

Fast solution of stiff PDEs in 1D, 2D and 3D periodic domains and on the sphere

ICOSAHOM 2016

Hadrien Montanelli & Niall Bootland

Numerical Analysis Group, University of Oxford

June 30, 2016

■ Problem: Stiff PDEs of the form (scalar or systems)

$$u_t = \mathcal{L}u + \mathcal{N}(u), \quad u(t=0,X) = u_0(X),$$

in 1D, 2D and 3D periodic domains and on the sphere

■ Problem: Stiff PDEs of the form (scalar or systems)

$$u_t = \mathcal{L}u + \mathcal{N}(u), \quad u(t = 0, X) = u_0(X),$$

in 1D, 2D and 3D periodic domains and on the sphere

■ Space discretization:

■ Problem: Stiff PDEs of the form (scalar or systems)

$$u_t = \mathcal{L}u + \mathcal{N}(u), \quad u(t = 0, X) = u_0(X),$$

in 1D, 2D and 3D periodic domains and on the sphere

■ **Space discretization:** Fourier spectral method in space (*N* equispaced points)

$$u(t,x) \approx \sum_{k=-N/2}^{N/2} \hat{u}_k(t)e^{ikx}, \quad \hat{u}_k(t) = \frac{1}{N} \sum_{j=0}^{N-1} u(t,x_j)e^{-ikx_j}$$

■ Problem: Stiff PDEs of the form (scalar or systems)

$$u_t = \mathcal{L}u + \mathcal{N}(u), \quad u(t = 0, X) = u_0(X),$$

in 1D, 2D and 3D periodic domains and on the sphere

■ **Space discretization:** Fourier spectral method in space (*N* equispaced points)

$$u(t,x) \approx \sum_{k=-N/2}^{N/2} \hat{u}_k(t)e^{ikx}, \quad \hat{u}_k(t) = \frac{1}{N} \sum_{j=0}^{N-1} u(t,x_j)e^{-ikx_j}$$

The linear part $\mathcal L$ is discretized with Fourier differentiation matrices \Rightarrow matrix $\mathbf L$

■ Problem: Stiff PDEs of the form (scalar or systems)

$$u_t = \mathcal{L}u + \mathcal{N}(u), \quad u(t = 0, X) = u_0(X),$$

in 1D, 2D and 3D periodic domains and on the sphere

■ **Space discretization:** Fourier spectral method in space (*N* equispaced points)

$$u(t,x) \approx \sum_{k=-N/2}^{N/2} \hat{u}_k(t)e^{ikx}, \quad \hat{u}_k(t) = \frac{1}{N} \sum_{j=0}^{N-1} u(t,x_j)e^{-ikx_j}$$

The linear part \mathcal{L} is discretized with Fourier differentiation matrices \Rightarrow matrix **L** This leads to a system of N ODEs for the coefficients $\hat{u}(t) = \{\hat{u}_k(t)\}$,

$$\hat{u}'(t) = \mathbf{L}\hat{u} + \mathbf{N}(\hat{u}), \quad t \in [0, T], \quad \hat{u}(0) = \hat{u}_0$$

■ Problem: Stiff PDEs of the form (scalar or systems)

$$u_t = \mathcal{L}u + \mathcal{N}(u), \quad u(t = 0, X) = u_0(X),$$

in 1D, 2D and 3D periodic domains and on the sphere

■ **Space discretization:** Fourier spectral method in space (*N* equispaced points)

$$u(t,x) \approx \sum_{k=-N/2}^{N/2} \hat{u}_k(t)e^{ikx}, \quad \hat{u}_k(t) = \frac{1}{N} \sum_{j=0}^{N-1} u(t,x_j)e^{-ikx_j}$$

