HIMatrix

Safety-Related Controller

DI 24 01 Manual

HIMA Paul Hildebrandt GmbH Industrial Automation

Rev. 2.00 HI 800 201 E

All HIMA products mentioned in this manual are protected by the HIMA trade-mark. Unless noted otherwise, this also applies to other manufacturers and their respective products referred to herein.

HIMax®, HIMatrix®, SILworX®, XMR® and FlexSILon® are registered trademarks of HIMA Paul Hildebrandt GmbH.

All of the instructions and technical specifications in this manual have been written with great care and effective quality assurance measures have been implemented to ensure their validity. For questions, please contact HIMA directly. HIMA appreciates any suggestion on which information should be included in the manual.

Equipment subject to change without notice. HIMA also reserves the right to modify the written material without prior notice.

For further information, refer to the HIMA DVD and our website at http://www.hima.de and http://www.hima.com.

© Copyright 2013, HIMA Paul Hildebrandt GmbH All rights reserved

Contact

HIMA contact details:

HIMA Paul Hildebrandt GmbH

P.O. Box 1261

68777 Brühl, Germany

Phone: +49 6202 709-0 Fax: +49 6202 709-107 E-mail: info@hima.com

Revision	Revisions	Type of change		
index		technical	editorial	
1.00	Added: Configuration with SILworX	Х	Х	
2.00	Added: DI 24 014, SIL 4 certified according to EN 50126, EN 50128 and EN 50129, Chapter 4.1.3	Х	Х	

DI 24 01 Table of Contents

Table of Contents

1	Introduction	5
1.1	Structure and Use of this Manual	5
1.2	Target Audience	6
1.3	Formatting Conventions	7
1.3.1	Safety Notes	7
1.3.2	Operating Tips	8
2	Safety	9
2.1	Intended Use	9
2.1.1 2.1.2	Environmental Requirements ESD Protective Measures	9
2.1.2 2.2	Residual Risk	10
2.2 2.3	Safety Precautions	10
2.4	Emergency Information	10
3	Product Description	11
3.1	Safety Function	11
3.1.1	Safety-Related Inputs	11
3.1.1.1	Reaction in the Event of a Fault	11
3.2	Equipment, Scope of Delivery	11
3.3	Type Label	12
3.4	Structure	13
3.4.1	Block Diagram	13
3.4.2	Front View	14
3.4.3 3.4.4	Status Indicators I/O LEDs	15 15
3.5	Product Data	16
3.5.1	Product Data DI 24 014	16
4	Start-up	17
4.1	Installation and Mounting	17
4.1.1	Mounting and Removing the Modules	17
4.1.2	Connecting the Digital Inputs	18
4.1.2.1	Surges on Digital Inputs	19
4.1.3 4.1.4	Cable Plugs Mounting the DI 24 01 in Zone 2	19 20
4.2	Configuration	21
4.2.1	Module Slots	21
4.3	Configuration with SILworX	21
4.3.1	Parameters and Error Codes for the Inputs	22
4.3.2	Digital Inputs	22
4.3.2.1 4.3.2.2	Tab Module Tab DI 24 01: Channels	22 22

HI 800 201 E Rev. 2.00 Page 3 of 34

Table of Contents	DI 24 01

4.4 4.4.1 4.4.2 4.4.2.1	Configuration with ELOP II Factory Configuring the Inputs Signals and Error Codes for the Inputs Digital Inputs	23 23 23 23
5	Operation	24
5.1 5.2	Handling Diagnosis	24 24
6	Maintenance	25
6.1	Faults	25
6.2 6.2.1 6.2.2	Maintenance Measures Loading the Operating System Proof Test	25 25 25
7	Decommissioning	26
8	Transport	27
9	Disposal	28
	Appendix	29
	Glossary	29
	Index of Figures	30
	Index of Tables	31
	Index	32

Page 4 of 34 HI 800 201 E Rev. 2.00

DI 24 01 1 Introduction

1 Introduction

This manual describes the technical characteristics of the module and its use. It provides information on how to install, start up and configure the module.

1.1 Structure and Use of this Manual

The content of this manual is part of the hardware description of the HIMatrix programmable electronic system.

