

1 A ultra low-dropout LDO with bias

Flip Chip6 (0.8x1.2 mm)

Product status link

LD57100

Features

- Input voltage from V_{OUT} to 5.5 V
- Input bias supply pin from 3.0 V to 5.5 V
- Ultra low-dropout voltage (40 mV typ. at 1 A load)
- Low ground current (35 μA typ. at no load)
- Output voltage tolerance: ±1% all over temperature range, ±0.5% at 25 °C
- 1 A guaranteed output current
- 50 mV output voltage step available from 0.4 V to 1.8 V
- 100 mV output voltage step available from 1.9 V to 3.6 V
- Adjustable version from 0.5 V to 3.0 V
- · Logic-controlled electronic shutdown
- Internal current limit
- Thermal shutdown
- Output active discharge function
- Available in Flip Chip6 (0.8x1.2 mm) package
- Temperature range: -40 °C to 85 °C

Applications

- Smartphones
- Cameras
- Low voltage, low noise post regulation

Description

The LD57100 is a high accuracy voltage regulator, which provides 1 A of current. It is equipped with an NMOS pass transistor, whose gate is biased by a dedicated pin, thus allowing the ultra-low drop performance even at very low input voltages.

It is available in Flip Chip6 (0.8x1.2 mm), maximizing the space saving. This device is stabilized with a small ceramic capacitor on the output. The ultra-low drop, low quiescent current and short-circuit protection make the LD57100 suitable for low power battery-operated applications.

An enable logic control function puts the LD57100 in shutdown mode allowing a total current consumption lower than 0.1 μ A. Thermal protection is also included.

1 Diagrams

Figure 1. Block diagram fixed version

Figure 2. Block diagram adjustable version

DS13123 - Rev 6 page 2/21

2 Pin configuration

Figure 3. Pin connection (top view)

Table 1. Pin description

Pin#	Symbol	Functions
A1	V _{OUT}	Output voltage
A2	V _{IN}	Input voltage
B1	SNS / FB	Output voltage sense pin in fixed version. Connect to the load with a separate PCB track. Feedback pin in adjustable version. Connect to the resistor divider central node
B2	EN Enable pin logic input: low = shutdown, high = active	
C1	GND	Common ground
C2	V _{BIAS}	Bias supply input

DS13123 - Rev 6 page 3/21

Typical application circuits

Figure 4. Typical application for fixed version

Figure 5. Typical application for adjustable version

Table 2. Typical application components

Symbol	Value	Description	Note
C _{IN}	1 μF	Input capacitor	Ceramic type
C _{BIAS}	4.7 µF	μF Control logic bypass capacitor Ceramic type	
C _{OUT}	10 μF	Output capacitor	Ceramic type
R ₁		Output voltage side resistor	See Section 6.4 V _{OUT} setting (adjustable version)
R ₂		Ground side resistor	<500 kΩ max.

DS13123 - Rev 6 page 4/21

4 Absolute maximum ratings

Table 3. Absolute maximum ratings

Symbol	Parameter	Value	Unit
V _{IN} , V _{BIAS}	Input voltage	-0.3 to 7	V
V _{OUT} , V _{FB} , V _{SNS}	Output voltage	-0.3 to V _{IN} + 0.3	V
V _{EN}	Enable input voltage	-0.3 to 7	V
Іоит	Output current	Internally limited (see I _{SC} in Table 7. Electrical characteristics)	А
T _{STG}	Storage temperature range	- 40 to 150	°C

Note:

Absolute maximum ratings are those values beyond which damage to the device may occur. Functional operation under these conditions is not implied. All values are referred to GND.

