03 _z

통계적 추론

확률분포 2

한국방송통신대학교 통계·데이터과학과 이 긍 희 교 수

학습내용

- 결합 확률분포를 이해한다.
- 공분산과 상관계수을 이해한다.
- 4 독립성을 이해한다.

결합 확률분포

이산형 결합 확률분포

● 결합 확률질량함수와 결합누적분포함수

$$f(x_i, y_j) = P(X = x_i, Y = y_j)$$

$$x_1 < x_2 < \dots < x_s < \dots$$
, $y_1 < y_2 < \dots < y_t < \dots$

$$F(x_s, y_t) = P(X \le x_s, Y \le y_t) = \sum_{j=1}^t \sum_{i=1}^s f(x_i, y_j)$$

이산형 결합 확률분포

● 결합 확률질량함수의 성질

- $0 \le f(x_i, y_j) \le 1$
- $f_X(x_i) = \sum_j f(x_i, y_j)$, $f_Y(y_j) = \sum_i f(x_i, y_j)$
- $P(x_a \le X \le x_b, y_c \le Y \le y_d) = \sum_{j=c}^d \sum_{i=a}^b f(x_i, y_j)$

이산형 결합 확률분포

예 3개의 공(1~3)이 든 상자에서 2개의 공을뽑을 때, 첫 번째 공의 숫자를 X, 두 번째공의 숫자를 Y라 할 때 결합 확률질량함수는?

이산형 결합 확률분포

예 3개의 공(1~3)이 든 상자에서 2개의 공을뽑을 때, 첫 번째 공의 숫자를 X, 두 번째공의 숫자를 Y라 할 때 결합 확률질량함수는?

연속형 결합 확률분포

● 결합 누적분포함수와 결합 확률밀도함수

$$F(x,y) = P(X \le x, Y \le y) = \int_{-\infty}^{y} \int_{-\infty}^{x} f(s,t) ds dt$$

•
$$f(x,y) = \frac{\partial^2}{\partial x \partial y} F(x,y)$$

연속형 결합 확률분포

○ 결합 확률밀도함수의 성질

- $f(x,y) \ge 0$
- $-\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f(x, y) dx dy = 1$
- $f_X(x) = \int_{-\infty}^{\infty} f(x, y) dy, f_Y(y) = \int_{-\infty}^{\infty} f(x, y) dx$
- $P(a \le X \le b, c \le Y \le d) = \int_{c}^{d} \int_{a}^{b} f(x, y) dx dy$

연속형 결합 확률분포

예
$$f(x,y) = 6x^2y$$
일 때 $P(0 \le X \le \frac{3}{4}, \frac{1}{3} \le Y \le 1)$ 값은?

연속형 결합 확률분포

예
$$f(x,y) = 6x^2y$$
일 때 $P(0 \le X \le \frac{3}{4}, \frac{1}{3} \le Y \le 1)$ 값은?

- 기댓값
 - 이산형 확률변수:

$$E(g(X,Y)) = \sum_{x} \sum_{y} g(x,y) f(x,y)$$

• 연속형 확률변수

$$E(g(X,Y)) = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} g(x,y)f(x,y) \, dy dx$$

- 기댓값의 성질
 - $E(g(X,Y) \pm h(X,Y)) = E(g(X,Y)) \pm E(h(X,Y))$

다음 결합분포에서 X+Y의 분포와 기댓값은?

Y	-1	1	행의 합
0	0.4	0.1	0.5
1	0.1	0.4	0.5
열의 합	0.5	0.5	1

다음 결합분포에서 X+Y의 분포와 기댓값은?

