Calcolo Numerico ed Elementi di	Prof. L. Dedè	Firma leggibile dello studente	
Analisi	Prof. A. Manzoni		
CdL Ingegneria Aerospaziale	Prof. S. Micheletti		
Appello			
09 luglio 2018			
Cognome:	Nome:	Matricola:	

ISTRUZIONI

- Riportare le risposte nello spazio indicato.
- Alcuni esercizi richiedono di utilizzare MATLAB; per tali esercizi riportare sul foglio esclusivamente gli output richiesti.
- Utilizzare esclusivamente una penna nera o blu.
- Tempo a disposizione: 3h.

SPAZIO RISERVATO AL DOCENTE

	PART	FI	
Pre Test	.,,		
Esercizio 1			
Esercizio 2			
Totale			
	PART	E II	
Pre Test			
Esercizio 1			
Esercizio 2			
Totale			
	FINA	LE	1

Parte I - Pre Test

1. (2 punti) Si consideri la matrice $A = \begin{bmatrix} 1 & -1 & 1 \\ 0 & 6 & 1 \\ 3 & 5 & 0 \end{bmatrix}$ e si determini la sua fattorizzazione LU senza pivoting. Riportare il valore dell'elemento $u_{33} = (U)_{33}$ della matrice triangolare

LU senza pivoting. Riportare il valore dell'elemento $u_{33} = (U)_{33}$ della matrice triangolar superiore U.

$$u_{33} = -\frac{13}{3}$$

2. (1 punto) Si consideri un metodo diretto per risolvere il sistema lineare $A\mathbf{x} = \mathbf{b}$ con $A \in \mathbb{R}^{n \times n}$ invertibile e $n \geq 1$. Sapendo che il numero di condizionamento di $A \in K_2(A) = 10^7$, $\|\mathbf{b}\| = 10^1$ e il residuo $\mathbf{r} \in \mathbb{R}^n$ calcolato usando la soluzione approssimata $\hat{\mathbf{x}}$ ha norma $\|\mathbf{r}\| = 10^{-8}$, si stimi l'errore relativo $e_{rel} = \frac{\|\hat{\mathbf{x}} - \mathbf{x}\|}{\|\mathbf{x}\|}$.

$$e_{rel} \le 10^{-2} = 0.01$$

3. (2 punti) Si consideri il sistema lineare $A\mathbf{x} = \mathbf{b}$ dove $\mathbf{b} = (1 \ 1)^T$ e $A = \begin{bmatrix} 4 & 4 \\ 4 & 5 \end{bmatrix}$. Assegnato $\mathbf{x}^{(0)} = (1 \ 1)^T$ si riporti la prima iterata $\mathbf{x}^{(1)}$ del metodo di Jacobi.

$$\mathbf{x}^{(1)} = (-0.75 \ -0.6)^T$$

4. (2 punti) Si consideri la funzione $f(x) = e^{(8/7-x)} - 1$ con un unico zero α e il metodo di bisezione per la sua approssimazione. Senza applicare esplicitamente il metodo, si *stimi* l'errore commesso dopo k=6 iterazioni partendo dall'intervallo iniziale [0,4].

$$|x^{(k)} - \alpha| \le 0.03125$$

5. (1 punto) Si consideri la funzione $f(x) = 5 \tan(2x)$ e il metodo di Newton per l'approssimazione dello zero $\alpha = 0$. Si riporti il valore della prima iterata $x^{(1)}$ del metodo assumendo l'iterata iniziale $x^{(0)} = \pi/8$.

$$x^{(1)} = \frac{\pi - 2}{8} = 0,142699$$

6. (1 punto) Si consideri la funzione $f(x) = 3 \log(x) \sin(\pi x)$ e il metodo di Newton per l'approssimazione dello zero $\alpha = 1$. Qual è l'ordine convergenza p atteso dal metodo per lo zero α assumendo l'iterata iniziale $x^{(0)}$ "sufficientemente" vicino ad α ?

$$p = 1$$

7. (1 punto) Si consideri la funzione di iterazione $\phi(x) = x^2 / (2x - 5)$ e il metodo delle iterazioni di punto fisso per l'approssimazione del punto fisso $\alpha = 5$. Si riporti il valore della prima iterata $x^{(1)}$ del metodo assumendo l'iterata iniziale $x^{(0)} = 20/3$.

