1- Seja o sinal x(t) cuja transformada de Fourier está mostrada a seguir. Este sinal é amostrado



gerando  $x_a(t) = \sum_{n=-\infty}^{\infty} x(nT) \, \delta(t-nT); T = 100 \mu s.$ 

- a) (0,5) Calcule a freqüência de amsotragem  $\omega_s$  correspondente ao intervalo T dado.
- b) (0,5) Esboce o espectro  $X_a(\omega)$ .
- c) (0,5) Esboce o espectro  $X_a(\Omega)$ ,  $\Omega = \omega T$ .
- d) (0,5) Demonstre se é possível ou não recuperar x(t) a partir de  $x_a(t)$ . Se for possível, especifique completamente o sistema de recuperação.
- e) (0,5) Calcule o maior intervalo possível entre amostras sob a restrição de que x(t) possa ser recuperado.
- f) (1,0) Suponha que a faixa de freqüências  $4.000\pi < |\omega| < 8.000\pi$  não é importante e pode sofrer sobreposição espectral. Calcule a menor freqüência de amostragem possível neste caso e justifique.
- 2- Considere o sinal  $x(t)=40.000\,\mathrm{Sa}(40.000\pi t)$ . Este sinal foi amostrado com uma freqüência de amostragem  $\omega_s=100.000\pi$  e filtrado com um filtro discreto passa-baixas ideal com freqüência de corte  $\Omega_c=2\pi/5$ , onde  $\Omega=\omega T$  e T é o intervalo entre amostras.
  - a) (0,5) Calcule  $X(\omega)$ .
  - b) (1,0) Esboce o espectro das amostras  $X_a(\Omega)$ .
  - c) (0,5) Esboce a função de transferência do filtro.
  - d) (0,5) Esboce o espectro das amostras após o filtro.
- e) (0,5) Calcule o sinal contínuo no tempo y(t) recuperado a partir das amostras após o filtro discreto.
  - 3- Seja  $x_1[n] = 2^n u[n]; \ x_2[n] = -(0,5)^n u[-n-1]; \ x_3[n] = u[n] u[n-10].$
  - a) (1,0) Calcule  $X_1(z)$ ,  $X_2(z)$  e  $X_3(z)$ .
  - b) (0,5) Calcule  $X_1(\Omega)$ ,  $X_2(\Omega)$  e  $X_3(\Omega)$ . Justifique.
  - c) (1,5) Considere  $X(z) = X_1(z) + X_2(z)$ ; 0, 5 < |z| < 2. Calcule x[n].
  - d) (0,5) Calcule  $X(\Omega)$ . Justifique.