量子力学习题集

马祥芸

October 1, 2022

Contents

1	出台	谔方程与一维定态问题 2
1		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
	1.1	一维有限势场
	1.2	一维 δ 势
	1.3	一维分段无限深势阱 5
	1.4	半壁无限深势阱
	1.5	复合势: $\delta(x)$ 和阶梯势
	1.6	复合势: $\delta(x)$ 和阶梯势
	1.7	复合势: $\delta(x)$ 和谐振子势
	1.8	反比例势: 合流超几何函数
	1.9	氢原子势能
		反比例势能
		已知波函数与 $V(x)$ 的极限
		已知波函数与 $V(x)$ 的均值 \ldots ϵ
	1.13	已知能量与势能的关系
	1.14	已知两能量的本征态
	1.15	圆圈运动
		改变哈密顿量求本征值(表象变换)
		期望值问题: 海森堡绘景
		转子势能突变
		谐振子势能突变
		The state of the s
		1.19 的演化问题
		有限区间深势阱的基态概率问题
		有限的深势阱的移动问题
	1.23	深势阱粒子的作用力问题
	1.24	无限深势阱的叠加态粒子
		无限深势阱的叠加态粒子 2
		已知波函数的平均值求未知波函数平均值
		表象问题
		动量波函数
		深势阱的壁崩溃问题与动量波函数
		一维无限深势阱
		算符的本征值问题
		二维谐振子耦合
	1.33	二维势场谐振子含交叉项
	1.34	两个等质一维谐振子耦合
	1.35	三维谐振子
	1 37	阶跃势的透射与反射问题
		阶跃势的透射与反射问题 2 · · · · · · · · · · · · · · · · · ·
		矩形势垒的透射与反射问题
		势阱的透射与散射问题
		复合势: 台阶势与 δ 势的透射与散射问题
		粒子吸收模型: 虚势
		非原点的 δ 势
	1.44	无限深势阱的叠加态粒子 3
		海森堡绘景
		海森堡绘景 2
		导文化 16

2	力学	量算符
	, , ,	空间反演算符和动量算符的厄米证明 18
	2.1	
	2.2	球坐标的动量算符
	2.3	算符函数问题 18
	2.4	算符欧拉公式
		21.0.2.1—1.1
	2.5	算符的久期方程问题 18
	2.6	对易关系求解问题
	2.7	能量表象的算符证明 18
	2.8	能量表象的算符证明
	2.9	角动量本征函数和本征值
	2.10	算符等式
	2.11	算符等式 2
	2 12	角动量算符的证明题 19
	2.13	算符等式 3
	2 14	角动量算符的本征值问题
		角动量升降算符问题 20
	2 16	未知算符和角动量的对易关系 20
	2.17	角动量算符的本征值问题 2
	2 18	连续谱问题
	2.19	算符的泰勒级数应用 20
	2.20	谐振子的均值问题
	2.21	则不准关系与演化问题 21
	2.22	动能概率分布问题
	2.23	谐振子的递推公式问题
	2.24	束缚定态下的新态平均值问题 21
	2.25	谐振子演化平均值问题 21
		一维无限深方势阱定态能量 21
	2.27	正定算符
	2.28	密度矩阵
	2.29	能量表象下可观测量的本征值 22
	2.30	两套本征杰的问题
		7.6.7
	2.31	叉乘的计算
	2.32	角动量算符的升降算符
		74 7 = 21 14 14 7 1 1 7 1 1 4
	2.33	力学量的对时间的二阶微分 23
	2.34	位能平均值的证明题
		不确定关系与小孔
	2.35	· / // = · · · · · · · ·
	2.36	期望的展开
	2 27	
		角动量算符的平均值 23
	2.38	束缚态的动量和力学量算符的平均值 23
		反对易关系
	2.40	力学量的测量问题
		力学量测量问题 2
	2.42	波函数的正交归一的方法
	2.44	谐振子的升降算符的证明问题 24
	2.43	谐振子的升降算符的证明问题 2
	2.46	谐振子升降算符的本征态
	2.48	算符的对易关系证明
		3113.42.4.33.2.23
•	-L- #.	24
3	表象	
	3.1	动量表象下的定态能量和波函数
	3.2	p 表象下的测不准关系验证
	3.3	谐振子的 p 表象计算 26
	3.4	均匀力场问题
	3.5	概率密度对时间的导数 26
	3.6	自由粒子两种表象下的均值计算 26
	3.7	中子反中子的波函数计算
		矩阵形式的力学量测量问题 26
	3 8	
	3.8	
	3.8 3.9	表象的本征值对应的矩阵
	3.9	表象的本征值对应的矩阵
	3.9 3.10	

	3.12 角动量表象下的测量问题	
	3.13 直角坐标系波函数转化计算角动量	
	3.14 角动量表象纠缠态问题 1	
	3.15 角动量表象纠缠态问题 2	
	3.16 角动量表象 j=3/2	
	3.17 角动量表象下的本征值和本征态问题	
	3.18 共同本征态问题	
	3.19 角动量表象下哈密顿量的表示	28
	3.20 动量表象下的哈密顿量	28
	— \(\lambda\), \(\lambda\) → \(\lambda\) \(\lambda\) = \(\lambda\)	20
4	三维定态问题	28
	4.1 三维方势阱	
	4.2 δ 势阱	
	4.3 无限深势阱	
	4.4 已经势场条件求能量和势能	
	4.5 柱坐标系的矢势问题	
	4.6 磁场下的电荷定态能量和波函数	31
	4.7 电磁场下的电荷定态能量和波函数	31
	4.8 磁场和势场下的运动	
	4.9 类氢原子核电荷数突变	
	4.10 氢原子基态波函数的演化问题	
	4.11 钢球势阱	
	4.12 能量与作用力和压强	
	4.13 中心势场下的维里定理的证明	
	4.14 类氢原子下计算 $\frac{1}{r}$ 的平均值	32
	4.15 类氢原子下计算 $\frac{1}{r^2}$ 的平均值	33
	4.16 径向角动量	
	4.17 基态氢原子的动量概率分布函数	
	4.18 基态氢原子检验测不振原理	33
	4.19 极坐标下的不确定关系	34
	4.20 测不准关系估算氢原子基态能量	34
	4.21 测不准关系估算基态能量	34
	4.22 测不准关系估算基态能量 2	
	4.23 维里定理的一般描述	
	4.24 两体问题	
	4.25 中心力场下的能量本征波函数	
	4.26 磁场下力学量的对易关系	35
	4.27 维里定理一般形式的应用	35
_)	25
5	近似方法	35
6	自旋	35
7	全同粒子体系	35
8	散射	35

1 薛定谔方程与一维定态问题

$$\frac{\mathrm{d}^2 y}{\mathrm{d}x^2} + p\frac{\mathrm{d}y}{\mathrm{d}x} + qy = 0$$

特征根方程

$$r^2 + pr + q = 0$$

1. $r_1 \neq r_2$ 且为实根

$$y = Ae^{r_1x} + Be^{r_2x}$$

2. $r_1 = r_2$ 且为实根

$$y = (C_1 + C_2 x)e^{r_1 x}$$

3. $r_1 = \alpha + i\beta, r_2 = \alpha - i\beta$ 为共轭复根 (通常 α 都是 0)

$$y = e^{\alpha x} (C_1 \cos \beta x + C_2 \sin \beta x)$$
 or $y = C_1 e^{i\beta x} + C_2 e^{-i\beta x}$

一阶微分变化值的关系

$$\triangle(\frac{d\psi}{dx}) = \int_{-\varepsilon}^{+\varepsilon} \frac{\hbar^2}{2\mu} V(x)\psi(x) dx$$

 δ 函数性质

$$\int_{-\varepsilon}^{+\varepsilon} \delta(x)\psi(x)dx = \psi(0) \quad \delta(Rx) = \frac{1}{R}\delta(x)$$

常见三角函数的公式

$$\sin(x+y) = \sin x \cos y + \sin y \cos x \quad \cos(x+y) = \cos x \cos y - \sin x \sin y$$

$$\sin(2x) = 2\sin x \cos x \quad \cos(2x) = \cos^2 x - \sin^2 x$$

$$\sin^2 x = \frac{1 - \cos(2x)}{2} \quad \cos^2 x = \frac{1 + \cos(2x)}{2}$$

$$1 + \tan x^2 = \frac{1}{\cos x^2} \quad \frac{d \tan x}{dx} = \frac{1}{\cos x^2}$$

两个常见积分

$$\int_{-\infty}^{+\infty} e^{-a(x+b)^2} dx = \sqrt{\frac{\pi}{a}}$$
$$\int_{-\infty}^{+\infty} x^2 e^{-ax^2} dx = \frac{1}{2a} \sqrt{\frac{\pi}{a}}$$

动量表象问题

$$\psi_p(x) = \frac{1}{(2\pi\hbar)^{\frac{n}{2}}} e^{\frac{ipx}{\hbar}}$$

$$\psi_x(p) = \frac{1}{(2\pi\hbar)^{\frac{n}{2}}} e^{\frac{-ipx}{\hbar}}$$

$$\delta(x) = \frac{1}{(2\pi)^n} \int_{-\infty}^{+\infty} e^{ipx} dp$$

$$\delta(p) = \frac{1}{(2\pi)^n} \int_{-\infty}^{+\infty} e^{-ipx} dx$$

$$\psi(p) = \langle p|\psi\rangle = \int dx' \, \langle p|x'\rangle \, \langle x'|\psi\rangle = \frac{1}{(2\pi\hbar)^{\frac{n}{2}}} \int_{-\infty}^{+\infty} \psi(x) e^{\frac{-ipx}{\hbar}} dx$$

$$\psi(x) = \langle x|\psi\rangle = \int dp' \, \langle x|p'\rangle \, \langle p'|\psi\rangle = \frac{1}{(2\pi\hbar)^{\frac{n}{2}}} \int_{-\infty}^{+\infty} \psi(p) e^{\frac{ipx}{\hbar}} dp$$

海森堡绘景

$$\frac{\mathrm{d}A_{H}(t)}{\mathrm{d}t} = \frac{\partial A_{H}(t)}{\partial t} + \frac{1}{i\hbar}[A_{H}(t), H] \label{eq:delta_H}$$

$$\frac{\mathrm{d} < A_H(t) >}{\mathrm{d}t} = \frac{\partial < A_H(t) >}{\partial t} + \frac{1}{i\hbar} \overline{[A_H(t), H]}$$

概率流密度

$$j_x = \frac{1}{2} (\psi^* \hat{\boldsymbol{v}} \psi - \psi \hat{\boldsymbol{v}} \psi^*) \quad \hat{\boldsymbol{v}} = \frac{\hat{\boldsymbol{p}}}{\mu} = -\frac{i\hbar}{\mu} \frac{\partial}{\partial x}$$
$$T = \begin{vmatrix} j_R \\ j_I \end{vmatrix} \quad R = \begin{vmatrix} j_T \\ j_I \end{vmatrix}$$

无限深方势阱 ([0,a]), 归一化系数 A, 势阱长度 L.

$$\psi_n(x)=\sqrt{\frac{2}{a}}\sin\frac{n\pi x}{a}\quad \frac{1}{2}LA^2=1$$

$$E_n=\frac{n^2\pi^2\hbar^2}{2\mu a^2}$$

谐振子

$$\psi_n(\xi) = N_n H_n(\xi) e^{-\frac{\xi^2}{2}}$$

$$N_n = \sqrt{\frac{\alpha}{\sqrt{\pi} 2^n n!}} \quad \alpha = \sqrt{\frac{\mu \omega}{\hbar}} \quad \xi = \alpha x$$

$$\psi_0(\xi) = \sqrt{\frac{\alpha}{\sqrt{\pi}}} e^{-\frac{\xi^2}{2}} \quad (H_0(\xi) = 1)$$

$$\psi_1(\xi) = \sqrt{\frac{\alpha}{\sqrt{\pi}}} \sqrt{2} \xi e^{-\frac{\xi^2}{2}} \quad (H_1(\xi) = 2\xi)$$

谐振子波函数具有字称 (-1)n, 通常用于奇函数的积分性质, 根据维里定理

$$\langle T \rangle = \langle V \rangle$$

能量与升降算符

$$\begin{split} E_n &= (\hat{\boldsymbol{N}} + \frac{1}{2})\hbar\omega = (n + \frac{1}{2})\hbar\omega \quad \hat{\boldsymbol{N}} = a_+ a_- \\ \hat{\boldsymbol{a}}_\pm &= \frac{1}{\sqrt{2\mu\hbar\omega}} (\mp i\hat{\boldsymbol{p}} + x) \quad [a_-, a_+] = 1 \\ a_+ &|n\rangle = \sqrt{n+1} \, |n+1\rangle \quad a_- &|n\rangle = \sqrt{n} \, |n-1\rangle \quad \hat{\boldsymbol{N}} \, |n\rangle = n \, |n\rangle \end{split}$$

交叉相谐振子处理方式

$$\xi = \frac{1}{\sqrt{2}}(x+y) \quad \eta = \frac{1}{\sqrt{2}}(x-y)$$

$$\xi^2 + \eta^2 = x^2 + y^2 \quad xy = \frac{1}{2}(\xi^2 - \eta^2) \quad \frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} = \frac{\partial^2}{\partial \xi^2} + \frac{\partial^2}{\partial \eta^2}$$

其他性质

$$x\psi_n = \frac{1}{\alpha} \left(\sqrt{\frac{n}{2}} \psi_{n-1} + \sqrt{\frac{n+1}{2}} \psi_{n+1} \right) \quad \frac{\mathrm{d}\psi_n}{\mathrm{d}x} = \alpha \left(\sqrt{\frac{n}{2}} \psi_{n-1} - \sqrt{\frac{n+1}{2}} \psi_{n+1} \right)$$

1.1 一维有限势场

定理 1.1. 势函数具有偶对称 V(x) = V(-x), $\psi(x)$ 和 $\psi(-x)$ 均是波函数的解

证明.

$$\frac{d^2}{[d(-x)]^2} = \frac{d^2}{dx^2}$$

定理 1.2. 设 V(x) = V(-x), 每一个 $\psi(x)$ 都有确定的宇称 (奇偶性)(注意每一个解的宇称可以不相同)

证明. 由于定理1.1,构造

$$f(x) = \psi(x) + \psi(-x)$$

$$g(x) = \psi(x) - \psi(-x)$$

f(x) 为偶宇称, g(x) 为奇宇称, 它们均为能量 E 的解 而 $\psi(x)$ 与 $\psi(-x)$ 都可以用 f(x) 和 g(x) 表示

$$\psi(x) = \frac{1}{2}[f(x) + g(x)]$$

$$\psi(-x) = \frac{1}{2}[f(x) - g(x)]$$

推论 1. 设 V(-x) = V(x), 而且对应于能量本征值 E, 方程的解无简并, 则该能量本征态必有确定的宇称, 例如一维 谐振子, 一维对称方势阱

• 若 E 非简并 本征函数具有确定字称 (两种字称)

$$\psi(-x) = \hat{P}\psi(x) = c\psi \quad c = \pm 1$$

 $\psi(x)$ 和 $\psi(-x)$ 分别为独立的波函数,它们的线性组合是具有字称的解

$$\psi_{\pm}(x) = \frac{1}{\sqrt{2}} [\psi(x) \pm \psi(-x)]$$

偶字称涉及到的函数图像如下

(b) $y = x \tan x$

奇宇称涉及到的函数图像如下

(b) 三个函数曲线

由于此题的势能函数具有偶对称,因此波函数可能存在偶 or 奇宇称 (需要分开讨论),此题中偶宇称至少存在一 个交点,而奇宇称有解必须有条件 $Q>\frac{\pi}{2}$,由题意可知存在且仅存在一个束缚态,所以保留偶宇称的唯一解即可 $(Q < \frac{\pi}{2})$

