TEMA $2c^{(1)}$: Derivadas de orden superior

Para una función f de una variable, sabemos que podemos calcular derivadas iteradas de f, a saber $\frac{d}{dx}f$, $\frac{d^2}{dx^2}f$, etc. Vamos a estudiar las operaciones análogas para funciones multivariables.

Empezamos con el caso particular de las derivadas de orden 2 para f(x, y), $\mathbb{R}^2 \to \mathbb{R}$ diferenciable. Se pueden tomar las derivadas siguientes:

$$\frac{\partial}{\partial x} \left(\frac{\partial f}{\partial x} \right) = \frac{\partial^2 f}{\partial x^2}, \qquad \frac{\partial}{\partial y} \left(\frac{\partial f}{\partial y} \right) = \frac{\partial^2 f}{\partial y^2},$$
$$\frac{\partial}{\partial x} \left(\frac{\partial f}{\partial y} \right) = \frac{\partial^2 f}{\partial x \partial y}, \qquad \frac{\partial}{\partial y} \left(\frac{\partial f}{\partial x} \right) = \frac{\partial^2 f}{\partial y \partial x}.$$

Las derivadas $\frac{\partial^2 f}{\partial x \partial y}$ y $\frac{\partial^2 f}{\partial y \partial x}$ se llaman a menudo **derivadas mixtas**.

Definición

Si todas estas derivadas existen en cada punto de \mathbb{R}^2 y son funciones continuas, se dice que f es una función de clase \mathcal{C}^2 , o se escribe $f \in \mathcal{C}^2$.

Para estas funciones tenemos el resultado siguiente.

Teorema

Si $f: \mathbb{R}^2 \to \mathbb{R}$ es de clase \mathcal{C}^2 , entonces $\frac{\partial^2 f}{\partial y \partial x} = \frac{\partial^2 f}{\partial x \partial y}$.

Derivadas de orden superior (cont.)

Ejemplo: Sea $f(x, y) = xy + (x + 2y)^2$. Entonces

$$\frac{\partial^2 f}{\partial x^2} = \frac{\partial}{\partial x} (y + 2(x + 2y)) = 2, \quad \frac{\partial^2 f}{\partial y^2} = \frac{\partial}{\partial y} (x + 4(x + 2y)) = 8.$$

Por otra parte, las derivadas mixtas se calculan como

$$\frac{\partial^2 f}{\partial y \partial x} = \frac{\partial}{\partial y} (y + 2(x + 2y)) = \frac{\partial}{\partial y} (2x + 5y) = 5;$$

$$\frac{\partial^2 f}{\partial x \partial y} = \frac{\partial}{\partial x} (x + 4(x + 2y)) = \frac{\partial}{\partial x} (5x + 8y) = 5.$$

Encontramos también que $\frac{\partial^2 f}{\partial y \partial x} = \frac{\partial^2 f}{\partial x \partial y} = 5$.

Derivadas de orden superior (cont).

Más generalmente, si la función es de más de 2 variables, podemos tomar de modo similar las derivadas parciales de orden 2, fijando $i,j\in 1,\ldots,n$ y tomando la derivada $\frac{\partial^2 f}{\partial x_i \partial x_i} = \frac{\partial}{\partial x_i} (\frac{\partial f}{\partial x_i})$.

Notación: A menudo se escribe $f_{x_i x_j}$ para denotar $\frac{\partial^2 f}{\partial x_i \partial x_j}$.

Definición

Sea $U \subset \mathbb{R}^n$ abierto y sea $f: U \to \mathbb{R}$. Decimos que f es **de clase** \mathcal{C}^2 **en** U si para todo $i, j \in 1, \ldots, n$ la derivada $\frac{\partial^2 f}{\partial x_i \partial x_j}$ existe y es continua en U.

Como en el caso n = 2, tenemos en general lo siguiente.

Teorema

Si $f: U \subset \mathbb{R}^n \to \mathbb{R}$ es de clase C^2 en U, entonces para todo $i, j \in 1, \ldots, n$, para todo punto $x_0 \in U$, tenemos $\frac{\partial^2 f}{\partial x_i \partial x_j}(x_0) = \frac{\partial^2 f}{\partial x_j \partial x_j}(x_0)$.

Derivadas de orden superior (cont).

<u>Ejemplo</u>: Sea $f(x, y, z) = e^{xy} + z \cos(x)$. Las derivadas de orden 2 (o derivadas segundas) de f son las siguientes:

$$\frac{\partial^2 f}{\partial x^2} = \frac{\partial}{\partial x} (y e^{xy} - z \operatorname{sen}(x)) = y^2 e^{xy} - z \operatorname{cos}(x).$$

$$\frac{\partial^2 f}{\partial y^2} = \frac{\partial}{\partial y} (x e^{xy}) = x^2 e^{xy}. \qquad \frac{\partial^2 f}{\partial z^2} = \frac{\partial}{\partial z} \operatorname{cos}(x) = 0.$$

Verifiquemos que las derivadas cruzadas son iguales:

$$\frac{\partial^2 f}{\partial x \partial y} = \frac{\partial}{\partial x} (x e^{xy}) = e^{xy} + xy e^{xy}, \qquad \frac{\partial^2 f}{\partial y \partial x} = \frac{\partial}{\partial y} (y e^{xy} - z \operatorname{sen}(x)) = e^{xy} + xy e^{xy}$$
$$\frac{\partial^2 f}{\partial x \partial z} = -\operatorname{sen}(x), \qquad \frac{\partial^2 f}{\partial z \partial x} = -\operatorname{sen}(x)$$
$$\frac{\partial^2 f}{\partial y \partial z} = 0, \qquad \frac{\partial^2 f}{\partial z \partial y} = 0.$$

Demostración del Teorema sobre derivadas mixtas

Puesto que las derivadas no involucradas se consideran fijas, podemos suponer sin pérdida de generalidad que f tiene solo dos variables. Así, suponiendo que $f \in \mathcal{C}^2$ queremos probar que $\frac{\partial^2 f}{\partial y \partial x} = \frac{\partial^2 f}{\partial x \partial y}$. Para ello, fijados x, y, s, t llamamos

$$R_{s,t} = (f(x+s,y+t) - f(x+s,y)) - (f(x,y+t) - f(x,y))$$
(1)

$$= g(x+s) - g(x) \qquad (con g(x) = f(x,y+t) - f(x,y), fijados y,t)$$
 (2)

$$= (f(x+s,y+t) - f(x,y+t)) - (f(x+s,y) - f(x,y))$$
(3)

$$= h(y+t) - h(y)$$
 (con $h(y) = f(x+s,y) - f(x,y)$, fijados x, s) (4)

Utilizando el TVM dos veces en (2) queda, para ciertos $0 < s^* < s$, $0 < t^* < t$

$$R_{s,t} = g'(x+s^*)s = \left(\frac{\partial f(x+s^*,y+t)}{\partial x} - \frac{\partial f(x+s^*,y)}{\partial x}\right)s = \frac{\partial^2 f}{\partial y \partial x}(x+s^*,y+t^*)st$$

Utilizando el mismo argumento ahora en (4), existen $0 < \overline{s} < s$, $0 < \overline{t} < t$ tales que

$$R_{s,t} = h'(y + \overline{t}) t = \left(\frac{\partial f(x + s, y + \overline{t})}{\partial y} - \frac{\partial f(x, y + \overline{t})}{\partial y}\right) t = \frac{\partial^2 f}{\partial x \partial y} (x + \overline{s}, y + \overline{t}) ts.$$

Identificando ambos resultados queda $\frac{\partial^2 f}{\partial y \partial x}(x+s^*,y+t^*) = \frac{\partial^2 f}{\partial x \partial y}(x+\overline{s},y+\overline{t})$. Finalmente, usando la continuidad, al hacer $s \to 0$ y $t \to 0$ obtenemos $\frac{\partial^2 f}{\partial y \partial x}(x,y) = \frac{\partial^2 f}{\partial x \partial y}(x,y)$.

