A Scrambled Method of Moments and other qMCMD Estimators (In Progress)

Jean-Jacques Forneron

May 10, 2019

Boston University

Introduction: Simulated Method of Moments

- Want to estimate a static/dynamic model that is intractable:
 - GMM moments/Likelihood not analytical tractable
 - e.g. Dynamic Discrete Choice, DSGE, Asset Pricing, . . .
 - often because of latent variables and non-closed form policy functions
- Solution: use Simulation-Based Estimation
 - simulate $S \geq 1$ artificial samples $y_t^s(\theta)$, $t = 1, \ldots, n$
 - match sample moments $\hat{\psi}_n$ with simulated $\hat{\psi}_n^S(\theta)$

$$\hat{\theta}_{SMD} = \operatorname{argmin}_{\theta} \|\hat{\psi}_n - \hat{\psi}_n^{S}(\theta)\|_{W}$$

Under regularity conditions:

$$\sqrt{n}(\hat{\theta}_{SMD} - \theta_0) \stackrel{d}{\rightarrow} \mathcal{N}\Big(0, (1 + \underbrace{1/S}_{\text{Simulation Noise}}) \times V\Big)$$

 Question: can we make the estimator efficient, i.e. no simulation noise, with the same moments, same S, etc.?

Introduction: Simulated Method of Moments

- In theory:
 - more simulations ⇒ smaller variance
- In practice:
 - more informative moments are often more costly to evaluate: tradeoff between larger S and better $\overline{\hat{\psi}_n}$
 - sample may be large: implies $n \times S$ very large. . .
 - optimization may be slow: $\nearrow S$ takes even more time
- Yet $S=1 \Rightarrow$ yields a variance twice as large as $S=+\infty$
- ullet Breaking the tradeoff between S and $\hat{\psi}_n$ could be very useful
 - smaller variance due to reduced simulation noise
 - better $\hat{\psi}_n$ possible without increasing simulation noise

Reducing Simulation Error

- Rely on (randomized) quasi-Monte Carlo methods instead of random draws to simulate y_t^s
- Call these Scrambled Method of Moments and qMCMD
- **Static models**: under standard assumptions, get for S = 1:

$$\sqrt{n}(\hat{\theta}_{SMM/qMCMD} - \theta_0) \stackrel{d}{\rightarrow} \mathcal{N}(0, V_{\infty})$$

no simulation noise (asymptotically), same class of moments

• **Dynamic Models**: for a certain class of moments, simulate in a way such that:

$$\sqrt{n}(\hat{\theta}_{SMM/qMCMD} - \theta_0) \stackrel{d}{\rightarrow} \mathcal{N}(0, V_{\infty} + V_{MC-qMC}/S)$$

where $V_{MC} \ge V_{MC-qMC}$ under some conditions (in progress)

The Big Picture

- SMM and Indirect Inference are very popular methods
 - major applied journals: 225 have GMM in title/abstract/keywords in 2015 vs. 73 for SMM/II (\sim 32%)
- Powerful method with some caveats, mainly:
 - i. assumes a fully parametric model
 - ii. identification is assumed, hard to check
 - iii. simulation noise: statistical/computational efficiency tradeoff

Related Literatures

- (Randomized) quasi-Monte Carlo methods used in
 - state-space filtering: sequential quasi-Monte Carlo (Gerber and Chopin, 2015, 2017)
 - Bayesian sampling, e.g.: ABC (Buchholz and Chopin, 2017)
 - Option pricing in finance (Paskov and Traub, 1995)
 - Review: Lemieux (2009)
 - Underlying theory: Dick and Pillichshammer (2010)

Simulation-Based Estimation:

- Classics: McFadden (1989); Pakes and Pollard (1989); Gouriéroux et al. (1993); Duffie and Singleton (1993); Gallant and Tauchen (1996)...

