# AG: Técnicas de selección

#### Introducción



#### Introducción

#### Estrategias de actualización de la población

- ► Modelo generacional
  - Durante cada iteración se crea una población completa con nuevos individuos
  - La nueva población reemplaza directamente a la antigua
- ► Modelo estacionario
  - Durante cada iteración se escogen dos padres de la población y se les aplican los operadores genéticos
  - El/los descendiente/s reemplazan a uno/dos cromosoma/s de la población inicial
  - Modelo elitista: produce una presión selectiva alta (convergencia rápida) cuando se reemplazan los peores cromosomas de la población

#### Introducción

- Selección de candidatos para reproducción y supervivencia
- Típicamente implementada de forma probabilística
- 3 grandes clases de técnicas
  - ► Selección proporcional
  - ► Selección mediante torneo
  - Selección de estado uniforme

- Grupo de esquemas de selección originalmente propuestos por Holland (1975)
  - ► Individuos elegidos de acuerdo a su contribución de aptitud con respecto al total de la población
  - ▶ 4 grandes grupos dentro de las técnicas de selección proporcional
    - Ruleta
    - Sobrante estocástico
    - Universal estocástica
    - Muestreo determinístico
  - ► Aditamentos: escalamiento Sigma, jerarquías, selección de Boltzmann

## Ruleta

- Ruleta
  - ► Método propuesto por De Jong (1975)
  - ► El más comúnmente usado desde los orígenes de los AGs
  - ▶ Algoritmo es simple, pero ineficiente (complejidad  $O(n^2)$ )
  - ▶ El individuo menos apto puede ser seleccionado más de una vez
  - ► Popularidad debida a su descripción en el libro clásico de Golberg (1989) sobre Ags ("ruleta de Goldberg")

- Ruleta: algoritmo (De Jong, 1975)
  - ightharpoonup Calcular las aptitudes relativas  $f_i$  y las aptitudes relativas acumuladas  $f_{i,cum}$
  - ▶ Repetir *N* veces (*N* es el número de padres / supervivientes):
    - Generar un número aleatorio *r* entre 0 y 1
    - =i=1
    - Ciclar a través de los individuos de la población: mientras  $r > f_{i,cum}$ , i=i+1
    - Seleccionar el individuo i
  - $\blacktriangleright$  Nota: el número esperado de copias de un individuo es igual a  $f_i \times N$

- Análisis de la ruleta
  - ► Problemas: diferencias entre el valor esperado y el valor real (o sea, el verdadero número de copias obtenidas). El peor individuo puede seleccionarse varias veces
  - ▶ Complejidad:  $O(n^2)$ , algoritmo ineficiente conforme crece n (tamaño de la población)
  - ► Mejoras posibles: uso de búsqueda binaria en vez de búsqueda secuencial para localizar la posición correcta de la rueda. La complejidad total se reduce a O(n log n)

# Sobrante estocástico

- Sobrante estocástico
  - ► Propuesta por Booker (1982) y Brindle (1981)
  - ► Alternativa para aproximarse más a los valores esperados (*Valesp*) de los individuos

$$Valesp_i = \frac{f_i}{\overline{f}}$$

- Idea principal
  - ► Asignar determinísticamente las partes enteras de los valores esperados para cada individuo y luego usar otro esquema (proporcional) para la parte fraccionaria
  - ► El sobrante estocástico reduce los problemas de la ruleta, pero puede causar convergencia prematura al introducir una mayor presión de selección

|                          | <u>Cadena</u>                        | aptitud                             | $\underline{e_i}$                             | enteros                                            | dif                          |
|--------------------------|--------------------------------------|-------------------------------------|-----------------------------------------------|----------------------------------------------------|------------------------------|
| (1)<br>(2)<br>(3)<br>(4) | 110100<br>011010<br>111001<br>001101 | $220$ $140$ $315$ $42$ $\sum = 717$ | 1.23<br>0.78<br>1.76<br>0.23<br>$\sum = 4.00$ | $ \begin{array}{c} 1\\0\\1\\0\\\sum=2\end{array} $ | 0.23<br>0.78<br>0.76<br>0.23 |
|                          |                                      | $\bar{f} = 179.25$                  |                                               |                                                    |                              |

