

"十二五"普通高等教育本科国家级规划教材

算机网络 第7版)

谢希仁 编著

中国工信出版集团

计算机网络

(第7版)

谢希仁 编著

電子工業出版社.

Publishing House of Electronics Industry

北京•BEIJING

内容简介

本书自1989年首次出版以来,曾于1994年、1999年、2003年、2008年和2013年分别出了修订版。在2006年本书通过了教育部的评审,被纳入普通高等教育"十一五"国家级规划教材;2008年出版的第5版获得了教育部2009年精品教材称号。2013年出版的第6版是"十二五"普通高等教育本科国家级规划教材。现在的第7版又在第6版的基础上进行了一些修订。

全书分为9章, 比较全面系统地介绍了计算机网络的发展和原理体系结构、物理层、数据链路层(包括局域网)、网络层、运输层、应用层、网络安全、互联网上的音频/视频服务, 以及无线网络和移动网络等内容。各章均附有习题(附录A给出了部分习题的答案和提示)。全书课件(PowerPoint文件)放在电子工业出版社悦学多媒体课程资源平台上(http://yx.51zhy.cn/mtrcsRes/phei_cnetwork.jsp), 供读者下载参考。

本书的特点是概念准确、论述严谨、内容新颖、图文并茂,突出基本原理和基本概念的阐述,同时力图反映计算机网络的一些最新发展。本书可供电气信息类和计算机类专业的大学本科生和研究生使用,对从事计算机网络工作的工程技术人员也有参考价值。

未经许可,不得以任何方式复制或抄袭本书之部分或全部内容。

版权所有,侵权必究。

图书在版编目(CIP)数据

计算机网络/谢希仁编著.—7版.—北京: 电子工业出版社, 2017.1 "十二五"普通高等教育本科国家级规划教材

ISBN 978-7-121-30295-4

I. ①计... Ⅱ. ①谢... Ⅲ. ①计算机网络-高等学校-教材 Ⅳ. ①TP393

中国版本图书馆CIP数据核字(2016)第269601号

策划编辑: 郝志恒

责任编辑: 牛晓丽

印刷:

装 订:

出版发行: 电子工业出版社

北京市海淀区万寿路173信箱

邮 编: 100036

开 本: 787×1092 1/16

印 张: 29

字 数: 742.4千字

版 次: 1999年4月第2版

2017年1月第7版

印 次: 2017年1月第1次印刷

定 价: 45.00元

凡所购买电子工业出版社图书有缺损问题,请向购买书店调换。若书店售缺,请与本社发行部联系,联系及邮购电话: (010) 88254888,88258888。

质量投诉请发邮件至zlts@phei.com.cn,盗版侵权举报请发邮件至dbqq@phei.com.cn。

本书咨询联系方式: QQ 9616328。

前言

本教材第6版被纳入"十二五"普通高等教育本科国家级教材规划。由于本教材所讲授的是计算机网络最基本的原理,而这些基本原理是比较成熟和稳定的,因此,介绍基本原理的部分相对稳定,不会有很大的变动。

第7版的教材有以下一些改动。

互联网的发展非常快,编者水平很有限,只能把最重要的一些新内容增加到新版教材中。所有各章应参考的RFC文档和参考文献也都尽可能进行了更新。对于重点内容适当地增加了一些习题。

删除了第10章。由于原第10章中的IPv6和MPLS已属于比较成熟的技术,现在改放在第4章中介绍。原第10章中的P2P应用,现在放在第6章中介绍,并增加了一些新的内容。

另一个改动是Internet的译名不再使用推荐译名"因特网",而改为目前大家已普遍使用的"互联网"。虽然推荐译名"因特网"有其权威性,但实践证明,各界人士大都不愿意用。考虑到我国的实际情况,编者决定从第7版起改用事实上的标准译名"互联网"。

此外,比特这个单位以前用英文字母b来表示,从第7版起改为bit。这样可能更加清楚明确些。

本教材的参考学时数为70学时左右。在课程学时数较少的情况下可以只学习前6章。这样仍可获得有关互联网的最基本的知识。

书后共有三个附录, 附录A是部分习题解答(而不是详细解题步骤)、附录B是英文缩写词, 附录C是参考文献与网址。

考虑到现在从网上下载已非常方便,因此原附在书中的CD-ROM已非必要。读者可以访问电子工业出版社悦学多媒体课程资源平台(http://yx.51zhy.cn/mtrcsRes/phei_cnetwork.jsp)下载有关的参考内容。

为满足不同院校、不同学时、不同专业的教学需要,第7版同时推出了精简版,也就是由电子工业出版社出版的《计算机网络简明教程》第3

版。

林波博士对第7章网络安全提出了许多修改意见。吴自珠副教授一直对本教材的出版给予全力支持。对此,编者均表示诚挚的谢意。由于编者水平所限,书中难免还存在一些缺点和错误,殷切希望广大读者批评指正。

谢希仁

2016年8月

于解放军理工大学, 南京

编者的电子邮件地址: xiexiren@tsinghua.org.cn

欢迎指出书中内容的不足和错误,但作者无法满足一些深入探讨和科研项目咨询的需求,请予谅解。若需索取解题的详细步骤,请参考作者编著的《计算机网络释疑与习题解答》。

目录

前言

第1章 概述

- 1.1 计算机网络在信息时代中的作用
- 1.2 互联网概述
- <u>1.2.1</u> 网络的网络
- 1.2.2 互联网基础结构发展的三个阶段
- 1.2.3 互联网的标准化工作
- 1.3 互联网的组成
- 1.3.1 互联网的边缘部分

- 1.3.2 互联网的核心部分
- 1.4 计算机网络在我国的发展
- 1.5 计算机网络的类别
- 1.5.1 计算机网络的定义
- 1.5.2 几种不同类别的计算机网络
- 1.6 计算机网络的性能
- 1.6.1 计算机网络的性能指标
- 1.6.2 计算机网络的非性能特征
- 1.7 计算机网络体系结构
- 1.7.1 计算机网络体系结构的形成
- 1.7.2 协议与划分层次
- 1.7.3 具有五层协议的体系结构
- 1.7.4 实体、协议、服务和服务访问点
- 1.7.5 TCP/IP的体系结构

习题

- 第2章 物理层
- 2.1 物理层的基本概念
- 2.2 数据通信的基础知识
- 2.2.1 数据通信系统的模型

- 2.2.2 有关信道的几个基本概念
- 2.2.3 信道的极限容量
- 2.3 物理层下面的传输媒体
- 2.3.1 导引型传输媒体
- 2.3.2 非导引型传输媒体
- 2.4 信道复用技术
- 2.4.1 频分复用、时分复用和统计时分复用
- 2.4.2 波分复用
- 2.4.3 码分复用
- 2.5 数字传输系统
- 2.6 宽带接入技术
- 2.6.1 ADSL技术
- 2.6.2 光纤同轴混合网(HFC网)
- 2.6.3 FTTx技术

习题

- 第3章 数据链路层
- 3.1 使用点对点信道的数据链路层
- 3.1.1 数据链路和帧
- 3.1.2 三个基本问题

- 3.2 点对点协议PPP
- 3.2.1 PPP协议的特点
- 3.2.2 PPP协议的帧格式
- 3.2.3 PPP协议的工作状态
- 3.3 使用广播信道的数据链路层
- 3.3.1 局域网的数据链路层
- 3.3.2 CSMA/CD协议
- 3.3.3 使用集线器的星形拓扑
- 3.3.4 以太网的信道利用率
- 3.3.5 以太网的MAC层
- 3.4 扩展的以太网
- 3.4.1 在物理层扩展以太网
- 3.4.2 在数据链路层扩展以太网
- 3.4.3 虚拟局域网
- 3.5 高速以太网
- 3.5.1 100BASE-T以太网
- 3.5.2 吉比特以太网
- 3.5.3 10吉比特以太网(10GE)和更快的以太网
- 3.5.4 使用以太网进行宽带接入

习题

第4章 网络层

- 4.1 网络层提供的两种服务
- 4.2 网际协议IP
- <u>4.2.1</u> 虚拟互连网络
- 4.2.2 分类的IP地址
- 4.2.3 IP地址与硬件地址
- 4.2.4 地址解析协议ARP
- 4.2.5 IP数据报的格式
- 4.2.6 IP层转发分组的流程
- 4.3 划分子网和构造超网
- 4.3.1 划分子网
- 4.3.2 使用子网时分组的转发
- 4.3.3 无分类编址CIDR(构造超网)
- 4.4 网际控制报文协议ICMP
- 4.4.1 ICMP报文的种类
- 4.4.2 ICMP的应用举例
- 4.5 互联网的路由选择协议
- 4.5.1 有关路由选择协议的几个基本概念
- 4.5.2 内部网关协议RIP

- 4.5.3 内部网关协议OSPF
- 4.5.4 外部网关协议BGP
- 4.5.5 路由器的构成
- 4.6 IPv6
- 4.6.1 IPv6的基本首部
- 4.6.2 IPv6的地址
- 4.6.3 从IPv4向IPv6过渡
- 4.6.4 ICMPv6
- 4.7 IP多播
- 4.7.1 IP多播的基本概念
- 4.7.2 在局域网上进行硬件多播
- 4.7.3 网际组管理协议IGMP和多播路由选择协议
- 4.8 虚拟专用网VPN和网络地址转换NAT
- 4.8.1 虚拟专用网VPN
- 4.8.2 网络地址转换NAT
- 4.9 多协议标记交换MPLS
- 4.9.1 MPLS的工作原理
- 4.9.2 MPLS首部的位置与格式

习题

第5章 运输层

- 5.1 运输层协议概述
- 5.1.1 进程之间的通信
- 5.1.2 运输层的两个主要协议
- 5.1.3 运输层的端口
- 5.2 用户数据报协议UDP
- 5.2.1 UDP概述
- 5.2.2 UDP的首部格式
- 5.3 传输控制协议TCP概述
- 5.3.1 TCP最主要的特点
- 5.3.2 TCP的连接
- 5.4 可靠传输的工作原理
- 5.4.1 停止等待协议
- <u>5.4.2 连续ARQ协议</u>
- 5.5 TCP报文段的首部格式
- 5.6 TCP可靠传输的实现
- 5.6.1 以字节为单位的滑动窗口
- 5.6.2 超时重传时间的选择
- 5.6.3 选择确认SACK
- 5.7 TCP的流量控制

- 5.7.1 利用滑动窗口实现流量控制
- 5.7.2 TCP的传输效率
- 5.8 TCP的拥塞控制
- 5.8.1 拥塞控制的一般原理
- 5.8.2 TCP的拥塞控制方法
- 5.8.3 主动队列管理AQM
- 5.9 TCP的运输连接管理
- 5.9.1 TCP的连接建立
- 5.9.2 TCP的连接释放
- 5.9.3 TCP的有限状态机

习题

第6章 应用层

- 6.1 域名系统DNS
- 6.1.1 域名系统概述
- 6.1.2 互联网的域名结构
- 6.1.3 域名服务器
- 6.2 文件传送协议
- 6.2.1 FTP概述
- 6.2.2 FTP的基本工作原理

- 6.2.3 简单文件传送协议TFTP
- 6.3 远程终端协议TELNET
- 6.4 万维网WWW
- 6.4.1 万维网概述
- 6.4.2 统一资源定位符URL
- 6.4.3 超文本传送协议HTTP
- <u>6.4.4</u> 万维网的文档
- 6.4.5 万维网的信息检索系统
- 6.4.6 博客和微博
- 6.4.7 社交网站
- 6.5 电子邮件
- <u>6.5.1</u> 电子邮件概述
- 6.5.2 简单邮件传送协议SMTP
- 6.5.3 电子邮件的信息格式
- 6.5.4 邮件读取协议POP3和IMAP
- 6.5.5 基于万维网的电子邮件
- 6.5.6 通用互联网邮件扩充MIME
- 6.6 动态主机配置协议DHCP
- 6.7 简单网络管理协议SNMP
- 6.7.1 网络管理的基本概念

- 6.7.2 管理信息结构SMI
- 6.7.3 管理信息库MIB
- 6.7.4 SNMP的协议数据单元和报文
- 6.8 应用进程跨越网络的通信
- 6.8.1 系统调用和应用编程接口
- 6.8.2 几种常用的系统调用
- 6.9 P2P应用
- 6.9.1 具有集中目录服务器的P2P工作方式
- 6.9.2 具有全分布式结构的P2P文件共享程序
- 6.9.3 P2P文件分发的分析
- 6.9.4 在P2P对等方中搜索对象

习题

第7章 网络安全

- 7.1 网络安全问题概述
- 7.1.1 计算机网络面临的安全性威胁
- 7.1.2 安全的计算机网络
- 7.1.3 数据加密模型
- 7.2 两类密码体制
- 7.2.1 对称密钥密码体制

- 7.2.2 公钥密码体制
- 7.3 数字签名
- 7.4 鉴别
- 7.4.1 报文鉴别
- 7.4.2 实体鉴别
- 7.5 密钥分配
- 7.5.1 对称密钥的分配
- 7.5.2 公钥的分配
- 7.6 互联网使用的安全协议
- 7.6.1 网络层安全协议
- 7.6.2 运输层安全协议
- 7.6.3 应用层安全协议
- 7.7 系统安全: 防火墙与入侵检测
- 7.7.1 防火墙
- 7.7.2 入侵检测系统
- 7.8 一些未来的发展方向

习题

第8章 互联网上的音频/视频服务

8.1 概述

- 8.2 流式存储音频/视频
- 8.2.1 具有元文件的万维网服务器
- 8.2.2 媒体服务器
- 8.2.3 实时流式协议RTSP
- 8.3 交互式音频/视频
- 8.3.1 IP电话概述
- 8.3.2 IP电话所需要的几种应用协议
- 8.3.3 实时运输协议RTP
- 8.3.4 实时运输控制协议RTCP
- 8.3.5 H.323
- 8.3.6 会话发起协议SIP
- 8.4 改进"尽最大努力交付"的服务
- 8.4.1 使互联网提供服务质量
- 8.4.2 调度和管制机制
- 8.4.3 综合服务IntServ与资源预留协议RSVP
- 8.4.4 区分服务DiffServ

习题

- 第9章 无线网络和移动网络
- 9.1 <u>无线局域网WLAN</u>

- 9.1.1 无线局域网的组成
- 9.1.2 802.11局域网的物理层
- 9.1.3 802.11局域网的MAC层协议
- 9.1.4 802.11局域网的MAC帧
- 9.2 无线个人区域网WPAN
- 9.3 无线城域网WMAN
- 9.4 蜂窝移动通信网
- 9.4.1 蜂窝无线通信技术简介
- 9.4.2 移动IP
- 9.4.3 蜂窝移动通信网中对移动用户的路由选择
- 9.4.4 GSM中的切换
- 9.4.5 无线网络对高层协议的影响
- 9.5 两种不同的无线上网

习题

附录A 部分习题的解答

附录B 英文缩写词

附录C 参考文献与网址

第1章 概述

本章是全书的概要。在本章的开始,先介绍计算机网络在信息时代的作用。接着对互联网进行了概述,包括互联网基础结构发展的三个阶段,以及今后的发展趋势。然后,讨论了互联网组成的边缘部分和核心部分。在简单介绍了计算机网络在我国的发展以及计算机网络的类别后,讨论了计算机网络的性能指标。最后,论述了整个课程都要用到的重要概念——计算机网络的体系结构。

本章最重要的内容是:

- (1) 互联网边缘部分和核心部分的作用, 其中包含分组交换的概念。
- (2) 计算机网络的性能指标。
- (3) 计算机网络分层次的体系结构,包含协议和服务的概念。这部分内容比较抽象。在没有了解具体的计算机网络之前,很难完全掌握这些很抽象的概念。但这些抽象的概念又能够指导后续的学习,因此也必须先从这些概念学起。建议读者在学习到后续章节时,经常再复习一下本章中的基本概念。这对掌握好整个计算机网络的概念是有益的。

1.1 计算机网络在信息时代中的作用

我们知道,21世纪的一些重要特征就是**数字化、网络化**和**信息化**,它是一个**以网络为核心的信息时代**。要实现信息化就必须依靠完善的网络,因为网络可以非常迅速地传递信息。因此网络现在已经成为信息社会的命脉和发展知识经济的重要基础。网络对社会生活的很多方面以及对社会经济的发展已经产生了不可估量的影响。

有三大类大家很熟悉的网络,即**电信网络、有线电视网络**和**计算机网络**。按照最初的服务分工,电信网络向用户提供电话、电报及传真等服务。有线电视网络向用户传送各种电视节目。计算机网络则使用户能够在计算机之间传送数据文件。这三种网络在信息化过程中都起到十分重要的作用,但其中发展最快的并起到核心作用的则是计算机网络,而这正是本书所要讨论的内容。

随着技术的发展, 电信网络和有线电视网络都逐渐融入了现代计算机 网络的技术, 扩大了原有的服务范围, 而计算机网络也能够向用户提

供电话通信、视频通信以及传送视频节目的服务。从理论上讲,把上述三种网络融合成一种网络就能够提供所有的上述服务,这就是很早以前就提出来的"三网融合"。然而事实并不如此简单,因为这涉及到各方面的经济利益和行政管辖权的问题。

自从20世纪90年代以后,以Internet为代表的计算机网络得到了飞速的发展,已从最初的仅供美国人使用的免费教育科研网络,逐步发展成为供全球使用的商业网络(有偿使用),成为全球最大的和最重要的计算机网络。可以毫不夸大地说,Internet是人类自印刷术发明以来在存储和交换信息的领域中的最大变革。

Internet的中文译名并不统一。现有的Internet译名有两种:

- (1) **因特网**,这个译名是全国科学技术名词审定委员会推荐的。虽然因特网这个译名较为准确,但却长期未得到推广。本书的前几版都采用因特网这个译名。
- (2) **互联网**,这是目前流行最广的、事实上的标准译名。现在我国的各种报刊杂志、政府文件以及电视节目中都毫无例外地使用这个译名。Internet是**由数量极大的各种计算机网络互连起来的**,采用互联网这个译名能够体现出Internet最主要的特征。本书从第7版开始,改用"互联网"作为Internet的译名。

也有些人愿意直接使用英文名词Internet,而不使用中文译名。这避免了译名的误解。但编者认为,在中文教科书中,常用的重要名词应当使用中文的。当然,对国际通用的英文缩写词,我们还是要尽量多使用。例如,直接使用更简洁的"TCP",比使用冗长的中文译名"传输控制协议"要方便得多。这样做也更加便于阅读外文技术资料。

曾人把Internet译为国际互联网。其实互联网本来就是**覆盖全球的**,因此"国际"二字显然是多余的。

对于仅在局部范围互连起来的计算机网络,只能称之为互连网,而不是互联网。

有时,我们往往使用更加简洁的方式表示互联网,这就是只用一个"**网**"字。例如,"上网"就是表示使用某个电子设备连接到互联网,而不是连接到其他的网络上。还有如网民、网吧、网银(网上银行)、网购

(网上购物)等。这里的"网",一般都不是指电信网或有线电视网,而是指当今世界上最大的计算机网络Internet——互联网。

那么,什么是互联网呢?很难用几句话说清楚。但我们可以从两个不同的方面来认识互联网。这就是互联网的应用和互联网的工作原理。

绝大多数人认识互联网都是从接触互联网的应用开始的。现在小孩就会上网玩游戏,看网上视频,或和朋友在微信上聊天。而更多的成年人则经常在互联网上搜索和查阅各种信息。现在人们经常利用互联网的电子邮件相互通信(包括传送各种照片和视频文件),这就使得传统的邮政信函的业务量大大减少。在互联网上购买各种物品,既方便又经济实惠,改变了必须到商店购物的方式。在互联网上购买机票或火车票,可以节省大量排队的时间,极大地方便了旅客。在金融方面,利用互联网进行转账或买卖股票等交易,都可以节省大量时间。需要注意的是,互联网的应用并不是固定不变的,而是不断会有新的应用出现。本书不可能详细地介绍互联网的各种应用,这需要有另一本专门的书。

从应用这个方面认识互联网的门槛较低,因为这不需要懂得很多的互联网工作原理。现在很多小学生都能够非常熟练地使用手机上的各种应用程序(比编者要熟练得多)。但本书是大学的计算机网络教材,要着重讲解计算机网络的工作原理。通过掌握计算机网络的基本工作原理,可以使我们更好地理解互联网是怎样工作的。这就是从另一个角度来认识互联网。

互联网之所以能够向用户提供许多服务,就是因为互联网具有两个重要基本特点,即**连通性**和**共享**。

所谓连通性(connectivity),就是互联网使上网用户之间,不管相距多远(例如,相距数千公里),都可以非常便捷、非常经济(在很多情况下甚至是免费的)地交换各种信息(数据,以及各种音频视频),好像这些用户终端都彼此直接连通一样。这与使用传统的电信网络有着很大的区别。我们知道,传统的电信网向用户提供的最重要的服务就是人与人之间的电话通信,因此电信网也具有连通性这个特点。但使用电信网的电话用户,往往要为此向电信网的运营商缴纳相当昂贵的费用,特别是长距离的越洋通信。但应注意,互联网具有虚拟的特点。例如,当你从互联网上收到一封电子邮件时,你可能无法

准确知道对方是谁(朋友还是骗子),也无法知道发信人的地点(在附近,还是在地球对面)。

所谓共享就是指**资源共享**。资源共享的含义是多方面的。可以是信息共享、软件共享,也可以是硬件共享。例如,互联网上有许多服务器(就是一种专用的计算机)存储了大量有价值的电子文档(包括音频和视频文件),可供上网的用户很方便地读取或下载(无偿或有偿)。由于网络的存在,这些资源**好像**就在用户身边一样地方便使用。

现在人们的生活、工作、学习和交往都已离不开互联网。设想一下,某一天我们所在城市的互联网突然瘫痪不能工作了,这会出现什么结果呢?这时,我们将无法购买机票或火车票,因为在售票处无法通过互联网得知目前还有多少余票可供出售;我们也无法到银行存钱或取钱,无法交纳水电费和煤气费等;股市交易都将停顿;在图书馆我们也无法检索所需要的图书和资料。互联网瘫痪后,我们既不能上网查询有关的资料,也无法使用电子邮件和朋友及时交流信息,网上购物也将完全停顿。总之,这样的城市将会是一片混乱。由此还可看出,人们的生活越是依赖于互联网,互联网的可靠性也就越重要。现在互联网已经成为社会最为重要的基础设施。

互联网现在可以向广大用户提供休闲娱乐的服务,如各种音频和视频节目。上网的用户可以利用鼠标随时点击各种在线节目。互联网还可进行一对一或多对多的网上聊天(文字的、声音的或包括视频的交流),使人们的社交方式发生了重大的变化。

现在常常可以看到一种新的提法,即"互联网+"。它的意思就是"互联网+各个传统行业",因此可以利用信息通信技术和互联网平台来创造新的发展生态。实际上"互联网+"代表一种新的经济形态,其特点就是把互联网的创新成果深度融合于经济社会各领域之中,这就大大地提升了实体经济的创新力和生产力。我们也必须看到互联网的各种应用对各行各业的巨大冲击。例如,电子邮件迫使传统的电报业务退出市场。网络电话的普及使得传统的长途电话(尤其是国际长途电话)的通信量急剧下降。对日用商品快捷方便的网购造成了不少实体商店的停业。原来必须排长队购买火车票的网点已被非常方便的网购所替代。网约车的问世对出租车行业产生了的巨大冲击。这些例子说明了互联网应用已对整个社会的各领域产生了很大的影响。

互联网也给人们带来了一些负面影响。有人肆意利用互联网传播计算机病毒,破坏互联网上数据的正常传送和交换;有的犯罪分子甚至利用互联网窃取国家机密和盗窃银行或储户的钱财;网上欺诈或在网上肆意散布谣言、不良信息和播放不健康的视频节目也时有发生;有的青少年弃学而沉溺于网吧的网络游戏中;等等。

虽然如此,互联网的负面影响毕竟还是次要的。随着对互联网的管理的加强,互联网给社会带来的正面积极的作用已成为互联网的主流。

由于互联网已经成为世界上最大的计算机网络,因此下面我们先进行互联网概述,包括互联网的主要构件,这样就可以对计算机网络有一个最初步的了解。

1.2 互联网概述

1.2.1 网络的网络

起源于美国的互联网(1)-现已发展成为世界上最大的覆盖全球的计算机网络。

我们先给出关于网络、互连网、互联网(因特网)的一些最基本的概念。

请读者注意:在本书中,为了方便,下面凡是"网络"就是"计算机网络"的简称,而不是表示电信网或有线电视网。

计算机网络(简称为网络)由若干结点(node)⁽²⁾和连接这些结点的链路(link)组成。网络中的结点可以是计算机、集线器、交换机或路由器等(在后续的两章我们将会介绍集线器、交换机和路由器等设备的作用)。图1-1(a)给出了一个具有四个结点和三条链路的网络。我们看到,有三台计算机通过三条链路连接到一个集线器上,构成了一个简单的计算机网络(简称为网络)。在很多情况下,我们可以用一朵云表示一个网络。这样做的好处是可以不去关心网络中的相当复杂的细节问题,因而可以集中精力研究涉及到与网络互连有关的一些问题。

图1-1 简单的网络(a)和由网络构成的互连网(b)

网络之间还可以通过路由器互连起来,这就构成了一个覆盖范围更大的计算机网络。这样的网络称为**互连网**(internetwork或internet),如图 1-1(b)所示。因此互连网是"网络的网络"(network of networks)。

图1-2 互连网与所连接的主机

请读者注意,当我们使用一朵云来表示网络时,可能会有两种不同的情况。一种情况如图1-1所示,用云表示的网络已经包含了和网络相连的计算机。但有时为了讨论问题的方便(例如,要讨论几个计算机之间如何进行通信),也可以把有关的计算机画在云的外面,如图1-2所示。习惯上,与网络相连的计算机常称为主机(host)。这样,用云表示的互连网里面就只剩下许多路由器和连接这些路由器的链路了。

这样, 我们初步建立了下面的基本概念:

网络把许多计算机连接在一起,而互连网则把许多网络通过路由器连接在一起。与网络相连的计算机常称为主机。

还有一点也必须注意,就是网络互连并不是把计算机仅仅简单地在物理上连接起来,因为这样做并不能达到计算机之间能够相互交换信息

的目的。我们还必须在计算机上安装许多使计算机能够交换信息的软件才行。因此当我们谈到网络互连时,就隐含地表示在这些计算机上已经安装了适当的软件,因而在计算机之间可以通过网络交换信息。

现在使用智能手机上网已非常普遍。由于智能手机中有中央处理机 CPU,因此也可以把连接在计算机网络上的智能手机称为主机。实际 上,智能手机已经不是个单一功能的设备,它既是电话机,但也是计 算机、照相机、摄像机、电视机、导航仪等综合多种功能于一体的智 能机器。

1.2.2 互联网基础结构发展的三个阶段

互联网的基础结构大体上经历了三个阶段的演进。但这三个阶段在时间划分上并非截然分开而是有部分重叠的,这是因为网络的演进是逐渐的,而并非在某个日期发生了突变。

第一阶段是从单个网络ARPANET向互连网发展的过程。1969年美国国防部创建的第一个分组交换网ARPANET最初只是一个单个的分组交换网(并不是一个互连的网络)。所有要连接在ARPANET上的主机都直接与就近的结点交换机相连。但到了20世纪70年代中期,人们已认识到不可能仅使用一个单独的网络来满足所有的通信问题。于是ARPA开始研究多种网络(如分组无线电网络)互连的技术,这就导致了互连网络的出现。这就成为现今互联网(Internet)的雏形。1983年TCP/IP协议成为ARPANET上的标准协议,使得所有使用TCP/IP协议的计算机都能利用互连网相互通信,因而人们就把1983年作为互联网的诞生时间。1990年ARPANET正式宣布关闭,因为它的实验任务已经完成。

请读者注意以下两个意思相差很大的名词internet和Internet [RFC 1208]:

以小写字母i开始的**internet(互连网)是一个通用名词,它泛指由多个计算机网络互连而成的计算机网络**。在这些网络之间的通信协议(即通信规则)可以任意选择,不一定非要使用TCP/IP协议。

以大写字母I开始的Internet (互联网,或因特网)则是一个专用名词,它指当前全球最大的、开放的、由众多网络相互连接而成的特定

互连网,它采用TCP/IP协议族作为通信的规则,且其前身是美国的ARPANET。

可见,任意把几个计算机网络互连起来(不管采用什么协议),并能够相互通信,这样构成的是一个互连网(internet),而不是互联网(Internet)。

第二阶段的特点是建成了**三级结构的互联网**。从1985年起,美国国家科学基金会NSF(National Science Foundation)就围绕六个大型计算机中心建设计算机网络,即国家科学基金网NSFNET。它是一个三级计算机网络,分为**主干网、地区网**和校园网(或企业网)。这种三级计算机网络覆盖了全美国主要的大学和研究所,并且成为互联网中的主要组成部分。1991年,NSF和美国的其他政府机构开始认识到,互联网必将扩大其使用范围,不应仅限于大学和研究机构。世界上的许多公司纷纷接入到互联网,网络上的通信量急剧增大,使互联网的容量已满足不了需要。于是美国政府决定将互联网的主干网转交给私人公司来经营,并开始对接入互联网的单位收费。1992年互联网上的主机超过100万台。1993年互联网主干网的速率提高到45Mbit/s(T3速率)。

第三阶段的特点是逐渐形成了**多层次ISP结构的互联网**。从1993年开始,由美国政府资助的NSFNET逐渐被若干个商用的**互联网主干网**替代,而政府机构不再负责互联网的运营。这样就出现了一个新的名词: **互联网服务提供者** ISP(Internet Service Provider)。在许多情况下,ISP就是一个进行商业活动的公司,因此ISP又常译为**互联网服务提供商**。例如,中国电信、中国联通和中国移动等公司都是我国最有名的ISP。

ISP可以从互联网管理机构申请到很多IP地址(互联网上的主机都必须有IP地址才能上网,这一概念我们将在第4章的4.2.2节详细讨论),同时拥有通信线路(大ISP自己建造通信线路,小ISP则向电信公司租用通信线路)以及路由器等连网设备,因此任何机构和个人只要向某个ISP交纳规定的费用,就可从该ISP获取所需IP地址的使用权,并可通过该ISP接入到互联网。所谓"上网"就是指"(通过某ISP获得的IP地址)接入到互联网"。IP地址的管理机构不会把一个单个的IP地址分配给单个用户(不"零售"IP地址),而是把一批IP地址有偿租赁给经审查合格的ISP(只"批发"IP地址)。由此可见,现在的互联网已不是某

个单个组织所拥有而是全世界无数大大小小的ISP所共同拥有的,这就是互联网也称为"**网络的网络**"的原因。

根据提供服务的覆盖面积大小以及所拥有的IP地址数目的不同,ISP也分为不同层次的ISP: 主干ISP、地区ISP和本地ISP。

主干ISP由几个专门的公司创建和维持,服务面积最大(一般都能够覆盖国家范围),并且还拥有高速主干网(例如10Gbit/s或更高)。有一些地区ISP网络也可直接与主干ISP相连。

地区ISP是一些较小的ISP。这些地区ISP通过一个或多个主干ISP连接 起来。它们位于等级中的第二层,数据率也低一些。

本地ISP给用户提供直接的服务(这些用户有时也称为端用户,强调是末端的用户)。本地ISP可以连接到地区ISP,也可直接连接到主干ISP。绝大多数的用户都是连接到本地ISP的。本地ISP可以是一个仅仅提供互联网服务的公司,也可以是一个拥有网络并向自己的雇员提供服务的企业,或者是一个运行自己的网络的非营利机构(如学院或大学)。本地ISP可以与地区ISP或主干ISP连接。

图1-3是具有三层ISP结构的互联网的概念示意图,但这种示意图并不表示各ISP的地理位置关系。图中给出了主机A经过许多不同层次的ISP与主机B通信的示意图。

图1-3 基于ISP的多层结构的互联网的概念示意图

从原理上讲,只要每一个本地ISP都安装了路由器连接到某个地区ISP,而每一个地区ISP也有路由器连接到主干ISP,那么在这些相互连接的ISP的共同合作下,就可以完成互联网中的所有的分组转发任务。但随着互联网上数据流量的急剧增长,人们开始研究如何更快地转发分组,以及如何更加有效地利用网络资源。于是,**互联网交换点 IXP**(Internet eXchange Point)就应运而生了。

互联网交换点IXP的主要作用就是允许两个网络直接相连并交换分组,而不需要再通过第三个网络来转发分组。例如,在图1-3中右方的两个地区ISP通过一个IXP连接起来了。这样,主机A和主机B交换分组时,就不必再经过最上层的主干ISP,而是直接在两个地区ISP之间用高速链路对等地交换分组。这样就使互联网上的数据流量分布更加合理,同时也减少了分组转发的迟延时间,降低了分组转发的费用。现在许多IXP在进行对等交换分组时,都互相不收费。但本地ISP或地区ISP通过IXP向高层的IXP转发分组时,则需要交纳一定的费用。IXP的结构非常复杂。典型的IXP由一个或多个网络交换机组成,许多ISP再连接到这些网络交换机的相关端口上。IXP常采用工作在数据链路层的网络交换机,这些网络交换机都用局域网互连起来。

据统计,到2016年3月,全球已经有226个IXP,分布在172个国家和地区。图1-4是目前IXP在全球的分布图。可以看出,互联网的发展在全世界还是很不平衡的 [W-IXP]。现在,世界上最大的IXP于1995年建造在德国的法兰克福,名字是DE-CIX [W-DECIX],其峰值吞吐量在2015年9月就已达到4.859Tbit/s。这个IXP已成为互联网在欧洲的枢纽。

互联网已经成为世界上规模最大和增长速率最快的计算机网络,没有人能够准确说出互联网究竟有多大。互联网的迅猛发展始于20世纪90年代。由欧洲原子核研究组织CERN开发的**万维网WWW**(World Wide Web)被广泛使用在互联网上,大大方便了广大非网络专业人员对网络的使用,成为互联网的这种指数级增长的主要驱动力。万维网的站点数目也急剧增长。互联网上准确的通信量是很难估计的,但有文献介绍,互联网上的数据通信量每月约增加10%。图1-5是从1993年至2016年互联网用户数的增长情况。这里的用户是指在家中上网的人,而数据的统计时间是在每年的7月1日(正好是每年的中间),其中2015年和2016年的数据是估算的[W-INTER]。可以看出,在2005年互联网的用户数超过了10亿,在2010年超过了20亿,而在2014年已接近30亿。

图1-5 1993年至2016年互联网用户的增长情况

表1-1是统计到2005年互联网上的网络数、主机数、用户数和管理机构数的简单概括「COME06」。

年份	网络数	主机数	用户数	管理机构数
1980	10	10^{2}	10^{2}	10^{0}
1990	10 ³	10 ⁵	10^{6}	10^{1}
2000	10 ⁵	10 ⁷	108	10^{2}
2005	10^{6}	10 ⁸	10 ⁹	10 ³

表1-1 互联网的发展概况

1.2.3 互联网的标准化工作

互联网的标准化工作对互联网的发展起到了非常重要的作用。我们知道,标准化工作的好坏对一种技术的发展有着很大的影响。缺乏国际标准将会使技术的发展处于比较混乱的状态,而盲目自由竞争的结果很可能形成多种技术体制并存且互不兼容的状态(如过去形成的彩电三大制式),给用户带来较大的不方便。但国际标准的制定又是一个非常复杂的问题,这里既有很多技术问题,也有很多属于非技术问题,如不同厂商之间经济利益的争夺问题等。标准制定的时机也很重要。标准制定得过早,由于技术还没有发展到成熟水平,会使技术的要。标准制定得过早,由于技术还没有发展到成熟水平,会使技术比较陈旧的标准限制了产品的技术水平。其结果是以后不得不再次修订标准,造成浪费。反之,若标准制定得太迟,也会使技术的发展无章可循,造成产品的互不兼容,也不利于产品的推广。互联网在制定其标准上很有特色。其中的一个很大的特点是面向公众。互联网所有的RFC文档都可从互联网上免费下载,而且任何人都可以用电子邮件随时发表对某个文档的意见或建议。这种开放方式对互联网的迅速发展影响很大。

1992年由于互联网不再归美国政府管辖,因此成立了一个国际性组织叫做**互联网协会**(Internet Society,简称为ISOC)[W-ISOC],以便对互联网进行全面管理以及在世界范围内促进其发展和使用。ISOC下面有一个技术组织叫做**互联网体系结构委员会IAB**(Internet Architecture Board)⁽³⁾,负责管理互联网有关协议的开发。IAB下面又设有两个工程部:

(1) **互联网工程部IETF** (Internet Engineering Task Force)

IETF是由许多工作组WG(Working Group)组成的论坛(forum),具体工作由**互联网工程指导小组** IESG(Internet Engineering Steering Group)管理。这些工作组划分为若干个领域(area),每个领域集中研究某一特定的短期和中期的工程问题,主要是针对协议的开发和标准化。

(2) **互联网研究部IRTF** (Internet Research Task Force)

IRTF是由一些**研究组** RG(Research Group)组成的论坛,具体工作由 **互联网研究指导小组** IRSG(Internet Research Steering Group)管理。

IRTF的任务是研究一些需要长期考虑的问题,包括互联网的一些协议、应用、体系结构等。

所有的互联网标准都是以RFC的形式在互联网上发表的。RFC(Request For Comments)的意思就是"请求评论"。所有的RFC文档都可从互联网上免费下载[W-RFC]。但应注意,并非所有的RFC文档都是互联网标准。互联网标准的制定往往要花费漫长的时间,并且是一件非常慎重的工作。只有很少部分的RFC文档最后能变成互联网标准。RFC文档按发表时间的先后编上序号(即RFC xxxx,这里的xxxx是阿拉伯数字)。一个RFC文档更新后就使用一个新的编号,并在文档中指出原来老编号的RFC文档已成为陈旧的或被更新,但陈旧的RFC文档并不会被删除,而是永远保留着,供用户参考。现在RFC文档的数量增长得很快,到2016年7月RFC的编号就已经高达7694了。

制定互联网的正式标准要经过以下三个阶段:

- (1) **互联网草案**(Internet Draft)——互联网草案的有效期只有六个月。在这个阶段还不能算是RFC文档。
- (2) **建议标准**(Proposed Standard)——从这个阶段开始就成为RFC文档。
- (3) **互联网标准**(Internet Standard)——达到正式标准后,每个标准就分配到一个编号STD xx。一个标准可以和多个RFC文档关联。截止到2016年7月,互联网标准的最大编号是STD 83。可见要成为互联网标准还是很不容易的。

要成为互联网标准,原先必须经过三个阶段,即建议标准→草案标准 → 互联网标准。由于"草案标准"容易和"互联网草案"混淆,从2011年 10月起取消了"草案标准"这个阶段 [RFC 6410]。这样,现在制定互联网标准的过程变为两个阶段,即建议标准 → 互联网标准。在新的规定以前就已发布的草案标准,将按照以下原则进行处理:若已达到互联网标准,就升级为互联网标准;对目前尚不够互联网标准条件的,则仍称为发布时的名称"草案标准"。我们可以很方便地在网上查到有哪些RFC文档是互联网标准或建议标准 [W-RFCS]。

除了建议标准和互联网标准这两种RFC文档外,还有三种RFC文档,即历史的、实验的和提供信息的RFC文档。历史的RFC文档或者是被

后来的规约所取代,或者是从未到达必要的成熟等级因而未变成为互联网标准。实验的RFC文档表示其工作属于正在实验的情况,而不能够在任何实用的互联网服务中进行实现。提供信息的RFC文档包括与互联网有关的一般的、历史的或指导的信息。

RFC 文档的数量很大,为便于查找,应利用其索引文档"RFC INDEX" [W-RFCX]。这个文档给出了已经发布的所有的RFC文档的标题、发表时间、类别,以及这个RFC文档更新了哪个老的RFC文档,或者被在它以后发表的哪个RFC文档更新了。

1.3 互联网的组成

互联网的拓扑结构虽然非常复杂,并且在地理上覆盖了全球,但从其工作方式上看,可以划分为以下两大块:

- (1) **边缘部分** 由所有连接在互联网上的主机组成。这部分是**用户直接使用的**,用来进行通信(传送数据、音频或视频)和资源共享。
- (2) **核心部分** 由大量网络和连接这些网络的路由器组成。这部分是为边缘部分提供服务的(提供连通性和交换)。

图1-6给出了这两部分的示意图。下面分别讨论这两部分的作用和工作方式。

图1-6 互联网的边缘部分与核心部分

1.3.1 互联网的边缘部分

处在互联网边缘的部分就是连接在互联网上的所有的主机。这些主机又称为端系统(end system),"端"就是"末端"的意思(即互联网的末端)。端系统在功能上可能有很大的差别,小的端系统可以是一台普通个人电脑(包括笔记本电脑或平板电脑)和具有上网功能的智能手机,甚至是一个很小的网络摄像头(可监视当地的天气或交通情况,并在互联网上实时发布),而大的端系统则可以是一台非常昂贵的大型计算机。端系统的拥有者可以是个人,也可以是单位(如学校、企业、政府机关等),当然也可以是某个ISP(即ISP不仅仅是向端系统提供服务,它也可以拥有一些端系统)。边缘部分利用核心部分所提供的服务,使众多主机之间能够互相通信并交换或共享信息。

我们先要明确下面的概念。我们说:"主机A和主机B进行通信",实际上是指:"运行在主机A上的某个程序和运行在主机B上的另一个程序进行通信"。由于"进程"就是"运行着的程序",因此这也就是指:"主机A的某个进程和主机B上的另一个进程进行通信"。这种比较严密的说法通常可以简称为"计算机之间通信"。

在网络边缘的端系统之间的通信方式通常可划分为两大类:客户-服务器方式(C/S方式)和对等方式(P2P方式)(4)。下面分别对这两种方式进行介绍。

1. 客户-服务器方式

这种方式在互联网上是最常用的,也是传统的方式。我们在上网发送电子邮件或在网站上查找资料时,都是使用客户-服务器方式(有时写为客户/服务器方式)。

当我们打电话时,电话机的振铃声使被叫用户知道现在有一个电话呼叫。计算机通信的对象是应用层中的应用进程,显然不能用响铃的办法来通知所要找的对方的应用进程。然而采用客户-服务器方式可以使两个应用进程能够进行通信。

客户(client)和**服务器**(server)都是指通信中所涉及的两个应用进程。客户-服务器方式所描述的是进程之间服务和被服务的关系。在图1-7中,主机A运行客户程序而主机B运行服务器程序。在这种情况下,A是客户而B是服务器。客户A向服务器B发出服务请求,而服务器B向客户A提供服务。这里最主要的特征就是:

客户是服务请求方, 服务器是服务提供方。

图1-7 客户-服务器工作方式

服务请求方和服务提供方都要使用网络核心部分所提供的服务。

在实际应用中,客户程序和服务器程序通常还具有以下一些主要特点。

客户程序:

- (1)被用户调用后运行,在通信时主动向远地服务器发起通信(请求服务)。因此,客户程序必须知道服务器程序的地址。
 - (2) 不需要特殊的硬件和很复杂的操作系统。

服务器程序:

- (1) 是一种专门用来提供某种服务的程序,**可同时处理** 多个远地或本地客户的请求。
- (2) 系统启动后即自动调用并一直不断地运行着,被动地等待并接受来自各地的客户的通信请求。因此,服务器程序不需要知道客户程序的地址。
 - (3) 一般需要有强大的硬件和高级的操作系统支持。

客户与服务器的通信关系建立后,通信可以是双向的,客户和服务器都可发送和接收数据。

顺便要说一下,上面所说的**客户和服务器本来都指的是计算机进程(软件)**。使用计算机的人是计算机的"用户"(user)而不是"客户"(client)。但在许多国外文献中,经常也把运行客户程序的**机器**称为client(在这种情况下也可把client译为"客户机"),把运行服务器程序的**机器**称为server。因此我们应当根据上下文来判断client或server是指软件还是硬件。在本书中,在表示机器时,我们也使用"客户端"(或"客户机")或"服务器端"(或服务器)来表示"运行客户程序的机器"或"运行服务器程序的机器"。

2. 对等连接方式

对等连接(peer-to-peer,简写为P2P。这里使用数字2是因为英文的2是two,其读音与to同,因此英文的to常缩写为数字2)是指两台主机在通信时并不区分哪一个是服务请求方哪一个是服务提供方。只要两台主机都运行了对等连接软件(P2P软件),它们就可以进行平等的、对等连接通信。这时,双方都可以下载对方已经存储在硬盘中的共享文档。因此这种工作方式也称为P2P方式。在图1-8中,主机C,D,E和F都运行了P2P软件,因此这几台主机都可进行对等通信(如C和D,E和F,以及C和F)。实际上,对等连接方式从本质上看仍然是使用客户-服务器方式,只是对等连接中的每一台主机既是客户又同时是服务器。例如主机C,当C请求D的服务时,C是客户,D是服务器。但如果C又同时向F提供服务,那么C又同时起着服务器的作用。

对等连接工作方式可支持大量对等用户(如上百万个)同时工作。关于这种工作方式我们将在后面第6章的6.9节进一步讨论。

1.3.2 互联网的核心部分

网络核心部分是互联网中最复杂的部分,因为网络中的核心部分要向 网络边缘中的大量主机提供连通性,使边缘部分中的任何一台主机都 能够向其他主机通信。

在网络核心部分起特殊作用的是**路由器**(router),它是一种专用计算机(但不叫做主机)。路由器是实现**分组交换**(packet switching)的关键构件,其任务是**转发收到的分组**,这是网络核心部分最重要的功能。为了弄清分组交换,下面先介绍电路交换的基本概念。

1. 电路交换的主要特点

在电话问世后不久,人们就发现,要让所有的电话机都两两相连接是不现实的。图1-9(a)表示两部电话只需要用一对电线就能够互相连接起来。但若有5部电话要两两相连,则需要10对电线,见图1-9(b)所示。显然,若N部电话要两两相连,就需要N(N-1)/2对电线。当电话机的数量很大时,这种连接方法需要的电线数量就太大了(与电话机的数量的平方成正比)。于是人们认识到,要使得每一部电话能够很方便地和另一部电话进行通信,就应当使用电话交换机将这些电话连接起来,如图1-9(c)所示。每一部电话都连接到交换机上,而交换机使用交换的方法,让电话用户彼此之间可以很方便地通信。电话发明后的一百多年来,电话交换机虽然经过多次更新换代,但交换的方式一直都是电路交换(circuit switching)。

图1-9 电话机的不同连接方法

当电话机的数量增多时,就要使用很多彼此连接起来的交换机来完成全网的交换任务。用这样的方法,就构成了覆盖全世界的电信网。

从通信资源的分配角度来看,交换 (switching) 就是按照某种方式动 态地分配传输线路的资源。在使用电路交换通话之前,必须先拨号请 求建立连接。当被叫用户听到交换机送来的振铃音并摘机后... 端到被叫端就建立了一条连接,也就是一条专用的物理通路。 这条连 接保证了双方通话时所需的通信资源,而这些资源在双方通信时不会 被其他用户占用。此后主叫和被叫双方就能互相通电话。通话完毕挂 机后,交换机释放刚才使用的这条专用的物理通路(即把刚才占用的 所有通信资源归还给电信网) 。这种必须经过"建立连接 资源) **→ 通话** (一直占用通信资源) **→ 释放连接** (归还诵信答 源)"三个步骤的交换方式称为电路交换⑤。如果用户在拨号呼叫时 电信网的资源已不足以支持这次的呼叫,则主叫用户会听到忙音,表 示电信网不接受用户的呼叫,用户必须挂机、等待一段时间后再重新 拨号。

图1-10为电路交换的示意图。为简单起见,图中没有区分市话交换机和长途电话交换机。应当注意的是,用户线是电话用户到所连接的市话交换机的连接线路,是用户独占的传送模拟信号的专用线路,而交换机之间拥有大量话路的中继线(这些传输线路早已都数字化了)则是许多用户共享的,正在通话的用户只占用了中继线里面的一个话路。电路交换的一个重要特点就是在通话的全部时间内,通话的两个用户始终占用端到端的通信资源。

图1-10 电路交换的用户始终占用端到端的通信资源

当使用电路交换来传送计算机数据时,其**线路的传输效率往往很低**。 这是因为计算机数据是突发式地出现在传输线路上的,因此线路上真 正用来传送数据的时间往往不到10%甚至1%。已被用户占用的通信线 路资源在绝大部分时间里都是空闲的。例如,当用户阅读终端屏幕上 的信息或用键盘输入和编辑一份文件时,或计算机正在进行处理而结 果尚未返回时,宝贵的通信线路资源并未被利用而是白白被浪费了。

2. 分组交换的主要特点

分组交换则采用**存储转发** 技术 (⑤)。图1-11表示把一个报文划分为几个分组后再进行传送。通常我们把要发送的整块数据称为一个**报文**(message)。在发送报文之前,先把较长的报文划分成为一个个更小的等长数据段,例如,每个数据段为1024bit (乙)。在每一个数据段前面,加上一些由必要的控制信息组成的**首部**(header)后,就构成了一个**分组**(packet)。分组又称为"包",而分组的首部也可称为"包头"。分组是在互联网中传送的数据单元。分组中的"首部"是非常重要的,正是由于分组的首部包含了诸如目的地址和源地址等重要控制信息,每一个分组才能在互联网中独立地选择传输路径,并被正确地交付到分组传输的终点。

图1-11 以分组为基本单位在网络中传送

图1-12(a)强调互联网的核心部分是由许多网络和把它们互连起来的路由器组成的,而主机处在互联网的边缘部分。在互联网核心部分的路由器之间一般都用高速链路相连接,而在网络边缘的主机接入到核心部分则通常以相对较低速率的链路相连接。

位于网络边缘的主机和位于网络核心部分的路由器都是计算机,但它们的作用却很不一样。**主机是为用户进行信息处理的**,并且可以和其他主机通过网络交换信息。**路由器则是用来转发分组的,即进行分组**

交换的。路由器收到一个分组,先暂时存储一下,检查其首部,查找转发表,按照首部中的目的地址,找到合适的接口转发出去,把分组交给下一个路由器。这样一步一步地(有时会经过几十个不同的路由器)以存储转发的方式,把分组交付最终的目的主机。各路由器之间必须经常交换彼此掌握的路由信息,以便创建和动态维护路由器中的转发表,使得转发表能够在整个网络拓扑发生变化时及时更新。

(a) 核心部分的路由器把网络互连起来

(b) 核心部分中的网络可用一条链路表示

图1-12 分组交换的示意图

当我们讨论互联网的核心部分中的路由器转发分组的过程时,往往把单个的网络简化成一条**链路**,而路由器成为核心部分的**结点**,如图1-12(b)所示。这种简化图看起来可以更加突出重点,因为在转发分组时最重要的就是要知道路由器之间是怎样连接起来的。

现在假定图1-12(b)中的主机 H_1 向主机 H_5 发送数据。主机 H_1 先将分组逐个地发往与它直接相连的路由器A。此时,除链路 H_1 -A外,其他通信链路并不被目前通信的双方所占用。需要注意的是,即使是链路 H_1 -A,也只是当分组正在此链路上传送时才被占用。在各分组传送之间的空闲时间,链路 H_1 -A仍可为其他主机发送的分组使用。

路由器A把主机 H_1 发来的分组放入缓存。假定从路由器A的转发表中查出应把该分组转发到链路A-C。于是分组就传送到路由器C。当分组正在链路A-C传送时,该分组并不占用网络其他部分的资源。

路由器C继续按上述方式查找转发表,假定查出应转发到路由器E。当分组到达路由器E后,路由器E就最后把分组直接交给主机 H_5 。

假定在某一个分组的传送过程中,链路A-C的通信量太大,那么路由器A可以把分组沿另一个路由传送,即先转发到路由器B,再转发到路由器E,最后把分组送到主机 H_5 。在网络中可同时有多台主机进行通信,如主机 H_2 也可以经过路由器B和E与主机 H_6 通信。

这里要注意,路由器暂时存储的是一个个短分组,而不是整个的长报文。短分组是暂存在路由器的存储器(即内存)中而不是存储在磁盘中的。这就保证了较高的交换速率。

在图中只画了一对主机 H_1 和 H_5 在进行通信。实际上,互联网可以容许非常多的主机同时进行通信,而一台主机中的多个进程(即正在运行中的多个程序)也可以各自和不同主机中的不同进程进行通信。

应当注意,分组交换在传送数据之前不必先占用一条端到端的链路的通信资源。分组在哪段链路上传送才占用这段链路的通信资源。分组到达一个路由器后,先暂时存储下来,查找转发表,然后从一条合适的链路转发出去。分组在传输时就这样一段一段地断续占用通信资源,而且还省去了建立连接和释放连接的开销,因而数据的传输效率更高。

互联网采取了专门的措施,保证了数据的传送具有非常高的可靠性(在第5章5.4节介绍运输层协议时要着重讨论这个问题)。当网络中的某些结点或链路突然出现故障时,在各路由器中运行的路由选择**协议**(protocol)能够自动找到转发分组最合适的路径。这些将在第4章4.5节中详细讨论。

从以上所述可知,采用存储转发的分组交换,实质上是采用了在数据通信的过程中断续(或动态)分配传输带宽的策略(关于带宽的进一步讨论见后面的1.6.1节)。这对传送突发式的计算机数据非常合适,使得通信线路的利用率大大提高了。

为了提高分组交换网的可靠性,互联网的核心部分常采用网状拓扑结构,使得当发生网络拥塞或少数结点、链路出现故障时,路由器可灵活地改变转发路由而不致引起通信的中断或全网的瘫痪。此外,通信

网络的主干线路往往由一些高速链路构成,这样就可以较高的数据率迅速地传送计算机数据。

综上所述,分组交换的主要优点可归纳如表1-2所示。

表1-2 分组交换的优点

分组交换也带来一些新的问题。例如,分组在各路由器存储转发时需要排队,这就会造成一定的**时延**。因此,必须尽量设法减少这种时延。此外,由于分组交换不像电路交换那样通过建立连接来保证通信时所需的各种资源,因而无法确保通信时端到端所需的带宽。

网, 使网络有很好的生存性

分组交换带来的另一个问题是各分组必须携带的控制信息也造成了一定的**开销**(overhead)。整个分组交换网还需要专门的管理和控制机制。

应当指出,从本质上讲,这种断续分配传输带宽的存储转发原理并非是完全新的概念。自古代就有的邮政通信,就其本质来说也属于存储转发方式。而在20世纪40年代,电报通信也采用了基于存储转发原理的报文交换(message switching)。在报文交换中心,一份份电报被接收下来,并穿成纸带。操作员以每份报文为单位,撕下纸带,根据报文的目的站地址,拿到相应的发报机转发出去。这种报文交换的时延较长,从几分钟到几小时不等。现在报文交换已不使用了。分组交换虽然也采用存储转发原理,但由于使用了计算机进行处理,就使分组的转发非常迅速。例如ARPANET建网初期的经验表明,在正常的网络负荷下,当时横跨美国东西海岸的端到端平均时延小于0.1秒。这

样,分组交换虽然采用了某些古老的交换原理,但实际上已变成了一种崭新的交换技术。

图1-13表示电路交换、报文交换和分组交换的主要区别。图中的A和D分别是源点和终点,而B和C是在A和D之间的中间结点。图中的最下方归纳了三种交换方式在数据传送阶段的主要特点:

电路交换——整个报文的比特流连续地从源点直达终点,好像在一个 管道中传送。

报文交换——整个报文先传送到相邻结点,全部存储下来后查找转发表,转发到下一个结点。

分组交换——单个分组(这只是整个报文的一部分)传送到相邻结点,存储下来后查找转发表,转发到下一个结点。

图1-13 三种交换的比较。电路交换;报文交换;分组交换, $P_1 \sim P_4$ 表示4个分组

从图1-13可看出,若要连续传送大量的数据,且其传送时间远大于连接建立时间,则电路交换的传输速率较快。报文交换和分组交换不需要预先分配传输带宽,在传送突发数据时可提高整个网络的信道 ⁽⁸⁾ 利用率。由于一个分组的长度往往远小于整个报文的长度,因此分组交换比报文交换的时延小,同时也具有更好的灵活性。

1.4 计算机网络在我国的发展

下面简单介绍一下计算机网络在我国的发展情况。

最早着手建设专用计算机广域网的是铁道部。铁道部在1980年即开始进行计算机联网实验。1989年11月我国第一个公用分组交换网CNPAC建成运行。在20世纪80年代后期,公安、银行、军队以及其他一些部门也相继建立了各自的专用计算机广域网。这对迅速传递重要的数据信息起着重要的作用。另一方面,从20世纪80年代起,国内的许多单位相继安装了大量的局域网。局域网的价格便宜,其所有权和使用权都属于本单位,因此便于开发、管理和维护。局域网的发展很快,对各行各业的管理现代化和办公自动化已起了积极的作用。

这里应当特别提到的是,1994年4月20日我国用64kbit/s专线正式连入互联网。从此,我国被国际上正式承认为接入互联网的国家。同年5月中国科学院高能物理研究所设立了我国的第一个万维网服务器。同年9月中国公用计算机互联网CHINANET正式启动。到目前为止,我国陆续建造了基于互联网技术并能够和互联网互连的多个全国范围的公用计算机网络,其中规模最大的就是下面这五个:

- (1) 中国电信互联网CHINANET(也就是原来的中国公用计算机互联网)
 - (2) 中国联通互联网UNINET
 - (3)中国移动互联网CMNET
 - (4) 中国教育和科研计算机网CERNET
 - (5) 中国科学技术网CSTNET

2004年2月,我国的第一个下一代互联网CNGI的主干网CERNET2试验网正式开通,并提供服务。试验网以2.5~10Gbit/s的速率连接北京、上海和广州三个CERNET核心结点,并与国际下一代互联网相连接。这标志着中国在互联网的发展过程中,已逐渐达到与国际先进水平同步。

中国互联网络信息中心CNNIC(China Network Information Center)每年两次公布我国互联网的发展情况。读者可在其网站www.cnnic.cn上查到最新的和过去的历史文档。CNNIC把过去半年内使用过互联网的6周岁及以上的中国居民称为网民。根据2016年1月CNNIC发表的《中国互联网络发展状况统计报告》,截至2015年12月底,我国网民已达到6.88亿,互联网普及率已达到50.3%。家庭电脑上网使用宽带上网的比例为98.9%,说明家庭电脑上网基本上都是在使用宽带上网。在网民中,手机网民的规模已达到6.20亿,占总体网民的比例为90.1%。但农村网民只有1.95亿,占整体网民的28.4%。

现在微博和网络视频的用户明显增多。移动互联网营销发展迅速,当前网民最主要的网络应用就是搜索引擎(即在互联网上使用搜索引擎来查找所需的信息)、即时通信、网络音乐、网络新闻和博客等。此外,更多的经济活动已步入了互联网时代。网上购物、网上支付和网上银行的使用率也迅速提升。到2016年底,我国的国际出口带宽已接近5.4Tbit/s(1Tbit/s=10³Gbit/s),这里中国电信的CHINANET占有出口总带宽的近60%。

对我国互联网事业发展影响较大的人物和事件不少,限于篇幅,下面仅列举几个例子。

1996年,张朝阳创立了中国第一家以风险投资资金建立的互联网公司——爱特信公司。两年后,爱特信公司推出"搜狐"产品,并更名为搜狐公司(Sohu)。搜狐公司最主要的产品就是搜狐网站(Sohu.com),是中国首家大型分类查询搜索引擎。1999年,搜狐网站增加了新闻及内容频道,成为一个综合门户网站。

1997年,丁磊创立了网易公司(NetEase),推出了中国第一家中文全文搜索引擎。网易公司开发的超大容量免费邮箱(如163和126等),由于具有高效的杀毒和拦截垃圾邮件的功能,邮箱的安全性很好,已成为国内最受欢迎的中文邮箱。网易网站现在也是全国出名的综合门户网站。

1998年,王志东创立新浪网站(Sina.com),该网站现已成为全球最大的中文综合门户网站。新浪的微博是全球使用最多的微博之一。

同年,马化腾、张志东创立了腾讯公司(Tencent)。1999年腾讯就推出了用在个人电脑上的即时通信软件QICQ,简称为QQ。QQ的功能不

断更新,现在已成为一款集话音、短信、文章、音乐、图片和视频于一体的网络沟通交流工具,成为几乎所有网民都在电脑中安装的软件,腾讯也因此成为中国最大的互联网综合服务提供商之一。

2011年,腾讯推出了专门供智能手机使用的即时通信软件"微信"(WebChat)。这个软件是在张小龙(著名的电子邮件客户端软件Foxmail的作者)领导下成功研发的。微信能够通过互联网快速发送话音短信、视频、图片和文字,并且支持多人群聊。由于微信能在各种不同操作系统的智能手机中运行,因此目前几乎所有的智能手机用户都在使用微信。微信的功能也在不断翻新。装有微信软件的智能手机,已从简单的社交工具演变成一个具有支付能力的全能钱包。

2000年,李彦宏和徐勇创建了百度网站(Baidu.com),现在已成为全球最大的中文搜索引擎。自谷歌于2010年退出中国后,在中国最大的搜索引擎无疑就是百度了。现在,百度网站也可以用主题分类的方法进行查找,非常便干网民对各种信息的浏览。

1999年,马云创建了阿里巴巴网站(Alibaba.com),是一个企业对企业的网上贸易市场平台。2003年,马云创立了个人网上贸易市场平台——淘宝网(Taobao.com)。2004年,阿里巴巴集团创立了第三方支付平台——支付宝(Alipay.com),为中国电子商务提供了简单、安全、快速的在线支付手段。现在淘宝网已成为中国最大的、深受欢迎的网购零售平台。

上述的一些事件对互联网应用在我国的推广普及,起着非常积极的作用。

1.5 计算机网络的类别

1.5.1 计算机网络的定义

计算机网络的精确定义并未统一。

关于计算机网络的较好的定义是这样的 [PETE11]: 计算机网络主要是由一些通用的、可编程的硬件互连而成的, 而这些硬件并非专门用来实现某一特定目的(例如, 传送数据或视频信号)。这些可编程的

硬件能够用来传送多种不同类型的数据,并能支持广泛的和日益增长的应用。

根据这个定义: (1) 计算机网络所连接的硬件,并不限于一般的计算机,而是包括了智能手机。(2) 计算机网络并非专门用来传送数据,而是能够支持很多种的应用(包括今后可能出现的各种应用)。

请注意,上述的"可编程的硬件"表明这种硬件一定包含有中央处理机 CPU。

我们知道,起初,计算机网络的确是用来传送数据的。但随着网络技术的发展,计算机网络的应用范围不断增大,不仅能够传送音频和视频文件,而且应用的范围已经远远超过一般通信的范畴。

有时我们也能见到"计算机通信网"这一名词。但这个名词容易使人误认为这是一种专门为了通信而设计的计算机网络。计算机网络显然应具有通信的功能,但这种通信功能并非计算机网络最主要的功能。因此本书不使用"计算机通信网"这一名词。

1.5.2 几种不同类别的计算机网络

计算机网络有多种类别,下面进行简单的介绍。

1. 按照网络的作用范围进行分类

- (1) 广域网WAN(Wide Area Network)广域网的作用范围通常为几十到几千公里,因而有时也称为远程网(long haul network)。广域网是互联网的核心部分,其任务是通过长距离(例如,跨越不同的国家)运送主机所发送的数据。连接广域网各结点交换机的链路一般都是高速链路,具有较大的通信容量。本书不专门讨论广域网。
- (2) **城域网MAN**(Metropolitan Area Network)城域网的作用范围一般是一个城市,可跨越几个街区甚至整个城市,其作用距离约为5~50km。城域网可以为一个或几个单位所拥有,但也可以是一种公用设施,用来将多个局域网进行互连。目前很多城域网采用的是以太网技术、因此有时也常并入局域网的范围进行讨论。

- (3) 局域网LAN (Local Area Network) 局域网一般用微型计算机或工作站通过高速通信线路相连(速率通常在10Mbit/s以上),但地理上则局限在较小的范围(如1km左右)。在局域网发展的初期,一个学校或工厂往往只拥有一个局域网,但现在局域网已非常广泛地使用,学校或企业大都拥有许多个互连的局域网(这样的网络常称为校园网或企业网)。我们将在第3章3.3至3.5节详细讨论局域网。
- (4) **个人区域网PAN**(Personal Area Network)个人区域网就是在个人工作的地方把属于个人使用的电子设备(如便携式电脑等)用无线技术连接起来的网络,因此也常称为无线个人区域网 WPAN(Wireless PAN),其范围很小,大约在10m左右。我们将在第9章9.2节对这种网络进行简单的介绍。

顺便指出,若中央处理机之间的距离非常近(如仅1米的数量级或甚至更小些),则一般就称之为多处理机系统而不称它为计算机网络。

2. 按照网络的使用者进行分类

- (1) **公用网**(public network) 这是指电信公司(国有或私有)出资建造的大型网络。"公用"的意思就是所有愿意按电信公司的规定交纳费用的人都可以使用这种网络。因此公用网也可称为**公众网**。
- (2) **专用网**(private network) 这是某个部门为满足本单位的特殊业务工作的需要而建造的网络。这种网络不向本单位以外的人提供服务。例如,军队、铁路、银行、电力等系统均有本系统的专用网。

公用网和专用网都可以提供多种服务。如传送的是计算机数据,则分别是公用计算机网络和专用计算机网络。

3. 用来把用户接入到互联网的网络

这种网络就是接入网 AN(Access Network),它又称为本地接入网 或居民接入网。这是一类比较特殊的计算机网络。我们在前面的1.2.2节已经介绍了用户必须通过ISP才能接入到互联网。由于从用户家中接入到互联网可以使用的技术有许多种,因此就出现了可以使用多种接入网技术连接到互联网的情况。接入网本身既不属于互联网的核心部分,也不属于互联网的边缘部分。接入网是从某个用户端系统到互联

网中的第一个路由器(也称为边缘路由器)之间的一种网络。从覆盖的范围看,很多接入网还属于局域网。从作用上看,接入网只是起到让用户能够与互联网连接的"桥梁"作用。在互联网发展初期,用户多用电话线拨号接入互联网,速率很低(每秒几千比特到几十千比特),因此那时并没有使用接入网这个名词。直到最近,由于出现了多种宽带接入技术,宽带接入网才成为互联网领域中的一个热门课题。我们将在第2章2.6节讨论宽带接入技术。

1.6 计算机网络的性能

计算机网络的性能一般是指它的几个重要的性能指标。但除了这些重要的性能指标外,还有一些非性能特征(nonperformance characteristics)也对计算机网络的性能有很大的影响。本节将讨论这两个方面的问题。

1.6.1 计算机网络的性能指标

性能指标从不同的方面来度量计算机网络的性能。下面介绍常用的七个性能指标。

1. 速率

我们知道,计算机发送出的信号都是数字形式的。**比特**(bit)来源于binary digit,意思是一个"二进制数字",因此一个比特就是二进制数字中的一个1或0。比特也是信息论中使用的**信息量的单位**。网络技术中的**速率**指的是**数据的传送速率**,它也称为**数据率**(data rate)或**比特率**(bit rate)。速率是计算机网络中最重要的一个性能指标。速率的单位是bit/s(比特每秒)(或b/s,有时也写为bps,即bit per second)。当数据率较高时,就常常在bit/s的前面加上一个字母。例如,k(kilo)= 10^3 =千,M(Mega)= 10^6 =兆,G(Giga)= 10^9 =吉,T(Tera)= 10^{12} =太,P(Peta)= 10^{15} =拍,E(Exa)= 10^{18} =艾,Z(Zetta)= 10^{21} =泽,Y(Yotta)= 10^{24} =尧(9)。这样,4× 10^{10} bit/s的数据率就记为40Gbit/s。现在人们在谈到网络速率时,常省略了速率单位中应有的bit/s,而使用不太正确的说法,如"40G的速率"。另外要注意的是,当提到网络的速率时,往往指的是**额定速率**或**标称速率**,而并非网络实际上运行的速率。

2. 带宽

"带宽"(bandwidth)有以下两种不同的意义:

- (1) 带宽本来是指某个**信号具有的频带宽度**。信号的带宽是指该信号所包含的各种不同频率成分所占据的频率范围。例如,在传统的通信线路上传送的电话信号的标准带宽是3.1kHz(从300Hz到3.4kHz,即话音的主要成分的频率范围)。这种意义的**带宽的单位**是**赫**(或**千赫、兆赫、吉赫**等)。在过去很长的一段时间,通信的主干线路传送的是模拟信号(即连续变化的信号)。因此,表示某信道允许通过的信号频带范围就称为该信道的**带宽**(或**通频带**)。
- (2) 在计算机网络中,带宽用来表示网络中某**通道** 传送数据的能力,因此网络带宽表示在单位时间内网络中的某信道所能通过的"最高数据率"。在本书中提到"带宽"时,主要是指这个意思。这种意义的带宽的单位 就是数据率的单位 bit/s,是"比特每秒"。

在"带宽"的上述两种表述中,前者为**频域**称谓,而后者为**时域**称谓, 其本质是相同的。也就是说,一条通信链路的"带宽"越宽,其所能传 输的"最高数据率"也越高。

3. 吞吐量

吞吐量(throughput)表示在单位时间内通过某个网络(或信道、接口)的实际的数据量。吞吐量更经常地用于对现实世界中的网络的一种测量,以便知道实际上到底有多少数据量能够通过网络。显然,吞吐量受网络的带宽或网络的额定速率的限制。例如,对于一个1Gbit/s的以太网,就是说其额定速率是1Gbit/s,那么这个数值也是该以太网的吞吐量的绝对上限值。因此,对1Gbit/s的以太网,其实际的吞吐量可能也只有100Mbit/s,或甚至更低,并没有达到其额定速率。请注意,有时吞吐量还可用每秒传送的字节数或帧数来表示。

4. 时延

时延(delay或latency)是指数据(一个报文或分组,甚至比特)从网络(或链路)的一端传送到另一端所需的时间。时延是个很重要的性能指标,它有时也称为延迟或迟延。

需要注意的是, 网络中的时延是由以下几个不同的部分组成的:

(1) 发送时延 发送时延(transmission delay)是主机或路由器发送数据帧所需要的时间,也就是从发送数据帧的第一个比特算起,到该帧的最后一个比特发送完毕所需的时间。因此发送时延也叫做传输时延(我们尽量不采用传输时延这个名词,因为它很容易和下面要讲到的传播时延弄混)。发送时延的计算公式是:

由此可见,对于一定的网络,发送时延并非固定不变,而是与发送的帧长(单位是比特)成正比,与发送速率成反比。

(2) 传播时延 传播时延 (propagation delay) 是电磁波在信道中传播一定的距离需要花费的时间。传播时延的计算公式是:

传播时延 =
$$\frac{$$
信道长度(m)}{电磁波在信道上的传播速率(m/s)} (1-2)

电磁波在自由空间的传播速率是光速,即3.0×10⁵ km/s。电磁波在网络传输媒体中的传播速率比在自由空间要略低一些:在铜线电缆中的传播速率约为2.3×10⁵ km/s,在光纤中的传播速率约为2.0×10⁵ km/s。例如,1000km长的光纤线路产生的传播时延大约为5ms。

以上两种时延有本质上的不同。但只要理解这两种时延发生的地方就不会把它们弄混。发送时延发生在机器内部的发送器中(一般就是发生在网络适配器中,见第3章3.3.1节),与传输信道的长度(或信号传送的距离)没有任何关系。但传播时延则发生在机器外部的传输信道媒体上,而与信号的发送速率无关。信号传送的距离越远,传播时延就越大。可以用一个简单的比喻来说明。假定有10辆车按顺序从公路收费站入口出发到相距50公里的目的地。再假定每一辆车过收费站要花费6秒钟,而车速是每小时100公里。现在可以算出这10辆车从收费站到目的地总共要花费的时间:发车时间共需60秒(相当于网络中的发送时延),在公路上的行车时间需要30分钟(相当于网络中的发送时延)。因此从第一辆车到收费站开始计算,到最后一辆车到达目的地为止,总共花费的时间是二者之和,即31分钟。

下面还有两种时延也需要考虑,但比较容易理解。

- (3) **处理时延** 主机或路由器在收到分组时要花费一定的时间进行处理,例如分析分组的首部、从分组中提取数据部分、进行差错检验或查找适当的路由等,这就产生了处理时延。
- (4) **排队时延** 分组在经过网络传输时,要经过许多路由器。但分组在进入路由器后要先在输入队列中排队等待处理。在路由器确定了转发接口后,还要在输出队列中排队等待转发。这就产生了排队时延。排队时延的长短往往取决于网络当时的通信量。当网络的通信量很大时会发生队列溢出,使分组丢失,这相当于排队时延为无穷大。

这样,数据在网络中经历的总时延就是以上四种时延之和:

一般说来,小时延的网络要优于大时延的网络。在某些情况下,一个低速率、小时延的网络很可能要优于一个高速率但大时延的网络。

图1-14画出了这几种时延所产生的地方,希望读者能够更好地分清这几种时延。

图1-14 几种时延产生的地方不一样

必须指出,在总时延中,究竟是哪一种时延占主导地位,必须具体分析。下面举个例子。

现在我们暂时忽略处理时延和排队时延($\frac{10}{10}$)。假定有一个长度为 100MB的数据块(这里的M显然不是指 10^6 而是指 2^{20} 。B是字节,1字 节=8比特)。在带宽为1Mbit/s的信道上(这里的M显然是 10^6)连续发送(即发送速率为1Mbit/s),其发送时延是

$$100 \times 2^{20} \times 8 \div 10^{6} = 838.9$$
s

现在把这个数据块用光纤传送到1000km远的计算机。由于在1000km的光纤上的传播时延约为5ms,因此在这种情况下,发送100MB的数据块的总时延=838.9+0.005≈838.9s。可见对于这种情况,发送时延决定了总时延的数值。

如果我们把发送速率提高到100倍,即提高到100Mbit/s,那么总时延就变为8.389+0.005=8.394s,缩小到原有数值的1/100。

但是,并非在任何情况下,提高发送速率就能减小总时延。例如,要传送的数据仅有1个字节(如键盘上键入的一个字符,共8bit)。当发送速率为1Mbit/s时,发送时延是

$$8 \div 10^{6} = 8 \times 10^{-6} \text{ s} = 8 \mu \text{s}$$

若传播时延仍为5ms,则总时延为5.008ms。在这种情况下,传播时延决定了总时延。如果我们把数据率提高到1000倍(即将数据的发送速率提高到1Gbit/s),不难算出,总时延基本上仍是5ms,并没有明显减小。这个例子告诉我们,不能笼统地认为:"数据的发送速率越高,其传送的总时延就越小"。这是因为数据传送的总时延是由公式(1-3)右端的四项时延组成的,不能仅考虑发送时延一项。

如果上述概念没有弄清楚,就很容易产生这样错误的概念: "在高速链路(或高带宽链路)上,比特会传送得更快些"。但这是不对的。我们知道,汽车在路面质量很好的高速公路上可明显地提高行驶速率。然而对于高速网络链路,我们提高的仅仅是数据的发送速率而不是比特在链路上的传播速率。荷载信息的电磁波在通信线路上的传播速率(这是光速的数量级)取决于通信线路的介质材料,而与数据的发送速率并无关系。提高数据的发送速率只是减小了数据的发送时延。还有一点也应当注意,就是数据的发送速率的单位是每秒发送多少个比特,这是指在某个点或某个接口上的发送速率。而传播速率的单位是每秒传播多少公里,是指在某一段传输线路上比特的传播速率的比特,这是指在某个点或某个接口上的发送速率。而传播速率的单位是每秒传播多少公里,是指在某一段传输线路上比特的传播速率的光行信道发送数据,而光纤信道的传播速率实际上还要比铜线的传播速率的优点。这是因为经过测量得知,光在光纤中的传播速率约为每秒20.5万公里,它比电磁波在铜线(如5类线)中的传播速率(每秒23.1万公里)略低一些。

上述的重要概念请读者务必弄清。

5. 时延带宽积

把以上讨论的网络性能的两个度量——传播时延和带宽——相乘,就得到另一个很有用的度量:传播**时延带宽积**,即

我们可以用图1-15的示意图来表示时延带宽积。这是一个代表链路的圆柱形管道,管道的长度是链路的传播时延(请注意,现在以时间作为单位来表示链路长度),而管道的截面积是链路的带宽。因此时延带宽积就表示这个管道的体积,表示这样的链路可容纳多少个比特。例如,设某段链路的传播时延为20ms,带宽为10Mbit/s。算出

时延带宽积=20×10⁻³×10×10⁶=2×10⁵bit

图1-15 链路像一条空心管道

这就表明,若发送端连续发送数据,则在发送的第一个比特即将达到终点时,发送端就已经发送了20万个比特,而这20万个比特都正在链路上向前移动。因此,链路的时延带宽积又称为**以比特为单位的链路长度**。

不难看出,管道中的比特数表示从发送端发出的但尚未到达接收端的 比特。对于一条正在传送数据的链路,只有在代表链路的管道都充满 比特时,链路才得到充分的利用。

6. 往返时间RTT

在计算机网络中,**往返时间** RTT(Round-Trip Time)也是一个重要的性能指标。这是因为在许多情况下,互联网上的信息不仅仅单方向传输而是双向交互的。因此,我们有时很需要知道双向交互一次所需的时间。例如,A向B发送数据。如果数据长度是100MB,发送速率是100Mbit/s,那么

发送时间=
$$\frac{$$
数据长度}{ 发送速率} = $\frac{100 \times 2^{20} \times 8}{100 \times 10^{6}} \approx 8.39s$

如果B正确收完100MB的数据后,就立即向A发送确认。再假定A只有在收到B的确认信息后,才能继续向B发送数据。显然,这需要等待一个往返时间RTT(这里假定确认信息很短,可忽略B发送确认的时间)。如果RTT=2s,那么可以算出A向B发送数据的有效数据率。

有效数据率= 数据长度 发送时间+RTT =
$$\frac{100 \times 2^{20} \times 8}{8.39 + 2} \approx 80.7 \times 10^6 \text{ bit / s} \approx 80.7 \text{Mbit / s}$$

比原来的数据率100Mbit/s小不少。

在互联网中,往返时间还包括各中间结点的处理时延、排队时延以及 转发数据时的发送时延。当使用卫星通信时,往返时间RTT相对较 长,是很重要的一个性能指标。

7. 利用率

利用率有信道利用率和网络利用率两种。信道利用率指出某信道有百分之几的时间是被利用的(有数据通过)。完全空闲的信道的利用率是零。网络利用率则是全网络的信道利用率的加权平均值。信道利用率并非越高越好。这是因为,根据排队论的理论,当某信道的利用率增大时,该信道引起的时延也就迅速增加。这和高速公路的情况有些相似。当高速公路上的车流量很大时,由于在公路上的某些地方会出现堵塞,因此行车所需的时间就会变长。网络也有类似的情况。当网络的通信量很少时,网络产生的时延并不大。但在网络通信量不断增大的情况下,由于分组在网络结点(路由器或结点交换机)进行处理时需要排队等候,因此网络引起的时延就会增大。如果令 D_0 表示网络空闲时的时延,D表示网络当前的时延,那么在适当的假定条件下,可以用下面的简单公式(1-5)来表示D, D_0 和利用率U之间的关系:

$$D = \frac{D_0}{1 - U} \tag{1-5}$$

这里*U*是网络的利用率,数值在0到1之间。当网络的利用率达到其容量的1/2时,时延就要加倍。特别值得注意的就是:当网络的利用率接

近最大值1时,网络的时延就趋于无穷大。因此我们必须有这样的概念:**信道或网络的利用率过高会产生非常大的时延**。图1-16给出了上述概念的示意图。因此一些拥有较大主干网的ISP通常控制信道利用率不超过50%。如果超过了就要准备扩容、增大线路的带宽。

图1-16 时延与利用率的关系

1.6.2 计算机网络的非性能特征

计算机网络还有一些非性能特征也很重要。这些非性能特征与前面介绍的性能指标有很大的关系。下面简单地加以介绍。

1. 费用

网络的价格(包括设计和实现的费用)总是必须考虑的,因为网络的性能与其价格密切相关。一般说来,网络的速率越高,其价格也越高。

2. 质量

网络的质量取决于网络中所有构件的质量,以及这些构件是怎样组成网络的。网络的质量影响到很多方面,如网络的可靠性、网络管理的简易性,以及网络的一些性能。但网络的性能与网络的质量并不是一回事。例如,有些性能一般的网络,运行一段时间后就出现了故障,变得无法再继续工作,说明其质量不好。高质量的网络往往价格也较高。

3. 标准化

网络的硬件和软件的设计既可以按照通用的国际标准,也可以遵循特定的专用网络标准。最好采用国际标准的设计,这样可以得到更好的互操作性,更易于升级换代和维修,也更容易得到技术上的支持。

4. 可靠性

可靠性与网络的质量和性能都有密切关系。高速网络的可靠性不一定 很差。但高速网络要可靠地运行,则往往更加困难,同时所需的费用 也会较高。

5. 可扩展性和可升级性

在构造网络时就应当考虑到今后可能会需要扩展(即规模扩大)和升级(即性能和版本的提高)。网络的性能越高,其扩展费用往往也越高,难度也会相应增加。

6. 易于管理和维护

网络如果没有良好的管理和维护,就很难达到和保持所设计的性能。

1.7 计算机网络体系结构

在计算机网络的基本概念中,分层次的体系结构是最基本的。计算机 网络体系结构的抽象概念较多,在学习时要多思考。这些概念对后面 的学习很有帮助。

1.7.1 计算机网络体系结构的形成

计算机网络是个非常复杂的系统。为了说明这一点,可以设想一种最简单的情况:连接在网络上的两台计算机要互相传送文件。

显然,在这两台计算机之间必须有一条传送数据的通路。但这还远远不够。至少还有以下几项工作需要去完成:

(1) 发起通信的计算机必须将数据通信的通路进行激活(activate)。所谓"激活"就是要发出一些信令,保证要传送的计算机

数据能在这条通路上正确发送和接收。

- (2) 要告诉网络如何识别接收数据的计算机。
- (3) 发起通信的计算机必须查明对方计算机是否已开机,并且与网络连接正常。
- (4) 发起通信的计算机中的应用程序必须弄清楚,在对方计算机中的文件管理程序是否已做好接收文件和存储文件的准备工作。
- (5) 若计算机的文件格式不兼容,则至少其中一台计算机应完成格式转换功能。
- (6) 对出现的各种差错和意外事故,如数据传送错误、重复或丢失, 网络中某个结点交换机出现故障等,应当有可靠的措施保证对方计算 机最终能够收到正确的文件。

还可以列举出一些要做的其他工作。由此可见,相互通信的两个计算机系统必须高度协调工作才行,而这种"协调"是相当复杂的。为了设计这样复杂的计算机网络,早在最初的ARPANET设计时即提出了分层的方法。"分层"可将庞大而复杂的问题,转化为若干较小的局部问题,而这些较小的局部问题就比较易干研究和处理。

1974年,美国的IBM公司宣布了**系统网络体系结构** SNA(System Network Architecture)。这个著名的网络标准就是按照分层的方法制定的。现在用IBM大型机构建的专用网络仍在使用SNA。不久后,其他一些公司也相继推出自己公司的具有不同名称的体系结构。

不同的网络体系结构出现后,使用同一个公司生产的各种设备都能够 很容易地互连成网。这种情况显然有利于一个公司垄断市场。但由于 网络体系结构的不同,不同公司的设备很难互相连通。

然而,全球经济的发展使得不同网络体系结构的用户迫切要求能够互相交换信息。为了使不同体系结构的计算机网络都能互连,国际标准化组织ISO于1977年成立了专门机构研究该问题。他们提出了一个试图使各种计算机在世界范围内互连成网的标准框架,即著名的开放系统互连基本参考模型 OSI/RM(Open Systems Interconnection Reference Model),简称为OSI。"开放"是指非独家垄断的。因此只要遵循OSI

标准,一个系统就可以和位于世界上任何地方的、也遵循这同一标准的其他任何系统进行通信。这一点很像世界范围的有线电话和邮政系统,这两个系统都是开放系统。"**系统**"是指在现实的系统中与互连有关的各部分(我们知道,并不是一个系统中的所有部分都与互连有关的各部分(我们知道,并不是一个系统中的所有部分都与互连有关的各部分)。所以OSI/RM是个抽象的概念。在1983年形成了开放系统互连部分)。所以OSI/RM是个抽象的概念。在1983年形成了开放系统互连基本参考模型的正式文件,即著名的ISO 7 498国际标准,也就是所谓的七层协议的体系结构。

OSI试图达到一种理想境界,即全球计算机网络都遵循这个统一标准,因而全球的计算机将能够很方便地进行互连和交换数据。在20世纪80年代,许多大公司甚至一些国家的政府机构纷纷表示支持OSI。当时看来似乎在不久的将来全世界一定会按照OSI制定的标准来构造自己的计算机网络。然而到了20世纪90年代初期,虽然整套的OSI国际标准都已经制定出来了,但由于基于TCP/IP的互联网已抢先在全球相当大的范围成功地运行了,而与此同时却几乎找不到有什么厂家生产出符合OSI标准的商用产品。因此人们得出这样的结论: OSI只获得了一些理论研究的成果,但在市场化方面则事与愿违地失败了。现今规模最大的、覆盖全球的、基于TCP/IP的互联网并未使用OSI标准。OSI失败的原因可归纳为:

- (1) OSI的专家们缺乏实际经验,他们在完成OSI标准时缺乏商业驱动力;
 - (2) OSI的协议实现起来过分复杂,而且运行效率很低;
- (3) OSI标准的制定周期太长,因而使得按OSI标准生产的设备无法及时进入市场;
 - (4) OSI的层次划分不太合理,有些功能在多个层次中重复出现。

按照一般的概念,网络技术和设备只有符合有关的国际标准才能大范围地获得工程上的应用。但现在情况却反过来了。得到最广泛应用的不是**法律上的国际标准** OSI,而是非国际标准TCP/IP。这样,TCP/IP就常被称为**是事实上的国际标准**。从这种意义上说,能够占领市场的就是标准。在过去制定标准的组织中往往以专家、学者为主。但现在许多公司都纷纷加入各种标准化组织,使得技术标准具有浓厚的商业

气息。一个新标准的出现,有时不一定反映其技术水平是最先进的,而是往往有着一定的市场背景。

顺便说一下,虽然OSI标准在一开始由ISO来制定,但后来的许多标准都是ISO与原来的国际电报电话咨询委员会CCITT (11).联合制定的。从历史上来看,CCITT原来是从通信的角度考虑一些标准的制定的,而ISO则关心信息的处理。但随着科学技术的发展,通信与信息处理的界限变得比较模糊了。于是,通信与信息处理就都成为CCITT与ISO所共同关心的领域。CCITT的建议书X.200就是关于开放系统互连参考模型的,它和上面提到的ISO 7498基本上是相同的。

1.7.2 协议与划分层次

在计算机网络中要做到有条不紊地交换数据,就必须遵守一些事先约定好的规则。这些规则明确规定了所交换的数据的格式以及有关的同步问题。这里所说的同步不是狭义的(即同频或同频同相)而是广义的,即在一定的条件下应当发生什么事件(例如,应当发送一个应答信息),因而同步含有时序的意思。这些为进行网络中的数据交换而建立的规则、标准或约定称为网络协议(network protocol)。网络协议也可简称为协议。更进一步讲,网络协议主要由以下三个要素组成:

- (1) 语法,即数据与控制信息的结构或格式;
- (2) **语义**,即需要发出何种控制信息,完成何种动作以及做出何种响应;
 - (3) 同步, 即事件实现顺序的详细说明。

由此可见,网络协议是计算机网络不可缺少的组成部分。实际上,只要我们想让连接在网络上的另一台计算机做点什么事情(例如,从网络上的某台主机下载文件),我们都需要有协议。但是当我们经常在自己的个人电脑上进行文件存盘操作时,就**不需要任何网络协议**,除非这个用来存储文件的磁盘是网络上的某个文件服务器的磁盘。

协议通常有两种不同的形式。一种是使用便于人来阅读和理解的文字描述。另一种是使用让计算机能够理解的程序代码。这两种不同形式

的协议都必须能够对网络上的信息交换过程做出精确的解释。

ARPANET的研制经验表明,对于非常复杂的计算机网络协议,其结构应该是层次式的。我们可以举一个简单的例子来说明划分层次的概念。

现在假定我们在主机1和主机2之间通过一个通信网络传送文件。这是一项比较复杂的工作,因为需要做不少的工作。

我们可以将要做的工作划分为三类。第一类工作与传送文件直接有关。例如,发送端的文件传送应用程序应当确信接收端的文件管理程序已做好接收和存储文件的准备。若两台主机所用的文件格式不一样,则至少其中的一台主机应完成文件格式的转换。这两项工作可用一个文件传送模块来完成。这样,两台主机可将文件传送模块作为最高的一层(图1-17)。在这两个模块之间的虚线表示两台主机系统交换文件和一些有关文件交换的命令。

图1-17 划分层次的举例

但是,我们并不想让文件传送模块完成全部工作的细节,这样会使文件传送模块过于复杂。可以再设立一个通信服务模块,用来保证文件和文件传送命令可靠地在两个系统之间交换。也就是说,让位于上面的文件传送模块利用下面的通信服务模块所提供的服务。我们还可以看出,如果将位于上面的文件传送模块换成电子邮件模块,那么电子邮件模块同样可以利用在它下面的通信服务模块所提供的可靠通信的服务。

同样道理,我们再构造一个网络接入模块,让这个模块负责做与网络接口细节有关的工作,并向上层提供服务,使上面的通信服务模块能

够完成可靠通信的任务。

从上述简单例子可以更好地理解分层可以带来很多好处。如:

- (1) **各层之间是独立的**。某一层并不需要知道它的下一层是如何实现的,而仅仅需要知道该层通过层间的接口(即界面)所提供的服务。由于每一层只实现一种相对独立的功能,因而可将一个难以处理的复杂问题分解为若干个较容易处理的更小一些的问题。这样,整个问题的复杂程度就下降了。
- (2) **灵活性好**。当任何一层发生变化时(例如由于技术的变化),只要层间接口关系保持不变,则在这层以上或以下各层均不受影响。此外,对某一层提供的服务还可进行修改。当某层提供的服务不再需要时,甚至可以将这层取消。
 - (3) 结构上可分割开。各层都可以采用最合适的技术来实现。
- (4) **易于实现和维护**。这种结构使得实现和调试一个庞大而又复杂的系统变得易于处理,因为整个的系统已被分解为若干个相对独立的子系统。
- (5) **能促进标准化工作**。因为每一层的功能及其所提供的服务都已有了精确的说明。

分层时应注意使每一层的功能非常明确。若层数太少,就会使每一层的协议太复杂。但层数太多又会在描述和综合各层功能的系统工程任务时遇到较多的困难。通常各层所要完成的功能主要有以下一些(可以只包括一种,也可以包括多种):

- ①差错控制 使相应层次对等方的通信更加可靠。
- ②**流量控制** 发送端的发送速率必须使接收端来得及接收,不要太快。
- ③**分段和重装** 发送端将要发送的数据块划分为更小的单位,在接收端将其还原。

- **④复用和分用** 发送端几个高层会话复用一条低层的连接,在接收端 再进行分用。
- ⑤**连接建立和释放** 交换数据前先建立一条逻辑连接,数据传送结束后释放连接。

分层当然也有一些缺点,例如,有些功能会在不同的层次中重复出现,因而产生了额外开销。

计算机网络的各层及其协议的集合 就是网络的体系结构 (architecture)。换种说法,计算机网络的体系结构就是这个计算机 网络及其构件所应完成的功能的精确定义 [GREE82]。需要强调的 是:这些功能究竟是用何种硬件或软件完成的,则是一个遵循这种体 系结构的实现(implementation)的问题。体系结构的英文名词 architecture的原意是建筑学或建筑的设计和风格。它和一个具体的建筑物的概念很不相同。例如,我们可以走进一个明代的建筑物中,但 却不能走进一个明代的建筑风格之中。同理,我们也不能把一个具体 的计算机网络说成是一个抽象的网络体系结构。总之,体系结构是抽 象的,而实现则是具体的,是真正在运行的计算机硬件和软件。

1.7.3 具有五层协议的体系结构

OSI的七层协议体系结构(图1-18(a))的概念清楚,理论也较完整,但它既复杂又不实用。TCP/IP体系结构则不同,但它现在却得到了非常广泛的应用。TCP/IP是一个四层的体系结构(图1-18(b)),它包含应用层、运输层、网际层和网络接口层(用网际层这个名字是强调这一层是为了解决不同网络的互连问题)。不过从实质上讲,TCP/IP只有最上面的三层,因为最下面的网络接口层并没有什么具体内容。因此在学习计算机网络的原理时往往采取折中的办法,即综合OSI和TCP/IP的优点,采用一种只有五层协议的体系结构(图1-18(c)),这样既简洁又能将概念阐述清楚(12)。有时为了方便,也可把最底下两层称为网络接口层。

图1-18 计算机网络体系结构

现在结合互联网的情况,自上而下地、非常简要地介绍一下各层的主要功能。实际上,只有认真学习完本书各章的协议后才能真正弄清各层的作用。

(1) 应用层 (application layer)

应用层是体系结构中的最高层。应用层的任务是通过应用进程间的交互来完成特定网络应用。应用层协议定义的是应用进程间通信和交互的规则。这里的进程就是指主机中正在运行的程序。对于不同的网络应用需要有不同的应用层协议。在互联网中的应用层协议很多,如域名系统DNS,支持万维网应用的HTTP协议,支持电子邮件的SMTP协议,等等。我们把应用层交互的数据单元称为报文(message)。

(2) **运输**层(transport layer)

运输层的任务就是负责向**两台主机中进程之间的通信** 提供**通用的数据传输** 服务。应用进程利用该服务传送应用层报文。所谓"通用的",是指并不针对某个特定网络应用,而是多种应用可以使用同一个运输层服务。由于一台主机可同时运行多个进程,因此运输层有复用和分用的功能。复用就是多个应用层进程可同时使用下面运输层的服务,分用和复用相反,是运输层把收到的信息分别交付上面应用层中的相应进程。

运输层主要使用以下两种协议:

- **传输控制协议** TCP(Transmission Control Protocol)——提供面向连接的、可靠的数据传输服务,其数据传输的单位是**报文段**(segment)。
- 用户数据报协议 UDP(User Datagram Protocol)——提供无连接的、尽最大努力(best-effort)的数据传输服务(不保证数据传输的可靠性),其数据传输的单位是用户数据报。

顺便指出,有人愿意把运输层称为传输层,理由是这一层使用的TCP协议就叫做传输控制协议。从意思上看,传输和运输差别也不大。但OSI定义的第4层使用的是Transport,而不是Transmission。这两个字的含义还是有些差别。因此,使用运输层这个译名较为准确。

(3) **网络层** (network layer)

网络层负责为分组交换网上的不同**主机** 提供通信服务。在发送数据时,网络层把运输层产生的报文段或用户数据报封装成**分组** 或包 进行传送。在TCP/IP体系中,由于网络层使用IP协议,因此分组也叫做IP数据报,或简称为数据报。本书把"分组"和"数据报"作为同义词使用。

请注意:不要将运输层的"用户数据报UDP"和网络层的"IP数据报"弄混。此外,无论在哪一层传送的数据单元,都可笼统地用"分组"来表示。

网络层的另一个任务就是要选择合适的路由,使源主机运输层所传下来的分组,能够通过网络中的路由器找到目的主机。

这里要强调指出,网络层中的"**网络**"二字,已不是我们通常谈到的具体网络,而是在计算机网络体系结构模型中的第3层的名称。

互联网是由大量的**异构**(heterogeneous)网络通过**路由器**(router)相互连接起来的。互联网使用的网络层协议是无连接的**网际协议** IP(Internet Protocol)和许多种路由选择协议,因此互联网的网络层也叫做**网际层**或IP层。在本书中,网络层、网际层和IP层都是同义语。

(4) **数据链路**层(data link layer)

数据链路层常简称为链路层。我们知道,两台主机之间的数据传输,总是在一段一段的链路上传送的,这就需要使用专门的链路层的协议。在两个相邻结点之间传送数据时,数据链路层将网络层交下来的IP数据报组装成帧(framing),在两个相邻结点间的链路上传送帧(frame)。每一帧包括数据和必要的控制信息(如同步信息、地址信息、差错控制等)。

在接收数据时,控制信息使接收端能够知道一个帧从哪个比特开始和 到哪个比特结束。这样,数据链路层在收到一个帧后,就可从中提取 出数据部分,上交给网络层。

控制信息还使接收端能够检测到所收到的帧中有无差错。如发现有差错,数据链路层就简单地丢弃这个出了差错的帧,以免继续在网络中传送下去白白浪费网络资源。如果需要改正数据在数据链路层传输时出现的差错(这就是说,数据链路层不仅要检错,而且要纠错),那么就要采用可靠传输协议来纠正出现的差错。这种方法会使数据链路层的协议复杂些。

(5) **物理层** (physical layer)

在物理层上所传数据的单位是**比特**。发送方发送1(或0)时,接收方应当收到1(或0)而不是0(或1)。因此物理层要考虑用多大的电压代表"1"或"0",以及接收方如何识别出发送方所发送的比特。物理层还要确定连接电缆的插头应当有多少根引脚以及各引脚应如何连接。当然,解释比特代表的意思,就不是物理层的任务。请注意,传递信息所利用的一些物理媒体,如双绞线、同轴电缆、光缆、无线信道等,并不在物理层协议之内而是在物理层协议的下面。因此也有人把物理层下面的物理媒体当作第0层。

在互联网所使用的各种协议中,最重要的和最著名的就是TCP和IP两个协议。现在人们经常提到的TCP/IP并不一定是单指TCP和IP这两个具体的协议,而往往是表示互联网所使用的整个TCP/IP协议族(protocol suite)(13)。

图1-19说明的是应用进程的数据在各层之间的传递过程中所经历的变化。这里为简单起见,假定两台主机通过一台路由器连接起来。

图1-19 数据在各层之间的传递过程

假定主机1的应用进程 AP_1 向主机2的应用进程 AP_2 传送数据。 AP_1 先将其数据交给本主机的第5层(应用层)。第5层加上必要的控制信息 H_5 就变成了下一层的数据单元。第4层(运输层)收到这个数据单元后,加上本层的控制信息 H_4 ,再交给第3层(网络层),成为第3层的数据单元。依此类推。不过到了第2层(数据链路层)后,控制信息被分成两部分,分别加到本层数据单元的首部(H_2)和尾部(T_2);而第1层(物理层)由于是比特流的传送,所以不再加上控制信息。请注意,传送比特流时应从首部开始传送。

OSI参考模型把对等层次之间传送的数据单位称为该层的**协议数据单元** PDU(Protocol Data Unit)。这个名词现已被许多非OSI标准采用。

当这一串的比特流离开主机1经网络的物理媒体传送到路由器时,就从路由器的第1层依次上升到第3层。每一层都根据控制信息进行必要的操作,然后将控制信息剥去,将该层剩下的数据单元上交给更高的一层。当分组上升到了第3层时,就根据首部中的目的地址查找路由器中的转发表,找出转发分组的接口,然后往下传送到第2层,加上新的首部和尾部后,再到最下面的第1层,然后在物理媒体上把每一个比特发送出去。

当这一串的比特流离开路由器到达目的站主机2时,就从主机2的第1层按照上面讲过的方式,依次上升到第5层。最后,把应用进程 \mathbf{AP}_1 发送的数据交给目的站的应用进程 \mathbf{AP}_2 。

可以用一个简单例子来比喻上述过程。有一封信从最高层向下传。每经过一层就包上一个新的信封,写上必要的地址信息。包有多个信封的信件传送到目的站后,从第1层起,每层拆开一个信封后就把信封中的信交给它的上一层。传到最高层后,取出发信人所发的信交给收信人。

虽然应用进程数据要经过如图1-19所示的复杂过程才能送到终点的应用进程,但这些复杂过程对用户来说,却都被屏蔽掉了,以致应用进程 AP_1 觉得好像是直接把数据交给了应用进程 AP_2 。同理,任何两个同样的层次(例如在两个系统的第4层)之间,也好像如同图1-19中的水平虚线所示的那样,把数据(即数据单元加上控制信息)通过水平虚线直接传递给对方。这就是所谓的"**对等层**"(peer layers)之间的通信。我们以前经常提到的各层协议,实际上就是在各个对等层之间传递数据时的各项规定。

在文献中也还可以见到术语"**协议栈**"(protocol stack)。这是因为几个层次画在一起很像一个**栈**(stack)的结构。

1.7.4 实体、协议、服务和服务访问点

当研究开放系统中的信息交换时,往往使用**实体** (entity) 这一较为抽象的名词表示**任何可发送或接收信息的硬件或软件进程**。在许多情况下,实体就是一个特定的软件模块。

协议是控制两个对等实体(或**多个实体**)进行通信的规则的集合。 协议的语法方面的规则定义了所交换的信息的格式,而协议的语义方 面的规则就定义了发送者或接收者所要完成的操作,例如,在何种条 件下,数据必须重传或丢弃。

在协议的控制下,两个对等实体间的通信使得本层能够向上一层提供服务。要实现本层协议,还需要使用下面一层所提供的服务。

一定要弄清楚,协议和服务在概念上是很不一样的。

首先,协议的实现保证了能够向上一层提供服务。使用本层服务的实体只能看见服务而无法看见下面的协议。也就是说,下面的协议对上面的实体是透明的。

其次,**协议是"水平的"**,即协议是控制对等实体之间通信的规则。但**服务是"垂直的"**,即服务是由下层向上层通过层间接口提供的。另外,并非在一个层内完成的全部功能都称为服务。只有那些能够被高一层实体"看得见"的功能才能称之为"服务"。上层使用下层所提供的服务必须通过与下层交换一些命令,这些命令在OSI中称为**服务原语**。

在同一系统中相邻两层的实体进行交互(即交换信息)的地方,通常称为**服务访问点** SAP(Service Access Point)。服务访问点SAP是一个抽象的概念,它实际上就是一个逻辑接口,有点像邮政信箱(可以把邮件放入信箱和从信箱中取走邮件),但这种层间接口和两个设备之间的硬件接口(并行的或串行的)并不一样。OSI把层与层之间交换的数据的单位称为**服务数据单元** SDU(Service Data Unit),它可以与PDU不一样。例如,可以是多个SDU合成为一个PDU,也可以是一个SDU划分为几个PDU。

这样,在任何相邻两层之间的关系可概括为图1-20所示的那样。这里要注意的是,第n层的两个"实体(n)"之间通过"协议(n)"进行通信,而第n+1层的两个"实体(n+1)"之间则通过另外的"协议(n+1)"进行通信(每一层都使用不同的协议)。第n层向上面的第n+1层所提供的服务实际上已包括了在它以下各层所提供的服务。第n层的实体对第n+1层的实体就相当于一个服务提供者。在服务提供者的上一层的实体又称为"服务用户",因为它使用下层服务提供者所提供的服务。

图1-20 相邻两层之间的关系

计算机网络的协议还有一个很重要的特点,就是协议必须把**所有**不利的条件事先都估计到,而**不能假定一切都是正常的和非常理想的**。例如,两个朋友在电话中约好,下午3时在某公园门口碰头,并且约定"不见不散"。这就是一个很不科学的协议,因为任何一方临时有急

事来不了而又无法通知对方时(如对方的电话或手机都无法接通),则另一方按照协议就必须永远等待下去。因此,看一台计算机网络协议是否正确,不能只看在正常情况下是否正确,而且还必须**非常仔细地检查这个协议能否应付各种异常情况**。

下面是一个有关网络协议的非常著名的例子。

【例1-1】占据东、西两个山顶的蓝军1和蓝军2与驻扎在山谷的白军作战。其力量对比是:单独的蓝军1或蓝军2打不过白军,但蓝军1和蓝军2协同作战则可战胜白军。现蓝军1拟于次日正午向白军发起攻击。于是用计算机发送电文给蓝军2。但通信线路很不好,电文出错或丢失的可能性较大(没有电话可使用)。因此要求收到电文的友军必须送回一个确认电文。但此确认电文也可能出错或丢失。试问能否设计出一种协议使得蓝军1和蓝军2能够实现协同作战因而一定(即100%而不是99.999...%)取得胜利?

【解】蓝军1先发送:"拟于明日正午向白军发起攻击。请协同作战和确认。"

假定蓝军2收到电文后发回了确认。

然而现在蓝军1和蓝军2都不敢下决心进攻。因为, 蓝军2不知道此确认 电文对方是否正确地收到了。如未正确收到, 则蓝军1必定不敢贸然进 攻。在此情况下, 自己单方面发起进攻就肯定要失败。因此, 必须等 待蓝军1发送"对确认的确认"。

假定蓝军2收到了蓝军1发来的确认。但蓝军1同样关心自己发出的确认 是否已被对方正确地收到。因此还要等待蓝军2的"对<u>确认的确认</u>的确 认"。

这样无限循环下去,蓝军1和蓝军2都始终无法确定自己最后发出的电文对方是否已经收到(图1-21)。因此,在本例题给出的条件下,没有一种协议可以使蓝军1和蓝军2能够100%地确保胜利。

西边蓝军 东边蓝军 明日正午向白军发起攻击 确认 对"确认"的确认

.

对("确认"的确认)的确认

图1-21 无限循环的协议

这个例子告诉我们,看似非常简单的协议,设计起来要考虑的问题还是比较多的。

1.7.5 TCP/IP的体系结构

前面已经说过,TCP/IP的体系结构比较简单,它只有四层。图1-22给出了用这种四层协议表示方法的例子。请注意,图中的路由器在转发分组时最高只用到网络层而没有使用运输层和应用层。

图1-22 TCP/IP四层协议的表示方法举例

应当指出,技术的发展并不是遵循严格的OSI分层概念。实际上现在的互联网使用的TCP/IP体系结构有时已经演变成为图1-23所示的那样,即某些应用程序可以直接使用IP层,或甚至直接使用最下面的网络接口层 [PETE11],图1-23是这种表示方法。在图中,网络接口层有时也称为子网层。但本书不采用"子网层"这种容易弄混淆的表示方

法,因为这里的"子网"是指一些局域网和某些广域网(如ATM网),但从IP层来看,这些网络属于数据链路层,也就是属于网络接口层。我们在第4章讲到IP地址时,将会讲到"子网划分"。但子网划分中的"子网"和图1-23中"子网层"中的"子网"是完全不同的概念。

图1-23 TCP/IP体系结构的另一种表示方法

还有一种方法,就是分层次画出具体的协议来表示TCP/IP协议族(图 1-24),它的特点是上下两头大而中间小:应用层和网络接口层都有多种协议,而中间的IP层很小,上层的各种协议都向下汇聚到一个IP协议中。这种很像沙漏计时器形状的TCP/IP协议族表明:TCP/IP协议可以为各式各样的应用提供服务(所谓的everything over IP),同时TCP/IP协议也允许IP协议在各式各样的网络构成的互联网上运行(所谓的IP over everything)。正因为如此,互联网才会发展到今天的这种全球规模。从图1-24不难看出IP协议在互联网中的核心作用。

图1-24 沙漏计时器形状的TCP/IP协议族示意

【例1-2】 利用协议栈的概念,说明在互联网中常用的客户-服务器工作方式。

【解】图1-25中的主机A和主机B都各有自己的协议栈。主机A中的应用进程(即客户进程)的位置在最高的应用层。这个客户进程向主机B应用层的服务器进程发出请求,请求建立连接(图中的❶)。然后,主机B中的服务器进程接受A的客户进程发来的请求(图中的❷)。所有这些通信,实际上都需要使用下面各层所提供的服务。但若仅仅考虑客户进程和服务器进程的交互,则可把它们之间的交互看成是如图中的水平虚线所示的那样。

图1-25 在应用层的客户进程和服务器进程的交互

图1-26画出了三台主机的协议栈。主机C的应用层中同时有两个服务器进程在通信。服务器1在和主机A中的客户1通信,而服务器2在和主机B中的客户2通信。有的服务器进程可以同时向几百个或更多的客户进程提供服务。

图1-26 主机C的两个服务器进程分别向A和B的客户进程提供服务

本章的重要概念

- 计算机网络(可简称为网络)把许多计算机连接在一起,而互连网则把许多网络连接在一起,是网络的网络。
- 以小写字母i开始的internet(互连网)是通用名词,它泛指由多个计算机网络互连而成的网络。在这些网络之间的通信协议(即通信规则)可以是任意的。
- 以大写字母I开始的Internet(互联网)是专用名词,它指当前全球最大的、开放的、由众多网络相互连接而成的特定互连网,并采用TCP/IP协议族作为通信规则,且其前身是美国的ARPANET。 Internet的推荐译名是"因特网",但很少被使用。
- 互联网现在采用存储转发的分组交换技术,以及三层ISP结构。
- 互联网按工作方式可划分为边缘部分与核心部分。主机在网络的边缘部分,其作用是进行信息处理。路由器在网络的核心部分,其作用是按存储转发方式进行分组交换。
- 计算机通信是计算机中的进程(即运行着的程序)之间的通信。 计算机网络采用的通信方式是客户—服务器方式和对等连接方式 (P2P方式)。
- 客户和服务器都是指通信中所涉及的应用进程。客户是服务请求方,服务器是服务提供方。
- 按作用范围的不同, 计算机网络分为广域网WAN、城域网MAN、局域网LAN和个人区域网PAN。

- 计算机网络最常用的性能指标是:速率、带宽、吞吐量、时延 (发送时延、传播时延、处理时延、排队时延)、时延带宽积、 往返时间和信道(或网络)利用率。
- 网络协议即协议,是为进行网络中的数据交换而建立的规则。计算机网络的各层及其协议的集合,称为网络的体系结构。
- 五层协议的体系结构由应用层、运输层、网络层(或网际层)、数据链路层和物理层组成。运输层最重要的协议是TCP和UDP协议,而网络层最重要的协议是IP协议。

习题

- 1-01 计算机网络可以向用户提供哪些服务?
- 1-02 试简述分组交换的要点。
- **1-03** 试从多个方面比较电路交换、报文交换和分组交换的主要优缺点。
- **1-04** 为什么说互联网是自印刷术以来人类在存储和交换信息领域中的最大变革?
- **1-05** 互联网基础结构的发展大致分为哪几个阶段?请指出这几个阶段最主要的特点。
- 1-06 简述互联网标准制定的几个阶段。
- **1-07** 小写和大写开头的英文名字internet和Internet在意思上有何重要区别?
- 1-08 计算机网络都有哪些类别?各种类别的网络都有哪些特点?
- 1-09 计算机网络中的主干网和本地接入网的主要区别是什么?
- **1-10** 试在下列条件下比较电路交换和分组交换。要传送的报文共x(bit)。从源点到终点共经过k 段链路,每段链路的传播时延为d(s),数据率为b(bit/s)。在电路交换时电路的建立时间为s
 - (s) 。在分组交换时分组长度为p (bit) ,且各结点的排队等待时间

可忽略不计。问在怎样的条件下,分组交换的时延比电路交换的要小? (提示: 画一下草图观察k 段链路共有几个结点。)

- **1-11** 在上题的分组交换网中,设报文长度和分组长度分别为x 和(p +h)(bit),其中p 为分组的数据部分的长度,而h 为每个分组所带的控制信息固定长度,与p 的大小无关。通信的两端共经过k 段链路。链路的数据率为b (bit/s),但传播时延和结点的排队时间均可忽略不计。若打算使总的时延为最小,问分组的数据部分长度p 应取为多大?(提示:参考图1-12的分组交换部分,观察总的时延由哪几部分组成。)
- **1-12** 互联网的两大组成部分(边缘部分与核心部分)的特点是什么?它们的工作方式各有什么特点?
- **1-13** 客户-服务器方式与P2P对等通信方式的主要区别是什么? 有没有相同的地方?
- 1-14 计算机网络有哪些常用的性能指标?
- **1-15** 假定网络的利用率达到了90%。试估算一下现在的网络时延是它的最小值的多少倍?
- **1-16** 计算机通信网有哪些非性能特征? 非性能特征与性能指标有什么区别?
- **1-17** 收发两端之间的传输距离为1000km,信号在媒体上的传播速率为2×10⁸ m/s。试计算以下两种情况的发送时延和传播时延:
 - (1) 数据长度为10⁷bit, 数据发送速率为100kbit/s。
 - (2) 数据长度为10³bit,数据发送速率为1Gbit/s。

从以上计算结果可得出什么结论?

- **1-18** 假设信号在媒体上的传播速率为2.3×10⁸ m/s。媒体长度*l* 分别为:
 - (1) 10cm (网络接口卡)

- (2) 100m (局域网)
- (3) 100km (城域网)
- (4) 5000km (广域网)

试计算当数据率为1Mbit/s和10Gbit/s时在以上媒体中正在传播的比特数。

1-19 长度为100字节的应用层数据交给运输层传送,需加上20字节的TCP首部。再交给网络层传送,需加上20字节的IP首部。最后交给数据链路层的以太网传送,加上首部和尾部共18字节。试求数据的传输效率。数据的传输效率是指发送的应用层数据除以所发送的总数据(即应用数据加上各种首部和尾部的额外开销)。

若应用层数据长度为1000字节,数据的传输效率是多少?

- **1-20** 网络体系结构为什么要采用分层次的结构?试举出一些与分层体系结构的思想相似的日常生活的例子。
- 1-21 协议与服务有何区别?有何关系?
- 1-22 网络协议的三个要素是什么?各有什么含义?
- 1-23 为什么一个网络协议必须把各种不利的情况都考虑到?
- **1-24** 试述具有五层协议的网络体系结构的要点,包括各层的主要功能。
- 1-25 试举出日常生活中有关"透明"这种名词的例子。
- **1-26** 试解释以下名词:协议栈、实体、对等层、协议数据单元、服务访问点、客户、服务器、客户-服务器方式。
- 1-27 试解释everything over IP和IP over everything的含义。
- 1-28 假定要在网络上传送1.5MB的文件。设分组长度为1KB, 往返时间RTT=80ms。传送数据之前还需要有建立TCP连接的时间, 这时

间是2×RTT=160ms。试计算在以下几种情况下接收方收完该文件的最后一个比特所需的时间。

- (1) 数据发送速率为10Mbit/s, 数据分组可以连续发送。
- (2) 数据发送速率为10Mbit/s,但每发送完一个分组后要等待一个RTT时间才能再发送下一个分组。
- (3) 数据发送速率极快,可以不考虑发送数据所需的时间。但规定在每一个RTT往返时间内只能发送20个分组。
- (4) 数据发送速率极快,可以不考虑发送数据所需的时间。但在第一个RTT往返时间内只能发送一个分组,在第二个RTT内可发送两个分组,在第三个RTT内可发送四个分组(即 $2^{3-1}=2^2=4$ 个分组)。(这种发送方式见教材第5章TCP的拥塞控制部分。)
- **1-29** 有一个点对点链路,长度为50km。若数据在此链路上的传播速度为2×10⁸ m/s,试问链路的带宽应为多少才能使传播时延和发送100字节的分组的发送时延一样大?如果发送的是512字节长的分组,结果又应如何?
- 1-30 有一个点对点链路,长度为20000km。数据的发送速率是1kbit/s,要发送的数据有100bit。数据在此链路上的传播速度为2×10⁸ m/s。假定我们可以看见在线路上传输的比特,试画出我们看到的线路上的比特(画两个图,一个在100bit刚刚发送完时,另一个是再经过0.05s后)。
- **1-31** 条件同上题。但数据的发送速率改为1Mbit/s。和上题的结果相比较、你可以得出什么结论?
- **1-32** 以**1**Gbit/s的速率发送数据。试问在以距离或时间为横坐标时,一个比特的宽度分别是多少?
- **1-33** 我们在互联网上传送数据经常是从某个源点传送到某个终点,而并非传送过去又再传送回来。那么为什么往返时间RTT是个很重要的性能指标呢?

- (1)_注: 1994年全国自然科学名词审定委员会公布的名词中,interconnection是"互连",interconnection network是"互连网络",internetworking是"网际互连" [MINGCI94] 。但1997年8月全国科学技术名词审定委员会在其推荐名(一)中,将internet,internetwork,interconnection network的译名均推荐为"互联网",而在注释中说"又称互连网",即"互联网"与"互连网"这两个名词均可使用,但请注意,"联"和"连"并不是同义字。术语"互连"一定不能用"互联"代替。"连接"也一定不能用"联接"代替。
- (2) 注:根据 [MINGCI94] 第112页,名词node的标准译名是:节点08.078,结点12.023。再查一下12.023这一节是 **计算机网络**,因此,在计算机网络领域,node显然应当译为结点,而不是节点。但不知由于何种原因,在网络领域中,很多人宁愿使用不太准确的"节点",也不愿使用标准译名"结点"。
- (3)_注:最初的IAB中的A曾经代表Activities(活动)。在一些旧的RFC中使用的是这个旧名词。
- (4)_注: C/S方式表示Client/Server方式, P2P方式表示Peer-to-Peer方式。有时还可看到另外一种叫做浏览器-服务器方式,即B/S方式(Browser/Server方式),但这仍然是C/S方式的一种特例。
- (5)_注: 电路交换最初指的是连接电话机的双绞线对在交换机上进行的交换(交换机有人工的、步进的和程控的,等等)。后来随着技术的进步,采用了多路复用技术,出现了频分多路、时分多路、码分多路等,这时电路交换的概念就扩展到在双绞线、铜缆、光纤、无线媒体中多路信号中的某一路(某个频率、某个时隙、某个码序等)和另一路的交换。
- (6)_注:存储转发的概念最初是在1964年8月由巴兰(Baran)在美国兰德(Rand)公司的"论分布式通信"的研究报告中提出的。在1962~1965年,美国国防部远景研究规划局DARPA和英国的国家物理实验室NPL都在对新型的计算机通信网进行研究。1966年6月,NPL的戴维斯(Davies)首次提出"分组"(packet)这一名词[DAVI86]。1969年12月,美国的分组交换网ARPANET(当时仅4个结点)投入运行。从此,计算机网络的发展就进入了一个崭新的纪元。1973年英国国家物理实验室NPL也开通了分组交换试验网。现在大家都公认ARPANET为分组交换网之父。除英美两国外,法国也在1973年开通其分组交换网CYCLADES。
- (乙) 注:在本书中,bit表示"比特"。在计算机领域中,bit常译为"位"。在许多情况下,"比特"和"位"可以通用。在使用"位"作为单位时,请根据上下文特别注意是二进制的"位"还是十进制的"位"。请注意,bit在表示信息量(比特)或信息传输速率(比特/秒)时不能译为"位"。
- (8)_注:信道(channel)是指以传输媒体为基础的信号通路(包括有线或无线电线路),其作用是传输信号。

传送。在计算机领域中,所有的这些单位都使用大写字母,但在通信领域中,只有"1000"使用小写"k",其余的也都用大写。请注意,也有的书不这样严格区分,大写K既可表示1000,又可表示1024、因此这时要特别小心,不要弄错。

(10) 注: 当计算机网络中的通信量过大时,网络中的许多路由器的处理时延和排队时延将会大大增加,因而处理时延和排队时延有可能在总时延中占据主要成分。这时整个网络的性能就变差了。

(11)_注:鉴于"有线电"和"无线电"的关系日益密切,国际电信联盟ITU(International Telecommunication Union)已将国际电报电话咨询委员会CCITT和国际无线电咨询委员会CCIR合并为 电信标准化部门TSS(Telecommunication Standardization Sector)。从1993年3月1日起,CCITT和CCIR就不复存在。今后有关电信的标准就由国际电联(ITU)的电信标准化部门颁布,并在每个建议书的前面加上ITU-T这几个字,例如,原来的CCITT X.25现在就称为ITU-T X.25。为了节约经费,以后不再是每隔四年就出版全套的建议书,而是只出版新通过的建议书或旧建议书中有变化的部分。CCITT虽然不存在了,但过去CCITT所制定的标准并未作废,凡未过时的标准我们在需要时都可继续引用。

(12)_注:五层协议的体系结构只是为介绍网络原理而设计的,实际应用还是TCP/IP四层体系结构。

(13) 注: 请注意suite这个字的特殊读音/swi: t/, 不要读错。

第2章 物理层

本章首先讨论物理层的基本概念。然后介绍有关数据通信的重要概念,以及各种传输媒体的主要特点,但传输媒体本身并不属于物理层的范围。在讨论几种常用的信道复用技术后,对数字传输系统进行简单介绍。最后再讨论几种常用的宽带接入技术。

对于已具备一些必要的通信基础知识的读者,可以跳过本章的许多部分的内容。

本章最重要的内容是:

- (1) 物理层的任务。
- (2) 几种常用的信道复用技术。
- (3) 几种常用的宽带接入技术,主要是ADSL和FTTx。

2.1 物理层的基本概念

首先要强调指出,物理层考虑的是怎样才能在连接各种计算机的传输媒体上传输数据比特流,而不是指具体的传输媒体。大家知道,现有的计算机网络中的硬件设备和传输媒体的种类非常繁多,而通信手段也有许多不同方式。物理层的作用正是要尽可能地屏蔽掉这些传输媒体和通信手段的差异,使物理层上面的数据链路层感觉不到这些差异,这样就可使数据链路层只需要考虑如何完成本层的协议和服务,而不必考虑网络具体的传输媒体和通信手段是什么。用于物理层的协议也常称为物理层规程(procedure)。其实物理层规程就是物理层协议。只是在"协议"这个名词出现之前人们就先使用了"规程"这一名词。

可以将物理层的主要任务描述为确定与传输媒体的接口有关的一些特性,即:

- (1) **机械特性** 指明接口所用接线器的形状和尺寸、引脚数目和排列、固定和锁定装置,等。平时常见的各种规格的接插件都有严格的标准化的规定。
 - (2) 电气特性 指明在接口电缆的各条线上出现的电压的范围。
 - (3) 功能特性 指明某条线上出现的某一电平的电压的意义。
 - (4) 过程特性 指明对于不同功能的各种可能事件的出现顺序。

大家知道,数据在计算机内部多采用并行传输方式。但数据在通信线路(传输媒体)上的传输方式一般都是**串行传输**(这是出于经济上的考虑),即逐个比特按照时间顺序传输。因此物理层还要完成传输方式的转换。

具体的物理层协议种类较多。这是因为物理连接的方式很多(例如,可以是点对点的,也可以采用多点连接或广播连接),而传输媒体的种类也非常之多(如架空明线、双绞线、对称电缆、同轴电缆、光缆,以及各种波段的无线信道等)。因此在学习物理层时,应将重点放在掌握基本概念上。

考虑到使用本教材的一部分读者可能没有学过"接口与通信"或有关数据通信的课程,因此我们利用下面的2.2节简单地介绍一下有关现代通信的一些最基本的知识和最重要的结论(不给出证明)。已具有这部分知识的读者可略过这部分内容。

2.2 数据通信的基础知识

2.2.1 数据通信系统的模型

下面我们通过一个最简单的例子来说明数据通信系统的模型。这个例子就是两个计算机经过普通电话机的连线,再经过公用电话网进行通信。

如图2-1所示,一个数据通信系统可划分为三大部分,即**源系统**(或**发送端、发送方**)、**传输系统**(或**传输网络**)和**目的系统**(或**接收端、接收方**)。

图2-1 数据通信系统的模型

源系统一般包括以下两个部分:

- **源点** (source) 源点设备产生要传输的数据,例如,从计算机的键盘输入汉字,计算机产生输出的数字比特流。源点又称为**源** 站,或**信源**。
- **发送器** 通常源点生成的数字比特流要通过发送器编码后才能够在传输系统中进行传输。典型的发送器就是调制器。现在很多计算机使用内置的调制解调器(包含调制器和解调器),用户在计算机外面看不见调制解调器。

目的系统一般也包括以下两个部分:

- 接收器 接收传输系统传送过来的信号,并把它转换为能够被目的设备处理的信息。典型的接收器就是解调器,它把来自传输线路上的模拟信号进行解调,提取出在发送端置入的消息,还原出发送端产生的数字比特流。
- **终点** (destination) 终点设备从接收器获取传送来的数字比特流,然后把信息输出(例如,把汉字在计算机屏幕上显示出来)。终点又称为**目的站**,或**信宿**。

在源系统和目的系统之间的传输系统可以是简单的传输线,也可以是连接在源系统和目的系统之间的复杂网络系统。

图2-1所示的数据通信系统,说它是计算机网络也可以。这里我们使用数据通信系统这个名词,主要是为了从通信的角度来介绍一个数据通信系统中的一些要素,而有些数据通信的要素在计算机网络中可能就不去讨论它们了。

下面我们先要介绍一些常用术语。

通信的目的是传送**消息**(message)。如话音、文字、图像、视频等都是消息。**数据**(data)是运送消息的实体。根据RFC 4949给出的定义,数据是使用特定方式表示的信息,通常是有意义的符号序列。这种信息的表示可用计算机或其他机器(或人)处理或产生。**信号**(signal)则是数据的电气或电磁的表现。

根据信号中代表消息的参数的取值方式不同,信号可分为以下两大类:

- (1) **模拟信号**,或**连续信号**——代表消息的参数的取值是连续的。例如在图2-1中,用户家中的调制解调器到电话端局之间的用户线上传送的就是模拟信号。
- (2) **数字信号**,或**离散信号**——代表消息的参数的取值是离散的。例如在图2-1中,用户家中的计算机到调制解调器之间,或在电话网中继线上传送的就是数字信号。在使用时间域(或简称为时域)的波形表示数字信号时,代表不同离散数值的基本波形就称为码元(1)。在使

用二进制编码时,只有两种不同的码元,一种代表**0**状态而另一种代表**1**状态。

下面我们介绍有关信道的几个基本概念。

2.2.2 有关信道的几个基本概念

在许多情况下,我们要使用"**信道** (channel)"这一名词。信道和电路并不等同。信道一般都是用来表示向某一个方向传送信息的媒体。因此,一条通信电路往往包含一条发送信道和一条接收信道。

从通信的双方信息交互的方式来看,可以有以下三种基本方式:

- (1) **单向通信** 又称为**单工通信**,即只能有一个方向的通信而没有 反方向的交互。无线电广播或有线电广播以及电视广播就属于这种类 型。
- (2) **双向交替通信** 又称为**半双工通信**,即通信的双方都可以发送信息,但不能双方同时发送(当然也就不能同时接收)。这种通信方式是一方发送另一方接收,过一段时间后可以再反过来。
- (3) **双向同时通信** 又称为**全双工通信**,即通信的双方可以同时发送和接收信息。

单向通信只需要一条信道,而双向交替通信或双向同时通信则都需要两条信道(每个方向各一条)。显然,双向同时通信的传输效率最高。

这里要提醒读者注意,有时人们也常用"**单工**"这个名词表示"双向交替通信"。如常说的"单工电台"并不是只能进行单向通信。正因为如此,ITU-T才不采用"单工"、"半双工"和"全双工"这些容易弄混的术语作为正式的名词。

来自信源的信号常称为**基带信号**(即基本频带信号)。像计算机输出的代表各种文字或图像文件的数据信号都属于基带信号。基带信号往往包含有较多的低频成分,甚至有直流成分,而许多信道并不能传输这种低频分量或直流分量。为了解决这一问题,就必须对基带信号进行**调制**(modulation)。

调制可分为两大类。一类是仅仅对基带信号的波形进行变换,使它能够与信道特性相适应。变换后的信号仍然是基带信号。这类调制称为基带调制。由于这种基带调制是把数字信号转换为另一种形式的数字信号,因此大家更愿意把这种过程称为编码(coding)。另一类调制则需要使用载波(carrier)进行调制,把基带信号的频率范围搬移到较高的频段,并转换为模拟信号,这样就能够更好地在模拟信道中传输。经过载波调制后的信号称为带通信号(即仅在一段频率范围内能够通过信道),而使用载波的调制称为带通调制。

(1) 常用编码方式

常用编码方式如图2-2所示。

图2-2 数字信号常用的编码方式

- 不归零制 正电平代表1. 负电平代表0。
- 归零制 正脉冲代表1. 负脉冲代表0。
- **曼彻斯特编码** 位周期中心的向上跳变代表0,位周期中心的向下跳变代表1。但也可反过来定义。
- **差分曼彻斯特编码** 在每一位的中心处始终都有跳变。位开始边界有跳变代表**0**,而位开始边界没有跳变代表**1**。

从信号波形中可以看出,曼彻斯特(Manchester)编码产生的信号频率比不归零制高。从自同步能力来看,不归零制不能从信号波形本身中提取信号时钟频率(这叫做没有自同步能力),而曼彻斯特编码具有自同步能力。

(2) 基本的带通调制方法

图2-3给出了最基本的调制方法。

图2-3 最基本的三种调制方法

- **调幅** (AM) 即载波的振幅随基带数字信号而变化。例如, 0或 1分别对应于无载波或有载波输出。
- **调频**(FM) 即载波的频率随基带数字信号而变化。例如,0或 1分别对应于频率 f_1 或 f_2 。
- **调相** (PM) 即载波的初始相位随基带数字信号而变化。例如,0或1分别对应于相位0度或180度。

为了达到更高的信息传输速率,必须采用技术上更为复杂的多元制的振幅相位混合调制方法。例如,**正交振幅调制** QAM(Quadrature Amplitude Modulation)。

有了上述的一些基本概念之后, 我们再讨论信道的极限容量。

2.2.3 信道的极限容量

几十年来,通信领域的学者一直在努力寻找提高数据传输速率的途径。这个问题很复杂,因为任何实际的信道都不是理想的,都不可能以任意高的速率进行传送。我们知道,数字通信的优点就是:虽然信号在信道上传输时会不可避免地产生失真,但在接收端只要我们从失真的波形中能够识别出原来的信号,那么这种失真对通信质量就没有影响。例如,图2-4(a)表示信号通过实际的信道传输后虽然有失真,但在接收端还可识别并恢复出原来的码元。但图2-4(b)就不同了,这时信号的失真已很严重,在接收端无法识别码元是1还是0。码元传输的速率越高,或信号传输的距离越远,或噪声干扰越大,或传输媒体质量越差,在接收端的波形的失真就越严重。

图2-4 数字信号通过实际的信道

从概念上讲、限制码元在信道上的传输速率的因素有以下两个。

(1) 信道能够通过的频率范围

具体的信道所能通过的频率范围总是有限的。信号中的许多高频分量往往不能通过信道。像图2-4所示的发送信号是一种典型的矩形脉冲信号,它包含很丰富的高频分量。如果信号中的高频分量在传输时受到衰减,那么在接收端收到的波形前沿和后沿就变得不那么陡峭了,每一个码元所占的时间界限也不再是很明确的,而是前后都拖了"尾巴"。这样,在接收端收到的信号波形就失去了码元之间的清晰界限。这种现象叫做码间串扰。严重的码间串扰使得本来分得很清楚的出了著名的奈氏准则。他给出了在假定的理想条件下,为了避免码间串扰,码元的传输速率的上限值。奈氏准则的推导已超出本书的范围,这可在通信原理教科书中查阅到。我们需要知道的就是:在任何信道中,码元传输的速率是有上限的,传输速率超过此上限,就会出现严重的码间串扰的问题,使接收端对码元的判决(即识别)成为不可能。

如果信道的频带越宽,也就是能够通过的信号高频分量越多,那么就可以用更高的速率传送码元而不出现码间串扰。

(2) 信噪比

噪声存在于所有的电子设备和通信信道中。由于噪声是随机产生的,它的瞬时值有时会很大,因此噪声会使接收端对码元的判决产生错误(1误判为0或0误判为1)。但噪声的影响是相对的。如果信号相对较强,那么噪声的影响就相对较小。因此,信噪比就很重要。所谓信噪

比就是信号的平均功率和噪声的平均功率之比,常记为S/N,并用分贝(dB)作为度量单位。即:

信噪比(dB) = 10
$$\log_{10}(S/N)$$
 (dB) (2-1)

例如,当S/N = 10时,信噪比为10dB,而当S/N = 1000时,信噪比为30dB。

在1948年,信息论的创始人香农(Shannon)推导出了著名的**香农公式**。香农公式指出:**信道的极限信息传输速率** C 是

$$C = W \log_2(1+S/N)$$
 (bit/s) (2-2)

式中,W为信道的带宽(以Hz为单位);S为信道内所传信号的平均功率;N为信道内部的高斯噪声功率。香农公式的推导可在通信原理教科书中找到。这里只给出其结果。

香农公式表明,**信道的带宽或信道中的信噪比越大,信息的极限传输速率就越高**。香农公式指出了信息传输速率的上限。香农公式的意义在于:只要信息传输速率低于信道的极限信息传输速率,就一定存在某种办法来实现无差错的传输。不过,香农没有告诉我们具体的实现方法。这要由研究通信的专家去寻找。

从以上所讲的不难看出,对于频带宽度已确定的信道,如果信噪比也不能再提高了,并且码元传输速率也达到了上限值,那么还有什么办法提高信息的传输速率呢?这就是用编码的方法**让每一个码元携带更多比特的信息量**。我们可以用个简单的例子来说明这个问题。

假定我们的基带信号是:

101011000110111010...

