CS 480

Introduction to Artificial Intelligence

September 20, 2022

Announcements / Reminders

Please follow the Week 04 To Do List instructions

 Written Assignment #01 due TONIGHT (09/20/22) at 11:00 PM CST

- Programming Assignment #1 will be posted within 1.5 weeks
- Midterm Exam (consider fixed):
 - October 13th, 2022 during lecture time

Plan for Today

- Adversarial Search: MinMax / α - β Pruning
- Constraint Satisfaction Problems: Introduction

Selected Searching Algorithms

MinMax: Assigning MINMAX Values

CASE 1:

State n is Terminal Node

ISTERMINAL(n) = true TOMOVE(n) = MAX or MIN

k = MINMAX(n) = UTILITY(n)

= utility value of this state for MAX Player

CASE 2:

State n is a Non-Terminal Node and it is MIN Player's move

ISTERMINAL(n) = false TOMOVE(n) = MIN

$$k = MINMAX(n) =$$

 $= min_{a \in ACTIONS(n)} MINMAX(RESULT(n, a))$

= min(MINMAX(x), MINMAX(y), MINMAX(z))

= min(5, 3, 6)

CASE 3:

State n is a Non-Terminal Node and it is MAX Player's move

ISTERMINAL(n) = false TOMOVE(n) = MAX

$$k = MINMAX(n) =$$

 $= max_{a \in ACTIONS(n)}MINMAX(RESULT(n, a))$

 $= \max(\mathit{MINMAX}(d), \mathit{MINMAX}(e), \mathit{MINMAX}(f))$

= max(8, 2, 9)

 $MINMAX(n) = \begin{cases} UTILITY(n, MAX), & if \ ISTERMINAL(n) \\ max_{a \in ACTIONS(n)}MINMAX(RESULT(n, a)), & if \ TOMOVE(s) = MAX \\ min_{a \in ACTIONS(n)}MINMAX(RESULT(n, a)), & if \ TOMOVE(s) = MIN \end{cases}$

MinMax: Assigning MINMAX Values

CASE 1:

State n is Terminal Node

ISTERMINAL(n) = true TOMOVE(n) = MAX or MIN

k = MINMAX(n) = UTILITY(n)

= utility value of this state for MAX Player

= 10

CASE 2:

State n is a Non-Terminal Node and it is MIN Player's move

ISTERMINAL(n) = false TOMOVE(n) = MIN

$$k = MINMAX(n) =$$

 $= min_{a \in ACTIONS(n)}MINMAX(RESULT(n, a))$

= min(MINMAX(x), MINMAX(y), MINMAX(z))

$$= min(5, 3, 6) = 3$$

CASE 3:

State n is a Non-Terminal Node and it is MAX Player's move

ISTERMINAL(n) = false TOMOVE(n) = MAX

$$k = MINMAX(n) =$$

 $= max_{a \in ACTIONS(n)}MINMAX(RESULT(n, a))$

= max(MINMAX(d), MINMAX(e), MINMAX(f))

$$= max(8, 2, 9) = 9$$

$$MINMAX(n) = \begin{cases} UTILITY(n, MAX), & if \ ISTERMINAL(n) \\ max_{a \in ACTIONS(n)}MINMAX(RESULT(n, a)), & if \ TOMOVE(s) = MAX \\ min_{a \in ACTIONS(n)}MINMAX(RESULT(n, a)), & if \ TOMOVE(s) = MIN \end{cases}$$

MinMax: Assigning MINMAX Values

CASE 1:

State n is Terminal Node

ISTERMINAL(n) = true TOMOVE(n) = MAX or MIN

$$k = MINMAX(n) = UTILITY(n)$$

= utility value of this state for MAX Player = 10

What does it mean?
Utility of node n, to MAX Player,
is 10 (if the game gets here, this is
what MAX Player will receive)

CASE 2:

State n is a Non-Terminal Node and it is MIN Player's move

ISTERMINAL(n) = false TOMOVE(n) = MIN

$$k = MINMAX(n) =$$

 $= min_{a \in ACTIONS(n)}MINMAX(RESULT(n, a))$

= min(MINMAX(x), MINMAX(y), MINMAX(z))

= min(5, 3, 6) = 3

What does it mean?
At node n, MIN Player will choose a move from n to y to MINIMIZE MAX Player's utility

CASE 3:

State n is a Non-Terminal Node and it is MAX Player's move

ISTERMINAL(n) = false TOMOVE(n) = MAX

$$k = MINMAX(n) =$$

 $= max_{a \in ACTIONS(n)}MINMAX(RESULT(n, a))$

= max(MINMAX(d), MINMAX(e), MINMAX(f))

= max(8, 2, 9) = 9

What does it mean?
At node n, MAX Player will choose a move from n to f to MAXIMIZE MAX Player's utility

