NAME

predict - Track and predict passes of satellites in Earth orbit

SYNOPSIS

predict [-u tle_update_source] [-t tlefile] [-q qthfile] [-a serial_port] [-a1 serial_port] [-f sat_name starting_date/time ending_date/time] [-p sat_name starting_date/time] [-o output_file]

LICENSING

PREDICT is an easy-to-use satellite tracking and orbital prediction program written and created by John A. Magliacane, KD2BD.

PREDICT is free software. You can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 2 of the License or any later version.

PREDICT is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY, without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details.

DESCRIPTION

The DOS version of **PREDICT** is a derivative of the full-featured Linux version **PREDICT**. It was compiled under Caldera's DR-DOS 7.02 operating system using the DJGPP version 2.03 32-bit protected mode software development environment (gcc 3.2, PDCurses 2.4).

PREDICT is 32-bit protected mode software, and as such requires a 32-bit processor (80386 or better). Numeric co-processor emulation is available for environments lacking a co-processor, but the emulation may not provide results as accurate as those possible when a physical co-processor is present.

The protected mode driver (CWSDPMI.EXE) packaged with this software is required for proper operation of **PREDICT**, and needs to be installed either in your current working directory, or in a subdirectory within your OSs search path. (Type "path" on your command line to inspect your search path.) Users of Windows 9.x and later versions do not need to install the protected mode driver included with this software.

FIRST TIME USE

PREDICT tracks and predicts passes of satellites based on the geographical location of the ground station, the current date and time as provided by the computer system's clock, and Keplerian orbital data for the satellites of interest to the ground station. First time users of **PREDICT** are provided default ground station location and orbital data information files. These files are managed by the program, and are normally located under **PREDICT**'s installation directory. First time users must supply **PREDICT** with their geographical location (the same as selecting option [G] from the program's main menu) the first time the program is run. Latitude is entered in decimal degrees north. Latitudes south of the equator are entered as negative values. Longitude is entered as decimal degrees west. Eastern longitudes may be entered as negative values. Station altitude is entered as the number of meters the ground station is located above sea level. This parameter is not very critical. If unsure, make a realistic guess or simply enter 0.

Users of **PREDICT** need Keplerian orbital data for the satellites they wish to track that is preferably no older than one month. The default orbital data supplied with the program is liable to be quite old, and so must be brought up to date if accurate results are to be expected. This may be accomplished by selecting option [E] from **PREDICT's** main menu and manually entering Keplerian data for each satellite in the program's database, or by selecting option [U] and specifying a file containing recent 2-line Keplerian element data sets that correspond to the satellites in the program's database. Keplerian orbital data is available from a variety of sources, including https://www.celestrak.com/ and https://www.amsat.org/.

PROGRAM OPERATION

The start-up screen of **PREDICT** lists the program's main functions. Several tracking and orbital prediction modes are available, as well as several utilities to manage the program's orbital database.

PREDICTING SATELLITE PASSES

Orbital predictions are useful for determining in advance when a satellite is expected to come within range of a ground station. They can also be used to look back to previous passes to help to confirm or identify past observations.

PREDICT includes two orbital prediction modes to predict any pass above a ground station (main menu option [P]), or list only those passes that might be visible to a ground station through optical means (main menu option [V]). In either mode, the user is asked to select a satellite of interest from a menu, and then asked to enter the date and time (in UTC) at which prediction calculations should start.

The current date and time may be selected by default by entering nothing and hitting simply the ENTER key when prompted to enter the starting date and time.

Otherwise, the starting date and time should be entered in the form:

DDMonYY HH:MM:SS

Entering the time is optional. If it is omitted, midnight (00:00:00) is assumed. Once complete, orbital calculations are started and prediction information is displayed on the screen.

The date and time in UTC, along with the satellite's elevation above ground, azimuth heading, modulo 256 orbital phase, sub-satellite point latitude and longitude, slant range between the ground station and the satellite, and the satellite's orbit number are all displayed. If spacecraft attitude parameters (ALAT, ALON) are included in **PREDICT's** transponder database file, then spacecraft antenna squint angles are displayed instead of orbit numbers in the orbital prediction output.

