

Outline

- Programming Model
- CUDA Language
- Example Code Study
- CPU & GPU Synchronization
- Multi-GPU
- Dynamic Parallelism

What is CUDA?

- CUDA: Compute Unified Device Architecture
 - > CUDA is a compiler and toolkit for programming NVIDIA GPUs
 - > Enable heterogeneous computing and horsepower of GPUs
 - > CUDA API extends the C/C++ programming language
 - Express SIMD parallelism
 - Give a high level abstraction from hardware

CUDA SDK Version	Compute Capability	Architecture
6.5	1.X	Tesla
7.5	2.0-5.x	Fermi, Kepler, Maxwell
8.0	2.0-6.x	Fermi, Kepler, Maxwell, Pascal
9.0	3.0-7.x	Kepler, Maxwell, Pascal, Volta

CUDA program flow

CUDA Programming Model

- CUDA = serial program with parallel kernels, all in C
 - Serial C code executes in a host thread (i.e. CPU thread)
 - > Parallel kernel C code executes in many devices threads across multiple processing elements (i.e. GPU threads)

CUDA program framework

GPU code (parallel)

CPU code (serial or parallel if p-thread/ OpenMP/T BB/MPI is used.)

```
#include <cuda runtime.h>
  global void my kernel(...) {
int main() {
   cudaMalloc(...)
   cudaMemcpy (...)
      my kernel<<<nblock,blocksize>>>(...)
   cudaMemcpy (...)
```


Kernel = Many Concurrent Threads

- One kernel is executed at a time on the device
- Many thread execute each kernel
 - > Each thread executes the same code
 - ... on the different data based on its threadID
- CUDA thread might be
 - Physical threads
 - As on NVIDIA GPUs
 - GPU thread creation and context switching are essentially free
 - > Or virtual threads
 - ◆ E.g. 1 CPU core might execute multiple CUDA threads
 NTHU LSA Lab

```
...
float x = input[threadID];
float y = func(x);
output[threadID] = y;
...
```


Hierarchy of Concurrent Threads

- Threads are grouped into thread blocks
 - Kernel = gird of thread blocks

 By definition, threads in the same block may synchronized with barriers, but not between blocks

```
scratch[threadID] = begin[threadID];
__syncthreads();
int left = scratch[threadID - 1];
```


Software Mapping

- Software: grid → blocks → threads
- Hardware: GPU(device) → SM(multicore processor) → core

Block Level Scheduling

- Blocks are independent to each other to give scalability
 - ➤ A kernel scales across any number of parallel cores by scheduling blocks to SMs

Thread Level Scheduling - Warp

- Inside the SM, threads are launched in groups of 32, called warps
 - Warps share the control part (warp scheduler)
 - Threads in a warp will be executing the same instruction (SIMD)
- In other words ...
 - Threads in a wrap execute physically in parallel
 - Warps and blocks execute logically in parallel

Thread group limits

- GTX1080 CUDA Capability6.1
 - > Use deviceQuery.cpp to find out your limits
- Total number of threads per kernel = threads per block * number of blocks
 - ➤ Max dimension size of a thread block (x,y,z): (1024, 1024, 64)
 - \triangleright Max dimension size of a grid size (x,y,z): (2³¹-1, 2¹⁶-1, 2¹⁶-1)
- Maximum execution concurrency
 - Maximum number of resident grids per device (Concurrent Kernel Execution): 32
 - > Maximum number of threads per multiprocessor: 2048
 - Maximum number of threads per block: 1024

Memory Hierarchy

Memory size limits

- GTX1080 CUDA Capability6.1
 - > Use deviceQuery.cpp to find out your limits
 - > Total amount of global memory: 11171 MBytes
 - > Total amount of constant memory: 64 MBytes
 - > Total amount of shared memory per block: 48 MBytes
 - > Total number of registers available per block: 65536

