# Aluminium - Cobalt - Titanium

Kazuhiro Ishikawa, Ryosuke Kainuma and Kiyohito Ishida

### Literature Data

This evaluation updates and modifies in parts the thoroughly made critical evaluation by [1991Sch] in the same MSIT Ternary Evaluation Program. The Al-Co-Ti system was first investigated by [1966Mar], who prepared 110 alloys, melted from iodide titanium (99.97%), cobalt (99.9%) and aluminum (99.997%) under helium in an arc furnace with W-electrode, using a water cooled copper mould. The whole ternary system was determined by thermal, X-ray, and dilatometric analysis together with hardness and specific electrical resistivity measurements (only for Ti-rich alloys). The samples were annealed at 800°C and 600°C for 1 month in evacuated silica ampoules containing Ti-chips. The authors found two ternary phases: TiCo<sub>2</sub>Al and another one called Ti<sub>2</sub>CoAl<sub>2</sub>, reported with a small range of homogeneity. The samples annealed at 600°C had compositions identical to those annealed at 800°C. The phase TiCo<sub>2</sub>Al is a Heusler phase [1962Mar, 1963Gla, 1967Hof], the phase Ti<sub>2</sub>CoAl<sub>2</sub> is of the Th<sub>6</sub>Mn<sub>23</sub> type [1969Mar], the latter paper gives an approximate composition TiCoAl<sub>2</sub>. A Japanese group [1967Tsu, 1968Tsu] studied the equilibria in the Ti-rich corner (more than 80 mass% Ti) between 1100 and 600°C. Commercially pure Ti-sponge (99.8%), Co (99.54%) and Al (99.99%) were melted in an argon arc furnace. Alloys with more than 85 mass% Ti were hot rolled between 1000 and 800°C to eliminate the as-cast structure. The specimens for microscopic examination were heat treated in argon filled silica capsules and subsequently quenched in water. Annealing times: 8 h at 1100°C, 1 day at 1050°C or 1 week at 1000°C. The specimens quenched from below 950°C were cooled in stages from 1000°C to the annealing temperature, being held for 1 week at 1000°C and then 1 week at 950°C, then 2 weeks at 900°C and 950°C and 1 month at 800, 750, 700, 650 and 600°C. For X-ray diffraction the specimens were heated in vacuum for 1 h to the required temperature and quenched [1967Tsu]. Eleven isothermal sections and nine isopleths of the Ti-rich corner with more than 80 mass% Ti were constructed [1968Tsu]. The paper [1967Tsu] is a short version of [1968Tsu] with five isothermal and four vertical sections. In two further papers [1969Tsu1, 1969Tsu2] the investigations were extended to 70 mass% Al+Co. In [1972Tsu] these two papers are combined in an English translation containing the same diagram and micrographs. From 111 alloys, most of them chemically analyzed, the liquidus surface as well as 6 isothermal sections were constructed, covering the partial system with less than 50 mass% Al and more than 30 mass% Ti. The authors reported a continuous solid solution (Ti,Al)Co between TiCo and AlCo although the reported alloys cover only part of this range. The three phase fields  $L+(T_1,A_1)C_0+\tau_2$  and  $L+\tau_2+T_1A_1$  have maxima with the reactions  $L+(T_1,A_1)C_0+\tau_2$  and  $L+\tau_2+T_1A_1$ respectively. Phase equilibria in the Al-Ti portion were determined by [2000Kai]. The alloys prepared by arc melting were equilibrated at 1300°C for 1 day, 1200°C for 7 days and 1000°C 7 days in a evacuated quartz tube back-filled with Ar with Ti filings as getters. The equilibrium compositions were determined by EPMA with standard calibration method. The phase equilibria in the Co-Ti portion were investigated by [2001Ish]. Twenty six alloys were prepared with pure elements by arc melting under an Ar atmosphere. The alloys were sealed in a quartz tube with a titanium getter and equilibrated at 1100°C for 7 days, 1000°C for 14 days and 900°C for 21 days. The equilibrium compositions were determined by energy dispersive spectroscopy (EDS) using standard calibration method. The phase  $\tau_2$ , contrary to [1966Mar], is assumed to have a large range of homogeneity by Ti to Al exchange. Six invariant four-phase reactions were found. By X-ray diffraction it is not possible to distinguish between the hexagonal ( $\alpha Ti$ ) phase and  $Ti_3Al$  which is ordered. Therefore no ordering reflections were observed by [1972Tsu]. By thermal analysis, X-ray diffraction reflections and metallography of 16 as-cast alloys [1979Sei] constructed the whole liquidus surface. It was stated that the results of [1967Tsu] and [1972Tsu] were used to construct the phase diagram, but the lines of double saturation in this diagram differ significantly from those of [1972Tsu], although the alloys reported are not at all sufficient to prove these differences. The Al-rich part was not assessed but estimated to be similar to the Al-Fe-Ti system, assessed in the same paper and to match the known binary systems. Three ternary phases  $\tau_1$ -TiCo<sub>2</sub>Al,  $\tau_2$ -Ti<sub>1-x</sub>CoAl<sub>2-x</sub> and  $\tau_3$ -Ti<sub>8</sub>Al<sub>22</sub>Co<sub>3</sub> were found by [1979Sei].

