

1 Moore'sches Gesetz

- alle 18-24 Monate verdoppelt sich die Anzahl der Transistoren auf gleicher Fläche
- Exponentielles Wachstum der Transistorzahl, exponentieller Rückgange des Preises pro Transistor
- Herstellungskosten (Fixkosten, Variable Kosten, Technologiefaktor), Entwicklerproduktivität, Verlustleistungsdichte

2 Einheiten

Potenz	Vorsatz	Poten	z Vorsatz	Hz	s^{-1}
10^{12}	Т	10-	1 d	N	kgms ⁻²
10^{9}	G	10-5	2 c	J	Nm = VAs
10^{6}	М	10-	3 m	W	$VA = Js^{-1}$
10^{3}	k	10-6	μ	C	As
10^{2}	h	10-9	n	V	JC^{-1}
10^{1}	da	10^{-1}	2 p	F	CV^{-1}
	ļ.	10-1	5 f	Ω	VA^{-1} VsA^{-1}
			ı	H	VsA^{-1}

 $Bit \xrightarrow{\cdot 8} Byte \xrightarrow{\cdot 1024} kByte \xrightarrow{\cdot 1024} MByte$

3 Polyadische Zahlensysteme

$$Z = \sum_{i=-n}^{p-1} r^i \cdot d_i = d_{p-1}...d_1d_0.d_{-1}...d_n$$

$$Z: \mathsf{Zahl}, \quad r: \mathsf{Basis}, \quad d_i: \mathsf{Ziffer}, \quad p: \#\mathsf{Ziffern} \text{ vorne} \quad n: \#\mathsf{Nachkommastellen}$$

Binäres Zahlensystem:

$$\begin{aligned} d_{i2} &\in 0,1 \qquad B = \sum_{i=-n}^{p-1} 2^i \cdot d_i \quad d_{-n} : LSB; \quad d_{p-1} : MSB \\ \text{Octalsystem:} & & \text{Hexadezimalsystem:} \\ d_{i8} &\in 0,1,2,3,4,5,6,7 \end{aligned}$$

Benötigte Bits: N:n Bit. M:m Bit $N+M:\max\{n,m\}+1$ Bit $N\cdot M:n+m$ Bit

3.1 Umrechnung

	$Z \ge 1$	Z < 1
$r \rightarrow 10$	$Z_{10} = \sum r^{i} \cdot d_{i}$ 101 ₂ \rightarrow 1 \cdot 4 + 0 \cdot 2 + 1 \cdot 1	$Z_{10} = \sum_{i=0}^{\infty} r^{-i} \cdot d_{-i}$ 0.11 ₂ \to 1 \cdot 0.5 + 1 \cdot 0.25
$10 \to r$	$d_i = Z_{10}\%r^i \ (d_i = Z_{10} \bmod r^i)$ $58/8 = 7 \operatorname{Rest} 2(LSB)$ $7/8 = 0 \operatorname{Rest} 7(MSB)$ (Ende wenn 0 erreicht) Auf Ende achten $1r3\%5 \to 0r1$	$0.4 \cdot 2 = 0.8$ Übertrag $0(MSB)$ $0.8 \cdot 2 = 1.6$ Übertrag 1 (Wiederholen bis 1 oder Periodizität)

3.2 Zweierkomplement Wertebereich: $-2^{n-1} \le Z \le 2^{n-1} - 1$

Z
ightarrow - Z (Umkehrung gleich)

1. Invertieren aller Bits

2. Addition von 13. Ignoriere Überträge beim MSB

 $\begin{array}{l} \text{Bsp: Wandle 2 in -2 um} \\ 0010 \ \Rightarrow 1101 \\ 1101 + 1 = 1110 \\ \ \Rightarrow \ -2_{10} = 1110_2 \end{array}$

3.3 Gleitkommadarstellung nach IEEE 754

Bitverteil	ung(single/double):
(4)	(0 (4 4)

5(1) 5(0/11) 5(20/02)

s: Vorzeichen, e: Exponent, f: Mantisse (Nachkommastellen! $2^{-1}2^{-2}...$)

