(19)日本国特許庁(JP)

(12) 公開特許公報(A)

(11)特許出願公開番号

特開平11-331696

(43)公開日 平成11年(1999)11月30日

(51) Int.Cl.6 H04N 識別記号

FΙ

H04N 5/265

G06F 15/66

470J

G06T 1/00

5/265

審査請求 未請求 請求項の数30 OL (全 16 頁)

(21)出願番号

特願平11-63086

(22)出願日

平成11年(1999) 3月10日

(31) 優先権主張番号 特願平10-75079

(32)優先日

平10(1998) 3月10日

(33)優先権主張国

日本 (JP)

(71)出願人 000001007

キヤノン株式会社

東京都大田区下丸子3丁目30番2号

(72)発明者 片山 達嗣

東京都大田区下丸子3丁目30番2号 キヤ

ノン株式会社内

(72) 発明者 矢野 光太郎

東京都大田区下丸子3丁目30番2号 キヤ

ノン株式会社内

(72)発明者 羽鳥 健司

東京都大田区下丸子3丁目30番2号 キヤ

ノン株式会社内

(74)代理人 弁理士 渡部 敏彦

最終頁に続く

(54) 【発明の名称】 画像処理方法、装置および記録媒体

(57) 【要約】

【課題】 画像だけを利用して自動的に合成方法を選択 することができる画像処理方法を提供する。

【解決手段】 画像処理装置は、撮影した画像を入力す る画像入力部100、入力した画像を一時保持する画像 メモリ104、画像メモリ104に保持された画像間の 対応点情報を抽出する対応点抽出部101、抽出された 対応点情報を基に撮影時の撮影方式を判別する撮影方式 判別部102、判別された撮影方式に応じて各々の画像 を適切に合成する合成処理部1.03、および合成された 画像を保持する合成画像メモリ105を有する。対応点 抽出部101では2つの画像の対応点を抽出し、撮影方 式判別部102では抽出された撮影方式として並進撮影 であるかパンニング撮影であるかを判別する。合成処理 部103では、判別された撮影方式にしたがって画像の 合成処理を行う。

【請求項1】 複数の画像を入力する入力工程と、 前記複数の画像を用いて、複数の合成方法の中から適切 な合成方法を選択する選択工程とを有する画像処理方 法。

【請求項2】 前記複数の合成方法のうち少なくとも1 つの合成方法に基づいた画像合成を評価する評価工程を 有し

前記選択工程は、前記評価に応じて合成方法を選択する ことを特徴とする請求項1記載の画像処理方法。

【請求項3】 前記複数の画像が有する重複領域内において対応点を抽出する抽出工程を有することを特徴とする請求項2記載の画像処理方法。

【請求項4】 前記評価工程は、前記対応点に基づいて 画像合成した場合に生じる合成誤差を計算し、前記合成 誤差を所定値と比較することによって合成方法を評価す ることを特徴とする請求項3記載の画像処理方法。

【請求項5】 前記評価工程は、前記対応点に基づいて、少なくとも2種類の合成方法それぞれを用いて画像合成した場合の合成誤差を計算し、それぞれの前記合成誤差の大小を比較することによって合成方法を評価することを特徴とする請求項3記載の画像処理方法。

【請求項6】 前記複数の合成方法は、少なくとも撮影方向を変えずに撮影位置を変えて撮影する並進撮影と、撮影位置を変えずに撮影方向を変えて撮影するパンニング撮影とに対応した合成方法であることを特徴とする請求項1記載の画像処理方法。

【請求項7】 前記パンニング撮影に応じた合成方法 は、前記複数の画像を撮影焦点距離を半径とする仮想円 筒面上、又は仮想球面上に座標変換した変換画像を用い ることを特徴とする請求項6記載の画像処理方法。

【請求項8】 前記パンニング撮影に応じた合成方法が360°パノラマ画像を生成する場合、合成画像の両端を合成して360°パノラマ画像を生成する際に生じる画像のずれを、前記合成画像を全体的に歪ませることによって補正する補正工程を有することを特徴とする請求項6記載の画像処理方法。

【請求項9】 複数の画像を入力する入力工程と、 前記複数の画像を用いて、複数の合成方法の中から適切 な合成方法を選択する選択工程とを実行させるプログラ ムを、コンピュータで読み取り可能に記録する記録媒 体。

【請求項10】 前記選択工程は、前記複数の合成方法 のうち少なくとも1つの合成方法に基づいた画像合成を 評価する評価工程を有し、

前記評価に応じて合成方法を選択することを特徴とする 請求項9記載の記録媒体。

【請求項11】 前記プログラムが前記複数の画像が有する重複領域内において対応点を抽出する抽出工程を実行させるプログラムであることを特徴とする請求項10 50

記載の記録媒体。

【請求項12】 前記評価工程は、前記対応点に基づいて、画像合成した場合に生じる合成誤差を計算し、前記合成誤差を所定値と比較することによって合成方法を評価することを特徴とする請求項11記載の記録媒体。

【請求項13】 前記評価工程は、前記対応点に基づいて、少なくとも2種類の合成誤差を計算し、それぞれの前記合成誤差の大小を比較することによって合成方法を評価することを特徴とする請求項11記載の記録媒体。

【請求項14】 前記複数の合成方法は、少なくとも撮 影方向を変えずに撮影位置を変えて撮影する並進撮影 と、撮影位置を変えずに撮影方向を変えて撮影するパン ニング撮影とに対応した合成方法であることを特徴とす る請求項9記載の記録媒体。

【請求項15】 前記パンニング撮影に応じた合成方法 は、前記複数の画像を撮影焦点距離を半径とする仮想円 筒面上、又は仮想球面上に座標変換した変換画像を用い ることを特徴とする請求項14記載の記録媒体。

【請求項16】 前記プログラムは、前記パンニング撮影に応じた合成方法が360°パノラマ画像を生成する場合、合成画像の両端を合成して360°パノラマ画像を生成する際に生じる画像のずれを、前記合成画像を全体的に歪ませることによって補正する補正工程を実行させるプログラムであることを特徴とする請求項14記載の記録媒体。