CUDA Programming Terminology

■ Host: CPU

Device : GPU

Kernel: functions executed on GPU

■ Thread: the basic execution unit

■ Block : a group of threads

■ Grid: a group of blocks

Quiz

- Can a kernel run across multiple SM processors?
- Does the kernel below have to run on 10 different SM processors?
 - my kernel<<< 10, 10 >>>();
- Can the threads from a same block run across multiple SM processors?
- What is the difference between the two kernals below?

```
1. my_kernel<<< 1, 100 >>>(A);
2. my kernel<<< 100, 1 >>>(A);
```

- Why shared block memory can only be accessed by the threads in the same blocks?
- Why we have to call __syncthreads() within a block if there are data dependency between statements
- Why syncthreads() is not supported across blocks?

Outline

- Programming Model
- CUDA Language
- Example Code Study
- CPU & GPU Synchronization
- Multi-GPU
- Dynamic Parallelism

CUDA Language

Philosophy: provide minimal set of extensions necessary

Kernel launch

- Build-in device variables
 - threadIdx; blockIdx; blockDim; gridDim
- Intrinsic functions that expose operations in kernel code __syncthreads();
- Declaration specifier to indicate where things live

```
__global__ void KernelFunc(...); // kernel function, run on device
__device__ void GlobalVar; // variable in device memory
__shared__ void SharedVar; // variable in per-block shared memory
NTHU LSA Lab
```


Thread and Block IDs

- Build-in device variables
 - threadIdx; blockIdx; blockDim; gridDim
- The index of threads and blocks can be denoted by a 3 dimensional struct
 - > dim3 defined in vector_types.h
 struct dim3 { x; y; z; };
- **■** Example:
 - > dim3 grid(3, 2);
 > dim3 blk(5, 3);
 > my kernel<<< grid, blk >>>();
- Each thread can be uniquely identified by a tuple of index (x,y) or (x,y,z)
- Q: When will we use multi-dimensional index?

Quiz

■ How to index a 100 elements of an array under the following kernel launch setting?

```
__global__ void VecAdd(float* A)
{
    int i = _____
        A[i] = A[i] + 1;
}

1. my_kernel <<< 1, 100 >>> (A);
2. my_kernel <<< 100, 1 >>> (A);
3. my_kernel <<< 10, 10 >>> (A);
4. size=10; dim3 blk(size, size);
my_kernel <<< 1, blk >>> (A, size);
```

// Kernel definition

Quiz

How to index a 100 elements of an array under the following kernel launch setting?

```
// Kernel definition
__global__ void VecAdd(float* A)
{
    int i = _____
    A[i] = A[i] + 1;
}
```

```
1. my_kernel<<< 1, 100 >>>(A); → inti=threadIdx;
2. my_kernel<<< 100, 1 >>>(A); → inti=blockIdx;
3. my_kernel<<< 10, 10 >>>(A);
  → inti=blockIdx*blockDim+threadIdx;
4. size=10; dim3 blk(size, size);
  my_kernel<<< 1, blk >>>(A, size);
  → inti=threadIdx.x* blockDim.x + threadIdx.y;
```


Function Qualifiers

Function qualifiers		limitations	
device function		Executed on the device Callable from the device only	
globalfunction		Executed on the device Callable from the host only (must have void return type!)	
host function		Executed on the host Callable from the host only	
Functions without qualifiers		Compiled for the host only	
hostdevicef	unction	Compiled for both the host and the device	

Variable Type Qualifiers

Variable qualifiers	limitations
device var	Resides in device's global memory space
constantvar	 Has the lifetime of an application Is accessible from all the threads within the grid and from the host through the runtime library
	• Resides in device's constant memory space
sharedvar	 Resides in the shared memory space of a thread block Has the lifetime of the block Is only accessible from all the threads within the block

