Data Structures and Algorithms

ISI-Delhi

Instructor: Krishnendu Mukhopadhyaya

Problems Session 2

Introduction to Data Structures

Problem 1

Given a singly linked list, the task is to find the middle node of the linked list.

- If the number of nodes is **odd**, return the middle node.
- If the number of nodes is **even**, there are two middle nodes, so return the **second middle node**.

Problem 2

Show how to implement a queue using two stacks. Analyze the running time of the queue operations.

Problem 3

For the set {1, 4, 5, 10, 16, 17, 21} of keys, draw binary search trees of heights 2, 3, 4, 5, and 6.

Problem 4

Give a nonrecursive algorithm that performs an inorder tree walk using stacks.

Problem 5

For each of the four types of lists in the following table, what is the asymptotic worst-case running time for each dynamic-set operation listed?

Operation	Unsorted singly linked	Sorted linked	singly	Unsorted doubly linked	Sorted doubly linked
$\overline{\operatorname{SEARCH}(L,k)}$				-	
INSERT(L, x)					
$\mathrm{DELETE}(L,x)$					
$\mathrm{SUCCESSOR}(L,x)$					
PREDECESSOR(L,x)					
$\operatorname{MINIMUM}(L)$					
$\operatorname{MAXIMUM}(L)$					

Supplementary Excercise

1. Argue that since sorting n elements takes $\Omega(n \lg n)$ time in the worst case in the comparison model, any comparison-based algorithm for constructing a binary search tree from an arbitrary list of n elements takes $\Omega(n \lg n)$ time in the worst case.