

Theory of Computation Week 2

Much of the material on this slides comes from the recommended textbook by Elaine Rich

Announcement

Weekly Quiz

- Weekly quiz will be released every Monday (5PM)
- ☐ Two weeks to complete the quiz
- ☐ You can have two attempts
- ☐ All quizzes contribute to to 5% grade

Detailed content

Weekly program

✓ Week 1 – Background knowledge revision: logic, sets, proof techniques

Week 2 – Languages and strings. Hierarchies. Computation. Closure properties

- Week 3 Finite State Machines: non-determinism vs. determinism
- ☐ Week 4 Regular languages: expressions and grammars
- Week 5 Non regular languages: pumping lemma. Closure
- Week 6 Context-free languages: grammars and parse trees
- Week 7 Pushdown automata
- ☐ Week 8 Non context-free languages: pumping lemma and decidability. Closure
- Week 9 Decidable languages: Turing Machines
- ☐ Week 10 Church-Turing thesis and the unsolvability of the Halting Problem
- Week 11 Decidable, semi-decidable and undecidable languages (and proofs)
- Week 12 Revision of the hierarchy. Safety-critical systems
- Week 13 Extra revision (if needed)

Week 02 Lecture Outline

Languages and strings, Hierarchies, Computation, Closure properties

- □ Alphabet, Strings,
- ☐ Function and Relations on Strings
- Languages
- Languages are sets
- ☐ Functions on Languages
- □ Decision Problems
- Power of Encoding
- ☐ Casting Problems as Decision Problems
- □ Rule of Least Power
- Decision procedures
- Nondeterminism
- ☐ Functions on languages (programs that operate on other programs)

Week 02 Videos

You already know:

- Definitions:
 - Symbols
 - □ Alphabet ∑
 - Strings
 - □ All Possible Strings ∑*
 - Languages
- ☐ String Operations:
 - □ Length
 - Reverse
 - Concatenation
 - Replication
- Language Operations:
 - Set operations: ∪, ∩, ¬, \ or -
 - Concatenation
 - Reversal
 - Replication
 - ☐ Kleene star and plus

- Decision Problem
- □ Decision Procedure
- □ Concept of Determinism VS

Non-determinism

Videos to watch before lecture

Additional videos to watch for this week

STRINGS

• An alphabet (Σ) is a <u>finite set</u> of **symbols** (or **characters**)

- $\Sigma = \{0, 1\}$ (binary alphabet)
- ASCII
- A string is a <u>finite sequence</u> of symbols chosen from some alphabet Σ
 - **•** 01101
 - abracadabra

STRINGS

- ϵ is the empty string.
- Σ^* is the set of all possible strings over an alphabet Σ .

Alphabet name	Alphabet symbols	Example strings
The English alphabet	{a, b, c,, z}	ε, aabbcg, aaaaa
The binary alphabet	{ 0, 1 }	ε, 0, 001100
A star alphabet	{★ ,�,★,★,☆,☆}	ε, ΦΦ, Φ★★☆★☆
A music alphabet	{₀, ∫, ∫, ♪, ♪, ♪, ●}	ε, ο Ι

STRINGS Functions on Strings

- Length: The length of a string s, which we will write as |s| is the number of symbols in s.
 - $|\epsilon| = 0$
 - **•** |101101|=6
- Concatenation: The concatenation of two strings s and t, written s||t or simply st, is the string formed by appending t to s.
 - s = good and t = bye, st = goodbye.
 - $\bullet |st| = |s| + |t|$

STRINGS Functions on Strings

- Replication. For each string w and natural number i, the string wⁱ is defined as:
 - $W^0 = \epsilon$
 - $W^{i+1} = W^i W$
- Examples:
 - $a^3b^2 = aaabb$
 - $a^0b^3 = bbb$
 - $(ab)^2$ = abab

STRINGS Functions on Strings

- Reversal: For each string w, the reverse of w, which we will write w^R is defined as:
 - If |w|=0 then $w=w^R=\varepsilon$
 - If $|w| \ge 1$ then $\exists a \in \Sigma$ and $\exists u \in \Sigma^*$ such that w = ua. Then define $w^R = au^R$

Theorem: If w and x are strings, then $(w x)^R = x^R w^R$.

