Change to Document's Title

Change to Document's Author

Abstract

Place text abstract here or comment it out.

Contents

1 Macros				
	1.1	Brackets	2	
	1.2	Nabla	2	
	1.3	Differential operators	2	
	1.4	Functions	4	
	1.5	Physical constants	5	
	1.6	Vectors	5	
		1.6.1 Vectors omega	6	
	1.7	Hat	7	
	1.8	Tilde	7	
	1.9	Random	7	
		1.9.1 Inside text	7	
2	Oth	er useful information	8	
	2.1	Example functions	8	
	2.2	Citing	8	
	2.3	Figures	8	
	2.4	Greek alphabet	9	
\mathbf{R}_{0}	efere	nces	9	

1 Macros

Here's a list of macros defined in macros.tex:

1.1 Brackets

$$\langle pa\{x\} = (x)$$

$$\langle cro\{x\} = [x]$$

$$\langle bra\{x\} = \{x\}$$

$$\langle abs\{x\} = |x|$$

$$(1a)$$

$$(1b)$$

$$(1c)$$

$$(1d)$$

1.2 Nabla

1.3 Differential operators

$$\langle \operatorname{delx}\{y\} = \frac{\partial y}{\partial x}$$

$$\langle \operatorname{dely}\{x\} = \frac{\partial x}{\partial y}$$

$$\langle \operatorname{delz}\{y\} = \frac{\partial y}{\partial z}$$

$$\langle \operatorname{delr}\{x\} = \frac{\partial x}{\partial r}$$

$$\langle \operatorname{delt}\{y\} = \frac{\partial y}{\partial t}$$

$$\langle \operatorname{delt}\{y\} = \frac{\partial y}{\partial t}$$

$$\langle \operatorname{deli}\{x\}\{y\} = \frac{\partial x}{\partial y}$$

$$\langle \operatorname{deli}\{x\} = \frac{\partial x}{\partial t}$$

$$\langle delxs\{y\} = \frac{\partial^2 y}{\partial x^2}$$
 (4a)

$$\langle \text{delys}\{\mathbf{x}\} = \frac{\partial^2 x}{\partial y^2} \tag{4b}$$

$$\langle delzs\{y\} = \frac{\partial^2 y}{\partial z^2}$$
 (4c)

$$\left\langle delts\{x\} \right\rangle = \frac{\partial^2 x}{\partial t^2}$$
 (4d)

$$\left| delis\{x\}\{y\} \right| = \frac{\partial^2 x}{\partial y^2}$$
 (4e)

$$\langle dx\{y\} = \frac{dy}{dx} \tag{5a}$$

$$\langle dy\{x\} = \frac{dx}{dy} \tag{5b}$$

$$\langle dz\{y\} = \frac{dy}{dz} \tag{5c}$$

$$\langle \operatorname{di}\{\mathbf{x}\}\{\mathbf{y}\} = \frac{\mathrm{d}x}{\mathrm{d}y} \tag{5d}$$

$$\langle dxs\{y\} = \frac{d^2y}{dx^2} \tag{6a}$$

$$\langle dys\{x\} = \frac{d^2x}{dy^2} \tag{6b}$$

$$\langle dzs\{y\} = \frac{d^2y}{dz^2}$$
 (6c)

$$\langle \operatorname{dis}\{x\}\{y\} = \frac{\mathrm{d}^2 x}{\mathrm{d}y^2} \tag{6d}$$

$$\det\{y\} = \frac{\mathrm{d}y}{\mathrm{d}t}$$
 (7a)

$$\operatorname{dtsreal}\{x\} = \frac{\mathrm{d}^2 x}{\mathrm{d}t^2}$$
 (7b)

