B.Sc. ELECTRONICS: CHOICE BASED CREDIT SYSTEM - LEARNING OUTCOMES BASED CURRICULUM FRAMEWORK (CBCS - LOCF)

(Applicable to the candidates admitted from the academic year 2022-23 onwards)

Sem.	Part	Course	Title	Ins. Hrs	Credit	Exam	Ma	arks	Total
						Hours	Int.	Ext.	
I	I	Language Course – I (Tamil \$/Other Languages + #)		6	3	3	25	75	100
	II	English Course – I		6	3	3	25	75	100
	III	Core Course – I (CC)	Electric Circuits & Electronic Devices	5	5	3	25	75	100
		Core Practical – I (CP)	Electric Circuits & Electronic Devices Laboratory	4	4	3	40	60	100
		First Allied Course – I (AC)	-	4	4	3	25	75	100
		First Allied Course – II (AC)		3	-	-	-	-	-
	IV	IV Value Education		2	2	3	25	75	100
		TOTAL	30	21	-	-	-	600	
II	I	Language Course – II (Tamil \$/Other Languages + #)		6	3	3	25	75	100
	II	English Course – II		6	3	3	25	75	100
	III	Core Course – II (CC)	Analog Electronic Circuits	5	5	3	25	75	100
		Core Practical – II (CP)	Analog Electronic Circuits Laboratory	4	4	3	40	60	100
		First Allied Course – II (AC)		3	2	3	25	75	100
		First Allied Course – III (AC)		4	4	3	25	75	100
	IV	Environmental Studies		2	2	3	25	75	100
		TOTAL		30	23	-	-	-	700

- \$ For those who studied Tamil upto 10th +2 (Regular Stream)
- + Syllabus for other Languages should be on par with Tamil at degree level
- # Those who studied Tamil upto 10th +2 but opt for other languages in degree level under Part I should study special Tamil in Part IV
- * Extension Activities shall be outside instruction hours.

List of Allied Courses

Allied Course I

Allied Course II

Mathematics

Chemistry / Computer Science

SUMMARY OF CURRICULUM STRUCTURE OF UG PROGRAMMES

S1. No.	Part	Types of the Courses	No. of Courses	No. of Credits	Marks
1.	I	Language Courses	4	12	400
2.	II	English Courses	4	12	400
3.	III	Core Courses	9	45	900
4.		Core Practical	6	24	600
5.		Allied Courses I & II	4	16	400
6.		Allied Practical	2	4	200
7.		Major Based Elective Courses	2	8	200
8.		Project	1	3	100
9.		Non-Major Elective Courses	2	4	200
10.		Skill Based Elective Courses	2	4	200
11.	IV	Soft Skills Development	1	2	100
12.		Value Education	1	2	100
13.		Environmental Studies	1	2	100
14.	V	Gender Studies	1	1	100
15.		Extension Activities	1	1	
16.		Total	41	140	4000

First Year CORE COURSE I Semester I

ELECTRIC CIRCUITS & ELECTRONIC DEVICES

Code: (Theory) Credit: 5

COURSE OBJECTIVES:

- To impart the basic ideas of circuits and devices.
- To improve the skills of the students in analysis of circuits.
- To acquire the ability to handle the s in a need-based manner.

UNIT - I PASSIVE COMPONENTS:

Resistors:- Types - Colour coding of Resistors - Resistors in series - Resistors in parallel - short circuit - open circuit; **Capacitors**:- Types - Factors affecting the capacity of a capacitor - Capacitors in series - capacitors in parallel - Energy stored in a capacitor; **Inductors**:- Types - Self-inductance - mutual inductance - Energy stored in an inductor - Transformer construction and its characteristics.

UNIT - II NETWORK THEOREMS AND BASICS OF DC & AC:

Ohm's law - Kirchhoff's law - node voltage analysis - mesh current method - super position theorem - Thevenin's theorem - Norton's theorem - Millman's theorem - simple problems; DC current - AC current - average value - RMS value - instantaneous value - RC, RL and RLC circuits.

UNIT - III INTRODUCTION TO SEMICONDUCTORS:

Classification of solids - conductors, insulators and semiconductors - energy band diagram - Intrinsic semiconductors - extrinsic semiconductors - doping of impurities- P type - N type - electron and hole current - direct band gap and indirect band gap.

