Tutorial 4

Exploratory Data Analysis

Note: Lines beginning with "#" are comment lines explaining what we are doing. The R compiler skips these lines. Lines indented (e.g., Create a Histogram, below) are meant to be on the same line as the one above. A semicolon tells R to separate one line into two lines, one before and one after the semicolon.

Input data set Churn into Data Frame "Churn"

churn <- read.csv(file = "C://churn.txt",	> (churn[1	L:10,] Account.Length	anna Code	Dhana	Int.1.Plan
atrings As Eastons—TDLIE)	1	KS	128		382-4657	no
stringsAsFactors=TRUE)	2	OH	107		371-7191	no
# Show the first ten records churn[1:10,]	3	N3	137	100000000000000000000000000000000000000	358-1921	no
	4	OH	84	408	375-9999	yes
	5	OK	75	415	330-6626	yes
	6	AL	118	510	391-8027	yes
	7	MA	121	510	355-9993	no
	8	MO	147	415	329-9001	yes
	9	LA	117	408	335-4719	no
	10	WV	141	415	330-8173	yes

Summarize the Churn variable

sum.churn <- summary(churn\$Churn) sum.churn</pre>

Calculate proportion of churners

```
prop.churn <- sum(churn$Churn == "True") /
  length(churn$Churn)
prop.churn</pre>
```

Bar chart of variable Churn

```
barplot(sum.churn,

ylim = c(0, 3000),

main = "Bar Graph of Churners and Non-Churners",

col = "lightblue")

box(which = "plot",

lty = "solid",

col="black")
```


Make a table for counts of Churn and International Plan

```
counts <- table(churn$Churn, churn$Int.1.Plan,
dnn=c("Churn", "International Plan"))
counts
```

```
> counts
International Plan
Churn no yes
False. 2664 186
True. 346 137
```

Create a table with sums for both variables

sumtable <- addmargins(counts, FUN = sum) sumtable

> sumtable
International Plan
Churn no yes sum
False. 2664 186 2850
True. 346 137 483
sum 3010 323 3333

Overlayed bar chart

```
barplot(counts,

legend = rownames(counts),

col = c("blue", "red"),

ylim = c(0, 3300),

ylab = "Count",

xlab = "International Plan",

main = "Comparison Bar Chart:

Churn Proportions by International Plan")

box(which = "plot",

lty = "solid",

col="black")
```


Create a table of proportions over rows

```
row.margin <- round(prop.table(counts,
margin = 1),
4)*100
row.margin
```

```
> row.margin
International Plan
Churn no yes
False. 93.47 6.53
True. 71.64 28.36
```

Create a table of proportions over columns

```
col.margin <- round(prop.table(counts,
    margin = 2),
4)*100
col.margin</pre>
```

```
> col.margin
International Plan
Churn no yes
False. 88.50 57.59
True. 11.50 42.41
```

Histogram of non-overlayed Customer Service Calls

```
hist(churn$CustServ.Calls,

xlim = c(0,10),

col = "lightblue",

ylab = "Count",

xlab = "Customer Service Calls",

main = "Histogram of Customer Service Calls")
```


Clustered Bar Chart, with legend

Download and install the R Package ggplot2

	70: Turkey	/1: UK (Bristol)	72: UK (Londo
install.packages("ggplot2")	73: UK (St Andrews)	74: USA (CA 1)	75: USA (CA 2
mounipatinges (SSP1012)	76: USA (IA)	77: USA (IN)	78: USA (KS)
# Pick any CRAN mirror	79: USA (MD)	80: USA (MI)	81: USA (MO)
	82: USA (OH)	83: USA (OR)	84: USA (PA 1
# (see example image)	85: USA (PA 2)	86: USA (TN)	87: USA (TX 1
" (see example image)	88: USA (WA 1)	89: USA (WA 2)	90: Venezuela
# Open the new package	91: Vietnam		
1 1 0	Selection: 74		
library(ggplot2)	36146616111		

Clustered Bar Chart of Churn and Int'l Plan with legend

```
barplot(t(counts),
  col = c("blue", "green"),
                                                                       International Plan Count by Churn
  ylim = c(0, 3300),
                                                                                                     Int'l Plan
                                                          3000
  ylab = "Counts",
                                                                                                     False.
  xlab = "Churn",
                                                                                                     True.
                                                          2500
  main = "International Plan Count by Churn",
                                                          2000
  beside = TRUE)
                                                       Counts
legend("topright",
                                                          1500
  c(rownames(counts)),
                                                          1000
  col = c("blue", "green"),
  pch = 15,
                                                          200
  title = "Int'l Plan")
box(which = "plot",
                                                                      False.
  lty = "solid",
                                                                                   Churn
  col="black")
```

