MATH2089 Numerical Methods Lecture 10

Runge Kutta Method
Predictor-Corrector Methods

Runge-Kutta Method

The Runge-Kutta methods do not require the calculation of higher derivation, but produce results equivalent in accuracy to the higher order Taylor formulas.

$$y_{i+1} = y_i + h \alpha(x_i, y_i, h);$$

The increment function is chosen to represent the average slope over the interval, $x_i \le x \le x_{i+1}$

$$\alpha(x_i, y_i, h) = c_1 k_1 + c_2 k_2 + \dots + c_n k_n;$$

n denotes the order of the Runge-Kutta method

 $c_1, c_2, ..., c_n$ are constants and $k_1, k_2, ..., k_n$ are recurrence relations given by

$$k_{1} = f(x_{i}, y_{i}),$$

$$k_{2} = f(x_{i} + p_{2}h, y_{i} + a_{21}hk_{1}),$$

$$k_{3} = f(x_{i} + p_{3}h, y_{i} + a_{31}hk_{1} + a_{32}hk_{2})$$

$$\vdots$$

$$k_{n} = f(x_{i} + p_{n}h, y_{i} + a_{n1}hk_{1} + a_{n2}hk_{2} + \dots + a_{n,n-1}hk_{n-1})$$

The compact form of the Runge-Kutta method:

$$y_{i+1} = y_i + h \sum_{j=1}^{n} c_j k_j$$

where
$$k_{j} = f(x_{i} + p_{j}h, y_{i} + \sum_{l=1}^{j-1} a_{jl}hk_{l})$$

First-order Runge-Kutta Method (n = 1)

$$y_{i+1} = y_i + hc_1k_1 = y_i + hc_1f(x_i, y_i)$$

- With c_1 = 1 the first order Runge-Kutta method is the same as Euler's method.
- Second-order Runge-Kutta Method (n = 2)

$$y_{i+1} = y_i + hc_1k_1 + hc_2k_2 = y_i + hc_1f(x_i, y_i) + hc_2f(x_i + p_2h, y_i + a_{21}hk_1)$$
 (A1)

- ightharpoonup Unknowns: c_1, c_2, p_2, a_{21}
- Step (1) By Taylor's series expansion:

$$y_{i+1} = y_i + hf(y_i, x_i) + \frac{h^2}{2!}f'(y_i, x_i) + O(h^3)$$

With the chain rule: $f' = \frac{\partial f}{\partial x} + \frac{\partial f}{\partial y} f = f_x + f_y f$

$$y_{i+1} = y_i + hf_i + \frac{h^2}{2!} (f_{x_i} + f_{y_i}f_i) + O(h^3)$$
 (B)

Step (2) Use Taylor's series expansion for function of two variables:

$$\overbrace{f(x_i + p_2 h, y_i + a_{21} h k_1)}^{k_2} = f_i + p_2 h f_{x_i} + a_{21} h f_{y_i} f_i + O(h^2)$$
(A2)

Substituting Eq. (A2) into (A1) and rearranging the equation yields

$$y_{i+1} = y_i + h f_i (c_1 + c_2) + h^2 f_{x_i} (c_2 p_2) + h^2 f_{y_i} f_i (c_2 a_{21}) + O(h^3)$$
 (A3)

The coefficients of the corresponding terms from Eq. (B) and (A3) must be the same:

$$c_1 + c_2 = 1$$
, $c_2 p_2 = \frac{1}{2}$ and $c_2 a_{21} = \frac{1}{2}$

- 4 unknowns and 3 equations -> one degree of freedom
- \triangleright Choose one parameter and determine the others. Let choose c_2 to be specified:

$$c_2 = 1 \rightarrow c_1 = 0, \ p_2 = \frac{1}{2}, \ a_{21} = \frac{1}{2} \implies \begin{cases} y_{i+1} = y_i + hk_2 \\ k_1 = f(x_i, y_i) \\ k_2 = f(x_i + \frac{1}{2}h, y_i + \frac{1}{2}hk_1) \end{cases}$$

The same as modified Euler's method!

$$c_{2} = \frac{1}{2} \rightarrow c_{1} = \frac{1}{2}, \ p_{2} = 1, \ a_{21} = 1 \implies \begin{cases} y_{i+1} = y_{i} + \frac{h}{2}(k_{1} + k_{2}) \\ k_{1} = f(x_{i}, y_{i}) \\ k_{2} = f(x_{i} + h, y_{i} + hk_{1}) \end{cases}$$

The same as Heun's method!

