# Einführung in die Stochastik - Mitschrieb

# $Vor lesung \ im \ Wintersemester \ 2011/2012$

Sarah Lutteropp

15. Dezember 2011

# Inhaltsverzeichnis

| 1 | Des                                | skriptive Statistik                                  |  |  |  |  |
|---|------------------------------------|------------------------------------------------------|--|--|--|--|
|   | 1.1                                | Der Grundraum                                        |  |  |  |  |
|   | 1.2                                | Absolute und relative Häufigkeit                     |  |  |  |  |
|   | 1.3                                | Histogramm                                           |  |  |  |  |
|   | 1.4                                | Lagemaße                                             |  |  |  |  |
|   | 1.5                                | Streuungsmaße                                        |  |  |  |  |
|   | 1.6                                | Empirischer Korrelationskoeffizient                  |  |  |  |  |
| 2 | Ereignisse und Zufallsvariablen 10 |                                                      |  |  |  |  |
|   | 2.1                                | Definition                                           |  |  |  |  |
|   | 2.2                                | Beispiele                                            |  |  |  |  |
|   | 2.3                                | Bemerkung (Mengentheoretische Operationen)           |  |  |  |  |
|   | 2.4                                | Definition                                           |  |  |  |  |
|   | 2.5                                | Definition                                           |  |  |  |  |
|   | 2.6                                | Definition                                           |  |  |  |  |
|   | 2.7                                | Bemerkungen (Rechenregeln für Indikatorfunktionen) 1 |  |  |  |  |
|   | 2.8                                | Definition                                           |  |  |  |  |
| 3 | Dis                                | krete Wahrscheinlichkeitsräume                       |  |  |  |  |
|   | 3.1                                | Motivation                                           |  |  |  |  |
|   | 3.2                                | Definition                                           |  |  |  |  |
|   | 3.3                                | Folgerung                                            |  |  |  |  |
|   | 3.4                                | Satz                                                 |  |  |  |  |
|   | 3.5                                | Definition + Satz                                    |  |  |  |  |
|   | 3.6                                | Definition                                           |  |  |  |  |
|   | 3.7                                | Definition                                           |  |  |  |  |
|   | 3.8                                | Definition                                           |  |  |  |  |
|   | 3.9                                | Satz                                                 |  |  |  |  |
| 4 | TZ.                                |                                                      |  |  |  |  |
| 4 |                                    | mbinatorik 1                                         |  |  |  |  |
|   | 4.1                                | Grundregeln                                          |  |  |  |  |
|   | 4.2                                | Satz                                                 |  |  |  |  |
|   | 4.3                                | Reispiel (Urnenmodelle)                              |  |  |  |  |

|   | 4.4            | Definition                                                | 19 |
|---|----------------|-----------------------------------------------------------|----|
|   | 4.5            | Satz                                                      | 19 |
|   | 4.6            | Beispiel (Geburtstagsproblem)                             | 20 |
|   | 4.7            | Beispiel                                                  | 20 |
|   | 4.8            | Beispiel (Besetzungsmodelle)                              | 20 |
| 5 | Der            | Erwartungswert                                            | 21 |
|   | 5.1            | Definition                                                | 21 |
|   | 5.2            | Satz                                                      | 21 |
|   | 5.3            | Folgerung                                                 | 22 |
|   | 5.4            | Satz (Transformationsformel)                              | 22 |
|   | 5.5            | Beispiele                                                 | 23 |
| 6 | Die            | hypergeometrische Verteilung und die Binomialvertei-      |    |
|   | lung           | S                                                         | 24 |
|   | 6.1            | Definition                                                | 24 |
|   | 6.2            | Satz                                                      | 25 |
|   | 6.3            | Motivation                                                | 25 |
|   | 6.4            | Definition                                                | 25 |
|   | 6.5            | Satz                                                      | 26 |
| 7 | Meh            | arstufige Experimente                                     | 27 |
|   | 7.1            | Beispiel                                                  | 27 |
|   | 7.2            | Definition                                                | 27 |
|   | 7.3            | Satz                                                      | 28 |
|   | 7.4            | Beispiel                                                  | 28 |
| 8 | $\mathbf{Bed}$ | ingte Wahrscheinlichkeiten                                | 30 |
|   | 8.1            | Definition                                                | 30 |
|   | 8.2            | Satz                                                      | 30 |
|   | 8.3            | Bemerkung (Zusammenhang zu Übergangswahrscheinlichkeiten) | 31 |
|   | 0.1            | · · · · · · · · · · · · · · · · · · ·                     |    |
|   | 8.4            | Satz (Multiplikationsformel)                              | 31 |
|   | $8.5 \\ 8.6$   | Satz                                                      |    |
|   | 8.7            | Beispiel (Ziegenproblem)                                  | 32 |
|   | 8.8            |                                                           | 32 |
|   | 0.0            | Beispiel (Simpson-Paradoxon)                              | 33 |
| 9 |                | chastische Unabhängigkeit                                 | 34 |
|   | 9.1            | Definition                                                | 34 |
|   | 9.2            | Bemerkung                                                 | 34 |
|   | 9.3            | Bemerkungen                                               | 35 |
|   | 9.4            | Beispiel (Produkträume)                                   | 35 |
|   | 0.5            | Cota                                                      | 26 |

|    | 9.6   | Satz (Blockungslemma)                           |
|----|-------|-------------------------------------------------|
|    | 9.7   | Satz                                            |
|    | 9.8   | Beispiel (Bernoulli-Kette der Länge $n$ )       |
| 10 | Gen   | neinsame Verteilung 39                          |
|    | 10.1  | <u>Definition</u>                               |
|    | 10.2  | Beispiel                                        |
|    | 10.3  | Beispiel                                        |
|    | 10.4  | <u>Definition</u>                               |
|    |       | Satz                                            |
|    | 10.6  | Satz (Blockungslemma)                           |
|    |       | Satz (allgemeine Transformations-Formel)        |
|    |       | Satz                                            |
|    |       | Satz (Faltungsformel)                           |
|    |       | Satz (Additionsgesetz für Binomialverteilungen) |
|    |       |                                                 |
| 11 |       | anz, Kovarianz, Korrelation 44                  |
|    |       | Definition                                      |
|    |       | Bemerkungen                                     |
|    |       | Satz                                            |
|    | 11.4  | Beispiel                                        |
|    | 11.5  | Definition                                      |
|    |       | Satz (Tschebyschov-Ungleichung)                 |
|    | 11.7  | <u>Definition</u>                               |
|    | 11.8  | Satz                                            |
|    | 11.9  | Folgerung                                       |
|    | 11.10 | Beispiel                                        |
|    |       | <u>Satz</u>                                     |
|    |       | Folgerung                                       |
|    |       | Bemerkung                                       |
|    |       |                                                 |
| 12 |       | htige diskrete Verteilungen 51                  |
|    | 12.1  | Satz (Gesetz seltener Ereignisse)               |
|    | 12.2  | <u>Definition</u>                               |
|    | 12.3  | Satz                                            |
|    | 12.4  | Definition und Satz                             |
|    |       | Definition und Satz                             |
|    |       | Satz                                            |
|    |       | Bemerkungen                                     |
|    |       | Beispiel (Multinomiales Versuchsschema)         |
|    |       | Definition                                      |
|    |       | Folgerung 56                                    |

| <b>13</b> | Bedingte Erwartungswerte und bedingte Verteilungen  | 57 |
|-----------|-----------------------------------------------------|----|
|           | 13.1 Definition                                     | 57 |
|           | 13.2 Bemerkungen                                    | 57 |
|           | 13.3 Beispiel                                       | 58 |
|           | 13.4 Satz (Formel vom totalen Erwartungswert)       | 58 |
|           | 13.5 Beispiel                                       | 58 |
|           | 13.6 Satz (Eigenschaften)                           | 59 |
|           | 13.7 Satz (Substitutionsformel)                     | 59 |
|           | 13.8 Beispiel (Würfelwurf)                          | 60 |
|           | 13.9 Definition                                     | 60 |
|           | 13.10Beispiel                                       | 6  |
|           | 13.11Satz                                           | 6  |
| 14        | Grenzwertsätze                                      | 62 |
|           | 14.1 Satz (Schwache Gesetz der großen Zahlen, SGGZ) | 62 |
|           | 14.2 Definition                                     | 62 |
|           | 14.3 Folgerung (SGGZ von Jakob Bernoulli)           | 63 |
|           | 14.4 Satz                                           | 63 |

## Vorwort

Dies ist ein Mitschrieb der Vorlesung "Einführung in die Stochastik" vom Wintersemester 2011/2012 am Karlsruher Institut für Technologie, die von Herrn Prof. Dr. Günther Last gehalten wird.

# Deskriptive Statistik

### 1.1 Der Grundraum

 $\emptyset \neq \Omega = \text{Grundraum (Grundgesamtheit, Merkmalsraum, Stichprobenraum)}$ Annahme:  $\Omega$  ist diskret(endlich oder abzählbar unendlich) (Häufig  $\Omega \subseteq \mathbb{R}$ )

## 1.2 Absolute und relative Häufigkeit

$$x_1,\ldots,x_n\in\Omega$$
 ("Daten")  
 $h(\omega)=\mathrm{card}\left\{j\in\{1,\ldots,n\}\colon x_j=\omega\right\},\omega\in\Omega,$  absolute Häufigkeit von  $\omega$ 

Bemerkung 
$$\sum_{\omega \in \Omega} h(\omega) = n$$

**Definition**  $\frac{1}{n}h(\omega)$  = relative Häufigkeit von  $\omega$   $h(A) = \operatorname{card} \{j \in \{1, \dots, n\} : x_j \in A\}, A \subset \Omega$  = absolute Häufigkeit von A,  $\frac{1}{n}h(A)$  = relative Häufigkeit von A

# 1.3 Histogramm

$$x_1, \dots, x_n \in \mathbb{R}, b_1 < b_2 < \dots < b_s \text{ mit } b_1 \leq \min_{1 \leq i \leq n} x_i, b_s > \max_{1 \leq i \leq n} x_i$$
  
TODO: BILD  
 $d_j(b_{j+1} - b_j) = h([b_j, b_{j+1})) = \operatorname{card} \{i \in \{1, \dots, n\} : b_j \leq x_i < b_{j+1}\}$ 

# 1.4 Lagemaße

**Definition** Ein **Lagemaß** ist eine Abbildung  $l: \mathbb{R}^n \to \mathbb{R}$  mit

$$l(x_1 + a, \dots, x_n + a) = l(x_1, \dots, x_n) + a$$

<sup>&</sup>quot;Verschiebungskovarianz".  $x_1, \ldots, x_n, a \in \mathbb{R}$ 

1.4 Lagemaße 7

### 1.4.1 Arithmetisches Mittel

$$x_1, \ldots, x_n \in \mathbb{R}, \bar{x} := \frac{1}{n} \sum_{j=1}^n x_j$$
 "Schwerpunkt der Daten"

Fakt 
$$\sum_{i=1}^{n} (x_i - t)^2 \xrightarrow{t} \text{Min}$$

Lösung:  $t = \bar{x}$ 

"Prinzip der kleinsten Quadrate"

**Beweis** 
$$\frac{1}{n} \sum_{j=1}^{n} (x_j - t)^2 = t^2 - 2\bar{x}t + \frac{1}{n} \sum_{j=1}^{n} x_j^2 = (t - \bar{x})^2 + \frac{1}{n} \sum_{j=1}^{n} x_j^2 - (\bar{x})^2$$

### 1.4.2 Median, Quantile

$$x_1, \ldots, x_n \in \mathbb{R} \Rightarrow x_{(1)} \leq x_{(2)} \leq \ldots \leq x_{(n)}$$
 geordnete Stichprobe

### Definition

$$x_{1/2} := \begin{cases} x_{(\frac{n+1}{2})} & \text{, falls } n \text{ ungerade} \\ \frac{1}{2}(x_{(\frac{n}{2})} + x_{(\frac{n}{2}+1)}) & \text{, falls } n \text{ gerade} \end{cases}$$

heißt **Median** von  $x_1, \ldots, x_n$ .

Fakt 
$$\sum_{j=1}^{n} |x_j - x_{1/2}| = \min_{t} \sum_{j=1}^{n} |x_j - t| Übungsaufgabe$$

**Bemerkung** Der Median ist "robust" gegenüber "Ausreißern". Ist etwa  $x_1 = \ldots = x_9 = 1$  und  $x_{10} = 1000(n = 10)$ , so gilt  $\bar{x} = 100, 9, x_{1/2} = 1$ 

**Definition** Für 0 heißt

$$x_p := \begin{cases} x_{(\lfloor n \cdot p + 1 \rfloor)} & \text{, falls } n \cdot p \notin \mathbb{N} \\ \frac{1}{2} (x_{(n \cdot p)} + x_{(n \cdot p + 1)}) & \text{, falls } n \cdot p \in \mathbb{N} \end{cases}$$

**p-Quantil** von  $x_1, \ldots, x_n$ .

**Interpretation** Mindestens  $p \cdot 100\%$  der Daten liegen links von  $x_p$  und mindestens  $(1-p) \cdot 100\%$  liegen rechts von  $x_p$ .  $x_{1/4}$  = unteres Quartil,  $x_{3/4}$  = oberes Quartil

#### 1.5Streuungsmaße

**Definition** Eine Abbildung  $\sigma: \mathbb{R}^n \to \mathbb{R}$  mit

$$\sigma(x_1 + a, \dots, x_n + a) = \sigma(x_1, \dots, x_n)$$
 (Translationsinvarianz)

heißt Streuungsmaß.

#### 1.5.1Empirische Varianz

$$s^2 := \frac{1}{n-1} \sum_{j=1}^n (x_j - \bar{x})^2 =$$
 empirische Varianz von  $x_1, \dots, x_n$ 

## 1.5.2 Empirische Standardabweichung

$$s := +\sqrt{s^2} =$$
 empirische Standardabweichung von  $x_1, \dots, x_n$ 

#### 1.5.3Spannweite

$$x_{(n)}-x_{(1)}=$$
 **Spannweite** von  $x_1,\ldots,x_n$ 

### 1.5.4 Quartilsabstand

$$x_{(3/4)} - x_{(1/4)} =$$
Quartilsabstand von  $x_1, \dots, x_n$ 

# Empirischer Korrelationskoeffizient

$$(x_1, y_1), \dots, (x_n, y_n) \in \mathbb{R}^2$$
 TODO: BILD  
Gesucht: Gerade  $y = a + b \cdot x$  so, dass

$$(*)$$
  $\sum_{j=1}^{n} (y_j - a - bx_j)^2 \stackrel{a,b}{\to} \text{Min}$ 

**Definition** 
$$\sigma_x^2 = \frac{1}{n} \sum_{i=1}^n (x_i - \bar{x})^2 \ \sigma_y^2 = \frac{1}{n} \sum_{i=1}^n (y_i - \bar{y})^2$$

$$\sigma_{xy} = \frac{1}{n} \sum_{j=1}^{n} (x_j - \bar{x})(y_j - \bar{y})$$
 empirische Kovarianz  $\sigma_x^2 > 0, \sigma_y^2 > 0.$ 

Lösung von (\*): 
$$b^* = \frac{\sigma_{xy}}{\sigma_{x^2}}, a^* = \bar{y} - b^* \cdot \bar{x}$$

$$\min_{\substack{a,b \ a,b}} \sum_{j=1}^{n} (y_j - a - bx_j)^2 \stackrel{!}{=} \min_{\substack{b \ b}} \sum_{j=1}^{n} (y_i - \bar{y} - b(x_j - \bar{x}))^2 = \dots$$

"lineare Regression"

Einsetzen von  $a^*$  und  $b^*$  in die Zielfunktion:

$$0 \le \sum_{j=1}^{n} (y_j - a^* - b^* x_j)^2 = \dots = n\sigma_y^2 (1 - (\frac{\sigma_{xy}}{\sigma_x \sigma_y})^2)$$

Definition  $r_{xy}:=rac{\sigma_{xy}}{\sigma_x\sigma_y}$  heißt empirischer Korrelationskoeffizient (Pearson).