Padres: 1 y 3 (partes enteras)

- Sobrante estocástico: algoritmo
  - Asignar de manera determinística el conteo de valores esperados a cada individuo (valores enteros)
  - ► Los valores restantes (sobrantes del redondeo) se usan probabilísticamente para rellenar la población
  - ▶ 2 variantes principales
    - Sin reemplazo: cada sobrante se usa para sesgar el tiro de una moneda (flip) que determina si una cadena se selecciona
    - Con reemplazo: los sobrantes se usan para dimensionar los segmentos de una ruleta y se usa esta técnica de manera tradicional

#### Sin reemplazo

flip(0.23) 
$$\longrightarrow$$
 ind 1  
flip(0.78)  $\longrightarrow$  ind 2  
:  
:  
flip(0.23)  $\longrightarrow$  ind 4

Dónde flip(p) devuelve cierto con una probabilidad p.

#### Con reemplazo

#### Armar una ruleta

- Análisis del sobrante estocástico
  - Complejidad
    - Versión con reemplazo:  $O(n^2)$
    - Versión sin reemplazo: O(n)
  - Versión más popular: sin reemplazo (superior a la ruleta)
  - ightharpoonup Ventaja: reducción de las diferencias entre  $V_e$  y el valor real (el verdadero número de copias por individuo).
  - ▶ Desventaja: puede producir convergencia prematura al introducir una mayor presión de selección (asignación determinística de los valores esperados de cada individuo)

# Selección universal estocástica

- Selección universal estocástica
  - ► Propuesta por Baker (1987)
  - ► Objetivo: minimizar la mala distribución de los individuos en la población en función de sus valores esperados

| (1)<br>(2)<br>(3)<br>(4) | Cadena<br>110100<br>011010<br>111001<br>001101<br>ptr=0.4<br>sum=0.0 | aptitud<br>220<br>140<br>315<br>42<br>inicialización                                                                  | $e_i$ 1.23 0.78 1.76 0.23 $\sum = 4.00$ |     |                                      |          |
|--------------------------|----------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------|-----------------------------------------|-----|--------------------------------------|----------|
| i=1                      | sum=1.23<br>Seleccionar (2                                           | 1.23>ptr<br>1)                                                                                                        |                                         | i=3 | sum=3.77<br>Seleccionar (            | -        |
|                          | ptr=1.4<br>sum=1.23                                                  | 1.23 <ptr (ter<="" td=""><td>mina ciclo)</td><td></td><td>ptr=3.4<br/>sum=3.77<br/>Seleccionar (</td><td>-</td></ptr> | mina ciclo)                             |     | ptr=3.4<br>sum=3.77<br>Seleccionar ( | -        |
| i=2                      | sum=1.23<br>sum=2.01<br>Seleccionar (2                               | 2.01>ptr                                                                                                              |                                         | P   | Padres: (1), (2),                    | (3), (3) |
|                          | ptr=2.4<br>sum=2.01                                                  | 2.01 <ptr (ter<="" td=""><td>mina ciclo)</td><td></td><td></td><td></td></ptr>                                        | mina ciclo)                             |     |                                      |          |

- Análisis de la selección universal estocástica
  - ► Complejidad: *O*(*n*)
  - Desventajas
    - Puede ocasionar convergencia prematura
    - Hace que los individuos más aptos se multipliquen muy rápidamente
    - No resuelve el problema de imprecisión entre valores esperados y números reales de copias de cada individuo

# Muestreo determinístico

Muestreo determinístico

Variante de la selección proporcional de De Jong

- ► Similar al sobrante estocástico, pero requiere un algoritmo de ordenación
- ► Algoritmo
  - Calcular las aptitudes relativas y los valores esperados
  - Asignar determinísticamente la parte entera de *Valesp*
  - Ordenar la población de acuerdo a las partes decimales (de mayor a menor)
  - Obtener los padres faltantes de la parte superior de la lista

