Problem A. 百年校庆

Input file: standard input
Output file: standard output

Time limit: 1 second

Memory limit: 512 megabytes

一世纪规格功夫,新百年世界一流。

在庆祝哈尔滨工业大学百年校庆之际,ACM 集训队正在准备哈工大(深圳)第二届程序设计大赛。

PBH 对我们说,在这个重大的历史转折点举办比赛,要友好一点才可以嘛。

所以, 我们决定, 将这道题献给哈工大百年校庆。

所以,在这一道题里,只用输出"HIT 100th anniversary!!!!!!"(不包含引号)就可以开开心心的通过这一道题!

让我们共同庆祝哈工大百年生日快乐!

Input

输入文件包含一个数字。

Output

输出 "HIT 100th anniversary!!!!!"

Example

standard input	standard output
19202020	HIT 100th anniversary!!!!!

Note

没错,每人领一个气球回去才显得喜庆!

Problem B. 闰年统计

Input file: standard input
Output file: standard output

Time limit: 1 second

Memory limit: 512 megabytes

一世纪规格功夫,新百年世界一流。

一个世纪有多少天来着?你不禁好奇了起来。

众所周知,一个世纪有一百年,一年有 365 天。可如果这一年是闰年,那么他就有了 366 天。 为了更好的统计一个世纪有多少天,你决定写一个程序,用来判断给定的两个年份之间有多少个闰年。

Input

输入包含一行,以空格分开的两个整数 $L, R(1582 \le L \le R \le 9999)$,表示起始年份和终止年份。

Output

输出一行一个整数,表示从起始年份到终止年份之间,有多少个闰年(包含起始年份和终止年份)。

Example

standard input	standard output
1871 1908	9
1920 2020	26

Note

样例 1 中的 9 个闰年为: 1872 年、1876 年、1880 年、1884 年、1888 年、1892 年、1896 年、1904 年、1908 年。注意 1900 年不是闰年。

ps: 如果你不知道闰年是什么,说明你没有好好复习 C 语言。

Problem C. 课程展示

Input file: standard input
Output file: standard output

Time limit: 1 second Memory limit: 512 megabytes

为了庆祝哈工大的百年校庆,弘扬以爱国主义为核心的民族精神和以改革创新为核心的时代精神,在思修课上,老师安排了期末展示活动。

在思修课的期末展示中,一共有n位同学被选作为评委。

对于正在进行展示的小组,第 i 位评委会给出一个整数 a_i ,作为这一组的评分。

在助教收齐了所有评委的评分后,他会去掉一个最高分,去掉一个最低分,将剩下的评分取平均数作为这个小组的最终成绩。

身为助教的小 P 觉得手算这么多加法和除法会令他十分疲惫, 他决定委托你写一个程序帮帮他。

Input

输入包含两行,第一行为一个正整数 $n(3 \le n \le 10^5)$,第二行包含 n 个空格分开的整数 $a_i(|a_i| \le 10^9)$ 。

Output

输出包含一行一个整数,表示最终得分。我们保证最终得分一定恰好是一个整数(尽管现实中很可能不是)。

Example

standard input	standard output
5	3
1 2 3 4 1000	
5	3
-1 -1 -1 11 11	

Note

对于样例 1, 去掉一个最高分和一个最低分后, 剩余的分数为 2 3 4 平均值为 3。

对于样例 2, 去掉一个最高分和一个最低分后, 剩余的分数为-1-111, 平均值为 3。

对于 C 或 C++ 语言,由于在 linux 下评测,使用 scanf 或 printf 输入输出 long long 类型时请使用%lld 而不是%I64d。

