WiMAX IEEE 802.16 LDPC Code Performance Evaluation

Channel Coding Final Project

Tommaso Zugno

tommasozugno@gmail.com

12/01/2018

Outline

- WiMAX Technology
- Channel coding in WirelessMAN-OFDMA PHY layer
- Substitution
 Sub
- Encoding procedure and encoder implementation
- Decoding procedure and decoder implementation
- 0 main.m
- Results

WiMAX Technology

WiMAX (Worldwide Interoperability for Microwave Access) is a standards-based technology enabling the delivery of last mile wireless broadband access as an alternative to cable and DSL $^{\rm 1}$.

WiMAX is based upon std. IEEE 802.16e-2005 which provides multiple PHY and MAC options.

¹www.WiMAXforum.org/technology/

Channel coding in WirelessMAN-OFDMA PHY layer

Channel coding procedure:

The standard specifies different FEC options:

- Convolutional Coding (CC)
- Convolutional Turbo Coding (CTC)
- Block Turbo Coding
- Low Density Parity Check codes

LDPC codes

The standard specifies a LDPC code for each combination of rate R and codeword length n. There are:

- 6 possible rates (1/2, 2/3A, 2/3B, 3/4A, 3/4B, 5/6)
- 19 possible codeword lengths

We implemented in Matlab the encoder/decoder couple for some codes. In particular we considered:

- 4 different rates (1/2, 2/3B, 3/4A, 5/6)
- 3 different codeword lengths (576, 1344, 2304 bits)

LDPC codes

Each code in the set of LDPC codes is specified by a parity check matrix H of size $m \times n$.

H is defined as:

$$H = \begin{bmatrix} P_{0,0} & P_{0,1} & \dots & P_{0,n_b-1} \\ P_{1,0} & P_{1,1} & \dots & P_{1,n_b-1} \\ \vdots & \vdots & & \vdots \\ P_{m_b-1,0} & P_{m_b-1,1} & \dots & P_{m_b-1,n_b-1} \end{bmatrix}$$

where $P_{i,j}$ is a $z \times z$ permutation matrices or a $z \times z$ zero matrix with $z = \frac{n}{n_b} = \frac{m}{m_b}$ and $n_b = 24$.

The permutations used are circular right shifts.

LDPC codes

H is expanded from a base model matrix H_{bm} of size $m_b \times n_b$:

- each positive entry p(i,j) is replaced by a $P_{i,j}$ matrix with circular shift size equal to p(i,j)
- each blank or negative entry p(i,j) is replaced by a $P_{i,j}$ zero matrix

The standard defines H_{bm} for the largest codeword length (n = 2304) of each code rate. H_{bm} for a different codeword length n' is obtained by scaling the shift sizes proportionally

$$p'(i,j) = \begin{cases} p(i,j) & p(i,j) \leq 0 \\ \left\lfloor \frac{p(i,j)z_f}{z_0} \right\rfloor & p(i,j) > 0 \end{cases}$$

where $z_0 = \frac{2304}{n_h}$ and $z_f = \frac{n'}{n_h}$.

Encoding procedure

For an efficient encoding, H is divided into the form:

$$H = \begin{bmatrix} A_{(m-z)\times Rn} & B_{(m-z)\times z} & T_{(m-z)\times (m-z)} \\ C_{z\times z} & D_{z\times k} & E_{z\times (m-z)} \end{bmatrix}$$

We define: $M_1 = ET^{-1}A + C$, $M_2 = T^{-1}A$, $M_3 = T^{-1}B$.

Given the infoword u, we compute:

- $p_1^T = M_1 u$
- $p_2^T = M_2 u + M_3 p_1^T$

The corresponding codeword is $v = [u, p_1, p_2]$

Given the chosen values for the rate R and codeword length n, the script generate-matrices2.m:

- ullet generates the matrix H using the corresponding base matrix H_{bm}
- ullet computes and saves the matrices M_1 , M_2 and M_3

At the begin of each simulation, the matrices M_1 , M_2 and M_3 are loaded and used during the encoding procedure.

