Rafael Ke

Definicõe

Grafo Matriz de Adjacência Matrizes Congruente

Trabalh

Demonstração Algoritmo

Referências

Localização de Autovalores em Grafos Árvore

Rafael Jacobs Kehl Orientador: Carlos Hoppen

Universidade Federal do Rio Grande do Sul Instituto de Matemática e Estatística

Sumário

Autovalores em Grafos Árvore

italael ite

Grafo Matriz de Adjacência Matrizes

Trabalh

Motivação Demonstração Algoritmo

Referência:

1 Definições

- Grafo
- Matriz de Adjacência
- Matrizes Congruentes
- 2 Trabalho
 - Motivação
 - Demonstração
 - Algoritmo
- 3 Referências

Autovalores em Grafos Árvore

Definicões

Grafo Matriz de Adjacência Matrizes

Frabalho

Motivação Demonstraçã Algoritmo

Referências

Grafo

Um grafo é formado pelos conjuntos (V, A) em que V é um conjunto arbitrário e A são pares não ordenados de V. Os elementos de V são chamados v ertices e os de A d

Figura: Exemplo de um grafo.

Autovalores em Grafos Árvore

Rafael Keh

D. C. . . ~ . .

Grafo Matriz de Adjacência Matrizes

Congruen

Motivação Demonstraçã Algoritmo

Referências

Grafo Conexo

Um grafo é conexo se, para qualquer par $\{v, w\}$ de seus vértices, existe um caminho com extremos $v \in w$.

Figura: Grafo conexo.

Figura: Grafo desconexo.

Autovalores em Grafos Árvore

Grafo

Grafo Árvore

Um grafo árvore, ou simplesmente árvore, é aquele que não possui ciclos e é conexo.

Figura: O grafo utilizado como exemplo é uma árvore.

Figura: Grafos com ciclos não são árvores.

Autovalores em Grafos Árvore

Rafael Refi

Grafo
Matriz de
Adjacência
Matrizes
Congruente

Trabalho

Motivação Demonstração Algoritmo

Referências

Matriz de Adjacência

A matriz de adjacência é uma das formas de representar um grafo. As entradas da matriz são tais que

$$a_{ij} = \begin{cases} 1, \text{ se } i \text{ \'e adjacente a } j \\ 0, \text{ se } i \text{ n\~ao \'e adjacente a } j \end{cases}$$

Figura: Grafo e sua matriz de adjacência.

Autovalores em Grafos Árvore

Maiaei M

Definições Grafo Matriz de Adjacência Matrizes Congruentes

Trabalho Motivação Demonstração

Referência

Matrizes Congruentes

Dizemos que duas matrizes R e S são congruentes se existe uma matriz não singular P que satisfaz $R = P^T S P$.

Em resumo, duas matrizes são congruentes quando é possível obter uma fazendo as mesmas operações fundamentais nas linhas e colunas da outra.

Teorema

Autovalores em Grafos Árvore

D C . ~

Grafo Matriz de Adjacência Matrizes

Trabalho

Motivação Demonstração Algoritmo

Referências

Lei da Inércia de Sylvester

Duas matrizes reais simétricas de ordem $n \times n$ são congruentes se e somente se elas têm o mesmo número de autovalores negativos e o mesmo número de autovalores positivos.

Motivação

Autovalores em Grafos Árvore

Rafael Ke

Definições
Grafo
Matriz de
Adjacência
Matrizes
Congruentes

Motivação Demonstraçã Algoritmo

Referências

Para a Teoria Espectral dos Grafos, é de grande interesse ter uma forma eficiente de verificar se um número é autovalor do grafo ou se há autovalores num dado intervalo.

Uma maneira de se localizar os autovalores de uma árvore T seria computando a sequência de Sturm para o polinômio característico de $\mathcal{X}(\lambda)$, mas só para obter \mathcal{X} são necessárias $\mathcal{O}(n\log^2 n)$ operações.

Por outro lado, há algoritmo de Jacobs e Trevisan para árvores que consegue o mesmo feito com somente $\mathcal{O}(n)$ operações.

Motivação

Autovalores em Grafos Árvore

Rafael Keh

Definiçõe

Grafo Matriz de Adjacência Matrizes Congruente

Trabalh

Motivação Demonstraçã Algoritmo

Referências

O algoritmo é baseado na diagonalização de $B_{\alpha}=A+\alpha I$, onde A é a matriz de adjacências de T.