Problem D. 很没精神

Input file: standard input
Output file: standard output

Time limit: 1 second Memory limit: 512 megabytes

由于昨晚在夜之城度过,小 L 第二天早上很没精神。为了防止错过早八课中的重要知识点,他决定将整节课录音。

课后, 在听录音时, 小 L 发现了一个叫"倒放"的功能, 他觉得这个功能十分有趣。

在倒放时,录音中的一段音频会被反过来播放。比如,老师说"waibibabu",那么在倒放时,就变成了"ubabibiaw"。

小 L 惊奇地发现, 老师讲课中的某些部分, 正放和倒放居然是一样的。比如 "abbba" 就具有这样的性质。他十分好奇, 在整个录音中, 最长的满足 "正放和倒放一样"的部分有多长。由于小 L 还在夜之城, 他希望你写个程序帮帮他。

ps: 我们保证录音中只有英语小写字母,没有空格、分号、逗号等。

Input

输入包含一行字符串 $S(|S| \le 5000)$ 表示老师上课的录音,保证 S 中只有小写英文字母。

Output

输出一行一个整数,表示录音中最长的部分的长度,满足正放、倒放相同。

Example

standard input	standard output
guigeyange	1
ggyggfdjgctt	5
guochengtaotaigcttttcg	8

Note

对于样例 1,满足性质的可以是任何一个长度为 1 的部分。

对于样例 2,满足性质的最长部分为 ggygg。

对于样例 3,满足性质的最长部分为 gcttttcg。

Problem E. 工地大学

Input file: standard input
Output file: standard output

Time limit: 1 second Memory limit: 512 megabytes

哈尔滨工地大学(深圳)在旧校区旁边新开辟了一块大小为 $n \times m$ 的矩形工地。在地图上,工地四个顶点的坐标分别为 (0,0),(0,m),(n,0),(n,m)。

在哈工大百年校庆之际,为了扩大招生规模、学校希望在工地上修建两栋教学楼。

在地图上, 教学楼可以表示成矩形, 其中一栋教学楼边长为 $a \times b$, 另一栋为 $c \times d$ 。

在建设教学楼时,学校希望两栋教学楼的四个顶点要落在矩形工地的坐标的整数点上,且两栋教学楼的 边界要与矩形工地的边界平行,并且两栋教学楼不能互相重叠(但是边、顶点可以重合;教学楼的边、顶 点可以与工地的边、顶点重合)。

为了统计同学们对两栋新教学楼位置的意愿,学校需要先统计所有可能的位置数量。辅导员找到了聪明 机智的你,希望你能够完成这个神圣而重大的任务。

由于答案很大, 你只需要输出答案对 998244353 取模后的结果 (答案除以 998244353 的余数)。ps: 整数点指的是坐标系上横坐标和纵坐标都是整数的点。

Input

每个测试点有多组测试数据,首先第一行会输入一个数 $t(1 \le t \le 10^5)$ — 测试数据的数量。 对于每个数据,只有一行,包含 6 个正整数 $n,m,a,b,c,d(1 \le n,m,a,b,c,d \le 10^9)$ 。 n,m 表示矩形工地的大小; a,b 表示一栋教学楼的边长; c,d 表示另一栋教学楼的边长。

Output

输出一共 t 行,对于每一组测试数据,输出一行,这一行输出一个整数为最终的答案。

Example

standard input	standard output
2	20
3 3 2 2 1 1	16
3 3 2 2 1 2	

Note

对于第二个测试样例:假设用红色矩形和蓝色矩形代表两个教学楼;当红色矩形在左上角的时候,一共有4种可能的修建方案,如下图:

红色矩形除了放在左上角,还有可以放在右上角,左下角,右下角,因此答案一共为 $4 \times 4 = 16$ 种。 注意:不是正方形的教学楼可以有两种摆放方向;正方形教学楼只有一种方向。