- Análisis del muestreo determinístico
  - ► Complejidad: El algoritmo es O(n) para la asignación determinística y es O(n log n) para la ordenación
  - ► Problemas: los mismos que para el sobrante estocástico

# Selección por jerarquías

- Selección por jerarquías
  - ▶ Propuesta por Baker (1985) para evitar la convergencia prematura
  - ► Objetivo: disminuir la presión de selección
  - ▶ Varias estrategias
    - Jerarquías lineales
    - Jerarquías no lineales (cambios más abruptos de la presión de selección)

- Individuos
  - Clasificados con base en su aptitud
  - ► Seleccionados con base en su rango (o jerarquía)
- Características del uso de jerarquías
  - ► No hay necesidad de escalar la aptitud
  - ▶ Prevención de la convergencia prematura (de hecho, lo que hacen, es alentar la velocidad convergencia del AG)

#### Algoritmo

- Ordenar (o jerarquizar) la población con base en su aptitud, de 1 a N (1:menos apto)
- ▶ Elegir Max (1 ≤ Max ≤ 2)
- ► Calcular Min = 2 Max
- ► El valor esperado de cada individuo será:

```
Valesp(i,t) = Min + (Max - Min) (jerarquía(i,t)-1)/(N-1)
```

- ▶ Baker recomendó *Max* = 1.1
- Usar selección proporcional aplicando los valores esperados obtenidos de la expresión anterior

|     | aptitud | jerarquías | Valesp        |                |
|-----|---------|------------|---------------|----------------|
| (1) | 12      | 2          | 0.95          |                |
| (2) | 245     | 5          | 1.10          | Aplicar ruleta |
| (3) | 9       | 1          | 0.90          | u otra técnica |
| (4) | 194     | 4          | 1.05          | proporcional   |
| (5) | 48      | 3          | 1.00          |                |
|     |         |            | $\sum = 5.00$ | )              |

$$Max = 1.1$$
  $Min = 2 - 1.1 = 0.9$   $N = 5$ 

$$Valesp = 0.9 + (0.2) \frac{jerarquia_i - 1}{N - 1}$$

- Análisis de las jerarquías lineales
  - ► Complejidad: O(nlog n) + tiempo de selección
  - ► Ventaja: es útil cuando la función tiene ruido (p.ej., cuando hay una variable aleatoria)
  - ▶ Desventaja: convergencia más lenta (diluye la presión de la selección)
  - Existen otros métodos de asignación de jerarquías además del lineal (p. ej. exponencial)
  - ▶ Puede alentar sobremanera la convergencia del algoritmo genético, por lo que su uso suele limitarse a situaciones en las que el AG convergería prematuramente en caso de no aplicarse

## TORNEO

- Métodos de selección proporcional antes descritos requieren de dos pasos (en cada generación):
  - ► Calcular la aptitud media / total
  - ► Calcular el valor esperado / la aptitud relativa de cada individuo
  - ▶ Jerarquías: ordenamiento total de la población (costo significativo con poblaciones grandes)

- Selección mediante torneo similar a la de jerarquías para la presión de selección, pero es computacional-mente más eficiente y más fácil de paralelizar
- Técnica propuesta por Wetzel (1983)
  - ► Idea básica: seleccionar con base en comparaciones directas de los individuos
  - ▶ 2 versiones de la selección mediante torneo
    - Determinística
    - Probabilística

- Versión determinística: algoritmo
  - ► Barajar los individuos de la población
  - ► Escoger un número p de individuos (típicamente 2)
  - ► Compararlos con base en su aptitud
  - ► El ganador del "torneo" es el individuo más apto
  - ▶ Debe barajarse la población un total de p veces para seleccionar N padres (N = tamaño de la población

| Orden | Aptitud        | Barajar           | Ganadores |
|-------|----------------|-------------------|-----------|
| (1)   | 254            | (2)               |           |
| (2)   | 47             | (6)               | (6)       |
| (3)   | 457            | (1)               |           |
| (4)   | 194            | (3)               | (3)       |
| (5)   | 85             | (5)               |           |
| (6)   | 310            | (4)               | (4)       |
|       | Barajar        | Ganadores         |           |
|       | (4)            |                   |           |
|       | (1)            | (1)               |           |
|       | (6)            |                   |           |
|       | (5)            | (6)               |           |
|       | (2)            | 4-4               |           |
|       | (3)<br>Padres: | (3)               |           |
|       | (6) y (1), (3  | 3) y (6), (4) y ( | (3)       |