Table 4. Thermal data

Symbol	Parameter	Value	Unit
R _{thJA}	Thermal resistance junction-ambient ⁽¹⁾	60	°C/W

1. We considered the STD JEDEC board 4 layers (2s2p) 101.5 x114.5 mm with a top copper plane of 4x4 mm.

Table 5. ESD performance

Symbol	Parameter	Test conditions	Value	Unit
ESD	ESD protection voltage	HBM	2	kV
E3D	ESD ESD protection voltage	CDM	500	V

Table 6. Recommended operating conditions

Parameter	Value	Unit
Supply input voltage, V _{IN}	0.6 to 5.5	V
Supply input voltage, BIAS	3 to 5.5	V
Junction temperature range	- 40 to 125	°C

DS13123 - Rev 6 page 5/21

5 Electrical characteristics

 V_{BIAS} = 3.0 V or V_{OUT} + 1.6 V (whichever is greater); V_{IN} = $V_{OUT(NOM)}$ + 0.3 V; I_{OUT} = 1 mA; C_{IN} = 4.7 μ F, C_{OUT} = 10 μ F; C_{BIAS} = 1 μ F, V_{EN} = 1 V; typical values are at T_J = 25 °C; min./max. values are at -40 °C \leq T_J \leq 85 °C, unless otherwise specified.

Table 7. Electrical characteristics

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
V_{IN}	Operating input voltage		V _{OUT} + V _{DROP}		5.5	V
V_{BIAS}	Operating bias voltage		(V _{OUT} + 1.60) ≥ 3.0		5.5	V
		V _{BIAS} rising	1.45	1.6	1.75	V
V_{UVLO}	Bias undervoltage	T _J = 25 °C	1.43	1.0	1.75	v
OVLO	lockout	Hysteresis	0.15	0.2	0.25	V
		T _J = 25 °C	0.10	- U.L	0.20	
V_{REF}	Reference voltage for adjustable devices	T _J = 25 °C;	0.4975	0.5	0.5025	V
		All versions, as per conditions above	-0.5		0.5	%
V _{OUT}	Output voltage accuracy	$\begin{split} &V_{OUT(NOM)} + 0.3 \text{ V} \leq V_{IN} \leq V_{OUT(NOM)} + 1.0 \text{ V}; \\ &3.0 \text{ V or } V_{OUT(NOM)} + 1.6 \text{ V (whichever is greater)} \leq V_{BIAS} \leq 5.5 \text{ V}; \\ &I_{OUT} = 1 \text{ mA to 1 A}; \\ &-40 \text{ °C} \leq T_{J} \leq 85 \text{ °C} \end{split}$	-1.0		+1.0	%
$\Delta V_{ ext{OUT-IN}}$	V _{IN} static regulation	$V_{OUT(NOM)} + 0.3 \text{ V} \le V_{IN} \le 5.0 \text{ V},$ $T_{J} = 25 \text{ °C}$		0.01	0.1	% / V
$\Delta V_{ ext{OUT-BIAS}}$	V _{BIAS} line regulation	$3.0 \text{ V or V}_{\text{OUT(NOM)}} + 1.6 \text{ V (whichever is greater)} \leq V_{\text{BIAS}} \leq 5.5 \text{ V,}$ $T_{\text{J}} = 25 ^{\circ}\text{C}$		0.01	0.1	% / V
$\Delta V_{OUT\text{-LOAD}}$	Static load regulation	I _{OUT} = 1 mA to 1 A, T _J = 25 °C		1.0	2.0	mV
V _{DROP}	Dropout voltage	I _{OUT} = 1 A; V _{OUT} = 97% of V _{OUT(NOM)}		40	80	mV
V _{DROP-BIAS}	Bias dropout voltage (1)	V _{BIAS} =V _{IN} ; I _{OUT} = 1 A; V _{OUT} = 97% of V _{OUT} (NOM)		1.05	1.5	V
		V _{OUT} = 90% V _{OUT(NOM)}	1.5	2	2.6	
I _{LIM}	Output current limit	V _{OUT} = 90% V _{OUT(NOM)} , −30 °C ≤ T _J ≤ 85 °C	1.55	2	2.6	Α
I _{FB} , I _{SNS}	FB/SNS pin operating current			0.1	0.5	μA
I _{BIAS}	VBIAS operating current	V _{BIAS} = 3.0 V, I _{OUT} = 0 mA		35	50	μA
I _{Standby-BIAS}	V _{BIAS} standby current	V _{BIAS} input current in OFF mode: V _{EN} = GND		0.1	1	μA
I _{Standby-IN}	V _{IN} standby current	V _{IN} input current in OFF mode: V _{EN} = GND		0.1	1	μA
V-··	Enable input logic low				0.4	V
V _{EN}	Enable input logic high		0.9			V
I _{EN}	Enable pin input current	$V_{EN} = V_{BIAS} = 5.5 \text{ V}$		0.2	1	μΑ