如果直接传送,则每一个码元所携带的信息量是1bit。现将信号中的每3个比特编为一个组,即101,011,000,110,111,010,...。3个比特共有8种不同的排列。我们可以用不同的调制方法来表示这样的信号。例如,用8种不同的振幅,或8种不同的频率,或8种不同的相位进行调制。假定我们采用相位调制,用相位 ϕ_0 表示000, ϕ_1 表示001, ϕ_2 表示010,..., ϕ_7 表示111。这样,原来的18个码元的信号就转换为

由6个新的码元(即由原来的每三个bit构成一个新的码元)组成的信号:

$$101011000110111010\cdots = \phi_5 \phi_3 \phi_0 \phi_6 \phi_7 \phi_2 \cdots$$

也就是说,若以同样的速率发送码元,则同样时间所传送的信息量就提高到了3倍。

自从香农公式发表后,各种新的信号处理和调制方法不断出现,其目的都是为了尽可能地接近香农公式给出的传输速率极限。在实际信道上能够达到的信息传输速率要比香农的极限传输速率低不少。这是因为在实际信道中,信号还要受到其他一些损伤,如各种脉冲干扰和在传输中产生的失真,等等。这些因素在香农公式的推导过程中并未考虑。

2.3 物理层下面的传输媒体

传输媒体 也称为传输介质或传输媒介,它就是数据传输系统中在发送器和接收器之间的物理通路。传输媒体可分为两大类,即导引型传输媒体和非导引型传输媒体(这里的"导引型"的英文就是guided,也可译为"导向传输媒体")。在导引型传输媒体中,电磁波被导引沿着固体媒体(铜线或光纤)传播,而非导引型传输媒体就是指自由空间,在非导引型传输媒体中电磁波的传输常称为无线传输。图2-5是电信领域使用的电磁波的频谱。

图2-5 电信领域使用的电磁波的频谱

2.3.1 导引型传输媒体

1. 双绞线

双绞线也称为双扭线,是最古老但又是最常用的传输媒体。把两根互相绝缘的铜导线并排放在一起,然后用规则的方法**绞合**(twist)起来就构成了双绞线。绞合可减少对相邻导线的电磁干扰。使用双绞线最多的地方就是到处都有的电话系统。几乎所有的电话都用双绞线连接到电话交换机。这段从用户电话机到交换机的双绞线称为**用户线**或用户环路(subscriber loop)。通常将一定数量的这种双绞线捆成电缆,在其外面包上护套。

模拟传输和数字传输都可以使用双绞线,其通信距离一般为几到十几公里。距离太长时就要加放大器以便将衰减了的信号放大到合适的数值(对于模拟传输),或者加上中继器以便对失真了的数字信号进行整形(对于数字传输)。导线越粗,其通信距离就越远,但导线的价格也越高。在数字传输时,若传输速率为每秒几个兆比特,则传输距离可达几公里。由于双绞线的价格便宜且性能也不错,因此使用十分广泛。

为了提高双绞线抗电磁干扰的能力,可以在双绞线的外面再加上一层用金属丝编织成的屏蔽层。这就是**屏蔽双绞线**,简称为STP(Shielded Twisted Pair)。它的价格当然比**无屏蔽双绞线** UTP(Unshielded Twisted Pair)要贵一些。图2-6是无屏蔽双绞线和屏蔽双绞线的示意图。

图2-6 双绞线的示意图

1991年,美国电子工业协会EIA(Electronic Industries Association)和电信行业协会TIA(Telecommunications Industries Association)联合发布了标准EIA/TIA-568,它的名称是"商用建筑物电信布线标准"(Commercial Building Telecommunications Cabling Standard)。这个标准规定了用于室内传送数据的无屏蔽双绞线和屏蔽双绞线的标

准。1995年将布线标准更新为EIA/TIA-568-A。此标准规定了5个种类的UTP标准(从1类线到5类线)。对传送数据来说,现在最常用的UTP是5类线(Category 5或CAT5)。5类线与3类线的最主要的区别就是大大增加了每单位长度的绞合次数。3类线的绞合长度是7.5至10cm,而5类线的绞合长度是0.6至0.85cm。图2-6(c)表示5类线具有比3类线更高的绞合度。此外,5类线在线对间的绞合度和线对内两根导线的绞合度都经过了更精心的设计,并在生产中加以严格的控制,使干扰在一定程度上得以抵消,从而提高了线路的传输速率。表2-1给出了常用的绞合线的类别、带宽和典型应用。

表2-1 常用的绞合线的类别、带宽和典型应用

绞合线类	带宽	线缆特点	典型应用
别		I Home Dit N	
3	16MHz	2对4芯双绞线	模拟电话; 曾用于
			传统以太网
			(10Mbit/s)
4	20MHz	4对8芯双绞线	曾用于令牌局域
			\overline{M}
5	100MHz	与4类相比增加了	传输速率不超过
		绞合度	100Mbit/s的应用
5E (超 5	125MHz	与5类相比衰减更	传输速率不超过
类)		小	1Gbit/s的应用
6	250MHz	与5类相比改善了	传输速率高于
		串扰等性能	1Gbit/s的应用
7	600MHz	使用屏蔽双绞线	传输速率高于
			10Gbit/s的应用

无论是哪种类别的双绞线,衰减都随频率的升高而增大。使用更粗的导线可以降低衰减,但却增加了导线的重量和价格。信号应当有足够大的振幅,以便在噪声干扰下能够在接收端正确地被检测出来。双绞线的最高速率还与数字信号的编码方法有很大的关系。

2. 同轴电缆

同轴电缆由内导体铜质芯线(单股实心线或多股绞合线)、绝缘层、网状编织的外导体屏蔽层(也可以是单股的)以及保护塑料外层所组成(图2-7)。由于外导体屏蔽层的作用,同轴电缆具有很好的抗干扰特性,被广泛用于传输较高速率的数据。

图2-7 同轴电缆的结构

在局域网发展的初期曾广泛地使用同轴电缆作为传输媒体。但随着技术的进步,在局域网领域基本上都采用双绞线作为传输媒体。目前同轴电缆主要用在有线电视网的居民小区中。同轴电缆的带宽取决于电缆的质量。目前高质量的同轴电缆的带宽已接近1GHz。

3. 光缆

从20世纪70年代到现在,通信和计算机都发展得非常快。据统计,计算机的运行速度大约每10年提高10倍。但在通信领域里,信息的传输速率则提高得更快,从20世纪70年代的56kbit/s提高到现在的100Gbit/s(使用光纤通信技术),并且这个速率还在继续提高。因此光纤通信就成为现代通信技术中的一个十分重要的领域。

光纤通信就是利用光导纤维(以下简称为光纤)传递光脉冲来进行通信。有光脉冲相当于1,而没有光脉冲相当于0。由于可见光的频率非常高,约为10⁸MHz的量级,因此一个光纤通信系统的传输带宽远远大于目前其他各种传输媒体的带宽。

光纤是光纤通信的传输媒体。在发送端有光源,可以采用发光二极管或半导体激光器,它们在电脉冲的作用下能产生出光脉冲。在接收端利用光电二极管做成光检测器,在检测到光脉冲时可还原出电脉冲。

光纤通常由非常透明的石英玻璃拉成细丝,主要由纤芯和包层构成双层通信圆柱体。纤芯很细,其直径只有8~100μm(1μm=10⁻⁶m)。光波正是通过纤芯进行传导的。包层较纤芯有较低的折射率。当光线从高折射率的媒体射向低折射率的媒体时,其折射角将大于入射角(图2-8)。因此,如果入射角足够大,就会出现全反射,即光线碰到

包层时就会折射回纤芯。这个过程不断重复,光也就沿着光纤传输下去。

图2-8 光线在光纤中的折射

图2-9画出了光波在纤芯中传播的示意图。现代的生产工艺可以制造出超低损耗的光纤,即做到光线在纤芯中传输数公里而基本上没有什么衰耗。这一点乃是光纤通信得到飞速发展的最关键因素。

图2-9 光波在纤芯中的传播

图2-9中只画了一条光线。实际上,只要从纤芯中射到纤芯表面的光线的入射角大于某个临界角度,就可产生全反射。因此,可以存在多条不同角度入射的光线在一条光纤中传输。这种光纤就称为**多模光纤**(图2-10(a))。光脉冲在多模光纤中传输时会逐渐展宽,造成失真。因此多模光纤只适合于近距离传输。若光纤的直径减小到只有一个光的波长,则光纤就像一根波导那样,它可使光线一直向前传播,而不会产生多次反射。这样的光纤称为**单模光纤**(图2-10(b))。单模光纤的纤芯很细,其直径只有几个微米,制造起来成本较高。同时单模光纤的光源要使用昂贵的半导体激光器,而不能使用较便宜的发光二极管。但单模光纤的衰耗较小,在100Gbit/s的高速率下可传输100公里而不必采用中继器。

图2-10 多模光纤(a)和单模光纤(b)的比较

在光纤通信中常用的三个波段的中心分别位于850nm, 1300nm和1550nm⁽²⁾。后两种情况的衰减都较小。850nm波段的衰减较大, 但在此波段的其他特性均较好。所有这三个波段都具有25000~30000GHz的带宽, 可见光纤的通信容量非常大。

由于光纤非常细,连包层一起的直径也不到0.2mm。因此必须将光纤做成很结实的光缆。一根光缆少则只有一根光纤,多则可包括数十至数百根光纤,再加上加强芯和填充物就可以大大提高其机械强度。必要时还可放入远供电源线。最后加上包带层和外护套,就可以使抗拉强度达到几公斤,完全可以满足工程施工的强度要求。图2-11为四芯光缆剖面的示意图。

图2-11 四芯光缆剖面的示意图

光纤不仅具有通信容量非常大的优点,而且还具有其他的一些特点:

(1) 传输损耗小,中继距离长,对远距离传输特别经济。

- (2) 抗雷电和电磁干扰性能好。这在有大电流脉冲干扰的环境下尤为重要。
 - (3) 无串音干扰, 保密性好, 也不易被窃听或截取数据。
- (4) 体积小, 重量轻。这在现有电缆管道已拥塞不堪的情况下特别有利。例如, 1km长的1000对双绞线电缆约重8000kg, 而同样长度但容量大得多的一对两芯光缆仅重100kg。但要把两根光纤精确地连接起来, 需要使用专用设备。

由于生产工艺的进步,光纤的价格不断降低,因此现在已经非常广泛地应用在计算机网络、电信网络和有线电视网络的主干网络中,因为它提供了很高的带宽,而且性价比很高。在高速局域网中也使用得很多。

最后要提一下,在导引型传输媒体中,还有一种是**架空明线**(铜线或铁线)。这是在20世纪初就已大量使用的方法——在电线杆上架设的互相绝缘的明线。架空明线安装简单,但通信质量差,受气候环境等影响较大。在许多国家现在都已停止了铺设架空明线。目前在我国的一些农村和边远地区的通信仍使用架空明线。

2.3.2 非导引型传输媒体

前面介绍了三种导引型传输媒体。但是,若通信线路要通过一些高山或岛屿,有时就很难施工。即使是在城市中,挖开马路敷设电缆也不是一件很容易的事。当通信距离很远时,敷设电缆既昂贵又费时。但利用无线电波在自由空间的传播就可较快地实现多种通信。由于这种通信方式不使用上一节所介绍的各种导引型传输媒体,因此就将自由空间称为"非导引型传输媒体"。

特别要指出的是,由于信息技术的发展,社会各方面的节奏变快了。人们不仅要求能够在运动中进行电话通信(即移动电话通信),而且还要求能够在运动中进行计算机数据通信(俗称上网)。因此在最近十几年无线电通信发展得特别快,因为利用无线信道进行信息的传输,是在运动中通信的唯一手段。

无线传输可使用的频段很广。从前面给出的图2-5可以看出,人们现在已经利用了好几个波段进行通信。紫外线和更高的波段目前还不能用于通信。图2-5的最下面一行还给出了ITU对波段取的正式名称。例如,LF波段的波长是从1km到10km(对应于30kHz~300kHz)。LF,MF和HF的中文名字分别是低频、中频(300kHz~3MHz)和高频(3MHz~30MHz)。更高的频段中的V,U,S和E分别对应于Very,Ultra,Super和Extremely,相应的频段的中文名字分别是甚高频(30MHz~300MHz)、特高频(300MHz~3GHz)、超高频(3GHz~30GHz)和极高频(30GHz~300GHz),最高的一个频段中的T是Tremendously,目前尚无标准译名。在低频LF的下面其实还有几个更低的频段,如甚低频VLF、特低频ULF、超低频SLF和极低频ELF等,因不用于一般的通信,故未画在图中。

短波通信(即高频通信)主要是靠电离层的反射。但电离层的不稳定所产生的衰落现象和电离层反射所产生的多径效应(3),使得短波信道的通信质量较差。因此,当必须使用短波无线电台传送数据时,一般都是低速传输,即速率为一个标准模拟话路传几十至几百比特/秒。只有在采用复杂的调制解调技术后,才能使数据的传输速率达到几千比特/秒。

无线电微波通信在数据通信中占有重要地位。微波的频率范围为300MHz~300GHz(波长1m~1mm),但主要使用2~40GHz的频率范围。微波在空间主要是直线传播。由于微波会穿透电离层而进入宇宙空间,因此它不像短波那样可以经电离层反射传播到地面上很远的地方。传统的微波通信主要有两种方式,即**地面微波接力通信**和卫星通信。

由于微波在空间是直线传播的,而地球表面是个曲面,因此其传播距离受到限制,一般只有50km左右。但若采用100m高的天线塔,则传播距离可增大到100km。为实现远距离通信必须在一条微波通信信道的两个终端之间建立若干个中继站。中继站把前一站送来的信号经过放大后再发送到下一站,故称为"接力"。大多数长途电话业务使用4~6GHz的频率范围。

微波接力通信可传输电话、电报、图像、数据等信息。其主要特点是:

- (1) 微波波段频率很高,其频段范围也很宽,因此其通信信道的容量很大。
- (2) 因为工业干扰和天电干扰的主要频谱成分比微波频率低得多,对微波通信的危害比对短波和米波(即甚高频)通信小得多,因而微波传输质量较高。
- (3) 与相同容量和长度的电缆载波通信比较,微波接力通信建设投资少、见效快、易干跨越山区、江河。

当然, 微波接力通信也存在如下的一些缺点:

- (1) 相邻站之间必须直视(常称为视距LOS(Line Of Si ght)),不能有障碍物。有时一个天线发射出的信号也会分成几条略有差别的路径到达接收天线,因而造成失真。
 - (2) 微波的传播有时也会受到恶劣气候的影响。
 - (3) 与电缆通信系统比较、微波通信的隐蔽性和保密性较差。
 - (4) 对大量中继站的使用和维护要耗费较多的人力和物力。

常用的卫星通信方法是在地球站之间利用位于约3万6千公里高空的人造同步地球卫星作为中继器的一种微波接力通信。对地静止通信卫星就是在太空的无人值守的微波通信的中继站。可见卫星通信的主要优缺点大体上应当和地面微波通信差不多。

卫星通信的最大特点是通信距离远,且通信费用与通信距离无关。同步地球卫星发射出的电磁波能辐射到地球上的通信覆盖区的跨度达1万8千多公里,面积约占全球的三分之一。只要在地球赤道上空的同步轨道上,等距离地放置3颗相隔120度的卫星,就能基本上实现全球的通信。

和微波接力通信相似,卫星通信的频带很宽,通信容量很大,信号所受到的干扰也较小,通信比较稳定。为了避免产生干扰,卫星之间相隔如果不小于2度,那么整个赤道上空只能放置180个同步卫星。好在人们想出来可以在卫星上使用不同的频段来进行通信。因此总的通信容量资源还是很大的。

卫星通信的另一特点就是具有**较大的传播时延**。由于各地球站的天线仰角并不相同,因此不管两个地球站之间的地面距离是多少(相隔一条街或相隔上万公里),从一个地球站经卫星到另一地球站的传播时延在250~300ms之间。一般可取为270ms。这和其他的通信有较大差别(请注意:这和两个地球站之间的距离没有什么关系)。对比之下,地面微波接力通信链路的传播时延一般取为3.3μs/km。

请注意,"卫星信道的传播时延较大"并不等于"用卫星信道传送数据的时延较大"。这是因为传送数据的总时延除了传播时延外,还有发送时延、处理时延和排队时延等部分。传播时延在总时延中所占的比例有多大,取决于具体情况。但利用卫星信道进行交互式的网上游戏显然是不合适的。

在十分偏远的地方,或在离大陆很远的海洋中,要进行通信就几乎完全要依赖于卫星通信。卫星通信还非常适合于广播通信,因为它的覆盖面很广。但从安全方面考虑,卫星通信系统的保密性则相对较差。

通信卫星本身和发射卫星的火箭造价都较高。受电源和元器件寿命的限制,同步卫星的使用寿命一般为10~15年。卫星地球站的技术较复杂,价格还比较贵。这就使得卫星通信的费用较高。

除上述的同步卫星外,低轨道卫星通信系统已开始使用。低轨道卫星相对于地球不是静止的,而是不停地围绕地球旋转。目前,大功率、大容量、低轨道宽带卫星已开始在空间部署,并构成了空间高速链路。由于低轨道卫星离地球很近,因此轻便的手持通信设备都能够利用卫星进行通信。

从20世纪90年代起,无线移动通信和互联网一样,得到了飞速的发展。与此同时,使用无线信道的计算机局域网也获得了越来越广泛的应用。我们知道,要使用某一段无线电频谱进行通信,通常必须得到本国政府有关无线电频谱管理机构的许可证。但是,也有一些无线电频段是可以自由使用的(只要不干扰他人在这个频段中的通信),这正好满足计算机无线局域网的需求。图2-12给出了美国的ISM频段,现在的无线局域网就使用其中的2.4GHz和5.8GHz频段。ISM是Industrial,Scientific,and Medical(工业、科学与医药)的缩写,即所谓的"工、科、医频段"。各国的ISM标准有可能略有差别。

图2-12 无线局域网使用的ISM频段

红外通信、激光通信也使用非导引型媒体。可用于近距离的笔记本电 脑相互传送数据。

2.4 信道复用技术

2.4.1 频分复用、时分复用和统计时分复用

复用(multiplexing)是通信技术中的基本概念。在计算机网络中的信道广泛地使用各种复用技术。下面对信道复用技术进行简单的介绍。

图2-13(a)表示 A_1 , B_1 和 C_1 分别使用一个单独的信道和 A_2 , B_2 和 C_2 进行通信,总共需要三个信道。但如果在发送端使用一个复用器,就可以让大家合起来使用一个共享信道进行通信。在接收端再使用分用器,把合起来传输的信息分别送到相应的终点。图2-13(b)是复用的示意图。当然复用要付出一定代价(共享信道由于带宽较大因而费用也较高,再加上复用器和分用器)。但如果复用的信道数量较大,那么在经济上还是合算的。

图2-13 复用的示意图

最基本的复用就是频**分复用** FDM(Frequency Division Multiplexing)和**时分复用** TDM(Time Division Multiplexing)。频分复用最简单,其特点如图2-14(a)所示。用户在分配到一定的频带后,在通信过程

中自始至终都占用这个频带。可见**频分复用的所有用户在同样的时间占用不同的带宽资源**(请注意,这里的"带宽"是频率带宽而不是数据的发送速率)。而时分复用则是将时间划分为一段段等长的时分复用帧(TDM帧)。每一个时分复用的用户在每一个TDM帧中占用固定序号的时隙。为简单起见,在图2-14(b)中只画出了4个用户A,B,C和D。每一个用户所占用的时隙周期性地出现(其周期就是TDM帧的长度)。因此TDM信号也称为等时(isochronous)信号。可以看出,时分复用的所有用户是在不同的时间占用同样的频带宽度。这两种复用方法的优点是技术比较成熟,但缺点是不够灵活。时分复用则更有利于数字信号的传输。

图2-14 频分复用 (a) 和时分复用 (b)

在使用频分复用时,若每一个用户占用的带宽不变,则当复用的用户数增加时,复用后的信道的总带宽就跟着变宽。例如,传统的电话通信每一个标准话路的带宽是4kHz(即通信用的3.1kHz加上两边的保护频带),那么若有1000个用户进行频分复用,则复用后的总带宽就是4MHz。但在使用时分复用时,每一个时分复用帧的长度是不变的,始终是125μs。若有1000个用户进行时分复用,则每一个用户分配到的时隙宽度就是125μs的千分之一,即0.125μs,时隙宽度变得非常窄。

我们应注意到,时隙宽度非常窄的脉冲信号所占的频谱范围也是非常宽的。

在进行通信时,**复用器** (multiplexer)总是和**分用器** (demultiplexer)成对地使用。在复用器和分用器之间是用户共享的高速信道。分用器的作用正好和复用器相反,它把高速信道传送过来的数据进行分用,分别送交到相应的用户。

当使用时分复用系统传送计算机数据时,由于计算机数据的突发性质,一个用户对已经分配到的子信道的利用率一般是不高的。当用户在某一段时间暂时无数据传输时(例如用户正在键盘上输入数据或正在浏览屏幕上的信息),那就只能让已经分配到手的子信道空闲着,而其他用户也无法使用这个暂时空闲的线路资源。图2-15说明了这一概念。这里假定有4个用户A,B,C和D进行时分复用。复用器按A→B→C→D的顺序依次对用户的时隙进行扫描,然后构成一个个时分复用帧。图中共画出了4个时分复用帧,每个时分复用帧有4个时隙。请注意,在时分复用帧中,每一个用户所分配到的时隙长度缩短了,在本例中,只有原来的1/4。可以看出,当某用户暂时无数据发送时,在时分复用帧中分配给该用户的时隙只能处于空闲状态,其他用户即使一直有数据要发送,也不能使用这些空闲的时隙。这就导致复用后的信道利用率不高。

图2-15 时分复用可能会造成线路资源的浪费

统计时分复用STDM(Statistic TDM)是一种改进的时分复用,它能明显地提高信道的利用率。**集中器**(concentrator)常使用这种统计时分复用。图2-16是统计时分复用的原理图。一个使用统计时分复用的集中器连接4个低速用户,然后将它们的数据集中起来通过高速线路发送到一个远地计算机。

图2-16 统计时分复用的工作原理

统计时分复用使用STDM帧来传送复用的数据。但每一个STDM帧中的时隙数小于连接在集中器上的用户数。各用户有了数据就随时发往集中器的输入缓存,然后集中器按顺序依次扫描输入缓存,把缓存中的输入数据放入STDM帧中。对没有数据的缓存就跳过去。当一个帧的数据放满了,就发送出去。因此,STDM帧不是固定分配时隙,而是按需动态地分配时隙。因此统计时分复用可以提高线路的利用率。我们还可看出,在输出线路上,某一个用户所占用的时隙并不是周期性地出现。因此统计复用又称为**异步时分复用**,而普通的时分复用称为**同步时分复用**。这里应注意的是,虽然统计时分复用的输出线路上的数据率小于各输入线路数据率的总和,但**从平均的角度来看,这二者是平衡的**。假定所有的用户都不间断地向集中器发送数据,那么集中器肯定无法应付,它内部设置的缓存都将溢出。所以集中器能够正常工作的前提是假定各用户都是间歇地工作。

由于STDM帧中的时隙并不是固定地分配给某个用户,因此在每个时隙中还必须有用户的地址信息,这是统计时分复用必须要有的和不可避免的一些开销。在图2-16输出线路上每个时隙之前的短时隙(白色)就是放入这样的地址信息。使用统计时分复用的集中器也叫做**智能复用器**,它能提供对整个报文的存储转发能力(但大多数复用器一次只能存储一个字符或一个比特),通过排队方式使各用户更合理地共享信道。此外,许多集中器还可能具有路由选择、数据压缩、前向纠错等功能。

最后要强调一下,TDM帧和STDM帧都是在物理层传送的比特流中所划分的帧。这种"帧"和我们以后要讨论的数据链路层的"帧"是完全不同的概念,不可弄混。

2.4.2 波分复用

波分复用 WDM(Wavelength Division Multiplexing)就是光的频分复用。光纤技术的应用使得数据的传输速率空前提高。现在人们借用传统的载波电话的频分复用的概念,就能做到使用一根光纤来同时传输多个频率很接近的光载波信号。这样就使光纤的传输能力可成倍地提高。由于光载波的频率很高,因此习惯上用波长而不用频率来表示所使用的光载波。这样就得出了波分复用这一名词。最初,人们只能在一根光纤上复用两路光载波信号。这种复用方式称为波分复用WDM。随着技术的发展,在一根光纤上复用的光载波信号的路数越来越多。现在已能做到在一根光纤上复用几十路或更多路数的光载波信号。于是就使用了密集波分复用DWDM(Dense Wavelength Division Multiplexing)这一名词。例如,每一路的数据率是40Gbit/s,使用DWDM后,如果在一根光纤上复用64路,就能够获得2.56Tbit/s的数据率。图2-17给出了波分复用的概念。

图2-17 波分复用的概念

图 2-17 表示 8 路传输速率均为 2.5Gbit/s 的光载波(其波长均为 1310nm)。经光的调制后,分别将波长变换到1550~1557nm,每个光载波相隔1nm。(这里只是为了说明问题的方便。实际上,对于密集波分复用,光载波的间隔一般是0.8或1.6nm。)这8个波长很接近的光载波经过**光复用器**(波分复用的复用器又称为**合波器**)后,就在一根光纤中传输。因此,在一根光纤上数据传输的总速率就达到了 8×2.5Gbit/s=20Gbit/s。但光信号传输了一段距离后就会衰减,因此对衰减了的光信号必须进行放大才能继续传输。现在已经有了很好的**掺**

铒光纤放大器 EDFA(Erbium Doped Fiber Amplifier)。它是一种光放大器,不需要像以前那样复杂,先把光信号转换成电信号,经过电放大器放大后,再转换成为光信号。EDFA不需要进行光电转换而直接对光信号进行放大,并且在1550nm波长附近有35nm(即4.2THz)频带范围提供较均匀的、最高可达40~50dB的增益。两个光纤放大器之间的光缆线路长度可达120km,而**光复用器和光分用器**(波分复用的分用器又称为**分波器**)之间的无光电转换的距离可达600km(只需放入4个EDFA光纤放大器)。

在地下铺设光缆是耗资很大的工程。因此人们总是在一根光缆中放入尽可能多的光纤(例如,放入100根以上的光纤),然后对每一根光纤使用密集波分复用技术。因此,对于具有100根速率为2.5Gbit/s光纤的光缆,采用16倍的密集波分复用,得到一根光缆的总数据率为100×40Gbit/s,或4Tbit/s。这里的T为10¹²,中文名词是"太",即"兆兆"。

现在光纤通信的容量和传输距离还在不断增长。据报道 [W-NEWS14],我国在2014年已在一根普通单模光纤在C+L波段以375路、每路267.27Gbit/s的超大容量超密集波分复用传输80公里,传输总容量达到100.23Tbit/s。当然,要达到普遍商用化的水平,可能还需要不少的时间。

2.4.3 码分复用

码分复用CDM(Code Division Multiplexing)是另一种共享信道的方法。实际上,人们更常用的名词是**码分多址CDMA**(Code Division Multiple Access)。每一个用户可以在同样的时间使用同样的频带进行通信。由于**各用户使用经过特殊挑选的不同码型,因此各用户之间不会造成干扰**。码分复用最初用于军事通信,因为这种系统发送的信号有很强的抗干扰能力,**其频谱类似于白噪声,不易被敌人发现**。随着技术的进步,CDMA设备的价格和体积都大幅度下降,因而现在已广泛使用在民用的移动通信中,特别是在无线局域网中。采用CDMA可提高通信的话音质量和数据传输的可靠性,减少干扰对通信的影响,增大通信系统的容量(是使用**GSM**的4~5倍(4)),降低手机的平均发射功率,等等。下面简述其工作原理。

在CDMA中,每一个比特时间再划分为m个短的间隔,称为**码片**(chip)。通常m的值是64或128。在下面的原理性说明中,为了画图简单起见,我们设m为8。

使用CDMA的每一个站被指派一个唯一的m bit **码片序列** (chip sequence)。一个站如果要发送比特1,则发送它自己的m bit 码片序列。如果要发送比特0,则发送该码片序列的二进制反码。例如,指派给S站的8bit码片序列是00011011。当S发送比特1时,它就发送序列00011011,而当S发送比特0时,就发送11100100。为了方便,我们按惯例将码片中的0写为-1,将1写为+1。因此S站的码片序列是(-1-1-1+1+1-1+1+1)。

现假定S站要发送信息的数据率为b bit/s。由于每一个比特要转换成m个比特的码片,因此S站实际上发送的数据率提高到mb bit/s,同时S站所占用的频带宽度也提高到原来数值的m 倍。这种通信方式是**扩频**(spread spectrum)通信中的一种。扩频通信通常有两大类。一种是**直接序列扩频** DSSS(Direct Sequence Spread Spectrum),如上面讲的使用码片序列就是这一类。另一种是**跳频扩频** FHSS(Frequency Hopping Spread Spectrum)。

CDMA系统的一个重要特点就是这种体制给每一个站分配的码片序列不仅必须各不相同,并且还必须互相**正交**(orthogonal)。在实用的系统中是使用**伪随机码序列**。

用数学公式可以很清楚地表示码片序列的这种正交关系。令向量 S 表示站S的码片向量,再令 T 表示其他任何站的码片向量。两个不同站的码片序列正交,就是向量 S 和 T 的规格化**内积** (inner product)都是0:

$$\mathbf{S} \bullet \mathbf{T} \equiv \frac{1}{m} \sum_{i=1}^{m} S_i T_i = 0 \tag{2-3}$$

例如,向量S为(-1-1-1+1+1-1+1+1),同时设向量T为(-1-1+1-1+1+1+1+1-1),这相当于T站的码片序列为00101110。将向量S和T的各分量值代入(2-3)式就可看出这两个码片序列是正交的。不仅如此,向量S和各站码片反码的向量的内积也是0。另外一点也很重要,即任何一个码片向量和该码片向量自己的规格化内积都是1:

$$S \bullet S = \frac{1}{m} \sum_{i=1}^{m} S_i S_i = \frac{1}{m} \sum_{i=1}^{m} S_i^2 = \frac{1}{m} \sum_{i=1}^{m} (\pm 1)^2 = 1$$
 (2-4)

而一个码片向量和该码片反码的向量的规格化内积值是-1。这从(2-4)式可以很清楚地看出,因为求和的各项都变成了-1。

现在假定在一个CDMA系统中有很多站都在相互通信,每一个站所发送的是数据比特和本站的码片序列的乘积,因而是本站的码片序列(相当于发送比特1)和该码片序列的二进制反码(相当于发送比特0)的组合序列,或什么也不发送(相当于没有数据发送)。我们还假定所有的站所发送的码片序列都是同步的,即所有的码片序列都在同一个时刻开始。利用全球定位系统 GPS就不难做到这点。

现假定有一个X站要接收S站发送的数据。X站就必须知道S站所特有的码片序列。X站使用它得到的码片向量 S 与接收到的未知信号进行求内积的运算。X站接收到的信号是各个站发送的码片序列之和。根据上面的公式(2-3)和(2-4),再根据叠加原理(假定各种信号经过信道到达接收端是叠加的关系),那么求内积得到的结果是: 所有其他站的信号都被过滤掉(其内积的相关项都是0),而只剩下S站发送的信号。当S站发送比特1时,在X站计算内积的结果是+1,当S站发送比特0时,内积的结果是-1。

图2-18是CDMA的工作原理。设S站要发送的数据是110三个码元。再设CDMA将每一个码元扩展为8个码片,而S站选择的码片序列为(-1-1-1+1+1-1+1+1)。S站发送的扩频信号为 S_x 。我们应当注意到,S站发送的扩频信号 S_x 中,只包含互为反码的两种码片序列。T站选择的码片序列为(-1-1+1-1+1+1-1),T站也发送110三个码元,而T站的扩频信号为 T_x 。因所有的站都使用相同的频率,因此每一个站都能够收到所有的站发送的扩频信号。对于我们的例子,所有的站收到的都是叠加的信号 S_x+T_x 。

当接收站打算收S站发送的信号时,就用S站的码片序列与收到的信号求规格化内积。这相当于分别计算 $S \cdot S_x$ 和 $S \cdot T_x$ 。显然, $S \cdot S_x$ 就是S站发送的数据比特,因为在计算规格化内积时,按(2-3)式相加的各项,或者都是+1,或者都是-1;而 $S \cdot T_x$ 一定是零,因为相加的8项中的+1和-1各占一半,因此总和一定是零。

2.5 数字传输系统

在早期电话网中,从市话局到用户电话机的用户线采用最廉价的双绞线电缆,而长途干线采用的是频分复用FDM的模拟传输方式。由于数字通信与模拟通信相比,无论是传输质量上还是从经济上都有明显的优势,目前,长途干线大都采用时分复用PCM的数字传输方式。因此,现在的模拟线路就基本上只剩下从用户电话机到市话交换机之间的这一段几公里长的用户线上。

现代电信网,早已不只是话音这一种业务,还包括视频、图像和各种数据业务。因此需要一种能承载来自其他各种业务网络数据的传输网络。在数字化的同时,光纤开始成为长途干线最主要的传输媒体。光纤的高带宽适用于承载今天的高速率数据业务(比如视频会议)和大量复用的低速率业务(比如话音)。基于这个原因,当前光纤和要求高带宽传输的技术还在共同发展。但早期的数字传输系统存在着许多缺点,其中最主要的是以下两个:

- (1) **速率标准不统一**。由于历史的原因,多路复用的速率体系有两个互不兼容的国际标准,北美和日本的T1速率(1.544Mbit/s)和欧洲的E1速率(2.048Mbit/s)。但是再往上的复用,日本又使用了第三种不兼容的标准。这样,国际范围的基于光纤的高速数据传输就很难实现。
- (2) **不是同步传输**。在过去相当长的时间,为了节约经费,各国的数字网主要采用**准同步**方式。在准同步系统中由于各支路信号的时钟频率有一定的偏差,给时分复用和分用带来许多麻烦。当数据传输的速率很高时,收发双方的时钟同步就成为很大的问题。

为了解决上述问题,美国在1988年首先推出了一个数字传输标准,叫做**同步光纤网** SONET(Synchronous Optical Network)。整个的同步网络的各级时钟都来自一个非常精确的主时钟(通常采用昂贵的铯原子钟,其精度优于±1×10⁻¹¹)。SONET为光纤传输系统定义了同步传输的线路速率等级结构,其传输速率以51.84Mbit/s为基础(5),大约对应于T3/E3的传输速率,此速率对电信号称为第1级**同步传送信号**(Synchronous Transport Signal),即STS-1;对光信号则称为第1级光载波(Optical Carrier),即OC-1。现已定义了从51.84Mbit/s(即OC-1)一直到9953.280Mbit/s(即OC-192/STS-192)的标准。

ITU-T以美国标准SONET为基础,制定出国际标准**同步数字系列** SDH(Synchronous Digital Hierarchy),即1988年通过的G.707~G.709等三个建议书。到1992年又增加了十几个建议书。一般可认为SDH与SONET是同义词,但其主要不同点是:SDH的基本速率为155.52Mbit/s,称为**第1级同步传递模块**(Synchronous Transfer Module),即STM-1,相当于SONET体系中的OC-3速率。表2-2为SONET和SDH的比较。为方便起见,在谈到SONET/SDH的常用速率时,往往不使用速率的精确数值而是使用表中第二列给出的近似值作为简称。

线路速率(Mbit/s)	线路速率的近似值	SONET 符号	ITU-T 符号	相当的话路数(每个话路 64 kbit/s)
51.840	-	OC-1/STS-1	_	810
155.520	155 Mbit/s	OC-3/STS-3	STM-1	2430
622.080	622 Mbit/s	OC-12/STS-12	STM-4	9720
1244.160	-	OC-24/STS-24	STM-8	19440
2488.320	2.5 Gbit/s	OC-48/STS-48	STM-16	38880
4976.640	-	OC-96/STS-96	STM-32	77760
9953.280	10 Gbit/s	OC-192/STS-192	STM-64	155 520
39813.120	40 Gbit/s	OC-768/STS-768	STM-256	622 080

表2-2 SONET的OC级/STS级与SDH的STM级的对应关系

SDH/SONET定义了标准光信号,规定了波长为1310nm和1550nm的激光源。在物理层定义了帧结构。SDH的帧结构是以STM-1为基础的,更高的等级是用N个STM-1复用组成STM-N,如4个STM-1构成STM-4,16个STM-1构成STM-16。

SDH/SONET标准的制定,使北美、日本和欧洲这三个地区三种不同的数字传输体制在STM-1等级上获得了统一。各国都同意将这一速率以及在此基础上的更高的数字传输速率作为国际标准。这是第一次真正

实现了数字传输体制上的世界性标准。现在SDH/SONET标准已成为公认的新一代理想的传输网体制,因而对世界电信网络的发展具有重大的意义。SDH标准也适合于微波和卫星传输的技术体制。

2.6 宽带接入技术

在第1章中已讲过,用户要连接到互联网,必须先连接到某个ISP,以便获得上网所需的IP地址。在互联网的发展初期,用户都是利用电话的用户线通过调制解调器连接到ISP的,经过多年的努力,从电话的用户线接入到互联网的速率最高只能达到56kbit/s。为了提高用户的上网速率,近年来已经有多种宽带技术进入用户的家庭。然而目前"宽带"尚无统一的定义。很早以前,有人认为只要接入到互联网的速率远大于56kbit/s就是宽带。后来美国联邦通信委员会FCC认为只要双向速率之和超过200kbit/s就是宽带。以后,宽带的标准也不断提高。2015年1月,美国联邦通信委员会FCC又对接入网的"宽带"进行了重新定义,将原定的宽带下行速率调整至25Mbit/s,原定的宽带上行速率调整至3Mbit/s。

从宽带接入的媒体来看,可以划分为两大类。一类是有线宽带接入,而另一类是无线宽带接入。由于无线宽带接入比较复杂,我们将在第9章中讨论这个问题。下面我们只限于讨论有线宽带接入。

2.6.1 ADSL技术

非对称数字用户线 ADSL(Asymmetric Digital Subscriber Line)技术是用数字技术对现有的模拟电话用户线进行改造,使它能够承载宽带数字业务。虽然标准模拟电话信号的频带被限制在300~3400Hz的范围内(这是电话局的交换机设置的标准话路频带),但用户线本身实际可通过的信号频率却超过1MHz。ADSL技术把0~4kHz低端频谱留给传统电话使用,而把原来没有被利用的高端频谱留给用户上网使用。ADSL的ITU的标准是G.992.1(或称G.dmt,表示它使用DMT技术,见后面的介绍)。由于用户在上网时主要是从互联网下载各种文档,而向互联网发送的信息量一般都不太大,因此ADSL的下行(从ISP到用户)带宽都远远大于上行(从用户到ISP)带宽。"非对称"这个名词就是这样得出的。

ADSL的传输距离取决于数据率和用户线的线径(用户线越细,信号传输时的衰减就越大)。例如,0.5mm线径的用户线,传输速率为1.5~2.0Mbit/s时可传送5.5km;但当传输速率提高到6.1Mbit/s时,传输距离就缩短为3.7km。如果把用户线的线径减小到0.4mm,那么在6.1Mbit/s的传输速率下就只能传送2.7km。此外,ADSL所能得到的最高数据传输速率还与实际的用户线上的信噪比密切相关。

ADSL在用户线(铜线)的两端各安装一个ADSL调制解调器。这种调 制解调器的实现方案有许多种。我国目前采用的方案是离散多音调 DMT (Discrete Multi-Tone) 调制技术。这里的"多音调"就是"多载 波"或"多子信道"的意思。DMT调制技术采用频分复用的方法... 40kHz以上一直到1.1MHz的高端频谱划分为许多子信道, 信道用干上行信道,而249个子信道用干下行信道,并使用不同的载波 (即不同的音调) 进行数字调制。这种做法相当于在一对用户线上使 用许多小的调制解调器并行地传送数据。由于用户线的具体条件往往 相差很大(距离、线径、受到相邻用户线的干扰程度等都不同) 此ADSL采用自适应调制技术使用户线能够传送尽可能高的数据率。 当ADSL启动时、用户线两端的ADSL调制解调器就测试可用的频率、 各子信道受到的干扰情况、以及在每一个频率上测试信号的传输质 量。这样就使ADSL能够选择合适的调制方案以获得尽可能高的数据 率。可见ADSL**不能保证固定的数据率**。对于质量很差的用户线甚至 无法开通ADSL。因此电信局需要定期检查用户线的质量,以保证能 够提供向用户承诺的最高的ADSL数据率。图2-19所示为这种DMT技 术的频谱分布。

图2-19 DMT技术的频谱分布

基于ADSL的接入网由以下三大部分组成: **数字用户线接入复用器** DSLAM(DSL Access Multiplexer),用户线和用户家中的一些设施(见图2-20)。数字用户线接入复用器包括许多ADSL调制解调器。

ADSL调制解调器又称为接入端接单元 ATU(Access Termination Unit)。由于ADSL调制解调器必须成对使用,因此把在电话端局(或远端站)和用户家中所用的ADSL调制解调器分别记为ATU-C(C代表端局(Central Office))和ATU-R(R代表远端(Remote))。用户电话通过电话分离器(Splitter)和ATU-R连在一起,经用户线到端局,并再次经过一个电话分离器把电话连到本地电话交换机。电话分离器是无源的,它利用低通滤波器将电话信号与数字信号分开。将电话分离器做成无源的是为了在停电时不影响传统电话的使用。一个DSLAM可支持多达500~1000个用户。若按每户6Mbit/s计算,则具有1000个端口的DSLAM(这就需要用1000个ATU-C)应有高达6Gbit/s的转发能力。因ATU-C要使用数字信号处理技术,因此DSLAM的价格较高。

图2-20 基于ADSL的接入网的组成

ADSL最大的好处就是可以利用现有电话网中的用户线(铜线),而不需要重新布线。有许多老的建筑,电话线都早已存在。但若重新铺设光纤,往往会对原有建筑产生一些损伤。从尽量少损坏原有建筑考虑,使用ADSL进行宽带接入就非常合适了。到2006年3月为止,全世界的ADSL用户已超过1.5亿户。现在ADSL调制解调器已经可以做得很轻巧(见图2-21)。需要注意的是,ADSL调制解调器有两个插口。较大的一个是RJ-45插口,用来和计算机相连(见图中的至PC)。较小的是RJ-11插口,用来和电话分离器相连。电话分离器则更小巧(见图2-22),用户只需要用三个带有RJ-11插头的连线就可以连接好,使用起来非常方便。

图2-22 电话分离器(有三个RJ-11插口)

最后我们要指出,ADSL借助于在用户线两端安装的ADSL调制解调器(即ATU-R和ATU-C)对数字信号进行了调制,使得调制后的数字信号的频谱适合在原来的用户线上传输。用户线本身并没有发生变化。但给用户的感觉是:加上ADSL调制解调器的用户线好像能够直接把用户计算机产生的数字信号传送到远方的ISP。正因为这样,原来的用户线加上两端的调制解调器就变成了可以传送数字信号的数字用户线DSL。

ADSL技术也在发展。现在ITU-T已颁布了更高速率的ADSL标准,即 G 系 列 标 准 。 例 如 , ADSL2 (G.992.3 和 G.992.4) 和 ADSL2 + (G.992.5),它们都称为第二代ADSL,目前已开始被许多ISP采用和投入运营。第二代ADSL改进的地方主要是:

- (1) 通过提高调制效率得到了更高的数据率。例如,ADSL2要求至少应支持下行8Mbit/s、上行800kbit/s的速率。而ADSL2+则将频谱范围从1.1MHz扩展至2.2MHz(相应的子信道数目也增多了),下行速率可达16Mbit/s(最大传输速率可达25Mbit/s),而上行速率可达800kbit/s。
- (2) 采用了**无缝速率自适应** 技术SRA(Seamless Rate Adaptation),可在运营中不中断通信和不产生误码的情况下,根据线路的实时状况,自适应地调整数据率。
- (3) 改善了线路质量评测和故障定位功能,这对提高网络的运行维护水平具有非常重要的意义。

这里我们要强调一下,虽然ADSL很受居民用户欢迎,但ADSL并不适合于企业。这是因为企业往往需要使用上行信道发送大量数据给许多用户。为了满足企业的需要,ADSL技术有几种变型。例如,对称DSL,即SDSL(Symmetric DSL),它把带宽平均分配到下行和上行两个方向,很适合于企业使用,每个方向的速度分别为384kbit/s或1.5Mbit/s,距离分别为5.5km或3km。还有一种使用一对线或两对线的对称DSL叫做HDSL(High speed DSL),是用来取代T1线路的**高速数字用户线**,数据速率可达768kbit/s或1.5Mbit/s,距离为2.7~3.6km。

还有一种比ADSL更快的、用于短距离传送(300~1800m)的VDSL(Very high speed DSL),即**甚高速数字用户线**,也很值得注意。这也就是ADSL的快速版本。VDSL的下行速率达50~55Mbit/s,上行速率是1.5~2.5Mbit/s。2011年ITU-T颁布了更高速率的VDSL2(即第二代的VDSL)的标准G.993.2。VDSL2能够提供的上行和下行的速率都能够达到100Mbit/s。用这样的速率能够观看非常流畅的视频节目。

以上这些不同的高速DSL都可记为xDSL。

近年来,高速DSL技术的发展又有了新的突破。2011年ITU-T成立了G.fast项目组。这个项目组致力于短距离超高速接入新标准的制定,目标是使用单对铜线在100m距离内能够提供超过500Mbit/s的接入速率。我国的华为公司积极参加了此标准的制定工作,是该标准的主要技术贡献者之一。在龙国柱博士的领导下,华为公司于2012年首先研制成功Giga DSL样机,实现了超高速的DSL接入。华为的Giga DSL使用时分双工TDD(Time Division Duplex)和OFDM技术,有效地降低了辐射干扰和设备功耗,在100m内上下行总速率可达1Gbit/s,而在200m内,接入速率可超过500Mbit/s。

目前在欧洲,这种超高速DSL的接入方式很受欢迎。这是因为在欧洲,具有历史意义的古老建筑非常之多,而各国政府都已制定了很严格的保护文物的法律。如果为了实现高速上网就在这些古老建筑的墙上钻洞铺设光缆,那么就破坏了文物,因而被法律禁止。值得注意的是,这些国家的电话普及率很高,进入这些建筑的电话线都早已铺设好了。因此,利用现有电话线来实现高速接入,在欧洲就特别受到欢迎。

在我国,情况有些不同。在建设新的高楼时,就已经把各种电缆的管线位置预留好了。因此,高楼中的用户可以根据自己的需要选择合适

的接入方式(不一定非要采用xDSL技术)。因此上述这种超高速的 DSL接入方式在国内使用得尚不普遍。

2.6.2 光纤同轴混合网(HFC网)

光纤同轴混合网(HFC网,HFC是Hybrid Fiber Coax的缩写)是在目前覆盖面很广的有线电视网的基础上开发的一种居民宽带接入网,除可传送电视节目外,还能提供电话、数据和其他宽带交互型业务。最早的有线电视网是树形拓扑结构的同轴电缆网络,它采用模拟技术的频分复用对电视节目进行单向广播传输。但以后有线电视网进行了改造,变成了现在的光纤同轴混合网(HFC网)。这种光纤同轴混合网HFC的主要特点如下。

为了提高传输的可靠性和电视信号的质量,HFC网把原有线电视网中的同轴电缆主干部分改换为光纤(图2-23)。光纤从头端连接到**光纤结点**(fiber node)。在光纤结点光信号被转换为电信号,然后通过同轴电缆传送到每个用户家庭。从头端到用户家庭所需的放大器数目也就减少到仅4~5个。连接到一个光纤结点的典型用户数是500左右,但不超过2000。

图2-23 HFC网的结构图

光纤结点与头端的典型距离为25km,而从光纤结点到其用户的距离则不超过2~3km。

原来的有线电视网的最高传输频率是450MHz,并且仅用于电视信号的下行传输。但现在的HFC网具有双向传输功能,而且扩展了传输频

带。根据有线电视频率配置标准GB/T 17786-1999, 目前我国的HFC网的频带划分如图2-24所示。

图2-24 我国的HFC网的频带划分

要使现有的模拟电视机能够接收数字电视信号,需要把一个叫做**机顶盒**(set-top box)的设备连接在同轴电缆和用户的电视机之间。但为了使用户能够利用HFC网接入到互联网,以及在上行信道中传送交互数字电视所需的一些信息,我们还需要增加一个为HFC网使用的调制解调器,它又称为**电缆调制解调器**(cablem odem)。电缆调制解调器可以做成一个单独的设备(类似于ADSL的调制解调器),也可以做成内置式的,安装在电视机的机顶盒里面。用户只要把自己的计算机连接到电缆调制解调器,就可方便地上网了。

美国的有线电视实验室CableLabs制定的**电缆调制解调器规约** DOCSIS (Data Over Cable Service Interface Specifications)的第一个版本 DOCSIS 1.0,已在1998年3月被ITU-T批准为国际标准。后来又有了 2001年的DOCSIS 2.0和2006年的DOCSIS 3.0等新的标准。

电缆调制解调器不需要成对使用,而只需安装在用户端。电缆调制解调器比ADSL使用的调制解调器复杂得多,因为它必须解决共享信道中可能出现的冲突问题。在使用ADSL调制解调器时,用户计算机所连接的电话用户线是该用户专用的,因此在用户线上所能达到的最高数据率是确定的,与其他ADSL用户是否在上网无关。但在使用HFC的电缆调制解调器时,在同轴电缆这一段用户所享用的最高数据率是不确定的,因为某个用户所能享用的数据率大小取决于这段电缆上现在有多少个用户正在传送数据。有线电视运营商往往宣传通过电缆调制解调器上网可以达到比ADSL更高的数据率(例如达到10Mbit/s甚至30Mbit/s),但只有在很少几个用户上网时才可能会是这样的。然而若出现大量用户(例如几百个)同时上网,那么每个用户实际的上网速率可能会低到难以忍受的程度。

2.6.3 FTTx技术

由于互联网上已经有了大量的视频信息资源,因此近年来宽带上网的普及率增长得很快。但是为了更快地下载视频文件,以及更加流畅地欣赏网上的各种高清视频节目,尽快地把用户的上网速率进行升级就成为ISP的重要任务。从技术上讲,光纤到户 FTTH(Fiber To The Home)应当是最好的选择,这也是广大网民最终所向往的。所谓光纤到户,就是把光纤一直铺设到用户家庭。只有在光纤进入用户的家门后,才把光信号转换为电信号。这样做就可以使用户获得最高的上网速率。

但光纤到户FTTH有两个问题:首先是目前的价格还不够便宜;其次是一般的家庭用户也并没有这样高的数据率的需求。要在网上流畅地观看视频节目,有数兆比特每秒的数据率就可以了,不一定非要使用100Mbit/s或更高的数据率。

在这种情况下,就出现了多种宽带光纤接入方式,称为FTTx,表示 Fiber To The...。这里字母x可代表不同的光纤接入地点。实际上,FTTx就是把光电转换的地方,从用户家中(这时x就是H)向外延伸到 离用户家门口有一定距离的地方。

其实,现在信号在陆地上长距离的传输,基本上都已经实现了光纤化。在前面所介绍的ADSL和HFC宽带接入方式中,用于远距离的传输媒体也早都使用了光缆。只是到了临近用户家庭的地方,才转为铜缆(电话的用户线和同轴电缆)。我们知道,一个家庭用户远远用不了一根光纤的通信容量。为了有效地利用光纤资源,在光纤干线和广大用户之间,还需要铺设一段中间的转换装置即光配线网 ODN(Optical Distribution Network),使得数十个家庭用户能够共享一根光纤干线。图2-25是现在广泛使用的无源光配线网的示意图。"无源"表明在光配线网中无须配备电源,因此基本上不用维护,其长期运营成本和管理成本都很低。无源的光配线网常称为无源光网络 PON(Passive Optical Network)。

图2-25 无源光配线网的组成

在图2-25中,光线路终端 OLT(Optical Line Terminal)是连接到光纤干线的终端设备。OLT把收到的下行数据发往无源的1: N光分路器(splitter),然后用广播方式向所有用户端的光网络单元 ONU(Optical Network Unit)发送。典型的光分路器使用分路比是1: 32,有时也可以使用多级的光分路器。每个ONU根据特有的标识只接收发送给自己的数据,然后转换为电信号发往用户家中。每一个ONU到用户家中的距离可根据具体情况来设置,OLT则给各ONU分配适当的光功率。如果ONU在用户家中,那就是光纤到户FTTH了。

当ONU发送上行数据时,先把电信号转换为光信号,光分路器把各ONU发来的上行数据汇总后,以TDMA方式发往OLT,而发送时间和长度都由OLT集中控制,以便有序地共享光纤主干。

光配线网采用波分复用, 上行和下行分别使用不同的波长。

无源光网络PON的种类很多,但最流行的有以下两种。

一种是以太网无源光网络EPON(Ethernet PON),已在2004年6月形成了IEEE的标准802.3ah。在链路层使用以太网协议,利用PON的拓扑

结构实现了以太网的接入。EPON的优点是: 与现有以太网的兼容性好,并且成本低,扩展性强,管理方便。

另一种是吉比特无源光网络GPON(Gigabit PON),其标准是ITU在2003年1月批准的ITU-TG.984。GPON采用**通用封装方法**GEM(Generic Encapsulation Method),可承载多业务,对各种业务类型都能够提供服务质量保证,是很有潜力的宽带光纤接入技术。

现在已有很多种不同的FTTx。除了光纤到户FTTH外,还有**光纤到路边** FTTC(C表示Curb)、**光纤到小区** FTTZ(Z表示Zone)、**光纤到大楼** FTTB(B表示Building)、**光纤到楼层** FTTF(F表示Floor)、**光纤到办公室** FTTO(O表示Office)、**光纤到桌面** FTTD(D表示Desk),等等。从ONU到用户的个人电脑一般使用以太网连接,使用5类线作为传输媒体。究竟选择何种接入方式最为合适,也就是说,究竟把光网络单元ONU放在什么地方,则应当通过详细的预算对比才能确定。从总的趋势来看,光网络单元ONU越来越靠近用户的家庭,因此就有了"光进铜退"的说法。

需要注意的是,目前有些网络运营商宣传所推出的"光纤到户",往往并非真正的FTTH,而是FTTx,对居民来说就是FTTB或FTTF。有的运营商把这种接入方式叫做"光纤宽带"或"光纤加局域网",这样可能较为准确。

本章的重要概念

- 物理层的主要任务就是确定与传输媒体的接口有关的一些特性, 如机械特性、电气特性、功能特性和过程特性。
- 一个数据通信系统可划分为三大部分,即源系统、传输系统和目的系统。源系统包括源点(或源站、信源)和发送器,目的系统包括接收器和终点(或目的站,或信宿)。
- 通信的目的是传送消息。如话音、文字、图像、视频等都是消息。数据是运送消息的实体。信号则是数据的电气或电磁的表现。
- 根据信号中代表消息的参数的取值方式不同,信号可分为模拟信号(或连续信号)和数字信号(或离散信号)。代表数字信号不同离散数值的基本波形称为码元。

- 根据双方信息交互的方式,通信可以划分为单向通信(或单工通信)、双向交替通信(或半双工通信)和双向同时通信(或全双工通信)。
- 来自信源的信号叫做基带信号。信号要在信道上传输就要经过调制。调制有基带调制和带通调制之分。最基本的带通调制方法有调幅、调频和调相。还有更复杂的调制方法,如正交振幅调制。
- 要提高数据在信道上的传输速率,可以使用更好的传输媒体,或使用先进的调制技术。但数据传输速率不可能被任意地提高。
- 传输媒体可分为两大类,即导引型传输媒体(双绞线、同轴电缆或光纤)和非导引型传输媒体(无线或红外或大气激光)。
- 常用的信道复用技术有频分复用、时分复用、统计时分复用、码分复用和波分复用(光的频分复用)。
- 最初在数字传输系统中使用的传输标准是脉冲编码调制PCM。现在高速的数字传输系统使用同步光纤网SONET(美国标准)或同步数字系列SDH(国际标准)。
- 用户到互联网的宽带接入方法有非对称数字用户线ADSL (用数字技术对现有的模拟电话用户线进行改造)、光纤同轴混合网HFC (在有线电视网的基础上开发的)和FTTx (即光纤到.....)。
- 为了有效地利用光纤资源,在光纤干线和用户之间广泛使用无源 光网络PON。无源光网络无须配备电源,其长期运营成本和管理 成本都很低。最流行的无源光网络是以太网无源光网络EPON和 吉比特无源光网络GPON。

习题

- 2-01 物理层要解决哪些问题?物理层的主要特点是什么?
- 2-02 规程与协议有什么区别?
- 2-03 试给出数据通信系统的模型并说明其主要组成构件的作用。
- **2-04** 试解释以下名词:数据,信号,模拟数据,模拟信号,基带信号,带通信号,数字数据,数字信号,码元,单工通信,半双工通信,全双工通信,串行传输,并行传输。
- 2-05 物理层的接口有哪几个方面的特性?各包含些什么内容?

- **2-06** 数据在信道中的传输速率受哪些因素的限制?信噪比能否任意提高?香农公式在数据通信中的意义是什么?"比特/秒"和"码元/秒"有何区别?
- **2-07** 假定某信道受奈氏准则限制的最高码元速率为20000码元/秒。如果采用振幅调制,把码元的振幅划分为16个不同等级来传送,那么可以获得多高的数据率(bit/s)?
- **2-08** 假定要用3kHz带宽的电话信道传送64kbit/s的数据(无差错传输),试问这个信道应具有多高的信噪比(分别用比值和分贝来表示)?这个结果说明什么问题?
- **2-09** 用香农公式计算一下,假定信道带宽为3100Hz,最大信息传输速率为35kbit/s,那么若想使最大信息传输速率增加60%,问信噪比 S/N应增大到多少倍?如果在刚才计算出的基础上将信噪比S/N 再增大到10倍,问最大信息速率能否再增加20%?
- 2-10 常用的传输媒体有哪几种?各有何特点?
- **2-11** 假定有一种双绞线的衰减是0.7dB/km(在1kHz时),若容许有 20dB的衰减,试问使用这种双绞线的链路的工作距离有多长?如果要 使这种双绞线的工作距离增大到100公里,问应当使衰减降低到多少?
- **2-12** 试计算工作在1200nm到1400nm之间以及工作在1400nm到1600nm之间的光波的频带宽度。假定光在光纤中的传播速率为2×10⁸ m/s。
- 2-13 为什么要使用信道复用技术? 常用的信道复用技术有哪些?
- 2-14 试写出下列英文缩写的全文,并进行简单的解释。
- FDM , TDM , STDM , WDM , DWDM , CDMA , SONET , SDH , STM-1 . OC-48 $^{\circ}$
- **2-15** 码分多址CDMA为什么可以使所有用户在同样的时间使用同样的频带进行通信而不会互相干扰?这种复用方法有何优缺点?
- **2-16** 共有四个站进行码分多址CDMA通信。四个站的码片序列为:

- A: (-1-1-1+1+1-1+1+1)
- B: (-1-1+1-1+1+1+1-1)
- C: (-1+1-1+1+1+1-1-1)
- D: (-1+1-1-1-1+1-1)

现收到这样的码片序列: (-1+1-3+1-1-3+1+1)。问哪个站发送数据了? 发送数据的站发送的是1还是0?

- 2-17 试比较ADSL、HFC以及FTTx接入技术的优缺点。
- **2-18** 为什么在ADSL技术中,在不到1MHz的带宽中却可以使传送速率高达每秒几个兆比特?
- **2-19** 什么是EPON和GPON?

(1) 注: 一个码元所携带的信息量是不固定的,而是由调制方式和编码方式决定的。

<u>(2)</u>注: 单位nm是"纳米",即10⁻⁹米。1310nm=1.31μm。

(3)_注: 多径效应就是同一个信号经过不同的反射路径到达同一个接收点, 但各反射路径的衰减和时延都不相同, 使得最后得到的合成信号失真很大。

(4)_注: GSM(Global System for Mobile)即全球移动通信系统,是欧洲和我国现在广泛使用的移动通信体制。

(5)_注:SONET规定,SONET每秒传送8000帧(和PCM的采样速率一样)。每个STS-1帧长为810字节,因此STS-1的数据率为8000×810×8=51840000bit/s。为了便于表示,通常将一个STS-1帧画成9行90列的字节排列。在这种排列中的每一个字节对应的数据率是64kbit/s。一个STS-n的帧长就是STS-1的帧长的n倍,也同样是每秒传送8000帧,因此STS-n的数据率就是STS-1的数据率的n倍。

第3章 数据链路层

数据链路层属于计算机网络的低层。数据链路层使用的信道主要有以下两种类型:

- (1) 点对点信道。这种信道使用一对一的点对点通信方式。
- (2) **广播信道**。这种信道使用一对多的广播通信方式,因此过程比较复杂。广播信道上连接的主机很多,因此必须使用专用的共享信道协议来协调这些主机的数据发送。

局域网虽然是个网络,但我们并不把局域网放在网络层中讨论。这是因为在网络层要讨论的问题是多个网络互连的问题,是讨论分组怎样从一个网络,通过路由器,转发到另一个网络。在本章中我们研究的是在同一个局域网中,分组怎样从一台主机传送到另一台主机,但并不经过路由器转发。从整个互联网来看,局域网仍属于数据链路层的范围。

本章首先介绍点对点信道和在这种信道上最常用的点对点协议PPP。 然后再用较大的篇幅讨论共享信道的局域网和有关的协议。关于无线 局域网的讨论将在第9章中进行。

本章最重要的内容是:

- (1) 数据链路层的点对点信道和广播信道的特点,以及这两种信道所使用的协议(PPP协议以及CSMA/CD协议)的特点。
 - (2) 数据链路层的三个基本问题: 封装成帧、透明传输和差错检测。
 - (3) 以太网MAC层的硬件地址。
- (4) 适配器、转发器、集线器、网桥、以太网交换机的作用以及使用场合。

下面看一下两台主机通过互联网进行通信时数据链路层所处的地位(图3-1)。

图3-1 数据链路层的地位

图3-1(a)表示用户主机 H_1 通过电话线上网,中间经过三个路由器(R_1 , R_2 和 R_3)连接到远程主机 H_2 。所经过的网络可以是多种的,如电话网、局域网和广域网。当主机 H_1 向 H_2 发送数据时,从协议的层次上看,数据的流动如图3-1(b)所示。主机 H_1 和 H_2 都有完整的五层协议栈,但路由器在转发分组时使用的协议栈只有下面的三层(1)。数据进入路由器后要先从物理层上到网络层,在转发表中找到下一跳的地址后,再下到物理层转发出去。因此,数据从主机 H_1 传送到主机 H_2 需要在路径中的各结点的协议栈向上和向下流动多次,如图中的浅灰色箭头所示。

然而当我们专门研究数据链路层的问题时,在许多情况下我们可以只 关心在协议栈中水平方向的各数据链路层。于是,当主机 H_1 向主机 H_2 发送数据时,我们可以想象数据就是在数据链路层从左向右沿水平方 向传送的,如图3-2中从左到右的粗箭头所示,即通过以下这样的链 路:

 H_1 的链路层 $\rightarrow R_1$ 的链路层 $\rightarrow R_2$ 的链路层 $\rightarrow R_3$ 的链路层 $\rightarrow H_2$ 的链路

图3-2 只考虑数据在数据链路层的流动

图3-2指出,从数据链路层来看, H_1 到 H_2 的通信可以看成由四段不同的链路层通信组成,即: $H_1 \rightarrow R_1$, $R_1 \rightarrow R_2$, $R_2 \rightarrow R_3$ 和 $R_3 \rightarrow H_2$ 。这四段不同的链路层可能采用不同的数据链路层协议。

3.1 使用点对点信道的数据链路层

本节讨论使用点对点信道的数据链路层的一些基本问题。其中的某些概念对广播信道也是适用的。

3.1.1 数据链路和帧

我们在这里要明确一下,"链路"和"数据链路"并不是一回事。

所谓**链路**(link)就是从一个结点**到相邻结点**的一段物理线路(有线或无线),而中间没有任何其他的交换结点。在进行数据通信时,两台计算机之间的通信路径往往要经过许多段这样的链路。可见链路只是一条路径的组成部分。

数据链路 (data link)则是另一个概念。这是因为当需要在一条线路上传送数据时,除了必须有一条物理线路外,还必须有一些必要的通信协议来控制这些数据的传输(这将在后面几节讨论)。若把实现这些协议的硬件和软件加到链路上,就构成了数据链路。现在最常用的方法是使用**网络适配器** (既有硬件,也包括软件)来实现这些协议。一般的适配器都包括了数据链路层和物理层这两层的功能。

也有人采用另外的术语。这就是把链路分为物理链路和逻辑链路。物理链路就是上面所说的链路,而逻辑链路就是上面的数据链路,是物理链路加上必要的通信协议。

早期的数据通信协议曾叫做通信**规程**(procedure)。因此在数据链路层,规程和协议是同义语。

下面再介绍点对点信道的数据链路层的协议数据单元——帧。

数据链路层把网络层交下来的数据构成**帧** 发送到链路上,以及把接收到的帧中的数据取出并上交给网络层。在互联网中,网络层协议数据单元就是IP数据报(或简称为**数据报、分组** 或**包**)。

为了把主要精力放在点对点信道的数据链路层协议上,可以采用如图 3-3 (a) 所示的三层模型。在这种三层模型中,不管在哪一段链路上的通信(主机和路由器之间或两个路由器之间),我们都看成是结点和结点的通信(如图中的结点A和B),而每个结点只有下三层——网络层、数据链路层和物理层。

图3-3 使用点对点信道的数据链路层

点对点信道的数据链路层在进行通信时的主要步骤如下:

- (1) 结点A的数据链路层把网络层交下来的IP数据报添加首部和尾部封装成帧。
 - (2) 结点A把封装好的帧发送给结点B的数据链路层。
- (3) 若结点B的数据链路层收到的帧无差错,则从收到的帧中提取出 IP数据报交给上面的网络层,否则丢弃这个帧。

数据链路层不必考虑物理层如何实现比特传输的细节。我们甚至还可以更简单地设想**好像是**沿着两个数据链路层之间的水平方向把帧直接发送到对方,如图3-3(b)所示。

3.1.2 三个基本问题

数据链路层协议有许多种,但有三个基本问题则是共同的。这三个基本问题是: **封装成帧、透明传输和差错检测**。下面分别讨论这三个基本问题。

1. 封装成帧

對装成帧 (framing) 就是在一段数据的前后分别添加首部和尾部,这 样就构成了一个帧。接收端在收到物理层上交的比特流后,就能根据 首部和尾部的标记,从收到的比特流中识别帧的开始和结束。图3-4表 示用帧首部和帧尾部封装成帧的一般概念。我们知道,分组交换的一 个重要概念就是: 所有在互联网上传送的数据都以分组(即IP数据 报)为传送单位。网络层的IP数据报传送到数据链路层就成为帧的数 据部分。在帧的数据部分的前面和后面分别添加上首部和尾部、构成 了一个完整的帧。这样的帧就是数据链路层的数据传送单元。一个帧 的帧长等干帧的数据部分长度加上帧首部和帧尾部的长度。首部和尾 部的一个重要作用就是进行**帧定界** (即确定帧的界限)。此外,首部 和尾部还包括许多必要的控制信息。在发送帧时,是从帧首部开始发 送的。各种数据链路层协议都对帧首部和帧尾部的格式有明确的规 定。显然,为了提高帧的传输效率,应当使帧的**数据部分长度尽可能** 地大于首部和尾部的长度。但是,每一种链路层协议都规定了所能传 送的帧的数据部分长度上限——最大传送单元 MTU (Maximum Transfer Unit)。图3-4给出了帧的首部和尾部的位置,以及帧的数据 部分与MTU的关系。

当数据是由可打印的ASCII码组成的文本文件时,帧定界可以使用特殊的**帧定界符**。我们知道,ASCII码是7位编码,一共可组合成128个不同的ASCII码,其中可打印的有95个⁽²⁾,而不可打印的控制字符有33个。图3-5的例子可说明帧定界的概念。控制字符SOH(Start Of Header)放在一帧的最前面,表示帧的首部开始。另一个控制字符EOT(End Of Transmission)表示帧的结束。请注意,SOH和EOT都是控制字符的名称。它们的十六进制编码分别是01(二进制是0000001)和04(二进制是00000100)。SOH(或EOT)并不是S,O,H(或E,O,T)三个字符。

图3-5 用控制字符进行帧定界的方法举例

当数据在传输中出现差错时,帧定界符的作用更加明显。假定发送端在尚未发送完一个帧时突然出故障,中断了发送。但随后很快又恢复正常,于是重新从头开始发送刚才未发送完的帧。由于使用了帧定界符,接收端就知道前面收到的数据是个不完整的帧(只有首部开始符SOH而没有传输结束符EOT),必须丢弃。而后面收到的数据有明确的帧定界符(SOH和EOT),因此这是一个完整的帧,应当收下。

2. 透明传输

由于帧的开始和结束的标记使用专门指明的控制字符,因此,所传输的数据中的任何8比特的组合一定不允许和用作帧定界的控制字符的比特编码一样,否则就会出现帧定界的错误。

当传送的帧是用文本文件组成的帧时(文本文件中的字符都是从键盘上输入的),其数据部分显然不会出现像SOH或EOT这样的帧定界控制字符。可见不管从键盘上输入什么字符都可以放在这样的帧中传输过去,因此这样的传输就是透明传输。

但当数据部分是非ASCII码的文本文件时(如二进制代码的计算机程序或图像等),情况就不同了。如果数据中的某个字节的二进制代码恰好和SOH或EOT这种控制字符一样(见图3-6),数据链路层就会错误地"找到帧的边界",把部分帧收下(误认为是个完整的帧),而把剩下的那部分数据丢弃(这部分找不到帧定界控制字符SOH)。

图3-6 数据部分恰好出现与EOT一样的代码

像图3-6所示的帧的传输显然就不是"透明传输",因为当遇到数据中碰巧出现字符"EOT"时就传不过去了。数据中的"EOT"将被接收端错误地解释为"传输结束"的控制字符,而在其后面的数据因找不到"SOH"被接收端当作无效帧而丢弃。但实际上在数据中出现的字符"EOT"并非控制字符而仅仅是二进制数据00000100。

前面提到的"透明"是一个很重要的术语。它表示: **某一个实际存在的事物看起来却好像不存在一样**(例如,你看不见在你前面有块100%透明的玻璃的存在)。"在数据链路层透明传送数据"表示无论什么样的比特组合的数据,都能够按照原样没有差错地通过这个数据链路层。因此,对所传送的数据来说,这些数据就"看不见"数据链路层有什么妨碍数据传输的东西。或者说,数据链路层对这些数据来说是透明的。

为了解决透明传输问题,就必须设法使**数据中**可能出现的控制字符"SOH"和"EOT"在接收端不被解释为控制字符。具体的方法是:发送端的数据链路层在数据中出现控制字符"SOH"或"EOT"的前面插入一个**转义字符**"ESC"(其十六进制编码是1B,二进制是00011011)。而在接收端的数据链路层在把数据送往网络层之前删除这个插入的转义字符。这种方法称为字节填充(byte stuffing)或字符填充(character stuffing)。如果转义字符也出现在数据当中,那么解决方法仍然是在转义字符的前面插入一个转义字符。因此,当接收端收到

连续的两个转义字符时,就删除其中前面的一个。图3-7表示用字节填充法解决透明传输的问题。

图3-7 用字节填充法解决透明传输的问题

3. 差错检测

现实的通信链路都不会是理想的。这就是说,比特在传输过程中可能会产生差错:1可能会变成0,而0也可能变成1。这就叫做**比特差错**。比特差错是传输差错中的一种。本小节所说的"差错",如无特殊说明,就是指"比特差错"。在一段时间内,传输错误的比特占所传输比特总数的比率称为**误码率** BER(Bit Error Rate)。例如,误码率为10⁻¹⁰时,表示平均每传送10¹⁰个比特就会出现一个比特的差错。误码率与信噪比有很大的关系。如果设法提高信噪比,就可以使误码率减小。实际的通信链路并非是理想的,它不可能使误码率下降到零。因此,为了保证数据传输的可靠性,在计算机网络传输数据时,必须采用各种差错检测措施。目前在数据链路层广泛使用了**循环冗余检验**CRC(Cyclic Redundancy Check)的检错技术。

下面我们通过一个简单的例子来说明循环冗余检验的原理。

在发送端,先把数据划分为组,假定每组k个比特。现假定待传送的数据M=101001 (k=6)。 CRC运算就是在数据M 的后面添加供差错检测用的n 位**冗余码**,然后构成一个帧发送出去,一共发送(k+n)位。在所要发送的数据后面增加n 位的冗余码,虽然增大了数据传输的开销,但却可以进行差错检测。当传输可能出现差错时,付出这种代价往往是很值得的。

这n 位冗余码可用以下方法得出。用二进制的**模2运算** (3) 进行2 n 乘M 的运算,这相当于在M 后面添加n 个0。得到的(k+n)位的数除以收发双方事先商定的长度为(n+1)位的除数P,得出商是Q 而余数是R (n 位,比P 少一位)。关于除数P 下面还要介绍。在图3-8所示的例子中,M=101001 (即k=6)。假定除数P=1101 (即n=3)。经模2除法运算后的结果是:商Q=110101 (这个商并没有什么用处),而余数R=001。这个余数R 就作为冗余码拼接在数据M 的后面发送出去。这种为了进行检错而添加的冗余码常称为**帧检验序列** FCS(Frame Check Sequence)。因此加上FCS后发送的帧是101001001(即2 nM +FCS),共有(k+n)位。

图3-8 说明循环冗余检验原理的例子

顺便说一下,循环冗余检验CRC和帧检验序列FCS并不是同一个概念。CRC是一种**检错方法**,而FCS是添加在数据后面的**冗余码**,在检错方法上可以选用CRC,但也可不选用CRC。

在接收端把接收到的数据以帧为单位进行CRC检验: 把收到的每一个帧都除以同样的除数P(模2运算),然后检查得到的余数R。

如果在传输过程中无差错,那么经过CRC检验后得出的余数R 肯定是0(读者可以自己验算一下。被除数现在是101001001,而除数是P=1101,看余数R 是否为0)。

但如果出现误码,那么余数R 仍等于零的概率是非常非常小的(这可以通过不太复杂的概率计算得出,例如,可参考「TANE11」)。

总之,在接收端对收到的每一帧经过CRC检验后,有以下两种情况:

- (1) 若得出的余数R = 0, 则判定这个帧没有差错, 就接受 (accept)。
- (2) 若余数*R* ≠0,则判定这个帧有差错(但无法确定究竟是哪一位或哪几位出现了差错),就丢弃。

一种较方便的方法是用多项式来表示循环冗余检验过程。在上面的例子中,用多项式 $P(X) = X^3 + X^2 + 1$ 表示上面的除数P = 1101(最高位对应于 X^3 ,最低位对应于 X^0)。多项式P(X) 称为**生成多项式**。现在广泛使用的生成多项式P(X) 有以下几种:

$$CRC-16 = X^{16} + X^{15} + X^{2} + 1$$

$$CRC-CCITT = X^{16} + X^{12} + X^{5} + 1$$

CRC-32=
$$X^{32}+X^{26}+X^{23}+X^{22}+X^{16}+X^{12}+X^{11}+X^{10}+X^{8}+X^{7}+X^{5}+X^{4}+X^{2}+X+1$$

在数据链路层,发送端帧检验序列FCS的生成和接收端的CRC检验都是用硬件完成的,处理很迅速,因此并不会延误数据的传输。

从以上的讨论不难看出,如果我们在传送数据时不以帧为单位来传送,那么就无法加入冗余码以进行差错检验。因此,如果要在数据链路层进行差错检验,就必须把数据划分为帧,每一帧都加上冗余码,一帧接一帧地传送,然后在接收方逐帧进行差错检验。

最后再强调一下,在数据链路层若**仅仅** 使用循环冗余检验CRC差错检测技术,则只能做到对帧的**无差错接受**,即:"**凡是接收端数据链路层接受的帧,我们都能以非常接近于1的概率认为这些帧在传输过程中没有产生差错**"。接收端丢弃的帧虽然曾收到了,但最终还是因为有差错被丢弃,即没有被**接受**。以上所述的可以**近似地** 表述为(通常都是这样认为):"**凡是接收端数据链路层接受的帧均无差错**"。

请注意,我们现在并没有要求数据链路层向网络层提供"可靠传输"的服务。所谓"可靠传输"就是:数据链路层的发送端发送什么,在接收端就收到什么。传输差错可分为两大类:一类就是前面所说的最基本的比特差错,而另一类传输差错则更复杂些,这就是收到的帧并没有出现比特差错,但却出现了帧丢失、帧重复或帧失序。例如,发送方

连续传送三个帧: [#1] - [#2] - [#3] 。假定接收端收到的每一个帧都没有比特差错, 但却出现下面的几种情况:

帧丢失: 收到「#1] - 「#3] (丢失「#2])。

帧重复: 收到「#1]-「#2]-「#2]-「#3] (收到两个「#2])。

帧失序: 收到 [#1] - [#3] - [#2] (后发送的帧反而先到达了接收端, 这与一般数据链路层的传输概念不一样)。

以上三种情况都属于"出现传输差错",但都不是这些帧里有"比特差错"。帧丢失很容易理解。但出现帧重复和帧失序的情况则较为复杂,对这些问题我们现在不展开讨论。在学完第5章的5.4节后,我们就会知道在什么情况下接收端可能会出现帧重复或帧失序。

总之,我们应当明确,"无比特差错"与"无传输差错"并不是同样的概念。在数据链路层使用CRC检验,能够实现无比特差错的传输,但这还不是可靠传输。

我们知道,过去OSI的观点是:必须让数据链路层向上提供可靠传输。因此在CRC检错的基础上,增加了**帧编号、确认**和**重传机制**。收到正确的帧就要向发送端发送确认。发送端在一定的期限内若没有收到对方的确认,就认为出现了差错,因而就进行重传,直到收到对方的确认为止。这种方法在历史上曾经起到很好的作用。但现在的通信线路的质量已经大大提高了,由通信链路质量不好引起差错的概率已经大大降低。因此,现在互联网就采取了区别对待的方法:

对于通信质量良好的有线传输链路,数据链路层协议不使用确认和重传机制,即不要求数据链路层向上提供可靠传输的服务。如果在数据链路层传输数据时出现了差错并且需要进行改正,那么改正差错的任务就由上层协议(例如、运输层的TCP协议)来完成。

对于通信质量较差的无线传输链路,数据链路层协议使用确认和重传机制,数据链路层向上提供可靠传输的服务(见第9章)。

实践证明,这样做可以提高通信效率。

可靠传输协议将在第5章中讨论。本章介绍的数据链路层协议都不是可 靠传输的协议。

3.2 点对点协议PPP

在通信线路质量较差的年代,在数据链路层使用可靠传输协议曾经是一种好办法。因此,能实现可靠传输的**高级数据链路控制** HDLC(High-level Data Link Control)就成为当时比较流行的数据链路层协议。但现在HDLC已很少使用了。对于点对点的链路,简单得多的点对点协议 PPP(Point-to-Point Protocol)则是目前使用得最广泛的数据链路层协议。

3.2.1 PPP协议的特点

我们知道,互联网用户通常都要连接到某个ISP才能接入到互联网。 PPP协议就是用户计算机和ISP进行通信时所使用的数据链路层协议 (图3-9)。

图3-9 用户到ISP的链路使用PPP协议

PPP协议是IETF在1992年制定的。经过1993年和1994年的修订,现在的PPP协议在1994年就已成为互联网的正式标准「RFC 1661」。

1. PPP协议应满足的需求

IETF认为,在设计PPP协议时必须考虑以下多方面的需求 [RFC 1547]:

(1)**简单** IETF在设计互联网体系结构时把其中最复杂的部分放在TCP协议中,而网际协议IP则相对比较简单,它提供的是不可靠的数据报服务。在这种情况下,数据链路层没有必要提供比IP协议更多的功能。因此,对数据链路层的帧,不需要纠错,不需要序号,也不需要流量控制。IETF把"简单"作为**首要的需求**。

简单的设计还可使协议在实现时不容易出错,从而使不同厂商在协议的不同实现上的**互操作性提高了**。我们知道,协议标准化的一个主要目的就是提高协议的互操作性。

总之,这种数据链路层的协议非常简单:接收方每收到一个帧,就进行CRC检验。如CRC检验正确,就收下这个帧;反之,就丢弃这个帧,其他什么也不做。

- (2) **對裝成帧** PPP协议必须规定特殊的字符作为**帧定界符** (即标志一个帧的开始和结束的字符),以便使接收端从收到的比特流中能准确地找出帧的开始和结束位置。
- (3) **透明性** PPP协议必须保证数据传输的透明性。这就是说,如果数据中碰巧出现了和帧定界符一样的比特组合时,就要采取有效的措施来解决这个问题(见3.2.2节)。
- (4) **多种网络层协议** PPP协议必须能够在**在同一条物理链路上同时 支持多种网络层协议** (如IP和IPX等) 的运行。当点对点链路所连接的是局域网或路由器时,PPP协议必须同时支持在链路所连接的局域 网或路由器上运行的各种网络层协议。
- (5) **多种类型链路** 除了要支持多种网络层的协议外, PPP还必须能够在多种类型的链路上运行。例如, 串行的(一次只发送一个比特)或并行的(一次并行地发送多个比特), 同步的或异步的, 低速的或高速的, 电的或光的, 交换的(动态的)或非交换的(静态的)点对点链路。

这里特别要提到的是在1999年公布的在以太网上运行的PPP,即PPP over Ethernet,简称为PPPoE [RFC 2516] ,这是PPP协议能够适应多种类型链路的一个典型例子。PPPoE是为宽带上网的主机使用的链路层协议。这个协议把PPP帧再封装在以太网帧中(当然还要增加一些能够识别各用户的功能)。宽带上网时由于数据传输速率较高,因此

可以让多个连接在以太网上的用户共享一条到ISP的宽带链路。现在,即使是只有一个用户利用ADSL进行宽带上网(并不和其他人共享到ISP的宽带链路),也是使用PPPoE协议,见后面的3.6.4节的讨论。

- (6) **差错检测**(error detection) PPP协议必须能够对接收端收到的帧进行检测,并**立即丢弃有差错的帧**。若在数据链路层不进行差错检测,那么已出现差错的无用帧就还要在网络中继续向前转发,因而会白白浪费许多的网络资源。
- (7) **检测连接状态 PPP**协议必须具有一种机制能够及时(不超过几分钟)自动检测出链路是否处于正常工作状态。当出现故障的链路隔了一段时间后又重新恢复正常工作时,就特别需要有这种及时检测功能。
- (8) 最大传送单元 PPP协议必须对每一种类型的点对点链路设置最大传送单元 MTU的标准默认值(4)。这样做是为了促进各种实现之间的互操作性。如果高层协议发送的分组过长并超过MTU的数值,PPP就要丢弃这样的帧,并返回差错。需要强调的是,MTU是数据链路层的帧可以载荷的数据部分的最大长度,而不是帧的总长度。
- (9) **网络层地址协商** PPP协议必须提供一种机制使通信的两个网络层(例如,两个IP层)的实体能够通过协商知道或能够配置彼此的网络层地址。协商的算法应尽可能简单,并且能够在所有的情况下得出协商结果。这对拨号连接的链路特别重要,因为如果仅仅在链路层建立了连接而不知道对方网络层地址,则还不能够保证网络层可以传送分组。
- (10) **数据压缩协商** PPP协议必须提供一种方法来协商使用数据压缩算法。但PPP协议并不要求将数据压缩算法进行标准化。

在TCP/IP协议族中,可靠传输由运输层的TCP协议负责,因此数据链路层的PPP协议不需要进行纠错,不需要设置序号,也不需要进行流量控制。PPP协议不支持多点线路(即一个主站轮流和链路上的多个从站进行通信),而只支持点对点的链路通信。此外,PPP协议只支持全双工链路。

2. PPP协议的组成

PPP协议有三个组成部分:

- (1)一个将IP数据报封装到串行链路的方法。PPP既支持异步链路(无奇偶检验的8比特数据),也支持面向比特的同步链路。IP数据报在PPP帧中就是其信息部分。这个信息部分的长度受最大传送单元MTU的限制。
- (2) 一个用来建立、配置和测试数据链路连接的**链路控制协议LCP** (Link Control Protocol)。通信的双方可协商一些选项。在RFC 1661 中定义了11种类型的LCP分组。
- (3) 一套**网络控制协议NCP**(Network Control Protocol)(5)., 其中的每一个协议支持不同的网络层协议,如IP、OSI的网络层、DECnet,以及AppleTalk等。

3.2.2 PPP协议的帧格式

1. 各字段的意义

PPP的帧格式如图3-10所示。PPP帧的首部和尾部分别为四个字段和两个字段。

图3-10 PPP帧的格式

首部的第一个字段和尾部的第二个字段都是标志字段F(Flag),规定为0x7E(符号"0x"表示它后面的字符是用十六进制表示的。十六进制的7E的二进制表示是01111110)。标志字段表示一个帧的开始或结束。因此标志字段就是PPP帧的定界符。连续两帧之间只需要用一个

标志字段。如果出现连续两个标志字段,就表示这是一个空帧,应当丢弃。

首部中的地址字段A规定为0xFF(即1111111),控制字段C规定为0x03(即0000011)。最初曾考虑以后再对这两个字段的值进行其他定义,但至今也没有给出。可见这两个字段实际上并没有携带PPP帧的信息。

PPP首部的第四个字段是2字节的协议字段。当协议字段为0x0021时, PPP帧的信息字段就是IP数据报。若为0xC021,则信息字段是PPP链路控制协议LCP的数据,而0x8021表示这是网络层的控制数据(6)。

信息字段的长度是可变的,不超过1500字节。

尾部中的第一个字段(2字节)是使用CRC的帧检验序列FCS。

2. 字节填充

当信息字段中出现和标志字段一样的比特(0x7E)组合时,就必须采取一些措施使这种形式上和标志字段一样的比特组合不出现在信息字段中。

当PPP使用异步传输时,它把转义符定义为0x7D(即01111101),并使用**字节填充**,RFC 1662规定了如下所述的填充方法:

- (1) 把信息字段中出现的每一个0x7E字节转变成为2字节序列 (0x7D, 0x5E)。
- (2) 若信息字段中出现一个0x7D的字节(即出现了和转义字符一样的比特组合),则把0x7D转变成为2字节序列(0x7D, 0x5D)。
- (3) 若信息字段中出现ASCII码的控制字符(即数值小于0x20的字符),则在该字符前面要加入一个0x7D字节,同时将该字符的编码加以改变。例如,出现0x03(在控制字符中是"传输结束"ETX)就要把它转变为2字节序列(0x7D,0x23)。

由于在发送端进行了字节填充,因此在链路上传送的信息字节数就超过了原来的信息字节数。但接收端在收到数据后再进行与发送端字节

填充相反的变换,就可以正确地恢复出原来的信息。

3. 零比特填充

PPP协议用在SONET/SDH链路时,使用同步传输(一连串的比特连续传送)而不是异步传输(逐个字符地传送)。在这种情况下,PPP协议采用零比特填充方法来实现透明传输。

零比特填充的具体做法是:在发送端,先扫描整个信息字段(通常用硬件实现,但也可用软件实现,只是会慢些)。只要发现有5个连续1,则立即填入一个0。因此经过这种零比特填充后的数据,就可以保证在信息字段中不会出现6个连续1。接收端在收到一个帧时,先找到标志字段F以确定一个帧的边界,接着再用硬件对其中的比特流进行扫描。每当发现5个连续1时,就把这5个连续1后的一个0删除,以还原成原来的信息比特流(图3-11)。这样就保证了透明传输:在所传送的数据比特流中可以传送任意组合的比特流,而不会引起对帧边界的错误判断。

信息字段中出现了和 标志字段 F 完全一样 的 8 比特组合

发送端在5个连续1之后 填入0比特再发送出去

在接收端把5个连续1 之后的0比特删除 01001111110001010 会被误认为是标志字段F

图3-11 零比特的填充与删除

3.2.3 PPP协议的工作状态

上一节我们通过PPP帧的格式讨论了PPP帧是怎样组成的。但PPP链路一开始是怎样被初始化的?当用户拨号接入ISP后,就建立了一条从用户个人电脑到ISP的物理连接。这时,用户个人电脑向ISP发送一系列的链路控制协议LCP分组(封装成多个PPP帧),以便建立LCP连接。

这些分组及其响应选择了将要使用的一些PPP参数。接着还要进行网络层配置,网络控制协议NCP给新接入的用户个人电脑分配一个临时的IP地址。这样,用户个人电脑就成为互联网上的一个有IP地址的主机了。

当用户通信完毕时,NCP释放网络层连接,收回原来分配出去的IP地址。接着,LCP释放数据链路层连接。最后释放的是物理层的连接。

上述过程可用图3-12的状态图来描述。

图3-12 PPP协议的状态图

PPP链路的起始和终止状态永远是图3-12中的"**链路静止**"(Link Dead)状态,这时在用户个人电脑和ISP的路由器之间并不存在物理层的连接。

当用户个人电脑通过调制解调器呼叫路由器时(通常是在屏幕上用鼠标点击一个连接按钮),路由器就能够检测到调制解调器发出的载波信号。在双方建立了物理层连接后,PPP就进入"链路建立"(Link Establish)状态,其目的是建立链路层的LCP连接。

这时LCP开始协商一些**配置选项**,即发送LCP的**配置请求帧**(Configure-Request)。这是个PPP帧,其协议字段置为LCP对应的代码,而信息字段包含特定的配置请求。链路的另一端可以发送以下几种响应中的一种:

- (1) **配置确认帧** (Configure-Ack) 所有选项都接受。
- (2) **配置否认帧**(Configure-Nak) 所有选项都理解但不能接受。
- (3) **配置拒绝帧** (Configure-Reject) 选项有的无法识别或不能接受,需要协商。

LCP 配置选项包括链路上的最大帧长、所使用的**鉴别协议**(authentication protocol)的规约(如果有的话),以及不使用PPP帧中的地址和控制字段(因为这两个字段的值是固定的,没有任何信息量,可以在PPP帧的首部中省略这两个字节)。

协商结束后双方就建立了LCP链路,接着就进入"鉴别"(Authenticate)状态。在这一状态,只允许传送LCP协议的分组、鉴别协议的分组以及监测链路质量的分组。若使用口令鉴别协议PAP(Password Authentication Protocol),则需要发起通信的一方发送身份标识符和口令。系统可允许用户重试若干次。如果需要有更好的安全性,则可使用更加复杂的口令握手鉴别协议CHAP(Challenge-Handshake Authentication Protocol)。若鉴别身份失败,则转到"链路终止"(Link Terminate)状态。若鉴别成功,则进入"网络层协议"(Network-Layer Protocol)状态。

在"网络层协议"状态,PPP链路的两端的网络控制协议NCP根据网络层的不同协议互相交换网络层特定的网络控制分组。这个步骤是很重要的,因为现在的路由器都能够同时支持多种网络层协议。总之,PPP协议两端的网络层可以运行不同的网络层协议,但仍然可使用同一个PPP协议进行通信。

如果在PPP链路上运行的是IP协议,则对PPP链路的每一端配置IP协议模块(如分配IP地址)时就要使用NCP中支持IP的协议——IP**控制协议 IPCP**(IP Control Protocol)。IPCP分组也封装成PPP帧(其中的协议字段为0x8021)在PPP链路上传送。在低速链路上运行时,双方还可以协商使用压缩的TCP和IP首部,以减少在链路上发送的比特数。

当网络层配置完毕后,链路就进入可进行数据通信的"**链路打开**"(Link Open)状态。链路的两个PPP端点可以彼此向对方发送分组。两个PPP端点还可发送**回送请求** LCP分组(Echo-Request)和**回送回答** LCP分组(Echo-Reply),以检查链路的状态。

数据传输结束后,可以由链路的一端发出终止请求 LCP分组(Terminate-Request)请求终止链路连接,在收到对方发来的终止确认 LCP分组(Terminate-Ack)后,转到"链路终止"状态。如果链路出现故障,也会从"链路打开"状态转到"链路终止"状态。当调制解调器的载波停止后,则回到"链路静止"状态。

图3-12右方的灰色方框给出了对PPP协议的几个状态的说明。从设备之间无链路开始,到先建立物理链路,再建立链路控制协议LCP链路。经过鉴别后再建立网络控制协议NCP链路,然后才能交换数据。由此可见,PPP协议已不是纯粹的数据链路层的协议,它还包含了物理层和网络层的内容。

3.3 使用广播信道的数据链路层

广播信道可以进行一对多的通信。下面要讨论的局域网使用的就是广播信道。局域网是在20世纪70年代末发展起来的。局域网技术在计算机网络中占有非常重要的地位。

3.3.1 局域网的数据链路层

局域网最主要的特点是: **网络为一个单位所拥有,且地理范围和站点数目均有限**。在局域网刚刚出现时,局域网比广域网具有较高的数据率、较低的时延和较小的误码率。但随着光纤技术在广域网中普遍使用,现在广域网也具有很高的数据率和很低的误码率。

局域网具有如下一些主要优点:

- (1) 具有广播功能,从一个站点可很方便地访问全网。局域网上的主机可共享连接在局域网上的各种硬件和软件资源。
 - (2) 便于系统的扩展和逐渐演变,各设备的位置可灵活调整和改变。
- (3) 提高了系统的可靠性(reliability)、可用性(availability)和生存性(survivability)。

局域网可按网络拓扑进行分类。图3-13(a)是**星形网**。由于**集线器**(hub)的出现和双绞线大量用于局域网中,星形以太网以及多级星形

结构的以太网获得了非常广泛的应用。图3-13(b)是**环形网**,图3-13(c)为**总线网**,各站直接连在总线上。总线两端的匹配电阻吸收在总线上传播的电磁波信号的能量,避免在总线上产生有害的电磁波反射。总线网以传统以太网最为著名。局域网经过了四十年的发展,尤其是在快速以太网(100Mbit/s)和吉比特以太网(1Gbit/s)、10吉比特以太网(10Gbit/s)相继进入市场后,以太网已经在局域网市场中占据了绝对优势。现在以太网几乎成为了局域网的同义词,因此本章从本节开始都是讨论以太网技术。

图3-13 局域网的拓扑

局域网可使用多种传输媒体。双绞线最便宜,原来只用于低速(1~2Mbit/s)基带局域网。现在从10Mbit/s至10Gbit/s的局域网都可使用双绞线。双绞线已成为局域网中的主流传输媒体。当数据率很高时,往往需要使用光纤作为传输媒体。

必须指出,局域网工作的层次跨越了数据链路层和物理层。由于局域 网技术中有关数据链路层的内容比较丰富,因此我们就把局域网的内容放在数据链路层这一章中讨论。但这并不表示局域网仅仅和数据链路层有关。

共享信道要着重考虑的一个问题就是如何使众多用户能够合理而方便地共享通信媒体资源。这在技术上有两种方法:

(1)**静态划分信道**,如在第2章的2.4节中已经介绍过的频分复用、时分复用、波分复用和码分复用等。用户只要分配到了信道就不会和其他用户发生冲突。但这种划分信道的方法代价较高,不适合于局域网使用。

- (2) **动态媒体接入控制**,它又称为**多点接入**(multiple access),其特点是信道并非在用户通信时固定分配给用户。这里又分为以下两类:
 - **随机接入** 随机接入的特点是所有的用户可随机地发送信息。但如果恰巧有两个或更多的用户在同一时刻发送信息,那么在共享媒体上就要产生**碰撞**(即发生了**冲突**),使得这些用户的发送都失败。因此,必须有解决碰撞的网络协议。
 - **受控接入** 受控接入的特点是用户不能随机地发送信息而必须服从一定的控制。这类的典型代表有分散控制的令牌环局域网和集中控制的多点线路**探询**(polling),或称为**轮询**。

属于随机接入的以太网将被重点讨论。受控接入则由于目前在局域网中使用得较少,本书不再讨论。

由于以太网的数据率已演进到每秒吉比特或甚至高达100吉比特,因此通常就用"传统以太网"来表示最早流行的10Mbit/s速率的以太网。为了讨论原理,下面我们就从传统以太网开始。

1. 以太网的两个标准

以太网是美国施乐(Xerox)公司的Palo Alto研究中心(简称为PARC)于1975年研制成功的。那时,以太网是一种基带总线局域网,当时的数据率为2.94Mbit/s。以太网用无源电缆作为总线来传送数据帧,并以曾经在历史上表示传播电磁波的**以太**(Ether)来命名。1976年7月,Metcalfe和Boggs发表他们的以太网里程碑论文 [METC76]。1980年9月,DEC公司、英特尔(Intel)公司和施乐公司联合提出了10Mbit/s以太网规约的第一个版本DIX V1(DIX是这三个公司名称的缩写)。1982年又修改为第二版规约(实际上也就是最后的版本),即DIX Ethernet V2,成为世界上第一个局域网产品的规约。

在此基础上, IEEE 802委员会(乙)的802.3工作组于1983年制定了第一个 IEEE的以太网标准IEEE 802.3 [W-IEEE802.3],数据率为10Mbit/s。802.3局域网对以太网标准中的帧格式做了很小的一点更动,但允许基于这两种标准的硬件实现可以在同一个局域网上互操作。以太网的两个标准DIX Ethernet V2与IEEE的802.3标准只有很小的差别,因此很多人也常把802.3局域网简称为"以太网"(本书也经常不严格区分它们,

虽然严格说来,"以太网"应当是指符合DIX Ethernet V2标准的局域网)。

出于有关厂商在商业上的激烈竞争,IEEE 802委员会未能形成一个统一的、"最佳的"局域网标准,而是被迫制定了几个不同的局域网标准,如802.4令牌总线网、802.5令牌环网等。为了使数据链路层能更好地适应多种局域网标准,IEEE 802委员会就把局域网的数据链路层拆成两个子层,即**逻辑链路控制** LLC(Logical Link Control)子层和**媒体接入控制** MAC(Medium Access Control)子层。与接入到传输媒体有关的内容都放在MAC子层,而LLC子层则与传输媒体无关,不管采用何种传输媒体和MAC子层的局域网对LLC子层来说都是透明的(如图3-14所示)。

图3-14 局域网对LLC子层是透明的

然而到了20世纪90年代后,激烈竞争的局域网市场逐渐明朗。以太网在局域网市场中已取得了垄断地位,并且几乎成为了局域网的代名词。由于互联网发展很快而TCP/IP体系经常使用的局域网只剩下DIX Ethernet V2而不是IEEE 802.3标准中的局域网,因此现在IEEE 802委员会制定的逻辑链路控制子层LLC(即IEEE 802.2标准)的作用已经消失了,很多厂商生产的适配器上就仅装有MAC协议而没有LLC协议。本章在介绍以太网时就不再考虑LLC子层。这样对以太网工作原理的讨论会更加简洁。

2. 适配器的作用

首先我们从一般的概念上讨论一下计算机是怎样连接到局域网上的。

计算机与外界局域网的连接是通过通信**适配器**(adapter)进行的。适配器本来是在主机箱内插入的一块网络接口板(或者是在笔记本电脑中插入一块PCMCIA卡——个人计算机存储器卡接口适配器)。这种接口板又称为**网络接口卡** NIC(Network Interface Card)或简称为"**网**

卡"。由于现在计算机主板上都已经嵌入了这种适配器,不再使用单独的网卡了,因此本书使用适配器这个更准确的术语。在这种通信适配器上面装有处理器和存储器(包括RAM和ROM)。适配器和局域网之间的通信是通过电缆或双绞线以串行传输方式进行的,而适配器和计算机之间的通信则是通过计算机主板上的I/O总线以并行传输方式进行的。因此,适配器的一个重要功能就是要进行数据串行传输和并行传输的转换。由于网络上的数据率和计算机总线上的数据率并不相同,因此在适配器中必须装有对数据进行缓存的存储芯片。在主板上插入适配器时,还必须把管理该适配器的设备驱动程序安装在计算机的操作系统中。这个驱动程序以后就会告诉适配器,应当从存储器的什么位置上把多长的数据块发送到局域网,或者应当在存储器的什么位置上把局域网传送过来的数据块存储下来。适配器还要能够实现以太网协议。

请注意,虽然我们把适配器的内容放在数据链路层中讲授,但适配器所实现的功能却包含了数据链路层及物理层这两个层次的功能。现在的芯片的集成度都很高,以致很难把一个适配器的功能严格按照层次的关系精确划分开。

适配器在接收和发送各种帧时,不使用计算机的CPU。这时计算机中的CPU可以处理其他任务。当适配器收到有差错的帧时,就把这个帧直接丢弃而不必通知计算机。当适配器收到正确的帧时,它就使用中断来通知该计算机,并交付协议栈中的网络层。当计算机要发送IP数据报时,就由协议栈把IP数据报向下交给适配器,组装成帧后发送到局域网。图3-15表示适配器的作用。我们特别要注意,计算机的硬件地址(在本章的3.3.5节讨论)就在适配器的ROM中,而计算机的软件地址——IP地址(在第4章4.2.3节讨论),则在计算机的存储器中。

图3-15 计算机通过适配器和局域网进行通信

3.3.2 CSMA/CD协议

最早的以太网是将许多计算机都连接到一根总线上。当初认为这种连接方法既简单又可靠,因为在那个时代普遍认为:"有源器件不可靠,而无源的电缆线才是最可靠的"。

总线的特点是: 当一台计算机发送数据时,总线上的所有计算机都能检测到这个数据。这种就是广播通信方式。但我们并不总是要在局域网上进行一对多的广播通信。为了在总线上实现一对一的通信,可以使每一台计算机的适配器拥有一个与其他适配器都不同的地址。在发送数据帧时,在帧的首部写明接收站的地址。现在的电子技术可以很容易做到: 仅当数据帧中的目的地址与适配器ROM中存放的硬件地址一致时,该适配器才能接收这个数据帧。适配器对不是发送给自己的数据帧就丢弃。这样,具有广播特性的总线上就实现了一对一的通信。

人们也常把局域网上的计算机称为"**主机"、"工作站"、"站点"**或"**站**"。在本书中,这几个名词都可以当成是同义词。

为了通信的简便,以太网采取了以下两种措施:

第一,采用较为灵活的**无连接**的工作方式,即不必先建立连接就可以直接发送数据。适配器对发送的数据帧**不进行编号,也不要求对方发回确认**。这样做可以使以太网工作起来非常简单,而局域网信道的质

量很好,因通信质量不好产生差错的概率是很小的。因此,**以太网提供的服务是尽最大努力的交付**,即**不可靠的交付**。当目的站收到有差错的数据帧时(例如,用CRC查出有差错),就把帧丢弃,其他什么也不做。**对有差错帧是否需要重传则由高层来决定**。例如,如果高层使用TCP协议,那么TCP就会发现丢失了一些数据。于是经过一定的时间后,TCP就把这些数据重新传递给以太网进行重传。**但以太网并不知道这是重传帧,而是当作新的数据帧来发送**。

我们知道,总线上只要有一台计算机在发送数据,总线的传输资源就被占用。因此,在同一时间只能允许一台计算机发送数据,否则各计算机之间就会互相干扰,使得所发送数据被破坏。因此,如何协调总线上各计算机的工作就是以太网要解决的一个重要问题。以太网采用最简单的随机接入,但有很好的协议用来减少冲突发生的概率。这好比有一屋子的人在开讨论会,没有会议主持人控制发言。想发言的随时可发言,不需要举手示意。但我们还必须有个协议来协调大家的随时可发言(否则就干扰了别人的发言)。但有时碰巧两个或更多的人同时发言了,那么一旦发现冲突,大家都必须立即停止发言,等听到没有人发言了你再发言。以太网采用的协调方法和上面的办法非常像,它使用的协议是CSMA/CD,意思是载波监听多点接入/碰撞检测(Carrier Sense Multiple Access with Collision Detection)。

第二,以太网发送的数据都使用**曼彻斯特**(Manchester)编码的信号。我们在第2章的2.2.2节中已经简单地介绍过曼彻斯特编码了。我们知道,二进制基带数字信号通常就是高、低电压交替出现的信号。使用这种信号的最大问题就是当出现一长串的连1或连0时,接收端就无法从收到的比特流中提取位同步(即比特同步)信号。如图3-16所示,曼彻斯特编码的编码方法是把每一个码元再分成两个相等的间隔。码元1是前一个间隔为低电压而后一个间隔为高电压。码元0则正好相反,从高电压变到低电压(也可采用相反的约定,即1是"前高后低"而0是"前低后高")。这样就保证了在每一个码元的正中间出现一次电压的转换,而接收端就利用这种电压的转换很方便地把位同步信号提取出来。但是从曼彻斯特编码的波形图也不难看出其缺点,这就是它所占的频带宽度比原始的基带信号增加了一倍(因为每秒传送的码元数加倍了)。

图3-16 曼彻斯特编码

下面介绍CSMA/CD协议的要点。

"**多点接入**"就是说明这是总线型网络,许多计算机以多点接入的方式连接在一根总线上。协议的实质是"载波监听"和"碰撞检测"。

"载波监听"就是用电子技术检测总线上有没有其他计算机也在发送。 其实总线上并没有什么"载波",这里只不过借用一下"载波"这个名词 而已。因此载波监听就是检测信道,这是个很重要的措施。不管在发 送前,还是在发送中,每个站都必须不停地检测信道。在发送前检测 信道,是为了获得发送权。如果检测出已经有其他站在发送,则自己 就暂时不许发送数据,必须要等到信道变为空闲时才能发送。在发送 中检测信道,是为了及时发现有没有其他站的发送和本站发送的碰 撞。这就称为碰撞检测。

"碰撞检测"也就是"边发送边监听",即适配器边发送数据边检测信道上的信号电压的变化情况,以便判断自己在发送数据时其他站是否也在发送数据。当几个站同时在总线上发送数据时,总线上的信号电压变化幅度将会增大(互相叠加)。当适配器检测到的信号电压变化幅度超过一定的门限值时,就认为总线上至少有两个站同时在发送数据,表明产生了碰撞。所谓"碰撞"就是发生了冲突。因此"碰撞检测"也称为"冲突检测"。这时,总线上传输的信号产生了严重的失真,无法从中恢复出有用的信息来。因此,任何一个正在发送数据的站,一旦发现总线上出现了碰撞,其适配器就要立即停止发送,免得继续进行无效的发送,白白浪费网络资源,然后等待一段随机时间后再次发送。

既然每一个站在发送数据之前已经监听到信道为"**空闲**",那么为什么还会出现数据在总线上的碰撞呢?这是因为电磁波在总线上总是以有限的速率传播的。这和我们开讨论会时相似。一听见会场安静,我们就立即发言,但偶尔也会发生几个人同时抢着发言而产生冲突的情况。图3-17所示的例子可以说明这种情况。设图中的局域网两端的站

A和B相距1km,用同轴电缆相连。电磁波在 1km电缆的传播时延约为 $5\mu s$ (这个数字应当记住)。因此,A向B发出的数据,在约 $5\mu s$ 后才能传送到B。换言之,B若在A发送的数据到达B之前发送自己的帧(因为这时B的载波监听检测不到A所发送的信息),则必然要在某个时间和A发送的帧发生碰撞。碰撞的结果是两个帧都变得无用。在局域网的分析中,常把总线上的单程端到端传播时延记为τ。发送数据的站希望尽早知道是否发生了碰撞。那么,A发送数据后,最迟要经过多长时间才能知道自己发送的数据和其他站发送的数据有没有发生碰撞?从图3-17不难看出,这个时间最多是两倍的总线端到端的传播时延(2τ),或总线的端到端往返传播时延。由于局域网上任意两个站之间的传播时延有长有短,因此局域网必须按最坏情况设计,即取总线两端的两个站之间的传播时延(这两个站之间的距离最大)为端到端传播时延。

图3-17 传播时延对载波监听的影响

显然,在使用CSMA/CD协议时,一个站**不可能同时进行发送和接收(但必须边发送边监听信道)**。因此使用CSMA/CD协议的以太网不可能进行全双工通信而只能进行**双向交替通信(半双工通信)**。

下面是图3-17中的一些重要的时刻。

在t=0时,A发送数据。B检测到信道为空闲。

在 $t = \tau - \delta$ 时(这里 $\tau > \delta > 0$),A发送的数据还没有到达B时,由于B检测到信道是空闲的,因此B发送数据。

经过时间 δ /2后,即在 $t = \tau - \delta$ /2时,A发送的数据和B发送的数据发生了碰撞。但这时A和B都不知道发生了碰撞。

在 $t = 2\tau - \delta$ 时、A也检测到发生了碰撞、因而也停止发送数据。

A和B发送数据均失败,它们都要推迟一段时间再重新发送。

由此可见,每一个站在自己发送数据之后的一小段时间内,存在着遭遇碰撞的可能性。这一小段时间是不确定的,它取决于另一个发送数据的站到本站的距离。因此,以太网不能保证某一时间之内一定能够把自己的数据帧成功地发送出去(因为存在产生碰撞的可能)。以太网的这一特点称为发送的不确定性。如果希望在以太网上发生碰撞的机会很小,必须使整个以太网的平均通信量远小于以太网的最高数据率。

从图3-17可看出,最先发送数据帧的A站,在发送数据帧后**至多**经过时间2 τ 就可知道所发送的数据帧是否遭受了碰撞。这就是 $\delta \to 0$ 的情况。因此以太网的端到端往返时间2 τ 称为**争用期**(contention period),它是一个很重要的参数。争用期又称为**碰撞窗口**(collision window)。这是因为一个站在发送完数据后,只有通过争用期的"考验",即**经过争用期这段时间还没有检测到碰撞,才能肯定这次发送不会发生碰撞**。这时,就可以放心把这一帧数据顺利发送完毕。

以太网使用**截断二进制指数退避**(truncated binary exponential backoff)算法来确定碰撞后重传的时机。截断二进制指数退避算法并不复杂。这种算法让发生碰撞的站在停止发送数据后,不是等待信道变为空闲后就立即再发送数据,而是**推迟**(这叫做**退避**)一个随机的时间。这点很容易理解,因为如果几个发生碰撞的站都在监听信道,那么都会同时发现信道变成了空闲。如果大家都同时再重新发送,那么肯定又会发生碰撞。为了使各站进行重传时再次发生冲突的概率减小,具体的退避算法如下:

- (1)协议规定了基本退避时间为争用期2τ,具体的**争用期时间是**51.2μs。对于10Mbit/s以太网,在争用期内可发送512bit,即64字节。也可以说争用期是512**比特时间**。1比特时间就是发送1比特所需的时间。所以这种时间单位与数据率密切相关。为了方便,也可以**直接使用比特作为争用期的单位**。争用期是512bit,即争用期是发送512bit所需的时间。
- (2) 从离散的整数集合 $[0, 1, ..., (2^k-1)]$ 中随机取出一个数,记为r。重传应推后的时间就是r 倍的争用期。上面的参数k 按下面的公式(3-1)计算:

$$k = Min[重传次数, 10]$$
 (3-1)

可见当重传次数不超过10时,参数k等于重传次数;但当重传次数超过10时,k就不再增大而一直等于10。

(3) 当重传达16次仍不能成功时(这表明同时打算发送数据的站太多,以致连续发生冲突),则丢弃该帧,并向高层报告。

例如,在第1次重传时,k=1,随机数r 从整数 $\{0,1\}$ 中选一个数。因此重传的站可选择的重传推迟时间是0或 2τ ,在这两个时间中随机选择一个。

若再发生碰撞,则在第2次重传时,k=2,随机数r 就从整数 $\{0, 1, 2, 3\}$ 中选一个数。因此重传推迟的时间是在 $0, 2\tau, 4\tau$ 和 6τ 这4个时间中随机地选取一个。

同样,若再发生碰撞,则重传时k=3,随机数r就从整数 $\{0,1,2,3,4,5,6,7\}$ 中选一个数。依此类推。

若连续多次发生冲突,就表明可能有较多的站参与争用信道。但使用上述退避算法可使重传需要推迟的平均时间随重传次数而增大(这也称为**动态退避**),因而减小发生碰撞的概率,有利于整个系统的稳定。

我们还应注意到,适配器每发送一个新的帧,就要执行一次CSMA/CD算法。适配器对过去发生过的碰撞并无记忆功能。因此,当好几个适配器正在执行指数退避算法时,很可能有某一个适配器发送的新帧能

够碰巧立即成功地插入到信道中,得到了发送权,而已经推迟好几次发送的站,有可能很不巧,还要继续执行退避算法,继续等待。

现在考虑一种情况。某个站发送了一个很短的帧,但在发送完毕之前并没有检测出碰撞。假定这个帧在继续向前传播到达目的站之前和别的站发送的帧发生了碰撞,因而目的站将收到有差错的帧(当然会把它丢弃)。可是发送站却不知道这个帧发生了碰撞,因而不会重传这个帧。这种情况显然是我们所不希望的。为了避免发生这种情况,以太网规定了一个最短帧长64字节,即512bit。如果要发送的数据非常少,那么必须加入一些填充字节,使帧长不小于64字节。对于10Mbit/s以太网,发送512bit的时间需要51.2µs,也就是上面提到的争用期。

由此可见,以太网在发送数据时,如果在争用期(共发送了64字节) 没有发生碰撞,那么后续发送的数据就一定不会发生冲突。换句话 说,如果发生碰撞,就一定是在发送的前64字节之内。由于一检测到 冲突就立即中止发送,这时已经发送出去的数据一定小于64字节,因 此**凡长度小于64字节的帧都是由于冲突而异常中止的无效帧**。只要收 到了这种无效帧,就应当立即将其丢弃。

前面已经讲过,信号在以太网上传播1km大约需要5μs。以太网上最大的端到端时延必须小于争用期的一半(即25.6μs),这相当于以太网的最大端到端长度约为5km。实际上的以太网覆盖范围远远没有这样大。因此,实用的以太网都能在争用期51.2μs内检测到可能发生的碰撞。以太网的争用期确定为51.2μs,不仅考虑到以太网的端到端时延,而且还包括其他的许多因素,如存在的转发器所增加的时延,以及下面要讲到的强化碰撞的干扰信号的持续时间等。

下面介绍**强化碰撞**的概念。这就是当发送数据的站一旦发现发生了碰撞时,除了立即停止发送数据外,还要再继续发送32比特或48比特的**人为干扰信号**(jamming signal),以便让所有用户都知道现在已经发生了碰撞(图3-18)。对于10Mbit/s以太网,发送32(或48)比特只需要3.2(或4.8)μs。

图3-18 人为干扰信号的加入

从图3-18可以看出,A站从发送数据开始到发现碰撞并停止发送的时间间隔是 T_B 。A站得知碰撞已经发生时所发送的强化碰撞的干扰信号的持续时间是 T_J 。图中的B站在得知发生碰撞后,也要发送人为干扰信号,但为简单起见,图3-18没有画出B站所发送的人为干扰信号。发生碰撞使A浪费时间 T_B+T_J 。可是整个信道被占用的时间还要增加一个单程端到端的传播时延t。因此总线被占用的时间是 $T_B+T_J+\tau$ 。

以太网还规定了**帧间最小间隔**为9.6µs,相当于96比特时间。这样做是为了使刚刚收到数据帧的站的接收缓存来得及清理,做好接收下一帧的准备。

根据以上所讨论的,可以把CSMA/CD协议的要点归纳如下:

- (1) 准备发送: 适配器从网络层获得一个分组,加上以太网的首部和尾部(见后面的3.4.3节),组成以太网帧,放入适配器的缓存中。但在发送之前,必须**先检测信道**。
- (2) 检测信道: 若检测到信道忙,则应不停地检测,一直等待信道转为空闲。若检测到信道空闲,并在96比特时间内信道保持空闲(保证了帧间最小间隔),就发送这个帧。
- (3) 在发送过程中仍不停地检测信道,即网络适配器要**边发送边监听**。这里只有两种可能性:

- ①发送成功:在争用期内一直未检测到碰撞。这个帧肯定能够发送成功。发送完毕后,其他什么也不做。然后回到(1)。
- ②发送失败:在争用期内检测到碰撞。这时立即停止发送数据,并按规定发送人为干扰信号。适配器接着就执行指数退避算法,等待r倍512比特时间后,返回到步骤(2),继续检测信道。但若重传达16次仍不能成功,则停止重传而向上报错。

以太网每发送完一帧,一定要把已发送的帧暂时保留一下。如果在争 用期内检测出发生了碰撞,那么还要在推迟一段时间后再把这个暂时 保留的帧重传一次。

3.3.3 使用集线器的星形拓扑

传统以太网最初是使用粗同轴电缆,后来演进到使用比较便宜的细同轴电缆,最后发展为使用更便宜和更灵活的双绞线。这种以太网采用星形拓扑,在星形的中心则增加了一种可靠性非常高的设备,叫做**集**线器 (hub),如图3-19所示。双绞线以太网总是和集线器配合使用的。每个站需要用两对无屏蔽双绞线(放在一根电缆内),分别用于发送和接收。双绞线的两端使用RJ-45插头。由于集线器使用了大规模集成电路芯片,因此集线器的可靠性就大大提高了。1990年IEEE制定出星形以太网10BASE-T的标准802.3i。"10"代表10Mbit/s的数据率,BASE表示连接线上的信号是基带信号,T代表双绞线。实践证明,这比使用具有大量机械接头的无源电缆要可靠得多。由于使用双绞线电缆的以太网价格便宜和使用方便,因此粗缆和细缆以太网现在都已成为历史,并已从市场上消失了。

图3-19 使用集线器的双绞线以太网

但10BASE-T以太网的通信距离稍短,每个站到集线器的距离不超过100m。这种性价比很高的10BASE-T**双绞线以太网的出现,是局域网发展史上的一个非常重要的里程碑**,从此以太网的拓扑就从总线型变为更加方便的星形网络,而以太网也就在局域网中占据了统治地位。

使双绞线能够传送高速数据的主要措施是把双绞线的绞合度做得非常精确。这样不仅可使特性阻抗均匀以减少失真,而且大大减少了电磁波辐射和无线电频率的干扰。在多对双绞线的电缆中,还要使用更加复杂的绞合方法。

集线器的一些特点如下:

- (1) 从表面上看,使用集线器的局域网在物理上是一个星形网,但由于集线器使用电子器件来模拟实际电缆线的工作,因此整个系统仍像一个传统以太网那样运行。也就是说,使用集线器的以太网在逻辑上仍是一个总线网,各站共享逻辑上的总线,使用的还是CSMA/CD协议(更具体些说,是各站中的适配器执行CSMA/CD协议)。网络中的各站必须竞争对传输媒体的控制,并且在同一时刻至多只允许一个站发送数据。
- (2) 一个集线器有许多接口(8), 例如8至16个,每个接口通过RJ-45插头(与电话机使用的插头RJ-11相似,但略大一些)用两对双绞线与一台计算机上的适配器相连(这种插座可连接4对双绞线,实际上只用2对,即发送和接收各使用一对双绞线)。因此,一个集线器很像一个多接口的转发器。
- (3) **集线器工作在物理层**,它的每个接口仅仅**简单地转发比特** —— 收到1就转发1,收到0就转发0,**不进行碰撞检测**。若两个接口同时有信号输入(即发生碰撞),那么所有的接口都将收不到正确的帧。图 3-20是具有三个接口的集线器的示意图。

(4)集线器采用了专门的芯片,进行自适应串音回波抵消。这样就可使接口转发出去的较强信号不致对该接口接收到的较弱信号产生干扰 (这种干扰即近端串音)。每个比特在转发之前还要进行再生整形并重新定时。

集线器本身必须非常可靠。现在的**堆叠式**(stackable)集线器由4~8个集线器堆叠起来使用。集线器一般都有少量的容错能力和网络管理功能。例如,假定在以太网中有一个适配器出了故障,不停地发送以太网帧。这时,集线器可以检测到这个问题,在内部断开与出故障的适配器的连线,使整个以太网仍然能够正常工作。模块化的机箱式智能集线器有很高的可靠性。它全部的网络功能都以模块方式实现。各模块均可进行热插拔,出故障时不断电即可更换或增加新模块。集线器上的指示灯还可显示网络上的故障情况,给网络的管理带来了很大的方便。

IEEE 802.3标准还可使用光纤作为传输媒体,相应的标准是10BASE-F系列,F代表光纤。它主要用作集线器之间的远程连接。

3.3.4 以太网的信道利用率

下面我们讨论一下以太网的信道利用率。

假定一个10Mbit/s以太网同时有10个站在工作,那么每一个站所能发送数据的平均速率似乎应当是总数据率的1/10(即1Mbit/s)。其实不然,因为多个站在以太网上同时工作就可能会发生碰撞。当发生碰撞时,信道资源实际上是被浪费了。因此,当扣除碰撞所造成的信道损失后,以太网总的信道利用率并不能达到100%。

图3-21的例子是以太网的信道被占用的情况。一个站在发送帧时出现了碰撞。经过一个争用期 2τ 后(τ 是以太网单程端到端传播时延),可能又出现了碰撞。这样经过若干个争用期后,一个站发送成功了。假定发送帧需要的时间是 T_0 。它等于帧长(bit)除以发送速率(10Mbit/s)。

图3-21 以太网的信道被占用的情况

我们应当注意到,成功发送一个帧需要占用信道的时间是 $T_0+\tau$,比这个帧的发送时间要多一个单程端到端时延 τ 。这是因为当一个站发送完最后一个比特时,这个比特还要在以太网上传播。在最极端的情况下,发送站在传输媒体的一端,而比特在媒体上传输到另一端所需的时间是 τ 。因此,必须在经过时间 $T_0+\tau$ 后以太网的媒体才完全进入空闲状态,才能允许其他站发送数据。

从图3-21可看出,要提高以太网的信道利用率,就必须减小 τ 与 T_0 之比。在以太网中定义了参数a,它是以太网**单程端到端时延** τ 与**帧的发送时间** T_0 之比:

$$a = \frac{\tau}{T_0} \tag{3-2}$$

当 $a \rightarrow 0$ 时,表示只要一发生碰撞,就立即可以检测出来,并立即停止发送,因而信道资源被浪费的时间非常非常少。反之,参数a 越大,表明争用期所占的比例越大,这就使得每发生一次碰撞就浪费了不少的信道资源,使得信道利用率明显降低。因此,以太网的**参数** a 的值应当尽可能小些。从(3-2)式可看出,这就要求(3-2)式分子 τ 的数值要小些,而分母 T_0 的数值要大些。这就是说,当数据率一定时,以太网的连线的长度受到限制(否则 τ 的数值会太大),同时以太网的帧长不能太短(否则 T_0 的值会太小,使a 值太大)。

现在考虑一种**理想化**的情况。假定以太网上的各站发送数据都不会产生碰撞(这显然已经不是CSMA/CD,而是需要使用一种特殊的调度方法),并且能够非常有效地利用网络的传输资源,即总线一旦空闲就有某一个站立即发送数据。这样,发送一帧占用线路的时间是 $T_0+\tau$,而帧本身的发送时间是 T_0 。于是我们可计算出极限信道利用率 S_{max} 为:

$$S_{\text{max}} = \frac{T_0}{T_0 + \tau} = \frac{1}{1 + a} \tag{3-3}$$

(3-3) 式的意义是:虽然实际的以太网不可能有这样高的极限信道利用率,但(3-3)式指出了**只有当参数** *a* 远小于1才能得到尽可能高的极限信道利用率。反之,若参数 *a* 远大于1(即每发生一次碰撞,就要浪费相对较多的传输数据的时间),则极限信道利用率就远小于1,而这时实际的信道利用率就更小了。据统计,当以太网的利用率达到30%时就已经处于重载的情况。很多的网络容量被网上的碰撞消耗掉了。

3.3.5 以太网的MAC层

1. MAC层的硬件地址

在局域网中,**硬件地址** 又称为**物理地址** 或**MAC地址** (因为这种地址 用在**MAC**帧中)。

大家知道,在所有计算机系统的设计中,**标识系统**(identification system)⁽⁹⁾都是一个核心问题。在标识系统中,地址就是识别某个系统的一个非常重要的标识符。在讨论地址问题时,很多人常常引用著名文献「SHOC78」给出的如下定义:

"名字指出我们所要寻找的那个资源,地址指出那个资源在何处,路由告诉我们如何到达该处。"

这个非形式的定义固然很简单,但有时却不够准确。**严格地讲,名字应当与系统的所在地无关**。这就像我们每一个人的名字一样,不随我们所处的地点而改变。但是IEEE 802标准为局域网规定了一种48位的全球地址(一般都简称为"地址"),是指局域网上的每一台计算机中**固化在适配器的ROM中的地址**。因此,

(1) 假定连接在局域网上的一台计算机的适配器坏了而我们更换了一个新的适配器,那么这台计算机的局域网的"地址"也就改变了,虽然这台计算机的地理位置一点也没有变化,所接入的局域网也没有任何改变。

(2) 假定我们把位于南京的某局域网上的一台笔记本电脑携带到北京,并连接在北京的某局域网上。虽然这台电脑的地理位置改变了,但只要电脑中的适配器不变,那么该电脑在北京的局域网中的"地址"仍然和它在南京的局域网中的"地址"一样。

由此可见,局域网上的某台主机的"地址"根本不能告诉我们这台主机位于什么地方。因此,**严格地讲,局域网的"地址"应当是每一个站的"名字"或标识符** [PERL00] 。不过计算机的名字通常都是比较适合人记忆的不太长的字符串,而这种48位二进制的"地址"却很不像一般计算机的名字。现在人们还是习惯于把这种48位的"名字"称为"地址"。本书也采用这种习惯用法,尽管这种说法并不太严格。

请注意,如果连接在局域网上的主机或路由器安装有多个适配器,那么这样的主机或路由器就有多个"地址"。更准确些说,这种48位"地址"应当是某个接口的标识符。

在制定局域网的地址标准时,首先遇到的问题就是应当用多少位来表示一个网络的地址字段。为了减少不必要的开销,地址字段的长度应当尽可能地短些。起初人们觉得用两个字节(共16位)表示地址就够了,因为这一共可表示6万多个地址。但是,由于局域网的迅速发展,而处在不同地点的局域网之间又经常需要交换信息,这就希望在各地的局域网中的站具有互不相同的物理地址。为了使用户在买到适配器并把机器连到局域网后马上就能工作,而不需要等待网络管理员给他先分配一个地址,IEEE 802标准规定MAC地址字段可采用6字节(48位)或2字节(16位)这两种中的一种。6字节地址字段对局部范围内使用的局域网的确是太长了,但是由于6字节的地址字段可使全世界所有的局域网适配器都具有不相同的地址,因此现在的局域网适配器实际上使用的都是6字节MAC地址。

现在IEEE的**注册管理机构** RA(Registration Authority)是局域网全球地址的法定管理机构[W-IEEERA],它负责分配地址字段的6个字节中的前三个字节(即高位24位)。世界上凡要生产局域网适配器的厂家都必须向IEEE购买由这三个字节构成的这个号(即地址块),这个号的正式名称是组织唯一标识符OUI(Organizationally Unique Identifier),通常也叫做公司标识符(company_id)[RFC 7042]。例如,3Com公司生产的适配器的MAC地址的前三个字节是02-60-8C(10)。地址字段中的后三个字节(即低位24位)则由厂家自行指派,称为**扩展标识符**(extended id entifier),只要保证生产出的适配器没有

重复地址即可。可见用一个地址块可以生成2²⁴个不同的地址。用这种方式得到的48位地址称为EUI-48,这里EUI表示**扩展的唯一标识符**(Extended Unique Identifier)。EUI-48的使用范围并不局限于局域网的硬件地址,而是可以用于软件接口。但应注意,24位的OUI不能够单独用来标志一个公司,因为一个公司可能有几个OUI,也可能有几个小公司合起来购买一个OUI。在生产适配器时,这种6字节的MAC地址已被固化在适配器的ROM中。因此,MAC地址也叫做**硬件地址**(hardware address)或**物理地址**(11)。可见"MAC地址"实际上就是**适配器地址**或**适配器标识符** EUI-48。当这块适配器插入(或嵌入)到某台计算机后,适配器上的标识符EUI-48就成为这台计算机的MAC地址了。

IEEE 规定地址字段的第一字节的最低位为I/G位。I/G表示Individual/Group。当I/G位为0时,地址字段表示一个单个站地址。当I/G位为1时表示组地址,用来进行多播(以前曾译为组播)。因此,IEEE只分配地址字段前三个字节中的23位。当I/G位分别为0和1时,一个地址块可分别生成2²⁴个单个站地址和2²⁴个组地址。需要指出,有的书把上述最低位写为"第一位",但"第一"的定义是含糊不清的。这是因为在地址记法中有两种标准:第一种记法是把每一字节的最低位写在最左边(最左边的最低位是第一位)。IEEE 802.3标准就采用这种记法。第二种记法是把每一字节的最高位写在最左边(最左边的最高位是第一位)。在发送数据时,两种记法都是按照字节的顺序发送,但每一个字节中先发送哪一位则不同:第一种记法先发送最低位,第二种记法先发送最高位。

IEEE还考虑到可能有人并不愿意向IEEE的RA购买OUI。为此,IEEE 把地址字段第1字节的最低第二位规定为G/L位,表示Global/Local。当G/L位为0时是**全球管理**(保证在全球没有相同的地址),厂商向IEEE购买的OUI都属于**全球管理**。当地址字段的G/L位为1时是本地管理,这时用户可任意分配网络上的地址。采用2字节地址字段时全都是**本地管理**。但应当指出,以太网几乎不理会这个G/L位。

这样,在全球管理时,对每一个站的地址可用46位的二进制数字来表示(最低位和最低第2位均为0时)。剩下的46位组成的地址空间可以有2⁴⁶个地址,已经超过70万亿个,可保证世界上的每一个适配器都可有一个唯一的地址。当然,非无限大的地址空间总有用完的时候。但据测算,到2020年以前还不需要考虑MAC地址耗尽的问题。

当路由器通过适配器连接到局域网时,适配器上的硬件地址就用来标志路由器的某个接口。路由器如果同时连接到两个网络上,那么它就需要两个适配器和两个硬件地址。

我们知道适配器有**过滤功能**。但适配器从网络上每收到一个MAC帧就 先用硬件检查MAC帧中的目的地址。如果是发往本站的帧则收下,然 后再进行其他的处理。否则就将此帧丢弃,不再进行其他的处理。这 样做就不浪费主机的处理机和内存资源。这里"发往本站的帧"包括以下三种帧:

- (1) **单播** (unicast) 帧 (-对-) ,即收到的帧的MAC地址与本站的硬件地址相同。
- (2) **广播**(broadcast)帧(一对全体),即发送给本局域网上所有站点的帧(全1地址)。
- (3) **多播**(multicast)帧(一对多),即发送给本局域网上一部分站点的帧。

所有的适配器都至少应当能够识别前两种帧,即能够识别单播和广播 地址。有的适配器可用编程方法识别多播地址。当操作系统启动时, 它就把适配器初始化,使适配器能够识别某些多播地址。显然,只有 目的地址才能使用广播地址和多播地址。

以太网适配器还可设置为一种特殊的工作方式,即**混杂方式**(promiscuousm ode)。工作在混杂方式的适配器只要"听到"有帧在以太网上传输就都悄悄地接收下来,而不管这些帧是发往哪个站。请注意,这样做实际上是"窃听"其他站点的通信而并不中断其他站点的通信。网络上的黑客(hacker或cracker)常利用这种方法非法获取网上用户的口令。因此,以太网上的用户不愿意网络上有工作在混杂方式的适配器。

但混杂方式有时却非常有用。例如,网络维护和管理人员需要用这种方式来监视和分析以太网上的流量,以便找出提高网络性能的具体措施。有一种很有用的网络工具叫做嗅探器(Sniffer)就使用了设置为混杂方式的网络适配器。此外,这种嗅探器还可帮助学习网络的人员更好地理解各种网络协议的工作原理。因此,混杂方式就像一把双刃剑,是利是弊要看你怎样使用它。

2. MAC帧的格式

常用的以太网MAC帧格式有两种标准,一种是DIX Ethernet V2标准(即以太网V2标准),另一种是IEEE的802.3标准。这里只介绍使用得最多的以太网V2的MAC帧格式(图3-22)。图中假定网络层使用的是IP协议。实际上使用其他的协议也是可以的。

图3-22 以太网V2的MAC帧格式

以太网V2的MAC帧较为简单,由五个字段组成。前两个字段分别为6字节长的**目的地址** 和**源地址**字段。第三个字段是2字节的**类型字段**,用来标志上一层使用的是什么协议,以便把收到的MAC帧的数据上交给上一层的这个协议。例如,当类型字段的值是0x0800时,就表示上层使用的是IP数据报。若类型字段的值为0x8137,则表示该帧是由Novell IPX发过来的。第四个字段是**数据字段**,其长度在46到1500字节之间(46字节是这样得出的:最小长度64字节减去18字节的首部和尾部就得出数据字段的最小长度)。最后一个字段是4字节的**帧检验序列** FCS(使用CRC检验)。当传输媒体的误码率为1×10⁻⁸时,MAC子层可使未检测到的差错小于1×10⁻¹⁴。

这里我们要指出,在以太网V2的MAC帧格式中,其首部并没有一个帧长度(或数据长度)字段。那么,MAC子层又怎样知道从接收到的以太网帧中取出多少字节的数据交付上一层协议呢?我们在前面讲述图 3-16的曼彻斯特编码时已经讲过,这种曼彻斯特编码的一个重要特点就是:在曼彻斯特编码的每一个码元(不管码元是1或0)的正中间一定有一次电压的转换(从高到低或从低到高)。当发送方把一个以太网帧发送完毕后,就不再发送其他码元了(既不发送1,也不发送0)。因此,发送方网络适配器的接口上的电压也就不再变化了。这

样,接收方就可以很容易地找到以太网帧的结束位置。在这个位置往前数4字节(FCS字段长度是4字节),就能确定数据字段的结束位置。

当数据字段的长度小于46字节时,MAC子层就会在数据字段的后面加入一个整数字节的填充字段,以保证以太网的MAC帧长不小于64字节。我们应当注意到,MAC帧的首部并没有指出数据字段的长度是多少。在有填充字段的情况下,接收端的MAC子层在剥去首部和尾部后就把数据字段和填充字段一起交给上层协议。现在的问题是:上层协议如何知道填充字段的长度呢?(IP层应当丢弃没有用处的填充字段。)可见,上层协议必须具有识别有效的数据字段长度的功能。我们知道,当上层使用IP协议时,其首部就有一个"总长度"字段。因此,"总长度"加上填充字段的长度,应当等于MAC帧数据字段的长度。例如,当IP数据报的总长度为42字节时,填充字段共有4字节。当MAC帧把46字节的数据上交给IP层后,IP层就把其中最后4字节的填充字段丢弃。

从图3-22可看出,在传输媒体上实际传送的要比MAC帧还多8个字节。这是因为当一个站在刚开始接收MAC帧时,由于适配器的时钟尚未与到达的比特流达成同步,因此MAC帧的最前面的若干位就无法接收,结果使整个的MAC成为无用的帧。为了接收端迅速实现位同步,从MAC子层向下传到物理层时还要在帧的前面插入8字节(由硬件生成),它由两个字段构成。第一个字段是7个字节的**前同步码**(1和0交替码),它的作用是使接收端的适配器在接收MAC帧时能够迅速调整其时钟频率,使它和发送端的时钟同步,也就是"实现位同步"(位同步就是比特同步的意思)。第二个字段是**帧开始定界符**,定义为10101011。它的前六位的作用和前同步码一样,最后的两个连续的1就是告诉接收端适配器:"MAC帧的信息马上就要来了,请适配器注意接收"。MAC帧的FCS字段的检验范围不包括前同步码和帧开始定界符。顺便指出,在使用SONET/SDH进行同步传输时则不需要用前同步码,因为在同步传输时收发双方的位同步总是一直保持着的。

还需注意,在以太网上传送数据时是以帧为单位传送的。以太网在传送帧时,各帧之间还必须有一定的间隙。因此,接收端只要找到帧开始定界符,其后面的连续到达的比特流就都属于同一个MAC帧。可见以太网不需要使用帧结束定界符,也不需要使用字节插入来保证透明传输。

IEEE 802.3标准规定凡出现下列情况之一的即为无效的MAC帧:

- (1) 帧的长度不是整数个字节;
- (2) 用收到的帧检验序列FCS查出有差错;
- (3) 收到的帧的MAC客户数据字段的长度不在46~1500字节之间。 考虑到MAC帧首部和尾部的长度共有18字节,可以得出有效的MAC帧长度为64~1518字节之间。

对于检查出的无效MAC帧就简单地丢弃。以太网不负责重传丢弃的帧。

最后要提一下, IEEE 802.3标准规定的MAC帧格式与上面所讲的以太 网V2 MAC帧格式的区别就是两个地方。

第一, IEEE 802.3规定的MAC帧的第三个字段是"长度/类型"。当这个字段值大于0x0600时(相当于十进制的1536),就表示"类型"。这样的帧和以太网V2 MAC帧完全一样。只有当这个字段值小于0x0600时才表示"长度",即MAC帧的数据部分长度。显然,在这种情况下,若数据字段的长度与长度字段的值不一致,则该帧为无效的MAC帧。实际上,前面我们已经讲过,由于以太网采用了曼彻斯特编码,长度字段并无实际意义。

第二,当"长度/类型"字段值小于0x0600时,数据字段必须装入上面的逻辑链路控制LLC子层的LLC帧。

由于现在广泛使用的局域网只有以太网,因此LLC帧已经失去了原来的意义(见本章3.3.1节第1小节"以太网的两个标准")。现在市场上流行的都是以太网V2的MAC帧,但大家也常常把它称为IEEE 802.3标准的MAC帧。

3.4 扩展的以太网

在许多情况下,我们希望对以太网的覆盖范围进行扩展。本节先讨论 在物理层对以太网扩展,然后讨论在数据链路层对以太网扩展。**这种** 扩展的以太网在网络层看来仍然是一个网络。

3.4.1 在物理层扩展以太网

以太网上的主机之间的距离不能太远(例如,10BASE-T以太网的两台主机之间的距离不超过200米),否则主机发送的信号经过铜线的传输就会衰减到使CSMA/CD协议无法正常工作。在过去广泛使用粗缆或细缆以太网时,常使用工作在物理层的转发器来扩展以太网的地理覆盖范围。那时,两个网段可用一个转发器连接起来。IEEE 802.3标准还规定,任意两个站之间最多可以经过三个电缆网段。但随着双绞线以太网成为以太网的主流类型,扩展以太网的覆盖范围已很少使用转发器了。

现在,扩展主机和集线器之间的距离的一种简单方法就是使用光纤(通常是一对光纤)和一对光纤调制解调器,如图3-23所示。

图3-23 主机使用光纤和一对光纤调制解调器连接到集线器

光纤调制解调器的作用就是进行电信号和光信号的转换。由于光纤带来的时延很小,并且带宽很宽,因此使用这种方法可以很容易地使主机和几公里以外的集线器相连接。

如果使用多个集线器,就可以连接成覆盖更大范围的多级星形结构的以太网。例如,一个学院的三个系各有一个10BASE-T以太网(图3-24(a)),可通过一个主干集线器把各系的以太网连接起来,成为一个更大的以太网(图3-24(b))。

图3-24 用多个集线器连成更大的以太网

这样做可以有以下两个好处。第一,使这个学院不同系的以太网上的计算机能够进行跨系的通信。第二,扩大了以太网覆盖的地理范围。例如,在一个系的10BASE-T以太网中,主机与集线器的最大距离是100m,因而两台主机之间的最大距离是200m。但在通过主干集线器相连接后,不同系的主机之间的距离就可扩展了,因为集线器之间的距离可以是100m(使用双绞线)或甚至更远(如使用光纤)。

但这种多级结构的集线器以太网也带来了一些缺点。

- (1) 如图3-24(a)所示的例子,在三个系的以太网互连起来之前,每一个系的10BASE-T以太网是一个独立的**碰撞域**(collision domain,又称为**冲突域**),即在任一时刻,在每一个碰撞域中只能有一个站在发送数据。每一个系的以太网的最大吞吐量是10Mbit/s,因此三个系总的最大吞吐量共有30Mbit/s。在三个系的以太网通过集线器互连起来后就把三个碰撞域变成一个碰撞域(范围扩大到三个系),如图3-24(b)所示,而这时的最大吞吐量仍然是一个系的吞吐量10Mbit/s。这就是说,当某个系的两个站在通信时所传送的数据会通过所有的集线器进行转发,使得其他系的内部在这时都不能通信(一发送数据就会碰撞)。
- (2) 如果不同的系使用不同的以太网技术(如数据率不同),那么就不可能用集线器将它们互连起来。如果在图3-24中,一个系使用10Mbit/s的适配器,而另外两个系使用10/100Mbit/s的适配器,那么用集线器连接起来后,大家都只能工作在10Mbit/s的速率。集线器基本上是个多接口(即多端口)的转发器,它并不能把帧进行缓存。

3.4.2 在数据链路层扩展以太网

扩展以太网更常用的方法是在数据链路层进行。最初人们使用的是**网桥**(bridge)。网桥对收到的帧根据其MAC帧的目的地址进行**转发**和**过滤**。当网桥收到一个帧时,并不是向所有的接口转发此帧,而是根据此帧的目的MAC地址,查找网桥中的地址表,然后确定将该帧转发到哪一个接口,或者是把它丢弃(即过滤)。

1990年问世的**交换式集线器**(switching hub),很快就淘汰了网桥。 交换式集线器常称为以太网**交换机**(switch)或**第二层交换机**(L2 switch),强调这种交换机**工作在数据链路层**。

"交换机"并无准确的定义和明确的概念。著名网络专家Perlman认为: "交换机"应当是一个**市场名词**,而交换机的出现的确使数据的转发更加快速了 [PERL00]。本书也使用这个广泛被接受的名词——以太网交换机。下面简单地介绍以太网交换机的特点。

1. 以太网交换机的特点

以太网交换机实质上就是一个**多接口的网桥**,通常都有十几个或更多的接口,和工作在物理层的转发器、集线器有很大的差别。以太网交换机的每个接口都直接与一个单台主机或另一个以太网交换机相连,并且一般都工作在全双工方式。以太网交换机还具有并行性,即能同时连通多对接口,使多对主机能同时通信(而网桥只能一次分析和转发一个帧)。相互通信的主机都是**独占传输媒体,无碰撞地传输数据**。

以太网交换机的接口还有存储器,能在输出端口繁忙时把到来的帧进行缓存。因此,如果连接在以太网交换机上的两台主机,同时向另一台主机发送帧,那么当这台主机的接口繁忙时,发送帧的这两台主机的接口会把收到的帧暂存一下,以后再发送出去。

以太网交换机是一种即插即用设备,其内部的帧**交换表**(又称为**地址表**)是通过自学习算法自动地逐渐建立起来的。以太网交换机由于使用了专用的交换结构芯片,用硬件转发,其转发速率要比使用软件转发的网桥快很多。

以太网交换机的性能远远超过普通的集线器,而且价格并不贵,这就使工作在物理层的集线器逐渐地退出了市场。

对于传统的10Mbit/s的共享式以太网,若共有10个用户,则每个用户占有的平均带宽只有1Mbit/s。若使用以太网交换机来连接这些主机,虽然在每个接口到主机的带宽还是10Mbit/s,但由于一个用户在通信时是独占而不是和其他网络用户共享传输媒体的带宽,因此对于拥有10个接口的交换机的总容量则为100Mbit/s。这正是交换机的最大优点。

从共享总线以太网转到交换式以太网时,所有接入设备的软件和硬件、适配器等都不需要作任何改动。

以太网交换机一般都具有多种速率的接口,例如,可以具有10Mbit/s、100Mbit/s和1Gbit/s的接口的各种组合,这就大大方便了各种不同情况的用户。

虽然许多以太网交换机对收到的帧采用存储转发方式进行转发,但也有一些交换机采用**直通**(cut-through)的交换方式。直通交换不必把整个数据帧先缓存后再进行处理,而是在接收数据帧的同时就立即按数据帧的目的MAC地址决定该帧的转发接口,因而提高了帧的转发速度。如果在这种交换机的内部采用基于硬件的交叉矩阵,交换时延就非常小。直通交换的一个缺点是它不检查差错就直接将帧转发出去,因此有可能也将一些无效帧转发给其他的站。在某些情况下,仍需要采用基于软件的存储转发方式进行交换,例如,当需要进行线路速率匹配、协议转换或差错检测时。现在有的厂商已生产出能支持两种交换方式的以太网交换机。以太网交换机的发展与建筑物结构化布线系统的普及应用密切相关。在结构化布线系统中,广泛地使用了以太网交换机。

2. 以太网交换机的自学习功能

我们用一个简单例子来说明以太网交换机是怎样进行自学习的。

假定在图3-25中的以太网交换机有4个接口,各连接一台计算机,其MAC地址分别是A,B,C和D。在一开始,以太网交换机里面的交换表是空的(图3-25(a))。

图3-25 以太网交换机中的交换表

A先向B发送一帧,从接口1进入到交换机。交换机收到帧后,先查找交换表,没有查到应从哪个接口转发这个帧(在MAC地址这一列中,找不到目的地址为B的项目)。接着,交换机把这个帧的源地址A和接口1写入交换表中,并向除接口1以外的所有接口广播这个帧(这个帧就是从接口1进来的,当然不应当把它再从接口1转发出去)。

C和D将丢弃这个帧,因为目的地址不对。只B才收下这个目的地址正确的帧。这也称为**讨滤**。

从新写入交换表的项目(A, 1)可以看出,以后不管从哪一个接口收到帧,只要其目的地址是A,就应当把收到的帧从接口1转发出去。这样做的依据是: 既然A发出的帧是从接口1进入到交换机的,那么从交换机的接口1转发出的帧也应当可以到达A。

假定接下来B通过接口3向A发送一帧。交换机查找交换表,发现交换表中的MAC地址有A。表明要发送给A的帧(即目的地址为A的帧)应从接口1转发。于是就把这个帧传送到接口1转发给A。显然,现在已经没有必要再广播收到的帧。交换表这时新增加的项目(B,3),表明今后如有发送给B的帧,就应当从接口3转发出去。

经过一段时间后,只要主机C和D也向其他主机发送帧,以太网交换机中的交换表就会把转发到C或D应当经过的接口号(2或4)写入到交换表中。这样,交换表中的项目就齐全了。要转发给任何一台主机的帧,都能够很快地在交换表中找到相应的转发接口。

考虑到有时可能要在交换机的接口更换主机,或者主机要更换其网络适配器,这就需要更改交换表中的项目。为此,在交换表中每个项目都设有一定的有效时间。过期的项目就自动被删除。用这样的方法保证交换表中的数据都符合当前网络的实际状况。

以太网交换机的这种自学习方法使得以太网交换机能够即插即用,不 必人工进行配置,因此非常方便。

但有时为了增加网络的可靠性,在使用以太网交换机组网时,往往会增加一些冗余的链路。在这种情况下,自学习的过程就可能导致以太网帧在网络的某个环路中无限制地兜圈子。我们用图3-26的简单例子来说明这个问题。

图3-26 在两个交换机之间兜圈子的帧

在图3-26中,假定一开始主机A通过接口交换机#1向主机B发送一帧。交换机#1收到这个帧后就向所有其他接口进行广播发送。现观察其中一个帧的走向: 离开交换机#1的接口3→交换机#2的接口1→接口2→交换机#1的接口4→接口3→交换机#2的接口1→.....。这样就无限制地循环兜圈子下去,白白消耗了网络资源。

为了解决这种兜圈子问题,IEEE的802.1D标准制定了一个**生成树协议** STP(Spanning Tree Protocol)。其要点就是不改变网络的实际拓扑,但在逻辑上则切断某些链路,使得从一台主机到所有其他主机的路径是无环路的树状结构,从而消除了兜圈子现象。

3. 从总线以太网到星形以太网

大家知道,传统的电话网是星形结构,其中心就是电话交换机。那么在20世纪70年代中期出现的局域网,为什么不采用这种星形结构呢?这是因为在当时的技术条件下,还很难用廉价的方法制造出高可靠性的以太网交换机。所以那时的以太网就采用无源的总线结构。这种总线式以太网一问世就受到广大用户的欢迎,并获得了很快的发展。

然而随着以太网上站点数目的增多,使得总线结构以太网的可靠性下降。与此同时,大规模集成电路以及专用芯片的发展,使得星形结构的以太网交换机可以做得既便宜又可靠。在这种情况下,采用以太网交换机的星形结构又成为以太网的首选拓扑,而传统的总线以太网也很快从市场上消失了。

总线以太网使用CSMA/CD协议,以半双工方式工作。但以太网交换机不使用共享总线,没有碰撞问题,因此不使用CSMA/CD协议,而是以全双工方式工作。既然连以太网的重要协议CSMA/CD都不使用了(相关的"争用期"也没有了),为什么还叫做以太网呢?原因就是它的帧结构未改变,仍然采用以太网的帧结构。

3.4.3 虚拟局域网

利用以太网交换机可以很方便地实现**虚拟局域网** VLAN (Virtual LAN)。在IEEE 802.1Q标准中,对虚拟局域网VLAN是这样定义的:

虚拟局域网VLAN是由一些局域网网段构成的与物理位置无关的逻辑组,而这些网段具有某些共同的需求。每一个VLAN的帧都有一个明确的标识符,指明发送这个帧的计算机属于哪一个VLAN。

虚拟局域网其实只是局域网给用户提供的一种服务,而并不是一种新型局域网。

图3-27 画的是使用了四个交换机的网络拓扑。设有10台计算机分配在三个楼层中,构成了三个局域网,即:

但这10个用户划分为三个工作组,也就是说划分为三个虚拟局域网VI.AN。即:

图3-27 三个虚拟局域网VLAN₁, VLAN₂和VLAN₃的构成

从图3-27可看出,每一个VLAN的计算机可处在不同的局域网中,也可以不在同一层楼中。

利用以太网交换机可以很方便地将这10台计算机划分为三个虚拟局域网: VLAN $_1$, VLAN $_2$ 和VLAN $_3$ 。在虚拟局域网上的每一个站都可以收到同一个虚拟局域网上的其他成员所发出的广播。例如,计算机B $_1$ ~B $_3$ 同属于虚拟局域网VLAN $_2$ 。当B $_1$ 向工作组内成员发送数据时,计算机B $_2$ 和B $_3$ 将会收到广播的信息,虽然它们没有和B $_1$ 连在同一个以太网交换机上。相反,B $_1$ 向工作组内成员发送数据时,计算机A $_1$,A $_2$ 和C $_1$ 都不会收到B $_1$ 发出的广播信息,虽然它们都与B $_1$ 连接在同一个以太网交换机上。以太网交换机不向虚拟局域网以外的计算机传送B $_1$ 的广播信息。这样,虚拟局域网限制了接收广播信息的计算机数,使得网络不会因传播过多的广播信息(即所谓的"广播风暴")而引起性能恶化。

由于虚拟局域网是用户和网络资源的逻辑组合,因此可按照需要将有关设备和资源非常方便地重新组合,使用户从不同的服务器或数据库中存取所需的资源。

以太网交换机的种类很多。例如,"具有第三层特性的第二层交换机"和"多层交换机"。前者具有某些第三层的功能,如数据报的分片和

对多播通信量的管理,而后者可根据第三层的IP地址对分组进行过滤。

1988年IEEE批准了802.3ac标准,这个标准定义了以太网的帧格式的扩展,以便支持虚拟局域网。虚拟局域网协议允许在以太网的帧格式中插入一个4字节的标识符(见图3-28),称为VLAN标记(tag),用来指明发送该帧的计算机属于哪一个虚拟局域网。插入VLAN标记得出的帧称为802.1Q帧。显然,如果还使用原来的以太网帧格式,那么就无法区分是否划分了虚拟局域网。图3-27标注出在几个粗线链路上传输的帧是802.1Q帧。在其他链路上传输的仍然是普通的以太网帧。

图3-28 插入VLAN标记后变成了802.1Q帧

VLAN标记字段的长度是4字节,插入在以太网MAC帧的源地址字段和类型字段之间。VLAN标记的前两个字节总是设置为0x8100(即二进制的10000001 00000000),称为IEEE 802.1Q标记类型。

当数据链路层检测到MAC帧的源地址字段后面的两个字节的值是0x8100时,就知道现在插入了4字节的VLAN标记。于是就接着检查后面两个字节的内容。在后面的两个字节中,前3位是用户优先级字段,接着的一位是**规范格式指示符** CFI(Canonical Format Indicator)(12),最后的12位是该虚拟局域网**VLAN标识符** VID(VLAN ID),它唯一地标志了这个以太网帧属于哪一个VLAN。

由于用于VLAN的以太网帧的首部增加了4个字节,因此以太网的最大帧长从原来的1518字节(1500字节的数据加上18字节的首部)变为1522字节。

3.5 高速以太网

随着电子技术的发展,以太网的速率也不断提升。从传统的10Mbit/s以太网一直发展到现在常用的速率为1Gbit/s的吉比特以太网,甚至更快的以太网。下面简单介绍几种高速以太网技术。

3.5.1 100BASE-T以太网

100BASE-T是在双绞线上传送100Mbit/s基带信号的星形拓扑以太网,仍使用IEEE 802.3的CSMA/CD协议,它又称为**快速以太网**(Fast Ethernet)。用户只要使用100Mbit的适配器和100Mbit/s的集线器或交换机,就可很方便地由10BASE-T以太网直接升级到100Mbit/s,而不必改变网络的拓扑结构。所有在10BASE-T上的应用软件和网络软件都可保持不变。100BASE-T的适配器有很强的自适应性,能够自动识别10Mbit/s和100Mbit/s。1995年IEEE已把100BASE-T的快速以太网定为正式标准,其代号为IEEE 802.3u,是对现行的IEEE 802.3标准的补充。

100BASE-T可使用以太网交换机提供很好的服务质量,可在全双工方式下工作而无冲突发生。因此,CSMA/CD协议对全双工方式工作的快速以太网是不起作用的(但在半双工方式工作时则一定要使用CSMA/CD协议)。快速以太网使用的MAC帧格式仍然是IEEE 802.3标准规定的帧格式。

然而IEEE 802.3u的标准未包括对同轴电缆的支持。这意味着想**从细缆以太网升级到快速以太网的用户必须重新布线**。因此,现在10/100Mbit/s以太网都使用无屏蔽双绞线布线。

100Mbit/s以太网的新标准改动了原**10Mbit**/s以太网的某些规定。我们知道,以太网有一个重要的参数a,它必须保持为很小的数值。在**3.3.4**节曾给出了参数a的公式(3-2):

$$a = \frac{\tau}{T_0} \tag{3-2}$$

这里 τ 是以太网单程端到端时延, T_0 是帧的发送时间。我们知道, T_0 是帧长与发送速率之比,可见为了保持参数a不变,可以使 τ 与发送速率的乘积不变。在帧长一定的条件下,若数据率提高到10倍,可把网络电缆长度(因而使 τ)减小到原有数值的十分之一。

在100Mbit/s的以太网中采用的方法是保持最短帧长不变,对于铜缆100Mbit/s以太网,一个网段的最大长度是100m,其最短帧长仍为64字节,即512比特。因此100Mbit/s以太网的争用期是5.12μs,帧间最小间隔现在是0.96μs,都是10Mbit/s以太网的1/10。

表3-1是100Mbit/s以太网的新标准规定的三种不同的物理层标准。

表3-1 100Mbit/s以太网的物理层标准

名称		网段最大长	特点
体	月	更	
100BASE-	铜	100m	两对UTP 5类线或屏蔽双绞线
TX 缆			STP
100BASE-	铜	100m	4对UTP 3类线或5类线
T4 缆			
100BASE-	光	2000m	两根光纤,发送和接收各用一
FX 缆			根

在标准中把上述的100BASE-TX 和100BASE-FX 合在一起称为100BASE-X。

100BASE-T4使用4对UTP 3类线或5类线时,使用3对线同时传送数据(每一对线以33⅓Mbit/s的速率传送数据),用1对线作为碰撞检测的接收信道。

3.5.2 吉比特以太网

吉比特以太网的产品已在1996年夏季问市。IEEE在1997年通过了吉比特以太网的标准802.3z,并在1998年成为正式标准。几年来,吉比特以太网迅速占领了市场,成为以太网的主流产品。

吉比特以太网的标准IEEE 802.3z有以下几个特点:

(1) 允许在1Gbit/s下以全双工和半双工两种方式工作。

- (2) 使用IEEE 802.3协议规定的帧格式。
- (3) 在半双工方式下使用CSMA/CD协议,而在全双工方式不使用CSMA/CD协议。
 - (4) 与10BASE-T和100BASE-T技术向后兼容。

吉比特以太网可用作现有网络的主干网,也可在高带宽(高速率)的应用场合中(如医疗图像或CAD的图形等)用来连接计算机和服务器。

吉比特以太网的物理层使用两种成熟的技术:一种来自现有的以太网,另一种则是美国国家标准协会ANSI制定的**光纤通道** FC(Fibre Channel)。采用成熟技术就能大大缩短吉比特以太网标准的开发时间。

表3-2是吉比特以太网的物理层的标准。

表3-2 吉比特以太网物理层标准

名称		媒	网段最大长	特点			
	体	J	度				
1000BASE-		光	550m	多模光纤	(50和62	.5µm)	
SX	缆						
1000BASE-		光	5000m	单模光纤	$(10\mu m)$	多模光纤	(50
LX	缆		,	和62.5µm)			
1000BASE-		铜	25m	使用2对屏	蔽双绞约	战电缆STP	
CX	缆						
1000BASE-		铜	100m	使用4对U	TP 5类线		
T	缆						

现在1000BASE-X(包括表3-2中的前三项)的标准是IEEE 802.3z,而 1000BASE-T的标准是IEEE 802.3ab。

吉比特以太网工作在半双工方式时,就必须进行碰撞检测。由于数据率提高了,因此只有减小最大电缆长度或增大帧的最小长度,才能使

参数a 保持为较小的数值。若将吉比特以太网最大电缆长度减小到10m, 那么网络的实际价值就大大减小。而若将最短帧长提高到640字节,则在发送短数据时开销又嫌太大。因此,吉比特以太网仍然保持一个网段的最大长度为100m,但采用了"载波延伸"(carrier extension)的办法,使最短帧长仍为64字节(这样可以保持兼容性),同时将争用期增大为512字节。凡发送的MAC帧长不足512字节时,就用一些特殊字符填充在帧的后面,使MAC帧的发送长度增大到512字节,这对有效载荷(13).并无影响。接收端在收到以太网的MAC帧后,要把所填充的特殊字符删除后才向高层交付。当原来仅64字节长的短帧填充到512字节时,所填充的448字节就造成了很大的开销。

为此,吉比特以太网还增加了一种功能称为**分组突发**(packet bursting)。这就是当很多短帧要发送时,第一个短帧要采用上面所说的载波延伸的方法进行填充。但随后的一些短帧则可一个接一个地发送,它们之间只需留有必要的帧间最小间隔即可。这样就形成一串分组的突发,直到达到1500字节或稍多一些为止。当吉比特以太网工作在全双工方式时(即通信双方可同时进行发送和接收数据),不使用载波延伸和分组突发。

吉比特以太网交换机可以直接与多个图形工作站相连。也可用作百兆以太网的主干网,与百兆比特或吉比特交换机相连,然后再和大型服务器连接在一起。图3-29是吉比特以太网的一种配置举例。

图3-29 吉比特以太网的配置举例

3.5.3 10吉比特以太网(10GE)和更快的以太网

10GE并非把吉比特以太网的速率简单地提高到10倍,因为还有许多技术上的问题要解决。顺便指出,10吉比特就是10×10⁹比特,有人愿意称之为"万兆比特"。虽然"万"是中国的一种常用的计量单位,但这与国际上通用的表示方法不一致,因此本书不予采用。

10GE的帧格式与10Mbit/s, 100Mbit/s和1Gbit/s以太网的**帧格式完全相同**, 并保留了802.3标准规定的**以太网最小帧长和最大帧长**。这就使用户在将其已有的以太网进行升级时,仍能和较低速率的以太网很方便地通信。

10GE**只工作在全双工方式**,因此**不存在争用问题,当然也不使用** CSMA/CD**协议**。这就使得10GE的传输距离大大提高了(因为不再受必须进行碰撞检测的限制)。

表3-3是10GE的物理层标准。

表3-3 10GE的物理层标准

		特点	
<u>)</u>	度		
光	300m	多模光纤	$(0.85 \mu m)$
			•
光	10km	单模光纤	(1.3µm)
			` '
光	40km	单模光纤	(1.5um)
, –		, , , , , _ ,	` '
铜	15m	使用4	对双芯同轴电缆
.,,		(twinax)	, ,,, 2 ,, ,,, , ,,
铜	100m		A类UTP双绞线
.1.7		DC/13 1/ 3 01	-200 // (// / / / / / / / / / / / / / / /
	光光	度 光 300m 光 10km 光 40km 铜 15m	光 300m多模光纤光 10km单模光纤光 40km单模光纤铜 15m使用 4 (twinax)

表3-3中的前三项的标准是IEEE 802.3ae, 在2002年6月完成。第四项的标准是IEEE 802.3ak, 完成于2004年。最后一项的标准是IEEE 802.3an, 完成于2006年。

以太网的技术发展得很快。在10GE之后又制定了40GE/100GE(即40 吉比特以太网和100 吉比特以太网)的标准IEEE 802.3ba-2010和802.3bm-2015。表3-4是40GE和100GE的物理层名称及传输距离,其中有两项带*号的是802.3bm提出的。

需要指出的是,40GE/100GE只工作在全双工的传输方式(因而不使用 CSMA/CD协议),并且仍然保持了以太网的帧格式以及802.3标准规定的以太网最小和最大帧长。100GE在使用单模光纤传输时,仍然可以达到40km的传输距离,但这需要波分复用(使用4个波长复用一根光纤,每一个波长的有效传输速率是25Gbit/s)。

表3-4 40GB/100GB以太网的物理层标准

物理层	40GB以太网	100GB以太网
在背板上传输至少超	40GBASE-KR4	
过1m		
在铜缆上传输至少超	40GBASE-CR4	100GBASE-CR10
过7m		
在多模光纤上传输至	40GBASE-SR4	100GBASE-SR10,
少100m		*100GBASE-SR4
在单模光纤上传输至	40GBASE-LR4	100GBASE-LR4
少10km		
在单模光纤上传输至	*40GBASE-ER4	100GBASE-ER4
少40km		

现在以太网的工作范围已经从局域网(校园网、企业网)扩大到城域网和广域网,从而实现了端到端的以太网传输。这种工作方式的好处是:

(1) 以太网是一种经过实践证明的成熟技术,无论是互联网服务提供者ISP还是端用户都很愿意使用以太网。当然对ISP来说,使用以太网

还需要在更大的范围进行试验。

- (2) 以太网的互操作性也很好,不同厂商生产的以太网都能可靠地进行互操作。
- (3) 在广域网中使用以太网时,其价格大约只有同步光纤网SONET的五分之一和异步传递方式ATM的十分之一。以太网还能够适应多种传输媒体,如铜缆、双绞线以及各种光缆。这就使具有不同传输媒体的用户在进行通信时不必重新布线。
- (4) 端到端的以太网连接使帧的格式全都是以太网的格式,而不需要再进行帧的格式转换,这就简化了操作和管理。但是,以太网和现有的其他网络,如帧中继或ATM网络,仍然需要有相应的接口才能进行互连。

以太网从10Mbit/s到10Gbit/s甚至到100Gbit/s的演进,证明了以太网是:

- (1) 可扩展的(速率从10Mbit/s到100Gbit/s)。
- (2) 灵活的(多种媒体、全/半双工、共享/交换)。
- (3) 易于安装。
- (4) 稳健性好。

3.5.4 使用以太网进行宽带接入

现在人们也在使用以太网进行宽带接入互联网。为此, IEEE在2001年 初成立了802.3EFM工作组(14), 专门研究高速以太网的宽带接入技术问题。

以太网接入的一个重要特点是它可以提供双向的宽带通信,并且可以根据用户对带宽的需求灵活地进行带宽升级(例如,把10兆的以太网交换机更新为吉比特的以太网交换机)。当城域网和广域网都采用吉比特以太网或10吉比特以太网时,采用以太网接入可以实现端到端的以太网传输,中间不需要再进行帧格式的转换。这就提高了数据的传输效率且降低了传输的成本。

然而以太网的帧格式标准中,在地址字段部分并没有用户名字段,也没有让用户键入密码来鉴别用户身份的过程。如果网络运营商要利用以太网接入到互联网,就必须解决这个问题。

于是有人就想法子把数据链路层的两个成功的协议结合起来,即把PPP协议中的PPP帧再封装到以太网中来传输。这就是1999年公布的PPPoE(PPP over Ethernet),意思是"在以太网上运行PPP" [RFC 2516]。现在的光纤宽带接入FTTx都要使用PPPoE的方式进行接入。

例如,如果使用光纤到大楼FTTB的方案,就在每个大楼的楼口安装一个光网络单元ONU(实际上就是一个以太网交换机),然后根据用户所申请的带宽,用5类线(请注意,到这个地方,传输媒体已经变为铜线了)接到用户家中。如果大楼里上网的用户很多,那么还可以在每一个楼层再安装一个100Mbit/s的以太网交换机。各大楼的以太网交换机通过光缆汇接到光结点汇接点(光汇接点一般通过城域网连接到互联网的主干网)。

使用这种方式接入到互联网时,在用户家中不再需要使用任何调制解调器。用户家中只有一个RJ-45的插口。用户把自己的个人电脑通过5类网线连接到墙上的RJ-45插口中,然后在PPPoE弹出的窗口中键入在网络运营商处购买的用户名(就是一串数字)和密码,就可以进行宽带上网了。请注意,使用这种以太网宽带接入时,从用户家中的个人电脑到户外的第一个以太网交换机的带宽是能够得到保证的。因为这个带宽是用户独占的,没有和其他用户共享。但这个以太网交换机到上一级的交换机的带宽,是许多用户共享的。因此,如果过多的用户同时上网,则有可能使每一个用户实际上享受到的带宽减少。这时,网络运营商就应当及时进行扩容,以保证用户的利益不受损伤。

顺便指出,当用户利用ADSL(非对称数字用户线)进行宽带上网时,从用户个人电脑到家中的ADSL调制解调器之间,也是使用RJ-45和5类线(即以太网使用的网线)进行连接的,并且也是使用PPPoE弹出的窗口进行拨号连接的。但是用户个人电脑发送的以太网帧到了家里的ADSL调制解调器后,就转换成为ADSL使用的PPP帧。需要注意的是,在用户家中墙上是通过电话使用的RJ-11插口,用普通的电话线传送PPP帧。这已经和以太网没有关系了。所以这种上网方式不能称为以太网上网,而是利用电话线宽带接入到互联网。

本章的重要概念

- 链路是从一个结点到相邻结点的一段物理线路,数据链路则是在 链路的基础上增加了一些必要的硬件(如网络适配器)和软件 (如协议的实现)。
- 数据链路层使用的信道主要有点对点信道和广播信道两种。
- 数据链路层传送的协议数据单元是帧。数据链路层的三个基本问题则是: 封装成帧、透明传输和差错检测。
- 循环冗余检验CRC是一种检错方法,而帧检验序列FCS是添加在数据后面的冗余码。
- 点对点协议PPP是数据链路层使用最多的一种协议,它的特点是:简单;只检测差错,而不是纠正差错;不使用序号,也不进行流量控制;可同时支持多种网络层协议。
- PPPoE是为宽带上网的主机使用的链路层协议。
- 局域网的优点是:具有广播功能,从一个站点可很方便地访问全网;便于系统的扩展和逐渐演变;提高了系统的可靠性、可用性和生存性。
- 共享通信媒体资源的方法有二:一是静态划分信道(各种复用技术),二是动态媒体接入控制,又称为多点接入(随机接入或受控接入)。
- IEEE 802委员会曾把局域网的数据链路层拆成两个子层,即逻辑链路控制(LLC)子层(与传输媒体无关)和媒体接入控制(MAC)子层(与传输媒体有关)。但现在LLC子层已成为历史。
- 计算机与外界局域网的通信要通过通信适配器(或网络适配器),它又称为网络接口卡或网卡。计算机的硬件地址就在适配器的ROM中。
- 以太网采用无连接的工作方式,对发送的数据帧不进行编号,也不要求对方发回确认。目的站收到有差错帧就把它丢弃,其他什么也不做。
- 以太网采用的协议是具有冲突检测的载波监听多点接入 CSMA/CD。协议的要点是:发送前先监听,边发送边监听,一旦 发现总线上出现了碰撞,就立即停止发送。然后按照退避算法等 待一段随机时间后再次发送。因此,每一个站在自己发送数据之 后的一小段时间内,存在着遭遇碰撞的可能性。以太网上各站点 都平等地争用以太网信道。

- 传统的总线以太网基本上都是使用集线器的双绞线以太网。这种以太网在物理上是星形网,但在逻辑上则是总线形网。集线器工作在物理层,它的每个接口仅仅简单地转发比特,不进行碰撞检测。
- 以太网的硬件地址,即MAC地址实际上就是适配器地址或适配器标识符,与主机所在的地点无关。源地址和目的地址都是48位长。
- 以太网的适配器有过滤功能,它只接收单播帧、广播帧或多播帧。
- 使用集线器可以在物理层扩展以太网(扩展后的以太网仍然是一个网络)。
- 交换式集线器常称为以太网交换机或第二层交换机(工作在数据链路层)。它就是一个多接口的网桥,而每个接口都直接与某台单主机或另一个集线器相连,且工作在全双工方式。以太网交换机能同时连通许多对的接口,使每一对相互通信的主机都能像独占通信媒体那样,无碰撞地传输数据。
- 高速以太网有100Mbit/s的快速以太网、吉比特以太网和10Gbit/s的10吉比特以太网。最近还发展到100吉比特以太网。在宽带接入技术中,也常使用高速以太网进行接入。

习题

- **3-01** 数据链路(即逻辑链路)与链路(即物理链路)有何区别?"电路接通了"与"数据链路接通了"的区别何在?
- **3-02** 数据链路层中的链路控制包括哪些功能?试讨论数据链路层做成可靠的链路层有哪些优点和缺点。
- 3-03 网络适配器的作用是什么? 网络适配器工作在哪一层?
- **3-04** 数据链路层的三个基本问题(封装成帧、透明传输和差错检测)为什么都必须加以解决?
- 3-05 如果在数据链路层不进行封装成帧,会发生什么问题?
- **3-06** PPP协议的主要特点是什么?为什么PPP不使用帧的编号? PPP 适用于什么情况?为什么PPP协议不能使数据链路层实现可靠传输?

3-07 要发送的数据为1101011011。采用CRC的生成多项式是P (X) = $X^4 + X + 1$ 。试求应添加在数据后面的余数。

数据在传输过程中最后一个1变成了0,问接收端能否发现?

若数据在传输过程中最后两个1都变成了0,问接收端能否发现?采用 CRC检验后,数据链路层的传输是否就变成了可靠的传输?

- **3-08** 要发送的数据为101110。采用CRC的生成多项式是 $P(X) = X^3 + 1$ 。试求应添加在数据后面的余数。
- **3-09** 一个PPP帧的数据部分(用十六进制写出)是7D 5E FE 27 7D 5D 7D 5D 65 7D 5E。试问真正的数据是什么(用十六进制写出)?
- **3-10** PPP协议使用同步传输技术传送比特串0110111111111100。试问经过零比特填充后变成怎样的比特串?若接收端收到的PPP帧的数据部分是0001110111110111110110,问删除发送端加入的零比特后变成怎样的比特串?
- **3-11** 试分别讨论以下各种情况在什么条件下是透明传输,在什么条件下不是透明传输。

(提示: 请弄清什么是"透明传输", 然后考虑能否满足其条件。)

- (1) 普诵的电话诵信。
- (2) 互联网提供的电子邮件服务。
- 3-12 PPP协议的工作状态有哪几种? 当用户要使用PPP协议和ISP建立连接进行通信时,需要建立哪几种连接? 每一种连接解决什么问题?
- **3-13** 局域网的主要特点是什么?为什么局域网采用广播通信方式而广域网不采用呢?
- **3-14** 常用的局域网的网络拓扑有哪些种类?现在最流行的是哪种结构?为什么早期的以太网选择总线拓扑结构而不使用星形拓扑结构,但现在却改为使用星形拓扑结构?

