VE475 Homework 5

Liu Yihao 515370910207

Ex. 1 — RSA setup

1. In the RSA encryption and decryption, we use

$$ed \equiv 1 \mod \varphi(n)$$

$$m^{ed} \equiv m \mod \varphi(n)$$

This is based on the Euler's theorem, which has a condition that m and n be two coprime integers. So it is likely for n to be coprime with m.

2. Suppose $k = a\varphi(n)$, $a \in N^*$, and m < n.

(a)

$$m^k \equiv (m^{\varphi(n)})^a \mod n$$

 $\equiv 1^a \mod n$
 $\equiv 1 \mod n$

So

$$m^k \equiv 1 \mod p$$
 and $m^k \equiv 1 \mod q$

(b) First, if gcd(m, n) = 1, according to (a), it's obvious that

$$m^{k+1} \equiv m \mod p$$
 and $m^{k+1} \equiv m \mod q$

Second, if gcd(m, n) = p, so gcd(m/p, q) = 1

$$m^{k+1} \equiv p \left[\left(\frac{m}{p} \right)^{k+1} \mod q \right] \mod n$$

$$\equiv p \left[\left(\frac{m}{p} \right)^{a(p-1)\varphi(q)+1} \mod q \right] \mod n$$

$$\equiv p \cdot \frac{m}{p} \mod n$$

$$\equiv m \mod n$$

So

$$m^{k+1} \equiv m \mod p$$
 and $m^{k+1} \equiv m \mod q$

Third, if gcd(m, n) = q, it is similar to the second case.

We can conclude that for any arbitrary $m, m^{k+1} \equiv m \mod p$ and mod q.

- 3. (a) We know that $ed \equiv 1 \mod \varphi(n)$, which means that ed = k + 1 where k is a multiple of $\varphi(n)$. According to part 2(b), we know that for any arbitrary m, $m^{k+1} \equiv m \mod p$ and mod q, or we can say $m^{k+1} \equiv m \mod n$, so $m^{ed} \equiv m \mod n$,
 - (b) From the previous calculation, we can find that for all m < n, no matter m and n are coprime or not, we can both find that $m^{ed} \equiv m \mod n$, so that the RSA encryption and decryption can be performed. So we can conclude that it is not necessary that gcd(m, n) = 1.

Ex. 2 — RSA decryption

$$n = 11413 = 101 \times 113$$

So we can find that p = 101 and q = 113, so $\varphi(n) = 11200$, and we should calculate d so that $ed \equiv 1 \mod \varphi(n)$.

By applying the extended euclidean algorithm,

	q_i	r_i	s_i
0		7467	1
1		11200	0
2	$7467 \div 11200 = 0$	$7467 - 0 \times 11200 = 7467$	$1 - 0 \times 0 = 1$
3	$11200 \div 7467 = 1$	$11200 - 1 \times 7467 = 3733$	$0 - 1 \times 1 = -1$
4	$7467 \div 3733 = 2$	$7467 - 2 \times 3733 = 1$	$1 - 2 \times -1 = 3$

$$e \cdot 3 \equiv 1 \mod \varphi(n)$$

So d=3, then we can apply modulo exponentiation to the equation

$$m \equiv c^d \bmod n$$

So m = 1415.

Ex. 3 — Breaking RSA

- 1. When we decrypt an RSA ciphertext, we use $m \equiv c^d \mod n$. When d is small, the decryption speed will be faster, so one would select short encryption or decryption keys.
- 2.

