Regression Part 2

Lecture #22 | GEOG 510 GIS & Spatial Analysis in Public Health

Varun Goel

Outline

- Regression
 - Multiple (Multivariate) regression
 - Motivation for Spatial Regression
 - Demo
 - In-class exercises

Varun Goel, GEOG 510 #22, REGRESSION: Part 2 Slide 2

Regression

 The <u>magnitude</u> of the influence one variable has on the other

 How does <u>variable X</u> (independent/predictor variable) <u>influence Y</u> (dependent/response variable)

- Multiple (Multivariate) Regression
 - Confounding!
 - How does X influence Y, after controlling for other potential factors that may explain the relationship?

Your Projects

(Name): (X) on (Y) - eg. Varun: heat on mental health

15 responses

Addy: heat on maternal health

Grace: heat on physical inactivity

Regan: Distance and Access to Free Clinics

Eleni: eviction on death

Kejsi: air pollution on childhood asthma rates

Michael Eslick Binge drinking on Birth defects

Haofeng: vegetation on mental distress

Liam Baker: Water affordability on food insecurity

Lucia: Spatial relationship between infectious diseases and temperature

Amanda: energy burden on mental health

Mikey: city walkability on drunk driving fatalities

Pengyu CHEN: Road Slope & Curvature, road condition, traffic flow on traffic

Univariate Regression

- Simple linear regression
 - Linear relationship between variables
 - Defined as Y = a + bX
 - Fits the regression line through the observed X, Y data
 - Ordinary Least Squares (OLS)
 - Minimizes the squared deviations from the observed Y values to the regression line

Point	X	y
1	2	6
2	4	4
3	5	6
4	6	8
5	8	9
6	9	8
7	9	7
8	11	7
9	12	8
10	13	10

Univariate OLS Regression

$$Y = \beta_0 + \beta X + \epsilon \rightarrow r^2$$

- Effects of X on Y
 - Regression parameters
 - Slope
 - $H_0: \beta = 0$ $H_A: \beta \neq 0$

Univariate OLS Regression

$$Y = \beta_0 + \beta X + \epsilon \longrightarrow r^2$$

- Coefficient of Determination
 - The proportion of Y explained by X
 - $-H_0: r^2 = 0$ $H_A: r^2 \neq 0$
 - Uses an F test (F value and df generally reported)
 - If the p-value is low (e.g., p < 0.05), reject the null hypothesis

Univariate OLS Regression

$$Y = \beta_0 + \beta X + \epsilon \longrightarrow r^2$$

- Error (residuals)
 - Everything else not explained by the model
 - Effect of unmeasured variables
 - Random, if model is well specified
 - However, not random in practice
 - Governed by strong assumptions, that are often violated

Point	x	y
1	2	6
2	4	4
3	5	6
4	6	8
5	8	9
6	9	8
7	9	7
8	11	7
9	12	8
10	13	10

- Regression can be "extended" to include multiple independent variables
 - For many phenomena, a single explanatory variable does not provide sufficient characterization
 - Influenced by numerous factors
 - CONFOUNDING!!!!
 - More than one explanatory variable may be included in an OLS regression

Confounding

Confounding

Triangle of Human Ecology

- Caution, only use if...
 - There is a functional relationship with the additional predictor variable(s)/confounder
 - Do not simply "include" other variables because you can!
 - Theoretical justification for including each predictor variable is necessary

$$Y = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \ldots + \beta_n X_n + \epsilon$$

$$Y = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \epsilon$$

- Inferential tests on the βs

- Slope parameters on Xs
-
$$H_0: \beta_n = 0$$
 $H_A: \beta_n \neq 0$

$$Y = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \epsilon \rightarrow R^2$$

- Regression coefficients
 - In multiple regression, these are sometimes referred to as "partial coefficients"
 - Because, theoretically, they will both explain a portion of the variation in the Y variable
 - These values, are generally conditional upon the other independent variables in the model
 - e.g., β_1 is the effect of X_1 on Y, when X_2 is held constant

- Coefficient of determination
 - The "fit" of the model
 - Proportion of the variation in Y that is explained by X_1 and X_2

- Via the β values, we can measure the effect of each X variable on Y
 - What if we want to compare the independent variables' effects?
 - e.g., which variable has a "stronger" effect on Y?
 - <u>β values are influenced by the units</u> of the X variables

- β values from a multiple regression
 cannot be compared directly
 - They must be "standardized"
 - Similar in concept to comparing the standard deviations from two different datasets
 - Standardize

$$\beta_k' = \beta_k \frac{S_{X_k}}{S_Y}$$

- Multiple OLS regression assumptions
 - Sample with independent observations
 - Xs,Y are interval/ratio data
 - Linear relationship between Xs,Y
 - Independent variables are
 INDEPENDENT from one another
 - This is a huge issue in multiple regression

- Independent variables must be independent from one another
 - Means not correlated!
- Multicollinearity occurs when the independent variables are correlated with one another
 - Correlation can be measured using r
 - Avoid at all costs!
 - Will produce "junk" regression results

- A simple method to detect multicollinearity is to examine the correlation matrix
 - Prior to regression!
 - Examine all variables that you are considering including in your multiple regression
 - Not necessary to test for the significance of the correlation
 - Only the r value is required

Correlation Matrix

- Most software packages can produce a correlation matrix
 - The correlation coefficient (r) for multiple combinations of variables