$$\langle dt\{y\} = \dot{y} \tag{7c}$$

$$\langle dts\{x\} = \ddot{x} \tag{7d}$$

1.4 Functions

$\operatorname{\operatorname{Verf}}\{x\} = \operatorname{\operatorname{erf}}\{x\}$	(8a)
$\langle \exp\{\mathbf{x}\} = \exp\{x\}$	(8b)
$\langle \exp\{x\} = e^{(x)}$	(8c)
$\langle e\{x\} = e^x$	(8d)
$\ln\{x\} = \ln x$	(8e)
$\log\{x\} = \log x$	(8f)
$\ln\{x\} = \ln(x)$	(8g)
$\langle \log p\{x\} \rangle = \log(x)$	(8h)
$\cos x = \cos x$	(8i)
$\langle \cos p\{x\} = \cos(x)$	(8j)
$\langle \cos ine\{x\} = \cos x$	(8k)
$\langle \sin \{x\} = \sin (x)$	(81)
$\sum \{x\} = \sin x$	(8m)
$\langle \sin(x) = \sin x \rangle$	(8n)
$\operatorname{sinec}\{x\} = \operatorname{sinc}(x)$	(8o)
$\sline \operatorname{sinc}^2(x) = \operatorname{sinc}^2(x)$	(8p)
$\langle \cos quared\{x\} = \cos^2 x$	(8q)
$\langle \sin quared\{x\} = \sin^2 x$	(8r)
$\langle \cos inesquared\{x\} = \cos^2 x$	(8s)
$\langle \sin x = \sin^2 x \rangle$	(8t)
$\left(\cos\{x\} \right) = a\cos\left(x\right)$	(8u)
$\langle a\sin\{x\} = a\sin(x)$	(8v)
$\operatorname{tan}\{x\} = \operatorname{atan}(x)$	(8w)
$\operatorname{sech}\{x\} = \operatorname{sech}(x)$	(8x)
$\tanh\{x\} = \tanh x$	(8y)
$\operatorname{sechsquared}\{x\} = \operatorname{sech}^2(x)$	(8z)

1.5 Physical constants

$$\begin{array}{lll} \langle \mathrm{epsz} = \epsilon_0 & (9\mathrm{a}) \\ \langle \mathrm{epsr} = \epsilon_r & (9\mathrm{b}) \\ \langle \mathrm{muz} = \mu_0 & (9\mathrm{c}) \\ \langle \mathrm{om} = \omega & (9\mathrm{d}) \\ \langle \mathrm{omi}\{2\} = \omega_2 & (9\mathrm{e}) \\ \langle \mathrm{omegaz} = \omega_0 & (9\mathrm{f}) \\ \langle \mathrm{omegasquared} = \omega^2 & (9\mathrm{g}) \\ \langle \mathrm{omegazsquared} = \omega^2 & (9\mathrm{h}) \\ \langle \mathrm{omegazsquared} = \omega^2_0 & (9\mathrm{h}) \\ \langle \mathrm{chiun} = \chi^{(1)} & (9\mathrm{j}) \\ \langle \mathrm{chideux} = \chi^{(2)} & (9\mathrm{k}) \\ \langle \mathrm{chitrois} = \chi^{(3)} & (9\mathrm{l}) \\ \end{array}$$

1.6 Vectors

$\$ $va = \mathbf{a}$	(11a)
$\backslash \mathrm{vb} = \mathbf{b}$	(11b)
$\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $	(11c)
$\backslash \mathrm{vd} = \mathbf{d}$	(11d)
$\text{vee} = \mathbf{e}$	(11e)
$ackslash ext{vf} = extbf{f}$	(11f)
$ackslash \mathrm{vg} = \mathbf{g}$	(11g)
$ackslash \mathrm{vh} = \mathbf{h}$	(11h)
$ackslash ext{vi} = \mathbf{i}$	(11i)
$ackslash ext{vj} = \mathbf{j}$	(11j)
$ackslash \mathrm{vk} = \mathbf{k}$	(11k)
ackslash vl = 1	(111)
$\bigvee vm = \mathbf{m}$	(11m)
$ackslash \mathrm{vp} = \mathbf{p}$	(11n)
$\bigvee vq = \mathbf{q}$	(11o)
$ackslash vr = \mathbf{r}$	(11p)
$\bigvee vqd = \dot{\mathbf{q}}$	(11q)
$\vert \mathbf{v} \mathbf{v} = \mathbf{v}$	(11r)
$ackslash ext{vt} = \mathbf{t}$	(11s)
$\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $	(11t)
$ackslash ext{vz} = \mathbf{z}$	(11u)

