Crank Nicolson method

Rosa Flaquer Galmés

To start the resolution of the problem we compute the time evolution for g = 0 and $V_{ext} = 0$ then the equation reads as:

$$i\frac{\partial \Psi(\tilde{z},\tilde{t})}{\partial \tilde{t}} = -\frac{\partial^2 \Psi(\tilde{z},\tilde{t})}{\partial \tilde{z}^2} \tag{1}$$

We will use the Crank Nicolson method which we will derive for this particular case. We start writing the time partial derivative as:

$$\begin{split} \frac{\partial \Psi(\tilde{z},\tilde{t})}{\partial \tilde{t}} &= \frac{\Psi(\tilde{z},\tilde{t} + \frac{\Delta \tilde{t}}{2}) - \Psi(\tilde{z},\tilde{t})}{\frac{\Delta \tilde{t}}{2}} = i \frac{\partial^2 \Psi(\tilde{z},\tilde{t})}{\partial \tilde{z}^2} \quad \Rightarrow \\ \Psi(\tilde{z},\tilde{t} + \frac{\Delta \tilde{t}}{2}) &= (1 + i \frac{\Delta \tilde{t}}{2} \frac{\partial^2}{\partial \tilde{z}^2}) \Psi(\tilde{z},\tilde{t}) \\ \Psi(\tilde{z},\tilde{t} + \frac{\Delta \tilde{t}}{2}) &= (1 - i \frac{\Delta \tilde{t}}{2} \frac{\partial^2}{\partial \tilde{z}^2}) \Psi(\tilde{z},\tilde{t} + \Delta \tilde{t}) \end{split} \tag{2}$$

from where we find:

$$(1 + i\frac{\Delta \tilde{t}}{2}\frac{\partial^2}{\partial \tilde{z}^2})\Psi(\tilde{z}, \tilde{t}) = (1 - i\frac{\Delta \tilde{t}}{2}\frac{\partial^2}{\partial \tilde{z}^2})\Psi(\tilde{z}, \tilde{t} + \Delta \tilde{t})$$
(3)

We then use a three point formula for the spatial derivative and change the notation to $\Psi(\tilde{z}, \tilde{t}) \equiv \Psi_i^t$ so that $\Psi(\tilde{z} + \Delta \tilde{z}, \tilde{t}) = \Psi_{i+1}^t$ and $\Psi(\tilde{z}, \tilde{t} + \Delta \tilde{t}) = \Psi_i^{t+1}$

$$\Psi_{i}^{t} + i \frac{\delta \tilde{t}}{(\Delta \tilde{z})^{2}} [\Psi_{i+1}^{t} - 2\Psi_{i}^{t} + \Psi_{i-1}^{t}] = \Psi_{i}^{t+1} - i \frac{\delta \tilde{t}}{(\Delta \tilde{z})^{2}} [\Psi_{i+1}^{t+1} - 2\Psi_{i}^{t+1} + \Psi_{i-1}^{t+1}] \tag{4}$$

Defining $r \equiv i \frac{\delta \tilde{t}}{(\Delta \tilde{z})^2}$ it takes the form of

$$2(1+r)\Psi_{i}^{t+1} - r\Psi_{i+1}^{t+1} - r\Psi_{i-1}^{t+1} = 2(1-r)\Psi_{i}^{t} + r\Psi_{i+1}^{t} + r\Psi_{i-1}^{t}$$
 (5)

Which turns to be a matrix equation if we define a vector u^t that contains all Ψ_i^t values at a given time

$$Au^{t+1} = Bu^t (6)$$

A is a tridiagonal matrix with 2(1+r) in its main diagonal and -r on the upper and lower diagonals, all the other elements are 0. B is also a tridiagonal matrix with 2(1-r) in its main diagonal and r on the upper and lower diagonals, all the other elements are 0.

There are various ways to check if the method is working properly: conservation of the norm and conservation of the energy. The easiest is the first one. First of all we ensure that our $\Psi(\tilde{z}, \tilde{t})$ is well normalizet to 1 using any integration method, for instance Simpson:

$$1 = \|N\|^2 \int_a^b \Psi^*(\tilde{z}, \tilde{t}) \Psi(\tilde{z}, \tilde{t}) d\tilde{z} \approx \|N\|^2 \frac{d\tilde{z}}{3} \sum_{k=0}^{M/2-1} (u_{2k}^t + 4u_{2k+1}^t + u_{2k+2}^t)$$
 (7)

Where M is the number of points where the function is avaluated. Once we have the wavefunction propperly normalized we can check at every step of the Crank-Nicolson method if it is conserved by computing the norm of u^{t+1} and storing the maximum difference between the norm at $\tilde{t} = 0$ and the evolved function.

