T1) **Enunciar** el teorema que permite resolver integrales dobles mediante un cambio de variables. Con el cambio de variables definido por (x,y) = (u+3v, 2u+2v), la región D del plano xy se transforma en la región D^* del plano uv. **Calcular** el área (D^*) sabiendo que el área(D) = 6 T2) **Enunciar** la condición necesaria para la existencia de función potencial de un campo vectorial. **Indicar** hipótesis.

Demostrar dicha condición.

- T1) Indicar si la siguiente proposición es verdadera o falsa y justificar.
- Si $D ext{ y } D^* ext{ son dos regiones de integración}$ $(x,y) = (2u+2v,3u+v) ext{ transforma } D^* ext{ en } D ext{ y}$ $\iint_{D^*} (2u+2v) du dv = 2$ Entonces

$$\iint_D x dx dy = -8$$

T2) **Definir** función potencial.

Dado el campo $\vec{f}(x,y) = (2x \cdot y + 2x \cdot g'(x^2), x^2)$ con $\vec{f} \in C^1$, calcular la circulación de \vec{f} desde (-2, 4) hasta (2,5).

- T1) Enunciar el Teorema de Green. Calcular la circulación de $\vec{f}(x,y) = (2xy \cdot e^{x^2}, x^2 + e^{x^2})$ a lo largo de la frontera de la región plana definida por $x^2 + y^2 \le 9$, $x \ge 0$. Indicar gráficamente la orientación asignada a la curva.
- T2) Enunciar y demostrar la condición necesaria para que el campo $\vec{f}(x, y) = (f_1, f_2)$ admita función potencial
- T1) Enunciar la condición necesaria para la existencia de función potencial de un campo vectorial. Indicar hipótesis. Demostrar dicha condición.
- T2) Demostrar que si $y_1(x)$ e $y_2(x)$ son solución de la ecuación $y''(x) + p \cdot y'(x) + q \cdot y(x) = 0$, entonces $y(x) = A \cdot y_1(x) + B \cdot y_2(x)$ es solución general de dicha ecuación. Indicar hipótesis.
 - T1) Enunciar la condición necesaria para la existencia de función potencial de un campo vectorial. Indicar hipótesis. Demostrar dicha condición.
 - T2) Enunciar el Teorema de la divergencia. Suponiendo que se puede aplicar el teorema y sabiendo que para $\overline{f}(x,y,z)=(x,2y,x-z)$ el flujo a través de ∂S es saliente e igual a 18π , calcular el volumen del cuerpo S
- T1) Enunciar y demostrar la condición necesaria para la existencia de función potencial de un campo vectorial en \Re^2 .
- T2) Demostrar que si y_1 es solución de la ecuación $y'' + p \cdot y' + q \cdot y = f_1(x)$ e y_2 es solución de la ecuación $y'' + p \cdot y' + q \cdot y = f_2(x)$ entonces $y_1 + y_2$ es solución de la ecuación $y'' + p \cdot y' + q \cdot y = f_1(x) + f_2(x)$

- λ , $\lambda \ge y \ge 3$ yell 1 octante. Indicar la orientación adoptada para \sum
- Γ 1) Enunciar y demostrar la condición necesaria para la existencia de función potencial de un campo vectorial. Verificar si $\vec{f}(x, y) = (2xy, y^2)$ admite función potencial.
- T2) Demostrar que si y_1 es solución de la ecuación $y'' + p \cdot y' + q \cdot y = f_1(x)$ e y_2 es solución de la ecuación $y'' + p \cdot y' + q \cdot y = f_2(x)$

entonces $y_1 - y_2$ es solución de la ecuación $y'' + p \cdot y' + q \cdot y = f_1(x) - f_2(x)$

