Mathematics Homework Sheet 6

Authors: Abdullah Oguz Topcuoglu & Ahmed Waleed Ahmed Badawy

Problem 2

(a)

 U_1 :

 U_1 is subspace of R[x].

Not empty:

 U_1 is not empty because $0 \in U_1$ (zero polynomial).

Closed under addition:

Let $p(x), q(x) \in U_1$. Then p(0) = 0 and q(0) = 0.

Then, (p+q)(0) = p(0) + q(0) = 0 + 0 = 0.

Closed under scalar multiplication:

Let $p(x) \in U_1$ and $c \in R$. Then, (cp)(0) = c(p(0)) = c(0) = 0.

Thus, U_1 is closed under scalar multiplication.

 U_2 :

 U_2 is not a subspace of R[x]. Because U_2 doesn't contain the zero polynomial. (every vector space has to contain the zero vector which is the zero polynomial in this case)

 U_3 :

 U_3 is subspace of R[x].

Not empty:

 U_3 is not empty because $0 \in U_3$ (zero polynomial).

Closed under addition:

Let $p(x), q(x) \in U_3$. Then p(1) = 0 and q(1) = 0.

Then, (p+q)(1) = p(1) + q(1) = 0 + 0 = 0.

Closed under scalar multiplication:

Let $p(x) \in U_3$ and $c \in R$. Then, (cp)(1) = c(p(1)) = c(0) = 0.

Thus, U_3 is closed under scalar multiplication.

 U_4 :

 U_4 is subspace of R[x].

Not empty:

 U_4 is not empty because $0 \in U_4$ (zero polynomial).

Closed under addition:

Let $p(x), q(x) \in U_4$. Then $\int_0^1 p(x)dx = 0$ and $\int_0^1 q(x)dx = 0$.

Then, $\int_0^1 (p+q)(x) dx = \int_0^1 p(x) dx + \int_0^1 q(x) dx = 0 + 0 = 0$. Closed under scalar multiplication:

Let $p(x) \in U_4$ and $c \in R$. Then, $\int_0^1 (cp)(x) dx = c \int_0^1 p(x) dx = c(0) = 0$. Thus, U_4 is closed under scalar multiplication.

 U_5 :

 U_5 is subspace of R[x].

Not empty:

 U_5 is not empty because $0 \in U_5$ (zero polynomial).

Closed under addition:

Let p(x), $q(x) \in U_5$. Then p'(0) + p''(0) = 0 and q'(0) + q''(0) = 0.

Then, (p+q)'(0) + (p+q)''(0) = p'(0) + q'(0) + p''(0) + q''(0) = 0 + 0 = 0.

Closed under scalar multiplication:

Let $p(x) \in U_5$ and $c \in R$. Then, (cp)'(0) + (cp)''(0) = c(p'(0)) + c(p''(0)) =c(p'(0) + p''(0)) = c(0) = 0.

Thus, U_5 is closed under scalar multiplication.

 U_6 :

 U_6 is not a subspace of R[x]. Because it is not closed under addition

Let $p(x), q(x) \in U_6$. Then p'(0)p''(0) = 0 and q'(0)q''(0) = 0.

Then,
$$(p+q)'(0)(p+q)''(0) = (p'(0)+q'(0))(p''(0)+q''(0)) = p'(0)p''(0) + p'(0)q''(0) + q'(0)p''(0) + q'(0)q''(0) = p'(0)q''(0) + q'(0)p''(0)$$

Which is not necessarily equal to 0. Thus U_6 is not closed under addition.

(b)

 S_1 is a subspace of $R^{2\times 2}$.

Not empty:

 S_1 is not empty because $0 \in S_1$ (2 by 2 zero matrix).

Closed under addition:

Let $A, B \in S_1$. Then $A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$ and $B = \begin{pmatrix} e & f \\ g & h \end{pmatrix}$ where a = b and e = f. Then, $A + B = \begin{pmatrix} a + e & b + f \\ c + g & d + h \end{pmatrix}$ where a + e = b + f.

Then,
$$A + B = \begin{pmatrix} a + e & b + f \\ c + g & d + h \end{pmatrix}$$
 where $a + e = b + f$.

Closed under scalar multiplication:

Let $A \in S_1$ and $c \in R$. Then, $A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$ where a = b.

Then,
$$cA = \begin{pmatrix} ca & cb \\ cc & cd \end{pmatrix}$$
 where $ca = cb$.

 S_2 is not a subspace of $R^{2\times 2}$. Because S_2 doesn't contain the zero matrix. (every vector space has to contain the zero vector which is the zero matrix in this case)

 S_3 is not a subspace of $R^{2\times 2}$. Because S_3 is not closed under addition.

