

EE2090: Kĩ thuật điện & Điều khiến quá trình

Chương 4: Phân tích và đánh giá chất lượng hệ thống điều khiến quá trình

Nội dung chương 4

- 4.1 Xây dựng hàm truyền đạt của hệ thống
- 4.2 Tính ổn định của hệ thống và tiêu chuẩn ổn định đại số Routh
- 4.3 Các tiêu chí đánh giá chất lượng điều khiển

4.1 Xây dựng hàm truyền đạt của hệ thống

- Hệ liên tục một vào một ra (SISO)
 - -x(t) tín hiệu vào có ảnh Laplace X(s)
 - -y(t) tín hiệu ra có ảnh Laplace Y(s)
- Hàm truyền $G(s) = \frac{U(s)}{Y(s)}\Big|_{\text{trạng thái đầu=0}}$
- Mô tả bằng sơ đồ khối

Đại số sơ đồ khối

- Mô tả hệ thống một cách trực quan
- Dễ dàng chia nhỏ một hệ thống lớn gồm nhiều khâu, nhiều công đoạn thành các hệ thống con
- Mỗi hệ thống con là một khâu/công đoạn với hàm truyền được xác định dễ dàng hơn
- Đại số sơ đồ khối:
 - Làm việc với các khối biểu diễn các hệ con
 - Sơ đồ quan hệ giữa các khối (là các hàm truyền hợp thức) có thể được mô tả bằng các phép tính đại số

Hai khối nối tiếp

$$\begin{cases}
Y(s) = G_1(s)W(s) \\
W(s) = G_2(s)U(s)
\end{cases} \Rightarrow Y(s) = G_1(s)G_2(s)U(s)$$

Hàm truyền:

$$G(s) = \frac{Y(s)}{U(s)} = G_1(s)G_2(s)$$

Hàm truyền G(s) của hệ thống gồm hai khối nối tiếp là tích của hai hàm truyền của hai khối đó.

Hai khối song song

$$\xrightarrow{u(t)} G_1(s) \pm G_2(s) \xrightarrow{y(t)}$$

- $y(t) = y_1(t) \pm y_2(t)$
- $G(s) = \frac{Y_1(s) \pm Y_2(s)}{U(s)} = \frac{Y_1(s)}{U(s)} \pm \frac{Y_2(s)}{U(s)} = G_1(s) \pm G_2(s)$
- Hàm truyền G(s) của hệ sơ đồ nối song song là tổng/hiệu của các hàm truyền thành phần $G_1(s)$ và $G_2(s)$

Hệ có hai khối nối hồi tiếp (hệ có phản hồi)

- $\bullet e(t) = u(t) \pm w(t)$
- Suy ra

$$Y(s) = G_1(s)[U(s) \pm G_2(s)Y(s)]$$

= $G_1(s)U(s) \pm G_1(s)G_2(s)Y(s)$

Hàm truyền của hệ có phản hồi:

$$G(s) = \frac{Y(s)}{U(s)} = \frac{G_1(s)}{1 \mp G_2(s)G_1(s)}$$

Ví dụ

Biến đổi sơ đồ khối

Ta được hàm truyền của cả hệ thống:

$$G(s) = \frac{G_2 + G_2 G_1}{1 + G_2}$$

Ví dụ

Biến đổi sơ đồ khối

$$\frac{u(t)}{1 + G_1(G_2 + G_3)} \xrightarrow{y(t)}$$

Ta được hàm truyền của cả hệ thống:

$$G(s) = \frac{G_1(G_2 + G_3)}{1 + G_1(G_2 + G_3)}$$

Chuyển nút nối tín hiệu từ sau ra trước:

• Hàm truyền G(s) có tín hiệu ra y(t) là tổng/hiệu của tín hiệu ra $y_1(t)$ của G(s) và một tín hiệu ra $y_2(t)$ khác:

$$Y(s) = Y_1(s) \pm Y_2(s) = G(s)[U(s) \pm \frac{1}{G(s)}Y_2(s)]$$

Tín hiệu đầu vào của khối G(s) là tổng/hiệu của hai tín hiệu u(t) và tín hiệu đầu ra của khối $\frac{1}{G(s)}$ có đầu vào là $y_2(t)$

Chuyển nút nối tín hiệu từ trước ra sau:

Khối G(s) có tín hiệu đầu vào là tổng/hiệu của hai tín hiệu thành phần $u_1(t)v$ à $u_2(t)$.

