

DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING SHARDA SCHOOL OF ENGINEERING AND TECHNOLOGY SHARDA UNIVERSITY, GREATER NOIDA

Controlling Basic Computer Functionalities With Hand Gesture

A project submitted

in partial fulfillment of the requirements for the degree of

Bachelor of Technology in Computer Science and Engineering

by

Rupansh Verma (2019648435)

Shubham Kumar Prajapati (2019005595)

Supervised by: Co-Supervised by:

Mr. Akhilesh Kumar Singh Dr. Arun Prakash Agrawal

MAY 2023

CERTIFICATE

This is to certify that the report entitled "Controlling Basic Computer Functionalities With Hand Gesture" submitted by "Rupansh Verma (2019648435) and Shubham Kumar Prajapati (2019005595)" to Sharda University, towards the fulfillment of requirements of the degree of "Bachelor of Technology" is record of Bonafede final year Project work carried out by them in the "Department of Computer Science & Engineering, Sharda School of Engineering and Technology, Sharda University".

The results/findings contained in this Project have not been submitted in part or full to any other University/Institute for award of any other Degree/Diploma.

Signature of the Guide

Name: Mr. Akhilesh Kumar Singh

Signature of Head of Department

Name: Prof. (Dr.) Nitin Rakesh

Place: Sharda University

Date:

Signature of External Examiner

Date:

ACKNOWLEDGEMENT

A major project is a golden opportunity for learning and self-development. We consider ourselves very lucky and honored to have so many wonderful people lead us through in completion of this project.

First and foremost, we would like to thank Dr. Nitin Rakesh, HOD, CSE who gave us an opportunity to undertake this project.

We are thankful to Mr. Akhilesh Kumar Singh for his guidance in our project work. Mr. Akhilesh Kumar Singh, who despite being extraordinarily busy with academics, took timeout to hear, guide and keep us on the correct path. We do not know where we would have been without his help.

The CSE department monitored our progress and arranged all facilities to make life easier. We choose this moment to acknowledge their contribution gratefully.

Name and signature of Students:

Rupansh Verma (2019648435)

Shubham Kumar Prajapati (2019005595)

ABSTRACT

In general, Human Computer Interaction is moving away from the traditional keyboard and mouse toward interfaces that appear natural and straightforward to use. Because of its wide range of applications and ability to effectively communicate with machines, hand gesture recognition is one of the most important approaches for creating user-friendly interfaces.

Hand gestures, which include movements of the hands, fingers, and arms, are important for engagement. The various levels of the hand gesture are perceived from the level of static gesture to the level of dynamic gestures or sophisticated foundation through which human feelings are successfully communicated with computers. The suggested method is framed by the recognition of hand gestures since it has the advantage of being simple to use and does not require the use of an intermediary medium.

In terms of human-computer interface, the current approach for application access is rigid and difficult for those with blindness and hand deformities. In this study, a deep convolutional neural network is proposed to recognize hand motions and categorize them quickly by maintaining even the non-hand area without any detection or segmentation step. As a result, the suggested goal is to leverage various hand motions via an integrated webcam and a deep learning concept to benefit the visually impaired and persons with hand disabilities.

Keywords: Python, OpenCV, Mediapipe, Computer Vision.

CONTENTS

TITLE	i
CERTIFICATE	ii
ACKNOWLEDGEMENT	iii
ABSTRACT	iv
LIST OF FIGURES	vii
LIST OF TABLES	viii
CHAPTER 1: INTRODUCTION	1
1.1 Problem Statement	1
1.2 Motivation	2
1.3 Project Overview	3
1.4 Objectives	4
1.5 Expected Outcome	5
1.6 Hardware & Software Requirements	6
1.7 Report Outline	7
CHAPTER 2: LITERATURE SURVEY	8
2.1 Existing Gesture Controlling Applications	8
2.2 Existing Gesture Recognition Models	9
2.3 Proposed System	14
2.4 Feasibility Study	15
CHAPTER 3: SYSTEM DESIGN & ANALYSIS	16
3.1 Software Development Life Cycle/Model	16
3.2 Methodology	17
3.3 Different Libraries and Techniques Used	19
CHAPTER 4: RESULTS AND OUTPUTS	23
4.1 Proposed Model Outputs	23
4.2 Gestures and Their Working	24
4.3 Outputs – Hand Gesture Recognition	25
4.4 Outputs – Functions Performing on Gesture Recognition	32
CHAPTER 5: Testing Process	39
5.1 Software Testing	39
5.2 Unit Testing	39
5.3 Integration Testing	39
5.3 Validation Testing	39
5.3 Test Cases	40

