# Estimación en áreas pequeñas

Indicadores de pobreza y métodos directos

Andrés Gutiérrez Comisión Económica para América Latina y el Caribe

2019

- Introducción
- 2 Indicadores comunes de pobreza y desigualdad
- Métodos directos para la desagregación de datos de pobreza
- Métodos directos: Estimadores Horvitz-Thompson y Hájek
- Métodos directos: Estimadores GREG y de calibración
- 6 Resultados: Estimación de ingreso medio en sectores de Montevideo

Introducción Indicadores comunes de pobreza y desigualdad Métodos directos para la desagregación de datos de

# Referencias

# Referencias

€018) Molina, Isabel. Estudio de los límites de desagregación de dates en encuestas de hogares para subgrupos de población y áreas geográficas y los requerimientos para superarlos: Fase II. CEPAL.

# Referencias

€018) Molina, Isabel. Estudio de los límites de desagregación de dates en encuestas de hogares para subgrupos de población y áreas geográficas y los requerimientos para superarlos: Fase II. CEPAL.

# Referencias

- ©018) Molina, Isabel. Estudio de los límites de desagregación de dates en encuestas de hogares para subgrupos de población y áreas geográficas y los requerimientos para superarlos: Fase II. CEPAL.
- (2015) Rao, J.N.K y Isabel Molina. Small Area Estimation. Second ed. Wiley Series in Survey Methodology.

Introducción Indicadores comunes de pobreza y desigualdad Métodos directos para la desagregación de datos de po

Introducci'on

• Una encuesta es realizada con un tamaño muestral establecido.

- Una encuesta es realizada con un tamaño muestral establecido.
- Después de una encuesta realizada, a menudo se produce una demanda para estimaciones en áreas más desagregadas.

- Una encuesta es realizada con un tamaño muestral establecido.
- Después de una encuesta realizada, a menudo se produce una demanda para estimaciones en áreas más desagregadas.
- Por ejemplo, se realiza un muestreo para estimar niveles de pobreza en departamentos, pero después, el cliente quiere que se realicen estas estimaciones a nivel de municipio.

• Cuando eso pasa, se puede aumentar los tamaños muestrales en las áreas en las que sea necesario.

- Cuando eso pasa, se puede aumentar los tamaños muestrales en las áreas en las que sea necesario.
- Hay varios métodos para mejorar el diseño muestral.

- Cuando eso pasa, se puede aumentar los tamaños muestrales en las áreas en las que sea necesario.
- Hay varios métodos para mejorar el diseño muestral.
- No obstante, esto podría ser caro, y el cliente podría pedir más de lo que es posible.

• Las subdivisiones para las cuales se desean estimaciones se llaman "áreas" o "dominios".

- Las subdivisiones para las cuales se desean estimaciones se llaman "áreas" o "dominios".
- "áreas" pueden ser no solo áreas geográficas, sino también grupos socioeconómicos, o un cruce de ambos tipos.

- Las subdivisiones para las cuales se desean estimaciones se llaman "áreas" o "dominios".
- "áreas" pueden ser no solo áreas geográficas, sino también grupos socioeconómicos, o un cruce de ambos tipos.
- A la hora de estimar indicadores en estas áreas, se puede usar un estimador directo, lo que usa solamente los datos de la encuesta para esa área.

- Las subdivisiones para las cuales se desean estimaciones se llaman "áreas" o "dominios".
- "áreas" pueden ser no solo áreas geográficas, sino también grupos socioeconómicos, o un cruce de ambos tipos.
- A la hora de estimar indicadores en estas áreas, se puede usar un estimador directo, lo que usa solamente los datos de la encuesta para esa área.
- Habitualmente son insesgados o prácticamente insesgados con respecto al diseño muestral.

- Las subdivisiones para las cuales se desean estimaciones se llaman "áreas" o "dominios".
- "áreas" pueden ser no solo áreas geográficas, sino también grupos socioeconómicos, o un cruce de ambos tipos.
- A la hora de estimar indicadores en estas áreas, se puede usar un estimador directo, lo que usa solamente los datos de la encuesta para esa área.
- Habitualmente son insesgados o prácticamente insesgados con respecto al diseño muestral.
- En esta presentación nos enfocaremos en estos estimadores.

 Como se ha dicho, en algunas áreas, el tamaño muestral es demasiado pequeño, lo que incrementa errores de muestro en los estimadores directos para esas áreas.

- Como se ha dicho, en algunas áreas, el tamaño muestral es demasiado pequeño, lo que incrementa errores de muestro en los estimadores directos para esas áreas.
- Cuando esto pasa, estas áreas se llaman areas pequeñas.

