This Page Is Inserted by IFW Operations and is not a part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- BLACK BORDERS
- TEXT CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT
- ILLEGIBLE TEXT
- SKEWED/SLANTED IMAGES
- COLORED PHOTOS
- BLACK OR VERY BLACK AND WHITE DARK PHOTOS
- GRAY SCALE DOCUMENTS

IMAGES ARE BEST AVAILABLE COPY.

As rescanning documents will not correct images, please do not report the images to the Image Problem Mailbox.

21 Aktenzeichen:

196 13 103.0

② Anmeldetag:

1. 4.96

Offenlegungstag:_

2.10.97

PATENTAMT

Henkel KGaA, 40589 Düsseldorf, DE

(7) Anmelder:

② Erfinder:

Speckmann, Horst-Dieter, Dr., 40764 Langenfeld, DE; Blum, Helmut, 40595 Düsseldorf, DE; Hill, Karlheinz, Dr., 40699 Erkrath, DE; Mayer, Bernd, Dr., 40597 Düsseldorf, DE; Nitsch, Christian, Dr., 40591 Düsseldorf, DE; Pegelow, Ulrich, Dr., 40597 Düsseldorf, DE; Riebe, Hans-Jürgen, Dr., 40724 Hilden, DE; Wilde, Andreas, Dr., 40589 Düsseldorf, DE

(5) Übergangsmetallkomplex-haltige Systeme als Aktivatoren für Persauerstoffverbindungen

Übergangsmetallkomplexe, die elektrochemisch im Potentialbereich von 0,8 V bis 1,4 V mit maximalen Stromdichten von mindestens 5 mA/cm² oxidierbar sind, werden in Kombination mit unter Perhydrolysebedingungen Peroxocarbonsäure-liefernden Verbindungen als Aktivatoren für Persauerstoffverbindungen in Oxidations-, Wasch-, Reinigungsoder Desinfektionslösungen verwendet. Die Mittel enthalten vorzugsweise 0,0025 Gew.-% bis 0,25 Gew.-% derartiger Übergangsmetallkomplexe.

Die vorliegende Erfindung betrifft die Verwendung von Bleichaktivator/Bleichkatalysator-Systemen aus unter Perhydrolysebedingungen peroxocarbonsäureliefernden Substanzen und bestimmten Komplexverbindungen von Übergangsmetallen zur Aktivierung von Persauerstoffverbindungen, insbesondere zum Bleichen von Farbanschmutzungen beim Waschen von Textilien, sowie Wasch-, Reinigungs- und Desinfektionsmittel, die

derartige Bleichaktivator/Bleichkatalysator-Systeme enthalten.

Anorganische Persauerstoffverbindungen, insbesondere Wasserstoffperoxid und feste Persauerstoffverbindungen, die sich in Wasser unter Freisetzung von Wasserstoffperoxid lösen, wie Natriumperborat und Natriumcarbonat-Perhydrat, werden seit langem als Oxidationsmittel zu Desinfektions- und Bleichzwecken verwendet. Die Oxidationswirkung dieser Substanzen hängt in verdünnten Lösungen stark von der Temperatur-ab; so erzielt man beispielsweise mit H2O2 oder Perborat in alkalischen Bleichflotten erst bei Temperaturen oberhalb von etwa 80°C eine ausreichend schnelle Bleiche verschmutzter Textilien. Bei niedrigeren Temperaturen kann die Oxidationswirkung der anorganischen Persauerstoffverbindungen durch Zusatz sogenannter Bleichaktivatoren verbessert werden, die in der Lage sind, unter den angesprochenen Perhydrolysebedingungen Peroxocarbonsäuren zu liefern und für die zahlreiche Vorschläge, vor allem aus den Stoffklassen der N- oder O-Acylverbindungen, beispielsweise mehrfach acylierte Alkylendiamine, insbesondere Tetraacetylethylendiamin, acylierte Glykolurile, insbesondere Tetraacetylglykoluril, N-acylierte Hydantoine, Hydrazide, Triazole, Hydrotriazine, Urazole, Diketopiperazine, Sulfurylamide und Cyanurate, außerdem Carbonsäureanhydride, insbesondere Phthalsäureanhydrid, Carbonsäureester, insbesondere Natrium-nonanoyloxy-benzolsulfonat, Natrium-isononanoyloxy-benzolsulfonat, O-acylierte Zuckerderivate, wie Pentaacetylglukose, und N-acylierte Lactame, wie N-Benzoylcaprolactam, in der Literatur bekannt geworden sind. Durch Zusatz dieser Substanzen kann die Bleichwirkung wäßriger Peroxidflotten so weit gesteigert werden, daß bereits bei Temperaturen um 60°C im wesentlichen die gleichen Wirkungen wie mit der Peroxidflotte allein bei 95°C eintreten.

Im Bemühen um energiesparende Wasch- und Bleichverfahren gewinnen in den letzten Jahren Anwendungstemperaturen deutlich unterhalb 60°C, insbesondere unterhalb 45°C bis herunter zur Kaltwassertemperatur an

Bedeutung.

Bei diesen niedrigen Temperaturen läßt die Wirkung der bisher bekannten Aktivatorverbindungen in der Regel erkennbar nach. Es hat deshalb nicht an Bestrebungen gefehlt, für diesen Temperaturbereich wirksamere Aktivatoren zu entwickeln, ohne daß bis heute ein überzeugender Erfolg zu verzeichnen gewesen wäre. Ein Ansatzpunkt dazu ergibt sich durch den Einsatz von Übergangsmetallsalzen und -komplexen, wie zum Beispiel in den europäischen Patentanmeldungen EP 392 592, EP 443 651, EP 458 397, EP 544490 oder EP 549 271 vorgeschlagen, als sogenannte Bleichkatalysatoren. Bei diesen besteht, vermutlich wegen der hohen Reaktivität der aus ihnen und der Persauerstoffverbindung entstehenden oxidierenden Intermediate, die Gefahr der Farbveranderung gefärbter Textilien und im Extremfall der oxidativen Textilschädigung. In der europäischen Patentanmeldung EP 272 030 werden Cobalt(III)-Komplexe mit Ammoniak-Liganden, die außerdem beliebige weitere ein-, zwei-, drei- und/oder vierzähnige Liganden aufweisen können, als Aktivatoren für H2O2 beschrieben. Aus der europäischen Patentanmeldung EP 630 964 sind bestimmte Mangankomplexe bekannt, welche keinen ausgeprägten Effekt hinsichtlich einer Bleichverstärkung von Persauerstoffverbindungen haben und gefärbte Textilfasern nicht entfärben, aber die Bleiche von in Waschlaugen befindlichem, von der Faser abgelöstem Schmutz oder Farbstoff bewirken können. Aus der deutschen Patentanmeldung DE 44 16 438 sind Mangan-, Kupfer- und Kobalt-Komplexe bekannt, welche Liganden aus einer Vielzahl von Stoffgruppen tragen können und als Bleichund Oxidationskatalysatoren verwendet werden sollen. Auch die Kombination konventioneller, unter Perhydrolysebedingungen Peroxocarbonsäuren ergebenden Bleichaktivatoren mit Übergangsmetall-Bleichkatalysatoren ist, zum Beispiel in der internationalen Patentanmeldung WO 95/27775, vorgeschlagen worden.

Auch die vorliegende Erfindung hat die Verbesserung der Oxidations- und Bleichwirkung anorganischer Persauerstoffverbindungen bei niedrigen Temperaturen unterhalb von 80°C, insbesondere im Temperaturbe-

reich von ca. 15°C bis 45°C, zum Ziel.

Es wurde nun gefunden, daß die bleichende Wirkung der üblichen Kombinationen aus Bleichmittel auf Persauerstoffbasis mit unter Perhydrolysebedingungen Peroxocarbonsäure-liefernden Bleichaktivatoren unerwartet stark erhöht werden kann, wenn man Übergangsmetallkomplexe zusetzt, die elektrochemisch in bestimmten Potentialbereichen mit möglichst hoher Stromdichte oxidierbar sind.

Gegenstand der Erfindung ist die Verwendung eines Systems aus unter Perhydrolysebedingungen Peroxocarbonsäure-liefernder Verbindung und Übergangsmetallkomplexverbindungen, die elektrochemisch im Potentialbereich von 0,8 V bis 1,4 V, jeweils bezogen auf die Standardwasserstoffelektrode, mit maximalen Stromdichten von mindestens 5 mA/cm² oxidierbar sind, als Aktivator für insbesondere anorganische Persauerstoffverbindun-

gen in Oxidations-, Wasch-, Reinigungs- oder Desinfektionslösungen.

Die elektrochemischen Messungen zur Ermittlung des Stromdichte-Maximums im angegebenen Potentialbereich können in bekannter Weise unter Verwendung einer elektrochemischen Standardmeßzelle mit Hilfe einer Dreielektrodenanordnung bestehend aus einer Meßelektrode, vorzugsweise aus Gold, einer Gegenelektrode, vorzugsweise ebenfalls aus Gold, und einer üblichen Referenzelektrode, bei 25°C in ca. 1 mmolarer Lösung der zu untersuchenden Übergangsmetallverbindung in ca. 0,1 molarer Leitsalzlösung durchgeführt werden.

Das System aus unter Perhydrolysebedingungen Peroxocarbonsäure-liefernder Substanz und den speziellen Übergangsmetallkomplexen wird vorzugsweise zum Bleichen von Farbanschmutzungen beim Waschen von Textilien, insbesondere in wäßriger, tensidhaltiger Flotte, verwendet. Die Formulierung "Bleichen von Farbanschmutzungen" ist dabei in ihrer weitesten Bedeutung zu verstehen und umfaßt sowohl das Bleichen von sich auf dem Textil befindendem Schmutz, das Bleichen von in der Waschflotte befindlichem, vom Textil abgelösten Schmutz als auch das oxidative Zerstören von sich in der Waschflotte befindenden Textilfarben, die sich unter

den Waschbedingungen von Textilien ablösen, bevor sie auf andersfarbige Textilien aufziehen können.

Eine weitere bevorzugte Anwendungsform gemäß der Erfindung ist die Verwendung des Systems aus unter Perhydrolysebedingungen Peroxocarbonsäure-liefernder Substanz und den speziellen Übergangsmetalikomplexen in Reinigungslösungen für harte Oberflächen, insbesondere für Geschirr, zum Bleichen von gefärbten Anschmutzungen. Auch dabei wird unter dem Begriff der Bleiche sowohl das Bleichen von sich auf der harten Oberfläche befindendem Schmutz, insbesondere Tee, als auch das Bleichen von in der Geschirrspülflotte befindlichem, von der harten Oberfläche abgelösten Schmutz verstanden.

Weitere Gegenstände der Erfindung sind Wasch-, Reinigungs- und Desinfektionsmittel, die das obengenannte System enthalten und ein Verfahren zur Aktivierung von Persauerstoffverbindungen unter Einsatz eines derartigen Systems.

Bei dem erfindungsgemäßen Verfahren und im Rahmen einer erfindungsgemäßen Verwendung kann das System aus unter Perhydrolysebedingungen Peroxocarbonsäure-liefernder Substanz und den speziellen Übergangsmetallkomplexen im Sinne eines Aktivators überall dort eingesetzt werden, wo es auf eine besondere Steigerung der Oxidationswirkung der Persauerstoffverbindungen bei niedrigen Temperaturen ankommt, beispielsweise bei der Bleiche von Textilien oder Haaren, bei der Oxidation organischer oder anorganischer Zwischenprodukte und bei der Desinfektion.

Die erfindungsgemäß geeigneten Übergangsmetallkomplexe, die elektrochemisch im Potentialbereich von 0.8 V bis 1,4 V mit maximalen Stromdichten von mindestens 5 mA/cm² vorzugsweise mindestens 10 mA/cm² und insbesondere im Bereich von 12 mA/cm² bis 25 mA/cm² oxidierbar sind, werden vorzugsweise unter den Cobalt-, Eisen-, Kupfer-, Mangan- und Rutheniumkomplexen, insbesondere unter den Komplex-Verbindungen 20 des dreiwertigen Cobalts, ausgewählt. Als Liganden in den erfindungsgemäß brauchbaren Übergangsmetall-komplexen kommen übliche Substanzen sowohl anorganischer als auch organischer Natur in Frage, welche die erfindungswesentliche Oxidierbarkeit nicht negativ beeinflussen. Zu den organischen Liganden gehören neben Carboxylaten insbesondere Verbindungen mit primären, sekundären und/oder tertiären Amin- und/oder Alkohol-Funktionen. Zu den anorganischen Neutralliganden gehören insbesondere Ammoniak und Wasser. Insbesondere bei den Co(III)-Komplexen, bei denen das Zentralatom normalerweise mit der Koordinationszahl 6 vorliegt, ist die Anwesenheit mindestens 1 Ammoniak-Liganden bevorzugt. Falls nicht sämtliche Koordinationsstellen des Übergangsmetalizentralatoms durch Neutralliganden besetzt sind, enthält ein in dem System gemäß der Erfindung zu verwendender Komplex weitere, vorzugsweise anionische und unter diesen insbesondere einzähnige Liganden. Zu diesen gehören insbesondere die Halogenide, vorzugsweise Chlorid, und die 30 (NO₂)—Gruppe.

