Digital Differential Algorithm(DDA)

- Scan conversion algorithm based on calculating either Δx or Δy.
- Sample the line at unit intervals in one coordinate and determine the corresponding integer values nearest the line path for the other coordinate.

Case 1

Line with positive slope less than or equal to 1, we sample at unit x intervals ($\Delta x = 1$) and determine the successive y value as

$$Y_{k+1} = Y_k + m$$

$$\triangle$$
y=m \triangle x
Yk+1- Yk =m \triangle x
Yk+1- Yk =m (\triangle x =1)

- k takes integer values starting from 1 and increases by 1 until the final point is reached.
- m can be any number between 0 and 1.
- Calculated y values must be rounded off to the nearest integer.
- For lines with positive slope greater than 1, sample at unit y intervals ($\Delta y = 1$) and calculate each successive x value as

$$x_{k+1} = x_k + 1/m$$

 The above eqns are based on the assumption that lines are processed from left to right. If the processing is reversed then

$$\Delta x = -1 \& y_{k+1} = y_k - m \longrightarrow Slope > 1$$

 $\Delta y = -1 \& x_{k+1} = x_k - 1/m \longrightarrow Slope < 1$

Steps

P1 (xa,ya) and P2 (xb,yb) are the two end points.

- 2. Horizontal and vertical differences between the endpoint positions are computed & assigned to two parameters namely dx and dy.
- 3. The difference with greater magnitude determines the 'value' of increments to be done. That means the number of times sampling has to be done. This value is assigned to a parameter called 'steps'.

- 4. Starting from the 1st pixel ,we determine the offset needed at each step to generate the next pixel position along the line path. Call the offset value as x_{increment} and y_{increment}.
- The starting points are xa and ya.
- Assign x =xa and y=ya
- $x = x + x_{incr} & y = y + y_{incr}$
- 5. Loop through the process steps times, till the last point xb, yb is reached.

Steps for DDA Algorithm

Step 1: Accept as input the 2 end point pixel position.

Step 2: Horizontal and vertical differences between the endpoint positions are computed & assigned to two parameters namely dx and dy.

$$dx = xb - xa$$
 $dy = yb - ya$

- Step 3: If abs(dx) >abs(dy)
- steps =abs(dx)
- else steps =abs(dy)
- Step 4: $x_{incr} = dx/steps$
- (if steps = abs(dx), xincr = 1)
- $y_{incr} = dy/steps$
- (ie dy/dx = m)
- Assign x= xa and y=ya
- $x = x + x_{incr} & y = y + y_{incr}$
- Step 5: Loop through the process steps times.

DDA Example

- Suppose we want to draw a line starting at pixel (2,3) and ending at pixel (12,8).
- What are the values of the variables x and y at each timestep?
- What are the pixels colored, according to the DDA algorithm?

numsteps = 12 - 2 = 10xinc = 10/10 = 1.0yinc = 5/10 = 0.5

t	x	у	R(x)	R(y)
0	2	3	2	3
1	3	3.5	3	4
2	4	4	4	4
3	5	4.5	5	5
4	6	5	6	5
5	7	5.5	7	6
6	8	6	8	6
7	9	6.5	9	7
8	10	7	10	7
9	11	7.5	11	8
10	12	8	12	8