## 9. ფიგურათა ფართობები

**კვადრატის ფართობი** - მისი გვერდის კვადრატის ტოლია.



**მართკუთხედის ფართობი** მისი სიგრძისა და სიგანის ნამრავლის ტოლია.

**პარალელოგრამის ფართობი** - ტოლია მისი სიმაღლე გამრავლებული იმ გვერდზე რომელ გვერდზეც ეშვება ან ორი მეზობელი გვერდი გამრავლებული მათ შორის მდებარე კუთხის სინუსზე.

$$S = bh$$

$$5b$$

$$S = a \cdot b \cdot sin\alpha$$

*ъб* 

$$S = \frac{1}{2} \cdot d_1 \cdot d_2 \cdot \sin\beta$$

სამკუთხედის ფართობის ფორმულები:

1) ფუძითა და სიმაღლით - 
$$S = \frac{1}{2}ah$$

2) მხოლოდ გვერდებით - 
$$S=\sqrt{p(p-a)(p-b)(p-c)}$$
 ოღონდ,

$$p = \frac{a+b+c}{2}$$

3) ორი გვერდითა და მათ შორის მდებარე კუთხით - 
$$S=rac{1}{2}ab\cdot sinA$$

4) შემოხაზული წრის R-ით - 
$$S = \frac{abc}{4R}$$

5) ჩახაზული წრის r-ით - 
$$S = \frac{rP}{2}$$



**მართკუთხა სამკუთხედის ფართობი** - მისი კათეტების სიგრძეების ნამრავლის ნახევრის ტოლია.

$$S = \frac{ab}{2}$$



**ტოლგვერდა სამკუთხედის ფართობი** - გამოითვლება შემდეგი ფორმულით:

$$S = \frac{a^2\sqrt{3}}{4}$$



ტრაპეციის ფართობი - ტრაპეციის ფართობი მისი ფუძეების ნახევარჯამის და სიმაღლის ნამრავლის ტოლია.

$$S = \frac{a+b}{2}h$$
 
$$s\delta$$
 
$$S = \frac{1}{2} \cdot d_1 \cdot d_2 \cdot sin\alpha$$



ტოლფერდა ტრაპეციის ფართობი - შუახაზის (ან სიმაღლის მიერ დიდი ფერდზე მოკვეთილი გრმელი მონაკვეთის) სიმაღლეზე ნამრავლის ტოლია.

$$S = KD \cdot h$$



ტოლფერდა ტრაპეციის ფართობი რომლის დიაგონალები ურთიერთმართობულია - უდრის სიმაღლის კვადრატს.

$$S = h^{2}$$

$$\delta \delta$$

$$S = (\frac{a+b}{2})^{2}$$

$$\delta \delta$$

$$S = \frac{1}{2} \cdot d_{1} \cdot d_{2} \cdot \sin \alpha$$



2 2 2

რომბის ფართობი - ტოლია დიაგონალების ნამრავლის ნახევრის, გვერდის კვადრატის კუთხის სინუსზე ნამრავლის და ასევე სიმაღლის გვერდზე ნამრავლის.



**წებისმიერი ამოზნექილი ოთხკუთხედის ფართობი -** მისი დიაგონალების და მათ შორის მდებარე კუთხის სინუსის წამრავლის ნახევრის ტოლია.

$$S = \frac{1}{2} \cdot d_1 \cdot d_2 \cdot \sin \alpha$$



## მსგავსი სამკუთხედების პერიმეტრები და ფართობები

• მსგავსი სამკუთხედების პერიმეტრები ისე შეეფარდება, როგორც შესაბამისი

გვერდები. ფორმულა – 
$$\frac{a}{a_1} = \frac{b}{b_1} = \frac{c}{c_1} = \frac{P}{P_1} = K$$

• მსგავსი სამკუთხედების ფართობები ისე შეეფარდება, როგორც ამ სამკუთხედებში

შესაბამისი გვერდების კვადრატები. ფორმულა - 
$$S_1=K^2\cdot S$$
 ან  $\frac{S_1}{S}=K^2$ 

## ტოლდიდი ნაწილები სამკუთხედში, პარალელოგრამსა და ტრაპეციაში

