федеральное государственное автономное образовательное учреждение высшего образования

«НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ ИТМО»

ОТЧЕТ

по лабораторной работе №4

«Основы сетевой безопасности и доступа к сети»

по дисциплине «Администрирование систем и сетей»

Вариант на оценку 5

Авторы: Кулаков Н. В.

Факультет: ПИиКТ

Группа: Р34312

Преподаватель: Афанасьев Д.Б.

Санкт-Петербург 2023

Оглавление

1. Лабораторная работа 1. Основы Ethernet и конфигурирование VLAN	3
1.1. Задачи	3
1.2. Топология сети	3
1.3. Настраивание и диагностические команды	4
1.4. Конфигурации	6
2. Лабораторная работа 2. Настройка локального механизма ААА	8
2.1. Задачи	8
2.2. Топология сети	9
2.3. Настраивание и диагностические команды	9
2.4. Конфигурации	11
3. Лабораторная работа 3. Настройка NAT	12
3.1. Задачи	12
3.2. Топология сети	12
3.3. Настраивание и диагностические команды	12
3.4. Конфигурации	16

1. Лабораторная работа 1. Основы Ethernet и конфигурирование VLAN

1.1. Задачи

- Настройка ІР-адресов.
- Настройка OSPF для обеспечения возможности сетевого подключения.
- Создание ACL на основе необходимого трафика.
- Настройка фильтрации трафика.

1.2. Топология сети

1.3. Настраивание и диагностические команды

Шаг 1 и Шаг 2:

Настроить IP адреса, OSPF area 0 на маршрутизаторах:

[R1-ospf-1-area-0.0.0.0]dis ip interface brief

*down: administratively down

^down: standby
(1): loopback
(s): spoofing

The number of interface that is UP in Physical is 4
The number of interface that is DOWN in Physical is 2
The number of interface that is UP in Protocol is 4
The number of interface that is DOWN in Protocol is 2

Interface	IP Address/Mask	Physical	Protocol
GigabitEthernet0/0/0	10.1.2.1/24	up	up
GigabitEthernet0/0/1	unassigned	down	down
GigabitEthernet0/0/2	unassigned	down	down
LoopBack0	10.1.1.1/24	up	up(s)
LoopBack1	10.1.4.1/24	up	up(s)
NULL0	unassigned	up	up(s)

[R1-ospf-1]dis ospf 1 routing

OSPF Process 1 with Router ID 10.1.2.1
Routing Tables

Routing for Network

Destination	Cost	Туре	NextHop	AdvRouter	Area
10.1.1.1/32	0	Stub	10.1.1.1	10.1.2.1	0.0.0.0
10.1.2.0/24	1	Transit	10.1.2.1	10.1.2.1	0.0.0.0
10.1.4.1/32	0	Stub	10.1.4.1	10.1.2.1	0.0.0.0
10.1.3.0/24	2	Transit	10.1.2.2	10.1.3.1	0.0.0.0

Total Nets: 4

Intra Area: 4 Inter Area: 0 ASE: 0 NSSA: 0

[R3-ospf-1-area-0.0.0.0]ping 10.1.1.1

PING 10.1.1.1: 56 data bytes, press CTRL_C to break

Reply from 10.1.1.1: bytes=56 Sequence=1 ttl=254 time=150 ms

Reply from 10.1.1.1: bytes=56 Sequence=2 ttl=254 time=30 ms

```
Reply from 10.1.1.1: bytes=56 Sequence=3 ttl=254 time=40 ms
Reply from 10.1.1.1: bytes=56 Sequence=4 ttl=254 time=20 ms
Reply from 10.1.1.1: bytes=56 Sequence=5 ttl=254 time=30 ms
```

Также настроены и другие маршрутизаторы.

