תורת הקבוצות – תרגיל בית מס' 13 – פתרון חלקי

.1

- א) יהיו $y_3 \in Y$ כך ש- $y_1 < y_2 < y_3$ כך ש- $y_1 < y_3 < y_2$ ער היוע $y_1 < y_3 < y_2$ נניח $y_1 < y_3 < y_2$ איזומורפיזם. הפונקציה f היא על, לכן קיימים $f(x_2) = y_2 < y_1$ ו- $f(x_2) = y_2 < y_1$ כך ש- $f(x_1) = y_1 < y_2$ ב $f(x_1) = y_1 < y_1$ (כי $f(x_2) = y_1 < y_2 < y_1 < y_2$ בפופה, לכן קיים $f(x_1) = y_1 < y_1 < y_2$ נסמן: $f(x_2) = y_1 < y_2 < y_1 < y_2 < y_2 < y_1 < y_2 < y_2 < y_2 < y_1 < y_2 < y_2 < y_2 < y_2 < y_2 < y_1 < y_2 <$
 - \mathbb{Z} ב) כן, תוך שימוש בפונקציה חח"ע ועל בין \mathbb{Z} ו-
- ג) לא, כי ביחס טוב לכל איבר (פרט לאחרון) יש עוקב מיידי. (יש רק מקרה טריוויאלי אחד של סדר טוב צפוף: אורדינל 1).

2

- א) איזומורפית ל- $\mathbb{Z}\times\mathbb{Z}$: ב- $\mathbb{Z}\times\mathbb{Z}$ ניתן למצוא 3 אברים כך שבין כל שניים מהם יש אינסוף איברים, וב- $\mathbb{Z}+\mathbb{Z}$ לא.
 - ב) בדומה לסעיף הקודם: $\mathbb{Z} \times \mathbb{Z}$: בדומה לסעיף הקודם.
- ג) $\mathbb{Z} \times \mathbb{N}$ לא איזומורפית ל- $\mathbb{Z} \times \mathbb{Z}$: ב- $\mathbb{Z} \times \mathbb{Z}$ ניתן למצוא איבר כך שלפניו יש אינסוף איברים שבין כל שניים מהם יש אינסוף איברים, וב- $\mathbb{Z} \times \mathbb{Z}$ לא.
 - $\mathbb{Z} \times \mathbb{Q}$ לא צפופה, לכן $\mathbb{Z} \times \mathbb{Q}$ היא זאת שאיזומורפית ל- $\mathbb{Q} \times \mathbb{Z}$.3

.4

- X אם X קבוצה ו- R יחס סדר טוב בה כך שגם R^{-1} סדר טוב, אז א קבוצה סופית. הטענה נכונה.
- X- נניח R וגם R^{-1} הם יחסי סדר טוב ב- R ונניח בדרך השלילה ש- R קבוצה אינסופית.

יהי a_{n+1} גגדיר גדיר $n\in\mathbb{N}$ לכל R לפי סדר A_1 להיות מידר a_n איבר ראשון של A_n לפי סדר A_n . זה אפשרי כי אם מגיעים בסדרה העוקב המיידי של A_n של A_n של A_n הפאר של A_n הפאר אומר של A_n אומר של A_n של סופית. הסדרה אינסופית עולה לפי סדר A_n ולכן בקבוצה A_n הוא יחס סדר איבר ראשון לפי סדר A_n זאת סתירה לכך שגם A_n הוא יחס סדר

טוב (ניתן גם להגיד: הסדרה $\{a_n\}_{n\in\mathbb{N}}$ היא סדרה אינסופית יורדת לפי סדר R^{-1} אינו יחס סדר טוב).

.5

- א) כן: ₪.
- ב) לא, כי ב- $\omega+1$ יש איבר ללא קודם מיידי.
 - ג) כן.
 - . $\{m-1/n\}_{m,n\in\mathbb{N}}$: כן: (ד
 - ה) כן, כי א שקולת עצמה ל- ₪.
 - ו) כן, כי \mathbb{Z} שקולת עצמה ל- \mathbb{Q} .
- ז) כן. בוחרים $x_0 \in X$ כלשהו, לכל $n \in \mathbb{N}$ מגדירים $x_0 \in X$ כלשהו מיבר כלשהו x_{-n-1} ו- x_{-n-1} בוחרים x_{-n-1} ו- x_{-n-1} להיות איבר כלשהו שקטן מ- x_{-n-1} הפונקציה $f(a) = x_a$ המוגדרת ע"י $f(a) = x_a$ היא איזומורפיזם.

6. השווה את האורדינלים הבאים:

$$2 \cdot (\omega + 3) = (1+1) \cdot (\omega + 3) = 1 \cdot (\omega + 3) + 1 \cdot (\omega + 3) = \omega + 3 + \omega + 3 = \omega + (3+\omega) + 3 = \omega + \omega + 3 = 2 \cdot \omega + 3$$
$$2 \cdot (3+\omega) = 2 \cdot \omega$$

.
$$3+\omega\cdot 2 < 3+2\cdot\omega = 2\cdot(3+\omega) < 2\cdot\omega + 3 = 2\cdot(\omega+3)$$
 לכן: