MIN-HASHING AND LOCALITY SENSITIVE HASHING

Task: Finding Similar Documents

- Goal: Given a large number (N in the millions or billions) of documents, find "near duplicate" pairs
- Applications:
 - Mirror websites, or approximate mirrors
 - Don't want to show both in search results
 - Similar news articles at many news sites
 - Cluster articles by "same story"

Main issues

- What is the right representation of the document when we check for similarity?
 - E.g., representing a document as a set of characters will not do (why?)
- When we have billions of documents, keeping the full text in memory is not an option.
 - We need to find a shorter representation

3 Essential Steps for Similar Docs

- 1. Shingling: Convert documents to sets
- 2. Min-Hashing: Convert large sets to short signatures, while preserving similarity
- Locality-Sensitive Hashing: Focus on pairs of signatures likely to be from similar documents
 - Candidate pairs

The Big Picture

Shingling Documents

Define: Shingles

- A k-shingle (or k-gram) for a document is defined to be any substring of length k found within the document.
- We associate with each document the set of kshingles that appear one or more times within that document.

Example:

Suppose our document D is the string **abcdabd**, and k = 2.

Set of 2-shingles for D is {ab, bc, cd, da, bd}.

Option: Shingles as a bag (multiset), count ab twice: $S'(D_1) = \{ab, bc, ca, ab\}$

Working Assumption

- Documents that have lots of shingles in common have similar text, even if the text appears in different order
- Caveat: You must pick k large enough, or most documents will have most shingles
 - k = 5 is OK for short documents
 - k = 10 is better for long documents

Motivation for Minhashing / LSH

- Suppose we need to find near-duplicate documents among N = 1 million documents
- Naïvely, we would have to compute pairwise
 Jaccard similarities for every pair of docs
 - $N(N-1)/2 \approx 5*10^{11}$ comparisons
 - At 10⁵ secs/day and 10⁶ comparisons/sec, it would take 5 days
- For N = 10 million, it takes more than a year...

MINHASHING

Minhashing: Convert large sets to short signatures, while preserving similarity

Encoding Sets as Bit Vectors

 Many similarity problems can be formalized as finding subsets that have significant intersection

- Encode sets using 0/1 (bit, boolean) vectors
 - One dimension per element in the universal set
- Interpret set intersection as bitwise AND, and set union as bitwise OR
- Example: $C_1 = 10111$; $C_2 = 10011$
 - Size of intersection = 3; size of union = 4,
 - Jaccard similarity (not distance) = 3/4
 - Distance: d(C₁,C₂) = 1 (Jaccard similarity) = 1/4

Representing Sets as Boolean Matrices

- Rows = elements (shingles)
- Columns = sets (documents)
 - 1 in row e and column s if and only if e is a member of s
 - Column similarity is the Jaccard similarity of the corresponding sets (rows with value 1)
 - Typical matrix is sparse!
- Each document is a column:
 - Example: $sim(C_1, C_2) = ?$
 - Size of intersection = 3; size of union = 6,
 Jaccard similarity (not distance) = 3/6
 - $d(C_1,C_2) = 1 (Jaccard similarity) = 3/6$

Documents

	1	1	1	0
	1	1	0	1
S	0	1	0	1
Sulugies	0	0	0	1
ח	1	0	0	1
	1	1	1	0
	1	0	1	0

Matrix Representation of Set

- The columns of the matrix correspond to the sets, and the rows correspond to elements of the universal set from which elements of the sets are drawn.
- A value 1 in row r and column c if the element for row r is a member of the set for column c.
- Otherwise the value in position (r, c) is 0.