This manual is organized in the following main chapters:

- Introduction
- Safety
- Product Description
- Start-up
- Operation
- Maintenance
- Decommissioning
- Transport
- Disposal

The HIMatrix F60 is available for the programming tools SILworX and ELOP II Factory. Which programming tool can be used, depends on the processor operating system of the HIMatrix F60, refer to the following table:

Programming tool Programming		Processor operating system	Communication operating system
	SILworX	CPU OS V7 and higher	COM OS V12 and higher
	ELOP II Factory	CPU OS up to V6.x	COM OS up to V11.x

Table 1: Programming Tools for HIMatrix F60

In the manual, the differences are specified by using:

- Separated chapters
- Tables differentiating among the versions

1	Projects created with	ELOP II Factory	cannot be edited	with SILworX,	and vice v	versa!
---	-----------------------	-----------------	------------------	---------------	------------	--------

† The manual usually refers to the plug-in cards of the modular controller F60 as *modules*.

**Modules is also the term used in SILworX.

HI 800 201 E Rev. 2.00 Page 5 of 34

1 Introduction DI 24 01

Additionally, the following documents must be taken into account:

Name	Content	Document number
HIMatrix System Manual Compact Systems	Hardware description of the HIMatrix compact systems	HI 800 141 E
HIMatrix System Manual Modular System F60	Hardware description of the HIMatrix modular system	HI 800 191 E
HIMatrix Safety Manual	Safety functions of the HIMatrix system	HI 800 023 E
HIMatrix Safety Manual for Railway Applications	Safety functions of the HIMatrix system using the HIMatrix in railway applications	HI 800 437 E
SILworX Online Help	Instructions on how to use SILworX	-
ELOP II Factory Online Help	Instructions on how to use ELOP II Factory, Ethernet IP protocol	-
SILworX First Steps	Introduction to SILworX using the HIMax system as an example	HI 801 103 E
ELOP II Factory First Steps	Introduction to ELOP II Factory	HI 800 006 E

Table 2: Additional Relevant Documents

The latest manuals can be downloaded from the HIMA website at www.hima.com. The revision index on the footer can be used to compare the current version of existing manuals with the Internet edition.

1.2 Target Audience

This document addresses system planners, configuration engineers, programmers of automation devices and personnel authorized to implement, operate and maintain the modules and systems. Specialized knowledge of safety-related automation systems is required.

Page 6 of 34 HI 800 201 E Rev. 2.00

DI 24 01 1 Introduction

1.3 Formatting Conventions

To ensure improved readability and comprehensibility, the following fonts are used in this document:

Bold To highlight important parts.

Names of buttons, menu functions and tabs that can be clicked and used

in the programming tool.

Italics For parameters and system variables

Courier Literal user inputs

RUN Operating state are designated by capitals

Chapter 1.2.3 Cross references are hyperlinks even though they are not particularly

marked. When the cursor hovers over a hyperlink, it changes its shape.

Click the hyperlink to jump to the corresponding position.

Safety notes and operating tips are particularly marked.

1.3.1 Safety Notes

The safety notes are represented as described below.

These notes must absolutely be observed to reduce the risk to a minimum. The content is structured as follows:

- Signal word: warning, caution, notice
- Type and source of risk
- Consequences arising from non-observance
- Risk prevention

A SIGNAL WORD

Type and source of risk!

Consequences arising from non-observance

Risk prevention

The signal words have the following meanings:

- Warning indicates hazardous situation which, if not avoided, could result in death or serious injury.
- Caution indicates hazardous situation which, if not avoided, could result in minor or modest injury.
- Notice indicates a hazardous situation which, if not avoided, could result in property damage.

NOTE

Type and source of damage!

Damage prevention

HI 800 201 E Rev. 2.00 Page 7 of 34

1 Introduction DI 24 01

1.3.2 Operating Tips Additional information is structured as presented in the following example: The text corresponding to the additional information is located here. Useful tips and tricks appear as follows:

TIP

The tip text is located here.

