Math 415 - Lecture 21 Networks and linear algebra

Wednesday October 14th 2015

Textbook reading: Chapter 2.5.

Textbook reading: Chapter 2.5.

Suggested practice exercises: Chapter 2.5: 1, 2, 6.

Textbook reading: Chapter 2.5.

Suggested practice exercises: Chapter 2.5: 1, 2, 6.

Strang lecture: Lecture 12: Graphs, Networks, Incidence Matrices

Review

•
$$\dim(V) + \dim(V^{\perp}) = \dim(\mathbb{R}^n) = n$$
.

of V.

- $\dim(V) + \dim(V^{\perp}) = \dim(\mathbb{R}^n) = n$.
- $Col(A)^{\perp} = Nul(A^T)$.

- $\dim(V) + \dim(V^{\perp}) = \dim(\mathbb{R}^n) = n$.
- $\operatorname{Col}(A)^{\perp} = \operatorname{Nul}(A^{T}).$
- $\operatorname{Nul}(A)^{\perp} = \operatorname{Col}(A^T)$.

Directions and Equations

Directions and Equations. Let V be a subspace of \mathbb{R}^n . Then there are *two* ways of describing V.

By directions: If V = Col(A) then you know that any vector \mathbf{v} in V is a linear combination of the columns of A,

By directions: If V = Col(A) then you know that any vector \mathbf{v} in V is a linear combination of the columns of A,

By equations: If V = Nul(B) then you know that any \mathbf{v} in V satisfies the equations $\mathbf{R_i^T} \cdot \mathbf{v} = 0$, for all rows $\mathbf{R_i}$ of B.

By equations: If V = Nul(B) then you know that any \mathbf{v} in V satisfies the equations $\mathbf{R_i^T} \cdot \mathbf{v} = 0$, for all rows $\mathbf{R_i}$ of B.

By equations: If V = Nul(B) then you know that any \mathbf{v} in V satisfies the equations $\mathbf{R_i^T} \cdot \mathbf{v} = 0$, for all rows $\mathbf{R_i}$ of B.

Both descriptions are useful, and we will often switch between them, to answer any particular question we want to answer. To see if $A\mathbf{x} = \mathbf{b}$ has a solution, check that

Direct approach: $\mathbf{b} \in Col(A)$

Indirect approach: $\mathbf{b} \perp Nul(A^T)$

Indirect approach: $\mathbf{b} \perp Nul(A^T)$

Indirect approach: $\mathbf{b} \perp Nul(A^T)$

The indirect approach means:

Indirect approach: $\mathbf{b} \perp Nul(A^T)$

The indirect approach means:

if
$$\underbrace{\mathbf{y}^T A = \mathbf{0}}_{\mathbf{y} \in \mathit{Nul}(A^T)}$$
, then $\underbrace{\mathbf{y}^T \mathbf{b} = \mathbf{0}}_{\mathbf{b} \perp \mathbf{y}}$.

Let
$$A = \begin{bmatrix} 1 & 2 \\ 3 & 1 \end{bmatrix}$$

Let $A = \begin{bmatrix} 1 & 2 \\ 3 & 1 \\ 0 & 5 \end{bmatrix}$. For which **b** does $A\mathbf{x} = \mathbf{b}$ have a solution?

Write augmented matrix, get Echelon form:

$$\begin{bmatrix} 1 & 2 & b_1 \\ 3 & 1 & b_2 \\ 0 & 5 & b_3 \end{bmatrix} \longrightarrow \begin{bmatrix} 1 & 2 & b_1 \\ 0 & -5 & -3b_1 + b_2 \\ 0 & 0 & -3b_1 + b_2 + b_3 \end{bmatrix}$$

When is this consistent?

Write augmented matrix, get Echelon form:

$$\begin{bmatrix} 1 & 2 & b_1 \\ 3 & 1 & b_2 \\ 0 & 5 & b_3 \end{bmatrix} \longrightarrow \begin{bmatrix} 1 & 2 & b_1 \\ 0 & -5 & -3b_1 + b_2 \\ 0 & 0 & -3b_1 + b_2 + b_3 \end{bmatrix}$$

When is this consistent? Whenever $-3b_1 + b_2 + b_3 = 0$.

Indirect approach says: $A\mathbf{x} = \mathbf{b}$ solvable $\iff \mathbf{b} \perp Nul(A^T)$.