Background: Monte-Carlo and

quasi-Monte Carlo Integration

Monte Carlo Integration

We want to approximate the following integral:

$$\int_{[0,1]^d} f(u) du$$
 where $f:[0,1]^d o \mathbb{R}$

ullet Monte Carlo approach: draw $u_1,\dots,u_n \stackrel{\it iid}{\sim} \mathcal{U}_{[0,1]^d}$ and

$$\frac{1}{n}\sum_{i=1}^n f(u_i) - \int_{[0,1]^d} f(u)du = O_p(n^{-1/2})$$

if $f \in \mathbb{L}^2([0,1]^d)$ i.e. $f(u_i)$ has finite variance

- Worse-case probabilistic error bound is $O(\sqrt{\log \log(n)/n})$ by the Law of the Iterated Logarithm
- Can we do better?

Numerical Integration

• For $d=1,\ u_1=0,u_2=1/n,\ldots,u_{n+1}=1$ and f Lipschitz

$$\left|\frac{1}{n}\sum_{i=1}^{n}f(u_{i})-\int_{[0,1]}f(u)du\right|\leq C_{f}\times n^{-1}$$

• For d = 2, use the regular lattice grid and

$$\left|\frac{1}{n}\sum_{i=1}^{n}f(u_{i})-\int_{[0,1]^{2}}f(u)du\right|\leq C_{f}\times n^{-1/2}$$

• For d = 3, use the regular lattice grid and

$$\left|\frac{1}{n}\sum_{i=1}^n f(u_i) - \int_{[0,1]^3} f(u)du\right| \le C_f \times n^{-1/3}$$

- Summary: d = 1 better, d = 2 same, $d \ge 3$ worse, ...
- ... that's the curse of dimensionality

Approximation Error for Arbitrary Sequences

• Koksma-Hlawka inequality: pick any $(u_i)_{i=1,...,n} \in [0,1]^d$. For $f:[0,1]^d \to \mathbb{R}$, the integration error is bounded by:

$$\left|\frac{1}{n}\sum_{i=1}^{n}f(u_{i})-\int_{[0,1]^{d}}f(u)du\right|\leq \|f\|_{TV}\times D_{n}^{*}(u_{1},\ldots,u_{n})$$

• where $||f||_{TV}$ is the **Total Variation** in the sense of Hardy and Krause, i.e.:

$$\int_{[0,1]} \Big| \frac{\partial f(\mathfrak{u})}{\partial \mathfrak{u}} \Big| d\mathfrak{u} \text{ for } d=1, \quad \sum_{\mathfrak{u} \subset \mathcal{I}_d} \int_{[0,1]^{|\mathfrak{u}|}} \Big| \frac{\partial^{|\mathfrak{u}|} f(\mathfrak{u})}{\partial \mathfrak{u}} \Big| d\mathfrak{u} \text{ for } d>1$$

• $D_n^{\star}(u_1,\ldots,u_n)$ is the **Star Discrepancy** of u_1,\ldots,u_n

Dispersion and Discrepancy

• The dispersion of (u_1, \ldots, u_n) is:

$$DP(u_1,...,u_n) = \sup_{u \in [0,1]^d} \left(\inf_{i=1,...,n} \|u - u_i\| \right)$$

lower bound: $DP(u_1, \ldots, u_n) \ge n^{-1/d}$, up to constants

• The **Star Discrepancy** of (u_1, \ldots, u_n) is:

$$D_n^{\star}(u_1,\ldots,u_n) = \sup_{\mathfrak{u}\in[0,1]^d} \left| \frac{\sum_{i=1}^n \mathbb{1}_{u_i\in[0,\mathfrak{u})}}{n} - \int_{[0,\mathfrak{u})} 1du \right|$$

it measures how well (u_1, \ldots, u_n) approximates the Lebesgue measure for rectangles $[0, \mathfrak{u}) \subseteq [0, 1)$

• It's equal to the KS distance between the two measures

Number Theory to the Rescue

 Number Theory provides the following lower-bound (proved by Schmidt for d = 2 and Roth for d > 2)

$$D_n^{\star}(u_1,\ldots,u_n)\geq C_d\frac{\log(n)^{d-1}}{n}$$

where C_d depends only on $d \ge 1$; it suggests a $n^{-1+\varepsilon}$ rate is feasible for any $\varepsilon > 0$

ullet For random draws $u_i \overset{iid}{\sim} \mathcal{U}_{[0,1]^d}$

$$D_n^{\star}(u_1,\ldots,u_n) = O(\sqrt{\log\log(n)/n})$$

Monte-Carlo is inefficient for d > 1

• Lattice rule:

$$D_n^{\star}(u_1,\ldots,u_n)=O(n^{-1/d})$$

Lattice rule is inefficient for d > 1

Low Discrepancy Sequences for quasi-Monte Carlo Integration

- Deterministic sequences close (in rate) to the lower bound
- Sobol Sequence:

$$D_n^{\star}(u_1,\ldots,u_n) \asymp \underbrace{2^d}_{\text{increases very quickly with d}} \times \frac{\log(n)^d}{n}$$

