EVALUAREA NAȚIONALĂ PENTRU ABSOLVENȚII CLASEI a VIII-a Anul școlar 2020 - 2021 Matematică

Varianta 3

BAREM DE EVALUARE ȘI DE NOTARE

• Se acordă zece puncte din oficiu. Nota finală se calculează prin împărțirea la zece a punctajului total acordat pentru lucrare.

SUBIECTUL I ȘI SUBIECTUL al II-lea:

- Se punctează doar rezultatul, astfel: pentru fiecare răspuns se acordă fie cinci puncte, fie zero puncte.
- Nu se acordă punctaje intermediare.

SUBIECTUL al III-lea

- Pentru orice soluție corectă, chiar dacă este diferită de cea din barem, se acordă punctajul corespunzător.
- Nu se acordă fracțiuni de punct, dar se pot acorda punctaje intermediare pentru rezolvări parțiale, în limitele punctajului indicat în barem.

SUBIECTUL I (30 de puncte)

1.	d)	5 p
2.	d)	5 p
3.	a)	5 p
4.	a)	5 p
5.	d)	5p
6.	a)	5p

SUBIECTUL al II-lea (30 de puncte)

1.	a)	5p
2.	a)	5p
3.	c)	5 p
4.	b)	5p
5.	b)	5p
6.	c)	5p

SUBIECTUL al III-lea (30 de puncte)

1.	a) Dacă distanța parcursă de turist în primele două zile reprezintă 50% din lungimea întregului traseu, atunci în a treia zi turistul ar parcurge 50% din 50% din lungimea	1p
	întregului traseu	
	În a treia zi turistul ar parcurge 25% din lungimea întregului traseu, deci nu este posibil ca	
	distanța parcursă de turist în primele două zile să reprezinte 50% din lungimea întregului	1p
	traseu	
	b) În primele două zile turistul a parcurs 2.9=18km	1p
	x+(x-6)=18, unde x reprezintă distanța parcursă de turist în prima zi	1p
	$x = 12 \mathrm{km}$	1p
2.	a) $E(x) = 4x^2 - 4x + 1 - (2x^2 - 8) + x^2 + 6x + 9 =$	1p
	$=3x^2+2x+18$, pentru orice număr real x	1p

Ministerul Educației Centrul Național de Politici și Evaluare în Educație

		•
	b) $A = 3n^2 + 3n + 18 =$	1p
	$=3(n^2+n+6)$, pentru orice număr natural n	1p
	$n^2 + n + 6 = n(n+1) + 6$ este număr par, pentru orice număr natural n , deci A este multiplu de 6 , pentru orice număr natural n	1p
3.		1p
3.		
	$f(-3) = -5 \Rightarrow f(3) - f(-3) = 1 - (-5) = 6$	1p
	b) Punctele de intersecție a graficului funcției f cu axele Ox și Oy sunt $A(2,0)$ și	1p
	B(0,-2)	-P
	$A_{\Delta ABC} = \frac{AC \cdot OB}{2} = \frac{d(C, AB) \cdot AB}{2}$	1,5
		1p
	Cum $AB = 2\sqrt{2}$, obținem $d(C, AB) = \frac{4 \cdot 2}{2\sqrt{2}} = 2\sqrt{2}$	1p
4.	a) $MP \parallel AC$, deci $\triangle BMP$ este echilateral	1p
	$BM = 2 \text{cm}$, deci $P_{\Delta BMP} = 3BM = 6 \text{ cm}$	1p
	b) AD este mediană în triunghiul echilateral ABC , deci $BD = 1,5$ cm	1p
	Triunghiul DPQ este dreptunghic în D , $\angle PQD = 30^{\circ}$, deci $PQ = 2DP$	1p
	$DP = 0.5 \mathrm{cm} \Rightarrow PQ = 1 \mathrm{cm}$	1p
5.	a) $AE = BF = 3$ cm, unde $DE \perp AB$, $E \in AB$ și $CF \perp AB$, $F \in AB$	1p
	DCFE este dreptunghi, deci $EF = DC = 6$ cm, de unde obținem $AB = 12$ cm	1p
	b) $MB = MC$ și $\angle MBC = 60^{\circ}$, deci $\triangle MBC$ este echilateral $\Rightarrow \angle BMP = 30^{\circ}$ și $MB = 6$ cm	1p
	Triunghiul AMD este echilateral, deci ∢AMD = 60°	1p
	$\angle DMP = 180^{\circ} - (60^{\circ} + 30^{\circ}) = 90^{\circ}$, deci $DM \perp MP$	1p
6.	a) $V = AB^3 =$	1p
	$=(6\sqrt{2})^3 = 432\sqrt{2} \text{ cm}^3$	1p
	b) Punctul M este mijlocul segmentului $D'Q$, unde $\{Q\} = AC \cap BD$, deci $OM \parallel AQ$	1p
	$AQ \perp BD$, $AQ \perp DD'$, $\{D\} = DD' \cap BD \Rightarrow AQ \perp (BDD') \Rightarrow OM \perp (BDD')$, deci	1p
	d(O,(BDD')) = OM	
	$OM = \frac{AQ}{2} = \frac{6\sqrt{2} \cdot \sqrt{2}}{4} = 3 \text{ cm}$	1p