- Como se ha dicho, en algunas áreas, el tamaño muestral es demasiado pequeño, lo que incrementa errores de muestro en los estimadores directos para esas áreas.
- Cuando esto pasa, estas áreas se llaman areas pequeñas.
- Esto no refiere al tamaño poblacional del área, sino áreas para las que no se disponen estimadores directos eficientes debido a tamaños muestrales pequeños.

|  | Indicadores | comunes d | le pobreza y | designal dad |  |  |  |  |
|--|-------------|-----------|--------------|--------------|--|--|--|--|
|  |             |           |              |              |  |  |  |  |
|  |             |           |              |              |  |  |  |  |
|  |             |           |              |              |  |  |  |  |
|  |             |           |              |              |  |  |  |  |

 El indicador más común para medir pobreza es la incidencia o tasa de pobreza, también se conoce como tasa en riesgo de pobreza.

- El indicador más común para medir pobreza es la incidencia o tasa de pobreza, también se conoce como tasa en riesgo de pobreza.
- Otro indicador es la brecha de la pobreza, que mide la magnitud de pobreza en lugar de frecuencia.

- El indicador más común para medir pobreza es la incidencia o tasa de pobreza, también se conoce como tasa en riesgo de pobreza.
- Otro indicador es la brecha de la pobreza, que mide la magnitud de pobreza en lugar de frecuencia.
- Estos dos son parte de una familia de indicadores más amplia definidos por Foster, Greer y Thorbecke (1984), que llamaremos indicadores FGT.

- El indicador más común para medir pobreza es la incidencia o tasa de pobreza, también se conoce como tasa en riesgo de pobreza.
- Otro indicador es la brecha de la pobreza, que mide la magnitud de pobreza en lugar de frecuencia.
- Estos dos son parte de una familia de indicadores más amplia definidos por Foster, Greer y Thorbecke (1984), que llamaremos indicadores FGT.
- Ambos indicadores tienen la ventaja de ser aditivos.

• Llamemos U a la población objetivo de tamaño N, la cuál se divide en D subpoblaciones de tamaños  $N_1, \ldots, N_D$ .

- Llamemos U a la población objetivo de tamaño N, la cuál se divide en D subpoblaciones de tamaños  $N_1, \ldots, N_D$ .
- Llamemos  $E_{di}$  al poder adquisitivo (e.g.medida de ingresos o gastos) del individuo i en área d.

- Llamemos U a la población objetivo de tamaño N, la cuál se divide en D subpoblaciones de tamaños  $N_1, \ldots, N_D$ .
- Llamemos  $E_{di}$  al poder adquisitivo (e.g.medida de ingresos o gastos) del individuo i en área d.
- Llamamos z al umbral predefinido de pobreza, por debajo del cual un individuo se considera en riesgo de pobreza.

• Los indicadores FGT para el área d pueden ser definidos por:

$$F_{\alpha d} = \frac{1}{N_d} \sum_{i=1}^{N_d} \left( \frac{z - E_{di}}{z} \right)^{\alpha} I(E_{di} < z), \quad d = 1, \dots, D, \ \alpha \ge 0$$

donde  $I(E_{di} < z)$  es una función indicadora que toma el valor 1 si  $E_{di} < z$  y 0 en caso contrario. Note que:

• Los indicadores FGT para el área d pueden ser definidos por:

$$F_{\alpha d} = \frac{1}{N_d} \sum_{i=1}^{N_d} \left(\frac{z - E_{di}}{z}\right)^{\alpha} I(E_{di} < z), \quad d = 1, \dots, D, \ \alpha \ge 0$$

donde  $I(E_{di} < z)$  es una función indicadora que toma el valor 1 si  $E_{di} < z$  y 0 en caso contrario. Note que:

• Con  $\alpha = 0$ , obtenemos la tasa de pobreza

• Los indicadores FGT para el área d pueden ser definidos por:

$$F_{\alpha d} = \frac{1}{N_d} \sum_{i=1}^{N_d} \left(\frac{z - E_{di}}{z}\right)^{\alpha} I(E_{di} < z), \quad d = 1, \dots, D, \ \alpha \ge 0$$

donde  $I(E_{di} < z)$  es una función indicadora que toma el valor 1 si  $E_{di} < z$  y 0 en caso contrario. Note que:

- Con  $\alpha = 0$ , obtenemos la tasa de pobreza
- Con  $\alpha = 1$ , obtenemos la *brecha de pobreza*

Introducción Indicadores comunes de pobreza y desigualdad Métodos directos para la desagregación de datos de p

Métodos directos para la desagregación de datos de pobreza

#### Métodos directos

 En esta sección, se describirán estimadores directos para la media de una variable en un área, dada por:

$$\overline{Y}_d = N_d^{-1} \sum_{i=1}^{N_d} Y_{di}$$

donde  $Y_{di}$  es el valor de la variable de individuo i en área d.