Element	S_1	S_2	S_3	S_4
a	1	0	0	1
b	0	0	1	0
c	0	1	0	1
d	1	0	1	1
e	0	0	1	0

Finding Similar Columns

- Next Goal: Find similar columns, Small signatures
- Naïve approach:
 - 1) Signatures of columns: small summaries of columns
 - 2) Examine pairs of signatures to find similar columns
 - Essential: Similarities of signatures and columns are related
 - 3) Optional: Check that columns with similar signatures are really similar

Warnings:

- Comparing all pairs may take too much time: Job for LSH
 - These methods can produce false negatives, and even false positives (if the optional check is not made)

Hashing Columns (Signatures)

- Key idea: "hash" each column C to a small signature h(C), such that:
 - (1) h(C) is small enough that the signature fits in RAM
 - (2) $sim(C_1, C_2)$ is the same as the "similarity" of signatures $h(C_1)$ and $h(C_2)$
- Goal: Find a hash function h(·) such that:
 - If $sim(C_1, C_2)$ is high, then with high prob. $h(C_1) = h(C_2)$
 - If $sim(C_1, C_2)$ is low, then with high prob. $h(C_1) \neq h(C_2)$
- Hash docs into buckets. Expect that "most" pairs of near duplicate docs hash into the same bucket!

Min-Hashing

- Goal: Find a hash function h(·) such that:
 - if $sim(C_1, C_2)$ is high, then with high prob. $h(C_1) = h(C_2)$
 - if $sim(C_1, C_2)$ is low, then with high prob. $h(C_1) \neq h(C_2)$
- Clearly, the hash function depends on the similarity metric:
 - Not all similarity metrics have a suitable hash function
- There is a suitable hash function for the Jaccard similarity: It is called Min-Hashing

Min-Hashing

- Imagine the rows of the boolean matrix permuted under random permutation π
- Define a "hash" function h_π(C) = the index of the first (in the permuted order π) row in which column C has value 1:

$$h_{\pi}(\mathbf{C}) = \min_{\pi} \pi(\mathbf{C})$$

- Use several (e.g., 100) independent hash functions (that is, permutations) to create a signature of a column
- The minhash value of any column is the number of the first row, in the permuted order, in which the column has a 1.

Example:

=	Element	S_1	S_2	S_3	S_4		Element	S_1	S_2	S_3	S_4
	b	0	0	1	0	•	a	1	0	0	1
	e	0	0	1	0		b	0	0	1	0
	a	1	0	0	1		c	0	1	0	1
	d	1	0	1	1		d	1	0	1	1
	c	0	1	0	1		e	0	0	1	0

- Suppose, we pick the order of rows beadc for the matrix given
- This permutation defines a minhash function h that maps sets to rows.

Computing minhash value of set S1 according to h:

- First column, column for set S1, has 0 in row b, 0 in row e, and a 1 in row a, so h(S1) = a
- Similarly, h(S2) = c, h(S3) = b, and h(S4) = a.

Min-Hashing

- Pick a random permutation of the rows (the universe U).
- Define "hash" function for set S
 - h(S) = the index of the first row (in the permuted order) in which column S has 1.
 - OR
 - h(S) = the index of the first element of S in the permuted order.
- Use k (e.g., k = 100) independent random permutations to create a signature.

Min-Hashing Example

2nd element of the permutation is the first to map to a 1

Permutation π Input matrix (Shingles x Documents)

Signature matrix M

2	4	3
3	2	4
7	1	7
6	3	2
1	6	6
5	7	1
4	5	5

1	0	1 K	0
1	0	0	7
0	7	0	1
0	1	0	7
0	1	0	1
1	0	1	0
1	0	1	0

1/0	2	1	2	1
	2	1	4	1
	1	2 /	1	2

4th element of the permutation is the first to map to a 1

Four Types of Rows

Given cols C₁ and C₂, rows may be classified as:

$$\begin{array}{ccccc} & & C_1 & & C_2 \\ A & 1 & 1 \\ B & 1 & 0 \\ C & 0 & 1 \\ D & 0 & 0 \\ \end{array}$$

- **a** = # rows of type A, etc.
- Note: $sim(C_1, C_2) = a/(a + b + c)$
- Then: $Pr[h(C_1) = h(C_2)] = Sim(C_1, C_2)$
 - Look down the cols C₁ and C₂ until we see a 1
 - If it's a type-A row, then $h(C_1) = h(C_2)$ If a type-B or type-C row, then not

Minhash Signatures

- Collection of sets represented by some characteristic matrix M.
- Call the minhash functions determined by these permutations h1, h2, . . . , hn.
- From the column representing set S, construct the minhash signature for S, the vector [h1(S), h2(S), . . . , hn(S)], normally represented as a column.
- Thus, we can form a signature matrix from matrix M, in which the ith column of M is replaced by the minhash signature for (the set of) the ith column.

