Working title: Mirković-Vybornov fusion in Beilinson-Drinfeld Grassmannian

October 2020

1 Background

The BD Grassmannian. The convolution Grassmannian. Distinguished orbits, slices therein. Mirković–Vybornov.

2 Notation

Definition 1. Say μ_1 and μ_2 are **disjoint** if $(\mu_1)_i \neq 0 \Rightarrow (\mu_2)_i = 0$ and $(\mu_2)_i \neq 0 \Rightarrow (\mu_1)_i = 0$.

Anne: I propose "anodyne" as another candidate for the above property after Kapranov–Shechtman.

3 Main results

Claim 1. $\widetilde{T}_x^a \to \pi^{-1}(\overline{\operatorname{Gr}^{\lambda}} \cap \operatorname{Gr}_{\mu})$ (this does depend on b! we get something like a springer fibre where the action of [what] on either side has eigenvalues a permutation of b.)

Claim 2. Let $W_{\rm BD}^{\mu} = G_1((t^{-1}))t^{\mu}$. Then $S^{\mu_1+\mu_2}$ is contained in $W_{\rm BD}^{\mu}$ if μ is dominant. Joel: And μ_1 , μ_2 are dominant also? Anne: Roger has a proof.

Claim 3. Let a=(0,s) and suppose μ_1 and μ_2 are disjoint "transverse" Let $\mu=\mu_1+\mu_2$. Then $X\in \widetilde{T_x^a}$ is a $\mu\times\mu$ block matrix, with $(\mu_1)_k\times(\mu_1)_k$ diagonal block conjugate to a $(\mu_1)_k$ Jordan block and $(\mu_2)_k\times(\mu_2)_k$ diagonal block conjugate to $(\mu_2)_k$ Jordan block plus sI.

Question 1. If μ_i is not a permutation of λ_i and λ_i are not "homogeneous" how do we proceed? E.g. if $\mu_1 = (3,0,2)$, $\mu_2 = (0,2,0)$ and $\lambda_1 = (4,1)$, $\lambda_2 = (2,0,0)$.

Question 2. If μ_1 and μ_2 are not disjoint how do we proceed? E.g. if $\mu_1 = (2, 2, 0), \mu_2 = (1, 0, 2); \mu_1 = (2, 2, 1), \mu_2 = (1, 0, 1).$

4 Background on MVy

What they do. What they stop short of doing.

- Their slice T_x or T_λ
- Their embedding $T_x \to \mathfrak{G}_N$
- N-dim D
- The map $\tilde{\mathbf{m}}: \tilde{\mathfrak{g}}^n \to \mathrm{End}(D)$
- The map $\mathbf{m}: \tilde{\mathcal{N}}^n \to \mathcal{N}$ sending (x, F_{\bullet}) to x
- The map $\pi: \tilde{\mathfrak{G}}^n \to \mathfrak{G}$ sending \mathcal{L}_{\bullet} to \mathcal{L}_n

The special case $b = \vec{0}$. In this case 0 in the affine quiver variety goes to the point L_{λ} in the affine Grassmannian, and the preimage of zero in the smooth quiver variety (the core?) is identified with the preimage of L_{λ} in the BD Grassmannian.

$$\begin{array}{ccc} \mathfrak{L}(\vec{v}, \vec{w}) & \longrightarrow \pi^{-1}(L_{\lambda}) \\ \downarrow & & \downarrow \\ 0 & \longrightarrow L_{\lambda} \end{array}$$

MVy write: "we believe that one should be able to generalize this to arbitrary [b]" and that's where we come in!

Recall the Mirković-Vybornov immersion [MV07, Theorems 1.2 and 5.3].

Theorem 1. ([MV07, Theorem 1.2 and 5.3]) There exists an algebraic immersion $\tilde{\psi}$

$$\widetilde{\mathbf{m}}^{-1}(T_{\lambda}) \cap \widetilde{\mathfrak{g}}^{n,a,E,\tilde{\mu}} \xrightarrow{\widetilde{\psi}} \widetilde{\mathfrak{G}}_{b}^{n,a}(P)$$

5 Statements and Proofs of Results

Anne: Maybe split for now into a Notation section and a Proofs section Define

$$S_{\mu_1,\mu_2} = N((t^{-1}))t^{\mu_1}(t-s)^{\mu_2}$$

and

$$W_{\mu} = G_1[[t^{-1}]]t^{\mu}.$$

Let $|\lambda| = |\lambda_1 + \lambda_2|$ and $|\mu| = |\mu_1 + \mu_2|$.

