A logic gate is a physical device or circuit implementing a Boolean function. It performs a logical operation on one or more binary inputs and produces a single binary output.

Logic gates are primarily implemented using diodes or transistors. Logic gates can be cascaded in the same coay that Borlean function can be composed, allowing the construction of a physical model of all of Borlean logic.

There are three basic gates; AND, OR and NOT. from these three gates, two more gotes have been formed, called NOR and NAND gate. These two gates also called 'Universal Gates', because by using universal gates we can make any gate or we can redize any Boolean expression. Two special logic circuits that occur quite often in digital systemare the exclusive—OR (XOR) and exclusive—NOR (XNOR) circuits.

connected to low input terminals and the diode Connected to low input terminals and the diode become forward biased, resulting in flow of current through resistor R. So in such condition Voltage of the output terminal becomes low. The complete truth table for 2-input AND gate is shown table.

	Truth Table	
A	B	Y = A.B
0	0	0
0		. 0
1	0	0
	1	

OR Gate

The OR gate performs logical addition, more commonly known as the OR function. An OR gate has two or more inputs signals with only one output signal. Figure 1 shows the symbol of OR gate and the OR function expressed as

A of Fight

In or gate output voltage is high if

any or all of the input voltages are high.

Figure 2 shows a circuit to build a 2-input OR gate. The input voltages are lobelled A and B, while the output voltage 4, when voltage of any input is high, the diode corresponding to that voltage is conducting because diode is in forward briased. Since the diode is in forward briased. Since the diode is on, current flows through Kenison R and get the output high. But when the input terminals connected to low, and get the diode connected to low input terminal in this condition both the

diodes are in off condition and get the output low.

The logical operation of the two input OR gate is described in truth table shown below.

Truth Table: OR Gete

	-		
	A	B	Y= A+B
-	0	0	0
	0		
	1	0'	
	(1	1

NOT Gate

The NOT gate (Inverter) performs a basic logic function called inversion or Complimentation. A NOT gate is called inverter because output state is always opposite to the input state, so when the input is low, output is high and vice-versa. Figure I shows the symbol of NOT gate and the expression for NOT gate in

A V= A

This gate has only one input and output. Transisdor may be used as an inverter as shown in figure 2. When input terminal (base of the transhor) Vin is Zero, base current of transitor is zero, so no current flows in collector circuit and the potential of Vont remains equel to Vcc. On the other hand when Vin is high, base current flows through the transistor resulting in flow of saturation current in collector circuit. This results low output at output terminal. The truth table for HOT gate is

6

Universal Gates

NOR and NAND gates have become very popular and are extensively used in digital circuitry. The reason is that these gates actually combine the basic operations AND, OR and NOT, which makes it relatively easy to describe them using the Boolean algebraic operations. Because of this reason NOR and NAND gates are also called Universal Gates.

NOR Gate

The term NOR is a contraction of NOT-OR and implies an OR function with an inverted output. The output of this gate is high, only when all inputs are low. The standard symbol for the NOR gate is the same as the OR gate symbol except that it has a small circle on the output. This small circle represent the inversion operation.

The circuit of NoR gate is shown in figure.

The output Y is I only when both transisdors

are in cut off i.e. when A=0 and B=0. For

any other condition of input such as A=1,B=0

or A=0,B=1 or A=1,B=1 one or both transisdoms

operate in saturation and as a result the

output Y is low.

A RB B RB O Wout

Figi Circuit for NOR gate. The truth table for 2-input NOR gate is given in Table. From tabe we. find that NOR gate output is the exact inverse of the OR gate output.

-Pruth Table

	The second secon	The state of the s
A	B	YEARB
0	0	
0		0
1	0	0
	(0

The term NAND is a contraction of NOT-AND and implies an AND function with inverted output. In this gate, output is low only when all inputs are high. A standard logic symbol for NAND gate is the same as the AND gate except for small eirde on its output. This a small circle denotes the inverse operation.

The circuit of NAND gate is shown in figure. Here a diode AND circuit using diodes are connected to NOT circuit using transistor, that gives the NAND circuit.

It. can be seen from the figure that the point X coould be driven to ground when either of the diodes DI or D2 or both DI and D2 Conducts. Under such conditions, the transition is in cut off and output goes high. out put is low only when both input voltages are high so that X is at the and translators operates in saturation.

The truth table for 2 input NAND gate is given in Table. From the table it is clear that NAND gate output is the exact inverse of AND gate.

Tah	le: Trut	h Table
A	B	A.B
0	0	1
0		1
1	0	1
l	1	0

Special Logic Circuits

chrousts that occur, quite often in digital systems are the enclusive -or (XOR) and exclusive -NOR (XNOR) circuits.

Exclusive - OR (XOR) Gate:

The symbol and equivalent switching circuit of a XOR gate are shown in figures 1 and 2 respectively.

A a y

It is observed that output of the XOR gode is high if its either input but not both, is high. It means that owhen the two inputs are different, the output is high and when the two inputs are the same the output is low. The truth table for XOR gode is shown in Table I.

A	В	ABB
0		0
0	1	/
Ī	0	. [
1	1	0

The XNOR circuit operates just opposite to the XOR circuit. The circuit symbol and equivalent switching circuit are shown in figures 1 and 2.

The expression for the output of the circuit is given as

> Y = AB+AB Y = ADB

This gate has ligh output if and only if its both inputs are some and its output is low if injut are different. Truth table for KHOR gate

il shown in table

A	B	ABB
0	D	1
O	- 8	0
1	D	0
l	l	1