【請求項17】 複数の画像を入力する入力手段と、 前記複数の画像を用いて、複数の合成方法の中から適切 な合成方法を選択する選択手段とを有する画像処理装 置。

【請求項18】 前記複数の合成方法のうち少なくとも 1つの合成方法に基づいた画像合成を評価する評価手段 を有し、

前記選択手段は前記評価に応じて合成方法を選択することを特徴とする請求項17記載の画像処理装置。

【請求項19】 前記複数の画像が有する重複領域内に おいて対応点を抽出する抽出手段を有することを特徴と する請求項18記載の画像処理装置。

【請求項20】 前記評価手段は、前記対応点に基づい て画像合成した場合に生じる合成誤差を計算し、前記合 成誤差を所定値と比較することによって合成方法を評価 することを特徴とする請求項19記載の画像処理装置。

【請求項21】 前記評価手段は、前記対応点に基づいて、少なくとも2種類の合成方法それぞれを用いて画像合成した場合の合成誤差を計算し、それぞれの前記合成誤差の大小を比較することによって合成方法を評価することを特徴とする請求項19記載の画像処理装置。

【請求項22】 前記複数の合成方法は、少なくとも撮 影方向を変えずに撮影位置を変えて撮影する並進撮影 と、撮影位置を変えずに撮影方向を変えて撮影するパン ニング撮影とに対応した合成方法であることを特徴とす

る請求項17記載の画像処理装置。

【請求項23】 前記パンニング撮影に応じた合成方法 は、前記複数の画像を撮影焦点距離を半径とする仮想円 筒面上、又は仮想球面上に座標変換した変換画像を用い ることを特徴とする請求項22記載の画像処理装置。

【請求項24】 前記パンニング撮影に応じた合成方法 が360°パノラマ画像を生成する場合、合成画像の両端を合成して360°パノラマ画像を生成する際に生じる画像のずれを、前記合成画像を全体的に歪ませることによって補正する補正手段を有することを特徴とする請求項22記載の画像処理装置。

【請求項25】 複数の画像を入力する入力工程と、 前記複数の画像が有する重複領域内において対応点を抽 出する抽出工程と、前記対応点に基づいて複数の合成方 法の中から適切な合成方法を選択する選択工程とを有す る画像処理方法。

【請求項26】 前記複数の合成方法のうち少なくとも 1つの合成方法に基づいた画像合成を評価する評価工程 を有し、

前記選択工程は、前記評価に応じて合成方法を選択する ことを特徴とする請求項25記載の画像処理方法。

【請求項27】 前記複数の合成方法は、少なくとも撮影方向を変えずに撮影位置を変えて撮影する並進撮影と、撮影位置を変えずに撮影方向を変えて撮影するパンニング撮影とに対応した合成方法であることを特徴とする請求項25記載の画像処理方法。

【請求項28】 前記評価工程は、円筒写像変換又は球面写像変換を利用することを特徴とする請求項26記載の画像処理方法。

【請求項29】 前記合成方法は、アフィン変換又はプロジェクション変換を利用することを特徴とする請求項25記載の画像処理方法。

【請求項30】 撮影地点の周りの全方向を撮影した前記複数の画像を合成し、合成画像の両端を合成して360°パノラマ画像を形成する際に生じる画像のずれを、前記合成画像を全体的に歪ませることによって補正する補正工程を有することを特徴とする画像処理方法。

【発明の詳細な説明】

100011

【発明の属する技術分野】本発明は、画像の一部が重複 40 している複数の画像を合成してパノラマ画像あるいは高精細画像を生成する画像処理方法、装置および記録媒体 に関する。

[0002]

【従来の技術】複数の画像を合成してパノラマ画像などを生成する場合、撮影方式に応じて適切な合成処理方式を設定することが重要である。ここで言う合成処理方式とは、アフィン変換、プロジェクション変換、円筒写像変換などである。

【0003】撮影方式を設定する方法として、従来で

は、合成の際に撮影方式を操作者が入力する方法、ジャイロなどのハードウェアをカメラに装着してジャイロの 出力情報を用いて撮影方式を推定する方法があった。

[0004]

【発明が解決しようとする課題】しかしながら、前者の 設定方法では、合成処理に際して操作者が撮影方式を入 力する必要があり、撮影時の状況を覚えておかなければ ならず、負荷が大きかった。また、後者の設定方法では カメラにジャイロなどの検出装置を装着する必要があ り、カメラが大型化してしまうというデメリットがあ り、さらにオフラインで合成処理を行う場合、ジャイロ 出力情報等を何らかの方法で保持する必要があった。

【0005】そこで、本発明は、上記問題点を鑑みてなされたものであり、画像だけを利用して自動的に合成方法を選択することができる画像処理方法、装置および記録媒体を提供することを目的とする。

【0006】本発明の他の目的は、画像を用いて撮影方法を判別し、撮影方法に応じた画像合成を行うことにより、撮影方法に応じてより高精度な画像合成を行うことである。

【0007】本発明の更に別の目的は、複数の合成方法 のうち少なくとも1つの合成方法に基づいた画像合成を 評価して、適切な合成方法を選択することである。

【0008】本発明の更に別の目的は、複数の画像が有する重複領域内において対応点を抽出してより正確に合成方法を選択することである。

【0009】本発明の更に別の目的は、円筒写像変換や 球面写像変換を用いることにより、並進撮影かパンニン グ撮影かの判別をより容易にすることができるようにす ることである。

【0010】本発明の更に別の目的は、360°パノラマ画像をより高精度に、かつ自動的に合成できるようにすることである。

[0011]

【課題を解決するための手段】上記目的を達成するため に、本発明の請求項1に記載の画像処理方法は、複数の 画像を入力する入力工程と、前記複数の画像を用いて、 複数の合成方法の中から適切な合成方法を選択する選択 工程とを有する。

【0012】請求項2に記載の画像処理方法は、請求項1に係る画像処理方法において、前記複数の合成方法のうち少なくとも1つの合成方法に基づいた画像合成を評価する評価工程を有し、前記選択工程は、前記評価に応じて合成方法を選択することを特徴とする。

【0013】請求項3に記載の画像処理方法は、請求項2に係る画像処理方法において、前記複数の画像が有する重複領域内において対応点を抽出する抽出工程を有することを特徴とする。

