Лабораторная работа №2 по дисциплине "Математическое моделирование"

Вариант XXII: Сорокин Никита

Задание Б:

Дано нелинейное дифференциальное уравнение второго порядка

$$\ddot{x} - rac{1}{\sqrt{(x+l)^2 + a^2}} + rac{1}{\sqrt{(x-l)^2 + a^2}} = 0$$

Здесь l, a - параметры задачи.

Найти периодическое решение дифференциального уравнения методом Линдштедта в окрестности устойчивого частного решения $x=0, \dot{x}=0$ при l=1, a=3. Для этого следует:

1. Разложить нелинейные функции исследуемого уравнения в ряд по возмущениям x,\dot{x} в окрестности точки покоя $x=0,\dot{x}=0$ и удержать члены до третьего порядка включительно. Ввести в уравнения движений малый параметр ε , используя замену переменных $x=\varepsilon y,\ \dot{x}=\varepsilon \dot{y}$, и новое время τ по формуле $\tau=\omega t$, где

$$\omega = \omega_0 + \varepsilon \omega_1 + \varepsilon^2 \omega_2 + \dots$$

Получить в явном виде периодическое решение $y=y(\tau),\;\dot{y}=\dot{y}(\tau)$ задачи Коши $y(0)=y_0,\;\dot{y}(0)=0$ для преобразованного дифференциального уравнения с точностью до членов порядка ε^3 . После этого вернуться к старым переменным x,\dot{x} и получить приближенное выражение периодических колебаний в виде $x=x(t),\;\dot{x}=\dot{x}(t).$

2. С помощью графического калькулятора построить две сравнительные фазовые кривые на плоскости переменных $x,\ \dot x$, соответствующие аналитическому (приближенному) решению и строгому решению задачи Коши (полученному на основе численного счета). Рассмотреть два интервала изменения времени $t:t\in[0,\ 10],\ t\in[0,1/arepsilon]$. Численные значения параметров и начальных условий таковы: $l=1,\ a=3$.

$$y(0) = 1,$$
 $\dot{y}(0) = 0,$ $\varepsilon = 0.01$

Решение

Из прошлого задания имеем:

$$f(x) = -rac{1}{\sqrt{(x+1)^2 + 9}} + rac{1}{\sqrt{(x-1)^2 + 9}}$$

Разложим нелинейную функцию исследуемого уравнения в ряд Тейлора, удерживая члены до третьего порядка:

$$f(x) = f(x^*) + rac{f'(x^*)}{1}(x-x^*) + rac{f''(x^*)}{2}(x-x^*)^2 + rac{f'''(x^*)}{6}(x-x^*)^3 + O((x-x^*)^4)$$

Найдем производные в точке покоя:

$$f'(x) = rac{2x+2}{2\Big((x+1)^2+9\Big)^{rac{3}{2}}} - rac{2x-2}{2\Big((x-1)^2+9\Big)^{rac{3}{2}}} \Rightarrow f'(x*) = rac{\sqrt{10}}{50}$$
 $f''(x) = -rac{3(2x+2)^2}{4\Big((x+1)^2+9\Big)^{rac{5}{2}}} + rac{1}{\Big((x+1)^2+9\Big)^{rac{3}{2}}} + rac{3(2x-2)^2}{4\Big((x-1)^2+9\Big)^{rac{5}{2}}} - rac{1}{\Big((x-1)^2+9\Big)^{rac{5}{2}}}$
 $f''(x*) = 0$

$$f'''(x) = rac{15(2x+2)^3}{8\Big((x+1)^2+9\Big)^{rac{7}{2}}} - rac{9(2x+2)}{2\Big((x+1)^2+9\Big)^{rac{5}{2}}} - rac{15(2x-2)^3}{8\Big((x-1)^2+9\Big)^{rac{7}{2}}} + rac{9x-9}{\Big((x-1)^2+9\Big)^{rac{7}{2}}} \ f'''(x*) = -rac{3\sqrt{10}}{200}$$