MinMax Algorithm: Pseudocode

```
function MINIMAX-SEARCH(game, state) returns an action
  player \leftarrow qame.To-Move(state)
  value, move \leftarrow MAX-VALUE(game, state)
  return move
function MAX-VALUE(game, state) returns a (utility, move) pair
  if game.Is-Terminal(state) then return game.Utility(state, player), null
  v \leftarrow -\infty
  for each a in game. ACTIONS (state) do
    v2, a2 \leftarrow MIN-VALUE(game, game.RESULT(state, a))
    if v2 > v then
       v, move \leftarrow v2, a
  return v, move
function MIN-VALUE(game, state) returns a (utility, move) pair
  if game.Is-Terminal(state) then return game.Utility(state, player), null
  v \leftarrow +\infty
  for each a in game. ACTIONS (state) do
    v2, a2 \leftarrow MAX-VALUE(game, game.RESULT(state, a))
    if v2 < v then
       v, move \leftarrow v2, a
  return v, move
```

Search Tree: Recursive Structure

MinMax Algorithm: Pseudocode

```
function MINIMAX-SEARCH(game, state) returns an action
  player \leftarrow qame.To-Move(state)
  value, move \leftarrow MAX-VALUE(game, state)
  return move
function MAX-VALUE(game, state) returns a (utility, move) pair
  if game.Is-TERMINAL(state) then return game.UTILITY(state, player), null
  v \leftarrow -\infty
  for each a in game. ACTIONS (state) do
                                                                        RECURSION
    v2, a2 \leftarrow MIN-VALUE(game, game.RESULT(state, a))
    if v2 > v then
       v, move \leftarrow v2, a
  return v, move
function MIN-VALUE(game, state) returns a (utility, move) pair
  if game.Is-Terminal(state) then return game.Utility(state, player), null
  v \leftarrow +\infty
  for each a in game. ACTIONS (state) do
    v2, a2 \leftarrow MAX-VALUE(game, game.RESULT(state, a))
    if v2 < v then
       v, move \leftarrow v2, a
  return v, move
```



```
function ALPHA-BETA-SEARCH(game, state) returns an action
  player \leftarrow game.To-Move(state)
  value, move \leftarrow \text{MAX-VALUE}(game, state, -\infty, +\infty)
  return move
function MAX-VALUE(game, state, \alpha, \beta) returns a (utility, move) pair
  if game.IS-TERMINAL(state) then return game.UTILITY(state, player), null
  v \leftarrow -\infty
  for each a in game. ACTIONS(state) do
     v2, a2 \leftarrow \text{Min-Value}(game, game. \text{Result}(state, a), \alpha, \beta)
     if v^2 > v then
        v, move \leftarrow v2, a
        \alpha \leftarrow \text{MAX}(\alpha, v)
     if v \geq \beta then return v, move
  return v, move
function MIN-VALUE(game, state, \alpha, \beta) returns a (utility, move) pair
  if game.IS-TERMINAL(state) then return game.UTILITY(state, player), null
  v \leftarrow +\infty
  for each a in game.ACTIONS(state) do
     v2, a2 \leftarrow \text{MAX-VALUE}(game, game. \text{RESULT}(state, a), \alpha, \beta)
     if v2 < v then
        v, move \leftarrow v2, a
        \beta \leftarrow \text{Min}(\beta, v)
     if v \leq \alpha then return v, move
  return v, move
```

Example MinMax with α - β Pruning

 α : the value of the best (highest-value) choice we have found so far at any choice point along the path for MAX player ("at least")

 β : the value of the best (lowest-value) choice we have found so far at any choice point along the path for MIN player ("at most")