$$ed \equiv 1 \mod \operatorname{lcm}(p-1, q-1)$$

$$ed = K \cdot lcm(p-1, q-1) + 1, K \in N$$

Suppose $G = \gcd(p-1, q-1)$, we can find

$$ed = \frac{K}{G}(p-1, q-1) + 1$$

Let
$$k=\frac{K}{\gcd(K,G)},$$
 $g=\frac{G}{\gcd(K,G)},$
$$ed=\frac{k}{g}(p-1,q-1)+1$$

$$\frac{e}{pq}=\frac{k}{dq}(1-\lambda), \lambda=\frac{p+q-1-g/k}{pq}$$

Since $p \approx q \gg 0$, λ would be very small, then $\frac{e}{pq}$ is slightly smaller than $\frac{k}{dq}$, and

$$edg = k(p-1)(q-1) + g$$

Let $k_0 = \frac{k}{a}$ we can find

$$\varphi(n) = (p-1)(q-1) = \frac{ed-1}{k_0}$$

where $\frac{k_0}{d}$ converges to $\frac{e}{n}$. Then we can apply continued fractions to get a list of approximate of k_0 and d, validate them and get the right d if it is small enough by the equation

$$x^{2} - pq + n = 0$$

$$x^{2} - (n - \varphi(n) + 1) + n = 0$$

$$p, q = \frac{n - \varphi(n) + 1 \pm \sqrt{(n - \varphi(n) + 1)^{2} - 4n}}{2}$$

- 3. According to Wiener's theorem, decryption key should be larger than $\frac{1}{3}n^{1/4}$. For security considerations, it should be randomly selected from the safe range.
- 4. We apply continued fraction to n and e and get the following table:

i	a	k_0	d
0	0	0	1
1	4	1	4
2	9	9	37
3	1	10	41
4	19	199	816
5	1	209	857
6	1	408	1673
7	15	6329	25952
8	3	19395	79529
9	2	45119	185010
10	3	154752	634559
11	71	11032511	45238699
12	3	33252285	136350656
13	2	77537081	317940011

According to Wiener's theorem, $d < \frac{1}{3}n^{1/4} < 45$, so we can try data from i = 1, 2.

First we can guess that $k_0 = 1$, d = 4,

$$\phi(n) = \frac{ed - 1}{k_0} = 310148323$$

$$n - \varphi(n) + 1 = 7791689$$

$$(n - \varphi(n) + 1)^2 - 4n = 60709145712677$$

It is not a square number, so d is wrong.

Second we can guess that $k_0 = 9$, d = 37,

$$\phi(n) = \frac{ed - 1}{k_0} = \frac{2868871996}{9}$$

It is not a integer, so d is wrong.

Third, we can guess that $k_0 = 10$, d = 41,

$$\phi(n) = \frac{ed - 1}{k_0} = 317902032$$

$$n - \varphi(n) + 1 = 37980$$

$$(n - \varphi(n) + 1)^2 - 4n = 170720356 = 13066^2$$

$$p = \frac{37980 + 13066}{2} = 25523$$

$$q = \frac{37980 - 13066}{2} = 12457$$

$$n = 317940011 = 25523 \times 12457$$

Ex. 4 — Programming

In the ex3 folder, with a README file inside it.

Ex. 5 — Simple Questions

- 1. We can calculate $c \cdot 2^e \mod n$, and it equals to $2m \mod n$. Since n is odd, if $2m \mod n$ is even, $m = \frac{2m \mod n}{2}$; if $2m \mod n$ is odd, $m = \frac{(2m \mod n) + n}{2}$.
- 2. No, it doesn't. Because the RSA problem is actually a factorization problem. If the attacker succeeded in factoring n, no matter how many exponents are chosen, the decryption method is the same.

3.

$$4 \cdot 516107^2 - 187722^2 \equiv 0 \mod n$$

$$(2 \cdot 516107 - 187722)(2 \cdot 516107 + 187722) \equiv 0 \mod n$$

$$1219936 \cdot 844492 \equiv 0 \mod n$$

$$64866 \cdot 844492 \equiv 0 \mod n$$

$$2 \cdot 3 \cdot 10811 \cdot 2^2 \cdot 211123 \equiv 0 \mod n$$

We can find that 64866 must have a factor of n since 211123 < n (suppose n have only two factors according to RSA), and the factorization of 10811 is easy since it's small enough. We can try the primes smaller than $\sqrt{10811}(<104)$ and find that it has a factor 19. Then we can deduce that $10811 = 19 \times 569$, where 569 is also a prime.