1.2 一维 δ 势

先不考虑 $x \neq 0$ 的局部区域, 丢掉 $\delta(x)$ 势阱, 需要用到

阶微分变化值的关系

$$\triangle(\frac{d\psi}{dx}) = \int_{-\varepsilon}^{+\varepsilon} \frac{\hbar^2}{2\mu} V(x) \psi(x) dx$$

积分性质

$$\int_{-\epsilon}^{+\epsilon} \delta(x)\psi(x)dx = \psi(0)$$

注意不要丢了 $\delta(x)$ 前面的参数

在归一化中,由于在 $x \neq 0$ 其他的区域的波函数具有对称性,对其中一边积分时其值为 $\frac{1}{5}$

$$\int_0^{+\infty} A^2 e^{-2kx} dx = \frac{1}{2}$$

1.3 一维分段无限深势阱

此题的特点是 x=0 处的 $V(x)|_{x=0}=\infty$, 与 $\delta(x)$ 势不一样的是, 虽然在此处的势能大小都是为 ∞ , 但是前者的 $\psi(0)=0$ (也因此 $\triangle \frac{d\psi}{dx}$ =0, 连续) 而后者并不为 $\psi(0)\neq 0$, 所以 $\delta(x)$ 势通常在此点并不连续。 当然由于 V(x) 具有偶对称性,波函数同样具有确定的宇称, 现假设两个排除 0 点的波函数解分别为

$$\psi_1(x) = B\sin(kx) \quad (0 < x < a) \quad \psi_2(x) = D\sin(kx) \quad (-a < x < 0)$$

给两种方法通过宇称判断系数关系

- 全局判断法 若 $\psi(x)$ 在 |x| < a 上为奇字称, 那么恰好为正弦函数 $\sin(kx)$ (奇函数) 的形式 $\Rightarrow B = D$
- 由奇宇称的定义 $\psi(x) = -\psi(-x) \Rightarrow B\sin(kx) = -D\sin(-kx) = D\sin(kx) \Rightarrow B = D$

最后需要注意 n 的取值范围, 应该是从 $n=1,2,3\cdots$ 不能从 0 开始因为 $ka=0\Rightarrow k=0$ (能量为 0) 可能在归一化中需要用到的三角函数数学公式

$$\sin(x+y) = \sin x \cos y + \sin y \cos x \quad \cos(x+y) = \cos x \cos y - \sin x \sin y$$

$$\sin(2x) = 2\sin x \cos x \quad \cos(2x) = \cos^2 x - \sin^2 x$$

$$\sin^2 x = \frac{1 - \cos(2x)}{2} \quad \cos^2 x = \frac{1 + \cos(2x)}{2}$$

1.4 半壁无限深势阱

再次遇到 $y = -x \cot x$, 记忆关键点的方式可以通过极限来记忆

$$\begin{split} &\lim_{x\to 0} -x\cot x = \lim_{x\to 0} -\frac{x}{\sin x} + \lim_{x\to 0} \cos x = -1\times 1 = -1\\ &\lim_{x\to \frac{\pi}{2}} -x\cot x = \lim_{x\to \frac{\pi}{2}} -\frac{x}{\sin x} + \lim_{x\to \frac{\pi}{2}} \cos x = -\frac{\pi}{2}\times 0 = 0 \end{split}$$

最后在此题中可变参量为a与 V_0 ,最好化简为不等式一边仅有可变参量,正如

$$V_0 a^2 \ge \frac{\pi^2 \hbar^2}{8\mu}$$

1.5 复合势: $\delta(x)$ 和阶梯势

注意任何含有 $\delta(x)$ 的势场其束缚态能量必然是负数, 所以 E < 0, 明确这一点再求解, 同样 x = 0 处波函数不连 续,在求一阶微分关系时不要忘记 $\delta(x)$ 前面的的所有系数此题束缚态条件比较特殊,是可解析的等式,不需要两个方 程联立作图求解,最后保证一方为根式,另一方包含所有可变参量并要求 > 0 即可. 同时在最后的归一化过程中需要 全空间积分为1(不是对称函数).

1.6 复合势: $\delta(x)$ 和阶梯势

此题直接带入波函数的连续性条件得到的方程组是难以求解的,因此需要特殊技巧(两部分解分别满足连续性和一阶微分连续性)

- 获得奇宇称的解, 满足一阶微分连续性, 无视 $\delta(x)$ 势, 采用无限深方势阱的解, 只取在 $x=\frac{a}{2}$ 的有效解 (此处为 0 的解)
- 获得偶宇称解重点在于 $\psi_2(a)=0$,所以不妨让 $\psi_2(x)=A\sin(x-a)$,同时在 $x=\frac{a}{2}$ 处连续得到 $\psi(x)=-A\sin(x-a)$,它是很容易验证在关于 $x=\frac{a}{2}$ 对称的.(设对称轴为 x=b)

$$\psi_1(b-x) = \psi_2(b+x) \quad \Rightarrow b = \frac{a}{2}$$

注意在求第一激发态的时候还没有考虑 $a \to 0$, 所以对于偶宇称的解的最低能量是在某一个区间, 需要把两种宇称解的最低能量进行对比.

1.7 复合势: $\delta(x)$ 和谐振子势

加入 $\delta(x)$ 后需要重新考虑 x=0 的一阶连续情况, 也就是 $\psi(0)$ 的值, 若 $\psi(0)=0$ 则原来的解仍成立反之不成立, 所以带入 x=0 后发现是 H(0)=0 即可, 事实上仅有 $n=1,3,5\cdots$ 成立

1.8 反比例势: 合流超几何函数

关键点

- 整理微分方程形如 $\frac{d^2\psi(x)}{dx^2} k^2\psi(x) + \frac{\beta}{x}\psi(x)$
- 带入 $\psi(x) = xe^{-kx}F(x)$ 进一步整理微分方程
- 变量代换 $\xi \to 2kx$ 进一步整理微分方程
- \mathbb{H} \mathfrak{h} $\xi \frac{d^2 F(\xi)}{d\xi^2} + (\gamma \xi) \frac{dF(\xi)}{d\xi} \alpha F(\xi) = 0$

$$E = -|E| \quad \beta = \frac{2\mu a}{\hbar^2} \quad \gamma = 2 \quad \alpha = 1 - \frac{\beta}{2k} = 1 - \frac{\mu a}{k\hbar^2}$$
$$\psi(\xi) = A\xi e^{-\frac{\xi}{2}} F(\alpha, \gamma, \xi)$$

一般不考, 记得反比例势能的解和合流超几何方程有关就行了, 其解为合流超几何函数, 此题和 1.9,1.10 的差不多

1.9 氢原子势能

见1.8题

1.10 反比例势能

见1.8题

1.11 已知波函数与 V(x) 的极限

此题具有启发性, 当已知波函数时, 那么波函数的二阶导数同样已知, 因此 Schrödinger 方程的未知数仅有 V(x) 与 E, 可以得到 V(E,x) 方程, 在利用额外条件进行求解, 此题为 $x\to +\infty$ $V\to 0$, 可以解得 E, 再求解 V(x) 求导的时候需要小心, 此题的二阶导一共有 4 项

1.12 已知波函数与 V(x) 的均值

同题目1.11类似,不过给出另一个已知条件是 $\langle \psi | V | \psi \rangle = 0$,记住利用这类已知条件时不要贸然带入波函数进行求解,应该凑题目条件,同时获得一个经验就是能量 E 是与坐标变量无关的,通常是优先求的,其次在得到 $\int \psi^* E \psi dx$ 后不要变成 \bar{E} ,能量的平均值和定态能量并不是同一个东西.

1.13 已知能量与势能的关系

求解过程中注意三角函数的周期性

$$\arctan{(-1)} = -\frac{\pi}{4} + n\pi \quad (n = 1, 2, 3 \cdots)$$

1.14 已知两能量的本征态

此题的关键点

• 两个有能量的本征态具有正交性

$$\int_{-\infty}^{\infty} \psi_1^*(x)\psi_2(x) = 0$$

但是直接利用以上正交关系来直接求得 b,c 是复杂又难以实现的, 我们需要额外的关系来先求得一个参数化简第二个波函数.

由于 $\psi_1(x)$ 的信息是完全可知的,因此我们需要利用它来获得关于 V(x) 的信息,本题可得到 V(x) 具有偶对称性,因此我们可以化简 $\psi_2(x)$,只能存在一个偶字称即 b=0.

这个积分可拆分成如下两个积分

$$\int_{-\infty}^{+\infty} ce^{-\beta x^2} dx + \int_{-\infty}^{+\infty} x^2 e^{-\beta x^2} dx = 0 \quad (1)$$

这两个积分相当典型,在后面使用高斯试探函数经常会遇到此类积分,现总结

1.

$$\int_{-\infty}^{+\infty} e^{-a(x+b)^2} dx = \sqrt{\frac{\pi}{a}}$$

证明.

$$I = \int_{-\infty}^{+\infty} e^{-ax^2} dx$$

$$I^2 = \int_{-\infty}^{+\infty} e^{-a(x^2 + y^2)} dx dy$$

 $\Rightarrow x = r\cos\theta \quad y = r\sin\theta$

$$I^2 = \int_0^{+\infty} \int_0^{2\pi} e^{-ar^2} r dr d\theta$$

$$I^{2} = \int_{0}^{+\infty} \pi e^{-ar^{2}} d(r^{2})$$
$$= \frac{\pi}{a} \Longrightarrow I = \sqrt{\frac{\pi}{a}}$$

2.

$$\int_{-\infty}^{+\infty} x^2 e^{-ax^2} dx = \frac{1}{2a} \sqrt{\frac{\pi}{a}}$$

特别的当 $n = 1, 3, 5, 7 \cdots$

$$\int_{-\infty}^{+\infty} x^n e^{-ax^2} dx = 0$$

证明.

$$\frac{d(e^{-ax^2})}{dt} = -2axe^{-ax^2}$$

$$I = -\frac{1}{2a} \int_{-\infty}^{+\infty} x d(e^{-ax^2})$$
$$= -\frac{1}{2a} (xe^{-ax^2} \Big|_{-\infty}^{+\infty} - \int_{-\infty}^{+\infty} e^{-ax^2} dx)$$

洛必达法则

$$\lim_{x \to \pm \infty} x e^{-x^2} = \frac{1}{2xe^{x^2}} \bigg|_{x \to +\infty} = 0^+ \quad and \quad 0^-$$

$$I = \frac{1}{2a} \sqrt{\frac{\pi}{a}}$$

3. 表格分部积分法 (处理复杂分部积分函数): 被积函数的结构为—(多项式)(函数) (本质是分部积分)

$$\int (x^2 + x)e^{3x} dx \qquad \int x(x - a)\sin 2x \qquad \int e^{3x}\sin 2x dx$$

记为 f(x) g(x)

f(x)	f'(x)	f''(x)	 0
g(x)	$\int g(x)dx$	$\iint g(x)dxdx$	 $\iiint \dots$

第二行的项数与第一行保持一致, 共计 [n,n]

$$+(1,2)-(2,3)+(3,4)-(4,5)\cdots+c$$

注意:(i,i+1) 表示第一行第 i 个元素 × 第二行的第 (i+1) 个元素,每一个乘积前的正负号为 $[+,-,+,\dots]$ 交替,同时不要漏掉积分常数 c,如果第一行的函数无法求导到 0,求导直到出现原函数的常数倍也可以.($\int e^{3x} \sin 2x dx$ 的积分第一行第三项与第二行第三项积的积分为原函数的 $-\frac{9}{4}$ 倍),减去一个 AI(A) 常数,前一个例子中为 $\frac{-9}{4}$),移项即可

回到原积分 $I_1+I_2=0$,第一个积分值很容易知道为 $c\sqrt{\frac{\pi}{\beta}}$,第二个积分值为 $\frac{1}{2\beta}\sqrt{\frac{\pi}{\beta}}$,求得 $c=-\frac{1}{2\beta}$ 方程 (9) 带入波函数求解复杂,需要细心,其中有一部需要分解因式 (具有启发性,二阶导为原函数的一个多项式倍)

$$\frac{\psi_2''(x)}{\psi_2(x)} = \frac{\beta(2\beta^2 x^4 - 11\beta x^2 + 5)}{2\beta x^2 - 1}$$
$$= \frac{\beta(2\beta x^2 - 1)(\beta x^2 - 5)}{2\beta x^2 - 1}$$
$$= \beta(\beta x^2 - 5)$$

1.15 圆圈运动

此题的 x 是以圆环的外周长为度量的, 需要变换波函数的变量便于求解 $x=R\varphi$, 因此 $\frac{d}{dx^2}=\frac{1}{R^2d\varphi^2}$ 此时 $V(x)=a\delta(x-L/2)\Longrightarrow V(\varphi)=a\delta[R(\varphi-\pi)]$ 值得注意的一个 $\delta(x)$ 的缩放性质

$$\int_{-\infty}^{+\infty} \delta(Rx) dx = \int_{-\infty}^{+\infty} \frac{1}{R} \delta(Rx) d(Rx) = 1 \Longrightarrow \delta(Rx) = \frac{1}{R} \delta(x)$$

所以我们得到新的势函数 $V(\varphi)=\frac{\alpha}{R}\delta(\varphi-\pi)$, 在求解过程中不使用三角函数解, 使用复幂指数的解更合适 (涉及角度), $\psi(x)=Ae^{-ik\varphi}+Be^{ik\varphi}$

连续性条件发生变化,发散点为 $\varphi = \pi$,实际上第三个条件和第一个条件给出的结论是一样的,而第二个条件往往是被忽略的

$$\psi_1(0) = \psi_2(2\pi) \quad \psi_1'(0) = \psi_2'(2\pi) \quad \psi_1(\pi) = \psi_2(\pi)$$

由前两个条件可以得到如下两个方程组

$$A + B = C + D \tag{1}$$

$$A - B = C - D \tag{2}$$

容易解出 A=C 带入方程 (1)or(2) 会得到 B=D, A 与 B 的关系需要一阶波函数在 $\varphi=\pi$ 的连续性关系解出, 之后我们需要再将复幂指数的解在返回三角函数形式并归一化得到

$$\psi(x) = \sqrt{\frac{1}{\pi}} \sin m\varphi$$

存在一个隐藏的周期性边界条件限制 m 的取值

$$\psi(\varphi) = \psi(\varphi + 2\pi) \Longrightarrow 2m\varphi = 2n\pi \quad (n = 1, 2, 3, 4\cdots) \Longrightarrow m = 1, 2, 3, 4\cdots$$

