On Commonsense Domains within the Winograd Schema Challenge

Aneta Koleva

International Center for Computational Logic Technische Universität Dresden Germany

- Winograd Schema Challenge
- Previous Approaches
- Knowledge Types Identification and Reasoning
- Categorization of Winograd Schemas
- Conclusion

Motivation

- ▶ Winograd Schema Challenge (Levesque et al., 2012)
 - S: The trophy does not fit into the brown suitcase because it is too [small/large].
 - Q: What is too [small/large]?
 - A: The suitcase/the trophy.

Motivation

- ▶ Winograd Schema Challenge (Levesque et al., 2012)
 - S: The trophy does not fit into the brown suitcase because it is too [small/large].
 - Q: What is too [small/large]?
 - A: The suitcase/the trophy.

Winograd Schema Challenge

- S: The trophy does not fit into the brown suitcase because it is too [small/large].
- Q: What is too [small/large]?
- A: The suitcase/the trophy.

Winograd Schema Challenge

- S: The trophy does not fit into the brown suitcase because it is too [small/large].
- Q: What is too [small/large]?
- A: The suitcase/the trophy.
- Winograd Schema:
 - Sentence containing two nouns, one ambiguous pronoun and a special word
 - Question asking about the referent of the pronoun
 - Two possible answers corresponding to the noun phrases in the sentence

Winograd Schema Challenge

- S: The trophy does not fit into the brown suitcase because it is too [small/large].
- Q: What is too [small/large]?
- A: The suitcase/the trophy.
- Winograd Schema:
 - Sentence containing two nouns, one ambiguous pronoun and a special word
 - Question asking about the referent of the pronoun
 - Two possible answers corresponding to the noun phrases in the sentence
- Characteristics:
 - Easy to answer for an adult English speaker
 - Always contains special word
 - Google proof

Competition

- Competition in 2016 at IJCAI-16
 - ▶ Two time-constraint rounds 210 min. each
 - ▶ Pronoun Disambiguation Problems (PDPs) 60
 - Parts of Winograd Schemas 150
 - Four competitors
 - Best result: 58% correctly resolved PDPs
 - There was no second round
- Current state-of-the-art (Radford et al., 2019) achieves 70.7% accuracy on the WSs dataset

Previous Approaches

- ▶ Machine learning and deep learning techniques
- ► Knowledge-based system with reasoning procedures

Previous Approaches

- ▶ Machine learning and deep learning techniques
- ► Knowledge-based system with reasoning procedures

	PDPs	WSC	WSC*	
Technique	Size	Size	Size	Remarks
•	Correct	Correct	Correct	
Supervised ranking	NA	NA	282 - 30%	-provided additional dataset set
SVM model [?]			205 - 73%	-no evaluation on WSC dataset
Classification task	NA	282 - 100%	282 - 30%	-first to use substitution of the
with NN [?]		157 - 56%	177 - 63%	pronoun with the antecedents
Knowledge Enhanced			-best results in the 2016	
Embeddings (KEE) [?]			WSC competition	
Google's language	60-100% 42 - 70%	273 - 100% 173 - 63.7%	NA	-no reasoning involved in the
models [?]				discovery of the correct answer
	42 7070			-state-of-the-art for PDPs
OpenAl language	NA	273 - 100% 193 - 70.70%	NA	-current state-of-the-art for WSC
models [?]				-requires a lot of data for training
models [1]				-results are not reproducible
Graphs with Relevance theory [?]	NA	4 - 2.6% 4 - 100%	NA	-manual construction of graphs
				-first representation of WS
				as dependency graph
2 identified	NA	71 -25% 49 - 69%	NA	-first attempt of identifying
categories [?]				commonsense knowledge types
categories [1]				-developed the KParser
Semantic relations categories [?]	NA	100 - 34% 100 - 100%	138 - 14% 111 - 80%	-provided Reasoning Algorithm
				-identified 12 commonsense types
				which capture the entire WSC
Knowledge hunting framework [?]	NA	273 - 100% 119 - 43.5%	NA	-refined query generation
				-developed an algorithm for
				scoring the retrieved sentences

► Language models trained on unlabeled data

- ► Language models trained on unlabeled data
 - Recurrent Neural Networks
 - Trained on large datasets and on a dataset customized for WSC

- Language models trained on unlabeled data
 - Recurrent Neural Networks
 - ▶ Trained on large datasets and on a dataset customized for WSC
- ▶ Substitution of the ambiguous pronoun
 - The trophy doesn't fit in the suitcase because the trophy is too big
 - ▶ The trophy doesn't fit in the suitcase because the suitcase is too big

- Language models trained on unlabeled data
 - Recurrent Neural Networks
 - ▶ Trained on large datasets and on a dataset customized for WSC
- ► Substitution of the ambiguous pronoun
 - The trophy doesn't fit in the suitcase because the trophy is too big
 - ▶ The trophy doesn't fit in the suitcase because the suitcase is too big
- Language models assign scores to both sentences

Score_{full} ("the trophy")= **P**(The trophy doesn't fit into the brown suitcase because **the trophy** is too small)

Score partial ("the trophy")= P(is too big | The trophy doesn't fit into the brown suitcase because the trophy)

