

Московский государственный университет имени М. В. Ломоносова Факультет вычислительной математики и кибернетики Кафедра математической кибернетики

Стешин Семен Сергеевич

Khnum: быстрая open-source программа для расчета метаболических потоков с использованием ¹³С-углерода

Выпускная квалификационная работа

Научный руководитель: к.ф.м.н., доцент Шуплецов М. С.

Аннотация

В биологии и медицине встречается задача определения скорости метаболических потоков внутри клетки. Один из методов решения этой задачи — ¹³C-Metabolic Flux Analysis — анализ метаболических потоков с использованием ¹³C-углерода. В этом методе, исследователи проводят эксперимент и обрабатывают его результаты на компьютере. Проблема в том, что современные программы для анализа метаболических потоков либо имеют закрытый код и платны для коммерческого использования, либо написаны неэффективно, из-за чего вычисления могут занимать недели для одного эксперимента. В этой работе проведен краткий обзор метода, написана эффективная программа для решения задачи и проведено сравнение с существующими аналогами.

Оглавление

1	Введение			
	1.1	Мотивация	2	
	1.2	Эксперимент	3	
	1.3	Компьютерное моделирование	3	
2	Осн	овные понятия	4	
	2.1	Глоссарий	4	
	2.2	Прямая задача	4	
	2.3	Обратная задача	4	
3	Постановка задачи		5	
4	Основная часть			
5	5 Полученные результаты			

Введение

1.1 Мотивация

Рак — вторая по частоте причина смерти в мире[1]. Сто лет назад Отто Варбург заметил[2] особенность раковых клеток: они склонны производить энергию с помощью активного гликолиза, вместо более эффективного окислительного фосфорилирования. Знание этого позволило находить опухоли с помощью позитронно-эмиссионной томографии, а Варбурга наградили Нобелевской премией.

Диабетом болеет 8.8% людей в мире[3]. Почти 4 миллиона в год умирает из-за этой болезни. Лечения пока нет, но есть симптоматическая терапия инъекциями инсулина. Раньше его получали из поджелудочных желез свиней и коров, но препарат было сложно очистить, поэтому иногда случались аллергические реакции. Все изменилось в 1978 году, когда компания Genentech смогла создать генетически-модифицированную кишечную палочку, которая в ходе жизнедеятельности производила чистый человеческий инсулин[4]. Сейчас таким образом производят почти весь препарат.

В случае с эффектом Варбурга, открытие заключалось в изменении скорости химической реакции, протекающей внутри клетки. В случае с инсулином, решается задача метаболической инженерии — увеличить скорость синтеза инсулина, не убив кишечную палочку. В обоих случаях надо уметь измерять скорости внутриклеточных химических реакций — их называют потоками. Один из современных методов измерения потоков — ¹³C-Metabolic Flux Analysis (далее MFA), что переводится как анализ метаболических потоков. Этому методу посвящена наша работа.

MFA имеет множество применений в исследованиях рака[5–11], в метаболической инженерии[12–14] и в других областях[15–17].

- 1.2 Эксперимент
- 1.3 Компьютерное моделирование

Основные понятия

- 2.1 Глоссарий
- 2.2 Прямая задача
- 2.3 Обратная задача

Постановка задачи

Основная часть

Полученные результаты

Литература

- [1] Всемирная Ассоциация Здравоохранения. Cancer [Электронный ресурс] URL: https://www.who.int/news-room/fact-sheets/detail/cancer (дата обращения: 12.03.2020)
- [2] Warburg O., Wind F., Negelein E. The metabolism of tumors in the body //The Journal of general physiology.— 1927. T. 8. $N_{\rm e}$. 6. C. 519.
- [3] Zimmet P. et al. Diabetes mellitus statistics on prevalence and mortality: facts and fallacies //Nature Reviews Endocrinology. 2016. T. 12. \cancel{N} . 10. C. 616.
- [4] Cohen S. N. et al. Construction of biologically functional bacterial plasmids in vitro //Proceedings of the National Academy of Sciences. 1973. T. 70. N. 11. C. 3240—3244.
- [5] Metallo C. M., Walther J. L., Stephanopoulos G. Evaluation of 13C isotopic tracers for metabolic flux analysis in mammalian cells //Journal of biotechnology. 2009. T. 144. \mathbb{N}° . 3. C. 167—174.
- [6] Walther J. L. et al. Optimization of 13C isotopic tracers for metabolic flux analysis in mammalian cells //Metabolic engineering. -2012.-T. 14. -N9. 2. -C. 162–171.
- [7] Hiller K., Metallo C. M. Profiling metabolic networks to study cancer metabolism //Current opinion in biotechnology. 2013. T. 24. N_2 . 1. C. 60–68.
- [8] Boroughs L. K., DeBerardinis R. J. Metabolic pathways promoting cancer cell survival and growth //Nature cell biology. 2015. T. 17. \mathbb{N} . 4. C. 351–359.

- [9] Dong W., Keibler M. A., Stephanopoulos G. Review of metabolic pathways activated in cancer cells as determined through isotopic labeling and network analysis //Metabolic engineering. 2017. T. 43. C. 113–124.
- [10] Antoniewicz M. R. A guide to 13 C metabolic flux analysis for the cancer biologist //Experimental & molecular medicine. 2018. T. 50. N_2 . 4. C. 1–13.
- [11] Badur M. G., Metallo C. M. Reverse engineering the cancer metabolic network using flux analysis to understand drivers of human disease //Metabolic engineering. — 2018. — T. 45. — C. 95–108.
- [12] Nakahigashi K. et al. Systematic phenome analysis of Escherichia coli multiple-knockout mutants reveals hidden reactions in central carbon metabolism //Molecular systems biology. 2009. T. 5. \mathbb{N}_{2} . 1.
- [13] Crown S. B., Long C. P., Antoniewicz M. R. Integrated 13C-metabolic flux analysis of 14 parallel labeling experiments in Escherichia coli //Metabolic engineering. 2015. T. 28. C. 151–158.
- [14] Long C. P. et al. Enzyme I facilitates reverse flux from pyruvate to phosphoenolpyruvate in Escherichia coli //Nature communications. — 2017. — T. 8. — №. 1. — C. 1–8.
- [15] Wahrheit J., Nicolae A., Heinzle E. Eukaryotic metabolism: measuring compartment fluxes //Biotechnology journal. — 2011. — T. 6. — №. 9. — C. 1071–1085.
- [16] Metallo C. M., Vander Heiden M. G. Understanding metabolic regulation and its influence on cell physiology //Molecular cell. 2013. T. 49. N. 3. C. 388-398.
- [17] Dieuaide-Noubhani M., Alonso A. P. (ed.). Plant metabolic flux analysis: methods and protocols. Humana Press, 2014.