Third-order Runge-Kutta Method (n = 3)

➤ The derivation is similar to the one described for the second-order method. 8 unknowns and 6 equations → two degree of freedom. Choose two parameters and determine the others.

$$y_{i+1} = y_i + \frac{h}{6} (k_1 + 4k_2 + k_3)$$

$$k_1 = f(x_i, y_i)$$

$$k_2 = f(x_i + \frac{1}{2}h, y_i + \frac{1}{2}hk_1)$$

$$k_3 = f(x_i + h, y_i - hk_1 + 2hk_2)$$

If y' = f(x), the third order Runge-Kutta method is reduced to Simpson's 1/3 rule which yields exact results when f(x) is a cubic equation.

Fourth-order Runge-Kutta Method (n = 4)

The fourth order Runge-Kutta methods are most popular with the global truncation is $O(h^4)$. $y_{i+1} = y_i + \frac{h}{6}(k_1 + 2k_2 + 2k_3 + k_4)$

 $k_1 = f(x_i, y_i)$ $k_{2} = f(x_{i} + \frac{1}{2}h, y_{i} + \frac{1}{2}hk_{1})$

 $k_2 = f(x_1 + \frac{1}{2}h, y_2 + \frac{1}{2}hk_2)$

 $k_{A} = f(x_{i} + h, y_{i} + hk_{3})$

 $y_{i+1} = y_i + \frac{h}{8}(k_1 + 3k_2 + 3k_3 + k_4)$

 $k_{i} = f(x_{i}, y_{i})$

 $k_{2} = f(x_{i} + \frac{1}{3}h, y_{i} + \frac{1}{3}hk_{1})$ Method Attributed to Kutta

 $k_{3} = f(x_{i} + \frac{2}{3}h, y_{i} - \frac{1}{3}hk_{1} + hk_{2})$

 $k_4 = f(x_i + h, y_i + hk_1 - hk_2 + hk_3)$

Method Attributed to Runge

Example

Find the solution of the problem y' = y + 2x - 1 with y(x = 0) = 1 over the interval $0 \le x \le 1$ using the fourth order Runge-Kutta method (attributed to Runge)

Solution:

$$h = 0.1$$
; $x_0 = 0$, $x_1 = 0.1$, $x_2 = 0.2$, $x_3 = 0.3$, ..., $x_{10} = 1$
Start with $y_0 = 1$

$$k_{1} = f(x_{0}, y_{0}) = y_{0} + 2x_{0} - 1 \implies k_{1} = f(0,1) = 1 + 2(0) - 1 = 0$$

$$k_{2} = f(x_{0} + \frac{1}{2}h, y_{0} + \frac{1}{2}hk_{1}) = f(0 + \frac{1}{2}(0.1), 1 + \frac{1}{2}(0.1)(0)) = f(0.05, 1) = 1 + 2(0.05) - 1 = 0.1$$

$$k_{3} = f(x_{0} + \frac{1}{2}h, y_{0} + \frac{1}{2}hk_{2}) = f(0 + \frac{1}{2}(0.1), 1 + \frac{1}{2}(0.1)(0.1)) = f(0.05, 1.005) = 0.105$$

$$k_{4} = f(x_{0} + h, y_{0} + hk_{3}) = f(0 + 0.1, 1 + 0.1(0.105)) = f(0.1, 1.0105) = 0.2105$$

$$y_{1} = y_{0} + \frac{h}{6}(k_{1} + 2k_{2} + 2k_{3} + k_{4}) \implies y_{1} = y(0.1) = 1 + \frac{h}{6}(0 + 2(0.1 + 0.105) + 0.2105) = 1.0103$$

$$k_1 = f(x_1, y_1) = y_1 + 2x_1 - 1 \implies k_1 = f(0.1, 1.013) = 1.013 + 2(0.1) - 1 = 0.2103$$

$$k_2 = f(x_1 + \frac{1}{2}h, y_1 + \frac{1}{2}hk_1) = f(0.1 + \frac{1}{2}(0.1), 1.013 + \frac{1}{2}(0.1)(2.103)) = f(0.15, 1.0208) = 0.32082$$