Find basis for $Nul(A^T)$:

$$\begin{bmatrix} 1 & 3 & 0 & 0 \\ 2 & 1 & 5 & 0 \end{bmatrix} \longrightarrow \begin{bmatrix} 1 & 0 & 3 & 0 \\ 0 & 1 & -1 & 0 \end{bmatrix}$$

Indirect approach says: $A\mathbf{x} = \mathbf{b}$ solvable $\iff \mathbf{b} \perp Nul(A^T)$.

Find basis for $Nul(A^T)$:

$$\begin{bmatrix} 1 & 3 & 0 & 0 \\ 2 & 1 & 5 & 0 \end{bmatrix} \longrightarrow \begin{bmatrix} 1 & 0 & 3 & 0 \\ 0 & 1 & -1 & 0 \end{bmatrix}$$

so
$$Nul(A^T)$$
 has basis $\begin{bmatrix} -3\\1\\1 \end{bmatrix}$

Indirect approach says: $A\mathbf{x} = \mathbf{b}$ solvable $\iff \mathbf{b} \perp Nul(A^T)$. Find basis for $Nul(A^T)$:

$$\begin{bmatrix} 1 & 3 & 0 & 0 \\ 2 & 1 & 5 & 0 \end{bmatrix} \longrightarrow \begin{bmatrix} 1 & 0 & 3 & 0 \\ 0 & 1 & -1 & 0 \end{bmatrix}$$

so
$$Nul(A^T)$$
 has basis $\begin{bmatrix} -3\\1\\1 \end{bmatrix}$

Need $\mathbf{b} \perp Nul(A^T)$: $A\mathbf{x} = \mathbf{b}$ is solvable \iff

Indirect approach says: $A\mathbf{x} = \mathbf{b}$ solvable $\iff \mathbf{b} \perp Nul(A^T)$. Find basis for $Nul(A^T)$:

$$\begin{bmatrix} 1 & 3 & 0 & 0 \\ 2 & 1 & 5 & 0 \end{bmatrix} \longrightarrow \begin{bmatrix} 1 & 0 & 3 & 0 \\ 0 & 1 & -1 & 0 \end{bmatrix}$$

so
$$Nul(A^T)$$
 has basis $\begin{bmatrix} -3\\1\\1 \end{bmatrix}$

Need
$$\mathbf{b} \perp Nul(A^T)$$
: $A\mathbf{x} = \mathbf{b}$ is solvable $\iff \mathbf{b} \cdot \begin{bmatrix} -3\\1\\1 \end{bmatrix} = 0$

Indirect approach says: $A\mathbf{x} = \mathbf{b}$ solvable $\iff \mathbf{b} \perp Nul(A^T)$.

Find basis for $Nul(A^T)$:

$$\begin{bmatrix} 1 & 3 & 0 & 0 \\ 2 & 1 & 5 & 0 \end{bmatrix} \longrightarrow \begin{bmatrix} 1 & 0 & 3 & 0 \\ 0 & 1 & -1 & 0 \end{bmatrix}$$

so
$$Nul(A^T)$$
 has basis $\begin{bmatrix} -3\\1\\1 \end{bmatrix}$

Need
$$\mathbf{b} \perp Nul(A^T)$$
: $A\mathbf{x} = \mathbf{b}$ is solvable $\iff \mathbf{b} \cdot \begin{bmatrix} -3 \\ 1 \\ 1 \end{bmatrix} = 0$

This is the same condition as before!

Application: Directed graphs

Set up

Set up

 Graphs appear in network analysis (e.g. internet) or circuit analysis.

- Graphs appear in network analysis (e.g. internet) or circuit analysis.
- Arrow indicates direction of flow

- Graphs appear in network analysis (e.g. internet) or circuit analysis.
- Arrow indicates direction of flow
- No edges from a node to itself

Set up

Definition

Let G be a graph with m edges and n nodes.

Definition

Let G be a graph with m edges and n nodes. The edge-node incidence matrix of G is the $m \times n$ matrix A with

$$A_{i,j} = \left\{ egin{array}{ll} -1, & ext{if edge i leaves node j} \\ +1, & ext{if edge i enters node j} \\ 0, & ext{otherwise} \end{array}
ight.$$

Definition

Let G be a graph with m edges and n nodes. The edge-node incidence matrix of G is the $m \times n$ matrix A with

$$A_{i,j} = \begin{cases} -1, & \text{if edge } i \text{ leaves node } j \\ +1, & \text{if edge } i \text{ enters node } j \\ 0, & \text{otherwise} \end{cases}$$

So each row (describing an edge=arrow) contains a single -1 (the tail of the arrow), a single +1 (the head of the arrow), and for the rest zeroes.