Seja $Diagonalize(A, \alpha)$ a função que aplica o algoritmo de **Jacobs e Trevisan** e retorna a matriz D congruente a B_{α} , fazendo uso da **Lei da Inércia de Sylvester**, teremos então o **Teorema 1**, que será enunciado e demonstrado a seguir.

Teorema

Autovalores em Grafos Árvore

Motivação

Teorema 1

Seja $D = Diagonalize(A, -\alpha)$. Temos então:

- a O número de entradas positivas de D é o número de autovalores de A maiores que α .
- b O número de entradas negativas de D é o número de autovalores de A menores que α .
- c O número de entradas nulas na diagonal de D é a multiplicidade de α como autovalor de A.

Demonstração

Autovalores em Grafos Árvore

Rafael Kel

Grafo Matriz de

Matrizes Congruentes Trabalho

Motivação Demonstração

Demonstraçã Algoritmo

Referências

Seja A a matriz de adjacências de T, com autovalores λ_i , e sejam β_i os autovalores de $B_{-\alpha}$.

Agora sejam d_i os elementos na diagonal de D.

Para todos acima, temos que i = 1, ..., n.

Demonstração

Autovalores em Grafos Árvore

Arvore Rafael Keh

Grafo Matriz de

Matriz de Adjacência Matrizes Congruentes

Trabalho Motivação Demonstração Algoritmo

Referências

Note que $\beta_i = \lambda_i - \alpha$. Então, $\lambda_i > \alpha$ se, e somente se, $\beta_i > 0$.

Então, basta observar que para cada $d_i > 0$ há um $\beta_i > 0$.

Logo, há o mesmo número de $\lambda_i > \alpha$. Isso demonstra **a**.

Podemos demonstrar ${\bf b}$ e ${\bf c}$ de forma análoga, basta trocar > por < ou =, respectivamente.

Autovalores em Grafos Árvore

Rafael Kehl

Grafo
Matriz de
Adjacência
Matrizes
Congruente

Trabalho Motivação Demonstraçã

Algoritmo Referências Seja T uma árvore com n vértices e A sua matriz de adjacência. Escolha um vértice v_0 arbitrário para ser a raiz da árvore, então enumere os demais vértices $v_1, ..., v_{n-1}$ tal que se v_i é filho de v_j então i > j.

Dessa forma a raiz será sempre v_0 . Considere agora a matriz B_{α} para um escalar α . Note que o valor diagonal d(v) de todos os vértices é $d(v) = \alpha$.

Figura: Árvore do exemplo com enumeração válida e sua matriz B_{α} .

Autovalores em Grafos Árvore

Rafael K

Grafo
Matriz de
Adjacência
Matrizes
Congruente

Trabalho Motivação Demonstração

Algoritmo

Referências

A principal característica do algoritmo é que pode ser **executado diretamente na árvore**, procedendo das folhas para a raiz.

Aplicando o algoritmo (das folhas para a raiz), temos então dois casos, se todos os filhos v_i do vértice v_j possuem $d(v_i) \neq 0$ e se algum dos filhos de v_j possui $d(v_i) = 0$.

Figura: A execução do algoritmo para $\alpha = 2$ recai no primeiro caso.

Figura: A execução do algoritmo para $\alpha = 0$ recai no segundo caso.

Autovalores em Grafos Árvore

Rafael K

Definições Crafo

Grafo Matriz de Adjacência Matrizes Congruente

Trabalho Motivação Demonstraçã Algoritmo

Referências

No primeiro caso a entrada de $d(v_j)$ recebe $d(v_j) - \sum_{c \in \mathcal{C}} \frac{1}{d(c)}$, onde \mathcal{C} é o conjunto dos vértices filhos de v_j .

Figura: A execução do algoritmo para $\alpha=2$. Temos que todos autovalores são menores que 2.

Autovalores em Grafos Árvore

Rafael Ke

Definições Grafo Matriz de Adjacência Matrizes Congruente:

Trabalho Motivação Demonstraçã Algoritmo

Referências

O segundo caso é mais complexo. Quando um ou mais filhos de v_j possui d(v)=0, então escolhe-se um v_i filho de v_j com $d(v_i)=0$ e atribuímos então $d(v_j)=-\frac{1}{2}$ e $d(v_i)=2$. Após isso, desconectamos v_j de seu pai, caso não seja a raiz, e continuamos a execução do algoritmo.

