Quant Researcher Intern Technical Assessment Supplement

Submission Deadline:

Submit this along with the main Deep Learning Time-Series Prediction assessment.

Submission Format:

- Coding Question: Submit your solution as a Jupyter Notebook (.ipynb) or a Python script (.py).
 - Ensure your code is well-commented, and include brief explanations of your approach and any assumptions made.
- Statistics Question: Provide a clearly written answer in one of the following formats:
 - Markdown (within a Jupyter Notebook)
 - PDF document
 - Text cell within the same Jupyter Notebook as the coding question

Section 1: Data Structures and Algorithms

Problem: Sliding Window Stock Span

Objective:

To assess your problem-solving ability and understanding of efficient data structures used in financial time-series analysis.

Problem Statement:

You are given an array prices[] where each element represents the **daily closing price** of a stock for n consecutive days. For a given integer k, your task is to calculate the **price span** for each day, considering only the past k days (including the current day).

What is Price Span?

For a given day, the **price span** is the number of **consecutive days (going backwards) up to k days** where the stock price was **less than or equal to the current day's price**.

Function Signature:

```
def calculate_price_span(prices: List[float], k: int) -> List[int]:
    pass

Input:
    prices = [100, 80, 60, 70, 60, 75, 85]
    k = 4

Output:
    [1, 1, 1, 2, 1, 4, 4]
```

Explanation:

- Day 0 (price = 100): No previous days, span = 1
- Day 1 (price = 80): Only day 0 is within 4-day window. $80 < 100 \rightarrow \text{span} = 1$
- **Day 2 (price = 60):** 60 < 80 → span = 1
- Day 3 (price = 70): Previous 3 days: [60 (yes), 80 (no)] → span = 2
- Day 4 (price = 60): 60 < 70 → span = 1
- **Day 5 (price = 75):** Check last 4 days $[60, 70, 60, 80] \rightarrow \text{span} = 4 (60, 70, 60 \text{ all } \le 75)$
- **Day 6 (price = 85):** Check last 4 days [75, 60, 70, 60] \rightarrow span = 4 (all \leq 85)

Constraints:

- 1 ≤ n ≤ 10^5
- 1 ≤ k ≤ n
- 0 ≤ prices[i] ≤ 10^5

Hint:

Use a monotonic stack or deque to efficiently compute the span in O(n) time.

Section 2: Probability and Statistics

Problem: Analyzing Correlation Between Stock Returns

Objective:

Evaluate your understanding of statistical measures like **covariance** and **correlation**, commonly used to analyze relationships between financial instruments.

Problem Statement:

You are analyzing the **daily return percentages** of two NASDAQ stocks, Stock A and Stock B, over a 10-day period:

Day	Return A (%)	Return B (%)
1	0.5	0.4
2	-0.2	-0.1
3	0.3	0.2
4	0.7	0.8
5	-0.3	-0.4
6	0.1	0.0
7	0.4	0.3
8	0.2	0.2
9	-0.1	-0.2
10	0.6	0.5

Tasks:

- 1. Compute the sample covariance between Return A and Return B.
- 2. Compute the Pearson correlation coefficient between Return A and Return B.
- 3. Interpret the correlation value:
 - o Is the relationship positive or negative?
 - Is it weak, moderate, or strong?
 - What does it imply about the movement of these two stocks?

Notes:

- You may compute the values manually, or use a short Python/NumPy snippet to show your working.
- Clearly **show formulas** and **intermediate steps** used in your calculation.

Submission Checklist:

- Well-commented Python code for the stock span problem
- Written answer (with formulas/code) for the statistics question