

- Ocena systemu wyszukiwania to miara tego, jak bardzo system spełnia potrzeby informacyjne użytkowników
 - ■Problem stanowi inna ocena jakości tego samego zbioru wynikowego przez różnych użytkowników
 - Aby rozwiązać problem wprowadzono różne miary jakości wyszukanego zbioru skorelowane z preferencjami różnych grup użytkowników
- Aby oceniać systemy wyszukiwania (indeksowania) opracowano testowe kolekcje referencyjne bazujące na założeniach wynikających z badań Cranfielda (1958-1966)
- ■Pozwalają one porównywać różne metody rankingu na tych samych zbiorach pytań i dokumentów

Ocena wyszukiwania

- Kolekcja referencyjna składa się z:
 - Zbioru D preselekcjonowanych dokumentów,
 - Zbioru / opisów informacji używanej do testowania,
 - ■Zbioru ocen istotności związanych z każdą parą $[i_m,d_j]$ gdzie $i_m \in I$, $d_j \in D$.
- Ocena istotności dokumentu ma wartość 0 gdy dokument d_j jest nieistotny dla i_m i 1 w przeciwnym przypadku
- Taka ocena dokonywana jest przez specjalistów

- Dane są:
 - I: żądanie informacji,
 - R: zbiór dokumentów istotnych dla *I,*
 - A: zbiór odpowiedzi dla I, wygenerowanych przez system wyszukiwania IR,
 - $\blacksquare R \cap A$: iloczyn zbiorów R i A.

Kompletność jest częścią istotnych dokumentów (zbiór R), które zostały wyszukane:

$$Recall = \frac{|R \cap A|}{|R|}$$

Dokładność jest częścią wyszukanych dokumentów (zbiór A), które są istotne:

$$Precision = \frac{|R \cap A|}{|A|}$$

- Definicja dokładności i kompletności zakłada, że wszystkie dokumenty w zbiorze A są testowane
- Użytkownik widzi uszeregowany zbiór dokumentów i sprawdza je od początku, więc dokładność i kompletność zmieniają się podczas przeglądania zbioru A.

- Wskazane jest wykreślenie zależności dokładności (precision) od kompletności (recall)
- Niech R_{q1} będzie zbiorem dokumentów istotnych dla zapytania q_1 :

$$R_{q1} = \{d_3, d_5, d_9, d_{25}, d_{39}, d_{44}, d_{56}, d_{71}, d_{89}, d_{123}\}$$

 Algorytm wyszukiwania daje zbiór odpowiedzi (dokumeny istotne oznaczone kółkiem)

```
01. d_{123} \bullet 06. d_{9} \bullet 11. d_{38}
02. d_{84} 07. d_{511} 12. d_{48}
03. d_{56} \bullet 08. d_{129} 13. d_{250}
04. d_{6} 09. d_{187} 14. d_{113}
05. d_{8} 10. d_{25} \bullet 15. d_{3} \bullet
```

Wykres dokładności w funkcji kompletności dla kolejnych dokumentów odpowiedzi

Recall	Precision
0	100
10	100
20	66.6
30	50
40	40
50	33.3
60	0
70	0
80	0
90	0
100	0

Rozważmy zapytanie q_2 dla którego zbiór istotnych odpowiedzi jest dany jako:

$$R_{q2} = \{d_3, d_{56}, d_{129}\}$$

Algorytm IR przetwarza zapytanie i zwraca następujący ranking:

01.
$$d_{425}$$
 06. d_{615} 11. d_{193} 02. d_{87} 07. d_{512} 12. d_{715} 03. $d_{56} \bullet$ 08. $d_{129} \bullet$ 13. d_{810} 04. d_{32} 09. d_4 14. d_5 05. d_{124} 10. d_{130} 15. $d_3 \bullet$

Pierwszy istotny dokument d_{56} zapewnia dokładność i kompletność 33,3%, drugi d_{129} daje kompletność 66,6% i dokładność 25%, trzeci d_3 zapewnia 100% kompletności z dokładnością 20%

Dla standardowych poziomów kompletności $r_j = \{0,1,...,10\}$ dokładność jest interpolowana następująco

$$P(r_j) = \max_{\forall r \mid r \ge r_j} P(r)$$

■ Ta zasada interpolacji umożliwia zbudowanie dla ostatniego przykładu następującego wykresu Precision(Recall)

