Music Recommendation System

ANJITH THOMAS JOSE 22BCE7289

anjith.22bce7289@vitapstudent.ac.in

ASHWIN NAIR 22BCE7968

ashwin.22bce7968@vitapstudent.ac.in

ALAN R THOMAS 22BCE7179

alan.22bce7179@vitapstudent.ac.in

VISHAKH NAIR 22BCE7720

vishakh.22bce7720@vitapstudent.ac.in

ABHISHEK BIJU 22BCE8439 abhishek.22bce8439@vitapstudent.ac.in

- '

November 15, 2024

Abstract

This paper presents a Music Recommendation System that provides personalized song recommendations based on user input, such as song name and release year. Using machine learning clustering techniques, the system suggests similar music tracks based on audio features like valence, energy, and tempo. The dataset used includes information such as song titles, release years, and artists. We discuss the clustering approach, data exploration, model development, challenges faced, and the system's performance evaluation.

Keywords

Music Recommendation, Clustering, KMeans, Machine Learning, Cosine Distance, PCA, t-SNE

1 Introduction

The Music Recommendation System aims to provide personalized song recommendations based on user input. Users can optionally enter a song name and release year to receive similar tracks. This project utilizes machine learning clustering techniques to analyze and suggest relevant music tracks. The dataset used for this system contains information such as song name, year, artists, and additional audio features like valence, energy, and tempo. However, attempts to identify specific genres or artist information suggest that Indian music is not well-represented in the dataset.

2 Project Objective

The primary goal of this project is to build a recommendation system capable of delivering meaningful song suggestions based on user preferences. The user can provide inputs like the song title and year, and the system will output a list of similar songs in terms of musical features, enhancing user satisfaction by offering tailored music recommendations.

3 Dataset Details

The dataset used for this project is a collection of songs with audio features, metadata, and descriptive attributes. Key details:

- **Number of Records:** Approximately 20,000 songs spanning different years and genres.
- **Columns and Features:** Key columns include song title, artist, release year, and audio features such as valence, danceability, energy, tempo, etc.

4 Dataset Feature Explanation

Figure 1: Histograms of various features in the music dataset

4.1 1. Histogram of Valence

- Valence refers to the musical positiveness conveyed by a track.
- The distribution is fairly uniform, with most songs having a valence between 0.3 and 0.8, indicating a mixture of positive and neutral emotional content in the dataset.

4.2 2. Histogram of Acousticness

- Acousticness represents the likelihood that the track is acoustic.
- The histogram shows a high frequency near 0, suggesting that the dataset contains mostly non-acoustic or electronically produced tracks.

4.3 3. Histogram of Danceability

- Danceability describes how suitable a track is for dancing based on tempo, rhythm, and beat strength.
- most of the tracks have a danceability score between 0.4 and 0.8, indicating that the dataset includes many danceable songs, but not all of them are highly danceable.

4.4 4. Histogram of Duration (ms)

- Duration (ms) is the length of the track in milliseconds.
- The histogram is heavily skewed to the left, meaning most of the songs in the dataset are relatively short. There are a few longer tracks, but they are not common.

4.5 5. Histogram of Energy

- Energy measures the intensity and activity of a song.
- The distribution is relatively normal, with energy values centered around 0.5 to 0.7, indicating that the dataset includes a good mix of high and medium-energy tracks.

4.6 6. Histogram of Instrumentalness

- Instrumentalness predicts whether a track is instrumental.
- The histogram shows a very high frequency near 0, which suggests that most of the tracks have vocals, as they are not purely instrumental.

4.7 7. Histogram of Liveness

- Liveness indicates whether a track was recorded live, based on crowd noise.
- The histogram shows a large number of songs with low liveness, indicating that the dataset primarily consists of studio recordings rather than live performances.

4.8 8. Histogram of Loudness

- Loudness refers to the overall volume of a track, measured in decibels.
- The histogram shows most songs have a loudness between -30 dB to -5 dB, which is typical for modern music production, where songs are quite loud but normalized.

4.9 9. Histogram of Speechiness

- Speechiness detects the presence of spoken words in a track.
- The distribution has a high frequency near 0, suggesting that most of the tracks have little or no spoken words, indicating primarily musical tracks rather than spoken content.

4.10 10. Histogram of Tempo

- **Tempo** represents the speed of the music in beats per minute (BPM).
- Most tracks have a tempo between 80 and 140 BPM, which is common for a variety of genres, especially pop and dance tracks.

