Diskrete Strukturen in der Informatik

Logik & Naive Mengenlehre

PD Dr. Stefan Milius

WS 2015/2016

Überblick

Inhalt

- Aussagen- und Prädikatenlogik
- Naive Mengenlehre
- Relationen und Funktionen
- Mombinatorik und Stochastik
- Algebraische Strukturen
- Bäume und Graphen
- Arithmetik

Vorlesungsziele

dieses Kapitel

- Basiswissen Prädikatenlogik
- 2 Einführung Mengen
- Grundoperationen mit Mengen

Bitte Fragen direkt stellen!

Grundlagen der Logik

Aussagenlogik

Inhalt

- Aussagen- und Prädikatenlogik
- Naive Mengenlehre
- Relationen und Funktionen
- Mombinatorik und Stochastik
- Algebraische Strukturen
- Bäume und Graphen
- Arithmetik

Aussagenlogik - Notation

Wiederholung

- ¬ Negation
- ∧ Konjunktion
- ∨ Disjunktion
- → Implikation

nicht und

oder

genau dann wenn

wenn ..., dann ...

A	В	$\neg A$	$A \wedge B$	$A \vee B$	$A \rightarrow B$	$A \leftrightarrow B$
0	0	1	0	0	1	1
0	1	1	0	1	1	0
1	0	0	0	1	0	0
1	1	0	1	1	1	1

Aussagenlogik — Tautologien

§1.13 Definition

Eine Formel ist

- eine Tautologie, falls sie immer wahr ist (unabh. von der Belegung der Atome)
- unerfüllbar, falls sie immer falsch ist (unabh. von der Belegung der Atome)
- erfüllbar, falls sie nicht unerfüllbar ist

Beispiel

• $(A \land A) \leftrightarrow A$ ist eine Tautologie

- (Idem. \wedge)
- Gerade ↔ ¬Ungerade ist erfüllbar, aber keine Tautologie (auch wenn diese Aussage mit Fachwissen immer wahr ist)

Aussagenlogik — Tautologien

klassische Tautologien	Bezeichnung
	ausgeschlossenes Drittes Fallunterscheidung
$(A \land (A \rightarrow B)) \rightarrow B$ $((A \rightarrow B) \land (B \rightarrow C)) \rightarrow (A \rightarrow C)$	modus ponens Syllogismus (Transitivität von $ ightarrow$)
$(A ightarrow B) \leftrightarrow (\lnot B ightarrow \lnot A) \ ((A ightarrow B) \wedge (A ightarrow \lnot B)) ightarrow \lnot A$	Kontraposition reductio ad absurdum (indirekter Beweis)
$(A \wedge B) o A \ A o (A \vee B)$	Abschwächung für \land Abschwächung für \lor
$A \leftrightarrow B$	für äquivalente Aussagen A und B

Aussagenlogik – Schlusskette

Theorem ($\S 1.14$ – modus ponens)

$$F = (A \land (A \rightarrow B)) \rightarrow B$$
 ist eine Tautologie. (gelten A und "wenn A , dann B ", dann gilt auch B)

Beweis.

Mit Fallunterscheidung:

- falls B wahr ist, dann ist $F = \cdots \rightarrow B$ wahr
- falls B falsch ist, dann ist entweder
 - A wahr, womit $A \wedge (A \rightarrow B)$ falsch ist
 - A falsch, womit $A \wedge (A \rightarrow B)$ auch falsch ist

Da
$$F' = A \wedge (A \rightarrow B)$$
 falsch ist, ist $F = F' \rightarrow B$ wahr

Aussagenlogik – Schlusskette

Theorem ($\S 1.15$)

$$((A \rightarrow B) \land (B \rightarrow C)) \rightarrow (A \rightarrow C)$$
 ist eine Tautologie.

 $(Transitivität von \rightarrow)$

Beweis.