An asterisk (*) displayed to the right of the orbit number or squint angle means the satellite is in sunlight at the date and time listed on the line. A plus symbol (+) means the satellite is in sunlight while the ground station is under the cover of darkness at the time and date listed. Under good viewing conditions, large satellites such as the International Space Station (ISS), the US Space Shuttles, and Hubble Space Telescope, and the Upper Atmosphere Research Satellite (UARS) are visible to the naked eye. If no symbol appears to the right of each line, then the satellite is in the Earth's shadow at the time and date listed, and is not receiving any illumination from the sun.

Pressing the **ENTER** key, the 'Y' key, or the space bar advances the orbital predictions to a screen listing the next available passes. Pressing the 'L' key allows the currently displayed screen plus any subsequent screens to be logged to a text file in your current working directory. The name given to this file is the name of the satellite plus a ".txt" extension. Any slashes or spaces appearing in the satellite name are replaced by the underscore (_) symbol. The logging feature may be toggled on and off at any time by pressing the 'L' key. Exiting the orbital prediction mode by pressing 'N' or hitting the **ESC**ape key will also close the log file. The log file will be appended with additional information if additional predictions are conducted for the same satellite with the logging feature turned on.

Selecting [V] from PREDICT's main menu will permit a ground station to only predict passes for satellites that are potentially visible through optical means. Since all other passes are filtered out in this mode, and since some satellites may never arrive over a ground station when optical viewing conditions are possible, the program provides the option of breaking out of visual orbital prediction mode by pressing the [ESC]ape key as calculations are made. A prompt is displayed at the bottom of the screen to alert the user of this option.

In either orbital prediction mode, predictions will not be attempted for satellites that can never rise above the ground station's horizon, or for satellites in geostationary orbits. If a satellite is in range at the starting date and time specified, **PREDICT** will adjust the starting date back in time until the point of AOS so that the prediction screen displays the first pass in its entirety from start to finish.

SINGLE SATELLITE TRACKING MODE

In addition to predicting satellite passes, **PREDICT** allows satellites to be tracked in real-time using **PRE-DICT's** Single Satellite Tracking Mode (main menu option [T]), or simultaneously as a group of 24 using the program's Multi-Satellite Tracking Mode (main menu option [M]). The positions of the Sun and Moon are also displayed when tracking satellites in real-time.

Selecting option [T] from **PREDICT's** main menu places the program in Single Satellite Tracking Mode. The user will be prompted to select the satellite of interest, after which a screen will appear and display tracking positions for the satellite selected.

In Single Satellite Tracking Mode, a wealth of information related to tracking a spacecraft and communicating through its transponder is displayed. The current date and time is displayed along with the satellite's sub-satellite point, its orbital altitude in both kilometers and statute miles, the slant range distance between the ground station and the satellite in both kilometers and statute miles, the current azimuth and elevation headings toward the satellite, the orbital velocity of the satellite in both kilometers per hour and statute miles per hour, the footprint of the satellite in both kilometers and statute miles, the modulo 256 orbital phase of the satellite, the eclipse depth, the spacecraft antenna squint angle, and orbital model in use, as well as the current orbit number are also displayed. The date and time for the next AOS is also provided.

Additionally, if the satellite is currently in range of the ground station, the amount of Doppler shift experienced on uplink and downlink frequencies, path loss, propagation delay, and echo times are also displayed. The expected time of LOS is also provided.

Uplink and downlink frequencies are held in **PREDICT's** transponder database file *predict.db*. A default file is provided with **PREDICT**.

Transponders may be selected by pressing the SPACE BAR. The passband of the transponder may be tuned in 1 kHz increments by pressing the < and > keys. 100 Hz tuning is possible using the , and . keys. (These are simply the < and > keys without the SHIFT key.)

If no transponder information is available, the data displayed on the tracking screen is abbreviated.

The features available in the Single Satellite Tracking Mode make it possible to accurately determine the proper uplink frequency to yield a given downlink frequency, or vice versa. For example, if one wishes to communicate with a station heard on 435.85200 MHz via FO-29, then 435.85200 MHz can be selected via the keyboard as an RX frequency using the tuning keys while tracking FO-29, and the corresponding groundstation TX frequency will be displayed by **PREDICT**.

