Bazele Electrotehnicii Tema

Dobre Gigi-Alexandru Aprilie 2020

Grupa 312CD Facultatea de Automatică și Calculatoare Universitatea Politehnica București dobrealex4@gmail.com

Contents

1	Ger	nerarea unui circuit	3		
	1.1	Graful Intensitatii si cel al Tensiunii	3		
	1.2	Calcularea valorilor elementelor de circuit	5		
	1.3	Verificarea circuitului cu ajutorul Teoremei lui Tellegen si cu Bilantul Puterilor \dots	6		
2	Metode sistematice eficiente				
	2.1	Tabel metode	8		
	2.2	Metoda curentilor in coarde	9		
3	Ger	neratorul echivalent de tensiune/curent	10		
	3.1	Dependenta U, I, P	11		
	3.2	Caracteristica generatorului si a rezistorului liniar	13		
	3.3	Dioda semiconductoare in polarizare directa	14		
	3.4	Dioda semiconductoare in polarizare inversa	15		
4	Sim	nulatorul Spice	17		
	4.1	Circuitul Initial	17		
	4.2	Circuitul cu SUCI	18		
	4.3	Circuitul cu SICU	19		
5	Rec	dactare Latex	20		
6	Bib	liografie	22		

1 Generarea unui circuit

1.1 Graful Intensitatii si cel al Tensiunii

N=5 noduri; L=7 laturi

N-1 = 4 ramuri

L-N+1 = 3 coarde

Graf curenti

Kirchhoff I in N-1 noduri:

$$I_3 = 2A; I_6 = 2A; I_7 = 1A$$

- $(1): I_1 = I_6 \Rightarrow I_1 = 2A$
- (2): $I_2 = I_1 + I_7 \Rightarrow I_2 = 2A + 1A \Rightarrow I_2 = 3A$
- (3): $I_5 = I_2 I_3 \Rightarrow I_5 = 3A 2A \Rightarrow I_5 = 1A$
- $(4): I_4 = I_3 \Rightarrow I_4 = 2A$

Graf tensiuni

Kirchhoff II în L-N+1 bucle:

$$U_1=2V;\,U_2=2V;\,U_5=6V;\,U_4=4V$$

$$[1]: U_3 = U_5 - U_4 \Rightarrow U_3 = 6V - 4V \Rightarrow U_3 = 2V$$

[2]:
$$U_7 = U_5 - U_2 \Rightarrow U_7 = 6V - 2V \Rightarrow U_7 = 4V$$

[3]: $U_6 = U_7 + U_1 \Rightarrow U_6 = 4V + 2V \Rightarrow U_6 = 6V$

[3]:
$$U_6 = U_7 + U_1 \Rightarrow U_6 = 4V + 2V \Rightarrow U_6 = 6V$$

Calcularea valorilor elementelor de circuit

Graful circuitului

$$R_1 = U_1/I_1 \Rightarrow R_1 = 10hm$$

$$R_3 = U_3/I_3 \Rightarrow R_3 = 10hm$$

$$R_4 = U_4/I_4 \Rightarrow R_4 = 20hm$$

$$E_2 = 2V$$

$$E_5 = 6V$$

$$J_6 = 2A$$

$$J_7 = 1A$$

1.3 Verificarea circuitului cu ajutorul Teoremei lui Tellegen si cu Bilantul Puterilor

Teorema lui Tellegen

Puterea de la rezistoare

$$P_r = U_1 * I_1 + U_3 * I_3 + U_4 * I_4 + U_5 * I_5$$

$$P_r = 2V * 2A + 2V * 2A + 4V * 2A + 6V * 1A$$

$$P_r = 22W$$

Puterea de la generatoare

$$P_g = U_2 * I_2 + U_6 * I_6 + U_7 * I_7$$

 $P_g = 2V * 3A + 6V * 2A + 4V * 1A$
 $P_g = 22W$
 $\Rightarrow P_r = P_g$

Bilantul puterilor

$$P_C = \sum_k R_K I_K^2 \tag{1}$$

$$P_G = \sum_{SIT}^A E_K I_K + \sum_{SIC} U_{gK} J_K \tag{2}$$

Puterea consumata

$$P_c = R_1 * I_1 * I_1 + R_3 * I_3 * I_3 + R_4 * I_4 * I_4$$

$$P_c = 1ohm * 2A * 2A + 1ohm * 2A * 2A + 2ohm * 2A * 2A$$

$$P_c = 16W$$

Puterea generata

$$P_g = E_2 * I_2 - E_5 * I_5 + U_{g6} * J_6 + U_{g7} * J_7$$

$$P_g = 2V * 3A - 6V * 1A + 6V * 2A + 4V * 1A$$

$$P_g = 16W$$

$$\Rightarrow P_c = P_g$$

2 Metode sistematice eficiente

2.1 Tabel metode

Metoda	Numar de ecuatii
Kirchhoff clasic	2L = 14
Kirchhoff in curenti	L - N + 1 = 3
Kirchhoff in tensiuni	N - 1 = 4
Curenti de coarde (curenti de bucle/curenti ciclici)	$L - N + 1 - n_{SIC} = 1$
Tensiuni in ramuri (potentiale ale nodurilor daca	
SIT formeaza un subgraf conex)	N - 1 - $n_{SIT} = 2$

2.2 Metoda curentilor in coarde

Parametri topologici:

$$n_{SIC} = 2$$
; N = 5 noduri; L = 7 laturi

Kirchhoff II in bucla:

$$(R_4 + R_3) * (3A - I'_5) = E_5 \Rightarrow$$

 $\Rightarrow I'_5 * (R_4 + R_3) = 3A * (R_4 + R_3) - E_5 \Rightarrow$
 $\Rightarrow I'_5 = (3A * (R_4 + R_3) - E_5)/(R_4 + R_3) \Rightarrow$
 $\Rightarrow I'_5 = (3A * (2ohm + 1ohm) - 6V)/(2ohm + 1ohm) \Rightarrow$
 $\Rightarrow I'_5 = 3V/3ohm \Rightarrow$
 $\Rightarrow I'_5 = 1A$
 $I'_5 = I_5$
 $3A - I'_5 = I_3$
 $3A - I'_5 = I_4$

Deoarece intensitatile care sunt prin laturile din bucla au aceeasi valoare ca cele de la inceput și cum niciuna dintre celelalte nu se schimba, atunci Graful Curent si Graful Tensiune raman neschimbate deasemenea. Prin urmare, Bilantul de Puteri va ramane la fel.

3 Generatorul echivalent de tensiune/curent

In realizarea acestui task a fost nevoie sa-mi echivalez circuitul. Am echivalat SIC-ul G_6 aflat in serie cu R_1 cu un SIC G_6' cu aceeasi intensitate. SIC-ul G_6' in paralel cu SIC-ul G_7 formeaza un alt SIC G_{67} cu intensitatea $J_6' + J_7$, unde $J_6' = J_6$. SIC-ul G_{67} in serie cu SIT-ul E_2 formeaza un alt SIC G_{67}' cu $J_{67}' = J_{67}$. SIC-ul G_{67}' in paralel cu SIT-ul E_5 formeaza un SIT Ee cu $E_6 = E_5 = 6V$. Deasemenea, $R_6 = 10$ hm este cel de pe latura de jos, pe care il vom varia, si $R_6 = 20$ hm este cel de pe latura din dreapta. Circuitul va fi:

3.1 Dependenta U, I, P

In codul Matlab de mai jos, R este valoarea rezistentei R pe care o variez intre 0 si 20, 6 este U_{qol} si 2 este Re.

