Guia 13 de logica: El algebra de Lindenbaum

November 5, 2024

Recordemos que dado un tipo τ , con S^{τ} denotamos el conjunto de las sentencias de tipo τ , es decir

$$S^{\tau} = \{ \varphi \in F^{\tau} : Li(\varphi) = \emptyset \}$$

Sea $T=(\Sigma,\tau)$ una teoria. Podemos definir la siguiente relacion binaria sobre S^{τ} :

$$\varphi \dashv \vdash_T \psi \text{ si y solo si } T \vdash (\varphi \leftrightarrow \psi)$$

Es decir

$$\dashv \vdash_T = \{ (\varphi, \psi) \in S^\tau : T \vdash (\varphi \leftrightarrow \psi) \}$$

Lemma 1 $\dashv\vdash_T$ es una relacion de equivalencia.

Proof. La relacion es reflexiva ya que $(\varphi \leftrightarrow \varphi)$ es un axioma logico y por lo tanto $((\varphi \leftrightarrow \varphi), AXIOMALOGICO)$ es una prueba formal de $(\varphi \leftrightarrow \varphi)$ en T. Veamos que es simetrica. Supongamos que $\varphi \dashv \vdash_T \psi$, es decir $T \vdash (\varphi \leftrightarrow \psi)$. Ya que $(\psi \leftrightarrow \varphi)$ se deduce de $(\varphi \leftrightarrow \psi)$ por la regla de commutatividad, (2) del Lema "Propiedades basicas de \vdash " de la Guia 12 nos dice que $T \vdash (\psi \leftrightarrow \varphi)$.

Ejercicio 1: Complete la prueba anterior probando que $\dashv\vdash_T$ es transitiva

Una sentencia φ se dice refutable en (Σ, τ) si $(\Sigma, \tau) \vdash \neg \varphi$.

Lemma 2 Dada una teoria $T = (\Sigma, \tau)$, se tiene que:

- (1) $\{\varphi \in S^{\tau} : \varphi \text{ es un teorema de } T\} \in S^{\tau}/\dashv \vdash_{T}$
- (2) $\{\varphi \in S^{\tau} : \varphi \text{ es refutable en } T\} \in S^{\tau}/\dashv \vdash_{T}$

Proof. Haremos la prueba de (2) y dejaremos la prueba de (1) como ejercicio. Sean φ, ψ refutables en T, veremos que $\varphi \dashv \vdash_T \psi$. Notese que

1.	φ	HIPOTESIS1
2.	$\neg \psi$	HIPOTESIS2
3.	$\neg \varphi$	AXIOMAPROPIO
4.	$(\varphi \wedge \neg \varphi)$	TESIS2CONJUNCIONINTRODUCCION(1,3)
5.	$\neg \psi \to (\varphi \land \neg \varphi)$	CONCLUSION
6.	ψ	TESIS1ABSURDO(5)
7.	$(\varphi \to \psi)$	CONCLUSION
8.	ψ	HIPOTESIS3
9.	$\neg \varphi$	HIPOTESIS4
10.	$\neg \psi$	AXIOMAPROPIO
11.	$(\psi \wedge \neg \psi)$	TESIS4CONJUNCIONINTRODUCCION(8, 10)
12.	$\neg \varphi \to (\psi \land \neg \psi)$	CONCLUSION
13.	arphi	TESIS3ABSURDO(12)
14.	$(\psi \to \varphi)$	CONCLUSION
15.	$(\varphi \leftrightarrow \psi)$	EQUIVALENCIAINTRODUCCION(7, 14)

justifica que $(\Sigma \cup \{\neg \varphi, \neg \psi\}, \tau) \vdash (\varphi \leftrightarrow \psi)$ lo cual por (1) del Lema "Propiedades basicas de \vdash " de la Guia 12 nos dice que $(\Sigma, \tau) \vdash (\varphi \leftrightarrow \psi)$, obteniendo que $\varphi \dashv \vdash_T \psi$. Para terminar de probar (2) faltaria ver que si φ es refutable en T y $\varphi \dashv \vdash_T \psi$, entonces ψ es refutable en T. Dejamos al lector la prueba.