UNIT - IV SEMICONDUCTOR DEVICES:

PN junction diode - V-I characteristics - diode as a switch - Avalanche break down - Zener break down - Zener diode - V-I characteristics - Bipolar junction Transistor - PNP - NPN - CB, CE and CC configurations - transistor as an amplifier.

UNIT - V SPECIAL SEMICONDUCTOR DEVICES:

FET - V-I characteristics - pinch off voltage - modes of operation - CS, CD and CG configuration - MOSFET and its modes of operation. - UJT - V-I characteristics - Relaxation oscillator - PNPN device - SCR construction and characteristics- DIAC and TRIAC Construction and characteristics.

UNIT - VI CURRENT CONTOURS (For Continuous Internal Assessment Only):

Multimeter basic measurements - Testing of resistor - Testing of Capacitor - Testing of inductor and transformer - Testing of diode and transistor

REFERENCES

- 1. B. Grob, Basic Electronics, 7th Ed. (TMH Publishers, 1994)
- 2. V. K. Mehta and Rohit Mehta, *Principles of Electronics* (S. Chand & Co. Ltd., New Delhi, 2014).
- 3. Dennis L. Eggleston, *Basic Electronics for Scientists and Engineers* (Cambridge University Press, 2012).
- 4. M. Arumugam and N. Premakumaran, Electric Circuit theory (Khanna Publishers, 1979).
- 5. R. S. Sedha, A text Book of Applied Electronics (S. Chand & Co. Ltd., New Delhi, 2008).
- 6. Solid State Electronic Devices, 6th Edition by Ben G. Streetman & Sanjay Kumar Banerjee
- 7. Electronics Fundamentals. Circuits, Devices, and Applications by David M. Buchla & Thomas L. Floyd
- 8. [1] https://onlinecourses.nptel.ac.in/noc21_ee59/preview
- 9. [2] https://www.classcentral.com/course/swayam-network-analysis-17705
- 10. [3] https://onlinecourses.nptel.ac.in/noc21_ee80/preview

COURSE OUTCOME:

On the successful completion of the course, students will be able to

- get the basic ideas of Electricity.
- develop the circuit analysis.
- get idea of semiconductor theory.
- understand the operation of diode and transistor
- know the characteristics of devices and their operations.

First Year

CORE PRACTICAL I ELECTRIC CIRCUITS & ELECTRONIC DEVICES LABORATORY

Semester I

Code: (Practical) Credit: 4

COURSE OBJECTIVES:

- To impart the practical skills to test the circuits
- To familiarize the students with basic characteristics of electronic components.
- 1. Verification of Ohm's law.
- 2. Verification of Kirchoff's law.
- 3. Verification of Super position theorem.
- 4. Verification of Millman's theorem.
- 5. Verification of Thevenin's theorem.
- 6. Verification of Norton's theorem.
- 7. Transient response of RL circuit.
- 8. Transient response of RC circuit.
- 9. Series resonance circuit.
- 10. Parallel resonance circuit.
- 11. V-I characteristics of PN junction diode.
- 12. V-I characteristics of a Zener diode.
- 13. BJT CB characteristics.
- 14. BJT CE characteristics.
- 15. FET characteristics.
- 16. UJT and SCR characteristics.

REFERENCES:

1. H. W Jackson, D. Temple, B. Kelly, K. Craigs and L. Fuentes, Introduction to Electric Circuits: Lab Manual, 10th Ed. (OBU Publishers, 2019).

COURSE OUTCOME:

On the successful completion of the course, students will be able to

- verify all the basic laws and theorems
- characterize the BJT, FET, UJT, etc.

First Year

CORE COURSE II ANALOG ELECTRONIC CIRCUITS (Theory)

Semester II

Code: (Theory) Credit: 5

COURSE OBJECTIVES:

- To enhance the knowledge of the students in advanced circuits.
- To gain ability to design and develop own electronic application.
- To impart the knowledge of electronic needs of society.

UNIT - I RECTIFIERS AND REGULATED POWER SUPPLY:

Half wave rectifier - Full wave rectifier - Bridge rectifier - efficiency- form factor - Zener diode as a voltage regulator - fixed voltage regulator ICs - Variable voltage regulator ICs.

