Programowanie i metody numeryczne

zestaw zadań 9

Całkowanie, algebra liniowa

Opracowanie Jędrzej Wardyn

29 kwietnia 2024

Polecam: kody C++, jak ktoś potrzebuje sobie C++ powtórzyć: Rozwiązania na githubie Kurs na youtubie

1 Całkowanie I: metodami Newtona-Cotesa

Mając całkę oznaczoną:

$$I = \int_a^b f(x) \mathrm{d}x$$

dla odwzorowania y = f(x). Napisz szablon do różnych metod całkowania za pomocą templatki:

template <typename T>

T integrate(T (*f)(T), T x, T h, string method) {

gdzie T oznacza nazwę zastosowanego typu (na przykład double, tylko nie macie go wpisywać w templatkę, a jedynie w funkcji main używacie konkretnego typu na wartości npa, bi wtedy kod przyjmie te wartości jako T.) Wykorzystaj wzory Newtona-Cotesa:

- 1. Rectangular
- 2. Trapezoid
- 3. Simpson

Porównaj dokładność metod dla odwzorowania $\sin(x)$ w przedziale $[0,\pi]$

2 Algebra Liniowa i powtórka z klas C++

: Autor: Z.B.

Napisz szablon klasy

template <typename T>

class Vector

reprezentującej wektor n-wymiarowy, którego skladowe są liczbami reprezentowanymi przez typ T. W klasie tej zaimplementuj:

- konstruktor jednoargumentowy, ustalający wartość n równą liczbie przekazanej mu jako argument
- metodę Length zwracającą długość wektora (liczbę reprezentowaną przez typ T),
- operator== porównywania wektorów,
- jednoargumentowy operator zmiany znaku-,
- operator +dodawania wektorów,
- operator * mnozenia wektora przez liczbę (reprezentowaną przez typ T),
- operator* iloczynu skalarnego wektorów (wynik powinien być typu T)
- operator«, wypisujący do strumienia typu ostream wektor reprezentowany przez obiekt, oraz operator
- >> wczytujący odpowiedni wektor ze strumienia typu istream; przyjmij dowolny, wygodny dla Ciebie sposób tekstowego reprezentowania wektora,

Napisz szablon klasy

template <typename T> class Matrix

reprezentującej macierz $n \times n$, której składowe są liczbami reprezentowanymi przez typ T. W klasie tej zaimplementuj:

- konstruktor jednoargumentowy, ustalający wartość n równą liczbie przekazanej mu jako argument
- metode Length zwracajaca długość wektora (liczbe reprezentowana przez typ T),
- operator == porównywania macierzy,
- jednoargumentowy operator zmiany znaku ,
- operator + dodawania macierzy,
- operator * mnozenia macierzy przez liczbę (reprezentowaną przez typ T),
- operator * iloczynu skalarnego macierzy (wynik powinien być typu T)
- operator <<, wypisujący do strumienia typu ostream macierz reprezentowaną przez obiekt, oraz operator >> wczytujący odpowiedni wektor ze strumienia typu istream; przyjmij dowolny, wygodny dla Ciebie sposób tekstowego reprezentowania macierzy,

Metody:

1. metodę do LU decomposition

pair<Matrix<T>, Matrix<T>> DecomposeLU(const Matrix<T> \&C)

zwracającą parę macierzy złożoną z macierzy górnotrójkątnej i dolnotrójkątnej, których iloczyn jest równy macierzy przekazanej jako argument metody,

2. template <typename T>

Vector<T> SolveU(const Matrix<T><<U,const Vector<T><<y)</pre>

zwracającej wektor x stanowiący rozwiązanie równania Ux = y przy założeniu, że macierz U jest dolnotrójkątna

3. template <typename T>

Vector<T> SolveL(const Matrix<T> \&L, const Vector<T> \&y)

zwracającej wektor x stanowiący rozwiązanie równania Lx = y przy założeniu, ze macierz L jest górnotrójkątna,

4. template <typename T>

Vector<T> Solve(const Matrix<T> &C, const Vector<T> &y)

zwracającej wektor x stanowiący rozwiązanie równania Cx = y dla dowolnej macierzy C; funkcja ta powinna wykorzystywać rozkład LU macierzy C.

Korzystając z tych szablonów, napisz program eqsolver, który wczytuje ze standardowego wejścia macierz C oraz wektor y, a następnie wypisuje na standardowe wyjście wektor x stanowiący rozwiązanie równania Cx = y.

2.1 Rozwiązywanie układu oporników, ale nie ręcznie: programem

Rysunek 1: Układ rezystorów, do którego podłączone jest stałe źródło napięcia +10V

Napisz program rozwiązujący i zastosuj go do powyższego układu rezystorów (patrz Rysunek 2.1).

Wystarczy, że zapiszesz 6 równań dla 6 oczek (pętli/loopów), które są widoczne [czyli nie trzeba równania dla kilku naraz]. Na przykład pierwsze oczko to:

$$10V = (1\Omega)I_1 + (25\Omega)(I_1 - I_2) + (50\Omega)(I_1 - I_3)$$

(Nie trzeba zapisywać równań dla węzłów, wystarczą oczka.) Mając zapisaną macierz rezystancji oraz wektor napięć dokonaj:

- 1. Rozkładu ${\bf L}{\bf U}$ wykorzystując metodę Dolittle
- 2. Policz wyznacznik znając macierz ${\bf U}$
- 3. Na macierzy ${\bf U}$ dokonaj eliminacji Gaussa i znajdź wektor natężeń prądu

Jak wykonać rozkład ${\bf L}{\bf U}$ i eliminację gaussa? Linki:

LU metodą Dolittle

Eliminacja Gaussa