Unter einer (NO₂)⁻-Gruppe soll im vorliegenden Fall ein Nitro-Ligand, der über das Stickstoffatom an das Übergangsmetall gebunden ist, oder ein Nitrito-Ligand, der über ein Sauerstoffatom an das Übergangsmetall gebunden ist, verstanden werden. Die (NO₂)⁻-Gruppe kann an ein Übergangsmetall M auch chelatbildend

gebunden sein. Sie kann auch zwei Übergangsmetallatome asymmetrisch verbrücken

oder η^1 — O-verbrücken:

Außer den genannten Neutral- sowie Ammoniak- und Nitro- beziehungsweise Nitrito-Liganden können die im Aktivatorsystem gemäß der Erfindung zu verwendenden Übergangsmetallkomplexe noch weitere, in der Regel einfacher aufgebaute Liganden, insbesondere ein- oder mehrwertige Anionliganden, tragen. In Frage kommen beispielsweise Nitrat, Acetat, Formiat, Citrat, Perchlorat und die Halogenide wie Fluorid, Chlorid, Bromid und Iodid sowie komplexe Anionen wie Hexafluorophosphat. Die Anionliganden sollen für den Ladungsausgleich zwischen Übergangsmetall-Zentralatom und dem Ligandensystem sorgen. Auch die Anwesen-

verbrückend wirken, so daß mehrkernige Komplexe entstehen. Diese enthalten vorzugsweise pro Übergangsmetallatom mindestens 1 Ammoniak-Liganden und/oder mindestens 1 (NO₂)—Gruppe. Im Falle verbrückter, zweikerniger Komplexe müssen nicht beide Metallatome im Komplex gleich sein. Der Einsatz zweikerniger Komplexe, in denen die beiden Übergangsmetallzentralatome unterschiedliche Oxidationszahlen aufweisen, ist möglich.

Falls Anionliganden fehlen oder die Anwesenheit von Anionliganden nicht zum Ladungsausgleich im Komplex führt, sind in den gemäß der Erfindung zu verwendenden Übergangsmetallkomplex-Verbindungen anionische Gegenionen anwesend, die den kationischen Übergangsmetall-Komplex neutralisieren. Zu diesen anionischen Gegenionen gehören insbesondere Nitrat, Hydroxid, Hexafluorophosphat, Sulfat, Chlorat, Perchlorat, die Halogenide wie Chlorid oder die Anionen von Carbonsäuren wie Formiat, Acetat, Benzoat oder Citrat.

Co(NH₃)₅]Cl₄

Die zweite Komponente des erfindungsgemäß zu verwendenden Systems besteht aus einer eine Peroxocarbonsäure liefernden Substanz. Zu diesen gehören die eingangs zitierten üblichen Bleichaktivatoren. Vorzugsweise handelt es sich um Verbindungen, die in der Lage sind, bei der Perhydrolyse Peroxocarbonsäuren mit 1 bis 18, insbesondere 2 bis 12 C-Atomen abzuspalten. Peroxocarbonsäuren abspaltende Verbindungen werden vorzugsweise aus den Verbindungen nach Formel (I),

 $(R^1-CO-)_0X$ (I)

in der R1 für einen Aryl-, Alkyl-, Alkenyl- oder Cycloalkylrest mit 1 bis 17 C-Atomen, n für eine Zahl von 1 bis 4 und X für eine Sauerstoff- und/oder stickstoffhaltige Abgangsgruppe mit direkter Bindung zwischen Sauerstoff und/oder Stickstoff einerseits und der Acylgruppe R¹—CO andererseits steht, sowie deren Gemischen ausgewählt. Bevorzugt sind die Verbindungen nach Formel (I) mit R¹ = Phenyl, C₁- bis C₁₁-Alkyl, 9-Decenyl und deren Gemische, wobei die Alkylreste linear oder verzweigtkettig sein können. Unter den Verbindungen der Formel (I) mit linearen Alkylresten sind solche mit 1 bis 9 C-Atomen besonders bevorzugt. Die erfindungsgemäß in Kombination mit Übergangsmetallkomplexen zu verwendenden Verbindungen gemäß Formel (I) können durch O- beziehungsweise N-Acylierung mit reaktiven R1-CO-Derivaten, beispielsweise Säurechloriden, der entsprechenden unsubstituierten Verbindungen HnX nach bekannten Verfahren hergestellt werden. Bevorzugte stickstoffhaltige Abgangsgruppen X sind solche, in denen der Stickstoff neben der abzuspaltenden Acylgruppe R1-CO- mindestens eine weitere Acylgruppe trägt. Beispiele für derartige Verbindungen gemäß Formel (I) sind die Triacylierungsprodukte von Ammoniak und die Diacylierungsprodukte von primären Aminogruppen, wie die jenigen von Ethylendiamin. Falls es sich bei der genannten mindestens einen weiteren Acylgruppe nicht ebenfalls um einen Acylrest R¹-CO- handelt, ist bevorzugt, wenn sie eine dermaßen abgestufte Perhydrolyseaktivität aufweist, daß sich unter den Anwendungsbedingungen im wesentlichen nur aus der Gruppe R1—CO die entsprechende Peroxocarbonsäure bildet. Dies kann dadurch erreicht werden, daß in der Verbindung gemäß Formel (I) der die Gruppe R¹-CO- tragende Stickstoff außerdem Teil einer cyclischen Amid- oder Imidstruktur ist. Letztgenannte Verbindungen können als Acylamide beziehungsweise Acylimide bezeichnet werden, wobei sich der Namensteil "Acyl" auf die Gruppe R1-CO- bezieht. Der Amidteil derartiger Acylamide besteht vorzugsweise aus einer gegebenenfalls substituierten Capro- oder Valerolactam-Gruppe und der Imidteil solcher Acylimide besteht vorzugsweise aus einer Succinimid-, Maleinimid- oder Phthalimid-Gruppe, welche Gruppen gegebenenfalls C1- bis C4-Alkyl-, Hydroxyl-, COOH- und/oder SO3H-Substituenten tragen können, wobei letztgenannte Substituentengruppen auch in Form ihrer Salze vorliegen können. Unter den Acylimiden ist N-Nonanoyl- und N-Isononanoyl-succinimid besonders bevorzugt.

Beispiele für geeignete Verbindungen sind mehrfach acylierte Alkylendiamine, insbesondere Tetraacetylethylendiamin (TAED), acylierte Glykolurile, insbesondere Tetraacetylgtykoluril (TAGU), acylierte Triazinderivate, insbesondere 1,5-Diacetyl-2,4-dioxohexahydro-1,3,5-triazin (DADHT), acylierte mehrwertige Alkohole, insbesondere Triacetin, Ethylenglykoldiacetat und 2,5-Diacetoxy-2,5-dihydrofuran sowie acetyliertes Sorbit und Mannit, acylierte Phenolsulfonate, insbesondere Nonanoyl- oder Isononanoyloxybenzolsulfonat, und acylierte Zukkerderivate, insbesondere Pentaacetylglukose (PAG), Pentaacetylfruktose, Tetraacetylxylose und Octaacetyllactose sowie acetyliertes, gegebenenfalls N-alkyliertes Glucamin und Gluconolacton. Mischungen von verschiedene Peroxocarbonsäuren abspaltenden Verbindungen, insbesondere solchen, die unter Perhydrolysebedingungen gegebenenfalls substituierte Perbenzoesäure und/oder Peroxocarbonsäuren mit 1 bis 5 C-Atomen, insbesondere 2 bis 4 C-Atomen ergeben, mit solchen, die unter Perhydrolysebedingungen lineare oder verzweigtkettige Peroxocarbonsäuren mit 6 bis 18 C-Atomen, insbesondere 7 bis 12 C-Atomen ergeben, werden in einer bevorzugten Ausführungsform der Erfindung eingesetzt. Zusätzlich zur oder anstatt der Peroxocarbonsäure-liefern-

den Substanz kann auch direkt die entsprechende Peroxocarbonsäure eingesetzt werden.

Im erfindungsgemäß zu verwendenden aktivierenden System liegt das Gewichtsverhältnis von Peroxocarbonsäure-abspaltender Substanz zu Übergangsmetall vorzugsweise im Bereich von 100 000:1 bis 1000:1, insbesondere von 50 000:1 bis 2500:1.

Die erfindungsgemäße Verwendung besteht im wesentlichen darin, Bedingungen zu schaffen, unter denen die Persauerstoffverbindung und das aktivierende System gemäß der Erfindung miteinander reagieren können, mit dem Ziel, stärker oxidierend wirkende Folgeprodukte zu erhalten. Solche Bedingungen liegen insbesondere dann vor, wenn die Reaktionspartner in wäßriger Lösung aufeinandertreffen. Dies kann durch separate Zugabe der Persauerstoffverbindung und des aktivierenden Systems beziehungsweise beider Komponenten Bystems beziehungsweise beiden Systems beziehungsweise beiden Syst

renden Systems in separater Form zu einer gegebenenfalls wasch- oder reinigungsmittelhaltigen Lösung geschehen. Besonders vorteilhaft wird das erfindungsgemäße Verfahren jedoch unter Verwendung eines erfindungsgemäßen Wasch-, Reinigungs- oder Desinfektionsmittels, das das aktivierende System und gegebenenfalls ein peroxidisches Oxidationsmittel enthält, durchgeführt. Die Persauerstoffverbindung kann auch separat, in Substanz oder als vorzugsweise wäßrige Lösung oder Suspension, zur Wasch-, Reinigungs- beziehungsweise Desinfektionslösung zugegeben werden, wenn ein persauerstofffreies Mittel verwendet wird.

Je nach Verwendungszweck können die Bedingungen weit variiert werden. So kommen neben rein wäßrigen Lösungen auch Mischungen aus Wasser und geeigneten organischen Lösungsmitteln als Reaktionsmedium in Frage. Die Einsatzmengen an Persauerstoffverbindungen werden im allgemeinen so gewählt, daß in den Lösungen zwischen 10 ppm und 10% Aktivsauerstoff, vorzugsweise zwischen 50-und 5000 ppm-Aktivsauerstoffvorhanden sind. Auch die verwendete Menge an aktivierendem System hängt vom Anwendungszweck ab. Je nach gewünschtem Aktivierungsgrad wird soviel des erfindungsgemäß zu verwendenden Systems eingesetzt, daß 0,00001 Mol bis 0,025 Mol, vorzugsweise 0,0001 Mol bis 0,002 Mol Übergangsmetall pro Mol Persauerstoffverbindung zum Einsatz kommen, doch können in besonderen Fällen diese Grenzen auch über- oder unterschritten werden.

Ein erfindungsgemäßes Wasch-, Reinigungs- oder Desinfektionsmittel enthält vorzugsweise eine solche Menge an erfindungsgemäß zu verwendendem aktivierendem System, daß 0,0025 Gew.-% bis 0,25 Gew.-%, insbesondere 0,01 Gew.-% bis 0,1 Gew.-% der Übergangsmetallkomplexverbindung neben üblichen, mit dem aktivierenden System verträglichen Inhaltsstoffen enthalten ist. Das erfindungsgemäß zu verwendende aktivierende System oder dessen Komponenten kann beziehungsweise können in im Prinzip bekannter Weise an Trägerstoffen adsorbiert und/oder in Hüllsubstanzen eingebettet sein.

Die erfindungsgemäßen Wasch-, Reiniguags- und Desinfektionsmittel, die als insbesondere pulverförmige Feststoffe, in nachverdichteter Teilchenform, als homogene Lösungen oder Suspensionen vorliegen können, können außer dem erfindungsgemäß zu verwendenden System im Prinzip alle bekannten und in derartigen Mitteln üblichen Inhaltsstoffe enthalten. Die erfindungsgemäßen Wasch- und Reinigungsmittel können insbesondere Buildersubstanzen, oberflächenaktive Tenside, organische und/oder insbesondere anorganische Persauerstoffverbindungen, wassermischbare organische Lösungsmittel, Enzyme, Sequestrierungsmittel, Elektrolyte, pH-Regulatoren und weitere Hilfsstoffe, wie optische Aufheller, Vergrauungsinhibitoren, Farbübertragungsinhibitoren, Schaumregulatoren, zusätzliche Persauerstoff-Aktivatoren, Farb- und Duftstoffe enthalten.

Ein erfindungsgemäßes Desinfektionsmittel kann zur Verstärkung der Desinfektionswirkung gegenüber speziellen Keimen zusätzlich zu den bisher genannten Inhaltsstoffen übliche antimikrobielle Wirkstoffe enthalten. Derartige antimikrobielle Zusatzstoffe sind in den erfindungsgemäßen Desinfektionsmitteln vorzugsweise in Mengen bis zu 10 Gew.-%, insbesondere von 0,1 Gew.-% bis 5 Gew.-%, enthalten.

Zusätzlich zu den Übergangsmetall-Bleichkatalysatoren, die im genannten Potentialbereich mit den gemäß der Erfindung erforderlich hohen Stromdichten oxidierbar sind, können übliche als Bleichaktivatoren bekannte 35 Übergangsmetallkomplexe eingesetzt werden.