#### Métodos directos

Los indicadores FGT,

$$F_{\alpha,di} = \left(\frac{z - E_{di}}{z}\right)^{\alpha} I(E_{di} < z),$$

también se pueden escribir en la forma de la diapositiva anterior.

#### Métodos directos

Los indicadores FGT,

$$F_{\alpha,di} = \left(\frac{z - E_{di}}{z}\right)^{\alpha} I(E_{di} < z),$$

también se pueden escribir en la forma de la diapositiva anterior.

• Llamemos  $F_{\alpha d}$  a la media de  $Y_{di} = F_{\alpha,di}$  en el dominio d.

#### Métodos directos

Los indicadores FGT,

$$F_{\alpha,di} = \left(\frac{z - E_{di}}{z}\right)^{\alpha} I(E_{di} < z),$$

también se pueden escribir en la forma de la diapositiva anterior.

- Llamemos  $F_{\alpha d}$  a la media de  $Y_{di} = F_{\alpha,di}$  en el dominio d.
- Entonces,

$$F_{\alpha d} = N_d^{-1} \sum_{i=1}^{N_d} F_{\alpha, di}$$

#### Métodos directos

Los indicadores FGT,

$$F_{\alpha,di} = \left(\frac{z - E_{di}}{z}\right)^{\alpha} I(E_{di} < z),$$

también se pueden escribir en la forma de la diapositiva anterior.

- Llamemos  $F_{\alpha d}$  a la media de  $Y_{di} = F_{\alpha,di}$  en el dominio d.
- Entonces,

$$F_{\alpha d} = N_d^{-1} \sum_{i=1}^{N_d} F_{\alpha, di}$$

• Este estimador es *directo* pues solo usa los datos del dominio *d* en cuestión.

Introducción Indicadores comunes de pobreza y desigualdad Métodos directos para la desagregación de datos de p

Métodos directos: Estimadores Horvitz-Thompson y Hájek

• El estimador Horvitz-Thompson es un estimador directo insesgado con respecto al diseño muestral para la media de área d,  $\bar{Y}_d$ .

- El estimador Horvitz-Thompson es un estimador directo insesgado con respecto al diseño muestral para la media de área d,  $\bar{Y}_d$ .
- El estimador HT es conocido por

$$\hat{\overline{Y}}_d = N_d^{-1} \sum_{i \in s_d} w_{di} Y_{di}$$

- El estimador Horvitz-Thompson es un estimador directo insesgado con respecto al diseño muestral para la media de área d,  $\bar{Y}_d$ .
- El estimador HT es conocido por

$$\hat{\overline{Y}}_d = N_d^{-1} \sum_{i \in s_d} w_{di} Y_{di}$$

• Para este estimador, es necesario conocer el tamaño poblacional,  $N_d$ .

- El estimador Horvitz-Thompson es un estimador directo insesgado con respecto al diseño muestral para la media de área d,  $\bar{Y}_d$ .
- El estimador HT es conocido por

$$\hat{\overline{Y}}_d = N_d^{-1} \sum_{i \in s_d} w_{di} Y_{di}$$

- Para este estimador, es necesario conocer el tamaño poblacional,  $N_d$ .
- En cambio, para el estimador HT del total,  $\hat{Y}_d = \sum_{i \in s_d} w_{di} Y_{di}$ , no se necesita el tamaño poblacional.

• Un estimador para la varianza del estimador HT viene dado por

$$\widehat{\mathsf{var}}_{\pi}(\widehat{\bar{Y}}_{d}) = N_{d}^{-2} \left\{ \sum_{i \in s_{d}} \frac{Y_{di}^{2}}{\pi_{di}^{2}} (1 - \pi_{di}) + 2 \sum_{i \in s_{d}} \sum_{\substack{j \in s_{d} \\ j > i}} \frac{Y_{di} Y_{dj}}{\pi_{di} \pi_{dj}} \left( \frac{\pi_{d, ij} - \pi_{di} \pi_{dj}}{\pi_{d, ij}} \right) \right\}$$

donde  $\pi_{d,ij}$  es la probabilidad de inclusión de segundo orden

• Un estimador para la varianza del estimador HT viene dado por

$$\widehat{\mathsf{var}}_{\pi}(\widehat{\bar{Y}}_{d}) = N_{d}^{-2} \left\{ \sum_{i \in s_{d}} \frac{Y_{di}^{2}}{\pi_{di}^{2}} (1 - \pi_{di}) + 2 \sum_{i \in s_{d}} \sum_{\substack{j \in s_{d} \\ j > i}} \frac{Y_{di} Y_{dj}}{\pi_{di} \pi_{dj}} \left( \frac{\pi_{d,ij} - \pi_{di} \pi_{dj}}{\pi_{d,ij}} \right) \right\}$$

donde  $\pi_{d,ij}$  es la probabilidad de inclusión de segundo orden

• Este estimador es insesgado si  $\pi_{di} > 0$  para todo  $i = 1, \dots, N_d$ .

