

Politechnika Śląska

Wydział Automatyki, Elektroniki i Informatyki Automatyka i Robotyka

ANALIZA BŁĘDÓW POMIARU POŁOŻENIA PLATFORMY MOBILNEJ

Promotor dr Aleksander Staszulonek Autor Daniel Chydziński

S CEL PRACY PLAN PREZENTACJI

1 Model fizyczny

3 Pętla regulacji

5 Strojenie PID

2 Oprogramowanie

4 Charakterystyki statyczne

6 Wyniki i wnioski

MODEL FIZYCZNY

Druk 3D

2 silniki z enkoderami

Sterownik silników

Mikrokontroler ESP32

OPROGRAMOWANIE

Moduły:

Łączności

Regulatorów

Procesora pakietów

Konfiguracyjny

PĘTLA REGULACJI

 u_i – prędkość w pulsach na pętlę u_{Pi} – sygnał w procentach (PWM) $u_{W}(t)$ – sygnał w woltach

y(t) – położenie wału silnika $y_K(t)$ – funkcja kwadratowa y_i – położenie absolutne wału silnika w pętli

CHARAKTERYSTYKI STATYCZNE KÓŁ*

*W przeliczeniu na prędkość liniową dla średnicy koła 30 mm, bieg jałowy.

Z synchronizacją

Koło prowadzące

32

Koło śledzące

30

Dla $K_P = 0.05$, $K_I = 1$, $K_D = 0$

 $\bar{e} = 0.12, cm$

12

14

20

24

Czas, s

26

28

16

WYNIKI I WNIOSKI

	PID niezależne	PID synchronizujący
K _P	0.05	0.2
K _I	1	3
K _D	0	0

KONIEC

Promotor: dr Aleksander Staszulonek Autor: Daniel Chydziński aleksander.staszulonek@polsl.pl danichy491@student.polsl.pl