Die erfindungsgemäßen Mittel können ein oder mehrere Tenside enthalten, wobei insbesondere anionische Tenside, nichtionische Tenside und deren Gemische in Frage kommen. Geeignete nichtionische Tenside sind insbesondere Alkylglykoside und Ethoxylierungs- und/oder Propoxylierungsprodukte von Alkylglykosiden oder linearen oder verzweigten Alkoholen mit jeweils 12 bis 18 C-Atomen im Alkylteil und 3 bis 20, vorzugsweise 4 bis 10 Alkylethergruppen. Weiterhin sind entsprechende Ethoxylierungs- und/oder Propoxylierungsprodukte von N-Alkyl-aminen, vicinalen Diolen, Fettsäureestern und Fettsäureamiden, die hinsichtlich des Alkylteils den genannten langkettigen Alkoholderivaten entsprechen, sowie von Alkylphenolen mit 5 bis 12 C-Atomem im Alkylrest brauchbar.

Geeignete anionische Tenside sind insbesondere Seifen und solche, die Sulfat- oder Sulfonat-Gruppen mit bevorzugt Alkaliionen als Kationen enthalten. Verwendbare Seifen sind bevorzugt die Alkalisalze der gesättigten oder umgesättigten Fettsäuren mit 12 bis 18 C-Atomen. Derartige Fettsäuren können auch in nicht vollständig neutralisierter Form eingesetzt werden. Zu den brauchbaren Tensiden des Sulfat-Typs gehören die Salze der Schwefelsäurehalbester von Fettalkoholen mit 12 bis 18 C-Atomen und die Sulfatierungsprodukte der genannten nichtionischen Tenside mit niedrigem Ethoxylierungsgrad. Zu den verwendbaren Tensiden vom Sulfonatoryp gehören lineare Alkylbenzolsulfonate mit 9 bis 14 C-Atomen im Alkylteil, Alkansulfonate mit 12 bis 18 C-Atomen, sowie Olefinsulfonate mit 12 bis 18 C-Atomen, die bei der Umsetzung entsprechender Monoolefine mit Schwefeltrioxid entstehen, sowie alpha-Sulfofettsäureester, die bei der Sulfonierung von Fettsäuremethyloder-ethylestern entstehen.

Derartige Tenside sind in den erfindungsgemäßen Reinigungs- oder Waschmitteln in Mengenanteilen von vorzugsweise 5 Gew.-% bis 50 Gew.-%, insbesondere von 8 Gew.-% bis 30 Gew.-%, enthalten, während die erfindungsgemäßen Desinfektionsmittel wie auch erfindungsgemäße Mittel zur Reinigung von Geschirt vorzugsweise 0,1 Gew.-% bis 20 Gew.-%, insbesondere 0,2 Gew.-% bis 5 Gew.-% Tenside, enthalten.

Als geeignete Persauerstoffverbindungen kommen insbesondere organische Persäuren beziehungsweise persaure Salze organischer Säuren, wie Phthalimidopercapronsäure, Perbenzoesäure oder Salze der Diperdodecandisäure, Wasserstoffperoxid und unter den Waschbeziehungsweise Reinigungsbedingungen Wasserstoffperoxid abgebende anorganische Salze, wie Perborat, Percarbonat und/oder Persilikat, in Betracht. Sofern feste Persauerstoffverbindungen eingesetzt werden sollen, können diese in Form von Pulvern oder Granulaten verwendet werden, die auch in im Prinzip bekannter Weise umhüllt sein können. Die Persauerstoffverbindungen können als solche oder in Form diese enthaltender Mittel, die prinzipiell alle üblichen Wasch-, Reinigungs- oder Desinfektionsmittelbestandteile enthalten können, zu der Wasch- beziehungsweise Reinigungslauge zugegeben werden. Besonders bevorzugt wird Alkalipercarbonat, Alkaliperborat-Monohydrat oder Wasserstoffperoxid in Form wäßriger Lösungen, die 3 Gew.-% bis 10 Gew.-% Wasserstoffperoxid enthalten, eingesetzt. Falls ein

vorzugsweise bis zu 50 Gew.-%, insbesondere von 5 Gew.-% bis 30 Gew.-%, vorhanden, während in den erfindungsgemäßen Desinfektionsmitteln vorzugsweise von 0,5 Gew.-% bis 40 Gew.-%, insbesondere von 5 Gew.-% bis 40 Gew.-%, insbesondere von 5 Gew.-% bis 40 Gew.-%, insbesondere von 5 Gew.-% bis 40 Gew.-%, insbesondere von

5 Gew.-% bis 20 Gew.-%, an Persauerstoffverbindungen enthalten sind. Ein erfindungsgemäßes Mittel enthält vorzugsweise mindestens einen wasserlöslichen und/oder wasserunlöslichen, organischen und/oder anorganischen Builder. Zu den wasserlöslichen organischen Buildersubstanzen gehören Polycarbonsäuren, insbesondere Citronensäure und Zuckersäuren, monomere und polymere Aminopolycarbonsäuren, insbesondere Methylglycindiessigsäure, Nitrilotriessigsäure und Ethylendiamintetraessigsäure sowie Polyasparaginsäure, Polyphosphonsäuren, insbesondere Aminotris(methylenphosphonsäure), Ethylendiamintetrakis(methylenphosphonsäure) und 1-Hydroxyethan-1,1-diphosphonsäure, polymere Hydroxyverbindungen wie Dextrin sowie polymere (Poly-)carbonsäuren, insbesondere die durch Oxidation von Polysacchariden zugänglichen Polycarboxylate der internationalen Patentanmeldung WO 93/16110, polymere Acrylsäuren. Methacrylsäuren, Maleinsäuren und Mischpolymere aus diesen, die auch geringe Anteile polymerisierbarer Substanzen ohne Carbonsäurefunktionalität einpolymerisiert enthalten können. Die relative Molekülmasse der Homopolymeren ungesättigter Carbonsäuren liegt im allgemeinen zwischen 5000 und 200 000, die der Copolymeren zwischen 2000 und 200 000, vorzugsweise 50 000 bis 120 000, jeweils bezogen auf freie Säure. Ein besonders bevorzugtes Acrylsäure-Maleinsäure-Copolymer weist eine relative Molekülmasse von 50 000 bis 100 000 auf. Geeignete, wenn auch weniger bevorzugte Verbindungen dieser Klasse sind Copolymere der Acrylsäure oder Methacrylsäure mit Vinylethern, wie Vinylmethylethern, Vinylester, Ethylen, Propylen und Styrol, in denen der Anteil der Säure mindestens 50 Gew.-% beträgt. Als wasserlösliche organische Buildersubstanzen können auch Terpolymere eingesetzt werden, die als Monomere zwei ungesättigte Säuren und/oder deren Salze sowie als drittes Monomer Vinylalkohol und/oder ein Vinylalkohol-Derivat oder ein Kohlenhydrat enthalten. Das erste saure Monomer beziehungsweise dessen Salz leitet sich von einer monoethylenisch ungesättigten C₃-C₆-Carbonsäure und vorzugsweise von einer C₃-C₆-Monocarbonsäure, insbesondere von (Meth)-acrylsäure ab. Das zweite saure Monomer beziehungsweise dessen Salz kann ein Derivat einer C₁—C₈-Dicarbonsäure, vorzugsweise einer C₁—C₈-Dicarbonsäure sein, wobei Maleinsäure besonders bevorzugt ist. Die dritte monomere Einheit wird in diesem Fall von Vinylalkohol und/oder vorzugsweise einem veresterten Vinylalkohol gebildet. Insbesondere sind Vinylalkohol-Derivate bevorzugt, welche einen Ester aus kurzkettigen Carbonsäuren, beispielsweise von C1-C4-Carbonsäuren, mit Vinylalkohol darstellen. Bevorzugte Polymere enthalten dabei 60 Gew.-% bis 95 Gew.-%, insbesondere 70 Gew.-% bis 90 Gew.-% (Meth)acrylsäure bzw. (Meth)acrylat, besonders bevorzugt Acrylsäure bzw. Acrylat, und Maleinsäure bzw. Maleat sowie 5 Gew.-% bis 40 Gew.-%, vorzugsweise 10 Gew.-% bis 30 Gew.-% Vinylalkohol und/oder Vinylacetat. Ganz besonders bevorzugt sind dabei Polymere, in denen das Gewichtsverhältnis von (Meth)acrylsäure beziehungsweise (Meth)acrylat zu Maleinsäure beziehungsweise Maleat zwischen 1:1 und 4:1, vorzugsweise zwischen 2:1 und 3:1 und insbesondere 2:1 und 2,5:1 liegt. Dabei sind sowohl die Mengen als auch die Gewichtsverhältnisse auf die Säuren bezogen. Das zweite saure Monomer beziehungsweise dessen Salz kann auch ein Derivat einer Allylsulfonsäure sein, die in 2-Stellung mit einem Alkylrest, vorzugsweise mit einem C1-C4-Alkylrest, oder einem aromatischen Rest, der sich vorzugsweise von Benzol oder Benzol-Derivaten ableitet, substituiert ist. Bevorzugte Terpolymere enthalten dabei 40 Gew.-% bis 60 Gew.-%, insbesondere 45 bis 55 Gew.-% (Meth)acrylsäure beziehungsweise (Meth)acrylat, besonders bevorzugt Acrylsäure beziehungsweise Acrylat, 10 Gew.-% bis 30 Gew.-%, vorzugsweise 15 Gew.-% bis 25 Gew.-% Methallylsulfonsäure bzw. Methallylsulfonat und als drittes Monomer 15 Gew.-% bis 40 Gew.-%, vorzugsweise 20 Gew.-% bis 40 Gew.-% eines Kohlenhydrats. Dieses Kohlenhydrat kann dabei beispielsweise ein Mono-, Di-, Oligo- oder Polysaccharid sein, wobei Mono-, Di- oder Oligosaccharide bevorzugt sind. Besonders bevorzugt ist Saccharose. Durch den Einsatz des dritten Monomers werden vermutlich Sollbruchstellen in das Polymer eingebaut, die für die gute biologische Abbaubarkeit des Polymers verantwortlich sind. Diese Terpolymere lassen sich insbesondere nach Verfahren herstellen, die in der deutschen Patentschrift DE 42 21 381 und der deutschen Patentanmeldung DE 43 00 772 beschrieben sind, und weisen im allgemeinen eine relative Molekülmasse zwischen 1000 und 200 000, vorzugsweise zwischen 200 und 50 000 und insbesondere zwischen 3000 und 10 000 auf. Weitere bevorzugte Copolymere sind solche, die in den deutschen Patentanmeldungen DE 43 03 320 und DE 44 17 734 beschrieben werden und als Monomere vorzugsweise Acrolein und Acrylsäure/Acrylsäuresalze beziehungsweise Vinylacetat aufweisen. Die organischen Buildersubstanzen können, insbesondere zur Herstellung flüssiger Mittel, in Form wäßriger Lösungen, vorzugsweise in Form 30- bis 50-gewichtsprozentiger wäßriger Lösungen eingesetzt werden. Alle genannten Säuren werden in der Regel in Form ihrer wasserlöslichen Salze, insbesondere ihre Alkalisalze. eingesetzt.

Derartige organische Buildersubstanzen können gewünschtenfalls in Mengen bis zu 40 Gew.-%, insbesondere bis zu 25 Gew.-% und vorzugsweise von 1 Gew.-% bis 8 Gew.-% enthalten sein. Mengen nahe der genannten Obergrenze werden vorzugsweise in pastenförmigen oder flüssigen, insbesondere wasserhaltigen, erfindungsge-

mäßen Mitteln eingesetzt.

Als wasserlösliche anorganische Buildermaterialien kommen insbesondere Polyphosphate, vorzugsweise Natriumtriphosphat, in Betracht. Als wasserunlösliche, wasserdispergierbare anorganische Buildermaterialien werden insbesondere kristalline oder amorphe Alkalialumosilikate, in Mengen von bis zu 50 Gew.-%, vorzugsweise nicht über 40 Gew.-% und in flüssigen Mitteln insbesondere von 1 Gew.-% bis 5 Gew.-%, eingesetzt. Unter diesen sind die kristallinen Natriumalumosilikate in Waschmittelqualität, insbesondere Zeolith A. P und gegebenenfalls X, bevorzugt. Mengen nahe der genannten Obergrenze werden vorzugsweise in festen, teilchenförmigen Mitteln eingesetzt. Geeignete Alumosilikate weisen insbesondere keine Teilchen mit einer Korngröße über 30 µm auf und bestehen vorzugsweise zu wenigstens 80 Gew.-% aus Teilchen mit einer Größe unter 10 µm. Ihr Calciumbindevermögen, das nach den Angaben der deutschen Patentschrift DE 24 12 837 bestimmt werden

kann, liegt in der Regel im Bereich von 100 bis 200 mg CaO pro Gramm.