由此我们可以反解出

$$E_m = \frac{\hbar^2 m^2}{2\mu R^2}$$
 $(m = 1, 2, 3, 4 \cdots)$

1.16 改变哈密顿量求本征值(表象变换)

此题的关键在于表象的变换, 由坐标表象转化到动量表象 (详见曾书 P_{151} 和 P_{281-6})

 $\hat{m{x}}=i\hbarrac{\partial}{\partial\hat{m{p}}}$

证明.

$$\psi_p(x) = \frac{1}{(2\pi\hbar)^{\frac{n}{2}}} e^{\frac{ipx}{\hbar}}$$

$$\psi_x(p) = \frac{1}{(2\pi\hbar)^{\frac{n}{2}}} e^{\frac{-ipx}{\hbar}}$$

$$\delta(x) = \frac{1}{(2\pi)^n} \int_{-\infty}^{+\infty} e^{ipx} dp$$

$$\delta(p) = \frac{1}{(2\pi)^n} \int_{-\infty}^{+\infty} e^{-ipx} dx$$

n 为维数, 这里取 1 进行证明, 证明前须知内积 $\langle x|\psi\rangle$ 就是波动力学的波函数

$$\psi(x) \stackrel{def}{=} \langle x | \psi \rangle$$

进一步可知动量在坐标表象下即为动量波函数

$$\langle x|p\rangle = \frac{1}{(2\pi\hbar)^{\frac{n}{2}}} e^{\frac{ipx}{\hbar}}$$

$$\langle p|x\rangle = \frac{1}{(2\pi\hbar)^{\frac{n}{2}}}e^{\frac{-ipx}{\hbar}}$$

算符 \hat{x} 在坐标表象下的形式为x,同理算符 \hat{p} 在动量表象下为p

$$\hat{\boldsymbol{x}} |x\rangle = x |x\rangle \quad \hat{\boldsymbol{p}} |p\rangle = p |p\rangle$$

关于 δ 函数

$$\langle x'|x\rangle = \delta(x'-x)$$

坐标算符在自己坐标表象下的矩阵元

$$x_{x'x''} = \langle x'|\hat{\boldsymbol{x}}|x''\rangle = x'\langle x'|x''\rangle = x'\delta(x'-x'')$$

$$\begin{split} x_{p'p''} &= \langle p'|x|p'' \rangle \\ &= \langle p'|x' \rangle \ \langle x'|x|x'' \rangle \ \langle x''|p'' \rangle \\ &= \frac{1}{(2\pi\hbar)} \iint e^{\frac{-ip'x'}{\hbar}} e^{\frac{ip''x''}{\hbar}} x' \delta(x' - x'') dx' dx'' \\ &= \frac{1}{(2\pi\hbar)} \int x' e^{\frac{-ix(p' - p'')}{\hbar}} dx' \\ &= \frac{1}{(2\pi)} \int x' e^{-i(p' - p'')\frac{x}{\hbar}} d(\frac{x'}{\hbar}) \end{split}$$

积分内恰好出现了一个 x' 也就是坐标算符

$$\frac{\mathrm{d}e^{\frac{-ix(p'-p'')}{\hbar}}}{\mathrm{d}p'} = -\frac{i}{\hbar}e^{\frac{-ix(p'-p'')}{\hbar}}$$

$$e^{\frac{-ix(p'-p'')}{\hbar}}=i\hbar\frac{\mathrm{d}}{\mathrm{d}p'}e^{\frac{-ix(p'-p'')}{\hbar}}$$

因此

$$\begin{split} \frac{1}{(2\pi)} \int x' e^{\frac{-ix(p'-p'')}{\hbar}} dx' &= \frac{1}{(2\pi)} i\hbar \frac{\mathrm{d}}{\mathrm{d}p'} 2\pi \delta(p'-p'') \\ &= i\hbar \frac{\mathrm{d}}{\mathrm{d}p'} \delta(p'-p'') \end{split}$$

有了矩阵元后,考虑算符的一般作用

$$\begin{split} |\varphi\rangle &= \hat{\pmb{x}} \, |\psi\rangle \Longrightarrow \langle p|\varphi\rangle = \, \langle p|\hat{\pmb{x}}|\psi\rangle \Longrightarrow \varphi_p = \int dp' x_{pp'} \psi_{p'} \\ \varphi_{p'} &= \int dp'' [x_{p'p''}] \psi_{p''} = \int dp'' [i\hbar \frac{\mathrm{d}}{\mathrm{d}p'} \delta(p'-p'')] \psi_{p''} = i\hbar \frac{\mathrm{d}}{\mathrm{d}p'} \psi_{p'} \end{split}$$

1.17 期望值问题:海森堡绘景

此题涉及到两种绘景的选择: 薛定谔绘景和海森堡景

• 薛定谔绘景

此绘景下, 负责时间演化的算符是一种幺正算符 ($UU^*=U^*U=I_n\quad U^{-1}=U^*$), 态向量 $|\psi(0)\rangle_s$, 经过时 t, 演化到 $|\psi(t)\rangle_s$, 演化方程表示为

$$|\psi(t)\rangle_s = U(t,0) |\psi(0)\rangle_s$$

U(t,0) 是时间从 0 流易到 t 的时间演化算符 (或者写为时间 t_0),是幺正算符,假设系统哈密顿量 H 不含时间,则时间演化算符为

$$U(t,0) = e^{\frac{-iHt}{\hbar}}$$

而且时间演化算符与哈密顿量对易,注意指数函数 e^{-iHt} 必须通过泰勒级数进行计算

• 海森堡绘景

态向量 $|\psi(t)\rangle_H$, 算符 $A_H(t)$ 的定义分别为

$$|\psi(t)\rangle_{H} \stackrel{def}{=\!\!\!=\!\!\!=} |\psi(0)\rangle_{H} = |\psi(0)\rangle_{s}$$

$$A_H(t) \stackrel{def}{=\!=\!=\!=} U^{\dagger}(t,0) A_s U(t,0)$$

时间演化算符对时间的偏导数为

$$\frac{\partial U(t,0)}{\partial t} = \frac{1}{i\hbar} HU(t,0)$$

$$\frac{\partial U^{\dagger}(t,0)}{\partial t} = -\frac{1}{i\hbar}U^{\dagger}(t,0)H$$

所以算符 $A_H(t)$ 对时间的导数为

$$\frac{\mathrm{d}A_H(t)}{\mathrm{d}t} = \frac{1}{i\hbar}[U^\dagger A_s U, U_\dagger H U]$$

不含时间的哈密顿量在两种绘景下完全一样

$$H_H = U^{\dagger} H_s U = H_s = H$$

将算符的定义纳入考虑,得到海森堡运动方程

$$\frac{\mathrm{d}A_H(t)}{\mathrm{d}t} = \frac{1}{i\hbar}[A_H(t), H]$$

$$\frac{\mathrm{d} < A_H(t) >}{\mathrm{d}t} = \frac{1}{i\hbar} \overline{[A_H(t), H]}$$

宁外在解题过程中需要用到一个特殊的对易关系

$$[\hat{\boldsymbol{x}}, F(\hat{\boldsymbol{p}})] = \hbar F'(\hat{\boldsymbol{p}}) \Longleftrightarrow [\hat{\boldsymbol{x}}, \hat{\boldsymbol{p}}^n] = \hbar n \hat{\boldsymbol{p}}^{n-1}$$
$$[\hat{\boldsymbol{p}}, F(\hat{\boldsymbol{x}})] = -\hbar F'(\hat{\boldsymbol{x}}) \Longleftrightarrow [\hat{\boldsymbol{p}}, \hat{\boldsymbol{x}}^n] = -\hbar n \hat{\boldsymbol{x}}^{n-1}$$

1.18 转子势能突变

自由转子和自由粒子的解的形式相似

$$\psi = Ae^{-imx} + Be^{imx}$$

通常两个传播方向会将其合并

$$\psi_m = Ae^{imx}$$

但是自由转子具有周期性边界条件 $\psi(x) = \psi(x+2\pi)$ 因此使得 m 的取值只有整数 $m=0,\pm 1,\pm 2,\pm 3\cdots$,也正因为是分立指标,所以和自由粒子有所不同,可以简单的写成求和.

任何波函数都可以由它进行线性组合组合而成

$$\psi(\varphi,t) = \sum_{m} c_m \psi_m(\varphi) U(t,0)$$

所以题目要求我们求出处于新的能量基态概率 $|c_0|^2$, 因此我们先要求出 c_m , 事实上它是由初始条件决定的 (初始波函数)

同样的在我们已知了初始波函数与初始能量, 初始波函数仍然可以用 $\psi_m(\varphi)$ 展开 (新解具有完备性可以组合任何波函数)(t=0,U(0,0)=1)

$$\psi(\varphi,0) = \sum_{m} c_{m} \psi_{m}(\varphi)$$
$$\psi_{n}^{*}(\varphi)\psi(\varphi,0) = \sum_{m} c_{m} \psi_{n}^{*}(\varphi)\psi_{m}(\varphi)$$

对其进行积分,只留下了 c_m 项进行积分

 $\int \psi_m^*(\varphi)\psi(\varphi,0)d\varphi = \int c_m \psi_m^*(\varphi)\psi_m(\varphi)d\varphi$ $c_m = \int_0^{\varphi_0} \psi_m^*(\varphi)\psi(\varphi,0)d\varphi$ $c_0 = \int_0^{\varphi_0} \sin\frac{\pi\varphi}{\varphi_0}d\varphi = \frac{2\varphi_0}{\pi\sqrt{\phi\varphi_0}}$ $|c_0|^2 = \frac{4\varphi_0}{\pi^3}$

 $\diamondsuit m = 0$

时间演化算符并不影响粒子处于某个态的概率,因此当移除壁垒后概率仍旧以移除前的波函数作为初始状态(初始条件),这样将初始波函数展开(移除后的波函数可解),一些特定的系数可以求解($m \neq 0$ 无法求解)

1.19 谐振子势能突变

应该先将势场化为标准的谐振子形式 $V(x) = \frac{1}{2}\mu\omega^2x^2$, 变 k 实际上是变 ω

$$P = \left| \int_{-\infty}^{+\infty} \psi_0^*(\omega_2, x) \psi_0(\omega_1, x) dx \right|^2$$

实际上和上一题有异曲同工之秒, 总是拿目标基态和初始基态做内积就行了此题的不同点在于求平均能量, 需要用到粒子现在处的态 (波函数), 突然变化的势场会改变处于当前态的概率, 但波函数还来不及变化, 使用初始波函数即可 3 但哈密顿量 H(系数变了) 发生了变化, 不含时所以求解 t=0 时刻的能量平均值即可, 需要带入新的哈密顿量, 积分过程中和原积分进行比较 (动能没变, 势能变化)

一个重要结论在 n = 0.1 时动能和势能的期望值相等 (格里菲斯 $P_{33-2.11(c)}$)

$$\langle T \rangle = \langle V \rangle$$

建议记谐振子波函数的形式

$$\psi_n(\xi) = N_n H_n(\xi) e^{-\frac{\xi^2}{2}}$$

$$N_n = \sqrt{\frac{\alpha}{\sqrt{\pi} 2^n n!}} \quad \alpha = \sqrt{\frac{\mu \omega}{\hbar}} \quad \xi = \alpha x$$

$$\psi_0(\xi) = \sqrt{\frac{\alpha}{\sqrt{\pi}}} e^{-\frac{\xi^2}{2}}$$

$$\psi_1(\xi) = \sqrt{\frac{\alpha}{\sqrt{\pi}}} \sqrt{2} \xi e^{-\frac{\xi^2}{2}} \quad (H_1(\xi) = 2\xi)$$

1.20 1.19 的演化问题

考虑这种演化某时长后回到某态,不再求概率,而是求 T 的某个些取值满足恒等式子,最主要的还是前两行的理解,第一行为 $k\to 2k$ 任意含时波函数的表示,第二行表示此时 t=0 的初始波函数其实为原来的基态 $\psi_0(\omega_1,x)$ 明确所需论证的是当时间为多大的 T 后,其波函数一定变为 $\psi_0(\omega_1,x)$ (此时不仅回到基态同时 $\omega_2\to\omega_1$) 需要知道谐振子的波函数字称为 $(-1)^n$

1.21 有限区间深势阱的基态概率问题

由于积分区间不再是无限的, 所以我们需要明确积分区间是初始波函数所在的区间关于函数的平移缩放问题

- 平移: 是仅仅对 x 作加减, 势场和波函数一同移动的方向满足左加右减去
- 伸縮: 是仅仅对 x(任何 x 加减了常数都需要拆开再变)前的系数变化,满足放大则系数缩小,反之亦然
- 注意如果是先平移再伸缩需要拆开括号, 伸缩在平移相对不容易出错

归一化系系数通常是(L 是整个势阱的宽度)

$$\frac{1}{2}LA^2 = 1$$

1.22 有限的深势阱的移动问题

此题和上一题的区别在于是压缩而不是膨胀,粒子将会收到外力作用第一小问主要在于缓慢一词,粒子的状态并不发生变化第二小问在于突然一词,你无法判断每个微时刻的粒子受力情况

1.23 深势阱粒子的作用力问题

主要存在一个公式,即平均作用力做功等于基态能量的改变量,需要让能量对宽度 a 做微分 (将 a 看作一个可微的变量)

$$F\triangle a = -(\frac{dE}{da})\triangle a \Longrightarrow F = -\frac{dE}{da}$$

1.24 无限深势阱的叠加态粒子

题中所给的波函数一定要分解为深势阱解的叠加,这样才能知道是哪个几个能量对应的本征态的叠加,乘上相 因子时其能量也可解

第二问最好用海森堡绘景的运动方程来说明

$$\frac{dH}{dt} = \frac{1}{i\hbar}[H, H] = 0$$

所以 $t = t_0$ 时的能量不变

第三问的积分中并不是所有的相因子可以抵消,仔细计算,带入深势阱的波函时记得带入归一化系数 ($\sqrt{\frac{2}{a}}$)

1.25 无限深势阱的叠加态粒子 2

第一问记得归一化波函数 $\psi(x,t)$ 以求出 A

第二问的积分依旧难算,需要多算

第三问不确定度的表达式为

$$\triangle p = \sqrt{\langle \hat{\boldsymbol{p}}^2 \rangle - \langle \hat{\boldsymbol{p}} \rangle^2}$$

