Distribuição Qui-quadrado e Beta

Prof. José Roberto Silva dos Santos

Depto. de Estatística e Matemática Aplicada - UFC

Fortaleza, 26 de outubro 2022

Sumário

- 1 Distribuição Qui-quadrado
 - Teste de Associação

2 Distribuição Beta

Sumário

- 1 Distribuição Qui-quadrado
 - Teste de Associação

2 Distribuição Beta

Distribuição Qui-quadrado

Definição:

Um caso particular muito importante da distribuição gama será obtido, se fizermos $\alpha=n/2$ e $\lambda=1/2$, em que n é um inteiro positivo. Nesse caso,

$$f(x) = \frac{1}{2^{n/2}\Gamma(n/2)} x^{n/2-1} e^{-x/2} I(x)$$

Distribuição Qui-quadrado

Definição:

Um caso particular muito importante da distribuição gama será obtido, se fizermos $\alpha=n/2$ e $\lambda=1/2$, em que n é um inteiro positivo. Nesse caso,

$$f(x) = \frac{1}{2^{n/2}\Gamma(n/2)} x^{n/2-1} e^{-x/2} I(x)$$

Nesse caso, dizemos que X possui distribuição qui-quadrado com n graus de liberdade (Notação: $X \sim \chi^2_{(n)}$)

Sumário

- 1 Distribuição Qui-quadrado
 - Teste de Associação

2 Distribuição Beta

• Considere duas características designadas por A e B e suponha que existem r categorias A_1, A_2, \ldots, A_r para A e c categorias B_1, B_2, \ldots, B_c para B.

- Considere duas características designadas por $A \in B$ e suponha que existem r categorias A_1, A_2, \ldots, A_r para $A \in c$ categorias B_1, B_2, \ldots, B_c para B.
- Suponha que uma amostra de tamanho n é classificada e distribuída nas caselas da tabela produzindo uma tabela de frequência em que:
 - n_{ij} = frequência de observações com as características A_i e B_j conjuntamente.

- Considere duas características designadas por $A \in B$ e suponha que existem r categorias A_1, A_2, \ldots, A_r para $A \in c$ categorias B_1, B_2, \ldots, B_c para B.
- Suponha que uma amostra de tamanho n é classificada e distribuída nas caselas da tabela produzindo uma tabela de frequência em que:

 $n_{ij}=$ frequência de observações com as características A_i e B_j conjuntamente.

 n_{i0} = total da *i*-ésima linha, ou frequência de A_i .

- Considere duas características designadas por $A \in B$ e suponha que existem r categorias A_1, A_2, \ldots, A_r para $A \in c$ categorias B_1, B_2, \ldots, B_c para B.
- Suponha que uma amostra de tamanho n é classificada e distribuída nas caselas da tabela produzindo uma tabela de frequência em que:

 $n_{ij}=$ frequência de observações com as características A_i e B_j conjuntamente.

 n_{i0} = total da *i*-ésima linha, ou frequência de A_i .

 n_{0j} = total da j-ésima coluna, ou frequência de B_j .

Tabela de contingência $r \times c$

	B_1	B_2		B_c	total da linha
A_1	n_{11}	n_{12}	• • •	n_{1c}	n_{10}
A_2	n_{21}	$n_{12} \\ n_{22}$	• • •	n_{2c}	n_{20}
÷		:			÷
A_r	n_{r1}	n_{r2}		n_{rc}	n_{r0}
total da coluna	n_{01}	n_{02}		n_{0c}	\overline{n}

• Queremos avaliar se existe associação entre as variáveis. Podemos o coeficiente de associação de Pearson

$$\chi^2 = \sum_{rc \text{ componentes}} \frac{(n_{ij} - E_{ij})^2}{E_{ij}}.$$

com

$$E_{ij} = n\hat{p}_{ij} = \frac{n_{i0}n_{0j}}{n}.$$

 Queremos avaliar se existe associação entre as variáveis. Podemos o coeficiente de associação de Pearson

$$\chi^2 = \sum_{rc \text{ componentes}} \frac{(n_{ij} - E_{ij})^2}{E_{ij}}.$$

com

$$E_{ij} = n\hat{p}_{ij} = \frac{n_{i0}n_{0j}}{n}.$$

• Pode-se mostrar que esse coeficiente tem distribuição χ^2 com $(r-1)\times(c-1)$ graus de liberdade, para n grande.

Uma amostra aleatória de 500 pessoas responde um questionário sobre filiação partidária e atitude mediante um programa de racionamento de energia.

Uma amostra aleatória de 500 pessoas responde um questionário sobre filiação partidária e atitude mediante um programa de racionamento de energia.

Tabela de contingência: filiação partidária e opinião sobre o racionamento de energia

	favorável	indiferente	contrário	Total
A	138	83	64	285
В	64	67	84	215
Total	202	150	148	500

Antes de apresentar uma análise formal estatística consideramos a tabela de um ponto de vista descritivo, transformando as contagens em proporções, primeiramente por linhas, depois por casela.

