

PATENT ABSTRACTS OF JAPAN

(11)Publication number : 03-244630

(43)Date of publication of application : 31.10.1991

(51)Int.CI.

C08G 61/00
H05B 33/14

(21)Application number : 02-043930

(22)Date of filing : 23.02.1990

(71)Applicant : SUMITOMO CHEM CO LTD

(72)Inventor : NAKANO TSUYOSHI

DOI HIDEJI

NOGUCHI MASANOBU

ONISHI TOSHIHIRO

(54) ORGANIC ELECTROLUMINESCENT ELEMENT

(57)Abstract:

PURPOSE: To obtain an organic electroluminescent element which can be easily formed into a thin film and has a large area and a high luminous efficiency by using a conjugated polymer having specified repeating units as a luminescent layer.

CONSTITUTION: An organic electroluminescent element having a luminescent layer between a pair of electrodes at least one of which is transparent or translucent, wherein a conjugated polymer having repeating units of the formula (wherein Ar is a 6C or higher aromatic hydrocarbon group or a ring-substituted group derived by introducing 1-2 substituents of 1-22C hydrocarbon groups or 1-22C alkoxy groups into the aromatic hydrocarbon group) is used as the luminescent layer. When this polymer is used as a luminescent material, an organic electroluminescent element which can be easily formed into an even thin film by spin coating or casting and has a large area and a high luminous efficiency can be obtained. It can be desirably used as a surface illuminant as a backlight or a device such as a flat panel display.

LEGAL STATUS

[Date of request for examination]

[Date of sending the examiner's decision of rejection]

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number]

[Date of registration]

[Number of appeal against examiner's decision of rejection]

[Date of requesting appeal against examiner's decision of rejection]

[Date of extinction of right]

Copyright (C) 1998,2003 Japan Patent Office

BEST AVAILABLE COPY

⑨ 日本国特許庁 (JP) ⑩ 特許出願公開
 ⑪ 公開特許公報 (A) 平3-244630

⑫ Int. Cl.⁵
 C 08 G 61/00
 H 05 B 33/14

識別記号 NLF
 庁内整理番号 8215-4J
 8815-3K

⑬ 公開 平成3年(1991)10月31日

審査請求 未請求 請求項の数 1 (全5頁)

⑭ 発明の名称 有機エレクトロルミネッセンス素子

⑮ 特 願 平2-43930
 ⑯ 出 願 平2(1990)2月23日

⑰ 発 明 者 中 野 強	茨城県つくば市北原 6 番 住友化学工業株式会社内
⑰ 発 明 者 土 居 秀 二	茨城県つくば市北原 6 番 住友化学工業株式会社内
⑰ 発 明 者 野 口 公 信	茨城県つくば市北原 6 番 住友化学工業株式会社内
⑰ 発 明 者 大 西 敏 博	茨城県つくば市北原 6 番 住友化学工業株式会社内
⑰ 出 願 人 住友化学工業株式会社	大阪府大阪市中央区北浜4丁目5番33号
⑰ 代 理 人 弁理士 諸石 光熙	外1名

明 細 書

1. 発明の名称

有機エレクトロルミネッセンス素子

2. 特許請求の範囲

(1)少なくとも一方が透明または半透明である一対の電極間に発光層を有する有機エレクトロルミネッセンス素子において、該発光層として、一般式

(Arは炭素数8以上の芳香族炭化水素基、あるいは該芳香族炭化水素基に炭素数1~22の炭化水素基、または炭素数1~22のアルコキシ基を1ないし2個置換した核置換体基を表す。)で示される繰り返し単位を有する共役系高分子を用いることを特徴とする有機エレクトロルミネッセンス素子。

3. 発明の詳細な説明

(産業上の利用分野)

本発明は、有機エレクトロルミネッセンス素子に関するものであり、詳しくは、作製方法が簡便

で安価な各種表示装置の発光体として用いられる有機エレクトロルミネッセンス素子に関するものである。

〔従来の技術〕

有機蛍光材料を用いたエレクトロルミネッセンス素子(以下EL素子という)は、無機EL素子にくらべ、駆動電圧が低くて輝度が高く、どのような色の発光も容易に作ることができるという特徴があり、多くの試みが報告されていた。

〔発明が解決しようとする課題〕

これまで報告してきた有機物EL素子は発光層を真空中で蒸着することにより作製していた。

しかしながら、真空蒸着法では大量生産に向かず、また大面積の素子を作製するには限度があった。また、EL素子をLCDなどの非発光性のバックライト照明として用いる場合、大面積化の要求は大きく、大量生産も必要である。ところが、これまでよく用いられているトリス(8-ヒドロキシノリン)アルミニウムやアントラゼン等の有機物低分子蛍光物質を発光層に用いた場合、単独

の物質では塗布による薄膜化は容易ではない。したがって、EL素子のために薄膜を作製しようとすると、真空蒸着法等、限られた製膜方法しか取り得なかった。また、ポリビニルカルバゾールを代表とした高分子半導体にペリレンやトリフェニルブタジエンなどの蛍光物質を分散させたものをスピンドルティングしてEL素子の発光層にする試みがある (Polymer., 24, 748(1983)) が、膜の強度や均一な発光面を得るのに問題がある。