• Also: van der Corput, Hammersley, Halton,...

$$D_n^{\star}(u_1, \dots, u_n) \simeq \underbrace{C_d}_{\text{increases rapidly with d}} \times \frac{\log(n)^d}{n}$$

- for fixed d, these are faster than MC methods
- increasing/large $d: C_d \to +\infty$, curse of dimensionality

Randomized quasi-Monte Carlo

• **Digital Shift** take $u \sim \mathcal{U}_{[0,1]^d}$ and u_i low-discrepancy

$$\tilde{u}_i = u_i + u \text{ modulo } 1$$

shifts all dimensions independently

• The Scramble (Owen, 1997), more complicated write:

$$u_i = \sum_{j=1}^k \frac{x_{i,j}}{b^j}$$

- e.g. for Sobol b = 2 (binary expansion)
 - do a uniform permutation of the $x_{i,j}$ across the u_i
 - yields a $\mathcal{U}_{[0,1]^d}$ draw which is still low-discrepancy wp. 1
 - can compute the variance the usual way

The Scramble: Abracadabra

Theorem (Owen (1997))

• Let u_1, \ldots, u_n be a scrambled low-discrepancy sequence and $f \in \mathbb{L}^2([0,1]^d)$ (possibly non-smooth/discontinuous), then:

$$\frac{1}{n}\sum_{i=1}^n f(u_i) - \int_{[0,1]^d} f(u)du = o_p(n^{-1/2})$$

• If additionally f is sufficiently smooth then the last term is $O_p(n^{-3/2+\varepsilon})$ for any $\varepsilon>0$ – d is fixed here

Remarks:

- d is fixed, curse of dimensionality still applies
- conditions are identical to the CLT for iid draws, rate is faster

Visualisation: Lattice Rule

Visualisation: Random Uniform Draws

Visualisation: Halton Sequence

Visualisation: Sobol Sequence

Visualisation: Scrambled Sobol Sequence 1/2

Visualisation: Scrambled Sobol Sequence 2/2

Static Models

Quasi-Monte Carlo Estimation:

Static Models: the setting

• Static Models - cross-sectional:

$$y_i = g(\theta, u_i), u_i \stackrel{iid}{\sim} \mathcal{U}_{[0,1]^d}$$

• Sample Moments:

$$\hat{\psi}_n = \frac{1}{n} \sum_{i=1}^n \psi(y_i)$$

Simulated Moments:

$$\hat{\psi}_n^s(\theta) = \frac{1}{n} \sum_{i=1}^n \psi(y_i^s), \quad y_i^s = g(\theta, u_i^s), u_i^s \stackrel{iid}{\sim} \mathcal{U}_{[0,1]^d}$$

• Simulation-based estimator:

$$\hat{\theta}_n^S = \operatorname{argmin}_{\Theta} \|\hat{\psi}_n - \hat{\psi}_n^S(\theta)\|_W$$

Static Models: Simulated Method of Moments

Theorem (Pakes and Pollard (1989))

Suppose $\theta \to \lim_{n \to \infty} \mathbb{E}(\hat{\psi}_n^s(\theta))$ is injective, that $\hat{\psi}_n$ satisfies a LLN and a CLT. Suppose $\hat{\psi}_n^s(\cdot)$ satisfies a uniform CLT and stochastic equicontinuity conditions then:

$$\sqrt{n}\left(\hat{\theta}_{n}^{S}-\theta_{0}\right)\stackrel{d}{\rightarrow}\mathcal{N}\left(0,\left(1+1/S\right)\times V\right)$$

Static Models: Scrambled Method of Moments

Theorem (Scrambled Method of Moments)

Suppose Pakes and Pollard (1989)'s conditions holds and u_i^s is a scrambled net sequence then:

$$\sqrt{n}\left(\hat{\theta}_{n}^{S}-\theta_{0}\right)\stackrel{d}{\rightarrow}\mathcal{N}\left(0,V\right)$$

for any $S \ge 1$ fixed.

