

Algebraic constructions on set partitions

Maxime Rey

Laboratoire d'Informatique de l'Institut Gaspard-Monge Université Paris-Est

2007 July 6

Several works mixed

- combinatorial algorithms,
- Hopf algebras,
- partial orders.

Goal · Similar construction over set partitions

Several works mixed

- combinatorial algorithms,
- Hopf algebras,
- partial orders.

permutations	FQSym	permutohedron
binary trees	PBT	associahedron
Std. Young tableaux	FSym	weak order on SYT
compositions	NCSF	hypercube
ordered set partitions	WQSym	pseudo-permutohedron
plane trees	TD	quotient of pp
segmented compositions	TC	quotient of pp

- combinatorial algorithms :
- Hopf algebra :
- partial order :

permutations	FQSym	permutohedron
binary trees	PBT	associahedron
Std. Young tableaux	FSym	weak order on SYT
compositions	NCSF	hypercube
ordered set partitions	WQSym	pseudo-permutohedron
plane trees	TD	quotient of pp
segmented compositions	TC	quotient of pp

■ Goal · Similar construction over set partitions

- combinatorial algorithms : Robinson-Schensted correspondence and jeu de taquin,
- Hopf algebra :
- partial order :

permutations	FQSym	permutohedron
binary trees	PBT	associahedron
Std. Young tableaux	FSym	weak order on SYT
compositions	NCSF	hypercube
ordered set partitions	WQSym	pseudo-permutohedron
plane trees	TD	quotient of pp
segmented compositions	TC	quotient of pp

- combinatorial algorithms : Robinson-Schensted correspondence and jeu de taquin,
- Hopf algebra : **FSym** (Poirier-Reutenauer Hopf algebra),
- partial order :

permutations	FQSym	permutohedron
binary trees	PBT	associahedron
Std. Young tableaux	FSym	weak order on SYT
compositions	NCSF	hypercube
ordered set partitions	WQSym	pseudo-permutohedron
plane trees	TD	quotient of pp
segmented compositions	TC	quotient of pp

Goal : Similar construction over set partitions

- combinatorial algorithms: Robinson-Schensted correspondence and jeu de taquin,
- Hopf algebra : FSym (Poirier-Reutenauer Hopf algebra),
- partial order : weak order on SYT.

permutations	FQSym	permutohedron
binary trees	PBT	associahedron
Std. Young tableaux	FSym	weak order on SYT
compositions	NCSF	hypercube
ordered set partitions	WQSym	pseudo-permutohedron
plane trees	TD	quotient of pp
segmented compositions	TC	quotient of pp

■ Goal : Similar construction over set partitions.

- combinatorial algorithms: Robinson-Schensted correspondence and jeu de taquin,
- Hopf algebra : FSym (Poirier-Reutenauer Hopf algebra),
- partial order : weak order on SYT.

permutations	FQSym	permutohedron
binary trees	PBT	associahedron
Std. Young tableaux	FSym	weak order on SYT
compositions	NCSF	hypercube
ordered set partitions	WQSym	pseudo-permutohedron
plane trees	TD	quotient of pp
segmented compositions	TC	quotient of pp

■ Goal : Similar construction over set partitions.

- combinatorial algorithms: Robinson-Schensted correspondence and jeu de taquin,
- Hopf algebra : **FSym** (Poirier-Reutenauer Hopf algebra),
- partial order : weak order on SYT.

permutations	FQSym	permutohedron
binary trees	PBT	associahedron
Std. Young tableaux	FSym	weak order on SYT
compositions	NCSF	hypercube
ordered set partitions	WQSym	pseudo-permutohedron
plane trees	TD	quotient of pp
segmented compositions	TC	quotient of pp

■ Goal : Similar construction over set partitions.

Related works

- M. Rosas, B. Sagan, *Symmetric Functions in Noncommuting Variables*, Transactions of the American Mathematical Society, to appear.
- N. Bergeron and M. Zabrocki, *The Hopf algebras of symmetric functions and quasisymmetric functions in non-commutative variables are free and cofree* preprint math.CO/0509265.
- lacktriangleq NCSym is a non-commutative and co-commutative Hopf algebra.

