Last name	
First name	

LARSON—MATH 610—CLASSROOM WORKSHEET 25 Polynomials.

Concepts & Notation

- (Sec. 3.5) linear functional, trace, dual space, V^* , dual basis, annihilator.
- (Sec. 4.1) linear algebra, \mathbb{F}^{∞} , algebra of formal power series.
- (Sec. 4.2) $\mathbb{F}[x]$, degree, scalar polynomial, monic polynomial.
- 1. If V is a vector space over a field \mathbb{F} and $S \subseteq V$, what is the annihilator of S?

2. What is \mathbb{F}^{∞} ? Let $f, g \in \mathbb{F}^{\infty}$. How is fg defined?

3. What is $1 \in \mathbb{F}^{\infty}$?

4. What is $x \in \mathbb{F}^{\infty}$?

5. What is $x^2 \in \mathbb{F}^{\infty}$? 6. What is $\mathbb{F}[x]$? 7. What is the degree of $f \in \mathbb{F}[x]$? 8. What is a *scalar* polynomial? What is a *monic* polynomial? 9. (Claim:) If f and g are non-zero polynomials over a field \mathbb{F} then: (a) fg is a non-zero polynomial; (b) $\deg(fg) = \deg(f) + \deg(g);$ (c) fg is a monic polynomial if and only if both f and g are monic polynomials; (d) fg is a scalar polynomial if and only if both f and g are scalar polynomials; (e) if $f + g \neq 0$ then $\deg(f + g) \leq \max\{\deg(f), \deg(g)\}.$