Forest Cover Type Prediction - Internship Project

Data Initialization

Dependencies

```
In [1]:
        import pandas as pd
        import numpy as np
        import matplotlib.pyplot as plt
        import seaborn as sns
        from sklearn.model_selection import train_test_split
        from sklearn.ensemble import RandomForestClassifier
        from xgboost import XGBClassifier
        from sklearn.metrics import accuracy_score, classification_report, f1_score
In [2]:
        pd.set_option('display.max_columns', None)
        Merging two data
        data1 = pd.read_csv('train.csv',index_col="Id") # Got from internship
In [3]:
        data2 = pd.read_csv('covtype.csv') # got from internet
        forestData = pd.concat([data2,data1],ignore_index=True)
        Viewing Data
        forestData.head()
In [4]:
Out[4]:
            Elevation Aspect Slope Horizontal_Distance_To_Hydrology Vertical_Distance_To_Hydrology
                                                                                                   Horizoi
         0
                2596
                         51
                                 3
                                                                258
                                                                                                0
         1
                2590
                         56
                                 2
                                                                212
                                                                                               -6
         2
                2804
                        139
                                 9
                                                                268
                                                                                               65
         3
                2785
                         155
                                18
                                                                242
                                                                                              118
         4
                2595
                         45
                                 2
                                                                153
                                                                                               -1
        Shape
        print(f"No. of rows: {forestData.shape[0]}")
In [5]:
        print(f"No. of cols: {forestData.shape[1]}")
       No. of rows: 596132
       No. of cols: 55
        Data Info
       forestData.info()
In [6]:
```

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 596132 entries, 0 to 596131
Data columns (total 55 columns):

Ducu	coramiis (cocar ss coramiis).					
#	Column	Non-Null Count	Dtype			
0	Elevation	596132 non-null	int64			
1	Aspect	596132 non-null	int64			
2	Slope	596132 non-null	int64			
3	Horizontal_Distance_To_Hydrology	596132 non-null	int64			
4	Vertical_Distance_To_Hydrology	596132 non-null	int64			
5	Horizontal_Distance_To_Roadways	596132 non-null	int64			
6	Hillshade_9am	596132 non-null	int64			
	-					
7	Hillshade_Noon	596132 non-null	int64			
8	Hillshade_3pm	596132 non-null	int64			
9	Horizontal_Distance_To_Fire_Points	596132 non-null	int64			
10	Wilderness_Area1	596132 non-null	int64			
11	Wilderness_Area2	596132 non-null	int64			
12	Wilderness_Area3	596132 non-null	int64			
13	Wilderness_Area4	596132 non-null	int64			
14	Soil_Type1	596132 non-null	int64			
15	Soil_Type2	596132 non-null	int64			
16	Soil_Type3	596132 non-null	int64			
17	Soil_Type4	596132 non-null	int64			
18	Soil_Type5	596132 non-null	int64			
19	Soil_Type6	596132 non-null	int64			
20	Soil Type7	596132 non-null	int64			
21	Soil_Type8	596132 non-null	int64			
22	Soil_Type9	596132 non-null	int64			
23	Soil_Type10	596132 non-null	int64			
24	Soil_Type11	596132 non-null	int64			
25	—	596132 non-null	int64			
	Soil_Type12					
26	Soil_Type13	596132 non-null	int64			
27	Soil_Type14	596132 non-null	int64			
28	Soil_Type15	596132 non-null	int64			
29	Soil_Type16	596132 non-null	int64			
30	Soil_Type17	596132 non-null	int64			
31	Soil_Type18	596132 non-null	int64			
32	Soil_Type19	596132 non-null	int64			
33	Soil_Type20	596132 non-null	int64			
34	Soil_Type21	596132 non-null	int64			
35	Soil_Type22	596132 non-null	int64			
36	Soil_Type23	596132 non-null	int64			
37	Soil_Type24	596132 non-null	int64			
38	Soil_Type25	596132 non-null	int64			
39	Soil Type26	596132 non-null	int64			
40	Soil_Type27	596132 non-null	int64			
41	Soil_Type28	596132 non-null	int64			
42	Soil Type29	596132 non-null	int64			
43	Soil_Type30	596132 non-null	int64			
44	Soil_Type31	596132 non-null	int64			
45	Soil_Type32	596132 non-null	int64			
46	Soil_Type33	596132 non-null	int64			
	 					