$$k_3 = f(x_1 + \frac{1}{2}h, y_1 + \frac{1}{2}hk_2) = f(0.1 + \frac{1}{2}(0.1), 1.013 + \frac{1}{2}(0.1)(0.32082)) = f(0.15, 1.0263) = 0.32634$$

$$k_4 = f(x_1 + h, y_1 + hk_3) = f(0.1 + 0.1, 1.013 + 0.1(0.32634)) = f(0.2, 1.0546) = 0.44293$$

$$y_2 = y(0.2) = 1 + \frac{h}{6}(0.2103 + 2(0.32082 + 0.32634) + 0.44293) = 1.0428$$

Subsequently calculate y₃, y₄, y₅, ..., y₉, y₁₀

Compare with exact solution

Х	у	k ₁	k ₂	k ₃	k ₄	exact	% error
0	1	0	0.1	0.105	0.2105	1	0
0.1	1.0103	0.21034	0.32086	0.32638	0.44298	1.0103	1.6775E-05
0.2	1.0428	0.44281	0.56495	0.57105	0.69991	1.0428	3.5924E-05
0.3	1.0997	0.69972	0.83470	0.84145	0.98386	1.0997	5.6471E-05
0.4	1.1836	0.98365	1.1328	1.1403	1.2977	1.1836	7.7314E-05
0.5	1.2974	1.2974	1.4623	1.4706	1.6445	1.2974	9.7438E-05
0.6	1.4442	1.6442	1.8264	1.8356	2.0278	1.4442	1.1609E-04
0.7	1.6275	2.0275	2.2289	2.2389	2.4514	1.6275	1.3283E-04
0.8	1.8511	2.4511	2.6736	2.6848	2.9196	1.8511	1.4750E-04
0.9	2.1192	2.9192	3.1652	3.1775	3.4369	2.1192	1.6019E-04
1	2.4366					2.4366	1.7109E-04

Multistep Methods

- All the previous methods (Euler, modified Euler, Huen and Runge-Kutta methods) are called single-step methods because they use only the information from the last step computed
- Single-step methods require information at a single point to find .
- Multi-step methods require information at more than one point to find .
- Utilize the past values of y and/or to construct a polynomial that approximates the derivative function, and extrapolate this into the next interval.

Adams-Bashforth Open (or Explicit) Formula

Using Taylor's series expansion of y around x_i to express y_{i+1}

$$y_{i+1} = y_i + hf_i + \frac{h^2}{2!}f_i' + \frac{h^3}{3!}f_i'' + \frac{h^4}{4!}f_i''' + \cdots$$

By using the backward different formula,

$$f_i' = \frac{f_i - f_{i-1}}{h} + \frac{h}{2} f_i'' + O(h^2)$$

for the 2nd -order method

$$y_{i+1} = y_i + h \left(\frac{3}{2} f_i - \frac{1}{2} f_{i-1} \right) + \frac{5}{12} h^3 f_i'' + O(h^4)$$

Adams-Bashforth Open (or Explicit) Formula (continue)

By using ,

$$f_i' = \frac{3f_i - 4f_{i-1} + f_{i-2}}{2h} + O(h^2)$$

$$f_{i}'' = \frac{f_{i} - 2f_{i-1} + f_{i-2}}{h^{2}} + O(h)$$

for the 3d -order method

$$y_{i+1} = y_i + h \left(\frac{23}{12} f_i - \frac{16}{12} f_{i-1} + \frac{5}{12} f_{i-2} \right) + O(h^4)$$

The general expression for the *nth-order Adams-Bashforth open formula*

$$y_{i+1} = y_i + h \sum_{k=1}^{n} \alpha_{nk} f_{i-k+1} + O(h^{n+1})$$

Adams-Bashforth Open (or Explicit) Formula (continue)