DS13123 - Rev 6 page 6/21

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
T _{ON}	Turn-on time	From assertion of V _{EN} to V _{OUT} = 98% V _{OUT(NOM)} , V _{OUT(NOM)} = 1.0 V		160		μs
SVR _{IN-ADJ}	V _{IN} supply voltage rejection (adj version)	$V_{IN} = V_{OUT(NOM)} + 0.5 \text{ V} + /- V_{RIPPLE}$ $V_{RIPPLE} = 0.2 \text{ V}; \text{ freq=1 kHz}$ $I_{OUT} = 10 \text{ mA}; V_{OUT(NOM)} = 1.0 \text{ V}$		70		dB
SVR _{BIAS-ADJ}	V _{BIAS} supply voltage rejection (adj version)	$V_{BIAS} = 3.0 \text{ V +/- } V_{RIPPLE},$ $V_{RIPPLE} = 0.2 \text{ V; freq=1 kHz;}$ $V_{IN} = V_{OUT(NOM)} + 0.5 \text{ V}$ $I_{OUT} = 10 \text{ mA; } V_{OUT(NOM)} = 1.0 \text{ V}$		85		dB
e _{N-ADJ}	Output noise voltage (adj version)	V _{IN} = V _{OUT(NOM)} + 0.5 V; V _{OUT(NOM)} = 1.0 V; 10 Hz to 100 kHz, I _{OUT} = 1 mA		35 x V _{OUT} / V _{REF}		μV _{RMS}
SVR _{IN-FIX}	VIN supply voltage rejection (adj version)	$V_{IN} = V_{OUT(NOM)} + 0.5 \text{ V} + /- V_{RIPPLE}$ $V_{RIPPLE} = 0.2 \text{ V}; \text{ freq=1 kHz}$ $I_{OUT} = 10 \text{ mA}; V_{OUT(NOM)} = 1.8 \text{ V}$		75		dB
SVR _{BIAS-FIX}	V _{BIAS} supply voltage rejection (fixed versions)	V_{BIAS} = 4.0 V +/- V_{RIPPLE} V_{RIPPLE} = 0.2 V; freq=1 kHz; V_{IN} = $V_{OUT(NOM)}$ + 0.5 V I_{OUT} = 10 mA; $V_{OUT(NOM)}$ = 1.8 V		85		dB
e _{N-FIX}	Output noise voltage (fixed versions)	V _{IN} = V _{OUT(NOM)} + 0.5 V; V _{OUT(NOM)} = 1.0 V; 10 Hz to 100 kHz, I _{OUT} = 1 mA		27		μV _{RMS}
R _{ON}	Output voltage discharge MOSFET			150		Ω
T _{SHDN}	Thermal shutdown			160		°C
' SHUN	Hysteresis			20		

^{1.} Not applicable to fixed versions with $V_{OUT(NOM)}$ < 2.0 V.

DS13123 - Rev 6 page 7/21

6 Application information

6.1 V_{BIAS} pin voltage requirements

The bias input is the supply of the internal driving and control circuitry. In order to assure a proper biasing of the N-channel power element, the bias pin must have a minimum voltage of 3.0 V and be 1.6 V (typically) higher than the output. If V_{IN} supply voltage meets these requirements then the bias pin can be tied to V_{IN} .