Landolt-Börnstein
New Series IV/11A1

MSIT®

She indicated a field of primary crystallization of the Heusler-cF16 type phase  $TiCo_2Al$ , which implies that there is no continuous solid solution between CoAl and TiCo in contradiction to [1969Tsu1, 1969Tsu2, 1972Tsu] and [1986Zas]. Several works [1962Mar, 1963Gla, 1967Mar, 1967Hof, 1973Web, 1984End, 1993Nak] contributed to the crystal structure and the lattice parameter of the Heusler phase  $TiCo_2Al$ . The phase equilibria in the  $TiCo-TiCo_2Al$ -CoAl pseudo-binary section (Co = 50 at.%) were determined by [2002Ish1] using the diffusion couple method. The  $TiCo/TiCo_2Al$  and  $TiCo_2Al/CoAl$  couples were equilibrated for 2 days at  $1300^{\circ}C$ , 14 days for  $1200^{\circ}C$  and 21 days at  $1100^{\circ}C$ . From the concentration-penetration profiles obtained by EDS analysis, it was confirmed in the TiCo-CoAl pseudo-binary section that a continuous ordering from the CsCl (B2) type to Heusler ( $L2_1$ ) phase exist on both the TiCo and CoAl sides. The phase equilibria in the  $TiCo-TiCo_2Al$  section (Co = 52 at.%) were also investigated by [2003Kaw] correlating microstructures and mechanical properties. Their alloys were prepared by are melting and homogenized in a vacuum at  $1200^{\circ}C$  for 2 days, then annealed at  $700 - 900^{\circ}C$ . Transmission electron microscopic observation was carried out to detect the anti-phase domain structure introduced during the ordering reaction in the as-quenched alloys. These studies also confirmed the continuous ordering reaction in the  $TiCo-TiCo_2Al$  section.

A detailed refinement of the crystal structure of the  $\tau_2$  phase has been performed by [2003Gry] employing X-ray single crystal- and neutron powder diffraction as well as electron diffraction.

# **Binary Systems**

The binary systems Al-Co and Co-Ti compiled by [Mas] are used as boundary systems. The Al-Ti system [1989Pri] is based on the critical assessment of Murray [1987Mur], but corrected with the results [1989McC] for the range of 40 to 55 at.% Al and [1989Kal] for the range of 65 to 75 at.% Al. This phase diagram is shown in Fig. 1.

### **Pseudobinary Systems**

The TiCo-CoAl section is reported by [2002Ish1] and [2003Kaw] to be a pseudobinary one and shown in Figs. 12 and 13 by dashed lines.

