Matematiikan ja tilastotieteen laitos Topologia I Korvaava kurssikoe 15.3.2010

Huom. Tenttijällä saa olla A4-arkin kokoinen tiivistelmä mukanaan tentissä.

1. Osoita, että puoliavaruus

$$A = \{(x, y, z) \in \mathbf{R}^3 \mid x + y + z > 0\}$$

on avoin joukko \mathbb{R}^3 :ssa.

2. Osoita, että yhtälö

$$d(x,y) = |e^{-x} - e^{-y}|, \text{ kun } x, y \in \mathbf{R},$$

määrittelee metriikan joukossa ${f R}$.

3. Tarkastellaan funktioavaruutta $E=C\big([0,1],\mathbf{R}\big)=\{$ jatkuvat funktio
t $f:[0,1]\to\mathbf{R}\}$ ja sen osajoukkoa

$$A = \{ f_n : [0,1] \to \mathbf{R} \mid f_n(x) = \sqrt[n]{x}, \ n \in \mathbf{N} \}.$$

Merkitään vakiofunktiota jossa $x\mapsto 1$ kaikilla x, lyhyesti $\mathbf{1}$:llä, jolloin $\mathbf{1}\in E$.

- (a) Määrää etäisyys $d(\mathbf{1},A)$, kun E:ssä on supnormin $||f||_{\infty} = \sup\{|f(x)| : x \in [0,1]\}$ luoma metriikkaa d. Päteekö $\mathbf{1} \in \bar{A}$ (\bar{A} on A:n sulkeuma), kun käytetään tätä metriikkaa? Perustelu.
- (b) Etäisyys $e(\mathbf{1},A)$, kun E:ssä käytetään L_2 -normin $||f||_2 = \left(\int_0^1 f(x)^2 dx\right)^{1/2}$ luomaa metriikkaa e.
- 4. Olkoon F niiden \mathbb{R}^2 :n pisteiden (x,y) joukko, joilla pätee

$$\sin(n(x+y)) \le xy$$
 kaikilla $n \in \mathbf{N}$.

Osoita, että F on suljettu joukko ${\bf R}^2$:ssa. Pidetään tunnettuna, että funktio sin : ${\bf R} \to {\bf R}$ on jatkuva.