记忆技巧: 平方拔减拔平方

其中 $\hat{p}^2 = 2\mu < E >$,即计算动量平方的期望需要联系上能量不用再带入计算

1.26 已知波函数的平均值求未知波函数平均值

求动量的平均值时间因子无法抵消

1.27 表象问题

表象问题的公式总结:

$$\langle x|p\rangle = \psi_p(x) = \frac{1}{(2\pi\hbar)^{\frac{n}{2}}} e^{\frac{ipx}{\hbar}}$$

$$\langle p|x\rangle = \psi_x(p) = \frac{1}{(2\pi\hbar)^{\frac{n}{2}}} e^{\frac{-ipx}{\hbar}}$$

$$\int dx' |x'\rangle \langle x'| = I$$

$$\int dp' |p'\rangle \langle p'| = I$$

$$\psi(p) = \langle p|\psi\rangle = \int dx' \langle p|x'\rangle \langle x'|\psi\rangle = \frac{1}{(2\pi\hbar)^{\frac{n}{2}}} \int_{-\infty}^{+\infty} \psi(x) e^{\frac{-ipx}{\hbar}} dx$$

$$\psi(x) = \langle x|\psi\rangle = \int dp' \langle x|p'\rangle \langle p'|\psi\rangle = \frac{1}{(2\pi\hbar)^{\frac{n}{2}}} \int_{-\infty}^{+\infty} \psi(p) e^{\frac{ipx}{\hbar}} dp$$

1.28 动量波函数

积分可以化简为

$$\begin{split} Q\int_0^{n\pi}\sin u e^{-ku}du\\ Q&=\frac{a}{n\pi}\sqrt{\frac{1}{\pi\hbar a}}\quad u=\frac{n\pi\hbar}{a}\frac{x}{\hbar}=\frac{n\pi}{a}x \end{split}$$

使用表格分部积分法即可,记得平方的时候,要取复共轭

1.29 深势阱的壁崩溃问题与动量波函数

求概率不用考虑时间因子 $p \sim p + dp$ 之间的概率为 $|\psi(p)|^2 dp$ 波函时的表示式子要求是 $\psi(x,t)$

1.30 一维无限深势阱

第二问把三角函数的括号内展开,讨论 n 在级数与偶数下的函数形式,根据函数的奇偶性直接得出 < x >= 0 第三问积分使用分部积分,同时有了 $|c_n|^2$,可以直接通过求和获得平均能量,需要使用到一个求和公式

$$\bar{E} = \sum_{n} |c_n|^2 E_n \quad \sum_{n=1,3.5} \frac{1}{n^4} = \frac{\pi^4}{96}$$

也可以使用哈密顿量求解

$$H = -\frac{\hbar^2}{2\mu} \frac{d^2}{dx^2}$$

$$\bar{E} = \int \psi^*(x,0)H\psi(x,0)dx$$

1.31 算符的本征值问题

需要明确以下几点

- 对易子本身就是一个算符
- 乘上一个新的算符只能选择左乘或者右乘
- 一个算符不同本征值对应不同本征函数 (一般而言) 所以求证 $p_0 + \hbar c$ 为其本征值, 需要利用第一个小问的对易子, 但是相应的本征函数不一样

1.32 二维谐振子耦合

二维谐振子的耦合有以下特点

- 哈密顿量为相加
- 波函数为乘积
- 能量为相加 证明.

$$H_x\psi(x) = E_x\psi(x) \tag{1}$$

$$H_y \psi(y) = E_y \psi(y) \tag{2}$$

方程 (1) 乘以 $\psi(y)$, 方程 (2) 乘以 $\psi(x)$ 得到

$$(H_x + H_y)\psi(x)\psi(y) = (E_x + E_y)\psi(x)\psi(y)$$

第一小问 N 的取值为 $0,1,3\cdots,N$, 所以共计 N+1 个 第二小问 $n_y = \frac{N-n_x}{2}$, 必须满足 n_y 的取值是偶数, 而 n_x 的取值范围为 $0, 1, 2 \cdots N$, 枚举法即可

1.33 二维势场谐振子含交叉项

此题的计算方法具有极强的技巧性需要背住 计算能量的本征值要先写出哈密顿量,并往标准形式上靠

$$\xi = \frac{1}{\sqrt{2}}(x+y) \quad \eta = \frac{1}{\sqrt{2}}(x-y)$$

$$\xi^2 + \eta^2 = x^2 + y^2 \quad xy = \frac{1}{2}(\xi^2 - \eta^2) \quad \frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} = \frac{\partial^2}{\partial \xi^2} + \frac{\partial^2}{\partial \eta^2}$$

记得最后变成原变量

1.34 两个等质一维谐振子耦合

变量代换同上,需要凑两次平方

1.35 三维谐振子

第一小问有第三个变量代换 第二小问主要考虑 z<-c 时势能的情况为 ∞ , 波函数必须在边界上为 0, 所以有 $\psi(\xi,\eta,0)=0$, 因此 n_3 只能取 奇数项

1.36 δ 势 d 的透射与反射问题

第一小问的一般表达式就是指通解(舍弃掉x>0部分向左传播的波) 第三小问, 透射率 T 与反射率 R, 参数带虚数指标 i 时, 要取复共轭来计算

$$T = \frac{|F|^2}{|A|^2}$$
 $R = \frac{|B|^2}{|A|^2}$

第四小问,一个是经典力学认为无法穿过的势垒,但实际上可以穿过的隧道效应;以及百分之百能穿的过的势阱.

1.37 阶跃势的透射与反射问题

这种题通常为了计算方便,入射系数通常取1

第一小问由于零点两侧势能状况并不一样,即波数不一样所以需要通过概率流密度计算

$$j_x = -\frac{i\hbar}{2\mu} (\psi^* \frac{\partial}{\partial x} \psi - \psi \frac{\partial}{\partial x} \psi^*)$$
$$T = \left| \frac{j_R}{j_I} \right| \quad R = \left| \frac{j_T}{j_I} \right|$$

第二小问由于 x>0 的部分是势垒, 只需要考虑波函数有界, 舍去 $e^{\beta x}$, 其他正常算,T 和 R 此时也满足波数一样时的等式即

$$T + R = 1$$

但是透射参数 $T \neq |F|^2$ (解的形式不一样), 由于 ψ_2 是实函数, 所以其透射系数必为 0

1.38 阶跃势的透射与反射问题 2

此题中 E = 1000ev V = 750ev, 初始个数 $N_0 = 1800$, 透射个数 $N = N_0T$

1.39 矩形势垒的透射与反射问题

计算量较大, 在处理 $\alpha \to 0$ 时用到无穷小代换 $\sin \alpha = \alpha$

1.40 势阱的透射与散射问题

类似解法,同样实函数的透射系数为0

1.41 复合势: 台阶势与 δ 势的透射与散射问题

类似解法,解法类似,仅仅是波函数的一阶导数在0点跃进

1.42 粒子吸收模型: 虚势

虚势场描述粒子的吸收,只是一个实用的模型,不是量子力学的理论,因为粒子在虚势场的哈密顿量不是厄米算符,它同量子力学的基本原理不符合

这个虚势场模型描述为下

$$V(x) = \begin{cases} 0, & \text{if } x < 0 \\ -iV, & \text{if } x > 0 \end{cases}$$

前期解法基本一致,后面需要根据 V<< E 将 k 用 k_0 表示,带入 A,B 取近似值. 吸收系数的定义,单位路程上流密度的减少 $-\frac{dj}{dx}$,相对值 $\frac{1}{j}$

$$M = \left| -\frac{1}{i} \frac{dj}{dx} \right|$$

1.43 非原点的 δ 势

遇到指数方程不要急,此题和三角函数方程组解法很类似

$$\frac{e^{kx} + e^{-kx}}{e^{kx} - e^{-kx}} = 1 - \frac{2e^{-kx}}{e^{kx} - e^{-kx}}$$
$$= 1 - \frac{2}{e^{2kx} - 1}$$

将超越方程构造成过原点的直线和某一指数函数的交点问题,最后满足通过原点的直线的斜率小于另一侧指数函数的斜率 1

1.44 无限深势阱的叠加态粒子 3

算归一化系数别去积分,而是两个态的概率为1就行动量平均值的计算量依旧大,通常将能量差值设为

$$\frac{E_2 - E_1}{\hbar} = w$$

最后再带入具体的一般的这类相似的题都有

$$\int \psi_1^* \hat{\boldsymbol{p}} \psi_1 = 0 \qquad \int \psi_2^* \hat{\boldsymbol{p}} \psi_2 = 0$$

1.45 海森堡绘景

这类题记得需要算两次微分,第一次得到的是一个微分方程组,再让方程对时间 t 求微分,并联立两个方程求解 初始条件 $\hat{x}(0) = x$ $\hat{p}(0) = p$

1.46 海森堡绘景 2

定理 1.3. 维里 (位力) 定理: 动能平均值是势能的平均值的 $\frac{v}{2}$ 倍, 其中 v 表示势能函数是关于 x 的 v 次方程

$$\bar{T} = \frac{v}{2}\bar{V}$$

第一小问在本题中 v=-2, 因此 E=T+V=0, 不满足在该势场下 E<0 的条件

在一维谐振子中v=2 因此有结论 $\bar{T}=\bar{V}$

第二小问对算符求时间的倒数时,如果含有时间项需要加上一个对时间的偏微分

$$\frac{\mathrm{d}\hat{\boldsymbol{Q}}(t)}{\mathrm{d}x} = \frac{\partial\hat{\boldsymbol{Q}}(t)}{\partial t} + \frac{1}{i\hbar}[\hat{\boldsymbol{Q}}(t),\hat{\boldsymbol{H}}]$$

1.47 量子化

量子化:

量子化的一个含义是, 在经典力学中取连续值的力学量, 到量子力学中变成取分立值的现象, 其原因是在经典力学中的力学量 $F(x_i, p_i)$ 到了量子力学中变成了厄米算符 $\hat{F}(\hat{x}_i, \hat{p}_i)$, 他们满足一些对易关系(略)

正是这些对易关系是的一些由 \hat{x}_i 与 \hat{p}_i 组成的力学量算符的本征值取分立值.

根据经典力学的哈密顿正则运动方程,带入对易关系,就得到海森堡运动方程,,这些对易关系又叫做正则量 子化条件

2 力学量算符

总结算符容易忘记的知识点

常见对易关系

$$\begin{split} \left[x_{i},\hat{\boldsymbol{p}}_{j}\right] &= i\hbar\delta_{ij} \quad \left[\hat{\boldsymbol{p}}_{i},\hat{\boldsymbol{p}}_{j}\right] = 0 \\ \\ \left[\hat{\boldsymbol{L}}_{i},\hat{\boldsymbol{L}}_{j}\right] &= i\hbar\hat{\boldsymbol{L}}_{k}\varepsilon_{ijk} \quad \left[\hat{\boldsymbol{L}}^{2},\hat{\boldsymbol{L}}_{i}\right] = 0 \quad \left[x,f(\hat{\boldsymbol{p}})\right] = i\hbar\frac{\partial f(\hat{\boldsymbol{p}})}{\partial\hat{\boldsymbol{p}}} \\ \\ \left[\hat{\boldsymbol{L}}_{i},\hat{\boldsymbol{x}}_{j}\right] &= i\hbar\hat{\boldsymbol{x}}_{k} \quad \left[\hat{\boldsymbol{L}}_{i},\hat{\boldsymbol{p}}_{j}\right] = i\hbar\hat{\boldsymbol{p}}_{k} \\ \\ \hat{\boldsymbol{L}}_{\pm} &= \hat{\boldsymbol{L}}_{x} \pm i\hat{\boldsymbol{L}}_{y} \quad \left[\hat{\boldsymbol{L}}_{z},\hat{\boldsymbol{L}}_{\pm}\right] = \pm\hbar\hat{\boldsymbol{L}}_{\pm} \quad \left[\hat{\boldsymbol{L}}^{2},\hat{\boldsymbol{L}}_{\pm}\right] = 0 \end{split}$$

角动量升降算符

$$\hat{m{L}}_{\pm}=\hat{m{L}}_x\pm i\hat{m{L}}_y \quad \left[\hat{m{L}}_z,\hat{m{L}}_{\pm}
ight]=\pm \hbar\hat{m{L}}_{\pm}$$
 $\hat{m{L}}_x=rac{1}{2}(\hat{m{L}}_++\hat{m{L}}_-) \quad \hat{m{L}}_y=rac{1}{2i}(\hat{m{L}}_+-\hat{m{L}}_-) \quad \hat{m{L}}^2=\hat{m{L}}_-\hat{m{L}}_++\hat{m{L}}_z^2+\hbar\hat{m{L}}_z$

$$\hat{\boldsymbol{L}}^2 Y_{lm} = l(l+1)\hbar^2 Y_{lm} \quad \hat{\boldsymbol{L}}_z = m\hbar Y_{lm}$$

$$\hat{\boldsymbol{L}}_{\pm} Y_{lm} = \sqrt{l(l+1) - m(m\pm 1)}\hbar Y_{lm\pm 1}$$

$$\langle lm|\hat{\boldsymbol{L}}_x|lm\rangle = 0 \quad \langle lm|\hat{\boldsymbol{L}}_y|lm\rangle = 0$$

矩阵量子力学

$$\sum_{|n\rangle} \langle n| = 1$$

$$\hat{\boldsymbol{\rho}} = |\psi\rangle \langle \psi| \quad \hat{\boldsymbol{\rho}} = \hat{\boldsymbol{\rho}}^2 \quad \lambda = 0, 1$$

$$\hat{\boldsymbol{\rho}}$$

$$tr(\hat{\boldsymbol{A}}) = \sum_{n} \langle n|\hat{\boldsymbol{A}}|n\rangle$$

$$\hat{\boldsymbol{F}}_{nm} = \langle n|\hat{\boldsymbol{F}}|m\rangle$$

算符公式

$$F(\hat{\boldsymbol{A}}) = \sum_{n=0}^{\infty} \frac{F^{(n)}(0)}{n!} \hat{\boldsymbol{A}}^n \qquad F^{(n)}(0) = \left. \frac{\mathrm{d}^n F(\hat{\boldsymbol{A}})}{\mathrm{d} \hat{\boldsymbol{A}}^n} \right|_{\hat{\boldsymbol{A}} = 0}$$
$$e^{i\alpha\hat{\boldsymbol{A}}} = \cos\alpha + i\sin\alpha \hat{\boldsymbol{A}}$$

Baker-Hausdorff 算符等式

$$e^{\hat{\boldsymbol{A}}}\hat{\boldsymbol{B}}e^{-\hat{\boldsymbol{A}}} = \hat{\boldsymbol{B}} + \left[\hat{\boldsymbol{A}}, B\right] + \frac{1}{2!}\left[\hat{\boldsymbol{A}}, \left[\hat{\boldsymbol{A}}, \hat{\boldsymbol{B}}\right]\right] + \frac{1}{3!}\left[\hat{\boldsymbol{A}}, \left[\hat{\boldsymbol{A}}, \left[\hat{\boldsymbol{A}}, \hat{\boldsymbol{B}}\right]\right]\right] \cdots$$

如果一个算符写在了幂指数上例如 $e^{\lambda \hat{A}}$, 那么它和别的算符的对易关系可以直接看作算符 \hat{A} 来使用,

比如

$$\left[\hat{\boldsymbol{L}}^2, \hat{\boldsymbol{L}}_x\right] = 0 \quad \left[\hat{\boldsymbol{L}}^2, e^{\lambda \hat{\boldsymbol{L}}_x}\right] = 0$$

