NUEN 647 Homework 2

Due: October 19, 2016

1. Consider a covariance function between points in 2-D space:

$$k(x_1, y_1, x_2, y_2) = \exp[-|x_1 - x_2| - |y_1 - y_2|].$$

Generate 4 realizations of a Gaussian random process with zero mean, $\mu(x,y)=0$, and this covariance function defined on the unit square, $x,y\in[0,1]$. For the realizations, evaluate the process at 50 equally spaced points in each direction. Plot the realizations.

- 2. Assume you have a 100 samples of a pair of random variables (X_1, X_2) that have a positive correlation, call this set of pairs, \mathbf{A}_1 . You then draw another 100 samples and call this set \mathbf{A}_2 . The Pearson correlation between (X_1, X_2) in \mathbf{A}_1 is positive and the Pearson correlation between (X_1, X_2) in \mathbf{A}_2 is negative. What can you say about the Pearson correlation for all 200 samples?
- 3. For the following data, compute by hand or via code you write the Pearson and Spearman correlations and Kendall's tau.

X_1	X_2
55.01	82.94
54.87	55.02
57.17	85.18
36.01	-84.27
35.88	-106.30
36.33	-119.65
43.49	-112.03
41.44	-71.69
54.43	-3.50
36.47	140.57

- 4. Demonstrate the tail dependence of a bivariate normal random variable is o.
- 5. Another Archimedean copula is the Joe copula with generator

$$\varphi_{\mathbf{J}}(t) = -\log\left(1 - (1-t)^{\theta}\right),$$

and

$$\varphi_{\rm J}^{-1}(t) = 1 - (1 - \exp(-t))^{1/\theta}$$
.

- (a) Compute the bivariate copula for this generator.
- (b) Derive the upper and lower tail dependence for this copula.
- (c) Compute the value of Kendall's tau for this copula
- (d) Generate 1000 samples from the copula with standard normal marginals and a value of Kendall's tau of 0.6.