Quiz 8 CHEM 3PA3; Fall 2019

1-2. What is the ground-state (a) wavefunction and (b) energy for the hydrogen molecule cation, H_2^+ , in the united-atom limit?

$$\psi_{g.s.}(\mathbf{r}) =$$

$$E_{g.s.} =$$

3-4. What is the ground-state (a) wavefunction and (b) energy for the hydrogen molecule cation, H_2^+ , in the separated-atom limit?

$$\psi_{g.s.}(\mathbf{r}) =$$

$$E_{g.s.} =$$

Student #_____

5-10. For each of the following orbitals, assign a symmetry label $\{\sigma, \pi, \delta, \ldots\}, \{u, g\}, \{+, -\}$. Assume that the orbitals are the atomic orbitals of the left and right atom in the separated-atom limit, and that the molecule is a homonuclear diatomic molecule. Assume that the bond axis is the z axis. Circle whether the orbital is bonding or antibonding.

Orbital	Symmetry-Label	Bonding/Antibonding (circle one)	
$\psi_{1s}^{(l)}(\mathbf{r}) - \psi_{1s}^{(r)}(\mathbf{r})$		bonding	antibonding
$\psi_{2p_z}^{(l)}(\mathbf{r}) - \psi_{2p_z}^{(r)}(\mathbf{r})$		bonding	antibonding
$\psi_{3p_x}^{(l)}(\mathbf{r})-\psi_{3p_x}^{(r)}(\mathbf{r})$		bonding	antibonding
$\psi_{2p_{y}}^{(l)}\left(\mathbf{r}\right)+\psi_{2p_{y}}^{(r)}\left(\mathbf{r}\right)$		bonding	antibonding
$\psi_{\scriptscriptstyle 3d_{+2}}^{(l)}(\mathbf{r}) - \psi_{\scriptscriptstyle 3d_{+2}}^{(r)}(\mathbf{r})$		bonding	antibonding
$\psi_{3d_0}^{(l)}\left(\mathbf{r}\right)+\psi_{3d_0}^{(r)}\left(\mathbf{r}\right)$		bonding	antibonding
Bonus:			
$\psi_{3d_{xy}}^{(l)}\left(\mathbf{r}\right)+\psi_{3d_{xy}}^{(r)}\left(\mathbf{r}\right)$		bonding	antibonding
$\psi_{3d_{xz}}^{(l)}\left(\mathbf{r} ight)\!-\!\psi_{3d_{xz}}^{(r)}\left(\mathbf{r} ight)$		bonding	antibonding

Bonus: (5 points) How would these answers change if the molecule were a heteronuclear diatomic, that is, if the right- and left- atoms were different?

Quiz 8 CHEM 3PA3; Fall 2019

1-2. What is the ground-state (a) wavefunction and (b) energy for the hydrogen molecule cation, H_2^+ , in the united-atom limit?

$$\psi_{g.s.}(\mathbf{r}) = \psi_{1s}^{\text{He}}(\mathbf{r})$$

11

$$E_{g.s.} = -2 \text{ a.u.}$$

3-5. What is the ground-state (a) wavefunction and (b) energy for the hydrogen molecule cation, H_2^+ , in the separated-atom limit?

$$\psi_{g.s.}(\mathbf{r}) = \frac{1}{\sqrt{2}} \left(\psi_{1s}^{H_{left}}(\mathbf{r}) \pm \psi_{1s}^{H_{right}}(\mathbf{r}) \right)$$

$$E_{g.s.} = -\frac{1}{2}$$
 a.u.

5-10. For each of the following orbitals, assign a symmetry label $\{\sigma,\pi,\delta,...\},\{u,g\},\{+,-\}$. Assume that the orbitals are the atomic orbitals of the left and right atom in the separated-atom limit, and that the molecule is a homonuclear diatomic molecule. Assume that the bond axis is the z axis. Circle whether the orbital is bonding or antibonding.

I will include a "count" of how many orbitals there are of this symmetry before you get to this one but this is not essential.

Orbital	Symmetry-Label	Bonding/Antibonding (circle one)		
$\psi_{\scriptscriptstyle 1s}^{(l)}(\mathbf{r}) - \psi_{\scriptscriptstyle 1s}^{(r)}(\mathbf{r})$	$1\sigma_g^+$	bonding	antibonding	
$\psi_{2p_z}^{(l)}\left(\mathbf{r}\right)-\psi_{2p_z}^{(r)}\left(\mathbf{r}\right)$	$3\sigma_g^+$	bonding	antibonding	∞
$\psi_{3p_x}^{(l)}(\mathbf{r})-\psi_{3p_x}^{(r)}(\mathbf{r})$	$2\pi_g^+$	bonding	antibonding	
$\psi_{2p_{y}}^{(l)}\left(\mathbf{r}\right)+\psi_{2p_{y}}^{(r)}\left(\mathbf{r}\right)$	$1\pi_u^-$	bonding	antibonding	a
$\psi_{\scriptscriptstyle 3d_{+2}}^{(l)}ig(\mathbf{r}ig)\!-\!\psi_{\scriptscriptstyle 3d_{+2}}^{(r)}ig(\mathbf{r}ig)$	$1\delta_u^+$	bonding	antibonding	<-(°) €
$\psi_{3d_0}^{(l)}\left(\mathbf{r}\right)+\psi_{3d_0}^{(r)}\left(\mathbf{r}\right)$	$6\sigma_g^+$	bonding	antibonding	6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Bonus:				
$\psi_{3d_{xy}}^{(l)}\left(\mathbf{r}\right)+\psi_{3d_{xy}}^{(r)}\left(\mathbf{r}\right)$	$1\mathcal{S}_{g}^{-}$	bonding	antibonding	
$\psi_{\scriptscriptstyle 3d_{xz}}^{(l)}\left(\mathbf{r} ight)\!-\!\psi_{\scriptscriptstyle 3d_{xz}}^{(r)}\left(\mathbf{r} ight)$	$5\pi_u^+$	bonding	antibonding	

Bonus: (5 points) How would these answers change if the molecule were a heteronuclear diatomic, that is, if the right- and left- atoms were different?

The "u" and "g" labels would be deleted. That's the only change.