Folgerung  $|r_{xy}| \le 1$ Es gilt  $r_{xy} = \pm 1 \Leftrightarrow$  Punktewolke liegt exakt auf der Geraden  $y = a^* + b^*x$ . Dabei ist  $b^* > 0$ , falls  $r_{xy} = 1$  und  $b^* < 0$ , falls  $r_{xy} = -1$ .

Dieser empirische Korrelationskoeffizient ist ein Maß für die (affin) lineare  $Abh \ddot{a}ngigkeit zwischen den x_j und den y_j$ .

# Ereignisse und Zufallsvariablen

### 2.1 Definition

Gegeben sei eine Grundmenge  $\Omega$ . Die Elemente von  $\Omega$  heißen **Elementarereignisse**. Teilmengen von  $\Omega$  heißen **Ereignisse**. (Idee:  $\omega \in \Omega$  ist Ausgang eines zufälligen Versuchs.)

**Interpretation** Ein Ereignis  $A \subset \Omega$  "tritt ein", wenn  $\omega \in A$ .

## 2.2 Beispiele

- (i) (Münzwurf)  $\Omega = \{0, 1\} (\text{oder } \Omega = \{W, Z\})$
- (ii) (m Münzwürfe)  $\Omega = \{0,1\}^m (A = \{\omega = (\omega_1,\ldots,\omega_m): \sum_{j=1}^m \omega_j \geq k\} \text{ Ereignis })$
- (iii) Werfen von 2 Würfeln  $\Omega = \{1, \dots, 6\}^2$
- (iv) Brownsche Bewegung (TODO: BILD) Bewegung eines Blütenpollens in einer Flüssigkeit  $\Rightarrow$  Zukunftsmusik  $\Omega = C([0,1], \mathbb{R}^2)$

# 2.3 Bemerkung (Mengentheoretische Operationen)

```
Seien A, B, A_1, A_2, \ldots \subset \Omega.

A \cap B = \{\omega \in \Omega : \omega \in A \text{ und } \omega \in B\} = \text{"A und B treten ein"}

A \cup B = \text{"A oder B treten ein"}

\bar{A} \equiv A^c := \Omega \setminus A = \{\omega \in \Omega : \omega \notin A\} = \text{"A tritt nicht ein"}
```

2.4 Definition 11

 $A \backslash B = A \cap B^c \hat{=}$  "A tritt ein, aber nicht B"  $A \subset B \hat{=}$  "wenn A, dann B"  $\emptyset \hat{=}$  "unmögliches Ereignis"  $\Omega \hat{=}$  "sicheres Ereignis"

**Abkürzung**  $AB = A \cap B$ 

### 2.4 Definition

Eine Abbildung  $X \colon \Omega \to \mathbb{R}$  heißt (reelle) **Zufallsvariable**. Für  $\omega \in \Omega$  heißt  $X(\omega)$  **Realisierung** der Zufallsvariable zu  $\omega$ .

**Idee** Mit  $\omega \in \Omega$  bekommt auch  $X(\omega)$  einen zufälligen Charakter.

**Definition** 
$$X^{-1} \colon \mathcal{P}(\mathbb{R}) \to \mathcal{P}(\Omega) = \{A \colon A \in \Omega\}$$
 ist definiert durch  $X^{-1}(A) = \{\omega \in \Omega \colon X(\omega) \in A\}$  ("Urbild von A unter X")

### Bemerkung

• 
$$X^{-1}(A \cap B) = X^{-1}(A) \cap X^{-1}(B), A, B \subset \mathbb{R}$$

• 
$$X^{-1}(A \cup B) = X^{-1}(A) \cup X^{-1}(B)$$

• 
$$X^{-1}(\bigcup_{j=1}^{\infty} A_j) = \bigcup_{j=1}^{\infty} X^{-1}(A_j)$$

• 
$$X^{-1}(\bigcap_{j=1}^{\infty} A_j) = \bigcap_{j=1}^{\infty} X^{-1}(A_j)$$

**Vereinbarung** Es sei X eine Zufallsvariable und  $t \in \mathbb{R}$ . Wir setzen

• 
$$\{X = t\} := \{\omega : X(\omega) = t\} (= X^{-1}(t))$$

• 
$$\{X \ge t\} := \{\omega \colon X(\omega) \ge t\}$$

### 2.5 Definition

Sind X, Y Zufallsvariablen, so definiert man

• 
$$(X + Y)(\omega) = X(\omega) + Y(\omega)$$

• 
$$(X - Y)(\omega) = X(\omega) - Y(\omega)$$

• 
$$(X \cdot Y)(\omega) = X(\omega) \cdot Y(\omega)$$

2.6 Definition 12

 $\omega \in \Omega,$ neue Zufallsvariablen  $X+Y, X-Y, X\cdot Y$ analog für  $a \in \mathbb{R}$ 

- $aX(\omega) = a \cdot (X(\omega))$
- $\min(X, Y) = (X \wedge Y)(\omega) := \min\{X(\omega), Y(\omega)\}\dots$

### 2.6 Definition

Sei  $A \subset \Omega$ . Die Funktion  $1_A : \Omega \to \mathbb{R}$  ist definiert durch

$$1_A(\omega) = \begin{cases} 1 & \text{, falls } \omega \in A \\ 0 & \text{, falls } \omega \notin A \end{cases}$$

und heißt Indikatorfunktion von A.

# 2.7 Bemerkungen (Rechenregeln für Indikatorfunktionen)

- $1_{\emptyset} \equiv 0$
- $1_{\Omega} \equiv 1$
- $(1_A)^2 = 1_A$
- $1_{A^c} = 1 1_A$
- $\bullet \ 1_{A \cap B} = 1_A \cdot 1_B$
- $1_{A \cup B} = 1_A + 1_B 1_{A \cap B}$
- $A \subset B \Leftrightarrow 1_A \leq 1_B$
- $1_{A \wedge B} = |1_A 1_B|$

### 2.8 Definition

Seien  $A_1, \ldots, A_n \subset \Omega$ . Die Zufallsvariable

$$X := \sum_{j=1}^{n} 1_{A_j}$$

heißt Zählvariable oder Indikatorsumme.

2.8 Definition 13

## Bemerkung

- $\{X = 0\} = \{\omega \colon X(\omega) = 0\} = A_1^c \cap \dots A_n^c$
- $\{X=n\}=A_1\cap\ldots\cap A_n$
- $\{X=k\}$  = "genau k der Ereignisse  $A_1,\ldots,A_n$  treten ein" =  $\bigcup_{T\subset\{1,\ldots,n\},|T|=k} (\bigcap_{j\in T} A_j\cap\bigcap_{j\notin T} A_j^c) (T\subset\{1,\ldots,n\},|T|=\mathrm{card}\ T=k)$

# Diskrete Wahrscheinlichkeitsräume

## 3.1 Motivation

Zufallsexperiment mit Ausgängen in  $\Omega$  n-malige, 'unabhängige' Wiederholung  $\Rightarrow$  Ergebnis  $(a_1,\ldots,a_n)\in\Omega^n$   $r_n(A):=\frac{1}{n}\sum_{j=1}^n 1_A(a_j), A\subset\Omega$  relative Häufigkeit von A  $0\leq r_n(A)\leq 1, r_n(\emptyset)=0, r_n(\Omega)=1$   $r_n(A\cup B)=r_n(A)+r_n(B), A\cap B=\emptyset$  empirisches Gesetz über Stabilisierung relativer Häufigkeiten:  $r_n(A) \underset{n\to\infty}{\leadsto} ?$ 

### 3.2 Definition

Ein Paar  $(\Omega, \mathbb{P})$  bestehend aus einer diskreten Menge  $\Omega \neq \emptyset$  und einer Funktion  $\mathbb{P} \colon \mathcal{P} \to \mathbb{R}$  heißt diskreter Wahrscheinlichkeitsraum, falls:

- (P1)  $\mathbb{P}(A) \geq 0, A \subset \Omega$
- (P2)  $\mathbb{P}(\Omega) = 1$
- (P3)  $\mathbb{P}(\bigcup_{j=1}^{\infty} A_j) = \sum_{j=1}^{\infty} \mathbb{P}(A_j), A_i \cap A_j = \emptyset, i \neq j$ Diese Eigenschaft heißt  $\sigma$ -Additivität.

Man nennt  $\mathbb{P}$  Wahrscheinlichkeitsmaß (auf  $\Omega$ ) (oder Wahrscheinlichkeitsverteilung) und  $\mathbb{P}(A)$  heißt Wahrscheinlichkeit von A.

3.3 Folgerung 15

## 3.3 Folgerung

- a)  $\mathbb{P}(\emptyset) = 0$
- b)  $\mathbb{P}(\bigcup_{j=1}^{n} A_j) = \sum_{j=1}^{n} \mathbb{P}(A_j), A_i \cap A_j = \emptyset, i \neq j$
- c)  $0 \leq \mathbb{P}(A) \leq 1, A \subset \Omega$
- d)  $\mathbb{P}(A \cup B) = \mathbb{P}(A) + \mathbb{P}(B) \mathbb{P}(A \cap B), A, B \subset \Omega$
- e)  $A \subset B \Rightarrow \mathbb{P}(A) \leq \mathbb{P}(B)$  (Monotonie)
- f)  $\mathbb{P}(A^c) = 1 \mathbb{P}(A)$  (Komplementärwahrscheinlichkeit)
- g)  $\mathbb{P}(\bigcup_{j=1}^{\infty} A_j) \leq \sum_{j=1}^{\infty} A_j$  (Subadditivität)
- h)  $A_n \subset A_{n+1}, n \in \mathbb{N} \Rightarrow \mathbb{P}(\bigcup_{n=1}^{\infty} A_n) = \lim_{n \to \infty} \mathbb{P}(A_n)$  (Stetigkeit von unten)
- i)  $A_n \supset A_{n+1}, n \in \mathbb{N} \Rightarrow \mathbb{P}(\bigcap_{n=1}^{\infty} A_n) = \lim_{n \to \infty} \mathbb{P}(A_n)$  (Stetigkeit von oben)

Beweis • a):  $A_j = \emptyset, j \in \mathbb{N}$  (P3) 1  $\mathbb{P}(\emptyset) = 0$ .

- b):  $A_{n+1} = A_{n+2} = \ldots = \emptyset$  in P3!
- c) + f): Für  $A \subset \Omega$  gilt nach b) (für n = 2):

$$1 = \mathbb{P}(\Omega) = \mathbb{P}(A \cup A^c) \stackrel{(b)}{=} \mathbb{P}(A) + \mathbb{P}(A^c)$$

• d): Nach b) gilt  $\mathbb{P}(A) = \mathbb{P}(A \backslash B) + \mathbb{P}(A \cap B)$ ,  $\mathbb{P}(B) = \mathbb{P}(B \backslash A) + \mathbb{P}(A \cap B)$  und somit  $\mathbb{P}(A) + \mathbb{P}(B) - \mathbb{P}(A \cap B) = \mathbb{P}(A \backslash B) + \mathbb{P}(B \backslash A) + \mathbb{P}(A \cap B) \stackrel{(b)}{=} \mathbb{P}(A \cup B)$ 

• e): Wegen  $B = A \cup (B \setminus A)$  folgt<sup>2</sup>  $\mathbb{P}(B) = \mathbb{P}(A) + \mathbb{P}(B \setminus A) \ge \mathbb{P}(A)$ 

• g): 
$$B_1 := A_1, B_2 := A_2 \setminus A_1, \dots, B_n := A_n \setminus (\bigcup_{j=1}^{n-1} A_j), n \ge 2.$$

Dann gilt  $B_n \subset A_n$  und  $\bigcup_{j=1}^n B_j = \bigcup_{j=1}^n A_j$  sowie  $B_i \cap B_j = \emptyset, i \neq j$ .

Es folgt aus (P3):

$$\mathbb{P}(\bigcup_{j=1}^{\infty} A_j) \stackrel{!}{=} \mathbb{P}(\bigcup_{j=1}^{n} B_j) \stackrel{(P3)}{=} \sum_{j=1}^{n} \mathbb{P}(B_j) \stackrel{e)}{\leq} \sum_{j=1}^{n} \mathbb{P}(A_j) \ (\infty \text{ ist zugelassen})$$

h) + i): Übungsaufgabe

 $<sup>{}^{1}\</sup>mathbb{P}(\emptyset) = \mathbb{P}(\emptyset \cup \emptyset) = \mathbb{P}(\emptyset) + \mathbb{P}(\emptyset) = 2 \cdot \mathbb{P}(\emptyset)$ <sup>2</sup>(aus der Additivität)

3.4 Satz 16

#### 3.4 Satz

Seien  $A_1, \ldots, A_n \subset \Omega$ . Setze

$$S_k := \sum_{1 \le i_1 < \dots < i_k \le n} \mathbb{P}(A_{i_1} \cap \dots \cap A_{i_k})$$

Dann gilt

• a) 
$$\mathbb{P}(\bigcup_{j=1}^{n} A_j) = \sum_{k=1}^{n} (-1)^{k-1} S_k$$
 'Siebformel'

• b) 
$$\mathbb{P}(\bigcup_{j=1}^{n} A_j) \le \sum_{k=1}^{2s+1} (-1)^{k-1} S_k, s = 0, \dots, \lfloor \frac{n-1}{2} \rfloor$$
  
 $\mathbb{P}(\bigcup_{j=1}^{n} A_j) \ge \sum_{k=1}^{2s} (-1)^{k-1} S_k, s = 1, \dots, \lfloor \frac{n}{2} \rfloor$ 

Beweisidee für Siebformel vollständige Induktion nach n:

$$\underline{\mathbf{n}} = \underline{\mathbf{2}} : \mathbb{P}(A_1 \cup A_2) \stackrel{(d)}{=} \mathbb{P}(A_1) + \mathbb{P}(A_2) - \mathbb{P}(A_1 \cap A_2) = S_1 - S_2 \\
\underline{\mathbf{n}} = \underline{\mathbf{3}} : \mathbb{P}(\underline{A_1 \cup A_2} \cup A_3) \stackrel{(d)}{=} \mathbb{P}(A_1 \cup A_2) + \mathbb{P}(A_3) - \mathbb{P}((A_1 \cup A_2) \cap A_3)^3 \\
\stackrel{(d)}{=} \mathbb{P}(A_1) + \mathbb{P}(A_2) - \mathbb{P}(A_1 \cap A_2) + \mathbb{P}(A_3) - \mathbb{P}(A_1 \cap A_3) - \mathbb{P}(A_2 \cap A_3) + \mathbb{P}(A_1 \cap A_2) \\
\underline{A_2 \cap A_3} = S_1 - S_2 + S_3$$

#### 3.5 Definition + Satz

a) Sei  $(\Omega, \mathbb{P})$  diskreter Wahrscheinlichkeitsraum. Dann heißt  $p: \Omega \to \mathbb{R}$  definiert durch  $p(\omega) := \mathbb{P}(\{\omega\})$  Wahrscheinlichkeitsfunktion (von  $\mathbb{P}$ ). Es gilt  $\mathbb{P}(A) = \sum_{\omega \in A} p(\omega), A \subset \Omega$ .

b) Sind  $\Omega$  diskret und  $p \colon \Omega \to \mathbb{R}$  eine Abbildung mit  $p(\omega) \geq 0$  und  $\sum_{\omega \in \Omega} p(\omega) = 1$ , so erhält man vermöge  $\mathbb{P}(A) := \sum_{\omega \in A} p(\omega)$  einen diskreten Wahrscheinlichkeitsraum.

