Universität Osnabrück / FB6 / Theoretische Informatik

Prof. Dr. M. Chimani

Informatik D: Einführung in die Theoretische Informatik Klausur — SoSe 2014 — 30. Juli 2014

Haupttermin, Prüfungsnr. 1007049 Gruppe: Nudeln (Spaghetti, Bami-Goreng)

	Unbedingt	ausfüllen		
Matrikelnummer	Studiengang/Abs	chluss	Fachsemeste	er
Nachname		Vorname		
Unterschrift		Identifikator	(Beliebiges Wort zur Identifikation im anonymen Notenaushang))

Grundregeln

- Die Bearbeitungszeit der Klausur beträgt 120 Minuten.
- Sie schreiben diese Klausur vorbehaltlich der Erfüllung der Zulassungsvoraussetzung. Das heißt: Wir werden Ihre Zulassung vor Korrektur prüfen; die Tatsache, dass Sie die Klausur mitschreiben, bedeutet keine implizite Zulassung.
- Es sind keine Unterlagen und auch keine anderen Hilfsmittel erlaubt.
- Benutzen sie nur dokumentenechten (blauen oder zur Not schwarzen) **Kugelschreiber!** Bleistiftlösungen werden nicht gewertet!
- Es zählt die Antwort, die sich im dafür vorgesehenen Kästchen befindet! Soll eine andere Antwort gewertet werden, so ist diese **eindeutig** zu kennzeichnen! Falsche Kreuzchen können zu Punkteabzug innerhalb der Teilaufgabe führen.
- Jegliches Schummeln, und auch der Versuch desselben, führt zum Ausschluss von der Klausur und einer Bewertung mit 5,0.

Kla	usur u	nd eine	r Bewe	rtung	mit 5	5, 0.								
			Wir	d von	n Kor	rekt	or/Pr	üfer a	ausge	efüllt	- -			
Au	ıfgabe		1	2	3	4	5	6	7	8	9	10	\sum	
Pu	nkte (1	max)	12	12	16	12	10	12	12	12	20	12	130	
	nkte reicht)													
Punkte	064	6572	7379	8084				96100	101.		10611			8130
Note	5,0	4,0	3,7	3,3	3,0) 2	2,7	2,3	2,	,0	1,7]	1,3	1,0
				Note:										

(\mathbf{a})) Hierarchie	und	Automaten
----------------	--------------	-----	-----------

(10 Punkte)

Zu jeder Sprache gibt es entsprechende Automaten. Vervollständigen Sie die folgende Tabelle:

Automaten	Chomsky-Typ	Name der Sprachfamilie
NLBA		
		rekursiv aufzählbar
	3	

${ m (b)} { m Grammatikdefinition}$

(2 Punkte)

Definieren Sie kontextsensitive Grammatiken (für Sprachen L mit $\varepsilon \notin L$).

	` -	, ,	
Alle Regeln haben die Form			

Aufgabe 2: Sprachen

(12 Punkte)

Welche Aussagen stimmen?

(Achtung: Pro Frage gibt es +2/0/-2 Punkte bei einer richtigen/keinen/falschen Antwort! Sie erhalten jedoch natürlich mindestens 0 Punkte für die gesamte Aufgabe.)

korrekt	falsch	
		Jede endliche Menge kann das Alphabet einer Sprache sein.
		Das Alphabet einer Sprache muss endlich sein.
		Die Potenzmenge von Σ^* ist wieder Σ^* .
		Deterministische Kellerautomaten, die maximal ein Symbol im Keller speichern können, sind nur so mächtig wie deterministische endliche Automaten.
		Man kann jeden nicht-deterministischen Kellerautomat so umformen, dass der Keller immer maximal 2 Elemente enthält.
		Die Sprache $\{b^j a^i a^j c^i i, j \ge 0\}$ ist kontextfrei.