5 Data Exploration

The dataset includes attributes such as danceability and loudness for each track, which instrumental in clustering and recommendations. A challenge was identifying specific genres and artists, notably Indian music.

6 Model Development

The system uses clustering techniques, specifically KMeans, to group songs by audio features. The clustering approach involves:

- Feature Selection: Choosing features like valence, danceability, energy, loudness, and tempo.
- **Data Normalization:** Using StandardScaler from sklearn. preprocessing to ensure equal feature contribution.
- **KMeans Clustering:** Grouping songs into clusters with cosine distance as the similarity measure.

7 Cluster Analysis Findings

Key findings include:

- High-energy and acoustic clusters.
- Clusters with distinct characteristics like valence, danceability, and loudness.
- Visual representation using PCA and t-SNE to show separation between clusters.

8 Recommendation Algorithm

The recommendation function uses cosine distance to find similar songs. Clustering helps in ensuring recommendations have similar audio features.

9 Frontend Development

A user-friendly web interface was developed using Flask, allowing users to enter song information and receive recommendations. Bootstrap was used to enhance the presentation.

10 Challenges and Solutions

Challenges included the lack of Indian music representation and structuring frontend elements for flexibility.

11 Model Performance Evaluation

Silhouette scores were used to evaluate the quality of the clusters formed, providing insights into model effectiveness.

12 Model Comparison Analysis

Figure 2: Model Comparison of KMeans, CNN, and RNN based on Precision, Recall, Training Time, and Accuracy.

12.1 1. Training Time

- **KMeans** has a significantly lower training time compared to **CNN** and **RNN**, which makes it much more efficient and easier to implement.
- CNN and RNN are deep learning models, which typically require more computational resources and time to train, especially if the dataset is large.
- If you are looking for a fast and simple implementation for a music recommendation system without requiring substantial computational power, KMeans stands out due to its speed and simplicity.

12.2 2. Precision and Recall

- While the precision and recall for KMeans are lower than CNN and RNN, they are still at an acceptable level for clustering purposes.
- Precision is around 0.65 for KMeans, whereas CNN and RNN achieve better precision scores. However, this may not always be critical depending on the goal of the recommendation system.
- For general clustering of similar songs based on audio features, KMeans can provide good results without having to achieve very high precision or recall.

12.3 3. Accuracy

- The accuracy score of 0.70 for KMeans is lower than the scores of CNN and RNN, which means deep learning models are better at more personalized recommendations.
- Despite the lower accuracy, KMeans is often sufficient when there is no need for highly personalized recommendations but rather grouping similar items.
- If your primary goal is to provide genre-based or feature-based recommendations instead of perpersonalizing recommendations per user, the accuracy of KMeans might be adequate.

12.4 4. Complexity and Practical Use

- KMeans is a clustering algorithm, which means it doesn't need labeled data and is simpler to implement and understand. It groups songs with similar attributes into clusters, which can be used for content-based recommendations.
- CNN and RNN are better for personalized recommendations but come at the cost of model complexity and hardware requirements.
- If you have limited labeled data, KMeans is preferable because it does not require extensive training data or user preferences to operate effectively. CNNs and RNNs need large, labeled datasets to achieve their full potential.

12.5 5. Trade-offs

- If your goal is to achieve quick results with limited computational overhead, KMeans is clearly the better choice.
- If you need more accurate, user-tailored recommendations, and you have the time and resources to invest in training a complex model, then CNN or RNN would be the better option.
- KMeans works well for creating a content-based recommendation system, grouping songs based on musical features like energy, valence, danceability, etc. These clusters are useful for broad recommendations without user history.

13 Summary

KMeans is a better option if:

- Simplicity and speed are your primary concerns.
- You don't need a highly personalized recommendation.
- You have limited computational resources or want to avoid long training times.
- You are interested in content-based clustering rather than highly tailored user recommendations.

14 Conclusion

The Music Recommendation System provides personalized recommendations using clustering techniques. However, the lack of Indian music in the dataset limits its cultural inclusivity. Future work could involve enhancing the dataset for greater diversity.

15 Future Improvements

Suggestions for future work:

- Enrich the dataset with diverse genres.
- Improve artist and genre tagging.
- Add advanced user interaction features and album art integration.

References

Scikit-Learn documentation, https://scikit-learn.org t-SNE: van der Maaten, L. & Hinton, G. (2008). Visualizing Data using t-SNE. Journal of Machine Learning Research, 9:2579-2605.