Beweis • a)  $\sigma$ -Additivität  $(A = \bigcup_{\omega \in A} \{\omega\})$ • b)  $\sigma$ -Additivität: Großer Umordnungssatz! (Analysis)

#### 3.6 Definition

 $|\Omega| =: n < \infty$ . Definiere  $\mathbb{P}(A) = \frac{|A|}{n}$ . Dann heißt  $(\Omega, \mathbb{P})$  (ein diskreter Wahrscheinlichkeitsraum!) Laplace-Raum. Man nennt P Gleichverteilung auf

('homogene Münze', 'Würfeln', ...)

 $<sup>\</sup>overline{{}^{3}(A_{1} \cup A_{2}) \cap A_{3} = (A_{1} \cap A_{3}) \cup (A_{2} \cap A_{3})}$ 

3.7 Definition 17

## 3.7 Definition

Sei  $\Omega \neq \emptyset$  beliebig!  $(\Omega, \mathbb{P})$  diskreter Wahrscheinlichkeitsraum  $\Leftrightarrow \exists$  abzählbare Menge  $\Omega_0 \subset \Omega$ ,  $\exists p \colon \Omega \to [0, \infty)$  mit  $p(\omega = 0)$  für alle  $\omega \notin \Omega_0$ , und  $\sum_{\omega \in \Omega_0} p(\omega) = 1$ , und  $\mathbb{P}(A) = \sum_{\omega \in A \cap \Omega_0} p(\omega)$ ,  $A \subset \Omega$ .

Wiederholung  $(\Omega, \mathbb{P})$  Wahrscheinlichkeitsraum

$$p: \Omega \to [0, 1], \sum_{\omega \in \Omega} p(\omega) = 1$$

$$\mathbb{P}(A) := \sum_{\omega \in A} p(\omega), A \subset \Omega$$

$$p(\omega) := \mathbb{P}(\{\omega\})$$

 $\begin{array}{l} \Omega \text{ allgemeine Menge, } \Omega_0 \subset \Omega \text{ diskret} \\ p \colon \Omega \to [0,1], \sum_{\omega \in \Omega_0} p(\omega) = 1, p(\omega) = 0, \omega \notin \Omega_0 \\ \mathbb{P}(A) := \sum_{\omega \in A} p(\omega) := \sum_{\omega \in A \cap \Omega_0} p(\omega) \\ \Omega_0 = \text{Träger von } \mathbb{P} \end{array}$ 

### 3.8 Definition

 $(\Omega, \mathbb{P})$  diskreter Wahrscheinlichkeitsraum mit Träger  $\Omega_0$ . Es sei  $X : \Omega \to \mathbb{R}$  eine Zufallsvariable. Dann heißt die Funktion  $\mathbb{P}^X : \mathbb{P}(\mathbb{R}) \to \mathbb{R}$  definiert durch  $\mathbb{P}^X(B) := \mathbb{P}(X^{-1}(B)), B \subset \mathbb{R}$  Verteilung um X.

### 3.9 Satz

In der Situation von Definition 3.8 ist  $(\mathbb{R}, \mathbb{P}^X)$  ein diskreter Wahrscheinlichkeitsraum mit Träger  $B_0 := X(\Omega_0) = \{X(\omega) : \omega \in \Omega_0\}$ 

Beweis. Für  $B \subset \mathbb{R}$ .

$$\mathbb{P}^{X}(B) = \mathbb{P}(\{\omega \colon X(\omega) \in B\})$$
$$\stackrel{!}{=} \mathbb{P}(\{\omega \colon X(\omega) \in B \cap B_{0}\})$$

Definiert man für  $t \in \mathbb{R}$ 

$$p_t = \mathbb{P}(\{\omega \colon X(\omega) = t\}) = \mathbb{P}(X = t)$$

so ergibt sich aus der  $\sigma\text{-}\mathrm{Additivit}$ ät von  $\mathbb P$ 

$$\mathbb{P}^X(B) = \sum_{t \in B \cap B_0} \mathbb{P}(\{\omega \colon X(\omega) = t\}) = \sum_{t \in B \cap B_0} p_t$$

# Kombinatorik

|A| = card(A) = Anzahl der Elemente einer endlichen Menge A

#### 4.1 Grundregeln

$$\begin{array}{l} A_1,\ldots,A_k \text{ endliche Menge} \\ \text{(i)} \ A_i\cap A_j=\emptyset, i\neq j \Rightarrow \left|\bigcup_{j=1}^n A_j\right| = \sum\limits_{j=1}^n A_j \\ \text{(ii)} \ |A_1\times\ldots\times A_n| = \prod\limits_{j=1}^k |A_j| \end{array}$$

(ii) 
$$|A_1 \times \ldots \times A_n| = \prod_{j=1}^k |A_j|$$

#### 4.2 Satz

Es sollen k-Tupel  $(a_1, \ldots, a_k)$  durch sukzessives Festlegen von  $a_1, a_2, \ldots, a_k$ nach folgenden Regeln gebildet werden:

- $\bullet\,$ es gibt  $j_1$  Möglichkeiten für die Wahl von  $a_1$
- $\bullet$ es gibt (dann)  $j_2$  Möglichkeiten für die Wahl von  $a_2$
- ullet es gibt (dann)  $j_k$  Möglichkeiten für die Wahl von  $a_k$

Dann gibt es genau  $j_1 \cdot \ldots \cdot j_k$  solcher Tupel.

#### 4.3 Beispiel (Urnenmodelle)

Betrachte Urne mit n durchnummerierten Kugeln. Es werden k Kugeln nach folgenden Regeln gezogen:  $(M := \{1, \dots, n\})$ 

4.4 Definition 19

| Beachtung der<br>Reihenfolge<br>Zurücklegen<br>(Wiederholung) | ja                   | nein                 |
|---------------------------------------------------------------|----------------------|----------------------|
| ja                                                            | k-Permutationen aus  | k-Kombinationen aus  |
|                                                               | M mit Wiederholung,  | M mit Wiederholung,  |
|                                                               | $Per_k^n$            | $Kom_k^n$            |
| nein                                                          | k-Permutationen aus  | k-Kombinationen aus  |
|                                                               | M ohne Wiederholung, | M ohne Wiederholung, |
|                                                               | $Per_{k,\neq}^n$     | $Kom_{k,\neq}^n$     |

## 4.4 Definition

 $M = \{1, \dots, n\} (n \in \mathbb{N})$ 

- $Per_k^n := M^k$
- $Per_{k,\neq}^n := \{(a_1, \dots, a_k) \in M^k : a_i \neq a_j \text{ für } i \neq j\}$
- $Kom_k^n := \{(a_1, \dots, a_k = \in M^k : a_1 \le a_2 \le \dots \le a_k\}$
- $(Kom_{k,\neq}^n := \{(a_1,\ldots,a_k) \in M^k : a_1 < a_2 < \ldots < a_k\}$

### 4.5 Satz

- (i)  $|Per_k^n| = n^k$
- (ii)  $|Per_{k,\neq}^n| := n^{\underline{k}} = n \cdot (n-1) \cdot \ldots \cdot (n-k+1)$
- (iii)  $|Kom_k^n| = \binom{n+k-1}{k}$
- (iv)  $|Kom_{k,\neq}^n| = \binom{n}{k}$

Beweis. (i): 4.1.(ii)

- (ii) Satz 4.2
- (iv) Betrachte Äquivalenzrelation

$$(a_1, \ldots, a_k) \sim (b_1, \ldots, b_k) \Leftrightarrow \{a_1, \ldots, a_k\} = \{b_1, \ldots, b_k\}$$

auf  $Per^n_{k,\neq}$ . Jede Äquivalenzklasse hat k! Elemente! Es folgt

$$|Kom_{k,\neq}^n| \cdot k! = |Per_{k,\neq}^n| = n^{\underline{k}}$$

(iii) Die Abbildung  $g\colon Kom^n_k\to Kom^{n+k-1}_{k,\neq}$  definiert durch

$$(a_1,\ldots,a_k)\mapsto (a_1,a_2+1,a_3+2,\ldots,a_k+k-1)$$

ist eine Bijektion! (Umkehrabbildung!) Es folgt(!)

$$|Kom_k^n| = |Kom_{k,\neq}^{n+k-1}| = \binom{n+k-1}{k}$$

## 4.6 Beispiel (Geburtstagsproblem)

Wie groß ist die Wahrscheinlichkeit, dass unter k rein zufällig ausgewählten Personen mindestens zwei am selben Tag Geburtstag haben?

**Antwort** Betrachte  $\Sigma = Per_k^n$  mit n = 365, und der Laplace-Verteilung. Es sei  $A := \{(a_1, \ldots, a_k) \in \Omega : \text{ es gibt } i, j \in \{1, \ldots, k\} \text{ mit } i \neq j, a_i = a_j\}$ . Es gilt

$$\mathbb{P}(A) = 1 - \mathbb{P}(A^c)$$

$$= 1 - \mathbb{P}(Per_{k,\neq}^n)$$

$$\stackrel{!}{=} 1 - \frac{|Per_{k,\neq}^n|}{card\Omega}$$

$$= 1 - \frac{n \cdot (n-1) \cdot \dots \cdot (n-k+1)}{n^k}$$

$$= 1 - \frac{n}{n} \cdot \frac{(n-1)}{n} \cdot \dots \cdot \frac{n-k+1}{n}$$

$$= 1 - (1 - \frac{1}{n}) \cdot \dots \cdot (1 - \frac{k-1}{n})$$

$$\begin{array}{l} \underline{k=23:} \ \mathbb{P}(A)\approx 0,507>\frac{1}{2} \\ n=\binom{49}{6}, k=4004, \mathbb{P}(A)=0,5001>\frac{1}{2} \end{array}$$

# 4.7 Beispiel

n Personen bringen (zu einer Feier) je ein Geschenk mit. Geschenke werden "rein zufällig" verteilt. Mit welcher Wahrscheinlichkeit bekommt mindestens eine Person ihr eigenes Geschenk?

→ Siebformel!

# 4.8 Beispiel (Besetzungsmodelle)

kTeilchen sollen auf nnummerierte Fächer verteilt werden. Analogie zu Urnenmodell: Nummer der Kugel $\hat{=}$  Nummer des Fachs, Nummer der Ziehung

|             | 9                           |                  |                  |                     | _                       |
|-------------|-----------------------------|------------------|------------------|---------------------|-------------------------|
| $\hat{=}$ N | Nummer des Teilchens        |                  |                  |                     |                         |
|             | Mehrfachbesetzungen         | ;,               |                  | nain                |                         |
|             | Unterscheidbare<br>Teilchen | Ja               |                  | nein                |                         |
|             | renchen                     | D 20             | 3.6 11           | TZ m                |                         |
|             | Ja                          | $Per_k^n$        | ${ m Maxwell}$ - | $\mid Kom_k^n \mid$ | $\operatorname{Bose}$ - |
|             |                             | Boltzmann        |                  | Einstein-Statistik  |                         |
|             | nein                        | $Per_{k,\neq}^n$ | Fermi-           | $Kom_{k,\neq}^n$    |                         |
|             |                             | Dirak-S          | Statistik        | .,,                 |                         |
| CL.         | : : 1 D1 :1                 |                  |                  |                     |                         |

Statistische Physik

# Der Erwartungswert

 $p(\omega) = \mathbb{P}(\{\omega\}), (\Omega, \mathbb{P})$  diskreter Wahrscheinlichkeitsraum

## 5.1 Definition

• Der Erwartungswert einer Zufallsvariablen  $X: \Omega \to \mathbb{R}$  existiert (genauer: X ist integrierbar bezüglich  $\mathbb{P}$ ), falls

$$\sum_{\omega \in \Omega} |X(\omega)| p(\omega) < \infty \tag{5.1}$$

In diesem Fall heißt

$$\mathbb{E} X = \mathbb{E}[X] := \sum_{\omega \in \Omega} X(\omega) p(\omega)$$

(Physik:  $\langle X \rangle = \mathbb{E}[X]$ ) Erwartungswert von X.

• Ist  $X \ge 0$  eine Zufallsvariable, so heißt

$$\mathbb{E} X := \sum_{\omega \in \Omega} X(\omega) p(\omega) \in [0,\infty]$$

ebenfalls Erwartungswert von X.

## 5.2 Satz

Sei  $L^1 \equiv L^1(\mathbb{P}) := \{X \colon X \text{ erfüllt 5.1}\}$ . Dann ist  $L^1$  ein reeller Vektorraum. Genauer:

- (i)  $\mathbb{E}[X+Y] = \mathbb{E}X + \mathbb{E}Y, X, Y \in L^1$
- (ii)  $\mathbb{E}[aX] = a\mathbb{E}X, X \in L^1, a \in \mathbb{R}$
- (iii)  $\mathbb{E}1_A = \mathbb{P}(A), A \subset \Omega$

5.3 Folgerung 22

- (iv)  $X \le Y \Rightarrow \mathbb{E}X \le \mathbb{E}Y$
- (v)  $|\mathbb{E}X| \leq \mathbb{E}|X|$

Beweis. (i)  $|(X+Y)(\omega)| \le |X(\omega)| + |Y(\omega)|$ . Also  $X+Y \in L^1(\mathbb{P})$  und

$$\sum_{\omega \in \Omega} (X(\omega) + Y(\omega)) p(\omega) \stackrel{!}{=} \sum_{\omega \in \Omega} X(\omega) p(\omega) + \sum_{\omega \in \Omega} Y(\omega) p(\omega)$$

(ii) analog

(iii) 
$$\mathbb{E}1_A = \sum_{\omega \in \Omega} p(\omega) = \mathbb{P}(A)$$

$$(iv) + (v) Übungsaufgabe$$

## 5.3 Folgerung

Seien  $A_1, \ldots, A_n \subset \Omega$  und  $X := \sum_{j=1}^n 1_{A_j}$ . Dann gilt  $\mathbb{E}X = \sum_{j=1}^n \mathbb{P}(A_j)$ . (Gilt auch für  $\infty$  viele Ereignisse.)