Kontraposition:
$$F = \neg(A \to C) \to \underbrace{\neg((A \to B) \land (B \to C))}_{F'}$$

Fallunterscheidung:

- Falls $\neg (A \rightarrow C)$ falsch ist, dann ist F wahr.
- Falls $\neg (A \rightarrow C)$ wahr ist, dann ist $A \rightarrow C$ falsch, woraus A wahr und C falsch folgen
 - Sei B falsch. Dann ist $A \to B$ falsch und damit F' wahr
 - Sei B wahr. Dann ist $B \to C$ falsch und damit F' wahr

Da F' wahr ist, ist auch F wahr

10 / 46

§2.1 Theorem (indirekter Beweis)

$$(\underbrace{(A \to B) \land (A \to \neg B)}_{\neg A}) \to \neg A$$
 ist eine Tautologie.

in Worten: wenn man aus A einen Widerspruch ableiten kann, dann kann A nicht gelten

Beweis.

Wahrheitswertetabelle:

A	В	$A \rightarrow B$	$\neg B$	$A \rightarrow \neg B$	F'	$\neg A$	$F' o \neg A$
0	0	1	1	1	1	1	1
0	1	1	0	1	1	1	1
1	0	0	1	1	0	0	1
1	1	1	0	0	0	0	1

Offensichtlich gilt sogar $F' \leftrightarrow \neg A$

§2.2 Theorem

Es gibt keine rationale Zahl x mit $x^2 = 2$.

Beweis (indirekt).

Sei $x \in \mathbb{Q}$, so dass $x^2 = 2$.

Negation der Aussage

Dann existieren teilerfremde $m,n\in\mathbb{Z}$ mit $n\neq 0$, so dass $x=\frac{m}{n}$.

Also $2n^2=m^2$, womit m^2 gerade ist. Gemäß §1.12 (aus der letzten VL) ist somit auch m gerade, so dass m=2k mit $k\in\mathbb{Z}$.

$$2n^2 = m^2 = (2k)^2 = 4k^2$$
 \Rightarrow $n^2 = 2k^2$

Also ist auch n^2 gerade und damit ist n gerade gemäß §1.12.

Da m und n gerade sind, sind sie nicht teilerfremd (gemeinsamer Teiler 2). Folglich gilt das Theorem.

Theorem $(\S 2.2)$

Es gibt keine rationale Zahl x mit $x^2 = 2$.

Beweisstruktur.

Es existieren teilerfremde $m, n \in \mathbb{Z}$ mit $n \neq 0$ und $\left(\frac{m}{n}\right)^2 = 2$

Wir zeigten zunächst $A \rightarrow B$ und danach $\neg B$

Damit gilt auch $A \rightarrow \neg B$, da $\neg B$ wahr ist.

Wir haben also $A \to B$ und $A \to \neg B$ gezeigt. Folglich gilt $\neg A$ gemäß $\S 2.1$.

Notizen

- äquivalent: $(A \rightarrow (B \land \neg B)) \rightarrow \neg A$
- anstatt $B \land \neg B$ kann jede unerfüllbare Aussage stehen
- indirekte Beweise sind nicht konstruktiv; sie zeigen nur Widerspruch auf
- → lieber direkt als indirekt beweisen

Prädikatenlogik

Prädikatenlogik – Motivation

Theorem $(\S 1.12)$

Sei $n \in \mathbb{Z}$ beliebig. Falls n^2 gerade ist, so ist auch n gerade.

Probleme

- dies ist natürlich eine Aussage,
 aber deren interne Struktur können wir nicht modellieren
- die Abhängigkeit von n können wir nicht modellieren
 QuadratGerade = "n² gerade" und ZahlGerade = "n gerade"
 für eine Konstante n

 \rightarrow Aussagenschablonen

• auch die beliebige Wahl von n können wir nicht modellieren

 \rightarrow Quantoren

Prädikatenlogik - Motivation

Intuition

- eine Aussagenschablone ist ein Satz, der Variablen verwendet, so dass für jede Belegung der Variablen eine Aussage entsteht
- Quantoren verlangen Wahrheit der Aussagen für alle oder für eine der Instanziierungen einer Aussagenschablone

Formalisierung von §1.12

Sei $n \in \mathbb{Z}$ beliebig. Falls n^2 gerade ist, so ist auch n gerade.

$$(\forall n \in \mathbb{Z}). \Big(\mathsf{QuadratGerade}(n) \to \mathsf{ZahlGerade}(n)\Big)$$

Prädikatenlogik – Grundbegriffe

§2.3 Begriffe

- Variablen (üblicherweise kleingeschrieben)
 können als Parameter von Prädikaten auftreten
- Prädikat Aussagenschablone bildet zusammen mit Variablen als Parameter ein Atom

