C411. Multirate Signal Processing · Changing sampling make in the discrete. time domain 11.1. Downsampling · downsampling by N · loner-rate sequence · keep only one out of N Samples · also called subsampling or decimation · downsampling operator DN . XNO [4] = DN [XC4]} - XCAN] · loss of information: discards N-1 oak of N samples X[4] - (N) XND [4]

11.1.1. Properies of the Downsampling Operation Example: donnsampling by 2 · operato D2 . if xzp [n] = Dz Exch] LL X ChJ = ..., x[-2], x[-1], x[0], x[1], x[1], x[1], ... * x20[4]=..., x[4], x[-2], x[a], x[2], x[4]... · time origin is impartant D, {x[4+1]} = ..., x[-5], x[-3], x[1]... D downsampling operator is not time-invasiant · peradically time-caying · downsampling operator is linear not LTI due to no hime-invariance · complex sincesoids are no longer eigensequences'

11.1.2 Frequency - Domain Representation · Downsampling by N · 2 - tranform of downsampled signal XNO(2) = \(\times \tam\) 2 - 12 · "qaxiliary" & - tearsform Xa(s) = Ex [UN] z-hN 6 XND(2) = Xq (2 1/N) · Xq(2): derive from X(2) (original signals 2- hasford) by "killing off" terms in t-hansform whose index are not mathiple of N 4 Xq(2)= = \[\{\pi\[4]\x[4]\\ \\ \] The SNEW I is selector

SN= { o flemise

Fourier transform of downsampled signal: XNO (eia) = 1 2 X (W/ 21/N) · Aliasing can occer due to the loss of information in the downsampled signal · non-alias.ng condition max. positive freq. of original spectrom (com) and Th · fulfillment of nomaliasing condition indicates that original signal is intrinically redundant Lo downsampled signal con besocon pletely reconstruct original signal

3

Upsampling (Video) Increase number of samples of discretetime sequence X C43 - (NP) - XWW C43 · Interpolate between samples · Refect upsampling: interpolate and low-pass filter Downsampling (Video) Discard samples from requerce X [m] - (N) - YW [m] · los of information · allasing occurs · first sow pess with ano = TN

11.1.4. Downsampling and Filtering · Filter signal prior to downwampliner because of aliasing · eliminate aliasing by removing the high frequency components · high frequencies would fold back onto lour frequencies for downsampling by N: loupais filher with catoff hong: wc=t/N X[4] - LPETYN3 - (NA) - YEN] · some information is lost by filtering but the distortion is contolled and less disraptive than foldow aliasing

11.2. Upsampling

· Coreafe higher -rafe sequence

by creating N samples out al

every sample of original signal

by upsampling by N

simple inserting N-1 reases between

every two impat samples

· XNG[n] UN {XIn]} = { x [6] for n=kN, k & Z

UN: upsampling operator

upsampling is "nice" than donsamply,

oniginal signal con be recovered by down sampling

40 DN {UN {xch]}} = xch]

spechal description of up sumpling is simples in 2-harsform domain:

X Ny (2) = \$ x Ny [h] 2 m = \$ x[4] 2 = X(2M) Lo XNy(eic) = X(eicN)

· Upsampling is only a contraction of the frequency axis by foctor N

212 periodicity of spectrum much be taken into account

· Uprampling operator:

XTG] - (NP) XNGCG]

11.2.1. Upsampling and Interpolation · Upsampled signal: 2 dansacks · time dangin: signal not "natural" Since N-1 zeros between emy sample Lo not "smooth" frequency domain: deaun in by upsampling do not look as if they belong to the [-R, 12] interval Lo these two problems are one and his = P solve by appropriate filter x[n] - (NP) LP [17/13] - you) · filling the gapt between nontero samply in upsampled requence is similar to discuele - La comincago - time interpolation, exept non we operate

· Zero-Order Hold · Piecewise - constant in Lepolation · after uprampling by N, use Filter with impulse response ho [4] { o otherise to simply repeats the original sample & times (stailcake approximation) - First - Order Hold · picewise linear intepolation afte hyter pling by N hyter] = { 1 - 1/1 / lal X N often ie impulse response: trangular functions to triangular for : convolution of two rech hi[n] = 1/2 (hoEn] * hoEn])

													a					6	L		0 1	_
			ı		7/		4	no		ſ	3,	-			u.	16	_		114		100	
				3	4	Lu	J	•	5	1	C	(K	7)	Α.,						
												4										
			5	- 1	1.								-		1							
				- 2	1			1	9				1									
	4			0	13	7	30	15	82 ·	1		0									7	
					1																	
		14.5	0.0	3					1	100		900				-						
	_	100	2			Part of										-						
				100	1								1									
				5	4		1.	1		-			100									
					1																	
			-					r.							,							
					S. na							1		à.		- 4						
											-											
																						-
-		A 3-	100	69	-	-																
-																						
1														1								
					15									ζ.								
								3	Ty													

1	1.3. Rational Sampling Rate Changes
	Aubritrary rational sampling rate chases
	· combining upsampling and downsampling
	Typically wate change by W/M caucing
	· upsample by N
	· loupass filte
	· downsample by M
•	Filhers cutoff feq: min ({ T/N, T/13)
	· bold (up- and downsampling) require
	or louper film). The one with he minimum catoff freq. dominates the
	Carcade
	XIN - (NP) - [P Emin E M/N 17/N] - (T) - (T)
•	upsampling and downsampling operators are
	geneally not commutative
	aby if Nand Mare copine they do commune

11. 4. Oversampling · use higher sanding onte than needed by sampling theorem · improve performance of A/Dan/D/A 11.4.1. Oversampled A/D conversion · Sampling theorem : it · contious - time signal x(E) · bound limited · choose sampling period Is Lo no error introduced by samping Doby source of error in A/D converior to quantization eno Dover sampling reduces this error · qua hization enna: additive noise · if x (t) is sev - bandlinited signal *[=] + e[]

· with etal: white process where D: quantization · signal to noise ratio of oversampled signal is still the same . It's easy to implement a digital filter that removes the moise outside of the support Lo this improves SNR · after out of band noise is removed to use downsample to oblain contically sampled signal