A Theory of Pareto Distributions NBER EF&G Meeting

François Geerolf UCLA

October 21, 2016

Pareto distributions

Schedule D - Année 1893-94.

$_{x}$	N	
£	GREAT BRITAIN	IRELAND
150	400 648	17 717
200	234 485	9 365
300	121 996	4 592
400	74 041	2 684
500	54 419	1 898
600	42 072	1 428
700	34 269	1 104
900	29 311	940
900	25 033	771
1000	22 896	684
2000	9 880	271
3000	6 069	142
4000	4 161	88
5000	3 081	68
10000	1 104	22

▶ 1890s, tax tabulations: Pareto plots *N* of people with incomes > *x*:

$$\log N = \log A - \alpha \log x.$$

- ▶ Same α : England, Ireland, Prussia, Saxe, and Peru.
- With Pareto:
 - ► High Heterogeneity (unbounded).
 - No scale. US: $y_{50} = \$51,939 < y_{av} = \$72,641.$
 - Long tails. 5σ , 10σ draws are very frequent. Top 1% gets ≈ 20% of pre-tax income.
- Pareto ≠ bell-shaped curve. Few empirical regularities in economics.

Zipf's law for firm sizes

Distribution of US firm sizes. Source: Axtell (2001).

Slope: 2.059 (density) \Rightarrow Tail coeff: 1.059. "Zipf's law".

Theories of Pareto distributions in Economics

Why Pareto? May reflect some fundamental economic principle:

- 1. **Pareto distributed primitives.** Explain one Pareto with another Pareto.
 - Lucas (1978), Chaney (2008), Gabaix, Landier (2008), etc.
- 2. Paretos from random growth models.
 - Champernowne (1953), Simon, Bonini (1958), Kesten (1973), Gabaix (1999), Benhabib, Bisin, Zhu (2011), Gabaix, Lasry, Lions, Moll (2016), etc.
- 3. New from this paper: Paretos from production functions. Assignment models with positive sorting, with a special form of production function.
 - ▶ Presentation: Garicano (2000) model.
 - Property of the production function, not of specific microfoundations.
 - Another example: Geerolf (2015).

This paper

- Production function derives from a particular version of Garicano (2000). Under limited assumptions on the skill distribution:
 - L layers of hierarchy = Pareto tail for span of control with coefficient:

$$\boxed{lpha_L=1+rac{1}{L-1}}, \qquad \boxed{lpha_2=2}, \qquad \boxed{lpha_{+\infty}=1}.$$

- \Rightarrow a new theory of **Zipf's law for firm sizes**.
- ▶ Pareto tail for labor incomes, with $\beta_L \in [1, +\infty]$, when top skills are scarce enough.
- ▶ Data supports these predictions: French matched employer-employee / known US data.
- ► Taking competitive assignment models to the extreme, where wages are a convex function of skills. (Sattinger (1975)) Here: wages are Pareto with a bounded support for skills.

Environment: A Garicano (2000) Economy

- ▶ Agents: continuum, measure 1. 1 unit of time.
- ▶ 1 good. 1 unit of time \rightarrow 1 good.
- Agents: different exogenous **skills**. Agent with skill x can solve "problems" in [0, x].
- Distribution of skills x: c.d.f. F(.), density f(.) on [1 Δ, 1].
 Δ: Heterogeneity in Skills.
 F(.): Skill Distribution.
- ▶ Workers encounter **problems** in production. Draw a unit continuum of different problems on [0,1] in c.d.f. G(.), uniform w.l.o.g. :
 - ▶ When they know the solution: produce 1 unit of the good.
 - When they don't: can ask someone else for a solution.
 h < 1: manager's time cost to listen to one problem.
 h: Helping Time.

Imposing 2 layers

- ▶ Planner's problem. Planner maximizes total output.
- ▶ Occupational cutoff: z_2 splits managers (high x) and workers (low x).
- ▶ Workers x fail to solve 1-x problems. Time supervising worker x: h(1-x). Span of control of a manager hiring workers with skill x:

$$n = \frac{1}{h(1-x)}$$

Output Q(x, y) jointly produced by manager with skill y hiring workers with skill x:

$$Q(x,y) = \frac{y}{h(1-x)}$$
 \Rightarrow $\frac{\partial^2 Q(x,y)}{\partial x \partial y} = \frac{1}{h(1-x)^2} > 0$

► Complementarities \Rightarrow **Positive sorting**. y = m(x), m'(x) > 0.

Uniform distribution

m(.) ensures market clearing for time:

$$f(y)dy = h(1-x)f(x)dx \quad \Rightarrow \quad f(m(x))m'(x) = h(1-x)f(x).$$

 \triangleright z_2 , m(.) unknowns. Boundary value problem:

$$m(1-\Delta) = z_2, \qquad m(z_2) = 1.$$

Assume for a moment that $f(x) = 1/\Delta$ on $[1 - \Delta, 1]$. Then 1-x is a uniform distribution on $[1 - z_2, \Delta]$. What is the distribution of span of control:

$$n(y)=\frac{1}{h(1-x)}.$$

Mathematical Result: Inverse of a Uniform on $[\Delta^2, \Delta]$

Lemma

If $U \sim Uniform$ ($[\Delta^2, \Delta]$), then $1/U \sim Truncated\ Pareto$ $(1, 1/\Delta, 1/\Delta^2)$.