• Un estimador para la varianza del estimador HT viene dado por

$$\widehat{\mathsf{var}}_{\pi}(\widehat{\hat{Y}}_{d}) = N_{d}^{-2} \left\{ \sum_{i \in s_{d}} \frac{Y_{di}^{2}}{\pi_{di}^{2}} (1 - \pi_{di}) + 2 \sum_{i \in s_{d}} \sum_{\substack{j \in s_{d} \\ j > i}} \frac{Y_{di} Y_{dj}}{\pi_{di} \pi_{dj}} \left( \frac{\pi_{d,ij} - \pi_{di} \pi_{dj}}{\pi_{d,ij}} \right) \right\}$$

donde  $\pi_{d,ij}$  es la probabilidad de inclusión de segundo orden

- Este estimador es insesgado si  $\pi_{di}>0$  para todo  $i=1,\ldots,N_d$ .
- Si se supone que  $\pi_{d,ij} \approx \pi_{di} \pi_{dj}$ , el estimador queda definido por:

$$\widehat{\mathsf{var}}_\pi(\widehat{ar{Y}}_d) = N_d^{-2} \sum_{i \in s_d} w_{di}(w_{di} - 1) Y_{di}^2$$

 Como se ha mencionado, los indicadores FGT se pueden escribir como una media para individuos en un área,

$$F_{\alpha d} = N_d^{-1} \sum_{i=1}^{N_d} F_{\alpha, di}$$

 Como se ha mencionado, los indicadores FGT se pueden escribir como una media para individuos en un área,

$$F_{\alpha d} = N_d^{-1} \sum_{i=1}^{N_d} F_{\alpha, di}$$

• Por consiguiente, el estimador HT de  $F_{\alpha d}$  es,

$$\hat{F}_{\alpha d} = N_d^{-1} \sum_{i \in s_d} w_{di} F_{\alpha, di}$$

• Podemos usar el estimador HT,  $\hat{Y}_d = \sum_{i \in s_d} w_{di} Y_{di}$ , para estimar el total poblacional, es decir,

$$\hat{Y} = \sum_{d=1}^{D} \hat{Y}_d$$

• Podemos usar el estimador HT,  $\hat{Y}_d = \sum_{i \in s_d} w_{di} Y_{di}$ , para estimar el total poblacional, es decir,

$$\hat{Y} = \sum_{d=1}^{D} \hat{Y}_d$$

• Esta propiedad se llama *benchmarking*, donde los estimadores para áreas desagregadas suman al estimador para el total.

# Métodos directos: Horvitz-Thompson (HT), comentario sobre benchmarking

• Cuando no se cumple la propiedad de benchmarking,  $\hat{Y} = \sum_{d=1}^{D} \hat{Y}_d$ , es común ajustar de la siguiente manera:

$$\hat{Y}_d^{AEST} = \hat{Y}_d^{EST} \frac{\hat{Y}}{\sum_{d=1}^D \hat{Y}_d^{EST}}, \quad d = 1, \dots, D$$

 Aunque el estimador HT es insesgado, puede tener una varianza bajo el diseño muestral muy grande.

- Aunque el estimador HT es insesgado, puede tener una varianza bajo el diseño muestral muy grande.
- El estimador de Hájek es ligeramente insesgado pero con una varianza menor que la de HT, escrito de la siguiente forma,

$$\hat{ar{Y}}_d^{HA} = \hat{N}_d^{-1} \sum_{i \in s_d} w_{di} Y_{di}, ext{ donde } \hat{N}_d = \sum_{i \in s_d} w_{di}$$

- Aunque el estimador HT es insesgado, puede tener una varianza bajo el diseño muestral muy grande.
- El estimador de Hájek es ligeramente insesgado pero con una varianza menor que la de HT, escrito de la siguiente forma,

$$\hat{ar{Y}}_d^{HA} = \hat{N}_d^{-1} \sum_{i \in s_d} w_{di} \, Y_{di}, \, \, \mathsf{donde} \, \, \hat{N}_d = \sum_{i \in s_d} w_{di}$$

 Observe que no se necesita el tamaño poblacional con el estimador de Hájek.