	ENROLLMENT	PBERATE13	MedHouInc	PcEdltHS	PcEdColDeg	WhPct	AsPct	HispPct	PopDenKMsq	SchType
ENROLLMENT	1.00	-0.19	-0.08	0.19	-0.16	-0.20	-0.04	0.22	0.06	-0.54
PBERATE13	-0.19	1.00	0.08	-0.25	0.14	0.36	-0.14	-0.26	-0.16	0.10
MedHouInc	-0.08	0.08	1.00	-0.67	0.79	0.40	0.38	-0.56	-0.12	0.13
PcEdItHS	0.19	-0.25	-0.67	1.00	-0.75	-0.76	-0.22	0.90	0.24	-0.12
PcEdColDeg	-0.16	0.14	0.79	-0.75	1.00	0.46	0.43	-0.70	0.05	0.20
WhPct	-0.20	0.36	0.40	-0.76	0.46	1.00	-0.27	-0.79	-0.48	0.03
AsPct	-0.04	-0.14	0.38	-0.22	0.43	-0.27	1.00	-0.29	0.36	0.10
HispPct	0.22	-0.26	-0.56	0.90	-0.70	-0.79	-0.29	1.00	0.25	-0.09
PopDenKMsq	0.06	-0.16	-0.12	0.24	0.05	-0.48	0.36	0.25	1.00	0.10
SchType	-0.54	0.10	0.13	-0.12	0.20	0.03	0.10	-0.09	0.10	1.00

Varun Goel, GEOG 510 #22, REGRESSION: Part 2 Slide 24

- Evaluating the correlation among independent variables
 - How much correlation is too much?
 - A somewhat difficult question!
 - Common rules of thumb for r
 - No more than 0.8 (highly relaxed)
 - Personally, I believe this is too much correlation
 - No more than 0.5
 - This is generally where I start to get pretty nervous about the "independence" of my independent variables

- Variance Inflation Factor (VIF)
 - Higher VIF signals more multicollinearity
 - Rules of thumb
 - VIF > 10, VIF > 7.5, VIF > 2
- Tolerance
 - VIF is reciprocal of Tolerance
 - e.g., VIF = 2 = Tolerance = 0.5
 - Lower tolerance signals more multicollinearity

- Multicollinearity Condition Number (MCN) in Geoda
 - Higher MCN signals more multicollinearity
 - Rules of thumb
 - MCN > 30, MCN > 15

- My advice...
 - Use multiples
 - Check R values prior
 - Help decide what to include or not include in regression
 - Check Tolerance, VIF, or MCF after
 - Help decide whether results can/should be trusted

Inference

- Required checks (post regression)
 - Residuals should be normally distributed
 - Residuals should have equal variance
 - Observations must be independent
 - For spatial data, residuals should **not** be spatially autocorrelated (should be random)

Varun Goel, GEOG 510 #22, REGRESSION: Part 2 Slide 29

Inference

- Required checks (post regression)
 - Residuals should be normally distributed
 - Residuals should have equal variance
 - Observations must be independent
 - For spatial data, residuals should <u>not</u> be spatially autocorrelated (should be random)

$$Y = \beta_0 + \beta X + \epsilon \longrightarrow r^2$$

Varun Goel, GEOG 510 #22, REGRESSION: Part 2 Slide 30

- Regression residuals should be
 - normally distributed
- How to test?
 - Look at the histogram
 - Jarque-Bera statistic
 - If p < 0.05, this signals non-normality
 - In practice, normality tests are extremely sensitive
 - Using "real" data, a high chance your residuals will not be normal

- If your residuals are extremely nonnormal
 - Potential effects
 - Model is invalid (misspecified)
 - e.g., you cannot trust anything!
 - Standard errors on coefficients are unreliable (too narrow)
 - e.g., you cannot trust the p-values on the β coefficients

- Potential causes... and fixes
 - Non-linear relationship(s) or...
 - Extremely non-normal Y or X data
 - Mathematical transform (e.g., log)
 - Non-OLS regression model
 - Outliers
 - Removal (must be justified)
 - Robust regression approaches

Non-normal regression residuals transformed to normal using a square root transformation

- Residuals should have equal variance
 - Variation is similar over the range of predicted Y values
 - The opposite is heteroscedasticity
 - Plot the residuals against the modeled
 Y values
 - Should be box or rectangle shaped
 - Watch out for "cones" or "trends"

- Residuals should have equal variance
 - Plot residuals against the modeled Y values
 - Breusch-Pagan test
 - Levene test
 - If p < 0.05, this signals heteroscedasticity (unequal variance)

- If your residuals are heteroscedastic
 - Potential effects
 - Standard errors on coefficients are unreliable (too narrow)
 - e.g., you cannot trust the p-values on the β coefficients

- Potential causes... and fixes
 - Unequal weighting among observations
 - Weighted regression approach (e.g., by population size)
 - Non-normal Y or X data
 - Mathematical transform (e.g., log of Y)
 - Another fix: White adjustment

- Potential causes... and fixes
 - Unequal weighting among observations
 - Weighted regression approach (e.g., by population size)
 - Non-normal Y or X data
 - Mathematical transform (e.g., log of Y)
 - Another fix: White adjustment
 - Spatial autocorrelation!

Residual Autocorrelation

- Residuals should not be spatially autocorrelated independence
 - Run a **Moran's** *I* analysis using the **residuals** as the observations
 - We hope to get "null" results (high p value), meaning regression residuals are randomly distributed

Please, please, please note that this DOES NOT mean that we remove variables from a regression if they have spatial autocorrelation. What this means is that regression residuals cannot be spatially autocorrelated.

Residual Autocorrelation

- Potential fixes...
 - Find missing independent variable
 - Spatial regression approaches

Varun Goel, GEOG 510 #22, REGRESSION: Part 2 Slide 45

Keywords

- Explanatory vs predictive
- Correlation
- Regression
- Confounding
- β , R^2 , p value
- Multiple regression
- Multicollinearity

- Residuals
 - Independent,normal,homoscedastic