

PATENT ABSTRACTS OF JAPAN

(11) Publication number : 11-070322

(43) Date of publication of application : 16.03.1999

(51)Int.Cl.

B01D	53/86
B01D	53/86
B01J	21/04
B01J	21/06
B01J	23/06
B01J	23/10
B01J	23/14
B01J	23/42
B01J	23/745
B01J	23/75
B01J	23/755

(21)Application number : 10-172543 (71)Applicant : HITACHI LTD

(22)Date of filing : **19.06.1998** (72)Inventor : **SUGANO SHUICHI
IKEDA SHINZO
YASUDA TAKESHI
YAMASHITA HISAO
AZUHATA SHIGERU
TAMADA SHIN
IRIE KAZUYOSHI**

(30)Priority

Priority number : 09163717 Priority date : 20.06.1997 Priority country : JP

**(54) DECOMPOSITION TREATMENT METHOD OF FLUORINE -
CONTAINING COMPOUND, CATALYST AND DECOMPOSITION
TREATMENT DEVICE**

(57)Abstract:

PROBLEM TO BE SOLVED: To efficiently decompose and treat fluorine compounds containing only fluorine as halogen such as CF₄ and C₂F₆

SOLUTION: In the method for decomposing and treating fluorine-containing compounds, gas flow consisting of fluorine compounds containing only fluorine as halogen is brought into contact with an Al-containing catalyst such as a catalyst consisting of Al and Ni, Al and Zn, Al and Ti at about 200–800° C in the existence of steam and fluorine contained in the gas flow and fluorine contained in gas flow is converted into hydrogen fluoride. Further,

the device for decomposing and treating the fluorine-containing compounds is equipped with a reactor 15 filled with the catalyst 14 containing Al, a water adding vessel in which steam is added to gas flow containing a compound consisting of fluorine and one of carbon, sulfur and nitrogen treated in the reactor 15 and a heating means consisting of a preheater 12 and a heater 13 by which one hand of the catalyst 14 filled in the reactor 15 and the gas flow containing fluorine compounds 1 introduced into the reactor 15 is heated at such temperature that the fluorine compounds 1 are hydrolyzed.

LEGAL STATUS

[Date of request for examination] 19.07.2000

[Date of sending the examiner's decision of rejection]

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number] 3269456

[Date of registration] 18.01.2002

[Number of appeal against examiner's decision of rejection]

[Date of requesting appeal against examiner's decision of rejection]

[Date of extinction of right]

Copyright (C); 1998,2003 Japan Patent Office

(19)日本国特許庁 (JP)

(12) 公開特許公報 (A)

(11)特許出願公開番号

特開平11-70322

(43)公開日 平成11年(1999)3月16日

(51) Int.Cl.⁶
B 0 1 D 53/86
B 0 1 J 21/04
21/06
23/06

識別記号
ZAB

F I
B 0 1 D 53/36
B 0 1 J 21/04
21/06
23/06
23/10

Z A B Z
A
A
A
A

審査請求 未請求 請求項の数15 O L (全 11 頁) 最終頁に続く

(21)出願番号 特願平10-172543
(22)出願日 平成10年(1998)6月19日
(31)優先権主張番号 特願平9-163717
(32)優先日 平9(1997)6月20日
(33)優先権主張国 日本 (JP)

(71)出願人 000005108
株式会社日立製作所
東京都千代田区神田駿河台四丁目6番地
(72)発明者 菅野 周一
茨城県日立市大みか町七丁目1番1号 株式会社日立製作所日立研究所内
(72)発明者 池田 伸三
茨城県日立市大みか町七丁目1番1号 株式会社日立製作所日立研究所内
(72)発明者 安田 健
茨城県日立市大みか町七丁目1番1号 株式会社日立製作所日立研究所内
(74)代理人 弁理士 小川 勝男

最終頁に続く

(54)【発明の名称】 フッ素含有化合物の分解処理方法、触媒及び分解処理装置

(57)【要約】

【課題】 C_2F_4 , C_2F_6 などのようにハロゲンとしてフッ素のみを含有するフッ素化合物を効率良く分解処理する。

【解決手段】 ハロゲンとしてフッ素のみを含有するフッ素化合物を含むガス流を、水蒸気の存在下で A_1 と N_i , A_1 と Zn , A_1 と Ti からなる触媒のように A_1 を含んでなる触媒と約 200~800°Cで接触させて、前記ガス流中のフッ素をフッ化水素に転化する。

【効果】 ハロゲンとしてフッ素のみを含有するフッ素化合物を効率良く分解処理することができる。

図 2

【特許請求の範囲】

【請求項1】ハロゲンとしてフッ素を含み該フッ素を炭素、窒素及び硫黄から選ばれた元素との化合物にて含むガス流を、水蒸気の存在下で、A1を含んでなる触媒と約200～800℃の温度で接触させて前記ガス流中のフッ素化合物を加水分解してフッ化水素に転化することを特徴とするフッ素含有化合物の分解処理方法。

【請求項2】請求項1において、前記フッ素化合物を含むガス流を、A1を含み、Zn, Ni, Ti, Fe, Sn, Co, Zr, Ce, Si及びPtのうちから選ばれた少なくとも1つを含む触媒と接触させることを特徴とするフッ素含有化合物の分解処理方法。

