

CPE 213 Data Models (a.k.a. Data Modeling and Visualization)

Lecture 8: Simulating data distribution using Monte Carlo simulation

Asst. Prof. Dr. Santitham Prom-on

Department of Computer Engineering, Faculty of Engineering King Mongkut's University of Technology Thonburi

Modeling virus dynamics

More realistic virus dynamic model

Figure 1 Flowchart of hepatitis B virus (HBV) transmission in a population

 $\lambda(a,t)$: the force of HBV infection.

α: the rate of transition from latent period to temporary HBV viraemia.

 $\beta(a)$: the risk of transient viraemia progressing to chronic HBV carrier state.

ε: the rate of transition from temporary HBV viraemia to immune per time unit.

v(a): the rate of HBV clearance in chronic HBV carriers.

 $\tau(a)$: the mortality rate of HBV related diseases.

 ∞ (a): the age-specific mortality rate of non-HBV related diseases.

Vc(a,t): the effectiveness of hepatitis B vaccine immunization.

$$\lambda(a,0) = \begin{cases} 0.13074116 - 0.01362531a + 0.00046463a^2 \\ -0.00000489a^3, 0 \le a \le 47.5, \\ \lambda(47.5,0), a > 47.5 \end{cases}$$

 $\beta(a) = 0.706004 \exp(-0.787711a) + 0.08464$ $v(a) = 0.00227005a - 0.00011211a^2 + 0.00000149a^3$

 $\tau(a) = 1/[1 + \exp(11.80965 - 0.16887177a + 0.0007375a^2)]$

Specific input...specific output

Specific input...specific behavior

e.g.
$$x0 = 100$$

 $y0 = 500$

Simulating dynamical systems

```
set initial conditions set t=0 do compute systems at t increase t while t < t_{\rm max}
```


Form comparison

Analytical model

Analytic solution

- Predicting output based on
 - a set of parameters
 - initial conditions

Simulation model

No closed form analytic solution

- Predicting output based on
 - Simulated inputs

Method comparisons

Analytical method (e.g. solving ODEs)

- Can examine many decision points at once
- But limited to simple models

Numerical method (e.g. Euler approximation)

- Can handle more complex models but still limited
- Often have to repeat computation for each decision point

Simulation modeling (e.g. Monte Carlo)

- Can handle very complex and realistic systems
- But has to be repeated for each decision point

Why use simulation?

- To understand complex stochastic systems
- To control complex stochastic systems

Computer Simulation

Simulated input...simulated output

Simulating deterministic models

Integration of complex / unknown function

Example I: Area under a function Problem statement

Analytical approach

$$A = \int_{t_0}^{t_0+T} f(t)dt$$

$$= \int_{t_0}^{t_0+2\pi} (1+\sin(t))dt$$

$$= t|_{t_0}^{t_0+2\pi} - \cos(t|_{t_0}^{t_0+2\pi})$$

$$= (t_0 + 2\pi - t_0) - 0$$

$$= 2\pi$$

$$= 6.2832$$

Formulate a Monte Carlo simulation model of area under a function

```
library(tidyverse)
f <- function(x) {
  return(1+sin(x))
run <- 1000
t <- runif(n=run, min=2, max=2+2*pi)
y <- runif(n=run, min=0, max=2)
f t < - f(t)
print(paste0("Approx. Pi: ",2*pi*2*sum(y < f t)/run))</pre>
```


Plotting

```
t1 < -t[y < ft]
y1 \leftarrow y[y < f t]
t0 < - seq(0,10,0.1)
y0 < - f(t0)
ggplot() +
  geom point (aes (x=t1, y=y1), size=0.5) +
  geom path(aes(x=t0, y=y0), color='blue') +
  xlim(c(0,10))
```


Integration approximation

Simulating probabilistic behavior Example II: Coin tossing

For a fair coin, p(H) = p(T) = 0.5

Monte Carlo simulation of coin tossing

```
p <- runif(1000)
mean(p < 0.5)</pre>
```


Approximating probability

Important issues

Replications in simulation

$$y_1, y_2, ..., y_k$$
 k repetitions of N iterations
 $y_N = (y_1+y_2+...+y_k)/k$

Random number generator

$$u \sim U[0, 1]$$

$$u = F(x) \sim U[0, 1]$$

$$x = F^{-1}(u)$$

Generating random numbers of uniform distribution from U[0,1]

Generate uniform random numbers

Inverse normal dist. function

Normal distributed random numbers

Generating random numbers of exponential distribution from U[0,1]

Generate uniform random numbers

Inverse exponential dist. function

Exponentially distributed random numbers

Example III: modeling stock market – simulating portfolio evaluation

Objectives

- To investigate various investment strategies
- To determine the strategy that likely to result in a good positive return over a long period of time
- The investor defines his/her decision method

Goals of this simulation

Portfolio

- Cash assets
- Stocks

Goals

- Each day, update the allocation of the asset between cash and stocks
- Increase the total value of the assets over time

Modeling investment strategy

- For our learning purpose, we assume a very simple investment strategy
- Only a single stock is considered

IF today stock price is higher

THEN spend 10% of cash asset to purchase shares of the stock

IF today stock price declines

THEN sell 10% of shares holding

Possible to include later

- Reversed strategy
- Waiting
- Threshold
- Brokerage commission
- Etc.

