Аксиоматика теории множеств

Равенство определяли следующим образом: $x = y \stackrel{\text{def}}{\Leftrightarrow} \forall z, (z \in x \Leftrightarrow z \in y).$

Изучили следующие аксиомы:

- (1) Аксиома равенства: x = y;
- (2) **Аксиома пары:** $\{x, y\}$;
- (3) Аксиома объединения: $\cup x$;
- (4) Аксиома степени: $\mathcal{P}(x)$;
- (5) Аксиома выделения: $\{z \in x \mid \varphi(z)\};$

Для аксиомы выделения можно добавить параметры \Rightarrow получим $\{z \in x \mid \varphi(z, p_1, \dots, p_n)\}$, например $\{z \in \mathbb{R} \mid z < a\}$, где a - параметр.

Опр: 1. $X \times Y = \{ \langle u, v \rangle \mid u \in X \land v \in Y \}$ - Декартово произведение, $\langle u, v \rangle \in \mathcal{P}(\mathcal{P}(X \cup Y))$.

Почему $\langle u, v \rangle \in \mathcal{P}(\mathcal{P}(X \cup Y))$ - ?

$$\begin{split} \langle x,y\rangle &= \big\{\{x,y\},\{x\}\big\} \\ \{x\} &\in \mathcal{P}(X) \Rightarrow \{x\} \in \mathcal{P}(X \cup Y) \Rightarrow \{x,y\} \in \mathcal{P}(X \cup Y) \text{ и } \{x\} \in \mathcal{P}(X \cup Y) \Rightarrow \big\{\{x,y\},\{x\}\big\} \in \mathcal{P}\big(\mathcal{P}(X \cup Y)\big) \end{split}$$

Формальная запись Декартова произведения

$$X \times Y = \{ z \in \mathcal{P}(\mathcal{P}(X \cup Y)) \mid \exists u, v \colon (z = \langle u, v \rangle \land u \in X \land y \in Y) \}$$

$$z = \langle u, v \rangle \Leftrightarrow z = \{\{u, v\}, \{v\}\} \Leftrightarrow \exists z_1, \exists z_2, (z_1 = \{u\} \land z_2 = \{u, v\} \land z = \{z_1, z_2\})\}$$

$$z_1 = \{u\} \Leftrightarrow \forall w, (w \in z_1 \Leftrightarrow w = u)$$

Опр: 2. R - <u>бинарное отношение</u> между A и B, если $R \subseteq A \times B$.

Рис. 1: Бинарное отношение

Пример:

$$\langle x,y \rangle \in R \stackrel{\mathrm{def}}{\Leftrightarrow} xRy$$
 =_A:= { $\langle x,x, \rangle \mid x \in A$ } $\subseteq A \times A$ (равенство на A или тождественная функция).

Отношение эквивалентности:

- (1) Рефлексивное: $\forall x \in A, (xRx);$
- (2) Транзитивное: $\forall x, y, z \in A, (xRy \land yRz \Rightarrow xRz);$
- (3) Симметричное: $\forall x, y \in A, (xRy \Rightarrow yRx);$

Можно разделять множества по классам эквивалентности: $x \in A \Rightarrow x_R := \{ y \in A \mid yRx \}$ (по A5), по определению $x \in x_R$.

Утв. 1. $\forall x, y, (x_R = y_R \lor x_R \cap y_R = \varnothing).$

$$\square \quad x \in A \Rightarrow x_R = \{y \in A \mid yRx\}; \text{ пусть } x_1, x_2 \in A, \text{ пусть } x_R^1 \cap x_R^2 \neq \varnothing \Rightarrow \text{ пусть } z \in x_R^1 \cap x_R^2 \Rightarrow x_1Rz \wedge x_2Rz \Rightarrow x_1Rx_2 \Rightarrow x_2Rx_1 \Rightarrow \forall z \colon x_2Rz \Rightarrow x_1Rz, \forall z \colon x_1Rz \Rightarrow x_2Rz \Rightarrow x_1^1 = x_R^2, \text{ иначе } x_R^1 \cap x_R^2 = \varnothing. \quad \blacksquare$$

A/R - множество всех классов эквивалентности элементов множества A по отношению R; A/R - фактор-множе

Опр: 3. Фактор-множество - $A/R = \{x_R \in \mathcal{P}(A) \mid x \in A\} = \{z \in \mathcal{P}(A) \mid \exists x \in A \colon x_R = z\}$, где $z = \{y \in A \mid yRx\}$ - по определению.