Beispiele

- Atom: ZahlGerade(n)
 - Prädikat: ZahlGerade
 - Variable: n
- Atom: Summe(x, y, z)
 - Prädikat: Summe
 - Variablen: x, y, z

Wahrheit hängt nun von *n* ab ZahlGerade(2) ist wahr

ZahlGerade(3) ist falsch

Summe(x, y, z) wahr

gdw. x + y = z

Prädikatenlogik - Grundbegriffe

Notizen

- die bekannten Junktoren ∨, ∧, ¬, →, ↔
 können weiterhin verwendet werden
 (auch zur Verknüpfung von Aussagenschablonen)
- die Wahrheit einer Aussagenschablone lässt sich erst bei Kenntnis der Belegung der Variablen bestimmen
- → Mechanismus für Umwandlung Aussagenschablone in Aussage

Prädikatenlogik – Quantoren

§2.4 Quantoren

Sei F eine prädikatenlogische Formel.

• $(\forall x \in X).F$ ist eine Formel, die wahr ist, gdw. F für alle $x \in X$ wahr ist

- $\forall A = \text{für Alle}$ Allquantor
- $(\exists x \in X).F$ ist eine Formel, die wahr ist, $\exists E = E$ xistiert ein gdw. $x \in X$ existiert, so dass F für dieses x wahr ist

Existenzquantor

Durch Quantifizierung aller Variablen erhält man eine Aussage.

Beispiel (§2.2)

Es gibt keine rationale Zahl x mit $x^2 = 2$.

Formalisierung: $\neg(\exists x \in \mathbb{Q}).(x^2 = 2)$

Stefan Milius Diskrete Strukturen WS 2015/2016 20 / 46

Prädikatenlogik – Beispiele

weitere Beispiele

Jede ganze Zahl ist größer 0.

falsch

$$(\forall n \in \mathbb{Z})$$
. Größer (n) $(\forall n \in \mathbb{Z})$. $(n > 0)$

• Jede gerade natürliche Zahl n > 2 ist die Summe zweier Primzahlen. unbekannt

$$(\forall n \in \mathbb{N}). \Big(\big((n > 2) \land \mathsf{ZahlGerade}(n) \big) \to \\ (\exists i, j \in \mathbb{N}). \big(\mathsf{Prim}(i) \land \mathsf{Prim}(j) \land (i + j = n) \big) \Big)$$

Prädikatenlogik - komplexe Beispiele

komplexe Beispiele

• CAUCHY-Konvergenz einer Folge $(x_i)_{i \in \mathbb{N}}$

$$(\forall \epsilon \in \mathbb{R}_{>0}).(\exists n \in \mathbb{N}).(\forall i \in \mathbb{N}).(\forall j \in \mathbb{N}).$$
$$((i \geq n) \land (j \geq n)) \rightarrow (|x_j - x_i| < \epsilon)$$

• Grenzwert $\lim_{i\to n} f(i)$ einer Funktion $f: \mathbb{R} \to \mathbb{R}$ ist ℓ gdw.

$$(\forall \epsilon \in \mathbb{R}_{>0}).(\exists \delta \in \mathbb{R}_{>0}).(\forall i \in \mathbb{R}).$$
$$(0 < |i - n| < \delta) \to (|f(i) - \ell| < \epsilon)$$

Augustin-Louis Cauchy (* 1789; † 1857)

- franz. Mathematiker
- Pionier der Analysis
- Verfechter des formalen Beweises

22 / 46

Prädikatenlogik – Rechenregeln

weitere äquiva	lente Formeln	Bezeichnung		
$\neg (\forall x \in X).F$	$(\exists x \in X). \neg F$	Negation Allquantor		
$\neg(\exists x \in X).F$	$(\forall x \in X). \neg F$	Negation Existenzquantor		
→ siehe Übung				

Stefan Milius Diskrete Strukturen WS 2015/2016 23 / 46

Mengenlehre

Mengenlehre

Inhalt

- Aussagen- und Prädikatenlogik
- Naive Mengenlehre
- Relationen und Funktionen
- Mombinatorik und Stochastik
- Algebraische Strukturen
- Bäume und Graphen
- Arithmetik

Mengenlehre – Grundbegriffe

§2.5 Definition (Menge – nach [CANTOR, 1895])

Eine Menge ist eine Zusammenfassung von unterscheidbaren Objekten zu einem Ganzen. Die zusammengefassten Objekte heißen Elemente von M.

