

Data Analysis Using Regression and Multilevel/Hierarchical Models

ANDREW GELMAN JENNIFER HILL

CAMBRIDGE

Contents

List of examples pag			
Pı	eface	e	xix
1	Wh	v?	1
_	1.1	What is multilevel regression modeling?	1
	1.2	Some examples from our own research	3
	1.3	Motivations for multilevel modeling	6
	1.4	Distinctive features of this book	8
	1.5	Computing	9
2	Con	cepts and methods from basic probability and statistics	13
	2.1	Probability distributions	13
	2.2	Statistical inference	16
	2.3	Classical confidence intervals	18
	2.4	Classical hypothesis testing	20
	2.5	Problems with statistical significance	22
	2.6	55,000 residents desperately need your help!	23
	2.7	Bibliographic note	26
	2.8	Exercises	26
Pa	art 1.	A: Single-level regression	29
3	Line	ear regression: the basics	31
	3.1	One predictor	31
	3.2	Multiple predictors	32
	3.3	Interactions	34
	3.4	Statistical inference	37
	3.5	Graphical displays of data and fitted model	42
	3.6	Assumptions and diagnostics	45
	3.7	Prediction and validation	47
	3.8	Bibliographic note	49
	3.9	Exercises	49
4			53
	4.1	Linear transformations	53
	4.2	Centering and standardizing, especially for models with interaction	
	4.3	Correlation and "regression to the mean"	57
	4.4	Logarithmic transformations	59
	4.5	Other transformations	65
	4.6	Building regression models for prediction	68
	4.7	Fitting a series of regressions	73

TENTS	5
	TENTS

	4.8 4.9	Bibliographic note Exercises	74 74		
5	_	stic regression	79		
	5.1	Logistic regression with a single predictor	79		
	5.2	Interpreting the logistic regression coefficients	81		
	5.3	Latent-data formulation	85 86		
	5.4	Building a logistic regression model: wells in Bangladesh Logistic regression with interactions	86 92		
	$5.5 \\ 5.6$	Evaluating, checking, and comparing fitted logistic regressions	92 97		
	5.7	Average predictive comparisons on the probability scale	101		
	5.8	Identifiability and separation	104		
	5.9	Bibliographic note	105		
		Exercises	105		
6	Gen	eralized linear models	109		
U	6.1	Introduction	109		
	6.2	Poisson regression, exposure, and overdispersion	110		
	6.3	Logistic-binomial model	116		
	6.4	Probit regression: normally distributed latent data	118		
	6.5	Multinomial regression	119		
	6.6	Robust regression using the t model	124		
	6.7	Building more complex generalized linear models	125		
	6.8	Constructive choice models	127		
	6.9	Bibliographic note	131		
	6.10	Exercises	132		
Pa	rt 1I	3: Working with regression inferences	135		
7	Sim	ulation of probability models and statistical inferences	137		
	7.1	Simulation of probability models	137		
	7.2	Summarizing linear regressions using simulation: an informal			
		Bayesian approach	140		
	7.3	Simulation for nonlinear predictions: congressional elections	144		
	7.4	Predictive simulation for generalized linear models	148		
	7.5	Bibliographic note	151		
	7.6	Exercises	152		
8		ulation for checking statistical procedures and model fits	155		
	8.1	Fake-data simulation	155		
	8.2	Example: using fake-data simulation to understand residual plots	157		
	8.3	Simulating from the fitted model and comparing to actual data	158		
	8.4 8.5	Using predictive simulation to check the fit of a time-series model	163 165		
	8.6	Bibliographic note Exercises	165		
C	C	real inference using magnession on the two-two-stars 111	167		
9		sal inference using regression on the treatment variable Causal inference and predictive comparisons	167		
	9.1 9.2	The fundamental problem of causal inference	167 170		
	9.2 9.3	Randomized experiments	$\frac{170}{172}$		
	9.3	Treatment interactions and poststratification	178		