# **Solid Phases**

The reported binary phases and the ternary phases are represented in Table 1. The solid solubility of Co in (Ti) and Ti\_3Al is less than 5 at.% Co at 800°C [1966Mar]. There are conflicting assumptions on the solid solution between TiCo and CoAl and the observation of the ternary Heusler phase TiCo\_2Al, which is an ordered form of the CsCl-solid solution "Co(Ti,Al)". Complete solid solubility is claimed by [1972Tsu], although the experimental points cover only the Co-rich part. An enthalpy vs concentration curve of the CoAl-TiCo section which shows no interruption by a two phase field was reported by [1986Zas]. Since the Heusler phase is a superstructure of the CsCl type, the distinction between both phases was possibly not well established. The ternary phase  $\tau_3$  [1979Sei] was not found by [1966Mar] and is outside the ranges investigated by other authors. But since similar phases exist in Al-Ni-Ti and Al-Cu-Ti [1965Ram], its existence is very probable. The solvus of the  $(\beta Ti)$  phase was determined by [1967Tsu], it is shown in Fig. 2. The refinement of the crystal strucure of the  $\tau_2$  phase gives as formula: Ti\_27.5Co\_23.4Al\_49.1 , its structure type has been determined as Mg\_6Cu\_16Si\_7, a filled variant of the Th\_6Mn\_23 type.

# Invariant Equilibria

The partial reaction scheme after [1972Tsu], corrected to the accepted binaries, is given in Fig. 3. A reaction scheme given by [1979Sei] is partially in contradiction to that of [1972Tsu] and to the accepted Al-Ti binary system. In the reaction scheme in Fig. 3 a continuous solid solution (Ti,Al)Co is assumed, from which the Heusler phase  $TiCo_2Al$  may form at lower temperatures.

MSIT®

Landolt-Börnstein New Series IV/11A1

### Liquidus Surface

The liquidus surfaces given by [1972Tsu] and [1979Sei] disagree in many details. That of [1972Tsu] is based on many more alloys and therefore is preferred in the construction of the liquidus surface in Fig. 4. The remaining parts given by [1979Sei] are based on so few alloys that they can be taken only as very tentative. Furthermore the phases TiCo<sub>3</sub> and the two different modifications of TiCo<sub>2</sub> are neglected in [1979Sei].

#### **Isothermal Sections**

The isothermal sections of 1300, 1200, 1100, 1000, 900, 800 and 600°C in the Ti-rich part by [1972Tsu], the Al-Ti corner by [2000Kai] and the Co-Ti by [2001Ish] are integrated in Figs. 5, 6, 7, 8, 9, 10 and 11, respectively. Because of the discrepancy between [1967Tsu, 1972Tsu, 1979Sei] and [1966Mar], the isothermal section of [1966Mar] at 800°C is not shown. For the same reason, the isothermal section at 1000°C by [1972Tsu] was replaced by one constructed on the basis of recent data [2000Kai, 2001Ish].

### **Temperature – Composition Sections**

Nine vertical sections were constructed by [1968Tsu] in the Ti-corner.

### **Thermodynamics**

Enthalpies of formation by solution calorimetry in liquid Al for five alloys of the section  $Ti_{1-x}CoAl_x$  were determined by [1986Zas]. The entropies of alloys of the  $Ti_{1-x}CoAl_x$  section were determined by [1987Kra] using low temperature (78 to 273 K) heat capacity measurements.

# **Notes on Materials Properties and Applications**

Magnetic measurements on the Heusler phase  $TiCo_2Al$  were made by [1973Web, 1983Bus, 1984End]. For alloy concentrations of  $Ti_{1-x}CoAl_x$  with x > 0.6 the ferromagnetic behavior changes to paramagnetic. The Curie temperature for the  $TiCo_2Al$  compound is determined as 134 K in [1983Bus] on a sample annealed at 527°C for 14 days.

The characteristic of the electrical resistivity of the  $Ti_{32}Co_{22}Al_{46}$  compound is typical metalic and the temperature dependence follows the Bloch-Grüneisen relation with a Debye temperature of ~300 K [2003Gry]. The residual resistivity for the  $Ti_{32}Co_{22}Al_{46}$  compound is 0.97 m $\Omega$ ·cm [2003Gry]. The  $Ti_{47}Co_{28}Al_{25}$  compound can absorb up to 0.8 wt.% hydrogen (8.57 mg) [2003Gry].

