第三册

大青花鱼

目录

第一章	无穷	5
1.1	无穷集合的势	6
1.2	常见无穷集合的势	9
1.3	可数和不可数	12
第二章	连续函数的变化 1	7
2.1	函数在一点的变化 1	17
2.2	微变的运算法则	24
2.3	常见函数的微变3	30
2.4	微变函数的性质	37
2.5	多次微变 3	37
第三章	研究函数 3	89
3.1	增减与极值 3	39
3.2	凹凸性质 3	39

4	E	录
3.3	局部性质	39
3.4	曲线的性质	39
第四章	平直空间	41
4.1	平直空间的基本性质	41
4.2	子空间与和空间	41
4.3	生成空间	41
4.4	基底和维数	41
第五章	连续函数的和	43
5.1	函数图像的面积	43
5.2	函数的定合	43
5.3	合函数	43
第六章	级数	45
6.1	正项级数	45
6.2	收敛与发散	45
6.3	函数的级数	45
附录 A	序、序数和集合的势	47
附录 B	微变与求合	51
2.1	函数的微变与微变的函数	51

第一章 无穷

我们已经学习过无穷的概念。我们用数数原则来判定无穷。简单来说, 数得尽的集合是有穷的,数不尽的集合是无穷的。现在,我们来进一步探讨 无穷的性质。

数数原则把集合分成有穷的和无穷的两种。有穷的集合,集合元素的个数是可以知道的,因为按照定义,它是数得尽的。

我们把有穷集合的元素个数称为**集合的势**,用数字绝对值的符号来表记。比如,空集的势就是 0,记作 $|\varnothing|$ = 0。集合 {2,5,1} 的势是 3,记作 $|\{2,5,1\}|$ = 3。

比较两个集合的势,可以用最简单的"对消法":每次从集合 A 中"拿掉"一个元素,对应地,也从集合 B 中"拿掉"一个元素。直到某个集合的元素被"拿光"。如果另一个集合里还有元素,就说明前者的势小于后者;如果另一个集合里也没有元素了,就说明两者的势相等。

容易验证,有穷集合的势有以下的基本性质:

- 1. 子集的势不多于母集的势; 真子集的势小于真母集的势。
- 2. 集合 A 在集合 B 中补集的势,加上 A 的势,等于 B 的势。

第一章 无穷

1.1 无穷集合的势

6

有穷集合的基本性质符合我们日常生活中的经验。对于无穷集合,它们是否也成立呢?

来看以下的例子。

一个旅馆里有无穷个房间。房间的号码是正整数:1号、2号、3号……

一天,有一个客人来旅馆里住宿。可所有的房间都住了人,怎么办呢?旅馆的老板说:这样吧,我们把 1 号房的客人转到 2 号房,把 2 号房的客人转到 3 号房,把 3 号房的客人转到 4 号房……以此类推,n 号房的人转到 n+1 号房。

这样,1号房就空出来了。客人顺利入住。

又一天,有无穷多个客人来旅馆里住宿。可所有的房间都住了人,怎么办呢?旅馆的老板一看,每个客人有一个正整数号码,没有重复的也没有缺少的,恰好和房号一样。老板说:这样吧,我们把 1 号房的客人转到 2 号房,把 2 号房的客人转到 4 号房,把 3 号房的客人转到 6 号房……以此类推, n 号房的人转到 2n 号房。

这样,所有奇数号的房间就空出来了。于是,1 号客人住 1 号房,2 号客人住 3 号房,3 号客人住 5 号房,……以此类推,n 号客人入住 2n-1 号房。这样,所有的客人都顺利入住了。

以上的情况似乎有点违反我们的直觉。集合 $\{2,3,4,\cdots\}$ 和 $\{2,4,6,\cdots\}$ 是 $\{1,2,3,\cdots\}$ 的真子集,但它们的势与 $\{1,2,3,\cdots\}$ 相等。这说明,无穷集合的势,有着不同的性质。

为此,我们首先要定义无穷集合的势的关系。我们从"对消法"出发来构思。"对消法"中,我们实际上在给两个集合的元素建立一一对应的关系。每次从两个集合里分别"拿掉"的元素形成一一对应。

如果一个集合"拿光"的时候,另一个集合也"拿光"了,说明我们给两个集合的元素建立了一一对应的映射,也就是双射。

如果一个集合"拿光"的时候,另一个集合还有"剩余",就说明我们无法在两个集合的元素之间建立双射。我们可以从前一个集合出发,建立到后一个集合的单射;但无法从后一个集合出发,建立到前一个集合的单射。这是因为后一个集合的元素太多了,总会有两个元素映射到同一个目标。

用这个思路, 我们来定义无穷集合的势的关系。

定义 1.1.1. 设有集合 A 和 B。

- 如果存在 A 到 B 的双射,就说 A 和 B 的势相等,两者等势,记作 |A| = |B|。
- 如果存在从 A 到 B 的单射,就说 A 的势不大于 B 的势或 A 的势小于等于 B 的势,记作 $|A| \leq |B|$ 或 $|B| \geq |A|$ 。
- 如果存在从 A 到 B 的单射,但不存在 B 到 A 的单射,就说 A 的势小于 B 的势,记作 |A| < |B| 或 |B| > |A|。

用这个定义,就可以理解无穷旅馆的例子。对于集合 $\{1,2,3,\dots\}$ 和 $\{2,3,4,\dots\}$ 来说,我们有双射 $n\mapsto n+1$,因此两者等势。对于集合 $\{1,2,3,\dots\}$ 和 $\{2,4,6,\dots\}$ 来说,我们有双射 $n\mapsto 2n$,因此两者等势。

注意:

- 1. 以上定义对有穷集合、无穷集合都成立,也就是说,上面的 A、B 分别可以是有穷、无穷集合。
- 2. 对于有穷集合 A、B, 这个定义与有穷集合的势的定义是兼容的。
- 3. 无穷集合的势不是数。我们沿用有穷集合的记法,把无穷集合 A 的势记作 |A|。但 |A| 并不是任何数。因此,无穷集合的势不能参与四则运算。
- 4. 同样地,当我们写 $|A| \le |B|$ 、|A| = |B| 的时候,里面的等号和不等号也不能按数的相等、不等关系来理解。但在一定条件下,它们的性

第一章 无穷

质和数的相等、不等关系是一样的(具体参见附录 A)。

思考 1.1.1.

8

- 1. 在无穷旅馆的例子里,如果旅馆已经住满了,而有无穷多个旅客来住宿,旅客的编号用全体整数来编号。是否能腾出足够的房间呢?如何操作?如果旅客的编号用全体有理数呢?全体实数呢?
 - 2. 请用满射代替单射, 定义无穷集合的势的关系。
 - 3. 能否给无穷集合的势定义四则运算?

习题 1.1.1.

- 1. 以下集合的势是多少?
 - 1.1. {一年中的月份}
 - 1.2. {100以内的素数}
 - 1.3. $\{S$ 的所有子集 $\}$, 其中|S| = 9.
 - 1.4. $\{(x, y, z) \mid 0 \le x, y, z \le 3, x + 2y + z \le 8, x, y \in \mathbb{Z}\}$
- 2. 证明: 把有穷集合的势定义为元素的个数,这样的定义,满足定义 1.1.1 中势的关系。
 - 3. 证明:有穷集合的势总小于无穷集合的势。
 - 4. 证明,如果集合 $A \in B$ 的子集,那么 $|A| \leq |B|$ 。
- 5. 证明: 定义 1.1.1 中集合的势相等的关系,是一种等价关系,即满足:
 - 自反性: 任意集合 A 的势等于自己: |A| = |A|。
 - 对称性: 若集合 A 的势等于集合 B 的势,则集合 B 的势等于集合 A 的势。
 - 传递性: 若集合 A 的势等于集合 B 的势,集合 B 的势等于集合 C 的势,则集合 A 的势等于集合 C 的势。
 - 6. 证明:如果集合 $A \times B$ 满足 |A| < |B|,那么 |A| = |B|不成立。

1.2 常见无穷集合的势

常见的无穷集合有:自然数集 \mathbb{Z}^+ 、整数集 \mathbb{Z}^+ 、整数集 \mathbb{Z} 、有理数集 \mathbb{Q} 、实数集 \mathbb{R} 等等。下面来看一些无穷集合的势的关系。

容易看出, $|\mathbb{N}| = |\mathbb{Z}^+|$,两者间的关系可以用双射 $n \mapsto n+1$ 确立。而 双射 $n \mapsto -n$ 可以说明 $|\mathbb{Z}^+| = |\mathbb{Z}^-|$,所以 $|\mathbb{N}| = |\mathbb{Z}^-|$ 。

考虑把整数映射到自然数的映射:

$$f, n \mapsto \begin{cases} 2n & \text{m} \mathbb{R} n \geqslant 0 \\ -2n - 1 & \text{m} \mathbb{R} n < 0 \end{cases}$$

也就是:

它把所有自然数对应到自然数中的偶数,把所有负整数对应到自然数中的 奇数。

不难验证,映射 f 是单射。这是因为,给定两个不相同的正数 $m \neq n$,如果两者一个小于零,一个不小于零,那么两者映射的结果奇偶性不同,因此不相等;如果两者同时小于零或同时不小于零,按定义 $2m \neq 2n$ 、 $-2m-1 \neq -2n-1$,也就是说两者映射的结果不相等。综上所述,如果 $m \neq n$,那么 $f(m) \neq f(n)$ 。

同时,映射 f 也是满射,因为任何偶数 n 都是整数 $\frac{n}{2}$ 映射的结果,任何奇数 n 都是整数 $-\frac{n+1}{2}$ 映射的结果。

f 既是单射也是满射,因此是双射。我们在自然数集 $\mathbb N$ 和整数集 $\mathbb Z$ 之间建立了双射 f,这说明 $|\mathbb N|=|\mathbb Z|$ 。

考虑平面所有坐标是自然数的点的集合: $\mathbb{N}^2 = \{(x, y) | x, y \in \mathbb{N}\}$ 。 \mathbb{N}^2 的势与 \mathbb{N} 的势关系如何呢?

