CURRICULUM VITAE FOR DI WU

Homepage: diwu1990.github.io Phone: +1 608-886-2103 E-mail: di.wu@ece.wisc.edu

RESEARCH INTEREST

Low Power Computer Architecture, Neural Network Optimization

EDUCATION

- Sep 2017 Now Ph.D Student in Department of ECE at University of Wisconsin–Madison, USA
 - Advisor: Joshua San Miguel; GPA: 3.82
- Sep 2012 Jan 2015 M.E. in IC Engineering at Fudan University, China
 - Academic Ranking: 1/67; GPA Ranking: 3/67

Sep 2007 – Jun 2012 B.S. in Micro-Electronics at Fudan University, China

HONOR

Jan 2021	uGEMM (ISCA'20) selected in IEEE Micro Top Picks for 2020
May 2020	Gerald Holdridge Outstanding Teaching Assistant Awards from UW-Madison
Jun 2019	Chancellor's Opportunity Fellowship (COF) from UW–Madison
Apr 2019	ASPLOS 2019 SRC Grant from ACM ASPLOS 2019, Providence, RI
Mar 2019	Student Research Travel Grant-Conference from UW-Madison
Mar 2019	Student Research Competition (SRC) Candidate in ACM ASPLOS 2019, Providence, RI
Mar 2019	Finalist in Qualcomm Innovation Fellowship 2019, UW-Madison
Mar 2019	Winner in Foxconn SmartCity Competition 2019, UW-Madison
Feb 2019	Winner of Student Travel Grant in ACM ASPLOS 2019, Providence, RI
Oct 2018	The Hiran Mayukh Award on Computer Architecture Affiliate Meeting 2018, UW–Madison
Sep 2015	Excellent New Employee Prize in Hisilicon Technologies Co., Ltd
Mar 2014	National Scholarship for Excellent Graduate Student of Fudan University $(1/67)$
Sep 2007	Third Prize Scholarship for Excellent Freshman of Fudan University (3/45)
Jun 2007	Ranking 88/450,000 in National College Entrance Examination in Anhui Province, China

PUBLICATION

Journal:

- **J4. D. Wu**, J. Li, R. Yin, H. Hsiao, Y. Kim and J. San Miguel, "uGEMM: Unary Computing for GEMM Applications," in *IEEE Micro*, 2021.
- **J3. D. Wu**, R. Yin and J. San Miguel, "In-Stream Correlation-Based Division and Bit-Inserting Square Root in Stochastic Computing", in *IEEE Design & Test*, 2021.
- **J2. D. Wu**, Y. Chen, Q. Zhang, Y. Ueng and X. Zeng, "Strategies for Reducing Decoding Cycles in Stochastic LDPC Decoders," in *TCASII*, 2016.
- **J1.** Y. Chen, Q. Zhang, **D. Wu**, C. Zhou and X. Zeng, "An Efficient Multirate LDPC-CC Decoder With a Layered Decoding Algorithm for the IEEE 1901 Standard," in *TCASII*, 2014.

Conference:

C12. D. Wu, etc., "uSystolic: Byte-Crawling Unary Systolic Array," under review.