IEEE \rightarrow Wert Z $Z = (-1)^{s} \cdot (1 + 0.f) \cdot 2^{e-127}$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
$\begin{array}{l} \textbf{Wert} \ Z \rightarrow \textbf{IEEE} \ (\text{Bin\"{a}rdarstellung}) \\ s = 0 (\text{positiv}), \ s = 1 (\text{negativ}) \\ Z \rightarrow Z_2 \ (\text{beim Komma teilen}) \\ Z_2 \ \text{n-mal shiften} \rightarrow 1.xxx \dots \\ \text{Exponent} \ e = n + 127 \rightarrow e_2 \\ \text{Mantisse} \ f_2 = xxx \dots \end{array}$	$\begin{aligned} & Bsp:\ Z = 11.25 \\ & s = 0 \\ & Z = 1011.01_2 \\ & Z = 1.01101_2 \cdot 2^3 \\ & e = 3 + 127 = 130 = 10000010_2 \\ & f = 01101000 \ldots_2 \end{aligned}$
$\begin{array}{l} \textbf{Wert } Z \rightarrow \textbf{IEEE} \text{ (Formel)} \\ s = 0 \text{ (positiv)}, \ s = 1 \text{ (negativ)} \\ E = \lfloor \log_2 Z \rfloor \\ e = E + 127 \rightarrow e_2 \\ f = \left(\frac{ Z }{2^E} - 1\right) \cdot 2^{23} \rightarrow f_2 \end{array}$	$\begin{array}{l} Bsp:\ Z=11.25\\ s=0\\ E=\lfloor\log_2 11.25 \rfloor=\lfloor3,49\dots\rfloor=3\\ e=3+127=130=10000010_2\\ f=\left(\frac{ 11.25 }{2^3}-1\right)\cdot 2^{23}=3407872=\\ 01101000\dots_2 \end{array}$

3.4 Zahlenoperationen

- Festkomma (Vorzeichenlos)
 - Erweiterung: Null vorne anhängen
 - Addition: Bitweise
 - Subtraktion: Bitweise
 - Multiplikation: Add-Shift (Add für jede 1 im Multiplikant) (Resultat eins rechts Shiften)
 Sonderfall: Multiplikation mit 2-er Potenz → um Potenz mal shiften.
 - Division:
- Festkomma (Einser Komplement)
 - Erweiterung: Null an Stelle 2 einfügen.
 - Addition:
 - 1. Prüfe Beide Vorzeichen
 - 2. Gleiches Vorzeichen → reguläre Addition
 - 3. Verschieden \to Subtraktion kleiner Operator von großem Operator. Übernahme Vorzeichen des großen Operators.
- Festkomma (Zweier Komplement)
 - Erweiterung: 1 vorne anhängen
 - Addition: Regulär (Gleiche Parameterlänge) (Overflow ignorieren)
 - Subtraktion: Addition mit komplementiertem Subtraktor (Gleiche Parameterlänge) (Overflow ignorieren)
 - Multiplikation:
 - 1. Zahlen auf Produktlänge erweitern.
 - Zahlen mittels Add-Shift multiplizieren (Überflüssige Bits nach links rausschieben und ignorieren)
- Gleitkomma (IEEE Float)
 - Addition: Exponenten auf größeren angleichen, Mantissen addieren. Vorzeichen inspizieren.
 - Subtraktion:
 - Multiplikation: Exponenten auf größeren angleichen, Mantissen multiplizieren. Vorzeichen multiplizieren.

Sonderfall: Multiplikation mit 2-er Potenz → Potenz zu Exponent addieren.

Achtung: bei addieren der Exponenten zweier Gleitkommazahlen muss von einem Exponenten der Bias abgezogen werden.

- Division:

4 Zeichenkodierung

4.1 ASCII

American Standard Code for Information Exchange Fixe Codewortlänge (7 Bit, 128 Zeichen) 0x00-0x7F

4.2 UTF-8

Universal Character Set Transformation Format Variable Codewortlänge (1-4 Byte) → Effizient

Schema

- MSB = $0 \rightarrow 8$ Bit (restliche Bit nach ASCII)
- MSB = $1 \rightarrow 16$, 24 oder 32 Bit
 - Byte 1: Die ersten 3, 4, 5 Bit geben die Länge des Codewortes an (110, 1110, 11110)
 - Byte 2-4: Beginnen mit Bitfolge 10

4.3 Zahlensysteme

Base 10	Base 2	Base 8	Base 16
00	0000	0 o00	0 x0
01	0001	0o 01	0x1
02	0010	0o 02	0 x2
03	0011	0o 03	0 x3
04	0100	0o 04	0x4
05	0101	0o 05	0x5
06	0110	0o 06	0 x6
07	0111	0o 07	0x7
08	1000	0o 10	0x8
09	1001	0 o11	0 x9
10	1010	0o 12	0xA
11	1011	0o 13	0xB
12	1100	0 o14	0xC
13	1101	0o 15	0xD
14	1110	0o 16	0xE
15	1111	0 o17	0xF

5 Boolsche Algebra

5.1 Boolsche Operatoren (Wahrheitstabelle WT)

		A — out	Aout	A Dout	A-Do-out	Ao-out	A Do-out
		A	₽ P	₽ <u>₽</u> ₽	B P	B P	A D Y
		A — 8 B — Y	A 21 -Y	A =1 =1 -Y	А—— & р— ү	A 21 D-Y	A ==1 B == 0-Y
×	у	AND	OR	XOR	NAND	NOR	EQV
		$x \cdot y$	x + y	$x \oplus y$	$\overline{x \cdot y}$	$\overline{x+y}$	$x \oplus y$
0	0	0	0	0	1	1	1
0	1	0	1	1	1	0	0
1	0	0	1	1	1	0	0
1	1	1	1	0	0	0	1
Konfi	guratio	on: $f = c_1 + $	$c_2 + c_3 \Rightarrow$	$cov(f) = \{$	c_1, c_2, c_3	$x \oplus y \equiv x$	$\overline{y} + \overline{x}y$