Device memory operations

- Three functions:
 - > cudaMalloc(), cudaFree(), cudaMemcpy()
 - Similar to the C's malloc(), free(), memcpy()
- cudaMalloc(void **devPtr, size t size)
 - devPtr: return the address of the allocated device memory
 - size: the allocated memory size (bytes)
- cudaFree (void *devPtr)
- 3. cudaMemcpy(void *dst, const void *src, size t count, enum cudaMemcpyKind kind)
 - count: size in bytes to copy

cudaMemcpyKind

one of the following four values

cudaMemcpyKind	Meaning	dst	src
cudaMemcpyHostToHost	Host → Host	host	host
cudaMemcpyHostToDevice	Host → Device	device	host
cudaMemcpyDeviceToHost	Device → Host	host	device
cudaMemcpyDeviceToDevice	Device → Device	device	device

host to host has the same effect as memcpy()

Program Compilation

- Any source file containing
 CUDA language must be
 compiled with NVCC
 - NVCC separates code running on the host from code running on the device
- Two-stage complication:
 - Virtual ISA
 - PTX: Parallel Threads executions
 - Device-specific binary object

Outline

- Programming Model
- CUDA Language
- Example Code Study
- CPU & GPU Synchronization
- Multi-GPU
- Dynamic Parallelism

Example 1: Hello World!

```
__global__ void mykernel(void) {
}
int main(void) {
   mykernel<<<<1,1>>>();
   printf("Hello World!\n");
   return 0;
}
```

- Two new syntactic elements...
 - 1. <u>global</u> indicates a function that runs on the device and is called from host code
 - 2. mykernel<<<1, 1>>> (); Triple angle brackets mark a call from host code to device code, which is called a "kernel launch".

Example 2: add 2 numbers

```
__global__ void add(int *a, int *b, int *c) {
    *c = *a + *b;
}
int main(void) {
    int ha=1,hb=2,hc;
    add<<<1,1>>>(&ha, &hb, &hc);
    printf("c=%d\n",hc);
    return 0;
}
```

- This does not work!!
- int ha, hb, hc are in the host memory (DRAM), which cannot be used by device (GPU).
- We need to allocate variables in "device memory".

The correct main()

```
int main(void) {
   int a=1, b=2, c; // host copies of a, b, c
   int *d a, *d b, *d c; // device copies of a, b, c
   // Allocate space for device copies of a, b, c
   cudaMalloc((void **)&d a, sizeof(int));
   cudaMalloc((void **)&d b, sizeof(int));
   cudaMalloc((void **)&d c, sizeof(int));
   // Copy inputs to device
   cudaMemcpy(d a, &a, sizeof(int), cudaMemcpyHostToDevice);
   cudaMemcpy(d b, &b, sizeof(int), cudaMemcpyHostToDevice);
   // Launch add() kernel on GPU
   add <<<1,1>>> (d a, d b, d c);
   // Copy result back to host
   cudaMemcpy(&c, d c, size, cudaMemcpyDeviceToHost);
   // Cleanup
   cudaFree(d a); cudaFree(d b); cudaFree(d c);
   return 0;
```


Example 3: add 2 vectors

■ Let's first look at the sequential code!

```
// function definition
void VecAdd(int N, float* A, float* B, float* C)
{
     for(int i = 0; i<N; i++)
           C[i] = A[i] + B[i];
}
int main()
{ ...
   VecAdd (N, Ah, Bh, Ch);
```


Parallel CUDA code

- Use blockIdx.x as the index of the arrays
 - ➤ Each thread processes 1 addition, for the elements indexed at blockIdx.x.

```
// Kernel definition
_global__ void VecAdd(float* A, float* B, float* C)
     int i = threadIdx.x;
     C[i] = A[i] + B[i];
}
int main()
{ . . .
     // Kernel invocation with N threads
     VecAdd<<<1, N>>>(Ah, Bh, Ch); ...
}
                           NTHU LSA Lab
```


Alternative implementation

Using parallel thread instead

```
__global__ void add(int *a, int *b, int *c) {
    c[blockIdx.x] = a[blockIdx.x] + b[blockIdx.x];
}
int main(void) {
    int a[N], b[N], c[N];
    int *d_a, *d_b, *d_c;
    ...
    add<<< N, 1 >>>(d_a, d_b, d_c);
    ...
}
```

- N blocks and each block has 1 thread.
- Which one is better?
 - Threads in the same block can communicate, synchronize with others, but the number of threads per block is limited.