El Hessiano o la matriz Hessiana

• Si $f:U\subseteq\mathbb{R}^n\longrightarrow\mathbb{R}$ es derivable dos veces, entonces se define la matriz Hessiana como la matriz de dimensiones $n \times n$ dada por

$$\mathbf{H}_{f}(x_{0}) = \begin{pmatrix} \frac{\partial^{2} f}{\partial x_{1}^{2}} & \frac{\partial^{2} f}{\partial x_{2} \partial x_{1}} & \cdots & \frac{\partial^{2} f}{\partial x_{n} \partial x_{1}} \\ \frac{\partial^{2} f}{\partial x_{1} \partial x_{2}} & \frac{\partial^{2} f}{\partial x_{2}^{2}} & \cdots & \frac{\partial^{2} f}{\partial x_{n} \partial x_{2}} \\ \cdots & \cdots & \cdots & \cdots \\ \frac{\partial^{2} f}{\partial x_{1} \partial x_{n}} & \frac{\partial^{2} f}{\partial x_{2} \partial x_{n}} & \cdots & \frac{\partial^{2} f}{\partial x_{n}^{2}} \end{pmatrix}_{|_{x=x_{0}}}$$

donde todas las derivadas están calculadas en el punto x_0 .

- Obsérvese que el Hessiano equivale a la matriz de derivadas de la función vectorial dada por $F: U \subseteq \mathbb{R}^n \longrightarrow \mathbb{R}^n$ con $F(x) = \nabla f(x)$. De esta forma, F tiene como funciones coordenadas $F_j = \frac{\partial f}{\partial x_i}, \quad j = 1, 2, \dots, n$.
- ullet Por último, hacemos notar que si la función es de clase \mathcal{C}^2 entonces la matriz Hessiana es simétrica: $H = H^T$ (es decir, la entrada $A_{i,j}$ coincide con la $A_{j,i}$ para todos $1 \le i,j \le n$).

Derivadas de orden superior (cont).

En general, si todas las derivadas de orden k existen y son continuas en U, decimos que la función es **de clase** \mathcal{C}^k **en** U. También podemos considerar la derivación k veces con respecto a las variables $x_{j_1}, x_{j_2}, \ldots, x_{j_k}$ que pueden ser repetidas o no:

$$\frac{\partial^k f(x)}{\partial x_{j_1} \partial x_{j_2} \dots \partial x_{j_k}} = \frac{\partial}{\partial x_{j_1}} \frac{\partial}{\partial x_{j_2}} \dots \frac{\partial}{\partial x_{j_k}} f(x)$$

En este caso, las derivadas de orden $\leq k$ conmutan, es decir que no importa el orden de las variables en que tomemos las derivadas, la función obtenida al final será la misma.

Recordad: A la hora de hacer derivadas mixtas de una función C^k , podemos elegir el orden de derivación que nos convenga:

Ejemplo: Hallar la derivada $\frac{\partial^2 f}{\partial x \partial y}$ para la función $f(x,y) = x^2 y + \int_0^{y^2} \sin e^t dt$:

$$\frac{\partial^2 f}{\partial x \partial y} = \frac{\partial^2 f}{\partial y \partial x} = \frac{\partial}{\partial y} (2xy) = 2x.$$

Repaso: Polinomio de Taylor en una variable

Polinomio de Taylor en una variable.

- Queremos aproximar una función, cerca de un punto dado x_0 , por un polinomio.
- La idea es imponer que el polinomio comparta con la función el valor de las sucesivas derivadas en ese punto x_0 .

El **polinomio de Taylor** de orden n de f alrededor del punto x_0 es

$$P_{n,x_0}f(x) = \sum_{k=0}^n \frac{f^{k)}(x_0)}{k!} (x - x_0)^k$$

Idea: Cuando x está cerca de x_0 , los valores del polinomio $P_{n,x_0}f(x)$ se aproximan a los de f(x). Más aún, la aproximación mejora cuando n aumenta.

Queda caracterizado por la propiedad de ser el único polinomio Q de grado menor o igual que n que verifica

$$\lim_{x \to x_0} \frac{f(x) - Q(x)}{(x - x_0)^n} = 0.$$

Repaso: Polinomio de Taylor en una variable (cont.)

Algunos ejemplos clásicos:

•
$$e^x$$
, $x_0 = 0$ $\rightarrow 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \cdots + \frac{x^n}{n!} = \sum_{k=0}^n \frac{x^k}{k!}$

Aqui aparecen las gráficas de $f(x) = e^x$ (gris) y de su segundo polinomio de Taylor (rojo)

• sen
$$x$$
, $x_0 = 0$ \rightarrow $x - \frac{x^3}{3!} + \frac{x^5}{5!} + \dots + \frac{(-1)^n x^{2n+1}}{(2n+1)!}$

•
$$\cos x$$
, $x_0 = 0$ \rightarrow $1 - \frac{x^2}{2!} + \frac{x^4}{4!} + \dots + \frac{(-1)^n x^{2n}}{(2n)!}$

•
$$\log(1+x)$$
, $x_0 = 0$ \rightarrow $x - \frac{x^2}{2} + \frac{x^3}{3} + \dots + \frac{(-1)^{n+1}x^n}{n}$

Repaso: Polinomio de Taylor en una variable (cont.)

La aproximación mejora al aumentar el grado del polinomio:

Ejemplo: $f(x) = \operatorname{sen} x$

$$P_{1,0}f(x)=x$$

$$P_{5,0}f(x) = x - \frac{x^3}{6} + \frac{x^5}{120}$$

$$P_{3,0}f(x) = x - \frac{x^3}{6}.$$

$$P_{7,0}f(x) = x - \frac{x^3}{6} + \frac{x^5}{120} - \frac{x^7}{5040}$$

Fórmula de Taylor para funciones de varias variables

Teorema (Fórmula de Taylor de 1º orden)

Sea $U \subseteq \mathbb{R}^n$ un abierto $y \ f: U \longrightarrow \mathbb{R}$ diferenciable en $x_0 \in U$. Entonces si $h \in \mathbb{R}^n$ con $x_0 + h \in U$,

$$f(x_0+h)=f(x_0)+\langle \nabla f(x_0),h\rangle+R_1(x_0,h),$$

donde

$$\lim_{h\to 0}\frac{|R_1(x_0,h)|}{\|h\|}=0, \quad \text{ o tambi\'en } \quad R_1(x_0,h)=\mathcal{O}(\|h\|), \text{ para } \|h\|\to 0.$$

Cuando $f:U\subset\mathbb{R}^2\to\mathbb{R}$, el punto es (x_0,y_0) , y n=1, la fórmula queda

$$P_{1,x_0}f(x,y) = f(x_0,y_0) + \frac{\partial f}{\partial x}(x_0,y_0)(x-x_0) + \frac{\partial f}{\partial y}(x_0,y_0)(y-y_0).$$

Esto coincide con la fórmula del plano tangente a la gráfica de f en el punto (x_0, y_0) .