Remarks:

- computation is identical
- simply change the random number generator
- ullet asymptotic variance is equivalent to SMM with $S(n) o +\infty$

Proof of the Theorem (Sketch)

Note that:

$$\mathbb{E}(\hat{\psi}_n^s(\theta)) = \int_{[0,1]^d} \psi \circ g(u;\theta) du$$

is within the framework of quasi-Monte Carlo integration

• Scrambled $u_i^s \stackrel{iid}{\sim} \mathcal{U}_{[0,1]^d}$; invoke Pakes and Pollard (1989):

$$\sqrt{n}\left(\hat{\theta}_{SMM} - \theta_0\right) = -(G'WG)^{-1}G'W\left(\hat{\psi}_n - \hat{\psi}_n^S(\theta_0)\right) + o_p(1)$$
where $G = \partial_{\theta}\mathbb{E}(\hat{\psi}_n^S(\theta_0))$

• Finally $\hat{\psi}_n^s(\theta_0)$ is scrambled so:

$$\sqrt{n}\left(\hat{\theta}_{SMM}-\theta_{0}\right)\overset{d}{
ightarrow}\mathcal{N}(0,V)$$

where $V = avar(\hat{\psi}_n)$ does not depend on $S \ge 1$

• Discussion about covariates x_i at the end

Illustration: a Pen and Pencil Example

Very basic example:

$$y_i = \mu + \sigma e_i, e_i \stackrel{iid}{\sim} \mathcal{N}(0,1)$$

• Method of moments: $\hat{\mu} = \bar{y}_n$,

$$\hat{\sigma}^2 = \frac{1}{n} \sum_{i=1}^{n} (y_i - \bar{y}_n)^2$$
 (biased)

• Gouriéroux et al. (1993), SMM:

$$\hat{\sigma}_{SMM}^2 = \frac{\hat{\sigma}^2}{\frac{1}{nS} \sum_{s=1}^{S} \sum_{i=1}^{n} (e_i^s - \bar{e}_n^s)^2} \xrightarrow{S \to \infty} \frac{n}{n-1} \hat{\sigma}^2 \text{ (unbiased)}$$

• Minimum Distance $(S = +\infty)$:

$$\hat{\sigma}_{MD}^2 = \frac{n}{n-1}\hat{\sigma}^2$$
 (unbiased)

Scrambled vs. Simulated Method of Moments vs. Analytical

S=1	$\hat{\sigma}_{MM}^2$	$\hat{\sigma}^2_{MD}$	$\hat{\sigma}_{SMM}^2$	$\hat{\sigma}_{qMCMD}^2$
n × variance	2.00	2.02	4.10	2.08
n imes bias	-1.11	-0.11	1.38	-2.11
n × MSE	2.01	2.02	4.11	2.10
<i>S</i> = 2	$\hat{\sigma}_{MM}^2$	$\hat{\sigma}^2_{MD}$	$\hat{\sigma}_{SMM}^2$	$\hat{\sigma}_{qMCMD}^2$
n × variance	2.00	2.02	3.14	2.02
n imes bias	-1.11	-0.11	1.29	-1.71
n × MSE	2.01	2.02	3.14	2.04
<i>S</i> = 20	$\hat{\sigma}_{MM}^2$	$\hat{\sigma}_{MD}^2$	$\hat{\sigma}_{SMM}^2$	$\hat{\sigma}_{qMCMD}^2$
n × variance	2.00	2.02	2.10	1.95
n imes bias	-1.11	-0.11	-0.12	-2.22
n × MSE	2.01	2.02	2.10	1.97
n imes bias	-1.11	-0.11	-0.12	-2.22

Quasi-Monte Carlo Estimation:

Dynamic Models

Common Application: Option Pricing

- Value of an option at time $T: P_T = e^{-rT}\mathbb{E}(H(S_T))$
 - $S_t = \text{stock price at } t$
 - H =some function
- (quasi)-Monte Carlo approach:
 - simulate n (large) paths of $(S_t)_{t \in [0,T]}$
 - approximate the expectation by computing a sample mean
 - use $d = T \Rightarrow$ curse of dimensionality
 - not an issue there because they need *n* very large anyways. . .
- For our setup: would like S fixed; not large
- The dynamics are going to be an issue if you are not careful

Dynamic Models: Setting

Dynamic Models

$$\begin{aligned} y_t &= g_{obs}(y_{t-1}, \theta, z_t) \\ z_t &= g_{latent}(z_{t-1}, \theta, u_t), \quad u_t \overset{iid}{\sim} \mathcal{U}_{[0,1]^d} \end{aligned}$$

• Consider the sample moments:

$$\hat{\psi}_n = \frac{1}{n} \sum_{t=1}^n \psi(y_t, \dots, y_{t-L})$$
$$= \frac{1}{n} \sum_{t=1}^n \psi_t(e_t, \dots, e_1, z_0, y_0)$$

- Several issues:
 - $\mathbb{E}(\hat{\psi}_n)$ involves a n-dimensional integral over (u_n,\dots,u_1)
 - (z_0,y_0) fixed \Rightarrow non-stationarity (integral changes with $t\dots$)

Dynamic Models: things that do not work

• Even *m*-dependent models (simplest):

$$y_t = g_{obs}(u_t, \dots, u_{t-m}, \theta), \quad u_t \stackrel{iid}{\sim} \mathcal{U}_{[0,1]^d}$$

are not straightforward because of the overlap (lags)

 Brute-force approach (don't do this); suppose lags do not matter much:

$$\|\psi_t(u_t,\ldots,u_1,z_0,y_0,\theta)-\psi_t(u_t,\ldots,u_{t-m},0,\ldots,0,\theta)\| \le C_1^m$$
 up to a constant, for some $C_1 \in [0,1)$

And suppose that:

$$\left\| \frac{1}{n} \sum_{t=1}^{n} \psi_{t}(e_{t}, \dots, e_{t-m}, 0, \dots, 0, \theta) - \mathbb{E}(\psi_{t}(e_{t}, \dots, e_{t-m}, 0, \dots, 0, \theta)) \right\|$$

$$< C_{2}(\psi) \times C_{3}(m) \log(n)^{m} n^{-1}$$

• Use m-dimensional Sobol sequence: $C_3(m) = 2^m$

Dynamic Models: things that do not work

- Can't balance out the rates: $m = \alpha \times \frac{\log(n)}{\log\log(n) + \log(2)}$ for some well chosen $\alpha > 0$
- Yields rates that are always slower than \sqrt{n}
 - either the bias dominates (m small)
 - or the variance is too large (*m* large)
- That's because of $log(n)^m$: curse of dimensionality
- Gets worse for $C_1 \simeq 1$ very persistent DGPs
- So...back to Monte Carlo?...Not necessarily

Getting around the curse of dimensionality

- Simple trick: suppose we know (i.e. can draw from) the stationary distribution $f(y_t, z_t; \theta)$
- Consider moments of the form:

$$\hat{\psi}_n = \frac{1}{n} \sum_{t=1}^n \psi(y_t, \dots, y_{t-L}),$$
 L fixed

• Draw $(y_t^L, z_t^L) \stackrel{iid}{\sim} f(y_t, z_t; \theta)$ and simulate independent short time-series, then we have:

$$(y_t^1,\ldots,y_t^L) \stackrel{iid}{\sim} f(y_t,\ldots,y_{t-L};\theta)$$

• Only depends on L-1 iid $\mathcal{U}_{[0,1]^d}$ shocks (u_t^1,\ldots,u_t^{L-1})

Getting around the curse of dimensionality

- We can use d = L and simulate $n \times S$ short time-series
- We are within the quasi-Monte Carlo framework again:

$$\mathbb{E}(\hat{\psi}_n^s(\theta)) = \int_{\mathbf{u} \in [0,1]^{L-1}, y, z} \psi \circ g_L(\mathbf{u}, y, z; \theta) f(y, z) dy dz d\mathbf{u}$$

