

IIC1253 — Matemáticas Discretas — 1' 2019

Ayudantía 6

Clausuras y funciones

Problema 1

Sean A un conjunto e $I = \{(a, a) \mid a \in A\}$ la relación identidad sobre A. Dada la relación R, se define

$$R^{\sim} = (R \cup R^{-1} \cup I)^t$$

Demuestre que R^{\sim} es la menor relación de equivalencia que contiene a R.

Solución propuesta.

Primero demostramos que R^{\sim} es una relación de equivalencia. Para esto, consideramos las tres propiedades necesarias. Cabe notar que R^{\sim} está definida como la clausura transitiva de la relación $(R \cup R^{-1} \cup I)$.

Refleja. Dado $a \in A$ cualquiera, por definición de I, $(a, a) \in I$. Como $I \subseteq (R \cup R^{-1} \cup I)$ y $(R \cup R^{-1} \cup I) \subseteq R^{\sim}$, entonces $(a, a) \in \mathbb{R}^{\sim}$ por lo cual es refleja.

Simétrica. En primer lugar, $(R \cup R^{-1} \cup I)$ es simétrica pues si $(a,b) \in (R \cup R^{-1} \cup I)$, ocurre uno de los siguientes casos:

- Si $(a,b) \in R$, entonces $(b,a) \in R^{-1}$ y por lo tanto, $(b,a) \in (R \cup R^{-1} \cup I)$.
- Si $(a,b) \in R^{-1}$, entonces $(b,a) \in R$ y por lo tanto, $(b,a) \in (R \cup R^{-1} \cup I)$.
- Si $(a, b) \in I$, entonces a = b v $(b, a) = (a, b) \in (R \cup R^{-1} \cup I)$.

Ahora, consideremos $(a,b) \in R^{\sim}$. Como R^{\sim} es clausura transitiva de $(R \cup R^{-1} \cup I)$, sabemos que existe un $i \ge 1$ tal que

$$(a,b) \in (R \cup R^{-1} \cup I)^i$$

En este punto, recurrimos a una propiedad útil (que demostraremos en seguida).

Proposición. Si $M \subseteq A \times A$ es una relación e $i \ge 1$, entonces $(a,b) \in M^i$ si y solo si existe un camino de largo i desde a hasta b en el grafo de M. Demostramos la proposición por inducción sobre i.

- Caso base. $(a,b) \in M$ si y solo si existe una arista desde a hasta b en el grafo de M.
- Suponemos la hipótesis inductiva para i. Ahora, $(a,b) \in M^{i+1}$ si y solo si existe $c \in A$ tal que $(a,c) \in M^i$ $y(c,b) \in M$. Por hipótesis inductiva, lo anterior es equivalente a que exista un camino de largo i desde a hasta c en M, y como hay una arista desde c hasta b, existe un camino de largo i+1 desde a hasta b en M. Esto concluye la demostración.

Con esta propiedad, si $(a,b) \in (R \cup R^{-1} \cup I)^i$ sabemos que existe un camino de largo i desde a hasta b en el grafo de $(R \cup R^{-1} \cup I)$. Tal camino está formado por una secuencia de aristas de la forma

$$(x_0, x_1), (x_1, x_2), \dots, (x_{i-1}, x_i)$$

donde $x_k \in A$ y $(x_{k-1}, x_k) \in (R \cup R^{-1} \cup I)$ para todo $0 \le k \le i$, y tales que $x_0 = a$ y $x_i = b$. Luego, como $(R \cup R^{-1} \cup I)$ es simétrica, cada una de dichas aristas encuentra su contraparte también en la relación, de forma que el camino

$$(x_i, x_{i-1}), (x_{i-1}, x_{i-2}), \dots, (x_1, x_0)$$

es de largo i y va desde b hasta a. Luego, por la proposición demostrada tenemos que

$$(b,a) \in (R \cup R^{-1} \cup I)^i \implies (b,a) \in (R \cup R^{-1} \cup I)^t$$

lo que comprueba que $(a, b) \in \mathbb{R}^{\sim}$.

Transitiva. La relación R^{\sim} es transitiva pues es la clausura transitiva de la relación $(R \cup R^{-1} \cup I)$.

Menor relación. Ahora que probamos que R^{\sim} es relación de equivalencia, debemos probar que es la menor relación de equivalencia que contiene a R. Para esto, tomamos una relación E de equivalencia cualquiera tal que $R \subseteq R$. Debemos probar que $R^{\sim} \subseteq E$. Como R^{\sim} se define como unión, si probamos que cada uno de los conjuntos que la forma está contenido en E entonces probamos lo pedido. Por lo tanto, demostraremos que

$$(R \cup R^{-1} \cup I)^i \quad i \ge 1$$

Usaremos inducción sobre i.

- Caso base. Si i = 1, tenemos que $(R \cup R^{-1} \cup I) \subset E$ pues
 - $R \subseteq E$ por definición de E
 - $R^{-1} \subseteq E$ pues $R \subseteq E$ y E es simétrica. Por lo tanto, para cada $(a,b) \in R$, $(a,b) \in E$ y por simetría $(b,a) \in E$. Luego, $R^{-1} \subseteq E$.
 - $I \subseteq E$ pues E es refleja.
- Suponemos la hipótesis inductiva para i y demostramos para $(R \cup R^{-1} \cup I)^{i+1}$. Sea $(a,b) \in (R \cup R^{-1} \cup I)^{i+1}$. Por definición de composición, existe un $c \in A$ tal que

$$(a,c) \in (R \cup R^{-1} \cup I)^i \land (c,b) \in (R \cup R^{-1} \cup I)$$

Por hipótesis inductiva, $(a,c) \in E$ y como $(R \cup R^{-1} \cup I) \subseteq E$, entonces $(c,b) \in E$. Como E es transitiva, $(a,c) \in E$ y por lo tanto, $(R \cup R^{-1} \cup I)^{i+1} \subseteq E$.

De esta forma, se demuestra que cada $(R \cup R^{-1} \cup I)^i \subseteq E$ para $i \ge 1$ y con ello, $R^{\sim} \subseteq E$ para toda relación de equivalencia E que contiene a R.

Problema 2

Sea A un conjunto finito y $f:A\to A$ una biyección. A partir de f, se define la relación $R_f\subseteq A\times A$ como:

$$(a,b) \in R_f$$
 si, y solo si, existe un $n > 0$ tal que $f^n(a) = b$

donde $f^n = f \circ \cdots \circ f$. En otras palabras, f^n corresponde a componer la función f n-veces.

Demuestre que la relación R_f es una relación de equivalencia.

Solución propuesta.

Debemos probar que la relación R_f es refleja, simétrica y transitiva.

Refleja. Sea $a \in A$ cualquiera y n = |A|. Definimos el conjunto $A^* = \{a, f(a), f^2(a), \dots, f^n(a)\}$ Como $A^* \subseteq A$, existen dos elementos de A^* que deben ser iguales, i.e. existen $0 \le i < j \le n$ tales que

$$f^i(a) = f^j(a)$$

donde consideraremos que $f^0(a) = a$. Definimos i^* como el menor i que cumple lo anterior, es decir, i^* es el menor número de composiciones de f tal que su imagen en a coincide con una composición de f consigo misma j veces, para $j > i^*$.

Supongamos que $i^* \neq 0$. Como $i^* > 0$, $i^* - 1 \geq 0$ es un número de composiciones válido, y como $j > i^*$, $j - 1 > i^* - 1$ también lo es. Luego, podemos escribir

$$f^{i^*}(a) = f^j(a) \iff f(f^{i^*-1}(a)) = f(f^{j-1}(a))$$

Como f es inyectiva, de la última igualdad deducimos que

$$f^{i^*-1}(a) = f^{j-1}(a)$$

lo cual contradice que i^* era el mínimo número de composiciones tal que existe una mayor cantidad de composiciones con igual imagen en a. Esta contradicción permite concluir que $i^* = 0$. Como $i^* = 0$, $f^{i^*}(a) = f^0(a) = a$ y por lo tanto

$$a = f^j(a)$$

Como existe tal j, $(a, a) \in R_f$ y al ser a un elemento arbitrario de A, concluimos que R_f es refleja.

Simétrica. Sea $(a,b) \in R_f$. Por la definición de R_f , sabemos que existe un n > 0 tal que $f^n(a) = b$. Como probamos en la parte anterior, R_f es refleja y por lo tanto existe un m > 0 tal que $f^m(a) = a$. Además, si $f^{im}(a) = a$, con $i \ge 1$ pues cada composición de tamaño m entrega a.

Luego, deducimos un k adecuado tal que $f^k(b) = a$:

$$b = f^{n}(a) \Rightarrow f^{k}(b) = f^{k}(f^{n}(a)) = f^{k+n}(a)$$

Para que el lado derecho de la última igualdad resulte en a, necesitamos que k+n sea múltiplo de m. Luego,

$$k+n = im \implies k = \left\lceil \frac{n}{m} \right\rceil m - n$$

y por lo tanto existe un k tal que $f^k(b) = a$. Por lo tanto, $(b, a) \in R_f$ y es simétrica.

Transitiva. Sean $(a,b) \in R_f$ y $(b,c) \in R_f$. Por definición de R_f , existen n,m>0 tales que

$$f^n(a) = b$$
 y $f^m(b) = c$

Al aplicar f^m sobre ambos lados de la primera igualdad obtenemos

$$f^m(f^n(a)) = f^m(b)$$

Por la segunda igualdad, concluimos

$$f^{m+n}(a) = c$$

y por lo tanto, existe k = n + m > 0 tal que $f^k(a) = c$, i.e. $(a, c) \in R_f$ y la relación es transitiva.

Problema 3

Sea A un conjunto finito. Demuestre que $f: A \to A$ es inyectiva si y solo si es sobre.

Solución propuesta.

 \implies Sea $f:A\to A$ inyectiva. Supongamos que f no es sobre, i.e. existe $a_0\in A$ tal que no tiene preimagen según la función f. Luego,

$$\operatorname{Img}(f) = A \setminus \{a_0\} = B$$

Como $f:A\to B$, pero |B|<|A|, por principio del palomar f no es inyectiva. Esto contradice la hipótesis y por lo tanto f es sobre.

 \sqsubseteq Sea $f:A\to A$ una función sobre, i.e. cada $a\in A$ tiene una preimagen en A y por lo tanto, $|\mathrm{Img}(f)|=n$. Además, como f es función, tenemos que esta preimagen es única para cada a. Supongamos que f no es inyectiva. Entonces, existen $a_1,a_2\in A$ tales que $a_1\neq a_2$ y $f(a_1)=f(a_2)$ y por lo tanto $f(a_1)=f(a_2)=a\in \mathrm{Img}(f)$ tiene dos preimágenes: a_1 y a_2 , una contradicción.