Example

Give the edge-node incidence matrix of our graph.

Example

Give the edge-node incidence matrix of our graph.

Solution

$$\begin{bmatrix} -1 & 1 & 0 & 0 \\ -1 & 0 & 1 & 0 \\ 0 & -1 & 1 & 0 \\ 0 & -1 & 0 & 1 \\ 0 & 0 & -1 & 1 \end{bmatrix}$$

Meaning of the null space

Theorem

dim(Nul(A)) is the number of connected subgraphs.

Theorem

dim(Nul(A)) is the number of connected subgraphs.

Theorem

dim(Nul(A)) is the number of connected subgraphs.

• For large graphs, disconnection may not be visually apparent

Theorem

dim(Nul(A)) is the number of connected subgraphs.

- For large graphs, disconnection may not be visually apparent
- But, we can always find out by computing dim(Nul(A)) using Gaussian elimination!

The ${\bf x}$ in $A{\bf x}$ assigns values to each node.

The x in Ax assigns values to each node. (Think: assigning potentials)

The x in Ax assigns values to each node. (Think: assigning potentials)

$$A\mathbf{x} = \begin{bmatrix} -1 & 1 & 0 & 0 \\ -1 & 0 & 1 & 0 \\ 0 & -1 & 1 & 0 \\ 0 & -1 & 0 & 1 \\ 0 & 0 & -1 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix} = \begin{bmatrix} -x_1 + x_2 \\ -x_1 + x_3 \\ -x_2 + x_3 \\ -x_2 + x_4 \\ -x_3 + x_4 \end{bmatrix}$$

The x in Ax assigns values to each node. (Think: assigning potentials)

$$A\mathbf{x} = \begin{bmatrix} -1 & 1 & 0 & 0 \\ -1 & 0 & 1 & 0 \\ 0 & -1 & 1 & 0 \\ 0 & -1 & 0 & 1 \\ 0 & 0 & -1 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix} = \begin{bmatrix} -x_1 + x_2 \\ -x_1 + x_3 \\ -x_2 + x_3 \\ -x_2 + x_4 \\ -x_3 + x_4 \end{bmatrix}$$

ldea

$$Ax = 0 \iff$$

Idea

 $Ax = 0 \iff$ nodes connected by an edge are assigned the same value.

ldea

 $Ax = 0 \iff$ nodes connected by an edge are assigned the same value.

Idea

 $Ax = 0 \iff$ nodes connected by an edge are assigned the same value.

For our graph, Nul(A) has basis

ldea

 $Ax = 0 \iff$ nodes connected by an edge are assigned the same value.

For our graph, Nul(A) has basis $\begin{bmatrix} 1\\1\\1\\1 \end{bmatrix}$

Idea

 $Ax = 0 \iff$ nodes connected by an edge are assigned the same value.

For our graph, Nul(A) has basis $\begin{bmatrix} 1\\1\\1\\1 \end{bmatrix}$ (i.e. $x_1=x_2=x_3=x_4$.)

Idea

 $Ax = 0 \iff$ nodes connected by an edge are assigned the same value.

For our graph, Nul(A) has basis $\begin{bmatrix} 1\\1\\1\\1 \end{bmatrix}$ (i.e. $x_1=x_2=x_3=x_4$.)

This always happens as long as G is connected.

Example

Give a basis for Nul(A) for this graph:

Example

Give a basis for Nul(A) for this graph:

If Ax = 0, then

$$\underbrace{x_1 = x_3}_{\text{connected by an edge}}$$
 and $\underbrace{x_2 = x_4}_{\text{connected by an edge}}$

If Ax = 0, then

$$\underbrace{x_1 = x_3}_{\text{connected by an edge}}$$
 and $\underbrace{x_2 = x_4}_{\text{connected by an edge}}$

So, Nul(A) has basis:

If Ax = 0, then

connected by an edge connected by an edge connected by an edge connected by an edge
$$X_2 = X_4$$

So, $Nul(A)$ has basis:
$$\begin{bmatrix} 1 \\ 0 \\ 1 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 1 \\ 0 \\ 1 \end{bmatrix}$$

Just to make sure, the edge-node incidence matrix is:

$$A = \begin{bmatrix} -1 & 0 & 1 & 0 \\ 0 & -1 & 0 & 1 \end{bmatrix}$$

Meaning of left null space

The \mathbf{y} in $\mathbf{y}^T A$ is assigning values to each edge.

