Recueil direct de distances sensorielles : le napping

François Husson - Agrocampus Ouest

Profil sensoriel

- Évaluations sensorielles descriptives (profils sensoriels)
 - 1 fiche de descripteurs (olfactifs, gustatifs, ...)
 - une note par descripteur
 - chaque juge évalue chaque produit
- Avantages
 - recueil le plus classique
 - description très précise de chaque produit
- Limites
 - temps
 - entraînement du jury
 - choix des descripteurs
 - pas d'informations sur l'importance des critères pour les juges

Les données

- 10 vins blancs du Val de Loire
- 2 cépages : 5 Chenins (Vouvray) et 5 Sauvignons (Touraine)
- Terroirs
- Différentes vinifications (un vin contient 7g de sucre résiduel)
- Élevage (passage en fût ou pas)

Napping

- Recueil direct de distances sensorielles
 - Principe: «évaluer les ressemblances (ou dissemblances) entre plusieurs produit selon vos propres critères (ceux importants pour vous). Vous n'avez pas à indiquer vos critères. Il n'y a ni bonnes ni mauvaises réponses. »
 - Mode opératoire
 - Nappes 40*60 cm
 - Tous les produits sont fournis simultanément
- Profil ultra-flash (Pagès 2003)
- Avantages
 - facile à mettre en œuvre
 - rapide
 - critères personnels
 - génération de vocabulaire
- Limite
 - nombre de produits par nappe

Données

Pour chaque nappe on récupère les coordonnées de chaque produit (en cm)

AFM non normée

• On fait une AFM non normée du tableau

• Représentation des produits : 2 produits proches si vus proches par l'ensemble des juges

6

Représentation des 10 vins

Individual factor map

Représentation des 10 vins (ellipses)

Confidence ellipses for the napping configuration

8

Représentation des coordonnées des juges

Buta

Représentation des juges

10

Représentation de la configuration d'un juge

- Il est intéressant de représenter la nappe d'un juge avec la configuration moyenne
- Rotation procrustéenne de la configuration du juge sur la configuration moyenne : translation, rotation et éventuellement dilatation pour minimiser les distances entre les points des deux configurations
- Distance entre configurations mesurée par le coefficient RV :

$$RV(X,Y) = \frac{\langle W_X, W_Y \rangle}{\left\|W_X\right\| \left\|W_y\right\|} = \frac{tr(XX'YY')}{\sqrt{tr(XX')^2 tr(YY')^2}}$$

 Un test de significativité du coefficient RV fondé sur des tests de permutation est disponible (fonction coeffRV)

Représentation de la configuration d'un juge

12

Utilisation de données « complémentaires »

• Les fréquences de mots_{mots}

x_{ik} fréquence avec laquelle le mot k est associé au vin i

• Les données sensorielles

 x_{ik} moyenne des notes du jury pour le descripteur k et le produit i

13

Utilisation de données « complémentaires »

nappes

Utilisation de données « complémentaires »

Utilisées comme variables supplémentaires dans l'AFM

Modèle Indscal

• Le modèle s'écrit pour le juge j: $S_j = \sum_{i=1}^R q_r^j z_r z_r' + \varepsilon_j$

Avec S_j la matrice de produits scalaires du juge j, q_r^j le poids du juge j pour la dimension r, z_r les coordonnées des produits sur la dimension r, ε_j le vecteur des erreurs

 q_r^j et z_r sont obtenus par algorithme itératif en minimisant

$$Strain = \frac{1}{J} \sum_{j=1}^{J} \| \varepsilon_j \|^2$$

Rappel: la formule de Torgerson relie produits scalaires et distance:

$$\langle i, l \rangle_j = -\frac{1}{2} (d_j^2(i, l) - d_j^2(i, .) - d_j^2(., l) + d_j^2(., .))$$

Modèle Indscal

Principe: trouver une configuration commune (appelée configuration des stimuli) à tous les juges et des poids spécifiques (weights) à chaque juge pour chaque dimension (l'idée étant que chaque juge n'accorde pas la même importance à chaque dimension: un juge différencie les produits par rapport au sucre et à l'amertume tandis qu'un autre les différencie par rapport au sucre et à l'acidité)

17

19

;ndsca

Modèle Indscal

Modèle Indscal

- Possibilité d'ajouter des variables supplémentaires
- Difficulté si les dimensions Indscal sont non-indépendantes :
 - On construit un graphe avec les 2 dimensions indscal
 - Les coordonnées de la variable k à projeter correspondent au coefficient de corrélation avec chacune des dimensions
 - La qualité de représentation est mesurée par les coefficient de détermination
 R2 de la régression de la variable k en fonction des 2 dimensions
 - Ceci est fait par la fonction prefpls

20

Napping catégorisé

Correlation between Dim 1 and Dim 2 : -0.3295

Étude des mots par une Analyse Factorielle des Correspondances (AFC)

- Étudier les liaisons entre 2 variables qualitatives
- Association entre modalités

Représentation des produits

Représentation des produits et des mots ²²