LMX2594 EVM Instructions – 15-GHz Wideband Low Noise PLL With Integrated VCO

Noel Fung, Julian Di Matteo

ABSTRACT

This Evaluation Module is for the LMX2594, which is the first PLL with integrated VCO in industry to get fundamental VCO output up to 15 GHz. The industry leading PLL FOM is –236 dBc/Hz with 1/f of –129 dBc/Hz. This device supports the JESD204B standard (as in the LMX2594 can generate or repeat the SYSREF signal), and is designed for clock high-speed data converters. The integrated jitter from the EVM measurements is less than 50 fs at 9-GHz carrier frequency. By providing a SYNC signal, the user can synchronize the output phase across multiple LMX2594 devices. The LMX2594 can also generate a frequency ramp as demonstrated in this evaluation module. With an on-board oscillator, the setup process only requires a 3.3-V power supply and a Reference Pro module (included for SPI Programming interface). The software is simple with an intuitive and user-friendly GUI.

Figure 1-1. LMX2594EVM

Table of Contents

1 Evaluation Board Setup	
2 EVM Description.	

Trademarks www.ti.com

2.1 Installing the Software	4
3 Bringing LMX2594 to a Lock State	
4 Loop Filter Configuration	5
5 Key Results to Expect	
A Schematic	<mark>7</mark>
B Bill of Materials	<mark>8</mark>
C Board Layers Stack-Up	9
D Changing Reference Oscillator and Setup	
E Connecting Reference Pro	
F Ramping Feature	14
G SYSREF Feature	
H Enabling Onboard DC-DC Buck Converter (TPS62150)	16
Revision History	
List of Figures	
Figure 1-1. LMX2594EVM	
Figure 1-1. LMX2594EVM Setup	
Figure 2-1. LMX2594EVM Description	
Figure 2-2. Search for LMX2594 on TICS Pro	
Figure 2-3. USB Communications on TICS Pro	
Figure 2-4. USB Communication Between TICS Pro and Reference Pro	
Figure 3-1. TICS Pro GUI LMX2594 Default Configuration	5
Figure 4-1. Loop Filter Configuration	
Figure 5-1. Phase Noise Plot at 14-GHz Output Frequency	6
Figure A-1. Schematic	
Figure C-1. Board Layer Stack-Up	9
Figure C-2. Top Layer	9
Figure C-3. GND Layer	9
Figure C-4. Power Layer	
Figure C-5. Bottom Layer	10
Figure E-1. LMX2594EVM Setup With Reference Pro	
Figure E-2. LMK61PD0A2 Output Termination	13
Figure F-1. Ramping Example	
Figure F-2. Ramping Example	14
Figure G-1. SYSREF Example	
Figure H-1. Resistor Configuration to Enable DC-DC	16
<u></u>	
List of Tables	
Table 2-1. Serial Interface Connector Description	
Table 4-1. Loop Filter Configuration	
Table B-1. Bill of Materials	
Table D-1. Reference Oscillator Requirements	
Table D-2. Reference Clock Input Configuration	
Table E-1. Output Frequency of LMK61PD0A2 (Reference Pro)	
Table E-2. Output Type of LMK61PD0A2 (Reference Pro)	
Table E-3. Output Termination Schemes	
Table G-1 SYSRFF Modes	15

Trademarks

PLLATINUM[™] is a trademark of Texas Instruments.

All trademarks are the property of their respective owners.

www.ti.com Evaluation Board Setup

1 Evaluation Board Setup

Figure 1-1. LMX2594EVM Setup

- 1. Power:
 - a. Set power supply to 3.3 V with 600-mA current limit and connect to V_{CC} SMA.
- 2. Input Signal:
 - a. Connect a clean 100-MHz clock source to the OSCinP SMA.
- 3. Programming Interface:
 - Reference Pro will provide SPI interface to program LMX2594.
 - a. Connect USB cable from laptop or PC to USB port in Reference Pro. This provides power to Reference Pro board and communication with TICS GUI.
 - b. Connect 10 pin ribbon cable from Reference Pro to LMX2594EVM as shown above.
- 4. Output:
 - a. Connect RFoutAM or RFoutAP to a phase noise analyzer. Connect a $50-\Omega$ resistor on the unused pin if you are using a single-ended output. Use a balun if you are using a differential output.

2 EVM Description

The LMX2594 is populated on a 4-layer PCB. This brief description should help you use the EVM:

Figure 2-1. LMX2594EVM Description

EVM Description www

The serial interface pin description is shown in Table 2-1.

