Prof. Luiz Oliveira (BCC 1)
Prof. Armando Delgado (BCC 2)
Prof. Vinícius Fülber (BCC 3)

Compressão de Dados Run Length Encoding (RLE)

Você já ouviu falar da estratégia chamada RLE? Tal estratégia é uma das mais seminais no contexto de compressão de dados sem perda e é utilizada até hoje para pré- ou pós-processamento de dados por alguns compressores modernos, como o LZ77 e DEFLATE (Zip).

A compressão RLE mais básica funciona da seguinte forma:

- Um arquivo de entrada é aberto, sendo a fonte dos dados que serão processados pelo algoritmo
- Um arquivo de saída é aberto, sendo que este receberá a versão comprimida do arquivo de entrada
- Os dados de entrada são processados byte a byte, onde o objetivo é contar a quantidade de bytes iguais alocados em um segmento sequencial
- Uma vez que se encontre um byte diferente, quebrando a sequência, ou que se chegue a um número máximo de contagem de um byte, um registro é gravado no arquivo de saída. O registro tem o seguinte formato:

Byte Nr. de Ocorrências

- O processo é repetido até que todos os dados do arquivo de entrada sejam consumidos.

A descompressão, por sua vez, consome os dados do arquivo comprimido e expande os mesmos, gerando como saída um arquivo idêntico ao original, utilizado como entrada no processo de compressão.

Veja como o processo seria realizado manualmente...

Arquivo Original:

aaaaaaabbbcddddddddaaaaaaaa

Arquivo Comprimido:

a8b3c1d9a8

Baseado nas informações apresentadas, você deve implementar a versão básica do algoritmo RLE (compressão e descompressão) considerando os seguintes requisitos:

- O registro de compressão terá sempre dois (2) bytes, o primeiro registra o byte contado, o segundo registra o número de ocorrências do mesmo.
- A manipulação do arquivo comprimido deve ser realizada utilizando buffers de dez (10) bytes (escrever cinco (5) registros por vez na compressão, ler cinco (5) registros por vez na descompressão).
- O arquivo descomprimido deve ser exatamente igual ao arquivo original.

Assim, o programa terá dois modos de execução: compressão e descompressão.

Modo compressão:

rle -e -i ArquivoOriginal -o ArquivoComprimido

Modo de descompressão:

rle -d -i ArquivoComprimido -o ArquivoDescomprimido

Você deve usar o arquivo main.c fornecido para implementar a sua solução. Nesse arquivo, você deve implementar apenas três funções: Encode, Decode, e rle. Além disso, você deve completar a implementação da função main, conforme indicação (comentários) presente no arquivo main.c fornecido.

A função *Encode* recebe como argumentos o nome do arquivo de entrada (que deve passar pelo processo de compressão) e o nome do arquivo de saída (que deve ser criado e conter o conteúdo do arquivo de entrada comprimido).

A função *Decode* recebe como argumentos o nome do arquivo de entrada (contendo um conteúdo comprimido) e o nome do arquivo de saída (que deve ser criado e conter o conteúdo descomprimido, idêntico ao do arquivo original usado para a compressão).

A função *rle* só tem uma utilidade: **chamar as funções** *Encode* **e** *Decode* **através de ponteiros para funções**. Note que você deve preencher os seus parâmetros no protótipo da função no *main.c* fornecido e, em seguida, implementar a mesma.

Faça download do arquivo main.c, analise-o e leia atentamente todos os comentários presentes no mesmo antes de iniciar a implementação.

Avaliação

- O programa produzido deve atender aos requisitos acima;
- Programas que apresentem erros de compilação não serão corrigidos e receberão nota ZERO;
- Programas que apresentem falhas de segmentação prematuras durante a execução sem que nenhum resultado seja produzido receberão nota ZERO.

Entrega do projeto

Para entregar seu programa, gere um arquivo tar contendo o código-fonte de seu programa, um makefile (all e clean) e outros arquivos que sejam necessários para sua compilação.

Este arquivo tar deve ser entregue via Moodle, no tópico associado ao Projeto 3.