Proof: By induction on |x|:

$$|x| = 0$$
: Then $x = \varepsilon$, and $(wx)^R = (w \varepsilon)^R = (w)^R = \varepsilon W^R = \varepsilon^R W^R = x^R W^R$. Base case $n \ge 0$ ((($|x| = n$) \rightarrow (($|x| = x^R W^R$)) Induction Hypothesis

$$\forall n \ge 0 \ (((|x| = n) \to ((w \ x)^R = x^R \ w^R)) \to ((|x| = n + 1) \to ((w \ x)^R = x^R \ w^R)))$$
:

Consider any string x, where |x| = n + 1. Then x = u a for some character a and |u| = n. So:

$$(w \ x)^{R} = (w \ (u \ a))^{R}$$

= $((w \ u) \ a)^{R}$
= $a \ (w \ u)^{R}$
= $a \ (u^{R} \ w^{R})$
= $(a \ u^{R}) \ w^{R}$
= $(ua)^{R} \ w^{R}$
= $x^{R} \ w^{R}$

rewrite *x* as *ua* associativity of concatenation definition of reversal induction hypothesis associativity of concatenation definition of reversal rewrite *ua* as *x*

THE UNIVERSITY OF NEWCASTLE AUSTRALIA

March 02, 2020

STRINGS Relations on Strings. Substrings

aaa is a *substring* of aaabbbaaa

aaaaaa is not a substring of aaabbbaaa

aaa is a *proper substring* of aaabbbaaa

- Every string is a substring of itself.
- \triangleright ϵ is a substring of every string.

STRINGS Relations on Strings. Prefixes

s is a *prefix* of *t* iff: $\exists x \in \Sigma^* (t = sx)$.

s is a **proper prefix** of t iff: s is a prefix of t and $s \neq t$.

Examples:

The *prefixes* of abba are: ϵ , a, ab, abb, abba.

The *proper prefixes* of abba are: ϵ , a, ab, abb.

Every string is a prefix of itself.

 ϵ is a prefix of every string.

STRINGS Relations on Strings. Suffixes

s is a *suffix* of *t* iff: $\exists x \in \Sigma^* (t = xs)$.

s is a **proper suffix** of t iff: s is a suffix of t and $s \neq t$.

Examples:

The *suffixes* of abba are: ϵ , a, ba, bba, abba.

The *proper suffixes* of abba are: ϵ , a, ba, bba.

Every string is a suffix of itself.

 ϵ is a suffix of every string.

- A language is a set (<u>finite or infinite</u>) of strings chosen from some finite alphabet Σ
 - The set of all binary strings consisting of some number of 0's followed by an equal number of 1's; that is, ε ; 01; 0011; 000111; ...
 - C (the set of C programs that compiles without syntax errors)
 - English

- Another example: Let $\Sigma = \{a, b\}$.
 - Some languages over Σ:
 - **■** Ø,
 - **■** {ε},
 - {a, b},
 - {ε, a, aa, aaa, aaaa, aaaaa}

The language Σ^* contains an infinite number of strings, including: ϵ , a, b, ab, ababaa.

■ Another example: $L = \{x \in \{a, b\}^* : all a's precede all b's\}$

ab, aabb and aabbb are in L.

aba, ba, and abc are not in L.

What about: ε, a, aa, and bb?

■ Another example: $L = \{x : \exists y \in \{a, b\}^* : x = ya\}$

Simple English description:

LANGUAGES Two important little languages

•
$$L = \{\} = \emptyset$$

- The language that contains no strings
- $L = \{\epsilon\}$
 - The language that contains the empty string

LANGUAGES English isn't a well defined language

- $L = \{w: w \text{ is a sentence in English}\}.$
- Examples, which sentences are in L?

Kerry hit the ball.

Colorless green ideas sleep furiously.

The window needs fixed.

Ball the Stacy hit blue.

LANGUAGES The Halting Problem: an important language

- $L = \{w: w \text{ is a C program that halts on all inputs}\}.$
 - Well specified.
 - Unlike the English language example on previous slide
 - Can we decide what strings it contains?
 - We will see this on Week 10!