\mathbf{C}	ONTENTS	xi

	9.5	Observational studies	181
	9.6	Understanding causal inference in observational studies	186
	9.7	Do not control for post-treatment variables	188
	9.8	Intermediate outcomes and causal paths	190
	9.9	Bibliographic note	194
	9.10	Exercises	194
10	Caus	sal inference using more advanced models	199
	10.1	Imbalance and lack of complete overlap	199
	10.2	Subclassification: effects and estimates for different subpopulations	204
	10.3	Matching: subsetting the data to get overlapping and balanced	
		treatment and control groups	206
	10.4	Lack of overlap when the assignment mechanism is known:	
		regression discontinuity	212
	10.5	Estimating causal effects indirectly using instrumental variables	215
	10.6	Instrumental variables in a regression framework	220
		Identification strategies that make use of variation within or between	
		groups	226
	10.8	Bibliographic note	229
		Exercises	231
D.	rt 2 A	a: Multilevel regression	235
10	11 t 2 F	t. Wutthever regression	200
11		tilevel structures	237
	11.1	Varying-intercept and varying-slope models	237
	11.2	Clustered data: child support enforcement in cities	237
	11.3	Repeated measurements, time-series cross sections, and other	
		non-nested structures	241
	11.4	Indicator variables and fixed or random effects	244
		Costs and benefits of multilevel modeling	246
		Bibliographic note	247
	11.7	Exercises	248
12	Mult	tilevel linear models: the basics	251
	12.1	Notation	251
	12.2	Partial pooling with no predictors	252
	12.3	Partial pooling with predictors	254
	12.4	Quickly fitting multilevel models in R	259
		Five ways to write the same model	262
	12.6	Group-level predictors	265
	12.7	Model building and statistical significance	270
	12.8	Predictions for new observations and new groups	272
	12.9	How many groups and how many observations per group are	
		needed to fit a multilevel model?	275
	12.10	Bibliographic note	276
	12.11	Exercises	277
13	Mult	tilevel linear models: varying slopes, non-nested models, and	
_		r complexities	279
		Varying intercepts and slopes	279
	13.2	Varying slopes without varying intercepts	283
		•	

xii CONTENTS

	13.3	Modeling multiple varying coefficients using the scaled inverse- Wishart distribution	284
	13.4	Understanding correlations between group-level intercepts and	
		slopes	287
		Non-nested models	289
		Selecting, transforming, and combining regression inputs	293
		More complex multilevel models	297
		Bibliographic note	297
	13.9	Exercises	298
14	Mul	tilevel logistic regression	301
		State-level opinions from national polls	301
	14.2	Red states and blue states: what's the matter with Connecticut?	310
	14.3	Item-response and ideal-point models	314
		Non-nested overdispersed model for death sentence reversals	320
		Bibliographic note	321
	14.6	Exercises	322
15	Mul	tilevel generalized linear models	325
		Overdispersed Poisson regression: police stops and ethnicity	325
		Ordered categorical regression: storable votes	331
		Non-nested negative-binomial model of structure in social networks	332
	15.4	Bibliographic note	342
	15.5	Exercises	342
Pa	rt 2I	3: Fitting multilevel models	343
16	Mul	tilevel modeling in Bugs and R: the basics	345
		Why you should learn Bugs	345
		Bayesian inference and prior distributions	345
	16.3	Fitting and understanding a varying-intercept multilevel model	
		using R and Bugs	348
	16.4	Step by step through a Bugs model, as called from R	353
	16.5	Adding individual- and group-level predictors	359
	16.6	Predictions for new observations and new groups	361
		Fake-data simulation	363
		The principles of modeling in Bugs	366
		Practical issues of implementation	369
		Open-ended modeling in Bugs	370
		Bibliographic note	373
	16.12	? Exercises	373
17	Fitti	ing multilevel linear and generalized linear models in Bugs	
	and		375
	17.1	Varying-intercept, varying-slope models	375
		Varying intercepts and slopes with group-level predictors	379
		Non-nested models	380
		Multilevel logistic regression	381
		Multilevel Poisson regression	382
		Multilevel ordered categorical regression	383
	17.7	Latent-data parameterizations of generalized linear models	384

