A Book of Abstract Algebra | (2nd Edition)

	Chapter 33, Problem 1EE	Bookmark	Show all steps: ON	
Problem				
	Let K be a finite extension of F , where K is a root field over F , with $G = Gal(K:F)$ a solvable group. As remarked in the text, we will assume that F contains the required roots of unity. By Exercise D, let H_0, \ldots, H_n be a solvable series for G in which every quotient H_{i+1}/H_i is cyclic of prime order. For any $i = 1, \ldots, n$, let F_i and F_{i+1} be the fixfields of H_i and H_{i+1} . Prove: F_i is a normal extension of F_{i+1} , and $[F_i: F_{i+1}]$ is a prime p . Step-by-step solution Step 1 of 4 Here, objective is to prove that F_i is a normal extension of F_{i+1} and $[F_i: F_{i+1}]$ is a prime p .			
	Comment			
	Step 2 of 4 A G is a group of automorphism of K. The set of elements fixed by every element of G called the fixed field.			
	Comment			
	Step 3 of 4			
	G = Gal(K : F) is a solvable group. F is the fixed field of G . Where K is a the finite extension of F			

 $H_0, H_1, \dots H_n$ is the solvable series for G.

Every quotient $\ H_{i+1}$ / H_i ; i=1,2,...n is a cyclic of prime order. That is $\ |\ H_{i+1}$ / H_i $\ |= p$

Comment

Step 4 of 4

Consider F_i and F_{i+1} are the fixed fields of H_i and H_{i+1}

 F_0, F_1, \dots, F_n is the solvable series for H.

$$\begin{split} F_i &= L^{H_i} \\ [F_i:F_{i+1}] &= \mid H_{i+1} \mid H_i \mid \\ &= p \end{split}$$

So, $[F_i:F_{i+1}]$ is a prime p.

 F_0, F_1, \dots, F_n is the solvable series for G

Then,

$$G = Gal[F_i : F_{i+1}]$$

 $F_{\!\scriptscriptstyle i}$ is a simple normal extension of $F_{\!\scriptscriptstyle i+1}$.

Therefore, F_i is a normal extension of F_{i+1} and $[F_i:F_{i+1}]$ is a prime p.

Hence, proved

Comment