The linear part $\mathcal L$ is discretized with Fourier differentiation matrices \Rightarrow matrix $\mathbf L$ This leads to a system of N ODEs for the coefficients $\hat u(t) = \{\hat u_k(t)\}$,

$$\hat{u}'(t) = \mathbf{L}\hat{u} + \mathbf{N}(\hat{u}), \quad t \in [0, T], \quad \hat{u}(0) = \hat{u}_0$$

Example (1D KdV):
$$u_t = -u_{xxx} - \frac{1}{2}(u^2)_x \implies \hat{u}' = ik^3\hat{u} - \frac{ik}{2}\mathcal{F}(\left(\mathcal{F}^{-1}\hat{u}\right)^2)$$

■ Problem: Stiff PDEs of the form (scalar or systems)

$$u_t = \mathcal{L}u + \mathcal{N}(u), \quad u(t = 0, X) = u_0(X),$$

in 1D, 2D and 3D periodic domains and on the sphere

■ **Space discretization:** Fourier spectral method in space (*N* equispaced points)

$$u(t,x) \approx \sum_{k=-N/2}^{N/2} \hat{u}_k(t)e^{ikx}, \quad \hat{u}_k(t) = \frac{1}{N} \sum_{j=0}^{N-1} u(t,x_j)e^{-ikx_j}$$

The linear part $\mathcal L$ is discretized with Fourier differentiation matrices \Rightarrow matrix $\mathbf L$ This leads to a system of N ODEs for the coefficients $\hat u(t) = \{\hat u_k(t)\}$,

$$\hat{u}'(t) = \mathbf{L}\hat{u} + \mathbf{N}(\hat{u}), \quad t \in [0, T], \quad \hat{u}(0) = \hat{u}_0$$

Example (1D KdV):
$$u_t = -u_{xxx} - \frac{1}{2}(u^2)_x \implies \hat{u}' = ik^3\hat{u} - \frac{ik}{2}\mathcal{F}\big(\big(\mathcal{F}^{-1}\hat{u}\big)^2\big)$$

■ Why is this challenging?

■ Problem: Stiff PDEs of the form (scalar or systems)

$$u_t = \mathcal{L}u + \mathcal{N}(u), \quad u(t = 0, X) = u_0(X),$$

in 1D, 2D and 3D periodic domains and on the sphere

■ **Space discretization:** Fourier spectral method in space (*N* equispaced points)

$$u(t,x) \approx \sum_{k=-N/2}^{N/2} \hat{u}_k(t)e^{ikx}, \quad \hat{u}_k(t) = \frac{1}{N} \sum_{j=0}^{N-1} u(t,x_j)e^{-ikx_j}$$

The linear part $\mathcal L$ is discretized with Fourier differentiation matrices \Rightarrow matrix $\mathbf L$ This leads to a system of N ODEs for the coefficients $\hat u(t) = \{\hat u_k(t)\}$,

$$\hat{u}'(t) = \mathbf{L}\hat{u} + \mathbf{N}(\hat{u}), \quad t \in [0, T], \quad \hat{u}(0) = \hat{u}_0$$

Example (1D KdV):
$$u_t = -u_{xxx} - \frac{1}{2}(u^2)_x \implies \hat{u}' = ik^3\hat{u} - \frac{ik}{2}\mathcal{F}\big(\big(\mathcal{F}^{-1}\hat{u}\big)^2\big)$$

■ Why is this challenging? Stiffness, i.e., standard methods need very small time-steps (related to L having large eigenvalues)

■ **Problem:** Stiff PDEs of the form (scalar or systems)

$$u_t = \mathcal{L}u + \mathcal{N}(u), \quad u(t=0,X) = u_0(X),$$

in 1D, 2D and 3D periodic domains and on the sphere

■ **Space discretization:** Fourier spectral method in space (*N* equispaced points)

$$u(t,x) \approx \sum_{k=-N/2}^{N/2} \hat{u}_k(t)e^{ikx}, \quad \hat{u}_k(t) = \frac{1}{N} \sum_{j=0}^{N-1} u(t,x_j)e^{-ikx_j}$$

