STAT 5701 Homework 1 - Fall 2015

This homework is due on Wednesday, September 30 at 11:59pm. Submit your solutions in a pdf document on Moodle. Include your R code (which must be commented and properly indented) in the pdf file. Please name the pdf file <your last name>-HW1.pdf. Please also submit one text file with your R code, which must be commented and properly indented.

1. In this question, you will create a rejection sampling algorithm to generate a realization of a random variable with density f defined by

$$f(x) = \begin{cases} \frac{3}{4}(1 - x^2) & \text{if } x \in (-1, 1) \\ 0 & \text{otherwise} \end{cases}.$$

- (a) Create this rejection sampling algorithm using Unif(-1,1) as the trial/proposal distribution. Simplify and state the steps of this algorithm.
- (b) Write an R function called rquad that generates a realization of n independent copies of the random variable X with density f. This function must use the algorithm created in part 1a. This function has one argument \mathbf{n} , which is the sample size. This function returns a list with two elements:
 - x.list, a vector of n entries, where the *i*th entry is the realization of the *i*th independent copy of X.
 - k.list, a vector of n entries, where the *i*th entry is the number of iterations of the rejection sampling algorithm required to produce the realization of the *i*th independent copy of X.
- (c) Test rquad by generating a realization of X_1, \ldots, X_{1000} iid with density f. Create a a histogram of these measurements. How many iterations, on average, were required to produce each realization?
- 2. (a) Write an R function called myrtnorm that generates a realization of the sequence of independent random variables T_1, \ldots, T_n , where each T_i has the truncated Normal distribution: $T_i \sim (X|a < X < b)$ where $X \sim N(\mu, \sigma^2)$ and a, b are non-random. A rejection sampling algorithm should be used in combination with the Box-Muller method. Only the standard uniform random generator runif is allowed.

This function should have five arguments:

- n, the random sample size
- mu, the value of μ
- sigma, the value of σ
- a, the value of a (the left endpoint of the interval or -Inf)
- b, the value of b (the right endpoint of the interval or Inf).

This function should return a vector of \mathbf{n} entries with the generated realization of T_1, \ldots, T_n .

(b) Derive an expression for the expected number of iterations of the rejection sampling algorithm required to generate a realization of T_1 in terms of μ , σ , a and b.

- (c) Fix n = 500 and pick values of μ , σ , a and b so that the expected number of iterations of the rejection sampling algorithm required to generate a realization of T_1 is less than 10. Using these values, use myrtnorm to generate a realization of T_1, \ldots, T_{500} and produce a histogram.
- 3. (a) Write an R function called myrexp that generates a realization of n independent random variables X_1, \ldots, X_n , where X_i has the exponential distribution with mean $\mu > 0$ for $i = 1, \ldots, n$. In other words, generate a realization of a random sample of size n from $\text{Exp}(\mu)$. Only calls to R's standard uniform generator runif are permitted, e.g. calling rexp is not allowed.

This function should have two arguments:

- n, the random sample size
- mu, the user-specified mean of the exponential distribution

This function should return a vector of \mathbf{n} entries with the generated realization of X_1, \ldots, X_n .

- (b) Test myrexp by generating a realization of random sample of size 1000 from the Exponential distribution with some mean μ that you pick. Create a QQ-plot to compare the data percentiles (of the realization of the random sample) to the percentiles of $\text{Exp}(\mu)$. Calling the function qexp is not allowed here.
- (c) Let Y_1, \ldots, Y_n be independent copies of $Y \sim \operatorname{Exp}(\mu)$ and define $\bar{Y} = n^{-1} \sum_{i=1}^n Y_i$. Write an R function called run.exp.sim that generates a realization of reps independent copies of \bar{Y} with sample size n.

This function should have three arguments:

- n the sample size
- mu the mean of the exponential distribution
- reps the number of realizations of \bar{Y}

The function should return a vector of reps realizations of \bar{Y} and display a Normal QQ-plot of entries in this vector.

- (d) A civil engineer measured the times between vehicle arrivals at a rural bridge on a Sunday afternoon. For a simple model, she assumes that her measured inter-arrival times (in minutes) x_1, \ldots, x_{30} are a realization of a random sample from the exponential distribution with unknown mean μ . She computes the observed sample mean $\bar{x} = (1/30) \sum_{i=1}^{30} x_i$ to estimate μ . Is this sample size of 30 large enough for \bar{x} to be a realization of random variable with a distribution well approximated by the Normal distribution? To respond, pretend that $\mu = 3.4$ minutes and perform a simulation study using the function run.exp.sim. Comment on the result.
- 4. (a) Write an R function called mymvrnorm that generates a realization of the sequence of independent random vectors Y_1, \ldots, Y_n , where $Y_i \sim N_p(\mu, \Sigma)$ for $i = 1, \ldots, n$. Only calls to R's standard uniform generator runif are permitted.

This function should have three arguments:

- n, the random sample size
- mu, the mean vector with p entries

• Sigma, this is the covariance matrix $\Sigma \in \mathbb{S}_0^p$.

This function should return a matrix with n rows and p columns, where the ith row has the realization of Y_i . The eigen function should be called in your definition of mymvrnorm.

- (b) Suppose that we plan to measure the heights of n individuals.
 - i. Suppose that the yet-to-be measured heights X_1, \ldots, X_n are a random sample from $N(\mu, \sigma^2)$. Compute the mean and variance of $\bar{X} = n^{-1} \sum_{i=1}^n X_i$ (the standard estimator of μ). Express these in terms of μ, σ and n.
 - ii. Suppose that the yet-to-be measured heights will be of individuals in the same family. Let $(H_1, \ldots, H_n)'$ be these yet-to-be measured heights and suppose they have n-variate normal distribution with mean vector $(\mu, \ldots, \mu)' \in \mathbb{R}^n$ and covariance matrix $\Sigma \in \mathbb{S}_0^n$ with (i, j)th entry

$$\Sigma_{ij} = \sigma^2 \cdot 0.7^{|i-j|}$$

for $(i,j) \in \{1,\ldots,n\} \times \{1,\ldots,n\}$. Compute the mean and variance of $\bar{H} = n^{-1} \sum_{i=1}^{n} H_i$ (the standard estimator of μ). Express these in terms of μ, σ and n.

- iii. Is \bar{H} better or worse than \bar{X} as an estimator of μ . Explain.
- (c) Design and perform a simulation study that compares the formulas for the mean and variance of \bar{X} and \bar{H} derived in part 4b to their corresponding simulated estimates. You should use mymvrnorm. Set $n=10, \mu=68$, and $\sigma=3$.