# 5.4 Satz (Transformationsformel)

Seien  $X: \Omega \Rightarrow \mathbb{R}$  und  $g: \mathbb{R} \to \mathbb{R}$ . Definiere  $g(X): \Omega \to \mathbb{R}$  durch

$$g(X)(\omega) = g(X(\omega)).$$

Dann ist  $g(X) \in L^1(\mathbb{P})$  genau dann, wenn

$$\sum_{x \colon \mathbb{P}(X=x) > 0} |g(x)| \mathbb{P}(X=x) < \infty$$

1

In diesem Fall gilt

$$\mathbb{E}g(x) = \sum_{x \colon \mathbb{P}(X=x) > 0} g(x) \mathbb{P}(X=x)$$

Beweis. Es gilt

$$\sum_{\omega \in \Omega} \left| g\left( X(\omega) \right) \right| p(\omega) = \sum_{x \in \mathbb{R} \colon \mathbb{P}(X=x) > 0} \left| g(x) \right| \sum_{\omega \in \Omega \colon X(\omega) = x} p(\omega)$$

$$\Omega = \bigcup_{x \in \mathbb{R}: \ X(\omega) = x, \mathbb{P}(X = x) > 0} \{\omega \colon X(\omega) = x\} \cup \Omega', \mathbb{P}(\Omega') = 0$$

 $<sup>\</sup>overline{{}^{1}\mathbb{P}(X=x) = \mathbb{P}(\{\omega \in \Omega \colon X(\omega) = x\})}$ 

5.5 Beispiele 23

$$\begin{split} &= \sum |g\left(X(\omega)\right)|p(\omega) = \sum_{\omega \notin \Omega'} |g\left(X(\omega)\right)|p(\omega) \\ &= \sum_{x \in \mathbb{R} \colon \mathbb{P}(X=x) > 0} \sum_{\omega \in \{\omega \in \Omega \colon X(\omega) = x\}} |g(X(\omega))|p(\omega) \\ &= \sum_{x \cdots} |g(x)|\mathbb{P}(X=x) \end{split}$$

Ist das endlich, so gilt die Rechnung auch ohne Betragsstriche! Insbesondere gilt

$$\mathbb{E}X = \sum_{x \in \mathbb{R}} x \mathbb{P}(X = x) (g(x) \equiv x)$$

5.5 Beispiele

• Würfelwurf, X=Augenzahl,  $\mathbb{P}(X = j) = \frac{1}{6}$ .

$$\mathbb{E}X = \sum_{j=1}^{6} j \cdot \mathbb{P}(X = j) = \frac{6 \cdot 7}{2} \cdot \frac{1}{6} = \frac{7}{2} = 3, 5$$

• Zweifacher Würfelwurf, X= Maximum der Augenzahlen ( $\Omega=\{1,\ldots,6\}^2,\mathbb{P}=$  Gleichverteilung)

$$\mathbb{P}(X=1) = \frac{1}{36}$$
 
$$\mathbb{P}(X=2) = p((1,2)) + p((2,1)) + p((2,2)) = \frac{3}{36}$$
 Allgemein: 
$$\mathbb{P}(X=j) = \frac{2j-1}{36}, j = 1, \dots, 6$$
 
$$\mathbb{E}X = \sum_{i=1}^{6} j \cdot \frac{2j-1}{36} \stackrel{?}{\approx} 4,47$$

# Die hypergeometrische Verteilung und die Binomialverteilung

Urne mit Kugeln 
$$\underbrace{1,2,\ldots,r}_{rot},\underbrace{r+1,\ldots,r+s}_{schwarz}$$
  $r,s\in\mathbb{N}_0,r+s>0.$ 

## 6.1 Definition

- $\bullet \ n$ mal Ziehen ohne Zurücklegen
- $a_j := \text{Nummer der } j\text{-ten gezogenen Kugel}$
- $\Omega = Per_{n,\neq}^{r+s}$
- $\bullet$   $\mathbb{P} =$  Gleichverteilung ("unabhängiges", "rein zufälliges" Ziehen)
- $A_j := \{(a_1, \dots, a_n) \in \Omega \colon a_j \le r\} \hat{=} \{\text{j-te gezogene Kugel ist rot}\}$
- $X := \sum_{j=1}^{n} 1_{A_j}$  = Anzahl der gezogenen roten Kugeln

 $\mathbb{P}^X$  (die Verteilung von X)heißt **hypergeometrische Verteilung** mit Parametern r,s,n, kurz:

$$X \sim Hyp(n, r, s), n \le r + s$$
  
$$\mathbb{P}^X = Hyp(n, r, s)$$

6.2 Satz 25

#### 6.2Satz

Es gilt

• (i) 
$$\mathbb{E}X = n \cdot \frac{r}{r+s}$$

• (ii) 
$$\mathbb{P}(X=k) = \frac{\binom{r}{s}\binom{s}{n-k}}{\binom{r+s}{n}}, k=0,\ldots,r \wedge n$$

Beweis. (i) Es gilt (Symmetrieargument!)  $|A_i| = r \cdot (r+s-1)^{n-1}$  $\begin{aligned} |\Omega| &= (r+s)^{\underline{n}} \Rightarrow \mathbb{P}(A_j) = \frac{|A_j|}{|\Omega|} = \frac{r}{r+s} \\ \text{Aus 5.3 folgt } \mathbb{E}X &= n \cdot \frac{r}{r+s} \end{aligned}$ 

(ii) 
$$|\{X = k\}| \stackrel{!}{=} \binom{n}{k} r^{\underline{k}} s^{\underline{n-k}}$$
  

$$\Rightarrow \mathbb{P}(X = k) = \frac{\binom{n}{k} r^{\underline{k}} s^{\underline{n-k}}}{(r+s)\underline{n}} = \frac{\binom{r}{k} \binom{s}{n-k}}{\binom{r+s}{n}}$$

#### 6.3 Motivation

X Zufallsvariable,  $\sum_{k=1}^{r} \mathbb{P}(X = x_n) = 1$ 

 $X_1, X_2, \ldots, X_n$  "unabhängige" Wiederholungen von X (= Ergebnis eines zufälligen Versuchs)

 $\bar{X} := \frac{1}{n}(X_1 + \ldots + X_n)$  Zufallsvariable!

Mit  $h_j := card\{i \in \{1, \dots, n\}: X_i = x_j\}$  gilt  $\bar{X} \stackrel{!}{=} \frac{1}{n}(h_1x_1 + h_2x_2 + \dots + h_nx_n)$  empirisches Gesetz über Stabilität relativer Häufigkeiten

$$\underset{n\to\infty}{\to} \mathbb{P}(X=x_1)x_1 + \ldots + \mathbb{P}(X=x_r)x_r \stackrel{!}{=} \mathbb{E}X$$

$$X \sim Hyp(n,r,s) = \mathbb{P}^X, n \le r + s$$

$$X \sim Hyp(n, r, s) = \mathbb{P}^X, n \le r + s$$
$$\mathbb{P}(X = k) = \frac{\binom{r}{s}\binom{s}{n-k}}{\binom{r+s}{n}}, k = 0, \dots, n$$

Wegen  $\binom{m}{l} := 0$  für m < l gilt:  $\mathbb{P}(X = k) = 0$  für k < r und für n - k > ls(k < n - s)

#### Definition 6.4

### Binomial verteilung:

- $\bullet$  n maliges Ziehen aus einer Urne mit r+s Kugeln mit Zurücklegen
- $\Omega = Per_n^{r+s} = \{(a_1, \dots, a_n) : 1 \le a_i \le r + s, i = 1, \dots, n\}$
- P Gleichverteilung

$$X := \sum_{i=1}^{n} 1_{A_j}, A_j := \{(a_1, \dots, a_n) \in \Omega \colon a_j \le r\}$$

 $\mathbb{P}^X$  heißt Binomialverteilung mit Parametern <br/>n und  $p:=\frac{r}{r+s}$ . Man schreibt auch  $Bin(n,p) := \mathbb{P}^X$ .

 $6.5~\mathrm{Satz}$ 

## 6.5 Satz

Es gilt

1. 
$$\mathbb{E}X = np$$

2. 
$$\mathbb{P}(X = k) = \binom{n}{k} p^k (1 - p)^{n-k}, 0 \le k \le n$$

Beweis. 1. 
$$|A_j| = r \cdot (r+s)^{n-1}$$
  
 $|\Omega| = (r+s)^n \leadsto \mathbb{P}(A_j) = \frac{|A_j|}{|\Omega|} = \frac{r}{r+s} = p$   
Folgerung 5.3  $\leadsto \mathbb{E}X = np$ .

2. 
$$card{X = k} = \binom{n}{k} r^k s^{n-k}$$
  

$$\rightsquigarrow \mathbb{P}(X = k) = \frac{\binom{n}{k} r^k s^{n-k}}{(r+s)^k (r+s)^{n-k}}$$

**Bemerkung** Bin(n,p) ist für jedes  $p \in [0,1]$  definiert.

# Mehrstufige Experimente

#### 7.1Beispiel

Urne mit einer roten und drei schwarzen Kugeln

- 1. Experiment Kugel ziehen, Farbe notieren, Kugel und eine weitere Kugel derselben Farbe zurücklegen
- 2. Experiment Erneut Kugel ziehen

Modell: 
$$\Omega := \{0, 1\} \times \{0, 1\}, \quad (0 = s, 1 = r)$$

Konstruction von 
$$\mathbb{P}$$
  $p(\omega) := \mathbb{P}(\{\omega\})$   
 $p(1,1) := \frac{1}{4} \cdot \frac{2}{5} = \frac{2}{50} = \frac{1}{10}$ 

$$\begin{array}{c} \textbf{Konstruktion von} \ \mathbb{P} & p(\omega) := \mathbb{P}(\{\omega\}) \\ p(1,1) := \frac{1}{4} \cdot \frac{2}{5} = \frac{2}{20} = \frac{1}{10} \\ p(1,0) := \frac{1}{4} \cdot \frac{3}{5} = \frac{3}{20} \\ p(0,1) := \frac{3}{4} \cdot \frac{1}{5} = \frac{3}{20} \\ p(0,0) := \frac{3}{4} \cdot \frac{4}{5} = \frac{12}{20} \end{array} \right\} 1. \ \text{Pfadregel}$$

$$\sum_{\omega \in \Omega} p(\omega) = 1.$$

Betrachte  $B := \{(1, 1), (0, 1)\}$ . Dann gilt

$$\mathbb{P}(B) = p(1,1) + p(0,1) = (2.$$
 Pfadregel)

$$= \frac{2}{20} + \frac{3}{20} = \frac{1}{4} \stackrel{!}{=} \mathbb{P}(\text{erste Kugel ist rot})$$

(TODO: Bild(Baumdiagramm))

#### 7.2Definition

Mehrstufige Experimente  $\Omega = \Omega_1 \times ... \times \Omega_n \ (\Omega_j = Grundraum \ für \ j$ -tes Teilexperiment)

$$\omega = (a_1, \ldots, a_n) \in \Omega$$

Problem: Definiere  $p(\omega) = \mathbb{P}(\{\omega\})$ 

7.3 Satz

1. Startverteilung 
$$p_1 \colon \Omega_1 \to [0,1]$$
  $\sum_{\omega \in \Omega_1} p_1(\omega) = 1$ 

2. Übergangswahrscheinlichkeiten  $p_2(a_2|a_1) \ge 0$   $\sum_{a_2 \in \Omega_2} p_2(a_2|a_1) \stackrel{!}{=} 1$ 

 $(p_2(a_2|a_1) = Wahrscheinlichkeit, dass 2.$  Versuch das Ergebnis  $a_2$  liefert unter der Bedingung, dass 1. Versuch Ergebnis  $a_1$  geliefert hat.)

$$p_3(a_3|a_1, a_2) \ge 0$$
  $\sum_{a_3 \in \Omega_3} p_3(a_3|a_1, a_2) = 1$ 

$$p_n(a_n|a_1,\ldots,a_{n-1}) \ge 0$$
  $\sum_{a_n \in \Omega_n} p_n(a_n|a_1,\ldots,a_{n-1}) = 1$ 

Setze für  $\omega = (a_1, \ldots, a_n) \in \Omega$ 

$$p(\omega) := p_1(a_1) \cdot p_2(a_2|a_1) \cdot p_3(a_3|a_1, a_2) \cdot \dots \cdot p_n(a_n|a_1, \dots, a_{n-1})$$
 1. Pfadregel

Schließlich sei

$$\mathbb{P}(A) := \sum_{\omega \in A} p(\omega), \quad A \subset \Omega \qquad \text{Produkt von Übergangswahrscheinlichkeiten}$$

### 7.3 Satz

 $(\Omega, \mathbb{P})$  ist diskreter Wahrscheinlichkeitsraum.

Beweis. zu zeigen:  $\sum_{\omega \in \Omega} p(\omega) = 1$ 

Induktion (oder direkt)! Zum Beispiel gilt für n=2

$$\sum_{\omega \in \Omega} p(\omega) = \sum_{(a_1, a_2) \in \Omega_1 \times \Omega_2} p_1(a_1) p_2(a_2 | a_1) = \sum_{a_1 \in \Omega_1} \sum_{a_2 \in \Omega_2} p_1(a_1) p_2(a_2 | a_1)$$

$$\sum_{a_1 \in \Omega_1} p_1(a_1) \cdot 1 = 1.$$

## 7.4 Beispiel

Unabhängige Experimente  $(\Omega_j, \mathbb{P}_j), j = 1, \dots, n$ , diskrete Wahrscheinlichkeitsräume,  $p_i(a_i) = \mathbb{P}_i(\{a_i\})$ 

Idee: "Unabhängiges" Durchführen der zugehörigen Experimente

$$\Omega := \Omega_1 \times \ldots \times \Omega_n, p(\omega) := p_1(a_1) \cdot \ldots \cdot p_n(a_n), \omega = (a_1, \ldots, a_n) \in \Omega$$

$$(p_2(a_2|a_1) = p_2(a_2), \dots, p_n(a_n|a_1, \dots, a_{n-1}) = p_n(a_n))$$

$$\mathbb{P}(A) = \sum_{\omega \in A} p(\omega)$$

7.4 Beispiel 29

Man nennt  $\mathbb P$ das  $\mathbf{Produkt}$ von  $\mathbb P_1,\dots,\mathbb P_n$ und schreibt

$$\mathbb{P} := \bigotimes_{i=1}^{n} \mathbb{P}_{i}.$$

z.B. kann 
$$\Omega = \Omega_1 \times \Omega_2$$
,  $\Omega_1 = \Omega_2 = \{1, \dots, 6\}$   
 $p_1(a_1) = p_2(a_2) = \frac{1}{6}$   
Dann ist

$$p(a_1, a_2) = \frac{1}{6} \cdot \frac{1}{6} = \frac{1}{36}$$

und  $\mathbb{P}$  ist die Laplace-Verteilung auf  $\Omega$ .

# Bedingte Wahrscheinlichkeiten

 $(\Omega, \mathbb{P})$  diskreter Wahrscheinlichkeitsraum.

