

RESCUE ME

DÉVELOPPEMENT SYSTÈME CYBER-PHYSIQUES

Julien ORIOL - Romain PELLEGRINI - Wassim BARATLI - Léo MENDES - Clervie CAUSER - Louis DEDIEU (joyeux anniversaire)

NOTRE PROJET

- Application pour l'intervention d'un pompier
- Une seule appli qui centralise toutes les actions : Fiche patient, formulaire, rapports des interventions.
- Gestion des appareils connectés à l'appli et données enregistrées et récupérées par ces appareils dans le formulaire.
- Possibilité de reconnaissance vocale pour remplir le formulaire en temps réel pendant l'intervention
- Une GoPro connecté à l'appli pour récupérer les images de l'intervention

SIMPLIFIER, ACCÉLÉRER, AUTOMATISER

Personna

Grégory Oriol

35 ans, pompier urgentiste

Objectifs

- Assurer la sécurité des victimes
- Communiquer avec les équipes médicales
- Retranscrire ses observations et mesures au fil du temps

Difficultés

- Retenir toutes les informations sensibles pendant qu'il manipule
- Gérer l'utilisation de son temps lors des interventions

Attentes

- Simplicité d'utilisation
- Gain de temps Communication en temps réel
- Mobilité / accessibilité
- Sécurité des données

Pendant intervention

Remplissage à la main

Doit parfois prendre en photo

TO BE

Notre projet (idéal)

Samsung Galaxy
Watch 5 Pro

Caractéristiques :

- Bluetooth / 4G / Wifi
- 80 h d'autonomie
- 1.5 Gb RAM
- 16 Gb de stockage
- Exynos W920 Dual Core
 1.18GHz

GoPro HERO11 Black Mini

Caractéristiques:

- 1080p/24 fps
- 2h (1500mAh)
- Wifi/Bluetooth
- RTMP

Oxymètre de pouls Nonin Onyx Vantage 9590

Caractéristiques :

- SpO2: ±2%
- 48h (2 piles AAA)
- BLE
- fréquence 1 mesure/seconde

Notre projet (idéal)

Braun ThermoScan® 7+ connect

Caractéristiques:

- BLE
- 48 h d'autonomie (2 piles AA)
- Format de données: HLV v2.6
- Fréquence: 1 mesure/s

Tensiomètre OMRON EVOLV

Caractéristiques :

- BLE
- Batterie: 300 mesures
- Format de données: IEEE 11073-10407 (standard médical
- Fréquence: à la demande

Objectifs:

- Centralisation des outils pour récolter les informations
- Rapidité opérationnelle
 - Simplification des procédures d'intervention

Hypothèses

Dispositifs à centraliser:

- Thermomètre
- Oxymètre
- Tensiomètre
- Caméra

Temps moyen d'intervention : 45 minutes

Ne veut pas transporter de batterie encombrante sur le terrain.

C'est une infirmière qui recevra le formulaire envoyée.

Matrice des risques

Architecture

Notre projet (POC)

Montre connectée

Téléphone

Démonstration

Retours d'expérience

Définition de l'architecture

- Étape fastidieuse mais nécessaire
- Construction d'une archi complète
- Très intéressant à réaliser
- Recherche des dispositifs à utiliser

Mise en oeuvre du POC

- Léo: Archi
- Louis : Mise en oeuvre du projet de base
- Oriol : Speech-To-Text
- Clervie : Formulaire + Lien dispositifs
- Romain : Caméra
- Wassim : Génération PDF
- Projection: Tester l'appli avec les vrais dispositifs.

Sources

Gopro Hero mini 11
Thermomètre 7+ connect

Les technologies (Idéal): Dispositifs

SQLite

- Parfaitement adapté pour le stockage local temporaire des données capteurs en cas de perte de connexion
- Performances optimales pour les opérations de lecture/écriture fréquentes des données des capteurs
- Faible empreinte mémoire, crucial pour les dispositifs embarqués avec ressources limitée

Alternative: Une base de données en mémoire comme Redis mais consomme trop

Serveur NTP

- Garantit la synchronisation précise des horodatages entre tous les dispositifs
- Essentiel pour la corrélation temporelle des données médicales
- reconstruction fidèle de la chronologie des événements

Alternative: GPS mais consomme beaucoup

Les technologies (Idéal): Dispositifs

Codes embarqués en C++ sur la montre:

- Support natif des protocoles de communication bas niveau
- Gestion fine de la mémoire et des ressources

Les technologies (Idéal): Mobile

2 DB SQLite

- Métier et données temporelles
- Optimise la maintenance et les performances
- La résilience est améliorée : un problème sur une base n'affecte pas l'autre

Alternative: Une seule base avec partitionnement → complexifierait les requêtes et donc les performances

React Native

- Développement cross-platform (iOS/Android) avec une base de code unique
- Large écosystème de composants
- Expo avec sa rapidité de déploiement et de développement

Alternative: Flutter mais écosystème de composants moins riche

Les technologies (Idéal): Mobile

Exoplayer

 Support natif du protocole RTMP utilisé par la GoPro

Alternative: WebRTC qui est performant pour le streaming P2P mais il faudrait convertir le flux RTMP

Les technologies (Idéal): Backend

Architecture microservices

- Scaling indépendant des services (alertes, formulaires)
- Isolation des responsabilités pour la sécurité

RabbitMQ

- Support multi-protocoles (MQTT/AMQP)
- Garantie de livraison des messages avec QoS configurable
- MQTT: mobile vers backend
- AMQP: du broker vers les microservices

Alternative: Architecture monolithique serait plus simple mais moins adaptée à l'évolution du système

Alternative: Apache

Les technologies (Idéal): Backend

MongoDB

- Stockage flexible des formulaires et données non structurées
- Performances en lecture

InfluxDB

- Optimisé pour les séries temporelles
- Requêtes performantes sur les plages temporelles

Alternative: PostgreSQL mais moins flexible pour modifier les schémas

Alternative: TimescaleDB

Les technologies (Idéal): Backend

Bucket S3

- Stockage des vidéos
- Facilité d'accès

Alternative: stockage NAS

BIOGRAPHIE

Pompier urgentiste et chef d'équipe de 35 ans avec 12 ans d'expérience, Grégory est un homme d'action déterminé à sauver des vies efficacement, et souhaiterait voir sa charge administrative allégée lors de ses interventions.

chef d'équipe sur le terrain

SUPPORTS UTILISES

Expression emblématique

Je suis surchargé lors de mes interventions

EXPERTISE Gestion de l'urgence Utilisation des équipements médicaux portables Coordination d'équipe

AIME

- Travail en équipe
- Se sentir utile
- Technologies pratiques

N'AIME PAS

- Bureaucratie
- Matériel encombrant
- Outils complexes

Simplicité d'utilisation

Mobilité / accessibilité

Sécurité des données

interventions

Gain de temps
Communication en

temps réel

ATTENTES