〔課題を解決するための手段〕

従来、導電性高分子として検討されている共役系高分子の中で蛍光を示すものがあることに着目して脱電検討した結果、共役鎖の短いものを発光材料として用いると、スピンドルティング法やキャスト法等によって簡便に薄膜化が可能で、しかも大面積で発光効率の高いEL素子が得られることを見出しつつ、本発明に到達した。

すなわち、本発明は、一般式 (I)

(Arは炭素数6以上の芳香族炭化水素基、あ

るいは該芳香族炭化水素基に炭素数1~22の炭化水素基、または炭素数1~22のアルコキシ基を1ないし2個置換した核置換体基を表す。) で示される繰り返し単位を有する共役系高分子を発光層として用いることを特徴とする有機エクトラルミネッセンス素子 (以下有機EL素子と呼ぶ) を提供することにある。

以下に本発明について詳細に説明する。

本発明の有機EL素子の発光層として用いる一般式 (I) に示す共役系高分子の合成法は特に限定されないが、例えば以下に述べるよういくつかの方法を用いることができる。

特開昭59-199746および特開平1-254734号公報に記載されているスルホニウム塩分解法では一般式 (II)

(Arは炭素数6以上の芳香族炭化水素基、または炭素数4以上のヘテロ環芳香族炭化水素基、Bは $\begin{array}{c} S^+ \\ | \\ R_1 \quad R_2 \end{array} X^-$ (R₁およびR₂は炭素数1~

8のアルキル基、X⁻は対イオン) を表す。) で示されるモノマーを水溶液中、約0℃でアルカリと反応させることにより得られる側鎖にスルホニウム塩を有する共役系高分子の中間体、それをアルコール溶媒と反応させることにより得られるアルコキシ基を側鎖に有する高分子中間体、あるいはスルホニウム塩を有する共役系高分子の中間体に芳香族スルホン酸を反応させることにより得られるスルホン酸塩を側鎖に有する高分子中間体を熱処理することにより一般式 (I) に示される共役系高分子を得ることができる。

次に、特開昭59-199746号公報に記載の脱ハロゲン化水素法では一般式 (III)

(Arは炭素数6以上の芳香族炭化水素基、または炭素数4以上のヘテロ環芳香族炭化水素基、X₁はハロゲンを表す。) で示されるジハロゲン化合物を溶液中で、t-ブリトキシカリウムなどのアルカリにより縮合することにより一般式 (I) の共役系高分子を得ること

ができる。

Wittig反応法では、上記一般式 (III) で示されるジハロゲン化合物にトリフェニルホスフィンなどを作用させ、ホスホニウム塩としてこれをジアルデヒド化合物(CHO-Ar-CHO, Arは上記のものと同様)を反応させて一般式 (I) の共役系高分子が得られる。

以上の合成方法のうちで、スルホニウム塩分解法、脱ハロゲン化水素法が、発光材料により適した、重合度が比較的高く、共役鎖長の比較的短い共役系高分子が得られるので好ましい。

上記の共役系高分子中の炭素数6以上の芳香族炭化水素基としては炭素数6以上の芳香環化合物、あるいはその核置換体が好ましい。炭素数6以上の芳香環化合物としてはローフェニレン、2,6-ナフタレンジイル、5,10-アントラセンジイルが例示され、好ましくはp-フェニレンである。核置換芳香族炭化水素基としては炭素数1~22の炭化水素基または炭素数1~22のアルコキシ基を1ないし2個核置換したものが好適に用いられる。

置換基である炭素数1～22の炭化水素基置換基としてはメチル、エチル、プロピル、ブチル、ベンチル、ヘキシル、ヘプチル、オクチル、ラウリル、オクタデシル基などが例示される。また、炭素数1～22のアルコキシ基としてはメトキシ、エトキシ、プロピルオキシ、ベンチルオキシ、ヘキシルオキシ、ヘプチルオキシ、オクチルオキシ、ラウリルオキシ、オクタデシルオキシ基等が例示される。核置換芳香族基について、より具体的にはモノメチル-p-フェニレン、モノメトキシ-p-フェニレン、2,5-ジメチル-p-フェニレン、モノエチル-p-フェニレン、2,5-ジエトキシ-p-フェニレン、2,5-ジエチル-p-フェニレン、モノブチル-p-フェニレン、モノブトキシ-p-フェニレン、モノブチル-p-フェニレン、2,5-ジブトキシ-p-フェニレン、2,5-ジヘプチル-p-フェニレン、2,5-ジヘプトキシ-p-フェニレン、2,5-ジオクチル-p-フェニレン、2,5-ジオクトキシ-p-フェニレン、2,5-ジ