LANGUAGES Using relations to define languages

- What are the following languages?
 - $L = \{w \in \{a, b\}^* : \text{ no prefix of } w \text{ contains } b\}$
 - $L = \{w \in \{a, b\}^*: \text{ no prefix of } w \text{ starts with } b\}$
 - $L = \{w \in \{a, b\}^* : \text{ every prefix of } w \text{ starts with } a\}$

LANGUAGES Using relations to define languages

- What are the following languages?
 - $L = \{w \in \{a, b\}^* : \text{no prefix of } w \text{ contains } b\}$ = $\{\varepsilon, a, aa, aaa, aaaa, aaaaa, aaaaaa, ...\}$
 - $L = \{w \in \{a, b\}^*: \text{ no prefix of } w \text{ starts with } b\}$ = $\{w \in \{a, b\}^*: \text{ first character of } w \text{ is } a\} \cup \{\epsilon\}$
 - $L = \{w \in \{a, b\}^* : \text{ every prefix of } w \text{ starts with } a\}$ = \emptyset

- If we want to provide a Computational definition of a language we specify either
 - Generator, which enumerates the elements
 - Recognizer, which decides whether a candidate string is or not in the language
 - Returns True or False

Generators (enumerators)

- Sometimes it is important the order in which the elements are generated
- If there exists an order of the elements of Σ we can use lexicographical order
 - Shorter strings precede longer ones
 - If two strings have the same length, sort them in dictionary order
- The lexicographic enumeration of:

$$\{w \in \{a, b\}^* : |w| \text{ is even}\}:$$

- ☐ What is the cardinality of a language?
 - \Box The smallest language over any Σ is \emptyset , with cardinality 0.
 - \Box The largest is Σ^* . How big is it?

Theorem: If $\Sigma \neq \emptyset$ then Σ^* is countably infinite.

Proof: The elements of Σ^* can be lexicographically enumerated by the following procedure:

- Enumerate all strings of length 0, then length 1, then length 2, and so forth.
- Within the strings of a given length, enumerate them in dictionary order.
- This enumeration is infinite since there is no longest string in Σ^* .
- \triangleright Since there exists an infinite enumeration of Σ^* , it is countably infinite. [Theorem A.1: Appendix A]

- ☐ So the smallest language has cardinality 0.
- ☐ The largest is countably infinite.
- ☐ So every language is either finite or countably infinite!

☐ How many languages are there?

Theorem: If $\Sigma \neq \emptyset$ then the set of languages over Σ is uncountably infinite.

Proof:

The set of languages defined on Σ is $\mathcal{P}(\Sigma^*)$.

 Σ^* is countably infinite.

If S is a countably infinite set, $\mathcal{P}(S)$ is uncountably infinite.

So $\mathcal{G}(\Sigma^*)$ is uncountably infinite. [Theorem A.4: Appendix A]

Set operations

- Union
- Intersection
- Complement
- Difference

Language operations

- Concatenation
- Kleene star
- Kleene plus

LANGUAGES Functions on languages: Concatenation

If L_1 and L_2 are languages over Σ :

$$L_1L_2 = \{w \in \Sigma^* : \exists s \in L_1 \ (\exists t \in L_2 \ (w = st))\}$$

Examples:

$$L_1 = \{\text{cat}, \text{dog}\}$$

 $L_2 = \{\text{apple}, \text{pear}\}$
 $L_1 L_2 = \{\text{catapple}, \text{catpear}, \text{dogapple}, \text{dogpear}\}$

$$L_1 = a^*$$

 $L_1 L_2 =$

$$L_2 = b^*$$

LANGUAGES Functions on languages: Kleene Star

$$L^* = \{\varepsilon\} \cup \{w \in \Sigma^* : \exists k \ge 1 \}$$

 $\{\exists w_1, w_2, \dots w_k \in L \ (w = w_1 \ w_2 \dots w_k)\}$

Example:

LANGUAGES Functions on languages: Kleene Plus

The + Operator

$$L^+ = L L^*$$

$$L^* = L^0 \cup L^1 \cup L^2 \cup L^3 \cup \dots$$

$$L^+ = L^1 \cup L^2 \cup L^3 \cup \dots$$

$$L^+ = L^* - \{\epsilon\}$$
 iff $\epsilon \notin L$

L⁺ is the closure of L under concatenation.

Functions on languages: Concatenation and reverse

Theorem:
$$(L_1 \ L_2)^R = L_2^R \ L_1^R$$
.