Obviously, an accurate system clock and up-to-date orbital data are required for the best tuning accuracy.

MULTI-SATELLITE TRACKING MODE

Selecting [M] from PREDICT's main menu places the program in a real-time multi-satellite tracking mode. In this mode, all 24 satellites in the program's database are tracked simultaneously along with the positions of the Sun and Moon. Tracking data for the satellites is displayed in two columns of 12 satellites each. The name, azimuth heading, elevation, sub-satellite point latitude (in degrees North) and longitude (in degrees West) positions are provided, along with the slant range distance between the satellite and the ground station (in kilometers).

A letter displayed to the right of the slant range indicates the satellite's sunlight and eclipse conditions. If the satellite is experiencing an eclipse period, an N is displayed. If the satellite is in sunlight and the ground station is under the cover of darkness, a V is displayed to indicate the possibility that the satellite is visible under the current conditions. If the satellite is in sunlight while conditions at the ground station do not allow the satellite to be seen, a D is displayed. Satellites in range of the ground station are displayed in BOLD lettering. The AOS dates and times for the next three satellites predicted to come into range are displayed on the bottom of the screen between the tracking coordinates of the Sun and Moon. Predictions are

not made for satellites in geostationary orbits or for satellites so low in inclination and/or altitude that they can never rise above the horizon of the ground station.

SOLAR ILLUMINATION PREDICTIONS

Selecting [S] from **PREDICT's** main menu will allow solar illumination predictions to be made. These predictions indicate how much sunlight a particular satellite will receive in a 24 hour period. This information is especially valuable to spacecraft designers and satellite groundstation controllers who must monitor spacecraft power budgets or thermal conditions on-board their spacecraft due to sunlight and eclipse periods. It can even be used to predict the optimum times for astronauts to perform extra-vehicular activities in space. Solar illumination predictions may be logged to a file in the same manner that orbital predictions may be logged (by pressing **L**).

COMMAND LINE ARGUMENTS

By default, **PREDICT** reads ground station location and orbital data information from a pair of files located in the current working directory. Ground station location information is held in a file named *predict.qth*, while orbital data information for 24 satellites is held in a file named *predict.tle*. If orbital data for more than 24 satellites exists in *predict.tle*, then only the first 24 satellites are read by **PREDICT**.

If we wish to run **PREDICT** using data from alternate sources instead of these default files, the names of such files may be passed to **PREDICT** on the command line when the program is started. For example, if we wish to read the TLE file *visual.tle* and the QTH file *holiday.qth* rather than the default files, we could start **PREDICT** and pass the names of these alternate files to the program in the following manner:

predict -t visual.tle -q holiday.qth

or

predict -q holiday.qth -t visual.tle

If the files specified are not located in the current working directory, then their relative or absolute paths should also be specified along with their names (*predict -t c:\keps\visual.tle*).

It is also possible to specify only one alternate file while using the default for the other. For example,

predict -t visual.tle

reads QTH information from the default predict.qth file, and TLE information from visual.tle, while

predict -q bobs.qth

reads QTH information from bobs.qth and TLE information from the default predict.tle location.

QUIET ORBITAL DATABASE UPDATES

It is also possible to update **PREDICT's** satellite orbital database using another command line option that updates the database from a NASA two-line element data set. **PREDICT** then quietly exits without displaying anything to the screen, thereby eliminating the need for entering the program and selecting the appropriate menu options. This option is invoked using the -*u* command line switch as follows:

predict -u orbs248.tle

This example updates **PREDICT's** default orbital database with the Keplerian elements found in the file *orbs248.tle*. **PREDICT** may be updated from a list of files as well:

predict -u amateur.tle visual.tle weather.tle

If an alternate datafile requires updating, it may also be specified on the command line using the -t switch

as follows:

predict -t oscar.tle -u amateur.tle

This example updates the oscar.tle orbital database with the two-line element data contained in amateur.tle.

These options permit the automatic update of **PREDICT's** orbital data files using Keplerian orbital data obtained through automatic means such as FTP, HTTP, or pacsat satellite download.

