

Instituto Superior de Engenharia de Coimbra Departamento de Engenharia Informática e de Sistemas

Introdução à Inteligência Artificial – LEI – 2021/2022

Trabalho Prático n.º 1 – Agentes Racionais

Bruno Amado Sousa → n.º 2020132971 - LEI

Jorge Gabriel Querido dos Santos → n.º 2020133143 - LEI

Docente da disciplina: Patrícia Ferreira

Índice

1.	INTRO	DUÇÃO	3
2.	AGENTES		4
	2.1.	Comilões	4
	2.2.	Limpadores	4
	2.3.	Transformadores	4
3.	INTERFACE		5
	3.1.	Interface do Modelo Base	5
	3.2.	Interface do Modelo Melhorado	6
4.	CÓDIGO		7
	4.1.	Código do Modelo Base	7
	4.2.	Código do Modelo Melhorado	9
5.	EXPERIÊNCIAS		
	5.1.	Experiências através do Modelo Base	11
	5.2.	Experiências através do Modelo Melhorado	12
6.	CONCLUSÃO		15
	6.1.	Conclusão Modelo Base	15
	6.2.	Conclusão Modelo Melhorado	15
	6.3.	Conclusão Final	15
7.	BIBLIO	GRAFIA	16

1. Introdução

No mundo da Inteligência Artificial existem agentes denominados por agentes racionais. Estes agentes são entidades que se baseiam em perceções e/ou sensores com o objetivo de alcançar resultados otimizados. Este é o tema deste trabalho prático.

Este trabalho consiste em analisar a sobrevivência de dois agentes e quanto estes dependem um do outro num ambiente com várias variáveis configuráveis.

Esta experiência é possível utilizando o NetLogo, que se usa para executar um ambiente com este tipo de agentes (agentes racionais) e Excel para organizar e analisar os diferentes resultados.

2. Agentes

2.1. Comilões

Os comilões são agentes racionais que andam pelo ambiente à procura de comida para sobreviver. Estes agentes não podem ir para cima de patches com lixo. Isso é feito através das suas perceções que detetam o lixo evitando-o, mas quando o detetam, eles perdem energia.

2.2. Limpadores

Os limpadores são agentes racionais com memória que andam pelo ambiente à procura de resíduos para depositar num depósito assim que o encontrarem. Estes agentes têm uma capacidade máxima no transporte de resíduos limitando-os no número de resíduos que podem depositar (número configurável). Estes agentes têm energia e perdem 1 por cada movimento que fazem, no entanto, esta energia é recuperável através da comida e dos depósitos que estes fazem.

2.3. Transformadores

Estes agentes são apenas implementados no modelo melhorado. A função deles é substituir resíduos por comida. Existe um número limitado de trocas que estes podem realizar, pelo que morrem quando esse número chegar a 0.

3. Interface

3.1. Interface do Modelo Base

Na interface do Modelo Base no NetLogo, temos presente vários componentes que podem ser configuráveis e outros que apresentam informações sobre os agentes e o ambiente.

Iremos apresentar e descrever todos estes componentes, a seguir:

Gráficos do ambiente

Figura 1 - Gráficos do ambiente

Estes gráficos apresentam informação sobre os agentes no ambiente e a comida/resíduos ao longo do tempo.

Informação do(s) Ambiente / Agentes

Figura 2 - Monitores com informações do ambiente e dos agentes

Estes monitores apresentam informação sobre os agentes (quantidade), sobre as patches (comida e resíduos) e da quantidade de resíduos já depositados.

Configuração Ambiente

Configuração Limpadores

Configuração Comilões

Figura 3 - Sliders para configurar o ambiente e os agentes

Estes sliders permitem definir algumas características dos agentes e do ambiente.

3.2. Interface do Modelo Melhorado

Como nesta interface é adicionado um novo agente (transformadores), precisamos de incluir sliders para configurar estes novos agentes:

Configuração Transformadores

Figura 4 - Sliders para configurar os transformadores

O slider ntrocas, configura a quantidade de trocas de resíduos para comida que os transformadores podem efetuar.