Problem F. RE: 从零开始的 NPY 生活

Input file: standard input
Output file: standard output

Time limit: 1 second Memory limit: 512 megabytes

小 P 成功找到了 NPY, 成为了人生赢家。

小 P 和他的 NPY 生活在一个有 n 座城市的国家。城市由 m 条只能单向行驶的道路连接。

小 P 家住 1 号城市,小 P 的 NPY 家住 n 号城市,放寒假了,小 P 准备开车去他 NPY 所在的城市找她玩。

众所周知, 当你去找 NPY 时, 需要给她带一些礼物。

由于每个城市有独特的特产,如果小 P 决定将 k 号城市的特产带给他的 NPY,那么在从 1 号城市到 n 号城市的路上,他一定需要经过 k 号城市。

而小 P 并不清楚他 NPY 究竟想要什么,他决定在制定出行计划时,考虑所有可以买到的特产,并且小 P 并不想绕远。

具体来说,对于每一个 k ,他需要知道,从他家所在的 1 号城市,经过 k 号城市,到达 n 号城市的所有行车方案中,路径最短的方案的路径长度。

道路交通规划部门向你保证,对于每一个城市,都有至少一种方案可以从 1 号城市到该城市再到 n 号城市。

这问题令小 P 十分头大,他决定求助于在 HITSZ 就读的,他的 HXD,你。希望你能够写一个程序,帮助他完成他的出行计划。

Input

输入的第一行包含两个整数 $n(1 \le n \le 2000)$ 和 $m(1 \le m \le 10^5)$,分别表示城市数量和单向道路的数量。对于第 $2 \sim m+1$ 行,其中第 i+1 行有三个整数 u_i, v_i, l_i 表示第 i 条单向道路,从 u_i 出发,到达 v_i ,长度为 l_i 。保证所有的路径长度满足 $l_i \le 2000$ 。

Output

输出 1 行 n 个整数,其中第 k 个整数表示从 1 号城市出发,经过 k 号城市到达 n 号城市路径长度最短的路径长度。

Example

standard input	standard output
5 9	1 9 6 5 1
1 2 3	
2 4 4	
2 3 3	
1 4 2	
3 5 3	
3 4 2	
4 1 2	
4 3 1	
1 5 1	

Note

五条可行的路径分别为 $1 \rightarrow 5$, $1 \rightarrow 2 \rightarrow 3 \rightarrow 5$, $1 \rightarrow 4 \rightarrow 3 \rightarrow 5$, $1 \rightarrow 4 \rightarrow 1 \rightarrow 5$, $1 \rightarrow 5$.

Problem G. 范学长放牙刷

Input file: standard input
Output file: standard output

Time limit: 1 second

Memory limit: 512 megabytes

众所周知, 范学长早晨起来是要刷牙的。

范学长有 N 支牙刷,又有 N 个牙刷套, 开始的时候,一支牙刷对应放在一个牙刷套中。可是有一天,范学长把所有牙刷套里的牙刷都拿出来,玩了一会儿,他又要把所有的牙刷都放回去。可是,他忽然一想,我可不可以使得没有任何一支牙刷放回它原来的牙刷套里面呢?

范学长努力试了很久,却一直没有成功过一次。于是他断定这个要求是无法达成的,你怎么认为的呢?

Input

只包括一个整数 $N(1 \le N \le 10^5)$,表示牙刷和牙刷套的总数。

Output

如果存在满足要求的方法,输出放法方案总数 L。因为方案总数可能比较大,所以请输出答案对 1206 取 模后的结果。如果不存在满足要求的方法,则输出"No Solution!"(不含引号)

Example

standard input	standard output
3	2
4	9

Note

对于第一组样例,易知,如果有3个牙刷、牙刷套,有2种方法使得它们重新排列并且没有任何牙刷放回原来的牙刷套。

Problem H. 芯片设计

Input file: standard input
Output file: standard output

Time limit: 1 second Memory limit: 512 megabytes

令人感到安稳可靠的 BangBang 学长正在参加第五届泷芯杯。

泷芯杯是一门考察学生芯片设计能力的竞赛,在本次比赛中,组委会要求选手们用给定的两种元件填满整个芯片,制造出稳定可靠的芯片的参赛选手可以获得本次比赛的一等奖。

具体来说,整个芯片可以视作一个 $2 \times N$ 的矩形,而组委会给定的两种元件形状如下:

这两种元件可以旋转,两种元件可以无限制提供。设计一个稳定可靠、速度飞快的芯片对于 BangBang 学长自然不是难事,可相比于已经是囊中之物的一等奖来说,BangBang 学长更加好奇,在满足组委会要求的前提下,总共有多少种可能的芯片设计方式呢?

