

Ансамбли моделей. Ч1.

КУХАЛЬСКИЙ НИКОЛАЙ ГЕННАДЬЕВИЧ

Вопросы занятия

1. Классификаторы с голосованием;

- 2. Бэггинг и вставка;
- 3. Случайный лес.

В конце занятия научимся:

- бороться с переобучением при помощи ансамблей;
- объяснять алгоритм случайного леса и использовать его в реальных задачах;
- интерпретировать ML модель, автоматически оценивая важность признаков.

Классификаторы с голосованием

Классификаторы с голосованием

ПРАКТИКА

Voting.ipynb

Проблем с некоторыми моделями

НЕЛИНЕЙНЫЕ МОДЕЛИ ЧАСТО ПЕРЕОБУЧАЮТСЯ

BAGGING =
BOOTSTRAP
AGGREGATION

ПОВТОРЕНИЕ: BIAS/VARIANCE

АЛГОРИТМ

Дано: выборка \boldsymbol{X} размера \boldsymbol{N}

- 1. Генерируем подвыборку X_i размера N с возвращением
- 2. Обучим базовый алгоритм $a_i(x)$ на выборке
- 3. Повторяем шаги 1-2 *M* раз
- 4. Усредняем (регрессия) или проводим голосование среди ответов $a_i(x)$:

$$a(x) = rac{1}{M} \sum_{i=1}^M a_i(x)$$

РАЗДЕЛЯЮЩАЯ ПОВЕРХНОСТЬ

Решающее дерево

РАЗДЕЛЯЮЩАЯ ПОВЕРХНОСТЬ

Бэггинг 300 решающих деревьев

ВАЖНО

минимальная корреляция ошибок базовых алгоритмов

строим вариативные, неустойчивые модели

решающие деревья отличный выбор!

ПОЧЕМУ УМЕНЬШАЕТСЯ VARIANCE?

Центральная предельная теорема:

^{*}википедия, центральная предельная теорема

ОСОБЕННОСТИ

- уменьшает variance модели;
- заметно улучшает качество нестабильных базовых алгоритмов;
- может увеличить bias и ухудшить качество стабильного алгоритма, т.к. в каждой подвыборке в среднем остается на 37% меньше данных (выводится через второй замечательный предел)

ПРАКТИКА

Bagging.ipynb

Проблем с некоторыми моделями

ПРОБЛЕМА ИНТЕРПРЕТАЦИИ СЛОЖНЫХ МОДЕЛЕЙ

АЛГОРИТМ

Базовый алгоритм $\,a_i(x)\,$ - решающее дерево

- 1. Генерируем подвыборку с возвращением (bagging)
- 2. Строим на ней дерево $a_i(x)$, причем при каждом разбиении выбираем m случайных признаков (метод случайных подпространств)
- 3. Повторяем шаги 1-2 *M* раз
- 4. Усредняем (регрессия) или проводим голосование среди ответов $a_i(x)$:

$$a(x) = rac{1}{M} \sum_{i=1}^M a_i(x)$$

ПАРАМЕТРЫ ДЕРЕВЬЕВ

Реализация sklearn.ensemble.RandomForestClassifier/Regressor

- criterion критерий построения дерева
- max_depth максимальная глубина дерева
- обычно 10-20, больше глубина –> больше риск переобучения
- min_samples_leaf минимальное число объектов в листе
- обычно 20+, больше объектов –> меньше риск переобучения

ПАРАМЕТРЫ ЛЕСА

Реализация sklearn.ensemble.RandomForestClassifier/Regressor

- n_estimators кол-во деревьев чем больше тем лучше
- max_features число признаков случайного подпространства
- n_jobs кол-во потоков для одновременного построения деревьев
 большая прибавка к скорости на многоядерных процессорах

IT-Academy

ЧИСЛО ДЕРЕВЬЕВ

число признаков

ЧИСЛО ОБЪЕКТОВ В ЛИСТЕ

МАКСИМАЛЬНАЯ ГЛУБИНА

РАЗДЕЛЯЮЩАЯ ПОВЕРХНОСТЬ

Случайный лес

ВАЖНОСТЬ ПРИЗНАКОВ

- несколько способов подсчета важности MDI, MDA, ...
- в sklearn используется MDI;
- усредненное по всем деревьям в ансамбле кол-во сплитов по признаку, взвешенное на прирост информации (Information gain) и долю объектов в вершине, в которой производится этот сплит

плюсы

- устойчив к переобучению;
- устойчивость к выбросам;
- дает хорошее качество "из коробки";
- встроенная оценка важности признаков;
- быстрая реализация.

МИНУСЫ

- сложность интерпретации по сравнению с одним деревом;
- плохо справляется с очень большим числом признаков;
- работает дольше линейных моделей:

ПРАКТИКА

Ensemble_methods.IPYNB

ЧТО МЫ СЕГОДНЯ УЗНАЛИ

- Как бороться с переобучением при помощи ансамблей моделей
- Как устроен Random Forest и как происходит оценка важности признаков
- Как правильно делать мета-признаки и сооружать многоуровневые модели
- Потренировались строить ансамбли разных типов на практике

Ансамбли моделей. Ч1.

КУХАЛЬСКИЙ НИКОЛАЙ ГЕННАДЬЕВИЧ