

Curso: Técnicas avanzadas de diseño digital

Módulo 5: Restricciones temporales en el mundo real

Contenidos del módulo 5

- Circuitos de distribución de reloj intra-chip
- Circuitos de distribución de reloj extra-chip.
- Parámetros de importancia intra-chip: Tsetup, Thold, Tco, TcoM Tskew, Tslack.
- Parámetros referidos a señales externas
- El punto de referencia en ciertos circuitos de PLL

Circuitos de distribución de reloj intra-chip

- Las redes (nets) globales son de gran importancia cuando se desea propagar señales por todo el chip con mínima dispersión temporal (skew)
- Son independientes de las redes usadas para datos, y aunque pueden ser usadas para lógica, su funcionalidad se orienta como fuente de señales de reloj o de control (CLEAR/PRESET) u
 OUPUT-ENABLE.

•Ejemplo de la red de distribución de reloj en una FPGA pequeña: QL6325 de Quick Logic

Circuitos de distribución de reloj extra-chip

- ☐ En sistemas sincrónicos de alta velocidad el problema de la generación y distribución de una o más señales de reloj puede ser sumamente importante, debido a los distintos retardos y la necesidad de mantener coherencia entre las fases de distintos relojes.
- □ Además de ser necesario emplear topologías de distribución de reloj que ecualicen los caminos de propagación puede convenir el uso de dispositivos especiales
- Un caso especial a considerar son los ispClock de Lattice Semiconductors
- A partir de un PLL y 5 divisores se generan 5 distintas frecuencias, que son ruteadas a hasta 20 canales de salida, y cada uno de estos puede ser demorado un tiempo distinto para acomodar los tiempos de arribo de cada señal a su destino. Cada señal de reloj puede salir del chip mediante distintas normas de I/O de alta velocidad.

Tiempos referidos a cada Flipflop respecto al reloj

- T_{su}: tiempo que los datos deben estar en un valor estable (0 o 1) antes de la ocurrencia del flanco activo de reloj
- T_h: tiempo que los datos deben estar en un valor estable (0 o 1) luego de la ocurrencia del flanco activo de reloj
- T_w: tiempo mínimo de duración de la señal de reloj en 1 o 0
- Fmax : máxima frecuencia de flancos activos de reloj
- T_{PHL}: retardo Tco (clock-to-output para propagar un 0 a la salida
- T_{PLH}: retardo Tco (clock-to-output para propagar un 1 a la salida

74HC74; 74HCT74, Dual D-type flip-flop with set reset; positive-edge trigger. NXP 10/7/2003

El tiempo Tskew

- El tiempo de skew se refiere a la diferencia en el tiempo de arribo a destino de señales simultáneas.
- En el caso del reloj, la señal atraviesa mútiples etapas de buffereado
- Y la dispersión en los retardos agregados por esos buffers provoca que el reloj llegue en distintos momentos
- Para evitar generar metaestabilidades,
 los valores de F_{max} y Tsu_{max} quedan:

$$F_{max} < 1/(Tco_{max} + Tcomb_{max} + Tsu_{max} + Tskew_{max})$$
 $Tsu_{max} < (1/F_{max}) - (Tco_{max} + Tcomb_{max} + Tskew_{max})$

El tiempo Thold

- El tiempo Thold, junto a Tsetup, debe ser respetado si se desea evitar generar metaestabilidades
- A diferencia de Tskew, el caso peor sucede cuando Tcomb es mínimo
- Si Tco es demasiado rápido y se suma el efecto de Tskew (donde el reloj llegue antes al segundo flipflop), se puede producir la violación temporal
- Debe cumplirse entonces:

$$Tco_{min} > Thold_{max} + Tskew_{max}$$

 Es usual que por retardos internos de cada flipflop se especifiquen Thold negativos

Family 74HC							
SAMBOL SAMBOL	=1; = 8 ns: C_ = 50 pF. PARAMETER	TEST CONDITIONS		10000	TYP.	Lorenz	
		WAVEFORMS	Vec (V)	MIN.	TYP.	MAX.	UNIT
7 _{cmb} = -40 to	+05 °C	100000000000000000000000000000000000000			1		
\$51.'\$1.1	propagation delay nOF to nQ, nQ	sae F g.7	4.6		18	44	15
	propagation delay n80 to nQ, nQ	эте Гол	4.5		23	50	75
	propagation delay rRD to nG, nG	see Fig.5	4.5	=	24	50	7.5
t _{HL} AiLH	output transition time	996.Fg.7	4.5		7	19	19
b _N	clock selse width HIGH an LOW	sae + g./	4.5	22	9		75
	set or reset pulse width LOW	sэе Гg.ü	4,5	20	9	(B)	78
4en	removal time set or reset:	see F g.1	4.5	0	1	¥:	31
Ç _u	set-up time nO to nOP	sae Fig.7	4.5	15	5		75
bi.	hold time nCP to nD	see Гg.7	4.5	+ \$	-3	4 5	78
r _{max}	maximum dock pulse. Reduency	ань Ед 7	4.5	27	n-	1	MHZ

El tiempo Tslack

- El tiempo de *Tslack* se refiere al margen temporal disponible una vez que un dispositivo ha sido ruteado y el análisis temporal ha sido hecho
- Un diseño que funcione a una frecuencia Fmax es más susceptible a cambios que afecten los caminos de menor Tslack
- Un buen diseño busca maximizar los menores Tslack:

```
Tslack_{min} = (1/F_{max}) - (Tco_{max} + Tcomb_{max} + Tsu_{max} + Tskew_{max})
```

Ejemplo del reporte del Timing Analyzer de un software de Place&Route: 10,157ns + 37,918ns = 48,075ns ... el 1,925ns faltante considera el Tsu de EN