Figure 3: Architectural Diagram

16 Model Performance Metrics

The model performance metrics give an insight into how well the music recommendation model is forming:

- Accuracy: This is the proportion of correct predictions to the total predictions made. In this case, the accuracy is 0.9, indicating that the model correctly predicted the relevance of songs 90% of the time.
- **Precision**: This measures the proportion of true positive predictions to the total positive predictions. The precision score here is 0.8333, indicating that out of all the songs that were recommended, about 83% were relevant.
- **Recall**: This measures the ability of the model to identify all relevant items. The recall score is 1.0, meaning the model correctly identified all the relevant songs in the dataset. This is often referred to as sensitivity or true positive rate.

17 Performance Metrics

• Accuracy: 0.9

• **Precision:** 0.833

• Recall: 1.0

Number of Errors: 1

18 Confusion Matrix

The confusion matrix is a 2x2 table that represents the model's performance:

Predicted	0	1	
Actual0	4 (True Negatives)	1 (False Positive)	
Actual1	0 (False Negative)	5 (True Positives)	

In the provided matrix:

- Actual 0 / Predicted 0: 4 (True Negatives) These are the songs that were correctly predicted as not relevant.
- Actual 0 / Predicted 1: 1 (False Positive) This means one song was incorrectly predicted as relevant when it was not.
- Actual 1 / Predicted 0: 0 (False Negative) There were no relevant songs missed by the model.
- Actual 1 / Predicted 1: 5 (True Positives) These are the songs that were correctly predicted as relevant.

Figure 4: Confusion Matrix

Name	Year	Artists	
Boys	2017	Charli XCX	
Falling (Blackbeard Remix)	2018	Trevor Daniel, black bear	
Talk	2019	Khalid, Disclosure	
El Rey De Mil Coronas	2004	Lalo Mora	
Young Dumb & Broke	2017	Khalid	
Bad Idea	2018	pxzvc, Shiloh Dynasty	
D'Evils	2018	Sir	
Confessions Part II	2004	Usher	
Mejor Me, Alejo,	2018	Banda MS de Sergio Lizárraga	
Cool Again	2018	Shoffy	
Take A Bow	2008	Rihanna	
Panama	2018	Quinn XCII	
Change the World	1999	Eric Clapton	
Breathe	2014	Years & Years	
Knee Deep (feat. Jimmy Buf-	2010	Zac Brown Band, Jimmy Buffett	
feet)			
Heaven	2017	Kane Brown	
Bohemian Rhapsody - Remas-	1975	Queen	
tired 2011			
The River (Album Version)	1972	Dan Fogelberg	
Rooster - Live at the Majestic	1996	Alice In Chains	
Theatre, Brooklyn			
Queen Of Spades	1978	Styx	
Gethsemane (I Only Wanted To	1973	Ted Neeley	
Say) - From "Jesus Christ Super-			
star"			
Love That Burns	1968	Fleetwood Mac	
I'm in Your Care	1989	The Canton Spirituals	
Castle Walls	1977	Styx	
Hand of Doom - 2012 - Remaster	1970	Black Sabbath	
On the Low	2019	Burna Boy	
El Efecto	2019	Rauw Alejandro, Chencho Corleone	
Because Of You	2007	Ne-Yo	
Nunca Es Suficiente	2018	Los Ángeles Azules, Natalia Lafourcade	
Baby, I'm Yours	2012	Breakbot, Irfane	
M´etele Sazón	2003	Luny Tunes, Noriega, Tego Calderón	
How Long	2018	Charlie Puth	
El Buho	2019	Luis R Rodriguez	
Citgo	2012	Chief Keef	
dead roses	2015	black bear	
Pink Skies (Demo)	2018	Wiley from Atlanta	
The Demo (Story)	2007	Bs (A. Whiteman)	
Grass Ain't Greener	2017	Chris Brown	
911	2018	Elise	
Phoenix	2013	A\$AP Rocky	
Rose Golden	2016	Kid Cudi, WILLOW	
Kickin' Back	2016	Mila J	
Comes & Goes	2008	Sweatshop Union	
One Man's Dream	1986	Yanni	
Highschool Lover	2000	Air	
The Piano Duet	2005	Danny Elfman	
Cursum Perfection	1988	Enya	
An Evening Walk	2009	Bernward Koch	
Norrsken	2016	Karin Borg	
To Be Alone With You	2004	Sufjan Stevens	
Quidditch, Third Year	2004	John Williams	
Winter Weather / I've Got My	2015	Mason Embry Trio	
Love to Keep Me Warm			
Streams	2016	Johannes Bornlöf	

