Amendments to the Claims:

This listing of claims will replace all prior versions and listings of claims in the application:

Listing of Claims:

- 1-12 (Cancelled)
- 13. (New) A system for producing asymmetric cryptographic keys, said keys comprising $m \ge 1$ private values $Q_1, Q_2, ..., Q_m$ and m respective public values $G_1, G_2, ..., G_m$, the system comprising:
 - a processor; and

a memory unit coupled to the processor, the memory unit storing a set of instructions, which when executed cause the processor to execute the following acts:

selecting a security parameter k, wherein k is an integer greater than 1; selecting m base numbers $g_1, g_2, ..., g_m$, wherein each base number g_i (for i = 1, ..., m) is an integer greater than 1;

determining a modulus n, wherein n is a public integer equal to the product of at least two prime factors $p_1,...,p_f$, at least two of these prime factors, say p_1 and p_2 , being such that $p_1 \equiv 3 \mod 4$, $p_2 \equiv 3 \mod 4$, and such that p_2 is complementary to p_1 with respect to one of the base numbers;

calculating the public values G_i for i=1,...,m through $G_i \equiv {g_i}^2 \mod n$; and calculating the private values Q_i for i=1,...,m by solving either the equation $G_i \cdot Q_i^{\ \nu} \equiv 1 \mod n$ or the equation $G_i \equiv {Q_i}^{\ \nu} \mod n$, wherein the public exponent ν is such that $\nu=2^k$.

14. (New) The system according to claim 13, wherein the number (f - e) (where $e \ge 0$) of prime factors of the modulus n which are congruent to 3 mod 4 is larger than 2, and those prime factors p_{j+1} for $2 \le j \le m$ which are congruent to 3 mod 4 are determined iteratively as follows:

the profile $_{i}(g_{i})$ of g_{j} with respect to the prime factors $p_{1}, p_{2}, ..., p_{j}$ is computed, and

if $\operatorname{profile}_j(g_j)$ is flat, then the prime factor p_{j+1} is chosen such that p_{j+1} is complementary to p_1 with respect to g_j ; else, a number g is chosen among the (j-1) base numbers $g_1, g_2, ..., g_{j-1}$ and all of their multiplicative combinations, such that $\operatorname{profile}_j(g) = \operatorname{profile}_j(g_j)$, then p_{j+1} is chosen such that $\operatorname{profile}_{j+1}(g_j) \neq \operatorname{profile}_{j+1}(g)$,

wherein the last prime factor p_{f-e} congruent to 3 mod 4 is, in the case that $f-e \le m$, chosen such that p_{f-e} is complementary to p_1 with respect to all of the base numbers g_i such that $f-e \le i \le m$ and whose profile profile f-e-1 is flat.

15. (New) The system according to claim 13, wherein the number e of prime factors of the modulus n which are congruent to 1 mod 4 is at least equal to 1, and each such prime factor is determined as follows:

a candidate prime number p is chosen, such that the Legendre symbol of each base number g_i (for i = 1,...,m) with respect to p is equal to +1,

the integer t is computed such that (p-1) is divisible by 2^t , but not by 2^{t+1} , the integer $s = (p-1+2^t)/2^{t+1}$ is computed,

U.S. Patent Application Serial No. 09/869,966 Reply to Office Action dated March 16, 2005

an integer $b \equiv h^{p-1/2'} \mod p$, where h is a non-quadratic residue of the body of integers modulo p, is computed,

the *m* integers $r_i \equiv g_i^{2s} \mod p$ for i = 1,...,m are computed,

an integer u is initialized to u = 0,

the following sequence of steps, where i is initialized to 1, is iteratively implemented:

an integer w is initialized to $w = r_i$,

if $r_i = \pm g_i$, the value of i is incremented and a sequence of steps with the new value of i is proceeded to if i < m, whereas the candidate prime number p is accepted as a factor of the modulus n if i = m,

if $r_i \neq \pm g_i$:

an integer jj is initialized to 1,

the following sequence of steps, where an integer ii is initialized to 1, is iteratively implemented:

 $x \equiv w^2 / g_i^2 \mod p$ is computed,

 $y \equiv x^{2^{j-ii-1}} \mod p$ is computed, and

if y = +1, the sequence is terminated at the current value of ii,

if y = -1, jj is assigned the value $jj = 2^{ii}$, the number w is assigned a new value equal to the old value multiplied by b^{jj} modulo p, and

for ii < t-2, the value of ii is incremented and a new iteration is proceeded to with the new value of ii,

for ii = t - 2, the value of number u is updated through the relation $jj = 2^{t-u}$, and

if t - u < k, the candidate prime number p is rejected as a factor of the modulus n,

if t - u > k, the value of i is incremented and a sequence of steps with the new value of i is proceeded to if i < m, whereas the candidate prime number p is accepted as a factor of the modulus n if i = m.