	Recall	Precision
	0	33.3
١	10	33.3
١	20	33.3
١	30	33.3
۱	40	25
١	50	25
١	60	25
١	70	20
١	80	20
۱	90	20
	100	20
-		

Zazwyczaj ocenia się średnią jakość wyszukiwania dla zbioru N_a pytań testujących

$$\overline{P(r_j)} = \sum_{i=1}^{N_q} \frac{P_i(r_j)}{N_q}$$

gdzie:

- $\overline{P(r_j)}$ średnia dokładność na poziomie kompletności r_j ,
- $\blacksquare P_i(r_j)$ dokładność odpowiedzi na pytanie q_i z poziomiem kompletności r_i

■Wykres *Precision*(*Recall*) uśredniony dla dwóch zapytań q₁i q₂:

■Uśrednione przebiegi *Precision*(*Recall*) dla 2 różnych algorytmów wyszukiwania:

- Dokładność i kompletność są często stosowane do oceny jakości wyszukiwania przez algorytmy IR
- Poprawna estymacja kompletności zapytania wymaga znajomości wszystkich dokumentów kolekcji testowej
- Miara Precision-Recall nie jest skalarna
- Jakość algorytmu IR jest mierzona na zbiorze zapytań w trybie wsadowym
- Dla systemów IR wymagających słabego uporządkowania dokumentów miara Presision-Recall może nie być najlepsza

Miary P@5 i P@10

- Użytkownicy wyszukiwarek cenią przede wszystkim dużo istotnych dokumentów na początku rankingu
- Miary P@5 i P@10 wyznaczają dokładność odpowiednio dla 5 i 10 pierwszych dokumentów; pozwalają ocenić czy użytkownicy uzyskują istotne dokumenty na początku rankingu
- Rozpatrujemy listę dokumentów dla przykładowego pytania q_1 :

01 . <i>d</i> ₁₂₃ •	06 . d ₉ •	11. d ₃₈
02. d_{84}	07. d ₅₁₁	12. d ₄₈
03 . <i>d</i> ₅₆ •	08. d_{129}	13. d ₂₅₀
04. d_6	09. d_{187}	14. d_{113}
05. d ₈	10. dos •	15. d3 •

MAP: Mean average precision

- ■Dla tego pytania *P@5* = 40% i *P@10* = 40%
- ■P@5 i P@10 można uśredniać w zbiorze 100 zapytań
- ■MAP to średnia dokładność z wykresu *Precision-Recall*, przy standardowym zestawie kompletności
- ■Dla zapytania q_1 :

$$MAP_1 = \frac{1 + 0.66 + 0.5 + 0.4 + 0.33 + 0 + 0 + 0 + 0 + 0}{10} = 0.28$$

R-precision

- R-dokładność to dokładność wyznaczona na r-tej pozycji w rankingu odpowiedzi
- ■Dla pytania q₁ są cztery dokumenty istotne wśród pierwszych 10-ciu zwróconych dokumentów więc Rdokładność wynosi 4/10=0,4
- R-dokładność może być także uśredniana w zbiorze zapytań
- ■Może być stosowana do porównywania 2 algorytmów wyszukiwania dla każdego zapytania

 - $RP_{A/B}(i) = RP_A(i) RP_B(i)$ $RP_A(i) \text{n-uukiauiiosu aiguiyiiiu} \text{ A uia i-tego}$ zapytania
 - $\blacksquare RP_B(i)$ –R-dokładność algorytmu B dla i-tego zapytania

Histogram dokładności

Przykładowy histogram porównania algorytmów $RP_{A/B}(i)$ dla 10 różnych zapytań

Algorytm A jest lepszy w 8 przypadkach na 10

MRR: Mean Reciprocal Rank

- ■MRR dobra miara jakości wyszukiwania gdy interesuje nas pierwsza poprawna odpowiedź np. adresy URL, strony główne w sieci
- ■Jeżeli przyjąć:
 - $\blacksquare R_i$: ranking odpowiedzi dla zapytania q_i
 - $S_{correct}(R_i)$: pozycja pierwszej poprawnej odpowiedzi w R_i
 - $\square S_h$: próg pozycji rankingu,
- to odwrotna ranga $RR(R_i)$ dla pytania q_i jest wyrażona jakc

$$RR(\mathcal{R}_i) = \begin{cases} \frac{1}{S_{correct}(\mathcal{R}_i)} & \text{if } S_{correct}(\mathcal{R}_i) \leq S_h \\ 0 & \text{otherwise} \end{cases}$$