Dependenta puterii, curentului si tensiunii in functie de un rezistor. Valorile pentru transferul maxim de putere.

```
1 -
       R = 0 : 0.2 : 20;
2 -
       I = 6 . / (2 + R);
3 -
       U = I .* R;
 4 -
       P = U .* I;
5 -
       plot(R, I, 'r', 'LineWidth', 2);
6 -
      hold on
7 -
      plot(R, U, 'g', 'LineWidth', 2);
8 -
      plot(R, P, 'b', 'LineWidth', 2);
9 -
      plot([2, 2, 0], [0, max(P), max(P)], '-');
10 -
       plot([2, 2, 0], [0, U(R == 2), U(R == 2)], '-');
       plot([2, 2, 0], [0, I(R == 2), I(R == 2)], '-');
11 -
12 -
       xlabel('R [\Omega]');
13 -
       legend('Intensitatea I(A)', 'Tensiunea U(V)', 'Puterea P(W)');
14 -
       title ("Dependenta U, I, P in functie de R");
```


Pentru R = Re = 2ohm, se obtine punctul de putere maxim, puterea fiind 4.5W.

Dependenta puterii, curentului si tensiunii in functie de un rezistor. Valorile punctului de functionare initial al circuitului.

```
R = 0 : 0.2 : 20;
1 -
 2 -
       I = 6 . / (2 + R);
 3 -
       U = I .* R;
 4 -
       P = U .* I;
5 -
       plot(R, I, 'r', 'LineWidth', 2);
 6 -
 7 -
       plot(R, U, 'g', 'LineWidth', 2);
 8 -
       plot(R, P, 'b', 'LineWidth', 2);
 9 -
       plot([1, 1, 0], [0, P(R == 1), P(R == 1)], '-');
       plot([1, 1, 0], [0, U(R == 1), U(R == 1)], '-');
10 -
11 -
       plot([1, 1, 0], [0, I(R == 1), I(R == 1)], '-');
12 -
       xlabel('R [\Omega]');
13 -
       legend('Intensitatea I(A)', 'Tensiunea U(V)', 'Puterea P(W)');
14 -
       title("Dependenta U, I, P in functie de R");
```


Pentru R = 10hm, intensitatea este I = 2A, tensiunea este U = 2V, iar puterea este P = 4W, acestea fiind valorile punctului de functionare al circuitului initial. Atunci cand R = 0, intensitatea de scurtcircuit este $I_{sc} = 3A$, iar cand R tinde la infinit, tensiunea de mers in gol este $U_{gol} = 6V$.

3.2 Caracteristica generatorului si a rezistorului liniar

In codul Matlab de mai jos, Re = 2 ohm, R este rezistenta pastrata si E reprezinta valoarea sursei ideale de tensiune echivalente; I este intensitatea prin SIT, iar U este tensiunea acesteia in functie de intensitatea si de rezistenta pe care o variem; I_1 reprezinta intesitatea prin rezistor, care este variata, iar U_1 este tensiunea rezistorului in functie de intensitate.

```
2 -
       Re = 2;
 3 -
       R = 0 : 1 : 100;
       I = E ./ (R + Re);
 5 -
       U = I .* R;
 6 -
       R = 1;
 7 -
       I1 = 0 : 1 : 20;
 8 -
       U1 = R .* I1;
 9 -
       plot(U, I, 'r', 'LineWidth', 2);
10 -
       plot(U1, I1, 'b', 'Linewidth', 2);
11 -
12 -
       plot([2, 2, 0], [0, 2, 2], '-');
13 -
       xlabel('U [V]');
14 -
       ylabel('I [A]');
15 -
       legend('Caracteristica generatorului', 'Caracteristica rezistentei');
```


Am reprezentat punctul static de functionare, care se afla la intersectia celor doua drepte, avand valorile I = 2A si U = 2A.

3.3 Dioda semiconductoare in polarizare directa

In codul Matlab de mai jos, R este rezistenta pe care o vom varia, U este tensiunea pe dioda si I este intensitatea prin ea.

```
R = 0 : 1 : 1000;
       Ee = 6;
       Re = 2;
       I = Ee ./ (Re + R);
       U = I .* R;
       plot(U, I, 'b', 'LineWidth', 2);
 6 -
7 -
       hold on
 8 -
       U2 = 0 : 0.01 : 1.2;
9 -
       I2 = (1e-9) * (exp(U2/5.5e-2) - 1);
       xlabel('U [V]');
11 -
       ylabel('I [A]');
12 -
       plot(U2, I2, 'r', 'LineWidth', 2);
13 -
       legend('Caracteristica generatorului', 'Caracteristica diodei');
```


Polarizarea directa cu punctul static de functionare.

