PPT PRESENTATION

Enjoy your stylish business and campus life with BIZCAM

Index

- 1. SEM Dataset
- 2. Naïve Model
- 3. Style transfer
- 4. Depth estimation
- 5. KCI 논문 조사

SEM Dataset

주제 : 전자현미경(SEM) 이미지로부터 깊이를 예측하는 AI 알고리즘 개발

Train data1

- X:실제 SEM 영상을 캡쳐한 이미지들(각 케이스마다 이미지 개수가 다름 / 평균 깊이 1개에 26~32개 이미지)
- Y:각 hole(픽셀)들의 평균 깊이(스칼라 값)

 SEM Image

0

) O -

Depth_110_site_00001_sem043884 / 044215 / / 064970 (31장)

Average Depth

107.0344

Depth_110_site_00001

Train data2

- X:실제 SEM 영상을 캡쳐한 이미지 2개 (해당 이미지 2개는 Depth map에 pair하게 매칭)
- Y:SEM 영상과 Pixel별로 대응되는 Depth Map

Depth Map

20201001_202940_NE142400C_RAE01_1_S01_M0005-01MS_3_itr0 / 1

20201001_202940_NE142400C_RAE01_1_S01_M0005-01MS_3

SEM Dataset

Test data(총 25988개)

- X: SEM 영상을 캡쳐한 이미지 1개
- \hat{Y} : 실제 Hole 단위 SEM 영상으로부터 추론한 Depth Map (PNG 파일)

- 즉, Train1은 모델 구축시 SEM 영상에서 추출한 약 30개의 이미지를 요약해 1장의 SEM 이미지 input으로 하고 평균 깊이 스칼라 값을 이용해 학습하여 Test data로 Depth map을 만들어야 한다
- Trani2는 SEM pair 이미지 2장을 요약해 1장의 SEM 이미지를 input으로 하고 Depth Map 정답지를 이용해 학습하여 Test data로 Depth map을 만들어야 한다.

Train Data

- Train X: SEM pair 이미지 중 첫번째 이미지 (itr0) 21633 * 0.8 개
- Val X: SEM pair 이미지 중 두번째 이미지 (itr1) 21633 개
- Y:실제 Depth 이미지 21633 * 0.8 개
- Ŷ1: Train X에서 split한 나머지 이미지(itr0) 21633 * 0.8 개
- $\hat{Y}2$: 실제 Test set에 존재하는 이미지로 예측한 depth 이미지

Train image 예시 (72,48,1)

Test image 예시 (72,48,1)

모델 구조

학습 결과

Loss 함수 (72,48,1)

실제 depth 이미지와 생성한 depth의 hole 깊이 차이의 평균 분포

이미지 생성 결과

Ŷ1 이미지 생성 예시

Ŷ2 이미지 생성 예시

구후 계획

- Pre trained Model 도입
- 다른 오토 인코더 모델 도입
- Depth estimation 수행