Problemas Axiomas De Cuerpo

Cristopher Morales Ubal e-mail: c.m.ubal@gmail.com

Problemas

- 1. Usando exclusivamente los axiomas de los reales, y mencionándolos claramente cada vez que los use, demuestre las siguientes propiedades. Cualquier propiedad extra que utilice deberá ser demostrada.
 - (a) $\forall x, y \in \mathbb{R}, x, y \neq 0 (xy)^{-1} = y^{-1} \cdot x^{-1}$
 - (b) $\forall x, y \in \mathbb{R}, x, y \neq 0 \ (x+y) (x^{-1}y^{-1}) = x^{-1} + y^{-1}$
 - (c) Usando a), demostrar que $\forall a, b, c \in \mathbb{R}$, $b, d \neq 0$

$$ab^{-1} + cd^{-1} = (ad + cb)(bd)^{-1}$$

- 2. Demuestre que si $a, b \in \mathbb{R} \setminus \{0\}$ son tales que a + b = 1, entonces se cumple que el inverso multiplicativo de $(a \cdot b)$ es $(a^{-1} + b^{-1})$.
- 3. Demuestre usando solamente los axiomas de los números reales y los teoremas de existencia y unicidad de los neutros e inversos:
 - (a) $\forall a, b, c \in \mathbb{R}, b, c \neq 0$

$$(ab^{-1} + c^{-1}) [(bc) (ac + b)^{-1}] = 1$$

(b) Si $a, b, c, d \in \mathbb{R}$ son tales que se verifica la relación (ad) + (-(cb)) = 0 entonces

$$[(a+b)d] + [-((c+d)b)] = 0$$

- (c) $\forall a \in \mathbb{R}, \ a \neq 0 : -(a^{-1}) = (-a)^{-1}$
- 4. Usando sólo axiomas de cuerpo de los reales y unicidad de neutros e inversos, demuestre que:
 - (a) Sean $a, b, c \in \mathbb{R}$, entonces $(a + b = 0) \land (a + c = 0) \Longrightarrow (b = c)$
 - (b) $\forall b \in \mathbb{R}$, $a \cdot b = a \implies a = 0$
 - (c) $\forall a \in \mathbb{R}$, $a^2 = 0 \implies a = 0$
- 5. Usando sólo axiomas de cuerpo de los reales y los teoremas de unicidad de neutros e inversos, demuestre que:
 - (a) Si existiera $a \neq 0$, tal que a + a = 0 entonces se concluiria que:

$$\forall x \in \mathbb{R} , \ x + x = 0$$

- (b) Si $[(a + b \neq 0) \land (ax + by = 0) \land (bx + ay = 0)]$ entonces x + y = 0
- 6. Sea C un conjunto de números reales que satisfacen las siguientes propiedades (Axiomas)
 - (A1) $2 \in C$
 - (A2) Si $x \in C$, entonces $3x + 1 \in C$
 - (A3) Si $x, y \in C$, entonces $x + y \in C$
 - (A4) $3 \notin C$

Demuestre las siguientes propiedades indicando qué axiomas, ya sea de los números reales o de los recien mencionados:

- (a) $9 \in C$
- (b) $1 \notin C$
- (c) Si $5 \in C$ entonces $22 \in C$
- (d) Si $x, y \in C$, entonces $3x + 1 + 3y \in C$
- (e) Si $x \in C$, entonces $-x \notin C$