5.2 Gesetze der boolschen Algebra

			()	
	Boolsche Algebra	Mengenalgebra	KNF (KNF)	ein Produkt von
	$(0,1;\cdot,+,\overline{x})$	$(P(G); \cap, \cup, \overline{A}; G, \emptyset)$	KDNF (KDNF)	Summe aller Mir
Kommutativ	$x \cdot y = y \cdot x$	$A \cap B = B \cap A$	- KKNF (KKNF)	Menge aller Max
	x + y = y + x	$A \cup B = B \cup A$	VollSOP (nur 1)	Menge aller Prin
Assoziativ	$x \cdot (y \cdot z) = (x \cdot y) \cdot z$	$(A \cap B) \cap C = A \cap (B \cap C)$	MinSOP (min. 1)	Minimale Summ
	x + (y+z) = (x+y) + z	$(A \cup B) \cup C = A \cap (B \cup C)$,	l
Distributiv	$x \cdot (y+z) = x \cdot y + x \cdot z$	$A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$	FPGA: Field Program	mable Gate Array
	$x + (y \cdot z) = (x+y) \cdot (x+z)$	$A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$	LUT: Look Up Table	
Idempotenz	$x \cdot x = x$	$A \cap A = A$		
	x + x = x	$A \cup A = A$		•
Absorption	$x \cdot (x + y) = x$	$A \cap (A \cup B) = A$	6 Beschreibun	igstormen
	$x + (x \cdot y) = x$	$A \cup (A \cap B) = A$	6.1 Distruction N	
Neutral	$x \cdot 1 = x$	$A \cap G = A$	6.1 Disjunktive No	ormanorm/Sum
	x + 0 = x	$A \cup \emptyset = A$	Eins-Zeilen als Implik	
Dominant	$x \cdot 0 = 0$	$A \cap \emptyset = \emptyset$	$Z = \overline{A} \cdot \overline{B} + \overline{C} \cdot D$	1
	x + 1 = 1	$A \cup G = G$		
Komplement	$x \cdot \overline{x} = 0$	$A \cap \overline{A} = \emptyset$	6.2 Konjunktive N	lormalform/Pro
	$x + \overline{x} = 1$	$A \cup \overline{A} = G$	Null-Zeilen negiert al	s Implikat (ODER)
	$\overline{\overline{x}} = x$	$\overline{\overline{A}} = A$	$Z = (\overline{A} + \overline{C}) \cdot (\overline{A} + \overline{C})$	$+\overline{D})\cdot(\overline{B}+\overline{C})$
De Morgan	$\overline{x \cdot y} = \overline{x} + \overline{y}$	$\overline{A \cap B} = \overline{A} \cup \overline{B}$		
	$\overline{x+y} = \overline{x} \cdot \overline{y}$	$\overline{A \cup B} = \overline{A} \cap \overline{B}$	6.3 Umwandlung i	in jeweils andere
	*	•		

5.3 Boolesche Funktionen

$$f: \{0,1\}^n \to \{0,1\}$$
 $f(\underline{x}) = f(x_1, x_2, \dots, x_n)$

Einsmenge F von f: $F = \{\underline{\boldsymbol{x}} \in \{0,1\}^n | f(\underline{\boldsymbol{x}}) = 1\}$ Nullmenge \overline{F} von $f: \overline{F} = \{\underline{x} \in \{0,1\}^n | f(\underline{x}) = 0\}$

Kofaktor bezüglich

- $x_i: f_{x_i} = f|_{x_i=1} = f(x_1, \dots, 1, \dots, x_n)$
- $\bullet \ \overline{x}_i: f_{\overline{x}_i} = f|_{x_i=0} = f(x_1, \dots, 0, \dots, x_n)$

Eigenschaften von f(x)

- tautologisch $\Leftrightarrow f(x) = 1 \quad \forall x \in \{0, 1\}^n$
- kontradiktorisch $\Leftrightarrow f(\underline{x}) = 0 \qquad \forall \underline{x} \in \{0, 1\}^n$
- ullet unabhängig von $x_i \Leftrightarrow f_{x_i} = f_{\overline{x}_i}$
- abhängig von $x_i \Leftrightarrow f_{x_i} \neq f_{\overline{x}_i}$

5.4 Multiplexer

$$\begin{array}{ll} f=x\cdot a+\overline{x}\cdot b & \text{(2 Eingänge a,b und 1 Steuereingang x)} \\ f=\overline{x_1}\overline{x_2}a+\overline{x_1}x_2b+x_1\overline{x_2}c+x_1x_2d & \text{(Eingänge: a,b,c,d Steuerung: x_1,x_2)} \end{array}$$