3.4 Dioda semiconductoare in polarizare inversa

In codul Matlab de mai jos, R este rezistenta pe care o vom varia, U este tensiunea pe dioda si I este intensitatea prin ea.

```
1 -
       R = 0 : 1 : 1000;
2 -
       Ee = 6;
3 -
4 -
       I = Ee ./ (Re + R);
5 -
       U = I .* R;
       plot(U, I, 'b', 'LineWidth', 2);
6 -
7 -
       hold on
8 -
      U2 = -60 : 0.01 : 1.2;
9 -
      I2 = (1e-9) * (1 - exp(U2/5.5e-2));
      plot(-U2, I2, 'r', 'LineWidth', 2);
10 -
      xlabel('U [V]');
      ylabel('I [A]');
13 -
       legend('Caracteristica generatorului', 'Caracteristica diodei');
```


Polarizarea inversa cu punctul static de functionare.

4 Simulatorul Spice

4.1 Circuitul Initial

SPICE Netlist: E:\LTSpice\Draft2.net		Operating Pos	int
* E:\LTSpice\Draft2.asc I\$G7 5 2 1A R3 3 0 1 R4 0 5 2 V\$E5 3 5 6V I\$G6 5 1 2A R1 1 2 1 V\$E2 3 2 2V	V(5): V(2): V(3): V(1): I(G6): I(G7): I(R1): I(R4): I(R3):	-4 0 2 2 2 2 1 2 2	voltage voltage voltage voltage device_current device_current device_current device_current device_current
.backanno .end	I(E2): I(E5):	-3 1	device_current device_current

4.2 Circuitul cu SUCI

Am ales E_2 pentru a fi inlocuit cu o SUCI (in spice este H_1), care va fi comandata de E_5 . $Rez_{transfer} = E_2/I_5 = 2/1 = 1$.

Operating Foint		
V(5):	-4	voltage
V(2):	0	voltage
V(3):	2	voltage
V(1):	2	voltage
I(H1):	-3	device current
I(G6):	2	device current
I(G7):	1	device current
I(R1):	2	device current
I(R4):	2	device current
I(R3):	2	device current
I(E5):	1	device_current
	V(2): V(3): V(1): I(H1): I(G6): I(G7): I(R1): I(R4): I(R3):	V(5): -4 V(2): 0 V(3): 2 V(1): 2 I(H1): -3 I(G6): 2 I(G7): 1 I(R1): 2 I(R4): 2 I(R3): 2

4.3 Circuitul cu SICU

Am ales G_6 pentru a fi inlocuit cu o SICU, cu nodurile care genereaza tensiunea fiind 2 si 3 (in spice este G_1). $Cond_{transfer} = I_6/(V_2 - V_3) = 2/(-2) = -1$.

		- Operating Poir	nt
* C:\Users\dobre\Desktop\SpiceELTH\SpiceELTH.asc	V(5):	-4	voltage
ISG7 5 2 1A	V(2):	0	voltage
R3 3 0 1	V(3):	2	voltage
R4 0 5 2	V(1):	2	voltage
VSE5 3 5 6V	I(G7):	1	device current
R1 1 2 1	I(R1):	2	device current
VSE2 3 2 2V	I(R4):	2	device current
G1 5 1 2 3 -1	I(R3):	2	device current
.op	I(G1):	2	device current
backanno	I(E2):	-3	device current
. end	I(E5):	1	device_current