第一章 无穷

我们希望找出一种按顺序数出 \mathbb{N}^2 中所有点的数数方法。这样,我们就可以把 1 映射到数数中的第一个点,把 2 映射到数数中的第二个点,等等,建立从 \mathbb{Z}^+ 到 \mathbb{N}^2 的映射。这个映射如果是双射,那么 \mathbb{N}^2 的势就等于 \mathbb{Z}^+ 的势,从而等于 \mathbb{N} 的势。

考虑这样的数数方法: 把点的横坐标和纵坐标加起来。从和最小的点开始数起,逐步增大。对于和相等的点,则按照横坐标,从小数到大。也就是按照图中箭头的方法来数数。这样的数法,可以不重复不遗漏地数遍 № 所有的点。

按照箭头方向,可以不重复不遗漏数遍 \mathbb{N}^2 中所有的点

相应地,把正整数 n 映射到这个数法的第 n 个点,这样的映射就是双射。因此,按前面的推理,我们得到结论:

$$|\mathbb{N}^2| = |\mathbb{N}|.$$

类似地,考虑正有理数集 \mathbb{Q}^+ 。对有理数 r,将它写成既约分数 $\frac{p}{q}$,考虑分子分母之和。从和最小的开始数起,逐步增加。如果某些有理数按以上方法得到的和相等,这样的有理数个数有限,把它们按分子从小到大排列,从分子最小的数起。这样,我们得到了一种不重复不遗漏数遍所有正有理

11

数的方法:

$$\frac{1}{1} \rightarrow \frac{1}{2} \rightarrow \frac{2}{1} \rightarrow \frac{1}{3} \rightarrow \frac{3}{1} \rightarrow \frac{1}{4} \rightarrow \frac{2}{3} \rightarrow \frac{3}{2} \rightarrow \frac{4}{1} \rightarrow \cdots$$

这表明 \mathbb{Q}^+ 的势等于 \mathbb{Z}^+ 的势, 从而等于 \mathbb{N} 的势。

$$|\mathbb{Q}^+| = |\mathbb{N}|.$$

我们考虑把 N 映射到 \mathbb{Q}^+ 的双射 f。考虑以下映射:

$$g: r \mapsto \begin{cases} 0 & \text{如果}r = 0\\ f(r) & \text{如果}r > 0\\ -f(-r) & \text{如果}r < 0 \end{cases}$$

g 把所有整数映射为有理数。由于 f 是双射,容易证明 g 也是双射。因此我们有 \mathbb{Z} 到 \mathbb{Q} 的双射,这说明 \mathbb{Q} 的势等于 \mathbb{Z} 的势,从而等于 \mathbb{N} 的势。

$$|\mathbb{Q}| = |\mathbb{N}|.$$

习题 1.2.1.

1. 给定数集 A 和正整数 $k \ge 2$,定义由 $k \land A$ 中元素构成的有序数组的集合为:

$$A^k = \{(a_1, a_2, \cdots, a_k) \mid a_1, a_2, \cdots, a_k \in A\}.$$

- 1.1. 考虑 $A = \mathbb{N}$ 的情况。考虑 \mathbb{N}^k 中的有序数组 (a_1, a_2, \dots, a_k) 中的 k 个数的和。记所有和等于自然数 p 的有序数组构成的集合为 S_p 。证明: 所有的 S_p 构成 \mathbb{N}^k 的分划。
- 1.2. 给定正整数 $k \ge 2$,考虑 \mathbb{N}^{k+1} 和 \mathbb{N}^k 按上一问构成的分划。如果 $|\mathbb{N}^k| = |\mathbb{N}|$,证明:可以给出一种不重复不遗漏数遍 \mathbb{N}^{k+1} 的方法。
 - 1.3. 用归纳法证明:对任何正整数 $k \ge 2$, $|\mathbb{N}^k| = |\mathbb{N}|$ 。
 - 1.4. 证明: $|\mathbb{Z}^k| = |\mathbb{N}|$ 。
 - 2. 证明: № 的子集要么有限,要么和 № 等势。
 - 3. 证明: 如果 $|A|=|B|=|\mathbb{N}|$, 那么 $|A\cup B|=|\mathbb{N}|$ 。

第一章 无穷

1.3 可数和不可数

上一节中,我们研究了一些常见数集的势。很多直观上似乎比自然数 集"大得多"的数集,都和自然数集等势。那么,是否有比自然数集"大" 的数集呢?

考虑数列的项只有 0 和 1 的数列。我们把所有这样的数列构成的集合记为 $2^{\mathbb{N}}$:

$$2^{\mathbb{N}} = \{\{a_n\}_{n \in \mathbb{N}} \mid \forall n \in \mathbb{N}, a_n \in \{0, 1\}\}.$$

下面我们证明:

$$|\mathbb{N}| < |2^{\mathbb{N}}|$$

也就是说,存在 \mathbb{N} 到 $2^{\mathbb{N}}$ 的单射,但不存在 $2^{\mathbb{N}}$ 到 \mathbb{N} 的单射。

首先考虑映射:

$$\forall n \in \mathbb{N}, \quad n \mapsto \{a_k\}_{k \in \mathbb{N}}, \quad \sharp \vdash a_k = 1 \stackrel{.}{=} \sharp \pounds \not \subseteq k = n.$$

这个映射显然是单射,因此存在 № 到 2[№] 的单射。</sup>

如何证明不存在 \mathbb{N} 到 $2^{\mathbb{N}}$ 的单射呢? 我们用反证法证明。

假设存在 $2^{\mathbb{N}}$ 到 \mathbb{N} 的单射 f,则 $2^{\mathbb{N}}$ 所有元素经过映射得到的集合是 \mathbb{N} 的无穷子集,因而和 \mathbb{N} 等势。也就是说,我们可以假设 f 是满射,因而是 双射。因此,我们考虑它的逆映射 $g \circ g$ 是把自然数映射到 $2^{\mathbb{N}}$ 中元素的双

13

射。因此,我们可以把 $2^{\mathbb{N}}$ 中的元素按数数的方式列出来:

$$0 \mapsto a_{0,0}, a_{0,1}, a_{0,2}, \cdots, a_{0,k}, \cdots$$

$$1 \mapsto a_{1,0}, a_{1,1}, a_{1,2}, \cdots, a_{1,k}, \cdots$$

$$2 \mapsto a_{2,0}, a_{2,1}, a_{2,2}, \cdots, a_{2,k}, \cdots$$

$$\vdots \qquad \vdots$$

$$n \mapsto a_{n,0}, a_{n,1}, a_{n,2}, \cdots, a_{n,k}, \cdots$$

$$\vdots \qquad \vdots$$

其中 $a_{n,k}$ 是 n 对应的数列中的第 k 项。现在考虑这么一个数列 W: 它的 第 k 项就是 1 减去上面排列中 k 对应的数列的第 k 项。也就是说,如果该 项是 0,W 的第 k 项就是 1,如果该项是 1,W 的第 k 项就是 0。按定义,W 的第 k 项一定不等于上面排列中第 k 行数列的第 k 项。

按照 g 的定义,W 肯定是某个自然数 m 经过 g 得到的结果,因此,它 排在上面排列中的第 m 行。但是,它的第 m 项就是 $a_{m,m}$ 。然而按照 W 的 定义,它的第 m 项应该是 $1-a_{m,m}$,不等于 $a_{m,m}$ 。这就构成了矛盾。

因此,不存在 \mathbb{N} 到 $2^{\mathbb{N}}$ 的单射。

这样,我们得到了一个严格"大于"自然数集的集合。

以上结果说明:即便是无穷集合,也有"大小之分"。为此,我们要给无穷集合做更精细的划分。注意到以上证明里,我们通过把 $2^{\mathbb{N}}$ 中的元素用数数的方式列出来,而导出了矛盾。这个矛盾说明了 $2^{\mathbb{N}}$ 这样的集合的本质:它是"不可数"的。

我们把自然数集这样可以用数数的方式列出来的集合(也就是与 \mathbb{N} 等势的集合)称为**可数集合**或**可列集合**,而把 $2^{\mathbb{N}}$ 这样的集合称为**不可数集合**或**不可列集合**。而以上的推理说明,**不可数集合总大于可数集合**。

不可数集合是否也有类似无限旅馆这样的现象呢?

对于可数集合,它的子集如果是无限的,就和它等势。换句话说,如果 从可数集合中去掉有限个元素,得到的子集和它等势。用不严谨的话来说, 这是由于有限集合相比可数集合是"非常小"的,是可以忽略的。

这个关系在可数集合与不可数集合之间也有体现。

定理 1.3.1. 设 S 是不可数集合,它的子集 A 是可数集合,则 S 去除 A 中元素得到的集合 $S \setminus A$ 与 S 等势。

证明: 首先用反证法证明 $S \setminus A$ 是不可数集合。 $S \in A$ 与 $S \setminus A$ 的并集。如果 A 和 $S \setminus A$ 都是可数集合,那么它们的并集 S 也是可数集合。矛盾!