- 3-15 什么叫做传统以太网?以太网有哪两个主要标准?
- **3-16** 数据率为10Mbit/s的以太网在物理媒体上的码元传输速率是多少码元/秒?
- **3-17** 为什么LLC子层的标准已制定出来了但现在却很少使用?
- 3-18 试说明10BASE-T中的"10"、"BASE"和"T"所代表的意思。
- **3-19** 以太网使用的CSMA/CD协议是以争用方式接入到共享信道的。这与传统的时分复用TDM相比优缺点如何?
- 3-20 假定1km长的CSMA/CD网络的数据率为1Gbit/s。设信号在网络上的传播速率为200000km/s。求能够使用此协议的最短帧长。
- **3-21** 什么叫做比特时间? 使用这种时间单位有什么好处? **100**比特时间是多少微秒?
- **3-22** 假定在使用CSMA/CD协议的10Mbit/s以太网中某个站在发送数据时检测到碰撞,执行退避算法时选择了随机数r = 100。试问这个站需要等待多长时间后才能再次发送数据?如果是100Mbit/s的以太网呢?
- **3-23** 公式(3-3)表示,以太网的极限信道利用率与连接在以太网上的站点数无关。能否由此推论出:以太网的利用率也与连接在以太网上的站点数无关?请说明你的理由。
- 3-24 假定站点A和B在同一个10Mbit/s以太网网段上。这两个站点之间的传播时延为225比特时间。现假定A开始发送一帧,并且在A发送结束之前B也发送一帧。如果A发送的是以太网所容许的最短的帧,那么A在检测到和B发生碰撞之前能否把自己的数据发送完毕?换言之,如果A在发送完毕之前并没有检测到碰撞,那么能否肯定A所发送的帧不会和B发送的帧发生碰撞?(提示:在计算时应当考虑到每一个以太网帧在发送到信道上时,在MAC帧前面还要增加若干字节的前同步码和帧定界符。)
- **3-25** 在上题中的站点A和B在t = 0时同时发送了数据帧。当t = 225比特时间,A和B同时检测到发生了碰撞,并且在t = 225 + 48 = 273比特

时间完成了干扰信号的传输。A和B在CSMA/CD算法中选择不同的r 值退避。假定A和B选择的随机数分别是 $r_A = 0$ 和 $r_B = 1$ 。试问A和B各在什么时间开始重传其数据帧?A重传的数据帧在什么时间到达B?A重传的数据会不会和B重传的数据再次发送碰撞?B会不会在预定的重传时间停止发送数据?

- **3-26** 以太网上只有两个站,它们同时发送数据,产生了碰撞。于是按截断二进制指数退避算法进行重传。重传次数记为i, i=1, 2, 3, ...。试计算第1次重传失败的概率、第2次重传失败的概率、第3次重传失败的概率,以及一个站成功发送数据之前的平均重传次数I。
- **3-27** 有10个站连接到以太网上。试计算以下三种情况下每一个站所能得到的带宽。
 - (1) 10个站都连接到一个10Mbit/s以太网集线器;
 - (2) 10个站都连接到一个100Mbit/s以太网集线器:
 - (3) 10个站都连接到一个10Mbit/s以太网交换机。
- 3-28 10Mbit/s以太网升级到100Mbit/s、1Gbit/s和10Gbit/s时,都需要解决哪些技术问题?为什么以太网能够在发展的过程中淘汰掉自己的竞争对手,并使自己的应用范围从局域网一直扩展到城域网和广域网?
- 3-29 以太网交换机有何特点?用它怎样组成虚拟局域网?
- 3-30 在图3-30中,某学院的以太网交换机有三个接口分别和学院三个系的以太网相连,另外三个接口分别和电子邮件服务器、万维网服务器以及一个连接互联网的路由器相连。图中的A, B和C都是100Mbit/s以太网交换机。假定所有的链路的速率都是100Mbit/s,并且图中的9台主机中的任何一个都可以和任何一个服务器或主机通信。试计算这9台主机和两个服务器产生的总的吞吐量的最大值。为什么?

图3-30 习题3-30的图

- **3-31** 假定在图3-30中的所有链路的速率仍然为100Mbit/s,但三个系的以太网交换机都换成为100Mbit/s的集线器。试计算这9台主机和两个服务器产生的总的吞吐量的最大值。为什么?
- 3-32 假定在图3-30中的所有链路的速率仍然为100Mbit/s,但所有的以太网交换机都换成为100Mbit/s的集线器。试计算这9台主机和两个服务器产生的总的吞吐量的最大值。为什么?
- **3-33** 在图3-31中,以太网交换机有6个接口,分别接到5台主机和一个路由器。

图3-31 习题3-33的图

在下面表中的"动作"一栏中,表示先后发送了4个帧。假定在开始时, 以太网交换机的交换表是空的。试把该表中其他的栏目都填写完。

动作 交换表的状态 向哪些接口转 说明 发帧

A发送帧给D D发送帧给A

E发送帧给A A发送帧给E

- **3-34** 有两台主机A和B接在800m长的电缆线的两端,并在t=0时各自向对方发送一个帧,长度为1500bit(包括首部和前同步码)。假定在A和B之间有4个转发器,在转发帧时会产生20比特的时延。设传输速率为100Mbit/s,而CSMA/CD的退避时间是随机数r倍的争用期,争用期为512bit,在发生第一次碰撞后,在退避时A选择r=0而B选择r=1。忽略发生碰撞后的人为干扰信号和帧间最小间隔。
- (1) 设信号的传播速率是2×10⁸ m/s。试计算从A到B(包括4个转发器)的传播时延。
 - (2) 在什么时间(以秒为单位) B完全收到了A发送的帧?
- (3) 现在假定只有A发送帧, 帧长仍为1500bit, 但4个转发器都用交换机来代替。交换机在进行存储转发时还要产生额外的20bit的处理时延。在什么时间(以秒为单位)B完全收到了A发送的帧?
- (1)_注: 当路由器之间在交换路由信息时,则根据所使用的路由选择协议的不同,也有可能需要使用运输层协议。见下一章的4.5节。
- (2)_注:"可打印的字符"就是"可以从键盘上输入的字符"(因而也是可打印出的)。我们使用的标准键盘有47个键可输入94个字符(包括使用Shift键),加上空格键,一共可输入95个可打印字符。
- (3)_注:用模2运算进行加法时不进位,例如,1111+1010=0101。减法和加法一样,按加法规则计算。
- (4)_注: MTU的默认值是1500字节。在RFC 1661中,MTU叫做 **最大接收单元** MRU(Maximum Receive Unit)。
- (5) 注: TCP的早期版本也叫做NCP, 但它和这里所讨论的NCP没有关系。
- (6) 注: 在2002年1月以前可以在RFC 1700中查出这些代码的值。但现在RFC 3232已把RFC 1700划归为陈旧的RFC。读者可在网站www.iana.org上找到有关的代码值。

- (7)_注: IEEE 802委员会是专门制定局域网和城域网标准的机构。目前(2016年)其下属仍在活动的工作组只有8个,即: 802.1——桥接/体系结构; 802.3——以太网; 802.11——无线局域网; 802.15——无线个人区域网; 802.16——宽带无线接入; 802.19——无线共存(Wireless Coexistence); 802.21——媒体无关切换(Media Independent Handoff); 802.22无线偏远地区网络(Wireless Regional Area Networks)。其余的都已经暂时或完全停止了活动。所有802标准都可从互联网上下载「W-IEEE802」。
- (8) 注:集线器的接口又称为 端口(port)。由于在运输层要经常使用软件 端口(port),它和集线器的硬件端口是两回事。其实集线器的硬件端口就是一个接口,为了避免混淆,我们就使用集线器接口这个名词。
- (9) 注:名词identification原来的标准译名是"标识" [MINGCI94] 。2004年出版的《现代汉语规范词典》给出"标识"的读音是"biaozhi"(读音是"志"),并且说明:现在规范词形写作"标志"。现在教育部国家语言文字工作委员会发布"第一批异形词整理表"规定今后不再使用"标识"而应当用"标志"。但 [MINGCI94] 又将flag译为"标志"。这样,若identification和flag均译为"标志"就会引起混乱。因此,本书采取这样的做法:作为动词用时,我们使用"标志",但作为名词使用时,我们用"标识"(identification)和"标志"(flag)。请读者注意。
- (10) 注: 这里的02-60-8C是十六进制数字在局域网地址中的一种标准记法。每4个二进制数字用一个十六进制数字表示,而每两个十六进制数字与它后面两个十六进制数字之间用连字符隔开。另一种记法是在0x后面写上一连串的十六进制数字,如0x02608C。
- <u>(11)</u> 注:地址有 **平面地址**(flat address)和 **层次地址**(hierarchical address)两大类。平面 地址也叫做 **非层次地址**,就是在分配地址时按顺序号一个个地挨着分配。层次地址是将整个 地址再划分为几个部分,而每部分按一定的规律分配号码。像我们的电话号码就是一种层次 号码,电信网中的交换机按照国家号 \rightarrow 区号 \rightarrow 局号 \rightarrow 用户号的顺序可以准确地找到用户的电话。但局域网的6字节的地址是一种平面地址。适配器根据全部的48位地址决定接收或丢弃所收到的MAC帧。
- (12)_注: 所谓"规范格式"就是指地址的十六进制表示中每一个字节的最低位(见IEEE 802标准),代表规范格式地址中相应字节的最低位。"非规范格式"就是指地址的十六进制表示中每一个字节的最高位(见IEEE 802标准),代表规范格式地址中相应字节的最低位。CFI置1表示是规范格式。
- (13) 注:有效载荷(payload)是个很常用的名词,它表示在一个分组中,去掉首部和尾部(如果有尾部的话)的控制字段后,剩下的有用的数据部分。显然,在不同层次中,有效载荷所代表的内容是不一样的。例如,数据链路层一个帧的有效载荷,就包含了网络层IP数据报的IP首部和数据部分,而从网络层看,只有IP数据报中的数据部分,才是网络层IP数据报的有效载荷。如果IP数据报中的数据是运输层的TCP报文段,那么从运输层看,其有效载荷只是运输层TCP报文段中的数据部分(要把TCP的首部去除)。
- (14) 注:通信网的数字化是从主干网开始的,最后剩下的一段模拟线路是用户线,因此这一段用户线常称为通信线路数字化过程中的"最后一英里"。IEEE 802.3EFM中的"EFM"表示"Ethernet in the First Mile",意思是从用户端开始算,"第一英里采用以太网",也就是说,EFM表示"采用以太网接入"。

第4章 网络层

本章讨论网络互连问题。在介绍网络层提供的两种不同服务后,就进入本章的核心内容——网际协议IP,这是本书的一个重点内容。只有深入地掌握了IP协议的主要内容,才能理解互联网是怎样工作的。本章还要讨论网际控制报文协议ICMP,几种常用的路由选择协议,IPv6的主要特点,IP多播的概念。在讨论虚拟专用网VPN和网络地址转换NAT后,最后简单介绍多协议标记交换MPLS。

本章最重要的内容是:

- (1) 虚拟互连网络的概念。
- (2) IP地址与物理地址的关系。
- (3) 传统的分类的IP地址(包括子网掩码)和无分类域间路由选择CIDR。
 - (4) 路由选择协议的工作原理。

4.1 网络层提供的两种服务

在计算机网络领域,网络层应该向运输层提供怎样的服务("面向连接"还是"无连接")曾引起了长期的争论。争论焦点的实质就是:在计算机通信中,可靠交付应当由谁来负责?是网络还是端系统?

有些人认为应当借助于电信网的成功经验,让网络负责可靠交付。大家知道,传统电信网的主要业务是提供电话服务。电信网使用昂贵的程控交换机(其软件也非常复杂),用面向连接的通信方式,使电信网络能够向用户(实际上就是电话机)提供可靠传输的服务。因此他们认为,计算机网络也应模仿打电话所使用的面向连接的通信方式。当两台计算机进行通信时,也应当先建立连接(但在分组交换中是建立一条虚电路 VC(Virtual Circuit)(1),以预留双方通信所需的一切网络资源。然后双方就沿着已建立的虚电路发送分组。这样的分组的首部不需要填写完整的目的主机地址,而只需要填写这条虚电路的编号(一个不大的整数),因而减少了分组的开销。这种通信方式如

果再使用可靠传输的网络协议,就可使所发送的分组无差错按序到达终点,当然也不丢失、不重复。在通信结束后要释放建立的虚电路。图4-1(a)是网络提供虚电路服务的示意图。主机 H_1 和 H_2 之间交换的分组都必须在事先建立的虚电路上传送。

图4-1 网络层提供的两种服务

但互联网的先驱者却提出一种崭新的网络设计思路。他们认为, 电信 网提供的端到端可靠传输的服务对电话业务无疑是很合适的, 因为电信网的终端(电话机)非常简单,没有智能,也没有差错处理能力。 因此电信网必须负责把用户电话机产生的话音信号可靠地传送到对方的电话机,使还原后的话音质量符合技术规范的要求。但计算机网络的端系统是有智能的计算机。计算机有很强的差错处理能力(这点和传统的电话机有本质上的差别)。因此,互联网在设计上就采用了和电信网完全不同的思路。

互联网采用的设计思路是这样的: 网络层向上只提供简单灵活的、无连接的、尽最大努力交付的数据报服务 (2)—。这里的"数据报"(datagram)是互联网的设计者最初使用的名词,其实数据报(或IP数据报)就是我们经常使用的"分组"。在本书中,数据报和分组是同义词,可以混用。

网络在发送分组时不需要先建立连接。每一个分组(也就是IP数据 报)独立发送,与其前后的分组无关(不进行编号)。网络层不提供 服务质量的承诺。 也就是说,所传送的分组可能出错、丢失、重复和 失序(即不按序到达终点), 当然也不保证分组交付的时限。由于传 输网络不提供端到端的可靠传输服务, 这就使网络中的路由器比较简 单、且价格低廉(与电信网的交换机相比较)。如果主机(即端系 统)中的进程之间的通信需要是可靠的,那么就由网络的主机中的运 输层负责(包括差错处理、流量控制等)。采用这种设计思路的好处 是: 网络造价大大降低, 运行方式灵活, 能够适应多种应用。互联网 能够发展到今日的规模,充分证明了当初采用这种设计思路的正确 性。

图4-1(b)给出了网络提供数据报服务的示意图。主机 H_1 向 H_2 发送 的分组各自独立地选择路由、并且在传送的过程中还可能丢失。

OSI体系的支持者曾极力主张在网络层使用可靠传输的虚电路服务, 也曾推出过网络层虚电路服务的著名标准——ITU-T的X.25建议书。 但现在X.25早已成为历史了。

表4-1归纳了虚电路服务与数据报服务的主要区别。

表4-1 虚电路服务与数据报服务的对比

对 比 的 方 虚电路服务

证

数据报服务

面

思路

可靠通信应当由网络来保 可靠通信应当由用户主机

来保证

连接的建 必须有

不需要

\

终点地址 仅在连接建立阶段使用, 每个分组都有终点的完整 每个分组使用短的虚电路地址

分组的转 属于同一条虚电路的分组 每个分组独立选择路由进 均按照同一路由进行转发 行转发

当结点出故 所有通过出故障的结点的 出故障的结点可能会丢失

障时 虚电路均不能工作 分组,一些路由可能会发

生变化

分组的顺 总是按发送顺序到达终 到达终点的时间不一定按 发送顺序

端到端的差 可以由网络负责, 也可以 由用户主机负责 错处理和流由用户主机负责 量控制

鉴于TCP/IP体系的网络层提供的是数据报服务,因此下面我们的讨论 都是围绕网络层如何传送IP数据报这个主题。

4.2 网际协议IP

网际协议IP是TCP/IP体系中两个最主要的协议之一[STEV94] [COME06] [FORO10],也是最重要的互联网标准协议之一。网际协议IP又称为Kahn-Cerf协议,因为这个重要协议正是Robert Kahn和Vint Cerf二人共同研发的。这两位学者在2005年获得图灵奖(其地位相当于计算机科学领域的诺贝尔奖)。严格来说,这里所讲的IP其实是IP的第4个版本,应记为IPv4。但在讲述IP协议的各种原理时,往往不在IP后面加上版本号。在后面的4.6节我们再介绍较新的版本IPv6(版本1~3和版本5都未曾使用过)。

与IP协议配套使用的还有三个协议:

- 地址解析协议ARP (Address Resolution Protocol)
- 网际控制报文协议ICMP (Internet Control Message Protocol)
- 网际组管理协议IGMP (Internet Group Management Protocol)

本来还有一个协议叫做逆地址解析协议RARP(Reverse Address Resolution Protocol),是和ARP协议配合使用的。但现在已被淘汰不使用了。

图4-2画出了这三个协议和网际协议IP的关系。在这一层中,ARP画在最下面,因为IP经常要使用这个协议。ICMP和IGMP画在这一层的上部,因为它们要使用IP协议。这三个协议将在后面陆续介绍。由于网际协议IP是用来使互连起来的许多计算机网络能够进行通信的,因此TCP/IP体系中的网络层常常被称为**网际层**(internet layer),或IP层。使用"网际层"这个名词的好处是强调这是由很多网络构成的互连网络。

图4-2 网际协议IP及其配套协议

在讨论网际协议IP之前,必须了解什么是虚拟互连网络。

4.2.1 虚拟互连网络

我们知道,如果要在全世界范围内把数以百万计的网络都互连起来,并且能够互相通信,那么这样的任务一定非常复杂。其中会遇到许多需要解决的问题,如:

- 不同的寻址方案;
- 不同的最大分组长度;
- 不同的网络接入机制:
- 不同的超时控制;
- 不同的差错恢复方法;
- 不同的状态报告方法;
- 不同的路由选择技术;
- 不同的用户接入控制;
- 不同的服务(面向连接服务和无连接服务);
- 不同的管理与控制方式: 等等。

能不能让大家都使用相同的网络,这样可使网络互连变得比较简单。 答案是不行的。因为用户的需求是多种多样的,**没有一种单一的网络 能够适应所有用户的需求**。另外,网络技术是不断发展的,网络的制 造厂家也要经常推出新的网络,在竞争中求生存。因此在市场上总是 有很多种不同性能、不同网络协议的网络,供不同的用户选用。 从一般的概念来讲,将网络互相连接起来要使用一些**中间设备**。根据中间设备所在的层次,可以有以下四种不同的中间设备:

- (1) 物理层使用的中间设备叫做转发器 (repeater)。
- (2) 数据链路层使用的中间设备叫做**网桥**或桥接器(bridge)。
- (3) 网络层使用的中间设备叫做路由器(router)(3)。
- (4) 在网络层以上使用的中间设备叫做**网关**(gateway)。用网关连接两个不兼容的系统需要在高层进行协议的转换。

当中间设备是转发器或网桥时,这仅仅是把一个网络扩大了,而从网络层的角度看,这仍然是一个网络,一般并不称之为网络互连。网关由于比较复杂,目前使用得较少。因此现在我们讨论网络互连时,都是指用路由器进行网络互连和路由选择。路由器其实就是一台专用计算机,用来在互联网中进行路由选择。由于历史的原因,许多有关TCP/IP的文献曾经把网络层使用的路由器称为网关(本书有时也这样用),对此请读者加以注意。

图4-3(a)表示有许多计算机网络通过一些路由器进行互连。由于参加互连的计算机网络都使用相同的**网际协议** IP(Internet Protocol),因此可以把互连以后的计算机网络看成如图4-3(b)所示的一个**虚拟互连网络**(internet)。所谓虚拟互连网络也就是逻辑互连网络,它的意思就是互连起来的各种物理网络的异构性本来是客观存在的,但是我们利用IP协议就可以使这些性能各异的网络**在网络层上看起来好像是一个统一的网络**。这种使用IP协议的虚拟互连网络可简称为IP网(IP网是虚拟的,但平常不必每次都强调"虚拟"二字)。使用IP网的好处是:当IP网上的主机进行通信时,就好像在一个单个网络上通信一样,它们看不见互连的各网络的具体异构细节(如具体的编址方案、路由选择协议,等等)。如果在这种覆盖全球的IP网的上层使用TCP协议,那么就是现在的互联网(Internet)。

图4-3 IP网的概念

当很多异构网络通过路由器互连起来时,如果所有的网络都使用相同的IP协议,那么在网络层讨论问题就显得很方便。现在用一个例子来说明。

在图4-4所示的互联网中的源主机 H_1 要把一个IP数据报发送给目的主机 H_2 。根据第1章中讲过的分组交换的存储转发概念,主机 H_1 先要查找自己的路由表,看目的主机是否就在本网络上。如是,则不需要经过任何路由器而是**直接交付**,任务就完成了。如不是,则必须把IP数据报发送给某个路由器(图中的 R_1)。 R_1 在查找了自己的路由表(图中的 R_1)。 R_1 在查找了自己的路由表(图中的路力,这样一直转发下去,最后由路由器 R_5 知道自己是和 H_2 连接在同一个网络上,不需要再使用别的路由器转发了,于是就把数据报**直接交付**目的主机 H_2 。图中画出了源主机、目的主机以及各路由器的协议栈。我们注意到,主机的协议栈共有五层,但路由器的协议栈只有下三层。图中还画出了数据在各协议栈中流动的方向(用黑色粗线表示)。我们还可注意到,在 R_4 和 R_5 之间使用了卫星链路,而 R_5 所连接的是个无线局域网。在 R_1 到 R_4 之间的三个网络则可以是任意类型的网络。总之,这里强调的是: **互联网可以由多种异构网络互连组成**。

图中的协议栈中的数字 1~5 分别表示物理层、数据链路层、网络层、运输层和应用层

图4-4 分组在互联网中的传送

如果我们只从网络层考虑问题,那么IP数据报就可以想象是在网络层中传送,其传送路径是:

$$H_1 \rightarrow R_1 \rightarrow R_2 \rightarrow R_3 \rightarrow R_4 \rightarrow R_5 \rightarrow H_2$$

这样就不必画出许多完整的协议栈, 使问题的描述更加简单。

有了虚拟互连网络的概念后,我们再讨论在这样的虚拟网络上如何寻址。

4.2.2 分类的IP地址

在TCP/IP体系中, IP地址是一个最基本的概念, 一定要把它弄清楚。 有关IP最重要的文档就是互联网的正式标准RFC 791。

1. IP地址及其表示方法

整个的互联网就是一个**单一的、抽象的网络**。IP地址就是给互联网上的每一台主机(或路由器)的每一个接口分配一个在全世界范围内是

唯一的32位的标识符。IP地址的结构使我们可以在互联网上很方便地进行寻址。IP地址现在由**互联网名字和数字分配机构ICANN**(Internet Corporation for Assigned Names and Numbers)进行分配⁽⁵⁾。

IP地址的编址方法共经过了三个历史阶段。

- (1) **分类的IP地址**。这是最基本的编址方法,在1981年就通过了相应的标准协议。
- (2) **子网的划分**。这是对最基本的编址方法的改进,其标准RFC 950 在1985年通过。
- (3) **构成超网**。这是比较新的无分类编址方法。1993年提出后很快就得到推广应用。

本节只讨论最基本的分类的IP地址。后两种方法将在4.3节中讨论。

所谓"分类的IP地址"就是将IP地址划分为若干个固定类,每一类地址都由两个固定长度的字段组成,其中第一个字段是**网络号**(netid),它标志主机(或路由器)所连接到的网络。一个网络号在整个互联网范围内必须是唯一的。第二个字段是**主机号**(host-id),它标志该主机(或路由器)。一台主机号在它前面的网络号所指明的网络范围内必须是唯一的。由此可见,一个IP地址**在整个互联网范围内是唯一的**。

这种两级的IP地址可以记为:

式(4-1)中的符号"::="表示"**定义为**"。图4-5给出了各种IP地址的网络号字段和主机号字段,这里A类、B类和C类地址都是**单播地址**(一对一通信),是最常用的。

图4-5 IP地址中的网络号字段和主机号字段

从图4-5可以看出:

- A类、B类和C类地址的网络号字段(在图中这个字段是灰色的)分别为1个、2个和3个字节长,而在网络号字段的最前面有1~3位的类别位,其数值分别规定为0,10和110。
- A类、B类和C类地址的主机号字段分别为3个、2个和1个字节长。
- D类地址(前4位是1110)用于**多播**(一对多通信)。我们将在4.6节讨论IP多播。
- E类地址(前4位是1111)保留为以后用。

这里要指出,由于近年来已经广泛使用无分类IP地址进行路由选择,A类、B类和C类地址的区分已成为历史 [RFC 1812] ,但由于很多文献和资料都还使用传统的分类的IP地址,而且从概念的演进上更清晰,因此我们在这里还要从分类的IP地址讲起。

从IP地址的结构来看,IP 地址并不仅仅指明一台主机,而是还指明了主机所连接到的网络。

把IP地址划分为A类、B类、C类三个类别,当初是这样考虑的。各种网络的差异很大,有的网络拥有很多主机,而有的网络上的主机则很少。把IP地址划分为A类、B类和C类是为了更好地满足不同用户的要求。当某个单位申请到一个IP地址时,实际上是获得了具有同样网络

号的一块地址。其中具体的各台主机号则由该单位自行分配,只要做到在该单位管辖的范围内无重复的主机号即可。

对主机或路由器来说,IP地址都是32位的二进制代码。为了提高可读性,我们常常把32位的IP地址中的每8位插入一个空格(**但在机器中并没有这样的空格**)。为了便于书写,可用其等效的十进制数字表示,并且在这些数字之间加上一个点。这就叫做**点分十进制记法**(dotted decimal notation)。图4-6是一个B类IP地址的表示方法。显然,128.11.3.31比10000000 00001011 00000011 00011111书写起来要方便得多。

图4-6 采用点分十进制记法能够提高可读性

2. 常用的三种类别的IP地址

A类地址的网络号字段占1个字节,只有7位可供使用(该字段的第一位已固定为0),但可指派的网络号是126个(即2⁷-2)。减2的原因是:第一,IP地址中的全0表示"**这个**(this)"。网络号字段为全0的IP地址是个保留地址,意思是"本网络";第二,网络号为127(即0111111)保留作为本地软件环回测试(loopback test)本主机的进程之间的通信之用。若主机发送一个目的地址为环回地址(例如127.0.0.1)的IP数据报,则本主机中的协议软件就处理数据报中的数据,而不会把数据报发送到任何网络。目的地址为环回地址的IP数据报永远不会出现在任何网络上,因为网络号为127的地址根本不是一个网络地址。

A类地址的主机号占3个字节,因此每一个A类网络中的最大主机数是2²⁴-2,即16777214。这里减2的原因是:全0的主机号字段表示该IP地址是"本主机"所连接到的**单个网络地址**(例如,一主机的IP地址为5.6.7.8,则该主机所在的网络地址就是5.0.0.0),而全1表示"**所有的**(all)",因此全1的主机号字段表示该网络上的所有主机 (6)。

IP地址空间共有2 32 (即4294967296) 个地址。整个A类地址空间共有 2^{31} 个地址,占整个IP地址空间的50%。

B类地址的网络号字段有2个字节,但前面两位(10)已经固定了,只剩下14位可以进行分配。因为网络号字段后面的14位无论怎样取值也不可能出现使整个2字节的网络号字段成为全0或全1,因此这里不存在网络总数减2的问题。但实际上B类网络地址128.0.0.0是不指派的,而可以指派的B类最小网络地址是128.1.0.0 [COME06]。因此B类地址可指派的网络数为2¹⁴-1,即16383。B类地址的每一个网络上的最大主机数是2¹⁶-2,即65534。这里需要减2是因为要扣除全0和全1的主机号。整个B类地址空间共约有2³⁰个地址,占整个IP地址空间的25%。

C类地址有3个字节的网络号字段,最前面的3位是(110),还有21位可以进行分配。C类网络地址192.0.0.0也是不指派的,可以指派的C类最小网络地址是192.0.1.0 [COME06] ,因此C类地址可指派的网络总数是 2^{21} -1,即2097151。每一个C类地址的最大主机数是 2^{8} -2,即254。整个C类地址空间共约有 2^{29} 个地址,占整个IP地址的12.5%。

这样,我们就可得出表4-2所示的IP地址的指派范围。

网络	最大可指派的	第一个可指派的	最后一个可指派的	每个网络中的	
类别	网络数	网络号	网络号	最大主机数	
A	126 (2 ⁷ – 2)	1	126	16777214	
В	16383 (2 ¹⁴ – 1)	128.1	191.255	65534	
С	2097151 (2 ²¹ – 1)	192.0.1	223.255.255	254	

表4-2 IP地址的指派范围

表4-3给出了一般不使用的特殊IP地址,这些地址只能在特定的情况下使用。

表4-3 一般不使用的特殊IP地址

网络号	主机号	源地址使用	目的地址使用	代表的意思
0	0	可以 不可 在本网络		在本网络上的本主机(见 6.6 节 DHCP 协议)
0	host-id	可以	不可	在本网络上的某台主机 host-id
全1	全 1	不可	可以	只在本网络上进行广播(各路由器均不转发)
net-id	全1	不可	可以	对 net-id 上的所有主机进行广播
127	非全0或全1 的任何数	可以	可以	用于本地软件环回测试

IP地址具有以下一些重要特点。

- (1)每一个IP地址都由网络号和主机号两部分组成。从这个意义上说,IP地址是一种**分等级的地址结构**。分两个等级的好处是:第一,IP地址管理机构在分配IP地址时**只分配网络号**(第一级),而剩下的主机号(第二级)则由得到该网络号的单位自行分配。这样就方便了IP地址的管理;第二,路由器**仅根据目的主机所连接的网络号来转发分组**(而不考虑目的主机号),这样就可以使路由表中的项目数大幅度减少,从而**减小了路由表所占的存储空间以及查找路由表的时间**。
- (2) 实际上IP地址是标志一台主机(或路由器)和一条链路的接口。当一台主机同时连接到两个网络上时,该主机就必须同时具有两个相应的IP地址,其网络号必须是不同的。这种主机称为**多归属主机**(multihomed host)。由于一个路由器至少应当连接到两个网络,因此一个路由器至少应当有两个不同的IP地址。这好比一个建筑正好处在北京路和上海路的交叉口上,那么这个建筑就可以拥有两个门牌号码。例如,北京路4号和上海路37号。
- (3)按照互联网的观点,一个网络是指具有相同网络号net-id的主机的集合,因此,**用转发器或网桥连接起来的若干个局域网仍为一个网络**,因为这些局域网都具有同样的网络号。具有不同网络号的局域网必须使用路由器进行互连。
- (4) 在IP地址中,所有分配到网络号的网络(不管是范围很小的局域网,还是可能覆盖很大地理范围的广域网)都是**平等**的。所谓平等,是指互联网同等对待每一个IP地址。

图4-7画出了三个局域网(LAN₁,LAN₂和LAN₃)通过三个路由器(R₁,R₂和R₃)互连起来所构成的一个互联网(此互联网用虚线圆角方框表示)。其中局域网LAN₂是由两个网段通过网桥B互连的。图中的小圆圈表示需要有一个IP地址。

图4-7 互联网中的IP地址

我们应当注意到:

- 在同一个局域网上的主机或路由器的IP地址中的网络号必须是一样的。图中所示的网络号就是IP地址中的网络号字段的值,这也是文献中常见的一种表示方法。另一种表示方法是用主机号为全0的网络IP地址。
- 用网桥(它只在链路层工作)互连的网段仍然是一个局域网,只 能有一个网络号。
- 路由器总是具有两个或两个以上的IP地址。即路由器的每一个接口都有一个不同网络号的IP地址。
- 当两个路由器直接相连时(例如通过一条租用线路),在连线两端的接口处,可以分配也可以不分配IP地址。如分配了IP地址,则这一段连线就构成了一种只包含一段线路的特殊"网络"(如图中的N₁,N₂和N₃)。之所以叫做"网络"是因为它有IP地址。但为了节省IP地址资源,对于这种仅由一段连线构成的特殊"网络",现在也常常不分配IP地址。通常把这样的特殊网络叫做无编号网络 (unnumbered network)或无名网络 (anonymous network)[COME06]。

4.2.3 IP地址与硬件地址

在学习IP地址时,很重要的一点就是要弄懂主机的IP地址与**硬件地址**(7)的区别。

图4-8说明了这两种地址的区别。从层次的角度看,**物理地址是数据链路层和物理层使用的地址**,而IP**地址是网络层和以上各层使用的地址,是一种逻辑地址**(称IP地址为逻辑地址是因为IP地址是用软件实现的)。

图4-8 IP地址与硬件地址的区别

在发送数据时,数据从高层下到低层,然后才到通信链路上传输。使用IP地址的IP数据报一旦交给了数据链路层,就被封装成MAC帧了。MAC帧在传送时使用的源地址和目的地址都是硬件地址,这两个硬件地址都写在MAC帧的首部中。

连接在通信链路上的设备(主机或路由器)在收到MAC帧时,根据MAC帧首部中的硬件地址决定收下或丢弃。只有在剥去MAC帧的首部和尾部后把MAC层的数据上交给网络层后,网络层才能在IP数据报的首部中找到源IP地址和目的IP地址。

总之,IP地址放在IP数据报的首部,而硬件地址则放在MAC帧的首部。在网络层和网络层以上使用的是IP地址,而数据链路层及以下使用的是硬件地址。在图4-8中,当IP数据报放入数据链路层的MAC帧中以后,整个的IP数据报就成为MAC帧的数据,因而在数据链路层看不见数据报的IP地址。

图4-9(a)画的是三个局域网用两个路由器 R_1 和 R_2 互连起来。现在主机 H_1 要和主机 H_2 通信。这两台主机的IP地址分别是 IP_1 和 IP_2 ,而它们的硬件地址分别为 HA_1 和 HA_2 (HA表示 $Hardware Address)。通信的路径是: <math>H_1$ →经过 R_1 转发 →再经过 R_2 转发 → H_2 。路由器 R_1 因同时连接到两个局域网上,因此它有两个硬件地址,即 HA_3 和 HA_4 。同理,路由器 R_2 也有两个硬件地址 HA_5 和 HA_6 。

(0) 年刊及以下年刊区图印刷规范框框目印题框

图4-9 从不同层次上看IP地址和硬件地址

图4-9(b)特别强调了IP地址与硬件地址的区别。表4-4归纳了这种区别。

		在网络层		在数据链路层		
		写入 IP 数据报首部的地址		写入 MAC 帧首部的地址		
		源地址	目的地址	源地址	目的地址	
	从 H ₁ 到 R ₁	IP_1	IP_2	HA_1	HA_3	
ſ	从 R ₁ 到 R ₂	IP_1	IP_2	HA_4	HA_{5}	
	从 R ₂ 到 H ₂	IP_1	IP ₂	HA_{6}	HA_2	

表4-4 图4-9 (b) 中不同层次、不同区间的源地址和目的地址

这里要强调指出以下几点:

(1) 在IP层抽象的互联网上只能看到IP数据报。虽然IP数据报要经过路由器 R_1 和 R_2 的两次转发,但在它的首部中的源地址和目的地址始终分别是IP $_1$ 和IP $_2$ 。图中的数据报上写的"从IP $_1$ 到IP $_2$ "就表示前者是源地址而后者是目的地址。数据报中间经过的两个路由器的IP地址并不出现在IP数据报的首部中。

- (2) 虽然在IP数据报首部有源站IP地址,但**路由器只根据目的站的IP** 地址的网络号进行路由选择。
- (3) **在局域网的链路层,只能看见MAC帧**。IP数据报被封装在MAC帧中。MAC帧在不同网络上传送时,其MAC帧首部中的源地址和目的地址要发生变化,见图4-9(b)。开始在 H_1 到 R_1 间传送时,MAC帧首部中写的是从硬件地址 HA_1 发送到硬件地址 HA_3 ,路由器 R_1 收到此MAC帧后,在数据链路层,要丢弃原来的MAC帧的首部和尾部。在转发时,在数据链路层,要重新添加上<math>MAC帧的首部和尾部。这时首部中的源地址和目的地址分别便成为 HA_4 和 HA_5 。路由器 R_2 收到此帧后,再次更换MAC帧的首部和尾部,首部中的源地址和目的地址分别变成为 HA_6 和 HA_2 。MAC帧的首部的这种变化,在上面的IP层上是看不见的。
- (4) 尽管互连在一起的网络的硬件地址体系各不相同,**但IP层抽象的互联网却屏蔽了下层这些很复杂的细节。只要我们在网络层上讨论问题,就能够使用统一的、抽象的IP地址研究主机和主机或路由器之间的通信**。上述的这种"屏蔽"概念是一个很有用、很普遍的基本概念。例如,计算机中广泛使用的图形用户界面使得用户只需简单地点击几下鼠标就能让计算机完成很多任务。实际上计算机要完成这些任务必须执行很多条指令。但这些复杂的过程全都被设计良好的图形用户界面屏蔽掉了,使用户看不见这些复杂过程。

以上这些概念是计算机网络的精髓所在,对这些重要概念务必仔细思考和掌握。

细心的读者会发现,还有两个重要问题没有解决:

- (1) 主机或路由器怎样知道应当在MAC帧的首部填入什么样的硬件地址?
 - (2) 路由器中的路由表是怎样得出的?

第一个问题就是下一节所要讲的内容,而第二个问题将在后面的4.5节详细讨论。

4.2.4 地址解析协议ARP

在实际应用中,我们经常会遇到这样的问题:已经知道了一个机器(主机或路由器)的IP地址,需要找出其相应的硬件地址。地址解析协议ARP就是用来解决这样的问题的。图4-10说明了ARP协议的作用。

图4-10 ARP协议的作用

由于是IP协议使用了ARP协议,因此通常就把ARP协议划归网络层。但ARP协议的用途是为了从网络层使用的IP地址,解析出在数据链路层使用的硬件地址。因此,有的教科书就按照协议的所用,把ARP协议划归在数据链路层。这样做当然也是可以的。

还有一个旧的协议叫做逆地址解析协议RARP,它的作用是使只知道自己硬件地址的主机能够通过RARP协议找出其IP地址。现在的DHCP协议(见第6章的6.6节)已经包含了RARP协议的功能。因此本书不再介绍RARP协议。

下面就介绍ARP协议的要点。

我们知道,网络层使用的是IP地址,但在实际网络的链路上传送数据帧时,最终还是必须使用该网络的硬件地址。但IP地址和下面的网络的硬件地址之间由于格式不同而不存在简单的映射关系(例如,IP地址有32位,而局域网的硬件地址是48位)。此外,在一个网络上可能经常会有新的主机加入进来,或撤走一些主机。更换网络适配器也会使主机的硬件地址改变。地址解析协议ARP解决这个问题的方法是在主机ARP高速缓存中存放一个从IP地址到硬件地址的映射表,并且这个映射表还经常动态更新(新增或超时删除)。

每一台主机都设有一个ARP高速缓存(ARP cache),里面有本局域 **网上**的各主机和路由器的IP地址到硬件地址的映射表,这些都是该主机目前知道的一些地址。那么主机怎样知道这些地址呢?我们可以通过下面的例子来说明。

当主机A要向本局域网上的某台主机B发送IP数据报时,就先在其ARP高速缓存中查看有无主机B的IP地址。如有,就在ARP高速缓存中查出其对应的硬件地址,再把这个硬件地址写入MAC帧,然后通过局域网把该MAC帧发往此硬件地址。

也有可能查不到主机B的IP地址的项目。这可能是主机B才入网,也可能是主机A刚刚加电,其高速缓存还是空的。在这种情况下,主机A就自动运行ARP,然后按以下步骤找出主机B的硬件地址。

(1) ARP进程在本局域网上广播发送一个ARP请求分组(具体格式可参阅 [COME06] 的第23章)。图4-11(a)是主机A广播发送ARP请求分组的示意图。ARP请求分组的主要内容是:"我的IP地址是209.0.0.5,硬件地址是00-00-C0-15-AD-18。我想知道IP地址为209.0.0.6的主机的硬件地址。"

图4-11 地址解析协议ARP的工作原理

- (2) 在本局域网上的所有主机上运行的ARP进程都收到此ARP请求分组。
- (3) 主机B的IP地址与ARP请求分组中要查询的IP地址一致,就收下这个ARP请求分组,并向主机A发送ARP响应分组(其格式见[COME06]),同时在这个ARP响应分组中写入自己的硬件地址。由于其余的所有主机的IP地址都与ARP请求分组中要查询的IP地址不一致,因此都不理睬这个ARP请求分组,见图4-11(b)。ARP响应分组的主要内容是:"我的IP地址是209.0.0.6,我的硬件地址是08-00-2B-00-EE-0A。"请注意:虽然ARP请求分组是广播发送的,但ARP响应分组是普通的单播,即从一个源地址发送到一个目的地址。
- (4) 主机A收到主机B的ARP响应分组后,就在其ARP高速缓存中写入主机B的IP地址到硬件地址的映射。

当主机A向B发送数据报时,很可能以后不久主机B还要向A发送数据报,因而主机B也可能要向A发送ARP请求分组。为了减少网络上的通信量,主机A在发送其ARP请求分组时,就把自己的IP地址到硬件地址的映射写入ARP请求分组。当主机B收到A的ARP请求分组时,就把主机A的这一地址映射写入主机B自己的ARP高速缓存中。以后主机B向A发送数据报时就很方便了。

可见ARP高速缓存非常有用。如果不使用ARP高速缓存,那么任何一台主机只要进行一次通信,就必须在网络上用广播方式发送ARP请求分组,这就使网络上的通信量大大增加。ARP把已经得到的地址映射保存在高速缓存中,这样就使得该主机下次再和具有同样目的地址的主机通信时,可以直接从高速缓存中找到所需的硬件地址而不必再用广播方式发送ARP请求分组。

ARP对保存在高速缓存中的每一个映射地址项目都设置**生存时间**(例如,10~20分钟)。凡超过生存时间的项目就从高速缓存中删除掉。设置这种地址映射项目的生存时间是很重要的。设想有一种情况。主机A和B通信。A的ARP高速缓存里保存有B的硬件地址。但B的网络适配器突然坏了,B立即更换了一块,因此B的硬件地址就改变了。假定A还要和B继续通信。A在其ARP高速缓存中查找到B原先的硬件地址,并使用该硬件地址向B发送数据帧。但B原先的硬件地址已经失效了,因此A无法找到主机B。但是过了一段不长的生存时间,A的ARP

高速缓存中已经删除了B原先的硬件地址,于是A重新广播发送ARP请求分组,又找到了B。

请注意,ARP是解决**同一个局域网上** 的主机或路由器的IP地址和硬件地址的映射问题。如果所要找的主机和源主机不在同一个局域网上,例如,在前面的图4-9中,主机 H_1 就无法解析出另一个局域网上主机 H_2 的硬件地址(实际上主机 H_1 也不需要知道远程主机 H_2 的硬件地址)。主机 H_1 发送给 H_2 的IP数据报首先需要通过与主机 H_1 连接在同一个局域网上的路由器 H_1 来转发。因此主机 H_1 这时需要把路由器 H_1 的IP地址IP H_1 解析为硬件地址 H_1 ,以便能够把IP数据报传送到路由器 H_1 。以后, H_1 从转发表找出了下一跳路由器 H_2 ,同时使用ARP解析出 H_2 的硬件地址 H_1 。于是IP数据报按照硬件地址 H_2 ,同时使用ARP解析器 H_2 。路由器 H_2 在转发这个IP数据报时用类似方法解析出目的主机 H_2 的硬件地址 H_1 ,使IP数据报最终交付主机 H_2 。

从IP地址到硬件地址的解析是自动进行的,**主机的用户对这种地址解析过程是不知道的**。只要主机或路由器要和本网络上的另一个已知IP地址的主机或路由器进行通信,ARP协议就会自动地把这个IP地址解析为链路层所需要的硬件地址。

下面我们归纳出使用ARP的四种典型情况(图4-12)。

图4-12 使用ARP的四种典型情况

- (1)发送方是主机(如 \mathbf{H}_1),要把IP数据报发送到同一个网络上的另一台主机(如 \mathbf{H}_2)。这时 \mathbf{H}_1 发送ARP请求分组(在网1上广播),找到目的主机 \mathbf{H}_2 的硬件地址。
- (2)发送方是主机(如 H_1),要把IP数据报发送到另一个网络上的一台主机(如 H_3 或 H_4)。这时 H_1 发送ARP请求分组(在网1上广

- 播),找到网1上的一个路由器 R_1 的硬件地址。剩下的工作由路由器 R_1 来完成。 R_1 要做的事情是下面的(3)或(4)。
- (3)发送方是路由器(如 R_1),要把IP数据报转发到与 R_1 连接在同一个网络(网2)上的主机(如 H_3)。这时 R_1 发送ARP请求分组(在网2上广播),找到目的主机 H_3 的硬件地址。
- (4)发送方是路由器(如 R_1),要把IP数据报转发到网3上的一台主机(如 H_4)。 H_4 与 R_1 不是连接在同一个网络上。这时 R_1 发送ARP请求分组(在网2上广播),找到连接在网2上的一个路由器 R_2 的硬件地址。剩下的工作由这个路由器 R_2 来完成。

在许多情况下需要多次使用ARP。但这只是以上几种情况的反复使用而已。

有的读者可能会产生这样的问题: 既然在网络链路上传送的帧最终是按照硬件地址找到目的主机的, 那么为什么我们还要使用抽象的IP地址, 而不直接使用硬件地址进行通信? 这样似乎可以免除使用ARP。

这个问题必须弄清楚。

由于全世界存在着各式各样的网络,**它们使用不同的硬件地址**。要使这些异构网络能够互相通信就必须进行**非常复杂的硬件地址转换工作**,因此由用户或用户主机来完成这项工作几乎是不可能的事。但IP编址把这个复杂问题解决了。连接到互联网的主机只需各自拥有一个唯一的IP地址,它们之间的通信就像连接在同一个网络上那样简单方便,因为上述的调用ARP的复杂过程都是由计算机软件自动进行的,对用户来说是看不见这种调用过程的。

因此,在虚拟的IP网络上用IP地址进行通信给广大的计算机用户带来很大的方便。

4.2.5 IP数据报的格式

IP数据报的格式能够说明IP协议都具有什么功能。在TCP/IP的标准中,各种数据格式常常以32位(即4字节)为单位来描述。图4-13是IP

数据报的完整格式。

图4-13 IP数据报的格式

从图4-13可看出,一个IP数据报由首部和数据两部分组成。首部的前一部分是**固定长度**,共20字节,是所有IP数据报必须具有的。在首部的固定部分的后面是一些**可选字段**,其长度是可变的。下面介绍首部各字段的意义。

1. IP数据报首部的固定部分中的各字段

- (1) 版本 占4位,指IP协议的版本。通信双方使用的IP协议的版本 必须一致。目前广泛使用的IP协议版本号为4(即IPv4)。关于以后要使用的IPv6(即版本6的IP协议),我们将在后面的4.6节讨论。
- (2) **首部长度** 占4位,可表示的最大十进制数值是15。请注意,首部长度字段所表示数的单位是32位字(1个32位字长是4字节)。因为IP首部的固定长度是20字节,因此首部长度字段的最小值是5(即二进制表示的首部长度是0101)。而当首部长度为最大值1111时(即十进制数的15),就表明首部长度达到最大值15个32位字长,即60字节。当IP分组的首部长度不是4字节的整数倍时,必须利用最后的填充字段加以填充。因此IP数据报的数据部分永远在4字节的整数倍时开始,这样在实现IP协议时较为方便。首部长度限制为60字节的缺点是有时可能不够用。但这样做是希望用户尽量减少开销。最常用的首部长度是20字节(即首部长度为0101),这时不使用任何选项。

- (3) **区分服务** 占8位,用来获得更好的服务。这个字段在旧标准中叫做**服务类型**,但实际上一直没有被使用过。1998年IETF把这个字段改名为**区分服务** DS(Differentiated Services)。只有在使用区分服务时,这个字段才起作用(见8.4.4节)。在一般的情况下都不使用这个字段 [RFC 2474, 3168, 3260]。
- (4) **总长度** 总长度指首部和数据之和的长度,单位为字节。总长度字段为16位,因此数据报的最大长度为2 ¹⁶—1 = 65535字节。然而实际上传送这样长的数据报在现实中是极少遇到的。

我们知道,在IP层下面的每一种数据链路层协议都规定了一个数据帧中的**数据字段的最大长度**,这称为**最大传送单元** MTU(Maximum Transfer Unit)。当一个IP数据报封装成链路层的帧时,此数据报的总长度(即首部加上数据部分)一定不能超过下面的数据链路层所规定的MTU值。例如,最常用的以太网就规定其MTU值是1500字节。若所传送的数据报长度超过数据链路层的MTU值,就必须把过长的数据报进行分片处理。

虽然使用尽可能长的IP数据报会使传输效率得到提高(因为每一个IP数据报中首部长度占数据报总长度的比例就会小些),但数据报短些也有好处。每一个IP数据报越短,路由器转发的速度就越快。为此,IP协议规定,在互联网中所有的主机和路由器,必须能够接受长度不超过576字节的数据报。这是假定上层交下来的数据长度有512字节(合理的长度),加上最长的IP首部60字节,再加上4字节的富余量,就得到576字节。当主机需要发送长度超过576字节的数据报时,应当先了解一下,目的主机能否接受所要发送的数据报长度。否则,就要进行分片。

在进行分片时(见后面的"片偏移"字段),数据报首部中的"总长度"字段是指**分片后的每一个分片**的首部长度与该分片的数据长度的总和。

(5) **标识**(identification) 占16位。IP软件在存储器中维持一个计数器,每产生一个数据报,计数器就加1,并将此值赋给标识字段。但这个"标识"并不是序号,因为IP是无连接服务,数据报不存在按序接收的问题。当数据报由于长度超过网络的MTU而必须分片时,这个标识字段的值就被复制到所有的数据报片的标识字段中。相同的标识字段的值使分片后的各数据报片最后能正确地重装成为原来的数据报。

- (6) 标志 (flag) 占3位,但目前只有两位有意义。
 - 标志字段中的最低位记为MF (More Fragment)。MF=1即表示后面"还有分片"的数据报。MF=0表示这已是若干数据报片中的最后一个。
 - 标志字段中间的一位记为**DF** (Don't Fragment), 意思是"**不能分片**"。只有当**DF**=0时才允许分片。
- (7) **片偏移** 占13位。片偏移指出:较长的分组在分片后,某片在原分组中的相对

位置。也就是说,相对于用户数据字段的起点,该片从何处开始。片偏移以8个字节为偏移单位。这就是说,每个分片的长度一定是8字节(64位)的整数倍。

下面举一个例子。

【例4-1】一数据报的总长度为3820字节,其数据部分为3800字节长(使用固定首部),需要分片为长度不超过1420字节的数据报片。因固定首部长度为20字节,因此每个数据报片的数据部分长度不能超过1400字节。于是分为3个数据报片,其数据部分的长度分别为1400,1400和1000字节。原始数据报首部被复制为各数据报片的首部,但必须修改有关字段的值。图4-14给出分片后得出的结果(请注意片偏移的数值)。

图4-14 数据报的分片举例

表4-5是本例中数据报首部与分片有关的字段中的数值,其中标识字段的值是任意给定的(12345)。具有相同标识的数据报片在目的站就可无误地重装成原来的数据报。

表4-5 IP数据报首部中与分片有关的字段中的数值

	总长度	标识	MF	DF	片偏移
原始数据报	3820	12345	0	0	0
数据报片1	1420	12345	1	0	0
数据报片 2	1420	12345	1	0	175
数据报片3	1020	12345	0	0	350

现在假定数据报片2经过某个网络时还需要再进行分片,即划分为数据报片2-1 (携带数据800字节)和数据报片2-2 (携带数据600字节)。那么这两个数据报片的总长度、标识、MF、DF和片偏移分别为:820,12345,1,0,175;620,12345,1,0,275。

(8)生存时间 占8位,生存时间字段常用的英文缩写是TTL(Time To Live),表明这是数据报在网络中的寿命。由发出数据报的源点设置这个字段。其目的是防止无法交付的数据报无限制地在互联网中兜圈子(例如从路由器 R_1 转发到 R_2 ,再转发到 R_3 ,然后又转发到 R_1),因而白白消耗网络资源。最初的设计是以秒作为TTL值的单位。每经过一个路由器时,就把TTL减去数据报在路由器所消耗掉的一段时间。若数据报在路由器消耗的时间小于1秒,就把TTL值减1。当TTL值减为零时,就丢弃这个数据报。

然而随着技术的进步,路由器处理数据报所需的时间不断在缩短,一般都远远小于1秒,后来就把TTL字段的功能改为"**跳数限制**"(**但名称不变**)。路由器在每次转发数据报之前就把TTL值减1。若TTL值减小到零,就丢弃这个数据报,不再转发。因此,现在TTL的单位不再是秒,而是**跳数**。TTL的意义是指明数据报在互联网中至多可经过多少个路由器。显然,数据报能在互联网中经过的路由器的最大数值是255。若把TTL的初始值设置为1,就表示这个数据报只能在本局域网中传送。因为这个数据报一传送到局域网上的某个路由器,在被转发之前TTL值就减小到零,因而就会被这个路由器丢弃。

(9) **协议** 占8位,协议字段指出此数据报携带的数据是使用何种协议,以便使目的主机的IP层知道应将数据部分上交给哪个协议进行处理。

常用的一些协议和相应的协议字段值如下(8):

协议名	ICMP	IGMP	IP [®]	TCP	EGP	IGP	UDP	IPv6	ESP	OSPF
协议字段值	1	2	4	6	8	9	17	41	50	89

(10) 首部检验和 占16位。这个字段只检验数据报的首部,但不包括数据部分。这是因为数据报每经过一个路由器,路由器都要重新计算一下首部检验和(一些字段,如生存时间、标志、片偏移等都可能发生变化)。不检验数据部分可减少计算的工作量。为了进一步减小计算检验和的工作量,IP首部的检验和不采用复杂的CRC检验码而采用下面的简单计算方法:在发送方,先把IP数据报首部划分为许多16位字的序列,并把检验和字段置零。用反码算术运算《》,把所有16位字相加后,将得到的和的反码写入检验和字段。接收方收到数据报后,将首部的所有16位字再使用反码算术运算相加一次。将得到的和取反码,即得出接收方检验和的计算结果。若首部未发生任何变化,则此结果必为0,于是就保留这个数据报。否则即认为出差错,并将此数据报丢弃。图4-15说明了IP数据报首部检验和的计算过程。

图4-15 IP数据报首部检验和的计算过程

- (11) 源地址 占32位。
- (12) **目的地址** 占32位。

②注:这里的IP表示特殊的IP数据报——IP数据报再封装到IP数据报中。

2. IP数据报首部的可变部分

IP数据报首部的可变部分就是一个选项字段。选项字段用来支持排错、测量以及安全等措施,内容很丰富。此字段的长度可变,从1个字节到40个字节不等,取决于所选择的项目。某些选项项目只需要1个字节,它只包括1个字节的选项代码。而有些选项需要多个字节,这些选项一个个拼接起来,中间不需要有分隔符,最后用全0的填充字段补齐成为4字节的整数倍。

增加首部的可变部分是为了增加IP数据报的功能,但这同时也使得IP数据报的首部长度成为可变的。这就增加了每一个路由器处理数据报的开销。实际上这些选项很少被使用。很多路由器都不考虑IP首部的选项字段,因此新的IP版本IPv6就把IP数据报的首部长度做成固定的。这里就不讨论这些选项的细节了。有兴趣的读者可参阅RFC791。

4.2.6 IP层转发分组的流程

下面我们先用一个简单例子来说明路由器是怎样转发分组的。图4-16 (a) 是一个路由表的简单例子。有四个A类网络通过三个路由器连接 在一起。每一个网络上都可能有成千上万台主机(图中没有画出这些 主机)。可以想象,若路由表指出到每一台主机应怎样转发,则所得 出的路由表就会过于庞大(如果每一个网络有1万台主机,四个网络就 有4万台主机,因而每一个路由表就有4万个项目,即4万行。每一行对 **应于一台主机**)。但若路由表指出到某个网络应如何转发,则每个路 由器中的路由表就只包含4个项目(即只有4行,**每一行对应于一个网** 络)。以路由器R₂的路由表为例。由于R₂同时连接在网络2和网络3 上,因此只要目的主机在网络2或网络3上,都可通过接口0或1由路由 器R₂直接交付(当然还要利用地址解析协议ARP才能找到这些主机相 应的硬件地址)。若目的主机在网络1中,则下一跳路由器应为R₁, 其IP地址为20.0.0.7。路由器R₂和R₁由于同时连接在网络2上,因此从 路由器R₂把分组转发到路由器R₁是很容易的。同理,若目的主机在 网络4中,则路由器R₂应把分组转发给IP地址为30.0.0.1的路由器R₃。 我们应当注意到,图中的每一个路由器都有两个不同的IP地址。

图4-16 路由表举例

可以把整个的网络拓扑简化为图4-16(b)所示的那样。在简化图中,网络变成了一条链路,但每一个路由器旁边都注明其IP地址。使用这样的简化图,可以使我们不必关心某个网络内部的具体拓扑以及连接在该网络上有多少台主机,因为这些对于研究分组转发问题并没有什么关系。这样的简化图强调了在互联网上转发分组时,是**从一个路由器转发到下一个路由器**。

总之, 在路由表中, 对每一条路由最主要的是以下两个信息(10):

(目的网络地址,下一跳地址)

于是,我们就根据目的网络地址来确定下一跳路由器,这样做可得出以下的结果。

- (1) **IP**数据报最终一定可以找到目的主机所在目的网络上的路由器 (可能要通过多次的间接交付)。
- (2) 只有到达最后一个路由器时, 才试图向目的主机进行直接交付。

虽然互联网所有的分组转发都是**基于目的主机所在的网络**,但在大多数情况下都允许有这样的特例,即对特定的目的主机指明一个路由。 这种路由叫做**特定主机路由**。采用特定主机路由可使网络管理人员更 方便地控制网络和测试网络,同时也可在需要考虑某种安全问题时采用这种特定主机路由。在对网络的连接或路由表进行排错时,指明到某一台主机的特殊路由就十分有用。

路由器还可采用**默认路由**(default route)以减小路由表所占用的空间 和搜索路由表所用的时间。这种转发方式在一个网络只有很少的对外 连接时是很有用的。实际上、默认路由在主机发送IP数据报时往往更 能显示出它的好处。我们在前面的4.2.1节已经讲过, 主机在发送每一 个IP数据报时都要查找自己的路由表。如果一台主机连接在一个小网 络上,而这个网络只用一个路由器和互联网连接,那么在这种情况下 使用默认路由是非常合适的。例如,在图4-17的互联网中,连接在网 络N₁上的任何一台主机中的路由表只需要三个项目即可。第一个项目 就是到本网络主机的路由,其目的网络就是本网络 N_1 ,因而不需要路 由器转发,而是直接交付。第二个项目是到网络N2的路由,对应的下 一跳路由器是R₂。第三个项目就是**默认路由**。只要目的网络是**其他** 网络(不是 N_1 或 N_2),就一律选择默认路由,把数据报先间接交付 路由器R₁, 让R₁再转发给互联网中的下一个路由器, 一直转发到目 的网络上的路由器, 最后进行直接交付。在实际上的路由器中, 像图 4-17路由表中所示的"直接"和"其他"的几个字符并没有出现在路由表 中. 而是被记为0.0.0.0。

图4-17 路由器R,充当网络N,的默认路由器

这里我们应当强调指出,在IP数据报的首部中没有地方可以用来指明"下一跳路由器的IP地址"。在IP数据报的首部写上的IP地址是源IP地址和目的IP地址,而没有中间经过的路由器的IP地址。既然IP数据报中没有下一跳路由器的IP地址,那么待转发的数据报又怎样能够找到下一跳路由器呢?

当路由器收到一个待转发的数据报,在从路由表得出下一跳路由器的IP地址后,不是把这个地址填入IP数据报,而是送交数据链路层的网络接口软件。网络接口软件负责把下一跳路由器的IP地址转换成硬件地址(必须使用ARP),并将此硬件地址放在链路层的MAC帧的首部,然后根据这个硬件地址找到下一跳路由器。由此可见,当发送一连串的数据报时,上述的这种查找路由表、用ARP得到硬件地址、把硬件地址写入MAC帧的首部等过程,将不断地重复进行,造成了一定的开销。

那么,能不能在路由表中不使用IP地址而直接使用硬件地址呢?不行。我们一定要弄清楚,使用抽象的IP地址,本来就是为了隐蔽各种底层网络的复杂性而便于分析和研究问题,这样就不可避免地要付出些代价,例如在选择路由时多了一些开销。但反过来,如果在路由表中直接使用硬件地址,那就会带来更多的麻烦。

根据以上所述,可归纳出分组转发算法如下:

- (1)从数据报的首部提取目的主机的 \mathbf{IP} 地址 \mathbf{D} ,得出目的网络地址为 \mathbf{N} 。
- (2) 若N 就是与此路由器直接相连的某个网络地址,则进行**直接交付**,不需要再经过其他的路由器,直接把数据报交付目的主机(这里包括把目的主机地址D 转换为具体的硬件地址,把数据报封装为MAC 帧,再发送此帧):否则就是间接交付,执行(3)。
- (3) 若路由表中有目的地址为D 的特定主机路由,则把数据报传送给路由表中所指明的下一跳路由器;否则,执行(4)。
- (4) 若路由表中有到达网络N 的路由,则把数据报传送给路由表中所指明的下一跳路由器;否则,执行(5)。
- (5) 若路由表中有一个默认路由,则把数据报传送给路由表中所指明的默认路由器;否则,执行(6)。
 - (6) 报告转发分组出错。

这里我们要再强调一下,路由表并没有给分组指明到某个网络的完整路径(即先经过哪一个路由器,然后再经过哪一个路由器,等等)。

路由表指出,到某个网络应当先到某个路由器(即下一跳路由器),在到达下一跳路由器后,再继续查找其路由表,知道再下一步应当到哪一个路由器。这样一步一步地查找下去,直到最后到达目的网络。

可以用一个简单的比喻来说明查找路由表的作用。例如,从家门口开车到机场,但没有地图,不知道应当走哪条路线。好在每一个道路岔口都有一个警察可以询问。因此,每到一个岔口(相当于到了一个路由器),就问:"到机场应当走哪个方向?"(相当于查找路由表)。该警察既不指明到下一个岔口以后再应当如何走,也不指明还要经过几个岔口才到达机场。他仅仅指出下一个岔口的方向。其回答可能是:"向左转。"到了下一个岔口,再讯问到机场该走哪个方向?回答可能是:"直行。"这样,每到一个岔口,就询问下一步该如何走。这样,即使我们没有地图,但最终一定可以到达目的地——机场。

上面所讨论的是IP层怎样根据路由表的内容进行分组转发,而没有涉及到路由表一开始是如何建立的以及路由表中的内容应如何进行更新。但是在进一步讨论路由选择之前,我们还要先介绍划分子网和构造超网这两个非常重要的概念。

4.3 划分子网和构造超网

4.3.1 划分子网

1. 从两级IP地址到三级IP地址

在今天看来,在ARPANET的早期,IP地址的设计确实不够合理。

第一, IP地址空间的利用率有时很低。

每一个A类地址网络可连接的主机数超过1000万,而每一个B类地址网络可连接的主机数也超过6万。有的单位申请到了一个B类地址网络,但所连接的主机数并不多,可是又不愿意申请一个足够使用的C类地址,理由是考虑到今后可能的发展。IP地址的浪费,还会使IP地址空间的资源过早地被用完。

第二,给每一个物理网络分配一个网络号会**使路由表变得太大**因而使网络性能变坏。

每一个路由器都应当能够从路由表查出应怎样到达其他网络的下一跳路由器。因此,互联网中的网络数越多,路由器的路由表的项目数也就越多。这样,即使我们拥有足够多的IP地址资源可以给每一个物理网络分配一个网络号,也会导致路由器的路由表中的项目数过多。这不仅增加了路由器的成本(需要更多的存储空间),而且使查找路由时耗费更多的时间,同时也使路由器之间定期交换的路由信息急剧增加,因而使路由器和整个互联网的性能都下降了。

第三,**两级IP地址不够灵活。**

有时情况紧急,一个单位需要在新的地点马上开通一个新的网络。但是在申请到一个新的IP地址之前,新增加的网络是不可能连接到互联网上工作的。我们希望有一种方法,使一个单位能随时灵活地增加本单位的网络,而不必事先到互联网管理机构去申请新的网络号。原来的两级IP地址无法做到这一点。

为解决上述问题,从1985年起在IP地址中又增加了一个"**子网号字段**",使两级IP地址变成为三级IP地址,它能够较好地解决上述问题,并且使用起来也很灵活。这种做法叫做**划分于网**(subnetting)[RFC 950],或**子网寻址**或**子网路由选择**。划分子网已成为互联网的正式标准协议。

划分子网的基本思路如下:

- (1) 一个拥有许多物理网络的单位,可将所属的物理网络划分为若干个**子网**(subnet)。划分子网纯属一个单位内部的事情。本单位以外的网络**看不见** 这个网络是由多少个子网组成,因为这个单位**对外仍然表现为一个网络**。
- (2) 划分子网的方法是从网络的主机号借用若干位作为子网号(subnet-id),当然主机号也就相应减少了同样的位数。于是两级IP地址在**本单位内部**就变为**三级**IP地址:网络号、子网号和主机号。也可以用以下记法来表示:

IP 地址 ::= { <网络号>, <子网号>, <主机号>} (4-2)

(3) 凡是从其他网络发送给本单位某台主机的IP数据报,仍然是根据IP数据报的目的网络号找到连接在本单位网络上的路由器。但此路由器在收到IP数据报后,再按目的网络号和子网号找到目的子网,把IP数据报交付目的主机。

下面用例子说明划分子网的概念。图4-18表示某单位拥有一个B类IP地址, 网络地址是145.13.0.0 (网络号是145.13)。凡目的地址为145.13.x.x的数据报都被送到这个网络上的路由器R₁。

图4-18 一个B类网络145.13.0.0

现把图4-18的网络划分为三个子网(图4-19)。这里假定子网号占用8位,因此在增加了子网号后,主机号就只有8位。所划分的三个子网分别是: 145.13.3.0,145.13.7.0和145.13.21.0。在划分子网后,整个网络对外部仍表现为一个网络,其网络地址仍为145.13.0.0。但网络145.13.0.0上的路由器 \mathbf{R}_1 在收到外来的数据报后,再根据数据报的目的地址把它转发到相应的子网。

图4-19 把图4-18的网络145.13.0.0划分为三个子网、但对外仍是一个网络

总之,当没有划分子网时,IP地址是两级结构。划分子网后IP地址变成了三级结构。划分子网只是把IP地址的主机号这部分进行再划分,而不改变IP地址原来的网络号。

2. 子网掩码

现在剩下的问题就是: 假定有一个数据报 (其目的地址是 145.13.3.10)已经到达了路由器 R_1 。那么这个路由器如何把它转发到 子网145.13.3.0呢?

我们知道,从IP数据报的首部**无法看出**源主机或目的主机所连接的网络是否进行了子网的划分。这是因为32位的IP地址本身以及数据报的首部都没有包含任何有关子网划分的信息。因此必须另外想办法,这就是使用**子网掩码**(subnetmask)(见图4-20)。

图4-20 IP地址的各字段和子网掩码(以145.13.3.30为例)

图4-20(a)是IP地址为145.13.3.10的主机本来的两级IP地址结构。图4-20(b)是这个两级IP地址的子网掩码。图4-20(c)是同一地址的三级IP地址结构,也就是说,现在从原来16位的主机号中拿出8位作为子网号,而主机号由16位减少到8位。请注意,现在子网号为3的网络的网络地址 是145.13.3.0(既不是原来两级IP地址的网络地址145.13.0.0,也不是简单的子网号3)。为了使路由器R₁能够很方便地从数据报中的目的IP地址中提取出所要找的子网的网络地址,路由器R₁就要使用三级IP地址的子网掩码。图4-20(d)是三级IP地址的子网掩码,它也是32位,由一串24个1和跟随的一串8个0组成。子网掩码中的1对应于IP地址中原来二级地址中的16位网络号加上新增加的8位子网号,而子网掩码中的0对应于现在的8位主机号。虽然RFC文档中没有规定子网掩码中的一串1必须是连续的,但却极力推荐在子网掩码中选用**连续的**1,以免出现可能发生的差错。

图4-20(e)表示 R_1 把三级IP地址的子网掩码和收到的数据报的目的IP地址145.13.3.10逐位相"与"(AND)(计算机进行这种逻辑AND运算是很容易的),得出了所要找的**子网的网络地址** 145.13.3.0。

使用子网掩码的好处就是:不管网络有没有划分子网,只要把子网掩码和IP地址进行逐位的"与"运算(AND),就立即得出网络地址来。这样在路由器处理到来的分组时就可采用同样的算法。

归纳一下上述的要点。从网络145.13.0.0**外面** 看,这就是一个普通的B 类网络,其子网掩码为16个连1后面跟上16个连0。但**进入** 到这个网络后(即到了路由器 R_1),就看到了还有许多网络(即划分了子网后的许多网络),其网络地址是145.13.x.0(这里x可以表示不同的数值),而这些网络的子网掩码都是24个连1后面跟上8个连0。总之,在这个B类网络的外面和里面,看到的网络是不一样的。

这里还要弄清一个问题,这就是:在不划分子网时,既然没有子网,为什么还要使用子网掩码?这就是为了更便于查找路由表。现在互联网的标准规定:所有的网络都必须使用子网掩码,同时在路由器的路由表中也必须有子网掩码这一栏。如果一个网络不划分子网,那么该网络的子网掩码就使用**默认子网掩码**。默认子网掩码中1的位置和IP地址中的网络号字段net-id正好相对应。因此,若用默认子网掩码和某个不划分子网的IP地址逐位相"与"(AND),就应当能够得出该IP地址的网络地址来。这样做可以不用查找该地址的类别位就能知道这是哪一类的IP地址。显然,

A类地址的默认子网掩码是255.0.0.0, 或0xFF000000。

B类地址的默认子网掩码是255.255.0.0, 或0xFFFF0000。

C类地址的默认子网掩码是255.255.255.0,或0xFFFFFF00。

图4-21是这三类IP地址的网络地址和相应的默认子网掩码。

图4-21 A类、B类和C类IP地址的默认子网掩码

子网掩码是一个网络或一个子网的重要属性。在RFC 950成为互联网的正式标准后,路由器在和相邻路由器交换路由信息时,必须把自己所在网络(或子网)的子网掩码告诉相邻路由器。在路由器的路由表中的每一个项目,除了要给出目的网络地址外,还必须同时给出该网络的子网掩码。若一个路由器连接在两个子网上就拥有两个网络地址和两个子网掩码。

我们以一个B类地址为例,说明可以有多少种子网划分的方法。在采用固定长度子网时,所划分的**所有**子网的子网掩码都是相同的(见表4-6)。

表4-6 B类地址的子网划分选择(使用固定长度子网)

子网号的位数	子网掩码	子网数	每个子网的主 机数
2	255.255.192.0	2	16382
3	255.255.224.0	6	8190
4	255.255.240.0	14	4094
5	255.255.248.0	30	2046
6	255.255.252.0	62	1022
7	255.255.254.0	126	510
8	255.255.255.0	254	254
9	255.255.255.128	510	126
10	255.255.255.192	1022	62
11	255.255.255.224	2046	30
12	255.255.255.240	4094	14
13	255.255.255.248	8190	6
14	255.255.255.252	16382	2

在表4-6中,子网数是根据子网号(subnet-id)计算出来的。若subnet-id有n位,则共有2 n 种可能的排列。除去全0和全1这两种情况,就得出表中的子网数。

表中的"子网号的位数"中没有0, 1, 15和16这四种情况, 因为这没有意义。

请读者注意,虽然根据已成为互联网标准协议的RFC 950文档,子网号不能为全1或全0,但随着无分类域间路由选择CIDR的广泛使用(在4.3.3节讨论),**现在全1和全0的子网号也可以使用了**,但一定要谨慎使用,要弄清你的路由器所用的路由选择软件是否支持全0或全1的子网号这种较新的用法。

我们可以看出,若使用较少位数的子网号,则每一个子网上可连接的主机数就较多。反之,若使用较多位数的子网号,则子网的数目较多但每个子网上可连接的主机数就较少。因此我们可根据网络的具体情况(一共需要划分多少个子网,每个子网中最多有多少台主机)来选择合适的子网掩码。

通过简单的计算,读者不难得到这样的结论:**划分子网增加了灵活性,但却减少了能够连接在网络上的主机总数**。例如,本来一个B类地址最多可连接65534台主机,但表4-6中任意一行的最后两项的乘积一定小于65534。

对A类和C类地址的子网划分也可得出类似的表格,读者可自行算出。

【**例4-2**】已知IP地址是141.14.72.24,子网掩码是255.255.192.0。试求网络地址。

【解】子网掩码是11111111 11111111 11000000 00000000。请注意,掩码的前两个字节都是全1,因此网络地址的前两个字节可写为141.14。子网掩码的第四字节是全0,因此网络地址的第四字节是0。可见本题仅需对地址中的第三字节进行计算。我们只要把IP地址和子网掩码的第三字节用二进制表示,就可以很容易地得出网络地址(图4-22)。

图4-22 网络地址的计算

请注意,在一个IP地址中不允许把十进制和二进制混合使用。图4-22中(b)和(d)的写法,仅仅为了说明解题的步骤,而并非表示平时可以这样书写IP地址。

【例4-3】在上例中,若子网掩码改为255.255.224.0。试求网络地址,并讨论所得结果。

【解】用同样方法可得出网络地址是141.14.64.0,和上例的结果相同 (图4-23)。

图4-23 不同的子网掩码得出相同的网络地址

这个例子说明,同样的IP地址和不同的子网掩码可以得出相同的网络地址。但是,不同的掩码的效果是不同的。在例4-2中,子网号是2位,主机号是14位。在例4-3中,子网号是3位,主机号是13位。因此这两个例子中可划分的子网数和每一个子网中的最大主机数都是不一样的。

下面进一步讨论使用了子网掩码后应怎样查找路由表。

4.3.2 使用子网时分组的转发

在划分子网的情况下,分组转发的算法必须做相应的改动。

我们应当注意到,使用子网划分后,路由表必须包含以下三项内容: **目的网络地址、子网掩码和下一跳地址**。

在划分子网的情况下,路由器转发分组的算法如下:

- (1) 从收到的数据报的首部提取目的IP地址D。
- (2) 先判断是否为直接交付。对路由器直接相连的网络逐个进行检查:用各网络的子网掩码和D逐位相"与"(AND操作),看结果是否和相应的网络地址匹配。若匹配,则把分组进行直接交付(当然还需要把D转换成物理地址,把数据报封装成帧发送出去),转发任务结束。否则就是间接交付,执行(3)。
- (3) 若路由表中有目的地址为D 的特定主机路由,则把数据报传送给路由表中所指明的下一跳路由器,否则,执行(4)。
- (4) 对路由表中的每一行(目的网络地址,子网掩码,下一跳地址),用其中的子网掩码和D 逐位相"与"(AND操作),其结果为N。若N 与该行的目的网络地址匹配,则把数据报传送给该行指明的下一跳路由器;否则,执行(5)。
- (5) 若路由表中有一个默认路由,则把数据报传送给路由表中所指明的默认路由器;否则,执行(6)。
 - (6) 报告转发分组出错。
- 【例4-4】图4-24有三个子网,两个路由器,以及路由器 R_1 中的部分路由表。现在源主机 H_1 向目的主机 H_2 发送分组。试讨论 R_1 收到 H_1 向 H_2 发送的分组后查找路由表的过程。

图4-24 主机H,向H,发送分组

【解】源主机 H_1 向目的主机 H_2 发送的分组的目的地址是 H_2 的IP地址 128.30.33.138。

源主机 H_1 首先要进行的操作是要判断:发送的这个分组,是在本子网上进行直接交付还是要通过本子网上的路由器进行间接交付?

源主机 H_1 把本子网的"子网掩码255.255.255.128"与目的主机 H_2 的"IP地址128.30.33.138"逐位相"与"(即逐位进行AND操作),得出128.30.33.128,它不等于 H_1 的网络地址(128.30.33.0)。这说明 H_2 与 H_1 不在同一个子网上。因此 H_1 不能把分组直接交付 H_2 ,而必须交给子网上的默认路由器 R_1 ,由 R_1 来转发。

路由器 R_1 在收到一个分组后,就在其路由表中逐行寻找有无匹配的网络地址。

先看R₁路由表中的第一行。用这一行的"子网掩码255.255.255.128"和收到的分组的"目的地址128.30.33.138"逐位相"与"(即逐位进行AND操作),得出128.30.33.128。然后和这一行给出的目的网络地址128.30.33.0进行比较。但比较的结果不一致(即不匹配)。

用同样方法继续往下找第二行。用第二行的"子网掩码255.255.255.128"和该分组的"目的地址128.30.33.138"逐位相"与"(即逐位进行AND操作),结果也是128.30.33.128。这个结果和第二行的目的网络地址128.30.33.128相匹配,说明这个网络(子网2)就是收到

的分组所要寻找的目的网络。于是不需要再继续查找下去。 R_1 把分组从接口1直接交付主机 H_2 (它们都在一个子网上)。

4.3.3 无分类编址CIDR(构造超网)

1. 网络前缀

划分子网在一定程度上缓解了互联网在发展中遇到的困难。然而在1992年互联网仍然面临三个必须尽早解决的问题,这就是:

- (1) B类地址在1992年已分配了近一半, 眼看很快就将全部分配完毕!
- (2) 互联网主干网上的路由表中的项目数急剧增长(从几千个增长到 几万个)。
- (3) 整个IPv4的地址空间最终将全部耗尽。在2011年2月3日, IANA 宣布IPv4地址已经耗尽了。

当时预计前两个问题将在1994年变得非常严重。因此IETF很快就研究出采用无分类编址的方法来解决前两个问题。IETF认为上面的第三个问题属于更加长远的问题,因此专门成立IPv6工作组负责研究解决新版本IP协议的问题。

其实早在1987年,RFC 1009就指明了在一个划分子网的网络中可同时使用几个不同的子网掩码。使用**变长子网掩码** VLSM(Variable Length Subnet Mask)可进一步提高IP地址资源的利用率。在VLSM的基础上又进一步研究出**无分类编址** 方法,它的正式名字是**无分类域间路由选择** CIDR(Classless Inter-Domain Routing,CIDR的读音是"sider")。

CIDR最主要的特点有两个:

(1) CIDR消除了传统的A类、B类和C类地址以及划分子网的概念,因而能更加有效地分配IPv4的地址空间,并且在新的IPv6使用之前容许互联网的规模继续增长。CIDR把32位的IP地址划分为前后两个部分。前面部分是"网络前缀"(network-prefix)(或简称为"前缀"),用来指明网络,后面部分则用来指明主机。因此CIDR使IP地址从三级

编址(使用子网掩码)又回到了两级编址,但这已是**无分类的两级编址**。其记法是:

IP 地址 ::= {<网络前缀>, <主机号>} (4-3)

CIDR还使用"**斜线记法**"(slash notation),或称为**CIDR记法**,即在IP地址后面加上斜线"/",然后写上网络前缀所占的位数。

(2) CIDR把**网络前缀都相同** 的连续的IP地址组成一个"CIDR**地址块**"。我们只要知道CIDR地址块中的任何一个地址,就可以知道这个地址块的起始地址(即最小地址)和最大地址,以及地址块中的地址数。例如,已知IP地址128.14.35.7/20是某CIDR地址块中的一个地址,现在把它写成二进制表示,其中的前20位是网络前缀(用粗体和下划线表示出),而前缀后面的12位是主机号:

128.14.35.7/20 = **10000000 00001110 0010** 0011 00000111

这个地址所在的地址块中的最小地址和最大地址可以很方便地得出:

最小地址 128.14.32.0 <u>10000000 00001110 0010</u> 0000 000000000 最大地址 128.14.47.255 <u>10000000 00001110 0010</u> 1111

当然,以上这两个特殊地址的主机号是全0和全1的地址。一般并不使用。通常只使用在这两个特殊地址之间的地址。不难看出,这个地址块共有2¹²个地址。我们可以用地址块中的最小地址和网络前缀的位数指明这个地址块。例如,上面的地址块可记为128.14.32.0/20。在不需要指出地址块的起始地址时,也可把这样的地址块简称为"/20地址块"。

为了更方便地进行路由选择,CIDR使用32位的**地址掩码**(address mask)。地址掩码由一串1和一串0组成,而1的个数就是网络前缀的长度。虽然CIDR不使用子网了,但由于目前仍有一些网络还使用子网划分和子网掩码,因此CIDR使用的地址掩码也可继续称为**子网掩码**。例如,/20地址块的地址掩码是:1111111 1111111 11110000

00000000 (20个连续的1)。**斜线记法中,斜线后面的数字就是地址掩**码中1的个数。

请读者注意,"CIDR不使用子网"是指CIDR并没有在32位地址中指明若干位作为子网字段。但分配到一个CIDR地址块的单位,仍然可以在本单位内根据需要划分出一些子网。这些子网也都只有一个网络前缀和一台主机号字段,但子网的网络前缀比整个单位的网络前缀要长些。例如,某单位分配到地址块/20,就可以再继续划分为8个子网(即需要从主机号中借用3位来划分子网)。这时每一个子网的网络前缀就变成23位(原来的20位加上从主机号借来的3位),比该单位的网络前缀多了3位。

斜线记法还有一个好处就是它除了表示一个IP地址外,还提供了其他一些重要信息。我们举例说明如下。

例如,地址192.199.170.82/27不仅表示IP地址是192.199.170.82,而且还表示这个地址块的网络的前缀有27位(剩下的5位是主机号),因此这个地址块包含32个IP地址(2⁵=32)。通过简单的计算还可得出,这个地址块的最小地址是192.199.170.64,最大地址是192.199.170.95。具体的计算方法是这样的。找出地址掩码中1和0的**交界处**发生在地址中的哪一个字节。现在是在第四个字节。因此只要把**这一个字节**的十进制82用二进制表示即可。十进制82的二进制是01010010,取其前3位(这3位加上前3个字节的24位等于前缀的27位),再把后面5位都写成0,即010 00000,等于十进制的64。这就找出了地址块的最小地址192.199.170.64。再把地址的第四字节的最后5位都置1,即010 11111,等于十进制的95,这就找出了地址块中的最大地址192.199.170.95。

由于一个CIDR地址块中有很多地址,所以在路由表中就利用CIDR地址块来查找目的网络。这种地址的聚合常称为**路由聚合**(route aggregation),它使得路由表中的一个项目可以表示原来传统分类地址的很多个(例如上千个)路由。路由聚合也称为**构成超网**(supernetting)。如果没有采用CIDR,则在1994年和1995年,互联网的一个路由表就会超过7万个项目,而使用了CIDR后,在1996年一个路由表的项目数才只有3万多个。路由聚合有利于减少路由器之间的路由选择信息的交换,从而提高了整个互联网的性能。

CIDR记法有多种形式,例如,地址块10.0.0.0/10可简写为10/10,也就是把点分十进制中低位连续的0省略。另一种简化表示方法是在网络前

缀的后面加一个星号*,如:

00001010 00*

意思是: 在星号*之前是网络前缀, 而星号*表示IP地址中的主机号, 可以是任意值。

前缀位数不是8的整数倍时,需要进行简单的计算才能得到一些地址信息。

表4-7给出了最常用的CIDR地址块。表中的K表示2 ¹⁰ 即1024。网络前缀小于13或大于27都较少使用。在"包含的地址数"中没有把全1和全0的主机号除外。

表4-7 常用的CIDR地址块

CIDR 前缀 长度	点分十进制	包含的地址 数	相当于包含分类的网络 数
/13	255.248.0.0	512K	8个B类或2048个C类
/14	255.252.0.0	256K	4个B类或1024个C类
/15	255.254.0.0	128K	2个B类或512个C类
/16	255.255.0.0	64K	1个B类或256个C类
/17	255.255.128.0	32K	128个C类
/18	255.255.192.0	16K	64个C类
/19	255.255.224.0	8K	32个C类
/20	255.255.240.0	4K	16个C类
/21	255.255.248.0	2K	8个C类
/22	255.255.252.0	1K	4个C类
/23	255.255.254.0	512	2个C类
/24	255.255.255.0	256	1个C类
/25	255.255.255.128	128	1/2个C类
/26	255.255.255.192	64	1/4个C类
/27	255.255.255.224	32	1/8个C类

从表4-7可看出,每一个CIDR地址块中的地址数一定是2的整数次幂。除最后几行外,CIDR地址块都包含了**多个**C类地址(是一个C类地址的2 n 倍, n 是整数),这就是"**构成超网**"这一名词的来源。

使用CIDR的一个好处就是可以更加有效地分配IPv4的地址空间,可根据客户的需要分配适当大小的CIDR地址块。然而在分类地址的环境中,向一个部门分配IP地址,就只能以/8,/16或/24为单位来分配。这就很不灵活。

图4-25给出的是CIDR地址块分配的例子。假定某ISP已拥有地址块206.0.64.0/18(相当于有64个C类网络)。现在某大学需要800个IP地址。ISP可以给该大学分配一个地址块206.0.68.0/22,它包括1024(即2¹⁰)个IP地址,相当于4个连续的C类/24地址块,占该ISP拥有的地址空间的1/16。这个大学然后可自由地对本校的各系分配地址块,而各系还可再划分本系的地址块。CIDR的地址块分配有时不易看清,这是因为网络前缀和主机号的界限不是恰好出现在整数字节处。只要写出地址的二进制表示(从图中的地址块的二进制表示中可看出,实际上只需要将其中的一个关键字节转换为二进制的表示即可),弄清网络前缀的位数,就不会把地址块的范围弄错。

图4-25 CIDR地址块划分举例

从图4-25可以清楚地看出**地址聚合**的概念。这个ISP共拥有64个C类网络。如果不采用CIDR技术,则在与该ISP的路由器交换路由信息的每一个路由器的路由表中,就需要有64个项目。但采用地址聚合后,就只需用路由聚合后的一个项目206.0.64.0/18就能找到该ISP。同理,这个大学共有4个系。在ISP内的路由器的路由表中,也需使用206.0.68.0/22这个项目。这个项目好比是大学的收发室。凡寄给这个大学任何一个系的邮件,邮递员都不考虑大学各个系的地址,而是把这些邮件集中投递到大学的收发室,然后由大学的收发室再进行下一步的投递。这样就减轻了邮递员的工作量(相当于简化了路由表的查找)。

从图4-25下面表格中的二进制地址可看出,把四个系的路由聚合为大学的一个路由(即构成超网),是将网络前缀**缩短。网络前缀越短,其地址块所包含的地址数就越多**。而在三级结构的IP地址中,划分子网是使网络前缀变长。

2. 最长前缀匹配

在使用CIDR时,由于采用了网络前缀这种记法,IP地址由网络前缀和主机号这两个部分组成,因此在路由表中的项目也要有相应的改变。这时,每个项目由"网络前缀"和"下一跳地址"组成。但是在查找路由表时可能会得到不止一个匹配结果。这样就带来一个问题:我们应当从这些匹配结果中选择哪一条路由呢?

正确的答案是: **应当从匹配结果中选择具有最长网络前缀的路由**。这叫做**最长前缀匹配**(longest-prefix matching),这是因为网络前缀越长,其地址块就越小,因而路由就越具体(more specific)。最长前缀匹配又称为**最长匹配**或**最佳匹配**。为了说明最长前缀匹配的概念,我们仍以前面的例子来讨论。

假定大学下属的四系希望ISP把转发给四系的数据报直接发到四系而不要经过大学的路由器,但又不愿意改变自己使用的IP地址块。因此,在ISP的路由器的路由表中,至少要有以下两个项目,即206.0.68.0/22(大学)和206.0.71.128/25(四系)。现在假定ISP收到一个数据报,其目的IP地址为D=206.0.71.130。把D分别和路由表中这两个项目的掩码逐位相"与"(AND操作)。将所得的逐位AND操作的结果按顺序写在下面。

D 和 <u>11111111 11111111 1111111</u> 00 000000000 逐位相"与"= 206.0.68.0/22 匹配

D 和 **11111111 11111111 1** 00000000 逐位相"与"= 206.0.71.128/25 匹配

不难看出,现在同一个IP地址D可以在路由表中找到两个目的网络(大学和四系)和该地址相匹配。根据最长前缀匹配的原理,应当选择后者,把收到的数据报转发到后一个目的网络(四系),即选择两个匹配的地址中更具体的一个。

从以上的讨论可以看出,如果IP地址的分配一开始就采用CIDR,那么我们可以按网络所在的地理位置来分配地址块,这样就可大大减少路由表中的路由项目。例如,可以将世界划分为四大地区,每一地区分配一个CIDR地址块:

地址块194/7(194.0.0.0至195.255.255.255)分配给欧洲:

地址块198/7(198.0.0.0至199.255.255.255)分配给北美洲;

地址块200/7(200.0.0至201.255.255.255)分配给中美洲和南美洲;

地址块202/7 (202.0.0.0至203.255.255.255) 分配给亚洲和太平洋地区。

上面的每一个地址块包含有约3200万个地址。这种分配地址的方法就使得IP地址与地理位置相关联。它的好处是可以大大压缩路由表中的项目数。例如,凡是从中国发往北美的IP数据报(不管它是地址块198/7中的哪一个地址)都先送交位于美国的一个路由器,因此在路由表中使用一个项目就行了。

但是,在使用CIDR之前,互联网的地址管理机构没有按地理位置来分配IP地址。现在要把已分配出的IP地址收回再重新分配是件十分困难的事,因为这牵涉到很多正在工作的主机必须改变其IP地址。尽管这样,CIDR的使用已经推迟了IP地址耗尽的日期。

3. 使用二叉线索查找路由表

使用CIDR后,由于要寻找最长前缀匹配,使路由表的查找过程变得更加复杂了。当路由表的项目数很大时,怎样设法减小路由表的查找时间就成为一个非常重要的问题。例如,连接路由器的线路的速率为10Gbit/s,而分组的平均长度为2000bit,那么路由器就应当平均每秒钟能够处理500万个分组(常记为5Mpps)。或者说,路由器处理一个分组的平均时间只有200ns(1ns=10⁻⁹秒)。因此,查找每一个路由所需的时间是非常短的。可见在路由表中必须使用很好的数据结构和使用先进的快速查找算法,这一直是人们积极研究的热门课题。

对无分类编址的路由表的最简单的查找算法就是对所有可能的前缀进行循环查找。例如,给定一个目的地址D。对每一个可能的网络前缀长度M,路由器从D中提取前M个位成一个网络前缀,然后查找路由表中的网络前缀。所找到的最长匹配就对应于要查找的路由。

这种最简单的算法的明显缺点就是查找的次数太多。最坏的情况是路由表中没有这个路由。在这种情况下,算法仍要进行32次(具有32位的网络前缀是一个特定主机路由)。就是要找到一个传统的B类地址(即/16),也要查找16次。对于经常使用的默认路由,这种算法都要经历31次不必要的查找。

为了进行更加有效的查找,通常是把无分类编址的路由表存放在一种层次的数据结构中,然后自上而下地按层次进行查找。这里最常用的就是二叉线索(binary trie)(11),它是一种特殊结构的树。IP地址中从左到右的比特值决定了从根节点逐层向下层延伸的路径,而二叉线索中的各个路径就代表路由表中存放的各个地址。

图4-26用一个例子来说明二叉线索的结构。图中给出了5个IP地址。为了简化二叉线索的结构,可以先找出对应于每一个IP地址的**唯一前缀**(unique prefix)。所谓唯一前缀就是在表中所有的IP地址中,该前缀是唯一的。这样就可以用这些唯一前缀来构造二叉线索。在进行查找时,只要能够和唯一前缀相匹配就行了。

32 位的 IP 地址	唯一前缀		_
01000110 00000000 00000000 00000000	0100	1	
01010110 00000000 00000000 00000000	0101	0/1	9
01100001 00000000 00000000 00000000	011	, / , 🗅	
10110000 00000010 00000000 00000000	10110		
10111011 00001010 00000000 00000000	10111		

从二叉线索的根节点自顶向下的深度最多有32层,每一层对应于IP地址中的一位。一个IP地址存入二叉线索的规则很简单。先检查IP地址左边的第一位,如为0,则第一层的节点就在根节点的左下方;如为1,则在右下方。然后再检查地址的第二位,构造出第二层的节点。依此类推,直到唯一前缀的最后一位。由于唯一前缀一般都小于32位,因此用唯一前缀构造的二叉线索的深度往往不到32层。图中较粗的折线就是前缀0101在这个二叉线索中的路径。二叉线索中的小圆圈是中间节点,而在路径终点的小方框是叶节点(也叫做外部节点)。每个叶节点代表一个唯一前缀。节点之间的连线旁边的数字表示这条边在唯一前缀中对应的比特是0或1。

假定有一个IP地址是10011011 01111010 00000000 000000000, 需要查找该地址是否在此二叉线索中。我们从最左边查起。很容易发现,查到第三个字符(即前缀10后面的0)时,在二叉线索中就找不到匹配的,说明这个地址不在这个二叉线索中。

以上只是给出了二叉线索这种数据结构的用法,而并没有说明"与唯一前缀匹配"和"与网络前缀匹配"的关系。显然,要将二叉线索用于路由表中,还必须使二叉线索中的每一个叶节点包含所对应的网络前缀和子网掩码。当搜索到一个叶节点时,就必须将寻找匹配的目的地址和该叶节点的子网掩码进行逐位"与"运算,看结果是否与对应的网络前缀相匹配。若匹配,就按下一跳的接口转发该分组。否则,就丢弃该分组。

总之,二叉线索只是提供了一种可以快速在路由表中找到匹配的叶节点的机制。但这是否和网络前缀匹配,还要和子网掩码进行一次逻辑与的运算。

为了提高二叉线索的查找速度,广泛使用了各种**压缩技术**。例如,在图4-26中的最后两个地址,其最前面的4位都是1011。因此,只要一个地址的前4位是1011,就可以跳过前面4位(即压缩了4个层次)而直接从第5位开始比较。这样就可以减少查找的时间。当然,制作经过压缩的二叉线索需要更多的计算,但由于每一次查找路由表时都可以提高查找速度,因此这样做还是值得的。

4.4 网际控制报文协议ICMP

为了更有效地转发IP数据报和提高交付成功的机会,在网际层使用了**网际控制报文协议ICMP**(Internet Control Message Protocol)[RFC 792]。ICMP允许主机或路由器报告差错情况和提供有关异常情况的报告。ICMP是互联网的标准协议。但ICMP不是高层协议(看起来好像是高层协议,因为ICMP报文是装在IP数据报中,作为其中的数据部分),而是IP层的协议。ICMP报文作为IP层数据报的数据,加上数据报的首部,组成IP数据报发送出去。ICMP报文格式如图4-27所示。

4.4.1 ICMP报文的种类

ICMP报文的种类有两种,即ICMP差错报告报文 和ICMP询问报文。

ICMP报文的前4个字节是统一的格式,共有三个字段:类型、代码和检验和。接着的4个字节的内容与ICMP的类型有关。最后面是数据字段,其长度取决于ICMP的类型。表4-8给出了几种常用的ICMP报文类型。

表4-8 几种常用的ICMP报文类型

ICMP报文种类	类型的值	ICMP报文的类型
差错报告报文	3	终点不可达
	11	时间超过
	12	参数问题
	5	改变路由(Redirect)
询问报文	8或0	回送(Echo)请求或回答
	13或14	时间戳(Timestamp)请求或回
		答

ICMP标准在不断更新。已不再使用的ICMP报文有: "信息请求与回答报文"、"地址掩码请求与回答报文"、"路由器请求与通告报文"以及"源点抑制报文"「RFC 6633」。现在不再把这几种报文列入。

ICMP报文的代码字段是为了进一步区分某种类型中的几种不同情况。 检验和字段用来检验整个ICMP报文。我们应当还记得,IP数据报首部 的检验和并不检验IP数据报的内容,因此不能保证经过传输的ICMP报 文不产生差错。

表4-8给出的ICMP差错报告报文共有四种、即:

- (1) **终点不可达** 当路由器或主机不能交付数据报时就向源点发送 终点不可达报文。
- (2) **时间超过** 当路由器收到生存时间为零的数据报时,除丢弃该数据报外,还要向源点发送时间超过报文。当终点在预先规定的时间内不能收到一个数据报的全部数据报片时,就把已收到的数据报片都丢弃,并向源点发送时间超过报文。
- (3) **参数问题** 当路由器或目的主机收到的数据报的首部中有的字段的值不正确时,就丢弃该数据报,并向源点发送参数问题报文。
- (4) **改变路由(重定向)** 路由器把改变路由报文发送给主机,让主机知道下次应将数据报发送给另外的路由器(可通过更好的路由)。

下面对改变路由报文进行简短的解释。我们知道,在互联网的主机中也要有一个路由表。当主机要发送数据报时,首先是查找主机自己的

路由表,看应当从哪一个接口把数据报发送出去。在互联网中主机的数量远大于路由器的数量,出于效率的考虑,这些主机不和连接在网络上的路由器定期交换路由信息。在主机刚开始工作时,一般都在路由表中设置一个默认路由器的IP地址。不管数据报要发送到哪个目的地址,都一律先把数据报传送给这个默认路由器,而这个默认路由器知道到每一个目的网络的最佳路由(通过和其他路由器交换路由信息)。如果默认路由器发现主机发往某个目的地址的数据报的最佳路由应当经过网络上的另一个路由器R时,就用改变路由报文把这情况告诉主机。于是,该主机就在其路由表中增加一个项目:到某某目的地址应经过路由器R(而不是默认路由器)。

所有的ICMP差错报告报文中的数据字段都具有同样的格式(图4-28)。把收到的需要进行差错报告的IP数据报的首部和数据字段的前8个字节提取出来,作为ICMP报文的数据字段。再加上相应的ICMP差错报告报文的前8个字节,就构成了ICMP差错报告报文。提取收到的数据报的数据字段前8个字节是为了得到运输层的端口号(对于TCP和UDP)以及运输层报文的发送序号(对于TCP)。这些信息对源点通知高层协议是有用的(端口的作用将在下一章的5.1.3节中介绍)。整个ICMP报文作为IP数据报的数据字段发送给源点。

图4-28 ICMP差错报告报文的数据字段的内容

下面是不应发送ICMP差错报告报文的几种情况。

- 对ICMP差错报告报文,不再发送ICMP差错报告报文。
- 对第一个分片的数据报片的所有后续数据报片,都不发送ICMP差错报告报文。
- 对具有多播地址的数据报,都不发送ICMP差错报告报文。

• 对具有特殊地址(如127.0.0.0或0.0.0.0)的数据报,不发送ICMP 差错报告报文。

常用的ICMP询问报文有两种,即:

- (1) **回送请求和回答** ICMP回送请求报文是由主机或路由器向一个特定的目的主机发出的询问。收到此报文的主机必须给源主机或路由器发送ICMP回送回答报文。这种询问报文用来测试目的站是否可达以及了解其有关状态。
- (2) **时间戳请求和回答** ICMP时间戳请求报文是请某台主机或路由器回答当前的日期和时间。在ICMP时间戳回答报文中有一个32位的字段,其中写入的整数代表从1900年1月1日起到当前时刻一共有多少秒。时间戳请求与回答可用于时钟同步和时间测量。

4.4.2 ICMP的应用举例

ICMP的一个重要应用就是分组网间探测**PING** (Packet InterNet Groper),用来测试两台主机之间的连通性。PING使用了ICMP回送请求与回送回答报文。PING是应用层直接使用网络层ICMP的一个例子。它没有通过运输层的TCP或UDP。

Windows操作系统的用户可在接入互联网后转入MSDOS(点击"开始",点击"运行",再键入"cmd")。看见屏幕上的提示符后,就键入"ping hostname"(这里的hostname 是要测试连通性的主机名或它的IP地址),按回车键后就可看到结果。

图4-29给出了从南京的一台PC到新浪网的邮件服务器mail.sina.com.cn的连通性的测试结果。PC一连发出四个ICMP回送请求报文。如果邮件服务器mail.sina.com.cn正常工作而且响应这个ICMP回送请求报文(有的主机为了防止恶意攻击就不理睬外界发送过来的这种报文),那么它就发回ICMP回送回答报文。由于往返的ICMP报文上都有时间戳,因此很容易得出往返时间。最后显示出的是统计结果:发送到哪个机器(IP地址),发送的、收到的和丢失的分组数(但不给出分组丢失的原因),以及往返时间的最小值、最大值和平均值。从得到的结果可以看出,第三个测试分组丢失了。

```
C: Documents and Settings XXR>ping mail.sina.com.cn

Pinging mail.sina.com.cn [202.108.43.230] with 32 bytes of data:

Reply from 202.108.43.230: bytes=32 time=368ms ITL=242

Reply from 202.108.43.230: bytes=32 time=374ms ITL=242

Request timed out.

Reply from 202.108.43.230: bytes=32 time=374ms ITL=242

Ping statistics for 202.108.43.230:

Packets: Sent = 4, Received = 3, Lost = 1 (25% loss),

Approximate round trip times in milli-seconds:

Minimum = 368ms, Maximum = 374ms, Average = 372ms
```

图4-29 用PING测试主机的连通性

另一个非常有用的应用是traceroute(这是UNIX操作系统中名字),它用来跟踪一个分组从源点到终点的路径。在Windows操作系统中这个命令是tracert。下面简单介绍这个程序的工作原理。

Traceroute从源主机向目的主机发送一连串的IP数据报,数据报中封装的是无法交付的UDP用户数据报 (12)。第一个数据报 P_1 的生存时间TTL设置为1。当 P_1 到达路径上的第一个路由器 P_1 时,路由器 P_1 是作下它,接着把TTL的值减1。由于TTL等于零了, P_1 就把 P_1 是弃了,并向源主机发送一个ICMP**时间超过** 差错报告报文。

源主机接着发送第二个数据报 P_2 ,并把TTL设置为 $2 \circ P_2$ 先到达路由器 R_1 , R_1 收下后把TTL减1再转发给路由器 $R_2 \circ R_2$ 收到 P_2 时TTL为1,但减1后TTL变为零了。 R_2 就丢弃 P_2 ,并向源主机发送一个ICMP时间超过 差错报告报文。这样一直继续下去。当最后一个数据报刚刚到达目的主机时,数据报的TTL是1。主机不转发数据报,也不把TTL值减1。但因IP数据报中封装的是无法交付的运输层的UDP用户数据报,因此目的主机要向源主机发送ICMP终点不可达 差错报告报文(见下一章的5.2.2节)。

这样,源主机达到了自己的目的,因为这些路由器和最后目的主机发来的ICMP报文正好给出了源主机想知道的路由信息——到达目的主机所经过的路由器的IP地址,以及到达其中的每一个路由器的往返时间。图4-30是从南京的一个PC向新浪网的邮件服务器mail.sina.com.cn发出的tracert命令后所获得的结果。图中每一行有三个时间出现,是因为对应于每一个TTL值,源主机要发送三次同样的IP数据报。

我们还应注意到,从原则上讲,IP数据报经过的路由器越多,所花费的时间也会越多。但从图4-30可看出,有时正好相反。这是因为互联网的拥塞程度随时都在变化,也很难预料到。因此,完全有这样的可能:经过更多的路由器反而花费更少的时间。

```
C:\Documents and Settings\XXR>tracert mail.sina.com.cn
Tracing route to mail.sina.com.cn [202.108.43.230]
over a maximum of 30 hops:
        24 ms
                               23 ms 222.95.172.1
                    24 ms
                            22 ms 221.231.204.129
23 ms 221.231.206.9
24 ms 202.97.27.37
24 ms 202.97.41.226
28 ms 202.97.35.25
        23 ms
                    24 ms
        23 ms
                    22 ms
        24 ms
                    23 ms
        22 ms
                    23 ms
        28 ms
                    28 ms
                              51 ms 202.97.36.86
        50 ms
                   50 ms
       308 ms
                              310 ms 219.158.32.1
                   311 ms
                  305 ms 305 ms 219.158.13.17
164 ms 165 ms 202.96.12.154
320 ms 2988 ms 61.135.148.50
       307 ms
       164 ms
       322 ms
                              320 ms freemail43-230.sina.com [202.108.43.230]
       321 ms
                  322 ms
Trace complete.
```

图4-30 用tracert命令获得到目的主机的路由信息

4.5 互联网的路由选择协议

本节将讨论几种常用的路由选择协议,也就是要讨论路由表中的路由是怎样得出的。

4.5.1 有关路由选择协议的几个基本概念

1. 理想的路由算法

路由选择协议的核心就是路由算法,即需要何种算法来获得路由表中的各项目。一个理想的路由算法应具有如下的一些特点[BELL86]:

- (1) **算法必须是正确的和完整的**。这里,"正确"的含义是:沿着各路由表所指引的路由,分组一定能够最终到达目的网络和目的主机。
- (2) **算法在计算上应简单**。路由选择的计算不应使网络通信量增加太多的额外开销。

- (3) **算法应能适应通信量和网络拓扑的变化**,这就是说,要有**自适应性**。当网络中的通信量发生变化时,算法能自适应地改变路由以均衡各链路的负载。当某个或某些结点、链路发生故障不能工作,或者修理好了再投入运行时,算法也能及时地改变路由。有时称这种自适应性为"**稳健性**"(robustness)。(13)
- (4) **算法应具有稳定性**。在网络通信量和网络拓扑相对稳定的情况下,路由算法应收敛于一个可以接受的解,而不应使得出的路由不停地变化。
- (5) **算法应是公平的**。路由选择算法应对所有用户(除对少数优先级高的用户)都是平等的。例如,若仅仅使某一对用户的端到端时延为最小,但却不考虑其他的广大用户,这就明显地不符合公平性的要求。
- (6) **算法应是最佳的**。路由选择算法应当能够找出最好的路由,使得分组平均时延最小而网络的吞吐量最大。虽然我们希望得到"最佳"的算法,但这并不总是最重要的。对于某些网络,网络的可靠性有时要比最小的分组平均时延或最大吞吐量更加重要。因此,**所谓"最佳"只能是相对于某一种特定要求下得出的较为合理的选择而已**。
- 一个实际的路由选择算法,应尽可能接近于理想的算法。在不同的应用条件下,对以上提出的六个方面也可有不同的侧重。

应当指出,路由选择是个非常复杂的问题,因为它是网络中的所有结点共同协调工作的结果。其次,路由选择的环境往往是不断变化的,而这种变化有时无法事先知道,例如,网络中出了某些故障。此外,当网络发生拥塞时,就特别需要有能缓解这种拥塞的路由选择策略,但恰好在这种条件下,很难从网络中的各结点获得所需的路由选择信息。

倘若从路由算法能否随网络的通信量或拓扑自适应地进行调整变化来划分,则只有两大类,即**静态路由选择策略**与动态路由选择策略。静态路由选择也叫做非自适应路由选择,其特点是简单和开销较小,但不能及时适应网络状态的变化。对于很简单的小网络,完全可以采用静态路由选择,用人工配置每一条路由。动态路由选择也叫做自适应路由选择,其特点是能较好地适应网络状态的变化,但实现起来较为复杂,开销也比较大。因此,动态路由选择适用于较复杂的大网络。

2. 分层次的路由选择协议

互联网采用的路由选择协议主要是自适应的(即动态的)、分布式路由选择协议。由于以下两个原因,互联网采用分层次的路由选择协议:

- (1) 互联网的规模非常大。如果让所有的路由器知道所有的网络应怎样到达,则这种路由表将非常大,处理起来也太花时间。而所有这些路由器之间交换路由信息所需的带宽就会使互联网的通信链路饱和。
- (2) 许多单位不愿意外界了解自己单位网络的布局细节和本部门所采用的路由选择协议(这属于本部门内部的事情),但同时还希望连接到互联网上。

为此,可以把整个互联网划分为许多较小的**自治系统**(autonomous system),一般都记为AS。自治系统AS是在单一技术管理下的一组路由器,而这些路由器使用一种自治系统内部的路由选择协议和共同的度量。一个AS对其他AS表现出的是一个单一的和一致的路由选择策略 [RFC 4271]。

在目前的互联网中,一个大的ISP就是一个自治系统。这样,互联网就把路由选择协议划分为两大类,即:

- (1) **内部网关协议** IGP(Interior Gateway Protocol) 即在一个自治系统内部使用的路由选择协议,而这与在互联网中的其他自治系统选用什么路由选择协议无关。目前这类路由选择协议使用得最多,如RIP和OSPF协议。
- (2) **外部网关协议** EGP(External Gateway Protocol) 若源主机和目的主机处在不同的自治系统中(这两个自治系统可能使用不同的内部网关协议),当数据报传到一个自治系统的边界时,就需要使用一种协议将路由选择信息传递到另一个自治系统中。这样的协议就是外部网关协议EGP。目前使用最多的外部网关协议是BGP的版本4(BGP-4)。

自治系统之间的路由选择也叫做**域间路由选择** (interdomain routing),而在自治系统内部的路由选择叫做**域内路由选择** (intradomain routing)。

图4-31是两个自治系统互连在一起的示意图。每个自治系统自己决定在本自治系统内部运行哪一个内部路由选择协议(例如,可以是RIP,也可以是OSPF)。但每个自治系统都有一个或多个路由器(图中的路由器 \mathbf{R}_1 和 \mathbf{R}_2)除运行本系统的内部路由选择协议外,还要运行自治系统间的路由选择协议(BGP-4)。

图4-31 自治系统和内部网关协议、外部网关协议

这里我们要指出两点:

- (1) 互联网的早期RFC文档中未使用"路由器"而是使用"网关"这一名词。但是在新的RFC文档中又改用"路由器"这一名词,因此有的书把原来的IGP和EGP分别改为IRP(内部路由器协议)和ERP(外部路由器协议)。为了方便读者查阅RFC文档,本书仍使用RFC原先使用的名字IGP和EGP。
- (2) RFC采用的名词IGP和EGP是协议类别的名称。但RFC在使用名词EGP时出现了一点混乱,因为最早的一个外部网关协议的协议名字正好也是EGP [RFC 827]。后来发现该RFC提出的EGP有不少缺点,就设计了一种更好的外部网关协议,叫做边界网关协议 BGP (Border Gateway Protocol),用来取代旧的RFC 827外部网关协议EGP。实际上,旧协议EGP和新协议BGP都属于外部网关协议EGP这一类别。因此在遇到名词EGP时,应弄清它是指旧协议EGP(即RFC 827)还是指外部网关协议EGP这个类别。

总之,使用分层次的路由选择方法,可将互联网的路由选择协议划分为:

- 内部网关协议 IGP: 具体的协议有多种,如RIP和OSPF等。
- 外部网关协议 EGP: 目前使用的协议就是BGP。

对于比较大的自治系统,还可将所有的网络再进行一次划分。例如,可以构筑一个链路速率较高的主干网和许多速率较低的区域网。每个

区域网通过路由器连接到主干网。当在一个区域内找不到目的站时,就通过路由器经过主干网到达另一个区域网,或者通过外部路由器到别的自治系统中去查找。下面对这两类协议分别进行介绍。

4.5.2 内部网关协议RIP

1. 工作原理

RIP(Routing Information Protocol)是内部网关协议IGP中最先得到广泛使用的协议[RFC 1058],它的中文名称叫做路由信息协议,但很少被使用。RIP是一种分布式的**基于距离向量的路由选择协议**,是互联网的标准协议,其最大优点就是简单。

RIP协议要求网络中的每一个路由器都要维护从它自己到其他每一个目的网络的距离记录(因此,这是**一组距离**,即"**距离向量**")。RIP协议将"**距离**"定义如下:

从一路由器到直接连接的网络的距离定义为1。从一路由器到非直接连接的网络的距离定义为所经过的路由器数加1。"加1"是因为到达目的网络后就进行直接交付,而到直接连接的网络的距离已经定义为1。例如在前面讲过的图4-16中,路由器R₁到网1或网2的距离都是1(直接连接),而到网3的距离是2,到网4的距离是3。

RIP协议的"距离"也称为"**跳数**"(hop count)(14), 因为每经过一个路由器, 跳数就加1。RIP认为好的路由就是它通过的路由器的数目少, 即"距离短"。RIP允许一条路径最多只能包含15个路由器。因此"距离"等于16时即相当于不可达。可见RIP只适用于小型互联网。

需要注意的是,到直接连接的网络的距离也可定义为0(采用这种定义的理由是:路由器在和直接连接在该网络上的主机通信时,不需要经过另外的路由器。既然每经过一个路由器要将距离加1,那么不再经过路由器的距离就应当为0)。作者编写的其他版本的教材过去**也曾使用过这种定义**。但两种不同的定义对实现RIP协议并无影响,因为重要的是要找出最短距离,将所有的距离都加1或都减1,对选择最佳路由其实是一样的。

RIP不能在两个网络之间同时使用多条路由。RIP选择一条具有最少路由器的路由(即最短路由),哪怕还存在另一条高速(低时延)但路由器较多的路由。

本节讨论的RIP协议和下一节要讨论的OSPF协议,都是分布式路由选择协议。它们的共同特点就是每一个路由器都要不断地和其他一些路由器交换路由信息。我们一定要弄清以下三个要点,即和哪些路由器交换信息?交换什么信息?在什么时候交换信息?

RIP协议的特点是:

- (1) **仅和相邻路由器交换信息**。如果两个路由器之间的通信不需要经过另一个路由器,那么这两个路由器就是相邻的。RIP协议规定,不相邻的路由器不交换信息。
- (2) 路由器交换的信息是**当前本路由器所知道的全部信息,即自己现在的路由表**。也就是说,交换的信息是:"我到本自治系统中所有网络的(最短)距离,以及到每个网络应经过的下一跳路由器"。
- (3) **按固定的时间间隔** 交换路由信息,例如,每隔30秒。然后路由器根据收到的路由信息更新路由表。当网络拓扑发生变化时,路由器也及时向相邻路由器通告拓扑变化后的路由信息。

这里要强调一点:路由器在**刚刚开始工作时**,它的路由表是空的。然后路由器就得出到直接相连的几个网络的距离(这些距离定义为1)。接着,每一个路由器也只和**数目非常有限的**相邻路由器交换并更新路由信息。但经过若干次的更新后,所有的路由器最终都会知道到达本自治系统中任何一个网络的最短距离和下一跳路由器的地址。

看起来RIP协议有些奇怪,因为"我的路由表中的信息要依赖于你的,而你的信息又依赖于我的。"然而事实证明,通过这样的方式——"我告诉别人一些信息,而别人又告诉我一些信息。我再把我知道的更新后的信息告诉别人,别人也这样把更新后的信息再告诉我",最后在自治系统中所有的结点都得到了正确的路由选择信息。在一般情况下,RIP协议可以收敛,并且过程也较快。"收敛"就是在自治系统中所有的结点都得到正确的路由选择信息的过程。

路由表中最主要的信息就是:到某个网络的距离(即最短距离),以及应经过的下一跳地址。路由表更新的原则是找出到每个目的网络的**最短距离**。这种更新算法又称为**距离向量算法**。下面就是RIP协议使用的距离向量算法。

2. 距离向量算法

对每一个相邻路由器发送过来的RIP报文,进行以下步骤:

- (1) 对地址为X的相邻路由器发来的RIP报文,先修改此报文中的**所有项目**: 把"下一跳"字段中的地址都改为X,并把所有的"距离"字段的值加1(见后面的解释1)。每一个项目都有三个关键数据,即: 到目的网络N,距离是d,下一跳路由器是X。
 - (2) 对修改后的RIP报文中的每一个项目,进行以下步骤:

若原来的路由表中没有目的网络N,则把该项目添加到路由表中(见解释2)。

否则(即在路由表中有目的网络N,这时就再查看下一跳路由器地址)

若下一跳路由器地址是X,则把收到的项目替换原路由表中的项目(见解释3)。

否则(即这个项目是:到目的网络N,但下一跳路由器不是X)

若收到的项目中的距离d小于路由表中的距离,则进行更新(见解释4),否则什么也不做。(见解释5)

- (3) 若3分钟还没有收到相邻路由器的更新路由表,则把此相邻路由器记为不可达的路由器,即把距离置为16(距离为16表示不可达)。
 - (4) 返回。

上面给出的距离向量算法的基础就是Bellman-Ford算法(或Ford-Fulkerson算法)。这种算法的要点是这样的:

设X是结点A到B的最短路径上的一个结点。若把路径 $A \rightarrow B$ 拆成两段路径 $A \rightarrow X$ 和 $X \rightarrow B$,则每一段路径 $A \rightarrow X$ 和 $X \rightarrow B$ 也都分别是结点A到X和结点X到B的最短路径。

下面是对上述距离向量算法的五点解释。

解释1:这样做是为了便于进行本路由表的更新。假设从位于地址X的相邻路由器发来的RIP报文的某一个项目是:"Net2,3,Y",意思是"我经过路由器Y到网络Net2的距离是3",那么本路由器就可推断出:"我经过X到网络Net2的距离应为3+1=4"。于是,本路由器就把收到的RIP报文的这一个项目修改为"Net2,4,X",作为下一步和路由表中原有项目进行比较时使用(只有比较后才能知道是否需要更新)。读者可注意到,收到的项目中的Y对本路由器是没有用的,因为Y不是本路由器的下一跳路由器地址。

解释2:表明这是新的目的网络,应当加入到路由表中。例如,本路由表中没有到目的网络Net2的路由,那么在路由表中就要加入新的项目"Net2,4,X"。

解释3:为什么要替换呢?因为这是最新的消息,要以最新的消息为准。到目的网络的距离有可能增大或减小,但也可能没有改变。例如,不管原来路由表中的项目是"Net2,3,X"还是"Net2,5,X",都要更新为现在的"Net2,4,X"。

解释4: 例如,若路由表中已有项目"Net2, 5, P",就要更新为"Net2, 4, X"。因为到网络Net2的距离原来是5, 现在减到4, 更短了。

解释5:若距离更大了,显然不应更新。若距离不变,更新后得不到好处,因此也不更新。

【例4-5】已知路由器 R_6 有表4-9(a)所示的路由表。现在收到相邻路由器 R_4 发来的路由更新信息,如表4-9(b)所示。试更新路由器 R_6 的路由表。

目的网络	距离	下一跳路由器
Net2	3	R ₄
Net3	4	R_5
•••	•••	•••

表4-9 (b) R₄发来的路由更新信息

目的网络	距离	下一跳路由器
Net1	3	R_1
Net2	4	R ₂
Net3	1	直接交付

【解】 如同路由器一样,我们不需要知道该网络的拓扑。

先把表4-9(b)中的距离都加1,并把下一跳路由器都改为 R_4 。得出表4-9(c)。

表4-9 (c) 修改后的表4-9 (b)

目的网络	距离	下一跳路由器
Net1	4	R_4
Net2	5	R_4
Net3	2	R_4

把这个表的每一行和表4-9(a)进行比较。

第一行在表4-9(a)中没有,因此要把这一行添加到表4-9(a)中。

第二行的Net2在表4-9(a)中有,且下一跳路由器也是 R_4 。因此要更新(距离增大了)。

第三行的Net3在表4-9(a)中有,但下一跳路由器不同。于是就要比较距离。新的路由信息的距离是2,小于原来表中的4,因此要更新。

这样,得出更新后的R₆的路由表如表4-9(d)所示。

表4-9(d) 路由器R₆更新后的路由表

目的网络	距离	下一跳路由器
Net1	4	R ₄
Net2	5	R_4
Net3	2	R ₄
•••	•••	• • •

RIP协议让一个自治系统中的所有路由器都和自己的相邻路由器定期交换路由信息,并不断更新其路由表,使得从每一个路由器到每一个目的网络的路由都是最短的(即跳数最少)。这里还应注意:虽然所有的路由器最终都拥有了整个自治系统的全局路由信息,但由于每一个路由器的位置不同,它们的路由表当然也应当是不同的。

3. RIP协议的报文格式

现在较新的RIP版本是1998年11月公布的RIP2 [RFC 2453] (已成为互联网标准),新版本协议本身并无多大变化,但性能上有些改进。RIP2可以支持变长子网掩码和无分类域间路由选择CIDR。此外,RIP2还提供简单的鉴别过程支持多播。

图4-32是RIP2的报文格式,它和RIP1的首部相同,但后面的路由部分不一样。从图4-32还可看出,RIP协议使用运输层的用户数据报UDP进行传送(使用UDP的端口520。端口的意义见5.2.2节)。

图4-32 RIP2的报文格式

RIP报文由首部和路由部分组成。

RIP的首部占4个字节,其中的命令字段指出报文的意义。例如,1表示请求路由信息,2表示对请求路由信息的响应或未被请求而发出的路由更新报文。首部后面的"必为0"是为了4字节字的对齐。

RIP2报文中的路由部分由若干个路由信息组成。每个路由信息需要用20个字节。地址族标识符(又称为地址类别)字段用来标志所使用的地址协议。如采用IP地址就令这个字段的值为2(原来考虑RIP也可用于其他非TCP/IP协议的情况)。路由标记填入自治系统号 ASN(Autonomous System Number)(15),这是考虑使RIP有可能收到本自治系统以外的路由选择信息。再后面指出某个网络地址、该网络的子网掩码、下一跳路由器地址以及到此网络的距离。一个RIP报文最多可包括25个路由,因而RIP报文的最大长度是4+20×25=504字节。如超过,必须再用一个RIP报文来传送。

RIP2还具有简单的鉴别功能。若使用鉴别功能,则将原来写入第一个路由信息(20字节)的位置用作鉴别。这时应将地址族标识符置为全1(即0xFFFF),而路由标记写入鉴别类型,剩下的16字节为鉴别数据。在鉴别数据之后才写入路由信息,但这时最多只能再放入24个路由信息。

RIP存在的一个问题是**当网络出现故障时,要经过比较长的时间才能将此信息传送到所有的路由器**。我们可以用图4-33的简单例子来说

明。设三个网络通过两个路由器互连起来,并且都已建立了各自的路由表。图中路由器交换的信息只给出了我们感兴趣的一行内容。路由器 R_1 中的"1, 1, 直接"表示"到网1的距离是1, 直接交付"。路由器 R_2 中的"1, 2, R_1 "表示"到网1的距离是2, 下一跳经过 R_1 "。

图4-33 RIP协议的缺点:坏消息传播得慢

现在假定路由器 R_1 到网1的链路出了故障, R_1 无法到达网1。于是路由器 R_1 把到网1的距离改为16(表示到网1不可达),因而在 R_1 的路由表中的相应项目变为"1,16,直接"。但是,很可能要经过30秒钟后 R_1 才把更新信息发送给 R_2 。然而 R_2 可能已经先把自己的路由表发送给了 R_1 ,其中有"1,2, R_1 "这一项。

 R_1 收到 R_2 的更新报文后,误认为可经过 R_2 到达网1,于是把收到的路由信息"1,2, R_1 "修改为:"1,3, R_2 ",表明"我到网1的距离是3,下一跳经过 R_2 ",并把更新后的信息发送给 R_2 。

同理, R_2 接着又更新自己的路由表为"1,4, R_1 ",以为"我到网1距离是4,下一跳经过 R_1 "。

这样的更新一直继续下去,直到 R_1 和 R_2 到网1的距离都增大到16时, R_1 和 R_2 才知道原来网1是不可达的。RIP协议的这一特点叫做:**好消息传播得快,而坏消息传播得慢**。网络出故障的传播时间往往需要较长的时间(例如数分钟)。这是RIP的一个主要缺点。

但如果一个路由器发现了更短的路由,那么这种更新信息就传播得很快。

为了使坏消息传播得更快些,可以采取多种措施。例如,让路由器记录收到某特定路由信息的接口,而不让同一路由信息再通过此接口向反方向传送。

总之,RIP协议最大的优点就是**实现简单,开销较小**。但RIP协议的缺点也较多。首先,RIP限制了网络的规模,它能使用的最大距离为15(16表示不可达)。其次,路由器之间交换的路由信息是路由器中的完整路由表,因而随着网络规模的扩大,开销也就增加。最后,"坏消息传播得慢",使更新过程的收敛时间过长。因此,对于规模较大的网络就应当使用下一节所述的OSPF协议。然而目前在规模较小的网络中,使用RIP协议的仍占多数。

4.5.3 内部网关协议OSPF

1. OSPF协议的基本特点

这个协议的名字是**开放最短路径优先** OSPF(Open Shortest Path First)。它是为克服RIP的缺点在1989年开发出来的。OSPF的原理很简单,但实现起来却较复杂。"**开放**"表明OSPF协议不是受某一家厂商控制,而是公开发表的。"最短路径优先"是因为使用了Dijkstra 提出的最短路径算法SPF。OSPF的第二个版本OSPF2已成为互联网标准协议 [RFC 2328]。关于OSPF可参阅专著 [MOY98],「HUIT95]。

请注意: OSPF只是一个协议的名字, 它并不表示其他的路由选择协议不是"最短路径优先"。实际上, 所有的在自治系统内部使用的路由选择协议(包括RIP协议)都是要寻找一条最短的路径。

OSPF最主要的特征就是使用分布式的**链路状态协议** (link state protocol),而不是像RIP那样的距离向量协议。和RIP协议相比,OSPF的三个要点和RIP的都不一样:

(1) 向本自治系统中**所有路由器** 发送信息。这里使用的方法是**洪泛 法** (flooding), 这就是路由器通过所有输出端口向所有相邻的路由

器发送信息。而每一个相邻路由器又再将此信息发往其所有的相邻路由器(但不再发送给刚刚发来信息的那个路由器)。这样,最终整个区域中所有的路由器都得到了这个信息的一个副本。更具体的做法后面还要讨论。我们应注意,RIP协议是仅仅向自己相邻的几个路由器发送信息。

- (2) 发送的信息就是与本路由器相邻的所有路由器的链路状态,但这只是路由器所知道的部分信息。所谓"链路状态"就是说明本路由器都和哪些路由器相邻(16),以及该链路的"度量"(metric)。OSPF将这个"度量"用来表示费用、距离、时延、带宽,等等。这些都由网络管理人员来决定,因此较为灵活。有时为了方便就称这个度量为"代价"。我们应注意,对于RIP协议,发送的信息是:"到所有网络的距离和下一跳路由器"。
- (3) 只有当链路状态**发生变化时**,路由器才向所有路由器用洪泛法 发送此信息。而不像RIP那样,不管网络拓扑有无发生变化,路由器 之间都要定期交换路由表的信息。

从上述的三个方面可以看出,OSPF和RIP的工作原理相差较大。

由于各路由器之间频繁地交换链路状态信息,因此所有的路由器最终都能建立一个链路状态数据库(link-state database),这个数据库实际上就是全网的拓扑结构图。这个拓扑结构图在全网范围内是一致的(这称为链路状态数据库的同步)。因此,每一个路由器都知道全网共有多少个路由器,以及哪些路由器是相连的,其代价是多少,等等。每一个路由器使用链路状态数据库中的数据,构造出自己的路由表(例如,使用Dijkstra的最短路径路由算法)。我们注意到,RIP协议的每一个路由器虽然知道到所有的网络的距离以及下一跳路由器,但却不知道全网的拓扑结构(只有到了下一跳路由器,才能知道再下一跳应当怎样走)。

OSPF的链路状态数据库能较快地进行更新,使各个路由器能及时更新 其路由表。OSPF的**更新过程收敛得快**是其重要优点。

为了使OSPF能够用于规模很大的网络,OSPF将一个自治系统再划分为若干个更小的范围,叫做**区域**(area)。图4-34就表示一个自治系统划分为四个区域。每一个区域都有一个32位的区域标识符(用点分

十进制表示)。当然,一个区域也不能太大,在一个区域内的路由器最好不超过200个。

图4-34 OSPF划分为两种不同的区域

划分区域的好处就是把利用洪泛法交换链路状态信息的范围局限于每一个区域而不是整个的自治系统,这就减少了整个网络上的通信量。在一个区域内部的路由器只知道本区域的完整网络拓扑,而不知道其他区域的网络拓扑的情况。为了使每一个区域能够和本区域以外的区域进行通信,OSPF使用**层次结构的区域划分**。在上层的区域叫做**主 下区域**(backbone area)。主于区域的标识符规定为0.0.0.0。主于区域的作用是用来连通其他在下层的区域。从其他区域来的信息都由区域边界路由器(area border router)进行概括。在图4-34中,路由器R₃,R₄和R₇都是区域边界路由器,而显然,每一个区域至少应当有一个区域边界路由器。在主于区域内的路由器叫做**主干路由器**(backbone router),如R₃,R₄,R₅,R₆和R₇。一个主干路由器可以同时是区域边界路由器,如R₃,R₄和R₇。在主干区域内还要有一个路由器专门和本自治系统外的其他自治系统交换路由信息。这样的路由器叫做自治系统边界路由器(如图中的R₆)。

采用分层次划分区域的方法虽然使交换信息的种类增多了,同时也使 OSPF协议更加复杂了。但这样做却能使每一个区域内部交换路由信息 的通信量大大减小,因而使OSPF协议能够用于规模很大的自治系统 中。这里,我们再一次地看到划分层次在网络设计中的重要性。

OSPF不用UDP而是**直接用IP数据报传送**(其IP数据报首部的协议字段值为89)。OSPF构成的数据报很短。这样做可减少路由信息的通信量。数据报很短的另一好处是可以不必将长的数据报分片传送。分片

传送的数据报只要丢失一个,就无法组装成原来的数据报,而整个数据报就必须重传。

OSPF分组使用24字节的固定长度首部(见图4-35),分组的数据部分可以是五种类型分组中的一种。下面简单介绍OSPF首部各字段的意义。

图4-35 OSPF分组用IP数据报传送

- (1) 版本 当前的版本号是2。
- (2) 类型 可以是五种类型分组中的一种。
- (3) **分组长度** 包括OSPF首部在内的分组长度,以字节为单位。
- (4) **路由器标识符** 标志发送该分组的路由器的接口的IP地址。
- (5) 区域标识符 分组属于的区域的标识符。
- (6) 检验和 用来检测分组中的差错。
- (7) **鉴别类型** 目前只有两种, **0** (不用) 和**1** (口令)。

(8) **鉴别** 鉴别类型为0时就填入0,鉴别类型为1则填入8个字符的口令。

除了以上的几个基本特点外,OSPF还具有下列的一些特点:

- (1) OSPF允许管理员给每条路由指派不同的代价。例如,高带宽的卫星链路对于非实时的业务可设置为较低的代价,但对于时延敏感的业务就可设置为非常高的代价。因此,OSPF对于不同类型的业务可计算出不同的路由。链路的代价可以是1至65535中的任何一个无量纲的数,因此十分灵活。商用的网络在使用OSPF时,通常根据链路带宽来计算链路的代价。这种灵活性是RIP所没有的。
- (2) 如果到同一个目的网络有多条相同代价的路径,那么可以将通信量分配给这几条路径。这叫做多路径间的**负载平衡**(load balancing)。在代价相同的多条路径上分配通信量是通信量工程中的简单形式。RIP只能找出到某个网络的一条路径。
- (3) 所有在OSPF路由器之间交换的分组(例如,链路状态更新分组)都具有鉴别的功能,因而保证了仅在可信赖的路由器之间交换链路状态信息。
 - (4) OSPF支持可变长度的子网划分和无分类的编址CIDR。
- (5) 由于网络中的链路状态可能经常发生变化,因此OSPF让每一个链路状态都带上一个32位的序号,序号越大状态就越新。OSPF规定,链路状态序号增长的速率不得超过每5秒钟1次。这样,全部序号空间在600年内不会产生重复号。

2. OSPF的五种分组类型

OSPF共有以下五种分组类型:

- (1) **类型1,问候**(Hello)分组,用来发现和维持邻站的可达性。
- (2) **类型2,数据库描述**(Database Description)分组,向邻站给出自己的链路状态数据库中的所有链路状态项目的摘要信息。

- (3)**类型3,链路状态请求**(Link State Request)分组,向对方请求 发送某些链路状态项目的详细信息。
- (4) **类型4,链路状态更新**(Link State Update)分组,用洪泛法对全网更新链路状态。这种分组是最复杂的,也是OSPF协议最核心的部分。路由器使用这种分组将其链路状态通知给邻站。链路状态更新分组共有五种不同的链路状态「RFC 2328],这里从略。
- (5) **类型5,链路状态确认**(Link State Acknowledgment)分组,对链路更新分组的确认。

OSPF规定,每两个相邻路由器每隔10秒钟要交换一次问候分组。这样就能确知哪些邻站是可达的。对相邻路由器来说,"可达"是最基本的要求,因为只有可达邻站的链路状态信息才存入链路状态数据库(路由表就是根据链路状态数据库计算出来的)。在正常情况下,网络中传送的绝大多数OSPF分组都是问候分组。若有40秒钟没有收到某个相邻路由器发来的问候分组,则可认为该相邻路由器是不可达的,应立即修改链路状态数据库,并重新计算路由表。

其他的四种分组都是用来进行链路状态数据库的同步。所谓同步就是指不同路由器的链路状态数据库的内容是一样的。两个同步的路由器叫做"完全邻接的"(fully adjacent)路由器。不是完全邻接的路由器表明它们虽然在物理上是相邻的,但其链路状态数据库并没有达到一致。

当一个路由器刚开始工作时,它只能通过问候分组得知它有哪些相邻的路由器在工作,以及将数据发往相邻路由器所需的"代价"。如果所有的路由器都把自己的本地链路状态信息对全网进行广播,那么各路由器只要将这些链路状态信息综合起来就可得出链路状态数据库。但这样做开销太大、因此OSPF采用下面的办法。

OSPF让每一个路由器用数据库描述分组和相邻路由器交换本数据库中已有的链路状态摘要信息。摘要信息主要就是指出有哪些路由器的链路状态信息(以及其序号)已经写入了数据库。经过与相邻路由器交换数据库描述分组后,路由器就使用链路状态请求分组,向对方请求发送自己所缺少的某些链路状态项目的详细信息。通过一系列的这种分组交换,全网同步的链路数据库就建立了。图4-36给出了OSPF的基本操作,说明了两个路由器需要交换各种类型的分组。

图4-36 OSPF的基本操作

在网络运行的过程中,只要一个路由器的链路状态发生变化,该路由器就要使用链路状态更新分组,用洪泛法向全网更新链路状态。OSPF使用的是**可靠的洪泛法**,其要点见图4-37所示。设路由器R用洪泛法发出链路状态更新分组。图中用一些小的箭头表示更新分组。第一次先发给相邻的三个路由器。这三个路由器将收到的分组再进行转发时,要将其上游路由器除外。可靠的洪泛法是在收到更新分组后要发送确认(收到重复的更新分组只需要发送一次确认)。图中的空心箭头表示确认分组。

图4-37 用可靠的洪泛法发送更新分组

为了确保链路状态数据库与全网的状态保持一致,OSPF还规定每隔一段时间,如30分钟,要刷新一次数据库中的链路状态。

由于一个路由器的链路状态只涉及到与相邻路由器的连通状态,因而与整个互联网的规模并无直接关系。因此当互联网规模很大时,OSPF协议要比距离向量协议RIP好得多。由于OSPF没有"坏消息传播得慢"的问题,据统计,其响应网络变化的时间小于100ms。

4.5.4 外部网关协议BGP

1989年,公布了新的外部网关协议——**边界网关协议** BGP。为简单起见,后面我们把目前使用最多的版本BGP-4经常简写为BGP。最近已经陆续发布了一些BGP-4的更新文档,但目前BGP-4仍然是草案标准「RFC 4271〕。

我们首先应当弄清,在不同自治系统AS之间的路由选择为什么不能使用前面讨论过的内部网关协议,如RIP或OSPF?

