

UNIVERSIDAD POLITECNICA SALESIANA

SEDE CUENCA

CARRERA: INGENIERIA DE SISTEMAS

Nombre: Bryam Gabriel Mora Lituma

Materia: Sistemas Expertos

Fecha:10/02/2021

Familiarizarse con las operaciones fundamentales de los conjuntos difusos y cómo desarrollar las 3 etapas fundamentales de modelado de un sistema difuso: fuzzification, inference, defuzzification.

En un galpón se tiene una temperatura de 18 grados centígrados, y una humedad de aproximadamente 22 grados centígrados. Según estos valores determinar cuál es la velocidad que debería estar funcionando el motor.

Evidencias.

1. Aplicacion de la Logica Difusa.

Codigo para realizar el calculo.

```
In [ ]:
H
    1 import numpy as np
    2 import skfuzzy as fuzz
    3 from skfuzzy import control as ctrl
      temperatura = ctrl.Antecedent(np.arange(0, 61, 2), 'temperatura')
      humedad = ctrl.Antecedent(np.arange(10, 71, 2), 'humedad')
    7 RPMotor = ctrl.Consequent(np.arange(0, 61, 2), 'RPMotor')
      temperatura['bajo'] = fuzz.trapmf(temperatura.universe, [-1, 0, 10, 20])
   10 temperatura['medio'] = fuzz.trapmf(temperatura.universe, [10, 20, 40, 50])
   11 | temperatura['alto'] = fuzz.trapmf(temperatura.universe, [40, 50, 60, 61])
   12
   13 humedad['bajo'] = fuzz.trapmf(humedad.universe, [-1,10, 20, 30])
   14 humedad['medio'] = fuzz.trapmf(humedad.universe, [20, 30, 50, 60])
   15 humedad['alto'] = fuzz.trapmf(humedad.universe, [50, 60, 70, 71])
   16
   17 RPMotor['bajo'] = fuzz.trapmf(RPMotor.universe, [-1,0, 10, 20])
   18 RPMotor['medio'] = fuzz.trapmf(RPMotor.universe, [10, 20, 40, 50])
   19 RPMotor['alto'] = fuzz.trapmf(RPMotor.universe, [40, 50, 60, 61])
```

Reglas.

Temperatura	Humedad	RPM del Motor
Baja	Alta	Baja
Media	Alta	Media
Alta	Alta	Media
Baja	Media	Baja
Media	Media	Baja
Alta	Media	Media
Baja	Baja	Baja
Media	Baja	Baja
Alta	Baja	Alta

Reglas a considerar

Rangos para realizar el calculo.

Valores del problema

Rangos establecidos mediante la libreria.

Creacion de las reglas.

```
In [ ]:
    1 rule1 = ctrl.Rule(temperatura['bajo'] and humedad['alto'], RPMotor['bajo'])
М
      rule2 = ctrl.Rule(temperatura['medio'] and humedad['alto'], RPMotor['medio'])
       rule3 = ctrl.Rule(temperatura['alto'] and humedad['alto'], RPMotor['medio'])
       rule4 = ctrl.Rule(temperatura['bajo'] and humedad['medio'], RPMotor['bajo'])
       rule5 = ctrl.Rule(temperatura['medio'] and humedad['medio'], RPMotor['bajo'])
       rule6 = ctrl.Rule(temperatura['alto'] and humedad['medio'], RPMotor['medio'])
       rule7 = ctrl.Rule(temperatura['bajo'] and humedad['bajo'], RPMotor['bajo'])
      rule8 = ctrl.Rule(temperatura['medio'] and humedad['bajo'],RPMotor['bajo'])
      rule9 = ctrl.Rule(temperatura['alto'] and humedad['bajo'], RPMotor['alto'])
   12
      rule10 = ctrl.Rule(humedad['alto'] and temperatura['bajo'], RPMotor['bajo'])
   14 rule11 = ctrl.Rule(humedad['alto']and temperatura['medio'], RPMotor['medio'])
      rule12 = ctrl.Rule(humedad['alto']and temperatura['alto'], RPMotor['medio'])
   16
      rule13 = ctrl.Rule(humedad['medio'] and temperatura['bajo'], RPMotor['bajo'])
      rule14 = ctrl.Rule(humedad['medio'] and temperatura['medio'], RPMotor['bajo'])
      rule15 = ctrl.Rule(humedad['medio'] and temperatura['alto'], RPMotor['medio'])
   20
      rule16 = ctrl.Rule(humedad['bajo'] and temperatura['bajo'], RPMotor['bajo'])
      rule17 = ctrl.Rule(humedad['bajo'] and temperatura['medio'],RPMotor['bajo'])
   23 rule18 = ctrl.Rule(humedad['bajo'] and temperatura['alto'], RPMotor['alto'])
```

Interfaz con Tkinter.

Selecion de la temperatura y humedad y calculo de la logica difusa.

Grafica de Salida.