【請求項3】請求項2に記載の方法において、前記触媒が更にSを含むことを特徴とするフッ素含有化合物の分解処理方法。

【請求項4】請求項2に記載の方法において、前記触媒を構成する成分が各成分単独の酸化物或いはA1と他の成分との複合酸化物の状態で含まれていることを特徴とするフッ素含有化合物の分解処理方法。

【請求項5】請求項1に記載の方法において、前記フッ素化合物を含むガス流がCF₄, CHF₃, C₂F₆, C₃F₈, C₄F₈, C₅F₈よりなるフッ素化合物の少なくとも1つを含み、該フッ素化合物をCOとCO₂の少なくとも一方及びHFとに分解することを特徴とするフッ素含有化合物の分解処理方法。

【請求項6】請求項1において、前記フッ素化合物を含むガス流がSF₆よりなるフッ素化合物を含み、該SF₆をSO₂とSO₃の少なくとも一方及びHFとに分解することを特徴とするフッ素含有化合物の分解処理方法。

【請求項7】請求項1において、前記フッ素化合物を含有するガス流がNF₃よりなるフッ素化合物を含み、該NF₃をNOとNO₂とN₂Oの少なくとも一方及びHFとに分解することを特徴とするフッ素含有化合物の分解処理方法。

【請求項8】ハロゲンとしてフッ素を含み該フッ素を炭素、窒素及び硫黄から選ばれた元素との化合物にて含むガス流を、水蒸気の存在下で、A1を含んでなる触媒と約200～800℃の温度で接触させて前記ガス流中のフッ素化合物を加水分解してフッ化水素に転化し、その後、該フッ化水素を含むガス流を水と接触させてフッ化水素を除去し、このフッ化水素を含む水をアルカリにより中和することを特徴とするフッ素含有化合物の分解処理方法。

【請求項9】ハロゲンとしてフッ素のみを含有するハロゲン化合物を加水分解するために使用する触媒であつて、A1酸化物を含んでなることを特徴とするフッ素含有化合物の分解処理用触媒。

【請求項10】請求項9において、A1と、Zn, Ni, Ti, Fe, Sn, Co, Zr, Ce, Si及びPtのうちから選ばれた少なくとも1つとからなり、A

1 : M (MはZn, Ni, Ti, Fe, Sn, Co, Zr, Ce, Siの少なくとも1つ)の原子比がA1が50～99モル%で、Mが50～1モル%であることを特徴とするフッ素含有化合物の分解処理用触媒。

【請求項11】請求項10に記載の触媒において、更にSを0.1～20重量%含むことを特徴とするフッ素含有化合物の分解処理用触媒。

【請求項12】請求項10に記載の触媒において、前記各成分が各成分単独の酸化物或いはA1と他の成分との複合酸化物の状態で存在することを特徴とするフッ素含有化合物の分解処理用触媒。

【請求項13】請求項10に記載の触媒において、A1とPtからなり、Ptを0.1～2重量%含むことを特徴とするフッ素含有化合物の分解処理用触媒。

【請求項14】A1を含んでなる触媒を充填した反応器と、該反応器で処理されるフッ素と炭素、硫黄、窒素の1つとの化合物を含むガス流に水蒸気を添加する水添加器と、該反応器に充填された触媒及び該反応器に導入されるフッ素化合物含有ガス流の少なくとも一方をフッ素化合物が加水分解しうる温度まで加熱するための加熱手段とを備えたことを特徴とするフッ素含有化合物の分解処理装置。

【請求項15】請求項14に記載の装置において、前記反応器の後段に該反応器より排出されたガス流を水で洗浄するための排ガス洗浄槽を備えたことを特徴とするフッ素含有化合物の分解処理装置。

【発明の詳細な説明】

【0001】

【発明の属する技術分野】本発明は、CF₄, C₂F₆, SF₆, NF₃などのようにハロゲンとしてフッ素を含有する化合物を低温で効率良く分解処理する方法及び触媒並びに分解処理装置に関する。

【0002】

【従来の技術】CF₄, C₂F₆, SF₆, NF₃などのようにハロゲンとしてフッ素のみを含有するフッ素化合物ガスは、半導体エッチング剤、半導体洗浄剤などに大量に使用されている。しかし、これらの物質は大気中に放出されると、地球の温暖化を引き起こすことが判明した。

【0003】CF₄, C₂F₆, SF₆, NF₃などのガスは、分子構成成分としてフッ素(F)を多く含有している。フッ素はすべての元素の中でもっとも電気陰性度が高く、化学的に非常に安定な物質を形成する。特にCF₄, C₂F₆などは分子内力が強く、反応性に乏しい物質である。この性質から、燃焼などで分解するには高温に加熱する必要があり、大量のエネルギーを消費する。また、高温での分解反応は生成するフッ化水素などのガスによる装置材料の腐食速度が大きく、適切な分解処理方法がないのが現状である。

【0004】分解処理方法として、現在、提案されつつ

あるのは、高温での燃焼技術である。しかしながらこの方法では、プロパンなどの可燃ガスを使用するため、燃焼により大量のCO₂及び有害物質であるNO_xが生成する。また、プロパンなどの可燃ガスを使用するため爆発の危険性がある。また、1000°C近くで燃焼するため、ハロゲン化合物の分解で生成する腐食性ガスによって炉壁が損傷し、メンテナンスの頻度が高くなり運転コストが大きくなる。従って、より低温でかつ有害物質を生成しないで分解できる技術が必要である。

