Introduction to Environmental Sensors

Sensor Definitions

- Accuracy ability of a measurement to provide a result that is close as possible to the actual value
- Precision amount of agreement between repeated measurements of the same quantity
- **Resolution** the smallest increment of a measurement
- Hysteresis delayed response of a measurement
- <u>Linearity</u> the quality of delivering identical sensitivity throughout the measurement

Accuracy

The ability of a measurement to provide a result that is close as possible to the actual value

Precision (Repeatability)

The amount of agreement between repeated measurements of the same quantity

More Precise

More Accurate

99.8 22 times

> 99.9 18 times

100.0 12 times

100.1 19 times

100 g 100.2 21 times

105.2 70 times

> 105.3 30 times

100 g

05.3) times

Resolution

The smallest increment of a measurement

Hysteresis

Delayed response of a measurement

Linearity (& Sensitivity)

The quality of delivering identical sensitivity throughout the measurement

Analog Sensors

- Output continuous voltages that vary with the phenomena measured
- Connect to analog terminals
- Single Ended (SE) channels measured with respect to ground
- Differential (DIFF) channels measured with respect to another input channel

8 Differential & 16 Single Ended Channels

<u>Differential</u>	SE
1H	1
1L	2
2H	3
2L	4
2L	4

Analog Sensors

- Many analog sensors can connect to either SE or DIFF channels
- Pro of SE wiring: can connect twice as many sensors
- Con of SE wiring: data are generally noisier
- Rule of thumb: always connect sensors differentially if you have space to do so to get cleaner data

Analog Sensor wired to SE Channel #2

Analog Sensor wired to DIFF Channel #1

2-wire Voltage Sensor

- Can be single ended or differential
- E.g., a thermocouple

Bridge (Resistance) Sensors

- Change resistance with respect to environmental change
 - E.g., a thermistor
- Datalogger provides precise excitation voltage via the Excitation terminals (labeled EX1-3 or VX1-3 depending on your datalogger model)
- Sensors are measured on analog terminals

Potentiometer from Wind Vane wired to Excitation Channel #1

Pulse Sensors

- Connected to a Pulse terminal (P1, P2)
- Datalogger can measure switch closures, AC signals, or digital pulses (0-5v)

Switch Closure

Switch Closure

OV

Low Level AC

Anemometer wired to Pulse Channel #2

Digital I/O Ports

- CR1000 has 8 Digital I/O ports (C1-C8)
- High = 5v; Low = 0v
- Programmed as binary inputs or control outputs
- Used for:
 - Relays
 - Pulse Counting
 - Asynchronous communications
 - SDI-12 communications
 - SDM communications, etc...

Digital I/O Ports Used to Control/Monitor Pump

RS-232 Sensors

Connect to RS-232 terminal or Digital I/O ports

SDI-12 Sensors

- Serial Digital Interface at 1200 Baud
- Asynchronous serial communications protocol
- Each sensor identified by unique address
- E.g., YSI <u>multiparameter</u> sondes

Group Discussion:
Campbell Scientific vs.
Other Vendors vs.
Arduino