Analysis on red wine bataset

Made by: Dharini Patel A201 Khushi Patil A216 Vishwasinh Suratia A231

contents

studio

01

Introduction

INTRODUCTION TO DATASET

Going through drinks, which is way more popular in this era gave curiosity about how much level of harm it can cause or not and by going through a ranked wine data made it possible to come to a conclusion

Link:

https://www.kaggle.com/datasets/uciml/red-wine-quality-cortez-et-al-2009?resource=downloadhttps://www.kaggle.com/datasets/uciml/red-wine-quality-cortez-et-al-2009?resource=download

- > colnames(data)
- [1] "fixed.acidity"
- "volatile.acidity"
 "free.sulfur.dioxide"
- "citric.acid"
- "residual.sugar"

[5] "chlorides"

"sulphates"

- "total.sulfur.dioxide"
- "alcohol" "a
- "density" "quality"

02

R STUDIO

> data=read.csv("winequality-red.csv")

```
> head(data)
  fixed.acidity volatile.acidity citric.acid residual.sugar chlorides
            7.4
                            0.70
                                        0.00
                                                        1.9
                                                                0.076
            7.8
                            0.88
                                        0.00
                                                        2.6
                                                                0.098
            7.8
                            0.76
                                        0.04
                                                        2.3
                                                                0.092
          11.2
                            0.28
                                        0.56
                                                        1.9
                                                                0.075
            7.4
                            0.70
                                        0.00
                                                        1.9
                                                                0.076
            7.4
                            0.66
                                        0.00
                                                        1.8
                                                                0.075
  free.sulfur.dioxide total.sulfur.dioxide density
                                                     pH sulphates alcohol
                                                             0.56
                                                                      9.4
                   11
                                        34 0.9978 3.51
                   25
                                                                      9.8
                                            0.9968 3.20
                                                             0.68
                                                                      9.8
                   15
                                                             0.65
                                            0.9970 3.26
                   17
                                                                      9.8
                                                             0.58
                                            0.9980 3.16
                   11
                                                                      9.4
                                            0.9978 3.51
                                                             0.56
                   13
                                            0.9978 3.51
                                                             0.56
                                                                      9.4
  quality
```

```
summary(data)
fixed.acidity
               volatile.acidity citric.acid
                                                residual.sugar
Min. : 4.60
               Min.
                      :0.1200
                                Min.
                                       :0.000
                                                Min. : 0.900
                                                1st Qu.: 1.900
1st Qu.: 7.10
               1st Qu.:0.3900
                                1st Qu.:0.090
Median: 7.90
               Median :0.5200
                                Median :0.260
                                                Median : 2.200
                     :0.5278
                                Mean :0.271
                                                Mean : 2.539
Mean
     : 8.32
               Mean
3rd Qu.: 9.20
               3rd Qu.: 0.6400
                                3rd Qu.:0.420
                                                3rd Qu.: 2.600
Max.
       :15.90
               Max.
                      :1.5800
                                Max.
                                       :1.000
                                                Max.
                                                       :15.500
                 free.sulfur.dioxide total.sulfur.dioxide density
  chlorides
Min.
       :0.01200
                 Min. : 1.00
                                     Min.
                                               6.00
                                                          Min.
                                                                 :0.9901
                                     1st Qu.: 22.00
1st Ou.:0.07000
                 1st Qu.: 7.00
                                                         1st Qu.:0.9956
Median :0.07900
                 Median :14.00
                                     Median : 38.00
                                                         Median : 0.9968
                                     Mean : 46.47
       :0.08747
                 Mean :15.87
                                                         Mean
Mean
                                                                 :0.9967
3rd Qu.:0.09000
                 3rd Qu.:21.00
                                     3rd Qu.: 62.00
                                                          3rd Qu.: 0.9978
       :0.61100
                        :72.00
                                     Max.
                                            :289.00
                                                                 :1.0037
Max.
                 Max.
                                                         Max.
                                   alcohol
      pH
                 sulphates
                                                   quality
       :2.740
                     :0.3300
                                Min.
                                       : 8.40
                                                Min.
                                                       :3.000
Min.
               Min.
1st Qu.:3.210
               1st Qu.:0.5500
                                1st Qu.: 9.50
                                                1st Qu.:5.000
Median :3.310
               Median :0.6200
                                Median :10.20
                                                Median :6.000
       :3.311
                      :0.6581
                                Mean
                                       :10.42
                                                Mean
                                                       :5.636
Mean
               Mean
3rd Qu.:3.400
               3rd Qu.:0.7300
                                3rd Qu.:11.10
                                                3rd Qu.:6.000
       :4.010
                      :2.0000
                                       :14.90
                                                       :8.000
Max.
               Max.
                                Max.
                                                Max.
```

03

Analysis of The Dataset

PHYSICOCHEMICAL OBS: Using Pie CHart

select the columns of interest wine_sub <- select (wine, fixed.acidity, chlorides, pH, volatile.acidity,citric.acid, residual.sugar, free.sulfur.dioxide, total.sulfur.dioxide, density, sulphates, alcohol, quality)

calculate the total number of observations
total_obs <- nrow(wine_sub)</pre>

calculate the percentage of observations for each column percentages <- round(colSums(wine_sub) / total_obs * 100, 2)

create the pie chart pie (percentages, labels = paste(names(percentages), "(", percentages, "%)"), main = "Percentage of Observations by Column")

ALCOHOL CONTAINS: Using Histogram

 $install.packages ("ggplot2") \\ library (ggplot2) \\ \# for \ histogram \ of \\ ggplot (wine_subset, aes(x=alcohol)) + geom_histogram (binwidth = 0.1, color="black", fill="blue") + labs (title="alcohol contains") \\ \end{pmatrix}$

PH & FIXED aCIDITY: using scatter PLOT

```
install.packages("ggplot2")
library(ggplot2)
# Plot fixed acidity against pH, colored by wine quality
ggplot(wine_subset, aes(x = fixed.acidity, y = pH, color = quality)) + geom_point() + labs(x = "Fixed Acidity", y = "pH", color =
"Quality") + theme_classic()
```


ALCOHOL QUALITY: USING BUBBLE GRAPH

 $library(ggplot2) \\ library(dplyr) \\ \# \ Rename \ the \ columns \ for \ easier \ reference \\ colnames(wine) <- c("fixed.acidity", "chlorides", "pH", "volatile.acidity", "citric.acid", "residual.sugar", "free.sulfur.dioxide", "total.sulfur.dioxide", "density", "sulphates", "alcohol", "quality") \\ \# \ Create \ the \ bubble \ plot \ using \ ggplot2 \\ ggplot(wine, \ aes(x = pH, \ y = alcohol, \ size = quality, \ color = quality)) + \ geom_point() + \ scale_size(range = c(2, 8)) + \ labs(title = "Wine \ Dataset \ Bubble \ Plot", \ x = "pH", \ y = "alcohol", \ size = "quality", \ color = "quality") + \ theme_bw()$

SKEWNESS:

```
data(wine)
subset_data <- wine[, c("fixed.acidity", "chlorides", "pH", "volatile.acidity", "citric.acid",
"residual.sugar", "free.sulfur.dioxide", "total.sulfur.dioxide", "density", "sulphates", "alcohol",
"quality")]
library(moments)
sapply(subset_data, skewness)
```

```
> sapply(subset_data, skewness)
      fixed.acidity
                               chlorides
                                                                   volatile.acidity
                                                                                             citric.acid
         0.98090840
                              5.66969370
                                                   0.19332027
                                                                        0.67033307
                                                                                              0.31774029
     residual.sugar free.sulfur.dioxide total.sulfur.dioxide
                                                                            density
                                                                                               sulphates
         4.53213992
                              1.24822199
                                                   1.51268904
                                                                        0.07115397
                                                                                              2.42411764
            alcohol
                                 quality
         0.85921442
                              0.21739311
```

KUTTOSIS:

```
library(e1071)
# for kurtosis function
# load Wine dataset
data(wine)
# select columns of interest
cols <- c( "fixed.acidity", "chlorides", "pH","volatile.acidity", "citric.acid", "residual.sugar",
"free.sulfur.dioxide", "total.sulfur.dioxide", "density", "sulphates", "alcohol", "quality")wine_sub
<- wine[, cols]
# compute kurtosis for each column
kurt <- apply(wine_sub, 2, kurtosis)
# print results
names(kurt) <- colnames(wine_sub)
print(kurt)
```

```
Hamestran ex - cornamestranessapy
> print(kurt)
      fixed.acidity
                               chlorides
                                                                  volatile.acidity
                                                                                            citric.acid
          1.1196987
                              41.5259635
                                                    0.7959191
                                                                         1.2126893
                                                                                             -0.7930455
     residual.sugar free.sulfur.dioxide total.sulfur.dioxide
                                                                           density
                                                                                              sulphates
         28.4850200
                               2.0072212
                                                                         0.9225000
                                                                                             11.6615285
                                                    3.7856764
            alcohol
                                 quality
          0.1916586
                               0.2879148
```

variance:

```
# load wine dataset
data(wine
)# extract the columns of interest
cols <- c("fixed.acidity", "chlorides", "pH", "volatile.acidity", "citric.acid", "residual.sugar",
"free.sulfur.dioxide", "total.sulfur.dioxide", "density", "sulphates", "alcohol", "quality")wine_cols
<- wine[, cols]
# calculate the variance for each column
variances <- apply(wine_cols, 2, var)
# print the variances
print(variances)
```

> print(variances)				
fixed.acidity	chlorides	pH	volatile.acidity	citric.acid
3.031416e+00	2.215143e-03	2.383518e-02	3.206238e-02	3.794748e-02
residual.sugar	free.sulfur.dioxide	total.sulfur.dioxide	density	sulphates
1.987897e+00	1.094149e+02	1.082102e+03	3.562029e-06	2.873262e-02
alcohol	quality			
1.135647e+00	6.521684e-01			

co-relation:

print(correlation_matrix)

```
# Load the wine dataset
library(datasets)
data(wine)

# Select the columns of interest
cols <- c( "fixed.acidity", "chlorides", "pH","volatile.acidity", "citric.acid", "residual.sugar", "free.sulfur.dioxide",
"total.sulfur.dioxide", "density", "sulphates", "alcohol", "quality")wine_data <- wine[, cols]

# Calculate the correlation matrix
correlation_matrix <- cor(wine_data)
# Print the correlation matrix
```

	sulphates	alcohol	quality	
fixed.acidity	0.183005664	-0.06166827	0.12405165	
chlorides	0.371260481	-0.22114054	-0.12890656	
pH	-0.196647602	0.20563251	-0.05773139	
volatile.acidity	-0.260986685	-0.20228803	-0.39055778	
citric.acid	0.312770044	0.10990325	0.22637251	
residual.sugar	0.005527121	0.04207544	0.01373164	
free.sulfur.dioxide	0.051657572	-0.06940835	-0.05065606	
total.sulfur.dioxide	0.042946836	-0.20565394	-0.18510029	
density	0.148506412	-0.49617977	-0.17491923	
sulphates	1.000000000	0.09359475	0.25139708	
alcohol	0.093594750	1.00000000	0.47616632	
quality	0.251397079	0.47616632	1.00000000	

> print(correlation_	matrix)				
	fixed.acidity	chlorides	pH	volatile.acidity	citric,acid
fixed.acidity	1.88866688	0.093705186	-0.68297819	-0.256138895	0.67170343
chlorides	0.09370519	1,866666688	-0.26502613	0.061297772	0.20382291
pit	-0.68297819	-0.265026131	1.00000000	0.234937294	-0.54198414
volatile acidity	-0.25613089	0.861297772	0.23493729	1.000000000	-0.55249568
citric.ocid	0.67170343	0.203822914	-0.54190414	-0.552495685	1.00000000
residual.sugar	8.11477672	0.055609535	-0.08565242	0.001917882	0.14357716
free.sulfur.dioxide	-0.15379419	8.885562147	0.07037750	-0.010503827	-0.06097813
total.sulfur.dioxide	-0.11318144	0.847488468	-0.06649456	0.076470005	0.03553302
density	0.66884729	0.200632327	-0.34169933	0.022026232	0.36494718
sulphotes	0.18300566	0.371260481	-0.19664768	-0.260986685	0.31277804
alcohol	-0.86166827	-0.221140545	0.20563251	-0.202288027	0.10990325
quality	0.12405165	-0.128906560	-0.05773139	-0.398557780	0.22637251
SEC. 25 14.000	residual.sugar	free.sulfur	dioxide tota	il.sulfur.dioxide	density
fixed.acidity	0.114776724	-0.1	53794193	-0.11318144	0.66884729
chlorides	0.055609535	0.00	85562147	0.04740047	0.20063233
pH	-0.085652422	0.8	78377499	-0.06649456	-0.34169933
volatile.acidity	0.001917882	-0.0	10503827	0.07647000	0.02202623
citric.ocid	0.143577162	-0.0	68978129	0.03553302	0.36494718
residual_sugar	1.000000000	0.1	87848995	0.20302788	0.35528337
free, sulfur, dioxide	0.187048995	1.00	99999999	0.66766645	-0.02194583
total.sulfur.dioxide	0.203027882	0.6	67666450	1.00000000	0.07126948
density	0.355283371	-0.8	21945831	0.07126948	1.00000000
sulphates	0.005527121	0.0	51657572	0.04294684	0.14858641
alcohol	0.042075437	-0.0	69488354	-0.28565394	-0.49617977
quality	0.013731637	-0.8	58656857	-0.18510029	-0.17491923

04 conclusion

While working on Red wine Dataset in R, there are some conclusions that were seen, the dataset is all about types of physicochemical properties of contains in red wine based on the ranking of red wines(names not mentioned of grape types, wine brands or selling price)

- -We saw how high total sulphur dioxide level in wine is and according to research exposure to higher concentrations can cause **nausea**, **vomiting**, **stomach pain and corrosive damage to the airways and lungs**. People with asthma may be more sensitive to the effects of sulphur dioxide.
- -In alcohol histogram we can see that the mode is around 9 to 9.5 i.e from 1600 samples of wine alcohol quantity most repeated is around 9.5.
- -In PH below 7 is acidic in nature & Fixed acidity is the volatility level in scatter plot the acidic is shown around 3.3 in PH and 7.2 volatility in Fixed acidity.
- -In PH & alcohol bubble graph plot great quality is shown around 3.3 in PH and 9.5 in alcohol.

For conclusions, we have used various techniques and visualizations in R, such as: Histograms, bubble plots, pie chart, scatter plot to visualize the contents of red wine in a specific amount.

THANK YOU