接下来证明 $|S\backslash A| = |S|$ 。考虑 $S\backslash A$ 的可数子集 B,记 $S\backslash A$ 去掉 B 中元素得到的集合为 C,则 A、B、C 是 S 的分划, $S = A \cup B \cup C$ 。

注意到由于 $S \setminus A$ 是不可数集合,B 是可数集合,所以 C 也是不可数集合。另外,由于 $A \setminus B$ 是可数集合,所以 $|A| = |B| = |\mathbb{N}|$,于是 $|A \cup B| = |\mathbb{N}|$ 。 因此,存在从 B 到 $A \cup B$ 的双射 g。

考虑映射:

$$f: x \mapsto \begin{cases} g(x) & \text{m} \exists x \in B \\ x & \text{m} \exists x \in C \end{cases}$$

则 f 是 $S \setminus A$ 到 S 的双射。因此 $|S \setminus A| = |S|$ 。

这说明,可数集合比起不可数集合,就和有限集合相比可数集合一样, 是可以忽略的。

最后来看实数集 \mathbb{R} 。它是否可数呢? 我们可以用证明 $2^{\mathbb{N}}$ 类似的想法。

给定实数 x,我们可以将它写成小数的形式。如果 x 是有穷小数,就在最后补上无穷多个 0。这样,每个实数都可以写成无穷小数。也就是说,我们可以把每个实数对应到类似 0 到 9 组成的无穷数列。

假设实数集可数,那么可以像前面的证明里那样,构造正整数集到实数集的双射,把所有实数依次排列出来。各个实数的小数部分就和 $2^{\mathbb{N}}$ 里的数列一样。于是,我们构造这样的实数 a,它的小数部分第 k 位数字和排第 k 位的实数的小数部分第 k 位数字不一样。但另一方面,a 也是某个正整数 m 映射的结果。因此按照定义,a 的小数部分第 m 位不能等于自己。矛盾!因此我们可以得出结论:实数集不可数。

实际上, 我们可以严谨证明: 实数集 \mathbb{R} 和 $2^{\mathbb{N}}$ 等势, 具体参见附录 A。

研究了常见的无穷数集的势,我们发现,目前我们所知的无穷集合有两类。一类数集与自然数集 \mathbb{N} 等势,是为可数集合。另一类与实数集 \mathbb{R} 等势,等于 $2^{\mathbb{N}}$ 。那么,是否有既不等势于 \mathbb{N} ,也不等势于 $2^{\mathbb{N}}$ 的无穷集合呢?

数学研究者对无穷集合的研究发现:比 $2^{\mathbb{N}}$ "更大"的无穷集合是存在的。我们把这些类别按从小到大的顺序,记为 \aleph_0 、 \aleph_1 、 \aleph_2 、 \aleph_3 等等。 \aleph_0 就是自然数集 \mathbb{N} , \aleph_1 是 $2^{\mathbb{N}}$ 。 \aleph_2 、 \aleph_3 等则是比 $2^{\mathbb{N}}$ 更大的集合。

另一方面,是否存在介于 \mathbb{N} 和 $2^{\mathbb{N}}$ 之间的无穷集合,则是困难得多的问题。由于实数集是连续的,我们把这个问题称为"连续统问题"或"连续统假设"。对这个问题的研究直接引发了对数学基本推理框架的质疑。

1963 年,数学家证明了:在我们常见的推理框架内,"连续统问题"是"独立的",既不可能证明它成立,也不可能证明它不成立。从另一个角度来说,不论"存在介于 \mathbb{N} 和 $2^{\mathbb{N}}$ 之间的无穷集合"还是"不存在介于 \mathbb{N} 和 $2^{\mathbb{N}}$ 之间的无穷集合",都不会导致矛盾。

习题 1.3.1.

- 1. 证明:可数集合去除有限个元素后仍然是可数集合。
- 2. 证明: 无理数集是不可数集合。
- 3. 证明:可数个两两不相交的有限集合: $\{A_n\}_{n\in\mathbb{N}}$ 的并集是可数集合。
- 4. 证明:有限个可数集合的并集是可数集合;可数个可数集合的并集是可数集合;不可数集合的并集是不可数集合。

第二章 连续函数的变化

日常生活、工程和科学研究中,我们关心事物的运动和变化。描述、衡量、分析事物的运动和变化,是人类了解世界、科学进步的关键。17世纪,科学研究者发现了物体受力与运动变化的关系,建立了统一的力学理论,引发了工业革命。20世纪初,科学研究者提出了"光速不变"的假设,在此基础上构建了相对论。这些革命性的进步,都离不开对运动本质的探索。而对运动的深入研究,也促使了数学的发展。

数学中,我们用实变映射描述事物的运动和变化。具体来说,我们需要研究的事物性质一些基本要素相关。这些基本要素,比如时间、物体的位置、温度等等,我们认为是连续变化的,称为变量,用实数表示。于是,事物的性质就是关于这些变量的映射。分析这些映射的性质,找到适合描述实验数据的映射,是科学研究的重要部分。

2.1 函数在一点的变化

我们已经学习过用数学描述运动和变化。对于物体的运动,我们定义了平均速度,描述运动的快慢。一般来说,我们使用变率来描述事物变化的快慢。

定义 2.1.1. 实变映射的变率 设 f 是定义在实数集上的映射,给定实数 $t_1 < t_2$,则 f 在 $[t_1, t_2]$ 上的**变率**是:

$$\frac{f(t_2)-f(t_1)}{t_2-t_1}.$$

平均速度就是位移函数的变率。

使用平均速度,我们可以近似描述物体位置在一段时间里的变化。如果把物体的运动看作关于时间 t 的函数,设物体的位移为函数 p(t),那么,在 (t_1,t_2) 的时间段里,物体的位移大致是:

$$p(t) \approx p(t_1) + \frac{p(t_2) - p(t_1)}{t_2 - t_1}(t - t_1).$$

这里我们用一次函数代替了真实的位移函数 p。直观上,在区间 (t_1, t_2) 里,我们用直线近似表示了函数 p(t) 的图像。

很多时候,我们希望对事物的变化有更好的理解。比如,我们可以测量一秒内物体的位移,作为平均速度。但我们还想知道,如果把一秒换成更短的 0.1 秒、0.01 秒,得到的结果会不会完全不同。此外,我们可以记录运动物体在某个时刻的位移,但也希望能记录物体在该时刻的速度(或者其他变化),以更好地理解运动的性质。甚至,我们发现物体受到的力与物体运动速度的变率相关,也就是说,和物体位移的变率的变率相关。这时候,我们希望能更精确地知道物体运动速度的性质,以研究它的变率。总之,我们需要一个刻画物体在某个时刻"附近"变化快慢的量。

实践中,我们发现,对于大多数的运动物体,如果在同样条件下重复测量平均速度,那么随着取的时间间隔越来越短,测得的平均速度会趋于某个固定的值。这个现象让我们想到函数(在一点)的极限。因此,我们用极限的概念来描述物体某个时刻"附近"变化的快慢。

我们可以定义物体在某个时刻 t_0 的瞬时速度 $v(t_0)$:

$$v(t_0) = \lim_{t \to t_0} \frac{p(t) - p(t_0)}{t - t_0}.$$

它是 t 附近的平均速度的极限。正如数列的极限不一定等于数列自身的项,瞬时速度作为变率的极限,描述了物体在该时刻运动的快慢,但它并非变率,也不是运动。

对于一般的函数,我们也可以用这个方法描述它在一点变化的快慢。

定义 2.1.2. 给定在某一点 a 附近有定义的函数 f , 如果当 x 趋于 a 时 , f 在 a 到 x 的变率收敛到某个极限,就说函数 f 在 a 处可微。我们把这个极限叫做函数 f 在点 a 处的微变率,简称微变,记作 $\partial f(a)$ 。

$$\partial f(a) = \lim_{x \to a} \frac{f(x) - f(a)}{x - a} = \lim_{h \to 0} \frac{f(a+h) - f(a)}{h}.$$

比如,运动物体在某时刻的瞬时速度,就是它的位移函数在该时刻的微变率。

$$v(t_0) = \partial p(t_0).$$

如何理解瞬时速度呢?上图是物体做直线运动时,位移关于时间的函数的图像。横坐标表示时间 t,纵坐标表示物体的位移 p。我们希望了解物体在 t_0 时刻"附近"的运动情况。

 $^{^{1}}$ 函数 f 在点 a 处的微变率,一般记作 $\partial f(a)$ 或 f'(a),在物理书籍中也常记作 $\dot{f}(a)$ 。 关于微变率的记法,可见附录 B。

从 to 时刻起, 经过固定时段 dt, 物体的位移产生了变化:

$$\mathrm{d}p = p(t_0 + \mathrm{d}t) - p(t_0).$$

因此,这段时间内的平均速度 $\overline{v}(t_0)$ 就是 dp 与 dt 的比值:

$$\overline{v}(t_0) = \frac{\mathrm{d}p}{\mathrm{d}t}.$$

从图像来看,它是过函数两点构成的绿色直线的斜率。

使用平均速度,我们可以认为,在 t_0 附近,物体大致在做速度为 $\overline{v}(t_0)$ 的匀速运动,位移可以用一次函数近似表示:

$$p(t) \approx p(t_0) + \overline{v}(t_0)(t - t_0)$$

直观来说,图中函数 p(t) 的图像曲线,在 t_0 附近,可以用绿色直线近似表示。

但是,要注意的是,平均速度 $\overline{v}(t_0)$ 不仅仅与 t_0 相关。对不同的 $\mathrm{d}t$, $\overline{v}(t_0)$ 是不同的。而瞬时速度 $v(t_0)$ 的存在告诉我们, $\overline{v}(t_0)$ 会随着 $\mathrm{d}t$ 缩小而收敛。也就是说,绿色直线会逐渐收拢到过点 $(t_0, p(t_0))$ 、以 $v(t_0)$ 为斜率的红色直线。我们称这条直线为函数图像在 t_0 的**切线**。

使用瞬时速度 $v(t_0)$ 来近似描述 t_0 附近的运动,物体的位移可以用一次函数近似表示:

$$p(t) \approx p(t_0) + v(t_0)(t - t_0).$$

这样的表示和之前有什么不同呢?

