

Session 5.1 - Annotation

Isabel Cuesta

BU-ISCIII

<u>Unidades Comunes Científico Técnicas - SGSAFI-ISCIII</u>

16 al 20 octubre 2023, 5ª Edición Programa Formación Continua, ISCIII

Bacterial genome characteristics

- A bacterial genome is a single "circular" DNA molecule with several million base pairs in size
- Bacteria can contains plasmids (small and circular DNA molecules, that contain (usually) non-essential genes)
- Genomes contain a few thousand genes.
- "Gene density" is much higher than in humans, one million base pairs of bacterial DNA contains about 500 to 1000 genes.
 - bacterial genes have no introns,
 - the average number of codons in bacterial genes is less than in human genes
 - neighboring genes are very close together throughout the genome

Annotation

Genome annotation is the process of attaching biological (and positional) information to sequences. It consists of three main steps:

- identifying portions of the genome that do not code for proteins
- Identifying coding elements on the genome, a process called gene prediction
- attaching biological information to these elements

https://galaxyproject.github.io/training-material/topics/genome-annotation/tutorials/genome-annotation/tutorial.html

Main categories

- Structural annotation Finding genes and other biologically relevant sites with specific locations but unknown function
 - ORFs
 - Coding sequences(cds)
 - Promoters and regulatory regions
- Functional annotation Elements are used in database searches to attach biologically relevant information to whole sequence and individual objects

Automatic annotation

- Exponential submission of bacterial genomes
- Databases
 - Uniprot
 - RefSeq
 - Encyclopedia of DNA elements (ENCODE)
 - Entrez Gene
 - Ensembl
 - GENCODE
 - Gene Ontology Consortium (COGs)
 - GeneRIF
 - KEGG
 - Vertebrate and Genome Annotation Project (Vega)
 - Pfam
 - etc

https://www.ncbi.nlm.nih.gov/books/NBK20253/#!po=3.12500

Automatic annotation

Two strategies for identifying coding genes:

- Sequence alignment to find known protein sequences in the contigs
 - transfer the annotation across
 - will miss proteins not present in your database
 - may miss partial proteins
- Ab initio gene finding o find candidate open reading frames:
 - Build model of ribosome binding sites
 - predict coding regions
 - may choose the incorrect start codon
 - may miss atypical genes, overpredict small genes

Automatic annotation

- tRNA: easy to find and annotate: anti-codon
- rRNA: easy to find and annotate: 5s 16s 23s
- CDS: straightforward to find candidates
 - false positives are often small ORFs
 - wrong start codon o partial genes
 - Pseudogenes
 - assigning function is the bulk of the workload

- If sequence homologous are found, may not be functional homologous
- If no homology found- limited information can be inferred
- Incorrect annotation can be propagated when similarity is over part on sequence not used in annotation
 - Multidomain proteins (HMM)
- Inconsistent annotation (Different names, same protein)
- Same gene name, different product name
- Spelling mistakes
- Looking for new genes, not present in DDBB
- Expression experiments / Manual annotation needed

Inconsistent annotation, en un gen descrito evento de fusión genica

Salmonella typhi CT18 (NC_003198) and Salmonella typhi Ty2 (NC_004631) there is a single ORF of 690 bp

Figure 2: The six different models present across I7 RefSeq entries for Salmonella species for the eutM/eutN locus. Green indicates normal gene/CDS features, lighter grey indicates gene features annotated as pseudogenes.

- (A) A single intact gene of 690 bp; (B) a single pseudogene of 690 bp; (C) two short intact genes ~300 bp in length;
- (D) one pseudogene and one intact gene, each ~300 bp in length; (E) two pseudogenes, each 300 bp in length; and
- (F) two intact genes with the order reversed.

Inconsistent annotation

These two regions are more than 97% identical at the nucleotide level; however, the annotation differs considerably.

While E. coliK12MG1655 contains features with gene names araA, araB and araC, the equivalent features in E. coli 0157:H7 Sakai do not have those gene names and have been assigned uninformative locus tags

Figure 3: A syntenic block of genes showing inconsistent gene name annotations in E.coli KI2 MGI655 and E. coli 0157:H7 Sakai.