The linear part $\mathcal L$ is discretized with Fourier differentiation matrices \Rightarrow matrix $\mathbf L$ This leads to a system of N ODEs for the coefficients $\hat u(t) = \{\hat u_k(t)\}$,

$$\hat{u}'(t) = \mathbf{L}\hat{u} + \mathbf{N}(\hat{u}), \quad t \in [0, T], \quad \hat{u}(0) = \hat{u}_0$$

Example (1D KdV):
$$u_t = -u_{xxx} - \frac{1}{2}(u^2)_x \implies \hat{u}' = ik^3\hat{u} - \frac{ik}{2}\mathcal{F}\big(\big(\mathcal{F}^{-1}\hat{u}\big)^2\big)$$

- Why is this challenging? Stiffness, i.e., standard methods need very small time-steps (related to L having large eigenvalues)
- Time-stepping scheme:

■ Problem: Stiff PDEs of the form (scalar or systems)

$$u_t = \mathcal{L}u + \mathcal{N}(u), \quad u(t=0,X) = u_0(X),$$

in 1D, 2D and 3D periodic domains and on the sphere

■ **Space discretization:** Fourier spectral method in space (*N* equispaced points)

$$u(t,x) \approx \sum_{k=-N/2}^{N/2} \hat{u}_k(t)e^{ikx}, \quad \hat{u}_k(t) = \frac{1}{N} \sum_{j=0}^{N-1} u(t,x_j)e^{-ikx_j}$$

The linear part $\mathcal L$ is discretized with Fourier differentiation matrices \Rightarrow matrix $\mathbf L$ This leads to a system of N ODEs for the coefficients $\hat u(t) = \{\hat u_k(t)\}$,

$$\hat{u}'(t) = \mathbf{L}\hat{u} + \mathbf{N}(\hat{u}), \quad t \in [0, T], \quad \hat{u}(0) = \hat{u}_0$$

Example (1D KdV):
$$u_t = -u_{xxx} - \frac{1}{2}(u^2)_x \implies \hat{u}' = ik^3\hat{u} - \frac{ik}{2}\mathcal{F}\big(\big(\mathcal{F}^{-1}\hat{u}\big)^2\big)$$

- Why is this challenging? Stiffness, i.e., standard methods need very small time-steps (related to L having large eigenvalues)
- Time-stepping scheme: Exponential integrators

■ Problem: System of ODEs of the form

$$\hat{u}'(t) = \mathbf{L}\hat{u} + \mathbf{N}(\hat{u}), \quad \hat{u}(0) = \hat{u}_0$$

■ Problem: System of ODEs of the form

$$\hat{u}'(t) = \mathbf{L}\hat{u} + \mathbf{N}(\hat{u}), \quad \hat{u}(0) = \hat{u}_0$$

■ Two special features: The matrix L is diagonal and the stiffness comes from L

■ Problem: System of ODEs of the form

$$\hat{u}'(t) = \mathbf{L}\hat{u} + \mathbf{N}(\hat{u}), \quad \hat{u}(0) = \hat{u}_0$$

- Two special features: The matrix L is diagonal and the stiffness comes from L
- Key idea of exponential integrators: Integrate L exactly with matrix exponential (trivial) and apply a numerical scheme to N

■ Problem: System of ODEs of the form

$$\hat{u}'(t) = \mathbf{L}\hat{u} + \mathbf{N}(\hat{u}), \quad \hat{u}(0) = \hat{u}_0$$

- Two special features: The matrix L is diagonal and the stiffness comes from L
- Key idea of exponential integrators: Integrate L exactly with matrix exponential (trivial) and apply a numerical scheme to N
- Formula: For given value \hat{u}_n at time $t_n = nh$, the numerical approximation \hat{u}_{n+1} at time $t_{n+1} = (n+1)h$ is given by

$$\hat{u}_{n+1} = e^{hL}\hat{u}_n + h\sum_{i=1}^s B_i(hL)\mathbf{N}(\hat{v}_i)$$

■ Problem: System of ODEs of the form

$$\hat{u}'(t) = \mathbf{L}\hat{u} + \mathbf{N}(\hat{u}), \quad \hat{u}(0) = \hat{u}_0$$