Anne: Why not $\lambda = \lambda_1 + \lambda_2$ and recall $|\nu|$ in general.

Lemma 1 (Proof in Proposition 2.6 of KWWY). Suppose μ is dominant. Then

$$N((t^{-1}))t^{\mu} = N_1[[t^{-1}]]t^{\mu}.$$

Lemma 2. For dominant μ_1, μ_2 , we have

$$S_{\mu_1,\mu_2} \subset W_{\mu_1+\mu_2}$$
.

Proof. We have

$$S_{\mu_{1},\mu_{2}} = N((t^{-1}))t^{\mu_{1}}(t-s)^{\mu_{2}}$$

$$\subset T_{1}[[t^{-1}]]N((t^{-1}))t^{\mu_{1}}(t-s)^{\mu_{2}}$$

$$= T_{1}[[t^{-1}]]N_{1}[[t^{-1}]]t^{\mu_{1}}(t-s)^{\mu_{2}}$$

$$= B_{1}[[t^{-1}]]t^{\mu_{1}}(t-s)^{\mu_{2}}$$

$$= B_{1}[[t^{-1}]]t^{\mu_{1}+\mu_{2}}$$

$$\subset G_{1}[[t^{-1}]]t^{\mu_{1}+\mu_{2}}$$

$$= W_{\mu_{1}+\mu_{2}}$$

where $B_1[[t^{-1}]]t^{\mu_1}(t-s)^{\mu_2} = B_1[[t^{-1}]]t^{\mu_1+\mu_2}$ since

$$\frac{t}{t-s} = 1 + \frac{s}{t} + \frac{s^2}{t^2} + \dots \in B_1[[t^{-1}]].$$

Define $Gr^{\lambda_1,\lambda_2} \subset Gr_{BD}$ to be the family with generic fibre $Gr^{\lambda_1} \times Gr^{\lambda_2}$ and 0-fibre $Gr^{\lambda_1+\lambda_2}$.

Define $\mathbb{O}_{\lambda_1,\lambda_2}$ to be matrices X of size $|\lambda| \times |\lambda|$ such that

$$X\big|_{E_0} \in \mathbb{O}_{\lambda_1}$$
 and $(X-sI)\big|_{E_s} \in \mathbb{O}_{\lambda_2}$

Let

$$\mu = (\mu^{(1)}, \mu^{(2)}, ..., \mu^{(n)}).$$

Define \mathbb{T}_{μ_1,μ_2} to be $|\mu| \times |\mu|$ matrices X such that X consists of block matrices where the size of the i-th diagonal block is $|\mu^{(i)}| \times |\mu^{(i)}|$, for $1 \le i \le n$.

Theorem 2. We have an isomorphism

$$\overline{\mathrm{Gr}^{\lambda_1,\lambda_2}}\cap S_{\mu_1,\mu_2}\cong \overline{\mathbb{O}_{\lambda_1,\lambda_2}}\cap \mathbb{T}_{\mu_1,\mu_2}\cap \mathfrak{n}.$$

Anne: Rather, corollary?

Proof. We will prove this similarly to how the usual Mirković–Vybornov isomorphism is proven.

Step 1: Define a map $\mathbb{T}_{\mu_1,\mu_2} \cap \mathcal{N} \to G_1[t^{-1},(t-s)^{-1}]t^{\mu_1}(t-s)^{\mu_2}$.

Step 2: If $A \in \mathbb{T}_{\mu_1,\mu_2} \cap \mathfrak{n}$ then A is sent to $(N_-)_1[t^{-1},(t-s)^{-1}]t^{\mu_1}(t-s)^{\mu_2}$. Anne: Requires MVyBD!

Step 3: Conversely, given $L \in W_{\mu_1 + \mu_2}$, want to show surjectivity.

References

[MV07]Ivan Mirković and Maxim Vybornov. Quiver varieties and beilinsondrinfeld grassmannians of type a. <u>arXiv preprint arXiv:0712.4160, 2007.</u> 2