16. (New) The system according to claim 13, wherein, to compute the $f \cdot m$ private components $Q_{i,j}$ of the private values $Q_1, Q_2, ..., Q_m$, the following steps are implemented for each couple (i, j):

an integer t is determined, which is equal to 1 if p_j is congruent to 3 mod 4, and to the value obtained for t according to claim 15 if p_j is congruent to 1 mod 4,

an integer u is determined, which is equal to 0 if p_j is congruent to 3 mod 4, and to the value obtained for u according to claim 15 if p_j is congruent to 1 mod 4,

the integer $z \equiv G_i^s \mod p_j$ is computed, where $s = (p-1+2^t)/2^{t+1}$,

all the numbers zz are being considered, which:

if u = 0, are such that zz = z or such that zz is equal to the product modulo p_j of z by each of the 2^{ii-1} 2^{ii} -th primitive roots of unity, for ii ranging from 1 to $\min(k,t)$,

if u > 0, are such that zz is equal to the product modulo p_j of za by each of the 2^k 2^k -th roots of unity, where za is the value obtained for w according to claim 15, and

for each such number zz, a value for the component $Q_{i,j}$ is obtained by taking $Q_{i,j}$ equal to zz if the equation $G_i \equiv Q_i^{\ \nu} \mod n$ is used, or to the inverse of zz modulo p_j if $G_i \cdot Q_i^{\ \nu} \equiv 1 \mod n$ is used for this value of i.

17. (New) A computer-readable storage medium storing instructions for producing asymmetric cryptographic keys, said keys comprising $m \ge 1$ private values $Q_1, Q_2, ..., Q_m$ and m respective public values $G_1, G_2, ..., G_m$, the medium storing instructions, which when executed cause a processor to carry out the following acts:

selecting a security parameter k, wherein k is an integer greater than 1; selecting m base numbers $g_1, g_2, ..., g_m$, wherein each base number g_i (for i = 1, ..., m) is an integer greater than 1;

determining a modulus n, wherein n is a public integer equal to the product of at least two prime factors $p_1,...,p_f$, at least two of these prime factors, say p_1 and p_2 , being such that $p_1 \equiv 3 \mod 4$, $p_2 \equiv 3 \mod 4$, and such that p_2 is complementary to p_1 with respect to one of the base numbers;

calculating the public values G_i for i = 1,...,m through $G_i \equiv g_i^2 \mod n$; and

calculating the private values Q_i for i = 1,...,m by solving either the equation $G_i \cdot Q_i^{\nu} \equiv 1 \mod n$ or the equation $G_i \equiv Q_i^{\nu} \mod n$, wherein the public exponent ν is such that $\nu = 2^k$.

18. (New) The computer-readable storage medium storing instructions according to claim 17, wherein the number (f - e) (where $e \ge 0$) of prime factors of the modulus n which are congruent to 3 mod 4 is larger than 2, and those prime factors p_{j+1} for $2 \le j \le m$ which are congruent to 3 mod 4 are determined iteratively as follows:

the profile $profile_j(g_j)$ of g_j with respect to the prime factors $p_1, p_2, ..., p_j$ is computed, and

if $\operatorname{profile}_j(g_j)$ is flat, then the prime factor p_{j+1} is chosen such that p_{j+1} is complementary to p_1 with respect to g_j ; else, a number g is chosen among the (j-1) base numbers $g_1,g_2,...,g_{j-1}$ and all of their multiplicative combinations, such that $\operatorname{profile}_j(g)=\operatorname{profile}_j(g_j)$, then p_{j+1} is chosen such that $\operatorname{profile}_{j+1}(g_j)\neq\operatorname{profile}_{j+1}(g)$, wherein the last prime factor p_{f-e} congruent to 10 mod 11 is, in the case that 11 is chosen such that 12 is complementary to 12 with respect to all of the base numbers 13 such that 14 is and whose 15 profile 16 is flat.

