TeamCCRA: Chenyue Lu, Linda Nieman

Figure 1. Violinplots of quantitative variables vs Cover_Type

For the **quantitative variables**, we generated violinplots using seaborn, shown in Figure 1 above.

Examples: (feel free to skip the examples if we made ourselves clear)

From the violinplots, we can see that across different types of tree covers, elevation seems to be distinct. In other words, elevation may be a good determining variable to predict type of tree covers. From the Aspect vs Cover_Type plot, we see that each cover type also has distinct aspect profile. For example, tree cover type 4 has a cluster around aspect = 120 degrees, whereas tree cover type 6 are more prevalent when aspect is near either 0 or 360 degrees. These violinplots also show us the spread of the data. For example, from the Horizontal_Distance_To_Roadways vs Cover_Type and Horizontal_Distance_To_Fire_Points vs Cover_Type plots, we see that tree cover types 3 and 4 tend to be cluster near roadways and fire points. Please note that these violinplots are scaled by area for better visualization, because the sample sizes for cover type 1 and 2 are one order of magnitude greater than those of cover type 3 through 7.

For the **qualitative variables**, namely Wilderness_Area and Soil_Type, we took different approaches analyzing their correlation with the type of tree covers.

To visualize the correlation between Wilderness_Area and Cover_Type, we generated stacked bar graphs using matplotlib. The numbers of occurrences in the dataset that correspond to the separate Wilderness_Area and Cover_Type were counted.

Figure 2. Differential Cover Type Distribution by Wilderness Area Examples:

First, we can see that we have more data points from Cover_Type 1 and 2. For Cover_Type 1 and 2, we see that many of those types are found in Wilderness_Areas 1 and 3. For Cover_Type 3, most are found in Wilderness_Areas 3 and 4. As for Cover_Type 4 through 7, we can also use the same tool to analyze its correlation with Wilderness_Area by simply plotting them on a separate graph with a smaller y scale.

Figure 3. Differential Cover Type Distribution in Wilderness Areas Examples:

First, we can see that we have more data points from Wilderness_Area 1 and 3. In Wilderness_Area 1, 2 and 3, we found many Cover_Type 1 and 2. Cover_Type 3 is the most prevalent tree cover in Wilderness_Area.

The last variable we analyzed is Soil_Type. We used a seaborn heat map, shown below in Figure 4, to illustrate the correlation between Soil_Type and Cover_Type (Here Cover_Type goes from 0 to 6 instead of 1 to 7 as we used before. We can find a way to shift the index up by 1 if we had more time). We took the log of the counts for better visualization.

Figure 4. Differential Cover Type Distribution by Soil Type Examples:

We can see the differential distribution of different Cover_Type in different Soil_Type. For example, Cover_Types 2 are found in most Soil_Types, except Soil_Type 0, 5, 6, 30, 35. If we look horizontally, for example, Soil_Type 22 has Cover_Type 1, 2, 3, and 5, but not many 0, 4, and 6.