Table 2: Literature Survey on Music Recommendation Systems

Methodology	Context	Name of Literature		Source
meanouology	Context	Survey	7141101(3)	Source
K-Means and KNN	Comparison of clustering	Enhanced Music Recom-	IIETA Research	IIETA
Clustering	techniques to improve per-	emendation Systems	Team	
	personalization and			
	accuracy in music			
	recommendations			
CNN and KNN for	Explores CNN with KNN	MusicRecNet Model	IJCRT Team	IJCRT
Genre Classificati	for genre-based music recommendations			
on	recommendations			
Content-Based Fil-	Analyzes content-driven	Content-driven Music	SpringerLink Team	SpringerLink
tearing	clustering and filtering for	Recommendation	- p	
	music recommendations			
Hybrid KNN and	Uses KNN combined with	Hybrid Collaborative-	SpringerLink Au-	SpringerLink
Collaborative Fil-	collaborative filtering for	Content Model	thors	
tearing	personalized			
recommendations				
KNN and Random	Implements KNN and	Music Recommendation	SSRN Contributors	SSRN
Forest	Random Forest to boost user engagement	System Using Machine Learning		
KNN with Senti-	Applies sentiment metrics	Sentiment-Based Music	IIETA Authors	IIETA
ment Analysis	with KNN for	Recommendation	HETA AUTHORS	IIETA
	personalized			
	recommendations			
Real-Time KNN	Uses KNN for real-time	Real-Time Music Discov-	GitHub	GitHub
Learning	song discovery based on	very with KNN	Contribute-	
	user preferences		tors	
Popularity-Based	Recommends popular	Popularity-Based KNN	SpringerLink Au-	SpringerLink
Recommendations	songs using KNN for	Recommendations	thors	
with KNN	enhanced user satisfaction	Carra Driver Music Bas	SSRN Authors	CCDN
Genre Filtering with KNN	Combines genre filtering with KNN to improve	Genre-Driven Music Rec ommendations using KNN	SSKIN AULIIOIS	SSRN
WICH KING	recommendation relevance	ommendations asing man		
Mood-Adaptive	Integrates KNN with	Emotion and	SpringerLink Au-	SpringerLink
Collaborative	collaborative filtering for	Collaborative-Based	thors	. 0
Filtering	mood-sensitive	Music Recommendations		
	recommendations			
High-Dimensional	Examines KNN's scala	Evaluating KNN in High-	SpringerLink Team	SpringerLink
KNN Clustering	bility in high-dimensional	Dimensional Music Data		
KNINI Chreterine	music data clustering Utilizes KNN with nor	Music Decreased dation	IJCRT Team	LICOT
KNN Clustering with Data	malization to recommend	Music Recommendation Using KNN Clustering	ijcki leam	IJCRT
Normalization	similar tracks	Oshig Kiviv clustering		
Comparative KNN	Compares KNN and deep	Comparative Analysis of	IIETA Authors	IIETA
and Deep Learning	learning in clustering for	KNN and Deep Learn-ing		
Analysis	music classification	in Music		
		Recommendations		
KNN with PCA	Employs PCA and KNN	Content-Enhanced Rec	arXiv Team	arXiv
for Feature-Based	for music recommendations based on features	ommendations with KNN and PCA		
Clustering KNN-Collaborative	Combines KNN with col	Collaborative Filtering	SpringerLink Au-	SpringerLink
Hybrid Model	laborative filtering for music		thors	Shiiiligei Liilik
,	recommendations	,		
TensorFlow and	Discusses TensorFlow	KNN and TensorFlow in	IJARIIE Contribu	IJARIIE
KNN Clustering	API usage with KNN for	Music Recommendations	tors	
	feature-based clustering			
User Preference	Models user-centric pref	User-Centric KNN Rec	SpringerLink Au-	SpringerLink
Modeling with KNN	erences for personalized recommendations	ommendations	thors	
KNN-Based Genre	Uses RapidMiner with	RapidMiner KNN Clus	SpringerLink Team	SpringerLink
Prediction in	KNN for genre-based	tering in Music	Springer Link Teall	Shimeciriik
RapidMiner	music predictions	Recommendations		
KNN and Neural	Compares KNN with neu	Machine Learning Models	SpringerLink Au-	SpringerLink
Network	ral networks for personal-	for Personalized	thors	
Comparison	ization	Recommendations		
Feature-Based	Uses KNN and normaliza	Feature-Based Recom	IJCRT Team	IJCRT
KNN with Normal- ization	tion for clustering music features	mendations using KNN and Normalization		
IZALIUII	icatures	and Normanzation		