Ejemplo: fórmula de Taylor de orden 1

Escribe la fórmula de Taylor de orden 1 centrado en (0,0,1) para la función

$$f(x, y, z) = ze^{x} + \cos(x + y).$$

Solución: Como piden orden 1, empezamos calculando

- el valor de la función en el punto (0,0,1): f(0,0,1)=2;
- el valor de las derivadas parciales de orden 1 en el mismo punto (0,0,1):

$$f_x(0,0,1) = ze^x - \operatorname{sen}(x+y)|_{(0,0,1)} = 1, \quad f_y(0,0,1) = -\operatorname{sen}(x+y)|_{(0,0,1)} = 0,$$

 $f_z(0,0,1) = e^x|_{(0,0,1)} = 1$

Con estos valores, solo hay que sustituir en la fórmula de Taylor:

$$f(x,y,z) = f(0,0,1) + f_x(0,0,1)(x-0) + f_y(0,0,1)(y-0) + f_z(0,0,1)(z-1) + R_1$$

= x + z + 1 + R₁

Fórmula de Taylor de 2º orden

Teorema

Sea $U \subseteq \mathbb{R}^n$ un abierto y $f: U \longrightarrow \mathbb{R}$ una función de clase \mathcal{C}^2 en un entorno de $x_0 \in U$. Entonces la fórmula de Taylor de segundo orden de f en x_0 es

$$f(x_0 + h) = f(x_0) + \sum_{i=1}^n \frac{\partial f(x_0)}{\partial x_i} h_i + \frac{1}{2} \sum_{i=1}^n \sum_{j=1}^n \frac{\partial^2 f(x_0)}{\partial x_i \partial x_j} h_i h_j + R_2(x_0, h)$$

= $f(x_0) + \langle \nabla f(x_0), h \rangle + \frac{1}{2} h \cdot H_f(x_0) \cdot h^T + R_2(x_0, h),$

donde $H_f(x_0)$ es la matriz Hessiana de f en el punto x_0 y $\lim_{h\to 0} \frac{K_2(x_0,h)}{\|h\|^2} = 0$.

La demostración se sigue del caso de una dimensión: Dado $x_0 \in U$, de forma que $B(x_0, r) \subset U$ para cierto r > 0, elegido ||h|| < r definimos la función de una variable

$$\varphi(t) = f(x_0 + th), \quad \text{para } 0 \le t \le 1.$$

Entonces φ es de clase \mathcal{C}^2 por ser la composición de la trayectoria $\sigma(t) = x_0 + th$ con f, i.e. $\varphi = f \circ \sigma$. Por tanto

$$\varphi(1) = \varphi(0) + \varphi'(0) + \frac{1}{2}\varphi''(0) + R_{\varphi},$$

y el uso de la regla de la cadena nos da $\varphi'(0) = \langle \nabla f(x_0), h \rangle y \varphi''(0) = h \cdot H_f(x_0) \cdot h^T$.

Ejemplo: fórmula de Taylor de orden 2

Calcula la fórmula de Taylor de grados 1 y 2 de la función f(x,y) = sen(xy) en el punto $(1, \pi/2)$.

Solución: Tenemos primero $f(1, \pi/2) = sen(\pi/2) = 1$.

Las derivadas parciales de orden 1 son las siguientes:

$$\frac{\partial f}{\partial x}(1,\pi/2) = y \cos(xy)|_{(1,\pi/2)} = 0, \quad \frac{\partial f}{\partial y}(1,\pi/2) = x \cos(xy)|_{(1,\pi/2)} = 0.$$

Las derivadas parciales de orden 2 son las siguientes:

$$\frac{\partial^2 f}{\partial x^2}(1, \pi/2) = -y^2 \operatorname{sen}(xy)|_{(1, \pi/2)} = -\pi^2/4.$$

$$\frac{\partial^2 f}{\partial y^2}(1, \pi/2) = -x^2 \operatorname{sen}(xy)|_{(1, \pi/2)} = -1.$$

$$\frac{\partial^2 f}{\partial x \partial y}(1, \pi/2) = -xy \operatorname{sen}(xy)|_{(1, \pi/2)} = -\pi/2.$$

La fórmula de Taylor de grado 1 es $f(x, y) = 1 + R_1$.

La fórmula de Taylor de grado 2 es

$$f(x,y) = 1 - \frac{1}{2} \left(\frac{\pi^2}{4} (x-1)^2 + \pi (x-1) (y - \frac{\pi}{2}) + (y - \frac{\pi}{2})^2 \right) + R_2.$$

Otro ejemplo: fórmula de Taylor de orden 2

Halla la fórmula de Taylor de orden 2 centrado en (0,0) de la función: $f(x,y) = e^{x^2+y^2}$.

Solución: Como antes, empezamos calculando todas las parciales hasta orden dos.

$$f(0,0) = e^{x^2 + y^2}|_{(0,0)} = 1 f_{xx}(0,0) = 2e^{x^2 + y^2}(1 + 2x^2)|_{(0,0)} = 2$$

$$f_x(0,0) = 2xe^{x^2 + y^2}|_{(0,0)} = 0 f_{yy}(0,0) = 2e^{x^2 + y^2}(1 + 2y^2)|_{(0,0)} = 2$$

$$f_y(0,0) = 2ye^{x^2 + y^2}|_{(0,0)} = 0 f_{xy}(0,0) = f_{yx}(0,0) = 4xye^{x^2 + y^2}|_{(0,0)} = 0$$

Y ahora sustituimos en la fórmula sabiendo que $\nabla f(0,0) = (0,0)$ y $H = \begin{pmatrix} 2 & 0 \\ 0 & 2 \end{pmatrix}$:

$$f(x,y) = f(0,0) + f_x(0,0)(x-0) + f_y(0,0)(y-0)$$

$$+ \frac{1}{2} \left(f_{xx}(0,0)(x-0)^2 + f_{yy}(0,0)(y-0)^2 + 2f_{xy}(0,0)(x-0)(y-0) \right) + R_2$$

$$= 1 + \frac{1}{2} (2x^2 + 2y^2) + R_2 = 1 + x^2 + y^2 + R_2$$

Fórmula de Taylor general

Definición (Fórmula de Taylor de orden k)

