

Cambridge International Examinations

Cambridge International Advanced Subsidiary Level

		CANDIDATE NUMBER	
<u> </u>			9709/23
Paper 2 Pure Mathematics 2 (P2)			May/June 2018
			1 hour 15 minutes
wer on the Qu	estion Paper.		
	•		
	lathematics 2		NUMBER Number Number Nathematics 2 (P2)

READ THESE INSTRUCTIONS FIRST

Write your Centre number, candidate number and name in the spaces at the top of this page.

Write in dark blue or black pen.

You may use an HB pencil for any diagrams or graphs.

Do not use staples, paper clips, glue or correction fluid.

DO NOT WRITE IN ANY BARCODES.

Answer all the questions in the space provided. If additional space is required, you should use the lined page at the end of this booklet. The question number(s) must be clearly shown.

Give non-exact numerical answers correct to 3 significant figures, or 1 decimal place in the case of angles in degrees, unless a different level of accuracy is specified in the question.

The use of an electronic calculator is expected, where appropriate.

You are reminded of the need for clear presentation in your answers.

At the end of the examination, fasten all your work securely together.

The number of marks is given in brackets [] at the end of each question or part question.

The total number of marks for this paper is 50.

This document consists of 15 printed pages and 1 blank page.

i) Determine whether the stationary point is a maximum or minimum point.	, 1)	Find the <i>x</i> -coordinate of the stationary point.
i) Determine whether the stationary point is a maximum or minimum point.		
Determine whether the stationary point is a maximum or minimum point.		
Determine whether the stationary point is a maximum or minimum point.		
Determine whether the stationary point is a maximum or minimum point.		
Determine whether the stationary point is a maximum or minimum point.		
Determine whether the stationary point is a maximum or minimum point.		
Determine whether the stationary point is a maximum or minimum point.		
Determine whether the stationary point is a maximum or minimum point.		
Determine whether the stationary point is a maximum or minimum point.		
Determine whether the stationary point is a maximum or minimum point.		
Determine whether the stationary point is a maximum or minimum point.		
Determine whether the stationary point is a maximum or minimum point.		
Determine whether the stationary point is a maximum or minimum point.		
Determine whether the stationary point is a maximum or minimum point.		
) Determine whether the stationary point is a maximum or minimum point.		
)]	Determine whether the stationary point is a maximum or minimum point.

_			_		
3	(i)	Find	the	quotient	when

$x^4 - 2x^3 + 8x^2 - 12x + 13$	
is divided by $x^2 + 6$ and show that the remainder is 1.	[3]

	5
(ii)	Show that the equation
. ,	$x^4 - 2x^3 + 8x^2 - 12x + 12 = 0$
	has no real roots. [3

	••••••
	••••••

$2\ln(2^{u+1}) - \ln(2^u + 3) = 4\ln 2,$	
giving the value of u correct to 4 significant figures.	[2]
	••••••
	••••••
	••••••
	••••••
	•••••

5	A	curve	has	eq	uation

v^3 s	in 2x	+4y	= 8.
---------	-------	-----	------

Find the equation of the tangent to the curve at the point where it crosses the y-axis.			
	· • • •		
	· • • •		
	•••		
	· • • •		
	· • • •		
	· • • •		
	•••		
	· • • •		
	· • • •		
	· • • •		
	· • • •		
	•••		
	· • • •		
	· • • •		
	· • • •		
	, 		

Snow t	hat $a = 2 \ln $	$\left(\frac{16}{4 + e^{\frac{1}{2}a}}\right)$						
•••••			•••••				••••••	•••••
•••••	•••••	•	••••••	•	•	••••••	••••••	•••••
•••••			•••••	•••••				••••••
			••••••					•••••
•••••	••••••	••••••	••••••	•••••	••••••	•••••	••••••	•••••
			•••••	•••••	•••••			•••••
				•••••				
•••••	••••••••••	••••••	•••••	•••••	••••••	••••••	•••••••	•••••
•••••			•••••	•••••				•••••
••••••	•••••	••••••••	••••••	••••••	••••••	••••••	••••••	••••••
•••••	••••••		•••••			••••••	••••••	•••••

