Syntactic Theory I Assignment 3

Hayley Ross

September 30, 2020

I discussed this assignment with...

1 Examples and Glosses

Consider the following sentence:

- (1) This is a sentence
- (2) a. *Sentence a

b.#Sentence b

c. Sentence c

Shiny glosses! I can refer to example (1) like this.

(3) Fische, die Fische fischen, fischen fish.PL.NOM/ACC which.PL.NOM/ACC fish.PL.NOM/ACC fish.1/3.PL.PRES fish.1/3.PL.PRES

Fische, die Fische fischen.
fish.PL.NOM/ACC which.PL.NOM/ACC fish.PL.NOM/ACC fish.1/3.PL.PRES

'Fish which fish fish fish which fish fish.'

2 Trees

3 IPA

[neta]

LANGUAGE, Loniu INVENTORY, p,pw,t,tf,k,s,h,i,u,m,mw,n,,n,n,e,o,l, ϵ ,o,r,a,w,j PATTERN, Trigger, /a/ \rightarrow [ϵ] / _X[o, o] (in nouns) CLASS, p,t,tf,s,l,r,j

4 Tableaux and Rules

/cat-z/	Agree	IDENT-IO(voice)	*Ç
[cats]		*	
[cadz]		*	*!
[catz]	*!	*	*
[cads]	*!	*	*

VOWEL LOWERING BEFORE UVULARS. Lower high vowels to mid vowels before uvular consonants.

$$\begin{bmatrix} +\mathrm{syl} \end{bmatrix} \to \begin{bmatrix} -\mathrm{high} \end{bmatrix} / \underline{\qquad} \begin{bmatrix} +\mathrm{cons} \\ +\mathrm{dorsal} \\ -\mathrm{high} \end{bmatrix}$$

5 Semantics

Semantic rule: Exclusive Disjunction. If ϕ and ψ are formulas, then $\llbracket \phi \text{ XOR } \psi \rrbracket^I = 1$ if either $\llbracket \phi \rrbracket^I = 1$ and $\llbracket \psi \rrbracket^I = 0$, or $\llbracket \phi \rrbracket^I = 0$ and $\llbracket \psi \rrbracket^I = 1$. Otherwise $\llbracket \phi \text{ XOR } \psi \rrbracket^I = 0$.

Standalone equation:

$$male := \{ \langle Agnetha, 0 \rangle, \langle Bj\ddot{o}rn, 1 \rangle, \langle Benny, 1 \rangle, \langle Frida, 0 \rangle \}$$

Truth table:

P	Q	$[P \lor Q]$
1	1	1
1	0	1
0	1	1
0	0	0

Multiple aligned equations:

$$S_{1} = \{\{\varnothing\}, \{A\}, A\}$$
 $S_{6} = \varnothing$ $S_{7} = \{\varnothing\}$ $S_{3} = \{A\}$ $S_{8} = \{\{\varnothing\}\}$ $S_{9} = \{\varnothing, \{\varnothing\}\}$ $S_{5} = \{\{A\}, A\}$