Булевы функции

Булева функция от n переменных есть произвольное отображение вида

$$f: \{0,1\}^n \to \{0,1\}$$
.

$$y = f(x_1, ..., x_n)$$

x_1	x_2	V	∧(⋅,&)	\rightarrow (\supset)	~	⊕	I	↓
0	0	0	0	1	1	0	1	1
0	1	1	0	1	0	1	1	0
1	0	1	0	0	0	1	1	0
1	1	1	1	1	1	0	0	0

- 1)Дизъюнкция
- 2) Конъюнкция
- 3) Импликация
- 4) Эквивалентность
- 5) Сумма по модулю 2 (строгая дизъюнкция)
- 6) Штрих Шеффера
- 7) Стрелка Пирса

$$\int_{\mathbb{R}^{2}} \int_{\mathbb{R}^{2}} \int_{$$

Equation Jie There:

He appoint when we will a K_1, K_2, K_3 . $(K_1 \vee K_2)(K_1 \vee K_3) = K_1 K_3 \vee K_1 \vee K_2 K_3 \vee K_4 K_5 = K_1 \vee K_2 K_3 \times K_1 \vee K_2 K_3 \vee K_4 K_5 = K_1 \vee K_2 K_3 \times K_1 \times K_2 \times K_3 \vee K_4 \times K_5 \times$

g = (0000 0001)

SIDAHO M JUN-10 4+194?

Kaq	CCH	2	CMA

ъ	$\tau_{\rm e}$	5	М	L
_	_	+	1	+
+	+	_	+	_

™)	> (a! 0! a) = 4 => He cody
1	g (0;0;0) = 0 => coop.0

P	KCA	UL M	100	M-M
X,	<u>ک</u> و 0	X,	£	3
0	0	0	1	0
0		1	О	٥
0	1		0	0
D	,	ı	١	0
ı	٥	٥	0	0
١	D	1	١.	0
ì	ι	0	п	0
١	ı	١	b	1

\$ (0;0) 1)=0, 8 (1;1)=1 + } => HE COLLOBB-R

M) { | 0;0;0) > f (0;0;1) => 24-4 value gamentar B- MONDHHOUR, M. M. g (i) &g(i+1), i= 0,6

Merankuna Joruna

f(0; 0; 0)=1= 40 => 100=1 f(1;9;0)=0, @Q,= | @Q,=0=7a,=1 + (0;1;0)=0,0 @ OLz= 1 @0z=0=7 00z=1 + (e; 0; 1) = a, ⊕a, = 1 @ a, = 0 → a3=1 f (1;1;0)= 00 @ Q, @Q≥@ Q,Q== - | @ | @ | @ a,a = | =7 a,a = D + (0!1!1) = 0" @ 0" @ 0" @ 0" 0" @ 0" 10" = = 1 @ 1 @ 1 @ 0 a a a = 1 = 2 a a a 3 = 0 1 (1;0;1) = a @ 4, 6 a @ Q, a, a = | + | + | + | + | a,a,=| = | = | 0,a,=0 ⊕ 0'0' @ a'0'0"= = 0 @ a, a, a, a = 0 =7 a, a, a, a, a, =0

{ | X, ; Xz ; Xy) = | ⊕ X, ⊕ X, ⊕ Xz a. a. a. a.

TLOVINER HE CORESMENTED LIBORING BERNING (M.R. O. 192 = 0, 0, 03=0 " M-3) => NUMBELLIAR

(Попини жегаркина

g(0; =; b) = 0 = 40 => a0=0 @ (1; 0; 0)= a ⊕ Q, = 0 ⊕ Q, = 0 => a, = 0 \$ (0;1;0)= 00 @ OLE D BAZ=0=7 02=0 Q (0;0;1) = 0, 00 = 0 @ 0, =0 \$ =3=0 9 (1;1;0)= 00 ⊕ a, ⊕a, ⊕ a,a = = 0 @ 0 @ 0 @ 0,0 =0 =7 0,0,=0 0 (0;1;1)= 0. @ 02@ 0.3 @ 0203= $= 0 \otimes 0 \otimes 0 \oplus 0^{2} \otimes^{2} = 0 \Longrightarrow 0^{2} \otimes^{3} = 0$ 8 (1:0:1) = 000 4, 00 00,00,0 =0 0000@a,a,=0 => 0,a,=0 8 (1;1;1)= a. @ a. @ a. @ a. @ a. a. pa. a. @ ⊕ 0,03 @ 0,0,02 = =0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ,0 √ 0 √ 2 -3 = $= 0 \oplus a_1 a_2 a_3 = 1 = 7 \oplus a_1 a_2 a_3 = 1$

