HW2

George Zhou

September 2019

1 Batch GD

Derivative of gradient for one datapoint (\mathbf{x}, y) :

$$\frac{\partial LL(\theta)}{\partial \theta_i} = \frac{\partial}{\partial \theta_i} y \log \sigma(\theta^T \mathbf{x}) + \frac{\partial}{\partial \theta_i} (1 - y) \log[1 - \sigma^T(\mathbf{x}\theta^T)]$$
 (1)

$$= \left[\frac{y}{\sigma(\theta^T x)} - \frac{1 - y}{1 - \sigma(\theta^T x)} \right] \frac{\partial}{\partial \theta_j} \sigma(\theta^T x)$$
 (2)

$$= \left[\frac{y}{\sigma(\theta^T x)} - \frac{1 - y}{1 - \sigma(\theta^T x)}\right] \sigma(\theta^T x) \left[1 - \sigma(\theta^T x)\right] x_j \tag{3}$$

$$= \left[\frac{y - \sigma(\theta^T x)}{\sigma(\theta^T x)[1 - \sigma(\theta^T x)]}\right] \sigma(\theta^T x) [1 - \sigma(\theta^T x)] x_j \tag{4}$$

$$= [y - \sigma(\theta^T x)]x_j \tag{5}$$

Where theta equals w in this case, and taking the sum for all data points for the negative form:

$$\frac{\partial NLL(w)}{\partial w} = -\sum_{i=1}^{N} [y_i - \sigma(w^T x_i)] x_i \tag{6}$$

2 SGD

a)
$$[(1 - y_t) \log(1 - \sigma(w^T x_t)) + y_t \log \sigma(w^T x_t)]$$
 (7)

b)
$$w_t = w_{t-1} + \eta [y_t - \sigma(w_{t-1}^T x_t)] x_t$$
 (8)

- c) If it is dense, the time complexity is equal to O(Nx) where N is number of samples and x is number of features or average number of features. If it is very sparse, the time complexity approaches O(N) where N is size of dataset.
- d) A large value in learning rate leads to large changes of the weight of the feature along the direction of gradient which can lead to the algorithm

to look over the global minimum for optimization and find a local minimum instead. Smaller learning rates usually will take much longer, however, at finding a converging minima.

e)
$$w_t = w_{t-1} + \eta[(y_t - \sigma(w_{t-1}^T x_t))x_t - 2\mu w_{t-1}^T]$$
(9)

Time complexity is O(x) where x is number is features and O(Nx) where N is number of samples and in this case, it approaches O(x).

3 2.1 b) Descriptive Statistics

Metric	Deceased	Alive patients
Event Count	patients	
	1027.74	609.0
1. Average Event Count		683.2
2. Max Event Count	16829	12627
3. Min Event Count	2	1
Encounter Count	24.04	105
1. Average Encounter Count	24.84	18.7
2. Median Encounter Count	NA	NA
3. Max Encounter Count	375	391
4. Min Encounter Count Record	1	1
Length		
Record Length		
1. Average Record Length	157.04	194.7
2. Median Record Length	25	16
3. Max Record Length	5364	3103
4. Min Record Length	0	0
	DIAG320128	DIAG320128
	DIAG319835	DIAG319835
	DIAG313217	DIAG317576
	DIAG197320	DIAG42872402
	DIAG132797	DIAG313217
Common Diagnosis		
	LAB3009542	LAB3009542
	LAB3023103	LAB3000963
	LAB3000963	LAB3023103
	LAB3018572	LAB3018572
Common Laboratory Test	LAB3016723	LAB3007461
	DRUG19095164	
	DRUG43012825	
	DRUG19049105	
	DRUG956874	
	DRUG19122121	
		DRUG19095164
		DRUG43012825
		DRUG19049105
		DRUG19122121
Common Medication		DRUG956874

4 2.3 b) SGD LR Single Model Approach

Eta of 0.01 and Mu of 0:

Eta of 0.07 and Mu of 0:

It seems that as compared to the default hyper-parameters, a higher mu constant of 0.05 made the model perform even worse (makes sense as this type of model and data may not need much regularization). Furthermore, after testing higher learning rates with constant regularization constant, the model performed better with eta of 0.07 but then got worse as it went to 0.15. It seems that this particular model may have an optimal learning rate somewhere between 0.01 and 0.15. With more tuning the best performance can be achieved.

5 2.4c) SGD LR Ensemble Approach

Eta of 0.07 and Mu of 0:

Looking at the ensemble results, there does not seem to be too much of a difference between the ensemble and single model approach. Although, for every hyperparameter, the AUC was definitely better higher. The small difference in performance may be important to some production level systems but, one reason that the difference is so small, may be attributed to the fact that it uses the

same model. Ensemble modeling is typically more significant when different types or models are used.