### Miscellaneous

The stability of the Heusler phase  $TiCo_2Al$  up to the liquidus surface (1750°C) is described by [1979Sei]. The phase stability of the  $L2_1$  phase in the  $TiCo-TiCo_2Al$ -CoAl quasibinary section was reported by [2002Ish2]. There, the (metastable) critical temperature of  $B2/L2_1$  order-disorder transition of stoichiometric  $TiCo_2Al$  was given as  $1827^{\circ}C$  and the two tri-critical temperatures of the  $B2+L2_1$  decompositions were estimated as about  $1127^{\circ}C$ . The critical compositions of the continuous ordering evaluated by [2002Ish2] are shown in Fig. 12 superimposed on the stable melting equilibria (dashed lines). Also shown are the assumed limits of both  $B2+L2_1$  two-phase fields [2002Ish2]. [2003Kaw] describes the ordering temperature vs composition for continuous ordering on the TiCo rich side of the section at 52 at.% Co from  $\sim$ 1300 down to 600°C but does not recognize the separation into two phases  $B2+L2_1$ , see Fig. 13.

### Note added in press

Phase equilibria at 950°C has been reported by [2000Din] based on EPMA, quantitative X-ray diffraction and optical microscopy data for arc-melted samples annealed at 950°C for 240 hours. Note: In this work the existence of the  $\tau_3$  phase has been confirmed in as-cast and annealed samples.

Landolt-Börnstein
New Series IV/11A1

MSIT®

### References

- [1962Mar] Markiv, V.Ya., Teslyuk, M.Y., "Crystal Structure of Ternary Compounds TiCo<sub>2</sub>Al, MgNi<sub>2</sub>Zn, TlNi<sub>2</sub>Zn and TiCu<sub>2</sub>Zn" (in Russian), *Dop. Akad. Nauk Ukr. RSR*, (12), 1607-1609 (1962) (Crys. Structure, 7)
- [1963Gla] Gladyshevskij, E.I., Markiv, V.Ya., Kuz'ma, Yu.B., Cherkashin, E.E., "Crystal Structure of Some Ternary Intermetallic Compounds of Titanium" (in Russian), *Titan. Splavy. Izv. Akad. Nauk SSSR*, Moskva, **10**, 71-73 (1963) (Crys. Structure, 10)
- [1965Ram] Raman, A, Schubert, K., "On the Structure of Some Alloy Phases Related to TiAl<sub>3</sub>. III. Investigations in Several T-Ni-Al and T-Cu-Al Alloy Systems (T = Transition Element)" (in German), *Z. Metallkd.*, **56**, 99-104 (1965) (Experimental, Crys. Structure, 14)
- [1966Mar] Markiv, V.Ya., "Phase Equilibrium in the Ti-Co-Al System", *Izv. Akad. Nauk SSSR, Met.*, (1), 156-158 (1966) (Experimental, Crys. Structure, Equi. Diagram, #, 10)
- [1967Hof] Hofer, G., Stadelmaier, H.H., "Cobalt-, Nickel- and Copper-Phases of the Ternary MnCu<sub>2</sub>Al Type" (in German), *Monatsh. Chem.*, **98**, 408-411 (1967) (Experimental, Crys. Structure, 9)
