

COEN 241 Introduction to Cloud Computing

Lecture 13 - Software Defined Networking II

Lecture 12 Recap

- Software Defined Networking
- OpenFlow
- Readings
 - Recommended: http://yuba.stanford.edu/~casado/ethane-sigcomm07.pdf
 - Optional:
 - http://ccr.sigcomm.org/online/files/p69-v38n2n-mckeown.pdf

The Networking "Planes"

- Data plane: processing and delivery of packets with local forwarding state
 - Forwarding state + packet header with forwarding decision
 - Tasks: Filtering, buffering, scheduling
- Control plane: computing the forwarding state in routers
 - Determines how and where packets are forwarded
 - o Tasks: Routing, (automatic) traffic engineering, failure detection/recovery, ...
- Management plane: configuring and tuning the network
 - o Task: (Manual) traffic engineering, ACL config, device provisioning, ...

The Networking "Planes"

Timescale & Location of Each "Planes"

	Data Plane	Control Plane	Management Plane
Time-scale	Packet (nsec)	Event (10 msec to sec)	Human (min to hours)
Location	Linecard hardware	Router software	Humans or software scripts

Challenges in Networking

- Many task-specific protocols and control mechanisms
 - No modularity, limited functionality
- Indirect control mechanisms
 - Must invert protocol behavior, "coax" it to do what you want
 - E.g. Changing weights instead of the actual paths for traffic engineering
- Uncoordinated control mechanisms due to distributed nature
 - Cannot control which router updates first
- Complex interactions between protocols and mechanisms
 - Routing, addressing, access control, QoS

Challenges in Networking

- Therefore, Computer networks are:
 - 1. Hard to reason about
 - Hard to evolve as a whole
 - 3. Expensive to build, operate and manage

Software Defined Networking Definition

- A network in which the control plane is physically separate from the data plane and a single (logically centralized) control plane controls several forwarding devices (data planes).
- In a simple way, having a central, physically separate controller for many routers and switches in the network.

Software Defined Networking Definition

Why is this Better?

- Simpler management
 - No need to "invert" control-plane operations
- Faster pace of innovation
 - Less dependence on vendors and standards
- Easier interoperability
 - Compatibility only in "wire" protocols
- Simpler, cheaper equipment
 - Minimal software
 - Minimal hardware

Components of SDN

OpenFlow

- OpenFlow allows remote management of switch rules
 - OF switches use dedicated network link to a controller
 - Controller is often a 'normal' server, e.g., running Linux
 - Typically for first-time packet forwarding, call out to controller
 - Controller provides resulting packet matching rules & actions
 - Establishes flow to potentially be used for subsequent packets
- OF can be easily implemented within existing switches
 - OF controller can co-exist well with existing control programs

Agenda for Today

- OpenFlow Part II
- Mininet
- NFV
 - Openstack
- Readings
 - Recommended: <u>http://conferences.sigcomm.org/hotnets/2010/papers/a19-lantz.pdf</u>
 - Optional: https://queue.acm.org/detail.cfm?id=2560327

How does OpenFlow Work?

Consider a Switch

Traditional Switch

Control Plane (Software)

Data Plane (Hardware)

OpenFlow Switch

OpenFlow Controller

OpenFlow Protocol (SSL/TCP)

Control Plane (Software)

OpenFlow Software

Data Plane (Hardware)

OpenFlow Basics

Examples

Switching

Switch Port	VLAN ID	VLAN pcp	MAC src	MAC dst	Eth Type	IP src	IP dst	IP ToS	IP Proto	L4 sport	L4 dport	Action
*	*	*	*	00:1f:	*	*	*	*	*	*	*	port 4

Firewall

Switch Port	VLAN ID	VLAN pcp	MAC src	MAC dst	Eth Type	IP src	IP dst	IP ToS	IP Proto	L4 sport	L4 dport	Action
				•		•		•	•	•		
*	*	*	*	*	*	*	*	*	*	*	22	drop

Examples

Routing

Switch Port	VLAN ID	VLAN pcp	MAC src	MAC dst	Eth Type	IP src	IP dst	IP ToS	IP Proto	L4 sport	L4 dport	Action
			•	•	•			•	•	•		
*	*	*	*	*	*	*	5.6.7.8	*	*	*	*	port 1

VLAN Switching

Switch Port	VLAN ID	VLAN pcp	MAC src	MAC dst	Eth Type	IP src	IP dst	IP ToS	IP Proto	L4 sport	L4 dport	Action
	•				•				•	•		
*	vlan 1	*	*	00:1f	*	*	*	*	*	*	*	port 2