Page 8 of 34 HI 800 201 E Rev. 2.00

DI 24 01 2 Safety

2 Safety

All safety information, notes and instructions specified in this document must be strictly observed. The product may only be used if all guidelines and safety instructions are adhered to.

This product is operated with SELV or PELV. No imminent risk results from the product itself. The use in Ex-zone is permitted if additional measures are taken.

2.1 Intended Use

HIMatrix components are designed for assembling safety-related controller systems.

When using the components in the HIMatrix system, comply with the following general requirements.

2.1.1 Environmental Requirements

Requirement type	Range of values 1)		
Protection class	Protection class III in accordance with IEC/EN 61131-2		
Ambient temperature	0+60 °C		
Storage temperature	-40+85 °C		
Pollution	Pollution degree II in accordance with IEC/EN 61131-2		
Altitude	< 2000 m		
Housing	Standard: IP20		
Supply voltage	24 VDC		
1) The values appointed in the technical data apply and are designs for devices with extended			

The values specified in the technical data apply and are decisive for devices with extended environmental requirements.

Table 3: Environmental Requirements

Exposing the HIMatrix system to environmental conditions other than those specified in this manual can cause the HIMatrix system to malfunction.

2.1.2 ESD Protective Measures

Only personnel with knowledge of ESD protective measures may modify or extend the system or replace devices.

NOTE

Device damage due to electrostatic discharge!

- When performing the work, make sure that the workspace is free of static, and wear an ESD wrist strap.
- If not used, ensure that the device is protected from electrostatic discharge, e.g., by storing it in its packaging.

HI 800 201 E Rev. 2.00 Page 9 of 34

2 Safety DI 24 01

2.2 Residual Risk

No imminent risk results from a HIMatrix system itself.

Residual risk may result from:

- Faults related to engineering
- Faults related to the user program
- Faults related to the wiring

2.3 Safety Precautions

Observe all local safety requirements and use the protective equipment required on site.

2.4 Emergency Information

A HIMatrix system is a part of the safety equipment of a site. If a device or a module fails, the system enters the safe state.

In case of emergency, no action that may prevent the HIMatrix systems from operating safely is permitted.

Page 10 of 34 HI 800 201 E Rev. 2.00

3 Product Description

The DI 24 01 is a module for the modular F60 HIMatrix system.

The module can be inserted in the F60 subrack's slot 3...8. Slots 1 and 2 are reserved for the power supply module and central module, respectively.

The DI 24 01 module has 24 digital input channels for 110 VDC or 127 VAC that are galvanically separated from the I/O bus. The status of the signal inputs is displayed by LEDs located on the front plate next to the terminal plugs.

The module has been certified by the TÜV for safety-related applications up to SIL 3 (IEC 61508, IEC 61511 and IEC 62061), Cat. 4 and PL e (EN ISO 13849-1) and SIL 4 (EN 50126, EN 50128 and EN 129).

Further safety standards, application standards and test standards are specified in the certificates available on the HIMA website.

3.1 Safety Function

The module is equipped with safety-related inputs. The module is equipped with safety-related inputs.

3.1.1 Safety-Related Inputs

The DI 24 01 module has 24 digital input channels for 110 VDC or 127 VAC.

3.1.1.1 Reaction in the Event of a Fault

If the module detects a fault on a digital input, the user program processes a low level in accordance with the de-energized to trip principle.

The module activates the ERR LED.

In addition to the channel signal value, the user program must also consider the corresponding error code.

The error code allows the user to configure additional fault reactions in the user program.

3.2 Equipment, Scope of Delivery

The following table specifies the available module variants:

Designation	Description
DI 24 01	Module with 24 digital inputs, 110 VDC / 127 VAC
DI 24 014	Module with 24 digital inputs, 110 VDC / 127 VAC Operating temperature: -25+70 °C (temperature class T1), Vibration and shock tested according to EN 50125-3 and EN 50155, class 1B according to IEC 61373

Table 4: Available Variants

HI 800 201 E Rev. 2.00 Page 11 of 34

3.3 Type Label

The type plate contains the following details:

- Product name
- Bar code (1D or 2D code)
- Part no.
- Production year
- Hardware revision index (HW Rev.)
- Firmware revision index (FW Rev.)
- Operating voltage
- Mark of conformity

Figure 1: Sample Type Label

Page 12 of 34 HI 800 201 E Rev. 2.00

3.4 Structure

This chapter describes the layout and function of the module.

