Shuey's approximation Shuey, RT (1985), Geophysics, 50, 609-614

$$R_{\rm PP}(\theta) = \left(1 + \tan^2 \theta\right) \frac{\Delta I_{\rm P}}{2I_{\rm P}} - 8\left(\frac{V_{\rm S}}{V_{\rm P}}\right)^2 \sin^2 \theta \frac{\Delta I_{\rm S}}{2I_{\rm S}} - \left[\frac{1}{2} \tan^2 \theta - 2\left(\frac{V_{\rm S}}{V_{\rm P}}\right)^2 \sin^2 \theta\right] \frac{\Delta \rho}{\rho}$$

$R(\theta) pprox A + B \sin^2 \theta$ $A = R_P pprox rac{1}{2} \left(rac{\Delta V_P}{V_P} + rac{\Delta ho}{ ho} ight)$ $B pprox R_P - 2R_S$

Power and amplitude

dB level	Power	dB level	Amplitude
–30 dB	1/1000 = 0.001	-30 dB	$\sqrt{1/1000}$ = 0.03162
–20 dB	1/100 = 0.01	–20 dB	$\sqrt{1/100} = 0.1$
-10 dB	1/10 = 0.1	-10 dB	$\sqrt{1/10}$ = 0.3162
–3 dB	ca. 1/2 = 0.5	–3 dB	$\sqrt{1/2} = 0.7071$
3 dB	ca. 2	3 dB	$\sqrt{2}$ = 1.414
10 dB	10	10 dB	$\sqrt{10}$ = 3.162
20 dB	100	20 dB	$\sqrt{100} = 10$
30 dB	1000	30 dB	$\sqrt{1000}$ = 31.62

Types of mean average

Arithmetic ^[1]	the sum divided by the population size, $n-$ used when the sum is of interest			
Geometric [1][2]	the n th root of the product — used when the product is of interest			
Harmonic [1]	n divided by the sum of the reciprocals — used for rates and ratios			
Quadratic or RMS	$oldsymbol{atic}$ or $oldsymbol{RMS}$ the square root of the arithmetic mean of the squares $-$ used for magnitudes			
1) Pythagorean means, for which $A \ge G \ge H$ [2] Only defined for +ve number				

Seismic resolution

Tuning thickness is usually computed as one quarter of the wavelength, the Rayleigh criterion

tuning thickness =
$$\frac{v}{4f}$$

where v is interval velocity and f is the maximum frequency (at –20 dB). Only forward modelling can really address the question of tuning in your data. Note that the minimum thickness for which you can interpret separate events for top and base is greater than the tuning thickness. Note also that even though you cannot interpret top and base events, it may be possible to model thickness from amplitude around the tuning thickness.

Spatial resolution (Fresnel diameter after migration) is often computed a one half of the wavelength: ${\rm spatial\ resolution} = \frac{v}{2\,f}$

Powers of 2 (bit depth)

Bit-depth	Values		Range		
1	21	2	0, 1		
2	2 ²	4	-1 to +2		
3	2 ³	8	−3 to +4		
4	24	16	−7 to +8		
5	2 ⁵	32	-15 to +16		
6	2 ⁶	64	-31 to +32		
8	2 ⁸	256	-127 to +128		
16	2 ¹⁶	65 536	-32 767 to +32 768		
24	2 ²⁴	16 777 216	-8 388 607 to +8 388 608		
32	2 ³²	4 294 967 296	-2 147 483 647 to +2 147 483 648		
64	2 ⁶⁴	1.8 × 10 ¹⁹	±9 × 10 ¹⁸		
128	2128	3.4 × 10 ³⁸	+1.7 × 10 ¹⁹		

Meetings Dates, place, and actual or estimated abstract deadline

EGU	9 Jan 2013	GeoCon	Jan 20	
7 to 12 Apı Vienna, AU		6 to 10 May 2013 Calgary, CAN		
SEG	Apr 2013	GSA	Aug 20	

SEG Apr 2013 GSA Aug 2013
22 to 27 Sep 2013 27 to 30 Oct 2013
Houston, USA Denver, USA

AAPG 11 Oct 2012 EAGE 15 Jan 2013
19 to 22 May 2013 10 to 13 Jun 2013
Pittsburgh, USA London, GBR

AGU Aug 2013 SEG '14 Apr 2013
9 to 13 Dec 2013 26 to 31 Oct 2014

Denver, USA

Nyquist frequency

 $f_{\rm N}=\frac{1}{2}\times\frac{1000}{S}$

where *S* is sample interval e.g. for S = 4 ms, $f_N = 125$

Common rock properties

Rock	Fluid	Porosity	Density	Velocity	
Sandstone		0.0	2650 kg/m ³	3000-5500 m/s	
Sandstone	wet	0.1	2500	2500-4500	
Sandstone	wet	0.2	2500	2000–3500	
Sandstone	oil	0.2	2320	2000–3500	
Sandstone	gas	0.2	2320	1800–3500	
Limestone	wet	0.0	2710	4500–7000	
Limestone	wet	0.1	2540	3800–6500	
Dolomite	wet	0.0	2870	4500-7500	
Dolomite	wet	0.1	2680	3800-7000	
Shale			2000–2800	1800–5000	
Salt			2030	4200-4800	
Coal			1200-1500	1800–3200	

Filter kernels

Mea	an		Gau	ISS	
1	1	1	1	2	1
1	1	1	2	4	2
1	1	1	1	2	1
Sha	rp		Uns	harp)
-1	-1	-1	-1	-1	-1
-1	9	-1	-1	17	-1
-1	-1	-1	-1	-1	-1
Edg	e		Sob	el	
-1	-1	-1	-1	-2	-1
0	0	0	0	0	0
1	1	1	1	2	1

Horizon filters

San Francisco, USA

+ Good performance ++ Excellent performance

Hall (2007), Smooth operator: smoothing seismic interpretations and attributes, The Leading Edge 26 (1)

	•	-	•	
	Random noise	Spiky noise	Edges preserved	Comments
Mean	+			Gaussian is a better choice
Gaussian	+			Less affected by spikes than mean
Conservative		+	+	Only removes very sparse spikes
Trimmed mean	++	++		Best if edges not present or not wanted
Mode	+	+	+	Only use on discrete or class attributes
Median	++	++	+	Good all-rounder
SNN	++	++	++	Best all-rounder
Kuwahara	+	++	++	Enhances edges, but use median filter first

GEOPHYSICS cheatsheet

Acoustic

 $Z = V \times \rho$

impedance

Polarity & the forward model

reflectivity * wavelet + noise = seismic

AVO classes

Multiples