$$A = \begin{bmatrix} -1 & 1 & 0 & 0 \\ -1 & 0 & 1 & 0 \\ 0 & -1 & 1 & 0 \\ 0 & -1 & 0 & 1 \\ 0 & 0 & -1 & 1 \end{bmatrix}, A^T = \begin{bmatrix} 0 & 0 & 0 \\ 0 & -1 & 0 & 1 \\ 0 & 0 & -1 & 1 \end{bmatrix}$$

$$A = \begin{bmatrix} -1 & 1 & 0 & 0 \\ -1 & 0 & 1 & 0 \\ 0 & -1 & 1 & 0 \\ 0 & -1 & 0 & 1 \\ 0 & 0 & -1 & 1 \end{bmatrix}, A^{T} = \begin{bmatrix} -1 & -1 & 0 & 0 & 0 \\ 1 & 0 & -1 & -1 & 0 \\ 0 & 1 & 1 & 0 & -1 \\ 0 & 0 & 0 & 1 & 1 \end{bmatrix}$$

$$A = \begin{bmatrix} -1 & 1 & 0 & 0 \\ -1 & 0 & 1 & 0 \\ 0 & -1 & 1 & 0 \\ 0 & -1 & 0 & 1 \\ 0 & 0 & -1 & 1 \end{bmatrix}, A^{T} = \begin{bmatrix} -1 & -1 & 0 & 0 & 0 \\ 1 & 0 & -1 & -1 & 0 \\ 0 & 1 & 1 & 0 & -1 \\ 0 & 0 & 0 & 1 & 1 \end{bmatrix}$$

$$A^T \mathbf{y} =$$

$$A = \begin{bmatrix} -1 & 1 & 0 & 0 \\ -1 & 0 & 1 & 0 \\ 0 & -1 & 1 & 0 \\ 0 & -1 & 0 & 1 \\ 0 & 0 & -1 & 1 \end{bmatrix}, A^{T} = \begin{bmatrix} -1 & -1 & 0 & 0 & 0 \\ 1 & 0 & -1 & -1 & 0 \\ 0 & 1 & 1 & 0 & -1 \\ 0 & 0 & 0 & 1 & 1 \end{bmatrix}$$

$$A^{T}\mathbf{y} = \begin{bmatrix} -1 & -1 & 0 & 0 & 0 \\ 1 & 0 & -1 & -1 & 0 \\ 0 & 1 & 1 & 0 & -1 \\ 0 & 0 & 0 & 1 & 1 \end{bmatrix} \begin{vmatrix} y_{1} \\ y_{2} \\ y_{3} \\ y_{4} \\ y_{5} \end{vmatrix} = \begin{bmatrix} -y_{1} - y_{2} \\ y_{1} - y_{3} - y_{4} \\ y_{2} + y_{3} - y_{5} \\ y_{4} + y_{5} \end{vmatrix}$$

$$= \begin{bmatrix} -y_1 - y_2 \\ y_1 - y_3 - y_4 \\ y_2 + y_3 - y_5 \end{bmatrix}$$

$$A^{T}\mathbf{y} = \begin{bmatrix} -1 & -1 & 0 & 0 & 0 \\ 1 & 0 & -1 & -1 & 0 \\ 0 & 1 & 1 & 0 & -1 \\ 0 & 0 & 0 & 1 & 1 \end{bmatrix} \begin{bmatrix} y_1 \\ y_2 \\ y_3 \\ y_4 \\ y_5 \end{bmatrix} = \begin{bmatrix} -y_1 - y_2 \\ y_1 - y_3 - y_4 \\ y_2 + y_3 - y_5 \\ y_4 + y_5 \end{bmatrix}$$

$$A^{T}\mathbf{y} = \begin{bmatrix} -1 & -1 & 0 & 0 & 0 \\ 1 & 0 & -1 & -1 & 0 \\ 0 & 1 & 1 & 0 & -1 \\ 0 & 0 & 0 & 1 & 1 \end{bmatrix} \begin{bmatrix} y_1 \\ y_2 \\ y_3 \\ y_4 \\ y_5 \end{bmatrix} = \begin{bmatrix} -y_1 - y_2 \\ y_1 - y_3 - y_4 \\ y_2 + y_3 - y_5 \\ y_4 + y_5 \end{bmatrix}$$

Idea

So: $A^T \mathbf{y} = 0 \iff$ at each node, (directed) values assigned to edges add to zero.