Coefficients and local truncation error for Adams-Bashforth Open Formulas

							•
Order of the formula (n)	$k = 1$ α_{n1}	$k = 2$ α_{n2}	$k = 3$ α_{n3}	$k = 4$ α_{n4}	$k = 5$ α_{n5}	$k = 6$ α_{n6}	Local truncation error, $O(h^{n+1})$
1	1						$\frac{1}{2}h^2f'(\xi)$
2	$\frac{3}{2}$	$-\frac{1}{2}$					$\frac{1}{2}h^2f'(\xi) = \frac{5}{12}h^3f''(\xi)$
3	$\frac{23}{12}$	$-\frac{16}{12}$	$\frac{5}{12}$				$\frac{9}{24}h^4f^{\prime\prime\prime}(\xi)$
4	$\frac{55}{24}$	$-\frac{59}{24}$	$\frac{37}{24}$	$-\frac{9}{24}$			$\frac{9}{24}h^4f'''(\xi)$ $\frac{251}{720}h^5f^{(4)}(\xi)$
5	$\frac{1901}{720}$	$-\frac{2774}{720}$	$\frac{2616}{720}$	$-\frac{1274}{720}$	$\frac{251}{720}$		$\frac{475}{1440}h^6f^{(5)}(\xi)$
6	$\frac{4277}{1440}$	$-\frac{7923}{1440}$	$\frac{9982}{1440}$	$-\frac{7298}{1440}$	$\frac{2877}{1440}$	$-\frac{475}{1440}$	$\frac{19087}{60480}h^7f^{(6)}(\xi)$

The 4th -order method is the most popular $y_{i+1} = y_i + \frac{h}{24} (55f_i - 59f_{i-1} + 37f_{i-2} - 9f_{i-3})$

Adams-Moulton Closed (or Implicit) Formula

Using Taylor's series expansion of y around to express y_i
 (with -h)

$$y_{i} = y_{i+1} - hf_{i+1} + \frac{h^{2}}{2!}f'_{i+1} - \frac{h^{3}}{3!}f'''_{i+1} + \frac{h^{4}}{4!}f'''_{i+1} - \cdots$$

and rearrange the equation:

$$y_{i+1} = y_i + h f_{i+1} - \frac{h^2}{2!} f'_{i+1} + \frac{h^3}{3!} f'''_{i+1} - \frac{h^4}{4!} f'''_{i+1} + \cdots$$

The method is implicit because $f_{i+1} = f(x_{i+1}, y_{i+1})$ appears on the RHS.

Adams-Moulton Closed (or Implicit) Formula (continue)

By using the backward different formula

$$f'_{i+1} = \frac{f_{i+1} - f_i}{h} + \frac{h}{2} f''_{i+1} + O(h^2)$$

for the 2nd -order method

$$y_{i+1} = y_i + h \left(\frac{1}{2} f_i + \frac{1}{2} f_{i+1} \right) - \frac{1}{12} h^3 f_{i+1}'' + O(h^4)$$

- By using $f'_{i+1} = \frac{3f_{i+1} 4f_i + f_{i-1}}{2h} + O(h^2)$ $f'_{i+1} = \frac{f_{i+1} 2f_i + f_{i-1}}{h^2} + O(h)$
- for the 3^d -order method

$$y_{i+1} = y_i + h \left(\frac{5}{12} f_{i+1} + \frac{8}{12} f_i - \frac{1}{12} f_{i-1} \right) + O(h^4)$$

Adams-Moulton Closed (or Implicit) Formula (continue)

The general expression for the nth-order Adams-Moulton closed formula

$$y_{i+1} = y_i + h \sum_{k=1}^{n} \alpha_{nk} f_{i-k+2} + O(h^{n+1})$$

Adams-Moulton Closed (or Implicit) Formula (continue)

Coefficients and local truncation error for Adams-Moulton Closed Formulas.

Order of the formula (n)	$k = 1$ α_{n1}	$k=2$ α_{n2}	$k = 3$ α_{n3}	$k = 4$ α_{n4}	$k = 5$ α_{n5}	$k = 6$ α_{n6}	Local truncation error, $O(h^{n+1})$
1	1						$-\frac{1}{2}h^2f'(\xi)$
2	$\frac{1}{2}$	$\frac{1}{2}$					$-\frac{1}{12}h^3f''(\xi)$
3	<u>5</u>	<u>8</u> 12	$-\frac{1}{12}$				$-\frac{1}{24}h^4f^{\prime\prime\prime}(\xi)$
4	9 24	19 24	$-\frac{5}{24}$	$\frac{1}{24}$			$-\frac{19}{720}h^5f^{(4)}(\xi)$
5	251 720	646 720	$-\frac{264}{720}$	106 720	$-\frac{19}{720}$		$-\frac{27}{1440}h^6f^{(5)}(\xi)$
6	475 1440	1427 1440	$-\frac{798}{1440}$	482 1440	$-\frac{173}{1440}$	$\frac{27}{1440}$	$-\frac{863}{60480}h^7f^{(6)}(\xi)$