Antes de apresentar uma análise formal estatística consideramos a tabela de um ponto de vista descritivo, transformando as contagens em proporções, primeiramente por linhas, depois por casela.

a) Proporções por linhas

	favorável	indiferente	contrário	total
A	0,48	0,30	0,22	1
В	$0,\!30$	0,31	$0,\!39$	1

Antes de apresentar uma análise formal estatística consideramos a tabela de um ponto de vista descritivo, transformando as contagens em proporções, primeiramente por linhas, depois por casela.

a) Proporções por linhas

	favorável	indiferente	contrário	total
A	0,48	0,30	0,22	1
В	$0,\!30$	$0,\!31$	$0,\!39$	1

b) Proporções por casela

	favorável	indiferente	contrário	total
A	0,276	0,166	0,128	0,570
В	0,128	$0,\!134$	0,168	$0,\!430$
Total	0,404	0,300	$0,\!296$	1

Gráfico de barras: frequências relativas por linha.

Usando os dados sobre filiação partidária, a tabela abaixo mostra as frequências observadas e as esperadas.

Tabela de contingência para filiação partidária e opinião sobre

racionamento					
	favorável	indiferente	contrário	total	
A	138	83	64	285	
	(115,14)	(85,50)	(84,36)		
В	64	67	84	215	
	(86,86)	(64,50)	(63,64)		
Total	202	150	148	500	

A estatística χ^2 tem o valor observado de $\chi^2 = 4,539 + 0,073 + 4,914 + 6,016 + 0,097 + 6,514 = 22,153$ com (2-1)(3-1) = 2 g.l.

A estatística χ^2 tem o valor observado de $\chi^2=4,539+0,073+4,914+6,016+0,097+6,514=22,153$ com (2-1)(3-1)=2 g.l.

Usando o nível de significância $\alpha=0,05,$ o χ^2 tabulado é 5,991 que é menor do que o observado e daí a hipótese nula de indepêndencia é rejeitada.

Relação com a distribuição normal

• Se $X \sim N(0,1)$, qual a distribuição de $Y = X^2$?

Sumário

- 1 Distribuição Qui-quadrado
 - Teste de Associação

2 Distribuição Beta

Definição:

Seja X uma variável aleatória contínua, que tome somente valores no intervalo [0,1]. Diremos que X possui distribuição beta, se sua fdp for dada por

Definição:

Seja X uma variável aleatória contínua, que tome somente valores no intervalo [0,1]. Diremos que X possui distribuição beta, se sua fdp for dada por

$$f(x) = \frac{1}{B(a,b)} x^{a-1} (1-x)^{b-1} I(x),$$

Definição:

Seja X uma variável aleatória contínua, que tome somente valores no intervalo [0,1]. Diremos que X possui distribuição beta, se sua fdp for dada por

$$f(x) = \frac{1}{B(a,b)} x^{a-1} (1-x)^{b-1} I(x),$$

para todo a>0 e b>0. Temos que, B(a,b) é a função beta definida por

$$B(a,b) = \int_0^1 x^{a-1} (1-x)^{b-1} d_x$$

• Pode-se mostrar a seguinte relação:

$$B(a,b) = \frac{\Gamma(a)\Gamma(b)}{\Gamma(a+b)},$$

• Pode-se mostrar a seguinte relação:

$$B(a,b) = \frac{\Gamma(a)\Gamma(b)}{\Gamma(a+b)},$$

em que $\Gamma(.)$ é a função gama.

• Pode-se mostrar a seguinte relação:

$$B(a,b) = \frac{\Gamma(a)\Gamma(b)}{\Gamma(a+b)},$$

em que $\Gamma(.)$ é a função gama.

• Notação: $X \sim \text{Beta}(a, b)$.

Comportamento da fdp da distribuição beta para diferentes valores dos parâmetros

• Se a=b=1 então $X\sim \mathrm{Beta}(1,1)\equiv U(0,1).$

- Se a = b = 1 então $X \sim \text{Beta}(1, 1) \equiv U(0, 1)$.
- ullet O valor esperado de X é dado por

$$\mathbb{E}(X) = \frac{a}{a+b}.$$

- Se a = b = 1 então $X \sim \text{Beta}(1, 1) \equiv U(0, 1)$.
- ullet O valor esperado de X é dado por

$$\mathbb{E}(X) = \frac{a}{a+b}.$$

ullet A variância de X é dada por

$$Var(X) = \frac{ab}{(a+b)^2(a+b+1)}$$

- Se a = b = 1 então $X \sim \text{Beta}(1,1) \equiv U(0,1)$.
- ullet O valor esperado de X é dado por

$$\mathbb{E}(X) = \frac{a}{a+b}.$$

ullet A variância de X é dada por

$$Var(X) = \frac{ab}{(a+b)^2(a+b+1)}$$

ullet O k-ésimo momento de X é dado por

$$\mathbb{E}(X^k) = \frac{\Gamma(a+b)\Gamma(k+a)}{\Gamma(a)\Gamma(k+a+b)}; k = 1, 2, \dots$$

• Uma loja de comércio eletrônico envia e-mails com ofertas especiais a seus clientes cadastrados. Suponha que, após o recebimento de uma mensagem, a proporção de clientes que efetivam uma compra é uma variável aleatória com densidade dada por

$$f(x) = cx(1-x)^5 I(x).$$
(0,1)

- (a) Encontre o valor de c.
- (b) Calcule a probabilidade de que um e-mail resulte em alguma compra para mais de 50% dos seus destinatários.