- **C11.** V. Popescu, A. Venigalla, **D. Wu**, R. Schreiber, "Representation range needs for 16-bit neural network training," *under review*.
- **C10. D. Wu**, etc., "UNO: Virtualizing and Unifying Nonlinear Operations for Emerging Neural Networks," *under review*.
- **C9. D. Wu**, R. Yin and J. San Miguel, "Normalized Stability: A Cross-Level Design Metric for Early Termination in Stochastic Computing," in *ASP–DAC*, 2021.
- **C8. D. Wu**, J. Li, R. Yin, H. Hsiao, Y. Kim and J. San Miguel, "uGEMM: Unary Computing Architecture for GEMM Applications," in *ISCA*, 2020. *Selected to IEEE Micro Top Picks for 2020*.
- **C7.** Y. Kim, J. San Miguel, S. Behroozi, T. Chen, K. Lee, Y. Lee, J. Li, and **D. Wu**, "Approximate Hardware Techniques for Energy-Quality Scaling Across the System," in *ICEIC*, 2020. (Invited)
- **C6. D. Wu**, T. Chen, C. Chen, O. Ahia, J. San Miguel, M. Lipasti and Y. Kim, "SECO: A Scalable Accuracy Approximate Exponential Function Via Cross-Level Optimization," in *ISLPED*, 2019.
- **C5. D. Wu** and J. San Miguel, "In-Stream Stochastic Division and Square Root via Correlation," in *DAC*, 2019.
- **C4.** Q. Zhang, Y. Chen, **D. Wu**, X. Zeng and Y. Ueng, "Convergence-optimized variable node structure for stochastic LDPC decoder," in *ICASSP*, 2016.
- **C3.** Q. Zhang, Y. Chen, **D. Wu**, X. Zeng and Y. Ueng, "An area-efficient architecture for stochastic LDPC decoder," in *DSP*, 2015.
- **C2. D. Wu**, Y. C., Q. Zhang, L. Zheng, X. Zeng and Y. Ueng, "Latency-optimized stochastic LDPC decoder for high-throughput applications," in *ISCAS*, 2015.
- **C1. D. Wu**, Y. Chen, Y. Huang, Y. Ueng, L. Zheng and X. Zeng, "A high-throughput LDPC decoder for optical communication," in *ASICON*, 2013.

RESEARCH

Feb 2018 – Now Research Assistant in STACS Lab, Department of ECE, UW–Madison ⋄ Approximate Computing

- RAVEN: A Reconfigurable Architecture for Varying Emerging Neural Networks. (Qualcomm Innovation Fellowship 2019 Finalist)
 - Linear-nonlinear compatibility.
 - Dense-sparse compatibility. (*in progress*)
 - Task-aware resource partition. (in progress)
- Unified Nonlinear Operation (UNO) (under review)
 - Compatibility to nonlinearity using linear MAC.
 - Dynamic run-time accuracy-energy scaling using Horner's rule.
 - Accuracy validation on emerging DNNs, e.g. CapsNet, GCN and NMT.
 - Prototyping a UNO-based accelerator.
- Approximate Exponential Function (C6: ISLPED 2019)
 - Algorithm-level optimization for dynamic run-time accuracy-energy scaling.
 - Circuit-level error bound modeling static design-time accuracy-energy scaling.
 - Division simplification and multiplication skip.

Unary Computing [Website]

- General-purpose Simulator: Open-source UnarySim [Github] to simulate unary computing.
 - PyTorch as backbone.
 - Cycle-accurate simulation.
 - Encoding compatibility, i.e., both rate and temporal codings.
 - Metric-based early termination for stochastic computing. (C9: ASP-DAC 2021)

- Fully Streaming Unary Architecture
 - Unary GEMM Architecture (uGEMM). (C8: ISCA 2020; J4: IEEE Micro 2021 Top Pick Issue)
 - In-stream Division and Square Root. (C5: DAC 2019; J3: IEEE D&T 2020)
- Hybrid Unary-Binary Architecture
 - Unary Systolic Array (uSystolic). (under review)
- System-Level Performance Simulation
 - Support for holistic memory hierarchy.
 - Computing scheme awareness.
 - Flexibility for arbitrary computing kernel.
- Design Automation
 - End-to-end mapping from algorithm simulation to hardware implementation. (in progress)
- Stochastic CapsNet Architecture (ASPLOS 2019 SRC)
 - Nonlinear stochastic computing units.
 - Dataflow-level feedback loops.
 - Logic sharing.
- PIM-based Bitstream Generation
 - Design processing in memory (PIM) architecture for generating bitstreams in DRAM.
 - Model the proposed architecture with an in-house simulator.
 - Test the bitstream randomness with NIST SP 800-22 statistical test suit.

♦ Deep Learning

- Security Side of Homomorphic Inference
 - Successfully attack a DNN model using homomorphic encryption.
- Style Transfer for Medical Images
 - Modality transfer on medical images. [slides]
- Automatic Quantization Platform
 - Fast distribution-based fixed-point quantization for DNN.

Sep 2017 – Jan 2018 Research Assistant in WiCIL Lab, Department of ECE, UW–Madison ⋄ Hardware Architecture for Convolutional Neural Networks

- Sparse Neural Network
 - Resource estimation of a channel-level-pruned DNN.
 - Performance modeling for the DNN.

