

Module 2 Unit 2 DIELECTRICS - FORMULAS

(As per Revised Curriculum SVU R-2023)

1.	Capacitance (parallel plate)	$C = \frac{k\epsilon_0 A}{d}$; (k or ϵ_r)
2.	Electric field, Voltage (capacitor)	$E = \frac{Q}{k\epsilon_0 A'} V = \frac{Q d}{k\epsilon_0 A}$
3.		$\begin{aligned} \vec{D} &= \epsilon_0 \vec{E} + \vec{P} \\ \vec{P} &= \epsilon_0 (k-1) \vec{E} = \epsilon_0 \chi_e \vec{E} = N \alpha \vec{E} \\ \alpha &= \frac{\epsilon_0 (k-1)}{N} \end{aligned}$
4.	Electric susceptibility	$\chi_{\rm e} = { m k} - 1$ or $\epsilon_{\rm r} - 1$
5.	Electric dipole moment	$\vec{\mu} = \alpha \vec{E}, \vec{P} = \frac{\sum_j \vec{\mu}_j}{V} = N \vec{\mu}_{avg}$
6.	Clausius-Mossotti equation	$\alpha = \frac{3\epsilon_0(k-1)}{N(k+2)}$
7.	Electronic polarizability	$\alpha_{\rm e} = 4\pi\epsilon_0 {\rm R}^3$
8.	Internal field in solids	$ec{ extbf{E}}_{ ext{i}} = rac{\gamma ec{ ext{P}}}{\epsilon_0}$