首先,我们注意到,瞬时速度 $v(t_0)$ 只与 t_0 相关,不需要用别的时刻 t 来计算。其次,我们可以证明,如果要用一次函数(也就是匀速运动)来近似表示物体在 t_0 附近的运动,瞬时速度 $v(t_0)$ 是"最好"的系数。

直观来说,如果用一条过 $(t_0, p(t_0))$ 点的直线近似表示物体位移的曲线,那么对于 t_0 附近的情况,斜率为 $v(t_0)$ 的直线是"最好"的。

21

为什么这么说呢?

假设我们用某个数 u 做系数,用这样的一次函数:

$$t \mapsto p(t_0) + u \cdot (t - t_0).$$

来近似表示物体的位移。考虑 t_0 附近的 t,实际的位移是 p(t),近似的位移 是 $p(t_0) + u(t - t_0)$ 。因此近似误差为:

$$d(t) = |p(t) - p(t_0) - u(t - t_0)|.$$

这是一个关于 t 的函数。t 趋于 0 时,d(t) 趋于 0。

让我们来研究它趋于 0 有多快。我们这样来衡量: 以 $t \mapsto t - t_0$ 为参照物,考虑 d(t) 和 $|t - t_0|$ 的比值:

$$\frac{d(t)}{|t - t_0|} = \left| \frac{p(t) - p(t_0) - u(t - t_0)}{t - t_0} \right| = \left| \frac{p(t) - p(t_0)}{t - t_0} - u \right|.$$

如果这个比值在 t 趋于 t_0 的时候的极限是 0,就说明只要 t 与 t_0 足够近,近似误差 d(t) 就可以比 $t-t_0$ 小得多。这就是说 d(t) 比 $t-t_0$ 收敛得更快。如果比值不趋于 0,就说明 d(t) 并不比 $t-t_0$ 收敛得更快。

考虑这个比值在 t 趋于 to 时的极限:

$$\lim_{t \to t_0} \frac{d(t)}{|t - t_0|} = \left| \lim_{t \to t_0} \frac{p(t) - p(t_0)}{t - t_0} - u \right| = |v(t_0) - u|.$$

因此,这个比值趋于 0,当且仅当 v等于瞬时速度 $v(t_0)$ 。

换句话说,当且仅当 $u = v(t_0)$ 时,近似误差 d(t) 比 $t - t_0$ 收敛得更快。只要 t 与 t_0 足够近,近似误差就可以比 $t - t_0$ 小得多。而 v 取其他值的时候,就没有这样的效果,近似误差至多和 $t - t_0$ 收敛得一样快。也就是说, $u = v(t_0)$ 时,近似效果是最好的。在 t_0 附近,用微变率作为系数的一次函数和原来的函数最像。比如,我们取 t_0 处的瞬时速度 $v(t_0)$ 作为 t_0 附近的 "平均速度",就比取其他的平均速度更能表现 t_0 附近的运动。

一般来说,用微变率作为系数的一次函数:

$$t \mapsto f(t_0) + \partial f(t_0) \cdot (t - t_0)$$

称为函数 f 在 t_0 处的**微直观**。直观上,微直观就是函数 f 在 t_0 处的切线,是 t_0 附近模拟 f 图像曲线的最佳直线。

最后来看如何具体计算微变率。

从最简单的函数出发。常函数 $x \mapsto c$ 在任意点的微变都是 0。恒等函数 $x \mapsto x$ 在任意点的微变都是 1。正比例函数 $x \mapsto cx$ 在任意点的微变都是系数 c。以上的结论就由读者来证明。

对于稍微复杂一点的函数, 我们一起来算一算。

例题 2.1.1.

1. 求函数 $f: x \mapsto x^2$ 在点 x = 3 处的微变率。

2. 求函数 $f: x \mapsto \frac{1}{x}$ 在点 x = 2 处的微变率。

3. 求函数 $f: x \mapsto (x-1)^3$ 在点 x=1 处的微变率。

解答.

1. 按定义, f 在点 x = 3 处的微变率为:

$$\partial f(3) = \lim_{h \to 0} \frac{f(3+h) - f(3)}{h}$$

$$= \lim_{h \to 0} \frac{(3+h)^2 - 3^2}{h}$$

$$= \lim_{h \to 0} \frac{6h + h^2}{h}$$

$$= \lim_{h \to 0} (6+h)$$

$$= 6.$$

2. 按定义, f 在点 x=2 处的微变率为:

$$\begin{split} \partial f(2) &= \lim_{h \to 0} \frac{f(2+h) - f(2)}{h} \\ &= \lim_{h \to 0} \frac{\frac{1}{2+h} - \frac{1}{2}}{h} \\ &= \lim_{h \to 0} \frac{\frac{2 - (2+h)}{2(2+h)}}{h} \\ &= \lim_{h \to 0} - \frac{1}{2(2+h)} \\ &= -\frac{1}{2(2+\lim_{h \to 0} h)} \\ &= -\frac{1}{4}. \end{split}$$

3. 按定义, f 在点 x=1 处的微变率为:

$$\partial f(2) = \lim_{h \to 0} \frac{f(1+h) - f(1)}{h}$$
$$= \lim_{h \to 0} \frac{h^3 - 0}{h}$$
$$= \lim_{h \to 0} h^2$$
$$= 0.$$

思考 2.1.1.

- 1. 在关于圆的章节中,我们定义: 直线与圆恰有一个公共点,是为相切,公共点为切点。这个定义与本节中切线的定义相同吗? 是否有矛盾的地方?
- 2. 函数在一点可微,是否需要在该点有定义?是否需要在该点有极限? 是否需要在该点连续?

习题 2.1.1.

1. 证明本节提到的关于常函数、恒等函数、正比例函数的微变率的结论。

- 2. 求以下函数在给定点处的微变率。
- $2.1. f: x \mapsto x^4$ 在点 x=2 处的微变率。
- 2.2. $f: x \mapsto x^2 3x + 1$ 在点 x = 3 处的微变率。
- 2.3. $f: x \mapsto \frac{1}{1-2x}$ 在点 x = -1 处的微变率。
- 3. 已知函数 f 在 a 点可微,证明:函数 f 在 a 点连续。
- 4. 我们这样定义函数 f 在 a 点**左可微**: 函数 f 在 a 点左侧附近有定义。如果当 x < a 趋于 a 时,f 从 a 到 x 的变率收敛到某个极限,就说函数 f 在 a 点左可微,称该极限为 f 在 a 点的**左微变率或左微变**,记作:

$$\partial_{-}f(a) = \lim_{x \to a^{-}} \frac{f(x) - f(a)}{x - a} = \lim_{x \to ax < a} \frac{f(x) - f(a)}{x - a}.$$

- 4.1. 按照左可微的定义, 定义右可微。
- 4.2. 证明: 函数 f 在 a 点可微, 当且仅当它在 a 处左可微且右可微, 且左右微变相等。这时 f 在 a 点的微变就是相等的左微变和右微变。
 - 4.3. 考虑绝对值函数: $f: x \mapsto |x|$ 。它在 0 处是否可微?

2.2 微变的运算法则

已知函数的表达式,如何具体计算它在一点的微变率呢?与函数在一点的极限一样,我们可以从研究最简单的函数的微变率开始,通过四则运算得到更复杂的函数的微变率。为此,我们先来了解函数的运算与它(在一点的)微变的关系。

首先来看加减法。给定函数 f、g 和实数 a。设 f、g 在 a 处可微, 微变率为 $\partial f(a)$ 、 $\partial g(a)$ 。来看 f+g、f-g 在 a 处是否可导, 为此, 研究 $f\pm g$

变率的极限:

$$\lim_{x \to a} \frac{(f \pm g)(x) - (f \pm g)(a)}{x - a} = \lim_{x \to a} \left(\frac{f(x) - f(a)}{x - a} \pm \frac{g(x) - g(a)}{x - a} \right)$$
$$= \lim_{x \to a} \frac{f(x) - f(a)}{x - a} \pm \lim_{x \to a} \frac{g(x) - g(a)}{x - a}$$
$$= \partial f(a) \pm \partial g(a)$$