1.6.1 Vectors omega

1.7 Hat

1.8 Tilde

$$\label{eq:tilde} \begin{split} \text{\tilde}\{\mathbf{x}\} &= \tilde{x} & (14\mathbf{a}) \\ \text{\text{tE} = \tilde{E}} & (14\mathbf{b}) \\ \text{\text{tP} = \tilde{P}} & (14\mathbf{c}) \\ \text{\text{tvE} = $\tilde{\mathbf{E}}$} & (14\mathbf{d}) \\ \text{\text{tvP} = $\tilde{\mathbf{P}}$} & (14\mathbf{e}) \\ \text{\text{tA} = $\tilde{\mathbf{A}}$} & (14\mathbf{f}) \\ \text{\text{tVA} = $\tilde{\mathbf{A}}$} & (14\mathbf{g}) \end{split}$$

1.9 Random

$$\langle \min = \mu m \qquad (15)$$

$$\langle \dim \{3\} = \times 10^3 \qquad (16)$$

$$\langle \min = \mu \qquad (17)$$

$$\langle \text{VDelta} = \Delta \qquad (18)$$

1.9.1 Inside text

\schrödinger: Schrödinger

Figure 1: This is a caption

2 Other useful information

See also the *The Not So Short Introduction to LaTEX* $2\varepsilon[1]$ available online at http://tobi.oetiker.ch/lshort/lshort.pdf or http://www.ctan.org/tex-archive/info/lshort/english/lshort.pdf.

2.1 Example functions

$$F(x) = \int_0^\infty \frac{\sqrt{a+x}}{(b+x)^5} dx$$
 (19)

2.2 Citing

When a label is attached to an equation, it can be cited. By adding "\label{eqn:example}" in the function's *align* environment, it becomes possible to cite equation (19) with "\eqref{eqn:example}".

To refence a book, article or other, use BibTeX. Then cite the document using its BibTeXkey with "\cite{BibTeX key}". For example, "\cite{Taflove2005}" will give the clickable link [2] which points to the references section.

2.3 Figures

Figures should be in PDF or PNG format if compiling using **pdflatex** or EPS if compiling with **latex** (resulting in a DVI file).

Since PDF is a vectorial format, figures in PDF will give higher quality results (if the figure is in vectorial format that is). Figure 1 shows an example.

2.4 Greek alphabet

Code	Result	Code	Result	Code	Result	Code	Result
\alpha	α	\mu	μ	\chi	χ	\Sigma	Σ
\beta	β	\nu	ν	\psi	ψ	\varSigma	Σ
\gamma	γ	\xi	ξ	\omega	ω	\Upsilon	Υ
\delta	δ	\pi	π	\Gamma	Γ	\varUpsilon	γ
\epsilon	ϵ	\varpi	$\overline{\omega}$	\varDelta	Δ	\Phi	Φ
\varepsilon	ε	\rho	ρ	\Theta	Θ	∖varPhi	Φ
\zeta	ζ	\varrho	ρ	\varTheta	Θ	\Psi	Ψ
\eta	η	\sigma	σ	\Lambda	Λ	\varPsi	Ψ
\theta	θ	\varsigma	ς	\varLambda	Λ	\Omega	Ω
\vartheta	ϑ	\tau	τ	\Xi	[I]	\varOmega	Ω
\iota	ι	\upsilon	v	∖varXi	Ξ		
\kappa	κ	\phi	ϕ	\Pi	П		
\lambda	λ	\varphi	φ	\varPi	П		

References

- [1] T. Oetiket, H. Partl, Hyna, and E. Schlegl. The not-so-short introduction to LATEX. http://www.ctan.org/tex-archive/info/lshort/english/lshort.pdf.
- [2] Allen Taflove and Susan Hagness. Computational Electrodynamics: The Finite-Difference Time-Domain Method, Third Edition. Artech House, 3 edition, 2005.