Problema 3

Un generador de vapor consume $8626 \left[\frac{kg}{h}\right]$ de combustible cuyo poder calorifico alto es de $7560 \left[\frac{kcal}{kg}\right]$; la temperatura del agua de alimentacion es de $94 \left[^{\circ}C\right]$ y la presion del vapor en la salida es de $12.6 \left[\text{bar}\right]$ abs. Los datos de un calorimetro acoplado a la caldera son de $115 \left[^{\circ}C\right]$ y presion atmosferica de $725 \left[\text{mmHg}\right]$. La eficiencia de la caldera es de 76%. Calcular:

- 1. El calor suministrado $\dot{Q}_s \left[\frac{\text{kJ}}{\text{h}} \right]$.
- 2. El gasto de vapor $\dot{m_v} \left[\frac{\text{kg}}{\text{h}} \right]$.
- 3. La calidad del vapor generado %.

Solucion

Para resolver este problema es de utilidad la aplicacion de los principios de la conservacion de la energia y de la conservacion de la masa al sistema en estudio que puede modelarse como un volumen de control, tomando en consideracion, las siguientes suposiciones.

- No se realiza trabajo en la expansion del vapor despues de ser estrangulado.
- 2. No hay perdidas de energia en forma de calor.
- 3. El cambio en energia potencial es despreciable.
- Esquema

En el esquema se pueden distinguir los distintos puntos de interes o estados. Modelando el calorimetro como una valvula de estrangulamiento.

- 1. Entrada del generador de vapor (caldera).
- 2. Salida del generador de vapor.
- 3. Temperatura a la salida de la valvula.
- Diagrama

Insertar diagrama

1. Calor Suministrado \dot{Q}_s Se conocen los valores de \dot{m}_c y del PCA. Por lo tanto, se puede calcular \dot{Q}_s como sigue:

$$\dot{Q}_s \left[\frac{\mathrm{kJ}}{\mathrm{h}} \right] = \dot{m}_c \left[\frac{\mathrm{kg}}{\mathrm{h}} \right] \cdot \mathrm{PCA} \left[\frac{\mathrm{kJ}}{\mathrm{kg}} \right]$$
 (1)

2. Gasto de vapor \dot{m}_v De la definición de eficiencia se tiene que

$$\dot{Q}_a \left[\frac{\mathrm{kJ}}{\mathrm{h}} \right] = \eta \cdot \dot{Q}_s \left[\frac{\mathrm{kJ}}{\mathrm{h}} \right]$$

Ademas

$$\dot{Q}_a \left[\frac{\mathrm{kJ}}{\mathrm{h}} \right] = \dot{m}_v \left[\frac{\mathrm{kg}}{\mathrm{h}} \right] \cdot (h_2 - h_1) \left[\frac{\mathrm{kJ}}{\mathrm{kg}} \right]$$
 (2)

El proceso del estado 2 al estado 3 es isoentalpico, por lo tanto $h_2 = h_3$. h_3 se obtiene de tablas de vapor saturado con P_{atm} y T_3 . Dado que se conocen los valores de c_p y T_1 , se puede obtener la entalpia del estado inicial h_1 .

$$h_1 \left[\frac{\mathrm{kJ}}{\mathrm{kg}} \right] = c_p \left[\frac{\mathrm{kJ}}{\mathrm{kg} \cdot \mathrm{K}} \right] \cdot (T_1 - 0) \left[K \right]$$
 (3)

Despejando $\dot{m_v}$ y sustituyendo.

$$\dot{m}_v \left[\frac{\text{kg}}{\text{h}} \right] = \frac{\dot{Q}_a \left[\frac{\text{kJ}}{\text{h}} \right]}{(h_3 - h_1) \left[\frac{\text{kJ}}{\text{kg}} \right]} \tag{4}$$

3. Calidad del vapor generado χ De la definición de calidad:

$$h_2 \left[\frac{\text{kJ}}{\text{kg}} \right] = h_f \left[\frac{\text{kJ}}{\text{kg}} \right] + \chi \cdot h_{fg} \left[\frac{\text{kJ}}{\text{kg}} \right]$$

Obteniendo h_f y h_{fg} con P_{caldera} de tablas de vapor saturado y despejando la calidad tenemos:

$$\chi = \frac{h_2 \left[\frac{\text{kJ}}{\text{kg}}\right] - h_f \left[\frac{\text{kJ}}{\text{kg}}\right]}{h_{fg} \left[\frac{\text{kJ}}{\text{kg}}\right]}$$

Operaciones

Datos

$$\begin{split} m_c &= 8626 \left[\frac{\text{kg}}{\text{h}} \right] \\ \text{PCA} &= 7560 \left[\frac{\text{kcal}}{\text{kg}} \right] \cdot \frac{4.184}{1} \left[\frac{\text{kJ}}{\text{kcal}} \right] = 31631.04 \left[\frac{\text{kJ}}{\text{kg}} \right] \\ T_1 &= 94 \left[^{\circ}\text{C} \right] = (94 + 273.15) \left[\text{K} \right] = 367.15 \left[\text{K} \right] \\ P_2 &= 12.6 \left[\text{bar} \right] \cdot \frac{1}{10} \left[\frac{\text{MPa}}{\text{bar}} \right] = 1.26 \left[\text{MPa} \right] \\ T_2 &= 115 \left[^{\circ}\text{C} \right] \\ P_{\text{atm}} &= 725 \left[\text{mmHg} \right] \cdot \frac{1}{7500.63} \left[\frac{\text{MPa}}{\text{mmHg}} \right] = 0.096 \left[\text{MPa} \right] \\ \eta_{\text{caldera}} &= 0.76 \\ c_p &= 4.186 \left[\frac{\text{kJ}}{\text{kg·K}} \right] \end{split}$$

1. Calor suministrado \dot{Q}_s . Sustituyendo en la ecuación 1

$$\begin{split} \dot{Q}_s \left[\frac{\mathrm{kJ}}{\mathrm{h}} \right] &= \dot{m}_c \left[\frac{\mathrm{kg}}{\mathrm{h}} \right] \cdot \mathrm{PCA} \left[\frac{\mathrm{kJ}}{\mathrm{kg}} \right] \\ &= (8626) \left[\frac{\mathrm{kg}}{\mathrm{h}} \right] \cdot (31631.04) \left[\frac{\mathrm{kJ}}{\mathrm{kg}} \right] \\ \dot{Q}_s \left[\frac{\mathrm{kJ}}{\mathrm{h}} \right] &= 272849351.04 \left[\frac{\mathrm{kJ}}{\mathrm{h}} \right] \end{split}$$

- 2. Calculando \dot{Q}_a
 - (a) Obtencion de h_2 . Sabemos que $h_2 = h_3$. Obtenemos h_3 de tablas de vapor saturado con $P_{\text{atm}} = 0.096 \, [\text{MPa}] \, \text{y} \, T_3 = 115 \, [^{\circ}\text{C}]$

T [°C]	P [MPa]	$h\left[\frac{\mathrm{kJ}}{\mathrm{kg}}\right]$
115	0.09	2706.6
115	0.096	2706.53
115	0.01	2706.5

Por lo tanto: $h_2 = 2706.53 \left[\frac{\text{kJ}}{\text{kg}} \right]$

(b) Obtencion de h_1 a partir de c_p y T_1

$$h_1 \begin{bmatrix} \frac{\mathbf{kJ}}{\mathbf{kg}} \end{bmatrix} = c_p \begin{bmatrix} \frac{\mathbf{kJ}}{\mathbf{kg} \cdot \mathbf{K}} \end{bmatrix} \cdot (T_1 - 0) [K]$$
$$= (4.186) \begin{bmatrix} \frac{\mathbf{kJ}}{\mathbf{kg} \cdot \mathbf{K}} \end{bmatrix} \cdot (367.15 - 0) [K]$$
$$h_1 \begin{bmatrix} \frac{\mathbf{kJ}}{\mathbf{kg}} \end{bmatrix} = 1536.8899 \begin{bmatrix} \frac{\mathbf{kJ}}{\mathbf{kg}} \end{bmatrix}$$

(c) Obtencion de $\dot{m_v}$ a partir de Q_s y h_3

$$\begin{split} \dot{m}_v \left[\frac{\text{kg}}{\text{h}} \right] &= \frac{\dot{Q}_a \left[\frac{\text{kJ}}{\text{h}} \right]}{(h_3 - h_1) \left[\frac{\text{kJ}}{\text{kg}} \right]} \\ &= \frac{272849351.04 \left[\frac{\text{kJ}}{\text{h}} \right]}{(2706.53 - 1536.8899) \left[\frac{\text{kJ}}{\text{kg}} \right]} \\ \dot{m}_v \left[\frac{\text{kg}}{\text{h}} \right] &= 233275.8323269006 \left[\frac{\text{kg}}{\text{h}} \right] \end{split}$$

3. Calidad del vapor generado χ Obteniendo h_f y h_{fg} de tablas de vapor saturado con $P_{caldera} = 1.26 \, [\text{MPa}]$

P [MPa]	h_f	$\left[rac{\mathrm{kJ}}{\mathrm{kg}} ight]$	h_{fg}	$\left[rac{\mathrm{kJ}}{\mathrm{kg}} ight]$	
1.25	806.58		2785.1		
1.26	808	808.18. 2785		5.38	
1.30	814	4.60	2786.5		

Sustituyendo en la ecuacione

$$\begin{split} \chi &= \frac{h_2 \left[\frac{\text{kJ}}{\text{kg}}\right] - h_f \left[\frac{\text{kJ}}{\text{kg}}\right]}{h_{fg} \left[\frac{\text{kJ}}{\text{kg}}\right]} \\ &= \frac{2706.53 \left[\frac{\text{kJ}}{\text{kg}}\right] - 808.18 \left[\frac{\text{kJ}}{\text{kg}}\right]}{2785.38 \left[\frac{\text{kJ}}{\text{kg}}\right]} \\ \chi &= 0.68 \end{split}$$