Geeignete Substitute beziehungsweise Teilsubstitute für das genannte Alumosilikat sind kristalline Alkalisilikate, die allein oder im Gemisch mit amorphen Silikaten vorliegen können. Die in den erfindungsgemäßen Mitteln als Gerüststoffe brauchbaren Alkalisilikate weisen vorzugsweise ein molares Verhältnis von Alkalioxid zu SiO2 unter 0,95, insbesondere von 1:1,1 bis 1:12 auf und können amorph oder kristallin vorliegen. Bevorzugte Alkalisilikate sind die Natriumsilikate, insbesondere die amorphen Natriumsilikate, mit einem molaren Verhāltnis Na2O: SiO2 von 1:2 bis 1:2,8. Solche mit einem molaren Verhāltnis Na2O: SiO2 von 1:1,9 bis 1:2,8 können nach dem Verfahren der europäischen Patentanmeldung EP 0425 427 hergestellt werden. Als kristalline Silikate, die allein oder im Gemisch mit amorphen Silikaten vorliegen können, werden vorzugsweise kristalline Schichtsilikate der allgemeinen Formel Na2SixO2x+1--y-H2O eingesetzt, in der x, das sogenannte Modul, eine_ Zahl von 1,9 bis 4 und y eine Zahl von 0 bis 20 ist und bevorzugte Werte für x 2, 3 oder 4 sind. Kristalline Schichtsilikate, die unter diese allgemeine Formel fallen, werden beispielsweise in der europäischen Patentanmeldung EP 0 164 514 beschrieben. Bevorzugte kristalline Schichtsilikate sind solche, bei denen x in der genannten allgemeinen Formel die Werte 2 oder 3 annimmt. Insbesondere sind sowohl β- als auch δ-Natriumdisilikate (Na₂Si₂O₅ · y H₂O) bevorzugt, wobei β-Natriumdisilikat beispielsweise nach dem Verfahren erhalten werden kann, das in der internationalen Patentanmeldung WO 91/08171 beschrieben ist. 8-Natriumsilikate mit einem Modul zwischen 1,9 und 3,2 können gemäß den japanischen Patentanmeldungen JP 04/238 809 oder JP 04/260 610 hergestellt werden. Auch aus amorphen Alkalisilikaten hergestellte, praktisch wasserfreie kristalline Alkalisilikate der obengenannten allgemeinen Formel, in der x eine Zahl von 1,9 bis 2,1 bedeutet, herstellbar wie in den europäischen Patentanmeldungen EP 0 548 599, EP 0 502 325 und EP 0 452428 beschrieben, können 20 in erfindungsgemäßen Mitteln eingesetzt werden. In einer weiteren bevorzugten Ausführungsform erfindungsgemäßer Mittel wird ein kristallines Natriumschichtsilikat mit einem Modul von 2 bis 3 eingesetzt, wie es nach dem Verfahren der europäischen Patentanmeldung EP 0436 835 aus Sand und Soda hergestellt werden kann. Kristalline Natriumsilikate mit einem Modul im Bereich von 1,9 bis 3,5, wie sie nach den Verfahren der europäischen Patentschriften EP 0 164 552 und/oder EP 0 293 753 erhältlich sind, werden in einer weiteren 25 bevorzugten Ausführungsform erfindungsgemäßer Mittel eingesetzt. Falls als zusätzliche Buildersubstanz auch Alkalialumosilikat, insbesondere Zeolith, vorhanden ist, beträgt das Gewichtsverhältnis Alumosilikat zu Silikat, jeweils bezogen auf wasserfreie Aktivsubstanzen, vorzugsweise 1:10 bis 10:1. In Mitteln, die sowohl amorphe als auch kristalline Alkalisilikate enthalten, beträgt das Gewichtsverhältnis von amorphem Alkalisilikat zu kristallinem Alkalisilikat vorzugsweise 1:2 bis 2:1 und insbesondere 1:1 bis 2:1.

Buildersubstanzen sind in den erfindungsgemäßen Wasch- oder Reinigungsmitteln vorzugsweise in Mengen bis zu 60 Gew.-%, insbesondere von 5 Gew.-% bis 40 Gew.-%, enthalten, während die erfindungsgemäßen Desinfektionsmittel vorzugsweise frei von den lediglich die Komponenten der Wasserhärte komplexierenden Buildersubstanzen sind und bevorzugt nicht über 20 Gew.-%, insbesondere von 0,1 Gew.-% bis 5 Gew.-%, an schwermetallkomplexierenden Stoffen, vorzugsweise aus der Gruppe umfassend Aminopolycarbonsäuren, Aminopolyphosphonsäuren und Hydroxypolyphosphonsäuren und deren wasserlösliche Salze sowie deren Geminopolycarbonsäuren Geminopolycarbonsäuren und deren wasserlösliche Salze sowie deren Geminopolycarbonsäuren und deren

sche, enthalten.

Als in den Mitteln verwendbare Enzyme kommen solche aus der Klasse der Proteasen, Lipasen, Cutinasen, Amylasen, Pullulanasen, Hemicellulase, Cellulasen, Oxidasen und Peroxidasen sowie deren Gemische in Frage. Besonders geeignet sind aus Pilzen oder Bakterien, wie Bacillus subtilis, Bacillus licheniformis, Streptomyces griseus, Humicola lanuginosa, Humicola insolens, Pseudomonas pseudoalcaligenes oder Pseudomonas cepacia gewonnene enzymatische Wirkstoffe. Die gegebenenfalls verwendeten Enzyme können, wie zum Beispiel in den internationalen Patentanmeldungen WO 92/11347 oder WO 94/23005 beschrieben, an Trägerstoffen adsorbiert und/oder in Hüllsubstanzen eingebettet sein, um sie gegen vorzeitige Inaktivierung zu schützen. Sie sind in den erfindungsgemäßen Wasch-, Reinigungs- und Desinfektionsmitteln vorzugsweise in Mengen bis zu 5 Gew.-%, insbesondere von 0,2 Gew.-% bis 2 Gew.-%, enthalten.

Zu den in den erfindungsgemäßen Mitteln, insbesondere wenn sie in flüssiger oder pastöser Form vorliegen, verwendbaren organischen Lösungsmitteln gehören Alkohole mit 1 bis 4 C-Atomen, insbesondere Methanol, Ethanol, Isopropanol und tert.-Butanol, Diole mit 2 bis 4 C-Atomen, insbesondere Ethylenglykol und Propylenglykol, sowie deren Gemische und die aus den genannten Verbindungsklassen ableitbaren Ether. Derartige wassermischbare Lösungsmittel sind in den erfindungsgemäßen Wasch-, Reinigungs- und Desinfektionsmitteln

vorzugsweise nicht über 30 Gew.-%, insbesondere von 6 Gew.-% bis 20 Gew.-%, vorhanden.

Zur Einstellung eines gewünschten, sich durch die Mischung der übrigen Komponenten nicht von selbst ergebenden pH-Werts können die erfindungsgemäßen Mittel System- und umweltverträgliche Säuren, insbesondere Citronensäure, Essigsäure, Weinsäure, Äpfelsäure, Milchsäure, Glykolsäure, Bernsteinsäure, Glutarsäure und/oder Adipinsäure, aber auch Minerakäuren, insbesondere Schwefelsäure, oder Basen, insbesondere Ammonium- oder Alkalihydroxide, enthalten. Derartige pH-Regulatoren sind in den erfindungsgemäßen Mitteln vorzugsweise nicht über 20 Gew.-%, insbesondere von 1,2 Gew.-% bis 17 Gew.-%, enthalten.

Die Herstellung der erfindungsgemäßen festen Mittel bietet keine Schwierigkeiten und kann in im Prinzip bekannter Weise, zum Beispiel durch Sprühtrocknen oder Granulation, erfolgen, wobei Persauerstoffverbindung und Bleichkatalysator gegebenenfalls später zugesetzt werden. Zur Herstellung erfindungsgemäßer Mittel mit erhöhtem Schüttgewicht, insbesondere im Bereich von 650 g/l bis 950 g/l, ist ein aus der europaischen Patentschrift EP 486 592 bekanntes, einen Extrusionsschritt aufweisendes Verfahren bevorzugt. Erfindungsgemäße Wasch-, Reinigungs- oder Desinfektionsmittel in Form wäßriger oder sonstige übliche Lösungsmittel enthaltender Lösungen werden besonders vorteilhaft durch einfaches Mischen der Inhaltsstoffe, die in Substanz oder als Lösung in einen automatischen Mischer gegeben werden können, hergestellt. In einer bevorzugten Ausführung von Mitteln für die insbesondere maschinelle Reinigung von Geschirr sind diese tablettenförmig und können in Anlehnung an die in den europäischen Patentschriften EP 0 579 659 und EP 0 591 282 offenbarten

5

25

30

50

55

65

Beispiele

Beispiel 1

In einer elektrochemischen Standardmeßzelle bei einer Temperatur von 25°C unter Einleiten eines Stickstoffstroms wurde die Oxidierbarkeit verschiedener Übergangsmetallkomplex-Verbindungen gemessen. Eingesetzt wurde eine Dreielektrodenanordnung bestehend aus einer Meßelektrode aus Gold, einer Gegenelektrode aus Gold und einer üblichen Referenzelektrode. Die Untersuchungslösung enthielt jeweils 1 mmol/l der zu untersuchenden Komplexverbindung 0,1 mol/l Natriumborat als Leitsalz. Das Potential der Meßelektrode wurde in einem Bereich von 0,6 V bis 1,4 V, bezogen auf die Standardwasserstoffelektrode, mit einer Geschwindigkeit von 20 mV/s variiert. Getestet wurde Nitritopentammincobalt(in)chlorid (B1) neben der aus der deutschen Patentanmeldung 196 05 688.8 bekannten Komplexverbindung [Min₂(tpa)₂(OAc)₂(OAc)₂(V1). Im Bereich von 0,8 V bis 1,4 V traten die in der nachfolgenden Tabelle 1 angegebenen maximalen Stromdichten auf.

Tabelle 1

Maximale Stromdichte

Komplex	maximale Stromdichte [mA/cm²]
B 1	> 10
V1	0,5

Beispiel 2

In einem Launderometer wurde unter Verwendung eines bleichaktivatorfreien Waschmittels W1, enthaltend 16 Gew.-% Natriumperborat-Monohydrat, ein mit Tee verunreinigtes Gewebe aus weißer Baumwolle bei 30°C 20 Minuten gewaschen. Nach Spülen und Trocknen wurde die Remission (Meßwellenlänge 460 nm) des augenscheinlich sauberen Testgewebes photometrisch bestimmt. Zusätzlich wurden in gleicher Dosierung ein Mittel W2, das 3 Gew.-% TAED und 97 Gew.-% W1 enthielt, ein Mittel W3, das W1 und 50 ppm (Gewichtsteile, bezogen auf Co) B1 enthielt, ein erfindungsgemäßes Mittel M1, das 3 Gew.-% TAED und 97 Gew.-% W3 enthielt, ein Mittel W4, das W1 und 50 ppm (Gewichtsteile, bezogen auf Mn) V1 enthielt, und ein Mittel W5, das 3 Gew.-% TAED und 97 Gew.-% W4 enthielt, unter den gleichen Bedingungen getestet. Die in der nachfolgenden Tabelle 2 angegebenen Remissionswerte zeigen, daß Komplexverbindungen, die im angegebenen Potentialbereich mit hoher Stromdichte oxidierbar sind, in Kombination mit Peoxocarbonsäure-liefernden Substanzen synergistische Bleicheffekte zeigen (M1 im Vergleich zu W2 und W3). Dieser Synergismus tritt bei anderen Komplexverbindungen nicht auf (W5 im Vergleich zu W2 und W4).

Tabelle 2

Remissionswerte [%]

·	T	1	
Mittel	Remission		
•	36,9		
W1	56,0		
W2	63,1		
W3	56,2		
₩4	56,0		
.W5	62,9		
M1	65,1		
		J	

Beispiel 3

Zur Herstellung standardisierter Teebeläge wurden Teetassen in eine 70°C warme Teelösung 25 mal eingetaucht. Anschließend wurde jeweils etwas der Teelösung in jede Teetasse gegeben und die Tasse im Trockenschrank getrocknet. In einer Geschirrspülmaschine Miele® G 5900 (Dosierungen von jeweils 20 g Mittel im 55°C-Programm, Wasserhärte 14°dH bis 16°dH) wurden jeweils 8 der mit Teebelägen versehenen Tassen gespült und die Belagsentfernung anschließend visuell auf einer Skala von 0 (= unverändert sehr starker Belag) bis 10 (= kein Belag) benotet. Eingesetzt wurden ein bleichaktivatorfreies niederalkalisches Geschirrspülmittel, das 12 Gew.-% Natriumpercarbonat enthielt (G1), ein Mittel G2, das 98 Gew.-% G1 und 2 Gew.-% TAED 35 enthielt, ein Mittel G3, das G1 und 50 ppm (Gewichtsteile, bezogen auf Co) des Cobaltkomplexes B1 enthielt, ein Mittel M2, das G2 und 50 ppm (Gewichtsteile, bezogen auf Co) des Cobaltkomplexes B1 enthielt, ein Mittel G4, das G1 und 50 ppm (Gewichtsteile, bezogen auf Mn) des Mangancomplex V1 enthielt, und ein Mittel G5, das G2 und 50 ppm (Gewichtsteile, bezogen auf Mn) des Mangancomplex V1 enthielt. Die in der nachfolgenden Tabelle 3 angegebene Note des erfindungsgemäßen Mittels (M2) liegt signifikant besser als der Wert für das einen 40 erfindungsgemäß nicht brauchbaren Übergangsmetallkomplex enthaltende Vergleichsprodukt G5.