Original [CANTOR, 1895]

Unter einer Menge verstehen wir jede Zusammenfassung M von bestimmten wohlunterschiedenen Objekten m unsrer Anschauung oder unseres Denkens (welche Elemente von M genannt werden) zu einem Ganzen.

Notiz

verbale Definition → naive Mengenlehre

Mengenlehre – Grundbegriffe

Georg Cantor (* 1845; † 1918)

- deutscher Mathematiker
- Begründer der modernen Mengenlehre
- Kardinal- und Ordinalzahlen

§ 1.

Der Mächtigkeitsbegriff oder die Cardinalzahl.

Unter einer "Menge" verstehen wir jede Zusammenfassung M von bestimmten wohlunterschiedenen Objecten m unsrer Anschauung oder unseres Denkens (welche die "Elemente" von M genannt werden) zu einem Ganzen.

Mengenlehre – Grundbegriffe

§2.6 Definition (Menge)

• Menge als Zusammenfassung von bestimmten Objekten

(ihren Elementen)

- für jede Menge M und jedes Objekt m ist m entweder
 - ein Element von M

 $m \in M$

oder nicht

 $\neg (m \in M)$ oder besser: $m \notin M$

• "entweder ... oder ..." entspricht exklusivem Oder

$$(A \lor B) \land \neg (A \land B)$$

jede Menge ist unterscheidbar von jedem ihrer Elemente

 ${3} \neq {3}$

Mengenlehre – Mengen

Beispiele

• Menge aller Lastkraftwagen

Definition mit Eigenschaft

 Menge aller Lastkraftwagen, die (jetzt) frischen Fisch transportieren

Einschränkung einer anderen Menge

• Menge mit den Elementen 1, 2 und 3

(vollständige) Aufzählung

Menge mit den Elementen 0, 1, 2, usw.

(unvollständige) Aufzählung

Stefan Milius Diskrete Strukturen WS 2015/2016 29 / 46

Mengenlehre – Mengen

§2.7 Notation zur Definition von Mengen

- Leere Menge: ∅ hat keine Elemente
- Basismengen: sei Lkw die Menge aller Lastkraftwagen

textuelle Definition

• Einschränkung: $\{L \in Lkw \mid hatFisch(L)\}$ enthält genau die Elemente L von Lkw, für die hatFisch(L) wahr ist

$$M = \{x \in X \mid F\}$$
 mit Aussagenschablone F

- vollständige Aufzählung: {1, 2, 3}
 - funktioniert nur bei endlichen Mengen
- unvollständige Aufzählung: $\{0, 1, 2, \ldots\}$

Muster muss klar erkennbar sein

Stefan Milius Diskrete Strukturen WS 2015/2016 30 / 46

Mengenlehre – Mengen

Notizen

Elemente unterscheidbar

(Mehrfachnennungen unnütz)

$$\{1, 2, 3, 1\} = \{1, 2, 3\}$$
 und $\{0,5\} = \{\frac{1}{2}, \frac{2}{4}, 2 \cdot \frac{6}{24}\}$

nur Gruppierung; keine Anordnung

(Reihenfolge irrelevant)

$${3, 2, 1} = {1, 2, 3}$$

- dies gilt allgemein für Mengen, nicht nur für Aufzählungen
- Klassiker: bei $x, y, z \in \{1, 2, 3\}$

formal:
$$(x \in \{1, 2, 3\}) \land (y \in \{1, 2, 3\}) \land (z \in \{1, 2, 3\})$$

kann x = y = z gelten

Mengenlehre - Aquivalenz

§2.8 Definition (Gleichheit)

Mengen M und N sind gleich (Notation: M = N), wenn sie (exakt) die gleichen Elemente haben

Formal: M = N gdw. $(\forall m \in M).(m \in N) \land (\forall n \in N).(n \in M)$

Beispiel

- $M_2 = \{n \in \mathbb{N} \mid n \text{ ist durch 2 teilbar}\}$
- $G = \{n \in \mathbb{N} \mid \mathsf{ZahlGerade}(n)\}$
- es gilt $M_2 = G$

nat. 7ahlen mit Teiler 2 gerade nat. Zahlen

Stefan Milius Diskrete Strukturen WS 2015/2016 32 / 46

Mengenlehre - Teilmenge

§2.9 Definition (Teilmenge)

