课程编号: 100051202 北京理工大学 2017 - 2018 学年第二学期

## 2017 级电路分析基础 B 期末试题 A 卷

| 7)1/X | 班级 | 学号 | 姓名 | 成绩 |  |
|-------|----|----|----|----|--|
|-------|----|----|----|----|--|

| 日本 口 |    |    | 三 |    |    |    |    |    | M. 77 |   |     |
|------|----|----|---|----|----|----|----|----|-------|---|-----|
| 题号   | 1  |    | 1 | 2  | 3  | 4  | 5  | 6  | 7     | 8 | 总分  |
| 满分   | 10 | 20 | 6 | 10 | 10 | 10 | 10 | 10 | 8     | 6 | 100 |
| 得分   |    |    |   |    |    |    |    |    |       |   |     |

注意: 1. 考试允许用计算器; 2. 试卷不允许拆开,可撕下最后一张作为演算纸; 3. 答案全部写在各个试题相应空白位置处; 4. 计算题要写清过程,数值保留 1 位小数。

## 一、填空题(本题共10分,每题2分)

- 1、一切集总参数电路模型中的电压、电流都要受到两类约束的支配,这两类约束包括
- 2、一个实际电感器的电路模型可用 来抽象表征。
- 3、某一 220V、50Hz、10kW 的电动机(电感性负载), 功率因数为 0.8, 则电源提供的 无功功率为\_\_\_\_\_
- 4、图 1.1 所示电路中,设节点 1 和节点 2 的节点电压分别为  $U_1$  和  $U_2$  ,则节点 1 的节点方程为



5、图 1.2 所示电路中,设网孔 1 和网孔 2 的网孔电流相量分别为 $\dot{I}_1$ 和 $\dot{I}_2$ ,则网孔 1 相量形式的网孔方程为 (

]

## 二、选择题(本题共20分,每题2分)

- 1、电路如图 2.1 所示,则  $i_{ab} = _____$ 
  - (A) 4A
- (B) 10A
- (C) 2A
- (D) 6A



图 2.1



- 2、图 2.2 所示电路中,已知开关 K 闭合前, $i_L(0_-)=0$ , $u_C(0_-)=2V$ ,则开关 K 闭合的
  - (A) 6V

- (B) 4V (C) 0V (D) 8V
- 3、如图 2.3 所示电路, Q点电位为\_\_\_\_\_
  - (A) 7V
- (B) -2V
- (C) 5V (D) -9V





图 2.4

- 4、图 2.4 所示电路中, 欲使电路产生临界阻尼响应, 则 C 应为
- (A) 8F
- (B) 1/8F
- (C) 1/32F
- (D) 1/2F
- 5、RLC 并联电路在频率  $f_0$  时发生谐振,当频率增加到  $2f_0$  时,电路性质呈\_

- (A) 电阻性 (B) 电感性 (C) 电容性 (D) 不能确定

| 6、图 2.5 所示正弦稳态电路中 $R=X_L= X_C $ ,已知安培表 $A_1$ 的读数为 $3A$ ,则安培表 $A_2$ 、 $A_3$ 的读数为                               |
|---------------------------------------------------------------------------------------------------------------|
| (A) 4.24A, 1A (B) 3A, 0A (C) 4.24A, 3A (D) 2A, 1A                                                             |
| $\begin{array}{c c} & & & & & & \\ & & & & & \\ u & & & & & \\ & & & &$                                       |
| 图 2.5                                                                                                         |
| 7、图 2.6 所示电路中 a、b 端的等效电阻在开关 K 打开与闭合时分别 <u>为</u>                                                               |
| (A) $10\Omega$ , $10\Omega$ (B) $16\Omega$ , $8\Omega$ (C) $10\Omega$ , $16\Omega$ (D) $8\Omega$ , $10\Omega$ |
| 8、下列说法错误的是                                                                                                    |
| (A) 网孔都是回路,回路不一定是网孔。                                                                                          |
| (B) 正弦量可以用相量表示,因此相量等于正弦量。                                                                                     |
| (C) 当电容电流有界时,电容两端电压只能连续变化。                                                                                    |
| (D) 叠加原理只适用于线性电路。                                                                                             |
| 9、下列说法正确的是                                                                                                    |
| (A) RLC 串联电路的零输入响应在欠阻尼情况下为非振荡性衰减形式。                                                                           |
| (B) 视在功率在数值上等于电路中有功功率和无功功率之和。                                                                                 |
| (C) 品质因数高的电路对非谐振电流有较强的抵制能力。                                                                                   |
| (D) 电路等效变换时,如果一条支路上的电流为零,可按短路处理。                                                                              |

10、理想电容元件是\_\_\_\_\_元件(可多选)。

(A) 耗能 (B) 储能 (C) 记忆 (D) 无记忆

## 三、计算题(共8题,合计70分)

1、(6分) 电路如图 3.1 所示,(1) 计算电流  $i_1$  和  $i_2$  ;(2) 计算 1A 电流源的功率,并判断该电流源是吸收功率还是提供功率?



2、(10 分) 已知图 3.2 所示电路由一个电阻 R,一个电感 L 和一个电容 C 组成。已知  $i(t) = \left(-e^{-t} + 4e^{-2t}\right)$   $A,t \ge 0$ , $u_1(t) = \left(2e^{-t} - 4e^{-2t}\right)$   $V,t \ge 0$ 。若在 t=0 时,电路的总储能为 5.5J,试求 R、L、C 的值。



图 3.2

3、(10 分) 图 3.3 所示电路在开关 K 闭合前已稳定,t =0 时开关闭合,试用三要素法求 $i_L(t),\ t\geq 0$ 。



- 4、(10 分) 如图 3.4 所示正弦稳态电路,已知  $R_1 = 5\Omega$ , $R_2 = 3\Omega$ , $\omega L = 12\Omega$ , $\frac{1}{\omega C} = 4\Omega$ ,电压信号为 $u_s(t) = 10 + 100\cos\omega t$  V,求:
  - (1) *i*<sub>1</sub>(*t*) 和 *i*<sub>2</sub>(*t*)瞬时值;
  - (2) 该电路的有功功率 P。



- 5、(10分) 电路如图 3.5 所示,已知 $u_s(t) = 10\sqrt{2}\cos(t)$ , $R_L$ 并联  $C_L$ 为负载,
  - (1) 求当  $R_L$ 、 $C_L$ 为何值时此负载可得到最大功率?
  - (2) 求此最大功率值。



6、(10 分)图 3.6 所示电路的输入电压为 $u_i(t)=U_{1m}\cos\omega t+U_{3m}\cos3\omega t$  V, L=1H,  $\omega=100\,\mathrm{rad/s}$  。要使输出电压 $u_o(t)=U_{1m}\cos\omega t$  V,问  $C_1$ 、 $C_2$ 如何选值?



- 7、(8分) 图 3.7 所示电路中,开关闭合已久,t=0 时打开。
- (1) 列写求解 $u_c(t)$  ( $t \ge 0$ )的二阶电路方程,并求初始条件 $u_c(0_+) = ?$   $\frac{du_c}{dt}\Big|_{t=0_-} = ?$
- (2) 判断电路开关打开后是否会出现振荡现象,并说明判断依据。



图 3.7

8、(6 分)如图 3.8 所示电路中, N 为含源线性电阻电路, 电阻 R 可调, 当 R=8**Ω** 时 I=5**A**; 当 R=18**Ω** 时 I=3**A**; 当 R=38**Ω** 时 I=2**A**; 求当 R=6**Ω** 时电流 I 等于多少?