## 8.1 Definition

Sei  $B \subset \Omega$  mit  $\mathbb{P}(B) > 0$ . Dann heißt

$$\mathbb{P}(A|B) := \frac{\mathbb{P}(A \cap B)}{\mathbb{P}(B)}$$

bedingte Wahrscheinlichkeit von  $A\subset \Omega$  unter der Bedingung B. Alternativ:  $P_B(A):=\mathbb{P}(A|B)$ 

## 8.2 Satz

 $P_B$  ist ein Wahrscheinlichkeitsmaß auf  $\Omega$ . Dabei ist  $P_B(A) = 1$  falls  $B \subset A$  und  $P_B(A) = 0$  falls  $A \cap B = \emptyset$ . Es gilt:

$$p_B(\omega) := \begin{cases} \frac{p(\omega)}{\mathbb{P}(B)} & \text{, falls } \omega \in B \\ 0 & \text{, sonst} \end{cases} \quad \text{mit } p_B(\omega) := \mathbb{P}_B(\{\omega\})$$

Beweis ist klar!  $(\sum_{\omega \in \Omega} p_B(\omega) = \frac{1}{\mathbb{P}(B)} \sum_{\omega \in B} p(\omega) = \frac{\mathbb{P}(B)}{\mathbb{P}(B)} = 1.)$ 

**Motivation** Für  $A \subset B$ 

$$\frac{h_n(A)}{h_n(B)} = \frac{\frac{1}{n}h_n(A)}{\frac{1}{n}h_n(B)} \leadsto \frac{\mathbb{P}(A)}{\mathbb{P}(B)}.$$

### (Zusammenhang zu Übergangs-8.3 Bemerkung wahrscheinlichkeiten)

$$\Omega=\Omega_1\times\Omega_2,\quad p(\omega)=p_1(a_1)p_2(a_2|a_1),\quad \omega=(a_1,a_2)$$
 Für  $a_1\in\Omega_1$  sei

$$B := \{a_1\} \times \Omega_2.$$

Für  $a_2 \in \Omega_2$  sei

$$A := \Omega_1 \times \{a_2\}.$$

Es gilt  $A \cap B = \{(a_1, a_2)\},\$ 

$$\mathbb{P}(A \cap B) = \sum_{\omega \in A \cap B} p(\omega) = \sum_{(b_1, b_2) \in A \cap B} p_1(b_1) p_2(b_2 | b_1) = p_1(a_1) p_2(a_2 | a_1),$$

$$\mathbb{P}(B) = \sum_{b_2 \in \Omega_2} p(a_1|b_2) = \sum_{b_2 \in \Omega_2} p_1(a_1)p_2(b_2|a_1) = p_1(a_1)$$

Es folgt

$$\mathbb{P}(A|B) = \frac{\mathbb{P}(A \cap B)}{\mathbb{P}(B)} \stackrel{p_1(a_1) > 0}{=} p_2(a_2|a_1)$$

#### Satz (Multiplikationsformel) 8.4

Seien  $A_1, \ldots, A_n \subset \Omega$  mit  $\mathbb{P}(A_1 \cap \ldots \cap A_{n-1}) > 0$ . Dann gilt

$$\mathbb{P}(A_1 \cap \ldots \cap A_n) = \mathbb{P}(A_1)\mathbb{P}(A_2|A_1)\mathbb{P}(A_3|A_1 \cap A_2) \cdot \ldots \cdot \mathbb{P}(A_n|A_1 \cap \ldots \cap A_{n-1})$$

Beweis. Für n=2:

$$\mathbb{P}(A_1 \cap A_2) = \mathbb{P}(A_1) \cdot \mathbb{P}(A_2 | A_1)$$

$$\frac{\text{Allgemein:}}{n=3: \text{ rechte Seite: } \mathbb{P}(A_1) \cdot \frac{\mathbb{P}(A_1 \cap A_2)}{\mathbb{P}(A_1)} = \frac{\mathbb{P}(A_1 \cap A_2 \cap A_3)}{\mathbb{P}(A_1 \cap A_2)} = \mathbb{P}(A_1 \cap A_2 \cap A_3) \qquad \Box$$

#### Satz 8.5

Sei  $A_1, A_2, \ldots$  Zerlegung von  $\Omega(\bigcup A_i = \Omega, A_i \cap A_j = \emptyset, i \neq j)$ .

1. 
$$\mathbb{P}(B) = \sum_{j=1}^{\infty} \mathbb{P}(A_j) \mathbb{P}(B|A_j)$$
 Formel der totalen Wahrscheinlichkeit

2. <sup>1</sup> Für  $\mathbb{P}(B) > 0$ , so gilt

$$\mathbb{P}(A_k|B) = \frac{\mathbb{P}(A_k)\mathbb{P}(B|A_k)}{\sum_{j=1}^{\infty} \mathbb{P}(A_j)\mathbb{P}(B|A_j)}, \quad k = 1, 2, \dots$$

<sup>&</sup>lt;sup>1</sup>Formel von Bayes

8.6 Beispiel 32

(Man vereinbart  $\mathbb{P}(B|A_i)\mathbb{P}(A_i) := 0$ , falls  $\mathbb{P}(A_i) = 0$ )

Beweis. 1.  $B = B \cap \Omega = \bigcup_{j=1}^{\infty} \underbrace{B \cap A_j}_{\text{paarweise disjunkt}}$  Aus der  $\sigma$ -Additivität von  $\mathbb P$ 

folgt

$$\mathbb{P}(B) = \sum_{j=1}^{\infty} \mathbb{P}(B \cap A_j) = \sum_{j=1}^{\infty} \mathbb{P}(B|A_j)\mathbb{P}(A_j)$$

2. rechte Seite der Behauptung:  $\frac{\mathbb{P}(B \cap A_k)}{\mathbb{P}(B)} \stackrel{!}{=} \mathbb{P}(A_k|B)$ 

## 8.6 Beispiel

Eine Krankheit komme bei 4% der Bevölkerung vor<sup>2</sup>. Ein Test spreche bei 90% der Kranken an und bei 20% der Gesunden!

### Modell

- $\bullet$   $\Omega$ : Menge der Personen in Deutschland
- $K \subset \Omega$ : Menge der kranken Personen
- $A \subset \Omega$ : Menge der (hypothetisch) positiv getesteten Personen
- $\mathbb{P}$  = Gleichverteilung auf  $\Omega$

Dann

 $\mathbb{P}(K|A) = \text{Wahrscheinlichkeit}, \text{ dass eine positiv getestete Person krank ist}$ 

$$\stackrel{Bayes}{=} \frac{\mathbb{P}(K)\mathbb{P}(A|K)}{\mathbb{P}(K)\mathbb{P}(A|K) + \mathbb{P}(K^c)\mathbb{P}(A|K^c)} \quad (K = A_j, K^c = A_k)$$

$$= \frac{0,04 \cdot 0,9}{0,04 \cdot 0,9 + 0,96 \cdot 0,2} = \frac{0,036}{0,036 + 0,192} = \frac{0,036}{0,228} = 0,158$$

# 8.7 Beispiel (Ziegenproblem)

Ausgelassen.

<sup>&</sup>lt;sup>2</sup>Die Mediziner sprechen von "Prävalenz".

# 8.8 Beispiel (Simpson-Paradoxon)

Zulassung von Studenten in Berkeley (1973)

• Zulassungsrate Männer: 44%

• Zulassungsrate Frauen: 35%

<u>Aber:</u> Zulassungsraten der Männer in den einzelnen Fächern kleiner als die der Frauen

### Erklärung

- $A = Zulassung^3$
- $B = \text{Frau}^4$
- $K_j =$ Bewerbung für Fach j

Dann kann gelten

$$\mathbb{P}(A|B) < \mathbb{P}(A|B^c)$$

aber

$$\mathbb{P}(A|B\cap K_j) > \mathbb{P}(A|B^c\cap K_j), \quad j=1,2,\ldots$$

Denn:

$$\mathbb{P}(A|B) = \frac{\mathbb{P}(A \cap B)}{\mathbb{P}(B)} = \sum_{j} \frac{\mathbb{P}(A \cap B \cap K_{j})}{\mathbb{P}(B)} \frac{\mathbb{P}(B \cap K_{j})}{\mathbb{P}(B \cap K_{j})}$$

$$= \sum_{j} \underbrace{\mathbb{P}(K_{j}|B)}_{\text{Bewerbungsrate der Frauen im j-ten Fach}} \underbrace{\mathbb{P}(A|B \cap K_{j})}_{\text{siehe oben}}$$

analog

$$\mathbb{P}(A|B^c) = \sum \mathbb{P}(K_j|B^c)\mathbb{P}(A|B^c \cap K_j)$$

Die absolute Erfolgsquote ist eine gewichtete Summe der relativen Erfolgsquoten.

<sup>&</sup>lt;sup>3</sup> Ereignis, dass rein zufällig ausgewählter Bewerber erfolgreich ist mit seiner Bewerbung.

 $<sup>^4</sup>$ Ereignis, dass zufällig ausgewählte weibliche Bewerberin erfolgreich ist.

# Stochastische Unabhängigkeit

 $(\Omega, \mathbb{P})$  diskreter Wahrscheinlichkeitsraum.

#### 9.1 **Definition**

 $A_1, \ldots, A_n \subset \Omega$  heißen stochastisch unabhängig, falls

$$\mathbb{P}(\bigcap_{j \in T} A_j) = \prod_{j \in T} \mathbb{P}(A_j), \quad T \subseteq \{1, \dots, n\}, |T| \ge 2.$$

$$(2^n - n - 1 \text{ Gleichungen.})$$

#### 9.2Bemerkung

- 1. A, B stochastisch unabhängig
  - $\Leftrightarrow \mathbb{P}(A \cap B) = \mathbb{P}(A)\mathbb{P}(B)$

$$\begin{array}{l}
\mathbb{P}(B)>0 \\ \Leftrightarrow & \mathbb{P}(A|B) = \mathbb{P}(A) \text{ (Interpretation!)} \\
\Leftrightarrow & \mathbb{P}(B|A) \stackrel{\mathbb{P}(B)>0}{=} \mathbb{P}(B)
\end{array}$$

$$\Leftrightarrow \mathbb{P}(B|A) \stackrel{\mathbb{P}(B)>0}{=} \mathbb{P}(B)$$

- 2.  $\mathbb{P}(B) = 0 \rightsquigarrow A$  und B sind stochastisch unabhängig
  - $\mathbb{P}(B) = 1 \rightsquigarrow A$  und B sind stochastisch unabhängig
- 3. A, B, C unabhängig  $\Leftrightarrow$

$$\begin{array}{l} \mathbb{P}(A\cap B) = \mathbb{P}(A)\mathbb{P}(B) \\ \mathbb{P}(A\cap C) = \mathbb{P}(A)\mathbb{P}(C) \\ \mathbb{P}(B\cap C) = \mathbb{P}(B)\mathbb{P}(C) \end{array} \right\} \text{ paarweise stochastische Unabhängigkeit}$$

$$\mathbb{P}(A \cap B \cap C) = \mathbb{P}(A)\mathbb{P}(B)\mathbb{P}(C)$$

 $<sup>^1\</sup>mathrm{Wenn}$  die Kenntnis des Eintretens von B<br/> keinerlei Rückschlüsse auf das Eintreten von A zulässt.

Wiederholung  $A, B \subset \Omega$  stochastisch unabhängig

$$\Leftrightarrow \mathbb{P}(A \cap B) = \mathbb{P}(A)\mathbb{P}(B)$$

$$\Leftrightarrow \mathbb{P}(A|B) = \mathbb{P}(A) \Leftrightarrow \mathbb{P}(B|A) = \mathbb{P}(B)$$

 $A_1, \ldots, A_n$  stochastisch unabhängig  $\Leftrightarrow$ 

$$\mathbb{P}(\bigcap_{j\in T} A_j) = \prod_{j\in T} \mathbb{P}(A_j), \quad T\subset \{1,\ldots,n\}, |T|\geq 2$$

## 9.3 Bemerkungen

(iv) A, B stochastisch unabhängig. Dann:

$$\mathbb{P}(A \cap B^c) = \mathbb{P}(A) - \mathbb{P}(A \cap B)$$

$$\stackrel{!}{=} \mathbb{P}(A) - \mathbb{P}(A)\mathbb{P}(B)$$

$$= \mathbb{P}(A)(1 - \mathbb{P}(B)) = \mathbb{P}(A)\mathbb{P}(B^c)$$

Also sind A und  $B^c$  (also auch  $A^c$  und  $B^c$  bzw.  $A^c$  und B) stochastisch unabhängig.

- (v) Seien  $A_1, \ldots, A_n$  unabhängig und  $1 \leq i_1 < \ldots < i_k \leq n$ . Dann sind  $A_{i_1}, \ldots, A_{i_k}$  stochastisch unabhängig.
- (vi) Ist A von A unabhängig, so ist

$$\mathbb{P}(A) = \mathbb{P}(A)^2$$

d.h.  $\mathbb{P}(A) \in \{0, 1\}$ .

(vii) Man nennt  $A_1, A_2, \ldots \subset \Omega$  stochastisch unabhängig

 $\overset{d}{\Leftrightarrow} A_1, \dots, A_n$ stochastisch unabhängig für jedes  $n \geq 2.$ 

# 9.4 Beispiel (Produkträume)

Sei 
$$(\Omega, \mathbb{P}) := (\bigotimes_{j=1}^n \Omega_j, \bigotimes_{j=1}^n \mathbb{P}_j)$$
, d.h.  

$$\mathbb{P}(\{(a_1, \dots, a_n)\}) = p(\omega) \quad \omega = (a_1, \dots, a_n)$$

$$= p_1(a_1) \cdot \dots \cdot p_n(a_n) \quad (p_i(a_i) = \mathbb{P}_i(\{a_i\}))$$
Sei  $B = B_1^* \times \dots \times B_n^*, \quad B_i^* \in \Omega_i$ . Dann  $\mathbb{P}(B_1^* \times \dots \times B_n^*)$ 

$$= \sum_{(a_1, \dots, a_n) \in B_1^* \times \dots \times B_n^*} p_1(a_1) \cdot \dots \cdot p_n(a_n)$$

 $9.5 \; \mathrm{Satz}$ 

$$= \sum_{a_1 \in B_1^*} \dots \sum_{a_n \in B_n^*} p_1(a_1) \cdot \dots \cdot p_n(a_n)$$

$$= \prod_{j=1}^n \sum_{a \in B_i^*} p_j(a) = \prod_{j=1}^n \mathbb{P}_j(B_j^*) \qquad (*)$$

Sei jetzt  $A_j^* \subset \Omega_j, j = 1, \ldots, n$ .

**Behauptung**  $A_j = \Omega_1 \times \ldots \times \Omega_{j-1} \times A_j^* \times \Omega_{j+1} \times \ldots \times \Omega_n$ ,  $j = 1, \ldots, n$  stochastisch unabhängig.

