Tutorial of ST5215

AY2020/2021 Semester 1

20 Oct 2020

Exercise 1. Let X_1, \ldots, X_n be independent and identically distributed random variables with Lebesgue p.d.f.

$$f(x) = \frac{1}{2c} \frac{1}{x^2 \log x} I_{|x| > 3} \tag{1}$$

where $c = \int_{x=3}^{\infty} 1/(x^2 \log x) dx$.

Show that $E|X_1| = \infty$ but $n^{-1} \sum_{i=1}^n X_i \to_p 0$

Exercise 2. Suppose that X_n is a random variable having the binomial distribution with size n and probability $\theta \in (0, 1), n = 1, 2, \ldots$

Define $Y_n = \log(X_n/n)$ when $X_n \ge 1$ and $Y_n = 1$ when $X_n = 0$.

Show that $\lim_{n} Y_n = \log \theta$ a.s. and $\sqrt{n} (Y_n - \log \theta) \to_d N(0, \frac{1-\theta}{\theta})$

Exercise 3. Let $X_1, X_2, ...$ be independent random variables such that X_j has the uniform distribution on [-j, j], j = 1, 2, ... Show that

$$\frac{\sum_{j=1}^{n} X_j}{n^2} \xrightarrow{\mathcal{D}} N(0, 1/6) \tag{2}$$