Assume $f_U(u) = 1/(\Delta - \Delta^2)$ on $[\Delta^2, \Delta]$. The "tail function" (complementary c.d.f) of 1/U is:

$$\begin{split} \bar{F}_{1/U}(x) &\equiv 1 - F_{1/U}(x) = \mathbb{P}\left[\frac{1}{U} \ge x\right] \\ &= \mathbb{P}\left[U \le \frac{1}{x}\right] \\ &= \int_{\Delta^2}^{1/x} f_U(u) du \\ \bar{F}_{1/U}(x) &\equiv 1 - F_{1/U}(x) = \frac{\frac{1}{x} - \Delta^2}{\Delta - \Delta^2}. \end{split}$$

▶ Inverse of a Uniform on $[0, \Delta] =$ **full Pareto** with tail coefficient 1.

Mathematical Result 2: Inverse of a Uniform on $[\Delta^2, \Delta]$

▶ Span of control of manager *y* hiring workers with skill *x*:

$$n(y) = \frac{1}{h(1-x)}$$

- ▶ If f(.) is uniform, 1 x is a uniform distribution over $[1 z_2, \Delta]$.
- ▶ I show that:

$$1-z_2=rac{\sqrt{1+h^2\Delta^2}-1}{h}\sim_{\Delta o 0}rac{h}{2}\Delta^2.$$

- ▶ Thus the size-biased distribution is a Truncated Pareto (1).
- ► <u>Size-biased distribution</u>: a firm with 100 employees is counted 100 times. ⇒ Overstating fattailedness.
- ► Size-biased distribution is Truncated Pareto (1) ⇒ distribution is Truncated Pareto (2).

Non-uniform distribution

- ▶ "blowing up" of the denominator \Rightarrow under some regularity conditions on f(.), works also if not uniform.
- ▶ If $f_X(0) \neq 0$, then **Pareto tail**:

$$1 - F_{1/X}(x) = \int_0^{1/x} f_X(u) du \sim_{+\infty} \frac{f_X(0)}{x}.$$

Example with a linear increasing density.

Firm with L = 3 layers

Positive Sorting.

• Generalizing $\alpha_2 = 2$ by iteration, the tail exponent:

$$\boxed{\alpha_L = 1 + \frac{1}{L - 1}}.$$

▶ When $L \to \infty$, **Zipf's law** for firm sizes:

$$\boxed{\alpha_{+\infty} = 1}.$$

Again, true for any density.

French DADS - establishments per firms

- ► Empirics: French matched employer-employee data, US data.
- Example: number of establishments per firms. (France)

Assignment equation

Skill prices w(.) decentralizing optimal allocations:

$$w(y) = \max_{x} \frac{y - w(x)}{h(1 - x)}.$$

Envelope condition:

$$w'(y) = \frac{1}{h(1-x)} = n(y)$$
 \Rightarrow $\underbrace{\frac{dw(y(n))}{dn}}_{\Delta \text{Wages}} = \underbrace{n(y(n))}_{\text{Size}} \underbrace{y'(n)}_{\Delta \text{Talents}}$

- Comparison:
 - ► Gabaix, Landier (2008). Small differences in talent across managers, large and Pareto firm sizes ⇒ Large differences in pay.
 - ► This paper: Small differences in talents across workers and managers ⇒ Large differences in pay. (through endogenous large and Pareto firm sizes)

Labor income distribution: effect of a decrease in h (IT?)

- ► Gabaix, Landier (2008): if skill distribution does not change, Pareto coefficient does not change.
- ▶ Not true in this paper when *h* diminishes (IT?).

▶ Empirically: $\alpha = -3$ in 1970s to $\alpha = -1.8$ in 2010s.

Conclusion: coming back to Axtell (2001)

Conclusion

- Main takeaways:
 - Maths:
 - U is Uniform $(0,\Delta) \Rightarrow 1/U$ is Pareto $(1,1/\Delta)$.
 - ▶ X goes through the origin $\Rightarrow 1/X$ has a Pareto tail.
 - Stylized model accounts for Pareto firm size and labor income distribution, regardless of the ability distribution.
 - New intuition for why firm sizes and labor incomes are so heterogenous despite small observable differences: "power law change of variable near the origin".
 - ► Endogenous "economics of superstars".

► Future work:

- ▶ Other microfoundations for power-law production functions.
- ▶ In applied work, potential alternative to:
 - Optimal taxation: Pareto distributed skills.
 - <u>Trade</u>: Pareto distributed firm productivities.
 - Misallocation: Pareto distributed manager/firm productivities.