Table 2-1. Serial Interface Connector Description

NO.	NAME	
1	RAMPDIR and CE (Choose with Resistors on Board)	
2	CSB	
3	MUXout	
4	SDI	
5	Not Used	
6	GND	
7	RampCLK	
8	SCK	
9	SysRefReq	
10	SYNC	

2.1 Installing the Software

- 1. Download TICS Pro from the TI Website at www.ti.com/tool/TICSPRO-SW.
- 2. Install the software by following the wizard.
- 3. Search for the LMX2594. In the menu bar, search Select Device → PLL + VCO → LMX2594

Figure 2-2. Search for LMX2594 on TICS Pro

4. You are now ready to use this software. Verify that you can communicate with Reference Pro. Select Interface under USB communications.

Figure 2-3. USB Communications on TICS Pro

5. Click on Identify and you will see the LED (MSP430 Supplied) blinks on Reference Pro.

Figure 2-4. USB Communication Between TICS Pro and Reference Pro

3 Bringing LMX2594 to a Lock State

- Load the default mode by clicking on Default configuration → Default Mode xxxx-xx-xx.
- From the menu bar, select USB communications → Write All Registers, to write all the registers to LMX2594.

Figure 3-1. TICS Pro GUI LMX2594 Default Configuration

4 Loop Filter Configuration

The parameters for the loop filters are:

Table 4-1. Loop Filter Configuration

PARAMETER	VALUE
VCO Gain	132 MHz/V
Loop Bandwidth	285 kHz
Phase Margin	65 deg
C1_LF	390 pF
C2_LF	68 nF
C3_LF	Open
C4_LF	1800 pF
R2	68 Ω
R3_LF	0 Ω
R4_LF	18 Ω
Effective Charge Pump Gain	15 mA
Phase Detector Frequency (MHz)	200 MHz
VCO Frequency	Designed for 15 GHz, but works over the whole frequency range

Key Results to Expect www.ti.com

Figure 4-1. Loop Filter Configuration

For detailed design and simulation of TI's PLLATINUM™ integrated circuits, see the PLLatinum Sim Tool. For application notes, blogs, or videos on TI PLL products, see http://www.ti.com/pll.

5 Key Results to Expect

Figure 5-1. Phase Noise Plot at 14-GHz Output Frequency

This assumes that the input reference is very clean, such as a 100-MHz Wenzel oscillator. A signal generator is NOT sufficiently clean.

