DCC639: Álgebra Linear Computacional

(Prazo para submissão: 01/02/21 23:55)

Lista de Exercícios 03

Professores: Erickson e Fabricio

Política da Disciplina: Leia todas as instruções abaixo cuidadosamente antes de começar a resolver a lista, e antes de fazer a submissão.

- As questões podem ser discutidas entre até três alunos (conjuntos disjuntos). Os nomes dos colegas precisam ser incluídos na submissão.
- A submissão deve ser feita em formato PDF através do Moodle, mesmo que tenham sido resolvidas a mão e escaneadas.
- Todas as soluções devem ser justificadas.
- Todas as fontes de material precisam ser citadas. O código de conduta da UFMG será seguido à risca.

Problema 1: Quais das matrizes S_1, S_2, S_3, S_4 tem dois autovalores positivos? Use um teste, não calcule os $\lambda's$. Encontre também um vetor x tal que $\mathbf{x}^TS_1\mathbf{x}<0$, então S_1 não é uma matriz definida positiva.

$$S_1 = \begin{bmatrix} 5 & 6 \\ 6 & 7 \end{bmatrix}$$
 $S_2 = \begin{bmatrix} -1 & -2 \\ -2 & -5 \end{bmatrix}$ $S_3 = \begin{bmatrix} 1 & 10 \\ 10 & 100 \end{bmatrix}$ $S_4 = \begin{bmatrix} 1 & 10 \\ 10 & 101 \end{bmatrix}$

(Solução)

Only
$$S_4=\left[\begin{array}{cc} 1 & 10 \\ 10 & 101 \end{array}\right]$$
 has two positive eigenvalues since $101>10^2.$

 $x^{T}S_{1}x = 5x_{1}^{2} + 12x_{1}x_{2} + 7x_{2}^{2}$ is negative for example when $x_{1} = 4$ and $x_{2} = -3$:

 A_1 is not positive definite as its determinant confirms; S_2 has trace c_0 ; S_3 has det = 0.

Problema 2: Mostre que $||v||_2 \le \sqrt{n}||v||_\infty$ sempre. Prove também que $||v||_1 \le \sqrt{n}||v||_2$, escolhendo um vetor w adequado e aplicando a desigualdade de Cauchy-Schwarz.

(Solução)

$$||v||_2^2 = v_1^2 + \cdots + v_n^2 \le n \max |v_i|^2 \text{ so } ||v||_2 \le \sqrt{n} \max |v_i|.$$

For the second part, choose w = (1, 1, ..., 1) and use Cauchy-Schwarz:

$$||v||_1 = |v_1|w_1 + \cdots + |v_n|w_n \le ||v||_2 ||w||_2 = \sqrt{n} ||v||_2$$

Problema 3: Considere o uso do SVD truncado de posto k para compressão de imagens em escala de cinza (0 a 255) de tamanho 1024×768 .

(a) No caso de uma única imagem decomposta usando SVD, quantos bytes precisam ser armazenados para reconstruir a imagem? Qual o valor máximo de k para o qual a compressão vale a pena?

(Solução)

Para armazenar a imagem sem compressão são necessários 1024×768 bytes, já que cada elemento da matriz é equivalente a 1 byte (2^8). Para armazenar com compressão são necessários pelo menos 1024 + 768 bytes (assumindo k = 1).

 \dot{U} tem tamanho $\dot{10}24 \times k, \sum$ pode ser armazenada como um vetor de tamanho k e V^T tem tamanho $k \times 768$ bytes. Logo, $1793k < 1024 \times 768 \Rightarrow k \leq 438$.

(b) Agora suponha que queiramos usar um único SVD para comprimir várias imagens. Para isso, iremos representar as imagens como vetores de tamanho $786432 \ (= 1024 \times 768)$. Quantos bytes serão necessários para armazenar 10 imagens? E quanto a 1000 imagens?

(Solução)

O espaço necessário para armazenar a decomposição é mk + k + kn = (m + n + 1)k. Quando m = 10, temos (10 + 786432 + 1)k = 786443k. Quando m = 1000, temos (1000 + 786432 + 1)k = 787433k.

Problema 4: Seja Q uma matriz ortogonal. Mostre que: (a) os valores singulares de Q são todos iguais a 1, e que (b) $Q = U\Sigma V^{\top}$ com U = Q, $\Sigma = I$ e $V^{\top} = I$ é um SVD válido.

(Solução)

Para mostrar que os valores singulares de Q são iguais a 1, precisamos calcular as raízes dos autovalores de $Q^{\top}Q = I$. Como I é matriz diagonal, os elementos da diagonal são os seus autovalores (isto vale para qualquer matriz triangular). Tomando-se a raiz quadrada, conclui-se que os valores singulares de Q são iguais a 1.

Para mostrar que Q=QII é um SVD válido, basta observar que U=Q é uma matriz ortogonal, $\Sigma=I$ é diagonal com elementos positivos, e $V=I^{\top}=I$ é ortogonal.

Problema 5: Sem fazer contas (i.e., sem fazer multiplicação de matrizes ou calcular polinômios característicos), encontre os $\sigma's$, u's e v's da matriz $A=\begin{bmatrix}0&2&0\\0&0&3\\0&0&0\end{bmatrix}=U\Sigma V^T$. Dica: as matrizes ortogonais U e V são matrizes de permutação.

(Solução)

Temos que $Ax = \begin{bmatrix} 2x_2 & 3x_3 & 0 \end{bmatrix}^{\mathsf{T}}$. Como não há combinação entre os elementos de x, as matrizes U e V^{T} são apenas matrizes de permutação.

Caso não impusessemos nenhuma restrição em relação a ordem dos autovalores σ , bastaria fazer $V^{\top} = I$,

$$\Sigma = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 3 \end{bmatrix}$$
e $U = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{bmatrix}.$

Por outro lado, para impor $\sigma_1 = 3 > \sigma_2 = 2 > \sigma_3 = 0$, é preciso permutar os elementos de x de forma a obter $\begin{bmatrix} x_3 & x_2 & x_1 \end{bmatrix}^{\mathsf{T}}$. Nesse caso, teríamos o SVD (note que está faltando o '=' entre a primeira e a segunda matriz):

$$\begin{bmatrix} 0 & 2 & 0 \\ 0 & 0 & 3 \\ 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 3 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{bmatrix} = U \Sigma V^{\mathrm{T}}$$

Problema 6: Elabore e resolva uma questão (1 grupo = 1 questão) sobre qualquer tópico que apareça na planilha ao lado do nome de qualquer integrante do seu grupo: https://drive.google.com/file/d/1yWdp4-ehrSVz3VQ8EH8idn0Qj26ZczyE/view?usp=sharing.

Para alunos sem grupo, este problema é opcional.

Embora você seja livre para decidir, recomendamos que a questão não seja nem muito fácil, nem muito difícil. Questões interessantes podem ser escolhidas como base para as questões que irão compor a prova.