Chapitre 2 **Propriétés des Fluides**

2.1 INTRODUCTION

- ◆ Caractéristique d'un système = propriété (pression, température, volume, masse, viscosité, module d'élasticité, ...)
- → Propriétés peuvent être extensives ou intensives
- → Propriétés intensives sont indépendantes de la masse (pression, masse volumique, température)
- → Propriétés extensives dépendent de la grandeur du système (masse, volume)
- → Propriétés extensives par unité de masse = propriétés spécifiques (v = V/m, e = E/m).

2.2 MILIEU CONTINU

- Comme les solides, les fluides ont 3 propriétés de base : (1) grand nombre de molécules,
 (2) molécules possèdent un mouvement thermique aléatoire, (3) existence de force moléculaire entre les molécules
- → Fluide = milieu continu : on assume que le fluide est composé des particules et non des molécules ⇒ toutes les propriétés des particules du fluide sont des fonctions continues de l'espace et du temps (x, y, z, t).

Masse volumique (ρ) & poids spécifique (γ)

$$\rho = \frac{m}{V} \qquad \rho = \lim_{\Delta V \to 0} \frac{\Delta m}{\Delta V} = \frac{\mathrm{d}m}{\mathrm{d}V}$$

$$\gamma = \frac{G}{V} = \frac{mg}{V} = \rho g$$
 $\gamma = \lim_{\Delta V \to 0} \frac{\Delta G}{\Delta V} = \frac{dG}{dV}$

- → Viscosité : résistance du fluide à s'écouler suite à son frottement interne
 - Loi de viscosité de Newton (distribution de vitesse linéaire)

$$\tau = \mu \frac{v_0}{h}$$

μ : viscosité dynamique (Pa.s)

 τ : contrainte de cisaillement

PROPRIÉTÉS DES FLUIDES 2.3

- → Viscosité : résistance du fluide à s'écouler suite à son frottement interne
 - Loi de viscosité de Newton (distribution de vitesse non linéaire)

$$\tau = \pm \mu \frac{\mathrm{d}u}{\mathrm{d}y}$$

 $\frac{du}{dy}$: gradient de vitesse (taux de cisaillement)

• Viscosité cinématique (m²/s): $v = \frac{\mu}{\rho}$

$$v = \frac{\mu}{\rho}$$

Exemple 1 Une plaque de 1 cm de hauteur, section de 40 x 45 cm² et 5 kg de masse; vitesse de la plaque est 1 m/s et épaisseur de l'huile 1 mm. Calculer la viscosité dynamique de l'huile si gradient de vitesse est linéaire.

→ Relations entre viscosité et température (relations empiriques)

$$\mu = \mu_0 e^{-\lambda(t-t_0)},$$

 μ_0 = viscosité à t_0 , λ = coefficient reflétant taux de variation de viscosité avec température

$$\mu = \mu_0 \frac{1 + \frac{C}{273}}{1 + \frac{C}{T}} \sqrt{\frac{T}{273}}$$

 μ_0 = viscosité à 0 °C, T température en K, C une constante

Gas	Air	Hydrogen	Oxygen	Nitrogen	Steam	Carbon dioxide	Carbon monoxide
C	122	83	110	102	961	260	100

ullet Fluide idéal : fluide dans lequel ii n'y a pas de frottement $\Rightarrow \mu =
u = 0$

Valeurs de viscosité de l'eau et de l'air

Temp. t (°C)	Water		Air	
	μ (Pa s)	υ (m ² /s)	μ (Pa s)	$v \text{ (m}^2/\text{s)}$
0	1.792×10^{-3}	1.792×10^{-6}	0.0172×10^{-3}	13.7×10^{-6}
10	1.308×10^{-3}	1.308×10^{-6}	0.0178×10^{-3}	14.7×10^{-6}
20	1.005×10^{-3}	1.005×10^{-6}	0.0183×10^{-3}	15.3×10^{-6}
30	0.801×10^{-3}	0.801×10^{-6}	0.0187×10^{-3}	16.6×10^{-6}
40	0.656×10^{-3}	0.661×10^{-6}	0.0192×10^{-3}	17.6×10^{-6}
50	0.549×10^{-3}	0.556×10^{-6}	0.0196×10^{-3}	18.6×10^{-6}
60	0.469×10^{-3}	0.477×10^{-6}	0.0201×10^{-3}	19.6×10^{-6}
70	0.406×10^{-3}	0.415×10^{-6}	0.0204×10^{-3}	20.6×10^{-6}
80	0.357×10^{-3}	0.367×10^{-6}	0.0210×10^{-3}	21.7×10^{-6}
90	0.317×10^{-3}	0.328×10^{-6}	0.0216×10^{-3}	22.9×10^{-6}
100	0.284×10^{-3}	0.296×10^{-6}	0.0218×10^{-3}	23.6×10^{-6}

→ Compressibilité et expansibilité

Masse volumique d'un fluide varie en fonction de température & pression \Rightarrow volume occupé par un fluide varie en fonction de température et pression.

