Enseignant · e·s : Blanche Buet, Dominique Hulin et Thomas Letendre.

Feuille 5 – Espaces de Sobolev $H^1(I)$, équations (différentielles) dans $\mathcal{D}'(\mathbb{R})$

Exercice 1 (Convergence dominée L^p). Soient (X, μ) un espace mesuré et $p \in [1, +\infty[$. Soit $(f_n)_{n \in \mathbb{N}}$ une suite de fonctions de X dans \mathbb{C} telle que :

- il existe $f: X \to \mathbb{C}$ telle que $f_n(x) \xrightarrow[n \to +\infty]{} f(x)$ pour μ -presque tout $x \in X$;
- il existe $g \in L^p(X, \mu)$ telle que pour tout $n \in \mathbb{N}$, $|f_n| \leq g$ presque partout.

Montrer que $f_n \xrightarrow[n \to +\infty]{} f$ dans $L^p(X, \mu)$.

Exercice 2 (Dérivation d'un produit et intégration par parties dans H^1). Soit $I \subset \mathbb{R}$ un intervalle ouvert et soient $u, v \in H^1(I)$.

- 1. Montrer que $uv \in H^1(I)$ et que (uv)' = u'v + uv'.
- 2. En déduire que pour tout $[a,b] \subset \overline{I}$ la formule d'intégration par parties suivantes est valide :

$$\int_{a}^{b} u'(x)v(x) dx = [u(x)v(x)]_{a}^{b} - \int_{a}^{b} u(x)v'(x) dx.$$
 (1)

Exercice 3 (Singularité ponctuelle). Soient I =]a, b[et J =]b, c[, avec $-\infty \le a < b < c \le +\infty$. Soient $u \in H^1(I)$ et $v \in H^1(J)$, on note $w = u\mathbf{1}_I + v\mathbf{1}_J$.

- 1. À quelle condition a-t-on $w \in H^1(]a, c[)$?

 Indication. Calculer la dérivée de w.
- 2. Expliquer comment prolonger $u \in H^1(\mathbb{R}_+^*)$ en $\widetilde{u} \in H^1(\mathbb{R})$ tel que $\|\widetilde{u}\|_{H^1(\mathbb{R})} \leqslant \sqrt{2} \|u\|_{H^1(\mathbb{R}_+^*)}$.

Exercice 4 (La règle de la chaîne). Soit $G \in \mathcal{C}^1(\mathbb{R})$ telle que G(0) = 0. Soit I un intervalle ouvert, le but de l'exercice est de montrer que pour tout $u \in H^1(I)$, on a $G \circ u \in H^1(I)$ et

$$(G \circ u)' = (G' \circ u)u'. \tag{2}$$

- 1. Soit $u \in H^1(I)$, montrer que $G' \circ u$ est bornée. En déduire que $(G' \circ u)u'$ et $G \circ u$ sont L^2 .
- 2. Conclure en utilisant un argument de densité.
- 3. Que dire de l'hypothèse G(0) = 0 lorsque I est borné?

Exercice 5 (Inégalité de Poincaré). Soit I =]a, b[où $-\infty < a < b < +\infty$. Montrer que pour tout $u \in H_0^1(I)$ on a $||u||_2 \le (b-a)||u'||_2$.

Exercice 6 (Problème de Dirichlet). Soit I =]a, b[où $-\infty < a < b < +\infty$. Soient q et $f \in L^1(I)$, on suppose que q est une fonction positive. Le but de l'exercice est de montrer qu'il existe une unique solution à l'équation différentielle u'' = qu + f d'inconnue $u \in H^1_0(I)$, c'est-à-dire qu'il existe une unique fonction u continue sur [a, b] telle que u(a) = 0 = u(b) et $(T_u)'' = T_{qu+f}$ dans $\mathcal{D}(I)$.

1. Montrer que $L_f: v \mapsto \int_a^b f(t)v(t) dt$ définit une forme linéaire continue sur $(H_0^1(I), \|\cdot\|_{H^1})$.

- 2. On définit $\langle u, v \rangle_q = \int_a^b \left(\overline{u'(t)} v'(t) + q(t) \overline{u(t)} v(t) \right) dt$ pour tout $u, v \in H_0^1(I)$. Montrer que $\langle \cdot, \cdot \rangle_q$ définit un produit scalaire hermitien sur $H_0^1(I)$.
- 3. On note $\|\cdot\|_q$ la norme associée à $\langle\cdot\,,\cdot\rangle_q$. Montrer que $\|\cdot\|_q$ et $\|\cdot\|_{H^1}$ sont équivalentes.
- 4. Soit $u \in H_0^1(I)$, montrer que u'' = qu + f si et seulement si $\forall \varphi \in H_0^1(I), \langle \overline{u}, \varphi \rangle_q = -L_f(\varphi)$.
- 5. Conclure qu'il existe un unique $u \in H_0^1(I)$ tel que u'' = qu + f.

Exercice 7 (Inégalité de Gagliardo-Nirenberg — facultatif). On considère un intervalle ouvert I non borné. Le but de l'exercice est de prouver que pour tout $u \in H^1(I)$

$$||u||_{\infty} \leqslant \sqrt{2}||u||_{2}^{\frac{1}{2}}||u'||_{2}^{\frac{1}{2}}.$$
 (3)

- 1. Soit $u \in \mathcal{D}(\mathbb{R})$. Pour tout x et $y \in I$, montrer que $u(y)^2 = u(x)^2 + 2 \int_x^y u(t) u'(t) dt$. En déduire que la restriction de u à I vérifie (3).
- 2. Montrer que (3) est vérifiée pour tout $u \in H^1(I)$.
- 3. En considérant $I =]0, +\infty[$, montrer que la constante $\sqrt{2}$ apparaissant dans (3) est optimale.

Exercice 8 (Équation dans $\mathcal{D}'(\mathbb{R})$). On rappelle que la famille $(\delta_0^{(k)})_{k\in\mathbb{N}}$ est libre dans $\mathcal{D}'(\mathbb{R})$.

- 1. Soit $k \in \mathbb{N}$, donner une expression plus simple de $X\delta_0^{(k)}$. En déduire une expression plus simple de $X^j\delta_0^{(k)}$ pour tout $j \in \mathbb{N}^*$.
- 2. Soit $j \in \mathbb{N}^*$, résoudre l'équation $X^j T = 0$ d'inconnue T, dans $\mathcal{D}'(\mathbb{R}^*)$ puis dans $\mathcal{D}'(\mathbb{R})$.
- 3. Résoudre l'équation $X^2T=1$ d'inconnue $T\in \mathcal{D}'(\mathbb{R})$. Indication. Commencer par déterminer une solution particulière.

Exercice 9 (Équation différentielle dans $\mathcal{D}'(\mathbb{R})$). Le but de l'exercice est de résoudre l'équation différentielle suivante d'inconnue $T \in \mathcal{D}'(\mathbb{R})$:

$$2XT' - T = \delta_0. \tag{4}$$

On va d'abord considérer l'équation différentielle homogène associée :

$$2XT' - T = 0. (5)$$

- 1. Résoudre l'équation différentielle (5) dans $\mathcal{D}'(\mathbb{R}_+^*)$ (resp. $\mathcal{D}'(\mathbb{R}_-^*)$).
- 2. Déterminer les solutions de (5) dans $\mathcal{D}'(\mathbb{R})$ dont le support est inclus dans $\{0\}$.
- 3. Déterminer l'ensemble des solutions de (5) sur \mathbb{R} entier.
- 4. Déterminer l'ensemble des solutions de (4) dans $\mathcal{D}'(\mathbb{R})$.