- Two special features: The matrix L is diagonal and the stiffness comes from L
- Key idea of exponential integrators: Integrate L exactly with matrix exponential (trivial) and apply a numerical scheme to N
- Formula: For given value \hat{u}_n at time $t_n = nh$, the numerical approximation \hat{u}_{n+1} at time $t_{n+1} = (n+1)h$ is given by

$$\hat{u}_{n+1} = e^{hL}\hat{u}_n + h\sum_{i=1}^s B_i(hL)N(\hat{v}_i),$$

where the stages \hat{v}_i are defined by

$$\begin{split} &\hat{v}_{1} = \hat{u}_{n}, \\ &\hat{v}_{2} = e^{C_{2}hL}\hat{u}_{n} + hA_{2,1}(hL)N(\hat{v}_{1}), \\ &\hat{v}_{3} = e^{C_{3}hL}\hat{u}_{n} + hA_{3,1}(hL)N(\hat{v}_{1}) + hA_{3,2}(hL)N(\hat{v}_{2}), \\ &\vdots \end{aligned}$$

■ Problem: System of ODEs of the form

$$\hat{u}'(t) = \mathbf{L}\hat{u} + \mathbf{N}(\hat{u}), \quad \hat{u}(0) = \hat{u}_0$$

- Two special features: The matrix L is diagonal and the stiffness comes from L
- Key idea of exponential integrators: Integrate L exactly with matrix exponential (trivial) and apply a numerical scheme to N
- Formula: For given value \hat{u}_n at time $t_n = nh$, the numerical approximation \hat{u}_{n+1} at time $t_{n+1} = (n+1)h$ is given by

$$\hat{u}_{n+1} = e^{hL}\hat{u}_n + h\sum_{i=1}^s B_i(hL)\mathbf{N}(\hat{v}_i),$$

where the stages \hat{v}_i are defined by

$$\hat{\mathbf{v}}_{1} = \hat{\mathbf{u}}_{n},
\hat{\mathbf{v}}_{2} = e^{C_{2}hL}\hat{\mathbf{u}}_{n} + hA_{2,1}(hL)\mathbf{N}(\hat{\mathbf{v}}_{1}),
\hat{\mathbf{v}}_{3} = e^{C_{3}hL}\hat{\mathbf{u}}_{n} + hA_{3,1}(hL)\mathbf{N}(\hat{\mathbf{v}}_{1}) + hA_{3,2}(hL)\mathbf{N}(\hat{\mathbf{v}}_{2}),
\vdots$$

Coefficients $A_{i,j}$, B_i and C_i are functions of $\mathbf L$ (computed with contour integrals around each eigenvalue of $\mathbf L$)

■ Problem: System of ODEs of the form

$$\hat{u}'(t) = \mathbf{L}\hat{u} + \mathbf{N}(\hat{u}), \quad \hat{u}(0) = \hat{u}_0$$

- Two special features: The matrix L is diagonal and the stiffness comes from L
- Key idea of exponential integrators: Integrate L exactly with matrix exponential (trivial) and apply a numerical scheme to N
- Formula: For given value \hat{u}_n at time $t_n = nh$, the numerical approximation \hat{u}_{n+1} at time $t_{n+1} = (n+1)h$ is given by

$$\hat{u}_{n+1} = e^{hL}\hat{u}_n + h\sum_{i=1}^s B_i(hL)\mathbf{N}(\hat{v}_i),$$

where the stages \hat{v}_i are defined by

$$\hat{v}_1 = \hat{u}_n, \hat{v}_2 = e^{C_2 h L} \hat{u}_n + h A_{2,1}(h L) N(\hat{v}_1), \hat{v}_3 = e^{C_3 h L} \hat{u}_n + h A_{3,1}(h L) N(\hat{v}_1) + h A_{3,2}(h L) N(\hat{v}_2), \vdots$$

