Standard complex stuff

$z = re^{i\theta};$ $\theta \in (-\pi, \pi]$ $z^n = r^n(\cos n\theta + i\sin n\theta)$	$ \sqrt[n]{z} = \sqrt[n]{r} \left(\cos \frac{\theta + 2k\pi}{n} + i \sin \frac{\theta + 2k\pi}{n} \right); $ $ \{ \mathbf{k} \in \mathbb{Z} : \mathbf{k} \in [0, \mathbf{n} - 1] \} $	
$e^{z} = e^{x+yi} = e^{x}(\cos y + i \sin y)$ $e^{iz} = \cos z + i \sin z$	$\ln z = \ln r + i(\theta + 2k\pi);$ $\{ \mathbf{k} \in \mathbb{Z} : (\theta + 2k\pi) \in (-\pi, \pi] \}$	
$\sin z = \frac{1}{2i} (e^{iz} - e^{-iz}); \cos z = \frac{1}{2} (e^{iz} + e^{-iz})$	$ sinh z = \frac{1}{2}(e^z - e^{-z}); cosh z = \frac{1}{2}(e^z + e^{-z}) $	
$\sinh z = -i\sin iz; \cosh z = \cos iz$	$\overline{z_1} + \overline{z_2} = \overline{z_1 + z_2}; \ \overline{z_1} \times \overline{z_2} = \overline{z_1 \times z_2}$	

Calculus stuff

Analytic: $u_x = v_y$; $u_y = -v_x$	Entire: Analytic in C
Harmonic: $u_{xx} + u_{yy} = 0$; $v_{xx} + v_{yy} = 0$	Exact differential: $df(x,y) = \frac{\partial f}{\partial x} dx + \frac{\partial f}{\partial y} dy$
Given $u(x, y)$ to find $f(z) = u(x, y) + iv(x, y)$ ① Check harmonic: $u_{xx} + u_{yy} = 0$ ② Let $f(z) = \int f'(z) dz = \int (u_x - iu_y) dz$	$\int_{C} f(z) dz = \int_{a}^{b} f(z(t)) z'(t) dt : t \in [a, b]$
$f(z)$ is analytic, $C: z_0 \to z_1:$ $\int_C f(z)dz = \int_{z_0}^{z_1} f(z)dz$	$f(z)$ is analytic, C encloses z_0 , anti-clockwise: $\oint_C \frac{f(z)}{(z-z_0)^n} dz = \frac{2\pi i}{(n-1)!} f^{(n-1)}(z_0)$

Sequence & Series stuff

$s = \sum_{n=0}^{\infty} a_n (z - z_0)^n;$	$R = \lim_{n \to \infty} \left \frac{a_n}{a_{n+1}} \right $
$\ln(1-z) = -\sum_{n\geq 1} \frac{1}{n} z^n$	
$\sinh z = \sum_{n \ge 0} \frac{1}{(2n+1)!} z^{2n+1}$ $\cosh z = \sum_{n \ge 0} \frac{1}{1} z^{2n}$	$\frac{1}{z+a} = \frac{1}{a} \sum_{n \ge 0} \left(\frac{-1}{a}z\right)^n$
	$\ln(1-z) = -$

Ordinary differential equation stuff

Given $y' + A(x)y = B(x)$	Given $P(x, y) dx + Q(x, y) dy = 0$	
$y = \frac{1}{\alpha(x)} (\int \alpha(x) B(x) dx + C);$	① Check exact: $\frac{\partial P}{\partial y} = \frac{\partial Q}{\partial x}$	
$\alpha(x) = e^{\int A(x) dx}$		
Given $g(x, y, y', y'') = f(x)$	Given u_x , u_y to find $u(x, y)$	
$\textcircled{1}$ Solve y_h for $f(x) = 0$		
_		
	$\mathfrak{J} u = \int u_x dx + \int h'(y) dy$	
Given $ay'' + by' + cy = 0$	Solutions linear independence:	
$\left(C_1 e^{r_1 x} + C_2 e^{r_2 x} \qquad r_1 \neq r_2\right)$	$y_1^{(0)} \cdots y_n^{(0)}$	

