CIS 263 Introduction to Data Structures and Algorithms

Disjoint Set Class

Graph (Formal Definition)

- Pairwise relationship
- A Graph, **G**, is an ordered pair of vertices, **V**, and edges, **E**.

Undirected Graph

Q. Draw a graph a for the following input?

 $E = \{\{1, 2\}, \{2, 3\}, \{3, 1\}, \{1, 4\}\}$

Q. Draw a graph a for the following input?

```
E = {{1, 2}, {2, 3}, {3, 1}, {1, 4}}
V = Union(all edge vertices)
= {1, 2, 3, 4}
```

Q. Draw a graph a for the following input?

```
E = {{1, 2}, {2, 3}, {3, 1}, {1, 4}}
V = Union(all edge vertices)
= {1, 2, 3, 4}
```

$$G = (V, E)$$

Q. Draw a graph a for the following input edges?

$$G = (V, E)$$

So, the input required is the set of edges (at the minimum)

Q. Draw a graph a for the following input edges?

$$G = (V, E)$$

So, the input required is the set of edges (at the minimum)

	1	2	3	4
1	0	1	1	1
2	1	0	1	0
3	1	1	0	0
4	1	0	0	0

Adjacency Matrix

Q. Can you draw a graph a for the following input edges?

 $E = \{\{2, 3\}, \{3, 1\}, \{1, 2\}, \{5, 4\}, \{4, 6\}\}$

Q. Can you draw a graph a for the following input edges?

$$E = \{\{2, 3\}, \{3, 1\}, \{1, 2\}, \{5, 4\}, \{4, 6\}\}$$

It turned out to be two graphs; right?

Q. Can you draw a graph a for the following input edges?

$$E = \{\{2, 3\}, \{3, 1\}, \{1, 2\}, \{5, 4\}, \{4, 6\}\}$$

It turned out to be two graphs; right?

How do we know that we have two graphs?

Q. Can you draw a graph a for the following input edges?

$$E = \{\{2, 3\}, \{3, 1\}, \{1, 2\}, \{5, 4\}, \{4, 6\}\}$$

It turned out to be two graphs; right?

How do we know that we have two graphs?

Visual inspection

Q. Can you draw a graph a for the following input edges?

$$E = \{\{2, 3\}, \{3, 1\}, \{1, 2\}, \{5, 4\}, \{4, 6\}\}\}$$

It turned out to be two graphs; right?

How do we know that we have two graphs?

Visual inspection (AI Tools)

Q. Can you draw a graph a for the following input edges?

$$E = \{\{2, 3\}, \{3, 1\}, \{1, 2\}, \{5, 4\}, \{4, 6\}\}$$

It turned out to be two graphs; right?

How do we know that we have two graphs?

Disjoint Set Class

 $E = \{\{2, 3\}, \{3, 1\}, \{1, 2\}, \{5, 4\}, \{4, 6\}\}\$ $V = \{1, 2, 3, 4, 5, 6\}$

Edge processed		Collection of disjoint Sets					
Initial sets	{1}	{2}	{3}	{4}	{5}	{6}	

 $E = \{\{2, 3\}, \{3, 1\}, \{1, 2\}, \{5, 4\}, \{4, 6\}\}\$ $V = \{1, 2, 3, 4, 5, 6\}$

Edge processed		Collection of disjoint Sets					
Initial sets	{1}	{2} \ U	{3}	{4}	{5 }	{6}	
{2, 3}	{1}	{2, 3}		{4}	{5 }	{6}	

 $E = \{\{2, 3\}, \{3, 1\}, \{1, 2\}, \{5, 4\}, \{4, 6\}\}\$ $V = \{1, 2, 3, 4, 5, 6\}$

Edge processed			Collec	tion of disjoint Set	S
Initial sets	{1}	{2}	[3]	{4}	{5}
{2, 3}	{1}	{2, 3}		{4}	{5}
{3, 1}	{1, 2,			{4}	{5}

{6}

{6}

{6}

 $E = \{\{2, 3\}, \{3, 1\}, \{1, 2\}, \{5, 4\}, \{4, 6\}\}\$ $V = \{1, 2, 3, 4, 5, 6\}$

Edge processed					
Initial sets					
{2, 3}					
{3, 1}					
<u>{1, 2}</u>					

Collection of disjoint Sets								
{1}	{2} \	{3}	{4}	{5}	{6}			
{1}	{2, 3}		{4}	{5 }	{6}			
{1, 2, 3}			{4}	{5 }	{6}			
{1, 2, 3}			{4}	{5 }	{6}			

 $E = \{\{2, 3\}, \{3, 1\}, \{1, 2\}, \{5, 4\}, \{4, 6\}\}\$ $V = \{1, 2, 3, 4, 5, 6\}$

Edge processed	
Initial sets	
{2, 3}	
{3, 1}	
<u>{1, 2}</u>	
{5, 4}	

		Collection of	f disjoint Sets		
{1}	{2} \	{3}	{4}	{5}	{6}
{1} 	{2,3}		{4}	{5 }	{6}
{1, 2, 3}			{4}	{5 }	{6}
{1, 2, 3}			{ 4 }	{5}	{6}
{1, 2, 3}			↓ U {4, 5}		{6}

 $E = \{\{2, 3\}, \{3, 1\}, \{1, 2\}, \{5, 4\}, \{4, 6\}\}$ $V = \{1, 2, 3, 4, 5, 6\}$

Edge processed			Collection
Initial sets	{1}	{2} \ U	{3}
{2, 3}	{1} 	{2,3}	
{3, 1}	{1, 2, 3}		
<u>{1, 2}</u>	{1, 2, 3}		
{5, 4}	{1, 2, 3}		
{4, 6}	{1, 2, 3}		

Collection of disjoint Sets								
{1}	{2} \ U	{3}	{4}	{5 }	{6}			
{1} 	{2, 3}		{4}	{5 }	{6}			
{1, 2, 3}			{4}	{5 }	{6}			
{1, 2, 3}			{4}	{5}	{6}			
{1, 2, 3}			↓ U {4, 5}		{6}			
{1, 2, 3}			↓ U {4, 5, 6}					

 $E = \{\{2, 3\}, \{3, 1\}, \{1, 2\}, \{5, 4\}, \{4, 6\}\}\$ $V = \{1, 2, 3, 4, 5, 6\}$

Initial sets {2, 3} {3, 1} {1, 2} {5, 4}

{4, 6}

Let's Practice some BFSs ...

• Let build a graph and try the BFS

 $E = \{\{2, 3\}, \{3, 1\}, \{1, 2\}, \{5, 4\}, \{4, 6\}, \{3, 4\}\}$

QA