APPUNTI DI ANALISI 3

MANUEL DEODATO

Indice

1	Teo	ria della misura	3
	1.1	Introduzione	3
	1.2	Misura esterna	4
	1.3	Misurabilità	6

1 Teoria della misura

1.1 Introduzione

L'obiettivo è arrivare a costruire una funzione che permetta di misurare i sottoinsiemi di \mathbb{R}^d , o quantomeno la maggior parte, e una conseguente teoria dell'integrazione che abbia un buon comportamento rispetto al passaggio al limite.

Per ottenere il volume di generici sottoinsiemi di \mathbb{R}^d è opportuno partire da oggetti la cui geometria sia nota e *rivestire* tali sottoinsiemi con questi oggetti in modo tale da approssimarne arbitrariamente bene la misura. A questo scopo, si definisce il seguente oggetto fondamentale.

Definizione 1.1 (Plurintervallo). Si definisce plurintervallo un sottoinsieme di $I \subseteq \mathbb{R}^d$ tale per cui esistono degli intervalli $I_k \subseteq \mathbb{R}$ tali che

$$I = \prod_{k=1}^d I_k$$

dove il prodotto è il prodotto cartesiano. In altri termini, un plurintervallo I è della forma

$$I = \prod_{k=1}^d (a_k, b_k)$$

 $\mathrm{con} \ -\infty < a_k < b_k < +\infty, \ \forall k.$

Osservazione 1.1. Fondamentalmente, un plurintervallo è un rettangolo per d=2, un parallelepipedo per d=3, eccetera.

La geometria di questi oggetti è nota perché la loro misura¹ è nota ed è data da:

$$|I| = \prod_{k=1}^d (b_k - a_k) = \prod_{k=1}^d |I_k|$$

Per definire una misura, si parte col definire una misura esterna, cioè una funzione $\mu^*: \mathcal{P}(\mathbb{R}^d) \to [0, +\infty]$ tale che

 $^{^{1}\}mathrm{Cio}$ è il loro volume per d=3, la loro area per d=2, eccetera.

- (a). $\mu^*(\emptyset) = 0$;
- (b). se $A \subseteq B \subseteq \mathbb{R}^d$, allora $\mu^*(A) \leq \mu^*(B)$;
- (c). data $\left\{E_i\right\}_{i=1}^{+\infty}$ famiglia numerabile di insiemi, vale

$$\mu^*\left(\bigcup_{i=1}^{+\infty}E_i\right)\leq \sum_{i=1}^{+\infty}\mu^*(E_i)$$

Inoltre, si richiede che se $I \subseteq \mathbb{R}^d$ è un plurintervallo, allora $\mu^*(I) = |I|$.

1.2 Misura esterna

Si dà la seguente definizione.

Definizione 1.2 (Misura esterna di Lebesgue). Sia $E \subseteq \mathbb{R}^d$ e sia S un suo ricoprimento, tale che

$$E \subseteq \bigcup_{k=1}^{+\infty} I_k$$

con $I_k \subseteq \mathbb{R}^d$ plurintervalli. Sia, inoltre

$$\sigma(S) = \sum_{k=1}^{+\infty} |I_k|$$

il volume totale 1 del ricoprimento; allora si definisce la $\it misura~esterna$ di $\it E$ come:

$$\mu^*(E) := \inf_S \sigma$$

Ai fini della teoria, si assume che la frontiera degli insiemi sia a misura nulla, cioè si dice che due plurintervalli $I_k,I_j\subseteq\mathbb{R}^d$ non sono sovrapposti se

$$\mathring{I}_k \cap \mathring{I}_j = \emptyset$$
, per $k \neq j$

Teorema 1.1. Sia $I \subseteq \mathbb{R}^d$ un plurintervallo; allora $\mu^*(I) = |I|$.

 $^{^{1}\}mathrm{Cio\grave{e}}$ si conta anche il volume condiviso tra più plurintervalli.

Dimostrazione. Evidentemente I è il più piccolo ricoprimento di se stesso che, quindi, minimizza $\sigma(S)$, pertanto, per definizione, si ha $\mu^*(I) = |I|$. \square

Teorema 1.2. Siano $A, B \subseteq \mathbb{R}^d$ tali che $A \subseteq B$; allora $\mu^*(A) \le \mu^*(B)$.

Dimostrazione. Applicando direttamente la definizione, si nota che:

$$\mu^*(A) = \inf_{S_A} \sigma(S_A) \leq \inf_{S_B} \sigma(S_B) = \mu^*(B)$$

visto che ogni ricoprimento S_B di B ricopre anche A.

Corollario 1.2.1. Siano $E \subseteq E' \subseteq \mathbb{R}^d$, con $\mu^*(E') = 0$; $\mu^*(E) = 0$.

Teorema 1.3. Sia $E \subseteq \mathbb{R}^d$; allora $\forall \varepsilon > 0$, $\exists G \subseteq \mathbb{R}^d$ aperto tale che $E \subset G$ e $\mu^*(G) < \mu^*(E) + \varepsilon$.

Dimostrazione. Sia $\left\{I_k\right\}_{k=1}^{+\infty}$ una famiglia numerabile di plurintervalli chiusi di \mathbb{R}^d tali che

$$E \subset \bigcup_{k=1}^{+\infty} I_k \qquad \quad \sum_{k=1}^{+\infty} |I_k| \leq \mu^*(E) + \varepsilon$$

Allora si costruiscono dei nuovi intervalli I_k^* tali che $I_k \subset \mathring{I}_k^*$ e $|I_k^*| \leq |I_k| + \varepsilon/2^k$; allora il relativo insieme G aperto è dato da

$$G = \bigcup_{k=1}^{+\infty} \mathring{I}_k^*$$

Infatti

$$\mu^*(G) = \sum_{k=1}^{+\infty} |I_k^*| \le \sum_{k=1}^{+\infty} \left(|I_k| + \frac{\varepsilon}{2^k} \right) \le \mu^*(E) + \varepsilon$$

Osservazione 1.2. Relativamente al teorema precedente, si notano due cose: intanto fa uso della topologia di \mathbb{R}^d e poi afferma che un generico insieme $E\subseteq\mathbb{R}^d$ è approssimabile arbitrariamente bene tramite un aperto G

Teorema 1.4. Sia $E \subseteq \mathbb{R}^d$; allora $\exists H = \bigcap_{j=1}^{+\infty} G_j$, con G_j aperti, tale che $E \subset H$ e $\mu^*(E) = \mu^*(H)$.

1.3 Misurabilità