CC4 Data Structures and Algorithms Midterms Notes

I. INTRODUCTION TO DATA STRUCTURES AND ALGORITHMS

Basic Terminologies

A. Algorithm

- 1. Finite structure of well-defined instructions
- 2. Used to solve a problem
- 3. Typically, independent of the programming language
- 4. Can be expressed in:
 - a. Formal language
 - b. Flowcharting
 - c. Pseudocode
 - d. Programming language

B. Data Structure

- 1. Process of organizing data in a computer for more efficient use
- 2. Looks into:
 - a. Collection of data values
 - b. Relationships amongst data values
 - c. Functions and operations applied to the data
- 3. Expressed as an algorithm
 - a. All data structures are algorithms, but not all algorithms are data structures

C. Programming Language

- 1. Set of commands used to create a software program
- 2. Used to properly illustrate the concepts in an algorithm and data structure

Parts of a Programming Language

- A. Data types and objects (int, float, Boolean, String)
- B. Expressions (assignment, printing)
- C. Operations (arithmetic, conditional, logical)
- D. Decision control structures (if, else if, else, switch)
- E. Iterative control structures (while, for, do-while)
- F. Arrays (one-dimensional, multi-dimensional)
- G. Methods (user-defined, parameters, return type)
- H. Other parts:
 - 1. Input
 - 2. Classes and objects

Concepts in Algorithms and Data Structures

A. Data

- 1. A data must have the following characteristics:
- Atomic Define a single concept
- 3. **Traceable** Be able to be mapped to some data element
- 4. **Accurate** Should be unambiguous
- 5. **Clear and Concise** Should be understandable

B. Data Type

- 1. Classifies various types of data which help:
 - a. Determine the values that can be used
 - b. Type of operations that can be performed

C. Basic Operations

- 1. Data in data structures are processed by operations
- 2. Largely depends on the frequency of the operation that needs to be performed
- 3. Examples:
 - a. Search
 - b. Insertion
 - c. Deletion
 - d. Sorting
 - e. Merging

What is Data Type?

- A. Attribute of data that tells the compiler/interpreter how the data is intended to be used
- B. Looks into what kind of data can be placed inside of the variable
- C. Types of data types:
 - 1. Built-in
 - 2. Derived

3. Data object – represents an object having a data (i.e. String)

Built-in Data Types

- A. Programming language has built-in support
- B. Examples:
 - 1. Integers
 - 2. Boolean (true, false)
 - 3. Floating (Decimal numbers)
 - 4. Character and Strings

Derived Data Type

- A. Implementation independent
- B. Normally built by the combination of primary or built-in data types and associated operations on them
- C. Examples (based on the one-dimensional array):
 - 1. List
 - 2. Array
 - 3. Stack
 - 4. Queue

What is a Data Structure:

- A. Collection of data type values
- B. Process of organizing data in a computer for more efficient use
- C. Looks into:
 - 1. Collection of data values
 - 2. Relationships amongst data values
 - 3. Functions and operations applied to the data
 - 4. Expressed as an algorithm

Forms of Data Structures

A. Linear

- 1. Structure where the elements are stored sequentially
- 2. Elements are connected to the previous and the next element
- 3. As the elements are stored sequentially, so it can be traversed or accessed in a single run
- 4. Examples:
 - a. Array
 - b. List

B. Tree

- 1. Represent a hierarchical tree structure
- 2. Contains a root value and subtrees if children (with a parent node)
- 3. Represented as a set of linked nodes

C. Hash Table

- 1. Data structure capable of mapping keys to values
- 2. **Key** labels the pair; used to pertain to the pair
- 3. Value data stored as the pair to the key
- 4. Typically abstracted and enhanced with additional behaviors
- 5. Example:
 - a. Dictionary (Python)

D. Graphs

- 1. Abstract data type that follows the principles of graph theory
- 2. Structure is non-linear
- 3. Consists of:
 - a. **Nodes/Vertices** points on the graph
 - b. **Edges** lines connecting each node

Array Address Calculations

A. One-Dimensional Array

- 1. Also known as a list or just array
- 2. A set of elements stored sequentially
- 3. Uses the index as a pointer

B. Two-Dimensional Array

- 1. Also known as a matrix
- 2. Stored sequentially in two dimensions

- 3. Data is stored "row and column wise"
- C. Three-Dimensional Array
 - 1. Think as a collection of 2D arrays