Tabelle 3

Noten für die Teereinigung

Mittel	Note
G1	2
G2	3
G3	2
G4	3
G5	3
M2	7

- 1. Verwendung eines Systems aus unter Perhydrolysebedingungen Peroxocarbonsäure-liefernder Verbindung und Übergangsmetallkomplexverbindungen, die elektrochemisch im Potentialbereich von 0,8 V bis 1,4 V mit maximalen Stromdichten von mindestens 5 mA/cm² oxidierbar sind, als Aktivator für insbesondere anorganische Persauerstoffverbindungen in Oxidations-, Wasch-, Reinigungs- oder Desinfektionslösungen. 2. Verwendung eines Systems aus unter Perhydrolysebedingungen Peroxocarbonsäure-liefernder Verbindung und Übergangsmetallkomplexverbindungen, die elektrochemisch im Potentialbereich von 0,8 V bis 1,4 V mit maximalen Stromdichten von mindestens 5 mA/cm² oxidierbar sind, zum Bleichen von Farbanschmutzungen beim Waschen von Textilien, insbesondere in wäßriger, tensidhaltiger Flotte.
- -3. Verwendung eines Systems aus unter Perhydrolysebedingungen Peroxocarbonsäure-liefernder Verbindung und Übergangsmetallkomplexverbindungen, die elektrochemisch im Potentialbereich von 0,8 V bis 1,4 V mit maximalen Stromdichten von mindestens 5 mA/cm² oxidierbar sind, in Reinigungslösungen für harte Oberflächen, insbesondere für Geschirr, zum Bleichen von gefärbten Anschmutzungen.
- 4. Verwendung nach einem der Ansprüche bis 3, dadurch gekennzeichnet, daß die Übergangsmetallkomplexverbindung im Potentialbereich von 0,8 V bis 1,4 V mit maximalen Stromdichten von mindestens 10 mA/cm² und insbesondere im Bereich von 12 mA/cm² bis 25 mA/cm² oxidierbar ist.
- 5. Verwendung nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, daß die Übergangsmetallkomplexverbindung unter den Cobalt-, Eisen-, Kupfer-, Mangan- und Rutheniumkomplexen, insbesondere unter den Komplex-Verbindungen des dreiwertigen Cobalts, ausgewählt wird.
- 6. Verwendung nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, daß der Übergangsmetallkomplex anorganische Neutralliganden, insbesondere mindestens 1 Ammoniak-Liganden, enthält.
- 7. Verwendung nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, daß der Übergangsmetallkomplex ein- oder mehrwertige Anionliganden, insbesondere ausgewählt aus Nitrit, Nitrat, Actetat, Formiat, Citrat, Perchlorat, Halogenid wie Fluorid, Chlorid, Bromid und Iodid sowie komplexen Anionen wie Hexafluorophosphat, enthält.
 - 8. Verwendung nach einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, daß der Komplex kationisch ist und anionische Gegenionen, insbesondere ausgewählt aus Nitrat, Hydroxid, Hexafluorophosphat, Sulfat, Chlorat, Perchlorat, den Halogeniden wie Chlorid oder den Anionen von Carbonsäuren wie Formiat, Acetat, Benzoat oder Citrat, anwesend sind, die den kationischen Komplex neutralisieren.
- 9. Verwendung nach einem der Ansprüche 1 bis 8, dadurch gekennzeichnet, daß die unter Perhydrolysebedingungen Peroxocarbonsäure-liefernde Verbindung in der Lage ist, bei der Perhydrolyse eine Peroxocarbonsäure mit 1 bis 18, insbesondere 2 bis 12 C-Atomen abzuspalten.
- 10. Verwendung nach einem der Ansprüche 1 bis 9, dadurch gekennzeichnet, daß die unter Perhydrolysebedingungen abspaltende Verbindung aus den Verbindungen nach Formel (I).

$(R^1-CO-)_{h}X$ (I)

5

10

15

20

25

30

35

50

60

- in der R¹ für einen Aryl-, Alkenyl- oder Cycloalkylrest mit 1 bis 17 C-Atomen, n für eine Zahl von 1
 bis 4 und X für eine Sauerstoff- und/oder stickstoffhaltige Abgangsgruppe mit direkter Bindung zwischen
 Sauerstoff und/oder Stickstoff einerseits und der Acylgruppe R¹—CO andererseits steht, sowie deren
 Gemischen ausgewählt wird.
 - 11. Verwendung nach Anspruch 10, dadurch gekennzeichnet, daß in der Verbindung nach Formel (I) R¹ = Phenyl, C₁- bis C₁₁-Alkyl oder 9-Decenyl ist.
- 12. Verwendung nach einem der Ansprüche 1 bis 11, dadurch gekennzeichnet, daß im aktivierenden System das Gewichtsverhältnis von Peroxocarbonsäure-abspaltender Substanz zu Übergangsmetall im Bereich von 100 000: 1 bis 1000: 1, insbesondere von 50 000: 1 bis 2500: 1 liegt.
 - 13. Verwendung nach einem der Ansprüche 1 bis 12, dadurch gekennzeichnet, daß die zu aktivierende Persauerstoffverbindung aus der Gruppe umfassend organische Persäuren, Wasserstoffperoxid, Perborat und Percarbonat sowie deren Gemische ausgewählt wird.
 - 14. Wasch-, Reinigungs- oder Desinfektionsmittel, dadurch gekennzeichnet, daß es ein System aus unter Perhydrolysebedingungen Peroxocarbonsäure-liefernder Verbindung und Übergangsmetallkomplexverbindungen, die elektrochemisch im Potentialbereich von 0,8 V bis 1,4 V mit maximalen Stromdichten von mindestens 5 mA/cm² oxidierbar sind, enthält.
- 15. Mittel nach Anspruch 14, dadurch gekennzeichnet, daß es eine solche Menge des aktivierenden Systems enthält, daß 0,0025 Gew.-% bis 0,25 Gew.-%, insbesondere 0,01 Gew.-% bis 0,1 Gew.-% der Übergangsmetallkomplexverbindung enthalten ist.
 - 16. Mittel nach Anspruch 14 oder 15, dadurch gekennzeichnet, daß es 5 bis 50 Gew.-%, insbesondere 8 bis 30 Gew.-% anionisches und/oder nichtionisches Tensid, bis zu 60 Gew.-%, insbesondere 5 bis 40 Gew.-% Buildersubstanz, bis zu 2 Gew.-%, insbesondere 0,2 bis 0,7 Gew.-%, Enzym, bis zu 30 Gew.-%, insbesondere 6 bis 20 Gew.-%, organisches Lösungsmittel aus der Gruppe umfassend Alkohole mit 1 bis 4 C-Atomen, Diole mit 2 bis 4 C-Atomen sowie deren Gemische und die aus diesen Verbindungsklassen ableitbaren Ether und bis zu 20 Gew.-%, insbesondere 1,2-17 Gew.-% pH-Regulator enthält.
- 17. Mittel nach Anspruch 14 oder 15 zur insbesondere maschinellen Reinigung von Geschirr, dadurch gekennzeichnet, daß es 0,1 Gew.-% bis 20 Gew.-%, insbesondere 0,2 Gew.-% bis 5 Gew.-% Tensid enthält.

 18. Desinfektionsmittel nach Anspruch 14 oder 15, dadurch gekennzeichnet, daß es 0,1 Gew.-% bis 20 Gew.-%, insbesondere 0,2 Gew.-% Tensid und/oder antimikrobielle Zusatzstoffe in Mengen bis zu 10 Gew.-%, insbesondere von 0,1 Gew.-% bis 5 Gew.-%, enthält.

19. Mittel nach einem der Ansprüche 14 bis 18, dadurch gekennzeichnet, daß es zusätzlich zu den genannten Bestandteilen bis zu 50 Gew.-%, insbesondere von 5 Gew.-% bis 30 Gew.-% Persauerstoffverbindung, ausgewählt aus der Gruppe umfassend Wasserstoffperoxid, Perborat und Percarbonat sowie deren Gemische, enthält.

20. Verfahren zur Aktivierung von Persauerstoffverbindungen unter Einsatz eines Systems aus unter Perhydrolysebedingungen Peroxocarbonsäure-liefernder Verbindung und Übergangsmetallkomplexverbindungen, die elektrochemisch im Potentialbereich von 0,8 V bis 1,4 V mit maximalen Stromdichten von mindestens 5 mA/cm² oxidierbar sind.

-10

THIS PAGE BLANK (USPTO)

Doc. 1-1 on ss 7 from WPIL using MAX

©Derwent Information

Use of electrochemically oxidisable transition metal complexes - in systems for activating per:oxygen compounds, e.g., in oxidation, detergent and disinfectant solutions.

Patent Number: DE19613103

International patents classification: C11D-003/39 C11D-003/395 C11D-017/08 A01N-059/00 A61K-007/135 C09K-003/00 C11D-003/00 D06L-003/02

· Abstract:

DE19613103 A Use of a system, comprising: (a) a compound which, under perhydrolysis conditions, produces a peroxocarboxylic acid; and (b) transition metal complex compounds which are electrochemically oxidisable at a potential of 0.8-1.4 V with a maximum current density of at least 5 mA/cm2: (i) as an activator for peroxygen compounds (especially inorganic peroxygen compounds) in oxidation, detergent and disinfectant solutions; (ii) for bleaching of dye stains in washing of textiles, especially in aqueous, surfactant-containing liquors; or (iii) in cleaning solutions for hard surfaces (especially crockery) for bleaching of coloured stains, is new. Also claimed is a wash, cleaning and disinfecting composition comprising components (a) and (b) as above.

USE - Components (a) and (b) act as a bleach activator system for activation of peroxygen compounds. (Dwg.0/0)

Publication data:

Patent Family: DE19613103 A1 19971002 DW1997-45 C11D-003/395 11p * AP: 1996DE-1013103 19960401 WO9736987 A1 19971009 DW1997-46 C11D-003/39 Ger 32p AP: 1997WO-EP01481 19970324 DSNW: JP US DSRW: AT BE CH DE DK ES FI FR GB GR IE IT LU MC NL PT SE EP-968270 A1 20000105 DW2000-06 C11D-003/39 Ger FD: Based on WO9736987 AP: 1997EP-0908290 19970324; 1997WO-EP01481 19970324 DSR: AT BE DE ES FR IT NL JP2000507627 W 20000620 DW2000-36 C11D-017/08 26p FD: Based on WO9736987 AP: 1997JP-0534890 19970324; 1997WO-EP01481 19970324

Priority nº: 1996DE-1013103 19960401

Covered countries: 19 Publications count: 4

Cited patents: DE3002271; EP-458397; WO9527775; WO9606155; WO9623861; WO9700311; WO9700312

Accession codes :

Accession No : 1997-481903 [45] Sec. Acc. n° CPI : C1997-153260 • Derwent codes :

Manual code: CPI: D11-B01D E05-L E05-M E05-S E05-T E10-C02A E10-C04J1 E10-C04J2 E31-B E31-C E31-H05 E31-K07 E35

Derwent Classes: D25 E19

• Patentee & Inventor(s):

Patent assignee : (HENK) HENKEL KGAA Inventor(s): BLUM H; HILL K; MAYER B; NITSCH C; PEGELOW U; RIEBE H; SPECKMANN H; WILDE A

Update codes :

Basic update code:1997-45 Equiv. update code: 1997-46; 2000-06;

Systems Containing Transition Metal Complexes as Activators for Peroxygen Compounds

This invention relates to the use of bleach activator/bleach catalyst systems of compounds which form peroxocarboxylic acids under perhydrolysis conditions and certain complex compounds of transition metals for activating peroxygen compounds, more particularly for bleaching colored stains in the washing of textiles, and to detergents, cleaners and disinfectants containing such bleach activator/bleach catalyst systems.