Шаг 3:

Сконфигурируем R3 в качестве сервера:

```
[R3-ui-vty0-4]dis this
[V200R003C00]
#
user-interface con 0
  authentication-mode password
  idle-timeout 0 0
user-interface vty 0 4
  authentication-mode password
  user privilege level 3
  set authentication password cipher %$%$13(F7@e)f3Vj+z)eTH%.,"FmaIOZ<w6]H;xv0H,R
x!LD"Fp,%$%$
user-interface vty 16 20
#
return</pre>
```

Шаг 4:

Настроить ACL на основании необходимого трафика:

Вариант 1: Настроить ACL на интерфейсе VTY маршрутизатора R3, чтобы разрешить вход с R1 в R3 через Telnet, используя IP-адрес LoopBack 1.

```
[R3-ui-vty0-4]dis acl all
Total quantity of nonempty ACL number is 1

Advanced ACL 3000, 2 rules
Acl's step is 5
rule 5 permit tcp source 10.1.4.1 0 destination 10.1.3.1 0 destination-port eq telnet
rule 10 deny tcp
```

Вариант 2: Настроить ACL на физическом интерфейсе маршрутизатора R2, чтобы разрешить вход с R1 в R3 через Telnet, используя IP-адрес физического интерфейса.

```
[R2-GigabitEthernet0/0/0]display acl all
 Total quantity of nonempty ACL number is 1
Advanced ACL 3001, 2 rules
Acl's step is 5
 rule 5 permit tcp source 10.1.4.1 0 destination 10.1.3.1 0 destination-port eq
telnet
 rule 10 deny tcp
<R1>telnet -a 10.1.1.1 10.1.3.1
  Press CTRL_] to quit telnet mode
  Trying 10.1.3.1 ...
  Error: Can't connect to the remote host
<R1>telnet -a 10.1.4.1 10.1.3.1
  Press CTRL_] to quit telnet mode
  Trying 10.1.3.1 ...
  Connected to 10.1.3.1 ...
Login authentication
Password:
<R3>sys
[R3]dis telnet server status
 TELNET IPV4 server
                                          :Enable
 TELNET IPV6 server
                                          :Enable
 TELNET server port
                                          :23
```

1.4. Конфигурации

```
[V200R003C00]
#
   sysname R1
#
interface GigabitEthernet0/0/0
   ip address 10.1.2.1 255.255.255.0
#
interface LoopBack0
```

```
ip address 10.1.1.1 255.255.255.0
interface LoopBack1
 ip address 10.1.4.1 255.255.255.0
ospf 1
 area 0.0.0.0
  network 10.1.1.1 0.0.0.0
  network 10.1.2.1 0.0.0.0
  network 10.1.4.1 0.0.0.0
#
user-interface con 0
 authentication-mode password
 idle-timeout 0 0
user-interface vty 0 4
user-interface vty 16 20
 sysname R2
acl number 3001
 rule 5 permit tcp source 10.1.4.1 0 destination 10.1.3.1 0 destination-port eq
telnet
 rule 10 deny tcp
interface GigabitEthernet0/0/0
 ip address 10.1.2.2 255.255.255.0
traffic-filter inbound acl 3001
interface GigabitEthernet0/0/1
 ip address 10.1.3.2 255.255.255.0
#
ospf 1
 area 0.0.0.0
  network 10.1.2.2 0.0.0.0
  network 10.1.3.2 0.0.0.0
user-interface con 0
 authentication-mode password
 idle-timeout 0 0
user-interface vty 0 4
user-interface vty 16 20
```

```
[V200R003C00]
 sysname R3
acl number 3000
 rule 5 permit tcp source 10.1.4.1 0 destination 10.1.3.1 0 destination-port eq
telnet
 rule 10 deny tcp
interface GigabitEthernet0/0/0
 ip address 10.1.3.1 255.255.255.0
ospf 1
 area 0.0.0.0
  network 10.1.3.1 0.0.0.0
user-interface con 0
 authentication-mode password
 idle-timeout 0 0
user-interface vty 0 4
 acl 3000 inbound
 authentication-mode password
 user privilege level 3
 set authentication password cipher %$%$PPU]UL3`1Mpi_40KSj#5,$RV.[FTG!mXp)1qGjD0
WQ{X$RY, %$%$
user-interface vty 16 20
```

2. Лабораторная работа 2. Настройка локального механизма **AAA**

2.1. Задачи

- Настройка схемы ААА.
- Создание домена и применение к нему схемы ААА.
- Настройка локальных пользователей.

