

CONCORDIA UNIVERSITY

Faculty of Engineering and Computer Science
Department of Mechanical Industrial and Aerospace Engineering

ENGR 391 - NUMERICAL METHODS IN ENGINEERING

Professor: Dr. Ashok Kaushal

PROBLEMS FOR CHAPTER 3

2. Consider the following set of simultaneous equation

 $A \overline{x} = b$ where

$$\mathbf{A} = \begin{bmatrix} 1 & -1 & 0 \\ -1 & 4 & -2 \\ 0 & -2 & 2 \end{bmatrix} \text{ and } \mathbf{b} = [-1, 1, 2]^{\mathrm{T}}$$

- a) Check whether the matrix A is positive definite.
- b) Obtain the l_2 norm of vector b
- c) Solve equation $A \bar{x} = b$ by Gaussian Elimination method.

Solution:

(a) For matrix to be positive definite; the determinants of all the co-factor matrices must positive

$$\mathbf{A} = \begin{bmatrix} 1 & -1 & 0 \\ -1 & 4 & -2 \\ 0 & -2 & 2 \end{bmatrix}$$

The determinants of all the co-factor matrices are

Det
$$|1| > 0$$

$$\text{Det} \begin{vmatrix} 1 & -1 \\ -1 & 4 \end{vmatrix} = 3 > 0$$

$$\text{Det} \begin{vmatrix} 1 & -1 & 0 \\ -1 & 4 & -2 \\ 0 & -2 & 2 \end{vmatrix} = 2 > 0$$

Since the determinants of all the cofactor matrices are greater than 0, matrix A is positive definite

(b)
$$| x_{n+1} = | x_{n+1} | |_2 = \{ (-1)^2 + (1)^2 + (2)^2 \}^{1/2} = 2.4495 \dots$$

$$\widetilde{\mathbf{A}}^{1} = \begin{bmatrix} 1 & -1 & 0 & \mathsf{M} - 1 \\ -1 & 4 & -2 & \mathsf{M} & 1 \\ 0 & -2 & 2 & \mathsf{M} & 2 \end{bmatrix}$$

Professor: Dr. Ashok Kaushal

Row
$$j - \frac{A_{ji}}{A_{ij}}$$
 Row $i \to \text{New Row } j$

In this case

for
$$i=1$$

 $j=2$ Row $2-\frac{1}{1}$ Row $1 \to \text{New Row } 2$
 $A_{21} - \frac{A_{21}}{A_{11}} A_{11} \to A_{21}(\text{New})$ $-1 - \frac{-1}{1}(1) \to 0$ $A_{21} \text{ (New)}$
 $A_{22} - \frac{A_{21}}{A_{11}} A_{12} \to A_{22}(\text{New})$ $4 - \frac{-1}{1}(-1) \to 3$ $A_{22} \text{ (New)}$
 $A_{23} - \frac{A_{21}}{A_{11}} A_{13} \to A_{23}(\text{New})$ $-2 - \frac{-1}{1}(0) \to -2$ $A_{23} \text{ (New)}$
 $A_{24} - \frac{A_{21}}{A_{11}} A_{14} \to A_{24}(\text{New})$ $1 - \frac{-1}{1}(-1) \to 0$ $A_{24} \text{ (New)}$

The new matrix formed is referred to as the next augmented matrix.

$$\widetilde{A}^2 = \begin{bmatrix} 1 & -1 & 0 & M - 1 \\ 0 & 3 & -2 & M & 0 \\ 0 & -2 & 2 & M & 2 \end{bmatrix}$$

for
$$i=1$$
 $j=3$ Row3 $-\frac{A_{32}}{A_{22}}$ Row2 \rightarrow New Row3 $-2-\frac{-2}{3}$ $3 \rightarrow 0$ (New) $2-\frac{-2}{3}$ (-2) \rightarrow 0.667 (New) $2-\frac{-2}{3}$ (0) \rightarrow 2 (New)

Since all values below the pivot element become zero, the next augmented matrix becomes:

Professor: Dr. Ashok Kaushal

$$\widetilde{A}^2 = \begin{bmatrix} 1 & -1 & 0 & M - 1 \\ 0 & 3 & -2 & M & 0 \\ 0 & 0 & 0.6777 & M & 2 \end{bmatrix}$$

Back substitution:

$$x_3 = 3$$

$$x_2 = 2$$

$$x_1 = 1$$

10. Find the Crout decomposition of the matrix

$$\mathbf{A} = \begin{bmatrix} 1 & 1 & 0 \\ -1 & 4 & -2 \\ 0 & 2 & 2 \end{bmatrix}$$

Solution

Factorize A into L * U by letting $U_{ii} = 1$.

$$\begin{bmatrix} 1 & 1 & 0 \\ -1 & 4 & -2 \\ 0 & 2 & 2 \end{bmatrix} = \begin{bmatrix} L_{11} & 0 & 0 \\ L_{21} & L_{22} & 0 \\ L_{31} & L_{32} & L_{33} \end{bmatrix} * \begin{bmatrix} 1 & U_{12} & U_{13} \\ 0 & 1 & U_{23} \\ 0 & 0 & 1 \end{bmatrix}$$

