Laboratorio di Architetture degli Elaboratori I Corso di Laurea in Informatica, A.A. 2021-2022 Università degli Studi di Milano

Introduzione a Logisim

Logisim

http://www.cburch.com/logisim/

• Strumento software che permette di progettare e simulare circuiti logici digitali

Esempio

• Realizziamo un semplice circuito che, dati due segnali in ingresso A e B, calcoli (A AND B)

Esempio

Operatori logici e proprietà

NOT	\neg	
AND	\wedge	Ordine di precedenza in assenza di parentesi
OR	V ,	

Richiamo delle proprietà fondamentali

	AND	OR	
Identità	$1 \wedge X = X$	$0 \lor X = X$	
Elemento nullo	$0 \wedge X = 0$	$1 \lor X = 1$	
Idempotenza	$X \wedge X = X$	$X \vee X = X$	
Inverso	$X \wedge \neg X = 0$	$X \vee \neg X = 1$	
Commutativa	$X \wedge Y = Y \wedge X$	$X \vee Y = Y \vee X$	
Associativa	$(X \land Y) \land Z = X \land (Y \land Z)$	$(X \vee Y) \vee Z = X \vee (Y \vee Z)$	
	(di AND risp. ad OR)	(di OR risp. ad AND)	
Distributiva	$X \wedge (Y \vee Z) = X \wedge Y \vee X \wedge Z$	$X \vee (Y \wedge Z) = (X \vee Y) \wedge (X \vee Z)$	
Assorbimento I	$X \wedge (X \vee Y) = X$	$X \lor (X \land Y) = X$	
Assorbimento II	$X \wedge (\neg X \vee Y) = X \wedge Y$	$X \vee (\neg X \wedge Y) = X \vee Y$	
De Morgan	$\neg(X \land Y) = \neg X \lor \neg Y$	$\neg(X\vee Y)=\neg X\wedge \neg Y$	

1. Si riproduca in Logisim il seguente circuito:

- 2. Si determini l'espressione logica di tutte le uscite (intermedie e finale)
- 3. Si scriva la tabella di verità del circuito

Label sui segnali (intermedi e finale)

Tabella di verità

A	B	C	$(\neg A \lor C) \land (A \lor B)$
0	0	0	0
0	0	1	0
0	1	0	1
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	0
1	1	1	1

- 1. Dati due segnali A e B, si implementi un circuito che calcoli A XNOR B senza usare porte composte (NAND, NOR, XOR, XNOR)
- 2. Si derivi la tabella di verità e si osservi la funzione logica risultante

- 1. Dati due segnali A e B, si implementi un circuito che calcoli A XNOR B senza usare porte composte (NAND, NOR, XOR, XNOR)
- 2. Si derivi la tabella di verità e si osservi la funzione logica risultante

Suggerimento: $A \ XNOR \ B = \neg (A \lor B) \lor (A \land B)$

A	B	$\neg (A \lor B) \lor (A \land B)$
0	0	1
0	1	0
1	0	0
1	1	1

Confronto il circuito prodotto precedentemente con la singola porta XNOR utilizzando un'ulteriore porta XNOR:

Sia data la seguente espressione logica:

$$X = \neg A \vee \neg (B \vee \neg C)$$

- 1. Si derivi la tabella di verità (si indichino anche alcune sotto-espressioni)
- 2. Si realizzi il circuito corrispondente e si verifichi la correttezza della tabella

Circuito:

$$X = \neg A \vee \neg (B \vee \neg C)$$

$$Z_1 = \neg A \mid Z_2 = \neg C \mid Z_3 = (B \lor Z_2) \mid Z_4 = \neg Z_3 \mid X = Z_1 \lor Z_4$$

Dimostrare tramite manipolazioni algebriche (specificando le proprietà usate) che:

$$E_1 = E_2$$

dove:

$$E_1 = \neg(\neg A \land B \land \neg C \lor A \land B \land \neg C) \land A$$

$$E_2 = (\neg B \land A) \lor (A \land C)$$

Si implementino i circuiti di E_1 e E_2 e si verifichi l'equivalenza tramite la porta XNOR

$$E_1 = \neg(\neg A \land B \land \neg C \lor A \land B \land \neg C) \land A$$

$$E_2 = (\neg B \land A) \lor (A \land C)$$

Si consideri la seguente espressione:

$$E_1 = (A \ NOR \ B) \land (C \lor \neg B)$$

- 1. Si implementi il circuito corrispondente usando la sola porta NAND
- 2. Si mostri, con passaggi algebrici e confronto tra circuiti, che è equivalente a

$$E_2 = \neg A \wedge \neg B$$

A	B	A NAND B
0	0	1
0	1	1
1	0	1
1	1	0

$$E_1 = (A \ NOR \ B) \land (C \lor \neg B)$$

