HackerRank |

The Under Water Vision

NASA deployed under water cameras to detect the movement of the earths tectonic plates. Cameras are stationed above the border of the plates deep down in the ocean. However when the image are received they foud out that there are many defects in the image. Each image is affected by a combination of two artifacts and images have been distorted so much that any information cannot be extraxted from it.

- 1. White noise (more intense on the edges)
- 2. Sea creatures blocking the view of the camera

You are hired to extract as many information as possible from these images.

Inacurate information will have a penalty. Answer only if you are confident about the image.

Input Format

- first line contains an integer N The number of images to analyze
- The next lines are repeated N times per each image
 - empty line (to seperate each image)
 - 50 lines for each row of the image frame each consisting 50 characters (0 or 1) per pixel of the image. (0 White; 1 Black)

Constraints

- 1 <= N <= 50
- The camera resolution is **50x50** pixels
- Plate margin is a straight line
- Plate margin always crosses the left and right edges of the image frame

Output Format

- You should output N lines (one line per image) as follows
 - two space seperated floating point numbers **m c** whare m is the gradient and c is the y intercept of the straight lnie of the tectonic margin in a cartesian coordinate with the origin at thebottom left corner of the image and x any y axes towards the top and right directions respectively. (positive or negative score)
 - "x" if you are **not confident** about the image (0 score)

Scoring Method

Each image will get a score according to the following equation.

$$2 imes 2^{-(rac{A}{150})^2} - 1$$

Where **A** is the area between the output tectonic plate line and the actual tectonic plate line.

Score for the test case will be the average of the sores of the images within the test case. However the score for the test case will never drop below zero.

Note: Achieving a perfect score is nearly impossible. Try to optimize your score by answering accurately or not answering by outputting "x".

Sample Input 0

2	
000000000000000000000000000000000000000	
000000000000000000000000000000000000000	
000000000000000000000000000000000000000	
000000000000000000000000000000000000000	
000000000000000000000000000000000000000	
000000000000000000000000000000000000000	
000000000000000000000000000000000000000	
000000000000000000000000000000000000000	
000000000000000000000000000000000000000	
000000000000000000000000000000000000000	
000000000000000000000000000000000000000	
000000000000000000000000000000000000000	
000000000000000000000000000000000000000	
000000000000000000000000000000000000000	
000000000000000000000000000000000000000	
000000000000000000000000000000000000000	
000000000000000000000000000000000000000	
000000000000000000000000000000000000000	
000000000000000000000000000000000000000	
000000000000000000000000000000000000000	
000000000000000000000000000000000000000	
000000000000000000000000000000000000000	
000000000000000000000000000000000000000	
000000000000000000000000000000000000000	
000000000000000000000000000000000000000	
000000000000000000000000000000000000000	
000000000000000000000000000000000000000	
000000000000000000000000000000000000000	
000000000000000000000000000000000000000	
000000000000000000000000000000000000000	
000000000000000000000000000000000000000	
0000000000000000000000000000000000111111	
000000000000000000000000000000011111111	
000000000000000000000000000111111111111	
000000000000000000000000011111111111111	
000000000000000000000111111111111111111	
000000000000000001111111111111111111111	
000000000000000011111111111111111111111	
000000000000111111111111111111111111111	
000000000011111111111111111111111111111	
000000011111111111111111111111111111111	
000001111111111111111111111111111111111	
001111111111111111111111111111111111111	
111111111111111111111111111111111111111	
111111111111111111111111111111111111111	
111111111111111111111111111111111111111	
111111111111111111111111111111111111111	
111111111111111111111111111111111111111	
111111111111111111111111111111111111111	
01010111000010110011001110011110111001100111010	
11001001010011111001101010111101100110110000	
01111110001001110000001000001110000011010	
10110110110100111000110100010101110011001100110000	
1100110010100000011111010000000111111010	
10000000110100010100010001100001001011010	
1111100010000010000011000001010111001111	
0000100011110101000000011110001010000101	
001001110010100001101000110100000101101	
1010101000000010010110100101100111100101	
0011010010100000100000001010010111100101	

000010100111101010011111111111111111100100010001101

Sample Output 0

0.34387886318934346 5.8237147152576885

0.00617758565472909 7.560358570430488