Overlayed bar charts

```
ggplot() +
  geom_bar(data = churn,
  aes(x = factor(churn$CustServ.Calls),
  fill = factor(churn$Churn.)),
  position = "stack") +
  scale_x_discrete("Customer Service Calls") +
  scale_y_continuous("Percent") +
  guides(fill=guide_legend(title="Churn")) +
  scale_fill_manual(values=c("blue", "red"))
```



```
ggplot() +
  geom_bar(data=churn,
  aes(x = factor(churn$CustServ.Calls),
  fill = factor(churn$Churn.)),
  position = "fill") +
  scale_x_discrete("Customer Service Calls") +
  scale_y_continuous("Percent") +
  guides(fill=guide_legend(title="Churn")) +
  scale_fill_manual(values=c("blue", "red"))
```


Check these commands

Two-sample T-Test for Int'l Calls

```
# Partition data
churn.false <- subset(churn,
churn$Churn == "False")

churn.true <- subset(churn,
churn$Churn == "True")

# Run the test
t.test(churn.false$Intl.Calls,
churn.true$Intl.Calls)

# Churn.true$Intl.Calls

# Run the test
t.test(churn.false$Intl.Calls,
churn.true$Intl.Calls)

# Run the test
t.test(churn.false$Intl.Calls,
churn.true$Intl.Calls)
```

Scatterplot matrix

pairs(~churn\$Day.Mins+
 churn\$Day.Calls+
 churn\$Day.Charge)

Regression of Day Charge vs Day Minutes

```
\label{eq:churn} \begin{split} & \text{fit} <- \text{lm}(\text{churn}\$\text{Day}.\text{Charge} \sim \\ & \text{churn}\$\text{Day}.\text{Mins}) \\ & \text{summary}(\text{fit}) \end{split}
```

Scatterplot of Evening Minutes and Day Minutes, colored by Churn

```
plot(churn$Eve.Mins,
  churn$Day.Mins,
  x\lim = c(0, 400),
  y\lim = c(0, 400),
  xlab = "Evening Minutes",
  ylab = "Day Minutes",
  main = "Scatterplot of Day and Evening
     Minutes by Churn",
  col = ifelse(churn$Churn=="True",
     "red",
     "blue"))
legend("topright",
    c("True",
     "False"),
  col = c("red",
     "blue"),
  pch = 1,
```

title = "Churn")

Scatterplot of Day Minutes and Customer Service Calls, colored by Churn

```
plot(churn$Day.Mins,
  churn$CustServ.Calls,
  x \lim = c(0, 400),
  xlab = "Day Minutes",
  ylab = "Customer Service Calls",
  main = "Scatterplot of Day Minutes and
     Customer Service Calls by Churn",
  col = ifelse(churn$Churn=="True",
     "red",
     "blue"),
  pch = ifelse(churn$Churn=="True",
     16, 20))
legend("topright",
  c("True",
     "False"),
  col = c("red",
     "blue"),
  pch = c(16, 20),
  title = "Churn")
```


Correlation values, with p-values

```
> round(cor(days), 4)

[,1] [,2] [,3]

[1,] 1.0000 0.0068 1.0000

[2,] 0.0068 1.0000 0.0068

[3,] 1.0000 0.0068 1.0000

> MinsCallsTest$p.value

[1] 0.6968515

> MinsChargeTest$p.value

[1] 0

> CallsChargeTest$p.value

[1] 0.6967428
```

Correlation values and p-values in matrix form

```
# Collect variables of interest
corrdata <- cbind(churn$Account.Length,
   churn$VMail.Message,
   churn$Day.Mins,
   churn$Day.Calls,
   churn$CustServ.Calls)
                                                                         # Declare the matrix
                                                                                                            [.3]
                                                                                                         0.0062
corrpvalues <- matrix(rep(0, 25),
                                                                                                                    0.0385 -0.0038
                                                                          [2,] -0.0046 1.0000 0.0008 -0.0095 -0.0133 [3,] 0.0062 0.0008 1.0000 0.0068 -0.0134 [4,] 0.0385 -0.0095 0.0068 1.0000 -0.0189 [5,] -0.0038 -0.0133 -0.0134 -0.0189 1.0000
   ncol = 5
# Fill the matrix with correlations
for (i in 1:4) {
                                                                          > corrpvalues
                                                                                [,1] [,2] [,3] [,4] [,5]
0.0000 0.7894 0.7198 0.0264 0.8266
 for (j \text{ in } (i+1):5) {
                                                                                0.7894 0.0000 0.9642 0.5816 0.4440
                                                                         [2,] 0.7894 0.0000 0.9642 0.5816 0.4440 [3,] 0.7198 0.9642 0.0000 0.6969 0.4385 [4,] 0.0264 0.5816 0.6969 0.0000 0.2743 [5,] 0.8266 0.4440 0.4385 0.2743 0.0000
    corrpvalues[i,j] <- corrpvalues[j,i] <-
     round(cor.test(corrdata[,i],
        corrdata[,j])$p.value,
    4)
round(cor(corrdata), 4)
corrpvalues
```

Reference:

Discovering Knowledge in Data: An Introduction to Data exploration, Second Edition, by Daniel Larose and Chantal Larose, John Wiley and Sons, Inc., 2014.