

IEL – protokol k projektu

Martin, Navrátil xnavram00

14. prosince 2023

Obsah

1	Příklad 1	2
2	Příklad 2	3
3	Příklad 3	5
4	Příklad 4	7
5	Příklad 5	8
6	Shrnutí výsledků	10

Stanovte napětí U_{R2} a proud I_{R2} . Použijte metodu postupného zjednodušování obvodu.

sk.	U_1 [V]	U_2 [V]	$R_1 [\Omega]$	$R_2 [\Omega]$	$R_3 [\Omega]$	$R_4 [\Omega]$	$R_5 [\Omega]$	$R_6 [\Omega]$	$R_7 [\Omega]$	$R_8 [\Omega]$
С	100	80	450	810	190	220	220	720	260	180

$$U_{12} = U_1 + U_2 = 100 + 80 = 180V$$

$$R_{56} = \frac{R_5 R_6}{R_5 + R_6} = \frac{220 \cdot 720}{220 + 720} = 168.51063829787233\Omega$$

$$R_{78} = R_7 + R_8 = 260 + 180 = 440\Omega$$

Nyní provedeme transfiguraci trojuhelník hvězda

$$R_A = \frac{R_1 R_2}{R_1 + R_2 + R_3} = \frac{450 \cdot 810}{450 + 810 + 190} = \frac{364500}{1450} = 251.37931034482768276\Omega$$

$$R_B = \frac{R_1 R_3}{R_1 + R_2 + R_3} = \frac{450 \cdot 190}{450 + 810 + 190} = \frac{85500}{1450} = 58.96551724137931\Omega$$

$$R_C = \frac{R_2 R_3}{R_1 + R_2 + R_3} = \frac{810 \cdot 190}{450 + 810 + 190} = \frac{153900}{1450} = 106.13793103448276\Omega$$

$$R_{B5} = R_B + R_{56} = 58.96551724137931 + 168.51063829787233 = 227.47615553925164\Omega$$

$$R_{C4} = R_C + R_4 = 106.13793103448276 + 220 = 326.13793103448276\Omega$$

$$R_{B5C4} = \frac{R_{B5}R_{C4}}{R_{B5} + R_{C4}} = \frac{227.47615553925164 \cdot 326.13793103448276}{227.47615553925164 + 326.13793103448276} = 134.00779446635116\Omega$$

 $R_{EKV} = R_A + R_{B5C4} + R_{78} = 251.3793103448276 + 134.00779446635116 + 440 = 825.3871048111787\Omega$

Celkový proud I

$$I = \frac{U}{R_{EKV}} = \frac{180}{825.3871048111787} = 0.21807949136929883A$$

 $U_{RA} = I \cdot R_A = 0.21807949136929883 \cdot 251.37931034482768276 = 54.82067214076514V$

 $U_{B5C4} = I \cdot R_{B5C4} = 0.21807949136929883 \cdot 134.00779446635116 = 29.224351656743398V$

$$I_{RC4} = \frac{U_{B5C4}}{R_{C4}} = \frac{29.224351656743398}{326.13793103448276} = 0.08960733749688714A$$

 $U_{RC} = I_{RC4} \cdot R_C = 0.08960733749688714 \cdot 106.13793103448276 = 9.510737407428229V$

 $U_{R2} = U_{RA} + U_{RC} = 9.510737407428229 + 54.82067214076514 =$ **64.33140954819336V**

$$I_{R2} = rac{U_{R2}}{R_2} = \mathbf{0.07942149326937452A}$$

Stanovte napětí U_{R6} a proud I_{R6} . Použijte metodu Théveninovy věty.

sk.	U[V]	$R_1 [\Omega]$	$R_2 [\Omega]$	$R_3 [\Omega]$	$R_4 [\Omega]$	$R_5 [\Omega]$	$R_6 [\Omega]$
G	180	250	315	615	180	460	120

Vyřešíme za využití Theveninovy věty.

