

Electronics Presentation POBOTICS

- What do you need?
- What you will get
- Features and functionality
- Custom electronics & extending functionality
- Dispatching the kit

What do you need?

- What functions might you want your robot to perform?
 - In pairs discuss how you might:
 - find balls?
 - know what colour a ball is?
 - collect balls?
 - move around?
 - avoid the arena walls?
 - know where you are?
 - know where your opponents are?
 - deposit balls?

- What will you be given! ROBOTICS
- The student robotics kit consists of 4 custom made boards
 - Power Board
 - PWM (Servo) Board
 - Motor Board
 - Joint-IO Board
- And a few extras
 - Web camera
 - SLUG (the CPU)
 - Battery, cables, connectors etc.

The Power Board

- Supplies power to all of the boards
- Has data lines to all of the boards
- Radio module for remotely starting the games
- USB Hub

The Motor Board

- Control the speed and direction of up to two DC motors
- Optional motor feedback

Moving around

- DC Motors
 - Must be 12V DC motors
 - Motor board doesn't support Stepper motors
 - Motor board cannot drive AC motors

Motor Feedback

 Rotating slotted disc breaks a simple light gate

Count the interruptions to work out the speed

Knowing where you are ROBOTICS

- Why bother with motor feedback
- 'blind' speed control
- Wheel slipping
- The wall

The PWM Board

 Control the position of up to 5 servos (independently)

Moving things

Servos

- Easy to connect to the PWM Board
- Perfect for slow but high precision movements
- Simple to program

The Joint-IO Board

- Connect a maximum of 8 digital or analogue input devices
- Connect a maximum of 4 digital output devices

Analogue versus Digital ROBOTICS

Analogue

- An analogue signal is one which varies within a range of values.
- Infinite number of input values
- Example: output from a light sensor

Digital

- A digital signal has a limited number of possible input values.
- A single digital input (1 bit) has only 2 possible values (1/0)
- Example: output from a switch (on/off)

Digital Inputs

- Mechanical switches
 - Easy to connect to the Joint-IO Board
 - Bump sensors or position sensors
- Tilt switches
 - Detect changes in angles
- Reed (magnetic) switches
 - Detect nearby magnets

Analogue Input

- Rotary variable resistors
 - Easy to connect to the Joint-IO Board
 - Useful for measuring angular positions
- Photocells

- With little extra circuitry you could build a

colour sensor

Digital Outputs

- Motor switching
 - Using Bipolar/FET transistors
- Electromechanical devices
 - Relays
 - Solenoids
- Optical devices
 - LEDs
- Audible devices
 - buzzers?

Switching

+V

- What if two motors is not enough?
 - Use joint IO output to turn on a transistor
 - Transistor then switches on a larger current to the target device (motor)
 - You can use bipolar/FET type transistors
 - Cheap and Easy
 - Faster switching than relay
 - See website for info

Finding things

- Optical sensors
 - Easy to connect to the Joint-IO Board
 - Detect/follow lines

Where to buy?

- You will be given a budget to spend on mech and elec kits
 - You can spend it anywhere

- But we recommend the following:
 - Farnell [farnell.co.uk]
 - Maplin [maplin.co.uk]
 - RS [uk.rs-online.com]
- School departments

Vision

- A Web Camera
 - Can spot blobs of colours (e.g. balls and zones)
 - Could be used

- A Screen for your robot
 - View important information (real time)
 - Vision system output
 - Battery information
 - Error messages
 - Debugging code
 - Lots more...

Is that all?

- You are encouraged to build your own electronics too
- Don't be afraid to try out new ideas
- Use the website to find out more about the kit
- Ask your mentors
- Start early!

Restrictions & Guidelines OBOTICS

- Wiring rules
- Help and fact sheets will be available from the website
- All devices must be powered from the power board
- We cannot replace boards

Electronics Dispatch

When will the electronics be ready?

Any Questions?

Thank you for your attention