- 𝔻, a self-dual Hopf algebra on set partitions
 - Bidendriform ⇒ free, co-free and self-dual
 - Multiplicative bases
 - lacktriangledown PBT $\hookrightarrow \mathfrak{P} \hookrightarrow \mathsf{FQSym}$
- Bell order, a partial order on set partitions
 - Intervals of the Bell order describe the product of 𝔞
- Scrolling, a jeu de taquin-like on set partitions
- Robinson-Schensted analogue on set partitions
- Plactic-like monoid structure

- 𝔻, a self-dual Hopf algebra on set partitions
 - Bidendriform ⇒ free, co-free and self-dual
 - Multiplicative bases
 - \blacksquare PBT $\hookrightarrow \mathfrak{P} \hookrightarrow \mathsf{FQSym}$
- Bell order, a partial order on set partitions
 - lacksquare Intervals of the Bell order describe the product of ${\mathfrak P}$
- Scrolling, a jeu de taquin-like on set partitions
- Robinson-Schensted analogue on set partitions
- Plactic-like monoid structure

- 𝔻, a self-dual Hopf algebra on set partitions
 - Bidendriform ⇒ free, co-free and self-dual
 - Multiplicative bases
 - \blacksquare PBT $\hookrightarrow \mathfrak{P} \hookrightarrow \mathsf{FQSym}$
- Bell order, a partial order on set partitions
 - lacksquare Intervals of the Bell order describe the product of ${\mathfrak P}$
- Scrolling, a jeu de taquin-like on set partitions
- Robinson-Schensted analogue on set partitions
- Plactic-like monoid structure

- \blacksquare \mathfrak{P} , a self-dual Hopf algebra on set partitions
 - Bidendriform ⇒ free, co-free and self-dual
 - Multiplicative bases
 - lacktriangledown PBT $\hookrightarrow \mathfrak{P} \hookrightarrow \mathsf{FQSym}$
- Bell order, a partial order on set partitions
 - lacksquare Intervals of the Bell order describe the product of ${\mathfrak P}$
- Scrolling, a jeu de taquin-like on set partitions
- Robinson-Schensted analogue on set partitions
- Plactic-like monoid structure

A. Burstein and I. Lankham "Combinatorics of Patience Sorting Piles", SLC54A.

- 𝔻, a self-dual Hopf algebra on set partitions
 - Bidendriform ⇒ free, co-free and self-dual
 - Multiplicative bases
 - lacktriangledown PBT $\hookrightarrow \mathfrak{P} \hookrightarrow \mathsf{FQSym}$
- Bell order, a partial order on set partitions
 - lacksquare Intervals of the Bell order describe the product of ${\mathfrak P}$
- Scrolling, a jeu de taquin-like on set partitions
- Robinson-Schensted analogue on set partitions
- Plactic-like monoid structure

Robinson-Schensted analogue

 $\sigma = 586714923$

Ø

A. Burstein and I. Lankham "Combinatorics of Patience Sorting Piles", SLC54A.

Robinson-Schensted analogue

$$\sigma = 586714923$$

Ø

Robinson-Schensted analogue

$$\sigma = 586714923$$

5

Robinson-Schensted analogue

$$\sigma = 586714923$$

5

$$\sigma = 586714923$$

Robinson-Schensted analogue

$$\sigma = 586714923$$

5 < 6 < 8

Robinson-Schensted analogue

$$\sigma = 586714923$$

5 < 6 < 8

$$\sigma = 586714923$$

Robinson-Schensted analogue

$$\sigma = 586714923$$

Combinatorial algorithm Robinson-Schensted analogue

$$\sigma = 586714923$$

Robinson-Schensted analogue

$$\sigma = 586714923$$

Robinson-Schensted analogue

$$\sigma = 586714923$$

1 < 4 < 6

Robinson-Schensted analogue

$$\sigma = 586714923$$

 8

 5
 6

 1
 4
 7
 9

9

Robinson-Schensted analogue

$$\sigma = 586714923$$

8 6 5 4 1 2 7 9

Robinson-Schensted analogue

$$\sigma = 586714923$$

8 6 5 4 7 1 2 3 9

$$\sigma = 586714923$$

Robinson-Schensted analogue

There is no permutation σ such that:

$$P(\sigma) = \begin{bmatrix} 3 \\ 1 \end{bmatrix}$$

$$Q(\sigma) = \begin{array}{|c|c|c|} \hline 3 \\ \hline 1 \\ \hline 2 \\ \hline \end{array}$$