- The difficulty is when $f(y_t, z_t; \theta)$ is not known
 - We can simulate $(y_t, z_t)_{t=1,...,n}$ once with Monte-Carlo and then simulate mini-samples with qMC
 - Computationally: simulate more than MC alone, but qMC simulations can be done in parallel...
- Typically (iid case) yields variance: $V_{qMC} \leq V_{MC/qMC} \leq V_{MC}$ (see e.g. Ökten et al., 2006; Buchholz and Chopin, 2017)

Illustration

Algorithm

- Construct $L \times d$ -dimensional sequence $(\tilde{u}_t^1, \dots, \tilde{u}_t^L) \in [0, 1]^L$
- Draw $(\tilde{y}_t^0, \tilde{z}_t^0) \sim f(y_t, z_t; \theta)$ for $t = 1, \dots, n \times S$
- Simulate $n \times S$ short samples:

$$\begin{split} & \tilde{y}_t^\ell = g_{obs}(\tilde{y}_{t-1}^\ell, \theta, \tilde{z}_t^\ell) \\ & \tilde{z}_t^\ell = g_{latent}(\tilde{z}_{t-1}^\ell, \theta, \tilde{u}_t^\ell), \ell = 1, \dots, L \end{split}$$

And compute:

$$\hat{\psi}_n^{S}(\theta) = \frac{1}{nS} \sum_{t=1}^{nS} \psi(\tilde{y}_t^L, \dots, \tilde{y}_t^1)$$

$$= \frac{1}{nS} \sum_{t=1}^{nS} \psi(\tilde{u}_t^1, \dots, \tilde{u}_t^L, \tilde{y}_t^0, \tilde{z}_t^0; \theta)$$

• if \tilde{y}_t^0 not iid \Rightarrow complications in the asymptotics (when dependence is combined with qMC)

Scrambled Method of Moments

- If we can simulate directly from the stationary distribution: can apply the Static model theorem
- Otherwise: Theorem in progress
- Complications:
 - need a CLT for MC-qMC with dependence
 - initial value (y_0, z_0) bias as in Duffie and Singleton (1993)
- Can extend the results to some indirect inference estimators
 - if auxiliary parameters computed from moments with L-lags
 - e.g. AR(p) OLS estimates as moments for ARMA(1,1) model

Simple Example: ARMA(1,1)

Simple time-series model:

$$y_t = \rho y_{t-1} + \sigma[e_t + \theta e_{t-1}], e_t \stackrel{\textit{iid}}{\sim} \mathcal{N}(0, 1)$$

here:
$$e_t = \Phi^{-1}(u_t)$$
, $u_t \stackrel{iid}{\sim} \mathcal{U}_{[0,1]}$, $z_t = (e_t, e_{t-1})$

SMM/qMCMD estimator, auxiliary model:

$$y_t = \beta_1 y_{t-1} + \dots + \beta_p y_{t-1} + \tilde{e}_t$$

auxiliary moments: $\hat{\psi}_n = (\hat{eta}_1, \dots, \hat{eta}_p, \hat{\sigma}_{\tilde{e}})$ + efficient W

- Two experiments for (y_{t-L-1}, e_{t-L-1}) :
 - 1. draw from the stationary distribution directly (qMC)
 - 2. simulate a time-series and use simulated pairs (MC-qMC)

SMM vs. MLE vs. qMCMD – p = 4 Lags

Table 1: $\sqrt{n} \times$ standard deviation

S=1	MLE	SMM	qMCMD-1	qMCMD-2
$\hat{ ho}$	1.09	1.62	1.20	1.43
$\hat{ heta}$	1.13	1.89	1.35	1.55
$\hat{\sigma}$	0.72	1.05	0.76	0.97

Table 2: $\sqrt{n} \times$ standard deviation

<i>S</i> = 2	MLE	SMM	qMCMD-1	qMCMD-2
$\hat{ ho}$	1.09	1.41	1.16	1.28
$\hat{ heta}$	1.13	1.57	1.27	1.45
$\hat{\sigma}$	0.72	0.93	0.74	0.82