• Un estimador de la varianza de Hájek,  $\hat{Y}_d^{HA}$ , se obtiene con un proceso de linealización de Taylor.

- Un estimador de la varianza de Hájek,  $\hat{Y}_d^{HA}$ , se obtiene con un proceso de linealización de Taylor.
- Si suponemos que  $\pi_{d,ij} \approx \pi_{di}\pi_{dj}$  para todo  $j \neq i$ , y que todo  $\pi_{di} > 0$ , obtenemos:

$$\widehat{\mathsf{var}}_{\pi}(\widehat{\hat{Y}}_d) = \hat{N}_d^{-2} \sum_{i \in s_d} w_{di}(w_{di} - 1)(Y_{di} - \widehat{\hat{Y}}_d^{HA})^2$$

 Como se ha mencionado, variables FGT se pueden escribir como una media para individuos en un área.

- Como se ha mencionado, variables FGT se pueden escribir como una media para individuos en un área.
- ullet Por consiguiente, el estimador de Hájek de  $F_{lpha d}$  es,

$$\hat{F}_{\alpha d}^{HA} = \hat{N}_d^{-1} \sum_{i \in s_d} w_{di} F_{\alpha, di}$$

Indicadores objetivos:

- Indicadores objetivos:
  - Parámetros aditivos (que son sumas de ciertas variables para cada individuo del área).

- Indicadores objetivos:
  - Parámetros aditivos (que son sumas de ciertas variables para cada individuo del área).
  - Pueden ser funciones de variables de interés, por ejemplo,  $F_{\alpha,di} = f(E_{di})$ .

- Indicadores objetivos:
  - Parámetros aditivos (que son sumas de ciertas variables para cada individuo del área).
  - Pueden ser funciones de variables de interés, por ejemplo,  $F_{\alpha,di} = f(E_{di})$ .
- Requerimientos de datos:

- Indicadores objetivos:
  - Parámetros aditivos (que son sumas de ciertas variables para cada individuo del área).
  - Pueden ser funciones de variables de interés, por ejemplo,  $F_{\alpha,di} = f(E_{di})$ .
- Requerimientos de datos:
  - Pesos muestrales  $w_{di}$  para individuos en grupo d.

- Indicadores objetivos:
  - Parámetros aditivos (que son sumas de ciertas variables para cada individuo del área).
  - Pueden ser funciones de variables de interés, por ejemplo,  $F_{\alpha,di} = f(E_{di})$ .
- Requerimientos de datos:
  - Pesos muestrales  $w_{di}$  para individuos en grupo d.
  - Para el estimador HT de la media y estimador de Hájek del total, tamaño poblacional del área  $N_d$ .

Ventajas:

- Ventajas:
  - El estimador HT es insesgado y el de Hájek es ligeramente insesgado.

- Ventajas:
  - El estimador HT es insesgado y el de Hájek es ligeramente insesgado.
  - Ambos son consistentes cuando n<sub>d</sub> crece.

- Ventajas:
  - El estimador HT es insesgado y el de Hájek es ligeramente insesgado.
  - Ambos son consistentes cuando n<sub>d</sub> crece.
  - Son no paramétricos porque no se supone nada de la distribución de Y<sub>di</sub>.

Desventajas:

- Desventajas:
  - Son muy ineficientes para áreas pequeñas.

- Desventajas:
  - Son muy ineficientes para áreas pequeñas.
  - No se puede calcular un estimador cuando  $n_d=0$ , o cuando el área no es muestreada.

Introducción Indicadores comunes de pobreza y desigualdad Métodos directos para la desagregación de datos de p

# Métodos directos: Estimadores GREG y de calibración

• El estimador generalizado de regresión (generalized regression), GREG, utiliza información auxiliar.

- El estimador generalizado de regresión (generalized regression),
  GREG, utiliza información auxiliar.
- Este estimador requiere el total  $\mathbf{X}_d = \sum_{i=1}^{N_d} \mathbf{x}_{di}$ , o la media  $\overline{\mathbf{X}}_d = N_d^{-1} \sum_{i=1}^{N_d} \mathbf{x}_{di}$ , para el área d.

- El estimador generalizado de regresión (generalized regression),
  GREG, utiliza información auxiliar.
- Este estimador requiere el total  $\mathbf{X}_d = \sum_{i=1}^{N_d} \mathbf{x}_{di}$ , o la media  $\overline{\mathbf{X}_d} = N_d^{-1} \sum_{i=1}^{N_d} \mathbf{x}_{di}$ , para el área d.
- El vector  $\mathbf{x}_{di}$  consiste de valores de p variables auxiliares relacionadas con  $Y_{di}$ , para el individuo i en el área d.

