

# 實驗七 STM32 Clock and Timer

## 1. 實驗目的

- 瞭解 STM32 的各種 clock source 使用與修改
- 瞭解 STM32 的 timer 使用原理
- 瞭解 STM32 的 PWM 使用原理與應用

## 2. 實驗原理

#### 2.1. Timer and Counter

請參考上課 008-MCSL-CounterTimer 講義。

#### 2.2. Timer PWM output mode

在 STM32 系統中要利用 Timer 產生 PWM 輸出,主要通過 capture/compare mode register(TIMx\_CCMR1)與 TIMx\_CCRx registers 設定並利用 TIMx\_CCER 啟動之。



而一般 PWM 有分 model 與 mode2 兩種模式,而在計數器上數模式時其對應的輸出為

- PWM mode1: Channel is active as long as TIMx\_CNT<TIMx\_CCR1 else inactive.
- PWM mode2: Channel is inactive as long as TIMx\_CNT<TIMx\_CCR1 else active.

另外依不同的特殊用途又可分 Combined PWM mode 與 Asymmetric PWM mode。





Figure 279. Edge-aligned PWM waveforms (ARR=8)

在 ARR 設定為 8 時,不同 CCR 值設定下 OCxREF 所對應的訊號輸出 以上圖範例來說當 CCRx=4,ARR=8 可以得到 duty cycle(在單位時間內 1 準位與 0 準位的比例)為 50%的波形, CCRx=8,ARR=8 可得 duty cycle= 1-1/8=87.5%的 波形。

要輸出比較複雜的 PWM 與不同 duty cycle 波形也可以利用 Asymmetric PWM mode 來達成。



Figure 281. Generation of 2 phase-shifted PWM signals with 50% duty cycle

其他 PWM 設定細節用途請參閱 Reference manual chapter 27.3.9 PWM mode



#### 3. 實驗步驟

#### 3.1. Modify system initial clock(20%)

- 請利用先前 lab 所實作的 assembby 版本 GPIO\_init 與 delay\_1s 初始化 GPIO 與 delay。
- 修改 SYSCLK 的 clock source 以及相關的 prescaler 使得 CPU frequency(HCLK)為 1MHz。
- 觀察修改前後 LED 燈閃爍的頻率。
- 當使用者按下 user button 便依以下順序改變 CPU system clock(HCLK), 1MHz -> 6MHz -> 10MHz -> 16MHz -> 40MHz -> 1...

```
main.c
extern void GPIO init();
extern void delay 1s();
void SystemClock Config() {
   //TODO: Change the SYSCLK source and set the corresponding
Prescaler value.
int main(){
  SystemClock Config();
  GPIO_init();
  while(1){
     if (user press button())
       //TODO: Update system clock rate
     GPIOA -> BSRR = (1 << 5);
     delay 1s();
     GPIOA->BRR = (1<<5);
     delay 1s();
  }
```

Note: 有些 CPU 頻率設定須由 PLLCLK 內的倍頻器與除頻器達成,此時須將 SYSCLK source 改成 PLLCLK 並依以下流程設定 RCC\_PLLCFGR register 設定。

To modify the PLL configuration, proceed as follows:

- 1. Disable the PLL by setting PLLON to 0 in Clock control register (RCC\_CR).
- Wait until PLLRDY is cleared. The PLL is now fully stopped.
- 3. Change the desired parameter.
- 4. Enable the PLL again by setting PLLON to 1.
- 5. Enable the desired PLL outputs by configuring PLLPEN, PLLQEN, PLLREN in *PLL configuration register (RCC\_PLLCFGR)*.

其中 PLL clock 頻率計算為 f(VCO clock) = f(PLL clock input) × (PLLN / PLLM) 最終可輸出給 system clock 頻率為 f(PLL\_R) = f(VCO clock) / PLLR



## 3.2. 計時器(30%)

完成以下的 main.c 中的 Timer\_init()與 Timer\_start(); 並使用 STM32 timer 實做一個計時器會從 0 上數(Upcounting) TIME\_SEC 秒的時間。顯示到小數點以下第二位,結束時 7-SEG LED 停留在 TIME\_SEC 的數字。(建議使用擁用比較高 counter resolution 的 TIM2~TIM5 timer),請使用 polling 的方式取得 timer CNT register 值並換算成時間顯示到 7-SEG LED 上。

0.01 ≤ TIME\_SEC ≤ 10000.00 (超過範圍請直接顯示 0.00) 例如 TIME\_SEC 為 12.7 時的 demo 影片: https://goo.gl/F9hh35 Note: 7-SEG LED 驅動請利用之前 Lab 所實作的 GPIO\_init()、max7219\_init()與 Display ()函式呈現(須改成可呈現 2 個小數位)。

```
main.c
#include "stm321476xx.h"
#define TIME SEC 12.70
extern void GPIO_init();
extern void max7219 init();
extern void Display();
void Timer init( TIM TypeDef *timer)
   //TODO: Initialize timer
void Timer start(TIM TypeDef *timer) {
   //TODO: start timer and show the time on the 7-SEG LED.
int main()
  GPIO init();
  max7219 init();
  Timer init();
  Timer start();
  while (1)
    //TODO: Polling the timer count and do lab requirements
  }
}
```

蜀字交通大學 資訊工程學系



## **3.3.** Music keypad(35%)

蜂鳴器分為有源(自激式)蜂鳴器和無源(他激式)蜂鳴器。有源蜂鳴器將驅動電路直接設計到蜂鳴器中,因此只需提供直流電壓就可以發出聲音,但其缺點是聲音的頻率無法更改。無源蜂鳴器外部需提供震盪波形才會發出聲音,其聲音的頻率就是輸入波的頻率。我們這次 LAB 使用的是無源蜂鳴器。



蜂鳴器的 VCC 接 3.3V、GND 接 GND、IN 接 GPIO 腳位。

請利用 timer 產生並輸出 Duty cycle 為 50%的 PWM 訊號,並以 Lab6 中的 keypad 為鍵盤,當使用者在按下不同 keypad 按鍵時產生特定頻率(參考下表)的 PWM 方波給蜂鳴器,沒按鍵或按到沒功能的鍵時請不要發出聲音。本次實驗 會需要設定 GPIOx\_AFRH、GPIOx\_AFRL、TIMx\_CCER、TIMx\_CCMR1、TIMx\_CCR1…等 registers。

Note: 參考 <u>RM0351 Reference manual</u> 瞭解這些 register 的功能完成此次實驗。 並利用 <u>STM32L476xx</u> 找到 timer channel 所對應的腳位。

|    | X0 | X1  | X2 | X3 |
|----|----|-----|----|----|
| Y0 | Do | Re  | Mi |    |
| Y1 | Fa | So  | La |    |
| Y2 | Si | HDo |    |    |
| Y3 |    |     |    |    |

Keypad 對應音名

| 音名     | Do    | Re    | Mi    | Fa    | So    | La    | Si    | HDo   |
|--------|-------|-------|-------|-------|-------|-------|-------|-------|
| 頻率(Hz) | 261.6 | 293.7 | 329.6 | 349.2 | 392.0 | 440.0 | 493.9 | 523.3 |

音名頻率對應表

Note: GPIO Pin 設為 PWM output 時需設定為 alternate function(AF) Mode, 並根據根據所對應使用的 timer 設定 AFRH 與 AFRL register, 設定方式細節請參考 reference manual 與 datasheet。



| Port   |      | AF0               | AF1                                | AF2                              | AF3                 |
|--------|------|-------------------|------------------------------------|----------------------------------|---------------------|
|        |      | SYS_AF            | TIM1/TIM2/<br>TIM5/TIM8/<br>LPTIM1 | TIM1/TIM2/<br>TIM3/TIM4/<br>TIM5 | TIM8                |
|        | PB0  | -                 | TIM1_CH2N                          | TIM3_CH3                         | TIM8_CH2N           |
|        | PB1  | -                 | TIM1_CH3N                          | TIM3_CH4                         | TIM8_CH3N           |
|        | PB2  | RTC_OUT           | LPTIM1_OUT                         | -                                | -                   |
|        | PB3  | JTDO-<br>TRACESWO | TIM2_CH2                           | -                                | -                   |
|        | PB4  | NJTRST            | -                                  | TIM3_CH1                         | -                   |
|        | PB5  | -                 | LPTIM1_IN1                         | TIM3_CH2                         | -                   |
|        | PB6  | -                 | LPTIM1_ETR                         | TIM4_CH1                         | TIM8_BKIN2          |
| Port B | PB7  | -                 | LPTIM1_IN2                         | TIM4_CH2                         | TIM8_BKIN           |
| FULL   | PB8  | -                 | -                                  | TIM4_CH3                         | -                   |
|        | PB9  | -                 | IR_OUT                             | TIM4_CH4                         | -                   |
|        | PB10 | -                 | TIM2_CH3                           | -                                | -                   |
|        | PB11 | -                 | TIM2_CH4                           | -                                | -                   |
|        | PB12 | -                 | TIM1_BKIN                          | -                                | TIM1_BKIN_<br>COMP2 |
|        | PB13 | -                 | TIM1_CH1N                          | -                                | -                   |
|        | PB14 | -                 | TIM1_CH2N                          | -                                | TIM8_CH2N           |
|        | PB15 | RTC_REFIN         | TIM1_CH3N                          | -                                | TIM8_CH3N           |

PortB AF mode selection table

## 範例:<u>https://goo.gl/4MuIFv</u>

```
extern void GPIO_init();
void GPIO_init_AF() {
   //TODO: Initial GPIO pin as alternate function for buzzer. You can choose to use C or assembly to finish this function.
}
void Timer_init() {
   //TODO: Initialize timer
}
void PWM_channel_init() {
   //TODO: Initialize timer PWM channel
}
int main() {
   GPIO_init();
   GPIO_init_AF();
   Timer_init();
   PWM_channel_init();
   //TODO: Scan the keypad and use PWM to send the corresponding frequency square wave to buzzer.
}
```

國立交通大學 資訊工程學系



## 3.3.1. Music 音色實驗(15%)

在前一實驗中的 keypad 增加 2 個功能按鈕用以調整 PWM 輸出的 Duty cycle(範圍 10%~90%,每按一次鍵調整 5%),觀察是否會影響蜂鳴器所發出的聲音大小或音色。

Note: 須注意頻率與 duty cycle 的關係來設定 timer ARR 與 CCR registers。可用 LED 測試 duty cycle 是否有改變,成功應會看到 LED 隨著 duty cycle 不同而有明暗變化。