Math 328B: Winter 2017

Homework 1

Solutions written by Alex Menendez (1438704)

EXERCISE 1. Prove, using the definition of the limit, that $\lim_{x\to 4} \sqrt{x+5} = 3$.

Proof. Take $\delta = 3\epsilon$ and consider $|x - 4| < \delta \Rightarrow |x - 4| < 3\epsilon$. From this, we develop that $\frac{|x - 4|}{3} < \epsilon \Rightarrow \left|\frac{x - 4}{3}\right| < \epsilon$. Now observe that, since $\sqrt{x + 5} + 3 > 3$, one has that $\frac{x - 4}{3} > \frac{x - 4}{\sqrt{x + 5} + 3}$ and so $\left|\frac{x - 4}{3 + \sqrt{x + 5}}\right| < \epsilon \Rightarrow \left|\frac{(x + 5) - 9}{3 + \sqrt{x + 5}}\right| < \epsilon$ $\Rightarrow \left|\frac{(\sqrt{x + 5} - 3)(\sqrt{x + 5} + 3)}{3 + \sqrt{x + 5}}\right| < \epsilon \Rightarrow |\sqrt{x + 5} - 3| < \epsilon$, as required.

Exercise 2. Let f be defined as

$$f(x) = \begin{cases} 1/n & \text{if } x = 1/2^n \\ 0 & \text{otherwise} \end{cases}$$

If f continuous at 0?

Solution. f is continuous if $\lim_{x\to 0} f(x) = f(0)$. Since $0 \notin \left\{ \frac{1}{2^n} \mid n \in \mathbb{N} \right\}$, we see that f(0) = 0, as prescribed. Now, we observe that $\lim_{x\to 0} f(x) \equiv \lim_{n\to \infty} f(x)$ because $\lim_{n\to \infty} x = \lim_{n\to \infty} \frac{1}{2^n} = 0$, so as $n\to \infty$ one sees that $x\to 0$. Thus, we see that $\lim_{n\to \infty} f(x) = \lim_{n\to \infty} \frac{1}{n} = 0 = \lim_{x\to 0} f(x)$. Thus, $\lim_{x\to 0} f(x) = f(0) = 0$ and so f is continuous about 0.

EXERCISE 3. Let $f(x) = \frac{2x+3}{3x-1}$ for $x \in (-\infty, 1/3)$. For any $\epsilon > 0$, find a δ such that if $|x| < \delta$ and x < 1/3, then $|f(x) + 3| < \epsilon$.

Solution. Let us first do some scratch work:

Observe

$$\left|\frac{2x+3}{3x-1}+3\right|<\epsilon\Rightarrow\left|\frac{11x}{3x-1}\right|<\epsilon\Rightarrow\frac{|11x|}{|3x-1|}<\epsilon$$

Now, since x < 1/3, we have two cases to consider – if 0 < x < 1/3, then -1 < 3x - 1 < 0, and if $-\infty < x < 0$, then 3x - 1 < 0. We needn't consider 3x - 1 = 0, because that implies that x = 1/3, whereas in the context of the problem, this is not allowed. In either case, though, we recognize that 3x - 1 < 0, and so |3x - 1| = -(3x - 1) = 1 - 3x. Thus, we examine

$$\frac{11|x|}{1-3x} < \epsilon$$

1

Since $11|x| < \frac{11|x|}{1-3x}$, we see that $11|x| < \epsilon$, and thus $|x| < \frac{\epsilon}{11}$.

Thus, we find $\delta = \epsilon/11$.

EXERCISE 4. Let f and g be two functions defined in a neighborhood of x_0 such that $\lim_{x \to x_0} f(x) = L_f$ and $\lim_{x \to x_0} g(x) = L_g$. Prove that $\lim_{x \to x_0} f(x) + g(x) = L_f + L_g$.

Proof. We know the following:

- For any $\epsilon_f > 0$, there is a δ_f so that if $|x x_0| < \delta_f$ then $|f(x) L_f| < \epsilon_f$.
- For any $\epsilon_q > 0$, there is a δ_q so that if $|x x_0| < \delta_q$ then $|g(x) L_q| < \epsilon_q$.

Let $\epsilon > 0$ be given and take $\epsilon_f = \epsilon_g = \epsilon/2$. Also take $\delta = \min\{\delta_f, \delta_g\}$ so that, if $|x - x_0| < \delta$, then one has that $|x - x_0| < \delta_f$ for which it follows that $|f(x) - L_f| < \epsilon_f$. By the same token, one has that $|x - x_0| < \delta_g$ and thus it follows that $|g(x) - L_g| < \epsilon_g$. By the triangle inequality, one finds that

$$\underbrace{|f(x) - L_f|}_{<\epsilon/2} + \underbrace{|g(x) - L_g|}_{<\epsilon/2} \ge |(f(x) - L_f) + (g(x) - L_g)|$$

$$\Longrightarrow |(f(x) - L_f) + (g(x) - L_g)| < \epsilon$$

$$\Longrightarrow |(f(x) + g(x)) - (L_f + L_g)| < \epsilon$$

as required.