3.4.1 Block Diagram

Figure 2: Block Diagram

HI 800 201 E Rev. 2.00 Page 13 of 34

3.4.2 Front View

Figure 3: Front View

Page 14 of 34 HI 800 201 E Rev. 2.00

3.4.3 Status Indicators

LED	Color	Status	Description
RUN	Green	On	Operating voltage present
		Off	No operating voltage
ERR	Red	On	Module faulty or external faults Reaction as dictated by the diagnosis
		Off	No module faults and / or no channel faults

Table 5: Status Indicators

3.4.4 I/O LEDs

LED	Color	Status	Description
l1l16	Yellow	On	The related channel is active (energized).
		Off	The related channel is inactive (de-energized).

Table 6: I/O LEDs

HI 800 201 E Rev. 2.00 Page 15 of 34

3.5 Product Data

General		
Operating voltage	24 VDC, -15+20 %, r _{PP} ≤ 15 %,	
	from a power supply unit with safe insulation	
	in accordance with IEC 61131-2	
Operating data	3.3 VDC / 0.05 A	
	24 VDC / 0.1 A	
Ambient temperature	0+60 °C	
Storage temperature	-40+85 °C	
Space requirement	6 RU, 4 HP	
Weight	260 g	

Table 7: Product Data

Digital inputs		
Number of inputs	24, galvanically separated	
Input voltage High level Low level	110 VDC nom. 127 VAC (monophase) ≥ 79 V ≤ 20 V	
Input current High level	≥ 2.2 mA at 79 V	

Table 8: Specifications for Digital Inputs

3.5.1 Product Data DI 24 014

The DI 24 014 model variant is intended for use in railway applications. The electronic components are coated with a protective lacquer.

DI 24 014	
Operating temperature	-25+70 °C (temperature class T1)

Table 9: Product Data DI 24 014

The DI 24 014 module meets the vibration and shock requirements in accordance with EN 61373, Category 1, Class B.

Page 16 of 34 HI 800 201 E Rev. 2.00

DI 24 01 4 Start-up

4 Start-up

To start up the controller, it must be mounted, connected and configured in the programming tool.

4.1 Installation and Mounting

The module is mounted in the subrack of the modular HIMatrix F60 system.

When laying cables (long cables, in particular), take appropriate measures to avoid interference, e.g., by separating the signal lines from the power lines.

When dimensioning the cables, ensure that their electrical properties have no negative impact on the measuring circuit.

4.1.1 Mounting and Removing the Modules

To mount and remove the modules, the connection cable clamp terminals must be unplugged.

Additionally, personnel must be protected from electrostatic discharge. For details, refer to Chapter 2.1.2.

Mounting the Modules

To mount a module into the subrack

- 1. Insert the module as far as it can go without jamming it into the two guiding rails which are located on the housing's upper and lower part.
- 2. Apply pressure to the upper and lower extremity of the front plate until the module plugs snap into the backplane socket.
- 3. Secure the module with the screws located on upper and lower extremity of the front plate. The module is mounted.

Removing the Modules

To remove a module from the subrack

- 1. Remove the plugs from the module front plate.
- 2. Release the locking screws located on the upper and lower extremity of the front plate.
- 3. Loosen the module using the handle located on the lower part of the front plate and remove it from the guiding rails.

The module is removed.

HI 800 201 E Rev. 2.00 Page 17 of 34

4 Start-up DI 24 01

4.1.2 Connecting the Digital Inputs

The use of shielded cables is not required, but improves the EMC conditions significantly. To allow the connection of the clamps to the earth grid of the F60, the diameter of the cable shielding should not exceed 12 mm.

The inputs are connected using 9-pole connectors with numbered terminals. The terminal pins on the front plate of the module have the same numbered sequence to avoid invalid connections.