ラウリル-p-フェニレン、2,5-ジラウリルオキシ-p-フェニレン、2,5-ジステアリル-p-フェニレン、2,5-ジステアリルオキシ-p-フェニレン等が例示される。

p-フェニレン、p-フェニレン核置換体が発光輝度の高い有機ELを与えるので好ましい。

使用する一般式(I)の共役系高分子をスピニコート法あるいはキャスト法で均一な薄膜を得るにはその分子量は十分高いことが必要である。重合度は5以上であり、より好ましくは10～50000である。具体的にはゲルバーミエションクロマトグラフィーによる分子量測定において分子量2800の標準ポリスチレンに相当する溶媒溶出位置以前に溶出する高分子量を有するものがより効果的である。

スルホニウム塩分解法で得られる高分子中間体を用いる場合には、共役系高分子に転換するために側鎖の脱離処理を行う。脱離処理として光エネルギー、熱を与える方法が一般的であるが、加熱処理が好ましい。側鎖の熱脱離処理によって共役

鎖長を形成させる際、熱処理温度によって共役鎖長を規定できる。すなわち、ある一定の温度以下であれば熱処理温度が高いほど共役鎖長が長くなる。したがって熱処理温度としては共役鎖長を調節するため、一般的に、発光材料として用いる場合は比較的共役鎖長が短い方が好ましいので低温加熱処理を行うのが好ましい。具体的な熱処理温度例としてポリ-p-フェニレンビニレンスルホニウム塩中間体を挙げると、発光材料として用いる場合は室温～200℃で熱処理を行うのが好ましい。熱処理時間については、側鎖の脱離反応が起こる時間であれば特に制限はなく、一般的には10分～20時間、好ましくは30分～8時間程度である。熱処理する際の雰囲気については、高分子フィルムの変質が起こらない雰囲気、特に酸素、空気による酸化反応が起こらない雰囲気であれば特に限定されず、一般的にはN₂、Ar、He等の不活性ガス雰囲気であり、また真空下あるいは不活性媒体中であってもよい。

高分子中間体スルホニウム塩の対イオンX⁻につ

いては、Cl⁻、Br⁻等のハロゲンイオン、さらにそのハロゲンイオンを置換することによって、BF₄⁻、p-トルエンスルホン酸イオン等の化合物イオンとしてもできる。対イオンの種類によって高分子中間体スルホニウム塩の性質は異なり、ハロゲンイオンを例にとればCl⁻よりもBr⁻が対イオンである方が熱脱離反応が起きやすい。対イオンがBF₄⁻の場合にはN,N-ジメチルホルムアミド等の有機溶媒可溶となり、p-トルエンスルホン酸イオンの場合には高分子スルホニウム塩中間体側鎖をアルコキシ基化することが可能である。

本発明のEL素子の構造を第1図に示す。EL素子の製造過程で用いる透明な薄膜電極としては導電性の金属酸化物膜、半透明の金属薄膜等が用いられる。この電極の材料として具体的には、インジウム・スズ・オキサイド(ITO)、酸化スズ(NESA)、Au、Pt、Ag、Cu等が用いられ、膜厚としては50Å～1μm程度、好ましくは、100Å～500Å程度であり、作製方法としては、真空蒸着法、スパッタリング法、メッキ法などが用い

られる。

上記の共役系高分子の発光層は、一般式(1)で示される高分子中間体の溶液を電極上にスピンドティング法、キャスト法で薄膜を形成することができる。また、共役系高分子自体が溶媒に可溶な場合は、共役系高分子の溶液を同様にして薄膜を形成することできる。

発光層の膜厚は特に限定されないが、たとえば50Å～10μm、電流密度を上げて発光効率を上げるために好ましくは100Å～1μmである。

本発明の有機EL素子は例えば第1図で示すように、透明基板1上に前記の透明電極2、共役系高分子の発光層3、電極4を順次設けることにより得られるが、より発光効率を上げる目的で電荷輸送体層を該発光層の片側または両側に設ける、すなわち、透明電極上に(発光層/電荷輸送層)、(電荷輸送層/発光層)または(電荷輸送層/発光層/電荷輸送層)を設ける構造をとることもできる。

電荷輸送層としては、例えば特開昭59-194393

号公報等に記載の公知の化合物を用いることができる。具体的にはトリフェニルジアミン誘導体、ペリレン誘導体等が好ましく挙げられる。さらにポリ-2,5-チエニレンビニレン等の共役系高分子等も用いることができる。

本発明のEL素子の電子注入陰極の材料としては、Al、In、Mg、Mg-Ag合金、In-Ag合金、グラファイト薄膜等のイオン化エネルギーの小さい金属が好ましく用いられる。膜厚は50Å～1μmの素子をできる限り薄くするために好ましくは、500Å～1000Åで、作製方法としては真空蒸着法、スパッタリング法等が用いられる。

