

Feb 22, 2019

Working

Preparation of defined medium for marine holozoans.

PLOS Genetics

Sebastián Najle¹, Eduard Ocaña-Pallarès¹

¹Institut de Biologia Evolutiva (CSIC-Universitat Pompeu Fabra)

dx.doi.org/10.17504/protocols.io.wydffs6

Multicellgenomelab

Sebastián Najle

Institut de Biologia Evolutiva (CSIC-Universitat Pompeu Fabr...

ABSTRACT

In order to study specific metabolic pathways in microorganisms is crucial to have complete control on the components of the growth medium. This protocol describes the components and mode of preparation of a minimum medium (low nutrients medium) of defined composition, suited for marine holozoans (named "modified L1 medium" - mL1). mL1 medium can be used for cultivation of different marine holozoans (i.e. Ichthyosporea and Corallochytrea), allowing to completely control the components (for example: carbon source, nitrogen source, etc). mL1 medium is based on the L1 medium recipe publically available at the National Center for Marine Algae and Microbiota (http://ncma.bigelow.org/algal-recipes).

EXTERNAL LINK

https://doi.org/10.1371/journal.pgen.1007986

THIS PROTOCOL ACCOMPANIES THE FOLLOWING PUBLICATION

Ocaña-Pallarès E, Naile SR, Scazzocchio C, Ruiz-Trillo I (2019) Reticulate evolution in eukaryotes: Origin and evolution of the nitrate assimilation pathway. PLoS Genet 15(2): e1007986. doi: 10.1371/journal.pgen.1007986

PROTOCOL STATUS

Working

MATERIALS

	P212121 P212121
w I	P212121
w	P212121
384	Sigma Aldrich
944	Sigma Aldrich
1986	Sigma Aldrich
320	Sigma Aldrich
634	Sigma Aldrich
651	Sigma Aldrich
538	Sigma Aldrich
15-10	
94 19 32 63 65	14 : 186 : : : : : : : : : : : : : : : : : : :

NAME Y	CATALOG #	VENDOR V
Sodium Orthovanadate	S6508-10G	Sigma Aldrich
Vitamin B12	68-19-9	Fisher Scientific
100 ml Nickel Sulfate Hexahydrate	orb65604	biorbyt
Copper (II) sulfate pentahydrate	CDB0063.SIZE.2.5Kg	Bio Basic Inc.
Glucose	G8270	Sigma Aldrich

Preparation of stock solutions

1 Stock solution A: Trace elements.

■ Dissolve the following components in dH₂O to bring a final volume of 1 liter:

Na ₂ EDTA • 2H ₂ O	- 4.36 g
FeCl ₃ • 6H ₂ O	- 3.15 g
MnCl ₂ • 4H ₂ O	- 178.1 mg
ZnSO ₄ • 7H ₂ O	23 mg
CoCl ₂ • 6H ₂ O	11.9 mg
CuSO ₄ • 5H ₂ O	2.5 mg
Na ₂ MoO ₄ • 2H ₂ O	19.9 mg
H ₂ SeO ₃	1.29 mg
NiSO ₄ • 6H ₂ O	2.63 mg
Na ₃ VO ₄	1.84 mg
K ₂ CrO ₄	1.94 mg

 \bullet Sterilize by filtration through 0.2 μm filter and store at 4 °C.

Stock solution B: Vitamins.

Dissolve the following components in dH₂O to bring a final volume of 1 liter:

thiamine • HCl (vit. B ₁) 200 mg
biotin (vit. H) 1 mg
cyanocobalamin (vit. B ₁₂) 1 mg

It is recommended to prepare primary stock solutions of biotin (100 mg per liter) and cyanocobalamin (1 g per liter), and use, respectively, 10 and 1 ml to prepare 1 liter of stock solution B.

• Sterilize by autoclaving and store at 4 °C.

Stock solution C: Phosphate.

- Dissolve 5 g of NaH₂PO₄ H₂O in 1 liter of dH₂O.

Base mL1 medium preparation (working solution)

- Dissolve 35 g of marine salts (Instant Ocean) and 10 g of glucose in 900 ml of dH₂O.
 - Add 1 ml of Stock solution A (trace elements)
 - Add 40 μl of Stock solution B (vitamins)
 - Add 1 ml of Stock solution C (phosphate).

- Bring to a final volume of 1 liter with dH₂O.
- Sterilize by filtration through 0.2 μm filter and store at 4 °C.

IMPORTANT: The lack of nitrogen source in this medium is intentional. If the purpose is not to study nitrogen metabolism, it can be supplemented with 75 mg per liter of $NaNO_3$ or NH_4NO_3 .

This is an open access protocol distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited