1 Study II: Simulation Results

Table 1: Simulation Results Study II. The prediction error estimates across simulation conditions when the data generation model is a multilevel AR(1) model with one component and effects are considered to be fixed.

			N =	= 20			N =	= 60	
	Number of	Noise I	Error 5%	Noise E	rror 50%	Noise I	Error 5%	Noise E	rror 50%
Methods	Components	T = 50	T = 100						
PC.MAR.FE	Q = 1	0.948	0.934	0.961	0.958	0.870	0.871	0.928	0.912
	Q = 2	0.994	0.968	0.999	0.985	0.946	0.925	0.981	0.952
	Q = 3	1.024	0.991	1.020	1.001	0.993	0.962	1.011	0.978
	Q = 4	1.042	1.004	1.033	1.012	1.020	0.985	1.030	0.992
	Q = 5	1.053	1.014	1.043	1.019	1.035	0.999	1.042	1.003
	Q = 6	1.062	1.020	1.049	1.023	1.046	1.009	1.053	1.010
PC.MAR.RE	Q = 1	0.949	0.934	0.962	0.958	0.870	0.871	0.928	0.912
	Q = 2	0.995	0.969	1.000	0.986	0.947	0.925	0.982	0.952
	Q = 3	1.025	0.991	1.020	1.001	0.994	0.962	1.012	0.978
	Q = 4	1.043	1.005	1.034	1.013	1.021	0.985	1.030	0.993
	Q = 5	1.055	1.015	1.044	1.020	1.036	0.999	1.043	1.003
	Q = 6	1.063	1.021	1.050	1.024	1.047	1.009	1.053	1.011
PC.MVAR.FE	Q = 2	0.948	0.935	0.962	0.959	0.871	0.871	0.928	0.912
	Q = 3	0.949	0.936	0.963	0.959	0.871	0.871	0.929	$\boldsymbol{0.912}$
	Q = 4	0.951	0.936	0.964	0.959	0.872	0.871	0.929	$\boldsymbol{0.912}$
	Q = 5	0.951	0.938	0.966	0.960	0.872	0.871	0.930	0.913
	Q = 6	0.953	0.938	0.967	0.961	0.872	0.871	0.930	0.913
PC.MVAR.RE	Q = 2	0.951	0.936	0.963	0.960	0.872	0.871	0.929	0.912
	Q = 3	0.953	0.937	0.965	0.962	0.873	0.871	0.931	0.913
	Q = 4	0.957	0.939	0.969	0.964	0.875	0.872	0.932	0.913
	Q = 5	0.958	0.942	0.976	0.967	0.877	0.873	0.934	0.915
	Q = 6	0.963	0.946	0.984	0.969	0.880	0.874	0.937	0.916
PC.VAR	Q = 1	0.965	0.944	0.982	0.967	0.896	0.881	0.946	0.920
	Q = 2	0.986	0.952	1.003	0.975	0.914	0.893	0.966	0.928
	Q = 3	1.011	0.958	1.020	0.987	0.938	0.903	0.989	0.938
	Q = 4	1.038	0.970	1.043	1.000	0.960	0.913	1.017	0.950
	Q = 5	1.063	0.986	1.067	1.015	0.987	0.926	1.051	0.965
	Q = 6	1.086	1.001	1.105	1.030	1.016	0.937	1.083	0.980
AR		0.971	0.949	1.012	0.991	0.905	0.887	0.988	0.954
MAR.FE		0.953	0.938	0.985	0.978	0.877	0.876	0.962	0.942
MAR.RE		0.954	0.938	0.987	0.979	0.877	0.876	0.963	0.942
MVAR.FE		0.953	0.938	0.967	0.961	0.872	0.871	0.930	0.913
MVAR.RE		0.966	0.945	0.982	0.969	0.879	0.874	0.937	0.916
VAR		1.098	1.005	1.123	1.029	1.024	0.934	1.088	0.984

Table 2: Simulation Results Study II. The prediction error estimates across simulation conditions when the data generation model is a multilevel VAR(1) model with two components and effects are considered to be fixed.

			N =	= 20		N = 60						
	Number of	Noise I	Error 5%	Noise E	rror 50%	Noise I	Error 5%	Noise E	Frror 50%			
Methods	Components	T = 50	T = 100									
PC.MAR.FE	Q = 1	0.980	0.943	0.998	0.966	0.988	0.962	1.003	0.984			
	Q = 2	0.897	0.883	0.945	0.924	0.925	0.912	0.963	0.950			
	Q = 3	0.895	0.881	0.953	0.928	0.924	0.911	0.971	0.954			
	Q = 4	0.896	0.881	0.970	0.941	0.924	0.910	0.983	0.962			
	Q = 5	0.896	0.882	0.990	0.962	0.924	0.910	1.001	0.977			
	Q = 6	0.895	0.883	1.022	0.987	0.924	0.911	1.024	0.996			
PC.MAR.RE	Q = 1	0.981	0.943	0.998	0.967	0.988	0.962	1.003	0.984			
	Q = 2	0.898	0.883	0.945	0.925	0.925	0.913	0.963	0.950			
	Q = 3	0.896	0.882	0.953	0.928	0.924	0.911	0.971	0.954			
	Q = 4	0.896	0.882	0.970	0.941	0.924	0.910	0.984	0.963			
	Q = 5	0.896	0.882	0.991	0.962	0.925	0.910	1.001	0.978			
	Q = 6	0.895	0.883	1.023	0.988	0.924	0.911	1.024	0.996			
PC.MVAR.FE	Q = 2	0.877	0.862	0.936	0.911	0.911	0.895	0.954	0.940			
	Q = 3	0.878	0.863	0.937	0.912	0.911	0.895	0.954	0.940			
	Q = 4	0.879	0.863	0.939	0.913	0.912	0.896	0.955	0.940			
	Q = 5	0.881	0.864	0.940	0.913	0.912	0.896	0.955	0.941			
	Q = 6	0.883	0.865	0.942	0.914	0.913	0.896	0.955	0.941			
PC.MVAR.RE	Q = 2	0.878	0.863	0.938	0.913	0.912	0.896	0.955	0.940			
	Q = 3	0.881	0.865	0.941	0.914	0.913	0.896	0.956	0.941			
	Q = 4	0.883	0.866	0.945	0.916	0.914	0.897	0.957	0.942			
	Q = 5	0.887	0.867	0.950	0.918	0.916	0.898	0.959	0.942			
	Q = 6	0.893	0.870	0.955	0.921	0.918	0.899	0.961	0.944			
PC.VAR	Q = 1	0.991	0.950	1.007	0.972	1.002	0.969	1.013	0.988			
	Q = 2	0.994	0.957	1.008	0.975	1.009	0.973	1.024	0.995			
	Q = 3	1.017	0.966	1.028	0.985	1.033	0.986	1.048	1.006			
	Q = 4	1.047	0.976	1.054	0.997	1.057	0.998	1.075	1.019			
	Q = 5	1.076	0.985	1.079	1.012	1.087	1.011	1.108	1.033			
	Q = 6	1.110	1.000	1.119	1.027	1.118	1.025	1.144	1.048			
AR		0.921	0.895	0.989	0.957	0.953	0.924	1.007	0.977			
MAR.FE		0.900	0.884	0.969	0.946	0.927	0.912	0.981	0.966			
MAR.RE		0.900	0.884	0.969	0.946	0.928	0.913	0.981	0.966			
MVAR.FE		0.883	0.865	0.942	0.914	0.913	0.896	0.955	0.941			
MVAR.RE		0.895	0.870	0.957	0.921	0.919	0.899	0.961	0.944			
VAR		1.026	0.926	1.091	0.981	1.070	0.964	1.118	1.010			

Table 3: Simulation Results Study II. The prediction error estimates across simulation conditions when the data generation model is a multilevel VAR(1) model with three components and effects are considered to be fixed.

			N =	= 20			N =	= 60	
	Number of	Noise I	Error 5%	Noise E	rror 50%	Noise I	Error 5%	Noise E	rror 50%
Methods	Components	T = 50	T = 100						
PC.MAR.FE	Q = 1	1.001	0.964	1.021	0.982	1.002	0.946	1.017	0.972
	Q = 2	0.926	0.886	0.970	0.927	0.950	0.854	0.984	0.910
	Q = 3	0.899	0.867	0.954	0.918	0.917	0.837	0.965	0.903
	Q = 4	0.899	0.867	0.961	0.925	0.917	0.837	0.972	0.910
	Q = 5	0.899	0.867	0.976	0.937	0.917	0.837	0.982	0.925
	Q = 6	0.899	0.867	1.000	0.957	0.917	0.837	1.006	0.949
PC.MAR.RE	Q = 1	1.001	0.964	1.021	0.982	1.002	0.946	1.017	0.972
	Q = 2	0.926	0.886	0.971	0.927	0.950	0.854	0.984	0.910
	Q = 3	0.900	0.868	0.955	0.919	0.917	0.837	0.965	0.904
	Q = 4	0.900	0.867	0.962	0.926	0.917	0.837	0.972	0.911
	Q = 5	0.900	0.868	0.977	0.937	0.917	0.837	0.983	0.925
	Q = 6	0.900	0.868	1.001	0.958	0.917	0.837	1.007	0.949
PC.MVAR.FE	Q = 2	0.915	0.873	0.966	0.917	0.933	0.833	0.974	0.897
	Q = 3	0.872	0.838	0.937	0.898	0.885	0.799	0.944	0.876
	Q = 4	0.873	0.839	0.939	0.898	0.886	0.799	0.945	0.877
	Q = 5	0.874	0.840	0.940	0.899	0.886	0.799	0.946	0.877
	Q = 6	0.876	0.840	0.941	0.900	0.886	0.800	0.946	0.877
PC.MVAR.RE	Q = 2	0.917	0.874	0.968	0.918	0.935	0.834	0.974	0.898
	Q = 3	0.877	0.840	0.943	0.900	0.887	0.800	0.946	0.877
	Q = 4	0.881	0.841	0.947	0.903	0.888	0.801	0.947	0.878
	Q = 5	0.884	0.844	0.952	0.905	0.890	0.802	0.949	0.879
	Q = 6	0.891	0.846	0.956	0.907	0.892	0.803	0.952	0.880
PC.VAR	Q = 1	1.014	0.968	1.028	0.986	1.013	0.951	1.026	0.975
	Q = 2	0.980	0.926	1.002	0.960	1.037	0.919	1.044	0.956
	Q = 3	1.009	0.941	1.026	0.975	1.066	0.921	1.078	0.965
	Q = 4	1.040	0.954	1.053	0.989	1.091	0.933	1.104	0.977
	Q = 5	1.067	0.967	1.086	1.003	1.116	0.946	1.136	0.991
	Q = 6	1.101	0.980	1.126	1.019	1.148	0.958	1.173	1.005
AR		0.927	0.879	0.992	0.944	0.944	0.847	1.003	0.931
MAR.FE		0.901	0.868	0.969	0.933	0.919	0.836	0.979	0.919
MAR.RE		0.902	0.869	0.970	0.933	0.919	0.837	0.979	0.919
MVAR.FE		0.876	0.840	0.941	0.900	0.886	0.800	0.946	0.877
MVAR.RE		0.890	0.846	0.959	0.907	0.892	0.803	0.952	0.880
VAR		1.032	0.900	1.097	0.966	1.038	0.863	1.106	0.944

Table 4: Simulation Results Study II. The prediction error estimates across simulation conditions when the data generation model is a multilevel AR(1) model with one component and effects are considered to be random.