我们知道,内部网关协议(如RIP或OSPF)主要是设法使数据报在一个AS中尽可能有效地从源站传送到目的站。在一个AS内部也不需要考虑其他方面的策略。然而BGP使用的环境却不同。这主要是因为以下的两个原因:

第一,互联网的规模太大,使得自治系统AS之间路由选择非常困难。连接在互联网主干网上的路由器,必须对任何有效的IP地址都能在路由表中找到匹配的目的网络。目前在互联网的主干网路由器中,一个路由表的项目数早已超过了5万个网络前缀。如果使用链路状态协议,则每一个路由器必须维持一个很大的链路状态数据库。对于这样大的主干网用Dijkstra算法计算最短路径时花费的时间也太长。另外,由于自治系统AS各自运行自己选定的内部路由选择协议,并使用本AS指明的路径度量,因此,当一条路径通过几个不同AS时,要想对这样的路径计算出有意义的代价是不太可能的。例如,对某AS来说,代价为1000可能表示一条比较长的路由。但对另一AS代价为1000却可能表示不可接受的坏路由。因此,对于自治系统AS之间的路由选择,要用"代价"作为度量来寻找最佳路由也是很不现实的。比较合理的做法是在自治系统之间交换"可达性"信息(即"可到达"或"不可到达")。例如,告诉相邻路由器:"到达目的网络N可经过自治系统AS、"。

第二,**自治系统AS之间的路由选择必须考虑有关策略**。由于相互连接的网络的性能相差很大,根据最短距离(即最少跳数)找出来的路径,可能并不合适。也有的路径的使用代价很高或很不安全。还有一种情况,如自治系统AS₁要发送数据报给自治系统AS₂,本来最好是经过自治系统AS₃。但AS₃不愿意让这些数据报通过本自治系统的网络,因为"这是他们的事情,和我们没有关系。"但另一方面,自治系

统 AS_3 愿意让某些相邻自治系统的数据报通过自己的网络,特别是对那些付了服务费的某些自治系统更是如此。因此,自治系统之间的路由选择协议应当允许使用多种路由选择策略。这些策略包括政治、安全或经济方面的考虑。例如,我国国内的站点在互相传送数据报时不应经过国外兜圈子,特别是,不要经过某些对我国的安全有威胁的国家。这些策略都是由网络管理人员对每一个路由器进行设置的,但这些策略并不是自治系统之间的路由选择协议本身。还可举出一些策略的例子,如:"仅在到达下列这些地址时才经过 AS_x "," AS_x 和 AS_y 相比时应优先通过 AS_x ",等等。显然,使用这些策略是为了找出较好的路径而不是最佳路径。

由于上述情况,边界网关协议BGP只能是力求寻找一条能够到达目的网络且比较好的路由(不能兜圈子),而**并非要寻找一条最佳路由。**BGP采用了**路径向量**(path vector)**路由选择协议**,它与距离向量协议(如RIP)和链路状态协议(如OSPF)都有很大的区别。

在配置BGP时,每一个自治系统的管理员要选择至少一个路由器作为该自治系统的"BGP发言人"(17)。一般说来,两个BGP发言人都是通过一个共享网络连接在一起的,而BGP发言人往往就是BGP**边界路由器**,但也可以不是BGP边界路由器。

一个BGP发言人与其他AS的BGP发言人要交换路由信息,就要先建立TCP连接(端口号为179),然后在此连接上交换BGP报文以建立BGP会话(session),利用BGP会话交换路由信息,如增加了新的路由,或撤销过时的路由,以及报告出差错的情况等等。使用TCP连接能提供可靠的服务,也简化了路由选择协议。使用TCP连接交换路由信息的两个BGP发言人,彼此成为对方的邻站(neighbor)或对等站(peer)。

图4-38表示BGP发言人和自治系统AS的关系的示意图。在图中画出了三个自治系统中的5个BGP发言人。每一个BGP发言人除了必须运行BGP协议外,还必须运行该自治系统所使用的内部网关协议,如OSPF或RIP。

图4-38 BGP发言人和自治系统AS的关系

边界网关协议BGP所交换的网络可达性的信息就是要到达某个网络(用网络前缀表示)所要经过的一系列自治系统。当BGP发言人互相交换了网络可达性的信息后,各BGP发言人就根据所采用的策略从收到的路由信息中找出到达各自治系统的较好路由。图4-39表示从图4-38的 AS_1 上的一个BGP发言人构造出的自治系统连通图,它是树形结构,不存在回路。

图4-39 自治系统AS的连通图举例

在第1章的1.2.2节我们已经介绍了当前互联网的多级结构特点(图1-4)。这种多级结构的网络拓扑决定了BGP路由选择协议的特点。

图4-40给出了一个BGP发言人交换路径向量的例子。自治系统AS₂的BGP发言人通知主干网的BGP发言人:"要到达网络N₁,N₂,N₃和N₄可经过AS₂。"主干网在收到这个通知后,就发出通知:"要到达网络N₁,N₂,N₃和N₄可沿路径(AS₁,AS₂)。"同理,主干网还可发出通知:"要到达网络N₅,N₆和N₇可沿路径(AS₁,AS₃)。"

图4-40 BGP发言人交换路径向量的例子

从上面的讨论可看出,BGP协议交换路由信息的结点数量级是**自治系统个数**的量级,这要比这些自治系统中的**网络数**少很多。要在许多自治系统之间寻找一条较好的路径,就是要寻找正确的BGP发言人(或边界路由器),而在每一个自治系统中BGP发言人(或边界路由器)的数目是很少的。这样就使得自治系统之间的路由选择不致过分复杂。

BGP支持无分类域间路由选择CIDR,因此BGP的路由表也就应当包括目的网络前缀、下一跳路由器,以及到达该目的网络所要经过的自治系统序列。由于使用了路径向量的信息,就可以很容易地避免产生兜圈子的路由。如果一个BGP发言人收到了其他BGP发言人发来的路径通知,它就要检查一下本自治系统是否在此通知的路径中。如果在这条路径中,就不能采用这条路径(因为会兜圈子)。

在BGP刚刚运行时,BGP的邻站是交换整个的BGP路由表。但以后只需要在发生变化时更新有变化的部分。这样做对节省网络带宽和减少路由器的处理开销方面都有好处。

在RFC 4271中规定了BGP-4的四种报文:

- (1) **OPEN**(打开)报文,用来与相邻的另一个**BGP**发言人建立关系,使通信初始化。
- (2) UPDATE (更新)报文,用来通告某一路由的信息,以及列出要撤销的多条路由。

- (3) KEEPALIVE (保活)报文,用来周期性地证实邻站的连通性。
- (4) NOTIFICATION (通知) 报文, 用来发送检测到的差错。

若两个邻站属于两个不同AS,而其中一个邻站打算和另一个邻站定期地交换路由信息,这就应当有一个商谈的过程(因为很可能对方路由器的负荷已很重因而不愿意再加重负担)。因此,一开始向邻站进行商谈时就必须发送OPEN报文。如果邻站接受这种邻站关系,就用KEEPALIVE报文响应。这样,两个BGP发言人的邻站关系就建立了。

一旦邻站关系建立了,就要继续维持这种关系。双方中的每一方都需要确信对方是存在的,且一直在保持这种邻站关系。为此,这两个BGP发言人彼此要周期性地交换KEEPALIVE报文(一般每隔30秒)。KEEPALIVE报文只有19字节长(只用BGP报文的通用首部),因此不会造成网络上太大的开销。

UPDATE报文是BGP协议的核心内容。BGP发言人可以用UPDATE报文撤销它以前曾经通知过的路由,也可以宣布增加新的路由。撤销路由可以一次撤销许多条,但增加新路由时,每个更新报文只能增加一条。

BGP可以很容易地解决距离向量路由选择算法中的"坏消息传播得慢"这一问题。当某个路由器或链路出故障时,由于BGP发言人可以从不止一个邻站获得路由信息,因此很容易选择出新的路由。距离向量算法往往不能给出正确的选择,是因为这些算法不能指出哪些邻站到目的站的路由是独立的。

图4-41给出了BGP报文的格式。四种类型的BGP报文具有同样的通用首部,其长度为19字节。通用首部分为三个字段。标记(marker)字段为16字节长,用来鉴别收到的BGP报文(这是假定将来有人会发明出合理的鉴别方案)。当不使用鉴别时,标记字段要置为全1。长度字段指出包括通用首部在内的整个BGP报文以字节为单位的长度,最小值是19,最大值是4096。类型字段的值为1到4,分别对应于上述四种BGP报文中的一种。

图4-41 BGP报文具有通用的首部

OPEN报文 共有6个字段,即版本(1字节,现在的值是4)、本自治系统号(2字节,使用全球唯一的16位自治系统号,由ICANN地区登记机构分配)、保持时间(2字节,以秒计算的保持为邻站关系的时间)、BGP标识符(4字节,通常就是该路由器的IP地址)、可选参数长度(1字节)和可选参数。

UPDATE报文 共有5个字段,即不可行路由长度(2字节,指明下一个字段的长度)、撤销的路由(列出所有要撤销的路由)、路径属性总长度(2字节,指明下一个字段的长度)、路径属性(定义在这个报文中增加的路径的属性)和网络层可达性信息NLRI(Network Layer Reachability Information)。最后这个字段定义发出此报文的网络,包括网络前缀的位数、IP地址前缀。

KEEPALIVEM报文只有BGP的19字节长的通用首部。

NOTIFICATION**报文** 有3个字段,即差错代码(1字节)、差错子代码(1字节)和差错数据(给出有关差错的诊断信息)。

在讨论完路由选择之后, 我们再来介绍路由器的构成。

4.5.5 路由器的构成

1. 路由器的结构

路由器是一种具有多个输入端口和多个输出端口的专用计算机,其任务是转发分组。从路由器某个输入端口收到的分组,按照分组要去的

目的地(即目的网络),把该分组从路由器的某个合适的输出端口转发给下一跳路由器。下一跳路由器也按照这种方法处理分组,直到该分组到达终点为止。路由器的转发分组正是网络层的主要工作。图4-42给出了一种典型的路由器的构成框图。

图4-42 典型的路由器的结构(图中的数字1~3表示相应层次的构件)

从图4-42可以看出,整个的路由器结构可划分为两大部分:**路由选择** 部分和**分组转发部分**。

路由选择部分也叫做**控制部分**,其核心构件是路由选择处理机。路由选择处理机的任务是根据所选定的路由选择协议构造出路由表,同时经常或定期地和相邻路由器交换路由信息而不断地更新和维护路由表。关于怎样根据路由选择协议构造和更新路由表,我们已在前面的4.5.2至4.5.4节讨论过了。

分组转发部分是本节所要讨论的问题,它由三部分组成:**交换结构、**一组**输入端口**和一组**输出端口**(请注意:这里的端口就是硬件接口)。下面分别讨论每一部分的组成。

交换结构(switching fabric)又称为**交换组织**,它的作用就是根据**转发表**(forwarding table)对分组进行处理,将某个输入端口进入的分组从一个合适的输出端口转发出去。交换结构本身就是一种网络,但这种网络完全包含在路由器之中,因此交换结构可看成是"在路由器中的网络"。

请注意"转发"和"路由选择"是有区别的。在互联网中,"转发"就是路由器根据转发表把收到的IP数据报从路由器合适的端口转发出去。"转发"仅仅涉及到一个路由器。但"路由选择"则涉及到很多路由器,路由表则是许多路由器协同工作的结果。这些路由器按照复杂的路由第法,得出整个网络的拓扑变化情况,因而能够动态地改变所选择的路由,并由此构造出整个的路由表。路由表一般仅包含从目的网络到下一跳(用IP地址表示)的映射,而转发表是从路由表得出的。转发表必须包含完成转发功能所必需的信息。这就是说,在转发表的每一心须包含从要到达的目的网络到输出端口和某些MAC地址信息(如下一跳的以太网地址)的映射。将转发表和路由表用不同的数据结构实现会带来一些好处,这是因为在转发分组时,转发表的结构应当表过程最优化,但路由表则需要对网络拓扑变化的计算最优化。路由表过程最优化,但路由表则需要对网络拓扑变化的计算最优化。请读者注意,在讨论路由选择的原理时,往往不去区分转发表和路由表的区别,而可以笼统地都使用路由表这一名词。

在图4-42中,路由器的输入和输出端口里面都各有三个方框,用方框中的1,2和3分别代表物理层、数据链路层和网络层的处理模块。物理层进行比特的接收。数据链路层则按照链路层协议接收传送分组的帧。在把帧的首部和尾部剥去后,分组就被送入网络层的处理模块。若接收到的分组是路由器之间交换路由信息的分组(如RIP或OSPF分组等),则把这种分组送交路由器的路由选择部分中的路由选择处理机。若接收到的是数据分组,则按照分组首部中的目的地址查找转发表,根据得出的结果,分组就经过交换结构到达合适的输出端口。一个路由器的输入端口和输出端口就做在路由器的**线路接口卡上**。

输入端口中的查找和转发功能在路由器的交换功能中是最重要的。为了使交换功能分散化,往往把复制的转发表放在每一个输入端口中(如图4-42中的虚线箭头所示)。路由选择处理机负责对各转发表的副本进行更新。这些副本常称为"**影子副本**"(shadow copy)。分散化交换可以避免在路由器中的某一点上出现瓶颈。

以上介绍的查找转发表和转发分组的概念虽然并不复杂,但在具体的实现中还是会遇到不少困难。问题就在于路由器必须以很高的速率转发分组。最理想的情况是输入端口的处理速率能够跟上线路把分组传送到路由器的速率。这种速率称为**线速**(line speed或wire speed)。可以粗略地估算一下。设线路是OC-48链路,即2.5Gbit/s。若分组长度

为256字节,那么线速就应当达到每秒能够处理100万以上的分组。现在常用Mpps(百万分组每秒)为单位来说明一个路由器对收到的分组的处理速率有多高。在路由器的设计中,怎样提高查找转发表的速率是一个十分重要的研究课题。

当一个分组正在查找转发表时,后面又紧跟着从这个输入端口收到另一个分组。这个后到的分组就必须在队列中排队等待,因而产生了一定的时延。图4-43给出了在输入端口的队列中排队的分组的示意图。

图4-43 输入端口对线路上收到的分组的处理

我们再来观察在输出端口上的情况(图4-44)。输出端口从交换结构接收分组,然后把它们发送到路由器外面的线路上。在网络层的处理模块中设有一个缓冲区,实际上它就是一个队列。当交换结构传送过来的分组的速率超过输出链路的发送速率时,来不及发送的分组就必须暂时存放在这个队列中。数据链路层处理模块把分组加上链路层的首部和尾部,交给物理层后发送到外部线路。

图4-44 输出端口把交换结构传送过来的分组发送到线路上

从以上的讨论可以看出,分组在路由器的输入端口和输出端口都可能会在队列中排队等候处理。若分组处理的速率赶不上分组进入队列的

速率,则队列的存储空间最终必定减少到零,这就使后面再进入队列的分组由于没有存储空间而只能被丢弃。以前我们提到过的分组丢失就是发生在路由器中的输入或输出队列产生溢出的时候。当然,设备或线路出故障也可能使分组丢失。

2. 交换结构

交换结构是路由器的关键构件 [KURO13]。正是这个交换结构把分组从一个输入端口转移到某个合适的输出端口。实现这样的交换有多种方法,图4-45给出了三种常用的交换方法。这三种方法都是将输入端口 I_1 收到的分组转发到输出端口 O_2 。下面简单介绍它们的特点。

图4-45 三种常用的交换方法

最早使用的路由器就是利用普通的计算机,用计算机的CPU作为路由器的路由选择处理机。路由器的输入和输出端口的功能和传统的操作系统中的I/O设备一样。当路由器的某个输入端口收到一个分组时,就用中断方式通知路由选择处理机。然后分组就从输入端口复制到存储器中。路由器处理机从分组首部提取目的地址,查找路由表,再将分组复制到合适的输出端口的缓存中。若存储器的带宽(读或写)为每秒M个分组,那么路由器的交换速率(即分组从输入端口传送到输出

端口的速率)一定小于M/2。这是因为存储器对分组的读和写需要花费的时间是同一个数量级。

许多现代的路由器也通过存储器进行交换,图4-45(a)的示意图表示分组通过存储器进行交换。与早期的路由器的区别就是,目的地址的查找和分组在存储器中的缓存都是在输入端口中进行的。Cisco公司的Catalyst 8500系列交换机(有的公司把路由器也称为交换机)和Bay Network公司的Accelar 1200系列路由器就采用了共享存储器的方法。

图4-45(b)是通过总线进行交换的示意图。采用这种方式时,数据报从输入端口通过共享的总线直接传送到合适的输出端口,而不需要路由选择处理机的干预。但是,由于总线是共享的,因此在同一时间只能有一个分组在总线上传送。当分组到达输入端口时若发现总线忙(因为总线正在传送另一个分组),则被阻塞而不能通过交换结构,并在输入端口排队等待。因为每一个要转发的分组都要通过这一条总线,因此路由器的转发带宽就受总线速率的限制。现代的技术已经可以将总线的带宽提高到每秒吉比特的速率,因此许多的路由器产品都采用这种通过总线的交换方式。例如,Cisco公司的Catalyst 1900系列交换机就使用了带宽达到1Gbit/s的总线(叫做Packet Exchange Bus)。

图4-45(c)画的是通过纵横交换结构(crossbar switch fabric)进行交换。这种交换机构常称为**互连网络**(interconnection network),它有2N条总线,可以使N个输入端口和N个输出端口相连接,这取决于相应的交叉结点是使水平总线和垂直总线接通还是断开。当输入端口收到一个分组时,就将它发送到与该输入端口相连的水平总线上。若通向所要转发的输出端口的垂直总线是空闲的,则在这个结点将垂直总线与水平总线接通,然后将该分组转发到这个输出端口。但若该垂直总线已被占用(有另一个分组正在转发到同一个输出端口),则后到达的分组就被阻塞,必须在输入端口排队。采用这种交换方式的路由器例子是Cisco公司的12000系列交换路由器,它使用的互连网络的带宽达60Gbit/s。

4.6 IPv6

IP是互联网的核心协议。现在使用的IP(即IPv4)是在20世纪70年代末期设计的。互联网经过几十年的飞速发展,到2011年2月,IPv4的地

址已经耗尽, ISP已经不能再申请到新的IP地址块了。我国在2014年至2015年也逐步停止了向新用户和应用分配IPv4地址, 同时全面开始商用部署IPv6。

解决IP地址耗尽的根本措施就是采用具有更大地址空间的新版本的IP,即IPv6。到目前为止,IPv6还只是草案标准阶段 [RFC 2460,4862,4443]。有关向IPv6转换的进展情况见有关网站 [WNGTRANS]。

4.6.1 IPv6的基本首部

IPv6仍支持无连接的传送,但将协议数据单元PDU称为**分组**,而不是 IPv4 的 数 据 报 。 为 方 便 起 见 , 本 书 仍 采 用 数 据 报 这 一 名 词 ([COME06] 和 [TANE11] 也是这样做的)。

IPv6所引进的主要变化如下:

- (1) **更大的地址空间**。IPv6把地址从IPv4的32位增大到4倍,即增大到128位,使地址空间增大了2⁹⁶倍。这样大的地址空间在可预见的将来是不会用完的。
- (2) **扩展的地址层次结构**。IPv6由于地址空间很大,因此可以划分为更多的层次。
- (3) **灵活的首部格式**。IPv6数据报的首部和IPv4的并不兼容。IPv6定义了许多可选的扩展首部,不仅可提供比IPv4更多的功能,而且还可提高路由器的处理效率,这是因为路由器对扩展首部不进行处理(除逐跳扩展首部外)。
- (4) **改进的选项**。IPv6允许数据报包含有选项的控制信息,因而可以包含一些新的选项。但IPv6的**首部长度是固定的**,其选项放在有效载荷中。我们知道,IPv4所规定的选项是固定不变的,其选项放在首部的可变部分。
- (5) **允许协议继续扩充**。这一点很重要,因为技术总是在不断地发展(如网络硬件的更新)而新的应用也还会出现。但我们知道,**IPv4**的功能是固定不变的。

- (6) 支持即插即用(即自动配置)。因此IPv6不需要使用DHCP。
- (7) **支持资源的预分配**。**IPv6**支持实时视像等要求保证一定的带宽和时延的应用。
- (8) IPv6首部改为8**字节对齐** (即首部长度必须是8字节的整数倍)。原来的IPv4首部是4字节对齐。

IPv6数据报由两大部分组成,即**基本首部**(base header)和后面的**有效载荷**(payload)。有效载荷也称为净负荷。有效载荷允许有零个或多个**扩展首部**(extension header),再后面是数据部分(图4-46)。但请注意,所有的扩展首部并不属于IPv6数据报的首部。

图4-46 具有多个可选扩展首部的IPv6数据报的一般形式

与IPv4相比, IPv6对首部中的某些字段进行了如下的更改:

- 取消了首部长度字段,因为它的首部长度是固定的(40字节)。
- 取消了服务类型字段,因为优先级和流标号字段实现了服务类型字段的功能。
- 取消了总长度字段, 改用有效载荷长度字段。
- 取消了标识、标志和片偏移字段,因为这些功能已包含在分片扩展首部中。
- 把TTL字段改称为跳数限制字段,但作用是一样的(名称与作用更加一致)。
- 取消了协议字段, 改用下一个首部字段。
- 取消了检验和字段,这样就加快了路由器处理数据报的速度。我们知道,在数据链路层对检测出有差错的帧就丢弃。在运输层,当使用UDP时,若检测出有差错的用户数据报就丢弃。当使用TCP时,对检测出有差错的报文段就重传,直到正确传送到目的进程为止。因此在网络层的差错检测可以精简掉。

• 取消了选项字段, 而用扩展首部来实现选项功能。

由于把首部中不必要的功能取消了,使得IPv6首部的字段数减少到只有8个(虽然首部长度增大了一倍)。

下面解释IPv6基本首部中各字段的作用(参见图4-47)。

图4-47 40字节长的IPv6基本首部

- (1) **版本**(version) 占4位。它指明了协议的版本,对IPv6该字段是6。
- (2) **通信量类**(traffic class) 占8位。这是为了区分不同的IPv6数据报的类别或优先级。目前正在进行不同的通信量类性能的实验。
- (3) 流标号(flow label) 占20位。IPv6的一个新的机制是支持资源预分配,并且允许路由器把每一个数据报与一个给定的资源分配相联系。IPv6提出流(flow)的抽象概念。所谓"流"就是互联网络上从特定源点到特定终点(单播或多播)的一系列数据报(如实时音频或视频传输),而在这个"流"所经过的路径上的路由器都保证指明的服务质量。所有属于同一个流的数据报都具有同样的流标号。因此,流标号对实时音频/视频数据的传送特别有用。对于传统的电子邮件或非

实时数据,流标号则没有用处,把它置为0即可。关于流标号可参考「RFC 6437〕。

- (4) **有效载荷长度**(payload length) 占16位。它指明IPv6数据报除基本首部以外的字节数(所有扩展首部都算在有效载荷之内)。这个字段的最大值是64KB(65535字节)。
- (5) **下一个首部**(next header) 占8位。它相当于IPv4的协议字段或可选字段。
 - 当IPv6数据报没有扩展首部时,下一个首部字段的作用和IPv4的协议字段一样,它的值指出了基本首部后面的数据应交付IP层上面的哪一个高层协议(例如: 6或17分别表示应交付运输层TCP或UDP)。
 - 当出现扩展首部时,下一个首部字段的值就标识后面第一个扩展首部的类型。
- (6) **跳数限制**(hop limit) 占8位。用来防止数据报在网络中无限期地存在。源点在每个数据报发出时即设定某个跳数限制(最大为255跳)。每个路由器在转发数据报时,要先把跳数限制字段中的值减1。当跳数限制的值为零时,就要把这个数据报丢弃。
 - (7) **源地址** 占128位。是数据报的发送端的IP地址。
 - (8) **目的地址** 占128位。是数据报的接收端的IP地址。

下面我们介绍一下IPv6的扩展首部。

大家知道,IPv4的数据报如果在其首部中使用了选项,那么沿着数据报传送的路径上的每一个路由器都必须对这些选项一一进行检查,这就降低了路由器处理数据报的速度。然而实际上很多的选项在途中的路由器上是不需要检查的(因为不需要使用这些选项的信息)。IPv6把原来IPv4首部中选项的功能都放在扩展首部中,并把扩展首部留给路径两端的源点和终点的主机来处理,而数据报途中经过的路由器都不处理这些扩展首部(只有一个首部例外,即逐跳选项扩展首部),这样就大大提高了路由器的处理效率。

在RFC 2460中定义了以下六种扩展首部: (1) 逐跳选项; (2) 路由选择; (3) 分片; (4) 鉴别; (5) 封装安全有效载荷; (6) 目的站选项。

每一个扩展首部都由若干个字段组成,它们的长度也各不同。但所有扩展首部的第一个字段都是8位的"下一个首部"字段。此字段的值指出了在该扩展首部后面的字段是什么。当使用多个扩展首部时,应按以上的先后顺序出现。高层首部总是放在最后面。

4.6.2 IPv6的地址

一般来讲,一个IPv6数据报的目的地址可以是以下三种基本类型地址之一:

- (1) **单播**(unicast) 单播就是传统的点对点通信。
- (2) **多播**(multicast) 多播是一点对多点的通信,数据报发送到一组计算机中的每一个。IPv6没有采用广播的术语,而是将广播看作多播的一个特例。
- (3) **任播**(anycast) 这是IPv6增加的一种类型。任播的终点是一组计算机,但数据报只交付其中的一个,通常是距离最近的一个。

IPv6把实现IPv6的主机和路由器均称为结点。由于一个结点可能会使用多条链路与其他的一些结点相连,因此一个结点可能有多个与链路相连的接口。这样,IPv6给结点的每一个接口指派一个IP地址。一个结点可以有多个单播地址,而其中任何一个地址都可以当作到达该结点的目的地址。

在IPv6中,每个地址占128位,地址空间大于3.4×10³⁸。如果整个地球表面(包括陆地和水面)都覆盖着计算机,那么IPv6允许每平方米拥有7×10²³个IP地址。如果地址分配速率是每微秒分配100万个地址,则需要10¹⁹年的时间才能将所有可能的地址分配完毕。可见在想象到的将来,IPv6的地址空间是不可能用完的。

巨大的地址范围还必须使维护互联网的人易于阅读和操纵这些地址。 IPv4所用的点分十进制记法现在也不够方便了。例如,一个用点分十 进制记法的128位的地址为:

104.230.140.100.255.255.255.255.0.0.17.128.150.10.255.255

为了使地址再稍简洁些,IPv6使用**冒号十六进制记法** (colon hexadecimal notation,简写为colon hex),它把每个16位的值用十六进制值表示,各值之间用冒号分隔。例如,如果前面所给的点分十进制数记法的值改为冒号十六进制记法,就变成了:

68E6: 8C64: FFFF: FFFF: 0: 1180: 960A: FFFF

在十六进制记法中,允许把数字前面的0省略。上面就把0000中的前三个0省略了。冒号十六进制记法还包含两个技术使它尤其有用。首先,冒号十六进制记法可以允许**零压缩**(zero compression),即一连串连续的零可以为一对冒号所取代,例如:

FF05: 0: 0: 0: 0: 0: B3

可压缩为:

FF05: : B3

为了保证零压缩有一个不含混的解释,规定在任一地址中只能使用一次零压缩。该技术对已建议的分配策略特别有用,因为会有许多地址包含较长连续的零串。

其次,冒号十六进制记法可结合使用点分十进制记法的后缀。我们下面会看到这种结合在IPv4向IPv6的转换阶段特别有用。例如,下面的串是一个合法的冒号十六进制记法:

 $0\colon \ 0\colon \ 0\colon \ 0\colon \ 0\colon \ 128.10.2.1$

请注意,在这种记法中,虽然为冒号所分隔的每个值是两个字节(16位)的量,但每个点分十进制部分的值则指明一个字节(8位)的值。 再使用零压缩即可得出:

: : 128.10.2.1

下面再给出几个使用零压缩的例子。

1080: 0: 0: 0: 8: 800: 200C: 417A 记为 1080: : 8: 800: 200C: 417A

FF01: 0: 0: 0: 0: 0: 101 (多播地址) 记为 FF01: : 101

0: 0: 0: 0: 0: 0: 1 (环回地址) 记为 :: 1

0: 0: 0: 0: 0: 0: 0: 0 (未指明地址) 记为 ::

CIDR的斜线表示法仍然可用。例如,60位的前缀12AB0000000CD3 (十六进制表示的15个字符,每个字符代表4位二进制数字)可记为:

12AB: 0000: 0000: CD30: 0000: 0000: 0000: 0000/60

或 12AB: : CD30: 0: 0: 0: 0/60

或 12AB: 0: 0: CD30: : /60

但不允许记为:

12AB: 0: 0: CD3/60 (不能把16位地址CD30块中的最后的0省略)

或 **12**AB:: CD30/60 (这是地址**12**AB: 0: 0: 0: 0: 0: 0: CD30的前60位 二进制)

或 **12**AB:: CD3/60(这是地址**12**AB: 0: 0: 0: 0: 0: 0: 0CD3的前60位 二进制)

IPv6的地址分类见表4-10所示「RFC 4291」。

表4-10 IPv6的地址分类

地址类型 二进制前缀

未 指 明 地 00...0(128位),可记为::/128。 址

环回地址 00...1(128位),可记为: : 1/128。

多播地址 11111111 (8位), 可记为FF00::/8。

本地链路单 1111111010(10位),可记为FE80::/10。播地址

全球单播地 (除上述四种外, 所有其他的二进制前缀) 址

对表4-10所列举的几种地址简单解释如下。

未指明地址 这是16字节的全0地址,可缩写为两个冒号"::"。这个地址不能用作目的地址,而只能为某台主机当作源地址使用,条件是这台主机还没有配置到一个标准的IP地址。这类地址仅此一个。

多播地址 功能和IPv4的一样。这类地址占IPv6地址总数的1/256。

本地链路单播地址(Link-Local Unicast Address) 有些单位的网络使用TCP/IP协议,但并没有连接到互联网上。连接在这样的网络上的主机都可以使用这种本地地址进行通信,但不能和互联网上的其他主机通信。这类地址占IPv6地址总数的1/1024。

全球单播地址 IPv6的这一类单播地址是使用得最多的一类。曾提出过多种方案来进一步划分这128位的单播地址。根据2006年发布的草案标准RFC 4291的建议,IPv6单播地址的划分方法非常灵活,可以如图 4-48所示的任何一种。这就是说,可把整个的128比特都作为一个结点的地址。也可用n 比特作为子网前缀,用剩下的(128-n)比特作为接口标识符(相当于IPv4的主机号)。当然也可以划分为三级,用n 比特作为全球路由选择前缀,用m 比特作为子网前缀,而用剩下的(128-n-m)比特作为接口标识符。

结	点 地 址(128 bit)
子 网 前 缀 (nb	it) 接 口 标 识 符(128-n)bit
全球路由选择前缀(n bit)	子 网 标 识 符 (<i>m</i> bit) 接 口 标 识 符(128 - <i>n</i> - <i>m</i>) bit

图4-48 IPv6的单播地址的几种划分方法

4.6.3 从IPv4向IPv6过渡

由于现在整个互联网的规模太大,因此,"规定一个日期,从这一天起所有的路由器一律都改用IPv6",显然是不可行的。这样,向IPv6过渡**只能采用逐步演进的办法**,同时,还必须使新安装的IPv6系统能够**向后兼容**。这就是说,IPv6系统必须能够接收和转发IPv4分组,并且能够为IPv4分组选择路由。

下面介绍两种向IPv6过渡的策略,即使用双协议栈和使用隧道技术 [RFC 2473, 2529, 3056, 4038, 4213]。

1. 双协议栈

双协议栈(dual stack)是指在完全过渡到IPv6之前,使一部分主机(或路由器)装有双协议栈:一个IPv4和一个IPv6。因此双协议栈主机(或路由器)既能够和IPv6的系统通信,又能够和IPv4的系统通信。双协议栈的主机(或路由器)记为IPv6/IPv4,表明它同时具有两种IP地址:一个IPv6地址和一个IPv4地址。

双协议栈主机在和IPv6主机通信时采用IPv6地址,而和IPv4主机通信时则采用IPv4地址。但双协议栈主机怎样知道目的主机是采用哪一种地址呢?它是使用域名系统DNS来查询的。若DNS返回的是IPv4地址,双协议栈的源主机就使用IPv4地址。但当DNS返回的是IPv6地址,源主机就使用IPv6地址。

图4-49所示的情况是源主机A和目的主机F都使用IPv6,所以A向F发送 IPv6数据报,路径是 $A \rightarrow B \rightarrow C \rightarrow D \rightarrow E \rightarrow F$ 。中间B到E这段路径是IPv4 网络,路由器B不能向C转发IPv6数据报,因为C只使用IPv4协议。B是 IPv6/IPv4路由器,它把IPv6数据报首部转换为IPv4数据报首部后发送给C。C再转发到D。当D转发到IPv4网络的出口路由器E时(E也是

IPv6/IPv4路由器),再恢复成原来的IPv6数据报。需要注意的是: IPv6首部中的**某些字段却无法恢复**。例如,原来IPv6首部中的流标号X在最后恢复出的IPv6数据报中只能变为空缺。这种信息的损失是使用首部转换方法所不可避免的。

图4-49 使用双协议栈进行从IPv4到IPv6的过渡

2. 隧道技术

向IPv6过渡的另一种方法是**隧道技术**(tunneling)。图4-50给出了隧道技术的工作原理。这种方法的要点就是在IPv6数据报要进入IPv4网络时,把IPv6数据报封装成为IPv4数据报。现在整个的IPv6数据报变成了IPv4数据报的数据部分。这样的IPv4数据报从路由器B经过路由器C和D,传送到E,而原来的IPv6数据报就好像在IPv4网络的隧道中传输,什么都没有变化。当IPv4数据报离开IPv4网络中的隧道时,再把数据部分(即原来的IPv6数据报)交给主机的IPv6协议栈。图中的一条粗线表示在IPv4网络中好像有一个从B到E的"IPv6隧道",路由器B是隧道的入口而E是出口。请注意,在隧道中传送的数据报的源地址是B而目的地址是E。

图4-50 使用隧道技术进行从IPv4到IPv6的过渡

要使双协议栈的主机知道IPv4数据报里面封装的数据是一个IPv6数据报,就必须把IPv4首部的协议字段的值设置为41(41表示数据报的数据部分是IPv6数据报)。

4.6.4 ICMPv6

和IPv4一样,IPv6也不保证数据报的可靠交付,因为互联网中的路由器可能会丢弃数据报。因此IPv6也需要使用ICMP来反馈一些差错信息。新的版本称为ICMPv6,它比ICMPv4要复杂得多。地址解析协议ARP和网际组管理协议IGMP的功能都已被合并到ICMPv6中(图4-51)。

图4-51 新旧版本中的网络层的比较

ICMPv6是面向报文的协议,它利用报文来报告差错,获取信息,探测邻站或管理多播通信。ICMPv6还增加了几个定义报文功能及含义的其他协议。在对ICMPv6报文进行归类时,不同的文献和RFC文档使用了不同的策略,有的把其中的一些报文定义为ICMPv6报文,而把另一些报文定义为**邻站发现** ND(Neighbor-Discovery)报文或**多播听众交付** MLD(Multicast Listener Delivery)报文。其实所有这些报文都应当是

ICMPv6报文,只是功能和作用不同而已。因此我们把这些报文都列入ICMPv6的不同类别。使用这种分类方法的原因是所有这些报文都具有相同的格式,并且所有报文类型都由ICMPv6协议处理。其实,像ND和MLD这样的协议都是运行在ICMPv6协议之下的。基于这样的考虑,可把ICMPv6报文分类如图4-52所示。请注意,邻站发现报文和组成员关系报文分别是在ND协议和MLD协议的控制下进行发送和接收的。

图4-52 ICMPv6报文的分类

关于ICMPv6的进一步讨论可参阅 [FORO10] , 这里从略。

4.7 IP多播

4.7.1 IP多播的基本概念

1988年Steve Deering首次在其博士学位论文中提出IP多播的概念。1992年3月IETF在互联网范围首次试验IETF会议声音的多播,当时有20个网点可同时听到会议的声音。IP多播是需要在互联网上增加更多的智能才能提供的一种服务。现在IP多播(multicast,以前曾译为组播)已成为互联网的一个热门课题。这是由于有许多的应用需要由一个源点发送到许多个终点,即一对多的通信。例如,实时信息的交付(如新闻、股市行情等),软件更新,交互式会议等。随着互联网的用户数目的急剧增加,以及多媒体通信的开展,有更多的业务需要多播来支持。关于IP多播可参考 [W-MCAST]。

与单播相比,在一对多的通信中,多播可大大节约网络资源。图4-53 (a) 是视频服务器用单播方式向90台主机传送同样的视频节目。为此,需要发送90个单播,即同一个视频分组要发送90个副本。图4-53 (b) 是视频服务器用多播方式向属于同一个多播组的90个成员传送节目。这时,视频服务器只需把视频分组当作多播数据报来发送,并且只需发送一次。路由器R₁在转发分组时,需要把收到的分组**复制**成3个副本,分别向R₂、R₃和R₄各转发1个副本。当分组到达目的局域网时,由于局域网具有硬件多播功能,因此不需要复制分组,在局域网上的多播组成员都能收到这个视频分组。

图4-53 单播与多播的比较

当多播组的主机数很大时(如成千上万个),采用多播方式就可明显地减轻网络中各种资源的消耗。在互联网范围的多播要靠路由器来实现,这些路由器必须增加一些能够识别多播数据报的软件。能够运行多播协议的路由器称为**多播路由器**(multicast router)。多播路由器当然也可以转发普通的单播IP数据报。

为了适应交互式音频和视频信息的多播,从1992年起,在互联网上开始试验虚拟的**多播主干网** MBONE(Multicast Backbone On the InterNEt)。MBONE可把分组传播给地点分散但属于一个组的许多台主机。现在多播主干网已经有了相当大的规模。

在互联网上进行多播就叫做**IP多播**。IP多播所传送的分组需要使用多播IP地址。

我们知道,在互联网中每一台主机必须有一个全球唯一的IP地址。如果某台主机现在想接收某个特定多播组的分组,那么怎样才能使这个多播数据报传送到这台主机?

显然,这个多播数据报的目的地址一定不能写入这台主机的IP地址。这是因为在同一时间可能有成千上万台主机加入到同一个多播组。多播数据报不可能在其首部写入这样多的主机的IP地址。在多播数据报的目的地址写入的是多播组的标识符,然后设法让加入到这个多播组的主机的IP地址与多播组的标识符关联起来。

其实多播组的标识符就是IP地址中的D类地址。D类IP地址的前四位是1110,因此D类地址范围是224.0.0.0到239.255.255.255。我们就用每一个D类地址标志一个多播组。这样,D类地址共可标志2²⁸个多播组,也就是说,在同一时间可以允许有超过2.6亿的多播组在互联网上运行。多播数据报也是"尽最大努力交付",不保证一定能够交付多播组内的所有成员。因此,多播数据报和一般的IP数据报的区别就是它使用D类IP地址作为目的地址,并且首部中的协议字段值是2,表明使用网际组管理协议IGMP。

显然,**多播地址只能用于目的地址**,而**不能用于源地址**。此外,对多播数据报不产生ICMP差错报文。因此,若在PING命令后面键入多播地址,将永远不会收到响应。

IP多播可以分为两种。一种是只在本局域网上进行硬件多播,另一种则是在互联网的范围进行多播。前一种虽然比较简单,但很重要,因为现在大部分主机都是通过局域网接入到互联网的。在互联网上进行多播的最后阶段,还是要把多播数据报在局域网上用硬件多播交付多播组的所有成员(如图4-53(b)所示)。下面就先讨论这种硬件多播。

4.7.2 在局域网上进行硬件多播

互联网号码指派管理局IANA拥有的以太网地址块的高24位为00-00-5E, 因此TCP/IP协议使用的以太网多播地址块的范围是从00-00-5E-00-00-00到00-00-5E-FF-FF-FF。在第3章3.4.3节已讲过,以太网硬件地址字段中的第1字节的最低位为1时即为多播地址,这种多播地址数占IANA分配到的地址数的一半。因此IANA拥有的以太网多播地址的范围是从01-00-5E-00-00-00到01-00-5E-7F-FF-FF。不难看出,在每一个地址中,只有23位可用作多播。这只能和D类IP地址中的23位有一一对应的关系。D类IP地址可供分配的有28位,可见在这28位中的前5位不能用来构成以太网硬件地址(图4-54)。例如,IP多播地址224.128.64.32(即E0-80-40-20)和另一个IP多播地址224.0.64.32(即E0-00-40-20)转换成以太网的硬件多播地址都是01-00-5E-00-40-20。由于多播IP地址与以太网硬件地址的映射关系不是唯一的,因此收到多播数据报的主机,还要在IP层利用软件进行过滤,把不是本主机要接收的数据报丢弃。

图4-54 D类IP地址与以太网多播地址的映射关系

下面就讨论进行IP多播所需要的协议。

4.7.3 网际组管理协议IGMP和多播路由 选择协议

1. IP多播需要两种协议

图4-55是在互联网上传送多播数据报的例子。图中标有IP地址的四台主机都参加了一个多播组,其组地址是226.15.37.123。显然,多播数据报应当传送到路由器 R_1 , R_2 和 R_3 ,而不应当传送到路由器 R_4 ,因为与 R_4 连接的局域网上现在没有这个多播组的成员。但这些路由器又怎样知道多播组的成员信息呢?这就要利用一个协议,叫做**网际组管理协议** IGMP(Internet Group Management Protocol)。

图4-55 IGMP使多播路由器知道多播组成员信息

图4-55强调了IGMP的本地使用范围。请注意,IGMP并非在互联网范围内对所有多播组成员进行管理的协议。IGMP不知道IP多播组包含的成员数,也不知道这些成员都分布在哪些网络上,等等。IGMP协议是让连接在本地局域网上的多播路由器知道本局域网上是否有主机(严格讲,是主机上的某个进程)参加或退出了某个多播组。

显然,仅有IGMP协议是不能完成多播任务的。连接在局域网上的多播路由器还必须和互联网上的其他多播路由器协同工作,以便把多播数据报用最小代价传送给所有的组成员。这就需要使用**多播路由选择协议**。

然而多播路由选择协议要比单播路由选择协议复杂得多。我们可以通过一个简单的例子来说明(图**4-56**)。

图4-56 用来说明多播路由选择的例子

我们假定图4-56中有两个多播组。多播组①的成员有主机A,B和C,而多播组②的成员有主机D,E和F。这些主机分布在三个网络上(N_1 , N_2 和 N_3)。

路由器R不应当向网络N₃转发多播组①的分组,因为网络N₃上没有多播组①的成员。但是每一台主机可以随时加入或离开一个多播组。例如,如果主机G现在加入了多播组①,那么从这时起,路由器R就必须也向网络N₃转发多播组①的分组。这就是说,**多播转发必须动态地适应多播组成员的变化(这时网络拓扑并未发生变化)**。请注意,单播路由选择通常是在网络拓扑发生变化时才需要更新路由。

再看一种情况。主机E和F都是多播组②的成员。当E向F发送多播数据报时,路由器R把这个多播数据报转发到网络 N_3 。但当F向E发送多播

数据报时,路由器R则把多播数据报转发到网络N₂。如果路由器R收到来自主机A的多播数据报(A不是多播组②的成员,但也可向多播组发送多播数据报),那么路由器R就应当把多播数据报转发到N₂和N₃。由此可见,**多播路由器在转发多播数据报时,不能仅仅根据多播数据报中的目的地址**,而是还要考虑这个多播数据报从什么地方来和要到什么地方去。

还有一种情况。主机G没有参加任何多播组,但G却可向任何多播组发送多播数据报。例如,G可向多播组①或②发送多播数据报。主机G所在的局域网上可以没有任何多播组的成员。显然,多播数据报所经过的许多网络,也不一定非要有多播组成员。总之,**多播数据报可以由没有加入多播组的主机发出,也可以通过没有组成员接入的网络**。

正因为如此,IP多播就成为比较复杂的问题。下面介绍这两种协议的要点。

2. 网际组管理协议IGMP

IGMP已有了三个版本。1989年公布的RFC 111 2(IGMPv1)早已成为了互联网的标准协议。2002年10月公布的建议标准IGMPv3是最新的「RFC 3376」。

和网际控制报文协议ICMP相似,IGMP使用IP数据报传递其报文(即IGMP报文加上IP首部构成IP数据报),但它也向IP提供服务。因此,我们不把IGMP看成是一个单独的协议,而是属于整个网际协议IP的一个组成部分。

从概念上讲、IGMP的工作可分为两个阶段。

第一阶段: 当某台主机加入新的多播组时,该主机应向多播组的多播地址发送一个IGMP报文,声明自己要成为该组的成员。本地的多播路由器收到IGMP报文后,还要利用多播路由选择协议把这种组成员关系转发给互联网上的其他多播路由器。

第二阶段:组成员关系是动态的。本地多播路由器要周期性地探询本地局域网上的主机,以便知道这些主机是否还继续是组的成员。只要有一台主机对某个组响应,那么多播路由器就认为这个组是活跃的。

但一个组在经过几次的探询后仍然没有一台主机响应,多播路由器就认为本网络上的主机已经都离开了这个组,因此也就不再把这个组的成员关系转发给其他的多播路由器。

IGMP设计得很仔细,避免了多播控制信息给网络增加大量的开销。IGMP采用的一些具体措施如下:

- (1) 在主机和多播路由器之间的所有通信都是使用IP多播。只要有可能,携带IGMP报文的数据报都用硬件多播来传送。因此在支持硬件多播的网络上,没有参加IP多播的主机不会收到IGMP报文。
- (2) 多播路由器在探询组成员关系时,只需要对所有的组发送一个请求信息的询问报文,而不需要对每一个组发送一个询问报文(虽然也允许对一个特定组发送询问报文)。默认的询问速率是每125秒发送一次(通信量并不太大)。
- (3) 当同一个网络上连接有几个多播路由器时,它们能够迅速和有效 地选择其中的一个来探询主机的成员关系。因此,网络上多个多播路 由器并不会引起IGMP通信量的增大。
- (4) 在IGMP的询问报文中有一个数值N, 它指明一个最长响应时间(默认值为10秒)。当收到询问时,主机在0到N之间随机选择发送响应所需经过的时延。因此,若一台主机同时参加了几个多播组,则主机对每一个多播组选择不同的随机数。对应于最小时延的响应最先发送。
- (5) 同一个组内的每一台主机都要监听响应,只要有本组的其他主机 先发送了响应,自己就可以不再发送响应了。这样就抑制了不必要的 通信量。

多播路由器并不需要保留组成员关系的准确记录,因为向局域网上的组成员转发数据报是使用硬件多播。多播路由器只需要知道网络上是否至少还有一台主机是本组成员即可。实际上,对询问报文每一个组只需有一台主机发送响应。

如果一台主机上有多个进程都加入了某个多播组,那么这台主机对发给这个多播组的每个多播数据报只接收一个副本,然后给主机中的每一个进程发送一个本地复制的副本。

最后我们还要强调指出,多播数据报的发送者和接收者都不知道(也无法找出)一个多播组的成员有多少,以及这些成员是哪些主机。互联网中的路由器和主机都不知道哪个应用进程将要向哪个多播组发送多播数据报,因为任何应用进程都可以在任何时候向任何一个多播组发送多播数据报,而这个应用进程并不需要加入这个多播组。

IGMP的报文格式可参阅有关文档 [RFC 3376],这里从略。

3. 多播路由选择协议

虽然在TCP/IP中IP多播协议已成为建议标准,但多播路由选择协议 (用来在多播路由器之间传播路由信息)则尚未标准化。

在多播过程中一个多播组中的成员是动态变化的。例如在收听网上某个广播节目时,随时会有主机加入或离开这个多播组。多播路由选择实际上就是要找出以源主机为根节点的**多播转发树**。在多播转发树上,每一个多播路由器向树的叶节点方向转发收到的多播数据报,但在多播转发树上的路由器不会收到重复的多播数据报(即多播数据报不应在互联网中兜圈子)。不难看出,对不同的多播组对应于不同的多播转发树。同一个多播组,对不同的源点也会有不同的多播转发树。

已有了多种实用的多播路由选择协议,它们在转发多播数据报时使用了以下的三种方法:

(1) 洪泛与剪除。这种方法适合于较小的多播组,而所有的组成员接入的局域网也是相邻接的。一开始,路由器转发多播数据报使用洪泛的方法(这就是广播)。为了避免兜圈子,采用了叫做反向路径广播RPB(Reverse Path Broadcasting)的策略。RPB的要点是:每一个路由器在收到一个多播数据报时,先检查数据报是否是从源点经最短路径传送来的。进行这种检查很容易,只要从本路由器寻找到源点的最短路径上(之所以叫做反向路径,因为在计算最短路径时是把源点当作终点)的第一个路由器是否就是刚才把多播数据报送来的路由器。若是,就向所有其他方向转发刚才收到的多播数据报(但进入的方向除外),否则就丢弃而不转发。如果本路由器有好几个相邻路由器都处在到源点的最短路径上(也就是说,存在几条同样长度的最短路径),那么只能选择一条最短路径,选择的准则就是看这几条最短

路径中的相邻路由器谁的IP地址最小。图4-57的例子说明了这一概念。

图4-57 反向路径广播RPB和剪除

为简单起见,在图4-57中的网络用路由器之间的链路来表示。我们假定各路由器之间的距离都是1。路由器 R_1 收到源点发来的多播数据报后,向 R_2 和 R_3 转发。 R_2 发现 R_1 就在自己到源点的最短路径上,因此向 R_3 和 R_4 转发收到的数据报。 R_3 发现 R_2 不在自己到源点的最短路径上,因此丢弃 R_2 发来的数据报。其他路由器也这样转发。 R_7 到源点有两条最短路径: $R_7 \rightarrow R_4 \rightarrow R_2 \rightarrow R_1 \rightarrow$ 源点; $R_7 \rightarrow R_5 \rightarrow R_3 \rightarrow R_1 \rightarrow$ 源点。我们再假定 R_4 的IP地址比 R_5 的IP地址小,所以我们只使用前一条最短路径。因此 R_7 只转发 R_4 传过来的数据报,而丢弃 R_5 传过来的数据报。最后就得出了用来转发多播数据报的多播转发树(图中用粗线表示),以后就按这个多播转发树来转发多播数据报。这样就避免了多播数据报兜圈子,同时每一个路由器也不会接收重复的多播数据报。

如果在多播转发树上的某个路由器发现它的下游树枝(即叶节点方向)已没有该多播组的成员,就应把它和下游的树枝一起**剪除**。例如,在图4-57中虚线椭圆表示剪除的部分。当某个树枝有新增加的组成员时,可以再接入到多播转发树上。

(2) **隧道技术**(tunneling)。隧道技术适用于多播组的位置在地理上很分散的情况。例如在图4-58中,网1和网2都支持多播。现在网1中的

主机向网2中的一些主机进行多播。但路由器 R_1 和 R_2 之间的网络并不支持多播,因而 R_1 和 R_2 不能按多播地址转发数据报。为此,路由器 R_1 就对多播数据报进行再次封装,即再加上普通数据报首部,使之成为向单一目的站发送的**单播** (unicast)数据报,然后通过"**隧道**"(tunnel)从 R_1 发送到 R_2 。

图4-58 隧道技术在多播中的应用

单播数据报到达路由器R₂后,再由路由器R₂剥去其首部,使它又恢复成原来的多播数据报,继续向多个目的站转发。这一点和英吉利海峡隧道运送汽车的情况相似。英吉利海峡隧道不允许汽车在隧道中行驶。但是,可以把汽车放置在隧道中行驶的电气火车上来通过隧道。过了隧道后,汽车又可以继续在公路上行驶。这种使用隧道技术传送数据报又叫做IP中的IP(IP-in-IP)。

(3) 基于核心的发现技术。这种方法对于多播组的大小在较大范围内变化时都适合。这种方法是对每一个多播组G指定一个核心(core)路由器,给出它的IP单播地址。核心路由器按照前面讲过的方法创建出对应于多播组G的转发树。如果有一个路由器 R_1 向这个核心路由器发送数据报,那么它在途中经过的每一个路由器都要检查其内容。当数据报到达参加了多播组G的路由器 R_2 时, R_2 就处理这个数据报。如果 R_1 发出的是一个多播数据报,其目的地址是G的组地址, R_2 就向多播组G的成员转发这个多播数据报。如果 R_1 发出的数据报是一个请求加入多播组G的数据报, R_2 就把这个信息加到它的路由中,并用隧道技术向 R_1 转发每一个多播数据报的一个副本。这样,参加到多播组G的路由器就从核心向外增多了,扩大了多播转发树的覆盖范围。

目前还没有在整个互联网范围使用的多播路由选择协议。下面是一些建议使用的多播路由选择协议。

距离向量多播路由选择协议 DVMRP(Distance Vector Multicast Routing Protocol)是在互联网上使用的第一个多播路由选择协议 [RFC 1075] 。由于在UNIX系统中实现RIP的程序叫做routed,所以在routed的前面加表示多播的字母m,叫做mrouted,它使用DVMRP在路由器之间传播路由信息。

基于核心的转发树CBT(Core Based Tree) [RFC 2189, 2201]。这个协议使用核心路由器作为转发树的根节点。一个大的自治系统AS可划分为几个区域,每一个区域选择一个核心路由器(也叫做中心路由器center router,或汇聚点路由器rendezvous router)。

开放最短通路优先的多播扩展MOSPF (Multicast extensions to OSPF) [RFC 1585]。这个协议是单播路由选择协议OSPF的扩充,使用于一个机构内。MOSPF使用多播链路状态路由选择创建出基于源点的多播转发树。

协议无关多播-稀疏方式PIM-SM (Protocol Independent Multicast-Sparse Mode) [RFC 4601]。这个协议使用和CBT同样的方法构成多播转发树。采用"协议无关"这个名词是强调:虽然在建立多播转发树时是使用单播数据报来和远程路由器联系的,但这并不要求使用特定的单播路由选择协议。这个协议适用于组成员的分布非常分散的情况。

协议无关多播-密集方式PIM-DM (Protocol Independent Multicast-Dense Mode) [RFC 3973]。这个协议适用于组成员的分布非常集中的情况,例如组成员都在一个机构之内。PIM-DM不使用核心路由器,而是使用洪泛方式转发数据报。

4.8 虚拟专用网VPN和网络地址转换 NAT

4.8.1 虚拟专用网VPN

由于IP地址的紧缺,一个机构能够申请到的IP地址数往往远小于本机构所拥有的主机数。考虑到互联网并不很安全,一个机构内也并不需要把所有的主机接入到外部的互联网。实际上,在许多情况下,很多主机主要还是和本机构内的其他主机进行通信(例如,在大型商场或宾馆中,有很多用于营业和管理的计算机。显然这些计算机并不都需要和互联网相连)。假定在一个机构内部的计算机通信也是采用TCP/IP协议,那么从原则上讲,对于这些仅在机构内部使用的计算机就可以由本机构自行分配其IP地址。这就是说,让这些计算机使用仅在本机构有效的IP地址(这种地址称为本地地址),而不需要向互联网的管理机构申请全球唯一的IP地址(这种地址称为全球地址)。这样就可以大大节约宝贵的全球IP地址资源。

但是,如果任意选择一些IP地址作为本机构内部使用的本地地址,那么在某种情况下可能会引起一些麻烦。例如,有时机构内部的某台主机需要和互联网连接,那么这种仅在内部使用的本地地址就有可能和互联网中某个IP地址重合,这样就会出现地址的二义性问题。

为了解决这一问题,RFC 1918指明了一些**专用地址** (private address)。这些地址只能用于一个机构的内部通信,而不能用于和互联网上的主机通信。换言之,专用地址只能用做本地地址而不能用作全球地址。**在互联网中的所有路由器,对目的地址是专用地址的数据报一律不进行转发**。2013年4月,RFC 6890全面地给出了所有特殊用途的IPv4地址,但三个专用地址块的指派并无变化,即

- (1) 10.0.0.0到10.255.255.255 (或记为10.0.0.0/8, 它又称为24位块)
- (2) 172.16.0.0到172.31.255.255 (或记为172.16.0.0/12, 它又称为20位块)
- (3) 192.168.0.0到192.168.255.255 (或记为192.168.0.0/16, 它又称为16位块)

上面的三个地址块分别相当于一个A类网络、16个连续的B类网络和256个连续的C类网络。A类地址本来早已用完了,而上面的地址10.0.0.0本来是分配给ARPANET的。由于ARPANET已经关闭停止运行了,因此这个地址就用作专用地址。

采用这样的专用IP地址的互连网络称为**专用互联网或本地互联网**,或更简单些,就叫做**专用网**。显然,全世界可能有很多的专用互连网络具有相同的专用IP地址,但这并不会引起麻烦,因为这些专用地址仅在本机构内部使用。专用IP地址也叫做**可重用地址**(reusable address)。

有时一个很大的机构的许多部门分布的范围很广(例如,在世界各地),这些部门经常要互相交换信息。这可以有两种方法。(1)租用电信公司的通信线路为本机构专用。这种方法虽然简单方便,但线路的租金太高,一般难于承受。(2)利用公用的互联网作为本机构各专用网之间的通信载体,这样的专用网又称为虚拟专用网 VPN(Virtual Private Network)。

之所以称为"专用网"是因为这种网络是为本机构的主机用于机构内部的通信,而不是用于和网络外非本机构的主机通信。如果专用网不同网点之间的通信必须经过公用的互联网,但又有保密的要求,那么**所有通过互联网传送的数据都必须加密**。加密需要采用的协议将在7.6.1节讨论。"虚拟"表示"好像是",但实际上并不是,因为现在并没有真正使用通信专线,而VPN只是**在效果上**和真正的专用网一样。一个机构要构建自己的VPN就必须为它的每一个场所购买专门的硬件和软件,并进行配置,使每一个场所的VPN系统都知道其他场所的地址。

图4-59以两个场所为例说明如何使用IP隧道技术实现虚拟专用网。

图4-59 用隧道技术实现虚拟专用网

假定某个机构在两个相隔较远的场所建立了专用网A和B, 其网络地址分别为专用地址10.1.0.0和10.2.0.0。现在这两个场所需要通过公用的互联网构成一个VPN。

显然,每一个场所至少要有一个路由器具有合法的全球IP地址,如图 4-59(a)中的路由器 R_1 和 R_2 。这两个路由器和互联网的接口地址必须是合法的全球IP地址。路由器 R_1 和 R_2 在专用网内部网络的接口地址则是专用网的本地地址。

在每一个场所A或B内部的通信量都不经过互联网。但如果场所A的主机X要和另一个场所B的主机Y通信,那么就必须经过路由器 R_1 和 R_2 。主机X向主机Y发送的IP数据报的源地址是10.1.0.1,而目的地址是10.2.0.3。这个数据报先作为本机构的内部数据报从X发送到与互联网连接的路由器 R_1 。路由器 R_1 收到内部数据报后,发现其目的网络必须通过互联网才能到达,就把整个的内部数据报进行加密(这样就保证了内部数据报的安全),然后重新加上数据报的首部,封装成为在互联网上发送的外部数据报,其源地址是路由器 R_1 的全球地址125.1.2.3,而目的地址是路由器 R_2 的全球地址194.4.5.6。路由器 R_2 收到数据报后将其数据部分取出进行解密,恢复出原来的内部数据报

(目的地址是10.2.0.3),交付主机Y。可见,虽然X向Y发送的数据报是通过了公用的互联网,但在效果上就好像是在本部门的专用网上传送一样。如果主机Y要向X发送数据报,那么所进行的步骤也是类似的。

请注意,数据报从 R_1 传送到 R_2 可能要经过互联网中的很多个网络和路由器。但从逻辑上看,在 R_1 到 R_2 之间好像是一条直通的点对点链路,图4-59(a)中的"隧道"就是这个意思。

如图4-59(b)所示的、由场所A和B的内部网络所构成的虚拟专用网VPN又称为**内联网**(intranet 或intranet VPN,即内联网VPN),表示场所A和B都属于同一个机构。

有时一个机构的VPN需要有某些**外部机构**(通常就是合作伙伴)参加进来。这样的VPN就称为**外联网**(extranet 或extranet VPN,即外联网 VPN)。

请注意,内联网和外联网都采用了互联网技术,即都是基于TCP/IP协议的。

还有一种类型的VPN,就是**远程接入** VPN(remote access VPN)。我们知道,有的公司可能并没有分布在不同场所的部门,但却有很多流动员工在外地工作。公司需要和他们保持联系,有时还可能一起开电话会议或视频会议。远程接入VPN可以满足这种需求。在外地工作的员工通过拨号接入互联网,而驻留在员工个人电脑中的VPN软件可以在员工的个人电脑和公司的主机之间建立VPN隧道,因而外地员工与公司通信的内容也是保密的,员工们感到好像就是使用公司内部的本地网络。

4.8.2 网络地址转换NAT

下面讨论另一种情况,就是在专用网内部的一些主机本来已经分配到了本地IP地址(即仅在本专用网内使用的专用地址),但现在又想和互联网上的主机通信(并不需要加密),那么应当采取什么措施呢?

最简单的办法就是设法再申请一些全球IP地址。但这在很多情况下是不容易做到的,因为全球IPv4的地址已所剩不多了。目前使用得最多

的方法是采用网络地址转换。

网络地址转换 NAT(Network Address Translation)方法是在1994年提出的。这种方法需要在专用网连接到互联网的路由器上安装NAT软件。装有NAT软件的路由器叫做NAT路由器,它至少有一个有效的外部全球IP地址。这样,所有使用本地地址的主机在和外界通信时,都要在NAT路由器上将其本地地址转换成全球IP地址,才能和互联网连接。

图4-60给出了NAT路由器的工作原理。在图中,专用网192.168.0.0内所有主机的IP地址都是本地IP地址192.168.x.x。NAT路由器至少要有一个全球IP地址,才能和互联网相连。图4-60表示出NAT路由器有一个全球IP地址172.38.1.5(当然,NAT路由器可以有多个全球IP地址)。

图4-60 NAT路由器的工作原理

NAT路由器收到从专用网内部的主机A发往互联网上主机B的IP数据 报:源IP地址是192.168.0.3、而目的IP地址是213.18.2.4。NAT路由器 把IP数据报的源IP地址192.168.0.3、转换为新的源IP地址(即NAT路由 器的全球IP地址) 172.38.1.5. 然后转发出去。因此, 主机B收到这个 IP数据报时,以为A的IP地址是172.38.1.5。当B给A发送应答时,IP数 据报的目的IP地址是NAT路由器的IP地址172.38.1.5。B并不知道A的专 用地址192.168.0.3。实际上, 即使知道了. 也不能使用, 上的路由器都不转发目的地址是专用网本地IP地址的IP数据报。当 NAT路由器收到互联网上的主机B发来的IP数据报时,还要进行 地址的转换。通过NAT地址转换表,就可把IP数据报上的旧的目的IP 转换为新的目的IP地址192.168.0.3(主机A真正的本 地址172.38.1.5、 。表4-11给出了NAT地址转换表的举例。表中的前两行数 地IP地址) 据对应干图4-60中所举的例子。第一列"方向"中的"出"表示离开专用

网,而"入"表示进入专用网。表中后两行数据(图4-60中没有画出对应的IP数据报)表示专用网内的另一主机192.168.0.7向互联网发送了IP数据报,而NAT路由器还有另外一个全球IP地址172.38.1.6。

表4-11 NAT地址转换表举例

方向	字段	旧的IP地址	新的IP地址
出	源IP地址	192.168.0.3	172.38.1.5
λ	目的IP地址	172.38.1.5	192.168.0.3
出	源IP地址	192.168.0.7	172.38.1.6
入	目的IP地址	172.38.1.6	192.168.0.7

由此可见,当NAT路由器具有n个全球IP地址时,专用网内最多可以同时有n台主机接入到互联网。这样就可以使专用网内较多数量的主机,轮流使用NAT路由器有限数量的全球IP地址。

显然,通过NAT路由器的通信必须由专用网内的主机发起。设想互联网上的主机要发起通信,当IP数据报到达NAT路由器时,NAT路由器就不知道应当把目的IP地址转换成专用网内的哪一个本地IP地址。这就表明,这种专用网内部的主机不能充当服务器用,因为互联网上的客户无法请求专用网内的服务器提供服务。

为了更加有效地利用NAT路由器上的全球IP地址,现在常用的NAT转换表把运输层的端口号也利用上。这样,就可以使多个拥有本地地址的主机,共用一个NAT路由器上的全球IP地址,因而可以同时和互联网上的不同主机进行通信「COME06」。

由于运输层的端口号将在下一章5.1.3节讨论,因此,建议在学完运输层的有关内容后,再学习下面的内容。从系统性考虑,把下面的这部分内容放在本章中介绍较为合适。

使用端口号的NAT也叫做**网络地址与端口号转换** NAPT(Network Address and Port Translation),而不使用端口号的NAT就叫做传统的NAT(traditional NAT)。但在许多文献中并没有这样区分,而是不加

区分地都使用NAT这个更加简洁的缩写词。表4-12说明了NAPT的地址转换机制。

表4-12 NAPT地址转换表举例

	方 字段	旧的IP地址和端口	新的IP地址和端口
向		号	号
出	源IP地址: TCP》	原 192.168.0.3 :	172.38.1.5: 40001
	端口	30000	
出	源IP地址: TCP》	原 192.168.0.4 :	172.38.1.5: 40002
	端口	30000	
入	目的IP地址: TC	P 172.38.1.5: 40001	192.168.0.3 :
	目的端口		30000
入	目的IP地址: TC	P 172.38.1.5: 40002	192.168.0.4 :
	目的端口		30000

从表4-12可以看出,在专用网内主机192.168.0.3向互联网发送IP数据报,其TCP端口号选择为30000。NAPT把源IP地址和TCP端口号都进行转换(如果使用UDP,则对UDP的端口号进行转换。原理是一样的)。另一台主机192.168.0.4也选择了同样的TCP端口号30000。这纯属巧合(端口号仅在本主机中才有意义)。现在NAPT把专用网内不同的源IP地址都转换为同样的全球IP地址。但对源主机所采用的TCP端口号(不管相同或不同),则转换为不同的新的端口号。因此,当NAPT路由器收到从互联网发来的应答时,就可以从IP数据报的数据部分找出运输层的端口号,然后根据不同的目的端口号,从NAPT转换表中找到正确的目的主机。

应当指出,从层次的角度看,NAPT的机制有些特殊。普通路由器在转发IP数据报时,对于源IP地址或目的IP地址都是不改变的。但NAT路由器在转发IP数据报时,一定要更换其IP地址(转换源IP地址或目的IP地址)。其次,普通路由器在转发分组时,是工作在网络层。但NAPT路由器还要查看和转换运输层的端口号,而这本来应当属于运输层的范畴。也正因为这样,NAPT曾遭受了一些人的批评,认为NAPT的操作没有严格按照层次的关系。但不管怎样,NAT(包括

NAPT)已成为互联网的一个重要构件。有关NAT的详细讨论可参阅建议标准RFC 3022和IETF关于NAT工作组的网站「W-NAT」。

4.9 多协议标记交换MPLS

IETF于1997年成立了MPLS工作组,为的是开发出一种新的协议。这种新的协议就是**多协议标记交换** MPLS(MultiProtocol Label Switching)。"多协议"表示在MPLS的上层可以采用多种协议。IETF还综合了许多公司的类似技术,如Cisco公司的**标记交换TAG**(TAG Switching),以及Ipsilon公司的**IP交换**(IP Switching)等。2001年1月MPLS终于成为互联网的建议标准[RFC 3031,3032][W-MPLS]。

MPLS利用面向连接技术,使每个分组携带一个叫做标记(label)(18)的小整数(这叫做打上标记)。当分组到达交换机(即标记交换路由器)时,交换机读取分组的标记,并用标记值来检索分组转发表。这样就比查找路由表来转发分组要快得多。

人们经常把MPLS与**异步传递方式** ATM (Asynchronous Transfer Mode) 联系起来,这仅仅是因为它们都采用了面向连接的工作方式。以前很多人都曾认为网络的发展方向是以ATM为核心的宽带综合业务数字B-ISDN。然而价格低廉得多的高速IP路由器仍然占领了市场,最终导致ATM技术和B-ISDN未能够成为网络的发展方向。MPLS并没有取代IP,而是作为一种IP增强技术,被广泛地应用在互联网中。

MPLS具有以下三个方面的特点: (1) 支持面向连接的服务质量。 (2) 支持流量工程,平衡网络负载。 (3) 有效地支持虚拟专用网 VPN。

下面讨论MPLS的基本工作原理。

4.9.1 MPLS的工作原理

1. 基本工作过程

在传统的IP网络中,分组每到达一个路由器,都必须查找路由表,并按照"最长前缀匹配"的原则找到下一跳的IP地址(请注意,前缀的长度是不确定的)。当网络很大时,查找含有大量项目的路由表要花费很多的时间。在出现突发性的通信量时,往往还会使缓存溢出,这就会引起分组丢失、传输时延增大和服务质量下降。

MPLS的一个重要特点就是在MPLS域的入口处,给每一个IP数据报打上固定长度"标记",**然后对打上标记的IP数据报用硬件进行转发**,这就使得IP数据报转发的过程大大地加快了(19)。采用硬件技术对打上标记的IP数据报进行转发就称为**标记交换**。"交换"也表示在转发时不再上升到第三层查找转发表,而是**根据标记在第二层(链路层)用硬件进行转发**。MPLS可使用多种链路层协议,如PPP、以太网、ATM以及帧中继等。图4-61是MPLS协议的基本原理的示意图。

图4-61 MPLS协议的基本原理

MPLS域(MPLS domain)是指该域中有许多彼此相邻的路由器,并且所有的路由器都是支持MPLS技术的**标记交换路由器** LSR(Label Switching Router)。LSR同时具有标记交换和路由选择这两种功能,标记交换功能是为了快速转发,但在这之前LSR需要使用路由选择功能构造转发表。

图4-61 中给出了MPLS的基本工作过程如下:

(1) MPLS域中的各LSR使用专门的**标记分配协议LDP**(Label Distribution Protocol)交换报文,并找出和特定标记相对应的路径,即**标记交换路径** LSP(Label Switched Path)。例如在图中的路径A→B→C→D。各LSR根据这些路径构造出转发表。这个过程和路由器构造自己的路由表相似「RFC 3031〕,限于篇幅,这里不讨论转发

表构造的详细步骤。但应注意的是,MPLS是面向连接的,因为在标记交换路径LSP上的第一个LSR就根据IP数据报的初始标记确定了整个的标记交换路径,就像一条虚连接一样。

(2) 当一个IP数据报进入到MPLS域时,MPLS入口结点(ingress node)就给它打上标记(后面我们就会知道,这实际上是插入一个MPLS首部),并按照转发表把它转发给下一个LSR。以后的所有LSR都按照标记进行转发。

给IP数据报打标记的过程叫做分类(classification)。严格的第三层(网络层)分类只使用了IP首部中的字段,如源IP地址和目的IP地址等。大多数运营商实现了第四层(运输层)分类(除了要检查IP首部外,运输层还要检查TCP或UDP首部中的协议端口号),而有些运营商则实现了第五层(应用层)分类(更进一步地检查数据报的内部并考虑其有效载荷)。

(3)由于在全网内统一分配全局标记数值是非常困难的,因此一个标记仅仅在两个标记交换路由器LSR之间才有意义。分组每经过一个LSR,LSR就要做两件事:一是转发,二是更换新的标记,即把入标记更换成为出标记。这就叫做标记对换(label swapping)(20)。做这两件事所需的数据都已清楚地写在转发表中。例如,图4-61中的标记交换路由器B从入接口0收到一个入标记为3的IP数据报,查找了如下的转发表:

入接口 入标记 出接口 出标记 0 3 1 1

标记交换路由器B就知道应当把该IP数据报从出接口1转发出去,同时把标记对换为1。

当IP数据报进入下一个LSR时,这时的入标记就是刚才得到的出标记。因此,标记交换路由器C接着在转发该IP数据报时,又把入标记1对换为出标记2。

(4) 当IP数据报离开MPLS域时,MPLS出口结点 (egress node) 就把MPLS的标记去除,把IP数据报交付非MPLS的主机或路由器,以后就按照普通的转发方法进行转发。

上述的这种"由入口LSR确定进入MPLS域以后的转发路径"称为**显式路由选择**(explicit routing),它和互联网中通常使用的"每一个路由器逐跳进行路由选择"有着很大的区别。

下面再讨论MPLS中的几个重要概念。

2. 转发等价类FEC

MPLS 有 个 很 重 要 的 概 念 就 是 **转 发 等 价 类** FEC (Forwarding Equivalence Class)。所谓"转发等价类"就是路由器**按照同样方式对待**的IP数据报的集合。这里"按照同样方式对待"表示从同样接口转发到同样的下一跳地址,并且具有同样服务类别和同样丢弃优先级等。FEC的例子是:

- (1) 目的IP地址与某一个特定IP地址的前缀匹配的IP数据报(这就相当于普通的IP路由器);
 - (2) 所有源地址与目的地址都相同的IP数据报;
 - (3) 具有某种服务质量需求的IP数据报。

总之,划分FEC的方法不受什么限制,这都由网络管理员来控制,因此非常灵活。入口结点并不是给每一个IP数据报指派一个不同的标记,而是将属于同样FEC的IP数据报都指派同样的标记。FEC和标记是一一对应的关系。

图4-62给出一个把FEC用于负载平衡的例子。图4-62(a)的主机 H_1 和 H_2 分别向 H_3 和 H_4 发送大量数据。路由器A和C是数据传输必须经过的。但传统的路由选择协议只能选择最短路径A→B→C,这就可能导致这段最短路径过载。

图4-62 FEC用于负载平衡

图4-62(b)表示在MPLS的情况下,入口结点A可设置两种FEC: "源地址为 H_1 而目的地址为 H_3 "和"源地址为 H_2 而目的地址为 H_4 ",把前一种FEC的路径设置为 $H_1 \rightarrow A \rightarrow B \rightarrow C \rightarrow H_3$,而后一种的路径设置为 $H_2 \rightarrow A \rightarrow D \rightarrow E \rightarrow C \rightarrow H_4$ 。这样可使网络的负载较为平衡。网络管理员采用自定义的FEC就可以更好地管理网络的资源。这种均衡网络负载的做法也称为**流量工程** TE(Traffic Engineering) (21) 或**通信量工程**。

4.9.2 MPLS首部的位置与格式

MPLS并不要求下层的网络都使用面向连接的技术。因此一对MPLS路由器之间的物理连接,既可以由一个专用电路组成,如OC-48线路,也可以使用像以太网这样的网络。但是这些网络并不提供打标记的手段,而IPv4数据报首部也没有多余的位置存放MPLS标记。这就需要使用一种封装技术:在把IP数据报封装成以太网帧之前,先要插入一个MPLS首部。从层次的角度看,MPLS首部就处在第二层和第三层之间(图4-63)。在把加上MPLS首部的IP数据报封装成以太网帧时,以太网的类型字段在单播的情况下设置为8847₁₆,而在多播的情况下为8848₁₆。这样,接收方可以用帧的类型来判决这个帧是携带了MPLS标记还是一个常规的IP数据报。

图4-63 MPLS首部的位置

图4-64给出了MPLS首部的格式。可见"给IP数据报打上标记"其实就是在以太网的帧首部和IP数据报的首部之间插入一个4字节的MPLS首部。具体的标记就在"标记值"这个字段中。

图4-64 MPLS首部的格式

MPLS首部共包括以下四个字段:

- (1) **标记值** 占20位。由于一个MPLS标记占20位,因此从理论上讲,在设置MPLS时可以使用标记的所有20位,因而可以同时容纳高达2²⁰个流(即1048576个流)。但是,实际上几乎没有哪个MPLS实例会使用很大数目的流,因为通常需要管理员人工管理和设置每条交换路径。
 - (2) 试验 占3位,目前保留用于试验。
 - (3) 栈S 占1位,在有"标记栈"时使用。
- (4) **生存时间** TTL 占8位,用来防止MPLS分组在MPLS域中兜圈子。

本章的重要概念

- TCP/IP体系中的网络层向上只提供简单灵活的、无连接的、尽最大努力交付的数据报服务。网络层不提供服务质量的承诺,不保证分组交付的时限,所传送的分组可能出错、丢失、重复和失序。进程之间通信的可靠性由运输层负责。
- IP网是虚拟的,因为从网络层上看,IP网就是一个统一的、抽象的网络(实际上是异构的)。IP层抽象的互联网屏蔽了下层网络很复杂的细节,使我们能够使用统一的、抽象的IP地址处理主机之间的通信问题。
- 在互联网上的交付有两种:在本网络上的直接交付(不经过路由器)和到其他网络的间接交付(经过至少一个路由器,但最后一次一定是直接交付)。
- 一个IP地址在整个互联网范围内是唯一的。分类的IP地址包括A 类、B类和C类地址(单播地址),以及D类地址(多播地址)。 E类地址未使用。
- 分类的IP地址由网络号字段(指明网络)和主机号字段(指明主机)组成。网络号字段最前面的类别位指明IP地址的类别。
- IP地址是一种分等级的地址结构。IP地址管理机构在分配IP地址时只分配网络号,而主机号则由得到该网络号的单位自行分配。路由器仅根据目的主机所连接的网络号来转发分组。
- IP地址标志一台主机(或路由器)和一条链路的接口。多归属主机同时连接到两个或更多的网络上。这样的主机同时具有两个或更多的IP地址,其网络号必须是不同的。由于一个路由器至少应当连接到两个网络,因此一个路由器至少应当有两个不同的IP地址。
- 按照互联网的观点,用转发器或网桥连接起来的若干个局域网仍为一个网络。所有分配到网络号的网络(不管是范围很小的局域网,还是可能覆盖很大地理范围的广域网)都是平等的。
- 物理地址(即硬件地址)是数据链路层和物理层使用的地址,而 IP地址是网络层和以上各层使用的地址,是一种逻辑地址(用软件实现的),在数据链路层看不见数据报的IP地址。
- IP数据报分为首部和数据两部分。首部的前一部分是固定长度, 共20字节,是所有IP数据报必须具有的(源地址、目的地址、总 长度等重要字段都在固定首部中)。一些长度可变的可选字段放 在固定首部的后面。
- IP首部中的生存时间字段给出了IP数据报在互联网中所能经过的最大路由器数,可防止IP数据报在互联网中无限制地兜圈子。

- 地址解析协议ARP把IP地址解析为硬件地址,它解决同一个局域 网上的主机或路由器的IP地址和硬件地址的映射问题。ARP的高 速缓存可以大大减少网络上的通信量。
- 在互联网中,我们无法仅根据硬件地址寻找到在某个网络上的某台主机。因此,从IP地址到硬件地址的解析是非常必要的。
- 无分类域间路由选择CIDR是解决目前IP地址紧缺的一个好方法。 CIDR记法把IP地址后面加上斜线"/",然后写上前缀所占的位数。 前缀(或网络前缀)用来指明网络,前缀后面的部分是后缀,用 来指明主机。CIDR把前缀都相同的连续的IP地址组成一个"CIDR 地址块"。IP地址的分配都以CIDR地址块为单位。
- CIDR的32位地址掩码(或子网掩码)由一串1和一串0组成,而1的个数就是前缀的长度。只要把IP地址和地址掩码逐位进行"逻辑与(AND)"运算,就很容易得出网络地址。A类地址的默认地址掩码是255.0.0。B类地址的默认地址掩码是255.255.0.0。C类地址的默认地址掩码是255.255.255.0。
- 路由聚合(把许多前缀相同的地址用一个来代替)有利于减少路由表中的项目,减少路由器之间的路由选择信息的交换,从而提高了整个互联网的性能。
- "转发"和"路由选择"有区别。"转发"是单个路由器的动作。"路由选择"是许多路由器共同协作的过程,这些路由器相互交换信息,目的是生成路由表,再从路由表导出转发表。若采用自适应路由选择算法,则当网络拓扑变化时,路由表和转发表都能够自动更新。在许多情况下,可以不考虑转发表和路由表的区别,而都使用路由表这一名词。
- 自治系统(AS)就是在单一的技术管理下的一组路由器。一个自治系统对其他自治系统表现出的是一个单一的和一致的路由选择策略。
- 路由选择协议有两大类:内部网关协议(或自治系统内部的路由选择协议),如RIP和OSPF;外部网关协议(或自治系统之间的路由选择协议),如BGP-4。
- RIP是分布式的基于距离向量的路由选择协议,只适用于小型互联网。RIP按固定的时间间隔与相邻路由器交换信息。交换的信息是自己当前的路由表,即到达本自治系统中所有网络的(最短)距离,以及到每个网络应经过的下一跳路由器。
- OSPF是分布式的链路状态协议,适用于大型互联网。OSPF只在链路状态发生变化时,才向本自治系统中的所有路由器,用洪泛法发送与本路由器相邻的所有路由器的链路状态信息。"链路状

态"指明本路由器都和哪些路由器相邻,以及该链路的"度量"。"度量"可表示费用、距离、时延、带宽等,可统称为"代价"。所有的路由器最终都能建立一个全网的拓扑结构图。

- BGP-4是不同AS的路由器之间交换路由信息的协议,是一种路径向量路由选择协议。BGP力求寻找一条能够到达目的网络(可达)且比较好的路由(不兜圈子),而并非要寻找一条最佳路由。
- 网际控制报文协议ICMP是IP层的协议。ICMP报文作为IP数据报的数据,加上首部后组成IP数据报发送出去。使用ICMP并非为了实现可靠传输。ICMP允许主机或路由器报告差错情况和提供有关异常情况的报告。ICMP报文的种类有两种,即ICMP差错报告报文和ICMP询问报文。
- ICMP的一个重要应用就是分组网间探测PING,用来测试两台主机之间的连通性。PING使用了ICMP回送请求与回送回答报文。
- 要解决IP地址耗尽的问题,最根本的办法就是采用具有更大地址空间的新版本的IP协议,即IPv6。
- IPv6所带来的主要变化是: (1) 更大的地址空间(采用128位的地址); (2) 灵活的首部格式; (3) 改进的选项; (4) 支持即插即用; (5) 支持资源的预分配; (6) IPv6首部改为8字节对齐。
- IPv6数据报在基本首部的后面允许有零个或多个扩展首部,再后面是数据。所有的扩展首部和数据合起来叫做数据报的有效载荷或净负荷。
- IPv6数据报的目的地址可以是以下三种基本类型地址之一: 单播、多播和任播。
- IPv6的地址使用冒号十六进制记法。
- 向IPv6过渡只能采用逐步演进的办法,必须使新安装的IPv6系统能够向后兼容。向IPv6过渡可以使用双协议栈或使用隧道技术。
- 与单播相比,在一对多的通信中,IP多播可大大节约网络资源。 IP多播使用D类IP地址。IP多播需要使用网际组管理协议IGMP和 多播路由选择协议。
- 虚拟专用网VPN利用公用的互联网作为本机构各专用网之间的通信载体。VPN内部使用互联网的专用地址。一个VPN至少要有一个路由器具有合法的全球IP地址,这样才能和本系统的另一个VPN通过互联网进行通信。所有通过互联网传送的数据都必须加密。

- 使用网络地址转换NAT技术,可以在专用网络内部使用专用IP地址,而仅在连接到互联网的路由器使用全球IP地址。这样就大大节约了宝贵的IP地址。
- MPLS的特点: (1) 支持面向连接的服务质量; (2) 支持流量工程, 平衡网络负载; (3) 有效地支持虚拟专用网VPN。
- MPLS在入口结点给每一个IP数据报打上固定长度的"标记",然后根据标记在第二层(链路层)用硬件进行转发(在标记交换路由器中进行标记对换),因而转发速率大大加快。

习题

- 4-01 网络层向上提供的服务有哪两种? 试比较其优缺点。
- **4-02** 网络互连有何实际意义?进行网络互连时,有哪些共同的问题需要解决?
- 4-03 作为中间设备, 转发器、网桥、路由器和网关有何区别?
- 4-04 试简单说明下列协议的作用:
- IP, ARP, RARP和ICMP。
- **4-05** IP地址分为几类?各如何表示?IP地址的主要特点是什么?
- 4-06 试根据IP地址的规定,计算出表4-2中的各项数据。
- **4-07** 试说明IP地址与硬件地址的区别。为什么要使用这两种不同的地址?
- **4-08** IP地址方案与我国的电话号码体制的主要不同点是什么?
- **4-09** (1) 子网掩码为255.255.255.0代表什么意思?
- (2) 一个网络的现在掩码为255.255.255.248, 问该网络能够连接多少台主机?
- (3) 一个A类网络和一个B类网络的子网号subnet-id分别为16个1和8个1. 问这两个网络的子网掩码有何不同?

- (4) 一个B类地址的子网掩码是255.255.240.0。试问在其中每一个子网上的主机数最多是多少?
- (5) 一个A类网络的子网掩码为255.255.0.255, 它是否为有效的子网掩码?
- (6) 某个IP地址的十六进制表示是C2.2F.14.81, 试将其转换为点分十进制的形式。这个地址是哪一类IP地址?
 - (7) C类网络使用子网掩码有无实际意义? 为什么?
- **4-10** 试辨认以下IP地址的网络类别:
 - (1) 128.36.199.3
 - (2) 21.12.240.17
 - (3) 183.194.76.253
 - (4) 192.12.69.248
 - (5) 89.3.0.1
 - (6) 200.3.6.2
- **4-11 IP**数据报中的首部检验和并不检验数据报中的数据。这样做的最大好处是什么?坏处是什么?
- **4-12** 当某个路由器发现一IP数据报的检验和有差错时,为什么采取丢弃的办法而不是要求源站重传此数据报? 计算首部检验和为什么不采用CRC检验码?
- **4-13** 设IP数据报使用固定首部,其各字段的具体数值如图**4-65**所示 (除IP地址外,均为十进制表示)。试用二进制运算方法计算应当写入到首部检验和字段中的数值(用二进制表示)。

4	5	0	28	
		1	0 0	
2	1	17	首部检验和 (待计算后写入)	
	10.12.14.5			
12.6.7.9				

图4-65 习题4-13的图

- **4-14** 重新计算上题,但使用十六进制运算方法(每16位二进制数字转换为4个十六进制数字,再按十六进制加法规则计算)。比较这两种方法。
- **4-15** 什么是最大传送单元MTU? 它和IP数据报首部中的哪个字段有关系?
- **4-16** 在互联网中将IP数据报分片传送的数据报在最后的目的主机进行组装。还可以有另一种做法,即数据报片通过一个网络就进行一次组装。试比较这两种方法的优劣。
- 4-17 一个3200位长的TCP报文传到IP层,加上160位的首部后成为数据报。下面的互联网由两个局域网通过路由器连接起来,但第二个局域网所能传送的最长数据帧中的数据部分只有1200位,因此数据报在路由器必须进行分片。试问第二个局域网向其上层要传送多少比特的数据(这里的"数据"当然指的是局域网看见的数据)?
- **4-18** (1) 有人认为: "ARP协议向网络层提供了转换地址的服务, 因此ARP应当属于数据链路层。"这种说法为什么是错误的?
- (2) 试解释为什么ARP高速缓存每存入一个项目就要设置10~20分钟的超时计时器。这个时间设置得太大或太小会出现什么问题?
- (3) 举出至少两种不需要发送ARP请求分组的情况(即不需要请求将某个目的IP地址解析为相应的硬件地址)。
- **4-19** 主机A发送IP数据报给主机B,途中经过了5个路由器。试问在IP数据报的发送过程中总共使用了几次ARP?
- 4-20 设某路由器建立了如下路由表:

目的网络	子网掩码	下一跳
128.96.39.0	255.255.255.128	接口 m0
128.96.39.128	255.255.255.128	接口 ml
128.96.40.0	255.255.255.128	R_2
192.4.153.0	255.255.255.192	R_3
* (默认)	_	R_4

现共收到5个分组,其目的地址分别为:

- (1) 128.96.39.10
- (2) 128.96.40.12
- (3) 128.96.40.151
- (4) 192.4.153.17
- (5) 192.4.153.90

试分别计算其下一跳。

- **4-21** 某单位分配到一个B类IP地址,其net-id为129.250.0.0。该单位有4000台机器,平均分布在16个不同的地点。如选用子网掩码为255.255.255.0,试给每一个地点分配一个子网号码,并算出每个地点主机号码的最小值和最大值。
- **4-22** 一个数据报长度为4000字节(固定首部长度)。现在经过一个网络传送,但此网络能够传送的最大数据长度为1500字节。试问应当划分为几个短些的数据报片?各数据报片的数据字段长度、片偏移字段和MF标志应为何数值?
- **4-23** 分两种情况(使用子网掩码和使用CIDR)写出互联网的IP层查 找路由的算法。
- **4-24** 试找出可产生以下数目的A类子网的子网掩码(采用连续掩码):
 - (1) 2; (2) 6; (3) 30; (4) 62; (5) 122; (6) 250 \circ
- 4-25 以下有4个子网掩码,哪些是不推荐使用的?为什么?

- (1) 176.0.0.0; (2) 96.0.0.0; (3) 127.192.0.0; (4) 255.128.0.0 °
- 4-26 有如下的4个/24地址块、试进行最大可能的聚合。

212.56.132.0/24

212.56.133.0/24

212.56.134.0/24

212.56.135.0/24

- **4-27** 有两个CIDR地址块208.128/11和208.130.28/22。是否有哪一个地址块包含了另一个地址?如果有,请指出,并说明理由。
- 4-28 已知路由器R₁的路由表如表4-13所示。

表4-13 习题4-28中路由器R₁的路由表

地址掩码	目的网络地址	下一跳地址	路由器接口
/26	140.5.12.64	180.15.2.5	m2
/24	130.5.8.0	190.16.6.2	m1
/16	110.71.0.0		m0
/16	180.15.0.0		m2
/16	190.16.0.0		m1
默认	默认	110.71.4.5	m0

试画出各网络和必要的路由器的连接拓扑,标注出必要的IP地址和接口。对不能确定的情况应当指明。

4-29 一个自治系统有5个局域网,其连接图如图4-66所示。LAN $_2$ 至 LAN $_5$ 上的主机数分别为:91,150,3和15。该自治系统分配到的IP 地址块为30.138.118/23。试给出每一个局域网的地址块(包括前缀)。

图4-66 习题4-29的图

4-30 一个大公司有一个总部和三个下属部门。公司分配到的网络前缀是192.77.33/24。公司的网络布局如图4-67所示。总部共有5个局域网,其中的 $LAN_1 \sim LAN_4$ 都连接到路由器 R_1 上, R_1 再通过 LAN_5 与路由器 R_2 相连。 R_2 和远地的三个部门的局域网 $LAN_6 \sim LAN_8$ 通过广域网相连。每一个局域网旁边标明的数字是局域网上的主机数。试给每一个局域网分配一个合适的网络前缀。

图4-67 习题4-30的图

- 4-31 以下地址中的哪一个和86.32/12匹配?请说明理由。
- (1) 86.33.224.123; (2) 86.79.65.216; (3) 86.58.119.74; (4) 86.68.206.154 °
- **4-32** 以下的地址前缀中的哪一个地址与2.52.90.140匹配?请说明理由。
 - (1) 0/4; (2) 32/4; (3) 4/6; (4) $80/4 \circ$
- **4-33** 下面的前缀中的哪一个和地址152.7.77.159及152.31.47.252都匹配?请说明理由。
 - (1) 152.40/13; (2) 153.40/9; (3) 152.64/12; (4) 152.0/11 \circ

- 4-34 与下列掩码相对应的网络前缀各有多少位?
- (1) 192.0.0.0; (2) 240.0.0.0; (3) 255.224.0.0; (4) 255.255.255.252 °
- **4-35** 已知地址块中的一个地址是140.120.84.24/20。试求这个地址块中的最小地址和最大地址。地址掩码是什么?地址块中共有多少个地址?相当干多少个C类地址?
- **4-36** 已知地址块中的一个地址是190.87.140.202/29。重新计算上题。
- **4-37** 某单位分配到一个地址块136.23.12.64/26。现在需要进一步划分为4个一样大的子网。试问:
 - (1) 每个子网的网络前缀有多长?
 - (2) 每一个子网中有多少个地址?
 - (3) 每一个子网的地址块是什么?
 - (4) 每一个子网可分配给主机使用的最小地址和最大地址是什么?
- **4-38 IGP**和**EGP**这两类协议的主要区别是什么?
- 4-39 试简述RIP, OSPF和BGP路由选择协议的主要特点。
- **4-40** RIP使用UDP, OSPF使用IP, 而BGP使用TCP。这样做有何优点? 为什么RIP周期性地和邻站交换路由信息而BGP却不这样做?
- **4-41** 假定网络中的路由器B的路由表有如下的项目(这三列分别表示"目的网络"、"距离"和"下一跳路由器"):

 N_1 7 A N_2 2 C N_6 8 F

$$N_8$$
 4 E N_9 4 F

现在B收到从C发来的路由信息(这两列分别表示"目的网络"和"距离"):

试求出路由器B更新后的路由表(详细说明每一个步骤)。

4-42 假定网络中的路由器A的路由表有如下的项目(格式同上题):

现在A收到从C发来的路由信息(格式同上题):

$$\begin{array}{ccc}
N_1 & 2 \\
N_2 & 1 \\
N_3 & 3
\end{array}$$

试求出路由器A更新后的路由表(详细说明每一个步骤)。

- **4-43 IGMP**协议的要点是什么? 隧道技术在多播中是怎样使用的?
- 4-44 什么是VPN? VPN有什么特点和优缺点? VPN有几种类别?
- 4-45 什么是NAT? NAPT有哪些特点? NAT的优点和缺点有哪些?
- 4-46 试把下列IPv4地址从二进制记法转换为点分十进制记法。
 - (1) 10000001 00001011 00001011 11101111
 - (2) 11000001 10000011 00011011 11111111
 - (3) 11100111 11011011 10001011 01101111
 - (4) 11111001 10011011 11111011 00001111
- 4-47 下列IPv4地址是否有错误? 如有,请指出。
 - (1) 111.56.045.78
 - (2) 221.34.7.8.20
 - (3) 75.45.301.14
 - (4) 11100010.23.14.67
- **4-48** 假设一段地址的首地址为146.102.29.0, 末地址为146.102.32.255, 求这个地址段的地址数。
- 4-49 求下列每个地址的类别。
 - (1) 00000001 00001011 00001011 11101111
 - (2) 11000001 10000011 00011011 11111111

- (3) 10100111 11011011 10001011 01101111
- (4) 11110011 10011011 11111011 00001111
- 4-50 求下列每个地址的类别。
 - (1) 227.12.14.87
 - (2) 193.14.56.22
 - (3) 14.23.120.8
 - (4) 252.5.15.111
- **4-51** 给出某地址块中的一个地址为73.22.17.25。求该地址块的地址数及其首地址和末地址。
- **4-52** 已知某网络有一个地址是167.199.170.82/27, 问这个网络的网络掩码、网络前缀长度和网络后缀长度是多少?
- **4-53** 已知地址块中的一个地址是167.199.170.82/27, 求这个地址块的地址数、首地址以及末地址各是多少?
- **4-54** 某单位分配到一个起始地址为14.24.74.0/24的地址块。该单位需要用到三个子网,他们的三个子地址块的具体要求是:子网 N_1 需要120个地址,子网 N_2 需要60个地址,子网 N_3 需要10个地址。请给出地址块的分配方案。
- **4-55** 如图4-68所示,网络145.13.0.0/16划分为四个子网 N_1 , N_2 , N_3 和 N_4 。这四个子网与路由器R连接的接口分别是m0,m1,m2和m3。路由器R的第五个接口m4连接到互联网。

图4-68 习题4-55的图

- (1) 试给出路由器R的路由表。
- (2) 路由器R收到一个分组,其目的地址是145.13.160.78。试给出这个分组是怎样被转发的。
- **4-56** 收到一个分组,其目的地址**D**=11.1.2.5。要查找的路由表中有这样三项:

路由1 到达网络11.0.0.0/8

路由2 到达网络11.1.0.0/16

路由3 到达网络11.1.2.0/24

试问在转发这个分组时应当选择哪一个路由?

- 4-57 同上题。假定路由1的目的网络11.0.0.0/8中有一台主机H,其IP地址是11.1.2.3。当我们发送一个分组给主机H时,根据最长前缀匹配准则,上面的这个路由表却把这个分组转发到路由3的目的网络11.1.2.0/24。是最长前缀匹配准则有时会出错吗?
- 4-58 已知一CIDR地址块为200.56.168.0/21。
 - (1) 试用二进制表示这个地址块。
 - (2) 这个CIDR地址块包括有多少个C类地址块?

- **4-59** 建议的IPv6协议没有首部检验和。这样做的优缺点是什么?
- **4-60** 在IPv4首部中有一个"协议"字段,但在IPv6的固定首部中却没有。这是为什么?
- **4-61** 当使用IPv6时,ARP协议是否需要改变?如果需要改变,那么应当进行概念性的改变还是技术性的改变?
- 4-62 IPv6只允许在源点进行分片。这样做有什么好处?
- **4-63** 设每隔1微微秒就分配出100万个IPv6地址。试计算大约要用多少年才能将IPv6地址空间全部用光。可以和宇宙的年龄(大约有100亿年)进行比较。
- 4-64 试把以下的IPv6地址用零压缩方法写成简洁形式:
 - (1) 0000: 0000: 0F53: 6382: AB00: 67DB: BB27: 7332
 - (2) 0000: 0000: 0000: 0000: 0000: 004D: ABCD
 - (3) 0000: 0000: 0000: AF36: 7328: 0000: 87AA: 0398
 - (4) 2819: 00AF: 0000: 0000: 0000: 0035: 0CB2: B271
- 4-65 试把以下的零压缩的IPv6地址写成原来的形式:
 - (1) 0: : 0
 - (2) 0: AA: : 0
 - (3) 0: 1234: : 3
 - (4) 123: : 1: 2
- 4-66 从IPv4过渡到IPv6的方法有哪些?
- **4-67** 多协议标记交换MPLS的工作原理是怎样的?它有哪些主要的功能?

- (1)_注:虚电路表示这只是一条逻辑上的连接,分组都沿着这条逻辑连接按照存储转发方式传送,而并不是真正建立了一条物理连接。请注意,电路交换的电话通信是先建立了一条真正的连接。因此分组交换的虚连接和电路交换的连接只是类似,但并不完全一样。
- (2)_注:尽最大努力交付(best effort delivery)虽然并不表示路由器可以任意丢弃分组,但在网络层上的这种交付实质上就是不可靠交付。顺便提一下,文献中也常使用"尽力而为"的译名。这个译名固然较为简洁,但似不够准确。
- (3)_注:还有一种网桥和路由器的混合物 **桥路器**(brouter),它是兼有网桥和路由器的功能的产品。实际上,严格的网桥或严格的路由器产品是较少见的。不过桥路器名词用得不普遍。
- (4) 注: 更准确些说应是转发表。路由表和转发表的区别见后面4.5.5节的讨论。
- (5)_注: 我国用户可向 亚太网络信息中心 APNIC(Asia Pacific Network Information Center)申请IP地址(要缴费)。
- (<u>6</u>)_注:关于全1和全0还可以再举两个例子。例如,B类地址128.7.255.255表示"在网络128.7.0.0上的所有主机"。而A类地址0.0.0.35则表示"在这个网络上主机号为35的主机"。
- (7)_注: 在局域网中,由于硬件地址已固化在网卡上的ROM中,因此常常将硬件地址称为 **物理地址**。因为在局域网的MAC帧中的源地址和目的地址都是硬件地址,因此硬件地址又称为 **MAC地址**。在本书中,物理地址、硬件地址和MAC地址常常作为同义词出现。
- (8)_注:原来如协议字段值这样的数值都是由互联网赋号管理局IANA负责制定,并公布在有关的RFC文档中。其实IANA并不是一个庞大的机构,而仅仅由Jon Postel一个人来负责管理。由于Jon Postel于1998年去世,同时也由于互联网的商业化和国际化,美国决定用一个新的、私营的、非营利的国际公司——互联网名称与数字地址分配机构 ICANN [W-ICANN] 取代IANA。但后来ICANN并没有取消IANA,而是保留了IANA,并且和IANA进行了分工。因此现在就出现了IANA/ICANN或ICANN/IANA这样的写法。这两个机构都负责IP地址和一些重要参数的管理。现在有关互联网上的重要的参数已经不在RFC文档公布 [RFC 3232],而改为在网址www.iana.org上查询一个联机数据库。
- (9)_注:两个数进行二进制反码求和的运算很简单。它的规则是从低位到高位逐列进行计算。0和0相加是0,0和1相加是1,1和1相加是0但要产生一个进位1,加到下一列。若最高位相加后产生进位,则最后得到的结果要加1。请注意,**反码**(one's complement)和补码(two's complement)是不一样的。
- (10) 注:一个实际的路由表还会有其他的一些信息。例如, 标志、参考计数、使用情况 以及 接口 等。"标志"可以设置多个字符以说明不同的意思。如U表示该路由是可用的, G表示下一跳地址是一个路由器, 因而是间接交付(如不设置G, 则表示直接交付), H表示该路由是到一台主机(如不设置H, 则表示该路由是到一个网络)。"参考计数"是给出正在使用该路

由的TCP连接数。"使用情况"显示出通过该路由的分组数。"接口"是本地接口的名字,指出分组应当从哪一个接口转发。

- (11) 注:线索(trie)来自retrieval(检索),读音与"try"相同。
- (12) 注:无法交付的UDP用户数据报使用了非法的端口号(见下一章5.2.2节)。
- (13)_注: Robustness一词在自动控制界的标准译名是"鲁棒性",但在 [MINGCI94]则译为"稳健性"。
- (14) 注: 这里的"距离"实际上指的是"最短距离",但为方便起见往往省略"最短"二字。
- (<u>15</u>)_注:自治系统号ASN原来规定为一个16位的号码(最大的号码是65535),由IANA分配。现在已经把ASN扩展到32位「RFC 6793」。
- (16) 注:在前面我们已经说过,在讨论路由器之间是如何交换路由信息时,最好将路由器之间的网络简化为一条链路。OSPF的"链路状态"中的"链路"实际上就是指"和这两个路由器都有接口的网络"。
- (17)_注:BGP的文档中使用了一个新名词——BGP speaker(BGP发言人)。"BGP发言人"表明该路由器可以代表整个自治系统AS与其他自治系统AS交换路由信息。虽然BGP协议允许使用任何其他计算机作为BGP发言人,但大多数AS实际上是在一个路由器上运行BGP协议的。英文speaker在这里译为"发言人"容易引起误解,其实这里的speaker并不是人而是路由器。不过现在还没有找到更为合适的译名。
- (18)_注: label的标准译名本来是"标号",但目前在MPLS中的label常译为"标记"。在文献中也还有译为"标签"的。
- (19)_注:有的公司愿意用"第三层交换"表示"第三层的路由选择功能加上第二层的交换功能"。但这样的术语不够明确,因而编者不主张使用这一术语。
- (20)_注: 这里使用 [RFC 3031] 中的标准词汇。"对换"和"交换"的意思相近,但"对换"更强调 两个标记互相对换(把入标记更换为出标记)。虽然MPLS中的LS是表示"标记交换",但标记交换路由器LSR实现的功能是"标记对换"。
- (<u>21)</u> 注:流量工程是对网络上的通信量进行测量、建模和控制,使网络运行的性能得到最优化。

第5章 运输层

本章先概括介绍运输层协议的特点、进程之间的通信和端口等重要概念.然后讲述比较简单的UDP协议。其余的篇幅都是讨论较为复杂但

非常重要的TCP协议(1)和可靠传输的工作原理,包括停止等待协议和ARQ协议。在详细讲述TCP报文段的首部格式之后,讨论TCP的三个重要问题:滑动窗口、流量控制和拥塞控制机制。最后,介绍TCP的连接管理。

运输层 是整个网络体系结构中的关键层次之一。一定要弄清以下一些 重要概念:

- (1) 运输层为相互通信的应用进程提供逻辑通信。
- (2) 端口和套接字的意义。
- (3) 无连接的UDP的特点。
- (4) 面向连接的TCP的特点。
- (5) 在不可靠的网络上实现可靠传输的工作原理,停止等待协议和 ARQ协议。
 - (6) TCP的滑动窗口、流量控制、拥塞控制和连接管理。

5.1 运输层协议概述

5.1.1 进程之间的通信

从通信和信息处理的角度看,**运输层向它上面的应用层提供通信服务**,它属于面向通信部分的最高层,同时也是用户功能中的最低层。当网络的边缘部分中的两台主机使用网络的核心部分的功能进行端到端的通信时,只有主机的协议栈才有运输层,而网络核心部分中的路由器在转发分组时都只用到下三层的功能。

下面通过图5-1的示意图来说明运输层的作用。设局域网 LAN_1 上的主机A和局域网 LAN_2 上的主机B通过互连的广域网WAN进行通信。我们知道,IP协议能够把源主机A发送出的分组,按照首部中的目的地址,送交到目的主机B,那么,为什么还需要运输层呢?

图5-1 运输层为相互通信的应用进程提供了逻辑通信

从IP层来说,通信的两端是两台主机。IP数据报的首部明确地标志了 这两台主机的IP地址。但"两台主机之间的通信"这种说法还不够清 真正进行通信的实体是在主机中的进程,是这台主机 楚。这是因为. 中的一个进程和另一 台主机中的一个**讲程** 在交换数据 (即涌信) 两台主机进行通信就是两台主机中的应用进程互相通信 。 IP协议虽然能把分组送到目的主机... 但是这个 网络层而没有交付主机中的应用进程。从运输层的角度看 **正端点并不是主机而是主机中的进程** 。也就是说, 用进程之间的通信。在一台主机中经常有多个应用进程同时分别和另 台主机中的多个应用进程通信。例如, 某用户在使用浏览器查找某 网站的信息时,其主机的应用层运行浏览器客户进程。如果在浏览网 页的同时, 还要用电子邮件给网站发送反馈意见, 那么主机的应用层 就还要运行电子邮件的客户进程。在图5-1中,主机A的应用进程AP 1 和主机B的应用进程AP3通信,而与此同时,应用进程AP2也和对方 的应用进程AP4通信。这表明运输层有一个很重要的功能-(multiplexing) 和**分用** (demultiplexing) 。这里的"复用"是指在发送 方不同的应用进程都可以使用同一个运输层协议传送数据 加上适当的首部) 而"分用"是指接收方的运输层在剥去报文的首部 后能够把这些数据正确交付目的应用进程(2)。图5-1中两个运输层之 间有一个双向粗箭头,写明"运输层提供应用进程间的逻辑通信 "。"逻辑通信"的意思是:从应用层来看,只要把应用层报文交给下面 的运输层,运输层就可以把这报文传送到对方的运输层(哪怕双方相 距很远,例如几千公里),**好像这种通信就是沿水平方向直接传送数 据。但事实上这两个运输层之间并没有一条水平方向的物理连接。数 据的传送是沿着图中的虚线方向(经过多个层次)传送的**。"逻辑通 信"的意思是"好像是这样通信,但事实上并非真的这样通信"。

从这里可以看出网络层和运输层有明显的区别。**网络层为主机之间提供逻辑通信,而运输层为应用进程之间提供端到端的逻辑通信**(见图 5-2)。然而正如后面还要讨论的,运输层还具有网络层无法代替的许多其他重要功能。

图5-2 运输层协议和网络层协议的主要区别

运输层还要对收到的报文进行**差错检测**。大家应当还记得,在网络层,**IP**数据报首部中的检验和字段,只检验首部是否出现差错而不检查数据部分。

根据应用程序的不同需求,运输层需要有两种不同的运输协议,即**面向连接的TCP**和**无连接的UDP**,这两种协议就是本章要讨论的主要内容。

我们还应指出,**运输层向高层用户屏蔽了下面网络核心的细节**(如网络拓扑、所采用的路由选择协议等),**它使应用进程看见的就是好像在两个运输层实体之间有一条端到端的逻辑通信信道**,但这条逻辑通信信道对上层的表现却因运输层使用的不同协议而有很大的差别。当运输层**采用面向连接的TCP协议时,尽管下面的网络是不可靠的**(只

提供尽最大努力服务),但这种逻辑通信信道就相当于**一条全双工的可靠信道**。但当运输层采用无连接的UDP协议时,这种逻辑通信信道仍然是一条**不可靠信道**。

5.1.2 运输层的两个主要协议

TCP/IP运输层的两个主要协议都是互联网的正式标准、即:

- (1) 用户数据报协议 UDP(User Datagram Protocol) [RFC 768]
- (2) **传输控制协议** TCP(Transmission Control Protocol) [RFC 793] 图5-3给出了这两种协议在协议栈中的位置。

图5-3 TCP/IP体系中的运输层协议

按照OSI的术语,两个对等运输实体在通信时传送的数据单位叫做**运输协议数据单元** TPDU(Transport Protocol Data Unit)。但在TCP/IP体系中,则根据所使用的协议是TCP或UDP,分别称之为**TCP报文段**(segment)或**UDP用户数据报**。

UDP在传送数据之前**不需要先建立连接**。远地主机的运输层在收到UDP报文后,不需要给出任何确认。虽然UDP不提供可靠交付,但在某些情况下UDP却是一种最有效的工作方式。

TCP则提供面向连接的服务。在传送数据之前必须先建立连接,数据传送结束后要释放连接。TCP不提供广播或多播服务。由于TCP要提供可靠的、面向连接的运输服务,因此不可避免地增加了许多的开销,如确认、流量控制、计时器以及连接管理等。这不仅使协议数据单元的首部增大很多,还要占用许多的处理机资源。

表5-1给出了一些应用和应用层协议主要使用的运输层协议(UDP或TCP)。

表5-1 使用UDP和TCP协议的各种应用和应用层协议

应用	应用层协议	运输层协议
名字转换	DNS(域名系统)	UDP
文件传送	TFTP(简单文件传送协议)	UDP
路由选择协议	RIP (路由信息协议)	UDP
IP地址配置	DHCP(动态主机配置协议)	UDP
网络管理	SNMP(简单网络管理协议)	UDP
远程文件服务	NFS(网络文件系统)	UDP
器		
IP电话	专用协议	UDP
流式多媒体通	专用协议	UDP
信		
多播	IGMP (网际组管理协议)	UDP
电子邮件	SMTP (简单邮件传送协议)	TCP
远程终端接入	TELNET (远程终端协议)	TCP
万维网	HTTP (超文本传送协议)	TCP
文件传送	FTP (文件传送协议)	TCP

5.1.3 运输层的端口

前面已经提到过运输层的复用和分用功能。其实在日常生活中也有很多复用和分用的例子。假定一个机构的所有部门向外单位发出的公文都由收发室负责寄出,这相当于各部门都"复用"这个收发室。当收发

室收到从外单位寄来的公文时,则要完成"分用"功能,即按照信封上写明的本机构的部门地址把公文正确进行交付。

运输层的复用和分用功能也是类似的。应用层所有的应用进程都可以通过运输层再传送到IP层(网络层),这就是**复用**。运输层从IP层收到发送给各应用进程的数据后,必须分别交付指明的各应用进程,这就是**分用**。显然,给应用层的每个应用进程赋予一个非常明确的标志是至关重要的。

我们知道,在单个计算机中的进程是用进程标识符(一个不大的整数)来标志的。但是在互联网环境下,用计算机操作系统所指派的这种进程标识符来标志运行在应用层的各种应用进程则是不行的。这是因为在互联网上使用的计算机的操作系统种类很多,而不同的操作系统又使用不同格式的进程标识符。为了使运行不同操作系统的计算机的应用进程能够互相通信,就必须用统一的方法(而这种方法必须与特定操作系统无关)对TCP/IP体系的应用进程进行标志。

但是,把一个特定机器上运行的特定进程,指明为互联网上通信的最后终点还是不可行的。这是因为进程的创建和撤销都是动态的,通信的一方几乎无法识别对方机器上的进程。另外,我们往往需要利用目的主机提供的功能来识别终点,而不需要知道具体实现这个功能的进程是哪一个(例如,要和互联网上的某个邮件服务器联系,并不一定要知道这个服务器功能是由目的主机上的哪个进程实现的)。

解决这个问题的方法就是在运输层使用**协议端口号**(protocol port number),或通常简称为**端口**(port)。这就是说,虽然通信的终点是应用进程,但只要把所传送的报文交到目的主机的某个合适的目的端口,剩下的工作(即最后交付目的进程)就由TCP或UDP来完成。

请注意,这种**在协议栈层间的抽象的协议端口是软件端口**,和路由器或交换机上的硬件端口是完全不同的概念。硬件端口是**不同硬件设备**进行交互的接口,而**软件端口是应用层的各种协议进程与运输实体进行层间交互的一种地址**。不同的系统具体实现端口的方法可以是不同的(取决于系统使用的操作系统)。

在后面将讲到的UDP和TCP的首部格式中,我们将会看到(图5-5和图5-14)它们都有**源端口**和**目的端口**这两个重要字段。当运输层收到IP

层交上来的运输层报文时,就能够根据其首部中的目的端口号把数据交付应用层的目的应用进程。

TCP/IP的运输层用一个16位端口号来标志一个端口。但请注意,端口号只具有本地意义,它只是为了标志本计算机应用层中的各个进程在和运输层交互时的层间接口。在互联网不同计算机中,相同的端口号是没有关联的。16位的端口号可允许有65535个不同的端口号,这个数目对一个计算机来说是足够用的。

由此可见,两个计算机中的进程要互相通信,不仅必须知道对方的IP地址(为了找到对方的计算机),而且要知道对方的端口号(为了找到对方计算机中的应用进程)。这和我们寄信的过程类似。当我们要给某人写信时,就必须在信封上写明他的通信地址(这是为了找到他的住所,相当于IP地址),并且还要写上收件人的姓名(这是因为在同一住所中可能有好几个人,这相当于端口号)。在信封上还写明自己的地址。当收信人回信时,很容易在信封上找到发信人的地址。互联网上的计算机通信是采用客户-服务器方式。客户在发起通信请求时,必须先知道对方服务器的IP地址和端口号。因此运输层的端口号分为下面的两大类。

(1) **服务器端使用的端口号** 这里又分为两类,最重要的一类叫做**熟知端口号**(well-known port number)或**系统端口号**,数值为0~1023。这些数值可在网址www.iana.org查到。IANA把这些端口号指派给了TCP/IP最重要的一些应用程序,让所有的用户都知道。当一种新的应用程序出现后,IANA必须为它指派一个熟知端口,否则互联网上的其他应用进程就无法和它进行通信。表5-2给出了一些常用的熟知端口号。

表5-2 常用的熟知端口号

Γ	应用程序	FTP	TELNET	SMTP	DNS	TFTP	HTTP	SNMP	SNMP (trap)	HTTPS
Г	熟知端口号	21	23	25	53	69	80	161	162	443

另一类叫做**登记端口**号,数值为1024~49151。这类端口号是为没有熟知端口号的应用程序使用的。使用这类端口号必须在IANA按照规定的手续登记,以防止重复。

(2) **客户端使用的端口号** 数值为49152~65535。由于这类端口号仅在客户进程运行时才动态选择,因此又叫做**短暂端口号**(3)。这类端

口号留给客户进程选择暂时使用。当服务器进程收到客户进程的报文时,就知道了客户进程所使用的端口号,因而可以把数据发送给客户进程。通信结束后,刚才已使用过的客户端口号就不复存在,这个端口号就可以供其他客户进程使用。

下面将分别讨论UDP和TCP。UDP比较简单,本章主要讨论TCP。

5.2 用户数据报协议UDP

5.2.1 UDP概述

用户数据报协议UDP只在IP的数据报服务之上增加了很少一点的功能,这就是复用和分用的功能以及差错检测的功能。UDP的主要特点是:

- (1) UDP是**无连接的**,即发送数据之前不需要建立连接(当然,发送数据结束时也没有连接可释放),因此减少了开销和发送数据之前的时延。
- (2) UDP使用**尽最大努力交付**,即不保证可靠交付,因此主机不需要维持复杂的连接状态表(这里面有许多参数)。
- (3) UDP是**面向报文**的。发送方的UDP对应用程序交下来的报文,在添加首部后就向下交付IP层。UDP对应用层交下来的报文,既不合并,也不拆分,而是**保留这些报文的边界**。这就是说,应用层交给UDP多长的报文,UDP就照样发送,即一次发送一个报文,如图5-4所示。在接收方的UDP,对IP层交上来的UDP用户数据报,在去除首部后就原封不动地交付上层的应用进程。也就是说,UDP一次交付一个完整的报文。因此,应用程序必须选择合适大小的报文。若报文太长,UDP把它交给IP层后,IP层在传送时可能要进行分片,这会降低IP层的效率。反之,若报文太短,UDP把它交给IP层后,会使IP数据报的首部的相对长度太大,这也降低了IP层的效率。

图5-4 UDP是面向报文的

- (4) UDP没有拥塞控制,因此网络出现的拥塞不会使源主机的发送速率降低。这对某些实时应用是很重要的。很多的实时应用(如IP电话、实时视频会议等)要求源主机以恒定的速率发送数据,并且允许在网络发生拥塞时丢失一些数据,但却不允许数据有太大的时延。UDP正好适合这种要求。
 - (5) UDP支持一对一、一对多、多对一和多对多的交互通信。
- (6) UDP**的首部开销小**,只有8个字节,比TCP的20个字节的首部要短。

虽然某些实时应用需要使用没有拥塞控制的UDP,但当很多的源主机同时都向网络发送高速率的实时视频流时,网络就有可能发生拥塞,结果大家都无法正常接收。因此,不使用拥塞控制功能的UDP有可能会引起网络产生严重的拥塞问题。

还有一些使用UDP的实时应用,需要对UDP的不可靠的传输进行适当的改进,以减少数据的丢失。在这种情况下,应用进程本身可以在不影响应用的实时性的前提下,增加一些提高可靠性的措施,如采用前向纠错或重传已丢失的报文。

5.2.2 UDP的首部格式

用户数据报UDP有两个字段:数据字段和首部字段。首部字段很简单,只有8个字节(图5-5),由四个字段组成,每个字段的长度都是两个字节。各字段意义如下:

- (1) **源端口** 源端口号。在需要对方回信时选用。不需要时可用全 0。
 - (2) 目的端口 目的端口号。这在终点交付报文时必须使用。
 - (3) **长度** UDP用户数据报的长度,其最小值是8(仅有首部)。
- (4) **检验和** 检测UDP用户数据报在传输中是否有错。有错就丢弃。

图5-5 UDP用户数据报的首部和伪首部

当运输层从IP层收到UDP数据报时,就根据首部中的目的端口,把UDP数据报通过相应的端口,上交最后的终点——应用进程。图5-6是UDP基于端口分用的示意图。

图5-6 UDP基于端口的分用

如果接收方UDP发现收到的报文中的目的端口号不正确(即不存在对应于该端口号的应用进程),就丢弃该报文,并由网际控制报文协议ICMP发送"端口不可达"差错报文给发送方。我们在上一章4.4.2节"ICMP的应用举例"讨论traceroute时,就是让发送的UDP用户数据报故意使用一个非法的UDP端口,结果ICMP就返回"端口不可达"差错报文,因而达到了测试的目的。

请注意,虽然在UDP之间的通信要用到其端口号,但由于UDP的通信是无连接的,因此不需要使用套接字(TCP之间的通信必须要在两个套接字之间建立连接)。

UDP用户数据报首部中检验和的计算方法有些特殊。在计算检验和时,要在UDP用户数据报之前增加12个字节的**伪首部**。所谓"伪首部"是因为这种伪首部并不是UDP用户数据报真正的首部。只是在计算检验和时,临时添加在UDP用户数据报前面,得到一个临时的UDP用户数据报。检验和就是按照这个临时的UDP用户数据报来计算的。伪首部既不向下传送也不向上递交,而仅仅是为了计算检验和。图5-5的最上面给出了伪首部各字段的内容。

UDP计算检验和的方法和计算IP数据报首部检验和的方法相似。但不同的是: IP数据报的检验和只检验IP数据报的首部,但UDP的检验和是把首部和数据部分一起都检验。在发送方,首先是先把全零放入检验和字段。再把伪首部以及UDP用户数据报看成是由许多16位的字串接起来的。若UDP用户数据报的数据部分不是偶数个字节,则要填入一个全零字节(但此字节不发送)。然后按二进制反码计算出这些16位字的和。将此和的二进制反码写入检验和字段后,就发送这样的UDP用户数据报。在接收方,把收到的UDP用户数据报连同伪首部(以及可能的填充全零字节)一起,按二进制反码求这些16位字的和。当无差错时其结果应为全1。否则就表明有差错出现,接收方就应丢弃这个UDP用户数据报(也可以上交给应用层,但附上出现了差错的警告)。图5-7给出了一个计算UDP检验和的例子。这里假定用户数据报的长度是15字节,因此要添加一个全0的字节。读者可以自己检验一下在接收端是怎样对检验和进行检验的。不难看出,这种简单的差错检验方法的检错能力并不强,但它的好处是简单,处理起来较快。

按二进制反码运算求和 10010110 11101101 → 求和得出的结果 将得出的结果求反码 01101001 00010010 → 检验和

图5-7 计算UDP检验和的例子

如图5-5所示,伪首部的第3字段是全零;第4字段是IP首部中的协议字段的值。以前已讲过,对于UDP,此协议字段值为17;第5字段是UDP用户数据报的长度。因此,这样的检验和,既检查了UDP用户数据报的源端口号和目的端口号以及UDP用户数据报的数据部分,又检查了IP数据报的源IP地址和目的地址。

5.3 传输控制协议TCP概述

由于TCP协议比较复杂,因此本节先对TCP协议进行一般的介绍,然后再逐步深入讨论TCP的可靠传输、流量控制和拥塞控制等问题。

5.3.1 TCP最主要的特点

TCP是TCP/IP体系中非常复杂的一个协议。下面介绍TCP最主要的特点。

- (1) TCP是**面向连接的运输层协议**。这就是说,应用程序在使用TCP协议之前,必须先建立TCP连接。在传送数据完毕后,必须释放已经建立的TCP连接。也就是说,应用进程之间的通信好像在"打电话":通话前要先拨号建立连接,通话结束后要挂机释放连接。
- (2) 每一条TCP连接只能有两个端点(endpoint),每一条TCP连接只能是点对点的(一对一)。这个问题后面还要进一步讨论。

- (3) **TCP**提供**可靠交付**的服务。通过**TCP**连接传送的数据,无差错、不丢失、不重复,并且按序到达。
- (4) TCP提供全双工通信。TCP允许通信双方的应用进程在任何时候都能发送数据。TCP连接的两端都设有发送缓存和接收缓存,用来临时存放双向通信的数据。在发送时,应用程序在把数据传送给TCP的缓存后,就可以做自己的事,而TCP在合适的时候把数据发送出去。在接收时,TCP把收到的数据放入缓存,上层的应用进程在合适的时候读取缓存中的数据。
- (5) **面向字节流**。TCP中的"流"(stream)指的是**流入到进程或从进程流出的字节序列**。"面向字节流"的含义是:虽然应用程序和TCP的交互是一次一个数据块(大小不等),但TCP把应用程序交下来的数据仅仅看成是一连串的**无结构的字节流**。TCP并不知道所传送的字节流的含义。TCP不保证接收方应用程序所收到的数据块和发送方应用程序所发出的数据块具有对应大小的关系(例如,发送方应用程序交给发送方的TCP共10个数据块,但接收方的TCP可能只用了4个数据块就把收到的字节流交付上层的应用程序)。但接收方应用程序收到的字节流必须和发送方应用程序发出的字节流完全一样。当然,接收方的应用程序必须有能力识别收到的字节流,把它还原成有意义的应用层数据。图5-8是上述概念的示意图。

图5-8 TCP面向字节流的概念

为了突出示意图的要点,我们只画出了一个方向的数据流。但请注意,在实际的网络中,一个TCP报文段包含上千个字节是很常见的,而图中的各部分都只画出了几个字节,这仅仅是为了更方便地说明"面向字节流"的概念。另一点很重要的是:图5-8中的TCP连接是一条**虚**

连接(也就是逻辑连接),而不是一条真正的物理连接。TCP报文段先要传送到IP层,加上IP首部后,再传送到数据链路层。再加上数据链路层的首部和尾部后,才离开主机发送到物理链路。

图5-8指出,TCP和UDP在发送报文时所采用的方式完全不同。TCP并不关心应用进程一次把多长的报文发送到TCP的缓存中,而是根据对方给出的窗口值和当前网络拥塞的程度来决定一个报文段应包含多少个字节(UDP发送的报文长度是应用进程给出的)。如果应用进程传送到TCP缓存的数据块太长,TCP就可以把它划分短一些再传送。如果应用进程一次只发来一个字节,TCP也可以等待积累有足够多的字节后再构成报文段发送出去。关于TCP报文段的长度问题,在后面还要进行讨论。

5.3.2 TCP的连接

TCP把**连接**作为**最基本的抽象**。TCP的许多特性都与TCP是面向连接的这个基本特性有关。因此我们对TCP连接需要有更清楚的了解。

前面已经讲过,每一条TCP连接有两个端点。那么,TCP连接的端点是什么呢?不是主机,不是主机的IP地址,不是应用进程,也不是运输层的协议端口。TCP连接的端点叫做**套接字**(socket)或**插口**。根据RFC 793的定义:端口号**拼接到**(concatenated with)IP地址即构成了套接字。因此,套接字的表示方法是在点分十进制的IP地址后面写上端口号,中间用冒号或逗号隔开。例如,若IP地址是192.3.4.5而端口号是80,那么得到的套接字就是(192.3.4.5:80)。总之,我们有

每一条TCP连接唯一地被通信两端的两个端点(即两个套接字)所确定。即:

$$TCP$$
 连接 ::= {socket₁, socket₂} = {(IP₁: port₁), (IP₂: port₂)} (5-2)

这里 IP_1 和 IP_2 分别是两个端点主机的IP地址,而 $port_1$ 和 $port_2$ 分别是两个端点主机中的端口号。TCP连接的两个套接字就是socket $_1$ 和 $port_2$ 。可见套接字 $port_2$ 。可见套接字 $port_3$ 的概念。在下一章的 $port_4$ 的概念。在下一章的 $port_2$ 的介绍。

总之,TCP连接就是由协议软件所提供的一种抽象。虽然有时为了方便,我们也可以说,在一个应用进程和另一个应用进程之间建立了一条TCP连接,但一定要记住: TCP连接的端点是个很抽象的套接字,即(IP地址:端口号)。也还应记住: 同一个IP地址可以有多个不同的TCP连接,而同一个端口号也可以出现在多个不同的TCP连接中。

请注意,socket这个名词有时容易使人把一些概念弄混淆,因为随着互联网的不断发展以及网络技术的进步,**同一个名词socket却可表示多种不同的意思**。例如:

- (1) 允许应用程序访问连网协议的应**用编程接口API** (Application Programming Interface),即运输层和应用层之间的一种接口,称为socket API,并简称为socket。
 - (2) 在socket API中使用的一个**函数名** 也叫做socket。
 - (3) 调用socket函数的**端点** 称为socket,如"创建一个数据报socket"。
- (4) 调用socket函数时,其**返回值** 称为socket描述符,可简称为socket。
 - (5) 在操作系统内核中连网协议的Berkeley实现,称为socket**实现**。

上面的这些socket的意思都和本章所引用的RFC 793定义的socket(指端口号拼接到IP地址)不同。请读者加以注意。

5.4 可靠传输的工作原理

我们知道,TCP发送的报文段是交给IP层传送的。但IP层只能提供尽最大努力服务,也就是说,TCP下面的网络所提供的是不可靠的传输。因此,TCP必须采用适当的措施才能使得两个运输层之间的通信变得可靠。

理想的传输条件有以下两个特点:

(1) 传输信道不产生差错。

(2) 不管发送方以多快的速度发送数据,接收方总是来得及处理收到的数据。

在这样的理想传输条件下,不需要采取任何措施就能够实现可靠传输。

然而实际的网络都不具备以上两个理想条件。但我们可以使用一些可靠传输协议,当出现差错时让发送方重传出现差错的数据,同时在接收方来不及处理收到的数据时,及时告诉发送方适当降低发送数据的速度。这样一来,本来不可靠的传输信道就能够实现可靠传输了。下面从最简单的停止等待协议(4).讲起。

5.4.1 停止等待协议

全双工通信的双方既是发送方也是接收方。下面为了讨论问题的方便,我们仅考虑A发送数据而B接收数据并发送确认。因此A叫做**发送方**,而B叫做**接收方**。因为这里是讨论可靠传输的原理,因此把传送的数据单元都称为分组,而并不考虑数据是在哪一个层次上传送的⑤。"停止等待"就是每发送完一个分组就停止发送,等待对方的确认。在收到确认后再发送下一个分组。

1. 无差错情况

停止等待协议可用图5-9来说明。图5-9(a)是最简单的无差错情况。 A发送分组 M_1 ,发完就暂停发送,等待B的确认。B收到了 M_1 就向A发送确认。A在收到了对 M_1 的确认后,就再发送下一个分组 M_2 。同样,在收到B对 M_2 的确认后,再发送 M_3 。

图5-9 停止等待协议

2. 出现差错

图5-9(b)是分组在传输过程中出现差错的情况。B接收 M_1 时检测出了差错,就丢弃 M_1 ,其他什么也不做(不通知A收到有差错的分组)⑥。也可能是 M_1 在传输过程中丢失了,这时B当然什么都不知道。在这两种情况下,B都不会发送任何信息。可靠传输协议是这样设计的:A只要超过了一段时间仍然没有收到确认,就认为刚才发送的分组丢失了,因而重传前面发送过的分组。这就叫做**超时重传**。要实现超时重传,就要在每发送完一个分组时设置一个超时计时器。如果在超时计时器到期之前收到了对方的确认,就撤销已设置的超时计时器。其实在图5-9(a)中,A为每一个已发送的分组都设置了一个**超时计时器**。但A只要在超时计时器到期之前收到了相应的确认,就撤销该超时计时器。为简单起见,这些细节在图5-9(a)中都省略了。

这里应注意以下三点。

第一, A在发送完一个分组后, **必须暂时保留已发送的分组的副本**(在发生超时重传时使用)。只有在收到相应的确认后才能清除暂时保留的分组副本。

第二,分组和确认分组都必须进行**编号(7)**。这样才能明确是哪一个发送出去的分组收到了确认,而哪一个分组还没有收到确认。

第三,超时计时器设置的重传时间**应当比数据在分组传输的平均往返时间更长一些**。图5-9(b)中的一段虚线表示如果M₁正确到达B同时

A也正确收到确认的过程。可见重传时间应设定为比平均往返时间更长一些。显然,如果重传时间设定得很长,那么通信的效率就会很低。但如果重传时间设定得太短,以致产生不必要的重传,就浪费了网络资源。然而,在运输层重传时间的准确设定是非常复杂的,这是因为已发送出的分组到底会**经过哪些网络**,以及这些网络将会**产生多大的时延**(这取决于这些网络**当时的拥塞情况**),这些都是**不确定因素**。图5-9中把往返时间当作固定的(这并不符合网络的实际情况),只是为了讲述原理的方便。关于重传时间应如何选择,在后面的5.6.3节还要进一步讨论。

3. 确认丢失和确认迟到

图5-10(a)说明的是另一种情况。B所发送的对 M_1 的确认丢失了。A 在设定的超时重传时间内没有收到确认,并无法知道是自己发送的分组出错、丢失,或者是B发送的确认丢失了。因此A在超时计时器到期后就要重传 M_1 。现在应注意B的动作。假定B又收到了重传的分组 M_1 。这时应采取两个行动。

图5-10 确认丢失和确认迟到

第一,**丢弃这个重复的分组 M₁,不向上**层交付。

第二,向 A 发 送 确认。不能认为已经发送过确认就不再发送,因为A之所以重传 M_1 就表示A没有收到对 M_1 的确认。

图5-10(b)也是一种可能出现的情况。传输过程中没有出现差错,但 B对分组 M_1 的确认迟到了。A会收到重复的确认。对重复的确认的处

理很简单: 收下后就丢弃。B仍然会收到重复的 M_1 , 并且同样要丢弃重复的 M_1 , 并重传确认分组。

通常A最终总是可以收到对所有发出的分组的确认。如果A不断重传分组但总是收不到确认,就说明通信线路太差,不能进行通信。

使用上述的确认和重传机制,我们就可以**在不可靠的传输网络上实现可靠的通信**。

像上述的这种可靠传输协议常称为**自动重传请求** ARQ(Automatic Repeat reQuest)。意思是重传的请求是自动进行的。接收方不需要请求发送方重传某个出错的分组。

4. 信道利用率

停止等待协议的优点是简单,但缺点是信道利用率太低。我们可以用图5-11来说明这个问题。为简单起见,假定在A和B之间有一条直通的信道来传送分组。

图5-11 停止等待协议的信道利用率太低

假定A发送分组需要的时间是 T_D 。显然, T_D 等于分组长度除以数据率。再假定分组正确到达B后,B处理分组的时间可以忽略不计,同时立即发回确认。假定B发送确认分组需要时间 T_A 。如果A处理确认分组的时间也可以忽略不计,那么A在经过时间($T_D+RTT+T_A$)后就可以再发送下一个分组,这里的RTT是往返时间。因为仅仅是在时间 T_D 内才用来传送有用的数据(包括分组的首部),因此信道的利用率U可用下式计算:

$$U = \frac{T_D}{T_D + RTT + T_A} \tag{5-3}$$

请注意,更细致的计算还可以在上式分子的时间 T_D 内扣除传送控制信息(如首部)所花费的时间。但在进行粗略计算时,用近似的式(5-3)就可以了。

我们知道,式(5-3)中的往返时间RTT取决于所使用的信道。例如,假定1200km的信道的往返时间RTT=20ms。分组长度是1200bit,发送速率是1Mbit/s。若忽略处理时间和 T_A (T_A 一般都远小于 T_D),则可算出信道的利用率U=5.66%。但若把发送速率提高到10Mbit/s,则 $U=5.96\times10^{-4}$ 。信道在绝大多数时间内都是空闲的。

从图5-11还可看出,当往返时间RTT远大于分组发送时间 T_D 时,信道的利用率就会非常低。还应注意的是,图5-11并没有考虑出现差错后的分组重传。若出现重传,则对传送有用的数据信息来说,信道的利用率就还要降低。

为了提高传输效率,发送方可以不使用低效率的停止等待协议,而是采用**流水线传输**(如图5-12所示)。流水线传输就是发送方可连续发送多个分组,不必每发完一个分组就停顿下来等待对方的确认。这样可使信道上一直有数据不间断地在传送。显然,这种传输方式可以获得很高的信道利用率。

图5-12 流水线传输可提高信道利用率

当使用流水线传输时,就要使用下面介绍的**连续ARQ协议** 和**滑动窗口协议**。

5.4.2 连续ARQ协议

滑动窗口协议比较复杂,是TCP协议的精髓所在。这里先给出连续ARQ协议最基本的概念,但不涉及许多细节问题。详细的滑动窗口协议将在后面的5.6节中讨论。

图5-13(a)表示发送方维持的**发送窗口**,它的意义是:位于发送窗口内的5个分组都可连续发送出去,而不需要等待对方的确认。这样,信道利用率就提高了。

在讨论滑动窗口时,我们应当注意到,图中还有一个时间坐标(但以后往往省略这样的时间坐标)。按照习惯,"向前"是指"向着时间增大的方向",而"向后"则是"向着时间减少的方向"。分组发送是按照分组序号从小到大发送的。

图5-13 连续ARQ协议的工作原理

连续ARQ协议规定,发送方每收到一个确认,就把发送窗口向前滑动一个分组的位置。图5-13(b)表示发送方收到了对第1个分组的确认,于是把发送窗口向前移动一个分组的位置。如果原来已经发送了前5个分组,那么现在就可以发送窗口内的第6个分组了。

接收方一般都是采用**累积确认**的方式。这就是说,接收方不必对收到的分组逐个发送确认,而是在收到几个分组后,**对按序到达的最后一个分组发送确认**,这就表示:到这个分组为止的所有分组都已正确收到了。

累积确认有优点也有缺点。优点是:容易实现,即使确认丢失也不必重传。但缺点是不能向发送方反映出接收方已经正确收到的所有分组的信息。

例如,如果发送方发送了前5个分组,而中间的第3个分组丢失了。这时接收方只能对前两个分组发出确认。发送方无法知道后面三个分组的下落,而只好把后面的三个分组都再重传一次。这就叫做Go-back-N

(回退N),表示需要再退回来重传已发送过的N个分组。可见当通信 线路质量不好时,连续ARQ协议会带来负面的影响。

在深入讨论TCP的可靠传输问题之前,必须先了解TCP的报文段首部的格式。

5.5 TCP报文段的首部格式

TCP虽然是面向字节流的,但TCP传送的数据单元却是报文段。一个TCP报文段分为首部和数据两部分,而TCP的全部功能都体现在它首部中各字段的作用。因此,只有弄清TCP首部各字段的作用才能掌握TCP的工作原理。下面讨论TCP报文段的首部格式。

TCP报文段首部的前20个字节是固定的(图5-14),后面有4n字节是根据需要而增加的选项(n是整数)。因此TCP首部的最小长度是20字节。

图5-14 TCP报文段的首部格式

首部固定部分各字段的意义如下:

(1) **源端口和目的端口** 各占2个字节,分别写入源端口号和目的端口号。和前面图5-6所示的UDP的分用相似,TCP的分用功能也是通过

端口实现的。

- (2) **序号** 占4字节。序号范围是 [0, 2³²-1], 共2³² (即4 294 967 296) 个序号。序号增加到2³²-1后,下一个序号就又回到0。也就是说,序号使用mod 2³²运算。TCP是面向字节流的。在一个TCP连接中传送的字节流中的每一个字节都按顺序编号。整个要传送的字节流的起始序号必须在连接建立时设置。首部中的序号字段值则指的是本报文段所发送的数据的第一个字节的序号。例如,一报文段的序号字段值是301,而携带的数据共有100字节。这就表明:本报文段的数据的第一个字节的序号是400。显然,下一个报文段(如果还有的话)的数据序号应当从401开始,即下一个报文段的序号字段值应为401。这个字段的名称也叫做"报文段序号"。
- (3) **确认号** 占4字节,是**期望收到对方下一个报文段的第一个数据字节的序号**。例如,B正确收到了A发送过来的一个报文段,其序号字段值是501,而数据长度是200字节(序号501~700),这表明B正确收到了A发送的到序号700为止的数据。因此,B期望收到A的下一个数据序号是701,于是B在发送给A的确认报文段中把确认号置为701。请注意,现在的确认号不是501,也不是700,而是701。

总之,应当记住:

若确认号=N,则表明: 到序号N-1为止的所有数据都已正确收到。

由于序号字段有32位长,可对4GB(即4千兆字节)的数据进行编号。 在一般情况下可保证当序号重复使用时,旧序号的数据早已通过网络 到达终点了。

- (4) **数据偏移** 占4位,它指出TCP报文段的数据起始处距离TCP报文段的起始处有多远。这个字段实际上是指出TCP报文段的首部长度。由于首部中还有长度不确定的选项字段,因此数据偏移字段是必要的。但应注意,"数据偏移"的单位是32位字(即以4字节长的字为计算单位)。由于4位二进制数能够表示的最大十进制数字是15,因此数据偏移的最大值是60字节,这也是TCP首部的最大长度(即选项长度不能超过40字节)。
 - (5) 保留 占6位、保留为今后使用、但目前应置为0。

下面有6个**控制位**,用来说明本报文段的性质,它们的意义见下面的 $(6) \sim (11)$ 。

(6) **紧急** URG(URGent) 当URG=1时,表明紧急指针字段有效。它告诉系统此报文段中有紧急数据,应尽快传送(相当于高优先级的数据),而不要按原来的排队顺序来传送。例如,已经发送了很长的一个程序要在远地的主机上运行。但后来发现了一些问题,需要取消该程序的运行。因此用户从键盘发出中断命令(Control+C)。如果不使用紧急数据,那么这两个字符将存储在接收TCP的缓存末尾。只有在所有的数据被处理完毕后这两个字符才被交付接收方的应用进程。这样做就浪费了许多时间。

当URG置1时,发送应用进程就告诉发送方的TCP有紧急数据要传送。 于是发送方TCP就把紧急数据插入到本报文段数据的**最前面**,而在紧 急数据后面的数据仍是普通数据。这时要与首部中**紧急指针**(Urgent Pointer)字段配合使用。

然而在紧急指针字段的具体实现上,由于过去的有些文档有错误或有不太明确的地方,因而导致对有关的RFC文档产生了不同的理解。于是,在2011年公布的建议标准RFC 6093,把紧急指针字段的使用方法做出了更加明确的解释,并更新了几个重要的RFC文档,如RFC 793,RFC 1011、RFC 1122等。

- (7) **确认** ACK(ACKnowledgment) 仅当ACK = 1时确认号字段才有效。当ACK = 0时,确认号无效。TCP规定,在连接建立后所有传送的报文段都必须把ACK置1。
- (8) **推送** PSH (PuSH) 当两个应用进程进行交互式的通信时,有时在一端的应用进程希望在键入一个命令后立即就能够收到对方的响应。在这种情况下,TCP就可以使用推送(push)操作。这时,发送方TCP把PSH置1,并立即创建一个报文段发送出去。接收方TCP收到PSH=1的报文段,就尽快地(即"推送"向前)交付接收应用进程,而不再等到整个缓存都填满了后再向上交付。

虽然应用程序可以选择推送操作, 但推送操作很少使用。

(9) **复位** RST (ReSeT) 当RST=1时,表明TCP连接中出现严重差错(如由于主机崩溃或其他原因),必须释放连接,然后再重新建立

运输连接。RST置1还用来拒绝一个非法的报文段或拒绝打开一个连接。RST也可称为重建位或重置位。

- (10) **同步** SYN(SYNchronization) 在连接建立时用来同步序号。当SYN=1而ACK=0时,表明这是一个连接请求报文段。对方若同意建立连接,则应在响应的报文段中使SYN=1和ACK=1。因此,SYN置为1就表示这是一个连接请求或连接接受报文。关于连接的建立和释放,在后面的5.9节还要进行详细讨论。
- (11) **终止** FIN (FINis, 意思是"完"、"终") 用来释放一个连接。当FIN=1时,表明此报文段的发送方的数据已发送完毕,并要求释放运输连接。
- (12) **窗口** 占2字节。窗口值是 [0, 2 ¹⁶-1] 之间的整数。窗口指的是发送本报文段的一方的**接收窗口** (而不是自己的发送窗口)。窗口值**告诉对方**:从本报文段首部中的确认号算起,接收方目前允许对方发送的数据量(以字节为单位)。之所以要有这个限制,是因为接收方的数据缓存空间是有限的。总之,**窗口值作为接收方让发送方设置其发送窗口的依据**。

例如,发送了一个报文段,其确认号是701,窗口字段是1000。这就是告诉对方:"从701号算起,我(即发送此报文段的一方)的接收缓存空间还可接收1000个字节数据(字节序号是701~1700),你在给我发送数据时,必须考虑到这一点。"

总之,应当记住:

窗口字段明确指出了现在允许对方发送的数据量。窗口值经常在动态变化着。

(13) **检验和** 占2字节。检验和字段检验的范围包括首部和数据这两部分。和UDP用户数据报一样,在计算检验和时,要在TCP报文段的前面加上12字节的伪首部。伪首部的格式与图5-5中UDP用户数据报的伪首部一样。但应把伪首部第4个字段中的17改为6(TCP的协议号是6),把第5字段中的UDP长度改为TCP长度。接收方收到此报文段后,仍要加上这个伪首部来计算检验和。若使用IPv6,则相应的伪首部也要改变。

- (14) **紧急指针** 占2字节。紧急指针仅在URG=1时才有意义,它指出本报文段中的紧急数据的字节数(紧急数据结束后就是普通数据)。因此,紧急指针指出了紧急数据的末尾在报文段中的位置。当所有紧急数据都处理完时,TCP就告诉应用程序恢复到正常操作。值得注意的是,即使窗口为零时也可发送紧急数据。
- (15) **选项** 长度可变,最长可达40字节。当没有使用"选项"时,TCP的首部长度是20字节。

TCP最初只规定了一种选项,即**最大报文段长度** MSS(Maximum Segment Size) [RFC 879] 。请注意MSS这个名词的含义。MSS是每一个TCP报文段中的**数据字段的最大长度**。数据字段加上TCP首部才等于整个的TCP报文段。所以MSS并不是整个TCP报文段的最大长度,而是"TCP报文段长度减去TCP首部长度"。

为什么要规定一个最大报文段长度MSS呢?这并不是考虑接收方的接收缓存可能放不下TCP报文段中的数据。实际上,MSS与接收窗口值没有关系。我们知道,TCP报文段的数据部分,至少要加上40字节的首部(TCP首部20字节和IP首部20字节,这里都还没有考虑首部中的选项部分),才能组装成一个IP数据报。若选择较小的MSS长度,网络的利用率就降低。设想在极端的情况下,当TCP报文段只含有1字节的数据时,在IP层传输的数据报的开销至少有40字节(包括TCP报文段的首部和IP数据报的首部)。这样,对网络的利用率就不会超过1/41。到了数据链路层还要加上一些开销。但反过来,若TCP报文段非常长,那么在IP层传输时就有可能要分解成多个短数据报片。在终点要把收到的各个短数据报片装配成原来的TCP报文段。当传输出错时还要进行重传。这些也都会使开销增大。

因此,MSS应尽可能大些,只要在IP层传输时不需要再分片就行。由于IP数据报所经历的路径是动态变化的,因此在这条路径上确定的不需要分片的MSS,如果改走另一条路径就可能需要进行分片。因此最佳的MSS是很难确定的。在连接建立的过程中,双方都把自己能够支持的MSS写入这一字段,以后就按照这个数值传送数据,两个传送方向可以有不同的MSS值⁽⁸⁾。若主机未填写这一项,则MSS的默认值是536字节长。因此,所有在互联网上的主机都应能接受的报文段长度是536+20(固定首部长度)=556字节。

随着互联网的发展,又陆续增加了几个选项。如**窗口扩大**选项、时间**戳**选项等(见建议标准RFC 7323)。以后又增加了有关**选择确认**(SACK)选项(见建议标准RFC 2018)。这些选项的位置都在图5-14所示的选项字段中。

窗口扩大选项是为了扩大窗口。我们知道,TCP首部中窗口字段长度是16位,因此最大的窗口大小为64K字节(见下一节)。虽然这对早期的网络是足够用的,但对于包含卫星信道的网络⁽⁹⁾,传播时延和带宽都很大,要获得高吞吐率需要更大的窗口大小。

窗口扩大选项占3字节,其中有一个字节表示移位值S。新的窗口值等于TCP首部中的窗口位数从16增大到(16+S)。移位值允许使用的最大值是14,相当于窗口最大值增大到2 (16+14) -1=2 $^{30}-1$ 。

窗口扩大选项可以在双方初始建立TCP连接时进行协商。如果连接的某一端实现了窗口扩大,当它不再需要扩大其窗口时,可发送S=0的选项,使窗口大小回到16。

时间戳 选项占10字节,其中最主要的字段是**时间戳** 值字段(4字节)和**时间戳回送回答** 字段(4字节)。时间戳选项有以下两个功能:

第一,用来计算往返时间RTT(见后面的5.6.2节)。发送方在发送报文段时把当前时钟的时间值放入时间戳字段,接收方在确认该报文段时把时间戳字段值复制到时间戳回送回答字段。因此,发送方在收到确认报文后,可以准确地计算出RTT来。

第二,用于处理TCP序号超过2³²的情况,这又称为**防止序号绕回**PAWS(Protect Against Wrapped Sequence numbers)。我们知道,TCP报文段的序号只有32位,而每增加2³²个序号就会重复使用原来用过的序号。当使用高速网络时,在一次TCP连接的数据传送中序号很可能会被重复使用。例如,当使用1.5Mbit/s的速率发送报文段时,序号重复要6小时以上。但若用2.5Gbit/s的速率发送报文段,则不到14秒钟序号就会重复。为了使接收方能够把新的报文段和迟到很久的报文段区分开,可以在报文段中加上这种时间戳。

我们将在后面的5.6.3节介绍选择确认选项。

5.6 TCP可靠传输的实现

本节讨论TCP可靠传输的实现。

我们首先介绍以字节为单位的滑动窗口。为了讲述可靠传输原理的方便,我们**假定数据传输只在一个方向进行**,即A发送数据,B给出确认。这样的好处是使讨论限于两个窗口,即发送方A的发送窗口和接收方B的接收窗口。如果再考虑B也向A发送数据,那么还要增加A的接收窗口和B的发送窗口,这对讲述可靠传输的原理并没有多少帮助,反而会使问题更加繁琐。

5.6.1 以字节为单位的滑动窗口

TCP的滑动窗口是以字节为单位的。为了便于说明滑动窗口的工作原理,我们故意把后面图5-15至图5-18中的字节编号都取得很小。现假定A收到了B发来的确认报文段,其中窗口是20字节,而确认号是31(这表明B期望收到的下一个序号是31,而序号30为止的数据已经收到了)。根据这两个数据,A就构造出自己的发送窗口,如图5-15所示。

图5-15 根据B给出的窗口值,A构造出自己的发送窗口

我们先讨论发送方A的发送窗口。发送窗口表示:在没有收到B的确认的情况下,A可以连续把窗口内的数据都发送出去。凡是已经发送过的数据,在未收到确认之前都必须暂时保留,以便在超时重传时使用。

发送窗口里面的序号表示允许发送的序号。显然,窗口越大,发送方就可以在收到对方确认之前连续发送更多的数据,因而可能获得更高的传输效率。在上面的5.5节我们已经讲过,接收方会把自己的接收窗口数值放在窗口字段中发送给对方。因此,A的发送窗口一定不能超

过B的接收窗口数值。在后面的5.8节我们将要讨论,发送方的发送窗口大小还要受到当时网络拥塞程度的制约。但在目前,我们暂不考虑网络拥塞的影响。

发送窗口后沿的后面部分表示已发送且已收到了确认。这些数据显然不需要再保留了。而发送窗口前沿的前面部分表示不允许发送的,因为接收方都没有为这部分数据保留临时存放的缓存空间。

发送窗口的位置由窗口前沿和后沿的位置共同确定。发送窗口后沿的变化情况有两种可能,即不动(没有收到新的确认)和前移(收到了新的确认)。发送窗口后沿不可能向后移动,因为不能撤销掉已收到的确认。发送窗口前沿通常是不断向前移动,但也有可能不动。这对应于两种情况:一是没有收到新的确认,对方通知的窗口大小也不变;二是收到了新的确认但对方通知的窗口缩小了,使得发送窗口前沿正好不动。

发送窗口前沿也有可能**向后收缩**。这发生在对方通知的窗口缩小了。但**TCP**的标准**强烈不赞成这样做**。因为很可能发送方在收到这个通知以前已经发送了窗口中的许多数据,现在又要收缩窗口,不让发送这些数据,这样就会产生一些错误。

现在假定A发送了序号为31~41的数据。这时,发送窗口位置并未改变(图5-16),但发送窗口内靠后面有11个字节(灰色小方框表示)表示已发送但未收到确认。而发送窗口内靠前面的9个字节(42~50)是允许发送但尚未发送的。

图5-16 A发送了11个字节的数据

从以上所述可以看出,要描述一个发送窗口的状态需要三个指针: P_1 , P_2 和 P_3 (图5-16) 。指针都指向字节的序号。这三个指针指向的几个部分的意义如下:

小于 P_1 的是已发送并已收到确认的部分,而大于 P_3 的是不允许发送的部分。

 $P_3 - P_1 = A$ 的发送窗口

 P_2-P_1 = 已发送但尚未收到确认的字节数

 P_3-P_2 = 允许发送但当前尚未发送的字节数(又称为**可用窗口** 或**有效 窗口**)

再看一下B的接收窗口。B的接收窗口大小是20。在接收窗口外面,到30号为止的数据是已经发送过确认,并且已经交付主机了。因此在B可以不再保留这些数据。接收窗口内的序号(31~50)是允许接收的。在图5-16中,B收到了序号为32和33的数据。这些数据没有按序到达,因为序号为31的数据没有收到(也许丢失了,也许滞留在网络中的某处)。请注意,B只能对按序收到的数据中的最高序号给出确认,因此B发送的确认报文段中的确认号仍然是31(即期望收到的序号),而不能是32或33。

现在假定B收到了序号为31的数据,并把序号为31~33的数据交付主机,然后B删除这些数据。接着把接收窗口向前移动3个序号(图5-17),同时给A发送确认,其中窗口值仍为20,但确认号是34。这表明B已经收到了到序号33为止的数据。我们注意到,B还收到了序号为37,38和40的数据,但这些都没有按序到达,只能先暂存在接收窗口中。A收到B的确认后,就可以把发送窗口向前滑动3个序号,但指针P2不动。可以看出,现在A的可用窗口增大了,可发送的序号范围是42~53。

图5-17 A收到新的确认号,发送窗口向前滑动

A在继续发送完序号42~53的数据后,指针P₂向前移动和P₃重合。发送窗口内的序号都已用完,但还没有再收到确认(图5-18)。由于A的发送窗口已满,可用窗口已减小到零,因此必须停止发送。请注意,存在下面这种可能性,就是发送窗口内所有的数据都已正确到达B,B也早已发出了确认。但不幸的是,所有这些确认都滞留在网络中。在没有收到B的确认时,A不能猜测:"或许B收到了吧!"为了保证可靠传输,A只能认为B还没有收到这些数据。于是,A在经过一段时间后(由超时计时器控制)就重传这部分数据,重新设置超时计时器,直到收到B的确认为止。如果A收到确认号落在发送窗口内,那么A就可以使发送窗口继续向前滑动,并发送新的数据。

图5-18 发送窗口内的序号都属干已发送但未被确认

我们在前面的图5-8中曾给出了这样的概念:发送方的应用进程把字节流写入TCP的发送缓存,接收方的应用进程从TCP的接收缓存中读取字节流。下面我们就进一步讨论前面讲的窗口和缓存的关系。图5-19画出了发送方维持的发送缓存和发送窗口,以及接收方维持的接收缓存和接收窗口。这里首先要明确两点:

图5-19 TCP的缓存和窗口的关系

第一,缓存空间和序号空间都是有限的,并且都是循环使用的。最好是把它们画成圆环状的。但这里为了画图的方便,我们还是把它们画成长条状的。

第二,由于实际上缓存或窗口中的字节数是非常之大的,因此图5-19 仅仅是个示意图,没有标出具体的数值。但用这样的图来说明缓存和 发送窗口以及接收窗口的关系是很清楚的。

我们先看一下图5-19(a)所示的发送方的情况。

发送缓存用来暂时存放:

- (1) 发送应用程序传送给发送方TCP准备发送的数据;
- (2) TCP已发送出但尚未收到确认的数据。

发送窗口通常只是发送缓存的一部分。已被确认的数据应当从发送缓存中删除,因此发送缓存和发送窗口的后沿是重合的。发送应用程序最后写入发送缓存的字节减去最后被确认的字节,就是还保留在发送缓存中的被写入的字节数。发送应用程序必须控制写入缓存的速率,不能太快,否则发送缓存就会没有存放数据的空间。

再看一下图5-19(b)所示的接收方的情况。

接收缓存用来暂时存放:

- (1) 按序到达的、但尚未被接收应用程序读取的数据;
- (2) 未按序到达的数据。

如果收到的分组被检测出有差错,则要丢弃。如果接收应用程序来不及读取收到的数据,接收缓存最终就会被填满,使接收窗口减小到零。反之,如果接收应用程序能够及时从接收缓存中读取收到的数据,接收窗口就可以增大,但最大不能超过接收缓存的大小。图5-19(b)中还指出了下一个期望收到的字节号。这个字节号也就是接收方给发送方的报文段的首部中的确认号。

根据以上所讨论的、我们还要再强调以下三点。

第一,虽然A的发送窗口是根据B的接收窗口设置的,但在同一时刻,A的发送窗口并不总是和B的接收窗口一样大。这是因为通过网络传送窗口值需要经历一定的时间滞后(这个时间还是不确定的)。另外,正如后面5.7节将要讲到的,发送方A还可能根据网络当时的拥塞情况适当减小自己的发送窗口数值。

第二,对于不按序到达的数据应如何处理,TCP标准并无明确规定。如果接收方把不按序到达的数据一律丢弃,那么接收窗口的管理将会比较简单,但这样做对网络资源的利用不利(因为发送方会重复传送较多的数据)。因此TCP通常对不按序到达的数据是先临时存放在接收窗口中,等到字节流中所缺少的字节收到后,再**按序交付上层的应用进程**。

第三,TCP要求接收方必须有累积确认的功能,这样可以减小传输开销。接收方可以在合适的时候发送确认,也可以在自己有数据要发送时把确认信息顺便**捎带**上。但请注意两点。一是接收方不应过分推迟发送确认,否则会导致发送方不必要的重传,这反而浪费了网络的资源。TCP标准规定,确认推迟的时间不应超过0.5秒。若收到一连串具有最大长度的报文段,则必须每隔一个报文段就发送一个确认[RFC 1122]。二是捎带确认实际上并不经常发生,因为大多数应用程序很少同时在两个方向上发送数据。

最后再强调一下,TCP的通信是全双工通信。通信中的每一方都在发送和接收报文段。因此,每一方都有自己的发送窗口和接收窗口。在谈到这些窗口时,一定要弄清是哪一方的窗口。

5.6.2 超时重传时间的选择

上面已经讲到,TCP的发送方在规定的时间内没有收到确认就要重传已发送的报文段。这种重传的概念是很简单的,但重传时间的选择却是TCP最复杂的问题之一。

由于TCP的下层是互联网环境,发送的报文段可能只经过一个高速率的局域网,也可能经过多个低速率的网络,并且每个IP数据报所选择的路由还可能不同。如果把超时重传时间设置得太短,就会引起很多报文段的不必要的重传,使网络负荷增大。但若把超时重传时间设置得过长,则又使网络的空闲时间增大,降低了传输效率。

那么,运输层的超时计时器的超时重传时间究竟应设置为多大呢?

TCP采用了一种自适应算法,它记录一个报文段发出的时间,以及收到相应的确认的时间。这两个时间之差就是**报文段的往返时间RTT**。 TCP保留了RTT的一个**加权平均往返时间** RTT_S(这又称为平滑的往返时间,S表示Smoothed。因为进行的是加权平均,因此得出的结果更加平滑)。每当第一次测量到RTT样本时,RTT_S值就取为所测量到的RTT样本值。但以后每测量到一个新的RTT样本,就按下式重新计算一次RTT_S:

新的
$$RTT_S = (1 - \alpha) \times ($$
旧的 $RTT_S) + \alpha \times ($ 新的 RTT 样本) (5-4)

在上式中, $0 \le \alpha < 1$ 。若 α 很接近于零,表示新的RTT $_S$ 值和旧的RTT $_S$ 值相比变化不大,而对新的RTT样本影响不大(RTT值更新较慢)。若选择 α 接近于1,则表示新的RTT $_S$ 值受新的RTT样本的影响较大(RTT值更新较快)。已成为建议标准的RFC 6298推荐的 α 值为1/8,即 0.125。用这种方法得出的加权平均往返时间RTT $_S$ 就比测量出的RTT值更加平滑。

显然,超时计时器设置的**超时重传时间** RTO(RetransmissionTime-Out)应略大于上面得出的加权平均往返时间RTT $_{\rm S}$ 。RFC 6298建议使用下式计算RTO:

$$RTO = RTT_S + 4 \times RTT_D \tag{5-5}$$

而RTT_D是RTT的**偏差**的加权平均值,它与RTT_S和新的RTT样本之差有关。RFC 6298建议这样计算RTT_D。当第一次测量时,RTT_D值取

为测量到的RTT样本值的一半。在以后的测量中,则使用下式计算加权平均的RTT $_{D}$:

新的
$$RTT_D = (1 - \beta) \times (\text{旧的 } RTT_D) + \beta \times |RTT_S - \text{ 新的 } RTT |$$
 (5-6)

这里β是个小于1的系数,它的推荐值是1/4,即0.25。

上面所说的往返时间的测量、实现起来相当复杂。试看下面的例子。

如图5-20所示,发送出一个报文段,设定的重传时间到了,还没有收到确认。于是重传报文段。经过了一段时间后,收到了确认报文段。现在的问题是: 如何判定此确认报文段是对先发送的报文段的确认,还是对后来重传的报文段的确认? 由于重传的报文段和原来的报文段完全一样,因此源主机在收到确认后,就无法做出正确的判断,而正确的判断对确定加权平均RTT_S的值关系很大。

图5-20 收到的确认是对哪一个报文段的确认?

若收到的确认是对重传报文段的确认,但却被源主机当成是对原来的报文段的确认,则这样计算出的RTT_S和超时重传时间RTO就会偏大。若后面再发送的报文段又是经过重传后才收到确认报文段,则按此方法得出的超时重传时间RTO就越来越长。

同样,若收到的确认是对原来的报文段的确认,但被当成是对重传报文段的确认,则由此计算出的RTT $_{\rm S}$ 和RTO都会偏小。这就必然导致报文段过多地重传。这样就有可能使RTO越来越短。

根据以上所述,Karn提出了一个算法:在计算加权平均RTTS时,只要报文段重传了,就不采用其往返时间样本。这样得出的加权平均RTTS和RTO就较准确。

但是,这又引起新的问题。设想出现这样的情况:报文段的时延突然增大了很多。因此在原来得出的重传时间内,不会收到确认报文段。于是就重传报文段。但根据Karn算法,不考虑重传的报文段的往返时间样本。这样,超时重传时间就无法更新。

因此要对Kam算法进行修正。方法是:报文段每重传一次,就把超时重传时间RTO增大一些。典型的做法是取新的重传时间为旧的重传时间的2倍。当不再发生报文段的重传时,才根据上面给出的(5-5)式计算超时重传时间。实践证明,这种策略较为合理。

总之,Karn算法能够使运输层区分开有效的和无效的往返时间样本,从而改进了往返时间的估测,使计算结果更加合理。

5.6.3 选择确认SACK

现在还有一个问题没有讨论。这就是若收到的报文段无差错,只是未按序号,中间还缺少一些序号的数据,那么能否设法只传送缺少的数据而不重传已经正确到达接收方的数据?答案是可以的。选择确认就是一种可行的处理方法。

我们用一个例子来说明**选择确认**(Selective ACK)的工作原理。TCP的接收方在接收对方发送过来的数据字节流的序号不连续,结果就形成了一些不连续的字节块(如图5-21所示)。可以看出,序号1~1000收到了,但序号1001~1500没有收到。接下来的字节流又收到了,可是又缺少了3001~3500。再后面从序号4501起又没有收到。也就是说,接收方收到了和前面的字节流不连续的两个字节块。如果这些字节的序号都在接收窗口之内,那么接收方就先收下这些数据,但要把这些信息准确地告诉发送方,使发送方不要再重复发送这些已收到的数据。

图5-21 接收到的字节流序号不连续

从图5-21可看出,和前后字节不连续的每一个字节块都有两个边界: 左边界和右边界。因此在图中用四个指针标记这些边界。请注意,第 一个字节块的左边界 L_1 =1501,但右边界 R_1 =3001而不是3000。这就是说,左边界指出字节块的第一个字节的序号,但右边界减1才是字节块中的最后一个序号。同理,第二个字节块的左边界 L_2 =3501,而右边界 L_2 =4501。

我们知道,TCP的首部没有哪个字段能够提供上述这些字节块的边界信息。RFC 2018规定,如果要使用选择确认SACK,那么在建立TCP连接时,就要在TCP首部的选项中加上"允许SACK"的选项,而双方必须都事先商定好。如果使用选择确认,那么原来首部中的"确认号字段"的用法仍然不变。只是以后在TCP报文段的首部中都增加了SACK选项,以便报告收到的不连续的字节块的边界。由于首部选项的长度最多只有40字节,而指明一个边界就要用掉4字节(因为序号有32位,需要使用4个字节表示),因此在选项中最多只能指明4个字节块的边界信息。这是因为4个字节块共有8个边界,因而需要用32个字节来描述。另外还需要两个字节。一个字节用来指明是SACK选项,另一个字节是指明这个选项要占用多少字节。如果要报告五个字节块的边界信息,那么至少需要42个字节。这就超过了选项长度的40字节的上限。互联网建议标准RFC 2018还对报告这些边界信息的格式都做出了非常明确的规定,这里从略。

然而,SACK文档并没有指明发送方应当怎样响应SACK。因此大多数的实现还是重传所有未被确认的数据块。

5.7 TCP的流量控制

5.7.1 利用滑动窗口实现流量控制

一般说来,我们总是希望数据传输得更快一些。但如果发送方把数据发送得过快,接收方就可能来不及接收,这就会造成数据的丢失。所谓**流量控制**(flow control)就是**让发送方的发送速率不要太快,要让接收方来得及接收**。

利用滑动窗口机制可以很方便地在TCP连接上实现对发送方的流量控制。

下面通过图5-22的例子说明如何利用滑动窗口机制进行流量控制。

图5-22 利用可变窗口进行流量控制举例

设A向B发送数据。在连接建立时,B告诉了A: "我的接收窗口rwnd=400"(这里rwnd表示receiver window)。因此,**发送方的发送窗口不能超过接收方给出的接收窗口**(10)-的数值。请注意,TCP的**窗口单位是字节,不是报文段**。TCP连接建立时的窗口协商过程在图中没有显示出来。再设每一个报文段为100字节长,而数据报文段序号的初始值设为1(见图中第一个箭头上面的序号seq=1。图中右边的注释可帮助理解整个过程)。请注意,图中箭头上面大写ACK表示首部中的确认位ACK,小写ack表示确认字段的值。

我们应注意到,接收方的主机B进行了三次流量控制。第一次把窗口减小到rwnd=300,第二次又减到rwnd=100,最后减到rwnd=0,即不允许发送方再发送数据了。这种使发送方暂停发送的状态将持续到主机B重新发出一个新的窗口值为止。我们还应注意到,B向A发送的三个报文段都设置了ACK=1,只有在ACK=1时确认号字段才有意义。

现在我们考虑一种情况。在图5-22中,B向A发送了零窗口的报文段后不久,B的接收缓存又有了一些存储空间。于是B向A发送了rwnd = 400的报文段。然而这个报文段在传送过程中丢失了。A一直等待收到B发送的非零窗口的通知,而B也一直等待A发送的数据。如果没有其他措施,这种互相等待的死锁局面将一直延续下去。

为了解决这个问题,TCP为每一个连接设有一个**持续计时器**(persistence timer)。只要TCP连接的一方收到对方的零窗口通知,

就启动持续计时器。若持续计时器设置的时间到期,就发送一个零窗口探测报文段(仅携带1字节的数据)(11)-,而对方就在确认这个探测报文段时给出了现在的窗口值。如果窗口仍然是零,那么收到这个报文段的一方就重新设置持续计时器。如果窗口不是零,那么死锁的僵局就可以打破了。

5.7.2 TCP的传输效率

前面已经讲过,应用进程把数据传送到TCP的发送缓存后,剩下的发送任务就由TCP来控制了。可以用不同的机制来控制TCP报文段的发送时机。例如,第一种机制是TCP维持一个变量,它等于**最大报文段长度** MSS。只要缓存中存放的数据达到MSS字节时,就组装成一个TCP报文段发送出去。第二种机制是由发送方的应用进程指明要求发送报文段,即TCP支持的**推送**(push)操作。第三种机制是发送方的一个计时器期限到了,这时就把当前已有的缓存数据装入报文段(但长度不能超过MSS)发送出去。

但是,如何控制TCP发送报文段的时机仍然是一个较为复杂的问题。

例如,一个交互式用户使用一条TELNET连接(运输层为TCP协议)。假设用户只发1个字符,加上20字节的首部后,得到21字节长的TCP报文段。再加上20字节的IP首部,形成41字节长的IP数据报。在接收方TCP立即发出确认,构成的数据报是40字节长(假定没有数据发送)。若用户要求远地主机回送这一字符,则又要发回41字节长的IP数据报和40字节长的确认IP数据报。这样,用户仅发1个字符时,线路上就需传送总长度为162字节共4个报文段。当线路带宽并不富裕时,这种传送方法的效率的确不高。因此应适当推迟发回确认报文,并尽量使用捎带确认的方法。

在TCP的实现中广泛使用Nagle算法。算法如下:若发送应用进程把要发送的数据逐个字节地送到TCP的发送缓存,则发送方就把第一个数据字节先发送出去,把后面到达的数据字节都缓存起来。当发送方收到对第一个数据字符的确认后,再把发送缓存中的所有数据组装成一个报文段发送出去,同时继续对随后到达的数据进行缓存。只有在收到对前一个报文段的确认后才继续发送下一个报文段。当数据到达较快而网络速率较慢时,用这样的方法可明显地减少所用的网络带宽。Nagle算法还规定,当到达的数据已达到发送窗口大小的一半或已达到

报文段的最大长度时,就立即发送一个报文段。这样做,就可以有效地提高网络的吞吐量。

另一个问题叫做**糊涂窗口综合征**(silly window syndrome)[RFC 813],有时也会使TCP的性能变坏。设想一种情况: TCP接收方的缓存已满,而交互式的应用进程一次只从接收缓存中读取1个字节(这样就使接收缓存空间仅腾出1个字节),然后向发送方发送确认,并把窗口设置为1个字节(但发送的数据报是40字节长)。接着,发送方又发来1个字节的数据(请注意,发送方发送的IP数据报是41字节长)。接收方发回确认,仍然将窗口设置为1个字节。这样进行下去,使网络的效率很低。

要解决这个问题,可以**让接收方等待一段时间**,使得或者接收缓存已有足够空间容纳一个最长的报文段,或者**等到接收缓存已有一半空闲的空间**。只要出现这两种情况之一,接收方就发出确认报文,并向发送方通知当前的窗口大小。此外,发送方也不要发送太小的报文段,而是把数据积累成足够大的报文段,或达到接收方缓存的空间的一半大小。

上述两种方法可配合使用。使得在发送方不发送很小的报文段的同时,接收方也不要在缓存刚刚有了一点小的空间就急忙把这个很小的窗口大小信息通知给发送方。

5.8 TCP的拥塞控制

5.8.1 拥塞控制的一般原理

在计算机网络中的链路容量(即带宽)、交换结点中的缓存和处理机等,都是网络的资源。在某段时间,若对网络中某一资源的需求超过了该资源所能提供的可用部分,网络的性能就要变坏。这种情况就叫做**拥塞**(congestion)。可以把出现网络拥塞的条件写成如下的关系式:

$$\sum$$
对资源的需求 > 可用资源 (5-7)

若网络中有许多资源同时呈现供应不足,网络的性能就要明显变坏,整个网络的吞吐量将随输入负荷的增大而下降。

有人可能会说: "只要任意增加一些资源,例如,把结点缓存的存储空间扩大,或把链路更换为更高速率的链路,或把结点处理机的运算速度提高,就可以解决网络拥塞的问题。"其实不然。这是因为网络拥塞是一个非常复杂的问题。简单地采用上述做法,在许多情况下,不但不能解决拥塞问题,而且还可能使网络的性能更坏。

网络拥塞往往是由许多因素引起的。例如,当某个结点缓存的容量太小时,到达该结点的分组因无存储空间暂存而不得不被丢弃。现在设想将该结点缓存的容量扩展到非常大,于是凡到达该结点的分组均可在结点的缓存队列中排队,不受任何限制。由于输出链路的容量和处理机的速度并未提高,因此在这队列中的绝大多数分组的排队等待时间将会大大增加,结果上层软件只好把它们进行重传(因为早就超时了)。由此可见,简单地扩大缓存的存储空间同样会造成网络资源的严重浪费,因而解决不了网络拥塞的问题。

又如,处理机处理的速率太慢可能引起网络的拥塞。简单地将处理机的速率提高,可能会使上述情况缓解一些,但往往又会将瓶颈转移到其他地方。问题的实质往往是整个系统的各个部分不匹配。只有所有的部分都平衡了,问题才会得到解决。

拥塞常常趋于恶化。如果一个路由器没有足够的缓存空间,它就会丢弃一些新到的分组。但当分组被丢弃时,发送这一分组的源点就会重传这一分组,甚至可能还要重传多次。这样会引起更多的分组流入网络和被网络中的路由器丢弃。可见拥塞引起的重传并不会缓解网络的拥塞,反而会加剧网络的拥塞。

拥塞控制与流量控制的关系密切,它们之间也存在着一些差别。所谓 **拥塞控制** 就是**防止过多的数据注入到网络中,这样可以使网络中的路由器或链路不致过载**。拥塞控制所要做的都有一个前提,就是**网络能够承受现有的网络负荷**。拥塞控制是一个**全局性的过程**,涉及到所有的主机、所有的路由器,以及与降低网络传输性能有关的所有因素。但TCP连接的端点只要迟迟不能收到对方的确认信息,就猜想在当前网络中的某处很可能发生了拥塞,但这时却无法知道拥塞到底发生在网络的何处,也无法知道发生拥塞的具体原因。(是访问某个服务器的通信量过大?还是在某个地区出现自然灾害?)

