1 Lezione del 21-11-24

1.1 Analisi di circuiti aperiodici

Finora abbiamo studiato circuiti in **corrente continua** e in **regime sinusoidale**. Adesso vedremo come studiare circuiti dove le forme d'onda dei generatori sono arbitrari.

1.1.1 Circuito RL

disegno Poniamo un circuito formato da un resistore in serie a un induttore, dove il generatore di tensione ha forma d'onda:

$$e(t) = \begin{cases} E_0, & t < 0\\ 2E_0, & t \ge 0 \end{cases}$$

Nell'intervallo negativo possiamo assumere che il circuito sia rimasto a E_0 costante per un tempo tale da poterlo studiare nello stato di equilibrio. Cioè, se cercavamo i(t), avremo semplicemente:

$$i(t) = \frac{E_0}{R}, \quad t < 0$$

Allo stesso modo, per tempi t >> 0, quindi con $t \to \infty$, potremo immaginare che il circito si trova nuovamente allo stato di equilibrio, cioè:

$$i(t) = \frac{2E_0}{R} \quad t >> 0$$

La domanda è quindi come *varia* la corrente i(t) nell'intervallo immediatamente $t \ge 0$. Chiamiamo il comportamento della corrente in questa fase **transitorio**.

Potremo applicare la prima legge di Kirchoff:

$$-2E_0 + R \cdot i(t) + L \frac{di(t)}{dt} = 0$$

Questa è un'equazione differenziale del primo ordine, che sappiamo ha soluzione omogenea e particolare:

$$i(t) = i_o(t) + i_p(t)$$

Risolvendo per $i_o(t)$:

$$R \cdot i_o(t) + L \frac{d i_o(t)}{dt} = 0, \quad i_o(t) = Ae^{2t}$$

$$R\lambda^0 + L\lambda^1 = 0 \Rightarrow \lambda = -\frac{R}{L}$$

da cui:

$$i_o(t) = Ae^{-\frac{R}{L}t}$$

Troviamo quindi $i_p(t)$:

$$i_p(t) = I, \quad -2E_0 + RI = 0 \Rightarrow I = i_p(t) = 2\frac{E_0}{R}$$

riguarda i conti

Otteniamo quindi la soluzione:

$$i(t) = i_o(t) + i_p(t) = 2\frac{E_0}{R} + Ae^{-\frac{R}{l}t}$$

Imponiamo la condizione iniziale, cioè $i(t)=\frac{E_0}{R}$ per t<0:

$$i(0) = \frac{E_0}{R} = \frac{2E_0}{R} + A \Rightarrow A = \frac{E_0}{R} - \frac{2E_0}{R} = -\frac{E_0}{R}$$

da cui:

$$i(t) = \frac{2E_0}{R} - \frac{E_0}{R}e^{-\frac{R}{L}t} = \frac{E_0}{R}\left(2 - e^{-\frac{R}{L}t}\right)$$

fai grafici

Questa procedura, sebbene sia completamente generale, è difficilmente applicabile su circuiti più complessi. Conviene quindi spostarsi in un nuovo dominio, seguendo un procedimento simile a quello che avevamo seguito usando i fasori.

1.2 Trasformata di Laplace

Rappresentato un segnale come una funzione f(t), la **trasformata di Laplace** viene indicata come:

$$F(s) = \mathcal{L}\left\{f(t)\right\} = \int_{0^{-}}^{+\infty} f(t)e^{-st} dt$$

Possiamo fare una prova: scelto $f(t)=e^{-at}$, si ha: eh si ha che luca se la studia e poi fa gli appunti