Amilise Complexa LFIS/ MIETIS Segundo testo 2015/2016 1) A série proposta é  $\sum_{n=0}^{\infty} a_n z^n$  com an =  $e^{in}$ . Trata-se de uma série de potências centrada em z= o pelo que o seu disco de convergência é D(0, R

1 = lin n/an/, pelo ceitério da Raíz.

Re notes lim n  $|a_n|^2 = \lim_{n \to +\infty} n \left| \frac{|a_n|}{|a_n|} = \lim_{n \to +\infty} n \left| \frac{1}{|a_n|} = \lim_{n \to +\infty} n \left$ Para 1/2 (1 (=> 121)1), usando noramente a 3 Sabernos que  $e^{\omega} = \frac{\omega}{2} \frac{\omega}{\omega}$  para  $\omega \in \Omega$ .  $n=0 \quad n!$  para  $\omega \in \Omega$ .  $\log \sigma_{1}$   $\sigma_{2}$   $\sigma_{3}$   $\sigma_{4}$   $\sigma_{5}$   $\sigma_{5}$ 



Resz=0 
$$d(z) = \frac{y(0)}{y(0)} = 1$$
 $y'(0)$ 

Logo,  $T = 2\pi i \left(\frac{i+1}{2}\right) + \pi i = -\pi i \left(\frac{i+1}{2}\right) + \pi i = \pi$ 

by  $\int_{0}^{+\infty} \frac{\cos x}{\sin x} \, dx = 1$ 
 $\int_{0}^{+\infty} \frac{\cos x}{\sin x} \, dx$ 

where  $\int_{0}^{+\infty} \frac{\cos x}{\sin x} \, dx$ 

Alom disso,  $\int_{0}^{+\infty} \frac{\cos x}{\sin x} \, dx$ 
 $\int_{0}^{+\infty} \frac{\cos$ 

interior de curva  $\chi = \frac{1}{2} \left| \frac{12}{2} \right| = 2 \right|$ . Assim, or residuo logazitmi os de  $\frac{1}{2} \left| \frac{1}{2} \right| = 2 - \left( \frac{1}{1+1+1} \right) = -1$