# Codility\_

## CodeCheck Report: trainingXK4NDX-NE7

Test Name:

Summary Timeline Check out Codility training tasks





#### **Tasks Details**

1.

#### CountTriangles

Count the number of triangles that can be built from a given set of edges.

**Task Score** 

Correctness

100%

Performance

100%

100%

## Task description

An array A consisting of N integers is given. A triplet (P, Q, R) is triangular if it is possible to build a triangle with sides of lengths A[P], A[Q] and A[R]. In other words, triplet (P, Q, R) is triangular if  $0 \le P < Q < R < N$  and:

- A[P] + A[Q] > A[R],
- A[Q] + A[R] > A[P],
- A[R] + A[P] > A[Q].

For example, consider array A such that:

$$A[0] = 10$$
  $A[1] = 2$   $A[2] = 5$ 

$$A[3] = 1$$
  $A[4] = 8$   $A[5] = 12$ 

There are four triangular triplets that can be constructed from elements of this array, namely (0, 2, 4), (0, 2, 5), (0, 4, 5), and (2, 4, 5).

#### Solution

Programming language used: Python

Total time used:

19 minutes

Effective time used:

19 minutes

Notes:

not defined yet

Task timeline

1 von 3 19.07.23, 11:35 Test results - Codility

Write a function:

def solution(A)

that, given an array A consisting of N integers, returns the number of triangular triplets in this array.

For example, given array A such that:

$$A[0] = 10$$
  $A[1] = 2$   $A[2] = 5$   
 $A[3] = 1$   $A[4] = 8$   $A[5] = 12$ 

the function should return 4, as explained above.

Write an efficient algorithm for the following assumptions:

- N is an integer within the range [0..1,000];
- each element of array A is an integer within the range [1..1,000,000,000].

Copyright 2009–2023 by Codility Limited. All Rights Reserved. Unauthorized copying, publication or disclosure prohibited.

09:05:59 09:24:32

```
Code: 09:24:32 UTC, py,
                            show code in pop-up
final, score: 100
     # you can write to stdout for debugging p
    # print("this is a debug message")
 2
3
    def solution(A):
 5
         # Implement your solution here
 6
         # pass
 7
         N = len(A)
 8
         A.sort()
9
         count = 0
         for P in range(N):
10
11
             R = P + 2
             for Q in range(P + 1, N):
12
13
                 while R < N and A[P] + A[Q] >
14
                  count += \max(0, R - Q - 1)
15
16
         return count
17
```

## Analysis summary

The solution obtained perfect score.

#### **Analysis**

Detected time complexity:  $O(N^{**}2)$ 

| expand all                            | Example                                 | tests              |  |
|---------------------------------------|-----------------------------------------|--------------------|--|
| example example, po                   | sitive answer, lengtl                   | <b>✓ OK</b><br>n=6 |  |
| expand all                            | Correctnes                              | s tests            |  |
| empty sequ                            | empty<br>ence + [5,3,3]                 | <b>∠</b> OK        |  |
| extreme_1-element s                   | single<br>equence + [5,3,3]             | <b>∠</b> OK        |  |
| · · · · · · · · · · · · · · · · · · · | two_elems<br>equence + [5,3,3]          | <b>∠</b> OK        |  |
| _                                     | arith_overflow<br>st, 3 MAXINTs + [5,3, | <b>∨ OK</b><br>3]  |  |
| ▶ simple                              |                                         | ✓ OK               |  |
| medium1 chaotic seq [1100K], le       | uence of values fror<br>ngth=30         | <b>✓ OK</b>        |  |
| medium2 chaotic seq [11K], leng       | uence of values fror                    | <b>✓ OK</b>        |  |
| expand all                            | Performand                              | e tests            |  |
| large chaotic seq                     | uence with values fr                    | <b>✓ OK</b><br>om  |  |

2 von 3 19.07.23, 11:35

| <b>&gt;</b> | large2 1 followed by an ascending sequence of ~1K elements from [12K] | <b>∨</b> OK |
|-------------|-----------------------------------------------------------------------|-------------|
| <b>&gt;</b> | large_random<br>chaotic sequence of values from<br>[11M], length=1K   | <b>√</b> OK |
| <b>&gt;</b> | large_the_same<br>sequence of the same value value                    | <b>✓</b> OK |

3 von 3