47	Soil_Type34	596132 non-null	int64			
48	Soil_Type35	596132 non-null	int64			
49	Soil_Type36	596132 non-null	int64			
50	Soil_Type37	596132 non-null	int64			
51	Soil_Type38	596132 non-null	int64			
52	Soil_Type39	596132 non-null	int64			
53	Soil_Type40	596132 non-null	int64			
54	Cover_Type	596132 non-null	int64			
dtypes: int64(55)						
memory usage: 250.1 MB						

memory usage: 250.1 MB

Out[7]:		Elevation	Aspect	Slope	Horizontal_Distance_To_Hydrology	Vertical_Distance
	count	596132.000000	596132.000000	596132.000000	596132.000000	
	mean	2954.037879	155.682674	14.164522	268.357052	
	std	286.213696	111.867752	7.523713	212.590510	
	min	1859.000000	0.000000	0.000000	0.000000	
	25%	2801.000000	59.000000	9.000000	108.000000	
	50%	2993.000000	127.000000	13.000000	218.000000	
	75%	3163.000000	260.000000	19.000000	384.000000	
	max	3858.000000	360.000000	66.000000	1397.000000	

Checking for any Null values

In [8]: forestData.isna().any()

Floretien	Годоо
Elevation	False False
Aspect Slope	False
Horizontal Distance To Hydrology	False
Vertical_Distance_To_Hydrology	False
	False
Horizontal_Distance_To_Roadways	
Hillshade_9am	False
Hillshade_Noon	False
Hillshade_3pm	False
Horizontal_Distance_To_Fire_Points	False
Wilderness_Area1	False
Wilderness_Area2	False
Wilderness_Area3	False
Wilderness_Area4	False
Soil_Type1	False
Soil_Type2	False
Soil_Type3	False
Soil_Type4	False
Soil_Type5	False
Soil_Type6	False
Soil_Type7	False
Soil_Type8	False
Soil_Type9	False
Soil_Type10	False
Soil_Type11	False
Soil_Type12	False
Soil_Type13	False
Soil_Type14	False
Soil_Type15	False
Soil_Type16	False
Soil_Type17	False
Soil_Type18	False
Soil_Type19	False
Soil_Type20	False
Soil_Type21	False
Soil_Type22	False
Soil_Type23	False
Soil_Type24	False
Soil_Type25	False
Soil_Type26	False
Soil_Type27	False
Soil_Type28	False
Soil_Type29	False
Soil_Type30	False
Soil_Type31	False
Soil_Type32	False
Soil_Type33	False
Soil_Type34	False
Soil_Type35	False
Soil_Type36	False
Soil_Type37	False
Soil_Type38	False
Soil_Type39	False
Soil_Type40	False
Cover_Type	False
dtype: bool	
Calumana in the shate	

Out[8]:

Columns in the data

```
Out[9]: Index(['Elevation', 'Aspect', 'Slope', 'Horizontal_Distance_To_Hydrology',
               'Vertical_Distance_To_Hydrology', 'Horizontal_Distance_To_Roadways',
               'Hillshade_9am', 'Hillshade_Noon', 'Hillshade_3pm',
               'Horizontal_Distance_To_Fire_Points', 'Wilderness_Area1',
               'Wilderness_Area3', 'Wilderness_Area4',
               'Soil_Type1', 'Soil_Type2', 'Soil_Type3', 'Soil_Type4', 'Soil_Type5',
               'Soil_Type6', 'Soil_Type7', 'Soil_Type8', 'Soil_Type9', 'Soil_Type10',
               'Soil_Type11', 'Soil_Type12', 'Soil_Type13', 'Soil_Type14',
               'Soil_Type15', 'Soil_Type16', 'Soil_Type17', 'Soil_Type18',
               'Soil_Type19', 'Soil_Type20', 'Soil_Type21', 'Soil_Type22',
               'Soil_Type23', 'Soil_Type24', 'Soil_Type25', 'Soil_Type26',
               'Soil_Type27', 'Soil_Type28', 'Soil_Type29', 'Soil_Type30',
               'Soil_Type31', 'Soil_Type32', 'Soil_Type33', 'Soil_Type34',
               'Soil_Type35', 'Soil_Type36', 'Soil_Type37', 'Soil_Type38',
               'Soil_Type39', 'Soil_Type40', 'Cover_Type'],
              dtype='object')
```

Note: There are no null values hence theres no need to do data cleaning

EDA

Target Variable Analysis

- Plot histogram of the forest cover type distribution.
- Check for class imbalance.

```
In [10]: ax = sns.countplot(data=forestData,x='Cover_Type')
    ax.set_xlabel('Cover_Type')
    ax.set_ylabel('Count')
    ax.set_title('Forest Cover Type Distibution',fontdict={'weight':'600','size':'17'})
    plt.tight_layout()
    plt.plot()
```

Out[10]: []