EXERCISE 5. Prove that, if $\lim_{x\to x_0} f(x) = \infty$ and $\lim_{x\to x_0} g(x) = L$, then

- 1. $\lim_{x \to x_0} f(x) + g(x) = \infty$
- $2. \lim_{x \to x_0} f(x)g(x) = \infty$
- 3. $\lim_{x \to x_0} \frac{g(x)}{f(x)} = 0$
- 1. Proof. We know:
 - For every $A_f > 0$, there is a δ_f so that if $|x x_0| < \delta_f$ then $f(x) > A_f$
 - For every $\epsilon_g > 0$ there is a δ_g so that if $|x x_0| < \delta_g$ then $|g(x) L| < \epsilon_g$

From this, we shall develop:

• For every A > 0, there is a δ so that if $|x - x_0| < \delta$ then f(x) + g(x) > A

Let $\delta = \min\{\delta_f, \delta_g\}$. Given that $|x - x_0| < \delta$, it follows that $|x - x_0| < \delta_f$ and $|x - x_0| < \delta_g$. From this, it follows that $f(x) > A_f$, given some $A_f > 0$, and $|g(x) - L| < \epsilon_g$, given some $\epsilon_g > 0$. Now, take $A = A_f + (L - \epsilon_g) > 0$. Since $|g(x) - L| < \epsilon_g$, we see that $L - \epsilon_g < g(x) < L + \epsilon_g$. In particular, we have that $g(x) > L + \epsilon_g$ and $f(x) > A_f$. From this, it follows that $f(x) + g(x) > A_f + (L - \epsilon_g)$, or $f(x) + g(x) > A_f$ as required.

- 2. Proof. We know:
 - For every $A_f > 0$, there is a δ_f so that if $|x x_0| < \delta_f$ then $f(x) > A_f$
 - For every $\epsilon_g > 0$ there is a δ_g so that if $|x x_0| < \delta_g$ then $|g(x) L| < \epsilon_g$

From this, we shall develop:

• For every A > 0, there is a δ so that if $|x - x_0| < \delta$ then f(x)g(x) > A

Take $\delta = \min\{\delta_f, \delta_g\}$. Since $|x - x_0| < \delta$, it follows that $|x - x_0| < \delta_f \Rightarrow f(x) > A_f$ and $|x - x_0| < \delta_g \Rightarrow |g(x) - L| < \epsilon_g$. Now, let $A = A_f(L - \epsilon_g) > 0$. In particular, $g(x) > L - \epsilon_g$ and so $f(x)g(x) > A_f(L - \epsilon_g) \Rightarrow f(x)g(x) > A$, as required.

- 3. Proof. We know:
 - For every $A_f > 0$, there is a δ_f so that if $|x x_0| < \delta_f$ then $f(x) > A_f$
 - For every $\epsilon_g > 0$ there is a δ_g so that if $|x x_0| < \delta_g$ then $|g(x) L| < \epsilon_g$

From this, we shall develop:

• For every $\epsilon > 0$, there is a δ so that if $|x - x_0| < \delta$ then $\left| \frac{g(x)}{f(x)} \right| < \epsilon$.

Let $\epsilon = \frac{\epsilon_g - L}{A_f}$ and $\delta = \min\{\delta_f, \delta_g\}$. Also assume that $|f(x)| \leq M$ for all x. Thus, if $|x - x_0| < \delta$ then simultaneously $|x - x_0| < \delta_f$ and $|x - x_0| < \delta_g$ for which it follows that $f(x) > A_f$ and $|g(x) - L| < \epsilon_g$, which gives, in particular, that $g(x) > L - \epsilon_g$. Now, note that, given our choice of ϵ , we see that

$$\epsilon = \frac{\epsilon_g - L}{A_f}$$

$$\Longrightarrow L - \epsilon_g = -\epsilon A_f$$

Thus, $g(x) > L - \epsilon_g \Rightarrow g(x) > -\epsilon A_f \Rightarrow g(x) > -\epsilon M \Rightarrow g(x) > -\epsilon |f(x)|$. From this we glean that $|g(x)| < -\epsilon |f(x)|$, which gives $\left| \frac{g(x)}{f(x)} \right| < \epsilon$, as required.

3

Page 3 of 3