Obrada informacija

1. međuispit – 26. ožujka 2008.

- 1. Definirajte signal, sustav i informaciju. Klasificirajte signale s obizirom na prebrojivost domene i kodomene. Za svaku klasu signala navedite neki od primjera iz stvarnog života!
- 2. Definirajte DTFT i IDTFT transformaciju. Izračunajte DTFT transformaciju impulsnog odziva diskretnog LTI sustava

$$h[n] = \delta[n-1] + \delta[n+1]$$

te skicirajte pripadnu amplitudnu i faznu karakteristiku. Također izračunajte i skicirajte grupno vrijeme kašnjenja.

- **3.** Definirajte dekonvoluciju. Ako znate da odziv LTI sustava s impulsnim odzivom $h[n] = \{2, 3, 2\}$ iznosi $y[n] = \{2, 1, 1, -1, -1, -2\}$ odredite ulaz u[n].
- 4. Diskretni LTI sustav ima prijenosnu funkciju $H(z)=(1-2z^{-1})(3-1z^{-1})$. Ispitajte je li zadani sustav stabilan i je li minimalno fazni. Odredite pripadni minimalno-fazni sustav $H_{\rm mf}(z)$ i pripadni inverz $H_{\rm mf}^{-1}(z)$. Pokažite da vrijedi $\left|H(e^{j\omega})H_{\rm mf}^{-1}(e^{j\omega})\right|=1!$
- 5. Definirajte DFT_N transformaciju, kompleksnu eksponencijalu W_N i pripadnu matricu transformacije \mathbf{W}_N . Za sustav zadan slikom (DFT₄ analizirajući filtarski slog) odredite izlaze $y_0[n],\ y_1[n],\ y_2[n]$ i $y_3[n]$ na pobudu $x[n]=\{\underline{0},1,0,0\}$. Ispitajte jesu li uzorci odziva $y_k[n],\ k=0,1,2,3$ u trenutku n=0 jednaki uzorcima $X[k]=\mathrm{DFT}_4\big[x[n]\big]$, odnosno pokažite da vrijedi $y_k[0]=X[k]$.