【0014】請求項4に記載の画像処理方法は、請求項 3に係る画像処理方法において、前記評価工程は、前記

j

対応点に基づいて画像合成した場合に生じる合成誤差を 計算し、前記合成誤差を所定値と比較することによって 合成方法を評価することを特徴とする。

【0015】請求項5に記載の画像処理方法は、請求項3に係る画像処理方法において、前記評価工程は、前記対応点に基づいて、少なくとも2種類の合成方法それぞれを用いて画像合成した場合の合成誤差を計算し、それぞれの前記合成誤差の大小を比較することによって合成方法を評価することを特徴とする。

【0016】請求項6に記載の画像処理方法では、請求 10項1に係る画像処理方法において、前記複数の合成方法は、少なくとも撮影方向を変えずに撮影位置を変えて撮影する並進撮影と、撮影位置を変えずに撮影方向を変えて撮影するパンニング撮影とに対応した合成方法であることを特徴とする。

【0017】請求項7に記載の画像処理方法では、請求項6に係る画像処理方法において、前記パンニング撮影に応じた合成方法は、前記複数の画像を撮影焦点距離を半径とする仮想円筒面上、又は仮想球面上に座標変換した変換画像を用いることを特徴とする。

【0018】請求項8に記載の画像処理方法は、請求項6に係る画像処理方法において、前記パンニング撮影に応じた合成方法が360°パノラマ画像を生成する場合、合成画像の両端を合成して360°パノラマ画像を生成する際に生じる画像のずれを、前記合成画像を全体的に歪ませることによって補正する補正工程を有することを特徴とする。

【0019】請求項9に記載の記録媒体は、複数の画像を入力する入力工程と、前記複数の画像を用いて、複数の合成方法の中から適切な合成方法を選択する選択工程 30とを実行させるプログラムを、コンピュータで読み取り可能に記録する。

【0020】請求項10に記載の記録媒体では、請求項9に係る記録媒体において、前記選択工程は、前記複数の合成方法のうち少なくとも1つの合成方法に基づいた画像合成を評価する評価工程を有し、前記評価に応じて合成方法を選択することを特徴とする。

【0021】請求項11に記載の記録媒体は、請求項10に係る記録媒体において、前記プログラムが前記複数の画像が有する重複領域内において対応点を抽出する抽40出工程を実行させるプログラムであることを特徴とする。

【0022】請求項12に記載の記録媒体は、請求項11に係る記録媒体において、前記評価工程は、前記対応点に基づいて、画像合成した場合に生じる合成誤差を計算し、前記合成誤差を所定値と比較することによって合成方法を評価することを特徴とする。

【0023】請求項13に記載の記録媒体は、請求項1 1に係る記録媒体において、前記評価工程は、前記対応 点に基づいて、少なくとも2種類の合成誤差を計算し、 それぞれの前記合成誤差の大小を比較することによって 合成方法を評価することを特徴とする。

【0024】請求項14に記載の記録媒体では、請求項9に係る記録媒体において、前記複数の合成方法は、少なくとも撮影方向を変えずに撮影位置を変えて撮影する並進撮影と、撮影位置を変えずに撮影方向を変えて撮影するパンニング撮影とに対応した合成方法であることを特徴とする。

【0025】請求項15に記載の記録媒体では、請求項 14に係る記録媒体において、前記パンニング撮影に応 じた合成方法は、前記複数の画像を撮影焦点距離を半径 とする仮想円筒面上、又は仮想球面上に座標変換した変 換画像を用いることを特徴とする。

【0026】請求項16に記載の記録媒体では、請求項14に係る記録媒体において、前記プログラムは、前記パンニング撮影に応じた合成方法が360°パノラマ画像を生成する場合、合成画像の両端を合成して360°パノラマ画像を生成する際に生じる画像のずれを、前記合成画像を全体的に歪ませることによって補正する補正工程を実行させるプログラムであることを特徴とする。

【0027】請求項17に記載の画像処理装置は、複数の画像を入力する入力手段と、前記複数の画像を用いて、複数の合成方法の中から適切な合成方法を選択する 選択手段とを有する。

【0028】請求項18に記載の画像処理装置は、請求項17に係る画像処理装置において、前記複数の合成方法のうち少なくとも1つの合成方法に基づいた画像合成を評価する評価手段を有し、前記選択手段は前記評価に応じて合成方法を選択することを特徴とする。

【0029】請求項19に記載の画像処理装置は、請求項18に係る画像処理装置において、前記複数の画像が有する重複領域内において対応点を抽出する抽出手段を有することを特徴とする。

【0030】請求項20に記載の画像処理装置では、請求項19に係る画像処理装置において、前記評価手段は、前記対応点に基づいて画像合成した場合に生じる合成誤差を計算し、前記合成誤差を所定値と比較することによって合成方法を評価することを特徴とする。

【0031】請求項21に記載の画像処理装置では、請求項19に係る画像処理装置において、前記評価手段は、前記対応点に基づいて、少なくとも2種類の合成方法それぞれを用いて画像合成した場合の合成誤差を計算し、それぞれの前記合成誤差の大小を比較することによって合成方法を評価することを特徴とする。

【0032】請求項22に記載の画像処理装置では、請求項17に係る画像処理装置において、前記複数の合成方法は、少なくとも撮影方向を変えずに撮影位置を変えて撮影する並進撮影と、撮影位置を変えずに撮影方向を変えて撮影するパンニング撮影とに対応した合成方法であることを特徴とする。

【0033】請求項23に記載の画像処理装置では、請求項22に係る画像処理装置において、前記パンニング撮影に応じた合成方法は、前記複数の画像を撮影焦点距離を半径とする仮想円筒面上、又は仮想球面上に座標変換した変換画像を用いることを特徴とする。

【0034】請求項24に記載の画像処理装置は、請求項22に係る画像処理装置において、前記パンニング撮影に応じた合成方法が360°パノラマ画像を生成する場合、合成画像の両端を合成して360°パノラマ画像を生成する際に生じる画像のずれを、前記合成画像を全位のに歪ませることによって補正する補正手段を有することを特徴とする。

【0035】請求項25に記載の画像処理方法は、複数の画像を入力する入力工程と、前記複数の画像が有する 重複領域内において対応点を抽出する抽出工程と、前記 対応点に基づいて複数の合成方法の中から適切な合成方 法を選択する選択工程とを有する。