Подставим $x^* = 0$:

$$f(x) = \frac{\sqrt{10}}{50}x - \frac{\sqrt{10}}{400}x^3$$

Запишем уравнение движения:

$$\ddot{x} + \frac{\sqrt{10}}{50}x - \frac{\sqrt{10}}{400}x^3 = 0$$

Используем замену $x=arepsilon y,\;\dot{x}=arepsilon\dot{y}$ и новое время $au=\omega t.$ Тогда:

$$rac{d}{dt} = \omega rac{d}{d au}, \quad rac{d^2}{dt^2} = \omega^2 rac{d^2}{d au^2}$$

После замен получаем уравнения вида:

$$\omega^2arepsilonrac{d^2y(au)}{d au^2}+rac{\sqrt{10}}{50}arepsilon y-rac{\sqrt{10}}{400}arepsilon^3y^3=0$$

Можно сократить на ε :

$$\omega^2rac{d^2y(au)}{d au^2}+rac{\sqrt{10}}{50}y-rac{\sqrt{10}}{400}arepsilon^2y^3=0$$

Преобразуем уравнению к виду:

$$\omega^2 y'' + \omega_0^2 y = arepsilon f(y), \quad \omega_0^2 = rac{\sqrt{10}}{50}.$$

Будем искать частоту колебаний и решение задачи Коши в виде ряда по малому параметру:

$$egin{aligned} \omega &= \omega_0 + arepsilon \omega_1 + arepsilon^2 \omega_2 + arepsilon^3 \omega_3, \ y &= y_0(au) + arepsilon y_1(au) + arepsilon^2 y_2(au) + arepsilon^3 y_3(au) \end{aligned}$$

Подставляем в полученное уравнение:

$$egin{split} (\omega_0+arepsilon\omega_1+arepsilon^2\omega_2+arepsilon^3\omega_3)^2(y_0(au)+arepsilon y_1(au)+arepsilon^2 y_2(au)+arepsilon^3 y_3(au))''+\ &+\omega_0^2(y_0(au)+arepsilon y_1(au)+arepsilon^2 y_2(au)+arepsilon^3 y_3(au))-\ &-rac{\sqrt{10}}{400}arepsilon^2(y_0(au)+arepsilon y_1(au)+arepsilon^2 y_2(au)+arepsilon^3 y_3(au))^3=0 \end{split}$$

Сгруппируем члены по степеням ε . Для части без ε :

$$\left\{egin{aligned} &\omega_0^2 y_0(au)'' + \omega_0^2 y_0(au) = 0 \ &y_0(0)' = 0 \end{aligned}
ight.$$

Решением задачи является:

$$y_0(au) = a \cdot cos(au)$$

Для части с ε :

$$\left\{egin{aligned} 2\omega_0\omega_1y_0(au)''+\omega_0^2y_1(au)''+\omega_0^2y_1(au)=0\ y_1(0)'=0 \end{aligned}
ight.$$

Первое уравнение системы имеет вид:

$$egin{aligned} \omega_0\omega_1(a\cdot cos(au))'' + \omega_0^2y_1(au)'' + \omega_0^2y_1(au) &= 0, \ y_1(au)'' + y_1(au) &= rac{\omega_1}{\omega_0}a\cdot cos(au) \end{aligned}$$

При решении этого уравнения возникает резонанс, избавимся от него занулив секулярный член:

$$\omega_1 = 0$$

Решением задачи является:

$$y_1(\tau) = 0$$

Для части с ε^2 :

$$\left\{egin{aligned} \omega_0^2 y_2(au)'' + 2\omega_0\omega_1 y_1(au)'' + \left(2\omega_0\omega_2 + \omega_1^2
ight)y_0(au)'' + \omega_0^2 y_2(au) - rac{\sqrt{10}}{400}y_0(au)^3 = 0 \ y_2(0)' = 0 \end{aligned}
ight.$$

Первое уравнение системы:

$$egin{split} y_2(au)''\omega_0^2 - 2a\cos(au)\,\omega_0\omega_2 + y_2(au)\,\omega_0^2 - rac{\sqrt{10}\,a^3\left(\cos^3(au)
ight)}{400} &= 0 \ y_2(au)'' + y_2(au) &= rac{2a\omega_2}{\omega_0}\cos(au) + rac{\sqrt{10}\,a^3\left(\cos^3(au)
ight)}{400\omega_0^2} \ y_2(au)'' + y_2(au) &= rac{\left(3200a\omega_0\omega_2 + 3\sqrt{10}\,a^3
ight)\cos(au)}{1600\omega_0^2} + rac{\sqrt{10}\,a^3\cos(3 au)}{1600\omega_0^2} \end{split}$$

