Задание по курсу

«Уравнения математической физики»

Автор: Хоружий Кирилл

От: 20 сентября 2021 г.

1 Неделя I

№1

Рассмотрим уравнение на G(t)

$$(\partial_t + \gamma)G(t) = \delta(t),\tag{1}$$

с учетом принципа причинности g(t < 0) = 0.

При t>0 $\delta(t)=0$, так что

$$\partial_t G(t) = -\gamma G(t), \quad \Rightarrow \quad G(t) = A \exp(-\gamma t).$$

Проинтегрируем уравнение (1) от $-\varepsilon$ до ε :

$$G'(\varepsilon) - G'(\varepsilon) + \int_{-\varepsilon}^{\varepsilon} \gamma G(t) \, dt = \int \delta(t) \, dt = 1, \quad \Rightarrow \quad G'(\varepsilon) = 1, \quad \Rightarrow \quad A = 1.$$

Таким образом, искомая функция Грина G(t):

$$G(t) = \theta(t) \cdot \exp(-\gamma t)$$
,

где $\theta(t)$ обеспечивает G(t)=0 при t<0.

№2

Рассмотрим уравнение, вида

$$(\partial_t^2 + \omega^2)\varphi(t) = g(t), \quad g(t) = \begin{cases} 0, & t \notin [0, \tau]; \\ -\frac{v}{\tau l}, & t \in [0, \tau], \end{cases}$$

с нулевым начальным условием $\varphi(t<0)=0.$ Функция Грина G(t) для оператора $(\partial_t^2+\omega^2)$ равна 1

$$G(t) = \theta(t) \frac{1}{\omega} \sin(\omega t).$$

Далее найдём вид $\varphi(t)$ при $t < \tau$ (красная линия рис. 1):

$$\varphi(t<\tau) = \frac{1}{\omega} \int_{-\infty}^t \sin \omega(t-s) \ g(s) \ dt = \frac{1}{\omega} \int_0^t \sin \omega(t-s) \frac{v}{2l} \ d(t-s) = \frac{v}{l\tau} \frac{1}{\omega^2} \left(\cos(\omega t) - 1\right).$$

Рис. 1: Сшивка решений в I.2

¹Конспект, уравнение (1.11).

Теперь решим 2 задачу Коши с начальным условием при $t=\tau$, введя переменную $T=t-\tau$:

$$\varphi(T) = \varphi(t - \tau) = \dot{\varphi}(\tau)G(t - \tau) + \varphi(\tau)\dot{G}(t - \tau) + 0 = \frac{v}{lt}\frac{1}{\omega^2}(\cos\omega t - \cos\omega(t - \tau)).$$

получая синюю кривую на рис. 1.

Итого, решение уравнения (1) (фиолетовая кривая, рис 1):

$$\varphi(t) = \frac{v}{l\tau} \frac{1}{\omega^2} \begin{cases} 0, & t < 0; \\ \cos \omega t - 1, & t \in [0, \tau]; \\ \cos \omega t - \cos \omega (t - \tau), & t > \tau. \end{cases}$$

№3

Найдём значение интеграла, вида

$$I_1 = \int_{-\infty}^{+\infty} \frac{1}{(x^2 + a^2)^2} dx.$$

Заметим, что уравнение $z^2 + a^2 = 0$ имеет корни в $z_{1,2} = a^{\pm i\pi/2}$, тогда

$$I_1 = 2\pi i \cdot \operatorname{res}_{z_1} = 2\pi i \lim_{z \to z_1} \cdot \left(\frac{1}{(z - z_2)^2}\right)' = -4\pi i \cdot \lim_{z \to z_1} \left(\frac{1}{(z - z_2)^3}\right) = -4\pi i \frac{1}{(2ia)^3} = \frac{\pi}{2a^3}.$$

2 Неделя I

№5

Рассмотрим многомерное нормаьное распределение для \tilde{y}_i с симметричной матрицей ковариации Σ :

$$\tilde{y} = \frac{1}{(2\pi)^{l/2}\sqrt{\det \Sigma}} \exp\left(-\frac{1}{2}(\tilde{y} - y)\Sigma^{-1}(\tilde{y} - y)\right).$$

Нормировка. В силу симметричности Σ существует S такая, что $S^{\mathrm{T}}\Sigma^{-1}S = E$, тогда $\det S = \sqrt{\det \Sigma}$. Тогда, в силу знания о линейной замене переменных в кратном интеграле, при замене $\tilde{y} - y = Sz$, верно:

$$\int \tilde{y} d^l \tilde{y} = \frac{\det S}{\sqrt{\det \Sigma}} \int \frac{1}{(\sqrt{2\pi})^l} \exp\left(-\frac{1}{2}z^{\mathrm{T}} S^{\mathrm{T}} \Sigma^{-1} S z\right) d^l \tilde{y},$$

что приводит к факторизации, и, по теореме Фубини, можем записать

$$\int \tilde{y} \, d^l \tilde{y} = \int \frac{1}{\sqrt{2\pi}} \exp\left(-\frac{1}{2}z_1^2\right) \, dz_1 + \dots + \int \frac{1}{\sqrt{2\pi}} \exp\left(-\frac{1}{2}z_l^2\right) \, dz_l = 1,$$

следовательное, указанное распределение нормировано.