$$A^{T}\mathbf{y} = \begin{bmatrix} -1 & -1 & 0 & 0 & 0 \\ 1 & 0 & -1 & -1 & 0 \\ 0 & 1 & 1 & 0 & -1 \\ 0 & 0 & 0 & 1 & 1 \end{bmatrix} \begin{vmatrix} y_1 \\ y_2 \\ y_3 \\ y_4 \\ y_5 \end{vmatrix} = \begin{bmatrix} -y_1 - y_2 \\ y_1 - y_3 - y_4 \\ y_2 + y_3 - y_5 \\ y_4 + y_5 \end{bmatrix}$$

Idea

So: $A' y = 0 \iff$ at each node, (directed) values assigned to edges add to zero.

When thinking of currents, this is Kirchhoff's first law: at each node, incoming and outgoing currents balance. Flow in = Flow out.

What is the simplest way to balance current?

What is the simplest way to balance current? Assign current in a loop!

What is the simplest way to balance current? Assign current in a loop! We have two loops:

$$\textit{edge}_1 \rightarrow \textit{edge}_3 \rightarrow -\textit{edge}_2 \text{ and } \textit{edge}_3 \rightarrow \textit{edge}_5 \rightarrow -\textit{edge}_4$$

Solve $A^T \mathbf{y} = 0$ for our graph. Recall

$$A^{T} = \begin{bmatrix} -1 & -1 & 0 & 0 & 0 \\ 1 & 0 & -1 & -1 & 0 \\ 0 & 1 & 1 & 0 & -1 \\ 0 & 0 & 0 & 1 & 1 \end{bmatrix}$$

Solve $A^T \mathbf{y} = 0$ for our graph. Recall

$$A^{T} = \begin{bmatrix} -1 & -1 & 0 & 0 & 0 \\ 1 & 0 & -1 & -1 & 0 \\ 0 & 1 & 1 & 0 & -1 \\ 0 & 0 & 0 & 1 & 1 \end{bmatrix}$$

Solution

Get RREF:

$$\begin{bmatrix} -1 & -1 & 0 & 0 & 0 \\ 1 & 0 & -1 & -1 & 0 \\ 0 & 1 & 1 & 0 & -1 \\ 0 & 0 & 0 & 1 & 1 \end{bmatrix} \xrightarrow{RREF} \begin{bmatrix} 1 & 0 & -1 & 0 & 1 \\ 0 & 1 & 1 & 0 & -1 \\ 0 & 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix}$$

The parametric solution is:
$$\begin{bmatrix} y_3 - y_5 \\ -y_3 + y_5 \\ y_3 \\ -y_5 \\ y_5 \end{bmatrix}$$

So a basis for
$$Nul(A^T)$$
 is: $\begin{bmatrix} 1 \\ -1 \\ 1 \\ 0 \\ -1 \end{bmatrix}$, $\begin{bmatrix} -1 \\ 1 \\ 0 \\ -1 \end{bmatrix}$

Observation: These two basis vectors correspond to loops.

The parametric solution is:
$$\begin{bmatrix} y_3 - y_5 \\ -y_3 + y_5 \\ y_3 \\ -y_5 \\ y_5 \end{bmatrix}$$

So a basis for $Nul(A^T)$ is: $\begin{bmatrix} 1 \\ -1 \\ 1 \\ 0 \end{bmatrix}$, $\begin{bmatrix} 1 \\ 1 \\ -1 \end{bmatrix}$

Observation: These two basis vectors correspond to loops.

Note: get the "simpler" loop $\begin{vmatrix} 0 \\ 0 \\ 1 \\ -1 \end{vmatrix}$ as $\begin{vmatrix} 1 \\ -1 \\ 1 \\ 0 \\ -1 \end{vmatrix} + \begin{vmatrix} -1 \\ 1 \\ 0 \\ -1 \end{vmatrix}$

Theorem

In general, $dim(Nul(A^T))$ is the number of (independent) loops.

Theorem

In general, $dim(Nul(A^T))$ is the number of (independent) loops.

Theorem

In general, $dim(Nul(A^T))$ is the number of (independent) loops.

For large graphs, we now have a nice way to computationally find all loops.

Summary/Outlook

* We described a network by using a matrix A.

* The Null space *Nul(A)* has as dimension the number of connected components of the network.

- * The Null space Nul(A) has as dimension the number of connected components of the network.
- * The Left Null Space $Nul(A^T)$ has as dimension the number of independent loops.