- [1967Mar] Markiv V.Ya., Kripyakevich, P.I., "Compounds of the Type R(X',X'')<sub>2</sub> in Systems with R=Ti, Zr, Hf, X'=Fe, Co, Ni, Cu and X''=Al, Ga and their Crystal Structures", *Sov. Phys. Crystallogr.*, **11**, 733-738 (1967), translated from *Kristallografiya*, **11**, 859-865 (1966) (Crys. Structure, 25)
- [1967Tsu] Tsujimoto, T., Adachi, M., "The Titanium-Rich Corner of the Ternary Ti-Al-Co System", J. Inst. Met., 95, 146-151 (1967) (Experimental, Equi. Diagram, 8)
- [1968Tsu] Tsujimoto, T., Adachi, M. "The Titanium-Rich Corner of the Ternary Ti-Al-Co System", Trans. Nat. Res. Inst. Met. (Jpn.), 10, 325-343 (1968) (Experimental, Equi. Diagram, 8)
- [1969Mar] Markiv, V.Ya., Burnashova, V.V., "New Ternary Compounds in the (Sc, Ti, Zr, Hf)-(V, Cr, Mn, Fe, Co, Ni, Cu)-(Al, Ga) Systems" (in Ukrainian), *Dop. Akad. Nauk Ukr. RSR, A*, (5), 463-464 (1969) (Crys. Structure, 12)
- [1969Tsu1] Tsujimoto, T., Adachi, M., "Reactions with the Melt in the Titanium-Rich Region of the Ternary Titanium-Aluminium-Cobalt System" (in Japanese), *Nippon Kinzoku Gakkaishi*, **33**, 606-611 (1969) (Experimental, Equi. Diagram, Crys. Structure, #, 19)
- [1969Tsu2] Tsujimoto, T., Adachi, M., "Reactions in the Solid State in the Titanium-Rich Region of the Ternary Titanium-Aluminium-Cobalt System" (in Japanese), *Nippon Kinzoku Gakkaishi*, **33**, 612-617 (1969) (Experimental, Equi. Diagram, 6)
- [1972Tsu] Tsujimoto, T., Adachi, M., "The Titanium-Rich Region of the Ternary Ti-Al-Co System", Trans. Nat. Res. Inst. Met. (Jpn.), 14, 178-188 (1972) (Experimental, Equi. Diagram, Crys. Structure, #, \*)
- [1973Web] Webster, P.J., Ziebeck, K.R.A., "Magnetic and Chemical Order in Heusler Alloys Containing Cobalt and Titanium", *J. Phys. Chem. Solids*, **34**, 1647-1654 (1973) (Crys. Structure, 26)
- [1979Sei] Seibold, A., "Determination of Ternary and Quaternary Systems of Titanium for the Development of Technical Appliable Casting Alloys" (in German), *Thesis*, Univ. Erlangen-Nürnberg, (1979) (Experimental, Equi. Diagram, #, 70)
- [1983Bus] Buschow, K.H.J., van Engen, P.G., Jongebreur, R., "Magneto-Optical Properties of Metallic Ferromagnetic Materials", *J. Magn. Magn. Mater.*, **38**, 1-22 (1983) (Magn. Prop., Optical Prop., 23)
- [1984End] Endo, K., Shinogi, A., Ooiwa, K., Date, M., Hiramoto, K., "The Transitions from Nonmagnetic State to Ferromagnetic State of Co is a Pseudobinary Alloy CoTi<sub>1-x</sub>Al<sub>x</sub>", *J. Phys. Soc. Jpn.*, **53**, 1487-1494 (1984) (Experimental, 12)
- [1986Zas] Zasypalov, Yu.V., Kiselev, O.A., Mogutnov, B.M., "The Enthalpies of Formation of Intermetallic Compounds  $CoTi_{1-x}Al_x$  and  $TiNi_{1-x}Co_x$  ( $0 \le x \le 1$ )" (in Russian), *Dokl. Akad. Nauk SSSR*, **287**, 158-161 (1986) (Thermodyn., 9)