Парные корреляторы. Вообще, говорят, что набор случайных величин ξ имеет многомерноное нормальное распределение, если найдётся вектор a, невыроденная матрица C и набор nesaeucumux стандартных нормальных величин η такие, что

$$\mathcal{E} = a + Cn$$

Так гораздо удобнее найти $cov(\xi_i, \xi_k)$:

$$\langle\!\langle \xi_i, \xi_j \rangle\!\rangle = \langle\!\langle (a + C\eta)_i, (a + C\eta)_j \rangle\!\rangle = \sum_{\alpha = 1}^l \sum_{\beta = 1}^l c_{i\alpha} c_{j\beta} \underbrace{\langle\!\langle \eta_\alpha, \eta_\beta \rangle\!\rangle}_{\delta_{\alpha\beta}} = \sum_{\alpha = 1}^l c_{i\alpha} c_{j\alpha} = (CC^{\mathrm{T}})_{ij} = \Sigma_{ij},$$

где последнее равенство следует из факторизации распределения для η .

Погрешности параметров. Оценим погрешности парметров, аналогично расчёту с лекции:

$$\begin{array}{ll} w_{\alpha} = Q_{\alpha i} y_{i} \\ \tilde{w}_{\alpha} = Q_{\alpha i} \tilde{y}_{i} \end{array} \Rightarrow \langle \langle \tilde{w}_{\alpha}, \, \tilde{w}_{\beta} \rangle \rangle = \ldots = Q_{\alpha i} Q_{\beta j} \langle \langle \tilde{y}_{i}, \, \tilde{y}_{j} \rangle \rangle = Q_{\alpha i} Q_{\beta j} \Sigma_{ij} = (Q \Sigma Q^{\mathrm{T}})_{\alpha \beta}, \end{array}$$

что похоже на правду, по крайней мере формы совпадают.

Погрешности в линейной регрессии. Считая $A = \operatorname{diag}(A_1, \ldots, A_l)$, оценим погрешности $\operatorname{var} w_{\alpha}$. Рассмотрим, видимо, линейную регрессию, тогда, как и раньше

$$X = \begin{pmatrix} x_1 & 1 \\ \dots & \dots \\ x_l & 1 \end{pmatrix}, \quad X^{\mathrm{T}}X = l \begin{pmatrix} \bar{x^2} & \bar{x} \\ \bar{x} & 1 \end{pmatrix}, \quad (X^{\mathrm{T}}X)^{-1} = \frac{1}{l \operatorname{var} x} \begin{pmatrix} 1 & -\bar{x} \\ -\bar{x} & \bar{x^2} \end{pmatrix}.$$

 $^{^{2}}$ Конспект, уравнение (1.12).

 Φ_{M} ЗТ E Х 2 НЕДЕЛЯ I

Здесь, наверное, будет удобнее сразу найти

$$Q = (X^{T}X)^{-1} X^{T} = \frac{1}{l \operatorname{var} x} \begin{pmatrix} x_{1} - \bar{x} & \dots & x_{l} - \bar{x} \\ \overline{x^{2}} - \bar{x}x_{1} & \dots & \overline{x^{2}} - \bar{x}x_{l} \end{pmatrix}.$$

Тогда искомые погрешности могут быть найдены, как

$$\operatorname{var} w_{1} = (Q \Sigma Q^{\mathrm{T}})_{11} = \frac{1}{l(\operatorname{var} x)^{2}} \left(\langle x_{i}^{2} \sigma_{i}^{2} \rangle - 2 \bar{x} \langle x_{i} \sigma_{i}^{2} \rangle + \bar{x}^{2} \langle \sigma_{i}^{2} \rangle \right),$$

$$\operatorname{var} w_{0} = (Q \Sigma Q^{\mathrm{T}})_{22} = \frac{1}{l(\operatorname{var} x)^{2}} \left((\bar{x}^{2})^{2} \langle \sigma_{i}^{2} \rangle - 2 \bar{x} \cdot \bar{x}^{2} \langle x_{i} \sigma_{i}^{2} \rangle + \bar{x}^{2} \langle x_{i}^{2} \sigma_{i}^{2} \rangle \right).$$

где $\Sigma = \mathrm{diag}(\sigma_1, \dots, \sigma_l)$, и var $\tilde{y}_i \sim \sigma_i^2$. Действительно, при $\sigma_i^2 = s^2 = \mathrm{const}$ всё сходится.