CONTENTS xii				
17.8	Bibliographic note	385		
	Exercises	385		
11.0		000		
18 Like	elihood and Bayesian inference and computation	387		
18.1	Least squares and maximum likelihood estimation	387		
18.2	Uncertainty estimates using the likelihood surface	390		
18.3	Bayesian inference for classical and multilevel regression	392		
	Gibbs sampler for multilevel linear models	397		
18.5	Likelihood inference, Bayesian inference, and the Gibbs sampler:			
	the case of censored data	402		
	Metropolis algorithm for more general Bayesian computation	408		
18.7	Specifying a log posterior density, Gibbs sampler, and Metropolis	400		
10.0	algorithm in R	409		
	Bibliographic note Exercises	413 413		
16.9	Exercises	415		
19 Del	ougging and speeding convergence	415		
	Debugging and confidence building	415		
	General methods for reducing computational requirements	418		
19.3	Simple linear transformations	419		
19.4	Redundant parameters and intentionally nonidentifiable models	419		
19.5	Parameter expansion: multiplicative redundant parameters	424		
19.6	Using redundant parameters to create an informative prior			
	distribution for multilevel variance parameters	427		
	Bibliographic note	434		
19.8	Exercises	434		
Part 3	: From data collection to model understanding to model			
	. If the data concertor to moder understanding to moder			
	cking	435		
	eking			
20 San	cking			
		435		
20.1	aple size and power calculations Choices in the design of data collection Classical power calculations: general principles, as illustrated by	435 437		
20.1 20.2	aple size and power calculations Choices in the design of data collection Classical power calculations: general principles, as illustrated by estimates of proportions	435 437 437 439		
20.1 20.2 20.3	aple size and power calculations Choices in the design of data collection Classical power calculations: general principles, as illustrated by estimates of proportions Classical power calculations for continuous outcomes	435 437 437 439 443		
20.1 20.2 20.3 20.4	aple size and power calculations Choices in the design of data collection Classical power calculations: general principles, as illustrated by estimates of proportions Classical power calculations for continuous outcomes Multilevel power calculation for cluster sampling	437 437 439 443 447		
20.1 20.2 20.3 20.4 20.5	rple size and power calculations Choices in the design of data collection Classical power calculations: general principles, as illustrated by estimates of proportions Classical power calculations for continuous outcomes Multilevel power calculation for cluster sampling Multilevel power calculation using fake-data simulation	435 437 437 439 443 447 449		
20.1 20.2 20.3 20.4 20.5 20.6	rple size and power calculations Choices in the design of data collection Classical power calculations: general principles, as illustrated by estimates of proportions Classical power calculations for continuous outcomes Multilevel power calculation for cluster sampling Multilevel power calculation using fake-data simulation Bibliographic note	435 437 437 439 443 447 449 454		
20.1 20.2 20.3 20.4 20.5 20.6	rple size and power calculations Choices in the design of data collection Classical power calculations: general principles, as illustrated by estimates of proportions Classical power calculations for continuous outcomes Multilevel power calculation for cluster sampling Multilevel power calculation using fake-data simulation	435 437 437 439 443 447 449		
20.1 20.2 20.3 20.4 20.5 20.6 20.7	rple size and power calculations Choices in the design of data collection Classical power calculations: general principles, as illustrated by estimates of proportions Classical power calculations for continuous outcomes Multilevel power calculation for cluster sampling Multilevel power calculation using fake-data simulation Bibliographic note Exercises	435 437 437 439 443 447 449 454 454		
20.1 20.2 20.3 20.4 20.5 20.6 20.7	aple size and power calculations Choices in the design of data collection Classical power calculations: general principles, as illustrated by estimates of proportions Classical power calculations for continuous outcomes Multilevel power calculation for cluster sampling Multilevel power calculation using fake-data simulation Bibliographic note Exercises derstanding and summarizing the fitted models	435 437 437 439 443 447 449 454		
20.1 20.2 20.3 20.4 20.5 20.6 20.7 21 Und 21.1	rple size and power calculations Choices in the design of data collection Classical power calculations: general principles, as illustrated by estimates of proportions Classical power calculations for continuous outcomes Multilevel power calculation for cluster sampling Multilevel power calculation using fake-data simulation Bibliographic note Exercises	435 437 437 439 443 447 449 454 454		
20.1 20.2 20.3 20.4 20.5 20.6 20.7 21 Und 21.1 21.2	rple size and power calculations Choices in the design of data collection Classical power calculations: general principles, as illustrated by estimates of proportions Classical power calculations for continuous outcomes Multilevel power calculation for cluster sampling Multilevel power calculation using fake-data simulation Bibliographic note Exercises derstanding and summarizing the fitted models Uncertainty and variability	435 437 437 439 443 447 449 454 454 457		
20.1 20.2 20.3 20.4 20.5 20.6 20.7 21 Und 21.1 21.2 21.3	aple size and power calculations Choices in the design of data collection Classical power calculations: general principles, as illustrated by estimates of proportions Classical power calculations for continuous outcomes Multilevel power calculation for cluster sampling Multilevel power calculation using fake-data simulation Bibliographic note Exercises derstanding and summarizing the fitted models Uncertainty and variability Superpopulation and finite-population variances	435 437 437 439 443 447 449 454 454 457 457		
20.1 20.2 20.3 20.4 20.5 20.6 20.7 21 Une 21.1 21.2 21.3 21.4	aple size and power calculations Choices in the design of data collection Classical power calculations: general principles, as illustrated by estimates of proportions Classical power calculations for continuous outcomes Multilevel power calculation for cluster sampling Multilevel power calculation using fake-data simulation Bibliographic note Exercises lerstanding and summarizing the fitted models Uncertainty and variability Superpopulation and finite-population variances Contrasts and comparisons of multilevel coefficients	435 437 439 443 447 449 454 457 457 459 462		
20.1 20.2 20.3 20.4 20.5 20.6 20.7 21 Une 21.1 21.2 21.3 21.4 21.5	aple size and power calculations Choices in the design of data collection Classical power calculations: general principles, as illustrated by estimates of proportions Classical power calculations for continuous outcomes Multilevel power calculation for cluster sampling Multilevel power calculation using fake-data simulation Bibliographic note Exercises lerstanding and summarizing the fitted models Uncertainty and variability Superpopulation and finite-population variances Contrasts and comparisons of multilevel coefficients Average predictive comparisons	435 437 437 439 443 447 449 454 457 457 459 462 466		
20.1 20.2 20.3 20.4 20.5 20.6 20.7 21 Une 21.1 21.2 21.3 21.4 21.5 21.6 21.7	aple size and power calculations Choices in the design of data collection Classical power calculations: general principles, as illustrated by estimates of proportions Classical power calculations for continuous outcomes Multilevel power calculation for cluster sampling Multilevel power calculation using fake-data simulation Bibliographic note Exercises lerstanding and summarizing the fitted models Uncertainty and variability Superpopulation and finite-population variances Contrasts and comparisons of multilevel coefficients Average predictive comparisons R^2 and explained variance Summarizing the amount of partial pooling Adding a predictor can increase the residual variance!	435 437 437 439 443 447 449 454 457 459 462 466 473 477 480		
20.1 20.2 20.3 20.4 20.5 20.6 20.7 21 Une 21.1 21.2 21.3 21.4 21.5 21.6 21.7 21.8	The size and power calculations Choices in the design of data collection Classical power calculations: general principles, as illustrated by estimates of proportions Classical power calculations for continuous outcomes Multilevel power calculation for cluster sampling Multilevel power calculation using fake-data simulation Bibliographic note Exercises Herstanding and summarizing the fitted models Uncertainty and variability Superpopulation and finite-population variances Contrasts and comparisons of multilevel coefficients Average predictive comparisons R^2 and explained variance Summarizing the amount of partial pooling Adding a predictor can increase the residual variance! Multiple comparisons and statistical significance	435 437 437 439 443 447 449 454 457 459 462 466 473 477 480 481		
20.1 20.2 20.3 20.4 20.5 20.6 20.7 21 Une 21.1 21.2 21.3 21.4 21.5 21.6 21.7 21.8	aple size and power calculations Choices in the design of data collection Classical power calculations: general principles, as illustrated by estimates of proportions Classical power calculations for continuous outcomes Multilevel power calculation for cluster sampling Multilevel power calculation using fake-data simulation Bibliographic note Exercises lerstanding and summarizing the fitted models Uncertainty and variability Superpopulation and finite-population variances Contrasts and comparisons of multilevel coefficients Average predictive comparisons R^2 and explained variance Summarizing the amount of partial pooling Adding a predictor can increase the residual variance!	435 437 437 439 443 447 449 454 457 459 462 466 473 477 480		