 Coefficient de compression : variation relative de volume causée par changement de pression à température constante

$$C_L = -\frac{\frac{\mathrm{d}V}{V}}{\mathrm{d}p} = -\frac{1}{V}\frac{\mathrm{d}V}{\mathrm{d}p}\,\mathrm{m}^2/\mathrm{N}$$

$$C_L = \frac{1}{\rho} \frac{\mathrm{d}\rho}{\mathrm{d}p} \,\mathrm{m}^2 / \mathrm{N},$$

– Module E = inverse du coefficient de compression

$$E = \frac{1}{C_L} N/m^2$$

Expansibilité : variation relative de volume suite au changement de température à pression constante

$$\beta_t = \frac{\frac{\mathrm{d}V}{V}}{\mathrm{d}t} = \frac{1}{V} \frac{\mathrm{d}V}{\mathrm{d}t} 1/^{\circ} \mathrm{C}$$

Valeurs d'expansibilité de l'eau (faibles valeurs)

Pressure/MPa	Temperature (°C)					
	1-10	10-20	40-50	60-70	90-100	
0.1	0.14×10^{-4}	1.50×10^{-4}	4.22×10^{-4}	5.56×10^{-4}	7.19×10^{-4}	
10	0.43×10^{-4}	1.65×10^{-4}	4.22×10^{-4}	5.48×10^{-4}	7.04×10^{-4}	
20	0.72×10^{-4}	1.83×10^{-4}	4.26×10^{-4}	5.39×10^{-4}	_	
50	1.49×10^{-4}	2.36×10^{-4}	4.29×10^{-4}	5.23×10^{-4}	6.61×10^{-4}	
90	2.29×10^{-4}	2.89×10^{-4}	4.37×10^{-4}	5.14×10^{-4}	6.21×10^{-4}	

Gaz : volume gaz change énormément en fonction de température et pression.

$$pV = mRT$$
 or $p = \rho RT$,

p = pression absolue, R = R_u/M , R = constante du gaz, R_u = constante universelle des gaz

$$R_{II} = 8.314 \text{ kJ/kmol.K}$$

$$T(K) = T(^{\circ}C) + 273$$

Masse molaire, constante de gaz des quelques substances

Molar mass, gas constant, and ideal-gas specfic heats of some substances

	Molar Mass	Gas Constant	Specific Heat Data at 25°C		
Substance	M, kg/kmol	R, kJ/kg · K*	c _p , kJ/kg ⋅ K	c _v , kJ/kg ⋅ K	$k = c_p/c_v$
Air	28.97	0.2870	1.005	0.7180	1.400
Ammonia, NH ₃	17.03	0.4882	2.093	1.605	1.304
Argon, Ar	39.95	0.2081	0.5203	0.3122	1.667
Bromine, Br ₂	159.81	0.05202	0.2253	0.1732	1.300
Isobutane, C ₄ H ₁₀	58.12	0.1430	1.663	1.520	1.094
n-Butane, C ₄ H ₁₀	58.12	0.1430	1.694	1.551	1.092
Carbon dioxide, CO ₂	44.01	0.1889	0.8439	0.6550	1.288
Carbon monoxide, CO	28.01	0.2968	1.039	0.7417	1.400
Chlorine, Cl ₂	70.905	0.1173	0.4781	0.3608	1.325
Chlorodifluoromethane (R-22), CHCIF ₂	86.47	0.09615	0.6496	0.5535	1.174
Ethane, C ₂ H ₆	30.070	0.2765	1.744	1.468	1.188
Ethylene, C ₂ H ₄	28.054	0.2964	1.527	1.231	1.241
Fluorine, F ₂	38.00	0.2187	0.8237	0.6050	1.362
Helium, He	4.003	2.077	5.193	3.116	1.667
n-Heptane, C ₇ H ₁₆	100.20	0.08297	1.649	1.566	1.053
n-Hexane, C ₆ H ₁₄	86.18	0.09647	1.654	1.558	1.062
Hydrogen, H ₂	2.016	4.124	14.30	10.18	1.405
Krypton, Kr	83.80	0.09921	0.2480	0.1488	1.667
Methane, CH ₄	16.04	0.5182	2.226	1.708	1.303
Neon, Ne	20.183	0.4119	1.030	0.6180	1.667
Nitrogen, N ₂	28.01	0.2968	1.040	0.7429	1.400
Nitric oxide, NO	30.006	0.2771	0.9992	0.7221	1.384
Nitrogen dioxide, NO ₂	46.006	0.1889	0.8060	0.6171	1.306
Oxygen, O ₂	32.00	0.2598	0.9180	0.6582	1.395
n-Pentane, C ₅ H ₁₂	72.15	0.1152	1.664	1.549	1.074
Propane, C ₃ H ₈	44.097	0.1885	1.669	1.480	1.127
Propylene, C ₃ H ₆	42.08	0.1976	1.531	1.333	1.148
Steam, H ₂ O	18.015	0.4615	1.865	1.403	1.329
Sulfur dioxide, SO ₂	64.06	0.1298	0.6228	0.4930	1.263
Tetrachloromethane, CCI ₄	153.82	0.05405	0.5415	0.4875	1.111
Tetrafluoroethane (R-134a), C ₂ H ₂ F ₄	102.03	0.08149	0.8334	0.7519	1.108
Trifluoroethane (R-143a), C ₂ H ₃ F ₃	84.04	0.09893	0.9291	0.8302	1.119
Xenon, Xe	131.30	0.06332	0.1583	0.09499	1.667

