

Umsetzung einer Trackingsoftware am Beispiel eines *Microsoft Kinect* - Kamerasensors

Sebastian Büttner, Florian Zorbach, Fabian Möbus

Agenda

- Aufgabenstellung
- Konzept
- Durchführung
 - Kinect
 - FaceVACS
 - Zustandsmodell
- Schwierigkeiten
- Fazit

Aufgabenstellung

biometrische Personendaten speichern

- Benutzereingabe:
 - bestimmte Person verfolgen

verfolgte Person wiedererkennen

Konzept

- Kinect
 - Personendaten erfassen
 - Datenweitergabe an FaceVACS
- FaceVACS
 - Personen wiedererkennen
 - Abgleich mit Datenbank
- Zustandsmodell
 - Koordination
 - Zustandsübergänge

- SkeletonStream
 - Personenerkennung (max. 6)
 - SkeletonID
 - Joint-Informationen (Kopf, ...)

- ColorStream
 - Auflösung: 1280 x 960 bei 12 FPS
 - Live-Bild

- WaitForBody
 - warte auf neue Person
 - bei neuer Person im Sichtbereich
 - SkeletonID speichern
 - Übergang zu WaitTakePicture

- WaitTakePicture
 - Person mit SkeletonID identifizieren
 - Joint-Informationen sammeln
 - Kopf-Position ermitteln (X: ... Y: ...)
 - Bitmap von Kopf erstellen
 - Bitmap an FaceVACS weitergeben

- Tracking
 - Person mit SkeletonID identifizieren
 - Person verfolgen
 - solange Fokus nicht verloren

FaceVACS

Zustandsmodell

Schwierigkeiten

- Kinect FaceVACS
 - schwache Bildqualität erschwert
 Identifikation

Daten konsistent halten

Fazit