由此可见, f+g、 f-g 在 a 处也可微, 微变率分别是 $\partial f(a)$ 、 $\partial g(a)$ 的和 与差。

$$\partial (f \pm g)(a) = \partial f(a) \pm \partial g(a)$$

接下来看乘法。同样地, 研究 $f \cdot g$ 变率的极限:

$$\lim_{x \to a} \frac{(f \cdot g)(x) - (f \cdot g)(a)}{x - a}$$

$$= \lim_{x \to a} \frac{f(x) \cdot g(x) - f(a) \cdot g(x) + f(a) \cdot g(x) - f(a) \cdot g(a)}{x - a}$$

$$= \lim_{x \to a} \left(g(x) \cdot \frac{f(x) - f(a)}{x - a} + f(a) \cdot \frac{g(x) - g(a)}{x - a} \right)$$

$$= \lim_{x \to a} g(x) \cdot \lim_{x \to a} \frac{f(x) - f(a)}{x - a} + f(a) \cdot \lim_{x \to a} \frac{g(x) - g(a)}{x - a}$$

$$= g(a) \cdot \partial f(a) + f(a) \cdot \partial g(a)$$

可以看到, $f \cdot g$ 在 a 处可微。不过, 它的微变率并不是 $\partial f(a)$ 、 $\partial g(a)$ 的乘积。

$$\partial (f \cdot g)(a) = g(a) \cdot \partial f(a) + f(a) \cdot \partial g(a)$$

再来看除法。研究 $f \div g$ 变率的极限²:

$$\lim_{x \to a} \frac{(f \div g)(x) - (f \div g)(a)}{x - a} = \lim_{x \to a} \frac{\frac{f(x)}{g(x)} - \frac{f(a)}{g(a)}}{x - a}$$

$$= \lim_{x \to a} \frac{1}{g(x)g(a)} \cdot \frac{f(x)g(a) - f(a)g(x)}{x - a}$$

$$= \frac{1}{\lim_{x \to a} g(x)g(a)} \cdot \lim_{x \to a} \frac{f(x)g(a) - f(a)g(a) - (f(a)g(x) - f(a)g(a))}{x - a}$$

$$= \frac{1}{g(a)^2} \cdot \left(g(a) \cdot \lim_{x \to a} \frac{f(x) - f(a)}{x - a} - f(a) \cdot \lim_{x \to a} \frac{g(x) - g(a)}{x - a}\right)$$

$$= \frac{g(a) \cdot \partial f(a) - f(a) \cdot \partial g(a)}{g(a)^2}$$

可以看到, $f \div g$ 在 a 处可微。不过, 和函数乘法一样, 它的微变率并不是 $\partial f(a)$ 除以 $\partial g(a)$ 的商。

$$\partial(f \div g)(a) = \frac{g(a) \cdot \partial f(a) - f(a) \cdot \partial g(a)}{g(a)^2}$$

综上可见,函数的四则运算的微变,并不是简单地把函数的微变作四则运算。下面来看更复杂一点的,复合函数的微变率。

设 f、g 是定义在实数集上的函数,a 为实数。g 在 a 处可微,微变率为 $\partial g(a)$; f 在 g(a) 处可微,微变率为 $\partial f(g(a))$ 。那么复合函数 $f \circ g$ 是否在 a 处可微呢?

²和以往一样,为了让 $f \div g$ 在 a 处有定义,这里需要假设 $g(a) \neq 0$ 。

来看 $f \circ g$ 在 a 处变率的极限:

$$\lim_{x \to a} \frac{(f \circ g)(x) - (f \circ g)(a)}{x - a}$$

$$= \lim_{x \to a} \left(\frac{f(g(x)) - f(g(a))}{x - a} \cdot \frac{g(x) - g(a)}{g(x) - g(a)} \right)$$

$$= \lim_{x \to a} \frac{f(g(x)) - f(g(a))}{g(x) - g(a)} \cdot \lim_{x \to a} \frac{g(x) - g(a)}{x - a}$$

$$= \partial f(g(a)) \cdot \partial g(a)$$
(2.1)

上面推导中,我们从 $\lim_{x\to a} \frac{f(g(x))-f(g(a))}{g(x)-g(a)}$ 算出 $\partial f(g(a))$,是因为 g 在 a 处可微,从而连续,因此 x 趋于 a 时,g(x) 趋于 g(a)。因此,把 g(x) 整体看作变化量,

$$\lim_{x \to a} \frac{f(g(x)) - f(g(a))}{g(x) - g(a)} = \lim_{t \to g(a)} \frac{f(t) - f(g(a))}{t - g(a)}$$
$$= \partial f(g(a))$$

综上,复合函数 $f \circ g$ 在 a 处可微,微变率为:

$$\partial (f \circ g)(a) = \partial f(g(a)) \cdot \partial g(a)$$

如果是多个函数的复合,比如三个函数 $f \times g \times h$,那么可以算出,上式变为:

$$\partial (f \circ g \circ h)(a) = \partial f(g(h(a))) \cdot \partial g(h(a)) \cdot h(a).$$

多次复合的微变是各次复合的微变的乘积,仿佛链条一样。这个结果被形象地称为"**链式法则**"。

最后来看反函数的微变率。设 f 是定义在实数集上的函数,a 为实数,f 在 a 处可微,微变率为 $\partial g(a)$ 。f 在 a 附近有反函数 g,即对 a 附近的 x,总有 f(g(x)) = g(f(x)) = x。g(f(a)) = a。那么反函数 g 在 f(a) 处是否可微呢?

假设 g 在 a 处可微。考虑 $f \circ g$,它是恒等函数,恒等函数在任意点的微变率是 1。因此,根据链式法则,我们有:

$$1 = \partial(g \circ f)(a) = \partial g(f(a)) \cdot \partial f(a)$$

也就是说,

$$\partial g(f(a)) = \frac{1}{\partial f(a)}$$

g 在 f(a) 处的微变率是 $\partial f(a)$ 的倒数。这要求 $\partial f(a)$ 不能为零。

假设 $\partial f(a)$ 不为零, 计算 g 在 f(a) 处变率的极限:

$$\lim_{x \to f(a)} \frac{g(x) - g(f(a))}{x - f(a)}$$

$$= \lim_{x \to f(a)} \frac{g(x) - a}{x - f(a)}$$

$$= \lim_{g(x) \to a} \frac{g(x) - a}{f(g(x)) - f(a)}$$

$$= \frac{1}{\lim_{g(x) \to a} \frac{f(g(x)) - f(a)}{g(x) - a}}$$

$$= \frac{1}{\partial f(a)}$$

上面推导中,我们用到了反函数的连续性: f 在 a 处连续,因此 g 在 f(a) 处连续。因此 x 趋于 f(a) 时,g(x) 趋于 g(f(a)),也就是 a。

例题 2.2.1.

1. 求以下函数在给定点处的微变率。

1.1. $f: x \mapsto (x+1)(3x-4)$ 在点 x=2 处的微变率。

1.2. $f: x \mapsto \frac{x-1}{2x^2-x+1}$ 在点 x = 1 处的微变率。

1.3. $f: x \mapsto (2x-1)^3$ 在点 x = -1 处的微变率。

解答.

1. 应用函数乘法的求微法则:

$$\partial f(2) = \partial(x+1)(2) \cdot (3 \cdot 2 - 4) + \partial(3x - 4)(2) \cdot (2+1)$$
$$= 1 \cdot (3 \cdot 2 - 4) + 3 \cdot (2+1)$$
$$= 6 + 9 = 15$$

其中 $\partial(x+1)(2)$ 表示函数 $x\mapsto x+1$ 在 x=2 处的微变率。 $\partial(3x-4)(2)$ 同理。

2. 应用函数除法的求微法则:

$$\partial f(1) = \frac{\partial (x-1)(1) \cdot (2 \cdot 1^2 - 1 + 1) - \partial (2x^2 - x + 1)(1) \cdot (1 - 1)}{(2 \cdot 1^2 - 1 + 1)^2}$$
$$= \frac{1 \cdot 2 - 3 \cdot 0}{2^2}$$
$$= \frac{1}{2}$$

3. 应用复合函数的求微法则(链式法则):

$$\partial f(-1) = \partial(x^3)(2 \cdot (-1) - 1) \cdot \partial(2x - 1)(-1)$$
= 3 \cdot (-3)^2 \cdot 2
= 54

思考 2.2.1.

- 1. 在函数的除法和反函数的求微法则中,都有要求取值不为零的情况。 请对应函数图像,给出这些要求的直观解释。
- 2. 对比函数在一点的极限,函数在一点微变率的运算法则有什么不同? 你觉得为什么会有这样的不同。
- 3. 对于把实数变量映射到向量的映射,能否定义在某个实数 t 的微变率? 如何在直观上解释你定义的微变率?
- 4. 对于把向量映射到向量的映射,也就是点映射,能否定义在某个点的微变率? 如何在直观上解释你定义的微变率?

习题 2.2.1.

1. 求以下函数在给定点处的微变率。

1.1. $f: x \mapsto (2x-1)(x-4)(x^2+3)$ 在点 x=2 处的微变率。

1.2. $f: x \mapsto \frac{(x+1)(x^2+1)}{x^3-2x+3}$ 在点 x=1 处的微变率。

1.3. $f: x \mapsto (2x - \frac{1}{x+1})^5$ 在点 x = 0 处的微变率。

2. 函数 $x \mapsto x^{\frac{1}{3}}$ 在 x = 0 处是否可微?

3. 考虑以下函数:

$$f: x \mapsto \begin{cases} x & \text{如果}x \to \text{有理数} \\ -x & \text{如果}x \to \text{无理数} \end{cases}$$

3.1. 证明: $f \propto x = 0$ 处可微。

3.2. 证明: f 在 x = 1 处不可微。

3.3. 找出 f 所有可微的点,并给出证明。

2.3 常见函数的微变

使用上一节中的结论, 我们来研究一些较为复杂的常见函数的微变。

首先来看整式函数的微变。给定整式: $a_0 + a_1 x + a_2 x^2 + \cdots + a_n x^n$, 其中 a_0, a_1, \cdots, a_n 是整式的系数。它是一系列单项式 x^k 乘以系数后相加的结果。因此,我们可以先研究形如 x^k 的单项式。

给定自然数 k, $x \mapsto x^k$ 是 $k \uparrow x$ 的乘积。对于 k = 0、 k = 1 的情况,我们已经知道对应的微变:

$$\forall a, \quad \partial(x^0)(a) = 0, \quad \partial(x^1)(a) = 1$$

k > 1 时,根据函数乘法的求微法则,

$$\partial(x^{k+1})(a) = \partial(x^k \cdot x)(a) = \partial(x^k)(a) \cdot a + 1 \cdot a^k$$
.

