Matrix Norms

Tom Lyche

University of Oslo Norway

Matrix Norms

We consider matrix norms on $(\mathbb{C}^{m,n},\mathbb{C})$. All results holds for $(\mathbb{R}^{m,n},\mathbb{R})$.

Definition 1 (Matrix Norms). A function $\|\cdot\|: \mathbb{C}^{m,n} \to \mathbb{C}$ is called a matrix norm on $\mathbb{C}^{m,n}$ if for all $A,B\in\mathbb{C}^{m,n}$ and all $\alpha\in\mathbb{C}$

- 1. $||A|| \ge 0$ with equality if and only if A = 0. (positivity)
- 2. $\|\alpha A\| = |\alpha| \|A\|$. (homogeneity)
- 3. $||A + B|| \le ||A|| + ||B||$. (subadditivity)

A matrix norm is simply a vector norm on the finite dimensional vector spaces $(\mathbb{C}^{m,n},\mathbb{C})$ of $m \times n$ matrices.

Equivalent norms

Adapting some general results on vector norms to matrix norms give

Theorem 2.

- 1. All matrix norms are equivalent. Thus, if $\|\cdot\|$ and $\|\cdot\|'$ are two matrix norms on $\mathbb{C}^{m,n}$ then there are positive constants μ and M such that $\mu\|A\| \leq \|A\|' \leq M\|A\|$ holds for all $A \in \mathbb{C}^{m,n}$.
- 2. A matrix norm is a continuous function $\|\cdot\|: \mathbb{C}^{m,n} \to \mathbb{R}$.

Submultiplicativity

For matrix norms we usually require that the norm of a product is bounded by the product of the norms. Thus for square matrices $A, B \in \mathbb{C}^{n,n}$ and a matrix norm we most often have the additional property

4.
$$||AB|| \le ||A|| ||B||$$
 (submultiplicativity).

• For a square matrix A and a submultiplicative matrix norm $\|\cdot\|$ we have

$$||A^k|| \le ||A||^k \text{ for } k \in \mathbb{N}. \tag{1}$$

Consistent Matrix norms

When m and n vary we have a family of norms which are formally different for each m and n since they are defined in different spaces. However, the most common matrix norms are defined by the same formula for all m, n and we consider mainly such norms.

Definition 3 (Consistent Matrix Norms). A submultiplicative matrix norm which is defined for all $m, n \in \mathbb{N}$, is said to be a consistent matrix norm.

The Frobenius Matrix Norm

• For $A \in \mathbb{C}^{m,n}$ we define the Frobenius norm by

$$||A||_F := \left(\sum_{i=1}^m \sum_{j=1}^n |a_{ij}|^2\right)^{1/2}.$$

- $\|\mathbf{A}\|_F = \sqrt{\sigma_1^2 + \dots + \sigma_n^2}$ (singular values of \mathbf{A} .)
- The Frobenius norm is a consistent matrix norm which is subordinate to the Euclidian vector norm.

Subordinate Matrix Norm

A matrix norm $\| \|$ on $\mathbb{C}^{m,n}$ is subordinate to the vector norms $\| \|_{\alpha}$ on \mathbb{C}^n and $\| \|_{\beta}$ on \mathbb{C}^m if

 $||A\boldsymbol{x}||_{\beta} \leq ||A|| ||\boldsymbol{x}||_{\alpha}$ for all $A \in \mathbb{C}^{m,n}$ and $\boldsymbol{x} \in \mathbb{C}^n$.

Operator Norm

Definition 4. Suppose $m, n \in \mathbb{N}$ are given and let $\|\cdot\|_{\alpha}$ be a vector norm on \mathbb{C}^n and $\|\cdot\|_{\beta}$ a vector norm on \mathbb{C}^m . For $A \in \mathbb{C}^{m,n}$ we define

$$||A|| := ||A||_{\alpha,\beta} := \max_{x \neq 0} \frac{||Ax||_{\beta}}{||x||_{\alpha}}.$$
 (2)

We call this the (α, β) operator norm, the (α, β) -norm, or simply the α -norm if $\alpha = \beta$.

Operator norm properties

The operator norm has the following properties:

- It is a matrix norm
- It is subordinate to the vector norms $\|\cdot\|_{\alpha}$ and $\|\cdot\|_{\beta}$.
- It is consistent if the vector norms $\|\cdot\|_{\alpha} = \|\cdot\|_{\beta}$ and they are defined for all m,n.
- There is some $\boldsymbol{x}^* \in \mathbb{C}^n$ with $\|\boldsymbol{x}^*\|_{\alpha} = 1$ such that

$$||A|| = \max_{\|\boldsymbol{x}\|_{\alpha}=1} ||A\boldsymbol{x}||_{\beta} = ||A\boldsymbol{x}^*||_{\beta}.$$

The p matrix norm

- The operator norms $||\cdot||_p$ defined from the p-vector norms are of special interest.
- We define

$$||A||_p := \max_{\boldsymbol{x} \neq 0} \frac{||A\boldsymbol{x}||_p}{||\boldsymbol{x}||_p} = \max_{||\boldsymbol{y}||_p = 1} ||A\boldsymbol{y}||_p.$$
 (3)

■ The p-norms are consistent matrix norms which are subordinate to the p-vector norm.