相反, 流量控制往往是指点对点通信量的控制, 是个端到端的问题(接收端控制发送端)。流量控制所要做的就是抑制发送端发送数据

的速率、以便使接收端来得及接收。

可以用一个简单例子说明这种区别。设某个光纤网络的链路传输速率为1000Gbit/s。有一台巨型计算机向一台个人电脑以1Gbit/s的速率传送文件。显然,网络本身的带宽是足够大的,因而不存在产生拥塞的问题。但流量控制却是必需的,因为巨型计算机必须经常停下来,以便使个人电脑来得及接收。

但如果有另一个网络,其链路传输速率为1Mbit/s,而有1000台大型计算机连接在这个网络上。假定其中的500台计算机分别向其余的500台计算机以100kbit/s的速率发送文件。那么现在的问题已不是接收端的大型计算机是否来得及接收,而是整个网络的输入负载是否超过网络所能承受的。

拥塞控制和流量控制之所以常常被弄混,是因为某些拥塞控制算法是 向发送端发送控制报文,并告诉发送端,网络已出现麻烦,必须放慢 发送速率。这点又和流量控制是很相似的。

进行拥塞控制需要付出代价。这首先需要获得网络内部流量分布的信息。在实施拥塞控制时,还需要在结点之间交换信息和各种命令,以便选择控制的策略和实施控制。这样就产生了额外开销。拥塞控制有时需要将一些资源(如缓存、带宽等)分配给个别用户(或一些类别的用户)单独使用,这样就使得网络资源不能更好地实现共享。十分明显,在设计拥塞控制策略时,必须全面衡量得失。

在图5-23中的横坐标是**提供的负载**(offered load),代表单位时间内输入给网络的分组数目。因此提供的负载也称为**输入负载**或**网络负载**。纵坐标是**吞吐量**(throughput),代表单位时间内从网络输出的分组数目。具有理想拥塞控制的网络,在吞吐量饱和之前,网络吞吐量应等于提供的负载,故吞吐量曲线是45°的斜线。但当提供的负载超过某一限度时,由于网络资源受限,吞吐量不再增长而保持为水平线,即吞吐量达到饱和。这就表明提供的负载中有一部分损失掉了(例如,输入到网络的某些分组被某个结点丢弃了)。虽然如此,在这种理想的拥塞控制作用下,网络的吞吐量仍然维持在其所能达到的最大值。

图5-23 拥塞控制所起的作用

但是,实际网络的情况就很不相同了。从图5-23可看出,随着提供的负载的增大,网络吞吐量的增长速率逐渐减小。也就是说,在网络吞吐量还未达到饱和时,就已经有一部分的输入分组被丢弃了。当网络的吞吐量明显地小于理想的吞吐量时,网络就进入了**轻度拥塞**的状态。更值得注意的是,当提供的负载达到某一数值时,网络的吞吐量反而随提供的负载的增大而下降,这时**网络就进入了拥塞状态**。当提供的负载继续增大到某一数值时,网络的吞吐量就下降到零,网络已无法工作,这就是所谓的**死锁**(deadlock)。

从原理上讲,寻找拥塞控制的方案无非是寻找使不等式(5-7)不再成立的条件。这或者是增大网络的某些可用资源(如业务繁忙时增加一些链路,增大链路的带宽,或使额外的通信量从另外的通路分流),或减少一些用户对某些资源的需求(如拒绝接受新的建立连接的请求,或要求用户减轻其负荷,这属于降低服务质量)。但正如上面所讲过的,在采用某种措施时,还必须考虑到该措施所带来的其他影响。

实践证明,拥塞控制是很难设计的,因为它是一个**动态的**(而不是静态的)问题。当前网络正朝着高速化的方向发展,这很容易出现缓存不够大而造成分组的丢失。但分组的丢失是网络发生拥塞的征兆而不是原因。在许多情况下,甚至正是拥塞控制机制本身成为引起网络性能恶化甚至发生死锁的原因。**这点应特别引起重视**。

由于计算机网络是一个很复杂的系统,因此可以从控制理论的角度来看拥塞控制这个问题。这样,从大的方面看,可以分为开环控制和闭

环控制 两种方法。开环控制就是在设计网络时事先将有关发生拥塞的 因素考虑周到,力求网络在工作时不产生拥塞。但一旦整个系统运行 起来,就不再中途进行改正了。

闭环控制是基于反馈环路的概念, 主要有以下几种措施:

- (1) 监测网络系统以便检测到拥塞在何时、何处发生。
- (2) 把拥塞发生的信息传送到可采取行动的地方。
- (3) 调整网络系统的运行以解决出现的问题。

有很多的方法可用来监测网络的拥塞。主要的一些指标是:由于缺少缓存空间而被丢弃的分组的百分数、平均队列长度、超时重传的分组数、平均分组时延、分组时延的标准差,等等。上述这些指标的上升都标志着拥塞的增长。

一般在监测到拥塞发生时,要将拥塞发生的信息传送到产生分组的源站。当然,通知拥塞发生的分组同样会使网络更加拥塞。

另一种方法是在路由器转发的分组中保留一个比特或字段,用该比特或字段的值表示网络没有拥塞或产生了拥塞。也可以由一些主机或路由器周期性地发出探测分组,以询问拥塞是否发生。

此外,过于频繁地采取行动以缓和网络的拥塞,会使系统产生不稳定的振荡。但过于迟缓地采取行动又不具有任何实用价值。因此,要采用某种折中的方法。但选择正确的时间常数是相当困难的。

下面就来介绍更加具体的防止网络拥塞的方法。

5.8.2 TCP的拥塞控制方法

TCP进行拥塞控制的算法有四种,即**慢开始**(slow-start)、**拥塞避免**(congestion avoidance)、**快重传**(fast retransmit)和**快恢复**(fast recovery)(见2009年9月公布的草案标准RFC 5681)。下面就介绍这些算法的原理。为了集中精力讨论拥塞控制,我们假定:

(1) 数据是单方向传送的,对方只传送确认报文。

(2) 接收方总是有足够大的缓存空间,因而发送窗口的大小由网络的 拥塞程度来决定。

1. 慢开始和拥塞避免

下面讨论的拥塞控制也叫做**基于窗口**的拥塞控制。为此,发送方维持一个叫做**拥塞窗口** cwnd(congestion window)的状态变量。拥塞窗口的大小取决于网络的拥塞程度,并且动态地在变化。**发送方让自己的发送窗口等于拥塞窗口**。

发送方控制拥塞窗口的原则是:只要网络没有出现拥塞,拥塞窗口就可以再增大一些,以便把更多的分组发送出去,这样就可以提高网络的利用率。但只要网络出现拥塞或有可能出现拥塞,就必须把拥塞窗口减小一些,以减少注入到网络中的分组数,以便缓解网络出现的拥塞。

发送方又是如何知道网络发生了拥塞呢?我们知道,当网络发生拥塞时,路由器就要丢弃分组。因此只要发送方没有按时收到应当到达的确认报文,也就是说,只要出现了超时,就可以猜想网络可能出现了拥塞。现在通信线路的传输质量一般都很好,因传输出差错而丢弃分组的概率是很小的(远小于1%)。因此,**判断网络拥塞的依据就是出现了超时**。

下面将讨论拥塞窗口cwnd的大小是怎样变化的。我们从"慢开始算法"讲起。

慢开始 算法的思路是这样的:当主机开始发送数据时,由于并不清楚网络的负荷情况,所以如果立即把大量数据字节注入到网络,那么就有可能引起网络发生拥塞。经验证明,较好的方法是先探测一下,即由小到大逐渐增大发送窗口,也就是说,由小到大逐渐增大拥塞窗口数值。

旧的规定是这样的:在刚刚开始发送报文段时,先把初始拥塞窗口cwnd设置为1至2个发送方的最大报文段SMSS(Sender Maximum Segment Size)的数值,但新的RFC 5681把初始拥塞窗口cwnd设置为不超过2至4个SMSS的数值。具体的规定如下:

若SMSS>2190字节.

则设置初始拥塞窗口cwnd=2×SMSS字节,且**不得超过**2个报文段。

若(SMSS>1095字节)且(SMSS≤2190字节),

则设置初始拥塞窗口cwnd=3×SMSS字节,且**不得超过**3个报文段。

若SMSS≤1095字节,

则设置初始拥塞窗口 $cwnd = 4 \times SMSS$ 字节,且**不得超过** 4个报文段。

可见这个规定就是限制初始拥塞窗口的字节数。

慢开始规定,在每收到一个**对新的报文段的确认**后,可以把拥塞窗口增加最多一个SMSS的数值。更具体些,就是

拥塞窗口 cwnd 每次的增加量 =
$$\min(N, SMSS)$$
 (5-8)

其中N是原先未被确认的、但现在被刚收到的确认报文段所确认的字节数。不难看出,当N <SMSS时,拥塞窗口每次的增加量要小于SMSS。

用这样的方法逐步增大发送方的拥塞窗口cwnd,可以使分组注入到网络的速率更加合理。

下面用例子说明慢开始算法的原理。请注意,虽然实际上TCP是用字节数作为窗口大小的单位。但为叙述方便起见,我们**用报文段的个数作为窗口大小的单位**,这样可以使用较小的数字来阐明拥塞控制的原理。

在一开始发送方先设置cwnd=1,发送第一个报文段 M_1 ,接收方收到后确认 M_1 。发送方收到对 M_1 的确认后,把cwnd从1增大到2,于是发送方接着发送 M_2 和 M_3 两个报文段。接收方收到后发回对 M_2 和 M_3 的确认。发送方每收到一个**对新报文段的确认**(重传的不算在内)就使发送方的拥塞窗口加1,因此发送方在收到两个确认后,cwnd就从2增大到4,并可发送 M_4 ~ M_7 共4个报文段(见图5-24)。因此使用慢开

始算法后,**每经过一个传输轮次** (transmission round),**拥塞窗口** cwnd**就加倍**。

图5-24 发送方每收到一个确认就把窗口cwnd加1

这里我们使用了一个名词——传输**轮次**。从图5-24可以看出,一个传输轮次所经历的时间其实就是往返时间RTT(请注意,RTT并非是恒定的数值)。使用"传输轮次"是更加强调:把拥塞窗口cwnd所允许发送的报文段都连续发送出去,并收到了对已发送的最后一个字节的确认。例如,拥塞窗口cwnd的大小是4个报文段,那么这时的往返时间RTT就是发送方连续发送4个报文段,并收到这4个报文段的确认,总共经历的时间。

我们还要指出,慢开始的"慢"并不是指cwnd的增长速率慢,而是指在TCP开始发送报文段时先设置cwnd=1,使得发送方在开始时只发送一个报文段(目的是试探一下网络的拥塞情况),然后再逐渐增大cwnd。这当然比设置大的cwnd值一下子把许多报文段注入到网络中要"慢得多"。这对防止网络出现拥塞是一个非常好的方法。

顺便指出,图5-24只是为了说明慢开始的原理。在TCP的实际运行中,发送方只要收到一个对新报文段的确认,其拥塞窗口cwnd就立即加1,并可以立即发送新的报文段,而不需要等这个轮次中所有的确认都收到后(如图5-24所示的那样)再发送新的报文段。

为了防止拥塞窗口cwnd增长过大引起网络拥塞,还需要设置一个**慢开始门限** ssthresh状态变量(如何设置ssthresh,后面还要讲)。慢开始

门限ssthresh的用法如下:

当cwnd<ssthresh时,使用上述的慢开始算法。

当cwnd>ssthresh时,停止使用慢开始算法而改用拥塞避免算法。

当cwnd=ssthresh时,既可使用慢开始算法,也可使用拥塞避免算法。

拥塞避免 算法的思路是让拥塞窗口cwnd缓慢地增大,即每经过一个往返时间RTT就把发送方的拥塞窗口cwnd加1⁽¹²⁾,而不是像慢开始阶段那样加倍增长。因此在拥塞避免阶段就有"加法增大"AI(Additive Increase)的特点。这表明在拥塞避免阶段,拥塞窗口cwnd按线性规律缓慢增长,比慢开始算法的拥塞窗口增长速率缓慢得多。

图5-25用具体例子说明了在拥塞控制的过程中,TCP的拥塞窗口cwnd 是怎样变化的。图中的的数字❶至❺是特别要注意的几个点。现假定 TCP的发送窗口等于拥塞窗口。

图5-25 TCP拥塞窗口cwnd在拥塞控制时的变化情况

当TCP连接进行初始化时,把拥塞窗口cwnd置为1。为了便于理解,图中的窗口单位不使用字节而使用报文段的个数。在本例中,慢开始门限的初始值设置为16个报文段,即ssthresh=16。在执行慢开始算法时,发送方每收到一个对新报文段的确认ACK,就把拥塞窗口值加1,然后开始下一轮的传输(请注意,图5-25的横坐标是传输轮次,不是时间)。因此拥塞窗口cwnd随着传输轮次按指数规律增长。当拥塞窗口cwnd增长到慢开始门限值ssthresh时(图中的点❶,此时拥塞窗口cwnd=16),就改为执行拥塞避免算法,拥塞窗口按线性规律增长。但请注意,"拥塞避免"并非完全能够避免了拥塞。"拥塞避免"是说把拥塞窗口控制为按线性规律增长,使网络比较不容易出现拥塞。

当拥塞窗口cwnd=24时,网络出现了超时(图中的点②),发送方判断为网络拥塞。于是调整门限值ssthresh=cwnd/2=12,同时设置拥塞窗口cwnd=1,进入慢开始阶段。

按照慢开始算法,发送方每收到一个对新报文段的确认ACK,就把拥塞窗口值加1。当拥塞窗口cwnd=ssthresh=12时(图中的点❸,这是**新的** ssthresh值),改为执行拥塞避免算法,拥塞窗口按线性规律增大。

当拥塞窗口cwnd=16时(图中的点4),出现了一个新的情况,就是发送方一连收到3个对同一个报文段的重复确认(图中记为3-ACK)。 关于这个问题要解释如下。

有时,个别报文段会在网络中丢失,但实际上网络并未发生拥塞。如果发送方迟迟收不到确认,就会产生超时,就会误认为网络发生了拥塞。这就导致发送方错误地启动慢开始,把拥塞窗口cwnd又设置为1,因而降低了传输效率。

采用快重传算法可以让发送方**尽早知道发生了个别报文段的丢失**。快重传算法首先要求接收方不要等待自己发送数据时才进行捎带确认,而是要**立即发送确认**,即使收到了**失序的报文段** 也要立即发出对已收到的报文段的重复确认。如图5-26所示,接收方收到了 M_1 和 M_2 后都分别及时发出了确认。现假定接收方没有收到 M_3 但却收到了 M_4 。本来接收方可以什么都不做。但按照快重传算法,接收方**必须立即发送对** M_2 的重复确认,以便让发送方及早知道接收方没有收到报文段 M_3 。发送方接着发送 M_5 和 M_6 。接收方收到后也仍要再次分别发出对 M_2 的重复确认。这样,发送方共收到了接收方的4个对 M_2 的确认,其中后3个都是重复确认。快重传算法规定,发送方只要**一连收到3个重复确认**,就知道接收方确实没有收到报文段 M_3 ,因而应当**立即进行重传**(即"快重传"),这样就不会出现超时,发送方也不就会误认为出现了网络拥塞。使用快重传可以使整个网络的吞吐量提高约 20%。

图5-26 快重传的示意图

因此,在图5-25中的点**4**,发送方知道现在只是丢失了个别的报文段。于是不启动慢开始,而是执行**快恢复**算法。这时,发送方调整门限值ssthresh = cwnd/2 = 8,同时设置拥塞窗口cwnd = ssthresh = 8(见图5-25中的点**5**),并开始执行拥塞避免算法(13)。

在图5-25中还标注有"TCP Reno版本",表示区别于老的TCP Tahao版本。

请注意,也有的快恢复实现是把快恢复开始时的拥塞窗口cwnd值再增大一些(增大3个报文段的长度),即等于新的ssthresh+3×MSS。这样做的理由是: 既然发送方收到3个重复的确认,就表明有3个分组已经离开了网络。这3个分组不再消耗网络的资源而是停留在接收方的缓存中(接收方发送出3个重复的确认就证明了这个事实)。可见现在网络中并不是堆积了分组而是减少了3个分组。因此可以适当把拥塞窗口扩大些。

从图5-25可以看出,在拥塞避免阶段,拥塞窗口是按照线性规律增大的,这常称为**加法增大** AI(Additive Increase)。而一旦出现超时或3个重复的确认,就要把门限值设置为当前拥塞窗口值的一半,并大大减小拥塞窗口的数值。这常称为"**乘法减小**"MD(Multiplicative Decrease)。二者合在一起就是所谓的AIMD算法。

采用这样的拥塞控制方法使得TCP的性能有明显的改进[STEV94] 「RFC 5681]。

根据以上所述,TCP的拥塞控制可以归纳为图5-27的流程图。这个流程图就比图5-25所示的特例要更加全面些。例如,图5-25没有说明在慢开始阶段如果出现了超时(即出现了网络拥塞)或出现3-ACK,发送方应采取什么措施。但从图5-27的流程图就可以很明确地知道发送方应采取的措施。

图5-27 TCP的拥塞控制的流程图

在这一节的开始我们就假定了接收方总是有足够大的缓存空间,因而发送窗口的大小由网络的拥塞程度来决定。但实际上接收方的缓存空间总是有限的。接收方根据自己的接收能力设定了接收方窗口rwnd,并把这个窗口值写入TCP首部中的窗口字段,传送给发送方。因此,接收方窗口又称为通知窗口(advertised window)。因此,从接收方对发送方的流量控制的角度考虑,发送方的发送窗口一定不能超过对方给出的接收方窗口值 rwnd。

如果把本节所讨论的拥塞控制和接收方对发送方的流量控制一起考虑,那么很显然,发送方的窗口的上限值应当取为接收方窗口rwnd和拥塞窗口cwnd这两个变量中较小的一个,也就是说:

(5-9) 式指出:

当rwnd<cwnd时,是接收方的接收能力限制发送方窗口的最大值。

反之,当cwnd<rwnd时,则是网络的拥塞程度限制发送方窗口的最大值。

也就是说,rwnd和cwnd中数值较小的一个,控制了发送方发送数据的速率。

5.8.3 主动队列管理AQM

上一节讨论的TCP拥塞控制并没有和网络层采取的策略联系起来。其实、它们之间有着密切的关系。

例如,假定一个路由器对某些分组的处理时间特别长,那么这就可能使这些分组中的数据部分(即TCP报文段)经过很长时间才能到达终点,结果引起发送方对这些报文段的重传。根据前面所讲的,重传会使TCP连接的发送端认为在网络中发生了拥塞。于是在TCP的发送端就采取了拥塞控制措施,但实际上网络并没有发生拥塞。

网络层的策略对TCP拥塞控制影响最大的就是路由器的分组丢弃策略。在最简单的情况下,路由器的队列通常都是按照"先进先出"FIFO(First In First Out)的规则处理到来的分组。由于队列长度总是有限的,因此当队列已满时,以后再到达的所有分组(如果能够继续排队,这些分组都将排在队列的尾部)将都被丢弃。这就叫做尾部丢弃策略(tail-drop policy)。

路由器的尾部丢弃往往会导致一连串分组的丢失,这就使发送方出现超时重传,使TCP进入拥塞控制的慢开始状态,结果使TCP连接的发送方突然把数据的发送速率降低到很小的数值。更为严重的是,在网络中通常有很多的TCP连接(它们有不同的源点和终点),这些连接中的报文段通常是复用在网络层的IP数据报中传送。在这种情况下,若发生了路由器中的尾部丢弃,就可能会同时影响到很多条TCP连接,结果使这许多TCP连接在同一时间突然都进入到慢开始状态。这在TCP的术语中称为全局同步(global syncronization)。全局同步使得全网的通信量突然下降了很多,而在网络恢复正常后,其通信量又突然增大很多。

为了避免发生网络中的全局同步现象,在1998年提出了**主动队列管理** AQM(Active Queue Management)。所谓"主动"就是不要等到路由器

的队列长度已经达到最大值时才不得不丢弃后面到达的分组。这样就太被动了。应当在队列长度达到某个值得警惕的数值时(即当网络拥塞有了某些拥塞征兆时),就主动丢弃到达的分组。这样就提醒了发送方放慢发送的速率,因而有可能使网络拥塞的程度减轻,甚至不出现网络拥塞。AQM可以有不同实现方法,其中曾流行多年的就是**随机早期检测** RED(Random Early Detection)。RED还有几个不同的名称,如Random Early Drop或Random Early Discard(随机早期丢弃)。

实现RED时需要使路由器维持两个参数,即队列长度最小门限和最大门限。当每一个分组到达时,RED就按照规定的算法先计算当前的平均队列长度。

- (1) 若平均队列长度小于最小门限,则把新到达的分组放入队列进行排队。
 - (2) 若平均队列长度超过最大门限,则把新到达的分组丢弃。
- (3) 若平均队列长度在最小门限和最大门限之间,则按照某一丢弃概率p 把新到达的分组丢弃(这就体现了丢弃分组的随机性)。

由此可见,RED不是等到已经发生网络拥塞后才把所有在队列尾部的分组全部丢弃,而是在检测到网络拥塞的**早期征兆**时(即路由器的平均队列长度达到一定数值时),就以概率p丢弃个别的分组,让拥塞控制只在个别的TCP连接上进行,因而避免发生全局性的拥塞控制。

在RED的操作中,最难处理的就是丢弃概率p的选择,因为p并不是个常数。对每一个到达的分组,都必须计算丢弃概率p的数值。IETF曾经推荐在互联网中的路由器使用RED机制 [RFC 2309],但多年的实践证明,RED的使用效果并不太理想。因此,在2015年公布的RFC 7567已经把过去的RFC 2309列为"陈旧的",并且不再推荐使用RED。对路由器进行主动队列管理AQM仍是必要的。AQM实际上就是对路由器中的分组排队进行智能管理,而不是简单地把队列的尾部丢弃。现在已经有几种不同的算法来代替旧的RED,但都还在实验阶段。目前还没有一种算法能够成为IETF的标准,读者可注意这方面的进展。

5.9 TCP的运输连接管理

TCP是面向连接的协议。运输连接是用来传送TCP报文的。TCP运输连接的建立和释放是每一次面向连接的通信中必不可少的过程。因此,运输连接就有三个阶段,即: **连接建立、数据传送和连接释放**。运输连接的管理就是使运输连接的建立和释放都能正常地进行。

在TCP连接建立过程中要解决以下三个问题:

- (1) 要使每一方能够确知对方的存在。
- (2) 要允许双方协商一些参数(如最大窗口值、是否使用窗口扩大选项和时间戳选项以及服务质量等)。
- (3) 能够对运输实体资源(如缓存大小、连接表中的项目等)进行分配。

TCP连接的建立采用客户服务器方式。主动发起连接建立的应用进程叫做**客户**(client),而被动等待连接建立的应用进程叫做**服务器**(server)。

5.9.1 TCP的连接建立

TCP建立连接的过程叫做握手,握手需要在客户和服务器之间交换三个TCP报文段。图5-28画出了三报文握手(14)建立TCP连接的过程。

图5-28 用三报文握手建立TCP连接

假定主机A运行的是TCP客户程序,而B运行TCP服务器程序。最初两端的TCP进程都处于CLOSED(关闭)状态。图中在主机下面的方框分别是TCP进程所处的状态。请注意,在本例中,A**主动打开连接**,而B**被动打开连接**。

一开始,B的TCP服务器进程先创建**传输控制块** TCB (15), 准备接受客户进程的连接请求。然后服务器进程就处于LISTEN(收听)状态,等待客户的连接请求。如有,即作出响应。

A的TCP客户进程也是首先创建传输控制模块 TCB。然后,在打算建立TCP连接时,向B发出连接请求报文段,这时首部中的同步位SYN=1,同时选择一个初始序号seq=x。TCP规定,SYN报文段(即SYN=1的报文段)不能携带数据,但要消耗掉一个序号。这时,TCP客户进程进入SYN-SENT(同步已发送)状态。

B收到连接请求报文段后,如同意建立连接,则向A发送确认。在确认报文段中应把SYN位和ACK位都置1,确认号是ack=x+1,同时也为自己选择一个初始序号seq=y。请注意,这个报文段也不能携带数据,但同样**要消耗掉一个序号**。这时TCP服务器进程进入SYN-RCVD(同步收到)状态。

TCP客户进程收到B的确认后,还要向B给出确认。确认报文段的ACK置1,确认号ack=y+1,而自己的序号seq=x+1。TCP的标准规定,

ACK报文段可以携带数据。但**如果不携带数据则不消耗序号**,在这种情况下,下一个数据报文段的序号仍是seq=x+1。这时,TCP连接已经建立,A进入ESTABLISHED(已建立连接)状态。

当B收到A的确认后,也进入ESTABLISHED状态。

上面给出的连接建立过程叫做**三报文握手**。请注意,在图5-28中B发送给A的报文段,也可拆成两个报文段。可以先发送一个确认报文段 (ACK=1, ack=x+1),然后再发送一个同步报文段 (SYN=1, seq=y)。这样的过程就变成了**四报文握手**,但效果是一样的。

为什么A最后还要发送一次确认呢?这主要是为了防止已失效的连接请求报文段突然又传送到了B,因而产生错误。

所谓"已失效的连接请求报文段"是这样产生的。考虑一种正常情况,A发出连接请求,但因连接请求报文丢失而未收到确认。于是A再重传一次连接请求。后来收到了确认,建立了连接。数据传输完毕后,就释放了连接。A共发送了两个连接请求报文段,其中第一个丢失,第二个到达了B,没有"已失效的连接请求报文段"。

现假定出现一种异常情况,即A发出的第一个连接请求报文段并没有丢失,而是在某些网络结点长时间滞留了,以致延误到连接释放以后的某个时间才到达B。本来这是一个早已失效的报文段。但B收到此失效的连接请求报文段后,就误认为是A又发出一次新的连接请求。于是就向A发出确认报文段,同意建立连接。假定不采用报文握手,那么只要B发出确认,新的连接就建立了。

由于现在A并没有发出建立连接的请求,因此不会理睬B的确认,也不会向B发送数据。但B却以为新的运输连接已经建立了,并一直等待A发来数据。B的许多资源就这样白白浪费了。

采用三报文握手的办法,可以防止上述现象的发生。例如在刚才的异常情况下,A不会向B的确认发出确认。B由于收不到确认,就知道A并没有要求建立连接。

5.9.2 TCP的连接释放

TCP连接释放过程比较复杂,我们仍结合双方状态的改变来阐明连接 释放的过程。

数据传输结束后,通信的双方都可释放连接。现在A和B都处于ESTABLISHED状态(图5-29)。A的应用进程先向其TCP发出连接释放报文段,并停止再发送数据,主动关闭TCP连接。A把连接释放报文段首部的终止控制位FIN置1,其序号seq=u,它等于前面已传送过的数据的最后一个字节的序号加1。这时A进入FIN-WAIT-1(终止等待1)状态,等待B的确认。请注意,TCP规定,FIN报文段即使不携带数据,它也消耗掉一个序号。

图5-29 TCP连接释放的过程

B收到连接释放报文段后即发出确认,确认号是ack=u+1,而这个报文段自己的序号是v,等于B前面已传送过的数据的最后一个字节的序号加1。然后B就进入CLOSE-WAIT(关闭等待)状态。TCP服务器进程这时应通知高层应用进程,因而从A到B这个方向的连接就释放了,这时的TCP连接处于**半关闭**(half-close)状态,即A已经没有数据要发送了,但B若发送数据,A仍要接收。也就是说,从B到A这个方向的连接并未关闭,这个状态可能会持续一段时间。

A收到来自B的确认后,就进入FIN-WAIT-2(终止等待2)状态,等待B发出的连接释放报文段。

若B已经没有要向A发送的数据,其应用进程就通知TCP释放连接。这时B发出的连接释放报文段必须使FIN=1。现假定B的序号为w(在半关闭状态B可能又发送了一些数据)。B还必须重复上次已发送过的确认号ack=u+1。这时B就进入LAST-ACK(最后确认)状态,等待A的确认。

A在收到B的连接释放报文段后,必须对此发出确认。在确认报文段中把ACK置1,确认号ack=w+1,而自己的序号是seq=u+1(根据TCP标准,前面发送过的FIN报文段要消耗一个序号)。然后进入到TIME-WAIT(时间等待)状态。请注意,现在TCP连接还没有释放掉。必须经过时间等待计时器(TIME-WAIT timer)设置的时间2MSL后,A才进入到CLOSED状态。时间MSL叫做最长报文段寿命(Maximum Segment Lifetime),RFC 793建议设为2分钟。但这完全是从工程上来考虑的,对于现在的网络,MSL=2分钟可能太长了一些。因此TCP允许不同的实现可根据具体情况使用更小的MSL值。因此,从A进入到TIME-WAIT状态后,要经过4分钟才能进入到CLOSED状态,才能开始建立下一个新的连接。当A撤销相应的传输控制块TCB后,就结束了这次的TCP连接。

为什么A在TIME-WAIT状态必须等待2MSL的时间呢?这有两个理由。

第一,为了保证A发送的最后一个ACK报文段能够到达B。这个ACK报文段有可能丢失,因而使处在LAST-ACK状态的B收不到对已发送的FIN+ACK报文段的确认。B会超时重传这个FIN+ACK报文段,而A就能在2MSL时间内收到这个重传的FIN+ACK报文段。接着A重传一次确认,重新启动2MSL计时器。最后,A和B都正常进入到CLOSED状态。如果A在TIME-WAIT状态不等待一段时间,而是在发送完ACK报文段后立即释放连接,那么就无法收到B重传的FIN+ACK报文段,因而也不会再发送一次确认报文段。这样,B就无法按照正常步骤进入CLOSED状态。

第二,防止上一节提到的"已失效的连接请求报文段"出现在本连接中。A在发送完最后一个ACK报文段后,再经过时间2MSL,就可以使本连接持续的时间内所产生的所有报文段都从网络中消失。这样就可以使下一个新的连接中不会出现这种旧的连接请求报文段。

B只要收到了A发出的确认,就进入CLOSED状态。同样,B在撤销相应的传输控制块TCB后,就结束了这次的TCP连接。我们注意到,B结束TCP连接的时间要比A早一些。

上述的TCP连接释放过程是四报文握手。

除时间等待计时器外,TCP还设有一个保活计时器(keepalive timer)。设想有这样的情况:客户已主动与服务器建立了TCP连接。但后来客户端的主机突然出故障。显然,服务器以后就不能再收到客户发来的数据。因此,应当有措施使服务器不要再白白等待下去。这就是使用保活计时器。服务器每收到一次客户的数据,就重新设置保活计时器,时间的设置通常是两小时。若两小时没有收到客户的数据,服务器就发送一个探测报文段,以后则每隔75秒钟发送一次。若一连发送10个探测报文段后仍无客户的响应,服务器就认为客户端出了故障,接着就关闭这个连接。

5.9.3 TCP的有限状态机

为了更清晰地看出TCP连接的各种状态之间的关系,图5-30给出了TCP的有限状态机。图中每一个方框即TCP可能具有的状态。每个方框中的大写英文字符串是TCP标准所使用的TCP连接状态名。状态之间的箭头表示可能发生的状态变迁。箭头旁边的字,表明引起这种变迁的原因,或表明发生状态变迁后又出现什么动作。请注意图中有三种不同的箭头。粗实线箭头表示对客户进程的正常变迁。粗虚线箭头表示对服务器进程的正常变迁。另一种细线箭头表示异常变迁。

图5-30 TCP的有限状态机

我们可以把图5-30和前面的图5-28、图5-29对照起来看。在图5-28和图5-29中左边客户进程从上到下的状态变迁,就是图5-30中粗实线箭头所指的状态变迁。而在图5-28和5-29右边服务器进程从上到下的状态变迁,就是图5-30中粗虚线箭头所指的状态变迁。

还有一些状态变迁,例如连接建立过程中的从LISTEN到SYN-SENT和从SYN-SENT到SYN-RCVD。读者可分析在什么情况下会出现这样的变迁(见习题5-40)。

本章的重要概念

- 运输层提供应用进程间的逻辑通信,也就是说,运输层之间的通信并不是真正在两个运输层之间直接传送数据。运输层向应用层屏蔽了下面网络的细节(如网络拓扑、所采用的路由选择协议等),它使应用进程看见的就是好像在两个运输层实体之间有一条端到端的逻辑通信信道。
- 网络层为主机之间提供逻辑通信,而运输层为应用进程之间提供端到端的逻辑通信。
- 运输层有两个主要的协议: TCP和UDP。它们都有复用和分用,以及检错的功能。当运输层采用面向连接的TCP协议时,尽管下面的网络是不可靠的(只提供尽最大努力服务),但这种逻辑通信信道就相当于一条全双工通信的可靠信道。当运输层采用无连接的UDP协议时,这种逻辑通信信道仍然是一条不可靠信道。
- 运输层用一个16位端口号来标志一个端口。端口号只具有本地意义,它只是为了标志本计算机应用层中的各个进程在和运输层交互时的层间接口。在互联网的不同计算机中,相同的端口号是没有关联的。
- 两台计算机中的进程要互相通信,不仅要知道对方的IP地址(为了找到对方的计算机),而且还要知道对方的端口号(为了找到对方计算机中的应用进程)。
- 运输层的端口号分为服务器端使用的端口号(0~1023指派给熟知端口,1024~49151是登记端口号)和客户端暂时使用的端口号(49152~65535)。
- UDP的主要特点是: (1) 无连接; (2) 尽最大努力交付; (3) 面向报文; (4) 无拥塞控制; (5) 支持一对一、一对多、多对一和多对多的交互通信; (6) 首部开销小(只有四个字段: 源端口、目的端口、长度、检验和)。
- TCP的主要特点是: (1) 面向连接; (2) 每一条TCP连接只能是点对点的(一对一); (3) 提供可靠交付的服务; (4) 提供全双工通信: (5) 面向字节流。
- TCP用主机的IP地址加上主机上的端口号作为TCP连接的端点。 这样的端点就叫做套接字(socket)或插口。套接字用(IP地址: 端口号)来表示。
- 停止等待协议能够在不可靠的传输网络上实现可靠的通信。每发送完一个分组就停止发送,等待对方的确认。在收到确认后再发

- 送下一个分组。分组需要进行编号。
- 超时重传是指只要超过了一段时间仍然没有收到确认,就重传前面发送过的分组(认为刚才发送的分组丢失了)。因此每发送完一个分组需要设置一个超时计时器,其重传时间应比数据在分组传输的平均往返时间更长一些。这种自动重传方式常称为自动重传请求ARQ。
- 在停止等待协议中,若接收方收到重复分组,就丢弃该分组,但同时还要发送确认。
- 连续ARQ协议可提高信道利用率。发送方维持一个发送窗口,凡位于发送窗口内的分组都可连续发送出去,而不需要等待对方的确认。接收方一般采用累积确认,对按序到达的最后一个分组发送确认,表明到这个分组为止的所有分组都已正确收到了。
- TCP报文段首部的前20个字节是固定的,后面有4N字节是根据需要而增加的选项(N是整数)。在一个TCP连接中传送的字节流中的每一个字节都按顺序编号。首部中的序号字段值则指的是本报文段所发送的数据的第一个字节的序号。
- TCP首部中的确认号是期望收到对方下一个报文段的第一个数据字节的序号。若确认号为N,则表明: 到序号N-1为止的所有数据都已正确收到。
- TCP首部中的窗口字段指出了现在允许对方发送的数据量。窗口 值是经常在动态变化着的。
- TCP使用滑动窗口机制。发送窗口里面的序号表示允许发送的序号。发送窗口后沿的后面部分表示已发送且已收到了确认,而发送窗口前沿的前面部分表示不允许发送。发送窗口后沿的变化情况有两种可能,即不动(没有收到新的确认)和前移(收到了新的确认)。发送窗口前沿通常是不断向前移动的。
- 流量控制就是让发送方的发送速率不要太快,要让接收方来得及接收。
- 在某段时间,若对网络中某一资源的需求超过了该资源所能提供的可用部分,网络的性能就要变坏。这种情况就叫做拥塞。拥塞控制就是防止过多的数据注入到网络中,这样可以使网络中的路由器或链路不致过载。
- 流量控制是一个端到端的问题,是接收端抑制发送端发送数据的速率,以便使接收端来得及接收。拥塞控制是一个全局性的过程,涉及到所有的主机、所有的路由器,以及与降低网络传输性能有关的所有因素。

- 为了进行拥塞控制,TCP的发送方要维持一个拥塞窗口cwnd的状态变量。拥塞窗口的大小取决于网络的拥塞程度,并且动态地在变化。发送方让自己的发送窗口取为拥塞窗口和接收方的接收窗口中较小的一个。
- TCP的拥塞控制采用了四种算法,即慢开始、拥塞避免、快重传和快恢复。在网络层,也可以使路由器采用适当的分组丢弃策略(如主动队列管理AQM),以减少网络拥塞的发生。
- 运输连接有三个阶段, 即: 连接建立、数据传送和连接释放。
- 主动发起TCP连接建立的应用进程叫做客户,而被动等待连接建立的应用进程叫做服务器。TCP的连接建立采用三报文握手机制。服务器要确认客户的连接请求,然后客户要对服务器的确认进行确认。
- TCP的连接释放采用四报文握手机制。任何一方都可以在数据传送结束后发出连接释放的通知,待对方确认后就进入半关闭状态。当另一方也没有数据再发送时,则发送连接释放通知,对方确认后就完全关闭了TCP连接。

习题

- **5-01** 试说明运输层在协议栈中的地位和作用。运输层的通信和网络层的通信有什么重要的区别?为什么运输层是必不可少的?
- 5-02 网络层提供数据报或虚电路服务对上面的运输层有何影响?
- **5-03** 当应用程序使用面向连接的TCP和无连接的IP时,这种传输是面向连接的还是无连接的?
- **5-04** 试画图解释运输层的复用。画图说明许多个运输用户复用到一条运输连接上,而这条运输连接又复用到IP数据报上。
- **5-05** 试举例说明有些应用程序愿意采用不可靠的UDP,而不愿意采用可靠的TCP。
- 5-06 接收方收到有差错的UDP用户数据报时应如何处理?
- **5-07** 如果应用程序愿意使用UDP完成可靠传输,这可能吗?请说明理由。

- 5-08 为什么说UDP是面向报文的,而TCP是面向字节流的?
- 5-09 端口的作用是什么? 为什么端口号要划分为三种?
- 5-10 试说明运输层中伪首部的作用。
- 5-11 某个应用进程使用运输层的用户数据报UDP,然后继续向下交给IP层后,又封装成IP数据报。既然都是数据报,是否可以跳过UDP而直接交给IP层?哪些功能UDP提供了但IP没有提供?
- 5-12 一个应用程序用UDP, 到了IP层把数据报再划分为4个数据报片发送出去。结果前两个数据报片丢失,后两个到达目的站。过了一段时间应用程序重传UDP,而IP层仍然划分为4个数据报片来传送。结果这次前两个到达目的站而后两个丢失。试问:在目的站能否将这两次传输的4个数据报片组装成为完整的数据报?假定目的站第一次收到的后两个数据报片仍然保存在目的站的缓存中。
- 5-13 一个UDP用户数据报的数据字段为8192字节。在链路层要使用以太网来传送。试问应当划分为几个IP数据报片?说明每一个IP数据报片的数据字段长度和片偏移字段的值。
- **5-14** 一个UDP用户数据报的首部的十六进制表示是: 06 32 00 45 00 1C E2 17。试求源端口、目的端口、用户数据报的总长度、数据部分长度。这个用户数据报是从客户发送给服务器还是从服务器发送给客户? 使用UDP的这个服务器程序是什么?
- **5-15** 使用TCP对实时话音数据的传输会有什么问题? 使用UDP在传送数据文件时会有什么问题?
- 5-16 在停止等待协议中如果不使用编号是否可行? 为什么?
- **5-17** 在停止等待协议中,如果收到重复的报文段时不予理睬(即悄悄地丢弃它而其他什么也不做)是否可行?试举出具体例子说明理由。
- **5-18** 假定在运输层使用停止等待协议。发送方发送报文段 M_0 后在设定的时间内未收到确认,于是重传 M_0 ,但 M_0 又迟迟不能到达接收方。不久,发送方收到了迟到的对 M_0 的确认,于是发送下一个报文

段 \mathbf{M}_1 ,不久就收到了对 \mathbf{M}_1 的确认。接着发送方发送新的报文段 \mathbf{M}_0 ,但这个新的 \mathbf{M}_0 在传送过程中丢失了。正巧,一开始就滞留在网络中的 \mathbf{M}_0 现在到达接收方。接收方无法分辨 \mathbf{M}_0 是旧的。于是收下 \mathbf{M}_0 ,并发送确认。显然,接收方后来收到的 \mathbf{M}_0 是重复的,协议失败了。

试画出类似于图5-9所示的双方交换报文段的过程。

- **5-19** 试证明: 当用n 比特进行分组的编号时,若接收窗口等于1(即只能按序接收分组),则仅在发送窗口不超过 2^n -1时,连续ARQ协议才能正确运行。窗口单位是分组。
- **5-20** 在连续ARQ协议中,若发送窗口等于7,则发送端在开始时可连续发送7个分组。因此,在每一分组发出后,都要置一个超时计时器。现在计算机里只有一个硬时钟。设这7个分组发出的时间分别为 t_0 , t_1 ,…, t_6 ,且 t_{out} 都一样大。试问如何实现这7个超时计时器(这叫软时钟法)?
- **5-21** 假定使用连续ARQ协议,发送窗口大小是3,而序号范围是[0,15],而传输媒体保证在接收方能够按序收到分组。在某一时刻,在接收方,下一个期望收到的序号是5。试问:
 - (1) 在发送方的发送窗口中可能出现的序号组合有哪些?
- (2) 接收方已经发送出的、但在网络中(即还未到达发送方)的确认分组可能有哪些?说明这些确认分组是用来确认哪些序号的分组。
- **5-22** 主机A向主机B发送一个很长的文件,其长度为L 字节。假定 TCP使用的MSS为1460字节。
 - (1) 在TCP的序号不重复使用的条件下. L 的最大值是多少?
- (2) 假定使用上面计算出的文件长度,而运输层、网络层和数据链路层所用的首部开销共66字节,链路的数据率为10Mbit/s,试求这个文件所需的最短发送时间。

- 5-23 主机A向主机B连续发送了两个TCP报文段, 其序号分别是70和100。试问:
 - (1) 第一个报文段携带了多少字节的数据?
 - (2) 主机B收到第一个报文段后发回的确认中的确认号应当是多少?
- (3) 如果B收到第二个报文段后发回的确认中的确认号是180, 试问A发送的第二个报文段中的数据有多少字节?
- (4) 如果A发送的第一个报文段丢失了,但第二个报文段到达了B。 B在第二个报文段到达后向A发送确认。试问这个确认号应为多少?
- 5-24 一个TCP连接下面使用256kbit/s的链路, 其端到端时延为128ms。经测试, 发现吞吐量只有120kbit/s。试问发送窗口W是多少? (提示: 可以有两种答案, 取决于接收端发出确认的时机。)
- **5-25** 为什么在TCP首部中的要把TCP的端口号放入最开始的4个字节?
- 5-26 为什么在TCP首部中有一个首部长度字段,而UDP的首部中就没有这个字段?
- 5-27 一个TCP报文段的数据部分最多为多少个字节?为什么?如果用户要传送的数据的字节长度超过TCP报文段中的序号字段可能编出的最大序号,问还能否用TCP来传送?
- 5-28 主机A向主机B发送TCP报文段,首部中的源端口是m而目的端口是n。当B向A发送回信时,其TCP报文段的首部中的源端口和目的端口分别是什么?
- **5-29** 在使用TCP传送数据时,如果有一个确认报文段丢失了,也不一定会引起与该确认报文段对应的数据的重传。试说明理由。
- **5-30** 设TCP使用的最大窗口为65535字节,而传输信道不产生差错,带宽也不受限制。若报文段的平均往返时间为20ms,问所能得到的最大吞叶量是多少?

- **5-31** 通信信道带宽为1Gbit/s,端到端传播时延为10ms。TCP的发送窗口为65535字节。试问:可能达到的最大吞吐量是多少?信道的利用率是多少?
- **5-32** 什么是Karn算法? 在TCP的重传机制中,若不采用Karn算法,而是在收到确认时都认为是对重传报文段的确认,那么由此得出的往返时间样本和重传时间都会偏小。试问: 重传时间最后会减小到什么程度?
- 5-33 假定TCP在开始建立连接时,发送方设定超时重传时间RTO=6秒。
- (1) 当发送方收到对方的连接确认报文段时,测量出RTT样本值为 1.5秒。试计算现在的RTO值。
- (2) 当发送方发送数据报文段并收到确认时,测量出RTT样本值为 2.5秒。试计算现在的RTO值。
- 5-34 已知第一次测得TCP的往返时间RTT是30ms。接着收到了三个确认报文段,用它们测量出的往返时间样本RTT分别是: 26ms,32ms和24ms。设 α =0.1。试计算每一次的新的加权平均往返时间值RTT_S。讨论所得出的结果。
- 5-35 试计算一个包括五段链路的运输连接的单程端到端时延。五段链路中有两段是卫星链路,有三段是广域网链路。每条卫星链路又由上行链路和下行链路两部分组成。可以取这两部分的传播时延之和为250ms。每一个广域网的范围为1500km,其传播时延可按150000km/s来计算。各数据链路速率为48kbit/s.帧长为960bit。
- **5-36** 重复5-35题,但假定其中的一个陆地上的广域网的传输时延为 150ms。
- 5-37 在TCP的拥塞控制中,什么是慢开始、拥塞避免、快重传和快恢复算法?这里每一种算法各起什么作用?"乘法减小"和"加法增大"各用在什么情况下?
- 5-38 设TCP的ssthresh的初始值为8(单位为报文段)。当拥塞窗口上升到12时网络发生了超时,TCP使用慢开始和拥塞避免。试分别求

出第1轮次到第15轮次传输的各拥塞窗口大小。你能说明拥塞窗口每一次变化的原因吗?

5-39 TCP的拥塞窗口cwnd大小与传输轮次n的关系如下所示:

cwnd	1	2	4	8	16	32	33	34	35	36	37	38	39
n	1	2	3	4	5	6	7	8	9	10	11	12	13
ewnd	40	41	42	21	22	23	24	25	26	1	2	4	8
n	14	15	16	17	18	19	20	21	22	23	24	25	26

- (1) 试画出如图5-25所示的拥塞窗口与传输轮次的关系曲线。
- (2) 指明TCP工作在慢开始阶段的时间间隔。
- (3) 指明TCP工作在拥塞避免阶段的时间间隔。
- (4) 在第16轮次和第22轮次之后发送方是通过收到三个重复的确认还是通过超时检测到丢失了报文段?
- (5) 在第1轮次、第18轮次和第24轮次发送时,门限ssthresh分别被设置为多大?
 - (6) 在第几轮次发送出第70个报文段?
- (7) 假定在第26轮次之后收到了三个重复的确认,因而检测出了报文段的丢失,那么拥塞窗口cwnd和门限ssthresh应设置为多大?
- **5-40** TCP在进行流量控制时,以分组的丢失作为产生拥塞的标志。有没有不是因拥塞而引起分组丢失的情况?如有,请举出三种情况。
- 5-41 用TCP传送512字节的数据。设窗口为100字节,而TCP报文段每次也是传送100字节的数据。再设发送方和接收方的起始序号分别选为100和200,试画出类似于图5-28的工作示意图。从连接建立阶段到连接释放都要画上。
- **5-42** 在图 **5-29**中所示的连接释放过程中,在ESTABLISHED状态下,服务器进程能否先不发送ack=u+1的确认?(因为后面要发送的连接释放报文段中仍有ack=u+1这一信息。)

- 5-43 在图5-30中,在什么情况下会发生从状态SYN-SENT到状态SYN-RCVD的变迁?
- **5-44** 试以具体例子说明为什么一个运输连接可以有多种方式释放。可以设两个互相通信的用户分别连接在网络的两结点上。
- **5-45** 解释为什么突然释放运输连接就可能会丢失用户数据,而使用 **TCP**的连接释放方法就可保证不丢失数据。
- **5-46** 试用具体例子说明为什么在运输连接建立时要使用三报文握手。说明如不这样做可能会出现什么情况。
- **5-47** 一客户向服务器请求建立**TCP**连接。客户在**TCP**连接建立的三报文握手中的最后一个报文段中捎带上一些数据,请求服务器发送一个长度为*L* 字节的文件。假定:
- (1) 客户和服务器之间的数据传送速率是R 字节/秒,客户与服务器之间的往返时间是RTT(固定值)。
- (2) 服务器发送的TCP报文段的长度都是M字节,而发送窗口大小是nM字节。
- (3) 所有传送的报文段都不会出现差错(无重传),客户收到服务器发来的报文段后就及时发送确认。
- (4) 所有的协议首部开销都可忽略, 所有确认报文段和连接建立阶段的报文段的长度都可忽略(即忽略这些报文段的发送时间)。

试证明,从客户开始发起连接建立到接收服务器发送的整个文件所需的时间T是:

$$T=2$$
 RTT+ L/R $\stackrel{\text{def}}{=}$ $nM>R$ (RTT) + M

或
$$T = 2$$
 RTT+ L/R + $(K-1)$ [M/R +RTT- nM/R] 当 $nM < R$ (RTT) + M

其中, $K = \lceil L/nM \rceil$,符号 $\lceil x \rceil$ 表示若x 不是整数,则把x 的整数部分加1。

(提示: 求证的第一个等式发生在发送窗口较大的情况,可以连续把文件发送完。求证的第二个等式发生在发送窗口较小的情况,发送几个报文段后就必须停顿下来,等收到确认后再继续发送。建议先画出双方交互的时间图,然后再进行推导。)

- **5-48** 网络允许的最大报文段长度为128字节,序号用8位表示,报文段在网络中的寿命为30秒。求发送报文段的一方所能达到的最高数据率。
- 5-49 下面是以十六进制格式存储的一个UDP首部:

CB84000D001C001C

试问:

- (1) 源端口号是什么?
- (2) 目的端口号是什么?
- (3) 这个用户数据报的总长度是多少?
- (4) 数据长度是多少?
- (5) 这个分组是从客户到服务器方向的,还是从服务器到客户方向的?
 - (6) 客户进程是什么?
- **5-50** 把图5-7计算UDP检验和的例子自己具体演算一下,看是否能够得出书上的计算结果。
- **5-51** 在以下几种情况下, UDP的检验和在发送时的数值分别是多少?
 - (1) 发送方决定不使用检验和。

- (2) 发送方使用检验和, 检验和的数值是全1。
- (3) 发送方使用检验和, 检验和的数值是全0。
- 5-52 UDP和IP的不可靠程度是否相同?请加以解释。
- 5-53 UDP用户数据报的最小长度是多少? 用最小长度的UDP用户数据报构成的最短IP数据报的长度是多少?
- 5-54 某客户使用UDP将数据发送给一服务器,数据共16字节。试计算在运输层的传输效率(有用字节与总字节之比)。
- 5-55 重做习题5-54, 但在IP层计算传输效率。假定IP首部无选项。
- **5-56** 重做习题5-54, 但在数据链路层计算传输效率。假定IP首部无选项, 在数据链路层使用以太网。
- **5-57** 某客户有67000字节的分组。试说明怎样使用UDP数据报将这个分组进行传送。
- **5-58** TCP在时间为4: 30: 20 (即4点30分20秒) 发送了一个报文段。由于没有收到确认,因此在4: 30: 25重传了前面这个报文段,并在4: 30: 27收到了确认。若以前的RTT值是4秒,根据Karn算法,新的RTT值是多少?
- **5-59** TCP连接使用1000字节的窗口值,而上一次的确认号是22001。 现在收到了一个报文段,确认了字节22401。试用图来说明在这之前与 之后的窗口情况。
- **5-60** 同上题。但接收方收到确认字节为22401的报文段时,其窗口字段变为1200字节。试用图来说明在这之前与之后的窗口情况。
- 5-61 在本题中列出的8种情况下,画出发送窗口的变化,并标明可用窗口的位置。已知主机A要向主机B发送3KB的数据。在TCP连接建立后,A的发送窗口大小是2KB。A的初始序号是0。
 - (1) 一开始A发送1KB的数据。
 - (2)接着A就一直发送数据,直到把发送窗口用完。

- (3) 发送方A收到对第1000号字节的确认报文段。
- (4) 发送方A再发送850 B的数据。
- (5) 发送方A收到ack=900的确认报文段。
- (6) 发送方A收到对第2047号字节的确认报文段。
- (7) 发送方A把剩下的数据全部都发送完。
- (8) 发送方A收到ack=3072的确认报文段。
- **5-62** TCP连接处于ESTABLISHED状态。以下的事件相继发生:
 - (1) 收到一个FIN报文段。
 - (2) 应用程序发送"关闭"报文。

在每一个事件之后,连接的状态是什么?在每一个事件之后发生的动作是什么?

- 5-63 TCP连接处于SYN-RCVD状态。以下的事件相继发生:
 - (1) 应用程序发送"关闭"报文。
 - (2) 收到FIN报文段。

在以上的每一个事件之后,连接的状态是什么?在每一个事件之后发生的动作是什么?

5-64 TCP连接处于FIN-WAIT-1状态。以下的事件相继发生:

收到ACK报文段。

收到FIN报文段。

发生了超时。

- 在以上的每一个事件之后,连接的状态是什么?在每一个事件之后发生的动作是什么?
- **5-65** 假定主机A向B发送一个TCP报文段。在这个报文段中,序号是50,而数据一共有6字节长。试问,在这个报文段中的确认字段是否应当写入56?
- 5-66 主机A通过TCP连接向B发送一个很长的文件,因此这需要分成很多个报文段来发送。假定某一个TCP报文段的序号是x,那么下一个报文段的序号是否就是x+1呢?
- **5-67** TCP的吞吐量应当是每秒发送的数据字节数,还是每秒发送的首部和数据之和的字节数?吞吐量应当是每秒发送的字节数,还是每秒发送的比特数?
- **5-68** 在TCP的连接建立的三报文握手过程中,为什么第三个报文段不需要对方的确认? 这会不会出现问题?
- 5-69 现在假定使用类似TCP的协议(即使用滑动窗口可靠传送字节流),数据传输速率是1Gbit/s,而网络的往返时间RTT=140ms。假定报文段的最大生存时间是60秒。如果要尽可能快地传送数据,在我们的通信协议的首部中,发送窗口和序号字段至少各应当设为多大?
- 5-70 假定用TCP协议在40Gbit/s的线路上传送数据。
- (1) 如果TCP充分利用了线路的带宽,那么需要多长的时间TCP会发生序号绕回?
- (2) 假定现在TCP的首部中采用了时间戳选项。时间戳占用了4字节,共32位。每隔一定的时间(这段时间叫做一个嘀嗒)时间戳的数值加1。假定设计的时间戳是每隔859微秒,时间戳的数值加1。试问要经过多少时间才发生时间戳数值的绕回?
- **5-71** 在5.5节中指出:例如,若用2.5Gbit/s的速率发送报文段,则不到14秒钟序号就会重复。请计算验证这句话。
- 5-72 已知TCP的接收窗口大小是600(单位是字节,为简单起见以后就省略了单位),已经确认了的序号是300。试问,在不断地接收报文

段和发送确认报文段的过程中,接收窗口也可能会发生变化(增大或缩小)。请用具体例子(指出接收方发送的确认报文段中的重要信息)来说明哪些情况是可能发生的,而哪些情况是不允许发生的。

- **5-73** 在上题中,如果接收方突然因某种原因不能够再接收数据了,可以立即向发送方发送把接收窗口置为零的报文段(即rwnd=0)。这时会导致接收窗口的前沿后退。试问这种情况是否允许?
- **5-74** 流量控制和拥塞控制的最主要的区别是什么?发送窗口的大小取决干流量控制还是拥塞控制?
- (1) 注:运输层最近又增加了第三种协议,即 **流控制传输协议** SCTP(Stream Control Transmission Protocol)[RFC 4960,建议标准],它具有TCP和UDP协议的共同优点,可支持一些新的应用,如IP电话。限于篇幅,这里不再介绍。
- (2)_注: IP层也有复用和分用的功能。即,在发送方不同协议的数据都可以封装成IP数据报发送出去,而在接收方的IP层根据IP首部中的协议字段进行分用,把剥去首部后的数据交付应当接收这些数据的协议。
- (3)_注:短暂端口(ephemeral port) [STEV94, p. 13] 表示这种端口的存在时间是短期的。客户进程并不在意操作系统给它分配的是哪一个端口号,因为客户进程之所以必须有一个端口号(在本地主机中必须是唯一的),是为了让运输层的实体能够找到自己。这和熟知端口不同。服务器机器一接通电源,服务器程序就运行起来。为了让互联网上所有的客户程序都能找到服务器程序,服务器程序所使用的端口(即熟知端口)就必须是固定的,并且是众所周知的。
- (4) 注:在计算机网络发展初期,通信链路不太可靠,因此在链路层传送数据时都要采用可靠的通信协议。其中最简单的协议就是这种"**停止等待协议**"。在运输层并不使用这种协议,这里只是为了引出可靠传输的问题才从最简单的概念讲起。在运输层使用的可靠传输协议要复杂得多(见后面5.6节)。
- (<u>5</u>)_注:运输层传送的协议数据单元叫做报文段,网络层传送的协议数据单元叫做IP数据报。但在一般讨论问题时,都可把它们简称为分组。
- (6)_注:在可靠传输的协议中,也可以在检测出有差错时发送"否认报文"给对方。这样做的好处是能够让发送方及早知道出现了差错。不过由于这样处理会使协议复杂化,现在实用的可靠传输协议都不使用这种否认报文了。
- (7)_注:编号并不是一个非常简单的问题。分组编号使用的位数总是有限的,同一个号码会重复使用。例如,10位的编号范围是 $0\sim1023$ 。当编号增加到1023时,再增加一个号就又回到00、然后重复使用这些号码。因此,在所发送的分组中,必须能够区分开哪些是新发送的,哪

些是重传的。对于简单链路上传送的帧,如采用停止等待协议,只要用1位编号即可,也就是发送完0号帧,收到确认后,再发送1号帧,收到确认后,再发送0号帧。但是在运输层,这种编号方法有时并不能保证可靠传输(见习题5-18)。

- (<u>8</u>)_注: RFC 879指出,流行的一种说法是:在TCP连接建立阶段"双方协商MSS值",但这是错误的,因为这里并不存在任何的协商,而只是一方把MSS值设定好以后通知另一方而已。
- (9) 注: 这种信道常称为 **长粗管道** (long fat pipe)。
- (10) 注: 从rwnd的原文看,中文译名应当是 **接收方窗口**。然而在不产生误解的情况下,也可简称为 **接收窗口**。
- (<u>11)</u>注: TCP规定,即使设置为零窗口,也必须接收以下几种报文段:零窗口探测报文段、确认报文段和携带紧急数据的报文段。
- (12) 注:请注意,因为现在是讲原理,把窗口的单位改为 **报文段的个数**。实际上应当是"拥塞窗口仅增加一个MSS的大小, **单位是字节**"。在具体实现拥塞避免算法的方法时可以这样来完成:只要收到一个新的确认,就使拥塞窗口cwnd增加(MSS×MSS/cwnd)个字节。例如,假定cwnd等于10个MSS的长度,而MSS是1460字节。发送方可一连发送14600字节(即10个报文段)。假定接收方每收到一个报文段就发回一个确认。于是发送方每收到一个新的确认,就把拥塞窗口稍微增大一些,即增大0.1MSS=146字节。经过一个往返时间RTT(或一个传输轮次)后,发送方共收到10个新的确认,拥塞窗口就增大了1460字节,正好是一个MSS的大小。
- (13)_注:虽然RFC 5681给出了根据已发送出但还未被确认的数据的字节数来设置ssthresh的新的计算公式,即ssthresh=max { FlightSize/2, 2×SMSS } 。这里FlightSize是正在网络中传送的数据量。但在讨论拥塞控制原理时,我们就采用这种把问题简化的方法(即把慢开始门限减半)来表述。
- (14) 注: 三报文握手是本教材首次采用的译名。在RFC 973(TCP标准的文档)中使用的名称是three way handshake,但这个名称很难译为准确的中文。例如,以前本教材曾采用"三次握手"这个广为流行的译名。其实这是在 一次握手 过程中交换了三个报文,而并不是进行了三次握手(这有点像两个人见面进行一次握手时,他们的手上下摇晃了三次,但这并非进行了三次握手)。最近再次重新阅读了RFC 973文档,发现有这样的表述:"three way(threemessage)handshake"。可见采用"三报文握手"这样的译名,在意思的表达上应当是比较准确的。请注意,handshake使用的是单数而不是复数,表明只是 一次握手。
- (15) 注: **传输控制块** TCB(Transmission Control Block)存储了每一个连接中的一些重要信息,如: TCP连接表,指向发送和接收缓存的指针,指向重传队列的指针,当前的发送和接收序号,等等。

第6章 应用层

在前五章我们已经详细地讨论了计算机网络提供通信服务的过程。但 是我们还没有讨论这些通信服务是如何提供给应用进程来使用的。本 章讨论各种应用进程通过什么样的应用层协议来使用网络所提供的这 些通信服务。

在上一章,我们已学习了运输层为应用进程提供了端到端的通信服务。但不同的网络应用的应用进程之间,还需要有不同的通信规则。因此在运输层协议之上,还需要有应用层协议 (application layer protocol)。这是因为,每个应用层协议都是为了解决某一类应用问题,而问题的解决又必须通过位于不同主机中的多个应用进程之间的通信和协同工作来完成。应用进程之间的这种通信必须遵循严格的规则。应用层的具体内容就是精确定义这些通信规则。具体来说,应用层协议应当定义:

- 应用进程交换的报文类型,如请求报文和响应报文。
- 各种报文类型的语法, 如报文中的各个字段及其详细描述。
- 字段的语义,即包含在字段中的信息的含义。
- 进程何时、如何发送报文, 以及对报文进行响应的规则。

互联网公共领域的标准应用的应用层协议是由RFC文档定义的,大家都可以使用。例如,万维网的应用层协议HTTP(超文本传输协议)就是由RFC 7230定义的。如果浏览器开发者遵守RFC 7230标准,所开发出来的浏览器就能够访问任何遵守该标准的万维网服务器并获取相应的万维网页面。在互联网中还有很多其他应用的应用层协议不是公开的,而是专用的。例如,很多现有的P2P文件共享系统使用的就是专用应用层协议。

请注意,应用层协议与网络应用并不是同一个概念。应用层协议只是网络应用的一部分。例如,万维网应用是一种基于客户/服务器体系结构的网络应用。万维网应用包含很多部件,有万维网浏览器、万维网服务器、万维网文档的格式标准,以及一个应用层协议。万维网的应用层协议是HTTP,它定义了在万维网浏览器和万维网服务器之间传送的报文类型、格式和序列等规则。而万维网浏览器如何显示一个万维网页面,万维网服务器是用多线程还是用多进程来实现,则都不是HTTP所定义的内容。

应用层的许多协议都是基于**客户服务器方式**。即使是P2P对等通信方式,实质上也是一种特殊的客户服务器方式。这里再明确一下,**客户**

(client)和**服务器**(server)都是指通信中所涉及的两个应用进程。客户服务器方式所描述的是进程之间服务和被服务的关系。这里最主要的特征就是:**客户是服务请求方,服务器是服务提供方**。

下面先讨论许多应用协议都要使用的域名系统。在介绍了文件传送协议和远程登录协议后,再重点介绍万维网的工作原理及其主要协议。由于万维网的出现使互联网得到了飞速的发展,因此万维网在本章中占有最大的篇幅,也是本章的重点。接着讨论用户经常使用的电子邮件。最后,介绍有关网络管理方面的问题以及有关网络编程的基本概念。对应用层更深入的学习可参阅[COME15][COME06]「TANE11]及有关标准。

本章最重要的内容是:

- (1) 域名系统DNS——从域名解析出IP地址。
- (2) 万维网和HTTP协议,以及万维网的两种不同的信息搜索引擎。
- (3) 电子邮件的传送过程,SMTP协议和POP3协议、IMAP协议使用的场合。
 - (4) 动态主机配置协议DHCP的特点。
- (5) 网络管理的三个组成部分(SNMP本身、管理信息结构SMI和管理信息库MIB)的作用。
 - (6) 系统调用和应用编程接口的基本概念。
 - (7) P2P文件系统。

6.1 域名系统DNS

6.1.1 域名系统概述

域名系统 DNS(Domain Name System)是互联网使用的命名系统,用来把便于人们使用的机器名字转换为IP地址。域名系统其实就是名字系统。为什么不叫"名字"而叫"域名"呢?这是因为在这种互联网的命

名系统中使用了许多的"域"(domain),因此就出现了"域名"这个名词。"域名系统"很明确地指明这种系统是用在互联网中的。

许多应用层软件经常直接使用域名系统DNS。虽然计算机的用户只是**间接**而不是直接使用域名系统,但DNS却为互联网的各种网络应用提供了核心服务。

用户与互联网上某台主机通信时,必须要知道对方的IP地址。然而用户很难记住长达32位的二进制主机地址。即使是点分十进制IP地址也并不太容易记忆。但在应用层为了便于用户记忆各种网络应用,连接在互联网上的主机不仅有IP地址,而且还有便于用户记忆的主机名字。域名系统DNS能够把互联网上的主机名字转换为IP地址。

早在ARPANET时代,整个网络上只有数百台计算机,那时使用一个叫做hosts的文件,列出所有主机名字和相应的IP地址。只要用户输入一台主机名字,计算机就可很快地把这台主机名字转换成机器能够识别的二进制IP地址。

为什么机器在处理IP数据报时要使用IP地址而不使用域名呢?这是因为IP地址的长度是固定的32位(如果是IPv6地址,那就是128位,也是定长的),而域名的长度并不是固定的,机器处理起来比较困难。

从理论上讲,整个互联网可以只使用一个域名服务器,使它装入互联网上所有的主机名,并回答所有对IP地址的查询。然而这种做法并不可取。因为互联网规模很大,这样的域名服务器肯定会因过负荷而无法正常工作,而且一旦域名服务器出现故障,整个互联网就会瘫痪。因此,早在1983年互联网就开始采用层次树状结构的命名方法,并使用分布式的域名系统 DNS。DNS的互联网标准是RFC 1034, 1035。

互联网的域名系统DNS被设计成为一个联机分布式数据库系统,并采用客户服务器方式。DNS使大多数名字都在本地进行**解析**(resolve) (1),仅少量解析需要在互联网上通信,因此DNS系统的效率很高。由于DNS是分布式系统,即使单个计算机出了故障,也不会妨碍整个DNS系统的正常运行。

域名到IP地址的解析是由分布在互联网上的许多**域名服务器程序**(可简称为域名服务器)共同完成的。域名服务器程序在专设的结点上运行,而人们也常把运行域名服务器程序的机器称为**域名服务器**。

域名到IP地址的解析过程的要点如下: 当某一个应用进程需要把主机名解析为IP地址时,该应用进程就调用解析程序(resolver),并成为DNS的一个客户,把待解析的域名放在DNS请求报文中,以UDP用户数据报方式发给本地域名服务器(使用UDP是为了减少开销)。本地域名服务器在查找域名后,把对应的IP地址放在回答报文中返回。应用进程获得目的主机的IP地址后即可进行通信。

若本地域名服务器不能回答该请求,则此域名服务器就暂时成为DNS中的另一个客户,并向其他域名服务器发出查询请求。这种过程直至找到能够回答该请求的域名服务器为止。上述这种查找过程,后面还要进一步讨论。

6.1.2 互联网的域名结构

早期的互联网使用了非等级的名字空间,其优点是名字简短。但当互联网上的用户数急剧增加时,用非等级的名字空间来管理一个很大的而且是经常变化的名字集合是非常困难的。因此,互联网后来就采用了层次树状结构的命名方法,就像全球邮政系统和电话系统那样。采用这种命名方法,任何一个连接在互联网上的主机或路由器,都有一个唯一的层次结构的名字,即域名(domain name)。这里,"域"(domain)是名字空间中一个可被管理的划分。域还可以划分为子域,而子域还可继续划分为子域的子域,这样就形成了顶级域、二级域、三级域、等等。

从语法上讲,每一个域名都由**标号**(label)序列组成,而各标号之间 用点隔开(请注意,是小数点".",不是中文的句号"。")。例如下 面的域名

就是中央电视台用于收发电子邮件的计算机(即邮件服务器)的域名,它由三个标号组成,其中标号com是顶级域名,标号cctv是二级域名,标号mail是三级域名。

DNS规定,域名中的标号都由英文字母和数字组成,每一个标号不超过63个字符(但为了记忆方便,最好不要超过12个字符),也不区分大小写字母(例如,CCTV或cctv在域名中是等效的)。标号中除连字符(-)外不能使用其他的标点符号。级别最低的域名写在最左边,而级别最高的顶级域名则写在最右边。由多个标号组成的完整域名总共不超过255个字符。DNS既不规定一个域名需要包含多少个下级域名,也不规定每一级的域名代表什么意思。各级域名由其上一级的域名管理机构管理,而最高的顶级域名则由ICANN进行管理。用这种方法可使每一个域名在整个互联网范围内是唯一的,并且也容易设计出一种查找域名的机制。

需要注意的是,域名只是个**逻辑概念**,并不代表计算机所在的物理地点。变长的域名和使用有助记忆的字符串,是为了便于人使用。而IP地址是定长的32位二进制数字则非常便于机器进行处理。这里需要注意,域名中的"点"和点分十进制IP地址中的"点"并无一一对应的关系。点分十进制IP地址中一定是包含三个"点",但每一个域名中"点"的数目则不一定正好是三个。

据2012年5月的统计[W-IANA-root],现在顶级域名TLD(Top Level Domain)已有326个。原先的顶级域名共分为三大类:

- (1) **国家顶级域名** nTLD: 采用ISO 3166的规定。如: cn表示中国, us表示美国, uk表示英国, 等等 ⁽²⁾。国家顶级域名又常记为ccTLD(cc表示国家代码country-code)。到2012年5月为止, 国家顶级域名总数已达296个。
- (2) **通用顶级域名** gTLD: 到2006年12月为止,通用顶级域名的总数已经达到20个。最先确定的通用顶级域名有7个,即:

com(公司企业), net(网络服务机构), org(非营利性组织), int(国际组织), edu(美国专用的教育机构), gov(美国的政府部门), mil表示(美国的军事部门)。

以后又陆续增加了13个通用顶级域名:

aero(航空运输企业), asia(亚太地区), biz(公司和企业), cat(使用加泰隆人的语言和文化团体), coop(合作团体), info(各种情况), jobs(人力资源管理者), mobi(移动产品与服务的用户

和提供者), museum(博物馆), name(个人), pro(有证书的专业人员), tel(Telnic股份有限公司), travel(旅游业)。

(3) **基础结构域名**(infrastructure domain):这种顶级域名只有一个,即arpa,用于反向域名解析,因此又称为**反向域名**。

值得注意的是,ICANN于2011年6月20日在新加坡会议上正式批准**新顶级域名**(New gTLD),因此任何公司、机构都有权向ICANN申请新的顶级域。新顶级域名的后缀特点,使企业域名具有了显著的、强烈的标志特征。因此,新顶级域名被认为是真正的企业网络商标。新顶级域名是企业品牌战略发展的重要内容,其申请费很高(18万美元),并且在2013年开始启用。目前已有一些由两个汉字组成的中文的顶级域名出现了,例如,商城、公司、新闻等。到2016年,在ICANN注册的中文顶级域名已有60个 [W-IANA-root]。

在国家顶级域名下注册的二级域名均由该国家自行确定。例如,顶级域名为jp的日本,将其教育和企业机构的二级域名定为ac和co,而不用edu和com。

我国把二级域名划分为"**类别域名**"和"行政区域名"两大类。

"类别域名"共7个,分别为: ac(科研机构),com(工、商、金融等企业),edu(中国的教育机构),gov(中国的政府机构),mil(中国的国防机构),net(提供互联网络服务的机构),org(非营利性的组织)。

"行政区域名"共34个,适用于我国的各省、自治区、直辖市。例如: bj (北京市), js (江苏省),等等。

关于我国的互联网络发展现状以及各种规定(如申请域名的手续),均可在中国互联网网络信息中心 CNNIC的网址上找到 [W-CNNIC]。

用域名树来表示互联网的域名系统是最清楚的。图6-1是互联网域名空间的结构,它实际上是一个倒过来的树,在最上面的是**根**,但**没有对应的名字**。根下面一级的节点(3)就是最高一级的顶级域名(由于根没有名字,所以在根下面一级的域名就叫做顶级域名)。顶级域名可往下划分子域,即二级域名。再往下划分就是三级域名、四级域名,等

等。图6-1列举了一些域名作为例子。凡是在顶级域名com下注册的单位都获得了一个二级域名。图中给出的例子有:中央电视台cctv,以及IBM、华为等公司。在顶级域名cn(中国)下面举出了几个二级域名,如:bj,edu以及com。在某个二级域名下注册的单位就可以获得一个三级域名。图中给出的在edu下面的三级域名有:tsinghua(清华大学)和pku(北京大学)。一旦某个单位拥有了一个域名,它就可以自己决定是否要进一步划分其下属的子域,并且不必由其上级机构批准。图中cctv(中央电视台)和tsinghua(清华大学)都分别划分了自己的下一级的域名mail和www(分别是三级域名和四级域名)(4)。域名树的树叶就是单台计算机的名字,它不能再继续往下划分子域了。

图6-1 互联网的域名空间

应当注意,虽然中央电视台和清华大学都各有一台计算机取名为mail,但它们的域名并不一样,因为前者是mail.cctv.com,而后者是mail.tsinghua.edu.cn。因此,即使在世界上还有很多单位的计算机取名为mail,但是它们在互联网中的域名都必须是唯一的。

这里还要强调指出,互联网的名字空间是按照机构的组织来划分的,与物理的网络无关,与IP地址中的"子网"也没有关系。

6.1.3 域名服务器

上面讲述的域名体系是抽象的。但具体实现域名系统则是使用分布在各地的域名服务器。从理论上讲,可以让每一级的域名都有一个相对应的域名服务器,使所有的域名服务器构成和图6-1相对应的"域名服务器树"的结构。但这样做会使域名服务器的数量太多,使域名系统的运行效率降低。因此DNS就采用划分区的办法来解决这个问题。

一个服务器所负责管辖的(或有权限的)范围叫做区(zone)。各单位根据具体情况来划分自己管辖范围的区。但在一个区中的所有节点必须是能够连通的。每一个区设置相应的**权限域名服务器**(authoritative name server),用来保存该区中的所有主机的域名到IP地址的映射。总之,DNS服务器的管辖范围不是以"域"为单位,而是以"区"为单位。区是DNS服务器实际管辖的范围。区可能等于或小于域,但一定不能大于域。

图6-2是区的不同划分方法的举例。假定abc公司有下属部门x和y,部门x下面又分三个分部门u,v和w,而y下面还有其下属部门t。图6-2(a)表示abc公司只设一个区abc.com。这时,区abc.com和域abc.com指的是同一件事。但图6-2(b)表示abc公司划分了两个区(大的公司可能要划分多个区):abc.com和y.abc.com。这两个区都隶属于域abc.com,都各设置了相应的权限域名服务器。不难看出,区是"域"的子集。

图6-2 DNS划分区的举例

图6-3以图6-2(b)中公司abc划分的两个区为例,给出了DNS域名服务器树状结构图。这种DNS域名服务器树状结构图可以更准确地反映出DNS的分布式结构。在图6-3中的每一个域名服务器都能够进行部分域名到IP地址的解析。当某个DNS服务器不能进行域名到IP地址的转换时,它就设法找互联网上别的域名服务器进行解析。

图6-3 树状结构的DNS域名服务器

从图6-3可看出,互联网上的DNS域名服务器也是按照层次安排的。每一个域名服务器都只对域名体系中的一部分进行管辖。根据域名服务器所起的作用,可以把域名服务器划分为以下四种不同的类型:

(1) **根域名服务器** (root name server): 根域名服务器是最高层次的 域名服务器、也是最重要的域名服务器。所有的根域名服务器都知道 所有的顶级域名服务器的域名和IP地址。根域名服务器是最重要的域 名服务器,因为不管是哪一个本地域名服务器,若要对互联网上任何 一个域名进行解析(即转换为IP地址),只要自己无法解析, 要求助于根域名服务器。假定所有的根域名服务器都瘫痪了, 个互联网中的DNS系统就无法工作。据统计、到2016年2月、全世界已 经在588个**地点**(地点数值还在不断增加)安装了根域名服务器, 这么多的根域名服务器却只使用13个不同IP地址的域名, a.rootservers.net, b.rootservers.net, ..., m.rootservers.net。每个域名下 的根域名服务器由专门的公司或美国政府的某个部门负责运营。但请 注意,虽然互联网的根域名服务器总共只有13个域名,但这不表明根 域名服务器是由13台机器所组成(如果仅仅依靠这13台机器. 可能为全世界的互联网用户提供令人满意的服务) 网中是由13套装置(13 installations)构成这13组根域名服务器 ROOT」。每一套装置在很多地点安装根域名服务器(也可称为镜像 . 但都使用同一个域名。负责运营根域名服务器的公司大 多在美国,但所有的根域名服务器却分布在全世界。为了提供更可靠 的服务,在每一个地点的根域名服务器往往由多台机器组成(为了安 全起见,有些根域名服务器的具体地点还是保密的)。现在世界上大 部分DNS域名服务器,都能**就近** 找到一个根域名服务器查询IP地址 (现在这些根域名服务器都已增加了IPv6地址)。为了方便,人们常用从A到M的前13个英文字母中的一个,来表示某组根域名服务器。

图6-4是覆盖范围很大的一组根域名服务器L在世界上150个地点的分布图(在中国有3个,位置都在北京)。由于根域名服务器采用了**任播**(anycast)技术 ⁽⁵⁾,因此当DNS客户向某个根域名服务器的IP地址发出查询报文时,互联网上的路由器就能找到离这个DNS客户最近的一个根域名服务器。这样做不仅加快了DNS的查询过程,也更加合理地利用了互联网的资源。

图6-4 根域名服务器L在世界上150个地点的分布图

必须指出,目前根域名服务器的分布仍然是很不均衡的。例如,在北美,平均每375万个网民就可以分摊到一个根域名服务器,而在亚洲,平均超过2千万个网民才分摊到一个根域名服务器,这样就会使亚洲的网民上网速度明显地低于北美的。

需要注意的是,在许多情况下,根域名服务器并不直接把待查询的域名直接转换成IP地址(根域名服务器也没有存放这种信息),而是告诉本地域名服务器下一步应当找哪一个顶级域名服务器进行查询。

由于根域名服务器在DNS中的地位特殊,因此对根域名服务器有许多具体的要求,可参阅RFC 2870。

(2) **顶级域名服务器**(即TLD**服务器**):这些域名服务器负责管理在该顶级域名服务器注册的所有二级域名。当收到DNS查询请求时,就给出相应的回答(可能是最后的结果,也可能是下一步应当找的域名服务器的IP地址)。

- (3) **权限域名服务器**: 这就是前面已经讲过的负责一个区的域名服务器。当一个权限域名服务器还不能给出最后的查询回答时, 就会告诉发出查询请求的DNS客户, 下一步应当找哪一个权限域名服务器。例如在图6-2(b)中, 区abc.com和区y.abc.com各设有一个权限域名服务器。
- (4) 本地域名服务器(local name server):本地域名服务器并不属于图6-3所示的域名服务器层次结构,但它对域名系统非常重要。当一台主机发出DNS查询请求时,这个查询请求报文就发送给本地域名服务器。由此可看出本地域名服务器的重要性。每一个互联网服务提供者ISP,或一个大学,甚至一个大学里的系,都可以拥有一个本地域名服务器,这种域名服务器有时也称为默认域名服务器。当计算机使用Windows 7操作系统时,打开"控制面板",然后依次选择"网络和Internet"→"网络和共享中心"→"查看网络状态和任务"→"无线网络连接"(假定采用家庭网络)→"属性"→"Internet协议版本4"→"属性"等项目,就可以看见首选DNS服务器和备用DNS服务器的IP地址。这里的DNS服务器指的就是本地域名服务器。本地域名服务器离用户较近,一般不超过几个路由器的距离。当所要查询的主机也属于同一个本地ISP时,该本地域名服务器立即就能将所查询的主机名转换为它的IP地址,而不需要再去询问其他的域名服务器。

为了提高域名服务器的可靠性,DNS域名服务器都把数据复制到几个域名服务器来保存,其中的一个是**主域名服务器**(master name server),其他的是**辅助域名服务器**(secondary name server)。当主域名服务器出故障时,辅助域名服务器可以保证DNS的查询工作不会中断。主域名服务器定期把数据复制到辅助域名服务器中,而更改数据只能在主域名服务器中进行。这样就保证了数据的一致性。

下面简单讨论一下域名的解析过程。这里要注意两点。

第一, 主机向本地域名服务器的查询一般都是采用**递归查询**(recursive query)。所谓递归查询就是: 如果主机所询问的本地域名服务器不知道被查询域名的IP地址, 那么本地域名服务器就以DNS客户的身份, 向其他根域名服务器继续发出查询请求报文(即替该主机继续查询), 而不是让该主机自己进行下一步的查询。因此, 递归查询返回的查询结果或者是所要查询的IP地址, 或者是报错, 表示无法查询到所需的IP地址。

第二,本地域名服务器向根域名服务器的查询通常是采用**迭代查询**(iterative q uery)。迭代查询的特点是这样的:当根域名服务器收到本地域名服务器发出的迭代查询请求报文时,要么给出所要查询的IP地址,要么告诉本地域名服务器:"你下一步应当向哪一个域名服务器进行查询"。然后让本地域名服务器进行后续的查询(而不是替本地域名服务器进行后续的查询)。根域名服务器通常是把自己知道的顶级域名服务器的IP地址告诉本地域名服务器,让本地域名服务器再向顶级域名服务器查询。顶级域名服务器在收到本地域名服务器的查询请求后,要么给出所要查询的IP地址,要么告诉本地域名服务器下一步应当向哪一个权限域名服务器进行查询,本地域名服务器的查询请求报文的设置是要求使用哪一种查询方式。

图6-5用例子说明了这两种查询的区别。

图6-5 DNS查询举例

假定域名为m.xyz.com的主机想知道另一台主机(域名为y.abc.com)的 IP地址。例如,主机m.xyz.com打算发送邮件给主机y.abc.com。这时就必须知道主机y.abc.com的IP地址。下面是图6-5(a)的几个查询步骤:

- ① 主机m.xyz.com先向其本地域名服务器dns.xyz.com进行递归查询。
- 2 本地域名服务器采用迭代查询。它先向一个根域名服务器查询。
- ❸ 根域名服务器告诉本地域名服务器,下一次应查询的顶级域名服务器dns.com的IP地址。
- ◆ 本地域名服务器向顶级域名服务器dns.com进行查询。
- **⑤** 顶级域名服务器dns.com告诉本地域名服务器,下一次应查询的权限域名服务器dns.abc.com的IP地址。
- ⑥ 本地域名服务器向权限域名服务器dns.abc.com进行查询。
- **⑦** 权限域名服务器dns.abc.com告诉本地域名服务器,所查询的主机的 IP地址。
- ❸ 本地域名服务器最后把查询结果告诉主机m.xyz.com。

我们注意到,这8个步骤总共要使用8个UDP用户数据报的报文。本地域名服务器经过三次迭代查询后,从权限域名服务器dns.abc.com得到了主机y.abc.com的IP地址,最后把结果返回给发起查询的主机m.xyz.com。

图6-5(b)是本地域名服务器采用递归查询的情况。在这种情况下,本地域名服务器只需向根域名服务器查询一次,后面的几次查询都是在其他几个域名服务器之间进行的(步骤③至⑥)。只是在步骤⑦,本地域名服务器从根域名服务器得到了所需的IP地址。最后在步骤⑧,本地域名服务器把查询结果告诉主机m.xyz.com。整个的查询也是使用8个UDP报文。

为了提高DNS查询效率,并减轻根域名服务器的负荷和减少互联网上的DNS查询报文数量,在域名服务器中广泛地使用了**高速缓存**(有时也称为高速缓存域名服务器)。高速缓存用来存放最近查询过的域名以及从何处获得域名映射 (6) 信息的记录。

例如,在图6-5(a)的查询过程中,如果在不久前已经有用户查询过域名为y.abc.com的IP地址,那么本地域名服务器就不必向根域名服务器重新查询y.abc.com的IP地址,而是直接把高速缓存中存放的上次查询结果(即y.abc.com的IP地址)告诉用户。

假定本地域名服务器的缓存中并没有y.abc.com的IP地址,而是存放着顶级域名服务器dns.com的IP地址,那么本地域名服务器也可以不向根域名服务器进行查询,而是直接向com顶级域名服务器发送查询请求报文。这样不仅可以大大减轻根域名服务器的负荷,而且也能够使互联网上的DNS查询请求和回答报文的数量大为减少。

由于名字到地址的绑定(2)并不经常改变,为保持高速缓存中的内容正确,域名服务器应为每项内容设置计时器并处理超过合理时间的项(例如,每个项目只存放两天)。当域名服务器已从缓存中删去某项信息后又被请求查询该项信息,就必须重新到授权管理该项的域名服务器获取绑定信息。当权限域名服务器回答一个查询请求时,在响应中都指明绑定有效存在的时间值。增加此时间值可减少网络开销,而减少此时间值可提高域名转换的准确性。

不但在本地域名服务器中需要高速缓存,在主机中也很需要。许多主机在启动时从本地域名服务器下载名字和地址的全部数据库,维护存放自己最近使用的域名的高速缓存,并且只在从缓存中找不到名字时才使用域名服务器。维护本地域名服务器数据库的主机自然应该定期地检查域名服务器以获取新的映射信息,而且主机必须从缓存中删掉无效的项。由于域名改动并不频繁,大多数网点不需花太多精力就能维护数据库的一致性。

6.2 文件传送协议

6.2.1 FTP概述

文件传送协议FTP(File Transfer Protocol) [RFC 959] 是互联网上使用得最广泛的文件传送协议。FTP提供交互式的访问,允许客户指明文件的类型与格式(如指明是否使用ASCII码),并允许文件具有存取权限(如访问文件的用户必须经过授权,并输入有效的口令)。FTP屏蔽了各计算机系统的细节,因而适合于在异构网络中任意计算机之间传送文件。RFC 959很早就成为了互联网的正式标准。

在互联网发展的早期阶段,用FTP传送文件约占整个互联网的通信量的三分之一,而由电子邮件和域名系统所产生的通信量还小于FTP所产生的通信量。只是到了1995年,WWW的通信量才首次超过了FTP。

在下面6.2.2和6.2.3节分别介绍基于TCP的FTP和基于UDP的简单文件传送协议TFTP,它们都是文件共享协议中的一大类,即**复制整个文件**,其特点是:若要存取一个文件,就必须先获得一个本地的文件副本。如果要修改文件,只能对文件的副本进行修改,然后再将修改后的文件副本传回到原节点。

文件共享协议中的另一大类是**联机访问**(on-line access)。联机访问 意味着允许多个程序同时对一个文件进行存取。和数据库系统的不同 之处是用户不需要调用一个特殊的客户进程,而是由操作系统提供对 远地共享文件进行访问的服务, 就如同对本地文件的访问一样。这就 使用户可以用远地文件作为输入和输出来运行任何应用程序, 而操作 系统中的文件系统则提供对共享文件的透明存取。透明存取的优点 是:将原来用于处理本地文件的应用程序用来处理远地文件时,不需 要对该应用程序作明显的改动。属于文件共享协议的有网络文件系统 NFS(Network File System)「COME06」。网络文件系统 NFS最初是 在UNIX操作系统环境下实现文件和目录共享的。NFS可使本地计算机 共享远地的资源,就像这些资源在本地一样。由于NFS原先是美国 SUN公司在TCP/IP网络上创建的,因此目前NFS主要应用在TCP/IP网 络上。然而现在NFS也可在OS/2, M S-Windows, N etWare等操作系统 上运行。NFS还没有成为互联网的正式标准。经过几次修订更新,现 在的最新版本(NFSv4)于2015年3月发布「RFC 7530],目前还只是 建议标准。限于篇幅、本书不讨论NFS的详细工作过程。

6.2.2 FTP的基本工作原理

网络环境中的一项基本应用就是将文件从一台计算机中复制到另一台可能相距很远的计算机中。初看起来,在两台主机之间传送文件是很简单的事情。其实这往往非常困难。原因是众多的计算机厂商研制出的文件系统多达数百种,且差别很大。经常遇到的问题是:

- (1) 计算机存储数据的格式不同。
- (2) 文件的目录结构和文件命名的规定不同。
- (3) 对于相同的文件存取功能,操作系统使用的命令不同。
- (4) 访问控制方法不同。

文件传送协议FTP只提供文件传送的一些基本的服务,它使用TCP可靠的运输服务。FTP的主要功能是减少或消除在不同操作系统下处理文件的不兼容性。

FTP使用客户服务器方式。一个FTP服务器进程可同时为多个客户进程提供服务。FTP的服务器进程由两大部分组成:一个**主进程**,负责接受新的请求;另外有若干个**从属进程**,负责处理单个请求。

主进程的工作步骤如下:

- (1) 打开熟知端口(端口号为21), 使客户进程能够连接上。
- (2) 等待客户进程发出连接请求。
- (3) 启动从属进程处理客户进程发来的请求。从属进程对客户进程的请求处理完毕后即终止,但从属进程在运行期间根据需要还可能创建其他一些子进程。
- (4) 回到等待状态,继续接受其他客户进程发来的请求。主进程与从属进程的处理是并发进行的。

FTP的工作情况如图6-6所示。图中的椭圆圈表示在系统中运行的进程。图中的服务器端有两个从属进程: 控制进程和数据传送进程。为简单起见,服务器端的主进程没有画上。客户端除了控制进程和数据传送进程外,还有一个用户界面进程用来和用户接口。

在进行文件传输时,FTP的客户和服务器之间要建立两个并行的TCP连接: "控制连接"和"数据连接"。控制连接在整个会话期间一直保持打开,FTP客户所发出的传送请求,通过控制连接发送给服务器端的控制进程,但控制连接并不用来传送文件。实际用于传输文件的是"数据连接"。服务器端的控制进程在接收到FTP客户发送来的文件传输请求后就创建"数据传送进程"和"数据连接",用来连接客户端和服务器端的数据传送进程。数据传送进程实际完成文件的传送,在传送完毕后关闭"数据传送连接"并结束运行。由于FTP使用了一个分离的控制连接,因此FTP的控制信息是带外(out of band)传送的。

图6-6 FTP使用的两个TCP连接

当客户进程向服务器进程发出建立连接请求时,要寻找连接服务器进程的熟知端口21,同时还要告诉服务器进程自己的另一个端口号码,用于建立数据传送连接。接着,服务器进程用自己传送数据的熟知端口20与客户进程所提供的端口号建立数据传送连接。由于FTP使用了两个不同的端口号,所以数据连接与控制连接不会发生混乱。

使用两个独立的连接的主要好处是使协议更加简单和更容易实现,同时在传输文件时还可以利用控制连接对文件的传输进行控制。例如,客户发送"请求终止传输"。

FTP并非对所有的数据传输都是最佳的。例如,计算机A上运行的应用程序要在远地计算机B的一个很大的文件末尾添加一行信息。若使用FTP,则应先将此文件从计算机B传送到计算机A,添加上这一行信息后,再用FTP将此文件传送到计算机B,来回传送这样大的文件很花时间。实际上这种传送是不必要的,因为计算机A并没有使用该文件的内容。

然而网络文件系统NFS则采用另一种思路。NFS允许应用进程打开一个远地文件,并能在该文件的某一个特定的位置上开始读写数据。这

样,NFS可使用户只复制一个大文件中的一个很小的片段,而不需要复制整个大文件。对于上述例子,计算机A中的NFS客户软件,把要添加的数据和在文件后面写数据的请求一起发送到远地的计算机B中的NFS服务器,NFS服务器更新文件后返回应答信息。在网络上传送的只是少量的修改数据。

6.2.3 简单文件传送协议TFTP

TCP/IP协议族中还有一个**简单文件传送协议** TFTP(Trivial File Transfer Protocol),它是一个很小且易于实现的文件传送协议。TFTP的版本2是互联网的正式标准 [RFC 135 0]。虽然TFTP也使用客户服务器方式,但它使用UDP数据报,因此TFTP需要有自己的差错改正措施。TFTP只支持文件传输而不支持交互。TFTP没有一个庞大的命令集,没有列目录的功能,也不能对用户进行身份鉴别。

TFTP的主要优点有两个。第一,TFTP可用于UDP环境。例如,当需要将程序或文件同时向许多机器下载时就往往需要使用TFTP。第二,TFTP代码所占的内存较小。这对较小的计算机或某些特殊用途的设备是很重要的。这些设备不需要硬盘,只需要固化了TFTP、UDP和IP的小容量只读存储器即可。当接通电源后,设备执行只读存储器中的代码,在网络上广播一个TFTP请求。网络上的TFTP服务器就发送响应,其中包括可执行二进制程序。设备收到此文件后将其放入内存,然后开始运行程序。这种方式增加了灵活性,也减少了开销。

TFTP的主要特点是:

- (1) 每次传送的数据报文中有512字节的数据,但最后一次可不足512字节。
 - (2) 数据报文按序编号,从1开始。
 - (3) 支持ASCII码或二进制传送。
 - (4) 可对文件进行读或写。
 - (5) 使用很简单的首部。

TFTP的工作很像停止等待协议(见第5章5.4.1节)。发送完一个文件块后就等待对方的确认,确认时应指明所确认的块编号。发完数据后在规定时间内收不到确认就要重发数据PDU。发送确认PDU的一方若在规定时间内收不到下一个文件块,也要重发确认PDU。这样就可保证文件的传送不致因某一个数据报的丢失而告失败。

在一开始工作时。TFTP客户进程发送一个读请求报文或写请求报文给TFTP服务器进程,其熟知端口号码为69。TFTP服务器进程要选择一个新的端口和TFTP客户进程进行通信。若文件长度恰好为512字节的整数倍,则在文件传送完毕后,还必须在最后发送一个只含首部而无数据的数据报文。若文件长度不是512字节的整数倍,则最后传送数据报文中的数据字段一定不满512字节,这正好可作为文件结束的标志。

6.3 远程终端协议TELNET

TELNET是一个简单的远程终端协议 [RFC 854] ,它也是互联网的正式标准。用户用TELNET就可在其所在地通过TCP连接注册(即登录)到远地的另一台主机上(使用主机名或IP地址)。TELNET能将用户的击键传到远地主机,同时也能将远地主机的输出通过TCP连接返回到用户屏幕。这种服务是透明的,因为用户感觉到好像键盘和显示器是直接连在远地主机上。因此,TELNET又称为终端仿真协议。

TELNET并不复杂,以前应用得很多。现在由于计算机的功能越来越强,用户已较少使用TELNET了。

TELNET也使用客户服务器方式。在本地系统运行TELNET客户进程,而在远地主机则运行TELNET服务器进程。和FTP的情况相似,服务器中的主进程等待新的请求,并产生从属进程来处理每一个连接。

TELNET能够适应许多计算机和操作系统的差异。例如,对于文本中一行的结束,有的系统使用ASCII码的回车(CR),有的系统使用换行(LF),还有的系统使用两个字符,回车-换行(CR-LF)。又如,在中断一个程序时,许多系统使用Control-C(^C),但也有系统使用ESC按键。为了适应这种差异,TELNET定义了数据和命令应怎样通过互联网。这些定义就是所谓的**网络虚拟终端** NVT(Network Virtual Terminal)。图6-7说明了NVT的意义。客户软件把用户的击键和命令转换成NVT格式,并送交服务器。服务器软件把收到的数据和命令从

NVT格式转换成远地系统所需的格式。向用户返回数据时,服务器把远地系统的格式转换为NVT格式,本地客户再从NVT格式转换到本地系统所需的格式。

图6-7 TELNET使用网络虚拟终端NVT格式

NVT的格式定义很简单。所有的通信都使用8位一个字节。在运转时,NVT使用7位ASCII码传送数据,而当高位置1时用作控制命令。ASCII码共有95个可打印字符(如字母、数字、标点符号)和33个控制字符。所有可打印字符在NVT中的意义和在ASCII码中一样。但NVT只使用了ASCII码的控制字符中的几个。此外,NVT还定义了两字符的CR-LF为标准的行结束控制符。当用户键入回车按键时,TELNET的客户就把它转换为CR-LF再进行传输,而TELNET服务器要把CR-LF转换为远地机器的行结束字符。

TELNET的选项协商(Option Negotiation)使TELNET客户和TELNET服务器可商定使用更多的终端功能,协商的双方是平等的。

6.4 万维网WWW

6.4.1 万维网概述

万维网 WWW(World Wide Web)并非某种特殊的计算机网络。万维 网是一个大规模的、联机式的信息储藏所, 英文简称为Web。万维网 用链接的方法能非常方便地从互联网上的一个站点访问另一个站点(也就是所谓的"链接到另一个站点"),从而主动地按需获取丰富的信息。图6-8说明了万维网提供分布式服务的特点。

图6-8 万维网提供分布式服务

图6-8 画出了五个万维网上的站点,它们可以相隔数千公里,但都必须连接在互联网上。每一个万维网站点都存放了许多文档。在这些文档中有一些地方的文字是用特殊方式显示的(例如用不同的颜色,或添加了下划线),而当我们将鼠标移动到这些地方时,鼠标的箭头就变成了一只手的形状。这就表明这些地方有一个链接(link)(这种链接有时也称为超链 hyperlink),如果我们在这些地方点击鼠标,就可以从这个文档链接到可能相隔很远的另一个文档。经过一定的时延(几秒钟、几分钟甚至更长,取决于所链接的文档的大小和网络的拥塞情况),在我们的屏幕上就能将远方传送过来的文档显示出来。约如,站点A的某个文档中有两个地方①和②可以链接到其他的站点。当我们点击链接①时,就可链接到站点B的某个文档。若点击链接③就可链接到站点D,而点击链接④就链接到站点E,但从E的这个文档已不能继续链接到其他任何的站点。站点D的文档中有两个地方⑤和⑥有链接,可以分别链接到A和C。

正是由于万维网的出现,使互联网从仅由少数计算机专家使用变为普通百姓也能利用的信息资源。万维网的出现使网站数按指数规律增长。因此,万维网的出现是互联网发展中的一个非常重要的里程碑。

万维网是欧洲粒子物理实验室的Tim Berners-Lee最初于1989年3月提出的。1993年2月,第一个图形界面的浏览器(browser)开发成功,名字叫做Mosaic。1995年著名的Netscape Navigator浏览器上市。目前最流行的浏览器是微软公司的Internet Explorer。

万维网是一个分布式的**超媒体**(hypermedia)系统,它是**超文本**(hypertext)系统的扩充。所谓超文本是指包含指向其他文档的链接的文本(text)。也就是说,一个超文本由多个信息源链接成,而这些信息源可以分布在世界各地,并且数目也是不受限制的。利用一个链接可使用户找到远在异地的另一个文档,而这又可链接到其他的文档(依此类推)。这些文档可以位于世界上任何一个接在互联网上的超文本系统中。超文本是万维网的基础。

超媒体与超文本的区别是文档内容不同。超文本文档仅包含文本信息,而超媒体文档还包含其他表示方式的信息,如图形、图像、声音、动画以及视频图像等。

分布式的和非分布式的超媒体系统有很大区别。在非分布式系统中,各种信息都驻留在单个计算机的磁盘中。由于各种文档都可从本地获得,因此这些文档之间的链接可进行一致性检查。所以,一个非分布式超媒体系统能够保证所有的链接都是有效的和一致的。

万维网把大量信息分布在整个互联网上。每台主机上的文档都独立进行管理。对这些文档的增加、修改、删除或重新命名都不需要(实际上也不可能)通知到互联网上成千上万的节点。这样,万维网文档之间的链接就经常会不一致。例如,主机A上的文档X本来包含了一个指向主机B上的文档Y的链接。若主机B的管理员在某日删除了文档Y,那么主机A的上述链接显然就失效了。

万维网以客户服务器方式工作。上面所说的浏览器就是在用户主机上的万维网客户程序。万维网文档所驻留的主机则运行服务器程序,因此这台主机也称为万维网服务器。**客户程序向服务器程序发出请求,服务器程序向客户程序送回客户所要的万维网文档**。在一个客户程序主窗口上显示出的万维网文档称为页面(page)。

从以上所述可以看出,万维网必须解决以下几个问题:

- (1) 怎样标志分布在整个互联网上的万维网文档?
- (2) 用什么样的协议来实现万维网上的各种链接?
- (3) 怎样使不同作者创作的不同风格的万维网文档,都能在互联网上的各种主机上显示出来,同时使用户清楚地知道在什么地方存在着链

(4) 怎样使用户能够很方便地找到所需的信息?

为了解决第一个问题,万维网使用**统一资源定位符** URL(Uniform Resource Locator)来标志万维网上的各种文档,并使每一个文档在整个互联网的范围内具有唯一的标识符URL。为了解决上述的第二个问题,就要使万维网客户程序与万维网服务器程序之间的交互遵守严格的协议, 这就是 超文本传送协议 HTTP(HyperText Transfer Protocol)。HTTP是一个应用层协议,它使用TCP连接进行可靠的传送。为了解决上述的第三个问题,万维网使用超文本标记语言 HTML(HyperText Markup Language),使得万维网页面的设计者可以很方便地用链接从本页面的某处链接到互联网上的任何一个万维网页面,并且能够在自己的主机屏幕上将这些页面显示出来。最后,用户可使用搜索工具在万维网上方便地查找所需的信息。

下面我们将进一步讨论上述的这些重要概念。

6.4.2 统一资源定位符URL

1. URL的格式

统一资源定位符 URL是用来表示从互联网上得到的资源位置和访问这些资源的方法。URL给资源的位置提供一种抽象的识别方法,并用这种方法给资源定位。只要能够对资源定位,系统就可以对资源进行各种操作,如存取、更新、替换和查找其属性。由此可见,URL实际上就是在互联网上的资源的地址。只有知道了这个资源在互联网上的什么地方,才能对它进行操作。显然,互联网上的所有资源,都有一个唯一确定的URL。

这里所说的"资源"是指在互联网上可以被访问的任何对象,包括文件目录、文件、文档、图像、声音等,以及与互联网相连的任何形式的数据。"资源"还包括电子邮件的地址和USENET新闻组(8)-,或USENET新闻组中的报文。

URL相当于一个文件名在网络范围的扩展。因此,URL是与互联网相连的机器上的任何可访问对象的一个指针。由于访问不同对象所使用

的协议不同,所以URL还指出读取某个对象时所使用的协议。URL的一般形式由以下四个部分组成:

<协议>: //<主机>: <端口>/<路径>

URL的第一部分是最左边的<协议>。这里的<协议>就是指出使用什么协议来获取该万维网文档。现在最常用的协议就是http(超文本传送协议HTTP),其次是ftp(文件传送协议FTP)。

在<协议>后面的"://"是规定的格式。它的右边是第二部分<主机>,它 指出这个万维网文档是在哪一台主机上。这里的<主机>就是指该主机 在互联网上的域名。再后面是第三和第四部分<端口>和<路径>,有时 可省略。

现在有些浏览器为了方便用户,在输入URL时,可以把最前面的"http://"甚至把主机名最前面的"www"省略,然后浏览器替用户把省略的字符添上。例如,用户只要键入ctrip.com,浏览器就自动把未键入的字符补齐,变成http://www.ctrip.com。

下面我们简单介绍使用得最多的一种URL。

2. 使用HTTP的URL

对于万维网的网点的访问要使用HTTP协议。HTTP的URL的一般形式是:

http://<主机>: <端口>/<路径>

HTTP的默认端口号是80,通常可省略。若再省略文件的<路径>项,则URL就指到互联网上的某个**主页**(home page)。主页是个很重要的概念,它可以是以下几种情况之一:

- (1) 一个WWW服务器的最高级别的页面。
- (2) 某一个组织或部门的一个定制的页面或目录。从这样的页面可链接到互联网上的与本组织或部门有关的其他站点。
 - (3) 由某一个人自己设计的描述他本人情况的WWW页面。

例如,要查有关清华大学的信息,就可先进入到清华大学的主页,其URL为⁽⁹⁾:

http://www.tsinghua.edu.cn

这里省略了默认的端口号80。我们从清华大学的主页入手,就可以通过许多不同的链接找到所要查找的各种有关清华大学各个部门的信息。

更复杂一些的路径是指向层次结构的从属页面。例如:

是清华大学的"院系设置"页面的URL。注意:上面的URL中使用了指向文件的路径,而文件名就是最后的index.htm。后缀htm(有时可写为html)表示这是一个用超文本标记语言HTML写出的文件。

URL里面的字母不分大小写,但为了便于阅读,有时故意使用一些大写字母。

用户使用URL并非仅仅能够访问万维网的页面,而且还能够通过URL使用其他的互联网应用程序,如FTP或USENET新闻组等。更重要的是,用户在使用这些应用程序时,只使用一个程序,即浏览器。这显然是非常方便的。

6.4.3 超文本传送协议HTTP

1. HTTP的操作过程

HTTP协议定义了浏览器(即万维网客户进程)怎样向万维网服务器请求万维网文档,以及服务器怎样把文档传送给浏览器。从层次的角度看,HTTP是**面向事务的**(transaction-oriented)⁽¹⁰⁾应用层协议,它是万维网上能够可靠地交换文件(包括文本、声音、图像等各种多媒体文件)的重要基础。请注意,HTTP不仅传送完成超文本跳转所必需的信息,而且也传送任何可从互联网上得到的信息,如文本、超文本、声音和图像等。

万维网的大致工作过程如图6-9所示。

图6-9 万维网的工作过程

每个万维网网点都有一个服务器进程,它不断地监听TCP的端口80,以便发现是否有浏览器(即万维网客户。请注意,浏览器和万维网客户是同义词)向它发出连接建立请求。一旦监听到连接建立请求并建立了TCP连接之后,浏览器就向万维网服务器发出浏览某个页面的请求,服务器接着就返回所请求的页面作为响应。最后,TCP连接就被释放了。在浏览器和服务器之间的请求和响应的交互,必须按照规定的格式和遵循一定的规则。这些格式和规则就是超文本传送协议HTTP。

HTTP规定在HTTP客户与HTTP服务器之间的每次交互,都由一个ASCII码串构成的请求和一个类似的通用互联网扩充,即"类MIME(MIME-like)"的响应组成。HTTP报文通常都使用TCP连接传送。

用户浏览页面的方法有两种。一种方法是在浏览器的地址窗口中键入所要找的页面的URL。另一种方法是在某一个页面中用鼠标点击一个可选部分,这时浏览器会自动在互联网上找到所要链接的页面。

HTTP使用了面向连接的TCP作为运输层协议,保证了数据的可靠传输。HTTP不必考虑数据在传输过程中被丢弃后又怎样被重传。但是,HTTP协议**本身是无连接的**。这就是说,虽然HTTP使用了TCP连接,但通信的双方在交换HTTP报文之前不需要先建立HTTP连接。在1997年以前使用的是RFC 1945定义的HTTP/1.0协议。现在普遍使用的升级版本HTTP/1.1已是互联网建议标准 [RFC 7231]。

HTTP协议是**无状态的**(stateless)。也就是说,同一个客户第二次访问同一个服务器上的页面时,服务器的响应与第一次被访问时的相同(假定现在服务器还没有把该页面更新),因为服务器并不记得曾经访问过的这个客户,也不记得为该客户曾经服务过多少次。HTTP的无状态特性简化了服务器的设计,使服务器更容易支持大量并发的HTTP请求。

下面我们粗略估算一下,从浏览器请求一个万维网文档到收到整个文档所需的时间(图6-10)。用户在点击鼠标链接某个万维网文档时,HTTP协议首先要和服务器建立TCP连接。这需要使用三报文握手。当建立TCP连接的三报文握手的前两部分完成后(即经过了一个RTT时间后),万维网客户就把HTTP请求报文,作为建立TCP连接的三报文握手中的第三个报文的数据,发送给万维网服务器。服务器收到HTTP请求报文后,就把所请求的文档作为响应报文返回给客户。

图6-10 请求一个万维网文档所需的时间

从图6-10可看出,请求一个万维网文档所需的时间是该文档的传输时间(与文档大小成正比)加上两倍往返时间RTT(一个RTT用于连接TCP连接,另一个RTT用于请求和接收万维网文档。TCP建立连接的三报文握手的第三个报文段中的数据,就是客户对万维网文档的请求报文)。

HTTP/1.0的主要缺点,就是每请求一个文档就要有两倍RTT的开销。若一个主页上有很多链接的对象(如图片等)需要依次进行链接,那么每一次链接下载都导致2×RTT的开销。另一种开销就是万维网客户和服务器每一次建立新的TCP连接都要分配缓存和变量。特别是万维网服务器往往要同时服务于大量客户的请求,所以这种**非持续连接**会使万维网服务器的负担很重。好在浏览器都能够打开5~10个并行的TCP连接,而每一个TCP连接处理客户的一个请求。因此,使用并行TCP连接可以缩短响应时间。

HTTP/1.1协议较好地解决了这个问题,它使用了**持续连接**(persistent connection)。所谓持续连接就是万维网服务器在发送响应后仍然在一段时间内保持这条连接,使同一个客户(浏览器)和该服务器可以继续在这条连接上传送后续的HTTP请求报文和响应报文。这并不局限于传送同一个页面上链接的文档,而是只要这些文档都在同一个服务器上就行。目前一些流行的浏览器(如IE 1 1.0)的默认设置就使用了HTTP/1.1。如果用户不愿意使用持续连接的浏览器,可以选择IE浏览器上面的"工具"→"Internet选项"→"高级"等项目,把"HTTP 1.1设置"的选择取消即可。

HTTP/1.1协议的持续连接有两种工作方式,即**非流水线方式**(without pipelining)和**流水线方式**(with pipelining)。

非流水线方式的特点,是客户在收到前一个响应后才能发出下一个请求。因此,在TCP连接已建立后,客户每访问一次对象都要用去一个往返时间RTT。这比非持续连接要用去两倍RTT的开销,节省了建立TCP连接所需的一个RTT时间。但非流水线方式还是有缺点的,因为服务器在发送完一个对象后,其TCP连接就处于空闲状态,浪费了服务器资源。

流水线方式的特点,是客户在收到HTTP的响应报文之前就能够接着发送新的请求报文。于是一个接一个的请求报文到达服务器后,服务器就可连续发回响应报文。因此,使用流水线方式时,客户访问**所有的**

对象 只需花费一个RTT时间。流水线工作方式使TCP连接中的空闲时间减少,提高了下载文档效率。

2. 代理服务器

代理服务器(proxy server)是一种网络实体,它又称为万维网高速缓存(Web cache)。代理服务器把最近的一些请求和响应暂存在本地磁盘中。当新请求到达时,若代理服务器发现这个请求与暂时存放的请求相同,就返回暂存的响应,而不需要按URL的地址再次去互联网访问该资源。代理服务器可在客户端或服务器端工作,也可在中间系统上工作。下面我们用例子说明它的作用。

设图6-11(a)是校园网不使用代理服务器的情况。这时,校园网中所有的计算机都通过2Mbit/s专线链路(\mathbf{R}_1 - \mathbf{R}_2)与互联网上的源点服务器建立TCP连接。因而校园网各计算机访问互联网的通信量往往会使这条2Mbit/s的链路过载,使得时延大大增加。

(a)不使用代理服务器

(b) 使用代理服务器

图6-11 代理服务器的作用

- 图6-11(b)是校园网使用代理服务器的情况。这时,访问互联网的过程是这样的:
- (1) 校园网的计算机中的浏览器向互联网的服务器请求服务时,就先和校园网的代理服务器建立TCP连接,并向代理服务器发出HTTP请求报文(见图6-11(b)中的10)。
- (2) 若代理服务器已经存放了所请求的对象,代理服务器就把这个对象放入HTTP响应报文中返回给计算机的浏览器。
- (3) 否则,代理服务器就代表发出请求的用户浏览器,与互联网上的**源点服务器**(origin server)建立TCP连接(如图6-11(b)中的❷所示),并发送HTTP请求报文。
- (4)源点服务器把所请求的对象放在HTTP响应报文中返回给校园网的代理服务器。
- (5) 代理服务器收到这个对象后,先复制在自己的本地存储器中(留待以后用),然后再把这个对象放在HTTP响应报文中,通过已建立的TCP连接(见图6-11(b)中的❶),返回给请求该对象的浏览器。

我们注意到,代理服务器有时是作为服务器(当接受浏览器的HTTP请求时),但有时却作为客户(当向互联网上的源点服务器发送HTTP请求时)。

在使用代理服务器的情况下,由于有相当大一部分通信量局限在校园网的内部,因此,2Mbit/s专线链路(R_1 - R_2)上的通信量大大减少,因而减小了访问互联网的时延。

3. HTTP的报文结构

HTTP有两类报文:

- (1) 请求报文——从客户向服务器发送请求报文,见图6-12 (a)。
- (2) 响应报文——从服务器到客户的回答,见图6-12(b)。

图6-12 HTTP的报文结构

由于HTTP是**面向文本的**(text-oriented),因此在报文中的每一个字段都是一些ASCII码串,因而各个字段的长度都是不确定的。

HTTP请求报文和响应报文都是由三个部分组成的。可以看出,这两种报文格式的区别就是开始行不同。

- (1) **开始行**,用于区分是请求报文还是响应报文。在请求报文中的开始行叫做**请求行**(Request-Line),而在响应报文中的开始行叫做**状态行**(Status-Line)。在开始行的三个字段之间都以空格分隔开,最后的"CR"和"LF"分别代表"回车"和"换行"。
- (2)**首部行**,用来说明浏览器、服务器或报文主体的一些信息。首部可以有好几行,但也可以不使用。在每一个首部行中都有首部字段名和它的值,每一行在结束的地方都要有"回车"和"换行"。整个首部行结束时,还有一空行将首部行和后面的实体主体分开。
- (3)**实体主体**(entity body),在请求报文中一般都不用这个字段, 而在响应报文中也可能没有这个字段。

下面先介绍HTTP请求报文的一些主要特点。

请求报文的第一行"请求行"只有三个内容,即**方法,请求资源的URL**,以及HTTP的**版本**。

请注意:这里的名词"方法"(method)是面向对象技术中使用的专门名词。所谓"方法"就是对所请求的对象进行的操作,这些方法实际上也就是一些命令。因此,请求报文的类型是由它所采用的方法决定的。表6-1给出了请求报文中常用的几种方法。

表6-1 HTTP请求报文的一些方法

方法 (操 意义

作)

OPTION 请求一些选项的信息

GET 请求读取由URL所标志的信息

HEAD 请求读取由URL所标志的信息的首部

POST 给服务器添加信息 (例如,注释)

PUT 在指明的URL下存储一个文档

DELETE 删除指明的URL所标志的资源

TRACE 用来进行环回测试的请求报文

CONNECT 用于代理服务器

下面是HTTP的请求报文的开始行(即请求行)的格式。请注意,在GET后面有一个空格,接着是某个完整的URL,其后面又有一个空格,最后是HTTP/1.1。

GET http://www.xyz.edu.cn/dir/index.htm HTTP/1.1

下面是一个完整的HTTP请求报文的例子:

GET/dir/index.htm HTTP/1.1 { 请求行使用了相对URL }

Host: www.xyz.edu.cn {此行是首部行的开始。这行给出主机的域

名 }

Connection: close {告诉服务器发送完请求的文档后就可释放连

接 }

User-Agent: Mozilla/5.0 Firefox }

{表明用户代理是使用火狐浏览器

Accept-Language: cn

{表示用户希望优先得到中文版本的文

档 }

{请求报文的最后还有一

个空行 }

在请求行使用了相对URL(即省略了主机的域名)是因为下面的首部行(第2行)给出了主机的域名。第3行是告诉服务器不使用持续连接,表示浏览器希望服务器在传送完所请求的对象后即关闭TCP连接。这个请求报文没有实体主体。

再看一下HTTP响应报文的主要特点。

每一个请求报文发出后,都能收到一个响应报文。响应报文的第一行就是状态行。

状态行包括三项内容,即HTTP的版本,状态码,以及解释状态码的简单短语。

状态码 (Status-Code) 都是三位数字的,分为5大类,原先有33种 [RFC 2616],后来又增加了几种 [RFC 6585]。这5大类的状态码都是以不同的数字开头的。

1xx表示通知信息,如请求收到了或正在进行处理。

2xx表示成功,如接受或知道了。

3xx表示重定向,如要完成请求还必须采取进一步的行动。

4xx表示客户的差错,如请求中有错误的语法或不能完成。

5xx表示服务器的差错,如服务器失效无法完成请求。

下面三种状态行在响应报文中是经常见到的。

HTTP/1.1 202 Accepted {接受}

HTTP/1.1 400 Bad Request {错误的请求}

Http/1.1 404 Not Found { 找不到 }

若请求的网页从http://www.ee.xyz.edu/index.html转移到了一个新的地 址,则响应报文的状态行和一个首部行就是下面的形式:

HTTP/1.1 301 Moved Permanently { 永久性地转移了 }

Location: http://www.xyz.edu/ee/index.html {新的URL}

4. 在服务器上存放用户的信息

在本节(6.4.3节)第1小节"HTTP的操作过程"中已经讲过,HTTP是无 状态的。这样做虽然简化了服务器的设计,但在实际工作中,一些万 维网站点却常常希望能够识别用户。例如, 在网上购物时, 一个顾客 要购买多种物品。当他把选好的一件物品放入"购物车"后,他还要继 续浏览和选购其他物品。因此,服务器需要记住用户的身份,使他接 着选购的一些物品能够放入同一个"购物车"中,这样就便干集中结 账。有时某些万维网站点也可能想限制某些用户的访问。要做到这 点,可以在HTTP中使用Cookie。在RFC 6265中对Cookie进行了定义, 规定万维网站点可以使用Cookie来跟踪用户。Cookie原意是"小甜 饼"(广东人用方言音译为"曲奇"),目前尚无标准译名,在这里 Cookie表示在HTTP服务器和客户之间传递的状态信息。现在很多网站 都已广泛使用Cookie。

Cookie是这样工作的。当用户A浏览某个使用Cookie的网站时、该网站 的服务器就为A产生一个唯一的识别码,并以此作为索引在服务器的 后端数据库中产生一个项目。接着在给A的HTTP响应报文中添加一个 叫做Set-cookie的首部行。这里的"首部字段名"就是"Set-cookie",而后 面的"值"就是赋予该用户的"识别码"。例如这个首部行是这样的:

Set-cookie: 31d4d96e407aad42

当A收到这个响应时,其浏览器就在它管理的特定Cookie文件中添加一行,其中包括这个服务器的主机名和Set-cookie后面给出的识别码。当A继续浏览这个网站时,每发送一个HTTP请求报文,其浏览器就会从其Cookie文件中取出这个网站的识别码,并放到HTTP请求报文的Cookie首部行中:

Cookie: 31d4d96e407aad42

于是,这个网站就能够跟踪用户31d4d96e407aad42 (用户A) 在该网站的活动。需要注意的是,服务器并不需要知道这个用户的真实姓名以及其他的信息。但服务器能够知道用户31d4d96e407aad42在什么时间访问了哪些页面,以及访问这些页面的顺序。如果A是在网上购物,那么这个服务器可以为A维护一个所购物品的列表,使A在结束这次购物时可以一起付费。

如果A在几天后再次访问这个网站,那么他的浏览器会在其HTTP请求报文中继续使用首部行Cookie: 31d4d96e407aad42,而这个网站服务器根据A过去的访问记录可以向他推荐商品。如果A已经在该网站登记过和使用过信用卡付费,那么这个网站就已经保存了A的姓名、电子邮件地址、信用卡号码等信息。这样,当A继续在该网站购物时,只要还使用同一个电脑上网,由于浏览器产生的HTTP请求报文中都携带了同样的Cookie首部行,服务器就可利用Cookie来验证出这是用户A,因此以后A在这个网站购物时就不必重新在键盘上输入姓名、信用卡号码等信息。这对顾客显然是很方便的。

尽管Cookie能够简化用户网上购物的过程,但Cookie的使用一直引起很多争议。有人认为Cookie会把计算机病毒带到用户的计算机中。其实这是对Cookie的误解。Cookie只是一个小小的文本文件,不是计算机的可执行程序,因此不可能传播计算机病毒,也不可能用来获取用户计算机硬盘中的信息。对于Cookie的另一个争议,是关于用户隐私的保护问题。例如,网站服务器知道了A的一些信息,就有可能把这些信息出卖给第三方。Cookie还可用来收集用户在万维网网站上的行为。这些都属于用户个人的隐私。有些网站为了使顾客放心,就公开声明他们会保护顾客的隐私,绝对不会把顾客的识别码或个人信息出售或转移给其他厂商。

为了让用户有拒绝接受Cookie的自由,在浏览器中用户可自行设置接受Cookie的条件。例如在浏览器IE11.0中,选择工具栏中的"工具"→"Internet选项"→"隐私"命令,就可以看见菜单中的左边有一个可上下滑动的标尺,它有六个位置。最高的位置是阻止所有Cookie,而最低的位置是接受所有Cookie。中间的位置则是在不同条件下可以接受Cookie。用户可根据自己的情况对IE浏览器进行必要的设置。

6.4.4 万维网的文档

1. 超文本标记语言HTML

要使任何一台计算机都能显示出任何一个万维网服务器上的页面,就必须解决页面制作的标准化问题。超文本标记语言HTML(HyperText Markup Language)就是一种制作万维网页面的标准语言,它消除了不同计算机之间信息交流的障碍。但请注意,HTML并不是应用层的协议,它只是万维网浏览器使用的一种语言。由于HTML非常易于掌握且实施简单,因此它很快就成为万维网的重要基础[RFC 2854]。官方的HTML标准由万维网联盟W3C(即WWW Consortium)负责制定。有关HTML的一些参考资料见[WHTML]。从HTML在1993年问世后,就不断地对其版本进行更新。现在最新的版本是HTML 5.0(2014年9月发布),新的版本增加了在网页中嵌入音频、视频以及交互式文档等功能。现在一些主流的浏览器都支持HTML 5.0。

HTML定义了许多用于排版的命令,即"标签"(tag)(11)。例如,<I>表示后面开始用斜体字排版,而</I>则表示斜体字排版到此结束。HTML把各种标签嵌入到万维网的页面中,这样就构成了所谓的HTML文档。HTML文档是一种可以用任何文本编辑器(例如,Windows的记事本Notepad)创建的ASCII码文件。但应注意,仅当HTML文档是以.html或.htm为后缀时,浏览器才对这样的HTML文档的各种标签进行解释。如果HTML文档改为以.txt为其后缀,则HTML解释程序就不对标签进行解释,而浏览器只能看见原来的文本文件。

并非所有的浏览器都支持所有的HTML标签。若某一个浏览器不支持某一个HTML标签,则浏览器将忽略此标签,但在一对不能识别的标签之间的文本仍然会被显示出来。

下面是一个简单例子,用来说明HTML文档中标签的用法。在每一个语句后面的花括号中的字是给读者看的注释,在实际的HTML文档中并没有这种注释。

{ HTML文档开始 } <HTML> <HEAD> { 首部开始 } 标题 } { 首部结束 } </HEAD> <B0DY> { 主体开始 } <H1>HTML很容易掌握</H1> { "HTML很容易掌握"是主体的1 级颢头 } <P>这是第一个段落。</P> { <P>和</P>之间的文字是一个 段落 <P>这是第二个段落。</P> { <P>和</P>之间的文字是一个 段落 </BODY> { 主体结束 } { HTML 文档结束 } </HTML>

把上面的HTML文档存入D盘的文件夹HTML中,文件名是HTMLexample.html(注意:实际的文档中没有注释部分)。当浏览器读取了该文档后,就按照HTML文档中的各种标签,根据浏览器所使用的显示器的尺寸和分辨率大小,重新进行排版并显示出来。图6-13表示IE浏览器在计算机屏幕上显示出的与该文档有关部分的画面。文档的标题(title)"一个HTML的例子"显示在浏览器最上面的标题栏中。文件的路径显示在地址栏中。再下面就是文档的主体部分。主体部分的题头(heading),即文档主体部分的标题"HTML很容易掌握",用较大的字号显示出来,因为在标签中指明了使用的是1级题头<H1>。

图6-13 在屏幕上显示的HTML文档主体部分的例子

目前已开发出了很好的制作万维网页面的软件工具,使我们能够像使用Word文字处理器那样很方便地制作各种页面。即使我们用Word文字处理器编辑了一个文件,但只要在"另存为(Save As)"时选取文件后缀为.htm或.html,就可以很方便地把Word的.doc格式文件转换为浏览器可以显示的HTML格式的文档。

HTML允许在万维网页面中插入图像。一个页面本身带有的图像称为内含图像(inline image)。HTML标准并没有规定该图像的格式。实际上,大多数浏览器都支持GIF和JPEG文件。很多格式的图像占据的存储空间太大,因而这种图像在互联网传送时就很浪费时间。例如,一幅位图文件(.bmp)可能要占用500~700KB的存储空间。但若将此图像改存为经压缩的.gif格式,则可能只有十几个千字节,大大减少了存储空间。

HTML还规定了链接的设置方法。我们知道每个链接都有一个**起点**和**终点**。链接的起点说明在万维网页面中的什么地方可引出一个链接。在一个页面中,链接的起点可以是一个字或几个字,或是一幅图,或是一段文字。在浏览器所显示的页面上,链接的起点是很容易识别的。在以文字作为链接的起点时,这些文字往往用不同的颜色显示(例如,一般的文字用黑色字时,链接起点往往使用蓝色字),甚至还会加上下划线(一般由浏览器来设置)。当我们将鼠标移动到一个链接的起点时,表示鼠标位置的箭头就变成了一只手。这时只要点击鼠标,这个链接就被激活。

链接的终点可以是其他网站上的页面。这种链接方式叫做**远程链接**。 这时必须在HTML文档中指明链接到的网站的URL。有时链接可以指 向本计算机中的某一个文件或本文件中的某处,这叫做**本地链接**。这 时必须在HTML文档中指明链接的路径。 实际上,现在这种链接方式已经不局限于用在万维网文档中。在最常用的Word文字处理器的工具栏中,也设有"插入超链接"的按钮。只要点击这个按钮,就可以看到设置超链接的窗口。用户可以很方便地在自己写的Word文档中设置各种链接的起点和终点。

在这一小节的最后,我们还要简单介绍一下和浏览器有关的几种其他语言。

XML(Extensible Markup Language)是可扩展标记语言,它和HTML很相似。但XML的设计宗旨是传输数据,而不是显示数据(HTML是为了在浏览器上显示数据)。更具体些,XML用于标记电子文件,使其具有结构性的标记语言,可用来标记数据、定义数据类型,是一种允许用户对自己的标记语言进行定义的源语言。XML是一种简单、与平台无关并被广泛采用的标准。XML相对于HTML的优点是它将用户界面与结构化数据分隔开来。这种数据与显示的分离使得集成来自不同源的数据成为可能。客户信息、订单、研究结果、账单付款、病历、目录数据及其他信息都可以转换为XML。XML不是要替换HTML,而是对HTML的补充。XML标记由文档的作者定义,并且是无限制的。HTML标记则是预定义的;HTML作者只能使用当前HTML标准所支持的标记。

另一种语言XHTML(Extensible HTML)是**可扩展超文本标记语言**,它与HTML 4.01几乎是相同的。但XHTML是更严格的HTML版本,也是一个W3C标准(2000年1月制定),是作为一种XML应用被重新定义的HTML,并将逐渐取代HTML。所有新的浏览器都支持XHTML。

还有一种语言CSS(Cascading Style Sheets)是**层叠样式表**,它是一种样式表语言,用于为HTML文档定义布局。CSS与HTML的区别就是:HTML用于结构化内容,而CSS则用于格式化结构化的内容。例如,在浏览器上显示的字体、颜色、边距、高度、宽度、背景图像等方面,都能够给出精确的规定。现在所有的浏览器都支持CSS。

2. 动态万维网文档

上面所讨论的万维网文档只是万维网文档中最基本的一种,即所谓的**静态文档**(static document)。静态文档在文档创作完毕后就存放在万维网服务器中,在被用户浏览的过程中,内容不会改变。由于这种

文档的内容不会改变,因此用户对静态文档的每次读取所得到的返回结果都是相同的。

静态文档的最大优点是简单。由于HTML是一种排版语言,因此静态文档可以由不懂程序设计的人员来创建。但静态文档的缺点是不够灵活。当信息变化时就要由文档的作者手工对文档进行修改。可见,变化频繁的文档不适于做成静态文档。

动态文档(dynamic document)是指文档的内容是在浏览器访问万维网服务器时才由应用程序动态创建的。当浏览器请求到达时,万维网服务器要运行另一个应用程序,并把控制转移到此应用程序。接着,该应用程序对浏览器发来的数据进行处理,并输出HTTP格式的文档,万维网服务器把应用程序的输出作为对浏览器的响应。由于对浏览器每次请求的响应都是临时生成的,因此用户通过动态文档所看到的内容是不断变化的。动态文档的主要优点是具有报告当前最新信息的能力。例如,动态文档可用来报告股市行情、天气预报或民航售票情况等内容。但动态文档的创建难度比静态文档的高,因为动态文档的开发不是直接编写文档本身,而是编写用于生成文档的应用程序,这就要求动态文档的开发人员必须会编程,而所编写的程序还要通过大范围的测试、以保证输入的有效性。

动态文档和静态文档之间的主要差别体现在服务器一端。这主要是**文档内容的生成方法不同**。而从浏览器的角度看,这两种文档并没有区别。动态文档和静态文档的内容都遵循HTML所规定的格式,浏览器仅根据在屏幕上看到的内容无法判定服务器送来的是哪一种文档,只有文档的开发者才知道。

从以上所述可以看出,要实现动态文档就必须在以下两个方面对万维 网服务器的功能进行扩充:

- (1) 应增加另一个应用程序,用来处理浏览器发来的数据,并创建动态文档。
- (2) 应增加一个机制,用来使万维网服务器将浏览器发来的数据传送给这个应用程序,然后万维网服务器能够解释这个应用程序的输出,并向浏览器返回HTML文档。

图6-14是扩充了功能的万维网服务器的示意图。这里增加了一个机制,叫做**通用网关接口** CGI(Common Gateway Interface)。CGI是一种标准,它定义了动态文档应如何创建,输入数据应如何提供给应用程序,以及输出结果应如何使用。

图6-14 扩充了功能的万维网服务器

在万维网服务器中新增加的应用程序叫做CGI程序。取这个名字的原因是:万维网服务器与CGI的通信遵循CGI标准。"通用"是因为这个标准所定义的规则对其他任何语言都是通用的。"网关"二字的出现是因为CGI程序还可能访问其他的服务器资源,如数据库或图形软件包,因而CGI程序的作用有点像一个网关。也有人将CGI程序简称为**网关程序**。"接口"是因为有一些已定义好的变量和调用等可供其他CGI程序使用。请读者注意:在看到CGI这个名词时,应弄清是指CGI标准,还是指CGI程序。

CGI程序的正式名字是CGI**脚本**(script)。按照计算机科学的一般概念,"**脚本**"(12)指的是一个程序,它被另一个程序(解释程序)而不是计算机的处理机来解释或执行。有一些语言专门作为**脚本语言**(script language),如Perl,REXX(在IBM主机上使用),JavaScript以及Tcl/Tk等。脚本也可用一些常用的编程语言写出,如C,C++等。使用脚本语言可更容易和更快地进行编码,这对一些有限功能的小程序是很合适的。但一个脚本运行起来比一般的编译程序要慢,因为它的每一条指令先要被另一个程序来处理(这就要一些附加的指令),而不是直接被指令处理器来处理。脚本不一定是一个独立的程序,它可以是一个动态装入的库,甚至是服务器的一个子程序。

CGI程序又称为cgi-bin脚本,这是因为在许多万维网服务器上,为便于找到CGI程序,就将CGI程序放在/cgi-bin的目录下。

3. 活动万维网文档

随着HTTP和万维网浏览器的发展,上一节所述的动态文档已明显地不能满足发展的需要。这是因为,动态文档一旦建立,它所包含的信息内容也就固定下来而无法及时刷新屏幕。另外,像动画之类的显示效果,动态文档也无法提供。

有两种技术可用于浏览器屏幕显示的连续更新。一种技术称为**服务器推送**(server push),这种技术是将所有的工作都交给服务器。服务器不断地运行与动态文档相关联的应用程序,定期更新信息,并发送更新过的文档。

尽管从用户的角度看,这样做可达到连续更新的目的,但这也有很大的缺点。首先,为了满足很多客户的请求,服务器就要运行很多服务器推送程序。这将造成过多的服务器开销。其次,服务器推送技术要求服务器为每一个浏览器客户维持一个不释放的TCP连接。随着TCP连接的数目增加,每一个连接所能分配到的网络带宽就下降,这就导致网络传输时延的增大。

另一种提供屏幕连续更新的技术是**活动文档**(active document)。这种技术是把所有的工作都转移给浏览器端。每当浏览器请求一个活动文档时,服务器就返回一段活动文档程序副本,使该程序副本在浏览器端运行。这时,活动文档程序可与用户直接交互,并可连续地改变屏幕的显示。只要用户运行活动文档程序,活动文档的内容就可以连续地改变。由于活动文档技术不需要服务器的连续更新传送,对网络带宽的要求也不会太高。

从传送的角度看,浏览器和服务器都把活动文档看成是静态文档。在服务器上的活动文档的内容是不变的,这点和动态文档是不同的。浏览器可在本地缓存一份活动文档的副本。活动文档还可处理成压缩形式,以便于存储和传送。另一点要注意的是,活动文档本身并不包括其运行所需的全部软件,大部分的支持软件是事先存放在浏览器中的。图6-15说明了活动文档的创建过程。

图6-15 活动文档由服务器发送过来的程序在客户端创建

由美国SUN公司开发的Java语言是一项用于创建和运行活动文档的技术。在Java技术中使用了一个新的名词"小应用程序"(applet)(13)来描述活动文档程序。当用户从万维网服务器下载一个嵌入了Java小应用程序的HTML文档后,用户可在浏览器的显示屏幕上点击某个图像,然后就可看到动画的效果;或是在某个下拉式菜单中点击某个项目,即可看到根据用户键入的数据所得到的计算结果。实际上,Java技术是活动文档技术的一部分。限于篇幅,有关Java技术的进一步讨论这里从略。

6.4.5 万维网的信息检索系统

1. 全文检索搜索与分类目录搜索

万维网是一个大规模的、联机式的信息储藏所。那么,应当采用什么方法才能找到所需的信息呢?如果已经知道存放该信息的网点,那么只要在浏览器的地址(Location)框内键入该网点的URL并按回车键,就可进入该网点。但是,若不知道要找的信息在何网点,那就要使用万维网的搜索工具。

在万维网中用来进行搜索的工具叫做**搜索引擎**(search engine)。搜索引擎的种类很多,但大体上可划分为两大类,即**全文检索**搜索引擎和**分类目录**搜索引擎。

全文检索搜索引擎是一种纯技术型的检索工具。它的工作原理是通过搜索软件(例如一种叫做"蜘蛛"或"网络机器人"的Spider程序)到互联

网上的各网站收集信息,找到一个网站后可以从这个网站再链接到另一个网站,像蜘蛛爬行一样。然后按照一定的规则建立一个很大的在线索引数据库供用户查询。用户在查询时只要输入关键词,就从已经建立的索引数据库里进行查询(并不是实时地在互联网上检索到的信息)。因此很可能有些查到的信息已经是过时的(例如很多年前的)。建立这种索引数据库的网站必须定期对已建立的数据库进行更新维护(但不少网站的维护很不及时,因此对查找到的信息一定要消量发布的时间)。现在全球最大的并且最受欢迎的全文检索搜索引擎就是谷歌Google(www.google.com)。谷歌提供的主要的搜索服务有:网页搜索、图片搜索、视频搜索、地图搜索、新闻搜索、购物搜索、博客搜索、论坛搜索、学术搜索、财经搜索等。应全球用户的需求,谷歌在美国及世界各地创建数据中心。至2013年底,谷歌的数据中心在全球共设有12处。大多数数据中心的业主基于信息安全考虑,极少透露其数据中心的信息及内部情形。

我们将在下一小节简单介绍谷歌搜索技术的特点。现在"谷歌"不仅是网站名,而且还是动词。例如,"谷歌一下"的意思就是"用谷歌网站进行信息搜索"。在全文检索搜索引擎中另外两个著名的网站是美国微软的必应(cn.bing.com)和中国的百度(www.baidu.com)。

分类目录搜索引擎并不采集网站的任何信息,而是利用各网站向搜索引擎提交网站信息时填写的关键词和网站描述等信息,经过人工审核编辑后,如果认为符合网站登录的条件,则输入到分类目录的数据库中,供网上用户查询。因此,分类目录搜索也叫做分类网站搜索。分类目录的好处就是用户可根据网站设计好的目录有针对性地逐级查询所需要的信息,查询时不需要使用关键词,只需要按照分类(先找大类,再找下面的小类),因而查询的准确性较好。但分类目录查询的结果并不是具体的页面,而是被收录网站主页的URL地址,因而所得到的内容就比较有限。相比之下,全文检索可以检索出大量的信息(一次检索的结果是几百万条,甚至是千万条以上),但缺点是查询结果不够准确,往往是罗列出了海量的信息(如上千万个页面),使用户无法迅速找到所需的信息。在分类目录搜索引擎中最著名的就是雅虎(www.yahoo.com)。国内著名的分类搜索引擎有雅虎中国(cn.yahoo.com)、新浪(sina.com.cn)、搜狐(www.sohu.com)、网易(www.163.com)等。

图6-16说明了上述这两种搜索方法的区别。图6-16(a)是全文搜索谷歌的首页。用户只需在空白的栏目中键入拟搜索的关键词,搜索引擎就返回搜索结果,用户可根据屏幕上显示的结果继续点击下去,直到看到满意的结果。图6-16(b)是分类检索新浪网的首页。我们可以看到页面上有三行共63个类别。用户要检索的内容通常总是在这几十个类别之中,因此按类别点击查找下去,最后就可以查找到所要检索的内容。

图6-16 举例说明两种检索的区别

从用户的角度看,使用这两种不同的搜索引擎一般都能够实现自己查询信息的目的。为了使用户能够更加方便地搜索到有用信息,目前许多网站往往同时具有全文检索搜索和分类目录搜索的功能。在互联网上搜索信息需要经验的积累。要多实践才能掌握从互联网获取信息的技巧。

这里再强调一下,不管哪种搜索引擎,就是告诉你只要链接到什么地方就可以检索到所需的信息。搜索引擎网站本身并没有直接存储这些信息。

值得注意的是,目前出现了**垂直搜索引擎**(Vertical Search Engine),它针对某一特定领域、特定人群或某一特定需求提供搜索服务。垂直搜索也是提供关键字来进行搜索的,但被放到了一个行业知识的上下文中,返回的结果更倾向于信息、消息、条目等。例如,对买房的人讲,他希望查找的是房子的具体供求信息(如面积、地点、价格等),而不是有关房子供求的一般性的论文或新闻、政策等。目前热门的垂直搜索行业有:购物、旅游、汽车、求职、房产、交友等。还有一种元搜索引擎(Meta Search Engine),它把用户提交的检索请求发送到多个独立的搜索引擎上去搜索,并把检索结果集中统一处理,

以统一的格式提供给用户,因此是搜索引擎之上的搜索引擎。它的主要精力放在提高搜索速度、智能化处理搜索结果、个性化搜索功能的设置和用户检索界面的友好性上。元搜索引擎的查全率和查准率都比较高。

2. Google搜索技术的特点

Google的搜索引擎性能优良,因为它使用了先进的硬件和软件。以往的大多数的搜索引擎是使用少量大型服务器。在访问高峰期,搜索的速度就会明显减慢。Google则利用在互联网上相互链接的计算机来快速查找每个搜索的答案,并且成功地缩短了查找的相应时间。Google的搜索软件可同时进行许多运算,它的核心技术就是PageRank TM ,译为**网页排名**。

PageRank对搜索出来的结果按重要性进行排序,这是Google的两个创 始人Larry Page和Sergey Brin共同开发出来的[W-GOOGLE]。由于用 户在有限的时间内, 不可能阅读全部的搜索结果 (因为数量往往非常 大),而通常仅仅是查阅一下前几个(或前几十个)项目。因此用户 希望检索结果能够按重要性来排序。但怎样确定某个页面的重要性 呢? 传统的搜索引擎往往是检查关键字在网页上出现的频率。 PageRank技术则把整个互联网当作了一个整体对待,检查整个网络链 接的结构,并确定哪些网页重要性最高。更具体些,就是如果有很多 网站上的链接都指向页面A, 那么页面A就比较重要。PageRank对链接 的数目进行加权统计。对来自重要网站的链接,其权重也较大。统计 链接数目的问题是一个二维矩阵相乘的问题,从理论上讲,这种二维 矩阵的元素数是网页数目的平方。对于1亿个网页,这个矩阵就有1亿 亿个元素。这样大的矩阵相乘,计算量是非常大的。Larry Page和 Sergey Brin两人利用稀疏矩阵计算的技巧,大大地简化了计算量。他 们用迭代的方法解决了这个问题。他们先假定所有网页的排名是相同 的,并且根据此初始值,算出各个网页的第一次迭代排名,再根据第 一次迭代排名算出第二次的排名。他们从理论上证明了不论初始值如 何选取,这种算法都保证了网页排名的估计值能收敛到排名的真实 值。这种算法是完全没有任何人工干预的,厂商不可能用金钱购买网 页的排名。Google还要进行超文本匹配分析,以确定哪些网页与正在 执行的特定搜索相关。在综合考虑整体重要性以及与特定查询的相关 性之后,Google就把最相关、最可靠的搜索结果放在首位。

然而有一些著名网站通过"竞价排名"把虚假广告信息放在检索结果的首位,结果误导了消费者,使受骗者蒙受很大的损失。因此对网络搜索的结果,我们应认真分析其真伪,提高辨别能力,不要随意轻信网络检索的广告信息(哪怕是知名度很高的网站)。

6.4.6 博客和微博

近年来,万维网的一些新的应用广为流行,这就是博客和微博。下面进行简单的介绍。

1. 博客

我们知道,建立网站就是万维网的一种应用。博客(blog)和网站有很相似的地方。博客的作者可以源源不断地往万维网上的个人博客里填充内容,供其他网民阅读。网民可以用浏览器上网阅读博客、发表评论,也可以什么都不做。

博客是万维网日志(weblog)的简称。也有人把blog进行音译,译为"部落格",或"部落阁"。还有人用"博文"来表示"博客文章"。

本来,网络日志是指个人撰写并在互联网上发布的、属于网络共享的个人日记。但现在它不仅可以是个人日记,而且可以有无数的形式和大小,也没有任何实际的规则。

现在博客已经极大地扩充了互联网的应用和影响,成为了所有网民都可以参与的一种新媒体,并使得无数的网民有了发言权,有了与政府、机构、企业,以及很多人交流的机会。在博客出现以前,网民是互联网上内容的消费者,网民在互联网上搜寻并下载感兴趣的信息。这些信息是其他人生产的,他们把这些信息放在互联网的某个服务器上,供广大网民使用(也就是供网民消费)。但博客改变了这种情况,网民不仅是互联网上内容的消费者,而且还是互联网上内容的生产者。

从历史上看,weblog这个新词是Jorn Barger于1997年创造的。简写的blog(这是今天最常用的术语)则是Peter Merholz于1999年创造的。不久,有人把blog既当作名词,也当作动词,表示编辑博客或写博客。接着,新名词blogger也出现了,它表示博客的拥有者,或博客内容的

撰写者和维护者,或博客用户。博客可以看成是继电子邮件、电子公告牌系统BBS和即时传信IM(Instant Messaging)(14)之后的第四种网络交流方式。

现在从一些著名的门户网站的主页上都能很容易地进入到博客页面,这让用户查看博客或发表自己的博客都非常方便。前面的图6-16(b)所示的新浪网站首页,就可看到在几十个分类中的第1行第9列的"博客"。

当我们在新浪网站主页点击"博客"时,就可以看到各式各样的博客。 也可以利用搜索工具寻找所需的博客。如果我们已在新浪博客注册 了,那么也可随时把自己的博客发表在此,让别人来阅读。我们还可 直接登录新浪博客网站blog.sina.com.cn。

博客与个人网站还是有不少区别的。这里最主要的区别就是建立个人网站成本较高,需要租用个人空间、域名等,同时建立网站的个人需要懂得HTML语言和网页制作等相关技术;但博客在这方面是不需要什么投资的,所需的技术仅仅是会上网和会用键盘或书写板输入汉字即可。因此网民用较短的时间就能够把自己写的博客发表在网上,而不像制作个人网站那样花费较多的时间。正因为写博客的门槛较低,广大的网民才有可能成为今天互联网上的信息制造者。

顺便提一下,不要把"博客"和"播客"弄混。播客(Podcast)是苹果手机的一个预装软件,能够让用户通过手机订阅和自动下载所预订的音乐文件,以便随时欣赏音乐。

2. 微博

在图6-16(b)新浪网站首页各种分类的第1行的最后,可以找到"微博"。微博就是**微型博客**(microblog),又称为**微博客**,它的意思已经非常清楚。博客或微博里的朋友,常称为"博友"。微博也被人戏称为"围脖",把博友戏称为"脖友"。

但微博不同于一般的博客。微博只记录片段、碎语,三言两语,现场记录,发发感慨,晒晒心情,永远只针对一个问题进行回答。微博只是记录自己琐碎的生活,呈现给人看,而且必须很真实。微博中不必有太多的逻辑思维,很随便,很自由,有点像电影中的一个镜头。写

微博比写其他东西简单多了,不需要标题,不需要段落,更不需要漂亮的词汇。

2009年是中国微博蓬勃发展的一年,相继出现了新浪微博、139说客、9911、嘀咕网、同学网、贫嘴等微博客。例如,新浪微博就是由中国最大的门户网站新浪网推出的微博服务,是中国目前用户数最多的微博网站(weibo.com),名人用户众多是新浪微博的一大特色,基本已经覆盖大部分知名文体明星、企业高管、媒体人士。用户可以通过网页、WAP网、手机短信彩信、手机客户端等多种方式更新自己的微博。每条微博字数最初限制为140英文字符,但现在已增加了"长微博"的选项,可输入更多的字符。微博还提供插入图片、视频、音乐等功能。根据统计,从2010年3月到2012年3月共两年的时间,新浪微博的覆盖人数从2510.9万增长到3亿人,而其中90%的用户认为微博改变了他们与媒体接触的方式。

现在不少地方政府也开通了微博(即政务微博),这是信息公开的表现。政府可以通过政务微博,及时公布政情、公务、资讯等,获取与民众更多、更直接、更快的沟通,特别是在突发事件或者群体性事件发生的时候,微博就能够成为政府新闻发布的一种重要手段。

虽然政务微博具有"传递信息、沟通上下、解决问题"的功能性特点,并受到广大网民的欢迎,但政务微博的日常管理也非常重要。如果政务微博因缺乏良好的管理而不能够满足群众的各种需求,那么它就会成为一种无用的摆设。

微博是一种互动及传播性极快的工具,其实时性、现场感及快捷性,往往超过所有媒体。这是因为微博对用户的技术要求门槛非常低,而且在语言的编排组织上,没有博客那么高。另外,微博开通的多种API使大量的用户可通过手机、网络等方式来即时更新自己的个人信息。微博网站的即时传信功能非常强大,可以通过QQ和MSN直接书写。

我们正处在一个急剧变革的时代,人们需要用贯穿不同社会阶层的信息去了解社会、改变生活。在互联网上微博的出现正好满足了广大网民的需求。微博发布、转发信息的功能很强大,这种一个人的"通讯社"将对整个社会产生越来越大的影响。

6.4.7 社交网站

社交网站 SNS(Social Networking Site)是近年来发展非常迅速的一种网站,其作用是为一群拥有相同兴趣与活动的人创建在线社区。社交网站的功能非常丰富,如电子邮件、即时传信(在线聊天)、博客撰写、共享相册、上传视频、网页游戏、创建社团、刊登广告等,对现实社交结构已经形成了巨大冲击。社交网络服务提供商针对不同的群众,有着不同的定位,对个人消费者都是免费的。这种网站通过朋友,一传十、十传百地把联系范围不断扩大下去。前面曾提到过的BBS和微博,可以看作是社交网站的前身。

2004年社交网站**脸书**(Facebook,又名面书、脸谱、脸谱网)在美国诞生。脸书最初的用户定位是大学生,但现在它的用户范围已经扩大了很多。接着社交网站热潮席卷全球,而国内以人人网、开心网等为代表的社交网站也如雨后春笋般迅速崛起。社交网站极大地丰富了人们的社交生活,孕育了新的经济增长点,其所蕴含的巨大商业价值和社会力量也正凸显出来。

毫无疑问,目前世界上排名第一且分布最广的社交网站是脸书。脸书最大的特点就是可以非常方便地寻找朋友或联系老同学、老同事,能够简易地在朋友圈中分享图片、视频和音频文件(现在也可以发送其他文件,如.docx,. xlsx等),以及通过集成的地图功能分享用户所在的位置。现在脸书的月度活跃用户已达11.5亿人之多,其中半数以上为移动电话用户。在2010年3月,脸书在美国的访问人数已超过谷歌,成为全美访问量最大的网站。脸书的官网域名为Facebook.com,并持有.cn域名Facebook.cn。排名第二的社交网站是视频分享网站YouTube,其月度活跃用户人数为10亿人。2006年YouTube.com网站被谷歌收购,目前谷歌手上持有了youtube.com/.com.cn/.net/.org等域名。国内类似的视频分享网站有优酷(www.youku.com)、土豆(movie.tudou.com)、56网(56.com)等。

另一种能够提供微博服务的社交网络现在也很流行。例如**推特** Twitter(twitter.com)网站创建于2006年,它可以让用户发表不超过140个英文字符的消息。这些消息也被称为"推文"(Tweet)。我国的新浪微博(www.weibo.com)、腾讯微博(t.qq.com)等就是这种性质的社交网站。职业性社交网站**领英** LinkedIn也是很受欢迎的网站。

目前在我国最为流行的社交网站就是微信(weixin.qq.com)。微信最初是专为手机用户使用的聊天工具,其功能是"收发信息、拍照分享、联系朋友"。但几年来经过多次系统更新,现在微信不仅可传送文字短信、图片、录音电话、视频短片,还可提供实时音频或视频聊天,甚至可进行网上购物、转账、打车,等等。原来微信仅限于在手机上使用,但新的微信版本已能够安装在普通电脑上。现在微信的功能已远远超越了社交领域。我们知道,电子邮件可以发送给网上任何一个并不认识你的用户,也不管他是否愿意接收你发送的邮件。各种博客和微博也可供任何上网用户浏览。但微信只能在确定的朋友圈中交换信息。正是由于朋友之间更加需要交换信息,而微信的功能又不断在扩展,因此微信在我国已成为几乎每个网民都使用的应用软件。

6.5 电子邮件

6.5.1 电子邮件概述

大家知道,实时通信的电话有两个严重缺点。第一,电话通信的主叫和被叫双方必须同时在场。第二,有些电话常常不必要地打断被叫者的工作或休息。

电子邮件 (e-mail) 是互联网上使用最多的和最受用户欢迎的一种应用。电子邮件把邮件发送到收件人使用的邮件服务器,并放在其中的收件人邮箱 (mail box)中,收件人可在自己方便时上网到自己使用的邮件服务器进行读取。这相当于互联网为用户设立了存放邮件的信箱,因此e-mail有时也称为"电子信箱"。电子邮件不仅使用方便,而且还具有传递迅速和费用低廉的优点。据有的公司报道,使用电子邮件后可提高劳动生产率30%以上。现在电子邮件不仅可传送文字信息,而且还可附上声音和图像。由于电子邮件和手机的广泛使用,现已迫使传统的电报业务退出市场,因为这种传统电报既贵又慢,且很不方便。

1982年ARPANET的电子邮件问世后,很快就成为最受广大网民欢迎的互联网应用。电子邮件的两个最重要的标准就是:**简单邮件传送协议**SMTP(Simple Mail Transfer Protocol)[RFC 5321]和**互联网文本报文格式** 「RFC 5322] 。

由于互联网的SMTP只能传送可打印的7位ASCII码邮件,因此在1993年又提出了**通用互联网邮件扩充** MIME(Multipurpose Internet Mail Extensions)。MIME在其邮件首部中说明了邮件的数据类型(如文本、声音、图像、视像等)。在MIME邮件中可同时传送多种类型的数据。这在多媒体通信的环境下是非常有用的。

一个电子邮件系统应具有图6-17所示的三个主要组成构件,这就是用户代理、邮件服务器,以及邮件发送协议(如SMTP)和邮件读取协议(如POP3)。POP3是邮局协议(Post Office Protocol)的版本3。凡是有TCP连接的,都经过了互联网,有的甚至可以跨越数千公里的距离。这里为简洁起见,没有画出网络。在互联网中,邮件服务器的数量是很大的。正是这些邮件服务器构成了电子邮件基础结构的核心。在图6-17中为了说明问题,仅仅画出了两个邮件服务器。

图6-17 电子邮件的最主要的组成构件

用户代理 UA(User Agent)就是用户与电子邮件系统的接口,在大多数情况下它就是运行在用户电脑中的一个程序。因此用户代理又称为电子邮件客户端软件。用户代理向用户提供一个很友好的接口(目前主要是窗口界面)来发送和接收邮件。现在可供大家选择的用户代理有很多种。例如,微软公司的Outlook Express和我国张小龙制作的Foxmail,都是很受欢迎的电子邮件用户代理。

用户代理至少应当具有以下4个功能。

- (1) **撰写**。给用户提供编辑信件的环境。例如,应让用户能创建便于使用的通讯录(有常用的人名和地址)。回信时不仅能很方便地从来信中提取出对方地址,并自动地将此地址写入到邮件中合适的位置,而且还能方便地对来信提出的问题进行答复(系统自动将来信复制一份在用户撰写回信的窗口中,因而用户不需要再输入来信中的问题)。
- (2) **显示**。能方便地在计算机屏幕上显示出来信(包括来信附上的声音和图像)。
- (3) **处理**。处理包括发送邮件和接收邮件。收件人应能根据情况按不同方式对来信进行处理。例如,阅读后删除、存盘、打印、转发等,以及自建目录对来信进行分类保存。有时还可在读取信件之前先查看一下邮件的发件人和长度等,对于不愿收的信件可直接在邮箱中删除。
- (4) **通信**。发信人在撰写完邮件后,要利用邮件发送协议发送到用户所使用的邮件服务器。收件人在接收邮件时,要使用邮件读取协议从本地邮件服务器接收邮件。

互联网上有许多**邮件服务器** 可供用户选用(有些要收取少量的邮箱费用)。邮件服务器24小时不间断地工作,并且具有很大容量的邮件信箱。邮件服务器的功能是发送和接收邮件,同时还要向发件人报告邮件传送的结果(已交付、被拒绝、丢失等)。邮件服务器按照客户服务器方式工作。邮件服务器需要使用**两种不同的协议**。一种协议用于用户代理向邮件服务器发送邮件或在邮件服务器之间发送邮件,如**SMTP**协议,而另一种协议用于用户代理从邮件服务器读取**邮件**,如**邮局协议** POP3。

这里应当注意,邮件服务器必须能够同时充当客户和服务器。例如,当邮件服务器A向另一个邮件服务器B发送邮件时,A就作为SMTP客户,而B是SMTP服务器。反之,当B向A发送邮件时,B就是SMTP客户,而A就是SMTP服务器。

图6-17给出了计算机之间发送和接收电子邮件的几个重要步骤。请注意,SMTP和POP3(或IMAP)都是使用TCP连接来传送邮件的,使用TCP的目的是为了可靠地传送邮件。

- 发件人调用计算机中的用户代理撰写和编辑要发送的邮件。
- ②发件人点击屏幕上的"发送邮件"按钮,把发送邮件的工作全都交给用户代理来完成。用户代理把邮件用SMTP协议发给发送方邮件服务器,用户代理充当SMTP客户,而发送方邮件服务器充当SMTP服务器。用户代理所进行的这些工作,用户是看不到的。有的用户代理可以让用户在屏幕上看见邮件发送的进度显示。用户所使用的邮件服务器究竟在什么地方,用户并不知道,也不必要知道。实际上,用户在把写好的信件交付给用户代理后,就什么都不用管了。
- ③ SMTP服务器收到用户代理发来的邮件后,就把邮件临时存放在邮件缓存队列中,等待发送到接收方的邮件服务器(等待时间的长短取决于邮件服务器的处理能力和队列中待发送的信件的数量。但这种等待时间一般都远远大于分组在路由器中等待转发的排队时间)。
- ◆ 发送方邮件服务器的SMTP客户与接收方邮件服务器的SMTP服务器建立TCP连接,然后就把邮件缓存队列中的邮件依次发送出去。请注意,邮件不会在互联网中的某个中间邮件服务器落地。如果SMTP客户还有一些邮件要发送到同一个邮件服务器,那么可以在原来已建立的TCP连接上重复发送。如果SMTP客户无法和SMTP服务器建立TCP连接(例如,接收方服务器过负荷或出了故障),那么要发送的邮件就会继续保存在发送方的邮件服务器中,并在稍后一段时间再进行新的尝试。如果SMTP客户超过了规定的时间还不能把邮件发送出去,那么发送邮件服务器就把这种情况通知用户代理。
- ⑤ 运行在接收方邮件服务器中的SMTP服务器进程收到邮件后,把邮件放入收件人的用户邮箱中,等待收件人进行读取。
- ⑥ 收件人在打算收信时,就运行计算机中的用户代理,使用POP3(或IMAP)协议读取发送给自己的邮件。请注意,在图6-17中,POP3服务器和POP3客户之间的箭头表示的是邮件传送的方向。但它们之间的通信是由POP3客户发起的。

请注意这里有两种不同的通信方式。一种是"**推**"(push): SMTP客户把邮件"推"给SMTP服务器。另一种是"拉"(pull): POP3客户把邮件从POP3服务器"拉"过来。细心的读者可能会想到这样的问题: 如果让图6-17中的邮件服务器程序就在发送方和接收方的计算机中运行,那么岂不是可以直接把邮件发送到收件人的计算机中?