Table 3: $\sqrt{n} \times$ standard deviation

SMM vs. MLE vs. qMCMD – p = 12 Lags

Table 4: $\sqrt{n} \times$ standard deviation

S = 1	MLE	SMM	qMCMD-1	qMCMD-2
$\hat{\rho}$	1.09	1.86	1.30	1.49
$\hat{ heta}$	1.13	1.85	1.37	1.46
$\hat{\sigma}$	0.72	1.10	0.81	0.93

Table 5: $\sqrt{n} \times$ standard deviation

<i>S</i> = 2	MLE	SMM	qMCMD-1	qMCMD-2
$\hat{ ho}$	1.09	1.57	1.29	1.35
$\hat{ heta}$	1.13	1.60	1.34	1.32
$\hat{\sigma}$	0.72	0.94	0.74	0.83

Table 6: $\sqrt{n} \times$ standard deviation

SMM vs. MLE vs. qMCMD – p = 4 Lags

Table 7: $\sqrt{n} \times$ standard deviation

<i>S</i> = 1	MLE	SMM	qMCMD-1	qMCMD-2
$\hat{ ho}$	0.54	0.77	0.56	0.85
$\hat{ heta}$	0.94	1.53	1.09	1.13
$\hat{\sigma}$	0.68	1.03	0.75	0.82

Table 8: $\sqrt{n} \times$ standard deviation

<i>S</i> = 2	MLE	SMM	qMCMD-1	qMCMD-2
$\hat{ ho}$	0.54	0.63	0.50	0.71
$\hat{ heta}$	0.94	1.34	1.06	1.06
$\hat{\sigma}$	0.68	0.93	0.73	0.78

Table 9: $\sqrt{n} \times$ standard deviation

Dynamic Models: Some Conclusions

- As usual (near) unit-roots do not mix well with SMM (see e.g. Phillips, 2012)
- Here it seems to affect the MC-qMC properties: be careful

Covariates, MC-qMC and CLTs

Introducing Covariates - Static Models

• Suppose we are interested in moments of the form:

$$\hat{\psi}_n^s(\theta) = \frac{1}{n} \sum_{t=1}^n \psi(u_t, x_t; \theta)$$

- If $x_t \stackrel{iid}{\sim} f_x$, this is very similar to MC-qMC
- Idea similar to MC-qMC (Ökten et al., 2006):

$$\begin{split} \hat{\psi}_{n}^{s}(\theta) - \mathbb{E}(\hat{\psi}_{n}^{s}(\theta)) &= \\ \underbrace{\frac{1}{n} \sum_{t=1}^{n} [\psi(u_{t}, x_{t}; \theta) - \mathbb{E}(\psi(u_{t}, x_{t}; \theta) | u_{t})]}_{\text{non iid CLT}} \\ &+ \underbrace{\frac{1}{n} \sum_{t=1}^{n} [\mathbb{E}(\psi(u_{t}, x_{t}; \theta) | u_{t}) - \mathbb{E}(\psi(u_{t}, x_{t}; \theta))]}_{\text{Standard gMC: } o_{p}(n^{-1/2})} \end{split}$$

Introducing Covariates - Static Models

• The main difficulty is in deriving a CLT for:

$$\frac{1}{n}\sum_{t=1}^{n}[\psi(u_t,x_t;\theta)-\mathbb{E}(\psi(u_t,x_t;\theta)|u_t)]$$

• Need a Lindeberg/Lyapunov condition using

$$s_n^2 = \sum_{t=1}^n \mathbb{E}\left(\|\psi(u_t, x_t; \theta) - \mathbb{E}(\psi(u_t, x_t; \theta)|u_t)\|^2 \middle| u_t\right)$$

• Since u_t is a low-discrepancy sequence, we have:

$$s_n^2/n \to \mathbb{E}\left(\mathbb{E}\left(\|\psi(u_t, x_t; \theta) - \mathbb{E}(\psi(u_t, x_t; \theta)|u_t)\|^2 \middle| u_t\right)\right) = \sigma > 0$$

Introducing Covariates - Static Models

• Suppose the sum:

$$0 < \lim_{n \to \infty} \frac{1}{n} \sum_{t=1}^{n} \mathbb{E}\left(\|\psi(u_t, x_t; \theta) - \mathbb{E}(\psi(u_t, x_t; \theta)|u_t)\|^{2+\delta} \Big| u_t \right) < +\infty$$

