Model Definition and Naming Convention

R-Package streambugs ver. 1.0 26.10.2017

State Variables

Names of state variables consist of three mandatory parts and one optional part separated by underline characters:

Reach Habitat Taxon or Reach Habitat Taxon Group

where:

Reach: Unique, user-defined identifier for river reach.

The reaches to be modeled are extracted by the program from the names of

the state variables.

Habitat: Unique, user-defined identifier for habitat within river reach.

Within each reach, there must be at least one habitat. Different reaches may contain different habitats. The habitats to be modeled in each reach are

extracted from the names of the state variables.

Taxon: Unique, user-defined identifier for each taxon/substance to be modeled.

The taxa to be modeled in each habitat of each reach are extracted from the

names of the state variables.

Group: Optional, user-defined functional group identifier that can be used to simplify

the specification of joint parameters for a functional group.

The group specification does not have any influence on the food web structure; it only serves the purpose of simplifying the specification of joint parameters. It could be used to separate trophic levels in the food web or, alternatively, also

groups within the same trophic level.

Only use lower or uppercase letters and numbers within each identifier. No special character and no underline ("_") character. Do not use identifiers that are the same as parameter names.

Model Parameters and Inputs

All names can be used for "parameters" (i.e. constants) or for "inputs" (i.e. time series). If there is the opportunity for several alternative names, always the value associated with the most specific name is used.

Global Parameters

Syntax	Name	Unit	Meaning	Default value
Par	kBoltzmann	eV/K	Boltzmann constant	8.61734e-05
	M0	g	Normalization mass	1
	ftempmax_intercept -		critical value for ftemp if	0
			affinity score is 0,	
			intercept with ftemp-axis	
	ftempmax_curv	-	curvature for	0
			transformation of affinity	
			scores for temperature,	
			curv>0 means curved to the	
			right, curv<0 means curved	
			to the left, curv=0 means	
			linear transformation	
	fcurrent_intercept	-	see above	0
	fcurrent_curv	-		0
	fsapro_intercept	-		0
	fsapro_curv	-		0
	forgmicropollut_intercept	-		0
	forgmicropollut_curv	-		0
	fmicrohab_intercept	-		0
	fmicrohab_curv	-		0
	fsapro_intercept	-		0
	tempmaxKval_class1n	K	mid values of temperature	
			classes, "very cold"	
	currentmsval _class1 n	m/s	mid values of current classes	
	saprowqclassval_class0	-	mid values of water quality	
	saprowqclassval_class4		classes regarding saprobic	
			conditions	
	orgmicropollTUval _class1,	TU	mid values of classes of	
	orgmicropollTUval _class2		organic toxicants related to	
			the Spear-trait	

Environmental Conditions

Syntax	Name	Unit	Meaning	Default value
Reach_Par	w	m	River width	- varue
Par	L	m	River reach length	_
			Triver reach tength	
Reach_Habitat_Par	Т	К	Temperature	-
Habitat_Par Reach_Par	10	W/m2	Radiation at the water surface	-
Par	fshade		Fraction of water surface that is shaded	-
	СР	gP/m3	Dissolved reactive phosphorus	-
	CN	gN/m3	Inorganic dissolved nitrogen	-
	fA		Area fraction of habitat (need not be normalized)	1
	DSusPOM	gDM/m3	Concentration of suspended organic particles	-
	tau	kg /(s²⋅m)	bottom shear force	-
	taucrit	kg /(s²⋅m)	critical bottom shear stress that induces bed-movement	-
	tempmaxK	К	maximum morning temperature in summer in Kelvin	-
	currentms	m/s	mean current velocity in m/s	-
	saprowqclass	-	water quality class regarding saprobic conditions, 1=oligo, 2=beta,3=alpha,4=pol y	
	orgmicropollTU	TU	Toxic units describing the effective concentration of organic toxicants	
	Dfish	kg/ha	Density of fish in a reach	0

Environmental conditions with a variable number of "classes" the number of which is extracted from the parameter vector by the internal function get.inpind.parval.envcond.habitat.group()							
Reach_Habitat_Par Habitat_Par Reach_Par Par	microhabaf_type1	- (m2/m2)	areal fraction of microhabitat types 1 to X, sum can be larger than 1 if the habitat surface is larger than the width*length of the river reach, sum=1 refers to the area of the river bottom (width*length)				

Initial Conditions and Input

Syntax	Name	Unit	Meaning	Default value
Taxon_Reach_Habitat_Par	Dini	gDM/m2	initial density of	0
Group_Reach_Habitat_Par			taxon/sub_stance in the	
Taxon_Habitat_Par			given habitat of a reach	
Group_Habitat_Par	Input	gDM/m2/yr	input of the	0
Taxon_Reach_Par			taxon/substance in the	
Group_Reach_Par			given habitat of a reach	
Taxon_Par				
Group_Par				
Reach_Habitat_Par				
Habitat_Par				
Reach_Par				
Par				

