Objetivos de aprendizaje Tema 9

Análisis Matemático II

Javier Gómez López

2 de junio de 2022

1. Conocer y comprender la definición de función de variación acotada

En lo que sigue, trabajamos en un intervalo compacto $[a, b] \subset \mathbb{R}$ con a < b. Empezamos observando una útil propiedad de las funciones crecientes.

■ Si $f:[a,b] \to \mathbb{R}$ es una función creciente, entonces f tiene límite en los puntos a y b, y tiene límites laterales en todo punto $c \in]a,b[$. Como consecuencia, f sólo puede tener un conjunto numerable de discontinuidades, todas ellas evitables o de salto.

Por otro lado, llamaremos **partición** del intervalo [a,b] a todo conjunto finito $P \subset [a,b]$ con $a,b \in P$, y denotaremos por $\Pi(a,b)$ al conjunto de tales particiones. Si $P \in \Pi(a,b)$ tiene n+1 elementos, con $n \in \mathbb{N}$, solemos numerarlos de menor a mayor, escribiendo $P = \{a = x_0 < x_1 < \ldots < x_n = b\}$. Fijada dicha partición, a cada función $f: J \to \mathbb{R}$, definida en un intervalo $J \subset \mathbb{R}$ con $a,b \in J$, podemos asociar la suma dada por

$$\sigma(f, P) = \sum_{k=1}^{n} |f(x_k) - f(x_{k-1})|$$

Llamaremos variación total de f en [a, b] al supremo de las sumas del tipo anterior, que se obtienen para todas las particiones del intervalo [a, b], a la que se denota por

$$V(f;a,b) = \sup \{\sigma(f,P) : P \in \Pi(a,b)\} \in [0,\infty]$$

Decimos que f tiene variación acotada en [a,b] cuando $V(f;a,b) < \infty$. Resaltamos que esta definición tiene sentido para funciones definidas en cualquier intervalo J tal que $a,b \in J$. En el caso J = [a,b], cuando una función $f:[a,b] \to \mathbb{R}$ tiene variación acotada en [a,b], se dice simplemente que f es una función de variación acotada.

- 2. Conocer y comprender el enunciado de los siguientes resultados:
 - a) Relación entre funciones crecientes y funciones de variación acotada Es fácil ver que toda función creciente $f:[a,b]\to\mathbb{R}$ es de variación acotada. De hecho, si una partición $P\in\Pi(a,b)$ viene dada por $P=\{a=x_0< x_1<\ldots< x_n=b\}$, se tiene

$$\sigma(f, P) = \sum_{k=1}^{n} |f(x_k) - f(x_{k-1})| = \sum_{k=1}^{n} (f(x_k) - f(x_{k-1})) = f(b) - f(a)$$

de donde deducimos que V(f; a, b) = f(b) - f(a). Podemos ya caracterizar las funciones que se obtienen como diferencia de dos crecientes.

- Una función de [a,b] en \mathbb{R} tiene variación acotada en [a,b] si, y sólo si, se puede expresar como diferencia de dos funciones crecientes.
- b) Límites y continuidad de las funciones de variación acotada El resultado sobre límites y continuidad de las funciones crecientes, enunciado al

principio, se puede extender a las funciones de variación acotada:

- Si $f:[a,b] \to \mathbb{R}$ es una función de variación acotada, entonces f tiene límite en los puntos a g b, g límites laterales en todo punto g ∈ g la demás, g sólo puede tener un conjunto numerable de discontinuidades, todas ellas evitables o de salto.
- c) Teorema de derivación de Lebesgue

A continuación, se presenta uno de los resultados más importantes en el estudio de las funciones reales de una variable real.

Teorema 1 (Derivación de Lebesgue). Dado un intervalo no trivial $J \subset \mathbb{R}$, supongamos que una función $f: J \to \mathbb{R}$ tiene variación acotada en cada intervalo compacto $K \subset J$. Entonces f es derivable casi por doquier en J.