Control Theory Observability

Robert Szalai

Department of Engineering Mathematics University of Bristol

Observability: why we need it?

- ► Controllability checks if the sytem can be brought into any state.
- ▶ We need to know the state to check if we reached the desired state!
- ▶ However we cannot always measure the full state (cost, technical difficulty, etc)
- Question: can we recover the state from what we can measure?
- ▶ If yes, the system is observable.

Observability: definition

Definition

The system

$$\begin{array}{lll}
\dot{x} = Ax + Bu & \chi \in \mathbb{R}^h \\
y = Cx & \mathcal{U} \in \mathbb{R}^n \\
y \in \mathcal{R}^\rho
\end{array}$$

with initial condition $\mathbf{x}(0) = \underline{\mathbf{x}_0}$ is **observable** if knowing $\underline{\mathbf{u}}$ and $\underline{\mathbf{y}}$ on some interval $[0, t_1]$, $t_1 < \infty$ is sufficient to determine \mathbf{x}_0 .

Theorem

The system

Observability test

them
$$\dot{x} = Ax + B\underline{u} \qquad \text{for } x = \mathbb{R}^{h}$$

$$\dot{y} = Cx \qquad \text{for } x = \mathbb{R}^{h}$$

$$\dot{y} = Cx \qquad \text{for } x = \mathbb{R}^{h}$$

$$\dot{y} = R \qquad \text{for } x = \mathbb{R}^{h}$$

$$\dot{y} = R \qquad \text{for } x = \mathbb{R}^{h}$$

$$\dot{y} = R \qquad \text{for } x = \mathbb{R}^{h}$$

$$\dot{y} = R \qquad \qquad \dot{y} = \mathbb{R}^{h}$$

$$\dot{y} = R \qquad \qquad \dot{y} = R \qquad \qquad \dot{y} =$$

is observable if and only if the matrix

$$\begin{array}{c}
 \text{Inservability} \\
 \text{Instrict} \\
 \text{Instrict} \\
 \text{Inservability} \\
 \text{Instrict} \\
 \text{Instruct} \\
 \text{Instrict} \\
 \text{Instruct} \\
 \text{Instric$$

has full rank.

Notes:

1. Size of \boldsymbol{W}_o is $(np) \times n$ 2. If C is a row vector, i.e., p=1, W_o is square, hence $\det(W_o) \neq 0$ means observables

Example: observability test (1)
$$x_1(t)$$

$$\dot{X} = \begin{pmatrix} -\frac{R_1}{S_1} & O \\ \frac{R_1}{S_2} & \frac{R_2}{S_2} \end{pmatrix} \times \begin{pmatrix} \frac{1}{S_1} \\ O \end{pmatrix} \mathcal{M}$$

$$x_2(t)$$
 $R_1x_1(t)$
 $R_2x_2(t)$

$$C = (R_1 \ 0) \quad W_0 = \begin{pmatrix} C \\ CA \end{pmatrix} = \begin{pmatrix} R_1 \ 0 \\ -R_1^2 \ 0 \end{pmatrix}$$

$$D \text{ not be anable}$$

$$y = R_2 \times_2$$

$$C = (O R_2) \quad W_0 = \begin{pmatrix} C \\ CA \end{pmatrix} = \begin{pmatrix} R_1 R_2 \\ S_2 \\ S_2 \end{pmatrix}$$

$$det W_0 = -\frac{R_1 R_2^2}{S_2}$$

Example: observability test (2)

Observability: interpretation (1)

Transform the matrix

Assume
$$\mathbf{A}$$
 is complete (semisimple) with eigenvalues $(\mathbf{W}_o)^T = \begin{bmatrix} \mathbf{C}^T & \mathbf{A}^T \mathbf{C}^T & \cdots & (\mathbf{A}^{n-1})^T \mathbf{C}^T \end{bmatrix}$

$$\lambda_1, \lambda_2 \ldots, \lambda_n$$

into

and eigenvectors

define

Observability: interpretation (2)

Observability: interpretation (3)

Theorem

The system

is observable if

- 1. C is a row vector
- 2. **A** is complete (semisimple) with with eigenvalues $\lambda_1, \lambda_2, \ldots, \lambda_n$, eigenvectors $\mathbf{v}_1, \mathbf{v}_2, \ldots, \mathbf{v}_n$ and transformation matrix

$$T = [\mathbf{v}_1 \ \mathbf{v}_2 \ \cdots \ \mathbf{v}_n]_{n-1}$$

- 3. $\lambda_i \neq \lambda_i$ for all $i \neq j$
- 4. The vector $\mathbf{E} = \overline{\mathbf{T}}^T \mathbf{C}^T$ has only non-zero entries

Example: interpretation of observability

Consider
$$\dot{\mathbf{x}} = \begin{pmatrix} -2 & 1 \\ 0 & -1 \end{pmatrix} \mathbf{x} + \begin{pmatrix} a \\ b \end{pmatrix} \mathbf{u} \qquad \qquad \lambda_2 = -1$$

$$\mathbf{y} = \begin{pmatrix} c & d \end{pmatrix} \cdot \mathbf{x}$$
For which values of c and d is this observ-

able?

$$V_1 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$
 $V_2 = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$ $T = \begin{pmatrix} 1 \\ 0 \end{pmatrix} = T$
 $T = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$ $T = \begin{pmatrix} 1 \\ 1 \end{pmatrix} = T$
 $C \neq 0$ $C + d \neq 0$

The End