2.2. Топология сети

2.3. Настраивание и диагностические команды

Шаг 1, Шаг 2, Шаг 3:

Задать IP адреса, назначить схемы аутентификации и авторизации, добавить домен:

Interface	IP Addres		Physical	Protocol
GigabitEthernet0/0/0	10.0.12.2		up	up
GigabitEthernet0/0/1	unassigne	d	down	down
GigabitEthernet0/0/2	unassigne	d	down	down
NULL0				
	unassigned	up	up(s)	
[R2-aaa]dis this				
[V200R003C00]				
#				
aaa				
authentication-scheme default				
authentication-scheme datacom				
authorization-scheme default				
authorization-scheme datacom				
accounting-scheme default				
domain default				
domain default_admin				
domain datacom				
authentication-scheme da	tacom			
authorization-scheme dat	acom			

Шаг 4:

Настроить локальных пользователей:

```
local-user hcia@datacom password cipher %$%$i8kAAxN!y.rGT!K<m/b"z+1<%$%$ local-user hcia@datacom privilege level 3 local-user hcia@datacom service-type telnet
```

Шаг 5:

Включить telnet, настроить режим аутентификации AAA:

```
user-interface vty 0 4 authentication-mode aaa
```

Шаг 6:

Подключиться:

```
[R1]q
<R1>telnet 10.0.12.2
Press CTRL_] to quit telnet mode
Trying 10.0.12.2 ...
Connected to 10.0.12.2 ...
```

Login authentication

Username:hcia@datacom

Password:

<R2>

[R2-ui-vty0-4]dis users

User-Intf Delay Type Network Address AuthenStatus AuthorcmdFlag

+ 0 CON 0 00:00:00 pass

Username : Unspecified

129 VTY 0 00:01:45 TEL 10.0.12.1 pass

Username : hcia@datacom

2.4. Конфигурации

```
sysname R1
interface GigabitEthernet0/0/0
 ip address 10.0.12.1 255.255.255.0
[V200R003C00]
 sysname R2
aaa
 authentication-scheme default
 authentication-scheme datacom
 authorization-scheme default
 authorization-scheme datacom
 accounting-scheme default
 domain default
 domain default_admin
 domain datacom
  authentication-scheme datacom
  authorization-scheme datacom
 local-user admin password cipher %$%$K8m.Nt84DZ}e#<0`8bmE3Uw}%$%$
 local-user admin service-type http
 local-user hcia@datacom password cipher %$%$i8kAAxN!y.rGT!K<m/b"z+1<%$%$
 local-user hcia@datacom privilege level 3
 local-user hcia@datacom service-type telnet
interface GigabitEthernet0/0/0
 ip address 10.0.12.2 255.255.255.0
user-interface con 0
 authentication-mode password
 idle-timeout 0 0
user-interface vty 0 4
 authentication-mode aaa
user-interface vty 16 20
return
```

3. Лабораторная работа 3. Настройка NAT

3.1. Задачи

- Настройка динамического NAT.
- Настройка Easy IP.
- Настройка сервера NAT.

3.2. Топология сети

3.3. Настраивание и диагностические команды

Шаг 1:

Настроить основные параметры:

[R1]dis ip interface brief			
Interface	IP Address/Mask	Physical	Protocol
GigabitEthernet0/0/0	192.168.1.1/24	up	up
[R2]			
Interface	IP Address/Mask	Physical	Protocol
GigabitEthernet0/0/0	192.168.1.254/24	up	up
GigabitEthernet0/0/1	1 2 2 4/24		un
3	1.2.3.4/24	up	up
GigabitEthernet0/0/2	unassigned	down	down
		•	•

```
[R2]ping 1.2.3.254
 PING 1.2.3.254: 56 data bytes, press CTRL_C to break
   Reply from 1.2.3.254: bytes=56 Sequence=1 ttl=255 time=270 ms
   Reply from 1.2.3.254: bytes=56 Sequence=2 ttl=255 time=30 ms
   Reply from 1.2.3.254: bytes=56 Sequence=3 ttl=255 time=40 ms
   Reply from 1.2.3.254: bytes=56 Sequence=4 ttl=255 time=40 ms
   Reply from 1.2.3.254: bytes=56 Sequence=5 ttl=255 time=40 ms
[R3]dis ip routing-table 192.168.1.1
[R3]
[R1]ping 1.2.3.254
 PING 1.2.3.254: 56 data bytes, press CTRL_C to break
   Request time out
   Request time out
Шаг 2:
Настроить функцию динамического NAT на R2 из диапазона адресов 1.2.3.10
1.2.3.20:
[R2]dis nat address-group 1
NAT Address-Group Information:
 -----
Index Start-address End-address
 -----
          1.2.3.10
                      1.2.3.20
 -----
 Total: 1
[R2]dis nat outbound
NAT Outbound Information:
 ______
Interface
                            Address-group/IP/Interface
                       Acl
 -----
GigabitEthernet0/0/1
                      2000
 -----
 Total: 1
<R1>telnet 1.2.3.254
 Press CTRL_] to quit telnet mode
 Trying 1.2.3.254 ...
```

```
Connected to 1.2.3.254 ...

Login authentication
```

Username:test
Password:

User last login information:

Access Type: Telnet IP-Address : 1.2.3.16

Time : 2023-10-23 00:30:03-08:00

[R2]dis nat session all

NAT Session Table Information:

Protocol : TCP(6)

SrcAddr Port Vpn : 192.168.1.1 21442 DestAddr Port Vpn : 1.2.3.254 5888

NAT-Info

New SrcAddr : 1.2.3.16
New SrcPort : 10241
New DestAddr : ---New DestPort : ----

Шаг 3:

Настройка через Easy-IP, если IP адреса интерфейса задается динамически:

[R2-GigabitEthernet0/0/1]nat outbound 2000

[R1]ping 1.2.3.254

PING 1.2.3.254: 56 data bytes, press CTRL_C to break

Reply from 1.2.3.254: bytes=56 Sequence=1 ttl=254 time=50 ms Reply from 1.2.3.254: bytes=56 Sequence=2 ttl=254 time=30 ms

Войдем на R3 через telnet:

[R2-GigabitEthernet0/0/1]display nat session all NAT Session Table Information:

Protocol : TCP(6)

```
DestAddr Port Vpn : 1.2.3.254
                                       5888
    NAT-Info
      New SrcAddr : 1.2.3.4
      New SrcPort
                    : 10241
      New DestAddr
                     : ----
      New DestPort : ----
 Total: 1
Шаг 4:
Настроим сервер для того, чтобы подключаться к R1 с R3:
[R2-GigabitEthernet0/0/1]nat server protocol tcp global current-interface 2323 i
nside 192.168.1.1 telnet
[R2]dis nat server
 Nat Server Information:
 Interface : GigabitEthernet0/0/1
   Global IP/Port : current-interface/2323 (Real IP : 1.2.3.4)
   Inside IP/Port : 192.168.1.1/23(telnet)
   Protocol : 6(tcp)
   VPN instance-name : ----
   Acl number
                 : ----
   Description : ----
 Total: 1
<R3>telnet 1.2.3.4 2323
 Press CTRL_] to quit telnet mode
 Trying 1.2.3.4 ...
 Connected to 1.2.3.4 ...
Login authentication
Username:test
Password:
<R1>dis this
[R2]dis nat session all
 NAT Session Table Information:
```

21952

SrcAddr Port Vpn : 192.168.1.1

Protocol : TCP(6)

SrcAddr Port Vpn : 1.2.3.254 45255 DestAddr Port Vpn : 1.2.3.4 4873

NAT-Info

New SrcAddr : ---New SrcPort : ----

New DestAddr : 192.168.1.1

New DestPort : 5888

Protocol : TCP(6)