$$R_{23} = R_2 + R_3 = 315 + 615 = 930\Omega$$

 $R_{45} = R_4 + R_5 = 180 + 460 = 640\Omega$

$$R_{EKV} = R_1 + \frac{R_{23}R_{45}}{R_{23} + R_{45}} = 250 + \frac{930 \cdot 640}{930 + 640} = 629.1082802547771\Omega$$

$$I = \frac{U}{R_{EKV}} = \frac{180}{629.1082802547771} = 0.28611926698390194A$$

$$U_{R45} = U - (IR_1) = 180 - (0.28611926698390194 \cdot 250) = 108.47018325402452V$$

$$I_{R45} = \frac{U_{R45}}{R_{45}} = \frac{108.47018325402452}{640} = 0.1694846613344133A$$

$$U_i = I_{R45}R_5 = 0.1694846613344133 \cdot 460 = 77.96294421383013V$$

$$R_i = \frac{(\frac{R_{23}R_1}{R_{23}R_1} + R_4)R_5}{\frac{R_1R_{23}}{R_1 + R_{23}} + R_{45}} = \frac{(\frac{930 \cdot 250}{250 \cdot 930} + 180) \cdot 460}{\frac{250 \cdot 930}{250 + 930} + 640} = 207.20259188012557\Omega$$

$$I_{R6} = \frac{U_i}{R_i + R_6} = \frac{77.96294421383013}{207.20259188012557 + 120} = \mathbf{0.23827116944841545} A$$

$$U_{R6} = R_6 I_{R6} = 120 \cdot 0.23827116944841545 = \mathbf{28.592540333809854}V$$

Stanovte napětí U_{R4} a proud I_{R4} . Použijte metodu uzlových napětí $(U_A,\,U_B,\,U_C)$.

sk.	U[V]	I_1 [A]	I_2 [A]	$R_1 [\Omega]$	$R_2 [\Omega]$	$R_3 [\Omega]$	$R_4 [\Omega]$	$R_5 [\Omega]$
Н	130	0.95	0.50	47	39	58	28	25

$$G_1 = \frac{1}{R_1} = \frac{1}{47}S$$

$$G_2 = \frac{1}{R_2} = \frac{1}{39}S$$

$$G_3 = \frac{1}{R_3} = \frac{1}{58}S$$

$$G_4 = \frac{1}{R_4} = \frac{1}{28}S$$

$$G_5 = \frac{1}{R_5} = \frac{1}{25}S$$

$$I_3 = \frac{U}{R_4 + R_5} = \frac{130}{28 + 25} = \frac{130}{53}A = 2.452830188679245A$$

Nyní sestavíme rovnici pro jednotlivé uzly

$$A)G_1U_A + G_2(U_A - U_B) = -I_1$$

Nyní si vytvoříme matici za jejiž pomocí vypočteme U

$$\begin{pmatrix} -G_1 - G_2 & G_2 & 0 \\ G_2 & -G_2 - G_3 & G_3 \\ 0 & G_3 & -G_3 - G_4 - G_5 \end{pmatrix}^{-1} \times \begin{pmatrix} -I_1 \\ -I_2 \\ I_2 - \frac{U}{R_5} \end{pmatrix}$$

Dosadíme hodnoty a vypočteme U

$$\begin{pmatrix} -\frac{1}{47} - \frac{1}{39} & \frac{1}{39} & 0 \\ \frac{1}{39} & -\frac{1}{39} - \frac{1}{58} & \frac{1}{58} \\ 0 & \frac{1}{58} & -\frac{1}{58} - \frac{1}{28} - \frac{1}{25} \end{pmatrix}^{-1} \times \begin{pmatrix} -0.95 \\ -0.50 \\ 0.50 - \frac{130}{25} \end{pmatrix} =$$

$$= \begin{pmatrix} -32.94851176 & -21.2887662 & -3.94863178 \\ -21.2887662 & -38.95391263 & -7.22515602 \\ -3.94863178 & -7.22515602 & -12.09793567 \end{pmatrix} \times \begin{pmatrix} -0.95 \\ -0.5 \\ -4.7 \end{pmatrix} = \begin{pmatrix} 60.50403865 \\ 73.65951752 \\ 64.22407585 \end{pmatrix}$$

$$U_A = 60.50403865V$$

$$U_B = 73.65951752V$$

$$U_C = U_{R4} = \mathbf{64.22407585V}$$

$$I_{R4} = \frac{U_{R4}}{R_4} = \frac{64.22407585}{28} = \mathbf{2.2937169946428573A}$$

Pro napájecí napětí platí: $u_1=U_1\cdot\sin(2\pi ft),\,u_2=U_2\cdot\sin(2\pi ft).$ Ve vztahu pro napětí $u_{L_2}=U_{L_2}\cdot\sin(2\pi ft+\varphi_{L_2})$ určete $|U_{L_2}|$ a φ_{L_2} . Použijte metodu smyčkových proudů.

