Question 2:

- 1. There will be $(m \times n) k$ tiles in general in a (m, n, k) puzzle. M x n is the number of total possible tiles then we subtract k tiles for empty squares.
- 2. $(m \times n)!/k$ amount of distinct state spaces. I found this by counting the number of unique state spaces in a (2, 2, 1) puzzle. For a (2, 2, 1) puzzle there are $4 \times 3 \times 2$ possible states. If there is a (2,2,2) puzzle there will then be $4 \times 3 \times 2 / 2$ possible states. For each tile, there are $(m \times n) \times (m \times n 1)$ possible combinations for all other tiles.

3.

