5 TD5

5.1 De Bayes et de risque constant implique minimax

- 1. Redémontrer qu'un estimateur de Bayes de risque constant est minimax.
- 2. Soit $\mathcal{P} = \{P_{\theta} = \text{Bin}(n, \theta), \ \theta \in (0, 1)\}$ et soit $X \mid \theta \sim P_{\theta}$.
 - (a) Montrer que la famille de lois a priori $\{\Pi_{a,b} = \text{Beta}(a,b), a > 0, b > 0\}$ est conjuguée pour ce modèle.
 - (b) Donner un estimateur de Bayes $\hat{\theta}_{a,b}(X)$ pour $\Pi_{a,b}$ et la perte quadratique.
 - (c) On suppose a = b. Trouver un estimateur minimax pour la perte quadratique.
 - (d) L'estimateur T = X/n est-il minimax?

5.2 De Bayes et *unique* implique admissible

Soit $\mathcal{P} = \{P_{\theta}, \ \theta \in \Theta \subset \mathbb{R}\}$ un modèle statistique avec $dP_{\theta} = f_{\theta}d\mu$ et soit X une observation suivant ce modèle. Soit T un estimateur de θ et $R_B(\Pi, T)$ son risque de Bayes pour une loi a priori Π sur Θ et la perte quadratique.

- 1. Qui est l'estimateur de Bayes pour Π ? On le notera T_1 .
- 2. Soit $m^{\pi}(x) = \int f_{\theta}(x) d\Pi(\theta)$. Comment s'interprète cette quantité?
- 3. Montrer que pour T = T(X) un estimateur de θ ,

$$R_B(\Pi, T) = \int E[(T(X) - \theta)^2 | X = x] m^{\pi}(x) d\mu(x).$$

4. Soit T_2 un estimateur de Bayes pour Π et la perte quadratique, potentiellement différent de T_1 . Montrer que si la loi

$$dQ = m^{\pi} d\mu$$

domine toutes les lois P_{θ} alors T_1 et T_2 sont equivalents, au sens où

$$R(\theta, T_1) = R(\theta, T_2) \qquad \theta \in \Theta.$$

- 5. Montrer que si l'estimateur de Bayes est unique à équivalence près, il est admissible. Soit maintenant $\mathcal{P} = \{P_{\theta} = \mathcal{N}(\theta, 1), \ \theta \in \mathbb{R}\}\$ et X_1, \ldots, X_n i.i.d. de loi P_{θ} sachant θ . On pose $\Pi = \mathcal{N}(a, \sigma^2)$, avec $a \in \mathbb{R}$ et $\sigma^2 > 0$ fixés.
 - 1. Calculer l'estimateur de Bayes pour l'a priori Π et la perte quadratique.
 - 2. Déterminer la loi marginale de $X = (X_1, ..., X_n)$, que l'on notera Q_n [On pourra écrire X comme somme de deux vecteurs gaussiens].
 - 3. Vérifier que Q_n domine toutes les lois $P_{\theta}^{\otimes n}$.
 - 4. Montrer que les estimateurs $\alpha \overline{X} + \beta$, avec $\alpha \in [0,1)$ et $\beta \in \mathbb{R}$, sont admissibles.
 - 5. Montrer que les estimateurs $\overline{X} + \beta$, pour $\beta \neq 0$, ne sont pas admissibles.

5.3 Presque de Bayes implique admissible

Soit un modèle paramétrique $\{P_{\theta}, \ \theta \in \Theta\}$ avec Θ un ouvert de \mathbb{R}^k , $k \geq 1$. On considère des fonctions de perte dont les fonctions de risque finies sont continues sur Θ .

Soit T un estimateur de risque fini tel que, pour tout ouvert \mathcal{V} non vide de Θ et tout $\varepsilon > 0$, il existe une loi a priori Π sur Θ (pouvant dépendre de \mathcal{V} et de ε) telle que

$$R_B(\Pi, T) < R_B(\Pi) + \varepsilon \Pi(\mathcal{V}).$$

On peut montrer qu'alors T est admissible.

- 1. En utilisant ce résultat, et sous les hypothèses précédentes, montrer que pour toute loi a priori Π telle que $\Pi(\mathcal{V}) > 0$ pour tout ouvert non vide \mathcal{V} de Θ , tout estimateur de Bayes pour Π est admissible.
- 2. Soit $\mathcal{P} = \{P_{\theta} = \mathcal{N}(\theta, 1), \ \theta \in \mathbb{R}\}\$ et X_1, \dots, X_n i.i.d. de loi P_{θ} sachant θ . On pose $\Pi = \mathcal{N}(a, \sigma^2)$, avec $a \in \mathbb{R}$ et $\sigma^2 > 0$ fixés. On considère dans la suite la perte quadratique.
 - (a) (*) Montrer que les fonctions de risque finies sont continues.
 - (b) Montrer que $R_B(\Pi, \overline{X}) = 1/n$.
 - (c) Déterminer un estimateur de Bayes T_1 pour Π et montrer que

$$R_B(\Pi) = \frac{1}{n + \sigma^{-2}}.$$

- (d) Déduire de ce qui précède que T_1 est admissible.
- (e) Montrer que \overline{X} est admissible.

5.4 Distance de Hellinger

Soient P et Q deux lois de probabilité avec $dP = pd\mu$ et $dQ = qd\mu$.

- 1. Rappeler la définition de la distance de Hellinger h(P,Q).
- 2. Qu'appelle-t-on affinité de Hellinger $\rho(P,Q)$?
- 3. Comment évalue-t-on ces quantités si P et Q sont des lois produits?

On considère un modèle $\mathcal{P} = \{P_{\theta}, \ \theta \in \Theta \subset \mathbb{R}\}$, avec $dP_{\theta}(x) = f_{\theta}(x)d\mu(x)$ pour une mesure dominante μ .

- 4. Calculer la distance de Hellinger $h(P_{\theta}, P_{\theta'})$ dans les cas suivants
 - (a) $P_{\theta} = \mathcal{N}(\theta, 1)$ et $\theta, \theta' \in \Theta = \mathbb{R}$.
 - (b) $P_{\theta} = \mathcal{P}(\theta)$ loi de Poisson de paramètre $\theta \in \Theta = (0, \infty)$.
 - (c) P_{θ} est donnée par, avec $\Theta = (0, \infty)$,

$$dP_{\theta} = \exp(\theta - x) \mathbb{1}_{[\theta, \infty)}(x) dx, \qquad \theta \in \Theta.$$

5. Donner un équivalent de $h(P_{\theta_0}, P_{\theta_0+h})^2$ lorsque $h \to 0$ et $\theta_0 \in \Theta$ fixé, pour chaque modèle des questions 4. a), b), c).