【0036】請求項26に記載の画像処理方法は、請求項25に係る画像処理方法において、前記複数の合成方法のうち少なくとも1つの合成方法に基づいた画像合成 20 を評価する評価工程を有し、前記選択工程は、前記評価に応じて合成方法を選択することを特徴とする。

【0037】請求項27に記載の画像処理方法では、請求項25に係る画像処理方法において、前記複数の合成方法は、少なくとも撮影方向を変えずに撮影位置を変えて撮影する並進撮影と、撮影位置を変えずに撮影方向を変えて撮影するパンニング撮影とに対応した合成方法であることを特徴とする。

【0038】請求項28に記載の画像処理方法は、請求項26に係る画像処理方法において、前記評価工程は、 円筒写像変換又は球面写像変換を利用することを特徴と する

【0039】請求項29に記載の画像処理方法は、請求項25に係る画像処理方法において、前記合成方法は、アフィン変換又はプロジェクション変換を利用することを特徴とする。

【0040】請求項30に記載の画像処理方法は、撮影地点の周りの全方向を撮影した前記複数の画像を合成し、合成画像の両端を合成して360°パノラマ画像を形成する際に生じる画像のずれを、前記合成画像を全体 40的に歪ませることによって補正する補正工程を有することを特徴とする。

[0041]

【発明の実施の形態】本発明の画像処理方法、装置および記録媒体の実施の形態について説明する。

【0042】 [第1の実施形態] 図1は第1の実施形態における画像処理装置の構成を示すブロック図である。図において、1は画像合成処理部、100は撮影した画像を入力する画像入力部、104は入力した画像を一時保持する画像メモリ、101は画像メモリ104に保持50

された画像間の対応点情報を抽出する対応点抽出部である。

【0043】102は抽出された対応点情報を基に撮影時の撮影方式を判別する撮影方式判別部、103は判別された撮影方式に応じて、各々の画像を適切に合成する合成処理部、105は合成された画像を保持する合成画像メモリである。

【0044】撮影方式判別部102で判別される撮影方式としては、撮影方向を変えずに撮影位置を変えて撮影する並進撮影と、撮影位置を変えずに撮影方向を変えて撮影するパンニング撮影などがある。図2は原稿画像などを撮影する場合の並進撮影を示す図である。カメラを位置1で撮影した後に位置2に移動して再度撮影する。位置1から位置2に移動する際の主な変化には、並進(\triangle x, \triangle y)、回転(θ)および倍率差(ここでは、被写体までの距離mとしている)がある。この撮影を並進撮影と呼ぶものとする。

【0045】図3は風景等を撮影する場合のパンニング撮影を示す図である。カメラを位置1、位置2および位置3に設定して撮影する。この際の主な変化には、XY Z 各軸回りの回転(ϕ , ϕ , θ)がある。特に、カメラを横方向に回転させながら逐次撮影しているので、Y軸回りの回転 ϕ が支配的な変化要因となる。これをパンニング撮影と呼ぶものとする。

【0046】撮影方式判別部102は、本実施形態では 撮影方式として並進撮影であるかパンニング撮影である かを判別する。

【0047】つぎに、上記構成を有する画像合成装置の動作について説明する。図4は画像合成装置の画像合成処理手順を示すフローチャートである。まず、画像入力部100により画像データを入力する(ステップS1)。入力される画像データとしては、カメラにより撮影された画像をA/D変換によりデジタル化したものが用いられるが、カメラで撮影された画像に限らず、記録媒体あるいは記憶素子等に保持された画像を読み込んで

【0048】画像入力部100により入力した画像を画像メモリ104に一時保持する(ステップS2)。2つの画像を入力しているか否かを判別する(ステップS3)。2つの画像を入力している場合、入力した2つの画像を用いて対応点抽出処理を実行する(ステップS4)。図5は対応点抽出処理を概略的に示す図である。画像メモリ104内の画像200Lおよび200Rを用い、次の手順で対応点を抽出する。

- (1) 基準画像200L上の点P1Lを中心としてp× p画素からなるテンプレート201を設定する。
- (2) 参照画像200R上に設定したサーチエリア20 2内でテンプレート201を移動させながら各移動点に おける相関値2mnを数式(1)により生成する。

[0049]

もよい。

【数1】

$$Z_{mn} = \frac{\sum_{x = y}^{\sum \sum_{y = 1}^{\infty} f_{L}(x, y) \cdot f_{R}(x-m, y-n)}}{\sqrt{\sum_{x = y}^{\sum \sum_{y = 1}^{\infty} f_{R}(x-m, y-n)^{2}}}} \sqrt{\sum_{x = y}^{\sum \sum_{y = 1}^{\infty} f_{R}(x-m, y-n)^{2}}}$$

 $(\Sigma, \Sigma$ はテンプレート内のすべての画案についての総和を表す)

【0050】(3)参照画像200R上の各移動点にお ける相関値2mnを比較して最大値を与える点を抽出す

(4) 最大の相関値を与える移動量を (m'n') とす ると、点P1Lの座標を(i, j)として対応点の座標 (i', j')はi'=i-m', j'=j-n'の式 より定まる。

【0051】対応点抽出部101では、図5の画像20 0.Lに複数のテンプレートを設定して各テンプレートに 対する対応点を上記(1)から(4)の手順により抽出 する。抽出した対応点は図示しないメモリに保持され る。

【0052】ステップS4で抽出された対応点情報を基 に撮影方式判別部102は撮影方式の判別を行う(ステ ップS5)。つづいて、撮影方式の判別について説明す る。

【0053】図6は並進撮影およびパンニング撮影によ り得られる画像間の対応点を模式的に示す図である。同 図(A)に示す対応点の座標間の関係は数式(2)に示 すアフィン変換により記述できる。

[0054]

【数2】

x' = Ax + By + C

y' = -Bx + Ay + D

ここで、(x, y)は同図(A)の画像300L上の座

 $E2 = \sum [(x' - (Ax + By + C))^2 + (y' - (-Bx + Ay + D))^2]$

【0059】また、プロジェクション変換の場合、数式 (5) の誤差E3を最小にするパラメータm1~m8を算 出する。

[0060] 【数 5 】

$$E3 = \sum [\{x' (m_1x + m_2y + 1) - (m_1x + m_2y + m_3)\}^2 +$$

{y'
$$(m_7 x + m_6 y + 1) - (m_6 x + m_6 y + m_6)$$
}²]