$$Y(s) = G(s)[U_1(s) \pm U_2(s)]$$

= $G(s)U_1(s) \pm G(s)U_2(s)$

Chuyển nút rẽ nhánh tín hiệu từ trước ra sau một khối:

Chuyển nút rẽ nhánh tín hiệu từ sau tới trước một khối:

Chuyển nút rẽ nhánh từ trước ra sau một nút nối:

Chuyển nút rẽ nhánh từ sau tới trước một nút nối:

4.2 Tính ổn định của hệ thống

- Khái niệm ổn định BIBO (Bound Inputs Bound Output):
 - Một hệ thống được gọi là ổn định nếu khi kích thích hệ bằng tín hiệu x(t) bị chặn ở đầu vào, thì hệ sẽ có đáp ứng y(t) ở đầu ra cũng bị chặn.
- Ngoài khái niệm ổn định BIBO còn có nhiều định nghĩa khác nhau về tính ổn định của hệ thống: tiệm cận Lyapunov, ổn định tuyệt đối... Tuy nhiên nếu chỉ giới hạn ở hệ tuyến tính thì các khái niệm ổn định trên là tương đương nhau

Tính ổn định của hệ thống

- Các tiêu chí chất lượng:
 - Sai lệch tĩnh
 - Thời gian quá độ
 - Độ quá điều chỉnh
- Tính bền vững: Hệ phải làm việc không những đạt được chất lượng tĩnh và động đã đề ra mà còn phải giữ được những chất lượng đó cho dù:
 - Có bất cứ một sự thay đổi nào không lường trước được xảy ra bên trong hệ thống.
 - Có sự tác động của những tín hiệu nhiễu không mong muốn vào hệ thống.

Định lý về tính ổn định

- Xét hệ có hàm truyền $G(s) = \frac{B(s)}{A(s)}$, phương trình đặc tính: $A(s) = a_n s^n + a_{n-1} s^{n-1} + \dots + a_1 s + a_0 = 0$
- Định lý về tính ổn định của hệ thống:
 Hệ ổn định BIBO ⇔ phương trình đặc tính có các điểm cưc nằm bên trái truc ảo
- Chỉ cần một nghiệm của phương trình nằm bên phải trục ảo thì hệ không ổn định
- Nếu phương trình có nghiệm nằm trên trục ảo (≠ 0) thì hệ ở biên giới ổn định

Da thức Hurwitz

- Định nghĩa: Đa thức A(s) được gọi là đa thức Hurwitz nếu tất cả các nghiệm của nó đều nằm bên trái trục ảo (có phần thực âm và khác 0).
- (Điều kiện cần và đủ): Cho đa thức A(s). Để A(s) là Hurwitz thì cần và đủ là đa thức đối ngẫu với nó $A_{dn}(s) = a_0 s^n + s_1 s^{n-1} + ... + a_{n-1} s + a_n$ cũng là đa thức Hurwitz.
- (Điều kiện cần): Nếu đa thức A(s) là Hurwitz thì tất cả các hệ số $a_0, a_1, ..., a_n$ của nó phải cùng dấu và khác 0. Nếu A(s) là đa thức có bậc không lớn hơn hai $(n \le 2)$ thì điều kiện cần trên cũng là điều kiện đủ.

© HĐC 2019.1

Tiêu chuẩn ổn định đại số Routh

1. Lập bảng Routh (n+1) hàng) như sau

a_n	a_{n-2}	a_{n-4}	•••
a_{n-1}	a_{n-3}	a_{n-5}	•••
$b_1 = \frac{a_{n-1}a_{n-2} - a_na_{n-3}}{a_{n-1}}$	$b_2 = \frac{a_{n-1}a_{n-4} - a_na_{n-5}}{a_{n-1}}$	$b_3 = \frac{a_{n-1}a_{n-6} - a_na_{n-7}}{a_{n-1}}$	•••
$c_1 = \frac{b_1 a_{n-3} - a_{n-1} b_2}{b_1}$	$c_2 = \frac{b_1 a_{n-5} - a_{n-1} b_3}{b_1}$	$c_3 = \frac{b_1 a_{n-7} - a_{n-1} b_4}{b_1}$	
:			

- 2. Đa thức A(s) là một đa thức Hurwitz (hệ ổn định) khi và chỉ khi các hệ số $a_n, a_{n-1}, b_1, c_1, \dots$ trong cột đầu của bảng Routh cùng dấu và khác 0
- 3. Số lần đổi dấu trong cột đầu bằng số các nghiệm của A(s) nằm bên phải của mặt phẳng phức (có phần thực dương).
- 4. Quá trình lập bảng sẽ dừng (trước khi đến hàng n+1) khi gặp phần tử đầu tiên trong hàng bằng không (khi đó hệ có thể ở biên giới ổn định)