6.2 Output discharge function

The LD57100 integrates a MOSFET connected between V_{OUT} and GND. This transistor is activated when the EN pin goes to low logic level and has the function to quickly discharge the output capacitor when the device is disabled by the user.

6.3 Short-circuit and current limitation

The LD57100 is protected against short-circuit on the output. The load current is limited to the maximum value of I_{LIM} when V_{OLIT} is equal to 90% of its nominal value.

6.4 V_{OUT} setting (adjustable version)

In the LD57100 adjustable version, the desired output voltage is set according to the formula below:

$$V_{OUT} = V_{REF} \times \left(1 + \frac{R_1}{R_2}\right) \tag{1}$$

where R_2 cannot be higher than 500 k Ω .

Please, refer to Figure 5. Typical application for adjustable version for R₁ and R₂ connections.

6.5 Thermal protection

Thermal protection works when the junction temperature reaches 160 °C typical. At this point, the output of the IC shuts down. As soon as the junction temperature falls below the thermal hysteresis value, the device starts working again.

In order to calculate the maximum power that the device can dissipate, keeping the junction temperature below the maximum operating value, the following formula is used:

$$P_{DMAX} = \left(85 - T_{AMB}\right) / R_{th/A} \tag{2}$$

6.6 Input and output capacitors

The LD57100 requires external capacitors to assure the regulator control loop stability.

Any good quality ceramic capacitor can be used, however the X5R and the X7R are suggested since they guarantee a very stable combination of capacitance and ESR all over the temperature range.

It is recommended to place the input/output capacitors as close as possible to the relative pins. The LD57100 requires a V_{IN} capacitor with a minimum value of 1 μ F and a V_{BIAS} capacitor of 100 nF minimum. These capacitors must be placed as close as possible to the input pins of the device and returned to a clean analog ground.

The control loop is designed to be stable with any good quality output ceramic capacitor (such as: X5R/X7R types) with a minimum value of 1.0 μ F and equivalent series resistance in the [3 – 300 m Ω] range. It is important to highlight that the output capacitor must maintain its capacitance and ESR in the stable region over the full operating temperature, load and input voltage ranges, to assure stability. Therefore, capacitance and ESR variations must be taken into account in the design phase to be sure that the device works in the expected stability region.

DS13123 - Rev 6 page 8/21

7 Typical characteristics

 C_{IN} = 1 μ F; C_{OUT} = 10 μ F, T_J = 25 $^{\circ}$ C unless otherwise specified.

Figure 8. V_{OUT} vs. temperature (V_{BIAS}@3 V, V_{IN}@V_{OUT} +0.3 V@1 mA)

Figure 9. V_{OUT} vs. temperature (V_{BIAS}@3 V, V_{IN}@V_{OUT} +0.3 V@1 A)

Figure 10. V_{in_line} vs. temp. $(V_{OUT(NOM)} + 0.3 \text{ V} \le V_{IN} \le 5.0 \text{ V})$

Figure 11. V_{BIAS_line} vs. temp. (3.0 V or $V_{OUT(NOM)}$ + 1.6 V, whichever is greater, $\leq V_{BIAS} \leq 5.5$ V)

DS13123 - Rev 6 page 9/21

Figure 12. Load vs. temperature $I_{OUT} = 1 \text{ mA to } 1 \text{ A}$ 3.0 2.5 2.0 2.0 [2.0] 1.5 Cod 1.0 0.0 50 -50 -25 0 25 75 100 125 150

T [°C]

DS13123 - Rev 6 page 10/21

 V_{OUT} = 0.5 V, C_{IN} = 4.7 μ F, C_{OUT} = 10 μ F, C_{BIAS} = 1 μ F, t_{rise}/t_{fall} = 5 μ s

DS13123 - Rev 6 page 11/21

Figure 26. Discharge_RMOS vs temperature

DS13123 - Rev 6 page 12/21

8 Package information

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK packages, depending on their level of environmental compliance. ECOPACK specifications, grade definitions and product status are available at: www.st.com. ECOPACK is an ST trademark.

