#### Linear Analysis

To find the analytical solutions conveniently, the governing equations were linearized:

The film height and concentration were assumed to have the forms,

The film height and concentration were assumed to have the forms,
$$h = 1 + \eta(t) \frac{\cos \pi x}{2}$$

$$c = \frac{1}{2} + \xi(t) \frac{\cos \pi x}{2}$$

$$\frac{\partial \eta}{\partial t} + \frac{1}{3A} \left[ \left( 1 + \frac{S_2}{2} \right) \pi^4 \right] \eta - \left[ \left( \frac{Ma}{2} \right) \pi^2 \right] \xi = 0$$

$$---(1)$$

$$\frac{\partial \xi}{\partial t} + \left[ \left( \frac{1}{Pe} \right) \pi^2 \right] \xi = 0 \quad ---(2)$$

$$\eta_{max} \left( = \frac{h_{max}}{h0} \right) = \frac{\frac{Ma\pi^2}{2}}{\psi_1 - \psi_2} \left\{ exp\left(\frac{\psi_1}{\psi_1 - \psi_2} ln\left(\frac{\psi_2}{\psi_1}\right)\right) - exp\left(\frac{\psi_2}{\psi_1 - \psi_2} ln\left(\frac{\psi_2}{\psi_1}\right)\right) \right\}$$

#### Physical Mechanisms Involved





#### Marangoni Effect

S. Vafaei, Nanomaterials, 2020, 10, 397.

#### **Capillary Leveling Effect**

Low C High Low C

**Photoproduct Diffusion** 

S. K. Stanley et al., Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2020, 603, 125217.

#### Objective

Study the behavior of  $h_{max}/h_0$  with increasing  $\lambda$  (photomask-half-periodicity) and  $h_0$  (initial height of polymer film);

 $(h_{max})$  is a key parameter of interest in patterned films and governs feature resolution and aspect ratio)



Physical mechanism unclear



T. A. Arshad et al., Soft Matter, 2014, 10, 8043– 8050.

#### Photochemically Induced Marangoni Patterning



T. A. Arshad et al., Soft Matter, 2014, 10, 8043– 8050.

### Key findings

- The variation of  $h_{max}/h_0$  with  $\lambda$  and  $h_0$  is well understood physically
- Different physical mechanisms dominate in extreme regimes of parameter space
- Our findings can be helpful for achieving desired height of patterned films

## Variation of $h_{max}/h_0$ with $\lambda$

For low  $\lambda$ :  $Pe \gg A$  (capillary leveling dominates)

$$\lim_{y \to 0} \eta_{max} = \frac{3MaA}{2\pi^2 \left(1 + \frac{S_2}{2}\right)} \sim A \sim \lambda^2 \sim \frac{1}{Surface\ Tension}$$



For high  $\lambda$ :  $A \gg Pe$  (diffusion dominates)

$$\lim_{y\to 0} \eta_{max} = \frac{MaPe}{2} \sim Pe \sim \lambda^0 \sim \frac{1}{Diffusive\ forces}$$



# Analytical expression for $\frac{h_{max}}{h0}$ (or $\eta_{max}$ )

After solving equations (1) and (2),

$$\eta = \frac{\frac{Ma\pi^2}{2}}{\psi_1 - \psi_2} \left\{ e^{\psi_1 t} - e^{\psi_2 t} \right\}$$

$$\xi = \left(\frac{\frac{\pi^4}{3A}\left(1 + \frac{S_2}{2}\right) + \psi_1}{\psi_1 - \psi_2}\right) e^{\psi_1 t} - \left(\frac{\frac{\pi^4}{3A}\left(1 + \frac{S_2}{2}\right) + \psi_2}{\psi_1 - \psi_2}\right) e^{\psi_2 t}$$

$$\eta_{max}\left(=\frac{h_{max}}{h0}\right)=\frac{\frac{Ma\pi^{2}}{2}}{\psi_{1}-\psi_{2}}\left\{exp\left(\frac{\psi_{1}}{\psi_{1}-\psi_{2}}\ln\left(\frac{\psi_{2}}{\psi_{1}}\right)\right)-exp\left(\frac{\psi_{2}}{\psi_{1}-\psi_{2}}\ln\left(\frac{\psi_{2}}{\psi_{1}}\right)\right)\right\}$$

# Effect of Process Parameters on Attainable Feature Heights in Photoinduced Marangoni Patterning

Pankaj Chaudhary (NIT Agartala)

## Variation of $h_{max}/h_0$ with $h_0$

For low  $h_0$ :  $A \gg Pe$  (diffusion dominates)

$$\lim_{y\to 0} \eta_{max} = \frac{MaPe}{2} \sim Pe \sim h_0 \sim \frac{1}{Diffusive\ forces}$$

For high  $h_0$ :  $Pe \gg A$  (capillary leveling dominates)

$$\lim_{y\to 0} \eta_{max} = \frac{3MaA}{2\pi^2 \left(1 + \frac{S_2}{2}\right)} \sim A \sim h_0^{-2} \sim \frac{1}{Surface\ Tension}$$





#### Applications of Patterned Polymer Films



#### Clockwise:

- (1) M. Fang et al., Advanced Optical Materials, 2014, 2, 855–860.
- (2) Y. Zhao et al., Advanced Healthcare Materials, 2019, 8, 1801187.
- (3) J. Mei et al., Journal of the American Chemical Society, 2013, 135, 6724–6746.

One technique to create patterned films – Marangoni patterning

#### Governing Equations: Mass and Momentum Conservation

$$\frac{\partial h}{\partial t} = -\frac{\partial}{\partial x} \left[ \frac{h^3}{3A} \frac{\partial}{\partial x} \left( (1 + S_2 c) \frac{\partial^2 h}{\partial x^2} \right) + Ma \frac{h^2}{2} \frac{\partial c}{\partial x} \right] \dots \text{ film height evolution}$$

$$\text{capillary leveling} \quad \text{Marangoni effect}$$

$$\frac{\partial c}{\partial t} + u \frac{\partial c}{\partial x} = \frac{1}{Pe} \frac{1}{h} \frac{\partial}{\partial x} \left( h \frac{\partial c}{\partial x} \right) \dots \text{ photoproduct concentration evolution}$$

convection diffusion
$$A \equiv \frac{\lambda^2}{h_0^2} \sim \frac{1}{Surface Tension} \; ; Pe \equiv \frac{h_0 \gamma_0}{\mu D} \sim \frac{1}{Diffusive forces} \qquad Pe \longrightarrow Peclet number$$

$$A \longrightarrow Capillary number$$

Pe  $\longrightarrow$  Peclet number  $A \longrightarrow$  Capillary number Ma  $\longrightarrow$  Marangoni number  $S_2 \rightarrow$  Strength of Marangoni Forces