【0005】ハロゲン化合物の分解触媒について、これまでに様々な特許が出願されているが、本発明の対象ガスであるハロゲンとしてフッ素のみを含有するハロゲン化合物を分解したという報告は少ない。特開平3-66388号公報には、チタニアを含む触媒によるハロゲン化合物の加水分解について記載されているが、ハロゲンとしてフッ素のみを含有するCF₄に対しては分解性能を示さないと記述されている。また、Chem.Lett. (1989)pp.1901-1904に記載されているように、岡崎らは、Fe₂O₃／活性炭を用いてCFC-14(CF₄)を加水分解することを試みたが、分解しなかった。ハロゲンとしてフッ素のみを含有するフッ素化合物の分解については、特開平7-116466号公報に、フッ化水素処理無機酸化物からなる分解剤を用いた例が報告されている程度である。

【0006】

【発明が解決しようとする課題】本発明の目的は、CF₄、C₂F₆、SF₆、NF₃などのようにハロゲンとしてフッ素のみを含有するフッ素化合物を低温で効率良く分解する分解処理方法、及び高い分解率と長い触媒寿命を持つ分解触媒及び分解処理装置を提供するものである。

【0007】

【課題を解決するための手段】本発明者らは、CF₄、C₂F₆、SF₆、NF₃などのようにハロゲンとしてフッ素のみを含有する化合物を低温でかつ高効率で分解が可能であり、また分解ガス中の腐食性ガスによる装置の腐食が生じにくい分解処理方法の検討を詳細に進めた結果、本発明に至った。

【0008】即ち、ハロゲンとしてフッ素のみを含有し、該フッ素を炭素、硫黄及び窒素から選ばれた元素との化合物にて含むガス流を、水蒸気の存在下でA1を含んでなる触媒と約200～800°Cで接触させ前記フッ素化合物を加水分解して、ガス流中の前記フッ素化合物をフッ化水素に転化する方法を見いたした。

【0009】対象ガスであるCF₄、C₂F₆等のようにハロゲンとしてフッ素のみを含有するハロゲン化合物は、電気陰性度の高いフッ素の性質から分子内力が強く、反応性の乏しい物質であり、酸素との反応ではほとんど分解しない。すなわちH₂Oを添加して初めて高い分解率が得られる。

【0010】本発明の対象とするフッ素化合物は、ハロゲンとしてフッ素のみを含有するハロゲン化合物であ

る。化合物の構成成分としては、フッ素、炭素、酸素、硫黄、窒素などであり、化合物の一例としてはCF₄、CH₂F₂、CH₃F、C₂F₆、C₂H₂F₅、C₂H₂F₄、C₂H₃F₃、C₂H₄F₂、C₂H₅F、C₃F₈、CH₃OCH₂CF₃、CF₃F、C₂F₈、SF₆、NF₃等である。

【0011】本発明のフッ素化合物分解処理方法においては、A1を含んでなる触媒を用いる。A1は酸化物の形で用いられる。A1は単独で用いることができるが、そのほかに、Zn、Ni、Ti、Fe、Sn、Pt、Co、Zr、Ce、Siのうちの少なくとも一成分と組合せて用いることができる。さらに、これらの触媒にSを添加して触媒の分解活性を高めることができる。

【0012】触媒性能として必要なのは、高い分解率と長い触媒寿命を持つことである。これらの性能を示す触媒を詳細に検討した結果、A1₂O₃単体でも使用する原料によって高い分解性能を持たすことができるを見出した。

【0013】A1と、Zn、Ni、Ti、Fe、Sn、Pt、Co、Zr、Ce、Siのうちの少なくとも一成分とからなる触媒を用いることによって、A1を単独で使用する場合よりも分解率を高めることができる。これらの触媒中では、A1はA1₂O₃、または添加した金属成分と複合酸化物の状態で存在する。Zn、Ni、Ti、Fe、Sn、Co、Zr、Ce、Siは酸化物、またはA1との複合酸化物の状態で存在する。これらの触媒では、A1:M(=Zn、Ni、Ti、Fe、Sn、Co、Zr、Ce、Siの少なくとも1つ)の原子比がA1が50～99モル%でMが50～1モル%であることが好ましい。またはA1とPtからなる触媒においては、Ptを0.1～2wt%含有することが好ましい。A1以外の添加成分の量を前記範囲内にすることによって高い分解率が得られる。

【0014】長い触媒寿命を得るには触媒中のA1₂O₃の結晶化を抑制することが有効であり、Ni、Znなどを含有してNiA1₂O₄、ZnA1₂O₄などのように、添加した金属成分とA1とを複合酸化物化することが望ましい。触媒性能向上の方法としては、触媒中にSを添加する方法がある。Sの添加方法としては、触媒調製時に硫酸塩を使用する、あるいは硫酸を使用する、などの方法を適用できる。触媒中のSはSO₄イオンの形などで存在し、触媒の酸性質を強める働きをする。Sの量は0.1～20重量%が好ましい。

【0015】本発明の分解処理方法では、CF₄、C₂F₆などのフッ素化合物を含むガス流中に酸素を添加してもよい。分解ガス中のCOなどの酸化反応に使うことができる。

【0016】フッ素化合物の分解反応の代表的な反応には次のようなものがある。

【0017】

… (式 1)
… (式 2)
… (式 3)

(式 2) 及び (式 3) の反応では CO が生成するが、本発明の触媒は CO 酸化性能も有するため、酸素が存在すれば CO を CO₂ にすることができる。