$$x^{(1)} = \frac{16}{3} = 5{,}333\,333$$

Parte I - Esercizi

10 punti

	ritmo (non i		o [®]) del metodo tazione utilizzat	
		= b ; si delim		
		= D ; si delilli 		
		= b ; si deimi		
		= b ; si deiiiii		
		= b ; si delimi		

	$e A \mathbf{x} = \mathbf{b} \operatorname{si}$	conside	ermo ora <i>i</i>	i = 30	$, \mathbf{b} =$	(1,1,.	$\dots, \perp)$	е
$A = \frac{3}{2} n I + C, \text{dove } C$	$= \begin{bmatrix} n \\ -n \\ 5 \end{bmatrix}$	$ \begin{array}{c} -n \\ (n-1) \\ -n \\ \vdots $	5 -n (n-2)	$ 5 -n $ $ \cdot \cdot . $	5 ··.	٠.		$\in \mathbb{R}^{n imes n}$
2			5	-n 5	$ \begin{array}{c} 3 \\ -n \\ 5 \end{array} $	-n 2 $-n$	$5\\-n\\1$	
e $I \in \mathbb{R}^{n \times n}$ è la matrice identit con i dati precedenti motivano	à. Si discuta	ano le p	roprietà d	i conve	ergenz	a del r	netodo	del gradien
(3 punti) Si consideri ora il r	metodo del	gradien	te nrecono	dizion a	to ne	r la so	oluzion	o dol siston
lineare $A \mathbf{x} = \mathbf{b}$ di cui al punto	o (c) con la	_	-		_		orazion	e dei sisten
lineare $A \mathbf{x} = \mathbf{b}$ di cui al punto	,	matrice	-	dizion	_		71421011	e dei sisten
dipendente da un parametro β mente tramite Matlab [®] il valo a \mathbf{x} . Indicato con β^* tale valor	$P = \text{tridi}$ $\beta \text{ tale per cui}$ $\text{ore di } \beta \in [2]$	matrice $iag(-1, isia sim 4,4]$ che s	di precon $\beta, -1) \in$ metrica e garantisce	dizion $\mathbb{R}^{n \times n}$ definit la con	amen a pos	to itiva. nza pi	Si dete ù rapid	rmini grafic la del metod
dipendente da un parametro β mente tramite Matlab [®] il valo	$P = \text{tridi}$ B tale per cui ore di $\beta \in [2]$ re, lo si ripor	matrice $(-1, \frac{1}{4})$ is single $(-1, \frac{1}{4})$ is single $(-1, \frac{1}{4})$ is single $(-1, \frac{1}{4})$ is single $(-1, \frac{1}{4})$ in $(-1, \frac{1}{4})$	di precon $\beta, -1) \in$ metrica e garantisce	dizion $\mathbb{R}^{n \times n}$ definit la con	amen a pos	to itiva. nza pi	Si dete ù rapid	rmini grafic
dipendente da un parametro β mente tramite Matlab [®] il valo a \mathbf{x} . Indicato con β^* tale valor	$P = \text{tridi}$ B tale per cui ore di $\beta \in [2]$ re, lo si ripor	matrice $(-1, \frac{1}{4})$ is single $(-1, \frac{1}{4})$ is single $(-1, \frac{1}{4})$ is single $(-1, \frac{1}{4})$ is single $(-1, \frac{1}{4})$ in $(-1, \frac{1}{4})$	di precon $\beta, -1) \in$ metrica e garantisce riustifichi i	dizion $\mathbb{R}^{n \times n}$ definit la con	amen a pos	to itiva. nza pi	Si dete ù rapid	rmini grafic la del metod
dipendente da un parametro β mente tramite Matlab [®] il valo a \mathbf{x} . Indicato con β^* tale valor	$P = \text{tridi}$ B tale per cui ore di $\beta \in [2]$ re, lo si ripor	matrice $(-1, \frac{1}{4})$ is single $(-1, \frac{1}{4})$ is single $(-1, \frac{1}{4})$ is single $(-1, \frac{1}{4})$ is single $(-1, \frac{1}{4})$ in $(-1, \frac{1}{4})$	di precon $\beta, -1) \in$ metrica e garantisce riustifichi i	dizion $\mathbb{R}^{n \times n}$ definit la con	amen a pos	to itiva. nza pi	Si dete ù rapid	rmini grafic la del metod