Foi, igualmente, introduzida aos limpadores uma nova opção em que estes podem trocar resíduos entre eles. Ex: (um limpador tem 10 e outro tem 2, estes dividem de maneira que ambos ficam com 6), esta mecânica permite os limpadores terem um maior número de resíduos.

Figura 5 - Sliders para configurar esta nova mecânica

4. Código

4.1. Código do Modelo Base

Neste capítulo é explicado algumas secções do código do modelo base (Perceções, Mecânicas e Limites).

```
ifelse [pcolor] of patch-ahead 1 != yellow and [pcolor] of patch-ahead 1 != red [
    set energia energia - 1
    if [pcolor] of patch-ahead 1 = yellow [set energia energia - energia * 0.05] if [pcolor] of patch-ahead 1 = red [set energia energia - energia * 0.1]
    ifelse random 101 <= 50
      ifelse [pcolor] of patch-left-and-ahead 45 0 != red and [pcolor] of patch-left-and-ahead 45 0 != yellow [
        set energia energia - 1
        if [pcolor] of patch-left-and-ahead 45 0 = red [set energia energia - energia * 0.1]
        if [pcolor] of patch-left-and-ahead 45 0 = yellow [set energia energia *
        left 180
        set energia energia - 1
      ifelse [pcolor] of patch-right-and-ahead 45 0 != red and [pcolor] of patch-right-and-ahead 45 0 != yellow [
        set energia energia - 1
        if [pcolor] of patch-right-and-ahead 45~0 = red [set energia energia - energia * 0.1]
        if [pcolor] of patch-right-and-ahead 45 0 = yellow [set energia energia - energia * 0.05]
        set energia energia - 1
      ]
  1
1
  ifelse random 101 >= 50 [
    left 90
    set energia energia - 1
    right 90
    set energia energia - 1
if [pcolor] of patch-here = yellow or [pcolor] of patch-here = red [die]
if [pcolor] of patch-here = green [
```

Figura 6 - Movimento e Perceções dos Comilões

Mantendo a explicação simples, o comilão irá ter 80% de ir em frente e 20 % de virar para a esquerda ou para a direita. Quando o Comilão vai em frente, é analisado se a patch da frente não contem lixo; se contiver, a energia da perceção é retirada (consoante o tipo de lixo) e de seguida vira para o sítio que for mais seguro (percecionando a esquerda e a direita). Se nenhum destes for possível, irá simplesmente virar para trás evitando ir para cima de qualquer uma das patches com resíduos.


```
ifelse random 101 >= 20 and (deposito < nDepositoLimpadores or ([pcolor] of patch-ahead 1 != red and [pcolor] of patch-ahead 1 != yellow)) [
    set energia energia - 1
    ifelse random 101 >= 50 [
        left 90
        fd 1
        set energia energia - 1
    ] [
        right 90
        set energia energia - 1
    ]
}

if [pcolor] of patch-here = yellow [
    if deposito < nDepositoLimpadores [
        LimparAmarelo
        set deposito deposito + 1
    ]

if [pcolor] of patch-here = red[
    if deposito + 2 <= nDepositoLimpadores [
        LimparVenenlho
        set deposito deposito + 1
    ]

if [pcolor] of patch-here = blue [
    depositarResiduos
    ]

if [pcolor] of patch-here = preen [
    comertinga
}</pre>
```

Figura 7 - Movimento e Perceções dos Limpadores

Os códigos dos limpadores seguem o exemplo dos comilões, tirando a parte em que só percecionam para a direita e em frente. Estes só evitam os resíduos quando o seu depósito estiver cheio, não perdendo, por conseguinte, a energia da locomoção.

```
to comer

set energia energia + energiaGanha
    set pcolor black
    ask one-of patches with [pcolor = black] [
        set pcolor green
    ]

end

; Funcao para os limpadores que define uma regra para a restauração de energia quando comem.
to comerLimpa
    ifelse deposito > nDepositoLimpadores / 2 [set energia energia + (energiaGanha / 2)]
        [set energia energia + energiaGanha]
        set pcolor black
        ask one-of patches with [pcolor = black] [
            set pcolor green
    ]
end
```

Figura 8 - Mecânica de alimentação dos Comilões (to comer) e dos Limpadores (to comerLimpa)

Estas funções são responsáveis pela mecânica de alimentação dos comilões e dos limpadores; na função to comerLimpa é analisado o depósito dos limpadores para saber a quantidade de energia que estes ganham.


```
to LimparAmarelo

    set deposito deposito + 1
    set pcolor black
    ask one-of patches with [pcolor = black] [
        set pcolor yellow
    ]

end
;Limpar residuos vermelhos
to LimparVermelho
    set deposito deposito + 2
    set pcolor black
    ask one-of patches with [pcolor = black] [
        set pcolor red
    ]
end
```

Figura 9 - Mecânica na recolha dos resíduos no ambiente pelos Limpadores

Estas funções são as responsáveis pela recolha de resíduos no ambiente por parte dos limpadores.

4.2. Código do Modelo Melhorado

Este modelo melhorado, tem um novo agente denominado "Transformadores" e uma nova mecânica dos Limpadores "Partilha de Resíduos".

```
to shareResiduos
let variavel 0
let arredonda 0
let cant 0

ask Limpadores [
if any? Limpadores-on neighbors [
if deposito > nLimTrade [ ;Limtrada [6-10]
set variavel deposito
ask one-of Limpadores-on neighbors [
if deposito < 5 [
set variavel round(variavel - deposito)
set arredonda (ceiling(variavel / 2) - (variavel / 2))
set arredonda ceiling(arredonda)

set deposito deposito + (ceiling(variavel / 2) + arredonda)

]
]

set deposito deposito - (ceiling(variavel / 2) - arredonda)
set variavel 0
set arredonda 0
]

end
```

Figura 10 - Função responsável pela mecânica "Partilhar Resíduos"

Esta função, é composta por um algoritmo que analisa o depósito de dois limpadores vizinhos, e com a condição de um ter depósito > 5 e o outro depósito < 5, é permitido estes resíduos entre eles.


```
to moveTransformadores
 ask Transformadores [
  ifelse random 101 >= 20 [
   fd 1
   ifelse random 101 <= 50 [
     left 90
     right 90
   ]
  if [pcolor] of patch-here = yellow or [pcolor] of patch-here = red [TransformarResiduo]
 ]
end
to TransformarResiduo
  if [pcolor] of patch-here = yellow [ set trocas trocas - 1]
  if [pcolor] of patch-here = red [set trocas trocas - 2]
  set pcolor green
end
to TransformadoresDie
  if trocas < 1 [die]
end
```

Figura 11 - Funções responsáveis pelos Transformadores

A função moveTransformadores é a responsável pelos movimentos destes agentes. A função transformarResíduos transforma resíduos em comida, isto se o transformador ainda tiver "trocas" disponíveis; por sua vez, a função TransformadoresDie, é responsável pela análise da quantidade destas trocas sendo que se estas forem 0, então, o Transformador morre.

Com isto, foi explicado os novos componentes neste Modelo melhorado.

5. Experiências

5.1. Experiências através do Modelo Base

5.1.1. Comilões sem Limpadores, mas com a Comida e os Resíduos a variar

Nesta experiência, verificamos a sobrevivência dos comilões sem a presença do outro agente (Limpadores), que são responsáveis pela limpeza do ambiente.

Pelo Excel, podemos reparar que quando a taxa de comida é mínima, a probabilidade de extinção dos comilões é praticamente garantida. No entanto, à medida que a comida vai aumentando, os comilões vão sobrevivendo. Também podemos verificar que o número de Comilões afeta a chance de sobrevivência da espécie.

No entanto, não nos podemos esquecer que a ausência dos Limpadores deixa uma quantidade maior de comida presente em cada tick que esta é consumida.

5.1.2. Limpadores sem Comilões, mas com a Comida e os Resíduos a variar

Nesta experiência, fazemos o oposto da experiência anterior, vamos analisar a sobrevivência dos limpadores com a ausência dos comilões. Através do Excel podemos reparar que os limpadores têm apenas extinções quando a % de comida é mínima. Logo podemos concluir que à medida que à mais comida mais estes sobrevivem. Podemos também verificar que o número de limpadores influencia as taxas de extinção (sendo estas praticamente nulas).