Explicit expressions

- For $A \in \mathbb{C}^{m,n}$ we have:
- $||A||_1 = \max_{1 \le j \le n} \sum_{k=1}^m |a_{k,j}|$
- $||A||_2 = \sigma_1$, the largest singular value of A
- $||A||_{\infty} = \max_{1 \le k \le m} \sum_{j=1}^{m} |a_{k,j}|$
- If $A \in \mathbb{C}^{n,n}$ is nonsingular then $||A^{-1}||_2 = \frac{1}{\sigma_n}$, the smallest singular value of A.
- Proof:

Unitary Transformations

- An important property of the 2-norm is that it is invariant with respect to unitary transformations.
- Let $k, m, n \in \mathbb{N}$, $V \in \mathbb{C}^{k,m}$, $U \in \mathbb{C}^{n,n}$, $A \in \mathbb{C}^{m,n}$, $V^H V = I$ and $U^H U = I$. Then
- 1. $||VA||_2 = ||A||_2$ and $||V||_2 = 1$, 2. $||AU||_2 = ||A||_2$.
- Proof:

Example

- $A := \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}$
- $||A||_1 = 6$
- $||A||_2 = 5.465$
- $||A||_{\infty} = 7$.
- $||A||_F = 5.4772$

Perturbation of linear systems

Consider the system of two linear equations

$$x_1 + x_2 = 20$$

 $x_1 + 0.999x_2 = 19.99$

- The exact solution is $x_1 = x_2 = 10$.
- Suppose we replace the second equation by

$$x_1 + 1.001x_2 = 19.99,$$

- the exact solution changes to $x_1 = 30$, $x_2 = -10$.
- ▲ A small change in one of the coefficients, from 0.999 to 1.001, changed the exact solution by a large amount.

Ill Conditioning

- A mathematical problem in which the solution is very sensitive to changes in the data is called ill-conditioned or sometimes ill-posed.
- Such problems are difficult to solve on a computer.
- If at all possible, the mathematical model should be changed to obtain a more well-conditioned or properly-posed problem.

Perturbations

- We consider what effect a small change (perturbation) in the data A,b has on the solution x of a linear system Ax = b.
- Suppose y solves (A + E)y = b + e where E is a (small) $n \times n$ matrix and e a (small) vector.
- How large can y-x be?
- To measure this we use vector and matrix norms.

Conditions on the norms

- $\|\cdot\|$ will denote a vector norm on \mathbb{C}^n and also a submultiplicative matrix norm on $\mathbb{C}^{n,n}$ which in addition is subordinate to the vector norm.
- **●** Thus for any $A, B \in \mathbb{C}^{n,n}$ and any $x \in \mathbb{C}^n$ we have

$$||AB|| \le ||A|| \, ||B|| \text{ and } ||Ax|| \le ||A|| \, ||x||.$$

This is satisfied if the matrix norm is the operator norm corresponding to the given vector norm or the Frobenius norm.

Absolute and relative error

- The difference ||y-x|| measures the absolute error in y as an approximation to x,
- $\|y-x\|/\|x\|$ or $\|y-x\|/\|y\|$ is a measure for the relative error.

Perturbation in the right hand side

Theorem 5. Suppose $A \in \mathbb{C}^{n,n}$ is invertible, $b, e \in \mathbb{C}^n$, $b \neq 0$ and Ax = b, Ay = b + e. Then

$$\frac{1}{K(A)} \frac{\|\boldsymbol{e}\|}{\|\boldsymbol{b}\|} \le \frac{\|\boldsymbol{y} - \boldsymbol{x}\|}{\|\boldsymbol{x}\|} \le K(A) \frac{\|\boldsymbol{e}\|}{\|\boldsymbol{b}\|}, \quad K(A) = \|A\| \|A^{-1}\|. \quad (4)$$

- Proof:
- Consider (4). $\|e\|/\|b\|$ is a measure for the size of the perturbation e relative to the size of b. $\|y-x\|/\|x\|$ can in the worst case be

$$K(A) = ||A|| ||A^{-1}||$$

times as large as $\|e\|/\|b\|$.

Condition number

- K(A) is called the condition number with respect to inversion of a matrix, or just the condition number, if it is clear from the context that we are talking about solving linear systems.
- The condition number depends on the matrix A and on the norm used. If K(A) is large, A is called **iII-conditioned** (with respect to inversion).
- If K(A) is small, A is called well-conditioned (with respect to inversion).

Condition number properties

- Since $||A|| ||A^{-1}|| \ge ||AA^{-1}|| = ||I|| \ge 1$ we always have $K(A) \ge 1$.
- Since all matrix norms are equivalent, the dependence of K(A) on the norm chosen is less important than the dependence on A.
- Usually one chooses the spectral norm when discussing properties of the condition number, and the l_1 and l_∞ norm when one wishes to compute it or estimate it.