测不关系

$$\triangle A \triangle B \ge \frac{1}{2} \left| \overline{[A, B]} \right| \quad \triangle x \triangle p \ge \frac{\hbar}{2}$$
$$\triangle A = \sqrt{\langle A^2 \rangle - \langle A \rangle^2}$$

nabla 算子运算规则

$$\begin{split} \nabla \cdot (\vec{\mathbf{r}} \frac{\psi}{r}) &= (\nabla \cdot \vec{\mathbf{r}}) \frac{\psi}{r} + \vec{\mathbf{r}} \cdot \nabla (\frac{\psi}{r}) \\ \nabla (\frac{\psi}{r}) &= (\nabla \frac{1}{r}) \psi + \frac{1}{r} \nabla \psi \end{split}$$

其中 $\nabla \cdot \vec{\mathbf{r}} = 3$ $\nabla \frac{1}{r} = -\frac{\vec{\mathbf{r}}}{r^3}$ 在球坐标中

$$\nabla = \frac{\partial}{\partial r} \mathbf{e_r} + \frac{1}{r} \frac{\partial}{\partial \theta} \mathbf{e_\theta} + \frac{1}{r \sin \theta} \frac{\partial}{\partial \varphi} \mathbf{e_\varphi} \quad \vec{\mathbf{r}} = r \mathbf{e_r}$$

力学量完全集:

它们是一组线性无关的相互对易的力学量,它们的共同本征函数全体集合可以用来表示粒子的运动状态.在力学量完全集中,力学量的个数为粒子运动的维数.例如对于在三维中心力场中运动的粒子,力学量完全集可以是(x,y,z)或 $(\hat{p}_x,\hat{p}_y,\hat{p}_z)$ 或者 $(\hat{L}^2,\hat{L}_z,\hat{H})$ 如果考虑自旋,还应增加力学量 \hat{S}_z

F-H 定理:

$$\frac{\partial E_n}{\partial \lambda} = \overline{\left(\frac{\partial \hat{\boldsymbol{H}}}{\partial \lambda}\right)_n}$$

泰勒级数

$$\cos x = \sum_{n=0}^{\infty} \frac{(-1)^n}{(2n)!} x^{2n} = 1 - \frac{x^2}{2} + \frac{x^4}{24} + O\left(x^6\right)$$

$$\sin x = \sum_{n=0}^{\infty} \frac{(-1)^n}{(2n+1)!} x^{2n+1} = x - \frac{x^3}{6} + \frac{x^5}{120} + O\left(x^6\right)$$

$$e^x = \sum_{n=0}^{\infty} \frac{1}{n!} x^n = 1 + x + \frac{x^2}{2} + \frac{x^3}{6} + \frac{x^4}{24} + \frac{x^5}{120} + O\left(x^6\right)$$

2.1 空间反演算符和动量算符的厄米证明

换元时记得变积分上下限,负号可以收进去,同时改变积分上下限

2.2 球坐标的动量算符

一些运算规则

$$\begin{split} \nabla \cdot (\vec{\mathbf{r}} \frac{\psi}{r}) &= (\nabla \cdot \vec{\mathbf{r}}) \frac{\psi}{r} + \vec{\mathbf{r}} \cdot \nabla (\frac{\psi}{r}) \\ \nabla (\frac{\psi}{r}) &= (\nabla \frac{1}{r}) \psi + \frac{1}{r} \nabla \psi \end{split}$$

其中
$$\nabla \cdot \vec{\mathbf{r}} = 3$$
 $\nabla \frac{1}{r} = -\frac{\vec{\mathbf{r}}}{r^3}$ 在球坐标中

$$\nabla = \frac{\partial}{\partial r} \mathbf{e_r} + \frac{1}{r} \frac{\partial}{\partial \theta} \mathbf{e_\theta} + \frac{1}{r \sin \theta} \frac{\partial}{\partial \varphi} \mathbf{e_\varphi} \quad \vec{\mathbf{r}} = r \mathbf{e_r}$$

2.3 算符函数问题

结论需要背住(总结部分已经有了)

2.4 算符欧拉公式

结论需要背住(总结部分已经有了)

两个三角函数的泰勒级数

$$\cos x = \sum_{n=0}^{\infty} \frac{(-1)^n}{(2n)!} x^{2n} = 1 - \frac{x^2}{2} + \frac{x^4}{24} + O\left(x^6\right)$$

$$\sin x = \sum_{n=0}^{\infty} \frac{(-1)^n}{(2n+1)!} x^{2n+1} = x - \frac{x^3}{6} + \frac{x^5}{120} + O\left(x^6\right)$$

2.5 算符的久期方程问题

要求证明某态也为某算符本征矢时,直接算符作用到态上根据条件化简到久期方程的形式,本征值是会变化的

2.6 对易关系求解问题

第一小问当已知哈密顿量时, \hat{p} 是可以用 $\left[x,\hat{H}\right]$ 表示出来的,带入后再把对易子拆开这样就能利用哈密顿量的本征值方程,注意 $\langle n|\hat{H}=\langle n|E_n$

求系数的时候注意最好更改能量的减法为 E_n-E_m

第二小问与第三小问需要用到单位算符

$$\sum_{n} |n\rangle \langle n| = 1$$

第三小问化简后发现里面包含 xp, 因此将能量项提个负号再凑一个 px

2.7 能量表象的算符证明

所谓能量表象即,能量本征方程形式

$$\hat{\boldsymbol{H}}|n\rangle = E_n|n\rangle$$

方程中 E_n 为 n 个能量本征值, 其本征态为 $|n\rangle$ 所以将能量系数乘到算符里并作用在态上, 就得到 \hat{H} 分别放在第一个矩阵元和第二个矩阵元就可以得到两种形式

2.8 能量表象的算符证明

通常一个算符重复出现在一个内积里,则用单位算符隔开,如果还重复算符之间包含哈密顿算符,一般插入在哈密顿算符后面保证能用能量本征方程

例如下面几个情况

 $\hat{F}\hat{F}^{\dagger}\hat{H}$ 插入在算符之间; $\hat{F}\hat{H}\hat{F}^{\dagger}$ 插入在哈密顿算符后面; 特别的 $\hat{H}\hat{F}\hat{F}^{\dagger}$, 可以直接等价 $\langle k|\hat{H}=\langle k|E_k$ 并提出能量

2.9 角动量本征函数和本征值

 \hat{L}^2 的本征函数是球谐函数 $Y_{lm}(\theta,\varphi)$, 本征值是 $l(l+1)\hbar^2$, 算符 \hat{L}_z 的本征值是 $m\hbar$ l 为角量子数取值范围是 $0,1,2,3,4\cdots$, m 是磁量子数, 取值范围是 $0,\pm 1,\pm 2,\pm 3\cdots$ (简并度为 (2l+1)) 做此题不需要把升降算符展开, 直接算出对易关系就行了, 算对易关系用对易算子的运算法则, 建议记住 \hat{L}_z 与升降算符的对易式子

$$\hat{m{L}}_{\pm}=\hat{m{L}}_{x}\pm i\hat{m{L}}_{y}\quad\left[\hat{m{L}}_{z},\hat{m{L}}_{\pm}
ight]=\pm\hbar\hat{m{L}}_{\pm}$$

做第二小问的时候可以先把本征值假设出来,通过取符共轭做内积的方式消去本征值旁边的波函数

2.10 算符等式

证明目标非常像一个泰勒展开

Baker-Hausdorff 算符等式

$$e^{\hat{\boldsymbol{A}}}\hat{\boldsymbol{B}}e^{-\hat{\boldsymbol{A}}} = \hat{\boldsymbol{B}} + \left[\hat{\boldsymbol{A}}, B\right] + \frac{1}{2!}\left[\hat{\boldsymbol{A}}, \left[\hat{\boldsymbol{A}}, \hat{\boldsymbol{B}}\right]\right] + \frac{1}{3!}\left[\hat{\boldsymbol{A}}, \left[\hat{\boldsymbol{A}}, \left[\hat{\boldsymbol{A}}, \hat{\boldsymbol{B}}\right]\right]\right] \cdots$$

其证明过程是一个常见的方法就是加入参数 λ

$$F(\lambda) = e^{\lambda \hat{A}} \hat{B} e^{-\lambda \hat{A}}$$

同一个算符与其一个算符函数的位置可以互相交换一下(因此 $-\hat{A}$ 可以换到最后面去)

2.11 算符等式 2

第一小问回顾对易子的公式

$$\left[\hat{m{A}},\hat{m{B}}\hat{m{C}}
ight] = \hat{m{B}} \left[\hat{m{A}},\hat{m{C}}
ight] + \left[\hat{m{A}},\hat{m{B}}
ight]\hat{m{C}}$$

然后利用颗目条件的已知对易关系即可

第二小问构造算符函数

$$F(\lambda) = e^{\hat{A}\lambda}e^{\hat{B}\lambda}$$

之后使用 Baker-Hausdorff 算符等式时, 根据题目的对易关系, 有非常多项为 0, 因此再积分即可

2.12 角动量算符的证明题

Baker-Hausdorff 算符等式经典用法

2.13 算符等式 3

需要背住幂指数函数的展开式子

$$e^{x} = \sum_{n=0}^{\infty} \frac{1}{n!} x^{n} = 1 + x + \frac{x^{2}}{2} + \frac{x^{3}}{6} + \frac{x^{4}}{24} + \frac{x^{5}}{120} + O\left(x^{6}\right)$$

2.14 角动量算符的本征值问题

要求背诵角动量升降算符的形式与本征值

角动量升降算符,它们都是厄米算符,可以选择作用在左边或者右边

$$\hat{\boldsymbol{L}}_{\pm} = \hat{\boldsymbol{L}}_{x} \pm i\hat{\boldsymbol{L}}_{y} \quad \left[\hat{\boldsymbol{L}}_{z}, \hat{\boldsymbol{L}}_{\pm}\right] = \pm \hbar\hat{\boldsymbol{L}}_{\pm}$$

$$\hat{\boldsymbol{L}}_{x} = \frac{1}{2}(\hat{\boldsymbol{L}}_{+} + \hat{\boldsymbol{L}}_{-}) \quad \hat{\boldsymbol{L}}_{y} = \frac{1}{2i}(\hat{\boldsymbol{L}}_{+} - \hat{\boldsymbol{L}}_{-}) \quad \hat{\boldsymbol{L}}^{2} = \hat{\boldsymbol{L}}_{-}\hat{\boldsymbol{L}}_{+} + \hat{\boldsymbol{L}}_{z}^{2} + \hbar\hat{\boldsymbol{L}}_{z}$$

$$\hat{\boldsymbol{L}}^{2} |lm\rangle = l(l+1)\hbar^{2}Y_{lm} \quad \hat{\boldsymbol{L}}_{z} = m\hbar |lm\rangle$$

$$\hat{\boldsymbol{L}}_{\pm}Y_{lm} = \sqrt{l(l+1) - m(m\pm 1)}\hbar |l\pm m\rangle$$

$$\langle lm|\hat{\boldsymbol{L}}_{x}|lm\rangle = 0 \quad \langle lm|\hat{\boldsymbol{L}}_{y}|lm\rangle = 0$$

在求 $\overline{\hat{m{L}}_y^2}$ 时,将其中一个 $\hat{m{L}}_y$ 作用在复共轭波函数上,提出系数时变为 $-\frac{1}{2i}$,因此最前面的系数为 $\frac{1}{4}$

2.15 角动量升降算符问题

同题目 2.9(1)

2.16 未知算符和角动量的对易关系

这类题通常给出一个未知算符和已知算符的对易关系,由证明式子可知,在经过 \hat{V} 算符作用后整体升了一个态变成 $|j+1,j+1\rangle$,换句话说,如果经过算符 \hat{L}^2 与算符 \hat{L}_z 作用后能给出所有的j都升了1那么意味着算符 \hat{V} 确实让态升了,得证

在证明第二个等式的时候需要把 $\hat{\boldsymbol{L}}^2$ 算符用升降算符和 $\hat{\boldsymbol{L}}_z$ 去替代, 同时由于 m=l, 所以升降算符的本征值有很多项为 0

2.17 角动量算符的本征值问题 2

第三小问注意 l=m, 因此 $\hat{L}_+\psi_{kll}=0$

2.18 连续谱问题

其本征函数构成正交完备系,因此任何函数都可以是他们的组合包括势函数 V(x),待求解的方程之中唯一未知的就是 V(x),所以需要将 V(x) 使用完备基表示

同时由于 V(x) 仅包含 x, 因此需要将 ω 进行积分

左乘 $u^*(x,\omega')$ 其中第二个变量是 ω' 的原因是为了放到积分号里面 (并不对 ω' 进行积分). 再进行全空间积分,得到 δ 函数挑选出 $C(\omega)(\omega-\omega_0)$

2.19 算符的泰勒级数应用

使用幂级数展开 $e^{\frac{-ia\hat{p}_x}{\hbar}}$ 并带入算符 $\hat{p}_x=-\hbar\frac{d}{dx}$, 最后得到 $\psi(x-a)$ 在 0 点的泰勒展开得证第二小问直接去转置共轭就可以了, 不用再展开了

幺正算符

$$\hat{\boldsymbol{U}}^{\dagger} = \hat{\boldsymbol{U}}^{-1} = (\hat{\boldsymbol{U}}^T)^* \Longleftrightarrow \hat{\boldsymbol{U}}^{\dagger} \hat{\boldsymbol{U}} = \hat{\boldsymbol{U}} \hat{\boldsymbol{U}}^{\dagger} = \hat{\boldsymbol{I}}$$

2.20 谐振子的均值问题

多个方法都要会

求解 \hat{x} 和 \hat{p} 的平均值

- 谐振子的波函数的对称性(要么为奇函数要么为偶函数)
- 递推方式

$$x\psi_n = \frac{1}{\alpha} (\sqrt{\frac{n}{2}} \psi_{n-1} + \sqrt{\frac{n+1}{2}} \psi_{n+1}) \quad \frac{\mathrm{d}\psi_n}{\mathrm{d}x} = \alpha (\sqrt{\frac{n}{2}} \psi_{n-1} - \sqrt{\frac{n+1}{2}} \psi_{n+1})$$

- 对易方式: 将 \hat{x} 使用 $\left[\hat{p},\hat{H}\right]$ 的对易关系来表示并带入, 将哈密顿量分别左作用和右作用 求解 \hat{x}^2 与 \hat{p}^2 的平均值
- 使用维里定理
- 使用 F − H 定理

$$\frac{\partial E_n}{\partial \omega} = \overline{\left(\frac{\partial \hat{\boldsymbol{H}}}{\partial \omega}\right)_n}$$

2.21 则不准关系与演化问题

太难算了, 跳过

2.22 动能概率分布问题

当动能为 $T=\frac{\hat{p}^2}{2u}$,则对于 $p=\pm p_0$ 时都对应同一个动能,因此动能的概率分布为动量的概率分布的两倍

$$F(T)dT = 2|\psi(p)|^2 dp$$

F(T) 本身就是概率分布函数了,不需要再平方. 求动能的平均值时,由于 T 是厄米的,所以直接 $\int_0^{+\infty} F(T) T dT$,注意积分区间是 $[0,+\infty]$,使用高斯积分公式时值为原来的一半. 把剩下的系数等价换成 ω 更符合能量的表示形式

2.23 谐振子的递推公式问题

注意 $\frac{d\psi_n}{dx}$ 求导的时候有两项

第三小问将能量表示为 $E-\overline{\hat{H}}$,并用不确定度表示出来,使用均值不等式,带入测不准关系就可以得到关于能量的不等式.