Valeurs de module E de l'eau à température et pression donnée

Temp.	Pressure/MPa						
(°C)	0.5	1	2	4	8		
0	1.852×10^{9}	1.862×10^{9}	1.882×10^{9}	1.911×10^{9}	1.940×10^{9}		
5	1.891×10^{9}	1.911×10^{9}	1.931×10^{9}	1.970×10^{9}	2.030×10^{9}		
10	1.911×10^{9}	1.931×10^{9}	1.970×10^{9}	2.009×10^{9}	2.078×10^{9}		
15	1.931×10^{9}	1.960×10^{9}	1.985×10^{9}	2.048×10^{9}	2.127×10^{9}		
20	1.940×10^{9}	1.980×10^{9}	2.019×10^{9}	2.078×10^{9}	2.173×10^{9}		

Exemple 2 Condensation d'un liquide dans un récipient. À une pression de 10⁶ Pa, le volume du liquide est 1 L. Quand la pression passe à 2 x 10⁶ Pa, le volume du liquide devient 995 cm³. Trouver le module E.

Exemple 3 Déterminer la masse volumique, la densité (masse volumique relative) et la masse de l'air dans une salle de dimensions 4 m x 5 m x 6 m à 100 kPa et 25 °C.

→ Pression de vapeur & Cavitation

- Température à saturation (T_{sat}) : température à laquelle une substance change de phase à une pression donnée
- Pression à saturation (P_{sat}) : pression à laquelle une substance pure change de phase à une température donnée
- Pression de vapeur (P_v) d'une substance pure : pression exercée par sa vapeur en équilibre de phase avec son liquide à une température donnée $\Rightarrow P_v = P_{sat}$
- Pression partielle : pression d'un gaz ou de vapeur dans un mélange avec d'autres gaz
- Cavitation : bulles de vapeur (bulles de cavitation) forment des cavités dans le liquide génèrent des ondes d'extrêmes pressions (créent de l'érosion sur les pales de turbines)

Pression de vapeur & Cavitation

Pression à saturation ou pression de vapeur de l'eau à différentes températures

	Saturation
Temperature	Pressure
T, °C	P _{sat} , kPa
-10	0.260
-5	0.403
0	0.611
5	0.872
10	1.23
15	1.71
20	2.34
25	3.17
30	4.25
40	7.38
50	12.35
100	101.3 (1 atm)
150	475.8
200	1554
250	3973
300	8581

Exemple 4 Dans un système de distribution d'eau, la température de l'eau est 30 °C. Déterminer la pression minimale permise dans le système afin d'éviter la cavitation.

- → Tension superficielle
 - Tension superficielle :
 - Molécules de liquide sous la surface agissent les unes avec les autres au moyen des forces égales dans toutes les directions
 - Molécules près de la surface ont une forte attraction que celles sous la surface ⇒ tension donnée par :

$$T = \sigma L$$
,

 σ = tension superficielle (N/m), L = longueur

→ Tension superficielle

• Valeurs de tension superficielle de quelques liquides à 20 °C

Liquids	Surface tension σ (N/m)	Liquids	Surface tension σ (N/m)
Alcohol	0.0223	Water	0.0731
Benzene	0.0289	Mercury	
Carbon tetrachloride	0.0267	With air	0.5137
Kerosene	0.0233-0.0321	With water	0.3926
Lubricant	0.0350-0.0379	With vacuum	0.4857
Crude oil	0.0233-0.0379		

- → Tension superficielle
 - Capillarité :
 - Tension superficielle = base du phénomène de capillarité

- Équilibre des forces : $\pi d\sigma \cos\theta = \rho g h \pi d^2/4$
- Hauteur capillaire : $h = \frac{4\sigma \cos \theta}{\rho g d}$

- → Tension superficielle
 - Effets de tension superficielle sont négligeables dans plusieurs applications macroscopiques en ingénierie; mais plus importants dans applications microscopiques (études en nanotechnologies).