Ejercicio 2: Pruebe (1) del lema anterior y complete la prueba de (2)

Dada una teoria $T=(\Sigma,\tau)$ y $\varphi\in S^{\tau}$, $[\varphi]_T$ denotara la clase de φ con respecto a la relacion de equivalencia $\dashv\vdash_T$. Definiremos sobre $S^{\tau}/\dashv\vdash_T$ las siguiente operacion binaria s^T :

$$[\varphi]_T \mathsf{s}^T [\psi]_T = [(\varphi \vee \psi)]_T$$

Una observacion importante es que para que la definicion anterior de la operacion s^T sea inambigua, debemos probar la siguiente propiedad

- Si
$$[\varphi]_T = [\varphi']_T$$
 y $[\psi]_T = [\psi']_T$ entonces $[(\varphi \lor \psi)]_T = [(\varphi' \lor \psi')]_T$

Es decir debemos probar que si $T \vdash (\varphi \leftrightarrow \varphi')$ y $T \vdash (\psi \leftrightarrow \psi')$, entonces $T \vdash ((\varphi \lor \psi) \leftrightarrow (\varphi' \lor \psi'))$. Pero esto sigue de (1) del Lema "Propiedades basicas de \vdash " de la Guia 12 ya que

1.	$(\varphi \leftrightarrow \varphi')$	AXIOMAPROPIO
2.	$(\psi \leftrightarrow \psi')$	AXIOMAPROPIO
3.	$((\varphi \lor \psi) \leftrightarrow (\varphi \lor \psi))$	AXIOMALOGICO
4.	$((\varphi \vee \psi) \leftrightarrow (\varphi' \vee \psi))$	REEMPLAZO(1,3)
5.	$((\varphi \lor \psi) \leftrightarrow (\varphi' \lor \psi'))$	REEMPLAZO(2,4)

atestigua que $(\Sigma \cup \{(\varphi \leftrightarrow \varphi'), (\psi \leftrightarrow \psi')\}, \tau) \vdash ((\varphi \lor \psi) \leftrightarrow (\varphi' \lor \psi'))$. En forma analoga se puede ver que las siguientes igualdades definen en forma inambigua una operacion binaria i^T sobre $S^{\tau}/\dashv\vdash_T$ y una operacion unaria c^T sobre $S^{\tau}/\dashv\vdash_T$:

$$[\varphi]_T i^T [\psi]_T = [(\varphi \wedge \psi)]_T$$

 $([\varphi]_T)^{\mathbf{c}^T} = [\neg \varphi]_T$

Dada una teoria $T=(\Sigma,\tau)$, denotemos con 1^T al conjunto $\{\varphi\in S^\tau:\varphi\text{ es un teorema de }T\}$ y con 0^T al conjunto $\{\varphi\in S^\tau:\varphi\text{ es refutable en }T\}$. Ya vimos en un lema anterior que 0^T y 1^T pertenecen a $S^\tau/\!\!\dashv\!\!\vdash_T$. Podemos enunciar ahora el siguiente resultado, inspirado en la idea clasica de Boole para el calculo proposicional.

Theorem 3 Sea $T = (\Sigma, \tau)$ una teoria. Entonces $(S^{\tau}/\dashv \vdash_T, \mathsf{s}^T, \mathsf{i}^T, \mathsf{c}^T, 0^T, 1^T)$ es un algebra de Boole.