5.5 Wichtige Begriffe

Wichtige Begriffe:	Definition	Bemerkung
Signalvariable	x	$\hat{x} \in \{0, 1\}$
Literal	$l_i = x_i$ oder $\overline{x_i}$	$i \in I_0 = \{1,, n\}$
Minterme,0-Kuben	$MOC ightarrow m_j = \prod_{i \in I_0} l_i$	$ M0C = 2^n$
d-Kuben	$MC i c_j = \prod_{i \in I_j \subseteq I_0} l_i$	$ MC = 3^n$
Distanz	$\delta(c_i, c_j) = \{l \mid l \in c_i \land \bar{l} \in c_j\} $	$\delta_{ij} = \delta(c_i, c_j)$
Implikanten	$MI = \{c \in MC \mid c \subseteq f\}$	
	Terme, dessen Erfüllbarkeit identisch mit	
	die der Formel sind	
Primimplikanten	$MPI = \{ p \in MI \mid p \not\subset c \ \forall c \in MI \}$	$MPI \subseteq MI \subseteq MC$
	Implikanten, die maximal freie Variablen	
	besitzen	
Kernprimimplikanten	Primimplikanten die für Überdeckung zwingend notwendig sind	Spalten mit 1 Eintrag in Überdeckungstabelle

DNF (DNF) KNF (KNF) KDNF (KDNF) KKNF (KKNF)

eine Summe von Produkttermen ein Produkt von Summentermen Summe aller Minterme Menge aller Maxterme Menge aller Primimplikanten

Minimale Summe v. Primimplikanten

Eins-Zeilen als Implikanten (UND) schreiben und alle Implikanten mit ODER verknüpfen:

Null-Zeilen negiert als Implikat (ODER) schreiben und alle Implikaten UND verknüpfen:

2. Umformung "untere" Negation (DeMorgan) : $Z = \overline{\overline{A \cdot \overline{B} \cdot \overline{C} \cdot D}} = \overline{(A+B) \cdot (C+\overline{D})}$ 3. Ausmultiplizieren: $Z = \overline{(A+B) \cdot (C+\overline{D})} = \overline{A \cdot C + A \cdot \overline{D} + B \cdot C + B \cdot \overline{D}}$

 $Z = \overline{AC} \cdot \overline{AD} \cdot \overline{BC} \cdot \overline{BD} = (\overline{A} + \overline{C}) \cdot (\overline{A} + D) \cdot (\overline{B} + \overline{C}) \cdot (\overline{B} + D)$

 $f = x_i \cdot f_{x_i} + \overline{x}_i \cdot f_{\overline{x}_i} = (x_i + f_{\overline{x}_i}) \cdot (\overline{x}_i + f_{x_i}) = (f_{x_i} \oplus f_{\overline{x}_i}) \cdot x_i \oplus f_{\overline{x}_i}$

 \bullet m_i Minterm: UND-Term in dem alle Variablen vorkommen (aus KDNF) \bullet M_i Maxterm: ODER-Term in dem alle Variablen vorkommen (aus KKNF)

ullet c_i Implikant: UND-Term in dem freie Variablen vorkommen können

• C_i Implikat: ODER-Term in dem freie Variablen vorkommen können

• p_i Primimplikant: UND-Term mit maximal freien Variablen

ullet P_i Primimplikat: ODER-Term mit maximal freien Variablen

6.1 Disjunktive Normalform/Sum of products (DNF/DNF)

6.2 Konjunktive Normalform/Product of sums (KNF/KNF)

 $Z = (\overline{A} + \overline{C}) \cdot (\overline{A} + \overline{D}) \cdot (\overline{B} + \overline{C}) \cdot (\overline{B} + D)$

1. Doppeltes Negieren der Funktion: $Z = \overline{\overline{\overline{A} \cdot \overline{B} + \overline{C} \cdot D}}$

6.3 Umwandlung in jeweils andere Form

4. Umformung "obere" Negation (DeMorgan) :

Analog von KNF (KNF) nach DNF (DNF).