The stock market model Assumptions

- Today stock price is affected by change in the price of the stock of the previous day
- The change is a random number from a normal distribution with
 - $\sigma = 1\%$ of the previous day's price
 - $\mu = 10\%$ of the previous day's price change

The stock market model Example

- Suppose that in previous day the stock went from 100 baht to 110 baht
- Today change would be sampled from a normal distribution with
 - a mean of $10\% \times 10$ baht = 1 baht
 - a standard deviation of $1\% \times 100$ baht = 1 baht

$$P_{n+1} = P_n + \varepsilon$$

 $\varepsilon \sim N(0.1(P_n - P_{n-1}), (0.01P_n)^2)$

Simulating stock market model

Day	Stock Price	Share Held	Cash Held	Total Worth	Shares Purchase	Shares Sold	ΔPrice
0	₿100.00	500	\$50,000.00	B100,000.00	0	0	
1	₿99.05	500	B 50,000.00	₿99,523.34	0	50	- ₿0.95
2	₿99.31	450	₿54,952.33	₿99,643.82	55	0	₿0.27
3	₿100.29	505	B49,490.04	₿100,133.97	49	0	₿0.97
4	₿99.68	554	B44,576.08	₿99,796.66	0	55	-B0.61
5	B 101.32	499	₿50,058.26	₿100,619.32	49	0	₿1.65
6	₿101.04	548	B45,093.35	₿100,465.36	0	55	- ₿0.28
7	B100.40	493	₿50,650.76	₿100,145.68	0	49	-B0.65
8	₿100.45	444	₿55,570.13	₿100,170.59	55	0	₿0.06
9	₿99.60	499	₿50,045.30	в99,747.87	0	50	-B0.85
10	₿99.46	449	B55,025.52	₿99,682.99	0	45	-B0.14

Simulated stock price

Simulated portfolio management

Randomness in Monte Carlo simulation – stock price

Randomness in Monte Carlo simulation – assets in portfolio

Example IV: portfolio evaluation

- Consider two stock, A and B
- Let $S_a(t)$ and $S_b(t)$ be the time t prices of A and B
- Let n_a and n_b be the owned units of A and B
- Let W(t) be the wealth at time t

Portfolio

• No trading between 0 to T

Initial

• At t=0, n_a units of A n_b units of B initial wealth $W(0) = n_a S_a(0) + n_b S_b(0)$

Terminal

• At t=T, n_a units of A n_b units of B initial wealth $W(T) = n_a S_a(T) + n_b S_b(T)$

Brownian motion

https://www.britannica.com/video/185377/Albert-Einstein-Description-motion-theory-size-Brownian

Brownian motion of stock prices

$$S_a(T) = S_a(0) \exp((\mu_a - \sigma_a^2/2)T + \sigma_a B_a(T))$$

 $S_b(T) = S_b(0) \exp((\mu_b - \sigma_b^2/2)T + \sigma_b B_b(T))$
where
 $B_a(t)$ and $B_b(t)$ are standard brownian motion
 $B(t_i) = B(t_{i-1}) + X$
 $X \sim N(0, \Delta t)$

Simulating standard Brownian motion

SET
$$t_0 = 0$$
, $B(t_0) = 0$

FOR i=1 to n generate $X \sim N(0, t_i - t_{i-1})$ set $B(t_i) = B(t_{i-1}) + X$

END

Probability as an expected value of simulated trials

• Let L be the event that $W(T)/W(0) \le 0.9$ $P(L) = E(I_L)$

where

$$I_{L}(\mathbf{X}) = \begin{cases} 1 & \text{if } \frac{n_{a}S_{a}(T) + n_{b}S_{b}(T)}{n_{a}S_{a}(0) + n_{b}S_{b}(0)} \leq 0.9\\ 0 & \text{otherwise} \end{cases}$$

Set initial conditions

- Let assume these situations
 - T = 0.5 years
 - $\mu_a = 0.15$, $\mu_b = 0.12$, $\sigma_a = 0.2$, $\sigma_b = 0.18$
 - $S_a(0) = \$100, S_b(0) = \75
 - $n_a = n_b = 100$
- This implies W(0) = \$17,500

Monte Carlo simulation of $E(I_L)$

```
FOR i = 1 to N generate X^i = (S_a^i(T), S_b^i(T)) compute IL(X^i) END
E(IL) = (IL(X^1) + ... IL(X^N)) / N
```


Monte Carlo simulation of E(I_L) in R

```
res <- NULL
N <- 1000 # number of simulation run
n <- 1000; tt <- 0.5; na <- 100; nb <- 100
S0a <- 100; S0b <- 75
mua <- .15; mub <- .12; siga <-.2; sigb <-.18
W0 <- na*S0a+nb*S0b
for (k in 1:N) {
  B1 <- cumsum(rnorm(n,0,1)) B_1(t_1) B_2(t_1) t \times (0,1)
  B2 < - cumsum(rnorm(n, 0, 1))
  STa \leftarrow S0a * exp((mua-(siga^2)/2)*tt + siga*B1)
  STb \leftarrow S0b * exp((mub-(siqb^2)/2)*tt + siqb*B2)
  WT <- na*STa + nb*STb
  p < - \frac{\text{ds. hower, it}}{\text{mean}} (WT/W0 < 0.9)
  res <- c(res, p)
print(paste0("Prob of 10% drop is ", mean(res)))
```


Monte Carlo simulation result at least 10% drop in total asset

Thank you

Question?