答案是"不行"。这是因为并非所有的计算机都能运行邮件服务器程序。有些计算机可能没有足够的存储空间来运行允许程序在后台运行的操作系统,或是可能没有足够的CPU能力来运行邮件服务器程序。更重要的是,邮件服务器程序必须不间断地运行,每天24小时都必须不间断地连接在互联网上,否则就可能使很多外面发来的邮件无法接收。这样看来,让用户的计算机运行邮件服务器程序显然是很不现实的(一般用户在不使用计算机时就将机器关闭)。让来信暂时存储在用户的邮件服务器中,而当用户方便时就从邮件服务器的用户信箱中读取来信,则是一种比较合理的做法。在Foxmail中使用一种"特快专递"服务。这种服务就是从发件人的用户代理直接利用SMTP把邮件发送到接收方邮件服务器。这就加快了邮件的交付(省去在发送方邮件服务器中的排队等待时间)。但这种"特快专递"和邮政的EMS直接把邮件送到用户家中不同,它并没有把邮件直接发送到收件人的计算机中。但有些邮件服务器为了防止垃圾邮件和计算机病毒,拒绝接收从一般用户直接发来的邮件。

电子邮件由**信封**(envelope)和**内容**(content)两部分组成。电子邮件的传输程序根据邮件信封上的信息来传送邮件。这与邮局按照信封上的信息投递信件是相似的。

在邮件的信封上,最重要的就是收件人的地址。TCP/IP体系的电子邮件系统规定**电子邮件地址**(e-mail address)的格式如下:

在上式中,符号"@"读作"at",表示"在"的意思。例如,在电子邮件地址"xyz@abc.com"中,"abc.com"就是邮件服务器的域名,而"xyz"就是在这个邮件服务器中收件人的**用户名**,也就是**收件人邮箱名**,是收件人为自己定义的字符串标识符。但应注意,这个用户名在邮件服务器中必须是唯一的(当用户定义自己的用户名时,邮件服务器要负责检查该用户名在本服务器中的唯一性)。这样就保证了每一个电子邮件地址在世界范围内是唯一的。这对保证电子邮件能够在整个互联网范围内的准确交付是十分重要的。电子邮件的用户一般采用容易记忆的字符串。

6.5.2 简单邮件传送协议SMTP

下面介绍SMTP的一些主要特点。

SMTP规定了在两个相互通信的SMTP进程之间应如何交换信息。由于SMTP使用客户服务器方式,因此负责发送邮件的SMTP进程就是SMTP客户,而负责接收邮件的SMTP进程就是SMTP服务器。至于邮件内部的格式,邮件如何存储,以及邮件系统应以多快的速度来发送邮件,SMTP也都未做出规定。

SMTP规定了14条命令和21种应答信息。每条命令用几个字母组成,而每一种应答信息一般只有一行信息,由一个3位数字的代码开始,后面附上(也可不附上)很简单的文字说明。下面通过发送方和接收方的邮件服务器之间的SMTP通信的三个阶段介绍几个最主要的命令和响应信息。

1. 连接建立

发件人的邮件送到发送方邮件服务器的邮件缓存后,SMTP客户就每隔一定时间(例如30分钟)对邮件缓存扫描一次。如发现有邮件,就使用SMTP的熟知端口号码25与接收方邮件服务器的SMTP服务器建立TCP连接。在连接建立后,接收方SMTP服务器要发出"220 Service ready"(服务就绪)。然后SMTP客户向SMTP服务器发送HELO命令,附上发送方的主机名。SMTP服务器若有能力接收邮件,则回答: "250 OK",表示已准备好接收。若SMTP服务器不可用,则回答"421 Service not available"(服务不可用)。

如在一定时间内(例如三天)发送不了邮件,邮件服务器会把这个情况通知发件人。

SMTP不使用中间的邮件服务器。不管发送方和接收方的邮件服务器相隔有多远,不管在邮件传送过程中要经过多少个路由器,TCP连接总是在发送方和接收方这两个邮件服务器之间直接建立。当接收方邮件服务器出故障而不能工作时,发送方邮件服务器只能等待一段时间后再尝试和该邮件服务器建立TCP连接,而不能先找一个中间的邮件服务器建立TCP连接。

2. 邮件传送

邮件的传送从MAIL命令开始。MAIL命令后面有发件人的地址。如: MAIL FROM: <xiexiren@tsinghua.org.cn>。若SMTP服务器已准备好接收邮件,则回答"250 OK"。否则,返回一个代码,指出原因。如: 451(处理时出错),452(存储空间不够),500(命令无法识别)等。

下面跟着一个或多个RCPT命令,取决于把同一个邮件发送给一个或多个收件人,其格式为RCPT TO: <收件人地址>。RCPT是recipient(收件人)的缩写。每发送一个RCPT命令,都应当有相应的信息从SMTP服务器返回,如: "250 OK",表示指明的邮箱在接收方的系统中,或"550 No such user here"(无此用户),即不存在此邮箱。

RCPT命令的作用就是:先弄清接收方系统是否已做好接收邮件的准备,然后才发送邮件。这样做是为了避免浪费通信资源,不至于发送了很长的邮件以后才知道地址错误。

再下面就是DATA命令,表示要开始传送邮件的内容了。SMTP服务器返回的信息是: "354 Startmail input;end with<CRLF>. <CRLF>"。这里<CRLF>是"回车换行"的意思。若不能接收邮件,则返回421(服务器不可用),500(命令无法识别)等。接着SMTP客户就发送邮件的内容。发送完毕后,再发送<CRLF>. <CRLF>(两个回车换行中间用一个点隔开)表示邮件内容结束。实际上在服务器端看到的可打印字符只是一个英文的句点。若邮件收到了,则SMTP服务器返回信息"250 OK",或返回差错代码。

虽然SMTP使用TCP连接试图使邮件的传送可靠,但"发送成功"并不等于"收件人读取了这个邮件"。当一个邮件传送到接收方的邮件服务器后(即接收方的邮件服务器收下了这个邮件),再往后的情况如何,就有好几种可能性。接收方的邮件服务器也可能接着就出了故障,使收到的邮件全部丢失(在收件人读取信件之前)。也可能被邮件服务器的软件当作垃圾邮件删除了。也可能收件人在清理自己的邮箱时,把尚未读取的邮件一起都删除了。有时收件人由于某种原因,很久没有查阅自己的邮箱,根本不知道自己的邮箱中有一些来信。因此,一个邮件即使是"发送成功",收件人也不一定会读取到这个邮件。尽管如此,基于SMTP的电子邮件通常都被认为是可靠的。

3. 连接释放

邮件发送完毕后,SMTP客户应发送QUIT命令。SMTP服务器返回的信息是"221(服务关闭)",表示SMTP同意释放TCP连接。邮件传送的全部过程即结束。

这里再强调一下,**使用电子邮件的用户看不见以上这些过程**,所有这些复杂过程都被电子邮件的用户代理屏蔽了。

已经广泛使用多年的SMTP存在着一些缺点。例如,发送电子邮件不需要经过鉴别。这就是说,在FROM命令后面的地址可以任意填写。这就大大方便了垃圾邮件的作者,给收信人添加了麻烦(有人估计,在全世界所有的电子邮件中,垃圾邮件至少占到50%以上,甚至高达90%)。又如,SMTP本来就是为传送ASCII码而不是传送二进制数据设计的。虽然后来有了MIME可以传送二进制数据(见后面6.5.6节的介绍),但在传送非ASCII码的长报文时,在网络上的传输效率是不高的。此外,SMTP传送的邮件是明文,不利于保密。

为了解决上述问题,2008年10月颁布的RFC 5321对SMTP进行了扩充,成为**扩充的** SMTP(Extended SMTP),记为ESMTP。RFC 5321在许多命令中增加了扩展的参数。新增加的功能有:客户端的鉴别,服务器接受二进制报文,服务器接受分块传送的大报文,发送前先检查报文的大小,使用安全传输TLS(见下一章7.6.2节),以及使用国际化地址等。考虑到现在的许多SMTP邮件服务器可能还没有升级到ESMTP,因此特规定使用ESMTP的客户端在准备传送报文时,不是发送HELO而是发送EHLO报文。如果EHLO报文被对方服务器端拒绝,就表明对方仍然是一个标准的SMTP邮件服务器(不使用扩展的参数),因而就要按照原来使用的SMTP参数进行邮件的传送。如果EHLO报文被接受了,那么客户端就可以使用ESMTP扩展的参数传送报文了。

6.5.3 电子邮件的信息格式

一个电子邮件分为**信封**和**内容**两大部分。在RFC 5322文档中只规定了邮件内容中的**首部**(header)格式,而对邮件的**主体**(body)部分则让用户自由撰写。用户写好首部后,邮件系统自动地将信封所需的信息提取出来并写在信封上。所以用户不需要填写电子邮件信封上的信息。

邮件内容首部包括一些关键字,后面加上冒号。最重要的关键字是: To和Subject。

"To:"后面填入一个或多个收件人的电子邮件地址。在电子邮件软件中,用户把经常通信的对象姓名和电子邮件地址写到**地址簿**(address book)中。当撰写邮件时,只需打开地址簿,点击收件人名字,收件人的电子邮件地址就会自动地填入到合适的位置上。

"Subject:"是邮件的**主题**。它反映了邮件的主要内容。主题类似于文件系统的文件名,便于用户查找邮件。

邮件首部还有一项是**抄送** "Cc:"。这两个字符来自"Carbon copy",意思是留下一个"**复写副本**"。这是借用旧的名词,表示应给某某人发送一个邮件副本。

有些邮件系统允许用户使用关键字Bcc(Blind carbon copy)来实现**盲复写副本**。这是使发件人能将邮件的副本送给某人,但不希望此事为收件人知道。Bcc又称为暗送。

首部关键字还有"From"和"Date",表示**发件人的电子邮件地址和发信** 日期。这两项一般都由邮件系统自动填入。

另一个关键字是"Reply-To",即对方回信所用的地址。这个地址可以与发件人发信时所用的地址不同。例如有时到外地借用他人的邮箱给自己的朋友发送邮件,但仍希望对方将回信发送到自己的邮箱。这一项可以事先设置好,不需要在每次写信时进行设置。

6.5.4 邮件读取协议POP3和IMAP

现在常用的邮件读取协议有两个,即邮局协议第3个版本POP3和**网际报文存取协议 IMAP**(Internet Message Access Protocol)。现分别讨论如下。

邮局协议 POP是一个非常简单、但功能有限的邮件读取协议。邮局协议 POP最初公布于1984年。经过几次更新,现在使用的是1996年的版本POP3 [RFC 1939],它已成为互联网的正式标准。大多数的ISP都支持POP3。

POP3也使用客户服务器的工作方式。在接收邮件的用户计算机中的用户代理必须运行POP3客户程序,而在收件人所连接的ISP的邮件服务器中则运行POP3服务器程序。当然,这个ISP的邮件服务器还必须运行SMTP服务器程序,以便接收发送方邮件服务器的SMTP客户程序发来的邮件。这些请参阅图6-17。POP3服务器只有在用户输入鉴别信息(用户名和口令)后,才允许对邮箱进行读取。

POP3协议的一个特点就是只要用户从POP3服务器读取了邮件,POP3服务器就把该邮件删除。这在某些情况下就不够方便。例如,某用户在办公室的台式计算机上接收了一个邮件,还来不及写回信,就马上携带笔记本电脑出差。当他打开笔记本电脑写回信时,POP3服务器上却已经删除了原来已经看过的邮件(除非他事先将这些邮件复制到笔记本电脑中)。为了解决这一问题,POP3进行了一些功能扩充,其中包括让用户能够事先设置邮件读取后仍然在POP3服务器中存放的时间[RFC 2449]。目前RFC 2449是互联网建议标准。

另一个读取邮件的协议是网际报文存取协议IMAP,它比POP3复杂得多。IMAP和POP都按客户服务器方式工作,但它们有很大的差别。现在较新的版本是2003年3月修订的版本4,即IMAP4[RFC 3501],它目前也是互联网的建议标准。不过在习惯上,对这个协议大家很少加上版本号"4",而经常简单地用IMAP表示IMAP4。但是对POP3却不会忘记写上版本号"3"。

在使用IMAP时,在用户的计算机上运行IMAP客户程序,然后与接收方的邮件服务器上的IMAP服务器程序建立TCP连接。用户在自己的计算机上就可以操纵邮件服务器的邮箱,就像在本地操纵一样,因此IMAP是一个联机协议。当用户计算机上的IMAP客户程序打开IMAP服务器的邮箱时,用户就可看到邮件的首部。若用户需要打开某个邮件,则该邮件才传到用户的计算机上。用户可以根据需要为自己的邮箱创建便于分类管理的层次式的邮箱文件夹,并且能够将存放的邮件从某一个文件夹中移动到另一个文件夹中。用户也可按某种条件对邮件进行查找。在用户未发出删除邮件的命令之前,IMAP服务器邮箱中的邮件一直保存着。

IMAP最大的好处就是用户可以在不同的地方使用不同的计算机(例如,使用办公室的计算机、或家中的计算机,或在外地使用笔记本电脑)随时上网阅读和处理自己在邮件服务器中的邮件。IMAP还允许收件人只读取邮件中的某一个部分。例如,收到了一个带有视像附件

(此文件可能很大)的邮件,而用户使用的是无线上网,信道的传输速率很低。为了节省时间,可以先下载邮件的正文部分,待以后有时间再读取或下载这个很大的附件。

IMAP的缺点是如果用户没有将邮件复制到自己的计算机上,则邮件一直存放在IMAP服务器上。要想查阅自己的邮件,必须先上网。

下面的表6-2给出了IMAP和POP3的主要功能的比较。

表6-2 IMAP和POP3的主要功能比较

操作位置	操作内容	IMAP	POP3
收件箱	阅读、标记、 移动、删除邮件 等	客户端与邮箱 更新同步	仅在客户端内
发件箱	保存到已发送	客户端与邮箱 更新同步	仅在客户端内
创建文件夹		客户端与邮箱 更新同步	仅在客户端内
草稿	保存草稿	客户端与邮箱 更新同步	仅在客户端内
垃圾文件夹	接收并移入垃圾文件夹的邮件	支持	不支持
广告邮件	接收并移入广告邮件夹的邮件	支持	不支持

最后再强调一下,不要把邮件读取协议POP3或IMAP与邮件传送协议SMTP弄混。发件人的用户代理向发送方邮件服务器发送邮件,以及发送方邮件服务器向接收方邮件服务器发送邮件,都是使用SMTP协议。而POP3或IMAP则是用户代理从接收方邮件服务器上读取邮件所使用的协议。

6.5.5 基于万维网的电子邮件

从前面的图6-17可看出,用户要使用电子邮件,必须在自己使用的计算机中安装用户代理软件UA。如果外出到某地而又未携带自己的笔记本电脑,那么要使用别人的计算机进行电子邮件的收发,将是非常不方便的。

现在这个问题解决了。在20世纪90年代中期,Hotmail推出了基于万维网的电子邮件(Webmail)。今天,几乎所有的著名网站以及大学或公司,都提供了万维网电子邮件。常用的万维网电子邮件有谷歌的Gmail,微软的Hotmail,雅虎的Yahoo! Mail。我国的网易(163或126)和新浪(sina)等互联网技术公司也都提供万维网邮件服务。

万维网电子邮件的好处就是:不管在什么地方(在任何一个国家的网吧、宾馆或朋友家中),只要能够找到上网的计算机,在打开任何一种浏览器后,就可以非常方便地收发电子邮件。使用万维网电子邮件不需要在计算机中再安装用户代理软件。浏览器本身可以向用户提供非常友好的电子邮件界面(和原来的用户代理提供的界面相似),使用户在浏览器上就能够很方便地撰写和收发电子邮件。

例如,你使用的是网易的163邮箱,那么在任何一个浏览器的地址栏中,键入163邮箱的URL(mail.163.com),按回车键后,就可以使用163电子邮件了,这和在家中一样方便。你曾经接收和发送过的邮件、已删除的邮件以及你的通讯录等内容,都照常呈现在屏幕上。

我们知道,用户在浏览器中浏览各种信息时需要使用HTTP协议。因此,在浏览器和互联网上的邮件服务器之间传送邮件时,仍然使用HTTP协议。但是在各邮件服务器之间传送邮件时,则仍然使用SMTP协议。

6.5.6 通用互联网邮件扩充MIME

1. MIME概述

前面所述的电子邮件协议SMTP有以下缺点:

- (1) SM TP不能传送可执行文件或其他的二进制对象。人们曾试图将二进制文件转换为SMTP使用的ASCII文本,例如流行的UNIX UUe ncode/UUdecode方案,但这些均未形成正式标准或事实上的标准。
- (2) SM TP限于传送7位的ASCII码。许多其他非英语国家的文字(如中文、俄文,甚至带重音符号的法文或德文)就无法传送。即使在SMTP网关将EBCDIC码(即扩充的二/十进制交换码)转换为ASCII码,也会遇到一些麻烦。
 - (3) SMTP服务器会拒绝超过一定长度的邮件。
- (4) 某些SMTP的实现并没有完全按照SMTP的互联网标准。常见的问题如下:
 - 回车、换行的删除和增加;
 - 超过76个字符时的处理: 截断或自动换行;
 - 后面多余空格的删除;
 - 将制表符tab转换为若干个空格。

于是在这种情况下就提出了**通用互联网邮件扩充** MIME [RFC 2045~2049]。MIME并没有改动或取代SMTP。MIME的意图是继续使用原来的邮件格式,但增加了邮件主体的结构,并定义了传送非ASCII码的编码规则。也就是说,MIME邮件可在现有的电子邮件程序和协议下传送。图6-18表示MIME和SMTP的关系。

图6-18 MIME和SMTP的关系

MIME主要包括以下三部分内容:

- (1) 5个新的邮件首部字段,它们可包含在原来的邮件首部中。这些字段提供了有关邮件主体的信息。
- (2) 定义了许多邮件内容的格式,对多媒体电子邮件的表示方法进行了标准化。
- (3) 定义了传送编码,可对任何内容格式进行转换,而不会被邮件系统改变。

为适应于任意数据类型和表示,每个MIME报文包含告知收件人数据类型和使用编码的信息。MIME把增加的信息加入到原来的邮件首部中。

下面是MIME增加的5个新的邮件首部的名称及其意义(有的可以是选项)。

- (1) MIME-Version: 标志MIME的版本。现在的版本号是1.0。若无此行,则为英文文本。
- (2) Content-Description: 这是可读字符串,说明此邮件主体是否是图像、音频或视频。
 - (3) Content-Id: 邮件的唯一标识符。
 - (4) Content-Transfer-Encoding: 在传送时邮件的主体是如何编码的。
 - (5) Content-Type: 说明邮件主体的数据类型和子类型。

上述的前三项的意思很清楚,因此下面只对后两项进行介绍。

2. 内容传送编码

下面介绍三种常用的**内容传送编码**(Content-Transfer-Encoding)。

最简单的编码就是7位ASCII码,而每行不能超过1000个字符。MIME 对这种由ASCII码构成的邮件主体不进行任何转换。

对于任意的二进制文件,可用base64编码。这种编码方法是先把二进制代码划分为一个个24位长的单元,然后把每一个24位单元划分为4个6位组。每一个6位组按以下方法转换成ASCII码。6位的二进制代码共有64种不同的值,从0到63。用A表示0,用B表示1,等等。26个大写字母排列完毕后,接下去再排26个小写字母,再后面是10个数字,最后用"+"表示62,而用"/"表示63。再用两个连在一起的等号"=="和一个等号"="分别表示最后一组的代码只有8位或16位。回车和换行都忽略,它们可在任何地方插入。

下面是一个base64编码的例子:

24位二进制代码	01001001 00110001 01111001			
划分为4个6位组	010010	010011	000101 1	11001
对应的base64编码	S	Т	F	5
用ASCII编码发送	01010011	01010100	01000110	00110101

不难看出,24位的二进制代码采用base64编码后变成了32位,开销为25%。

3. 内容类型

MIME标准规定Content-Type说明必须含有两个标识符,即内容**类型**(type)和**子类型**(subtype),中间用"/"分开。

MIME标准原先定义了7个基本内容类型和15种子类型(见RFC 1521,但这个文档已被列入"陈旧的")。除了内容类型和子类型,MIME允许发件人和收件人自己定义专用的内容类型。但为避免可能出现名字冲突,标准要求为专用的内容类型选择的名字要以字符串X-开始。但是,后来陆续出现了几百个子类型,而且子类型的数目还在不断地增加。现在可以在网站上查出现有的MIME类型和子类型的名称,以及申请新的子类型的具体步骤 [W-MEDIA-TYPE] 。表6-3列出了MIME的内容类型、子类型举例及其说明(16)。

表6-3 可出现在MIME Content-Type说明中的类型及子类型举例

754日日

乙米型水沟

十谷未到

内谷类型	子类型举例	说明		
text (文 本)	plain, html, xml, css	不同格式的文本		
image (图像)	gif, jpeg, tiff	不同格式的静止图像		
audio (音 频)	basic, mpeg, mp4	可听见的声音		
video (视 频)	mpeg, mp4, quicktime	不同格式的影片		
model (模型)	vrml	3D模型		
		不同应用程序产生的数据		
message (报 文)	http, rfc822	封装的报文		
	mixed , alternative , parallel, digest	多种类型的组合		

MIME的内容类型中的multipart是很有用的,因为它使邮件增加了相当大的灵活性。MIME标准为multipart定义了四种可能的子类型,每个子

类型都提供重要功能。

- (1) mixed子类型允许单个报文含有多个相互独立的子报文,每个子报文可有自己的类型和编码。mixed子类型报文使用户能够在单个报文中附上文本、图形和声音,或者用额外数据段发送一个备忘录,类似商业信笺含有的附件。在mixed后面还要用到一个关键字,即Boundary = , 此关键字定义了分隔报文各部分所用的字符串(由邮件系统定义),只要在邮件的内容中不会出现这样的字符串即可。当某一行以两个连字符"--"开始,后面紧跟上述的字符串,就表示下面开始了另一个子报文。
- (2) alternative子类型允许单个报文含有同一数据的多种表示。当给多个使用不同硬件和软件系统的收件人发送备忘录时,这种类型的multipart报文很有用。例如,用户可同时用普通的ASCII文本和格式化的形式发送文本,从而允许拥有图形功能的计算机用户在查看图形时选择格式化的形式。
- (3) parallel子类型允许单个报文含有可同时显示的各个子部分(例如,图像和声音子部分必须一起播放)。
- (4) digest子类型允许单个报文含有一组其他报文(如从讨论中收集电子邮件报文)。

下面显示了一个MIME邮件,它包含有一个简单解释的文本和含有非 文本信息的照片。邮件中第一部分的注解说明第二部分含有一张照 片。

From: xiexiren@tsinghua.org.cn

To: xyz@163.com

MIME-Version: 1.0

Content-Type: multipart/mixed; boundary = qwertyuiop

--qwertyuiop

你要的图片在此邮件中, 收到后请回信。

谢希仁

--qwertyuiop

Content-Type: image/gif

Content-Transfer-Encoding: base64

...data for the image (图像的数据) ...

--qwertyuiop--

上面最后一行表示boundary的字符串后面还有两个连字符"--",表示整个multipart的结束。

6.6 动态主机配置协议DHCP

为了把协议软件做成通用的和便于移植的,协议软件的编写者不会把所有的细节都固定在源代码中。相反,他们把协议软件参数化。这就使得在很多台计算机上有可能使用同一个经过编译的二进制代码。一台计算机和另一台计算机的许多区别,都可以通过一些不同的参数来体现。在协议软件运行之前,必须给每一个参数赋值。

在协议软件中给这些参数赋值的动作叫做**协议配置**。一个协议软件在使用之前必须是已正确配置的。具体的配置信息有哪些则取决于协议栈。例如,连接到互联网的计算机的协议软件需要配置的项目包括:

- (1) IP地址;
- (2) 子网掩码;
- (3) 默认路由器的IP地址;
- (4) 域名服务器的IP地址。

为了省去给计算机配置IP地址的麻烦,我们能否在计算机的生产过程中,事先给每一台计算机配置好一个唯一的IP地址呢(如同每一个以太网适配器拥有一个唯一的硬件地址)?这显然是不行的。这是因为IP地址不仅包括了主机号,而且还包括了网络号。一个IP地址指出了一台计算机连接在哪一个网络上。当计算机还在生产时,无法知道它在出厂后将被连接到哪一个网络上。因此,需要连接到互联网的计算机,必须对IP地址等项目进行协议配置。

用人工进行协议配置很不方便,而且容易出错。因此,应当采用自动协议配置的方法。

互联网现在广泛使用的是**动态主机配置协议** DHCP(Dynamic Host Configuration Protocol),它提供了一种机制,称为**即插即用连网**(plug-and-playne tworking)。这种机制允许一台计算机加入新的网络和获取IP地址而不用手工参与。DHCP最新的RFC文档是1997年的RFC 2131和RFC 2132,目前还是互联网草案标准。

DHCP对运行客户软件和服务器软件的计算机都适用。当运行客户软件的计算机移至一个新的网络时,就可使用DHCP获取其配置信息而不需要手工干预。DHCP给运行服务器软件而位置固定的计算机指派一个永久地址,而当这计算机重新启动时其地址不改变。

DHCP使用客户服务器方式。需要IP地址的主机在启动时就向DHCP服务器广播发送发现报文(DHCPDISCOVER)(将目的IP地址置为全1,即255.255.255.255),这时该主机就成为DHCP客户。发送广播报文是因为现在还不知道DHCP服务器在什么地方,因此要发现(DISCOVER)DHCP服务器的IP地址。这台主机目前还没有自己的IP地址,因此它将IP数据报的源IP地址设为全0。这样,在本地网络上的所有主机都能够收到这个广播报文,但只有DHCP服务器才对此广播报文进行回答。DHCP服务器先在其数据库中查找该计算机的配置信息。若找到,则返回找到的信息。若找不到,则从服务器的IP地址池(address pool)中取一个地址分配给该计算机。DHCP服务器的回答报文叫做提供报文(DHCPOFFER),表示"提供"了IP地址等配置信息。

但是我们并不愿意在每一个网络上都设置一个DHCP服务器,因为这样会使DHCP服务器的数量太多。因此现在是使每一个网络至少有一个DHCP**中继代理**(relay agent)(通常是一台路由器,见图6-19),

它配置了DHCP服务器的IP地址信息。当DHCP中继代理收到主机A以广播形式发送的发现报文后,就以单播方式向DHCP服务器转发此报文,并等待其回答。收到DHCP服务器回答的提供报文后,DHCP中继代理再把此提供报文发回给主机A。需要注意的是,图6-19只是个示意图。实际上,DHCP报文只是UDP用户数据报的数据,它还要加上UDP首部、IP数据报首部,以及以太网的MAC帧的首部和尾部后,才能在链路上传送。

图6-19 DHCP中继代理以单播方式转发发现报文

DHCP服务器分配给DHCP客户的IP地址是临时的,因此DHCP客户只能在一段有限的时间内使用这个分配到的IP地址。DHCP协议称这段时间为**租用期**(lease period),但并没有具体规定租用期应取为多长或至少为多长,这个数值应由DHCP服务器自己决定。例如,一个校园网的DHCP服务器可将租用期设定为1小时。DHCP服务器在给DHCP发送的提供报文的选项中给出租用期的数值。按照RFC 2132的规定,租用期用4字节的二进制数字表示,单位是秒。因此可供选择的租用期范围从1秒到136年。DHCP客户也可在自己发送的报文中(例如,发现报文)提出对租用期的要求。

DHCP的详细工作过程如图6-20所示。DHCP客户使用的UDP端口是68,而DHCP服务器使用的UDP端口是67。这两个UDP端口都是熟知端口。

图6-20 DHCP协议的工作过程

下面按照图6-20中的注释编号(❶至❷)进行简单的解释。

- ❶ DHCP服务器被动打开UDP端口67,等待客户端发来的报文。
- 2 DHCP客户从UDP端口68发送DHCP发现报文。
- **③** 凡收到DHCP发现报文的DHCP服务器都发出DHCP提供报文,因此DHCP客户可能收到多个DHCP提供报文。
- **◆** DHCP客户从几个DHCP服务器中选择其中的一个,并向所选择的 DHCP服务器发送DHCP请求报文。
- **⑤**被选择的DHCP服务器发送确认报文DHCPACK。从这时起,DHCP客户就可以使用这个IP地址了。这种状态叫做**已绑定状态**,因为在DHCP客户端的IP地址和硬件地址已经完成绑定,并且可以开始使用得到的临时IP地址了。

DHCP客户现在要根据服务器提供的租用期T设置两个计时器 T_1 和 T_2 ,它们的超时时间分别是0.5T和0.875T。当超时时间到了就要请求更

新租用期。

- **6** 租用期过了一半(T_1 时间到),DHCP发送请求报文DHCPREQUEST要求更新租用期。
- **⑦** DHCP服务器若同意,则发回确认报文DHCPACK。DHCP客户得到了新的租用期,重新设置计时器。
- ❸ DHCP服务器若不同意,则发回否认报文DHCPNACK。这时DHCP客户必须立即停止使用原来的IP地址,而必须重新申请IP地址(回到步骤②)。

若DHCP服务器不响应步骤⑥的请求报文DHCPREQUEST,则在租用期过了87.5%时(T_2 时间到),DHCP客户必须重新发送请求报文DHCPREQUEST(重复步骤⑥),然后又继续后面的步骤。

9 DHCP客户可以随时提前终止服务器所提供的租用期,这时只需向 DHCP服务器发送释放报文DHCPRELEASE即可。

DHCP很适合于经常移动位置的计算机。当计算机使用Windows操作系统时,点击"控制面板"的"网络"图标就可以找到某个连接中的"网络"下面的菜单,找到TCP/IP协议后点击其"属性"按钮,若选择"自动获得IP地址"和"自动获得DNS服务器地址",就表示是使用DHCP协议。

6.7 简单网络管理协议SNMP

6.7.1 网络管理的基本概念

虽然网络管理还没有精确定义,但它的内容可归纳为:

网络管理包括对硬件、软件和人力的使用、综合与协调,以便对网络资源进行监视、测试、配置、分析、评价和控制,这样就能以合理的价格满足网络的一些需求,如实时运行性能、服务质量等。网络管理常简称为网管。

我们可以看到,网络管理并不是指对网络进行行政上的管理。

网络是一个非常复杂的分布式系统。这是因为网络上有很多不同厂家 生产的、运行着多种协议的结点(主要是路由器),而这些结点还在 相互通信和交换信息。网络的状态总是不断地变化着。可见,我们必 须使用一种机制来读取这些结点上的状态信息,有时还要把一些新的 状态信息写入到这些结点上。

下面简单介绍网络管理模型中的主要构件(见图6-21)。

图6-21 网络管理的一般模型

管理站 又称为**管理器**,是整个网络管理系统的核心,它通常是个有着良好图形界面的高性能的工作站,并由网络管理员直接操作和控制。所有向被管设备发送的命令都是从管理站发出的。管理站的所在部门也常称为**网络运行中心** NOC(Network Operations Center)。管理站中

的关键构件是**管理程序**(如图6-21中有字母M的椭圆形图标所示)。管理程序在运行时就成为**管理进程**。管理站(硬件)或管理程序(软件)都可称为**管理者**(manager)或**管理器**,所以这里的manager不是指人而是指机器或软件。网络管理员(administrator)才是指人。大型网络往往实行多级管理,因而有多个管理者,而一个管理者一般只管理本地网络的设备。

在被管网络中有很多的**被管设备**(包括设备中的软件)。被管设备可以是主机、路由器、打印机、集线器、网桥或调制解调器等。在每一个被管设备中可能有许多**被管对象**(Managed Object)。被管对象可以是被管设备中的某个硬件(例如,一块网络接口卡),也可以是某些硬件或软件(例如,路由选择协议)的配置参数的集合。被管设备有时可称为网络元素或简称为**网元**。在被管设备中也会有一些**不能被管的对象**(在下面的6.7.2节将会讲到对象命名树,所谓不能被管的对象就是不在对象命名树上的对象)。

在每一个被管设备中都要运行一个程序以便和管理站中的管理程序进行通信。这些运行着的程序叫做**网络管理代理程序**,或简称为**代理**(agent)(如图6-22中有字母A的几个椭圆形图标所示)。代理程序在管理程序的命令和控制下,在被管设备上采取本地的行动。

在图6-22中还有一个重要构件就是**网络管理协议**,简称为**网管协议**。 后面还要讨论它的作用。

简单网络管理协议 SNMP(Simple Network Management Protocol)中的管理程序和代理程序按客户服务器方式工作。管理程序运行SNMP 客户程序,而代理程序运行SNMP 服务器程序。在被管对象上运行的 SNMP服务器程序不停地监听来自管理站的SNMP客户程序的请求(或命令)。一旦发现了,就立即返回管理站所需的信息,或执行某个动作(例如,把某个参数的设置进行更新)。在网管系统中往往是一个(或少数几个)客户程序与很多的服务器程序进行交互。

关于网络管理有一个基本原理, 这就是:

若要管理某个对象,就必然会给该对象添加一些软件或硬件,但这种"添加"对原有对象的影响必须尽量小些。

SNMP正是按照这样的基本原理来设计的。

SNMP发布于1988年。OSI虽然在这之前就已制定出许多的网络管理标准,但当时(到现在也很少)却没有符合OSI网管标准的产品。SNMP最重要的指导思想就是**要尽可能简单**。SNMP的基本功能包括监视网络性能、检测分析网络差错和配置网络设备等。在网络正常工作时,SNMP可实现统计、配置和测试等功能。当网络出故障时,可实现各种差错检测和恢复功能。经过近二十年的使用,SNMP不断修订完善,较新的版本是SNMPv3,而前两个版本分别是SNMPv2和SNMPv1。但一般可简称为SNMP。现在SNMPv3已成为互联网标准(STD 62)。SNMPv3最大的改进就是安全特性。也就是说,只有被授权的人员才有资格执行网络管理的功能(如关闭某一条链路)和读取有关网络管理的信息(如读取一个配置文件的内容)。然而SNMP协议已相当庞大,一点也不"简单",整个标准共有八个RFC文档「RFC 3411~3418」。因此这里只能给出一些最基本的概念。

若网络元素使用的不是SNMP协议而是另一种网络管理协议,那么SNMP协议就无法控制该网络元素。这时可使用**委托代理**(proxy agent)。委托代理能提供如协议转换和过滤操作等功能对被管对象进行管理。

SNMP的网络管理由三个部分组成,即SNMP本身、**管理信息结构** SMI(Structure of Management Information) 和 **管 理 信 息 库** MIB(Management Information Base)。下面简述这三部分的作用。

SNMP定义了管理站和代理之间所交换的分组格式。所交换的分组包含各代理中的对象(变量)名及其状态(值)。SNMP负责读取和改变这些数值。

SMI定义了命名对象和定义对象类型(包括范围和长度)的**通用规则**,以及把对象和对象的值进行**编码的规则**。这样做是为了确保网络管理数据的语法和语义无二义性。但从SMI的名称并不能看出它的功能。请注意,SMI并不定义一个实体应管理的对象数目,也不定义被管对象名以及对象名及其值之间的关联。

MIB在被管理的实体中创建了命名对象,并规定了其类型。

为了更好地理解上述的几个组成部分,可以把它们和程序设计进行一下对比。

我们在编程时要使用某种语言,而这种语言就是用来定义编程的规则。例如,一个变量名必须从字母开始而后面接着是字母数字。在网络管理中,这些规则由SMI来定义。

在程序设计中必须对变量进行说明。例如, int counter, 表示变量 counter 是整数类型。MIB在网络管理中就做这样的事情。MIB给每个对象命名,并定义对象的类型。

在编程中的说明语句之后,程序需要写出一些语句用来存储变量的值,并在需要时改变这些变量的值。SNMP在网络管理中完成这件任务。SNMP按照SMI定义的规则,存储、改变和解释这些已由MIB说明的对象的值。

总之, SMI建立规则, MIB对变量进行说明, 而SNMP完成网管的动作。

下面就一一介绍上述的三个构件。

6.7.2 管理信息结构SMI

管理信息结构 SMI是SNMP的重要组成部分。根据6.7.1节所讲的, SMI 的功能应当有三个, 即规定:

- (1) 被管对象应怎样命名;
- (2) 用来存储被管对象的数据类型有哪些;
- (3) 在网络上传送的管理数据应如何编码。

1. 被管对象的命名

SMI规定,所有的被管对象都必须处在**对象命名树**(object naming tree)上。图6-22给出了对象命名树的一部分。对象命名树的根没有名字,它的下面有三个顶级对象,都是世界上著名的标准制定单位,即ITU-T(过去叫做CCITT),ISO,以及这两个组织的联合体,它们的标号分别是0到2。图中的对象名习惯上用英文小写表示。在ISO的下面的一个标号为3的节点是ISO认同的的组织成员org。在其下面有一个

美国国防部dod(Department of Defense)的子树(标号为6),再下面就是internet(标号为1)。在只讨论internet中的对象时,可只画出internet以下的子树,并在internet节点旁边写上对象标识符1.3.6.1即可。

图6-22 SMI规定所有被管对象必须在命名树上

在internet节点下面的标号为2的节点是mgmt(管理)。再下面只有一个节点,即管理信息库mib-2,其对象标识符为1.3.6.1.2.1。在mib-2下面包含了所有被SNMP管理的对象(见下面6.7.3节的讨论)。

2. 被管对象的数据类型

SMI使用基本的**抽象语法记法** 1(即ISO制定的ASN.1⁽¹⁷⁾)来定义数据类型,但又增加了一些新的定义。因此SMI既是ASN.1的子集,又是ASN.1的超集。ASN.1的记法很严格,它使得数据的含义不存在任何可能的二义性。例如,使用ASN.1时不能简单地说"一个具有整数值的变量",而必须说明该变量的准确格式和整数取值的范围。当网络中的计算机对数据项并不都使用相同的表示时,采用这种精确的记法就尤其重要。

我们知道,任何数据都具有两种重要的属性,即**值**(value)与**类型**(type)。这里"值"是某个值集合中的一个元素,而"类型"则是值集合的名字。如果给定一种类型,则这种类型的一个值就是该类型的一个具体实例。

SMI把数据类型分为两大类: **简单类型和结构化类型**。简单类型是最基本的、直接使用ASN.1定义的类型。表6-4给出了最主要的几种简单类型。

表6-4 几种最主要的简单类型

INTEGER 4字 在—2 ³¹ 到2 ³¹ —1之间的整数 节 4字 和INTEGER相同 节

大小 说明

Unsigned32 4 字 在0到2 ³² —1之间的无符号数

OCTET STRING 可变 不超过65535字节长的字节串

OBJECT 可变 对象标识符

IDENTIFIER

类型

IPAddress 4字由4个整数组成的IP地址

节

Counter32 4字 可从0增加到2³² 的整数; 当它到达最

节 大值时就返回到0

TimeTicks 4字 记录时间的计数值,以1/100秒为单位

节

BITS —— 比特串

Opaque 可变 不解释的串

SMI定义了两种结构化数据类型,即sequence和sequence of。

数据类型sequence类似于C语言中的struct或record,它是一些简单数据类型的组合(不一定要相同的类型)。而数据类型sequence of类似于C语言中的array,它是同样类型的简单数据类型的组合,或同样类型的sequence数据类型的组合。

3. 编码方法

SMI使用ASN.1制定的**基本编码规则** BER(Basic Encoding Rule)进行数据的编码。BER指明了每种数据的类型和值。在发送端用BER编码,可把用ASN.1所表述的报文转换成唯一的比特序列。在接收端用BER进行解码,就可得到该比特序列所表示的ASN.1报文。

初看起来,或许用两个字段就能表示类型和值。但由于表示值可能需要多个字节,因此还需要一个指出"要用多少字节表示值"的长度字段。因此ASN.1把所有的数据元素都表示为T-L-V三个字段组成的序列(见图6-23)。T字段(Tag)定义数据的类型,L字段(Length)定义V字段的长度,而V字段(Value)定义数据的值。

图6-23 用TLV方法进行编码

- (1) T字段又叫做**标记字段**,占1字节。T字段比较复杂,因为它要定义的数据类型较多。T字段又再分为以下三个子字段:
 - **类别** (2位) 共四种:通用类(00),即ASN.1定义的类型;应用类(01),即SMI定义的类型;上下文类(10),即上下文所定义的类型;专用类(11),保留为特定厂商定义的类型。
 - **格式** (1位) 共两种,指出数据类型的种类:简单数据类型 (0),结构化数据类型 (1)。
 - **编号** (5位) 用来标志不同的数据类型。编号的范围一般为0~30。当编号大于30时, T字段就要扩展为多个字节(这种情况很少用到,可参考ITU-T X.209, 这里从略)。

表6-5是一些数据类型的T字段的编码。

表6-5 几种数据类型的T字段编码

数据类型	类别	格式	编号	T字段(二进制)	T字段(十六进制)
INTEGER	00	0	00010	00000010	02
OCTET STRING	00	0	00100	00000100	04
OBJECT IDENTIFIER	00	0	00110	00000110	06
NULL	00	0	00101	00000101	05
Sequence, sequence of	00	1	10000	00110000	30
IPAddress	01	0	00000	01000000	40
Counter	01	0	00001	01000001	41
Gauge	01	0	00010	01000010	42
TimeTicks	01	0	00011	01000011	43
Opaque	01	0	00100	01000100	44

(2) L字段又叫做**长度字段**(单字节或多字节)。当L字段为单字节时,其最高位为0,后面的7位定义V字段的长度。当L字段为多个字节时,其最高位为1,而后面的7位定义后续字节的字节数(用二进制整数表示)。这时,所有的后续字节并置起来的二进制整数定义V字段的长度。图6-24给出了L字段的格式。

(3) V字段又叫做**值字段**,用干定义数据元素的值。

根据以上所述,我们给出两个用十六进制表示的编码例子。例如,INTEGER 15,根据表6-5,其T字段是02,再根据表6-4,INTEGER类型要用4字节编码。最后得出TLV编码为02 04 00 00 00 0F。又如IPAddress 192.1.2.3,IPAddress的T字段是40,V字段需要4字节表示,因此IPAddress 192.1.2.3的TLV编码是40 04 C0 01 02 03。

TLV方法中的V字段还可嵌套其他数据元素的TLV字段,并可多重嵌套。

6.7.3 管理信息库MIB

所谓"管理信息"就是指在互联网的网管框架中被管对象的集合。被管对象必须维持可供管理程序读写的若干控制和状态信息。这些被管对象构成了一个虚拟的信息存储器,所以才称为管理信息库 MIB。管理程序就使用MIB中这些信息的值对网络进行管理(如读取或重新设置这些值)。只有在MIB中的对象才是SNMP所能够管理的。例如,路由器应当维持各网络接口的状态、入分组和出分组的流量、丢弃的分组和有差错的报文的统计信息,而调制解调器则应当维持发送和接收的字符数、码元传输速率和接受的呼叫等统计信息。因此在MIB中就必须有上面这样一些信息。

我们再看一下图6-22,可以找到节点mib-2下面的部分是MIB子树。表 6-6给出了节点mib-2所包含的前八个信息类别代表的意思(在后面还有好几个类别)。

表6-6 节点mib-2所包含的信息类别举例

标号	所包含的信息
(1)	主机或路由器的操作系统
(2)	各种网络接口
(3)	地址转换(例如,ARP映射)
(4)	IP软件
(5)	ICMP软件
(6)	TCP软件
(7)	UDP软件
(8)	EGP软件
	(1) (2) (3) (4) (5) (6) (7)

我们可以用个简单例子进一步说明MIB的意义。例如,从图6-22可以看出,对象ip的标号是4。因此,所有与IP有关的对象都从前缀1.3.6.1.2.1.4开始。

(1) 在节点ip下面有个名为ipInReceives的MIB变量(见图6-22),表示收到的IP数据报数。这个变量的标号是3,变量的名字是: iso.org.dod.internet.mgmt.mib.ip. ipInReceives,而相应的数值表示是: 1.3.6.1.2.1.4.3。

- (2) 当SNMP在报文中使用MIB变量时,对于简单类型的变量,后缀0指具有该名字的变量的实例。因此,当这个变量出现在发送给路由器的报文中时,ipInReceives的数值表示(即变量的一个实例)就是:1.3.6.1.2.1.4.3.0。
- (3) 请注意,对于分配给一个MIB变量的数值或后缀是完全没有办法进行推算的,必须查找已发布的标准。

上面所说的MIB对象命名树的大小并没有限制。下面给出若干MIB变量的例子(见表6-7),以便更好地理解MIB的意义。这里的"变量"是指特定对象的一个实例。

表6-7 MIB变量的例子

MIB变量	所属类别	意义
sysUpTime	system	距上次重启动的时间
ifNumber	interfaces	网络接口数
ifMtu	interfaces	特定接口的最大传送单元MTU
ipDefaultTTL	ip	IP在生存时间字段中使用的值
ipInReceives	ip	接收到的数据报数目
ipForwDatagrams	ip	转发的数据报数目
ipOutNoRoutes	ip	路由选择失败的数目
ipReasmOKs	ip	重装的数据报数目
ipFragOKs	ip	分片的数据报数目
ipRoutingTable	ip	IP路由表
icmpInEchos	icmp	收到的ICMP回送请求数目
tcpRtoMin	tcp	TCP允许的最小重传时间
tcpMaxConn	tcp	允许的最大TCP连接数目
tcpInSegs	tcp	已收到的TCP报文段数目
udpInDatagrams	udp	已收到的UDP数据报数目

上面列举的大多数项目的值可用一个整数来表示。但MIB也定义了更复杂的结构。例如,MIB变量ipRoutingTable则定义一个完整的路由

表。还有其他一些MIB变量定义了路由表项目的内容,并允许网络管理协议访问路由器中的单个项目,包括前缀、地址掩码以及下一跳地址等。当然,MIB变量只给出了每个数据项的逻辑定义,而一个路由器使用的内部数据结构可能与MIB的定义不同。当一个查询到达路由器时,路由器上的代理软件负责MIB变量和路由器用于存储信息的数据结构之间的映射。

6.7.4 SNMP的协议数据单元和报文

实际上, SNMP的操作只有两种基本的管理功能, 即:

- (1)"读"操作,用Get报文来检测各被管对象的状况;
- (2) "写"操作,用Set报文来改变各被管对象的状况。

SNMP的这些功能通过探询操作来实现,即SNMP管理进程定时向被管理设备周期性地发送探询信息。上述时间间隔可通过SNMP的管理信息库MIB来建立。探询的好处是:第一,可使系统相对简单;第二,能限制通过网络所产生的管理信息的通信量。但探询管理协议不够灵活,而且所能管理的设备数目不能太多。探询系统的开销也较大。如探询频繁而并未得到有用的报告,则通信线路和计算机的CPU周期就被浪费了。

但SNMP不是完全的探询协议,它允许不经过询问就能发送某些信息。这种信息称为**陷阱**(trap),表示它能够捕捉"事件"。但这种陷阱信息的参数是受限制的。

当被管对象的代理检测到有事件发生时,就检查其门限值。代理只向管理进程报告达到某些门限值的事件(这就叫做**过滤**)。这种方法的好处是:第一,仅在严重事件发生时才发送陷阱;第二,陷阱信息很简单且所需字节数很少。

总之,使用探询(至少是周期性地)以维持对网络资源的实时监视,同时也采用陷阱机制报告特殊事件,使得SNMP成为一种有效的网络管理协议。

SNMP使用无连接的UDP,因此在网络上传送SNMP报文的开销较小。但UDP是不保证可靠交付的。这里还要指出,SNMP使用UDP的方法

有些特殊。在运行代理程序的服务器端用熟知端口161来接收Get或Set 报文和发送响应报文(与熟知端口通信的客户端使用临时端口),但运行管理程序的客户端则使用熟知端口162来接收来自各代理的trap报文。

SNMP现在共定义了如表6-8所示的8种类型的协议数据单元 [RFC 3416],其中PDU编号为4的已经废弃了。在PDU编号后面是对应的T字段值(十六进制表示)。

表6-8 SNMP定义的协议数据单元类型

PDU编号 段)	(T字	PDU名称	用途
0 (A0)		GetRequest	管理者从代理读取一个或一组 变量的值
1 (A1)		GetNextRequest	管理者从代理读取MIB树上的下一个变量的值(即使不知道此变量名也行)。此操作可反复进行,特别是按顺序一一读取列表中的值很方便
2 (A2)		Response	代理向管理者或管理者向管理 者发送对五种Request报文的响 应,并提供差错码、差错状态 等信息
3 (A3)		SetRequest	管理者对代理的一个或多个 MIB变量的值进行设置
5 (A 5)		GetBulkRequest	管理者从代理读取大数据块的 值(如大的列表中的值)
6 (A6)		InformRequest	管理者从另一远程管理者读取 该管理者控制的代理中的变量 值
7 (A7)		SNMPv2Trap	代理向管理者报告代理中发生 的异常事件
8 (A8)		Report	在管理者之间报告某些类型的

和大多数TCP/IP协议不一样,SNMP报文没有固定的字段。相反,它们使用标准ASN.1编码。因此,SNMP报文用人工进行编码和理解时都比较困难。为此,在图6-25中给出了SNMPv1的报文格式。可以看出,一个SNMP报文共由四个部分组成,即**版本、首部、安全参数**和SNMP报文的**数据部分**。版本现在已是版本3。首部包括报文标识(message identification)、最大报文长度、报文标志(message flag)。报文标志占1字节,其中的每一位定义安全类型或其他信息。安全参数用来产生报文摘要(见下一章的7.4节)。

图6-25 SNMP的报文格式

从图6-25可看出,在SNMP PDU前面还有两个有关加密信息的字段。 这是当数据部分需要加密时才使用的两个字段。与网络管理直接相关 的是后面的SNMP PDU部分。对于表6-8给出的前四种PDU的格式都是 相同的,即由PDU类型、请求 ID、差错状态、差错索引 以及变量绑 定 这几个字段组成。PDU的各种类型以及类型的编号和T字段的编码 已在表6-8中给出。下面简单介绍一下其他字段的作用。

- (1) **请求标识符**(request ID) 由管理进程设置的4字节整数值。代理进程在发送响应报文时也要返回此请求标识符。由于管理进程可同时向许多代理发出请求读取变量值的报文,因此设置了请求标识符可使管理进程能够识别返回的响应是对应于哪一个请求报文。
- (2) **差错状态**(error status) 在请求报文中,这个字段是零。当代理进程响应时,就填入0~18中的一个数字。例如0表示noError(一切正常),1表示tooBig(代理无法把回答装入到一个SNMP报文之中),2表示noSuchName(操作指明了一个不存在的变量),3表示badValue(无效值或无效语法),等等[RFC 3416]。

- (3) **差错索引**(error index) 在请求报文中,这个字段是零。当代理进程响应时,若出现noSuchName,badValue或readOnly的差错,代理进程就设置一个整数,指明有差错的变量在变量列表中的偏移。
- (4) **变量绑定**(variable-bindings) 指明一个或多个变量的名和对应的值。在请求报文中,变量的值应忽略(类型是NULL)。

为了大致了解ASN.1给出的定义的形式,下面举出定义GetRequest-PDU的例子。两个连字符"--"后面的是注解。

Get-request-PDU: : = [0] -- [0] 表示上下 文类, 编号为0

IMPLICIT SEQUENCE { --类型是 SEQUENCE

request-id integer32, -- 变量 request-id的类型是integer32

error-status INTEGER { 0..18 }, -- 变量error-status取值为0~18的整数

error-index INTEGER { 0..max-bindings } , -- 变量error-index取值为0~max-bindings的整数

variable-bindings VarBindList } -- 变量 variable-binding的类型是VarBindList

但变量VarBindList是什么类型呢?还需要继续定义(这里从略)。上面ASN.1定义中的第二行中的IMPLICIT叫做隐式标记,是为了在进行编码时可省去对IMPLICIT后面的类型(SEQUENCE)的编码,使最后得出的编码更加简洁。

下面我们假定管理者发送GetRequest-PDU,为的是从某路由器的代理进程获得"收到UDP数据报的数目"的信息。从图6-22可以查出,mib-2下面第7个节点是 udp, 而 udp 节点下面的第一个节点就是udpInDatagrams。由于这个节点已经是叶节点(即没有连接在它下面的子节点了),读取这个节点的数值时应在节点标识符后面加上0,即

1.3.1.1.2.1.7.1.0。这样,可得出GetRequest-PDU的ASN.1编码如图6-26 所示。

图6-26 GetRequest-PDU的ASN.1编码

可以把图中各字段的十六进制编码表示如下。

型,长度09₁₆,udpInDatagrams

A0 1D --GetRequest-PDU, 上下文 类型,长度1D₁₆=29 --INTEGER类型,长度**04** 16 02 04 05 AE 56 02 , request-id=05 AE 56 02 --INTEGER类型,长度**01**₁₆ 02 01 00 , error status=00 ₁₆ --INTEGER类型,长度**01**₁₆ 02 01 00 , error index = 00_{16} --SEQUENCE OF类型, 长度OF 30 OF ₁₆ =15 --SEQUENCE类型,长度0D 16 30 OD = 1306 09 01 03 06 01 02 01 07 01 00 --OBJECT IDENTIFIER类

6.8 应用进程跨越网络的通信

在这以前我们已经讨论了互联网使用的几种常用的应用层协议,这些应用协议使广大用户可以更加方便地利用互联网的资源。

现在的问题是:如果我们还有一些特定的应用需要互联网的支持,但这些应用又不能直接使用已经标准化的互联网应用协议,那么我们应当做哪些工作?要回答这个问题,实际上就是要了解下面要介绍的系统调用和应用编程接口。这些问题实际上需要一门专门的课程来学习,我们在这里只能给出一些初步的概念。

6.8.1 系统调用和应用编程接口

大多数操作系统使用**系统调用**(system call)的机制在应用程序和操作系统之间传递控制权。对程序员来说,系统调用和一般程序设计中的函数调用非常相似,只是系统调用是将控制权传递给了操作系统。图6-27说明了多个应用进程使用系统调用的机制。

图6-27 多个应用进程使用系统调用的机制

当某个应用进程启动系统调用时,控制权就从应用进程传递给了系统调用接口。此接口再把控制权传递给计算机的操作系统。操作系统把这个调用转给某个内部过程,并执行所请求的操作。内部过程一旦执行完毕,控制权就又通过系统调用接口返回给应用进程。总之,只要应用进程需要从操作系统获得服务,就要把控制权传递给操作系统,操作系统在执行必要的操作后把控制权返回给应用进程。因此,系统

调用接口实际上就是应用进程的控制权和操作系统的控制权进行转换的一个接口。由于应用程序在使用系统调用之前要编写一些程序,特别是需要设置系统调用中的许多参数,因此这种系统调用接口又称为应用编程接口 API(Application Programming Interface)。API从程序设计的角度 定义了许多标准的系统调用函数。应用进程只要使用标准的系统调用函数就可得到操作系统的服务。因此从程序设计的角度看,也可以把API看成是应用程序和操作系统之间的接口。

现在TCP/IP协议软件已驻留在操作系统中。由于TCP/IP协议族被设计成能运行在多种操作系统的环境中,因此TCP/IP标准没有规定应用程序与TCP/IP协议软件如何接口的细节,而是允许系统设计者能够选择有关API的具体实现细节。目前,只有几种可供应用程序使用TCP/IP的应用编程接口API。这里最著名的就是美国加利福尼亚大学伯克利分校为Berkeley UNIX操作系统定义了一种API,它又称为**套接字接口**(socket in terface)(或**插口接口**)。微软公司在其操作系统中采用了**套接字接口** API,形成了一个稍有不同的API,并称之为Windows Socket,简称为WinSock。AT&T为其UNIX系统V定义了一种API,简写为TLI(Transport Layer Interface)。

我们知道,若要让计算机做某件事情,就要编写使计算机能理解的程序。在网络环境下的计算机应用都有一个共同特点,这就是:在不同地点的计算机要通过网络进行通信。从另一种角度看,计算机之间的通信就是本计算机要读取另一个地点的计算机中的数据,或者要把数据从本计算机写入到另一个地点的计算机中。这种"读取"和"写入"的过程都要用到上面所说的系统调用。

在讨论网络编程时常常把套接字作为应用进程和运输层协议之间的接口,图6-28表示这一概念。图中假定了运输层使用TCP协议(若使用UDP协议,情况也是类似的,只是UDP是无连接的。通信的两端仍然可用两个套接字来标志)。现在套接字已成为计算机操作系统内核的一部分。

图6-28 套接字成为应用进程与运输层协议的接口

请注意:在套接字以上的进程是受应用程序控制的,而在套接字以下的运输层协议软件则是受计算机操作系统的控制。因此,只要应用程序使用TCP/IP协议进行通信,它就必须通过套接字与操作系统交互(这就要使用系统调用函数)并请求其服务。我们应当注意到,应用程序的开发者对套接字以上的应用进程具有完全的控制,但对套接字以下的运输层却只有很少的控制,例如,可以选择运输层协议(TCP或UDP)以及一些运输层的参数(如最大缓存空间和最大报文长度等)。

当应用进程(客户或服务器)需要使用网络进行通信时,必须首先发出socket系统调用,请求操作系统为其创建一个"套接字"。这个调用的实际效果是请求操作系统把网络通信所需要的一些系统资源(存储器空间、CPU时间、网络带宽等)分配给该应用进程。操作系统为这些资源的总和用一个叫做**套接字描述符**(socket descriptor)的号码(小的整数)来表示,然后把这个套接字描述符返回给应用进程。此后,应用进程所进行的网络操作(建立连接、收发数据、调整网络通信参数等)都必须使用这个套接字描述符。所以,几乎所有的网络系统调用都把这个套接字描述符作为套接字的许多参数中的第一个参数。在处理系统调用的时候,通过套接字描述符,操作系统就可以识别出应该使用哪些资源来完成应用进程所请求的服务。通信完毕后,应用进程通过一个关闭套接字的close系统调用通知操作系统回收与该套接字描述符相关的所有资源。由此可见,套接字是应用进程为了获得网络通信服务而与操作系统进行交互时使用的一种机制。

图6-29给出了当应用进程发出socket系统调用时,操作系统所创建的套接字描述符与套接字数据结构的关系。由于在一个机器中可能同时出现多个套接字,因此需要有一个存放套接字描述符的表,而每一个套接字描述符有一个指针指向存放套接字的地址。在套接字的数据结构

中有许多参数要填写。图 6-29 中已填写好的参数是协议族(PF_INET ,表示使用 Internet 的 TCP/IP 协议族)和服务(SOCK_STREAM,表示使用流式服务,也就是使用TCP服务)。在刚刚创建一个新的套接字时,有灰色背景的四个项目(本地和远地IP地址,本地和远地端口)都是未填写的,因此它和任何机器中的应用进程暂时都还没有联系。

图6-29 调用socket创建套接字

6.8.2 几种常用的系统调用

下面我们以使用TCP的服务为例介绍几种常用的系统调用。

1. 连接建立阶段

当套接字被创建后,它的端口号和IP地址都是空的,因此应用进程要调用bind(绑定)来指明套接字的本地地址(本地端口号和本地IP地址)。在服务器端调用bind时就是把熟知端口号和本地IP地址填写到已创建的套接字中。这就叫做把本地地址绑定到套接字。在客户端也可以不调用bind,这时由操作系统内核自动分配一个动态端口号(通信结束后由系统收回)。

服务器在调用bind后,还必须调用listen(收听)把套接字设置为**被动**方式,以便随时接受客户的服务请求。UDP服务器由于只提供无连接服务,不使用listen系统调用。

服务器紧接着就调用accept(接受),以便把远地客户进程发来的连接请求提取出来。系统调用accept的一个变量就是要指明是从哪一个套接字发起的连接。

调用accept要完成的动作较多。这是因为一个服务器必须能够同时处理多个连接。这样的服务器常称为**并发方式**(concurrent)工作的服务器。可以有多种方法实现这种并发方式。图6-30所示的是一种实现方法。

图6-30 并发方式工作的服务器

主服务器进程M(就是通常所说的服务器进程)一调用accept,就为每一个新的连接请求创建一个新的套接字,并把这个新创建的套接字的标识符返回给发起连接的客户方。与此同时,主服务器进程还要创建一个从属服务器进程(如图6-30中的S₁)来处理新建立的连接。这样,从属服务器进程用这个新创建的套接字和客户进程建立连接,而主服务器进程用原来的套接字重新调用accept,继续接受下一个连接请求。在已建立的连接上,从属服务器进程就使用这个新创建的套接字传送和接收数据。数据通信结束后,从属服务器进程就关闭这个新创建的套接字,同时这个从属服务器也被撤销。

总之,在任一时刻,服务器中总是有一个主服务器进程和零个或多个从属服务器进程。主服务器进程用原来的套接字接受连接请求,而从

属服务器进程用新创建的套接字(在图6-30中注明是"连接套接字") 和相应的客户建立连接并可进行双向传送数据。

以上介绍的是服务器为了接受客户端发起的连接请求而进行的一些系统调用。现在看一下客户端的情况。当使用TCP协议的客户已经调用socket创建了套接字后,客户进程就调用connect,以便和远地服务器建立连接(这就是**主动打开**,相当于客户发出的连接请求)。在connect系统调用中,客户必须指明远地端点(即远地服务器的IP地址和端口号)。

2. 数据传送阶段

客户和服务器都在TCP连接上使用send系统调用传送数据,使用recv系统调用接收数据。通常客户使用send发送请求,而服务器使用send发送回答。服务器使用recv接收客户用send调用发送的请求。客户在发完请求后用recv接收回答。

调用send需要三个变量:数据要发往的套接字的描述符、要发送的数据的地址以及数据的长度。通常send调用把数据复制到操作系统内核的缓存中。若系统的缓存已满,send就暂时阻塞,直到缓存有空间存放新的数据。

调用recv也需要三个变量:要使用的套接字的描述符、缓存的地址以及缓存空间的长度。

3. 连接释放阶段

一旦客户或服务器结束使用套接字,就把套接字撤销。这时就调用 close释放连接和撤销套接字。

图6-31画出了上述的一些系统调用的使用顺序。有些系统调用在一个 TCP连接中可能会循环使用。

图6-31 系统调用使用顺序的例子

UDP服务器由于只提供无连接服务,因此不使用listen和accept系统调用。

6.9 P2P应用

我们在第1章的1.3.1节中已经简单地介绍了P2P应用的概念。现在我们将进一步讨论P2P应用的若干工作原理。

P2P应用就是指具有P2P体系结构的网络应用。所谓P2P体系结构就是在这样的网络应用中,没有(或只有极少数的)固定的服务器,而绝大多数的交互都是使用对等方式(P2P方式)进行的。

P2P应用的范围很广,例如,文件分发、实时音频或视频会议、数据库系统、网络服务支持(如P2P打车软件、P2P理财等)。限于篇幅,下面只介绍最常用的P2P文件分发的工作原理。

P2P文件分发不需要使用集中式的媒体服务器,而所有的音频/视频文件都是在普通的互联网用户之间传输的。这其实是相当于有很多(有时达到上百万个)分散在各地的媒体服务器(由普通用户的计算机充当这种媒体服务器)向其他用户提供所要下载的音频/视频文件。这种P2P文件分发方式解决了集中式媒体服务器可能出现的瓶颈问题。

目前在互联网流量中,P2P工作方式下的文件分发已占据了最大的份额,比万维网应用所占的比例大得多。因此单纯从流量的角度看,P2P文件分发应当是互联网上最重要的应用。现在P2P文件分发不仅传送音频文件MP3,而且还传送视频文件(10~1 000MB,或更大)、各种软件和图像文件。

6.9.1 具有集中目录服务器的P2P工作方式

最早使用P2P工作方式的是Napster。这个名称来自1999年美国东北大学的新生Shawn Fanning所写的一个叫做Napster的软件。利用这个软件就可通过互联网免费下载各种MP3音乐。Napster的出现使MP3成为网络音乐事实上的标准(18)。

Napster能够搜索音乐文件,能够提供检索功能。所有音乐文件的索引信息都集中存放在Napster目录服务器中。这个目录服务器起着索引的作用。使用者只要查找目录服务器,就可知道应从何处下载所要的MP3文件。在2000年,Napster成为互联网上最流行的P2P应用,并占据互联网上的通信量中相当大的比例。

这里的关键就是运行Napster的所有用户,都必须及时向Napster的目录服务器报告自己已经存有哪些音乐文件。Napster目录服务器就用这些用户信息建立起一个动态数据库,集中存储了所有用户的音乐文件信息(即对象名和相应的IP地址)。当某个用户想下载某个MP3文件时,就向目录服务器发出查询(这个过程仍是传统的客户—服务器方式),目录服务器检索出结果后向用户返回存放这一文件的计算机IP地址,于是这个用户就可以从中选取一个地址下载想要得到的MP3文件(这个下载过程就是P2P方式)。可以看出,Napster的文件传输是分散的(P2P方式),但文件的定位则是集中的(客户—服务器方式)。

图6-32是Napster的工作过程的示意图。假定Napster目录服务器已经建立了其用户的动态数据库。图中给出了某个用户要下载音乐文件的主要交互过程。

图6-32 Napster的工作过程

- ❶ 用户X向Napster目录服务器查询(客户–服务器方式)谁有音乐文件 MP3#。
- ❷ Napster目录服务器回答X:有三个地点有文件MP3#,即A,B和C(给出了这三个地点的IP地址)。于是用户X得知所需的文件MP3#的三个下载地点。
- ③用户X可以随机地选择三个地点中的任一个,也可以使用PING报文寻找最方便下载的一个。在图6-32中,我们假定X向A发送下载文件MP3#的请求报文。现在X和A都使用P2P方式通信,互相成为对等方,X是临时的客户,而对等方A是临时的服务器。
- ❹ 对等方A(现在作为服务器)把文件MP3#发送给X。

这种集中式目录服务器的最大缺点就是可靠性差,而且会成为其性能的瓶颈(尤其是在用户数非常多的情况下)。更为严重的是这种做法侵犯了唱片公司的版权。虽然Napster网站并没有直接非法复制任何MP3文件(Napster网站不存储任何MP3文件,因而并没有直接侵犯版权),但法院还是判决Napster属于"间接侵害版权",因此在2000年7月底Napster网站就被迫关闭了。

6.9.2 具有全分布式结构的P2P文件共享 程序

在第一代P2P文件共享网站Napster关闭后,开始出现了以Gnutella为代表的第二代P2P文件共享程序。Gnutella是一种采用全分布方法定位内

容的P2P文件共享应用程序。Gnutella与Napster最大的区别就是不使用集中式的目录服务器进行查询,而是使用洪泛法在大量Gnutella用户之间进行查询。为了不使查询的通信量过大,Gnutella设计了一种**有限范围的洪泛查询**。这样可以减少倾注到互联网的查询流量,但由于查询的范围受限,因而这也影响到查询定位的准确性。

为了更加有效地在大量用户之间使用P2P技术下载共享文件,最近几年已经开发出很多种第三代P2P共享文件程序 [KURO13] ,它们使用分散定位和分散传输技术。如KaZaA,电骡eMule,比特洪流BT(Bit Torrent)等。

下面对比特洪流BT的主要特点进行简单的介绍。

在P2P的文件分发应用中,2001年由Brahm Cohen开发的BitTorrent(中文意思是"比特洪流")是很具代表性的一个。取这个名称的原因就是BitTorrent把参与某个文件分发的所有对等方的集合称为一个**洪流**(torrent)。为了方便,下面我们使用BitTorrent的简称BT。BT把对等方下载文件的数据单元称为**文件块**(chunk),一个文件块的长度是固定不变的,例如,典型的数值是256KB。当一个新的对等方加入某个洪流时,一开始它并没有文件块。但新的对等方逐渐地能够下载到一些文件块。而与此同时,它也为别的对等方上传一些文件块。某个对等方获得了整个的文件后,可以立即退出这个洪流(相当于自私的用户),也可继续留在这个洪流中,为其他的对等方上传文件块(相当于无私的用户)。加入或退出某个洪流可在任何时间完成(即使在某个文件还没有下载完毕时),也是完全自由的。

BT的协议相当复杂 [W-BT] 。下面讨论其基本机制。

每一个洪流都有一个基础设施结点,叫做**追踪器**(tracker)。当一个对等方加入洪流时,必须向追踪器**登记**(或称为**注册**),并周期性地通知追踪器它仍在洪流中。追踪器因而就跟踪了洪流中的对等方。一个洪流中可以拥有少到几个多到几百或几千个对等方。

我们用图6-33来进一步说明BT的工作原理。当一个新的对等方A加入洪流时,追踪器就随机地从参与的对等方集合中选择若干个(例如,30个),并把这些对等方的IP地址告诉A。于是A就和这些对等方建立了TCP连接。我们称所有与A建立了TCP连接的对等方为"相邻对等方"(neighboring peers)。在图6-33中我们画出了A有三个相邻对等方

(B, C和D)。这些相邻对等方的数目是动态变化的,有的不久就离开了,但又有新加入进来的。请注意,实际的网络拓扑可能是非常复杂的(参见图6-34的实际网络图)。我们知道,TCP连接只是个逻辑连接,而每一个TCP连接可能会穿越很多的网络。因此我们在讨论问题时,可以利用实际网络上面的一个更加简洁的覆盖网络,这个覆盖网络忽略了实际网络的许多细节,使问题的讨论更加方便。在覆盖网络中,A的三个相邻对等方就看得很清楚。然而在实际网络中,则反映不出这几个对等方的相邻关系。

图6-33 在覆盖网络中对等方的相邻关系的示意图

在任何时刻,每一个对等方可能只拥有某文件的一个文件块子集,而不同的对等方所拥有的文件块子集也不会完全相同。对等方A将通过TCP连接周期性地向其相邻对等方索取它们拥有的文件块列表。根据收到的文件块列表,A就知道了应当请求哪一个相邻对等方把哪些自己缺少的文件块发送过来。

图6-34是对等方之间互相传送数据块的示意图。例如,A向B、C和D索取数据块,但B同时也向C和D传送数据块,D和C还互相传送数据块。由于P2P对等用户的数量非常多,因此,从不同的对等方获得不同的数据块,然后组装成整个的文件,一般要比仅从一个地方下载整个的文件要快很多。

图6-34 对等方之间互相传送文件数据块

然而A必须做出两个重要决定。第一,哪些文件块是首先需要向其相邻对等方请求的?第二,在很多向A请求文件块的相邻对等方中,A应当向哪些相邻对等方发送所请求的文件块?

对于第一个问题,A要使用叫做**最稀有的优先**(rarest first)的技术。我们知道,凡是A所缺少的而正好相邻对等方已拥有的文件块,都应当去索取。可能其中的某些文件块,很多相邻对等方都有(即文件块的副本很多),这就是"不稀有的"文件块,以后可慢慢请求。如果A所缺少的文件块在相邻对等方中的副本很少,那就是"很稀有的"。因此,A首先应当请求副本最少的文件块(即最稀有的)。否则,一旦拥有最稀有文件块的对等方退出了洪流,就会影响A对所缺文件块的收集。

对于第二个问题,BT采用了一种更加机灵的算法,其基本思想就是: 凡当前有以最高数据率向A传送文件块的某相邻对等方,A就优先把所请求的文件块传送给该相邻对等方。具体来说,A持续地测量从其相邻对等方接收数据的速率,并确定速率最高的4个相邻对等方。接着,A就把文件块发送给这4个相邻对等方。每隔10秒钟,A还要重新计算数据率,然后可能修改这4个对等方。在BT的术语中,这4个对等方叫做已疏通的或无障碍的(unchoked)对等方。更重要的是,每隔30秒,A要随机地找一个另外的相邻对等方B,并向其发送文件块。这样,A有可能成为B的前4位上传文件块的提供者。在此情况下,B也有可能向A发送文件块。如果B发送文件块的速率足够快,那么B也有可能进入A的前4位上传文件块的提供者。这样做的结果是,这些对等方相互之间都能够以令人满意的速率交换文件块。

6.9.3 P2P文件分发的分析

我们从一个例子开始,来讨论P2P文件分发中的几个重要概念 [KURO13]。

在图6-35中,有N 台主机要从互联网上的服务器下载一个大文件,其长度为Fbit。在图中我们把这个文件也记为F。按照习惯,从互联网传送数据到主机,叫做**下载**(download),而反过来传送数据,即从主机向互联网传送,则称为**上传**(upload)或**上载**。服务器的文件是供互联网上的用户享用的,因此服务器的文件只是单方向上传到互联网。我们把服务器的上传速率记为 u_s ,单位是bit/s。再假定主机与互联网连接的链路的上传速率和下载速率分别为 u_i 和 d_i ,单位都是bit/s。我们还假定互联网的核心部分不会产生拥塞。瓶颈只会发生在服务器的接入链路,或者是某些主机的接入链路。

图6-35 文件分发的例子

我们先在传统的客户-服务器方式下,计算给所有主机分发完毕的最短时间 T_{cs} 。

从服务器端考虑,N 台主机共需要从服务器得到的数据总量(比特数)是NF。如果服务器能够不停地以其上传速率 u_s 向各主机传送数据,一直到各主机都收到文件F,就需要时间 NF/u_s ,单位是秒。由此可见, T_{cs} 不可能小于 NF/u_s 。

如果N 台主机都以各自的下载速率不停地下载文件F,那么下载速率最慢的主机(设其下载速率为 d_{min})的下载文件时间(F/d_{min}),将是N 个下载时间中最大的一个。由此可见, T_{CS} 也不可能小于 F/d_{min} 。

如果 $NF/u_s \ge F/d_{min}$,则瓶颈在服务器端的接入链路。这时 $T_{cs} = NF/u_s$ 。

如果 $F/d_{min} \ge NF/u_s$,则瓶颈在下载最慢的主机的接入链路。这时 $T_{cs} = F/d_{min}$ 。

由此可得出所有主机都下载完文件F的最少时间是

$$T_{cs} = \max\left\{\frac{NF}{u_s}, \frac{F}{d_{\min}}\right\} \tag{6-2}$$

从以上分析可以看出,若公式(6-2)括号中的第一项远大于第二项,则 T_{cs} 近似与主机数N成正比。如果主机数增大1000倍,那么文件的分发时间也要增大1000倍。

下面讨论在P2P方式下,文件全部分发完毕的最少时间 T_{P2P} 。然而在P2P方式下,文件分发所需的时间较难计算,这是因为每一台主机在接收文件的同时,还利用自己的上传能力向其他主机传送文件。文件传送所需的时间取决于主机向对等方传送文件的具体方式。但是,我们还是可以导出文件分发所需的最少时间的表达式。

在文件分发开始时,只有服务器有文件F。服务器必须把文件F的每一个比特通过接入链路传送到互联网(至少要传送一次)。因此文件分发的最少时间不可能小于 F/u_s 。和客户-服务器方式相比,在P2P方式下,服务器不需要一遍一遍地发送文件F,因为互联网上的其他主机(即对等方)可以代替服务器向其他对等方分发文件F。

在P2P方式下,下载速率最慢的主机(设其下载速率为 d_{min})下载文件F的时间是 E/d_{min} ,这是N个对等方下载时间中最大的一个。可见文件分发的最少时间不可能小于 E/d_{min} 。这个结论和客户—服务器方式是一样的。

整个系统中所有主机(包括服务器)的上传速率之和是 $u_T = u_s + u_1 + u_2 + ... + u_N$ 。因此,文件分发的最少时间也不可能小于 NF/u_T 。

这样,我们得出在P2P方式下所有主机都下载完文件F的最少时间的下限是

$$T_{\text{P2P}} \ge \max\left\{\frac{F}{u_s}, \frac{F}{d_{\min}}, \frac{NF}{u_{\text{T}}}\right\}$$
 (6-3)

在公式(6-3)的推导过程中,我们假定每一个对等方只要收到一个比特就立即上传到互联网的其他对等方。但实际上是把收到的若干个比特组成一个数据块后再上传出去。但是当文件F很大时,我们也可以在公式(6-3)中取等号,作为文件F的最少分发时间 T_{P2P} 的近似值。

有一种情况最值得我们注意。这就是对等方的数目N 非常大,因此在公式(6-3)的括号中的最后一项的值将远大于前两项的值。这样, T_{P2P} 值的下限就近似为 NF/u_T 。

我们再假定一些数据。设所有的对等方的上传速率都是u,并且F/u=1小时,所有对等方的下载速率都不小于服务器的上传速率,因而不会对我们的计算产生影响。我们还设服务器的上传速率 $u_s=10u$ 。当N=30时,用公式(6-3)算出所有主机都下载完文件F的最少时间的下限是 $T_{P2P}=0.75$ F/u=0.75小时<1小时(不管N 多大)。如果采用客户-服务器方式,则当N=30时,所有主机都下载完文件F的最少时间是 $T_{CS}=NF/u_S=3$ 小时。

6.9.4 在P2P对等方中搜索对象

在P2P文件系统中,对等方用户的数量非常多,并且处于一种无序的状态。任何一个对等方可以随时加入进来或随时退出。在这种情况下,怎样有效地找到所需的文件,也就是怎样有效地定位对等方及其资源,乃是P2P系统中的一个十分重要的问题。

限于篇幅, 我们在这里只简单介绍一下怎样利用散列函数来定位对等方。

我们知道,Gnutella是一种采用全分布方法定位内容的P2P文件共享应用程序,它解决了集中式目录服务器所造成的瓶颈问题。然而Gnutella是在非结构化的覆盖网络中采用查询洪泛的方法来进行查找的,因此查找的效率较低。现在比较好的查找方法是设法构建一种分布式数据库,以进行对等方及其资源的定位。这种分布式数据库在概念上并不复杂,只要能够支持大量对等方(可能有几百万个)进行索引查找即可。存储在数据库中的信息只有两个部分:

- (1) 要查找的**资源名** K (例如,电影或歌曲的名字)。资源名也可称为**关键字**。
 - (2) 存放该对象的**结点的IP地址N**。有的IP地址还附带有端口号。

存放在数据库中的信息就是大量成对出现的(资源名K,结点的IP地址N)。在查找某资源名K时,只要在数据库中查找到匹配的资源名K,数据库就能够返回对应的结点的IP地址N。所以问题的关键就是要设法把每个资源名K存放在一个非常便干查找的地方。

细心的读者可能会联想到曾在前面6.1节讨论的DNS域名系统。DNS是根据主机的域名来查找其IP地址,这和P2P的情况有相似之处。但我们知道,主机的域名是结构化的命名系统,因此域名服务器可以划分为几种不同的级别(如根服务器等)便于查找。但P2P系统则不同,其资源名是非结构化的。因此不能套用DNS的那种查找方法。

前面已经讲过,Napster在一个集中式目录服务器中构建的查找数据库虽然很简单,但性能上却有瓶颈。在P2P系统中,应怎样构建分布式的P2P数据库? 让每个对等方都拥有所有对等方IP地址的列表是不可行的。让所有成对出现的(资源名K,IP地址N)随机地分散到各对等方也是不可行的。因为这将使查找对象的次数过大,无法使用。现在广泛使用的索引和查找技术叫做**分布式散列表** DHT(Distributed Hash Table)。DHT也可译为分布式哈希表,它是由大量对等方共同维护的散列表。基于DHT的具体算法已有不少,如Chord,Pastry,CAN(Content Addressable Network),以及Kademilia等。下面简单介绍广泛使用的Chord算法,这是美国麻省理工大学于2001年提出的[STOI01]。

分布式散列表DHT利用散列函数,把资源名K及其存放的结点IP地址N都分别映射为资源名标识符 KID和结点标识符 NID。如果所有的对等

方都使用散列函数SHA-1(我们在下一章7.4.1节还要介绍SHA-1在网络安全方面的应用),那么通过散列得出的标识符KID和NID都是160位二进制数字,且其数值范围在 [0, 2 160 -1] 之间。虽然从理论上讲,散列函数SHA-1是多对一的函数,但实际上不同输入得到相同的输出的概率是极小的。此外,通过SHA-1映射得到的标识符能够比较均匀而稀疏地分布在Chord环上。为便于讨论,我们假定现在标识符只有5位二进制数字,也就是说,所有经散列函数得出的标识符的数值范围都在 [0, 31] 之间。Chord把结点按标识符数值从小到大沿顺时针排列成一个环形覆盖网络(见图6-36(a)),并按照下面的规则进行映射:

- (1) 结点标识符NID按照其标识符值映射到Chord环上对应的点,见图6-36(a) 中标有NID的小圆点,如N4,N7,N10,N20,N26和N30。
- (2)资源名标识符KID则按照其标识符值映射到与其值最接近的下一个NID,见图6-36(a)中标有KID的小方块。所谓"最接近的下一个"NID就是指:从KID值开始,按顺时针方向沿Chord环遇到的下一个NID。例如,K31和K2应放在N4,因为在环上从31和2按顺时针方向遇到的下一个NID是N4。同理,K8,K12,K23和K29应分别放在N10,N20,N26和N30。如果碰巧同时出现K29和N29(这种概率极小),那么K29就应当放在N29。

图6-36 基于DHT的Chord环

请注意:在图6-36中,K31和K2都放在N4,这表示要查找存放资源K31或K2的结点的IP地址,就应当到结点N4去查找。请注意,资源K31和K2并非存放在结点N4。

这就是说,每个资源由Chord环上与其标识符值**最接近**的下一个结点提供服务。我们再强调一下,Chord环并非实际的网络。在Chord环上相邻的结点,在地理上很可能相距非常远。

Chord环上的每一个结点都要维护两个指针变量,一个指向其后继结点,而另一个指向其前任结点。例如,在图6-36(a)中,N10的后继结点是N20(沿顺时针方向N10的下一个结点),其前任结点是N7(沿逆时针方向N10之前的一个结点)。如果一个新的结点N13加入进来,那么N20的前任结点就变为N13,因而K12就要从N20的位置移到N13,同时N10的后继结点就变为N13(见图6-36(b))。此外,如果结点N26退出,那么K23就要移到N30,而N30的前任结点就变为N20,同时N20的后继结点变为N30。

在这样的Chord环上查找资源,从理论上讲,任何一个结点,只要从其后继结点一个个地遍历查找下去,一定可以找到所查询的资源。可见要定位一个资源,平均需要沿环发送查找报文N/2个,或遍历O(N)个结点(N为环上的总结点数)。显然,这种顺序查找的方法效率很低。

为了加速查找,在Chord环上可以增加一些**指针表**(finger table),它又称为**路由表**或**查找器表**。若Chord环上的标识符有m位(现在m=5),则在结点n上的指针表可设置不超过m个指针,指向其后继的结点。我们先看图6-37中结点N4的指针表。指针表中的第2列是从N4可以指向的多个后继结点。本来每一个结点仅仅指向沿顺时针方向的下一个后继结点,但现在则指向多个后继结点(在本例中就是N7,N10和N20)。第1列的第i行是计算(N4+2 $^{i-1}$),用来得出后继结点。例如,第4行i=4,算出(N4+2 $^{i-1}$)=N4+8=12,而Chord环上的结点12的后继结点是N20。图中还画出了从N4到这几个后继结点的连线(这些连线就是Chord环上的弦,Chord名字由此得出)。还有一点要注意的是,在N20的指针表中的第5行,N20+16=36,但按照模2 5 运算,36mod 2 5 =4,恰好结点4的后继结点是N4。

假定在图6-37中的结点N4要查找K29。如果用遍历各结点的方法,则要查找5次,即N7→N10→N20→N29→N30。但若利用指针表,则N4首先在自己的指针表中寻找在不到29且最接近29的结点,即N20,然后把定位资源K29的请求发送给N20。在N20的指针表中继续类似的寻找。结果是:最接近29的结点是N30。这就是存放资源K29的结点。这

种查找方法类似于二分查找,只用了两次查找,定位一个资源仅需 $O(\log_2 N)$ 步。

图6-37 结点N4和N20的指针表

在P2P网络中,对等方可能相当频繁地加入或退出系统,这就需要很好地维护这个分布式数据库(维护各结点的指针和指针表),而这种维护的工作量可能会很大。当对等方数量非常大时,究竟采用何种查询机制更加合理,则需要根据具体情况来确定。

P2P技术还在不断地改进,但随着P2P文件共享程序日益广泛地使用,也产生了一系列的问题有待于解决。这些问题已迫使人们要重新思考下一代互联网应如何演进。例如,音频/视频文件的知识产权就是其中的一个问题。又如,当非法盗版的、或不健康的音频/视频文件在互联网上利用P2P文件共享程序广泛传播时,要对P2P的流量进行有效的管理,在技术上还是有相当的难度。由于现在P2P文件共享程序的大量使用,已经消耗了互联网主干网上大部分的带宽。因此,怎样制定出合理的收费标准,既能够让广大网民接受,又能使网络运营商赢利并继续加大投入,也是目前迫切需要解决的问题。

本章的重要概念

应用层协议是为了解决某一类应用问题,而问题的解决又是通过位于不同主机中的多个应用进程之间的通信和协同工作来完成的。应用层规定了应用进程在通信时所遵循的协议。应用层的许

多协议都是基于客户服务器方式的。客户是服务请求方,服务器 是服务提供方。

- 域名系统DNS是互联网使用的命名系统,用来把便于人们使用的机器名字转换为IP地址。DNS是一个联机分布式数据库系统,并采用客户服务器方式。
- 域名到IP地址的解析是由分布在互联网上的许多域名服务器程序 (即域名服务器)共同完成的。
- 互联网采用层次树状结构的命名方法,任何一台连接在互联网上的主机或路由器,都有一个唯一的层次结构的名字,即域名。域名中的点和点分十进制IP地址中的点没有关系。
- 域名服务器分为根域名服务器、顶级域名服务器、权限域名服务器。
- 文件传送协议FTP使用TCP可靠的运输服务。FTP使用客户服务器方式。一个FTP服务器进程可同时为多个客户进程提供服务。在进行文件传输时,FTP的客户和服务器之间要建立两个并行的TCP连接:控制连接和数据连接。实际用于传输文件的是数据连接。
- 万维网WWW是一个大规模的、联机式的信息储藏所,可以非常方便地从互联网上的一个站点链接到另一个站点。
- 万维网的客户程序向互联网中的服务器程序发出请求,服务器程序向客户程序送回客户所要的万维网文档。在客户程序主窗口上显示出的万维网文档称为页面。
- 万维网使用统一资源定位符URL来标志万维网上的各种文档,并使每一个文档在整个互联网的范围内具有唯一的标识符URL。
- 万维网客户程序与服务器程序之间进行交互所使用的协议是超文本传送协议HTTP。HTTP使用TCP连接进行可靠的传送。但HTTP协议本身是无连接、无状态的。HTTP/1.1协议使用了持续连接(分为非流水线方式和流水线方式)。
- 万维网使用超文本标记语言HTML来显示各种万维网页面。
- 万维网静态文档是指在文档创作完毕后就存放在万维网服务器中,在被用户浏览的过程中,内容不会改变。动态文档是指文档的内容是在浏览器访问万维网服务器时才由应用程序动态创建的。
- 活动文档技术可以使浏览器屏幕连续更新。活动文档程序可与用户直接交互,并可连续地改变屏幕的显示。
- 在万维网中用来进行搜索的工具叫做搜索引擎。搜索引擎大体上可划分为全文检索搜索引擎和分类目录搜索引擎两大类。

- 电子邮件是互联网上使用最多的和最受用户欢迎的一种应用。电子邮件把邮件发送到收件人使用的邮件服务器,并放在其中的收件人邮箱中,收件人可随时上网到自己使用的邮件服务器进行读取,相当于"电子信箱"。
- 一个电子邮件系统有三个主要组成构件,即:用户代理、邮件服务器,以及邮件协议(包括邮件发送协议,如SMTP,和邮件读取协议,如POP3和IMAP)。用户代理和邮件服务器都要运行这些协议。
- 电子邮件的用户代理就是用户与电子邮件系统的接口,它向用户提供一个很友好的视窗界面来发送和接收邮件。
- 从用户代理把邮件传送到邮件服务器,以及在邮件服务器之间的传送,都要使用SMTP协议。但用户代理从邮件服务器读取邮件时,则要使用POP3(或IMAP)协议。
- 基于万维网的电子邮件使用户能够利用浏览器收发电子邮件。用户浏览器和邮件服务器之间的邮件传送使用HTTP协议,而在邮件服务器之间邮件的传送仍然使用SMTP协议。
- 简单网络管理协议SNMP由三部分组成,即(1)SNMP本身,负责读取和改变各代理中的对象名及其状态数值;(2)管理信息结构SMI,定义命名对象和定义对象类型(包括范围和长度)的通用规则,以及把对象和对象的值进行编码的基本编码规则BER;
 - (3) 管理信息库MIB,在被管理的实体中创建了命名对象,并规定了其类型。
- 系统调用接口是应用进程的控制权和操作系统的控制权进行转换的一个接口,又称为应用编程接口API。API就是应用程序和操作系统之间的接口。
- 套接字是应用进程和运输层协议之间的接口,是应用进程为了获得网络通信服务而与操作系统进行交互时使用的一种机制。
- 目前P2P工作方式下的文件共享在互联网流量中已占据最大的份额,比万维网应用所占的比例大得多。
- BT是很流行的一种P2P应用。BT采用"最稀有的优先"的技术,可以尽早把最稀有的文件块收集到。此外,凡有当前以最高数据率向某个对等方传送文件块的相邻对等方,该对等方就优先把所请求的文件块传送给这些相邻对等方。这样做的结果是,这些对等方相互之间都能够以令人满意的速率交换文件块。
- 当对等方的数量很大时,采用P2P方式下载大文件,要比传统的客户-服务器方式快得多。

• 在P2P应用中,广泛使用的索引和查找技术是分布式散列表 DHT。

习题

- **6-01** 互联网的域名结构是怎样的? 它与目前的电话网的号码结构有何异同之处?
- **6-02** 域名系统的主要功能是什么? 域名系统中的本地域名服务器、根域名服务器、顶级域名服务器以及权限域名服务器有何区别?
- **6-03** 举例说明域名转换的过程。域名服务器中的高速缓存的作用是什么?
- **6-04** 设想有一天整个互联网的**DNS**系统都瘫痪了(这种情况不大会出现),试问还有可能给朋友发送电子邮件吗?
- **6-05** 文件传送协议FTP的主要工作过程是怎样的?为什么说FTP是带外传送控制信息?主进程和从属进程各起什么作用?
- **6-06** 简单文件传送协议TFTP与FTP的主要区别是什么?各用在什么场合?
- **6-07** 远程登录TELNET的主要特点是什么?什么叫做虚拟终端NVT?
- **6-08** 解释以下名词。各英文缩写词的原文是什么? WWW, URL, HTTP, HTML, CGI, 浏览器, 超文本, 超媒体, 超链, 页面, 活动文档, 搜索引擎。
- **6-09** 假定一个超链从一个万维网文档链接到另一个万维网文档时,由于万维网文档上出现了差错而使得超链指向一个无效的计算机名字。这时浏览器将向用户报告什么?
- **6-10** 假定要从已知的URL获得一个万维网文档。若该万维网服务器的IP地址开始时并不知道。试问:除HTTP外,还需要什么应用层协议和运输层协议?

- **6-11** 你所使用的浏览器的高速缓存有多大?请进行一个实验:访问几个万维网文档,然后将你的计算机与网络断开,然后再回到你刚才访问过的文档。你的浏览器的高速缓存能够存放多少个页面?
- 6-12 什么是动态文档? 试举出万维网使用动态文档的一些例子。
- **6-13** 浏览器同时打开多个TCP连接进行浏览的优缺点如何?请说明理由。
- **6-14** 当使用鼠标点击一个万维网文档时,若该文档除了有文本外,还有一个本地.gif图像和两个远地.gif图像。试问:需要使用哪个应用程序,以及需要建立几次UDP连接和几次TCP连接?
- **6-15** 假定你在浏览器上点击一个URL,但这个URL的IP地址以前并没有缓存在本地主机上。因此需要用DNS自动查找和解析。假定要解析到所要找的URL的IP地址共经过n个DNS服务器,所经过的时间分别为RTT₁,RTT₂,…,RTT_n。假定从要找的网页上只需要读取一个很小的图片(即忽略这个小图片的传输时间)。从本地主机到这个网页的往返时间是RTT_w。试问从点击这个URL开始,一直到本地主机的屏幕上出现所读取的小图片,一共要经过多长时间?
- **6-16** 在上题中,假定同一台服务器的HTML文件中又链接了三个非常小的对象。若忽略这些对象的发送时间,试计算客户点击读取这些对象所需的时间。
 - (1) 没有并行TCP连接的非持续HTTP:
 - (2) 使用并行TCP连接的非持续HTTP;
 - (3) 流水线方式的持续HTTP。
- **6-17** 在浏览器中应当有几个可选解释程序。试给出一些可选解释程序的名称。
- **6-18** 一个万维网网点有1000万个页面,平均每个页面有10个超链。 读取一个页面平均要100ms。问要检索整个网点所需的最少时间。
- 6-19 搜索引擎可分为哪两种类型?各有什么特点?

- **6-20** 试述电子邮件的最主要的组成部件。用户代理UA的作用是什么?没有UA行不行?
- **6-21** 电子邮件的信封和内容在邮件的传送过程中起什么作用?和用户的关系如何?
- 6-22 电子邮件的地址格式是怎样的?请说明各部分的意思。
- 6-23 试简述SMTP通信的三个阶段的过程。
- **6-24** 试述邮局协议POP的工作过程。在电子邮件中,为什么需要使用POP和SMTP这两个协议? IMAP与POP有何区别?
- **6-25** MIME与SMTP的关系是怎样的?什么是quoted-printable编码和base64编码?
- **6-26** 一个二进制文件共3072字节长。若使用base64编码,并且每发送完80字节就插入一个回车符CR和一个换行符LF,问一共发送了多少个字节?
- **6-27** 试将数据11001100 1 0000001 001 11000进行base64编码,并得出最后传送的ASCII数据。
- **6-28** 试将数据01001100 10011101 00111001进行quoted-printable编码,并得出最后传送的ASCII数据。这样的数据用quoted-printable编码后,其编码开销有多大?
- **6-29** 电子邮件系统需要将人们的电子邮件地址编成目录以便于查找。要建立这种目录应将人名划分为几个标准部分(例如,姓、名)。若要形成一个国际标准,那么必须解决哪些问题?
- **6-30** 电子邮件系统使用TCP传送邮件。为什么有时我们会遇到邮件发送失败的情况?为什么有时对方会收不到我们发送的邮件?
- **6-31** 基于万维网的电子邮件系统有什么特点? 在传送邮件时使用什么协议?
- **6-32** DHCP协议用在什么情况下? 当一台计算机第一次运行引导程序时,其ROM中有没有该主机的IP地址、子网掩码或某个域名服务器

的IP地址?

- **6-33** 什么是网络管理? 为什么说网络管理是当今网络领域中的热门课题?
- **6-34** 解释下列术语: 网络元素、被管对象、管理进程、代理进程和管理信息库。
- **6-35** SNMP使用UDP传送报文。为什么不使用TCP?
- **6-36** 为什么SNMP的管理进程使用探询掌握全网状态属于正常情况,而代理进程用陷阱向管理进程报告属于较少发生的异常情况?
- **6-37** SNMP使用哪几种操作? SNMP在Get报文中设置了请求标识符字段,为什么?
- **6-38** 什么是管理信息库MIB? 为什么要使用MIB?
- **6-39** 什么是管理信息结构SMI? 它的作用是什么?
- **6-40** 用ASN.1基本编码规则对以下4个数组(SEQUENCE-OF)进行编码。假定每一个数字占用4个字节。
- 2345, 1236, 122, 1236
- **6-41** SNMP要发送一个GetRequest报文,以便向一个路由器获取ICMP的icmpInParmProbs的值。在icmp中变量icmpInParmProbs的标号是5,它是一个计数器,用来统计收到的类型为参数问题的ICMP差错报告报文的数目。试给出这个GetRequest报文的编码。
- **6-42** 对象tcp的OBJECT IDENTIFIER是什么?
- **6-43** 在ASN.1中,IP地址(IPAddress)的类别是应用类。若IPAddress=131.21.14.2、试求其ASN.1编码。
- **6-44** 什么是应用编程接口API? 它是应用程序和谁的接口?
- 6-45 试举出常用的几种系统调用的名称,说明它们的用途。

6-46 图6-38表示了各应用协议在层次中的位置。

图6-38 习题6-46的图

- (1) 简单讨论一下为什么有的应用层协议要使用TCP而有的却要使用UDP?
 - (2) 为什么MIME画在SMTP之上?
 - (3) 为什么路由选择协议RIP放在应用层?
- **6-47** 现在流行的**P2P**文件共享应用程序都有哪些特点?存在哪些值得注意的问题?
- 6-48 使用客户-服务器方式进行文件分发。一台服务器把一个长度为F的大文件分发给N个对等方。假设文件传输的瓶颈是各计算机(包括服务器)的上传速率u。试计算文件分发到所有对等方的最短时间。
- **6-49** 重新考虑上题的文件分发任务,但采用P2P文件分发方式,并且每个对等方只能在接收完整个文件后才能向其他对等方转发。试计算文件分发到所有N个对等方的最短时间。
- **6-50** 再重新考虑上题的文件分发任务,但可以把这个非常大的文件划分为一个个非常小的数据块进行分发,即一个对等方在下载完一个数据块后就能向其他对等方转发,并同时可下载其他数据块。不考虑分块增加的控制信息,试计算整个大文件分发到所有对等方的最短时间。

- (1)_注: 在TCP/IP的文档中,这种地址转换常称为 **地址解析**。解析就是转换的意思,地址解析可能会包含多次的查询请求和回答过程。
- (2)_注:实际上,国家顶级域名也包括某些地区的域名,如我国的香港特区(hk)和台湾省(tw)也都是ccTLD里面的顶级域名。此外,国家顶级域名可以使用一个国家自己的文字。例如,中国可以有".cn"、".中国"和繁体字的".中國"这三种不同形式的域名。
- (3)_注:根据[MINGCI94],对于树这样的数据结构,它的node应当译为"节点"(不是结点)。
- (4)_注:为了便于记忆,人们愿意把用作邮件服务器的计算机取名为mail,而把用作网站服务器的计算机取名为www。
- (5)_注:任播的IP数据报的终点是一组在不同地点的主机,但具有相同的IP地址。IP数据报交付离源点最近的一台主机。
- (6) 注:映射(mapping)指两个集合元素之间的一种对应规则。
- (7) 注: 绑定(binding) 指一个对象(或事务) 与其某种属性建立某种联系的过程。
- (8)_注: USENET新闻组实际上是一个世界范围的电子公告牌系统BBS (Bulletin Board System),用于发布公告、新闻和各种文章供大家使用。
- (9)_注: Tsinghua是清华大学创立时所用的拼音名字(那时拼音ts和现在的汉语拼音字母q的发音一样)。由于国外都早已知道Tsinghua这个名字,因此现在就不使用标准的汉语拼音qinghua。
- (10)_注: 所谓 **事务**(transaction)就是指一系列的信息交换,而这一系列的信息交换是一个不可分割的整体,也就是说,要么所有的信息交换都完成,要么一次交换都不进行。
- (11)_注:在[MINGCI93]中,将tag和flag两个名词都译为"标志"。由于目前已有较多的作者将tag译为"标签",并考虑到最好与flag的译名有所区别,故将tag译为 标签。实际上,"标签"的意思也还比较准确,因为一个HTML文档与浏览器所显示的内容相比,主要就是增加了许多的标签。
- (12)_注: **脚本**(script)一词还有其他的意思。例如,在多媒体开发程序中用"脚本"来表示编程人员输入的一系列指令,这些指令指明多媒体文件应按什么顺序执行。
- (13)_注:在Java语言出现之前就已经有了applet这一名词。小应用程序applet通常被嵌入在操作系统或一个较大的应用程序之中。在万维网技术中,此名词常常指的是Java小应用程序。
- (14)_注:目前流传的译名还有"即时通信"或"即时通讯",但messaging译为"传信"似乎更准确。

(15) 注: ASCII码原来定义为7位码。但最初为了增加检错能力就增加了一个奇偶检验位,因而使用一个字节(8位)表示一个ASCII码。于是ASCII码就变成了8位码,但其最高位一定是0,而后面的7位就是最初定义的ASCII编码。

(16) 注:GIF(Graphics Interchange Format),JPEG(Joint Photographic Expert Group)和TIFF(Tagged Image File Format)都是静止图像(如照片)格式的标准,前两者是压缩的,后者可以是压缩的,也可以是不压缩的。而MPEG(Motion Picture Experts Group)是活动图像(如电影)的压缩标准,包括MPEG视频、MPEG音频和MPEG系统(视频音频同步)三个部分。QuickTime是苹果公司的媒体播放机。VRML(Virtual Reality Modeling Language)是虚拟现实建模语言。PDF(Portable Document Format)是Adobe公司开发的一种电子文件格式。ZIP是一种文件压缩算法。

(17)_注: ISO原以为还会制定出更多的抽象语法记法,但实际上到目前为止并没有第二个抽象语法记法出现。因此ASN.1似应写为ASN。 **抽象语法** 只描述数据的结构形式且与具体的编码格式无关,同时也不涉及这些数据结构在计算机内如何存放。

(18) 注:通常CD光盘中的音乐都采用wav格式,即采用标准的PCM编码。MP3则进行了压缩,把一些人耳朵不太能够听出来的部分频率分量压缩掉了。压缩比一般在1:4到1:12之间。例如,压缩比为1:10就表明10MB的wav格式音乐,可压缩成1MB的MP3格式,而音质的下降并不太明显。

第7章 网络安全

随着计算机网络的发展,网络中的安全问题也日趋严重。当网络的用户来自社会各个阶层与部门时,大量在网络中存储和传输的数据就需要保护。由于计算机网络安全是另一门专业学科,所以本章只对计算机网络安全问题的基本内容进行初步的介绍。

本章最重要的内容是:

- (1) 计算机网络面临的安全性威胁和计算机网络安全的主要问题。
- (2) 对称密钥密码体制和公钥密码体制的特点。
- (3) 数字签名与鉴别的概念。
- (4) 网络层安全协议IPsec协议族和运输层安全协议SSL/TLS的要点。
- (5) 应用层电子邮件的安全措施。
- (6) 系统安全: 防火墙与入侵检测。

7.1 网络安全问题概述

本节讨论计算机网络面临的安全性威胁、安全的内容和一般的数据加密模型。

7.1.1 计算机网络面临的安全性威胁

计算机网络的通信面临两大类威胁,即**被动攻击** 和**主动攻击** (见图7-1)。

图7-1 对网络的被动攻击和主动攻击

被动攻击是指攻击者从网络上窃听他人的通信内容。通常把这类攻击称为截获。在被动攻击中,攻击者只是观察和分析某一个协议数据单元 PDU(这里使用 PDU这一名词是考虑到所涉及的可能是不同的层次)而不干扰信息流。即使这些数据对攻击者来说是不易理解的,他也可通过观察 PDU的协议控制信息部分,了解正在通信的协议实体的地址和身份,研究 PDU的长度和传输的频度,从而了解所交换的数据的某种性质。这种被动攻击又称为流量分析(traffic analysis)。在战争时期,通过分析某处出现大量异常的通信量,往往可以发现敌方指挥所的位置。

主动攻击 有如下几种最常见的方式。

- (1) **篡改** 攻击者故意篡改网络上传送的报文。这里也包括彻底中断传送的报文,甚至是把完全伪造的报文传送给接收方。这种攻击方式有时也称为更改报文流。
- (2) **恶意程序** 恶意程序(rogue program)种类繁多,对网络安全威胁较大的主要有以下几种:

- **计算机病毒** (computer virus),一种会"传染"其他程序的程序,"传染"是通过修改其他程序来把自身或自己的变种复制进去而完成的。
- **计算机蠕虫**(computer worm),一种通过网络的通信功能将自身从一个结点发送到另一个结点并自动启动运行的程序。
- 特洛伊木马(Trojan horse),一种程序,它执行的功能并非所声称的功能而是某种恶意功能。如一个编译程序除了执行编译任务以外,还把用户的源程序偷偷地复制下来,那么这种编译程序就是一种特洛伊木马。计算机病毒有时也以特洛伊木马的形式出现。
- 逻辑炸弹 (logic bomb),一种当运行环境满足某种特定条件时执行其他特殊功能的程序。如一个编辑程序,平时运行得很好,但当系统时间为13日又为星期五时,它会删去系统中所有的文件,这种程序就是一种逻辑炸弹。
- **后门入侵**(backdoor knocking),是指利用系统实现中的漏洞通过网络入侵系统。就像一个盗贼在夜晚试图闯入民宅,如果某家住户的房门有缺陷,盗贼就能乘虚而入。索尼游戏网络(PlayStation Network)在2011年被入侵,导致7700万用户的个人信息,诸如姓名、生日、email地址、密码等被盗[W-BACKD]。
- 流氓软件, 一种未经用户允许就在用户计算机上安装运行并损害用户利益的软件, 其典型特征是: 强制安装、难以卸载、浏览器劫持、广告弹出、恶意收集用户信息、恶意卸载、恶意捆绑等等。现在流氓软件的泛滥程度已超过了各种计算机病毒, 成为互联网上最大的公害。流氓软件的名字一般都很吸引人, 如某某卫士、某某搜霸等, 因此要特别小心。

上面所说的计算机病毒是狭义的,也有人把所有的恶意程序泛指为计算机病毒。例如1988年10月"Morris病毒"入侵美国互联网,舆论说该事件是"计算机病毒入侵美国计算机网",而计算机安全专家却称之为"互联网蠕虫事件"。

(3) **拒绝服务** DoS(Denial of Service) 指攻击者向互联网上的某个服务器不停地发送大量分组,使该服务器无法提供正常服务,甚至完全瘫痪。2000年2月7日至9日美国几个著名网站遭黑客(1)-袭击,使这些网站的服务器一直处于"忙"的状态,因而无法向发出请求的客户提供服务。这种攻击被称为**拒绝服务**。又如在2014年圣诞节,索尼游戏

网(PlayStation Network)和微软游戏网(Microsoft Xbox Live)被黑客攻击后瘫痪,估计有1.6亿用户受到影响[W-DOS]。

若从互联网上的成百上千个网站集中攻击一个网站,则称为**分布式拒绝服务** DDoS(Distributed Denial of Service)。有时也把这种攻击称为**网络带宽攻击** 或**连通性攻击**。

还有其他类似的网络安全问题。例如,在使用以太网交换机的网络中,攻击者向某个以太网交换机发送大量的伪造源MAC地址的帧。以太网交换机收到这样的帧,就把这个假的源MAC地址写入交换表中(因为表中没有这个地址)。由于这种伪造的地址数量太大,因此很快就把交换表填满了,导致以太网交换机无法正常工作(称为**交换机中毒**)。

对于主动攻击,可以采取适当措施加以检测。但对于被动攻击,通常却是检测不出来的。根据这些特点,可得出计算机网络通信安全的目标如下:

- (1) 防止析出报文内容和流量分析。
- (2) 防止恶意程序。
- (3) 检测更改报文流和拒绝服务。

对付被动攻击可采用各种数据加密技术,而对付主动攻击,则需将加密技术与适当的鉴别技术相结合。

7.1.2 安全的计算机网络

人们一直希望能设计出一种安全的计算机网络,但不幸的是,网络的安全性是不可判定的 [DENN82]。目前在安全协议的设计方面,主要是针对具体的攻击设计安全的通信协议。但如何保证所设计出的协议是安全的?这可以使用两种方法。一种是用形式化方法来证明,另一种是用经验来分析协议的安全性。形式化证明的方法是人们所希望的,但一般意义上的协议安全性也是不可判定的,只能针对某种特定类型的攻击来讨论其安全性。对于复杂的通信协议的安全性,形式化证明比较困难,所以主要采用人工分析的方法来找漏洞。对于简单的

协议,可通过限制敌手的操作(即假定敌手不会进行某种攻击)来对一些特定情况进行形式化的证明,当然,这种方法有很大的局限性。

根据上一节所述的各种安全性威胁,不难看出,一个安全的计算机网络应设法达到以下四个目标:

1. 保密性

保密性就是只有信息的发送方和接收方才能懂得所发送信息的内容,而信息的截获者则看不懂所截获的信息。显然,保密性是网络安全通信最基本的要求,也是对付被动攻击所必须具备的功能。尽管计算机网络安全并不仅仅依靠保密性,但不能提供保密性的网络肯定是不安全的。为了使网络具有保密性,我们需要使用各种密码技术。

2. 端点鉴别

安全的计算机网络必须能够鉴别信息的发送方和接收方的真实身份。网络通信和面对面的通信差别很大。现在频繁发生的网络诈骗,在许多情况下,就是由于在网络上不能鉴别出对方的真实身份。当我们进行网上购物时,首先需要知道卖家是真正有资质的商家还是犯罪分子假冒的商家,不能解决这个问题,就不能认为网络是安全的。端点鉴别在对付主动攻击时是非常重要的。

3. 信息的完整性

即使能够确认发送方的身份是真实的,并且所发送的信息都是经过加密的,我们依然不能认为网络是安全的。还必须确认所收到的信息都是完整的,也就是信息的内容没有被人篡改过。保证信息的完整性在应对主动攻击时也是必不可少的。信息的完整性和保密性是两个不同的概念。例如,商家向公众发布的商品广告当然不需要保密,但如果广告在网络上传送时被人恶意删除或添加了一些内容,那么就可能对商家造成很大的损失。

实际上,信息的完整性与端点鉴别往往是不可分割的。假定你准确知道报文发送方的身份没有错(即通过了端点鉴别),但收到的报文却已被人篡改过(即信息不完整),那么这样的报文显然是没有用处

的。因此,在谈到"鉴别"时,有时是同时包含了端点鉴别和报文的完整性。也就是说、既鉴别发送方的身份,又鉴别报文的完整性。

4. 运行的安全性

现在的机构与计算机网络的关系越密切,就越要重视计算机网络运行的安全性。上一节介绍的恶意程序和拒绝服务的攻击,即使没有窃取到任何有用的信息,也能够使受到攻击的计算机网络不能正常运行,甚至完全瘫痪。因此,确保计算机系统运行的安全性,也是非常重要的工作。对于一些要害部门,这点尤为重要。

访问控制(access control)对计算机系统的安全性非常重要。必须对访问网络的权限加以控制,并规定每个用户的访问权限。由于网络是个非常复杂的系统,其访问控制机制比操作系统的访问控制机制更复杂(尽管网络的访问控制机制是建立在操作系统的访问控制机制之上的),尤其在安全要求更高的多级安全(multilevel security)情况下更是如此。

7.1.3 数据加密模型

一般的数据加密模型如图7-2所示。用户A向B发送**明文**X,但通过**加密算法**E运算后,就得出**密文**Y。

图7-2 一般的数据加密模型

图中所示的加密和解密用的**密钥** K (key) 是一串秘密的字符串(即比特串)。公式(7-1)就是明文通过加密算法变成密文的一般表示方法。

$$Y = E_K(X) \tag{7-1}$$

在传送过程中可能出现密文的**截取者**(或**攻击者、入侵者**)。公式(7-2)表示接收端利用**解密算法**D运算和**解密密钥**K,解出明文X。解密算法是加密算法的逆运算。在进行解密运算时,如果不使用事先约定好的密钥就无法解出明文。

$$D_K(Y) = D_K(E_K(X)) = X$$
 (7-2)

这里我们假定加密密钥和解密密钥都是一样的。但实际上它们可以是不一样的(即使不一样,这两个密钥也必然有某种相关性)。密钥通常由密钥中心提供。当密钥需要向远地传送时,一定要通过另一个安全信道。

密码编码学(cryptography)是密码体制的设计学,而**密码分析学**(cryptanalysis)则是在未知密钥的情况下从密文推演出明文或密钥的技术。密码编码学与密码分析学合起来即为**密码学**(cryptology)。

如果不论截取者获得了多少密文,但在密文中都没有足够的信息来唯一地确定出对应的明文,则这一密码体制称为无条件安全的,或称为**理论上是不可破的**。在无任何限制的条件下,目前几乎所有实用的密码体制均是可破的。因此,人们关心的是要研制出**在计算上(而不是在理论上)是不可破的密码体制**。如果一个密码体制中的密码,不能在一定时间内被可以使用的计算资源破译,则这一密码体制称为**在计算上是安全的**。

早在几千年前人类就已经有了通信保密的思想和方法。直到1949年,信息论创始人香农(C. E. Shannon)发表著名文章 [SHAN49],论证了一般经典加密方法得到的密文几乎都是可破的。密码学的研究曾面临着严重的危机。但从20世纪60年代起,随着电子技术、计算技术的迅速发展以及结构代数、可计算性和计算复杂性理论等学科的研究,密码学又进入了一个新的发展时期。在20世纪70年代后期,美国的**数据加密标准** DES(Data Encryption Standard)和**公钥密码体制**(public key crypto-system,又称为公开密钥密码体制)的出现,成为近代密码学发展史上的两个重要里程碑。

7.2 两类密码体制

7.2.1 对称密钥密码体制

所谓**对称密钥密码体制**,即**加密密钥与解密密钥是使用相同的密码体制**。例如图7-2所示的情况,通信的双方使用的就是对称密钥。

数据加密标准 DES属于对称密钥密码体制。它由IBM公司研制出,于1977年被美国定为联邦信息标准后,在国际上引起了极大的重视。ISO曾将DES作为数据加密标准。

DES是一种分组密码。在加密前,先对整个的明文进行分组。每一个组为64位长的二进制数据。然后对每一个64位二进制数据进行加密处理,产生一组64位密文数据。最后将各组密文串接起来,即得出整个的密文。使用的密钥占有64位(实际密钥长度为56位,外加8位用于奇偶校验)。

DES的保密性仅取决于对密钥的保密,而算法是公开的。DES的问题是它的密钥长度。56位长的密钥意味着共有2 ⁵⁶种可能的密钥,也就是说,共有约7.6×10 ¹⁶种密钥。假设一台计算机1μs可执行一次DES加密,同时假定平均只需搜索密钥空间的一半即可找到密钥,那么破译DES要超过1000年。

但现在已经设计出来搜索DES密钥的专用芯片。例如在1999年有一批在互联网上合作的人借助于一台不到25万美元的专用计算机,用22小时多一点的时间就破译了56位密钥的DES。若用价格为100万美元或1000万美元的机器,则预期的搜索时间分别为3.5小时或21分钟。现在对于56位DES密钥的搜索已成常态,56位DES已不再被认为是安全的。

但从另一方面来说,20世纪70年代设计的DES,经过世界上无数优秀学者20多年的密码分析,除了密钥长度以外,没有发现任何大的设计缺陷(最为有效的是"线性分析",需要用到近2⁴⁷个明文-密文对)。

对于DES 56位密钥的问题,学者们提出了三重DES(Triple DES或记为3DES)的方案,把一个64位明文用一个密钥加密,再用另一个密钥解密,然后再使用第一个密钥加密,即

$$Y = DES_{K1}(DES^{-1}_{K2}(DES_{K1}(X)))$$

这里,X是明文,Y是密文,K1和K2分别是第一个和第二个密钥, DES_{K1} (\cdot) 表示用密钥K1进行DES加密,而 $DES^{-1}_{K2}(\cdot)$ 表示用密钥

K2进行DES解密。

三重DES广泛用于网络、金融、信用卡等系统。

在DES之后,1997年美国标准与技术协会(NIST)开始了对高级加密标准AES(Advanced Encryption Standard)的遴选,以取代DES。最初有15个方案申报,经过两轮的筛选和世界各地学者的论证以及在各种平台上的测试,最后由两位年轻的比利时学者Joan Daemen和Vincent Rijmen提交的Rijndael算法被选中,在2001年正式成为高级加密标准AES。

7.2.2 公钥密码体制

公钥密码体制 (又称为公开密钥密码体制)的概念是由斯坦福(Stanford) 大学的研究人员 Diffie 与 Hellman 于 1976 年提出的「DIFF76」。公钥密码体制使用不同的加密密钥与解密密钥。

公钥密码体制的产生主要有两个方面的原因,一是由于对称密钥密码体制的**密钥分配**问题,二是由于对**数字签名**的需求。

在对称密钥密码体制中,加解密的双方使用的是相同的密钥。但怎样才能做到这一点呢?一种是事先约定,另一种是用信使来传送。在高度自动化的大型计算机网络中,用信使来传送密钥显然是不合适的。如果事先约定密钥,就会给密钥的管理和更换带来极大的不便。若使用高度安全的**密钥分配中**心KDC(Key Distribution Center),也会使得网络成本增加。

对数字签名的强烈需要也是产生公钥密码体制的一个原因。在许多应用中,人们需要对纯数字的电子信息进行签名,表明该信息确实是某个特定的人产生的。

公钥密码体制提出不久,人们就找到了三种公钥密码体制。目前最著名的是由美国三位科学家Rivest,Shamir和Adleman于1976年提出并在1978年正式发表的RSA体制,它是一种基于数论中的大数分解问题的体制「RIVE78」。

在公钥密码体制中,**加密密钥** PK (public key, 即**公钥**) 是向公众公开的,而**解密密钥** SK (secret key, 即**私钥** 或**秘钥**) 则是需要保密

的。加密算法E 和解密算法D 也都是公开的。

公钥密码体制的加密和解密过程有如下特点:

- (1)**密钥对**产生器产生出接收者B的一对密钥:加密密钥 PK_B 和解密密钥 SK_B 。发送者A所用的加密密钥 PK_B 就是接收者B的公钥,它向公众公开。而B所用的解密密钥 SK_B 就是接收者B的私钥,对其他人都保密。
- (2)发送者A用B的公钥 PK_B 通过E运算对明文X加密,得出密文Y,发送给B。

$$Y = E_{PK_{\mathbf{R}}}(X) \tag{7-3}$$

B用自己的私钥 SK_B 通过D运算进行解密,恢复出明文,即

$$D_{SK_{R}}(Y) = D_{SK_{R}}(E_{PK_{R}}(X)) = X$$
(7-4)

- (3) 虽然在计算机上可以容易地产生成对的 PK_B 和 SK_B ,但从已知的 PK_B 实际上不可能推导出 SK_B ,即从 PK_B 到 SK_B 是"**计算上不可能的**"。
 - (4) 虽然公钥可用来加密,但却不能用来解密,即

$$D_{PK_{\mathsf{B}}}(E_{PK_{\mathsf{B}}}(X)) \neq X \tag{7-5}$$

(5) 先后对X 进行D 运算和E 运算或进行E 运算和D 运算,结果都是一样的:

$$E_{PK_B}(D_{SK_B}(X)) = D_{SK_B}(E_{PK_B}(X)) = X$$
(7-6)

请注意,通常都是先加密然后再解密。但仅从运算的角度看,D运算和E运算的先后顺序则可以是任意的。对某个报文进行D运算,并不表明是要对其解密。

图7-3给出了用公钥密码体制进行加密的过程。

图7-3 公钥密码体制

公开密钥与对称密钥在使用通信信道方面有很大的不同。在使用对称密钥时,由于双方使用同样的密钥,因此在通信信道上可以进行一对一的双向保密通信,每一方既可用此密钥加密明文,并发送给对方,也可接收密文,用同一密钥对密文解密。这种保密通信仅限于持有此密钥的双方(如再有第三方就不保密了)。但在使用公开密钥时,在通信信道上可以是多对一的单向保密通信。例如在图7-3中,可以有很多人同时持有B的公钥,并各自用此公钥对自己的报文加密后发送给B。只有B才能够用其私钥对收到的多个密文一一进行解密。但使用这对密钥进行反方向的保密通信则是不行的。在现实生活中,这种多对一的单向保密通信是很常用的。例如,在网购时,很多顾客都向同一个网站发送各自的信用卡信息,就属于这种情况。

请注意,任何加密方法的安全性取决于密钥的长度,以及攻破密文所需的计算量,而不是简单地取决于加密的体制(公钥密码体制或传统加密体制)。我们还要指出,公钥密码体制并没有使传统密码体制被弃用,因为目前公钥加密算法的开销较大,在可见的将来还不会放弃传统加密方法。

7.3 数字签名

书信或文件是根据亲笔签名或印章来证明其真实性的。但在计算机网络中传送的文电又如何盖章呢?这就要使用数字签名。数字签名必须保证能够实现以下三点功能:

(1)接收者能够核实发送者对报文的签名。也就是说,接收者能够确信该报文的确是发送者发送的。其他人无法伪造对报文的签名。这叫做报文鉴别。

- (2) 接收者确信所收到的数据和发送者发送的完全一样而没有被篡改 过。这叫做**报文的完整性**。
 - (3) 发送者事后不能抵赖对报文的签名。这叫做不可否认。

现在已有多种实现数字签名的方法。但采用公钥算法要比采用对称密钥算法更容易实现。下面就来介绍这种数字签名。

为了进行**签名**,A用其私钥 SK_A 对报文X进行D运算(见图7-4)。D运算本来叫做解密运算。可是,还没有加密怎么就进行解密呢?这并没有关系。因为D运算只是得到了某种不可读的密文。在图7-4中我们写为"D运算"而不是"解密运算",就是为了避免产生这种误解。A把经过D运算得到的密文传送给B。B为了**核实签名**,用A的公钥进行E运算,还原出明文X。请注意,任何人用A的公钥 PK_A 进行E运算后都可以得出A发送的明文。可见图7-4所示的通信方式并非为了保密,而是为了进行签名和核实签名,即确认此明文的确是A发送的。

图7-4 数字签名的实现

下面讨论一下数字签名为什么具有上述的三点功能。

因为除A外没有别人持有A的私钥 SK_A ,所以除A外没有别人能产生密文 $D_{SK_A}(X)$ 。这样,B就相信报文X是A签名发送的。这就是报文鉴别的功能。同理,其他人如果篡改过报文,但由于无法得到A的私钥 SK_A 来对X进行加密,那么B对篡改过的报文进行解密后,将会得出不可读的明文,就知道收到的报文被篡改过。这样就可以保证报文的完整性。若A要抵赖曾发送报文给B,B可把X 及 $D_{SK_A}(X)$ 出示给进行公证的第三者。第三者很容A)(易用 PK_A 去证实A确实发送X 给B。这就是不可否认的功能。这三项功能的关键都在于没有其他人能够持有A的私钥 SK_A 。

但上述过程仅对报文进行了签名,对报文X本身却未保密。因为截获到密文 $D_{SK_A}(X)$ 并知道发送者身份的任何人,通过查阅手册即可获得发送者的公钥 PK_A ,因而能知道报文的内容。若采用图7-5所示的方法,则可同时实现秘密通信和数字签名。图中 SK_A 和 SK_B 分别为A和B的公钥。

图7-5 具有保密性的数字签名

7.4 鉴别

在网络的应用中,**鉴别**(authentication)是网络安全中一个很重要的问题。鉴别和加密是不相同的概念。**鉴别是要验证通信的对方的确是自己所要通信的对象,而不是其他的冒充者,并且所传送的报文是完整的,没有被他人篡改过。**

请注意,鉴别与**授权**(authorization)也是不同的概念。授权涉及的问题是:所进行的过程是否被允许(如是否可以对某文件进行读或写)。

有时可再把鉴别细分为两种。一种是报文鉴别,即鉴别所收到的报文的确是报文的发送者所发送的,而不是其他人伪造的或篡改的。这就包含了端点鉴别和报文完整性的鉴别。另一种则是实体鉴别,即仅仅鉴别发送报文的实体。实体可以是一个人,也可以是一个进程(客户或服务器)。这就是端点鉴别。

下面分别讨论报文鉴别与实体鉴别的特点。

7.4.1 报文鉴别

1. 密码散列函数

理论上讲,使用7.3节所讨论的数字签名就能够实现对报文的鉴别。然而这种方法有一个很大的缺点,就是对较长的报文(这是很常见的)进行数字签名会使计算机增加非常大的负担,因为这需要进行较多的时间来进行运算。例如图7-4所示的D运算和E运算都需要花费非常多的计算机的CPU时间。因此,我们需要找出一种相对简单的方法对报文进行鉴别。这种方法就是使用**密码散列函数**(cryptographic hash function)。

我们在前面几章中,曾多次使用过检验和(checksum)这一概念。实际上,检验和就是散列函数的一种应用,用于发现数据在传输过程中的比特差错。

我们知道, 散列函数具有以下两个特点:

- (1) 散列函数的输入长度可以很长,但其**输出长度则是固定的,并且较短**。散列函数的输出叫做**散列值**,或更简单些,称为**散列**。
- (2) 不同的散列值肯定对应于不同的输入,但不同的输入却可能得出相同的散列值。这就是说,散列函数的输入和输出并非一一对应的,而是多对一的。

在密码学中使用的散列函数称为密码散列函数,其最重要的特点就是:要找到两个不同的报文,它们具有同样的密码散列函数输出,在计算上是不可行的。也就是说,密码散列函数实际上是一种**单向函数**(one-way function)。

上述的重要概念可用图7-6来说明。

这就是说,如果我们的固定长度的散列H(X)被网络入侵者截获了,那么截获者也无法伪造出另一个明文Y,使得H(Y)=H(X)。换言之,散列H(X)可用来保护明文X的完整性,因为如果 (X, H(X)) 是发送方所创建的明文和从该明文导出的散列,那么入侵者无法根据截获的散列H(X) 伪造出另一个明文Y,使得Y的散列H(Y) 与明文X的散列H(X)相同。

2. 实用的密码散列函数MD5和SHA-1

通过许多学者的不断努力,已经设计出一些实用的密码散列函数(或称为散列算法),其中最出名的就是MD5和SHA-1。MD就是Message Digest的缩写,意思是**报文摘要**。MD5是报文摘要的第5个版本。

报文摘要算法MD5公布于RFC 1321(1991年),并获得了非常广泛的应用。MD5的设计者Rivest曾提出一个猜想,即根据给定的MD5报文摘要代码,要找出一个与原来报文有相同报文摘要的另一报文,其难度在计算上几乎是不可能的。但在2004年,中国学者王小云②发表了轰动世界的密码学论文,证明可以用系统的方法找出一对报文,这对报文具有相同的MD5报文摘要[W-WANG],而这仅需15分钟,或不到1小时。"密码散列函数的逆向变换是不可能的"这一传统概念现在已受到了颠覆性的动摇。随后,又有许多学者开发了对MD5实际的攻击。于是MD5最终被另一种叫做安全散列算法 SHA(Secure Hash Algorithm)的标准所取代。

下面仍以MD5为例来介绍报文摘要。这主要是考虑到目前新的散列函数(如SHA)都是从MD5发展而来的。对于有兴趣研究散列函数的读者,MD5是个很好的出发点。

MD5算法的大致过程如下:

- (1) 先把任意长的报文按模 2^{64} 计算其余数(64位),追加在报文的后面。
- (2) 在报文和余数之间填充1~512位,使得填充后的总长度是512的整数倍。填充的首位是1.后面都是0。

(3) 把追加和填充后的报文分割为一个个512位的数据块,每个512位的报文数据再分成4个128位的数据块依次送到不同的散列函数进行4轮计算。每一轮又都按32位的小数据块进行复杂的运算。一直到最后计算出MD5报文摘要代码(128位)。

这样得出的MD5报文摘要代码中的每一位都与原来报文中的每一位有关。由此可见,像MD5这样的密码散列函数实际上已是个相当复杂的算法,而不是简单的函数了。

SHA是由美国标准与技术协会NIST提出的一个散列算法系列。SHA和MD5相似,但码长为160位(比MD5的128位多了25%)。SHA也是用512位长的数据块经过复杂运算得出的。SHA比MD5更安全,但计算起来却比MD5要慢些。1995年发布的新版本SHA-1[RFC 3174]在安全性方面有了很大的改进,但后来SHA-1也被证明其实际安全性并未达到设计要求,并且也曾被王小云教授的研究团队攻破。虽然现在SHA-1仍在使用,但很快就会被另外的两个版本SHA-2和SHA-3[WSHA3]所替代。例如,微软选择弃用SHA-1的计划,并将于2017年1月1日起停止支持SHA-1证书,而以前签发的SHA-1证书也必须更换为SHA-2证书。谷歌也宣布将在Chrome浏览器中逐渐降低SHA-1证书的安全指示。

3. 报文鉴别码

下面进一步讨论在报文鉴别中怎样使用散列函数。

下面给出的三个简单步骤,看起来似乎可以作为报文鉴别之用。

- (1) 用户A首先根据自己的明文X 计算出散列H(X) (例如,使用MD5)。为方便起见,我们把得出的散列H(X) 记为H。
- (2) 用户A把散列H 拼接在明文X 的后面,生成了扩展的报文(X,H),然后发送给B。
- (3) 用户B收到了这个扩展的报文(X, H)。因为散列的长度H 是早已知道的固定值,因此可以把收到的散列H 和明文X 分离开。B通过散列函数的运算,计算出收到的明文X 的散列H(X)。若H(X)=

像上面列举的做法,**实际上是不可行的**。设想某个入侵者创建了一个伪造的报文M,然后也同样地计算出其散列H(M),并且冒充A把拼接有散列的扩展报文发送给B。B收到扩展的报文(M, H(M))后,按照上面步骤(3)的方法进行验证,发现一切都是正常的,就会误认为所收到的伪造报文就是A发送的。

因此,必须设法对上述的攻击进行防范。解决的办法并不复杂,就是对散列进行一次加密。图7-7给出了这种办法的示意图。

图7-7 用报文鉴别码MAC鉴别报文

从图7-7可以看出,在A从报文X 导出散列H 后,就对散列H 用密钥K 加密。这样得出的结果叫做**报文鉴别码** MAC(Message Authentication Code)。请注意:局域网中使用的媒体接入控制MAC也是使用这三个字母,因此在看到MAC时应注意上下文。

A把已加密的报文鉴别码MAC拼接在报文X的后面,得到扩展的报文,发送给B。

B收到扩展的报文后,先把报文鉴别码MAC与报文X分离出来。然后用同样的密钥K对收到的报文鉴别码MAC进行解密运算,得出加密前的散列H。再把报文X进行散列函数运算,得出散列H(X)。最后,把计算出的散列H(X)与H进行比较。如一致,就可以相信所收到的报文X的确是A发送的。由于入侵者不掌握密钥K,所以入侵者无法伪造A的报文鉴别码MAC,因而无法伪造A发送的报文。这样就完成了对报文的鉴别。

我们可以注意到,现在整个的报文是不需要加密的。虽然从散列H 导出报文鉴别码MAC需要加密算法,但由于散列H 的长度通常都远远小于报文X 的长度,因此这种加密不会消耗很多的计算资源。这样,使用鉴别码MAC就能够很方便地保护报文的完整性。

现在已经有了好几个不同的MAC标准,而使用最广泛的就是HMAC,它可以和MD5或SHA-1一起使用「RFC 2104, 6151」。

如图7-7所示的鉴别报文的方法实际上还有不少问题有待解决。例如, 采用什么样的方法可以安全有效地来分发通信双方共享的密钥*K*?一种可行的方法是采用公钥系统。我们仍然用图7-7来说明。

用户A用其私钥对散列H进行D运算,得出报文鉴别码MAC。然后A把报文鉴别码MAC拼接在报文X的后面,构成扩展的报文发送给B。B收到扩展的报文后,采取的做法和前面所述的基本一样,不同的地方是,对收到的报文鉴别码MAC是用A的公钥进行E运算。由于入侵者没有A的私钥,因此他不可能伪造出A发出的报文。

我们还可看出,采用这样的方法得到的扩展报文,不仅是不可伪造的,也是不可否认的。

7.4.2 实体鉴别

实体鉴别和报文鉴别不同。报文鉴别是对每一个收到的报文都要鉴别报文的发送者,而实体鉴别是在系统接入的全部持续时间内对和自己通信的对方实体只需验证一次。

最简单的实体鉴别过程如图7-8所示。A向远端的B发送带有自己身份A(例如,A的姓名)和口令的报文,并且使用双方约定好的共享对称密钥 K_{AB} 进行加密。B收到此报文后,用共享对称密钥 K_{AB} 进行解密,从而鉴别了实体A的身份。

图7-8 仅使用对称密钥传送鉴别实体身份的报文

然而这种简单的鉴别方法具有明显的漏洞。例如,入侵者C可以从网络上截获A发给B的报文,C并不需要破译这个报文 (因为这可能得花很长时间),而是直接把这个由A加密的报文发送给B,使B误认为C就是A;然后B就向伪装成A的C发送许多本来应当发给A的报文。这就叫做重放攻击 (replay attack)。C甚至还可以截获A的IP地址,然后

把A的IP地址冒充为自己的IP地址(这叫做IP欺骗),使B更加容易受骗。

为了对付重放攻击,可以使用**不重数** (nonce) 。不重数就是一个**不重复使用的大随机数**,即"一次一数"。在鉴别过程中不重数可以使B能够把重复的鉴别请求和新的鉴别请求区分开。图7-9给出了这个过程。

图7-9 使用不重数进行鉴别

在图7-9中,A首先用明文发送其身份A和一个不重数 R_A 给B。接着,B响应A的查问,用共享的密钥 K_{AB} 对 R_A 加密后发回给A,同时也给出了自己的不重数 R_B 。最后,A再响应B的查问,用共享的密钥 K_{AB} 对 R_B 加密后发回给B。这里很重要的一点是A和B对不同的会话必须使用不同的不重数集。由于不重数不能重复使用,所以C在进行重放攻击时无法重复使用所截获的不重数。

在使用公钥密码体制时,可以对不重数进行签名鉴别。例如在图7-9中,B用其私钥对不重数 R_A 进行签名后发回给A。A用B的公钥核实签名,如能得出自己原来发送的不重数 R_A ,就核实了和自己通信的对方的确是B。同样,A也用自己的私钥对不重数 R_B 进行签名后发送给B。B用A的公钥核实签名,鉴别了A的身份。

公钥密码体制虽然不必在互相通信的用户之间秘密地分配共享密钥,但仍有受到攻击的可能。让我们看下面的例子。

C冒充是A, 发送报文给B, 说:"我是A"。

B选择一个不重数 R_R ,发送给A,但被C截获了。

C用自己的私钥 SK_C 冒充是A的私钥,对 R_B 加密,并发送给B。

B向A发送报文,要求对方把解密用的公钥发送过来,但这报文也被C 截获了。

 $C把自己的公钥PK_C冒充是A的公钥发送给B。$

B用收到的公钥 PK_C 对收到的加密的 R_B 进行解密,其结果当然正确。于是B相信通信的对方是A,接着就向A发送许多敏感数据,但都被C截获了。

然而上述这种欺骗手段不够高明,因为B只要打电话询问一下A就能戳穿骗局,因为A根本没有和B进行通信。但下面的"中间人攻击"(man-in-the-middle attack)就更加具有欺骗性。图7-10是"中间人攻击"的示意图。

图7-10 中间人攻击

从图7-10可看出,A想和B通信,向B发送"我是A"的报文,并给出了自己的身份。这个报文被"中间人"C截获,C把这个报文原封不动地转发给B。B选择一个不重数 R_B 发送给A,但同样被C截获后也照样转发给A。

中间人C用自己的私钥 SK_C 对 R_B 加密后发回给B,使B误以为是A发来的。A收到 R_B 后也用自己的私钥 SK_A 对 R_B 加密后发回给B,但中途被C截获并丢弃。B向A索取其公钥,这个报文被C截获后转发给A。

C把自己的公钥 PK_C 冒充是A的公钥发送给B,而C也截获到A发送给B的公钥 PK_{Δ} 。

B用收到的公钥 PK_C (以为是A的)对数据DATA 加密,并发送给A。C 截获后用自己的私钥 SK_C 解密,复制一份留下,然后再用A的公钥 PK_A 对数据DATA 加密后发送给A。A收到数据后,用自己的私钥 SK_A 解密,以为和B进行了保密通信。其实,B发送给A的加密数据已被中间人C截获并解密了一份,但A和B却都不知道。

由此可见,公钥的分配以及认证公钥的真实性也是一个非常重要的问题。关于这点我们在后面(7.5.2节)还要讨论。

7.5 密钥分配

由于密码算法是公开的,网络的安全性就完全基于密钥的安全保护上。因此在密码学中出现了一个重要的分支——**密钥管理**。密钥管理包括:密钥的产生、分配、注入、验证和使用。本节只讨论密钥的分配。

密钥分配(或**密钥分发**)是密钥管理中最大的问题。密钥必须通过最安全的通路进行分配。例如,可以派非常可靠的信使携带密钥分配给互相通信的各用户。这种方法称为**网外分配方式**。但随着用户的增多和网络流量的增大,密钥更换频繁(密钥必须定期更换才能做到可靠),派信使的办法已不再适用,而应采用**网内分配方式**,即对密钥自动分配。

7.5.1 对称密钥的分配

对称密钥分配存在以下两个问题。

第一,如果n个人中的每一个需要和其他n-1个人通信,就需要n(n-1)个密钥。但每两人共享一个密钥,因此密钥数是n(n-1)/2。这常称为 n^2 问题。如果n是个很大的数,所需要的密钥数量就非常大。

第二,通信的双方怎样才能安全地得到共享的密钥呢?正是因为网络不安全,所以才需要使用加密技术。但密钥又需要怎样传送呢?