6.4 Shannon Entwicklung

7 Logikminimierung

 $\overline{f} = x_i \cdot \overline{f}_{x_i} + \overline{x}_i \cdot \overline{f}_{\overline{x}_i}$

7.1 Nomenklatur

Terme sind ODER-verknüpft Terme sind UND-verknüpft WT: 1-Zeilen sind Minterme WT: 0-Zeilen negiert sind Maxterme Bestimmung siehe Quine Methode oder Schichtenalgorithmus durch Überdeckungstabelle

- 1. KDNF/KDNF bestimmen (z.B. $f(x, y, z) = xy = xyz + xy\overline{z}$)
 - 2. Alle Minterme in Tabelle eintragen (Index von m ist (binär)Wert des Minterms)
 - 3. 1-Kubus; Minterme die sich um eine Negation unterscheiden, zu einem Term verschmolzen (Resolutionsgesetz)
 - 4. Der 1-Kubus muss zusammenhängend sein! (d.h. alle 1-Kubus Minterme müssen zusammenhängen)
 - 5. Wenn möglich 2-Kubus bilden.
 - 6. Wenn keine Kubenbildung mehr möglich → Primimplikanten

Beispiel (Quine Methode):

		0-Kubus	Α	1-Kubus	R	Α	2-Kubus	Α
	m_1	$\overline{x}_1\overline{x}_2x_3$	\checkmark	\overline{x}_2x_3	$m_1 \& m_5$	p_1		
	m_4	$x_1\overline{x}_2\overline{x}_3$	\checkmark	$x_1\overline{x}_2$	$m_4 \& m_5$	$\sqrt{}$	x_1	p_2
	m_5	$x_1\overline{x}_2x_3$	\checkmark	$x_1\overline{x}_3$	$m_4 \& m_6$	√		
	m_6	$x_1x_2\overline{x}_3$	\checkmark	$x_{1}x_{3}$	$m_5 \& m_7$	√		
	m_7	$x_1x_2x_3$	$\sqrt{}$	x_1x_2	$m_6 \& m_7$	√		
\Rightarrow	$\Rightarrow f(x_1, x_2, x_3) = p_1 + p_2 = \overline{x}_2 x_3 + x_1$							

7.4 Resolventenmethode

Ziel: alle Primimplikanten

Wende folgende Gesetze an: Absorptions gesetz: a + ab = a

allgemeines Resolutionsgesetz: $x \cdot a + \overline{x} \cdot b = x \cdot a + \overline{x} \cdot b + ab$

Anwendung mit Schichtenalgorithmus

- 1. schreibe die Funktion f in die 0. Schicht
- 2. bilde alle möglichen Resolventen aus der 0. Schicht und schreibe sie in die nächste Schicht als ODER Verknüpfungen (Resolventen zu f "hinzufügen")
- 3. überprüfe ob Resolventen aus der 1. Schicht Kuben aus Schicht 0 überdecken(Absorption) und streiche diese Kuben aus Schicht 0
- 4. Schicht i besteht aus den möglichen Resolventen von Schicht 0 bis (i-1). Abgestrichene Kuben aus vorherigen Schichten brauchen nicht mehr beachtet werden.
- 5. Sobald in der i-ten Schicht +1 steht oder keine weiteren Resolventen gebildet werden können, ist man fertig. ⇒ alle nicht ausgestrichenen Terme bilden die VollSOP

$f(x_1,\ldots,x_n)$	Schicht
$x\cdot w + \overline{x}\cdot w + x\cdot y\cdot w\cdot \overline{z} + \overline{x}\cdot y\cdot w\cdot \overline{z} + \overline{y}\cdot w\cdot \overline{z}$	0
$+w+y\cdot w\cdot \overline{z}$	1
$+w\cdot \overline{z}$	2
+w	3

7.2 Karnaugh-Diagramm

2-dim Zyklische Gray-Codierung: 3-dim 000 001 011 010 110 111 101 100 z^{xy} | 00 | 01 | 11 | 10 Gleiche Zellen zusammenfassen: z.B. $\overline{xy} + y \cdot z$ 1 0 0 X 1 1 Don't Care Werte ausnutzen!

Achtung: Auf eventuelle Unterdefiniertheit überprüfen (Redundante Zeilen) (Kreiert Don't Cares) Immer vollständig mit Nullen und Einsen ausfüllen

7.3 Quine Methode

geg.: DNF/DNF oder Wertetabelle von f(x)ges.: alle Primimplikanten p_i (VolISOP)

Spezielles Resoltutionsgesetz: $x \cdot a + \overline{x} \cdot a = a$ Absorptionsgesetz: $a + a \cdot b = a$

7.5 Überlagerung Bestimmung der MinSOP

Geg: KDNF/KDNF $(\sum m_i)$ und VollSOP $(\sum p_i)$ Ges: MinSOP (Minimalform)

Alternativ: Mit Überdeckungstabelle bestimmen. Bsp:

	Minterme						
m_1	m_2		m_N	$L(p_i)$			
√				$L(p_1)$			
			√	$L(p_2)$			
				:			
	√			$L(p_K)$			
	m_1 $\sqrt{}$						

Algorithmus:

- 1. Suche Spalten mit nur einem Minterm
- 2. Streiche andere Spalten des zugehörigen Primterms.
- 3. Streiche Primterme, dessen Minterme alle gestrichen sind
- 4. Dominierte Zeilen streichen.