Proof. Por definicion de algebra de Boole, debemos probar que cualesquiera sean $\varphi_1, \varphi_2, \varphi_3 \in S^{\tau}$, se cumplen las siguientes igualdades:

- (1) $[\varphi_1]_T \mathbf{i}^T [\varphi_1]_T = [\varphi_1]_T$
- $(2) [\varphi_1]_T \mathbf{s}^T [\varphi_1]_T = [\varphi_1]_T$
- (3) $[\varphi_1]_T i^T [\varphi_2]_T = [\varphi_2]_T i^T [\varphi_1]_T$
- (4) $[\varphi_1]_T \operatorname{s}^T [\varphi_2]_T = [\varphi_2]_T \operatorname{s}^T [\varphi_1]_T$
- (5) $[\varphi_1]_T i^T ([\varphi_2]_T i^T [\varphi_3]_T) = ([\varphi_1]_T i^T [\varphi_2]_T) i^T [\varphi_3]_T$
- (6) $[\varphi_1]_T \operatorname{s}^T ([\varphi_2]_T \operatorname{s}^T [\varphi_3]_T) = ([\varphi_1]_T \operatorname{s}^T [\varphi_2]_T) \operatorname{s}^T [\varphi_3]_T$
- $(7) \ [\varphi_1]_T \ \mathbf{s}^T \ ([\varphi_1]_T \ \mathbf{i}^T \ [\varphi_2]_T) = [\varphi_1]_T$
- (8) $[\varphi_1]_T i^T ([\varphi_1]_T s^T [\varphi_2]_T) = [\varphi_1]_T$
- (9) $0^T \, \mathbf{s}^T \, [\varphi_1]_T = [\varphi_1]_T$
- $(10) \ [\varphi_1]_T \ \mathbf{s}^T \ \mathbf{1}^T = \mathbf{1}^T$
- (11) $[\varphi_1]_T \mathbf{s}^T ([\varphi_1]_T)^{\mathbf{c}^T} = 1^T$
- (12) $[\varphi_1]_T i^T ([\varphi_1]_T)^{\mathsf{c}^T} = 0^T$
- $(13) \ [\varphi_1]_T \ \mathsf{i}^T \ ([\varphi_2]_T \ \mathsf{s}^T \ [\varphi_3]_T) = ([\varphi_1]_T \ \mathsf{i}^T \ [\varphi_2]_T) \ \mathsf{s}^T \ ([\varphi_1]_T \ \mathsf{i}^T \ [\varphi_3]_T)$

Veamos por ejemplo que se da (10), es decir probaremos que $[\varphi_1]_T$ s^T $1^T = 1^T$, cualesquiera sea la sentencia φ_1 . Ya que $\forall x_1(x_1 \equiv x_1)$ es un teorema de T, atestiguado por la prueba formal

1. $c \equiv c$ AXIOMALOGICO 2. $\forall x_1(x_1 \equiv x_1)$ GENERALIZACION(1) (c es un nombre de cte no perteneciente a C y tal que $(C \cup \{c\}, \mathcal{F}, \mathcal{R}, a)$ es un tipo), tenemos que el Lema 2 nos dice que $1^T = \{\varphi \in S^\tau : \varphi \text{ es un teorema de } T\} = [\forall x_1(x_1 \equiv x_1)]_T$. Es decir que para probar (10) debemos probar que para cualquier $\varphi_1 \in S^\tau$, se da que

$$[\varphi_1]_T \operatorname{\mathsf{s}}^T [\forall x_1(x_1 \equiv x_1)]_T = \{ \varphi \in S^\tau : \varphi \text{ es un teorema de } T \}$$

Ya que $[\varphi_1]_T$ s^T $[\forall x_1(x_1 \equiv x_1)]_T = [\varphi_1 \lor \forall x_1(x_1 \equiv x_1)]_T$, debemos probar que $\varphi_1 \lor \forall x_1(x_1 \equiv x_1)$ es un teorema de T, lo cual es atestiguado por la siguiente prueba formal

- 1. $c \equiv c$ AXIOMALOGICO
- 2. $\forall x_1(x_1 \equiv x_1)$ GENERALIZACION(1)
- 3. $(\varphi_1 \lor \forall x_1(x_1 \equiv x_1))$ DISJUNCIONINTRODUCCION(2)