Centralized vs Distributed Controller

Centralized vs Distributed Controller

- Distributed Controller improves scalability
 - E.g., Many packets to capture
- Still requires lot of packets through the control channels
- How to solve this issue?
 - Modify the data plane
 - At the loss of visibility

Types of Flow Rules

- Flow-based
 - Every flow is individually set up by controller
 - Exact-match flow entries
 - Flow table contains one entry per flow
 - Good for fine grain control, e.g. campus networks
- Aggregated
 - One flow entry covers large groups of flows
 - Wildcard flow entries
 - Flow table contains one entry per category of flows
 - Good for large number of flows, e.g. backbone

Flow Rule Installation Methods

- Reactive
 - First packet of flow triggers controller to insert flow entries
 - Efficient use of flow table
 - Every flow incurs small additional flow setup time
 - If control connection lost, switch has limited utility
- Proactive
 - Controller pre-populates flow table in switch
 - Zero additional flow setup time
 - Loss of control connection does not disrupt traffic
 - Essentially requires aggregated (wildcard) rules

Mininet Overview

So now what?

- We have learned many interesting concepts regarding SDN
- But SDN is a concept that applies within a cloud
- So, how can we even test and try new technologies in SDN?
- Mininet to the rescue!
 - We will try mininet out for HW 3 as well

What is Mininet?

- Software for development and testing of network tools and protocols
- Creates virtual network on any type of machine (VM or native)
- Enables the following features:
 - Fast prototyping for new networking protocols
 - Simplified testing for complex topologies without buying expensive hardware
 - Realistic execution as it runs real code on the Unix and Linux kernels
 - Large open source community
- Designed for experiment in SDN

What is Mininet?

- Mininet provides network emulation opposed to simulation, allowing all network software at any layer to be simply run as is
- Mininet's logical nodes can be connected into networks
- Nodes are also called containers or network namespaces
- Nodes consume sufficiently few resources
 - Networks of over a thousand nodes have been created, running on a laptop

Mininet Nodes

- A node is a process (or group of processes) that no longer has access to all the host system's native network interfaces
- Nodes are then assigned virtual Ethernet interfaces, which are connected to other containers through a virtual switch
- Mininet connects a host and a switch using a virtual Ethernet (veth) link
- The veth link is analogous to a wire connecting two virtual interfaces

Mininet Nodes

How to Use Mininet

Starting Mininet

To start a minimal topology, enter the command sudo mn

Mininet Commands

• To display the available nodes, enter the command nodes

```
File Actions Edit View Help

admin@admin-pc: ~

mininet> nodes
available nodes are:
h1 h2 s1
mininet>
```


Mininet Commands

To display the links between the devices, type net

```
File Actions Edit View Help

admin@admin-pc:~

mininet> net
h1 h1-eth0:s1-eth1
h2 h2-eth0:s1-eth2
s1 lo: s1-eth1:h1-eth0 s1-eth2:h2-eth0
mininet>
```


Mininet Commands

- To execute commands from a specific device, type the device first, followed by the command
- E.g., execute the command ifconfig on host h1, type h1 ifconfig

```
File Actions Edit View Help
               admin@admin-pc: ~
ininet> h1 ifconfig
1-eth0: flags=4163<UP,BROADCAST,RUNNING,MULTICAST> mtu 1500
       inet 10.0.0.1 netmask 255.0.0.0 broadcast 10.255.255.255
      inet6 fe80::48ab:42ff:fe29:129a prefixlen 64 scopeid 0x20<link>
      ether 4a:ab:42:29:12:9a txqueuelen 1000 (Ethernet)
      RX packets 49 bytes 4916 (4.9 KB)
      RX errors 0 dropped 0 overruns 0 frame 0
      TX packets 19 bytes 1482 (1.4 KB)
      TX errors 0 dropped 0 overruns 0 carrier 0 collisions 0
o: flags=73<UP,LOOPBACK,RUNNING> mtu 65536
       inet 127.0.0.1 netmask 255.0.0.0
      inet6 ::1 prefixlen 128 scopeid 0x10<host>
      loop txqueuelen 1000 (Local Loopback)
      RX packets 0 bytes 0 (0.0 B)
      RX errors 0 dropped 0 overruns 0 frame 0
      TX packets 0 bytes 0 (0.0 B)
      TX errors 0 dropped 0 overruns 0 carrier 0 collisions 0
```