 $\bigsqcup A/R = A$ (все множество A разбивается на классы эквивалентности).

Целые числа ℤ

Пусть задали \mathbb{N} , как задать \mathbb{Z} - ?

 $\langle m,n \rangle$, где $m,n \in \mathbb{N}$; интуитивно: "m-n" $\Rightarrow \langle 1,2 \rangle \cong -1; \langle 2,3 \rangle \cong -1; \dots;$

 $=_{\mathbb{Z}}$ - отношение эквивалентности на $\mathbb{N} \times \mathbb{N}$: $\langle m_1, n_1 \rangle =_{\mathbb{Z}} \langle m_2, n_2 \rangle$ - ?

$$m_1 - n_1 = m_2 - n_2 \Leftrightarrow m_1 + n_2 = m_2 + n_1 \Rightarrow \langle m_1, n_1 \rangle =_{\mathbb{Z}} \langle m_2, n_2 \rangle \stackrel{\text{def}}{\Leftrightarrow} m_1 + n_2 = m_2 + n_1 \Rightarrow \mathbb{Z} \stackrel{\text{def}}{=} \left(\mathbb{N} \times \mathbb{N} / =_{\mathbb{Z}} \right)$$

Рациональные числа **Q**

Как задать
$$\mathbb{Q}$$
 - ? $\frac{m}{n} \Rightarrow \langle m, n \rangle, m \in \mathbb{Z}, n \in \mathbb{N} \setminus \{0\} \Rightarrow \frac{m_1}{n_1} =_{\mathbb{Q}} \frac{m_2}{n_2} \Leftrightarrow m_1 n_2 =_{\mathbb{Z}} n_1 m_2 \Rightarrow \mathbb{Q} = (\mathbb{Z} \times (\mathbb{N} \setminus \{0\}) / =_{\mathbb{Q}})$

 $=_{\mathbb{Q}}$ - отношение эквивалентности на $\mathbb{Z} \times (\mathbb{N} \setminus \{0\})$

Функции

 $f \colon A \to B$ - функция. $x \mapsto f(x)$ - соответствие, но в теории множеств все статично, все состоит из множеств, можем отождествить с графиком, то есть с парой $\Rightarrow f \subseteq A \times B \Rightarrow f = \{\langle x, f(x) \rangle \mid x \in A\}, f$ - частный случай бинарного отношения.

Свойства бинарных отношений:

- (1) <u>Функциональность</u>: $\forall x, y_1, y_2, (xRy_1 \land xRy_2 \Rightarrow y_1 = y_2);$
- (2) <u>Тотальность:</u> $\forall x \in A, \exists y \in B \colon xRy \Leftrightarrow \text{dom} R = A;$
- (3) <u>Инъективность:</u> $\forall x_1, x_2, y, (x_1Ry \land x_2Ry \Rightarrow x_1 = x_2);$
- (4) Сюрьективность: $\forall y \in B, \exists x \in A \colon xRy \Leftrightarrow \operatorname{rng} R = B;$

 $\forall R, \exists R^{-1} \colon R^{-1} = \{ \langle y, x \rangle \mid xRy \}, R^{-1} \subseteq B \times A;$

Можно заметить, что R - функционально $\Leftrightarrow R^{-1}$ - инъективно, R - тотально $\Leftrightarrow R^{-1}$ - сюръективно.

Опр: 4. $f \subseteq A \times B$ - функция из A в B, если f - тотальна и функциональна.

 \mathbf{Rm} : 1. Если f - только функциональна, то это частичная функция.

Опр: 5. Область определения $\operatorname{dom} R \stackrel{\text{def}}{=} \{ x \in A \mid \exists y \in B \colon xRy \}.$

Опр: 6. Область значений $\operatorname{rng} R \stackrel{\text{def}}{=} \{ y \in B \mid \exists x \in A \colon xRy \}.$

Опр: 7. <u>Композицией</u> $R\cdot S$ двух отношений $R\colon A\to B$ и $S\colon B\to C$ называется $R\cdot S\subseteq A\times C$, такой что $xRSz \stackrel{\mathrm{def}}{\Leftrightarrow} \exists y\in B\colon (xRy\wedge ySz).$

Onp: 8. $(f \circ g)(x) \stackrel{\text{def}}{=} f(g(x)), A \stackrel{g}{\to} B \stackrel{f}{\to} C \Rightarrow f \circ g \stackrel{\text{def}}{=} g \cdot f.$