【0018】添加する水蒸気の量は、処理するフッ素化合物中の F 数と少なくとも同等の水素分子が存在するよう調節する必要がある。これにより、化合物中のフッ素をフッ化水素に転化することができ、後処理しやすい形態にできる。

【0019】フッ素化合物を加水分解する反応温度は、約 200~800°C が好ましい。炭素とフッ素と水素から少なくとも構成されるフッ素化合物を処理する場合の反応温度は、約 500~800°C が好ましい。これ以上の高温で使用すると、高分解率は得られるが、触媒の劣化が速い。また、装置材料の腐食が進みやすくなる。ハロゲンとしてフッ素のみを含有し該フッ素を炭素、硫黄及び窒素から選ばれた元素との化合物にて含むガス流を触媒と接触させるに当たっては、ガス流中のフッ素化合物の含有量を 0.1~10 vol% とすることが好ましく、さらに好ましくは 0.1~3 vol% である。また、空間速度は、100 毎時~10,000 毎時が好ましく、さらに好ましくは 100 毎時~3,000 毎時である。空間速度 (h⁻¹) は反応ガス流量 (ml/h) / 触媒量 (ml) で求められる。

【0020】本発明によるフッ素化合物分解処理方法においては、分解生成物としてフッ化水素、二酸化炭素などが生成する。このほかに SO₂, SO₃ 等の硫黄酸化物及び NO, NO₂ 等の窒素酸化物が生成する場合もある。これらの分解生成物を除去するためにアルカリ溶液で洗浄したり或いは水で洗浄することが好ましい。水で洗浄する方法は、装置の腐食を抑制しつつフッ化水素を除去する方法として好ましい。ただし、水洗浄の場合には、その後、フッ化水素を含む水をアルカリで中和することが望ましい。アルカリとしては、水酸化カルシウムや水酸化ナトリウムの水溶液、スラリ液などの一般的なアルカリ試薬を使用することができる。

【0021】本発明の触媒を調製するための A1 原料としては、γ-アルミナ、γ-アルミナと δ-アルミナの混合物などを使用することができる。特にペーマイトを A1 原料として用い、焼成により酸化物を形成したものは高い分解活性を示す。

【0022】本発明の触媒を調製するための各種金属成分の原料としては、硝酸塩、硫酸塩、アンモニウム塩、塩化物などを用いることができる。Ni 原料としては硝酸ニッケルや硫酸ニッケルなどを使用することができる。これらの水和物も使用できる。Ti 原料としては、硫酸チタン、チタニアゾルなどを使用することができる。

【0023】本発明の触媒の製造法は通常の触媒の製造に用いられる沈殿法、含浸法、混練法、などいずれも使用できる。

【0024】また、本発明における触媒は、そのまま粒状、ハニカム状などに成形して使用することができる。成形法としては、押し出し成形法、打錠成形法、転動造粒法など目的に応じ任意の方法を採用できる。また、セラミックスや金属製のハニカムや板にコーティングして使用することもできる。

【0025】本発明の処理方法を実施するために使用される反応器は、通常の固定床、移動床あるいは流動床型のものでよいが、分解生成ガスとして HF などの腐食性のガスが発生するので、これらの腐食性のガスによって損傷しにくい材料で反応器を構成すべきである。

【0026】本発明の処理方法を実施するために使用される処理装置は、前述の反応器の他に、ガス流中のフッ素化合物の濃度を調節する手段例えばガス流に対して窒素あるいは空気あるいは酸素を供給する手段、ガス流と前記触媒とを 200~800°C の温度で接触させるために少なくとも一方を加熱する手段、前記フッ素化合物を分解するために水蒸気あるいは水を前記ガス流に対して添加する手段、前記反応器に充填された触媒に前記ガス流が接触することによって生成した分解生成物を水及びあるいはアルカリ水溶液で洗浄して該分解生成物中の二酸化炭素の一部と SO₂, SO₃ 等の硫黄酸化物の一部と NO, NO₂ 等の窒素酸化物の一部とフッ化水素とを除去する排ガス洗浄槽とを具備する。排ガス洗浄槽の後段に除去されなかった前記分解生成物中の二酸化炭素、硫黄酸化物、窒素酸化物を吸着剤などによって吸着する手段を設けることは更に好ましい。

【0027】既設の半導体工場へ本発明のフッ素化合物含有ガスの処理方法を適用することもできる。半導体工場には一般に酸成分ガスの排ガス処理装置があるため、これを利用し、本発明の触媒のみを CF₄ などのフッ素化合物の排ガスラインに設置し、水蒸気を添加して加熱すれば、フッ素化合物を分解処理することができる。また、本発明の装置全体あるいは一部をトラック等に積載し、廃棄されたフッ素化合物詰めボンベを貯蔵している場所へ移動して、含有されているフッ素化合物を抜き出し、直接処理することもできる。また、排ガス洗浄槽内の洗浄液を循環する循環ポンプや、排ガス中の二酸化炭素などを吸着する排ガス吸着槽を同時に搭載してもよい。また、発電機などを搭載してもよい。

【0028】本発明のフッ素化合物の分解処理方法によれば、低温でフッ素化合物を分解することができ、運転コストを低減できる。

【0029】フッ素化合物含有ガスを処理する場合、分

解して生成するHFなどの酸成分による装置材料の腐食が問題となるが、本発明によれば、使用する温度が低温であるため腐食速度が小さく、装置のメンテナンス頻度を減少できる。

