Лекция №6

Метод модифицированной быстрой сортировки

N = 2 P = 4 n = 16 n/P = 4

Предварительная стадия связана с формированием из исходной последовательности блоков, которе рассылаются ведущим ПЭ по ПЭ, реализующим быструю сортировку.

В качестве опорного элемента используем последний элемент исходной последовательности. На каждом ПЭ выполняется локальный алгоритм быстрой сортировки в соответствии с полученным значением опорного элемента.

Вид полученных последовательностей следующий:

	ПЭ	9 1			П	9 2			ПЗ	3		ПЭ 4			
7	54	13	27	71	23	14	27	3	32	11	6	38	41	44	10
7	54	13	27	71	23	14	27	<u>3</u>	<u>6</u>	11	32	<u>10</u>	41	44	38

На ведущем процессором элементе формируется последовательность значений, соответствующих количеству элементов в левой и правой подпоследовательностях на соответствующих ПЭ. a: 1 0 2 1; б: 3 4 2 3

Вычисление на основе полученных в пунктах \underline{a} и \underline{b} значений префиксных сумм, дополняемых слева нулями.

Если x1, x2, ..., xn – это исходная последовательность, то ей будет соответствовать последовательность вида π 1, π 2, ..., π n, где элементы этой последовательности формируются следующим образом: π 1 = x1; π 2 = x1+x2; π 3 = x1 + x2 + x3; π i = SUM[j=1..i](xj);

Для значений из <u>а</u> последовательность префиксных сумм имеет вид: π a = 1 1 3 4; а для последовательности <u>б</u>: π б = 3 7 9 12; К полученной последовательности добавляют лидирующие нули. Исключение последнего элемента π a и добавление его ко всем элементам последовательности π б = 4 7 11 13 16; π a = 0 1 1 3;

	ПЗ	∋ 1			ПЗ	∋ 2			ПЭ	3		ПЭ 4			
<u>Z</u>	<u>3</u>	<u>6</u>	<u>10</u>	54	13	27	71	23	14	27	11	32	41	44	38

Префиксные суммы, полученные в пункте <u>а</u> соответствуют номерам позиций «левых» последовательностей в формируемой на ведущем ПЭ результирующей последовательности, соответственно суммы, полученные в <u>б</u> номерам позиций «правых» последовательностей формируемой результирующей последовательности.

Элементы, входящие в левую часть сортируются независимо от элеменов, входящих в правую часть. При этом сортировка элементов правой части выполняется распределено.

	ПЭ	9 1			ПЗ	92			ПЭ	3		ПЭ 4			
7	3	6	10	<u>13</u>	<u>27</u>	54	71	<u>11</u>	<u>14</u>	<u>23</u>	<u>27</u>	<u>32</u>	<u>38</u>	41	44
3	6	7	10	<u>13</u>	<u>27</u>	<u>11</u>	<u>14</u>	<u>23</u>	<u>27</u>	<u>32</u>	<u>38</u>	54	71	41	44
					1				†						

Самостоятельно к экзамену продолжить итерации модифицированного метода быстрой сортировки.

Алгоритмы на графах

Параллельные алгоритмы обработки графа

Общие понятия теории графов

G(V, R) – граф, множество вершин и дуг которого является заданным

$$v_j \in V$$
, $j = 1..n$, $n = IVI$

$$(v_j,\,v_k)\in R\subset V^2,\,m=IRI$$

Дугам графа ставится в соответствие некоторые числовые характеристики, называемые весами, тогда

$$w(v_i, v_k) = w_{ik}$$

Для графа определяется матрица смежности, как способ его представления.

$$\begin{array}{lll} A & = & (a_{jk}), \ j=1..n, \ k=1..n \\ a_{jk} & = & \{w_{jk}, \ \text{если} \ (v_j, \ v_k) \in R; \\ \text{ {иначе}} & \infty \end{array}$$

Задача поиска кратчайшего пути на графе