Spelling mistakes

- There are 128 proteins in UniProt that contain the word 'syntase', an incorrect spelling of the word 'synthase'
- If a user was to visit any of these databases and search for 'dihydrofolate synthase' the misspelled entries would be omitted from the search results

- 'Same gene name, different product name'
 - The NCBI validation software specifically highlights when this occurs intra-genomically with the description 'Same gene name, different product name'

Table 1: Different product names assigned to features with the gene name 'int' across 17 different RefSeq entries for Salmonella species

Gene name	Product name	Accession
int	bacteriophage integrase	NC.003198, NC.004631, NC.015761
int	Gifsy-I prophage Int	NC.006905
nt	hypothetical protein	NC.006905
nt	Integrase	NC.003198, NC.004631, NC.006511, NC.012125
nt	integrase (fragment)	NC.003198
it	phage integrase family site specific recombinase	NC.006905
nt	putative cytoplasmic protein	NC.006905
t	Putative integrase	NC.003384
t	putative integrase protein	NC.006905
t	putative P4-type integrase	NC.006905
nt	putative phage integrase protein	NC.006905 Richardson and Wat
t	site-specific recombinase, phage integrase family	NC.012125 in Bioinformatics. 20

Hypothetical proteins

- These may be real genes with no known function or they may be artifacts of the gene prediction process.
- Often there are features which are only orthologous to other hypothetical features and do not contain any domains. These could either be regions with no functionality, a relic of the feature prediction software or the domains present have not been discovered yet
- Whether or not to include them is often a decision made by the annotation team and varies between groups
- As experimental data becomes more ubiquitous evidence tags should play a larger role in annotation.

<u>Distinguishing orthologs from paralogs</u>

orthologs tend to retain similar functions, whereas paralogs tend to diverge over time to perform different functions

Figure 4: A diagram displaying the processes that can lead to, and define, orthologs and paralogs. Gene duplication and speciation events create complex evolutionary relationships between genes.

- RefSeq is one attempt to standardize and improve the quality of genome annotation
 - WP_ prefix. All identical proteins regardless of species
 - Standard classification

```
beta-lactamase (conceptual)
   class A beta-lactamase (HMM:NF033103)
   metallo-beta-lactamase (HMM:NF012229)
      subclass B1 metallo-beta-lactamase (HMM:NF033088)
         NDM family subclass B1 metallo-beta-lactamase (HMM:NF000259)
             subclass B1 metallo-beta-lactamase NDM-1 (allele)
             subclass B1 metallo-beta-lactamase NDM-2 (allele)
             subclass B1 metallo-beta-lactamase NDM-3 (allele)
         VIM family subclass B1 metallo-beta-lactamase (HMM:NF012100)
         SPM family subclass B1 metallo-beta-lactamase (HMM:NF012150)
      subclass B2 metallo-beta-lactamase (HMM:NF033087)
      subclass B3 metallo-beta-lactamase (HMM:NF033105)
   class C beta-lactamase (HMM:NF033085)
   class D beta-lactamase (conceptual)
      class D beta-lactamase (main branch) (HMM:NF012161)
      class D beta-lactamase (other branch) (HMM:NF000270)
```


annotation)

Automatic annotation: Prokka (Rapid prokaryotic genome

Seeman, Bioinformatics 2014

Features predicted
Coding sequence (CDS)
Ribosomal RNA genes (rRNA)
Transfer RNA genes
Signal leader peptides
Non-coding RNA
Specific function or name
Personal database

https://galaxyproject.github.io/trainingmaterial/topics/genomeannotation/tutorials/annotation-withprokka/slides.html#8

- Optional user-provided set of annotated proteins
- All bacterial proteins in UniProt
- All proteins from finished bacterial genomes in RefSeq
- Hidden Markov model profile databases, Pfam and TIGRFAMs
- Hypothetical protein

Prokka uses this method, but in a hierarchical manner, starting with a smaller trustworthy database, moving to medium sized but domain-specific databases, and finally to curated models of protein families

