Frontera Eficiente y Teoría de Markowitz

Fernando Cotrina

Marzo 2025

I. Teoría Moderna de Portafolio (MPT)

La **Teoría Moderna de Portafolio**, desarrollada por **Harry Markowitz** en 1952, es un marco matemático para la toma de decisiones de inversión bajo riesgo. Su objetivo es construir portafolios eficientes, es decir:

- Maximizar el rendimiento esperado dado un nivel de riesgo, o
- Minimizar el riesgo dado un rendimiento esperado.

Fundamento clave: Diversificación

La diversificación es el principio central de la MPT. Al combinar activos que no están perfectamente correlacionados, es posible reducir el riesgo total del portafolio sin sacrificar retorno esperado.

II. Definiciones Básicas

Sea N el número de activos. Denotamos:

- $\mathbf{w} = (w_1, w_2, \dots, w_N)^T$: vector de **pesos** del portafolio.
- Cada w_i representa la proporción del capital invertido en el activo i.

En una estrategia **long-only**, se cumple:

$$w_i \ge 0, \quad \sum_{i=1}^N w_i = 1$$

III. Rendimiento Esperado del Portafolio

El retorno esperado del portafolio es una combinación lineal de los retornos esperados individuales:

$$R_p = \sum_{i=1}^N w_i R_i = \mathbf{w}^T \mathbf{R}$$

Donde $\mathbf{R} = (R_1, R_2, \dots, R_N)^T$ es el vector de retornos esperados de los activos.

IV. Riesgo del Portafolio (Volatilidad)

El riesgo (desviación estándar) del portafolio incorpora varianzas individuales y covarianzas entre activos:

$$\sigma_p = \sqrt{\mathbf{w}^T \Sigma \mathbf{w}}$$

Donde Σ es la matriz de covarianzas de los retornos de los activos.

V. Frontera Eficiente

La **frontera eficiente** es el conjunto de portafolios que maximizan el rendimiento esperado para cada nivel de riesgo o minimizan el riesgo para un rendimiento esperado dado.

Figure 1: Frontera Eficiente

En el plano **riesgo-retorno**, la frontera eficiente es una curva convexa hacia arriba. Portafolios por debajo de esta curva son ineficientes.

VI. Correlación y Diversificación

El riesgo del portafolio no depende sólo del riesgo individual de cada activo, sino también de cómo se relacionan entre ellos.

1. Correlación

La correlación entre activos i y j se denota ρ_{ij} :

- $\rho_{ij} = 1$: movimientos perfectamente positivos.
- $\rho_{ij} = 0$: no hay relación lineal.
- $\rho_{ij} = -1$: movimientos perfectamente opuestos.

2. Impacto sobre el riesgo

Supón dos activos con igual riesgo individual, $\sigma_1=\sigma_2$, pero distinta correlación:

- Si $\rho = 1$, no hay beneficio de diversificación.
- Si $\rho < 1$, se reduce el riesgo del portafolio.
- $\bullet\,$ Si $\rho<0,$ es posible que el riesgo del portafolio sea menor que el de cualquiera de los activos.

3. Riesgo para dos activos

Sea w_A y w_B los pesos, $\sigma_A^2,\,\sigma_B^2$ las varianzas, y ρ_{AB} la correlación:

$$\sigma_p^2 = w_A^2 \sigma_A^2 + w_B^2 \sigma_B^2 + 2w_A w_B \rho_{AB} \sigma_A \sigma_B$$

Conclusión: una correlación baja entre activos permite reducir el riesgo del portafolio gracias a la diversificación.

VII. Apéndice: Optimización de Portafolios

1. Portafolio de Volatilidad Mínima Global (GMVP)

Se puede encontrar un portafolio óptimo (en la frontera eficiente) resolviendo un problema de minimización de varianza:

$$\min_{\mathbf{w}} \quad \frac{1}{2}\mathbf{w}^T \Sigma \mathbf{w}$$

Sujeto a:

$$\begin{cases} \mathbf{w}^T \mathbf{1} = 1 \\ 0 \le \mathbf{w}_i \le 1 \end{cases}$$
 (estrategia long-only)

Nota: Este problema puede resolverse con métodos numéricos como scipy.optimize.

2. Maximización del Ratio de Sharpe

El portafolio con mayor ratio de Sharpe maximiza la rentabilidad ajustada al riesgo:

$$\max_{\mathbf{w}} \quad SR = \frac{R_p - r_f}{\sigma_p}$$

Esto equivale a minimizar el negativo del Sharpe ratio:

$$\min_{\mathbf{w}} \quad -\frac{R_p - r_f}{\sigma_p}$$

Sujeto a las mismas restricciones:

$$\begin{cases} \mathbf{w}^T \mathbf{1} = 1\\ 0 \le \mathbf{w}_i \le 1 \end{cases}$$

Este enfoque permite encontrar la combinación óptima entre riesgo y retorno con respecto a un activo libre de riesgo r_f .