Decoder-Only Transformers in Einstein Notation

Valentin A.

1 Conventions and Einstein Primer

We use Einstein summation: an index repeated once up and once down in a term is summed. **Temporal indices** t, s, u **are never implicitly summed**; we write \sum or softmax_s(·) explicitly. Kronecker deltas always pair one up with one down. We use the trivial metric δ to raise/lower indices only when needed; e.g. $a_k := a^m \delta_{mk}$.

Index sets. $t, s \in \{1..T\}$ (time), $u \in \{1..U\}$ (encoder), $r \in \{1..R\}$ (request id), $f \in \{1..d_{\text{model}}\}$, $h \in \{1..H\}$, $d, k \in \{1..d_k\}$, $e \in \{1..d_{\text{ff}}\}$, $\rho \in \{1..r\}$ (latent for MLA), $x \in \{1..E\}$ (experts), $v \in \{1..V\}$ (vocab).

2 Pre-Norm Decoder Block

Let X_t^f be token embeddings. One layer (pre-norm): $\widetilde{H}_t^f = \text{LN}(H_t^f)$; self-attention produces A_t^f ; residual $H_t'^f = H_t^f + A_t^f$; then LN, FFN:

$$U_t{}^e = H_t''{}^f W_{1\,f}{}^e, \quad Z_t{}^e = \sigma(U_t{}^e), \quad F_t{}^f = Z_t{}^e W_{2\,e}{}^f, \quad H_t^{\text{out}\,f} = H_t'{}^f + F_t{}^f.$$

2.1 Multi-Head Self-Attention

Projections for head h:

$$Q_{th}{}^d = \widetilde{H}_t{}^f W_{Qhf}{}^d, \quad K_{sh}{}^d = \widetilde{H}_s{}^f W_{Khf}{}^d, \quad V_{sh}{}^d = \widetilde{H}_s{}^f W_{Vhf}{}^d.$$

RoPE rotation matrices have indices exactly R_{td}^{k} so that

$$\widehat{Q}_{th}^{\ k} = Q_{th}^{\ d} R_{td}^{\ k}, \qquad \widehat{K}_{sh}^{\ k} = K_{sh}^{\ d} R_{sd}^{\ k}.$$

(no implicit sums over t or s). Causal logits (we lower \widehat{K} using δ ; no implicit sum over s):

$$L_{ts}^{(h)} = \frac{1}{\sqrt{d_k}} \, \widehat{Q}_{th}^{\ k} \, \widehat{K}_{shk}, \quad \text{with } \widehat{K}_{shk} := \widehat{K}_{sh}^{\ m} \, \delta_{mk}.$$

Masked to $s \leq t$. With ALiBi, add $-m_h(t-s)$ inside the softmax. Weights:

$$A_{ts}^{(h)} = \operatorname{softmax}_{s} (L_{ts}^{(h)}).$$

Head output and merge:

$$Y_{th}^{\ d} = \sum_{s \le t} A_{ts}^{(h)} V_{sh}^{\ d}, \qquad A_t^{\ f} = Y_{th}^{\ d} W_{Ohd}^{\ f}.$$

3 Positional Schemes

3.1 RoPE (post-projection)

As above, RoPE uses R_{td}^k , yielding a dot-product depending on (t-s) via relative phase.

3.2 ALiBi (score bias)

Add per-head linear bias:

$$A_{ts}^{(h)} = \operatorname{softmax}_{s} \left(\frac{1}{\sqrt{d_{k}}} Q_{th}^{d} K_{shd} - m_{h}(t-s) \right), \quad s \leq t.$$

4 KV Caching and Long Context

4.1 KV Cache

At step t, reuse cached K_{sh}^d , V_{sh}^d for s < t; compute only Q_{th}^d (and K_t , V_t) and append.

4.2 RoPE in cache: store rotated vs unrotated

Option A: store $\widehat{K}_{sh}{}^k$ and use $\widehat{Q}_{th}{}^k$ directly. Option B: store unrotated $K_{sh}{}^d$ and rotate on-the-fly: $\widehat{K}_{sh}{}^k = K_{sh}{}^d R_{sd}{}^k$ (flexible for scaling, more compute).