MSIT<sup>®</sup>
Landolt-Börnstein
New Series IV/11A1

[1987Kra] Krasheninnikova, N.G., Mogutnov, B.M., Tomilin, I.A., Shaposhnikov, N.G., "Thermodynamic Properties of the Intermetallic Compounds  $(Ni_{0.5}Ti_{0.5})_x(Co_{0.5}Ti_{0.5})_{1-x}$  and  $(Co_{0.5}Ti_{0.5})_x(Co_{0.5}Al_{0.5})_{1-x}$  at Low Temperatures", *Russ. J. Phys. Chem.*, **61**, 1627-1630 (1987), translated from *Zh. Fiz. Khim.*, **61**, 3089-3093 (1987) (Experimental, Thermodyn., 10)

- [1987Mur] Murray, J.L., "Phase Diagrams of Binary Titanium Alloys" in "Series on Alloy Phase Diagrams", ASM Metals Park Ohio, (1987) (Equi. Diagram, Crys. Structure, Review, #, 93)
- [1989Kal] Kaltenbach, K., Gama, S., Pinatti, D.G., Schulze, K., "A Contribution to the Al-Ti Phase Diagram", *Z. Metallkd.*, **80**, 511-514 (1989) (Experimental, Equi. Diagram, Crys. Structure, #, 14)
- [1989McC] McCullough, C., Valencia, J.J., Levi, C.G., Mehrabian, R., "Phase Equilibria and Solidification in Ti-Al Alloys", *Acta Metall.*, **37**, 1321-1336 (1989) (Experimental, Equi. Diagram, Crys. Structure, #, 25)
- [1989Pri] Prince, A., "The Al-Ti Binary Phases Diagram", private communication (1989) (Equi. Diagram, Review)
- [1991Sch] Schmid, E.E., "Aluminium-Cobalt-Titanium", MSIT Ternary Evaluation Program, in *MSIT Workplace*, Effenberg, G. (Ed.), MSI, Materials Science International Services GmbH, Stuttgart; Document ID: 10.10909.1.20, (1991) (Equi. Diagram, Crys. Structure, Assessment, 21)
- [1993Nak] Nakayama, Y., Mabuchi, H., "Formation of Ternary L1(2) Compounds in Al<sub>3</sub>Ti-Base Alloys", *Intermetallics*, **1**, 41-48 (1993) (Crys. Structure, Experimental, Equi. Diagram, 40)
- [2000Din] Ding, J.J., Rogl, P., Schmidt, H., Podloucky, R., "Structure Chemistry and Constitution in TiAl-Based Intermetallics", *Visn. L'viv. Univ., Ser. Khim*, (39), 136-141 (2000) (Crys. Structure, 12)
- [2000Kai] Kainuma, R., Fujita, Y., Mitsui, H., Ohnuma, I., Ishida, K., "Phase Equilibria Among α (hcp), β (bcc) and γ (L1<sub>0</sub>) Phases in Ti-Al Base Ternary Alloys", *Intermetallics*, **8**, 855-867 (2000) (Experimental, Equi. Diagram, 29)
- [2001Ish] Ishikawa, K., Himuro, Y., Ohnuma, I., Kainuma, R., Aoki, K., Ishida, K., "Phase Equilibria in the Co-Ti Portion of the Co-Al-Ti Ternary System", *J. Phase Equilib.*, **22**, 219-226 (2001) (Experimental, Equi. Diagram, #, 10)
- [2002Ish1] Ishikawa, K., Mitsui, H., Ohnuma, I., Kainuma, R., Aoki, K., Ishida, K., "Ordering and Phase Separation of BCC Aluminides in (Ni, Co)-Al-Ti System", *Mat. Sci. Eng. A*, **329-331**, 276-281 (2002) (Experimental, Equi. Diagram, 11)
- [2002Ish2] Ishikawa, K., Kainuma, R., Ohnuma, I., Aoki, K., Ishida, K., "Phase Stability of the X<sub>2</sub>AlTi (X: Fe, Co, Ni and Cu) Heusler and B2-Type Intermetallic Compounds", *Acta Mater.*, **50**, 2233-2243 (2002) (Experimental, Equi. Diagram, 12)
- [2003Gry] Grytsiv, A., Ding, J.J., Rogl, P., Weill, F., Chevalier, B., Etourneau, J., Andre, G., Bouree, F., Noel, H., Hundegger, P., Wiesinger, G., "Crystal Chemistry of the G-Phases in the Systems Ti-{Fe, Co, Ni}-Al with a Novel Filled Variant of the Th<sub>6</sub>Mn<sub>23</sub>-Type", *Intermetallics*, **11**, 351-359 (2003) (Experimental, Crys. Structure, 26)
- [2003Kaw] Kawai, H., Kaneko, Y., Yoshida, M., Takasugi, T., "Microstructures and Mechanical Properties of CoTi(B2)-Co<sub>2</sub>AlTi (L2<sub>1</sub>) Pseudo-Binary Intermetallic Compounds", *Intermetallics*, **11**, 467-473 (2003) (Experimental, Equi. Diagram, Mechan. Prop., 17)