Aug 2012 – Jan 2015 State Key Laboratory of ASIC and System, Fudan University

- ♦ High Throughput Low-Density Parity-Check (LDPC) Architecture Design
 - Latency Optimization in Stochastic LDPC decoding (C2: ISCAS 2015; J2: TCASII 2016)
 - Fast channel information initialization.
 - Bit-flipping for early termination.
 - Posterior information recovering for accurate decision.
 - Dual clock edge triggered LDPC decoding (C1: AISCON 2013)

INDUSTRIAL EXPERIENCE

May 2020 - Aug 2020 Research Intern in Cerebras Systems.

- Numerical Optimization for Deep Neural Network
 - Explore novel 16-bit fp format for training both CV and language models. (*under review*)
 - Simulate the training process on the real hardware with boundary casting in software simulator.

May 2019 – Aug 2019 Research Intern in Facebook Inc.

\$ Lossless Quantization for Video Model

- Post training quantization for ResNet-50 with Min-Max and distribution-based quantization.
- Perform quantization-aware training for ResNext-50 with channel-wise 3D convolution.

Mar 2015 – May 2017 Digitial Circuit Engineer in Hisilicon Technologies Co., Ltd.

Algorithm Analysis for SoC

- DSP resource estimation based on parallelism and ISA.
- Optimize task scheduling for both DSP and SoC.
- SoC bandwidth estimation.

Hardware Design for DSP

- Customize the interface between DSP and SoC using ARM AXI-4 protocol.
- Unit-level formal verification using the Cadence Jaspergold.
- Power analysis for DSP system.

♦ Design Automation

- Automate place-and-route.
- Automate CAD report analysis.
- ISA auto-encoding using discrete gradient descent.

SKILL.

Programming language: Verilog HDL, Python, C++, Perl, MATLAB

Hardware: Modelsim, Design Compiler, VCS, Verdi, Quartus Prime, Vivado

Software: PyTorch, TensorFlow, Caffe2

ACADEMIC ACTIVITY

Apr 2021	Guest Lecture on Unary Computing in ECE757 (Advanced Computer Architecture II),		
UW-Madison			
Jan 2021	Artifact Evaluation Committee for ASPLOS 2021		
Seq 2020	External Reviewer for HPCA 2021		
Sep 2020	Teaching Assistant for ECE454 (Mobile Computing Lab), UW–Madison		

Feb 2020 Guest Lecture on Introduction to Unary Computing in ECE757 (Advanced Computer Architecture II), UW–Madison

Jan 2020	Teaching A	Assistant for ECE5	554 (Digital C	ircuit Lab),	UW–Madison
----------	------------	---------------------------	----------------	--------------	------------

Jan 2020 External Reviewer for ISCA 2020

Jan 2020 External Reviewer for DAC 2020

Jan 2020 Artifact Evaluation Committee for ASPLOS 2020

Seq 2019 Teaching Assistant for ECE554 (Digital Circuit Lab), UW–Madison

Apr 2019 External Reviewer for MICRO 2019

Apr 2019 ASPLOS 2019 attendee in Providence, RI, USA

Mar 2019 Guest Lecture on Deep Neural Network and Stochastic Computing in ECE752 (Advanced Computer Architecture I), UW–Madison

Feb 2019 External Reviewer for ISCA 2019

Jan 2019 Research Assistant with Prof. Joshua San Miguel

Jan 2019 Teaching Assistant for ECE554 (Digital Circuit Lab), UW–Madison

Seq 2018 Teaching Assistant for ECE552 (Introduction to Computer Architecture) and ECE554 (Digital Circuit Lab), UW–Madison

Jan 2018 External Reviewer for DAC 2018 Seq 2017 Research Assistant in WiCIL

NON-ACADEMIC ACTIVITY

Nov 2011	Campus Computer Gaming Champion of DOTA in Fudan University
May 2010	Volunteer for EXPO 2010 in Shanghai
Mar 2010	Excellent Student Leader for Excellent Student Union Leader of Fudan University
Sep 2009	Minister of Sports in the Student Union of Fudan University
2009,10,12	Campus Basketball Champion in Zhangjiang Campus of Fudan University
May 2008	Volunteer for helping disabled students of Guanxin School in Shanghai