Menge M ist eine Teilmenge von der Menge N (Notation: $M \subseteq N$), falls jedes Element von M auch Element von N ist

Formal: $M \subseteq N$ gdw. $(\forall m \in M).(m \in N)$

Beispiel

- $M_4 = \{ n \in \mathbb{N} \mid n \text{ ist durch 4 teilbar} \}$
- $G = \{n \in \mathbb{N} \mid \mathsf{ZahlGerade}(n)\}$
- es gilt $M_4 \subset G$

nat. Zahlen mit Teiler 4 gerade nat. Zahlen

Mengenlehre – Teilmenge

Notizen

- Alternativen zu $M \subseteq N$ (M ist Teilmenge von N):
 - $N \supseteq M$ (N ist Obermenge von M)
 - ullet manchmal auch: $M\subset N$ (werden wir nicht verwenden)
- Was bedeutet: $M \not\subseteq N$?

$$M \nsubseteq N$$
gdw. $\neg (M \subseteq N)$
gdw. $\neg (\forall m \in M).(m \in N)$
gdw. $(\exists m \in M).\neg (m \in N)$
gdw. $(\exists m \in M).(m \notin N)$

in Worten: $M \nsubseteq N$ gdw. es ein Element m von M gibt, welches kein Element von N ist

Mengenlehre – Zwischenfrage

Fragen

Welche Aussagen gelten für $M = \{\emptyset, \{\emptyset\}\}$?

•
$$\{\emptyset\} \in M$$

•
$$\{\{\emptyset\}\}\in M$$

•
$$\{\emptyset\} \subseteq M$$

•
$$\{\{\emptyset\}\}\subseteq M$$

Mengenlehre – Teilmenge

§2.10 Theorem

Für alle Mengen M und N gilt: M = N gdw. $M \subseteq N$ und $N \subseteq M$.

Beweis.

Direkt durch Einsetzen der Definitionen:

$$M = N$$

gdw.
$$(\forall m \in M).(m \in N) \land (\forall n \in N).(n \in M)$$

gdw.
$$(M \subseteq N) \land (\forall n \in N).(n \in M)$$

gdw.
$$(M \subseteq N) \land (N \subseteq M)$$
 §2.9

36 / 46

§2.8

§2.9

Stefan Milius Diskrete Strukturen WS 2015/2016

Mengenlehre – Standardmengen

Beispiele

•
$$\emptyset = \{\}$$

•
$$\mathbb{N} = \{0, 1, 2, \ldots\}$$

•
$$\mathbb{Z} = \{\ldots, -2, -1, 0, 1, 2, \ldots\}$$

•
$$\mathbb{Q} = \{ \frac{m}{n} \mid m \in \mathbb{Z}, n \in \mathbb{Z}, n \neq 0 \}$$

ullet $\mathbb{R} = \mathsf{Menge}$ aller reellen Zahlen

leere Menge (hat keine Elemente)

natürlichen Zahlen (manchmal auch ohne 0)

manchmal auch ohne U)
ganzen Zahlen

rationalen Zahlen

(',' heißt "und" in Eigenschaften)

reellen Zahlen

Operationen auf Mengen

Mengenlehre – Grundoperationen

§2.11 Definition (Vereinigung, Schnitt, Differenz)

Seien M und N Mengen.

• Vereinigung $M \cup N$ von M und N besteht aus den Elementen, die Element von M oder Element von N sind

$$M \cup N = \{x \mid x \in M \text{ oder } x \in N\}$$

• Schnitt $M \cap N$ von M und N besteht aus den Elementen, die Element von M und Element von N sind

$$M \cap N = \{x \mid x \in M, x \in N\} = \{x \in M \mid x \in N\}$$

 Differenz M \ N von M ohne N besteht aus den Elementen, die Element von M aber nicht Element von N sind

$$M \setminus N = \{x \mid x \in M, x \notin N\} = \{x \in M \mid x \notin N\}$$

39 / 46

Mengenlehre – Grundoperationen

Grafische Darstellung

- VENN-Diagramme
- Vereinigung $M \cup N$, Schnitt $M \cap N$, Differenz $M \setminus N$

