Advanced Features: Type Classes and Relations

Pierre Castéran

Suzhou, Paris, 2011

In this lecture, we present shortly two quite new and useful features of the ${\it Coq}$ system :

- Type classes are a nice way to formalize (mathematical) structures,
- User defined relations, and rewriting non-Leibniz "equalities" (i.e. for instance, equivalences).

In this lecture, we present shortly two quite new and useful features of the ${\it Coq}$ system :

- Type classes are a nice way to formalize (mathematical) structures,
- User defined relations, and rewriting non-Leibniz "equalities" (i.e. for instance, equivalences).
- More details are given in Coq's reference manual,
- A tutorial will be available soon.
- We hope you will replay the proofs, enjoy, and try to use these features.

In this lecture, we present shortly two quite new and useful features of the ${\it Coq}$ system :

- Type classes are a nice way to formalize (mathematical) structures,
- User defined relations, and rewriting non-Leibniz "equalities" (*i.e.* for instance, equivalences).
- More details are given in Coq's reference manual,
- A tutorial will be available soon.
- We hope you will replay the proofs, enjoy, and try to use these features.

Demo files:

Power_Mono.v, Monoid.v, EMonoid.v, Trace_Monoid.v.
The file Monoid_op_classes.v is given for advanced experiments only.

A simple example : computing a^n

The following definition is very naïve, but obviously correct.

```
Compute power 2 40.
= 1099511627776
: Z
```

A simple example : computing a^n

The following definition is very naïve, but obviously correct.

Compute power 2 40.

```
= 1099511627776
: Z
```

Thus, the function power can be considered as a specification for more efficient algorithms.

The binary exponentiation algorithm

Let's define an auxiliary function ...

```
Function binary_power_mult (acc x:Z)(n:nat)
                {measure (fun i=>i) n} : Z
  (* acc * (power x n) *) :=
match n with 0%nat => acc
             | _ => if Even.even_odd_dec n
                    then binary_power_mult
                          acc (x * x) (div2 n)
                    else binary_power_mult
                         (acc * x) (x * x) (div2 n)
  end.
intros; apply lt_div2; auto with arith.
intros; apply lt_div2; auto with arith.
Defined.
```

Compute binary_power 2 40.

Definition binary_power (x:Z)(n:nat) :=
 binary_power_mult 1 x n.

Compute binary_power 2 40.

1099511627776: Z

• Is binary_power correct (w.r.t. power)?

```
Definition binary_power (x:Z)(n:nat) :=
    binary_power_mult 1 x n.
```

Compute binary_power 2 40.

- Is binary_power correct (w.r.t. power)?
- Is it worth proving this correctness only for powers of integers?

```
Definition binary_power (x:Z)(n:nat) :=
    binary_power_mult 1 x n.
```

Compute binary_power 2 40.

- Is binary_power correct (w.r.t. power)?
- Is it worth proving this correctness only for powers of integers?
- And prove it again for powers of real numbers, matrices?

```
Definition binary_power (x:Z)(n:nat) :=
    binary_power_mult 1 x n.
```

Compute binary_power 2 40.

- Is binary_power correct (w.r.t. power)?
- Is it worth proving this correctness only for powers of integers?
- And prove it again for powers of real numbers, matrices? NO!

Monoids

We aim to prove the equivalence between power and binary_power for any structure consisting of a binary associative operation that admits a neutral element

Monoids

We aim to prove the equivalence between power and binary_power for any structure consisting of a binary associative operation that admits a neutral element

Definition

A monoid is a mathematical structure composed of :

- A carrier A
- A binary, associative operation on A
- A neutral element $1 \in A$ for \circ

```
Class Monoid {A:Type}(dot : A -> A -> A)(unit : A)
: Type := {
  dot_assoc : forall x y z:A,
      dot x (dot y z)= dot (dot x y) z;
  unit_left : forall x, dot unit x = x;
  unit_right : forall x, dot x unit = x }.
```

In fact such a class is stored as a record, parameterized with A, dot and unit. Just try Print monoid.

An alternative?

An alternative?

No!

Bas Spitters and Eelis van der Weegen,
 Type classes for mathematics in type theory,
 CoRR, abs/1102.1323, 2011.

In short, it would be clumsy to express "two monoids on the same carrier".

