家庭网络 我们每天在冲浪(surfing the internet)

如果我们想上网,就的找网络业务提供商(Internet Service Provider,简称 ISP)。互联网(internet),又称国际网络,指的是网络与网络之间所串连成的庞大网络,这些网络以一组通用的协议相连,形成逻辑上的单一巨大国际网络。互联网始于1969年美国的阿帕网。你也会经常听到万维网(WWW的缩写,World Wide Web -- 全球广域网)。万维网于1989年发明,1991正式亮相。它是一个透过互联网访问的,由许多互相链接的超文本组成的资讯系统。

我们把下面的五层网络模型,称之为TCP/IP协议,但是它的前身是OSI七层模型(开放式通信系统互联参考模型(Open System Interconnection Reference Model)

OSI定义了网络互连的七层模型 (物理层、数据链路层、网络层、传输层、会话层、表示层、应用层) 转载: https://zhuanlan.zhihu.com/p/143654140

	OSI 七层模型。				
层级。	层。	英文全称。	常用协议。		
7₽	应用层₽	Application Layer	HTTP、FTP、SMTP、POP3、TELNET、NNTP、IMAP4、		
			FINGER₽		
6₽	表示层。	Presentation Layer₽	LPP、NBSSP₽		
5₽	会话层。	Session Layer₽	SSL、TLS、DAP、LDAP₽		
40	传输层₽	Transport Layer₽	TCP、UDP₽		
3₽	网络层₽	Network Layer∘	IP、ICMP、RIP、IGMP、OSPF₽		
2₽	数据链路层。	Data Link Layer	以太网、网卡、交换机、PPTP、L2TP、ARP、ATMP。		
1.	物理层↩	Physical Layer	物理线路、光纤、中继器、集线器、双绞线。		

老师说七层模型,它只是个reference,最终实践才能得到真理,最终出现了TCP/IP协议。

层级↩	OSI 七层模型↩	TCP/IP 五层模型↔	常用协议↩
7₽	应用层↩	٩	Ψ.
64□	表示层₽	应用层↩	HTTPS、HTTP、Telnet、FTP、TFTP、DNS、
5₽	会话层↩		SMTP₽
44⁻	传输层₽	传输层↩	TCP、UDP₽
34□	网络层↩	网络层↩	IP、ICMP、RIP、IGMP、OSPF₽
24□	数据链路层↩	数据链路层↩	以太网、令牌环、PPP、PPTP、L2TP、ARP、
			ATMP₽
1€	物理层↩	物理层↩	物理线路、光纤、无线电₽

详细的关于HTPP协议可以参考: http协议

网络模型

应限。 传输层 网络层 数据链路层 物理层

具体应用场景提供服务

保止数据的传输、ct如TcP、VDPthix 使用IP地址将不同网络地址、欧加岛由岛 使用MAC地址的记路面,比如交换机 网络物理传输介质:六件、双铰线 网络模型 定限。 传输层 网络层 数据链路层 物理层

比如,我们在公司的网络,世界各个地方的网络。此时就会产生一个局域网和广域网的概念,玩过游戏的人可能经常看到局域网游戏,网络游戏。

因为早期发明IPV4(Internet Protocol Version 4)他提供的ip地址的个数有限(IPv4中规定IP地址长度为32,即有2^32-1(4294967296)个地址。),随着互联网的发展迅速,发现不够了,但是为了应急先使用了NAT(Network Address Translation)技术,这种通过使用少量的全球IP地址(公网IP地址)代表较多的私有IP地址的方式,将有助于减缓可用的IP地址空间的枯竭,因此他的缺点就是:无法从 NAT 的外部向内部服务器建立连接(NAT穿

越)。不过后来已经出现了IPV6来解决这些问题。因此我们现在服务商默认提供给我们的都是内网ip(可以登陆光猫的管理界面,上面默认局域网内自动分配IP地址),当然你也可以向服务商要公网ip,另外也可以去申请IPV6。

NAT工作机制

参考: https://blog.csdn.net/yingshuanglu2564/article/details/111830114

以 10.0.0.10 的主机与 163.221.120.9 的主机进行通信为例讲解 NAT 的工作机制。利用 NAT,途中的 NAT 路由器将发送源地址从 10.0.0.10 转换为全局的IP地址(202.244.174.37)再发送数据。反之,当响应数据从 163.221.120.9 发送过来时,目标地址(202.244.174.37)先被转换成私有 IP地址 10.0.0.10以后再被转发。

IPV4									
	全 部 地 址	私 有 地 址							
A类	1.0.0.1–126.255.255.254	10.0.0.0-10.255.255.255	大型规模网络						
B类	128.0.0.1–191.255.255.254	172.16.0.0-172.31.255.255	中等规模网络						
C类	192.0.0.1-223.255.255.254	192.168.0.0-192.168.255.255	小型规模网络						
D类	224.0.0.1-239.255.255.254	HIMMAN	多路广播网络						
E类	240.0.0.1–255.255.255.255		保留地址						

向运营商要公网ip

向运营商要公网ip (注意防火墙安全!!):

- 1. 一般电话客服根本不了解这些东西,无非是你的要求进行关键词检索进行申请,发现找不到去找上级咨询,上级不处理就尽量敷衍顾客。
- 2. 运营商能掌握的ip就那些,他们为了增加用户量(赚更多的钱)进行无限套娃,比方说房东有套5室的房间租给客户,但如果1个房间再隔成5个房间,他就可以收25份钱;现在你向他要公网IP相当于要一间完整房间,这时他就只能收21份钱,运营商当然不愿意即使这应该是你的权利。他们不会直接告诉你不能设置因为这违反合同(特便宜或者移动免费那种的估计就是不行),但他们可以跟你绕,这招对付普通用户或者公网ip需求度不高的极为管用。所以一个电话不了了之是常规操作所以想要公网ip就准备好持久战准备,放平心态,明确目的和态度,全以直击对付客服,打到你的账号工单塞满投诉塞炸,最好让你成为每个客服的噩梦,战争就是看谁先支撑不住。
- 3. 去向运营商申请IPV6

家庭组织网络

上网连接模式:

- 1. 桥接模式:光猫里边不拨号(光猫只起了一个光信号与电信号相互转换的作用),需要外接一个路由器才能上网,或者电脑宽带拨号才能上网。
- 2. 路由模式:光猫里边已经进行了宽带拨号,光猫的LAN口(包括wifi)是可以直接上网的。
- 3. Repeater中继模式:中继模式可以达到放大已有的WiFi网络的信号覆盖范围。借助该模式,无线路由器能够连接到上级无线网络,从而实现扩大WiFi网络覆盖范围的目的。
- 4. AP(Wireless Access Point)无线接入点:路由器通过网线连接上级路由器,将有线信号转变为无线信号,以此来扩展无线网络覆盖范围。

上网的方式:

1. IP模式

- 1. 动态IP方式 (DHCP)
- 2. 静态IP方式
- 2. PPPoE (虚拟拨号)

基本的组网模式:

- 1. 光猫 (桥接) + 路由器 (路由) + DHCP (最佳选择)
- 2. 光猫 (路由) + 路由器 (桥接) + DHCP (运营商官方买的路由器就采用 此方案,路由器也是支持桥接模式的)
- 3. mesh组网

功能:

家里的路由器信号覆盖不到位的地方,通过多个子路由器把信号扩展 开,并且在不改变无线信号的情况下,也就是不切换SSID名称的情况, 做到网络不中断,漫游无感知。桥接最重要的一点就是无法实现网络自 动无缝衔接切换。