【0061】ステップS12で得られる誤差E2を数式 (6) により比較する (ステップS13)。

[0062]

【数6】E2<Th

即ち、誤差E2が予め設定したしきい値Thより小さい 場合、アフィン変換つまり撮影方式が並進撮影であると 判別する(ステップS15)。一方、誤差E2が予め設 定したしきい値Th以上である場合、誤差E2を数式

(7) により誤差E3と比較する(ステップS14)。

[0063]

【数7】E2≦E3

即ち、誤差E2が誤差E3以下の場合、アフィン変換つ まり並進撮影であると判別し(ステップS15)、誤差 E3が誤差E2より小さい場合、プロジェクション変換 つまりパンニング撮影であると判別する(ステップS1 6)。判別結果はパラメータと共に合成処理部103に 与えられる。

【0064】ステップS5の判別結果に基づいて合成処

標であり、(x', y')は画像300R上の座標を示 す。また、同図(B)に示す対応点の座標間の関係は数 式(3)に示すプロジェクション変換により記述でき る。

10

[0055]

【数3】

$$x' = \frac{m_1 x + m_2 y + m_3}{m_7 x + m_8 y + 1}$$

$$y' = \frac{m_4 x + m_5 y + m_6}{m_7 x + m_9 y + 1}$$

【0056】図7は撮影方式判別部102における撮影 方式判別処理手順を示すフローチャートである。まず、 対応点抽出部101で得られた対応点情報を図示しない メモリより読み込む(ステップS11)。

【0057】読み込んだ対応点を用いて上記数式(2) および数式(3)により示される各々の変換式を基に最 小二乗法による演算処理を行って、画像合成が良好に行 われたかを評価するために合成誤差を計算する(ステッ プS12)。最小二乗法による評価式を以下に示す。ア フィン変換の場合、数式(4)の誤差E2を最小にする パラメータA、B、CおよびDを算出する。

[0058] 【数4】

理を行う(ステップS6)。図8は合成画像メモリ105を展開した合成処理を示す図である。同図(A)は並進撮影と判別された場合の合成処理を示し、同図(B)はパンニング撮影と判別された場合の合成処理を示している。

【0065】合成処理部103は次の手順で合成処理を行う。

(1) 合成パラメータを基に画像間のつなぎ目位置Sを 設定する。

(2) 画像メモリ104より画像200Lを読み出し、 つなぎ目Sの左側の領域を合成画像メモリ105に書き 込む

(3) 画像200Rを基につなぎ目位置Sの右側の領域を合成画像メモリ105に書き込む。同図(A)の点P1(x, y)に対応する画像200R上の座標(x', y')を数式(2)により算出する。また、同図(B)の点P2(x, y)に対応する画像200R上の座標を数式(3)により算出する。

(4) 対応する画像 200R 上の座標 (x', y') に おける画素値を前記点 P1(x, y) あるいは点 P2(x, y) の画素値として書き込む。これにより合成処理が実行される。

【0066】尚、上記(3)の手順で対応する座標 (x', y')が小数点を含む場合、公知の補間処理を 用いて画素値を生成してもよい。

【0067】図4のステップS1~S6の処理が完了すると、図8に示すように合成画像が合成画像メモリ105に書き込まれる。

【0068】第1の実施形態の画像合成装置によれば、 撮影方式を画像だけから判別し、判別結果に基づいて最 30 適な合成処理を施すので、ユーザーが撮影方式を記憶す る必要がなく、しかも常に高画質の合成画像を得ること ができる。

【0069】尚、合成方法が撮影方式と対応していなくても、合成誤差が十分に小さい場合、その合成方法によって画像合成されることになるが、この場合も適切な合成方法を選択しているので、何ら問題はない。

【0070】又、合成パラメータの生成等においては、一方の画像を他方に対して一画素ずつずらしたり、又は変形させることにより重なり部分の相関値を計算して求 40 めることもできる。さらに、対応点の抽出を行って、対応点の情報を利用した方が計算が少なくて済むので、処理時間の短縮を図ることができる。

【0071】[第2の実施形態]図9は第2の実施形態における画像処理装置の構成を示すブロック図である。前記第1の実施形態と同一の構成要素については同一の符号を付してその説明を省略する。

【0072】第2の実施形態の画像処理装置において特徴的部分は、焦点距離入力部106、画像変換部10 9、撮影方式判別部107および合成処理部108であ ろ.

【0073】焦点距離入力部106は撮影時の焦点距離を入力するものである。焦点距離の入力は、ユーザーが数値をキーボード等で入力することにより行ってもよいし、複数の値の中から選択してもよい。また、撮影時に画像と共に焦点距離情報を記録し、記録した情報を焦点距離入力部106が読み込むようにしてもよい。

12

【0074】画像変換部109は焦点距離を用いて画像データを変換する。変換は円筒写像変換処理である。対応点抽出部1010、1011は、画像間の対応点を抽出する。抽出処理方式は前記第1の実施形態と同様である。

【0075】撮影方式判別部107は前記第1の実施形態と同様に撮影方式として、並進撮影かパンニング撮影かを判別する。但し、評価方式が前記第1の実施形態とは異なる。合成処理部108は判別された撮影方式に基づいて画像を合成する。

【0076】上記構成を有する第2の実施形態における 画像処理装置の動作について説明する。前記第1の実施 形態と同様の処理については同一の符号を付すことによ りその説明を省略する。

【0077】画像変換部109は画像メモリ104に記憶された画像データを焦点距離入力部106により得られる焦点距離を基に円筒写像変換する。図10は画像変換部109における円筒写像変換処理を示す図である。

【0078】図において、200は画像メモリ104より読み込んだオリジナル画像であり、201は円筒写像変換後の画像である。円筒写像前の座標を(x,y)とし、円筒写像後の座標を(φ,v)とすると、数式(8)に示す関係となる。

[0.079]

【数8】

 $x = f \tan \phi$

$$y = \frac{\sqrt{x^2 + f^2}}{f} v$$

【0080】画像変換部109では、数式(8)にしたがって画像を変換する。図11は変換後の画像を概略的に示す図である。第2の実施形態における画像合成装置の画像合成処理部2は、オリジナル画像間の対応点抽出処理を対応点抽出部1010で行い、円筒写像変換画像を用いた対応点抽出処理を対応点抽出部1011で実行する。従って、2組の対応点ペアが生成される。

