

Indian Institute of Technology, Guwahati

CS-561 Project Presentation

Energy Efficiency in Workplace Based on Occupant's Routine

Presented By: Group 26 – Team Alphabet

Dated: 22nd April 2017 CS 561

Outline

- > Motivation
- ➤ Methodology
 - > Segmentation and Features
 - ➤ Activity Recognition (Using Naïve Bayes and HMM)
 - ➤ Activity Prediction (HMM)
- > Experiment and Results
- > Demo
- > Conclusion and Future work

Motivation

- ➤ Energy-saving workplaces require autonomous and optimized control of integrated devices and appliances with the objective of saving energy while preserving the comfort of occupant.
- A state of art artificial intelligence system can be built to control equipment to reduce energy consumption.
- Learning user activities and behavior can help us identify the planning to control equipment for better usage.

Approach

- ➤ Building data set for the location
- ➤ Activity Recognition based on context information
- > Activity Prediction
- ➤ Combining AI Planning We haven't attempted this. Can be done in future.

Methodology: Data Collection and Tagging

➤ Identifying equipment, location and user activities.

Identified Equipment: Workstation, Overhead Lights Activities: User presence, absence and usage of computer system

- ➤ Collecting sensory data based on user activities identified.
- > Tagging the data with activities.
 - Position of person is Sitting on his/her computer desk and Monitor is in ON state.
 - Position of person is Sitting on his/her computer desk and Monitor is in OFF state.
 - Position of person is not Sitting on his/her computer desk and Monitor is in ON state.
 - Position of person is no Sitting on his/her computer desk and Monitor is in OFF state.

Methodology: Activity Recognition

- ➤ This is very well researched area and several researchers used different model for the same like: HMM, KNN, Decision Tree, LSTM neural net etc.
- > We used HMM and Naïve Babes models for AR and used HMM for AP.
- ➤ Naïve Bayes

Activity A =
$$\underset{k=1,2,...,K}{\operatorname{argmax}} Pr(A_k) * \prod_{i}^{n} Pr(e_i|A_k)$$

We minimized following loss function to get the activity

$$L = -\left(\log \Pr(Ak) \cdot \sum_{i=1}^{n} \log \left(\Pr(ei|Ak)\right)\right)$$

Methodology: Activity Recognition

- Hidden Markov Model
 - ➤ Used Viterbi Algorithm to get the most probable sequence and used this activity sequence to get the likelihood of activity at time t as below.
 - ➤ Given prior belief, transition model and observation model calculated Likelihood of activity given current evidence.

$$\begin{aligned} & Liklihood \Big(a(t)\Big) \\ &= \Pr(a(t)|e(1:t) = \ \alpha \ P(e(t)|a(t)) \ \sum_{a(t-1)} \Pr(at \big| a(t-1) \Big) \ Likelihood (a(t-1)) \end{aligned}$$
 where,
$$& Likelihood \Big(a(t=0) \Big) = \Pr(a(t)|a(t)) = \Pr(a(t)|a(t-1))$$

Methodology: Activity Recognition

- ➤ Hidden Markov Model
 - Recursively updated the belief of an activity at each time t with likelihood Pr(At) calculated above.

Prior Probability Pr(At) = Likelihood(At)

Methodology: Activity Prediction

- ➤ Hidden Markov Model
 - ➤ We used prediction model of HMM to predict next activity for time t+1 given evidence e (1:t)

$$\begin{aligned} \mathit{Likelihood}(\mathit{At}+1) &= \Pr(\mathit{At}+1|\mathit{e1}:t) = \sum_{\mathit{at}} \Pr(\mathit{At}+1|\mathit{at}) \cdot \Pr\left(\mathit{at}|\mathit{e1}:t\right) \\ \\ \mathit{Predicted}\; \mathit{Activity}\, A &= \underset{k=\{1,2,\dots,K\}}{\operatorname{argmax}}\; \mathit{Likelihood}(\mathit{Ak}). \end{aligned}$$

Experiment: Dataset

- > We have worked on two data sets.
 - ➤ Collected sensory data in Robotics Lab
 - ➤ Online Benchmark dataset CASAS

Experiment: Dataset Collection and Tagging

➤ Collected sensory data from our lab using following sensors:

PIR, Ultrasonic, Light Sensor, Barometer

➤ Used Raspberry Pi and libraries to collect and process the data.

Format: <Date Time, PIR, Ping, Light, Temperature, Pressure, Activity-Tag>

2017-03-29 10:21:35.978083	14036	4101.5950441361	22388	23.8	100535	1
2017-03-29 10:21:37.328279	14612	4.9925208092	22379	23.8	100536	1
2017-03-29 10:21:38.936853	14817	4105.1973462105	22390	23.8	100535	1
2017-03-29 10:21:40.277285	14936	4.9925208092	22400	23.8	100529	1
2017-03-29 10:21:41.883308	13616	4112.4305725098	22395	23.8	100536	1
2017-03-29 10:21:43.230644	13304	4.9557209015	22390	23.8	100536	1
2017-03-29 10:21:44.842752	13847	4148.4495043755	22339	23.8	100540	1
2017-03-29 10:21:46.190569	13432	5.1642537117	22332	23.8	100536	1
2017-03-29 10:21:47.836307	13669	4080.0548315048	22301	23.8	100538	1
2017-03-29 10:21:49.172666	14474	5.1478981972	22291	23.8	100533	1
2017-03-29 10:21:50.780240	14815	4085.1618409157	22285	23.8	100538	1
2017-03-29 10:21:52.122341	15044	4.972076416	22310	23.8	100533	1

Experiment: Online Dataset and Feature Extraction

- > CASAS dataset was used, which contains sensor data that was collected in the home of a volunteer adult resident and a dog.
- > 27 Motion sensors were used to record activities.