N. Anzahl der Minterme

 $L(p_i)$: Kosten/Länge der Primimplikanten

L(z): Länge des Terms z= Summe der Literale in Teiltermen + Anzahl der Teilterme

Primimplikanten von Tabelle ausrechnen: Minterme für jeden Primterm ablesen und reduzieren. Länge Primimplikanten: anhand Anzahl von Kreuzen ablesen.

8 Halbleiter

	Isolator	Metall	undotiert	N-Typ	P-Typ
Ladungsträger	Keine	e ⁻	e^-/e^+	e^-	e^+
Leitfähigkeit	Keine	Sehr hoch	$\propto T$	Hoch	Mittel

9 MOS-FET's

Metal Oxide Semiconductor Field Effekt Transistor

9.1 Bauteilparameter

- große Kanalweite ⇒ große Drain-Störme \Rightarrow schnelle Schaltgeschwindigkeit (da $i_d \propto \beta \propto \frac{W}{L}$) Aber: große Fläche.
- nMos schaltet schneller als pMOS

9.2 Drainstrom

nMos (p-dotiertes Substrat, n-dotierte Drain/Source), schlechter pull up (Pegeldegenerierung)

$$I_d = \begin{cases} 0, & \text{für } U_{gs} - U_{th} \leq 0 & \text{(Sperrber.)} \\ \beta[(u_{gs} - U_{th}) \cdot u_{ds} - \frac{1}{2}u_{ds}^2], & \text{für } 0 \leq U_{gs} - U_{th} \geq u_{ds} \text{ (linearer Ber.)} \\ \frac{1}{2}\beta \cdot (u_{gs} - U_{th})^2, & \text{für } 0 \leq U_{gs} - U_{th} \leq u_{ds} \text{ (S\"{attigungsber.)}} \end{cases}$$

pMos (n-dotiertes Substrat, p-dotierte Drain/Source), schlechter pull down (Pegeldegenerierung)

$$I_d = \begin{cases} 0, & \text{für } U_{gs} - U_{th} \geq 0 & \text{(Sperrber.)} \\ -\beta[(u_{gs} - U_{th}) \cdot u_{ds} - \frac{1}{2}u_{ds}^2], & \text{für } 0 \geq U_{gs} - U_{th} \leq u_{ds} & \text{(linearer Ber.)} \\ -\frac{1}{2}\beta \cdot (u_{gs} - U_{th})^2, & \text{für } 0 \geq U_{gs} - U_{th} \geq u_{ds} & \text{(S\"{a}ttigungsber.)} \end{cases}$$

9.3 pMos und nMos

9.4 Kondensatoraufgaben

9.4.1 Laden

Kondensator C lädt, solange $I_D\,>\,0$ ightarrow C lädt, solange $u_{gs} - U_{th} \geq 0$ und $u_{ds} \geq 0$

9.4.2 Entladen

Source und Drain werden vertauscht. Auf Gatespannung achten.

9.5 Gatterschwellspannungsaufgaben

10 CMOS - Logik

Vorteil: (Fast) nur bei Schaltvorgängen Verlustleistung - wenig statische Verluste Drei Grundgatter der CMOS-Technologie:

Falls GND und V_{DD} vertauscht würden, dann $NAND \rightarrow AND$ und $NOR \rightarrow OR$ Allerdings schlechte Pegelgenerierung.

10.1 Gatterdesign

Netzwerk	Pull-Down	Pull-U p
Transistoren	nMos	pMos
AND	Serienschaltung	Parallelschaltung
OR	Parallelschaltung	Serienschaltung

- 1. Möglichkeit: Direkt; ggf. Inverter vor die Eingänge und Ausgänge schalten.
- 2. Möglichkeit: Mit boolesche Algebra die Funktion nur mit NAND und NOR darstellen.

10.2 Umwandlung in Nand und Nor

Gatter	Funktion	NAND Form	NOR Form	
NOT	\overline{A}	$\overline{A\cdot A}$	$\overline{A+A}$	
AND	$A \cdot B$	$\overline{\overline{A\cdot B}\cdot \overline{A\cdot B}}$	$\overline{\overline{A+A}+\overline{B+B}}$	
OR	OR $A + B$ $\overline{\overline{A \cdot A \cdot \overline{B \cdot B}}}$		$\overline{\overline{A+B}} + \overline{A+B}$	
NAND	$\overline{A \cdot B}$	$\overline{A\cdot B}$	$\overline{\overline{A+A}+\overline{B+B}}+\overline{\overline{A+A}+\overline{B+B}}$	
NOR	$\overline{A+B}$	$\overline{\overline{A\cdot A\cdot \overline{B\cdot B}}}\cdot \overline{\overline{A\cdot A\cdot \overline{B\cdot B}}}$	$\overline{A+B}$	

10.3 Anzahl Gatter aus Netzwerk berechnen

Jede Unterbrecheung in der Mittellinie (Mittellinie → Eingang CMOS Transistor) ist die Grenze zwischen zwei Gattern.

