

Exercice 1 Formen l'équation admettant four racines les différentes valeurs du raffort anharmonique de quatre nombres donnés. Exercice 2 Résouche l'équation

XS-209 X + 56 = 0

Sachant que le produit de deux racines est égal à 1.

Problème

RAPPELS.

6325. On rappelle que, pour n et k entiers naturels,

$$\binom{n}{k} = \frac{n!}{k! (n-k)!}$$

et que, par convention, 0! = 1. Les candidats pourront utiliser la notation C_n^k si elle leur est plus familière. La notation N désigne l'ensemble des entiers positifs ou nuls (entiers naturels).

OBJET DU PROBLÈME.

Soit K un corps commutatii de caractéristique nulle. Dans tout le problème, \mathscr{P} désigne l'algèbre K[x] des polynômes à une indéterminée et à coefficients dans K. On note \mathscr{P}^* le dual de \mathscr{P} , c'est-à-dire l'espace vectoriel des formes linéaires sur \mathscr{P} . Si L appartient à \mathscr{P}^* et p à \mathscr{P} , on note $\langle L, p \rangle$ la valeur de L er p.

Une suite polynômiale $(p_n)_{n\in\mathbb{N}}$ est une suite d'éléments de \mathscr{P} tels que, pour tout n, le polynôme p_n soit exactement de degré n. En particulier p_0 est un polynôme constant non nul. On remarquera que les éléments d'une telle suite forment une base de \mathscr{P} .

Une suite binomiale est une suite polynomiale $(p_n)_{n \in \mathbb{N}}$ telle que, pour tout n, on ait, dans K[x, y] l'identité

$$p_n(x + y) = \sum_{k=0}^{n} {n \choose k} p_k(x) p_{n-k}(y).$$

زمزانسه زمرانسه

Par exemple, la suite $(x^n)_{n \in \mathbb{N}}$ est binomiale.

L'objet du problème est l'étude des suites binomiales. Toutesois ces suites n'interviennent pas dans la premiere partie.

PREMIÈRE PARTIE.

Pour tout élément a de K, on note ε_a l'élément de P* défini par

$$\langle \varepsilon_a, p \rangle = p(a)$$
 pour tout $p \in \mathcal{P}$

et l'on pose $\varepsilon = \varepsilon_0$.

Soit L et M deux éléments de \mathscr{P}^* et L \otimes M la forme linéaire sur K[x, y] définie par

$$\langle L \otimes M, x^i y^j \rangle = \langle L, x^i \rangle \langle M, y^j \rangle$$
 pour $i, j \in \mathbb{N}$.

On appelle produit de L et de M et on note LM, la forme linéaire sur P définie par

$$\langle LM, p \rangle = \langle L \otimes M, p(x+y) \rangle$$
 pour tout $p \in \mathcal{P}$.

En particulier si $(p_n)_{n \in \mathbb{N}}$ est une suite binomiale, on a

$$\langle LM, p_n \rangle = \sum_{k=0}^{n} {n \choose k} \langle L, p_k \rangle \langle M, p_{n-k} \rangle.$$

Muni de ce produit, l'espace vectoriel ** est une algèbre associative sur K (on ne demande pas de vérifier cette assertion).

1° Démontrer que l'algèbre \mathscr{P}^* admet ε comme élément unité et que, pour a et b éléments de K. on a

2° Si L est un élément non nul de \mathcal{P}^* , on note v(L) le plus petit entier n tel que $\langle L, x^n \rangle$ soit non nul. On pose

$$|L| = 2^{-\kappa L}$$

ct |0| = 0.

a) Démontrer, pour L et M appartenant à P*, que

$$|L + M| \le \sup (|L|, |M|) \ge \operatorname{et} (|LM| = |L| |M|.$$

b) Soit, pour Let M appartenant à \mathcal{P}^* , d(L, M) = |L - M|; démontrer que d est une distance sur \mathcal{P}^* . On munit P* de la topologie associée à det K de la topologie discrète (toute partie de K est donc ouverte). On munit P* × Pet K × 3* des topologies produits correspondantes. Établir, pour L et M appartenant à 3* et a appartenant à K, la continuité des applications

$$(L, M) \mapsto L + M, (L, M) \mapsto LM \text{ et } (a, L) \mapsto aL.$$

De même, p étant un élément fixé de P, démontrer que l'application

$$L \mapsto \langle L, p \rangle$$

de 9* dans K est continue.

- c) Démontrer que 9 est complet.
- 3° Soit $(L_n)_{n \in \mathbb{N}}$ une suite d'éléments de \mathscr{P}^* . Démontrer que la série de terme général L_n est convergente si et sculement si la suite $(L_n)_{n\in\mathbb{N}}$ tend vers 0.
 - 4° Soit L un élément de 3°*. Démontrer que les trois conditions suivantes sont équivalentes
 - i) <L, 1> = 0;
 - ii) La suite $(L^n)_{n \in \mathbb{N}}$ tend vers 0;
- iii) Pour toute suite $(a_n)_{n \in \mathbb{N}}$ d'éléments de K, la série de terme général $a_n L^n$ est convergente. (On convient, pour L appartenant à \mathcal{P}^* , que $L^0 = \varepsilon$; de même, si a appartient à K, on a $a^0 = 1$).
- 5° Soit L un élément non nul de \mathcal{P}^* , et posons v(L) = m. Démontrer que, pour tout entier naturel k, on a $v(L^k) = km$

et que
$$\langle L^k, x^{km} \rangle = \frac{(km)!}{(m!)^k} \langle L, x^m \rangle^k$$
.

6° On rappelle que, n et k étant deux entiers naturels,

$$\delta_{n, k} = \begin{cases} 1 & \text{si} \quad n = k \\ 0 & \text{si} \quad n \neq k \end{cases}$$

Soit A l'élément de 9* défini par

$$\langle A, x^n \rangle = \delta_{n,1}$$
 pour $n \in \mathbb{N}$.

Démontrer que, pour n et k entiers naturels, on a

$$\langle A^k, x^n \rangle = k ! \delta_{n, k}.$$

Pour un polynôme p, que représente $\langle A^k, p \rangle$?

DEUXIÈME PARTIE.

On note \mathcal{P}_0^* l'ensemble des éléments non nuls L de \mathcal{P}^* tels que v(L)=1.

1° a) Soit $(p_n)_{n \in \mathbb{N}}$ une suite binomiale. Montrer que $p_0 = 1$ et que, pour n non nul, on a $p_n(0) = 0$.

b) Démontrer qu'une suite polynomiale $(p_n)_{n \in \mathbb{N}}$ est binomiale si et seulement si, pour tout $n \in \mathbb{N}$ et pour tout

$$\langle \varepsilon_a \varepsilon_b, p_n \rangle = \sum_{k=0}^n \binom{n}{k} \langle \varepsilon_a, p_k \rangle \langle \varepsilon_b, p_{n-k} \rangle.$$

2° Soit L un élément de \mathcal{P}_0^* . Démontrer que si un polynôme p verifie, pour tout entier naturel k.

$$\langle L^k, p \rangle = 0$$

alors p = 0. Démontrer qu'il existe une unique suite polynomiale $(p_n)_{n \in \mathbb{N}}$ telle que, pour tout n et k entiers naturels, on ait

$$\langle L^k, p_n \rangle = k! \delta_{n,k}.$$

On dit que la suite $(p_n)_{n\in\mathbb{N}}$ est la suite associée à L.

3° Soit L un élément de \mathcal{P}_0^* et $(p_n)_{n\in\mathbb{N}}$ la suite associée. Soit M un élément de \mathcal{P}^* . Démontrer qu'il existe une unique suite $(a_k)_{k\in\mathbb{N}}$ d'éléments de K telle que

$$M = \sum_{k=0}^{\sigma} a_k L^k$$

et que

$$a_k = \frac{\langle M, p_k \rangle}{k!}$$
 pour tout $k \in \mathbb{N}$.

4° Démontrer que, si M et N sont deux éléments de \mathscr{P}^* et L un élément de \mathscr{P}^*_0 de suite associée $(p_n)_{n\in\mathbb{N}}$, alors

$$\langle MN, p_n \rangle = \sum_{k=0}^n \binom{n}{k} \langle M, p_k \rangle \langle N, p_{n-k} \rangle.$$

(On pourra commencer par le cas où M et N sont des puissances de L).

5° Démontrer que la suite associée à un élément de \mathscr{P}_0^* est binomiale et qu'inversement toute suite binomiale est la suite associée à un unique élément de \mathscr{P}_0^* .

6° a) Soit L un élément de 39° et, pour tout entier naturel n,

$$q_n(x) = \sum_{k=0}^n \frac{\langle L^k, x^n \rangle}{k!} x^k.$$

Démontrer que la suite $(q_n)_{n \in \mathbb{N}}$ est binomiale (on pourra revenir à la définition d'une suite binomiale).

b) Démontrer qu'inversement toute suite binomiale s'obtient de cette manière à partir d'un unique élément de \mathscr{S}_0^* .

c) Pour tout élément M de \mathscr{P}_0^* , de suite associée $(p_n)_{n \in \mathbb{N}}$, il existe ainsi un unique élément \widetilde{M} de \mathscr{P}_0^* tel que, pour tout entier naturel n, on ait

$$p_n(x) = \sum_{k=0}^n \frac{\langle \widetilde{M}^k, x^n \rangle}{k!} x^k.$$

On dit que M est le conjugué de M. Calculer A.