Use the following terminals to connect the inputs:

Terminal	Designation	Function
01	I1	Input 1
02	12	Input 2
03	13	Input 3
04	14	Input 4
05	15	Input 5
06	16	Input 6
07	17	Input 7
08	18	Input 8
09	N/-	Common ground
Terminal	Designation	Function
10	19	Input 9
11	I10	Input 10
12	I11	Input 11
13	l12	Input 12
14	I13	Input 13
15	l14	Input 14
16	I15	Input 15
17	I16	Input 16
18	N/-	Common ground
Terminal	Designation	Function
19	l17	Input 17
20	I18	Input 18
21	I19	Input 19
22	120	Input 20
23	I21	Input 21
24	122	Input 22
25	123	Input 23
26	124	Input 24
27	N/-	Common ground

Table 10: Terminal Assignment for the Inputs

Page 18 of 34 HI 800 201 E Rev. 2.00

DI 24 01 4 Start-up

4.1.2.1 Surges on Digital Inputs

Due to the short cycle time of the HIMatrix systems, a surge pulse as described in EN 61000-4-5 can be read in to the digital inputs as a short-term high level.

The following measures ensure proper operation in environments where surges may occur:

- 1. Install shielded input wires
- 2. Program noise blanking in the user program. A signal must be present for at least two cycles before it is evaluated. The fault reaction is triggered with a corresponding delay.
- ${\overset{\bullet}{1}} \qquad \text{The measures specified above are not necessary if the plant design precludes surges from occurring within the system.}$

In particular, the design must include protective measures with respect to overvoltage, lightning, earth grounding and plant wiring in accordance with the relevant standards and the instructions specified in the System Manual (HI 800 141 E or HI 800 191 E).

4.1.3 Cable Plugs

Cable plugs attached to the pin headers of the module are used to connect to the field zone. The cable plugs are included within the scope of delivery of the HIMatrix modules.

Connection to the field zone		
Number of cable plugs	2 pieces, nine poles, screw terminals	
Wire cross-section	0.21.5 mm ² (single-wire)	
	0.21.5 mm ² (finely stranded)	
	0.21.5 mm ² (with wire end ferrule)	
Stripping length	6 mm	
Screwdriver	Slotted 0.4 x 2.5 mm	
Tightening torque	0.20.25 Nm	

Table 11: Cable Plug Properties

HI 800 201 E Rev. 2.00 Page 19 of 34

4 Start-up DI 24 01

4.1.4 Mounting the DI 24 01 in Zone 2

(EC Directive 94/9/EC, ATEX)

The module is suitable for mounting in zone 2. Refer to the corresponding declaration of conformity available on the HIMA website.

When mounting the device, observe the special conditions specified in the following section.

Specific Conditions X

1. Mount the HIMatrix F60 controller in an enclosure that meets the EN 60079-15 requirements and achieves a type of protection of at least IP54, in accordance with EN 60529. Provide the enclosure with the following label:

Work is only permitted in the de-energized state

Exception:

If a potentially explosive atmosphere has been precluded, work can also performed when the controller is under voltage.

- The enclosure in use must be able to safely dissipate the generated heat. The power dissipation of the DI 24 01 module is 3.1 W at maximum depending on the power supply voltage.
- 3. The 24 VDC power must come from a power supply unit with safe isolation. Use power supply units of type PELV or SELV only.
- 4. Applicable standards:

VDE 0170/0171 Part 16, DIN EN 60079-15: 2004-5 VDE 0165 Part 1, DIN EN 60079-14: 1998-08

Pay particular attention to the following sections:

DIN EN 60079-15:

Chapter 5 Design

Chapter 6 Terminals and cabling
Chapter 7 Air and creeping distances

Chapter 14 Connectors

DIN EN 60079-14:

HIMatrix

Chapter 5.2.3 Equipment for use in zone 2
Chapter 9.3 Cabling for zones 1 and 2
Chapter 12.2 Equipment for zones 1 and 2

The controller is additionally equipped with the label represented below:

Paul Hildebrandt GmbH

A.-Bassermann-Straße 28, D-68782 Brühl

ឱ II 3 G Ex nA II T4 X

0 °C ≤ Ta ≤ 60 °C

DI 24 01 Besondere Bedingungen X beachten!