10.4 CMOS Verlustleistung

Inverterschaltvorgang $V_A:0\to 1$:

Achtung: Logikpegel sind über die Steigung der $|VTC| \le 1$ des Inverters definiert. Zusammensetzung I_{short} :

Transistor	$(0, V_{tn})$	$(V_{tn}, V_{DD}/2)$	Um $V_{DD}/2$	$(V_{DD}/2, V_{DD} - V_{tp})$	$(V_{DD} - V_{tp}, V_{DD})$
n-MOS	Sperrt	Sättigung	Sättigung	Linear	Linear
p-MOS	Linear	Linear	Sättigung	Sättigung	Sperrt

Dynamische Verlustleistung $P_{dyn} = P_{cap} + P_{short}$ $P_{cap} = \alpha_{01} f C_L V_{DD}^2$ Kapazitive Verluste

 V_{DD} - $|V_{tp}|$

 $P_{short} = \alpha_{01} f \beta_n \tau (V_{DD} - 2V_{tn})^3$ Kurzschlussstrom

 $\alpha_{0 \to 1} = \frac{\text{Schaltvorgänge(pos. Flanke)}}{\# \text{ Betrachtete Takte}} \text{ (max 0.5)}$ Schalthäufigkeit

 $\alpha = \frac{f_{\text{switch}}}{f}$ Schalthäufigkeit (periodisch)

Abhängig von den Signalflanken, mit Schaltfunktionen verknüpft

 $\approx V_{DD}1/\propto \text{Schaltzeit: } \frac{V_{DD2}}{V_{DD1}} = \frac{t_{D1}}{t_{D2}} \text{ (bei Schaltnetzen } t_{log} \text{)}$ $\text{Verzögerungszeit } t_{pd} \propto \frac{C_L t_{ox} L_p}{W_p \mu_p \varepsilon (V_{DD} - V_{th})}$

 t_{pd} ist Zeit zwischen crossover 50% von Eingang zu crossover 50% am Ausgang.

Steigend mit: Kapazitiver Last, Oxiddicke, Kanallänge, Schwellspannung

Sinkend mit: Kanalweite, Ladungsträger Beweglichkeit, Oxyd Dielektrizität, Versorgungsspannung

 $\textbf{Statische Verlustleistung} \ \ P_{stat} \text{: Sub-Schwellstr\"{o}me, Leckstr\"{o}me, Gate-Str\"{o}me \ Abh\"{a}ngigkeit} \text{:}$ $V_{DD} \uparrow: P_{stat} \uparrow V_{th} \uparrow: P_{stat} \downarrow \text{ (aber nicht proportional)}$

11 Volladdierer (VA)/Ripple-C(u)arry-Adder

Propagate $p_n = a_n \oplus b_n$

Summerbit $S_n = c_n \oplus p_n = a_n \oplus b_n \oplus c_n$

 $a_nb_nc_n$ (Ungerade Anzahl von Eingängen 1) $S_n = a_n \overline{b_n} \overline{c_n} + \overline{a_n} b_n \overline{c_n} + \overline{a_n} \overline{b_n} c_n +$

alle Eingänge high

genau ein Eingang high

$$\begin{array}{l} \text{Carry-out} \ c_{n+1} = c_n \cdot p_n + g_n \\ c_{n+1} = \underbrace{a_n b_n \overline{c_n} + a_n \overline{b_n} c_n + \overline{a_n} b_n c_n}_{\text{zwei Eingänge 1}} + \underbrace{a_n b_n c_n}_{\text{drei Eingänge 1}} \quad \text{(Mindesten zwei Eingänge 1)} \end{array}$$

Laufzeiten

$$\begin{split} t_{sn} &= \begin{cases} t_{cn} + t_{xor} & t_{cn} > t_{xor} \\ 2t_{xor} & sonst \end{cases} \\ t_{cn+1} &= \begin{cases} t_{and} + t_{or} & a_n = b_n = 1 \\ t_{xor} + t_{and} + t_{or} & a_n = b_n = 0 \\ t_{xor} + t_{xor} + t_{xor} & a_{xor} + b_{xor} \end{cases} & (p_n = 0, g_n = 0) \end{split}$$

11.1 Multibit Addierer / Subtrahierer

Subtraktion entspricht Addition mit negiertem Subtrahenden

Zweierkomplement zur Bildung des negativen Subtrahenden

→ Invertieren aller Bits des Subtrahenden und Addition von 1

 $XOR: X \oplus 0 = X, X \oplus 1 = \overline{X}$

Aufteilen langer kombinatorischer Pfade durch Einfügen zusätzlicher Registerstufen → Möglichst Halbierung des längsten Pfades

- Zeitverhalten beachten (evtl. Dummy-Gatter einfügen)
- Durchsatz erhöht sich entsprechend der Steigerung der Taktfrequenz
- · Gesamtlatenz wird eher größer
- Taktfrequenz erhöht sich

