Test de Hipótesis - Una vuelta más de tuerca

Cuándo y cómo usar Test de hipótesis

- El investigador tiene una hipótesis que debe ser formulada en términos de *parámetros* un modelo.
- Debe definir un estadístico de contraste para medir la diferencia entre los datos y los valores esperados bajo el supuesto de que la hipótesis nula es cierta.
- Construye una región de rechazo para un nivel dado.
- Utiliza sus datos para tomar una decisión.

Test

$$H_0: \theta \in \Theta_0 \qquad H_1 = \theta \in \Theta_1$$

Un test es una regla de decisión que, en función de H_0 y H_1 , determina cómo deben ser la muestra (o los datos) para que H_0 sea rechazada en favor de H_1 .

La región de rechazo $\mathcal R$ indica en qué casos rechazamos H_0 en favor de H_1 .

La región de rechazo \mathcal{R} es el conjunto de valores que llevan a la decisión de rechazar H_0 .

Test: Regla de decisión- posibles errores

 \mathcal{R} : Región de rechazo. Determina cómo deben ser los datos para rechazar H_0 en favor de H_1 .

	No Rechazamos H_0	Rechazamos H_0
H_0 es cierta	no hay error	error Tipo I
H_0 es falsa	error Tipo II	no hay error

- Error (es) tipo I: rechazar H_0 cuando es verdadera:
- Error (es) tipo II: NO rechazar H_0 cuando es falsa.

Error - Probabilidad de error

- Es imposible no cometer errores con una regla de decisión.
- Minimizar un error agranda el otro.
- Propuesta: fijamos uno y ese controlamos. El que controlamos es el error tipo I.
- Las hipótesis se ponen de formal tal que el error tipo I es el mas grave. Pero es el que vamos a controlar!

Función de Potencia

 $\pi(\theta)$ es la probabilidad de rechazar H_0 cuando el valor verdadero del parámetro es θ .

$$\pi(\theta) = \mathbb{P}_{\theta}(\mathcal{R})$$

- si θ está en H_0 , $\mathbb{P}_{\theta}(\mathcal{R}) = \pi(\theta)$ es (probabilidad de) error tipo I.
- si θ está H_1 , $\mathbb{P}_{\theta}(\mathcal{R}^c) = 1 \pi(\theta)$ es (probabilidad de) error tipo II.

En sintesis, cuando $H_0: \theta = \theta_0$

• Fijado n, y α , se puede construir un test mediante una región de rechazo \mathcal{R}_{α} de nivel α :

$$\mathbb{P}_{\theta_0}(\mathcal{R}_{n,\alpha}) = \alpha$$

La potencia del test está definida por

$$\pi(\theta) = \pi_n(\theta) = \pi_{n,\alpha}(\theta) = \mathbb{P}_{\theta}(\mathcal{R}_{n,\alpha})$$

• Dado un valor θ_1 en H_1 y β , se puede encontrar n para que el error tipo II en θ_1 sea menor o igual a β .

$$\mathbb{P}_{\theta_1}(\mathcal{R}^c) = 1 - \pi_n(\theta_1) \le \beta \equiv \pi_n(\theta_1) \ge 1 - \beta$$

Mundo exacto o mundo asintótico.

Significatividad Estadísica

Cuando los resultados son poco probables suponiendo que la hipótesis nula H_0 es cierta, e indican evidencias en favor de H_1 , decimos que los resultados son estadísticamente significativos. Si nuestra muestra es estadísticamente significativa, tenemos evidencia convincente contra H_0 y en favor de H_1 .

p-valor

- p-valor se calcula una vez realizado el experimento.
- Depende de los valores (x_1, \ldots, x_n) observados.
- Indica cuan probable es observar valores extremos como el obtenido con (x_1, \ldots, x_n) cuando H_0 es verdadero.

p-valor chico da evidencia contra H_0 , en favor de H_1

• Con los datos rechazo H_0 a nivel α si y solo si p-valor $\leq \alpha$.

Sobre la significatividad Estadística

- Estadísticamente significativo: p-valor < 0.05
- Altamente significativo: p-valor < 0.01