Math. - CC 1 - S1 - Analyse

vendredi 05 octobre 2018 - Durée 1 h

Toutes les réponses seront justifiées. La notation tiendra compte du soin apporté à la rédaction.

Exercice 1

Déterminer la nature et la somme éventuelle des séries de terme général :

1.

$$u_n = e^{\frac{1}{n}} - e^{\frac{1}{n+2}}$$

2.

$$w_n = a^{2n+1}, \quad a \in \mathbb{R}$$

Exercice 2

Montrer que la série de terme général $u_n = \frac{(-1)^n}{\sqrt{n}}$ est convergente.

Pour cela, si on nomme U_n la somme partielle d'indice n, on étudiera (U_{2n}) et (U_{2n+1}) .

Exercice 3

 $(a_n)_{n\in\mathbb{N}^*}$ désigne une suite de réels non nuls. On définit les suites (u_n) et (p_n) par

$$\forall n \in \mathbb{N}^*, \ p_n = \prod_{k=1}^n a_k = a_1 a_2 \cdots a_n$$
 et $a_n = 1 + u_n$

Lorsque la suite (p_n) converge, on note p sa limite.

- 1. Donner un exemple de suite (a_n) telle que (p_n) converge vers 0.
- **2.** Montrer que si (p_n) converge vers une limite p non nulle, alors (a_n) converge vers 1.
- 3. On suppose dans cette question que

$$\exists n_0 \in \mathbb{N}^*, \ \forall n \geq n_0, \ a_n > 0 \qquad \text{et on pose} \qquad \forall n > n_0, \ q_n = \prod_{k=n_0+1}^n a_k$$

- **a.** Pour $n > n_0$, exprimer q_n en fonction de p_n et de p_{n_0} .
- Montrer que si la série $\sum_{n\geq n_0} \ln(a_n)$ converge alors la suite (p_n) converge puis que $p\neq 0$.
- On suppose que la suite des sommes partielles de la série $\sum_{n=1}^{\infty} \ln(a_n)$ diverge vers $+\infty$ ou $-\infty$.

Que peut-on dire dans ces deux cas du comportement de la suite (p_n) ?

4. On suppose dans cette question que $\forall n \in \mathbb{N}^*, u_n \geq 0$.

Démontrer que la suite (p_n) converge vers p > 0, si et seulement si la série $\sum u_n$ converge.

- 5. On suppose dans cette question que la série $\sum u_n$ converge.
 - **a.** Montrer que si la série $\sum u_n^2$ converge, alors la suite (p_n) converge et $p \neq 0$.
 - **b.** Montrer que si la série $\sum u_n^2$ diverge, alors la suite (p_n) converge et p=0.
- 6. Etudier la convergence et déterminer alors la limite éventuelle de (p_n) dans les cas suivants :

 - **a.** $a_n = 1 + \frac{1}{n}$ **b.** $a_n = 1 + \frac{(-1)^n}{\sqrt{n}}$

Fin de l'énoncé d'analyse