Facts

- searching against smaller databases is faster
- searching against similar sequences is faster

• <u>Idea</u>

- start with small set of close proteins
- advance to larger sets of more distant proteins

Prokka

- your own custom "trusted" set (optional)
- core bacterial proteome (default)
- genus specific proteome (optional)
- whole protein HMMs: PRK clusters, TIGRfams
- protein domain HMMs: Pfam

Prokka uses this method, but in a hierarchical manner, starting with a smaller trustworthy database, moving to medium sized but domain-specific databases, and finally to curated models of protein families

Core Bacterial proteome

- Many bacterial proteins are conserved
 - experimentally validated
 - good annotations
- Prokka provides this database
 - derived from UniProt-Swissprot
 - only bacterial proteins
 - only accept evidence level 1 (aa) or 2 (RNA)
 - reject "Fragment" entries
 - extract /gene /EC_number /product /db_xref ●
- First step gets ~50% of the genes
 - BLAST+ blastp, multi-threading to use all CPUs

Prokka has genus specific databases

- aim to capture "genus specific" naming conventions
- derived from proteins in completed genomes
- proteins are clustered and majority annotation wins
- some annotations are rubbish though

Custom model databases

- I took COG/PRK MSAs and made HMMs
- Existing model databases
 - Pfam, TIGRfams are well curated
- And if all else fails
 - we always have our friend "hypothetical protein"

Automatic annotation: Prokka output

Suffix	Description of file contents	
.fna	FASTA file of original input contigs (nucleotide)	
.faa	FASTA file of translated coding genes (protein)	
.ffn	FASTA file of all genomic features (nucleotide)	
.fsa	Contig sequences for submission (nucleotide)	
.tbl	Feature table for submission	
.sqn	Sequin editable file for submission	
.gbk	Genbank file containing sequences and annotations	
.gff	GFF v3 file containing sequences and annotations	
.log	Log file of Prokka processing output	
.txt	Annotation summary statistics	

Annotation format: gff3

```
##gff-version 3.2.1
Seqid - name
                             ##sequence-region ctg123 1 1497228
Source - program
                                                                        ID=gene00001;Name=EDEN
                             ctg123 . gene
                                                    1000 9000
                             ctg123 . TF_binding_site 1000 1012 . +
                                                                        ID=tfbs00001;Parent=gene00001
Type - term or SOFA
                             ctg123 . mRNA
                                                                        ID=mRNA00001;Parent=gene00001;Name=EDEN.1
sequence ontology
                             ctg123 . mRNA
                                                                        ID=mRNA00002; Parent=gene00001; Name=EDEN.2
Start
                             ctg123 . mRNA
                                                                        ID=mRNA00003; Parent=gene00001; Name=EDEN.3
End
                                                                        ID=exon00001;Parent=mRNA00003
                             ctg123 . exon
                             ctg123 . exon
                                                                        ID=exon00002; Parent=mRNA00001, mRNA00002
Score
                             ctg123 . exon
                                                     3000
                                                                        ID=exon00003; Parent=mRNA00001, mRNA00003
Strand -(+/-)
                             ctg123 . exon
                                                                        ID=exon00004; Parent=mRNA00001, mRNA00002, mRNA00003
                                                     5000
Phase -(0/1/2)
                                                                        ID=exon00005; Parent=mRNA00001, mRNA00002, mRNA00003
                             ctg123 . exon
                             ctg123 . CDS
                                                                       ID=cds00001;Parent=mRNA00001;Name=edenprotein.1
Attributes
                             ctg123 . CDS
                                                          3902 . + 0 ID=cds00001;Parent=mRNA00001;Name=edenprotein.1
   Name
                                                         5500 . + 0 ID=cds00001;Parent=mRNA00001;Name=edenprotein.1
                             ctg123 . CDS
    Alias
                             ctg123 . CDS
                                                               . + 0 ID=cds00001;Parent=mRNA00001;Name=edenprotein.1
                             ctg123 . CDS
                                                               . + 0 ID=cds00002;Parent=mRNA00002;Name=edenprotein.2
    Parent
                                                                       ID=cds00002;Parent=mRNA00002;Name=edenprotein.2
                             ctg123 . CDS
    Target
                             ctg123 . CDS
                                                               . + 0 ID=cds00002;Parent=mRNA00002;Name=edenprotein.2
    Gap
                             ctg123 . CDS
                                                          3902 . + 0 ID=cds00003;Parent=mRNA00003;Name=edenprotein.3
                                                    3301
    Derives from
                                                         5500 . + 1 ID=cds00003;Parent=mRNA00003;Name=edenprotein.3
                             ctg123 . CDS
                             ctg123 . CDS
                                                         7600 . + 1 ID=cds00003;Parent=mRNA00003;Name=edenprotein.3
    Note
                                                         3902 . + 0 ID=cds00004;Parent=mRNA00003;Name=edenprotein.4
                             ctg123 . CDS
                                                    3391
    Dbxref
                             ctg123 . CDS
                                                          5500 . + 1 ID=cds00004;Parent=mRNA00003;Name=edenprotein.4
    Ontology term
                             ctg123 . CDS
                                                         7600 . + 1 ID=cds00004;Parent=mRNA00003;Name=edenprotein.4
```