www.ti.com Schematic

A Schematic

Figure A-1. Schematic

Bill of Materials www.ti.com

B Bill of Materials

Table B-1. Bill of Materials

	Tubic B 1. Bill C			
DESIGNATOR	DESCRIPTION	MANUFACTURER	PART NUMBER	QUANTITY
C1, C3, C9, C14, C15, C17, C30	CAP, CERM, 0.1 µF, 16 V, ±5%, X7R, 0603	AVX	0603YC104JAT2A	7
C1_LF	CAP, CERM, 390 pF, 50 V, ±5%, C0G/NP0, 0603	Kemet	C0603C391J5GACTU	1
C2, C4, C8, C16	CAP, CERM, 10 μF, 10 V, ±10%, X5R, 0805	Kemet	C0805C106K8PACTU	4
C2_LF	CAP, CERM, 0.068 µF, 50 V, ±10%, X7R, 0603	MuRata	GRM188R71H683KA93D	1
C4_LF	CAP, CERM, 1800 pF, 50 V, ±5%, C0G/NP0, 0603	MuRata	GRM1885C1H182JA01D	1
C5, C6, C7, C10, C11, C12	CAP, CERM, 0.01 µF, 16 V, ±10%, X7R, 0402	AT Ceramics	520L103KT16T	6
C18, C23, C24, C26, C27, C28, C29	CAP, CERM, 1 µF, 16 V, ±10%, X7R, 0603	TDK	C1608X7R1C105K080AC	7
C19, C20, C21, C22, C25	CAP, CERM, 10 µF, 10 V, ±20%, X5R, 0603	TDK	C1608X5R1A106M080AC	5
CE_TP, CSB_TP, GND_TP, MUXout_TP, RampCLK_TP, RampDIR_TP, SCK_TP, SDI_TP, SYNC_TP, SysRefReq_TP, Vcc_TP, VccRF_TP, Vtune_TP	Test Point, Compact, White, TH	Keystone	5007	13
Cin_0	CAP, CERM, 10 μF, 25 V, ±10%, X5R, 0805	MuRata	GRM219R61E106KA12D	1
Cout0	CAP, CERM, 22 μF, 16 V, ±10%, X5R, 0805	TDK	C2012X5R1C226K125AC	1
Css	CAP, CERM, 3300 pF, 50 V, ±5%, C0G/NP0, 0603	MuRata	GRM1885C1H332JA01D	1
D1	LED, Green, SMD	Lite-On	LTST-C190GKT	1
L1, L2	Inductor, Multilayer, Air Core, 18 nH, 0.3 A, 0.36 Ω, SMD	MuRata	LQG15HS18NJ02D	2
L1_TPS	Inductor, Shielded, Composite, 2.2 μH, 3.7 A, Coilcraft XFL402		XFL4020-222MEB	1
MUXout_SW	Switch, SPST, Slide, Off-On, 2 Pos, 0.1 A, 20 V, SMD CTS Electrocomponents 219-2MS		219-2MST	1
OSCinM, OSCinP, SYNC, SysRef, Vcc	Connector, SMT, End launch SMA 50 ohm Emerson Network Power Connectivity 142-0		142-0701-851	5
R1	RES, 330 Ω, 5%, 0.1 W, 0603	Yageo America	RC0603JR-07330RL	1
R2	RES, 100 k, 5%, 0.1 W, 0603	Vishay-Dale	CRCW0603100KJNEA	1
R2_LF	RES, 68, 5%, 0.1 W, 0603	Vishay-Dale	CRCW060368R0JNEA	1
R3_LF, R12, R15, R24, R26, R25, R30, R31, R34, R35, R36, R41, R42, R43, R44, R45	RES, 0, 5%, 0.1 W, 0603	Vishay-Dale	CRCW06030000Z0EA	16
R4_LF	RES, 18, 5%, 0.1 W, 0603	Vishay-Dale	CRCW060318R0JNEA	1
R5, R7, R8, R9, R16, R19, R20, R22	RES, 12 kΩ, 5%, 0.1 W, 0603 Vishay-Dale CRCW060312		CRCW060312K0JNEA	8
R37, R38, R39, R40	RES, 50, 0.1%, 0.05 W, 0402 Vishay-Dale FC0402E50R0		FC0402E50R0BST1	4
Rfbb1	RES, 180 k, 0.1%, 0.1 W, 0603 Yageo America RT0603BRD07180		RT0603BRD07180KL	1
Rfbt1	7		CRCW0603562KFKEA	1
RFoutAM, RFoutAP, RFoutBM, RFoutBP			142-0771-831	4
U1	Wideband RF Synthesizer Texas Instruments LMX2594RHAI		LMX2594RHAR	1
uWire Header (shrouded), 100 mil, 5x2, Gold plated, SMD		FCI	52601-S10-8LF	1

C Board Layers Stack-Up

The top layer is 1-oz. copper.

Figure C-1. Board Layer Stack-Up

Figure C-2. Top Layer

Figure C-3. GND Layer

Board Layers Stack-Up www.ti.com

Figure C-4. Power Layer

Figure C-5. Bottom Layer

D Changing Reference Oscillator and Setup

The reference can be single-ended or differential. To measure the performance of the PLL ONLY, the reference should have at least this level of performance. We understand that this can be a challenge at 100-Hz offset:

Table D-1. Reference Oscillator Requirements

100-MHz REFERENCE MINIMUM REQUIREMENTS FOR A 0.4-dB IMPACT ON PLL INBAND PN ⁽¹⁾) PN ⁽¹⁾		
	Offset [Hz]	100	1k	10k	100k
	Noise level [dBc/Hz]	-139	-149	-159	-164

⁽¹⁾ A noise source 10 dB down from the PLL noise will contribute to raise the noise by 0.4 dB.

There are different options to provide a reference oscillator to LMX2594. Use on-board oscillator, enable LMK61xx from Reference Pro PCB, or use external oscillator. By default, the EVM is configured for an external single-ended clock.

Table D-2. Reference Clock Input Configuration

E Connecting Reference Pro

To use Reference Pro, change the configuration for SE or differential connection as shown on Appendix D.

Figure E-1. LMX2594EVM Setup With Reference Pro

The LMK61PD0A2 has several control pins dedicated for output format control, output frequency control, and output enable control. These control pins can be configured through the jumpers shown in Table E-1 and Table E-2.

Jumpers FS1, FS0, OS, and OE can be used to configure the corresponding control pin to either high or low state by strapping the center pin to VDD position (tie pins 2-3) or GND position (tie pins 1-2), respectively. Connections from the VDD position to the device supply or from the GND position to the ground plane are connected by 1.5-k Ω resistors.

