

Introduction

Liniger A, Domahidi A, Morari M. **Optimization-based autonomous racing of 1: 43 scale RC cars**[J]. Optimal Control Applications and Methods, 2015, 36(5): 628-647.

Heilmeier A, Wischnewski A, Hermansdorfer L, et al. **Minimum curvature trajectory planning and control for an autonomous race car**[J]. Vehicle System Dynamics, 2019.

Motivation

$$\sum_{k=1}^{N_c-1} \|\Delta u_k\|_{R_1}^2 + \sum_{k=1}^{N_c} \|u_k - u_{\text{ref}}\|_{R_2}^2$$

 $\min_{u} J_{\text{MPCC}}$

s.t.
$$\zeta(0) = \zeta_{\text{cur}}$$
 (4a)

$$\zeta(k+1) = f_d(\zeta(k), u(k)) \tag{4b}$$

$$\zeta_{\min} \le \zeta(k) \le \zeta_{\max}$$
(4c)

$$u_{\min} \le u(k) \le u_{\max}$$
 (4d)

 $\gamma \cdot \mathbf{v}_{p,k} \cdot T_s$

Contribution

How to incorporate global racetrack information in MPCC's autonomous racing framework?

Contribution

Our solution: Curvature-Integrated MPCC Local Trajectory Planning (CiMPCC)

- A practical method for **integrating curvature** into optimization problems;
- A novel mapping method between curvature and velocity.

Method

$$\boldsymbol{\kappa}_{i} = \frac{\left\|\Delta x_{i} \cdot \Delta^{2} x_{i} - \Delta^{2} x_{i} \cdot \Delta y_{i}\right\|}{\left(\Delta x_{i}^{2} + \Delta y_{i}^{2}\right)^{\frac{3}{2}}}$$

$$J_{\text{Ci}} = \sum_{k=1}^{N_p} (1 - \boldsymbol{\beta}) \cdot \|\mathbf{v}_k - \underline{\mathbf{v}}\|_{R_3}^2 + \boldsymbol{\beta} \cdot \|\mathbf{v}_k - \bar{\mathbf{v}}\|_{R_3}^2, \boldsymbol{\beta} = g(\mathbf{K}_{\text{cur}}^n)$$

 $egin{bmatrix} \mathbf{v}_l & \mathbf{v}_p \end{bmatrix}$ [

Curvature

Experimental result

Based on the comparison and analysis of the control laws, it can be concluded that CiMPCC is effective for modeling the normalized smooth curvature of the racetrack centerline.

Experimental result

- ◆ Subsequently, we continuously performed the DDRA for a total of **seventeen laps** of autonomous racing.
- ◆ According to the percentage of performance improvement it can be seen that CiMPCC outperforms the traditional MPCC and RDM+OTG (based on path velocity decomposition) methods in terms of **mean velocity and lap time**. This also shows the stability of the CiMPCC method.
- ◆ This shows that the computation efficiency of CiMPCC is sufficient for **real-time computation**.

Conclusion

- ◆ The main innovation lies in the method of integrating the racetrack centerline into the optimization problem.
- ◆ The experimental results from long-term autonomous racing demonstrate that the CiMPCC method decreases the mean lap time by 11.8% compared to the traditional MPCC method.

Future work

Velocity Prediction MPCC (VPMPCC)

Automatically tuning parameters using BO

Additional velocity decisions

Mean velocity achieved **93.18%** of limits

Trajectory filter for BO training

Objective Function adapted to **Racing (OFR)**

Fast planning of highquality trajectories

Improve training efficiency of BO

Mean trajectory planning time is **7.04 ms** with **transferable parameters**

Imporve training efficiency by **42.86%**

ACCEPT MY ENDLESS GRATITUDE