【0030】本発明のフッ素化合物の分解処理方法は、フッ素化合物を分解する触媒反応工程と分解生成ガス中の酸成分を中和除去する排ガス洗浄工程とからなり、装置を小型化できる。

【0031】フッ素化合物の分解は水蒸気との反応によるため、分解処理方法としての安全性が高く、可燃ガスを使用した場合のように爆発などの危険性がない。

【0032】

【発明の実施の形態】以下、実施例にて本発明をさらに詳細に説明する。本発明は、これら実施例にのみ限定されるものではない。

【0033】図1は、半導体エッチング工程で用いる場合のハロゲン化合物の分解処理プロセスの一例を示す。

【0034】エッチング工程では、減圧したエッチング炉内にCF₄などのフッ素化合物1を入れて、プラズマで20分間励起し、半導体と反応させる。その後チャンバ内をN₂で置換し、ハロゲン化合物の濃度を数%に希釈して約10L/minでエッチング炉内から排出している。

【0035】この排出ガスに空気3を添加しCF₄などのハロゲン化合物を希釈した。このとき窒素を添加して希釈してもよい。また、窒素と酸素を添加して希釈してもよい。この希釈ガスに、さらに水添加器4により水蒸気を添加した反応ガス5を分解工程に送る。分解工程は、触媒を充填した反応器を用いて行う。反応ガス中のハロゲン化合物の濃度は約0.5～1%である。分解工程では、反応ガス5を、空間速度1,000毎時（空間速度(h⁻¹) = 反応ガス流量(ml/h) / 触媒量(m³))の条件でA1を含んでなる触媒と約200～800°Cで接触させる。この場合、反応ガスを加熱してもよく、電気炉などにより触媒を加熱してもよい。分解ガス6は、排ガス洗浄工程に送られる。排ガス洗浄工程では、分解ガス6に水7がスプレーされ、分解ガス中の酸成分が除去された排ガス8が系外に放出される。酸性ガスを含んだ酸性排水9は、半導体工場既設の排水処理設

$$\text{分解率} = 1 - \frac{\text{出口のハロゲン化合物}}{\text{供給したハロゲン化合物}} \times 100 (\%) \quad \dots (\text{数1})$$

【0041】以下に上記条件において試験に供した各触媒の調製法を示す。

【0042】触媒1；市販のベーマイト粉末を120°Cで2時間乾燥した。この乾燥粉末200gを300°Cで0.5時間焼成し、さらに焼成温度を700°Cにあげ2時間焼成した。得られた粉末を金型に入れ、500kgf/cm²の圧力で圧縮成型した。成型品を粉碎、篩い分けして0.5～1mm粒径として試験に供した。完成後の触媒はAl₂O₃からなる。

備で処理される。CF₄などのハロゲン化合物の分解率は、反応ガス5と分解ガス6をFID(Flame Ionization Detectorの略称)ガスクロマトグラフ、TCD(Thermal Conductivity Detectorの略称)ガスクロマトグラフを用いて分析し、入口及び出口の物質収支により求められる。

【0036】図10に、本発明の処理装置の一例を示す。エッチング工程からのフッ素化合物ガスは、入口スプレー10で水がスプレーされ、ガス中のSiF₄等の不純物が除去される。このガスと、空気3及びイオン交換樹脂11等で精製された水7とが予熱器12内でヒーター13により加熱されるようになっている。反応器15はA1を含む触媒14を充填したものである。又、反応器15の後段に、水のスプレー手段16を有する冷却室17及び水のスプレー手段18を有し、充填材19を含む排ガス洗浄槽20を備えている。排ガス8はプロワー21により引かれ、酸性排水9はポンプ22で引かれる。なお、排ガス洗浄槽のフッ化水素を含む水は、イオン交換処理して、純水原料として再利用することが可能である。

【0037】(実施例1) 本実施例は、各種フッ素化合物分解触媒の活性を調べた例である。

【0038】純度99%以上のC₂F₆ガスに空気を添加して希釈した。この希釈ガスに、さらに水蒸気を添加した。水蒸気は純水を約0.2ml/minで反応管上部へマイクロチューブポンプを用いて供給しガス化させた。反応ガス中のC₂F₆濃度は約0.5%であった。この反応ガスを、電気炉により反応管外部から所定温度に加温した触媒と空間速度2,000毎時で接触させた。

【0039】反応管は内径3.2mmのインコネル製の反応管で、触媒層を反応管中央に有しており、内部に外径3mmのインコネル製の熱電対保護管を有している。触媒層を通過した分解生成ガスはフッ化カルシウム溶液中にパブリングさせ、系外に放出した。C₂F₆の分解率は、FIDガスクロマトグラフ、TCDガスクロマトグラフにより、次式で求めた。

【0040】

【数1】

【0043】触媒2；市販のベーマイト粉末を120°Cで1時間乾燥した。この乾燥粉末200gに、硝酸亜鉛6水和物85.38gを溶かした水溶液を添加し、混練した。混練後、250～300°Cで約2時間乾燥し、700°Cで2時間焼成した。焼成物を粉碎、篩い分けして0.5～1mm粒径として試験に供した。完成後の触媒組成は原子比でA1:Zn=91:9(モル%)であった。この触媒は、A1酸化物、Zn酸化物のほかにZnAl₂O₄の複合酸化物を含む。