The 4th -order method is the most popular $y_{i+1} = y_i + \frac{h}{24} (9f_{i+1} + 19f_i - 5f_{i-1} + f_{i-2})$

Fourth-Order Adams Predictor-Corrector Method

- The open and closed formulas are used in combination. The open formula is used in a predictor step and the closed formula is applied as a corrector step.
- 1. Select the value of h and ε and compute $\chi_i = \chi_0 + ih$, i = 1, 2, ...
- 2. From the known initial condition $y(x_0) = y_0$ use the fourth Runge-Kutta method (because it has the same level of accuracy), find the solution

$$y_1, y_2, y_3$$

3. Compute $f_1 = f(x_1, y_1), f_2 = f(x_2, y_2), f_3 = f(x_3, y_3)$

Fourth-Order Adams Predictor-Corrector Method

Step 1 Start with i = 3, find $y_{i+1}^{(0)} = y_4^{(0)}$ using the fourth-order Adams-Bashforth open formula $y_4^{(0)} = y_3 + \frac{h}{24} (55f_3 - 59f_2 + 37f_1 - 9f_0)$: predictor

Step 2 Compute $f_4^{(0)} = f(x_4, y_4^{(0)})$ and start with j = 0 to find $y_{i+1}^{(j+1)} = y_4^{(1)}$ using the fourth-order Adams-Moulton closed formula

$$y_4^{(1)} = y_3 + \frac{h}{24} (9f_4^{(0)} + 19f_3 - 5f_2 + f_1)$$
: corrector

Step 3 Check convergence

if
$$\left| \frac{y_4^{(1)} - y_4^{(0)}}{y_4^{(1)}} \right| \le \varepsilon$$
, the answer is $y_4^{(1)}$, compute $f_4 = f(x_4, y_4^{(1)})$ and

go to step 1 to compute a new predictor $y_{i+1}^{(0)} = y_5^{(0)}$ for next i,

$$y_{i+1}^{(0)} = y_i + \frac{h}{24} (55f_i - 59f_{i-1} + 37f_{i-2} - 9f_{i-3})$$
: predictor

Fourth-Order Adams Predictor-Corrector Method

if
$$\left| \frac{y_4^{(1)} - y_4^{(0)}}{y_4^{(1)}} \right| > \varepsilon$$
, compute $f_4^{(1)} = f(x_4, y_4^{(1)})$ and repeat step $2 - 3$

re-compute corrector $y_{i+1}^{(j+1)} = y_4^{(2)}$

$$(y_{i+1}^{(j+1)} = y_i + \frac{h}{24}(9f_{i+1}^{(j)} + 19f_i - 5f_{i-1} + f_{i-2})$$
: corrector) for next j until

the convergence is reached, $\left| \frac{y_{i+1}^{(j+1)} - y_{i+1}^{(j)}}{y_{i+1}^{(j+1)}} \right| \le \varepsilon$, then compute

 $f_{i+1} = f(x_{i+1}, y_{i+1}^{(j+1)})$ and go to step 1 to compute a new predictor $y_{i+1}^{(0)}$ for next i.

If the convergence criterion is not satisfied in a reasonable number of iterations, repeat the whole procedure with a reduced step size, h.

Example

Find the solution of the problem y' = y + 2x - 1 with y(x = 0) = 1 over the interval $0 \le x \le 1$ using the Adams predictor-corrector method.

