1 Алгоритм решения

- 1. P разбивается символами «?» на k непустых подстрок P_1, P_2, \ldots, P_k . Для каждой подстроки P_i сохраняем её смещение $shift_i$ от конца образца, т.е. количество символов (включая «?») между концом P_i и концом P.
- 2. Построение бора и суффиксных ссылок на $\{P_1, \dots, P_k\}$. Делаем **Ахо-Корасик**.
- 3. Каждая вершины бора конец подстроки, держит индекс подстроки в массиве $\{P_1, \dots, P_k\}$.
- 4. Массив счётчиков Count[0...|T|-1] := 0, где Count[i] сколько из k подстрок совпали на позиции i текста.
- 5. Проходим T по бору. Если при индекс текущего символа в тексте j вершина соответствует концу P_i , увеличиваем $Count[j+shift_i]$ на 1.
- 6. Итоговые индексы i, т.ч. Count[i-|P|+1]=k и $i-|P|+1\geqslant 0$, соответствуют позициям начала вхождений образца P в текст T.

При этом, достаточно кольцевого буфера длины |P| заместо массива Count длины |T|, поскольку на каждой итерации алгоритм обновляет только одну позицию, соответствующую текущему окну длины |P|.

2 Корректность

Теорема 1. T[i ... i + |P| - 1] является вхождением образца P, если и только если:

- 1. Для каждой подстроки P_i существует точное вхождение P_i в T на позиции $i+|P|-shift_i-|P_i|$.
- 2. Символы $T[i \dots i + |P| 1]$, не покрытые подстроками P_i являются «?».

Доказательство. **Необходимость.** Пусть подстрока $S = T[i \dots i + |P| - 1]$ действительно совпадает с образцом P, учитывая, что символы «?» могут принимать любые значения. Тогда каждая фиксированная часть P_i должна найти точное вхождение в S на отрезке

$$i+|P|-shift_j-|P_j| \ldots i+|P|-shift_j-1,$$

что эквивалентно точному совпадению P_j в тексте T на позиции $i+|P|-shift_j-|P_j|$. Остальные позиции в S соответствуют символам «?» и поэтому не накладывают дополнительных ограничений.

Достаточность. Предположим теперь, что для каждого $j=1,\ldots,k$ имеется точное совпадение P_j в указанных выше позициях, а все остальные символы в S могут быть произвольными. Тогда из определения символа «?» следует, что эти «нежёсткие» позиции не препятствуют полному совпадению S с P. Следовательно, S является вхождением P в текст.

Таким образом, если Count[i] = k, то это означает, что каждая подстрока P_j сопоставилась с нужной позицией относительно начала вхождения, а значит, P сопоставим с $T[i \dots i + |P| - 1]$.

3 Временная сложность

Построение бора и суффиксных ссылок для k строк суммарной длины O(|P|) выходит в O(|P|), поиск в тексте T осуществляется за O(|T|+|R|), где |R| - длина ответа поиска, которое зависит от общего количество найденных вхождений в тексте, максимальное значение которого ограничевается количеством всех образцов на каждый символ текста. Количество образцов зависит напрямую зависит от количества символов «?», допустим |Q|, откуда $\max |R| = |T|(|Q|+1)$, из чего Ахо-Корасик имеет сложность $O(|T||Q|) \to O(|P|+|T||Q|)$ - общая сложность по времени.

4 Затраты по памяти

Бор - O(|P|), кольцевой буфер - O(|P|), структуры данных Ахо–Корасика - $O(|P|) \to O(|P|)$ - итоговая пространственная сложность алгоритма.