MRR: Mean Reciprocal Rank

• Średnia odwrotna ranga (MRR) dla zbioru Q z N_q zapytań:

$$MRR(Q) = \sum_{i}^{N_q} RR(\mathcal{R}_i)$$

Miara E

Łączy dokładność i kompletność w jednym wskaźniku skalarnym uwzględniającym ich proporcje:

$$E(j) = 1 - \frac{1 + b^2}{\frac{b^2}{r(j)} + \frac{1}{P(j)}}$$

- gdzie
 - r(j) kompletność na j-tej pozycji w rankingu,
 - P(j) dokładność na j-tej pozycji w rankingu,
 - b≥0 ustalony parametr przewagi kompletności nad dokładnością; b=0 $\bigcirc E(j) = 1-P(j)$ oraz b $\bigcirc E(j) = 1-r(j)$
 - $\blacksquare E(j)$ E-metryka na j-tej pozycji w rankingu.

Miara F (średnia harmoniczna)

■ Dla b=1 miara E staje się miarą średniej harmonicznej F:

$$F(j) = \frac{2}{\frac{1}{r(j)} + \frac{1}{P(j)}}$$

- Funkcja *F* ma wartości w zakresie [0,1]; przyjmuje wartość 0 gdy żadne istotne dokumenty nie zostały znalezione lub wartość 1 gdy wszystkie dokumenty odpowiedzi są istotne
- Duże wartości F wiążą się z dużą dokładnością i kompletnością

- Dokładność i kompletność zakładają, że zbiór istotnych dokumentów zwróconych w odpowiedzi na zapytanie nie zależy od użytkowników
- Różni użytkownicy mogą różnie rozumieć istotność dokumentów

Miary zorientowane na użytkownika

- K: zpior dokumentow znanych uzytkownikowi
- ■K ∩ R ∩ A: zbiór wyszukanych istotnych dokumentów znanych użytkownikowi
- 【R ∩ A) –K: zbiór wyszukanych istotnych dokumentów nieznanych użytkownikowi

Miary zorientowane na użytkownika

■Współczynnik pokrycia – frakcja dokumentów znanych i istotnych w zbiorze odpowiedzi

$$coverage = \frac{|K \cap R \cap A|}{|K \cap R|}$$

■Współczynnik nowości – frakcja istotnych dokumentów w zbiorze odpowiedzi nieznanych użytkownikowi

$$novelty = \frac{|(R \cap A) - K|}{|R \cap A|}$$

Wysokie pokrycie, wskazuje że system IR znalazł większość dokumentów oczekiwanych przez użytkownika

Wysoka nowość oznacza znalezienie wielu nowych, istotnych dokumentów

- Dokładność i kompletność pozwalają jedynie na binarną ocenę istotności
- Nie ma rozróżnienia między bardzo i średnio ważnymi dokumentami
- Zredukowane skumulowane wzmocnienie DCG jest miarą uwzględniającą stopień istotności dokumentów
 - Bardzo istotne dokumenty są preferowane na początku rankingu,
 - Istotne dokumenty na końcu rankingu są mniej ważne
- Dla kilkunastu dokumentów d[i] odpowiedzi na zapytanie q_j tworzy się wektor wzmocnienia $G_j[i]$ odpowiadajcy przyjętej skali istotności dokumentów np. 0-3.
- Wzmocnienie 0 mają dokumenty nieistotne.

DCG — Discounted Cumulated Gain

Wektor skumulowany CG_j odpowiada sumowaniu wzmocnień w kolejności rankingu:

$$CG_{j}[i] = \left\{egin{array}{ll} G_{j}[1] & ext{if } i=1; \ \\ G_{j}[i] + CG_{j}[i-1] & ext{otherwise} \end{array}
ight.$$

- Współczynnik dyskonta stanowi logarytm pozycji rankingu np. $log_2(i)$,
- Dzieląc elementy wektora skumulowanego CG_j[i] przez odpowiednie współczynniki dyskonta otrzymuje się współczynnik DCG zdyskontowanego skumulowanego wzmocnienia.