적률생성함수

→ 적률생성함수

- $M_{X,Y}(t_1,t_2) = E(e^{t_1X+t_1Y})$
- $M_X(t_1) = M_{X,Y}(t_1,0)$
- $M_Y(t_2) = M_{X,Y}(0, t_2)$

I 다차원 결합 확률분포

● 결합 확률질량함수

- $0 \le f(x_1, x_2, \dots, x_k) \le 1$
- $P(a_1 \le X_1 \le b_1, a_2 \le X_2 \le b_2 \cdots, a_k \le X_k \le b_k)$

$$= \sum_{a_1 \le x_1 \le b_1} \sum_{a_2 \le x_2 \le b_2} \cdots \sum_{a_k \le x_k \le b_k} f(x_1, x_2, \cdots, x_k)$$

5 다차원 결합 확률분포

● 결합 확률밀도함수

$$0 \le f(x_1, x_2, \cdots, x_k)$$

$$\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \cdots \int_{-\infty}^{\infty} f(x_1, x_2, \cdots, x_k) dx_1 dx_2 \cdots dx_k = 1$$

•
$$P(a_1 \le X_1 \le b_1, a_2 \le X_2 \le b_2, \dots, a_k \le X_k \le b_k)$$

$$= \int_{a_1}^{b_1} \int_{a_2}^{b_2} \cdots \int_{a_k}^{b_k} f(x_1, x_2, \cdots, x_k) d_{x_1} d_{x_2} \cdots d_{x_k}$$

공분산

공분산

● 공분산(covariance)의 정의

$$Cov(X,Y) = E[(X - E(X))(Y - E(Y))]$$

$$= E(XY) - E(X)E(Y)$$

공분산의 정의

- 공분산의 성질
 - Cov(X,Y) = Cov(Y,X)
 - Cov(aX + b, cY + d) = acCov(X, Y)
 - -Cov(X+Y,Z) = Cov(X,Z) + Cov(Y,Z)

공분산의 정의

- 공분산의 성질
 - $-Var(X \pm Y) = Var(X) + Var(Y) \pm 2Cov(X, Y)$
 - $Var(\sum_{i=1}^{n} a_i X_i) = \sum_{i=1}^{n} a_i^2 Var(X_i) \pm 2 \sum_{i < j} a_i a_j Cov(X_i, X_j)$

공분산

다음 결합분포에서 Cov(X,Y) 는?

Y	-1	1	행의 합
0	0.4	0.1	0.5
1	0.1	0.4	0.5
열의 합	0.5	0.5	1

● 상관계수(correlation)의 정의

$$- Corr(X,Y) = \frac{Cov(X,Y)}{\sqrt{Var(X)}\sqrt{Var(Y)}}$$

- 상관계수의 성질
 - $-1 \leq Corr(X, Y) \leq 1$
 - Corr(aX + b, cY + b) = ac/|ac|Corr(X, Y)

● 상관계수의 성질

$$P(Y = aX + b) = 1$$

$$\rightarrow Corr(X,Y) = \{ \begin{matrix} 1, & a > 0 \\ -1, & a < 0 \end{matrix} \}$$

다음 결합분포에서 Cov(X,Y) 는?

Y	-1	1	행의 합
0	0.4	0.1	0.5
1	0.1	0.4	0.5
열의 합	0.5	0.5	1

조건부 확률분포

● 이산형 확률변수

•
$$f_{Y|X} = P(Y = y | X = x) = \frac{f(x,y)}{f_X(x)}, \qquad y = 0,1,2,\dots$$

불량품 1개와 정상제품 4개 들어있는 바구니 에서 3개의 제품을 복원추출

X : 불량품 총수

Y: 마지막 제품이 불량품인지 여부

P(Y|X=1)의 값은?

P(Y|X=1)의 값은?

● 연속형 확률변수

$$f_{Y|X} = \frac{f(x,y)}{f_X(x)}, \quad -\infty < y < \infty$$

$$f_X(x) = \int_{-\infty}^{\infty} f(x, y) dy$$

예 두 확률 변수 X,Y의 결합확률밀도함수가 다음과 같을 때 $f_{Y|X}(y|x)$ 는?

$$f(x, y) = \begin{cases} 2, & 0 < x < y < 1 \\ 0, 그 밖에 \end{cases}$$

두 확률 변수 X, Y의 결합확률밀도함수가 다음과 같을 때 $f_{Y|X}(y|x)$ 는?