Solution:

$$h = 0.1$$
; $x_0 = 0$, $x_1 = 0.1$, $x_2 = 0.2$, $x_3 = 0.3$, ..., $x_{10} = 1$

Use the fourth Runge-Kutta method to find the solution of y_1, y_2, y_3 with $y_0 = 1$

i	χ	у	k ₁	k ₂	k ₃	k ₄
0	0	1.000000000000000	0.000000000	0.100000000	0.105000000	0.210500000
1	0.1	1.01034166666667	0.210341667	0.320858750	0.326384604	0.442980127
2	0.2	1.04280514170139	0.442805142	0.564945399	0.571052412	0.699910383
3	0.3	1.09971699412508				

Compute $f_1 = f(x_1, y_1), f_2 = f(x_2, y_2), f_3 = f(x_3, y_3)$ where f(x,y) = y + 2x - 1

i	Х	у	f(x, y)
0	0	1.000000000000000	0.0000000000000000
1	0.1	1.01034166666667	0.210341666666667
2	0.2	1.04280514170139	0.442805141701389
3	0.3	1.09971699412508	0.699716994125075

Step 1 Start with i = 3, find $y_{i+1}^{(0)} = y_4^{(0)}$ using the fourth-order Adams-Bashforth open formula

predictor:
$$y_4^{(0)} = y_3 + \frac{h}{24} (55f_3 - 59f_2 + 37f_1 - 9f_0) =$$

1.183640214888258,

Step 2 Compute $f_4^{(0)} = f(x_4, y_4^{(0)}) = 0.983640$ and start with j = 0 to find $y_{i+1}^{(j+1)} = y_4^{(1)}$ using the fourth-order Adams-Moulton closed formula

corrector (1):
$$y_4^{(1)} = y_3 + \frac{h}{24} (9f_4^{(0)} + 19f_3 - 5f_2 + f_1) = 1.1836491$$

Step 3 Check convergence

$$\left| \frac{y_4^{(1)} - y_4^{(0)}}{y_4^{(1)}} \right| = 7.4903017 \text{E-}06 > \varepsilon = 10^{-6}$$

compute $f_4^{(1)} = f(x_4, y_4^{(1)}) = 0.9836402148882581$ and repeat step 2 – 3

corrector (2):
$$y_4^{(2)} = y_3 + \frac{h}{24} (9f_4^{(1)} + 19f_3 - 5f_2 + f_1) =$$

1.18364941317895

$$\left| \frac{y_4^{(2)} - y_4^{(1)}}{y_4^{(2)}} \right| = 2.808842 \text{E-}07 < \varepsilon = 10^{-6} \implies \text{converge, stop the iteration,}$$

then compute $f_4 = f(x_4, y_4^{(2)}) = 0.9836491$ and go to step 1 to compute a new predictor $y_{i+1}^{(0)}$ for next i.

Repeat step 1 - 3 for next i, we get

Х	У
0	1.0000000000000000
0.1	1.01034166666667
0.2	1.04280514170139
0.3	1.09971699412508
0.4	1.18364941317895
0.5	1.29744332717520
0.6	1.44423931921767
0.7	1.62750825205359
0.8	1.85108602902678
0.9	2.11921197874592
1	2.43657128484701

Initial value

Use the fourth-order Runge-Kutta method

Use the fourth-order Adams predictor-corrector method

Note:

- The fourth-order Runge-Kutta and Adams predictor-corrector methods are found to be very efficient and reliable compared with all method.
- The Runge-Kutta methods are self-starting and are easy to program on a digital computer. Although the predictor-corrector methods are not self-starting, a fourth-order Runge-Kutta method can be used to start the solution.
- The Runge-Kutta methods might require a smaller step size in order to achieve a specified accuracy.
- The predictor-corrector methods yield the results faster in most cases.
- For large systems of differential equations, a predictor-corrector method is preferred not only because of smaller computational time, but also due to the simplicity to estimate the error at any given stage.

Simultaneous Differential Equations

- In analysis of many engineering systems involves the solution of systems of simultaneous differential equations including higher order ordinary differential equations.
- The numerical solution of one or more higher ordinary differential equations is most conveniently obtained if the system of equations is represented in the form of a set of *n* simultaneous first-order differential equations

Simultaneous Differential Equations (continue)

consider the nth-order differential equation:

$$a_n(x)\frac{d^n y}{dx^n} + a_{n-1}(x)\frac{d^{n-1} y}{dx^{n-1}} + \dots + a_1(x)\frac{dy}{dx} + a_0 y = g(x)$$

This can be rewritten as: $\frac{d^n y}{dx^n} = F\left(y, \frac{dy}{dx}, \frac{d^2 y}{dx^2}, \dots, \frac{d^{n-1} y}{dx^{n-1}}, x\right)$

$$\frac{d^n y}{dx^n} = F\left(y, \frac{dy}{dx}, \frac{d^2 y}{dx^2}, \dots, \frac{d^{n-1} y}{dx^{n-1}}, x\right)$$