Address Calculations

- A. Two Ways:
 - 1. Row major system
 - 2. Column major system

Row Major System

- A. All elements of the same rows are stored consecutively
- B. Formula:
 - 1. Address of A[i][i] = baseAddress + w*(i*c+j)
- C. Which means:
 - 2. baseAddress = assigned address to A[0][0]
 - 3. w = storage size of one element stored in the array
 - 4. I = row index
 - 5. c = number of columns
 - 6. j = column index

Address of A[i][j] = baseAddress + w * (i * c + j)

Address of [2][3] = 115

Column Major System

- A. All elements of the same column are stored consecutively
- B. Formula:
 - 1. Address of A[i][j]=baseAddress + w*(i+r*j)
- C. Where:
 - 2. baseAddress = assigned address to A[0][0]
 - 3. w = storage size of one element stored in the array
 - 4. I = row index
 - 5. r = number of rows
 - 6. j = column index

Address of A[i][j] = baseAddress + w * (i + r * j)

B = 50

W = 5

II. STACKS AND QUEUES

Importance of Stacks and Queues

- A. Both stacks and queues are an example of data structures
- B. Most common way to arrange data in different algorithms of the same data type
 - 1. Expressions (infix, prefix, postfix)
 - 2. Binary search trees
 - 3. AVL frees

- 4. Graphs
- 5. Searching algorithm
- 6. Sorting algorithms

Applying Stacks and Queues

- A. Usually implemented in one-dimensional array
 - 1. Can use other variations: list, linked-list, etc.
 - 2. Possible to use for any programming language
- B. Can also be used in multidimensional arrays
 - 3. Not recommended
 - 4. Increases the time complexity and the space required

Stack

- Last-in first-out policy
- First element is at the bottom
- Last element is at the topmost part
- Examples: pancakes, pringles, stack of books, etc.

Queue

- First-in first-out policy
- First element is at the beginning/front
- Last element is at the end of the queue
- Examples: lines at the supermarket or jeepney

Stacks

- A. Container based on the last-in-first-out (LIFO) policy
 - New data is inserted at the last index (push)
 - 2. Data to be deleted starts off with the last index (pop)
- B. Uses only one (1) pointer
 - 1. Starts off at array[-1]: empty
- C. Maximum number of elements is the limit of the array
- D. Practical examples:
 - 1. Pringles
 - 2. Pancake stack
 - 3. Stack of clothing

Inserting Elements in Stacks (Push)

- A. Create a one-dimensional array
 - 1. Pointer is at -1
- B. Place value to be inserted in another value
- C. Locate the pointer
- D. Iterate the value of the pointer
- E. Place value to the array where is the index is pointer (array[pointer])

Deleting Elements in Stacks (Pop)

- A. Locate the pointer
- B. Assign the value of the pointer to the index of the array
- C. Remove the value at array[pointer]
- D. Decrement the value of the pointer by 1

Queues

- A. Container based on the first-in-first-out (FIFO) policy
 - 1. New data is inserted at the last index
 - 2. Data to be deleted starts off with the first index
- B. Uses two (2) pointers
 - 3. One pointer is for the first element in the array
 - 4. Another pointer is for the space after the last element in the array
- C. Maximum number of elements is array.length-1
 - 5. Queue is considered empty if both pointers are on the same position
 - 6. Arrays can be considered circular
- D. Practical examples:
 - 7. People queuing on a line

Inserting Elements in Queues (Enqueue)

- A. Create a one-dimensional array
- B. Place the value to be inserted into a variable
- C. Locate the value of the second pointer (position of the index number after the last element that was placed)
- D. Place value to the array where is the index is the second pointer (array[pointer_two])

E. Iterate the second pointer

Deleting Elements in Queue (Dequeue)

- A. Locate where the first pointer is (pointer that shows the earliest element inserted)
- B. Remove the value at array [pointer_one]
- C. Iterate first pointer

III. INTRODUCTION TO EXPRESSIONS

What are Expressions?

- A. A combination of symbols used to express portions of mathematical equations
- B. Symbols can be:
 - 1. Numbers (positive/negative, absolute/decimal)
 - 2. Variables (expressed in letters)
 - 3. Operators (arithmetic or comparison)
 - 4. Punctuations (grouping)
- C. Mathematical expressions can be:
 - 1. Arithmetic (numbers only)
 - 2. Algebraic (numbers and constant)
 - 3. Comparison (uses comparison symbols)

Parts of an Expression

A. Operator

- 1. Symbols(s) that decide(s) which operation is to be performed
- 2. Arithmetic (+, -, *, /, %)
- 3. Comparison (<, >, ==, <=, >=)

B. Operand

- 4. Symbol(s) that represents an entity on which the operation is performed
- 1. Numbers (0, -1, 1.2)
- 2. Variables (a, b, x)
- 3. Constants (log, e)

Expressions in this Unit

- A. Limited to binary expressions
 - 1. Utilizes operations that would require two operands
 - 2. Arithmetic and comparison operations may be used
 - 3. Increment and decrement operations are not to be used
 - 4. Unary/ternary operators are possible for use in expressions
- B. Limited to arithmetic operations
 - 1. Comparison operations may be used, and may appear in activities
 - 2. All examples will be limited to arithmetic operations and the equal sign (=)

Infix Expressions

What is an Infix Expression?

