Notation

- $ullet \ \mathbb{Z}_p^* = \{1,2,\ldots,p-1\}$ for a prime p
- ullet A small letter except p means an element in \mathbb{Z}_p^*
- ullet $g \leftarrow \mathbb{Z}_p^*$ denotes sampling from the unifrom distribution on \mathbb{Z}_p^*

ElGamal Encryption

ElGamal Encryption consists of (KeyGen, Enc, Dec):

- KeyGen(1^{λ});
 - \circ Choose a large prime p and $g \leftarrow \mathbb{Z}_p^*$
 - \circ Choose a secret key $s \leftarrow \mathbb{Z}_p^*$
 - \circ Compute $y := g^s \mod p$
 - $\quad \text{Output } pk := \{p,g,y\} \text{ and } sk := \{s\}$
- $\operatorname{Enc}(pk, m)$;
 - \circ Choose a random $r \leftarrow \mathbb{Z}_n^*$
 - \circ Compute $c_1 = g^r \mod p$
 - \circ Compute $c_2 = m \cdot y^r \mod p$
 - \circ Output $c:=(c_1,c_2)$
- Dec(sk, c);
 - \circ Parse c as (c_1, c_2)
 - \circ Output $m:=c_2\cdot (c_1^s)^{-1}$

Moreover, ElGamal Encryption supports multiplications.

- $\mathsf{Mult}(c_1, c_2)$;
 - Parse c_1 as (c_{11}, c_{12}) .
 - Parse c_2 as (c_{21}, c_{22}) .
 - \circ Output $c_{mult}:=(c_{11}\cdot c_{21},c_{12}\cdot c_{22})$

Correctness

- for decryption:
 - $\circ \ c_2 \cdot (c_1^s)^{-1} = m \cdot y^r \cdot (g^r)^{-s} = m$
- for multiplication:
 - \circ Let $\mathsf{Enc}(pk, m_1) = (c_{11}, c_{12}) = (g^{r_1}, m_1 \cdot y^{r_1})$
 - \circ Let $\mathsf{Enc}(pk, m_2) = (c_{21}, c_{22}) = (g^{r_2}, m_2 \cdot y^{r_2})$
 - \circ Then, $(c_{11} \cdot c_{21}, c_{12} \cdot c_{22}) = (g^{r_1 + r_2}, m_1 m_2 \cdot y^{r_1 + r_2})$

Distributed ElGamal Encryption

Distributed ElGamal Encryption consists of (KeyGen, Enc, PartDec, Reconstruct):

- KeyGen(1^λ);
 - \circ Choose a large prime p and $g \leftarrow \mathbb{Z}_p^*$
 - For each player i,
 - lacksquare choose a secret key $s_i \leftarrow \mathbb{Z}_p^*$
 - $lacksquare \operatorname{\mathsf{compute}} y_i := g^{s_i} mod p$
 - along with zero-knowledge proof
 - Proof of Knowledge of DL of y_i
 - lacksquare Output $pk_i:=\{p,g,y_i\}$ and $sk_i:=\{s_i\}$
- $\operatorname{Enc}(\{pk_i\}, m);$
 - \circ From $\{pk_i\}$, compute $y:=\prod y_i$ for all i.
 - \circ Choose a random $r \leftarrow \mathbb{Z}_p^*$
 - \circ Compute $c_1 = g^r \mod p$
 - \circ Compute $c_2 = m \cdot y^r \mod p$
 - \circ Output $c:=(c_1,c_2)$
- PartDec(sk_i, c);
 - \circ Parse c as (c_1, c_2)
 - \circ Output $m_i := c_1^{s_i}$
 - along with zero-knowledge proof
 - lacksquare Proof of Equality of DL for y_i and m_i
- Reconstruct($\{m_i\}, c$);
 - \circ parse c as (c_1, c_2)
 - \circ Compute $d:=\prod m_i$
 - \circ Output $m:=c_2\cdot d^{-1}$

Correctness

- $ullet \ d = \prod m_i = \prod c_1^{s_i} = g^{r\sum s_i}$
- ullet Let $s=\sum s_i$
- $\bullet \ \ c_2 \cdot d^{-1} = m \cdot y^r \cdot (g^{rs})^{-1} = m \cdot (\prod y_i)^r \cdot (g^{rs})^{-1} = m \cdot (\prod g^{s_i})^r \cdot (g^{rs})^{-1} = m \cdot (g^s)^r \cdot (g^{rs})^{-1} = m$

Remark

- To multiply two ciphertexts, the underlying public key should be the same.
- Every player who has a secret key should take part in the decryption phase.

(t,n)-Threshold ElGamal Encryption

Threshold ElGamal Encryption consists of (KeyGen, Enc, PartDec, Reconstruct):

- KeyGen(1^{λ} , t, n);
 - \circ Choose a large prime p and $g \leftarrow \mathbb{Z}_p^*$

- \circ Choose a secret $a \leftarrow \mathbb{Z}_p^*$ and compute $y = g^a$
- \circ Set a random polynomial f(x) of degree t-1

$$lacksquare f(x) = a + \sum_{i=1}^{t-1} a_i x^i$$
 where $a_i \leftarrow \mathbb{Z}_p^*$ for all i

- Distribute $(x_i, f(x_i))$ to each player i.
- $\circ \;\;$ Output pk:=(p,g,y) and $sk_i=(f(x_i))$
- msk := (a), however, it is not given to anyone.
- $\operatorname{Enc}(pk, m)$;
 - \circ Choose a random $r \leftarrow \mathbb{Z}_p^*$
 - \circ Output $c:=(g^r,m\cdot y^r)$
- PartDec(sk_i, c);
 - \circ Parse c as (c_1, c_2)
 - \circ Output $m_i:=c_1^{s_i\ell_i(0)}$ where $s_i=f(x_i)$ and $\ell_i(x)=\prod_{k=1,k
 eq i}^nrac{x-x_k}{x_i-x_k}$

•
$$f(x) = f(x_1)\ell_1(x) + f(x_2)\ell_2(x) + \dots + f(x_n)\ell_n(x)$$

$$a = f(0) = f(x_1)\ell_1(0) + f(x_2)\ell_2(0) + \dots + f(x_n)\ell_n(0)$$

- Reconstruct($\{m_i\}, c$);
 - \circ parse c as (c_1, c_2)
 - $\circ \;\;$ Compute $d:=\prod m_i$
 - \circ Output $m:=c_2\cdot d^{-1}$

Correctness

- $ullet \ d = \prod m_i = \prod c_1^{s_i\ell_i(0)} = c_1^{\sum f(x_i)\ell_i(0)} = c_1^a$
- $ullet c_2 \cdot d^{-1} = m \cdot y^r \cdot (g^r)^a = m$