Proof:

$$\forall x (\forall y ((xy)^R = y^R x^R))$$
 (see slide 11 of this lesson)

$$(L_1 L_2)^R = \{(xy)^R : x \in L_1 \text{ and } y \in L_2\}$$
 (by the definition of concatenation of languages)

$$= \{y^R x^R : x \in L_1 \text{ and } y \in L_2\}$$

$$= L_2^R L_1^R$$
 (by the definition of concatenation of languages)

DECISION PROBLEMS

A *decision problem* is simply a problem for which the answer is yes or no (True or False). A *decision procedure* answers a decision problem.

Examples:

 Given an integer n, does n have a pair of consecutive integers as factors?

The language recognition problem: Given a language *L* and a string *w*, is *w* in *L*?

Power of Encoding

Everything is a string.

Two categories:

- Problems that are already stated as decision problems.
- Problems that don't look like decision problems can be recast into new problems that do look like that.

Power of Encoding – Everything is a String

What If We're Not Working with Strings?

Anything can be encoded as a string.

<*X*> is the string encoding of some object *X*.

< X, Y > is the string encoding of the pair of objects X, Y.

Pattern matching on the web:

- □ Problem: Given a search string w and a web document d, do they match? In other words, should a search engine, on input w, consider returning d?
- ☐ The language to be decided: {< w, d> : d is a candidate match for the query w}

Does a program always halt?

- □ Problem: Given a program p, written in some standard programming language, is p guaranteed to halt on all inputs?
- ☐ The language to be decided:

 $HP_{ALL} = \{p : p \text{ halts on all inputs}\}$

- ☐ **Problem:** Given a nonnegative integer *n*, is it prime?
- □ An instance of the problem: Is 9 prime?
- Encoding: To encode the problem we need a way to encode each instance: We encode each nonnegative integer as a binary string.
- The language to be decided:

PRIMES = $\{w : w \text{ is the binary encoding of a prime number}\}$.

- ☐ **Problem:** Verify the correctness of the addition of two numbers.
- \Box An instance of the problem: 2 + 3 = 5?
- Encoding: encode each of the numbers as a string of decimal digits. Each instance of the problem is a string of the form:
 <integer₁> + <integer₂> = <integer₃>
- ☐ The language to be decided:

INTEGERSUM = $\{w \text{ of the from: } < integer_1 > + < integer_2 > = < integer_3 > :$ each of the substrings $< integer_1 > , < integer_2 > \text{ and } < integer_3 > \text{ is an element of } \{0,1,2,3,4,5,6,7,8,9\}^+ \text{ and } integer_3 \text{ is sum of } integer_1 \text{ and } integer_2 \}.$

☐ **Problem:** Protein sequence alignment:

Given a protein fragment f and a complete protein molecule p, could f be a fragment from p?

- **Encoding**: Represent each protein molecule or fragment as a sequence of amino acid residues. Assign a letter to each of the 20 possible amino acids. So a protein fragment might be represented as AGHTYWDNR.
- □ The language to be decided: PRTNALIGN={<f, p> : f could be a fragment from p}.

Turning Problems into Decision Problems

- Any problem can be reformulated as a decision problem
- □ **IDEA:** Encode both the inputs and outputs of the original problem *P* into a single string.
 - ☐ For example if P takes two inputs and produces one result, then string representation could be $s=i_1$; i_2 ; r
- ☐ Then a string s=x; y; z is in the language L that corresponds to P iff z is the result that P produces given the inputs x and y.

Turning Problems into Decision Problems

Casting multiplication as decision:

- □ **Problem:** Given two nonnegative integers, compute their product.
- ☐ Encoding: Transform computing into verification.
- ☐ The language to be decided:

 $L = \{w \text{ of the form: }$

 $< integer_1 > \times < integer_2 > = < integer_3 >$, where: $< integer_n >$ is any well formed integer, and

$$integer_3 = integer_1 * integer_2$$

$$12 \times 9 = 108 \in L$$

Turning Problems into Decision Problems

Casting sorting as decision:

- □ Problem: Given a list of integers, sort it.
- ☐ **Encoding**: Transform the sorting problem into one of examining a pair of lists.
- The language to be decided:

$$L = \{w_1 \# w_2 : \exists n \ge 1 \}$$

 $(w_1 \text{ is of the form } < int_1, int_2, \dots int_n > ,$
 $w_2 \text{ is of the form } < int_1, int_2, \dots int_n > ,$ and
 $w_2 \text{ contains the same objects as } w_1 \text{ and}$
 $w_2 \text{ is sorted}\}$

Examples:

1,5,3,9,6
$$\#$$
1,3,5,6,9 \in L 1,5,3,9,6 $\#$ 1,2,3,4,5,6,7 \notin L

March 02, 2020

Turning Problems into Decision Problems

The Traditional Problems and their Language Formulations are Equivalent

By equivalent we mean that either problem can be *reduced to* the other.

