HW 11

DUE Friday, April 27, 9am

List of Exercises

Section 6.1: 16, (27), 28, (30)

Section 6.2: 10, 12, (13), 16, 24, (33)

Section 6.3: 6, 8, 12, (13), 16

Section 6.1

Exercises: 16, (27), 28, (30)

6.1.16. Determine whether
$$\mathbf{u} = \begin{bmatrix} 12 \\ 3 \\ -5 \end{bmatrix}$$
 and $\mathbf{v} = \begin{bmatrix} 2 \\ -3 \\ 3 \end{bmatrix}$ are orthogonal vectors.

6.1.27. (recommended)

Suppose a vector \mathbf{y} is orthogonal to vectors \mathbf{u} and \mathbf{v} . Show that \mathbf{y} is orthogonal to the vector $\mathbf{u} + \mathbf{v}$.

6.1.28. Suppose \mathbf{y} is orthogonal to \mathbf{u} and \mathbf{v} . Show that \mathbf{y} is orthogonal to every \mathbf{w} in Span{ \mathbf{u} , \mathbf{v} }. [*Hint:* An arbitrary \mathbf{w} in Span{ \mathbf{u} , \mathbf{v} } has the form $\mathbf{w} = c_1 \mathbf{u} + c_2 \mathbf{v}$; show that \mathbf{y} is orthogonal to every such a vector.]

6.1.30. (recommended)

Let W be a subspace of \mathbb{R}^n , and let W^{\perp} be the set of all vectors orthogonal to W. Show that W^{\perp} is a subspace of \mathbb{R}^n using the following steps.

- **a.** Take \mathbf{z} in W^{\perp} , and let \mathbf{u} represent any element of W. Then $\mathbf{z} \cdot \mathbf{u} = 0$. Take any scalar c and show that $c\mathbf{z}$ is orthogonal to \mathbf{u} . (Since \mathbf{u} was an arbitrary element of W, this will show that $c\mathbf{z}$ is in W^{\perp} .)
- **b.** Take \mathbf{z}_1 and \mathbf{z}_2 in W^{\perp} , and let \mathbf{u} be any element of W. Show that $\mathbf{z}_1 + \mathbf{z}_2$ is orthogonal to \mathbf{u} . What can you conclude about $\mathbf{z}_1 + \mathbf{z}_2$? Why?
- **c.** Finish the proof that W^{\perp} is a subspace of \mathbb{R}^n .

Section 6.2

Exercises: 10, 12, (13), 16, 24, (33)

6.2.10. Let
$$\mathbf{u}_1 = \begin{bmatrix} 3 \\ -3 \\ 0 \end{bmatrix}$$
, $\mathbf{u}_2 = \begin{bmatrix} 2 \\ 2 \\ -1 \end{bmatrix}$, $\mathbf{u}_3 = \begin{bmatrix} 1 \\ 1 \\ 4 \end{bmatrix}$, and $\mathbf{x} = \begin{bmatrix} 5 \\ -3 \\ 1 \end{bmatrix}$. Show that $\{\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3\}$ is an

orthogonal basis for \mathbb{R}^3 . Then express **x** as a linear combination of the **u**'s.

6.2.12. Compute the orthogonal projection of
$$\begin{bmatrix} 1 \\ -1 \end{bmatrix}$$
 onto the line through $\begin{bmatrix} -1 \\ 3 \end{bmatrix}$.

6.2.13. (recommended)

Let $\mathbf{y} = \begin{bmatrix} 2 \\ 3 \end{bmatrix}$ and $\mathbf{u} = \begin{bmatrix} 4 \\ -7 \end{bmatrix}$. Write \mathbf{y} as the sum of two orthogonal vectors, one in $\mathrm{Span}\{\mathbf{u}\}$ and the other orthogonal to \mathbf{u} .

- **6.2.16.** Let $\mathbf{y} = \begin{bmatrix} -3 \\ 9 \end{bmatrix}$ and $\mathbf{u} = \begin{bmatrix} 1 \\ 2 \end{bmatrix}$. Compute the distance from \mathbf{y} to the line passing through \mathbf{u} and the origin.
- **6.2.24.** Mark each statement True or False. Justify each answer. All vectors are assumed to belong to \mathbb{R}^n .
- **a.** Not every orthogonal set in \mathbb{R}^n is linearly independent.
- **b.** If a set $S=\{\mathbf{u}_1,\ldots,\mathbf{u}_p\}$ has the property that $\mathbf{u}_i\cdot\mathbf{u}_j=0$ whenever $i\neq j$, then S is an orthonormal set.
- **c.** If the columns of an $m \times n$ matrix A are orthonormal, then the linear mapping $\mathbf{x} \mapsto A\mathbf{x}$ preserves lengths.
- **d.** The orthogonal projection of **y** onto **v** is the same as the orthogonal projection of **y** onto $c\mathbf{v}$ whenever $c \neq 0$.
- e. An orthogonal matrix is invertible.

6.2.33. (recommended)

Suppose $\mathbf u$ is a nonzero vector in $\mathbb R^n$, and let $L=\operatorname{Span}\{\mathbf u\}$. Show that the mapping $\mathbf x\mapsto\operatorname{proj}_L\mathbf x$ is a linear transformation.

Section 6.3

Exercises: 6, 8, 12, (13), 16

- **6.3.6.** Let $\mathbf{y} = \begin{bmatrix} 6 \\ 4 \\ 1 \end{bmatrix}$, $\mathbf{u}_1 = \begin{bmatrix} -4 \\ -1 \\ 1 \end{bmatrix}$, $\mathbf{u}_2 = \begin{bmatrix} 0 \\ 1 \\ 1 \end{bmatrix}$. Verify that $\{\mathbf{u}_1, \mathbf{u}_2\}$ is an orthogonal set, and then find the orthogonal projection of \mathbf{y} onto $\mathrm{Span}\{\mathbf{u}_1, \mathbf{u}_2\}$.
- **6.3.8.** Let $\mathbf{y} = \begin{bmatrix} -1 \\ 4 \\ 3 \end{bmatrix}$, $\mathbf{u}_1 = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$, $\mathbf{u}_2 = \begin{bmatrix} -1 \\ 3 \\ -2 \end{bmatrix}$. Let W be the subspace spanned by \mathbf{u}_1 and \mathbf{u}_2 , and write \mathbf{y} as the sum of a vector in W and a vector orthogonal to W.
- **6.3.12.** Let $\mathbf{y} = \begin{bmatrix} 3 \\ -1 \\ 1 \\ 13 \end{bmatrix}$, $\mathbf{v}_1 = \begin{bmatrix} 1 \\ -2 \\ -1 \\ 2 \end{bmatrix}$, $\mathbf{v}_2 = \begin{bmatrix} -4 \\ 1 \\ 0 \\ 3 \end{bmatrix}$. Find the closest point to \mathbf{y} in the subspace W spanned

by \mathbf{v}_1 and \mathbf{v}_2 .

6.3.13. (recommended)

Let
$$\mathbf{z} = \begin{bmatrix} 3 \\ -7 \\ 2 \\ 3 \end{bmatrix}$$
, $\mathbf{v}_1 = \begin{bmatrix} 2 \\ -1 \\ -3 \\ 1 \end{bmatrix}$, $\mathbf{v}_2 = \begin{bmatrix} 1 \\ 1 \\ 0 \\ -1 \end{bmatrix}$. Find the best approximation to \mathbf{z} by a vector of the form

 $c_1\mathbf{v}_1+c_2\mathbf{v}_2.$

6.3.16. Let \mathbf{y} , \mathbf{v}_1 , \mathbf{v}_2 be as in Exercise 12. Find the distance from \mathbf{y} to the subspace W spanned by \mathbf{v}_1 and \mathbf{v}_2 .