

Vietnam National University Integrated Circuit Design Research and Education Center

PROJECT 1-1: APB-UART IP CORE (RESEARCH)

Teacher: Nguyễn Hùng Quân

(Specification and Coding Engineer)

Email: quan.nguyenhung@icdrec.edu.vn

Other email: nguyenhungquan.dientu@gmail.com

Do not copy and only use for this course

CONTENTS

- UART Functions
- UART IP core
 - Feature
 - Block diagram
 - Block details
- RTL code
- Block-level simulation
- Basic system-level simulation

Step-by-step

Vietnam National University Integrated Circuit Design Research and Education Center

PROJECT 1: APB-UART IP CORE

UART FUNCTIONS

CONTENTS

- Basic functions
 - Data format
 - Transfer modes
 - Bit rate and baud rate
 - Basic structure
- Other functions
 - APB interface
 - Interrupt signals
 - DMA interface
 - Auto flow control

Vietnam National University Integrated Circuit Design Research and Education Center

PROJECT 1: APB-UART IP CORE

BASIC FUNCTIONS

Data format

- UART Universal Asynchronous Receiver Transmitter
- Communicate with peripheral devices.

Transfer modes

- Single transfer
- Back-to-back transfer

Baud rate (bps)

- Fixed Formula: Desired band rate = $\frac{fosc}{64,32,16,8,4}$
- Variable Formula: Desired band rate = $\frac{fosc}{64,16,8,4\times(BRG+1)}$
- Variable baud rate is based on Timer/Counter

SM0	SM1	Mode	Description	Baud Rate
0	0	0	Shift registe	er f _{osc} /12
0	1	1	8-bit UART	Variable
1	0	2	9-bit UART	f _{osc} /32 or /64
1	1	3	9-bit UART	Variable
			177	
	Mode			Baud Rate
	Μ	lode0		f _{osc} /12
	Mode1,3			Time1 overflow rate or Timer2 overflow rate
	M	ode2		$SMOD0 = 0 f_{OSC}/64$
				$SMOD0 = 1 f_{OSC}/32$

Baud rate error (%)

- Desired band rate = $\frac{fosc}{64,16,8,4(BRG+1)}$
- $BRG_cal = \frac{fosc}{64,16,8,4 \times Desired\ Baud\ rate}$ —

fosc = 14Mhz

Baud rate = 2400bps

BRG_used?

Used baud rate?

Baud rate error?

- Choices the nearest integer value: BRG_used
- Used baud rate = $\frac{fosc}{64,16,8,4(BRG_used+1)}$

BRG_used = 364 Used baud rate = 2397 Baud rate error = 0.125%

■ Baud rate error =
$$\frac{|Used\ baud\ rate - Desired\ baud\ rate|}{Desired\ baud\ rate}$$

Bit rate and baud rate

- Bit rate or Data rate: The speed of the data is expressed in bits per second (bits/s or bps).
- $Bit\ rate = \frac{1}{T\ bit}$
- Example: T_bit = 20ns => Bit rate = 50 Mbps

Bit rate and baud rate (cont)

- Baud rate: is measured in symbols per second or baud (Bd)
 - -1 symbol = 1 or multiple bits
- $Baud\ rate = \frac{Bit\ rate}{N}$
 - n: the number of bits per symbol
- UART: Baud rate is the same as bit rate (Why??)
- Note: the used unit

UART structure example

Transmitter

UART structure example (cont)

Receiver

CONTENTS

- Basic functions
 - Data format
 - Transfer modes
 - Bit rate and baud rate
 - Basic structure
- Other functions
 - APB interface
 - Interrupt signals
 - DMA interface
 - Auto flow control
 - Auto baud detection

Vietnam National University Integrated Circuit Design Research and Education Center

PROJECT 1: APB-UART IP CORE

OTHER FUNCTIONS

UART IP core example

- APB Interface
- Interrupt signals
- DMA interface
- Auto Flow Control

APB interface

APB interface (cont)

Interrupt signals

- To signal the special status to CPU core
- Interrupt types:
 - Separate interrupts
 - Combined interrupt
- Example:
 - Transmit interrupt
 - Receive interrupt
 - Receive error (overrun/parity/framing/break condition)
 - Character timeout (CTI)

Interrupt connection

DMA interface (System connection)

Direct memory access (DMA)

DMA interface (signals)

DMA interface (Timing diagram)

DMA interface (Master)

- The number of requested data: 200 byte
- The configuration of DMA:
 - Burst size: 4
 - Transfer size: 32 bit (4 byte)
- The number of burst transfers: 200/16 = 12 bursts (192 byte)
- The number of single transfers: 200 192 = 8 byte (2 singles)

DMA interface (Slave)

- Transmitter requests
 - The transmitter FIFO is not full.
 - The transmitter FIFO is at or below the programmed threshold.
 - The transmitter FIFO is empty.
- Receiver
 - The transmitter FIFO is not empty.
 - The transmitter FIFO is at or above the programmed threshold.
 - The transmitter FIFO is full.

Auto flow control (signals)

 Supporting Auto RTS (Request To Send) and Auto CTS (Clear To Send)

Using with FIFOs

Auto flow control (Auto RTS)

 The rts_n output is forced inactive (high) when the receiver FIFO level reaches the threshold.

- rts_n is connected to the cts_n input of another UART device, the other UART stops sending serial data until the receiver FIFO has available space (until it is completely empty)
- The receiver FIFO becomes completely empty by reading, rts_n again becomes active (low), signalling the other UART to continue sending data.

Auto flow control (Auto RTS)

Auto flow control (Auto CTS)

- Transmitter is disabled whenever the cts_n input becomes inactive (high).
- If the cts_n input is not inactivated before the middle of the last stop bit, another character is transmitted before the transmitter is disabled

Questions and Discussion