DCG — Discounted Cumulated Gain

$$DCG_j[i] = \begin{cases} G_j[1] & \text{if } i = 1; \\ \frac{G_j[i]}{\log_2 i} + DCG_j[i-1] & \text{otherwise} \end{cases}$$

Dla przykładowych zapytań q_1 i q_2 uzyskuje się wektory G_1 , G_2 oraz DCG_1 i DCG_2 .

$$G_1 = (1,0,1,0,0,3,0,0,0,2,0,0,0,0,3)$$

 $G_2 = (0,0,2,0,0,0,0,1,0,0,0,0,0,3)$
 $DCG_1 = (1.0,1.0,1.6,1.6,1.6,2.8,2.8,2.8,2.8,3.4,3.4,3.4,3.4,3.4,4.2)$
 $DCG_2 = (0.0,0.0,1.3,1.3,1.3,1.3,1.3,1.6,1.6,1.6,1.6,1.6,1.6,1.6,2.4)$

Dyskontowane skumulowane wzmocnienia są znacznie mniej wrażliwe na występowanie istotnych dokumentów pod koniec rankingu

DCG — Discounted Cumulated Gain

Funkcje $\overline{CG}[i]$ i $\overline{DCG}[i]$ uśrednione w zbiorze N_q zapytań:

$$\overline{CG}[i] = \sum_{j=1}^{N_q} \frac{CG_j[i]}{N_q}; \qquad \overline{DCG}[i] = \sum_{j=1}^{N_q} \frac{DCG_j[i]}{N_q}$$

DCG-znormalizowane

- Dokładność i kompletność są obliczane względem zbioru istotnych dokumentów
- CG i DCG nie mają odniesienia do żadnej konkretnej bazy, co może utrudniać użycie ich do porównania metod wyszukiwania
- Niech *ICG* i *IDCG* będą idealnymi odpowiednikami *CG* i *DCG* po wysortowaniu istotności dokumentów w porządku malejącym
- Wprowadza się znormalizowane wartości CG i DCG :

$$NCG[i] = \frac{\overline{CG}[i]}{\overline{ICG}[i]}; \qquad NDCG[i] = \frac{\overline{DCG}[i]}{\overline{IDCG}[i]}$$

- Pole pod krzywymi *NCG* i *NDCG* reprezentuje jakość algorytmu wyszukiwania z rankingiem
- Większe pole oznacza lepszy algorytm
- Kumulowane wzmocnienie zapewnia skalarną miarę jakości wyszukiwania na dowolnej pozycji rankingu
- Zdyskontowane wzmocnienie pozwala na kontrolę wpływu ważnych dokumentów pod koniec rankingu na na ocenę jakości algorytmu

- Paradygmat Cranfielda zakłada ocenę wszystkich dokumentów testowych ze względu na każde zapytanie
- To może być spełnione tylko dla niewielkich zbiorów
- Dla dużych zbiorów stosuje się metodę grupowania (pooling)
 - Składa ona do puli tylko najtrafniejsze wyniki uzyskane przez różne algorytmy wyszukiwania,
 - Następnie dokumenty z puli są oceniane w celu porównania metod
- Miary typu Precision-Recall przyjmują za nieistotne wszystkie dokumenty nie wyszukane
- Jest to nie do przyjęcia dla kolekcji złożonych z miliardów dokumentów

- Problem rozwiązuje się poprzez ustalenie preferencji między parami wyszukanych dokumentów zamiast bezpośredniego używania ich rangi jak to ujęto w przypadku BPREF
- ■BPREF mierzy ilość dokumentów nieistotnych poprzedzających dokumenty istotne
- Ocenia się czy dokument d_j jest preferowany w parze z d_k dla danego zapytania q.
- Ponadto każdy dokument istotny jest preferowany w parze z nieistotnym

BPREF — preferencje binarne

- Dla wymaganej informacji I:
 - $\blacksquare R_A$: ranking wyliczony przez system IR w odniesieniu do I,
 - $\blacksquare s_{A,j}$: pozycja dokumentu d_j w R_A ,
 - $[(J R) \land A]_{|R|}$: zbiór pierwszych |R| dokumentów w R_A ocenionych jako nieistotne