Now applying the procedure:

$$i = 1$$
 Row1 * Column1 = A₁₁
 $j = 1$ (of L) (of U)
 $(L_{11} * 1 + 0 * 0 + 0 * 0) = 1$
 $L_{1} = 1$
 $i = 1$ Row1 * Column2 = A₁₂ $i = 1$
 $j = 2$ (of L) (of U) $j = 1, 2, 3$

$$(L_{11} * U_{12} + 0 * 1 + 0 * 0) = 1$$

gives

$$U_{12} = 1$$

 L_{11} , U_{12} , U_{13}

i = 1 Row1 * Column3 = A_{13}

$$j = 3$$
 (of L) (of U)

$$(L_{11} * U_{13} + 0 * U_{23} + 0 * 1) = 0$$

$$U_{13} = 0$$

$$i = 2$$
 Row2 * Column1 = A_{21}

$$(L_{21} * 1 + L_{22} * 0 + 0 * 0) = -1$$

$$L_{21} = -1$$

$$i = 2$$
 Row2 * Column2 = A_{22}

i = 2

$$j = 2$$
 (of L) (of U)

j = 1, 2, 3

$$(L_{21} * U_{12} + L_{22} * 1 + 0 * 0) = 4$$

gives

$$-1+L_{22}=4;L_{22}=5$$

 L_{21} , L_{22} , U_{23}

$$i = 2$$
 Row2 * Column3 = A_{23}

$$j = 3$$
 (of L) (of U)

$$(L_{21} * U_{13} + L_{22} * U_{23} + 0 * 1) = -2$$

$$1(0)+5(U_{23})=-2$$
; $U_{23}=-0.4$

$$i = 3 \qquad \text{Row3} * \text{Column1} = A_{31}$$

$$j = 1 \qquad (\text{of L}) \quad (\text{of U})$$

$$(L_{31} * 1 + L_{32} * 0 + L_{33} * 0) = 0$$

$$L_{31} = 0$$

$$i = 3 \qquad \text{Row3} * \text{Column2} = A_{32}$$

$$j = 2 \qquad (\text{of L}) \quad (\text{of U})$$

$$(L_{31} * U_{12} + L_{32} * 1 + L_{33} * 0) = 2$$

$$L_{32} = 2$$

$$i = 3 \qquad \text{Row3} * \text{Column3} = A_{23}$$

$$j = 3 \qquad (\text{of L}) \quad (\text{of U})$$

$$(L_{31} * U_{13} + L_{32} * U_{23} + L_{33} * 1) = 2$$

$$2(-0.4) + L_{33} = 5; L_{33} = 2.8$$

The system is now factorized

$$\begin{bmatrix} 1 & 1 & 0 \\ -1 & 4 & -2 \\ 0 & 2 & 2 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ -1 & 5 & 0 \\ 0 & 2 & 2.8 \end{bmatrix} * \begin{bmatrix} 1 & 1 & 0 \\ 0 & 1 & -0.4 \\ 0 & 0 & 1 \end{bmatrix}$$

16. If
$$[A] = [2,-4,1,3]^T$$
 find

$$\|A\|_{1}, \|A\|_{E}, \|A\|_{\infty}$$

Solution

$$\mathbf{A} = \begin{bmatrix} 2 \\ -4 \\ 1 \\ 3 \end{bmatrix}$$

 $I_{1} = ||A||_{1}$ = largest absolute column sum

10

$$I_1 = ||A||_1 = 10$$

$$I_{\infty} = ||A||_{\infty} = 4$$

$$I_{E} = ||A||_{E} = {2^{2} + (-4)^{2} + 1^{2} + 3^{2}}^{1/2}$$

$$I_{E} = ||A||_{E} = {30}^{1/2} = 5.477$$

21. In problem 20, find the relative error of the solution vector after 4^{th} iteration, using the 1_{∞} norm, in both Jacobi method and Gauss-Seidel method.

Solution

Jacobi

$$\mathbf{x}^{(3)} = \begin{bmatrix} 4.406 \\ 5.875 \\ -5.469 \end{bmatrix} \text{ and } \mathbf{x}^{(4)} = \begin{bmatrix} 1.594 \\ 2.828 \\ -4.531 \end{bmatrix}$$

$$\mathbf{x}^{(4)} - \mathbf{x}^{(3)} = \begin{bmatrix} -2.813 \\ -3.047 \\ 0.938 \end{bmatrix}$$

$$I_{\infty}$$
 of $x^{(4)} - x^{(3)} = ||x^{(4)} - x^{(3)}||_{\infty} = 3.047$

$$I_{\infty}$$
 of $x^{(3)} = ||x^{(3)}||_{\infty} = 5.875$

Relative error =
$$\frac{\left\| x^{(4)} - x^{(3)} \right\|_{\infty}}{\left\| x^{(3)} \right\|_{\infty}} = 0.519$$

Gauss-Seidel

$$\mathbf{x}^{(3)} = \begin{bmatrix} 3.088 \\ 3.927 \\ -5.018 \end{bmatrix}$$
 and $\mathbf{x}^{(4)} = \begin{bmatrix} 3.055 \\ 3.954 \\ -5.011 \end{bmatrix}$

$$\mathbf{x}^{(4)} - \mathbf{x}^{(3)} = \begin{bmatrix} -0.033\\ 0.027\\ 0.007 \end{bmatrix}$$

$$\int_{\infty}^{\infty} of x^{(4)} - x^{(3)} = ||x^{(4)} - x^{(3)}||_{\infty} = 0.033$$

$$I_{\infty}$$
 of $x^{(3)} = ||x^{(3)}||_{\infty} = 3.088$

Relative error =
$$\frac{\|\mathbf{x}^{(4)} - \mathbf{x}^{(3)}\|_{\infty}}{\|\mathbf{x}^{(3)}\|_{\infty}} = 0.011$$