Computing Minhash Signature

- Let SIG(i, c) be the element of the signature matrix for the ith hash function and column c.
- Initially, set SIG(i, c) to ∞ for all i and c.
- We handle row r by doing the following:
 - 1. Compute $h_1(r), h_2(r), ..., h_n(r)$.
 - 2. For each column c do the following:
 - (a) If c has 0 in row r, do nothing.
 - (b) However, if c has 1 in row r, then for each i = 1, 2, ..., n set SIG(i, c) to the smaller of the current value of SIG(i, c) and $h_i(r)$.

Row	S_1	S_2	S_3	S_4	$x+1 \mod 5$	$3x + 1 \mod 5$
0	1	0	0	1	1	1
1	0	0	1	0	2	4
2	0	1	0	1	3	2
3	1	0	1	1	4	0
4	0	0	1	0	0	3

Steps of Signature matrix

Row	S_1	S_2	S_3	S_4	$x+1 \mod 5$	$3x + 1 \mod 5$
0	1	0	0	1	1	1
1	0	0	1	0	2	4
2	0	1	0	1	3	2
3	1	0	1	1	4	0
4	0	0	1	0	0	3

• Step 1:

• Step 2:

Step 3:

	S_1	S_2	S_3	S_4
h_1	1	∞	2	1
h_2	1	∞	4	1

Contd...

Row	S_1	S_2	S_3	S_4	$x+1 \mod 5$	$3x+1 \mod 5$
0	1	0	0	1	1	1
1	0	0	1	0	2	4
2	0	1	0	1	3	2
3	1	0	1	1	4	0
4	0	0	1	0	0	3

• Step 4:

• Step 5:

Step 6:

	S_1	S_2	S_3	S_4
h_1	1	3	0	1
h_2	0	2	0	0

Example

 Using the data given, determine signatures of the columns the values of the following hash functions:

(a)
$$h_3(x) = 2x + 4 \mod 5$$
.

(b)
$$h_4(x) = 3x - 1 \mod 5$$
.

Element	S_1	S_2	S_3	S_4
0	0	1	0	1
1	0	1	0	0
2	1	0	0	1
3	0	0	1	0
4	0	0	1	1
5	1	0	0	0

Locality-Sensitive Hashing:

Focus on pairs of signatures likely to be from similar documents

Locality Sensitive Hashing

- One general approach to LSH is to "hash" items several times, in such a way that similar items are more likely to be hashed to the same bucket than dissimilar items are.
- Any pair that hashed to the same bucket for any of the hashings is termed to be a candidate pair

LSH:

- Goal: Find documents with Jaccard similarity at least s (for some similarity threshold, e.g., s=0.8)
- LSH General idea: Use a function f(x,y) that tells whether x and y is a candidate pair
- For Min-Hash matrices:
 - Hash columns of signature matrix M to many buckets
 - Each pair of documents that hashes into the same bucket is a candidate pair

Candidates from Min-Hash

- Pick a similarity threshold s(0 < s < 1)
- Columns x and y of M(Signature matrix) are a candidate pair if their signatures agree on at least fraction s of their rows:
 - M(i, x) = M(i, y) for at least frac. s values of i
 - We expect documents x and y to have the same (Jaccard) similarity as their signatures

LSH for Min-Hash

- Big idea: Hash columns of signature matrix M several times
- Arrange that (only) similar columns are likely to hash to the same bucket, with high probability
- Candidate pairs are those that hash to the same bucket