Example MinMax with α - β Pruning


```
function ALPHA-BETA-SEARCH(game, state) returns an action
  player \leftarrow game.To-Move(state)
  value, move \leftarrow MAX-VALUE(game, state, -\infty, +\infty)
  return move
function MAX-VALUE(game, state, \alpha, \beta) returns a (utility, move) pair
  if game.IS-TERMINAL(state) then return game.UTILITY(state, player), null
  v \leftarrow -\infty
  for each a in game. ACTIONS(state) do
                                                                                          RECURSION
     v2, a2 \leftarrow \text{Min-Value}(game, game. \text{Result}(state, a), \alpha, \beta) \blacktriangleleft
     if v2 > v then
        v, move \leftarrow v2, a
        \alpha \leftarrow \text{MAX}(\alpha, v)
     if v \geq \beta then return v, move
  return v, move
function MIN-VALUE(game, state, \alpha, \beta) returns a (utility, move) pa
  if game.IS-TERMINAL(state) then return game.UTILITY(state, player), null
  v \leftarrow +\infty
  for each a in game.ACTIONS(state) do
     v2, a2 \leftarrow \text{MAX-VALUE}(game, game. \text{RESULT}(state, a), \alpha, \beta)
     if v2 < v then
        v, move \leftarrow v2, a
        \beta \leftarrow \text{MIN}(\beta, v)
     if v \leq \alpha then return v, move
  return v, move
```

```
function ALPHA-BETA-SEARCH(game, state) returns an action player \leftarrow game.To-Move(state) value, move \leftarrow \text{MAX-VALUE}(game, state, -\infty, +\infty) return move
```

```
function MAX-VALUE(game, state, \alpha, \beta) returns a (utility, move) pair
  if game.IS-TERMINAL(state) then return game.UTILITY(state, player), null
  v \leftarrow -\infty
  for each a in game. ACTIONS(state) do
     v2, a2 \leftarrow \text{Min-Value}(game, game. \text{Result}(state, a), \alpha, \beta)
     if v2 > v then
        v, move \leftarrow v2, a
        \alpha \leftarrow \text{MAX}(\alpha, v)
     if v \geq \beta then return v, move
  return v, move
                                                                                              MAX Player's move
function MIN-VALUE(game, state, \alpha, \beta) returns a (utility, move) pair
  if game.IS-TERMINAL(state) then return game.UTILITY(state, player), null
  v \leftarrow +\infty
  for each a in game.ACTIONS(state) do
     v2, a2 \leftarrow MAX-VALUE(game, game.RESULT(state, a), <math>\alpha, \beta)
     if v2 < v then
        v, move \leftarrow v2, a
        \beta \leftarrow \text{Min}(\beta, v)
     if v \leq \alpha then return v, move
                                                                                              MIN Player's move
  return v, move
```

```
function ALPHA-BETA-SEARCH(game, state) returns an action player \leftarrow game.TO-MOVE(state) value, move \leftarrow MAX-VALUE(game, state, -\infty, +\infty) return move
```

```
function MAX-VALUE(game, state, \alpha, \beta) returns a (utility, move) pair
  if game.IS-TERMINAL(state) then return game.UTILITY(state, player), null
  for each a in game. ACTIONS(state) do
                                                                                              Go through all legal
     v2, a2 \leftarrow \text{Min-Value}(game, game. \text{Result}(state, a), \alpha, \beta)
                                                                                                   actions/moves
                                                                                            (subtrees) recursively
     if v^2 > v then
        v, move \leftarrow v2, a
        \alpha \leftarrow \text{MAX}(\alpha, v)
     if v \geq \beta then return v, move
                                                                                            MAX Player's move
  return v, move
function MIN-VALUE(game, state, \alpha, \beta) returns a (utility, move) pair
  if game.IS-TERMINAL(state) then return game.UTILITY(state, player), null
  for each a in game.ACTIONS(state) do
                                                                                              Go through all legal
                                                                                                  actions/moves
     v2, a2 \leftarrow MAX-VALUE(game, game.RESULT(state, a), <math>\alpha, \beta)
                                                                                            (subtrees) recursively
     if v2 < v then
        v, move \leftarrow v2, a
        \beta \leftarrow \text{MIN}(\beta, v)
     if v \leq \alpha then return v, move
                                                                                            MIN Player's move
  return v, move
```

```
function ALPHA-BETA-SEARCH(game, state) returns an action player \leftarrow game.To-MovE(state) value, move \leftarrow MAX-VALUE(game, state, -\infty, +\infty) return move
```

```
function MAX-VALUE(game, state, \alpha, \beta) returns a (utility, move) pair
  if game.IS-TERMINAL(state) then return game.UTILITY(state, player), null
  for each a in game. ACTIONS(state) do
                                                                                            Go through all legal
     v2, a2 \leftarrow \text{Min-Value}(game, game. \text{Result}(state, a), \alpha, \beta)
                                                                                                 actions/moves
    if v2 > v then
                                                                                           (subtrees) recursively
                                          If higher MINMAX(subtree) value found
       v, move \leftarrow v2, a
                                                          store a as the best move
                                  update bound \alpha (within this recursive call only!)
       \alpha \leftarrow \text{MAX}(\alpha, v)
    if v \geq \beta then return v, move
                                                                                           MAX Player's move
  return v. move
function MIN-VALUE(game, state, \alpha, \beta) returns a (utility, move) pair
  if game.IS-TERMINAL(state) then return game.UTILITY(state, player), null
  for each a in game. ACTIONS(state) do
                                                                                            Go through all legal
                                                                                                 actions/moves
     v2, a2 \leftarrow MAX-VALUE(game, game.RESULT(state, a), <math>\alpha, \beta)
                                                                                           (subtrees) recursively
    if v^2 < v then
                                          If lower MINMAX(subtree) value found:
        v, move \leftarrow v2, a
                                                          store a as the best move
                            update bound \beta (within this recursive call only!)
       \beta \leftarrow \text{Min}(\beta, v)
     if v < \alpha then return v, move
                                                                                           MIN Player's move
  return v. move
```

```
function ALPHA-BETA-SEARCH(game, state) returns an action player \leftarrow game.TO-MOVE(state) value, move \leftarrow MAX-VALUE(game, state, -\infty, +\infty) return move
```

```
function MAX-VALUE(game, state, \alpha, \beta) returns a (utility, move) pair
  if game.IS-TERMINAL(state) then return game.UTILITY(state, player), null
  for each a in game. ACTIONS(state) do
                                                                                            Go through all legal
     v2, a2 \leftarrow \text{Min-Value}(game, game. \text{Result}(state, a), \alpha, \beta)
                                                                                                 actions/moves
    if v2 > v then
                                                                                          (subtrees) recursively
                                          If higher MINMAX(subtree) value found
       v, move \leftarrow v2, a
                                                          store a as the best move
                                                                                          MAX Player does NOT
                                  update bound \alpha (within this recursive call only!)
       \alpha \leftarrow \text{MAX}(\alpha, v)
                                                                                          change bound β here!
    if v \geq \beta then return v, move
  return v, move
                                                                                           MAX Player's move
function MIN-VALUE(game, state, \alpha, \beta) returns a (utility, move) pair
  if game.IS-TERMINAL(state) then return game.UTILITY(state, player), null
  for each a in game. ACTIONS(state) do
                                                                                            Go through all legal
                                                                                                 actions/moves
     v2, a2 \leftarrow MAX-VALUE(game, game.RESULT(state, a), <math>\alpha, \beta)
                                                                                          (subtrees) recursively
    if v^2 < v then
                                          If lower MINMAX(subtree) value found:
        v, move \leftarrow v2, a
                                                          store a as the best move
                                                                                          MIN Player does NOT
                             update bound β (within this recursive call only!)
       \beta \leftarrow \text{Min}(\beta, v)
                                                                                          change bound \alpha here!
     if v < \alpha then return v, move
                                                                                           MIN Player's move
  return v. move
```