8.1 Flip Chip6 (0.8x1.2 mm) package information

Figure 27. Flip Chip6 (0.8x1.2 mm) package outline

DS13123 - Rev 6 page 13/21

Table 8	Elin	Chine	/n s	2v1 2	mm	nackado	mechanical	data
Table o.	LIID	CHIDO	UU.	DX I.2		Dackage	IIIeciiaiiicai	uala

Symbol	Milimeters					
Symbol	Min.	Тур.	Max.			
Α	0.277	0.315	0.361			
A1	0.045	0.060	0.075			
A2	0.205	0.230	0.255			
A3	0.022	0.025	0.028			
b	0.210	0.240	0.270			
D	1.155	1.175	1.195			
E	0.755	0.775	0.795			
D1		0.8 BSC	0.8 BSC			
E1		0.4 BSC				
е		0.4 BSC				
SE		0.2 BSC				
aaa						
bbb	0.06					
ccc		0.03				
ddd		0.015				

Figure 28. Flip Chip6 (0.8x1.2 mm) recommended footprint

DS13123 - Rev 6 page 14/21

8.2 Flip Chip6 (0.8x1.2 mm) packing information

- 2.00 ±0.05 4.00 ±0.10 Ø 1.50 +0.10 4.00 ±0.10 -1.75 ±0.10 8.00 +0.30 -0.10 3.50 ±0.05 \oplus $\Theta^ \oplus$ 0 Ø 0.40 ±0.05 0.02 RAISED CROSS-BAR-.20 ±0.02 — 3° MAX 3° MAX 0.85 ±0.05 0.46 ±0.05 1.26 ±0.05

Figure 29. Flip Chip6 (0.8x1.2 mm) carrier tape outline

DS13123 - Rev 6 page 15/21

9 Ordering information

Table 9. Order codes

Order code	V _{OUT}	Marking
LD57100J100R	1.00 V	JB
LD57100J105R	1.05 V	JC
LD57100J800R	0.8 V	JF
LD57100J110R	1.10 V	JD
LD57100J120R	1.20 V	JE
LD57100J330R	3.3 V	JT
LD57100JR	Adjustable	JA

DS13123 - Rev 6 page 16/21

Revision history

Table 10. Document revision history

Date	Version	Changes
30-Oct-2019	1	Initial release.
20-Dec-2019	2	Updated Figure 2. Block diagram adjustable version, Figure 22. V_{BIAS} PSRR vs frequency and Figure 23. V_{IN} PSRR vs frequency .
20-Dec-2019	2	Updated Table 3. Absolute maximum ratings and Table 6. Electrical characteristics.
20-Jan-2020	3	Updated Table 6. Electrical characteristics and Table 8. Order codes.
22-Feb-2021	4	Added new order code LD57100J120R in Table 9. Order codes.
21-Apr-2021	5	Added new Table 6. Recommended operating conditions. Updated V_{REF} and V_{OUT} values in Table 7. Electrical characteristics.
18-Jul-2023	6	Added new order code LD57100J330R in Table 9

DS13123 - Rev 6 page 17/21

Contents

1	Diag	grams	2
2		configuration	
3		ical application circuits	
4		solute maximum ratings	
5		ctrical characteristics	
6		olication information	
	6.1	V _{BIAS} pin voltage requirements	8
	6.2	Output discharge function	8
	6.3	Short-circuit and current limitation	8
	6.4	V _{OUT} setting (adjustable version)	8
	6.5	Thermal protection	8
	6.6	Input and output capacitors	8
7	Турі	ical characteristics	9
8	Pac	kage information	13
	8.1	Flip Chip6 (0.8x1.2 mm) package information	13
	8.2	Flip Chip6 (0.8x1.2 mm) packing information	15
9	Ord	lering information	16
Re	vision	history	17