【0081】撮影方式判別部107では、対応点抽出部 1010、1011において生成された対応点情報を用 いて撮影方式の判別を行う。

【0082】図12は撮影方式判別部107における撮影方式判別処理手順を示すフローチャートである。まず、対応点抽出部1010、1011において得られた対応点情報を図示しないメモリから読み込む(ステップ

S21)。

【0083】読み込んだ対応点を用いて上記数式(2)により示される各々の変換式を基に最小二乗法による演算処理を行う(ステップS22)。

【0084】尚、ここで数式(2)たけを用いる理由は、パンニング撮影で撮影された画像であっても、円筒写像変換した画像はアフィン変換で座標変換するためである。つまり、円筒写像変換した画像としない画像とを用意し、それぞれの合成誤差を数式(2)を用いて計算すれば、適切な合成方法を選択できるのである。

【0085】第2の実施形態の処理では、画像変換部1 09において円筒写像変換した画像を用いているため、 並進撮影およびパンニング撮影のいずれの場合も数式 (2)のアフィン変換で座標変換を表すことができる。 【0086】最小二乗法による評価式を数式 (9)に示す。オリジナル画像間の対応点抽出で得られた対応点ペアを $(x_0, y_0) - (x_0', y_0')$ とし、円筒写像変換画像間の対応点抽出で得られた対応点ペアを $(x_s, y_s) - (x_s', y_s')$ として、数式 (9)の誤差 E 4および E 5 を最小にするパラメータ (x_0, x_0') を (x_0, x_0') を (x

DoおよびAs, Bs, Cs, Dsを算出する。

【0087】 【数9】

 $E 4 = \sum [(x_0' - (A_0 x_0 + B_0 y_0 + C_0))^2 +$

 $\{y_0' - (-B_0x_0 + A_0y_0 + D_0)\}^2\}$ E 5 = $\sum [\{x_i' - (A_ix_i + B_iy_iC_i)\}^2 +$

 $\{y_{s}' - (-B_{s} x_{20} + A_{s} y_{s} + D)\}^{2}$

【0088】次に、ステップS22で得られる誤差E4がしきい値Thより小さいか否かの比較(E4<Th)を行う(ステップS23)。即ち、誤差E4が予め設定したしきい値Thより小さい場合、撮影方式が並進撮影であると判別して並進撮影に対応した合成方法を選択する(ステップS25)。

【0089】次に、誤差E4がしきい値Th以上である場合、誤差E4が誤差E5以下であるか否かの比較(E4<=E5)を行う(ステップS24)。そして、誤差30E4が誤差E5以下の場合、並進撮影であると判別し(ステップS25)、誤差E5が誤差E4より小さい場合、パンニング撮影であると判別とし、それぞれの判別に応じた合成方法を選択して(ステップS26)、処理を終了する。判別結果はパラメータと共に合成処理部108に与えられる。

【0090】合成処理部108の動作は基本的には前記第1の実施形態と同様である。前記第1の実施形態と異なる動作として、撮影方式判別部107は、パンニング撮影と判別された場合、画像メモリ104からオリジナルの画像を読み込み、画像変換部109と同様の処理により円筒写像変換画像に変換した後、上記パラメータAs, Bs, Cs, Dsを用いて合成画像メモリ105に画素値を書き込む。

【0091】図13はパンニング撮影であると判別された場合の合成画像を示す図である。ここで、画像合成の際に再度円筒写像変換処理を実行しているが、画像変換部109は生成した合成画像を画像メモリ104に保持しておき、合成処理部108が保持されている円筒写像変換画像を読み出して合成することも可能である。

【0092】尚、パンニング撮影での合成画像の画角があまり大きくない場合、第1の実施形態のプロジェクション変換をして画像を合成した方が良好な場合がある。このような場合には、パンニング撮影の判定の後に、画角に応じて合成方法を切り換えてもよい。

【0093】また、これまではパンニング撮影時に一方向(例えば左右方向)のみで撮影方向を変えていたが、 二方向以上(例えば上下左右方向)で撮影方向を変えた 場合には、周知の球面写像変換を利用する方が好まし く、このような場合でも、合成方法を切り換えるように してもよい。

【0094】 [第3の実施形態] 図14は第3の実施形態における画像処理装置の構成を示すプロック図である。第3の実施形態ではn枚画像の合成に対応した処理を行うことに特徴を有する。尚、第3の実施形態における画像合成処理部は前記第1の実施形態の画像合成処理部1と同様の構成を有する。

【0095】図において、111はn画像統合部であり、n枚の画像を合成するための各種情報を演算により生成して保持する。112は焦点距離推定部であり、焦点距離の推定を行う。したがって、第3実施形態では焦点距離が未知の場合でも対応可能である。但し、焦点距離が既知である場合、別途入力手段を設けて焦点距離の値を入力してもよい。113はメイン画像メモリであり、n枚の画像情報を保持している。114はn画像合成部であり、n枚の画像を合成して1枚のパノラマ画像を生成する。

【0096】図15および図16は第3の実施形態における画像合成処理手順を示すフローチャートである。ま

ず、メイン画像メモリ113より2つの画像を画像合成 処理部1に読み込む(ステップS31)。尚、画像枚数 は図示しない手段によりn画像統合部111が保持して いるものとする。

【0097】画像合成処理部1は前記第1の実施形態と同様の方式により2つの画像を合成する(ステップS32)。ここで、合成画像メモリ105に保持されている合成画像を図示しない表示部に表示し、ユーザが合成結果を確認するようにすることも可能である。また、各画像間の対応点座標データ、合成パラメータおよび撮影方式に関する情報はn画像統合部111に保持される。

【0098】n枚の画像間の合成処理が終了したか否かを判別する(ステップS33)。n枚の画像間の合成処理が終了していない場合、ステップS31に戻って処理を繰り返す。一方、n枚の画像間の合成処理が終了している場合、n画像統合部111に保持されているn-1個の撮影方式の判別結果情報をチェックし、多数決によりn枚の画像間の撮影方式を並進撮影であるかパンニングであるか決定する(ステップS34)。

