U))

UNIVERSIDADE DA BEIRA INTERIOR

Departamento de Matemática

Unidade Curricular: Cálculo II 1.º ciclo: Engenharia Informática Data: 26 de Abril 2023 Duração da Prova: 2h

1.ª Frequência

ATENÇÃO: Apresente na sua folha de teste todos os cálculos e justificações.

1. Seja $f: D \subset \mathbb{R}^2 \to \mathbb{R}$ definida por $f(x,y) = \sqrt{9 - x^2 - y^2} + \ln(5 - y^2)$.

(a) Determine e esboce o domínio D da função f.

(b) Defina o interior de D e conclua se D é aberto.

(c) Determine $\nabla f(1,2)$ (vector gradiente de f em (1,2)).

(d) Determine o contradomínio da função h definida por $h(x,y) = \ln(5-y^2)$.

2. Diga, justificando, se são verdadeiras ou falsas as seguintes afirmações:

- (a) A curva em \mathbb{R}^2 definida por $x^2+y^2=1$ é uma curva de nível da função f dada por $f(x,y)=x^2+y^2+4.$
- (b) A superfície em \mathbb{R}^3 definida por $x^2+y^2=3$ é a superfície de nível 4 da função g dada por $g(x,y,z)=x^2+y^2+z^2+1.$
- (c) Seja $f: \mathbb{R}^2 \to \mathbb{R}$ tal que $|f(x,y)| \leq \sqrt{x^2 + y^2}$. Todos os limites direccionais da função f, no ponto (0,0), existem e são iguais a 0.
- (d) Não existe $\lim_{(x,y)\to(0,0)} \frac{2y^2}{x^4+y^2}$.
- (e) Seja \vec{u} um vector unitário em \mathbb{R}^2 . Se $f(x,y) = \sin x + \sin y$ então a derivada direccional $D_{\vec{u}}f$ verifica $-\sqrt{2} \le D_{\vec{u}}f(x,y) \le \sqrt{2}$, para todo o $(x,y) \in \mathbb{R}^2$.
- 3. Mostre que a função $g:\mathbb{R}^2 \to \mathbb{R}$ definida por

$$g(x,y) = \begin{cases} \frac{x^2 \sin y}{x^2 + y^2} & \text{se} \quad (x,y) \neq (0,0) \\ 0 & \text{se} \quad (x,y) = (0,0). \end{cases}$$

é contínua em (0,0).

- 4. Escreva as equações
 - (a) do plano tangente
 - (b) da recta normal

à superfície dada por sen(xyz) = x + 2y + 3z no ponto $P_0 = (2, -1, 0)$.

- 5. Se $v = x^2 \operatorname{tg}(3y) + ye^{xy}$, onde x = s + 2t e y = st, use a Regra da Cadeia para encontrar $\frac{\partial v}{\partial s}$ quando s = 0 e t = 1.
- 6. Determine e classifique os pontos críticos da função definida por

$$f(x,y) = \frac{x^3}{3} + \frac{y^2}{2} + 2xy + 5x + y .$$