12.3 Parallel Processing

$$\label{eq:Durchsatz} \mathsf{Durchsatz} = \frac{\#\mathsf{Modul}}{t_{clk}, Modul} = f \qquad \qquad \mathsf{Latenz} = t_{clk}$$

- Paralleles, gleichzeitiges Verwenden mehrere identischer Schaltnetze
- Zusätzliche Kontrolllogik nötig (Multiplexer)
- Taktfrequenz und Latenz bleiben konstant
- Durchsatz steigt mit der Zahl der Verarbeitungseinheiten ABER: deutlich höherer Ressourcenverbrauch

13 Speicherelemente

Flüchtig Speicherinhalt gehen verloren, wenn Versorgungsspannung V_{DD} wegfällt - Bsp: *RAM Nicht Flüchtig Speicherinhalt bleibt auch ohne ${\cal V}_{DD}$ erhalten - Bsp: Flash

Asynchron Daten werden sofort geschrieben/gelesen.

Synchron Daten werden erst mit $clk_{0\rightarrow 1}$ geschrieben.

Dynamisch Ohne Refreshzyklen gehen auch bei angelegter V_{DD} Daten verloren - Bsp: DRAM Statisch Behält den Zustand bei solange V_{DD} anliegt (keine Refreshzyklen nötig) - Bsp: SRAM Bandbreite: Bitanzahl, die gleichzeitig gelesen/geschrieben werden kann.

Latenz: Zeitverzögerung zwischen Anforderung und Ausgabe von Daten.

Zykluszeit: Minimale Zeitdifferenz zweier Schreib/Lesezugriffe.

 ${\sf Speicherkapazit\"{a}t} = {\sf Wortbreite} \cdot 2^{{\sf Adressbreite}}$

13.1 Speicherzelle/Register

Ring aus zwei Invertern. Logikpegel kann nur mit öffnen des Inverter-Rings gesetzt werden.

13.2 Latch

12 Sequentielle Logik

Logik mit Gedächtnis (Speicher).

12.1 Begriffe/Bedingungen

t_{Setup}	Stabili
t_{hold}	Stabili
t_{c2q}	Eingan
Min. Taktperiode	$t_{clk} \ge$
Max. Taktfrequenz	f_{max}
Holdzeitbedingung	t _{hold}
Durchsatz	$t_{clk,j}$
Latenz	t _{clk} ·

itätszeit vor der aktiven Taktflanke litätszeit nach der aktiven Taktflanke

ng wird spätestens nach t_{c2q} am Ausgang verfügbar

 $\geq t_{1,c2q} + t_{logic,max} + t_{2,setup}$ (Nicht aufrunden)

 $\leq t_{c2q} + t_{logic,min}
ightarrow extsf{Dummy Gatter einbauen}$

 $t_{clk} \cdot \# Pipelinestufen (das zwischen den FFs)$

12.2 Pipelining

Nur bei synchronen(taktgesteuerten) Schaltungen möglich!

Set-Reset Latch:

Zwei gegenseitig rückgekoppelte NAND-Gatter. Active Low Logik:

 $\overline{S} = 0 \Rightarrow \overline{Q} = 1, \overline{R} = 0 \Rightarrow Q = 0$ \overline{R} \overline{S} Q0 1 0 $Q = \overline{Q}$

Enable-Latch: ändert Speicherzustand auf D nur wenn e=1. Level-Controlled \Leftrightarrow Latch

e Q 0 Q D

13.3 Flip-Flop

		_
clk	Q	Q
$0 \rightarrow 1$	D	\overline{D}
sonst	Q	\overline{Q}

Besteht aus zwei enable-Latches

Flip-Flop: Ändert Zustand bei steigender/(fallender) Taktflanke.

14 Automaten

DFA 6-Tupel $\{I, O, S, R, f, g\}$

Eingabealphabet 0 Ausgabealphabet SMenge von Zuständen Menge der Anfangszustände

 $R \subseteq S$ $f: S \times I \rightarrow S$ Übergangsrelation

Ausgaberelation

Mealy Automat Moore Automat

Zustandsnummerierung immer einfügen.

Moore	Mealy	
Ouput hängt nur vom Zustand ab	Output hängt von Zustand und Eingabe ab	
Kein direkter kombinatorischer Pfad Eingang⇒Ausgang	Generell weniger Zustände als Moore.	
s' = f(s, i), o = g(s)	s' = f(s, i), o = g(s, i)	
$g: S \rightarrow O$	$g: S \times I \rightarrow O$	

14.1 Wahrheitstabelle einer FSM

i	$S = S_0S_n$	o	$S' = S_1' S_n'$
0	00	00,00	$S'_{0,00}$
:	:	:	
1	11	$o_{1,11}$	$S'_{1,11}$

Moore: o ist f(S), nächster Zustand S' = f(i, S)**Mealy:** o ist f(i, S), nächster Zustand S' = f(i, S)