MAX Player wants to maximize the utility of the game by choosing the right move from state a to one of three successor states: b, c, d. It will choose the state with maximum MAXMIN value. Currently:

- MINMAX(b) = UNKNOWN | MINMAX(c) = UNKNOWN | MINMAX(d) = UNKNOWN
- MAX Player's decision: not enough information yet.
 MINMAX(a) = max(MINMAX(b), MINMAX(c), MINMAX(d)) = max(???, ???, ???) → can't be established

MAX Player wants to maximize the utility of the game by choosing the right move from state a to one of three successor states: b, c, d. It will choose the state with maximum MAXMIN value. Currently:

- MINMAX(b) = UNKNOWN | MINMAX(c) = UNKNOWN | MINMAX(d) = UNKNOWN
- MAX Player's decision: not enough information yet.
 MINMAX(a) = max(MINMAX(b), MINMAX(c), MINMAX(d)) = max(???, ???, ???) → can't be established

- MIN Player (at node b) has not seen any successor MINMAX values yet \rightarrow min MINMAX seen: $v = \infty$
- $v > \alpha_a \ (\infty > -\infty) \rightarrow we \ can keep \ exploring \ b's \ subtree$

MAX Player wants to maximize the utility of the game by choosing the right move from state a to one of three successor states: b, c, d. It will choose the state with maximum MAXMIN value. Currently:

- MINMAX(b) = UNKNOWN | MINMAX(c) = UNKNOWN | MINMAX(d) = UNKNOWN
- MAX Player's decision: not enough information yet.
 MINMAX(a) = max(MINMAX(b), MINMAX(c), MINMAX(d)) = max(???, ???, ???) → can't be established

- We need to analyze e's subtree
- Node e is a terminal node (Case 1) \rightarrow MINMAX(e) = UTILITY(e) = 3 | v2 = MINMAX(e) = 3

MAX Player wants to maximize the utility of the game by choosing the right move from state a to one of three successor states: b, c, d. It will choose the state with maximum MAXMIN value. Currently:

- MINMAX(b) = UNKNOWN | MINMAX(c) = UNKNOWN | MINMAX(d) = UNKNOWN
- MAX Player's decision: not enough information yet.
 MINMAX(a) = max(MINMAX(b), MINMAX(c), MINMAX(d)) = max(???, ???, ???) → can't be established

- $v2 < v (3 < \infty) \rightarrow v = v2 = 3 \rightarrow \beta_b = min(\beta_b, v) = min(\infty, 3) = 3$
- $v > \alpha_a$ (3 > $-\infty$) \rightarrow we can keep exploring b's subtree

MAX Player wants to maximize the utility of the game by choosing the right move from state a to one of three successor states: b, c, d. It will choose the state with maximum MAXMIN value. Currently:

- MINMAX(b) = UNKNOWN | MINMAX(c) = UNKNOWN | MINMAX(d) = UNKNOWN
- MAX Player's decision: not enough information yet.
 MINMAX(a) = max(MINMAX(b), MINMAX(c), MINMAX(d)) = max(???, ???, ???) → can't be established

- We need to analyze f's subtree
- Node f is a terminal node (Case 1) → MINMAX(f) = UTILITY(f) = 12 | v2 = MINMAX(f) = 12

MAX Player wants to maximize the utility of the game by choosing the right move from state a to one of three successor states: b, c, d. It will choose the state with maximum MAXMIN value. Currently:

- MINMAX(b) = UNKNOWN | MINMAX(c) = UNKNOWN | MINMAX(d) = UNKNOWN
- MAX Player's decision: not enough information yet.
 MINMAX(a) = max(MINMAX(b), MINMAX(c), MINMAX(d)) = max(???, ???, ???) → can't be established

- $v2 > v (12 > 3) \rightarrow MINMAX(f)$ is not "better" than MINMAX(e) \rightarrow no changes
- $v > \alpha_a$ (3 > $-\infty$) \rightarrow we can keep exploring b's subtree

MAX Player wants to maximize the utility of the game by choosing the right move from state a to one of three successor states: b, c, d. It will choose the state with maximum MAXMIN value. Currently:

- MINMAX(b) = UNKNOWN | MINMAX(c) = UNKNOWN | MINMAX(d) = UNKNOWN
- MAX Player's decision: not enough information yet.
 MINMAX(a) = max(MINMAX(b), MINMAX(c), MINMAX(d)) = max(???, ???, ???) → can't be established

- We need to analyze g's subtree
- Node g is a terminal node (Case 1) \rightarrow MINMAX(g) = UTILITY(g) = 8 | v2 = MINMAX(g) = 8

MAX Player wants to maximize the utility of the game by choosing the right move from state a to one of three successor states: b, c, d. It will choose the state with maximum MAXMIN value. Currently:

- MINMAX(b) = UNKNOWN | MINMAX(c) = UNKNOWN | MINMAX(d) = UNKNOWN
- MAX Player's decision: not enough information yet.
 MINMAX(a) = max(MINMAX(b), MINMAX(c), MINMAX(d)) = max(???, ???, ???) → can't be established

- v2 > v (8 > 3) → MINMAX(g) is not "better" than MINMAX(e) → no changes
- $v > \alpha_a$ (3 > $-\infty$) \rightarrow we could keep exploring b's subtree, but all b's subtrees are explored now

MAX Player wants to maximize the utility of the game by choosing the right move from state a to one of three successor states: b, c, d. It will choose the state with maximum MAXMIN value. Currently:

- MINMAX(b) = UNKNOWN | MINMAX(c) = UNKNOWN | MINMAX(d) = UNKNOWN
- MAX Player's decision: not enough information yet.
 MINMAX(a) = max(MINMAX(b), MINMAX(c), MINMAX(d)) = max(???, ???, ???) → can't be established

MIN Player explored entire b's subtree:

- MINMAX(b) = min(MINMAX(e), MINMAX(f), MINMAX(g)) = 3 (Case 2)
- $v > \alpha_a$ (3 > $-\infty$) \rightarrow we could keep exploring b's subtree, but all b's subtrees are explored now

MAX Player wants to maximize the utility of the game by choosing the right move from state a to one of three successor states: b, c, d. It will choose the state with maximum MAXMIN value. Currently:

- MINMAX(b) = UNKNOWN | MINMAX(c) = UNKNOWN | MINMAX(d) = UNKNOWN
- MAX Player's decision: not enough information yet.
 MINMAX(a) = max(MINMAX(b), MINMAX(c), MINMAX(d)) = max(???, ???, ???) → can't be established

MIN Player explored entire b's subtree:

• We know the exact value of MINMAX(b) $\rightarrow \alpha_b$ = 3

MAX Player wants to maximize the utility of the game by choosing the right move from state a to one of three successor states: b, c, d. It will choose the state with maximum MAXMIN value. Currently:

- MINMAX(b) = 3 | MINMAX(c) = UNKNOWN | MINMAX(d) = UNKNOWN
- MAX Player's decision: not enough information yet.

 MINMAX(a) = max(MINMAX(b), MINMAX(c), MINMAX(d)) = max(3, ???, ???) \rightarrow can't be established, but

 MAX Player now knows that it will be AT LEAST 3 (3 OR HIGHER) $\rightarrow \alpha_a = 3$

MAX Player wants to maximize the utility of the game by choosing the right move from state a to one of three successor states: b, c, d. It will choose the state with maximum MAXMIN value. Currently:

- MINMAX(b) = 3 | MINMAX(c) = UNKNOWN | MINMAX(d) = UNKNOWN
- MAX Player's decision: not enough information yet.

MINMAX(a) = $max(3, MINMAX(c), MINMAX(d)) = max(3, ???, ???) \rightarrow can't be established$

- MIN Player (at node c) has not seen any successor MINMAX values yet \rightarrow min MINMAX seen: $v = \infty$
- $v > \alpha_a \ (\infty > 3) \rightarrow we \ can keep exploring c's subtree$

MAX Player wants to maximize the utility of the game by choosing the right move from state a to one of three successor states: b, c, d. It will choose the state with maximum MAXMIN value. Currently:

- MINMAX(b) = 3 | MINMAX(c) = UNKNOWN | MINMAX(d) = UNKNOWN
- MAX Player's decision: not enough information yet.

MINMAX(a) =
$$max(3, MINMAX(c), MINMAX(d)) = max(3, ???, ???) \rightarrow can't be established$$

- We need to analyze h's subtree
- Node h is a terminal node (Case 1) → MINMAX(h) = UTILITY(h) = 2 | v2 = MINMAX(h) = 2

MAX Player wants to maximize the utility of the game by choosing the right move from state a to one of three successor states: b, c, d. It will choose the state with maximum MAXMIN value. Currently:

- MINMAX(b) = 3 | MINMAX(c) = UNKNOWN | MINMAX(d) = UNKNOWN
- MAX Player's decision: not enough information yet.