Given $ay'' + by' + cy = 0$	Solutions linear independence:		
$y_{h} = \begin{cases} C_{1}e^{r_{1}x} + C_{2}e^{r_{2}x} & r_{1} \neq r_{2} \\ e^{rx}(C_{1}x + C_{2}) & r_{1} = r_{2} ; ar^{2} + br + c = 0 \\ e^{\alpha x}(C_{1}\sin\beta x + C_{2}\cos\beta x) & r = \alpha \pm \beta i \end{cases}$	$W = \begin{vmatrix} y_1^{(0)} & \cdots & y_n^{(0)} \\ \vdots & \ddots & \vdots \\ y_1^{(n-1)} & \cdots & y_n^{(n-1)} \end{vmatrix} \neq 0$		
(0)	Change of variables:		
$Given \sum_{i=0}^n a_i y^{(i)} = 0$	$x = e^u$		
$ v_h = \sum_{i=1}^k \left(e^{r_i x} \sum_{i=1}^{m_i-1} C_{ij} x^j \right); \sum_{i=1}^n a_i r^i = \prod_{i=1}^k (x - r_i)^{m_i} = 0 $	y = v		
Given $\sum_{i=0}^{n} a_i y^{(i)} = 0$ $y_h = \sum_{i=1}^{k} \left(e^{r_i x} \sum_{j=0}^{m_i - 1} C_{ij} x^j \right); \sum_{i=0}^{n} a_i r^i = \prod_{i=1}^{k} (x - r_i)^{m_i} = 0$	$y' = e^{-2u}v'' - e^{-2u}v'$		
Given $ax^2y'' + bxy' + cy = 0$			
$\left(C_1 x^{r_1} + C_2 x^{r_2} \qquad \qquad r_1 \neq r_2\right)$			
$y_h = \begin{cases} C_1 x^{r_1} + C_2 x^{r_2} & r_1 \neq r_2 \\ x^r (C_1 \ln x + C_2) & r_1 = r_2; \ ar \\ x^{\alpha} [C_1 \sin(\beta \ln x) + C_2 \cos(\beta \ln x)] & r = \alpha \pm \beta i \end{cases}$	$r^2 + (b-a)r + c = 0$		
$\left(x^{\alpha}[C_1\sin(\beta\ln x) + C_2\cos(\beta\ln x)] r = \alpha \pm \beta i$			

Partial differential equation stuff

1 01 1101 011111 0111111 0 0111111		
Partial integration:	Given $au_{xx} = u_t$	
Let all constants $C_n = f_n(y)$ for $\int u(x, y) dx$	$u_i(x,t) = (A\sin\kappa x + B\cos\kappa x)e^{-a\kappa^2 t} + Cx + D$	
Given $a^2 u_{xx} = u_t$; $u _{x=0} = c$; $u _{x=L} = d$; $u _{t=0} = f(x)$		
$u(x,t) = c + \frac{d-c}{L}x + 2\sum_{n=1}^{\infty} k_n \sin\frac{n\pi}{L}x e^{-\left(\frac{n\pi a}{L}\right)^2 t}; k_n = \frac{1}{L} \int_0^L \left(f(x) - c - \frac{d-c}{L}x\right) \sin\frac{n\pi}{L}x dx$		
Given $u_{tt} = c^2 u_{xx}$; $u _{x=0} = u _{x=L} = 0$; $u _{t=0} = f(x)$; $u_t _{t=0} = g(x)$		
$ \mathfrak{D} \begin{cases} a_n = \frac{1}{L} \int_0^L f(x) \sin \frac{n\pi}{L} x dx \\ b_n = \frac{1}{Cn\pi} \int_0^L g(x) \sin \frac{n\pi}{L} x dx \end{cases} $		
$b_n = \frac{1}{cn\pi} \int_0^L g(x) \sin \frac{n\pi}{L} x dx$		
Given $u_{xx} + u_{yy} = 0$; $u _{x=0} = u _{x=a} = u _{y=0} = 0$; $u _{y=b} = f(x)$		
$u(x,y) = 2\sum_{n=1}^{\infty} \left(d_n \sin \frac{n\pi}{a} x \sinh \frac{n\pi}{a} y \right); \ d_n = \frac{1}{a \sinh \frac{n\pi b}{a}} \int_0^a f(x) \sin \frac{n\pi}{a} x dx$		
Given $P(x, y, u)u_x + Q(x, y, u)u_y = R(x, y, u)$	$u); \ u _{y=0} = f(x) \qquad \qquad \text{Given } eq[u, u_x, u_t]$	
$ \bigoplus_{P(x,y,u)} \frac{\partial x}{P(x,y,u)} = \frac{\partial y}{P(x,y,u)} = \frac{\partial u}{R(x,y,u)}; \begin{cases} Q dx = P dy \\ R dx = P du; R dy = Q du \end{cases} $ $ \bigoplus_{P(x,y,u)} \text{Let } u(x,t) = X(x) \cdot T(t) $ $ \bigoplus_{P(x,y,u)} f(x,x') = g(T,T') = k $		
② $F(\int Q dx - \int P dy) = \int R dx - \int P du = \int R dy - \int Q du$ ③ Reduce into ODEs		
(3) Substitute $u(x, 0) = f(x)$ to find $F(t)$		
4 Find $u(x,y)$	\mathfrak{S} Find $u(x,t)$	