3rd implementation

- Using multiple threads and multiple blocks
- Suppose N=16, grid size = 4, and block size = 4

- How to index 16 elements of an array?
 - > Method 1: index = blockIdx.x*4+threadIdx.x
 - > Method 2: index = threadIdx.x*4+blockIdx.x
- Which one is better?

The general case

■ Use the built-in variable blockDim.x for threads per block.

```
__global__ void add(int *a, int *b, int *c) {
   int index = threadIdx.x + blockIdx.x * blockDim.x;
   c[index] = a[index] + b[index];
}
int main(void) {
   int a[N], b[N], c[N];
   int *d_a, *d_b, *d_c;
   add<<< N/BS,BS>>> (d_a, d_b, d_c);
}
What if N is not a
   multiple of BS?
```

■ BS is block size (number of threads per block)

A even more general case

```
__global___ void add(int *a, int *b, int *c, int n) {
   int index = threadIdx.x + blockIdx.x * blockDim.x;
   if (index < n)
      c[index] = a[index] + b[index];
}
int main(void) {
   int a[N], b[N], c[N];
   int *d_a, *d_b, *d_c;
   ...
   add<<< (N+BS-1)/BS, BS>>> (d_a, d_b, d_c, N);
   ...
}
```

■ The kernel function can have branches, but with a price to pay...

Example4: APSP

- Given a weighted directed graph G(V, E, W), where |V| = n, |W|=m, and W>0, find the shortest path of all pairs of vertices (vi,vj).
- **■** Example:

0	INF	-2	INF
4	0	3	INF
INF	INF	0	2
INF	-1	INF	0

Initial weight

0	-1	-2	0
4	0	2	4
5	1	0	2
3	-1	1	0

Final result

Floyd-Warshall (Sequential code)

```
Floyd-Warshall (G, W) { n \leftarrow |V| | D^{(0)} \leftarrow W | for k = 1 to n do for i = 1 to n do for j = 1 to n do if D^{(k-1)}[i,j] > D^{(k-1)}[i,k] + D^{(k-1)}[k,j] then D^{(k)}[i,j] \leftarrow D^{(k-1)}[i,k] + D^{(k-1)}[k,j] else D^{(k)}[i,j] \leftarrow D^{(k-1)}[i,j] return D^{(n)} }
```



```
k = 1:
2 \xrightarrow{4} 1 \xrightarrow{-2} 3
k = 2:
4 \xrightarrow{-1} 2 \xrightarrow{4} 1
4 \xrightarrow{-1} 2 \xrightarrow{4} 1
k = 3:
```


NTHU LSA Lab

Implementation I

- 1 block and *n* threads.
- Thread i updates the SP for vertex i.

```
__global___ void FW_APSP(int k, int D[n][n]) {
    int i = threadIdx.x;
        for (int j =0; j < n; j ++)
              if (D[i][j]>D [i][k]+D[k][j])
              D[i][j]= D[i][k]+D[k][j];
}

int main() { ...
    for (int k = 0; k < n, k ++)
        FW_APSP < < < 1, n >>> (k, D);
}
```

Simple! But can it be faster?

Implementation 2

- Each thread updates one pair of vertices
 - ➤ Increase parallelism from n to n²

```
__global___ void FW_APSP(int k, int D[n][n]) {
    int i = threadIdx.x;
    int j = threadIdx.y;
    if (D[i][j]>D[i][k]+D[k][j])
        D[i][j]= D[i][k]+D[k][j];
}
int main() { ...
    dim3 threadsPerBlock(n, n);
    for (int k = 0; k<n, k++)
        FW_APSP<<<<1, threadsPerBlock >>>(k, D);
}
```

■ How about the for-loop of k?