- Language models trained on unlabeled data
 - Recurrent Neural Networks
 - ▶ Trained on large datasets and on a dataset customized for WSC
- Substitution of the ambiguous pronoun
 - ▶ The trophy doesn't fit in the suitcase because the trophy is too big
 - ▶ The trophy doesn't fit in the suitcase because the suitcase is too big
- Language models assign scores to both sentences

Score_{full} ("the trophy")= **P**(The trophy doesn't fit into the brown suitcase because **the trophy** is too small)

 $Score_{partial}$ ("the trophy")= P (is too big |The trophy doesn't fit into the brown suitcase because the trophy)

- Evaluation and results
 - PDPs 70% accuracy
 - ▶ WSC 63.7% accuracy

Knowledge Types Identification and Reasoning (Sharma and Baral, 2018)

- ▶ Identified 12 knowledge types which cover the entire WSC dataset
- ► Categorization based on the structure of the Winograd sentence.
- Developed a logical reasoning algorithm
- ► Evaluated on 100 problems from WSC and achieved 100% accuracy

¹kparser.org

Knowledge Types Identification and Reasoning (Sharma and Baral, 2018)

- Identified 12 knowledge types which cover the entire WSC dataset
- Categorization based on the structure of the Winograd sentence.
- ► Developed a logical reasoning algorithm
- ► Evaluated on 100 problems from WSC and achieved 100% accuracy
- Solver
 - 1. Semantic graph of the input sentence and question
 - 2. Semantic graph representation of background knowledge
 - 3. Graph merging
 - 4. Project question graph on the merged graph
 - Answer the node from the merged graph which is from the same domain as the unknown node from the question graph

¹kparser.org

Semantic graph representation

"The man couldn't lift his son because he was so weak".

Semantic graph representation

"The man couldn't lift his son because he was so weak".

"Who was weak?"

Semantic graph representation

"The man couldn't lift his son because he was so weak".

Categorization of Winograd Schemas

- Motivation
 - Current state-of-the-art has a poor performance
 - Background knowledge is crucial for predicting the correct answer

Categorization of Winograd Schemas

- Motivation
 - Current state-of-the-art has a poor performance
 - Background knowledge is crucial for predicting the correct answer
 - Idea
 - Analyze the input Winograd Schema and identify the domain
 - 2. Search for knowledge specific to this domain
 - 3. Apply reasoning procedure
- Categorization based on the content of the Winograd sentence

Identified Categories

Category	Example			
Physical	S: John couldn't see the stage with Billy in front of him because he is so [short/tall].			
	Q: Who is so [short/tall]?			
2. Emotional	S: Frank felt [vindicated/crushed] when his longtime rival Bill			
	revealed that he was the winner of the competition.			
	Q: Who was the winner of the competition?			
3. Interactions	S: Joan made sure to thank Susan for all the help she had [given/received].			
	Q: Who had [given/received] help?			
4. Comparison	S: Joe's uncle can still beat him at tennis, even though he is 30 years [older/younger].			
	Q: Who is [older/younger]?			
5. Causal	S: Pete envies Martin [because/although] he is very successful.			
	Q: Who is very successful?			
6. Multiple knowledge	S: Sam and Amy are passionately in love, but Amy's parents are unhappy about it, because they are [snobs/fifteen]. Q: Who are [snobs/fifteen]?			

Annotation of Winograd Schemas

- Strong agreement between the annotators Cohen's kappa score 0.66
- ► Annotation Results

Category	Annotator 1 # - %	Annotator 2 # - %
Physical	36 - 24%	39 - 26%
Emotions	7 - 4.6%	9 - 6%
Interactions	44 - 29.3%	24 - 16%
Comparison	19 - 12.6%	26 - 17.3%
Causal	16 - 10.6%	18 - 12%
Multiple knowledge	28 - 18.6%	34 - 22.6%

Graph Representation for Physical Category

1. The trophy doesn't fit into the brown suitcase because it's too small.

Graph Representation for Physical Category

1. The trophy doesn't fit into the brown suitcase because it's too small.

2. The man couldn't lift his son because he was so weak.

Reasoning

- Knowledge required for both examples is about physical features
- Similar reasoning rules for categorizing the traits
 - has_k(small,is_trait_of,y) :- has_k(fits,recipient,y), not has_k(fits,modifier,could).
 - has_k(weak, is_trait_of,y) :- has_k(lift,agent,y), not has_k(lift,modifier,could).

Reasoning

- Knowledge required for both examples is about physical features
- Similar reasoning rules for categorizing the traits
 - has_k(small,is_trait_of,y) :- has_k(fits,recipient,y), not has_k(fits,modifier,could).
 - has_k(weak, is_trait_of,y) :- has_k(lift,agent,y), not has_k(lift,modifier,could).
- Reasoning Algorithm
- Change of background knowledge
 - has_k(weak,prevents,lift).

Contributions

- Overview of different approaches towards WSC
- None achieves close to 90% accuracy
- ▶ We analyzed the entire WSC corpus and identified 6 categories
- We identified a mistake in the Reasoning Algorithm and proposed a correction

Future Work

- Formalization of the characteristics for each category
- Knowledge-enhanced neural networks

Thank you!