- A. Usual way on how human express mathematical expressions
- B. Notation where the operators are placed in-between the operands
- C. Requires specific precedence and associativity rules

Precedence

- A. Determines the order of what operation must be performed first in comparison to other operations
- B. Parenthesis, Multiplication and Division, Addition and Subtraction

Associativity

- A. Determines the order of what operation must be performed if they are in the same precedence
- B. Left to right precedence

Prefix and Postfix Expressions

- A. Infix expressions are easily understood for humans, but not for machines
 - There are a lot of rules and regulations that cannot be easily translated into machine code
- B. Prefix and Postfix expressions are notation that are understood better by machines
 - 1. All rules on precedence and associativity are removed
 - 2. All symbols can be placed on a stack
 - 3. Increases overall efficiency of the code
 - 4. Less understood by humans

Precedence Rule

- A. In-Stack Priority
 - 1. The priority if the operator as an element of the stack
- **B.** In-Coming Priority
 - 1. The priority of the operator as a current token

Postfix Expressions

What is a Postfix Expression?

- A. Notation for expressions where:
 - 1. Operators are placed on the right side (after)
 - 2. Operands are placed on the left side (before)
- B. Order of evaluation of expressions is always left to right
- C. Bracket cannot be used to change the order
- D. More commonly used for machine code
 - 1. Translation from infix expression is much easier

Steps – Infix to Postfix

- A. Determine the order of operations using the riles from infix expressions
- B. First operands that must be evaluated are placed at the leftmost portion of the notation
- C. First operator that must be evaluated are placed after the operands
- D. Next operators and/or operands are placed at the left side of the notation
- E. Last operator must be at the rightmost side of the notation

Prefix Expressions

What is a Prefix Expression?

- A. Notation where the operators are written before the operands
- B. Operators act on the two nearest values on the right
 - 1. Technically evaluated from left to right
 - 2. The order changes depending whether or not elements to the right would be used

Steps – Infix to Prefix

- A. Determine the order of operations using the rules from infix expressions
- B. First operands that must evaluated are placed at the rightmost portion of the notation
- C. First operator that must be evaluated are placed before the operands
- D. Next operators and/or operands are placed at the right side of the notation
- E. Last operator must be at the leftmost side of the notation

IV. INTRODUCTION TO ALGORITHMS

Priori and Posteriori Estimates

- A. Originally used for statistics and partial differential equations
- B. In computer science, they are used to analyze algorithms and test their effectiveness
 - 1. Priori estimate/priori analysis analysis of algorithms
 - 2. Posteriori estimate/ posteriori testing testing of program codes

Piori Analysis

- A. Focuses on analyzing an algorithm
 - 1. Determine the efficiency of the algorithm
 - 2. Determine the time and space
 - 3. Done before it is coded into a program
- B. Independent of language
 - 1. Usually expressed in pseudocode
- C. Independent on hardware
 - 1. Worst case scenario is usually measured

Posteriori Testing

- A. Done on a program
 - 1. Usually focuses on testing the efficiency of the program
 - 2. Also looks into watch time and bytes
 - 3. There are other factors that can change the efficiency
- B. Dependent on the:
 - 1. Language
 - 2. Hardware (usually space)
 - 3. Operating system

Asymptotic Notation

What is Asymptotic Notation?

- A. Language that analyzes an algorithm's running time
- B. Done by identifying its behavior as the input size for the algorithm increases
- C. Usually used to measure time, but can also measure space

Type of Asymptotic Notations

- A. Big-O notation (O)
 - 1. Identifies the worst-case scenario complexity of an algorithm
- B. Omega notation (Ω)
 - 1. Identifies the best-case scenario complexity of an algorithm
- C. Theta notation (Θ)
 - 1. Identifies the average-case scenario complexity of an algorithm

Frequency Count and Big-O Notation What is the Frequency Count Method?