Pozn: Pomocné směry šipek napájecích zdrojů platí pro speciální časový okamžik $(t=\frac{\pi}{2\omega}).$

[sk.	U_1 [V]	U_2 [V]	$R_1 [\Omega]$	$R_2 [\Omega]$	L_1 [mH]	L_2 [mH]	C_1 [μ F]	C_2 [μ F]	f [Hz]
	С	3	4	10	13	220	70	230	85	75

V obvodu na obrázku níže v čase t=0 [s] sepne spínač S. Sestavte diferenciální rovnici popisující chování obvodu na obrázku, dále ji upravte dosazením hodnot parametrů. Vypočítejte analytické řešení $u_C=f(t)$. Proveďte kontrolu výpočtu dosazením do sestavené diferenciální rovnice.

sk.	<i>U</i> [V]	C [F]	$R\left[\Omega\right]$	$u_C(0)$ [V]
G	20	8	100	5
t = 0 s		C UC		

Známe U, R, C, $U_{C(0)}$

1)Ohmův zákon:

$$I = \frac{U_R}{R}$$

2)Kirchhochův zákon:

$$\dot{\mathbf{U}} = U_R + U_C$$

$$U - U_C - U_R = 0$$

3)Axiom:

$$u_C' = \frac{1}{C} \times I$$

$$U_C(0) = U_{CP}$$

1.krok

$$u'_{C} = \frac{1}{C} \times \frac{1}{R} \times U_{R}$$
$$U_{R} = U - U_{C}$$
$$u'_{C} = \frac{1}{RC} \times (U - u_{C})$$

Jedná se o diferenciální rovnici 1. řádu počáteční podmínka: $u_C(0) = U_{CP}$

$$u_C' + \frac{u_C}{RC} = \frac{U}{RC}$$

Charakteristická rovnice:

$$\lambda + \frac{1}{RC} = 0$$

$$\lambda = -\frac{1}{RC}$$

Očekávané řešení $u_C(t)=K(t)e^{\lambda t}=K(t)e^{-\frac{t}{RC}}$ Zderivujeme $u_c(t)$:

$$u_c(t) = K(t)e^{-\frac{t}{RC}}$$
$$u'_c(t) = K'(t)e^{-\frac{t}{RC}} - \frac{1}{RC} \times K(t)e^{-\frac{t}{RC}}$$

Nyní $u_C(t)$ a $u_c'(t)$ dosadíme do $u_C' + \frac{u_C}{RC} = \frac{U}{RC}$

$$K'(t)e^{-\frac{t}{RC}} - \frac{K(t)}{RC}e^{-\frac{t}{RC}} + \frac{K(t)e^{-\frac{t}{RC}}}{RC} = \frac{U}{RC}$$
$$K'(t)e^{-\frac{t}{RC}} = \frac{U}{RC}$$

Nyní zjistíme K(t)

$$K'(t)e^{-\frac{t}{RC}} = \frac{U}{RC} / e^{\frac{t}{RC}}$$

$$K'(t) = \frac{U}{RC} e^{\frac{t}{RC}} / \int$$

$$K(t) = \frac{U}{RC} (RCe^{\frac{t}{RC}})$$

$$K(t) = Ue^{\frac{t}{RC}} + k$$

k je integrační konstanta

Nyní dosadíme do původní rovnice (TODO:change this text to reflect reality)

$$u_C(t) = (Ue^{\frac{t}{RC}} + k)e^{-\frac{t}{RC}}$$
$$u_C(t) = U + ke^{-\frac{t}{RC}}$$

Dosadíme $u_C(0) = u_{CP} \implies k = 0$

$$u_{CP} = U + ke^0$$
$$u_{CP} - U = k$$

Analytické řešení

$$u_C(t) = U + (u_{CP} - U)e^{-\frac{t}{RC}}$$

Kontrola dosazením hodnot v $u_C(0)$

$$u_c(0) = 20 + (5 - 20)e^{-\frac{0}{100 \times 8}}$$
$$u_c(0) = 20 + (-15)e^{-\frac{0}{800}}$$
$$u_c(0) = 20 - 15 \times e^0$$
$$u_c(0) = 5$$
$$5 = 5$$

Shrnutí výsledků

Příklad	Skupina	$ m V\acute{y}sledky$					
1	C	$U_{R2} = 64.33140954819336V$	$I_{R2} = 0.07942149326937452A$				
2	G	$U_{R6} = 28.592540333809854V$	$I_{R6} = 0.23827116944841545A$				
3	Н	$U_{R4} = 64.22407585V$	$I_{R4} = 2.2937169946428573A$				
4	С	$ U_{L_2} =$	$arphi_{L_2} =$				
5	G	u_C :	=5V				