用归纳法可以证明:

$$\forall k \in \mathbb{Z}^+, \ a \in \mathbb{R}, \ \partial(x^k)(a) = ka^{k-1}.$$

因此,我们可以得出一般整式函数的微变:

$$\forall a, \quad \partial(a_0 + a_1 x + a_2 x^2 + \dots + a_n x^n) = a_1 + 2a_2 x + \dots + na_n a^{n-1}.$$

接下来看幂函数 x^r 的微变。对自然数 k,函数 $x \mapsto x^{\frac{1}{k}}$ 是单项式函数 $x \mapsto x^k$ 的反函数,所以根据反函数的求微法则:

$$\partial(x^{\frac{1}{k}})(a) = \frac{1}{\partial(x^k)(a^{\frac{1}{k}})}$$
$$= \frac{1}{ka^{\frac{k-1}{k}}}$$
$$= \frac{1}{k}a^{\frac{1}{k}-1}$$

要注意的是,这里用到了反函数的求微法则,所以,根据对应的要求,a 不能为 0。a=0 时,函数不可微。

对于 $r = \frac{p}{q}$ 为非零有理数时,函数 $x \mapsto x^r$ 可以看作函数 $x \mapsto x^{\frac{1}{q}}$ 与函数 $x \mapsto x^p$ 的复合函数,因此,根据复合函数的求微法则:

$$\partial(x^{\frac{p}{q}})(a) = \partial(x^p)(a^{\frac{1}{q}}) \cdot \partial(x^{\frac{1}{q}})(a)$$
$$= p \cdot a^{\frac{p-1}{q}} \cdot \frac{1}{q} \cdot a^{\frac{1}{q}-1}$$
$$= \frac{p}{q} a^{\frac{p}{q}-1}$$

综上可知,对非零有理数 r,如果函数 $x\mapsto x^r$ 在一点 a 附近有定义,那么 其微变为:

$$\partial(x^r)(a) = ra^{r-1}.$$

要注意的是,"在一点 a 附近有定义"的要求是必需的,它包括了 $a \neq 0$ 的要求。

再来看三角函数的微变。我们需要用到之前的结论:

$$\lim_{x \to 0} \frac{\sin x}{x} = 1.$$

对于正弦函数 sin, 计算变率的极限:

$$\partial \sin(a) = \lim_{h \to 0} \frac{\sin a + h - \sin a}{h}$$

$$= \lim_{h \to 0} \frac{\sin a \cos h + \cos a \sin h - \sin a}{h}$$

$$= \sin a \lim_{h \to 0} \frac{\cos h - 1}{h} + \cos a \lim_{h \to 0} \frac{\sin h}{h}$$
(2.2)

这里我们要计算两个极限,第二个极限可以直接使用上面的结论,结果是 1。对于第一个极限,我们把分子转化为关于 sin 的表达式。

$$\lim_{h \to 0} \frac{\cos h - 1}{h} = \lim_{h \to 0} \frac{\cos^2 h - 1}{h(\cos h + 1)}$$

$$= \lim_{h \to 0} -\frac{\sin h}{h} \cdot \lim_{h \to 0} \frac{\sin h}{\cos h + 1}$$

$$= -1 \cdot \frac{0}{1+1}$$

$$= 0. \tag{2.3}$$

因此,正弦函数 \sin 在一点 a 的微变为:

$$\partial \sin(a) = \cos a$$

类似地,可以计算余弦函数 cos 的微变。变率的极限:

$$\begin{split} \partial \cos(a) &= \lim_{h \to 0} \frac{\cos a + h - \cos a}{h} \\ &= \lim_{h \to 0} \frac{\cos a \cos h - \sin a \sin h - \cos a}{h} \\ &= \cos a \lim_{h \to 0} \frac{\cos h - 1}{h} - \sin a \lim_{h \to 0} \frac{\sin h}{h} \\ &= \cos a \cdot 0 - \sin a \cdot 1 = -\sin a \end{split}$$

33

余弦函数 cos 在一点 a 的微变为:

$$\partial \cos(a) = -\sin a$$

正切函数 tan 可以看作正弦函数和余弦函数的比值,因此,它在一点a 的微变为:

$$\begin{aligned} \partial \tan(a) &= \partial \left(\frac{\sin a}{\cos a} \right) \\ &= \left(\frac{\partial \sin(a) \cdot \cos a - \partial \cos(a) \cdot \sin a}{\cos^2 a} \right) \\ &= \frac{\cos^2 a + \sin^2 a}{\cos^2 a} \\ &= \frac{1}{\cos^2 a}. \end{aligned}$$

正切函数 cos 在一点 a 的微变为:

$$\partial \tan(a) = \frac{1}{\cos^2 a}$$

余切 cot 是正切的倒数,使用求微法则可知,余切函数在一点 a 的微变为:

$$\partial \cot(a) = -\frac{1}{\sin^2 a}$$

最后来看指数函数。给定底数 c > 1,指数函数 $x \mapsto c^x$ 是连续函数,计算它在一点 a 的微变:

$$\partial(c^x)(a) = \lim_{h \to 0} \frac{c^{a+h} - c^a}{h}$$
$$= c^a \lim_{h \to 0} \frac{c^h - 1}{h}$$
$$= c^a \cdot \partial(c^x)(0)$$

可以看到,如果指数函数在 0 处可微,那么它在任意点处可微,且微变率是函数值与函数在 0 处微变率的乘积。

于是,我们来研究指数函数在 0 处的微变。对于不同的底数 c_1 、 c_2 ,有:

$$c_2^h = c_1^{\frac{\log c_2}{\log c_1} \cdot h}.$$

因此,

$$\lim_{h \to 0} \frac{c_2^h - 1}{h} = \lim_{h \to 0} \frac{c_1^{\frac{\log c_2}{\log c_1} \cdot h} - 1}{h}$$

$$= \frac{\log c_2}{\log c_1} \cdot \lim_{h \to 0} \frac{c_1^{\frac{\log c_2}{\log c_1} \cdot h} - 1}{\frac{\log c_2}{\log c_1} \cdot h}$$

$$= \frac{\log c_2}{\log c_1} \cdot \lim_{t \to 0} \frac{c_1^t - 1}{t}$$

也就是说,如果底数 c_1 的指数函数在 0 处可微,那么底数 c_2 的指数函数 在 0 处也可微,并且两个微变率只差一个乘法系数。

考虑通项公式如下的数列 $\{e_n\}$:

$$\forall n \in \mathbb{Z}^+, \quad e_n = \left(1 + \frac{1}{n}\right)^n.$$

可以证明,数列 $\{e_n\}$ 有极限 e。而 e 满足:

$$\lim_{t \to 0} \frac{e^t - 1}{t} = 1.$$

因此,对任意底数 c,指数函数 $x \mapsto c^x$ 在 0 处可微,微变率是:

$$\lim_{h \to 0} \frac{c^h - 1}{h} = \log_e c.$$

从而,指数函数 $x \mapsto c^x$ 在 a 处的微变率为:

$$\partial(c^x)(a) = c^a \cdot \log_e c.$$

指数函数在任一点的微变率与它在该点的值成正比,比值是以 e 为底数的对数 $\log_e c$ 。

35

特别来说,以 e 为底数时,指数函数 $f:x\mapsto e^x$ 在任一点的微变率等 于它在该点的值。

$$\partial f(a) = e^a = f(a).$$

对数函数是指数函数的反函数。因此,可以用反函数的求微法则,求出 对数函数的微变。

$$\partial log_c(a) = \frac{1}{\partial (c^x)(log_c a)}$$
$$= \frac{1}{a \cdot log_c c}$$

对数函数在定义域中任一点的微变率与它在该点的值成反比,比值是以 e为底数的对数 $\log_e c$ 的倒数。

同样,如果底数为e,那么对数函数在任一点的微变率等于它在该点的 值的倒数。

$$\partial \log_e(a) = \frac{1}{a}.$$

为此,我们把以 e 为底数的对数函数称为**自然对数**,记作 \ln 。而 e 也叫做 自然对数的底数。

例题 2.3.1.

1. 求以下函数在给定点处的微变率。

1.1. $f: x \mapsto \sin(2x - 7)$ 在点 x = 2 处的微变率。

1.2. $f: x \mapsto \log_2\left(\frac{x+1}{x-1} + \sin(x)\right)$ 在点 x = 2 处的微变率。 1.3. $f: x \mapsto 3^{2x-\frac{1}{\sin x+2}}$ 在点 x = -1 处的微变率。

解答.