BPREF — preferencje binarne

Ilość nieistotnych dokumentów pojawiających się w R_A przed d_i .

$$C(\mathcal{R}_A, d_j) = \| \{ d_k \mid d_k \in [(J - R) \cap A]_{|R|} \land s_{A,k} < s_{A,j} \} \|$$

■ Miara BPREF dla rankingu R_A :

$$Bpref(\mathcal{R}_A) = \frac{1}{|R|} \sum_{d_j \in (R \cap A)} \left(1 - \frac{C(\mathcal{R}_A, d_j)}{min(|R|, |(J - R) \cap A|)} \right)$$

- Dla każdego istotnego dokumentu d_j w rankingu Bpref akumuluje wagę zmieniającą się odwrotnie do ilości nieistotnych dokumentów poprzedzających
- Jeśli liczba znanych dokumentów istotnych jest bardzo mała (1 lub 2) stosuje się skorygowaną miarę BPREF-10

BPREF — preferencje binarne

Zapewnia ona minimum 10 istotnych dokumentów

$$C_{10}(\mathcal{R}_A, d_j) = \| \{d_k \mid d_k \in [(J - R) \cap A)]_{|R|+10} \land s_{A,k} < s_{A,j} \} \|$$

Wówczas:

$$Bpref_{10}(\mathcal{R}_A) = \frac{1}{|R|} \sum_{d_j \in (R \cap A)} \left(1 - \frac{C_{10}(\mathcal{R}_A, d_j)}{min(|R|+10, |(J-R) \cap A|)} \right)$$

- Dokładność i zupełność pozwalają na porównanie istotności wyników uzyskanych przez dwie funkcje rankingowe
- W pewnych sytuacjach:
 - Nie można bezpośrednio określić istotności dokumentów,
 - Należy ustalić jak bardzo dana funkcja rankingu różni się od drugiej znanej
- Wówczas interesuje nas porównanie uporządkowania dwóch rankingów
- Można tego dokonać poprzez funkcje statystyczne zwane miarami korelacji rangowej

Miary korelacji rangowej

- Miary korelacji rankingów R_1 i R_2 można wyrazić przez współczynnik korelacji $C(R_1, R_2)$ o następujących właściwościach
 - $-1 \le C(R_1, R_2) \le 1$
 - Jeżeli $C(R_1, R_2) = 1$ zgodność pomiędzy rankingami jest pełna,
 - Jeżeli $C(R_1, R_2)$ = -1 niezgodność pomiędzy rankingami jest pełna, tzn. są one odwrócone względem siebie,
 - Jeżeli $C(R_1, R_2) = 0$ dwa rankingi są kompletnie niezależne,
 - Zwiększenie wartości $C(R_1, R_2)$ implikuje zwiększenie zgodności rankingów

Współczynnik Spearman'a

■Współczynnik Spearman'a jest najczęściej używaną miarą korelacji rangowej – bazuje on na różnicach pozycji tego samego dokumentu w różnych rankingach

documents	$s_{1,j}$	$s_{2,j}$	$s_{i,j} - s_{2,j}$	$(s_{1,j} - s_{2,j})^2$
d_{123}	1	2	-1	1
d_{84}	2	3	-1	1
d_{56}	2	1	+2	4
d_6	4	5	-1	1
d_8	5	4	+1	1
d_9	6	7	-1	1
d_{511}	7	8	-1	1
d_{129}	8	10	-2	4
d_{187}	9	6	+3	9
d_{25}	10	9	+1	1
Sum of Square Distances			24	

■Dane z 10 dokumentów wyszukanych przez 2 rankingi R_1 i R_2 . $s_{1,j}$ and $s_{2,j}$ są pozycjami j-tego dokumentu w tych rankingach

Współczynnik Spearman'a

Przy porządkowaniu *K* dokumentów maksimum sumy kwadratów różnic pozycji rankingu wynosi

$$\frac{K \times (K^2 - 1)}{3}$$

- Przy pełnej niezgodności rankingów dla K=10 maksimum to wynosi $(10 \times (10^2 1))/3 = 330$
- ■Współczynnik Spearmana korelacji rang $S(R_1,R_2)$:

$$S(\mathcal{R}_1, \mathcal{R}_2) = 1 - \frac{6 \times \sum_{j=1}^{K} (s_{1,j} - s_{2,j})^2}{K \times (K^2 - 1)}$$