Coefficients $A_{i,j}$, B_i and C_i are functions of L (computed with contour integrals around each eigenvalue of L)

■ Cost per time-step: $O(2sN \log(N))$

Method	Туре	Order	Stages s	Steps q
ABNørsett4	ETD Adams-Bashforth	4	1	4
ABNørsett5	ETD Adams-Bashforth	5	1	5
ABNørsett6	ETD Adams-Bashforth	6	1	6
Friedli (VRK4)	ETD Runge-Kutta	4	4	1
Strehmel-Weiner	ETD Runge-Kutta	4	4	1
Cox-Matthews (ETDRK4)	ETD Runge-Kutta	4	4	1
Krogstad (ETDRK4-B)	ETD Runge-Kutta	4	4	1
Minchev	ETD Runge-Kutta	4	4	1
Hochbruck-Ostermann	ETD Runge-Kutta	4	5	1
Luan-Ostermann (EXPRK5S8)	ETD Runge-Kutta	5	8	1
(Mod)GenLawson41	(Mod.) Gen. Lawson	4	4	1
(Mod)GenLawson42	(Mod.) Gen. Lawson	4	4	2
(Mod)GenLawson43	(Mod.) Gen. Lawson	4	4	3
(Mod)GenLawson44	(Mod.) Gen. Lawson	5	4	4
(Mod)GenLawson45	(Mod.) Gen. Lawson	6	4	5
PEC423	Predictor-corrector	4	2	3
PECEC433	Predictor-corrector	4	3	3
PEC524	Predictor-corrector	5	2	4
PECEC534	Predictor-corrector	5	3	4
PEC625	Predictor-corrector	6	2	5
PECEC635	Predictor-corrector	6	3	5
PEC726	Predictor-corrector	7	2	6
PECEC736	Predictor-corrector	7	3	6

Method	Type	Order	Stages s	Steps q
ABNørsett4	ETD Adams-Bashforth	4	1	4
ABNørsett5	ETD Adams-Bashforth	5	1	5
ABNørsett6	ETD Adams-Bashforth	6	1	6
Friedli (VRK4)	ETD Runge-Kutta	4	4	1
Strehmel-Weiner	ETD Runge-Kutta	4	4	1
Cox-Matthews (ETDRK4)	ETD Runge-Kutta	4	4	1
Krogstad (ETDRK4-B)	ETD Runge-Kutta	4	4	1
Minchev	ETD Runge-Kutta	4	4	1
Hochbruck-Ostermann	ETD Runge-Kutta	4	5	1
Luan-Ostermann (EXPRK5S8)	ETD Runge-Kutta	5	8	1
(Mod)GenLawson41	(Mod.) Gen. Lawson	4	4	1
(Mod)GenLawson42	(Mod.) Gen. Lawson	4	4	2
(Mod)GenLawson43	(Mod.) Gen. Lawson	4	4	3
(Mod)GenLawson44	(Mod.) Gen. Lawson	5	4	4
(Mod)GenLawson45	(Mod.) Gen. Lawson	6	4	5
PEC423	Predictor-corrector	4	2	3
PECEC433	Predictor-corrector	4	3	3
PEC524	Predictor-corrector	5	2	4
PECEC534	Predictor-corrector	5	3	4
PEC625	Predictor-corrector	6	2	5
PECEC635	Predictor-corrector	6	3	5
PEC726	Predictor-corrector	7	2	6
PECEC736	Predictor-corrector	7	3	6