> 2 (x, ; x2; x3) = x1 x2 x3 alany Na

Полина содартии процведине=1 C-HE AWARDE-7

Diem: Karygon emonter marking uneen some in ogen "-"=> MH-to DP-Mus \$ 5.91 Ms cooppin wernight the & Strong Kidece Boems, m.c. 10 meopoure Boened Jun-80 17.31 nonto.

Dunem N16

Onpepenumi ronkomy cuementh + normaces konstonkindo a ompayame.

			111
X2	X3	ナ	8
0	0	0	
0	١.	1	l١
1	0	1	1 1
1	1	0	ု
0	0	1	١ĭ
0	1	٥	1 1
1	0	0	1
1	1	1	0
		g = (1 X2 X3	g= (1110 t x x

	T _o	т,	S	М	L
Ŧ	+	+	+	-	+
8	_	-	-	_	-

(T., T.	f (0,0,0)-0 coxp. 0	(
	f(1,1,1)=1 coxp.1	
	9(0,0,0) = 1 Ne cosp. 0	
<u>s</u>	$g(1,1,1) = 0 \text{ We coxp } 1$ $f(0,0,0) \neq f(1,1,1)$ $f(0,0,1) \neq f(1,1,0)$ $f(0,1,0) \neq f(1,0,1)$ $f(0,1,1) \neq f(1,0,0)$	
	$g(0,0,0) \neq g(1,1,0) => ue$ caughoù steun	ioy

$$\frac{g(0,0,0) = a_0 = 1 = 2a_0 = 1}{g(1,0,0) = a_0 \oplus a_1 = 1 \oplus a_1 = 1 \oplus a_2 = 1 = 2a_1 = 0}$$

$$\frac{g(0,1,0) = a_0 \oplus a_1 = 1 \oplus a_2 = 1 = 2a_2 = 0}{a_3 = 0}$$

$$\frac{g(0,1,0) = a_0 \oplus a_1 \oplus a_2 \oplus a_1 a_2 = 1 \oplus 0 \oplus 0 \oplus a_1 a_2 = 0}{a_3 = 0}$$

$$\frac{g(1,1,0) = a_0 \oplus a_1 \oplus a_2 \oplus a_1 a_2 = 1 \oplus 0 \oplus 0 \oplus a_1 a_2 = 0}{a_1 a_2 = 1 \oplus 0 \oplus 0 \oplus a_1 a_2 = 0}$$

$$\frac{g(0,1,1) = a_0 \oplus a_2 \oplus a_3 \oplus a_2 \oplus a_2 = 1 \oplus 0 \oplus 0 \oplus a_1 a_2 = 0}{a_1 a_2 = 1 \oplus a_1 a_2 = 1 \oplus a_1 a_2 = 0}$$

$$\frac{g(1,0,1) = a_0 \oplus a_1 \oplus a_2 \oplus a_3 \oplus a_2 \oplus a_3 \oplus a_2 = 1}{a_1 a_2 = 0}$$

$$\frac{g(1,1,1) = a_0 \oplus a_1 \oplus a_2 \oplus a_3 \oplus a_2 \oplus a_3 \oplus a_1 \oplus a_2 \oplus a_2 \oplus a_3 \oplus a_2 \oplus a_3 \oplus a_$$

Thakum offagon, un-les op-vsui 2+184 nonno no m. stocma.

• Ompayame:
$$\frac{1}{8}(x,x,x)$$
 | $\frac{1}{8}(x,x,x)$ | $\frac{1}{8}(x,x,x)$ | $\frac{1}{8}(x,x,x)$