第十周习题课: 曲线、曲面积分 1

- 一. 曲线积分
- 1. 计算 $\oint_L xydl$, 其中L是正方形|x|+|y|=a, (a>0).

2. 设
$$L$$
 为椭圆 $\frac{x^2}{4} + \frac{y^2}{3} = 1$, 其周长记为 a 。 求 $\oint_L (2xy + 3x^2 + 4y^2) dl$

3. 计算积分
$$I = \int_{\Gamma} (y^2 - z^2) dx + (z^2 - x^2) dy + (x^2 - y^2) dz$$
, 其中
$$\Gamma$$
 为球面片 $x^2 + y^2 + z^2 = 1$, $x, y, z \ge 0$ 的边界曲线,方向是从点
$$(1,0,0)$$
 到点 $(0,1,0)$,到点 $(0,0,1)$,再回到 $(1,0,0)$ 。 (课本习题 4. 4 题 3
$$(4)$$
 ,page 192)

4. 设C为闭曲线: |x|+|y|=2, 逆时针为正向。

计算
$$\oint_C \frac{axdy - bydx}{|x| + |y|}$$
。

- 二.曲面积分
- 5. 计算 $\iint_S (x^2 + y^2) dS$. 其中S是锥体 $\sqrt{x^2 + y^2} \le z \le 1$ 的边界.
- 6. 求 $I = \iint_S (x + y + z)^2 dS$, 其中 S 为单位球面.
- 7. 计算螺旋面 S: $x = r\cos\varphi$, $y = r\sin\varphi$, $z = r\varphi$ $(0 \le r \le R, 0 \le \varphi \le 2\pi)$ 的面积。
- 8. 求圆柱面 $x^2 + y^2 = R^2$ 被抛物柱面 $z = R^2 x^2$ 及平面 z = 0 所截部分 S 的侧面积。

- 9. 计算均匀半球面 $x^2 + y^2 + z^2 = a^2$ ($z \ge 0$) 关于 z 轴的转动惯量.
- 10. 令曲面 S 在球坐标下方程为 $r=a(1+\cos\theta)$, Ω 是 S 围成的有界区域,分别计算 S 和 Ω 在直角坐标系下的形心坐标。
- 11. 计算第一型曲面积分 $I=\iint_S|z|dS$,以及第二型曲面积分 $J=\iint_{S^+}|z|dx\wedge dy$, 其中曲面 S 为 球面 $S:x^2+y^2+z^2=a^2$; 定向曲面 S^+ 的正法向向外。
- 12. 记S 为锥面 $z = \sqrt{x^2 + y^2}$ 被柱面 $x^2 + y^2 = 2x$ 所截的有限部分。规定曲面S 的正向向下,所得的定向曲面记为 S^+ 。求下面两个积分的值。

(i)
$$\iint_{S} zdS \circ \qquad \text{(ii)} \quad \iint_{S} \sqrt{x^2 + y^2 + z^2} \left(xdydz + ydzdx + zdxdy \right).$$

13. 设一元函数 f(u) 于整个实轴上连续, S 代表单位球面 $x^2 + y^2 + z^2 = 1$ 。证明 Poisson 公式 $\iint_S f(ax + by + cz) dS = 2\pi \int_{-1}^1 f(\rho t) dt$,这里 $\rho := \sqrt{a^2 + b^2 + c^2}$ 。(课本习题 4.3 第 11 题,page 187)。

提示:

Lemma:设 Σ 是一个正则的参数曲面。记 Σ 是 Σ 在一个正交变换(正交矩阵) Γ 下的象,

即
$$\Sigma' = P(\Sigma)$$
 。记 $X = \begin{pmatrix} x \\ y \\ z \end{pmatrix}$, $U = \begin{pmatrix} u \\ v \\ w \end{pmatrix}$,则对任何 Σ 上连续函数 $g(x,y,z)$,我们有

 $\iint_{\Sigma} g(X)dS = \iint_{\Sigma'} g(P^TU)dS$ 。(这个 Lemma 大致的意思是说,曲面的面积元素关于正交变换是不变的。)