CS161 Homework 5

1.

(a) Neither

Smoke	Fire	$(Smoke => Fire) => (\neg Smoke => \neg Fire)$
F	F	T
F	T	F
T	F	T
T	T	T

(b) Neither

Smoke	Fire	Heat	$(Smoke => Fire) => ((Smoke \lor Heat) => Fire)$
F	F	F	T
F	F	T	F
F	T	F	T
T	F	F	T
F	T	T	T
T	F	Т	T
T	T	F	T
T	T	T	T

(c) Valid

Smoke	Fire	Heat	$((Smoke \land Heat) => Fire) <=> ((Smoke => Fire) \lor (Heat => Fire))$
F	F	F	T
F	F	T	T
F	T	F	T
T	F	F	T
F	T	T	T
T	F	T	T
T	T	F	T
T	T	T	T

2.

(a)

Knowledge Base

P1: *Mythical* => *Immortal*

P2: $\neg Mythical => \neg Immortal \land Mammal$

P3: Immortal \(\text{Mammal} => \text{Horned} \)

P4: Horned => Magical

(b)

P1: $\neg Mythical \lor Immortal$

P2: $Mythical \lor (\neg Immortal \land Mammal) = (Mythical \lor \neg Immortal) \land (Mythical \lor Mammal)$

P3: $\neg(Immortal \lor Mammal) \lor Horned = (\neg Immortal \lor Horned) \land (\neg Mammal \lor Horned)$

P4: $\neg Horned \lor Magical$

(c)

Given the KB, we are not able to prove the unicorn is mythical. However, we are able to prove the unicorn is magical (and also horned).

Proof that unicorn is magical, horned

P5: ($Mythical \lor \neg Immortal$)	Extracted from P2
P6: (Mythical ∨ Mammal)	Extracted from P2
P7: $(\neg Immortal \lor Horned)$	Extracted from P3
P8: (¬Mammal ∨ Horned)	Extracted from P3
P9: (¬Mammal ∨ Magical)	Resolve P4 and P8
P10: (¬ <i>Immortal</i> ∨ <i>Magical</i>)	Resolve P4 and P7
P11: (Mythical V Magical)	Resolve P5 and P10
P12: (Mythical V Horned)	Resolve P6 and P8
P13: (Immortal ∨ Mammal)	Resolve P1 and P6
P14: ¬Mythical ∨ Horned	Resolve P1 and P7
P15: Horned	Resolve P12 and P14
P16: Magical	Resolve P4 and P15

3.

(a)

 $\{x/A, y/B, z/B\}$

(b)

No general unifier exists because A cannot be unified with B

(c)

{y/John, x/John}

(d)

No general unifier exists (i.e. we can do $\{x/\text{Father}(y)\}$, but then Father(y) cannot be unified with y

4.

(a)

First-Order Logic Formulations

P1: A x, Food(x) \Rightarrow Likes(John, x)

P2: Food(Apples)

P3: Food(Chicken)

P4: A x, y, Eats(x, y) & -Killed(x, y) => Food(y)

P5: A x (E y, Killed(x, y)) \Rightarrow -Alive(x)

P6: Eats(Bill, Peanuts) & Alive(Bill)

P7: A x, Eats(Bill, x) \Rightarrow Eats(Sue, x)

(b)

FOL in CNF

P1: -Food(x) | Likes(John, x)

P2: Food(Apples)

P3: Food(Chicken)

P4: $-Eats(x, y) \mid Killed(x, y) \mid Food(y)$

P5: -Killed(x, y) | -Alive(x)

P6: Eats(Bill, Peanuts)

P7: Alive(Bill)

P8: -Eats(Bill, x) | Eats(Sue, x)

(c)

Proof that John likes peanuts

1 1001 that some fixes peanets	
P9: -Likes(John, Peanuts)	Proof by contradiction
P10: -Food(Peanuts)	Resolve P1 and P9 w/ substitution {x/Peanuts}
P11: -Eats(x, Peanuts) Killed(x, Peanuts)	Resolve P4 and P10 w/ substitution {y/Peanuts}
P12: -Eats(x, Peanuts) -Alive(x)	Resolve P5 and P11 w/ substitution {y/Peanuts}
P13: -Eats(Bill, Peanuts)	Resolve P7 and P12 w/ substitution {x/Bill}
P14: Empty clause (i.e. John likes Peanuts)	Resolve P6 and P13

(d)

What food does Sue eat?

First-Order Logic Formulation: E x, Food(x) & Eats(Sue, x)

P9: $-Food(x) \mid -Eats(Sue, x)$	Formulation in CNF
P10: -Eats(Bill, x) -Food(x)	Resolve S8 and S9
P11: -Food(Peanuts)	Resolve S6 and S10 w/ substitution {x/Peanuts}

Then the same proof follows from (c) starting w/P10 in (c) (i.e. Sue eats Peanuts)

(e)

First-Order Logic Formulations

P1: A x, Food(x) \Rightarrow Likes(John, x)

P2: Food(Apples)

P3: Food(Chicken)

P4: A x, y, Eats(x, y) & -Killed(x, y) => Food(y)

P5: A x (E y, Killed(x, y)) \Rightarrow -Alive(x)

P6: A x, y, -Eats(x, y) \Rightarrow Die(x)

P7: A x, $Die(x) \Rightarrow -Alive(x)$

P8: Alive(Bill)

P9: A x, Eats(Bill, x) \Rightarrow Eats(Sue, x)

FOL in CNF

P1: -Food(x) | Likes(John, x)

P2: Food(Apples)

P3: Food(Chicken)

P4: $-Eats(x, y) \mid Killed(x, y) \mid Food(y)$

P5: -Killed(x, y) | -Alive(x)

P6: Eats $(x, y) \mid Die(x)$

P7: $-Die(x) \mid -Alive(x)$

P8: Alive(Bill)

P9: -Eats(Bill, x) | Eats(Sue, x)

What food does Sue eat?

First-Order Logic Formulation: E z, Food(z) & Eats(Sue, z)

That Order Eogle Formulation. E. 2, Tood(2) &	Euro(Sue, E)
P10: $-Food(z) \mid -Eats(Sue, z)$	Formulation in CNF
P11: -Eats(Bill, z) -Food(z)	Resolve P9 and P10 w/ substitution $\{x/z\}$
P12: Die(Bill) -Food(z)	Resolve P6 and P11 w/ substitution {x/Bill, y/z}
P13: -Alive(Bill) -Food(z)	Resolve P7 and P12 w/ substitution {x/Bill}
P14: -Food(z)	Resolve P8 and P13
P15: -Eats (x, y) Killed (x, y)	Resolve P4 and P14 w/ substitution {z/y}
P16: -Eats (x, y) -Alive (x)	Resolve P5 and P15
P17: -Eats(Bill, y)	Resolve P8 and P16 w/ substitution {x/Bill}
P18: Die(Bill)	Resolve P6 and P17 w/ substitution {x/Bill}
P19: -Alive(Bill)	Resolve P7 and P18 w/ substitution {x/Bill}
P20: Empty clause (i.e. Sue eats everything	Resolve P8 and P19
Bill eats)	

Sue eats everything Bill eats