			N =	= 20			N =	= 60	
	Number of	Noise I	Error 5%	Noise E	rror 50%	Noise I	Error 5%	Noise E	rror 50%
Methods	Components	T = 50	T = 100						
PC.MAR.FE	Q = 1	0.952	0.868	0.978	0.893	0.916	0.859	0.955	0.892
	Q = 2	0.999	0.923	1.010	0.939	0.972	0.916	0.996	0.938
	Q = 3	1.026	0.962	1.028	0.969	1.008	0.956	1.020	0.967
	Q = 4	1.043	0.986	1.040	0.988	1.029	0.979	1.034	0.985
	Q = 5	1.055	1.001	1.047	1.000	1.043	0.995	1.044	0.998
	Q = 6	1.062	1.011	1.053	1.009	1.053	1.006	1.051	1.007
PC.MAR.RE	Q = 1	0.952	0.866	0.977	0.889	0.914	0.854	0.954	0.889
	Q = 2	1.000	0.922	1.010	0.936	0.971	0.914	0.996	0.937
	Q = 3	1.026	0.961	1.029	0.968	1.007	0.955	1.020	0.966
	Q = 4	1.044	0.986	1.041	0.987	1.029	0.979	1.034	0.984
	Q = 5	1.056	1.001	1.048	0.999	1.043	0.994	1.045	0.997
	Q = 6	1.063	1.012	1.053	1.009	1.053	1.006	1.052	1.007
PC.MVAR.FE	Q = 2	0.953	0.869	0.978	0.894	0.916	0.859	0.955	0.892
	Q = 3	0.954	0.869	0.980	0.894	0.917	0.859	0.955	0.892
	Q = 4	0.955	0.870	0.981	0.895	0.917	0.860	0.956	0.892
	Q = 5	0.956	0.870	0.984	0.895	0.918	0.860	0.956	0.892
	Q = 6	0.958	0.871	0.986	0.896	0.918	0.860	0.957	0.893
PC.MVAR.RE	Q = 2	0.954	0.866	0.978	0.891	0.915	0.856	0.955	0.889
	Q = 3	0.956	0.868	0.982	0.893	0.917	0.857	0.957	0.890
	Q = 4	0.961	0.869	0.985	0.894	0.920	0.858	0.958	0.891
	Q = 5	0.963	0.873	0.992	0.897	0.922	0.859	0.960	0.892
	Q = 6	0.969	0.874	0.998	0.900	0.923	0.860	0.963	0.893
PC.VAR	Q = 1	0.968	0.870	0.986	0.892	0.929	0.858	0.968	0.893
	Q = 2	0.986	0.882	1.012	0.903	0.951	0.867	0.989	0.901
	Q = 3	1.010	0.894	1.036	0.913	0.971	0.877	1.013	0.911
	Q = 4	1.029	0.904	1.066	0.923	0.996	0.887	1.036	0.923
	Q = 5	1.061	0.914	1.103	0.936	1.024	0.899	1.066	0.937
	Q = 6	1.091	0.926	1.136	0.952	1.050	0.908	1.102	0.951
AR		0.974	0.876	1.017	0.929	0.936	0.864	1.003	0.930
MAR.FE		0.956	0.874	0.999	0.925	0.921	0.865	0.981	0.925
MAR.RE		0.956	0.871	0.999	0.922	0.920	0.860	0.981	0.923
MVAR.FE		0.958	0.871	0.986	0.896	0.918	0.860	0.957	0.893
MVAR.RE		0.975	0.875	0.997	0.899	0.921	0.858	0.964	0.893
VAR		1.105	0.927	1.128	0.952	1.058	0.913	1.110	0.949

Table 5: Simulation Results Study II. The prediction error estimates across simulation conditions when the data generation model is a multilevel VAR(1) model with two components and effects are considered to be random.