Figure 4: Label for Ex Conditions

Page 20 of 34 HI 800 201 E Rev. 2.00

DI 24 01 4 Start-up

4.2 Configuration

The module can be configured using a programming tool, SILworX or ELOP II Factory. Which programming tool should be used, depends on the revision status of the operating system (firmware):

- SILworX is required for CPU operating system version 7 and higher.
- ELOP II Factory is required for CPU operating system versions up to 6.x.

How to switch between operating systems is described in Chapter *Loading Operating Systems* of the system manual for the modular F60 system (HI 800 191 E).

4.2.1 Module Slots

1

Slots 1 and 2 on the F60 subrack are reserved for the PS 01 power supply module and the central module, respectively. Any type of I/O modules can be plugged in to slots 3...8.

The module slots in SILworX and ELOP II Factory are numbered as follows:

Module	Slot on the rack	Slot in SILworX	Slot in ELOP II Factory
PS 01	1	-	-
CPU/COM	2	0/1	-
I/O	3	2	1
I/O	4	3	2
I/O	5	4	3
I/O	6	5	4
I/O	7	6	5
I/O	8	7	6

Table 12: Module Slots

- The PS 01 power supply module is not configured.
- CPU and COM are both on the central module. In the programming tools, however, they are represented as separate items.

4.3 Configuration with SILworX

In the Hardware Editor, the controller is represented with the following modules:

- one processor module (CPU)
- one communication module (COM)
- 6 slots available for I/O modules

To insert I/O modules, drag them from the module list onto an available slot.

Double-click the module to open the Detail View with the corresponding tabs. The tabs are used to assign the global variables configured in the user program to the system parameters of the corresponding module.

HI 800 201 E Rev. 2.00 Page 21 of 34

4 Start-up DI 24 01

4.3.1 Parameters and Error Codes for the Inputs

The following tables specify the system parameters that can be read and set for the inputs, including the corresponding error codes.

In the user program, the error codes can be read using the variables assigned within the logic.

The error codes can also be displayed in SILworX.

4.3.2 Digital Inputs

The following tables present the statuses and parameters for the input module in the same order as given in the Hardware Editor.

4.3.2.1 Tab **Module**

The Module tab contains the following system parameters:

System parameter	Data type	R/W	Description	
DI.Error Code	WORD	R	Error codes for all digital inputs	
			Coding	Description
			0x0001	Module fault
			0x0002	FTT test of test pattern faulty
			0x0004	FTT test: 1st temperature threshold exceeded
			0x0008	FTT test: 2nd temperature threshold exceeded
Module Error Code	WORD	R	Module error code	
			Coding	Description
			0x0000	I/O processing, if required with errors
				see other error codes
			0x0001	No I/O processing (CPU not in RUN)
			0x0002	No I/O processing during the booting test
			0x0004	Manufacturer interface operating
			0x0010	No I/O processing: invalid configuration
			0x0020	No I/O processing: fault rate exceeded
			0x0040/ 0x0080	No I/O processing: configured module not plugged in
Module SRS	UDINT	R	Slot number (System.Rack.Slot)	
Module Type	UINT	R	Type of module, target value: 0xFA05 [64 005 _{dec}]	

Table 13: SILworX - System Parameters for Digital Inputs, **Module** Tab

4.3.2.2 Tab **DI 24 01: Channels**

System parameter	Data type	R/W	Description	
-> Error Code [BYTE]	BYTE	R	Error codes for the digital input channels	
			Coding	Description
			0x01	Fault in the analog input module
-> Value [BOOL]	BOOL	R	Input values for the digital input channels	
			0 = input de-energized	
			1 = input energized	

Table 14: SILworX - System Parameters for Digital Inputs, DI 24: Channels Tab

Page 22 of 34 HI 800 201 E Rev. 2.00

DI 24 01 4 Start-up

4.4 Configuration with ELOP II Factory

4.4.1 Configuring the Inputs

The signals previously defined in the Signal Editor (Hardware Management) are assigned to the individual channels (inputs) using ELOP II Factory. Refer to the system manual for the modular F60 system or the online help for more details.