List of tables

Table 1.	Pin description	3
Table 2.	Typical application components	4
Table 3.	Absolute maximum ratings	5
Table 4.	Thermal data	5
Table 5.	ESD performance	5
Table 6.	Recommended operating conditions	5
Table 7.	Electrical characteristics	6
Table 8.	Flip Chip6 (0.8x1.2 mm) package mechanical data	4
	Order codes	
Table 10.	Document revision history	7

List of figures

Figure 1.	Block diagram fixed version	. 2
Figure 2.	Block diagram adjustable version	. 2
Figure 3.	Pin connection (top view)	. 3
Figure 4.	Typical application for fixed version	. 4
Figure 5.	Typical application for adjustable version	. 4
Figure 6.	V _{IN} drop vs. temperature	. 9
Figure 7.	UVLO vs. temperature	. 9
Figure 8.	V _{OUT} vs. temperature (V _{BIAS} @3 V, V _{IN} @V _{OUT} +0.3 V@1 mA)	. 9
Figure 9.	V _{OUT} vs. temperature (V _{BIAS} @3 V, V _{IN} @V _{OUT} +0.3 V@1 A)	. 9
Figure 10.	V_{in_line} vs. temp. $(V_{OUT(NOM)} + 0.3 \text{ V} \le V_{IN} \le 5.0 \text{ V})$	
Figure 11.	V _{BIAS_line} vs. temp. (3.0 V or V _{OUT(NOM)} + 1.6 V, whichever is greater, ≤ V _{BIAS} ≤ 5.5 V)	
Figure 12.	Load vs. temperature	
Figure 13.	I _{SENSE} vs. temperature	
Figure 14.	I _{BIAS} vs. temperature	10
Figure 15.	Enable high vs. temperature (V _{BIAS} min.)	10
Figure 16.	I _{ENABLE} vs. temperature	10
Figure 17.	Ground pin current vs. load current	10
Figure 18.	Input voltage turn-on (V_{IN} = from 0 V to 0.8 V, V_{BIAS} = 3 V, V_{EN} = 0.8 V, I_{OUT} = 1 A)	11
Figure 19.	Load transient (V _{IN} = 0.8 V, V _{BIAS} = 3 V, V _{EN} = 1 V, I _{OUT} from 1 mA to 1 A)	11
Figure 20.	Line transient vs. input voltage (V _{IN} = from 0.8 V to 1.08 V, V _{BIAS} = 3 V, V _{EN} = 1 V, I _{OUT} 100 mA)	11
Figure 21.	Line transient vs. BIAS voltage (V_{IN} = 0.8 V to 1.08 V, V_{BIAS} = from 2.8 to 3.8 V, V_{EN} = 1 V, I_{OUT} = 100 mA)	11
Figure 22.	V _{BIAS} PSRR vs. frequency	11
Figure 23.	V _{IN} PSRR vs. frequency	11
Figure 24.	Output voltage spectral noise density vs. frequency (V _{OUT} = 1 V adj.)	12
Figure 25.	Output voltage spectral noise density vs. frequency	12
Figure 26.	Discharge_RMOS vs temperature	
Figure 27.	Flip Chip6 (0.8x1.2 mm) package outline	13
Figure 28.	Flip Chip6 (0.8x1.2 mm) recommended footprint	14
Figure 29.	Flip Chip6 (0.8x1.2 mm) carrier tape outline	15

DS13123 - Rev 6 page 20/21

IMPORTANT NOTICE - READ CAREFULLY

STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST's terms and conditions of sale in place at the time of order acknowledgment.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of purchasers' products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. For additional information about ST trademarks, refer to www.st.com/trademarks. All other product or service names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2023 STMicroelectronics – All rights reserved

DS13123 - Rev 6 page 21/21