Aufgabe 3: Pump	oing Lemma	(16 Punkte)
(a) Definition Wie lautet das	s Pumping Lemma für reguläre Sprachen?	(4 Punkte)
(b) Anwendung Beweisen Sie, o	dass $\{1^i 2^{4j} 3332^j \mid i, j \geq 0\}$ keine reguläre Sprache ist.	(12 Punkte)

	Aufgabe 4:	RegEx	vs.	DEA
--	------------	-------	-----	-----

(12 Punkte)

Geben Sie einen	deterministischen	endlichen	Automaten	an, d	der dem	folgenden	regulären	Aus-
druck entspricht:	:							

druck entspricht: $(a^* ac^*a \varnothing^*)b$
(Es gibt genug Platz, damit Sie Zwischenschritte aufschreiben können. Markieren Sie Ihr Endergebnis bitte entsprechend.)

Aufgabe 5: Kellerautomat	(10 Punkte)
Geben Sie für die Sprache $\{0^i31^k32^{i-k}\mid 0\leq k\leq i\}$ einen Keller akzeptiert.	
Aufgabe 6: Rechnende Turingmaschine	(12 Punkte)
Aufgabe 6: Rechnende Turingmaschine Gegeben eine binär kodierte Zahl α . Geben Sie eine Turingmaschine	
Gegeben eine binär kodierte Zahl α . Geben Sie eine Turingmac berechnet:	
Gegeben eine binär kodierte Zahl α . Geben Sie eine Turingmac berechnet:	
Gegeben eine binär kodierte Zahl α . Geben Sie eine Turingmac berechnet:	
Gegeben eine binär kodierte Zahl α . Geben Sie eine Turingmac berechnet:	
Gegeben eine binär kodierte Zahl α . Geben Sie eine Turingmac berechnet:	
Gegeben eine binär kodierte Zahl α . Geben Sie eine Turingmac berechnet:	
Gegeben eine binär kodierte Zahl α . Geben Sie eine Turingmac berechnet:	(12 Punkte) hine an, die die folgende Funktion

(a)	LOOP-Programm
-----	---------------

(8 Punkte)

Geben Sie ein LOOP-Programm an (eingeschränkte Definition, d.h. keine Addition von Variablen oder höhere Rechenoperationen), dass der folgenden Codezeile entspricht:

$$x_3 := 2 \cdot x_2 \cdot x_1$$

Mächtigkeit	(4 Punkte)

(b) Mächtigkeit	(4 Punkte)
-----------------	------------

Begründen Sie, warum LOOP-Programme nicht Turing-vollständig sind.

Aufgabe 8: Entscheidbarkeit

(12 Punkte)

Wir definieren das Ergebnis des $Klebeoperators \otimes$ als die Zahl, die durch das Hintereinanderschreiben der Dezimaldarstellungen ihrer einzelnen Argumente repräsentiert wird. Wir können mehrere Klebeoperationen gesammelt schreiben, z.B.

$$\bigotimes_{i=1}^{4} i^{3} = 1 \otimes 8 \otimes 27 \otimes 64 = 182764.$$

Betrachten Sie das folgende Problem:

Gegeben: Eine Menge \mathcal{M} :=	$=\{(x_i,y_i,$	$(z_i)\}_{1 \le i \le m}$	von m 3-	Tupeln,	wobei x_i	$y_i, z_i \in \mathbb{N}$	[,
Frage: Gibt es einen Vektor	$v[1 \dots n]$	$mit n \ge 1$	und $v[i]$	$\in \{1, \dots$	$., m$ } für	alle $1 \le i$	$i \leq n,$
so dass	n	n	n				

$$\bigotimes_{i=1}^{n} x_{v[i]} = \bigotimes_{i=1}^{n} y_{v[i]} - \bigotimes_{i=1}^{n} z_{v[i]}.$$
 ("Gleichung")