Defining power in any monoid

```
Generalizable Variables A dot one.
Fixpoint power '{M :Monoid A dot one}(a:A)(n:nat) :=
  match n with 0%nat => one
             | S p => dot a (power a p)
 end.
Lemma power_of_unit '{M :Monoid A dot one} :
  forall n:nat, power one n = one.
Proof.
 induction n as [| p Hp];simpl;
     [|rewrite Hp;simpl;rewrite unit_left];trivial.
Qed.
```

Building an instance of the class Monoid

```
Require Import ZArith.
Open Scope Z_scope.
Instance ZMult: Monoid Zmult 1.
split.
3 subgoals
  forall x y z : Z, x * (y * z) = x * y * z
subgoal 2 is:
forall x : Z, 1 * x = x
subgoal 3 is:
forall x : Z. x * 1 = x
Qed.
```

Each subgoal has been solved by intros; ring.

Instance Resolution

```
About power.

power:

forall (A : Type) (dot : A -> A -> A) (one : A),

Monoid dot one -> A -> nat -> A
```

Arguments A, dot, one, M are implicit and maximally inserted

Instance Resolution

```
About power:

power:

forall (A : Type) (dot : A -> A -> A) (one : A),

Monoid dot one -> A -> nat -> A

Arguments A, dot, one, M are implicit and maximally inserted

Compute power 2 100.

= 1267650600228229401496703205376 : Z
```

Instance Resolution

```
About power.

power:

forall (A : Type) (dot : A -> A -> A) (one : A),

Monoid dot one -> A -> nat -> A
```

Arguments A, dot, one, M are implicit and maximally inserted

```
Compute power 2 100.
= 1267650600228229401496703205376 : Z
```

```
Set Printing Implicit.
Check power 2 100.

Opower Z Zmult 1 ZMult 2 100: Z
Unset Printing Implicit.
```

The *instance* ZMult is inferred from the type of 2.

2×2 Matrices on any Ring

Require Import Ring. Section matrices. Variables (A:Type) (zero one : A) (plus mult minus : A -> A -> A) $(sym : A \rightarrow A)$. Notation "0" := zero. Notation "1" := one. Notation "x + y" := (plus x y). Notation "x * y" := (mult x y). Variable rt: ring_theory zero one plus mult minus sym (@eq A). Add Ring Aring: rt.

```
Structure M2 : Type := \{c00 : A; c01 : A; c10 : A; c11 : A\}.
```

Definition Id2 : M2 := Build_M2 1 0 0 1.

Global Instance M2_Monoid : Monoid M2_mult Id2.

. . .

Defined.

End matrices.

```
Compute power (Build_M2 1 1 1 0) 40.
= {|
    c00 := 165580141;
    c01 := 102334155;
    c10 := 102334155;
    c11 := 63245986 |}
: M2 Z
```

```
Compute power (Build_M2 1 1 1 0) 40.
 =\{|
    c00 := 165580141:
    c01 := 102334155:
    c10 := 102334155:
    c11 := 63245986 \mid 
   : M2 7
Definition fibonacci (n:nat) :=
  c00 (power (Build_M2 1 1 1 0) n).
Compute fibonacci 20.
= 10946
   : Z
```

A generic proof of correctness of binary_power

We are now able to prove the equivalence of power and binary_power *in* any monoid.

A generic proof of correctness of binary_power

We are now able to prove the equivalence of power and binary_power in any monoid.

Note

We give only the structure of the proof. The complete development will be distributed (for coq8.3p12)

Let us consider an arbitrary monoid

Section About_power.

Require Import Arith.

Context '(M:Monoid A dot one).

Let us consider an arbitrary monoid

Section About_power.

Require Import Arith.

```
Context '(M:Monoid A dot one).
Ltac monoid rw :=
    rewrite (@one_left A dot one M) ||
    rewrite (@one_right A dot one M) | |
    rewrite (@dot_assoc A dot one M).
  Ltac monoid_simpl := repeat monoid_rw.
  Local Infix "*" := dot.
  Local Infix "**" := power (at level 30, no associativity).
```

Within this context, we prove some useful lemmas

```
Lemma power_x_plus : forall x n p,
  x ** (n + p) = x ** n * x ** p.
Proof.
  induction n; simpl.
  intros; monoid_simpl; trivial.
  intro p; rewrite (IHn p). monoid_simpl; trivial.
Qed.
```

