Particle spectrograph

Wave operator and propagator

Source constraints	traints	
SO(3) irreps	Fundamental fields	Multiplicities
$\sigma_{0}^{\#1} == 0$	$\partial_{\beta}\sigma^{\alpha\beta}_{\alpha} == 0$	1
$\sigma_{1}^{\#2\alpha} == 0$	$\partial_{\chi}\partial_{\beta}\sigma^{\alpha\beta\chi} == 0$	8
$\sigma_1^{\#2}\alpha\beta == 0$	$\partial_{\delta}\partial_{\chi}\partial^{\alpha}\sigma^{\beta\chi\delta} + \partial_{\delta}\partial^{\delta}\partial_{\chi}\sigma^{\alpha\beta\chi} == \partial_{\delta}\partial_{\chi}\partial^{\beta}\sigma^{\alpha\chi\delta}$	e
$\sigma_{2}^{\#1}\alpha\beta\chi$ == 0	$3 \partial_{\epsilon} \partial_{\delta} \partial^{\chi} \partial^{\alpha} \sigma^{\beta \delta \epsilon} + 3 \partial_{\epsilon} \partial^{\epsilon} \partial^{\chi} \partial^{\alpha} \sigma^{\beta \delta} +$	5
	$2\partial_{\epsilon}\partial^{\epsilon}\partial_{\delta}\partial^{\beta}\sigma^{\alpha\chi\delta} + 4\partial_{\epsilon}\partial^{\epsilon}\partial_{\delta}\partial^{\beta}\sigma^{\alpha\delta\chi} +$	
	$2 \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial^{\beta} \sigma^{\chi \delta \alpha} + 4 \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial^{\chi} \sigma^{\alpha \beta \delta} +$	
	$2 \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial^{\chi} \sigma^{\alpha \delta \beta} + 2 \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial^{\delta} \sigma^{\beta \chi \alpha} +$	
	$3 \eta^{eta\chi} \partial_\phi \partial^\phi \partial_\epsilon \partial^\alpha \sigma^{\delta\epsilon}_{\ \ \delta} + 3 \eta^{\alpha\chi} \partial_\phi \partial^\phi \partial_\epsilon \partial_\delta \sigma^{eta\delta\epsilon} +$	
	$3 \eta^{\beta \chi} \partial_{\phi} \partial^{\phi} \partial_{\varepsilon} \partial^{\varepsilon} \sigma^{\alpha \delta}{}_{\delta} == 3 \partial_{\varepsilon} \partial_{\delta} \partial^{\chi} \partial^{\beta} \sigma^{\alpha \delta \varepsilon} +$	
	$3 \partial_{\epsilon} \partial^{\epsilon} \partial^{\chi} \partial^{\beta} \sigma^{\alpha \delta}{}_{\delta} + 2 \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial^{\alpha} \sigma^{\beta \chi \delta} +$	
	$4\partial_{\epsilon}\partial^{\epsilon}\partial_{\delta}\partial^{\alpha}\sigma^{\beta\delta\chi} + 2\partial_{\epsilon}\partial^{\epsilon}\partial_{\delta}\partial^{\alpha}\sigma^{\chi\delta\beta} +$	
	$2 \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial^{\chi} \sigma^{\beta \delta \alpha} + 4 \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial^{\delta} \sigma^{\alpha \beta \chi} +$	
	$2 \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial^{\delta} \sigma^{\alpha \chi \beta} + 3 \eta^{\alpha \chi} \partial_{\phi} \partial^{\phi} \partial_{\epsilon} \partial^{\beta} \sigma^{\delta \epsilon}_{\delta} +$	
	$3 \eta^{eta\chi} \partial_\phi \partial^\phi \partial_\epsilon \partial_\delta \sigma^{\alpha\delta\epsilon} + 3 \eta^{\alpha\chi} \partial_\phi \partial^\phi \partial_\epsilon \partial^\epsilon \sigma^{eta\delta}$	
Total constra	Total constraints/gauge generators:	12