Veamos ahora que se da (6), es decir veamos que

$$[\varphi_1]_T \operatorname{s}^T ([\varphi_2]_T \operatorname{s}^T [\varphi_3]_T) = ([\varphi_1]_T \operatorname{s}^T [\varphi_2]_T) \operatorname{s}^T [\varphi_3]_T$$

cualesquiera sean $\varphi_1, \varphi_2, \varphi_3 \in S^{\tau}$. Sean $\varphi_1, \varphi_2, \varphi_3 \in S^{\tau}$ fijas. Por la definicion de la operacion \mathbf{s}^T debemos probar que

$$[(\varphi_1 \vee (\varphi_2 \vee \varphi_3))]_T = [((\varphi_1 \vee \varphi_2) \vee \varphi_3)]_T$$

es decir, debemos probar que

$$T \vdash ((\varphi_1 \lor (\varphi_2 \lor \varphi_3)) \leftrightarrow ((\varphi_1 \lor \varphi_2) \lor \varphi_3))$$

Notese que por (2) del Lema "Propiedades basicas de \vdash " de la Guia 12 , basta con probar que

$$T \vdash ((\varphi_1 \lor (\varphi_2 \lor \varphi_3)) \to ((\varphi_1 \lor \varphi_2) \lor \varphi_3))$$
$$T \vdash (((\varphi_1 \lor \varphi_2) \lor \varphi_3) \to (\varphi_1 \lor (\varphi_2 \lor \varphi_3)))$$

La siguiente es una prueba formal de $((\varphi_1 \lor (\varphi_2 \lor \varphi_3)) \to ((\varphi_1 \lor \varphi_2) \lor \varphi_3))$ en

T y dejamos al lector la otra prueba formal.

1.	$(\varphi_1 \lor (\varphi_2 \lor \varphi_3))$	HIPOTESIS1
2.	φ_1	HIPOTESIS2
3.	$(\varphi_1 \vee \varphi_2)$	DISJUNCIONINTRODUCCION(2)
4.	$((\varphi_1 \vee \varphi_2) \vee \varphi_3)$	TESIS2DISJUNCIONINTRODUCCION(3)
5.	$\varphi_1 \to ((\varphi_1 \vee \varphi_2) \vee \varphi_3)$	CONCLUSION
6.	$(\varphi_2 \vee \varphi_3)$	HIPOTESIS3
7.	$arphi_2$	HIPOTESIS4
8.	$(\varphi_1 \vee \varphi_2)$	DISJUNCIONINTRODUCCION(6)
9.	$((\varphi_1 \vee \varphi_2) \vee \varphi_3)$	TESIS4DISJUNCIONINTRODUCCION(7)
10.	$\varphi_2 \to ((\varphi_1 \vee \varphi_2) \vee \varphi_3)$	CONCLUSION
11.	$arphi_3$	HIPOTESIS5
12.	$((\varphi_1 \vee \varphi_2) \vee \varphi_3)$	TESIS5DISJUNCIONINTRODUCCION(11)
13.	$\varphi_3 \to ((\varphi_1 \vee \varphi_2) \vee \varphi_3)$	CONCLUSION
14.	$((\varphi_1 \vee \varphi_2) \vee \varphi_3)$	TESIS3DIVISIONPORCASOS $(6, 10, 13)$
15.	$(\varphi_2 \vee \varphi_3) \to ((\varphi_1 \vee \varphi_2) \vee \varphi_3)$	CONCLUSION
16.	$((\varphi_1 \vee \varphi_2) \vee \varphi_3)$	TESIS1DIVISIONPORCASOS(1, 5, 15)
17.	$(\varphi_1 \vee (\varphi_2 \vee \varphi_3)) \to ((\varphi_1 \vee \varphi_2) \vee \varphi_3)$	CONCLUSION

El resto de las propiedades pueden ser probadas en forma similar, algunas de las pruebas formales necesarias han sido dadas en los ejemplos que siguen a la definicion de prueba formal \blacksquare