Combinatorial algorithm

Robinson-Schensted analogue

Definition

For $\sigma, \pi \in \mathfrak{S}$, we write

$$\sigma \equiv \pi$$
,

if $P(\sigma) = P(\pi)$. Then, σ and π belong to the same *Bell class*.

Definition

We consider the following elements of FQSym:

$$\mathbf{P}_{\delta} := \sum_{P(\sigma) = \delta} \mathbf{F}_{\sigma},$$

for every set partition δ .

Associative algebra

Theorem

Associative algebra

Theorem

$$12 \cup 21 = 1243 + 1423 + 4123 + 1432 + 4132 + 4312$$

Associative algebra

Theorem

$$12 \cup 21 = 1243 + 1423 + 4123 + 1432 + 4132 + 4312$$

Associative algebra

Theorem

$$12 \cup 21 = 1243 + 1423 + 4123 + 1432 + 4132 + 4312$$

Associative algebra

Theorem

$$1 \cup (213+231) = (1324+1342) + (3124) + (3214+3241+3421) + (3142+3412)$$

$$\downarrow$$

$$\{1\} \times \{21|3\} = \{1|32|4\} + \{31|2|4\} + \{321|4\} + \{31|42\}$$

Associative algebra

Theorem

The elements $(\mathbf{P}_{\delta})_{\delta \in SP}$ form a subalgebra of **FQSym** .

$$1 \uplus (213+231) = (1324+1342) + (3124) + (3214+3241+3421) + (3142+3412)$$

$$\downarrow$$

$$\{1\} \times \{21|3\} = \{1|32|4\} + \{31|2|4\} + \{321|4\} + \{31|42\}$$

Proposition (Restriction to intervals)

Let $\sigma, \pi \in \mathfrak{S}$. If $\sigma \equiv \pi$, then $Std(\sigma|_I) \equiv Std(\pi|_I)$.

Hopf algebra on set partitions Coalgebra

Theorem

The elements $(\mathbf{P}_{\delta})_{\delta \in SP}$ form a subcoalgebra of FQSym .

Proposition

Let u, v, u', v' be words. If $u \equiv v$ and $u' \equiv v'$, then $u \cdot v \equiv u' \cdot v'$.

Hopf algebra on set partitions Coalgebra

Theorem

The elements $(\mathbf{P}_{\delta})_{\delta \in SP}$ form a subcoalgebra of **FQSym** .

$$\bar{\Delta}((4213+4231)) = 1 \otimes (213+231) + 21 \otimes 12 + 21 \otimes 21 + 321 \otimes 1 + 312 \otimes 1$$

$$\downarrow$$

$$\bar{\Delta}(\{421|3\}) = \{1\} \otimes \{21|3\} + \{21\} \otimes (\{1|2\} + \{21\}) + (\{321\} + \{31|2\}) \otimes \{1\}$$

Proposition

Let u, v, u', v' be words. If $u \equiv v$ and $u' \equiv v'$, then $u \cdot v \equiv u' \cdot v'$

Hopf algebra on set partitions Coalgebra

Theorem

The elements $(\mathbf{P}_{\delta})_{\delta \in SP}$ form a subcoalgebra of **FQSym** .

$$\Delta((4213+4231)) = 1 \otimes (213+231) + 21 \otimes 12 + 21 \otimes 21 + 321 \otimes 1 + 312 \otimes 1$$

$$\downarrow$$

$$\bar{\Delta}(\textcolor{red}{\{421|3\}}) = \{1\} \otimes \textcolor{red}{\{21|3\}} + \{21\} \otimes (\{1|2\} + \{21\}) + (\{321\} + \{31|2\}) \otimes \{1\}$$

Proposition

Let u, v, u', v' be words. If $u \equiv v$ and $u' \equiv v'$, then $u \cdot v \equiv u' \cdot v'$.