UNIT - II TRANSISTOR BIASING:

Transistor biasing methods - Fixed bias - collector to base bias - potential divider bias - stability analysis - thermal runaway - Q point - load line analysis. H parameter analysis of BJT.

UNIT - III CLASSIFICATION OF AMPLIFIERS:

Types of coupling - RC coupled amplifier - frequency response - inductor coupled amplifier - transformer coupled amplifier and their frequency response - DC coupling - comparison. Feedback amplifiers: Positive feedback - negative feedback amplifiers - Effect of negative feedback in amplifiers - voltage and current feedback.

UNIT - IV POWER AMPLIFIER:

Class A amplifier - gain characteristics - efficiency - Class B Push-Pull amplifier - cross over distortion - efficiency - Class C amplifier - efficiency - Class D amplifier. Applications of power amplifiers.

UNIT - V OSCILLATORS AND MULTIVIBRATORS:

Barkhausen's criteria - damped oscillations in LC circuit - Hartley oscillator - Colpitts' oscillator - phase shift oscillator - crystal oscillator; Transistor multivibrators: Astable, mono stable and bistable multivibrators using translators - Schmitt trigger.

Unit - VI Current Contours (For continuous internal assessment only):

Clapp circuit - Sound generator - heat sink design - power saving - amplifier simulation.

REFERENCES:

- 1. V. K. Mehta, R. Mehta, Principles of Electronics (Chand & Co Ltd, 2008).
- 2. S. Salivahanan, N. Sureshkumar, Electronic devices and circuits, 4th Ed. (McGraw Hill, 2017).
- 3. R. S Sedha, A text Book of Applied Electronics, (S Chand & Co., 2008); SBN 13-978-8121927833.
- 4. Y.N. Bapat, Electronic Circuits and Systems: Analog and Digital, 1st Ed. (Tata McGraw-Hill Education, 1992)
- 5. Jacob Millman and Christos C Halkias, "Electronic devices and circuits" 3rd Edition, MH Publishers, ISBN 9780070700815
- 6. Electronic Principles (SIE) 7th Edition by Albert Malvino and David J. Bates, July 2017
- 7. Electrical and Electronic Principles Volume 1 by C R Robertson, 2000
- 8. https://www.edx.org/xseries/mitx-circuits-and-electronics
- 9. https://odp.inflibnet.ac.in/index.php/module_details?course=noc:analog%20circui ts&source=swayam&subsource=NPTEL
- 10. https://www.swayamprabha.gov.in/index.php/program/archive/14

COURSE OUTCOME:

On the successful completion of the course, students will be able to

- Gain the knowledge of Rectifiers and power supply.
- Enhance skills in transistor biasing.
- Learn of all types of coupling of amplifiers
- Acquire knowledge in power amplifiers.
- Develop skills in oscillator circuits.

First Year

CORE PRACTICAL II ANALOG ELECTRONIC CIRCUITS LABORATORY

Semester II

Code: (Practical) Credit: 4

COURSE OBJECTIVES:

- To impart the practical skills on basic analog circuits.
- To gain practical knowledge on diode circuits and their applications.
- To practice transistors based elementary amplifier and oscillator circuits.
- 1. Construction of full wave rectifier using diodes.
- 2. Construction of Bridge rectifier using diodes.
- 3. Construction of Zener diode Voltage regulator.
- 4. IC regulated power supply using IC 7809 and 7909.
- 5. Determination of stability factor of Potential divider bias circuit.
- 6. Study the characteristics of Base bias circuit.
- 7. Construction and characteristics of Class A amplifier.
- 8. Construction and characteristics of Class B amplifier
- 9. Construction of Class C amplifier.
- 10. Voltage shunt feedback amplifier.
- 11. Hartley oscillator.
- 12. Colpitts' oscillator.
- 13. Schmitt trigger using BJT.
- 14. Astable multivibrator using BJT.
- 15. Mono stable multivibrator using BJT.
- 16. Bistable multivibrator using BJT.

REFERENCES:

1. K. Craigs and L. Fuentes, Introduction to Electric Circuits: Lab Manual, 10th Ed. (OBU Publishers, 2019).

COURSE OUTCOME:

On the successful completion of the course, students will be able to

- Learn all waveform generation techniques.
- Gain knowledge on the improvement of power amplifier circuit ideas.