第四小问使用维里定理和 F-H 定理秒做.

2.24 束缚定态下的新态平均值问题

若粒子处于束缚定态,则必有

$$<\hat{\pmb{p}}>=<\hat{\pmb{F}}>=0 \quad F=-rac{\partial V(x)}{\partial x}$$

证明方法见习题 2.38(去算 $\left[x, \hat{\boldsymbol{H}}\right] \quad \left[\hat{\boldsymbol{p}}, \hat{\boldsymbol{H}}\right]$)

2.25 谐振子演化平均值问题

需要利用谐振子波函数的宇称 $(-1)^n$, 同时被积函数为奇函数的直接去掉, 再利用谐振子波函数的递推公式即可.

2.26 一维无限深方势阱定态能量

直接用能量的表达式就可以了.

2.27 正定算符

第一小问证明算符的正定性看是否是模方

第二小问厄米算符左作用形成新的态,右作用形成一个态变成内积,所以正定

迹的定义

$$tr(\hat{\boldsymbol{A}}) = \sum_{n} \langle n | \hat{\boldsymbol{A}} | n \rangle$$

2.28 密度矩阵

密度算符

$$\hat{\boldsymbol{\rho}} = |\psi\rangle\langle\psi| \quad \hat{\boldsymbol{\rho}} = \hat{\boldsymbol{\rho}}^2 \quad \lambda = 0, 1$$

第一小问两个内积(或者矩阵元等)都是积分或者说是一个数,是可交换的

第二小问取的态需使用 φ 作为符号, 以免直接内积为 1, 同时需要将密度算符二次作用, 这是一个常见的方法.

第三小问直接对密度算符求偏导

$$\frac{\partial \hat{\boldsymbol{\rho}}}{\partial t} = \frac{\partial (|\psi\rangle \langle \psi|)}{\partial t}$$

题目条件的符厄米共轭方程

$$-i\hbar\frac{\partial\left\langle \psi\right|}{\partial t}=\left\langle \psi\right|\hat{\boldsymbol{H}}$$

注意 $\langle \psi |$ 和 $\hat{\mathbf{H}}$ 的位置要调换

2.29 能量表象下可观测量的本征值

此题仅有两个能量本征态 $|1\rangle$ $|2\rangle$,所以任何态都会是它们的叠加 在第三小问求本征值时,可以在此能量表象下求,因此可以看作 $|1\rangle=\begin{pmatrix}1\\0\end{pmatrix}$ $|2\rangle=\begin{pmatrix}0\\1\end{pmatrix}$,所以算符 $\hat{\mathbf{R}}$ 在此表象下的四个矩阵元可以算出

2.30 两套本征态的问题

第一小问记住,测量谁就用谁的本征态去展开此时的态,得到本征值的贡献并求和

第二小问总结量子力学中的测量原理

量子力学测量问题

在此题中初态为 $|\psi_{\lambda}\rangle$ 经过测量 \hat{A} 后, 波函数坍缩到某 $|\phi_n\rangle$ 上, 但是这个态仅仅是体系受到测量仪器的作用而产生的一个暂态, 是体系一个新的初态而已, 体系要按照它原来的规律随时间演化也就是 $|\psi(t)\rangle$

2.31 叉乘的计算

计算叉乘使用行列式 $\hat{p} \times \hat{L}$

$$egin{array}{cccc} ert & ec{\mathbf{i}} & ec{\mathbf{j}} & ec{\mathbf{k}} \ \hat{oldsymbol{p}}_x & \hat{oldsymbol{p}}_y & \hat{oldsymbol{p}}_z \ \hat{oldsymbol{L}}_x & \hat{oldsymbol{L}}_y & \hat{oldsymbol{L}}_z \end{array}$$

2.32 角动量算符的升降算符

第二小问需要明确要证明什么,平均值在共同本征态上与磁量子数无关即 $\langle jm|\hat{\pmb{F}}|jm\rangle = \langle jm+1|\hat{\pmb{F}}|jm+1\rangle$ 需要用到一个重要的等式

$$\hat{J}_{+}\left|jm\right\rangle = \sqrt{j(j+1) - m(m+1)}\hbar\left|jm+1\right\rangle$$

它的厄米共轭形式非常有用

$$\langle jm|\hat{\boldsymbol{J}}_{-}=\sqrt{j(j+1)-m(m+1)}\hbar\langle jm+1|$$

这样 $\hat{J}_-\hat{J}_+$ 不改变磁量子数的值, 而算符 \hat{J}_- 左作用和算符 \hat{J}_+ 右作用都改变磁量子数的值同时该算符和升降算符都对易, 即 $\hat{J}_-\hat{F}\hat{J}_+=\hat{F}\hat{J}_-\hat{J}_+$

2.33 力学量的对时间的二阶微分

直接使用海森堡运动方程更简单

2.34 位能平均值的证明题

需要用到题目 2.6 的结论, 没做跳过

2.35 不确定关系与小孔

争议题

2.36 期望的展开

之前都是展开初态波函数,其厄米共轭也存在,因此可以用波函数展开某期望的形式. 需要利用题目条件 $E_1 \leq E_2 \leq E_3 \cdots$ 进行缩放

第二小问基态为 |0> 第一激发态为 |1>, 第二激发态为 |2>, 所以任一波函数的展开到第二激发态即可

$$|\psi\rangle = \langle 0|\psi\rangle |0\rangle + \langle 1|\psi\rangle |1\rangle + c_2 |2\rangle$$

其中因为要构造第二激发态所以 $c_2 = \langle 2|\psi\rangle = \langle 2|2\rangle = 1$

$$|2\rangle = |\psi\rangle - \langle 0|\psi\rangle |0\rangle - \langle 1|\psi\rangle |1\rangle$$

求第二激发态等能量上限的计算有疑问

2.37 角动量算符的平均值

显然 \hat{L}_x 与 \hat{L}_y 都可以使用升降算符表示, 在本征态下的平均值均为 0(右作用磁量子数加一导致正交) 第二小问使用简单的结论即 \hat{L}_x^2 与 \hat{L}_y^2 的平均值一样 (对称性)

$$<\hat{m{L}}_{x}^{2}>=<\hat{m{L}}_{y}^{2}>=<rac{1}{2}(\hat{m{L}}^{2}-\hat{m{L}}_{z}^{2})>$$

同时和算符 \hat{L}_z 的交叉相均为 0, 仅有 $\hat{L}_x\hat{L}_y$ 和 $\hat{L}_y\hat{L}_x$ (使用升降算符计, 计算量非常大)

2.38 束缚态的动量和力学量算符的平均值

主要是计算 $\left[x, \hat{\boldsymbol{H}}\right]$ 表示 $\hat{\boldsymbol{p}}$ 计算 $\left[\hat{\boldsymbol{p}}, \hat{\boldsymbol{H}}\right]$, 其中势函数式关于 x 的, 其对易关系不是 0 而是 $\left[\hat{\boldsymbol{p}}, V(x)\right] = \frac{\partial V(x)}{\partial x} \left[\hat{\boldsymbol{p}}, x\right] = -\hbar \frac{\partial V(x)}{\partial x}$

2.39 反对易关系

简单题

2.40 力学量的测量问题

此题是一类问题需要掌握.

测量谁就用谁的本征态作展开(如果没有则先计算本征态),同时每次测量波函数都会坍缩到这个本征态上

注意 | ψ > 虽然测出来是本征值, 但是不是本征态, 要先假设本征态

2.41 力学量测量问题 2

注意假设 χ_1 和 χ_2 是正交的, 因此 ϕ_1 展开系数的平方和为 1 是归一化的, 而 ϕ_2 展开系数的平方和不为 1 要先归一化

2.42 波函数的正交归一的方法

建议看方法2更有物理意义(P99)

2.43 能量表象的概率计算

前 3 问简单, 注意在第三问算出中微子要么处于 $|e\rangle$ 要么处于 $|\mu\rangle$ 因此第四问再次回到 $|e\rangle$, 无非就是处于 $|\mu\rangle$ 的概率为 0(或者处于 $|e\rangle$ 的概率为 1), 使用第三问的计算结果即可

2.44 谐振子的升降算符的证明问题

这些证明关系可以看看就行了,第二小问主要是计算 $\left[\hat{a}_{-},\hat{N}\right]$ 与 $\left[\hat{a}_{+},\hat{N}\right]$

$$\hat{m{N}}=\hat{m{a}}_{+}\hat{m{a}}_{-}$$
 $\hat{m{H}}=(\hat{m{N}}+rac{1}{2})\hbar\omega$

2.45 谐振子的升降算符的证明问题 2

一个重要的式子

$$\sum_{n=0}^{\infty} c_n \sqrt{n} |n-1\rangle = \alpha \sum_{n=0}^{\infty} c_n |n\rangle$$

求和公式不是随便提出系数,这个公式说明的是相同态下的系数一样即

$$c_n\sqrt{n} = \alpha c_{n-1} \iff c_{n+1}\sqrt{n+1} = \alpha c_n$$

得到系数的递推关系,并利用归一化条件求出 co

2.46 谐振子升降算符的本征态

只做前两问即可,记得算符 â 作用上去时,提出求和项中的基态 |0>

2.47 谐振子升降算符的本征态 2

第一小问和第二小问均是使用升降算符去表示哈密顿量、坐标算符、动量算符,由于正好处于相干态,所以算平均值是在这个态下计算

2.48 算符的对易关系证明

注意证明算符的对易关系需要一个任意的态,而不是题目给的某个本征态,对这个任意态用本征态做展开就行了

3 表象

知识要点(1.27的总结)

$$\langle x|p\rangle = \psi_p(x) = \frac{1}{(2\pi\hbar)^{\frac{n}{2}}} e^{\frac{ipx}{\hbar}}$$

$$\langle p|x\rangle = \psi_x(p) = \frac{1}{(2\pi\hbar)^{\frac{n}{2}}} e^{\frac{-ipx}{\hbar}}$$

$$\int dx' \, |x'\rangle \, \langle x'| = I$$

$$\int dp' \, |p'\rangle \, \langle p'| = I$$

$$\psi(p) = \langle p|\psi\rangle = \int dx' \, \langle p|x'\rangle \, \langle x'|\psi\rangle = \frac{1}{(2\pi\hbar)^{\frac{n}{2}}} \int_{-\infty}^{+\infty} \psi(x) e^{\frac{-ipx}{\hbar}} dx$$

$$\psi(x) = \langle x|\psi\rangle = \int dp' \, \langle x|p'\rangle \, \langle p'|\psi\rangle = \frac{1}{(2\pi\hbar)^{\frac{n}{2}}} \int_{-\infty}^{+\infty} \psi(p) e^{\frac{ipx}{\hbar}} dp$$

$$\delta(x) = \frac{1}{(2\pi)^n} \int_{-\infty}^{+\infty} e^{ipx} dp$$

$$\delta(p) = \frac{1}{(2\pi)^n} \int_{-\infty}^{+\infty} e^{-ipx} dx$$

一维动量波函数满足的定态方程

$$\frac{p^2}{2\mu}\varphi(p) + \int_{-\infty}^{+\infty} V_{pp'}\varphi(p')dp' = E\varphi(p)$$

$$V_{pp'} = \frac{1}{2\pi\hbar} \int_{-\infty}^{+\infty} e^{-i(p-p')x/\hbar} V(x)dx$$

如果 $V(\vec{r})$ 可以表示成 $\vec{r}(x,y,z)$ 的正幂次级数, 定态方程变为

$$\[\frac{p^2}{2\mu} + V(r = i\hbar \nabla_p)\]\varphi(p) = E\varphi(p)$$

矩阵元

$$\hat{\mathbf{F}}_{nm} = \langle n | \hat{\mathbf{F}} | m \rangle = \int u_m^* \hat{\mathbf{F}} u_n d\tau$$

表象变换

$$\psi' = S^{\dagger} \psi \quad \hat{\boldsymbol{F}}' = S^{\dagger} \hat{\boldsymbol{F}} S$$

其中 S 矩阵可以在 \hat{Q} 表象中求出 \hat{Q}' 的所有本征态矢

3.1 动量表象下的定态能量和波函数

此求解过程典型, 对p 求导的时候p' 对其的导数为0, 本质上它们不是同一个p

$$\begin{split} \frac{\mathrm{d}\varphi(p)}{\mathrm{d}p} &= -\frac{d(p^2 + 2\mu|E|)}{p^2 + 2\mu|E|}\\ \ln\varphi(p) &+ \ln\left(p^2 + 2\mu|E|\right) = c\\ \varphi(p) &= \frac{A}{p^2 + 2\mu|E|} \end{split}$$

两个需要学会的积分

• 积分1

$$\int \frac{1}{x^2+1} dx = \arctan x \Longrightarrow \int \frac{1}{x^2+k^2} dx = \frac{1}{k} \arctan \frac{x}{k}$$

• 积分 2

$$\int_{-\infty}^{+\infty} \frac{1}{(x^2 + b^2)^2} dx = \frac{1}{2} b^{-3} \pi$$

证明.

$$x = b \tan \theta$$
 $dx = b \frac{1}{\cos \theta^2} d\theta$ $1 + \tan \theta^2 = \frac{1}{\cos \theta^2}$

积分区间变为 (-5,5), 通过以上换元即可求得结果

3.2 p 表象下的测不准关系验证

没有技巧都是积分, $\int_{-\infty}^{+\infty} \frac{x^2}{(x^2+b^2)^2} dx$ 同样适用上面的换元

3.3 谐振子的 p 表象计算

 $x = \hbar \frac{\partial}{\partial x}$, 证明见题目 1.16 最后将方程化成类似于坐标表象下的薛定谔方程, 解的形式类似

3.4 均匀力场问题

$$f(x) = -F = -\frac{\partial V(x)}{\partial x} \Longrightarrow V(x) = Fx \Longrightarrow V(p) = F \hbar \frac{\mathrm{d}}{\mathrm{d}p}$$

3.5 概率密度对时间的导数

这类题不涉及能量,因此能量写为 $\hbar \frac{\partial}{\partial t}$,取符共轭去计算概率密度对时间的导数

3.6 自由粒子两种表象下的均值计算

主要在于第二小问,自由粒子的动量守恒,动量的平均值不随时间变化,平均位移等于平均速度 № 乘以时间 t, 或者带入海森堡运动方程中进行计算

3.7 中子反中子的波函数计算

这道题计算的关键在于要求出 t 时刻的波函数, 而整个体系的哈密顿量为 $\hat{\boldsymbol{H}}=\hat{\boldsymbol{H}}_0+\hat{\boldsymbol{H}}'$, 取 $\hat{\boldsymbol{H}}_0$ 为表象, 其两

