Hromaty Werosi U waruble avouratyphoss. 1) ighticity 2) Lendona pratha (hylaydysaija sp²)
3) Spretone marania il 4) Reguso Hirblio

Aromatylely: liales e-w=lln2 glade nEN 3) Tol 4) Tah avomotypy Ardyanatyerny: e-11=lun golivar no N 1) Tah 2) Fah 3) Tale distyonomatyling Regula Hiickla Obowiazeil bla Liverphon We Lightayor wit 3 previousic

- odda sudjon William pors, zeby N 24 horder motyenost 1) Tak 2) Take 2) Take 3) 7ah 4) Forh m=1 4) John 1 aromotylly avonatyery

Delokalizacja elektronów i aromatyczność

Aromatyczność, czyli w najprostszym ujęciu zjawisko występowania cyklicznego układu wiązań podwójnych, które wykazują efekt delokalizacji elektronów π i spełniają regułę Hückla, ma bardzo istotny wpływ na szereg właściwości związków chemicznych. Związki takie są zwykle bardzo stabilne, mniej reaktywne niż alkeny i mają płaską strukturę. Dlatego ważne jest aby umieć rozpoznać na podstawie struktury chemicznej czy dany związek jest aromatyczny.

Jedną z metod rozpoznawania związków aromatycznych jest użycie poniższej tabeli, w której przykładowo zanalizowano benzen:

struktura	cykliczny	sprzężone wiązania wielokrotne	wiązania π	wolne pary elektronów sprzężone z wiązaniami π	elektrony π	4n+2	aromatyczny	
benzen	tak	tak	3	0	6	tak (n=1)	tak	

Wypełniając po kolei tabelę widzimy, że benzen a) jest związkiem cyklicznym, b) ma układ sprzężonych wiązań wielokrotnych, posiada c) trzy wiązania π , d) zero wolnych par elektronów oraz e) sześć elektronów π . W związku z tym spełnia regułę Hückla (regułę 4n+2), która brzmi: związek jest prawdopodobnie aromatyczny, gdy w układzie wiązań wielokrotnych tworzących układ cykliczny występuje 4n+2 elektronów π (gdzie n- dowolna liczba naturalna).

Pokrewną w stosunku do aromatyczności cechą jest antyaromatyczność, która ma miejsce wtedy, gdy cykliczny układ ze sprzężonymi wiązaniami wielokrotnymi zawiera 4n elektronów π . Antyaromatyczność destabilizuje cząsteczkę, która często, aby uniknąć destabilizacji, zmienia kształt i przyjmuje wygiętą konformację, co powoduje zerwanie układu oddziałujących ze sobą elektronów/wiązań π .

Delokalizację elektronów dla związków chemicznych można przedstawić graficznie np. poprzez narysowanie struktur rezonansowych, różniących się jedynie rozmieszczeniem elektronów π lub elektronów niewiążących (obecnych w wolnych parach elektronowych). Przykładowo dla benzenu struktury rezonansowe to:

Polecenia:

Wypełnij analogiczną tabelę dla podanych związków chemicznych i dla każdego z nich narysuj przynajmniej dwie możliwe struktury rezonansowe (o ile istnieją):

a. Naftalen

b. Etylen.

c. Cyklobutadien.

d. Pirol.

- e. Pirydyna.
- f. Wskaż, które z układów a-e są antyaromatyczne i wyjaśnij jednym zdaniem, dlaczego.

Struktura	Cykliczny	sp. wiązania wielokrotne	Wiązania pi	Wolne pary elektronowe sprzężone z wiązaniami pi	Elektrony pi	4x+2	Aromatyczny	
	tal	tah	5	0	10	tak (n=2)	tal	
H2C=CH2	nie	hie		0	7	nie	vil	
1	-lah	tale	2	G	4	n'ie	nic	
	tah	toch	2	1	So	forh (n=1)	tale	
[N]	tah	tah	3	0	6	tak m-1)	409	

Polecenia:

a. (16 m.) Na podstawie tabeli sprawdzania aromatyczności, określ czy podane poniżej związki są aromatyczne.

Struktura	Cykliczny	sp. wiązania wielokrotne	Wiązania pi	Wolne pary elektronowe sprzężone z wiązaniami pi	Elektrony pi	4x+2	Aromatyczny
	tak	tah	2		G	tah	lic
	tah	-lah	2	0	4	Lie	live
	tork	toh	4		10	toh	tah
	tala	tah	5	0	10	tah	tal
	toh	tah	4	0	8	wie	wil

Struktura	Cykliczny	sp. wiązania wielokrotne	Wiązania pi	Wolne pary elektronowe sprzężone z wiązaniami pi	Elektrony pi	4x+2	Aromatyczny	
N karbazol	torh	toh	Co		14	+ah	toh	
heptalen	tah	tah	0	0	12	we	lie	
cyklooktatetraen	4ah	tal	Ч	0	8	wie	wre	

Wg znanych kryteriów określ, które z poniższych związków są aromatyczne, niearomatyczne lub antyaromatyczne:

