## Measure of Efficiency

Let us define the measure of efficiency or reduction ratio (R.R) on

· Measure of efficiency OR Reduction Ratio

= Length of interval of uncertamity after n
experiments

Length of initial interval of uncertamity.

= Ln

We have studied many region elemination techniques for solving: unconstrained non-linear optimitation problems. The measure of efficiency for a particular method is less than the other methods concludes that the methoporticular method is more efficient compare to the others. Let's have a look for the methods discussed before which are more efficient among all the discussed method.

| Elemination<br>Technique.     | Initial Interval of uncertainty | Final<br>Interval of<br>uncertainty                                 | Reduction Ratio                            |
|-------------------------------|---------------------------------|---------------------------------------------------------------------|--------------------------------------------|
| 1. Exhaustire<br>Search       | 20                              | Ln= 2x Lo n+1                                                       | R.R = 2<br>n+1                             |
| 2. Dichotomous<br>Search      | Lo                              | $L_n = \frac{L_0}{2^{n}y_2} + 8\left(1 - \frac{1}{2^{n}y_2}\right)$ | RR % 1 27/2                                |
| 3. Interval<br>Halving        | 40                              | Ln 2 (1) 2/2 Lo                                                     | RR = (1) 1/2                               |
| 4. Fibonacci<br>Method        | Lo                              | In = Fr. Lo                                                         | RR= In                                     |
| s. Golden<br>Seetim<br>Method | Lo                              | Ln = 1 1-1. Lo                                                      | $RR = \frac{1}{2^{n-1}}$ $= (0.618)^{n-1}$ |

As we discussed in the RET meshods that afters reaching the final interval of uncertainty Ln, we will take the optimal point as the middle point of that interval.



I If we allowed some error to Mereney of the initial interval of uncertainty.

Therefore,  $\frac{Ln}{2} \leq L_0 \times \text{error allowed}$ 

# If error is 10% of exact value

· \frac{Ln}{2} \leq \frac{L0}{10}

If error is 5 % of exact value

 $\frac{4m}{2} \leq \frac{10}{20}$   $= 10n \leq \frac{10}{10}$ 

|                              | To x GREEN,                                         | Lo = [0,1] (assume)                               |
|------------------------------|-----------------------------------------------------|---------------------------------------------------|
| Flemination<br>Technique     | 10%, error<br>allowed                               | 57. error                                         |
| 1. Exhaus Hre<br>Search      | $\frac{2}{n+1} \leq \frac{11}{5} \Rightarrow n > 9$ | $\frac{2}{n+1} = \frac{1}{10} \Rightarrow n > 19$ |
| 2. Dichotomous<br>Search     | 1 27/2 = 15 => カンリ                                  | 2m2 ≤ to => N>6                                   |
| 3. Interoral<br>Halving      | (发) 型 二多 为 725                                      | (分) 当 三十 =) カラチ                                   |
| 4. Fibonacci<br>Method       | Fn = 5 => m > 5                                     | そっちっかき                                            |
| 5. Goldens<br>section Method | (0.618) = 15 => n> 5                                | (0.618) = 10 => m>6.                              |

Also, as now both methods are same Kind of behaviour.

## Exercise >

- ① Minimize  $f(x) = x^5 5x^3 20x + 5$ within the interval [0, 5] by
  - · unrestricted search by considering step size 0.1.
    and starting point 0.
  - · Exhamtive secret
  - · Dichotomom search, s= 0.001
  - · Intereval halving Method
  - · fibonacci Method (consider 10 y, of mitful internal)
  - · Golden seetim Memo Q. (10 y. of inital interval)
- (3) Use Golden Seitim Method / Fibonacei Method
  to obtain the optimals solz.

max  $x^2+2x$ s.t.  $x \in [-3,5]$  621ce = 0.8.