Inorganic peroxygen compounds, more particularly hydrogen peroxide. and solid peroxygen compounds which dissolve in water with elimination of hydrogen peroxide, such as sodium perborate and sodium carbonate perhydrate, have long been used as oxidizing agents for disinfecting and bleaching purposes. In dilute solutions, the oxidizing effect of these substances depends to a large extent on the temperature. For example, with H₂O₂ or perborate in alkaline bleaching liquors, sufficiently rapid bleaching of soiled textiles is only achieved at temperatures above about 80°C. At lower temperatures, the oxidizing effect of the inorganic peroxygen compounds can be improved by addition of so-called bleach activators which form peroxocarboxylic acids under the described perhydrolysis conditions and for which numerous proposals, above all from the classes of N- or O-acyl compounds, for example polyacylated alkylenediamines, more particularly tetraacetyl ethylenediamine, acylated glycolurils, more particularly tetraacetyl glycoluril, N-acylated hydantoins, hydrazides, triazoles, hydrotriazines, urazoles, diketopiperazines, sulfuryl amides and cyanurates, also carboxylic anhydrides, more particularly phthalic anhydride, carboxylic acid esters, more particularly sodium nonanoyloxybenzenesulfonate, sodium isononanoyloxybenzenesulfonate, O-acylated sugar derivatives, such as pentaacetyl glucose, and N-acylated lactams, such as N-benzoyl caprolactam, can be found in the literature. By adding these substances, the bleaching effect of aqueous peroxide liquors can be increased to such an extent that substantially the same effects are obtained at temperatures of only 60°C as are obtained with the peroxide liquor alone at 95°C.

In the search for energy-saving washing and bleaching processes, operating temperatures well below 60°C and, more particularly, below 45°C down to the temperature of cold water have acquired increasing significance in recent years.

At these low temperatures, there is generally a discernible reduction in the effect of known activator compounds. Accordingly, there has been no shortage of attempts to develop more effective activators for this temperature range although the results achieved thus far have not been convincing. A starting point in this connection is the use of the transition metal salts and complexes proposed, for example, in European patent applications EP 392 592, EP 443 651, EP 458 397, EP 544 490 or EP 549 271 as so-called bleach catalysts. In their case, the high reactivity of the oxidizing intermediates formed from them and the peroxygen compound is presumably responsible for the risk of discoloration of colored fabrics and, in extreme cases, oxidative fabric damage. In European patent application EP 272 030, cobalt(III) complexes with ammonia ligands which may additionally contain other mono-, bi-, tri- and/or tetradentate ligands are described as activators for H₂O₂. European patent application EP 630 964 describes certain manganese complexes which do not have a pronounced effect in boosting the bleaching action of peroxygen compounds and which do not decolor dyed textile fibers although they are capable of bleaching soil or dye detached from fibers in wash liquors. German patent application DE 44 16 438 describes manganese, copper and cobalt complexes which can carry ligands from a number of groups of compounds and which are said to be used as bleaching and oxidation catalysts. A combination of conventional bleach activators which form peroxocarboxylic acids under perhydrolysis conditions with transition metal bleach catalysts has also been proposed, for example in International patent application WO 95/27775.

The problem addressed by the present invention was to improve the oxidizing and bleaching effect of inorganic peroxygen compounds at low temperatures below 80°C and, more particularly, in the range from about 15°C to 45°C.

It has now been found that the bleaching effect of the usual combinations of peroxygen-based bleaching agents with bleach activators which form peroxocarboxylic acids under perhydrolysis conditions can be increased to an unexpectedly considerable extent by the addition of transition metal complexes which, in the form of an aqueous solution, can be electrochemically oxidized in certain potential ranges with a very high current density.

The present invention relates to the use of a system of compounds which form peroxocarboxylic acids under perhydrolysis conditions and transition metal complex compounds which, in the form of a 1-millimolar aqueous solution, can be electrochemically oxidized in the potential range from 0.8 V to 1.4 V, based on the standard hydrogen electrode, with maximum current densities of at least 5 mA/cm² as activators for peroxygen compounds, more particularly inorganic peroxygen compounds, in oxidizing, washing, cleaning or disinfecting solutions.

The electrochemical measurements for determining the maximum current density in the indicated potential range may be carried out in known manner using a standard electrochemical measuring cell in conjunction with a three-electrode arrangement consisting of a measuring electrode, preferably of gold, a counterelectrode, preferably of gold also, and a standard reference electrode at a temperature of 25°C in a ca. 1 mmolar solution of the transition metal compound to be investigated in ca. 0.1 molar conducting salt

solution.

The system of compounds which form peroxocarboxylic acids under perhydrolysis conditions and the special transition metal complexes is preferably used for bleaching colored stains in the washing of textiles, particularly in a water-based surfactant-containing liquor. The expression "bleaching of colored stains" is meant to be interpreted in its broadest sense and encompasses both the bleaching of soil present on the textiles, the bleaching of soil detached from the textiles and present in the wash liquor and the oxidative destruction of textile dyes present in the wash liquor - which are detached from textiles under the washing conditions - before they can be absorbed by differently colored textiles.

In another preferred embodiment, the present invention relates to the use of the system of compounds which form peroxocarboxylic acids under perhydrolysis conditions and the special transition metal complexes in cleaning solutions for hard surfaces, more particularly for crockery, for bleaching colored stains. In this case, too, the term "bleaching" applies both to the bleaching of soil, particularly tea, present on the hard surface and to the bleaching of soil suspended in the dishwashing liquor after detachment from the hard surface.

The present invention also relates to detergents, cleaners and disinfectants containing the above-mentioned system and to a process for activating peroxygen compounds using this system.

In the process according to the invention and in the use according to the invention, the system of compounds which form peroxocarboxylic acids under perhydrolysis conditions and the special transition metal complexes may be used as an activator anywhere where a particular increase in the oxidizing effect of the peroxygen compounds at low temperatures is required, for example in the bleaching of fabrics or hair, in the oxidation of organic or inorganic intermediates and in disinfection.

The present invention also relates to a process for the selection of transition_metal_complex_compounds suitable for use in bleach-boosting systems containing compounds which form peroxocarboxylic acids under perhydrolysis conditions. This process is characterized in that a 1-millimolar aqueous solution of the transition metal complex compound is prepared and electrochemically investigated in the potential range from 0.8 V to 1.4 V and those transition metal complex compounds which can be oxidized with maximum current densities of at least 5 mA/cm² are selected.

The transition metal complexes suitable for the purposes of the invention which can be electrochemically oxidized in the form of a 1-millimolar aqueous solution in the potential range from 0.8 V to 1.4 V with maximum current densities of at least 5 mA/cm², preferably of at least 10 mA/cm² and more particularly in the range from 12 mA/cm² to 25 mA/cm² must have a corresponding minimum solubility in water and are preferably selected from the cobalt, iron, copper, manganese and ruthenium complexes, more particularly from the complex compounds of trivalent cobalt. Suitable ligands in the transition metal complexes usable in accordance with the invention are any of the usual inorganic and organic substances which do not adversely affect the oxidizability crucial to the invention. Besides carboxylates, organic ligands include above all compounds containing primary, secondary and/or tertiary amine and/or alcohol functions. The inorganic neutral ligands include in particular ammonia and water. The presence of at least one ammonia ligand is preferred, particularly in Co(III) complexes where the central atom is normally present with a coordination number of 6. Unless all the coordination sites of the transition metal central atom are occupied by neutral ligands, a complex to be used in the system according to the invention contains other, preferably anionic ligands, more particularly monodentate ligands. These include in particular the halides, preferably chloride, and the (NO₂) group.

In the present case, an (NO₂) group is a nitro ligand which is attached

to the transition metal by the nitrogen atom or a nitrito ligand which is attached-to-the-transition-metal-by-an-oxygen atom. The (NO₂) group may also be attached to a transition metal M to form a chelate

O

M N

O

It may also bridge two transition metal atoms asymmetrically :

O

N

O

M

M

M

or n¹-O:

N

0

О М М

Besides the neutral and ammonia ligands and nitro and nitrito ligands, the transition metal complexes to be used in the activator system according to the invention may contain other anionic ligands of generally simple structure, more particularly mono- or polyvalent anionic ligands. Examples of such other ligands are hydroxide, nitrate, acetate, formate, citrate, perchlorate and the halides, such as fluoride, chloride, bromide and iodide, and also complex anions, such as hexafluorophosphate. The anionic ligands are intended to provide for charge equalization between the transition metal central atom and the ligand system. Oxo ligands, peroxo ligands and imino ligands may also be present. These ligands may also have a bridging effect so that polynuclear complexes are formed. These complexes preferably

contain at least one ammonia ligand and preferably at least one (NO₂) group per-transition-metal-atom.—In-the-case_of_bridged_binuclear_complexes, the two metal atoms in the complex do not have to be the same. Binuclear complexes in which the two transition metal central atoms have different oxidation numbers may be used.

In the absence of anionic ligands or if the presence of anionic ligands does not lead to charge equalization in the complex, the transition metal complex compounds to be used in accordance with the invention contain anionic counterions which neutralize the cationic transition metal complex. These anionic counterions include in particular nitrate, hydroxide, hexafluorophosphate, sulfate, chlorate, perchlorate, halides, such as chloride, or the anions of carboxylic acids, such as formate, acetate, benzoate or citrate. Preferred transition metal complex compounds in the systems to be used in accordance with the invention include nitropentammine cobalt(III) chloride, nitritopentammine cobalt(III) chloride, tetrammine carbonato-cobalt(III) chloride, tetrammine carbonato-cobalt(III) hydrogen carbonate, tetrammine carbonato-cobalt(III) nitrate, hexammine cobalt(III) chloride and chloropentammine cobalt(III) chloride and also the peroxo complex [(NH₃)₅Co-O-O-Co(NH₃)₅]Cl₄.

The second component of the system to be used in accordance with the invention consists of a compound which forms a peroxocarboxylic acid. Such compounds include the conventional bleach activators cited at the beginning. These are preferably compounds which are capable of eliminating peroxocarboxylic acids containing 1 to 18 and more particularly 2 to 12 carbon atoms under perhydrolysis conditions. Compounds eliminating peroxocarboxylic acids are preferably selected from compounds corresponding to formula (I):

in-which-R¹ is-an-aryl, alkyl, alkenyl or cycloalkyl group containing 1 to 17 carbon atoms, n is a number of 1 to 4 and X is an oxygen- and/or nitrogen-containing leaving group with a direct bond between oxygen and/or nitrogen on the one hand and the acyl group R¹-CO on the other hand,

and mixtures thereof. Preferred compounds of formula (I) are those in which R1 = phenyl, C1-11 alkyl, 9-decenyl and mixtures thereof, the alkyl chains being linear or branched. Among the compounds of formula (I) with linear alkyl chains, those containing 1 to 9 carbon atoms are particularly preferred. The compounds of formula (I) to be used in combination with transition metal complexes in accordance with the invention may be prepared in known manner by O- or N-acylation with reactive R1-CO derivatives, for example acid chlorides, the corresponding unsubstituted compounds H_nX. Preferred nitrogen-containing leaving groups X are those in which, besides the acyl group R1-CO- to be eliminated, the nitrogen contains at least one other acyl group. Examples of such compounds (I) are the triacylation products of ammonia and the diacylation products of primary amino groups, such as those of ethylenediamine. Unless the at least one other acyl group mentioned is also an acyl group R1-CO, it preferably has a perhydrolysis activity graduated in such a way that the corresponding peroxocarboxylic acid is formed largely from the group R1-CO- alone under the in-use conditions. This can be achieved if, in the compound of formula (I), the nitrogen bearing the group R¹-CO- is also part of a cyclic amide or imide structure. Compounds of this type may be termed acylamides or acylimides, the "acyl" part of the name relating to the group R1-CO-. The amide part of these acylamides preferably consists of an optionally substituted caprolactam or valerolactam group while the imide part of the acylimides preferably consists of a succinimide, maleic imide or phthalimide group. These groups may optionally be substituted by C₁₋₄ alkyl, hydroxyl, COOH and/or SO₃H groups which may even be present in the form of their salts. Of the acylimides, N-nonanoyl and N-isononanoyl succinimide are particularly-preferred.

Examples of suitable compounds are polyacylated alkylenediamines, more particularly tetraacetyl ethylenediamine (TAED), acylated glycolurils, more particularly tetraacetyl glycoluril (TAGU), acylated triazine derivatives, more particularly 1,5-diacetyl-2,4-dioxohexahydro-1,3,5-triazine (DADHT), acylated polyhydric alcohols, more particularly triacetin, ethylene glycol diacetate and 2,5-diacetoxy-2,5-dihydrofuran, and acetylated sorbitol and mannitol, acylated phenol sulfonates, more particularly nonanoyl or isononanoyloxybenzenesulfonate, acylated sugar derivatives. particularly pentaacetyl glucose (PAG), pentaacetyl fructose, tetaacetyl xylose and octaacetyl lactose and acetylated, optionally N-alkylated glucamine and gluconolactone. Mixtures of different peroxocarboxylic acideliminating compounds, especially those which yield optionally substituted perbenzoic acid and/or peroxocarboxylic acids containing 1 to 5 carbon atoms and more particularly 2 to 4 carbon atoms under perhydrolysis conditions, with those which yield linear or branched-chain peroxocarboxylic acids containing 6 to 18 carbon atoms and more particularly 7 to 12 carbon atoms under perhydrolysis conditions are used in a preferred embodiment of the invention. The corresponding peroxocarboxylic acid may be used in addition to or instead of the peroxocarboxylic acid-yielding compound.

The ratio by weight of peroxocarboxylic acid-yielding compound to transition metal in the activating system to be used in accordance with the invention is preferably in the range from 100,000:1 to 1:1 and, more particularly, in the range from 50,000:1 to 25:1.