Annotation format: gbk

- LOCUS Annotated sequence
- DEFINITION
- ACCESION
- FEATURES
 - source
 - gene
 - CDS
 - Locus tag
 - function
 - Product
 - protein_id
 - Translation (sequence)

```
linear ROD 06-DEC-1999
LOCUS
            AF068625
                                     200 bp
DEFINITION Mus musculus DNA cytosine-5 methyltransferase 3A (Dnmt3a) mRNA,
            complete cds.
ACCESSION
            AF068625 REGION: 1..200
VERSION
            AF068625.2 GI:6449467
KEYWORDS
SOURCE
            Mus musculus (house mouse)
            Eukaryota; Metazoa; Chordata; Craniata; Vertebrata; Euteleostomi;
            Mammalia; Eutheria; Euarchontoglires; Glires; Rodentia;
            Sciurognathi; Muroidea; Muridae; Murinae; Mus.
REFERENCE
           1 (bases 1 to 200)
  AUTHORS
           Okano, M., Xie, S. and Li, E.
            Cloning and characterization of a family of novel mammalian DNA
            (cytosine-5) methyltransferases
  JOURNAL
            Nat. Genet. 19 (3), 219-220 (1998)
            9662389
REFERENCE
           2 (bases 1 to 200)
  AUTHORS
           Xie, S., Okano, M. and Li, E.
  TITLE
            Direct Submission
            Submitted (28-MAY-1998) CVRC, Mass. Gen. Hospital, 149 13th Street,
            Charlestown, MA 02129, USA
REFERENCE
           3 (bases 1 to 200)
           Okano, M., Chijiwa, T., Sasaki, H. and Li, E.
  TITLE
            Direct Submission
            Submitted (04-NOV-1999) CVRC, Mass. Gen. Hospital, 149 13th Street,
            Charlestown, MA 02129, USA
            Sequence update by submitter
COMMENT
            On Nov 18, 1999 this sequence version replaced gi:3327977.
FEATURES
                     Location/Qualifiers
     source
                     1..200
                     /organism="Mus musculus"
                     /mol type="mRNA"
                     /db xref="taxon:10090"
                     /chromosome="12"
                     /map="4.0 cM"
     gene
                     1..>200
                     /gene="Dnmt3a"
ORIGIN
       1 gaattccggc ctgctgccgg gccgcccgac ccgccgggcc acacggcaga gccgcctgaa
       61 gcccagcgct gaggctgcac ttttccgagg gcttgacatc agggtctatg tttaagtctt
      121 agctcttgct tacaaagacc acggcaattc cttctctgaa gccctcgcag ccccacagcg
      181 ccctcgcagc cccagcctgc
//
```