			N =	= 20		N = 60					
	Number of	Noise I	Error 5%	Noise E	rror 50%	Noise I	Error 5%	Noise E	rror 50%		
Methods	Components	T = 50	T = 100								
PC.MAR.FE	Q = 1	0.996	0.960	1.002	0.983	1.007	0.964	1.013	0.978		
	Q = 2	0.896	0.881	0.923	0.931	0.928	0.886	0.957	0.905		
	Q = 3	0.895	0.880	0.929	0.935	0.928	0.885	0.962	0.907		
	Q = 4	0.895	0.880	0.939	0.946	0.928	0.885	0.977	0.926		
	Q = 5	0.895	0.880	0.966	0.959	0.928	0.885	0.996	0.935		
	Q = 6	0.895	0.880	1.015	0.994	0.928	0.883	1.029	0.979		
PC.MAR.RE	Q = 1	0.967	0.918	0.982	0.957	0.968	0.918	0.986	0.945		
	Q = 2	0.832	0.812	0.883	0.884	0.863	0.809	0.914	0.848		
	Q = 3	0.832	0.812	0.891	0.893	0.865	0.810	0.921	0.850		
	Q = 4	0.834	0.812	0.906	0.912	0.867	0.809	0.943	0.881		
	Q = 5	0.832	0.811	0.941	0.928	0.866	0.809	0.969	0.891		
	Q = 6	0.832	0.810	1.003	0.976	0.869	0.806	1.015	0.943		
PC.MVAR.FE	Q = 2	0.883	0.868	0.912	0.921	0.912	0.868	0.947	0.894		
	Q = 3	0.883	0.868	0.913	0.922	0.913	0.868	0.948	0.894		
	Q = 4	0.884	0.869	0.914	0.922	0.913	0.868	0.948	0.895		
	Q = 5	0.886	0.869	0.916	0.923	0.913	0.868	0.949	0.895		
	Q = 6	0.887	0.870	0.917	0.923	0.914	0.868	0.949	0.895		
PC.MVAR.RE	Q = 2	0.767	0.739	0.832	0.830	0.799	0.724	0.860	0.792		
	Q = 3	0.770	0.741	0.837	0.833	0.800	0.725	0.863	0.793		
	Q = 4	0.774	0.743	0.843	0.836	0.802	0.726	0.868	0.797		
	Q = 5	0.778	0.745	0.853	0.839	0.804	0.726	0.875	0.799		
	Q = 6	0.783	0.747	0.864	0.847	0.806	0.727	0.885	0.805		
PC.VAR	Q = 1	0.969	0.918	0.983	0.957	0.969	0.918	0.987	0.945		
	Q = 2	1.013	0.978	1.019	0.997	1.039	0.982	1.036	0.961		
	Q = 3	1.039	0.988	1.045	1.009	1.061	0.994	1.061	0.973		
	Q = 4	1.071	1.000	1.071	1.021	1.089	1.006	1.087	0.985		
	Q = 5	1.109	1.015	1.104	1.034	1.119	1.019	1.118	0.999		
	Q = 6	1.146	1.032	1.142	1.050	1.152	1.032	1.158	1.016		
AR		0.844	0.813	0.918	0.909	0.877	0.808	0.943	0.870		
MAR.FE		0.897	0.882	0.948	0.950	0.933	0.885	0.976	0.926		
MAR.RE		0.843	0.813	0.913	0.909	0.873	0.808	0.938	0.869		
MVAR.FE		0.887	0.870	0.917	0.923	0.914	0.868	0.949	0.895		
MVAR.RE		0.785	0.748	0.857	0.841	0.807	0.728	0.875	0.799		
VAR		0.862	0.776	0.938	0.876	0.896	0.761	0.977	0.838		

Table 6: Simulation Results Study II. The prediction error estimates across simulation conditions when the data generation model is a multilevel VAR(1) model with three components and effects are considered to be random.

