TD4 K- Nearest Neighbor

Questions de cours :

- 1. Critiquer l'algorithme KNN (ses limites).
- 2. Si on voulait utiliser l'algorithme Knn pour une régression, comment procéderait-on ?
- 3. Principe de K-NN : dis-moi, qui sont tes voisins, je te dirais qui tu es ! Est-il toujours vrai ?
- 4. Pour quel type d'applications Knn donne de bon resultats (rechercher sur le net) ?

Exercice 1 : Finir la colonne distance du 1^{er} tableau. Vérifier que nos conclusions sur la classe étaient correctes.

Exercice 2 : Faire un tableau et trouver la classe du dernier exemple (avec valeur manquante).

Exercice 3 : En utilisant l'algorithme de Knn (k = 1, puis K = 3), la distance de Manhattan, puis la distance d'Euclide, classer les instances :

- 1. O 55 F 100
- 2. N ? M 85
- 3. 0 49 ? 110

Etude	Age	Sexe	Prêt	Rembourse ?
0	25	М	40	0
N	35	М	60	0
N	45	F	?	0
?	20	F	20	N
N	35	М	120	N
0	52	F	18	N
0	23	М	95	0
0	3	М	62	0
N	60	F	100	N
0	48	F	220	0
0	33	?	150	0

• Distance euclidienne:
$$d(x,y) = \sqrt{\sum_{i=1}^{n} (x_i - y_i)^2}$$

Distance de Manhattan:
$$d(x,y) = \sum_{i=1}^{n} |\chi_i - y_i|$$

Faites les TDs, et l'examen sera un jeu d'enfants pour vous, sinon ça sera ... !!!!