〔発明の効果〕

本発明のEL素子における発光層は熱的に安定であり、共役系高分子中間体あるいは共役系高分子は有機溶媒に可溶であり賦形性に富み、素子作製が容易に行える。

本発明によるEL素子によれば、バックライトとしての面状光源、フラットパネルディスプレイ等の装置として好適に使用される。

〔実施例〕

以下、実施例により本発明を具体的に説明するが、本発明はこれらによって何ら制限されるものではない。

実施例 1

特開平1-79217号公報に記載の方法に従い、2,5-ジヘプチルオキシ-p-キシリレンジプロミドをt-ブートキシカリウムで縮重合して、ポリ-2,5-ジヘプチルオキシ-p-フェニレンビニレン(HO-PPV)を得た。このクロロホルム溶液、ITO薄膜をスパッタリングによって200Åの厚みで付けたガラス基板上に回転数2000rpmのスピンドティング法により1000Åの厚みで塗布し、発光層とした。さらに、その上にAl電極を蒸着によって1000Åの厚みで作製した。ITO電極、Al電極には銀ペーストで端子をとり、エポキシ樹脂で固定した。

作製した有機EL素子に、電圧40Vを印加したところ、2.5mA/cm²の電流密度で、輝度0.06cd/m²の黄橙色の発光が確認された。発光スペクトル

のピーク波長は580nmでHO-PPVスピンドティング薄膜の蛍光のスペクトルと一致していた。また、発光強度は電流密度に比例して増加した。

実施例 2

特開平1-9221号公報に記載の方法に従い、2,5-チエニレンジスルホニウムプロミドをアルカリで重合し、メタノールと反応させてポリ-2,5-チエニレンビニレン(PTV)の中間体であるポリ-2,5-チエニレンメトキシエチレンを得た。ITO薄膜をスパッタリングによって200Åの厚みで付けたガラス基板に、得られたPTV中間体のN,N-ジメチルホルムアミド(以下DMF)溶液を回転数2000rpmのスピンドティング法により700Åの厚みで塗布した。その後、N₂中で200°C、2時間熱処理した。熱処理することによりPTV中間体の膜厚は400Åに減少していた。ここで、赤外吸収スペクトルを測定したところ1100cm⁻¹の中間体特有の吸収ピークがなくなっていたことからPTV構造を確認し、電荷輸送層とした。

次いで、特開昭59-199746の記載に従い、p-

キシリレンビス(ジエチルスルホニウムプロマイド)を水溶液中、水酸化ナトリウム水溶液を滴下して重合し、ポリ-*p*-フェニレンビニレン(以下PPV)の中間体であるポリ-*p*-フェニレンビス(ジエチルスルホニウムプロマイド)エチレン(以下PPV中間体)水溶液を得た。

その上に、上記PPV中間体水溶液を回転数2000rpmでスピンドルティングした。このときの膜厚は500Åであった。その後、N₂中で120℃、2時間熱処理を行った。熱処理後の膜厚は400Åであり、赤外吸収スペクトルによって、PPV構造が完全には形成されず、一部中間体構造が残っていることを確認した。さらに、その上に実施例1と同様にしてAl電極を蒸着して、素子を完成させた。

作製した2層積層型素子に、電圧20Vを印加したところ25mA/cm²の電流密度で、輝度0.05cd/m²の黄色の発光が観察された。発光スペクトルのピーク波長は550nmで、PPV中間体スピンドルティング膜の蛍光のスペクトルと一致していた。

4. 図面の簡単な説明

第1図は本発明における有機エレクトロルミネッセンス素子の一実施例の概念的な断面構造を表す図である。

1……透明基板、2……透明電極、3……発光層、4……電極

第1図

【公報種別】特許法第17条の2の規定による補正の掲載

【部門区分】第3部門第3区分

【発行日】平成10年(1998)10月6日

【公開番号】特開平3-244630

【公開日】平成3年(1991)10月31日

【年通号数】公開特許公報3-2447

【出願番号】特願平2-43930

【国際特許分類第6版】

C08G 61/00 NLF

H05B 33/14

【F I】

C08G 61/00 NLF

H05B 33/14

手続補正書(自発)

平成9年2月21日

特許庁長官致

1. 事件の件名

平成2年特許願第043930号

2. 発明の名称

有機エレクトロルミネッセンス素子

3. 補正をする者

事件との関係 特許出願人

住所 大阪市中央区北浜四丁目5番33号

名称 (109) 住文化学工産株式会社

代表者 嘉英雄

4. 代理人

住所 大阪市中央区北浜四丁目5番33号

名称 住文化学工産株式会社内

氏名 弁理士(922) 久保山 雄

5. 補正により増加する請求項の数 3

6. 補正の対象

明細書全文

7. 補正の内容

別紙の通り

別紙

明細書

1. 発明の名称

有機エレクトロルミネッセンス素子

2. 特許請求の範囲

(1) 少なくとも一方が透明または半透明である一对の電極間に発光層を有する有機エレクトロルミネッセンス素子において、該発光層として、一般式(1)

$$-Ar-CH=CH-$$
 (1)

(Arは炭素数1~6の芳香族炭化水素基、あるいは炭素数1~22のアルコキシ基を1ないし2個置換した炭素換体基、あるいは炭素数4以上のヘテロ芳香族炭化水素基を表す。) で示される繰り返し単位を有し、下記一般式(1')

$$B-CH_2-Ar-CH_2-B$$
 (1')

(Arは前記の定義と同じであり、Bは

[R₁およびR₂は炭素数1~8のアルキル基、X⁻は対イオン]を表す。)

で示されるモノマーをアルカリと反応させることにより得られる衍生物にスルホニウム塩を有する共役系高分子の中間体、またはそれをアルコール溶液と反応させることにより得られるアルコキシ基を側鎖に有する高分子中間体、またはスルホニウム塩を有する共役系高分子の中間体に芳香族スルホン酸を反応させることにより得られるスルホン酸塩を側鎖に有する高分子中間体を-60℃以上200℃未満で熱処理することでは得られる共役系高分子を含む荷電を用いることを特徴とする有機エレクトロルミネッセンス素子。

(2) 少なくとも一方が透明または半透明である一对の電極間に発光層を有する有機エレクトロルミネッセンス素子において、該発光層として、請求項1記載の一般式(1)で示される繰り返し単位を有し、一般式(1'')

$$X_1-CH-Ar-CH-X_2$$
 (1'')(Arは請求項1における定義と同じであり、X₁はハロゲンを表す。)

で示されるジハロゲン化合物をアルカリを用いて縮合して得られる共役系高分子を含む化合物用いることを特徴とする有効エレクトロルミネッセンス素子。
(3) 少なくとも一方が透明または半透明である一対の電極間に発光層を有する有効エレクトロルミネッセンス素子において、該発光層として、請求項1記載の一式式(1)で示される通り返し単位を有し、請求項2記載の一式式(111)で示されるジハロゲン化合物にトリアリールホスフィンを作用させて得られるホスホニウム塩化合物と、一式式(IV)

(Arは請求項1における定義と同じであり、X₁はハロゲンを表す。) で示されるジアルデヒド化合物とを縮合して得られる共役系高分子を含む化合物用いることを特徴とする有効エレクトロルミネッセンス素子。

(4) 発光層に含まれる共役系高分子が、p-フェニレン、2, 6-ナフタレンジイル、炭素数1~22のアルキル基がないし二回換したp-フェニレン、炭素数1~22のアルコキシ基がないし二回換した2, 6-ナフタレンジイル、および炭素数1~22のアルコキシ基がないし二回換した2, 6-ナフタレンジイルからなる群から選ばれる基を少なくとも1つ含むことを特徴とする請求項1~3のいずれかに記載の有効エレクトロルミネッセンス素子。

3. 発明の詳細な説明

(立式上の引用部分)

本発明は、有効エレクトロルミネッセンス素子に関するものであり、詳しくは、作成方法が簡便で安価な各種の表示用の発光体として用いられる有効エレクトロルミネッセンス素子に関するものである。

(従来の技術)

有効発光材料を用いたエレクトロルミネッセンス素子(以下E.L.素子という)は、既往E.L.素子にくらべ、駆動电压が低くて輝度がなく、どのような色の発光も容易に作成ができるという特徴があり、多くの試みが報告されていた。

(発明が解決しようとする問題)

これまで報告してきた有効物E.L.素子は発光層を真空中で乾燥することによ

り作製していた。しかしながら、真空蒸着法では大量生産に向かず、また大面积の素子を作製するには限度があった。また、E.L.素子をLCDなどの非発光性のパックライト照明として用いる場合、大面积化の要求は大きく、大量生産も必要である。ところが、これまでよく用いられているトリス(ヒドロキシノリノン)アルミニウムやアントラセン等の有機物低分子発光物質を発光層に用いた場合、既往の技術では旋布による均一化は容易ではない。したがって、E.L.素子のために均一化を図しようとすると、真空蒸着法等、膜られた回路方法しか取り得なかつた。また、ポリビニルカルバソールを代表とした高分子半導体にペリレンやトリフェニルブタジエンなどの発光物質を分散させたものをスピンドルティングしてE.L.素子の発光層にする試みがある(Polymer., 14, 748(1973))が、既往均一化が困難である。

(問題を解決するための手段)

従来、既往の高分子として検討されている共役系高分子の中で蛍光を示すものがあることを目的して検討した結果、共役系の短いものを発光材料として用いると、スピンドルティング法やキャスト法等によって既往に均一化が可能で、しかも大面积で発光効率の高いE.L.素子が得られることを見い出し、本発明に到達した。

すなわち、本発明は、(1) 少なくとも一方が透明または半透明である一対の電極間に発光層を有する有効エレクトロルミネッセンス素子において、該発光層として、一式式(1)

(Arは炭素数6以上の芳香族化水素基、あるいは炭素数1~22のアルコキシ基を1ないし2回置換した低分子体、あるいは炭素数4以上のヘテロ環芳香族化水素基を含す。) で示される通り返し単位を有し、下記一式式(11)

(Arは前記の走査と同じであり、Bは

[R₁およびR₂は炭素数1~8のアルキル基、X⁻は対イオン]を表す。)

