

Enhancing Evaluations with *Realistic* CT Simulations

CT Simulations Frameworks and XCIST (formerly CatSim)

Phys. Med. Biol. 67 (2022) 194002

PAPER

https://doi.org/10.1088/1361-6560/ac9174

Physics in Medicine & Biology

Brandon J. Nelson

DLIR Meeting 03/29/2023

XCIST—an open access x-ray/CT simulation toolkit

Mingye Wu^{1,4}, Paul FitzGerald^{1,4}, Jiayong Zhang^{1,4}, W Paul Segars², Hengyong Yu³, Yongshun Xu³ and Bruno De Man^{1,4,4}

- GE Research, Niskayuna, NY, United States of America
- ² Duke University, Durham, NC, United States of America
- 3 University of Massachusetts Lowell, Lowell, MA, United States of America
- ⁴ Mingye Wu, Paul FitzGerald, Jiayong Zhang, and Bruno De Man are employees of the General Electric Company
- * Author to whom any correspondence should be addressed.

Objectives

- Review current in-house use of CT Simulation Frameworks
- Introduce XCIST: X-Ray Cancer Imaging Simulation Toolkit and motivate its use compared to existing frameworks
- Overview basic use and capabilities of XCIST
 - And details to incorporate into current in-house workflows/phantoms
- Discussion and feedback on how to best develop shared in-house tools

Where are we now?

Simulated CT Scanner

Ped Size Adult Size

> **Image Quality Phantoms**

Virtual Patients

Siemens Somatom Definition **Reconstruct: DL**

Scan with virtual scanner

Ped Size

Image Quality Phantoms

Adult Size

recon/denoising

Virtual Patients

Previous Focus

Many in DIDSR use CT sims: ALL would benefit from shared tools optimized for our workflow: evaluations

Many simplifying assumptions made – Time to Revisit!

Why change, why XCIST, and why now?

- Michigan Image Reconstruction Toolbox (MIRT)
 - Great for prototyping: fast, intuitive, low level, simple
 - Lacking in realism: monoenergetic, fan beam, ray-tracing (no scatter)
 - Not scalable: too much hand-written code for large VCT experiments (not intended use)
- XCIST: X-Ray Cancer Imaging Simulation Toolkit
 - Mature, actively maintained
 - Software engineered + industry supported (GE)

1. Wu M, FitzGerald P, Zhang J, et al. XCIST-an open access x-ray/CT simulation toolkit. *Phys Med Biol.* 2022;67(19). doi:10.1088/1361-6560/ac9174

Comparison of X-Ray Simulation Frameworks

Framework	Physics	Beam Hardening Correction	Noise Model	Simulation Time	Benefits	Limitations
MIRT	Ray traced, monochromatic	NA	Poisson	Seconds (CPU)	Fast, optimal for developing recons	Low-level
DukeSim	Ray traced + Monte-Carlo polychromatic	Optional	Gaussian (central limit theorem, high dose assumption)	Minutes (GPU)	ease of use, well designed	Requires paid license
XCIST	Ray traced + Monte-Carlo polychromatic	Optional	Poisson + Gaussian	Minutes (CPU)	Open source, ease of use, well designed	
VICTRE	Monte-Carlo	NA	MC	Hours?	Realistic, in house	Low-level

OSEL Accelerating patient access to innovative, safe, and effective medical devices through best-in-the-world regulatory science

Sample XCIST Experiment

- Config files define defaults
- High level python library for simple workflow
- Easily manage many patients, phantoms, scan/recon protocols, ...
- Lots of documentation and examples


```
protocol.scanTrajectory = "Gantry_Helical" # name of the function that d
protocol.viewsPerRotation = 1000
protocol.viewCount = 1000
protocol.rotationTime = 1.0
protocol.rotationDirection = 1
protocol.startAngle = 0
protocol.tableSpeed = 0
protocol.startZ = 0
protocol.tiltAngle = 0
protocol.wobbleDistance = 0.0
protocol.focalspotOffset = [0, 0, 0]
protocol.mA = 200
protocol.spectrumCallback = "Spectrum"
protocol.spectrumFilename = "tungsten_tar7_120_unfilt.dat" # name of the
protocol.bowtie = "small.txt"
protocol.flatFilter = ['Al',3.0]
protocol.dutyRatio = 1.0
recon.fov = 123.0
recon.imageSize = 512
recon.sliceCount = 1
recon.sliceThickness = 1.0
recon.centerOffset = [0.0, 0.0, 0.0]
recon.reconType = 'fdk_equiAngle'
recon.kernelType = 'Bone' # 'R-L' for the Ramachandran-Lakshminarayanan 1
```

Small details for those wanting to get started

FDA

Possible Inputs:

- Non-Uniform Rational B-Splines NURBS
 - → XCAT format (see <u>Andreu's 2022 AAPM</u> talk for more)*
 - *Cannot feed in whole XCAT patient → Need NURBS editing software (e.g. <u>Rhino3D</u>, AutoDesk, SolidWorks) crop to desired region
- Voxelized Phantoms**
 - **Requires segmented volumes of each tissue type
 - Raw_to_DICOM.py →
 DICOM_to_Volxelized.py →
 XCIST.py

Sample Results on Ped XCAT Data

FBP 25% dose

Sample Results from XCIST Paper

Figure 10. Experiment 3 results. A head section of an XCAT phantom is used to demonstrate the impact of the x-ray source's focal spot width and the x-ray detector's column width on spatial resolution. Left, a 260 mm FOV reconstruction shows the entire head cross-section. The yellow box indicates a 60 mm region of interest. Right, 60 mm FOV reconstructions using two x-ray source focal spot sizes and three detector column widths. Arrows indicate features that become sharper, with more well-defined dimensions, as the focal size and detector column widths are reduced. All images are displayed with window width = 1000 HU, window level = 0 HU.

Sample Results from XCIST Paper

Discussion on shared in house tools Dev

- XCIST (and other high-level frameworks: DukeSim) simplify complex VCT experiments
 - More time for science, less on writing boiler plate code
- Use of common tools in-house enables improved collaboration
- How best to do this? (Discussion welcomed!)
 - Common shared install location e.g. /gpfs_projects/<tool name here>
 - Docker/Docker files for less setup time?
 - Github Forks

- ...