【0044】触媒3；市販のベーマイトを120°Cで1時間乾燥した。この乾燥粉末200gに、硫酸ニッケル6水和物50.99gを溶かした水溶液を添加し、混練した。混練後、250～300°Cで約2時間乾燥し、700°Cで2時間焼成した。焼成物を粉碎、篩い分けして0.5～1mm粒径として試験に供した。完成後の触媒組成は原子比でA1:Ni=91:9(モル%)であった。この触媒は、A1酸化物、Ni酸化物、NiAl₂O₄の複合酸化物及びS酸化物を含む。

【0045】触媒4；市販のベーマイト粉末を120°Cで1時間乾燥した。この乾燥粉末300gに、硝酸ニッケル6水和物125.04gを溶かした水溶液を添加し、混練した。混練後、250～300°Cで約2時間乾燥し、700°Cで2時間焼成した。焼成物を粉碎、篩い分けして0.5～1mm粒径として試験に供した。完成後の触媒組成は原子比でA1:Ni=91:9(モル%)であった。この触媒は、A1酸化物、Ni酸化物及びNiAl₂O₄の複合酸化物を含む。

【0046】触媒5；市販のベーマイト粉末を120°Cで1時間乾燥した。この乾燥粉末300gと30%硫酸チタン溶液354.4gを純水約300gを添加しながら混練した。混練後、250～300°Cで約5時間乾燥し、700°Cで2時間焼成した。焼成物を粉碎、篩い分けして0.5～1mm粒径として試験に供した。完成後の触媒組成は原子比でA1:Ti=91:9(モル%)であった。

【0047】触媒6；市販のベーマイト粉末を120°Cで1時間乾燥した。この乾燥粉末200gに、硝酸鉄9水和物115.95gを溶かした水溶液を添加し、混練した。混練後、250～300°Cで約2時間乾燥し、700°Cで2時間焼成した。焼成物を粉碎、篩い分けして0.5～1mm粒径として試験に供した。完成後の触媒組成は原子比でA1:Fe=91:9(モル%)であった。

【0048】触媒7；市販のベーマイト粉末を120°Cで1時間乾燥した。この乾燥粉末200gに、塩化第二すず水和物95.43gを溶かした水溶液を添加し、混練した。混練後、250～300°Cで約2時間乾燥し、700°Cで2時間焼成した。焼成物を粉碎、篩い分けして0.5～1mm粒径として試験に供した。完成後の触媒組成は原子比でA1:Sn=91:9(モル%)であった。

【0049】触媒8；市販のベーマイト粉末を120°Cで1時間乾燥した。この乾燥粉末200gに、ジニトロジアンミンPt(II)硝酸溶液(Pt濃度4.5wt%)22.2gを純水200mlで希釈した水溶液を添加し、混練した。混練後、250～300°Cで約2時間乾燥し、700°Cで2時間焼成した。焼成物を粉碎、篩い分けして0.5～1mm粒径として試験に供した。完成後の触媒はA1₂O₃100重量%に対してPtを0.68

重量%含んでいた。

【0050】触媒9；市販のベーマイト粉末を120°Cで1時間乾燥した。この乾燥粉末300gに、硝酸コバルト6水和物125.87gを溶かした水溶液を添加し、混練した。混練後、250～300°Cで約2時間乾燥し、700°Cで2時間焼成した。焼成物を粉碎、篩い分けして0.5～1mm粒径として試験に供した。完成後の触媒組成は原子比でA1:Co=91:9(モル%)であった。

【0051】触媒10；市販のベーマイト粉末を120°Cで1時間乾燥した。この乾燥粉末200gに、硝酸ジルコニル2水和物76.70gを溶かした水溶液を添加し、混練した。混練後、250～300°Cで約2時間乾燥し、700°Cで2時間焼成した。焼成物を粉碎、篩い分けして0.5～1mm粒径として試験に供した。完成後の触媒組成は原子比でA1:Zr=91:9(モル%)であった。

【0052】触媒11；市販のベーマイト粉末を120°Cで1時間乾燥した。この乾燥粉末200gに、硝酸セリウム6水和物124.62gを溶かした水溶液を添加し、混練した。混練後、250～300°Cで約2時間乾燥し、700°Cで2時間焼成した。焼成物を粉碎、篩い分けして0.5～1mm粒径として試験に供した。完成後の触媒組成は原子比でA1:Ce=91:9(モル%)であった。

【0053】触媒12；市販のベーマイト粉末を120°Cで1時間乾燥した。この乾燥粉末300gに、20wt%シリカゾル129.19gを溶かした水溶液を添加し、混練した。混練後、250～300°Cで約2時間乾燥し、700°Cで2時間焼成した。焼成物を粉碎、篩い分けして0.5～1mm粒径として試験に供した。完成後の触媒組成は原子比でA1:Si=91:9(モル%)であった。

【0054】上記触媒1～12の反応温度700°Cでの試験結果を図2に示す。A1とZnからなる触媒及びA1とNiからなる触媒の分解活性が他にめきんで高い。次いでA1とTiからなる触媒の分解活性が高い。触媒3が触媒4よりも高活性を有するのは、Sの効果と思われる。

【0055】(実施例2)本実施例は、実施例1の触媒4と同じA1原料、Ni原料を用い、A1とNiの組成を変化させた触媒を調製し、C₂F₆の分解活性を調べた結果である。

