The Lorentz Group and Singular Lorentz Transformations

Kevin Maguire (10318135) (Dated: February 28, 2014)

abstract

Contents

I. Special Linear Matrices of the Lorentz Transformation A. Example 1: Rotational Transformation	$\frac{2}{3}$
B. Example 2: Special Relativity Lorentz Transformation	3
C. Example 3: Singular Lorentz Transformation	3
II. Infinitesimal Lorentz Transformations	4
III. Acknowledgements	4
References	4

I. SPECIAL LINEAR MATRICES OF THE LORENTZ TRANSFORMATION

Let $\vec{x} = (x, y, z, t)$ be the position vector of a point in minkowskian space-time. Knowing \vec{x} we can construct the following 2×2 hermitian matrix:

$$A = \begin{pmatrix} t - z & x + iy \\ x - iy & t + z \end{pmatrix} \tag{1}$$

with $A^{\dagger}(\vec{x}) = A(\vec{x})$. This is useful as its determinant is the same as the usual lorentz invariant quantity (WHAT DO WE CALL THIS???):

$$\det(A(\vec{x})) = t^2 - x^2 - y^2 - z^2$$

Consider any 2×2 hermitian matrix H.

$$H = \left(egin{array}{c} p & q \\ r & s \end{array}
ight) \; , \, H^\dagger = \left(egin{array}{c} ar{p} & ar{q} \\ ar{r} & ar{s} \end{array}
ight)$$

It is know that $H^{\dagger}(\vec{x}) = H(\vec{x})$ so it is clear that $p = \bar{p}$ and $s = \bar{s}$ and thus $p, s \in \mathbb{R}$. Also $q = \bar{r}$ and then of course $\bar{q} = r$. Hence knowing p, q, r and s is equivalent to knowing 4 real numbers, two from p and two from q. From these parameters the coordinates (x, y, z, t) of a point in Minkowskian space-time can be constructed as:

$$x + iy = q = \bar{r}$$
, $t - z = p$, $t + z = s$

by comparing with matrix A above. Hence it is true that there is a one to one correspondence between points in Minkowskian space-time and 2×2 hermitian matrices.

Construct the following matrix:

$$U = \left(\begin{array}{cc} \alpha & \beta \\ \gamma & \delta \end{array}\right)$$

with $\alpha, \beta, \gamma, \delta \in \mathbb{C}$. With the condition that $\det(U) = 1$. Such matrices U form a group called the special linear group, which is denoted by $SL(2,\mathbb{C})$. Given $A(\vec{x})$ consider $UA(\vec{x})U^{\dagger}$. This is a 2×2 hermitian matrix since:

$$\begin{split} cl(UA(\vec{x})U^{\dagger})^{\dagger} &= (U^{\dagger})^{\dagger}A^{\dagger}(\vec{x})U^{\dagger} \\ &= UA(\vec{(x)})U^{\dagger} \end{split}$$

since $(U^{\dagger})^{\dagger} = U$ and $A^{\dagger} = A$. Hence there exists a point $\vec{x'} = (x', y', z', t')$ in minkowskian space-time for which:

$$A(\vec{x'}) = UA(\vec{x})U^{\dagger} \tag{2}$$

Any U involves 6 real parameters, 2 each from the four complex components, with the condition det(U) = 1 supplying two constraints. One on the real parts and one on the imaginary parts of the components. Now calculate the determinant of the matrix in the primed frame

$$\begin{split} \det(A(\vec{x'})) &= \det(UA(\vec{x})U^{\dagger}) \\ &= (\det(U))(\det(A(\vec{x}))(\det(U^{\dagger})) \\ &= (\det(U))(\det(A(\vec{x}))(\det(U)) \\ &= \det(A(\vec{x})) \end{split}$$

Thus we have the relation:

$$t'^2 - x'^2 - y'^2 - z'^2 = t^2 - x^2 - y^2 - z^2$$

Hence the transformation $\vec{x} \to \vec{x'}$ implicit in Eqn.(2) is a Lorentz transformation. Eqn.(2) describes the most general proper, orthochronous Lorentz transformation.

It is useful to calculate the matrix U for some examples of Lorentz transformations. First, write Eqn.(2) in terms of its components:

$$\begin{pmatrix} t'-z' & x'+iy' \\ x'-iy' & t'+z' \end{pmatrix} = \begin{pmatrix} \alpha & \beta \\ \gamma & \delta \end{pmatrix} \begin{pmatrix} t-z & x+iy \\ x-iy & t+z \end{pmatrix} \begin{pmatrix} \bar{\alpha} & \bar{\beta} \\ \bar{\gamma} & \bar{\delta} \end{pmatrix}$$

$$= \begin{pmatrix} \alpha & \beta \\ \gamma & \delta \end{pmatrix} \begin{pmatrix} (t-z)\bar{\alpha}+(x+iy)\bar{\beta} & (t-z)\bar{\gamma}+(x+iy)\bar{\delta} \\ (x-iy)al\bar{p}ha+(t+z)\bar{\beta} & (x-iy)\bar{\gamma}+(t+z)\bar{\delta} \end{pmatrix}$$

