Aplicatii nostime ale seriilor de numere

Paradoxul lui Zeno

$$1 + \frac{1}{2} + \frac{1}{4} + \dots = \sum_{n=0}^{\infty} \frac{1}{2^n} = \sum_{n=0}^{\infty} \left(\frac{1}{2}\right)^n = \frac{1}{1 - \frac{1}{2}} = 2$$

<u>O problema de logistica militara</u>

- "n" aparate de zbor pornesc simultan in aceeasi directie cu scopul de a acoperi o distanta maxima
- autonomie de zbor : o unitate de lungime
- abilitate transfer combustibil intre aparate
- se cere numarul initial "n" pentru a putea acoperi distanta de 10 unitati

1/2

In general, cele "n" aparate parcurg distanta maxima

$$H_n = 1 + \frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{n} \to +\infty \quad (n \to +\infty)$$

$$H_n = 10 \implies n = ?$$

N[HarmonicNumber[12366], 10] N[HarmonicNumber[12367], 10]

1/2

9.999962148

10.00004301

 \implies n = 12 367

Fractalul lui Koch

Se porneste cu un triunghi echilateral de latura unitate

KochSnowflake[0]

Latura = 1

Aria =
$$\frac{\sqrt{3}}{4}$$
 $\stackrel{\text{not}}{=}$ α

Perimetrul = 3

KochSnowflake[1]

Aria =
$$\alpha + 3 \times \frac{1}{3^2} \alpha$$

Perimetrul =
$$3 \times 4 \times \frac{1}{3}$$

KochSnowflake[2]

$$Latura = \frac{1}{3^2}$$

Aria =
$$\alpha$$
 + 3 × $\frac{1}{3^2}$ α + 3 × 4 × $\frac{1}{3^4}$ α

Perimetrul =
$$3 \times 4^2 \times \frac{1}{3^2}$$

KochSnowflake[3]

 $Latura = \frac{1}{3^3}$

Aria = $\alpha + 3 \times \frac{1}{3^2} \alpha + 3 \times 4 \times \frac{1}{3^4} \alpha + 3 \times 4^2 \times \frac{1}{3^6} \alpha$

Perimetrul = $3 \times 4^3 \times \frac{1}{3^3}$

KochSnowflake[5]

In general, dupa "n" iteratii avem

$$Latura = \frac{1}{3^n}$$

Aria =
$$\alpha$$
 + 3 × $\frac{1}{3^2}$ α + 3 × 4 × $\frac{1}{3^4}$ α + ... + 3 × 4^{n-1} × $\frac{1}{3^{2n}}$ α =
= α + $\frac{3}{4} \sum_{k=1}^{n} \left(\frac{4}{9}\right)^k \alpha$

Perimetrul =
$$3\left(\frac{4}{3}\right)^n$$

La limita se obtine fractalul Koch $(n \rightarrow \infty)$

Aria
$$\rightarrow \alpha + \frac{3}{4} \sum_{n=1}^{\infty} \left(\frac{4}{9}\right)^n \alpha =$$

$$= \alpha + \frac{3}{4} \left[-1 + \sum_{n=0}^{\infty} \left(\frac{4}{9} \right)^{n} \right] \alpha = \alpha + \frac{3}{4} \left[-1 + \frac{1}{1 - \frac{4}{9}} \right] \alpha = \frac{8}{5} \alpha$$

Perimetrul $\rightarrow \infty$

Dati un alt exemplu de figura geometrica plana care sa fie simultan

- marginita
- de arie finita (eventual nula)
- de perimetru infinit

(fractalul Vicsek - vezi Wikipedia)