18.022 Recitation Handout 8 September 2014

- 1. (1.1.25 in *Colley*) Physical forces are quantities possessing both magnitude and direction and therefore can be represented by vectors. If an object has more than one force acting on it, then the resulting force can be represented by the sum of the individual force vectors. Suppose that two forces $\mathbf{F}_1 = (2,7,-1)$ and $\mathbf{F}_2 = (3,-2,5)$ are acting on an object.
- (a) What is the resultant force of F_1 and F_2 ?
- (b) What force \mathbf{F}_3 is needed to counteract these forces, so that no net force results and the object remains at rest?
- 2. (a) Consider the vectors $u_1 = (1,1,0)$, $u_2 = (-1,1,0)$, and $u_3 = (0,1,1)$. Write (3,-6,4) as a linear combination of u_1 , u_2 , and u_3 . In other words, find real numbers c_1 , c_2 , and c_3 such that (3,-6,4) is equal to $c_1u_1 + c_2u_2 + c_3u_3$.
- (b) Consider the vectors $v_1 = (1, 1, 0)$, $v_2 = (-1, 1, 0)$, and $v_3 = (0, -2, 0)$. Can you write (3, -6, 4) as a linear combination of v_1 , v_2 , and v_3 ?
- (c) Sketch u_1 , u_2 , u_3 and v_1 , v_2 , v_3 on the axes below. What is the key difference between the two sets of vectors?

second. Write parametric equations describing the location of the particle at time t, assuming that it

starts at the point (6,2).