At last we can take 3, 19 and 569 as the possible factors of n, validate them and conclude that

$$n = 642401 = 569 \times 1129$$

4. Thus

$$\varphi(n) = (p-1)(q-1)(r-1)$$

And we should also find e and d such that

$$ed \equiv 1 \mod \varphi(n)$$

Then

$$c \equiv m^e \bmod n$$

$$c^d \equiv m^{ed} \equiv m^{\varphi(n)+1} \equiv m \bmod n$$

However, if we use the same bits length of n with three prime factors instead of two, the length of each factor will become shorter, so the factorization can be more efficient, and the security is poorer.

5.

$$(97-1) = 96 = 2^5 \times 3$$

So the generator x should satisfy that

$$x^{32} \neq 1 \mod 97$$
 and $x^{48} \neq 1 \mod 97$
$$x^{16} \neq \pm 1, 35, 61 \mod 97$$

We can find that

$$2^{16} \equiv 61 \mod 97$$

 $3^{16} \equiv 61 \mod 97$
 $4^{16} \equiv 1 \mod 97$
 $5^{16} \equiv 36 \mod 97$

So the smallest generator of U(Z/97Z) is 5.

6. (a)
$$101 - 1 = 100 = 2^{2} \times 5^{2}$$

$$2^{100/2} \equiv (2^{10})^{5} \mod 101$$

$$\equiv 14^{5} \mod 101$$

$$\equiv 100 \mod 101$$

$$2^{100/5} \equiv (2^{10})^{2} \mod 101$$

$$\equiv 14^{2} \mod 101$$

$$\equiv 95 \mod 101$$

Since $2^{50} \not\equiv 1 \mod 101$ and $2^{20} \not\equiv 1 \mod 101$, 2 is a generator of G.

(b)
$$\log_2 2 = 1$$

$$\log_2 24 = \log_2 3 + 3\log_2 2 = 72$$

(c)
$$\log_2 24 = \log_2 125 = 3\log_2 5 = 72$$

7. $(137 - 1) = 136 = 2^3 \times 17$ $3^{136/2} \equiv 3^5 \cdot (3^7)^9 \mod 137$ $\equiv 243 \cdot (-5)^9 \mod 137$

 $\equiv 106 \cdot 12^3 \mod 137$ $\equiv 106 \cdot 7 \cdot 12 \mod 137$

 $\equiv 136 \mod 137$ $3^{136/17} \equiv 3^8 \mod 137$ $\equiv 3 \cdot -5 \mod 137$ $\equiv 122 \mod 137$

Since $3^{68} \not\equiv 1 \mod 137$ and $3^8 \not\equiv 1 \mod 137$, 3 is a generator of U(Z/137Z).

$$\log_3 44 = 6$$

$$\log_3 2 = 10$$

$$\log_3 11 = \log_3 44 - 2\log_3 2 = -14$$

So x = 122.

8. (a)
$$\label{eq:65} 6^5 \equiv 10 \ \mathrm{mod} \ 11$$
 So $6^5 = 10$ in $U(Z/11Z)$

(b)
$$(11-1) = 10 = 2 \times 5$$

$$2^{10/2} \equiv 10 \mod 11$$

$$2^{10/5} \equiv 4 \mod 11$$

Since $2^5 \not\equiv 1 \mod 11$ and $2^2 \not\equiv 1 \mod 11$, 2 is a generator of G.

(c)

$$2^x \equiv 6 \mod 11$$
$$2^{5x} \equiv 6^5 \mod 11$$
$$(-1)^x \equiv -1 \mod 11$$

So we can find that x is odd.

Ex. 6 — DLP

1.

$$3^x \equiv 2 \mod 65537$$

 $3^{16x} \equiv -1 \mod 65537$
 $3^{32x} \equiv 1 \mod 65537$

And we also know

$$3^{65536} \equiv 1 \bmod 65537$$

So $65536 \mid 32x$ and $65536 \mid 16x$, which means $2048 \mid x$ and $4096 \nmid x$.