That is: if we have a *machine* to solve one, we can use it to build a machine to do the other using just the starting machine and other functions that can be built using a machine of equal or lesser power.

Machines accept or reject strings that we feed into them

An Example

Suppose we have a program **P** that multiplies a pair of integers. Then the following program decides the language INTEGERMUL where

INTEGERMUL={w of the form: $<integer_1> \times <integer_2> = <integer_3>$, where: $<integer_n>$ is any well formed integer, and $integer_3 = integer_1 * integer_2$ }

INTEGERMUL(w):

Given a string w of the form $< integer_1 > \times < integer_2 > = < integer_3 >$

- 1. Let $x = convert-to-integer(< integer_1>)$.
- 2. Let $y = convert-to-integer(< integer_2>)$.
- 3. Let z = P(x,y)
- 4. If $z = \text{convert-to-integer}(< \text{integer}_3>)$ then accept Else reject.

An Example

Alternatively, if we have a program T that decides the language INTEGERMUL then the following program **P** computes the multiplication of two integers x and y:

P (x,y):

- 1. Lexicographically enumerate the strings that represent decimal encodings of nonnegative integers.
- 2. Each time a string s is generated, create the new string $\langle x \rangle \times \langle y \rangle = s$.
- 3. Feed the string to T.
- 4. If T accepts $\langle x \rangle \times \langle y \rangle = s$, halt and return convert-to-integers(s).

Finite State Machines

An FSM to accept a*b*:

Any FSM to accept $A^nB^n = \{a^nb^n : n \ge 0\}$?

Pushdown Automata

A PDA to accept $A^nB^n = \{a^nb^n : n \ge 0\}$

Example: aaabb

Stack:

Turing Machines

A Turing Machine to accept AⁿBⁿCⁿ:

Rule of Least Power: "Use the least powerful language suitable for expressing information, constraints or programs on the World Wide Web."

THE UNIVERSITY OF NEWCASTLE AUSTRALIA

- A decision procedure is an algorithm to solve a decision problem
 - i.e. a program whose result is a Boolean value
 - Therefore, a decision procedure <u>must halt</u>.
- Examples:
 - Is string s in the language L?
 - Given two strings s and t, does s occur anywhere as a substring of t?

- A decision procedure is an algorithm that <u>correctly</u> <u>answers</u> a question and <u>terminates</u>. The whole idea of a decision procedure itself raises a new class of questions.
 - Is there a decision procedure for question X?
 - What is that procedure?
 - How efficient is the best such procedure?
- Clearly, if we jump immediately to an answer to question 2, we have our answer to question 1. But sometimes it makes sense to answer question 1 first. For one thing, it tells us whether to bother looking for answers to questions 2 and 3.

Fermat numbers

$$F_n = 2^{2^n} + 1, n \ge 0$$

$$F_0 = 3$$
, $F_1 = 5$, $F_2 = 17$, $F_3 = 257$, $F_4 = 65,537$, $F_5 = 4,294,967,297$, ...

- Are there any prime Fermat numbers less than 1,000,000?
- Are there any prime Fermat numbers greater than 1,000,000?

- Given a Java program P that takes a string w as input. Does P halt on some particular string w?
- Given a Java program P that takes a single string as input parameter, does it halt on all possible input values?

- The bottom line is that there are 3 kinds of questions:
 - Those for which a decision procedure exists
 - Those for which no decision procedure exists but a semi-decision procedure exists
 - Those for which not even a semi-decision procedure exists

DETERMINISM AND NONDETERMINISM

Imagine you had to add to a programming language the action "choose" defined as:

```
choose (action 1;; action 2;; ... action n)
```

OR

• **choose** (x from S: P(x))

- choose will
 - Return successful value if there is one
 - If there is no successful value, then choose will:
 - Halt and return False if all the actions halt and return False
 - Fail to halt if any of the actions fails to halt.

