Problem Set 1

B 1	r	
	0	
1.0		

(1) You will need to consult the p5.js reference in order to solve these problems.

Link to the reference: https://p5js.org/reference/

(2) Experimenting with code will help you learn.

A place to experiment with code: https://editor.p5js.org/

createCanvas()

* If you want to create canvas with width equal 400 and height equal 300, what code should you write?

point()

* What code do you write to draw a point at the top-left corner of the canvas?

* Assume the size of the canvas is 101x101. What is the x-coordinate and what is the y-coordinate for the point located at the center of the canvas?

point(____, ___)

line()

* What's the meaning of each number in line(30, 20, 85, 75)?				

st Assume the size of the canvas is 101×101 . What are the numbers for the diagonal line?

line(____, ____, ____)

* Assume the size of the canvas is 101x101. What are the numbers for the vertical line?

line(____, ____, ____)

st Assume the size of the canvas is 101x101. What are the numbers for the horizontal line?

line(____, ____, ____)

triangle()

* Assume the size of the canvas is 101x101. What are the numbers for the white triangle?

triangle(____, ____, ____, ____)

rect()

* Assume the size of the canvas is 101×101 . What are the numbers the white

rectangle?

rect(____, ____, 51, 51)

ellipse()

* Assume the size of the canvas is 101x101. Which one will ellipse(51,51,99) draw?

* Assume the size of the canvas is 101x101. Which one will ellipse(51,51,50,99)

* ellipse(51,51,100) draws a circle on the canvas. What's the radius of the circle?
* ellipse(51,51,100) draws a circle on the canvas. What's the diameter of the circle?
color()
* What are the numbers for red?
color(,)
* What's the name of the color(0,255,0)?
* How will you describe the differences between color(0,0,100) and color(0,0,200)?
* What does RGB stand for?
* How will you describe the differences between color(255,255,0,50) and color(255,255,0,255)?

* Is color(40,80,120,255) fully transparent or opaque?

* What are the numbers for yellow?

color(___, ___, ___)

background()

* What's the code for making a black background?

noFill()

* What's the difference between (a) and (b)?

noStroke()

* What's the difference between (a) and (b)?

fill(), stroke()

* Compare the following circles.

What code can turn (a) into (b)?

What code can turn (a) into (c)?

strokeWeight()

Which is the line that has a weight of 10? _____

Which is the line that has a weight of 5? _____

Which is the line that has a weight of 1? _____