Suites

Révision de tout le programme de MP2I.

Séries

Les séries sont avant tout un outil. L'étude des séries semi-convergentes n'est pas un objectif du programme.

A - Séries numériques et vectorielles

Contenus

Capacités & commentaires

a) Séries à valeurs dans un espace normé de dimension finie (en fait ici dans $\mathbb R$ ou $\mathbb C$)

Sommes partielles. Convergence, divergence.

La série de terme général u_n est notée $\sum u_n$.

Somme et restes d'une série convergente.

En cas de convergence, notation $\sum_{n=0}^{+\infty} u_n$.

Linéarité de la somme.

Divergence grossière.

Le terme général d'une série convergente tend vers 0. Lien suite-série.

La suite (u_n) et la série $\sum (u_{n+1} - u_n)$ ont même nature.

Série absolument convergente.

Une série absolument convergente d'éléments d'un es-

Cas des séries matricielles.

pace vectoriel normé de dimension finie est convergente.

Le critère de Cauchy est hors programme.

b) Compléments sur les séries numériques

Règle de d'Alembert.

Critère des séries alternées. Signe et encadrement des restes.

Introduite principalement en vue de l'étude des séries entières.

L'étude des séries semi-convergentes n'est pas un objectif du programme. La transformation d'Abel est hors programme. L'étude de la sommation par tranches dans le cas semi-convergent est hors pro-

gramme.

Comparaison série-intégrale :

Si f est une fonction continue par morceaux et décroissante de \mathbb{R}^+ dans \mathbb{R}^+ , alors la série de terme général

$$\int_{n-1}^{n} f(t) dt - f(n)$$
 converge.

sommations des relations de comparaison : domination, négligeabilité, équivalence.

Les étudiants doivent savoir utiliser la comparaison série-intégrale pour estimer des sommes partielles de séries divergentes ou des restes de séries convergentes dans le cas où f est monotone.

Interprétation géométrique.

La suite de référence est positive à partir d'un certain

Cas des séries convergentes, des séries divergentes.