조건부 기댓값

- 조건부 기댓값
 - 이산형 확률변수:

$$E(Y|X=x) = \sum_{y=0}^{\infty} y f_{Y|X}(y|x)$$

• 연속형 확률변수

$$E(Y|X=x) = \int_{-\infty}^{\infty} y f_{Y|X}(y|x) dy$$

조건부 기댓값

예 조건부 확률분포 $f_{Y|X}(y|x)$ 가 다음과 같을 때 E(Y|X=x)는?

조건부 확률분포 $f_{Y|X}(y|x)$ 가 다음과 같을 때 E(Y|X=x) = ?

- 조건부 기댓값의 성질
 - $Var[E(Y|X)] \leq Var(Y)$

- 조건부 기댓값의 성질
 - E[E(Y|X)] = E(Y)
 - E(aY + b|X = x) = aE(Y|X = x) + b

예
$$f_{Y|X} = 2 \cdot \frac{y}{x^2} I_{(0,x)}(y), 0 < x < 1$$
 일 때
$$E(Y^2 - \frac{4}{3}XY + \frac{4}{9}X^2 | X = x) = ?$$

04

독립성

독립성의 정의

- 두 사건의 독립
 - $P(A|B) = P(A) \Leftrightarrow P(A \cap B) = P(A)P(B)$

독립성의 정의

- 확률변수간 독립
 - $f(x,y) = f_{Y|X}(y|x)f_X(x)$
 - $f_{Y|X}(y|x)$ 가 x에 의존하지 않음 $\Rightarrow f_{Y|X}(y|x) = f_Y(y)$

$$\Rightarrow f(x,y) = f_X(x)f_Y(y)$$

독립성의 정의

- 두 확률변수의 독립
 - $f(x,y) = f_X(x)f_Y(y)$
 - $F(x,y) = F_X(x)F_Y(y)$

| 독립성과 공분산

- 독립된 확률변수의 성질
 - $X, Y \subseteq \mathbb{I} \Rightarrow Cov(X, Y) = 0, Corr(X, Y) = 0$
 - $Var(X \pm Y) = Var(X) + Var(Y)$

독립성과 공분산

증명
$$X, Y$$
 독립 $\Rightarrow Cov(X, Y) = 0$

독립성과 공분산

결합분포가 다음과 같을 때 X,Y가 독립인지 살펴보고 Cov(X,Y)를 구하라.

Y	-1	0	1
0	0	1/3	0
1	1/3	0	1/3

독립성과 공분산

예 결합분포가 다음과 같을 때 X,Y가 독립인지 살펴보고 Cov(X,Y)를 구하라.

독립성과 적률생성함수

- 독립성과 적률생성함수
 - $X, Y = \exists \exists M_{X,Y}(t_1, t_2) = M_X(t_1)M_Y(t_2)$

다변량 확률분포와 독립성

- 독립성
 - X_1, X_2, \cdots, X_n 독립

$$-f(x_1, x_2, \cdots, x_n) = f(x_1)f(x_2)\cdots f(x_n)$$

$$-Var(X_1 + X_2 \cdots + X_n) = \sum_{i=1}^n Var(X_i)$$

□ 결합 확률질량함수 :

$$f(x_i, y_j) = P(X = x_i, Y = y_j)$$

□ 결합 확률밀도함수 :

$$F(x,y) = P(X \le x, Y \le y) = \int_{-\infty}^{y} \int_{-\infty}^{x} f(s,t) ds dt$$

$$f(x,y) = \frac{\partial^2}{\partial x \partial y} F(x,y)$$

정리하기

□ 두 확률변수가 같이 변하는 정도의 측도 : 공분산과 상관계수

$$Cov(X,Y) = E[(X - E(X))(Y - E(Y))]$$

$$Corr(X,Y) = \frac{Cov(X,Y)}{\sqrt{Var(X)}\sqrt{Var(Y)}}$$

■ X = x의 조건하에서 Y의 조건부 확률질량(밀도)함수 :

$$f_{Y|X}(Y = y|X = x) = \frac{f(x,y)}{f_X(x)}$$

□ 두 확률변수의 독립 :

$$f(x,y) = f_X(x)f_Y(y)$$