The following chapter describes the system signals used for assigning signals in the controller.

4.4.2 Signals and Error Codes for the Inputs

The following tables specify the system signals that can be read and set for the inputs, including the corresponding error codes.

In the user program, the error codes can be read using the signals assigned within the logic.

The error codes can also be displayed in ELOP II Factory.

4.4.2.1 Digital Inputs

System signal	R/W	Description		
Mod.SRS [UDINT]	R	Slot number (System.Rack.Slot)		
Mod. Type [UINT]	R	Type of module, target value: 0xFA05 [64 005 _{dez}]		
Mod. Error Code	R	Error codes for		
[WORD]		Coding	Description	
		0x0000	I/O processing, if required with errors	
			see other error codes	
		0x0001	No I/O processing (CPU not in RUN)	
		0x0002	No I/O processing during the booting test	
		0x0004	Manufacturer interface operating	
		0x0010	No I/O processing: invalid configuration	
0x0020		0x0020	No I/O processing: fault rate exceeded	
		0x0040/	No I/O processing: configured module not plugged in	
		0x0080		
DI.Error Code	Code R Error codes for all digital inputs		all digital inputs	
[WORD]		Coding	Description	
		0x0001	Module fault	
		0x0002	FTT test of test pattern faulty	
		0x0004	FTT test: 1st temperature threshold exceeded	
		0x0008	FTT test: 2nd temperature threshold exceeded	
DI[xx].Error Code R Error codes for the digital input channels		the digital input channels		
[BYTE]		Coding	Description	
		0x01	Fault in the analog input module	
DI[xx].Value [BOOL]	R	Input values for the digital input channels		
	0 = input de-energized			
1 = input energized		gized		

Table 15: ELOP II Factory - Digital Input System Signals

HI 800 201 E Rev. 2.00 Page 23 of 34

5 Operation DI 24 01

5 Operation

The module runs within a HIMatrix base plate and does not require any specific monitoring.

5.1 Handling

Handling of the controller during operation is not required.

5.2 Diagnosis

A first diagnosis results from evaluating the LEDs, see Chapter 3.4.3.

The module diagnostic history can also be read using the programming tool.

Page 24 of 34 HI 800 201 E Rev. 2.00

DI 24 01 6 Maintenance

6 Maintenance

No maintenance measures are required during normal operation.

If a failure occurs, the defective module or device must be replaced with a module or device of the same type or with a replacement model approved by HIMA.

Only the manufacturer is authorized to repair the device or module.

6.1 Faults

Refer to Chapter 3.1.1.1, for more information on the fault reaction of inputs.

NOTE

If a failure occurs, the module must be replaced to ensure the plant's safety.

A module may only be replaced while the power is switched off.

Modules may not be removed or inserted during operation.

The instructions specified in Chapter 4.1.1 must be observed when replacing an existing module or installing a new one.

6.2 Maintenance Measures

The following measures are required for the modular F60 system:

- Load the operating system, if a new version is required
- Perform the proof test

6.2.1 Loading the Operating System

HIMA is continuously improving the operating system of the F60 central module. HIMA recommends to use system downtimes to load the current version of the operating system into the F60 controller.

Refer to the release list to check the consequences of the new operation system version on the system!

The operating system is loaded using the programming tool.

Prior to loading the operating system, the F60 controller must be in STOP (displayed in the programming tool). Otherwise, stop the controller.

For more information, refer to the programming tool documentation and the system manual for the modular F60 system (HI 800 191 E).

6.2.2 Proof Test

HIMatrix devices and modules must be subjected to a proof test in intervals of 10 years. For more information, refer to the safety manual (HI 800 023 E).

HI 800 201 E Rev. 2.00 Page 25 of 34

7 Decommissioning DI 24 01

7 Decommissioning

Remove the supply voltage of the PS 01 supply module to decommission the module. Afterwards pull out the pluggable screw terminal connector blocks for inputs and outputs and the Ethernet cables.

Page 26 of 34 HI 800 201 E Rev. 2.00

DI 24 01 8 Transport

8 Transport

To avoid mechanical damage, HIMatrix components must be transported in packaging.