Asumamos que existe un modelo de la forma

$$Y_{di} = \mathbf{x}'_{di}\beta_d + \epsilon_{di}, \quad i = 1, \dots, N_d$$

Asumamos que existe un modelo de la forma

$$Y_{di} = \mathbf{x}'_{di}\beta_d + \epsilon_{di}, \quad i = 1, \dots, N_d$$

Entonces, podemos definir un estimador

$$\hat{\mathbf{B}}_d = \left(\sum_{i \in s_d} w_{di} \mathbf{x}_{di} \mathbf{x}'_{di} / c_{di}\right)^{-1} \sum_{i \in s_d} w_{di} \mathbf{x}_{di} Y_{di} / c_{di}$$

Asumamos que existe un modelo de la forma

$$Y_{di} = \mathbf{x}'_{di}\beta_d + \epsilon_{di}, \quad i = 1, \dots, N_d$$

Entonces, podemos definir un estimador

$$\hat{\mathbf{B}}_d = \left(\sum_{i \in s_d} w_{di} \mathbf{x}_{di} \mathbf{x}'_{di} / c_{di}\right)^{-1} \sum_{i \in s_d} w_{di} \mathbf{x}_{di} Y_{di} / c_{di}$$

• En el modelo, los errores  $\epsilon_{di}$  son independientes con esperanza igual a 0 y varianza  $\sigma^2 c_{di}$ , con  $c_{di} > 0$  siendo constantes que representan la posible heteroscedasticidad,  $i = 1, \ldots, N_d$ .

• 
$$\hat{\overline{\mathbf{X}}}_d = N_d^{-1} \sum_{i \in s_d} w_{di} \mathbf{x}_{di}$$
 es el estimador de HT de  $\overline{\mathbf{X}}_d$ 

- ullet  $\hat{\overline{\mathbf{X}}}_d = N_d^{-1} \sum_{i \in s_d} w_{di} \mathbf{x}_{di}$  es el estimador de HT de  $\overline{\mathbf{X}}_d$
- ullet Podemos usar la regresión mencionada para estimar  $\overline{Y}_d$

- ullet  $\hat{\overline{\mathbf{X}}}_d = N_d^{-1} \sum_{i \in s_d} w_{di} \mathbf{x}_{di}$  es el estimador de HT de  $\overline{\mathbf{X}}_d$
- ullet Podemos usar la regresión mencionada para estimar  $\overline{Y}_d$
- Este estimador está dado por:

$$\hat{\overline{Y}}_{d}^{GREG} = \hat{\overline{Y}}_{d} + \left(\overline{\mathbf{X}}_{d} - \hat{\overline{\mathbf{X}}}_{d}\right)' \hat{\mathbf{B}}_{d}$$

• El estimador GREG es más eficiente que el estimador directo  $\overline{Y}$  si las variables auxiliares están linealmente relacionadas con  $Y_{di}$ ,

- El estimador GREG es más eficiente que el estimador directo  $\overline{Y}$  si las variables auxiliares están linealmente relacionadas con  $Y_{di}$ ,
- Es difícil encontrar auxiliares  $\mathbf{x}_{di}$  relacionadas con  $F_{\alpha,di} = I\{(z-E_{di})/z\}^{\alpha}I(E_{di} < z)$ , porque es una función compleja.

• Si  $\pi_{d,ij} \approx \pi_{di}\pi_{di}$ , para  $j \neq i$ , el estimador de varianza para GREG viene dado por:

$$\widehat{\operatorname{var}}_{\pi}(\widehat{\overline{Y}}_d^{GREG}) = N_d^{-2} \sum_{i \in s_d} w_{di}(w_{di} - 1)\widetilde{e}_{di}^2$$

donde 
$$\tilde{e}_{di} = Y_{di} - \mathbf{x}'_{di} \hat{\mathbf{B}}_{d}$$
.

• Este método utiliza los pesos  $h_{di}$  para estimar el total de una variable de interés usando p variables auxiliares.