Partition into Bands

- Divide the signature matrix Sig into b bands of r rows.
 - Each band is a mini-signature with r hash functions.
- For each band, there is a hash function that takes vectors of r integers (the portion of one column within that band) and hash them to some large no of buckets.
- Same hash function can be used for all bands but use separate bucket for each band

Signature matrix divided into four bands of three rows per band

band 1	•••	1 0 0 0 2 3 2 1 2 2 0 1 3 1 1	•••	
band 2				
band 3				
band 4				

Partitioning into bands

Partition into Bands

- Divide the signature matrix Sig into b bands of r rows.
 - Each band is a mini-signature with r hash functions.
- For each band, hash the mini-signature to a hash table with k buckets.
 - Make k as large as possible so that mini-signatures that hash to the same bucket are almost certainly identical.
- Candidate column pairs are those that hash to the same bucket for at least 1 band.
- Tune b and r to catch most similar pairs, but few non-similar pairs.

Analysis of the Banding Technique

Suppose we use b bands of r rows each, and suppose that a particular pair of documents have Jaccard similarity s. We can calculate the probability that these documents (or rather their signatures) become a candidate pair as follows:

- 1. The probability that the signatures agree in all rows of one particular band is s^r .
- 2. The probability that the signatures disagree in at least one row of a particular band is $1 s^r$.
- 3. The probability that the signatures disagree in at least one row of each of the bands is $(1-s^r)^b$.
- 4. The probability that the signatures agree in all the rows of at least one band, and therefore become a candidate pair, is $1 (1 s^r)^b$.

The function 1-(1-s^r)^b has the form of s-curve regardless of constants b and r

- The threshold, that is, the value of similarity s at which the probability of becoming a candidate is 1/2, is a function of b and r.
- The threshold is roughly where the rise is the steepest, and for large b and r there we find that pairs with similarity above the threshold are very likely to become candidates, while those below the threshold are unlikely to become candidates.
- An approximation to the threshold is $(1/b)^1/r$. For example, if b = 16 and r = 4, then the threshold is approximately at s = 1/2, since the 4th root of 1/16 is 1/2.

Example: b = 20; r = 5

5	1-(1-s ^r) ^b
.2	.006
.3	.047
.4	.186
.5	.470
.6	.802
.7	.975
.8	.9996

Figure 3.7: The S-curve

Suppose S₁, S₂ are 80% Similar

- We want all 80%-similar pairs. Choose 20 bands of 5 integers/band.
- Probability S_1 , S_2 identical in one particular band: $(0.8)^5 = 0.328$.
- Probability S_1 , S_2 are not similar in any of the 20 bands: $(1-0.328)^{20} = 0.00035$
 - i.e., about 1/3000-th of the 80%-similar column pairs are false negatives.
- Probability S₁, S₂ are similar in at least one of the 20 bands:

$$1-0.00035 = 0.999$$

C₁, C₂ are 30% Similar

- Find pairs of ≥ s=0.8 similarity, set b=20, r=5
- **Assume:** $sim(C_1, C_2) = 0.3$
 - Since sim(C₁, C₂) < s we want C₁, C₂ to hash to NO common buckets (all bands should be different)
- Probability C_1 , C_2 identical in one particular band: $(0.3)^5 = 0.00243$
- Probability C_1 , C_2 identical in at least 1 of 20 bands: 1 $(1 0.00243)^{20} = 0.0474$
 - In other words, approximately 4.74% pairs of docs with similarity 0.3% end up becoming candidate pairs
 - They are false positives since we will have to examine them (they are candidate pairs) but then it will turn out their similarity is below threshold s

LSH Summary

- Tune to get almost all pairs with similar signatures, but eliminate most pairs that do not have similar signatures.
- Check in main memory that candidate pairs really do have similar signatures.
- Optional: In another pass through data, check that the remaining candidate pairs really represent similar sets.

Applications

- Entity Matching/Record Linkage
- Advertising Matching
- Image Search
- News Article
- Fingerprints