Within this context, we prove some useful lemmas

```
Lemma power_x_plus : forall x n p,
x ** (n + p) = x ** n * x ** p.
Proof.
 induction n; simpl.
 intros; monoid_simpl;trivial.
 intro p;rewrite (IHn p). monoid_simpl;trivial.
Qed.
Lemma power_of_power : forall x n p,
     (x ** n) ** p = x ** (p * n).
Proof.
   induction p; simpl;
   [| rewrite power_x_plus; rewrite IHp]; trivial.
Qed.
```

```
Lemma binary_power_mult_ok :
  forall n a x, binary_power_mult M a x n = a * x ** n.
...
Lemma binary_power_ok : forall x n,
      binary_power (x:A)(n:nat) = x ** n.
Proof.
  intros n x;unfold binary_power;
```

rewrite binary_power_mult_ok;

Qed.

End About_power.

monoid_simpl; auto.

Subclasses

```
Class Abelian_Monoid '(M:Monoid ):= {
  dot_comm : forall x y, (dot x y = dot y x)}.
Instance ZMult_Abelian : Abelian_Monoid ZMult.
split.
  exact Zmult_comm.
Defined.
```

```
Section Power_of_dot.
Context '{M: Monoid A} {AM:Abelian_Monoid M}.
Theorem power_of_mult : forall n x y,
  power (dot x y) n = dot (power x n) (power y n).
Proof.
 induction n; simpl.
rewrite one_left; auto.
 intros; rewrite IHn; repeat rewrite dot_assoc.
rewrite <- (dot_assoc x y (power x n));
rewrite (dot_comm y (power x n)).
repeat rewrite dot_assoc; trivial.
Qed.
```

More about class types

- Download Coq's latest development version,
- Read Papers by Matthieu Sozeau on the implementation
- Bas Spitters, Eelis van der Weegen : Type Classes for Mathematics in Type Theory

More about class types

- Download Coq's latest development version,
- Read Papers by Matthieu Sozeau on the implementation
- Bas Spitters, Eelis van der Weegen : Type Classes for Mathematics in Type Theory

It is possible to define and export notations for operations on type classes. See ${\tt Monoid_op_classes.v}$

Introduction to Setoids

Let us recall how rewrite works.

This tactic uses eq_rect,

eq_rect

 without other hypotheses, the proposition x = y can only be proven through eq_refl

```
: forall (A : Type) (x : A) (P : A -> Type),
        P x -> forall y : A, x = y -> P y

Inductive eq (A : Type) (x : A) : A -> Prop :=
| eq_refl : x = x
```

Introduction to Setoids

Let us recall how rewrite works.

- This tactic uses eq_rect,
- without other hypotheses, the proposition x = y can only be proven through eq_refl

```
eq_rect
```

```
: forall (A : Type) (x : A) (P : A -> Type),
P x -> forall y : A, x = y -> P y
```

```
Inductive eq (A : Type) (x : A) : A -> Prop :=
| eq_refl : x = x
```

We would like to use rewrite with relations weaker (easier to prove) than x = y.

An example : Trace Monoids

The following intruction sequences are equivalent but not equal.

```
x = y+1;
y = z * z;
for(int i=0;i<n;i++)
   x +=z
if (y >= 0) then
   System.out.println("y=" + y +" x =" + x);
```

```
x = y+1;
for(int i=0;i<n;i++)
    x +=z;
y = z * z;
System.out.println("y=" + y+ " x =" + x);</pre>
```

- Trace monoids a.k.a. free partially commutative monoids are models of concurrent programming.
- They describe which actions are independent, i.e. can commute.
- For instance, x+=z can commute with $y=z^*z$, but not with x=y+1

- Trace monoids a.k.a. free partially commutative monoids are models of concurrent programming.
- They describe which actions are independent, i.e. can commute.
- For instance, x+=z can commute with $y=z^*z$, but not with x=y+1

In order to simplify our development, we consider three basic actions : a, b and c, and represents programms as lists of actions.

The lists a::b::a::c::b::a::nil and a::a::b::c::a::b::nil should be equivalent, but not equal!

```
Require Import List
Relation_Operators
Operators_Properties.
```

Section Partial_Com.

```
Inductive Act : Set := a \mid b \mid c.
```

```
Example Diff : a::b::nil <> b::a::nil.
discriminate.
Qed.
```

Let us define the relation partial commutation, generated by a and b

We can now consider the reflexive, symmetric and transitive closure of transpose :

```
{\tt Definition\ commute\ :=\ clos\_refl\_sym\_trans\ \_\ transpose.}
```

Infix "==" := commute (at level 70):type_scope.