Implementation 3

```
global void FW_APSP(int D[n][n]) {
    int i = threadIdx.x;
   int j = threadIdx.y;
    for (int k = 0; k < n, k++)
        if (D[i][j]>D[i][k]+D[k][j])
            D[i][j] = D[i][k] + D[k][j];
int main() { ...
    dim3 threadsPerBlock(n, n);
    FW APSP<<<1, threadsPerBlock >>>(D);
}
```

- It is a synchronous computation
 - > There are data dependency on k...

Add syncthreads()

```
_global__ void FW_APSP(int D[n][n]) {
   int i = threadIdx.x;
   int j = threadIdx.y;
    for (int k = 0; k < n, k++){
        if (D[i][j]>D[i][k]+D[k][j])
            D[i][j] = D[i][k] + D[k][j];
          syncthreads();
int main() { ...
    dim3 threadsPerBlock(n, n);
   FW APSP<<<1, threadsPerBlock >>>(D);
```


Outline

- Programming Model
- CUDA Language
- Example Code Study
- CPU & GPU Synchronization
- Multi-GPU
- Dynamic Parallelism

Asynchronous Functions

- To facilitate concurrent execution between host and device, most CUDA function calls are asynchronous:
 - Control is returned to the host thread before the device has completed the requested task.
 - > But function calls from a kernel are serialized on GPU
- Asynchronous functions:
 - > Kernel launches
 - Asynchronous memory copy and set options: cudaMemcpyAsync, cudaMemsetAsync
 - > cudaMemcpy within the same device
 - > H2D cudaMemcpy of **64kB or less**
 - cudaEvent functions

NTHU LSA Lab

Why Use Asynchronous Functions?

 Overlap CPU computation with the GPU computation or data transfer

```
void main() {
  cudaMemcpy ( /**/, H2D );
  kernel2 <<< grid, block>>> ();
  kernel3 <<< grid, block>>> ();
  cudaMemcpy ( /**/, D2H );
  cpu_method();
}
```

```
void main() {
  cudaMemcpy ( /**/, H2D );
  kernel2 <<< grid, block>>> ();
  kernel3 <<< grid, block>>> ();
  cudaMemcpyAsync ( /**/, D2H );
  cpu_method();
}
```

```
GPU
  CPU
         H2D memcpy
                     kernel1
                     kernel2
         H2D memcpy
cpu_method()
         H2D memcpy
                     kernel1
cpu_method()
                     kernel2
         H2D memcpy
```


Risk of Using Asynchronous Functions

Programmer must enforce synchronization between GPU and CPU when there is data dependency

```
void main() {
  cudaMemcpyAsync ( d_a, h_a, count, H2D );
  kernel <<< grid, block>>> (d_a);
  cudaMemcpyAsync ( h_a, d_a, count, D2H );
  cpu_method(h_a);
}
```

NTHU LSA Lab 46

Synchronization between CPU & GPU

- Device based: cudaDeviceSynchronize()
 - ➤ Block a CPU thread until all issued CUDA calls to a device complete
- Context based: cudaThreadSynchronize()
 - > Block a CPU thread until all issued CUDA calls from the thread complete
- Stream based: cudaStreamSynchronize(stream-id)
 - > Block a CPU thread until all CUDA calls in stream stream-id complete
- Event based:
 - cudaEventSynchronize (event)
 - Block a CPU thread until event is recorded
 - cudaStreamWaitEvent (steam-id, event)
 - Block a GPU stream until event reports completion

Device Synchronization Example

```
void main() {
  cudaSetDevice(0);
  kernel1 <<< grid, block>>> ();
  kernel2 <<< grid, block>>> ();
  cudaSetDevice(1);
  kernel3 <<< grid, block>>> ();
  cudaDeviceSynchronize()
  cpu_method();
}
```


NTHU LSA Lab 48

Thread Synchronization Example

```
void main() {
  cudaSetDevice(0);
  kernel1 <<< grid, block>>> ();
  kernel2 <<< grid, block>>> ();
  cudaSetDevice(1);
  kernel3 <<< grid, block>>> ();
  cudaThreadSynchronize()
  cpu_method();
}
```