SrcAddr Port Vpn : 192.168.1.1 21952 DestAddr Port Vpn : 1.2.3.254 5888

NAT-Info

New SrcAddr : 1.2.3.4
New SrcPort : 10241
New DestAddr : ---New DestPort : ----

Total: 2

3.4. Конфигурации

```
[V200R003C00]
sysname R1
aaa
authentication-scheme default
authorization-scheme default
accounting-scheme default
domain default
domain default_admin
 local-user test password cipher %$%$\*lE'RWa*K/W)yUZfY0EzJ`9%$%$
 local-user test privilege level 15
 local-user test service-type telnet
 local-user admin password cipher %$%$K8m.Nt84DZ}e#<0`8bmE3Uw}%$%$
 local-user admin service-type http
interface GigabitEthernet0/0/0
ip address 192.168.1.1 255.255.255.0
ip route-static 0.0.0.0 0.0.0.0 192.168.1.254
```

```
user-interface con 0
 authentication-mode password
 idle-timeout 0 0
user-interface vty 0 4
 authentication-mode aaa
user-interface vty 16 20
[V200R003C00]
 sysname R2
acl number 2000
 rule 5 permit
 nat address-group 1 1.2.3.10 1.2.3.20
interface GigabitEthernet0/0/0
 ip address 192.168.1.254 255.255.255.0
interface GigabitEthernet0/0/1
 ip address 1.2.3.4 255.255.255.0
 nat server protocol tcp global current-interface 2323 inside 192.168.1.1 telnet
 nat outbound 2000
ip route-static 0.0.0.0 0.0.0.0 1.2.3.254
user-interface con 0
 authentication-mode password
 idle-timeout 0 0
user-interface vty 0 4
user-interface vty 16 20
return
[V200R003C00]
 sysname R3
aaa
 authentication-scheme default
 authorization-scheme default
 accounting-scheme default
```

```
domain default
domain default_admin
local-user test password cipher %$%$r~G5Wo-kL/ZdF0JU:1LVzL(q%$%$
local-user test privilege level 15
local-user test service-type telnet
local-user admin password cipher %$%$K8m.Nt84DZ}e#<0`8bmE3Uw}%$%$
local-user admin service-type http

#
interface GigabitEthernet0/0/0
ip address 1.2.3.254 255.255.255.0

#
user-interface con 0
authentication-mode password
idle-timeout 0 0
user-interface vty 0 4
authentication-mode aaa
user-interface vty 16 20
#</pre>
```

4. Усложненная топология

4.1. Задачи

Настроить обычную работоспособность топологии при заданных ІР адресах.

Запретить доступ узла client на все другие узлы из других подсетей, кроме server telnet 2323.

4.2. Топология

4.3. Настраивание и диагностические команды

Основную конфигурацию не привожу.

Advanced acl 3100 правило выглядит следующим образом:

```
rule 5 permit tcp source 192.168.1.100 0 destination 10.0.23.3 0 destination-port eq 2323 tcp-flag syn rule 10 deny tcp source 192.168.1.100 0 destination 10.0.23.3 0 tcp-flag syn ack rule 15 permit tcp source 192.168.1.100 0 destination 10.0.23.3 0 destination-port eq 2323 rule 30 deny ip
```

Таким образом узлу резрешается начинать соединение с сервером, узлу запрещается подтверждать соединение с сервером (он должен инициировать), разрешается обмен по протоколу tcp между сервером и клиентом. Любой другой IP трафик запретить.

Применяю правило на входящем интерфейсе (от клиента).

[R1-GigabitEthernet0/0/1]traffic-filter inbound acl 3100 Проверка работоспособности:

<client>telnet 10.0.23.3 2323

```
Press CTRL_] to quit telnet mode
  Trying 10.0.23.3 ...
  Connected to 10.0.23.3 ...
Login authentication
Username: test
Password: ...
<client>ping 10.0.23.4
  PING 10.0.23.4: 56 data bytes, press CTRL_C to break
    Request time out
    Request time out
    Request time out
    Request time out
    Request time out
<client>ping 10.0.2.100
  PING 10.0.2.100: 56 data bytes, press CTRL_C to break
    Request time out
    Request time out
    Request time out
    Request time out
4.4. Конфигурации
Client:
interface GigabitEthernet0/0/0
 ip address 192.168.1.100 255.255.255.0
```

```
interface GigabitEthernet0/0/0
ip address 192.168.1.100 255.255.255.0

#
ip route-static 0.0.0.0 0.0.0 192.168.1.1

#

sysname R1

#
acl number 2000
rule 5 permit source 192.168.1.0 0.0.0.255

#
acl number 3100
rule 5 permit tcp source 192.168.1.100 0 destination 10.0.23.3 0 destination-port eq 2323 tcp-flag syn
rule 10 deny tcp source 192.168.1.100 0 destination 10.0.23.3 0 tcp-flag ack syn
```

```
rule 15 permit tcp source 192.168.1.100 0 destination 10.0.23.3 0 destination-p
ort eq 2323
 rule 30 deny ip
 nat address-group 1 10.0.12.2 10.0.12.10
interface GigabitEthernet0/0/0
 ip address 10.0.12.1 255.255.255.0
 nat outbound 2000 address-group 1
interface GigabitEthernet0/0/1
 ip address 192.168.1.1 255.255.255.0
 traffic-filter inbound acl 3100
ospf 1
 area 0.0.0.0
  network 10.0.12.0 0.0.0.255
 sysname R2
interface GigabitEthernet0/0/0
 ip address 10.0.2.1 255.255.255.0
interface GigabitEthernet0/0/1
 ip address 10.0.12.2 255.255.255.0
interface GigabitEthernet0/0/2
 ip address 10.0.23.2 255.255.255.0
ospf 1
 area 0.0.0.0
  network 10.0.2.0 0.0.0.255
  network 10.0.12.0 0.0.0.255
  network 10.0.23.0 0.0.0.255
return
 sysname R3
acl number 2000
 rule 5 permit source 192.168.1.0 0.0.0.255
interface GigabitEthernet0/0/0
```

```
ip address 10.0.23.3 255.255.255.0
 nat server protocol tcp global current-interface 2323 inside 192.168.1.101 teln
et
 nat static global 10.0.23.4 inside 192.168.1.100 netmask 255.255.255.255
 nat outbound 2000
interface GigabitEthernet0/0/1
 ip address 192.168.1.1 255.255.255.0
ospf 1
 area 0.0.0.0
  network 10.0.23.0 0.0.0.255
[V200R003C00]
 sysname server
aaa
 authentication-scheme default
 authorization-scheme default
 accounting-scheme default
 domain default
 domain default_admin
 local-user test password cipher %$%$9F<G:og0lJTJ2@A\ctRF5Hx:%$%$
 local-user test privilege level 15
 local-user test service-type telnet
 local-user admin password cipher %$%$K8m.Nt84DZ}e#<0`8bmE3Uw}%$%$
 local-user admin service-type http
interface GigabitEthernet0/0/0
 ip address 192.168.1.101 255.255.255.0
ip route-static 0.0.0.0 0.0.0.0 192.168.1.1
user-interface vty 0 4
 authentication-mode aaa
return
```

5. Усложненная топология. R1 как firewall

5.1. Конфигурации

```
[V200R003C00]
 sysname R1
firewall statistics system enable
firewall statistics system connect-number tcp high 15000 low 12000
firewall statistics system connect-number udp high 15000 low 12000
acl number 2000
 rule 5 permit source 192.168.1.0 0.0.0.255
acl number 3100 # для firewall
 rule 5 permit tcp source 192.168.1.100 0 destination 10.0.23.3 0 destination-po
rt eq 2323 tcp-flag syn
 rule 10 deny tcp source 192.168.1.100 0 destination 10.0.23.3 0 tcp-flag ack sy
 rule 15 permit tcp source 192.168.1.100 0 destination 10.0.23.3 0 destination-p
ort eq 2323
 rule 20 permit ip source 192.168.1.101 0
 rule 30 deny ip
firewall zone lsw1
 priority 5
 statistics zone enable inzone
 statistics zone enable outzone
firewall zone r2
 priority 3
firewall zone Local
 priority 15
firewall interzone lsw1 r2
 firewall enable
 packet-filter 3100 outbound
 nat address-group 1 10.0.12.3 10.0.12.15
```

```
interface GigabitEthernet0/0/0
  ip address 10.0.12.1 255.255.255.0
  nat outbound 2000 address-group 1
  zone r2

#
interface GigabitEthernet0/0/1
  ip address 192.168.1.1 255.255.255.0
  zone lsw1

#
interface GigabitEthernet0/0/2

#
interface NULL0

#
ospf 1
  area 0.0.0.0
  network 10.0.12.0 0.0.0.255

#
return
```