Decoding binary LDPC

The decoding is performed using the Message Passing Algorithm (MPA) in the logarithmic domain. The MPA is based on this factor graph:

Message Passing Algorithm

Initialization: Messages $\mu_{h \to f}$ are initialized with the channel a-priori knowledge g.

Schedule:

- run message passing on check nodes
- 2 run message passing on variable nodes
- perform ongoing marginalization:

$$\hat{c}_{l} = \begin{cases} 0 & , \mu_{h_{l} \to c_{l}} + \mu_{g_{l} \to c_{l}} \ge 0 \\ 1 & , otherwise \end{cases}$$

go back to step 1 until the maximum number of iterations is reached or a codeword is found

Leaf nodes

Under the hypothesis of equally probable input symbols, the messages from leaf to variable nodes are:

$$g_I = -\frac{2r_I}{\sigma_w^2}$$

where r_l is the l-th received symbol and σ_w^2 is the noise variance.

Variable nodes

The update rule for the variable nodes is:

$$\mu_{h\to y} = \sum_{i} \mu_{x_i\to h}$$

Check nodes

The update rule for the check nodes is:

$$\mathbf{y} - \mathbf{f} = \underbrace{\mu_{\mathbf{x_a} \to f}}_{\mu_{\mathbf{x_b} \to f}} \qquad \mu_{f \to y} = \tilde{\phi} \left(\sum_{i} \tilde{\phi} \left(|\mu_{\mathbf{x_i} \to f}| \right) \right) \prod_{i} \mathit{sign}(\mu_{\mathbf{x_i} \to f})$$

where:

$$\tilde{\phi} = -\log\left(\tanh\!\left(\frac{1}{2}x\right)\right) = \tilde{\phi}^{-1}$$

The decoder is implemented by the function decode2.m which outputs the estimate $\hat{\mathbf{u}}$ of the transmitted infoword \mathbf{u} , given the received vector \mathbf{r} and the noise variance σ_w^2 .

- the vector g contains the messages exiting the leaf nodes and going upwards
- ullet the matrix mu_hf contains the messages variable ightarrow check
- ullet the matrix mu_fh contains the messages check o variable
- the vector mu_hg contains the messages exiting the leaf nodes and going downwards

decode2.m implements the Message Passing schedule described above:

Initialization: compute g and initialize mu_hf
while max n of iterations is not reached AND codeword is not found

update mu_fh

$$\tilde{\phi} (|\text{mu_hf}|) = \begin{bmatrix} \tilde{\phi}(|\mu_{h_1 \to f_1}|) & \tilde{\phi}(|\mu_{h_1 \to f_2}|) & \dots & \tilde{\phi}(|\mu_{h_1 \to f_m}|) \\ \vdots & & \vdots & & \vdots \\ \tilde{\phi}(|\mu_{h_n \to f_1}|) & \tilde{\phi}(|\mu_{h_n \to f_2}|) & \dots & \tilde{\phi}(|\mu_{h_n \to f_m}|) \end{bmatrix}$$

$$\texttt{tmp3} = \left(\begin{bmatrix} \sum_{1}^{n} \tilde{\phi}(|\mu_{h_{i} \rightarrow f_{1}}|) \\ \vdots \\ \sum_{1}^{n} \tilde{\phi}(|\mu_{h_{i} \rightarrow f_{m}}|) \end{bmatrix} \begin{bmatrix} 1 & \dots & 1 \end{bmatrix} \right) . *H - \tilde{\phi}(|\mathtt{mu_hf}|)^{T}$$

$$\begin{aligned} & sign\left(\mathtt{mu_hf}\right) = \begin{bmatrix} sign(\mu_{h_1 \to f_1}) & sign(\mu_{h_1 \to f_2}) & \dots & sign(\mu_{h_1 \to f_m}) \\ & \vdots & & \vdots & & \vdots \\ sign(\mu_{h_n \to f_1}) & sign(\mu_{h_n \to f_2}) & \dots & sign(\mu_{h_n \to f_m}) \end{bmatrix} \\ & \mathbf{mu_fh} = \tilde{\phi}(\mathtt{tmp3}).* \begin{pmatrix} \begin{bmatrix} \prod_{1}^{n} sign(\mu_{h_i \to f_1}) \\ & \vdots & & \vdots \\ \prod_{1}^{n} sign(\mu_{h_i \to f_m}) \end{bmatrix} \begin{bmatrix} 1 & \dots & 1 \end{bmatrix} \\ .*sign(\mathtt{mu_hf})^T \end{aligned}$$