The use according to the invention essentially comprises creating conditions under which the peroxygen compound and the activating system according to the invention can react with one another with a view to obtaining products with a stronger oxidizing effect. Such conditions prevail in particular

when both reactants meet in an aqueous solution. This can be achieved by separately adding the peroxygen compound and the activating system or both components of the activating system to a solution optionally containing a detergent or cleaner. In one particularly advantageous embodiment, however, the process according to the invention is carried out using a detergent, cleaner or disinfectant according to the invention which contains the activating system and optionally a peroxidic oxidizing agent. The peroxygen compound may even be separately added to the washing, cleaning or disinfecting solution as such or preferably in the form of an aqueous solution or suspension in cases where a peroxygen-free formulation is used.

The conditions can be widely varied according to the application envisaged. Thus, besides purely aqueous solutions, mixtures of water and suitable organic solvents may serve as the reaction medium. The quantities of peroxygen compounds used are generally selected so that the solutions contain between 10 ppm and 10% of available oxygen and preferably between 50 and 5000 ppm of available oxygen. The quantity of activating system used is also determined by the particular application envisaged. Depending on the required degree of activation, the system to be used in accordance with the invention is used in such a quantity that 0.00001 mole to 0.025 mole and preferably 0.0001 mole to 0.002 mole of transition metal is used per mole of peroxygen compound, although quantities above and below these limits may be used in special cases.

A detergent, cleaner or disinfectant according to the invention preferably contains such a quantity of the activating system to be used in accordance with the invention that 0.0025% by weight to 0.25% by weight and, more preferably, 0.01% by weight to 0.1% by weight of the transition metal complex compound is present in addition to typical ingredients compatible with the activating system. The activating system to be used in

accordance with the invention or its components may be adsorbed onto supports-and/or-encapsulated in shell-forming substances by methods known in principle.

In addition to the system to be used in accordance with the invention, the detergents, cleaners and disinfectants according to the invention, which may be present in the form of - in particular - powder-form solids, in the form of post-compacted particles or in the form of homogeneous solutions or suspensions, may in principle contain any known ingredients typically encountered in such formulations. In particular, the detergents and cleaners according to the invention may contain builders, surfactants, organic and/or in particular inorganic peroxygen compounds, water-miscible organic solvents, enzymes, sequestering agents, electrolytes, pH regulators and other auxiliaries, such as optical brighteners, redeposition inhibitors, dye transfer inhibitors, foam regulators, additional peroxygen activators, dyes and perfumes.

In addition to the ingredients mentioned thus far, a disinfectant according to the invention may contain typical antimicrobial agents to enhance its disinfecting effect on special germs. Antimicrobial additives of the type in question are present in the disinfectants according to the invention in quantities of preferably up to 10% by weight and, more preferably, in quantities of 0.1% by weight to 5% by weight.

Conventional transition metal complexes known as bleach activators may be used in addition to the transition metal bleach catalysts which can be oxidized in the above-mentioned potential range with the high current densities required in accordance with the invention.

The formulations according to the invention may contain one or more surfactants, more particularly anionic surfactants, nonionic surfactants and mixtures thereof. Suitable nonionic surfactants are, in particular, alkyl glycosides and ethoxylation and/or propoxylation products of alkyl glycosides

or linear or branched alcohols containing 12 to 18 carbon atoms in the alkyl group and 3 to 20 and preferably 4-to 10 alkyl-ether-groups. Corresponding ethoxylation and/or propoxylation products of N-alkylamines, vicinal diols, fatty acid esters and fatty acid amides corresponding to the long-chain alcohol derivatives in regard to the alkyl moiety and of alkylphenols containing 5 to 12 carbon atoms in the alkyl group may also be used.

Suitable anionic surfactants are, in particular, soaps and those which contain sulfate or sulfonate groups preferably having alkali metal ions as cations. Preferred soaps are the alkali metal salts of saturated or unsaturated fatty acids containing 12 to 18 carbon atoms. Fatty acids such as these need not even be completely neutralized for use in accordance with the invention. Suitable surfactants of the sulfate type include salts of sulfuric acid semiesters of fatty alcohols containing 12 to 18 carbon atoms and sulfation products of the nonionic surfactants mentioned with a low degree of ethoxylation. Suitable surfactants of the sulfonate type include linear alkylbenzenesulfonates containing 9 to 14 carbon atoms in the alkyl moiety, alkanesulfonates containing 12 to 18 carbon atoms and olefin sulfonates containing 12 to 18 carbon atoms and olefin sulfonates containing 12 to 18 carbon atoms, which are formed in the reaction of corresponding monoolefins with sulfur trioxide, and also α -sulfofatty acid esters which are formed in the sulfonation of fatty acid methyl or ethyl esters.

Surfactants such as these are present in the cleaners or detergents according to the invention in quantities of, preferably, 5% by weight to 50% by weight and, more preferably, 8% by weight to 30% by weight while the disinfectants according to the invention and machine dishwashing detergents according to the invention preferably contain 0.1% by weight to 20% by weight and, more preferably, 0.2% by weight to 5% by weight of surfactants.

Particularly suitable peroxygen compounds are organic peracids or peracidic salts of organic acids, such as phthalimidopercaproic acid, perbenzoic acid or salts of diperdodecane diacid, hydrogen peroxide and inorganic salts which give off hydrogen peroxide under the washing/cleaning conditions, such as perborate, percarbonate and/or persilicate. If solid peroxygen compounds are to be used, they may be employed in the form of powders or granules which may even be coated in known manner. The peroxygen compounds may be added to the wash or cleaning liquor either as such or in the form of formulations containing them which, in principle, may comprise all the usual ingredients of detergents, cleaners or disinfectants. In one particularly preferred embodiment, alkali metal percarbonate, alkali metal perborate monohydrate or hydrogen peroxide is used in the form of an aqueous solution containing 3% by weight to 10% by weight of hydrogen peroxide. If a detergent or cleaner according to the invention contains peroxygen compounds, the peroxygen compounds are present in quantities of preferably up to 50% by weight and, more preferably, in quantities of 5% by weight to 30% by weight whereas the disinfectants according to the invention preferably contain from 0.5% by weight to 40% by weight and, more preferably, from 5% by weight to 20% by weight of peroxygen compounds.

A formulation according to the invention preferably contains at least one water-soluble and/or water-insoluble, organic and/or inorganic builder. Water-soluble organic builders include polycarboxylic acids, more particularly citric acid and sugar acids, monomeric and polymeric aminopolycarboxylic acids, more particularly methyl glycine diacetic acid, nitrilotriacetic acid and ethylenediamine tetraacetic acid, and polyaspartic aminotrisparticularly acid, polyphosphonic acids, more (methylenephosphonic acid), ethylenediamine tetrakis(methylenephosphonic acid) and 1-hydroxyethane-1,1-diphosphonic acid, polymeric hydroxy compounds, such as dextrin, and polymeric (poly)carboxylic acids, more particularly the polycarboxylates obtainable by oxidation of polysaccharides according to International patent application WO 93/16110, polymeric acrylic acids, methacrylic acids, maleic acids and copolymers thereof which may also contain small amounts of polymerizable substances with no carboxylic acid functionality in copolymerized form. The relative molecular weight of the homopolymers of unsaturated carboxylic acids is generally in the range from 5,000 to 200,000 while the relative molecular weight of the copolymers is between 2,000 and 200,000 and preferably between 50,000 and 120,000, based on free acid. A particularly preferred acrylic acid/maleic acid copolymer has a relative molecular weight of 50,000 to 100,000. Suitable, albeit less preferred, compounds of this class are copolymers of acrylic acid or methacrylic acid with vinyl ethers, such as vinyl methyl ethers, vinyl esters, ethylene, propylene and styrene, in which the acid makes up at least 50% by weight of the copolymer. Other suitable water-soluble organic builders are terpolymers which contain two unsaturated acids and/or salts thereof as monomers and vinyl alcohol and/or an esterified vinyl alcohol or a carbohydrate as the third monomer. The first acidic monomer or its salt is derived from a monoethylenically unsaturated C₃₋₈ carboxylic acid and preferably from a C₃₋₄ monocarboxylic acid, more particularly from (meth)acrylic acid. The second acidic monomer or its salt may be a derivative of a C₄₋₈ dicarboxylic acid, maleic acid being particularly preferred, and/or a derivative of an allylsulfonic acid substituted in the 2-position by an alkyl or aryl group. Polymers such as these may be produced in particular by the processes described in German patent DE 42 21 381 and in German patent application DE 43 00 772 and generally have a relative molecular weight in the range from 1,000 to 200,000. Other preferred copolymers are the copolymers which are described in German patent applications DE 43 03 320 and DE 44 17 734 and which preferably contain acrolein and acrylic acid/acrylic acid salts or vinyl acetate as monomers. The organic builders may be used in the form of aqueous solutions, preferably 30 to 50% by weight aqueous solutions, particularly for the production of liquid formulations. All the acids mentioned are generally used in the form of their water-soluble

salts, more particularly their alkali metal salts.

If desired, organic builders of the type-in-question may be present in quantities of up to 40% by weight, more particularly in quantities of up to 25% by weight and preferably in quantities of 1% by weight to 8% by weight. Quantities near the upper limit mentioned are preferably used in paste-form or liquid, more particularly water-containing, formulations according to the invention.

Particularly suitable water-soluble inorganic builders are polyphosphates, preferably sodium triphosphate. Particularly suitable water-insoluble, water-dispersible inorganic builders are crystalline or amorphous alkali metal alumosilicates used in quantities of up to 50% by weight and preferably in quantities of not more than 40% by weight and, in liquid formulations, particularly in quantities of 1% by weight to 5% by weight. Of these inorganic builders, detergent-range crystalline sodium alumosilicates, more particularly zeolite A, P and optionally X, are preferred. Quantities approaching the upper limit mentioned are preferably used in solid particulate formulations. Suitable alumosilicates contain in particular no particles larger than 30 μm in size, at least 80% by weight preferably consisting of particles below 10 μm in size. Their calcium binding capacity, which may be determined in accordance with German patent **DE 24 12 837**, is generally in the range from 100 to 200 mg CaO per gram.

Suitable substitutes or partial substitutes for the alumosilicate mentioned are crystalline alkali metal silicates which may be present either on their own or in the form of a mixture with amorphous silicates. The alkali metal silicates suitable for use as builders in the formulations according to the invention preferably have a molar ratio of alkali metal oxide to SiO₂ of less than 0.95:1 and, more particularly, from 1:1.1 to 1:12 and may be present in amorphous or crystalline form. Preferred alkali metal silicates are the sodium silicates, more particularly the amorphous sodium silicates, with a molar

Na₂O:SiO₂ ratio of 1:2 to 1:2.8. Those with a molar Na₂O:SiO₂ ratio of 1:1.9 to 1:2.8 may be produced by the process according to European patent application EP 0 425 427. Preferred crystalline silicates, which may be present either on their own or in the form of a mixture with amorphous silicates, are crystalline layer silicates with the general formula Na₂Si_xO_{2x+1}·yH₂O, where x - the so-called modulus - is a number of 1.9 to 4 and y is a number of 0 to 20, preferred values for x being 2, 3 or 4. Crystalline layer silicates which correspond to this general formula are described, for example, in European patent application EP 0 164 514. Preferred crystalline layer silicates are those in which x in the general formula mentioned assumes a value of 2 or 3. Both β - and δ -sodium disilicates (Na₂Si₂O₅·yH₂O) are particularly preferred, β-sodium disilicate being obtainable, for example, by the process described in International patent application WO 91/08171. δ-Sodium silicates with a modulus of 1.9 to 3.2 may be produced in accordance with Japanese patent applications JP 04/238 809 or JP 04/260 610. Substantially water-free crystalline alkali metal silicates corresponding to the above general formula, in which x is a number of 1.9 to 2.1, obtainable from amorphous alkali metal silicates as described in European patent applications EP 0 548 599, EP 0 502 325 and EP 0 452 428, may also be used in the formulations according to the invention. Another preferred embodiment of formulations according to the invention uses a crystalline sodium layer silicate with a modulus of 2 to 3 obtainable from sand and soda by the process according to European patent application EP 0 436 835. Crystalline sodium silicates with a modulus of 1.9 to 3.5 obtainable by the processes according to European patents EP 0 164 552 and/or EP 0 293 753 are used in another preferred embodiment of the formulations according to the invention. If alkali metal alumosilicate, particularly zeolite, is present as an additional builder, the ratio by weight of alumosilicate to silicate, expressed as water-free active substances, is preferably from 1:10 to 10:1. In formulations containing both amorphous and crystalline alkali metal silicates, the ratio by weight of amorphous alkali metal silicate to crystalline alkali-metal-silicate-is-preferably 1:2 to 2:1 and, more preferably, 1:1 to 2:1.

Builders are present in the detergents or cleaners according to the invention in quantities of, preferably, up to 60% by weight and, more preferably, from 5% by weight to 40% by weight while the disinfectants according to the invention are preferably free from the builders which only complex the components of water hardness and contain preferably no more than 20% by weight and, more preferably, from 0.1% by weight to 5% by weight of heavy metal complexing agents, preferably from the group consisting of aminopolycarboxylic acids, aminopolyphosphonic acids and hydroxypolyphosphonic acids and water-soluble salts and mixtures thereof.