Sea $U \subseteq \mathbb{R}^n$ un abierto y $f: U \longrightarrow \mathbb{R}$ una función $f \in C^k$ en un entorno de $x_0 \in U$. Entonces

$$f(x_0 + h) = f(x_0) + \sum_{i=1}^n \frac{\partial f(x_0)}{\partial x_i} h_i + \frac{1}{2} \sum_{i,j=1}^n \frac{\partial^2 f(x_0)}{\partial x_i \partial x_j} h_i h_j$$

+ \cdots + \frac{1}{k!} \sum_{i_1,\cdots,i_k}^n \frac{\partial^k f(x_0)}{\partial^k i_1 \cdots \partial^k i_k} h_{i_1} \cdots h_{i_k} + R_n(x_0, h),

donde

$$\lim_{h \to 0} \frac{R_k(x_0, h)}{\|h\|^k} = 0$$

En los sumatorios, cada índice i_1, \ldots, i_k va desde 1 hasta n. Esto implica que, por ejemplo, el último sumatorio que aparece en la fórmula anterior tendrá n^k sumandos (muchos de los cuales se podran agrupar).

Polinomio y resto de Taylor

El polinomio de Taylor es simplemente las fórmulas de Taylor sin el resto. Por ejemplo,

$$P_{k,x_0,f}(x) = f(x_0) + \sum_{i=1}^n \frac{\partial f(x_0)}{\partial x_i} h_i + \frac{1}{2} \sum_{i,j=1}^n \frac{\partial^2 f(x_0)}{\partial x_i \partial x_j} h_i h_j$$
$$+ \dots + \frac{1}{k!} \sum_{i_1,\dots,i_k}^n \frac{\partial^k f(x_0)}{\partial x_{i_1} \dots \partial x_{i_k}} h_{i_1} \dots h_{i_k}$$

es el polinomio de Taylor de grado k para la función f en el punto x_0 .

Cuando la función es C^{k+1} entonces el **resto de Taylor de orden** k se describe con fórmulas (bien la de Lagrange, bien la integral). (Ver el libro de texto).

Tema $2c^{(2)}$: Máximos, mínimos y extremos locales

En esta sección estudiamos cómo calcular máximos y mínimos de funciones multivariables. Empecemos recordando estas nociones para funciones $f: \mathbb{R} \to \mathbb{R}$.

 $x_0 = \text{máximo local: } f \text{ toma un valor máximo}$ en un entorno de x_0 .

 $x_1 = \text{mínimo local: } f \text{ toma un valor mínimo en un entorno de } x_1.$

Estas nociones se generalizan fácilmente a funciones $\mathbb{R}^n \to \mathbb{R}$.

Definición (Máximo local)

Sea $f: U \subset \mathbb{R}^n \to \mathbb{R}$. Decimos que $x_0 \in U$ es un máximo local de f si existe una bola abierta V con $x_0 \in V \subset U$ tal que $\forall x \in V$, $f(x) \leq f(x_0)$.

Definición (Mínimo local)

Sea $f: U \subset \mathbb{R}^n \to \mathbb{R}$. Decimos que $x_1 \in U$ es un **mínimo local** de f si existe una bola abierta V con $x_1 \in V \subset U$ tal que $\forall x \in V$, $f(x) \geq f(x_1)$.

Diremos que $x_0 \in U$ es un **extremo local** si es un máximo local o un mínimo local.

Fernando Soria (UAM) TEMA 2c: Derivadas de orden superior

Máximos y mínimos locales

Teorema

Sea $f: U \subset \mathbb{R}^n \to \mathbb{R}$ diferenciable en $x_0 \in U$. Si x_0 es un extremo local, entonces $\nabla f(x_0) = \vec{0}$.

Los puntos en los que se anula el gradiente se denominan puntos críticos

Dem.: La demostración se deduce a partir del caso 1-dimensional. Para ello basta ver que si f tiene un extremo local en x=0, entonces para cada vetor \vec{e}_j de la base canónica, la función en la variable t dada por

$$\varphi(t) = f(x_0 + t\vec{e}_i),$$

tiene un extremo local en el punto t=0. Luego $\varphi'(0)=0$. Ahora bien, esto nos dice que

$$0=\varphi'(0)=\frac{\partial f}{\partial x_i}(x_0).$$

Como esto es cierto para todo $j=1,2,\ldots,n$, deducimos $\nabla f(x_0)=(0,0,\ldots,0)$ q.e.d.

Máximos y mínimos locales (cont.)

<u>Ejemplo 1</u>: Sea $f(x,y) = x^2 + y^2$. Se tiene $\nabla f = (\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}) = (2x, 2y)$, que se anula en (0,0), luego es un punto crítico. En este caso es fácil ver que se trata de un mínimo.

<u>Ejemplo 2</u>: Sea $f(x,y)=x^2-y^2$. Aquí se tiene $\nabla f=\left(\frac{\partial f}{\partial x},\frac{\partial f}{\partial y}\right)=(2x,-2y)$, que de nuevo se anula en (0,0). Sin embargo, si nos acercamos a (0,0) por y=0, tenemos un máximo en x=0, mientras que si nos acercamos a (0,0) por x=0, tenemos un mínimo en y=0. Un tal punto crítico se llama un *punto de silla*.

Tipos de extremos

Supongamos que $x_0 \in U$ es un extremo de $f: U \subset \mathbb{R}^n \to \mathbb{R}$. Entonces x_0 puede ser de tres tipos:

- un máximo local;
- un mínimo local;
- un punto de silla, si no es ni máximo ni mínimo local.

Los puntos críticos los hallamos resolviendo $\nabla f(x_0) = 0$; una vez hecho esto, ¿cómo sabemos a cuál de los tres tipos de arriba pertenece?

En el caso de $f: \mathbb{R} \to \mathbb{R}$ la segunda derivada f'' nos da el criterio deseado, a saber, que x_0 es un máximo local si $f''(x_0) < 0$ y es un mínimo local si $f''(x_0) > 0$.

El criterio equivalente en el caso de funciones de varias variables viene dado por la matriz Hessiana, algunas de cuyas propiedades revisamos a continuación.

Formas cuadráticas definidas positivas o negativas

Dada una matriz A de dimensiones n imes n definimos la forma cuadrática asociada por medio de

$$F_A(x) = x \cdot A \cdot x^T$$
.

Observaciones:

- F_A coincide con un polinomio homogéneo de grado 2, es decir, $F_A(tx) = t^2 F_A(x)$.
- F_A es continua entre \mathbb{R}^n y \mathbb{R} .

Definiciones y propiedades:

- Diremos que la matriz A es **definida positiva** si, con la notación anterior, se tiene $F_A(x) > 0, \forall x \neq 0$
- Diremos que la matriz A es definida negativa si se tiene $F_A(x) < 0, \forall x \neq 0$
- Si la matriz A es **definida positiva** (respectivamente **definida negativa**) existen dos valores $0 < \lambda \leq \Lambda < \infty$ tales que

$$\lambda \|x\|^2 \le F_A(x) \le \Lambda \|x\|^2. \tag{5}$$

(respectivamente $(\lambda ||x||^2 \le -F_A(x) \le \Lambda ||x||^2$.)

