Math 321 Lecture 30

Yuchong Pan

March 22, 2019

1 Proof of the Inverse Function Theorem (Cont'd)

Proof (Cont'd). Let

$$\mathbf{f}: E \to \mathbb{R}^n, \qquad E \overset{\text{open}}{\subseteq} \mathbb{R}^n, \qquad \mathbf{a} \in E, \qquad \mathbf{A} = \mathbf{f}'(\mathbf{a}) \text{ invertible}, \qquad \underbrace{\mathbf{f} \in C^1(E)}_{\begin{subarray}{c} \Leftrightarrow x \mapsto \mathbf{f}'(x) \text{ is continuous on } E: \\ \text{given any } \lambda > 0, \text{ there exists } \delta > 0 \\ \text{such that } \|\mathbf{f}'(\mathbf{x}) - \mathbf{A}\| < \lambda \text{ for } \|\mathbf{x} - \mathbf{a}\| < \delta \\ \end{subarray}}$$

1. Last time, we found $U = B(\mathbf{a}, \epsilon)$ and $V = \mathbf{f}(U)$ such that $\mathbf{f} : U \to V$ is a bijection. We showed \mathbf{f} is 1-1 on U using the CMP. Defined $\varphi_{\mathbf{y}}(\mathbf{x}) = \mathbf{x} + \mathbf{A}^{-1}(\mathbf{y} - \mathbf{f}(\mathbf{x})), \mathbf{x} \in E$; showed that for $\mathbf{x}_1, \mathbf{x}_2 \in U$,

$$||\varphi_{\mathbf{y}}(\mathbf{x}_1) - \varphi_{\mathbf{y}}(\mathbf{x}_2)|| \le \frac{1}{2} ||\mathbf{x}_1 - \mathbf{x}_2||.$$
 (*)

Note that

$$\|\varphi_{\mathbf{y}}(\mathbf{x}_1) - \varphi_{\mathbf{y}}(\mathbf{x}_2)\| \le \|\varphi'_{\mathbf{y}}\| \cdot \|\mathbf{x}_1 - \mathbf{x}_2\|,$$

where

$$\|\varphi'_{\mathbf{y}}(\mathbf{x})\| = \|\mathbf{I} - \mathbf{A}^{-1}\mathbf{f}'(\mathbf{x})\| = \|\mathbf{A}^{-1}(\mathbf{A} - \mathbf{f}'(\mathbf{x}))\|.$$

Pick $\epsilon > 0$ so that

$$\underbrace{\|\mathbf{x} - \mathbf{a}\| < \epsilon}_{\mathbf{x} \in U} \Rightarrow \|\mathbf{A} - \mathbf{f}'(\mathbf{x})\| < \frac{1}{2\|\mathbf{A}^{-1}\|}.$$

Thus,

$$\|\varphi'_{\mathbf{y}}(\mathbf{x})\| \le \|\mathbf{A}^{-1}\| \cdot \|\mathbf{A} - \mathbf{f}'(\mathbf{x})\| < \|\mathbf{A}^{-1}\| \cdot \lambda = \frac{1}{2}.$$

Remark: The ϵ chosen to define $U = B(\mathbf{a}, \epsilon)$ is independent of \mathbf{y} , but dependent on \mathbf{a} and \mathbf{f} .

Remark: Let V, W be vector spaces.

 $\mathbf{B}: V \xrightarrow{\text{linear}} W \text{ where } \dim(V) < \infty, \dim(W) < \infty \Rightarrow \mathbf{B} \text{ is continuous and bounded; i.e., } \|\mathbf{B}\| < \infty.$

(*) is a contraction condition, but $\varphi_{\mathbf{y}}$ need not map U to itself.

Note: U is not complete, but \overline{U} is. (*) continues to hold for $\mathbf{x}_1, \mathbf{x}_2 \in \overline{U}$.

Can $\varphi_{\mathbf{y}}$ have a fixed point in U?

If there exists such \mathbf{x} , then

$$\varphi_{\mathbf{v}}(\mathbf{x}) = \mathbf{x} \in U \Rightarrow \varphi_{\mathbf{v}}(\mathbf{x}) \in U.$$

Math 321 Lecture 30 Yuchong Pan

We do not know if $\varphi_{\mathbf{y}}(U) \subseteq U$, so cannot guarantee the *existence* of a fixed point of $\varphi_{\mathbf{y}}$. However, if a fixed point exists, by CMP it would have to be unique.

Take $\mathbf{y} \in V = \mathbf{f}(U)$. Then there exists $\mathbf{x} \in U$ such that $\mathbf{f}(\mathbf{x}) = \mathbf{y}$. Thus, \mathbf{x} is a fixed point of $\varphi_{\mathbf{y}}$. By CMP, there exists only one such \mathbf{x} ; hence $\mathbf{f}: U \to V$ is injective.