4.3 Paged attention

Partition $\{1..t\}$ into pages of size P; attend within page (or with small overlap). Mask equivalent: $L_{ts} = -\infty$ if s outside t's page window.

4.4 Sliding window

Restrict to $s \in (t - W, ..., t]$ by masking s < t - W. Drop old cache entries beyond window if desired.

4.5 Continuous batching (request index)

Use $\delta_r^{r'}$ to prevent cross-request attention:

$$L_{rt,r's}^{(h)} = \frac{1}{\sqrt{d_k}} Q_{rth}{}^d K_{r'shd} \delta_r{}^{r'}.$$

Then $Y_{rth}^{\ d} = \sum_{s} A_{rt,rs}^{(h)} V_{rsh}^{\ d}$.

5 FlashAttention: Exact Tiled Online-Softmax

For fixed (t, h), iterate blocks B over s. Maintain running max $m_t^{(h)}$, partition $z_t^{(h)}$, and numerator N_{th}^d .

Initialize: $m = -\infty$, z = 0, $N_{th}^{d} = 0$.

For a block $B \subseteq \{s \le t\}$, define per-s logits $\ell_s = \frac{1}{\sqrt{d_k}} \widehat{Q}_{th}{}^k \widehat{K}_{shk} + b_{ts}^{(h)}$ (bias includes mask/ALiBi if any; no implicit sum over s). Let $m_B = \max_{s \in B} \ell_s$ and $m' = \max(m, m_B)$. Then

$$\alpha = \exp(m - m'), \qquad z \leftarrow \alpha \, z + \sum_{s \in B} \exp(\ell_s - m'), \qquad N_{th}{}^d \leftarrow \alpha \, N_{th}{}^d + \sum_{s \in B} \exp(\ell_s - m') \, V_{sh}{}^d, \qquad m \leftarrow m'.$$

After all blocks, exact output:

$$Y_{th}{}^{d} = \frac{N_{th}{}^{d}}{z}.$$

This is numerically equivalent to full softmax but never materializes the $t \times t$ matrix.

6 GQA, MLA, MoE, MTP

6.1 Grouped-Query Attention (GQA)

Let $g \in \{1..G\}$ index KV groups (G < H). Queries use h, K/V use g, with a mapping $\pi(h)$:

$$L_{ts}^{(h)} = \frac{1}{\sqrt{d_k}} Q_{th}{}^d K_{s,\pi(h)d}, \qquad Y_{th}{}^d = \sum_{s \le t} A_{ts}^{(h)} V_{s,\pi(h)}{}^d.$$

6.2 Multi-Head Latent Attention (MLA)

Compress to latent $L_s^{\rho} = \widetilde{H}_s^f U_f^{\rho}$, then per-head expand:

$$K_{sh}{}^d = L_s{}^\rho P_{h\rho}{}^d, \qquad V_{sh}{}^d = L_s{}^\rho Q_{h\rho}{}^d.$$

Logits become $\frac{1}{\sqrt{d_k}} q_{th}^{\rho} L_s^{\rho}$ with $q_{th}^{\rho} = Q_{th}^{d} P_{h \rho d}$; the weighted latent $z_{th}^{\rho} = \sum_{s \leq t} A_{ts}^{(h)} L_s^{\rho}$; output $Y_{th}^{d} = z_{th}^{\rho} Q_{h \rho}^{d}$.

6.3 MoE with learned router bias

Router logits: $G_t^x = H_t''^f W_{\text{gate }f}^x + b^x$; choose top-k experts $\{x_i\}$ and weights $p_{tx_i} = \frac{e^{G_t^{x_i}}}{\sum_j e^{G_t^{x_j}}}$. Output $F_t^f = \sum_i p_{tx_i} F_{(x_i),t}^f$.