By using the transformation:

$$y = y_{1},$$

$$\frac{dy}{dx} = \frac{dy_{1}}{dx} = y_{2},$$

$$\frac{d^{2}y}{dx^{2}} = \frac{dy_{2}}{dx} = y_{3},$$

$$\vdots,$$

$$\frac{d^{n-1}y}{dx^{n-1}} = \frac{dy_{n-1}}{dx} = y_{n},$$

$$\frac{d^{n}y}{dx^{n}} = \frac{dy_{n}}{dx}$$

Simultaneous Differential Equations (continue)

$$\frac{dy_{1}}{dx} = f_{1}(y_{1}, y_{2}, ..., y_{n}, x) \equiv y_{2},
\frac{dy_{2}}{dx} = f_{2}(y_{1}, y_{2}, ..., y_{n}, x) \equiv y_{3}
\vdots,
\frac{dy_{n-1}}{dx} = f_{n-1}(y_{1}, y_{2}, ..., y_{n}, x) \equiv y_{n},
\frac{d^{n}y}{dx^{n}} = f_{n}(y_{1}, y_{2}, ..., y_{n}, x) \equiv \frac{dy_{n}}{dx}$$

$$\frac{d\vec{y}}{dx} = \vec{f}(\vec{y}, x) \implies \vec{y} = \begin{cases} y_{1} \\ y_{2} \\ \vdots \\ y_{n} \end{cases}, \vec{f} = \begin{cases} f_{1} \\ f_{2} \\ \vdots \\ f_{n} \end{cases}$$

$$\frac{d\vec{y}}{dx} = \vec{f}(\vec{y}, x) \implies \vec{y} = \begin{cases} y_1 \\ y_2 \\ \vdots \\ y_n \end{cases}, \vec{f} = \begin{cases} f_1 \\ f_2 \\ \vdots \\ f_n \end{cases}$$

The initial conditions are usually stated as:

$$\vec{y}(x=0) = \begin{cases} y_1(x=0) \\ y_2(x=0) \\ \vdots \\ y_n(x=0) \end{cases}$$

Example

Solve the following differential equation $\frac{d^2y}{dx^2} + 2\frac{dy}{dx} + 4y = 0$

using Euler's method and 4th-order Runge-Kutta method, assuming that at x = 0, y = 2 and $\frac{dy}{dx} = 0$

Integrate to x = 3 with a step size of 0.1 and 0.01.

Solution:

By defining

$$\frac{dy}{dx} = z = f_1(x, y, z), \quad \frac{dz}{dx} = -2z - 4y = f_2(x, y, z)$$

The initial conditions: y(0) = 2, z(0) = 0

$$y_{i+1} = y_i + h f_1(x_i, y_i, z_i) = y_i + h z_i$$

$$z_{i+1} = z_i + h f_2(x_i, y_i, z_i) = z_i + h (-2z_i - 4y_i)$$

Euler's method: h = 0.1, x0 = 0, x1 = 0.1, x2 = 0.2, x3 = 0.3, ..., x30 = 3, with an initial y0 = 2, z0 = 0

$$y_1 = y_0 + h f_1(x_0, y_0, z_0)$$

$$= y_0 + h z_0 = 2 + 0.1(0) = 2$$

$$z_1 = z_0 + h f_2(x_0, y_0, z_0) = z_0 + h(-2z_0 - 4y_0)$$

$$= 0 + 0.1(-2(0) - 4(2)) = -0.8$$

$$y_2 = y_1 + hz_1 = 2 + 0.1(-0.8) = 1.92$$

 $z_2 = z_1 + h(-2z_1 - 4y_1)$
 $= -0.8 + 0.1(-2(-0.8) - 4(2)) = -1.44$

$$y_{3} = y_{2} + hz_{2} = 1.92 + 0.1(-0.8) = 1.776$$

$$z_{3} = z_{2} + h(-2z_{2} - 4y_{2})$$

$$= -1.44 + 0.1(-2(-1.44) - 4(1.92)) = -1.92$$

$$y_{4} = y_{3} + hz_{3} = 1.776 + 0.1(-1.92) = 1.584$$

$$z_{4} = z_{3} + h(-2z_{3} - 4y_{3})$$

$$= -1.92 + 0.1(-2(-1.92) - 4(1.776)) = -2.2464$$

$$y_{i+1} = y(x_{i+1}) = y_{i} + hz_{i}$$

$$z_{i+1} = z(x_{i+1}) = z_{i} + h(-2z_{i} - 4y_{i})$$

$$i = 5,7,...,30$$

➤ Then calculate y5, z5, ..., y29, z29, y30...