目前常用的密钥分配方式是设立**密钥分配中心** KDC(Key Distribution Center)。KDC是大家都信任的机构,其任务就是给需要进行秘密通信的用户临时分配一个会话密钥(仅使用一次)。在图7-11中假定用户A和B都是KDC的登记用户。A和B在KDC登记时就已经在KDC的服务器上安装了各自和KDC进行通信的**主密钥**(master key) K_A 和 K_B 。为简单起见,下面在叙述时把"主密钥"简称为"密钥"。密钥分配分为三个步骤(如图7-11中带箭头直线上的 $\mathbf{1}$,**2**和**3**所示)。

图7-11 KDC对会话密钥的分配

- ❶ 用户A向密钥分配中心KDC发送时用明文,说明想和用户B通信。 在明文中给出A和B在KDC登记的身份。
- ② KDC用随机数产生"一次一密"的会话密钥 K_{AB} 供A和B的这次会话使用,然后向A发送回答报文。这个回答报文用A的密钥 K_A 加密。这个报文中包含这次会话使用的密钥 K_{AB} 和请A转给B的一个**票据**(ticket)⁽³⁾,该票据包括A和B在KDC登记的身份,以及这次会话将要使用的密钥 K_{AB} 。票据用B的密钥 K_{B} 加密,A无法知道此票据的内容,因为A没有B的密钥 K_{B} ,当然A也不需要知道此票据的内容。
- 3 当B收到A转来的票据并使用自己的密钥 K_B 解密后,就知道A要和他通信,同时也知道KDC为这次和A通信所分配的会话密钥 K_{AB} 。

此后, $A和B就可使用会话密钥<math>K_{AB}$ 进行这次通信了。

请注意,在网络上传送密钥时,都是经过加密的。解密用的密钥都不在网上传送。

KDC还可在报文中加入时间戳,以防止报文的截取者利用以前已记录下的报文进行重放攻击。会话密钥 K_{AB} 是一次性的,因此保密性较高。而KDC分配给用户的密钥 K_A 和 K_B ,都应定期更换,以减少攻击者破译密钥的机会。

目前最出名的密钥分配协议是Kerberos V5⁽⁴⁾ [RFC 4120, 4121, 目前是建议标准],是美国麻省理工学院(MIT)开发的。Kerberos既是鉴别协议,同时也是KDC,它已经变得很普及,现在是互联网建议标准。Kerberos使用比DES更加安全的高级加密标准AES进行加密。下面用图7-12介绍Kerberos V4的大致工作过程(其原理和V5大体一样,但稍简单些)。

图7-12 Kerberos的工作原理

Kerberos使用两个服务器: **鉴别服务器** AS(Authentication Server)、**票据授予服务器** TGS(Ticket-Granting Server)。Kerberos只用于客户与服务器之间的鉴别,而不用于人对人的鉴别。在图7-12中,A是请求服务的客户,而B是被请求的服务器。A通过Kerberos向B请求服务。Kerberos需要通过以下六个步骤鉴别的确是A(而不是其他人冒充A)向B请求服务后,才向A和B分配会话使用的密钥。下面简单解释各步骤。

- ❶ A用明文(包括登记的身份)向鉴别服务器AS表明自己的身份。AS就是KDC,它掌握各实体登记的身份和相应的口令。AS对A的身份进行验证。只有验证结果正确,才允许A和票据授予服务器TGS进行联系。
- ②鉴别服务器AS向A发送用A的对称密钥 K_A 加密的报文,这个报文包含A和TGS通信的会话密钥 K_S 以及AS要发送给TGS的票据(这个票据是用TGS的对称密钥 K_{TG} 加密的)。A并不保存密钥 K_A ,但当这个报文到达A时,A就键入其口令。若口令正确,则该口令和适当的算法一起就能生成密钥 K_A 。这个口令随即被销毁。密钥 K_A 用来对AS发送过来的报文进行解密。这样就提取出会话密钥 K_S (这是A和TGS通信要使用的)以及要转发给TGS的票据(这是用密钥 K_{TG} 加密的)。

❸ A向TGS发送三项内容:

- 转发鉴别服务器AS发来的票据。
- 服务器B的名字。这表明A请求B的服务。请注意,现在A向TGS证明自己的身份并非通过键入口令(因为入侵者能够从网上截获明文口令),而是通过转发AS发出的票据(只有A才能提取出)。票据是加密的,入侵者伪造不了。
- 用 K_S 加密的时间戳T。它用来防止入侵者的重放攻击。
- $oldsymbol{\Phi}$ TGS发送两个票据,每一个都包含A和B通信的会话密钥 K_{AB} 。给A的票据用 K_S 加密;给B的票据用B的密钥 K_B 加密。请注意,现在入侵者不能提取 K_{AB} ,因为不知道 K_S 和 K_B 。入侵者也不能重放步骤 $oldsymbol{\Phi}$,因为入侵者不能把时间戳更换为一个新的(因为不知道 K_S)。如果入侵者在时间戳到期之前,非常迅速地发送步骤 $oldsymbol{\Phi}$ 的报文,那么对TGS发送过来的两个票据仍然不能解密。
- $oldsymbol{5}$ A向B转发TGS发来的票据,同时发送用 K_{AB} 加密的时间戳T。
- **⑤** B把时间戳T加1来证实收到了票据。B向A发送的报文用密钥 K_{AB} 加密。

以后,A和B就使用TGS给出的会话密钥 K_{AB} 进行通信。

顺便指出,Kerberos要求所有使用Kerberos的主机必须在时钟上进行"松散的"同步。所谓"松散的"同步是要求所有主机的时钟误差不能太大,例如,不能超过5分钟的数量级。这个要求是为了防止重放攻击。TGS发出的票据都设置较短的有效期。超过有效期的票据就作废了。因此入侵者即使截获了某个票据,也不能长期保留用来进行以后的重放攻击。

7.5.2 公钥的分配

在公钥密码体制中,如果每个用户都具有其他用户的公钥,就可实现安全通信。看起来好像可以随意公布用户的公钥,其实不然。设想用户A要欺骗用户B,A可以向B发送一份伪造是C发送的报文,A用自己的私钥进行数字签名,并附上A自己的公钥,谎称这公钥是C的。B如何知道这个公钥不是C的呢?显然,这需要有一个值得信赖的机构来将公钥与其对应的实体(人或机器)进行绑定(binding)。这样的机构就叫做认证中心CA(Certification Authority),它一般由政府出资建立。每个实体都有CA发来的证书(certificate),里面有公钥及其拥有者的标识信息(人名或IP地址)。此证书被CA进行了数字签名。任何用户都可从可信的地方(如代表政府的报纸)获得认证中心CA的公钥,此公钥用来验证某个公钥是否为某个实体所拥有(通过向CA查询)。有的大公司(如Netscape)也提供认证中心服务。

在IE浏览器中,选择"工具/Internet选项/内容/证书"就可以查看有关证书发行机构的信息。用户可以从证书颁发机构获得自己的安全证书。

为了使CA的证书具有统一的格式,ITU-T制定了X.509协议标准,用来描述证书的结构。在X.509中规定要使用ASN.1。IETF接受了X.509(仅有少量的改动),并在RFC 5280(现在是建议标准)中给出了互联网X.509公钥基础结构 PKI(Public Key Infrastructure)。

7.6 互联网使用的安全协议

前面几节所讨论的网络安全原理都可用在互联网中,目前在网络层、运输层和应用层都有相应的网络安全协议。下面分别介绍这些协议的要点。

7.6.1 网络层安全协议

1. IPsec协议族概述

我们在第4章的4.8.1节中讨论虚拟专用网VPN时,提到在VPN中传送的信息都是经过加密的。现在我们就要介绍提供这种加密服务的IPsec。

IPsec并不是一个单一协议,而是能够在IP层提供互联网通信安全的协议族(不太严格的名词"IPsec协议"也常见到)。IPsec并没有限定用户必须使用何种特定的加密和鉴别算法。实际上,IPsec是个框架,它允许通信双方选择合适的算法和参数(例如,密钥长度)。为保证互操作性,IPsec还包含了一套加密算法,所有IPsec的实现都必须使用。

IPsec就是"IP安全(security)"的缩写。在很多RFC文档中已给出了详细的描述。在这些文档中,最重要的就是描述IP安全体系结构的RFC 4301(目前是建议标准)和提供IPsec协议族概述的RFC 6071。

IPsec协议族中的协议可划分为以下三个部分:

- (1) IP安全数据报格式的两个协议: **鉴别首部AH** (Authentication Header) 协议 和**封装安全有效载荷ESP** (Encapsulation Security Payload) 协议。
 - (2) 有关加密算法的三个协议(在此不讨论)。
 - (3)**互联网密钥交换** IKE(Internet Key Exchange)协议。

后面我们要重点介绍IP安全数据报的格式,以便了解IPsec怎样提供网络层的安全通信。AH协议提供源点鉴别和数据完整性,但不能保密。而ESP协议比AH协议复杂得多,它提供源点鉴别、数据完整性和保密。IPsec支持IPv4和IPv6。在IPv6中,AH和ESP都是扩展首部的一部分。AH协议的功能都已包含在ESP协议中,因此使用ESP协议就可以不使用AH协议。下面我们将不再讨论AH协议,而只介绍ESP协议的要点。

使用ESP或AH协议的IP数据报称为IP安全数据报(或IPsec数据报),它可以在两台主机之间、两个路由器之间或一台主机和一个路由器之

间发送。

IP安全数据报有以下两种不同的工作方式。

第一种工作方式是**运输方式**(transportm ode)。运输方式是在整个运输层报文段的前后分别添加若干控制信息,再加上IP首部,构成IP安全数据报。

第二种工作方式是**隧道方式**(tunnelm ode)。隧道方式是在原始的IP 数据报的前后分别添加若干控制信息,再加上新的IP首部,构成一个IP安全数据报。

无论使用哪种方式,最后得出的IP安全数据报的IP首部都是不加密的。只有使用不加密的IP首部,互联网中的各个路由器才能识别IP首部中的有关信息,把IP安全数据报在不安全的互联网中进行转发,从源点安全地转发到终点。所谓"安全数据报"是指数据报的数据部分是经过加密的,并能够被鉴别的。通常把数据报的数据部分称为数据报的**有效载荷**(payload)。

由于目前使用最多的就是隧道方式,因此下面的讨论只限于隧道方式。

2. 安全关联

在发送IP安全数据报之前,在源实体和目的实体之间必须创建一条网络层的逻辑连接,即**安全关联SA**(Security Association)。这样,**传统的互联网中无连接的网络层就变为了具有逻辑连接的一个层**。安全关联是从源点到终点的**单向连接**,它能够提供安全服务。如要进行双向安全通信,则两个方向都需要建立安全关联。假定某公司有一个公司总部和一个在外地的分公司。总部需要和这个分公司以及在各地出差的n个员工进行双向安全通信。在这种情况下,一共需要创建(2+2n)条安全关联SA。在这些安全关联SA上传送的就是IP安全数据报。

图7-13是安全关联SA的示意图。公司总部和分公司都各有一个负责收发IP数据报的路由器 R_1 和 R_2 (通常就是公司总部和分公司的防火墙中的路由器),而公司总部与分公司之间的安全关联SA就是在路由器

 R_1 和 R_2 之间建立的。现假定公司总部的主机 H_1 要和分公司的主机 H_2 通过互联网进行安全通信。

安全关联 SA: 路由器 R₁ 到路由器 R₂

图7-13 安全关联SA的示意图

公司总部主机 H_1 发送给分公司主机 H_2 的IP数据报,必须先经过公司总部的路由器 R_1 。然后经IPsec的加密处理后,成为IP安全数据报。这样就把原始的IP数据报隐藏在IP安全数据报中了。IP安全数据报经过互联网中很多路由器的转发,最后到达分公司的路由器 R_2 。路由器 R_2 对IP安全数据报解密,还原出原始的数据报,传送到终点主机 H_2 。从逻辑上看,IP安全数据报在安全关联SA上传送,就好像通过一个安全的隧道。这就是"隧道方式"这一名词的来源。如果总部的主机 H_1 要和总部的另一台主机 H_3 通信,由于都在公司内部,不需要加密,因此不需要建立安全关联。 H_1 发出的IP数据报只需通过总部内部的路由器 R_1 转发一次即可送到 H_3 。如果 H_1 要上网查看天气预报,同样不需要建立安全关联,而是发送IP数据报,经过路由器 R_1 转发到互联网中的下一个路由器,最后到达互联网中预报气象的服务器。

若公司总部的主机 H_1 要和某外地业务员的主机 H_2 进行安全通信,则情况将稍有不同(图7-14)。可以看出,这时公司总部的路由器 R_1 和外地业务员的主机 H_2 建立安全关联SA(即路由器和主机之间的安全关联)。公司总部 H_1 发送的IP数据报,通过路由器 R_1 后,就变成了IP安全数据报。经过互联网中许多路由器的转发,最后到达 H_2 。可以看出,现在是在路由器 R_1 和业务员的主机 H_2 之间构成了一个安全隧道。外地业务员利用事先安装在 H_2 中的IPSec对IP安全数据报进行鉴别和解密,还原 H_1 发来的IP数据报。

图7-14 和外地笔记本电脑建立安全关联SA的示意图

建立安全关联SA的路由器或主机,必须维护这条SA的状态信息。我们以图7-13中的安全关联SA为例,说明其状态信息应包括的项目:

- (1) 一个32位的连接标识符,称为**安全参数索引SPI** (Security Parameter Index)。
- (2)安全关联SA的源点和终点的IP地址(即路由器 R_1 和 R_2 的IP地址)。
 - (3) 所使用的加密类型(例如、DES或AES)。
 - (4) 加密的密钥。
- (5) 完整性检查的类型(例如,使用报文摘要MD5或SHA-1的报文鉴别码MAC)。
 - (6) 鉴别使用的密钥。

当路由器 R_1 要通过SA发送IP安全数据报时,就必须读取SA的这些状态信息,以便知道如何把IP数据报进行加密和鉴别。

3. IP安全数据报的格式

图7-15是IP安全数据报的格式。下面以隧道方式为例,结合各字段的作用,讨论一下IP安全数据报是怎样构成的。图中的数字❶至❺表示IP安全数据报构成的先后顺序。

图7-15 IP安全数据报的格式

- ① 首先在原始的IP数据报(也就是ESP的有效载荷)后面添加ESP尾 部。ESP尾部有三个字段。第一个字段是填充字段,用全0填充。第二 个字段是填充长度(8位) 指出填充字段的字节数。为什么要进行填 充呢? 这是因为在进行数据加密时, 通常都要求数据块长度是若干字 节 (例如, 4字节) 的整数倍。当IP数据报长度不满足此条件时. 须用0进行填充。每个0为一个字节长。虽然填充长度 填充很少会用到这个最大值。ESP尾部最后 段是"下一个首部"(8位) 现在的值为4。这个字段的值指明 收端, ESP的有效载荷应交给什么样的协议来处理。如图7-15所示, 安全数据报有三个首部。现在ESP尾部中的"下一个首部"显然就是指 ESP的有效载荷中的"原始的IP首部"。如果不是隧道方式而是运输方 式.则"ESP的有效载荷"就应当是TCP或UDP报文段."下一个首部"的 值也要改为另外的数值。
- ❷按照安全关联SA指明的加密算法和密钥,对"ESP的有效载荷(即原始的IP数据报)+ESP尾部"(见图7-15中的"加密的部分")进行加密。
- ❸对"加密的部分"完成加密后,就添加ESP首部。ESP首部有两个32位字段。第一个字段存放安全参数索引SPI。通过同一个SA的所有IP安全数据报都使用同样的SPI值。第二个字段是序号,鉴别要用到这个序号,它用来防止重放攻击。请注意,当分组重传时序号并不重复。
- ❹ 按照SA指明的算法和密钥,对"ESP首部+加密的部分"(见图7-15中的"鉴别的部分")生成报文鉴别码MAC。

- ⑤ 把所生成的报文鉴别码MAC添加在ESP尾部的后面,和ESP首部、ESP的有效载荷、ESP尾部一起,构成IP安全数据报的有效载荷。
- ⑥生成新的IP首部,通常为20字节长,和普通的IP数据报的首部的格式是一样的。需要注意的是,首部中的协议字段的值是50,表明在接收端,首部后面的有效载荷应交给ESP协议来处理。

当分公司的路由器 R_2 收到IP安全数据报后,先检查首部中的目的地址。发现目的地址就是 R_2 ,于是路由器 R_2 就继续处理这个IP安全数据报。

路由器 R_2 找到IP首部的协议字段值(现在是50),就把IP首部后面的所有字段(即IP安全数据报的有效载荷)都用ESP协议进行处理。先检查ESP首部中的安全参数索引SPI,以确定收到的数据报属于哪一个安全关联SA(因为路由器 R_2 可能有多个安全关联)。路由器 R_2 接着计算报文鉴别码MAC,看是否和ESP尾部后面添加的报文鉴别码MAC相符。如是,即知收到的数据报的确是来自路由器 R_1 。再检验ESP首部中的序号,以证实有无被入侵者重放。接着要用和这个安全关联SA对应的加密算法和密钥,对已加密的部分进行解密。再根据ESP尾部中的填充长度,去除发送端填充的所有0,还原出加密前的ESP有效载荷,也就是 H_1 发送的原始IP数据报。

根据解密后得到的ESP尾部中"下一个首部"的值(现在是4),把ESP的有效载荷交给IP来处理。当找到原始的IP首部中的目的地址是主机H₂的IP地址时,就把整个的IP数据报传送给主机H₂。整个IP数据报的传送过程到此结束。

请注意,在图7-15的"原始的IP首部"中,是用主机 H_1 和 H_2 的IP地址分别作为源地址和目的地址,而在IP安全数据报的"新的IP首部"中,是使用路由器 R_1 和 R_2 的IP地址分别作为源地址和目的地址(这是图7-13所示的情况)。但如果是图7-14所示的情况,安全IP数据报不经过另一个路由器 R_2 ,那么在IP安全数据报的"新的IP首部"中,要用路由器 R_1 和主机 H_2 的IP地址分别作为IP安全数据报的源地址和目的地址。

从以上的讨论可以看出,设想有一个IP安全数据报在互联网中被某人截获,如果截获者不知道此安全数据报的密码,那么他只能知道这是

一个从路由器 R_1 发往路由器 R_2 的IP数据报,但却无法看懂其有效载荷中的数据含义。假定截获者故意删除了安全数据报中的一些字节,但由于接收端的路由器 R_2 能够进行完整性检验,就不会接收这种含有差错的信息。如果截获者试图进行重放攻击,那么由于安全数据报使用了有效的序号,使得重放攻击也无法得逞。

4. IPsec的其他构件

前面已经提到过,发送IP安全数据报的实体可能要用到很多条安全关联SA。那么这些SA存放在什么地方呢?这就要提及IPsec的一个重要构件,叫做**安全关联数据库** SAD(Security Association Database)。当主机要发送IP安全数据报时,就要在SAD中查找相应的SA,以便获得必要的信息,来对该IP安全数据报实施安全保护。同样,当主机要接收IP安全数据报时,也要在SAD中查找相应的SA,以便获得信息来检查该分组的安全性。

前面已经提到了,主机所发送的数据报并非都必须进行加密,很多信息使用普通的数据报用明文发送即可。因此,除了安全关联数据库SAD,还需要另一个数据库,这就是**安全策略数据库**SPD(Security Policy Database)。SPD指明什么样的数据报需要进行IPsec处理。这取决于源地址、源端口、目的地址、目的端口,以及协议的类型等。因此,当一个IP数据报到达时,SPD指出应当做什么(使用IP安全数据报还是不使用),而SAD则指出,如果需要使用IP安全数据报,应当怎样做(使用哪一个SA)。

还有一个问题,安全关联数据库SAD中存放的许多安全关联SA是怎样建立起来的呢?如果一个虚拟专用网VPN只有几个路由器和主机,那么用人工键入的方法就可以建立起所需的安全关联数据库SAD。但如果一个VPN有好几百或几千个路由器和主机,人工键入的方法显然是不行的。因此,对于大型的、地理位置分散的系统,为了创建SAD,我们需要使用自动生成的机制,即使用**互联网密钥交换** IKE(Internet Key Exchange)协议。IKE的用途就是为IP安全数据报创建安全关联SA。

IKE是个非常复杂的协议,IKEv2是其新的版本,在2014年10月已成为互联网的正式标准 [RFC 7296] 。IKEv2以另外三个协议为基础:

- (1) Oakley——是个密钥生成协议 [RFC 2412] 。
- (2) **安全密钥交换机制** SKEME(Secure Key Exchange Mechanism)——是用于密钥交换的协议。它利用公钥加密来实现密钥交换协议中的实体鉴别。
- (3) **互联网安全关联和密钥管理协议** ISAKMP(Internet Secure Association and Key Management Protocol)——用于实现IKE中定义的密钥交换,使IKE的交换能够以标准化、格式化的报文创建安全关联SA。

关于IKE的深入介绍可参阅有关文档,如RFC 4945和RFC 7427(都是建议标准)。

7.6.2 运输层安全协议

当万维网能够提供网上购物时,安全问题就马上被提到桌面上来了。 例如,当顾客在网上购物时,他会要求得到下列安全服务:

- (1) 顾客需要确保服务器属于真正的销售商,而不是属于一位冒充者,因为顾客不希望把他的信用卡号交给一位冒充者。同样,销售商也可能需要对顾客进行鉴别。
- (2) 顾客与销售商需要确保报文的内容(例如账单)在传输过程中没有被更改。
- (3) 顾客与销售商需要确保诸如信用卡号之类的敏感信息不被冒充者窃听。

像上述这些安全服务,需要使用运输层的安全协议。现在广泛使用的有两个协议:

- 安全套接字层 SSL(Secure Socket Layer)。
- 运输层安全 TLS(Transport Layer Security)。

下面简单介绍这两个协议的特点。

SSL协议是Netscape公司在1994年开发的安全协议,广泛应用于基于万维网的各种网络应用(但不限于万维网应用)。SSL作用在端系统应用层的HTTP和运输层之间,在TCP之上建立起一个安全通道,为通过TCP传输的应用层数据提供安全保障。

1995年Netscape公司把SSL转交给IETF,希望能够把SSL进行标准化。于是IETF在SSL 3.0的基础上设计了TLS协议,为所有基于TCP的网络应用提供安全数据传输服务。为了应对网络安全的变化,IETF及时地对TLS的版本进行升级,如2008年8月的互联网建议标准TLS 1.2 [RFC 5246],到2015年10月就有了8个更新文档。

运输层原来还有一个**安全电子交易** SET(Secure Electronic Transaction)协议,是专门用于在互联网上进行安全信用卡交易的协议。它最初是由两家著名信用卡公司Visa和MasterCard于1996年开发的,世界上许多具有领先技术的公司也参与了。然而由于在SET交易中客户端要使用专门的软件(叫做浏览器钱包),同时商家要支付的费用比使用SSL更加昂贵,因此SET在市场竞争中失败了。

现在很多浏览器都已使用了SSL和TLS。例如,在IE 11.0中,打开"工具"菜单,选择"Internet选项"项目,弹出"Internet选项"对话框(图7-16中的❶),再选择"高级"(图7-16中的❷),在"安全"组中就可看见"使用 SSL 2.0"、"使用 SSL 3.0"和"使用 TLS 1.0"、"使用 TLS 1.1"、"使用TLS 1.2"选项(图7-16中的❸)。

图7-16 在IE浏览器中使用SSL和TLS

在下面的讨论中,为简单起见,我们用SSL表示SSL/TLS。

我们知道,在未使用SSL时,应用层的应用程序的数据是通过TCP套接字与运输层进行交互的。这一概念如图7-17(a)所示。

使用SSL后的情况有些特殊。因为SSL增强了TCP的服务(更加安全了),因此,SSL应该是运输层协议。然而实际上,需要使用安全运输的应用程序(如HTTP)却把SSL驻留在应用层。结果如图7-17(b)所示,应用层扩大了。在应用程序下面多了一个SSL子层,而在应用程序和SSL子层之间,还有一个SSL套接字,其作用和以前讲过的TCP套接字相似,是应用程序和SSL子层的应用编程接口API。

应用层使用SSL最多的就是HTTP,但SSL并非仅用于HTTP,而是可用于任何应用层的协议。例如,SSL也可用于IMAP邮件存取的鉴别和数据加密。当使用普通不加密的浏览器查看网页时,HTTP就直接使用TCP连接,这时SSL不起作用。但使用信用卡进行网上支付,要键入信用卡密码时,就需要使用安全的浏览器。这时,应用程序HTTP就调用SSL对整个网页进行加密。网页上会提示用户,同时网址栏原来显示http的地方,现在变成了https。在http后面加上的s代表security,表明现在使用的是提供安全服务的HTTP协议(TCP的HTTPS端口号是443,而不是平时使用的端口号80)。这时在发送方,SSL从SSL套接字接收应用层的数据(如HTTP或IMAP报文),对数据进行加密,然后把加密的数据送往TCP套接字;在接收方,SSL从TCP套接字读取数据,解密后,通过SSL套接字把数据交给应用层。

SSL提供的安全服务可归纳为以下三种:

- (1) SSL服务器鉴别,允许用户证实服务器的身份。支持SSL的客户端通过验证来自服务器的证书,来鉴别服务器的真实身份并获得服务器的公钥。
- (2) SSL客户鉴别, SSL的可选安全服务, 允许服务器证实客户的身份。
- (3) 加密的SSL会话,对客户和服务器间发送的所有报文进行加密,并检测报文是否被篡改。

下面以万维网应用为例来说明SSL的工作过程。

销售商的万维网服务器B使用SSL为顾客A提供安全的在线购物。当顾客点击该网站链接建立TCP连接后,先进行浏览器和服务器之间的握手协议,完成加密算法的协商和会话密钥的传递,然后进行安全数据传输。其简要过程如下(实际步骤要复杂得多):

(1) **协商加密算法**。●浏览器A向服务器B发送浏览器的SSL版本号和一些可选的加密算法。❷B从中选定自己所支持的算法(如RSA),并告知A。

- (2)**服务器鉴别**。❸服务器B向浏览器A发送包含其RSA公钥的数字证书。❹A使用该证书的认证机构CA公开发布的RSA公钥对该证书进行验证。
- (3) **会话密钥计算**。由浏览器A随机产生一个秘密数。❺用服务器B的RSA公钥进行加密后发送给B。⑥双方根据协商的算法产生共享的对称会话密钥。
- (4) **安全数据传输**。 **②**双方用会话密钥加密和解密它们之间传送的数据并验证其完整性。

上述的SSL安全会话建立过程如图7-18所示。

图7-18 SSL建立安全会话的简要过程

目前全球通过SSL进行的网上交易每年已超过数百亿美元。但SSL还缺少一些措施来防止在互联网商务中出现各种可能的欺骗行为。

7.6.3 应用层安全协议

限于篇幅,我们在这一节仅讨论应用层中有关电子邮件的安全协议。

电子邮件在传送过程中可能要经过许多路由器,其中的任何一个路由器都有可能对转发的邮件进行阅读。从这个意义上讲,电子邮件是没有什么隐私可言的。

电子邮件这种网络应用也有其很特殊的地方,这就是发送电子邮件是个即时的行为。这种行为在本质上与我们前两节所讨论的不同。当我们使用IPSec或SSL时,我们假设双方在相互之间建立起一个会话并双向地交换数据。而在电子邮件中没有会话存在。当A向B发送一个电子邮件时,A和B并不会为此而建立任何会话。而在此后的某个时间,如果B读取了该邮件,他有可能会、也有可能不会回复这个邮件。可见我们所讨论的是**单向报文的安全问题**。

如果说电子邮件是即时的行为,那么发送方与接收方如何才能就用于电子邮件安全的加密算法达成一致意见呢?如果双方之间不存在会话,不存在协商加密/解密所使用的算法,那么接收方如何知道发送方选择了哪种算法呢?

要解决这个问题,电子邮件的安全协议就应当为每种加密操作定义相应的算法,以便用户在其系统中使用。A必须要把使用的算法的名称(或标识)包含在电子邮件中。例如,A可以选择用AES进行加密/解密,并选择用SHA-1作为报文摘要算法。当A向B发送电子邮件时,就在自己的邮件中包含与AES和SHA-1相对应的标识。B在接收到该邮件后,首先要提取这些标识,然后就能知道在解密和报文摘要运算时应当分别使用哪种算法了。

加密算法在使用加密密钥时也存在同样的问题。如果没有协商过程,通信的双方如何在彼此之间知道所使用的密钥?目前的电子邮件安全协议要求使用对称密钥算法进行加密和解密,并且这个一次性的密钥要跟随报文一起发送。发信人A可以生成一个密钥并把它与报文一起发送给B。为了保护密钥不被外人截获,这个密钥需要用收信人B的公钥进行加密。总之,这个密钥本身也要被加密。

还有一个问题也需要考虑。很显然,要实现电子邮件的安全就必须使用某些公钥算法。例如,我们需要对密钥加密或者对邮件签名。为了对密钥进行加密,发信人A就需要收信人B的公钥,同样为了验证被签名的报文,收信人B也需要发信人A的公钥。因此,为了发送一个具有鉴别和保密的报文,就需要用到两个公钥。但是A如何才能确认B的公

钥,B又如何才能确认A的公钥呢?不同的电子邮件安全协议有不同的方法来验证密钥。

下面我们介绍在应用层为电子邮件提供安全服务的协议PGP。

PGP(Pretty Good Privacy)是Zimmermann于1995年开发的。它是一个完整的电子邮件安全软件包,包括加密、鉴别、电子签名和压缩等技术。PGP并没有使用什么新的概念,它只是把现有的一些加密算法(如RSA公钥加密算法或MD5报文摘要算法)综合在一起而已。由于包括源程序的整个软件包可以从互联网免费下载[W-PGP],因此PGP在MS-DOS/Windows以及UNIX等平台上得到了广泛的应用。现在PGP的网站以每个月百万页的规模,为一百多个国家的用户提供服务。

值得注意的是,虽然PGP已被广泛使用,并且成为了电子邮件的事实上的标准,但PGP并不是互联网的正式标准。

PGP的工作原理并不复杂。它提供电子邮件的安全性、发送方鉴别和报文完整性。

假定A向B发送电子邮件明文X,现在用PGP进行加密。A有三个密钥:自己的私钥、B的公钥和自己生成的一次性密钥。B有两个密钥:自己的私钥和A的公钥。

A需要做以下几件事(见图7-19)。

图7-19 在发送方A的PGP处理过程

(1)对明文邮件X进行MD5运算,得出MD5报文摘要H。用A的私钥对H进行加密(即数字签名),得出报文鉴别码MAC,把它拼接在明文X后面,得到扩展的邮件(X,MAC)。

- (2)使用A自己生成的一次性密钥对扩展的邮件(X,MAC)进行加密。
 - (3) 用B的公钥对A生成的一次性密钥进行加密。
 - (4) 把加了密的一次性密钥和加了密的扩展的邮件发送给B。

请注意,在图7-19中有三个"加密"是不同的作用。第一次加密是用A的私钥对报文摘要H进行加密(也就是进行数字签名)。第二次加密是用A的一次性密钥对扩展的邮件(X,MAC)加密,而第三次加密是用B的公钥对A的一次性密钥加密。

B收到加密的扩展的报文后要做以下几件事(见图7-20):

图7-20 在接收方B的PGP处理过程

- (1) 把被加密的一次性密钥和被加密的扩展的报文(X,MAC)分离开。
 - (2) 用B自己的私钥解出A的一次性密钥。
- (3) 用解出的一次性密钥对报文进行解密,然后分离出明文X 和MAC。
- (4) 用A的公钥对MAC进行解密(即签名核实),得出报文摘要H。这个报文摘要就是A原先用明文邮件X通过MD5运算生成的那个报文摘要。
- (5) 对分离出的明文邮件X 进行MD5报文摘要运算,得出另一个报文摘要,我们在图7-20中记为H(X)。把H(X)和前面得出的H进行

比较,是否一样。如一样,则对邮件的发送方的鉴别就通过了,报文的完整性也得到肯定。

在PGP中,发件方和收件方是如何获得对方的公钥呢?当然,最安全的办法是双方面对面直接交换公钥,但在大多数情况下这并不现实。因此可以通过认证中心CA签发的证书来验证公钥持有者的合法身份。在PGP中不要求使用CA,而允许用一种第三方签署的方式来解决该问题。例如,如果用户A和用户B分别和第三方C已经确认对方拥有的公钥属实。则,C可以用其私钥分别对A和B的公钥进行签名,为这两个公钥进行担保。当A得到一个经C签名的B的公钥时,可以用已确认的C的公钥对B的公钥进行鉴别。不过,用户发布其公钥的最常见的方式还是把公钥发布在他们的个人网页上,或仅仅通过电子邮件进行分发。

PGP很难被攻破。因此在目前可以认为PGP是足够安全的。

7.7 系统安全: 防火墙与入侵检测

恶意用户或软件通过网络对计算机系统的入侵或攻击已成为当今计算机安全最严重的威胁之一。用户入侵包括利用系统漏洞进行未授权登录,或者授权用户非法获取更高级别权限。软件入侵方式包括通过网络传播病毒、蠕虫和特洛伊木马。此外还包括阻止合法用户正常使用服务的拒绝服务攻击,等等。而前面讨论的所有安全机制都不能有效解决以上安全问题。例如,加密技术并不能阻止植入了"特洛伊木马"的计算机系统通过网络向攻击者泄漏秘密信息。

7.7.1 防火墙

防火墙(firewall)作为一种访问控制技术,通过严格控制进出网络边界的分组,禁止任何不必要的通信,从而减少潜在入侵的发生,尽可能降低这类安全威胁所带来的安全风险。由于防火墙不可能阻止所有入侵行为,作为系统防御的第二道防线,**入侵检测系统** IDS(Intrusion Detection System)通过对进入网络的分组进行深度分析与检测发现疑似入侵行为的网络活动,并进行报警以便进一步采取相应措施。

防火墙是一种特殊编程的路由器,安装在一个网点和网络的其余部分之间,目的是实施访问控制策略。这个访问控制策略是由使用防火墙的单位自行制定的。这种安全策略应当最适合本单位的需要。图7-21指出防火墙位于互联网和内部网络之间。互联网这边是防火墙的外面,而内部网络这边是防火墙的里面。一般都把防火墙里面的网络称为"可信的网络"(trusted network)。

图7-21 防火墙在互连网络中的位置。

防火墙技术一般分为以下两类。

(1) 分组过滤路由器 是一种具有分组过滤功能的路由器,它根据过滤规则对进出内部网络的分组执行转发或者丢弃(即过滤)。过滤规则是基于分组的网络层或运输层首部的信息,例如:源/目的IP地址、源/目的端口、协议类型(TCP或UDP),等等。我们知道,TCP的端口号指出了在TCP上面的应用层服务。例如,端口号23是TELNET,端口号119是新闻网USENET,等等。所以,如果在分组过滤器中将所有目的端口号为23的入分组(incoming packet)都进行阻拦,那么所有外单位用户就不能使用TELNET登录到本单位的主机上。同理,如果某公司不愿意其雇员在上班时花费大量时间去看互联网的USENET新闻,就可将目的端口号为119的出分组(outgoing packet)阻拦住,使其无法发送到互联网。

分组过滤可以是无状态的,即独立地处理每一个分组。也可以是有状态的,即要跟踪每个连接或会话的通信状态,并根据这些状态信息来决定是否转发分组。例如,一个目的地是某个客户动态分配端口(该端口无法事先包含在规则中)的进入分组,它被允许通过的唯一条件是:该分组是该端口发出合法请求的一个响应。这样的规则只能通过有状态的检查来实现。

分组过滤路由器的优点是简单高效,且对于用户是透明的,但不能对高层数据进行过滤。例如,不能禁止某个用户对某个特定应用进行某个特定的操作,不能支持应用层用户鉴别等。这些功能需要使用应用网关技术来实现。

(2) **应用网关** 也称为**代理服务器** (proxy server),它在应用层通信中扮演报文中继的角色。一种网络应用需要一个应用网关,例如在上一章6.4.3节中"代理服务器"介绍过的万维网缓存就是一种万维网应用的代理服务器。在应用网关中,可以实现基于应用层数据的过滤和高层用户鉴别。

所有进出网络的应用程序报文都必须通过应用网关。当某应用客户进程向服务器发送一份请求报文时,先发送给应用网关,应用网关在应用层打开该报文,查看该请求是否合法(可根据应用层用户标识ID或其他应用层信息来确定)。如果请求合法,应用网关以客户进程的身份将请求报文转发给原始服务器。如果不合法,报文则被丢弃。例如,一个邮件网关在检查每一个邮件时,根据邮件地址,或邮件的其他首部,甚至是报文的内容(如,有没有"导弹""核弹头"等关键词)来确定该邮件能否通过防火墙。

应用网关也有一些缺点。首先,每种应用都需要一个不同的应用网关 (可以运行在同一台主机上)。其次,在应用层转发和处理报文,处理负担较重。另外,对应用程序不透明,需要在应用程序客户端配置 应用网关地址。

通常可将这两种技术结合使用,图7-20所画的防火墙就同时具有这两种技术。它包括两个分组过滤路由器和一个应用网关,它们通过两个局域网连接在一起。

7.7.2 入侵检测系统

防火墙试图在入侵行为发生之前阻止所有可疑的通信。但事实是不可能阻止所有的入侵行为,有必要采取措施在入侵已经开始,但还没有造成危害或在造成更大危害前,及时检测到入侵,以便尽快阻止入侵,把危害降低到最小。入侵检测系统 IDS正是这样一种技术。IDS对进入网络的分组执行深度分组检查,当观察到可疑分组时,向网络管理员发出告警或执行阻断操作(由于IDS的"误报"率通常较高,多数情

况不执行自动阻断)。IDS能用于检测多种网络攻击,包括网络映射、端口扫描、DoS攻击、蠕虫和病毒、系统漏洞攻击等。

入侵检测方法一般可以分为基于特征的入侵检测和基于异常的入侵检 测两种。

基于特征的IDS维护一个所有已知攻击标志性特征的数据库。每个特征是一个与某种入侵活动相关联的规则集,这些规则可能基于单个分组的首部字段值或数据中特定比特串,或者与一系列分组有关。当发现有与某种攻击特征匹配的分组或分组序列时,则认为可能检测到某种入侵行为。这些特征和规则通常由网络安全专家生成,机构的网络管理员定制并将其加入到数据库中。

基于特征的IDS只能检测已知攻击,对于未知攻击则束手无策。基于异常的IDS通过观察正常运行的网络流量,学习正常流量的统计特性和规律,当检测到网络中流量的某种统计规律不符合正常情况时,则认为可能发生了入侵行为。例如,当攻击者在对内网主机进行ping搜索时,或导致ICMP ping报文突然大量增加,与正常的统计规律有明显不同。但区分正常流和统计异常流是一个非常困难的事情。至今为止,大多数部署的IDS主要是基于特征的,尽管某些IDS包括了某些基于异常的特性。

不论采用什么检测技术都存在"漏报"和"误报"情况。如果"漏报"率比较高,则只能检测到少量的入侵,给人以安全的假象。对于特定IDS,可以通过调整某些阈值来降低"漏报"率,但同时会增大"误报"率。"误报"率太大会导致大量虚假警报,网络管理员需要花费大量时间分析报警信息,甚至会因为虚假警报太多而对报警"视而不见",使IDS形同虚设。

7.8 一些未来的发展方向

本章介绍了网络安全的主要概念。网络安全是一个很大的领域,无法 在这进行深入的探讨。对于有志于这一领域的读者,可在下面几个方 向作进一步的研究:

1. 椭圆曲线密码(Elliptic Curve Cryptography,简写为ECC)与AES 这一系统现在已广泛用于电子护照中,也是下一代金融系统使用的加

密系统。

- 2. 移动安全(Mobile Security)移动通信带来的广泛应用(如移动支付,Mobile Payment)向网络安全提出了更高的要求。
- 3. 量子密码(Quantum Cryptography)量子计算机的到来将使得目前许多使用中的密码技术无效,后量子密码学(Post-Quantum Cryptography)的研究方兴未艾。

本章的重要概念

- 计算机网络上的通信面临的威胁可分为两大类,即被动攻击(如截获)和主动攻击(如中断、篡改、伪造)。主动攻击的类型有更改报文流、拒绝服务、伪造初始化、恶意程序(病毒、蠕虫、木马、逻辑炸弹、后门入侵、流氓软件)等。
- 计算机网络安全主要有以下一些内容: 保密性、安全协议的设计和访问控制。
- 密码编码学是密码体制的设计学,而密码分析学则是在未知密钥的情况下从密文推演出明文或密钥的技术。密码编码学与密码分析学合起来即为密码学。
- 如果不论截取者获得了多少密文,都无法唯一地确定出对应的明文,则这一密码体制称为无条件安全的(或理论上是不可破的)。在无任何限制的条件下,目前几乎所有实用的密码体制均是可破的。如果一个密码体制中的密码不能在一定时间内被可以使用的计算资源破译,则这一密码体制称为在计算上是安全的。
- 对称密钥密码体制是加密密钥与解密密钥相同的密码体制(如数据加密标准DES和高级加密标准AES)。这种加密的保密性仅取决于对密钥的保密,而算法是公开的。
- 公钥密码体制(又称为公开密钥密码体制)使用不同的加密密钥与解密密钥。加密密钥(即公钥)是向公众公开的,而解密密钥(即私钥或秘钥)则是需要保密的。加密算法和解密算法也都是公开的。
- 目前最著名的公钥密码体制是RSA体制,它是基于数论中的大数分解问题的体制。
- 任何加密方法的安全性取决于密钥的长度,以及攻破密文所需的 计算量,而不是简单地取决于加密的体制(公钥密码体制或传统 加密体制)。

- 数字签名必须保证能够实现以下三点功能: (1)报文鉴别,即接收者能够核实发送者对报文的签名; (2)报文的完整性,即接收者确信所收到的数据和发送者发送的完全一样而没有被篡改过;
 (3)不可否认,即发送者事后不能抵赖对报文的签名。
- 鉴别是要验证通信的对方的确是自己所要通信的对象,而不是其他的冒充者。鉴别与授权是不同的概念。
- 报文摘要MD是进行报文鉴别的一种简单方法。目前广泛使用的是SHA-1。
- 密钥管理包括:密钥的产生、分配、注入、验证和使用。密钥分配(或密钥分发)是密钥管理中最大的问题。密钥必须通过最安全的通路进行分配。目前常用的密钥分配方式是设立密钥分配中心KDC。
- 认证中心CA是一个值得信赖的机构,用来将公钥与其对应的实体 (人或机器)进行绑定。每个实体都有CA发来的证书,里面有公 钥及其拥有者的标识信息(人名或IP地址)。此证书被CA进行了 数字签名。任何用户都可从可信的地方获得认证中心CA的公钥。
- 在网络层可使用IPsec协议族, IPsec包括鉴别首部协议AH和封装安全有效载荷协议ESP。AH协议提供源点鉴别和数据完整性, 但不能保密。而ESP协议提供源点鉴别、数据完整性和保密。IPsec支持IPv4和IPv6。在IPv6中, AH和ESP都是扩展首部的一部分。IPsec数据报的工作方式有运输方式和隧道方式两种。
- 运输层的安全协议有SSL(安全套接字层)和TLS(运输层安全)。SSL最新的版本是SSL 3.0,它是保护万维网HTTP通信量所公认的事实上的标准。SSL不仅被所有常用的浏览器和万维网服务器所支持,而且也是TLS的基础。
- PGP是一个完整的电子邮件安全软件包,包括加密、鉴别、电子签名和压缩等技术。PGP并没有使用什么新的概念,它只是把现有的一些加密算法(如RSA公钥加密算法或MD5报文摘要算法)综合在一起而已。
- 防火墙是一种特殊编程的路由器,安装在一个网点和网络的其余部分之间,目的是实施访问控制策略。防火墙里面的网络称为"可信的网络",而把防火墙外面的网络称为"不可信的网络"。防火墙的功能有两个:一个是阻止(主要的),另一个是允许。
- 防火墙技术分为:网络级防火墙,用来防止整个网络出现外来非法的入侵(属于这类的有分组过滤和授权服务器);应用级防火墙,用来进行访问控制(用应用网关或代理服务器来区分各种应用)。

• 入侵检测系统IDS是在入侵已经开始,但还没有造成危害或在造成更大危害前,及时检测到入侵,以便尽快阻止入侵,把危害降低到最小。

习题

- **7-01** 计算机网络都面临哪几种威胁? 主动攻击和被动攻击的区别是什么? 对于计算机网络, 其安全措施都有哪些?
- **7-02** 试解释以下名词: (1) 重放攻击; (2) 拒绝服务; (3) 访问控制; (4) 流量分析; (5) 恶意程序。
- **7-03** 为什么说计算机网络的安全不仅仅局限于保密性? 试举例说明, 仅具有保密性的计算机网络不一定是安全的。
- 7-04 密码编码学、密码分析学和密码学都有哪些区别?
- **7-05** "无条件安全的密码体制"和"在计算上是安全的密码体制"有什么区别?
- 7-06 试破译下面的密文诗。加密采用替代密码。这种密码是把26个字母(从a到z)中的每一个用其他某个字母替代(注意,不是按序替代)。密文中无标点符号。空格未加密。

kfd ktbd fzm eubd kfd pzyiom mztx ku kzyg ur bzha kfthcm ur mfudm zhx mftnm zhx mdzythc pzq ur ezsszcdm zhx gthcm zhx pfa kfd mdz tm sutythc

fuk zhx pfdkfdi ntcm fzld pthcm sok pztk z stk kfd uamkdim eitdx sdruid pd fzld uoi efzk rui mubd ur om zid uok ur sidzkf zhx zyy ur om zid rzk hu foiia mztx kfd ezindhkdi kfda kfzhgdx ftb boef rui kfzk

7-07 对称密钥体制与公钥密码体制的特点各是什么?各有何优缺点?

- **7-08** 为什么密钥分配是一个非常重要但又十分复杂的问题? 试举出一种密钥分配的方法。
- **7-09** 公钥密码体制下的加密和解密过程是怎样的?为什么公钥可以公开?如果不公开是否可以提高安全性?
- 7-10 试述数字签名的原理。
- **7-11** 为什么需要进行报文鉴别?鉴别和保密、授权有什么不同?报文鉴别和实体鉴别有什么区别?
- 7-12 试分别举例说明以下情况: (1) 既需要保密, 也需要鉴别;
 - (2) 需要保密, 但不需要鉴别; (3) 不需要保密, 但需要鉴别。
- 7-13 A和B共同持有一个只有他们二人知道的密钥(使用对称密码)。A收到了用这个密钥加密的一份报文。A能否出示此报文给第三方,使B不能否认发送了此报文?
- **7-14** 图7-5所示的具有保密性的签名与使用报文鉴别码相比较,哪一种方法更有利于进行鉴别?
- 7-15 试述实现报文鉴别和实体鉴别的方法。
- 7-16 结合第5章图5-7计算UDP的检验和的例子,说明这种检验和不能用来鉴别报文。
- 7-17 报文的保密性与完整性有何区别? 什么是MD5?
- 7-18 什么是重放攻击? 怎样防止重放攻击?
- **7-19** 图 7-9的鉴别过程也有可能被骗子利用。假定A发送报文和B联系,但不巧被骗子P截获了,于是P发送报文给A:"我是B"。接着,A就发送图 7-9中的第一个报文"A, R_A ",这里 R_A 是不重数。本来,P必须也发给A另一个不重数,以及发回使用两人共同拥有的密钥 R_{AB} 加密的 R_A ,即 R_{AB} (R_A) 。但P根本不知道 R_{AB} ,只好就发送同样的 R_A 作为自己的不重数。A收到 R_A 后,发给P报文" R_{AB} (R_A)",P仍然不知道密钥 R_{AB} ,也照样发回报文" R_{AB} (R_A)"。接着A就把一些报文

发送给P了。虽然P不知道密钥 K_{AB} ,但可以慢慢设法攻破。试问A能 否避免这样的错误?

- 7-20 什么是"中间人攻击"? 怎样防止这种攻击?
- 7-21 试讨论Kerberos协议的优缺点。
- 7-22 互联网的网络层安全协议族IPsec都包含哪些主要协议?
- 7-23 用户A和B使用IPsec进行通信。A需要向B接连发送6个分组。是否需要在每发送一个分组之前,都先建立一次安全关联SA?
- 7-24 在图7-14中,公司总部和业务员之间先建立了TCP连接,然后使用IPsec进行通信。假定有一个TCP报文段丢失了。后来在重传该序号的报文段时,相应的IPsec安全数据报是否也要使用同样的IPsec序号呢?
- 7-25 试简述SSL的工作过程。
- **7-26** 在图7-18中,假定在第一步,顾客发送报文给经销商时,误将报文发送到一个骗子处,而骗子就接着冒充经销商继续下面的步骤。试问在报文交互到第几个步骤时,顾客可以发现对方并不是真正的经销商?
- 7-27 电子邮件的安全协议PGP主要都包含哪些措施?
- **7-28** 试述防火墙的工作原理和所提供的功能。什么叫做网络级防火墙和应用级防火墙?

(1)_注: 黑客(hacker)是指精通计算机编程的高手,他们能够通过专门的技术手段进入某些据称是相当安全的计算机系统中。黑客一般可分为两大类。一类是蓄意搞破坏或盗窃别人计算机中数据信息的坏人,而另一类则是专门研究计算机系统安全性的好人。例如,银行发行的信用卡必须十分安全,但这种信用卡的安全性在公开发行之前却无从知晓。这时就要请专门研究计算机安全的黑客对信用卡进行攻击实验。如黑客在努力尝试后仍无法攻破,则可认为该信用卡至少在目前是相对安全的。

(2)_注: 王小云,女,1966年出生,山东大学和清华大学教授,主要研究领域为密码学和信息安全学。

- (3)_注:目前在网络安全领域中ticket一词还没有标准译名,也有人译为"票"、"执照"或"签条"。
- (4)_注: Kerberos是希腊神话中具有三个头的狗,它为Hades(哈得斯,主宰阴间的冥王)看门。
- (5)_注: 2004年11月,联合国总部建立了"互联网治理工作组WGIG(Working Group on Internet Governance)",来解决互联网的诚信和安全问题。我国在2006年2月颁布的《国家中长期科学和技术发展规划纲要(2006~2020年)》中,提出以发展高可信网络为重点。现在高可信网络已成为研究热点。

第8章 互联网上的音频/视频服务

本章首先对互联网提供音频/视频服务进行概述。然后介绍流式音频/视频中的媒体服务器和实时流式协议RTSP,并以IP电话为例介绍交互式音频/视频所使用的一些协议,如实时运输协议RTP、实时传送控制协议RTCP、H.323以及会话发起协议SIP。接着讨论改进"尽最大努力交付"的服务的一些措施,包括怎样使互联网能够提供服务质量,并介绍综合服务IntServ、资源预留协议RSVP和区分服务DiffServ的要点。

本章最重要的内容是;

- (1) 多媒体信息的特点(如时延和时延抖动、播放时延等)。
- (2) 流媒体的概念。
- (3) IP电话使用的几种协议。
- (4) 改进"尽最大努力交付"服务的几种方法。

8.1 概述

计算机网络最初是为传送数据设计的。互联网IP层提供的"尽最大努力交付"服务以及每一个分组独立交付的策略,对传送数据信息十分合适。互联网使用的TCP协议可以很好地解决IP层不能提供可靠交付这一问题。

然而技术的进步使许多用户开始利用互联网传送音频/视频信息。在许多情况下,这种音频/视频常称为**多媒体信息**(1)。本来电路交换的公用电话网传送话音和多媒体信息早已是成熟的技术。例如视频会议(又称为电视会议)原先是使用电路交换的公用电话网。使用电路交换的好处是:一旦连接建立了(也就是只要拨通了电话),各种信号在电话线路上的传输质量就有保证。但使用公用电话网的缺点是价格太高。因此要想办法改用互联网。

多媒体信息(包括声音和图像信息)与不包括声音和图像的数据信息有很大的区别,其中最主要的两个特点如下。

第一. 多媒体信息的信息量往往很大。

含有音频或视频的多媒体信息的信息量一般都很大,下面是简单的说明。

对于电话的声音信息,如采用标准的PCM编码(8kHz速率采样),而每一个采样脉冲用8位编码,则得出的声音信号的数据率就是64kbit/s。对于高质量的立体声音乐CD信息,虽然它也使用PCM编码,但其采样速率为44.1kHz,而每一个采样脉冲用16位编码,因此这种双声道立体声音乐信号的数据率超过了1.4Mbit/s。

再看一下数码照片。假定分辨率为 1280×960 (中等质量)。若每个像素用24位进行编码,则一张未经压缩的照片的字节数约合3.52MB(这里1 B=8bit,1 M=2 20)。

活动图像的信息量就更大,如不压缩的彩色电视信号的数据率超过 250Mbit/s。

因此在网上传送多媒体信息都无例外地采用各种信息压缩技术。例如在话音压缩方面的标准有:移动通信的GSM(13kbit/s),IP电话使用的G.729(8kbit/s)和G.723.1(6.4kbit/s和5.3kbit/s);在立体声音乐的压缩技术有MP3(128kbit/s或112kbit/s)。在视频信号方面有:VCD质量的MPEG 1(1.5Mbit/s)和DVD质量的MPEG 2(3~6Mbit/s)。由于多媒体信息压缩技术本身不是计算机网络技术范畴,本书将不讨论有关数据压缩方面的内容。

第二,在传输多媒体数据时,对时延和时延抖动均有较高的要求。

首先要说明的是,"传输多媒体数据"隐含地表示了"边传输边播放"的意思。因为如果是把多媒体音频/视频节目先下载到计算机的硬盘中,等下载完毕后再去播放,那么在互联网上传输多媒体数据就没有什么更多的特点值得我们专门来讨论(仅仅是数据量非常大而已)。设想我们想欣赏网上的某个视频或音频节目。如果必须先花好几个小时(准确的时间事先还不知道)来下载它,等下载完毕后才能开始播放,那么这显然是很不方便的。因此,今后讨论在互联网上传输多媒体数据时,都是指含有"边传输边播放"的特点。

我们知道,模拟的多媒体信号只有经过数字化后才能在互联网上传送。就是对模拟信号要经过采样和模数转换变为数字信号,然后将一定数量的比特组装成分组进行传送。这些分组在发送时的时间间隔都是恒定的,通常称这样的分组为等时的(isochronous)。这种等时分组进入互联网的速率也是恒定的。但传统的互联网本身是非等时的。这是因为在使用IP协议的互联网中,每一个分组是独立地传送,因而这些分组在到达接收端时就变成为非等时的。如果我们在接收端对这些以非恒定速率到达的分组边接收边还原,那么就一定会产生很大的失真。图8-1说明了互联网是非等时的这一特点。

图8-1 互联网是非等时的

要解决这一问题,可以在接收端设置适当大小的缓存(2), 当缓存中的分组数达到一定的数量后再以恒定速率按顺序将这些分组读出进行还原播放。图8-2说明了缓存的作用。

图8-2 缓存把非等时的分组变换为等时的

从图8-2可看出,缓存实际上就是一个先进先出的队列。图中标明的T叫做播放时延,这就是从最初的分组开始到达缓存算起,经过时间T后就按固定时间间隔把缓存中的分组按先后顺序依次读出。我们看到,缓存使所有到达的分组都经受了迟延。由于分组以非恒定速率到达,因此早到达的分组在缓存中停留的时间较长,而晚到达的分组在缓存中停留的时间就较短。从缓存中取出分组是按照固定的时钟节拍进行的,因此,到达的非等时的分组,经过缓存后再以恒定速率读出,就变成了等时的分组(但请注意,时延太大的分组就丢弃了),这就在很大程度上消除了时延的抖动。但我们付出的代价是增加了时延。以上所述的概念可以用图8-3来说明。

图8-3 利用缓存得到等时的分组序列

图8-3画出了发送端一连发送6个等时的分组。如果网络**没有时延**,那么到达的分组数随时间的变化就如图中最左边的阶梯状的曲线所示。这就是说,只要发送方一发出一个分组,在接收方到达的分组数就立

即加1。但实际的网络使每一个分组经受的时延不同,因此这一串分组在到达接收端时就变成了非等时的,这就使得分组到达的阶梯状曲线向右移动,并且变成不均匀的。图8-3标注出了分组1的时延。图中给出了两个不同的开始播放时刻。黑色小圆点表示在播放时刻对应的分组已经在缓存中,而空心小圆圈表示在播放时刻对应的分组尚未到达。我们可以看出,即使推迟了播放时间(如图中的①),也还有可能有某个迟到分组赶不上播放(如图中的空心小圆圈)。如果再推迟播放时间(如图中的②),则所有的6个分组都不会错过播放,但这样做的时延会较大。

然而我们还有一些问题没有讨论。

首先,播放时延T应当选为多大?把T选择得越大,就可以消除更大的时延抖动,但所有分组经受的平均时延也增大了,而这对某些实时应用(如视频会议)是很不利的。当然这对单向传输的视频节目问题并不太大(如从网上下载一段视频节目,只要耐心多等待一段时间用来将分组放入缓存即可)。如果T选择得太小,那么消除时延抖动的效果就较差。因此播放时延T的选择必须折中考虑。在传送时延敏感(delay sensitive)的实时数据时,不仅传输时延不能太大,而且时延抖动也必须受到限制。

其次,在互联网上传输实时数据的分组时有可能会出现差错或甚至丢失。如果利用TCP协议对这些出错或丢失的分组进行重传,那么时延就会大大增加。因此实时数据的传输在运输层就应采用用户数据报协议UDP而不使用TCP协议。这就是说,对于传送实时数据,我们宁可丢失少量分组(当然不能丢失太多),也不要太晚到达的分组。在连续的音频或视频数据流中,很少量分组的丢失对播放效果的影响并不大(因为这是由人来进行主观评价的),因而是可以容忍的。丢失容忍(loss tolerant)也是实时数据的另一个重要特点。

由于分组的到达可能不按序,但将分组还原和播放时又应当是按序的。因此在发送多媒体分组时还应当给每一个分组加上**序号**。这表明还应当有相应的协议支持才行。

还有一种情况,就是要使接收端能够将节目中本来就存在的正常的短时间停顿(如话音中的静默期或音乐中出现的几拍停顿)和因某些分组产生的较大迟延造成的"停顿"区分开来。这就需要在每一个分组增

加一个**时间戳**(timestamp),让接收端知道所收到的每一个分组是在什么时间产生的。

有了序号和时间戳,再采用适当的算法,接收端就知道应在什么时间 开始播放缓存中收到的分组。这样既可减少分组的丢失率,也可使播放的延迟在人们可容忍的范围之内。

根据以上的讨论可以看出,若想在互联网上传送质量很好的音频/视频数据,就需要设法改造现有的互联网使它能够适应音频/视频数据的传送。

对这个问题,网络界一直有较大的争论,众说纷纭。有人认为,只要大量使用光缆,网络的时延和时延抖动就可以足够小。再加上使用具有大容量高速缓存的高速路由器,在互联网上传送实时数据就不会有问题。也有人认为,必须将互联网改造为能够对端到端的带宽实现**预留**(reservation),从而根本改变互联网的协议栈——**从无连接的网络转变为面向连接的网络**。还有人认为,部分改动互联网的协议栈所付出的代价较小,而这也能够使多媒体信息在互联网上的传输质量得到改进。

尽管上述的争论仍在继续,但互联网的一些新的协议也在不断出现。 下面我们有选择地讨论与传送音频/视频信息有关的若干问题。

目前互联网提供的音频/视频服务大体上可分为三种类型:

- (1) 流式(streaming)存储音频/视频 这种类型是先把已压缩的录制好的音频/视频文件(如音乐、电影等)存储在服务器上。用户通过互联网下载这样的文件。请注意,用户并不是把文件全部下载完毕后再播放,因为这往往需要很长时间,而用户一般也不大愿意等待太长的时间。流式存储音频/视频文件的特点是能够边下载边播放,即在文件下载后不久(例如,一般在缓存中存放最多几十秒)就开始连续播放。请注意,普通光盘中的DVD电影文件不是流式视频文件。如果我们打算下载一部光盘中的普通的DVD电影,那么你只能花费很长的时间把整个电影文件全部下载完毕后才能播放。请注意,flow的译名也是"流"(或"流量"),但意思和streaming完全不同。
- (2) 流式实况音频/视频 这种类型和无线电台或电视台的实况广播相似,不同之处是音频/视频节目的广播是通过互联网来传送的。流式

实况音频/视频是一对多(而不是一对一)的通信。它的特点是: 音频/视频节目不是事先录制好和存储在服务器中的, 而是在发送方边录制边发送(不是录制完毕后再发送)。在接收时也要求能够连续播放。接收方收到节目的时间和节目中事件的发生时间可以认为是同时的(相差仅仅是电磁波的传播时间和很短的信号处理时间)。流式实况音频/视频按理说应当采用多播技术才能提高网络资源的利用率, 但目前实际上还是使用多个独立的单播。

(3) **交互式音频/视频** 这种类型是用户使用互联网和其他人进行实时交互式通信。现在的互联网电话或互联网电视会议就属于这种类型。

请注意,对于流式音频/视频的"下载",实际上并没有把"下载"的内容存储在硬盘上。因此当"边下载边播放"结束后,在用户的硬盘上没有留下有关播放内容的任何痕迹。播放流式音频/视频的用户,仅仅能够在屏幕上观看播放的内容。用户既不能修改节目内容,也不能把播放的内容存储下来,因此也无法进行转发。这对保护版权非常有利。

不过技术总是在不断进步,现在已经有了能够存储在网上播放的流式音频/视频文件的软件。

我们现在常见的词汇**流媒体**(streamingm edia)就是上面所说的流式音频/视频。流媒体最主要的特点就是不是全部都收录下来再开始播放。在国外的一些文献中,常见到streaming一词,网上有人译为"串流",但目前还没有找到对streaming更好的译名。

限于篇幅,下面简单介绍上面的第一种和第三种音频/视频类型的服务。

8.2 流式存储音频/视频

"流式**存储** 音频/视频"中的"存储"二字,表明这里所讨论的流式音频/视频文件不是实时产生的,而是已经录制好的,通常存储在光盘或硬盘中。不过有时为了简便,往往省略"存储"二字。在讨论从网上下载这种文件之前,我们先回忆一下使用传统的浏览器是怎样从服务器下载已经录制好的音频/视频文件的。图8-4说明了下载的三个步骤。

图8-4 传统的下载文件方法

- ①用户从客户机(clientm achine)的浏览器上用HTTP协议向服务器请求下载某个音频/视频文件,GET表示请求下载的HTTP报文。请注意,HTTP使用TCP连接。
- ❷ 服务器如有此文件就发送给浏览器,RESPONSE表示服务器的HTTP响应报文。在响应报文中装有用户所要的音频/视频文件。整个下载过程可能会花费**很长的时间**。
- ❸ 当浏览器完全收下 这个文件后(所需的时间取决于音频/视频文件的大小),就可以传送给自己机器上的媒体播放器进行解压缩,然后播放。

为什么不能直接在浏览器中播放音频/视频文件呢?这是因为播放器并没有集成在万维网浏览器中。因此,必须使用一个单独的应用程序来播放这种音频/视频节目。这个应用程序通常称为**媒体播放器**(media player)。现在流行的媒体播放器有Real Networks的RealPlayer、微软的Windows Media Player和苹果公司的QuickTime。媒体播放器具有的主要功能是:管理用户界面、解压缩、消除时延抖动和处理传输带来的差错。

请注意,图8-4所示传统的下载文件的方法并没有涉及到"流式"(即边下载边播放)的概念。传统的下载方法最大缺点就是历时太长,这往往使下载者不愿继续等待。为此,已经找出了几种改进的措施。

8.2.1 具有元文件的万维网服务器

第一种改进的措施就是在万维网服务器中,除了真正的音频/视频文件外,还增加了一个**元文件**(metafile)。所谓元文件(请注意,不是源文件)就是一种非常小的文件,它描述或指明**其他文件**的一些重要信息。这里的元文件保存了有关这个音频/视频文件的信息。图8-5说明了使用元文件下载音频/视频文件的几个步骤。

图8-5 使用具有元文件的万维网服务器

- ① 浏览器用户点击所要看的音频/视频文件的超链,使用HTTP的GET 报文接入到万维网服务器。实际上,这个超链并没有直接指向所请求 的音频/视频文件,而是指向一个元文件。这个元文件有实际的音频/ 视频文件的统一资源定位符URL。
- ❷ 万维网服务器把该元文件装入HTTP响应报文的主体,发回给浏览器。在响应报文中还有指明该音频/视频文件类型的首部。
- ❸ 客户机浏览器收到万维网服务器的响应,分析其内容类型首部行,调用相关的媒体播放器(客户机中可能装有多个媒体播放器),把提取出的元文件传送给媒体播放器。
- ④ 媒体播放器使用元文件中的URL直接和万维网服务器建立TCP连接,并向万维网服务器发送HTTP请求报文,要求下载浏览器想要的音频/视频文件。
- ⑤ 万维网服务器发送HTTP响应报文,把该音频/视频文件发送给媒体播放器。媒体播放器在存储了若干秒的音频/视频文件后(这是为了消除抖动),就以音频/视频流的形式边下载、边解压缩、边播放。

8.2.2 媒体服务器

为了更好地提供播放流式音频/视频文件的服务,现在最为流行的做法就是使用两个分开的服务器。如图8-6所示,现在使用一个普通的万维网服务器,和另一个**媒体播放器**(media server)。媒体服务器和万维网服务器可以运行在一个端系统内,也可以运行在两个不同的端系统中。媒体服务器与普通的万维网服务器的最大区别就是,媒体服务器是专门为播放流式音频/视频文件而设计的,因此能够更加有效地为用户提供播放流式多媒体文件的服务。因此媒体服务器也常被称为流式服务器(streaming server)。下面我们介绍其工作原理。

图8-6 使用媒体服务器

在用户端的媒体播放器与媒体服务器的关系是客户与服务器的关系。与图8-5不同的是,现在媒体播放器不是向万维网服务器而是向媒体服务器请求音频/视频文件。媒体服务器和媒体播放器之间采用另外的协议进行交互。

采用媒体服务器后,下载音频/视频文件的前三个步骤仍然和上一节所述的一样,区别就是后面两个步骤,即:

- ❶~❸ 前三个步骤与图8-5中的相同。
- ❹媒体播放器使用元文件中的URL接入到媒体服务器,请求下载浏览器所请求的音频/视频文件。下载文件可以使用上一小节讲过的HTTP/TCP,也可以借助于使用UDP的任何协议,例如使用实时运输协议RTP(见8.3.3节)。

5 媒体服务器给出响应,把该音频/视频文件发送给媒体播放器。媒体播放器在迟延了若干秒后(例如,2~5秒),以流的形式边下载、边解压缩、边播放。

上面提到,传送音频/视频文件可以使用TCP,也可以使用UDP。起初人们选用UDP来传送。不采用TCP的主要原因是担心当网络出现分组丢失时,TCP的重传机制会使重传的分组不能按时到达接收端,使得媒体播放器的播放不流畅。但后来的实践经验发现,采用UDP会有以下几个缺点。

- (1) 发送端按正常播放的速率发送流媒体数据帧,但由于网络的情况多变,在接收端的播放器很难做到始终按规定的速率播放。例如,一个视频节目需要以1Mbit/s的速率播放。如果从媒体服务器到媒体播放器之间的网络容量突然降低到1Mbit/s以下,那么这时就会出现播放器的暂停,影响正常的观看。
- (2) 很多单位的防火墙往往阻拦外部UDP分组的进入,因而使用UDP 传送多媒体文件时会被防火墙阻拦掉。
- (3) 使用UDP传送流式多媒体文件时,如果在用户端希望能够控制媒体的播放,如进行暂停、快进等操作,那么还需要使用另外的协议RTP(见8.3.3节)和RTSP(见8.2.3节)。这样就增加了成本和复杂性。
- 于是,现在对流式存储音频/视频的播放,如YouTube和Netflix^③-,都采用TCP来传送。图8-7说明了使用TCP传送流式视频的几个主要步骤「KURO13」。

图8-7 使用TCP传送流式视频的主要步骤

步骤①:用户使用HTTP获取存储在万维网服务器中的视频文件,然后把视频数据传送到TCP发送缓存中。若发送缓存已填满,就暂时停止传送。

步骤❷:从TCP发送缓存通过互联网向客户机中的TCP接收缓存传送视频数据,直到接收缓存被填满。

步骤**③**: 从TCP接收缓存把视频数据再传送到应用程序缓存(即媒体播放器的缓存)。当这个缓存中的视频数据存储到一定程度时,就开始播放。这个过程一般不超过1分钟。

步骤**4**: 在播放时,媒体播放器等时地(即周期性地)把视频数据按帧读出,经解压缩后,把视频节目显示在用户的屏幕上。

请注意。这里只有步骤④的读出速率是严格按照源视频文件的规定速率来播放的。而前面的三个步骤中的数据传送速率则可以是任意的。如果用户暂停播放,那么图中的三个缓存将很快被填满,这时TCP发送缓存就暂停读取所存储的视频文件。以后,媒体播放器每读出nbit,TCP发送缓存就可以从存储的视频文件再读取nbit。如果客户机中的两个个缓存经常处于填满状态,就能够较好地应付网上偶然出现的拥塞。

如果步骤②的传送速率小于步骤④的读出速率,那么客户机中的两个缓存中的存量就会逐渐减少。当媒体播放器缓存的数据被取空后,播放就不得不暂停,直到后续的视频数据重新注入进来后才能再继续播放。实践证明,只要在步骤②的TCP平均传送速率达到视频节目规定的播放速率的两倍,媒体播放器一般就能流畅地播放网上的视频节目。

这里要指出,如果是观看实况转播,那么最好应当首先考虑使用UDP来传送。如果使用TCP传送,则当出现网络严重拥塞而产生播放的暂停时,就会使人难于接受。使用UDP传送时,即使因网络拥塞丢失了一些分组,对观看的感觉也会比突然出现暂停要好些。

顺便指出,宽带上网并不能保证媒体播放器一定能够流畅地回放任何视频节目。这是因为网络营运商只能保证从媒体播放器到网络运营商这一段网络的数据速率。但从网络运营商到互联网上的某个媒体服务器的这段网络状况则是未知的,很可能在某些时段会出现一些网络拥

塞。此外,还要考虑所选的视频节目的清晰度。我们都知道,DVD质量的视频和高清电视节目所要求的网速就相差很远。

流式媒体播放器问世后就很受欢迎。网民们不需要再随身携带刻录有视频节目的光盘,只要有能够上网的智能手机或轻巧的平板电脑,就能够随时上网观看各种视频音频节目。曾经在城市中很热闹的光盘销售商店,由于受到流式媒体的冲击,现已变得相当萧条。

8.2.3 实时流式协议RTSP

实时流式协议 RTSP(Real-Time Streaming Protocol)是 IETF的 MMUSIC工作组(Multiparty MUltimedia SessIon Control WG,多方多媒体会话控制工作组)开发的协议[W-MMUSIC],现已成为互联网建议标准[RFC 2326]。RTSP是为了给流式过程增加更多的功能而设计的协议。RTSP本身并不传送数据,而仅仅是使媒体播放器能够控制多媒体流的传送(有点像文件传送协议FTP有一个控制信道),因此RTSP又称为带外协议(out-of-band protocol)。

RTSP协议以客户服务器方式工作,它是一个应用层的**多媒体播放控制协议**,用来使用户在播放从互联网下载的实时数据时能够进行控制 (像在影碟机上那样的控制),如:暂停/继续、快退、快进等。因此,RTSP又称为"**互联网录像机遥控协议**"。

RTSP的语法和操作与HTTP协议的相似(所有的请求和响应报文都是ASCII文本)。但与HTTP不同的地方是RTSP是有状态的协议(HTTP是无状态的)。RTSP记录客户机所处于的状态(初始化状态、播放状态或暂停状态)。RFC 2326还规定,RTSP控制分组既可在TCP上传送,也可在UDP上传送。RTSP没有定义音频/视频的压缩方案,也没有规定音频/视频在网络中传送时应如何封装在分组中。RTSP不规定音频/视频流在媒体播放器中应如何缓存。

在使用RTSP的播放器中比较著名的是苹果公司的QuickTime和Real Networks公司的RealPlayer。

图8-8表示使用RTSP的媒体服务器的工作过程。

图8-8 使用RTSP的媒体服务器的工作过程

- ① 浏览器使用HTTP的GET报文向万维网服务器请求音频/视频文件。
- 2 万维网服务器从浏览器发送携带有元文件的响应。
- ❸ 浏览器把收到的元文件传送给媒体播放器。
- ④ 媒体播放器的RTSP客户发送SETUP报文与媒体服务器的RTSP服务器建立连接。
- **⑤** 媒体服务器的RTSP服务器发送响应RESPONSE报文。
- ❺媒体播放器的RTSP客户发送PLAY报文开始下载音频/视频文件(即开始播放)。
- **⑦** 媒体服务器的RTSP服务器发送响应RESPONSE报文。

此后,音频/视频文件被下载,所用的协议是运行在UDP上的。可以是后面要介绍的RTP,也可以是其他专用的协议。在音频/视频流播放的过程中,媒体播放器可以随时暂停(利用PAUSE报文)和继续播放(利用PLAY报文),也可以快进或快退。

- ❸ 用户在不想继续观看时,可以由RTSP客户发送TEARDOWN报文断开连接。
- **⑨** 媒体服务器的RTSP服务器发送响应RESPONSE报文。

请注意,以上编号的步骤❹至❷都使用实时流协议RTSP。在图8-8中步骤⑦后面没有编号的"音频/视频流"则使用另外的传送音频/视频数据的协议,如RTP。

8.3 交互式音频/视频

限于篇幅,在本节中我们只介绍交互式音频,即IP电话。IP电话是在互联网上传送多媒体信息的一个例子。通过IP电话的讨论,可以有助于了解在互联网上传送多媒体信息应当解决好哪些问题。

8.3.1 IP电话概述

1. 狭义的和广义的IP电话

IP电话有多个英文同义词。常见的有VoIP(Voice over IP), Internet Telephony和VON(Voice On the Net)。但IP电话的含义却有不同的解释。

狭义的IP电话就是指在IP网络上打电话。所谓"IP网络"就是"使用IP协议的分组交换网"的简称。这里的网络可以是互联网,也可以是包含有传统的电路交换网的互联网,不过在互联网中至少要有一个IP网络。

广义的IP电话则不仅仅是电话通信,而且还可以是在IP网络上进行交互式多媒体实时通信(包括话音、视像等),甚至还包括**即时传信 IM**(Instant Messaging)。即时传信是在上网时就能从屏幕上得知有哪些朋友也正在上网。若有,则彼此可在网上即时交换信息(文字的或声音的),也包括使用一点对多点的多播技术。目前流行的即时传信应用程序有Skype,QQ和MSN Messenger [CHEN07] ,很受网民的欢迎。IP电话可看成是一个正在演进的多媒体服务平台,是话音、视像、数据综合的基础结构。在某些条件下(例如使用宽带的局域网),IP电话的话音质量甚至还优于普通电话。

下面讨论狭义的IP电话 [COLL01] [W-VoIP], 而广义的IP电话在原理上是一样的。

其实IP电话并非新概念。早在20世纪70年代初期ARPANET刚开始运行不久,美国即着手研究如何在计算机网络上传送电话信息,即所谓的**分组话音通信**。但在很长一段时间里,分组话音通信发展得并不快。主要的原因是:

- (1) 缺少廉价的高质量、低速率的话音信号编解码软件和相应的芯片。
- (2) 计算机网络的传输速率和路由器处理速率均不够快,因而导致传输时延过大。
- (3)没有保证实时通信**服务质量** QoS(Quality of Service)的网络协议。
- (4) 计算机网络的规模较小,而通信网只有在具有一定规模后才能产生经济效益。

2. IP电话网关

然而到了20世纪90年代中期,上述的几个问题才相继得到了较好的解决。于是美国的VocalTec公司在1995年初率先推出了实用化的IP电话。但是这种IP电话必须使用PC。1996年3月,IP电话进入了一个转折点: VocalTec 公司 成功 地 推 出了 IP 电 话 网 关 (IP Telephony Gateway),它是公用电话网 (4) 与IP网络的接口设备。IP电话网关的作用就是:

- (1) 在电话呼叫阶段和呼叫释放阶段进行电话信令的转换。
- (2) 在通话期间进行话音编码的转换。

有了这种IP电话网关,就可实现PC用户到固定电话用户打IP电话(仅需经过IP电话网关一次),以及固定电话用户之间打IP电话(需要经过IP电话网关两次)。

图8-9画出了IP电话几种不同的连接方式。图中最上面的情况最简单,是两个PC用户之间的通话。这当然不需要经过IP电话网关,但必须是双方都同时上网才能进行通话。图8-9中间的一种情况是PC到固定电话之间的通话。最后一种情况是两个固定电话之间打IP电话,这当然是最方便的。读者应当特别注意在哪一部分是使用电路交换还是分组交换。

图8-9 IP电话的几种连接方法

3. IP电话的通话质量

IP电话的通话质量与电路交换电话网的通话质量有很大差别。在电路交换电话网中,任何两端之间的通话质量都是有保证的。但IP电话则不然。IP电话的通话质量主要由两个因素决定,一个是**通话双方端到端的时延和时延抖动**,另一个是**话音分组的丢失率**。但这两个因素都是**不确定的**,而是取决于**当时网络上的通信量**。若网络上的通信量非常大以致发生了网络拥塞,那么端到端时延和时延抖动以及分组丢失率都会很高,这就导致IP电话的通话质量下降。因此,一个用户使用IP电话的通话质量取决于当时其他许多用户的行为。请注意,电路交换电话网的情况则完全不是这样。当电路交换电话网的通信量太大时,往往使我们无法拨通电话(听到的是忙音),即电话网拒绝对正在拨号的用户提供接通服务。但是只要我们拨通了电话,那么电信公司就能保证让用户满意的通话质量。

经验证明,在电话交谈中,端到端的时延不应超过250m s,否则交谈者就会感到不自然。陆地公用电话网的时延一般只有50~70ms。但经过同步卫星的电话端到端时延就超过250ms,一般人都不太适应经过卫星传送的过长的时延。IP电话的时延有时会超过250ms,因此IP电话必须努力减小端到端的时延。当通信线路产生回声时,则容许的端到端时延就更小些(有时甚至只容许几十毫秒的时延)。

IP电话端到端时延是由以下几个因素造成的:

- (1) 话音信号进行模数转换要产生时延。
- (2) 已经数字化的话音比特流要积累到一定的数量才能够装配成一个话音分组, 这也会产生时延。
- (3) 话音分组的发送需要时间,此时间等于话音分组长度与通信线路的数据率之比。
 - (4) 话音分组在互联网中经过许多路由器的存储转发时延。
 - (5) 话音分组到达接收端在缓存中暂存所引起的时延。
- (6) 将话音分组还原成模拟话音信号的数模转换也要产生一定的时延。
 - (7) 话音信号在通信线路上的传播时延。
- (8) 由终端设备的硬件和操作系统产生的接入时延。由IP电话网关引起的接入时延约为20~40ms,而用户PC声卡引起的接入时延为20~180ms。有的调制解调器(如V.34)还会再增加20~40ms的时延(由于进行数字信号处理、均衡等)。

话音信号在通信线路上的传播时延一般都很小(卫星通信除外),通常可不予考虑。当采用高速光纤主干网时,上述的第三项时延也不大。

第一、第二和第六项时延取决于话音编码的方法。很明显,在保证话音质量的前提下,话音信号的数码率应尽可能低些。为了能够在世界范围提供IP电话服务,话音编码就必须采用统一的国际标准。ITU-T已

制定出不少话音质量不错的低速率话音编码的标准。目前适合IP电话使用的ITU-T标准主要有以下两种:

- (1) G.729 话音速率为8kbit/s的**共轭结构代数码激励线性预测** CS-ACELP(Conjugate-Structure Algebraic-Code-Excited Linear Prediction) 声码器。
- (2) G.723.1 话音速率为5.3/6.3kbit/s的**线性预测编码** LPC (Linear Prediction Coding) 声码器。

这两种标准的比较见表8-1。

表8-1 G.729和G.723.1的主要性能比较

标准	比特率(kbit/s)	帧大小 (ms)	处理时延 (ms)	帧长 (字节)	数字信号处理 MIPS
G.729	8	10	10	10	20
G.723.1	5.3/6.3	30	30	20/24	16

表中的比特率是输入为64kbit/s标准PCM信号时在编码器输出的数据率。帧大小是压缩到每一个分组中的话音信号时间长度。处理时间是对一个帧运行编码算法所需的时间。帧长是一个已编码的帧的字节数(不包括首部)。数字信号处理MIPS(每秒百万指令)是用数字信号处理芯片实现编码所需的最小处理机速率(以每秒百万指令为单位)。如使用PC的通用处理机,则所需的处理机MIPS还要高些。不难看出,G.723.1标准虽然可得到更低的数据率,但其时延也更大些。

要减少上述第四和第五项时延较为困难。当网络发生拥塞而产生话音分组丢失时,还必须采用一定的策略(称为"丢失掩蔽算法")对丢失的话音分组进行处理。例如,可使用前一个话音分组来填补丢失的话音分组的间隙。

接收端缓存空间和播放时延的大小对话音分组丢失率和端到端时延也有很大的影响。图8-10说明了这一问题。话音质量可分为四个级别,即"长途电话质量"(这是最好的质量)、"良好"、"基本可用"和"不好",各对应于图8-10中的一个区域。越接近坐标原点,话音质量就越好。我们假定某IP电话的通话质量处在图中B点的位置。若增大接收端缓存空间并增大播放时延,则话音分组丢失率将减小,但端到端的时延将增大(如图中的C点)。继续增大播放时延,则话音分组丢失率将继续减小,趋向于网络所引起的丢失率(如图中的D点),但D点

的端到端时延很大,话音质量很不好。反之,若将接收端缓存做得很小并减小播放时延,则端到端时延将减小,趋向于网络所引起的端到端时延(如图中的A点),但话音分组丢失率将会大大增加,话音质量也不好。

图8-10 播放时延有一个最佳值

可见接收端的播放时延有一个最佳值。图中有一个点N,相当于端到端时延和话音分组丢失率都是最小的,但实际上并不可能工作在这个点上。

据统计,当通话双方相距3200km时,互联网上的时延约为30~100ms(传播和排队),而所有各环节的时延总和约为100~262ms(在两个IP电话网关之间)或170~562ms(在两个PC之间) [KAST98]。可见为了减小时延,应尽可能不要直接用PC打IP电话。

提高路由器的转发分组的速率对提高IP电话的质量也是很重要的。据统计,一个跨大西洋的IP电话一般要经过20~30个路由器。现在一个普通路由器每秒可转发50~100万个分组。若能改用吉比特路由器(又称为**线速路由器**),则每秒可转发500万至6000万个分组(即交换速率达60Gbit/s左右)。这样还可进一步减少由网络造成的时延。

近几年来,IP电话的质量得到了很大的提高。现在许多IP电话的话音质量已经优于固定电话的话音质量。一些电信运营商还建造了自己专用的IP电话线路,以便保证更好的通话质量。在IP电话领域里,最值得一提的就是Skype IP电话,它给全世界的广大用户带来了高品质并

且廉价的通话服务。Skype使用了Global IP Sound公司开发的互联网低比特率编解码器iLBC(internet Low Bitrate Codec)[RFC 3951,3952],进行话音的编解码和压缩,使其话音质量优于传统的公用电话网(采用电路交换)的话音质量。Skype支持两种帧长: 20ms(速率为15.2kbit/s,一个话音分组块为304bit)和30ms(速率为13.33kbit/s,一个话音分组块为400bit)。Skype的另一个特点是对话音分组的丢失进行了特殊的处理,因而能够容忍高达30%的话音分组丢失率,通话的用户一般感觉不到话音的断续或迟延,杂音也很小。

Skype采用了P2P(见第6章6.9节的介绍)和全球索引(Global Index)技术提供快速路由选择机制(而不是单纯依靠服务器来完成这些工作),因而其管理成本大大降低,在用户呼叫时,由于用户路由信息分布式存储于互联网的结点中,因此呼叫连接完成得很快。Skype还采用了端对端的加密方式,保证信息的安全性。Skype在信息发送之前进行加密,在接收时进行解密,在数据传输过程中完全没有可能在中途被窃听。

由于Skype使用的是P2P的技术,用户数据主要存储在P2P网络中,因此必须保证存储在公共网络中的数据是可靠的和没有被篡改的。Skype对公共目录中存储的和用户相关的数据都采用了数字签名,保证了数据无法被篡改。

自2003年8月Skype推出以来,在短短15个月内,Skype已拥有超过5000万次的下载量,注册量超过2000万用户,并且还在以每天超过15万的速度增长。在2011年,在同一时间使用Skype的用户数已经突破了3000万大关。据统计,在2014年的国际长途电话的市场份额中,Skype已经占据了40%。Skype的问世给全球信息技术和通信产业带来深远的影响,也给每一位网络使用者带来生活方式的改变。

8.3.2 IP电话所需要的几种应用协议

在IP电话的通信中,我们至少需要两种应用协议。一种是信令协议,它使我们能够在互联网上找到被叫用户(5)。另一种是话音分组的传送协议,它使我们用来进行电话通信的话音数据能够以时延敏感属性在互联网中传送。这样,为了在互联网中提供实时交互式的音频/视频服务,我们需要新的多媒体体系结构。

图8-11给出了在这样的体系结构中的三种应用层协议。第一种协议是与信令有关的,如H.323和SIP(画在最左边);第二种协议是直接传送音频/视频数据的,如RTP(画在最右边);第三种协议是为了提高服务质量,如RSVP和RTCP(画在中间)。

图8-11 提供实时交互式音频/视频服务所需的应用层协议

下面先介绍**实时运输协议** RTP及其配套的协议——**实时运输控制协议** RTCP,然后再介绍IP电话的信令协议H.323和会话发起协议SIP。

8.3.3 实时运输协议RTP

实时运输协议 RTP(Real-time Transport Protocol)是IETF的AVT工作组(Audio/Video Transport WG)开发的协议[W-AVT],现已成为互联网标准「RFC 3550,3551]。

RTP为实时应用提供端到端的运输,但不提供任何服务质量的保证。需要发送的多媒体数据块(音频/视频)经过压缩编码处理后,先送给RTP封装成为RTP分组(也可称为RTP报文⑥)。RTP分组装入运输层的UDP用户数据报后,再向下递交给IP层。RTP现已成为互联网正式标准,并且已被广泛使用。RTP同时也是ITU-T的标准(H.225.0)。实际上,RTP是一个协议框架,因为它只包含了实时应用的一些共同功能。RTP自己并不对多媒体数据块做任何处理,而只是向应用层提供一些附加的信息,让应用层知道应当如何进行处理。

图8-11把RTP协议画在应用层。这是因为从应用开发者的角度看,RTP 应当**是应用层的一部分**。在应用程序的发送端,开发者必须编写用 RTP封装分组的程序代码,然后把RTP分组交给UDP套接字接口。在 接收端,RTP分组通过UDP套接字接口进入应用层后,还要利用开发者编写的程序代码从RTP分组中把应用数据块提取出来。

然而RTP的名称又隐含地表示它是一个**运输层协议**。这样划分也是可以的,因为RTP封装了多媒体应用的数据块,并且由于RTP向多媒体应用程序提供了服务(如时间戳和序号),因此也可以把RTP看成是在UDP之上的一个**运输层子层的协议**。

RTP还有两点值得注意。首先,RTP分组只包含RTP数据,而控制是由另一个配套使用的RTCP协议提供的(这在下一节介绍)。其次,RTP在端口号1025到65535之间选择一个未使用的偶数UDP端口号,而在同一次会话中的RTCP则使用下一个奇数UDP端口号。但端口号5004和5005则分别用作RTP和RTCP的默认端口号。

图8-12给出了RTP分组的首部格式,下面进行简单的介绍。

图8-12 RTP分组的首部格式

在RTP分组的首部中,前12个字节是必需的,而12字节以后的部分则是可选的。下面按照各字段重要性的顺序来进行介绍。

(1) **有效载荷类型** (payload type) 占7位。这个字段指出后面的 RTP数据属于何种格式的应用。收到RTP分组的应用层就根据此字段指出的类型进行处理。例如,对于音频有效载荷(每一种格式后面括弧中的数字就表示其有效载荷类型的编码): μ律PCM(0), GSM(3), LPC(7), A律PCM(8), G.722(9), G.728(15)等。

- 对于视频有效载荷: 活动JPEG (26), H.261 (31), MPEG1 (32), MPEG2 (33)等。
- (2) **序号** 占16位。对每一个发送出的RTP分组,其序号加1。在一次RTP会话开始时的初始序号是随机选择的。序号使接收端能够发现丢失的分组,同时也能将失序的RTP分组重新按序排列好。例如,在收到序号为60的RTP分组后又收到了序号为65的RTP分组。那么就可推断出,中间还缺少序号为61至64的4个RTP分组。
- (3) **时间戳** 占32位。时间戳反映了RTP分组中数据的第一个字节的采样时刻。在一次会话开始时时间戳的初始值也是随机选择的。即使在没有信号发送时,时间戳的数值也要随时间而不断地增加。接收端使用时间戳可准确知道应当在什么时间还原哪一个数据块,从而消除时延的抖动。时间戳还可以用来使视频应用中声音和图像同步。在RTP协议中并没有规定时间戳的**粒度**,这取决于有效载荷的类型。因此RTP的时间戳又称为**媒体时间戳**,以强调这种时间戳的粒度取决于信号的类型。例如,对于8kHz采样的话音信号,若每隔20ms构成一个数据块,则一个数据块中包含有160个样本(0.02×8000=160)。因此发送端每发送一个RTP分组,其时间戳的值就增加160。
- (4) **同步源标识符** 占32位。同步源标识符SSRC(Synchronous SouRCe identifier)是一个数,用来标志RTP流(stream)的来源。SSRC与IP地址无关,在新的RTP流开始时随机地产生。由于RTP使用UDP传送,因此可以有多个RTP流(例如,使用几个摄像机从不同角度拍摄同一个节目所产生的多个RTP流)复用到一个UDP用户数据报中。SSRC可使接收端的UDP能够将收到的RTP流送到各自的终点。两个RTP流恰好都选择同一个SSRC的概率是极小的。若发生这种情况,这两个源就都重新选择另一个SSRC。
- (5) 参与源标识符 这是选项,最多可有15个。参与源标识符 CSRC(Contributing SouRCe identifier)也是一个32位数,用来标志来源于不同地点的RTP流。在多播环境中,可以用中间的一个站(叫做**混合站** mixer)把发往同一个地点的多个RTP流混合成一个流(可节省通信资源),在目的站再根据CSRC的数值把不同的RTP流分开。
 - (6) 参与源数 占4位。这个字段给出后面的参与源标识符的数目。
 - (7) 版本 占2位。当前使用的是版本2。

- (8) **填充 P** 占1位。在某些特殊情况下需要对应用数据块加密,这往往要求每一个数据块有确定的长度。如不满足这种长度要求,就需要进行填充。这时就把P位置1,表示这个RTP分组的数据有若干填充字节。在数据部分的最后一个字节用来表示所填充的字节数。
- (9) **扩展** X 占1位。X置1表示在此RTP首部后面还有扩展首部。扩展首部很少使用,这里不再讨论。
- (10) **标记 M** 占1位。M置1表示这个RTP分组具有特殊意义。例如,在传送视频流时用来表示每一帧的开始。

8.3.4 实时运输控制协议RTCP

实时运输控制协议 RTCP(RTP Control Protocol)是与RTP配合使用的协议 [RFC 3550, 3551], 实际上, RTCP协议也是RTP协议不可分割的部分。

RTCP协议的主要功能是:服务质量的监视与反馈、媒体间的同步(如某一个RTP发送的声音和图像的配合),以及多播组中成员的标志。RTCP分组(也可称为RTCP报文)也使用UDP来传送,但RTCP并不对音频/视频分组进行封装。由于RTCP分组很短,因此可把多个RTCP分组封装在一个UDP用户数据报中。RTCP分组周期性地在网上传送,它带有发送端和接收端对服务质量的统计信息报告(例如,已发送的分组数和字节数、分组丢失率、分组到达时间间隔的抖动等)。

表8-2是RTCP使用的五种分组类型、它们都使用同样的格式。

表8-2 RTCP的五种分组类型

类型	缩写表示	意义
200	SR	发送端报告
201	RR	接收端报告
202	SDES	源点描述
203	BYE	结束
204	APP	特定应用

结束分组 BYE表示关闭一个数据流。

特定应用分组 APP使应用程序能够定义新的分组类型。

接收端报告分组 RR用来使接收端周期性地向所有的点用多播方式进行报告。接收端每收到一个RTP流(一次会话包含有许多的RTP流)就产生一个接收端报告分组RR。RR分组的内容有:所收到的RTP流的SSRC;该RTP流的分组丢失率(若分组丢失率太高,发送端就应当适当降低发送分组的速率);在该RTP流中的最后一个RTP分组的序号;分组到达时间间隔的抖动等。

发送RR分组有两个目的:第一,可以使所有的接收端和发送端了解当前网络的状态;第二,可以使所有发送RTCP分组的站点自适应地调整自己发送RTCP分组的速率,使得起控制作用的RTCP分组不要过多地影响传送应用数据的RTP分组在网络中的传输。通常是使RTCP分组的通信量不超过网络中数据分组的通信量的5%,而接收端报告分组的通信量又应小于所有RTCP分组的通信量的75%。

发送端报告分组 SR用来使发送端周期性地向所有接收端用多播方式进行报告。发送端每发送一个RTP流,就要发送一个发送端报告分组 SR。SR分组的主要内容有:该RTP流的同步源标识符SSRC;该RTP流中最新产生的RTP分组的时间戳和绝对时钟时间(或墙上时钟时间wall clock time);该RTP流包含的分组数;该RTP流包含的字节数。

绝对时钟时间是必要的。因为RTP要求每一种媒体使用一个流。例如,要传送视频图像和相应的声音就需要传送两个流。有了绝对时钟时间就可讲行图像和声音的同步。

源点描述分组 SDES给出会话中参加者的描述,它包含参加者的规范 名CNAME(Canonical NAME)。规范名是参加者的电子邮件地址的 字符串。

8.3.5 H.323

现在IP电话有两套信令标准:一套是ITU-T定义的H.323协议,另一套是IETF提出的**会话发起协议** SIP(Session Initiation Protocol)。我们先介绍H.323协议。

H.323是ITU-T于1996年制定的为在局域网上传送话音信息的建议书。1998年的第二个版本改用的名称是"基于分组的多媒体通信系统"。基于分组的网络包括互联网、局域网、企业网、城域网和广域网。H.323是互联网的端系统之间进行实时声音和视频会议的标准。请注意,H.323不是一个单独的协议而是一组协议。H.323包括系统和构件的描述、呼叫模型的描述、呼叫信令过程、控制报文、复用、话音编解码器、视像编解码器,以及数据协议等。图8-13示意了连接在分组交换网上的H.323终端使用H.323协议进行多媒体通信。

图8-13 H.323终端使用H.323协议进行多媒体通信

H.323标准指明了四种构件,使用这些构件连网就可以进行点对点或一点对多点的多媒体通信。

- (1) H.323**终端** 这可以是一个PC, 也可以是运行H.323程序的单个设备。
- (2) **网关** 网关连接到两种不同的网络,使得H.323网络可以和非H.323网络(如公用电话网)进行通信。仅在一个H.323网络上通信的两个终端当然就不需要使用网关。
- (3) **网闸**(gatekeeper) 网闸相当于整个H.323网络的大脑。所有的呼叫都要通过网闸,因为网闸提供地址转换、授权、带宽管理和计费功能。网闸还可以帮助H.323终端找到距离公用电话网上的被叫用户最近的一个网关。
- (4) **多点控制单元** MCU(Multipoint Control Unit) MCU支持三个或更多的H.323终端的音频或视频会议。MCU管理会议资源、确定使用的音频或视频编解码器。

网关、网闸和MCU在逻辑上是分开的构件,但它们可实现在一个物理设备中。在H.323标准中,将H.323终端、网关和MCU都称为H.323端点(end point)。

图8-14表示了利用H.323网关使互联网能够和公用电话网进行连接。

图8-14 H.323网关用来和非H.323网络进行连接

图8-15 给出了H.323的体系结构。可以看出,H.323是一个协议族,它可以使用不同的运输协议。H.323包括以下一些组成部分:

音频/视频应用		信令和控制				数据应用	
音频 编解码	视频 编解码	RTCP	H.225.0 登记	H.225.0 呼叫	H.245 控制	T.120 数据	
RTP			信令	信令	信令	9X 1/D	
UDP				ТСР			
IP							

图8-15 H.323的协议体系结构

- (1) **音频编解码器** H.323要求至少要支持G.711 (64kbit/s的PCM)。建议支持如G.722 (16kbit/s的ADPCM), G.723.1 (5.3/6.3的LPC), G. 728 (16kbit/s的低时延CELP)和G.729 (8kbit/s的CS-ACELP)等。
- (2) **视频编解码器** H.323要求必须支持H.261标准(176×144像素)。
- (3) H.255.0 登记信令 ,即登记/接纳/状态 RAS (Registration/Admission/Status)。H.323终端和网闸使用RAS来完成登记、接纳控制和带宽转换等功能。
 - (4) H.225.**0呼叫信令** 用来在两个H.323端点之间建立连接。
- (5) H.245**控制信令** 用来交换端到端的控制报文,以便管理H.323端点的运行。

- (6) T.120**数据传送协议** 这是与呼叫相关联的数据交换协议。用户在参加音频/视频会议时,可以和其他与会用户共享屏幕上的白板。由于使用TCP协议,因此能够保证数据传送的正确(在传送音频/视频文件时使用的是UDP,因此不能保证服务质量)。
- (7) **实时运输协议** RTP和**实时运输控制协议** RTCP 这两个协议前面已讨论。

H.323的出发点是以已有的电路交换电话网为基础,增加了IP电话的功能(即远距离传输采用IP网络)。H.323的信令也沿用原有电话网的信令模式,因此与原有电话网的连接比较容易。

8.3.6 会话发起协议SIP

虽然H.323系列现在已被大部分生产IP电话的厂商采用,但由于H.323过于复杂(整个文档多达736页),不便于发展基于IP的新业务,因此IETF的MMUSIC工作组制定了另一套较为简单且实用的标准,即**会话发起协议SIP** (Session Initiation Protocol) [RFC 3261~3264,6665,4566],目前已成为互联网的建议标准 [W-SIP] 。SIP使用了KISS原则:即"保持简单、傻瓜"(Keep It Simple and Stupid)。

SIP协议的出发点是以互联网为基础,而把IP电话视为互联网上的新应用。因此SIP协议只涉及到IP电话所需的信令和有关服务质量的问题,而没有提供像H.323那样多的功能。SIP没有强制使用特定的编解码器,也不强制使用RTP协议。然而,实际上大家还是选用RTP和RTCP作为配合使用的协议。

SIP使用文本方式的客户服务器协议。SIP系统只有两种构件,即用户代理(user agent)和网络服务器(network server)。用户代理包括两个程序,即用户代理客户 UAC(User Agent Client)和用户代理服务器UAS(User Agent Server),前者用来发起呼叫,后者用来接受呼叫。网络服务器分为代理服务器(proxy server)和重定向服务器(redirect server)。代理服务器接受来自主叫用户的呼叫请求(实际上是来自用户代理客户的呼叫请求),并将其转发给被叫用户或下一跳代理服务器,然后下一跳代理服务器再把呼叫请求转发给被叫用户(实际上是转发给用户代理服务器)。重定向服务器不接受呼叫,它

通过响应告诉客户下一跳代理服务器的地址,由客户按此地址向下一跳代理服务器重新发送呼叫请求。

SIP的地址十分灵活。它可以是电话号码,也可以是电子邮件地址、IP地址或其他类型的地址。但一定要使用SIP的地址格式,例如:

电话号码 sip: zhangsan@8625-87654321
 IPv4地址 sip: zhangsan@201.12.34.56
 电子邮件地址 sip: zhangsan@163.com

和HTTP相似,SIP是基于报文的协议。SIP使用了HTTP的许多首部、编码规则、差错码以及一些鉴别机制。它比H.323具有更好的可扩缩性。

SIP的会话共有三个阶段:建立会话、通信和终止会话。图8-16给出了一个简单的SIP会话的例子。图中的建立会话阶段和终止会话阶段,都是使用SIP协议,而中间的通信阶段,则使用如RTP这样的传送实时话音分组的协议。

图8-16 一个简单的SIP会话的例子

在图8-16中, 主叫方先向被叫方发出INVITE报文, 这个报文中含有双方的地址信息以及其他一些信息(如通话时话音编码方式等)。被叫方如接受呼叫,则发回OK响应,而主叫方再发送ACK报文作为确认(这和建立TCP连接的三次握手相似)。然后双方就可以通话了。当

通话完毕时,双方中的任何一方都可以发送BYE报文以终止这次的会话。

SIP有一种跟踪用户的机制,可以找出被叫方使用的PC的IP地址(例如,被叫方使用DHCP,因而没有固定的IP地址)。为了实现跟踪,SIP 使用登记的概念。 SIP 定义一些服务器作为 SIP 登记器(registrar)。每一个SIP用户都有一个相关联的SIP登记器。用户在任何时候发起SIP应用时,都应当给SIP登记器发送一个SIP REGISTER报文,向登记器报告现在使用的IP地址。SIP登记器和SIP代理服务器通常运行在同一台主机上。

图8-17说明了SIP登记器的用途。主叫方把INVITE报文发送给SIP代理服务器。这个INVITE报文中只有被叫方的电子邮件地址而没有其IP地址。SIP代理服务器就向SIP登记器发送域名系统DNS查询(这个查找报文不是SIP的报文),然后从回答报文得到了被叫方的IP地址。代理服务器把得到的被叫方的IP地址插入到主叫方发送的INVITE报文中,转发给被叫方。被叫方发送OK响应,然后主叫方发送ACK报文,完成了会话的建立。

图8-17 跟踪被叫方的机制

如果被叫没有在这个SIP登记器进行过登记,那么这个SIP登记器就发回重定向报文,指示SIP代理服务器向另一个SIP登记器重新进行DNS

查询, 直到找到被叫为止。

SIP还有一个配套协议是**会话描述协议** SDP(Session Description Protocol)。SDP在电话会议的情况下特别重要,因为电话会议的参加者是**动态地加入和退出**。SDP详细地指明了媒体编码、协议的端口号以及多播地址。SDP现在也是互联网建议标准「RFC 2327〕。

由于SIP问世较晚,因此它现在比H.323占有的市场份额要小。对今后作为IETF标准的SIP协议的进展情况应当引起我们的注意。

8.4 改进"尽最大努力交付"的服务

使互联网更好地传送多媒体信息的另一种方法,是改变互联网平等对待所有分组的思想,使得对时延有较严格要求的实时音频/视频分组,能够从网络得到更好的**服务质量** QoS。

下面我们先介绍提供服务质量的一般方法。

8.4.1 使互联网提供服务质量

根据ITU-T在建议书E.800中给出的定义,**服务质量QoS是服务性能的总效果,此效果决定了一个用户对服务的满意程度**。因此在最简单的意义上,有服务质量的服务就是能够满足用户的应用需求的服务,或者说,可提供一致的、可预计的数据交付服务。

在涉及到一些具体问题时,服务质量可用若干基本的性能指标来描述,包括可用性、差错率、响应时间、吞吐量、分组丢失率、连接建立时间、故障检测和改正时间等。服务提供者可向其用户保证某一种等级的服务质量。

我们已多次强调过,互联网的网络本身只能提供"尽最大努力交付"的服务。而要传送多媒体信息,网络又必须具有一定的服务质量。下面通过图8-18的例子说明应从哪些方面入手使互联网具有一定的服务质量 [KURO13]。图中表示局域网上的两台主机 H_1 和 H_2 通过非常简单的网络(路由器 R_1 和 R_2 以及连接它们的链路)分别向远地另外两

台主机 H_3 和 H_4 发送数据。连接 R_1 和 R_2 的链路带宽是1.5Mbit/s。现在考虑以下四种情况。

图8-18 主机H,和H,分别向主机H,和H,发送数据

(1) 一个1Mbit/s的实时音频数据和一个FTP文件数据

假定 H_1 向 H_3 传送1Mbit/s的实时音频数据,而 H_2 向 H_4 传送低优先级的FTP文件数据。两台主机发送的数据都在路由器 R_1 的输出队列中排队。若突然有一个很大的FTP数据块来到 R_1 ,就会把输出队列全部占满。后面到达路由器 R_1 的实时音频分组就会被丢弃。显然这是不合理的。因此需要增加一个机制,就是**给不同性质的分组打上不同的标记**。这样当 H_1 和 H_2 的分组进入路由器 R_1 时, R_1 就能够识别 H_1 的实时数据分组,并使这些分组以高优先级进入输出队列,而仅在队列有多余空间时才准许低优先级的FTP的数据分组进入。

(2) 一个1Mbit/s的实时音频数据和一个高优先级的FTP文件数据

假定FTP的用户用高价从ISP处购买了高优先级服务,而实时音频的用户只购买了低优先级服务。因此,仅根据分组自己的标记来确定其服务等级还不够合理。可见应当使路由器增加一种机制——分类(classification),即路由器根据某些准则(例如,根据发送数据的地址)对输入分组进行分类,然后对不同类别的通信量给予不同的优先级。

(3) 一个数据率异常的实时音频数据和一个FTP文件数据

假定上述的主机 H_1 的数据率突然不正常地增大到1.5Mbit/s或更高(这可能是出了故障或恶意破坏网络的正常运行),那么就会使主机 H_2 的

FTP的低优先级数据无法通过路由器 \mathbf{R}_1 。因此,应当使路由器能够对某个数据流进行通信量的**管制**(policing),使得这个数据流不要影响其他正常的数据流在网络中通过。例如,可以将 \mathbf{H}_1 的数据率限定为 $\mathbf{1}$ Mbit/s。路由器 \mathbf{R}_1 不停地监视 \mathbf{H}_1 的数据率。只要 \mathbf{H}_1 的数据率超过规定的 $\mathbf{1}$ Mbit/s,路由器 \mathbf{R}_1 就把其中的某些分组丢弃,使其数据率不超过原来设定的门限。

为了更加合理地利用网络资源,应在路由器中再增加一种机制——**调度**(scheduling)。我们可以利用调度功能给实时音频和文件传送这两个应用分别分配1Mbit/s和0.5Mbit/s的带宽。这就好像在带宽为1.5Mbit/s的链路中划分出两个逻辑链路,其带宽分别为1Mbit/s和0.5Mbit/s,因而对这两种应用都有相应的服务质量保证。

(4) H₁和H₂都发送数据率为1Mbit/s的实时数据

在这种情况下,到达路由器R₁的总数据率是2Mbit/s,已超过了1.5Mbit/s链路的带宽。若使这两台主机发出的数据流**平等地** 共享1.5Mbit/s链路的带宽,则每个数据流平均将丢失25%的分组,因而都变得没有用了。比较合理的做法是让一个数据流通过1.5Mbit/s的链路,而阻止另一个数据流的通过。这就需要另一种机制——**呼叫接纳**(call admission)。这里借用了电话网的术语,进一步的讨论见后面的8.4.3节。在使用呼叫接纳机制时,一个数据流要预先声明它所需的服务质量,然后或者被准许进入网络(能得到所需的服务质量),或者被拒绝进入网络(当所需的服务质量不能得到满足时)。

上面简单地说明了为使互联网能够提供一定的服务质量,应当设法增加一些机制,即:分组的类别、管制、调度以及呼叫接纳。在后面的几节我们将陆续讨论这些问题。

8.4.2 调度和管制机制

调度和管制机制是使互联网能够提供服务质量的重要措施 [STAL10]。下面先讨论调度机制。

1. 调度机制

这里所说的"调度"就是指**排队的规则**。如果不采用专门的调度机制,那么在路由器的队列采用的默认排队规则就是**先进先出** FIFO(First In First Out)。当队列已满时,后到达的分组就被丢弃。先进先出的最大缺点就是**不能区分时间敏感分组和一般数据分组**,并且也不公平,因为这使得排在长分组后面的短分组要等待很长的时间。就像在机场办理登机卡时,正巧排在你前面的一个人代表20个人的团队来办理登机卡,这时你只能耐心等待。

在先进先出的基础上增加**按优先级排队**,就能使优先级高的分组优先得到服务。图8-19是按优先级排队的例子。图中假定优先级分为两种,因此有两个队列:高优先级队列和低优先级队列。

图8-19 按优先级排队的例子

假定分组的到达是按照编号从小到大的顺序。在到达路由器后就由**分类器**(又称为**分类程序**)对其进行优先级分类,然后按照类别进入相应的队列。图中的圆圈表示调度,其作用是从队列中取走排在队首的分组。"调度"相当于排队论中的服务员。只要高优先级队列中有分组在内,就从高优先级队列中按照链路速率取出排在队首的分组。只有当高优先级队列已空时,才能轮到低优先级队列中的分组输出到链路上。在图8-19的下方给出三个高优先级的分组(灰色方块)与两个低优先级的分组(白色方块)交替地到达路由器。但在分组离开路由器时,高优先级的分组3和5都提前得到服务。请注意,低优先级的分组2仍然比高优先级的分组5先得到服务。这是因为在分组2得到服务时,分组5还没有到达路由器。当高优先级的分组5到达时,路由器正在发送分组2,因此分组5必须等待分组2离开路由器后才能得到服务。

简单地按优先级排队会带来一个缺点,这就是在高优先级队列中总是有分组时,低优先级队列中的分组就长期得不到服务。这就不太公平。公平排队FQ(Fair Queuing)可解决这一问题。公平排队是对每种类别的分组流设置一个队列,然后轮流使每一个队列一次只能发送一个分组。对于空的队列就跳过去。但公平排队也有不公平的地方,这就是长分组得到的服务时间长,而短分组就比较吃亏,并且公平排队并没有区分分组的优先级。

为了使高优先级队列中的分组有更多的机会得到服务,可增加队列"**权 重**"的概念,这就是**加权公平排队** WFQ(Weighted Fair Queuing),其工作原理如图8-20所示。

图8-20 加权公平排队WFQ

加权公平排队WFQ是这样工作的。分组到达后就进行分类,然后送交与其类别对应的队列(图中假定分为三类)。三个队列按顺序依次把队首的分组发送到链路。遇到队列空就跳过去。但根据各类别的优先级不同,每种队列分配到的服务时间也不同。可以给队列i 指派一个权重 w_i 。于是队列i 得到的平均服务时间为 w_i /(Σw_j),这里 Σw_j 是对所有的非空队列的权重求和。这样,若路由器输出链路的数据率(即带宽)为R,那么队列i 将得到的有保证的数据率 R_i 应为

$$R_i = \frac{R \times w_i}{\sum w_j} \tag{8-1}$$

加权公平排队WFQ在服务质量体系结构中占有重要的地位。当前的许多路由器产品都加入了WFQ调度的功能。为了更好地理解WFQ的概念,图8-21给出了一个简单的例子,并把先进先出FIFO的情况也同时画出。我们假定在WFQ的情况下,分配给分组流1的权重是0.5(即得到服务的时间占总的服务时间的一半),而分配给其他10个分组流的

权重都各为0.05。这样,分组流2~11共10个分组流合起来的权重也是0.5。

图8-21 WFQ与FIFO的比较

在使用先进先出规则时,只有一个队列,因此每个分组流的第一个分组共11个分组排在队首。在图8-21 (a) 和 (b) 两种情况下,FIFO的结果都是一样的,即队列中前11分组发送完毕后才能发送分组流中剩下的分组。在使用WFQ时,在图 (a) 中分组流1先可以发送10个分组(但第11个分组还不能发送),而在图 (b) 中分组流1和其他的分组流交替地发送。不管是哪一种情况,分组流1都能够得到更多时间的服务。

2. 管制机制

前面提到了使用管制机制可以提供服务质量。对一个数据流,我们可根据以下三个方面进行管制:

(1) **平均速率** 网络需要控制一个数据流的平均速率。这里的平均速率是指在**一定的时间间隔内通过的分组数**。但这个时间间隔的选择也说明了这个指标的严格程度。例如,限定数据流的平均速率为每秒50个分组和平均速率为每分钟3000个分组,虽然这两个指标的平均值都一样,但其严格程度却不同。假定有一个数据流,有一秒钟通过了

1000个分组, 但一分钟平均下来仍不超过3000个, 那么这个数据流的平均速率符合后面一个指标, 但却远远不满足前面的指标。

- (2) **峰值速率** 峰值速率限制了数据流在非常短的时间间隔内的流量。数学上的"瞬时值"在实际网络中无法测定。因此这里所说的"非常短的时间间隔"需要指明时间间隔是多少。例如,限定数据流的平均速率为每分钟3000个分组,但同时限定其峰值速率不超过每秒1000个分组。峰值速率也同时受到链路带宽的限制。
- (3) **突发长度** 网络也限制在非常短的时间间隔内连续注入到网络中的分组数。

要在网络中对进入网络的分组流按以上三个指标进行管制,可使用非常著名的**漏桶管制器**(leaky bucket policer)(可简称为**漏桶**),其工作原理如图8-22所示。

图8-22 漏桶管制器的工作原理

漏桶是一种抽象的机制。在漏桶中可装入许多**权标**(token),但最多装入b个权标。只要漏桶中的权标数小于b个,新的权标就以每秒r个权标的恒定速率加入到漏桶中。但若漏桶已装满了b个权标,则新的权标就不再装入,而漏桶的权标数达到最大值b。

漏桶管制分组流进入网络的过程如下。分组进入网络前,先要进入一个队列中等候漏桶中的权标。只要漏桶中有权标,就可从漏桶取走一个权标,然后就准许一个分组从队列进入到网络。若漏桶已无权标,就要等新的权标注入到漏桶,再把这个权标拿走后才能准许下一个分

组进入网络。请注意:"准许进入网络"并不等于说"已经进入了网络",因为分组进入网络还需要时间,这取决于输出链路的带宽和分组在输出端的排队情况。

假定在时间间隔t 中把漏桶中的全部b 个权标都取走。但在这个时间间隔内漏桶又装入了rt 个新的权标,因此在任何时间间隔t 内准许进入网络的分组数的最大值为rt+b 。控制权标进入漏桶的速率r 就可对分组进入网络的速率进行管制。

3. 漏桶机制与加权公平排队相结合

把漏桶机制与加权公平排队结合起来,可以控制队列中的最大时延。

现假定有n个分组流输入到一个路由器,复用后从一条链路输出。每一个分组流使用漏桶机制进行管制,漏桶参数为 b_i 和 r_i ,i=1,2, ..., n (见图8-23)。

图8-23 用漏桶机制进行管制

前面已经讲过,WFQ可以使每一个分组流得到如公式(8-1)所示的有保证的数据率。那么当分组流通过漏桶后等待WFQ服务时,一个分组所经受的**最大时延** 是多少?

现在考虑分组流i。假定漏桶i已经装满了 b_i 个权标。这就表示分组流i不需要等待就可从漏桶中拿走 b_i 个权标,因此 b_i 个分组可以马上从路由器输出。但分组流i得到的数据率是由公式(8-1)给出。这 b_i 个分组中的最后一个分组所经受的时延最大,它等于传输这 b_i 个分组所需的时间 d_{max} ,即 b_i 除以公式(8-1)给出的传输速率:

$$d_{\text{max}} = \frac{b_i \Sigma w_j}{R \times w_i} \tag{8-2}$$

8.4.3 综合服务IntServ与资源预留协议 RSVP

最初试图在互联网中将互联网提供的服务划分为不同类别的是IETF提出的**综合服务** IntServ(Integrated Services)[RFC 2210~2215]和**资源预留协议** RSVP(ReSource reserVation Protocol)[RFC 2205~2209][ZHAN93][W-IntServ],其中的某些RFC文档已成为互联网的建议标准。

IntServ可对单个的应用会话提供服务质量的保证,其主要特点有二:

- (1) **资源预留**。一个路由器需要知道给不断出现的会话已经预留了 多少资源(即链路带宽和缓存空间)。
- (2) **呼叫建立**。一个需要服务质量保证的会话,必须首先在源点到终点路径上的**每一个**路由器预留足够的资源,以保证其端到端的服务质量的要求。因此,在一个会话开始之前必须先有一个**呼叫建立**(又称为**呼叫接纳**)过程,它需要在其分组传输路径上的每一个路由器都参加。每一个路由器都要确定该会话所需的本地资源是否够用,同时还不要影响到已经建立的会话的服务质量。

IntServ定义了两类服务:

- (1) **有保证的服务**(guaranteed service),可保证一个分组在通过路由器时的排队时延有一个严格的上限。
- (2) **受控负载的服务**(controlled-load service),可以使应用程序得到比通常的"尽最大努力"更加可靠的服务。

IntServ共有以下四个组成部分:

(1) **资源预留协议** RSVP. 它是IntServ的信令协议。

- (2) **接纳控制** $(admission\ control)$,用来决定是否同意对某一资源的请求。
- (3) **分类器**(classifier),用来把进入路由器的分组进行分类,并根据分类的结果把不同类别的分组放入特定的队列。
- (4) **调度器**(scheduler),根据服务质量要求决定分组发送的前后顺序。

一个会话必须首先声明它所需的服务质量,以便使路由器能够确定是否有足够的资源来满足该会话的需求。资源预留协议RSVP在进行资源预留时采用了多播树的方式。发送端发送PATH报文(即存储路径状态报文),给所有的接收端指明通信量的特性。每个中间的路由器都要转发PATH报文,而接收端用RESV报文(即资源预留请求报文)进行响应。路径上的每个路由器对RESV报文的请求都可以拒绝或接受。当请求被某个路由器拒绝时,路由器就发送一个差错报文给接收端,从而终止了这一信令过程。当请求被接受时,链路带宽和缓存空间就被分配给这个分组流,而相关的流(flow)状态信息就保留在路由器中。"流"是在多媒体通信中的一个常用的名词,一般定义为"具有同样的源IP地址、源端口号、目的IP地址、目的端口号、协议标识符及服务质量需求的一连串分组"。

图8-24用一个简单例子说明RSVP协议的要点。设主机 H_1 要向互联网上的四台主机 $H_2 \sim H_5$ 发送多播视频节目,在图中这四台主机右边标注的数据率就是这些主机打算以这样的数据率来接收 H_1 发送的视频节目。这个视频节目可使用不同的数据率来接收。用较低数据率接收时,图像和声音的质量也就较差。

(a) 源点用多播发送 PATH 报文

(b) 各终点向源点返回 RESV 报文

图8-24 RSVP协议的工作原理

主机 H_1 先以多播方式从源点 H_1 向下游方向发送PATH报文,如图8-24(a)所示。当PATH报文传送到多播路径终点的四台主机(即叶节点)时,每一台主机就向多播路径的上游发送RESV报文,指明在接收该多播节目时所需的服务质量等级。路由器若无法预留RESV报文所请求的资源,就返回差错报文。若能预留,则把下游传来的RESV报文合并构成新的RESV报文,传送给自己的上游路由器,最后传送到源点主机 H_1 。这些情况如图8-24(b)所示。因此,RSVP协议是**面向终点的**。

需要注意的是,路由器合并下游的RESV报文并不是把下游提出的预留数据率简单地相加而是取其中较大的数值。例如,路由器 R_4 收到两个预留3Mbit/s的RESV报文,但 R_4 向 R_2 发送的RESV报文只要求预留3Mbit/s而不是6Mbit/s(因为向下游方向发送数据是采用可以节省带宽的多播技术)。同理, R_3 向 R_2 发送的RESV报文要求预留100kbit/s而不是150kbit/s。最后, R_1 向源点 H_1 发送的RESV报文要求预留

3Mbit/s。当 H_1 收到返回的RESV报文后,就开始发送视频数据报文了。

IntServ/RSVP 使得互联网的体系结构发生了根本的变化,因为IntServ/RSVP使得互联网不再是提供"尽最大努力交付"的服务。在有关服务质量的协议中,RSVP是最复杂的。

IntServ/RSVP所基于的概念是端系统中与分组流有关的状态信息。各路由器中的预留信息**只存储有限的时间**(这称为**软状态** soft-state),因而各终点对这些预留信息**必须定期进行更新**。我们还应注意到,RSVP协议不是运输层协议而是网络层的控制协议。RSVP不携带应用数据。图8-25给出了在路由器中实现的IntServ体系结构。

图8-25 IntServ体系结构在路由器中的实现

IntServ体系结构分为前台和后台两个部分。前台部分画在下面,包括两个功能块,即分类器与分组转发,分组的调度器。每一个进入路由器的分组都要通过这两个功能块。后台部分画在上面(有灰色阴影的部分),包括四个功能块和两个数据库。这四个功能块是:

- 路由选择协议,负责维持路由选择数据库。由此可查找出对应于每一个目的地址和每一个流的下一跳地址。
- RSVP协议,为每一个流预留必要的资源,并不断地更新通信量控制数据库。
- 接纳控制,当一个新的流产生时,RSVP就调用接纳控制功能块, 以便确定是否有足够的资源可供这个流使用。
- 管理代理, 用来修改通信量控制数据库和管理接纳控制功能块, 包括设置接纳控制策略。

综合服务IntServ体系结构存在的主要问题是:

- (1) **状态信息的数量与流的数目成正比**。例如,对于OC-48链路(2.5Gbit/s) 上的主干网路由器,通过64kbit/s的音频流的数目就超过39000个。如果对数据率再进行压缩,则流的数目就更多。因此在大型网络中,按每个流进行资源预留会产生很大的开销。
- (2) IntServ体系结构复杂。若要得到有保证的服务,**所有的路由器都必须装有** RSVP、**接纳控制、分类器和调度器**。这种路由器称为 RSVP路由器。在应用数据传送的路径中只要有一个路由器是非RSVP 路由器,整个的服务就又变为"尽最大努力交付"了。
 - (3) 综合服务IntServ所定义的**服务质量等级数量太少,不够灵活**。

8.4.4 区分服务DiffServ

1. 区分服务的基本概念

由于综合服务IntServ和资源预留协议RSVP都较复杂,很难在大规模的网络中实现,因此IETF提出了一种新的策略,即**区分服务** DiffServ(Differentiated Services)[RFC 2475][W-DiffServ]。区分服务有时也简写为DS。因此,具有区分服务功能的结点就称为DS结点。

区分服务DiffServ的要点如下:

(1) DiffServ为图不改变网络的基础结构,但在路由器中增加区分服务的功能。因此,DiffServ将IP协议中原有8位的IPv4的服务类型字段和IPv6的通信量类字段重新定义为区分服务 DS(见图8-26)。路由器根据DS字段的值来处理分组的转发。因此,利用DS字段的不同数值就可提供不同等级的服务质量。根据互联网的建议标准[RFC 2474],DS字段现在只使用其中的前6位,即区分服务码点 DSCP(Differentiated Services CodePoint),再后面的两位目前不使用,记为CU(Currently Unused)。因此由DS字段的值所确定的服务质量实际上就是由DS字段中DSCP的值来确定。

图8-26 区分服务码点DSCP占DS字段的前6位

在使用DS字段之前,互联网的ISP要和用户商定一个**服务等级协定** SLA(Service Level Agreement)。在SLA中指明了被支持的服务类别(可包括吞吐量、分组丢失率、时延和时延抖动、网络的可用性等)和每一类别所容许的通信量。

(2) 网络被划分为许多个DS域(DS Domain)。一个DS域在一个管理实体的控制下实现同样的区分服务策略。DiffServ将所有的复杂性放在DS域的边界结点(boundary node)中,而使DS域内部路由器工作得尽可能简单。边界结点可以是主机、路由器或防火墙等。为了简单起见,下面只讨论边界结点是边界路由器的情况(原理都是一样的)。图8-27给出了DS域、边界路由器(boundary router)和内部路由器(interior router)的示意图。图中标有B的路由器都是边界路由器。

图8-27 DS域、边界路由器和内部路由器的示意图

(3) 边界路由器中的功能较多,可分为**分类器**(classifier)和**通信量调节器**(conditioner)两大部分。调节器又由**标记器**(marker)、整形器(shaper)和**测定器**(meter)三个部分组成。分类器根据分组首部中的一些字段(如源地址、目的地址、源端口、目的端口或分组的标识等)对分组进行分类,然后将分组交给标记器。标记器根据分组的类别设置DS字段的值。以后在分组的转发过程中,就根据DS字段的值使分组得到相应的服务。测定器根据事先商定的SLA不断地测定分组流的速率(与事前商定的数值相比较),然后确定应采取的行

动,例如,可重新打标记或交给整形器进行处理。整形器中设有缓存队列,可以将突发的分组峰值速率平滑为较均匀的速率,或丢弃一些分组。在分组进入内部路由器后,路由器就根据分组的DS值进行转发。图8-28给出了边界路由器中各功能块的关系。

图8-28 边界路由器中的各功能块的关系

(4) DiffServ提供了一种**聚合**(aggregation)功能。DiffServ不是为网络中的每一个流维持供转发时使用的状态信息,而是把若干个流根据其DS值聚合成少量的流。路由器对相同DS值的流都按相同的优先级进行转发。这就大大简化了网络内部的路由器的转发机制。区分服务DiffServ不需要使用RSVP信令。

2. 每跳行为PHB

DiffServ定义了在转发分组时体现服务水平的**每跳行为** PHB(Per-Hop Behavior)。所谓"**行为**"就是指在转发分组时路由器对分组是怎样处理的。"行为"的例子可以是:"首先转发这个分组"或"最后丢弃这个分组"。"每跳"是强调这里所说的行为只涉及到本路由器转发的这一跳的行为,而下一个路由器再怎样处理则与本路由器的处理无关。这和IntServ/RSVP考虑的服务质量是"端到端"的很不一样。

IETF的DiffServ工作组已经定义了两种PHB,即**迅速转发** PHB和**确保** 转发 PHB。

迅速转发 PBH(Expedited Forwarding PHB)可记为EF PHB,或EF。 定义EF的RFC文档是建议标准RFC 3246。EF指明离开一个路由器的通信量的数据率必须等于或大于某一数值。因此EF PHB用来构造通过 DS域的一个低丢失率、低时延、低时延抖动、确保带宽的端到端服务

(即不排队或很少排队)。这种服务对端点来说像点对点连接或"**虚拟 租用线**",又称为Premium(优质)服务。对应于EF的区分服务码点 DSCP的值是101110。

确保转发 PHB(Assured Forwarding PHB)可记为AF PHB或AF。定义AF的RFC文档是建议标准RFC 2597。AF用DSCP的第0~2位把通信量划分为四个等级(分别为001,010,011和100),并给每一种等级提供最低数量的带宽和缓存空间。对于其中的每一个等级再用DSCP的第3~5位划分出三个"丢弃优先级"(分别为010,100和110,从最低丢弃优先级到最高丢弃优先级)。当发生网络拥塞时,对于每一个等级的AF,路由器就首先把"丢弃优先级"较高的分组丢弃。

从以上所述可看出,区分服务DiffServ比较灵活,因为它并没有定义特定的服务或服务类别。当新的服务类别出现而旧的服务类别不再使用时,DiffServ仍然可以工作。

本章的重要概念

- 多媒体信息有两个重要特点: (1) 多媒体信息的信息量往往很大; (2) 在传输多媒体数据时,对时延和时延抖动均有较高的要求。在互联网上传输多媒体数据时,我们都是指含有"边传输、边播放"的特点。
- 由多媒体信息构成的分组在发送时是等时的。这些分组在到达接收端时就变成为非等时的。当接收端缓存中的分组数达到一定的数量后,再以恒定速率按顺序将这些分组进行还原播放。这样就产生了播放时延,同时也可以在很大程度上消除时延的抖动。
- 在传送时延敏感的实时数据时,传输时延和时延抖动都必须受到限制。通常宁可丢失少量分组,也不要接收太晚到达的分组。
- 目前互联网提供的音频/视频服务有三种类型: (1)流式存储音频/视频,用户通过互联网边下载、边播放。(2)流式实况音频/视频,其特点是在发送方边录制、边发送,在接收时也是要求能够连续播放。(3)交互式音频/视频,如互联网电话或互联网电视会议。
- 流媒体(streamingm edia)就是流式音频/视频, 其特点是边下载、边播放, 但不能存储在硬盘上成为用户的文件。
- 媒体服务器(或称为流式服务器)可以更好地支持流式音频和视频的传送。TCP能够保证流式音频/视频文件的播放质量,但开始

播放的时间要比请求播放的时间滞后一些(必须先在缓存中存储一定数量的分组)。对于实时流式音频/视频文件的传送则应当选用UDP。

- 实时流式协议RTSP是为了给流式过程增加更多功能而设计的协议。RTSP本身并不传送数据,而仅仅是使媒体播放器能够控制多媒体流的传送。RTSP又称为"互联网录像机遥控协议"。
- 狭义的IP电话是指在IP网络上打电话。广义的IP电话则不仅是电话通信,而且还可以在IP网络上进行交互式多媒体实时通信(包括话音、视像等),甚至还包括即时传信IM(如QQ和Skype等)。
- IP电话的通话质量主要由两个因素决定: (1) 通话双方端到端的时延和时延抖动; (2) 话音分组的丢失率。但这两个因素都是不确定的,而是取决于当时网络上的通信量。
- 实时运输协议RTP为实时应用提供端到端的运输,但不提供任何服务质量的保证。需要发送的多媒体数据块(音频/视频)经过压缩编码处理后,先送给RTP封装成为RTP分组,装入运输层的UDP用户数据报后,再向下递交给IP层。可以把RTP看成是在UDP之上的一个运输层子层的协议。
- 实时运输控制协议RTCP是与RTP配合使用的协议。RTCP协议的主要功能是:服务质量的监视与反馈,媒体间的同步,以及多播组中成员的标志。RTCP分组也使用UDP来传送,但RTCP并不对音频/视频分组进行封装。
- 现在IP电话有两套信令标准。一套是ITU-T定义的H.323协议,另一套是IETF提出的会话发起协议SIP。
- H.323不是一个单独的协议而是一组协议。H.323包括系统和构件的描述、呼叫模型的描述、呼叫信令过程、控制报文、复用、话音编解码器、视像编解码器,以及数据协议等。H.323标准的四个构件是: (1) H.323终端; (2) 网关; (3) 网闸; (4) 多点控制单元MCU。
- 会话发起协议SIP只涉及到IP电话所需的信令和有关服务质量的问题。SIP使用文本方式的客户服务器协议。SIP系统只有两种构件,即用户代理(包括用户代理客户和用户代理服务器)和网络服务器(包括代理服务器和重定向服务器)。SIP的地址十分灵活,它可以是电话号码,也可以是电子邮件地址、IP地址或其他类型的地址。
- 服务质量QoS是服务性能的总效果,此效果决定了一个用户对服务的满意程度。因此,有服务质量的服务就是能够满足用户的应

用需求的服务。或者说,可提供一致的、可预计的数据交付服务。

- 服务质量可用若干基本的性能指标来描述,包括可用性、差错率、响应时间、吞吐量、分组丢失率、连接建立时间、故障检测和改正时间等。服务提供者可向其用户保证某一种等级的服务质量。
- 为了使互联网具有一定的服务质量,可采取以下一些措施: (1) 分类,如区分服务; (2)管制; (3)调度; (4)呼叫接纳; (5)加权公平排队等。
- 综合服务IntServ可对单个的应用会话提供服务质量的保证,它定义了两类服务,即有保证的服务和受控负载的服务。IntServ共有以下四个组成部分,即(1)资源预留协议RSVP;(2)接纳控制;(3)分类器;(4)调度器。
- 区分服务DiffServ在路由器中增加区分服务的功能,把IP协议中原有的服务类型字段重新定义为区分服务DS,利用DS字段的不同数值提供不同等级的服务质量。DiffServ将所有的复杂性放在DS域的边界结点中,而使DS域内部路由器工作得尽可能地简单。DiffServ定义了在转发分组时体现服务水平的每跳行为PHB,包括EF和AF,即迅速转发PHB和确保转发PHB。

习题

- **8-01** 音频/视频数据和普通的文件数据都有哪些主要的区别?这些区别对音频/视频数据在互联网上传送所用的协议有哪些影响? 既然现有的电信网能够传送音频/视频数据,并且能够保证质量,为什么还要用互联网来传送音频/视频数据呢?
- **8-02** 端到端时延与时延抖动有什么区别?产生时延抖动的原因是什么?为什么说在传送音频/视频数据时对时延和时延抖动都有较高的要求?
- **8-03** 目前有哪几种方案改造互联网,使互联网能够适合于传送音频/视频数据?
- **8-04** 实时数据和等时的数据是一样的意思吗?为什么说互联网是不等时的?实时数据都有哪些特点?试说明播放时延的作用。

- **8-05** 流式存储音频/视频、流式实况音频/视频和交互式音频/视频都有何区别?
- **8-06** 媒体播放器和媒体服务器的功能是什么?请用例子说明。媒体服务器为什么又称为流式服务器?
- **8-07** 实时流式协议RTSP的功能是什么?为什么说它是个带外协议?
- **8-08** 狭义的IP电话和广义的IP电话都有哪些区别? IP电话都有哪几种连接方式?
- **8-09** IP电话的通话质量与哪些因素有关?影响IP电话话音质量的主要因素有哪些?为什么IP电话的通话质量是不确定的?
- **8-10** 为什么RTP协议同时具有运输层和应用层的特点?
- 8-11 RTP协议能否提供应用分组的可靠传输?请说明理由。
- 8-12 在RTP分组的首部中为什么要使用序号、时间戳和标记?
- **8-13** RTCP协议使用在什么场合? RTCP使用的五种分组各有何主要特点?
- 8-14 IP电话的两个主要信令标准各有何特点?
- **8-15** 携带实时音频信号的固定长度分组序列发送到互联网。每隔 10ms发送一个分组。前10个分组通过网络的时延分别是45ms, 50ms, 53ms, 46ms, 49ms, 55ms和51ms。
 - (1) 用图表示出这些分组发出时间和到达时间。
- (2) 若在接收端还原时的端到端时延为75ms, 试求出每一个分组在接收端缓存中应增加的时延。
 - (3) 画出接收端缓存中的分组数与时间的关系。
- 8-16 话音信号的采样速率为8000Hz。每隔10ms将已编码的话音采样装配成话音分组。每一个话音分组在发送之前要加上一个时间戳。假定时间戳是从一个时钟得到的,该时钟每隔Δ秒将计数器加1。试问能

- 否将 Δ 取为9ms?如果行,请说明理由。如果不行,你认为 Δ 应取为多少?
- **8-17** 在传送音频/视频数据时,接收端的缓存空间的上限由什么因素决定?实时数据流的数据率和时延抖动对缓存空间上限的确定有何影响?
- **8-18** 什么是服务质量QoS? 为什么说"互联网根本没有服务质量可言"?
- 8-19 在讨论服务质量时,管制、调度、呼叫接纳各表示什么意思?
- **8-20** 试比较先进先出(FIFO)排队、公平排队(FQ)和加权公平排队(WFQ)的优缺点。
- **8-21** 假定有一个支持三种类别的缓存运行加权公平排队WFQ的调度策略,并假定这三种类别的权重分别是0.5,0.25和0.25。如果是采用循环调度,那么这三个类别接受服务的顺序是123123123...。
- (1) 如果每种类别在缓存中都有大量的分组,试问这三种类别的分组可能以何种顺序接受服务?
- (2) 如果第1类和第3类在缓存中有大量的分组,但缓存中没有第2类的分组,试问这两类分组可能以何种顺序接受服务?
- **8-22** 漏桶管制器的工作原理是怎样的?数据流的平均速率、峰值速率和突发长度各表示什么意思?
- **8-23** 采用漏桶机制可以控制达到某一数值的、进入网络的数据率的持续时间。设漏桶最多可容纳b个权标(token)。当漏桶中的权标数小于b个时,新的权标就以每秒r个权标的恒定速率加入到漏桶中。设分组到达速率为N pkt/s(pkt代表分组),试推导以此速率进入网络所能持续的时间T。讨论一下为什么改变权标加入到漏桶中的速率就可以控制分组进入网络的速率。
- **8-24** 在上题中,设b = 250token,r = 5000token/s,N = 25000pkt/s。 试求分组用这样的速率进入网络能够持续多长时间。若N = 2500pkt/s,重新计算本题。

- 8-25 试推导公式 (8-2)。
- **8-26** 假定图8-23中分组流1的漏桶权标装入速率 $r_1 < Rw_1 / (\Sigma w_i)$,试证明: (8-2) 式给出的 d_{max} 实际上是分组流1中任何分组在WFQ队列中所经受的最大时延。
- **8-27** 考虑8.4.2节讨论的管制分组流的平均速率和突发长度的漏桶管制器。现在我们限制其峰值速率*p* 分组/秒。试说明怎样把一个漏桶管制器的输出流入到第二个漏桶管制器的输入,以便用这样串接的两个漏桶能够管制分组流的平均速率、峰值速率以及突发长度。第二个漏桶的大小和权标产生的速率应当是怎样的?
- **8-28** 综合服务IntServ由哪几个部分组成?有保证的服务和受控负载的服务有何区别?
- 8-29 试述资源预留协议RSVP的工作原理。
- **8-30** 区分服务DiffServ与综合服务IntServ有何区别?区分服务的工作原理是怎样的?
- **8-31** 在区分服务DiffServ中的每跳行为PHB是什么意思? EF PHB和AF PHB有何区别? 它们各适用于什么样的通信量?
- **8-32** 假定一个发送端向2ⁿ个接收端发送多播数据流,而数据流的路径是一个完全的二叉树,在此二叉树的每一个节点上都有一个路由器。若使用RSVP协议进行资源预留,问总共要产生多少个资源预留报文RESV(有的在接收端产生,也有的在网络中的路由器产生)?
- **8-33** 假定IP电话的发送方在讲话时,每秒钟产生8000字节的话音数据。每隔20毫秒把得到的数据块加上RTP首部和UDP首部后,交给IP层发送出去。假定RTP首部和IP首部都没有选项。试计算发送方在发送这种IP数据报时的数据率(kbit/s)。这个数据率比原始的话音数据率增加了百分之多少?
- **8-34** 如图8-29所示,发送方在t = 1发送话音分组8个(等时发送,时间间隔是一个时间单位)。第8个分组在t = 8到达接收方。后续的话音分组的到达时间见图8-29。

- (1) 分组2到分组8的时延(从发送方到接收方) 各为多少?
- (2) 如果接收方在t=8就开始播放,试问这8个分组中有哪几个未能按时到达赶上播放?
- (3) 如果要所有的8个分组都能按时赶上播放,那么接收方应在什么时间开始播放?
- **8-35** 有一个RTP会话包括四个用户,他们都和同一个多播地址进行通信:发送和接收分组。每个用户发送视频的速率是100kbit/s。
 - (1) RTCP的通信量将被限制在多少(kbit/s)?
 - (2) 每一个用户能够分配到的RTCP带宽是多少?