			N =	= 20		N = 60					
	Number of	Noise I	Error 5%	Noise E	rror 50%	Noise I	Error 5%	Noise E	rror 50%		
Methods	Components	T = 50	T = 100								
PC.MAR.FE	Q = 1	1.012	0.967	1.010	0.974	1.024	0.952	1.024	0.971		
	Q = 2	0.917	0.889	0.924	0.919	0.930	0.863	0.956	0.897		
	Q = 3	0.885	0.854	0.898	0.901	0.903	0.827	0.934	0.869		
	Q = 4	0.885	0.854	0.903	0.903	0.903	0.827	0.935	0.871		
	Q = 5	0.885	0.854	0.909	0.909	0.903	0.827	0.942	0.871		
	Q = 6	0.885	0.854	0.918	0.920	0.903	0.827	0.955	0.874		
PC.MAR.RE	Q = 1	0.991	0.940	0.992	0.955	1.002	0.923	1.005	0.949		
	Q = 2	0.879	0.838	0.890	0.875	0.890	0.811	0.920	0.855		
	Q = 3	0.830	0.777	0.852	0.845	0.841	0.754	0.886	0.811		
	Q = 4	0.830	0.777	0.860	0.848	0.841	0.754	0.888	0.813		
	Q = 5	0.830	0.777	0.867	0.855	0.841	0.754	0.899	0.814		
	Q = 6	0.830	0.777	0.879	0.872	0.841	0.754	0.917	0.817		
PC.MVAR.FE	Q = 2	0.904	0.873	0.916	0.911	0.917	0.855	0.950	0.890		
	Q = 3	0.860	0.823	0.873	0.875	0.877	0.804	0.918	0.851		
	Q = 4	0.861	0.823	0.875	0.875	0.877	0.804	0.918	0.851		
	Q = 5	0.862	0.824	0.876	0.876	0.878	0.804	0.918	0.851		
	Q = 6	0.864	0.824	0.878	0.877	0.878	0.804	0.919	0.852		
PC.MVAR.RE	Q = 2	0.825	0.772	0.858	0.836	0.833	0.758	0.886	0.814		
	Q = 3	0.690	0.622	0.762	0.736	0.699	0.608	0.788	0.699		
	Q = 4	0.694	0.623	0.768	0.738	0.701	0.608	0.790	0.700		
	Q = 5	0.699	0.625	0.776	0.743	0.703	0.609	0.795	0.701		
	Q = 6	0.704	0.627	0.783	0.749	0.705	0.610	0.801	0.703		
PC.VAR	Q = 1	0.993	0.940	0.993	0.955	1.003	0.923	1.006	0.949		
	Q = 2	1.021	1.008	0.969	0.975	1.040	0.927	1.010	0.941		
	Q = 3	1.195	1.143	1.106	1.074	1.191	1.084	1.131	1.056		
	Q = 4	1.225	1.157	1.142	1.085	1.220	1.098	1.156	1.070		
	Q = 5	1.255	1.171	1.179	1.100	1.256	1.114	1.189	1.085		
	Q = 6	1.289	1.186	1.222	1.119	1.292	1.130	1.228	1.103		
AR		0.834	0.776	0.875	0.860	0.843	0.754	0.907	0.828		
MAR.FE		0.887	0.855	0.916	0.915	0.904	0.829	0.949	0.887		
MAR.RE		0.831	0.776	0.871	0.860	0.840	0.754	0.903	0.827		
MVAR.FE		0.864	0.824	0.878	0.877	0.878	0.804	0.919	0.852		
MVAR.RE		0.704	0.627	0.785	0.748	0.706	0.611	0.801	0.706		
VAR		0.760	0.646	0.847	0.770	0.773	0.633	0.878	0.733		

2 Study III: Simulation Results

Table 7: Simulation Results Part III. The prediction error estimates across simulation conditions when the data generation model is a multilevel VAR(1) model with random effects, persons are clustered in groups with similar dynamics, and the differences between clusters are large.

Cluster		N =	20 and 2 C	lusters	N =	20 and 4 C	lusters	N =	20 and 4 C	lusters	N = 60 and 4 Clusters		
Size	Method	T = 50	T = 100	T = 200	T = 50	T = 100	T = 200	T = 50	T = 100	T = 200	T = 50	T = 100	T = 200
	AR	1.237	1.226	1.212	1.233	1.220	1.207	1.213	1.223	1.224	1.242	1.211	1.206
	MAR.FE	1.254	1.270	1.279	1.253	1.274	1.270	1.225	1.273	1.293	1.265	1.252	1.285
Equal	MAR.RE	1.206	1.213	1.205	1.204	1.206	1.200	1.187	1.211	1.218	1.207	1.196	1.200
Equal	MVAR.FE	1.218	1.222	1.222	1.211	1.232	1.231	1.203	1.243	1.260	1.244	1.225	1.265
	MVAR.RE	1.089	1.046	1.018	1.065	1.043	1.023	1.076	1.050	1.031	1.069	1.041	1.021
	VAR	1.161	1.068	1.025	1.140	1.068	1.033	1.136	1.068	1.038	1.149	1.067	1.030
	AR	1.226	1.199	1.205	1.240	1.213	1.209	1.241	1.235	1.207	1.246	1.224	1.207
	MAR.FE	1.240	1.246	1.282	1.246	1.256	1.267	1.264	1.302	1.270	1.273	1.286	1.299
Minority	MAR.RE	1.196	1.187	1.199	1.209	1.199	1.202	1.211	1.224	1.200	1.217	1.211	1.200
Willionty	MVAR.FE	1.181	1.169	1.193	1.177	1.193	1.199	1.238	1.266	1.236	1.249	1.250	1.265
	MVAR.RE	1.080	1.034	1.019	1.067	1.044	1.018	1.089	1.053	1.026	1.074	1.041	1.021
	VAR	1.148	1.055	1.027	1.150	1.071	1.028	1.151	1.074	1.033	1.146	1.064	1.030
	AR	1.236	1.217	1.201	1.227	1.216	1.208	1.254	1.214	1.203	1.246	1.213	1.217
	MAR.FE	1.260	1.252	1.250	1.236	1.265	1.289	1.266	1.271	1.259	1.255	1.267	1.295
Majority	MAR.RE	1.208	1.205	1.194	1.194	1.201	1.201	1.223	1.201	1.198	1.213	1.198	1.210
Majority	MVAR.FE	1.210	1.210	1.196	1.196	1.212	1.235	1.227	1.232	1.218	1.219	1.231	1.260
	MVAR.RE	1.073	1.049	1.021	1.066	1.040	1.023	1.089	1.050	1.020	1.075	1.040	1.023
	VAR	1.136	1.070	1.029	1.144	1.066	1.032	1.159	1.070	1.028	1.153	1.065	1.032