Formas cuadráticas definidas positivas o negativas (cont.)

Dem.: Demostramos solo el primer caso, (5): Fijado $x \neq \vec{0}$, se tiene por un lado

$$F_A(x) = F_A\left(\|x\| \frac{x}{\|x\|}\right) = \|x\|^2 F_A\left(\frac{x}{\|x\|}\right)$$
 (6)

Como F_A es continua y la esfera unidad de \mathbb{R}^n , $S = \{x \in \mathbb{R}^n : \|x\| = 1\}$ es un compacto, F_A alcanza su máximo y su mínimo sobre S. Si llamamos $\lambda = \min_{y \in S} F_A(y)$ y $\Lambda = \max_{y \in S} F_A(y)$, usando que F_A es definida positiva, deducimos que $0 < \lambda \le \Lambda < \infty$ y que $\lambda \le F_A\left(\frac{x}{\|x\|}\right) \le \Lambda$. Llevando esta estimación a (6) obtenemos (5) tal y como queríamos.

Ejemplos:

- Si n = 2, $A = \begin{pmatrix} a & b \\ b & d \end{pmatrix}$ es simétrica y det $A = ad b^2 > 0$ entonces
 - si a > 0, A es definida positiva,
 - si a < 0, A es definida negativa.

Dem.: Dado $(x, y) \neq (0, 0)$ se tiene $F_A(x, y) = ax^2 + 2bxy + dy^2$. Por hipótesis $a \neq 0$, luego $F_A(x, y) = a \left[(x + \frac{b}{a}y)^2 + \frac{y^2}{a^2} (ad - b^2) \right].$

La conclusión se obtiene observando que el término entre corchetes es siempre positivo.

◆ロト ◆個ト ◆差ト ◆差ト 差 めので

Formas cuadráticas definidas positivas o negativas (cont.)

• Si
$$n = 3$$
 y $A = \begin{pmatrix} a & b & c \\ b & d & e \\ c & e & f \end{pmatrix}$ es simétrica, entonces
• $a > 0$, $\begin{vmatrix} a & b \\ b & d \end{vmatrix} = ad - b^2 > 0$ y det $A > 0 \implies A$ es definida positiva,
• $a < 0$, $\begin{vmatrix} a & b \\ b & d \end{vmatrix} = ad - b^2 > 0$ y det $A < 0 \implies A$ es definida negativa.

Con más generalidad se tiene el siguiente

Criterio de Silvester

Dada una matriz M cuadrada de tamaño $n \times n$, para cada $i \in 1 \dots n$ se define el menor principal i-ésimo de M como el determinante de la submatriz $M_i \in \mathbb{R}^{i \times i}$ cuyas filas y columnas son las primeras i filas y columnas de M. Supongamos que cada menor de la matriz M es no nulo. Entonces

- $oldsymbol{0}$ si todos los menores principales de M son positivos, entonces M es definida positiva
- ② si los menores principales i-ésimos de M son negativos para i impar y positivos para i par, entonces M es definida negativa

4 D > 4 A > -

Uso de la Hessiana para distinguir extremos

Clasificación de puntos críticos

Sea $f:U\subset\mathbb{R}^n\to\mathbb{R}$ de clase \mathcal{C}^2 en U. Sea $x_0\in U$ un punto crítico de f, y supongamos que cada menor de la matriz Hessiana $H = H_f(x_0)$ es no nulo.

- 1) x_0 es un mínimo local si $H_f(x_0)$ es definida positiva.
- 2) x_0 es un máximo local si $H_f(x_0)$ es definida negativa.
- 3) Si los menores principales son todos no nulos y no se da ni 1) ni 2), entonces x_0 es un **punto** de silla (en algunas direcciones es un mínimo y en otras un máximo).

(Si algún menor de $H_f(x_0)$ es nulo, no podemos decir nada en general.)

Dem.: Demostramos solo el caso 1). Al ser x_0 un punto crítico, es decir $\nabla f(x_0) = \vec{0}$, el teorema de Taylor nos dice que

$$\lim_{h \to \vec{0}} \frac{f(x_0 + h) - f(x_0) - h \cdot H \cdot h^T}{\|h\|^2} = 0.$$
 (7)

Por lo visto anteriormente, s H es definida positiva, $\exists \lambda > 0$ tal que $h \cdot H \cdot h^T \geq \lambda \|h\|^2$. Por otro lado, de (7) deducimos que dado $\epsilon > 0$, $\exists \delta > 0$ de forma que $||h|| < \delta \implies$ $-\epsilon \|h\|^2 < f(x_0 + h) - f(x_0) - h \cdot H \cdot h^T$. Eligiendo $\epsilon = \lambda/2$ queda

$$f(x_0 + h) - f(x_0) \ge h \cdot H \cdot h^T - \epsilon/2 ||h||^2 \ge \lambda ||h||^2 - \lambda/2 ||h||^2 = \lambda/2 ||h||^2 > 0,$$

 $\forall ||h|| < \delta$. Luego x_0 es un mínimo local estricto.

◆□▶ ◆圖▶ ◆圖▶ ◆圖▶ ■ 圖 25 / 42

EL caso n=2

Definición

Sea $f: U \subset \mathbb{R}^2 \to \mathbb{R}$ una función de clase C^2 . El discriminante de f en (x_0, y_0) (denotado por

D) es el determinante del Hessiano de f en (x_0, y_0) , esto es, $D := \frac{\partial^2 f}{\partial x^2} \cdot \frac{\partial^2 f}{\partial v^2} - \left(\frac{\partial^2 f}{\partial x \partial v}\right)^2$ todo ello evaluado en el punto (x_0, y_0) .

Teorema (clasificación de puntos críticos)

Sean $f:U\subset\mathbb{R}^2\longrightarrow\mathbb{R}$ una función de clase C^2 en un abierto U.

• Un punto $(x_0, y_0) \in U$ es un mínimo local estricto de f si se tiene que

$$\nabla f(x_0, y_0) = (0, 0), \qquad \frac{\partial^2 f}{\partial x^2}(x_0, y_0) > 0, \qquad D > 0 \text{ en } (x_0, y_0).$$

• Un punto $(x_0, y_0) \in U$ es un máximo local estricto de f si se tiene que

$$\nabla f(x_0,y_0) = (0,0), \qquad \frac{\partial^2 f}{\partial x^2}(x_0,y_0) < 0, \qquad D > 0 \text{ en } (x_0,y_0).$$

• (x_0, y_0) es un punto de silla si $\nabla f(x_0, y_0) = (0, 0), D < 0$.

Observación: Si D=0, no podemos decir nada de (x_0, y_0) ←□ → ←□ → ←□ → □ → □

Ejemplo de cálculo y clasificación de extremos

Sea $f: \mathbb{R}^2 \to \mathbb{R}$, $f(x,y) = x^2 - 2xy + 2y^2$. Calculemos los puntos críticos de f.

$$\frac{\partial f}{\partial x} = 2x - 2y$$
, $\frac{\partial f}{\partial y} = -2x + 4y$. Resolvemos el sistema $\begin{cases} 2x - 2y = 0 \\ 2x - 4y = 0 \end{cases}$.