			••••••	••••••	•••••
				•••••	
				••••••	••••••
				•••••	
				•••••	•••••
Use an iterative	formula based	on the equatio	on in part (i) to fi	nd the value of	f <i>a</i> correc
Use an iterative 3 significant fign	formula based ares. Give the re	on the equation	on in part (i) to fi ation to 5 significa	nd the value of nt figures.	f a correc
Use an iterative 3 significant figu	formula based ares. Give the re	on the equation of each iterated	on in part (i) to fi ation to 5 significa	nd the value of nt figures.	f a correc
Use an iterative 3 significant fign	formula basedures. Give the re	on the equation of each iteration	on in part (i) to fi ation to 5 significa	nd the value of nt figures.	f a correc
Use an iterative 3 significant figu	formula basedures. Give the re	on the equation of each iteration	on in part (i) to fi ation to 5 significa	nd the value of nt figures.	f a correc
Use an iterative 3 significant figu	formula based ares. Give the re	on the equation of each iteration	on in part (i) to fi ation to 5 significa	nd the value of nt figures.	f a correc
Use an iterative 3 significant figu	formula based ures. Give the re	on the equation of each iteration	on in part (i) to fi ation to 5 significa	nd the value of	f a correc
Use an iterative 3 significant figu	formula based ures. Give the re	on the equation esult of each iteration	on in part (i) to fi ation to 5 significa	nd the value of	f a correc
Use an iterative 3 significant figu	formula based ures. Give the re	on the equation esult of each iteration	on in part (i) to fi ation to 5 significa	nd the value of nt figures.	f a correc
Use an iterative 3 significant figu	formula based ures. Give the re	on the equation esult of each iteration	on in part (i) to fi ation to 5 significa	nd the value of nt figures.	f a correc
Use an iterative 3 significant figu	formula based ures. Give the re	on the equation esult of each iteration	on in part (i) to fi ation to 5 significa	nd the value of nt figures.	f a correc
Use an iterative 3 significant figu	formula based ares. Give the re	on the equation esult of each iteration	on in part (i) to fi ation to 5 significa	nd the value of nt figures.	f a correc
Use an iterative 3 significant figu	formula based ares. Give the re	on the equation esult of each iteration	on in part (i) to fi ation to 5 significa	nd the value of nt figures.	f a correct

		•••••
		•••••
		•••••
		••••••
		•••••
		•••••
		••••••
	2- 4	
(ii)	Solve the equation $2\csc^2 2x(1-\cos 2x) = \tan x + 21$ for $0 < x < \pi$, giving your	inswers co
	to 3 significant figures.	
		•••••
		•••••
		•••••
		•••••
		•••••
		•••••

(iii)	Find $\int [2\csc^2(4y+2) - 2\csc^2(4y+2)\cos(4y+2)] dy$. [3]
(iii)	Find $\int [2\csc^2(4y+2) - 2\csc^2(4y+2)\cos(4y+2)] dy$. [3]
(iii)	Find $\int [2\csc^2(4y+2) - 2\csc^2(4y+2)\cos(4y+2)] dy$. [3]
(iii)	Find $\int [2\csc^2(4y+2) - 2\csc^2(4y+2)\cos(4y+2)] dy$. [3]
(iii)	Find $\int [2\csc^2(4y+2) - 2\csc^2(4y+2)\cos(4y+2)] dy$. [3]
(iii)	Find $\int [2\csc^2(4y+2) - 2\csc^2(4y+2)\cos(4y+2)] dy$. [3]
(iii)	Find $\int [2\csc^2(4y+2) - 2\csc^2(4y+2)\cos(4y+2)] dy$. [3]
(iii)	Find $\int [2\csc^2(4y+2) - 2\csc^2(4y+2)\cos(4y+2)] dy$. [3]
(iii)	Find $\int [2\csc^2(4y+2) - 2\csc^2(4y+2)\cos(4y+2)] dy$. [3]
(iii)	
(iii)	

 	 	•••••
 	 	•••••
 	 	•••••
 	 	••••••

Additional Page

If you use the following lined page to complete the answer(s) to any question(s), the question number(s) must be clearly shown.

BLANK PAGE

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced online in the Cambridge International Examinations Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download at www.cie.org.uk after the live examination series.

Cambridge International Examinations is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of University of Cambridge Local Examinations Syndicate (UCLES), which is itself a department of the University of Cambridge.