The 2-norm

- Suppose A has singular values $\sigma_1 \ge \sigma_2 \ge \cdots \ge \sigma_n > 0$ and eigenvalues $|\lambda_1| \ge |\lambda_2| \ge \cdots \ge |\lambda_n|$ if A is square.
- $K_2(\mathbf{A}) = \|\mathbf{A}\|_2 \|\mathbf{A}^{-1}\|_2 = \frac{\sigma_1}{\sigma_n}$
- $K_2(\mathbf{A}) = \|\mathbf{A}\|_2 \|\mathbf{A}^{-1}\|_2 = \frac{|\lambda_1|}{|\lambda_n|}, \quad \mathbf{A} \text{ normal.}$
- It follows that A is ill-conditioned with respect to inversion if and only if σ_1/σ_n is large, or $|\lambda_1|/|\lambda_n|$ is large when A is normal.
- $K_2(\mathbf{A}) = \|\mathbf{A}\|_2 \|\mathbf{A}^{-1}\|_2 = \frac{\lambda_1}{\lambda_n}$, **A** positive definite.

The residual

Suppose we have computed an approximate solution y to Ax = b. The vector r(y:) = Ay - b is called the residual vector, or just the residual. We can bound x-y in term of r(y).

Theorem 6. Suppose $A \in \mathbb{C}^{n,n}$, $b \in \mathbb{C}^n$, A is nonsingular and $b \neq 0$. Let r(y) = Ay - b for each $y \in \mathbb{C}^n$. If Ax = b then

$$\frac{1}{K(\mathbf{A})} \frac{\|\mathbf{r}(\mathbf{y})\|}{\|\mathbf{b}\|} \le \frac{\|\mathbf{y} - \mathbf{x}\|}{\|\mathbf{x}\|} \le K(\mathbf{A}) \frac{\|\mathbf{r}(\mathbf{y})\|}{\|\mathbf{b}\|}.$$
 (5)

Discussion

- If A is well-conditioned, (5) says that $\|m{y}-m{x}\|/\|m{x}\| pprox \|m{r}(m{y})\|/\|m{b}\|.$
- In other words, the accuracy in y is about the same order of magnitude as the residual as long as $||b|| \approx 1$.
- If A is ill-conditioned, anything can happen.
- The solution can be inaccurate even if the residual is small
- We can have an accurate solution even if the residual is large.

Perturbation in A

We consider next a perturbation in A.

Theorem 7. Suppose $A, E \in \mathbb{C}^{n,n}$, $b \in \mathbb{C}^n$ with A invertible and $b \neq 0$. If $\|A^{-1}E\| < 1$ for some operator norm then A+E is invertible. If Ax = b and (A+E)y = b then

$$\frac{\|\boldsymbol{y} - \boldsymbol{x}\|}{\|\boldsymbol{x}\|} \leq \frac{\|\boldsymbol{A}^{-1}\boldsymbol{E}\|}{1 - \|\boldsymbol{A}^{-1}\boldsymbol{E}\|} \leq \frac{K(\boldsymbol{A})}{1 - \|\boldsymbol{A}^{-1}\boldsymbol{E}\|} \frac{\|\boldsymbol{E}\|}{\|\boldsymbol{A}\|}.$$
 (6)

- ||E||/||A|| is a measure of the size of the perturbation E in A relative to the size of A.
- The condition number again plays a crucial role.

The Spectral Radius

• We define the spectral radius of a matrix $A \in \mathbb{C}^{n,n}$ as the maximum absolute values of the eigenvalues.

$$\rho(\mathbf{A}) = \max_{\lambda \in \sigma(\mathbf{A})} |\lambda|. \tag{7}$$

- For any submultiplicative matrix norm $\|\cdot\|$ on $\mathbb{C}^{n,n}$ and any $A \in \mathbb{C}^{n,n}$ we have $\rho(A) \leq \|A\|$.
- Proof:
- Let $A \in \mathbb{C}^{n,n}$ and $\epsilon > 0$ be given. There is a submultiplicative matrix norm $\|\cdot\|'$ on $\mathbb{C}^{n,n}$ such that $\rho(A) \leq \|A\|' \leq \rho(A) + \epsilon$.
- Proof:

Limits

ullet For any $oldsymbol{A}\in\mathbb{C}^{n,n}$ we have

$$\lim_{k \to \infty} \mathbf{A}^k = 0 \iff \rho(\mathbf{A}) < 1.$$

Convergence can be slow:

$$\mathbf{A} = \begin{bmatrix} 0.99 & 1 & 0 \\ 0 & 0.99 & 1 \\ 0 & 0 & 0.99 \end{bmatrix}, \ \mathbf{A}^{100} = \begin{bmatrix} 0.4 & 9.37 & 1849 \\ 0 & 0.4 & 37 \\ 0 & 0 & 0.4 \end{bmatrix},$$
$$\mathbf{A}^{2000} = \begin{bmatrix} 10^{-9} & \epsilon & 0.004 \\ 0 & 10^{-9} & \epsilon \\ 0 & 0 & 10^{-9} \end{bmatrix}$$