Landolt-Börnstein
New Series IV/11A1

MSIT®

Table 1: Crystallographic Data of Solid Phases

| Phase /<br>Temperature Range<br>[°C]    | Pearson Symbol/<br>Space Group/<br>Prototype                    | Lattice Parameters [pm]                                          | Comments/References                                      |
|-----------------------------------------|-----------------------------------------------------------------|------------------------------------------------------------------|----------------------------------------------------------|
| (A1) < 660                              | <i>cF4</i><br><i>Fm3m</i><br>Cu                                 | a = 404.88                                                       | 24°C [V-C]                                               |
| (γCo)(h)<br>1495-422                    | <i>cF4</i><br><i>Fm3̄m</i><br>Cu                                | a = 354.46                                                       | [V-C]                                                    |
| (εCo)(r)<br>< 422                       | hP2<br>P6 <sub>3</sub> /mmc<br>Mg                               | a = 250.71<br>c = 406.95                                         | [V-C]                                                    |
| (βTi)(h)<br>1670-882                    | cI2<br>Im3m<br>W                                                | a = 330.65                                                       | [V-C]                                                    |
| (αTi)(r)<br>< 882                       | hP2<br>P6 <sub>3</sub> /mmc<br>Mg                               | a = 295.08<br>c = 468.55                                         | [V-C]                                                    |
| Ti <sub>2</sub> Co < 1058               | <i>cF</i> 96<br><i>Fd3m</i><br>Ti₂Ni                            | a = 1130                                                         | [V-C]                                                    |
| TiCo <sub>2</sub> (c) < 1235            | cF24 <sup>a)</sup><br>Fd3m<br>MgCu <sub>2</sub>                 | a = 669.2                                                        | [V-C],<br>homogeneity range 66.5 to 67 at.% Co<br>[Mas]  |
| TiCo <sub>2</sub> (h)                   | hP24 <sup>a)</sup><br>P6 <sub>3</sub> /mmc<br>MgNi <sub>2</sub> | a = 473<br>c = 1541                                              | [V-C],<br>homogeneity range 68.75 to 72 at.% Co<br>[Mas] |
| TiCo <sub>3</sub> ≤ 1190                | cP4<br>Pm3̄m<br>CuAu₃                                           | a = 361.4                                                        | [V-C]                                                    |
| Co <sub>2</sub> Al <sub>5</sub> < 1172  | hP28<br>P6 <sub>3</sub> /mmc<br>Co <sub>2</sub> Al <sub>5</sub> | a = 767.15<br>c = 760.85                                         | [V-C]                                                    |
| Co <sub>4</sub> Al <sub>13</sub> ≤ 1100 | mC100<br>Cm<br>Co <sub>4</sub> Al <sub>13</sub>                 | a = 1518.3<br>b = 812.2<br>c = 1234.0<br>$\beta = 107.9^{\circ}$ | [V-C]                                                    |
| Co <sub>2</sub> Al <sub>9</sub> < 944   | mP22<br>P2 <sub>1</sub> /a<br>Co <sub>2</sub> Al <sub>9</sub>   | a = 855.6<br>b = 629.0<br>c = 621.3<br>$\beta = 94.76^{\circ}$   | [V-C]                                                    |
| TiAl <sub>3</sub> < 1395                | tI8<br>I4/mmm<br>TiAl <sub>3</sub>                              | a = 384.9<br>c = 861                                             | [1989Kal]                                                |