Let
$$A, B \in S_3$$
. Then $A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$ and $B = \begin{pmatrix} e & f \\ g & h \end{pmatrix}$ where $a^2 = b^2$ and $e^2 = f^2$. Then, $A + B = \begin{pmatrix} a + e & b + f \\ c + g & d + h \end{pmatrix}$ where $(a + e)^2 = (b + f)^2$ is not necessarily true.

$$(a+e)^2 = (b+f)^2$$

$$a^2 + 2ae + e^2 = b^2 + 2bf + f^2 \qquad \text{use } a^2 = b^2 \text{ and } e^2 = f^2$$

$$2ae = 2bf$$

$$ae = bf$$

Which is not always true. Thus S_3 is not closed under addition.

Problem 3

We need to show two things: vectors are linearly independent and they span the subspace *W*.

Vectors are linearly independent:

Let $c_1(x^3 - x^2) + c_2(x^3 - x) = 0$. Then, $c_1x^3 - c_1x^2 + c_2x^3 - c_2x = 0$. Then, $(c_1 + c_2)x^3 - c_1x^2 - c_2x = 0$.

The coefficients of x^3 , x^2 and x must be equal to 0.

Thus, c_1 and c_2 must be equal to 0.

Vectors span the subspace *W*:

Let $p(x) \in W$. Then, p(0) = 0 and p(1) = 0.

Then, $p(x) = a_3 x^3 + a_2 x^2 + a_1 x + a_0$.

Then, $p(0) = a_0 = 0$.

Then, $p(1) = a_3 + a_2 + a_1 = 0$. Thus, $p(x) = a_3x^3 + a_2x^2 + (-a_3 - a_2)x$. Then, $p(x) = a_3(x^3 - x^2) + a_2(x^3 - x)$.

Thus, p(x) can be written as a linear combination of the vectors $x^3 - x^2$ and $x^{3} - x$.

Extend the basis to a basis for $R^3[x]$:

We want to be able write any polynomial in $R^3[x]$ as a linear combination of the basis vectors. We know that $dimR^3[x] = 4$. So we need 2 more linearly independent vectors.

From the basis extension theorem we know that if we add two more linearly independent vectors to our original set of vectors, we will have a basis for $R^3[x]$. So let's peak two vectors outside of the subspace W which are linearly independent.

 $q_1(x) = 1$ and $q_2(x) = x$ are linearly independent and not in the subspace W.

They are not in the subspace W because $q_1(1) \neq 0$ and $q_2(1) \neq 0$. Thus, a basis for $R^3[x]$ is $\{x^3 - x^2, x^3 - x, 1, x\}$.

Problem 4

We are interested in the matrices in the following form:

$$A = \begin{pmatrix} a & b & c \\ b & d & e \\ c & e & f \end{pmatrix}$$

So, if we determine the upper part (or lower part) of the matrix we can determine the whole matrix.

We can write the matrix *A* as a linear combination of the following matrices:

$$A = a \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} + b \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} + c \begin{pmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \\ 1 & 0 & 0 \end{pmatrix} + d \begin{pmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix} + e \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix} + f \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

These matrices are trivially linearly independent.

Since there are 6 linearly independent matrices, the dimension of S_3 is 6.

Extend this basis to a basis for $R^{3\times3}$:

We want to be able write any matrix in $R^{3\times3}$ as a linear combination of the basis vectors. We know that $dimR^{3\times3}=9$. So we need 3 more linearly independent vectors.

Intiutively we want to be able to control the lower part of the matrix. Following matrices are linearly independent and not in the subspace S_3 :

$$A_1 = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 1 & 0 & 0 \end{pmatrix}$$
, $A_2 = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix}$, $A_3 = \begin{pmatrix} 0 & 0 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$

Thus, a basis for $R^{3\times3}$ is $\{A_1, A_2, A_3\} \cup S_3$.

Problem 5

(a)

Let U_1 , U_2 be subspaces of a vector space V.

We need to show that $U_1 \cup U_2$ is a subspace of V if and only if $U_1 \subseteq U_2$ or $U_2 \subseteq U_1$.

If direction (right to left):

Assume that $U_1 \subseteq U_2$ or $U_2 \subseteq U_1$.

```
If U_1 \subseteq U_2 then U_1 \cup U_2 = U_2 and U_2 is a subspace of V. If U_2 \subseteq U_1 then U_1 \cup U_2 = U_1 and U_1 is a subspace of V.
```

Only if direction (left to right):

Assume that $U_1 \cup U_2$ is a subspace of V.

We want to prove that one of the sets contains the other.

Now suppose neither is contained in the other. Then there exists $u \in U_1 \setminus U_2$ and $v \in U_2 \setminus U_1$.

Then, $u + v \in U_1 \cup U_2$ because $U_1 \cup U_2$ is a subspace of V.

Which means $u + v \in U_1$ or $u + v \in U_2$.

If $u + v \in U_1$, since $u \in U_1$ and U_1 is a subspace $(u + v) - u = v \in U_1$ which contradicts the fact that $v \in U_2 \setminus U_1$.

If $u + v \in U_2$, since $v \in U_2$ and U_2 is a subspace $(u + v) - v = u \in U_2$ which contradicts the fact that $u \in U_1 \setminus U_2$.

Thus, we have a contradiction.

Thus, one of the sets must contain the other.