【0099】ステップS34で決定した撮影方式の判別 20 結果を判別する(ステップS35)。即ち、並進撮影であると判別された場合、n画像統合部111に保持している各画像間の対応点情報を順次読み出し、数式(2)にしたがって最小二乗法によりアフィン変換パラメータAi, Bi, Ci, Diを算出する(ステップS36)。

M = FRF

ここで、

【0100】算出したアフィン変換パラメータを、画像 1を基準とした合成パラメータ A_i ', B_i ', C_i ', D_i 'に変換する(ステップS37)。図17は合成パラメータの変換の後、n枚の画像を繋げた様子を示す図である。

16

【0101】変換した合成パラメータ A_i ', B_i ', C_i ', D_i 'を用いて、n 画像合成部114により図17に示すように数式(2)の座標変換に基づいて各点の画素値を生成してメイン画像メモリ113に書き込む(ステップS38)。画素値の生成方式は前記第10の実施形態と同様である。

【0102】一方、ステップS35でパンニング撮影であると判別された場合、360度合成であるかを確認するメッセージを図示しない表示部に表示する(ステップS39)。360度合成であるか否かを判別する(ステップS40)。360度合成でない場合、焦点距離推定部112において以下の方式により焦点距離を推定する(ステップS41)。

【0103】図3に示すようにパンニング撮影はXYZ軸回りの回転 (ϕ , ϕ , θ) により視野を変えて撮影する。したがって、各画像間の座標変換マトリクスMは、数式 (10) により表される。

【0104】 【数10】

 $R = \begin{bmatrix} \cos \phi \cos \phi & \sin \phi \cos \theta + \cos \phi \sin \phi \sin \theta & \sin \phi \sin \theta - \cos \phi \sin \phi \cos \theta \\ -\sin \phi \cos \phi & \cos \phi \cos \theta - \sin \phi \sin \phi & \cos \phi \sin \theta + \sin \phi \sin \phi \cos \theta \\ \sin \phi & -\cos \phi \sin \theta & \cos \phi \cos \theta \end{bmatrix}$

$$\mathbf{F} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1/f \end{bmatrix}$$

【0105】数式(3)にしたがって座標変換マトリクスを記述すると、数式(11)に示すようになる。

[0106]

【数11】

 $M = \begin{bmatrix} m_1 & m_2 & m_3 \\ m_4 & m_5 & m_6 \\ m_7 & m_8 & 1 \end{bmatrix}$

【0107】そして、数式(10)および数式(11) より数式(12)に示す関係が成り立つ。

【0108】 【数12】

$$= \sqrt{\frac{m_1^2 + m_4^2 - m_2^2 - m_5^2}{m_5^2 - m_5^2}} \quad \text{ell } m_8 \neq m_7$$

あるいは、

$$f = \sqrt{\frac{-m_1 m_2 - m_4 m_5}{m_6 m_7}}$$
 但し $m_8 \neq 0$ かつ $m_7 \neq 0$

【0109】したがって、焦点距離推定部112においては数式(12)を用いて焦点距離を推定する。この場合のパラメータ m_1 ~ m_7 は、n 画像統合部111に保持されているパンニング撮影と判別された場合のパラメータを用いる。また、パラメータの組は複数存在するので、各パラメータにより得られる焦点距離 f_k の中央値を用いる。推定された焦点距離 f はn 画像統合部111 に保持される。

【0110】生成されたパラメータfを用いてn画像合成部114は合成画像を生成する(ステップS42)。第2の実施形態に示すように、合成画像を円筒写像変換画像に変換し、図13に示すようにn画像の合成画像を生成してメイン画像メモリ113に書き込む。

【0111】一方、ステップS40で360度合成である場合、1枚目とn枚目の画像が重複することになるので、1枚目の画像とn枚目の画像間の座標変換パラメータ推定を実行する(ステップS43)。これは、メイン画像メモリ113より1枚目およびn枚目の画像を読み出し、合成画像処理部1で前述した処理を実行することにより得られる。生成されるパラメータ等の情報はn画 20像統合部111に保持される。

【0112】焦点距離推定部112で焦点距離を推定する(ステップS44)。図18は各画像における視野角を示す図である。各画像における視野角を ω kとすると、数式(13)により視野角 ω kは得られる。

[0113]

【数13】 $\omega_k = t a n^{-1} (x_k/f)$

ここで、xkは画像間の重複領域の中心線Sを求めることにより得られる。図19は画像間の重複領域の中心線Sを示す図である。したがって、n画像統合部111において各画像間の重複領域を座標変換パラメータを基に算出し、上記xkを求める。

【0114】n枚の画像で360度の視野をカバーしているので、図18に示すように ω 1から ω nで360度(2π)となる。これを表すと数式(14)が得られる。

[0115]

【数14】

$$2\pi - \sum \{2\tan^{-1}(x_k/f)\} = 0$$

【0116】数式14をニュートン法等を用いて解くことにより焦点距離fを推定する。推定した焦点距離fは、n画像統合部111に保持する。また、n画像統合部111は各画像間の対応点座標を焦点距離fを基に円筒写像変換し、変換した対応点座標を用いて数式(2)にしたがってパラメータを生成する。さらに生成したパラメータを基準画像(例えば画像1)を基にした値に変換して全画像合成に用いる。

【0117】以上により、第2の実施形態の焦点距離 f の値も画像情報のみから自動的に得ることができる。

【0118】360度合成の結果、1枚目とn枚目のつなぎ目が滑らかとなるような変換処理を行う(ステップS45)。図20は変換処理前の合成画像を示す図である。変換処理を行わないと、1枚目の画像とn枚目の画像の夫々の画像において設定される基準線がずれたままとなる。

18

【0119】図21は変換処理後の合成画像を示す図である。1枚目の画像とn枚目の画像の夫々の画像において設定される基準線が一致するように変換されている。図22は変換処理を概略的に示す図である。

【0120】図22に示すように、全周の始点P1と終点PNを設定し、点PNにおいて画像1の基準線と画像nの基準線が一致するように画像を変換する。この場合、点PNにおける基準線のズレはDであり、始点P1と終点PN間はH画素であるので、始点P1を合成画像における水平方向の始点とすると、数式(15)により得られる値dv(x)分だけ垂直方向の書き込み座標をシフトする。