(a)	Beispiele		(4 Punkte)
	Geben Sie jeweils ein Beispiel einer Ja- ur	nd eir	ner Nein-Instanz für dieses Problem an:
	Ja-Instanz		Nein-Instanz

(b) Unentscheidbarkeit

(4 Punkte)

Beschreiben Sie kurz die notwendige Reduktion (von? nach? wie?) um zu begründen, warum das Problem nicht entscheidbar ist:

c) Semi-Entscheidbarkeit	(4 Punkte
Zeigen Sie, dass das Problem semi-entscheidbar is	rt:
	7 ·
ıfgabe 9: P vs. NP	(20 Punkte
a) Definition	(4 Punkte
Definieren Sie die Komplexitätsklasse NP .	(11 333300
Dominion die die Hompiesteasse W.	

korrekt	falsch	
		Das Problem "Finde die größte aus m gegebenen Zahlen." liegt in ${\it F}$
		Das Problem "Gegeben ein Graph mit Kantenkosten und eine Zah K . Kann man einen Baum mit Maximalkosten K finden, der alle Knoten enthält?" ist NP -vollständig.
		Das Problem "Gegeben ein Graph auf $n \geq 4$ Knoten. Kann mar einen Hamiltonkreis finden, der maximal $n/2$ Kanten enthält?" lieg in P .
		Wenn ein schwach NP -vollständiges Problem einen pseudopolynomi ellen Algorithmus erlaubt, gilt $P=NP$.
		Sei $\mathcal A$ ein Optimierungsproblem und $\mathcal B$ das zugehörige Entscheidungsproblem. Wenn $\mathcal B\in \mathcal P$ kann $\mathcal A$ dennoch $\mathcal NP$ -schwer sein.
Zeuge		(6 Punk
J	teht ma	(6 Punk n, wenn man über ${\pmb P}$ und ${\pmb N}{\pmb P}$ spricht, unter einem $Zeugen$?
Was verst		`
Was verst		n, wenn man über P und NP spricht, unter einem Zeugen?
Was verst		n, wenn man über P und NP spricht, unter einem Zeugen?
Was verst		n, wenn man über P und NP spricht, unter einem Zeugen?
Was verst		n, wenn man über P und NP spricht, unter einem Zeugen?
Was verst		n, wenn man über P und NP spricht, unter einem Zeugen?
Was verst		n, wenn man über P und NP spricht, unter einem Zeugen?
Was verst		n, wenn man über P und NP spricht, unter einem Zeugen?
Was verst	ndige!) I	n, wenn man über P und NP spricht, unter einem Zeugen? Definition:
Was verst	ndige!) I	n, wenn man über P und NP spricht, unter einem Zeugen?
Was verst	ndige!) I	n, wenn man über P und NP spricht, unter einem Zeugen? Definition:

(10 Punkte)

(b) Basiszusammenhänge

Aufgabe 10: NP-vollständig

(12 Punkte)

Sie kennen das Problem Sat, in dem eine Formel in konjunktiver Normalform gegeben ist, und jede Klausel *mindestens* ein Literal enthält. Sie kennen auch den Spezialfall des 3-Sat, in dem jede Klausel *maximal* drei Literale enthält. Wir definieren nun das folgende Problem:

Gegeben: Exakt-4-SAT Gegeben: Eine aussagenlogische Forme Literalen pro Klausel.	el F in konjunktiver Normalform mit $genau$ vier
Frage: Ist F erfüllbar?	
Um zu zeigen, dass Exakt-4-SAT NP -vol	llständig ist, zeigt man im Normalfall, dass
	und \square in $Co\text{-}NP$ liegt. \square P -vollständig ist. \square NP -schwer ist. \square nicht NP -schwer ist. \square P -
Punkt A ist trivial, daher beschränken wir und über das □ von dem □ zu dem H	uns auf Punkt B. Dazu benötigen wir eine Reduktion Problem □ SAT □ 3-SAT □ CLIQUE .
	begründen Sie ihre notwendigen Eigenschaften und