Table 8: Simulation Results Part III. The prediction error estimates across simulation conditions when the data generation model is a multilevel VAR(1) model with fixed effects, persons are clustered in groups with similar dynamics, and the differences between clusters are large.

Cluster		N =	20 and 2 C	lusters	N =	60 and 2 C	lusters	N =	20 and 4 C	lusters	N = 60 and 4 Clusters		
Size	Method	T = 50	T = 100	T = 200	T = 50	T = 100	T = 200	T = 50	T = 100	T = 200	T = 50	T = 100	T = 200
	AR	1.111	1.075	1.074	1.108	1.085	1.076	1.130	1.097	1.077	1.101	1.091	1.077
	MAR.FE	1.071	1.063	1.072	1.069	1.071	1.078	1.094	1.086	1.083	1.070	1.084	1.081
Equal	MAR.RE	1.070	1.056	1.066	1.067	1.065	1.068	1.090	1.078	1.070	1.063	1.074	1.069
Equal	MVAR.FE	1.033	1.029	1.043	1.038	1.040	1.044	1.084	1.071	1.066	1.051	1.064	1.065
	MVAR.RE	1.023	1.009	1.006	1.015	1.007	1.004	1.058	1.031	1.009	1.020	1.023	1.012
	VAR	1.143	1.057	1.029	1.141	1.062	1.028	1.164	1.072	1.025	1.130	1.066	1.029
	AR	1.125	1.091	1.077	1.118	1.092	1.082	1.110	1.094	1.077	1.129	1.083	1.081
	MAR.FE	1.077	1.072	1.068	1.071	1.074	1.075	1.078	1.084	1.081	1.095	1.073	1.084
Minority	MAR.RE	1.078	1.071	1.067	1.071	1.072	1.073	1.074	1.077	1.071	1.090	1.066	1.073
Willionty	MVAR.FE	1.023	1.021	1.020	1.023	1.027	1.020	1.065	1.067	1.063	1.076	1.053	1.066
	MVAR.RE	1.028	1.020	1.009	1.018	1.017	1.008	1.042	1.031	1.013	1.048	1.016	1.015
	VAR	1.152	1.071	1.032	1.149	1.072	1.033	1.139	1.072	1.028	1.158	1.059	1.033
	AR	1.116	1.084	1.082	1.115	1.090	1.081	1.112	1.098	1.095	1.120	1.092	1.078
	MAR.FE	1.080	1.072	1.080	1.077	1.077	1.081	1.076	1.088	1.098	1.086	1.085	1.077
Majority	MAR.RE	1.077	1.067	1.073	1.073	1.072	1.072	1.072	1.081	1.087	1.081	1.075	1.070
Majority	MVAR.FE	1.039	1.036	1.048	1.043	1.046	1.044	1.058	1.056	1.059	1.051	1.053	1.050
	MVAR.RE	1.029	1.017	1.011	1.019	1.015	1.006	1.043	1.027	1.018	1.028	1.022	1.012
	VAR	1.146	1.065	1.032	1.146	1.068	1.030	1.151	1.067	1.034	1.140	1.068	1.031

Table 9: Simulation Results Study III. The estimation accuracy (standard errors) in percentage across simulation conditions when P = 4, N = 60 and persons are equally distributed across clusters.