Dada una teoria $T=(\Sigma,\tau)$, denotaremos con \mathcal{A}_T al algebra de Boole $(S^{\tau}/\dashv \vdash_T, \mathsf{s}^T, \mathsf{i}^T, \mathsf{c}^T, \mathsf{0}^T, \mathsf{1}^T)$. El algebra \mathcal{A}_T sera llamada el algebra de Lindenbaum de la teoria T. Denotaremos con \leq^T al orden parcial asociado al algebra de Boole \mathcal{A}_T (es decir $[\varphi]_T \leq^T [\psi]_T$ si y solo si $[\varphi]_T \mathsf{s}^T [\psi]_T = [\psi]_T$). El siguiente lema nos da una descripcion agradable de \leq^T .

Lemma 4 Sea T una teoria. Se tiene que

$$[\varphi]_T \leq^T [\psi]_T \text{ si y solo si } T \vdash (\varphi \to \psi)$$

Proof. Supongamos que $[\varphi]_T \leq^T [\psi]_T$, es decir supongamos que $[\varphi]_T$ $\mathbf{s}^T [\psi]_T = [\psi]_T$. Por la definicion de \mathbf{s}^T tenemos que $[(\varphi \vee \psi)]_T = [\psi]_T$, es decir $T \vdash ((\varphi \vee \psi) \leftrightarrow \psi)$. Es facil ver entonces que $T \vdash (\varphi \rightarrow \psi)$. Reciprocamente si $T \vdash (\varphi \rightarrow \psi)$, entonces facilmente podemos probar que $T \vdash ((\varphi \vee \psi) \leftrightarrow \psi)$, lo cual nos dice que $[(\varphi \vee \psi)]_T = [\psi]_T$. Por la definicion de \mathbf{s}^T tenemos que $[\varphi]_T \mathbf{s}^T [\psi]_T = [\psi]_T$, lo cual nos dice que $[\varphi]_T \leq^T [\psi]_T \blacksquare$

Ejercicio 3: Reflexionar sobre la siguiente pregunta: ¿El concepto de algebra de Lindenbaum es un concepto sintactico o semantico?

Si queremos demostrar que en \mathcal{A}_T se da que $[\varphi]_T \neq [\psi]_T$, es claro que por definicion de $\dashv \vdash_T$ deberemos probar que $(\varphi \leftrightarrow \psi)$ no es un teorema de T. O sea que por el criterio **NoEsTeorema** surge el siguiente criterio:

- Si queremos demostrar que en \mathcal{A}_T se da que $[\varphi]_T \neq [\psi]_T$, entonces basta con encontrar un modelo \mathbf{A} de T tal que $(\varphi \leftrightarrow \psi)$ sea falsa en \mathbf{A} . Es decir deberemos encontrar un modelo \mathbf{A} de T el cual haga verdadera a una de las sentencias y falsa a la otra

Ejercicio 4: Hacer

- (a) Encuentre φ y ψ sentencias de τ_{RetCua} tales que $[\varphi]_{RetCua} < ^{RetCua}$ $[\psi]_{RetCua}$
- (b) Encuentre en \mathcal{A}_{RetCua} una cadena ascendente numerable infinita

Ejercicio 5: V o F o I, justifique

- (a) Sea $T=(\Sigma,\tau)$ una teoria. Entonces $\mathbf{1}^T\cap\mathbf{0}^T=\emptyset$
- (b) Sea Tuna teoria. Entonces $e \leq^T \forall x_1(x_1 \equiv x_1),$ para cada $e \in S^\tau / \dashv \vdash_T$
- (c) Sea $\tau=(\emptyset,\emptyset,\emptyset,\emptyset)$. El algebra de Boole $\mathcal{A}_{(\emptyset,\tau)}$ tiene una cantidad finita de elementos
- (d) Sea T una teoria. Entonces $[\varphi]_T \leq^T [\psi]_T$ si y solo si $(\varphi \to \psi)$ es veradera en T