We now declare commute as an instance of the Equivalence type class :

Instance Commute_E : Equivalence commute.
split;[constructor 2|constructor 3|econstructor 4];eauto.
Qed.

We are now able to use the tactics reflexivity, symmetry, and transitivity on goals of the form x == y.

```
Example ex0 : b::a::nil == a::b::nil.
symmetry.
repeat constructor.
Qed.
```

```
Example ex0 : b::a::nil == a::b::nil.
symmetry.
repeat constructor.
Qed.

Example ex1 : a::b::b::nil == b::b::a::nil.
transitivity (b::a::b::nil).
repeat constructor.
repeat constructor.
Qed.
```

```
Goal forall w, w++(a::b::nil) == w++(b::a::nil).
Proof.
 induction w; simpl.
 constructor, constructor.
 a0 : Act
 w: list Act
 IHw: w++ a:: b:: nil == w++ b:: a:: nil
  a0 :: w ++ a :: b :: nil == a0 :: w ++ b :: a :: nil
rewrite IHw.
```

Error message
Abort.

We need to prove and register that if u == v then x::u == x::v.

We need to prove and register that if u == v then x:: u == x:: v.

Require Import Setoid Morphisms.

```
Instance cons_commute_Proper (x:Act):
  Proper (commute ==> commute) (cons x).
intros 11' H.
1 subgoal
 x: Act
 1 : list Act
 I': list Act
 H \cdot I == I'
 x :: I == x :: I'
Qed.
```

```
Note that the following statement is also correct :
```

```
Instance cons_commute_Proper (x:Act) :
  Proper (@eq _ ==> commute ==> commute)
  (@cons Act).
```

We are now able to use rewrite in contexts formed by the cons operator.

```
Goal forall u v, u == v -> (a::b::u) == (b::a::v).
Proof.
intros u v H; rewrite H.
constructor; constructor.
Qed.
```

We can now consider again our failed attempt.
Goal forall w, w++(a::b::nil) == w++(b::a::nil).
Proof.
induction w;simpl.

constructor. constructor.

```
We can now consider again our failed attempt.
Goal forall w, w++(a::b::nil) == w++(b::a::nil).
Proof.
 induction w; simpl.
 constructor, constructor.
1 subgoal
 a0 : Act
 w: list Act
 IHw: w++a::b::nil == w++b::a::nil
  a0 :: w ++ a :: b :: nil == a0 :: w ++ b :: a :: nil
```

```
We can now consider again our failed attempt.
Goal forall w, w++(a::b::nil) == w++(b::a::nil).
Proof.
 induction w; simpl.
 constructor, constructor.
1 subgoal
 a0 : Act
 w: list Act
 IHw: w++a::b::nil == w++b::a::nil
  a0 :: w ++ a :: b :: nil == a0 :: w ++ b :: a :: nil
rewrite IHw; reflexivity.
Qed.
```

We want now to use rewrite H on the commute relation in contexts built with the app function.

```
Instance append_commute_Proper_1 :
Proper (Logic.eq ==> commute ==> commute) (@app Act).
(* usage :
H : v == w
   11 ++ v == u ++ w
[setoid ]rewrite H.
*)
Qed.
```

Qed.

```
Instance append_Proper :
Proper (commute ==> commute ==> commute) (@app Act).
Proof.
intros x y H z t HO;transitivity (y++z).
rewrite H;reflexivity.
rewrite HO;reflexivity.
```

Setoids and Monoids

Set Implicit Arguments.

Extract from Demo file Trace_Monoid.v

Instance PCom : EMonoid commute (@List.app Act) nil.
Proof

```
split.
```

apply Commute_E.

apply append_Proper.

intros;rewrite <- app_assoc;reflexivity.</pre>

simpl; reflexivity.

intros;rewrite app_nil_r;reflexivity.

Qed.

Conclusion

- Type classes and setoids are advanced features that allow to represent complex objects,
- It is important to look again at the examples and exercises, as well as the *Coq* documentation.
- Suscribe to the coq-club mailing list!