- Este método utiliza los pesos h<sub>di</sub> para estimar el total de una variable de interés usando p variables auxiliares.
- h<sub>di</sub> son los pesos más cercanos a los pesos originales, w<sub>di</sub>, sujeto a

$$\sum_{i \in s_d} h_{di} \mathbf{x}_{di} = \mathbf{X}_d$$

- Este método utiliza los pesos h<sub>di</sub> para estimar el total de una variable de interés usando p variables auxiliares.
- h<sub>di</sub> son los pesos más cercanos a los pesos originales, w<sub>di</sub>, sujeto a

$$\sum_{i \in s_d} h_{di} \mathbf{x}_{di} = \mathbf{X}_d$$

Una posibilidad viene dada por

$$h_{di} = w_{di} \left\{ 1 + \mathbf{x}'_{di} \left( \sum_{i \in s_d} w_{di} \mathbf{x}'_{di} / c_{di} \right)^{-1} \left( \mathbf{X}_d - \sum_{i \in s_d} w_{di} \mathbf{x}_{di} / c_{di} \right) \right\}, i \in s_d$$

ullet El estimador de calibración de  $ar{Y}_d$  se obtiene igual que el estimador de HT

$$\hat{\bar{Y}}_d^{CAL} = N_d^{-1} \sum_{i \in s_d} h_{di} Y_{di}$$

 $\bullet$  El estimador de calibración de  $\bar{Y}_d$  se obtiene igual que el estimador de HT

$$\hat{\bar{Y}}_d^{CAL} = N_d^{-1} \sum_{i \in s_d} h_{di} Y_{di}$$

• Se puede mostrar que, bajo ciertas condiciones de regularidad para  $G_{di}(\cdot,\cdot)$ , el estimador de calibración es asintóticamente igual al GREG y comparten la misma varianza asintótica.

• Indicadores objetivo: Medias/totales de la variable de interés.

- Indicadores objetivo: Medias/totales de la variable de interés.
- Requerimientos de datos:

- Indicadores objetivo: Medias/totales de la variable de interés.
- Requerimientos de datos:
  - Pesos muestrales  $w_{di}$  para individuos de la muestra en el área d.

- Indicadores objetivo: Medias/totales de la variable de interés.
- Requerimientos de datos:
  - Pesos muestrales  $w_{di}$  para individuos de la muestra en el área d.
  - Para el estimador de la media, tamaño poblacional del área  $N_d$ .

- Indicadores objetivo: Medias/totales de la variable de interés.
- Requerimientos de datos:
  - Pesos muestrales  $w_{di}$  para individuos de la muestra en el área d.
  - ullet Para el estimador de la media, tamaño poblacional del área  $N_d$ .
  - Observaciones muestrales de las *p* variables auxiliares.

- Indicadores objetivo: Medias/totales de la variable de interés.
- Requerimientos de datos:
  - Pesos muestrales  $w_{di}$  para individuos de la muestra en el área d.
  - ullet Para el estimador de la media, tamaño poblacional del área  $N_d$ .
  - ullet Observaciones muestrales de las p variables auxiliares.
  - Totales  $\mathbf{X}_d$  o medias  $\bar{\mathbf{X}}_d$  poblacionales de las p variables auxiliares.

Ventajas:

- Ventajas:
  - Son aproximadamente insesgados con respecto al diseño muestral.

- Ventajas:
  - Son aproximadamente insesgados con respecto al diseño muestral.
  - Pueden mejorar a los estimadores directos básicos si el modelo de regresión se verifica.

#### Ventajas:

- Son aproximadamente insesgados con respecto al diseño muestral.
- Pueden mejorar a los estimadores directos básicos si el modelo de regresión se verifica.
- No requieren la verificación del modelo considerado para las variables de interés  $Y_{di}$ ; son no paramétricos.

Desventajas:

- Desventajas:
  - Pueden ser ineficientes para áreas pequeñas.

- Desventajas:
  - Pueden ser ineficientes para áreas pequeñas.
  - No se pueden calcular en áreas con un tamaño muestro n<sub>d</sub> igual a 0.

Introducción Indicadores comunes de pobreza y desigualdad Métodos directos para la desagregación de datos de p

Resultados: Estimación de ingreso medio en sectores de Montevideo

# Horvitz Thompson: Hombres y Mujeres en Montevideo

| sec2 | ntotal | Hombres | Mujeres |
|------|--------|---------|---------|
| 2    | 121    | 20461   | 13277   |
| 1    | 167    | 24837   | 18694   |
| 3    | 186    | 14299   | 15951   |
| 4    | 319    | 26635   | 21965   |
| 6    | 320    | 28784   | 23314   |
| 5    | 495    | 23223   | 22414   |
| 21   | 3165   | 11148   | 10435   |
| 13   | 3556   | 10897   | 10742   |
| 18   | 3950   | 38932   | 34943   |
| 11   | 3963   | 11080   | 10473   |
| 17   | 4373   | 8750    | 8167    |
| 10   | 6302   | 24576   | 22823   |

# $Horvitz\ Thompson:\ Hombres\ y\ Mujeres\ en\ Montevideo$ Ingresos de hombres y mujeres en Montevideo con el estimador HT



