CORRECTION DE LA FEUILLE D'EXERCICES NIVEAU 1

· Exercice 1: 1eixe figure: faux. (pas la mome direction)

2 eme figure: faux (pas le même sens)

3 ema figure: vnai

· Exercice 2:

· Exercice 3:

1.

- 2. ABDC, ABCF, EADC, EACF, EBDF
- $\overrightarrow{BD} = \overrightarrow{AC} = \overrightarrow{EF}$ $\overrightarrow{BC} = \overrightarrow{AF}$ $\overrightarrow{BE} = \overrightarrow{DF}$

· Exercice 4:

1. a. GEF

2. a. Par lo translation de vocteur CK.

b. F

b

- 3. Construit en vert
- 4. Non car il a subi une retation.

Exercice 5:

· Exercice 6:

· Exercice 7:

1 (D, DE, DG, FG, BA, DC, ED, GD, GF, CF, FC

2. BA, CD, DC, DE, ED, CE, EC, FG, GF. Ceux ayant le meme sens

 $3 \cdot \overrightarrow{AB} = \overrightarrow{CD} = \overrightarrow{De} = \overrightarrow{FG}$

4. Non (pas le moine sens)

5. Oui (car distances)

2. A milieu de [PB] donc P est le symétrique de B par rapport à A.

3. Non can A et B sont districts

4. Q est le milieu de [AB]

I. Mest confondu avec B.

· Exercice 9

Exercice 8:

2. a. $\overrightarrow{AD} = \overrightarrow{BC}$ $\overrightarrow{AB} = \overrightarrow{DC}$ $\overrightarrow{DC} = \overrightarrow{EF}$ $\overrightarrow{DE} = \overrightarrow{CF}$ $\overrightarrow{DA} = \overrightarrow{CB}$ $\overrightarrow{BA} = \overrightarrow{CD}$ $\overrightarrow{CD} = \overrightarrow{FC}$ $\overrightarrow{CD} = \overrightarrow{FC}$

 $\begin{pmatrix}
denc & \overrightarrow{AB} = \overrightarrow{EF} \\
\overrightarrow{BA} = \overrightarrow{FE}
\end{pmatrix}$

b $\overrightarrow{AB} = \overrightarrow{DC}$ et $\overrightarrow{DC} = \overrightarrow{EF}$ donc $\overrightarrow{AB} = \overrightarrow{EF}$ donc \overrightarrow{ABFE} est un parallélogramme.

Exercice 10.

etc ...

· Exercice 11

C'est le symétrique de A par rapport à B

donc
$$\overrightarrow{AB} = \overrightarrow{BC}$$
 est vioir

 $\overrightarrow{AC} = \overrightarrow{AB}$ est fausse (pas la même morme)

 $\overrightarrow{CB} = \overrightarrow{AC}$ est fausse (pas le même sens mi la même morme)

 $\overrightarrow{CB} = \overrightarrow{AB}$ est fausse (pas le même sens mi la même morme)

 $\overrightarrow{CB} = \overrightarrow{AB}$ est fausse (pas le même sens).

· Exercice 12

Lecture graphique:
$$\overrightarrow{AB}\begin{pmatrix} 3 \\ 4 \end{pmatrix} \xrightarrow{\overrightarrow{CD}}\begin{pmatrix} 4 \\ -4 \end{pmatrix} \xrightarrow{\overrightarrow{EF}}\begin{pmatrix} -4 \\ -2 \end{pmatrix} \xrightarrow{\overrightarrow{GH}}\begin{pmatrix} 2 \\ 0 \end{pmatrix} \xrightarrow{\overrightarrow{PS}}\begin{pmatrix} -3 \\ 0 \end{pmatrix} \xrightarrow{\overrightarrow{KL}}\begin{pmatrix} 2 \\ -3 \end{pmatrix}$$

Calcul:

$$\begin{array}{ll}
\alpha & \overrightarrow{RT} \begin{pmatrix} -12+5 \\ -17-8 \end{pmatrix} = \begin{pmatrix} -7 \\ -25 \end{pmatrix} \\
b & \overrightarrow{RT} \begin{pmatrix} -2-\frac{1}{2} \\ \frac{1}{4}-\frac{3}{4} \end{pmatrix} = \begin{pmatrix} -\frac{4}{2}-\frac{1}{2} \\ -\frac{2}{4} \end{pmatrix} = \begin{pmatrix} -\frac{5}{2} \\ -\frac{1}{2} \end{pmatrix}$$