CHAPTER 6: CONCLUSION	43
6.1System Usability	45
6.2 Future Scope	46
REFERENCES	47
ANNEXURE 1	49
ANNEXURE 2	50

LIST OF FIGURES

Fig. 1.3.1	Play/Pause with Open Hand Gesture through Webcam	3
Fig. 3.1.1	Agile Model	16
Fig. 3.2.1.1	Hand Gesture Recognition Model Flowchart	17
Fig. 3.2.2.1	Normalization of the hand points	18
Fig. 3.3.1.1	Mediapipe Hand detection point names	19
Fig. 3.3.1.2	Mediapipe Hand Detection Open	20
Fig. 3.3.1.3	Mediapipe Hand Detection Close (2 hands)	20
Fig. 3.3.2.1	OpenCV hand detection	21
Fig. 4.3.1	Static Gesture – Open Hand	25
Fig. 4.3.2	Static Gesture – Close Hand	25
Fig. 4.3.3	Static Gesture – OK Sign	26
Fig. 4.3.4	Static Gesture – Peace Sign/V-Sign	26
Fig. 4.3.5	Static Gesture – Thumbs Up	27
Fig. 4.3.6	Static Gesture – Thumbs Down	27
Fig. 4.3.7	Static Gesture – Pinch In	28
Fig. 4.3.8	Static Gesture – Pinch Out	28
Fig. 4.3.9	Dynamic Gesture – Clockwise	29
Fig. 4.3.10	Dynamic Gesture – Counter clockwise	29
Fig. 4.3.11	Dynamic Gesture – Move Left	30
Fig. 4.3.12	Dynamic Gesture – Move Right	30
Fig. 4.3.13	Dynamic Gesture – Move Up	31
Fig. 4.3.14	Dynamic Gesture – Move Down	31
Fig. 4.4.1	Multiple opened windows	32
Fig. 4.4.2	All windows minimized (after clockwise gesture)	32
Fig. 4.4.3	Windows locked(after counter-clockwise gesture)	33
Fig. 4.4.4	Save pop-up after OK gesture	33
Fig. 4.4.5	Moving to Page top with Thumbs Up Gesture	34
Fig. 4.4.6	Moving to Page bottom with Thumbs Down Gesture	34
Fig. 4.4.7	Video Play with Open Hand Gesture	35
Fig. 4.4.8	Video Pause with Open Hand Gesture	35
Fig. 4.4.9	Mute with V-sign or Peace Gesture	36
Fig. 4.4.10	Unmute with V-sign or Peace Gesture	36
Fig. 4.4.11	Volume Decrease with Move Down Gesture	37
Fig. 4.4.12	Volume Increase with Move Up Gesture	37
Fig. 4.4.13	Zoom Out with Pinch In Gesture	38
Fig. 4.4.14	Zoom In with Pinch Out Gesture	38

LIST OF TABLES

Table 2.2.1	Pre-existing Gesture Recognition Model	9
Table 4.2.1	Gesture Name and Their Corresponding Functions	24
Table 5.5.1	Test case for working of Mediapipe	40
Table 5.5.2	Test case for working of Hand detection model	40
Table 5.5.3	Test case for working of Static Gesture Recognition Model	40
Table 5.5.4	Test case for working of Dynamic Gesture Recognition model	41
Table 5.5.5	Test case for using of PyAutoGUI library	41
Table 5.5.6	Test case for Using computer functionalities with Hand	42