					ısters				4 Clusters						
Population			nall Differer			rge Differe			nall Differe			rge Differer			
Model	Method	T = 50	T = 100	T = 200	T = 50	T = 100	T = 200	T = 50	T = 100	T = 200	T = 50	T = 100	T = 200		
MVAR.FE	AR	1.331	1.125	1.086	1.819	1.469	1.474	1.388	1.140	0.984	1.771	1.567	1.475		
		(0.032)	(0.046)	(0.019)	(0.056)	(0.074)	(0.051)	(0.035)	(0.026)	(0.023)	(0.041)	(0.042)	(0.062)		
	MAR.FE	1.088	1.162	1.168	1.523	1.426	1.537	1.210	1.226	1.115	1.566	1.617	1.639		
		(0.056)	(0.039)	(0.047)	(0.075)	(0.075)	(0.053)	(0.032)	(0.030)	(0.042)	(0.053)	(0.050)	(0.064)		
	MAR.RE	1.023	1.018	1.044	1.472	1.330	1.416	1.116	1.051	0.951	1.468	1.472	1.447		
		(0.039)	(0.045)	(0.026)	(0.066)	(0.070)	(0.049)	(0.022)	(0.024)	(0.027)	(0.047)	(0.039)	(0.062)		
	MVAR.FE	0.620	0.684	0.691	0.772	0.706	0.926	0.876	0.974	0.906	1.301	1.317	1.335		
		(0.042)	(0.070)	(0.044)	(0.058)	(0.067)	(0.081)	(0.035)	(0.042)	(0.043)	(0.055)	(0.065)	(0.083)		
	MVAR.RE	0.325	0.185	0.104	0.360	0.191	0.102	$\boldsymbol{0.524}$	0.379	0.217	0.620	0.394	$\boldsymbol{0.225}$		
		(0.012)	(0.010)	(0.004)	(0.015)	(0.010)	(0.003)	(0.019)	(0.014)	(0.006)	(0.021)	(0.013)	(0.007)		
	VAR	2.317	0.989	0.455	2.255	0.971	0.449	2.277	1.022	0.488	2.281	0.969	0.441		
		(0.041)	(0.020)	(0.013)	(0.026)	(0.014)	(0.008)	(0.041)	(0.022)	(0.008)	(0.030)	(0.013)	(0.006)		
MVAR.RE	AR	3.286	3.118	3.223	3.652	3.531	3.394	3.391	3.161	3.221	3.705	3.530	3.534		
		(0.067)	(0.084)	(0.059)	(0.070)	(0.074)	(0.043)	(0.083)	(0.048)	(0.058)	(0.082)	(0.080)	(0.073)		
	MAR.FE	3.916	4.048	4.502	4.463	4.287	4.285	4.134	4.194	4.321	4.311	4.613	4.634		
		(0.112)	(0.108)	(0.225)	(0.113)	(0.110)	(0.075)	(0.113)	(0.171)	(0.164)	(0.100)	(0.195)	(0.141)		
	MAR.RE	3.215	3.150	3.251	3.612	3.540	3.402	3.357	3.181	3.239	3.627	3.537	3.553		
		(0.074)	(0.095)	(0.060)	(0.076)	(0.080)	(0.044)	(0.084)	(0.050)	(0.059)	(0.082)	(0.085)	(0.075)		
	MVAR.FE	3.419	3.477	3.931	3.721	3.549	3.538	3.806	3.841	3.949	3.983	4.286	4.361		
		(0.133)	(0.080)	(0.193)	(0.130)	(0.088)	(0.063)	(0.083)	(0.141)	(0.136)	(0.100)	(0.175)	(0.139)		
	MVAR.RE	1.122	0.640	0.345	1.122	0.636	$\boldsymbol{0.362}$	1.157	0.658	0.365	1.166	$\boldsymbol{0.632}$	0.366		
		(0.018)	(0.009)	(0.006)	(0.021)	(0.010)	(0.007)	(0.023)	(0.017)	(0.006)	(0.016)	(0.012)	(0.005)		
	VAR	2.076	0.900	0.408	2.069	0.859	0.419	1.987	0.892	0.419	1.977	0.859	0.431		
		(0.048)	(0.017)	(0.009)	(0.019)	(0.017)	(0.008)	(0.033)	(0.020)	(0.006)	(0.033)	(0.016)	(0.007)		