Theorem

The elements $(\mathbf{P}_{\delta})_{\delta \in SP}$ form a Hopf subalgebra of FQSym .

Proposition

 ${\cal B}$ is a bidendriform bialgebra. Hence, ${\cal B}$ is free, cofree and self-dual

Theorem

The elements $(\mathbf{P}_{\delta})_{\delta \in SP}$ form a Hopf subalgebra of **FQSym** .

Proposition

 ${\cal B}$ is a bidendriform bialgebra. Hence, ${\cal B}$ is free, cofree and self-dual.

31

31 642

31 642 5

Proposition

In every Bell class,

- 1 the canonical element is the unique permutation of minimal length,
- 2 there is a unique element of maximal length.

Definition

Rewriting rule:

$$..b\underbrace{...}_{>b}\underbrace{ac}.. \longrightarrow ..b\underbrace{...}_{>b}\underbrace{ca}..$$

Theorem

$$\forall \sigma \in \mathfrak{S}, P(\sigma) \xrightarrow{*} \sigma$$

Definition

Rewriting rule:

$$..b$$
 $\underbrace{...}_{>b}$ $ac..$ \longrightarrow $..b$ $\underbrace{...}_{>b}$ $ca..$

Theorem

$$\forall \sigma \in \mathfrak{S}, P(\sigma) \xrightarrow{*} \sigma.$$

22/03/2007

Bell classes Intervals

316425

22/03/2007

Bell classes Intervals

316425

Bell classes Intervals

Bell classes

Bell classes Intervals

Theorem

Bell classes are intervals of the permutohedron.

Intervals on \mathfrak{S}_4

1234

6 5 4 1 2 3 7

5			
4	6		
1	2	3	7

5			
4	6		
1	2	3	7

6			
5	4		
1	2	3	7

6 5 4 1 2 3 7

5 4 6 1 2 3 7

3 alone in its column7 greater than 4

5			
4	6		
1	2	3	7

5			
4	6		
1	2	3	7

6			
5	4		
1	2	3	7

Intervals & Product

Intervals & Product

Intervals & Product

Theorem

For every set partitions α, β ,

$$\mathbf{P}_{\alpha} imes \mathbf{P}_{eta} = \sum_{(\alpha \mid eta) \leq \delta \leq (\alpha \sqcup eta)} \mathbf{P}_{\delta}$$

Intervals & Product

Scrolling

Jeu de taquin-like

$$\sigma = 179524863$$

 $\sigma = 179524863$

5 < **7**

$$\sigma = 179524863$$

1	7	9		
	5	0		
		2	4	8
				6
 				3

$$\sigma = 179524863$$

1	7				
0	5	9			
		2	4	8	
				6	
! !				3	

$$\sigma = 179524863$$

	7			
1	5	9		
	0	2	4	8
				6
				3

$$\sigma = 179524863$$

	7			
1	5	9		
_	2	0	4	8
:				6
				3

$$\sigma = 179524863$$

$$\sigma = 179524863$$

	7			
1	5	9	8	
0	2	4	6	
				3

$$\sigma = 179524863$$

	7			
	5	9	8	
1	2	4	6	
			0	3

$$\sigma = 179524863$$

	7		
	5	9	8
1	2	4	6
0			3

$$\sigma = 179524863$$

	7		
	5	9	
1	2	4	8
	0	3	6

$$\sigma = 179524863$$

	7	9	
1	5	4	8
0	2	3	6

Jeu de taquin-like

$$\sigma = 179524863$$

$$S(\sigma) = \begin{bmatrix} 7 & 9 \\ 5 & 4 & 8 \\ 1 & 2 & 3 & 6 \end{bmatrix}$$

$$\sigma = 179524863$$

$$S(\sigma) = \begin{bmatrix} 7 & 9 \\ 5 & 4 & 8 \end{bmatrix} = P(\sigma)$$

$$\begin{bmatrix} 1 & 2 \end{bmatrix} \times \begin{bmatrix} 2 & 1 \end{bmatrix}$$

4

+

3

+

3

3

_

3

+

3