DETERMINISM AND NONDETERMINISM

Nondeterministic trip planner

- Each of the 4 functions trip-plan calls returns a successful value iff it succeeds in finding a plan that meets the cost and time requirements
- Doesn't care if they run in parallel or sequentially, just needs to know if there is a value and if so what it is

The 15-Puzzle

5	2	15	9
7	8	4	12
13	1	6	11
10	14	3	

1	2	3	4
5	6	7	8
9	10	11	12
13	14	15	

solve-15(position-list) =

/* Explore moves available from the last board configuration to have been generated. */

current = last(position-list);

if *current* = *solution* then return (*position-list*);

/* Assume that *successors*(*current*) returns the set of configurations that can be generated by one legal move from *current*. No other condition needs to be checked, so *choose* simply picks one. */

append(position-list, choose x from successors(current): True);

/* Recursively call *solve-*15 to continue searching from the new board configuration. */ return(*solve-*15(*position-list*));

Implementing Nondeterminism

before the first choice choose makes

Nondeterminism in Finite State Machines

- Nondeterminism in FSM increases conveneince
- For every NDFSM there is an equivalent deterministic FSM
- So adding choose does not change the class of languages that can be accepted.
- This is also true for Turing machine but not for PDA

- Now a brief reminder of our 'framework' slides
- A binary relation R on a set A is closed under property P if and only if R possesses P.

Examples

- < on the integers, P = transitivity
- \leq on the integers, P = reflexive

- Let INF be the set of infinite languages.
- Let FIN be the set of finite languages.
- Are languages FIN and INF closed under function...
 - union
 - intersection
 - firstchars
 - chop

- Let $firstchars(L) = \{w : \exists y \in L \ (y = cx \land c \in \Sigma_L \land x \in \Sigma_L^* \land w \in c^*)\}.$
- What is firstchars (AⁿBⁿ)?
- What is firstchars (AⁿBⁿCⁿ)?
- Are FIN and INF closed under firstchars?

- Let $firstchars(L) = \{w : \exists y \in L \ (y = cx \land c \in \Sigma_L \land x \in \Sigma_L^* \land w \in c^*)\}.$
- What is *firstchars* (AⁿBⁿ)?
- {a*}
- What is firstchars (AⁿBⁿCⁿ)?
- {a*}
- Are FIN and INF closed under firstchars?
- Think about it!

- Let $chop(L) = \{w : \exists x \in L \ (x = x_1 c x_2, x_1 \in \Sigma_L^*, x_2 \in \Sigma_L^*, c \in \Sigma_L, |x_1| = |x_2|, \text{ and } w = x_1 x_2)\}.$
- What is chop(AⁿBⁿ)?
- What is *chop*(AⁿBⁿCⁿ)?
- Are FIN and INF closed under chop?

- Let $chop(L) = \{w : \exists x \in L \ (x = x_1 c x_2, x_1 \in \Sigma_L^*, x_2 \in \Sigma_L^*, c \in \Sigma_L, |x_1| = |x_2|, \text{ and } w = x_1 x_2)\}.$
- What is *chop*(AⁿBⁿ)?
- What is chop(AⁿBⁿCⁿ)?
- $\{a^{2n+1}b^{2n}c^{2n+1}: n \ge 0\}$
- Are FIN and INF closed under chop?
- Think about it!

Are languages FIN and INF closed under function...

Function	FIN	INF
union	Yes	Yes
intersection	Yes	No
firstchars	No	Yes
chop	Yes	No

Summary

- Alphabet, Strings, Languages
- Functions on String: Concatenation, Reversal, Replication
- Relation on String: Substring, Prefix, Suffix.
- Languages are sets: Functions on languages are functions on sets
- Operations on Languages: Concatenation, Kleene Star, Kleene Plus,
- What is Decision Problem and Decision Procedure?
- How any problem can be casted as an equivalent decision problem?
- Rule of least power
- Difference between determinism and non-determinism

References

- Automata, Computability and Complexity. Theory and Applications
 - By Elaine Rich
- Chapter 2, 3, 4:
 - Page: 8~52.

