

1 1. (Amended) A method for measuring registration errors and chromatic
2 aberration in live video signals, said live video signals being represented as least first and
3 second color signals and said registration errors and chromatic aberration appearing as
4 misaligned edges of the first and second color signals in an image reproduced from the live
5 video signals, the method comprising the steps of:

6 a) selecting a first set of N samples of the first color signal and a second set of
7 N samples of the second color signal, where N is an integer greater than 2;

8 b) analyzing the first and second sets of N samples to determine if the
9 respective first and second color signals are at proper relative levels to obtain valid
10 information on misaligned transitions in the image;

11 c) if the first and second color signals are at proper levels then analyzing the
12 set of samples of the first color signal to determine whether the first set of samples contains
13 M samples representing an edge in the image, where M is an integer less than N, and storing
14 the first and second sets of samples if the first set of samples is determined to contain the M
15 samples representing the edge; and

16 d) comparing the stored first set of samples to the stored second set of samples
17 to determine a displacement between the M samples in the first set of samples with M
18 corresponding samples in the second set of samples.

1 2. (Amended) A method according to claim 1, wherein step b) further
2 includes the steps of:

3 calculating a measure of color balance between the first set of samples and the
4 second set of samples; and

5 discarding the first and second sets of samples if the measure of color balance
6 has a value which is not within a predetermined range.

1 4. (Amended) A method according to claim 1, wherein M equals 2 and step c)
2 includes the steps of:

A5

3 calculating difference values between successive ones of the samples in the
4 first set of samples;

5 comparing each of the calculated difference values to an edge threshold value;
6 and

7 indicating that the set of samples represents an edge if any of the calculated
8 difference values is greater than the edge threshold value.

1 5. (Amended) A method according to claim 1, wherein step d) includes
2 the steps of:

3 A 5
4 performing a cross correlation between the stored first set of samples and the
5 stored second set of samples to identify a coarse displacement between respective edges in
6 the first and second sets of samples to a nearest intersample distance;

6 selecting the M samples from the stored first set of samples and M
7 corresponding samples from the stored second set of samples, wherein each of the samples
8 from the second set is displaced by the identified displacement from the respective sample in
9 the first set;

10 interpolating S samples between successive ones of the M samples of each of
11 the first and second sets of samples, where S is an integer;

12 performing a cross correlation between the respective M original and
13 interpolated samples of the first and second sets of samples to identify a fine displacement
14 between the first and second sets of samples which is less than one intersample distance of
15 the original samples from a central sample of the M samples of the first set of samples; and

16 combining the coarse displacement and the fine displacement to obtain the
17 measure of the registration errors and chromatic aberration errors in the live video signals.

1 6. (Amended) A method according to claim 1, wherein step d) includes
2 the steps of:

3 performing a cross correlation between the stored first set of samples and the
4 stored second set of samples to identify a coarse displacement between respective edges in
5 the first and second sets of samples to a nearest intersample distance and storing a correlation
6 value at each displacement considered in the cross correlation;

7 selecting at least three of the stored correlation values including the correlation
8 value corresponding to the identified displacement:

9 fitting a parabolic curve to the selected correlation values:

10 determining a maximum point of the parabolic curve as a fine displacement;
11 and

12 combining the coarse displacement and the fine displacement to obtain the
 13 measure of the registration errors and chromatic aberration errors in the live video signals.

1 7. (Amended) A method according to claim 1, wherein step d) includes
2 the steps of:

generating respective measures of sum of absolute difference between the M samples of the first stored set of samples and M samples of the second stored set of samples for respectively different displacements between the first stored set of samples and the second stored set of samples;

7 identifying a coarse displacement as the sum of absolute difference measures
8 which is less than or equal to any other one of the sum of absolute difference measures:

9 selecting the M samples from the stored first set of samples and M
10 corresponding samples from the stored second set of samples, wherein each of the samples
11 from the second set is displaced by the coarse displacement from the respective sample in the
12 first set:

13 interpolating S samples between successive ones of the M samples of each of
14 the first and second sets of samples, where S is an integer:

15 performing a cross correlation between the respective M original and S
16 interpolated samples of the first and second sets of samples to identify a fine displacement
17 between the first and second sets of samples which is less than one intersample distance of
18 the original samples from a central sample of the M samples of the first set of samples; and

19 combining the coarse displacement and the fine displacement to obtain the
20 measure of the registration errors and chromatic aberration errors in the live video signals.

