Pairwise Likelihood Fixed Rho

Sam Morris 25 May 2015

Likelihood for the data

The bivariate likelihood for the data is given as

$$f(Y_1, Y_2) = \begin{cases} 1 - \exp\left\{-\frac{1}{z_1}\right\} - \exp\left\{-\frac{1}{z_2}\right\} + \exp\left\{-\vartheta(\mathbf{s}_1, \mathbf{s}_2)\right\} & Y_1 = 1, Y_2 = 1\\ \exp\left\{-\frac{1}{z_2}\right\} - \exp\left\{-\vartheta(\mathbf{s}_1, \mathbf{s}_2)\right\} & Y_1 = 1, Y_2 = 0\\ \exp\left\{-\frac{1}{z_1}\right\} - \exp\left\{-\vartheta(\mathbf{s}_1, \mathbf{s}_2)\right\} & Y_1 = 0, Y_2 = 1\\ \exp\left\{-\vartheta(\mathbf{s}_1, \mathbf{s}_2)\right\} & Y_1 = 0, Y_2 = 0 \end{cases}$$
(1)

where
$$z_i = \left(1 - \xi \mathbf{X}_i^T \beta\right)^{1/\xi}$$
, and $\vartheta(\mathbf{s}_1, \mathbf{s}_2) = \sum_{l=1}^L \left[\left(\frac{w_l(\mathbf{s}_1)}{z_1}\right)^{1/\alpha} + \left(\frac{w_l(\mathbf{s}_2)}{z_2}\right)^{1/\alpha} \right]^{\alpha}$

Pairwise composite likelihood with fixed ρ

Based on a suggestion from Dan, we're trying to fix ρ and fit α using pairwise composite likelihood. Then we'll make predictions using MCMC. I am going to try running this for a few datasets and see how it does. At the moment, I am going to try to do something near the true ρ term.

Data settings

Right now, we're fitting n = 1000 observations with one replication. In the future, it would be nice to allow for multiple replications.

$$\alpha = 0.25, \pi = 0.05, \rho = 0.1$$

Our estimates are
$$\widehat{\alpha}=0.55,\,\widehat{\xi}=0.16,\,$$
 and $\widehat{\beta}=-3.81$ when $\rho=0.11$ The estimates are $\widehat{\alpha}=0.38,\,\widehat{\xi}=0.15,\,$ and $\widehat{\beta}=-3.79$ when $\rho=0.07$

Setup MCMC

simulated dataset - knots 2

MCMC Results

Here are the iteration plots from the two GEV models. The true values are $\beta_0=5.7476855,$ and $\xi=0.25.$

Brier Scores

The brier scores are Logit 1: 0.02 Logit 2: 0.0224 Probit 1: 0.0185 Probit 2: 0.0192 GEV 1: 0.0262 GEV 2: 0.018

Generating another dataset

$$\alpha = 0.75, \pi = 0.05, \rho = 0.1$$

Our estimates are $\widehat{\alpha}=0.6,\,\widehat{\xi}=0.15,\,\mathrm{and}\,\,\widehat{\beta}=-3.71$ when $\rho=0.11$

The estimates are $\widehat{\alpha}=0.6,\,\widehat{\xi}=0.16,\,\mathrm{and}\,\,\widehat{\beta}=-3.76$ when $\rho=0.07$

Setup MCMC

simulated dataset - knots 2

MCMC Results

Here are the iteration plots from the two GEV models. The true values are $\beta_0=5.2837104,$ and $\xi=0.25.$

Brier Scores

The brier scores are Logit 1: 0.0221 Logit 2: 0.0421 Probit 1: 0.0219 Probit 2: 0.0219 GEV 1: 0.023 GEV 2: 0.0233

Generating another dataset

$$\alpha = 0.25, \pi = 0.01, \rho = 0.1$$

Our estimates are $\hat{\alpha} = 0.82$, $\hat{\xi} = -0.08$, and $\hat{\beta} = -4.02$ when $\rho = 0.11$

The estimates are $\hat{\alpha} = 0.69$, $\hat{\xi} = -0.09$, and $\hat{\beta} = -3.92$ when $\rho = 0.07$

Setup MCMC

simulated dataset - knots 2

MCMC Results

Here are the iteration plots from the two GEV models. The true values are $\beta_0=12.4060482,$ and $\xi=0.25.$

Brier Scores

The brier scores are Logit 1: 0.0158 Logit 2: 0.013 Probit 1: 0.0139 Probit 2: 0.014 GEV 1: 0.0137 GEV 2: 0.0137

Generating another dataset

$$\alpha = 0.75, \pi = 0.01, \rho = 0.1$$

Our estimates are $\hat{\alpha} = 0.91$, $\hat{\xi} = -0.04$, and $\hat{\beta} = -4.17$ when $\rho = 0.11$

The estimates are $\hat{\alpha} = 0.79$, $\hat{\xi} = -0.04$, and $\hat{\beta} = -4.14$ when $\rho = 0.07$

Setup MCMC

simulated dataset - knots 2

MCMC Results

Here are the iteration plots from the two GEV models. The true values are $\beta_0 = 9.9284461$, and $\xi = 0.25$.

Brier Scores

The brier scores are Logit 1: 0.0079 Logit 2: 0.0079 Probit 1: 0.0074 Probit 2: 0.0066 GEV 1: 0.0064 GEV 2: 0.0061