Update mu_hf and mu_hg

$$\mathtt{mu_hf} = \left[\left(\begin{bmatrix} \sum_{1}^{m} \mu_{f_{i} \to h_{1}} \\ \vdots \\ \sum_{1}^{m} \mu_{f_{i} \to h_{n}} \end{bmatrix} + \mathsf{g} \right) \begin{bmatrix} 1 & \dots & 1 \end{bmatrix} \right] . * H^{T} - \mathtt{mu_fh}^{T}$$

$$mu_hg = \begin{bmatrix} \sum_{1}^{m} \mu_{f_i \to h_1} & \sum_{1}^{m} \mu_{f_i \to h_2} & \dots & \sum_{1}^{m} \mu_{f_i \to h_n} \end{bmatrix}$$

marginalize

$$\hat{c} = (\text{mu_hg} + \text{g}) < 0$$

The $\tilde{\phi}$ function is truncated to avoid over/underflow errors:

$$\tilde{\phi}(x) = \begin{cases} 12.5 & x < 10^{-5} \\ -\log\left(\tanh\left(\frac{1}{2}x\right)\right) & 10^{-5} \le x < 50 \\ 0 & x \ge 50 \end{cases}$$

Decoding BICM

The BICM decoder was implemented by adding the conform nodes at the bottom of the LDPC factor graph.

The bit-interleaving operation was not implemented.

The Message Passing schedule modifies into:

- ullet Initialization: compute the messages leaf o conform
- Schedule:
 - 1 run message passing on the conform nodes
 - 2 update messages variable \rightarrow check
 - run message passing on the check nodes
 - ullet update messages variable o conform
 - 6 marginalize
 - go back to step 1 until the maximum number of iterations is reached or a codeword is found

Decoding BICM

The update rule for the conform nodes is:

$$\mu_{\omega \to y}(y) = \log \left(\frac{\sum\limits_{x_a, x_b, \dots} g(\textit{map}(0, x_a, x_b, \dots)) e^{(1 \oplus x_a)\mu_{x_a \to \omega} + (1 \oplus x_b)\mu_{x_b \to \omega} + \dots}}{\sum\limits_{x_a, x_b, \dots} g(\textit{map}(1, x_a, x_b, \dots)) e^{(1 \oplus x_a)\mu_{x_a \to \omega} + (1 \oplus x_b)\mu_{x_b \to \omega} + \dots}} \right)$$

BICM decoder implementation

The BICM decoder is implemented by the function decodeBICM.m which outputs the estimate $\hat{\mathbf{u}}$ of the transmitted infoword \mathbf{u} given the received vector \mathbf{r} and the noise variance σ_w^2 .

The BICM decoder was implemented starting from decode2.m. The initialization and schedule was modified as described above to include the contribute of the conform nodes.

main.m

The script main.m runs a simulation campaign to test the performance of a code in terms of P_{bit} vs SNR.

For each SNR value to test, the simulation follows this schedule:

- 1 generate a random infoword u
- 2 encode u to obtain c
- modulate c to obtain c_{mod}
- **4** add AWGN noise with variance σ_w^2 to obtain **r**
- **o** decode \mathbf{r} to obtain $\hat{\mathbf{u}}$
- $oldsymbol{0}$ compute the number of errors comparing $oldsymbol{u}$ and $\widehat{oldsymbol{u}}$
- go back to step 1 until the total number of errors or the number of transmitted packets reach the threshold

Performance of binary LDPC ($n=576,\ R=5/6$) for different number of iterations.

Performance of binary LDPC (n = 576, $N_{it} = 50$) for different rates.

Performance of binary LDPC (R=3/4A, $N_{it}=50$) for different codeword lengths.

Performance of BICM - LDPC (n=576, R=5/6, $N_{it}=50$) for different modulation schemes.