需要注意求出能量本征值后,需要计算此时哈密顿量的本征态 (并不是 $|n\rangle$, $|\bar{n}\rangle$) 需要在矩阵表达式中带入能量

$$\begin{pmatrix} -\alpha & \alpha \\ \alpha & -\alpha \end{pmatrix} \begin{pmatrix} c_1 \\ c_2 \end{pmatrix} = 0$$

并且有额外归一化要求 $|c_1|^2+|c_2|^2=1$,然后将获得的本征态用 $|n\rangle,|\bar{n}\rangle$ 展开求出两个本征态后,任意时刻的波函数用它们展开,记得带系数 (由初始条件决定,此题的初始条件为中子态). 然后带入能量与此时的本征态先化简再转化成 $|n\rangle,|\bar{n}\rangle$ 的展开

3.8 矩阵形式的力学量测量问题

第二小问, 初态题目已经给了, 需要测量力学量 \hat{A} 所以需要用它的本征态作展开, 第一步就是求解它的本征值与

经过计算 t=0 时刻只能测得本征值 a 而它是简并的, 所以处于这两个态其中之一或者它们的线性组合

第三小问注意 t 时刻的波函数的时间因子只能是哈密顿量的能量,不能是其他力学量的本征值,化简后再计算每 个力学量的期望值

3.9 表象的本征值对应的矩阵

在自身表象下所有的本征值,其算符的矩阵表示是对角化的

$$\hat{\boldsymbol{A}} = \begin{pmatrix} \lambda_1 & 0 & 0 \\ 0 & \lambda_2 & 0 \\ 0 & 0 & \lambda_3 \end{pmatrix}$$

再讲算符 \hat{B} 的矩阵参数设出来,并根据题目已知条件进行求解 (反对易关系以及厄米性以及平方为 1) 注意这个过程似乎和 \hat{A} 表象没有任何关系,但实际上在利用反对易关系的时候就涉及到了 \hat{A} 自身表象的矩阵形式,因而 \hat{B} 的矩阵是在此表象下求得的

第二小问由于其在 \hat{A} 表象下 \hat{B} 的矩阵形式已经获得,因此直接解它的本征值方程即可

第三小问回顾表象变换

$$\psi' = S^{\dagger} \psi \quad \hat{\boldsymbol{F}}' = S^{\dagger} \hat{\boldsymbol{F}} S$$

求解幺正变换矩阵的方法

• 已知变换前后的两组基矢 $S_{kb} = \langle \psi_k | \phi_b \rangle$

$$\begin{pmatrix} a_1' \\ a_2' \\ a_3' \end{pmatrix} = \begin{pmatrix} S_{11} & S_{12} & S_{13} \\ S_{21} & S_{22} & S_{23} \\ S_{31} & S_{32} & S_3 \end{pmatrix} \begin{pmatrix} a_1 \\ a_2 \\ a_3 \end{pmatrix}$$

• 已知力学量 $\hat{\mathbf{B}}$ 在 $\hat{\mathbf{A}}$ 表象下矩阵表示, 直接求解本征态失, 并起来可构成幺正变换矩阵 S

3.10 角动量表象

第一小问 \hat{L}_z 在自身表象下是对角化的,其他角动量根据矩阵元的计算方法进行计算,需要用到升降算符计算如 $(\hat{L}_x)_{12}$ 与 $(\hat{L}_x)_{21}$ 时,只需要计算一边,再去复共轭即可 (它们是厄米算符)

3.11 角动量表象本征值本征态

方法简答,略

3.12 角动量表象下的测量问题

题目给的 $2\hbar^2$ 得出 l=1 的结论

完整的做题过程需要在这三个基底下 Y_{1-1},Y_{10},Y_{11} 写出 $\hat{\boldsymbol{L}}_y$ 的矩阵表示, 并求出本征值和本征态 (前两个题已经算过)

再由于这个量子体系必然处于这三个基底中的一个态上,则测量的概率是 $\left|\left\langle \varphi_{0}^{\dagger}\middle|\psi\right\rangle \right|^{2}$ 其中 ψ 为这三个中的一个,分别计算

3.13 直角坐标系波函数转化计算角动量

颞目给出的是直角坐标系下的波函数,需要将其改写成球坐标系下的形式,并利用球谐函数表示它

涉及的知识点(背住)

三个典型球谐函数

$$Y_{11}=-\sqrt{\frac{3}{8\pi}}\sin\theta e^{i\varphi} \quad Y_{10}=\sqrt{\frac{3}{4\pi}}\cos\theta \quad Y_{1-1}=\sqrt{\frac{3}{8\pi}}\sin\theta e^{-i\varphi}$$

l=1,的 $(\hat{\boldsymbol{L}}^2,\hat{\boldsymbol{L}}_z)$ 表象下

$$\hat{m{L}}_x = rac{\hbar}{\sqrt{2}} egin{pmatrix} 0 & 1 & 0 \ 1 & 0 & 1 \ 0 & 1 & 0 \end{pmatrix} \quad \hat{m{L}}_y = rac{\hbar}{\sqrt{2}} egin{pmatrix} 0 & -i & 0 \ i & 0 & -i \ 0 & i & 0 \end{pmatrix} \quad \hat{m{L}}_z = \hbar egin{pmatrix} 1 & 0 & 0 \ 0 & 0 & 0 \ 0 & 0 & -1 \end{pmatrix}$$

它们三个的本征值都是ħ,0,-ħ,本征态自行计算

3.14 角动量表象纠缠态问题 1

第三小问需要将给出的 ψ 用矩阵形式表达,并写出 \hat{L}_x 的本征值和本征态,再做计算

3.15 角动量表象纠缠态问题 2

没看懂这道题, 略

3.16 角动量表象 j=3/2

需要将 4 个球谐函数作为基底, 此表象下 \hat{j}^2 和 \hat{J}_z 的矩阵可以根据对角化直接写出

3.17 角动量表象下的本征值和本征态问题

无论在什么表象下三个角动量分量算符的本征值取值都是 mh, 所以此题最大的本征值为 3.5

3.18 共同本征态问题

第二小问能量 $E=E_0$ 是非简并的, 能量 $E=-E_0$ 是简并的. 容易验证 $|1\rangle$ 是本征态, 单独的 $|2\rangle$, $|3\rangle$ 不是, 而它们的线性组合仍旧是本征值 $-E_0$ 的本征态, 所以存在合适的系数使得这个混合态是 $\hat{A}D$ 的本征态

3.19 角动量表象下哈密顿量的表示

要背住三个分量在l=1,动量表象下的矩阵表示,带入哈密顿量即可.(换元简化形式)

3.20 动量表象下的哈密顿量

需要知道 $r = \hbar \nabla_p = \hbar (\frac{\partial}{\partial p_x} + \frac{\partial}{\partial p_y} + \frac{\partial}{\partial p_z})$ 得到 $V(\hat{r} = \hbar \nabla_p)$ 后需要转化回原来的坐标表象下 (凑 $(\hbar)^2$) nabla 算子作用后记得带各方的单位向量, 转回向量 \vec{r}

4 三维定态问题

知识点总结

1. 在中心力场 V(r) 中, 定态波函数 $\psi(r)$ 可以表示为

$$\psi(r) = R(r)Y_{lm}(\theta, \varphi) = \frac{u(r)}{r}Y_{lm}(\theta, \varphi)$$

归一化形式变为

$$\int_{0}^{\infty} |\psi(r)|^{2} 4\pi r^{2} dr = 4\pi \int_{0}^{\infty} |u(r)|^{2} dr = 1$$

其中 R(r) 满足的方程为

$$\frac{\mathrm{d}^2 R(r)}{\mathrm{d} r^2} + \frac{2}{r} \frac{\mathrm{d} R(r)}{\mathrm{d} r} + \left\{ \frac{2\mu}{\hbar^2} [E - V(r)] - \frac{l(l+1)}{r^2} \right\} R(r) = 0$$

u(r) 满足方程与边界条件

$$\frac{\mathrm{d}^2 u(r)}{\mathrm{d}r^2} + \left\{ \frac{2\mu}{\hbar^2} [E - V(r)] - \frac{l(l+1)}{r^2} \right\} u(r) = 0 \quad u(0) = 0$$

2. 带有电荷 q 的粒子在电磁场中的哈密顿量算符为

$$\hat{\boldsymbol{H}} = \frac{1}{2u} [\hat{\boldsymbol{p}} - \frac{q}{c} A(r,t)]^2 + q\Phi(r,t)$$

其中 $\hat{p} = -i\hbar \nabla_{,} A(r,t)$ 与 $\Phi(r,t)$ 分别是电磁场的矢势和标势. 电磁场的矢势 (矢势的取法有无穷多种)

$$\vec{\mathbf{B}} = \nabla \times \vec{\mathbf{A}} \Longrightarrow \vec{\mathbf{A}'} = \vec{\mathbf{A}} + \nabla \varphi$$

当磁场 $\vec{\mathbf{B}} = B\vec{\mathbf{k}}$

$$\vec{\mathbf{A}} = (-By, 0, 0) \quad \vec{\mathbf{A}} = (-\frac{By}{2}, \frac{Bx}{2}, 0)$$

电磁场的标势

$$\vec{\mathbf{E}} = -\nabla \varphi - \frac{\partial \vec{\mathbf{A}}}{\partial t}$$

波函数为 ψ 的粒子在电磁场中的概率流密度为

$$\begin{split} \mathbf{J} &= \frac{1}{2\mu} \big[\psi^* (\hat{\boldsymbol{p}} - \frac{q}{c} \mathbf{A}) \psi + \psi (\hat{\boldsymbol{p}} - \frac{q}{c} \mathbf{A})^* \psi^* \big] \\ \mathbf{J} &= \frac{1}{2} [\psi^* \hat{\boldsymbol{v}} \psi + \psi \hat{\boldsymbol{v}} \psi^*] \\ \hat{\boldsymbol{v}} &= \frac{1}{\mu} (\hat{\boldsymbol{p}} - \frac{q}{c} \mathbf{A}) \end{split}$$

这里的 **û** 是粒子的速度算符 对比非电磁场下的概率流密度

$$j_x = -\frac{i\hbar}{2\mu} (\psi^* \frac{\partial}{\partial x} \psi - \psi \frac{\partial}{\partial x} \psi^*)$$

3. 在三维无限深方势阱

$$V(x,y,z) = \begin{cases} 0, & 0 < x < a, 0 < y < b, 0 < z < c \\ \infty, & \not \exists \, \& \end{cases}$$

中, 定态能量和定态波函数为

$$E_{n_1 n_2 n_3} = \frac{\pi^2 \hbar^2}{2\mu} \left(\frac{n_1^2}{a^2} + \frac{n_2^2}{b^2} + \frac{n_3^2}{c^2} \right)$$

$$\psi_{n_1 n_2 n_3}(x, y, z) = \begin{cases} \sqrt{\frac{8}{abc}} \sin \frac{n_1 \pi x}{a} \sin \frac{n_2 \pi y}{b} \sin \frac{n_3 \pi z}{c}, & \text{阱内} \\ 0, & \text{阱外} \end{cases}$$

4. 在三维各向异性谐振子势场

$$V(x, y, z) = \frac{1}{2}\mu(\omega_1^2 x^2 + \omega_2^2 y^2 + \omega_3^2 z^2)$$

中, 定态能量和定态波函数为

$$\begin{split} E_{n_1n_2n_3} &= (n_1 + \frac{1}{2})\hbar\omega_1 + (n_2 + \frac{1}{2})\hbar\omega_2 + (n_3 + \frac{1}{2})\hbar\omega_3 \\ \\ \psi_{n_1n_2n_3}(x,y,z) &= N_{n_1}N_{n_2}N_{n_3}exp[-\frac{1}{2}(\alpha_1^2x^2 + \alpha_2^2y^2 + \alpha_3^2z^2)] \times H_{n_1}(\alpha_1x)H_{n_2}(\alpha_2y)H_{n_3}(\alpha_3z) \\ \\ \alpha_i &= \sqrt{\frac{\mu\omega_i}{\hbar}} \quad N_{n_i} = \sqrt{\frac{\alpha_i}{\sqrt{\pi 2^{n_i}n_i!}}} \quad n_i = 0,1,3,4\cdots \quad i = 0,1,3,4\cdots \end{split}$$

5. 在类氢离子势场 $V(r) = -\frac{Ze^2}{r}$ 中, 定态能量和定态波函数为

$$E_n = -\frac{Z^2 e^2}{2an^2}$$

$$\psi_{nlm}(r) = R_{nl}(r)Y_{lm}(\theta, \varphi)$$

$$R_{nl}(r) = N_{nl}e^{-\frac{Zr}{na}}(\frac{2Zr}{na})^lF(l+1-n, 2l+2, \frac{2Zr}{na})$$

$$N_{nl} = \frac{2Z^{3/2}}{a^{3/2}n^2(2l+1)!}\sqrt{\frac{(n+l)!}{(n-l-1)!}}$$

其中 a 是波尔半径, $F(l+1-n,2l+2,\frac{2Zr}{na})$ 是个合流超几何函数 主量子数 n(电子层), 角量子数 l(角动量轨道), 磁量子数 m(磁矩方向)

$$n = 1, 2, 3, 4 \cdots$$
 $l = 0, 1, 2, 3 \cdots n - 1$ $m = 0, \pm 1, \pm 2, \pm 3, \cdots, \pm l$

电子层的代号 (KLMNOP), 亚层轨道代号 (spdf), 当说 s 波时即 l=0

6. 角动量的三个分量, 以及 \hat{L}_z 与 φ 角的关系

$$\hat{L}_x = yp_z - zp_y$$
 $\hat{L}_y = zp_x - xp_z$ $\hat{L}_z = xp_y - yp_x$

柱坐标系下

$$\hat{m{L}}_z = -i\hbarrac{\partial}{\partialarphi} \quad \hat{m{L}}_z^2 = -i\hbar^2rac{\partial^2}{\partialarphi^2}$$

此时 $\hat{m{L}}_z = -i\hbar rac{\partial}{\partial arphi}$ 的本征函数为 (曾书 P_{137})

$$\psi_m(\varphi) = \frac{1}{\sqrt{2\pi}} e^{im\varphi}$$

7. 类氢原子的玻尔半径

$$a = \frac{\hbar^2}{\mu e^2}$$

8. 保守系下的维里(位力)定理

$$\overline{T} = \frac{1}{2} \overline{\vec{\mathbf{r}} \cdot \nabla V(r)}$$

9. 折合质量 (两体问题变单体问题)

$$\mu = \frac{m_A m_B}{m_A + m_B}$$

4.1 三维方势阱

由题目条件束缚态 E < 0, s 波 $\Longrightarrow l = 0$

4.2 δ 势阱

存在束缚态即至少存在一个态为束缚态,那么必然是 l=0 的基态同样是指数式的超越方程,构造成过原点的直线和指数函数,同 1.43 题

4.3 无限深势阱

当波函数在某个非 0 常数时需要取得 0 时, 可以直接假设波函数的形式为 $u(r)=A\sin k(r-a)$ 方法和习题 1.6 的偶宇称解有点儿类似注意积分过程中 $\sin 2k(b-a)=0$

