TOSHIBA TLP421

TOSHIBA PHOTOCOUPLER GaAs IRED & PHOTO-TRANSISTOR

TLP421

OFFICE EQUIPMENT

HOUSEHOLD APPLIANCES

SOLID STATE RELAYS

SWITCHING POWER SUPPLIES

VARIOUS CONTROLLERS

SIGNAL TRANSMISSION BETWEEN DIFFERENT VOLTAGE CIRCUITS

The TOSHIBA TLP421 consists of a silicone photo-transistor optically coupled to a gallium arsenide infrared emitting diode in a four lead plastic DIP (DIP4) with having high isolation voltage $(AC : 5k V_{RMS} (min)).$

Collector-Emitter Voltage : 80 V (min)

Current Transfer Ratio : 50% (min) Rank GB : 100% (min)

: 5000 V_{rms} (min) Isolation Voltage

UL Recognized : UL1577

BSI Approved : BS EN60065 : 1994

> Approved No. 8411 BS EN60950: 1992 Approved No. 8412

SEMKO Approved : EN60065, EN60950, EN60335

Approved No. 9910249/01

Unit in mm

Weight: 0.26 g

PIN CONFIGURATIONS (TOP VIEW)

1: ANODE 2: CATHODE 3: EMITTER 4 : COLLECTOR

- TOSHIBA is continually working to improve the quality and the reliability of its products. Nevertheless, semiconductor devices in general can malfunction or fail due to their inherent electrical sensitivity and vulnerability to physical stress. It is the responsibility of the buyer, when utilizing TOSHIBA products, to observe standards of safety, and to avoid situations in which a malfunction or failure of a TOSHIBA product could cause loss of human life, bodily injury or damage to property. In developing your designs, please ensure that TOSHIBA products are used within specified operating ranges as set forth in the most recent products specifications. Also, please keep in mind the precautions and conditions set forth in the TOSHIBA Semiconductor Reliability Handbook.
- Gallium arsenide (GaAs) is a substance used in the products described in this document. GaAs dust and fumes are toxic. Do not break, cut or pulverize the product, or use chemicals to dissolve them. When disposing of the products, follow the appropriate regulations. Do not dispose of the products with other industrial waste or with domestic garbage. The products described in this document are subject to the foreign exchange and foreign trade laws.
- The information contained herein is presented only as a guide for the applications of our products. No responsibility is assumed by TOSHIBA CORPORATION for any infringements of intellectual property or other rights of the third parties which may result from its use. No license is granted by implication or otherwise under any intellectual property or other rights of TOSHIBA CORPORATION or others.

 The information contained herein is subject to change without notice.

TOSHIBA TLP421

• Option (D4) type

TÜV Approved : DIN VDE0884

Approved No. R9950202

 $\begin{array}{lll} \mbox{Maximum Operating Insulation Voltage} & : 890 \ \mbox{V}_{\mbox{PK}} \\ \mbox{Maximum Permissible Overvoltage} & : 8000 \ \mbox{V}_{\mbox{PK}} \end{array}$

(Note): When a VDE0884 approved type is needed,

please designate the "Option (D4)"

Making the VDE Application: DIN VDE0884

Construction Mechanical Rating

	7.62 mm pich 10.16 mm p	
	Typical type	TLPxxxF type
Creepage Distance	7.0 mm (min)	8.0 mm (min)
Clearance	7.0 mm (min)	8.0 mm (min)
Insulation Thickness		0.4 mm (min)

CURRENT TRANSFER RATIO

TYPE	CLASSI- FICATION	CURRENT TRANSFER RATIO (%) $\frac{(I_C/I_F)}{I_F = 5 \text{ mA}, \ V_{CE} = 5 \text{ V}, \ Ta = 25^{\circ}C}$		MARKING OF CLASSIFICATION
	(*1)	MIN	MAX	
	(None)	50	600	Blank, Y, Y+, G, G+, B, B+, GB
	Rank Y	50	150	Y, Y+
TLP421	Rank GR	100	300	G, G+
	Rank BL	200	600	B, B+
	Rank GB	100	600	G, G+, B, B+, GB

(*1) : Ex. Rank GB : TLP421 (GB)

(Note): Application type name for certification test, please use standard product type

name, i.e.

TLP421 (GB): TLP421

MAXIMUM RATINGS (Ta = 25°C)

	CHARACTERISTIC	STMBOL	RATING	UNIT
	Forward Current	${ m I_F}$	60	mA
	Forward Current Derating (Ta ≥ 39°C)	△I _F /°C	-0.7	mA/°C
	Pulse Forward Current (Note 2)	I_{FP}	1	A
LE	Power Dissipation	$P_{\mathbf{D}}$	100	mW
	Power Dissipation Derating	△P _D /°C	-1.0	mW/°C
	Reverse Voltage	$v_{ m R}$	5	V
	Junction Temperature	T_{j}	125	°C
R	Collector-Emitter Voltage	v_{CEO}	80	V
O F	Emitter-Collector Voltage	v_{ECO}	7	V
L	Collector Current	$I_{\mathbf{C}}$	50	mA
EC	Power Dissipation (Single Circuit)	$P_{\mathbf{C}}$	150	mW
ET	Power Dissipation Derating (Ta ≥ 25°C) (Single Circuit)	△P _C /°C	-1.5	mW/°C
D	Junction Temperature	T_{j}	125	°C
Op	erating Temperature Range	$T_{ m opr}$	-55~100	°C
Sto	rage Temperature Range	$T_{ m stg}$	-55~125	°C
Lea	ad Soldering Temperature (10 s)	T_{sol}	260	°C
Tot	al Package Power Dissipation	P_{T}	250	mW
	al Package Power Dissipation Derating $2 \geq 25^{\circ}\text{C}$	$\Delta \mathrm{P_T}/\mathrm{^{\circ}C}$	-2.5	mW/°C
Iso	lation Voltage (Note 3)	$BV_{\mathbf{S}}$	5000	V _{rms}

(Note 2) : 100 μ s pulse, 100 Hz frequency

(Note 3): AC, 1 min., R.H. ≤ 60%. Apply voltage to LED pin and detector pin together.