- * The Null space Nul(A) has as dimension the number of connected components of the network.
- * The Left Null Space $Nul(A^T)$ has as dimension the number of independent loops.
- * The column space Col(A) and row space $Col(A^T)$ also have "geometric" meaning in terms of the network, see the book and Strang's lecture.

Practice problems

Problem 1

Give a basis for $Nul(A^T)$ for the following graph:

Example

Give a basis for $Nul(A^T)$ for the following graph:

Solution

This graph contains no loops, so

Example

Give a basis for $Nul(A^T)$ for the following graph:

Solution

This graph contains no loops, so $Nul(A^T) = ??$.

Example

Give a basis for $Nul(A^T)$ for the following graph:

Solution

This graph contains no loops, so $Nul(A^T) = ??.$ $Nul(A^T)$ has the empty set as basis.

Example

Give a basis for $Nul(A^T)$ for the following graph:

Solution

This graph contains no loops, so $Nul(A^T) = ???. Nul(A^T)$ has the empty set as basis.

To check, the incidence matrix is :

Give a basis for $Nul(A^T)$ for the following graph:

Solution

This graph contains no loops, so $Nul(A^T) = ??.$ $Nul(A^T)$ has the empty set as basis.

To check, the incidence matrix is :

$$A = \begin{bmatrix} -1 & 0 & 1 & 0 \\ 0 & -1 & 0 & 1 \end{bmatrix}$$

Practice

Give a basis for $Nul(A^T)$ for the following graph:

Solution

This graph contains no loops, so $Nul(A^T) = ??. Nul(A^T)$ has the empty set as basis.

To check, the incidence matrix is :

$$A = \begin{bmatrix} -1 & 0 & 1 & 0 \\ 0 & -1 & 0 & 1 \end{bmatrix}$$

Indeed, $Nul(A^T) = \{0\}.$

Problem 2

Draw the graph with edge-node incidence matrix

$$A = \begin{bmatrix} 1 & -1 & 0 & 0 \\ -1 & 0 & 1 & 0 \\ 0 & -1 & 1 & 0 \\ 0 & 1 & 0 & -1 \end{bmatrix}$$

Give a basis for Nul(A) and $Nul(A^T)$.

Draw the graph with edge-node incidence matrix

$$A = egin{bmatrix} 1 & -1 & 0 & 0 \ -1 & 0 & 1 & 0 \ 0 & -1 & 1 & 0 \ 0 & 1 & 0 & -1 \end{bmatrix}$$

Give a basis for Nul(A) and $Nul(A^T)$.

Solution

Figure: The graph

If $A\mathbf{x} = 0$, then

If
$$A\mathbf{x} = 0$$
, then $x_1 = x_2 = x_3 = x_4$ (all connected by edges.)

So, Nul(A) has basis

If
$$A\mathbf{x} = 0$$
, then $x_1 = x_2 = x_3 = x_4$ (all connected by edges.)
So, $Nul(A)$ has basis $\begin{bmatrix} 1\\1\\1\\1 \end{bmatrix}$

If
$$A\mathbf{x}=0$$
, then $x_1=x_2=x_3=x_4$ (all connected by edges.)
So, $Nul(A)$ has basis $\begin{bmatrix} 1\\1\\1\\1 \end{bmatrix}$

(This graph is connected, so

If
$$A\mathbf{x}=0$$
, then $x_1=x_2=x_3=x_4$ (all connected by edges.)
So, $Nul(A)$ has basis $\begin{bmatrix} 1\\1\\1\\1 \end{bmatrix}$

(This graph is connected, so only 1 connected subgraph, so

If
$$A\mathbf{x}=0$$
, then $x_1=x_2=x_3=x_4$ (all connected by edges.)
So, $Nul(A)$ has basis $\begin{bmatrix} 1\\1\\1\\1 \end{bmatrix}$

(This graph is connected, so only 1 connected subgraph, so dim(Nul(A)) = 1.)

Loops: This graph has one loop: $edge_1 \rightarrow edge_2 \rightarrow -edge_3$.

$$Nul(A^T)$$
 has basis $\begin{bmatrix} 1\\1\\-1\\0 \end{bmatrix}$

$$Nul(A^T)$$
 has basis $\begin{bmatrix} 1\\1\\-1\\0 \end{bmatrix}$

(The graph has 1 loop, so

$$Nul(A^T)$$
 has basis $\begin{bmatrix} 1\\1\\-1\\0 \end{bmatrix}$

(The graph has 1 loop, so $dim(Nul(A^T)) = 1$.)