Future Intern as Data Analysis

Task 1

Task: Clean a dataset by removing missing values and outliers Solution:

Step:

1.Import packages and display train dataset and test dataset

2. Display data types

```
[ ] train_data.info()
  <<class 'pandas.core.frame.DataFrame'>
      RangeIndex: 891 entries, 0 to 890
      Data columns (total 12 columns):
                  Non-Null Count Dtype
      # Column
                     -----
      0 PassengerId 891 non-null int64
       1 Survived 891 non-null int64
       2 Pclass
                    891 non-null
                                 int64
                                 object
       3 Name
                    891 non-null
                    891 non-null
       4 Sex
                                 object
                    714 non-null
                                 float64
       6 SibSp
                 891 non-null int64
                    891 non-null
       8 Ticket
                 891 non-null
                                 obiect
                                  float64
                    891 non-null
       9 Fare
                   204 non-null
      10 Cabin
                                 object
      11 Embarked 889 non-null object
      dtypes: float64(2), int64(5), object(5)
      memory usage: 83.7+ KB
```

3. Get Summary Statistics for numerical column

4. Get the missing values in train dataset

5. Get missing values from train dataset in each column

6. Get missing values from test dataset in each column

```
✓ [ ] #sumarize missing values in each column
       test_data.isnull().sum()
  → PassengerId
       Pclass
       Name
                       0
       Sex
                       0
       Age
       SibSp
       Parch
       Ticket
       Fare
       Cabin
       Embarked
       dtype: int64
```

7. Create a box plot to visualize potential outliers for train dataset(Age)

8. Create a box plot to visualize potential outliers for test dataset (Age)

9. Create a box plot to visualize potential outliers for train dataset (Fare)

10. Create a box plot to visualize potential outliers for test dataset(Fare)

11. Replace the missing values with mean of the column

12. outlier

0

```
/ [ ] outliers=[]
        def detect_outliers(data):
          threshold=3
          mean = np.mean(data)
          std =np.std(data)
          for i in data:
            z_score= (i- mean)/std
           if np.abs(z_score) > threshold:
  outliers.append(y)
          return outliers
✓ [ ] from scipy import stats
        #calculate the z-score for a column
        z_scores = stats.zscore(train_data['Age'])
       \hbox{\tt\#identify outliers based on $z$-score thresgold}
       outlier_indices =(z_scores \gt 3 ) |(z_scores \lt -3)
/ [ ] cleaned_titanic_df = train_data[~outlier_indices]
/ [ ] plt.figure(figsize=(12,6))
       sns.boxplot(data = train_data['Age'])
       plt.xticks(rotation=45)
        plt.show()
 ₹
                                                                            0
          80
                                                                            0
                                                                            9
          70
          60
          50
       96 40
          30
          20
          10
```

Activate Windows

Go to Settings to activate Windows.