AUTOMATIC ANTENNA TRACKING

PREDICT is compatible with serial port antenna rotator interfaces conforming to the EasyComm 2 protocol standard. This includes the PIC/TRACK interface developed by Vicenzo Mezzalira, IW3FOL http://digilander.iol.it/iw3fol/pictrack.html, TAPR's EasyTrak Jr. (currently under development), and Suding Associates Incorporated's Dish Controllers http://www.ultimatecharger.com/Dish_Controllers.html. Using any of these hardware interfaces, **PREDICT** can automatically control the position of AZ/EL antenna rotators, and keep antennas accurately pointed toward a satellite being tracked by **PREDICT**. In operation, tracking data from **PREDICT** is directed to the specified serial port using the -a command line option. For example:

predict -a com1

will send AZ/EL tracking data to the first serial port when the program is tracking a satellite in the Single Satellite Tracking Mode. The data sent to the serial port is of the form: AZ241.0 EL26.0 using 9600 baud, 8-data bits, 1-stop bit, no parity, and no handshaking. Data is sent to the interface if the azimuth or elevation headings change by one degree or more. For interfaces requiring keepalive updates at least once per second whether the AZ/EL headings have changed or not (such as the ones by SAI), the -a1 option may be used:

predict -a1 com1

(Note: The DOS version of **PREDICT** lacks a serial port driver that more likely than not will prevent **PRE-DICT** from successfully sending data to the serial port tracking interfaces described here.)

ADDITIONAL OPTIONS

The -f command-line option, when followed by a satellite name or object number and starting date/time, allows **PREDICT** to respond with satellite positional information. This feature allows **PREDICT** to be invoked within other applications that need to determine the location of a satellite at a particular point in time, such as the location of where a CCD camera image was taken by a Pacsat satellite based on its timestamp.

The information produced includes the date/time in Unix format (the number of seconds since midnight UTC on January 1, 1970), the date/time in ASCII (UTC), the elevation of the satellite in degrees, the azimuth heading of the satellite, the orbital phase (modulo 256), the latitude (N) and longitude (W) of the satellite's sub-satellite point at the time specified, the slant range to the satellite in kilometers with respect to the ground station's location, the orbit number, and the spacecraft's sunlight visibility information.

The date/time must be specified in Unix format (number of seconds since midnight UTC on January 1, 1970). If no starting or ending time is specified, the current date/time is assumed and a single line of output is produced. If a starting and ending time are specified, a list of coordinates beginning at the starting time/date and ending with the ending time/date will be returned by the program with a one second resolution. If the letter m is appended to the ending time/date, then the data returned by the program will have a one minute resolution. The -o option allows the program to write the calculated data to an output file rather than directing it to the standard output device if desired.

The proper syntax for this option is as follows:

```
predict -f ISS 977446390 977446400 -o datafile
```

A list of coordinates starting at the current date/time and ending 10 seconds later may be produced by the following command:

```
predict -f ISS +10
```

If a list of coordinates specifying the position of the satellite every minute for the next 10 minutes is desired, the following command may be used:

```
predict -f ISS +10m
```

If a satellite name contains spaces, then the entire name must be enclosed by "quotes".

The -p option allows orbital predictions for a single pass to be generated by **PREDICT** via the command-line. For example:

```
predict -p OSCAR-11 1003536767
```

starts predictions for the OSCAR-11 satellite at a Unix time of 1003536767 (Sat 20Oct01 00:12:47 UTC). If the starting date/time is omitted, the current date/time is used. If a pass is already in progress at the starting date/time specified, orbital predictions are moved back to the beginning of AOS of the current pass, and data for the entire pass from AOS to LOS is provided.

When either the -f or -p options are used, **PREDICT** produces an output consisting of the date/time in Unix format, the date and time in ASCII (UTC), the elevation of the satellite in degrees, the azimuth of the satellite in degrees, the orbital phase (modulo 256), the latitude (N) and longitude (W) of the satellite's subsatellite point, the slant range to the satellite (in kilometers), the orbit number, and the spacecraft's sunlight visibility information. For example:

The output isn't annotated, but then again, it's meant to be read by other software.