Thus we have the relations:

$$t' - z' = (t - z)\alpha\bar{\alpha} + (x + iy)\alpha\bar{\beta} + (x - iy)\beta al\bar{p}ha + (t + z)\beta\bar{\beta}$$
(2a)

$$x' + iy' = (t - z)\alpha\bar{\gamma} + (x + iy)\alpha\bar{\delta} + (x - iy)\beta\bar{\gamma} + (t + z)\beta\bar{\delta}$$
 (2b)

$$t' + z' = (t - z)\gamma\bar{\gamma} + (x + iy)\gamma\bar{\delta} + (x - iy)\delta\bar{\gamma} + (t + z)\delta\bar{\delta}$$
 (2c)

A. Example 1: Rotational Transformation

Find U 2a2b2c corresponding to the one parameter Lorentz transformation:

$$x' = x \cos \theta + y \sin \theta$$
$$y' = -x \sin \theta + y \cos \theta$$
$$z' = z$$
$$t' = t$$

This implies that:

$$t' - z' = t - z$$
$$x' + iy' = (x + iy)e^{-i\theta}$$
$$t' + z' = t + z$$

Equating coefficients of x, y, z, t on both sides of Eqn. (2a) to obtain: (SEE CALS)

B. Example 2: Special Relativity Lorentz Transfomation

(CALCS)

C. Example 3: Singular Lorentz Transformation

(CALCS)

It is clear that there will always be two matrices $\pm U$ corresponding to every Lorentz transformation, since if U satisfies $A(\vec{x'}) = UA(\vec{x})U^{\dagger}$ then so does -U. Hence there is a 2 to 1 corresponded between the elements of $SL(2,\mathbb{C})$ and the proper orthochronous Lorentz transformation.

II. INFINITESIMAL LORENTZ TRANSFORMATIONS

There are Lorentz transformations that are small perturbations of the identity transformation and so $U \in SL(2,\mathbb{C})$ has the form

$$U = \pm \begin{pmatrix} 1 + \epsilon a & \epsilon b \\ \epsilon c & 1 + \epsilon f \end{pmatrix},$$

where $a,b,c,f\in\mathbb{C}$ and ϵ is a small real parameter. Here terms of order ϵ^2 will be neglected. As $U\in SL(2,\mathbb{C})$ its determinant is calculated as

$$\det(U) = 1 + O(\epsilon^2).$$

Using this it is possible to obtain a relation between f and a

$$(1 + \epsilon a)(1 + \epsilon f) - \epsilon^2 bc = 1 + O(\epsilon^2),$$

$$1 + \epsilon (a + f) = 1 + O(\epsilon^2),$$

$$\Rightarrow f = -a + O(\epsilon).$$

Hence

$$U = \left(\begin{array}{cc} 1 + \epsilon a & \epsilon b \\ \epsilon c & 1 - \epsilon a \end{array}\right),\,$$

Now the explicit infinitesimal Lorentz transformations are calculated as in section I, by substituting U into

$$A(\vec{x}') = UA(\vec{x})U^{\dagger}.$$

Now writing this out in component form to obtain

$$\begin{pmatrix} t'-z' & x'+iy' \\ x'+iy' & t'+z' \end{pmatrix} = \begin{pmatrix} 1+\epsilon a & \epsilon b \\ \epsilon c & 1-\epsilon a \end{pmatrix} \begin{pmatrix} t-z & x+iy \\ x-iy & t+z \end{pmatrix} \begin{pmatrix} 1+\epsilon \bar{a} & \epsilon \bar{c} \\ \epsilon \bar{b} & 1-\epsilon \bar{a} \end{pmatrix},$$

$$= \begin{pmatrix} 1+\epsilon a & \epsilon b \\ \epsilon c & 1-\epsilon a \end{pmatrix} \begin{pmatrix} (t-z)(1+\epsilon \bar{a})+\epsilon \bar{b}(x+iy) & (t-z)\epsilon \bar{c}+(1-\epsilon \bar{a})(x+iy) \\ (x-iy)(1+\epsilon \bar{a})+\epsilon \bar{b}(t+z) & (x-iy)\epsilon \bar{c}+(1-\epsilon \bar{a})(t+z) \end{pmatrix}.$$

This then implies the three relations

$$t'-z' = t - z + \epsilon(a+\bar{a})(t-z) + \epsilon(b+\bar{b})x + i\epsilon(\bar{b}-b)y + O(\epsilon^2)$$

$$t'+z' = t + z - \epsilon(a+\bar{a})(t+z) + \epsilon(c+\bar{c})x + i\epsilon(c-\bar{c})y + O(\epsilon^2)$$

$$x'+iy' = x + iy + \epsilon(a-\bar{a})(x+iy) + \epsilon(b+\bar{c})t + \epsilon(b-\bar{c})z + O(\epsilon^2)$$

III. ACKNOWLEDGEMENTS