Andrés Gutiérrez Comisión Económica para América Latina y el Caribe

Estimación en áreas pequeñas

# Hájek: Hombres y Mujeres en Montevideo

| sec2 | ntotal | Hombres | Mujeres |
|------|--------|---------|---------|
| 2    | 121    | 18088   | 16120   |
| 1    | 167    | 26363   | 21644   |
| 3    | 186    | 16294   | 15896   |
| 4    | 319    | 23786   | 22044   |
| 6    | 320    | 26723   | 24798   |
| 5    | 495    | 20874   | 21706   |
| 21   | 3165   | 11539   | 11424   |
| 13   | 3556   | 8248    | 8384    |
| 18   | 3950   | 33081   | 32103   |
| 11   | 3963   | 8954    | 8675    |
| 17   | 4373   | 8612    | 8377    |
| 10   | 6302   | 22186   | 20929   |

# Hájek: Hombres y Mujeres en Montevideo Ingresos de hombres y mujeres en Montevideo con el estimador Hájek



Andrés Gutiérrez Comisión Económica para América Latina y el Caribe Estimación en áreas pequeñas

# GREG: Hombres y Mujeres en Montevideo

| sec2 | ntotal | Hombres | Muioros |
|------|--------|---------|---------|
| Secz | ntotai | nombres | Mujeres |
| 2    | 121    | 21410   | 14107   |
| 1    | 167    | 25468   | 19861   |
| 3    | 186    | 15921   | 16981   |
| 4    | 319    | 26809   | 22819   |
| 6    | 320    | 29710   | 24484   |
| 5    | 495    | 23763   | 23282   |
| 21   | 3165   | 13125   | 11901   |
| 13   | 3556   | 11156   | 10862   |
| 18   | 3950   | 38789   | 35391   |
| 11   | 3963   | 11510   | 10977   |
| 17   | 4373   | 10473   | 9777    |
| 10   | 6302   | 25921   | 23589   |

# GREG: Hombres y Mujeres en Montevideo Ingresos de hombres y mujeres en Montevideo con el estimador GREG



Andrés Gutiérrez Comisión Económica para América Latina y el Caribe Estimación en áreas pequeñas

## Comparando los estimadores: Hombres

|      |        | 1     |       |       |
|------|--------|-------|-------|-------|
| sec2 | ntotal | HT    | Hajek | GREG  |
| 2    | 121    | 20461 | 18088 | 21410 |
| 1    | 167    | 24837 | 26363 | 25468 |
| 3    | 186    | 14299 | 16294 | 15921 |
| 4    | 319    | 26635 | 23786 | 26809 |
| 6    | 320    | 28784 | 26723 | 29710 |
| 5    | 495    | 23223 | 20874 | 23763 |
| 21   | 3165   | 11148 | 11539 | 13125 |
| 13   | 3556   | 10897 | 8248  | 11156 |
| 18   | 3950   | 38932 | 33081 | 38789 |
| 11   | 3963   | 11080 | 8954  | 11510 |
| 17   | 4373   | 8750  | 8612  | 10473 |
| 10   | 6302   | 24576 | 22186 | 25921 |

# Comparando los estimadores: Hombres Ingresos de hombres en Montevideo con estimadores directos



Andrés Gutiérrez Comisión Económica para América Latina y el Caribe Estimación en áreas pequeñas

# Comparando los estimadores: Mujeres

| sec2 | ntotal | HT    | Hajek | GREG  |
|------|--------|-------|-------|-------|
| 2    | 121    | 13277 | 16120 | 14107 |
| 1    | 167    | 18694 | 21644 | 19861 |
| 3    | 186    | 15951 | 15896 | 16981 |
| 4    | 319    | 21965 | 22044 | 22819 |
| 6    | 320    | 23314 | 24798 | 24484 |
| 5    | 495    | 22414 | 21706 | 23282 |
| 21   | 3165   | 10435 | 11424 | 11901 |
| 13   | 3556   | 10742 | 8384  | 10862 |
| 18   | 3950   | 34943 | 32103 | 35391 |
| 11   | 3963   | 10473 | 8675  | 10977 |
| 17   | 4373   | 8167  | 8377  | 9777  |
| 10   | 6302   | 22823 | 20929 | 23589 |

# $Comparando\ los\ estimadores:\ Mujeres\ \\ \text{Ingresos}\ \text{de mujeres}\ \text{en}\ \text{Montevideo}\ \text{con}\ \text{estimadores}\ \text{directos}$



Andrés Gutiérrez Comisión Económica para América Latina y el Caribe Estimación en áreas pequeñas

# ¡Gracias!

Email: andres.gutierrez@cepal.org