5.1.3. Comilões e Limpadores com a Energia Inicial e a Comida a variar

Nesta experiência, verificamos a sobrevivência dos Comilões com a presença dos limpadores (número fixo). Ao contrário das outras experiências, iremos variar a quantidade de energia inicial dos comilões e a % de comida no ambiente.

Podemos verificar, assim como nas outras, que quando a % de comida é mínima, os comilões têm praticamente 100% de extinção. Isto porque a % resíduos é igual a 3* à de % de comida, logo verificamos que à medida que a % de comida aumenta, a extinção diminui. No entanto, esta não é a única razão pela qual isto acontece, a quantidade de energia inicial também influencia a extinção dos Comilões, ou seja, quanto maior esta for, menor será a % de extinção dos Comilões.

Nota final: Assim que a %comida é > %resíduos, a extinção é praticamente evitada.

5.1.4. Comilões juntamente com Limpadores e com os Resíduos a variar

Assim como a experiência anterior, verificamos a sobrevivência dos Comilões com a presença dos limpadores (variando [10 30 50]) e a quantidade de resíduos a variar. Ao contrário da experiência anterior a % de comida é agora constante a 15 %.

Nesta experiência podemos verificar que à medida que o número de limpadores no ambiente aumenta, maior é a % de extinção dos Comilões. Podemos também verificar que, não importa a quantidade de Comilões ou resíduos os limpadores nunca chegam à extinção. Numa nota final, quando %resíduos > %comida, os Comilões quase sempre se extinguem.

5.1.5. Comilões e Limpadores com a Energia Ganha e a Comida a variar

Nesta experiência mantemos os Limpadores a uma quantidade fixa (25) e alteramos a quantidade de energia ganha por cada célula de comida consumida e % comida existente no ambiente. À medida que estes números variam, podemos verificar que quanto mais energia os comilões ganham por cada patch de comida consumida maior é a chance de sobreviver, apesar de que, quando a % de comida é mínima, a extinção destes é praticamente garantida, assim como em experiências anteriores. Isto porque a %resíduos é maior que a % de comida. Podemos verificar ao longo da execução destas experiências que a diferença entre %resíduos e %comida é um fator chave à sobrevivência dos Comilões.

5.2. Experiências através do Modelo Melhorado

5.2.1. Comilões com o n.º de Transformadores e a % de Comida a variar

Como já foi mencionado antes, no modelo melhorado foi inserido um novo agente, denominado "Transformador". Este agente consegue trocar lixo por comida tendo um número limitado de trocas a fazer. Assim, nesta experiência vimos como esse novo agente afeta a sobrevivência do Comilão com um número de limpadores = 25.

Ao longo desta experiência podemos verificar que este novo agente muda drasticamente a chance de sobrevivência dos Comilões, isto vê – se quando a % comida é mínima, à medida que o número de transformadores aumenta menor é a %extinção dos Comilões. Apesar de a %comida ter uma enorme influência no resultado final da sobrevivência dos Comilões, podemos agora dizer que os transformadores têm também um papel enorme nessa mesma sobrevivência.

Nota: Nesta experiência foram usados Transformadores com Limite de trocas igual a 8. Iremos verificar se esta variável influencia o papel dos transformadores na sobrevivência dos Comilões ou não na próxima experiência.

5.2.2. Comilões com a % de Comida e o n.º de trocas realizadas pelos Transformadores a variar

Como foi dito na "Nota" anterior, iremos agora fazer uma experiência para verificar se este limite irá afetar a sobrevivência dos comilões.

Ao longo da experiência podemos confirmar que este número influencia a sobrevivência dos comilões pois, aumenta a quantidade de lixo que é transformado em comida, logo, mesmo quando a %comida é baixa, os comilões têm maior chance de sobreviver quanto maior este número de trocas for.

5.2.3. Comilões com a % de Resíduos e o limite mínimo para ocorrer a troca entre os Limpadores a variar (Partilha de resíduos ativada)

Esta experiência utiliza a nova mecânica deste modelo melhorado. Em resumo, quando o depósito de um limpador é maior que o Limite mínimo do depósito para trocar, esse limpador pode dar alguns resíduos a outro limpador com o depósito inferior a 5, para que possa continuar à procura de outros resíduos. Esta mecânica aumenta o fluxo de troca de posição das patches de resíduos. Iremos agora avaliar como esta mecânica afeta a sobrevivência dos Comilões.