Taxon/Substance Property Parameters

Syntax	Name	Unit	Meaning	Default value
Taxon_Par	M	g	typical individual biomass	-
Group_Par	Ea	eV	Activation energy	-
Par	b		Allometric scaling	0.75
			exponent	
	i0	J/a	Allometric parameter	-
	EC	J/gDM	Energy content	-
	fbasaltax	-	factor to modify basal	1
			metabolic rate	
trait paramet	ers with a flexible number of c	lasses		
get.inpind.pa	rval.taxaprop.traits()			
Taxon_Par	tempmaxtolval_class1	-	affinity score between	_
Group_Par			normalized between 0 and	
Par			1 regarding flexible	
			number of trait classes	
	currenttolval_class1	-	affinity score between	-
			normalized between 0 and	
			1 regarding flexible	
			number of trait classes	
	microhabtolval_type1	-	affinity score between	-
			normalized between 0 and	
			1 regarding flexible	
			number of trait classes	
	saprotolval_class0	-	affinity score between	-
			normalized between 0 and	
			1 regarding flexible	
			number of trait classes	
	orgmircopolltolval_class1	-	affinity score between	-
			normalized between 0 and	
			1 regarding flexible	
			number of trait classes	

Process Properties

The stoichiometric parameters define the processes to be used (and for which kinetic parameters are searched in the parameter vector). The stoichiometric parameters cannot depend on reach or habitat. All kinetic parameters can depend on taxon, reach and habitat.

Processes associated to a single taxon

The syntax for stoichiometry of processes associated with a taxon is

Proc_Taxon_Taxi

where "Proc" is "Miner" (mineralization), "Resp" (respiration), "Death" (death) or "Prod" (primary production), "Taxon" is the taxon/substance to which the process is associated and "Taxi" is the taxon/substance for which the stoichiometric coefficient is defined. For each realization of the process characterized by "Proc" and "Taxon", an arbitrary number of stoichiometric coefficients for different "Taxi" is allowed. Typically the stoichiometric coefficient for "Taxi"="Taxon" will be plus (Prod) or minus unity (Miner, Resp, Death).

Syntax	Name	Unit	Meaning	Default value			
Stoichiometry:	Proc = M						
Proc_Taxon_Taxi	kminer	1/a	Specific mineralization rate	-			
	Proc=Drift						
Kinetic Parameters:	cdet	s ⁴ m ² /	coef. of catastrophic loss	-			
Taxon_Reach_Habitat_Par		(kg ² a)					
Group_Reach_Habitat_Par	Proc = Resp						
Taxon_Habitat_Par	fresp		Ratio of respiration rate to	-			
Group_Habitat_Par			metabolic rate				
Taxon_Reach_Par							
Group_Reach_Par	Proc = Death						
Taxon_Par	fdeath		Ratio of death rate to	-			
Group_Par			metabolic rate				
Reach_Habitat_Par							
Habitat_Par	Proc = Prod						
Reach_Par	fprod		Ratio of maximum primary	-			
Par			production growth rate to				
			metabolic rate				
	fgrotax	-	factor to modify growth rate	1			
	hdens	gDM/m2	Self-inhibition half	-			
			satura_tion concentration in				
			the absence of disturbances				
	KI	W/m2	Half-saturation light intensity	_			
			of algae growth				
	KP	gP/m3	Half-saturation conc. of algae	-			
			growth with respect to P				
	KN	gN/m3	Half-saturation conc. of algae	-			
			growth with respect to N				

Food web processes

The syntax for stoichiometry of food web processes is

Proc_Taxon1_Taxon2_Taxi

where "Proc" is "Cons", "Taxon1" is the first taxon and "Taxon2" the second taxon involved in the process (typically "Taxon1" feeds on "Taxon2") and "Taxi" is the taxon/substance for which the stoichiometric coefficient is defined. For each realization of the process

characterized by "Proc", "Taxon1" and "Taxon2", an arbitrary number of stoichiometric coefficients for different "Taxi" is allowed. Typically the stoichiometric coefficient for "Taxi"="Taxon1" will be unity.