NTHU LSA Lab 49

CUDA event

- Data type: cuda Event_t
- cudaError t cudaEventCreate(cudaEvent_t* event)
 - Create CUDA event
- cudaError_t cudaEventRecord(cudaEvent_t event, cudaStream t stream = 0)
 - Record CUDA event
 - ➤ If stream is non-zero, the event is recorded after all preceding operations in the stream have been completed
 - Since operation is asynchronous, cudaEventQuery() and/or cudaEventSynchronize() must be used to determine when the event has actually been recorded
- cudaError_t cudaEventSynchronize(cudaEvent_t event)
 - Wait until the completion of all device work preceding the most recent call to cudaEventRecord()

Event Synchronization Example

```
void main() {
cudaSetDevice(0);
kernel1 <<< grid, block>>> ();
cudaEventRecrod(event)
kernel2 <<< grid, block>>> ();
cudaSetDevice(1);
kernel3 <<< grid, block>>> ();
 cudaEventSynchronize (event)
cpu method();
                 GPU0
                                GPU1
   CPU
                  kernel1
                                 kernel3
                  kernel2
 cpu_method()
```

NTHU LSA Lab 51

Kernel Time Measurement Example

```
cudaEvent_t start, stop;
1.
                                         Create event
   cudaEventCreate(&start);
2.
   cudaEventCreate(&stop);
3.
                                       Record event
   cudaEventRecord(start);
   kernel<<<blook, thread>>>();
5.
                                           Record event and
   cudaEventRecord(stop);
                                             synchronize
6.
   cudaEventSynchronize(stop);
7.
   float time;
8.
   cudaEventElapsedTime(&time, start, stop);
9.
                                  Compute the event duration
```


Outline

- Programming Model
- CUDA Language
- Example Code Study
- CPU & GPU Synchronization
- Multi-GPU
- Dynamic Parallelism

Multi-GPUs

- Multi-GPUs within a node
 - > A single CPU thread, multiple GPU
 - Multiple CPU threads belonging to the same process, such as pthread or openMP

- Multiple GPUs on multiple nodes
 - > Need to go through network API, such as MPI

Single thread multi-GPUs

- All CUDA calls are issued to the current GPU
 - > cudaSetDevice() sets the current GPU

```
// Run independent kernel on each CUDA device
int numDevs = 0;
cudaGetNumDevices(&numDevs);
for (int d = 0; d < numDevs; d++) {
    cudaSetDevice(d);
    kernel<<<blooks, threads>>>(args);
}
```

 Asynchronous calls (kernels, memcopies) don't block switching the GPU

```
cudaSetDevice( 0 );
kernel<<<...>>>(...);
cudaSetDevice( 1 );
kernel<<<...>>>(...);
```


Using CUDA with OpenMP

- Put CUDA functions inside the parallel region
- General setting:
 - ➤ The number of CPU threads is the same as the number of CUDA devices. Each CPU thread controls a different device, processing its portion of the data.
- It's possible to use more CPU threads than there are CUDA devices.
 - Several CPU threads will be allocating resources and launching kernel on the same device, which will slow down the performance.

Example: cudaOMP.cu

```
cudaGetDeviceCount(&num gpus);
omp set num threads (num gpus);
// create as many CPU threads as there are CUDA devices
#pragma omp parallel
   unsigned int cpu thread id = omp get thread num();
   unsigned int num cpu threads = omp get num threads();
   cudaSetDevice(cpu thread id);
   int gpu id = -1;
   cudaGetDevice(&gpu id);
   printf("CPU thread %d (of %d) uses CUDA device %d\n",
           cpu thread id, num cpu threads, gpu id);
```


Using CUDA with MPI

```
int main(int argc, char* argv[]) {
   int rank, size;
   int A[32];
   int i;
   MPI Init(&argc, &argv);
   MPI Comm rank (MPI COMM WORLD, &rank);
   MPI Comm size (MPI COMM WORLD, &size);
   printf("I am %d of %d\n", rank, size);
   for (i = 0; i < 32; i++) A[i] = rank+1;
   launch(A); // a call to launch CUDA kernel
   MPI Barrier (MPI COMM WORLD);
   MPI Finalize();
   return 0;
```


