Technische Universität Dresden

Fakultät Elektrotechnik und Informationstechnik Institut für Regelungs- und Steuerungstheorie

Motorradzeugs

vorgelegt von: Marius Müller

geboren am: 29. September 1989 in Dresden

zum Erlangen des akademischen Grades

Diplomingenieur

(Dipl.-Ing.)

Betreuer: Dipl.-Ing. Markus

noch ein Betreuer

Verantwortlicher Hochschullehrer: Prof. Dr.-Ing. habil. Dipl.-Math. K. Röbenack

Tag der Einreichung: 10.08.2022

Selbstständigkeitserklärung

Hiermit erkläre ich, dass ich die von mir am heutigen Tage dem Prüfungsausschuss der Fakultät Elektrotechnik und Informationstechnik eingereichte zum Thema

Motorradzeugs

selbstständig und ohne Benutzung anderer als der angegebenen Hilfsmittel angefertigt habe. Alle Stellen, die wörtlich oder sinngemäß aus veröffentlichten oder nicht veröffentlichten Schriften entnommen sind, wurden als solche kenntlich gemacht.

Dresden, 2. Februar 2222

Marius Müller

Kurzfassung

An dieser Stelle fügen Sie bitte eine deutsche Kurzfassung ein.

Abstract

Please insert the English abstract here.

Inhaltsverzeichnis

Abkürzungsverzeichnis	III
Verzeichnis der verwendeten Formelzeichen	V
Verzeichnis der verwendeten Indizes	/II
Symbolverzeichnis	ΙX
Abbildungsverzeichnis	Xl
Tabellenverzeichnis	III
Stand der Technik	
1.1 Starrkörperbewegung	1
1.1.1 Koordinatensysteme	2
2 Literaturverzeichnis]
Δnhanσ	\ _ 1

Abkürzungsverzeichnis

FDM Finite Differenzen Methode

CFL Courant-Friedrichs-Levy

FEM Finite Elemente Methode

GaAs Galliumarsenid

gDgl gewöhniche Differentialgleichung

 $\mathbf{p}\mathbf{D}\mathbf{g}\mathbf{l}$ partielle Differentialgleichung

RWP Randwertproblem

RB Randbedingung

VB Vertical-Bridgman-Verfahren

VGF Vertical Gradient Freeze

Verzeichnis der verwendeten

Formelzeichen

lpha $m m^2/s$ Temperaturleitfähigkeit ho $m kg/m^3$ Dichte m c $m \frac{J}{kg\,^{\circ}C}$ spezifische Wärmekapazität m k $m \frac{W}{m\,^{\circ}C}$ thermische Leitfähigkeit m L $m \frac{J}{kg}$ latente Wärme

Verzeichnis der verwendeten Indizes

1	liquid/flüssig
\mathbf{S}	solid/fest
i	interface/Grenzschicht
m	melting point/Schmelzpunkt
\mathbf{U}	Unterseite
O	Oberseite

Symbolverzeichnis

Notation Bedeutung

 $\Gamma(t)$ Grenzflächen-/Interfacefunktion

Symbol Bedeutung

t Zeit

z vektorielle Ortskoordinate

 $\left\| \cdot \right\|$ euklidische Norm

Abbildungsverzeichnis

Tabellenverzeichnis

1.1 Starrkörperbewegung

Die Bewegung eines Punktes p im euklidischen Raum wird durch die Angabe seiner Position in Bezug zu einem inertialen Koordinatensystem I zu jedem Zeitpunkt t eindeutig beschrieben. Das inertiale Koordinatensystem $I \in \mathcal{R}^3$ habe die Basisvektoren e_1, e_2, e_3 . Für die Basisvektoren gelte:

$$\langle \boldsymbol{e_i}, \boldsymbol{e_j} \rangle = \begin{cases} 1, & \text{für } i = j \\ 0, & \text{für } i \neq j \end{cases}$$

und weiterhin

$$e_1 \times e_2 = e_3$$

Die Basisvektoren von I beschreiben damit ein orthonormales Rechtssystem (siehe beispielsweise [1, S. 80]).

Die Position des Punktes p sei durch das Tripel $(x, y, z) \in \mathcal{R}^3$ gegeben. Die Trajektorie von p kann dann durch die parametrisierte Bahn $p(t) = (x(t), y(t), z(t)) \in \mathcal{R}^3$ beschrieben werden. Da nicht die Bewegung von einzelnen Punkten, sondern die Bewegung eines Starrkörpers beschrieben werden soll, wird der Begriff Starrkörper definiert.

Definition 1 (Starrkörper). Ein Starrkörper ist dadurch gekennzeichnet, dass die Distanz zweier beliebiger Punkte p,q unabhängig von der Bewegung des Körpers, immer konstant bleibt. Die anfängliche Position des Punktes p sei beschrieben durch p(0). Die Position nach einer beliebigen Zeit t (und einer beliebigen Bewegung) sei beschrieben durch p(t). Die Nomenklatur gilt für den Punkt q analog. Für einen Starrkörper wird dann gefordert:

$$\|p(t) - q(t)\| = \|p(0) - q(0)\| = konstant$$

1.1.1 Koordinatensysteme

Literaturverzeichnis

[1] L. Papula, Mathematik für Ingenieure und Naturwissenschaftler Band
1. Springer Science + Business Media, 2014. DOI: 10.1007/978-3-65805620-9. Adresse: http://dx.doi.org/10.1007/978-3-658-05620-9.

Anhang

A Anhang mit Sachen	. A-
---------------------	------

Anhang mit Sachen

