TD3 Capteurs en instrumentation industrielle

Exercice 1

Un capteur de température (ruban de platine) possède une résistance R_0 qui varie avec la température θ suivant la loi : $R_{\theta} = R_0 (1 + a\theta)$ avec :

- \blacksquare R₀ (résistance à 0°C) \rightarrow R₀ = 100 Ω.
- a (coefficient de température) $\rightarrow a = 3.85 \cdot 10^{-3} \text{ °C}^{-1}$.

Ce capteur est inséré dans le circuit conditionneur de la figure ci-dessous :

On donne I = 10.0 mA.

- 1- Montrer que la tension u_{θ} aux bornes de R_{θ} s'écrit sous la forme : $u_{\theta} = U_0$ ($1 + a\theta$) . Exprimer U_0 en fonction de I et R_0 . Calculer U_0 .
- 2- Quel est l'intérêt du montage de l'amplificateur opérationnel A1 ?
- 3- Dans le montage construit autour de A2, la tension U_0 est la même que celle définie à la question 1- .

Montrer que la tension u_{θ} s'écrit sous la forme : u_{θ} = -b θ . Exprimer b en fonction de a, U_0 , R_2 , et R_1 .

4- On souhaite inverser la tension $\mathbf{u_\theta'}$ pour obtenir la tension $\mathbf{u_\theta''}$ qui s'écrit : $\mathbf{u_\theta''} = \mathbf{b}\boldsymbol{\theta}$. Représenter un montage à amplificateur opérationnel assurant cette fonction et qui complète le conditionneur.