Mapping Reducibility

CSE 480 Computational Theory

Introduction

- What is a computable function? A function $f: \Sigma^* \to \Sigma^*$ is a **computable function** if some Turing Machine M, on every input w, halts with just f(w) on its tape.
- What is a mapping?
 A mapping is a function from one thing to another thing.
 In our current context, the things are languages.
- What is a mapping reduction? It's a more formal notion of reduction than "plain old" reduction, namely:

A **mapping reduction** from $A \subseteq \Sigma^*$ to $B \subseteq \Sigma^*$ (denoted $A \leq_m B$) is a computable function $f : \Sigma^* \to \Sigma^*$ such that for all $x \in \Sigma^*, x \in A \iff f(x) \in B$.

Typical Use of Mapping Reductions

- 1. Let A be a language known to be undecidable ("old" or "existing" language).
- 2. Let B be the language that must be shown to be undecidable ("new" language).
- 3. Find a mapping reduction f from A to B.
- 4. Now, if B has a decider D_B , then we can decide membership in A as follows:
 - On input w, in order to check if w is in A, find out if $D_B(f(w))$ accepts or not. If it accepts, then w is in A, and if it rejects, then w is not in A.

Mapping Reduction from A_{TM} to $Halt_{TM}$

The mapping reduction function f, in effect, generates the text of the program M' from the text of M. Given that function, a decider for A_{TM} could then be obtained in 4 easy steps:

```
M' = "On input x:
   Run M on x
   If the result is "accept," then "accept"
   If the result is "reject," then loop"
```

1. Here is the initial tape:

```
M w
```

2. Build M' and put it on the tape:

```
M \mid w \mid \dots build M' that incorporates M here \dots
```

3. Put w on the tape

```
M \mid w \mid \dots build M' that incorporates M here \dots put w here
```

- 4. Run $D_{Halt_{TM}}$ on M' and w and return its decision:
 - $ightharpoonup D_{Halt_{TM}}(M', w)$ accepts $\Longrightarrow M'$ halts on $w \Rightarrow M$ accepts w
 - $ightharpoonup D_{Halt_{\mathsf{TM}}}(M',w)$ rejects $\implies M'$ loops on $w \implies M$ rejects w

Mapping Reduction from A_{TM} to $\overline{E_{TM}}$

Show that $\overline{E_{\text{TM}}} = \{\langle M \rangle \mid M \text{ is a } TM \text{ and } L(M) \neq \emptyset \}$ is undecidable through a mapping reduction that maps $\langle M, w \rangle$ into $\langle M' \rangle$ as follows:

```
M' = "On input x:

If x \neq w then goto reject_{M'}

Run M on w

If M accepts w, goto accept_{M'}

If M rejects w, goto reject_{M'}"
```

Given (an alleged) $D_{E_{TM}}$, how a decider for A_{TM} could be built:

1. Build above M' and put it on the tape:

```
M \mid w \mid \dots build M' that incorporates M and w here ...
```

- 2. Run $D_{E_{TM}}$ on M' and return the opposite of its decision
 - $ightharpoonup D_{E_{\mathsf{TM}}}(M')$ accepts $\implies L(M')$ is empty $\implies M$ rejects w.
 - $ightharpoonup D_{E_{\mathsf{TM}}}(M')$ rejects $\implies L(M')$ is not empty $\implies M$ accepts w.

Mapping Reduction from A_{TM} to Regular_{TM}

Similarly, we can prove $Regular_{TM}$ to be undecidable by building this mapping reduction:

```
M' = "On input x:

If x is of the form 0^n 1^n then goto accept_{M'}

Run M on w

If M accepts w, goto accept_{M'}

If M rejects w, goto reject_{M'}"
```

The (alleged) Decider for A_{TM} :

- ► $D_{Regular_{TM}}(M')$ accepts $\implies L(M')$ is regular $\implies L(M') = \Sigma^* \implies M$ accepts w.
- ► $D_{Regular_{TM}}(M')$ rejects $\implies L(M')$ is not regular $\implies L(M') = 0^n 1^n \implies M$ rejects w.

Clarification

Note that the TM M' is not constructed for the purpose of actually running it on some input — a common confusion. We construct M' only for the purpose of feeding its description into the decider for $Regular_{TM}$ that we have assumed to exist. Once this decider returns its answer, we can use it to obtain the answer to whether M accepts w. Thus, we can decide A_{TM} , a contradiction.