При решении этого уравнения возникает резонанс, избавимся от него занулив секулярный член:

$$\omega_2=-rac{3\sqrt{10}\,a^2}{3200\omega_0}$$

Первое уравнение принимает вид:

$$y_2(au)'' + y_2(au) = rac{\sqrt{10}\,a^3\cos(3 au)}{1600\omega_0^2}$$

Решением задачи является:

$$y_2(au) = -rac{\cos(au) \left(\sin^2(au)
ight) \sqrt{10}\,a^3}{3200 \omega_0^2}$$

Имеем решение вида $y(au)=y_0(au)+arepsilon y_1(au)+arepsilon^2 y_2(au)$. Подставим полученный выражения:

$$y(au) = a \cdot cos(au) - arepsilon^2 rac{\cos(au) \sin^2(au) \sqrt{10} \, a^3}{3200 \omega_0^2}$$

Сделаем обратную замену: $au=\omega\cdot t$, где $\omega=\omega_0+arepsilon\omega_1+arepsilon^2\omega_2$.

$$\omega = \sqrt{\frac{10^{1/2}}{50}} - \varepsilon^2 \frac{3 \cdot 10^{\frac{1}{4}} a^2 \sqrt{2}}{640}, \quad \tau = \left(\sqrt{\frac{10^{1/2}}{50}} - \varepsilon^2 \frac{3 \cdot 10^{\frac{1}{4}} a^2 \sqrt{2}}{640}\right) \cdot t$$

$$y(t) = a \cdot cos\left(\left(\sqrt{\frac{10^{1/2}}{50}} - \varepsilon^2 \frac{3 \cdot 10^{\frac{1}{4}} a^2 \sqrt{2}}{640}\right) \cdot t\right)$$

$$- \varepsilon^2 \frac{\cos\left(\left(\sqrt{\frac{10^{1/2}}{50}} - \varepsilon^2 \frac{3 \cdot 10^{\frac{1}{4}} a^2 \sqrt{2}}{640}\right) \cdot t\right) \sin^2\left(\left(\sqrt{\frac{10^{1/2}}{50}} - \varepsilon^2 \frac{3 \cdot 10^{\frac{1}{4}} a^2 \sqrt{2}}{640}\right) \cdot t\right) \sqrt{10} \, a^3}{3200\omega_0^2}$$

Построим графики в Maple:

$$eq := diff(x(t), t, t) - \frac{1}{\sqrt{(x+1)^2 + 9}} + \frac{1}{\sqrt{(x-1)^2 + 9}} = 0:$$

 $a1 := plot(subs(\varepsilon = 0.01, a = 1, y(t)), t = 0..10, style = point)$

with(DEtools):

n1 := DEplot(eq, x(t), t = 0..10, [[x(0) = 1, x'(0) = 0]], stepsize = 0.1)Warning, x is present as both a dependent variable and a name.

Inconsistent specification of the dependent variable is deprecated, and it is assumed that the name is being used in place of the dependent variable.

with(plots):

 $display(\,[\,a1,\,n1\,],\,legend\,{=}\,[\,'Linstedt\ method','Numerical'\,])$

$$a2 := plot(subs(\varepsilon = 0.01, a = 1, y(t)), t = 0...\frac{1}{0.01}, style = point)$$

with(DEtools):

$$n2 := DEplot(eq, x(t), t = 0... \frac{1}{0.01}, [[x(0) = 1, x'(0) = 0]], stepsize = 0.1)$$

Warning, x is present as both a dependent variable and a name.

Inconsistent specification of the dependent variable is deprecated,
and it is assumed that the name is being used in place of the
dependent variable.

with(plots):

 $display(\,[\,a2,\,n2\,],\,legend\,{=}\,[\,'Linstedt\,method','Numerical'\,])$

