A-24. TABLA DEL FACTOR "K" (página 1 de 4) Coeficientes de resistencia (K) válidos para válvulas y accesorios

("K" está basado en el uso de las tuberías cuyos números de cédula se dan en la página 2-10

FACTORES DE FRICCIÓN PARA TUBERÍAS COMERCIALES, NUEVAS, DE ACERO, CON FLUJO EN LA ZONA DE TOTAL TURBULENCIA

200	mm	15	20	25	32	40	50	65,80	100	125	150	200, 250	300-400	450-600
Diámetro Nominal	pulg	1/2	3/4	1	11/4	11/2	2	21/2, 3	4	5	6	8, 10	12-16	18-24
Factor de fricción (f	202	.027	.025	.023	.022	.021	.019	.018	.017	.016	.015	.014	.013	.012

FÓRMULAS PARA EL CÁLCULO DEL FACTOR "K" PARA VÁLVULAS Y ACCESORIOS CON SECCIONES DE PASO REDUCIDO

Fórmula 1

$$K_2 = \frac{0.8 \left(\operatorname{sen} \frac{\theta}{2} \right) (1 - \beta^2)}{\beta^4} = \frac{K_1}{\beta^4}$$

Fórmula 2

$$K_2 = \frac{0.5 (1 - \beta^2) \sqrt{\sin \frac{\theta}{2}}}{\beta^4} = \frac{K_1}{\beta^4}$$

Eármula 1

$$K_2 = \frac{2.6 \left(\sin \frac{\theta}{2} \right) (1 - \beta^2)^2}{\beta^4} = \frac{K_1}{\beta^4}$$

Fórmula 4

$$K_2 = \frac{(1-\beta^2)^2}{\beta^4} = \frac{K_1}{\beta^4}$$

Fórmula 5

$$K_2 = \frac{K_1}{\beta^4} + \text{Fórmula } 1 + \text{Fórmula } 3$$

$$K_2 = \frac{K_1 + \sin \frac{\theta}{2} \left[0.8 \left(1 - \beta^2\right) + 2.6 \left(1 - \beta^2\right)^2\right]}{\beta^4}$$

Fórmula (

$$K_2 = \frac{K_1}{R^4} + \text{Fórmula 2} + \text{Fórmula 4}$$

$$K_2 = \frac{K_1 + 0.5 \sqrt{\sin \frac{\theta}{2} (1 - \beta^2) + (1 - \beta^2)^2}}{\beta^4}$$

Fórmula 7

$$K_2 = \frac{K_1}{\beta^4} + \beta$$
 (Fórmula 2 + Fórmula 4), cuando $\theta = 180^\circ$

$$K_2 = \frac{K_1 + \beta \left[0.5 \left(1 - \beta^2\right) + \left(1 - \beta^2\right)^2\right]}{\beta^4}$$

$$\beta = \frac{d_1}{d_2}$$

$$\beta^2 = \left(\frac{d_1}{d_2}\right)^2 = \frac{a_1}{a_2}$$

El subíndice 1 define dimensiones y coeficientes para el diámetro menor. El subíndice 2 se refiere al diámetro mayor.

*Úsese el valor de K proporcionado por el proveedor, cuando se disponga de dicho valor

ESTRECHAMIENTO BRUSCO Y GRADUAL

ENSANCHAMIENTO BRUSCO Y GRADUAL

A-24 TABLA DEL FACTOR "K" (página 2 de 4) Coeficientes de resistencia (K) válidos para válvulas y accesorios

VÁLVULAS DE COMPUERTA De cuña, de doble obturador o tipo macho (cónico)

Si: $\beta =$	1,	θ =	0 .				$K_1 = 8 f_T$
β <	1	у	0 <	45°			K_2 = Fórmula 5
R-	1	37	150	< 0	~	1800	K - EArmula 6

VÁLVULAS DE RETENCIÓN DE DISCO OSCILANTE

Velocidad mínima-en la tubería para levantar totalmente

$$(m/seg) = 45\sqrt{\overline{V}}$$

$$=75\sqrt{\overline{V}}$$

(pie/seg) = 35 \sqrt{V}

 $= 100 \sqrt{V}$

U/L Registradas = $120\sqrt{\overline{V}}$

VÁLVULAS DE GLOBO Y ANGULARES

 $K_1 = 340 f_t$ Si:

 $\beta = 1 \dots K_1 = 55 f_T$

Si: $\beta = 1...K_1 = 150 f_T$ Si: $\beta = 1...K_1 = 55 f_T$

Todas las válvulas de globo y angulares con asiento reducido o de mariposa

Si: $\beta < 1 \dots K_2 = \text{F\'ormula } 7$

VÁLVULAS DE RETENCIÓN DE **OBTURADOR ASCENDENTE**

Si:
$$\beta = 1 \dots K_1 = 600 f_T$$

 $\beta < 1 \dots K_2 = \text{Fórmula 7}$

Velocidad mínima en la tubería para levantar totalmente el obturador = 50 $\beta^2 \sqrt{V}$ m/seg 40 $\beta^2 \sqrt{V}$ pie/seg

Si:
$$\beta = 1 \dots K_1 = 55 f_T$$

 $\beta < 1 \dots K_2 = \text{Fórmula 7}$

Velocidad mínima en la tubería para levantar totalmente el obturador = 170 $\beta^2 \sqrt{\overline{V}}$ m/seg 140 $\beta^2 \sqrt{\overline{V}}$ pie/seg