(2) 注:请不要和运输层TCP的缓存弄混。这里所说的缓存是在应用层的缓存。

(3)_注: YouTube是全球最大的视频网站,能支持数百万用户同时观看流畅的视频节目,也支持网民上传自己制作的共享视频节目。Netflix是世界上最大的在线影片租赁提供商,可提供

⁽¹⁾_注:多媒体信息和传统数据信息不同,它是指内容上相互关联的文本、图形、图像、声音、动画和活动图像等所形成的复合数据信息。而多媒体业务则应有集成性、交互性和同步性的特点。集成性是指对多媒体信息进行存储、传输、处理、显示的能力,交互性是指人与多媒体业务系统之间的相互控制能力,同步性是指在多媒体业务终端上显示的图像、声音和文字是以同步方式工作的。在本章中,我们经常把音频/视频信息和多媒体信息作为同义词来使用,虽然它们并不严格地等同。

超过85000部DVD电影的租赁服务,以及4000多部影片或者电视剧的在线观看服务。

(4) 注: 公用电话网即 公用电路交换电话网, 又称为 传统电话网 或 电信网。

(5)_注:在公用电话网中,电话交换机根据用户所拨打的号码就能够通过合适的路由找到被叫用户,并在主叫和被叫之间建立起一条电路连接。这些都依靠电话信令(signaling)完成。我们听到的振铃声、忙音或一些录音提示,以及打完电话挂机释放连接,也都是由电话信令来处理的。现在电话网使用的信令就是7号信令SS7。利用IP网络打电话同样也需要IP网络能够识别的某种信令,但由于IP电话往往要经过已有的公用电话网,因此IP电话的信令必须在所有的功能上与原有的7号信令相兼容,这样才能使IP网络和公用电话网上的两种信令能够互相转换,因而能够做到互操作。

(6)_注:按惯例,在运输层或应用层的协议数据单元应当叫做报文。但相关RFC文档中都是使用RTP packet这一名词。为了和RFC文档一致,这里也使用"RTP分组"。下一节的RTCP也按同样方法处理。

第9章 无线网络和移动网络

近几十年来,无线蜂窝电话通信技术得到了飞速发展。现在移动电话数已经超过了发展历史达一百多年的固定电话数。据ITU的统计,在2015年,全世界移动电话的普及率已达到96.8% [W-ITU],大大超过了固定电话仅14.5%的普及率。据工信部的统计,截止到2015年12月,我国的移动电话总数已超过13亿部,大大超过了固定电话的总数2.3亿部。固定电话的总数仍在逐年下降。每人随身携带一部自己的手机,有时比一家人共享一部固定电话更加方便。

对移动通信的这种需要也必然反映到计算机网络中。人们也希望能够在移动中使用计算机网络。随着便携机、平板电脑以及智能手机的普遍使用,无线计算机网络也飞速发展起来了。截至2015年12月,我国手机网民中通过3G/4G无线上网的比例为88.8%;而通过无线局域网络接入互联网的比例为91.8%。如果说,互联网在过去的二十多年是PC互联网,那么现在就可以说应当是移动互联网了。

由于无线网络和移动网络的数据链路层与传统的有线互联网的数据链路层相差很大,因此有必要单列一章来讨论这个问题。

本章先讨论无线局域网WLAN,其重点是无线局域网MAC层协议载波监听多点接入/碰撞避免CSMA/CA的原理;接着对无线个人区域网WPAN和无线城域网WMAN进行简单的介绍;最后要介绍一下蜂窝移

动通信网。本来,这种蜂窝移动通信网属于通信领域的内容,与计算机网络并无关系。但是随着技术的发展,现在的蜂窝移动通信网也能支持手机甚至支持电脑上网。蜂窝移动通信网也越来越多地采用了计算机网络中的IP技术。因此,在计算机网络课程中也应当适当增加一些有关无线蜂窝通信网的知识。

本章最重要的内容是:

- (1) 无线局域网的组成,特别是分配系统DS(Distribution System)和接入点AP(Access Point)的作用。
- (2) 无线局域网使用的CSMA/CA协议(弄清与载波监听多点接入/碰撞检测CSMA/CD的区别)和无线局域网MAC帧使用的几种地址。
 - (3) 移动用户在移动时怎样保持IP地址不变。
 - (4) 蜂窝移动通信网中对移动用户的路由选择问题。

9.1 无线局域网WLAN

在局域网刚刚问世后的一段时间,无线局域网的发展比较缓慢,原因是价格贵、数据传输速率低、安全性较差,以及使用登记手续复杂(使用无线电频率必须得到有关部门的批准)。但自20世纪80年代末以来,由于人们工作和生活节奏的加快以及移动通信技术的飞速发展,无线局域网也就逐步进入市场。无线局域网提供了移动接入的功能,这就给许多需要发送数据但又不能坐在办公室的工作人员提供了方便。当一个工厂跨越的面积很大时,若要将各个部门都用电缆连接成网,其费用可能很高;但若使用无线局域网,不仅节省了投资,而且建网的速度也会较快。另外,当大量持有便携式计算机的用户在一个地方同时要求上网时(如在图书馆或购买股票的大厅里),若用电缆连网,恐怕连铺设电缆的位置都很难找到。而用无线局域网则比较容易。由于手机普及率日益增高,通过无线局域网接入到互联网已成为当今上网的最常用的方式。无线局域网常简写为WLAN(Wireless Local Area Network)。

请读者注意,**便携站**(portable station)和**移动站**(mobile station)表示的意思并不一样。便携站当然是便于移动的,但便携站在工作时其

位置是固定不变的。而移动站不仅能够移动,而且还可以**在移动的过程中进行通信**(正在进行的应用程序感觉不到计算机位置的变化,也不因计算机位置的移动而中断运行)。移动站一般都是使用电池供电。

9.1.1 无线局域网的组成

无线局域网可分为两大类。第一类是**有固定基础设施的**,第二类是**无固定基础设施的**。所谓"固定基础设施"是指预先建立起来的、能够覆盖一定地理范围的一批固定基站。大家经常使用的蜂窝移动电话就是利用电信公司预先建立的、覆盖全国的大量固定基站来接通用户手机拨打的电话。

1. IEEE 802.11

对于第一类有固定基础设施的无线局域网,1997年IEEE制定出无线局域网的协议标准802.11 [W-IEEE802.11] 系列标准。2003年5月,我国颁布了WLAN的国家标准,该标准采用ISO/IEC 8802-11系列国际标准,并针对WLAN的安全问题,把国家对密码算法和无线电频率的要求纳入了进来。它是基于国际标准之上的符合我国安全规范的WLAN标准,是属于国家强制执行的标准。该国标在2004年6月已经正式执行,不符合此标准的WLAN产品将不允许出现在国内市场上。有关无线局域网的IEEE标准都可从互联网下载「W-IEEE802」。

802.11是个相当复杂的标准。但简单地说,802.11就是无线以太网的标准,它使用星形拓扑,其中心叫做**接入点AP**(Access Point),在MAC层使用CSMA/CA协议(在后面的9.1.3节讨论)。凡使用802.11系列协议的局域网又称为**Wi-Fi**(Wireless-Fidelity,意思是"无线保真度") [W-WiFi] (1)。请注意,现在Wi-Fi实际上已经成为了无线局域网WLAN的代名词,但无线局域网和"保真度"实在没有什么关系。

802.11标准规定无线局域网的最小构件是**基本服务集BSS**(Basic Service Set)。一个基本服务集BSS包括一个基站和若干个移动站,所有的站在本BSS以内都可以直接通信,但在和本BSS以外的站通信时都必须通过本BSS的基站。在802.11的术语中,上面提到的接入点AP就是基本服务集内的**基站**(base station)。当网络管理员安装AP时,必须为该AP分配一个不超过32字节的**服务集标识符** SSID(Service Set

IDentifier) ⁽²⁾和一个通信信道。SSID其实就是指使用该AP的无线局域网的名字。一个**基本服务集** BSS所覆盖的地理范围叫做一个基本服务区BSA(Basic Service Area)。基本服务区BSA和无线移动通信的蜂窝小区相似。无线局域网的基本服务区BSA的范围直径一般不超过100米。

一个基本服务集可以是孤立的,也可通过接入点AP连接到一个**分配系统DS**(Distribution System),然后再连接到另一个基本服务集,这样就构成了一个**扩展的服务集** ESS(Extended Service Set)(图9-1)。分配系统的作用就是使扩展的服务集ESS对上层的表现就像一个基本服务集BSS一样。分配系统可以使用以太网(这是最常用的)、点对点链路或其他无线网络。扩展服务集ESS还可为无线用户提供到802.x局域网(也就是非802.11无线局域网)的接入。这种接入是通过叫做门户(Portal)的设备来实现的。门户是802.11定义的新名词,其实它的作用就相当于一个网桥。在一个扩展服务集内几个不同的基本服务集也可能有相交的部分。在图9-1中的移动站A如果要和另一个基本服务集中的移动站B通信,就必须经过两个接入点AP₁和AP₂,即 $A \to AP_1 \to AP_2 \to B$ 。我们应当注意到,从 AP_1 到 AP_2 的通信是使用有线传输的。

图9-1 IEEE 802.11的基本服务集BSS和扩展服务集ESS

图9-1还画出了移动站A从一个基本服务集漫游到另一个基本服务集(图中的A'),而仍然可保持与另一个移动站B的通信,但A在不同的基本服务集所使用的接入点AP改变了。基本服务集的服务范围是由移动站所发射的电磁波的辐射范围确定的,在图9-1中用一个椭圆来表示基本服务集的服务范围,当然实际上的服务范围可能是很不规则的几何形状。

802.11标准并没有定义如何实现漫游,但定义了一些基本的工具。例如,一个移动站若要加入到一个基本服务集BSS,就必须先选择一个接入点AP,并与此接入点建立关联(association)。建立关联就表示这个移动站加入了选定的AP所属的子网,并和这个接入点AP之间创建了一个虚拟线路。只有关联的AP才向这个移动站发送数据帧,而这个移动站也只有通过关联的AP才能向其他站点发送数据帧。这和手机开机后必须和附近的某个基站建立关联的概念是相似的。

为了使一个基本服务集BSS能够为更多的移动站提供服务,往往在一个BSS内安装有多个接入点AP。有时一个移动站也可以收到本基本服务集以外的AP信号。移动站只能在多个AP中选择一个建立关联。通常可以选择信号最强的一个AP。但有时也可能该AP提供的信道都已被其他移动站使用了。在这种情况下,也只能与信号强度稍差些的AP建立关联。

此后,这个移动站就和选定的AP互相使用802.11关联协议进行对话。移动站点还要向该AP鉴别自身。在关联阶段过后,移动站点要通过关联的AP向该子网发送DHCP发现报文以获取IP地址。这时,互联网中的其他部分就把这个移动站当作该AP子网中的一台主机。

若移动站使用**重建关联**(reassociation)服务,就可把这种关联转移到另一个接入点。当使用分离(dissociation)服务时,就可终止这种关联。

移动站与接入点AP建立关联的方法有两种。一种是被动扫描,即移动站等待接收接入点AP周期性发出的(例如每秒10次或100次)**信标帧**(beacon frame)。信标帧中包含有若干系统参数(如服务集标识符SSID以及支持的速率等)。另一种是主动扫描,即移动站主动发出**探测请求帧**(probe request frame),然后等待从接入点发回的**探测响应帧**(probe response frame)。

现在许多地方,如办公室、机场、快餐店、旅馆、购物中心等都能够向公众提供有偿或无偿接入Wi-Fi的服务。这样的地点就叫做**热点**(hot spot)。由许多热点和接入点AP连接起来的区域叫做**热区**(hot zone)。热点也就是公众无线入网点。

由于无线局域网已非常普及,因此现在无论是笔记本电脑或台式计算机,其主板上都已经有了内置的无线局域网适配器,因而不需要再插

入外置的无线局域网卡了。无线局域网的适配器能够实现802.11的物理层和MAC层的功能。只要在无线局域网信号覆盖的地方,用户就能够通过接入点AP连接到互联网。由于无线信道的使用日益增多,因此现在也出现了无线互联网服务提供者 WISP(Wireless Internet Service Pro vider)这一名词。用户可以通过无线信道接入到WISP,然后再经过无线信道接入到互联网。

无线局域网用户在和附近的接入点AP建立关联时,一般还要键入用户密码。如键入正确,才能和在该网络中的AP建立关联。在无线局域网发展初期,这种接入加密方案称为WEP(Wired Equivalent Privacy,意思是"有线等效的保密"),它曾经是1999年通过的IEEE 802.11b标准中的一部分。然而WEP的加密方案相对比较容易被破译,因此现在的无线局域网普遍采用了保密性更好的加密方案WPA(WiFi Protected Access,意思是"无线局域网受保护的接入")或其第二个版本WPA2。现在WPA2是802.11n中强制执行的加密方案,微软的Windows XP和WIN7都支持WPA2。例如,当我们在PC的WIN7屏幕上点击"开始"→"控制面板"→"网络和Internet"→"查看网络状态和任务"→"管理无线网络",就会看见在当前无线局域网的网络名称后面,有"安全:WPA2"。这就表明对这个网络,只有在弹出的密码窗口中键入正确的密码后,才能与其AP建立关联。

2. 移动自组网络

另一类无线局域网是无固定基础设施的无线局域网,它又叫做**自组网络** (ad hoc network) ⁽³⁾。这种自组网络没有上述基本服务集中的接入点AP,而是由一些处于平等状态的移动站相互通信组成的临时网络(图9-2)。图中还画出了当移动站A和E通信时,经过A→B,B→C,C→D和最后D→E这样一连串的存储转发过程。因此,在从源结点A到目的结点E的路径中,移动站B,C和D都是转发结点,这些结点都具有路由器的功能。由于自组网络没有预先建好的网络固定基础设施(基站),因此自组网络的服务范围通常是受限的,而且自组网络一般也不和外界的其他网络相连接。移动自组网络也就是**移动分组无线网络**。

图9-2 由处于平等状态的一些便携机构成的自组网络

自组网络通常是这样构成的:一些可移动的设备发现在它们附近还有其他的可移动设备,并且要求和其他移动设备进行通信。随着便携式电脑和智能手机的普及,自组网络的组网方式已受到人们的广泛关注。由于在自组网络中的每一个移动站,都要参与到网络中其他移动站的路由的发现和维护,同时由移动站构成的网络拓扑有可能随时间变化得很快,因此在固定网络中行之有效的一些路由选择协议对移动自组网络已不适用。这样,在自组网络中路由选择协议就引起了特别的关注。另一个重要问题是多播。在移动自组网络中往往需要将某个重要信息同时向多个移动站传送。这种多播比固定结点网络的多播要复杂得多,需要有实时性好而效率又高的多播协议。在移动自组网络中,安全问题也是一个更为突出的问题。在IETF下面设有一个专门研究移动自组网络的工作组MANET(Mobile Ad-hoc NE Tworks)[W-MANET],读者可在MANET网站查阅到有关移动自组网络的技术资料。

移动自组网络在军用和民用领域都有很好的应用前景。在军事领域中,由于战场上往往没有预先建好的固定接入点,其移动站就可以利用临时建立的移动自组网络进行通信。这种组网方式也能够应用到作战的地面车辆群和坦克群,以及海上的舰艇群、空中的机群。由于每一个移动设备都具有路由器转发分组的功能,因此分布式的移动自组网络的生存性非常好。在民用领域,持有笔记本电脑的人可以利用这种移动自组网络方便地交换信息,而不受便携式电脑附近没有电话线插头的限制。当出现自然灾害时,在抢险救灾时利用移动自组网络进行及时通信往往也是很有效的,因为这时事先已建好的固定网络基础设施(基站)可能都已经被破坏了。

近年来,移动自组网络中的一个子集——**无线传感器网络** WSN (Wireless Sensor Network) 引起了人们广泛的关注。无线传感器网络

是由大量传感器结点通过无线通信技术构成的自组网络。无线传感器网络的应用就是进行各种数据的采集、处理和传输,一般并不需要很高的带宽,但是在大部分时间必须保持低功耗,以节省电池的消耗。由于无线传感结点的存储容量受限,因此对协议栈的大小有严格的限制。此外,无线传感器网络还对网络安全性、结点自动配置、网络动态重组等方面有一定的要求。

据统计,全球98%的处理器并不在传统的计算机中,而是处在各种家电设备、运输工具以及工厂的机器中。如果在这些设备上能够嵌入合适的传感器和无线通信功能,就可能把数量极大的结点连接成分布式的传感器无线网络,因而能够实现连网计算和处理。

图9-3(a)给出了一种传感器结点的形状,图9-3(b)是典型的传感器结点的组成,它的主要构件包括CPU、存储器、传感器硬件、无线收发器和电池。

图9-3 传感器结点的形状(a)和组成(b)

无线传感器网络中的结点基本上是固定不变的,这点和移动自组网络有很大的区别。无线传感器网络主要的应用领域就是组成各种**物联网**IoT(Internet of Things)。下面是物联网的一些举例:

- (1) 环境监测与保护(如洪水预报、动物栖息的监控);
- (2) 战争中对敌情的侦查和对兵力、装备、物资等的监控;
- (3) 医疗中对病房的监测和对患者的护理:
- (4) 在危险的工业环境(如矿井、核电站等)中的安全监测;

(5) 城市交通管理、建筑内的温度/照明/安全控制等。

关于无线传感器网络更详细的内容可参阅「COMM02」。

顺便指出,移动自组网络和移动IP并不相同。移动IP技术使漫游的主机可以用多种方式连接到互联网。漫游的主机可以直接连接到或通过无线链路连接到固定网络上的另一个子网。支持这种形式的主机移动性需要地址管理和增加协议的互操作性,但移动IP的核心网络功能仍然是基于在固定互联网中一直在使用的各种路由选择协议。但移动自组网络是把移动性扩展到无线领域中的自治系统,它具有自己特定的路由选择协议,并且可以不和互联网相连。即使在和互联网相连时,移动自组网络也是以残桩网络(stub network)方式工作的。所谓"残桩网络"就是通信量可以进入残桩网络,也可以从残桩网络发出,但不允许外部的通信量穿越残桩网络。

最后需要弄清在文献中经常要遇到的、与接入有关的几个名词。

固定接入(fixed access)——在作为网络用户期间,用户设置的地理位置保持不变。

移动接入(mobility access)——用户设备能够以车辆速度(一般取为每小时120公里)移动时进行网络通信。当发生切换(即用户移动到不同蜂窝小区)时,通信仍然是连续的。

便携接入(portable access)——在受限的网络覆盖面积中,用户设备能够在以步行速度移动时进行网络通信,提供有限的切换能力。

游牧接入(nomadic access)——用户设备的地理位置至少在进行网络通信时保持不变。如果用户设备移动了位置(改变了蜂窝小区),那么再次进行通信时可能还要寻找最佳的基站。

也有的文献把便携接入和游牧接入当作一样的,定义为可以在通信时以步行速度移动。这点在阅读文献时应加以注意。

9.1.2 802.11局域网的物理层

802.11标准中物理层相当复杂。限于篇幅,这里对无线局域网的物理层不能展开讨论。根据物理层的不同(如工作频段、数据率、调制方

法等),对应的标准也不同。最早流行的无线局域网是802.11b,802.11a和802.11g。2009年颁布了标准802.11n(见表9-1)。

标准	频段	数据速率	物理层	优缺点	
802.11b	2.4 GHz	最高 11 Mbit/s	扩频	最高数据率较低,价格最低,信号传播距离最远,且不易受	
(1999年)				阻碍	
802.11a	5 GHz	最高 54 Mbit/s	OFDM ^①	最高数据率较高,支持更多用户同时上网,价格最高,信号	
(1999年)				传播距离较短,且易受阻碍。	
802.11g	2.4 GHz	最高 54 Mbit/s	OFDM	最高数据率较高,支持更多用户同时上网,信号传播距离最	
(2003年)				远,且不易受阻碍,价格比802.11b贵。	
802.11n	2.4 / 5 GHz	最高 600 Mbit/s	MIMO [®]	使用多个发射和接收天线达到更高的数据传输率,	
(2009年)			OFDM	当使用双倍带宽(40 MHz)时速率可达 600 Mbit/s。	

表9-1 几种常用的802.11无线局域网

①注: OFDM是Orthogonal Frequency Division Multiplexing(正交频分复用)的缩写。MIMO是Multiple Input Multiple Output(多入多出)的缩写,即空间分集,使用多空间通道,即利用物理上完全分离的最多4个发射天线和4个接收天线,对不同数据进行不同的调制/解调,因而提高了数据的传输速率。

为了使无线局域网的适配器能够适应多种标准,很多适配器都做成双模的(802.11a/g)或三模的(例如,802.11a/b/g)或(802.11b/g/n)。如果你的电脑使用的操作系统是WIN7,那么点击"开始"→"控制面板"→"网络和Internet"→"查看网络状态和任务"→"适配器属性"→"网络",就可以看见你的电脑中的局域网适配器的模式以及局域网的工作频段。

近几年又有一些无线局域网的新标准相继推出。例如,2012年的802.11ad,工作频段在60GHz,最高数据率可达7Gbit/s。适用于单个房间(不能穿越墙壁)内的高速数据传输,如4K高清电视节目。2013年的802.11ac,是802.11n的升级版本,工作频段为5GHz,最高数据率为1Gbit/s。2016年的802.11ah,工作频段在900MHz,最高数据率为18Mbit/s,这种无线局域网的功耗低、传输距离长(最长可达1km),很适合于物联网设备之间的通信。

无线局域网最初还使用过跳频扩频FHSS(Frequency Hopping Spread Spectrum)和红外技术IR(InfraRed),但现在已经很少使用了。

以上几种标准都使用共同的媒体接入控制协议,都可以用于有固定基础设施的或无固定基础设施的无线局域网。

对于最常用的802.11b无线局域网,所工作的2.4~2.485GHz频率范围中有85MHz的带宽可用。802.11b定义了11个部分重叠的信道集,但仅当两个信道由四个或更多信道隔开时它们才无重叠。其中,信道1,6和11的集合是唯一的三个非重叠信道的集合。因此在同一个位置上可以设置三个AP,并分别给它们分配信道1,6和11,然后用一个交换机把这三个AP连接起来,这样就可以构成一个最大传输速率为33Mbit/s的无线局域网。

除IEEE的802.11委员会外,欧洲电信标准协会ETSI(European Telecommunications Standards Institute)的RES10工作组也为欧洲制定无线局域网的标准,他们把这种局域网取名为HiperLAN。ETSI和IEEE的标准是可以互操作的。

下面我们讨论802.11标准的MAC层。

9.1.3 802.11局域网的MAC层协议

1. CSMA/CA协议

虽然CSMA/CD协议已成功地应用于使用有线连接的局域网,但无线局域网能不能也使用CSMA/CD协议呢?显然,这个协议的前一部分CSMA能够使用。在无线局域网中,在发送数据之前先对媒体进行载波监听。如发现有其他站在发送数据,就推迟发送以免发生碰撞。这样做是合理的。但问题是"碰撞检测"(CD)在无线环境下却不能使用。理由如下。

- (1)"碰撞检测"要求一个站点在发送本站数据的同时,还必须不间断地检测信道。一旦检测到碰撞,就立即停止发送。但由于无线信道的传输条件特殊,其信号强度的动态范围非常大,因此在802.11适配器上接收到的信号强度往往会远远小于发送信号的强度(信号强度可能相差百万倍)。如要在无线局域网的适配器上实现碰撞检测,在硬件上的花费就会过大。
- (2) 更重要的是,即使我们能够在硬件上实现无线局域网的碰撞检测功能,也仍然无法避免碰撞的发生。这就表明,无线局域网不需要进行碰撞检测。

"无线局域网不需要进行碰撞检测"是由无线信道本身的特点决定的。我们知道,无线电波能够向所有的方向传播,且其传播距离受限。当电磁波在传播过程中遇到障碍物时,其传播距离就会受到限制。如图 9-4所示的例子表示了无线局域网的特殊问题。图中给出两个无线移动站A和B,以及接入点AP。我们假定无线电信号传播的范围是以发送站为圆心的一个圆形面积。

图9-4 无线局域网中的特殊问题

图9-4(a)表示站点A和C都想和B通信。但A和C相距较远,彼此都听不见对方。当A和C检测到信道空闲时,就都向B发送数据,结果发生了碰撞。这种未能检测出信道上其他站点信号的问题叫做**隐蔽站问题**(hidden station problem)。

当移动站之间有障碍物时也有可能出现上述问题。例如,三个站点A,B和C彼此距离都差不多,相当于在一个等边三角形的三个顶点。但A和C之间有一座山,因此A和C彼此都听不见对方。若A和C同时向B发送数据就会发生碰撞,使B无法正常接收。

图9-4(b)给出了另一种情况。站点B向A发送数据,而C又想和D通信,但C检测到信道忙,于是就不敢向D发送数据,其实B向A发送数据并不影响C向D发送数据(如果是A向B发送数据,同时C也向D发送数据,这时就会干扰B接收A发来的数据。但现在是假定B向A发送数据)。这就是**暴露站问题**(exposed station problem)。在无线局域网中,在不发生干扰的情况下,可允许同时有多个移动站进行通信。这点与有线局域网有很大的差别。

由此可见,无线局域网可能出现检测错误的情况:检测到信道空闲,其实信道并不空闲:有时检测到信道忙,其实信道并不忙。

我们知道, CSMA/CD有两个要点。一是发送前先检测信道, 信道空闲就立即发送, 信道忙就随机推迟发送。二是边发送边检测信道, 一发现碰撞就立即停止发送。因此偶尔发生的碰撞并不会使局域网的运行效率降低很多。但无线局域网不能使用碰撞检测, 只要开始发送数据, 就不能中途停止发送, 而一定把整个帧发送完毕。由此可见, 如果在无线局域网的发送过程中, 一旦发生了碰撞, 那么整个信道资源的浪费就比较严重。因此, 无线局域网应当尽量减少碰撞的发生。

为此,802.11 局域网使用CSMA/CA协议⁽⁴⁾-。CA表示Collision Avoidance,是碰撞避免的意思,或者说,**协议的设计是要尽量减少碰撞发生的概率**。

802.11局域网在使用CSMA/CA的同时,还使用停止等待协议。这是因为无线信道的通信质量远不如有线信道的,因此无线站点每通过无线局域网发送完一帧后,要等到收到对方的确认帧后才能继续发送下一帧。这就是**链路层确认**。

我们在进一步讨论CSMA/CA协议之前,先要介绍802.11的MAC层。

802.11标准设计了独特的MAC层(图 9-5)。它通过**协调功能**(Coordination Function)来确定在基本服务集BSS中的移动站,在什么时间能发送数据或接收数据。802.11的MAC层在物理层的上面,它包括两个子层。

图9-5 802.11的MAC层

- (1) **分布协调功能DCF** (Distributed Coordination Function)。 DCF 不采用任何中心控制,而是在每一个结点使用CSMA机制的分布式接入算法,让各个站通过争用信道来获取发送权。因此DCF向上提供争用服务。802.11协议规定,所有的实现都必须有 DCF功能。
- (2) **点协调功能PCF**(Point Coordination Function)。PCF是**选项**,是用接入点AP集中控制整个BSS内的活动,因此自组网络就没有PCF子层。PCF使用集中控制的接入算法,用类似于探询的方法把发送数据权轮流交给各个站,从而避免了碰撞的产生。对于时间敏感的业务,如分组话音,就应使用提供无争用服务的点协调功能PCF。

为了尽量避免碰撞,802.11规定,所有的站在完成发送后,必须等待一段很短的时间(继续监听)才能发送下一帧。这段时间通称为**帧间隔IFS**(InterFrame Space)。帧间间隔的长短取决于该站要发送的帧的类型。高优先级帧需要等待的时间较短,因此可优先获得发送权,但低优先级帧就必须等待较长的时间。若低优先级帧还没来得及发送而其他站的高优先级帧已发送到媒体,则媒体变为忙态,低优先级帧只能再推迟发送,这样就减少了发生碰撞的机会。至于各种帧间间隔的具体长度,则取决于所使用的物理层特性。下面解释最常用的两种帧间间隔的作用(参考图9-6)。

图9-6 CSMA/CA协议的工作原理

(1) **SIFS**,即**短**(Short)**帧间间隔**,长度为28µs。SIFS是最短的帧间间隔,用来分隔开属于一次对话的各帧。在这段时间内,一个站应当能够从发送方式切换到接收方式。使用SIFS的帧类型有:ACK帧、CTS帧(在后面第2小节"对信道进行预约"中介绍)、由过长的MAC帧分片后的数据帧 (5),以及所有回答AP探询的帧和在PCF方式中接入点AP发送出的任何帧。

(2) **DIFS**,即**分布协调功能帧间间隔**,它比SIFS的帧间间隔要长得多,长度为128μs。在DCF方式中,DIFS用来发送数据帧和管理帧。

CSMA/CA协议的工作原理可用图9-6来说明。

要发送数据的站先检测信道。在802.11标准中规定了在物理层的空中接口进行物理层的载波监听。通过收到的相对信号强度是否超过一定的门限数值就可判断是否有其他的移动站在信道上发送数据。当源站发送它的第一个MAC帧时,若检测到信道空闲,则在等待一段时间DIFS后就可发送。

为什么信道空闲还要再等待一段时间DIFS呢?就是考虑到可能有其他的站有高优先级的帧要发送。如有,就要让高优先级帧先发送。

现在假定没有高优先级帧要发送,因而源站发送了自己的数据帧。目的站若正确收到此帧,则经过时间间隔SIFS后,向源站发送确认帧ACK。若源站在规定时间内没有收到确认帧ACK(由重传计时器控制这段时间),就必须重传此帧,直到收到确认为止,或者经过若干次的重传失败后放弃发送。

由此可见,802.11无线局域网采用的停止等待协议,是一种可靠传输协议。发送方必须等待对方的确认帧。但802.3有线局域网的传输是不可靠的,发送方把数据发送出去就不管了(当然若检测到碰撞是必须重传的),如果需要可靠传输则由高层负责。

802.11标准还采用了一种叫做虚拟载波监听(Virtual Carrier Sense)的机制,这就是让源站把它要占用信道的时间(包括目的站发回确认帧所需的时间)及时通知给所有其他站,以便使其他所有站在这一段时间都停止发送数据,这样就大大减少了碰撞的机会。"虚拟载波监听"表示其他站并没有监听信道,而是由于其他站收到了"源站的通知"才不发送数据。这种效果好像是其他站都监听了信道。所谓"源站的通知"就是源站在其MAC帧首部中的第二个字段"持续时间"中,填入了在本帧结束后还要占用信道多少时间(以微秒为单位),包括目的站发送确认帧所需的时间。

当一个站检测到正在信道中传送的MAC帧首部的"持续时间"字段时,就调整自己的**网络分配向量** NAV(Network Allocation Vector)。NAV 指出了必须经过多少时间才能完成数据帧的这次传输,才能使信道转 入到空闲状态。因此,某个站认为信道处于忙态就有两种可能,一种可能是由于其物理层的载波监听检测到信道忙,另一种可能是由于MAC层的虚拟载波监听机制指出了信道忙。

图9-6指出, 当信道从忙态变为空闲时, 任何一个站要发送数据帧时, 只要不是要发送的第一个帧,不仅都必须等待一个DIFS的间隔,而且 还要进入争用窗口,并计算随机退避时间,以便再次重新试图接入到 信道。请读者注意,在以太网的CSMA/CD协议中,要发送数据的站, 在监听到信道变为空闲就**立即**发送数据,同时进行碰撞检测。如果不 巧发生了碰撞,不要紧,马上执行退避算法,大家都停止发送,这样 就立即使信道恢复到空闲状态。网络资源被浪费得很少。但在无线局 域网802.11标准的CSMA/CA协议中, 因为没有像以太网那样的碰撞检 测机制,所以,**在信道从忙态转为空闲时,为了避免几个站同时发送** 数据(一旦发送就要把一帧发送完,不能中途停止),所有想发送数 **据的站就都要执行退避算法**。 这样做不仅大大减小了发生碰撞的概 率,而且也避免了一个站连续发送长帧,垄断了整个的无线信道。 802.11标准也是使用二进制指数退避算法,但具体做法稍有不同。这 就是: 第i 次退避就在 2^{2+i} 个时隙中随机地选择一个。这就是说、第1次退避是在8个时隙(而不是2个)中随机选择一个,而第2次退避是在 16个时隙(而不是4个)中随机选择一个。

当某个要发送数据的站,使用退避算法选择了争用窗口中的某个时隙后,就根据该时隙的位置设置一个**退避计时器**(backoff timer)。当退避计时器的时间减小到零时,就开始发送数据。也可能当退避计时器的时间还未减小到零时而信道又转变为忙态,这时就冻结退避计时器的数值,重新等待信道变为空闲,再经过时间DIFS后,继续启动退避计时器(从剩下的时间开始)。这种规定有利于继续启动退避计时器的站更早地接入到信道中。

为了更好地了解802.11的退避机制,下面用个例子来说明(图9-7)。

图9-7 802.11的退避机制的概念

图9-7表示当A正在发送数据时,B,C和D都有数据要发送(用向上的箭头表示)。由于这三个站都检测到信道忙,因此都要执行退避算法,各自随机退避一段时间再发送数据。802.11标准规定,退避时间必须是整数倍的时隙时间。

前面已经讲过,第i 次退避是在时隙 $\{0, 1, ..., 2^{2+i}-1\}$ 中随机地选择一个。这样做是为了使不同站点选择相同退避时间的概率减少。因此,第1 次退避 (i=1) 要推迟发送的时间是在时隙 $\{0, 1, ..., 7\}$ 中(共8个时隙)随机选择一个,而第2 次退避是在时隙 $\{0, 1, ..., 15\}$ 中(共16个时隙)随机选择一个。当时隙编号达到255时(这对应于第6 次退避)就不再增加了。这里决定退避时间的变量i 称为**退避变量**。

退避时间选定后,就相当于设置了一个**退避计时器**(backoff timer)。站点每经历一个时隙的时间就检测一次信道。这可能发生两种情况:若检测到信道空闲,退避计时器就继续倒计时;若检测到信道忙,就**冻结退避计时器的剩余时间**,重新等待信道变为空闲并再经过时间DIFS后,从剩余时间开始继续倒计时。如果退避计时器的时间减小到零时,就开始发送整个数据帧。

从图9-7可以看出,C的退避计时器最先减到零,于是C立即把整个数据帧发送出去。请注意,A发送完数据后信道就变为空闲。C的退避计时器一直在倒计时。当C在发送数据的过程中,B和D检测到信道忙,就冻结各自的退避计时器的数值,重新期待信道变为空闲。正在

这时E也想发送数据。由于E检测到信道忙,因此E就执行退避算法和设置退避计时器。

当C发送完数据并经过了时间DIFS后,B和D的退避计时器又从各自的剩余时间开始倒计时。现在争用信道的除B和D外,还有E。D的退避计时器最先减到零,于是D得到了发送权。在D发送数据时,B和E都冻结其退避计时器。

以后E的退避计时器比B先减少到零。当E发送数据时,B再次冻结其退避计时器。等到E发送完数据并经过时间DIFS后,B的退避计时器才继续工作,一直到把最后剩余的时间用完,然后就发送数据。

冻结退避计时器剩余时间的做法是为了使协议对所有站点更加公平。

根据以上讨论的情况,可把CSMA/CA算法归纳如下:

- (1) 若站点**最初** 有数据要发送(而不是发送不成功再进行重传),且检测到信道空闲,在等待时间DIFS后,就发送整个数据帧。
- (2) 否则,站点执行CSMA/CA协议的退避算法。一旦检测到信道 忙,就冻结退避计时器。只要信道空闲,退避计时器就进行倒计时。
- (3) 当退避计时器时间减少到零时(这时信道只可能是空闲的),站点就发送整个的帧并等待确认。
- (4) 发送站若收到确认,就知道已发送的帧被目的站正确收到了。这时如果要发送第二帧,就要从上面的步骤(2)开始,执行CSMA/CA协议的退避算法,随机选定一段退避时间。

若源站在规定时间内没有收到确认帧ACK(由重传计时器控制这段时间),就必须重传此帧(再次使用CSMA/CA协议争用接入信道),直到收到确认为止,或者经过若干次的重传失败后放弃发送。

应当指出,当一个站要发送数据帧时,仅在下面的情况下才**不使用** 退避算法:检测到信道是空闲的,并且这个数据帧是它想发送的第一个数据帧。

除此以外的所有情况,都必须使用退避算法。具体来说,以下几种情况必须使用退避算法:

- (1) 在发送第一个帧之前检测到信道处于忙态。
- (2) 每一次的重传。
- (3) 每一次的成功发送后再要发送下一帧。

2. 对信道进行预约

为了更好地解决隐蔽站带来的碰撞问题,802.11允许要发送数据的站对信道进行预约。具体的做法是这样的。如图9-8所示,A在向B发送数据帧之前,先发送一个短的控制帧,叫做**请求发送** RTS(Request To Send),它包括源地址、目的地址和这次通信(包括相应的确认帧)所需的持续时间。当然,A在发送RTS帧之前,必须先监听信道。若信道空闲,则等待一段时间DIFS后,才能够发送RTS帧。若B正确收到A发来的RTS帧,且媒体空闲,则等待一段时间SIFS后,就向A发送一个叫做**允许发** 送CTS(Clear To Send)的控制帧,它也包括这次通信所需的持续时间。A收到CTS帧后,再等待一段时间SIFS后,就可发送数据帧。若B正确收到了A发来的数据帧,在等待时间SIFS后,就前A发送确认帧ACK。

图9-8 发送RTS帧和CTS帧对信道进行预约

这里要说明一下。根据802.11协议的规定,A在RTS帧中所填写的所需占用信道的持续时间,是从RTS帧发送完毕后,到B最后发送完确认ACK为止的时间。从图9-8可以看出,这段时间就是[SIFS+CTS+SIFS+数据帧+SIFS+ACK]这些时间段之和。这个时间也就是从RTS帧发完后,信道仍被A和B的通信占用的时间。而B在CTS帧中所填写的所需占用信道的持续时间,是从CTS帧发送完毕后,到B最后发送完确认ACK为止的时间。从图9-8可以看出,这就是[SIFS+数据帧+SIFS+ACK]这些时间段之和。这个时间也就是从CTS帧发完后,信道仍被A和B的通信占用的时间。

上述的这两个持续时间,实际上分别是A和B的网络分配向量NAV。其他站注意到NAV后,就不会在这段时间发送数据了。

使用RTS帧和CTS帧会使整个网络的通信效率有所下降。但由于这两种控制帧都很短,其长度分别为20字节和14字节,与数据帧(最长可达2346字节)相比开销不算大。相反,若不使用这种控制帧,则一旦发生碰撞而导致数据帧重发,浪费的时间就更多了。虽然如此,协议还是设有三种情况供用户选择。

- (1) 使用RTS帧和CTS帧。
- (2) 只有当数据帧的长度超过某一数值时才使用RTS帧和CTS帧(显然,当数据帧本身就很短时,再使用RTS帧和CTS帧只能增加开销)。
 - (3) 不使用RTS帧和CTS帧。

虽然协议经过了精心设计,但碰撞仍然会发生。例如,有两个站同时向同一个目的站发送RTS帧。这两个RTS帧发生碰撞后,使得目的站收不到正确的RTS帧,因而目的站就不会发送后续的CTS帧。这时,原先发送RTS帧的两个站就各自随机地推迟一段时间后再重新发送其RTS帧。推迟时间的算法也是使用二进制指数退避。

在图9-8中,在除源站和目的站以外的其他各站中,在收到CTS帧(或数据帧)后就设置其网络分配向量NAV,以便推迟接入到无线局域网中。这样就保证了源站和目的站之间的通信不会受到其他站的干扰。

为了更好地理解CSMA/CA协议,图9-9给出了CSMA/CA协议的基本流程图,它能帮助我们抓住这个协议的重点。我们可以看出,在这个流程图中没有考虑许多较为复杂的情况(如图9-7中冻结剩余的退避时间等问题)。

图9-9 CSMA/CA的基本流程图

9.1.4 802.11局域网的MAC帧

为了更好地了解802.11局域网的工作原理,我们应当进一步了解802.11 局域网的MAC帧的结构。802.11帧共有三种类型,即控制帧、数据帧 和**管理帧**。通过图9-10所示的802.11局域网的数据帧和三种控制帧的 主要字段,可以进一步了解802.11局域网的MAC帧的特点。

(c) CTS 和 ACK 帧格式(帧控制字段中的子类型分别为1100和1101)

①注: 802.11标准上使用的名词是分配系统DS, 但为了便于理解, 我们在这里使用接入点AP 代替DS。

从图9-10(a)可以看出,802.11数据帧由以下三大部分组成:

- (1) MAC首部, 共30字节。帧的复杂性都在帧的MAC首部。
- (2) 帧主体,也就是帧的数据部分,不超过2312字节。这个数值比以太网的最大长度长很多。不过802.11帧的长度通常都小于1500字节。
 - (3) 帧检验序列FCS是MAC尾部, 共4字节。

1. 关于802.11数据帧的地址

802.11数据帧最特殊的地方就是有四个地址字段。地址4用于自组网络。这里只讨论前三种地址。这三个地址的内容取决于帧控制字段中的"去往AP"(发送到接入点)和"来自AP"(从接入点发出)这两个子字段的数值。这两个子字段各占1位,合起来共有4种组合,用于定义802.11帧中的几个地址字段的含义。当然,这些地址都是MAC地址(在数据链路层不可能使用IP地址)。

表9-2给出的是802.11帧的地址字段最常用的两种情况(在有基础设施的网络中只使用前三种地址,而不使用仅在自组移动网络中使用的地址4)。

去往 AP	来自 AP	地址 1	地址 2	地址 3	地址 4
0	1	目的地址	AP 地址	源地址	_
1	0	AP 地址	源地址	目的地址	

表9-2 802.11帧的地址字段最常用的两种情况

现结合图9-11的例子进行说明。站点A向B发送数据帧,但这个数据帧必须经过AP转发。首先站点A把数据帧发送到接入点 AP_1 ,然后由 AP_1 把数据帧发送给站点B。

图9-11 A向B发送数据,或路由器R向C发送数据,都必须先发送到接入点

当站点A把数据帧发送给AP₁时,帧控制字段中的"去往AP=1"(因为现在数据报是发送到AP)而"来自AP=0"(因为现在数据报不是从AP发出)。因此,地址1是AP₁的MAC地址(⑤(接收地址),地址2是A的MAC地址(源地址),地址3是B的MAC地址(目的地址)。请注意,"接收地址"与"目的地址"并不等同。接收这个数据报的地址是AP₁的MAC地址,但这个数据报最终目的地址是B的MAC地址。

当 AP_1 把数据帧转发给站点B时,帧控制字段中的"去往AP=0"而"来自AP=1"。因此地址1是B的MAC地址(目的地址),地址2是 AP_1 的MAC地址(发送地址),地址3是A的MAC地址(源地址)。请注意,上述的"发送地址"与"源地址"也不相同。

现在再考虑另一个例子。假定要把一个数据报从图9-11中路由器R的接口2转发到移动站C。路由器当然知道C的IP地址(就是要转发的数据报的目的地址)。R使用地址解析协议ARP可得到C的MAC地址。于是R把要转发的数据报封装成以太网帧,其源地址是R在接口2的MAC地址,而目的地址是C的MAC地址。

但以太网帧到达 AP_2 后, AP_2 在将其进行无线发送之前,先把这个以太网帧转换为无线局域网802.11帧。在这个帧中,地址1和地址2分别是C的MAC地址和 AP_2 的MAC地址,地址3是路由器R的接口2的MAC地址。

同理,C在把数据报发往路由器R时,应先封装成802.11帧发送到接入点AP₂。这时,地址1和地址2应分别是AP₂的MAC地址和C的MAC地址,而地址3是R的接口2的MAC地址。

 AP_2 收到802.11帧后,将其转换成以太网帧,其源地址是C的MAC地址,而目的地址是R在接口2的MAC地址。

以上情况可归纳如表9-3所示。

表9-3 数据报在路由器R与移动站C之间传送(表中地址都是MAC地址)

数据报流向	去往 AP	来自 AP	地址 1	地址 2	地址 3	地址 4
R接□2 → AP ₂	1	0	AP ₂ 地址	R接口2地址	C的地址	
$AP_2 \rightarrow C$	0	1	C的地址	AP ₂ 地址	R接口2地址	
C → AP ₂	1	0	AP ₂ 地址	C的地址	R接口2地址	_
AP ₂ → R 接口 2	0	1	R接口2地址	AP ₂ 地址	C的地址	

2. 序号控制字段、持续期字段和帧控制字段

下面有选择地介绍802.11数据帧中的其他一些字段。

- (1) **序号控制字段** 占16位,其中**序号子字段** 占12位(从0开始,每发送一个新帧就加1,到4095后再回到0),**分片子字段** 占4位(不分片则保持为0。如分片,则帧的序号子字段保持不变,而分片子字段从0开始,每个分片加1,最多到15)。重传的帧的序号和分片子字段的值都不变。序号控制的作用是使接收方能够区分开是新传送的帧还是因出现差错而重传的帧。这和运输层讨论的序号的概念是相似的。
- (2) **持续期字段** 占16位。在9.1.3节第2小节"对信道进行预约"中已经讲过CSMA/CA协议允许发送数据的站点预约信道一段时间(见前面的图9-8的例子),并把这个时间写入到持续期字段中。这个字段有多种用途(这里不对这些用途进行详细的说明),只有最高位为0时才表示持续期。这样,持续期不能超过2 ¹⁵ –1 = 32767,单位是微秒。
- (3) **帧控制字段** 共分为11个子字段。下面介绍其中较为重要的几个。

协议版本字段现在是0。

类型字段 和**子类型字段** 用来区分帧的功能。上面已经讲过,**802.11**帧 共有三种类型:**控制帧、数据帧** 和**管理帧**,而每一种帧又分为若干种子类型。例如,控制帧有RTS,CTS和ACK等几种不同的子类型。控制帧的几种常用的帧格式如图9-10(b)(c)所示。

更多分片字段 置为1时表明这个帧属于一个帧的多个分片之一。我们知道,无线信道的通信质量是较差的。因此无线局域网的数据帧不宜太长。当帧长为n 而误比特率 $p=10^{-4}$ 时,正确收到这个帧的概率 $P=(1-p)^n$ 。若n=12144bit(相当于1518字节长的以太网帧),则算出这时P=0.2969,即正确收到这样的帧的概率还不到30%。因此,为了提高传输效率,在信道质量较差时,需要把一个较长的帧划分为许多较短的分片。这时可以在一次使用RTS和CTS帧预约信道后连续发送这些分片。当然这仍然要使用停止等待协议,即发送一个分片,等到收到确认后再发送下一个分片,不过后面的分片都不需要用RTS和CTS帧重新预约信道(见图9-12)。

图9-12 分片的发送

有线等效保密字段 WEP(Wired Equivalent Privacy)占1位。若WEP=1,就表明采用了WEP加密算法。WEP表明使用在无线信道的这种加密算法在效果上可以和有线信道上通信一样保密。WEP加密算法相当复杂 [KURO13] ,限于篇幅,这里从略。

9.2 无线个人区域网WPAN

无线个人区域网 WPAN(Wireless Personal Area Network)就是在个人工作地方把属于个人使用的电子设备(如便携式电脑、平板电脑、便携式打印机以及蜂窝电话等)用无线技术连接起来自组网络,不需要使用接入点AP,整个网络的范围约为10m。WPAN可以是一个人使用,也可以是若干人共同使用(例如,一个外科手术小组的几位医生把几米范围内使用的一些电子设备组成一个无线个人区域网)。这些电子设备可以很方便地进行通信,就像用普通电缆连接一样。请注意,无线个人区域网 WPAN和个人区域网 PAN(Personal Area Network)并不完全等同,因为PAN不一定都是使用无线连接的。

WPAN和无线局域网WLAN并不一样。WPAN是以个人为中心来使用的无线个人区域网,它实际上就是一个低功率、小范围、低速率和低价格的电缆替代技术。但WLAN却是同时为许多用户服务的无线局域网,它是一个大功率、中等范围、高速率的局域网。

WPAN的IEEE标准都由IEEE的802.15工作组制定,这个标准也包括MAC层和物理层这两层的标准 [W-IEEE802.15] 。WPAN都工作在2.4GHz的ISM频段。顺便指出,欧洲的ETSI标准则把无线个人区域网取名为HiperPAN。

1. 蓝牙系统

最早使用的WPAN是1994年爱立信公司推出的**蓝牙**(Bluetooth)系统,其标准是IEEE 802.15.1 [W-BLUE]。蓝牙的数据率为720kbit/s,通信范围在10米左右。蓝牙使用TDM方式和跳频扩频FHSS技术组成不用基站的**皮可网**(piconet)。Piconet直译就是"微微网",因为前缀pico-本来是微微(10⁻¹²)的意思,表示这种无线网络的覆盖面积非常小。每一个皮可网有一个**主设备**(Master)和最多7个工作的**从设备**(Slave)。通过共享主设备或从设备,可以把多个皮可网链接起来,形成一个范围更大的**扩散网**(scatternet)。这种主从工作方式的个人区域网实现起来价格就会比较便宜。

图9-13给出了蓝牙系统中的皮可网和扩散网的概念。图中标有M和S的小圆圈分别表示主设备和从设备,而标有P的小圆圈表示不工作的**搁置的**(Parked)设备。一个皮可网最多可以有255个搁置的设备。

图9-13 蓝牙系统中的皮可网和扩散网

为了适应不同用户的需求,WPAN还定义了另外两种低速WPAN和高速WPAN(下面介绍)。

2. 低速WPAN

低速WPAN主要用于工业监控组网、办公自动化与控制等领域,其速率是2~250kbit/s。低速WPAN的标准是IEEE 802.15.4。最近新修订的标准是IEEE 802.15.4-2006。在低速WPAN中最重要的就是ZigBee。ZigBee名字来源于蜂群使用的赖以生存和发展的通信方式。蜜蜂通过跳Z形(即ZigZag)的舞蹈,来通知其伙伴所发现的新食物源的位置、距离和方向等信息,因此就把ZigBee作为新一代无线通信技术的名称。ZigBee技术主要用于各种电子设备(固定的、便携的或移动的)之间的无线通信,其主要特点是通信距离短(10~80m),传输数据速率低,并且成本低廉。

ZigBee的另一个特点是功耗非常低。在工作时,信号的收发时间很短;而在非工作时,ZigBee结点处于休眠状态(处于这种状态的时间一般都远远大于工作时间)。这就使得ZigBee结点非常省电,其结点的电池工作时间可以长达6个月到2年左右。对于某些工作时间和总时间(工作时间+休眠时间)之比小于1%的情况,电池的寿命甚至可以超过10年。

ZigBee网络容量大。一个ZigBee的网络最多包括有255个结点,其中一个是主设备(Master),其余则是从设备(Slave)。若是通过网络协调器(Network Co ordinator),整个网络最多可以支持超过64000个结点。

ZigBee标准是在IEEE 802.15.4标准基础上发展而来的。因此,所有ZigBee产品也是802.15.4产品。虽然人们常常把ZigBee和802.15.4作为同义词,但它们之间是有区别的。图9-14是ZigBee的协议栈。可以看出,IEEE 802.15.4只是定义了ZigBee协议栈的最低的两层(物理层和MAC层),而上面的两层(网络层和应用层)则是由ZigBee联盟(2)定义的[W-ZigBee]。在一些文献中可以见到"ZigBee/802.15.4"的写法,这就表示ZigBee标准是由两个不同的组织制定的。

图9-14 ZigBee的协议栈

IEEE 802.15.4的物理层定义了表9-4所示的三个频段(都是免费开放的)。

表9-4 IEEE 802.15.4物理层使用的三个频段

频段	数据率	信道数
2.4GHz (全球)	250kbit/s	16
915MHz (美国)	40kbit/s	10
868MHz (欧洲)	20kbit/s	1

在MAC层,主要沿用802.11无线局域网标准的CSMA/CA协议。这就是在传输之前,会先检查信道是否空闲,若信道空闲,则开始进行数据传输;若产生碰撞,则推后一段时间重传。

在网络层,ZigBee可采用星形和网状拓扑,或两者的组合(图9-15)。一个ZigBee网络最多可以有255个结点。ZigBee的结点按功能的强弱可划分为两大类,即全功能设备 FFD(Full-Function Device)和精简功能设备 RFD(Reduced-Function Device)。RFD结点是ZigBee网络中数量最多的端设备(如图9-15中的9个黑色小圆点),它的电路简单,存储容量较小,因而成本较低。FFD结点具备控制器(Controller)的功能,能够提供数据交换,是ZigBee网络中的路由器。RFD结点只能与处在该星形网中心的FFD结点交换数据。在一个ZigBee网络中有一个FFD充当该网络的协调器(coordinator)。协调器负责维护整个ZigBee网络的结点信息,同时还可以与其他ZigBee网络的协调器交换数据。通过各网络协调器的相互通信,可以得到覆盖更大范围、超过65000个结点的ZigBee网络。

图9-15 ZigBee的组网方式

3. 高速WPAN

高速WPAN的标准是IEEE 802.15.3. 是专为在便携式多媒体装置之间 传送数据而制定的。这个标准支持11~55Mbit/s的数据率。这在个人 使用的数码设备日益增多的情况下特别方便。例如, 算机和在同-一间屋 以及各种消费电子设备创连接起来。别 可以不用连接线就能复制到你的数 厅中的便携式电脑可以不用连接线就 作好的幻灯片投影到大屏幕上。IEEE 802.15.3a工作组还提出了更高数 据率的物理层标准的**超高速 WPAN**。这种网络使用**超宽带 UWB** (Ultra-Wide Band) 技术。根据第2章所介绍的香农公式 道的极限传输速率与信道的带宽成正比。因此 信号的带宽,应超过信号中心频率的25%以上, 或者信号的绝对带宽 超过500MHz。UWB规定为:超宽带技术使用了瞬间高速脉冲,因此 就是指可支持100~400Mbit/s的数据率,可用于 小范围内高速传送图像或DVD质量的多媒体视频文件。

9.3 无线城域网WMAN

下面要介绍的是**无线城域网** WMAN(Wireless Metropolitan Area Network)。

我们已经有了多种有线宽带接入互联网的网络(如ADLC,HFC或FTTx等),然而人们发现,在许多情况下,使用无线宽带接入可以带来很多好处,如更加经济和安装快捷,同时也可以得到更高的数据率。

早期出现的**本地多点分配系统** LMDS(Local Multipoint Distribution System)就是一种宽带无线城域网接入技术。许多国家把27.5GHz~29.5GHz定为LMDS频段。然而由于缺乏统一的技术标准,LMDS一直未能普及起来。

后来IEEE成立了802.16委员会,专门制定无线城域网的标准。2002年4月通过了802.16无线城域网的标准(又称为IEEE无线城域网空中接口标准)。欧洲的ETSI也制定了类似的无线城域网标准HiperMAN。于是,近几年来无线城域网WMAN又成为无线网络中的一个热点。WMAN可提供"最后一英里"的宽带无线接入(固定的、移动的和便携的)。在许多情况下,无线城域网可用来代替现有的有线宽带接入,因此它有时又称为无线本地环路(wireless local loop)。

2001年4月WiMAX论坛成立了。WiMAX是Worldwide Interoperability for Microwave Access的缩写(意思是"全球微波接入的互操作性",AX表示Access)。现在已有超过150家著名IT行业的厂商参加了这个论坛。Intel公司是WiMAX的积极倡导者。为了推动无线城域网的使用,WiMAX论坛 [W-WiMAX] 给通过WiMAX的兼容性和互操作性测试的宽带无线接入设备颁发"WiMAX论坛证书"。在许多文献中,我们可以见到WiMAX常用来表示无线城域网WMAN,这与Wi-Fi常用来表示无线局域网WLAN相似。但应分清:IEEE的802.16工作组是无线城域网标准的制定者,而WiMAX论坛则是802.16技术的推动者。

现在无线城域网共有两个正式标准:一个是2004年6月通过的802.16的修订版本,即802.16d(它的正式名字是802.16-2004),是固定宽带无线接入空中接口标准(2~66GHz频段);另一个是2005年12月通过的802.16的增强版本,即802.16e,是**支持移动性**的宽带无线接入空中接口标准(2~6GHz频段),它向下兼容802.16-2004。图9-16所示为802.16无线城域网服务范围的示意图。

图9-16 802.16无线城域网服务范围示意图

另外,802.16可覆盖一个城市的部分区域,通信的距离变化很大(远的可达50公里),因此接收到的信号功率和信噪比等也会有很大的差别。这就要求有多种的调制方法。因此,工作在毫米波段的802.16必须有不同的物理层。802.16的基站可能需要多个定向天线,各指向对应的接收点。由于天气条件(雨、雪、雹、雾等)对毫米波传输的影响较大,因此与室内工作的无线局域网相比,802.16对差错的处理也更为重要。

9.4 蜂窝移动通信网

9.4.1 蜂窝无线通信技术简介

前面介绍的Wi-Fi无线局域网具有接入到互联网的功能。但是,这必须是当计算机处在某个Wi-Fi的热点之中。由于一个热点的覆盖直径只有10~100m,而目前在很多地方还没有开通Wi-Fi热点,因此要想在任何时间任何地点都能接入到互联网,仅靠Wi-Fi无线局域网是不行的。

几年来,蜂窝无线通信网发展非常迅速,其信号的覆盖面已相当广阔,只要是人们常去的地方几乎就都能进行可靠的无线通信。虽然在一些很偏僻的地方,如沙漠、荒山等地,可能没有无线信号,但从覆盖面来比较,蜂窝无线通信网的覆盖面还是要比Wi-Fi无线局域网的覆盖面大得多。因此要想在移动的环境下随时都能方便地接入到互联网,利用蜂窝无线通信网应当是个很好的办法。蜂窝无线通信技术相当复杂,要深入了解其工作原理,需要一本很厚的教材,或学习一门

专门的课程。我们在这里只能选择与计算机网络关系最密切的一些问题进行简要的讨论。

移动通信的种类很多,如蜂窝移动通信、卫星移动通信、集群移动通信、无绳电话通信等,但目前使用最多的是蜂窝移动通信,它又称为小区制移动通信。这种通信的特点是把整个的网络服务区划分成许多小区(cell,也就是"蜂窝"),每个小区设置一个基站,负责本小区各个移动站的联络与控制。移动站的发送或接收都必须经过基站完成。

蜂窝移动网络的发展非常迅速,到目前为止,世界上先后已有超过了 30种不同的标准。在学习计算机网络时,我们不需要深钻这些不同的 标准,只需要了解一些最基本的概念。

第一代蜂窝移动通信(1G,这里的G是Generation而不是Giga的缩写)是为话音通信设计的模拟FDM系统。1G的蜂窝无线网络早已淘汰了。

第二代蜂窝移动通信(2G)的代表性体制就是最流行的GSM系统。这个系统使用的带宽只有200kHz,因此除了基本的话音通信,它只能提供低速数字通信(短信服务)。为了能够提供接入到互联网的服务,2G蜂窝移动通信系统增加了如GPRS和EDGE (⁹⁾-等技术。也有人称GPRS为2.5G,而EDGE为2.75G,表明它们还属于2G,但比2G要强些,并且是从2G向第三代(3G)过渡的衔接性技术。目前在我国这种2G手机还在大量使用。

第三代蜂窝移动通信(3G)使用的带宽增大到5MHz,并且使用IP的体系结构和混合的交换机制(电路交换和分组交换),能够提供移动宽带多媒体业务(话音、数据、视频等,可收发电子邮件,浏览网页,进行视频会议等)。3G现有三个无线接口国际标准,即美国提出的CDMA2000(中国电信使用),欧洲提出的WCDMA(中国联通使用)和中国提出的TD-SCDMA(中国移动使用)(10),并且都已在我国开通运营。多种移动通信标准的出现是由于不同厂商为各自利益竞争的结果。每一种制式的调制与编码方法都不相同。3G手机的上网速率比起2G手机有了很大的提高。从3G开始以后的各代蜂窝移动通信都是以传输数据业务为主的通信系统,而且必须兼容2G的功能(即能够通电话和发送短信),这就是所谓的向后兼容。

2013年12月工信部正式发放4G牌照,宣告我国移动通信行业进入第四代 (4G)。4G正式名称是IMT-Advanced(International Mobile

Telecommunications-Advanced),意思是**高级国际移动通信**。这是国际电联无线电通信部门ITU-R在2008年3月提出的,其中的一个重要技术指标就是要实现更高的数据率。4G的目标峰值数据率是:固定的和低速移动通信时应达到1Gbit/s,在高速移动通信时(如在火车。汽车上)应达到100Mbit/s。由此可见,目前全世界所有声称是4G的蜂窝无线网络,其实都远未达到真正的4G标准。为了商业营销的考虑,众多厂家和电信运营商现在都声称自己的产品是4G的,而各种媒体也这样宣传。然而事实上现在所谓的4G并非真正的4G,虽然它比3G的速率快得多。

4G当然也要向后兼容3G。因此,现在很多手机都标明具有4G/3G/2G功能。这表示如果手机所在地还没有被4G网络覆盖,那么这个手机还可以使用3G网络的功能。而如果手机所在地只有2G网络,那么这个手机仍然可以使用原来2G网络的功能。

4G现有两个国际标准,即LTE(Long-Term Evolution)和LTE-A(LTE-Advanced)。LTE的意思就是"长期演进",表明从3G到4G的过渡需要较长的时间。LTE又分为**时分双工** TD-LTE和**频分双工** FDD-LTE两种,而LTE-A是LTE的升级版,俗称为3.9G。LTE把带宽增加到20MHz,采用了高阶调制64QAM和MIMO技术。LTE-A的带宽高达100MHz。据2016年6月的统计,全球投入商用的LTE-A网络已达100个,分布在49个国家和地区。

现在国际电联ITU尚未制定出5G的标准,但不少国家已经开始研究5G了。有人推测,5G或许会在2020年投入商用,可能会有全球统一的5G标准,并采用毫米波频段。

为了使一般电脑也能够像手机那样利用3G/4G蜂窝移动网络连接到互联网,3G/4G上网卡就应运而生了。普通的3G/4G上网卡就像一个U盘那样,使用USB接口,但里面装有一张USIM(Universal Subscriber Identity Mo dule)卡,其大小有两种。一种和手机使用的SIM卡一样大。另一种叫做微型USIM卡,其尺寸仅为一般USIM卡的一半左右。只要把这样的3G/4G上网卡插入到笔记本电脑或台式计算机中的USB接口,就可以通过3G/4G蜂窝移动网络接入到互联网。

3G/4G上网卡的问世给移动用户带来了许多方便。只要处在3G/4G手机信号的覆盖区域中,插入3G/4G上网卡的电脑就能够接入到互联网。但3G/4G上网目前没有按带宽付费的业务,这是因为用户在进行3G/4G

上网时,是和在一个或数个蜂窝小区内的其他3G/4G无线用户共享无线网络运营商接入到互联网的带宽的,因此一个移动用户实际上能够分配到的上网带宽是不确定的。

下面我们通过图9-17简单介绍3G蜂窝通信系统的重要组成构件「KURO13」。

图9-17 3G蜂窝通信系统的重要组成构件

从图9-17可以看出,用一个个相互拼接的六角形的小区就可以组成很大的蜂窝状的无线通信系统。每个基站的发射功率既要能够覆盖本小区,也不能太大以致干扰了邻近小区的通信。小区的大小视该小区内的移动用户数而定,从半径20m(移动用户很密集的地方)到1~25km不等。采用蜂窝形状结构的小区的好处是可以最大限度地进行频率复用。频率复用是指在相隔一定距离的不同小区可以采用相同的频率而不会相互干扰。像图9-17所画出的7个小区,每一个小区的基站使用不同的频率。这样,只要相邻小区采用不同的频率(总共只需要7个频率),就可以组成由大量小区构成的蜂窝无线通信系统。实际的小区因受地形的限制,并非严格的六角形。之所以画成六角形的小区是为了更好地说明采用蜂窝技术怎样解决了同频干扰以及节约频率资源的问题。

在图9-17中的每一个基站都有一个基站收发信机,其作用就是在移动站和无线网络控制器 RNC(Radio Network Controller) (11)-进行通信时,起到转接作用。无线网络控制器RNC控制一组基站(例如控制几十个基站),负责管理无线小区及其无线信道。如果移动站要进行电话通信,就必须和小区中的基站相关联,和基站建立起双向的无线通信信道。基站通过RNC连接到移动交换中心 MSC(Mobile Switching

Center)(现在都使用光缆连接)。MSC控制所有RNC的话音业务,提供电路交换功能,处理所控制区域内移动站的信令,以及移动站的位置更新。移动通信运营商可以建立很多的MSC,然后通过网关移动交换中心连接到公用电话网或其他移动通信网。

如果移动站要接入到互联网发送电子邮件或下载视频节目,RNC就把移动站发来的IP数据报转发到GPRS核心网络。GPRS核心网络包括两部分,即SGSN(Serving GPR SSupport Node),即GPRS服务支持结点,和GGSN(Ga teway GPRS Su pport No de),即网关GPRS支持结点。

SGSN主要完成IP数据报的转发、移动性管理、会话管理、逻辑链路管理、鉴别和加密、话单产生和输出等功能。SGSN还要和移动交换中心MSC进行通信,以便完成用户的鉴别、通信的切换等功能。GGSN具有网络接入控制功能,因此又称为GPRS路由器,它选择哪些分组可以进入GPRS网络,以保证GPRS网络的安全。

从图9-17可以看出,无线网络控制器RNC所起的关键作用。RNC处在无线接入网的边缘,它进行无线通信和有线通信的转换。在有线通信这边,RNC把电路交换的话音通信传送到MSC,而把分组交换的数据传送到SGSN。

处在移动状态的移动站怎样进行通信呢?这个过程相当复杂,我们将在后面几节进行讨论。

9.4.2 移动IP

移动 IP(Mobile IP)又称为移动IP协议[RFC 5944,建议标准],是由IETF开发的一种技术,这种技术允许计算机移动到外地时,仍然保留其原来的IP地址。移动IP对现在流行的在移动中上网有着重要的意义。

现在考虑一种情况。假定某用户在家中使用笔记本电脑上网。后来他 关机并把笔记本电脑带到外地重新上网。这个用户和他使用的电脑在 地理上都移动了,都更换了位置。他在不同地点能够很方便地通过动 态主机配置协议DHCP自动获取所需的IP地址。虽然用户"移动"了,更 换了上网的地点,以及更换了所接入的网络,因而也更换了他使用的 IP地址,但这和我们将要讨论的移动IP毫无关系。我们可以看出,从本质上看,这个用户的上网和传统的在固定地点上网并没有本质上的差异。用户在不同地点上网使用了不同的IP地址,但这对用户来说并不重要,因为在很多情况下,用户并不关心他所使用的具体的IP地址是什么。

在第4章中我们已经强调过,IP地址并不仅仅指明一台主机,还指明了主机所连接到的网络。当一个移动站在改变地理位置时,由于所接入的网络不同(我们不可能在任何地点所接入的网络都具有同一个网络号),因此,当一个移动站在异地接入到当地的网络时,其IP地址必然要改变。我们在第4章中已经讲过,路由器的寻址是先找到目的网络,而目的主机就连接在这个目的网络上。如果有个移动站连接到外地的某个网络但并不改变其IP地址,那么按常规的寻址方法,互联网中的路由器就无法找到这个移动站。

但是,我们需要在移动中上网。这时就希望移动站所建立的TCP连接在移动站漫游时一直保持连接,否则我们的上网就会变为断断续续的(因为TCP连接的建立是需要时间的,不可能瞬间就建立好)。可见,只要移动站的IP地址改变了,TCP连接就必须先中断再重新建立。因此,IP地址的改变对这样的移动用户来说就显得非常重要。

移动IP要解决的问题,就是要使用户的移动性对上层的网络应用是透明的。或者更加具体些说,就是若一个移动站在漫游时仍保持其IP地址不变,就要想办法使已建立的TCP连接与移动用户的漫游无关。此外,还要想办法让互联网中的其他主机能够找到这个移动站。

显然这必须使用一些特殊的方法。下面就简单介绍一下移动IP的要点。

移动IP使用了一种方法,和我们很早就知道的怎样联系同学的做法相似。例如,一个班级的大学生在毕业时都将同时走向各自的工作岗位。由于事先并不知道自己未来的工作单位的准确通信地址,那么怎样才能继续和这些同学保持联系呢?实际上,当时使用的办法也很简单,就是彼此都留下各自的家庭地址(即永久地址)。若要和某同学联系,只要写信到该同学的永久地址,请其家长把信件转交一下即可。在得知该同学新的地址后,就可使用这个新地址直接联系了。

移动IP使用了如图9-18给出的基本的概念 [KURO13]。首先,一个移动站A必须有一个原始地址(相当于上面提到的家庭地址),即永久地址,或归属地址(home address)。移动站原始连接到的网络叫做归属网络(home network)。永久地址和归属网络的关联是不会改变的。在图9-18中,我们可以看到移动站A的永久地址是131.8.6.7/16,而其归属网络是131.8.0.0/16。

图9-18 永久地址与转交地址的作用

为了让地址的改变对互联网的其余部分是透明的,移动IP使用了代理。**归属代理**(home agent)通常就是连接在归属网络上的路由器,然而它作为代理的特定功能则是在应用层完成的。因此,归属代理既是路由器,也是主机。

当移动站A移动到另一个地点,他所接入的网络称为被访网络(visited network)或外地网络(foreign network)。被访网络中使用的代理叫做外地代理(foreign agent),它通常就是连接在被访网络上的路由器(当然也充当主机)。假定移动站A到达的网络是被访网络15.0.0.0/8。外地代理的一个任务就是要为移动站A创建一个临时地址,叫做转交地址(care-of address)。转交地址的网络号显然必须和被访网络一致。我们假定现在A的转交地址是15.5.6.7/8。外地代理的另一个功能就是及时把移动站A的转交地址通知A的归属代理。

请注意两点:第一,转交地址是供移动站、归属代理以及外地代理使用的,各种应用程序都不使用这种转交地址;第二,转交地址在互联网中并不具有唯一性。这就是说,外地代理可以给好几个移动站指派同样的转交地址,甚至把自己的IP地址指派为移动站的转交地址。这样做并不会引起混乱。这是因为当外地代理要向连接在被访网络上的移动站发送数据报时,并不会像通常那样使用地址解析协议ARP,而

是直接使用这个移动站的MAC地址(当移动站首次和外地代理通信时,外地代理就记录下这个移动站的MAC地址)。

有时,移动站本身也可以充当外地代理,即移动站和外地代理是同一个设备。这时的转交地址叫做**同址转交地址**(co-located care-of address)。但是,要这样做,移动站必须能够接收发送到转交地址的数据报。使用同址转交地址的好处是移动站可以移动到任何网络,而不必担心外地代理的可用性。但缺点是移动站需要有额外的软件,使之能够充当自己的外地代理。

下面看一个例子。假定在图9-18中,有一个通信者B要和移动站A进行通信。B并不知道A在什么地方。但B可以使用A的永久地址作为发送的IP数据报中的目的地址。图中画出了四个重要步骤:

- ❶ B发送给A的数据报被A的归属代理截获了(只有当A离开归属网络时,归属代理才能截获发给A的数据报)。
- ②由于归属代理已经知道了A的转交地址(后面要讲到),因此归属代理把B发来的数据报进行再封装,新的数据报的目的地址是A现在的转交地址。新封装的数据报发送到被访网络的外地代理。这里使用的就是以前讲过的隧道技术或IP-in-IP(见4.6.3节和4.7.3节)。
- ③ 被访网络中的外地代理把收到的封装的数据报进行拆封,取出B发送的原始数据报,然后转发给移动站A。这个数据报的目的地址就是A的永久地址。A收到B发送的原始数据报后,也得到了B的IP地址。
- ❹如果现在A要向B发送数据报,那么情况就比较简单。A仍然使用自己的永久地址作为数据报的源地址,用B的IP地址作为数据报的目的地址。这个数据报显然没有必要在通过A的归属代理进行转发了。

从以上所述可以看出,为了支持移动性,在网络层应当增加以下的一些新功能。

(1) **移动站到外地代理的协议**。当移动站接入到被访网络时,必须向外地代理进行登记,以获得一个临时的转交地址。同样地,当移动站离开该被访网络时,它要向这个被访网络注销其原来的登记。

- (2) **外地代理到归属代理的登记协议**。外地代理要向移动站的归属代理登记移动站的转交地址。当移动站离开被访网络时,外地代理并不需要注销其在归属代理登记的转交地址。这是因为当移动站接入到另一个网络时,这个新的被访网络的外地代理就会到移动站的归属代理登记该移动站现在的转交地址,这样就取代了原来旧的转交地址。
- (3) **归属代理数据报封装协议**。归属代理收到发送给移动站的数据报后,将其再封装为一个新的数据报,其目的地址为移动站的转交地址,然后转发。
- (4) **外地代理拆封协议**。外地代理收到归属代理封装好的数据报后,取出原始数据报,并将此数据报发送给移动站。

像图9-18所示的数据报转发过程,又称为**间接路由选择**。这是因为源站并不知道移动站的当前地址,而是把数据报发往移动站的归属网络,以后的寻址工作都由归属代理来完成。

现在讨论移动站继续向其他网络移动时所发生的情况。

为了讨论的方便,我们把图9-18中移动站A原先到达的被访网络记为N₁,而现在A要从N₁移动到另一个被访网络N₂去(N₂在图中没有画出)。当A移动到N₂时,就向N₂的外地代理登记,N₂的外地代理把A在N₂中的转交地址告诉A的归属代理。此后,归属代理就会把收到的发送给A的数据报再封装后转发到N₂的外地代理。我们注意到,在A的这次移动前后,数据报都是由相同的归属代理转发的。原先转发到N₁,后来转发到N₂。我们关心的是,当移动站A在网络之间移动时,所接收的数据报流是否会中断?实际上,只要移动站A与网络N₁断开连接再连接到网络N₂所用的时间很短,那么就很少有可能会发生数据报的丢失。我们知道,在TCP连接中传送的报文偶尔丢失并不是什么大问题。而在使用UDP时,本来就没有指望一点都不发生报文的丢失。关于这个问题,我们还要在9.4.5节讨论。

如图9-18所示的这种间接路由选择,可能会引起数据报转发的低效, 文献中称之为**三角形路由选择问题**(triangle routing problem)。意思 是,本来在B和A之间可能有一条更有效的路由,但现在要走另外两条 路:先要把数据报从B发送到A的归属代理,然后再转发给漫游到被访 网络的A。设想一个极端的例子。如果B所在的网络就是A到达的被访 网络。在这种情况下,B发送数据报给A就是在同一个网络上非常简便的直接交付,根本不需要使用路由器。但由于B并不知道A的位置,因此只好让发送给A的数据报两次穿越广域网,既浪费了时间,也增加了网上不必要的通信量。

解决这个问题的一种方法是使用**直接路由选择**,但这是以增加复杂性为代价的。这种方法就是让通信者B创建一个**通信者代理**(correspondent agent),让这个通信者代理向归属代理询问到移动站在被访网络的转交地址,然后由通信者代理(而不是由归属代理)把数据报用隧道技术发送到被访网络的外地代理,最后再由这个外地代理拆封,把数据报转发给移动站。

使用这种方法时必须解决以下两个问题:

- (1) 增加一个协议,即**移动用户定位协议** (mobile-user location protocol),用来使通信者代理向移动站的归属代理查询移动站的转交地址。
- (2) **当移动站再移动到其他网络时,怎样得到移动站的位置信息**? 关于这个问题,我们可以用图9-19所示的几个重要步骤来说明。

图9-19 使用直接路由选择向移动站发送数据报

- lacklime B的通信者代理从移动站A的归属代理得到A所漫游到的被访网络N $_1$ 的外地代理。我们把移动站首次漫游到的被访网络的外地代理称为**锚 外地代理** (anchor foreign agent)。
- ❷ 通信者代理把B发给A的数据报再封装后,发送到A的锚外地代理。

- ❸ 锚外地代理把拆封后的数据报发送给A。
- 4 A移动到另一个被访网络N₂。
- ⑤A向被访网络N₂的新外地代理登记。
- ❺新外地代理把A的新转交地址告诉锚外地代理。
- $m{O}$ 当锚外地代理收到发给A的封装数据报后,就用A的新转交地址对数据报进行再封装,然后发送给被访网络 N_2 上的新外地代理。在拆封后转发给移动站A。

同理,如果移动站再漫游到另一个网络,则这个网络的外地代理将仍然要和锚外地代理联系,以便让锚外地代理以后把发给A的数据报转发过来。

上面所讨论的许多问题,都是由移动站在移动时仍然要保持原来的IP地址(永久地址)引起的。我们在文献中常会见到移动性管理(mobilitym anagement)这样的术语,这是指上述的这些新增加的措施和协议。但有时大家更愿使用移动管理这样更加简洁的译名。移动性管理涉及的面比以上所讨论的问题还要宽些,例如,安全问题也是必须要解决的。绝对不能容许不法分子把别人发送给A的数据报,转发到被暗中设定的某个伪造的外地代理。

限于篇幅,以上所提到的各种协议细节就不仔细讨论了,可参考「KURO13」。

9.4.3 蜂窝移动通信网中对移动用户的路 由选择

下面讨论在蜂窝移动通信网中对移动用户的路由选择问题。

假定有一个通信者(固定电话用户)对一个手机移动通信用户进行呼叫。图9-20给出了这个呼叫过程所涉及到的一些重要网络构件。在9.4.1节中,我们已经讲过移动交换中心MSC是蜂窝移动通信网中的核心构件。其实MSC还要维护两个非常重要的数据库,即**归属位置寄存**

器 HLR (Home Location Register) 和来访用户位置寄存器 VLR (Visitor Location Register)。在图9-20中我们各画出了一个作为代 表,HLR存放签约用户的所有数据信息,VLR则临时存放着当前漫游 到这个MSC控制区的用户位置信息。当移动用户漫游到新的MSC控制 区时,只要手机开机,就自动发送信令报文向该地区的VLR进行登 记。VLR要向该移动用户归属网络的HLR查询有关的参数、并给该移 动用户分配一个临时的移动站漫游号码 MSRN (Mobile Station 。这个MSRN就是移动用户现在的位置信息。但 Roaming Number) HLR怎样知道这个MSRN是什么呢? 原来漫游号码MSRN只是在移动 用户进入被访网络时才被VLR指派的,其作用和移动IP中的转交地址 类似。漫游号码对主叫和被叫用户来说都是透明的。VLR必须把这个 漫游号码及时告诉移动用户归属网络的HLR。如果移动用户从一个 VLR服务区移动到另一个VLR服务区,归属网络的HLR在修改该用户 的位置信息后(这个新的位置信息是从新的VLR得知的),还要通知 原来的VLR、注销此移动用户旧的位置信息。

图9-20 固定电话用户呼叫移动用户:间接路由选择

下面结合图9-20了解呼叫过程中的三个重要步骤。

① 找到移动用户的归属网络。通信者(固定电话用户)首先拨移动用户的电话号码。从这个电话号码很容易找到了移动用户电话的归属网络。例如,我国的移动电话号码是11位。前3位是网络运营商的代码。再后面的第4~7位就是该运营商管辖范围内的归属网络号码。所以通信者拨出某个移动用户的号码后,公用电话网的交换机就能够把呼叫

传送到被叫的**归属网络交换中心**(Home MSC),简称为归属MSC。在GSM术语中,移动电话的归属网络的名字很长,叫做**归属公共陆地移动网络** Home PLMN(Home Public Land Mobile Network)。但我们仍采用归属网络这个比较简洁的术语。

- ②归属MSC向其HLR查询现在被叫移动用户的位置。HLR向归属MSC返回被叫移动用户的移动站漫游号MSRN。请注意,这个MSRN正是被叫移动用户漫游到被访网络,并被VLR指派的MSRN,而VLR也已及时地把这个MSRN告诉了该移动站的归属MSC的HLR。可见HLR不仅存储了移动用户的许多不改变的数据信息,而且还临时存放了移动用户当前的位置信息。
- ❸ 归属MSC按照所得到的漫游号码MSRN进行呼叫的第二段,把通信者发起的呼叫从归属MSC传送到被访网络的MSC,再传送到该移动用户所漫游到的小区的基站。于是,整个的呼叫就完成了。

图9-20所示的呼叫过程使用的是间接路由选择。这就是说,不管被叫移动用户的位置如何,呼叫的第一步总是先找到被叫移动用户的归属MSC,呼叫的第二步再从归属MSC找到到被访网络的MSC和与该MSC相关联的被叫。

从以上的讨论可以看出,数据库HLR和VLR都必须具有很高的可靠性和可用性,并且查询响应时间必须非常短,否则就不能使电话的接通时间让用户满意。

9.4.4 GSM中的切换

移动用户在进行通信时总是处在某一个基站的服务小区内。当移动用户进入到地理上相邻的另一个小区时,他就与该小区的基站相关联。所谓切换(handover)就是移动用户与相关联的基站发生了改变。我们知道,小区的大小和形状取决于该地区的地形、基站的分布以及基站收发信机的功率。设计良好的蜂窝通信网络应当使移动用户在大多数情况下都能够处在超过一个基站的服务区内。网络会决定在什么时候由哪一个基站来为该移动用户服务。

切换使得呼叫的传输路由发生变化。切换发生的原因是:

- (1) 当前的基站和移动用户之间的信号减弱,有使呼叫中断的可能;
- (2) 一个蜂窝小区内的呼叫太多,基站不堪重负。这时可以把移动用户切换到与相邻的不太拥塞的蜂窝小区的基站相关联,以减轻原来基站的负荷。

移动用户在和一个基站相关联期间,会周期性地测量来自其当前基站 及其邻近基站的信标信号强度,并将测量结果以每秒1~2次频率报告 给当前基站。根据这些测量数据以及邻近蜂窝的当前负载情况,当前 基站决定是否发起切换。

移动站的切换可能仍处在同一个MSC的控制下,只是相关联的基站发生了变化。但在许多情况下,移动站的切换是相关联的MSC都改变了。在这种情况下,向移动站的呼叫路由会有很大的变化。图9-21给出了切换前后的对比(为了简洁起见,图中没有画出有关的RNC以及HLR或VLR)。

GSM使用了锚MSC的概念。锚MSC是在呼叫移动用户首次访问过的MSC,它在整个呼叫持续过程中保持不变。在整个呼叫持续期间,不管到移动用户相关联的基站怎样变化,整个呼叫路由的前面一段,即从归属MSC到锚MSC这一段,是始终不改变的。移动用户在不同的小区之间漫游时,呼叫路由只在从锚MSC到被访网络的MSC这一段发生变化。从图9-21可以看出,在通信者和被叫移动用户之间,最多出现三个MSC,即归属MSC、锚MSC和被访网络的MSC。

图9-21 切换时通过锚MSC重新进行路由选择

当然,当移动用户在漫游时,路由的改变还是要在蜂窝移动通信网中产生许多信令报文的交换。这些过程相当复杂,这里从略。

9.4.5 无线网络对高层协议的影响

前面讲过的无线网络在移动站漫游时,会经常更换移动用户到无线网络的连接点(即到移动站相关联的基站)。这样,网络的连接就会发生很短时间的中断。那么,这种情况对高层协议有没有影响呢?现在我们简单讨论一下这个问题。

我们知道,在TCP连接中,只要发生报文段的丢失或出错,TCP就要重传这个丢失或出错的报文段。在移动用户的情况下,TCP报文段的丢失,既可能是由于移动用户切换引起的,也可能是由于网络发生了拥塞。由于移动用户更新相关联的基站需要一定的时间(即不可能在数学上的瞬间完成),这就可能造成TCP报文段的丢失。但TCP并不知道现在出现的分组丢失的确切原因。只要出现TCP报文段频繁丢失,TCP的拥塞控制就会采取措施,减小其拥塞窗口,从而使TCP发送方的报文段发送速率降低。这种措施显然是默认了报文段丢失是由网络拥塞造成的。可见,当无线信道出现严重的比特差错,或由于切

换产生了报文段丢失,减小TCP发送方的拥塞窗口对改善网络性能并不会有任何好处。

经过研究, 发现可以使用三种方法来处理这个问题。

- (1) **本地恢复**。这是指差错在什么地方出现,就在什么地方改正。例如,在无线局域网中使用的自动请求重传ARQ协议就属于本地恢复措施。
- (2) **让TCP发送方知道什么地方使用了无线链路**。只有当TCP能够确知,是有线网络部分发生了拥塞时,TCP才采用拥塞控制的策略。然而要能够区分是在有线网段还是无线网段出现报文段丢失,则还需要一些特殊的技术。
- (3) 把含有移动用户的端到端TCP连接拆成两个互相串接的TCP连接。从移动用户到无线接入点是一个TCP连接(这部分使用无线信道),而剩下的使用有线网段连接的部分则是另一个TCP连接(我们假定TCP连接的另一端是有线主机)。已经有人研究过,采用拆分TCP连接的方法,在使用无线信道的TCP连接上,既可以使用标准的TCP协议,也可以使用有选择确认的TCP协议,甚至还可以使用专用的、有差错恢复的UDP协议。在蜂窝无线通信网中实验的结果表明,采用拆分TCP连接的方法可以使整个性能得到明显的改进。

9.5 两种不同的无线上网

前面已经介绍了有两种不同的方法可以进行无线上网。只要上网了, 我们就可以享受互联网提供的各种服务。

但应注意,上网所需的费用是很不一样的。

现在的蜂窝移动网络的服务范围已经几乎覆盖了所有的地方。因此使用手机几乎可以随时随地接入到互联网。但手机是通过附近的某个蜂窝移动网络的基站接入到互联网的(而不是通过某个无线路由器使用Wi-Fi)。这时所需的费用取决于蜂窝移动网络运营商的收费规定。目前蜂窝移动网络运营商的上网收费都是按照用户所消耗的数据流量来计算的。因此,当手机用户通过蜂窝移动网络上网,并浏览或下载视频节目时,将消耗相当大的数据流量。如果到外地或甚至到国外旅

游,再加上数据漫游费用,那么上网的高额费用是大多数手机用户所不愿承受的。这时只好停止使用蜂窝移动网络上网,把手机上的数据漫游(或蜂窝移动网络)功能关闭掉。或者,在国外购买当地的电话卡上网,也可能是个较好的办法。

如果在家中已经安装了宽带入网(不管是使用哪一种接入方式,光纤到户或ADSL),那么只要再添置一个无线路由器,并将其连接到宽带的插口,那么家中所有电脑和手机,就都可以通过家庭无线局域网中的无线路由器,接入到互联网。这就是另一种无线上网方式——Wi-Fi上网。我国的宽带入网一般都是根据用户使用的带宽多少,按使用的时间(按月或按年)收费的,因此,使用家庭的无线路由器上网,并不需要再增加任何额外上网的费用。这种无线上网方式看起来是免费的,但实际上并非如此,因为家中的宽带上网已经交纳了月租费或年租费。如果在家中没有宽带上网而仅仅使用无线路由器,有时或许也能够发现附近有一些无线局域网,但大部分的无线局域网往往需要登录的密码,要免费蹭网并不容易。

当手机通过Wi-Fi上网时,由于根本不经过3G/4G蜂窝移动网络的基站,因此也不会产生任何3G/4G的数据流量和通信费用。

目前许多酒店、餐馆、车站和机场,都能提供免费的无线局域网上网,简称为"提供免费Wi-Fi"。但应注意,在公共场所热点免费Wi-Fi的安全性并不好,比较敏感的信息(如银行卡的密码等)不宜在这种网络上传送。此外,这种免费Wi-Fi有时也很难保证质量(如上网人较多时无法登录,或上网速率下降,有时甚至发生通信中断等)。在城市的公交汽车或旅游大巴上提供免费Wi-Fi的服务也在迅速普及。

需要指出,有不少酒店提供的Wi-Fi是收费的,且价格不菲。有的国家在火车上也提供Wi-Fi,但只有购买一等座的旅客才能免费享用。现在所有的远洋邮轮都能提供付费的Wi-Fi。由于在大海中的邮轮只能通过卫星链路才能接入到互联网,因此费用相当昂贵,例如,每分钟收取0.75美元,并且还是窄带上网,速率很慢。但近来也有提供宽带上网的服务。

Wi-Fi上网的最大问题就是每个热点的覆盖面很小,在许多需要上网的地方很可能没有Wi-Fi信号。在这种情况下,无线上网只能依靠比较昂贵的蜂窝移动无线网络了。

回顾已经介绍过的各种无线网络,可以看出,这些网络各有优缺点,也都有各自最适宜的使用环境。图9-22给出了这些无线网络的使用范围和能够提供的数据率。

图9-22 几种无线网络的比较

本章的重要概念

- 无线局域网可分为两大类。第一类是有固定基础设施的,第二类是无固定基础设施的。
- 无线局域网的标准是IEEE的802.11系列。使用802.11系列协议的局域网又称为Wi-Fi。
- 802.11无线以太网标准使用星形拓扑,其中心叫做接入点AP,它就是基本服务集内的基站。
- 应当弄清几种不同的接入: 固定接入、移动接入、便携接入和游牧接入。
- 802.11 无线以太网在MAC层使用CSMA/CA协议。不能使用CSMA/CD的原因是: 在无线局域网中,并非所有的站点都能够听见对方(例如,当有障碍物出现在站点之间时),因此无法实现碰撞检测。使用CSMA/CA协议是为了尽量减小碰撞发生的概率。
- 802.11无线局域网在使用CSMA/CA的同时,还使用停止等待协议。
- 802.11标准规定,所有的站在完成发送后,必须再等待一段帧间间隔时间才能发送下一帧。帧间间隔的长短取决于该站要发送的帧的优先级。
- 在802.11无线局域网的MAC帧首部中有一个**持续期**字段,用来填入**在本帧结束后**还要占用信道多少时间(以微秒为单位)。
- 802.11标准允许要发送数据的站对信道进行预约,即在发送数据帧之前先发送RTS帧请求发送。在收到响应允许发送的CTS帧后,就可发送数据帧。
- 802.11的MAC帧共有三种类型,即控制帧、数据帧和管理帧。需要注意的是,MAC帧有四个地址字段。在有固定基础设施的无线局域网中,只使用其中的三个地址字段,即源地址、目的地址和AP地址。
- 几种无线网络简介:无线个人区域网(蓝牙系统、ZigBee和超高速WPAN)。无线城域网WiMAX。
- 当计算机移动到外地时,移动IP技术允许该计算机仍然保留其原来的IP地址。移动IP使用了一些新概念,如永久地址、归属地址、归属网络、被访网络或外地网络、归属代理、外地代理、转交地址、同址转交地址等。

- 移动IP使用了几种协议,如移动站到外地代理的协议,外地代理 到归属代理的登记协议,归属代理数据报封装协议,外地代理拆 封协议等。
- 移动IP的路由选择有间接路由选择和直接路由选择,后者需要使用通信者代理和锚外地代理。
- 蜂窝移动通信网中对移动用户的路由选择需要弄清一些概念: 归属位置寄存器HLR和来访用户位置寄存器VLR,移动站漫游号码MSRN,归属网络交换中心,归属MSC,锚MSC,被访网络的MSC。

习题

- 9-01 无线局域网都由哪几部分组成? 无线局域网中的固定基础设施对网络的性能有何影响? 接入点AP是否就是无线局域网中的固定基础设施?
- 9-02 Wi-Fi与无线局域网WLAN是否为同义词?请简单说明一下。
- 9-03 服务集标识符SSID与基本服务集标识符BSSID有什么区别?
- **9-04** 在无线局域网中的关联(association)的作用是什么?
- **9-05** 以下几种接入(固定接入、移动接入、便携接入和游牧接入)的主要特点是什么?
- 9-06 无线局域网的物理层主要有哪几种?
- **9-07** 无线局域网的MAC协议有哪些特点?为什么在无线局域网中不能使用CSMA/CD协议而必须使用CSMA/CA协议?
- **9-08** 为什么无线局域网的站点在发送数据帧时,即使检测到信道空闲也仍然要等待一小段时间?为什么在发送数据帧的过程中不像以太网那样继续对信道进行检测?
- **9-09** 结合隐蔽站问题和暴露站问题说明RTS帧和CTS帧的作用。RTS/CTS是强制使用还是选择使用?请说明理由。

- **9-10** 为什么在无线局域网上发送数据帧后,要求对方必须发回确认帧,而以太网就不需要对方发回确认帧?
- **9-11** 无线局域网的MAC协议中的SIFS和DIFS的作用是什么?
- **9-12** 试解释无线局域网中的名词: BSS, ESS, AP, BSA, DCF, PCF和NAV。
- **9-13** 冻结退避计时器剩余时间的做法是为了使协议对所有站点更加公平。请进一步解释。
- 9-14 为什么某站点在发送第一帧之前,若检测到信道空闲就可在等待时间DIFS后立即发送出去,但在收到对第一帧的确认后并打算发送下一帧时,就必须执行退避算法?
- **9-15** 无线局域网的MAC帧为什么要使用四个地址字段?请用简单的例子说明地址3的作用。
- **9-16** 试比较IEEE 802.3和IEEE 802.11局域网,找出它们之间的主要区别。
- **9-17** 无线个人区域网WPAN的主要特点是什么?现在已经有了什么标准?
- **9-18** 无线城域网WMAN的主要特点是什么?现在已经有了什么标准?
- **9-19** 当计算机移动到外地时,为什么可以保留其原来的IP地址?这时需要采取哪些措施?
- 9-20 试解释一下名词:归属网络,永久地址,归属代理,被访网络,外地代理,转交地址。
- **9-21** 当移动站在漫游时,为了找到这个移动站,可以使用间接路由 选择和直接路由选择。这两种方法有什么区别?
- 9-22 试以固定电话呼叫蜂窝移动通信网中的移动电话为例,说明怎样用间接路由选择和直接路由选择的方法找到正在漫游的移动电话。

- **9-23** 在蜂窝移动通信网中,移动站的漫游所产生的切换,对正在工作的TCP连接有什么影响?
- **9-24** 某餐馆中有两个ISP分别设置了接入点 AP_1 和 AP_2 ,并且都使用 802.11b协议。两个ISP都分别有自己的IP地址块。
- (1) 假定两个ISP在配置其接入点时都选择了信道11。如果有用户A和B分别使用接入点 AP_1 和 AP_2 ,那么这两个无线网络能够正常工作吗?
- (2) 若这两个AP一个工作在信道1, 而另一个工作在信道11, 题目的答案有变化吗?
- 9-25 本书中有这样的叙述:"当信道从忙态变为空闲时,任何一个站要发送数据帧时,只要不是要发送的第一个帧,不仅都必须等待一个DIFS的间隔,而且还要进入争用窗口"。试解释为什么这里要限定"只要不是要发送的第一个帧"。
- 9-26 假定有一个使用802.11b协议的站要发送1000字节长的数据帧(已包括了首部和尾部),并使用RTS和CTS帧。试计算,从决定发送帧一直到收到确认帧所经历的时间(以微秒计),忽略传播时间和误码率。在数据帧首部中的持续期字段中,应写入什么二进制代码?在ACK的持续期字段中,应写入什么二进制代码?
- 9-27 有如图9-23所示的四个站点使用同一无线频率通信。每个站点的无线电覆盖范围都是图9-23所示的椭圆形。也就是说,A发送时,仅仅B能够接收;B发送时,A和C能够接收;C发送时,B和D能够接收;D发送时,仅仅C能够接收。

图9-23 习题9-27的图

现假定每个站点都有无限多的报文要向每一个其他站点发送。若无法直接发送,则由中间的站点接收后再转发。例如,A发送报文给D时,

就必须是经过A→B,B→C和C→D这样三次发送和转发。时间被划分成等长的时隙,每个报文的发送时间恰好等于一个时隙长度。在一个时隙中,一个站点可以做以下事情中的一个:□发送一个报文□□接收一个发给自己的报文□□什么也不做。再假定传输无差错,在无线电覆盖范围内都能正确接收。

- (1) 假定有一个全能的控制器,能够命令各站点的发送或接收。试计算从C到A的最大数据报文传输速率(单位为报文/时隙)。
- (2) 假定现在A向B发送报文, D向C发送报文。试计算从A到B和从D到C的最大数据报文传输速率(单位为报文/时隙)。
- (3) 假定现在A向B发送报文, C向D发送报文。试计算从A到B和从C到D的最大数据报文传输速率(单位为报文/时隙)。
 - (4) 假定本题中的所有无线链路都换成为有线链路。重做以上的
 - (1) 至(3) 小题。
- (5) 现在再回到无线链路的情况。假定在每个目的站点收到报文后都必须向源站点发回ACK报文,而ACK报文也要用掉一个时隙。重做以上的(1)至(3)小题。

(1)_注: Wi-Fi是非营利性国际组织Wi-Fi联盟(Wi-Fi Alliance)的一个标记。Wi-Fi联盟对通过其互操作性测试的产品就发给"Wi-Fi认证"这样的注册商标。Wi-Fi可用作名词或形容词,写法也不统一,如WiFi, Wifi, Wi-fi等都能在文献中见到。

(2)_注:对于Windows XP,点击"开始"→"控制面板"→"网络连接"。在点击无线网络的图标后,点击"更改首选网络的顺序"和"添加",就看见"网络名(SSID)"。对于WIN7,点击"开始"→"控制面板"→"网络和Internet"→"查看网络状态和任务",就看见第一行"查看基本网络信息并设置连接"下面有三个图标。在中间的一个就表示无线局域网及网络名SSID。

(3)_注: 拉丁语ad hoc本来的意思是"仅为此目的(for this purpose only)",并且通常还有"临时的"含义。译成中文就是"**特定的**"。直译ad hocnetwork就是"**特定网络**"。但由于这种网络的组成并不需要使用固定的基础设施,因此可意译为"**自组网络**",表明不需要固定基站而仅依靠移动站自身就能组成网络。

(4)_注:有的资料称这种协议为 **具有碰撞避免的多点接入** MACA(Multiple Access with Collision Avoidance)。

- (<u>5</u>)_注:因为无线信道的误码率比有线信道的高得多,所以,无线局域网的MAC帧长应当短些,以便在出错重传时减小开销。这样,就必须将太长的帧进行分片。
- (6)_注: AP的MAC地址在802.11标准中叫做 **基本服务集标识符** BSSID, 也是一个6字节(48位)地址。和以太网地址相似,对于单一全球管理的地址,其第1字节的最低位是0而最低第2位是1。其余46位则按照指明的算法随机产生,这就能够以很高的概率保证所选择的BSSID是唯一的。
- (7) 注: ZigBee联盟成立于2001年8月,是由专门开发用于能源、住宅、商业和工业应用的无线解决方案的企业组成的全球企业团体。截止到2007年4月, ZigBee联盟的成员已超过220个。
- (8)_注: **消费电子设备** CE(Consumer Electronics)指电视机、数码相机、数码摄像机、MP3播放器等电子设备。在这些设备之间快速传送数据的需求促进了无线个人区域网的发展。
- (9)_ GPRS(General Packet Radio Service)是"通用分组无线服务"的简称,它利用GSM网络中未使用的TDMA信道,并通过在核心网中增设分组数据处理实体,使用分组交换接入互联网,提供中速的数据传递(10倍于GSM)服务。
- EDGE(Enhanced Data rate for GSM Evolution)是"增强型数据速率GSM演进"的简称,它主要是在GSM系统中采用了一种新的调制方法8PSK,其最高速率可达384kbit/s。
- (10)_注:WCDMA(Wideband CDMA)是"宽带码分多址"的简称。TD-SCDMA(Time Division-Synchronous CDMA)是"时分同步码分多址",它同时使用了FDMA,TDMA和CDMA技术。
- (11) 注:在2G蜂窝移动通信网中,处于这个位置的叫做 **基站控制器** BSC(Base Station Controller),其作用和这里的无线网络控制器相似。

附录A 部分习题的解答

第1章

1-10 分组交换时延较电路交换时延小的条件为:

$$(k-1)$$
 p/b ~~≝x >> p 時~~

1-11 写出总时延D的表达式,求D对p的导数,令其为零。解出

$$p = \sqrt{xh/(k-1)}$$

- 1-15 $D/D_0 = 10$ 现在的网络时延是最小值的10倍。
- 1-17 (1) 发送时延为100s, 传播时延为5ms。(2) 发送时延为1μs, 传播时延为5ms。

若数据长度大而发送速率低,则在总的时延中,发送时延往往大于传播时延。但若数据长度短而发送速率高,则传播时延就可能是总时延中的主要成分。

1-18

媒体长度 I	传播时延	媒体中的比特数	
		数据率=	数据率=
		1Mbit/s	10Gbit/s
(1) 0.1m	4.35×10^{-10} s	4.35×10^{-4}	4.35
(2) 100m	4.35×10^{-7} s	0.435	4.35×10 ³
(3) 100km	$4.35 \times 10^{-4} \text{ s}$	4.35×10 ²	4.35×10 ⁶
(4) 5000km	0.0217s	2.17×10 ⁴	2.17×10 ⁸

- 1-19 数据长度为100字节时,数据传输效率为63.3%。数据长度为1000字节时,传输效率为94.5%。
- 1-28 (1) 1.458s (2) 124.258s (3) 6.28s (4) 1s
- 1-29 3.2Mbit/s。如果改为发送512字节的分组,则发送速率应为16.38Mbit/s。
- 1-30 所要画出的图如图A-1所示:

图A-1 习题1-30的图

1-31 所要画出的图如图A-2所示:

图A-2 习题1-31的图

1-32 在以时间为横坐标的图上,每一个比特的宽度是1ns。 在以距离为横坐标的图上,每一个比特的宽度是20cm。

第2章

- 2-06 一个码元不一定对应于一个比特。
- 2-07 80000bit/s °
- 2-08 S/N = 64.2 dB 是个信噪比很高的信道。
- 2-09 信噪比应增大到约100倍。

如果在此基础上将信噪比S/N再增大到10倍,最大信息速率只能再增加18.5%左右。

2-11 使用这种双绞线的链路的工作距离=28.6km。

若工作距离增大到100km,则衰减应降低到0.2dB/km。

2-12 1200nm到1400nm: 带宽=23.8THz

- 1400nm到1600nm: 带宽=17.86THz
- 2-16 A和D发送1, B发送0, 而C未发送数据。
- 2-18 靠先进的编码,使得每秒传送一个码元就相当于每秒传送多个比特。

第3章

- 3-06 PPP适用于线路质量不太差的情况下。PPP没有编号和确认机制。
- 3-07 添加的检验序列是1110。出现的两种差错都可以发现。仅仅采用了CRC检验,数据链路层的传输还不是可靠的传输。
- 3-08 余数是011。
- 3-09 7E FE 27 7D 7D 65 7E
- **3-10** 第一个比特串: 经过零比特填充后变成**011011111<u>0</u> 11111<u>0</u> 00 (加上下划线的0**是填充的)。
- 另一个比特串: 删除发送端加入的零比特后变成000111011111-11111-110 (连字符表示删除了0)。
- 3-11 (1) 由于电话系统的带宽有限,而且还有失真,因此电话机两端的输入声波和输出声波是有差异的。在"传送声波"这个意义上讲,普通的电话通信并不是透明传输。但对"听懂说话的意思"来讲,则基本上是透明传输。但也有时个别语音会听错,如单个的数字1和7。这就不是透明传输。
- (2) 一般说来,电子邮件是透明传输。但有时不是。因为国外有些邮件服务器为了防止垃圾邮件,对来自某些域名的邮件一律阻拦掉。这就不是透明传输。有些邮件的附件在收件人的电脑上打不开。这也不是透明传输。
- 3-14 当时很可靠的星形拓扑结构较贵。人们都认为无源的总线结构 更加可靠。但实践证明,连接有大量站点的总线式以太网很容易出现

故障,而现在专用的ASIC芯片的使用可以将星形结构的集线器做得非常可靠。因此现在的以太网一般都使用星形结构的拓扑。

- 3-16 每秒20兆码元。
- 3-19 从网络上负载轻重、灵活性以及网络效率等方面进行比较。

网络上的负荷较轻时,CSMA/CD协议很灵活。但网络负荷很重时,TDM的效率就很高。

- 3-20 最短帧长为10000bit,或1250字节。
- 3-21 "比特时间"换算成"微秒"必须先知道数据率是多少。如数据率是10Mbit/s,则100比特时间等于10µs。
- 3-22 对于10Mbit/s的以太网, 等待时间是5.12ms。

对于100Mbit/s的以太网,等待时间是512µs。

- 3-23 实际的以太网各站发送数据的时刻是随机的,而以太网的极限信道利用率的得出是假定以太网使用了特殊的调度方法(已经不再是 CSMA/CD了),使各站点的发送不发生碰撞。
- 3-24 设在t = 0时A开始发送。在t = 576比特时间,A应当发送完毕。

t = 225比特时间,B就检测出A的信号。只要B在t = 224比特时间之前发送数据,A在发送完毕之前就一定能检测到碰撞,就能够肯定以后也不会再发生碰撞了。

如果A在发送完毕之前并没有检测到碰撞,那么就能够肯定A所发送的帧不会和B发送的帧发生碰撞(当然也不会和其他站点发生碰撞)。

- 3-25 t=0时,A和B开始发送数据。
- t=225比特时间,A和B都检测到碰撞。
- t=273比特时间,A和B结束干扰信号的传输。
- t=594比特时间,A开始发送。

t = 785比特时间,B再次检测信道。如空闲,则B将在881比特时间发送数据。

A重传的数据在819比特时间到达B, B先检测到信道忙, 因此B在预定的881比特时间不发送数据。

3-26 提示:将第i次重传失败的概率记为 P_i ,显然

$$P_i = (0.5)^{-k}, \quad k = \min [i, 10]$$

故第1次重传失败的概率 $P_1 = 0.5$,

第2次重传失败的概率 $P_2 = 0.25$,

第3次重传失败的概率 $P_3 = 0.125$ 。

P「传送i 次才成功〕

=P [第1次传送失败] P [第2次传送失败] ...P [第i-1次传送失败] P [第i 次传送成功]

求 { P [传送i 次才成功] } 的统计平均值,得出平均重传次数为 1.637。

- 3-27 (1) 10个站共享10Mbit/s。 (2) 10个站共享100Mbit/s。 (3) 每一个站独占10Mbit/s。
- 3-30 最大吞吐量为1100Mbit/s。三个系各有一台主机分别访问两个服务器和通过路由器上网。其他主机在系内通信。
- 3-31 最大吞吐量为500Mbit/s。每个系是一个碰撞域。
- 3-32 最大吞吐量为100Mbit/s。整个系统是一个碰撞域。

3-33

动作	交换表的状态	向哪些接口转发 帧	说明
A发送帧给	写入 (A, 1)	略	略
D			
D发送帧给	写入 (D, 4)	略	略
A			
E发送帧给	写入 (E, 5)	略	略
A			
A发送帧给	不变	略	略
E			

3-34 (1) 4.8μs; (2) 29.4μs; (3) 79.8μs °

第4章

- 4-09 (1) C类地址对应的子网掩码默认值。但也可以是A类或B类地址的掩码,即主机号由最后8位决定,而路由器寻找网络由前24位决定。(2)6台主机。(3)子网掩码一样,但子网数目不同。(4)最多可有4094个(不考虑全0和全1的主机号)。(5)有效,但不推荐这样使用。(6)194.47.20.129,C类。(7)有。对于小网络这样做还可进一步简化路由表。
- 4-10 (2) 和 (5) 是A类, (1) 和 (3) 是B类, (4) 和 (6) 是C 类。
- **4-11** 好处:转发分组更快。缺点:数据部分出现差错时不能及早发现。
- 4-12 IP首部中的源地址也可能变成错误的,请错误的源地址重传数据报是没有意义的。不使用CRC可减少路由器进行检验的时间。
- 4-13 10001011 10110001
- 4-14 8B B1
- **4-16** 在目的站而不是在中间的路由器进行组装是由于: (1) 路由器处理数据报更简单些; (2) 并非所有的数据报片都经过同样的路由

- 器,因此在每一个中间的路由器进行组装可能总会缺少几个数据报片;(3)也许分组后面还要经过一个网络,它还要给这些数据报片划分成更小的片。如果在中间的路由器进行组装就可能会组装多次。
- 4-17 由于分片, 共分为4个数据报片, 故第二个局域网向上传送 3840bit。
- 4-18 (1) 不能说"ARP向网络层提供了服务",因为ARP本身是网络层的一部分(但IP使用ARP)。数据链路层使用硬件地址而不使用IP地址,因此ARP不在数据链路层。
- (2) 当网络中某个IP地址和硬件地址的映射发生变化时,ARP高速缓存中的相应的项目就要改变。例如,更换以太网网卡就会发生这样的事件。10~20分钟更换一块网卡是合理的。超时时间太短会使ARP请求和响应分组的通信量太频繁,而超时时间太长会使更换网卡后的主机迟迟无法和网络上的其他主机通信。
- (3) 在源主机的ARP高速缓存中已经有了该目的IP地址的项目;源主机发送的是广播分组;源主机和目的主机使用点对点链路。
- 4-19 6次。主机用一次,每一个路由器各使用一次。
- 4-20 (1) 接口0, (2) R_2 , (3) R_4 , (4) R_3 , (5) R_4 °
- 4-22 3个。数据字段长度分别为1480, 1480和1020字节。片偏移字段的值分别为0, 185和370。MF字段的值分别为1, 1和0。
- 4-24 (1) 255.192.0.0, (2) 255.224.0.0, (3) 255.248.0.0, (4) 255.252.0.0, (5) 255.254.0.0, (6) 255.255.0.0 °
- 4-25 只有(4)是推荐使用的。
- 4-26 共同前缀是22位,即: 11010100 00111000 100001。聚合的CIDR地址块是: 212.56.132.0/22。
- **4-27** 前一个地址块包含了后一个。写出这两个地址块的二进制表示就可看出。

4-28 答案如图A-3所示。

图A-3 习题4-28的图

4-29 分配网络前缀时应先分配地址数较多的前缀。题目没有说LAN $_1$ 上有几台主机,但至少需要三个地址给三个路由器用。本题的解答有很多种,下面给出两种不同的答案:

	第一组答案	第二组答案
LAN $_1$	30.138.119.192/29	30.138.118.192/27
LAN ₂	30.138.119.0/25	30.138.118.0/25
LAN ₃	30.138.118.0/24	30.138.119.0/24
LAN ₄	30.138.119.200/29	30.138.118.224/27
LAN ₅	30.138.119.128/26	30.138.118.128/27

第一组和第二组答案分别用图A-4(a)和(b)表示。这样可看得清楚些。图中注明有LAN的三角形表示在三角形顶点下面所有的IP地址都包含在此局域网的网络前缀中。

30.138.118/23 = (30.138).01110110.00000000 (23 位的网络前缀有下划线)

30.138.118/23 = (30.138).01110110.000000000 (23 位的网络前缀有下划线)

4-30 本题的解答有很多种,下面给出其中的一种答案(先选择需要较大的网络前缀):

LAN₁: 192.77.33.0/26 °

LAN $_3$: 192.77.33.64/27; LAN $_6$: 192.77.33.96/27; LAN $_7$: 192.77.33.128/27;

LAN₈: 192.77.33.160/27 °

LAN $_2$: 192.77.33.192/28; LAN $_4$: 192.77.33.208/28 $^{\circ}$

 LAN_5 : 192.77.33.224/29(考虑到以太网上可能还要再接几台主机,故留有余地)。

WAN $_1$: 192.77.33.232/30; WAN $_2$: 192.77.33.236/30; WAN $_3$: 192.77.33.240/30 $^\circ$

4-31 观察地址的第二个字节0x32 = 00100000,前缀12位,说明第二字节的前4位在前缀中。

给出的四个地址的第二字节的前4位分别为: **0010**, **0 100**, **0011**和 **0100**。因此只有(1)是匹配的。

- 4-32 前缀(1)和地址2.52.90.140匹配。
- 4-33 前缀(4)和这两个地址都匹配。
- 4-34 (1) /2; (2) /4; (3) /11; (4) /30 °
- 4-35 最小地址是140.120.80.0/20。

最大地址是140.120.85.255/20。

地址数是4096。相当于16个C类地址。

4-36 最小地址是190.87.140.200/29。

最大地址是140.120.85.255/29。

地址数是8。相当于1/32个C类地址。

- 4-37 (1) 每个子网前缀28位。
 - (2) 每个子网的地址中有4位留给主机用, 因此共有16个地址。
- (3) 四个子网的地址块以及每个子网分配给主机的最小地址和最大地址是:

第一个地址块136.23.12.64/28、可分配给主机使用的

最小地址: 136.23.12.01000001 = 136.23.12.65/28

最大地址: 136.23.12.01001110=136.23.12.78/28

第二个地址块136.23.12.80/28, 可分配给主机使用的

最小地址: 136.23.12.01010001 = 136.23.12.81/28

最大地址: 136.23.12.01011110=136.23.12.94/28

第三个地址块136.23.12.96/28, 可分配给主机使用的

最小地址: 136.23.12.01100001=136.23.12.97/28

最大地址: 136.23.12.01101110=136.23.12.110/28

第四个地址块136.23.12.112/28, 可分配给主机使用的

最小地址: 136.23.12.01110001=136.23.12.113/28

最大地址: 136.23.12.01111110=136.23.12.126/28

4-40 RIP只和邻站交换信息,UDP虽不保证可靠交付,但UDP开销小,可以满足RIP的要求。OSPF使用可靠的洪泛法,并直接使用IP,好处是灵活性好和开销更小。BGP需要交换整个的路由表(在开始时)和更新信息,TCP提供可靠交付以减少带宽的消耗。

RIP使用不保证可靠交付的UDP, 因此必须不断地(周期性地)和邻站交换信息才能使路由信息及时得到更新。但BGP使用保证可靠交付的TCP, 因此不需要这样做。

4-41 路由器B更新后的路由表如下:

N_1	7	A	无新信息,不改变。
N_2	5	С	相同的下一跳,更新。
N_3	9	С	新的项目,添加进来。
N_6	5	С	不同的下一跳,距离更短,更新。
N_8	4	E	不同的下一跳,距离一样,不改
			变。

 N_9 4 F 不同的下一跳,距离更大,不改变。

4-42 路由器A更新后的路由表如下:

N_1	3	C	不同的下一跳,距离更短,改变。
N_2	2	С	相同的下一跳,距离一样,不变。
N ₃	1	F	不同的下一跳,距离更大,不改变。
N ₄	5	G	不同的下一跳,距离更大,不改变。

- 4-46 (1) 129.11.11.239 (2) 193.131.27.255 (3) 231.219.139.111 (4) 249.155.251.15
- 4-47 (1) 在点分十进制记法中不应当有以0开头的数(045)。
 - (2) IPv4地址不能超过4个字节。
 - (3) 每个字节必须小于或等于255, 而301超过了这个范围。
 - (4) 二进制记法和点分十进制记法混合使用是不允许的。
- 4-48 1024
- 4-49 (1) A类 (2) C类 (3) B类 (4) E类
- 4-50 (1) D类 (2) C类 (3) A类 (4) E类
- 4-51 该地址块的地址数为16 777 216, 首地址是73.0.0.0/8, 末地址是73.255.255.255。
- **4-52** 网络掩码是255.255.255.224。网络前缀长度是27, 网络后缀长度是5。
- 4-53 地址块的首地址: 10100111 11000111 10101010 01000000

地址块的末地址: 10100111 11000111 10101010 01011111

地址数: 32

4-54 分配给子网N₁的首地址是14.24.74.0/25, 末地址是14.24.74.127/25。

分配给子网N₂的首地址是14.24.74.128/26, 末地址是14.24.74.191/26。

分配给子网N₃的首地址是14.24.74.192/28, 末地址是14.24.74.207/28。

4-55 (1) 路由器R的路由表

目的网络地址	目的网络的子网掩码	下一跳
145.13.0.0	255.255.192.0	直接交付,接口m0
145.13.64.0	255.255.192.0	直接交付,接口m1
145.13.128.0	255.255.192.0	直接交付,接口m2
145.13.192.0	255.255.192.0	直接交付,接口m3
其他	M	默认路由器,接口
		m4

- (2) 收到的分组从路由器的接口m2转发。
- 4-56 根据最长前缀匹配准则, 应当选择路由3。
- 4-57 最长前缀匹配准则是没有问题的,问题出在主机H的IP地址。

网络11.0.0.0/8在分配本网络的主机号时,就不允许重复使用地址块11.1.0.0/16中的任何一台主机号。因此,网络11.0.0.0/8给它的一台主机分配像上面给出的地址11.1.2.3是不能允许的。这样做就会和网络11.1.0.0/16中的host-id=2.3的IP地址重复,因而引起了地址上的混乱。

4-58 (1) 200.56.168.0/21 = **11001000 00111000 10101** 000 000000000 上面有下划线的粗体数字表示网络号。

- (2) 这个CIDR地址块包含8个C类地址块。
- 4-59 对首部的处理更简单。数据链路层已经将有差错的帧丢弃了, 因此网络层可省去这一步骤。但可能遇到数据链路层检测不出来的差错(此概率极小)。
- 4-60 在IP数据报传送的路径上所有路由器都不需要这一字段的信息,只有目的主机才需要协议字段。在IPv6使用"下一个首部"字段完成IPv4中的"协议"字段的功能。
- 4-61 从概念上讲没有改变,但因IPv6地址长度增大了,所以相应的字段都需要增大。
- 4-62 分片与重装是非常耗时的操作。IPv6把这一功能从路由器中删除,并移到网络边缘的主机中,就可以大大加快网络中IP数据报的转发速度。
- 4-63 IPv6的地址空间共有2 128 个地址, 或3.4×10 38。

1秒钟分配10¹⁸个地址,可分配1.08×10¹³年。大约是宇宙年龄的1000倍。地址空间的利用不会是均匀的,但即使只利用整个地址空间的1/1000,那也是不可能用完的。

- 4-64 (1) : : F53: 6382: AB00: 67DB: BB27: 7332
 - (2) : : 4D: ABCD
 - (3) : : AF36: 7328: 0: 87AA: 398
 - (4) 2819: AF: : 35: CB2: B271
- **4-65** (1) 0000: 0000: 0000: 0000: 0000: 0000: 0000:
 - (2) 00 00: 00AA: 0000: 0000: 0000: 0000: 0000: 0000
 - (3) 00 00: 1234: 0000: 0000: 0000: 0000: 0000: 0003
 - (4) 01 23: 0000: 0000: 0000: 0000: 0000: 0001: 0002

第5章

- 5-03 都是。这要在不同层次来看。在运输层是面向连接的,在网络层则是无连接的。
- 5-06 丢弃。
- 5-11 IP数据报只能找到目的主机而无法找到目的进程。UDP提供对应用进程的复用和分用功能,并提供对数据部分的差错检验。
- 5-12 不行。重传时,IP数据报的标识字段会有另一个标识符。标识符相同的IP数据报片才能组装成一个IP数据报。前两个IP数据报片的标识符与后两个IP数据报片的标识符不同,因此不能组装成一个IP数据报。
- 5-13 6个。数据字段的长度: 前5个是1480字节, 最后一个是800字节。片偏移字段的值分别是: 0, 185, 370, 555, 740和925。
- 5-14 源端口1586,目的端口69,UDP用户数据报总长度28字节,数据部分长度20字节。此UDP用户数据报是从客户发给服务器的(因为目的端口号<1023,是熟知端口)。服务器程序是TFTP(从5.1.3节表5-2的常用熟知端口号的表可查出)。
- 5-15 UDP不保证可靠交付,但UDP比TCP的开销要小很多。因此只要应用程序接受这样的服务质量就可以使用UDP。如果话音数据不是实时播放(边接收边播放)就可以使用TCP,因为TCP传输可靠。接收端用TCP将话音数据接收完毕后,可以在以后的任何时间进行播放。但假定是实时传输,则必须使用UDP。
- 5-18 如图A-5所示。

旧的 M_0 被当成是新的 M_0 !

图A-5 习题5-18的图

5-19 如图A-6所示,设发送窗口记为 W_T ,接收窗口记为 W_R 。假定用3比特进行编号。设接收窗口正好在7号分组处(有阴影的分组)。发送窗口 W_T 的位置不可能比②更靠前,也不可能比③更靠后,也可能不是这种极端位置,如①。

图A-6 习题5-19的图

对于①和②的情况,在 W_T 的范围内无重复序号,即 $W_T \le 2^n$ 。

对于③的情况,在 $W_T + W_R$ 的范围内无重复序号,即 $W_T + W_R \le 2^n$ 。

现在 $W_R = 1$,故发送窗口的最大值 $W_T \le 2^n - 1$ 。

5-20 用相对发送时间实现一个链表(见图A-7)。

图A-7 习题5-20的图

- 5-21 (1) 序号到4为止的分组都已收到。若这些确认都已到达发送方,则发送窗口的范围是[5,7]。假定所有的确认都丢失了,发送方没有收到这些确认。这时,发送窗口应为[2,4]。因此,发送窗口可以是[2,4],[3,5],[4,6],[5,7]中的任何一个。
- (2) 接收方期望收到序号5的分组,说明序号为2,3,4的分组都已收到,并且发送了确认。对序号为1的分组的确认肯定被发送方收到了,否则发送方不可能发送4号分组。可见,对序号为2,3,4的分组的确认有可能仍滞留在网络中。这些确认是用来确认序号为2,3,4的分组。
- 5-22 (1) L 的最大值是4GB, $G=2^{30}$ 。
 - (2) 发送的总字节数是4 489 123 390字节。

发送4 489 123 390字节所需时间为: 3591.3秒, 即59.85分, 约1小时。

- 5-23 (1) 第一个报文段的数据序号是70到99, 共30字节的数据。
 - (2) 确认号应为100。
 - (3) 80字节。
 - (4) 70 °
- 5-24 设发送窗口=W(bit)。发送端连续发送完窗口内的数据所需的时间=T。

有以下情况(见图A-8)。

图A-8 习题5-24的图

- (a) 接收端在收完一批数据的最后才发出确认,因此发送端经过 (256ms+T) 后才能发送下一个窗口的数据。
- (b) 接收端每收到一个很小的报文段后就发回确认,因此发送端经过比256ms略多一些的时间即可再发送数据。因此每经过256ms就能发送一个窗口的数据。

对于 (a):

W=57825.88bit,约为7228字节。

对于 (b):

W = 30720 bit = 3840 B

- 5-25 在ICMP的差错报文中(见图4-28)要包含IP首部后面的8个字节的内容,而这里面有TCP首部中的源端口和目的端口。当TCP收到ICMP差错报文时需要用这两个端口来确定是哪条连接出了差错。
- 5-26 TCP首部除固定长度部分外,还有选项,因此TCP首部长度是可变的。UDP首部长度是固定的。
- 5-27 65495字节。此数据部分加上TCP首部的20字节,再加上IP首部的20字节,正好是IP数据报的最大长度。当然,若IP首部包含了选择,则IP首部长度超过20字节,这时TCP报文段的数据部分的长度将小于65495字节。

- 5-28 分别是n和m。
- 5-29 还未重传就收到了对更高序号的确认。
- 5-30 在发送时延可忽略的情况下,最大数据率=26.2Mbit/s。
- 5-31 最大吞吐量为25.5Mbit/s。信道利用率为25.5/1000=2.55%。
- 5-33 (1) RTO = 4.5 s
 - (2) RTO = $4.75s \circ$
- 5-34 三次算出加权平均往返时间分别为29.6, 29.84和29.256ms。

可以看出,RTT的样本值变化多达20%时,加权平均往返时间RTT_S的变化却很小。

- 5-35 630ms °
- 5-36 760ms °
- 5-38 拥塞窗口大小分别为: 1, 2, 4, 8, 9, 10, 11, 12, 1, 2, 4, 6, 7, 8, 9。
- 5-39 (1) 拥塞窗口与传输轮次的关系曲线如图A-9所示。

- (2) 慢开始时间间隔: [1, 6] 和 [23, 26] 。
- (3) 拥塞避免时间间隔: [6, 16] 和 [17, 22]。
- (4) 在第16轮次之后发送方通过收到三个重复的确认检测到丢失了报文段。在第22轮次之后发送方是通过超时检测到丢失了报文段。
 - (5) 在第1轮次发送时, 门限ssthresh被设置为32。

在第18轮次发送时,门限ssthresh被设置为发生拥塞时的一半,即21。

在第24轮次发送时、门限ssthresh是13。

- (6) 第70报文段在第7轮次发送出。
- (7) 拥塞窗口cwnd和门限ssthresh应设置为8的一半,即4。
- 5-40 例如,当IP数据报在传输过程中需要分片,但其中的一个数据报片未能及时到达终点,而终点组装IP数据报已超时,因而只能丢弃该数据报;IP数据报已经到达终点,但终点的缓存没有足够的空间存放此数据报;数据报在转发过程中经过一个局域网的网桥,但网桥在转发该数据报的帧时没有足够的差错空间而只好丢弃。
- 5-42 如果B不再发送数据了,是可以把两个报文段合并成为一个,即只发送FIN+ACK报文段。但如果B还有数据要发送,而且要发送一段时间,那就不行,因为A迟迟收不到确认,就会以为刚才发送的FIN报文段丢失了,就超时重传这个FIN报文段,浪费网络资源。
- 5-43 当A和B都作为客户,即同时主动打开TCP连接。这时每一方的状态变迁都是:

CLOSED → SYN-SENT → SYN-RCVD → ESTABLISHED

5-47 发送窗口的两种不同情况分别如图A-10 (a) 和 (b) 所示。根据此图, 很容易证明本题。

图A-10 习题5-47的图

5-48 8.704kbit/s

- 5-49 (1) 52100 (2) 13 (3) 28字节 (4) 20字节 (5) 分组是从客户到服务器 (6) Daytime
- 5-51 (1) 置为全0 (2) 全0 (3) 全1
- 5-52 UDP用户数据报的检验和既检验UDP用户数据报的首部又检验整个的UDP用户数据报的数据部分,而IP数据报的检验和仅仅检验IP数据报的首部。UDP用户数据报的检验和还增加了伪首部,即还检验了下面的IP数据报的源IP地址和目的IP地址。
- 5-53 UDP的最小长度是8字节,最短IP数据报的长度是28字节。
- 5-54 0.667
- 5-55 0.364
- 5-56 0.222
- 5-58 4秒
- 5-59 窗口的变化如图A-11所示:

图A-11 习题5-59的图

- 5-65 无法知道应写入什么数值。
- 5-66 仅在此报文段中仅有1个字节的数据时,下一个报文段的序号才是x+1。
- 5-67 TCP的吞吐量本来并没有标准的定义,TCP的吞吐量可定义为每秒发送的数据字节数。

计算机内部的数据传送是以每秒多少字节作为单位的,而在通信线路 上的数据率则常用每秒多少比特作为单位。

- 5-69 取序号字段长度n = 33位。但应注意,TCP的序号字段为32位。
- 5-70 (1) 859ms (2) 42.7天
- 5-73 这种情况是允许的。

第6章

- 6-04 有可能,如果你能够直接使用对方的邮件服务器的IP地址。
- 6-09 404 Not Found °
- 6-10 应用层协议需要的是DNS。

运输层协议需要的是UDP(DNS使用)和TCP(HTTP使用)。

6-14 若使用HTTP/1.0,则需要建立UDP连接0次;需要建立TCP连接4次(文本1个和图像3个各使用一个TCP连接)。

若使用HTTP/1.1,则需要建立UDP连接0次;需要建立TCP连接1次(文本1个和图像3个都使用这一个TCP连接)。

6-15 解析IP地址需要的时间是: RTT₁+RTT₂+...+RTT_n。

建立TCP连接和请求万维网文档需要2RTTw。

需要的总时间是: 2RTT_W+RTT₁+RTT₂+...+RTT_n。

- 6-16 (1) 所需时间=RTT₁+RTT₂+...+RTT_n+8RTT_W。
 - (2) 所需时间= $RTT_1 + RTT_2 + ... + RTT_n + 4RTT_W$ 。
 - (3) 所需时间= $RTT_1 + RTT_2 + ... + RTT_n + 3RTT_W$ 。
- 6-18 约11.6天。
- 6-26 4200字节。
- 6-27 对应的ASCII数据为zIE4,对应的二进制代码为:

01111010 01001001 01000101 00110100 °

- 6-28 01001100 00111101 00111001 01000100 00111001。编码开销为66.7%。
- 6-29 非常困难。例如,人名的书写方法,很多国家(如英、美等西方国家)是先写名再写姓。但像中国或日本等国家则先写姓再写名。有些国家的一些人还有中间的名。称呼也有非常多种类。还有各式各样的头衔。很难有统一的格式。
- **6-30** 有时对方的邮件服务器不工作,邮件就发送不出去。对方的邮件服务器出故障也会使邮件丢失。
- 6-40 整个的编码为

```
30 18
02 04 00 00 09 29
02 04 00 00 04 D4
02 04 00 00 00 7A
02 04 00 00 04 D4
```

6-41 变量icmpInParmProbs的对象标识符是1.3.6.1.2.1.5.5,加上后缀".0"。

```
A0 1D

02 04 00 01 06 14

02 01 00

02 01 00

30 0F

30 0D

06 09 01 03 06 01 02 01 05 05 00

05 00

6-42 { 1.3.6.1.2.1.6 }

6-43 40 04 83 15 0E 02

6-48 NF/u

6-49 [log<sub>2</sub> (N+1)] F/u

6-50 F/u
```

第7章

7-06 the time has come the walrus said to talk ofmany things of ships and shoes and sealing wax of cabbages and kings of why the sea is boiling hot and whether pigs have wings but wait abit the oysters cried before we have our chat for some of us are out of breath and all of us are fat no hurry said the carpenter they thanked himmuch for that

From *Through the looking glass* (Tweedledum and Tweedledee)

第8章

8-04 不一样。实时数据往往是等时的数据,但等时的数据不一定是 实时数据。

8-15 (2) 分组在接收端缓存中应增加的时延分别为(单位为ms): 30, 25, 22, 29, 45, 35, 29, 26, 20和24。

(3) 以时间t 为横坐标, 分组数N为纵坐标。

t < 45, N = 0; $45 \le t < 60$, N = 1; $60 \le t < 70$, N = 2; $70 \le t < 73$, N = 3;t > 165, N = 0 °

8-16 显然, Δ 应小于话音分组长度10ms。如果将 Δ 取为9ms,则有:

时钟时间: 0 9 1 8 2 7 3 6 4 5 54 63 72 81 90 99 108...

计数器值: 0 1 2 3 4 5 6 7 8 9 10 11 12...

话音分组每隔10ms产生一个,对应的时间戳值(即计数器值)为:

话音分组产生时间: 0 10 20 30 40 50 60 70 80 90 100 110...

应加上的时间戳值: 0 1 2 3 4 5 6 7 <u>8 10</u> 11 12...

我们看到时间戳值在8到10之间缺了一个。可见将Δ取为略小于话音分组长度10ms是不行的。

正确的做法是使 2Δ 或 3Δ 等于话音分组长度。当话音分组丢失时,时间戳值会相差 4Δ 或 5Δ ,由此来判定是否发生了分组丢失。

- 8-17 接收端缓存空间的上限取决于还原播放时所容许的时延。当还原播放时所容许的时延已确定时,缓存空间的上限与实时数据流的数据率成正比。时延抖动越大,缓存空间也应更大。
- 8-21 (1) 可能是121312131213..., 也可能是1123112311231123...。
 - (2) 113113113113... •
- 8-23 T = b / (N-r) \circ
- 8-24 12.5ms。当N=2500pkt/s时,T=任意长的时间,漏桶被权标装满后就不再增加权标。
- 8-26 在图A-12中,流1的发送速率(即离开WFQ队列的速率) $\ge w_1 R$ / (Σw_i) 。如果所有的流的队列中都有分组,那么上面的公式的" \ge "就应当取为"="。如果有的队列中没有分组,WFQ就跳过这个队列,因此这个流得到的服务时间就会多一些。

图A-12 习题8-26的图

现在设:

 t_0 =队列刚刚积累了分组需要排队等待的时刻(从这时起到达的分组就要排队了),

t=流1队列处于忙状态, $t>t_0$ (队列忙就是队列中有排队的分组)。 $T_1\left(t_0,\ t\right)=$ 在时间间隔 $\left[t_0,\ t\right]$ 内,流1发送到网络的分组数。

显然,

$$T_1$$
 $(t_0, t) \ge w_1 R$ $(t-t_0)$ / (Σw_i)

 Q_1 (t) = 进入WFQ队列的分组数-离开WFQ队列的分组数

$$=b_1 + (t-t_0) [r_1-w_1R/(\Sigma w_i)]$$

因为 $r_1 < Rw_1 / (\Sigma w_i)$ (题目已知),所以 Q_1 (t) $\leq b_1$,故流1在WFQ队列中排队的分组数的最大值是 b_1 。

这些分组被服务的速率的最小值是 $w_1R/\left(\Sigma w_i\right)$,因此流1中任何分组的最大时延是

$$b_1 (\Sigma w_i) / w_1 R = d_{max}$$

8-27 如图A-13所示,第二个漏桶的大小是1,权标产生的速率是p/s

图A-13 习题8-27的图

- 8-32 按题意,此二叉树的叶节点有2 n 个,故二叉树的深度为 n +1。每一个节点向其上游节点发送一个RESV报文,故总共发送2 n +1 $^-$ 1个RESV报文。
- 8-33 80kbit/s ° 25% °
- 8-34 (2) 3, 4, 6, 7, 8 ° (3) 3和6 ° (4) t = 10 °
- 8-35 (1) 20kbit/s \circ (2) 5kbit/s \circ

第9章

- 9-24 (1) 一般来说,两个无线网络的名字不会是一样的。如果A和B只有一个人在通话,那么是可以的。虽然两个AP都能同时收到信号,但其中一个会丢弃地址错误的帧。如果两人同时进行通话,由于信道11是共同使用的,就必然产生冲突,两个AP无法正常工作。
 - (2) 两个AP可以正常工作。
- 9-25 为了防止一个站一直垄断信道,一直不停地发送大文件。
- 9-26 总共的时间=998.9µs。

在数据帧的持续期字段中,应写入0000000 00100110。

在ACK的持续期字段中,应写入全0。

- 9-27 (1) 1报文/2时隙。(2) 2报文/1时隙。(3) 1报文/1时隙。
 - (4) ①1报文/1时隙。②2报文/1时隙。③2报文/1时隙。
- (5) ①1报文/4时隙。②时隙1: 报文A→B,报文D→C;时隙2: ACKB→A; 时隙3: ACKC→D。得出2报文/3时隙。③时隙1: 报文C→D; 时隙2: ACKD→C,报文A→B,;时隙3: ACKB→A。得出2报文/3时隙。

附录B 英文缩写词

ACK (ACKnowledgement) 确认

ADSL (Asymmetric Digital Subscriber Line)非对称数字用户线

AES (Advanced Encryption Standard)先进的加密标准

AFPHB (Assured Forwarding Per-Hop Behavior) 确保转发每跳行为(也可记为AF)

AH (Authentication Header) 鉴别首部

AIMD (Additive Increase Multiplicative Decrease) 加法增大乘法减小

AN (Access Network) 接入网

ANSI (American National Standards Institute) 美国国家标准协会

AP (Access Point) 接入点

AP (Application) 应用程序

API (Application Programming Interface)应用编程接口

APNIC (Asia Pacific Network Information Center)亚太网络信息中心

ARIN(American Registry for Internet Numbers)美国互联网号码注册机构

ARP (Address Resolution Protocol) 地址解析协议

ARPA (Advanced Research Project Agency)美国国防部远景研究规划局(高级研究计划署)

ARQ (Automatic Repeat reQuest) 自动重传请求

AS (Autonomous System) 自治系统

AS (Authentication Server) 鉴别服务器

ASCII (American Standard Code for Information Interchange)美国信息交换标准码

ASN (Autonomous System Number) 自治系统号

ASN.1 (Abstract Syntax Notation One) 抽象语法记法1

ATM (Asynchronous Transfer Mode) 异步传递方式

ATU (Access Termination Unit) 接入端接单元

ATU-C (Access Termination Unit Central Office)端局接入端接单元

ATU-R (Access Termination Unit Remote)远端接入端接单元

AVTWG (Audio/Video Transport Working Group) 音频/视频运输工作组

AWT (Abstract Window Toolkit) 抽象窗口工具箱

Bcc (Blind carbon copy) 盲复写副本

BER (Bit Error Rate) 误码率

BER (Basic Encoding Rule)基本编码规则

BGP(Border Gateway Protocol)边界网关协议

BOOTP (BOOTstrap Protocol) 引导程序协议

BSA (Basic Service Area) 基本服务区

BSC (Base Station Controller) 基站控制器

BSS (Basic Service Set) 基本服务集

BSSID (Basic Service Set ID) 基本服务集标识符

BT (BitTorrent) 一种P2P应用程序

CA (Certification Authority) 认证中心

CA (Collision Avoidance) 碰撞避免

CATV (Community Antenna TV, CAble TV) 有线电视

CBT (Core Based Tree) 基于核心的转发树

Cc (Carbon copy) 复写副本

CCIR(Consultative Committee,International Radio)国际无线电咨询委员会

CCITT (Consultative Committee , International Telegraph and Telephone) 国际电报电话咨询委员会

CDM (Code Division Multiplexing) 码分复用

CDMA (Code Division Multiplex Access) 码分多址

CE (Consumer Electronics) 消费电子设备

CFI (Canonical Format Indicator) 规范格式指示符

CGI (Common Gateway Interface)通用网关接口

CHAP (Challenge-Handshake Authentication Protocol) 口令握手鉴别协议

CIDR (Classless InterDomain Routing)无分类域间路由选择

CNAME (Canonical NAME)规范名

CNNIC (China Network Information Center)中国互联网络信息中心

CRC (Cyclic Redundancy Check)循环冗余检验

CS-ACELP (Conjugate-Structure Algebraic-Code-Excited Linear Prediction) 共轭结构代数码激励线性预测(声码器)

CSMA/CD (Carrier Sense Multiple Access/Collision Detection),载波监听多点接入/冲突检测

CSMA/CA (Carrier Sense Multiple Access/Collision Avoidance),载波监听多点接入/冲突避免

CSRC (Contributing SouRCe identifier) 参与源标识符

CSS (Cascading Style Sheets) 层叠样式表

CTS (Clear To Send) 允许发送

DACS (Digital Access and Cross-connect System)数字交接系统

DARPA (Defense Advanced Research Project Agency) 美国国防部远景规划局(高级研究署)

DCF (Distributed Coordination Function) 分布协调功能

DDoS (Distributed Denial of Service) 分布式拒绝服务

DES (Data Encryption Standard) 数据加密标准

DF(Don't Fragment)不能分片

DHCP (Dynamic Host Configuration Protocol) 动态主机配置协议

DiffServ (Differentiated Services) 区分服务

DIFS (Distributed Coordination Function IFS) 分布协调功能帧间间隔

DLCI(Data Link Connection Identifier)数据链路连接标识符

DMT (Discrete Multi-Tone) 离散多音(调制)

DNS (Domain Name System)域名系统

DOCSIS (Data Over Cable Service Interface Specifications) 电缆数据服务接口规约

DoS (Denial of Service) 拒绝服务

DS (Distribution System) 分配系统

DS (Differentiated Services) 区分服务(也写作DiffServ)

DSCP (Differentiated Services CodePoint) 区分服务码点

DSL (Digital Subscriber Line) 数字用户线

DSLAM (DSL Access Multiplexer) 数字用户线接入复用器

DSSS (Direct Sequence Spread Spectrum) 直接序列扩频

DVMRP(Distance Vector Multicast Routing Protocol)距离向量多播路由选择协议

DWDM (Dense WDM) 密集波分复用

EBCDIC (Extended Binary-Coded Decimal Interchange Code)扩充的二/十进制交换码

EDFA (Erbium Doped Fiber Amplifier) 掺铒光纤放大器

EDGE (Enhanced Data rate for GSM Evolution)增强型数据速率GSM 演讲

EFM(Ethernet in the First Mile)第一英里的以太网

EFPHB(Expedited Forwarding Per-Hop Behavior)迅速转发每跳行为(也可记为EF)

EGP (External Gateway Protocol) 外部网关协议

EIA (Electronic Industries Association) 美国电子工业协会

EOT (End Of Transmission) 传输结束

EPON (Ethernet PON) 以太网无源光网络

ESMTP(Extended SMTP)扩充的简单邮件传送协议

ESP (Encapsulating Security Payload) 封装安全有效载荷

ESS (Extended Service Set) 扩展的服务集

ETSI (European Telecommunications Standards Institute)欧洲电信标准协会

EUI (Extended Unique Identifier)扩展的唯一标识符

FC (Fiber Channel) 光纤通道

FCS (Frame Check Sequence)帧检验序列

FDDI (Fiber Distributed Data Interface)光纤分布式数据接口

FDM (Frequency Division Multiplexing)频分复用

FEC (Forwarding Equivalence Class)转发等价类

FFD (Full-Function Device) 全功能设备

FHSS (Frequency Hopping Spread Spectrum) 跳频扩频

FIFO (First In First Out) 先进先出

FQ (Fair Queuing) 公平排队

FTP (File Transfer Protocol)文件传送协议

FTTB (Fiber To The Building) 光纤到大楼

FTTC (Fiber To The Curb) 光纤到路边

FTTD (Fiber To The Door) 光纤到门户

FTTF (Fiber To The Floor) 光纤到楼层

FTTH (Fiber To The Home) 光纤到家

FTTN (Fiber To The Neighbor) 光纤到邻区

FTTO (Fiber To The Office) 光纤到办公室

FTTZ (Fiber To The Zone) 光纤到小区

GGSN (Gateway GPRS Support Node)网关GPRS支持结点

GIF (Graphics Interchange Format)图形交换格式

G/L (Global/Local) 全球/本地管理(位)

GMSK (Gaussian filtered Minimum Shift Keying)高斯滤波最小移频键控

GPON (Gigabit PON)吉比特无源光网络

GPRS (General Packet Radio Service) 通用分组无线服务

GSM (Global System for Mobile) 全球移动通信系统, GSM体制

HDLC (High-level Data Link Control)高级数据链路控制

HDSL (High speed DSL)高速数字用户线

HFC (Hybrid Fiber Coax)光纤同轴混合(网)

HIPPI (HIgh-Performance Parallel Interface)高性能并行接口

HLR (Home Location Register)归属位置寄存器

HR-DSSS (High Rate Direct Sequence Spread Spectrum)高速直接序列 扩频

HSSG (High Speed Study Group)高速研究组

HTML (HyperText Markup Language) 超文本标记语言

HTTP (HyperText Transfer Protocol)超文本传送协议

IAB (Internet Architecture Board) 互联网体系结构委员会

IANA (Internet Assigned Numbers Authority)互联网赋号管理局

ICANN (Internet Corporation for Assigned Names and Numbers) 互联网名字和数字分配机构

ICMP (Internet Control Message Protocol) 网际控制报文协议

IDEA (International Data Encryption Algorithm) 国际数据加密算法

IDS (Intrusion Detection System) 入侵检测系统

IEEE (Institute of Electrical and Electronic Engineering) (美国)电气和电子工程师学会

IESG (Internet Engineering Steering Group)互联网工程指导小组

IETF (Internet Engineering Task Force) 互联网工程部

IFS (InterFrame Space)帧间间隔

I/G (Individual/Group)单个站/组地址(位)

IGMP (Internet Group Management Protocol) 网际组管理协议

IGP (Interior Gateway Protocol)内部网关协议

IKE (Internet Key Exchange)互联网密钥交换

IM (Instant Messaging) 即时传信

IMAP (Internet Message Access Protocol) 网际报文存取协议

IND (Inverse-Neighbor-Discovery)反向邻站发现

IntServ (Integrated Services) 综合服务

IP (Internet Protocol) 网际协议

IPCP (IP Control Protocol) IP控制协议

IPng (IP Next Generation) 下一代的IP

IPRA (Internet Policy Registration Authority) 互联网政策登记管理机构

IPsec (IP security) IP安全协议

IPX (Internet Packet Exchange)Novell公司的一种连网协议

IR(Infra Red)红外技术

IRSG(Internet Research Steering Group)互联网研究指导小组

IRTF (Internet Research Task Force) 互联网研究部

ISAKMP (Internet Secure Association and Key Management Mechanism) 互联网安全关联和密钥管理协议

ISDN (Integrated Services Digital Network)综合业务数字网

ISO (International Organization for Standardization) 国际标准化组织

ISOC (Internet Society) 互联网协会

ISM (Industrial, Scientific, and Medical) 工业、科学与医药(频段)

ISP (Internet Service Provider)互联网服务提供者

ITU (International Telecommunication Union)国际电信联盟

ITU-T(ITU Telecommunication Standardization Sector)国际电信联盟电信标准化部门

JPEG (Joint Photographic Expert Group)联合图像专家组

JVM (Java Virtual Machine) Java 虑拟机

KDC (Key Distribution Center)密钥分配中心

LACNIC (Latin American & Caribbean Network Internet Center)拉美与加勒比海网络信息中心

LAN (Local Area Network) 局域网

LCP (Link Control Protocol) 链路控制协议

LDP (Label Distribution Protocol) 标记分配协议

LED (Light Emitting Diode)发光二极管

LMDS (Local Multipoint Distribution System)本地多点分配系统

LLC (Logical Link Control)逻辑链路控制

LoS (Line of Sight) 视距

LPC (linear Prediction Coding)线性预测编码

LSP (Label Switched Path)标记交换路径

LSR (Label Switching Router)标记交换路由器

LTE (Long-Term Evolution)长期演进

MAC (Medium Access Control) 媒体接入控制

MAC (Message Authentication Code)报文鉴别码

MACA (Multiple Access with Collision Avoidance)具有碰撞避免的多点接入

MAGIC (Mobilemultimedia, Anytime/any-where, Globalmobility support, Integrated wireless and Customized personal service) 移动多媒体、任何时间/地点、支持全球移动性、综合无线和定制的个人服务

MAN (Metropolitan Area Network) 城域网

MANET (Mobile Ad-hoc NETworks) 移动自组网络的工作组

MBONE (Multicast Backbone On the InterNEt)多播主干网

MCU (Multipoint Control Unit) 多点控制单元

MD (Message Digest)报文摘要

MF (More Fragment) 还有分片

MFTP (Multisource File Transfer Protocol)多源文件传输协议

MIB (Management Information Base) 管理信息库

MIME (Multipurpose Internet Mail Extensions)通用互联网邮件扩充

MIMO (Multiple Input Multiple Output) 多入多出

MIPS (Million Instructions Per Second) 百万指令每秒

MLD (Multicast Listener Delivery) 多播听众交付

MMUSIC (Multiparty MUltimedia SessIon Control)多参与者多媒体会话控制

MOSPF (Multicast extensions to OSPF) 开放最短通路优先的多播扩展

MP3 (MPEG Audio layer-3)一种音频压缩标准

MPEG (Motion Picture Experts Group) 活动图像专家组

MPLS (MultiProtocol Label Switching)多协议标记交换

MPPS (Million Packets Per Second) 百万分组每秒

MRU (Maximum Receive Unit)最大接收单元

MSC (Mobile Switching Center)移动交换中心

MSL (Maximum Segment Lifetime)最长报文段寿命

MSRN (Mobile Station Roaming Number)移动站漫游号码

MSS (Maximum Segment Size)最长报文段

MTU (Maximum Transfer Unit) 最大传送单元

NAP (Network Access Point)网络接入点

NAT (Network Address Translation) 网络地址转换

NAV (Network Allocation Vector) 网络分配向量

NCP (Network Control Protocol) 网络控制协议

ND (Neighbor-Discovery) 邻站发现

NFS (Network File System)网络文件系统

NGI (Next Generation Internet)下一代互联网

NGN (Next Generation Network)下一代电信网

NIC (Network Interface Card)网络接口卡、网卡

NLA (Next-Level Aggregation)下一级聚合

NLRI (Network Layer Reachability Information)网络层可达性信息

NOC (Network Operations Center)网络运行中心

NSAP (Network Service Access Point)网络层服务访问点

NSF (National Science Foundation) (美国) 国家科学基金会

NVT (Network Virtual Terminal) 网络虚拟终端

OC (Optical Carrier)光载波

ODN (Optical Distribution Network)光配线网

ODN (Optical Distribution Node) 光分配结点

OFDM (Orthogonal Frequency Division Multiplexing) 正交频分复用

OLT (Optical Line Terminal) 光线路终端

ONU (Optical Network Unit) 光网络单元

OSI/RM (Open Systems Interconnection Reference Model)开放系统互连基本参考模型

OSPF (Open Shortest Path First) 开放最短通路优先

OUI (Organizationally Unique Identifier)机构唯一标识符

P2P (Peer-to-Peer) 对等方式

PAN (Personal Area Network) 个人区域网

PAP (Password Authentication Protocol)口令鉴别协议

PARC (Polo Alto Research Center) (美国施乐公司(XEROX)的)PARC研究中心

PAWS (Protect Against Wrapped Sequence numbers) 防止序号绕回

PCA (Policy Certification Authority)政策认证中心

PCF (Point Coordination Function) 点协调功能

PCM (Pulse Code Modulation) 脉码调制

PCMCIA (Personal Computer Memory Card Interface Adapter)个人计算机存储器卡接口适配器

PDA (Personal Digital Assistant) 个人数字助理

PDF (Portable Document Forment) 轻便文档格式

PDU (Protocol Data Unit) 协议数据单元

PEM (Privacy Enhanced Mail) 互联网的正式邮件加密标准

PGP (Pretty Good Privacy) 一种电子邮件加密技术

PHB (Per-Hop Behavior) 每跳行为

PIFS (Point Coordination Function IFS) 点协调功能帧间间隔

PIM-DM (Protocol Independent Multicast-Dense Mode)协议无关多播-密集方式

PIM-SM (Protocol Independent Multicast-Sparse Mode)协议无关多播-稀疏方式

PING (Packet InterNet Groper) 分组网间探测,乒程序,ICMP的一种应用

PK (public key) 公钥,公开密钥

PKI (Public Key Infrastructure) 公钥基础结构

PLMN (Public Land Mobile Network) 公共陆地移动网络

PON (Passive Optical Network)无源光网络

PoP (Point of Presence) 汇接点

POP (Post Office Protocol) 邮局协议

POTS (Plain Old Telephone Service) 传统电话

PPP (Point-to-Point Protocol) 点对点协议

PPPoE (Point-to-Point Protocol over Ethernet) 以太网上的点对点协议

PS (POTS Splitter) 电话分离器

PTE (Path Terminating Element)路径端接设备

QAM (Quadrature Amplitude Modulation) 正交幅度调制

QoS (Quality of Service)服务质量

QPSK (Quarternary Phase Shift Keying 或 Quadrature Phase Shift Keying) 正交相移键控

RA (Registration Authority)注册管理机构

RARP (Reverse Address Resolution Protocol) 逆地址解析协议

RAS (Registration/Admission/Status)登记/接纳/状态

RED (Random Early Detection) 随机早期检测

RED (Random Early Discard, Random Early Drop) 随机早期丢弃

RESV (RESerVation) 预留

RFC (Request For Comments) 请求评论

RFD (Reduced-Function Device) 精简功能设备

RG (Research Group) 研究组

RIP (Routing Information Protocol)路由信息协议

RIPE (法文表示的European IP Network)欧洲的IP网络

RPB (Reverse Path Broadcasting) 反向路径广播

RR (Receiver Report)接收端报告(分组)

RSA (Rivest, Shamir and Adleman) 用三个人名表示的一种公开密钥算法的名称,

RSVP (Resource reSerVation Protocol) 资源预留协议

RTCP (Real-time Transfer Control Protocol)实时传送控制协议

RTO (Retransmission Time-Out) 超时重传时间

RTP (Real-time Transport Protocol)实时运输协议

RTS (Request To Send)请求发送

RTSP (Real-Time Streaming Protocol) 实时流式协议

RTT (Round-Trip Time)往返时间

SA (Security Association) 安全关联

SACK (Selective ACK) 选择确认

SAD (Security Association Database) 安全关联数据库

SAP (Service Access Point) 服务访问点

SCTP (Stream Control Transmission Protocol)流控制传输协议

SDH (Synchronous Digital Hierarchy) 同步数字系列

SDP (Session Description Protocol) 会话描述协议

SDSL (Single-line DSL) 1对线的数字用户线

SDU (Service Data Unit) 服务数据单元

SET (Secure Electronic Transaction)安全电子交易

SGSN (Serving GPRS Support Node) GPRS服务支持结点

SHA (Secure Hash Algorithm)安全散列算法

SIFS (Short IFS) 短帧间间隔

SIM (Subscriber Identity Module) 用户身份识别卡

SIP (Session Initiation Protocol) 会话发起协议

SK (Secret Key) 秘钥

SKEME (Secure Key Exchange Mechanism)安全密钥交换机制

SLA (Service Level Agreement)服务等级协定

SMI (Structure of Management Information)管理信息结构

SMTP (Simple Mail Transfer Protocol)简单邮件传送协议

SNA (System Network Architecture)系统网络体系结构

SNMP (Simple Network Management Protocol)简单网络管理协议

SOH (Start Of Header) 首部开始

SONET (Synchronous Optical Network) 同步光纤网

SPD (Security Policy Database)安全策略数据库

SPI (Security Parameter Index)安全参数索引

SR (Sender Reporting) 发送端报告(分组)

SRA (Seamless Rate Adaptation)无缝速率自适应技术

SSID (Service Set IDentifier) 服务集标识符

SSL (Secure Socket Layer)安全插口层,或安全套接层(协议)

SSRC (Synchronous SouRCe identifier)同步源标识符

STDM (Statistic TDM) 统计时分复用

STM (Synchronous Transfer Module)同步传递模块

STP (Shielded Twisted Pair)屏蔽双绞线

STS (Synchronous Transport Signal)同步传送信号

TAG (TAG Switching) 标记交换

TCB (Transmission Control Block) 传输控制程序块

TCP (Transmission Control Protocol) 传输控制协议

TDM (Time Division Multiplexing) 时分复用

TD-SCDMA (Time Division-Synchronous CDMA) 时分同步的码分多址

TELNET (TELetype NETwork) 电传机网络,一种互联网的应用程序

TFTP (Trivial File Transfer Protocol)简单文件传送协议

TGS (Ticket-Granting Server) 票据授予服务器

TIA (Telecommunications Industries Association)电信行业协会

TLA (Top-Level Aggregation) 顶级聚合

TLD (Top Level Domain)顶级域名

TLI (Transport Layer Interface)运输层接口

TLS (Transport Layer Security) 运输层安全协议

TLV (Type-Length-Value) 类型-长度-值

TPDU (Transport Protocol Data Unit) 运输协议数据单元

TSS (Telecommunication Standardization Sector) 电信标准化部门

TTL (Time To Live) 生存时间,或寿命

UA (User Agent) 用户代理

UAC (User Agent Client)用户代理客户

UAS (User Agent Server) 用户代理服务器

UDP (User Datagram Protocol) 用户数据报协议

UIB (User Interface Box) 用户接口盒

URL (Uniform Resource Locator) 统一资源定位符

USIM (Universal Subscriber Identity Module) 通用用户身份识别卡

UTP (Unshielded Twisted Pair) 无屏蔽双绞线

UWB (Ultra-Wide Band) 超宽带

VC (Virtual Circuit) 虚电路

VCI (Virtual Channel Identifier) 虚通路标识符

VDSL (Very high speed DSL) 甚高速数字用户线

VID (VLAN ID) VLAN标识符

VLAN (Virtual LAN) 虚拟局域网

VLR (Visitor Location Register)来访用户位置寄存器

VLSM (Variable Length Subnet Mask)变长子网掩码

VoIP(Voice over IP)在IP上的话音

VON (Voice On the Net)在互联网上的话音

VPI (Virtual Path Identifier)虚通道标识符

VPN (Virtual Private Network) 虚拟专用网

VRML (Virtual Reality Modeling Language)虚拟现实建模语言

VSAT (Very Small Aperture Terminal)甚小孔径地球站

WAN (Wide Area Network) 广域网

WCDMA (Wideband CDMA) 宽带码分多址

WDM (Wavelength Division Multiplexing) 波分复用

WEP (Wired Equivalent Privacy) 有线等效保密

WFQ (Weighted Fair Queuing)加权公平排队

WG (Working Group) 工作组

WGIG (Working Group on Internet Governance)互联网治理工作组

Wi-Fi(Wireless-Fidelity)无线保真度(无线局域网的同义词)

WiMAX (Worldwide interoperability for Microwave Access) 全球微波接入的互操作性,即WMAN。

WISP (Wireless Internet Service Provider)无线互联网服务提供者

WLAN (Wireless Local Area Network) 无线局域网

WMAN (Wireless Metropolitan Area Network)无线城域网

WPA (Wi-Fi Protected Access) 无线局域网受保护的接入

WPAN (Wireless Personal Area Network) 无线个人区域网

WSN (Wireless Sensor Network) 无线传感器网络

WWW (World Wide Web) 万维网

W3C (World Wide Web Consortium) 万维网联盟

XHTML (Extensible HTML) 可扩展超文本标记语言

XML (Extensible Markup Language) 可扩展标记语言

附录C 参考文献与网址

1. 值得进一步深入阅读的计算机网络教材

[CHEN07] 陈鸣等,《计算机网络实验教程,从原理到实践》,机械工业出版社,2007年。

[COME06] Comer, D., Internetworking with TCP/IP, Vol. 1, 5ed., Pearson Education, 2006. 中译本: 电子工业出版社, 2006年。

[COME15] Comer , D . , Computer Networks and Internets , 6ed . , Pearson Education , 2015 . 中译本,电子工业出版社。2015 年。

[FORO10] Forouzan, B. A., *TCP/IP Protocol Suite*, 4ed., McGraw-Hill, 2010. 中译本: 清华大学出版社, 2011年。

[KURO13] Kurose ,J. F. and Ross ,K. W. ,Computer Networking ,A Top-Down Approach Featuring the Internet , 6ed . ,Pearson Education,2013. 中译本4ed: 陈鸣译,2010年,机械工业出版社。

[LIUP15] 刘鹏, 《云计算》第三版, 电子工业出版社, 2015年1月。

[PERL00] Perlman, R., Interconnections: Bridges and Routers, 2ed. Addison-Wesley, 2000. 机械工业出版社影印版。有中译本: 机械工业出版社, 2000年。

[PETE11] Peterson , L . L . and Davie , B . S . , *Computer Networks* , *A Systems Approach* , 5ed . , Morgan Kaufmann , 2011 .

- [STAL10] Stallings, W., Data and Computer Communications, 9ed., Prentice-Hall, 2010. 中译本: 电子工业出版社, 2011年。
- [TANE11] Tanenbaum , A . S . , Computer Networks , 5ed . , 2011 . 机械工业出版社影印版。

2. 参考文献

- [BELL86] Bell, P. R., et al., "Review of Point-to-Point Network Routing Algorithms, "*IEEE Commun. Magazine*, Vol. 24, No. 1, pp. 34-38, Jan. 1986.
- [COLL01] Collins, D., Carrier Grade Voice over IP, McGraw-Hill, 2001. 人民邮电出版社影印版。
- [COMM90] *IEEE Commun .* Magazine , Special Issue on SONET/SDH, Vol. 28, No. 8, Aug. 1990.
- [CUNN99] Cunningham, D. G. and Lane, W. G., "Gigabit Ethernet Networking", Macmillan Technical Publishing, 1999, 清华大学出版社影印。
- [DAVI86] Davies , D . W . , "The Origins of Packet Switching, "Computer Network Usage: Recent Experiences , Eds . L . Csaba et al . , North-Holland, 1986, pp. 1-13.
- [DENN82] Denning, D. E., *Cryptograph and Data Security*, Addison-Wesley, 1982.
- [DIFF76] Diffie, W. and Hellman, M., "New Directions in Cryptography", *IEEE Trans*., Vol. IT-22, No. 6, pp. 644-654, Nov. 1976.

[HUIT95] Huitema, C., Routing in the Internet, Prentice Hall, 1995.

[KAST98] Kastas, T. J., et. al., "Real-Time Voice Over Packet-Switched Networks, "*IEEE Network*, Vol. 12, No. 1, pp. 18-27, Jan/Feb 1998.

[LAI90] Lai, X., and Massey, J.: "A Proposal for a New Block Encryption Standard." *Advances in Cryptology – Eurocrypt* '90 *Proceedings*, New York: Springer-Verlag, pp. 389-404, 1990.

[MAN02] Man Young Rhee, CDMA Cellular Mobile Communications and Network Security. Pearson Education, 2002. 电子工业出版社影印。

[METC76] Metcalfe, R. M., et al., "Ethernet: Distributed Packet Switching for Local Computer Networks, "Commun. ACM, Vol. 19, No. 7, pp. 395-404, July 1976.

[MINGCI93] 电子学名词,科学出版社,1994年4月。

「MINGCI94」计算机科学技术名词,科学出版社,1994年12月。

[MOY98] Moy, J. T., *OSPF: Anatomy of an Internet Routing Protocol*, Addison-Wesley, 1998.

[NETW88] *IEEE Network*, Special Issue on Bridges, Vol. 2, No. 1, Jan. 1988.

[RIVE78] Rivest, R. L., Shamir, A. and Adleman, L., "A Method for Obtaining Digital Signature and Public Key Cryptosystems, "Commun. ACM, Vol. 21, No. 2, pp. 120-126, Feb. 1978.

[SHAN49] Shannon, C. E., "Communication Theory of Secrecy Systems, "Bell Syst. Tech. J., Vol. 28, pp. 656-715, Oct. 1949.

[SHOC78] Shoch, J. F., "Inter-network Naming, Addressing, and Routing, "Compcon, pp. 72-79, Fall 1978.

[STOI01] Stoica , $\,$ I . , et al , "Chord : A Scalable Peer-to-peer Lookup service for Internet Applications , "ACM SIGCOMM Computer Communication Review Vol 31 $\,(4)\,:\,149\,,\,2001\,.$

[WANG05] Xiaoyun Wang and Hongbo Yu(2005). "How to Break MD5 and Other Hash Functions" (P DF) . Advances in Cryptology – Lecture Notes in Computer Science 3494 . pp . 19–35 . Retrieved 21 December 2009 .

[ZHAN93] Zhang Lixia , "RSVP ANew Resource ReServation Protocol , "*IEEE Network Magazine* , Vol . 7 , pp . 8-18 , Sept/Oct . 1993 .

3. 一些有参考价值的网址

[W-10GE] http://grouper.ieee.org/groups/802/3/10G_study/

http://www.10gea.org/

[W-ADSL] http://www.adsl.com/

[W-AVT] http://www.ietf.org/html.charters/avt-charter.html

[W-BACKD

https://en.wikipedia.org/wiki/2011_PlayStation_Network_outage

[W-BLUE] http://www.bluetooth.com/

[W-BT] http://www.bittorrent.org/

[W-CableLabs] http://www.cablelabs.com/

```
[W-CNNIC] http://www.cnnic.cn/
 [W-DECIX] https://www.de-cix.net/
 [W-DiffServ] http://www.ietf.org/html.charters/diffserv-charter.html
                http://krebsonsecurity.com/2014/12/cowards-attack-sony-
playstation-microsoft-xbox-networks/
 | W-GOOGLE | http://www.google.com/technology/index.html
 | W-gTLD | http://www.iana.org/gtld/gtld.htm
 [ W-HTML ] http://www.w3.org/hypertext/WWW/MarkUp/MarkUp .
html
    http://www.w3.org/MarkUp/
 [W-IANA-root] http://www.iana.org/domains/root/db/
 [W-ICANN] http://www.icann.org/
 [W-IEEE802] http://www.ieee802.org/
 [W-IEEE802.3] http://standards.ieee.org/getieee802/802.3.html
 [W-IEEE802.11] http://standards.ieee.org/getieee802/802.11-1999.pdf
 [W-IEEE802.15] http://grouper.ieee.org/groups/802/15/
 [W-IEEERA] http://standards.ieee.org/regauth/
 | W-IntServ | http://www.ietf.org/html.charters/intserv-charter.html
 [W-ISOC] http://www.isoc.org/
 | W-INTER | http://www.internetlivestats.com/internet-users/
 [W-ITU] http://www.itu.int/
```

```
[W-IXP] http://www.datacentermap.com/ixps.html
 [W-MANET] http://www.ietf.org/html.charter/manet-charter.html
 W-MCAST
                   White
                           Paper—The Evolution of Multicast ,
http://www.stardust.com/
 [W-MEDIA-TYPE] http://www.iana.org/assignments/media-types
 | W-MIME | http://www.iana.org/assignments/media-types/index.html
 [W-MMUSIC] http://www.ietf.org/html.charters/mmusic-charter.html
 [W-MPLS] http://www.ietf.org/html.charters/mpls-charter.html
 [W-NAT] http://www.ietf.org/html.charters/nat-charter.html
                            W-NEWS14
http://news.163.com/14/0923/10/A6QPKQFH00014AED.html
 [W-NGTRANS] http://www.ietf/org/html.charters/ipngwg-charter.html
 [W-PGP] http://www.pgpi.org/
 [W-RFC] http://www.ietf.org/rfc.html
    http://www.ietf.org/rfc/rfcNNNN.txt这里NNNN是所要下载的
    RFC编号
 [W-RFCS] http://www.rfc-editor.org/search/standards.php#IS
 [W-RFCX] http://www.rfc-editor.org/in-notes/rfc-index.txt
 | W-ROOT | http://www.root-servers.org/
 [W-SHA3] http://www.nist.gov/itl/csd/sha-100212.cfm
 [W-SIP] http://www.ietf.org/html.charters/sip-charter.html
```

[W-TLD] http://data.iana.org/TLD/tlds-alpha-by-domain.txt

[W-VoIP] http://www.ietf.org/html.charters/iptel-charter.html

[W-WiFi] http://www.wi-fi.org/

[W-WiMAX] http://www.wimaxforum.org/

[W-ZigBee] http://www.zigbee.org/

Table of Contents

书名页

版权页

前言

目录

第1章 概述

- 1.1 计算机网络在信息时代中的作用
- 1.2 互联网概述
 - 1.2.1 网络的网络
 - 1.2.2 互联网基础结构发展的三个阶段
 - 1.2.3 互联网的标准化工作
- 1.3 互联网的组成
 - 1.3.1 互联网的边缘部分
 - 1.3.2 互联网的核心部分
- 1.4 计算机网络在我国的发展

1.5 计算机网络的类别

- 1.5.1 计算机网络的定义
- 1.5.2 几种不同类别的计算机网络
- 1.6 计算机网络的性能
 - 1.6.1 计算机网络的性能指标
 - 1.6.2 计算机网络的非性能特征
- 1.7 计算机网络体系结构
 - 1.7.1 计算机网络体系结构的形成
 - 1.7.2 协议与划分层次
 - 1.7.3 具有五层协议的体系结构
 - 1.7.4 实体、协议、服务和服务访问点
 - 1.7.5 TCP/IP的体系结构

本章的重要概念

习题

第2章 物理层

- 2.1 物理层的基本概念
- 2.2 数据通信的基础知识
 - 2.2.1 数据通信系统的模型
 - 2.2.2 有关信道的几个基本概念
 - 2.2.3 信道的极限容量

- 2.3 物理层下面的传输媒体
 - 2.3.1 导引型传输媒体
 - 2.3.2 非导引型传输媒体
- 2.4 信道复用技术
 - 2.4.1 频分复用、时分复用和统计时分复 用
 - 2.4.2 波分复用
 - 2.4.3 码分复用
- 2.5 数字传输系统
- 2.6 宽带接入技术
 - 2.6.1 ADSL技术
 - 2.6.2 光纤同轴混合网(HFC网)
 - 2.6.3 FTTx技术

习题

第3章 数据链路层

- 3.1 使用点对点信道的数据链路层
 - 3.1.1 数据链路和帧
 - 3.1.2 三个基本问题
- 3.2 点对点协议PPP
 - 3.2.1 PPP协议的特点

- 3.2.2 PPP协议的帧格式
- 3.2.3 PPP协议的工作状态
- 3.3 使用广播信道的数据链路层
 - 3.3.1 局域网的数据链路层
 - 3.3.2 CSMA/CD协议
 - 3.3.3 使用集线器的星形拓扑
 - 3.3.4 以太网的信道利用率
 - 3.3.5 以太网的MAC层
- 3.4 扩展的以太网
 - 3.4.1 在物理层扩展以太网
 - 3.4.2 在数据链路层扩展以太网
 - 3.4.3 虚拟局域网
- 3.5 高速以太网
 - 3.5.1 100BASE-T以太网
 - 3.5.2 吉比特以太网
 - 3.5.3 10吉比特以太网(10GE)和更快的 以太网
 - 3.5.4 使用以太网进行宽带接入

习题

第4章 网络层

- 4.1 网络层提供的两种服务
- 4.2 网际协议IP
 - 4.2.1 虚拟互连网络
 - 4.2.2 分类的IP地址
 - 4.2.3 IP地址与硬件地址
 - 4.2.4 地址解析协议ARP
 - 4.2.5 IP数据报的格式
 - 4.2.6 IP层转发分组的流程
- 4.3 划分子网和构造超网
 - 4.3.1 划分子网
 - 4.3.2 使用子网时分组的转发
 - 4.3.3 无分类编址CIDR(构造超网)
- 4.4 网际控制报文协议ICMP
 - 4.4.1 ICMP报文的种类
 - 4.4.2 ICMP的应用举例
- 4.5 互联网的路由选择协议
 - 4.5.1 有关路由选择协议的几个基本概念
 - 4.5.2 内部网关协议RIP
 - 4.5.3 内部网关协议OSPF
 - 4.5.4 外部网关协议BGP

4.5.5 路由器的构成

4.6 IPv6

- 4.6.1 IPv6的基本首部
- 4.6.2 IPv6的地址
- 4.6.3 从IPv4向IPv6过渡
- 4.6.4 ICMPv6

4.7 IP多播

- 4.7.1 IP多播的基本概念
- 4.7.2 在局域网上进行硬件多播
- 4.7.3 网际组管理协议IGMP和多播路由选 择协议
- 4.8 虚拟专用网VPN和网络地址转换NAT
 - 4.8.1 虚拟专用网VPN
 - 4.8.2 网络地址转换NAT
- 4.9 多协议标记交换MPLS
 - 4.9.1 MPLS的工作原理
 - 4.9.2 MPLS首部的位置与格式

本章的重要概念

习题

第5章 运输层

5.1 运输层协议概述

- 5.1.1 进程之间的通信
- 5.1.2 运输层的两个主要协议
- 5.1.3 运输层的端口
- 5.2 用户数据报协议UDP
 - 5.2.1 UDP概述
 - 5.2.2 UDP的首部格式
- 5.3 传输控制协议TCP概述
 - 5.3.1 TCP最主要的特点
 - 5.3.2 TCP的连接
- 5.4 可靠传输的工作原理
 - <u>5.4.1</u> 停止等待协议
 - <u>5.4.2 连续ARQ协议</u>
- 5.5 TCP报文段的首部格式
- 5.6 TCP可靠传输的实现
 - 5.6.1 以字节为单位的滑动窗口
 - 5.6.2 超时重传时间的选择
 - <u>5.6.3</u> 选择确认SACK
- <u>5.7 TCP的流量控制</u>
 - 5.7.1 利用滑动窗口实现流量控制
 - 5.7.2 TCP的传输效率

5.8 TCP的拥塞控制

- 5.8.1 拥塞控制的一般原理
- 5.8.2 TCP的拥塞控制方法
- 5.8.3 主动队列管理AQM

5.9 TCP的运输连接管理

- 5.9.1 TCP的连接建立
- 5.9.2 TCP的连接释放
- 5.9.3 TCP的有限状态机

本章的重要概念

习题

第6章 应用层

- 6.1 域名系统DNS
 - 6.1.1 域名系统概述
 - 6.1.2 互联网的域名结构
 - 6.1.3 域名服务器
- 6.2 文件传送协议
 - 6.2.1 FTP概述
 - 6.2.2 FTP的基本工作原理
 - 6.2.3 简单文件传送协议TFTP
- 6.3 远程终端协议TELNET

6.4 万维网WWW

- 6.4.1 万维网概述
- 6.4.2 统一资源定位符URL
- 6.4.3 超文本传送协议HTTP
- 6.4.4 万维网的文档
- 6.4.5 万维网的信息检索系统
- 6.4.6 博客和微博
- 6.4.7 社交网站

6.5 电子邮件

- 6.5.1 电子邮件概述
- 6.5.2 简单邮件传送协议SMTP
- 6.5.3 电子邮件的信息格式
- <u>6.5.4</u> 邮件读取协议POP3和IMAP
- 6.5.5 基于万维网的电子邮件
- 6.5.6 通用互联网邮件扩充MIME
- 6.6 动态主机配置协议DHCP
- 6.7 简单网络管理协议SNMP
 - 6.7.1 网络管理的基本概念
 - <u>6.7.2</u> 管理信息结构SMI
 - 6.7.3 管理信息库MIB

6.7.4 SNMP的协议数据单元和报文

6.8 应用进程跨越网络的通信

- 6.8.1 系统调用和应用编程接口
- 6.8.2 几种常用的系统调用

6.9 P2P应用

- 6.9.1 具有集中目录服务器的P2P工作方式
- 6.9.2 具有全分布式结构的P2P文件共享 程序
- 6.9.3 P2P文件分发的分析
- 6.9.4 在P2P对等方中搜索对象

本章的重要概念

习题

第7章 网络安全

- 7.1 网络安全问题概述
 - 7.1.1 计算机网络面临的安全性威胁
 - 7.1.2 安全的计算机网络
 - 7.1.3 数据加密模型

7.2 两类密码体制

- 7.2.1 对称密钥密码体制
- 7.2.2 公钥密码体制

- 7.3 数字签名
- 7.4 鉴别
 - 7.4.1 报文鉴别
 - 7.4.2 实体鉴别
- 7.5 密钥分配
 - 7.5.1 对称密钥的分配
 - 7.5.2 公钥的分配
- 7.6 互联网使用的安全协议
 - 7.6.1 网络层安全协议
 - 7.6.2 运输层安全协议
 - 7.6.3 应用层安全协议
- 7.7 系统安全: 防火墙与入侵检测
 - 7.7.1 防火墙
 - 7.7.2 入侵检测系统
- 7.8 一些未来的发展方向

习题

- 第8章 互联网上的音频/视频服务
 - 8.1 概述
 - 8.2 流式存储音频/视频

- 8.2.1 具有元文件的万维网服务器
- 8.2.2 媒体服务器
- 8.2.3 实时流式协议RTSP
- 8.3 交互式音频/视频
 - 8.3.1 IP电话概述
 - 8.3.2 IP电话所需要的几种应用协议
 - 8.3.3 实时运输协议RTP
 - 8.3.4 实时运输控制协议RTCP
 - 8.3.5 H.323
 - 8.3.6 会话发起协议SIP
- 8.4 改进"尽最大努力交付"的服务
 - 8.4.1 使互联网提供服务质量
 - 8.4.2 调度和管制机制
 - 8.4.3 综合服务IntServ与资源预留协议 RSVP
 - 8.4.4 区分服务DiffServ

习题

- 第9章 无线网络和移动网络
 - 9.1 <u>无线局域网WLAN</u>
 - 9.1.1 无线局域网的组成

- 9.1.2 802.11局域网的物理层
- 9.1.3 802.11局域网的MAC层协议
- 9.1.4 802.11局域网的MAC帧
- 9.2 无线个人区域网WPAN
- 9.3 无线城域网WMAN
- 9.4 蜂窝移动通信网
 - 9.4.1 蜂窝无线通信技术简介
 - 9.4.2 移动IP
 - 9.4.3 蜂窝移动通信网中对移动用户的路 由选择
 - 9.4.4 GSM中的切换
 - 9.4.5 无线网络对高层协议的影响
- 9.5 两种不同的无线上网

习题

附录A 部分习题的解答

附录B 英文缩写词

附录C 参考文献与网址