【0056】触媒4-1；市販のベーマイト粉末を120°Cで1時間乾燥した。この乾燥粉末200gに、硝酸ニッケル6水和物8.52gを溶かした水溶液を添加し、混練した。混練後、250～300°Cで約2時間乾燥し、700°Cで2時間焼成した。焼成物を粉碎、篩い分けして0.5～1mm粒径とした。完成後の触媒組成は原子比でA1:Ni=99:1(モル%)であった。

【0057】触媒4-2；市販のペーマイト粉末を120°Cで1時間乾燥した。この乾燥粉末300gに、硝酸ニッケル6水和物66.59gを溶かした水溶液を添加し、混練した。混練後、250~300°Cで約2時間乾燥し、700°Cで2時間焼成した。焼成物を粉碎、篩い分けして0.5~1mm粒径とした。完成後の触媒組成は原子比でA1:Ni=95:5(モル%)であった。

【0058】触媒4-3；市販のペーマイト粉末を120°Cで1時間乾燥した。この乾燥粉末200gに、硝酸ニッケル6水和物210.82gを溶かした水溶液を添加し、混練した。混練後、250~300°Cで約2時間乾燥し、700°Cで2時間焼成した。焼成物を粉碎、篩い分けして0.5~1mm粒径とした。完成後の触媒組成は原子比でA1:Ni=80:20(モル%)であった。

【0059】触媒4-4；市販のペーマイト粉末を120°Cで1時間乾燥した。この乾燥粉末200gに、硝酸ニッケル6水和物361.16gを溶かした水溶液を添加し、混練した。混練後、250~300°Cで約2時間乾燥し、700°Cで2時間焼成した。焼成物を粉碎、篩い分けして0.5~1mm粒径とした。完成後の触媒組成は原子比でA1:Ni=70:30(モル%)であった。

【0060】触媒4-5；市販のペーマイト粉末を120°Cで1時間乾燥した。この乾燥粉末200gに、硝酸ニッケル6水和物562.1gを混ぜ、水を添加しながら混練した。混練後、250~300°Cで約2時間乾燥し、700°Cで2時間焼成した。焼成物を粉碎、篩い分けして0.5~1mm粒径とした。完成後の触媒組成は原子比でA1:Ni=60:40(モル%)であった。

【0061】触媒4，触媒4-1から触媒4-5の活性を、C₂F₆濃度を2%とし、供給する純水の量を約0.4ml/minとした以外は実施例1と同様の方法で調べた。試験開始6時間後の分解率を図3に示す。Ni/(Ni+A1)のモル%が20~30モル%のときに最も活性が高く、次いで5~40モル%のときに活性が高い。

【0062】(実施例3) 本実施例は、実施例1の触媒2と同じA1原料、Zn原料を用い、A1とZnの組成を変化させた触媒を調製し、活性を調べたものである。

【0063】触媒2-1；市販のペーマイト粉末を120°Cで1時間乾燥した。この乾燥粉末200gに、硝酸亜鉛6水和物215.68gを溶かした水溶液を添加し、混練した。混練後、250~300°Cで約2時間乾燥し、700°Cで2時間焼成した。焼成物を粉碎、篩い分けして0.5~1mm粒径とした。完成後の触媒組成は原子比でA1:Zn=80:20(モル%)であった。

【0064】触媒2-2；市販のペーマイト粉末を120°Cで1時間乾燥した。この乾燥粉末200gに、硝酸亜鉛6水和物369.48gを溶かした水溶液を添加

し、混練した。混練後、250~300°Cで約2時間乾燥し、700°Cで2時間焼成した。焼成物を粉碎、篩い分けして0.5~1mm粒径とした。完成後の触媒組成は原子比でA1:Zn=70:30(モル%)であった。

【0065】触媒2-3；市販のペーマイト粉末を120°Cで1時間乾燥した。この乾燥粉末126.65gに、硝酸亜鉛6水和物96.39gを溶かした水溶液を添加し、混練した。混練後、250~300°Cで約2時間乾燥し、700°Cで2時間焼成した。焼成物を粉碎、篩い分けして0.5~1mm粒径とした。完成後の触媒組成は原子比でA1:Zn=85:15(モル%)であった。

【0066】触媒2，触媒2-1から触媒2-3の活性を、C₂F₆濃度を2%とし、供給する純水の量を約0.4ml/minとした以外は実施例1と同様の方法で調べた。試験開始6時間後の分解率を図4に示す。Ni/(Ni+A1)のモル%が10~30モル%のときに最も活性が高い。

【0067】(実施例4) 本実施例は、CF₄, CHF₃, C₂F₆の分解を反応温度を変えて行った結果である。試験条件は、空間速度1,000毎時とし、ハログン化合物を空気の代わりに窒素で希釈した以外は、実施例1と同様である。触媒は実施例2中の触媒4-3を用いた。各反応温度での試験の結果を図5に示す。A1とNiからなる触媒は、CHF₃, CF₄に対しても高い分解活性を有する。又、これらのフッ素化合物に対しては600°C程度の低い温度でも高い活性を有し、特にCHF₃に対しては、反応ガス中のCHF₃濃度が0.1%の場合、300°Cでも35%分解した。

【0068】(実施例5) 本実施例は、C₂F₆の分解における水蒸気の影響を調べた結果である。試験条件は、空間速度1,000毎時とした以外は、実施例1と同様である。触媒は実施例1中の触媒4を用い、反応温度は700°Cとした。試験は反応開始から2時間後まで水蒸気を供給し、その後、水蒸気の供給を停止した。5時間後再び水蒸気を供給し始めた。試験の結果を図6に示す。水蒸気の添加時に分解率が高まりC₂F₆の分解は加水分解によることが明らかとなった。