■zmienia się w zakresie [-1, 1], K – rozmiar porównywanych zbiorów

Współczynnik Spearman'a

Przykład:

$$S(\mathcal{R}_1, \mathcal{R}_2) = 1 - \frac{6 \times 24}{10 \times (10^2 - 1)} = 1 - \frac{144}{990} = 0.854$$

documents	$s_{1,j}$	$s_{2,j}$	$s_{i,j} - s_{2,j}$	$(s_{1,j} - s_{2,j})^2$
d_{123}	1	2	-1	1
d_{84}	2	3	-1	1
d_{56}	3	1	+2	4
d_6	4	5	-1	1
d_8	5	4	+1	1
d_9	6	7	-1	1
d_{511}	7	8	-1	1
d_{129}	8	10	-2	4
d_{187}	9	6	+3	9
d_{25}	10	9	+1	1
Sum of Square Distances			24	

Współczynnik tau Kendall'a

■Posiada on naturalną i intuicyjną interpretację

$$\tau(\mathcal{R}_1, \mathcal{R}_2) = P(\mathcal{R}_1 = \mathcal{R}_2) - P(\mathcal{R}_1 \neq \mathcal{R}_2)$$

- gdzie
 - $P(R_1 = R_2)$ znormalizowana ilość zgodnych par dokumentów (concordant), dla których różnice w pozycjach rankingu par dokumentów $[d_k, d_j]$: $s_{1,k} s_{1,j}$ oraz $s_{2,k} s_{2,j}$ są tego samego znaku dla 2 porównywanych metod
 - $P(R_1 \neq R_2)$ znormalizowana ilość niezgodnych par dokumentów (discordant), dla których różnice w pozycjach rankingu par dokumentów $[d_k, d_j]$: $s_{1,k} s_{1,j}$ oraz $s_{2,k} s_{2,j}$ są różnych znaków
- ■Jeżeli przyjąć
 - $\triangle (R_1, R_2)$: liczba niezgodnych par dokumentów w rankingach R_1 i R_2 ,
 - $K(K-1) \Delta(R_1, R_2)$: liczba zgodnych par dokumentów,

Współczynnik tau Kendall'a

Wówczas:

$$P(\mathcal{R}_1 = \mathcal{R}_2) = \frac{K(K-1) - \Delta(\mathcal{R}_1, \mathcal{R}_2)}{K(K-1)}$$

$$P(\mathcal{R}_1 \neq \mathcal{R}_2) = \frac{\Delta(\mathcal{R}_1, \mathcal{R}_2)}{K(K-1)}$$

co daje:

$$\tau(\mathcal{R}_1, \mathcal{R}_2) = 1 - \frac{2 \times \Delta(\mathcal{R}_1, \mathcal{R}_2)}{K(K-1)}$$

Przykład: 5 dokumentów w 2 rankingach

documents	$s_{1,j}$	$s_{2,j}$	$s_{i,j} - s_{2,j}$
d_{123}	1	2	-1
d_{84}	2	3	-1
d_{56}	3	1	+2
d_6	4	5	-1
d_8	5	4	+1

Współczynnik tau Kendall'a

■Uporządkowane pary dokumentów w rankingu R₁

■Uporządkowane pary dokumentów w rankingu R_2 :

$$[d_{56}, d_{123}], \quad [d_{56}, d_{84}], \quad [d_{56}, d_{8}], \quad [d_{56}, d_{6}], \qquad D, D, C, C,$$

$$[d_{123}, d_{84}], \quad [d_{123}, d_{8}], \quad [d_{123}, d_{6}], \qquad C, C, C,$$

$$[d_{84}, d_{8}], \quad [d_{84}, d_{6}], \qquad C, C,$$

$$[d_{8}, d_{6}] \qquad D$$

■Dla K=5 dokumentów K(K-1)=20 oraz

$$\tau(\mathcal{R}_1, \mathcal{R}_2) = \frac{14}{20} - \frac{6}{20}$$

$$= 0.4$$

