Pumping-Lemma

Zeigen Sie jeweils, dass die angegebene Sprache nicht kontextfrei ist:

Exkurs: Pumping-Lemma für Kontextfreie Sprachen

Es sei L eine kontextfreie Sprache. Dann gibt es eine Zahl j, sodass sich alle Wörter $\omega \in L$ mit $|\omega| \geq j$ zerlegen lassen in $\omega = uvwxy$, sodass die folgenden Eigenschaften erfüllt sind:

- (a) $|vx| \ge 1$ (Die Wörter v und x sind nicht leer.)
- (b) $|vwx| \le j$ (Die Wörter v, w und x haben zusammen höchstens die Länge j.)
- (c) Für alle $i \in \mathbb{N}_0$ gilt $uv^iwx^iy \in L$ (Für jede natürliche Zahl (mit 0) i ist das Wort uv^iwx^iy in der Sprache L)

(a) $L_1 = \{ ww \mid w \in \{a, b\}^* \}$

Sei L_1 kontextfrei. Dann existiert nach dem Pumping-Lemma eine Zahl j, so dass für jedes Wort $\omega \in L_1$ mit $|\omega| \geq j$ eine Zerlegung $\omega = uvwxy$ existiert, für die gilt: |vx| > 0, $|vwx| \leq n$ und für jedes $i \in \mathbb{N}$ ist $uv^ixy^iz \in L_1$.

Wähle $\omega = a^n b^n a^n b^n$. Dann gibt es für jede Zerlegung $\omega = uvxyz$ mit den obigen Bedingungen zwei Möglichkeiten:

- vwx besteht aus a^jb^k mit j + k > 0.
- vwx besteht aus $b^j a^k$ mit j + k > 0.

Dann ist in beiden Fällen $uv^0xy^0z \notin L_1$.

(b)
$$L_2 = \{ a^k b^l c^m | k > l > m; k, l, m \in N \}$$

Sei L_2 kontextfrei. Dann existiert nach dem Pumping-Lemma eine Zahl j, so dass für jedes Wort $\omega \in L_2$ mit $|\omega| \geq j$ eine Zerlegung $\omega = uvwxy$ existiert, für die gilt: |vx| > 0, $|vwx| \leq j$ und für jedes $i \in \mathbb{N}$ ist $uv^iwx^iy \in L_2$.

Wähle $\omega=a^nb^{n-1}c^{n-2}$. Dann gibt es für jede Zerlegung $\omega=uvwxy$ mit den obigen Bedingungen zwei Möglichkeiten:

- vwx enthält kein a. Dann ist $uv^2wx^2y \notin L_2$.
- vwx enthält mindestens ein a. Dann ist $uv^0wx^0y\notin L_2$.