Mixed Models

Accounting for clustered/correlated data

ERHS 732

$$Y_i = \beta_0 + \beta_1 X_i + \epsilon_i$$
 or $E[Y_i|X_i] = \beta_0 + \beta_1 X_i$

► For a simple linear model of the form

$$Y_i = \beta_0 + \beta_1 X_i + \epsilon_i$$
 or $E[Y_i|X_i] = \beta_0 + \beta_1 X_i$

▶ We assume

$$Y_i = \beta_0 + \beta_1 X_i + \epsilon_i$$
 or $E[Y_i|X_i] = \beta_0 + \beta_1 X_i$

- ▶ We assume
 - Linearity: E[Y|X] is a linear function of X
 - Normality: $\epsilon_i \sim N(0, \sigma^2)$

$$Y_i = \beta_0 + \beta_1 X_i + \epsilon_i$$
 or $E[Y_i|X_i] = \beta_0 + \beta_1 X_i$

- ▶ We assume
 - Linearity: E[Y|X] is a linear function of X
 - Normality: $\epsilon_i \sim N(0, \sigma^2)$
 - ▶ Homoschedasticity: the $Var(\epsilon_i)$ is constant, σ^2

$$Y_i = \beta_0 + \beta_1 X_i + \epsilon_i$$
 or $E[Y_i|X_i] = \beta_0 + \beta_1 X_i$

- ▶ We assume
 - Linearity: E[Y|X] is a linear function of X
 - Normality: $\epsilon_i \sim N(0, \sigma^2)$
 - ▶ Homoschedasticity: the $Var(\epsilon_i)$ is constant, σ^2
 - ▶ **Independence**: The Y_i 's are independent random variables

▶ When we have multiple observations that are expected to be correlated then the independence assumption fails

- ▶ When we have multiple observations that are expected to be correlated then the independence assumption fails
 - These observations could be multiple observations per participant over time

- ► When we have multiple observations that are expected to be correlated then the independence assumption fails
 - These observations could be multiple observations per participant over time
 - Multiple patients of the same doctor

- ▶ When we have multiple observations that are expected to be correlated then the independence assumption fails
 - These observations could be multiple observations per participant over time
 - Multiple patients of the same doctor
 - Multiple residents of the same area

- ▶ When we have multiple observations that are expected to be correlated then the independence assumption fails
 - These observations could be multiple observations per participant over time
 - Multiple patients of the same doctor
 - Multiple residents of the same area
- ▶ In general if the data are 'clustered' in any way we expect them to be correlated

- ▶ When we have multiple observations that are expected to be correlated then the independence assumption fails
 - These observations could be multiple observations per participant over time
 - Multiple patients of the same doctor
 - Multiple residents of the same area
- ► In general if the data are 'clustered' in any way we expect them to be correlated
- ► This correlation has to be accounted for in the model by assuming a certain covariance structure

Assume we have longitudinal data with N participants and n observations per person ($N \times n$ total person-time observations)

- Assume we have longitudinal data with N participants and n observations per person ($N \times n$ total person-time observations)
 - Each observation is now Y_{it} with $i = 1, \dots, N$, and $t = 1, \dots, n$ and the mean of them is $E[Y_{it}]$

- Assume we have longitudinal data with N participants and n observations per person ($N \times n$ total person-time observations)
 - Each observation is now Y_{it} with $i = 1, \dots, N$, and $t = 1, \dots, n$ and the mean of them is $E[Y_{it}]$
- ▶ The variance of Y_{it} is a measure of the spread of the values around the mean

- Assume we have longitudinal data with N participants and n observations per person ($N \times n$ total person-time observations)
 - Each observation is now Y_{it} with $i = 1, \dots, N$, and $t = 1, \dots, n$ and the mean of them is $E[Y_{it}]$
- ▶ The variance of Y_{it} is a measure of the spread of the values around the mean
- The *covariance* is a measure of linear dependence between two random variables (say between Y_{i1} and Y_{i2} , σ_{12})

- Assume we have longitudinal data with N participants and n observations per person ($N \times n$ total person-time observations)
 - Each observation is now Y_{it} with $i = 1, \dots, N$, and $t = 1, \dots, n$ and the mean of them is $E[Y_{it}]$
- ▶ The variance of Y_{it} is a measure of the spread of the values around the mean
- The *covariance* is a measure of linear dependence between two random variables (say between Y_{i1} and Y_{i2} , σ_{12})
- ▶ In a traditional linear regression model we assume that any two observations are independent and the covariance is zero. However with correlated data $\sigma_{12} \neq 0$

► When we have correlated data the total variance is the sum of different sources of variation

- When we have correlated data the total variance is the sum of different sources of variation
 - Variability between groups/clusters

- When we have correlated data the total variance is the sum of different sources of variation
 - ► Variability between groups/clusters
 - Variability within groups/clusters

- ► When we have correlated data the total variance is the sum of different sources of variation
 - Variability between groups/clusters
 - Variability within groups/clusters
- ► Mixed models separate the types of effects into 'fixed' and 'random', but also quantify the contributions of these types of variation

➤ A simple mixed model is one with fixed effects for covariates X and a random intercept for each group or cluster of data

- ▶ A simple mixed model is one with fixed effects for covariates X and a random intercept for each group or cluster of data
- For the example with repeated observations per participant a mixed model would look like this

$$Y_{it} = \beta_0 + \beta_1 X_{ij} + b_i + \epsilon_{it}$$

- ▶ A simple mixed model is one with fixed effects for covariates X and a random intercept for each group or cluster of data
- For the example with repeated observations per participant a mixed model would look like this

$$Y_{it} = \beta_0 + \beta_1 X_{ij} + b_i + \epsilon_{it}$$

▶ b_i represents the random intercept and we assume that $b_i \sim N(0, \sigma_b^2)$. We can rewrite this as

$$Y_{it} = (\beta_0 + b_i) + \beta_1 X_{ij} + \epsilon_{it}$$

- ▶ A simple mixed model is one with fixed effects for covariates X and a random intercept for each group or cluster of data
- For the example with repeated observations per participant a mixed model would look like this

$$Y_{it} = \beta_0 + \beta_1 X_{ij} + b_i + \epsilon_{it}$$

▶ b_i represents the random intercept and we assume that $b_i \sim N(0, \sigma_b^2)$. We can rewrite this as

$$Y_{it} = (\beta_0 + b_i) + \beta_1 X_{ij} + \epsilon_{it}$$

▶ For each participant the intercept is $\beta_0 + b_i$, or in other words the intercept varies randomly around β_0 by a factor of b_i

• We said that $b_i \sim N(0, \sigma_b^2)$ and we still assume $\epsilon_{it} \sim N(0, \sigma^2)$

- We said that $b_i \sim N(0, \sigma_b^2)$ and we still assume $\epsilon_{it} \sim N(0, \sigma^2)$
- ▶ The total variance is $\sigma_b^2 + \sigma^2$ and σ_b^2 represents between-participant variability while σ^2 is within-participant variability

- We said that $b_i \sim N(0, \sigma_b^2)$ and we still assume $\epsilon_{it} \sim N(0, \sigma^2)$
- ▶ The total variance is $\sigma_b^2 + \sigma^2$ and σ_b^2 represents between-participant variability while σ^2 is within-participant variability
- σ_b^2 also represents the covariance in this structure and the correlation between two observations from the same participant is $\rho=\frac{\sigma_b^2}{\sigma_b^2+\sigma^2}$

We can also add random slopes for the covariates in the model that vary by group

- We can also add random slopes for the covariates in the model that vary by group
- For the example with repeated observations per participant a mixed model would look like this

$$Y_{it} = \beta_0 + \beta_1 X_{ij} + b_{0i} + b_{1i} X_{it} + \epsilon_{it}$$

- We can also add random slopes for the covariates in the model that vary by group
- For the example with repeated observations per participant a mixed model would look like this

$$Y_{it} = \beta_0 + \beta_1 X_{ij} + b_{0i} + b_{1i} X_{it} + \epsilon_{it}$$

▶ b_{1i} represents the random slope and we assume that $b_{1i} \sim N(0, \sigma_{b1}^2)$ on top of the previous assumptions. We can rewrite this as

$$Y_{it} = (\beta_0 + b_i) + (\beta_1 + b_{1i})X_{ij} + \epsilon_{it}$$

- We can also add random slopes for the covariates in the model that vary by group
- For the example with repeated observations per participant a mixed model would look like this

$$Y_{it} = \beta_0 + \beta_1 X_{ij} + b_{0i} + b_{1i} X_{it} + \epsilon_{it}$$

▶ b_{1i} represents the random slope and we assume that $b_{1i} \sim N(0, \sigma_{b1}^2)$ on top of the previous assumptions. We can rewrite this as

$$Y_{it} = (\beta_0 + b_i) + (\beta_1 + b_{1i})X_{ij} + \epsilon_{it}$$

For each participant the slope is $\beta_1 + b_{1i}$, or in other words the slope varies randomly around β_1 by a factor of b_{1i}