■ ETD Adams-Bashforth and Lawson methods have bad stability properties

Method	Type	Order	Stages s	Steps q
ABNørsett4	ETD Adams-Bashforth	4	1	4
ABNørsett5	ETD Adams-Bashforth	5	1	5
ABNørsett6	ETD Adams-Bashforth	6	1	6
Friedli (VRK4)	ETD Runge-Kutta	4	4	1
Strehmel-Weiner	ETD Runge-Kutta	4	4	1
Cox-Matthews (ETDRK4)	ETD Runge-Kutta	4	4	1
Krogstad (ETDRK4-B)	ETD Runge-Kutta	4	4	1
Minchev	ETD Runge-Kutta	4	4	1
Hochbruck-Ostermann	ETD Runge-Kutta	4	5	1
Luan-Ostermann (EXPRK5S8)	ETD Runge-Kutta	5	8	1
(Mod)GenLawson41	(Mod.) Gen. Lawson	4	4	1
(Mod)GenLawson42	(Mod.) Gen. Lawson	4	4	2
(Mod)GenLawson43	(Mod.) Gen. Lawson	4	4	3
(Mod)GenLawson44	(Mod.) Gen. Lawson	5	4	4
(Mod)GenLawson45	(Mod.) Gen. Lawson	6	4	5
PEC423	Predictor-corrector	4	2	3
PECEC433	Predictor-corrector	4	3	3
PEC524	Predictor-corrector	5	2	4
PECEC534	Predictor-corrector	5	3	4
PEC625	Predictor-corrector	6	2	5
PECEC635	Predictor-corrector	6	3	5
PEC726	Predictor-corrector	7	2	6
PECEC736	Predictor-corrector	7	3	6

- ETD Adams-Bashforth and Lawson methods have bad stability properties
- ETD Runge-Kutta of order four have similar accuracy and stability properties (hard to beat ETDRK4), EXPRK5S8 the most accurate but sometimes unstable

Method	Type	Order	Stages s	Steps q
ABNørsett4	ETD Adams-Bashforth	4	1	4
ABNørsett5	ETD Adams-Bashforth	5	1	5
ABNørsett6	ETD Adams-Bashforth	6	1	6
Friedli (VRK4)	ETD Runge-Kutta	4	4	1
Strehmel-Weiner	ETD Runge-Kutta	4	4	1
Cox-Matthews (ETDRK4)	ETD Runge-Kutta	4	4	1
Krogstad (ETDRK4-B)	ETD Runge-Kutta	4	4	1
Minchev	ETD Runge-Kutta	4	4	1
Hochbruck-Ostermann	ETD Runge-Kutta	4	5	1
Luan-Ostermann (EXPRK5S8)	ETD Runge-Kutta	5	8	1
(Mod)GenLawson41	(Mod.) Gen. Lawson	4	4	1
(Mod)GenLawson42	(Mod.) Gen. Lawson	4	4	2
(Mod)GenLawson43	(Mod.) Gen. Lawson	4	4	3
(Mod)GenLawson44	(Mod.) Gen. Lawson	5	4	4
(Mod)GenLawson45	(Mod.) Gen. Lawson	6	4	5
PEC423	Predictor-corrector	4	2	3
PECEC433	Predictor-corrector	4	3	3
PEC524	Predictor-corrector	5	2	4
PECEC534	Predictor-corrector	5	3	4
PEC625	Predictor-corrector	6	2	5
PECEC635	Predictor-corrector	6	3	5
PEC726	Predictor-corrector	7	2	6
PECEC736	Predictor-corrector	7	3	6

- ETD Adams-Bashforth and Lawson methods have bad stability properties
- ETD Runge-Kutta of order four have similar accuracy and stability properties (hard to beat ETDRK4), EXPRK5S8 the most accurate but sometimes unstable

■ Predictor-Corrector methods of order ≥ 5 more accurate but often unstable

SPIN: Stiff PDEs INtegrator 4 / 11

Example 1: ETD RK schemes for KdV equation from t = 0 to t = 0.005

We plot relative error $=\frac{\|u_{\mathrm{approx}}-u_{\mathrm{exact}}\|_{\infty}}{\|u_{\mathrm{exact}}\|_{\infty}}$ vs relative time-step $=\frac{dt}{0.005}$ and time

