Computational model of lambda calculus

Martin Stoev, Anton Dudov2018-9-28

Contents

1 General Definitions

1

1 General Definitions

Definition 1.1. An enumeration operator (or e-operator) Ψ^A is a r.e. set. For any $A \subseteq \mathbb{N}$

$$x \in \Psi^A \iff \exists u \ (finite \ D_u \subseteq A)((x, u) \in \Psi)$$
 (1)

Definition 1.2. If A is a r.e. set then Ψ_A is the enumeration operator defined by it, namely

$$x \in \Psi_A^B \iff \exists u \ (D_u is finite)((x, u) \in A \land D_u \subseteq B)$$
 (2)

Definition 1.3. If θ is an enumeration operator then G_{θ} is a well-defined r.e. set defining it, namely

$$(x,u) \in G_{\theta} \iff x \in \theta^{D_u}$$
 (3)

Lemma 1.1. If Ψ is an enumeration operator, then $\Psi_{G_{\Psi}} = \Psi$

Definition 1.4. Let η be an assignment of r.e. sets to the variables of lambda calculus. With every λ -term E we inductively associate a r.e. set $[E]_n$:

- 1. $[x]_{\eta} = \eta(x)$
- 2. $[E_1E_2]_{\eta} = \Psi_{[E_1]_{\eta}}([E_2]_{\eta})$
- 3. $[\![\lambda x.E]\!]_{\eta} = G_{\lambda X.[\![E]\!]_{\eta[x:=X]}}$

Where $\lambda X.[E]_{\eta[x:=X]}$ is a function

$$A \in W \mapsto [\![E]\!]_{\eta[x:=A]} \tag{4}$$

Lemma 1.2. For any environment η and term t, $[\![t]\!]_{\eta}$ is an c.e. set.

Proof. By structural induction on the definition of $[t]_{\eta}$.

- 1. $[x]_{\eta} = \eta(x)$ by definition
- 2. To show that $\Psi_{\llbracket E_1 \rrbracket_{\eta}}(\llbracket E_2 \rrbracket_{\eta})$ is a c.e. set we prove that Ψ_A^B is an enumeration operator which follows from

$$n \in \Psi_A^B \iff \exists u (D_u \subseteq B < n, u > \in A)$$
 (5)

3. To be done.

Lemma 1.3. For the following theorem we will need one lemma beforehand for better readability, namely

$$[\![u]\!]_{\eta[x:=[\![v]\!]_{\eta}]} = [\![u[x \mapsto v]]\!]_{\eta} \tag{6}$$

Proof. Structural induction on u.

1. u = x, then:

$$[\![x]\!]_{\eta[x:=[\![v]\!]_{\eta}]} = \eta(x) = [\![v]\!]_{\eta} = [\![x[x \mapsto v]]\!]_{\eta}$$
(7)

2. $u = y \neq x$, then:

$$[\![y]\!]_{\eta[x:=[\![v]\!]_{\eta}]} = \eta(y) = [\![y]\!]_{\eta} = [\![y[\![x \mapsto v]\!]]_{\eta}$$
(8)

3. u = pq, then:

$$\begin{aligned} \llbracket pq \rrbracket_{\eta[x:=\llbracket v \rrbracket_{\eta}]} & \stackrel{def1.4.2}{=} \Psi_{\llbracket p \rrbracket_{\eta[x:=\llbracket v \rrbracket_{\eta}]}} (\llbracket q \rrbracket_{\eta[x:=\llbracket v \rrbracket_{\eta}]}) \\ & \stackrel{ind.hyp.}{=} \Psi_{\llbracket p[x\mapsto v] \rrbracket_{\eta} (\llbracket q[x\mapsto v] \rrbracket_{\eta}]}) \\ & \stackrel{def1.4.2}{=} \llbracket p[x\mapsto v] q[x\mapsto v] \rrbracket_{\eta} \\ & \stackrel{defApp}{=} \llbracket pq[x\mapsto v] \rrbracket_{\eta} \end{aligned}$$

4. $u = \lambda_y$ p, then:

$$\begin{split} \llbracket \lambda_y p \rrbracket_{\eta[x:=\llbracket v \rrbracket_{\eta}]} & \stackrel{def1.4.3}{=} G_{\Lambda Y.\llbracket p \rrbracket_{\eta[x:]\llbracket v \rrbracket_{\eta};y:=Y]}} \\ & \stackrel{ind.hyp}{=} G_{\Lambda Y.\llbracket p[x\mapsto v] \rrbracket_{\eta[y:=Y]}} \\ & \stackrel{def1.4.3}{=} \llbracket \lambda_y p[x\mapsto v] \rrbracket_{\eta} \end{split}$$

Theorem 1.4. If $E_1 \stackrel{\beta}{\twoheadrightarrow} E_2$ then $[\![E_1]\!]_{\eta} = [\![E_2]\!]_{\eta}$ for any η .

Proof. We will prove one step of the β reduction and then by induction the rest will follow

We have that $(\lambda x E_1)E_2 = E_1[x \mapsto E_2]$ and we will prove that $[(\lambda x E_1)E_2]_{\eta} = [E_1[x \mapsto E_2]]_{\eta}$

Random citation [1] embeddeed in text. Random citation [2] embeddeed in text.

References

- [1] S. B. Cooper, Computability Theory. 2003.
- [2] P. Odifreddi, Classical recursion theory. 1989.