Beweis. Sei  $T \subset \{1, \dots, n\}$  mit  $|T| \geq 2$ . Definiere

$$B_j^* := \begin{cases} A_j^*, & j \in T, \\ \Omega_j, & j \notin T. \end{cases}$$

Dann

$$\mathbb{P}(\bigcap_{j\in T} A_j) = \mathbb{P}(B_1^* \times \ldots \times B_n^*)$$

2

$$(*) \quad \prod_{j=1}^{n} \mathbb{P}_{j}(B_{j}^{*}) = \prod_{j \in T} \mathbb{P}_{j}(A_{j}^{*})$$

$$\stackrel{(*)}{=} \prod_{j \in T} \mathbb{P}_{j}(A_{j})$$

3

### 9.5 Satz

 $A_1, \ldots, A_n$  stochastisch unabhängig  $\Leftrightarrow$ 

$$\mathbb{P}(\bigcap_{j\in I} A_j \cap \bigcap_{j\in J} A_j^c) = \prod_{j\in I} \mathbb{P}(A_j) \prod_{j\in J} \mathbb{P}(A_j^c) \quad I, J \subset \{1, \dots, n\}, I \cap J = \emptyset$$

(Hierbei 
$$\bigcap_{j \in \emptyset} B_j := \Omega, \prod_{j \in \emptyset} a_j := 1$$
)

Beweis. Induktion über Anzahl der Elemente von J (vergleiche auch Bemerkung 9.3 (iv))

 $<sup>^{2}(</sup>A_{1} \times A_{2}) \cap (B_{1} \times B_{2}) = (A_{1} \cap B_{1}) \times (A_{2} \cap B_{2})$ <sup>3</sup> mit  $B_{i}^{*} = \Omega_{i}$  bis auf ein i

**Definition** Für  $A \subset \Omega$  sei  $A^0 := A^c, A^1 := A$ . Für  $B_1, \ldots, B_n \subset \Omega$  sei

$$\sigma(B_1,\ldots,B_k) := \{ B \subset \Omega \colon \exists U \subset \{0,1\}^k \text{ mit } B = \bigcup_{(\epsilon_1,\ldots,\epsilon_n) \in U} B_1^{\epsilon_1} \cap \ldots \cap B_k^{\epsilon_k} \}.$$

(Die von  $B_1, \ldots, B_k$  erzeugte Algebra).

Beispiel 9.1. (TODO: Bild)

Bemerkung 9.1. Eine Menge der Form

$$B_1^{\epsilon_1} \cap \ldots \cap B_k^{\epsilon_k}$$
 für  $(\epsilon_1, \ldots, \epsilon_k) \in \{0, 1\}^k$ 

heißt Atom von  $\sigma(B_1, \ldots, B_k)$ . Jede Menge in  $\sigma(B_1, \ldots, B_k)$  ist Vereinigung von Atomen. Insbesondere gilt

$$B_1, \ldots, B_k \in \sigma(B_1, \ldots, B_k), \emptyset \in \sigma(B_1, \ldots, B_k), \Omega \in \sigma(B_1, \ldots, B_k).$$

#### 9.6 Satz (Blockungslemma)

Seien  $A_1, \ldots, A_k, A_{k+1}, \ldots, A_n$  stochastisch unabhängig und  $B \in \sigma(A_1, \ldots, A_k), C \in \sigma(A_{k+1}, \ldots, A_n)$ . Dann sind B und C stochastisch unabhängig.

Beweis. Es gilt

$$\mathbb{P}(B \cap C) = \mathbb{P}\left(\underbrace{(\bigcup_{(\epsilon_1, \dots, \epsilon_k) \in U} A_1^{\epsilon_1} \cap \dots A_k^{\epsilon_k}) \cap (\bigcup_{(\epsilon_{k+1}, \dots, \epsilon_n) \in V} A_{k+1}^{\epsilon_{k+1}} \cap \dots \cap A_n^{\epsilon_n})}_{C}\right)$$

disjunkte Vereinigung

$$\begin{split} &= \sum_{U} \mathbb{P} \left( (A_1^{\epsilon_1} \cap \ldots \cap A_k^{\epsilon_k}) \cap \bigcup_{V} (A_{k+1}^{\epsilon_{k+1}} \cap \ldots \cap A_n^{\epsilon_n}) \right) \\ &= \sum_{U,V} \mathbb{P} (A_1^{\epsilon_1} \cap \ldots \cap A_k^{\epsilon_k}) \cap A_{k+1}^{\epsilon_{k+1}} \cap \ldots A_n^{\epsilon_n}) \\ &= \sum_{U,V} \left( \prod_{j=1}^k \mathbb{P} (A_j^{\epsilon_j}) \prod_{j=k+1 \atop \mathbb{P} (A_j^{\epsilon_k})} \mathbb{P} (A_j^{\epsilon_{k+1}} \cap \ldots \cap A_n^{\epsilon_n}) \right) \end{split}$$

9.7 Satz 38

$$= \sum_{(\epsilon_1, \dots, \epsilon_k) \in U} \mathbb{P}(A_1^{\epsilon_1} \cap \dots \cap A_k^{\epsilon_k}) \sum_{(\epsilon_{k+1}, \dots, \epsilon_n) \in V} \mathbb{P}(A_{k+1}^{\epsilon_{k+1}} \cap \dots \cap A_n^{\epsilon_n})$$

$$\stackrel{!}{=} \mathbb{P}(B)\mathbb{P}(C)$$

9.7 Satz

 $A_1,\ldots,A_n\subset\Omega$  stochastisch unabhängig. Ferner gelte  $\mathbb{P}(A_i)=p,\quad i=1,\ldots,n.$  Dann ist

$$X := \sum_{j=1}^{n} 1_{A_j}$$

Bin(n, p)-verteilt.

Beweis. Es gilt

$$\{X = k\} = \bigcup_{T \subseteq \{1, \dots, n\}, |T| = k} \left( \bigcap_{j \in T} A_j \cap \bigcap_{j \notin T} A_j^c \right)$$

disjunkte Vereinigung, also

$$\mathbb{P}(X=k) = \mathbb{P}(\{X=k\}) = \sum_{T \subseteq \{1,\dots,n\}, |T|=k} \mathbb{P}(\bigcap_{j \in T} A_j \cap \bigcap_{j \notin T} A_j^c)$$

$$\stackrel{\text{Voraussetzung}}{=} \sum_{T \subseteq \{1,\dots,n\}, |T|=k} p^k (1-p)^{n-k} = \binom{n}{k} p^k (1-p)^{n-k}$$

9.8 Beispiel (Bernoulli-Kette der Länge n)

$$(\Omega, \mathbb{P}) := \bigotimes_{j=1}^{n} (\Omega_{j}, \mathbb{P}_{j})$$

$$\Omega_{1} = \ldots = \Omega_{n} = \{0, 1\}$$

$$\mathbb{P}_{j}(\{1\}) = 1 - \mathbb{P}_{j}(\{0\}) = p, \quad j = 1, \ldots, n$$
Die Ereignisse

$$A_j := \{(a_1, \dots, a_n) \in \Omega \colon a_j = 1\}, \quad j = 1, \dots, n$$

sind stochastisch unabhängig.

Ferner  $\mathbb{P}(A_i) = p$ .

## Kapitel 10

# Gemeinsame Verteilung

 $(\Omega, \mathbb{P})$  diskreter Wahrscheinlichkeitsraum (mit Träger  $\Omega_0$ ).

#### 10.1 Definition

Seien  $X_j \colon \Omega \to \mathbb{R}$  (j = 1, ..., k) Zuvfallsvariablen. Definiere  $X \colon \Omega \to \mathbb{R}^k$  vermöge  $X(\omega) = (X_1(\omega), ..., X_k(\omega)), \quad \omega \in \Omega$ . Dann heißt X k-dimensionaler Zufallsvektor.

Für  $B \subset \mathbb{R}^k$  sei  $X^{-1}(B) \equiv \{X \in B\} := \{\omega \in \Omega \colon X(\omega) \in B\}$ . Die Abbildung

$$\mathbb{P}^X \colon \mathcal{P}(\mathbb{R}) \to [0,1]$$

definiert durch

$$\mathbb{P}^X(B) := \mathbb{P}(\{X \in B\}) (= \mathbb{P}(X \in B))$$

heißt Verteilung von X oder auch gemeinsame Verteilung von  $X_1, \ldots, X_k$ . Die Verteilung von  $X_j$  heißt j-te Marginalverteilung (von  $X_j$ ).

Wiederholung  $(\Omega, \mathbb{P})$  Wahrscheinlichkeitsraum

 $\Omega_0 := \{ \omega \in \Omega \colon \mathbb{P}(\{\omega\}) > 0 \} \text{ diskret}$ 

$$X = (X_1, \dots, X_k) \colon \Omega \to \mathbb{R}^k$$

Verteilung:  $\mathbb{P}^X$ 

$$\mathbb{P}^{X}(A) := \mathbb{P}(X \in A) \equiv \mathbb{P}(\{\omega \colon X(\omega) \in A\}), \quad A \subset \mathbb{R}^{k}$$

**Bemerkung** Die gemeinsame Verteilung legt Randverteilungen fest. (k = 2)

$$\mathbb{P}(X_1 = x_1) \quad \left( = \mathbb{P}^{X_1}(\{x_1\}) \right)$$
$$= \mathbb{P}\left( \{X_1 = x_1\} \cap \bigcup_{x_2 \in X_2(\Omega_0)} \{X_2 = x_2\} \right)$$

10.2 Beispiel 40

$$\stackrel{\sigma\text{-Additivit"at}}{=} \sum_{x_2 \in X_2(\Omega_0)} \underbrace{\mathbb{P}(\{X_1 = x_1\} \cap \{X_2 = x_2\})}_{\mathbb{P}(X_1 = x_1, X_2 = x_2)}$$
$$= \sum_{x_2 \in X_2(\Omega_0)} \mathbb{P}^{(X_1, X_2)} \left( \{(x_1, x_2)\} \right)$$

#### 10.2 Beispiel

$$\Omega := \{1, \dots, 6\}^2$$

 $\mathbb{P} = \text{Gleichverteilung (2-maliger Würfelwurf)}$ 

$$X_1((k,l)) := \min(k,l), X_2((k,l)) := \max(k,l)$$

(TODO: Tabelle)

$$\mathbb{P}(X_1 = i, X_2 = j), \quad i, j = 1, \dots, 6$$

Es gilt

$$\mathbb{P}(X_1 = i) = \mathbb{P}(X_2 = 7 - i), \quad i = 1, \dots, 6$$

$$\sim \mathbb{P}^{X_1} = \mathbb{P}^{7 - X_2} \quad (X_1 \neq 7 - X_2)$$

 $X_1 \stackrel{d}{=} 7 - X_2$  Verteilungsgleichheit

#### 10.3 Beispiel

$$\mathbb{P}(X_1 = i, X_2 = j)$$
  
( $c \in [0, \frac{1}{2}] \text{ fest}$ )

| j | 1                 | 2               |               |
|---|-------------------|-----------------|---------------|
| 1 | c                 | $\frac{1}{2}-c$ | $\frac{1}{2}$ |
| 2 | $\frac{1}{2} - c$ | c               | $\frac{1}{2}$ |
|   | $\frac{1}{2}$     | $\frac{1}{2}$   |               |

$$\mathbb{P}(X_1 = 1) = \mathbb{P}(X_1 = 1, X_2 = 1) + \mathbb{P}(X_1 = 1, X_2 = 2)$$

$$\leadsto \mathbb{P}^{X_1} = \mathbb{P}^{X_2} \hat{=} \text{ fairer Münzwurf!}$$

Also legen die Randverteilungen  $\mathbb{P}^{X_1}, \mathbb{P}^{X_2}$  die gemeinsame Verteilung  $\mathbb{P}^{(X_1,X_2)}$  nicht fest.

#### 10.4 Definition

 $X_1,\ldots,X_k\colon\Omega\to\mathbb{R}$  heißen stochastisch unabhängig

$$\Leftrightarrow \{X_1 \in B_1\}, \dots, \{X_k \in B_k\} \text{ stochastisch unabhängig } \forall B_1, \dots, B_k \subset \mathbb{R}$$

10.5 Satz 41

#### 10.5 Satz

Die folgenden Aussagen sind äquivalent:

1.  $X_1, \ldots, X_k$  sind stochastisch unabhängig

2. 
$$\mathbb{P}(X_1 \in B_1, \dots, X_k \in B_k) = \prod_{i=1}^k \mathbb{P}(X_i \in B_i) \quad B_1, \dots, B_k \subset \mathbb{R}$$

3. 
$$\mathbb{P}(X_1 = x_1, \dots, X_k = x_k) = \prod_{i=1}^k \mathbb{P}(X_i = x_i) \quad x_1, \dots, x_k \in \mathbb{R}$$

Beweis.  $(1) \Rightarrow (2)$  Klar nach Definition.

(2)  $\Rightarrow$  (1): Wähle in der Definition  $B_j = \mathbb{R}$  für  $j \notin T(\{X_j \in B_j\} = \Omega)$ 

 $(2) \Rightarrow (3)$ : Setze  $B_i = \{x_i\}$ 

1

 $(3) \Rightarrow (2)$ : Für  $B_1, \ldots, B_k \subset \mathbb{R}$  gilt

$$\mathbb{P}(X_1 \in B_1, \dots, X_k \in B_k) \quad (= \mathbb{P}^{(X_1, \dots, X_k)}(B_1 \times \dots \times B_k)) \quad (B_i \subset \underbrace{X_i(\Omega_0)}_{\text{diskret}})$$

$$= \sum_{x_1 \in B_1, \dots, x_k \in B_k} \mathbb{P}(X_1 = x_1, \dots, X_k = x_k)$$

$$\stackrel{(3)}{=} \sum \mathbb{P}(X_1 = x_1) \dots \mathbb{P}(X_k = x_k)$$

$$= \mathbb{P}(X_1 \in B_1) \cdot \dots \cdot \mathbb{P}(X_k \in B_k)$$

**Bemerkung** Im Falle stochastischer Unabhängigkeit legen die Randverteilungen die gemeinsame Verteilung fest.

### 10.6 Satz (Blockungslemma)

Es seien  $X_1, \ldots, X_k$  stochastisch unabhängige, eindimensionale Zufallsvariablen und  $1 \leq l \leq k-1, g \colon \mathbb{R}^l \to \mathbb{R}, h \colon \mathbb{R}^{k-l} \to \mathbb{R}$ . Dann sind  $g(X_1, \ldots, X_l)$  und  $h(X_{l+1}, \ldots, X_k)$  stochastisch unabhängig.

Beweis. Übung!
$$\frac{1}{\sum_{i,j} a_i b_j = (\sum a_i)(\sum b_j) \text{ "Fubini"}}$$

#### 10.7 Satz (allgemeine Transformations-Formel)

Seien  $Z: \Omega \to \mathbb{R}^k$  Zufallsvektor,  $g: \mathbb{R}^k \to \mathbb{R}$ . Setze

$$M := \{ z \in \mathbb{R}^k \colon \mathbb{P}(Z = z) > 0 \}.$$

Dann ist g(Z) integrierbar<sup>2</sup> genau dann, wenn

$$\sum_{z \in M} |g(z)| \cdot \mathbb{P}(Z=z) < \infty$$

In diesem Fall ist der Erwartungswert

$$\mathbb{E}g(Z) = \sum_{z \in M} g(z) \cdot \mathbb{P}(Z = z)$$

Beweis. vgl. eindimensionalen Spezialfall.