Example 1: ETD RK schemes for KdV equation from t = 0 to t = 0.005

We plot relative error $=\frac{\|u_{
m approx}-u_{
m exact}\|_{\infty}}{\|u_{
m exact}\|_{\infty}}$ vs relative time-step $=\frac{dt}{0.005}$ and time

Example 2: ETD RK schemes for KdV equation from t=0 to t=0.015

Example 2: ETD RK schemes for KdV equation from t=0 to t=0.015

Example 3: ETD RK schemes for Gray-Scott equations in 2D from t=0 to t=30

Example 3: ETD RK schemes for Gray-Scott equations in 2D from t=0 to t=30

In Chebfun: spin, spin2 and spin3

In Chebfun: spin, spin2 and spin3

■ Preloaded demos: Nine demos in 1D, four in 2D, four in 3D

```
u = spin('kdv');
u = spin2('gs2');
u = spin3('sh3');
```

In Chebfun: spin, spin2 and spin3

■ Preloaded demos: Nine demos in 1D, four in 2D, four in 3D

```
u = spin2('gs2');
u = spin3('sh3');
```

u = spin('kdv');

■ Define your own problem:

```
dom = [0 32*pi]; tspan = [0 100];
S = spinop(dom, tspan);
S.linearPart = @(u) -diff(u,2)-diff(u,4);
S.nonlinearPart = @(u) -.5*diff(u.^2);
S.init = chebfun(@(x) cos(x/16).*(1 + sin(x/16)), dom, 'trig');
u = spin(S);
```

Stiff PDEs on the sphere (1/2)

Stiff PDEs on the sphere (1/2)

Our approach is based on the Double Fourier Sphere method:

Stiff PDEs on the sphere (1/2)

Our approach is based on the Double Fourier Sphere method:

■ When using longitude-latitude coordinate $(\lambda$ - θ), functions are 2π -periodic in λ but not periodic in θ

Our approach is based on the Double Fourier Sphere method:

- When using longitude-latitude coordinate $(\lambda$ - θ), functions are 2π -periodic in λ but not periodic in θ
- Double up the function and flip it

Our approach is based on the Double Fourier Sphere method:

- When using longitude-latitude coordinate $(\lambda$ - θ), functions are 2π -periodic in λ but not periodic in θ
- Double up the function and flip it
- lacktriangle Constant values along lines heta=0 and $heta=\pm\pi$

Our approach is based on the Double Fourier Sphere method:

- When using longitude-latitude coordinate $(\lambda$ - θ), functions are 2π -periodic in λ but not periodic in θ
- Double up the function and flip it
- lacktriangle Constant values along lines heta=0 and $heta=\pm\pi$

a = spherefun(@(lam,tt) 1./(1 + (cos(lam).*sin(tt)).^2) + cos(tt).^2);

SPIN: Stiff PDEs INtegrator

■ Problem: We want to solve

$$u_t = \mathcal{L}u + \mathcal{N}(u) = u_{\theta\theta} + \frac{\cos\theta}{\sin\theta}u_{\theta} + \frac{1}{\sin^2\theta}u_{\lambda\lambda} + \mathcal{N}(u)$$

■ Problem: We want to solve

$$u_t = \mathcal{L}u + \mathcal{N}(u) = u_{\theta\theta} + \frac{\cos\theta}{\sin\theta}u_{\theta} + \frac{1}{\sin^2\theta}u_{\lambda\lambda} + \mathcal{N}(u)$$

with the DFS method and exponential integrators

■ Space discretization: DFS in coefficient space with $m \times n$ points, leads to a block diagonal matrix L (n blocks of size m)

■ Problem: We want to solve

$$u_t = \mathcal{L}u + \mathcal{N}(u) = u_{\theta\theta} + \frac{\cos\theta}{\sin\theta}u_{\theta} + \frac{1}{\sin^2\theta}u_{\lambda\lambda} + \mathcal{N}(u)$$