Forest Cover Type Distibution

Feature Distributions

Plot histograms for each necessary numerical feature

Geospatial Relationships

Since this is geographical data, features like Horizontal_Distance_To_Roadways, Vertical_Distance_To_Hydrology, etc., may relate spatially.

```
In [12]: sns.scatterplot(x='Horizontal_Distance_To_Hydrology', y='Vertical_Distance_To_Hydrology', hue-
plt.show()
```


Wilderness Area vs Cover Type analysis

```
In [13]: # make it for other wilderness area too
fig,axes = plt.subplots(2,2,figsize = (16,10))
ax1 = sns.countplot(x='Wilderness_Area1', hue='Cover_Type', data=forestData,ax=axes[0,0])
ax2 = sns.countplot(x='Wilderness_Area2', hue='Cover_Type', data=forestData,ax=axes[0,1])
ax3 = sns.countplot(x='Wilderness_Area3', hue='Cover_Type', data=forestData,ax=axes[1,0])
ax4 = sns.countplot(x='Wilderness_Area4', hue='Cover_Type', data=forestData,ax=axes[1,1])
ax1.set_title('Wilderness1 vs Cover_type',fontdict={'size':'18','weight':'600'})
ax2.set_title('Wilderness2 vs Cover_type',fontdict={'size':'18','weight':'600'})
ax3.set_title('Wilderness3 vs Cover_type',fontdict={'size':'18','weight':'600'})
ax4.set_title('Wilderness4 vs Cover_type',fontdict={'size':'18','weight':'600'})
plt.tight_layout()
plt.show()
```


Soil Type vs Cover type relation

Check relationships between soil types and cover types

```
In [14]: soil_cols = [f"Soil_Type{i}" for i in range(1,41)]
    soil_onehot = forestData[soil_cols]

# get soil type label (e.g. 'Soil_Type7') then convert to integer 7
    soil_type_series = soil_onehot.idxmax(axis=1).str.replace('Soil_Type', '').astype(int)

pd.crosstab(soil_type_series, forestData['Cover_Type']).plot(kind='bar', stacked=True, figsize)
    plt.xlabel('Soil_Type')
    plt.ylabel('Count')
    plt.title('Soil Type vs Cover Type',fontdict={'size':'18','weight':'600'})
    plt.show()
```


Data Preprocessing

Note: Because we are going to use Tree based models theres no need of Scaling our data

```
In [15]: X = forestData.drop(['Cover_Type'],axis=1)
y = forestData['Cover_Type']
X_train,X_test,y_train,y_test = train_test_split(X,y,test_size=0.3,random_state=30)
```

Model Selection

Random Forest Implementation

XGBoost Implementation

Model Evaluation

```
In [18]: y_pred = rf_classifier.predict(X_test)

accuracy = accuracy_score(y_test, y_pred)
    classification_rep = classification_report(y_test, y_pred)
    weighted_f1 = f1_score(y_test, y_pred, average='weighted')

print(f"Accuracy: {accuracy:.2f}")
    print(f"Weighted F1 Score: {weighted_f1}")
    print("\nClassification Report:\n", classification_rep)
```

Accuracy: 0.96

Weighted F1 Score: 0.955195331162959

Classification Report:

	precision	recall	f1-score	support
1	0.96	0.94	0.95	64145
2	0.95	0.97	0.96	85642
3	0.95	0.96	0.96	11388
4	0.94	0.97	0.96	1487
5	0.95	0.84	0.89	3417
6	0.94	0.91	0.93	5938
7	0.98	0.96	0.97	6823
accuracy			0.96	178840
macro avg	0.95	0.94	0.94	178840
weighted avg	0.96	0.96	0.96	178840

```
In [19]: y_pred = xgb.predict(X_test)
    xgb_ytest = y_test.apply(lambda x: x-1)
    accuracy = accuracy_score(xgb_ytest, y_pred)
    classification_rep = classification_report(xgb_ytest, y_pred)
    weighted_f1 = f1_score(xgb_ytest, y_pred, average='weighted')

print(f"Accuracy: {accuracy:.2f}")
    print(f"Weighted F1 Score: {weighted_f1}")
    print("\nClassification Report:\n", classification_rep)
```

Accuracy: 0.87

Weighted F1 Score: 0.8737411073859305

Classification Report:

	precision	recall	f1-score	support
0	0.87	0.84	0.86	64145
1	0.87	0.90	0.89	85642
2	0.90	0.90	0.90	11388
3	0.91	0.95	0.93	1487
4	0.89	0.63	0.74	3417
5	0.85	0.82	0.84	5938
6	0.94	0.91	0.93	6823
accuracy			0.87	178840
macro avg	0.89	0.85	0.87	178840
weighted avg	0.87	0.87	0.87	178840

Note: Random Forest perfomed best in this case