# Московский физико-технический институт (госудраственный университет)

Лабораторная работа по квантовой физике

## Исследование энергетического спектра $\beta$ -частиц [4.2]

Талашкевич Даниил Александрович Группа Б01-008

# Содержание

| 1 | Аннотация                       |   |  |  |  |  |
|---|---------------------------------|---|--|--|--|--|
|   | 1.1 Теоретические сведения      | 1 |  |  |  |  |
|   | 1.2 Экспериментальная установка | 2 |  |  |  |  |
| 2 | Ход работы                      |   |  |  |  |  |
|   | 2.1 Оценка погрешностей         | 6 |  |  |  |  |
| 3 | Вывод                           | 7 |  |  |  |  |

#### 1 Аннотация

**Цель работы:** исследовать энергетический спектр  $\beta$ -частиц при распаде ядер  $^{137}\mathrm{Cs}$  и определить их максимальную энергию.

В работе используются:  $\beta$ -источник; Форвакуумный насос; Вакуумметр (фигура номинальная); Магнитная линза со свинцовым фильтром и диафрагмой; Сцинтилляционный счётчик; Источники питания  $0.02~\mathrm{A}$ ; Компьютер.

#### 1.1 Теоретические сведения

Бета-распадом называется самопроизвольное превращение ядер, при котором их массовое число нс изменяется, а заряд увеличивается или уменьшается на единицу. В данной работе мы будем иметь дело с электронным  $\beta$ -распадом:

$$_{Z}^{A}X \leftarrow_{Z+1}^{A}X + e^{-} + \widetilde{\nu},$$

при котором кроме электрона испускается антинейтрино.

Выясним вид энергетического спектра  $\beta$ -частиц. Во-первых, учтём ЗСЭ:



Рис. 1: Форма спектра  $\beta$ -частиц при разрешённых переходах

$$E_e - E - ck = 0, (1)$$

где ck – энергия нейтрино,  $E_e$  – максимальная энергия электрона, E – кинетическая энергия электрона, а связь между его энергией и импульсом даётся соотношением:

$$E = c\sqrt{p^2 + m^2c^2} - mc^2. (2)$$

Условие (1) можно учесть, введя  $\delta$ -функцию вида

$$F = \delta(E_e - E - ck),$$

которая по определению не равна нулю только если (1) выполнено. Тогда записать вероятность, что электрон после распада имеет импульс  $d^3p$ , а нейтрино —  $d^3k$ , можно следующим образом:

$$dw = D\delta(E_e - E - ck)d^3pd^3k = D\delta(E_e - E - ck)p^2dpk^2dkd\Omega_e d\Omega_{\widetilde{\nu}}, \quad (3)$$

где D – коэффициент пропорциональности, который в этом опыте можно считать константой,  $d\Omega_e$  и  $d\Omega_{\widetilde{\nu}}$  – элементы телесных углов вылета электрона и нейтрино.

Вероятность искомого события имеет связь со спектром, так как

$$dN = N_0 dw. (4)$$

Тогда интегрируем (3) и учитываем (4):

$$dN = \frac{16\pi^2 N_0}{c^2} Dp^2 (E_e - E)^2 dp.$$

Дифференцируя (2), найдём

$$dE = \frac{c^2 p}{E + mc^2} dp.$$

Тогда окончательно

$$\frac{dN}{dE} = N_0 B \sqrt{E \left(E + 2mc^2\right)} \left(E_e - E\right)^2 \left(E + mc^2\right),\tag{5}$$

что в нерелятивистском приближении упрощается до

$$\frac{dN}{dE} \approx \sqrt{E} \left( E_e - E \right)^2. \tag{6}$$

Дочерние ядра, возникающие в результате  $\beta$ -распада, нередко оказываются возбужденными. Возбужденные ядра отдают свою энергию либо излучая  $\gamma$ -квант, либо передавая избыток энергии одному из электронов с внутренних оболочек атома. Излучаемые в таком процессе электроны имеют строго определенную энергию и называются конверсионными. Соответствующий спектр отображён на рис. 1.

#### 1.2 Экспериментальная установка

Схема экспериментальной установки отображена на рис. 2 и 3. При заданной силе тока на входное окно счетчика фокусируются электроны с определенным импульсом. Электроны, обладающие другими значениями импульса, при этом не сфокусированы и в основном проходят мимо окна. При изменении тока в катушке на счетчик последовательно фокусируются электроны с разными импульсами, то есть

$$p_e = kI$$
,

где I – ток катушки. Для числа электронов, имеющих импульс  $p_e + \Delta p_e$ , можно получить

$$N(p_e) = CW(p_e)p_e,$$

где C = const,  $W(p_e) = dw/dp_e$  находится из формулы (6).



Рис. 2: Схема магнитной линзы



Рис. 3: Блок-схема экспериментальной установки

## 2 Ход работы

Проведём подробное измерение  $\beta$ -спектра, особенно в области конверсионного пика (энергия электронов внутренней конверсии <sup>137</sup>Cs равна 624 кэВ). Кроме того, измерим фон.