ADDING SATELLITES

One of the most frequently asked questions is how satellites in **PREDICT's** orbital database may be added, modified, or replaced. As it turns out, there are several ways in which this can be done. Probably the easiest is to manually edit your *predict.tle* file, and replace an existing satellite's entry with 2-line Keplerian data for the new satellite. If this method is chosen, however, just make sure to include ONLY the two line data, and nothing else.

Another way is to is select the Keyboard Edit option from the program's Main Menu, select a satellite you wish to replace. Edit the name and object number (replacing the old information with the new information). Just hit ENTER, and accept all the other orbital parameters shown. Get back to **PREDICT's** Main Menu. Select Auto Update, and then enter the filename containing the 2-line element data for your favorite new satellite. The new satellite data should be detected by **PREDICT**, and the orbital data for the old satellite will be overwritten by the new data.

GLOSSARY OF TERMS

The following terms are frequently used in association with satellite communications and space technology:

AOS:

Acquisition of Signal - the time at which a ground station first acquires radio signals from a satellite. **PRE-DICT** defines AOS as the time when the satellite being tracked comes within \pm 0.03 degrees of the local horizon, although it may have to rise higher than this before signals are first heard.

Apogee:

Point in a satellite's orbit when the satellite is at its farthest distance from the earth's surface.

Anomalistic Period:

A satellite orbital parameter specifying the time between successive perigees.

Ascending Node:

Point in a satellite's orbit when its sub-satellite point crosses the equator moving south to north.

Azimuth:

The compass direction measured clockwise from true north. North = 0 degrees, East = 90 degrees, South = 180 degrees, and West = 270 degrees.

Descending Node:

Point in a satellite's orbit when its sub-satellite point crosses the equator moving north to south.

Doppler Shift:

The motion of a satellite in its orbit around the earth, and in many cases the rotational motion of the earth itself, causes radio signals generated by satellites to be received on Earth at frequencies slightly different than those upon which they were transmitted. **PREDICT** calculates what effect these motions have upon radio communication links with satellites when they are within range of the groundstation.

Elevation:

The angle between the local horizon and the position of the satellite. A satellite that appears directly above a particular location is said to be located at an elevation of 90 degrees. A satellite located on the horizon of a particular location is said to be located at an elevation of 0 degrees. A satellite with an elevation of less than zero is positioned below the local horizon, and radio communication with a satellite in such a position is not possible under normal circumstances.

Footprint:

Diameter of the Earth's surface visible from a satellite. The higher the satellite's orbital altitude, the greater the footprint, and the wider the satellite's communications coverage.

LOS:

Loss of Signal - the time at which a ground station loses radio contact with a satellite. **PREDICT** defines LOS as the time when the satellite being tracked comes within ± 0.03 degrees of the local horizon.

Orbital Phase:

An orbital "clock" that describes a satellite's orbital position with respect to perigee. Orbital Phase may be modulo 256, or modulo 360, and is sometimes referred to as mean anomaly when speaking of amateur radio satellites in elliptical orbits, such as the Phase 3 satellites. Orbital phase is zero at perigee.

Path Loss:

The apparent attenuation a radio signal undergoes as it travels a given distance. This attenuation is the result of the dispersion radio waves experience as they propagate between transmitter and receiver using antennas of finite gain. Free space path loss is technically an oxymoron since free space is loss free.

Perigee:

Point in a satellite's orbit when the satellite is at its closest distance to the earth's surface.

Nodal Period:

A satellite orbital parameter specifying the time between successive ascending nodes.

Slant Range:

The straight line distance between the ground station and the satellite at a given time.

Sub-Satellite Point:

The latitude and longitude specifying the location on the Earth that is directly below the satellite.

ADDITIONAL INFORMATION

The latest news is available through the official **PREDICT** software web page located at: $\frac{\text{http://www.qsl.net/kd2bd/predict.html}}{}$.

FILES

predict.tle
Default database of Keplerian orbital data in NASA 2-line format

predict.db
Satellite transponder database file

predict.qth
Default ground station location information

AUTHORS

PREDICT was written by John A. Magliacane, KD2BD <kd2bd@amsat.org>. PIC/TRACK code was written by Vittorio Benvenuti, I3VFJ <benscosm@iol.it>.