dipendente da un parametro β mente tramite Matlab [®] il valo a \mathbf{x} . Indicato con β^* tale valor	$P = \text{tridi}$ B tale per cui ore di $\beta \in [2]$ re, lo si ripor	matrice $(-1, \frac{1}{4})$ is single $(-1, \frac{1}{4})$ in $(-1, \frac{1}{4})$ in $(-1, \frac{1}{4})$ in $(-1, \frac{1}{4})$ is single $(-1, \frac{1}{4})$ in	di precon $\beta, -1) \in$ metrica e garantisce riustifichi i	dizion $\mathbb{R}^{n \times n}$ definit la con	amen a pos	to itiva. nza pi	Si dete ù rapid	rmini grafic la del metoc
dipendente da un parametro β mente tramite Matlab [®] il valo a \mathbf{x} . Indicato con β^* tale valor	$P = \text{tridi}$ B tale per cui ore di $\beta \in [2]$ re, lo si ripor	matrice $(-1, \frac{1}{4})$ is single $(-1, \frac{1}{4})$ in $(-1, \frac{1}{4})$ in $(-1, \frac{1}{4})$ in $(-1, \frac{1}{4})$ is single $(-1, \frac{1}{4})$ in	di precon $\beta, -1) \in$ metrica e garantisce riustifichi i	dizion $\mathbb{R}^{n \times n}$ definit la con	amen a pos	to itiva. nza pi	Si dete ù rapid	rmini grafic la del metod
dipendente da un parametro β mente tramite Matlab [®] il valo a \mathbf{x} . Indicato con β^* tale valor	$P = \text{tridi}$ B tale per cui ore di $\beta \in [2]$ re, lo si ripor	matrice $(-1, \frac{1}{4})$ is single $(-1, \frac{1}{4})$ in $(-1, \frac{1}{4})$ in $(-1, \frac{1}{4})$ in $(-1, \frac{1}{4})$ is single $(-1, \frac{1}{4})$ in	di precon $\beta, -1) \in$ metrica e garantisce riustifichi i	dizion $\mathbb{R}^{n \times n}$ definit la con	amen a pos	to itiva. nza pi	Si dete ù rapid	rmini grafic la del metod
dipendente da un parametro β mente tramite Matlab [®] il valo a \mathbf{x} . Indicato con β^* tale valor	$P = \text{tridi}$ B tale per cui ore di $\beta \in [2]$ re, lo si ripor	matrice $(-1, \frac{1}{4})$ is single $(-1, \frac{1}{4})$ in $(-1, \frac{1}{4})$ in $(-1, \frac{1}{4})$ in $(-1, \frac{1}{4})$ is single $(-1, \frac{1}{4})$ in	di precon $\beta, -1) \in$ metrica e garantisce riustifichi i	dizion $\mathbb{R}^{n \times n}$ definit la con	amen a pos	to itiva. nza pi	Si dete ù rapid	rmini grafic la del metod
dipendente da un parametro β mente tramite Matlab [®] il valo a \mathbf{x} . Indicato con β^* tale valor	$P = \text{tridi}$ B tale per cui ore di $\beta \in [2]$ re, lo si ripor	matrice $(-1, \frac{1}{4})$ is single $(-1, \frac{1}{4})$ in $(-1, \frac{1}{4})$ in $(-1, \frac{1}{4})$ in $(-1, \frac{1}{4})$ is single $(-1, \frac{1}{4})$ in	di precon $\beta, -1) \in$ metrica e garantisce riustifichi i	dizion $\mathbb{R}^{n \times n}$ definit la con	amen a pos	to itiva. nza pi	Si dete ù rapid	rmini grafic la del metoc