На месте проведём предварительную обработку результатов эксперимента: учтём фон, прокалибруем спектрометр по конверсионному пику. Кроме того, построим график Ферми-Кюри. Полученные данные занесли в таблицу:

| I, A | N      | $N - N_{\Phi}$ | р, кэВ/с | Т, кэВ | mkFermi  |
|------|--------|----------------|----------|--------|----------|
| 0    | 1.419  | 1.3072         | 0        | 0      | 0        |
| 0.2  | 1.216  | 1.1041         | 62.8     | 3.8    | 0        |
| 0.4  | 1.199  | 1.0874         | 125.5    | 15.2   | 0        |
| 0.6  | 1.549  | 1.4372         | 188.3    | 33.6   | 208.8066 |
| 0.8  | 2.282  | 2.1702         | 251.1    | 58.3   | 254.3698 |
| 1    | 5.481  | 5.3687         | 313.8    | 88.7   | 369.5900 |
| 1.2  | 9.862  | 9.7499         | 376.6    | 123.8  | 401.3325 |
| 1.4  | 11.994 | 11.8820        | 439.4    | 162.9  | 355.7609 |
| 1.6  | 14.476 | 14.3641        | 502.1    | 205.4  | 323.0977 |
| 1.8  | 14.876 | 14.7639        | 564.9    | 250.7  | 274.8373 |
| 2    | 15.659 | 15.5471        | 627.7    | 298.4  | 241.3139 |
| 2.2  | 14.476 | 14.3641        | 690.5    | 348.0  | 200.3917 |
| 2.4  | 12.161 | 12.0486        | 753.2    | 399.2  | 159.7265 |
| 2.6  | 8.079  | 7.9673         | 816.0    | 451.8  | 112.0472 |
| 2.8  | 4.698  | 4.5857         | 878.8    | 505.5  | 71.1942  |
| 3    | 3.915  | 3.8028         | 941.5    | 560.3  | 56.4181  |
| 3.05 | 8.446  | 8.3338         | 957.2    | 574.1  | 90.5265  |
| 3.1  | 13.86  | 13.7477        | 972.9    | 587.9  | 116.9774 |
| 3.15 | 19.723 | 19.6115        | 988.6    | 601.9  | 138.2433 |
| 3.2  | 24.388 | 24.2758        | 1004.3   | 615.8  | 151.1093 |
| 3.3  | 23.538 | 23.4262        | 1035.7   | 643.9  | 141.6182 |
| 3.35 | 19.09  | 18.9785        | 1051.4   | 658.0  | 123.8706 |
| 3.4  | 14.676 | 14.5640        | 1067.1   | 672.1  | 105.0884 |
| 3.45 | 9.345  | 9.2333         | 1082.8.  | 686.3  | 79.8182  |
| 3.6  | 2.399  | 2.2868         | 1129.8   | 729.0  | 28.1231  |
| 3.8  | 0.983  | 0.8708         | 1192.6   | 786.5  | 0.0      |

Таблица 1: Все данные

 $N_{\Phi},$  полученное при обработки данных на компьютере:

$$N_{\Phi} = 1.2581, \ dN_{\Phi} = 0.112$$

Построим два графика: N=F(I) на рис. 4 и  $\sqrt{N-N_\Phi}/p^{\frac{3}{2}}$  [мк $\Phi$ ерми] = F(T).



Рис. 4: График зависимости числа частиц от тока J

Проанализировав график получим, что пик при I = 3.25 A.

По второму графику, принимая во внимание только точки в средней части и экстраполируя полученную прямую до оси абсцисс, найдём граничную энергию  $\beta$ -спектра:

$$E_{\beta}^{\max} = -\frac{a}{b} = 612 \pm 4$$
 кэВ.

Стоит принять во внимание, что в экстраполяции принимала участие только центральная часть графика, так как данные начальной части имеют существенные погрешности и вообще не очень точны, так как малы энергии электронов, и начинает действовать сила Кулона. Конечная часть графика не выходит на прямую после конверсионного пика, так как блоки питания не могли дать достаточный ток, и крайние точки снять не удалось.



Рис. 5: График Ферми-Кюри

#### 2.1 Оценка погрешностей

Точная оценка для величины N, даже из статистических соображений, невозможна, так как во-первых, для каждого опыта сделано только одно измерение, а во-вторых, неизвестна инструментальная погрешность сцинтиллятора и установки в целом. Поэтому считаем погрешность величины N равной погрешности  $N_{\Phi}$ , так как только её можно выяснить достаточно достоверно.

$$\sigma_{N_{\Phi}} = 0.04 \text{ c}^{-1}.$$

Оценка косвенных погрешностей проводится при помощи пакета Wolfram Mathematica по общей формуле:

$$\Delta_{u(x,y,z,...)}^2 = f_x'^2 \Delta_x^2 + f_y'^2 \Delta_y^2 + f_z'^2 \Delta_z^2 + \dots,$$
 (7)

Статистическая погрешность для среднего значения  $N_{\Phi}$  может быть вычислена по формуле стандартной ошибки среднего

$$\sigma_{N_{\Phi}} = \sqrt{\frac{1}{n(n-1)} \sum_{i=1}^{n} ((N_{\Phi})_i - N_{\Phi})^2}.$$
 (8)

#### 3 Вывод

По результатам работы изучили энергетический спектр  $\beta$ -частиц и нашли значение максимальной энергии для электрона при  $\beta$ -распаде :

$$E_{\beta}^{\max} = 612 \pm 4 \text{ кэВ}.$$

#### Список литературы

- [1] Сивухин Д. В. Общий курс физики. Том 5, 1989
- [2] Фаддеев М. А., Чупрунов Е. В. Лекции по атомной физике, 2008
- [3] Ципенюк Ю. М. Квантовая микро- и макрофизика, 2006
- [4] Игошин Ф. Ф., Самарский Ю. А., Ципенюк Ю. М. ЛАБОРАТОРНЫЙ ПРАКТИКУМ ПО ОБЩЕЙ ФИЗИКЕ. Квантовая физика: Учеб, пособие для вузов; Под ред. Ципенюка Ю.М.