4th-order Runge-Kutta method

$$h = 0.1, \ x0 = 0, \ x1 = 0.1, \ x2 = 0.2, \ x3 = 0.3, \ \dots, \ x30 = 3, \ \text{with an initial } \ y0 = 2, \ z0 = 0$$

$$k_{1,y} = f_1(z_0) = z_0 = 0$$

$$k_{1,z} = f_2(y_0, z_0) = -2z_0 - 4y_0 = -2(0) - 4(2) = -8$$

$$k_{2,y} = f_1(z_0 + \frac{1}{2}hk_{1,z}) = f_1(0 + \frac{1}{2}(0.1)(-8)) = f_1(-0.4) = -0.4$$

$$k_{2,z} = f_2(y_0 + \frac{1}{2}hk_{1,z}) = f_2(2 + \frac{1}{2}(.01)(0), 0 + \frac{1}{2}(0.1)(-8))$$

$$= f_2(2, -0.4) = -2(-0.4) - 4(2) = -7.2$$

$$k_{3,y} = f_1(z_0 + \frac{1}{2}hk_{2,z}) = f_1(0 + \frac{1}{2}(0.1)(-7.2)) = f_1(-0.36) = -0.36$$

$$k_{3,z} = f_2(y_0 + \frac{1}{2}hk_{2,y}, z_0 + \frac{1}{2}hk_{2,z}) = f_2(2 + \frac{1}{2}(0.1)(-0.4), 0 + \frac{1}{2}(0.1)(-7.2))$$

$$= f_2(1.98, -0.36) = -2(-0.36) - 4(1.98) = -7.2$$

$$k_{4,y} = f(z_0 + hk_{3,z}) = f_1(0 + 0.1(-7.2)) = f_1(-0.72) = -0.72$$

$$k_{4,z} = f(y_0 + hk_{3,y}, z_0 + hk_{3,z}) = f_2(2 + 0.1(-0.36), 0 + 0.1(-7.2))$$

$$= f_2(1.964, -0.72) = -2(-0.72) - 4(1.964) = --6.416$$

$$y_1 = y_0 + \frac{h}{6} \left(k_{1,y} + 2k_{2,y} + 2k_{3,y} + k_{4,y} \right) = 2 + \frac{0.1}{6} (0 + 2(-0.4) + 2(-0.36) - 0.72) = 1.9627$$

$$z_1 = z_0 + \frac{h}{6} \left(k_{1,z} + 2k_{2,z} + 2k_{3,z} + k_{4,z} \right) = 0 + \frac{0.1}{6} (-8 + 2(-7.2) + 2(-7.2) - 6.416) = -0.72027$$

➤ Then calculate y5, z5, ..., y29, z29, y30 ...

Example – system of equations

Each of the tanks shown in Fig. contain 100 gallons of water. The water in tank 1 contains 1000 grams of dissolved salt, while the water in tank 2 contains 100 grams of dissolved salt. At time t=0, pipe 1 starts pumping pure water at the rate of 10 gallons/min while pipes 2,3,4 start pumping mixed water at rates of 15, 5 and 10 gallons/min, respectively. Determine the concentration of salt in the tanks at t=3 min.

Use of MATLAB

- ode45 is based on an explicit Runge-Kutta (4,5) formula, the Dormand-Prince pair. In general, ode45 is the best function to apply as a "first try" for most problems.
- ode23 is an implementation of an explicit Runge-Kutta (2,3) pair of Bogacki and Shampine. It may be more efficient than ode45 at crude tolerances and in the presence of moderate stiffness. Like ode45, ode23 is a one-step solver.
- ode113 is a variable order Adams-Bashforth-Moulton PECE solver.
 - [t,Y] = solver(odefun,tspan,y0) where solver is one of ode45, ode23, ode113, ode15s, ode23s, ode23t, or ode23tb.