例如一个 2×3 的芯片可以有 5 种芯片设计方法,如下:

注意可以使用两种元件混合起来覆盖,如 2×4 的芯片可以这样设计:

由于结果可能很大,所以只要求出输出结果十进制下最后 4 位。例如 2×13 的芯片的设计方法有 13465 种,所以你只需输出 3465。如果答案少于 4 位,就直接输出就可以,不用加 0,如 N=3 时输出 5。

Input

输入包含一个整数 $N(1 \le N \le 10^6)$, 表示芯片的长。

Output

输出设计方案数的最后4位,如果不足4位就输出整个答案。

Example

standard input	standard output
3	5
13	3465

Problem I. 玄妙排列

Input file: standard input
Output file: standard output

Time limit: 1 second Memory limit: 512 megabytes

作为一名精通集合论、图论、近世代数、组合数学等多种高端操作的优秀教师, T 老师对排列情有独钟。 经过多年的潜心研究, T 老师发现, 如果排列中的某一个子段满足"将这一子段排序之后, 形成一段公差 为 1 的等差数列", 那么这个子段将具有一种十分玄妙的特性。

(排列的子段指排列中连续的一段数字)

比如,排列 1,5,6,2,4,3 中,子段 [5,6,2,4,3] 和子段 [2,4,3] 具有玄妙的特性,而子段 [5,6,2]则不然。

T 老师对自己的研究成果十分满意,并提出了一个更有挑战性的研究课题:

对于某个给定的排列的一个子段,该子段的所有子段中,有多少个子段具有玄妙的特性?

自然,这个课题交给了 T 老师的得意弟子 F 同学,不出所料, F 同学找到了你。

Input

输入的第一行包含 1 个整数 $n(n \le 10^5)$,表示排列的长度。

第 2 行包含 n 个整数 $p_i(1 \le p_i \le n)$,表示一个 $1 \sim n$ 的排列。

第 3 行包含一个整数 $q(q \le 10^5)$,表示询问的个数。

接下来有 q 行,每行两个整数 l_i 和 r_i ,代表每次询问的排列的子段 $[l_i, r_i] (1 \le l_i \le r_i \le n)$ 。

Output

输出 q 行,每行 1 个整数,代表询问的子段中有多少个子段具有这种特性。

Example

standard input	standard output
5	4
1 3 2 5 4	6
3	7
2 4	
1 4	
2 5	

Note

对于第一个询问,满足条件的子段有[3],[2],[5],[3,2]

对于第二个询问,满足条件的子段有 [1], [3], [2], [5], [3,2], [1,3,2]

对于第三个询问,满足条件的子段有 [3], [2], [5], [4], [3,2], [5,4], [3,2,5,4]

Problem J. 卷 王 之 王

Input file: standard input
Output file: standard output

Time limit: 1 second Memory limit: 512 megabytes

紧张刺激的内卷环节开始了。

HITSZ 的校园里共有 n 位卷王,每位卷王有他自己的内卷值 a_i 。

学校即将选出两名卷王凑成一队,参与第一届 HIT 双人内卷大赛。

由于学校对组队不加限制,根据 T 老师传授的组合数学相关知识,我们知道,一共有 $\frac{n\times(n-1)}{2}$ 种组队方式。

当两个卷王相遇时,他们所构成的小队的内卷值并非简简单单的加和,而是由一系列复杂的因素决定。

(此处隐藏了只有真正的卷王才知道的一系列复杂因素,成为真正的卷王后本内容自动解锁)

由于上述种种因素,当两名内卷值分别为 a_i 和 a_j 的卷王组队时,他们构成的卷王小队的内卷值将会是 $a_i \oplus a_j$ 。HIT 的内卷冠军毫无疑问是属于 HITSZ 的,可除了这显而易见的结果,小 P 还想知道,在 $\frac{n \times (n-1)}{2}$ 种组队方式中,内卷值第 k 大的队伍的内卷值是多少。