Table E-1. Output Frequency of LMK61PD0A2 (Reference Pro)

FS1	FS0	OUTPUT FREQUENCY (MHz)
0	0	100
0	NC	312.5
0	1	125
NC	0	106.25
NC	NC	156.25
NC	1	212.5
1	0	62.5

Table E-2. Output Type of LMK61PD0A2 (Reference Pro)

os	OE	OUTPUT TYPE
X	0	Disabled (PLL Functional)
0	1	LVPECL
NC	1	LVDS
1	1	HCSL

The OS pin is used to bias internal drivers and change the output type. It is imperative to match the output termination passive components as shown on Table E-3 with the output type from Table E-2.

www.ti.com Connecting Reference Pro

Table E-3 lists component values for each configuration.

Table E-3. Output Termination Schemes

OUTPUT FORMAT	COUPLING	COMPONENT	VALUE
LVPECL	AC	R25, R28	0 Ω
	(default EVM configuration)	R26, R29	150 Ω
		C24, C25	0.01 μF
		R27, R30, R31	DNP
	DC ⁽¹⁾	R25, R28, C24, C25	0 Ω
		R26, R29, R27, R30, R31	DNP
LVDS ⁽²⁾	AC	R25, R28, R27, R30	0 Ω
		R31	100 Ω
	DC	C24, C25	0.01 μF
		R26, R29	DNP
		R25, R27, R28, R30, C24, C25	0 Ω
		R31	100 Ω
		R26, R29	DNP
HCSL	AC	R25, R28	0 Ω
	DC	R26, R29	50 Ω
		C24, C25	0 Ω
		R27, R30, R31	DNP
		R25, R28	0 Ω
		R26, R29	50 Ω
		C24, C25	0.01 μF
		R27. R30, R31	DNP

- (1) 50 Ω to V_{CC} 2-V termination is required on receiver.
- (2) 100-Ω differential termination (R31) is provided on Reference Pro PCB. Removing the differential termination on the EVM is possible if the differential termination is available on the receiver.

Figure E-2. LMK61PD0A2 Output Termination

INSTRUMENTS Ramping Feature www.ti.com

F Ramping Feature

VCO is ramping from 12 to 12.125 GHz. This can be set up on the ramp GUI tab.

Figure F-1. Ramping Example

Figure F-2. Ramping Example

www.ti.com SYSREF Feature

G SYSREF Feature

- 1. Configure TICS Pro PLL tab for SYSREF.
 - Check the SYSREF_EN box and VCO_PHASE_SYNC box.
 - Change OUTB_MUX to SysRef and uncheck the OUT_PD box.
 - Confirm the *Interpolator frequency* is between 800 MHz and 1500 MHz. If not, change the SYSREF_DIV_PRE drop-down to Div2 or Div4.
 - To modify SYSREF frequency, change the value in the SYSREF_DIV box.
 - Go to User Controls in the side bar, make sure the INPIN IGNORE box is unchecked.
- 2. Click the Toggle SysRefReq Pin box to initiate SYSREF.

Figure G-1. SYSREF Example

Table G-1. SYSREF Modes

MODE NAME	DESCRIPTION	TICS PRO - SYS REF SETTINGS	
Master - Continuos	LMX2594 generates SysRef pulses as long as SysRefReq pin is held high.	as long as SysRefReq Default mode. See quick start instructions	
Master - Pulse	LMX2594 generates a finite number of pulses as long as the SysRefReq pin is held high. Note: SysRefReq must be held high for the duration of the pulses.	Uncheck SysRefReq under Pins in User Controls tab Check SYSREF_PULSE Set SYSREF_PULSE_CNT to desired number of pulses Check SysRefReq under Pins in User Controls tab	
Repeater	RFOUTB will repeat external input to SysRefReq pin. Output will be reclocked to LMX2594 internal frequency	Uncheck SysRefReq Check SysRef_Repeat	

H Enabling Onboard DC-DC Buck Converter (TPS62150)

Figure H-1. Resistor Configuration to Enable DC-DC

- 1. MUST SWITCH R35 to Rtps1
- 2. MUST SWITCH R34 to Rtps2
- 3. Populate Rtps
- 4. DC-DC circuitry was optimized for efficiency for 5 to 8 V, but a voltage of 3.3 V to 17 V can be applied to VCC SMA after resistor network is configured correctly from steps above.

Revision History

NOTE: Page numbers for previous revisions may differ from page numbers in the current version.

Changes from Revision A (March 2020) to Revision B (July 2021)

Page

Updated the numbering format for tables, figures and cross-references throughout the document......3

IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, or other requirements. These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources.

TI's products are provided subject to TI's Terms of Sale (https://www.ti.com/legal/termsofsale.html) or other applicable terms available either on ti.com or provided in conjunction with such TI products. TI's provision of these resources does not expand or otherwise alter TI's applicable warranties or warranty disclaimers for TI products.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2021, Texas Instruments Incorporated