ВЛАД ХОРОШ ПИЗДИТЬ МОИ ЛАБЫ

Лабораторная работа

Исследование энергетического спектра β -частиц и определение их максимальной энергии при помощи магнитного спектрометра

выполнила студенка 653 группы ФФКЭ Карпова Татьяна

1 Цель работы

Исследование энергетического спектра β -частиц при распаде ядер $^{137}\mathrm{Cs}$ и определение их максимальной энергии при помощи магнитного спектрометра.

2 В работе используются:

- Магнитный спектрометр с «короткой линзой»
- Высоковольтный и низковольтный выпрямители
- Форвакуумный насос и вакуумметр
- 9BM

3 Теоретические положения

Бета-распад – это самопроизвольное превращение ядер, при котором их массовое число не изменяется, а заряд изменяется на единицу. В данной работе мы будем иметь дело с электронным распадом:

$${}_{Z}^{A}X \rightarrow {}_{Z+1}^{A}X + e^{-} + \widetilde{\nu} \tag{1}$$

Освобождающаяся в результате распада энергия делится между исходным ядром, электроном и нейтрино. При этом доля энергии, уносимая ядром крайне мала, так что вся энергия делится между нейтрино и электроном. Поэтому электроны могут иметь любую энергию от нулевой до некоторой максимальной энергии, высвобождаемой при распаде.

Вероятность ω того, что электрон вылетит с импульсом 3p , а нейтрино с импульсом 3k равна произведению этих дифференциалов, но мы должны учесть также закон сохранения энергии.

$$E_e - E - ck = 0 (2)$$

Энергия электрона связана с импульсом обычным образом:

$$E = c\sqrt{p^2 + m^2c^2} - mc^2 (3)$$

Таким образом, вероятность ω принимает вид:

$$\omega = D\delta(E_e - E - ck)^3 p^3 k = D\delta(E_e - E - ck) p^2 p k^2 k \Omega_e \Omega_{\widetilde{\nu}}$$
(4)

D можно считать с хорошей точностью константой. В этом случае можно проинтегрировать по всем углам и по абсолютному значению импульса нейтрино. В этом случае δ -функция исчезнет, а ck всюду заменится на $E_e - E$. После умножения на полное число распадов выражение примет вид:

$$N = \frac{16\pi^2 N_0}{c^2} Dp^2 (E_e - E)^2 p$$
 (5)

В нерелятивистском случае выражение упрощается и принимает вид:

$$\frac{N}{E} \simeq \sqrt{E}(E_e - E)^2 \tag{6}$$

Дочерние ядра, возникающие в результате β -распада, нередко оказываются возбуждёнными. Возбуждённые ядра отдают свою энергию либо излучая гамма-квант, либо передавая избыток энергии одному из электронов с внутренних оболочек атома (обычно K или L). Последние электроны имеют строго определённую энергию и называются конверсионными. Ширина монохроматической линии, соответствующая конверсионным электронам, определяет разрешающую силу спектрометра.

4 Экспериментальная установка

Энергию частиц определяют с помощью β -спектрометров. В работе используется магнитный спектрометр с «короткой» линзой, сцинтиллятором и ФЭУ. Как показывает расчет, для заряженных частиц тонкая катушка эквивалентна линзе:

$$\frac{1}{f} \simeq \frac{I^2}{p_e^2} \tag{7}$$

Рис. 1: Схема β -спектрометра с короткой магнитной линзой

Рис. 2: Блок-схема установки для изучения β -спектра

При заданной силе тока на входное окно счетчика собираются электроны с определенным импульсом. Импульс сфокусированных электронов пропорционален силе тока, коэффициент пропорциональности определяется по какой-либо известной конверсионной линии.

Давление в спектрометре поддерживается на уровне около 0,1 Торр и измеряется термопарным вакуумметром. Откачка осуществляется форвакуумным насосом. Высокое напряжение на $\Phi \ni Y$ подаётся от стабилизированного выпрямителя.

5 Выполнение работы

- 1. Откачаем воздух из полости спектрометра. включим формирователь импульсов и питание магнитной линзы.
- 2. Изменяя ток линзы через 0.2 A, проведём измерение зависимости интенсивности потока падающих β -частиц от силы тока, время накопления 100 секунд. Более подробно пропишем конверсионный спектр. Результаты измерения занесём в таблицу 1.
- 3. Проведём измерение фона фонового излучения нет.
- 4. Прокалибруем спектрометр с учётом того, что $p_{conv}c=1013.5$ кэВ ($p_{conv}=634$ кэВ у 137 Сs). Определим значения энергии, импульса и величину $\sqrt{N(p)/p^{3/2}}$ для построения графика Ферми-Кюри.
- 5. Построим графики зависимости интенсивности потока частиц от силы тока (рис. 3) и график Ферми-Кюри (рис. 4)
- 6. По графику Ферми-Кюри определим максимальную энергию β -частиц в спектре, $E_{max}=602.42$ кэВ

6 Вывод

В ходе работы было исследовано явление β -распада 137 Cs. В спектре β -частиц наблюдаются две области: электроны, рождённые в паре с антинейтрино (приближаемая по Лоренцу кривая на графике спектра) и конверсионные электроны, испускаемые в результате перехода ядра на более низкий энергетический уровень (монохроматическая линия, строго определённое значение энергии 634 кэВ).

