Chapitre VIII. Lentilles et le modèle de l'oeil.

Attendus du chapitre

- Caractériser les foyers d'une lentille mince convergente à l'aide du modèle du rayon lumineux.
- Utiliser le modèle de rayon lumineux pour déterminer graphiquement la position, la taille et le sens de l'image réelle d'un objet plan réel donnée par une lentille mince convergente.
- Définir et déterminer géométriquement un grandissement.
- Modéliser l'oeil.
- Produire et caractériser l'image réelle d'un objet plan réel formée par une lentille mince convergente.
- Capacité mathématique : utiliser le théorème de Thalès.

Les lentilles.

I.1 Définition

Une lentille est un milieu transparent limité par deux surfaces S₁ et S₂ dont au moins une n'est pas plane.

I.2 Deux types de lentilles

On distingue deux types de lentilles minces :

1.3 Modèle de la lentille mince convergente

Une lentille est dite mince si son épaisseur « e » est très petite devant les rayons de courbure R_1 et R_2 des surfaces sphériques de centres C_1 et C_2 .

Le modèle d'une lentille mince convergente néglige l'épaisseur « e » de la lentille.

- La partie centrale se réduit donc à un point appelé de la lentille noté O.
- L'...... de la lentille noté Δ est la droite perpendiculaire à la lentille passant par O. C'est l'axe de symétrie de la lentille.

Une lentille mince convergente est symbolisée par une verticale de centre O. On lui associe deux foyers :

- Son F' : point de convergence sur l'axe optique d'un faisceau incident de lumière à l'axe optique.

Remarque: Une lentille est souvent caractérisée par sa vergence en dioptres : $V = \frac{1}{f'}$

II. Image d'un objet par une lentille mince convergente

II.1 Construction de l'image d'un objet réel

Un point objet est le point de croisement de rayons lumineux qui arrivent sur la lentille.

Un <u>point image</u> est le point de croisement des rayons lumineux qui émergent de la lentille. A chaque point objet correspond un point image et un seul.

Un objet plan droit AB perpendiculaire à l'axe optique est situé à gauche du foyer objet F. Une lentille mince convergente forme son sur un écran.

On construit graphiquement cette image à partir de deux rayons particuliers parmi les trois suivants :

- a. Le rayon issu de B passant par O n'est pas;
- b. Le rayon issu de B passant par le foyer objet F émerge de la lentille à l'axe optique ;
- c. Le rayon issu de B parallèle à l'axe optique émerge de la lentille en par le foyer image F'.

II.2 Grandissement

Le grandissent, noté γ , est le rapport entre la talle de l'image A'B' et la taille de l'objet AB : $\gamma = \frac{A'B'}{AB}$

Le grandissement n'a pas d'unité. Il est inférieur à 1 si l'image est plus petite que l'objet et supérieur à 1 dans le cas contraire. Le grandissement s'exprime aussi à l'aide des égalités obtenues par l'application du théorème de Thalès :

- Si l'image est dans le **même sens** que l'objet : $\gamma = \frac{\mathsf{A'B'}}{\mathsf{AB}}$
- Si l'image et l'objet sont de **sens opposés** : $\gamma = -\frac{A'B'}{AB}$.

Point maths. Théorème de Thalès.

Les côtés de deux triangles semblables ADE et ABC ont des longueurs proportionnelles.

Les triangles ABC et ADE sont semblables.

Théorème de Thales : Si les droites (AB) et (AC) sont sécantes en A et AB AC BC

les droites (BC) et (DE) sont parallèles alors : $\frac{AB}{AD} = \frac{AC}{AE} = \frac{BC}{DE}$

Exemple : Exprimer le grandissement en fonction de OA' et OA et après en fonction de OB' et OB. Utiliser le théorème de Thalès.

III. L'oeil et sa modélisation

III.1 L'oeil réel

L'oeil réel est un récepteur de lumière. Il est notamment constitué de :

- L'iris. C'est la membrane circulaire, colorée de l'oeil. Elle est percée en son centre d'un orifice : la pupille. En se dilatant ou en se contractant, l'iris contrôle la quantité de lumière qui pénètre dans l'oeil.
- L'ensemble **cornée-cristallin** (milieux transparents) qui serve à former l'image de l'objet sur la **rétine**.
- La **rétine** est la fine membrane qui tapisse le fond de l'oeil et sur laquelle se forment les images.

Coupe horizontale d'un oeil réel

III.2 Modèle de l'oeil réduit

L'étude optique de ce système peut être simplifiée en utilisant un modèle : le modèle de l'oeil réduit.

	Oeil réel	Modèle de l'oeil réduit	
Limitation de la lumière pénétrant dans l'oeil			
Système optique			
Lieu de formation de l'image			Modèle de l'oeil réduit

Dans un oeil réel la distance « d » entre le cristallin et la rétine est Pour obtenir une image nette, l'image doit se former sur la quelle que soit la distance entre l'objet et l'oeil.

Pour y parvenir, l'oeil modifie la de son cristallin, c'est le phénomène d'accommodation.