xiv CONTENTS

22	Ana	lysis of variance	487
		Classical analysis of variance	487
	22.2	ANOVA and multilevel linear and generalized linear models	490
	22.3	Summarizing multilevel models using ANOVA	492
	22.4	Doing ANOVA using multilevel models	494
		Adding predictors: analysis of covariance and contrast analysis	496
		Modeling the variance parameters: a split-plot latin square	498
	22.7	Bibliographic note	501
	22.8	Exercises	501
23	Cau	sal inference using multilevel models	503
_0		Multilevel aspects of data collection	503
		Estimating treatment effects in a multilevel observational study	506
		Treatments applied at different levels	507
		Instrumental variables and multilevel modeling	509
		Bibliographic note	512
		Exercises	512
24	Mod	lal shading and samparisan	513
44		lel checking and comparison Principles of predictive checking	513
		· · ·	515
		Example: a behavioral learning experiment Model comparison and deviance	524
		Bibliographic note	526
		Exercises Exercises	527
~-			
25		sing-data imputation	529
		Missing-data mechanisms	530
		Missing-data methods that discard data	531
		Simple missing-data approaches that retain all the data	532
		Random imputation of a single variable	533
		Imputation of several missing variables	539
		Model-based imputation	540
		Combining inferences from multiple imputations	542
		Bibliographic note Exercises	542 543
	25.9	EXERCISES	040
Aŗ	pen	lixes	545
\mathbf{A}	Six	quick tips to improve your regression modeling	547
	A.1	Fit many models	547
	A.2	Do a little work to make your computations faster and more reliable	547
	A.3	Graphing the relevant and not the irrelevant	548
	A.4	Transformations	548
	A.5	Consider all coefficients as potentially varying	549
	A.6	Estimate causal inferences in a targeted way, not as a byproduct	
		of a large regression	549
В	Stat	istical graphics for research and presentation	551
יב	B.1	Reformulating a graph by focusing on comparisons	552
	B.2	Scatterplots	553
		Miscellaneous tips	559

CONTE	ENTS	XV
B.4	Bibliographic note	562
B.5	Exercises	563
C Soft	ware	565
C.1	Getting started with R, Bugs, and a text editor	565
C.2	Fitting classical and multilevel regressions in R	565
C.3	Fitting models in Bugs and R	567
C.4	Fitting multilevel models using R, Stata, SAS, and other software	568
C.5	Bibliographic note	573
Refere	nces	575
Author	index	601
Subject	t index	607