Eigen Values

Dr. Kumar Aniket University of Cambridge

EIGENVALUES AND EIGEN VECTORS

Matrix: Take a determinant $\mathbf{A} = \begin{bmatrix} 3 & -1 \\ 4 & -2 \end{bmatrix}$

Eigenvalues: Find the Eigenvalues first.

$$\mathbf{A}\mathbf{x} = \lambda \mathbf{x} \tag{1}$$

$$\Rightarrow [\lambda \mathbf{I} - \mathbf{A}] \mathbf{x} = 0 \tag{2}$$

 $|\lambda \mathbf{I} - \mathbf{A}| = 0$ gives a quadratic equation with roots $\lambda = \{2, -1\}$. These roots are called Eigenvalues.

This also implies that $[2\mathbf{I} - \mathbf{A}]$ and $[-1\mathbf{I} - \mathbf{A}]$ and are thus singular matrices.

Eigenvectors: Find the Eigenvectors associated with Eigenvalues.

It follows that $[2\mathbf{I} - \mathbf{A}] \mathbf{x} = 0$ and $[-1\mathbf{I} - \mathbf{A}] \mathbf{x} = 0$ are simultaneous equations which we can solve and obtain the Eigenvectors.

 $\mathbf{A}\mathbf{x} = 2\mathbf{x}$ if and only if $x_1 = x_2$ with

$$\mathbf{x} = \left[\begin{array}{c} x_1 \\ x_2 \end{array} \right]$$

Similarly, $\mathbf{A}\mathbf{x} = -1\mathbf{x}$ if and only if $x_1 = 4x_2$.

The Eigenvectors corresponding to the Eigenvalues 2 and -1 are $\mathbf{x}^T = [1, 1]$ and [1, 4].

Putting Eigenvalues and Eigenvectors together: Using Eigenvectors to diagonalise a matrix and find the associated diagonalised matrix composed of Eigenvalue diagonal elements.

We can show that $\mathbf{AS} = \mathbf{SD}$ where \mathbf{S} is matrix constructed from Eigenvectors and \mathbf{D} is a diagonal matrix constructed from Eigenvalues.

$$\begin{bmatrix} 3 & -1 \\ 4 & -2 \end{bmatrix} \begin{bmatrix} 1 & 1 \\ 1 & 4 \end{bmatrix} = \begin{bmatrix} 1 & 1 \\ 1 & 4 \end{bmatrix} \begin{bmatrix} 2 & 0 \\ 0 & -1 \end{bmatrix}$$
 (3)

This can also be written as:

$$\mathbf{A} \quad \left[\begin{array}{ccc} \mathbf{x}_1 & \mathbf{x}_2 \end{array} \right] \quad = \quad \left[\begin{array}{ccc} \mathbf{x}_1 & \mathbf{x}_2 \end{array} \right] \quad \left[\begin{array}{ccc} \lambda_1 & 0 \\ 0 & \lambda_2 \end{array} \right] \tag{4}$$

where λ_1 and λ_2 are the Eigenvalues of **A**.

Punchline: Put another way $\mathbf{x}^{-1}\mathbf{A}\mathbf{x} = \mathbf{D}$ where \mathbf{D} is a diagonal matrix with Eigenvalues as its diagonal elements. So, Eigenvectors are used to transform a matrix to a diagonal matrix.

Theorem: A real symmetric matrix **A** (a Hessian is always symmetric) is:

- i. positive definite if and only if, all its eigenvalues $\lambda_i > 0$;

 positive semi-definite if and only if, all its eigenvalues are $\lambda_i \ge 0$;
- ii. negative definite if and only if, all its eigenvalues $\lambda_i < 0$;

 negative semi-definite if and only if, all its eigenvalues are $\lambda_i \leq 0$;

1. Taylor's Expansion

Taylor's Expansion: getting f(x) from a.

$$f(x) = f(a) + f'(a)\frac{(x-a)^{1}}{1!} + f''(a)\frac{(x-a)^{2}}{2!} + f'''(a)\frac{(x-a)^{3}}{3!} + \dots + \dots + f^{n}(a)\frac{(x-a)^{n}}{n!}.$$

$$f(x) = f(0) + f'(0)\frac{x^1}{1!} + f''(0)\frac{x^2}{2!} + f'''(0)\frac{x^3}{3!} + \dots + \dots + f^n(0)\frac{x^n}{n!}.$$