1. 应用复合函数的求微法则:

$$\partial f(2) = \partial \sin(2 \cdot 2 - 7) \cdot \partial(2x - 7)(2)$$
$$= \cos(-3) \cdot 2$$
$$= 2\cos 3$$

2. 应用复合函数的求微法则:

$$\begin{split} \partial f(2) &= \partial \log_2 \left(\frac{2+1}{2-1} + \sin 2\right) \cdot \left(\partial \left(\frac{x+1}{x-1}\right)(2) + \partial \sin(2)\right) \\ &= \frac{1}{\log_e 2\left(\frac{2+1}{2-1} + \sin 2\right)} \cdot \left(-\frac{2}{(2-1)^2} + \cos 2\right) \\ &= \frac{\cos \left(2\right) - 2}{\ln 2 \cdot \left(3 + \sin 2\right)} \end{split}$$

3. 应用复合函数的求微法则:

$$\partial f(-1) = \partial(3^x)(2 \cdot (-1) - \frac{1}{2 + \sin - 1}) \cdot \left(\partial(2x)(-1) - \partial \frac{1}{\sin x + 2}(-1)\right)$$

$$= \ln 3 \cdot 3^{-2 - \frac{1}{2 - \sin 1}} \cdot \left(2 - \frac{-1}{(\sin (-1) + 2)^2} \cdot \cos (-1)\right)$$

$$= \frac{\ln 3}{3^{2 + \frac{1}{2 - \sin 1}}} \cdot \left(2 + \frac{\cos 1}{(2 - \sin 1)^2}\right)$$

思考 2.3.1.

- 1. 有理函数在哪些地方可微?哪些地方不可微?
- 2
- 3. 对于把实数变量映射到向量的映射,能否定义在某个实数 t 的微变率?如何在直观上解释你定义的微变率?
- 4. 对于把向量映射到向量的映射,也就是点映射,能否定义在某个点的微变率?如何在直观上解释你定义的微变率?

习题 2.3.1.

1. 求以下函数在给定点处的微变率。

1.1. $f: x \mapsto (2x-1)(x-4)(x^2+3)$ 在点 x=2 处的微变率。

1.2. $f: x \mapsto \frac{(x+1)(x^2+1)}{x^3-2x+3}$ 在点 x=1 处的微变率。

1.3. $f: x \mapsto (2x - \frac{1}{x+1})^5$ 在点 x = 0 处的微变率。

- 2. 函数 $x \mapsto x^{\frac{1}{3}}$ 在 x = 0 处是否可微?
- 3. 考虑以下函数:

$$f: x \mapsto \begin{cases} x & \text{如果}x \to \text{有理数} \\ -x & \text{如果}x \to \text{无理数} \end{cases}$$

2.4 微变函数的性质

37

3.1. 证明: $f \propto x = 0$ 处可微。

3.2. 证明: $f \propto x = 1$ 处不可微。

3.3. 找出 f 所有可微的点,并给出证明。

2.4 微变函数的性质

2.5 多次微变

第三章 研究函数

- 3.1 增减与极值
- 3.2 凹凸性质
- 3.3 局部性质
- 3.4 曲线的性质

第四章 平直空间

- 4.1 平直空间的基本性质
- 4.2 子空间与和空间
- 4.3 生成空间
- 4.4 基底和维数

第五章 连续函数的和

- 5.1 函数图像的面积
- 5.2 函数的定合
- 5.3 合函数

第六章 级数

- 6.1 正项级数
- 6.2 收敛与发散
- 6.3 函数的级数

46 第六章 级数

附录 A 序、序数和集合的势

定理 1.0.1. 实数集 \mathbb{R} 和 $2^{\mathbb{N}}$ 等势。

证明: 直接建立 \mathbb{R} 和 $2^{\mathbb{N}}$ 之间的双射,比较困难。我们使用区间 (0,1) 作为"中介"。首先建立 (0,1) 到 \mathbb{R} 的双射 f_1 ,然后建立 $2^{\mathbb{N}}$ 到 (0,1) 的双射 f_2 。这样, f_1 和 f_2 的复合就是 $2^{\mathbb{N}}$ 到 \mathbb{R} 的双射。

首先建立 (0,1) 到 \mathbb{R} 的双射。考虑反三角函数 arccos 在 (-1,1) 上的取值,它把 (-1,1) 上的数映射到 $(0,\pi)$ 上,是从 (-1,1) 到 $(0,\pi)$ 的双射。而余切函数 cot 则是从 $(0,\pi)$ 到 \mathbb{R} 的双射。因此映射

$$f_1: x \mapsto \cot(\arccos(2x-1))$$

是从(0,1)到R的双射。

再来把区间 (0,1) 的实数和 $2^{\mathbb{N}}$ 联系起来。考虑 $2^{\mathbb{N}}$ 中的数列 $\{a_n\}_{n\in\mathbb{N}}$ 。

取数轴上区间 [0,1] 的中点 0.5,它把 [0,1] 平分成两个区间。如果 $a_0 = 0$,就取左边的区间 [0,0.5],否则取右边的区间 [0.5,1]。然后在新的闭区间里,根据 a_1 的值重复上一步的操作。这样不断下去,得到一个闭区间套。根据闭区间套定理,它趋于某个 [0,1] 中的实数。

如果数列从某一项后全是 0 或全是 1,那么从某一步操作后我们将总是取左边(右边)的区间。这样闭区间套会收敛到这一步对应的区间的左

(右)端点,它对应着某个分母是 2 的乘方的有理数。除此以外,区间套收敛到某个 (0,1)中的实数。这个实数不是分母是 2 的乘方的有理数。

把 $2^{\mathbb{N}}$ 中所有从某一项后全是 0 或全是 1 的数列的集合记为 A,把 (0,1) 中所有分母是 2 的乘方的有理数的集合记为 B,那么以上的操作构造了从 $2^{\mathbb{N}}\setminus A$ 到 $(0,1)\setminus B$ 的映射 g_1 。

下面证明 g_1 是双射。

首先证明 g_1 是单射。给定 $2^{\mathbb{N}}\setminus A$ 中两个不同的数列,设它们最早从第 k 项起不同,那么对应的第 k 步操作时就会选择同一区间 [a,b] 的左部分 $[a,\frac{a+b}{2}]$ 和右部分 $[\frac{a+b}{2},b]$ 。而由于数列不会从某一项后全是 0 或全是 1,所以最终闭区间套不会收敛到端点上,也就是说两者经过 f 映射的结果分别在 $(a,\frac{a+b}{2})$ 和 $(\frac{a+b}{2},b)$ 中,因此不相等。

再证明 g_1 是满射。 $\forall x \in (0,1)\backslash B$,用以下操作构建数列 $\{a_n\}$: 取数轴上区间 [0,1] 的中点 0.5,它把 [0,1] 平分成两个区间。如果 x < 0.5,则 $a_0 = 0$,取左边的区间;否则 $a_0 = 1$,取右边的区间。然后在新的区间里重复上一步的操作,决定 a_1 的值。以此类推,得到数列 $\{a_n\} \in 2^{\mathbb{N}}$ 。

以上操作同样得到一个闭区间套,且收敛到 $\{x\}$ 。由于 $x \notin B$,所以不会有从某次操作后总是取左边(右边)的区间的情况,也就是说,得到的数列不在 A 中。这就说明 x 必然是 $2^{\mathbb{N}}\setminus A$ 中某个数列经过 g_1 映射的结果,也就是说, g_1 是满射。

 g_1 既是单射又是满射,因此是双射。

另一方面,考虑集合 A 和 B。我们来建立 A 和 B 之间的双射。

B 是有理数集的无穷子集,因此是可数集合。而集合 A 可以作以下分划:

设 k 为自然数,记 A_k 为所有最早自 a_k 起全是 0 或全是 1 的数列的集合。所有 A_k 两两不相交,且并集是 A。

计算它们的势。 $|A_0| = |A_1| = 2$,

$$\forall \ k > 1, \quad |A_k| = 2^{k-1}.$$

因此, A_0 、 A_1 和 $\{0,1,2,3\}$ ——对应;k>1 时,每个 A_k 和 $\{2^{k-1}+3,2^{k-1}+4,\ldots,2^k+2\}$ ——对应。于是 A 和自然数集——对应。

于是, 存在 A 到 B 的双射 g_2 。这样, 我们就可以构造 $2^{\mathbb{N}}$ 到区间 (0,1) 的双射 f_2 :

$$f_2: x \mapsto \begin{cases} g_1(x) & \text{if } x \in 2^{\mathbb{N}} \backslash A \\ g_2(x) & \text{if } x \in A \end{cases}$$

把 f_1 和 f_2 复合,我们就完成了 \mathbb{R} 和 $2^{\mathbb{N}}$ 之间双射关系的构造。结论:

$$|\mathbb{R}| = |2^{\mathbb{N}}|.$$

附录 B 微变与求合

2.1 函数的微变与微变的函数

定理 2.1.1. 直指不等式 设有正整数 n > 1, 实数 x > -1 且 $x \neq 0$, 则 $(1+x)^n > 1+nx$.

