Algoritmo Genetico

Sistemas de Inteligencia Artificial Trabajo Práctico 2

Equipo 4:

- Ignacio Mendez
- Ignacio Villanueva
- Guido Barbieri

Definiciones e Implementaciones

Diversidad:

Promedio entre los genes de la cantidad de alelos distintos que poseen.

$$D = \frac{\sum_{i=0}^{\#genes} \#(Set \ de \ alelos \ gen \ i)}{\#genes}$$

Definiciones e Implementaciones

En caso de ser impar, a K se le suma 1, haciendolo par.

Genotipo:

Pruebas e Hipótesis

04.

K Alto

01. 02. 03. Fill-All Poca Variedad Diversidad

vs (Determinístico) vs vs

Fill-Parent vs Mutación K Bajo

Mucha Variedad

(Estocástico)

01. Fill-All vs Fill-Parent

Fill-All vs Fill-Parent

Selección: **0.5 * elite + 0.5 * roulette**

Recombinación: 0.5 * elite + 0.5 * roulette

Crossover: Uniforme

Mutación: Mutación Multigen Uniforme

Pm: **0.5**

M: **500**

K: **250**

Rol: Archer

Corte: **200 generaciones**

Fill-All vs Fill-Parent

Fill-Parent (N > K)

Fill-All vs Fill-Parent

Fill-Parent (N > K)

Fill-All vs Fill-Parent

Fill-All vs Fill-Parent

02.

Poca Variedad vs Mucha Variedad (Determinístico) (Estocástico)

Poca Variedad (Determinístico)

Selección: 1 * elite

Recombinación: 1* elite

Crossover: **Dos Puntos**

Mutación: **Un gen**

Implementación: Fill-All

Pm: **0.05**

M: **500**

K: **250**

Rol: **Archer**

Corte: **200 generaciones**

Poca Variedad (Determinístico)

Poca Variedad (Determinístico)

Mucha Variedad (Estocástico)

Selección: 0.5 * universal + 0.5 * roulette

Recombinación: 0.5 * elite + 0.5 * ranking

Crossover: **Un Punto**

Mutación: Gen Múltiple Uniforme

Implementación: Fill-Parent

Pm: **0.5**

M: **500**

K: **250**

Rol: Archer

Corte: **200 generaciones**

Mucha Variedad (Estocástico)

Mucha Variedad (Estocástico)

03.

Diversidad vs Mutación

Diversidad vs Mutación

Queremos probar si es mejor generar variedad a través de una <u>mayor diversidad</u> <u>en la población inicial</u>, o generar esa variedad a través de <u>mayor mutación</u>.

Metodos:

- **Selección**: 0.5 * *Universal* + 0.5 * *Ruleta*
- **Recombinación**: 0.5 * *Elite* + 0.5 * *Ranking*
- Mutacion: Unico Gen
- **Crossover**: *Uniforme*
- **Corte**: 100 Generaciones

Diversidad:

- **Poblacion** = 5000
- K = 2500
- **Pm** = 0.05

Mutacion:

- **Poblacion** = 500
- K = 100
- Pm = 0.5

Diversidad vs Mutación

Diversidad vs Mutación

04. K Alto vs K Bajo

Queremos ver como cambia la <u>diversidad</u> y los <u>fitness</u> cuando incrementamos el <u>K</u>

Parametros:

- **Role**: Archer
- **Population:** 500
- **K**: 30 | 450 | 600
- **Selección**: 0.5 * *Elite* + 0.5 * *Ruleta*
- **Recombinación:** 0.5 * *Elite* + 0.5 * *Ruleta*
- **Mutacion**: *Uniforme multigen*
- **Pm**: 0.5
- Crossover: Uniforme
- **Corte:** 200 Generaciones
- **Run instances:** 5

Mejores Personajes

Guerrero → **27.13** Fitness

Altura: 1.64 Arma: 431041 Casco: 364319 Armadura: 97749 Guantes: 785173 Botas: 500751

Arquero → **42.26** Fitness

Altura: 1.91 **Arma:** 698044 **Casco:** 798938

Armadura: 688249 **Guantes:** 476406 **Botas:** 425937

Defensor → **36.26** Fitness

Altura: 1.64 Arma: 993852 Casco: 346806 Armadura: 594979 Guantes: 573029

Botas: 23141

Infiltrado → **36.45** Fitness

Altura: 1.91 **Arma:** 968018 **Casco:** 131611

Armadura: 568289 **Guantes:** 94772 **Botas:** 136523

Conclusiones

Variedad

Es importante mantener una buena variedad en la población, para evitar convergencia prematuras, y lograr obtener individuos de mayor aptitud.

Implementacion

Fill-Parent da una mayor

las generaciones que

Fill-All.

diversidad de fitnesses en

Diversidad

Aunque mutación es importante, tener una población inicial con gran variación genera sustancialmente mejores resultados.

K

A mayor K se obtienen mejores resultados pero tarda más

Extra!

Apellidos: Un hijo recibe el apellido del padre con mayor fitness

Primera Iteracion

Segunda Iteracion

Tercera Iteracion

Muchas Gracias

Preguntas?