で示されるモノマーをアルカリと反応させることにより得られる側鎖にスルホニウム塩を有する共役系高分子の中間体、またはそれをアルコール溶媒と反応させることにより得られるアルコキシ基を側鎖に有する高分子の中間体、またはスルホニウム塩を有する共役系高分子の中間体に芳香族スルホン酸を反応させることにより得られるスルホン酸基を側鎖に有する高分子の中間体を室温以上200°C未満で熱処理することで得られる共役系高分子を含む組合を用いる有効エレクトロルミネッセンス素子を得るものである。

また、本発明は、(2) 少なくとも一方が透明または半透明である一対の電極間に発光層を有する有効エレクトロルミネッセンス素子において、該発光層として、前記(1)記載の一式式(1)で示される通り返し単位を有し、一式式(111)

(Arは前記(1)における定義と同じであり、X₁はハロゲンを表す。)

で示されるジハロゲン化合物をアルカリを用いて縮合して得られる共役系高分子を含む組合を用いる有効エレクトロルミネッセンス素子を得るものである。

また、本発明は、(3) 少なくとも一方が透明または半透明である一対の電極間に発光層を有する有効エレクトロルミネッセンス素子において、該発光層として、前記(1)記載の一式式(1)で示される通り返し単位を有し、前記(2)記載の一式式(111)で示されるジハロゲン化合物にトリアリールホスフィンを作用させて得られるホスホニウム塩化合物と、一式式(IV)

(Arは前記(1)における定義と同じであり、X₁はハロゲンを表す。)

で示されるジアルデヒド化合物とを縮合して得られる共役系高分子を含む組合を用いる有効エレクトロルミネッセンス素子を得るものである。

さらに、本発明は、(4) 発光層に含まれる共役系高分子が、p-フェニレン、2, 6-ナフタレンジイル、炭素数1~22のアルキル基がないし二回換したp-フェニレン、炭素数1~22のアルキル基がないし二回換した2, 6-ナフタレンジイル、炭素数1~22のアルキル基がないし二回換したp-フェニレン、炭素数1~22のアルキル基がないし二回換した2, 6-ナフタレンジイルからなる群から選ばれる基を少なくとも1つ含むことを特徴とする請求項1~3のいずれかに記載の有効エレクトロルミネッセンス素子。

シジル、および炭素数1~22のアルコキシ基がないし二回換した2, 6-ナフタレンジイルからなる群から選ばれる基を少なくとも1つ含む前記(1)~(3)のいずれかに記載の有効エレクトロルミネッセンス素子に係るものである。

以下に本発明について詳説する。

本発明の有効E.L.素子の発光層として用いる一式式(1)に示す共役系高分子の合成法としては、以下に述べる方法を用いる。

特開昭59-199746および特開平1-254734号公報に記載されているスルホニウム塩分岐法では一式式(11)

(Arは炭素数6以上の芳香族化水素基、あるいは炭素数1~22のアルコキシ基を1ないし2回置換した低分子体、あるいは炭素数4以上のヘテロ環芳香族化水素基を含す。) で示されるモノマーを水溶液中、約0°Cでアルカリと反応させることにより得られる側鎖にスルホニウム塩を有する共役系高分子の中間体、それをアルコール溶媒と反応させることにより得られるアルコキシ基を側鎖に有する高分子の中間体、あるいはスルホニウム塩を有する共役系高分子の中間体に芳香族スルホン酸を反応させることにより得られるスルホン酸基を側鎖に有する高分子の中間体を熱処理することにより得られるスルホン酸基を側鎖に有する高分子の中間体を得ることができる。

次に、特開昭59-199746号公報に記載のジハロゲン化水素法では一式式(111)

(Arは、前記の定義と同じであり、X₁はハロゲンを表す。)

で示されるジハロゲン化合物を溶液中で、チーブトキシカリウムなどのアルカリにより反応させることにより一式式(1)の共役系高分子を得ることができる。

Vitrig反応法では、上記一般式(I)で示されるジハロゲン化合物にトリフェニルホスフィンなどのトリアリールホスフィンを作用させ、ホスホニウム塩としてこれをジアルデヒド化合物(OHC-Ar-CHO、Arは上記のものと同様)を反応させて一般式(I)の共役系高分子が得られる。

以上の合成方法のうちで、スルホニウム塩分解法、脱ハロゲン化水素法が、発光材料により適した、直合度が比較的高く、共役長の比較的長い共役系高分子が得られるのが好ましい。

上記の共役系高分子中の炭素数6以上の芳香族炭化水素基としては炭素数6以上の芳香族化合物、あるいはその誘導体が好ましい。炭素数6以上の芳香族化合物としてはp-フェニレン、1,4-ナフタレンジイル、5,10-アントラセンジイルが例示され、好ましくはp-フェニレンである。誘導芳香族炭化水素基としては炭素数1~2の炭化水素基または炭素数1~2のアルコキシ基を1ないし2個直換したもののが好適に用いられる。

