Due Date: 21 September

ChE641: Mathematical Methods in Chemical Engineering

Assignment 2

1. Two complex numbers z and w are given by z=3+4i and w=2-i. On an Argand diagram, plot:

- (a) z+w,
- (b) w z,
- (c) wz,
- (d) z/w
- 2. By considering the real and imaginary parts of the product $e^{i\theta}e^{i\phi}$ prove the standard formulae for $\cos(\theta + \phi)$ and $\sin(\theta + \phi)$.
- 3. For each of the following complex numbers and their complex conjugates, find x, y, r, and θ and also draw a neat sketch of complex numbers and their conjugates in the Argand plane by specifying x, y, r, and θ
 - (a) 2-2i,
 - (b) $4[\cos(\frac{2\pi}{3}) i\sin(\frac{2\pi}{3})]$,
 - (c) $\sqrt{2}e^{\frac{-i\pi}{4}}$,
 - (d) $3e^{\frac{i\pi}{2}}$,

4. Find the absolute value of each of the following:

- (a) $\frac{2i-1}{i-2}$,
- (b) z/\bar{z} ,
- (c) $\frac{3i}{i-\sqrt{3}}$.
- 5. Solve for all possible values of the real numbers x and y in the following equations:
 - (a) x + iy = 3i ix,
 - (b) $(x+iy)^2 = (x-iy)^2$.

- 6. Express the following complex numbers in the x+iy form and draw neat sketch of them in Argand plane by specifying x, y, r, and θ :
 - (a) $9e^{\frac{3\pi i}{2}}$,
 - (b) $e^{\frac{3+4\pi i}{3}}$,