TROISIEME PARTIE.

- 1° a) Soit T une application linéaire de \mathcal{P} dans \mathcal{P} ; on note T* l'application linéaire de \mathcal{P}^* dans \mathcal{P}^* transposée de T. Démontrer que T* est continue.
- b) Soit U une application linéaire continue de \mathcal{P}^* dans \mathcal{P}^* . Démontrer que, pour tout polynôme p, il existe un unique polynôme q tel que, pour tout entier naturel k, l'on ait

$$\langle U(A^k), p \rangle = \langle A^k, q \rangle.$$

En déduire que U est la transposée d'une application linéaire de & dans &.

- 2° Soit L un élément de \mathscr{P}_0^* et $(p_n)_{n \in \mathbb{N}}$ la suite associée.
- a) Soit al l'application linéaire de P dans P définie par

$$\alpha_{L}(x^{n}) = p_{n}$$
 pour tout $n \in \mathbb{N}$.

Déterminer $\alpha_i^*(L^k)$ pour $k \in \mathbb{N}$.

- b) Soit \mathscr{A} l'ensemble des α_L pour L appartenant à \mathscr{P}_0^* . Démontrer qu'une application linéaire α de \mathscr{P} dans \mathscr{P} appartient à \mathscr{A} si et seulement si α^* est un isomorphisme algébrique et topologique de l'algèbre \mathscr{P}^* sur elle-même.
 - c) Soit θ_L l'application linéaire de \mathscr{P} dans \mathscr{P} définie par

$$\theta_{L}(p_n) = p_{n+1}$$
 pour tout $n \in \mathbb{N}$.

Une dérivation de P* est une application linéaire ∂ de P* dans P* telle que, pour tout M et N appartenant à P*, ont

$$\partial(MN) = M \partial(N) + \partial(M)N.$$

Démontrer que θ_L^* est une dérivation surjective de \mathscr{P}^* et qu'inversement, pour toute dérivation continue surjective ∂ de \mathscr{P}^* , il existe un élément L de \mathscr{P}_0^* tel que $\partial = \theta_L^*$. On pose

$$\partial_{L} = \theta_{L}^{*}$$

Calculer $\partial_L(L^k)$ pour k entier naturel et préciser le noyau de ∂_L .

- 3° Soit α une application linéaire de $\mathcal P$ dans $\mathcal P$ et soit $(p_n)_{n\in\mathbb N}$ une suite binomiale quelconque. Démontrer que α appartient à $\mathscr A$ si, et seulement si, la suite $(\alpha(p_n))_{n\in\mathbb N}$ est binomiale.
 - 4° a) Soit L et M deux éléments de \mathcal{P}_0^* . Démontrer qu'il existe un unique élément de \mathcal{P}_0^* , noté L o M, tel que

$$\alpha_{L \circ M} = \alpha_{L} \circ \alpha_{M}$$
.

- b) Démontrer que \mathcal{P}_0^* , muni de la loi o que l'on vient de définir, est un groupe. Quel est son élément neutre?
- c) Soit Let M deux éléments de \mathscr{D}_0^* et soit $(p_n)_{n \in \mathbb{N}}$, $(q_n)_{n \in \mathbb{N}}$ et $(r_n)_{n \in \mathbb{N}}$ les suites respectivement associées à L. M et L o M. Démontrer que si

$$q_n(x) = \sum_{k=0}^{n} c_{n,k} x^k$$
 alors $r_n(x) = \sum_{k=0}^{n} c_{n,k} p_k(x)$.

- 5° Soit L un élément de \mathcal{P}_0^* et L son conjugué (cf. deuxième partie, 6° c). Montrer que L o L = A. Quel est le conjugué de L?
 - 6° Soit L et M deux éléments de 3°. Démontrer que si

$$M = \sum_{k=1}^{\infty} b_k A^k \qquad b_k \in K, \text{ pour tout } k,$$

alors

$$L \circ M = \sum_{k=1}^{\infty} b_k L^k.$$

QUATRIÈME PARTIE.

- 1° Soit L un élément de 9°*.
- a) Démontrer qu'il existe une unique application linéaire μ_L de \mathcal{P} dans \mathcal{P} telle que, pour tout élément M de \mathcal{P}^{\bullet} et tout élément p de \mathcal{P} , on ait

$$\langle LM, p \rangle = \langle M, \mu_L(p) \rangle$$

- **b)** Déterminer μ_A et, pour $a \in K$, déterminer μ_{c_a} . On pose $D = \mu_A$.
- c) L et M étant deux éléments de \mathscr{P}^* , déterminer $\mu_L + \mu_M$ et $\mu_L \circ \mu_M$.