【0069】(実施例6) 本実施例は、A1とNiからなる触媒4-3を用いて、SF₆, C₂F₆の分解を行った結果である。SF₆の試験条件は、純度99%以上のSF₆ガスを用い、空間速度1,000毎時とし、SF₆を空気の代わりに窒素で希釈した以外は、実施例1と同様である。C₂F₆の試験条件は実施例1と同じである。試験結果を図7に示す。反応管入口の反応ガス中のSF₆量とアルカリ吸収槽通過後の分解ガス中のSF₆量をTCDガスクロマトグラフにより測定し、次式により分解率を求めた結果、反応温度550~700°CでのSF₆分解率は99%以上であった。C₂F₆の分解試験では、700°C以上の反応温度で高い反応率が得られた。

【0070】

【数2】

$$\text{分解率} = 1 - \frac{\text{出口のSF}_6\text{量}}{\text{供給したSF}_6\text{量}} \times 100 (\%) \quad \cdots (\text{数2})$$

【0071】(実施例7) 本実施例は、A1とNiからなる触媒4-3を用いてNF₃の分解を行った結果である。試験条件は、純度99%以上のNF₃ガスを用いた以外は実施例6と同様である。反応温度を700°Cとした。反応管入口の反応ガス中のNF₃量とアルカリ吸収槽通過後の分解ガス中のNF₃量をTCDガスクロマト

$$\text{分解率} = 1 - \frac{\text{出口のNF}_3\text{量}}{\text{供給したNF}_3\text{量}} \times 100 (\%) \quad \cdots (\text{数3})$$

【0073】(実施例8) A1とZnを原子比でA1:Zn=85:15(モル%)含む触媒を用いて、CF₄, C₂F₆, CHF₃の分解を行った。

【0074】CF₄の分解は、純度99%以上のCF₄ガスに空気を添加して希釈し、更に水蒸気を添加し、所定の反応温度で触媒と接触させることによって行った。空間速度は1,000毎時である。

【0075】反応ガス中のCF₄濃度は約0.5%である。水蒸気はCF₄ガスの約50倍となるように流量を調節した。

【0076】CHF₃及びC₂H₆の分解も同様にして行った。

【0077】図9の試験結果を示す。A1とZnからなる触媒はCHF₃, CF₄に対しても高い分解活性を示す。C₂F₆に対しては、700°C前後あるいはそれ以外の温度にすれば高い分解活性を示すことが明らかにされた。

【0078】

【発明の効果】本発明によれば、CF₄, C₂F₆などのようにハロゲンとしてフッ素のみを含有するハロゲン化合物を効率良く分解処理することができる。

【図面の簡単な説明】

【図1】本発明の実施例1の処理プロセスを示す図である。

【図2】本発明の各触媒の性能を示す図である。

グラフにより測定し、次式により分解率を求めた結果、分解率は99%以上であった。また、700°C以下の分解率を図8に示す。400°Cでも分解率99.9%が得られた。

【0072】

【数3】

【図3】本発明のA1-Ni触媒のC₂F₆分解性能を示す図である。

【図4】本発明のA1-Zn触媒のC₂F₆分解活性を示す図である。

【図5】本発明のA1-Ni触媒のC₂F₆, CHF₃, CF₄の分解活性を示す図である。

【図6】本発明のA1-Ni触媒のC₂F₆分解における水蒸気の影響を示す図である。

【図7】本発明のA1-Ni触媒のSF₆, C₃F₈の分解活性を示す図である。

【図8】本発明のA1-Ni触媒のNF₃分解活性を示す図である。

【図9】本発明のA1-Zn触媒のCF₄, C₂F₆, CHF₃の分解活性を示す図である。

【図10】本発明の一実施例による分解処理装置の概略構成図である。

【符号の説明】

- 1…CF₄などのフッ素化合物、2…N₂、3…空気、
- 4…水添加器、5…反応ガス、6…分解ガス、7…水、
- 8…排ガス、9…酸性排水、10…入口スプレー、11…イオン交換樹脂、12…予熱器、13…ヒーター、14…触媒、15…反応器、16, 18…スプレー手段、
- 17…冷却室、19…充填材、20…排ガス洗浄槽、21…プロワー、22…ポンプ。

【図6】

図 6

【図1】

【図5】

【図2】

図 2

【図3】

図3

【図4】

図4

【図7】

図7

【図8】

図8

【図9】

図9

【図10】

図10

フロントページの続き

(51)Int.Cl. ⁶	識別記号	F I	
B 0 1 J 23/10		B 0 1 J 23/14	A
23/14		23/42	A
23/42		B 0 1 D 53/36	D
23/745		B 0 1 J 23/74	3 0 1 A
23/75			3 1 1 A
23/755			3 2 1 A
(72)発明者 山下 寿生	茨城県日立市大みか町七丁目1番1号 株式会社日立製作所日立研究所内	(72)発明者 玉田 慎	茨城県日立市幸町三丁目1番1号 株式会社日立製作所日立工場内
(72)発明者 小豆畑 茂	茨城県日立市大みか町七丁目1番1号 株式会社日立製作所日立研究所内	(72)発明者 入江 一芳	茨城県日立市幸町三丁目1番1号 株式会社日立製作所日立工場内