由于计算 $\frac{n\times(n-1)}{2}$ 个小队的内卷值再排序实在令人头秃,他找到了即将代表 HITSZ 出战参与全世界大学生卷王大赛的你,他相信你一定能够给他一些帮助。

ps: $x \oplus y$ 表示数字 x 和 y 做按位异或(Bitwise-Xor)操作,也就是把 x 和 y 写成二进制,每一位进行异或操作,例如 $3 \oplus 5 = 6$ 。

Input

输入的第一行包含二个正整数 $n(2 \le n \le 2 \times 10^5)$ 和 $k(1 \le k \le \frac{n(n-1)}{2})$,分别表示卷王的个数以及询问的 k。第二行包含 n 个整数 $a_i(0 \le a_i \le 10^6)$,第 i 个数 a_i 表示第 i 个卷王的内卷值。

Output

输出一个整数,为生成的 $\frac{n(n-1)}{2}$ 个组队中,内卷值第 k 大的值。

Example

standard input	standard output
4 3	5
2 3 5 7	

Note

 a_1 的与 $a_2 \sim a_4$ 依次异或生成 1,7,5

 a_2 与 $a_3 \sim a_4$ 依次异或生成 6,4

a₃ 与 a₄ 异或生成 2

Problem K. ghj 的远足

Input file: standard input
Output file: standard output

Time limit: 2 seconds
Memory limit: 512 megabytes

ghi 喜欢远足。

ghj 生活在一个有 n 个城市的国家,这 n 个城市由 n-1 条双向通行的公路连接,并且保证,从一个城市出发,可以到达另外 n-1 座城市中的任意一座城市。

寒假来了, ghj 正在设计他的远足路线。

不巧,很多城市正在举办当地的双人内卷大赛,这些城市并不准备接待游客,所以 ghj 并不能在这些城市住店休息(但是可以经过这些城市)。

由于内卷大赛的特殊赛制,赛事组委会保证,当前并没有举行内卷大赛的城市一定是标号连续的某些城市。比如 4,5,6,7 就是标号连续的 4 座城市,而 3,4,8 则不是。

在这次远足中,ghj准备从没有举办内卷大赛的城市中挑选两座,从其中一座出发,沿公路徒步前往另一座。

ghj 真的很喜欢远足, 所以他希望, 在远足中, 徒步经过的公路数量尽量多。

但是,内卷大赛组委会并未确定举办城市最终方案,只是给出了m种候选方案。可ghj等不及要开始设计线路了。

ghj希望你对于候选方案中的每一种,都帮他设计一条路线,使得他徒步经过的公路数量尽量多。

由于 ghj 并没有 NPY, 他也不关心沿路的风景与特产, 所以你只需要告诉 ghj, 对于每一种方案, 他经过的公路数量就可以了。

Input

输入的第一行包含两个整数 $n(2 \le n \le 10^5)$ 和 $m(1 \le m \le 10^5)$,表示城市的数量和候选方案的数量。接下来 n-1 行,每行两个整数 u_i, v_i ,表示第 i 条道路连接的两个城市。

接下来 m 行,每行两个整数 $l_i, r_i (1 \le r_i \le r_i \le n)$,表示在第 i 个候选方案中,当前编号在 $[l_i, r_i]$ 内的城市没有举办内卷大赛。

Output

输出 m 行, 第 i 行包含一个整数, 代表对于第 i 个候选方案 $[l_i, r_i]$, ghj 最多可以徒步经过的公路数量。

Example

standard input	standard output
6 3	2
1 2	2
2 3	3
2 4	
2 5	
4 6	
1 3	
2 4	
1 6	

Problem L. 我不是助教

Input file: standard input
Output file: standard output
Time limit: 0.25 seconds
Memory limit: 512 megabytes