Encontramos el punto crítico $(x_0, y_0) = (0, 0)$.

Calculamos la hessiana en (0,0):
$$H = \begin{pmatrix} \frac{\partial^2 f}{\partial x^2} & \frac{\partial^2 f}{\partial x \partial y} \\ \frac{\partial^2 f}{\partial y \partial x} & \frac{\partial^2 f}{\partial y^2} \end{pmatrix} = \begin{pmatrix} 2 & -2 \\ -2 & 4 \end{pmatrix}$$
.

Los menores principales son
$$\frac{\partial^2 f}{\partial x^2} = 2$$
, $\det \begin{pmatrix} 2 & -2 \\ -2 & 4 \end{pmatrix} = 4$.

Por lo tanto (0,0) es un mínimo local.

Observación: Este ejemplo es un caso muy especial ya que se tiene

$$f(x,y) = (x,y)\begin{pmatrix} 1 & -1 \\ -1 & 2 \end{pmatrix}\begin{pmatrix} x \\ y \end{pmatrix}$$

Es decir, f es en sí misma una forma cuadrática asociada a la matriz $A = \frac{1}{2}H$.

Otro ejemplo de cálculo de mínimos

Queremos encontrar los puntos de **la gráfica de** f(x,y) = 1/(xy) que minimizan la distancia al origen (0,0,0). Esta distancia se da por la fórmula siguiente:

$$||(x, y, f(x, y)) - (0, 0, 0)|| = (x^2 + y^2 + 1/(x^2y^2))^{1/2}.$$

Por lo tanto, el problema consiste en encontrar los mínimos de la función $g(x,y)=x^2+y^2+1/(x^2y^2)$. Calculemos los puntos críticos.

$$\frac{\partial g}{\partial x} = 2x - \frac{2y^2x}{x^4y^4} = 2x - \frac{2}{x^3y^2}, \quad \frac{\partial g}{\partial y} = 2y - \frac{2}{x^2y^3}.$$

Está claro que los puntos críticos tienen x, y ambos no nulos.

Tenemos pues que resolver el sistema $\begin{cases} 2x^4y^2 = 2\\ 2x^2y^4 = 2 \end{cases}$. Encontramos cuatro puntos

críticos, a saber $(x_0,y_0)=(\pm 1,\pm 1)$. Confirmemos que son mínimos locales:

$$\tfrac{\partial^2 g}{\partial x^2} = 2 + \tfrac{6y^2 x^2}{x^6 y^4} = 2 + \tfrac{6}{x^4 y^2}, \quad \tfrac{\partial^2 g}{\partial y^2} = 2 + \tfrac{6}{x^2 y^4}, \quad \tfrac{\partial^2 g}{\partial x \partial y} = \tfrac{4y x^3}{x^6 y^4} = \tfrac{4}{x^3 y^3}.$$

Tenemos
$$H_gig(\pm(1,1)ig)=\left(egin{array}{cc} 8 & 4 \\ 4 & 8 \end{array}
ight), \quad H_gig(\pm(1,-1)ig)=\left(egin{array}{cc} 8 & -4 \\ -4 & 8 \end{array}
ight),$$

luego $(\pm 1, \pm 1)$ son mínimos locales, por la teoría desarrollada.

Otro ejemplo de cálculo de mínimos globales (cont.)

Por otra parte, en esos puntos $(\pm 1, \pm 1)$, $g(\pm 1, \pm 1) = 3$.

Para asegurarnos de que g no puede tomar valores más pequeños en \mathbb{R}^2 , observamos que si (x, y) se halla fuera del disco cerrado de radio 2 (por ejemplo)

$$x^2 + y^2 \ge 2^2 = 4,$$

У

$$g(x,y) = x^2 + y^2 + \frac{1}{x^2y^2} \ge 4.$$

Por lo tanto el mínimo global de g se alcanza en el **interior** del disco $x^2+y^2\leq 4$, y como ahí los puntos críticos son $(\pm 1,\pm 1)$, corresponden a los mínimos de g en todo su dominio.

Tema $2c^{(3)}$: Extremos condicionados

El problema que trataremos aquí es el de hallar extremos de una función bajo ciertas condiciones o restricciones, llamados **extremos condicionados**.

El método principal que estudiaremos para hacer esto es el llamado método de los multiplicadores de Lagrange.

Vamos a describir el problema más precisamente:

Sean $f,g:U\subset\mathbb{R}^n\to\mathbb{R}$ funciones de clase \mathcal{C}^1 en U. Denotemos por S_c el conjunto de nivel c de g, a saber $S_c=\{x:g(x)=c\}$. Denotemos por $f|_{S_c}$ la restricción de f a S_c , es decir la función cuyo dominio es $S_c\to\mathbb{R}$, dada por $x\in S_c\mapsto f(x)$.

Nuestra idea ahora es estudiar los extremos de $f|_{S_c}$, es decir, los extremos de f sujetos a la condición de pertenecer a S_c .

Extremos condicionados: multiplicadores de Lagrange

El método se basa en el resultado central siguiente.

Teorema (Multiplicadores de Lagrange)

Sean $f,g:U\subset\mathbb{R}^n\to\mathbb{R}$, y denotemos por S_c el conjunto de nivel c de g. Supongamos que $x_0\in S_c$ es tal que $\nabla g(x_0)\neq 0$. Si $f|_{S_c}$ tiene un extremo en x_0 , entonces existe un número real λ_0 tal que $\nabla f(x_0)=\lambda_0\nabla g(x_0)$. (Demo en clase)

¿Cómo se usa?:

Para hallar los máximos y los mínimos de f(x) sujetos a la restricción g(x) = c, donde $f, g: U \subset \mathbb{R}^n \to \mathbb{R}$:

• Hay que hallar los $\lambda \in \mathbb{R}$ y los puntos $x_0 \in \mathbb{R}^n$ tales que

$$\nabla f(x_0) = \lambda \cdot \nabla g(x_0),$$
 con la condición $g(x_0) = c.$

Para ello, se construye la función $F(x, \lambda) = f(x) - \lambda g(x)$. Sus puntos críticos (en x y λ) son los que vamos buscando:

$$\frac{\partial F}{\partial x_i} = \frac{\partial f}{\partial x_i} - \lambda \frac{\partial g}{\partial x_i} = 0, \quad j = 1, 2, \dots, n; \qquad \frac{\partial F}{\partial \lambda} = -g(x) = 0.$$

• Después hay que calcular f(x) en todos los puntos encontrados anteriormente; el mayor sera el máximo, el menor el mínimo.