VÁLVULAS DE RETENCIÓN DE DISCO BASCULANTE

Pasos	« = 5°	
50 mm (2") a 200 mm (8") K =	40 f _T	120 f _T
250 mm (10") a 350 mm (14") K=	$30 f_T$	90 f _T
400 mm (16") a 1200 mm (48") K =	$20 f_T$	60 f _T
Velocidad mínima en la tubería para abrir totalmente el obturador = m/seg	$100\sqrt{\bar{v}}$	$40\sqrt{\bar{v}}$
pie/seg	80 VV	30 VV

A-24, TABLA DEL FACTOR "K" (página 3 de 4) Coeficientes de resistencia (K) válidos para válvulas y accesorios

VÁLVULAS DE RETENCIÓN Y CIERRE

(Tipos recto y angular)

 $\beta = 1.... K_1 = 400 f_T$

Velocidad mínima en la tubería para levantar totalmente el obturador

m/seg = $70 \beta^2 \sqrt{\bar{V}}$

pie/seg = 55 $\beta^2 \sqrt{\overline{V}}$

Si:

 $\beta = 1....K_1 = 200 f_T$ $\beta < 1...K_2$ = Fórmula 7 $\beta < 1...K_2$ = Fórmula 7

> Velocidad mínima en la tubería para levantar totalmente el obturador

$$= 95 \beta^2 \sqrt{\overline{V}}$$
$$= 75 \beta^2 \sqrt{\overline{V}}$$

VÁLVULAS DE PIE CON FILTRO

Obturador oscilante Obturador ascendente

 $K = 420 f_T$ Velocidad mínima en la

tubería para levantar totalmente el obturador m/seg = 20 $\sqrt{\bar{V}}$

pie/seg = 15 \sqrt{V}

 $K = 75f_T$

Velocidad mínima en la tubería para levantar totalmente el obturador

 $=45\sqrt{\bar{V}}$

Si:

 $\beta = 1....K_1 = 300 f_T$ $\beta = 1....K_1 = 350 f_T$ $\beta < 1. \ldots \ K_{\text{\tiny 2}}$ = Fórmula 7 $\quad \beta < 1. \ldots \ K_{\text{\tiny 2}}$ = Fórmula 7

velocidad mínima en la tubería para abrir totalmente el obturador

m/seg = 75
$$\beta^2 \sqrt{\overline{V}}$$

pie/seg = 60 $\beta^2 \sqrt{\overline{V}}$

VÁLVULAS DE GLOBO

Si: $\beta = 1, \theta = 0 \dots K_1 = 3 f_T$

 $\beta < 1$ y $\theta < 45^{\circ}$ K_2 = Fórmula 5

 $\beta < 1$ y $45^{\circ} < \theta < 180^{\circ} \dots K_2 = \text{F\'ormula } 6$

 $\beta = 1...K_1 = 55 f_T$ $\beta = 1.... K_1 = 55 f_T$ $\beta < 1...K_2$ = Fórmula 7 $\beta < 1...K_2$ = Fórmula 7

Velocidad mínima en la tubería para levantar totalmente el obturador

 $mg/seg = 170 R^2 \sqrt{\overline{V}}$

(nie/seg) = I40 $\beta^2 \sqrt{\overline{V}}$

VÁLVULAS DE MARIPOSA

Diámetro 50 mm (2") a 200 mm (8") $K = 45 f_T$

Diámetro 250 mm (10") a 350 mm (14")... $K = 35 f_T$

Diámetro 400 mm (16") a 600 mm (24") . . . $K = 25 f_T$

A-24. TABLA DEL FACTOR "K" (página 4 de 4) Coeficientes de resistencia (K) válidos para válvulas y accesorios

VÁLVULAS DE MACHO Y LLAVES

tres entradas

Si:
$$\beta = 1$$
, $K_1 = 18 f_T$

 $K_1 = 30 f_T$

Si:
$$\beta = 1$$
, $K_1 = 90 f_T$

Si:
$$\beta < 1$$

 K_2 = Fórmula 6

CURVAS EN ESCUADRA O FALSA ESCUADRA

K
$2f_T$
$4f_T$
8 f _T
$15 f_T$
$25 f_T$
40 fT
60 f _T

CURVAS Y CODOS DE 90° CON BRIDAS O CON EXTREMOS PARA SOLDAR A TOPE

r/d	K	r/d	K
1	$20 f_T$	8	$24 f_T$
1.5	14 fT	10	30 f _T
2	$12 f_T$	12	34 fT
3	$12 f_T$	14	38 fT
4	14 fT	16	42 fT
6	17 fT	20	50 f _T

El coeficiente de resistencia K_{BI} , para curvas que no sean de 90° puede determinarse con la fórmula:

$$K_B = (n-1) \left(0.25 \,\pi \, f_T \frac{r}{d} + 0.5 \,K \right) + K$$

n = número de curvas de 90° K = coeficiente de resistencia para una curva de 90° (según tabla)

CURVAS DE 180º DE RADIO CORTO

CODOS ESTÁNDAR

CONEXIONES ESTÁNDAR EN "T"

Flujo directo $K = 20 f_T$ Flujo desviado a 90°.. $K = 60 f_T$

ENTRADAS DE TUBERÍA

r/d	K
0.00*	0.5
0.02	0.28
0.04	0.24
0.06	0.15
0.10	0.09
0.15 y más	0.04

*de cantos vivos

Véanse los valores de I en la tabla

SALIDAS DE TUBERÍA

Con resalte De cantos vivos Redondeada

