Seminar 4 Decizii, decizii

- 1. Un sistem airbag detectează un accident prin eșantionarea semnalului de la un senzor cu 2 valori posibile: $s_0(t) = 0$ (OK) sau $s_1(t) = 5$ (accident). Semnalul este afectat de zgomot gaussian \mathcal{N} ($\mu = 0, \sigma^2 = 2$). Se ia un singur eșantion din semnal, cu valoarea r = 3.1. Costurile scenariilor sunt: $C_{00} = 0$, $C_{01} = 100$, $C_{10} = 10$, $C_{11} = -100$. Probabilitățile celor două ipoteze sunt $P(H_0) = 2/3$, $P(H_1) = 1/3$.
 - a. Găsiți decizia pentru eșantionul r, cu criteriile ML / MPE / MR
 - b. Găsiți regiunile de decizie R_0 și R_1 pentru toate cele trei criterii
 - c. Dar dacă zgomotul este uniform U[-3,3]?
- 2. Repetați exercițiul de mai sus, considerând un zgomot uniform U[-3,3].

Pe lângă criteriile ML,MPE,MR, utilizați și criteriul Neyman-Pearson cu probabilitatea (condiționată) de alarmă falsă $P_{fa}=0.01$

- 3. Un semnal poate avea două valori, 0 (ipoteza H_0) sau 6 (ipoteza H_1).
 - Semnalul este afectat de zgomot gaussian $\mathcal{N}(0, \sigma^2 = 1)$.

La receptie se iau 5 esantioane, cu valorile $\{1.1, 4.4, 3.7, 4.1, 3.8\}$.

- a. Ce decizie se ia cu criteriul Maximum Likelihood?
- b. Ce decizie se ia cu criteriul Minium Probability of Error, dacă $P(H_0) = 2/3$ and $P(H_1) = 1/3$?
- c. Ce decizie se ia cu criteriul Minimum Risk, dacă $P(H_0) = 2/3$ and $P(H_1) = 1/3$, and $C_{00} = 0$, $C_{10} = 10$, $C_{01} = 20$, $C_{11} = 5$?
- d. Care e intervalul de valori posibile ale lui $P(H_0)$ pentru ca decizia cu criteriul MPE să fie D_0 ?