因縁基である炭素数1~2の炭化水素基直換としてはメチル、エチル、ブロピル、ブチル、ベンチル、ヘキシル、ヘプチル、オクチル、ラウリル、オクタデシル基などが例示される。また、炭素数1~2のアルコキシ基としてはメトキシ、エトキシ、ブロピオキシ、ベンチルオキシ、ヘキシルオキシ、ヘプチルオキシ、オクチルオキシ、ラウリルオキシ、オクタデシルオキシ等が例示される。初回发光試験について、より具体的にはモノメチル-p-フェニレン、モノメトキシロ-p-フェニレン、1,5-ジメチル-p-フェニレン、1,5-ジメトキシ-p-フェニレン、モノエチル-p-フェニレン、1,5-ジエチル-p-フェニレン、モノブチル-p-フェニレン、モノブチル-p-フェニレン、1,5-ジブチキシ-p-フェニレン、1,5-ジヘプチル-p-フェニレン、1,5-ジヘプトキシ-p-フェニレン、1,5-ジオクチル-p-フェニレン、1,5-ジオクタキシ-p-フェニレン、1,5-ジラウリル-p-フェニレン、1,5-ジグラウリルオキシ-p-フェニレン、1,5-ジステアリル-p-フェニレン、1,5-ジステアリルオキシ-p-フェニレン等が例示される。これらの中でp-フェニレン、p-フェニレン誘導体が発光効率の高い有効性を示すので好ましい。

本発明のE.L.素子の構造を図1に示す。E.L.素子の説明過程で用いる透明な導電性電極としては導電性の金属性電極が用いられる。この電極の材料として具体的には、インジウム・スズ・オキサイド(ITO)、疊化ズズ(NESA)、Au、Pt、Ag、Cu等が用いられ、成形としては50Å~1μm程度、好ましくは100Å~500Å程度であり、作成方法としては、真空蒸着法、スパッタリング法、メッキ法などが用いられる。

上記の共役系高分子の発光部は、一般式(I)で示される高分子の中間体の溶液を電極上にスピンドーティング法、キャスト法で薄膜を形成することができる。また、共役系高分子自身が溶液に可溶な場合は、共役系高分子の溶液を電極に直接に滴下して薄膜を形成することができる。

発光部の膜厚に特に限界はないが、たとえ50Å~10μm、印加電圧を上げて発光効率を上げるために好ましくは100Å~1μmである。

本発明の有効性E.L.素子は例えば第1回で示すように、透明電極1上に前記の透明電極2、共役系高分子の発光部3、電極4を順次設けることにより得られるが、より角光効率を上げる目的で電極2を複数設けることにより得られるが、すなわち、透明電極上に(発光部/電極)、(電極/発光部/発光部)または(電極/発光部/発光部/電極)を設ける構造をとることもできる。

電極部は、例えば特開昭59-194393号公報等に記載の公知の化合物を用いることができる。具体的にはトリフェニルジアミン類、ペリレン類等が好ましく挙げられる。さらにポリ-1,4-テニレンビニレン等の共役系高分子等も用いることができる。

本発明のE.L.素子の電子注入部の材料としては、Al、In、Sn、Hg-Ag合金、In-Ag合金、グラファイト等のイオン化エネルギーの小さい金属が好ましく用いられる。四極は50Å~1μmの粒子をできる限り多くするために好ましくは500Å~1000Åで、作成方法としては真空蒸着法、スパッタリング法等が用いられる。

【発明の発明】

本発明のビシ素子における発光部は基本的に安定であり、共役系高分子中間体あるいは共役系高分子は有効性に可溶であり成形性に富み、素子作成が容易に行

使用する一般式(I)の共役系高分子をスピンドーティング法あるいはキャスト法で均一な薄膜を得るにはその分子量は十分高いことが必要である。直合度は5以上であり、より好ましくは10~50000である。具体的にはグルバーミエショングロマトグラフィーによる分子量測定において分子量2800の標準ポリスチレンに相当する溶出時間以前に溶出する高分子量を有するものがより効果的である。

スルホニウム塩分解法では得られる高分子中間体を用いる場合には、共役系高分子に直接するために銀鏡の銀鏡処理を行う。銀鏡処理として光エネルギー、熱を与える方法が一般的であるが、加熱処理が好ましい。銀鏡の銀鏡処理によって共役銀鏡を形成せしめ、銀鏡温度によって共役銀鏡を規定できる。すなわち、ある一定の温度以下であれば誘導型銀鏡が好ましくは共役銀鏡が長くなる。したがって銀鏡温度としては共役銀鏡を約束するため、一般的に、発光材料として用いる場合には銀鏡温度が低い方が好ましいので低銀鏡処理を行うのが好ましい。具体的な銀鏡温度としてはポリ-p-フェニレンビニレンスルホニウム塩中間体を挙げると、発光材料として用いる場合には銀鏡温度~200°Cで銀鏡を行うのが好ましい。銀鏡温度については、銀鏡の銀鏡反応が起こる範囲であれば特に問題なく、一般的には10分~20時間、好ましくは30分~8時間程度である。銀鏡する時の空気気については、高分子フィルムの変質が起こらない空気気、特にN₂、空気による酸化反応が起こらない空気気であれば特に規定されず、一般的にはN₂、Ar、He等の不活性ガス空気であり、また真空下あるいは不活性銀鏡中であってもよい。