4.4 已经势场条件求能量和势能

此题不用按照书上的求法,直接让 $\psi(r)r = u(r)$ 带入u(r)满足的定态方程就可以了

4.5 柱坐标系的矢势问题

需要补充以下知识点

$$\vec{\mathbf{B}} = \nabla \times \vec{\mathbf{A}}$$

$$\begin{vmatrix} \vec{\mathbf{i}} & \vec{\mathbf{j}} & \vec{\mathbf{k}} \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ A_x & A_y & A_z \end{vmatrix} = \left(\frac{\partial}{\partial y} A_z - \frac{\partial}{\partial z} A_y \right) \vec{\mathbf{i}} + \left(\frac{\partial}{\partial z} A_x - \frac{\partial}{\partial x} A_z \right) \vec{\mathbf{j}} + \left(\frac{\partial}{\partial x} A_y - \frac{\partial}{\partial y} A_x \right) \vec{\mathbf{k}}$$

当磁场为z轴方向时,即 $\vec{\mathbf{B}} = B\vec{\mathbf{k}}$

$$\frac{\partial}{\partial x}A_y - \frac{\partial}{\partial y}A_x = 0$$

于是我们可以得到至少两种常见取法

$$\vec{\mathbf{A}} = (-By, 0, 0)$$

$$\vec{\mathbf{A}} = (-\frac{B}{2}y, \frac{B}{2}x, 0)$$

通常无其他限制取第一种, 如果被限制在了 xy 平面, 比如涉及到柱坐标系, 那么使用第二种 角动量的三个分量, 以及 \hat{L}_z 与 φ 角的关系

$$\hat{\boldsymbol{L}}_x = yp_z - zp_y$$
 $\hat{\boldsymbol{L}}_y = zp_x - xp_z$ $\hat{\boldsymbol{L}}_z = xp_y - yp_x$

柱坐标系下

$$\hat{m{L}}_z = -i\hbarrac{\partial}{\partialarphi} \quad \hat{m{L}}_z^2 = -\hbar^2rac{\partial^2}{\partialarphi^2}$$

此时 $\hat{m{L}}_z = -\hbar \frac{\partial}{\partial \varphi}$ 的本征函数为 (曾书 P_{137})

$$\psi_m(\varphi) = \frac{1}{\sqrt{2\pi}} e^{im\varphi}$$

4.6 磁场下的电荷定态能量和波函数

取磁矢势能 $\vec{\mathbf{A}} = (-By, 0, 0)$

$$\hat{H} = \frac{1}{2u}[(\hat{p}_x^2 + \frac{qB}{c}y)^2 + \hat{p}_y^2 + \hat{p}_z^2]$$

这里一共有四个量 \hat{p}_x \hat{p}_y \hat{p}_z y 分别与哈密顿量计算对易子, 显然只有 \hat{p}_x \hat{p}_z 是对易的

它们本征函数的形式是

$$\frac{1}{2\pi\hbar}e^{ip_xx/\hbar} \quad \frac{1}{2\pi\hbar}e^{ip_zz/\hbar}$$

剩下的部分是关于变量 y 的函数, 因此波函数可以表示为 (常数归化到 $\varphi(y)$ 里面了)

$$\psi(x,y,z) = e^{i(p_x x + p_z z)/\hbar} \varphi(y)$$

带入哈密顿量的本征方程,指数项都消掉了,所以得到的是关于 y 的方程,其他变量都可以看作常数,得到一个类似谐振子的方程

算出 E' 与 $\varphi(y)$ 后记得带回去算出 $\psi(x,y,z)$ 与 E

4.7 电磁场下的电荷定态能量和波函数

方法和上题类似, 只是凑平方更加复杂. 得到饿依旧是谐振子的解

4.8 磁场和势场下的运动

对易子的一个重要计算

$$[A, (B+C)] = [A, B] + [A, C]$$

需要知道的是, 矢势 \vec{A}_x \vec{A}_y \vec{A}_z 它们都是坐标 (x,y,z) 的函数, 求对易的时候直接用公式

$$[\hat{\boldsymbol{p}}_x, A_y] = [\hat{\boldsymbol{p}}_x, x] \frac{\partial}{\partial x} A_y = -i\hbar \frac{\partial}{\partial x} A_y$$

虽然 A_y 是 (x,y,z) 的函数, 但是 y,z 和 $\hat{\pmb{p}}_x$ 都是对易的, 所以用这个公式没有问题, 或者用试探函数法解出来的效果一样

第二小问 $[P,A] = -\hbar \nabla \cdot A = 0$ (这是三维情况下的对易公式)

第三小问的一个知识点

薛定谔方程是正则量子化得到的, 动量是不随时间变化的

所以此问应该用动量表象,分离变量

4.9 类氢原子核电荷数突变

跳过

4.10 氢原子基态波函数的演化问题

自由电子的波函数

$$\psi_p = \frac{1}{(2\pi\hbar)^{\frac{3}{2}}} e^{ip \cdot r/\hbar}$$

动量表象下 pp+dp 内的概率为

$$|\varphi(p)|^2 4\pi p^2 dp$$

跳过此题

4.11 钢球势阱

第三小问主要在于积分区间的问题, 因为初态波函数在 R-2R 上没有定义, 所以那部分的积分是没有的, 假如积分区间写为 0-2R 会发现计算出来是 0

同理,如果是计算半径缩小一半的情况,积分区间就变为0-29

4.12 能量与作用力和压强

- 能量与作用力
 - 1. 粒子对外做功 FdR 等于能量的减少量 $-dE \Longrightarrow F = -\frac{dE}{dR}$

2. 能量
$$E = \frac{p^2}{2\mu} \Longrightarrow dE = \frac{p}{\mu}dp = vdp$$
, 作用力 $F = \frac{dp}{dt}$ $vdt = dR \Longrightarrow F = \left|\frac{dE}{dR}\right|$

• 能量与压强

在球壳形式下 $P = \frac{F}{4\pi R^2}$

4.13 中心势场下的维里定理的证明

证明维里定理,主要是借助算符 $\vec{r} \cdot \hat{p}$ 不随时间变化,带入海森堡方程

$$0 = \frac{\mathrm{d}}{\mathrm{d}t}\overline{(\vec{\mathbf{r}}\cdot\hat{\boldsymbol{p}})} = \frac{1}{\imath\hbar}\overline{\left[\vec{\mathbf{r}}\cdot\hat{\boldsymbol{p}},\frac{p^2}{2\mu} + V(r)\right]}$$

自己要会计算右边的对易,需要注意点乘也是可以展开的

$$\left[\vec{\mathbf{r}}\cdot\hat{\boldsymbol{p}},\frac{p^2}{2\mu}\right] = \vec{\mathbf{r}}\cdot\left[\hat{\boldsymbol{p}},\frac{p^2}{2\mu}\right] + \left[\vec{\mathbf{r}},\frac{p^2}{2\mu}\right]\cdot\hat{\boldsymbol{p}} = \frac{i\hbar}{\mu}\hat{\boldsymbol{p}}^2$$

第二小问可以忽略涉及场论

4.14 类氢原子下计算 1 的平均值

维里定理 $E_n = < T > + < V >$ 又或者使用 F - H 定理对 e^2 求导 (通用方法)

4.15 类氢原子下计算 $\frac{1}{r^2}$ 的平均值

在利用 F - H 定理时, 通常要把波动方程写成左边有效哈密顿量, 右边能量 u(r) 满足的方程可以改写为以下形式 (类氢原子)

$$\left[-\frac{\hbar^2}{2\mu} \frac{\mathrm{d}^2}{\mathrm{d}r^2} - \frac{Ze^2}{r} + \frac{l(l+1)\hbar^2}{2\mu r^2} \right] u_{nl}(r) = E_n u_{nl}(r) \Longleftrightarrow \hat{\boldsymbol{H}}_{eff} u_{nl}(r) = E_n u_{nl}(r)$$

类氢原子的能级与一般中心势 (例如球方势阱) 能级不同的特点, 即能级只依赖与径向量子数 $n_r(n_r=0,1,2,3\cdots)$, 角量子数 l 的一种特殊组合, 即只依赖于主量子数 $n=n_r+l+1$

因此此题对 l 求导时, 需要将能量 E_n 的主量子数, 写成 $n_r + l + 1$

类氢原子的玻尔半径

$$a = \frac{\hbar^2}{\mu e^2}$$

因此如果打算选择其他参数,则需要把玻尔半径展开,所以 l 的求导更合适

4.16 径向角动量

第一小问正如题目 2.2 那样, 最好作用在一个任意的态上,nabla 算子需要带入球坐标系下的表示

一个 nabla 算子的误区 计算原则

$$\nabla \cdot (\varphi \vec{\mathbf{f}}) = (\nabla \cdot \varphi) \vec{\mathbf{f}} + \varphi (\nabla \cdot \vec{\mathbf{f}})$$

由此容易得出错误结果

$$\nabla \cdot (\frac{\vec{\mathbf{r}}}{r}) = \frac{2}{r}$$

在量子力学中算符通常需要作用在某一个态上,所以此时并不是单纯的点乘 $\frac{\vec{r}}{r}$, 而是点乘 $\frac{\vec{r}}{r}$

$$\nabla \cdot (\frac{\vec{\mathbf{r}}}{r}\psi) = \frac{\vec{\mathbf{r}}}{r} \cdot \nabla \psi + (\nabla \cdot \frac{\vec{\mathbf{r}}}{r})\psi \Longrightarrow = \frac{\vec{\mathbf{r}}}{r} \cdot \nabla + \frac{2}{r}$$

第二小问需要知道拉普拉斯的球坐标系下的表示形式,以及角动量平方在球坐标系下的表示.(跳过) 后面几问都很复杂跳过

4.17 基态氢原子的动量概率分布函数

在三维情况下

$$arphi(p)=rac{1}{(2\pi\hbar)^{rac{3}{2}}}\int_{0}^{+\infty}\psi(r)e^{ip\cdot r/\hbar}dr \quad p\cdot r=pr\cos heta$$

$$W(p)=\left|arphi(p)
ight|^{2}4\pi p^{2}$$

积分不算很好计算

4.18 基态氢原子检验测不振原理

在球对称情况下 $\overline{x^2} = \overline{y^2} = \overline{z^2} = \frac{1}{3}\overline{r^2}$

一旦知道势场函数和能量函数 (氢原子的需要背),考虑使用维里定理得到 < T > 更利于计算 $\overline{p^2}$

4.19 极坐标下的不确定关系

反三角函数的导数,为直接函数的倒数

$$\frac{\mathrm{d}x}{\mathrm{d}y} = \frac{1}{\frac{\mathrm{d}y}{\mathrm{d}x}}$$

放在三角型里面看, 如 $\arcsin x$, 斜边为 1, 对边为 x, 角度 y, 因此导数为斜率 $\frac{1}{\sqrt{1-x^2}}$

偏导数的转化

$$\frac{\partial}{\partial x} = \frac{\partial}{\partial \varphi} \frac{\partial \varphi}{\partial x}$$

4.20 测不准关系估算氦原子基态能量

基态下 l=0, 需要用到 4.16 颞的哈密顿量

4.21 测不准关系估算基态能量

估算题可以跳过(简单看一下)

4.22 测不准关系估算基态能量 2

估算题可以跳过(简单看一下)

4.23 维里定理的一般描述

维里(位力)定理: 质点系总动能对时间的平均值,等于作用在质点系上的位力。

$$\overline{T} = -\frac{1}{2} \overline{\sum_{i} \vec{\mathbf{r}}_{i} \cdot \vec{\mathbf{F}}_{i}}$$

等式右边这一块叫做"位力" 在保守系下 $\vec{\mathbf{F}} = -\nabla V(r) = -\frac{\mathrm{d}}{\mathrm{d}r}V(r)$

$$\overline{T} = \frac{1}{2} \overline{\sum_{i} \vec{\mathbf{r}}_{i} \cdot \nabla V(r)}$$

在本题中

$$\vec{\mathbf{r}} \cdot \nabla V = r \frac{\mathrm{d}V}{\mathrm{d}r} = r \frac{\mathrm{d}}{\mathrm{d}r} \left(c \ln \frac{r}{r_0} \right) = c$$

第二小问,使用F-H定理时,哈密顿对参数求导和记得取平均,利用之前的条件

此题具有启发性,这告诉我们此定理不仅可以在能量已知的情况下,求解某个变量的平均(包含在哈密顿量内), 也可以求解能量关于某个参数的具体形式

$$E_n = -\frac{c}{2} \ln \mu + C_n$$

积分常数 C_n 是一定同变量 μ 无关的数, 所以对任意的 n, 能量之差都和质量无关

4.24 两体问题

两体问题的折合质量

当考虑两个相互作用的质点 (弹簧连接的两个物体, 氢原子中质子和电子的相互束缚), 为了方便研究整个体系, 将其中一个质点 A 是为静止, 另一个质点 B 作运动, 其折合质量为

$$\mu = \frac{m_A m_B}{m_A + m_B}$$

在研究氢原子体系的波函数时,因为质子质量远大于电子质量,所以带入上式子可知约化质量为电子质量 注意区分质心质量和折合质量(研究方法不同,很多问题研究质心时,质心是不动的,而约化质量是研究运动的)

因此在这道题中类似于氢原子体系,两个质点相互束缚,不过将氢原子势能换成了其他三维球势,所以使用约化质量,把其中一个看成静止的,另一个围绕它运动,折合质量为 %

4.25 中心力场下的能量本征波函数

事实上中心力场下的能量本征波函数就是我们熟知的

$$\psi_{nlm}(r) = R_{nl}(r)Y_{lm}(\theta, \varphi)$$

只要求了径向积分则只有 r^2dr (舍去球谐函数部分)

第三小问更像是数学题, 存在一个定值 a 使得 V(a) = < V >, r < a 时显然成立, 接下来求这个积分的上限 (这个积分值也是关于 V(r) 单增的), 所以考虑积分到无穷处

$$\int_0^{+\infty} R(r)^2 r^2 dr = 1$$

4.26 磁场下力学量的对易关系

$$\left[\hat{\boldsymbol{p}}_i, \hat{\boldsymbol{p}}_j\right] = 0$$

同时对易不具有传递性: \hat{A} 与 \hat{B} 对易, \hat{B} 与 \hat{C} 对易,但是 \hat{A} 与 \hat{C} 不一定对易此题简单但是容易计算错误,建议再算几遍练手

4.27 维里定理一般形式的应用

维里定理告诉我们,知道势场就知道动能的平均值(和某些平均值相关),且隐含条件动能的平均值时显然大于 0的

- 5 近似方法
- 6 自旋
- 7 全同粒子体系
- 8 散射