- Space discretization: DFS in coefficient space with m × n points, leads to a block diagonal matrix L (n blocks of size m)
- Matrix exponential: Diagonalize $L = V \wedge V^{-1}$ by block $\Rightarrow e^{hL} = V e^{h \wedge} V^{-1}$, condition number O(100), $O(nm^3)$ cost

■ Problem: We want to solve

$$u_t = \mathcal{L}u + \mathcal{N}(u) = u_{\theta\theta} + \frac{\cos\theta}{\sin\theta}u_{\theta} + \frac{1}{\sin^2\theta}u_{\lambda\lambda} + \mathcal{N}(u)$$

- Space discretization: DFS in coefficient space with m × n points, leads to a block diagonal matrix L (n blocks of size m)
- Matrix exponential: Diagonalize $L = V \Lambda V^{-1}$ by block $\Rightarrow e^{hL} = V e^{h\Lambda} V^{-1}$, condition number O(100), $O(nm^3)$ cost
- ETDRK4 coefficients: Same as previously, contour integrals around each eigenvalue of L

■ Problem: We want to solve

$$u_t = \mathcal{L}u + \mathcal{N}(u) = u_{\theta\theta} + \frac{\cos\theta}{\sin\theta}u_{\theta} + \frac{1}{\sin^2\theta}u_{\lambda\lambda} + \mathcal{N}(u)$$

- Space discretization: DFS in coefficient space with m × n points, leads to a block diagonal matrix L (n blocks of size m)
- Matrix exponential: Diagonalize $L = V \Lambda V^{-1}$ by block $\Rightarrow e^{hL} = V e^{h\Lambda} V^{-1}$, condition number O(100), $O(nm^3)$ cost
- ETDRK4 coefficients: Same as previously, contour integrals around each eigenvalue of L
- Cost per time-step: $O(nm^2)$

SPIN: Stiff PDEs INtegrator

■ In the past 15 years it has been discovered that the highly non-obvious formulas known as exponential integrators are the best tool for the accurate solution of stiff PDEs

- In the past 15 years it has been discovered that the highly non-obvious formulas known as exponential integrators are the best tool for the accurate solution of stiff PDEs
- We have compared 30 of them and found that the ETDRK4 formula of Cox & Matthews (2002) is hard to beat

- In the past 15 years it has been discovered that the highly non-obvious formulas known as exponential integrators are the best tool for the accurate solution of stiff PDEs
- We have compared 30 of them and found that the ETDRK4 formula of Cox & Matthews (2002) is hard to beat
- Chebfun's spin implements this, and it is the easiest and most efficient way to solve many stiff PDEs in 1D/2D/3D periodic domains

SPIN: Stiff PDEs INtegrator

- In the past 15 years it has been discovered that the highly non-obvious formulas known as exponential integrators are the best tool for the accurate solution of stiff PDEs
- We have compared 30 of them and found that the ETDRK4 formula of Cox & Matthews (2002) is hard to beat
- Chebfun's spin implements this, and it is the easiest and most efficient way to solve many stiff PDEs in 1D/2D/3D periodic domains
- If you work with stiff PDEs, you definitely want to try spin

- In the past 15 years it has been discovered that the highly non-obvious formulas known as exponential integrators are the best tool for the accurate solution of stiff PDEs
- We have compared 30 of them and found that the ETDRK4 formula of Cox & Matthews (2002) is hard to beat
- Chebfun's spin implements this, and it is the easiest and most efficient way to solve many stiff PDEs in 1D/2D/3D periodic domains
- If you work with stiff PDEs, you definitely want to try spin
- Fourier spectral methods and exponential integrators can be used for solving PDEs on the sphere with the Double Fourier Sphere method (in coefficient space) and diagonalization by block

SPIN: Stiff PDEs INtegrator

11 / 11