2. x can be 2048(2k+1), where $k=0,1,\ldots,15$, so there are 16 possible choices. First we determine 3^{2048} mod 65537 and 3^{63488} mod 65537

				1 1	1.05597
			$\underline{}$	d_i	power mod 65537
			15	1	$1^2 \cdot 3 \equiv 3$
i	d_i	power mod 65537	14	1	$3^2 \cdot 3 \equiv 27$
11	1	$1^2 \cdot 3 \equiv 3$	13	1	$27^2 \cdot 3 \equiv 2187$
10	0	$3^2 \equiv 9$	12	1	$2187^2 \cdot 3 \equiv 61841$
9	0	$9^2 \equiv 81$	11	1	$61841^2 \cdot 3 \equiv 20623$
8	0	$81^2 \equiv 6561$	10	0	$20623^2 \equiv 38536$
7	0	$6561^2 \equiv 54449$	9	0	$38536^2 \equiv 20413$
6	0	$54449^2 \equiv 61869$	8	0	$20413^2 \equiv 6323$
5	0	$61869^2 \equiv 19139$	7	0	$6323^2 \equiv 2759$
4	0	$19139^2 \equiv 15028$	6	0	$2759^2 \equiv 9789$
3	0	$15028^2 \equiv 282$	5	0	$9789^2 \equiv 9427$
2	0	$282^2 \equiv 13987$	4	0	$9427^2 \equiv 157$
1	0	$13987^2 \equiv 8224$	3	0	$157^2 \equiv 24649$
0	0	$8224^2 \equiv 65529$	2	0	$24649^2 \equiv 45211$
'		•	1	0	$45211^2 \equiv 1028$
			0	0	$1028^2 \equiv 8192$

$$3^{2048} \equiv -8 \mod 65537$$

 $3^{2048 \cdot 31} \equiv 8192 \mod 65537$
 $3^{2048 \cdot (31-4)} \equiv 2 \mod 65537$

So $x = 2048 \cdot 27 = 55296$.

3. From Part 1, we know $x \mid 2048$ and $x \nmid 4096$, so we can set

$$x = 2^{11} + a_{12}2^{12} + a_{13}2^{13} + a_{14}2^{14} + a_{15}2^{15}$$

Then we can apply the Pohlig-Hellman algorithm.

For a_{12} ,

$$\left(\frac{3^x}{3^{2^{11}}}\right)^{2^{15-12}} \equiv (2^{14})^8 \equiv -1 \mod 65537, \quad a_{12} = 1$$

For a_{13} ,

$$\left(\frac{3^x}{3^{2^{11}+2^{12}}}\right)^{2^{15-13}} \equiv (2^8)^4 \equiv 1 \mod 65537, \quad a_{13} = 0$$

For a_{14} ,

$$\left(\frac{3^x}{3^{2^{11}+2^{12}}}\right)^{2^{15-14}} \equiv (2^8)^2 \equiv -1 \mod 65537, \quad a_{14} = 1$$

For a_{15} ,

$$\left(\frac{3^x}{3^{2^{11}+2^{12}+2^{14}}}\right)^{2^{15-14}} \equiv -1 \mod 65537, \quad a_{15} = 1$$

So
$$x = 2^{11} + 2^{12} + 2^{14} + 2^{15} = 55296$$
.

4. 65537 is a prime and is in the form $p^k + 1$. Suppose we can make $c^x \equiv p \mod p^k + 1$, in order to find x for this kind of prime, we can first determine a generator of it, which is quite easy. And since $c^{2k} \equiv p^{2k} \equiv 1 \mod p^k + 1$, we can find $p^k/2k \mid x$ and $p^k/k \nmid x$, and there are only k possible choices for x, which makes the decryption much more easier. So such primes are not fitting a cryptography context.