STA302/1001: Methods of Data Analysis

Instructor: Fang Yao

Chapter 4: Drawing Conclusions

Will curve up the mark later at the end of the term

The first may be harder, the next one may contain more calculation

(possibility: take the higher score of two quizzes)

Midterm: Oct. 24 2h 5~6 Problems

Parameter Interpretation

- meaning of parameter estimates:
- e.g., $E(Y|X) = 15 + 3X_1 + 4X_2 2X_3$
- coefficient for X_1 is 3, meaning: an increase of 1 unit in X_1 will be associated with an increase of 3 units in Y,

when other are held constant no interaction b/c of potential correlation

- will a change in X_1 affect other X's in this model? It il change
- association concluded from an observational study Sth. you
 ⇒ causation (possible from a randomized experiment) connect manipulate
- it is possible that the sign of a parameter estimate can change if a new variable is added

Parameter Interpretation - con't

Berkeley Guidance Study Data, consider n=70 girls $Y\colon soma$ - body type, 1 to 7 (thin to fat) sometimes, if the objects have an order, we treat

they're somehow WT2 = weight at age 2 it as a continuous distribution. WT9 = weight at age 9 WT18 = weight at age 18

the difference reduces the relation DW9 = WT9 - WT2 DW18 = WT18 - WT9

 sometimes we use meaningful linear contrasts instead of the original predictors to enhance interpretability

Parameter Interpretation - con't

FIG. 4.1 Scatterplot matrix for the girls in the Berkeley Guidance Study.

Parameter Interpretation - con't

				_
Term	Model 1	Model 2	Model 3	
(intercept)	1.5921	1.5921	1.5921	
WT2	-0.2256	-0.0111	-0. 11 56	Typo here:
WT9	0.0562		0.0562	Model 183
WT18	0.0483		0.0483	Typo here: Model 183 should be identical
DW9		0.1046	NA	idensical
DW18		0.0483	NA	

- same model, different parameterization
 - $\Rightarrow R^2$, $\hat{\sigma}^2$ are identical, but estimates and t-values are not
- WT2: significant in Model 1 (is -0.2256 surprising?) but not in Model 2 (which makes more sense?) _0.2256 does . For model 2: the coefficient 2 (which makes more sense?) _0.2256 does . is estimated in another linear
- why is 0.0483 for WT18 and DT18 identical? why NA in Model 3? relation. (co-If hold fixed then one increment in DW18 weak with the property of the prop

-> one increment in WTB (linearly equivalent)

More on \mathbb{R}^2

● Fig 4.2(a): R^2 =0.24 Fig 4.2(b): R^2 =0.37 Fig 4.2(c): R^2 =0.027

lacksquare random sampling is important for R^2 to make sense

More on \mathbb{R}^2 - con't

ullet R^2 can be meaningless for some situations

FIG. 4.3 Six summary graphs. R² is an appropriate measure for a-c, but inappropriate for d-f.

Sampling from Normal Population

• data: $(x_1, y_1), \cdots, (x_n, y_n)$

- $\beta_1 = |xy| \leq |y| = |xy|$ $y_i|x_i \sim N(\beta_0 + \beta_1 x_i, \sigma^2)$
- $\hat{\mu}_x = \bar{x}$, $\hat{\mu}_y = \bar{y}$, $\hat{\sigma}_x^2 = \frac{SXX}{n-1}$, $\hat{\sigma}_y^2 = \frac{SYY}{n-1}$, $\hat{\rho}_{xy} = \frac{SXY}{\sqrt{SXX.SYY}}$
- plug-in to get $\hat{\beta}_0$, $\hat{\beta}_1 \Longrightarrow OLS$ estimates

How to Handle Missing Data?

- first we need to understand why some data are missing
- "missing at random" (MAR) is the easiest to handle
- MAR: probability of missing does not depend on its value
- two simple strategies: deleting and guessing
- more advanced method: imputation need statistical modeling

Computationally Intensive Methods

Get some rough idea

- suppose $X_1, \cdots, X_n \sim N(\mu, \sigma^2)$
- what is $Var(\bar{X})$?
- what is $Var(\tilde{X})$, where \tilde{X} is the median of X_1, \dots, X_n ?
- what is $Var(\bar{X} + \tilde{X}^2)$?
- we can use computers instead of calculus
- suppose y_1, \dots, y_n from the distribution G
- want to construct a 95% C.I. for the median
- \blacksquare two cases: G is known and G is unknown

Case (i): G is known

- four steps:
 - 1. obtain a sample y_1^*, \dots, y_n^* from G
 - 2. compute the median and store its value
 - 3. repeat Steps 1 and 2 many times
 - 4. suppose we repeat 1000 times, so we have 1000 medians. Then a 95% C.I. for the median of G is $(25^{th} \text{ smallest}, 25^{th} \text{ largest})$
- it can be extremely difficult to generate from G. have you heard about Monte Carlo?
- ullet but typically unrealistic to assume G is known

Case (ii): G is unknown

- only one change
- replace Step 1 by: obtain a sample y_1^*, \dots, y_n^* by drawing n data points from y_1, \dots, y_n with replacement
- yes, some of the entries will be repeated
- this method is called bootstrap (sounds familiar? Pirates of Caribbean!)