· Exercice 13:

Exercice 14:

1. Je vous Paisse faire ...

2.
$$\overrightarrow{AC}$$
 $(4+2) = (6)$
3. $\overrightarrow{OM} = \overrightarrow{AC} \iff (2M-0) = (6)$
 $(3M-0) = (6)$

puisque OM = AC

Exercice 15

$$\begin{array}{ccc}
\underline{\mathcal{L}} & \overrightarrow{AF} = \overrightarrow{CB} & \Longrightarrow & \begin{pmatrix} \chi_{F} + 2 \\ y_{F} - 4 \end{pmatrix} = \begin{pmatrix} 3 - 0 \\ 4 + 3 \end{pmatrix} \\
& \Longrightarrow & \begin{pmatrix} \chi_{F} + 2 = 3 \\ y_{F} - 4 = 3 \end{pmatrix} & \Longleftrightarrow & F(\Delta_{f}, \Lambda_{f})
\end{array}$$

3.
$$\overrightarrow{AE} = \overrightarrow{BC}$$
 et $\overrightarrow{AF} = \overrightarrow{CB}$ donc $\overrightarrow{AE} = -\overrightarrow{AF} = \overrightarrow{FA}$
donc \overrightarrow{A} est le milieu de $[EF]$.
Remarque: $\frac{x_E + x_F}{2} = -\frac{5+1}{2} = -\frac{4}{2} = -2 = x_A$
 $y_E + y_F = -\frac{3+11}{2} = \frac{8}{2} = 4 = y_A$

· Exercice 16:

$$\overrightarrow{AB} + \overrightarrow{BD} = \overrightarrow{AD}$$
 $\overrightarrow{AC} + \overrightarrow{BA} = \overrightarrow{BC}$
 $\overrightarrow{NA} + \overrightarrow{AM} = \overrightarrow{NM}$
 $\overrightarrow{AB} + \overrightarrow{BA} = \overrightarrow{O}$
 $\overrightarrow{AB} + \overrightarrow{BA} = \overrightarrow{O}$
 $\overrightarrow{AB} + \overrightarrow{BA} = \overrightarrow{O}$
 $\overrightarrow{AB} + \overrightarrow{BA} = \overrightarrow{O}$

Exercice 17:

1 06

2. On veut seulement construire \mathcal{S}_2 .

Comme on enchaîne la translation de vecteur \overrightarrow{OA} puis la translation de vecteur \overrightarrow{AB} , cela revient à effectuer globalement la translation de vecteur $\overrightarrow{OA} + \overrightarrow{PB} = \overrightarrow{OB}$.

Exercice 18:

$$\overrightarrow{NM} + \overrightarrow{PN} = \overrightarrow{PM}$$

 $\overrightarrow{QN} + \overrightarrow{QP} = \overrightarrow{SN}$
 $-\overrightarrow{QN} = \overrightarrow{PR}$

2.
$$\overrightarrow{MQ} = \overrightarrow{RN}$$
 faux car meine direction mais sens opposé
$$\overrightarrow{aN} + \overrightarrow{QR} = \overrightarrow{SQ} \quad \text{faux car } \overrightarrow{QN} + \overrightarrow{QR} = \overrightarrow{QN} + \overrightarrow{SQ} = \overrightarrow{SN} \quad \text{qui m'a même}$$

$$\overrightarrow{pas} \quad \text{la meine direction que } \overrightarrow{SQ} \quad .$$

$$\overrightarrow{QN} + \overrightarrow{QS} = \overrightarrow{QM} \quad \text{faux car } \overrightarrow{QN} + \overrightarrow{QS} = \overrightarrow{PQ} + \overrightarrow{QN} = \overrightarrow{PN} \quad \text{qui m'a pas}$$

$$\overrightarrow{la meine direction que } \overrightarrow{QM} \quad .$$