19. (New) The computer-readable storage medium storing instructions according to claim 17, wherein the number e of prime factors of the modulus n which are congruent to 1 mod 4 is at least equal to 1, and each such prime factor is determined as follows:

a candidate prime number p is chosen, such that the Legendre symbol of each base number g_i (for i = 1,...,m) with respect to p is equal to +1,

the integer t is computed such that (p-1) is divisible by 2^t , but not by 2^{t+1} ,

the integer $s = (p-1+2^t)/2^{t+1}$ is computed,

an integer $b \equiv h^{p-1/2'} \mod p$, where h is a non-quadratic residue of the body of integers modulo p, is computed,

the *m* integers $r_i \equiv g_i^{2s} \mod p$ for i = 1,...,m are computed,

an integer u is initialized to u = 0,

the following sequence of steps, where i is initialized to 1, is iteratively implemented:

an integer w is initialized to $w = r_i$,

if $r_i = \pm g_i$, the value of i is incremented and a sequence of steps with the new value of i is proceeded to if i < m, whereas the candidate prime number p is accepted as a factor of the modulus n if i = m,

if $r_i \neq \pm g_i$:

an integer jj is initialized to 1,

the following sequence of steps, where an integer ii is initialized to 1, is iteratively implemented:

 $x \equiv w^2 / g_i^2 \mod p$ is computed,

 $y \equiv x^{2^{i-ii-1}} \mod p$ is computed, and

if y = +1, the sequence is terminated at the current value of ii,

if y = -1, jj is assigned the value $jj = 2^{ii}$, the number w is assigned a new value equal to the old value multiplied by b^{jj} modulo p, and

for ii < t-2, the value of ii is incremented and a new iteration is proceeded to with the new value of ii,

for ii = t - 2, the value of number u is updated through the relation $jj = 2^{t-u}$, and

if t - u < k, the candidate prime number p is rejected as a factor of the modulus n,

if t - u > k, the value of i is incremented and a sequence of steps with the new value of i is proceeded to if i < m, whereas the candidate prime number p is accepted as a factor of the modulus n if i = m.

20. (New) The computer-readable storage medium storing instructions according to claim 17, wherein, to compute the $f \cdot m$ private components $Q_{i,j}$ of the private values $Q_1, Q_2, ..., Q_m$, the following steps are implemented for each couple (i, j):

an integer t is determined, which is equal to 1 if p_j is congruent to 3 mod 4, and to the value obtained for t according to claim 15 if p_j is congruent to 1 mod 4,

an integer u is determined, which is equal to 0 if p_j is congruent to 3 mod 4, and to the value obtained for u according to claim 15 if p_j is congruent to 1 mod 4,

the integer $z \equiv G_i^s \mod p_j$ is computed, where $s = (p-1+2^t)/2^{t+1}$,

all the numbers zz are being considered, which:

if u = 0, are such that zz = z or such that zz is equal to the product modulo p_j of z by each of the 2^{ii-1} 2^{ii} -th primitive roots of unity, for ii ranging from 1 to $\min(k,t)$,

if u > 0, are such that zz is equal to the product modulo p_j of za by each of the 2^k 2^k -th roots of unity, where za is the value obtained for w according to claim 15, and

for each such number zz, a value for the component $Q_{i,j}$ is obtained by taking $Q_{i,j}$ equal to zz if the equation $G_i \equiv Q_i^{\ \nu} \mod n$ is used, or to the inverse of zz modulo p_j if $G_i \cdot Q_i^{\ \nu} \equiv 1 \mod n$ is used for this value of i.

21. (New) A computer-implemented process for producing asymmetric cryptographic keys, said keys comprising $m \ge 1$ private values $Q_1, Q_2, ..., Q_m$ and m respective public values $G_1, G_2, ..., G_m$, the computer-implemented process comprising:

selecting a security parameter k, wherein k is an integer greater than 1;

selecting m base numbers $g_1, g_2, ..., g_m$, wherein each base number g_i (for i = 1, ..., m) is an integer greater than 1;

determining a modulus n, wherein n is a public integer equal to the product of at least two prime factors $p_1,...,p_f$, at least two of these prime factors, say p_1 and p_2 , being such that $p_1 \equiv 3 \mod 4$, $p_2 \equiv 3 \mod 4$, and such that p_2 is complementary to p_1 with respect to one of the base numbers;

calculating the public values G_i for i=1,...,m through $G_i\equiv {g_i}^2 \mod n$; and calculating the private values Q_i for i=1,...,m by solving either the equation $G_i\cdot Q_i^{\ \nu}\equiv 1 \mod n$ or the equation $G_i\equiv Q_i^{\ \nu} \mod n$, wherein the public exponent ν is such that $\nu=2^k$.