Experiment: Online Dataset and Feature Extraction

> Activities Identified:

```
{Bed_to_toilet, Breakfast, Bed, C_work, Dinner, Laundry., Leave_home, Lunch, Night_wandering, R_medicine}
```

> Data format:

<Date(yyyy-mm-dd), Time, Sensor_Id, Sensor_State, Activity, Begin/End>

```
2009-06-10 03:20:59.087874 M006 ON Night_wandering begin

2009-06-10 03:21:01.038931 M002 ON

2009-06-10 03:21:03.001745 M002 OFF

2009-06-10 03:21:03.092281 M006 OFF

2009-06-10 03:21:04.000884 M002 ON

2009-06-10 03:21:05.009842 M002 OFF

2009-06-10 03:21:08.033939 M009 ON

2009-06-10 03:21:10.027285 M009 OFF
```

Experiment: Online Dataset and Feature Extraction

➤ Segmentation: Data was segmented into separate sequences of activity occurrences.

- > Features Extracted:
 - 1. Sensors Used
 - 2. Time of Use
 - 3. Day of Week
 - 4. Previous Activity
 - 5. Activity Length

Experiment: Algorithm Evaluation

- ➤ We used earlier described annotated data set to train the system.
- ➤ Used Maximum Likelihood Estimation (MLE) technique to estimate parameters for both Naïve Bayes and HMM model.
- ➤ Training Parameters for Naïve Bayes Model
 - Prior Beliefs Pr(Activity) =(#Sensor Events for Activity)/ (# Total Sensor Events)
 - ➤ Observation Pr(Ei|Activity) =

 (#Fi in sensor events for the activity)/(# Total Sensor Events for Activity)

(#Ei in sensor events for the activity)/ (# Total Sensor Events for Activity)

Experiment: Algorithm Evaluation

- ➤ Training Parameters for HMM Model
 - Prior Beliefs Pr(Activity) =

 (#Sensor Events for Activity)/ (# Total Sensor Events)
 - Observation Pr(Ei|Activity) =(#Ei in sensor events for the activity)/ (# Total Sensor Events for Activity)
 - ightharpoonup Transition Tr(Aj -> Ai):

$$Pr(Ai|Aj) =$$

(# of times Aj -> Ai)/ (# Occurrences of Activity Aj)

Experiment: Results

- ➤ We predicted activity with our model and compared with tagged activity. If activity tag is A and predicted activity is A', updated entry in matrix Freq(A,A').
- > Freq(i, j) = Frequency or number of times actual activity Ai predicted as activity Aj.

$$Accuracy = Frq(i,i) / \sum_{j=1}^{n} Freq(i,j)$$

We used Java 8 and NetBeans IDE for implementation of model.

Experiment: Results

➤ Naïve Bayes

Actaul/Class Lab							_						_				_		_	Accuracy
Bed_to_toilet		22	ı	0	Ę		0	ı	0		0		0	ı	0		3	ı	0	0.73333335
Breakfast	0)	Ī	12	Ę	5	0	I	24		0		0	I	5	I	2	I	0	0.25
Bed	3	3	Ī	0	1	149	1	I	0		0		0	I	0	I	54	I	0	0.7198068
C_work	0)	Ī	0	1	L7	25	I	0		0		0	I	0	I	4	I	0	0.54347825
Dinner	0)	Ī	5	7	7	0	I	24	ı	0		0	I	5		1	Ī	0	0.5714286
Laundry	0)	Ī	0	0)	0	I	0		7		1	Ī	1	ı	1	Ī	0	0.7
Leave_home	0)	Ī	0	0)	0	I	0		0		69	Ī	0	ı	0	Ī	0	1.0
Lunch	0)	Ī	7	3	3	0	I	16		0		0	Ī	10	ı	1	Ī	0	0.27027026
Night_wandering	0)	Ī	0	3	3	0	I	0		0		0	Ī	0	ı	64	Ī	0	0.95522386
R medicine	0)	Ī	6	3	3	0	Ī	0		0	ı	0	ı	1	ı	1	Ī	33	0.75

Result:

Right 415

Wrong 185

Average accuracy is 0.69166666

Experiment: Results

➤ Hidden Markov Model

							_			wandering R_medicine	
Bed_to_toilet	18	0	5	0 1	0	0	1 0	1 0	7	0	0.6
Breakfast	1 0	14	2	0	26	0	1 0	6	1 0	0	0.29166666
Bed	6	0	182	7	1	0	7	0	4	0	0.87922704
C_work	1 0	1 0	191	32	0	0	5	0	1 0	0	0.6956522
Dinner	1 0	9	101	0 [29	0	1 0	4	1 0	0	0.6904762
Laundry	1 0	1 0	0	0 [0	9	1	0	1 0	0	0.9
Leave_home	1 0	1 0	0	0	0	0	69	0	1 0	0	1.0
Lunch	1 0	10	1	0 [19	0	1 0	7	1 0	0	0.1891892
Night_wandering	13	1 0	11	0 [0	0	1 6	0	37	0	0.5522388
R medicine	1 0	1 0	14	0 1	0	1 0	18	0	1	11	0.25

Result:

Right 408

Wrong 192

Average accuracy is 0.68

Demo

Conclusion and Future Work

- > We collected data from robotics lab.
- > Applied AR and AP on benchmark data with accuracy around 70%.
- ➤ We worked on prediction of activity for time (t+1). It can be extended to find next activity sequence (t+k). HMM model can be used to do so.
- ➤ 'Internet of Things' (IoT) concepts can be applied to make equipments intelligent and able to communicate over a network.
- > Protocols and messages need to be built for these communication models.
- ➤ AI Planning algorithms can be used to intelligently control equipments for energy efficiency.

Thank You