1 8. (Amended) A method according to claim 1, wherein step d) includes
2 the steps of:

3 generating respective measures of sum of absolute difference between the M
4 samples of the first stored set of samples and M samples of the second stored set of samples
5 for respectively different displacements between the first stored set of samples and the second
6 stored set of samples;

7 identifying a coarse displacement as the sum of absolute difference measures
8 which is less than or equal to any other one of the sum of absolute difference measures;

9 selecting at least three of the measures of sum of absolute difference including
10 the measure corresponding to the coarse displacement;

11 fitting a parabolic curve to the selected measures;

12 determining a minimum point of the parabolic curve as a fractional intersample
13 distance to be combined with the identified displacement to produce the measured
14 displacement value.

1 9. (Amended) Apparatus for measuring registration errors and chromatic
2 aberration in live video signals, said live video signals being represented as least first and
3 second color signals and said registration errors and chromatic aberration appearing as
4 misaligned edges of the first and second color signals in an image reproduced from the live
5 video signals, the method comprising:

6 means for selecting a first set of N samples of the first color signal and a
7 second set of N samples of the second color signal, where N is an integer greater than 2;

8 means for analyzing the first and second sets of N samples to determine if the
9 respective first and second color signals are at proper relative levels to obtain valid
10 information on misaligned transitions in the image;

11 a video memory;

12 means for analyzing the set of samples of the first color signal to determine
13 whether the first set of samples contains M samples representing an edge in the image, where
14 M is an integer less than N, and storing the first and second sets of samples in the video
15 memory if the first set of samples is determined to contain the M samples representing the
16 edge; and

17 means for comparing the stored first set of samples to the stored second set of
18 samples to determine a displacement between the M samples in the first set of samples with
19 M corresponding samples in the second set of samples.

1 10. (Amended) Apparatus according to claim 9, means for analyzing the
2 first and second sets of N samples to determine if the respective first and second color signals
3 are at proper relative levels to obtain valid information on misaligned transitions in the image
4 further includes:

5 means for calculating a measure of color balance between the first set of
6 samples and the second set of samples; and

7 means for inhibiting the storage of the first and second sets of samples into the
8 memory if the measure of color balance has a value which is not within a predetermined
9 range.

1 13. (Amended) A method according to claim 9, wherein the means for
2 comparing includes:

3 first correlation means for performing a cross correlation between the stored
4 first set of samples and the stored second set of samples to identify a coarse displacement
5 between respective edges in the first and second sets of samples to a nearest intersample
6 distance;

7 means for selecting the M samples from the stored first set of samples and M
8 corresponding samples from the stored second set of samples, wherein each of the samples
9 from the second set is displaced by the identified displacement from the respective sample in
10 the first set;

11 means for interpolating S samples between successive ones of the M samples
12 of each of the first and second sets of samples, where S is an integer;

13 second correlation means for performing a cross correlation between the
14 respective M original and S interpolated samples of the first and second sets of samples to
15 identify a fine displacement between the first and second sets of samples which is less than
16 one intersample distance of the original samples from a central sample of the M samples of
17 the first set of samples; and

18 means for combining the coarse displacement and the fine displacement to
19 obtain the measure of the registration errors and chromatic aberration errors in the live video
20 signals.

1 14. (Amended) Apparatus according to claim 9, wherein the means for
2 comparing includes:

3 means for performing a cross correlation between the stored first set of
4 samples and the stored second set of samples to identify a coarse displacement between
5 respective edges in the first and second sets of samples to a nearest intersample distance and
6 storing a correlation value at each displacement considered in the cross correlation;

7 means for selecting at least three of the stored correlation values including the
8 correlation value corresponding to the identified displacement;

9 means for fitting a parabolic curve to the selected correlation values;

10 means for determining a maximum point of the parabolic curve as a fine
11 displacement; and

12 means for combining the coarse displacement and the fine displacement to
13 obtain the measure of the registration errors and chromatic aberration errors in the live video
14 signals.

1 15. (Amended) Apparatus according to claim 9, wherein the means for
2 comparing includes:

3 means for generating respective measures of sum of absolute difference
4 between the M samples of the first stored set of samples and M samples of the second stored
5 set of samples for respectively different displacements between the first stored set of samples
6 and the second stored set of samples;

7 means for identifying a coarse displacement as the sum of absolute difference
8 measures which is less than or equal to any other one of the sum of absolute difference
9 measures;

10 means for selecting the M samples from the stored first set of samples and M
11 corresponding samples from the stored second set of samples, wherein each of the samples
12 from the second set is displaced by the coarse displacement from the respective sample in the
13 first set;

14 means for interpolating S samples between successive ones of the M samples
15 of each of the first and second sets of samples, where S is an integer;

16 means for performing a cross correlation between the M original and S
17 interpolated samples of the first and second sets of samples, respectively, to identify a fine
18 displacement between the first and second sets of samples which is less than one intersample
19 distance of the original samples from a central sample of the M samples of the first set of
20 samples; and