Always store HIMatrix components in their original product packaging. This packaging also provides protection against electrostatic discharge. Note that the product packaging alone is not suitable for transport.

HI 800 201 E Rev. 2.00 Page 27 of 34

9 Disposal DI 24 01

9 Disposal

Industrial customers are responsible for correctly disposing of decommissioned HIMatrix hardware. Upon request, a disposal agreement can be arranged with HIMA.

All materials must be disposed of in an ecologically sound manner.

Page 28 of 34 HI 800 201 E Rev. 2.00

DI 24 01 Appendix

Appendix

Glossary

Term	Description
ARP	
ARP	Address resolution protocol: Network protocol for assigning the network addresses to hardware addresses
Al	Analog input
AO	Analog output
COM	Communication module
CRC	Cyclic redundancy check
DI	Digital input
DO	Digital output
ELOP II Factory	Programming tool for HIMatrix systems
EMC	Electromagnetic compatibility
EN	European norm
ESD	Electrostatic discharge
FB	Fieldbus
FBD	Function block diagrams
FTT	Fault tolerance time
ICMP	Internet control message protocol: Network protocol for status or error messages
IEC	International electrotechnical commission
MAC address	Media access control address: Hardware address of one network connection
PADT	Programming and debugging tool (in accordance with IEC 61131-3), PC with SILworX or ELOP II Factory
PE	Protective earth
PELV	Protective extra low voltage
PES	Programmable electronic system
R	Read: The system variable or signal provides value, e.g., to the user program
Rack ID	Base plate identification (number)
Interference-free	Supposing that two input circuits are connected to the same source (e.g., a transmitter). An input circuit is termed <i>interference-free</i> if it does not distort the signals of the other input circuit.
R/W	Read/Write (column title for system variable/signal type)
SELV	Safety extra low voltage
SFF	Safe failure fraction, portion of faults that can be safely controlled
SIL	Safety integrity level (in accordance with IEC 61508)
SILworX	Programming tool for HIMatrix systems
SNTP	Simple network time protocol (RFC 1769)
SRS	System.rack.slot addressing of a module
SW	Software
TMO	Timeout
W	Write: System variable/signal is provided with value, e.g., from the user program
r _{PP}	Peak-to-peak value of a total AC component
	Time monitoring for modules or programs. If the watchdog time is exceeded, the
Watchdog (WD)	module or program enters the ERROR STOP state.

HI 800 201 E Rev. 2.00 Page 29 of 34

Appendix		DI 24 01
Index of	Figures	
Figure 1:	Sample Type Label	12
Figure 2:	Block Diagram	13
Figure 3:	Front View	14

20

Figure 4: Label for Ex Conditions

Page 30 of 34 HI 800 201 E Rev. 2.00

DI 24 01 Appendix

Index of	Tables	
Table 1:	Programming Tools for HIMatrix F60	5
Table 2:	Additional Relevant Documents	6
Table 3:	Environmental Requirements	9
Table 4:	Available Variants	11
Table 5:	Status Indicators	15
Table 6:	I/O LEDs	15
Table 7:	Product Data	16
Table 8:	Specifications for Digital Inputs	16
Table 9:	Product Data DI 24 014	16
Table 10:	Terminal Assignment for the Inputs	18
Table 11:	Cable Plug Properties	19
Table 12:	Module Slots	21
Table 13:	SILworX - System Parameters for Digital Inputs, Module Tab	22
Table 14:	SILworX - System Parameters for Digital Inputs, DI 24: Channels Tab	22
Table 15:	ELOP II Factory - Digital Input System Signals	23

HI 800 201 E Rev. 2.00 Page 31 of 34

Appendix DI 24 01

Index

block diagram13	front view 14
diagnosis24	safety function11
fault reaction	specifications16
digital inputs11	surge

Page 32 of 34 HI 800 201 E Rev. 2.00

HIMA Paul Hildebrandt GmbH P.O. Box 1261 68777 Brühl, Germany Phone: +49 6202 709-0

Fax: +49 6202 709-107