• for some $\delta > 0$, then we have:

$$\frac{\sum_{t=1}^{n} \mathbb{E}\left(\|\psi(u_t, x_t; \theta) - \mathbb{E}(\psi(u_t, x_t; \theta)|u_t)\|^{2+\delta} \Big| u_t\right)}{s_n^{2+\delta}} = O(n^{-\delta/2}) \to 0$$

• This implies a CLT, i.e. conditional on $u_{1:n}$:

$$\sqrt{n}\left(\hat{\psi}_n^s(\theta) - \mathbb{E}[\hat{\psi}_n^s(\theta)|u_{1:n}]\right) \middle| u_{1:n} \stackrel{d}{\to} \mathcal{N}(0, V_{MC-qMC})$$

V_{MC-qMC} is smaller than the usual V_{MC}
 (Ökten et al., 2006; Buchholz and Chopin, 2017)

Central Limit Theorem

- Recall that we split the sum into:
 - a non iid sample mean in $x_t \Rightarrow \mathsf{CLT}$
 - an iid sample mean only in $u_t \Rightarrow o_p(n^{-1/2})$
- Hence an overall CLT applies with 2nd term negligible
- Focused on S=1, S>1 need to ensure $u_t \perp \!\!\! \perp x_t$ holds
 - scramble: ok
 - deterministic sequence: shuffle the x_t
- For dynamic models: similar idea with non-iid, non-stationary dependent sequences (in progress)
- Covariates are problematic in dynamic models without further assumptions
 - need to draw triplets: (y_t, x_t, z_t)
 - and simulate paths: $(y_t^\ell, x_t^\ell, z_t^\ell)$

Conclusion

Conclusion

- Static models:
 - should always use Scrambled Method of Moments or qMCMD
- Dynamic models:
 - most empirical applications rely on sample variances, covariances - could use SMM/qMCMD instead
- Dynamic Panel Data models:
 - fixed T (small): see static models
 - increasing T: see dynamic models

THANK YOU!

References

- Buchholz, A. and Chopin, N. (2017). Improving approximate Bayesian computation via quasi-Monte Carlo.
- Dick, J. and Pillichshammer, F. (2010). *Digital Nets and Sequences*. Cambridge University Press, Cambridge.
- Duffie, D. and Singleton, K. J. (1993). Simulated Moments Estimation of Markov Models of Asset Prices. *Econometrica*, 61(4):929.
- Gallant, a. R. and Tauchen, G. (1996). Which Moments to Match? Econometric Theory, 12(04):657.
- Gerber, M. and Chopin, N. (2015). Sequential quasi Monte Carlo. *Journal of the Royal Statistical Society: Series B (Statistical Methodology)*, 77(3):509–579.
- Gerber, M. and Chopin, N. (2017). Convergence of sequential quasi-Monte Carlo smoothing algorithms. *Bernoulli*, 23(4B):2951–2987.
- Gouriéroux, C., Monfort, A., and Renault, E. (1993). Indirect inference. *Journal of Applied Econometrics*, 8(S1):S85—S118.

References ii

- Lemieux, C. (2009). Monte Carlo and Quasi-Monte Carlo Sampling. Springer Series in Statistics. Springer New York, New York, NY.
- McFadden, D. (1989). A Method of Simulated Moments for Estimation of Discrete Response Models Without Numerical Integration. *Econometrica*, 57(5):995.
- Ökten, G., Tuffin, B., and Burago, V. (2006). A central limit theorem and improved error bounds for a hybrid-Monte Carlo sequence with applications in computational finance. *Journal of Complexity*, 22(4):435–458.
- Owen, A. B. (1997). Scrambled net variance for integrals of smooth functions. The Annals of Statistics, 25(4):1541–1562.
- Pakes, A. and Pollard, D. (1989). Simulation and the Asymptotics of Optimization Estimators. *Econometrica*, 57(5):1027.
- Paskov, S. H. and Traub, J. F. (1995). Faster Valuation of Financial Derivatives. *The Journal of Portfolio Management*, 22(1):113–123.
- Phillips, P. C. (2012). Folklore Theorems, Implicit Maps, and Indirect Inference. *Econometrica*, 80(1):425–454.