22. (New) The computer-implemented process according to claim 21, wherein the number (f-e) (where $e \ge 0$) of prime factors of the modulus n which are congruent to 3 mod 4 is larger than 2, and those prime factors p_{j+1} for $2 \le j \le m$ which are congruent to 3 mod 4 are determined iteratively as follows:

the profile $profile_j(g_j)$ of g_j with respect to the prime factors $p_1, p_2, ..., p_j$ is computed, and

if $\operatorname{profile}_j(g_j)$ is flat, then the prime factor p_{j+1} is chosen such that p_{j+1} is complementary to p_1 with respect to g_j ; else, a number g is chosen among the (j-1) base numbers $g_1,g_2,...,g_{j-1}$ and all of their multiplicative combinations, such that $\operatorname{profile}_j(g)=\operatorname{profile}_j(g_j)$, then p_{j+1} is chosen such that $\operatorname{profile}_{j+1}(g_j)\neq\operatorname{profile}_{j+1}(g)$, wherein the last prime factor p_{f-e} congruent to 10 mod 11 is, in the case that 11 is chosen such that 12 is complementary to 12 with respect to all of the base numbers 13 such that 14 is and whose 15 profile 16 is flat.

23. (New) The computer-implemented process according to claim 21, wherein the number e of prime factors of the modulus n which are congruent to 1 mod 4 is at least equal to 1, and each such prime factor is determined as follows:

a candidate prime number p is chosen, such that the Legendre symbol of each base number g_i (for i = 1,...,m) with respect to p is equal to +1,

the integer t is computed such that (p-1) is divisible by 2', but not by 2^{t+1} ,

the integer $s = (p-1+2^t)/2^{t+1}$ is computed,

an integer $b \equiv h^{p-1/2'} \mod p$, where h is a non-quadratic residue of the body of integers modulo p, is computed,

the *m* integers $r_i \equiv g_i^{2s} \mod p$ for i = 1,...,m are computed,

an integer u is initialized to u = 0,

the following sequence of steps, where i is initialized to 1, is iteratively implemented:

an integer w is initialized to $w = r_i$,

if $r_i = \pm g_i$, the value of i is incremented and a sequence of steps with the new value of i is proceeded to if i < m, whereas the candidate prime number p is accepted as a factor of the modulus n if i = m,

if $r_i \neq \pm g_i$:

an integer jj is initialized to 1,

the following sequence of steps, where an integer ii is initialized to 1, is iteratively implemented:

 $x \equiv w^2 / g_i^2 \mod p$ is computed,

 $y \equiv x^{2^{t-ii-1}} \mod p$ is computed, and

if y = +1, the sequence is terminated at the current value of ii,

if y = -1, jj is assigned the value $jj = 2^{ii}$, the number w is assigned a new value equal to the old value multiplied by b^{jj} modulo p, and

for ii < t-2, the value of ii is incremented and a new iteration is proceeded to with the new value of ii,

for ii = t - 2, the value of number u is updated through the relation $jj = 2^{t-u}$, and

if t - u < k, the candidate prime number p is rejected as a factor of the modulus n,

if t - u > k, the value of i is incremented and a sequence of steps with the new value of i is proceeded to if i < m, whereas the candidate prime number p is accepted as a factor of the modulus n if i = m.

24. (New) The computer-implemented process according to claim 21, wherein, to compute the $f \cdot m$ private components $Q_{i,j}$ of the private values $Q_1, Q_2, ..., Q_m$, the following steps are implemented for each couple (i, j):

an integer t is determined, which is equal to 1 if p_j is congruent to 3 mod 4, and to the value obtained for t according to claim 15 if p_j is congruent to 1 mod 4,

an integer u is determined, which is equal to 0 if p_j is congruent to 3 mod 4, and to the value obtained for u according to claim 15 if p_j is congruent to 1 mod 4,

the integer $z \equiv G_i^s \mod p_j$ is computed, where $s = (p-1+2^t)/2^{t+1}$,

all the numbers zz are being considered, which:

if u = 0, are such that zz = z or such that zz is equal to the product modulo p_j of z by each of the 2^{ii-1} 2^{ii} -th primitive roots of unity, for ii ranging from 1 to $\min(k,t)$,

if u > 0, are such that zz is equal to the product modulo p_j of za by each of the 2^k 2^k -th roots of unity, where za is the value obtained for w according to claim 15, and

for each such number zz, a value for the component $Q_{i,j}$ is obtained by taking $Q_{i,j}$ equal to zz if the equation $G_i \equiv Q_i^{\ \nu} \mod n$ is used, or to the inverse of zz modulo p_j if $G_i \cdot Q_i^{\ \nu} \equiv 1 \mod n$ is used for this value of i.