- A. Method to determine the time (usually) and space of an algorithm
- B. Can be known by assigning one unit of time/space for each statement
- C. If any statement is repeating, the frequency is calculated and the time taken is computed

Example - Frequency Count Method

```
Frequency Count for (j=1; j<=K; j++)  \begin{array}{c} 1 \\ x=x+1; \\ n=200; \end{array} Substituting actual value for k. Freq. count. = 1505 = O(n)
```

Parts:

```
Initialization – j=1

Condition – j<=K

Iteration – j++

Body/Statement – x= x+1;

Statement = 1

K = 500; - 1

j=1 – 1

j<=K – n-1+1

j++ - n-1+1+1

x= x+1; - n-1+1+1

n=200 – 1

Add Everything

1+1+n+n+1+n+1+1
```

Big O Notation

3n+5 3(500)+5 1505

What is the Big O Notation?

- A. Type of asymptotic notation
- B. Used to determine the efficiency and complexity of an algorithm
 - 1. Average
 - 2. Best
 - 3. Worst case usually used
- C. Looks into the complexity in terms of the input size
- D. Used for priori analysis
- E. Frequency count method must be done first to properly identify the complexity

General Rules to Determine:

- A. Ignore constants
- B. Certain terms dominate others:

$$O(1) < O(\log n) < O(n) < O(n \log n) < O(n^2) < O(2n) < O(n!)$$

C. Ignore low-order terms when the high-order terms are present

Big O Complexity Chart

Big-O Complexity Chart

- A. Looks into the time that is taken to finish a set of operations
- B. Usually states the efficiency of the algorithm
 - 1. "Horrible" notation can be faster depending on the number of operations
 - 2. "Good" notations are usually better on shorter operations, but worse at larger ones

Constant Time

- A. Independent of input size
- B. It doesn't matter what the operation is, it will have the same complexity
- C. Notation(s): O(1)
- D. Sample operations:
 - 1. Assignment to a variable
 - 2. Printing

Linear Time

- A. The more operations, the slower the time
- B. Better for shorter operations
- C. Notation(s): O(log N), O(N), O(N log N)
- D. Sample operations:
 - 1. Decision control structures
 - 2. One-layered iterative control structures

Quadratic Time

- A. The more operations, the shorter the time
- B. Better for longer operations
- C. Notation(s): O(N2), O(2N), O(N!)
- D. Sample operations:
 - 1. Nested iterative control structures
 - 2. Recursive loops
 - 3. Permutations

Big O Measure of Efficiency

Measure of efficiency for n = 10,000

Efficiency	Big-O	Iterations	Estimated Time
Logarithmic	O(logn)	14	Microsecond
Linear	O(n)	10,000	Seconds
Linear Logarithmic	O(nlogn)	140,000	Seconds
Quadratic	$O(n^2)$	10,0002	Minutes
Polynomial	$O(n^k)$	10,000k	Hours
Exponential	$O(c^n)$	210,000	Intractable
Factorial	O(n!)	10,000!	Intractable

llege of xmation Technology

Big O Notation

- A. O(1)
 - 1. Constant; most instructions are executed once or at most only a few times
- B. O(log n)
 - 1. Program slightly slower as N grows; normally in programs that solve a big problem by transforming it into a small problem, cutting the size by some constant factor
- C. O(n)
 - 1. Linear; proportional to the size of N
- D. O(n log n)
 - 1. Occurs in algorithms that solve a problem by breaking it up into smaller sub-problems, solve them independently and then combining the solution
- E. $O(n^2)$
 - 1. Quadratic; can be seen in algorithms that process all pairs of data items
- F. $O(n^k)$
 - 1. Polynomial; algorithms that process polynomial of data items
- G. $O(2^n)$
 - 1. Exponential; brute-force situation
- H. O(n!)
 - 1. Factorial

Example: given 2 algorithms performing the same task on N inputs, which is faster and efficient? P1 | 10n | O(n) P2 | $n^2/2$ | O(n^2)

N	P1	P2
1	10	0.5
5	50	12.5
10	100	50
15	150	112.5
20	200	200
30	300	450

Example - Big O Notation

```
public static int returnSum (int a[], n) {
    int s = 0;
    for (int i = 0; i < n; i++) {
        s = s + a[i];
    }
    return s;
}</pre>
```

Part

```
s = 0; -1

int i = 0; -1

1 < n - n - 0

1 + + - n - 0 + 1

s = s + a[i]; - n - 0 + 1

return s; -1
```