Example: launch (A)

```
extern "C"
void launch(int *A) {
    int *dA;
    cudaMalloc((void**)&dA, sizeof(int)*32);
    cudaMemcpy(dA, A, sizeof(int)*32,
                cudaMemcpyHostToDevice);
    kernel <<<1, 32>>> (dA);
    cudaMemcpy(A, dA, sizeof(int)*32,
                cudaMemcpyDeviceToHost);
    cudaFree(dA);
```


Sharing data between GPUs

- Options
 - 1. Explicit copies via host
 - 2. Zero-copy shared host array
 - 3. Peer-to-peer memory copy

1. Explicit copies via host

- CPU explicitly copies data from device A to device B
- Example:

```
cudaSetDevice(0);
cudaMemcpy(DM1,HM,n,D2H);
cudaSetDevice(1);
cudaMemcpy(HM,DM2,n,H2D);
PCI-E

GPU B
```


2. Using zero-copy

- "Zero-copy" refers to direct device access to host memory
- Device threads can read directly from host memory over PCI-e without using cudaMemcpy H2D or D2H
- The host memory must be pinned (page-locked)
 - Pageable memory cannot be directly accessed by the GPU because of the OS virtual memory mechanism

Host Memory Allocation

- malloc()
 - Regular C library memory allocation
 - Managed by host
 - Cannot be directly accessed by GPUs
 - Must be copied to device memory via cudaMemcpy ()
- cudaMallocHost(void ** hostPtr,size_t size)
 - Allocate pinned (page-locked) host memory for higher cudaMemcpy performance
 - Used with cudaMemAsync () for async memory copy or CUDA stream
- cudaHostAlloc(void ** hostPtr,size_t size, unsigned int flags)
 - > Add the flag "cudaHostAllocMapped" to allocate pinned host memory for higher cudaMemcpy performance
 - Add the flag "cudaHostAllocPortable" to allocate shared host memory for "Zero copy"
- → All these functions return host memory pointer

Zero Copy via cudaHostAlloc()

- Allocate host memory using cudaHostAlloc()
 - > It returns a **host pointer**. It can enable faster host memory access.
 - Must add flag cudaHostAllocMapped for page-locked
 - > Add flag cudaHostAllocPortable for sharing among all devices
- Bind host pointer to device pointer using cudaHostGetDevicePointer(void**, void*, 0)

```
int *hostPtr, *dev0Ptr, *dev1Ptr;
cudaHostAlloc(&hostPtr, 10, cudaHostAllocMapped)
        cudaHostAllocPortable);
cudaSetDevice(0);
cudaHostGetDevicePointer(&devPtr0, hostPtr, 0);
kernel<<1,10>>(devPtr0);
cudaSetDevice(1);
cudaHostGetDevicePointer(&dev1Ptr, hostPtr, 0);
kernel<<1,10>>(devPtr1);
```


Pitfalls of using zero-copy

- PCI-e is lower in bandwidth and higher in latency than **GPU global memory**
 - → access speed is slower than global memory
- Use zero-copy if:
 - ➤ The data is **only accessed once** or few times
 - Generate data on the device and copy back to host without reuse
 - Kernel(s) that access the memory are compute bound

3. Peer-to-Peer Memcpy

- Direct copy from pointer on GPU A to pointer on GPU B
- Using two functions

```
cudaError_t cudaMemcpyPeer(void *dst, int
dstDevice, const void* src, int srcDevice,
size_t count)
```

```
cudaError_t cudaMemcpyPeerAsync(void *dst,
int dstDevice, const void* src, int
srcDevice, size_t count, cuda_stream_t
stream=0)
```