5.2. Демонстрации

Проверим работоспособность, сначала пропинговав узлы. По требованию, необходимо, чтобы client мог общаться только с сервером, а узел РС5 в этой подсети, мог общаться с любыми другими узлами.

Таким образом для узла РС5:

```
PC>ping 10.0.12.2 -c 1000
Ping 10.0.12.2: 32 data bytes, Press Ctrl_C to break
From 10.0.12.2: bytes=32 seq=1 ttl=254 time=47 ms
From 10.0.12.2: bytes=32 seq=2 ttl=254 time=32 ms
From 10.0.12.2: bytes=32 seq=3 ttl=254 time=62 ms
    97 154.281000
                10.0.12.4
                                10.0.12.2
                                                TCMP
                                                         74 Echo (ping) request id=0x2a28, seq=25/6400, ttl=127 (reply in 98)
                                                         74 Echo (ping) reply id=0x2a28, seq=25/6400, ttl=255 (request in 97)
    98 154, 281000
                10.0.12.2
                                10.0.12.4
                                                ICMP
                                                         74 Echo (ping) request id=0x2b28, seq=26/6656, ttl=127 (reply in 100)
    99 155.312000
                                10.0.12.2
                                                ICMP
                10.0.12.4
   100 155.328000 10.0.12.2
                           10.0.12.4
                                             ICMP
                                                        74 Echo (ping) reply id=0x2b28, seq=26/6656, ttl=255 (request in 99)
```

Для client:

```
<client>ping 10.0.12.2
PING 10.0.12.2: 56 data bytes, press CTRL_C to break
Request time out
```

```
Request time out
Request time out
Request time out
Request time out
```

При подключении к серверу по telnet (порт 2323):

```
<client>telnet 10.0.23.3 2323
Press CTRL_] to quit telnet mode
Trying 10.0.23.3 ...
Connected to 10.0.23.3 ...
```

Login authentication

Username:

Тем временем на R1 в фаерволе можем увидеть сессию:

```
[R1]dis firewall session all
Firewall Session Table Information:
```

Protocol : TCP(6)

SrcAddr Port Vpn : 192.168.1.100 32197 DestAddr Port Vpn : 10.0.23.3 4873

Firewall-Info

InZone : lsw1
OutZone : r2

Total : 1

Если через R2 пингануть client используя его внутренний IP адрес, то ничего не выйдет (в отличие от Секции 4). Пакеты не проходят.

```
      2/6 620.016000
      10.0.12.2
      192.168.1.100
      ICMP
      98 Echo (ping) request 1d=0xcdab, seq=256/1, tt1=255 (no response found!)

      277 622.031000
      10.0.12.2
      192.168.1.100
      ICMP
      98 Echo (ping) request id=0xcdab, seq=512/2, tt1=255 (no response found!)

      279 624.031000
      10.0.12.2
      192.168.1.100
      ICMP
      98 Echo (ping) request id=0xcdab, seq=768/3, tt1=255 (no response found!)

      280 626.047000
      10.0.12.2
      192.168.1.100
      ICMP
      98 Echo (ping) request id=0xcdab, seq=1024/4, tt1=255 (no response found!)

      282 628.062000
      10.0.12.2
      192.168.1.100
      ICMP
      98 Echo (ping) request id=0xcdab, seq=1280/5, tt1=255 (no response found!)
```

```
<R2>ping 192.168.1.100
PING 192.168.1.100: 56 data bytes, press CTRL_C to break
Request time out
```

--- 192.168.1.100 ping statistics ---

5 packet(s) transmitted

0 packet(s) received

100.00% packet loss