Mininet Commands

- To test connectivity between end-hosts, use the ping command.
- Type h1 ping 10.0.0.2 to test the connectivity between host h1and host h2 (10.0.0.2)

```
File Actions Edit View Help

admin@admin-pc:~

mininet> h1 ping 10.0.0.2

PING 10.0.0.2 (10.0.0.2) 56(84) bytes of data.

64 bytes from 10.0.0.2: icmp_seq=1 ttl=64 time=1.15 ms

64 bytes from 10.0.0.2: icmp_seq=2 ttl=64 time=0.073 ms

64 bytes from 10.0.0.2: icmp_seq=3 ttl=64 time=0.072 ms

64 bytes from 10.0.0.2: icmp_seq=4 ttl=64 time=0.074 ms

^C

--- 10.0.0.2 ping statistics ---

4 packets transmitted, 4 received, 0% packet loss, time 57ms

rtt min/avg/max/mdev = 0.072/0.342/1.150/0.466 ms

mininet>
```


Mininet Topology

- Default topology is two hosts and one switch
- sudo mn --topo single, 3 gives single switch and three hosts
- sudo mn --topo linear, 3 gives three switch and three hosts
- sudo mn --topo tree, fanout=2, depth=2 gives a tree topology with depth of two and fanout of two
- You can also pass in a custom topology
 sudo mn --custom <file_name> --topo=<topology_name>
 - http://mininet.org/walkthrough/#custom-topologies

Network Function Virtualization

What is Network Function Virtualization (NFV)?

- Move network control functions from switch firmware into software
 - I.e., Virtualize the network function or network services
- Relies on server virtualization

 - OpenStack & VMWare are primarily used Functions / Services are packaged as VMs and run on commodity hardware
- Widely used in Telcos
- Example of network function virtualization include:

 DHCP: dynamic host configuration protocol (assign IPs)
 Firewalls: filter and modify traffic to secure networks
 DPI: deep packet inspection: scans packet data
 IDS: intrusion detection systems scan network for attacks
 NTP: network time protocol
- Not NFT

What is Network Function Virtualization?

NFV Frameworks

- There are three components to NFV framework
- Network functions virtualization infrastructure (NFVi) is all the hardware and software components that build the environment where NFVs are deployed
 - Can span several locations like a distributed system
- Virtualized network functions (VNFs) are software implementations of network functions deployed to NFVI
- Management, automation and network orchestration (MANO) is an architectural framework for managing and orchestrating VNFs and other software components

NFV Frameworks

OSS/BSS = Operational Support System / Business Support System

Pros & Cons of NFV

- Advantages
 - Reduced space needed for network hardware
 - Reduce network power consumption
 - Reduced network maintenance costs
 - Easier network upgrades
 - Longer life cycles for network hardware
 - Reduced maintenance and hardware costs
 - Easy to scale

Pros & Cons of NFV

- Disadvantages
 - NFV also demands a process realignment so that traditional and virtual infrastructure can be managed simultaneously
 - NFV requires managing IT in the abstract sense
 - NFV environments are more dynamic than traditional ones, which might require scaling up with additional features to cope with the speed of upgrade

Want to try out NFV?

- Way to create your own private cloud
 - o https://www.openstack.org/
 - Basically having your own AWS

Want to try out NFV?

- Openstack is often used for NFV Deployment, especially in Telcos
 - Verizon: <u>https://www.verizon.com/about/news/verizon-launches-industry-leading-large-openstack-nfv-deployment</u>
 - Tutorial: https://www.udemy.com/course/openstack-telcocloud-asad/
- We may revisit this in Advanced Cloud Computing class

SDN & NFV

- NFV and SDN are not dependent on each other, but have similarities and differences
- NFV and SDN can be used together
- **Similarities**
 - Both rely on virtualization and use network abstraction, but how they separate functions and abstract resources is different.
 - Both use commodity hardware
- Differences
 - SDN separates network forwarding functions from network control functions with the goal of creating a network that is centrally manageable and programmable. NFV abstracts network functions from hardware. NFV supports SDN by providing the infrastructure on which SDN software can run.

TODOs!

- HW 3
- Quiz 3

Agenda for Today

- OpenFlow Part II
- Mininet
- NFV
 - Openstack
- Readings
 - Recommended: http://conferences.sigcomm.org/hotnets/2010/papers/a19-lantz.pdf
 - Optional: https://queue.acm.org/detail.cfm?id=2560327

Questions?