Также с помощью графика Ферми-Кюри $(\frac{\sqrt{N}}{p^3/1}=f(T_{kin}))$ было определено максимальное значение энергии β -частиц в спектре: $E_{max}=602.42$ кэВ

Таблица 1: Экспериментальные данные

$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	T 4	37.4/	1.5. /	- I - I - I	,/N
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			- '	-	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	_ ·			_ ~	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		0,6	47,1	2,2	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		0,69			907,907
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0,6	0,77	141,4	19,2	521,881
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0,8	0,77	188,5	33,6	339,061
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1	1,24	235,6	51,7	307,927
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1,2	2,159	282,7	73	309,127
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1,4	3,449	329,8	97,2	310,078
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1,6	4,459	376,9	124	288,589
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1,8	6,068	424,1	153	282,046
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	2	7,628	471,2	184,1	270,021
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	2,2	8,947	518,3	216,8	253,494
2,8 9,127 659,6 323,4 178,338 3 7,548 706,8 361,1 146,208 3,2 6,268 753,9 399,7 120,947 3,4 3,749 801 439,1 85,410 3,6 2,249 848,1 479,2 60,719 3,8 1,64 895,2 519,8 47,813 4 2,089 942,4 561 49,959 4,1 8,018 965,9 581,7 94,327 4,2 11,847 989,5 602,6 110,581 4,3 13,416 1013 623,6 113,605 4,4 8,038 1036 644,7 85,023	2,4	9,317	565,4	251,1	227,041
3 7,548 706,8 361,1 146,208 3,2 6,268 753,9 399,7 120,947 3,4 3,749 801 439,1 85,410 3,6 2,249 848,1 479,2 60,719 3,8 1,64 895,2 519,8 47,813 4 2,089 942,4 561 49,959 4,1 8,018 965,9 581,7 94,327 4,2 11,847 989,5 602,6 110,581 4,3 13,416 1013 623,6 113,605 4,4 8,038 1036 644,7 85,023	2,6	9,157	612,5	286,7	199,626
3 7,548 706,8 361,1 146,208 3,2 6,268 753,9 399,7 120,947 3,4 3,749 801 439,1 85,410 3,6 2,249 848,1 479,2 60,719 3,8 1,64 895,2 519,8 47,813 4 2,089 942,4 561 49,959 4,1 8,018 965,9 581,7 94,327 4,2 11,847 989,5 602,6 110,581 4,3 13,416 1013 623,6 113,605 4,4 8,038 1036 644,7 85,023	2,8	9,127	659,6	323,4	178,338
3,4 3,749 801 439,1 85,410 3,6 2,249 848,1 479,2 60,719 3,8 1,64 895,2 519,8 47,813 4 2,089 942,4 561 49,959 4,1 8,018 965,9 581,7 94,327 4,2 11,847 989,5 602,6 110,581 4,3 13,416 1013 623,6 113,605 4,4 8,038 1036 644,7 85,023	3	7,548	706,8	361,1	146,208
3,6 2,249 848,1 479,2 60,719 3,8 1,64 895,2 519,8 47,813 4 2,089 942,4 561 49,959 4,1 8,018 965,9 581,7 94,327 4,2 11,847 989,5 602,6 110,581 4,3 13,416 1013 623,6 113,605 4,4 8,038 1036 644,7 85,023	3,2	6,268	753,9	399,7	120,947
3,6 2,249 848,1 479,2 60,719 3,8 1,64 895,2 519,8 47,813 4 2,089 942,4 561 49,959 4,1 8,018 965,9 581,7 94,327 4,2 11,847 989,5 602,6 110,581 4,3 13,416 1013 623,6 113,605 4,4 8,038 1036 644,7 85,023	3,4	3,749	801	439,1	85,410
4 2,089 942,4 561 49,959 4,1 8,018 965,9 581,7 94,327 4,2 11,847 989,5 602,6 110,581 4,3 13,416 1013 623,6 113,605 4,4 8,038 1036 644,7 85,023		2,249	848,1	479,2	60,719
4 2,089 942,4 561 49,959 4,1 8,018 965,9 581,7 94,327 4,2 11,847 989,5 602,6 110,581 4,3 13,416 1013 623,6 113,605 4,4 8,038 1036 644,7 85,023	3,8	1,64	895,2	519,8	47,813
4,2 11,847 989,5 602,6 110,581 4,3 13,416 1013 623,6 113,605 4,4 8,038 1036 644,7 85,023		2,089	942,4	561	49,959
4,3 13,416 1013 623,6 113,605 4,4 8,038 1036 644,7 85,023	4,1	8,018	965,9	581,7	94,327
4,4 8,038 1036 644,7 85,023	4,2	11,847	989,5	602,6	110,581
	4,3	13,416	1013	623,6	113,605
10001 0000	4,4	8,038	1036	644,7	85,023
$\begin{vmatrix} 4.5 & 3.519 & 1060.1 & 655.9 & 54.349 \end{vmatrix}$	4,5	3,519	1060,1	655,9	54,349
4,6 1,18 1083,7 687,1 30,449	4,6	1,18	1083,7	687,1	30,449
4,8 0,45 1130,8 729,9 17,641	4,8	0,45	1130,8	729,9	17,641
5 0,42 1177,9 773 16,031	5	0,42	1177,9	773	16,031

Рис. 3: Зависимость интенсивности потока частиц от силы тока в магнитной линзе

Рис. 4: График Ферми-Кюри