测试题 2

新定义的指令机器码说明

由于本条指令只涉及寄存器之间的运算, 因此定义为 R 型指令较为合适。

格式基本同R型指令中的 s11、sr1 指令,区别在于不使用 shamt 位域,且 funct 改为 000001。需要计算汉明重量的数据从rt 读入,结果写入rd。

还需要指定 aluc 控制信号。这里使用 1000,原本的 add 使用 0000。

需要修改的模块

需要修改的模块包括:

1. 控制信号模块, 先写出译码部分:

```
1 assign i_cont = r_type && (func == 6'b000001); // 000001, new!
```

然后需要为新指令设定控制信号。需要改变的控制信号如下:

2. ALU 模块。增加对应的处理:

```
1 | 4'b1000: res = (b[0] + b[1] + b[2] + b[3] + b[4] + b[5] + b[6] + b[7] + b[8] + 

2 | b[9] + b[10] + b[11] + b[12] + b[13] + b[14] + b[15] + b[16] + b[17] + 

3 | b[18] + b[19] + b[20] + b[21] + b[22] + b[23] + b[24] + b[25] + b[26] + b[27] + b[28] + b[29] + b[30] + b[31]); 

// 1000 COUNT
```

汇编代码和.mif文件

使用的汇编代码如下:

```
main: addi $1, $0, 168  # out_port (named ZhaoQiYuan)
loop: lw $4, 0($0)  # load the word at $0 to $4

sll $6, $4, 0  # dummy instruction; it should be cont
sw $6, 0($1)  # output the result to the out_port
j loop
```

使用的 sc_datamem.mif 如下:

4ddr	+0	+1	+2	+3	+4	+5	+6	+7	ASCII
00	30910289	00000000	00000000	00000000	00000000	00000000	00000000	00000000	
80	00000000	00000000	00000000	00000000	00000000	00000000	00000000	00000000	
10	00000000	00000000	00000000	00000000	00000000	00000000	00000000	00000000	
18	00000000	00000000	00000000	00000000	00000000	00000000	00000000	00000000	

使用的 sc_instmem.mif 如下。这里手动修改了第3条指令的机器码,使之与设定相对应。

∆ddr	+0	+1	+2	+3	+4	+5	+6	+7	ASCII
00	200100A8	8C040000	00043001	AC260000	08000001	00000000	00000000	00000000	
80	00000000	00000000	00000000	00000000	00000000	00000000	00000000	00000000	
10	00000000	00000000	00000000	00000000	00000000	00000000	00000000	00000000	
18	00000000	00000000	00000000	00000000	00000000	00000000	00000000	00000000	
20	00000000	00000000	00000000	00000000	00000000	00000000	00000000	00000000	
28	00000000	00000000	00000000	00000000	00000000	00000000	00000000	00000000	
30	00000000	00000000	00000000	00000000	00000000	00000000	00000000	00000000	
38	00000000	00000000	00000000	00000000	00000000	00000000	00000000	00000000	

仿真波形

图上没有 R0 寄存器,因为在我的设计中 0 号寄存器事实上并不存在,即通过硬编码的方式实现了这个 0 寄存器。

图上名为 ZhaoQiYuan 的端口即为地址为 A8h 的输出端口。

datamem 的读写时钟信号线无法在 post-fitting 中找到,推测其已经被优化掉。

由于 30910289 的二进制表示总共包含 9 个 1, 因此可以看出, 功能仿真基本正确。