Ví dụ xét tính ốn định của hệ

 Ví dụ 1: Cho hệ có hàm truyền thực – hữu tỷ, hợp thức với đa thức mẫu số

$$A(s) = s^4 + 8s^3 + 18s^2 + 16s + 5$$

 Ví dụ 2: Cho hệ có hàm truyền thực – hữu tỷ, hợp thức với đa thức mẫu số

$$A(s) = s^4 + 8s^3 + 2s^2 + 16s + 5$$

Ví dụ 3: Xét hệ có cấu trúc như trong hình

$$G(s) = \frac{s+4}{s(s+2)(s^2+0,5+1)}$$

Hãy tìm hệ số khuếch đại k để hệ được ốn định.

4.3 Các tiêu chí đánh giá chất lượng điều khiển trên miền thời gian

- Đánh giá thông qua phân tích hoặc thông qua mô phỏng
- Đánh giá bằng phương pháp đại số hoặc phương pháp đồ thị
- Đánh giá dựa trên từng chỉ tiêu riêng rẽ hoặc dựa trên chỉ tiêu tổng hợp

Đáp ứng với thay đổi giá trị đặt

Các chỉ tiêu chất lượng trên miền thời gian

- Thời gian đáp ứng (response time, Tr): Thời gian cần cho đầu ra lần đầu tiên đạt được 90% giá trị cuối cùng. Thời gian đáp ứng càng nhỏ càng tốt.
- Thời gian quá độ (settling time, Ts): Sau thời gian này đầu ra y(t) nằm lại trong phạm vi sai lệch cho phép so với giá trị xác lập (thông thường ±5% hoặc ±2% tùy theo yêu cầu). Thời gian quá độ càng nhỏ càng tốt.
- Độ quá điều chỉnh (overshoot): Chênh lệch giữa giá trị đỉnh và giá trị xác lập (A hoặc h_{max}) chia cho giá trị đầu ra xác lập. Thông thường, độ quá điều chỉnh được qui định không được phép vượt quá 20%-25%.

$$\sigma\% = \frac{h_{max} - h_{\infty}}{h_{\infty}} \cdot 100\%$$

Các chỉ tiêu chất lượng trên miền thời gian

- Hệ số tắt dần (decay ratio): Tỉ số giữa đỉnh thứ hai và đỉnh thứ nhất (so với giá trị xác lập), tức B/A. Hệ số tắt dần yêu cầu thường không lớn hơn 0.3.
- Sai lệch tĩnh (steady state error): Sai lệch giữa giá trị xác lập của đầu ra so với giá trị đặt (e(t) = r(t) y(t)). Sai lệch tĩnh càng nhỏ càng tốt, thông thường chỉ yêu cầu nằm trong một giới hạn nào đó.

$$\delta = \lim_{t \to \infty} e(t) = \lim_{s \to 0} sE(s)$$

Tiêu chuẩn tích phân (chuẩn tín hiệu)

Tích phân bình phương sai lệch(Integral Squared Error, ISE)

$$||e(t)||_2 = \left(\int_0^\infty |e(\tau)|^2 d\tau\right)^{1/2}$$

Tích phân sai lệch tuyệt đối (Integral Absolute Error, IAE):

$$||e(t)||_1 = \int_0^\infty e(\tau) d\tau$$

Mở rộng để quan tâm tới diễn biến của biến điều khiển:

$$J = \left(\int_0^\infty |e(\tau)|^2 \, d\tau \right)^{1/2} + \lambda \left(\int_0^\infty |\Delta u(\tau)|^2 \, d\tau \right)^{1/2}$$

Ví dụ tính sai lệch tĩnh

Cho hệ thống có cấu trúc:

- Tính sai lệch tĩnh với r(t) = 1(t), khi:
 - -K(s) là bộ điều khiển tỉ lệ (P), G(s) là khâu quán tính bậc nhất
 - K(s) là bộ điều khiển tỉ lệ (P), G(s) là khâu tích phân quán tính bậc nhất
 - K(s) là bộ điều khiển tỉ lệ tích phân (PI), G(s) là khâu quán tính bậc nhất

Đáp ứng quá độ với nhiễu quá trình

(a) Đáp ứng đầu ra

(b) Đáp ứng tín hiệu điều khiển