线性代数好难鸭。

众所周知, 小 L 不喜欢算矩阵乘法。

即使在他躲过了过程淘汰,成功晋升为助教之后,他也还是不喜欢矩阵乘法。

今天, 小 L 需要批改学弟学妹的线性代数作业。

翻开作业本,小 L 惊奇地发现,本次作业的所有题目,都是"给定两个 $n \times n$ 的方阵 A, B,求它们的乘积 $A \times B$ "。

可学弟学妹们并不规格严格、功夫到家,因此有的答案可能有错误,小 L 需要判断学弟学妹们的答案是否正确。

由于小 L 只需要批改作业而不是做作业,他并不需要自己算矩阵乘法,他只需要验证学弟学妹的答案是否正确。

想到这里,小 L 的嘴角微微上扬,可当他看到 n 满足 $n \le 1000$ 时,他的笑容消失了。

三天之后,小 L 带着剩下的厚达 1.414m 的未批改的作业题,找到了你。

你看见他面色苍白,神情恍惚,你的内心产生了波动,你不忍心再让他算矩阵乘法了。 你决定写个程序帮帮他。

Input

数据的第一行包含一个数字 $n(n \le 1000)$ 。

接下来的 n 行每行 n 个整数,表示矩阵 A 。

接下来的 n 行每行 n 个整数,表示矩阵 B 。

接下来的 n 行每行 n 个整数,表示学弟学妹计算的结果矩阵 C 。

保证给出的矩阵里所有数字 $|A_{ij}|, |B_{ij}| \leq 10^2, |C_{ij}| \leq 10^9$

Output

输出一行"Yes"或者"No"(不包括引号)代表学弟学妹的计算结果是否正确。

Example

standard input	standard output
3	Yes
1 2 3	
4 5 6	
7 8 9	
1 3 4	
2 5 8	
9 6 7	
32 31 41	
68 73 98	
104 115 155	
3	No
1 0 0	
2 5 0	
2 3 8	
1 3 8	
0 1 2	
0 0 3	
1 -3 8	
2 -11 26	
2 -9 46	

Note

第二个样例数据应为
$$\begin{pmatrix} 1 & 3 & 8 \\ 2 & 11 & 26 \\ 2 & 9 & 46 \end{pmatrix}$$

Problem M. 过程淘汰

Input file: standard input
Output file: standard output

Time limit: 1 second

Memory limit: 512 megabytes

一世纪规格功夫,新百年世界一流。

众所周知,哈尔滨工业大学的校训是"规格严格,功夫到家,过程淘汰"。

新的一学期里,小 P 所在的年级开设了 N 门课程,第 i 门课程的起始日期是第 l_i 天,终止日期是第 r_i 天(由于第 r_i 天是考试,因此课程时间包含第 l_i 天,但不包含第 r_i 天)。在这段时间里,每天都有第 i 门课程。

如果一个学生在一段连续时间内每天都有至少一门课,那么在这段连续的时间结束后,他会因为自己的成绩不够理想,而积累 1 点淘汰值。在整个学期结束后,由于这个学生面临找不到 npy、新年晚会抽奖没中、麦当劳队太长等不及、猫很凶不给撸等多种困难,他在这一学期的淘汰值会自我生长,变成原来的 k 次方。

小 P 的年级里一共有 2^N 个学生,每个学生的选课方案都是独一无二的。转眼快到学期末了,辅导员准备根据淘汰值来淘汰一批学生,但是,ta 首先需要知道所有 2^N 个人的淘汰值的和,你能帮 ta 算出来吗?

Input

输入的第一行包含 2 个整数 $N(1 \le N \le 10^5)$ 和 $k(1 \le k \le 10)$,表示课程数和淘汰值的生长能力。 $2 \sim N + 1$ 行,第 i + 1 行有两个整数 l_i 和 $r_i(1 \le l_i < r_i \le 10^9)$ 表示第 i 个课程的起始日期和截止日期 (课程包含第 l_i 天,但不包含第 r_i 天)。

Output

输出所有学生的淘汰值的和;由于这个数字可能很大,输出对 $10^9 + 7$ 取模后的值(除以 $10^9 + 7$ 的余数)。

Example

standard input	standard output
3 3	14
1 6	
2 3	
4 5	

Note

对于不选任何课的同学,他的淘汰值是 0; 对于同时选了第 2 和第 3 门课的同学,他的淘汰值是 8; 其他 六位同学淘汰值是 1; 和为 14。