Figura: A execução do algoritmo para $\alpha=0$. Temos dois autovalores menores, dois maiores e um igual a 0.

Autovalores em Grafos Árvore

rtaraci rta

Definições Grafo Matriz de Adjacência Matrizes Congruentes

Irabalho Motivação Demonstraçã Algoritmo

Referência

O Teorema 1 fornece um meio de utilizar o algoritmo de Jacobs e Trevisan para verificar quantos autovalores há em um intervalo qualquer.

No trabalho, foi implementado na linguagem C o algoritmo para intervalos ou para um valor α dado. Além disso, foi implementado o algoritmo aplicado à matriz, mostrando passo a passo do que ocorre durante a diagonalização.

Autovalores em Grafos Árvore

Rafael Kel

Definiçõe

Grafo Matriz de Adjacência Matrizes Congruente

Trabalh

Motivação Demonstraçã Algoritmo

Referências

Input

Como input, o programa recebe a matriz de adjacência, através de um arquivo de texto. Após isso, o usuário escolhe como deseja executar o algoritmo.

Digite o nome completo do arquivo com os dados da matriz: arvore_ex.txt

Autovalores em Grafos Árvore

Rafael Kel

Definicõe

Grafo Matriz de Adjacência Matrizes

Frabalho

Motivação Demonstraçã Algoritmo

Referências

Output

O output para a execução do intervalo é o seguinte:

```
Deseja saber quantos autovalores ha em um intervalo? (0-Nao, 1-Sim)

1

Digite o intervalo, separando o inicio e fim por um espaco:
0 2

No intervalo [0.000000,2.000000] existe(m) 3 autovalor(es)
```

Figura: O espectro do grafo do exemplo é [-1.84776, -0.76537, 0, 0.76537, 1.84776]

Autovalores em Grafos Árvore

Ratael Kel

Definiçõe

Grafo Matriz de Adjacência Matrizes Congruente

Erabalbe

Motivação Demonstraç Algoritmo

Referência

Output

O output da execução para um valor de α é o seguinte:

```
Digite o valor de alpha:

A arvore dada possui:

autovalor(es) maior(es) que 0.000000

autovalor(es) menor(es) que 0.000000

0.000000 e autovalor com multiplicidade 1
```

```
Digite o valor de alpha:
2
A arvore dada possui:
0 autovalor(es) maior(es) que 2.000000
5 autovalor(es) menor(es) que 2.000000
```

Figura: O resultado corrobora o que foi obtido acima.

Agradecimentos

Autovalores em Grafos Árvore

Professores: Carlos Hoppen, Luiz Emílio Allem e Vilmar Trevisan.

Referências

Autovalores em Grafos Árvore

Rafael Kel

Definiçõe

Grafo Matriz de Adjacência Matrizes Congruento

Trabalh

Motivação Demonstraçã Algoritmo

Referências

D. P. Jacobs and V. Trevisan Locating the Eigenvalues of Trees *Elsevier*, 2001.

Graph Theory (2nd edition)

Springer-Verlag, 1:2-26, 12:251-277, 2000.

N. Abreu, R. Del-Vecchio, V. Trevisan, C. Vinagre. Teoria Espectral de Grafos – Uma Introdução.

IIIº Colóquio de Matemática da Região Sul., 6:145–172, 2014.

Rafael Keh

Definiçõe

Grafo Matriz de Adjacência Matrizes Congruente

Trabalh:

Motivação Demonstração Algoritmo

Referências

Muito obrigado!

Rafael Keh

Definições

Grafo Matriz de Adjacência Matrizes

Trabalh

Demonstração Algoritmo

, 11g011c1110

$$B_{\alpha}v = (A + \alpha I)v = \beta v \Rightarrow (\lambda + \alpha)v = \beta v$$

Rafael Ke

Definiçõe

Grafo Matriz de Adjacência Matrizes

Trabalh

Motivação Demonstraçã Algoritmo

Referência

Figura: [-2.44949, -1.73205, -1, 0, 0, 0, 0, 0, 1, 1.73205, 2.44949]

Rafael Ke

Definiçõe

Grafo Matriz de Adjacência Matrizes Congruent

Trabalh

Motivação Demonstraçã Algoritmo

Referência

Figura: [-2.28349, -1.56870, -1.15103, 0, 0, 0, 0, 1.15103, 1.56870, 2.28349]