GaN Based Light Emitting Diodes

Dipankar Saha

Department of Electrical Engineering, IIT Bombay, Powai, Mumbai – 400076, India Email: dipankarsaha@iitb.ac.in

Importance of Heterostructure

- Heterostructure increases richness of the available materials
 - Tuning of energy band-gap (Insulator and semiconductor)
 - Change in potential profile
 - Independent control of dopant, carriers and mobility

Heterostructure:

- Two Different materials grown on top of each other
- They <u>accommodate the differences</u> and appear largely as a single crystal without much defect

Friendliness – Lattice Matching

- <u>Lattice mismatch</u> not desired same atomic separation and crystal structure
- Substrate decides the heterostructure lattice constant
- Multiple layers of dissimilar (alloyed) materials of same family – 3 layers (for simple p-i-n LED to > 100 layers for surface-emitting lasers)

Band-gap Tuning

- Key diagram for heterostructures
- Key diagram for designing new devices

Band-Edge Alignment

Density and Electric Field Modulation

A typical GaN-LED <u>structure</u>

A typical GaN Transistor structure

Heterostructure – LED Advantages

Carrier confinement

Photon confinement

Quantum efficiency – Less re-

absorption

when photon is releases it has lower

bandgap of gan is less than ga al n

 Wavelength tuning – material and quantum-confinement

Electrons

Multi-colour LED

Heterostructure - Applications

- Light emitting/detecting Devices
 - Wavelength IR, Visible and UV
 - Devices LEDs, Lasers and Single photon sources;
 photo-diodes, solar-cells
 - Applications Everywhere
 - Strategic Applications require special mention
- Computational Devices
 - Transistors HEMTs, MESFETs, HFETs, BJTs
 - Speed few Hz to 300 GHz
 - Applications Switching and analog applications
 - Strategic applications for MMIC

Why Gallium Nitride (GaN)?

- Energy band-gap 0.7 eV (InN) to 6.1 eV (AIN)
- Covers IR to UV range Visible range for lighting
- AlGaN surface states act as donors high electron density

GaN – Superior Material Properties

Attrtibute	Si	GaAs	SiC	GaN
Energy Gap (eV)	1.11	1.43	3.2	3.4
Breakdown Field (V/cm)	6×10 ⁵	6.5×10 ⁵	3.5×10 ⁶	3.5×10 ⁶
Saturation Velocity (cm/s)	1.0×10 ⁷	6×10 ⁶	1.9×10 ⁷	2.5×10 ⁷
Electron Mobility (cm²/V.s)	1350	6000	800	1600
Thermal Conductivity (W/cmK)	1.5	0.46	3.5	1.7
Maximum Operating Temperature (°C)	300	300	600	700

GaN LED - Typical Structure

Credit: University of Cambridge

p-contact p-GaN (Mg doping) Multi-Quantum Well n-GaN (Si doping) Buffer layer (Ensures Good Quality Material) (0001) Sapphire of SiC

Heart of the device

- p-i-n heterostructure Grown by MOCVD or MBE
- Three primary steps for fabrication
 - → Mesa Etching by ICP-RIE
 - → n-ohmic Ti/Al/Ni/Au annealed in RTP

n-contact

→ p-ohmic – Ni/Au annealed in RTP

GaN LED - Design

- Wavelength Choice of material for active region (GaN, AlGaN, InGaN) – Simulation
- Heterostructure lattice mismatch, Barrier regions, blocking layers, quantum confinement, n- and pregions
- Nano-structure Quantum well, wire or dot; dot in a well
- Device topology Edge emitting, surface emitting (top or bottom)
- Device layout Mesa size, n- and p-ohmic contact layout
- Packaging

GaN LED – Mesa Formation

- Expose n-region for contact
- Device isolation
- Low current spreading resistance desired
- Ar/Cl₂/BCl₃ etching in ICP-RIE tool

GaN LED — n-Ohmic

- Ti/Al/Ni/Au 30/100/30/300 nm by e-beam evaporation
- Annealing by rapid thermal process in N₂ environment at ~800 °C
- TiN formation, N-vacancy in GaN, tunneling current⁴

GaN LED - p-Ohmic

- Ni/Au 30/30 nm by e-beam evaporation
- Annealing in O₂ environment at 500 °C by RTP
- NiOx formation and tunneling current
- Still a challenge for GaN and high x in Al(In)_xGa_{1-x}N

GaN LED Characterizations

- Heterostructure characterizations Photo-luminescence (wavelength), Time resolved PL
- Device electrical characterizations I-V, C-V
- Device optical characterizations Electro-luminescence, LI
- Device performance Wall-plug efficiency (P_{out}/P_{in}), injection efficiency, internal quantum efficiency, external quantum efficiency

Heterostructure - Characterizations

- Hall Measurements Doping characterizations
- XRD Stoichiometry and crystal quality
- SIMS Si and Mg concentration for n- and pregions
- TEM Defects at the interface and crystal quality
- XPS Band-edge alignment
- EDX Approximate stoichiometry
- SEM Physical inspection
- CV and DLTS Electrical defects

Current Technological Challenges

- Substrate Sapphire, SiC, GaN, Si
- Packaging Increase external quantum efficiency
- Efficiency droop Due to Auger recombination
- Larger In and Al composition in the heterostructure
 - Green (gap) emission is difficult, UV and IR still a challenge
- Large area uniformity 30 cm or higher
- p-doping
- Current spreading layer particularly for p-contact
- Device heating change in colour

Interesting Research Problems

Equal carrier distribution in the multi-quantum well structure

Thank You