MSIT®

Landolt-Börnstein
New Series IV/11A1

|                                                                     |                            |                        | ~ ~ ~                                                                                |
|---------------------------------------------------------------------|----------------------------|------------------------|--------------------------------------------------------------------------------------|
| Phase /                                                             | Pearson Symbol/            |                        | Comments/References                                                                  |
| Temperature Range                                                   | Space Group/               | [pm]                   |                                                                                      |
| [°C]                                                                | Prototype                  |                        |                                                                                      |
| $Ti_9Al_{23}$                                                       |                            | a = 384.3              | superstructure of TiAl <sub>3</sub> [1989Kal]                                        |
| ≤ 780                                                               |                            | c = 3346.4             |                                                                                      |
| ξ, TiAl <sub>2.4</sub> (h)                                          | <i>tI</i> 16               | a = 391.7              | [1989Kal]                                                                            |
| 1415-990                                                            | I4/mmm                     | c = 1652.4             |                                                                                      |
|                                                                     | $ZrAl_3$                   |                        |                                                                                      |
| TiAl <sub>2</sub>                                                   | tI24                       | a = 397.6              | [1989Kal]                                                                            |
| < 1175                                                              | I41/amd                    | c = 2436               |                                                                                      |
|                                                                     | HfGa <sub>2</sub>          |                        |                                                                                      |
| TiAl                                                                | tP4                        | a = 401.1              | at 46 at.% Al [1989Kal]                                                              |
| < 1447                                                              | P4/mmm                     | c = 406.9              |                                                                                      |
|                                                                     | CuAu                       | a = 398.8              | at 62 at.% Al                                                                        |
|                                                                     |                            | c = 408.1              |                                                                                      |
| Ti <sub>3</sub> Al                                                  | hP8                        | a = 578.2              | [V-C]                                                                                |
| ≤ 1180                                                              | P6 <sub>3</sub> /mmc       | c = 462.9              |                                                                                      |
|                                                                     | Ni <sub>3</sub> Sn         |                        |                                                                                      |
| $\overline{(\mathrm{Ti}_{1-x}\mathrm{Al}_x)\mathrm{Co}}$            | cP2                        |                        | $0 \le x \le 1$                                                                      |
| TiCo                                                                | $Pm\overline{3}m$          | a = 299.5              | [V-C]                                                                                |
| < 1325                                                              | CsCl                       |                        |                                                                                      |
| CoAl                                                                |                            | a = 286.11             | [V-C]                                                                                |
| < 1648                                                              |                            |                        |                                                                                      |
| *τ <sub>1</sub> , TiCo <sub>2</sub> Al                              | cF16                       | a = 584.7              | [1962Mar], [1979Sei]                                                                 |
|                                                                     | $Fm\overline{3}m$          | a = 584.8              | [V-C]                                                                                |
|                                                                     | BiF <sub>3</sub>           |                        |                                                                                      |
| $*\tau_2$ , $Ti_{1+x}CoAl_{2-x}$                                    | cF116                      |                        | $0 \le x \le 1 \text{ [1972Tsu]}$                                                    |
|                                                                     | $Fm\overline{3}m$          | a = 1193               | TiCoAl <sub>2</sub> [1969Mar]                                                        |
|                                                                     | $\mathrm{Th_6Mn_{23}}$     |                        |                                                                                      |
|                                                                     | $\mathrm{Mg_6Cu_{16}Si_7}$ | $a = 1193.56 \pm 0.03$ | $Ti_{27.5}Co_{23.4}Al_{49.1}$ [2003Gry]; a filled variant of the $Th_6Mn_{23}$ -type |
| *τ <sub>3</sub> , ≈Ti <sub>8</sub> Co <sub>3</sub> Al <sub>22</sub> | cF4                        | a = 395                | Cu <sub>3</sub> Au-like [1979Sei]                                                    |

a) Possibly only one of the two TiCo<sub>2</sub> based Laves phases is a stable phase [Mas]

**Fig. 1:** Al-Co-Ti. Acceped Al-Ti phase diagram



**Fig. 2:** Al-Co-Ti. Solvus lines of the (βTi) phase field [1967Tsu]



 $MSIT^{\mathbb{R}}$ 

Fig. 3: Al-Co-Ti. Reaction scheme



**Fig. 4:** Al-Co-Ti. Liquidus surface



Landolt-Börnstein New Series IV/11A1  $\mathrm{MSIT}^{\circledR}$ 

**Fig. 5:** Al-Co-Ti. Isothermal section at 1300°C



**Fig. 6:** Al-Co-Ti. Isothermal section at 1200°C



 $MSIT^{\circledR}$ 

**Fig. 7:** Al-Co-Ti. Isothermal section at 1100°C



**Fig. 8:** Al-Co-Ti. Isothermal section at 1000°C



Landolt-Börnstein New Series IV/11A1  $\mathrm{MSIT}^{\circledR}$ 

**Fig. 9:** Al-Co-Ti. Isothermal section at 900°C



**Fig. 10:** Al-Co-Ti. Isothermal section at 800°C [1972Tsu]



 $MSIT^{\tiny{\circledR}}$ 

Al Data / Grid: at.%
Fig. 11: Al-Co-Ti.
Isothermal section at 600°C [1972Tsu]

20

80

Ti<sub>3</sub>Al

60

(OTi)

Ti<sub>2</sub>Co

2000 **Fig. 12: Al-Co-Ti.** TiCo - CoAl pseudobinary section [2002Ish1] 1750 L \_1640°C 1500 Temperature, °C 1325°C 1250 TiCo  ${\rm TiCo_2Al}$ CoAl 1000 750 500 -10 40 0.00 50.00 Со 50.00 **Co** 50.00 Al, at.% 50.00 ΑI 0.00 ΑI

Ti

Со

600 1 Ti 48.00 Co 52.00 Al 0.00



10

Al, at.%

 $MSIT^{\circledR}$ 

Ti 23.00 Co 52.00 Al 25.00

20