#### 10.8 Satz

Seien  $X, Y : \Omega \to \mathbb{R}$  stochastisch unabhängig. Sind X, Y integrierbar, so ist auch  $X \cdot Y$  integrierbar und  $\mathbb{E}(X \cdot Y) = (\mathbb{E}X) \cdot (\mathbb{E}Y)$ .

Beweis. Setze  $M := \{(x,y) \in \mathbb{R}^2 : \mathbb{P}(X=x,Y=y) > 0\} = \{(x,y) : \mathbb{P}(X=x) > 0, \mathbb{P}(Y=y) > 0\}$ . Dann

$$\mathbb{E}|X \cdot Y| = \sum_{\omega \in \Omega_0} |X(\omega)||Y(\omega)|\mathbb{P}(\{\omega\})$$

$$\stackrel{!}{=} \sum_{(x,y)\in M} |x||y| \underbrace{\mathbb{P}(X=x,Y=y)}_{\mathbb{P}(X=x)\cdot\mathbb{P}(Y=y)}$$

$$= \underbrace{\left(\sum_{x:\,\mathbb{P}(X=x)>0} |x|\mathbb{P}(X=x)\right)}_{y:\,\mathbb{P}(Y=y)>0} \cdot \underbrace{\left(\sum_{y:\,\mathbb{P}(Y=y)>0} |y|\mathbb{P}(Y=y)\right)}_{y:\,\mathbb{P}(Y=y)>0}$$

Dieselbe Rechnung "ohne Betragsstriche" liefert die behauptete Formel. □

#### 10.9 Satz (Faltungsformel)

Sind X, Y unabhängige reelle Zufallsvariablen, so gilt

$$\mathbb{P}(X+Y=z) = \sum_{x \in X(\Omega_0)} \mathbb{P}(X=x) \mathbb{P}(Y=z-x), \quad z \in \mathbb{R}$$

<sup>&</sup>lt;sup>2</sup>d.h. der Erwartungswert existiert.

Beweis. Ohne Unabhängigkeit gilt

$$\mathbb{P}(X+Y=z) \stackrel{!}{=} \sum_{X \in X(\Omega_0)} \mathbb{P}(X=x,Y=z-x)$$

# 10.10 Satz (Additionsgesetz für Binomialverteilungen)

Seien  $X \sim Bin(m, p), Y \sim Bin(n, p)$  stochastisch unabhängig. Dann ist  $X + Y \sim Bin(m + n, p) \quad \forall m, n \geq 1, p \in [0, 1]$ 

Beweis. Es seien  $A_1, \ldots, A_m, A_{m+1}, \ldots, A_{m+n}$  unabhängige Ereignisse mit  $\mathbb{P}(A_i) = p$ . Dann sind

$$X' := \sum_{i=1}^m 1_{A_i}, \qquad Y' := \sum_{i=m+1}^{m+n} 1_{A_i}$$

Bin(m,p) bzw. Bin(n,p) Binomialverteilt. (Bernoulli-Kette) Nach Blockungslemma sind X',Y' stochastisch unabhängig! Außerdem

$$X' + Y' = \sum_{i=1}^{m+n} 1_{A_i} \sim Bin(m+n, p)$$

Aber aus  $(X', Y') \stackrel{d}{=} (X, Y)$  folgt

$$X'+Y' \stackrel{d}{=} X+Y, \text{ d.h. } X+Y \sim Bin(m+n,p)$$
 
$$\mathbb{P}^{X'+Y'} = \mathbb{P}^{X+Y}$$

## Kapitel 11

# Varianz, Kovarianz, Korrelation

 $(\Omega, \mathbb{P})$  diskreter Wahrscheinlichkeitsraum.

#### 11.1 Definition

Falls X Zufallsvariable und  $\mathbb{E}X^2 < \infty$ , so heißt

$$V(X) \equiv Var(X) := \mathbb{E}(X - \mathbb{E}X)^2$$

Varianz von X.

#### 11.2 Bemerkungen

1. Wegen

$$|X| \le 1 + X^2$$
  
 $(X - a)^2 \le X^2 + 2|a||X| + a^2$ 

ist V(X) wohldefiniert.

2. Gilt 
$$\sum_{i=1}^{\infty} \mathbb{P}(X = x_i) = 1$$
, so ist

$$V(X) = \sum (x_i - \mathbb{E}X)^2 \mathbb{P}(X = x_i)$$
 (Transformationsformel)

3. Es gilt

$$V(X) = \mathbb{E}(X^2 - 2\underbrace{(\mathbb{E}X)}_{\mu}X + \underbrace{(\mathbb{E}X)^2}_{\mu^2})$$

$$= \mathbb{E}X^2 - 2\mu \mathbb{E}X + \mu^2 \quad \text{(Linearität des Erwartungswertes)}$$
$$= \mathbb{E}X^2 - \mu^2 = \mathbb{E}X^2 - (\mathbb{E}X)^2$$

4. Varianz kann als Trägheitsmoment interpretiert werden.

11.3 Satz 45

#### 11.3 Satz

Sei  $\mathbb{E}X^2 < \infty$ .

1. 
$$V(X) = \mathbb{E}(X-c)^2 - (\mathbb{E}X-c)^2, \quad c \in \mathbb{R}$$
 (Steiner-Formel)

2. 
$$V(X) = \min_{c} \mathbb{E}(X - c)^2$$

3. 
$$V(aX + b) = a^2V(X)$$

4. 
$$V(X) = 0 \Leftrightarrow \exists a \in \mathbb{R} : \mathbb{P}(X = a) = 1$$
.

Beweis. (1) 
$$V(X) =$$

$$= \mathbb{E}(\underline{X-c} + \underline{c-\mathbb{E}X})^{2}$$

$$= \mathbb{E}(X-c)^{2} + 2 \underbrace{\mathbb{E}(X-c)(c-\mathbb{E}X)}_{} + (c-\mathbb{E}X)^{2}$$

1

$$= \mathbb{E}(X - c)^{2} - 2\mathbb{E}(c - \mathbb{E}X)^{2} + (c - \mathbb{E}X)^{2}$$

(2) (1) 
$$\leadsto \mathbb{E}(X - c)^2 = V(X) + (\mathbb{E}X - c)^2$$

(3) 
$$\mathbb{E}(aX + b - \mathbb{E}(aX + b))^2$$

$$= \mathbb{E}(aX + b - a\mathbb{E}X - b)^{2}$$
$$= a^{2}\mathbb{E}(X - \mathbb{E}X)^{2}$$

(4) Bemerkung  $11.2.(2) \rightsquigarrow$ 

$$V(X) = 0 \Leftrightarrow (x_i - \mathbb{E}X)^2 \mathbb{P}(X = x_i) = 0$$

$$\Leftrightarrow \forall i \text{ mit } \mathbb{P}(X = x_i) \text{ gilt } x_i = \mathbb{E}X$$

$$\Leftrightarrow \text{ Es gibt nur ein } i_0 \text{ mit } \mathbb{P}(X = x_{i_0}) > 0$$
Dann ist  $\mathbb{P}(X = x_{i_0}) = 1$ , und  $x_{i_0} = \mathbb{E}X$ .

#### 11.4 Beispiel

1. 
$$X = 1_A$$
,  $A \subset \Omega$ .

$$VarX = \mathbb{E}1_A^2 - (\mathbb{E}1_A)^2 = \mathbb{E}1_A - (\mathbb{E}1_A)^2$$
$$= \mathbb{P}(A) - \mathbb{P}(A)^2 = \mathbb{P}(A)(1 - \mathbb{P}(A))$$

 $<sup>^{1}\</sup>mathbb{E}c = c$ 

11.5 Definition 46

2. 
$$X = \sum_{i=1}^{n} 1_{A_i}, \quad A_i \subset \Omega_i, i = 1, \dots, n$$

$$V(X) = \mathbb{E}\left(\sum_{i=1}^{n} 1_{A_i}\right) \cdot \left(\sum_{j=1}^{n} 1_{A_j}\right) - (\mathbb{E}\sum_{i=1}^{n} 1_{A_i})^2$$

$$= \sum_{i=1}^{n} \mathbb{P}(A_i) + \sum_{i \neq j} \mathbb{P}(A_i \cap A_j) - (\sum_{i=1}^{n} \mathbb{P}(A_i))^2$$

Es gelte etwa (für ein  $c \geq -r, r, s \in \mathbb{N}$ )

$$\mathbb{P}(A_i) = \frac{r}{r+s} =: p$$

$$\mathbb{P}(A_i \cap A_j) = \frac{r}{r+s} \frac{r+c}{r+s+c}, \quad i \neq j$$

(c = -1): Ziehen ohne Zurücklegen, c = 0ê Ziehen mit Zurücklegen, c > 0: Polyasches Urnenschema). Dann

$$V\left(\sum_{i=1}^{n} X_i\right) = np(1-p) \cdot \left(1 + \frac{(n-1) \cdot c}{r+s+c}\right)$$

(3) 
$$X \sim Bin(n, p) : V(x) = np(1-p) \quad (c = 0)$$

(4) 
$$X \sim Hyp(n,r,s) : V(X) = np(1-p)\left(1 - \frac{(n-1)}{r+s-1}\right) \quad (c = -1)$$

#### 11.5 Definition

X heißt standardisiert, wenn  $\mathbb{E}X = 0$  und V(X) = 1. Ist X eine beliebige Zufallsvariable ( $\mathbb{E}X^2 < \infty$ ), so heißt (falls V(X) > 0)

$$X^* = \frac{X - \mathbb{E}X}{\sqrt{V(X)}}$$

Standardisierung von X. (Es gilt  $\mathbb{E}X^* = 0, V(X^*) = 1$ )

Bemerkung 
$$X \sim Bin(n,p), \quad X^* = \frac{X-np}{\sqrt{np(1-p)}}$$

### 11.6 Satz (Tschebyschov-Ungleichung)

Für jede Zufallsvariable X mit  $\mathbb{E}X^2 < \infty$  gilt

$$\mathbb{P}(|X - \mathbb{E}X| \ge c) \le \frac{V(X)}{c^2}), \quad c > 0.$$

11.7 Definition 47

Beweis. Es sei (für gegebenes c > 0)

$$g(t) = \begin{cases} 1, & \text{falls } |t - \mathbb{E}X| \ge c \\ 0, & \text{sonst} \end{cases}, \quad t \in \mathbb{R}$$

Ferner sei

$$h(t) = \frac{(t - \mathbb{E}X)^2}{c^2}$$

(TODO: Bild)

Wegen  $g \leq h$  ist  $g(X) \leq h(X)$ , also

$$\underbrace{\mathbb{E}g(X)}_{=\mathbb{P}(|X-\mathbb{E}X|\geq c)} \leq \underbrace{\mathbb{E}h(X)}_{=\mathbb{E}\frac{(X-\mathbb{E}X)^2}{c^2}}$$

$$=\underbrace{\mathbb{E}\frac{(X-\mathbb{E}X)^2}{c^2}}_{=\frac{1}{c^2}V(X)}$$

#### 11.7 Definition

Es gelte  $\mathbb{E}X^2 < \infty$ ,  $\mathbb{E}Y^2 < \infty$ . Die Zahl

$$(Cov(X,Y) =)C(X,Y) := \mathbb{E}(X - \mathbb{E}X)(Y - \mathbb{E}Y)$$

heißt Kovarianz zwischen X und Y. Gilt C(X,Y) = 0, so heißen X und Y unkorreliert. Gilt V(X) > 0, V(Y) > 0, so heißt

$$\rho(X,Y) := \frac{C(X,Y)}{\sqrt{V(X)}\sqrt{V(Y)}}$$

Korrelationskoeffizient zwischen X und Y. (Wegen  $|a \cdot b| \leq \frac{1}{2}(a^2 + b^2)$  ist  $(X - \mathbb{E}X)(Y - \mathbb{E}Y) \in L^1(\mathbb{P}))^2$ .

#### 11.8 Satz

- 1.  $C(X,Y) = \mathbb{E}XY (\mathbb{E}X\mathbb{E}Y)$
- 2.  $C(X,Y) = C(Y,X), \quad C(X,X) = V(X)$
- 3.  $C(aX + b, cY + d) = a \cdot c \cdot C(X, Y)$
- 4. X, Y unabhängig  $\Rightarrow C(X, Y) = 0$
- 5. V(X,Y) = V(X) + V(Y) + 2C(X,Y)

 $<sup>^{2}</sup>L^{1}(\mathbb{P}) \rightsquigarrow \text{integrierbar}$ 

11.9 Folgerung 48

6. 
$$V(\sum_{j=1}^{n} X_j) = \sum_{j=1}^{n} V(X_j) + \sum_{i \neq j} C(X, Y)$$

7. 
$$C(1_A, 1_B) = \mathbb{P}(A \cap B) - \mathbb{P}(A)\mathbb{P}(B)$$

8. 
$$C(\sum_{i=1}^{n} X_i, \sum_{j=1}^{m} Y_j) = \sum_{i,j} C(X_i, Y_j)$$

9. 
$$\rho(aX + b, cY + d) = sgn(a \cdot c)\rho(X, Y)$$

Beweis. a),b),c) stimmt.

d) Satz 10.8.

$$C(X,Y) = \mathbb{E}X \cdot Y - \mathbb{E}X\mathbb{E}Y = 0.$$

- e) folgt aus f, f folgt aus h
- h) linke Seite

$$\mathbb{E}(\sum_{i} X_{i} - \sum_{i} \mathbb{E}X_{i}, \sum_{j} X_{j} - \sum_{j} \mathbb{E}X_{j})$$

$$= \mathbb{E}(\sum_{i} (X_{i} - \mathbb{E}X_{i}))(\sum_{j} (X_{j} - \mathbb{E}X_{j}))$$

$$= \sum_{i,j} \mathbb{E}(X_{i} - \mathbb{E}X_{i}) \cdot (Y_{j} - \mathbb{E}Y_{j})$$

i) für  $a, b \in \mathbb{R}, c, d \in \mathbb{R}$ 

$$\rho(aX + b, cY + d)$$

$$\stackrel{Def}{=} \frac{cov(aX + b, cY + d)}{\sqrt{Var(aX + b) \cdot Var(cY + d)}}$$

$$\stackrel{11.8.c}{=} \frac{acCov(X, Y)}{\sqrt{a^2c^2}\sqrt{Var(X) \cdot Var(Y)}}$$

$$= sqn(ac) \cdot \rho(X, Y)$$

#### 11.9 Folgerung

Sind  $X_1, \ldots, X_n$  unabhängig, so folgt

$$V(\sum_{i=1}^{n} X_i) = \sum_{i=1}^{n} V(X_i)$$
 (aus iv+vi(d+f))

11.10 Beispiel 49

#### 11.10 Beispiel

Für  $X \sim Bin(n, p)$  gilt (nach Satz 9.6)

$$X \stackrel{d}{=} X_1 + \ldots + X_n$$

mit  $X_1, \dots, X_n$  unabhängig und identisch verteilt mit

$$\mathbb{P}(X_i = 1) = 1 - \mathbb{P}(X_i = 0) = p \quad \text{für } i = 1, \dots, n$$

Also ist nach 11.9 und 11.4.i

$$V(X) = \sum_{i=1}^{n} V(X_i)$$

$$= n \cdot V(X_1) = np(1-p)$$

in Übereinstimmmung mit 11.4.iii (siehe auch Übung). Das folgende Resultat ist analog zu 1.6:

#### 11.11 Satz

Gilt  $\mathbb{E}X^2 < \infty$ ,  $\mathbb{E}Y^2 < \infty$  und V(X)V(Y) > 0, so folgt

$$\min_{a,b} \mathbb{E}(Y - a - bX)^2 = V(Y)(1 - \rho^2(X, Y))$$

Die Minimalstelle  $(a^*, b^*)$  ist gegeben durch

$$b^* = \frac{C(X,Y)}{V(X)}, \quad a^* = \mathbb{E}Y - b^* \mathbb{E}X$$

Beweis. (allg.  $\inf_{x,y} f(x,y) = \inf_{x} \inf_{y} f(x,y) = \inf_{y} \inf_{x} f(x,y)$ ) Es seien  $a,b \in \mathbb{R}$  und Z := Y - bX. Dann ist

$$\mathbb{E}(Y - bX - a)^2 = \mathbb{E}(Z - a)^2$$

$$\stackrel{11.3.i,Steiner}{=} V(Z) + \underbrace{(\mathbb{E}Z - a)^2}_{\geq 0}$$

Also ist  $a^* = \mathbb{E}Z = \mathbb{E}Y - b^*\mathbb{E}X$ .