Add everything

```
1+1+n+n+1+n+1+1
3n = 5
O(n)
```

Example - Big O Notation

```
for (j=1; j<=n; j++) {
    for (k=1; k<=n; k++) {
        c[j][k] = 0;
        for (l=1; l<=n; l++) {
            c[j][k] = c[j][k] * b[l][k];
        }
    }
}</pre>
```

Inner part

```
1=1 - 1
1<=n - n-1+1
1++ - n-1+1+1
C[j][k] = C[j][k] * b[l][k]; - n-1+1+1
```

Add everything

1+n+n+1+n+1 3n+3

Middle part

k=1 - 1 k<=n - n-1+1 k++ - n-1+1+1 c[j][k] = 0; - n-1+1+1

Add everything

1+n+n+1+n+1 3n+3

Multiply inner part and middle part

(3n+3)(3n+3) $9n^2+9n+9n+9$ $9n^2+18n+9$

Outer part

j=1 - 1 j<=n - n-1+1 j++ - n-1+1+1 statement - n-1+1+1

Add everything

1+n+n+1+n+1 3n+3

Multiply the calculated parts to Outer part

 $(9n^2+18n+9)(3n+3)$ $27n^3+27n^2+54n^2+54n+27n+27$ $27n^3+81n^2+81n+27$ $O(n^3)$

Big O Notation Basing

Output		Big O Notation
3 <u>n</u> ² +8	=	$O(n^2)$
5 <u>n</u> ³ +3n+2	=	$O(n^3)$
9 <u>n</u> +3	=	O(n)

Introduction to Expressions

Unit 3
CC4 Data Structures and Algorithms
Christine T. Gonzales

Table of Contents

- Infix to Prefix Conversion
- Infix to Postfix Conversion
- Infix to Postfix Using Stacks

Infix to Prefix Conversion

Infix-Prefix Example

Infix: <Operand 1> <Operator> <Operand 2>

Prefix: <Operator> <Operand 1> <Operand 2>

/84		-76	^52	-96
*/842				+-961
-*/8425			%^52+-963	1
+*/84256		+-76%^5	2+-961	
+*/84256+-76%^52+-961				

Infix-Prefix Example

Infix: <Operand 1> <Operator> <Operand 2>

Prefix: <Operator> <Operand 1> <Operand 2>

*AB %DEF

-*ABC /%DEFG

+-*ABC/%DEFG

Infix to Postfix Conversion

Infix-Postfix Example

Infix: <Operand 1> <Operator> <Operand 2>

Postfix: <Operand 1> <Operand 2> <Operator>

84/	76-	52^	96-
84/2*			96-1+
84/2*5-		52^96-1	.+%
84/2*5-6+	76-52^9	6-1+%+	
84/2*5-6+76-52^96-1+%++			

Infix-Postfix Example

Infix: <Operand 1> <Operator> <Operand 2>

Postfix: <Operand 1> <Operand 2> <Operator>

			DE^		
AB*			DE^F	%	
AB*	C-		DE^F	%G/	
AB*C- DE^F%G/+					

Infix to Postfix Using Stacks

Precedence Rule | Conversion

Precedence Rule

IN-Stack Priority

The priority if the operator as an element of the stack

IN-Coming Priority

• The priority of the operator as current token

SYMBOL	ISP	ICP	
)			
٨	3	4	
*, /, %	2	2	
+, -	1	1	
(0	4	

Precedence Rule

Rule:

 Operators are taken out of the stack (POP) as long as the ISP is greater than or equal to the ICP of the new operator

Example: $8/4*2-5+6+(7-6+5^2\%(9-6+1))$

Token	Stack	Output
8	#	8
/	#/	8
4	#/	84
*	#*	84/
2	#*	84/2
-	#-	84/2 84/2*
5	#-	84/2*5

+	#+	84/2*5-
6	#+	84/2*5-6
+	#+	84/2*5-6+
(#+(84/2*5-6+
7	#+(84/2*5-6+7
-	#+(-	84/2*5-6+7
6	#+(-	84/2*5-6+76
+	#+(+	84/2*5-6+76-

5	#+(+	84/2*5-6+76-5
٨	#+(+^	84/2*5-6+76-5
2	#+(+^	84/2*5-6+76-52
%	#+(+%	84/2*5-6+76-52^
(#+(+%(84/2*5-6+76-52^
9	#+(+%(84/2*5-6+76-52^9
_	#+(+%(-	84/2*5-6+76-52^9
6	#+(+%(-	84/2*5-6+76-52^96

+	#+(+%(+	84/2*5-6+76-52^96-
1	#+(+%(+	84/2*5-6+76-52^96-1
)	#+(+%	84/2*5-6+76-52^96-1+