À medida que variamos os valores, com o número de limpadores fixos, podemos confirmar que quanto maior a % de resíduos maior são as chances de extinção como tínhamos visto no modelo base, mas apesar disso, quanto maior for o limite importo na troca entre limpadores maior é a chance de sobrevivência dos Comilões como podemos ver na tabela 3 do Excel no modelo melhorado.

Assim, podemos afirmar que quanto maior é este limite maior chances os Comilões têm para sobreviver.

5.2.4. Comilões juntamente com Limpadores e o limite mínimo para ocorrer a troca de resíduos entre estes últimos a variar (Partilha de resíduos ativada)

Assim como a experiência anterior, iremos utilizar a nova mecânica dos limpadores, mas desta vez alterando o número de limpadores existentes no ambiente, visto que já tínhamos notado que quanto maior o número de limpadores no ambiente maior era a extinção dos Comilões. Nesta experiência usamos %resíduos e % comida igual a 15, estando as outras configurações no Excel. Podemos reparar ao longo da experiência que, o número de limpadores ainda influencia o número de comilões, isto porque existe menos comida por tick como foi explicado anteriormente. Mas apesar disso, notamos o mesmo acontecimento da experiência anterior, que quanto maior o limite mínimo do depósito dos limpadores para troca, maior é a chance de os comilões sobreviverem.

5.2.5. Comilões com a n.º de trocas realizadas pelos Transformadores e o limite mínimo para ocorrer a troca de resíduos a variar (Partilha de resíduos ativada)

Esta experiência é uma junção do novo agente e da nova mecânica deste modelo melhorado. Nesta experiência analisamos se o modelo melhorado proporciona um ambiente mais seguro de extinção dos comilões.

Assim como foi visto anteriormente, estas duas adições resultam num papel importante para a sobrevivência dos Comilões e podemos verificar isso outra vez aqui, uma vez á medida que os números aumentam (Limite de trocas e Limite mínimo do depósito dos limpadores) as extinções diminuem. Com isto podemos dizer que este novo modelo, proporciona menos riscos (dependendo dos números) para os comilões.

6. Conclusões

6.1. Conclusões Modelo Base

Para concluir, com as experiências do Modelo Base, podemos dizer que o número de limpadores influencia negativamente a sobrevivência dos Comilões, ou seja, quanto maior este número, maior a % de extinção dos comilões. Além desta variável, temos a %comida e a %resíduos, que também têm um grande impacto nesta % de extinção fazendo com que seja necessário haver mais comida que resíduos, especialmente quando o número de limpadores é grande.

6.2. Conclusões Modelo Melhorado

Para concluir, com as experiências do Modelo Melhorado, podemos dizer que a nova mecânica dos Limpadores de trocar resíduos entre si, influencia muito a sobrevivência dos Comilões como pode ser visto na folha Excel. Assim como a existência do novo agente influencia positivamente a sobrevivência dos Comilões no ambiente. Podemos dizer que quanto maior o número de trocas possíveis de resíduo para comida, maior é a chance de os Comilões sobreviverem.

6.3. Conclusões Finais

Para finalizar, comparando os resultados do modelo Base com o modelo Melhorado, podemos dizer que os Comilões têm mais hipóteses de sobrevivência no modelo Melhorado, esta afirmação é feita através da análise da tabela 3 do Excel na folha do modelo Base e a tabela 4 na folha do Modelo Melhorado, escolhemos estas duas, porque são as que mais se aproximam. Analisando – as podemos verificar que existe muito menos cenários de extinção dos Comilões no modelo Melhorado.

7. Bibliografia

- Site: https://moodle.isec.pt/moodle/, consultado no dia 03/11/2021;
- Site: https://ccl.northwestern.edu/netlogo/docs/, consultado no dia 05/11/2021;
- Site: https://ccl.northwestern.edu/netlogo/docs/dict/, consultado no dia 05/11/2021;
- Site: https://stackoverflow.com/tags/netlogo/, consultado no dia 08/11/2021;