}(1 - \cos\theta)$$

$$\overline{b} = (p\cos\theta - q\sin\theta)\hat{\alpha}_1 + (q\cos\theta + p\sin\theta)\hat{\alpha}_2 + r\hat{\lambda}$$

QED

4. Euler parameters – also called quaternions (4)

Pro: Mo singularities
no trig
convenient rule for successive approx.

Con: one reclandant parameter no obvious physical interpretation

Common applications: onboard inertial navigation

attitude analysis and control

5. Rodrigues parameters – also called Gibbs vector (3)

Pro: no redundant parameter
no thigs
convenient rule for successive approx.

Con: Singularities

Common application: analytical studies

6.

All are ways of describing orientation; each set of variables are related to each other; each set are therefore related to $\hat{\lambda}$, θ

We will not actually work with $\hat{\lambda}$, θ as kinematic variables; we will use $\hat{\lambda}, \theta$ to help visualize problem; use $\hat{\lambda}, \theta$ to relate variable sets to each

Examine the new variable sets one at a time ----- start with direction <u>cosines</u> (already somewhat familiar)

Four important truths

(1) A minimum of 3 coord are required to describe relative ang. orientation between two frames a) Any minimal set 3 omentation

		0) A	ny	mín	h pue	nl :	set		3 0	mer	NLA	1/02	1						
					jha	clue	le	A	12	lrse	_ [9	eo h	etri	ca (O	MHU	ele		
								, ,	·		,	V			,		. (-		
		(31	2	, Ingu	(ari	Ty														
		4) /	egi	r(av	186	(ion		۵	A	lee	ns-f	Or	e 1	redi	nhdo	ant	para	chet	(er
		·		V												·		l		