Extremos condicionados: multiplicadores de Lagrange

Para hallar los máximos y los mínimos de f(x) sujetos a más de una restricción, $g_1(x) = c$, $g_2(x) = c_2, \dots, g_k(x) = c_k$ donde

$$f, g_1, \ldots, g_k : U \subset \mathbb{R}^n \to \mathbb{R} \text{ y } c_i \in \mathbb{R} :$$

(esto a veces se pide como maximizar y minimizar f en la superficie de nivel $S_c = \{g_1(x) = c_1, \dots, g_k(x) = c_k\}$)

• hay que resolver el sistema

$$\nabla f(x_0) = \lambda_1 \nabla g_1(x_0) + \lambda_2 \nabla g_2(x_0) + \dots + \lambda_k \nabla g_k(x_0),$$

$$g_1(x_0) = c_1, \quad g_2(x_0) = c_2, \quad \dots, \quad g_k(x_0) = c_k,$$

donde a menudo hay que hallar tanto las λ 's como los x_0 's, pero prestando especial atención a estos últimos;

• después evaluamos f en los x_0 's encontrados; el mayor valor será el máximo de f, y el menor, el mínimo.

Ejemplo: encontrar el máximo de f(x, y, z) = x + z con la condición que $x^2 + y^2 + z^2 = 1$. Para un parámetro real λ , utilizamos la función auxiliar $F = f(x, y, z) - \lambda(g(x, y, z) - 1)$, con $g(x, y, z) = x^2 + y^2 + z^2$.

$$F(x, y, z, \lambda) = f(x, y, z) - \lambda(x^2 + y^2 + z^2 - 1).$$

Consideramos λ como una nueva variable, y buscamos los puntos críticos de la función de *cuatro* variables $F(x, y, z, \lambda)$.

Tenemos
$$\frac{\partial F}{\partial x}=1-2\lambda x$$
, $\frac{\partial F}{\partial y}=-2\lambda y$, $\frac{\partial F}{\partial z}=1-2\lambda z$, $\frac{\partial F}{\partial \lambda}=-x^2-y^2-z^2+1$.

Para que se anulen las tres primeras derivadas parciales, se necesita $\lambda \neq 0$, y=0, $x=z=1/(2\lambda)$. Por lo tanto la cuarta se anula también si $\frac{1}{4\lambda^2}+\frac{1}{4\lambda^2}=1$, i.e. si $\lambda=\pm 1/\sqrt{2}$.

Substituimos λ en $x=z=1/(2\lambda)$, obteniendo los puntos críticos condicionales $(\frac{1}{\sqrt{2}},0,\frac{1}{\sqrt{2}})$ (máximo), y $(\frac{-1}{\sqrt{2}},0,\frac{-1}{\sqrt{2}})$ (mínimo).

<u>Ejemplo:</u> hallar los extremos de f(x, y) = xy en $D: x^2 + y^2 \le 1$.

Aquí haremos como en la clase anterior, a saber, estudiar primero los extremos en el interior D° , y luego mirar si hay extremos en la frontera ∂D .

- 1) Estudio en D° : aquí aplicamos el análisis de extremos visto anteriormente. Tenemos $\frac{\partial f}{\partial x} = y$, $\frac{\partial f}{\partial y} = x$, $\frac{\partial^2 f}{\partial y^2} = \frac{\partial^2 f}{\partial y^2} = 0$, $\frac{\partial^2 f}{\partial y \partial y} = 1$.
- Tenemos pues (0,0) como punto crítico en D° , y $H_f(0,0) = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$ tiene determinante negativo, luego (0,0) es un punto de silla.
- 2) Estudio en $\partial D = \{(x,y) : x^2 + y^2 = 1\}$: aquí, podemos usar el método de los multiplicadores. Ponemos $F(x,y,\lambda) = xy \lambda(x^2 + y^2 1)$.

$$\begin{cases} \frac{\partial F}{\partial x} = y - 2\lambda x = 0\\ \frac{\partial F}{\partial y} = x - 2\lambda y = 0\\ \frac{\partial F}{\partial \lambda} = x^2 + y^2 - 1 = 0 \end{cases} \Rightarrow \begin{cases} y = 2\lambda x\\ x(1 - (2\lambda)^2) = 0\\ x^2 + y^2 = 1 \end{cases} \Rightarrow \begin{cases} 2\lambda = \pm 1\\ x^2 + y^2 = 1 \end{cases}$$

$$\lambda = 1/2$$
 \Rightarrow $x = y$ \Rightarrow $(x, y) = \pm (1/\sqrt{2}, 1/\sqrt{2})$, máximos.

$$\lambda = -1/2 \ \Rightarrow \ x = -y \ \Rightarrow \ (x, y) = \pm (1/\sqrt{2}, \ -1/\sqrt{2}),$$
 mínimos.

<u>Ejemplo:</u> hallar los extremos de $f(x,y) = \frac{x^2}{2} + \frac{y^2}{2}$ en $D: \frac{x^2}{2} + y^2 \le 1$.

De nuevo, dividimos el análisis en dos partes.

1) Estudio en D° : calculamos los extremos locales. Tenemos

$$\frac{\partial f}{\partial x}=x, \quad \frac{\partial f}{\partial y}=y, \quad \frac{\partial^2 f}{\partial x^2}=1, \quad \frac{\partial^2 f}{\partial y^2}=1, \quad \frac{\partial^2 f}{\partial x \partial y}=0.$$

Tenemos pues (0,0) como punto crítico en D° , y $H_f(0,0)=\left(\begin{smallmatrix} 1 & 0 \\ 0 & 1 \end{smallmatrix}\right)$ tiene determinante positivo, luego (0,0) es un mínimo local.

2) Estudio en $\partial D = \{(x,y): x^2 + 2y^2 = 2\}$: de nuevo usamos multiplicadores. Sea $F(x,y,\lambda) = \frac{1}{2}(x^2+y^2) - \lambda(\frac{x^2}{2}+y^2-1)$.

$$\begin{cases} \frac{\partial F}{\partial x} = x - \lambda x = 0 \\ \frac{\partial F}{\partial y} = y - 2\lambda y = 0 \\ \frac{\partial F}{\partial \lambda} = \frac{x^2}{2} + y^2 - 1 = 0 \end{cases} \Rightarrow \begin{cases} x = 0 \Rightarrow y = \pm 1, \ \lambda = 1/2, \text{ o bien} \\ y = 0 \Rightarrow x = \pm \sqrt{2}, \ \lambda = 1 \end{cases}$$

Obtenemos cuatro puntos críticos, a saber $(0,\pm 1)$, $(\pm \sqrt{2},0)$.

Conclusión: $f(0,\pm 1)=\frac{1}{2}$, $f(\pm \sqrt{2},0)=1$, f(0,0)=0. Por tanto, en D tenemos máximos globales en $(\pm \sqrt{2},0)$, y un mínimo global en (0,0).

En el ejemplo siguiente veremos que el método de multiplicadores se puede aplicar también en casos en que hay más de una condición.

Ejemplo: hallar los extremos de f(x, y, z) = x + y + z bajo las dos condiciones $x^2 + y^2 = 2$, x + z = 1.