MINMAX(a) =
$$max(3, MINMAX(c), MINMAX(d)) = max(3, ???, ???) \rightarrow can't be established$$

- $v2 < v (2 < \infty) \rightarrow v = v2 = 2 \rightarrow \beta_c = min(\beta_c, v) = min(\infty, 2) = 2$
- $v < \alpha_a$ (2 < 3) \rightarrow we cannot keep exploring c's subtree \rightarrow prune remaining branches

MAX Player wants to maximize the utility of the game by choosing the right move from state a to one of three successor states: b, c, d. It will choose the state with maximum MAXMIN value. Currently:

- MINMAX(b) = 3 | MINMAX(c) = UNKNOWN | MINMAX(d) = UNKNOWN
- MAX Player's decision: not enough information yet.

MINMAX(a) = $max(3, MINMAX(c), MINMAX(d)) = max(3, ???, ???) \rightarrow can't be established$

MIN Player explored c's subtree as far as it was necessary:

We know that MINMAX(c) ≤ 2

MAX Player wants to maximize the utility of the game by choosing the right move from state a to one of three successor states: b, c, d. It will choose the state with maximum MAXMIN value. Currently:

- MINMAX(b) = 3 | MINMAX(c) = \leq 2 | MINMAX(d) = UNKNOWN
- MAX Player's decision: not enough information yet.
 MINMAX(a) = max(3, MINMAX(c), MINMAX(d)) = max(3, ≤ 2, ???) → can't be established

MAX Player wants to maximize the utility of the game by choosing the right move from state a to one of three successor states: b, c, d. It will choose the state with maximum MAXMIN value. Currently:

- MINMAX(b) = 3 | MINMAX(c) = \leq 2 | MINMAX(d) = UNKNOWN
- MAX Player's decision: not enough information yet.

MINMAX(a) = $max(3, MINMAX(c), MINMAX(d)) = max(3, <math>\leq 2$, ???) \rightarrow can't be established

- MIN Player (at node d) has not seen any successor MINMAX values yet \rightarrow min MINMAX seen: $v = \infty$
- $v > \alpha_a \ (\infty > 3) \rightarrow we \ can keep \ exploring \ d's \ subtree$

MAX Player wants to maximize the utility of the game by choosing the right move from state a to one of three successor states: b, c, d. It will choose the state with maximum MAXMIN value. Currently:

- MINMAX(b) = 3 | MINMAX(c) = \leq 2 | MINMAX(d) = UNKNOWN
- MAX Player's decision: not enough information yet.

MINMAX(a) =
$$max(3, MINMAX(c), MINMAX(d)) = max(3, ≤ 2 , ???) \rightarrow can't be established$$

- We need to analyze k's subtree
- Node k is a terminal node (Case 1) → MINMAX(k) = UTILITY(k) = 14 | v2 = MINMAX(k) = 14

MAX Player wants to maximize the utility of the game by choosing the right move from state a to one of three successor states: b, c, d. It will choose the state with maximum MAXMIN value. Currently:

- MINMAX(b) = 3 | MINMAX(c) = \leq 2 | MINMAX(d) = UNKNOWN
- MAX Player's decision: not enough information yet.

MINMAX(a) =
$$max(3, MINMAX(c), MINMAX(d)) = max(3, ≤ 2 , ???) \rightarrow can't be established$$

- $v2 < v (14 < \infty) \rightarrow v = v2 = 14 \rightarrow \beta_d = min(\beta_d, v) = min(\infty, 14) = 14$
- $v > \alpha_a$ (14 > 3) \rightarrow we can keep exploring d's subtree \rightarrow we also know that MINMAX(d) \leq 14

MAX Player wants to maximize the utility of the game by choosing the right move from state a to one of three successor states: b, c, d. It will choose the state with maximum MAXMIN value. Currently:

- MINMAX(b) = 3 | MINMAX(c) = \leq 2 | MINMAX(d) = \leq 14
- MAX Player's decision: not enough information yet.

MINMAX(a) = $max(3, MINMAX(c), MINMAX(d)) = max(3, \le 2, \le 14) \rightarrow can't$ be established

MIN Player needs to explore d's subtree:

• we know that MINMAX(d) \leq 14 \rightarrow this tells us that MINMAX(a) cannot be > 14 \rightarrow β_a = 14

MAX Player wants to maximize the utility of the game by choosing the right move from state a to one of three successor states: b, c, d. It will choose the state with maximum MAXMIN value. Currently:

- MINMAX(b) = 3 | MINMAX(c) = \leq 2 | MINMAX(d) = \leq 14
- MAX Player's decision: not enough information yet.

MINMAX(a) =
$$max(3, MINMAX(c), MINMAX(d)) = max(3, \le 2, \le 14) \rightarrow can't$$
 be established

- We need to analyze I's subtree
- Node I is a terminal node (Case 1) → MINMAX(I) = UTILITY(I) = 5 | v2 = MINMAX(I) = 5

MAX Player wants to maximize the utility of the game by choosing the right move from state a to one of three successor states: b, c, d. It will choose the state with maximum MAXMIN value. Currently:

- MINMAX(b) = 3 | MINMAX(c) = \leq 2 | MINMAX(d) = \leq 14
- MAX Player's decision: not enough information yet.