5 Redactare Latex

Pentru redactarea temei în LaTeX, circuitele au fost realizate prin scrierea codului in LaTeX, iar imaginile folosite pentru tema sunt screenshot-uri din Matlab, LTSpice și LaTeX.


```
TemaFITH.tex* - TeXworks
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               - п ×
           File Edit Search Format Typeset Scripts Window Help
              ▶ pdfLaTeX ✓ 📑 🖀 🍮 🔗 🐰 📋 🗓 🐼
     \subsection{Tabel metode} \begin{flushleft} \begin{tabular}{||c | c||}
                                                                            Metoda & Numar de ecuatii \\ [0.1ex]
                                                                               Kirchhoff clasic & 2L = 14 \\
                                                                               \hline 
Kirchhoff in curenti & L - N + 1 = 3 \\
                                                                               \hline
Kirchhoff in tensiuni & N - 1 = 4 \\
                                                                            \hline Curenti de coarde (curenti de bucle/curenti ciclici) & L - N + 1 - n_{SIC} = 1 \
                                                                               \text{\text{Times}} \text{Times} \text{\text{NIII}} \text{\text{SIT}} \sqrt{\text{sol}} = 2 \\ [0.1ex]
\hine \hint \langle \hint \hintt \hint \hi
     \label{eq:symmetric} $$ \R_4 + R_3 = 3A^*(R_4 + R_3) - E_5 \ \Re \pi \times \Re \pi
                                                $\Rightarrow$
\Large{$I_5' = 3V / 3ohm$} $\Rightarrow$\\
  | Large(st_1 = 3 V / 3 ohms) $\square{\text{sightarrows}} \
| Large(st_2 = 1.45)\\ |
| Large(st_3 = 1.45)\\ |
| Large(st_3 = 1.55)\\ |
| Large(st_3 = 1.55)\ |
| Large(st_3 = 1.55)\\ |
| Large(st_3 = 1.55)\\ |
| Large(st_3
  Graftu Lurens as account (which is a second of the confidence of t
                                       TemaELTH.tex* - TeXworks
           File Edit Search Format Typeset Scripts Window Help
                   pdfLaTeX V 🚰 🏝 🦠 & 🖟 🔏 📋 🗓 🚱
                 newpage
subsection{Circuitul cu SUCI}
     \begin(figure)[h]
\begin(figure)[h]
\begin(fourter)
\begin(center)
\begin(conter)
\begin(conter)
\begin(conter)
\draw [red, thick] (0,8)
\draw [red, thick] (0,8)
\draw [red, thick] (0,0)
\tis[short,b=$1_2$, comanianCVS, i=$(E')$,**-*] (0,0);
\draw [red, thick] (0,8)
\tis[short,b=$1_2$, R=$1\timegas,**-*] (4,12);
\draw [red, thick] (0,8)
\tis[short,b=$1_2$, R=$1\timegas,**-*] (4,12);
\draw [thick] (8,8)
\tis[comanianCurrentSource, i=$(1,1)$, v=$U_(g7)$] (0,8);
\draw [thick] (8,8)
\tis[comanianCurrentSource, i=$(2,1)$, v=$U_(g6)$] (4,12);
\tis[comanianCurrentSource, i=$(2,1)$, v=$U_(g6)$] (4,12);
                                                                                                           \Large(Am ales $E_2$ pentru a fi inlocuit cu o SUCI (in spice este $H_1$), care va fi comandata de $E_5$. $Rez_(transfer) = E_2 / I_5 = 2 / I = 1.$\)\\
\includesgraphics[scale = 0.9]([sciesSUCI)
\includesgraphics[scale = 0.9]([sciesSUCI)
                 newpage
subsection{Circuitul cu SICU}
```

6 Bibliografie

- 1.Daniel Ioan, Circuite electrice rezistive breviare teoretice și probleme, http://www.lmn.pub.ro/daniel/culegere.pdf, 2000.
- 2.G. Ciuprina, A. Gheorghe, M. Popescu, D. Niculae, A.S. Lup, R. Bărbulescu, D. Ioan, Modelarea și simularea circuitelor electrice. Îndrumar de laborator, Disponibil pe site-ul de cursuri https://acs.curs.pub.ro/2018/course/view.php?id=1095.
- 3. Gabriela Ciuprina Template pentru redactarea rapoartelor in La
TeX (v3),

Disponibil la http://www.lmn.pub.ro/gabriela/LatexTemplate4Students/.