Série Nº1: Espaces vectoriels, sous-espace vectoriel et base

Exercice 1

1. Soit F un sous \mathbb{K} -e.v. d'un espace vectoriel E. Existe-t-il un sous-espace vectriel G de E tel que

$$F \cap G = \emptyset$$
.

- 2. Soit E et F deux K-e.v. Montrer que l'addition des applications linéaires et la multiplication par un scalaire munissent $\mathcal{L}(E, F)$ d'une structure d'espace vectoriel.
- 3. Quelles sont les applications linéaires de $\mathbb R$ dans lui-même? La loi

$$(f,g)\longmapsto f\circ g$$

définie dans $\mathcal{L}(\mathbb{R})$ est-elle commutative?

Exercice 2

1. (a) Soit α , β et λ des nombres réels. Montrer que le système :

$$\{(1, \alpha, \beta), (0, 1, \lambda), (0, 0, 1)\}$$

est une base de \mathbb{R}^3

(b) Est-ce que le système :

$$\{(1,2,3), (2,3,4), (3,4,5)\}$$

est une base de \mathbb{R}^3

- 2. Soit u, v et w trois vecteurs linéairement indépendants d'un espace vectoriel E.
 - (a) Montrer que le système (v+w,w+u,u+v) est libre. Le système (v+w,w+u,u+v) est-t-il une base?
 - (b) On suppose que E est de dimension 3. Si (α, β, λ) est le système des coordonnées d'un vecteur x de E dans la base (u, v, w), quel est le système de coordonnées de x dans la base (v + w, w + u, u + v)?

Exercice 3

Soit \mathcal{D} l'ensemble des fonctions numériques, définies et dérivables sur \mathbb{R} et $\mathcal{F}(\mathbb{R})$ l'espace vectoriel des fonctions numériques définies sur \mathbb{R} .

- 1. Montrer que \mathcal{D} est un sous-espace de $\mathcal{F}(\mathbb{R})$.
- 2. Soit $\varphi: \mathcal{D} \longrightarrow \mathcal{F}(\mathbb{R})$ l'application qui à une fonction $f \in \mathcal{D}$ associe la fonction dérivée f'. Montrer que φ est linéaire.
- 3. L'application φ est-elle injective? surjective?

Exercice 4

- 1. Soit E un espace vectoriel non nul. On note $\mathcal{H}(E)$ l'ensemble des homothéties vectorielles de E sur lui-même. Montrer que $\mathcal{H}(E)$ est un sous-groupe de $\mathrm{GL}(E)$.
- 2. Soit $h \in \mathcal{H}(E)$. Montrer que :

$$(\forall f \in GL(E)), \quad f^{-1} \circ h \circ f \in \mathcal{H}(E)$$

3. Montrer que si $E = \mathbb{R}$ est la droite vectorielle, alors $\mathcal{H}(\mathbb{R}) = GL(\mathbb{R})$.

Exercice 5

1. Soit E un espace vectoriel de dimension 2 et (i, j) une base de E. Soit f et g deux endomorphisme de E définis respectivement par :

$$\begin{cases} f(i) = i+2j, \\ f(j) = 4i+5j, \end{cases}$$
 et
$$\begin{cases} g(i) = 5i+6j \\ g(j) = 7i+8j. \end{cases}$$

Soit v = x.i + y.j (où $(i, j) \in \mathbb{R}^2$) un vecteur de E.

Quelles sont les composantes sur la base (i, j) des vecteurs suivants :

$$f(v)$$
; $g(v)$; $(5.f(v) - 4.g(v))$; $(2.f - id_E)(v)$; $(-f + \pi.g)(v)$.

2. Soit S et T les sous-espaces de \mathbb{R}^3 engendrés respactivement par les vecteurs :

$$S = \overline{\langle (1, -1, 2); (1, 1, 2); (3, 6, -6) \rangle},$$

$$T = \overline{\langle (0, -2, -3); (1, 0, 1) \rangle}$$

Quelles sont les dimensions de S, T et $S \cap T$?

Exercice 6

1. Soit (e_1, e_2, e_3) la base naturelle de \mathbb{R}^3 et f l'endomorphisme de \mathbb{R}^3 tel que :

$$f(e_1) = e_1 - e_2$$
; $f(e_2) = -e_2 + e_3$ et $f(e_3) = e_2 + e_3$.

Déterminer une base de Ker(f) et Im(f).

2. Soit E un espace vectoriel de dimension 3 et (i, j, k) une base de E. Soit f l'endomorphisme de E tel que :

$$f(i) = \frac{1}{3} [2i + 2j - k];$$
 $f(j) = \frac{1}{3} [2i - j + 2k];$ $f(k) = \frac{1}{3} [-i + 2j + 2k].$

- (a) Montrer que $f^2 = id_E$. Déterminer Ker(f) et Im(f).
- (b) Déterminer une autre base (e_1, e_2, e_3) de E telle que l'on ait :

$$f(e_1) = e_1, \quad f(e_2) = e_2, \quad f(e_3) = -e_3.$$

Exercice 7

Soit E un espace vectoriel de dimension 3 et (i, j, k) une base de E. Soit f l'endomorphisme de E tel que :

$$f(i) = \frac{1}{4}i + \frac{1}{8}j + \frac{\sqrt{11}}{8}k; \quad f(j) = \frac{1}{8}i + \frac{1}{16}j + \frac{\sqrt{11}}{16}k; \quad f(k) = \frac{\sqrt{11}}{8}i + \frac{\sqrt{11}}{16}j + \frac{11}{16}k.$$

- 1. Calculer $f \circ f$.
- 2. Montrer que $\operatorname{Ker}(f)$ est le plan d'équation : $\frac{1}{2}x + \frac{1}{4}y + \frac{\sqrt{11}}{4}z = 0$.
- 3. Montrer que $\operatorname{Im}(f)$ est la droite D de vecteur directeur : $\frac{1}{2}i + \frac{1}{4}j + \frac{\sqrt{11}}{4}k$.

Exercice 8

Soit E un espace vectoriel de dimension 3 et (i, j, k) une base de E. On désigne par f l'endomorphisme de E tel que :

$$f(i) = \frac{1}{2}i - \frac{1}{2}j;$$
 $f(j) = -\frac{1}{2}i + \frac{1}{2}j$ et $f(k) = \frac{1}{2}i + \frac{1}{2}j + k.$

- 1. Montrer que $f \circ f = f$.
- 2. Déterminer Ker(f).
- 3. Déterminer l'ensemble des points fixes de f.