Planetary Atmospheres Equations and Values

Joseph Glenn Ladd

May 13, 2025

1 Gasses and Equation of State

Mole-based Equation	Mass-based Equation
Ideal Gas Constant (R)	Specific Gas Constant (R_s)
pV = nRT (n = mol)	$pV = mR_sT (m = \text{mass})$

Table 1: Comparison of Mole-based and Mass-based Ideal Gas Equations

Symbol	Unit	Note		
p	Pa	Pressure		
V	m^3	Volume		
m	kg	Mass		
R_s	$J \cdot kg^{-1} \cdot K^{-1}$	Specific Gas Constant		
R	$J{\cdot}\mathrm{mol}^{-1}{\cdot}\mathrm{K}^{-1}$	Ideal Gas Constant		
T	K	Temperature		
M	$kg \cdot mol^{-1}$	Molecular Weight (Molar mass)		
n_V	m^{-3}	Number of molecules per unit volume		
ρ	${\rm kg}{\cdot}{\rm m}^{-3}$	Density		
α	$\mathrm{m^3 \cdot kg^{-1}}$	Specific Volume		
n	_	Moles		
N	${ m kg}{ m \cdot m}{ m \cdot s}^{-2}$	Newton (force)		
Pa	$\mathrm{kg}\cdot\mathrm{m}^{-1}\cdot\mathrm{s}^{-2}$	Pascal (pressure)		
J	$\mathrm{kg} \cdot \mathrm{m}^2 \cdot \mathrm{s}^{-2}$	Joule (energy)		
N_A	mol^{-1}	Avogadro's Number $(6.022 \times 10^{23} \text{ particles/mol})$		

Table 2: Physical symbols, units, and associated meanings

2 Wave Symbols and Quantities

Symbol	Name	Meaning (Wave Context)		
λ	Lambda	Wavelength – distance between wave crests (m)		
ν	Nu	Frequency – cycles per second ($Hz = 1/s$)		
$\bar{\nu}$	Nu-bar	Wave number – cycles per meter (1/m)		
k	k	Angular (circular) wave number – $k = 2\pi/\lambda$ (rad/m)		
ω	Omega	Angular (circular) frequency – $\omega = 2\pi\nu$ (rad/s)		
T	Т	Period – time per cycle (s)		
v_p	v-sub-p	Phase speed – speed at which wave phase propagates (m/s)		

Table 3: Wave Symbols and Their Meanings

3 Radiomentric Quantities

Quantity	Symbol	Units	Physical Meaning	Equation
Radiant Power (Radiative Flux)	Φ, F	W	Total radiant energy emitted, transferred, or received per second.	$\Phi = \frac{dQ}{dt}$
Radiant Energy (Thermal energy)	Q_e, E, W	J	Total electromagnetic energy accumulated over time.	$Q = \int \Phi(t) dt$
Radiant Power per Unit Area (Irradiance, Radiative Flux Density, Exitance)	E, I	$ m W/m^2$	Power received per unit surface area (in, through, or out).	$E = \frac{d\Phi}{dA}$
Radiance (Specific Intensity)	L	$W/(m^2 sr)$	Radiant power per unit area per solid angle in a specific direction.	$L = \frac{d^2 \Phi}{dA \cos \theta d\omega}$

Table 4: Radiometric Quantities: Symbols, Units, and Definitions