Fourier stuff

Given
$$f(x)$$
 of period $2r$

(1) $f(x) = a_0 + \sum_{n=1}^{\infty} \left(a_n \cos \frac{n\pi}{r} x + b_n \sin \frac{n\pi}{r} x \right)$

(2)
$$\begin{cases} a_0 = \frac{1}{2r} \int_{-r}^{r} f(x) dx \\ a_n = \frac{1}{r} \int_{-r}^{r} f(x) \cos \frac{n\pi}{r} x dx \end{cases}$$
(3)
$$\begin{cases} a_0 = \frac{1}{2r} \int_{-r}^{r} f(x) \cos \frac{n\pi}{r} x dx \\ b_n = \frac{1}{r} \int_{-r}^{r} f(x) \sin \frac{n\pi}{r} x dx \end{cases}$$
(4) Given $f(x)$ for $x \in [0, r]$ to extend $\frac{evenly}{r}$ to period $2r$

$$\begin{cases} a_0 = \frac{1}{r} \int_{-r}^{r} f(x) \cos \frac{n\pi}{r} x dx \\ a_n = \frac{2}{r} \int_{0}^{r} f(x) \cos \frac{n\pi}{r} x dx \end{cases}$$
(5) Given $f(x)$ for $x \in [0, r]$ to extend $\frac{evenly}{r}$ to period $2r$

$$f(x) = \sum_{n=1}^{\infty} \left(b_n \sin \frac{n\pi}{r} x \right); b_n = \frac{2}{r} \int_{0}^{r} f(x) \sin \frac{n\pi}{r} x dx \end{cases}$$

Calculus identities

$d(\sin x) = \cos x dx$	$d(\cos x) = -\sin x dx$	$d(\tan x) = \sec^2 x dx$	
$d(\sec x) = \sec x \tan x dx$	$d(\csc x) = -\csc x \cot x dx$	$d(\cot x) = -\csc^2 x dx$	
$\int \sec x dx = \ln \tan x + \sec x + C$	$\int a^x dx = \frac{1}{\ln a} a^x + C$	$\int \ln x dx = x \ln x - x + C$	
$\int \csc x dx = -\ln \csc x + \cot x + C$	$\int \frac{1}{\sqrt{1-x^2}} dx = \sin^{-1} x + C = -\cos^{-1} x + C$		
$\int \tan x dx = -\ln \cos x + C$	$\int \frac{1}{x\sqrt{x^2 - 1}} dx = \sec^{-1} x + C = -\csc^{-1} x + C$		
$\int \cot x dx = \ln \sin x + C$	$\int \frac{1}{1+x^2} dx = \tan^{-1} x$	$C + C = -\cot^{-1}x + C$	

Trigonometric identities

$\sin^2 x + \cos^2 x =$	= 1	sec ² x	$-\tan^2 x = 1$	$\csc^2 x - \cot^2 x = 1$
$\sin(x \pm y) = \sin x$	$\sin(x \pm y) = \sin x \cos y \pm \cos x \sin y$		$\cos(x \pm y) = \cos x \cos y \mp \sin x \sin y$	
$\sin 2x = 2\sin x \cos x$		$\cos 2x = \cos^2 x - \sin^2 x = 1 - 2\sin^2 x = 2\cos^2 x - 1$		
$\tan 2x = \frac{2\tan x}{1 - \tan^2 x}$	$\tan 3x = \frac{3}{2}$	$\frac{\tan x - \tan^3 x}{1 - 3\tan^2 x}$	$\tan x = \frac{\sin 2x}{1 + \cos 2x} = \frac{1 - \cos 2x}{\sin 2x} = \sqrt{\frac{1 - \cos 2x}{1 + \cos 2x}}$	
$\sin 3x = 3\sin^2 x$	$1x - 4\sin^3 x$		$\cos 3x$	$=4\cos^3 x - 3\cos x$
$\sin x \sin y = \frac{1}{2} [\cos(x - y) - \cos(x + y)]$		$\sin x \pm \sin x$	$\sin y = 2\sin\frac{x \pm y}{2}\cos\frac{x \mp y}{2}$	
$\cos x \cos y = \frac{1}{2} [\cos(x - y) + \cos(x + y)]$		$\cos x + \cos y = 2\cos\frac{x+y}{2}\cos\frac{x-y}{2}$		
$\sin x \cos y = \frac{1}{2} \left[\sin(x+y) + \sin(x-y) \right]$		$\cos x - \cos y = -2\sin\frac{\overline{x+y}}{2}\sin\frac{\overline{x-y}}{2}$		