JOHN VENN (* 1834; † 1923)

- engl. Mathematiker
- Lehrer der Logik in Cambridge

Mengenlehre – Grundoperationen

Stefan Milius Diskrete Strukturen WS 2015/2016

41 / 46

Mengenlehre - Komplement

Grundmenge U sei gegeben

(häufig implizit)

§2.12 Definition (Komplement)

Das Komplement M^c von $M \subseteq U$ beinhaltet genau die Elemente von U, die nicht Elemente von M sind.

$$M^{c} = \{u \in U \mid u \notin M\} = U \setminus M$$

Stefan Milius Diskrete Strukturen WS 2015/2016 42 / 46

Mengenlehre – Einfache Eigenschaften

§2.13 Theorem

- \bullet $x \in \{y \mid F(y)\}$ gdw. F(x) wahr
- $x \notin M \text{ gdw. } x \in M^c$

Grundmenge U und $x \in U$

Beweis.

- Beidseitige Implikationen
 - (\leftarrow) Falls F(x) gilt, dann auch $x \in \{y \mid F(y)\}$.
 - (→) Falls F(x) nicht gilt, dann gilt auch $x \notin \{y \mid F(y)\}$. Per Kontraposition gilt daher F(x), falls $x \in \{y \mid F(y)\}$.
- Beiseitige Implikationen
 - (←) Sei $x \in M^c = U \setminus M = \{y \mid y \in U, y \notin M\}$. Nach ① gilt daher $x \in U$ und $x \notin M$.
 - (→) Sei $x \in U$ und $x \notin M$. Dann gilt nach ① auch $x \in \{y \mid y \in U, y \notin M\} = U \setminus M = M^c$.

Mengenlehre – Rechenregeln

gleic	he Mengen	Bezeichnung
$A \cap B$	$B \cap A$	Kommutativität von ∩
$A \cup B$	$B \cup A$	Kommutativität von \cup
$(A \cap B) \cap C$	$A\cap (B\cap C)$	Assoziativität von ∩
$(A \cup B) \cup C$	$A \cup (B \cup C)$	Assoziativität von \cup
$A \cap (B \cup C)$	$(A \cap B) \cup (A \cap C)$	Distributivität von ∩
$A \cup (B \cap C)$	$(A \cup B) \cap (A \cup C)$	Distributivität von \cup
$A \cap A$	Α	$Idempotenz\ von\ \cap$
$A \cup A$	Α	$Idempotenz\ von\ \cup$
$(A^{c})^{c}$	Α	Involution ·c
$(A\cap B)^{c}$	$A^{c} \cup B^{c}$	${\tt DEMORGAN} ext{-}{\sf Gesetz}$ für \cap
$(A \cup B)^{c}$	$A^{c}\cap B^{c}$	${\tt DEMORGAN} ext{-}{\sf Gesetz}$ für \cup

Mengenlehre – Rechenregeln

§2.13 Theorem

Für alle Mengen M, N, P gilt

$$M \cup (N \cap P) = (M \cup N) \cap (M \cup P)$$

Beweis.

Direkt durch Anwendung der Definitionen:

$$M \cup (N \cap P) = \{x \mid (x \in M) \lor (x \in N \cap P)\}$$

$$= \{x \mid (x \in M) \lor (x \in \{y \mid (y \in N) \land (y \in P)\})\}$$

$$= \{x \mid \underbrace{(x \in M)}_{A} \lor \underbrace{(x \in N)}_{B} \land \underbrace{(x \in P)}_{C})\}$$

$$= \{x \mid \underbrace{((x \in M)}_{A} \lor \underbrace{(x \in N)}_{B}) \land \underbrace{((x \in M)}_{A} \lor \underbrace{(x \in P)}_{C})\}$$

$$= \{x \mid (x \in M \cup N) \land (x \in M \cup P)\}$$

$$= (M \cup N) \cap (M \cup P)$$

Zusammenfassung

- Grundwissen Prädikatenlogik
- Grundbegriffe Mengenlehre
- Definition von Mengen
- Beziehungen zwischen Mengen (Gleichheit, Teilmengen)
- Operationen und Rechenregeln für Mengen

Zweite Übungsserie erscheint demnächst im OLAT.