Annotation format: gbk

- LOCUS Annotated sequence
- DEFINITION
- ACCESION
- FEATURES
 - source
 - gene
 - CDS
 - Locus tag
 - function
 - Product
 - protein_id
 - Translation (sequence)

```
FEATURES
                     Location/Qualifiers
                     /organism="Klebsiella pneumoniae subsp. pneumoniae SA1"
                     /mol_type="genomic DNA"
                     /strain="SA1"
                     /sub species="pneumoniae"
                     /db_xref="taxon: 1379688"
                     /note="contig LPSB1_2557_Contig_49"
                     415..1536
                     /locus_tag="KPST86_490001"
                     415..1536
                     /locus tag="KPST86 490001"
                     /inference="ab initio prediction:AMIGene:2.0"
                     /note="Evidence 4:Homologs of previously reported genes of
                     unknown function"
                     /codon start=1
                     /transl_table=11
                     /product="conserved hypothetical protein"
                     /protein id="CDI25656.1"
                     /translation="MAYQLNINWPEFLEKYWQKQPVVLKNAFPDFVDPITPDELAGLA
                     MEPEVDSRLVSLKNGKWQASNGPFEHFDGLGETGWSLLAQAVNHWHMPAAELVRPFRV
                     LPDWRLDDLMISFSVPGGGVGPHIDQYDVFIIQGMGSRRWRVGDKLPMRQFCPHPALL
                     HVDPFPPIIDEDLQPGDILYIPPGFPHDGITHETALNYSVGFRGPNGRDLISSFADYV
                     LENDLGDEHYSDPDLTCREHPGRVEEYELERLRTMMIDMIRQPEDFKQWFGSFVTTPR
                     HELDIAPAEPPYEEEEVLDALLGGEKLSRLSGLRVLHIGDSFFVHSEOLDTTDAEALD
                     ALCRYTSLGOEELGSGLONPAFVSELTRLINOGYWYFEE"
                     complement(1584..2117)
                     /locus tag="KPST86 490002"
                     complement(1584..2117)
                     /locus tag="KPST86 490002"
                     /inference="ab initio prediction:AMIGene:2.0"
                     /note="Evidence 4:Homologs of previously reported genes of
                     unknown function"
                     /codon_start=1
                     /transl table=11
                     /product="conserved hypothetical protein"
                     /protein id="CDI25658.1"
                     /translation="MEQQLTIEMIADAFSYDITGFDCGEEALNTFLKEHLKRQHDGQI
                     LRGYALVSGDTVPRLLGYYTLSGSCFERGMLPSKTQQKKIPYQNAPSVTLGRLAIDKS
                     VQGQGWGEMLVAHAMRVVWGASKAVGIYGLFVEALNEKAKAFYLRLGFIQLVDENSNL
                     LFYPTKSIEOLFTDDES"
                     complement(2128..2394)
     gene
                     /locus tag="KPST86 490003"
                     complement(2128..2394)
     CDS
                     /locus tag="KPST86 490003"
                     /inference="ab initio prediction:AMIGene:2.0"
                     /note="Evidence 4:Homologs of previously reported genes of
                     unknown function'
```


Resistance prediction using WGS

Hendrisken et al. Frontiers in Microbiology. 2019.

Concordance between phenotypic susceptibility testing and WGS based predicted antimicrobial resistance