- Versión probabilística: algoritmo idéntico al anterior, pero en el paso en que se escoge al ganador
  - ▶ Se aplica flip(p): si el resultado = 1, se selecciona al más apto
  - ▶ De lo contrario, se selecciona al menos apto
  - ▶ El valor de p permanece fijo a lo largo de todo el proceso evolutivo:  $0.5 \le p \le 1$
  - Note que si p = 1, la técnica se reduce a la versión determinística
  - ► Efecto: reduce presión de selección (el individuo menos apto puede sobrevivir)

- Análisis de la selección mediante torneo
  - ► La versión determinística garantiza que el mejor individuo será seleccionado k veces (k = tamaño torneo)
  - ► Complejidad:
    - Cada competencia requiere la selección aleatoria de un número constante de individuos de la población. Esta operación puede realizarse en *O*(1)
    - Se requieren "n" competencias de este tipo para completar una generación.
    - Por lo tanto, el algoritmo es O(n)

- Análisis de la selección mediante torneo
  - Ventajas
    - Técnica eficiente y fácil de implementar
    - No requiere escalamiento de la función de aptitud (comparaciones directas)
  - Desventaja
    - Puede introducir una presión de selección muy alta (versión determinística): a los individuos menos aptos (casi) no se les da oportunidad de sobrevivir

- Análisis de la selección mediante torneo
  - ▶ Puede regularse la presión de selección variando el tamaño del torneo (mejor individuo será seleccionado tam\_torneo veces).
  - ▶ Si se usa tam\_torneo = 1, se produce una caminata aleatoria con una presión de selección muy baja
  - Si se usa tam\_torneo = ∞, la selección se vuelve totalmente determinística (los mejores individuos globales son seleccionados): "elitismo global"
  - Si se usa tam\_torneo ≥ 10, la selección se considera "dura"
  - ► Si se usa tam\_torneo entre 2 y 5, la selección se considera "blanda"

## Estado uniforme

#### Selección de Estado Uniforme

- Técnica fue propuesta por Whitley (1989): usada en AGs no generacionales (sólo unos cuantos individuos son reemplazados en cada generación)
- Técnica resulta útil cuando los miembros de la población resuelven colectivamente (y no de manera individual) un problema
- Asimismo, los AGs generacionales se usan cuando es importante "recordar" lo que se ha aprendido antes

#### Selección de Estado Uniforme

- Algoritmo
  - ► Llamaremos *G* a la población original de un AG
  - ▶ Seleccionar R individuos (1 ≤ R < |G|) de entre los más aptos (p.ej., R = 2)
  - ► Efectuar cruza y mutación a los *R* individuos seleccionados, produciendo a hijos *H*
  - ▶ Elegir al mejor individuo en H (o los  $\mu$  mejores)
  - ▶ Reemplazar los  $\mu$  peores individuos de G por los  $\mu$  mejores individuos de H

#### Selección de Estado Uniforme

- Análisis de la Selección de Estado Uniforme
  - Mecanismo especializado de selección
  - ► Complejidad (en la versión de Whitley, la cual usa jerarquías lineales): *O*(*n* log *n*)
  - ► AGs no generacionales no muy comunes en aplicaciones de optimización

#### Selección más (+)

- Selección "más" (+)
  - ► Es también posible en un AG usar una selección más (+)
  - Consiste en unir la población de padres con la de hijos y seleccionar la mejor mitad de ellos
  - ► Este tipo de selección resulta particularmente útil para resolver problemas de optimización global