Enzymes suitable for use in the detergents/cleaners/disinfectants are enzymes from the class of proteases, lipases, cutinases, amylases, pullulanases, hemicellulases, cellulases, oxidases and peroxidases and mixtures thereof. Particularly suitable enzymes are those obtained from fungi or bacteria, such as Bacillus subtilis, Bacillus licheniformis, Streptomyces griseus, Humicola lanuginosa, Humicola insolens, Pseudomonas pseudoalcaligenes or Pseudomonas cepacia. As described for example in International patent applications WO 92/11347 or WO 94/23005, the enzymes optionally used may be adsorbed onto supports and/or encapsulated in shell-forming substances to protect them against premature inactivation. They are added to the detergents, cleaners and disinfectants according to the invention in quantities of preferably up to 5% by weight and, more preferably, between 0.2% by weight and 2% by weight.

Organic solvents suitable for use in the formulations according to the invention, particularly where they are present in liquid or paste-like form, include alcohols containing 1 to 4 carbon atoms, more particularly methanol, ethanol, isopropanol and tert.butanol, diols containing 2 to 4 carbon atoms,

more particularly ethylene glycol and propylene glycol, and mixtures thereof and-the-ethers-derived-from-compounds-belonging-to-the-classes_mentioned_above. Water-miscible solvents such as these are present in the detergents, cleaners and disinfectants according to the invention in quantities of preferably not more than 30% by weight and, more preferably, in quantities of 6% by weight to 20% by weight.

To establish a desired pH value which is not automatically adjusted by the mixture of the other components, the formulations according to the invention may contain system-compatible and ecologically compatible acids, more particularly citric acid, acetic acid, tartaric acid, malic acid, lactic acid, glycolic acid, succinic acid, glutaric acid and/or adipic acid, and mineral acids, more particularly sulfuric acid, or bases, more particularly ammonium or alkali metal hydroxides. pH regulators such as these are present in the formulations according to the invention in quantities of preferably not more than 20% by weight and, more preferably, between 1.2% by weight and 17% by weight.

The production of the solid formulations according to the invention does not involve any difficulties and may be carried out by methods known in principle, for example by spray drying or granulation, the peroxygen compound and bleach catalyst optionally being added later. To produce formulations according to the invention with high bulk density, more particularly in the range from 650 g/l to 950 g/l, a process comprising an extrusion step known from European patent EP 486 592 is preferably applied. Detergents, cleaners or disinfectants according to the invention in the form of aqueous solutions or solutions containing other typical solvents are produced with particular advantage simply by mixing the ingredients which may be introduced into an automatic mixer either as such or in the form of a solution. In one preferred embodiment of machine dishwashing formulations, the formulations are produced in the form of tablets by the processes

disclosed in European patents EP 0 579 659 and EP 0 591 282.

Examples

Example 1

The oxidizability of various transition metal complex compounds was measured at 25°C in a standard electrochemical measuring cell through which a stream of nitrogen was passed. A three-electrode arrangement consisting of a gold measuring electrode, a gold counterelectrode and a standard reference electrode was used. The test solution contained 1 mmole/I of the complex compound to be investigated and 0.1 mole/I of sodium borate as conducting salt. The potential of the measuring electrode was varied at a rate of 20 mV/s over a range of 0.6 V to 1.4 V, based on the standard hydrogen electrode. Nitritopentammine cobalt(III) chloride (B1) was tested together with the complex compound [Mn₂(tpa)₂(OAc)₂(OAc)₂(C1) known from German patent application 196 05 688.8. In the 0.8 V - 1.4 V range, the maximum current densities shown in Table 1 below occurred.

Table 1: Maximum Current Density

Complex	Max. current density [mA/cm²]
B1	>10
C1	0.5

Example 2

A tea-stained cloth of white cotton was washed for 20 minutes at 30°C in a Launderometer using a bleach-activator-free detergent **D1** containing 16% by weight of sodium perborate monohydrate. After rinsing and drying, the reflectance (measurement wavelength 460 nm) of the apparently clean

containing 3% by weight of TAED and 97% by weight of D1, a detergent D3 containing D1 and 50 ppm (parts by weight, based on Co) of B1, a detergent according to the invention M1 containing 3% by weight of TAED and 97% by weight of D3, a detergent D4 containing D1 and 50 ppm (parts by weight, based on Mn) of V1 and a detergent D5 containing 3% by weight of TAED and 97% by weight of D4 were tested in the same dosage under the same conditions. The reflectance values set out in Table 2 below show that complex compounds which are oxidizable in the indicated potential range with high current densities produce synergistic bleaching effects in combination with peroxocarboxylic acid-yielding compounds (M1 compared with D2 and D3). This synergism does not occur with other complex compounds (D5 compared with D2 and D4).

Table 1: Reflectance Values [%]

Detergent	Reflectance	
•	36.9	
D1	56.0	
D2	63.1	
D3	56.2	
D4	56.0	
D5	62.9	
M1	65.1	

Example 3

To produce standardized tea films, teacups were immersed 25 times in a tea solution heated to 70°C. A little of the tea solution was then poured into each teacup after which the teacups were dried in a drying cabinet. 8 of the tea-stained teacups were then washed in a Miele® G 5900 dishwasher (20 g detergent, 55°C program, water hardness 14°dH to 16°dH) after which film removal was visually scored on a scale of 0 (= unchanged very pronounced film) to 10 (= no film). The detergents used were

- a bleach-activator-free low-alkali dishwashing detergent containing 12% by weight of sodium percarbonate (G1),
- a detergent **G2** containing 98% by weight of **G1** and 2% by weight of TAED, a detergent **G3** containing **G1** and 50 ppm (parts by weight, based on Co) of the cobalt complex **B1**,

a detergent M2 containing G2 and 50 ppm (parts by weight, based on Co) of the cobalt complex B1,

a detergent **G4** containing **G1** and 50 ppm (parts by weight, based on Mn) of the manganese complex compound **V1** and

a detergent **G5** containing **G2** and 50 ppm (parts by weight, based on Mn) of the manganese complex **V1**. The score set out in Table 3 below for the detergent according to the invention (**M2**) is significantly better than the score of the comparison product **G5** containing a transition metal complex unsuitable for use in accordance with the invention.

Table 3: Tea Cleaning Scores

Detergent	Score
G1	2
G2	3
G3	2
G4	3
G5	3
M2	7

CLAIMS

- The use of a system of compounds which form peroxocarboxylic acids-under perhydrolysis conditions and transition metal complex compounds which, in the form of a 1-millimolar aqueous solution, can be electrochemically oxidized in the potential range from 0.8 V to 1.4 V with maximum current densities of at least 5 mA/cm² as activators for peroxygen compounds, more particularly inorganic peroxygen compounds, in oxidizing, washing, cleaning or disinfecting solutions.
- 2. The use of a system of compounds which form peroxocarboxylic acids under perhydrolysis conditions and transition metal complex compounds which, in the form of a 1-millimolar aqueous solution, can be electrochemically oxidized in the potential range from 0.8 V to 1.4 V with maximum current densities of at least 5 mA/cm² for bleaching colored stains in the washing of textiles, particularly in aqueous surfactant-containing liquors.
- 3. The use of a system of compounds which form peroxocarboxylic acids under perhydrolysis conditions and transition metal complex compounds which, in the form of a 1-millimolar aqueous solution, can be electrochemically oxidized in the potential range from 0.8 V to 1.4 V with maximum current densities of at least 5 mA/cm² in cleaning solutions for hard surfaces, more particularly for crockery, for bleaching colored stains.
- 4. The use claimed in any of claims 1 to 3, characterized in that the transition metal complex compound is oxidizable in the potential range from 0.8 V to 1.4 V with maximum current densities of at least 10 mA/cm² and more particularly in the range from 12 mA/cm² to 25 mA/cm².
- 5. The use claimed in any of claims 1 to 4, characterized in that the transition metal complex compound is selected from the cobalt, iron, copper, manganese and ruthenium complexes, more particularly from the complex compounds of trivalent cobalt.
- 6. The use claimed in any of claims 1 to 5, characterized in that the

transition metal complex contains inorganic neutral ligands, more particularly at-least-one-ammonia-ligand.

- 7. The use claimed in any of claims 1 to 6, characterized in that the transition metal complex contains monovalent or polyvalent anionic ligands selected in particular from hydroxide, nitrite, nitrate, acetate, formate, citrate, perchlorate, halide, such as fluoride, chloride, bromide and iodide, and also complex anions, such as hexafluorophosphate.
- 8. The use claimed in any of claims 1 to 7, characterized in that the complex is cationic and anionic counterions selected in particular from nitrate, hydroxide, hexafluorophosphate, sulfate, chlorate, perchlorate, halides, such as chloride, or the anions of carboxylic acids, such as formate, acetate, benzoate or citrate, which neutralize the cationic complex, are present.
- 9. The use claimed in any of claims 1 to 8, characterized in that the compound yielding peroxocarboxylic acid under perhydrolysis conditions is capable of eliminating a peroxocarboxylic acid containing 1 to 18 and more particularly 2 to 12 carbon atoms under perhydrolysis conditions.
- 10. The use claimed in any of claims 1 to 9, characterized in that the compound yielding peroxocarboxylic acid under perhydrolysis conditions is selected from compounds corresponding to formula (I):

$$(R^1-CO-)_nX (I)$$

in which R¹ is an aryl, alkyl, alkenyl or cycloalkyl group containing 1 to 17 carbon atoms, n is a number of 1 to 4 and X is an oxygen- and/or nitrogen-containing leaving group with a direct bond between oxygen and/or nitrogen on the one hand and the acyl group R¹-CO on the other hand, and mixtures thereof.

11. The use claimed in claim 10, characterized in that, in the compound of formula (I), R^1 = phenyl, C_{1-11} alkyl or 9-decenyl.

- 12. The use claimed in any of claims 1 to 11, characterized in that the ratio by weight of peroxocarboxylic acid-yielding compound to transition metal in the activating system is preferably in the range from 100,000:1 to 1:1 and, more particularly, in the range from 50,000:1 to 25:1.
- 13. The use claimed in any of claims 1 to 12, characterized in that the peroxygen compound to be activated is selected from the group consisting of organic peracids, hydrogen peroxide, perborate and percarbonate and mixtures thereof.
- 14. A detergent, cleaner or disinfectant, characterized in that it contains a system of compounds which form peroxocarboxylic acids under perhydrolysis conditions and transition metal complex compounds which, in the form of a 1-millimolar aqueous solution, can be electrochemically oxidized in the potential range from 0.8 V to 1.4 V with maximum current densities of at least 5 mA/cm².
- 15. A formulation as claimed in claim 14, characterized in that it contains such a quantity of the activating system that 0.0025% by weight to 0.25% by weight and, more preferably, 0.01% by weight to 0.1% by weight of the transition metal complex compound is present.
- 16. A formulation as claimed in claim 14 or 15, characterized in that it contains 5 to 50% by weight and more particularly 8 to 30% by weight of anionic and/or nonionic surfactant, up to 60% by weight and more particularly 5 to 40% by weight of builder, up to 2% by weight and more particularly 0.2 to 0.7% by weight of enzyme, up to 30% by weight and more particularly 6 to 20% by weight of organic solvent from the group consisting of alcohols containing 1 to 4 carbon atoms, diols containing 2 to 4 carbon atoms and mixtures thereof and ethers derived from these compounds and up to 20% by weight and more particularly 1.2 to 17% by weight of pH regulator.
- 17. A formulation as claimed in claim 14 or 15, more particularly for machine dishwashing, characterized in that it contains 0.1% by weight to 20%

by weight and more particularly 0.2% by weight to 5% by weight of surfactant.

- 18. A disinfectant as claimed in claim 14 or 15, characterized in that it contains 0.1% by weight to 20% by weight and more particularly 0.2% by weight to 5% by weight of surfactant and/or antimicrobial additives in quantities of up to 10% by weight and more particularly from 0.1% by weight to 5% by weight.
- 19. A formulation as claimed in any of claims 14 to 18, characterized in that, in addition to the ingredients mentioned, it contains up to 50% by weight and more particularly 5% by weight to 30% by weight of peroxygen compound selected from the group consisting of hydrogen peroxide, perborate and percarbonate and mixtures thereof.
- 20. A process for activating peroxygen compounds using a system of compounds which form peroxocarboxylic acids under perhydrolysis conditions and transition metal complex compounds which, in the form of a 1-millimolar aqueous solution, can be electrochemically oxidized in the potential range from 0.8 V to 1.4 V with maximum current densities of at least 5 mA/cm².
- 21. A process for the selection of transition metal complex compounds suitable for use in bleach-boosting systems containing compounds which form peroxocarboxylic acids under perhydrolysis conditions, characterized in that a 1-millimolar aqueous solution of the transition metal complex compound is prepared and electrochemically investigated in the potential range from 0.8 V to 1.4 V and those transition metal complex compounds which can be oxidized with maximum current densities of at least 5 mA/cm² are selected.