证明: 用归纳法证明。n = 1 时有 $(1 + x)^n = 1 + nx$ 。假设对正整数 n 有 $(1 + x)^n \ge 1 + nx$,下面证明 $(1 + x)^{n+1} > 1 + (n+1)x$ 。

$$(1+x)^{n+1} = (1+x)^n \cdot (1+x)$$

$$\geqslant (1+nx)(1+x)$$

$$= 1 + (n+1)x + nx^2$$

$$> 1 + (n+1)x.$$
(B.1)

因此,由 n=1 的情况可以推出 n=2 时 $(1+x)^2>1+2x$ 。此后对所有 n>2,总有 $(1+x)^n>1+nx$ 。

定理 2.1.2. 对任意正整数 k, 数列 $\{(1+\frac{k}{n})^n\}_{n\in\mathbb{Z}^+}$ 收敛。

证明: 记数列 $\{u_{k,n}\}_{n\in\mathbb{Z}^+}$ 、 $\{v_{k,n}\}_{n\in\mathbb{Z}^+}$ 的通项分别是:

$$\forall n \in \mathbb{Z}^+, \quad u_{k,n} = \left(1 + \frac{k}{n}\right)^n, \\ v_{k,n} = \left(1 + \frac{k}{n}\right)^{n+1}.$$

只要证明 $\{u_{k,n}\}$ 是单调递增数列, $\{v_{k,n}\}$ 是单调递减数列。那么 $\{u_{k,n}\}$ 、 $\{v_{k,n}\}$ 都是有界数列,因而都有极限,分别记为 u_k, v_k 。

又注意到对任意正整数 n,

$$v_{k,n} - u_{k,n} = \frac{k}{n} \cdot u_{k,n},$$

因此差数列 $\{v_{k,n}-u_{k,n}\}$ 收敛到 0。所以 $u_k=v_k$ 。我们定义 $e=u_1=v_1$ 。

下面证明 $\{u_{k,n}\}$ 是单调递增数列。

对任意正整数 n:

$$\frac{u_{k,n+1}}{u_{k,n}} = \frac{\left(1 + \frac{k}{n+1}\right)^{n+1}}{\left(1 + \frac{k}{n}\right)^n} \\
= \frac{\left(1 + \frac{k}{n+1}\right)^{n+1}}{\left(1 + \frac{k}{n}\right)^{n+1}} \cdot \left(1 + \frac{k}{n}\right) \\
= \left(\frac{n(n+k+1)}{(n+1)(n+k)}\right)^{n+1} \cdot \left(1 + \frac{k}{n}\right) \\
= \left(1 + \frac{-k}{(n+1)(n+k)}\right)^{n+1} \cdot \left(1 + \frac{k}{n}\right) \\
> \left(1 + \frac{k}{n+k}\right) \cdot \left(1 + \frac{k}{n}\right) \\
= 1$$

其中的不等号根据直指不等式 (2.1.1) 可得。注意:由于直指不等式对任意 x > -1 且 $x \neq 0$ 成立,所以只要 k 是非零实数,对于足够大的 n,不等号总成立。也就是说,对非零实数 k,数列 $\{(1 + \frac{k}{n})^n\}_{n \in \mathbb{Z}^+}$ 在 n 足够大的时候总是单调递增数列。

再证明 $\{v_{k,n}\}$ 是单调递减数列。对任意正整数 n,考虑均值不等式:

$$\frac{(n+1) \cdot \frac{1}{n+1} + k \cdot \frac{1}{n}}{n+k+1} > \left(\left(\frac{1}{n+1} \right)^{n+1} \cdot \left(\frac{1}{n} \right)^k \right)^{\frac{1}{n+k+1}}$$

据此可以得到:

$$\left(1 + \frac{k}{n}\right)^{n+k+1} > \frac{(n+k+1)^{n+k+1}}{(n+1)^{n+1}n^k}.$$

因此,

$$\left(1 + \frac{k}{n}\right)^{n+1} > \frac{(n+k+1)^{n+k+1} \cdot n^k}{(n+1)^{n+1} \cdot n^k \cdot (n+k)^k}$$
$$= \left(1 + \frac{k}{n+1}\right)^{n+2} \cdot \frac{(n+1)(n+k+1)^{k-1}}{(n+k)^k}$$

只需证明 $\frac{(n+1)(n+k+1)^{k-1}}{(n+k)^k} > 1$, 就得到 $v_{k,n} > v_{k,n+1}$.

而这个不等式等价于:

$$\left(1 + \frac{1}{n+1}\right)^{k-1} > \frac{n+k}{n+1} = 1 + \frac{k-1}{n+1}.$$

根据直指不等式,上式成立。于是我们证明了 $\{v_{k,n}\}$ 是单调递减数列。 \square

对非零有理数 $r = \frac{p}{a}$, 注意到

$$\left(1 + \frac{r}{n}\right)^n = \left(1 + \frac{p}{qn}\right)^n = u_{p,qn}^{\frac{1}{q}}$$

于是数列 $\{u_{r,n}\}=\{\left(1+\frac{r}{n}\right)^n\}_{n\in\mathbb{Z}^+}$ 其实就是数列 $\{u_{p,n}^{\frac{1}{q}}\}$ 的子列,因而收敛。

定理 2.1.3. 对任意有理数 r,数列 $\{(1+\frac{r}{n})^n\}_{n\in\mathbb{Z}^+}$ 收敛。

考虑关于 x 的函数 $f_n: x \mapsto \left(1 + \frac{x}{n}\right)^n$ 。对足够大的正整数 $n, 1 + \frac{x}{n} > 0$, 于是 f_n 对于 x 总是单调递增函数。所以只要 a < b,对足够大的正整数 n就有 $u_{a,n} < u_{b,n}$ 。因此它们对应的数列的极限 u_a 、 u_b 就有 $u_a \leqslant u_b$ 。也就是 说,定义在有理数上的函数:

$$h: r \mapsto \lim_{n \to \infty} \left(1 + \frac{r}{n}\right)^n$$

单调递增。

对于函数 h, 我们还知道什么呢? 首先容易验证:

$$h(0) = 1, \quad h(1) = e.$$

从此不难做出这样的猜想:

$$h(x) = e^x$$
.

对正整数 k, 考虑 $u_{k,kn}$:

$$u_{k,kn} = \left(1 + \frac{k}{kn}\right)^{kn} = \left(1 + \frac{1}{n}\right)^{kn},$$

因此,当 n 趋于无穷时,数列 $\{u_{k,kn}\}$ 趋于 $h(1)^k$ 。而它又是 $\{u_{k,n}\}$ 的子列,所以趋于 h(k)。这说明 $h(k) = e^k$ 。

考虑 $u_{1,kn}$, 它等于 $u_{\frac{1}{k},n}^k$, 所以 $\{u_{\frac{1}{k},n}\}$ 趋于 $h(1)^{\frac{1}{k}}$, 即 $h(\frac{1}{k}) = e^{\frac{1}{k}}$ 。

同理,对于有理数 $r = \frac{p}{q}$,考虑 $u_{p,qn}$,它等于 $u_{\frac{p}{q},n}^q$,所以 $\{u_{\frac{p}{q},n}\}$ 趋于 $h(p)^{\frac{1}{q}}$,也就是 $h(1)^{\frac{p}{q}}$ 。这说明 $h(r) = e^{\frac{p}{q}}$ 。

综上可知,对任何有理数 r, $h(r) = e^r$ 。

给定实数 x,选择任意有理数 $r^{\top} < x < r^{\perp}$,则 n 足够大时, $u_{r^{\top},n} < u_{x,n} < u_{r^{\perp},n}$ 。因此,数列 $\{u_{x,n}\}$ 有界且单调递增,因此收敛。

我们把它的极限定为 h(x), 就把 h 的定义域扩延到了实数集上。

使用第一册中探索指数函数性质的方法,我们可以证明,对任何实数 x , $h(x) = e^x$ 。

接下来证明:

定理 2.1.4. 直指等极

$$\lim_{x \to 0} \frac{e^x - 1}{x} = 1.$$

证明: 在 $\frac{e^x-1}{r}$ 中, 用数列 $u_{x,n}$ 替换 e^x , 计算两者差别:

$$d(x,n) = \left| \frac{e^x - 1}{x} - \frac{u_{x,n} - 1}{x} \right| = \frac{|e^x - u_{x,n}|}{|x|}.$$

对给定的 x,数列 $\{u_{x,n}\}$ 趋于 e^x ,所以对任意正数 r,总有正整数 N,使得只要 n > N,就有:

$$|e^x - u_{x,n}| < \frac{|x|r}{2},$$

这样, $d(x,n) < \frac{r}{2}$ 。

再考虑 $\frac{u_{x,n}-1}{x}-1$:

$$\frac{u_{x,n} - 1}{x} - 1 = \frac{\left(1 + \frac{x}{n}\right)^n - 1 - x}{x}$$

$$= \frac{\sum_{k=0}^n C_n^k \left(\frac{x}{n}\right)^k - 1 - x}{x}$$

$$= \frac{\sum_{k=2}^n C_n^k \left(\frac{x}{n}\right)^k}{x}$$

$$= \sum_{k=1}^{n-1} \frac{C_n^{k+1}}{n^{k+1}} x^k$$

$$= \sum_{k=1}^{n-1} \frac{n!}{(k+1)!(n-k-1)!n^{k+1}} x^k$$

因此, |x| < 1 且 n 足够大时,

$$\left| \frac{u_{x,n} - 1}{x} - 1 \right| \leqslant \sum_{k=1}^{n-1} \left| \frac{n!}{(k+1)!(n-k-1)!n^{k+1}} \right| |x|^k$$

$$< \sum_{k=1}^{n-1} \frac{|x|^k}{(k+1)!}$$

$$< |x| \cdot \sum_{k=1}^{n-1} \frac{1}{2^k}$$

$$< |x|.$$

因此,首先选择 $|x|<\frac{r}{2}$ 且 |x|<1 的 x,再选择使得 $d(x,n)<\frac{r}{2}$ 的 n。这样就有:

$$\left| \frac{e^x - 1}{x} - 1 \right| \le \left| \frac{e^x - 1}{x} - \frac{u_{x,n} - 1}{x} \right| + \left| \frac{u_{x,n} - 1}{x} - 1 \right| < \frac{r}{2} + \frac{r}{2} = r.$$

这就说明:

$$\lim_{x \to 0} \frac{e^x - 1}{x} = 1.$$