Spirality of particles, Screw in mechanics and one invariant of motions in E^3

Consider affine space E^3 , fix a point O (nachalo koordinat) we come to linear space IR^3 . To arbitrary motion \mathcal{A} in E^3 corresponds a pair (A, b) where A is orthogonal transformation of IR^3 and b is a vector: x' = Ax + b If we consider another nachalo koordinat O' such that vector OO' is equal to r then to the motion \mathcal{A} corresponds a pair (A, b'): y' = Oy + b' where x = y + r and

$$b' = b + Ar - r \tag{1}$$

At what extent vector b is defined iniquely for a given motion \mathcal{A} under a changing of nachalo coordinate? Let \mathbf{n} be axis corresponding to orthogonal operator A: linear transformation via A is rotation around axis \mathbf{n} , or in another words \mathbf{n} is eigen vector of A: $A\mathbf{n} = \mathbf{n}$

It is easy to see from (1) that the component of vector b orthogonal to \mathbf{n} can be vanished by suitable choice of r and component of b parallel to axis remains unchanged. Formally it follows from the fact that image of operator $A - \mathbf{id}$ is two-dimensional space $(\det(A-1)=0)$ orthogonal to b.

We come to the invariant of motions: projection of b on \mathbf{n} .

Statement

Every motion of E^3 can be expressed as rotation over axis and translation along this axis, i.e. screw movement (vintovoje dvizhenije).

Shag vinta-projection of b on n is invariant.

Infinitezimally to this invariant corresponds invariant in affine algebra of rotations and translation: scalar product **Lp** of operators of angual moment and moments.

This simple statement can be considered as geometrical interpretation of spirality...