PHAS2423 - Problem Based Learning I - Problems and Solutions

(1) Determinant of a 3×3 matrix (|A|) can be expressed as

$$|A|\epsilon_{lmn} = A_{li}A_{mi}A_{nk}\epsilon_{ijk}.$$

(a) Demonstrate that determinant of the transpose matrix A^T is equal to determinant of the matrix A:

$$|A^T| = |A|.$$

(b) Show that if C is a product of two square matrices, C = AB, then

$$|C| = |AB| = |A||B|.$$

(2) In a certain system of units the electromagnetic stress tensor is given by

$$M_{ij} = E_i E_j + B_i B_j - \frac{1}{2} \delta_{ij} (E_k E_k + B_k B_k),$$

where E_i and B_i are components of the 1st-order tensors representing the electric and magnetic fields E and B, respectively.

- (a) Demonstrate that components M_{ij} transform as components of a tensor.
- (b–d) For $|\boldsymbol{E}|{=}|\boldsymbol{B}|$ (but $\boldsymbol{E}\neq\boldsymbol{B}){:}$
- (b) show that $E \pm B$ are principal axes of the tensor M;
- (c) determine the third principal axis and
- (d) find all principal values.

(3) A rigid body consists of eight particles, each of mass m, held together by light rods. In a certain coordinate system the particles are at positions

$$\pm a(3,1,-1)$$
 $\pm a(1,-1,3)$ $\pm a(1,3,-1)$ $\pm a(-1,1,3)$.

The body rotates about an axis passing through the origin. Show that, if the angular velocity and angular momentum vectors are parallel, then their ratio must be $40ma^2$, $64ma^2$, or $72ma^2$.

(4) Quantities x(t) and y(t) satisfy a system of equations

$$\frac{d^2x}{dt^2} + 2n\frac{dx}{dt} + n^2x = 0$$

$$\frac{d^2y}{dt^2} + 2n\frac{dy}{dt} + n^2y = \mu\frac{dx}{dt}$$

with the following boundary conditions at t = 0:

$$x(0) = y(0) = \frac{dy(t)}{dt} = 0$$
 and $\frac{dx}{dt} = \lambda$.

Use the Laplace transform method to show that

$$y(t) = \frac{1}{2}\mu\lambda t^2 \left(1 - \frac{1}{3}nt\right)e^{-nt}.$$