Quadratic (free) action	$S == \iiint (\omega^{\alpha\beta\chi} \ \sigma_{\alpha\beta\chi} + \frac{1}{3} r_2 (4 \partial_\beta \omega_{\alpha l\theta} - 2 \partial_\beta \omega_{\alpha \theta_l} + 2 \partial_\beta \omega_{\iota \theta \alpha} - \partial_\beta \omega_{\alpha \theta_l} + 2 \partial_\beta \omega_{\iota \theta \alpha} - \partial_\beta \omega_{\alpha \theta_l} + \partial_\theta \omega_{\alpha \theta_l} - \partial_\beta \omega_{\alpha \theta_l$	$\frac{1}{2} r_3 \left(\partial_\beta \omega_{\beta}^{\ \theta} \partial^{\prime} \omega^{\alpha \beta} + \partial_{\prime} \omega_{\beta}^{\ \theta} \partial^{\prime} \omega^{\alpha \beta} + \partial_{\alpha} \omega^{\alpha \beta \prime} \partial_{\theta} \omega_{\beta}^{\ \theta} - \partial_{\alpha} \omega^{\alpha \beta \prime} \partial_{\beta} \omega_{\beta}^{\ \theta} \right) - \partial_{\alpha} \omega^{\alpha \beta \prime} \partial_{\beta} \omega_{\beta}^{\ \theta} - \partial_{\alpha} \omega^{\alpha \beta \prime} \partial_{\beta} \omega_{\beta}^{\ \theta} \partial_{\alpha} \omega_{\beta}^{\ \theta} $	$2\partial'\omega^{\alpha\beta}_{\alpha}\partial_{\theta}\omega^{\beta}_{\beta} + 8\partial_{\beta}\omega_{\beta}\partial^{\alpha}\omega^{\beta}) + \sum_{\kappa}(\partial_{\kappa}\omega^{\kappa}_{\kappa}\partial^{\theta}\omega^{\alpha} - \partial_{\rho}\omega^{\kappa}\partial^{\theta}\omega^{\alpha}) - \partial_{\rho}\omega^{\kappa}\partial^{\theta}\omega^{\alpha} - (\partial_{\alpha}\omega^{\alpha}\partial^{\theta} - 2\partial^{\theta}\omega^{\alpha})$	$(\partial_{\kappa}\omega_{I_{\theta}}^{K}-\partial_{\kappa}\omega_{\theta_{I}}^{K})))[t,x,y,z]dzdydxdt$
Quadratic))[[[] == S			

	_	$\omega_{2^{+}c}^{\#1}$	$_{lphaeta}~\omega_{2}^{\#}$	1 αμ	3χ_						
$\omega_{2}^{\sharp 1} \dagger^{\alpha \beta}$ $\omega_{2}^{\sharp 1} \dagger^{\alpha \beta \chi}$		$-\frac{3k^2r_3}{2}$		0							
		0									
$\sigma_{1}^{\#2}{}_{lpha}$	0	0	0	C							
$\sigma_{1^{-}\alpha}^{\#1}$	0	0	$\frac{2}{k^2 (r_3 + 2 r_5)}$	Û	$\sigma_{0}^{\#1}$	0	$\frac{1}{k^2 r_2}$		ω_0^{i}	#1	(
$\sigma_{1}^{\#2}{}_{lphaeta}$	0	0	0	0	$\sigma_{0}^{\#1}$	$\sigma_{0}^{#1} + 0$	0 +	$\omega_0^{\#1}$	+ (
$\sigma_{1}^{\#1}{}_{lphaeta}$	$\frac{1}{k^2 (2 r_3 + r_5)}$	0 0		0		0 $\int_{2^{-}\alpha\beta\chi}^{\#1}$		k			
	$\sigma_1^{#1} + \alpha \beta - \frac{1}{k}$	$\sigma_{1}^{#2} + \alpha \beta$	$\sigma_{1}^{\#1} \dagger^{lpha}$	$\sigma_{+2}^{*2} + \alpha$		$\frac{1}{2}$ $+$ $+$ $\frac{\alpha\beta}{2}$	$\frac{2}{3k^2}$	r ₃	0		
$\omega_{1}^{\#1}{}_{lphaeta}$		Ó	$\omega_{1}^{\#2}{}_{\alpha\beta}$	ı	$\omega_{1-\alpha}^{\#1}$	•	$\omega_1^{\#2}$	ľ			
$\omega_{1+}^{\#1} + \alpha\beta k^{2} (2 r_{3} + r_{5})$		5)	0	0		0					
$\omega_{1+}^{\#2} \dagger^{\alpha\beta}$ 0			0	0		0					
$\omega_1^{\#1} \dagger^{\alpha}$ 0		0	0		$\frac{1}{2}k^2(r_3+2r_5)$		0				
$\omega_1^{\#2} \uparrow^{\alpha}$		0			0	0		0			

Massive and massless spectra

(No massive particles)

Unitarity conditions

$$r_3 < 0 \&\& (r_5 < -\frac{r_3}{2} || r_5 > -2 r_3) || r_3 > 0 \&\& -2 r_3 < r_5 < -\frac{r_3}{2}$$