6.4 Multi-Token Prediction (MTP)

Add n vocab heads:

$$O_t^{(j)v} = H_t^{\text{final}f} W_{O_j f}^v, \quad \mathcal{L} = \frac{1}{n} \sum_{j=1}^n \text{CE}(O_t^{(j)}, w_{t+j}).$$

7 FP8 Mixed Precision and Pipeline Overlap

FP8 for matmuls with per-tensor scales; keep reductions (LayerNorm/softmax sums) higher precision. Pipeline: split layers across devices; overlap micro-batches to minimize bubble; recompute or checkpoint as needed.

8 YaRN-Style RoPE Scaling

For extension from L to L', scale angles per dimension: $\theta'_d(t) = \theta_d(t/\alpha)$ (static, $\alpha = L'/L$), or dynamic scale increasing with current length. Use \tilde{R}_{td}^k in place of R_{td}^k . Cache note: if scale changes mid-generation, keep unrotated K_{sh}^d to re-rotate with new \tilde{R}_s .

9 Lemma: Single Bilinear Collapse and Why RoPE/ALiBi Break It

Lemma. Without positional terms, if $W_Q^{(h)}(W_K^{(h)})^{\top} = M$ (same M for all h), then all heads share logits $L_{ts}^{(h)} = X_t{}^f M_{fg} X_s{}^g$ and the layer equals a single-head with attention weights from M and a combined value-projection $U_g{}^f = \sum_h W_V{}^{(h)}{}^d W_{O\,h\,d}{}^f$.

RoPE counterexample. Effective bilinear becomes $M^{(h)}(t,s) = W_Q^{(h)} R_t^{\top} R_s (W_K^{(h)})^{\top}$ (depends on t,s). No single global M matches all (t,s).

ALiBi counterexample. Head-specific slopes m_h yield $L_{ts}^{(h)} = X_t{}^f M_{fg} X_s{}^g - m_h(t-s)$; differing m_h produce genuinely different $A^{(h)}$.

10 Index Sanity Checklist

- Every contraction pairs one up with one down (e.g. $Q_{th}{}^dK_{shd}$).
- Temporal indices t, s, u are never implicitly summed; sums and softmax_s are explicit.
- RoPE matrices use exact indices R_{td}^k ; $\widehat{Q}_{th}^k = Q_{th}^d R_{td}^k$ and similarly for \widehat{K} .
- δ usage: $\delta_r{}^{r'}$ (one up, one down) gates cross-request terms; we also lower \widehat{K} via δ in dot-products.
- Shapes check: $A_t^f = Y_{th}^d W_{Ohd}^f$ sums (h, d) to return f.

Appendix: Cross-Attention (Encoder–Decoder)

Encoder states E_u^f ; cross-attn queries from decoder \widetilde{H}_t^f :

$$Q_{th}^{\mathbf{x}\;d} = \tilde{H}_t{}^f W_{Q\,h\,f}^{\mathbf{x}\;d}, \quad K_{uh}^{\mathbf{x}\;d} = E_u{}^f W_{K\,h\,f}^{\mathbf{x}\;d}, \quad V_{uh}^{\mathbf{x}\;d} = E_u{}^f W_{V\,h\,f}^{\mathbf{x}\;d}.$$

Optionally apply RoPE on (t, u) with R_{td}^{k} , R_{ud}^{k} , then

$$L_{tu}^{\mathbf{x}(h)} = \frac{1}{\sqrt{d_k}} \, \widehat{Q}_{th}^{\mathbf{x}} \, \widehat{K}_{uhk}^{\mathbf{x}}, \quad A_{tu}^{\mathbf{x}(h)} = \mathrm{softmax}_u(L_{tu}^{\mathbf{x}(h)}), \quad Y_{th}^{\mathbf{x}\,d} = \sum_u A_{tu}^{\mathbf{x}(h)} V_{uh}^{\mathbf{x}\,d}.$$

Finally merge heads with $W_O^{\rm x}$ and add as a sublayer (pre-norm as usual).