u U	ERCIZIO 2. Si consideri il metodo delle potenze inverse per l'approssimazione dell'autovalor di modulo minimo di una matrice $A \in \mathbb{R}^{n \times n}$. (3 punti) Si riporti l'algoritmo delle potenze inverse definendo in modo preciso tutta la notazion itilizzata.
	ione dell'algoritmo delle potenze inverse? Perché?
((3 punti) Si consideri la seguente matrice
	$A = \begin{bmatrix} -5 & 1 & 1 \\ 1 & 3 & 1 \\ 0 & 2 & 4 \end{bmatrix}.$
g	Si utilizzino opportunamente i criteri dei cerchi di Gershgorin per la localizzazione geometrica de gli autovalori $\{\lambda_i(A)\}_{i=1}^3$ di A per stimarne la posizione nel piano complesso. Si motivi la rispos lata con l'ausilio di opportuni grafici e risultati teorici.
g	gli autovalori $\{\lambda_i(A)\}_{i=1}^3$ di A per stimarne la posizione nel piano complesso. Si motivi la rispos

12 punti

Parte II - Pre Test

1. (2 punti) Siano assegnati i nodi equispaziati x_0, x_1, \ldots, x_5 nell'intervallo [0,5] e i corrispondenti valori $y_0 = 1, y_1 = 3, y_2 = 3, y_3 = 1, y_4 = 0$ e $y_5 = 0$. Si consideri il polinomio di Lagrange $\Pi_5(x)$ interpolante tali dati ai precedenti nodi e si riporti il valore di $\Pi_5(2.5)$.

$$\Pi_5(2.5) = 2,0625$$

2. (2 punti) Si consideri l'interpolante polinomiale lineare a tratti $\Pi_1^H f(x)$ della funzione $f(x) = \cos(10 x)$ nell'intervallo I = [0,5]. Senza costruire esplicitamente $\Pi_1^H f(x)$, si stimi il numero n di sottointervalli equispaziati di [0,5] tali per cui l'errore di interpolazione è inferiore alla tolleranza $tol = 10^{-4}$.

$$n \ge 1768$$

3. (1 punto) Sia $f(x) = 1 + \sin(8x)$. Si approssimi $\int_{-2}^{2} f(x) dx$ con la formula semplice del punto medio e si riporti l'approssimazione $I_{PM}(f)$ ottenuta.

$$I_{PM}(f) = 4$$

4. (1 punto) Si consideri la funzione $f(x) = 4x^2 - 1$. Si riporti l'errore associato all'approssimazione di $f'(\overline{x})$ in un generico punto $\overline{x} \in \mathbb{R}$ mediate le differenze finite in avanti, ovvero $E_+f(\overline{x}) = f'(\overline{x}) - \delta_+f(\overline{x})$, usando il passo h = 1/6.

$$E_+f(\overline{x}) = -\frac{2}{3} = -0,666667$$

5. (1 punto) Si consideri il seguente problema di Cauchy:

$$\begin{cases} y'(t) = -\sqrt{y(t)} + 9 \cos t & t \in (0,9], \\ y(0) = 4. \end{cases}$$

Utilizzando il metodo di Eulero in avanti (Eulero Esplicito) con passo h = 1/5 e $u_0 = 4$ si calcoli u_1 , ovvero l'approssimazione di $y(t_1)$.

$$u_1 = \frac{27}{5} = 5.4$$

6. (2 punti) Si consideri il seguente problema di Cauchy:

$$\begin{cases} y'(t) = -2y(t) - 5\sqrt{t} & t \in (0,10], \\ y(0) = 4. \end{cases}$$

Utilizzando il metodo di Crank-Nicolson con passo h=1/4 e $u_0=4$ si calcoli u_1 , ovvero l'approssimazione di $y(t_1)$.

$$u_1 = \frac{43}{20} = 2,15$$

$\begin{cases} \mathbf{y}'(t) = A\mathbf{y}(t) & t \in (0, +\infty), \\ \mathbf{y}(0) = (3\ 1)^T. \end{cases}$ dove $A = \begin{bmatrix} -9 & 0 \\ 13 & -6 \end{bmatrix}$. Si riporti la condizione di assoluta stabilità del metodo di Heun per il precedente problema di Cauchy. $ 0 < h < \tfrac{2}{9} = 0,222222 $	
Parte II - Esercizi	-
ESERCIZIO 1. (a) (2 punti) Si descriva la formula di quadratura dei trapezi composita per l'approssimazione dell'integrale $I(f) = \int_a^b f(x) dx$; si definisca tutta la notazione utilizzata e si fornisca l'interpretazione grafica della formula.	e 10 punti
(b) (3 $punti$) Si definiscano l'ordine di accuratezza p e il grado di esattezza r di una generica formula di quadratura (composita).	ı

7. (1 punto) Si consideri il seguente problema di Cauchy:

	Inoltre, per la formula di quadratura dei trapezi composita, si riportino i valori di p e r ; si giust fichino con precisione le risposte date.
Γ	
($I(f) = \int_0^1 3x^2(1+x^2)dx$ mediante la formula di quadratura dei trapezi composita con $M\geq 1$ sottointervalli equispazia di $[0,1]$. Si calcolino e si riportino i valori approssimati $I_M(f)$ dell'integrale utilizzando i valo $M=1$ (formula semplice) e $M=10$ (formula composita).
	$I_1(f) = \phantom{aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa$
1	Per il caso $M=10$ si riporti il valore dell'errore <i>stimato</i> , ovvero $\widetilde{E}_{10}(f)$.
	$\widetilde{E}_{10}(f) \leq \phantom{AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA$
	$=10(f)=\frac{200}{200}$
]	$(2 \ punti)$ Si consideri ora la formula di quadratura di Gauss-Legendre (semplice) con $n+1$ no per approssimare l'integrale $I(f)$ di cui al punto (c); si indichi con $I_n^G(f)$ il valore approssimate dell'integrale corrispondente. Si usi tale formula nel caso $n=1$ sapendo che nell'intervallo riferimento $\widehat{I}=[-1,1]$ i nodi di quadratura sono $\widehat{y}_0=-\frac{1}{\sqrt{3}}$ e $\widehat{y}_1=+\frac{1}{\sqrt{3}}$, mentre i pesi di quadratura sono $\widehat{\alpha}_0=\widehat{\alpha}_1=1$. Si riporti il valore dell'integrale così approssimato, ovvero $I_1^G(f)$.
	$I_1^G(f) = \underline{\frac{19}{12} = 1,583333}$
(Qual è il grado di esattezza r di tale formula?

	$\begin{cases} -u''(a) = \\ u(a) = \\ u(b) = \end{cases}$	$f(x) + \sigma u(x) = f(x)$ $= \alpha,$ $= \beta,$) in (a,b) ,	(1)
second'ordine) si $i = 0, \dots, N+1$	rossimi il problema u una griglia di N	+2 nodi equispaz $a)/(N+1)$. Si rip	riati $\{x_i\}_{i=0}^{N+1}$, con x_0 ortino le equazioni d	enze finite centrate (del $= a, x_i = x_0 + i h$ per el sistema risultante in
sistema lineare		l'espressione dei		al punto (a), ovvero il rice A , del vettore del

12 punti

c)	(1 punto) Si considerino ora i seguenti dati per il problema (1): $\sigma = 2$, $f(x) = 7(2+\pi^2)x\sin(\pi x) + \pi^2$
	14 $[x - \pi \cos(\pi x)]$, $a = 0$, $b = 1$, $\alpha = 0$ e $\beta = 7$. Si verifichi che la soluzione esatta del problema è data da $u(x) = 7x(1 + \sin(\pi x))$; si riporti la procedura seguita.
d)	(4 punti) Si risolva il problema ai limiti (1) con i dati di cui al punto (c) tramite il metodo descritto al punto (a), ovvero risolvendo il sistema lineare definito al punto (b), per il valore $N=9$ (per risolvere il sistema lineare si utilizzi il comando "back-slash" di Matlab [®] \). Si riportino i valori della soluzione approssimata nei nodi x_1 e x_8 , ovvero rispettivamente u_1 e u_8 .
	$u_1 = \underline{\qquad 0.9115512 \qquad \qquad } u_8 = \underline{\qquad 8.92278064 \qquad }$
	Si risolva ora il problema per $N=9$, 19, 39 e 79 e, usando la soluzione esatta $u(x)$ al punto (c), si calcolino e si riportino per ogni N gli errori corrispondenti $E_N=\max_{i=0,\dots,N+1} u_i-u(x_i) $ (si usino almeno 4 cifre decimali in formato esponenziale).
	per $N = 9$: $E_N = _{0,03489619}$ per $N = 19$: $E_N = _{0,00869535}$
	per $N = 39$: $E_N = _{0,00217205}$ per $N = 79$ $E_N = _{0,0005429}$
e)	(1 punto) Dopo aver risposto al punto (d), si stimi algebricamente l'ordine di convergenza p del metodo rispetto ad h (ovvero $(b-a)/(N+1)$) riportando sinteticamente la procedura seguita.
	$p = _{2,0003}$

5	simata $\{u_i\}_i^I$	$\underset{i=0}{\overset{N+1}{\underset{i=0}{\sim}}}$ del proble	ma (1) di cui al j	punto (d) nel c	easo $N = 9$? Si	o la soluzione appr illustri e si motivi o rispettivamente δ	la
L		$\delta u_{x_0} = \underline{\hspace{1cm}}$	9,1155	$\delta u_{x_{10}}$ =	=	1	