Example: P2P memcpy

```
cudaSetDevice(0);    //set device 0 as current
float *p0;
size t size = 1024*sizeof(float);
cudaMalloc(&p0, size);//allocate mem on device 0
cudaSetDevice(1);  //set device 1 as current
float *p1;
cudaMalloc(&p1, size);//allocate mem on device 1
cudaSetDevice(0);    //set device 0 as current
Kernel1 <<<1000,128>>> (p0); //launch on dev 0
cudaSetDevice(1);  //set device 1 as current
cudaMemcpyPeer(p1,1,p0,0,size); //copy p0 to p1
Kernel1 <<<1000,128>>> (p1); //launch on dev 1
```


Outline

- Programming Model
- CUDA Language
- Example Code Study
- CPU & GPU Synchronization
- Multi-GPU
- Dynamic Parallelism

Dynamic parallelism

- The ability to launch new grids from the GPU
 - Dynamically
 - Simultaneously
 - > Independently
- Supported from CUDA5.0 on devices of Compute Capability 3.5 or higher

What does it mean?

■ Reduce the number of kernel launches

DYNAMIC PARALLELISM

Dependency in CUDA

```
void main() {
    float *data;
    do_stuff(data);
    A <<< ... >>> (data);
    B <<< ... >>> (data);
    C <<< ... >>> (data);
    cudaDeviceSynchronize();
    do_more_stuff(data);
}
```


Nested dependency

```
void main() {
   float *data;
                                            CPU
   do stuff(data);
   A <<< ... >>> (data);
   B <<< ... >>> (data);
                                            GPU
   C <<< ... >>> (data);
   cudaDeviceSynchronize();
   do more stuff(data);
                                        В
 global void B(float *data) {
  do stuff(data);
  X <<< ... >>> (data);
                                                  Z
  Y <<< ... >>> (data);
  Z <<< ... >>> (data);
  cudaDeviceSynchronize();
  do more stuff(data);
                   Parallel Programming - NTHU LSA Lab
```


What is DP good for?

- Dynamic block size and grid size
- Dynamic work generation
- Nested parallelism
- Library calls
- Parallel recursion

1. Dynamic block size and grid size

```
for i = 1 to N
  for j = 1 to x[i]
     convolution(i, j)
  next j
next i
```


1. Dynamic block size with DP

```
__global__ void convolution(int x[]){
   for j = 1 to x[blockIdx]
        kernel<<< ... >>>(blockIdx, j)
}
...
convolution<<< N, 1 >>>(x);
```


Parallel Programming – NTHU LSA Lab

2. Dynamic work generation

M

3. Nested Parallelism

LU Decomposition

- CPU controlled batching
 - Limited by single point control
 - Can run at most 10s of threads
 - CPU is fully consumed with controlling launches

- Batching via DP
 - Move top loop to GPU
 - Run thousands of independent tasks
 - Release CPU for other work

4. Library call

```
__global__ void libraryCall(float *a,float *b,float *c){
    // All threads generate data
    createData(a, b);
    __syncthreads();
    // Only one thread calls library
    if(threadIdx.x == 0) {
        cublasDgemm(a, b, c);
        cudaDeviceSynchronize();
    }
    // All threads wait for dtrsm
    __syncthreads();
    // Now continue
    consumeData(c);
}
```


5. Parallel Recursion

Quick sort

```
__global__ void qsort(int *data, int l, int r) {
   int pivot = data[0];
   int *lptr = data+l, *rptr = data+r;

   // Partition data around pivot value
   partition(data, l, r, lptr, rptr, pivot);

   // Launch next stage recursively
   if(l < (rptr-data))
        qsort<<< ... >>> (data, l, rptr-data);
   if(r > (lptr-data))
        qsort<<< ... >>> (data, lptr-data, r);
}
```


Reference

■ NVIDIA CUDA Library Documentation

http://developer.download.nvidia.com/compute/cuda/4_1/rel/t oolkit/docs/online/index.html

■ NVIDIA, Introduction to Dynamic Parallelism

http://on-demand.gputechconf.com/gtc/2012/presentations/ S0338-GTC2012-CUDA-Programming-Model.pdf