To compute the expextation value of the energy:

$$\langle E \rangle = \int_{-\infty}^{\infty} \Psi^*(\tilde{z}, \tilde{t}) \hat{H} \Psi(\tilde{z}, \tilde{t}) d\tilde{z} = \int_{-\infty}^{\infty} \Psi^*(\tilde{z}, \tilde{t}) \left(-\frac{\partial^2}{\partial \tilde{z}^2} \right) \Psi(\tilde{z}, \tilde{t}) d\tilde{z} = \int_{-\infty}^{\infty} \Psi^*(\tilde{z}, \tilde{t}) \left(i \frac{\partial \Psi(\tilde{z}, \tilde{t})}{\partial \tilde{t}} \right) d\tilde{z} \quad (8)$$

It is useful to write (\hat{H}) like this (using equation 1) because we can then write $\frac{\partial \Psi(\tilde{z},\tilde{t})}{\partial \tilde{t}}$ as:

$$\frac{\partial \Psi(\tilde{z}, \tilde{t})}{\partial \tilde{t}} \approx \frac{\Psi(\tilde{z}, \tilde{t} + \delta \tilde{t}) - \Psi(\tilde{z}, \tilde{t})}{\delta \tilde{t}} \tag{9}$$

and both of this terms are known in every iteration of the Crank Nicolson method so we only have to focus on computing the integral. Using the u_1^t notation:

$$\langle E \rangle = \int_{-\infty}^{\infty} (u_i^t)^* \frac{i}{\delta \tilde{t}} (u_i^{t+1} - u_i^t) d\tilde{z}$$
 (10)

This integral can be solved using, for example, the Simpson's method again.

1 Firts test, gaussian

To start testing the method we compute the time evolution for a gaussian function centered at zero and with $\sigma = 1$. We expect it to evolve as it is not an eigenfunction of $H = -\frac{\partial^2}{\partial \bar{z}^2}$.

We compute the method for a spacing of $\Delta \tilde{z}=0.01$ with $\tilde{z}\in[-3,3]$ and a time interval $\delta \tilde{t}=0.001.$

Figure 1: $|\Psi|^2$ at time $\tilde{t} = 0$ in blue and at time $\tilde{t} = 5$ in green

The maximum difference between the norm at $\tilde{t}=0$ and the norm of the evolving function was: $1.16233793701x10^{-7}$

Figure 2: $|\Psi|^2$ at time $\tilde{t} = 0$ in blue and at time $\tilde{t} = 10$ in green

The maximum difference between the norm at $\tilde{t}=0$ and the norm of the evolving function was: $1.16241938852x10^{-7}$

2 Second test, bright soliton

2.1 null velocity

We compute the method for a spacing of $\Delta \tilde{z} = 0.01$ with $\tilde{z} \in [-10, 10]$ and a time interval $\delta \tilde{t} = 0.001$ for a bright soliton solution with null velocity and $n_0 = 1$

Figure 3: $|\Psi|^2$ at time $\tilde{t}=0$ in blue and at time $\tilde{t}=10$ in green

The maximum difference between the norm at $\tilde{t}=0$ and the norm of the evolving function was: $1.4.59786764218x10^{-9}$

2.2 0.5 velocity

We compute with $\tilde{v} = 0.5$ and two different time intervals: $\delta \tilde{t} = 0.001$ and $\delta \tilde{t} = 0.01$

Figure 4: $|\Psi|^2$ at time $\tilde{t}=0$ in blue and at time $\tilde{t}=5$ in green with $\delta \tilde{t}=0.01$

The maximum difference between the norm at $\tilde{t}=0$ and the norm of the evolving function was: $3.06995195931x10^{-9}$

Figure 5: $|\Psi|^2$ at time $\tilde{t} = 0$ in blue and at time $\tilde{t} = 10$ in green with $\delta \tilde{t} = 0.001$

The maximum difference between the norm at $\tilde{t}=0$ and the norm of the evolving function was: $3.45472594976x10^{-9}$

Here we have also computed the time that the program's been runing to obtain the result. For $\delta \tilde{t} = 0.01$ it was only 19.82s whereas the running time for $\delta \tilde{t} = 0.001$ it was 87.26s and yet there is no significant improvement on the result.

3 Third test, grey soliton

We run the code for the grey solution for a spacing of $\Delta \tilde{z} = 0.01$ with $\tilde{z} \in [-10, 10]$ and a time interval $\delta \tilde{t} = 0.01$ and the results found are:

Figure 6: $|\Psi|^2$ at time $\tilde{t}=0$ in blue and at time $\tilde{t}=5$ in green with $\tilde{v}=0.5$

The maximum difference between the norm at $\tilde{t}=0$ and the norm of the evolving function was: $9.4415014253x10^{-5}$

Figure 7: $|\Psi|^2$ at time $\tilde{t}=0$ in blue and at time $\tilde{t}=5$ in green with $\tilde{v}=0$

The maximum diference between the norm at $\tilde{t}=0$ and the norm of the evolving function was: $9.70332161562x10^{-5}$