2 ÉVOLUTION 4

2 Évolution

2.1 Variation absolue, variation relative

On considère une quantité qui varie entre V_d sa valeur de départ et V_f sa valeur finale.

Définition 4.

- La variation absolue de la quantité est donnée par $V_f V_d$.
- La variation relative de la quantité, aussi appelée taux d'évolution, est donnée par $\frac{V_f V_d}{V_d}$.

Remarque.

- La variation absolue possède la même unité que la quantité étudiée, tandis que la variation relative ne possède pas d'unité.
- Quand la variation absolue ou relative est positive, c'est que la quantité a augmenté. Quand la variation absolue ou relative est négative, c'est que la quantité a diminué.
- Le taux d'évolution peut être donné en pourcentage : il suffit de multiplier le taux d'évolution par 100.

Exemple. Je possédais $V_d = 50$ ce mois-ci, et je possèderai $V_f = 75$ le mois prochain. Donner la variation absolue et le taux d'évolution concernant ce changement de budget.

Proposition 2. Soit $t = \frac{V_f - V_d}{V_d}$ le taux d'évolution. Alors $V_f = (1+t)V_d$. Autrement dit, il faut multiplier V_d par (1+t) pour faire évoluer cette quantité vers V_f .

Définition 5. Le nombre 1+t, où t est le taux d'évolution, est appelé **Coefficient Multiplicateur**.

Exemple. La température de la classe est initialement $V_d = 20$ °C. Elle augmente de 25%. Calculer le coefficient multiplicateur associé et donner la température finale.