Syntax	Name	Unit	Meaning	Default value	
Stoichiometry:	Proc = Cons				
Proc_Taxon1_Taxon2_Taxi	fcons		Ratio of maximum	-	
			consumpti_on		
Kinetic Parameters:			growth rate to		
Taxon1_Taxon2_Reach_Habitat_Par			metabolic rate		
Group1_Taxon2_Reach_Habitat_Par	fgrota	-	factor to modify	1	
Taxon1_Group2_Reach_Habitat_Par	х		growth rate		
Group1_Group2_Reach_Habitat_Par	hdens	gDM/m2	Self-inhibition half	-	
Taxon1_Taxon2_Habitat_Par			satura_tion		
Group1_Taxon2_Habitat_Par			concentration in the		
Taxon1_Group2_Habitat_Par			absence of		
Group1_Group2_Habitat_Par			disturbances		
Taxon1_Taxon2_Reach_Par	Kfood	gDM/m2	Half-saturation	-	
Group1_Taxon2_Reach_Par			concentra_tion		
Taxon1_Group2_Reach_Par			regarding food		
Group1_Group2_Reach_Par	q	-	Exponent in	1	
Taxon1_Taxon2_Par			limitation term		
Group1_Taxon2_Par	Pref	-	relative preference	1	
Taxon1_Group2_Par			factor for different		
Group1_Group2_Par			food sources		
Taxon1_Reach_Habitat_Par	Proc = FishPred				
Group1_Reach_Habitat_Par	cfish	gDM/kg/d	Food intake per kg	-	
Taxon1_Habitat_Par			fish and day		
Group1_Habitat_Par	Kfood	gDM/m2	Half-saturation	-	
Taxon1_Reach_Par			concentra_tion		
Group1_Reach_Par			regarding food		
Taxon1_Par	q	-	Exponent in	1	
Group1_Par			limitation term		
Reach_Habitat_Par	Pref	-	relative preference	1	
Habitat_Par			factor for different		
Reach_Par			food sources		
Par					

Overview parameter names related to traits

traitname	input file par env	par env model	par env global	trait parameters (affinity	model
			(e.g. midvalues of classes)	scores)	parameter
tempmax	Temp_max_summer				
	tempmaxC	tempmaxK	tempmaxKval_class1	tempmaxtolval_class1	ftempmax
current	currentclassname/				
	currentms	currentms	currentmsval_class1	currenttolval_class1	fcurrent
orgmicropoll	orgmicropollclassname/				
	orgmicropollTU	orgmicropollTU	orgmicropollTUval_class1	orgmicropolltolval_class1	forgmicropoll
sapro	saprobwqclassname/				
	saprowqclass	saprowqclass	saprowqclassval_class0	saprotolval_class0	fsapro
microhab	microhabaf_type1	microhabaf_type1	-	microhabtolval_type1	fmicrohab

History of model development

R-package streambugs ver. 1.0 includes the core functions used in Kattwinkel et al. (2016), Mondy and Schuwirth (2017), and Paillex et al. (2017).

Difference to model Streambugs 1.0 in Schuwirth & Reichert (2013):

- Environmental conditions and parameters can be time-dependent
- per reach different habitats can be modeled
- mineralization of organic material is introduced
- food limitation term has variable exponent q (default =1)
- _ Filt_scope is implemented as (still non taxon specific) parameter instead of fixed value
- ftemp is calculated differently from trait information

Differences in implementation:

- Option to run the model in C instead of R.
- different sites can be modeled simultaneously (allows extension with dispersal)
- we model now Biomass/per river length instead of Biomass per reach

Difference to Streambugs model used in Schuwirth et. al (2016):

Different way to calculate factors ftempmax, fcurrent, fmicrohab, forgmicropoll, fsapro, see
 Mondy & Schuwirth (2017) for explanation.

References

Kattwinkel, M., P. Reichert, J. Rüegg, M. Liess, and N. Schuwirth. 2016. Modeling Macroinvertebrate Community Dynamics in Stream Mesocosms Contaminated with a Pesticide. Environmental Science & Technology **50**:3165-3173.

Mondy, C. P., and N. Schuwirth. 2017. Integrating ecological theories and traits in process-based modeling of macroinvertebrate community dynamics in streams. Ecological Applications **27**:1365-1377.

Paillex, A., P. Reichert, A. W. Lorenz, and N. Schuwirth. 2017. Mechanistic modelling for predicting the effects of restoration, invasion and pollution on benthic macroinvertebrate communities in rivers. Freshwater Biology **62**:1083-1093.

Schuwirth, N., A. Dietzel, and P. Reichert. 2016. The importance of biotic interactions for the prediction of macroinvertebrate communities under multiple stressors. Functional Ecology **30**:974-984.

Schuwirth, N., and P. Reichert. 2013. Bridging the gap between theoretical ecology and real ecosystems: modeling invertebrate community composition in streams. Ecology **94**:368-379.