- T1) Enunciar la condición suficiente para que un campo vectorial $\vec{f}(x, y) = (f_1(x, y), f_2(x, y))$ sea conservativo. **Verificar** que el campo $\vec{f}(x, y) = (2xy + 1, x^2 + 2y)$ es conservativo. **Calcular** su función potencial sabiendo que vale 5 en (1,2)
- T2) **Enunciar** el Teorema de Green. **Calcular** la circulación de $\vec{f}(x,y) = (xy^2/2, 3x^2y/2)$ a lo largo de la curva frontera de la región definida por $x^2 \le y \le x$. **Indicar** el sentido de la circulación adoptado.
- T1) **Enunciar** el Teorema de Green. **Calcular** la circulación de $\vec{f}(x,y) = (xy^2/2, 3x^2y/2)$ a lo largo de la curva frontera de la región definida por $x^2 \le y \le x$. **Indicar** el sentido de la circulación adoptado.
- T2) **Demostrar** que si y_p es solución de la ecuación $y'' + p(x) \cdot y' + q(x) \cdot y = g(x)$ con y = y(x) entonces $k \cdot y_p$ es solución de la ecuación $y'' + p(x) \cdot y' + q(x) \cdot y = k \cdot g(x)$
- T1) **Demostrar** que si $\vec{f}: \Re^2 \to \Re^2 / \vec{f} = (f_1, f_2)$ es conservativo $(\vec{f} = \vec{\nabla} \phi)$ entonces $\int_{\vec{A} \to \vec{B}} \vec{f} \cdot d\vec{\lambda} = \phi(\vec{B}) \phi(\vec{A})$
- T2) **Demostrar** que si y_1 es solución de la ecuación $y'' + p \cdot y' + q \cdot y = f_1(x)$ e y_2 es solución de la ecuación $y'' + p \cdot y' + q \cdot y = f_2(x)$ entonces $y_1 y_2$ es solución de la ecuación $y'' + p \cdot y' + q \cdot y = f_1(x) f_2(x)$
- T1) **Enunciar** el teorema de cambio de variables en integrales dobles. Dado el cambio de variables definido por (x, y) = (v - 2u, u + v) la región D_{xy} se transforma en la región D_{uv} . **Calcular** el área de D_{uv} sabiendo que el área de D_{xy} es igual a 9
- T2) **Definir** función potencial.

Dado el campo $\vec{f}(x,y) = (2x \cdot y + 2x \cdot g'(x^2), x^2)$ con $\vec{f} \in C^1$, calcular la circulación de \vec{f} desde (-2, 4) hasta (2,5).

T1) Enunciar y demostrar la condición necesaria para la existencia de función potencial

Determinar si el campo $\vec{f}(x,y) = (2x \cdot y + 2x \cdot g'(x^2), x^2)$ con $\vec{f} \in C^1$, admite función potencial.

T2) Enunciar el teorema de cambio de variables en integrales dobles.

Dado el cambio de variables definido por (x, y) = (v - 2u, u + v) la región D_{xy} se transforma en la región D_{uv} .

Calcular el área de D_{uv} sabiendo que el área de D_{xy} es igual a 9

T1) Siendo $f: \mathbb{R}^n \to \mathbb{R}$ una función de varias variables, **indicar** si la siguiente afirmación es verdadera o falsa:

Si f es continua en un punto, entonces f es derivable en toda dirección en dicho punto. En caso afirmativo **dar** un ejemplo y en caso contra \tilde{g} io **dar** un contraejemplo. **Justificar**.

T2) Siendo
$$\vec{f}: \Re^2 \to \Re^2 / \vec{f}(x,y) = (f_1, f_2)$$
 un campo vectorial tal que $\vec{f} \in C^1$ y $\frac{\partial f_2}{\partial x} \equiv \frac{\partial f_1}{\partial y}$

Indicar si \vec{f} es conservativo

En caso afirmativo dar un ejemplo y en caso contrario dar un contraejemplo. Justificar.

T1) Enunciar el Teorema de la divergencia.

Suponiendo que se puede aplicar el teorema y sabiendo que para $\overline{f}(x,y,z) = (x,2y,x-z)$ el flujo a través de ∂S es saliente e igual a 18π , **calcular** el volumen del cuerpo S

T2) **Demostrar** que si
$$\vec{f}: \Re^2 \to \Re^2 / \vec{f} = (p(x,y), q(x,y))$$
 es conservativo $(\vec{f} = \vec{\nabla}\phi)$ entonces $p'_y \equiv q'_x$.

Indicar hipótesis adoptadas.

- T1) Enunciar el Teorema de Green. Calcular la circulación de $\tilde{f}(x,y) = (xy^2/2, 3x^2y/2)$ a lo largo de la curva frontera de la región definida por $x^2 \le y \le x$. Indicar el sentido de la circulación adoptado.
- T2) **Demostrar** que si y_p es solución de la ecuación $y'' + p(x) \cdot y' + q(x) \cdot y = g(x)$ con y = y(x) entonces $k \cdot y_p$ es solución de la ecuación $y'' + p(x) \cdot y' + q(x) \cdot y = k \cdot g(x)$
- T1) Con el cambio de variables definido por (x, y) = (u + 2v, 2u + v), la región D del plano xy se transforma en la región D^* del plano uv. Calcular el área (D^*) sabiendo que el área(D) = 6
- T2) **Enunciar** la condición necesaria para la existencia de función potencial de un campo vectorial. **Indicar** hipótesis.

Demostrar dicha condición.