RECOMMENDED OPERATING CONDITIONS

CHARACTERISTIC	SYMBOL	MIN	TYP.	MAX	UNIT
Supply Voltage	v_{CC}	_	5	24	V
Forward Current	$I_{\mathbf{F}}$	_	16	25	mA
Collector Current	$I_{\mathbf{C}}$	_	1	10	mA
Operating Temperature	${ m T_{opr}}$	-25	_	85	°C

INDIVIDUAL ELECTRICAL CHARACTERISTICS (Ta = 25°C)

	CHARACTERISTIC	SYMBOL	TEST CONDITION	MIN	TYP.	MAX	UNIT
Γ	Forward Voltage	$V_{\mathbf{F}}$	$I_{ m F}=10{ m mA}$	1.0	1.2	1.3	V
闰	Reverse Current	$I_{ m R}$	$V_R = 5 V$	_	_	10	μ A
-	Capacitance	C_{T}	V = 0, $f = 1 MHz$	_	30	_	рF
	Collector-Emitter Breakdown Voltage	V (BR) CEO	$I_{ m C}=0.5{ m mA}$	80	_	_	V
TOR	Emitter-Collector Breakdown Voltage	V _{(BR)ECO}	$I_{ m E}=0.1{ m mA}$	7	_	_	V
TEC'	Collector Dark Current	I_ (I_e= a)	$V_{CE} = 24 V$ (Ambient Light Below 1000 ℓx)	_	0.01 (0.1)	0.1 (10)	μ A
DET	Conector Dark Current	ID (ICEO)	$V_{CE} = 24 \text{ V}$ (Ambient Light) $Ta = 85^{\circ}\text{C}$ (Below 1000 ℓ x)	_	0.6 (1)	50 (50)	μ A
	Capacitance (Collector to Emitter)	c_{CE}	$V=0,\;f=1\;MHz$	_	10	_	pF

COUPLED ELECTRICAL CHARACTERISTICS (Ta = 25°C)

CHARACTERISTIC	SYMBOL	TEST CONDITION	MIN	TYP.	MAX	UNIT
Current Transfer Ratio	I _C /I _F	$ m I_F = 5~mA,~V_{CE} = 5~V$ Rank GB	50 100	_	600 600	%
Saturated CTR	I _C / I _F (sat)	$I_{ m F}=1~{ m mA},~{ m V}_{ m CE}=0.4~{ m V}$ Rank GB	-	60 —	_	- %
Callantan Emittan Catamatian		$I_{C} = 2.4 \text{ mA}, I_{F} = 8 \text{ mA}$	_	_	0.4	
Collector-Emitter Saturation Voltage	V _{CE} (sat)	$I_{\mathrm{C}} = 0.2 \mathrm{mA}, \; I_{\mathrm{F}} = 1 \mathrm{mA}$	_	0.2	_] v
Voltage	- (1	Rank GB	_	_	0.4	

ISOLATION CHARACTERISTICS (Ta = 25°C)

CHARACTERISTIC	SYMBOL	TEST CONDITION	MIN	TYP.	MAX	UNIT
Capacitance (Input to Output)	c_{S}	$V_{ m S}=0,~{ m f}=1~{ m MHz}$	_	0.8	_	pF
Isolation Resistance	RS	$V_S = 500 V$	$1 imes 10^{12}$	10^{14}		Ω
Isolation Voltage	BVS	AC, 1 minute	5000	_	_	37
		AC, 1 second, in oil	_	10000		V_{rms}
		DC, 1 minute, in oil	_	10000	_	Vdc

SWITCHING CHARACTERISTICS (Ta = 25°C)

CHARACTERISTICS	SYMBOL	TEST CONDITION	MIN	TYP.	MAX	UNIT
Rise Time	t_r		_	2	_	
Fall Time	tf	$V_{CC} = 10 \text{ V}, \text{ I}_{C} = 2 \text{ mA}$ $R_{L} = 100 \Omega$	_	3	_]
Turn-on Time	ton		_	3	_	μ s
Turn-off Time	$t_{ m off}$		_	3	_	
Turn-on Time	toN	D 101-0 (E:1)	_	2	_	
Storage Time	t_S	$R_{L} = 1.9 \text{ k}\Omega \qquad (\text{Fig.1})$ $V_{CC} = 5 \text{ V}, I_{F} = 16 \text{ mA}$	_	25		μ s
Turn-off Time	tOFF	$^{\circ}$ VCC = 5 v, $^{\circ}$ IF = 10 mA	_	50	_	

Fig.1 Switching Time Test Circuit

0.6

COLLECTOR-EMITTER VOLTAGE V_{CE} (V)

1.2

0.4