Exercise: V is open.

2. Let $\mathbf{g}: V \to U$ where $\mathbf{g} = \mathbf{f}^{-1}$ defined by part (a). Want to show \mathbf{g} is differentiable on V; in fact, $\mathbf{g} \in C^1(V)$.

Proof. Need to find $\mathbf{T} = \mathbf{T}(\mathbf{y})$ continuous on V such that

$$\frac{\|\mathbf{g}(\mathbf{y} + \mathbf{k}) - \mathbf{g}(\mathbf{y}) - \mathbf{T}\mathbf{k}\|}{\|\mathbf{k}\|} \xrightarrow{\|\mathbf{k}\| \to 0} 0.$$

In \mathbb{R} ,

$$g \circ f(x) = x \Rightarrow g'(f(x)) \cdot f'(x) = 1 \Rightarrow g'\left(\underbrace{f(x)}_{y}\right) = \underbrace{\frac{1}{f'(x)}}_{f'(f^{-1}(y))}.$$

Choose $\mathbf{T} = (\mathbf{f}'(\mathbf{g}(\mathbf{y})))^{-1}$. We will show that \mathbf{T} is well-defined.

Recall: A matrix $\mathbf{B}_{n\times n}$ is invertible if and only if

$$\det(\mathbf{B}) \neq 0.$$

a polynomial in the entries of ${\bf B}$ hence continuous in the entries of ${\bf B}$

Hence, $\mathbf{x} \in E \subseteq \mathbb{R}^n \mapsto \det(\mathbf{f}'(\mathbf{x})) \in \mathbb{R}$ is a continuous map, which assumes a nonzero value at $\mathbf{x} = \mathbf{a}$. Hence it remains nonzero on $U = B(\mathbf{a}, \epsilon)$ for $\epsilon > 0$ small.

Set

$$\mathbf{f}(\mathbf{x}) = \mathbf{y} \in V \Leftrightarrow \mathbf{g}(\mathbf{y}) = \mathbf{x},$$

$$\mathbf{f}(\mathbf{x} + \mathbf{h}) = \mathbf{y} + \mathbf{k} \Leftrightarrow \mathbf{g}(\mathbf{y} + \mathbf{k}) = \mathbf{x} + \mathbf{k}.$$

Then,

$$\mathbf{g}(\mathbf{y}+\mathbf{k})-\mathbf{g}(\mathbf{y})-\mathbf{T}\mathbf{k}=\mathbf{h}-\mathbf{T}\mathbf{k}=\mathbf{T}\left(\mathbf{T}^{-1}\mathbf{h}-\mathbf{k}\right)=\mathbf{T}(\mathbf{f}'(\mathbf{x})\mathbf{h}-\mathbf{k})=\mathbf{T}\left(\underbrace{(\mathbf{f}(\mathbf{x})-\mathbf{f}'(\mathbf{a}))\mathbf{h}}_{I}+\underbrace{\mathbf{f}'(\mathbf{a})\mathbf{h}-\mathbf{k}}_{II}\right).$$

Want to show that

$$\frac{\|\mathbf{II}\|}{\|\mathbf{k}\|} = \frac{\mathbf{T}(\mathbf{Ah} - \mathbf{k})}{\|\mathbf{k}\|} \xrightarrow{\mathbf{k} \to \mathbf{0}} 0. \tag{1}$$

Math 321 Lecture 30 Yuchong Pan

Note that

$$\underbrace{\varphi_{\mathbf{y}}(\mathbf{x} + \mathbf{h})}_{=\mathbf{x} + \mathbf{h} + \mathbf{A}^{-1}(\mathbf{y} - \mathbf{f}(\mathbf{x} + \mathbf{h}))} - \varphi_{\mathbf{y}}(\mathbf{x}) = \mathbf{h} + \mathbf{A}^{-1}(\mathbf{f}(\mathbf{x}) - \mathbf{f}(\mathbf{x} + \mathbf{h})).$$

Since $\varphi_{\mathbf{y}}$ is a contraction,

$$\left\|\mathbf{h} + \mathbf{A}^{-1}(\mathbf{f}(\mathbf{x}) - \mathbf{f}(\mathbf{x} + \mathbf{h}))\right\| \le \frac{1}{2} \|\mathbf{h}\| \Rightarrow \left\|\mathbf{h} + \mathbf{A}^{-1}\mathbf{k}\right\| \le \frac{1}{2} \|\mathbf{h}\|.$$

Use this to prove (1).

(Proof unfinished.)