[0121]

【数15】

$$d \nu (x) = \frac{D}{H} x$$

【0122】 n画像統合部111は数式(15)の係数 D/Hを生成して保持する。n画像統合部114は合成 画像の生成を行う(ステップS46)。合成画像生成の 際、数式(8)により円筒写像変換処理および数式(1 5)の変換処理を実行しながら合成画像の画素値を生成 し、メイン画像メモリ113に書き込む。

【0123】このように、パンニング方向に対して一定の割合で画像を歪ませることにより、全体的に画像を歪ませてずれを目立たなくすることができる。

【0124】図23は生成される合成画像を概略的に示す図である。合成画像は図示しない表示部に表示される。また、上記処理を施すことにより、円筒状にずれのない360度全周画像が自動的にマッピングされた画像が生成される。図24は円筒状に360度全周画像がマッピングされた画像の生成を示す図である。

【0125】[第4の実施形態]図25は第4の実施形態における画像処理装置が実現されるコンピュータシステムの構成を示すブロック図である。第4の実施形態では、前記第1実施形態における画像合成処理の内容をプログラム化して記録媒体に記録し、コンピュータシステム上で動作するようにされている。

【0126】図において、120は各種データを保持するメモリ、121はCPU、122は記録媒体の情報を再生する再生部、123は表示部、124は記録媒体である。

【0127】図26は第4の実施形態における画像合成 処理手順を示すフローチャートである。この処理プログ ラムは記録媒体124に格納されており、CPU121 によって実行される。まず、ユーザが合成に用いる画像を選択する(ステップS51)。各画像間の配置をユーザにより設定する(ステップS52)。配置に基づいて隣接する2つの画像をメモリ120に読み込む(ステップS53)。

【0128】読み込んだ画像間の対応点を抽出する(ステップS54)。対応点情報に基づいて撮影方式を判別する(ステップS55)。判別された撮影方式に基づいて最適な合成処理方式を設定し、合成パラメータを生成する(ステップS56)。

【0129】合成パラメータに基づいて2つの画像を合成する(ステップS57)。合成した画像を表示する(ステップS58)。隣接する2画像間の合成が終了したか否かを判別する(ステップS59)。

【0130】2画像間の合成が終了していない場合、ステップS53に戻って2画像の合成処理を繰り返す。一方、2画像間の合成処理が終了している場合、各パラメータを基準画像に対する値に変換する。変換した合成パラメータに基づいて全画像を合成する(ステップS61)。尚、各ステップの処理内容は前述した各実施形態 20と同様である。

【0131】尚、記録媒体としては、ROMなどのメモリに限らず、例えばフロッピーディスク、ハードディスク、光ディスク、光磁気ディスク、CD-ROM、CD-R、DVD、磁気テープ、不揮発性のメモリカードなどを用いることができる。

【0132】また、本発明は、上記実施形態に限らず、 特許請求の範囲に記載された範囲内で様々な変形、応用 が可能である。

[0133]

【発明の効果】本発明によれば、画像だけを利用して自動的に合成方法を選択することができる。また、画像を用いて撮影方法を判別し、撮影方法に応じた画像合成を行うことにより、撮影方法に応じてより高精度な画像合成を行うことができる。さらに、複数の合成方法のうち少なくとも1つの合成方法に基づいた画像合成を評価して、適切な合成方法を選択することができる。また、複数の画像が有する重複領域内において対応点を抽出してより正確に合成方法を選択することができる。さらに、円筒写像変換や球面写像変換を用いることにより、並進40撮影かパンニング撮影かの判別をより容易にすることができる。また、360°パノラマ画像をより高精度に、かつ自動的に合成できる。

【図面の簡単な説明】

【図1】第1の実施形態における画像処理装置の構成を 示すブロック図である。

【図2】原稿画像などを撮影する場合の並進撮影を示す 図である。

【図3】風景等を撮影する場合のパンニング撮影を示す図である。

【図4】画像合成装置の画像合成処理手順を示すフロー チャートである。

【図5】対応点抽出処理を概略的に示す図である。

【図6】並進撮影およびパンニング撮影により得られる 画像間の対応点を模式的に示す図である。

【図7】撮影方式判別部102における撮影方式判別処理手順を示すフローチャートである。

【図8】合成画像メモリ105を展開した合成処理を示す図である。

【図9】第2の実施形態における画像処理装置の構成を 示すブロック図である。

【図10】画像変換部109における円筒写像変換処理 を示す図である。

【図11】変換後の画像を概略的に示す図である。

【図12】撮影方式判別部107における撮影方式判別 処理手順を示すフローチャートである。

【図13】パンニング撮影であると判別された場合の合成画像を示す図である。

【図14】第3の実施形態における画像処理装置の構成を示すブロック図である。

【図15】第3の実施形態における画像合成処理手順を 示すフローチャートである。

【図16】図15につづく第3の実施形態における画像 合成処理手順を示すフローチャートである。

【図17】合成パラメータの変換の後、n枚の画像を繋げた様子を示す図である。

【図18】各画像における視野角を示す図である。

【図19】画像間の重複領域の中心線Sを示す図である。

【図20】変換処理前の合成画像を示す図である。

【図21】変換処理後の合成画像を示す図である。

【図22】変換処理を概略的に示す図である。

【図23】生成される合成画像を概略的に示す図である。

【図24】円筒状に360度全周画像がマッピングされた画像の生成を示す図である。

【図25】第4の実施形態における画像処理装置が実現されるコンピュータシステムの構成を示すブロック図である。

【図26】第4の実施形態における画像合成処理手順を 示すフローチャートである。

【符号の説明】

- 1 第1の実施形態の画像合成処理部
- 2 第2の実施形態の画像合成処理部
- 100 画像入力部
- 101、1010、1011 対応点抽出部
- 102、107 撮影方式判別部
- 103 合成処理部
- 104 画像メモリ
- 50 105 合成画像メモリ

106 焦点距離入力部

113 メイン画像メモリ

109 画像変換部 n画像合成部 114

111 n画像統合部 121 CPU

112 焦点距離推定部 124 記録媒体

【図21】

[図22]

【図23】

【図25】

フロントページの続き

(72)発明者 滝口 英夫

東京都大田区下丸子3丁目30番2号 キヤ ノン株式会社内