1N/FDLL 914/A/B / 916/A/B / 4148 / 4448

11-3/

THE PLACEMENT OF THE EXPANSION GAP HAS NO RELATIONSHIP TO THE LOCATION OF THE CATHODE TERMINAL

COLOR BAND MARKING				
DEVICE	1ST BAND	2ND BAND		
FDLL914	BLACK	BROWN		

| DLL1914 | BLACK | GRAY | FDLL1914B | BROWN | BLACK | FDLL1916B | BLACK | WHITE | FDLL1916B | BROWN | BROWN | FDLL14148 | BLACK | BROWN | BRO

High Conductance Fast Diode

Sourced from Process D3.

Absolute Maximum Ratings*

DO-35

TA = 25°C unless otherwise noted

Symbol	Parameter	Value	Units
W _{IV}	Working Inverse Voltage	75	V
Io	Average Rectified Current	200	mA
I _F	DC Forward Current	300	mA
İf	Recurrent Peak Forward Current	400	mA
İf(surge)	Peak Forward Surge Current Pulse width = 1.0 second Pulse width = 1.0 microsecond	1.0 4.0	A A
T _{stg}	Storage Temperature Range	-65 to +200	°C
T _J	Operating Junction Temperature	175	°C

^{*}These ratings are limiting values above which the serviceability of any semiconductor device may be impaired.

OTES

- 1) These ratings are based on a maximum junction temperature of 200 degrees C.
- 2) These are steady state limits. The factory should be consulted on applications involving pulsed or low duty cycle operations.

Thermal Characteristics

TA = 25°C unless otherwise noted

Symbol	Characteristic	Max	Units	
		1N/FDLL 914/A/B / 4148 / 4448		
P _D	Total Device Dissipation Derate above 25°C	500 3.33	mW mW/°C	
$R_{\theta JA}$	Thermal Resistance, Junction to Ambient	300	°C/W	

High Conductance Fast Diode

(continued)

Electrical Characteristics

TA = 25°C unless otherwise noted

Symbol	Parameter	Test Conditions	Min	Max	Units
B _V	Breakdown Voltage	$I_R = 100 \mu A$	100		V
		$I_R = 5.0 \mu\text{A}$	75		V
I _R	Reverse Current	$V_{R} = 20 \text{ V}$		25	nA
		$V_R = 20 \text{ V}, T_A = 150^{\circ}\text{C}$		50	μΑ
		$V_{R} = 75 \text{ V}$		5.0	μΑ
V _F	Forward Voltage 1N914B / 4448	$I_F = 5.0 \text{ mA}$	620	720	mV
	1N916B	$I_F = 5.0 \text{ mA}$	630	730	mV
	1N914 / 916 / 4148	$I_F = 10 \text{ mA}$		1.0	V
	1N914A / 916A	$I_F = 20 \text{ mA}$		1.0	V
	1N916B	$I_F = 30 \text{ mA}$		1.0	V
	1N914B / 4448	$I_F = 100 \text{ mA}$		1.0	V
C_{o}	Diode Capacitance				
	1N916/A/B / 4448	$V_R = 0$, $f = 1.0 \text{ MHz}$		2.0	pF
	1N914/A/B / 4148	$V_R = 0$, $f = 1.0 \text{ MHz}$		4.0	pF
T_RR	Reverse Recovery Time	$I_F = 10 \text{ mA}, V_R = 6.0 \text{ V } (60 \text{ mA}),$		4.0	nS
		$I_{rr} = 1.0 \text{ mA}, R_L = 100 \Omega$			

Typical Characteristics

REVERSE VOLTAGE vs REVERSE CURRENT BV - 1.0 to 100 uA

REVERSE CURRENT vs REVERSE VOLTAGE IR - 10 to 100 V

GENERAL RULE: The Reverse Current of a diode will approximately double for every ten (10) Degree C increase in Temperature

FORWARD VOLTAGE vs FORWARD CURRENT VF - 1 to 100 uA

FORWARD VOLTAGE vs FORWARD CURRENT VF - 0.1 to 100 mA

High Conductance Fast Diode

(continued)

Typical Characteristics (continued)

FORWARD VOLTAGE vs FORWARD CURRENT VF - 10 to 800 mA

VF - 0.01 - 20 mA (-40 to +65 Deg C) FORWARD VOLTAGE vs AMBIENT TEMPERATURE

CAPACITANCE vs REVERSE VOLTAGE VR = 0.0 to 15 V

REVERSE RECOVERY TIME vs REVERSE CURRENT

Average Rectified Current (Io) & Forward Current (I_F) versus Ambient Temperature (T_A)

POWER DERATING CURVE