MINMAX(a) =
$$max(3, MINMAX(c), MINMAX(d)) = max(3, \le 2, \le 14) \rightarrow can't$$
 be established

- $v2 < v (5 < 14) \rightarrow v = v2 = 5 \rightarrow \beta_d = min(\beta_d, v) = min(\infty, 5) = 5$
- $v > \alpha_a$ (5 > 3) \rightarrow we can keep exploring d's subtree \rightarrow we also know that MINMAX(d) \leq 5

MAX Player wants to maximize the utility of the game by choosing the right move from state a to one of three successor states: b, c, d. It will choose the state with maximum MAXMIN value. Currently:

- MINMAX(b) = 3 | MINMAX(c) = \leq 2 | MINMAX(d) = \leq 5
- MAX Player's decision: not enough information yet.

MINMAX(a) = max(3, MINMAX(c), MINMAX(d)) = max(3,
$$\leq 2$$
, ≤ 5) \rightarrow can't be established

MIN Player needs to explore d's subtree:

• we know that MINMAX(d) \leq 5 \rightarrow this tells us that MINMAX(a) cannot be > 5 \rightarrow β_a = 5

MAX Player wants to maximize the utility of the game by choosing the right move from state a to one of three successor states: b, c, d. It will choose the state with maximum MAXMIN value. Currently:

- MINMAX(b) = 3 | MINMAX(c) = \leq 2 | MINMAX(d) = \leq 5
- MAX Player's decision: not enough information yet.

MINMAX(a) = max(3, MINMAX(c), MINMAX(d)) = max(3,
$$\leq$$
 2, \leq 5) \rightarrow can't be established

- We need to analyze m's subtree
- Node m is a terminal node (Case 1) → MINMAX(m) = UTILITY(m) = 2 | v2 = MINMAX(m) = 2

MAX Player wants to maximize the utility of the game by choosing the right move from state a to one of three successor states: b, c, d. It will choose the state with maximum MAXMIN value. Currently:

- MINMAX(b) = 3 | MINMAX(c) = \leq 2 | MINMAX(d) = \leq 5
- MAX Player's decision: not enough information yet.

MINMAX(a) = max(3, MINMAX(c), MINMAX(d)) = max(3,
$$\leq 2$$
, ≤ 5) \rightarrow can't be established

- $v2 < v (2 < 5) \rightarrow v = v2 = 2 \rightarrow \beta_d = min(\beta_d, v) = min(\infty, 2) = 2$
- $v < \alpha_a$ (2 < 3) \rightarrow we cannot keep exploring d's subtree \rightarrow we also know that MINMAX(d) = 2

MAX Player wants to maximize the utility of the game by choosing the right move from state a to one of three successor states: b, c, d. It will choose the state with maximum MAXMIN value. Currently:

- MINMAX(b) = 3 | MINMAX(c) = \leq 2 | MINMAX(d) = 2
- MAX Player's decision: choose move b, because:

MINMAX(a) =
$$max(3, MINMAX(c), MINMAX(d)) = max(3, \leq 2, 2) = 3$$

• Since we know MINMAX(a), we can update β_a for completeness $\rightarrow \beta_a$ = 3

Selected Searching Algorithms

Constraint Satisfaction Problem

A Constraint Satisfaction Problem (CSP) consists of three components:

- lacktriangle a set of variables $X = \{X_1, ..., X_n\}$
- a set of domains $D = \{D_1, ..., D_n\}$
- a set of constraints C that specify allowable combinations of values
- $\begin{tabular}{l} \textbf{A domain } D_i \begin{tabular}{l} is a set of allowable values $\{v1,...,vk\}$ for variable X_i \\ \end{tabular}$
- A constraint C_j is a $\langle scope, relation \rangle$ pair, for example $\langle (X1, X2), X1 > X2 \rangle$

Constraint Satisfaction Problem

The goal is to find an assignment (variable = value):

$$\{X_1 = V_1, ..., X_n = V_n\}$$

- If NO constraints violated: consistent assignment
- If ALL variables have a value: complete assignment
- If SOME variables have NO value: partial assignment
- SOLUTION: consistent and complete assignment
- PARTIAL SOLUTION: consistent and partial assignment

State Representations

CSP Example: Map Coloring

Problem:

Color this map in a way that no two neighbors have same color

Variables:

 $X = \{WA, NT, Q, NSW, V, SA, T\}$ $D_{WA} = \{RED, GREEN, BLUE\}$

Variable Domains:

$$\begin{split} &D_{WA} = \{RED, GREEN, BLUE\} \\ &D_{NT} = \{RED, GREEN, BLUE\} \\ &D_{Q} = \{RED, GREEN, BLUE\} \\ &D_{NSW} = \{RED, GREEN, BLUE\} \\ &D_{V} = \{RED, GREEN, BLUE\} \\ &D_{SA} = \{RED, GREEN, BLUE\} \\ &D_{T} = \{RED, GREEN, BLUE\} \end{split}$$

Constraints (Rules):

Neighboring regions have to have DISTINCT colors:

CONSTRAINTS = C = $\{SA \neq WA, SA \neq NT, SA \neq Q, SA \neq NSW, SA \neq V, WA \neq NT, NT \neq Q, Q \neq NSW, NSW \neq V\}$

Constraint Graph:

CSP Example: Sudoku (3x3 for now)

Problem:

X _{1,1}	X _{1,2}	X _{1,3}
X _{2,1}	X _{2,2}	X _{2,3}
X _{3,1}	X _{3,2}	X _{3,3}

Variables:

$$X = \{x_{1,1}, x_{1,2}, x_{1,3}, x_{2,1}, x_{2,2}, x_{2,3}, x_{3,1}, x_{3,2}, x_{3,3}\}$$

Variable Domains:

$$\begin{aligned} \mathbf{D}_{x1,1} &= \{1,\,2,\,3,\,4,\,5,\,6,\,7,\,8,\,9\} \\ \mathbf{D}_{x1,2} &= \{1,\,2,\,3,\,4,\,5,\,6,\,7,\,8,\,9\} \\ \mathbf{D}_{x1,3} &= \{1,\,2,\,3,\,4,\,5,\,6,\,7,\,8,\,9\} \\ \mathbf{D}_{x2,1} &= \{1,\,2,\,3,\,4,\,5,\,6,\,7,\,8,\,9\} \\ \mathbf{D}_{x2,2} &= \{1,\,2,\,3,\,4,\,5,\,6,\,7,\,8,\,9\} \\ \mathbf{D}_{x2,3} &= \{1,\,2,\,3,\,4,\,5,\,6,\,7,\,8,\,9\} \\ \mathbf{D}_{x3,1} &= \{1,\,2,\,3,\,4,\,5,\,6,\,7,\,8,\,9\} \\ \mathbf{D}_{x3,2} &= \{1,\,2,\,3,\,4,\,5,\,6,\,7,\,8,\,9\} \\ \mathbf{D}_{x3,3} &= \{1,\,2,\,3,\,4,\,5,\,6,\,7,\,8,\,9\} \end{aligned}$$

Constraints (Rules):

Each value {1, 2, 3, 4, 5, 6, 7, 8, 9} can appear EXACTLY once:

CONSTRAINTS = C = $\{x_{1,1} \neq x_{1,2}, x_{1,1} \neq x_{1,3}, x_{1,1} \neq x_{2,1}, x_{1,1} \neq x_{2,2}, x_{1,1} \neq x_{2,3}, x_{1,2} \neq x_{1,3}, x_{1,2} \neq x_{2,1}, x_{1,2} \neq x_{2,2}, x_{1,2} \neq x_{2,3}, x_{1,2} \neq x_{3,1}, x_{1,2} \neq x_{3,2}, x_{1,3} \neq x_{2,1}, x_{1,3} \neq x_{2,2}, x_{1,3} \neq x_{2,3}, x_{1,3} \neq x_{3,1}, x_{1,3} \neq x_{3,2}, x_{1,3} \neq x_{3,3}, x_{2,1} \neq x_{2,2}, x_{2,1} \neq x_{2,3}, x_{2,1} \neq x_{3,1}, x_{2,1} \neq x_{3,2}, x_{2,1} \neq x_{3,2}, x_{2,1} \neq x_{3,2}, x_{2,1} \neq x_{3,2}, x_{2,2} \neq x_{3,3}, x_{2,2} \neq x_{3,3}, x_{2,2} \neq x_{3,3}, x_{2,3} \neq x_{2,3}, x_{2,3} \neq x$

CSP Example: Traveling Salesman

Problem:

There are:

- N cities (vertices)
- N(N-1) links (edges)
- Each link has some positive cost d
- Total path (tour) cost is COST

Variables:

$$Z = \{z_{1,2}, z_{1,3}, ..., z_{N-1,N}\}$$
$$D = \{d_{1,2}, d_{1,3}, ..., d_{N-1,N}\}$$

Variable Domains:

$$D_{zi,j} = \{traveled, notTraveled\}$$

or better:

$$D_{zi,j} = \{1, 0\}$$

$$\mathbf{D}_{\mathrm{di},j} = \mathbf{R}_{+}$$

Constraints (Rules):

- Exit each city EXACTLY once:
- Enter each city EXACTLY once:
- Cost of tour is at most C:

$$\sum_{j=1}^N z_{i,j} = 1$$

$$\sum_{i=1}^{N} z_{i,i} = 1$$

$$\sum_{i=1}^{N} \sum_{j=1}^{N} z_{i,j} d_{i,j} \leq COST$$

CSP as a Tree Search Problem

CSP as a Tree Search Problem

CSP: Variable Types

Domains can be:

- **■** finite, for example: {1, 2, 3, 5, 8, 20} (simpler)
- infinite, for example: a set of all integers

Variables can be:

- discrete, for example: $X = \{X_1, ..., X_n\}$ (simpler)
- continuous, for example: R₊

Constraints can be:

- unary (involve single variable), for example: $X_1 = 5$
- binary (involve two variables), for example: $X_1 = X_2$
- higher order (involve > 2 variables), for example: $X_1 = X_2 * X_3$
- Soft constraints (preferences: green over blue) possible

CSP Search Tree: Idea

Tree leaves are COMPLETE assignments

The sequence of variable assignments does NOT matter*

*(when you disregard performance)

0 variable assigned

1 variables assigned

2 variables assigned

lacktriangle

•

ALL (n) variables assigned