Sea
$$F(x, y, z, \lambda_1, \lambda_2) = (x + y + z) - \lambda_1(x^2 + y^2 - 2) - \lambda_2(x + z - 1)$$
.

$$\begin{cases} \frac{\partial F}{\partial x} = 1 - 2\lambda_1 x - \lambda_2 = 0 \\ \frac{\partial F}{\partial y} = 1 - 2\lambda_1 y = 0 \\ \frac{\partial F}{\partial z} = 1 - \lambda_2 = 0 \\ \frac{\partial F}{\partial \lambda_1} = 2 - x^2 - y^2 = 0 \\ \frac{\partial F}{\partial \lambda_2} = 1 - x - z = 0 \end{cases} \Rightarrow \begin{cases} \lambda_2 = 1 \Rightarrow 2\lambda_1 x + 1 = 2\lambda_1 y = 1 \\ \Rightarrow \lambda_1 \neq 0, \quad x = 0, \quad y = 1/(2\lambda_1) \\ \Rightarrow x = 0, \quad y = \pm \sqrt{2}, \quad z = 1. \end{cases}$$

Obtenemos pues dos puntos críticos, a saber

$$(0, \sqrt{2}, 1)$$
 (máximo), $(0, -\sqrt{2}, 1)$ (mínimo).

Máximos y mínimos globales

Definición (Máximo y mínimo global)

Sea $f: U \subset \mathbb{R}^n \to \mathbb{R}$. Un punto $x_0 \in U$ es un **máximo global** (resp. **mínimo global**) de f en U si $\forall x \in U$, $f(x) \leq f(x_0)$ (resp. $f(x) \geq f(x_0)$).

Recordemos lo que ocurre para funciones $f : \mathbb{R} \to \mathbb{R}$.

En x_0 , tenemos un mínimo local de f.

En x_1 , tenemos un mínimo global. Con los métodos vistos, detectamos que x_1 es un mínimo local, pero no que es global.

Para funciones $\mathbb{R}^n \to \mathbb{R}$ más generalmente, se da el mismo problema de detección. El resultado siguiente nos da por lo menos la existencia de extremos globales bajo ciertas condiciones.

Teorema

Sea $D\subset\mathbb{R}^n$ un conjunto compacto (i.e. cerrado y acotado), y sea $f:D\to\mathbb{R}$ una función continua. Entonces existe al menos un mínimo global de f en D y al menos un máximo global de f en D.

TEMA 2c: Derivadas de orden superior

Máximos y mínimos globales

En otras palabras, existen puntos del cerrado y acotado D en los cuales f alcanza sus extremos globales en D.

¿Cómo se hallan el máximo y el mínimo global de f en un compacto C? Sea $C \subset \mathbb{R}^n$ un compacto y $f: C \to \mathbb{R}$ una función continua.

Los valores máximo y mínimo de f en C se alcanzan en puntos pertenecientes a alguno de los siguientes conjuntos:

- Los puntos críticos de f en el interior de C, denotado usualmente como \mathring{C} .
- ② Los puntos donde f no sea diferenciable.
- **1** Los puntos máximo y mínimo de f en la frontera de C: $f|_{\partial C}$. En este punto, a veces se pueden usar extremos condicionados, pero a veces es más fácil otros argumentos.

Una vez hallados todos, se calcula f sobre ellos. El mayor valor será el **maximo global**, y el menor valor será el **mínimo global**.

Cálculo de máximos y mínimos globales

Ejemplo 1: encontrar los mínimos y máximos globales de la función f(x, y) = xy en el rectángulo $D = \{(x, y) : -1 \le x \le 1, -1 \le y \le 1\}$.

Calculamos primero los puntos críticos $x_0 \in \mathring{D}$: tenemos $\frac{\partial f}{\partial x} = y$, $\frac{\partial f}{\partial y} = x$, luego $x_0 = (0,0)$. Calculando, f(0,0) = 0.

f es diferenciable en todos puntos, así que no hay que considerar puntos de no diferenciabilidad. Queda estudiar f en la frontera de D .

A:
$$f(1, y) = y$$
, con $-1 \le y \le 1 \Rightarrow \min = -1$, $\max = 1$.

B:
$$f(x,1) = x$$
, con $-1 \le x \le 1 \Rightarrow \min = -1$, $\max = 1$.

$$\mathsf{C} \colon f(-1,y) = -y, \ -1 \leq y \leq 1 \Rightarrow \mathsf{min} = -1, \ \mathsf{max} = 1.$$

D:
$$f(x,-1) = -x$$
, $-1 \le x \le 1 \Rightarrow \min = -1$, $\max = 1$.

El mínimo global es -1 y se alcanza en los puntos (1,-1) y (-1,1). El máximo global es 1 y se alcanza en los puntos (1,1) y (-1,-1).

Cálculo de máximos y mínimos globales

Ejemplo 2: encontrar los mínimos y máximos globales de la función $f(x, y) = \text{sen}(x) + \cos(y)$ en $D = \{(x, y) : 0 \le x \le 2\pi, 0 \le y \le 2\pi\}$.

Como antes, calculamos primero los puntos críticos en el *interior*
$$D^{\circ}$$
. Tenemos $\frac{\partial f}{\partial x}=\cos(x), \ \frac{\partial f}{\partial y}=-\sin(y).$ En D° , estas derivadas se anulan respectivamente en $x=\frac{\pi}{2},\frac{3\pi}{2},\ y=\pi.$ En estos puntos, $f\left(\frac{\pi}{2},\pi\right)=0,\quad f\left(\frac{3\pi}{2},\pi\right)=-2.$

<u>Cuidado</u>: queda estudiar lo que pasa en la frontera ∂D .

A:
$$f(2\pi, y) = \cos(y) \Rightarrow \begin{cases} \min 1 \text{ en } y = 0, 2\pi \\ \min -1 \text{ en } y = \pi \end{cases}$$

B:
$$f(x, 2\pi) = \operatorname{sen}(x) + 1 \Rightarrow \begin{cases} \min 2 \text{ en } x = \pi/2 \\ \min 0 \text{ en } x = 3\pi/2 \end{cases}$$

C:
$$f(0,y) = \cos(y) \Rightarrow \begin{cases} \min 1 \text{ en } y = 0, 2\pi \\ \min -1 \text{ en } y = \pi \end{cases}$$

D:
$$f(x,0) = \operatorname{sen}(x) + 1 \Rightarrow \begin{cases} \min 2 \text{ en } x = \pi/2 \\ \min 0 \text{ en } x = 3\pi/2 \end{cases}$$

Cálculo de máximos y mínimos globales

Conclusión del estudio: en $D=\{(x,y): 0\leq x\leq 2\pi,\ 0\leq y\leq 2\pi\}$, la función $f(x,y)=\text{sen}(x)+\cos(y)$ alcanza su máximo global 2 en los puntos $(\frac{\pi}{2},0)$, $(\frac{\pi}{2},2\pi)$, y alcanza su mínimo global -2 en el punto $(\frac{3\pi}{2},\pi)$.

Ejercicio de cálculo de extremos globales

Encuentra los extremos globales de la función

$$f(x,y) = x^2 + y^2 - x - y + 1$$

en el conjunto

$$C = \{(x, y) \in \mathbb{R}^2 : x^2 + y^2 \le 1\}$$