	Pathogen	No. of pathogens	AST method	No. of antimicrobials	Bioinformatic tool	Sequencing data	Concordance	Sensitivity	Specificity	Comment	References
2013	S. Typhimurium	49	MIC	17	ResFinder	Assembled, Velvet	99.74%			Disagreement: 7 isolates	(7)
	E. coli	48								including 6 E. coli resistent to	
	E. faecalis	50		14						Spec	
	E. faecium	50									
2013	E. coli (ESBL)	74	DD	7	BLASTn, selected panel	Assembled, Velvet		96%	97%	VM rate: 1.2%/M rate: 2.1%	(8)
	K. pneumonia (ESBL)	69									
2014	S. aureus	501	DD/MIC (Vitek)	12	BLASTn, selected panel	Assembled, Velvet		97%	99%	VM rate: 0.5%/M rate: 0.7%	(9)
2016	C. jejuni	32	MIC	9	BLASTx	Assembled,	99.2%			Lower concordance to	(10)
	C. coli	82				CLC-bio				Gen, Azi, Clin, Tel	
2016	S. enterica	104	MIC	14	ResFinder/ ARG-ANNOT/	Assembled, CLC-bio	99.0%	99.2%	99.3%	Lower concordance to	(11)
		536			CARD/BLAST			97.6%	98.0%	aminoglycosides/β-lactams	
2017	E. coli	31	MIC	4	Custom DB based on			87%	98%	Neg. predictive value: 97%	(12)
	K. pneumonia	24			ARDB/CARD/β- lactamase					Pos. Predictive value: 91%	
	P. aeruginosa	22			allelles						
	E. cloacae	13									
2017	S. enterica	50	MIC	4	ResFinder/	Assembled, SPAdes	98.4%			Disagreement:	(13)
	E. coli	50		6	PointFinder					2/2 C.jejuni to FQ/ERY	
	C. jejuni	50	1270000	4						5 E. coli to COL (pmrB)	
2018	E. faecalis E. faecium	97 100	MIC	11	ResFinder/NCBI Pathogen DB/BLAST	Assembled, CLC-bio	96.5%				(14)
2018	S. aureus	501 491	DD/MIC	12	GeneFinder/ Mykrobe/	FASTQ/assembled, BLAST	98.3%			Disagreements: 0.7% predicted resistant	(15)
		397	MIC		Typewriter					0.6% predicted susceptible	
2018	M. tuberculosis	10,209	MGIT 960	4	Cortex	Assembled	89.5%			97.1%/99.0% predicted R/S 97.5%/98.8% predicted R/S	(16)
				4						94.6%/93.6% predicted R/S	
				4						91.3%/96.8% predicted R/S	
2019	H. pylori	140	MIC (E-test)	5	ARIBA	FASTQ	99%			Phenotype issues to metronidazole	(17)

¹⁾ ESBL: Extended Spectrum Beta-Lactamase, 2) MIC: Minimum Inhibitory Concentration, 3) DD: Disk diffusion, 4) VM: Very Major, 5) M: Major, 6) R/S: Resistant/Susceptible, 7) SPEC: Spectinomycin, 8) GEN: Gentamicin, 9) AZI: Azithromycin, 10) CLIN: Clindamycin, 11) TEL: Telithromycin, 12) FQ: Fluoroquinolone, 13) ERY: Erythromycin, 14) COL: colistin.

Resistance prediction using WGS

Hendrisken et al. Frontiers in Microbiology. 2019.

Resistance prediction using WGS

Hendrisken et al. Frontiers in Microbiology. 2019.

• <u>Huge list here: https://www.frontiersin.org/files/Articles/478239/fpubh-07-00242-HTML/image m/fpubh-07-00242-t002.jpg</u>

Software	Туре
SRST2	Mapping
Ariba	Mapping + assembly
ABRICATE	Assembly
ResFinder	Assembly

Mapping vs Assembly

- Functional annotation based on mapping (srst2)
 - Pro: more resolutive / high quality ddbb
 - Con: Unable to locate genes / no ab initio annotation
- Functional annotation based on assembly (Resfinder)
 - Pro: genes are located / related
 - Depend on assembly (close to repetitive regions)

INPUT

pipeline

MAP

rMAP - rapid microbial analysis pipeline- for ESKAPE bacterial group wgs data

The resistomes of ESKAPE pathogens (Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa and Enterobacter species)

Sserwadda & Mboowa, Microbiology, 2021

Annotation visualization using PlasmidID

- Automatic annotation
 - Prokka
 - DDBB plasmid
 - Contigs
 - Gff to bed
- Specific annotation
 - BLAST+
 - ABR & REP
 - User input FASTA

Annotation using PlasmidID

Plasmid Track

Coverage Track

Annotation Track

Complete contig Track

Manual annotation: Artemis

Artemis is a DNA sequence viewer and annotation tool that allows visualisation of sequence features and the results of analyses within the context of the sequence, and its six-frame translation.

Thanks for your attention!