НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ ИТМО

Факультет систем управления и робототехники

VİTMO

Электрический привод

Дополнительные задания по лабораторной работе №1

Выполнил студент:

Мысов М.С.

Группа № R33372

Руководитель:

Маматов А.Г.

Вариант – 10

Дополнительное задание 1

Исходные данные: файл, содержащий записи момента и скорости первой массы с периодом дискретизации 1 мс.

Задания:

- а) построить частотную характеристику по экспериментальным данным
- б) определить параметры двухмассовой механической системы
- в) собрать модель с идентифицированными параметрами
- г) промоделировать с входным воздействием из исходного файла
- д) посчитать среднеквадратичную ошибку между скоростью первой массы с модели и скоростью первой массы из исходного файла

Расчет:

Рисунок 1 – график исходных данных 1

Рисунок 2 – частотная характеристика исходных данных

Передаточная функция двухмассовой системы:

$$W_{mech2}(s) = \frac{\omega_1(s)}{M(s)} = \frac{1}{J_1 + J_2} \cdot \frac{\frac{J_2}{K_{12}} s^2 + \frac{B_{12}}{K_{12}} s + 1}{s \left(\frac{J_1 J_2}{K_{12} (J_1 + J_2)} s^2 + \frac{B_{12}}{K_{12}} s + 1\right)}$$

$$W_{mech2}(s) = \frac{\omega_1(s)}{M(s)} = \frac{K_{\omega}(T_1^2 s^2 + 2 \cdot T_1 \cdot \xi_1 \cdot s + 1)}{s(T_2^2 s^2 + 2 \cdot T_2 \cdot \xi_2 \cdot s + 1)}$$

Определим параметры системы:

Коэффициент усиления $K_w = 10^{-\frac{45}{20}} = 0.005$

Первая резонансная частота $\Omega_1 = 57$ рад/с

Вторая резонансная частота $\Omega_2=157$ рад/с

Откуда:

$$T_1 = \frac{1}{\Omega_1} = 0.0177$$
 $T_2 = \frac{1}{\Omega_2} = 0.0064$

Рисунок 3 — Частотная характеристика исходных данных и вычисленной передаточной функции при ξ_1 и $\xi_2=0.05$

Подберем значения $\boldsymbol{\xi_1}$ и $\boldsymbol{\xi_2}$ точнее: $\boldsymbol{\xi_1} = 0.06, \, \boldsymbol{\xi_2} = 0.153$

Рисунок 4 — частотная характеристика исходных данных и вычисленной передаточной функции при подобранных ξ_1 и ξ_2

Вычислим параметры системы:

Mbi:

$$J_1 = \frac{T_2^2}{T_1^2 \cdot K_W} = 23.992$$

$$J_2 = \frac{1}{K_W} - J_1 = 160.085$$

$$K_{12} = \frac{J_2}{T_1^2} = 511031$$

$$B_{12} = 2 \cdot \xi_2 \cdot T_2 \cdot K_{12} = 999.2$$

Рисунок 5 – схема моделирования

Рисунок 6 – графики исходных данных и моделирования вычисленной модели

Среднеквадратичная ошибка = 0.000098

Дополнительное задание 2

Исходные данные: файл, содержащий записи момента и скорости первой массы с периодом дискретизации 1 мс и значение коэффициента жесткости K12.

Задания:

- а) определить параметры двухмассовой механической системы
- б) собрать модель с идентифицированными параметрами
- в) промоделировать с входным воздействием из исходного файла
- г) посчитать среднеквадратичную ошибку между скоростью первой массы с модели и скоростью первой массы из исходного файла

Расчет:

Рисунок 7 – график исходных данных 2

Рисунок 8 – график момента исходных данных 2 (сгор)

Из рисунка 8 определим коэффициент усиления передаточной функции, как отношение коэффициента наклона прямой разгона к амплитуде входного сигнала:

Рисунок 9 – графики исходные данных с удалением линейного тренда

Рисунок 10 – данные для расчета параметров передаточной функции

Постоянная времени колебательного звена определяется через период колебаний:

$$T_2 = \frac{2.049 - 2.009}{2 \cdot pi} = 0.0064$$

Коэффициент демпфирования колебательного звена определяется через коэффициент затухания:

$$\xi_2 = -\frac{\ln\left(\frac{0.0067935}{0.0114221}\right)}{2 \cdot pi} = 0.0827$$

Рассчитаем параметры двухмассовой системы:

$$B_{12} = \xi_2 \cdot T_2 \cdot 2 \cdot K_{12} = 105.288$$

$$Kw \cdot J_2^2 - J_2 + T2^2 \cdot K12 = 0$$

$$J_2 = 43.35 \text{ kg} \cdot \text{m}^2$$

$$T_1 = \sqrt{\frac{J_2}{K_{12}}} = 0.0208$$

$$\xi_1 = \frac{B_{12}}{2 \cdot K_{12} \cdot T_1} = 0.0253$$

$$J_1 = \frac{1}{K_W} - J_2 = 4.4708 \text{ kg} \cdot \text{m}^2$$

Смоделируем, найденную систему с исходными входными данными момента, чтобы сравнить с исходными данными.

Рисунок 11 – графики исходных данных и моделирования вычисленной модели

Среднеквадратичная ошибка = $5.71^{-8} = 0.000000057$

Вывод

В ходе лабораторной работы были вычислены параметры двухмассовой системы управления привода разными способами: по частотной и временной характеристике. Среднеквадратичные ошибки составили 0.000098 и 0.0000041791.