高分子中間体スルホニウム塩の対イオン⁻については、Cl⁻、Br⁻等のハロゲンイオン、さらにそのハロゲンイオンを置換することによって、BF₄⁻、PF₆⁻、OTf⁻等のオルエンスルホン酸イオン等の化合物イオンとすることもできる。対イオンの種類によって該分子中間体スルホニウム塩の性質は異なり、ハロゲンイオンを例にとれども⁻よりもBr⁻が対イオンである方が脱離反応が起きやすい。対イオンがBF₄⁻の場合は、⁻ジステアリルホルムアミド等の有効性が認められ、p-オルエンスルホン酸イオンの場合は高分子スルホニウム塩中間体をアルコキシ基化することが可能である。

える。

本発明によるE.L.素子によれば、パックライトとしての面状光E.L.、フラットパネルディスプレイ等の装置として軽便に使用される。

【実施例】

以下、実施例により本発明を具体的に説明するが、本発明はこれらによって何ら制限されるものではない。

実施例 1

特開平1-79217号公報に記載の方法に従い、1,5-ジヘプチルオキシ-p-キシリレンジプロミドをt-ブトキシカリウムで反応させ、ポリ-1,5-ジヘプチルオキシ-p-フェニレンビニレン(HO-P-PV)を得た。このクロロホルム溶液を、ITO電極をスパッタリングによって200Åの厚みで付けたガラス基板上に回転数1000rpmのスピンドーティング法により1000Åの厚みで塗布し、発光部とした。さらに、その上にAl電極を蒸着によって1000Åの厚みで作成した。ITO電極、Al電極にはガーベストで粒子をとり、エポキシ樹脂で固定した。

作成した有機E.L.素子に、電圧40Vを印加したところ、1.5mA/cm²の電流密度で、輝度0.06cd/cm²の青緑色の発光が確認された。発光スペクトルのピーク波長は580nmでHO-P-PVスピンドーティング法により100Åの厚みで塗布した。また、発光強度は対数強度に比例して増加した。

実施例 2

特開平1-9221号公報に記載の方法に従い、1,5-テニレンジスルホニウムプロミドをアルカリで反応させ、メタノールと反応させてポリ-1,5-テニレンメトキシエチレンを得た。ITO電極をスパッタリングによって100Åの厚みで付けたガラス基板に、得られたPTV中間体の1,1-ジメチルホルムアミド(以下DMF)溶液を回転数1000rpmのスピンドーティング法により100Åの厚みで塗布した。その後、N₂中で200°C、2時間熱処理した。熱処理することによりPTV中間体の分子量は400人に減少していた。ここで、紫外吸収スペクトルを測定したところ110cm⁻¹の中間体特有の吸収ピークがなくなっていたことからPTV構造を確認し

往復口送形とした。次いで、特開昭69-199746 の記載に従い、p-キシリレンビス（ジエチルスルホニウムプロマイド）を水溶液中、水酸化ナトリウム水溶液を液下して混合し、ポリ-p-フェニレンビニレン（以下PPV）の中間体であるポリ-p-フェニレンビス（ジエチルスルホニウムプロマイド）エチレン（以下PPV中間体）水溶液を得た。

その上に、上記PPV中間体水溶液を回転数2000rpmでスピンドルティングした。このときの膜厚は500Åであった。その後、N₂中で120°C、2時間熱処理を行った。熱処理後の膜厚は400Åであり、赤外吸収スペクトルによって、PPV構造が完全には形成されず、一部中間体構造が残っていることを確認した。さらに、その上に実施例1と同様にしてAl電極を蒸着して、電子を完成させた。

作製した2回前回型電子に、電圧10Vを印加したところ100A/cm²のQ値程度で、輝度0.4cd/m²の黄色の発光が観察された。発光スペクトルのピーク波長は550nmで、PPV構造の発光のスペクトルと一致していた。

4. 図図の簡単な説明

図1図は本発明における有機エレクトロルミネッセンス電子の一実施例の概念的な断面構造を示す図である。

1……透明基板、2……透明電極、3……発光層、4……電極

**This Page is Inserted by IFW Indexing and Scanning
Operations and is not part of the Official Record**

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

- BLACK BORDERS**
- IMAGE CUT OFF AT TOP, BOTTOM OR SIDES**
- FADED TEXT OR DRAWING**
- BLURRED OR ILLEGIBLE TEXT OR DRAWING**
- SKEWED/SLANTED IMAGES**
- COLOR OR BLACK AND WHITE PHOTOGRAPHS**
- GRAY SCALE DOCUMENTS**
- LINES OR MARKS ON ORIGINAL DOCUMENT**
- REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY**
- OTHER:** _____

IMAGES ARE BEST AVAILABLE COPY.

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.