Es verbleibt die Aufgabe

$$\min_{b} \underbrace{\mathbb{E}(Y - \mathbb{E}Y - b(X - \mathbb{E}X))^{2}}_{=:f(b)}$$

$$f(b) = Var(Y) - 2bC(X,Y) + b^2Var(X)$$

11.12 Folgerung 50

$$= {}^{3}V(X)\underbrace{\left(b - \frac{C(X,Y)}{V(X)}\right)^{2}}_{\geq 0} + V(Y) - \frac{C(X,Y)^{2}}{V(X)}$$
$$\Rightarrow b^{*} = \frac{C(X,Y)}{V(X)}$$

11.12 Folgerung

1.  $C(X,Y)^2 \leq V(X) \cdot V(Y)$  (Cauchy-Schwarz-Ungleichung)

2. 
$$|\rho(X,Y)| \leq 1$$

3. 
$$|\rho(X,Y)| = 1$$

$$\Leftrightarrow \exists a, b \in \mathbb{R} \colon \mathbb{E}(Y - a - bX)^2 = 0$$

$$\Leftrightarrow \exists a, b \in \mathbb{R} \colon \mathbb{P}(Y - a - bX = 0) = 1$$

$$(\Leftrightarrow Y = a + bX \quad \mathbb{P} - \text{fast sicher})$$

insbesondere  $\rho(X,Y) = 1 \Rightarrow b > 0$ 

$$(b^* = \frac{C(X,Y)}{V(X)}) = \rho(X,Y) \cdot \underbrace{\sqrt{\frac{V(Y)}{V(X)}}}_{>0}$$

und 
$$\rho(X,Y) = -1 \Rightarrow b < 0$$
.

#### 11.13 Bemerkung

Falls  $\mathbb{P}(X = x_j, Y = y_j) = \frac{1}{n} \quad (1 \le j \le n)$  so

$$\mathbb{E}(Y - a - bX)^{2} = \sum_{j=1}^{n} \frac{1}{n} \cdot (y_{j} - a - bx_{j})^{2}$$

 $\leadsto$  Methode der kleinsten Quadrate  $\leadsto$  Kapitel 1 (empirischer Korrelationskoeffizient)

<sup>&</sup>lt;sup>3</sup>quadratische Ergänzung

# Kapitel 12

# Wichtige diskrete Verteilungen

- 1. Binomialverteilung  $Bin(n,p) \leadsto \text{Kapitel } 6,9.6$
- 2. Hypergeometrische Verteilung  $Hyp(n,r,s) \leadsto \text{Kapitel } 6$
- 3. Poisson-Verteilung  $Po(\lambda)$
- 4. Geometrische Verteilung G(p)
- 5. Negative Binomial verteilung Nb(r, p)
- 6. Multinomial verteilung  $Mult(n, p_1, \ldots, p_s)$

### 12.1 Satz (Gesetz seltener Ereignisse)

Sei  $(p_n)_{n\geq 1}, 0\leq p_n\leq 1$  eine Folge mit

$$np_n \stackrel{n \to \infty}{\to} \lambda \quad (0 < \lambda < \infty)$$

Dann gilt

$$\underbrace{\binom{n}{k} p_n^k (1 - p_n)^{n-k}}_{=\mathbb{P}(X_n = k) \text{ für } X_n \sim Bin(n, p_n)} \stackrel{n \to \infty}{\to} e^{-\lambda} \frac{\lambda^k}{k!}$$

Beweis. linke Seite:

$$\frac{n!}{k!(n-k)!} \frac{1}{n^k} \cdot (n \cdot p_n)^k (1 - \frac{n \cdot p_n}{n})^{n-k}$$

$$\frac{1}{k!} \underbrace{\frac{n^k}{n^k}}_{\to 1} \underbrace{\frac{(n, p_n)^k}{N}}_{\to \lambda^k} \underbrace{\frac{(1 - \frac{n \cdot p_n}{n})^{n-k}}_{\to e^{-\lambda}}}_{\to e^{-\lambda}}$$

$$\frac{n^k}{n^k} = \frac{n}{n} \cdot \frac{(n-1)}{n} \cdot \frac{(n-2)}{n} \cdot \dots \cdot \frac{(n-k+1)}{n}$$

12.2 Definition 52

und allgemein für  $a_n \to 1$  gilt

$$(1 + \frac{a_n}{n})^n \to e^a$$

12.2 Definition

$$X \sim Po(\lambda) \Leftrightarrow \mathbb{P}(X = k) = e^k \frac{\lambda^k}{k!}, \quad k \in \mathbb{N}_0$$

(Poisson-Verteilung mit Parameter  $\lambda, \lambda \in (0, \infty)$ ) Also, falls  $n \cdot p_n \to \lambda$ ,

$$Bin(n, p_n) \to Po(\lambda)$$
 im Sinne von 12.1

#### 12.3 Satz

1. 
$$X \sim Po(\lambda) \Rightarrow \mathbb{E}X = V(X) = \lambda$$

2. X, Y unabhängig,  $X \sim Po(\lambda), Y \sim Po(\mu)$ 

$$\Rightarrow X + Y \sim Po(\lambda + \mu)(Additivgesetz)$$

Beweis. 1.

$$\mathbb{E}X = \sum_{k=1}^{\infty} k \cdot e^{-\lambda} \frac{\lambda^k}{k!} = e^{-\lambda} \cdot \lambda \underbrace{\sum_{k=1}^{\infty} \frac{\lambda^{k-1}}{(k-1)!}}_{=\sum_{j=0}^{\infty} \frac{\lambda^j}{j!} = e^{\lambda}} = \lambda$$

$$\mathbb{E}(X(X-1)) = \sum_{k=2}^{\infty} k(k-1)e^{-\lambda} \frac{\lambda^k}{k!} = e^{-\lambda} \lambda^2 e^{\lambda} = \lambda^2$$

$$Var(X) = \mathbb{E}X^2 - (\mathbb{E}X)^2$$

$$= \mathbb{E}(X(X-1)) + \mathbb{E}X - \mathbb{E}X^2$$

$$= \lambda^2 + \lambda - \lambda^2 = \lambda$$

2. Faltungsformel (Übung!)

#### 12.4 Definition und Satz

Sei 0 .

$$X \sim G(p) : \Leftrightarrow \mathbb{P}(X = k) = (1 - p)^k \cdot p, \quad k \in \mathbb{N}_0$$

(geometrische Verteilung mit Parameter p) Es gilt

1. 
$$\mathbb{E}X = \frac{1}{p} - 1$$

2. 
$$V(X) = \frac{1-p}{p^2}$$

X modelliert <u>Anzahl der Nieten vor dem ersten Treffer</u> in einer unendlichen Bernoulli-Kette mit Trefferwahrscheinlichkeit p.

Beweis.

$$\sum_{k=0}^{\infty} X^{k} \equiv \frac{1}{1-x} \text{ auf } (-1,1)$$

$$\Rightarrow \sum_{k=1}^{\infty} k \cdot x^{k-1} = \frac{1}{(1-x)^{2}} \text{ für } |x| < 1$$

$$\Rightarrow \sum_{k=2}^{\infty} k(k-1)x^{k-2} = \frac{2}{(1-x)^{3}}$$

$$\mathbb{E}X = \sum_{k=1}^{\infty} k(1-p)^{k} \cdot p = p(1-p) \sum_{k=1}^{\infty} k(1-p)^{k-1}$$

$$p(1-p) \frac{1}{(1-(1-p))^{2}}$$

$$= \frac{1-p}{p}$$

$$\mathbb{E}X(X-1) = p(1-p)^{2} \sum_{k=2}^{\infty} k(k-1)(1-p)^{k-2}$$

$$= \frac{2}{p^{3}}$$

$$= 2\left(\frac{(1-p)}{p}\right)^{2}$$

$$\Rightarrow Var(X) = 2\left(\frac{1-p}{p}\right)^{2} + \frac{1-p}{p} - \left(\frac{1-p}{p}\right)^{2}$$

$$= \left(\frac{1-p}{p}\right)^{2} + \frac{1-p}{p} = \left(\frac{1-p}{p}\right) \underbrace{\left(\frac{1-p}{p}+1\right)}_{=1} = \frac{1-p}{p^{2}}$$

#### 12.5 Definition und Satz

X hat eine negative Binomialverteilung mit Parametern r und p ( $r \in \mathbb{N}$  und 0 ), falls gilt:

$$\mathbb{P}(X=k) = \binom{k+r-1}{k} p^r (1-p)^k, \quad k \in \mathbb{N}_0$$

Es gilt

$$\mathbb{E}X = r \cdot \frac{1-p}{p}$$

$$V(X) = r \cdot \frac{1-p}{p^2},$$

Notation:  $X \sim Nb(r, p)$ 

#### 12.6 Satz

$$X_1, \ldots, X_r \stackrel{u.i.v._1}{\sim} G(p)$$

$$\Rightarrow X_1 + \ldots + X_r \sim Nb(r, p)$$

Beweis. Faltungsformel (Übung)

#### Bemerkung

1.  $X \sim Nb(r, p)$ 

$$\mathbb{P}(X = k) = \frac{(k+r-1)^{k}}{k!} p^{r} (1-p)^{k}$$

$$= \frac{-r \cdot (-r-1) \cdot \dots \cdot (-r-k+1)}{k!} (-1)^{k} p^{r} (1-p)^{k}$$

$$= {\binom{-r}{k}} \cdot p^{r} (-(1-p))^{k}$$

wobei 
$$\binom{-r}{k} = \frac{-r^k}{k!} \quad \forall r \in \mathbb{R}$$

 $X \sim Nb(r, p)$ , falls

$$\mathbb{P}(X=k) = \binom{k+r-1}{k} p^r (1-p)^k$$
$$= \boxed{\binom{-r}{k} p^r (-(1-p))^k}$$

 $k=0,1,2,\dots \binom{x}{k}:=\frac{x^{\underline{k}}}{k!}=\frac{x(x-1)\cdots(x-k+1)}{k!})$ W<br/>kt. für k Fehlversuche bis zum r-ten Erfolg in einer ("un<br/>endlichen" Bernoulli-Kette)  $r=1:\mathbb{P}(X=k)=p(1-p)^k$ 

 $<sup>^{1}</sup>$ unabhängig identisch verteilt

#### 12.7 Bemerkungen

- 1. Siehe Box oben.
- 2.  $X \sim Nb(r, p), Y \sim Nb(r, p), X$  und Y unabhängig

$$\Leftarrow X + Y \sim Nb(r + s, p)$$

Beweis. Faltungsformel. Inhaltlich folgt das aus der Interpretation der negativen Binomialverteilung.  $\Box$ 

#### 12.8 Beispiel (Multinomiales Versuchsschema)

n unabhängige Experimente mit Ausgängen in  $\{1,\ldots,s\}$  mit  $s\geq 2$ . (Ausgang k = Treffer der k-ten Art)

 $p_k = \text{Wkt. für Treffer der } k\text{-ten Art}$ 

$$p_1 + \ldots + p_s = 1$$

$$\begin{aligned} \textbf{Modell:} \quad & (\Omega, \mathbb{P}) = (\bigotimes_{j=1}^n \Omega_j, \bigotimes_{j=1}^n \mathbb{P}_j) \\ & \Omega = \{1, \dots, s\}, \mathbb{P}_j(\{k\}) = p_k \\ & A_j^{(k)} := \{\omega = (\omega_1, \dots, \omega_n) \in \Omega \mid \omega_j = k\} \\ & X_k := \sum_{j=1}^n 1_{A_j^{(k)}} \quad \text{Anzahl der Treffer $k$-ter Art} \\ & X_1 + \dots + X_s = n \end{aligned}$$

Es gilt für  $i_1, \ldots, l_s \in \mathbb{N}_0, i_1 + \ldots + i_s = n$ 

$$\begin{aligned} |\{X_1 = i_1, \dots, X_s = i_s\}| \\ &= \binom{n}{i_1} \binom{n - i_1}{i_2} \cdots \binom{n - i_1 \dots - i_{s-1}}{i_s} \\ &= \frac{n!}{i_1! i_2! \dots i_s!} =: \binom{n}{i_1 \dots i_s} \\ (p_1^{i_1} \cdot p_2^{i_2} \cdots p_s^{i_s}) \end{aligned}$$

12.9

 $(X_1,\ldots,X_s) \sim Mult(n,p_1,\ldots,p_s)$ , falls

$$\mathbb{P}(X_1 = i_1, \dots, X_s = i_s) = \binom{n}{i_1 \cdots i_s} p_1^{i_1} \cdots p_s^{i_s}$$

 $i_1, \ldots, i_s \in \mathbb{N}_0, i_1 + \ldots + i_s = n.$ 

**Definition** 

12.10 Folgerung 56

#### 12.10 Folgerung

Es gelte  $(X_1, \ldots, X_s) \sim Mult(n, p_1, \ldots, p_s)$ 

1.  $X_k \sim Bin(n, p_k)$ 

2. 
$$X_{i_1} + \ldots + X_{i_0} \sim Bin(n, p_{i_1} + \ldots + p_{i_{\nu}}), \quad (\{i_1, \ldots, i_{\nu}\} \subset \{1, \ldots, s\})$$

3. 
$$C(X_i, X_j) = -np_i p_j, \quad i \neq j.$$

4. 
$$\rho(X_i, X_j) = -\sqrt{\frac{p_i p_j}{(1 - p_i)(1 - p_j)}}, \quad i \neq j, p_i < 1, p_j < 1.$$

Beweis. 1. Ist Spezialfall von (2) ( $\nu = 1$ ).

Bildung der Randverteilung von  $(X_1, \ldots, X_s)$ 

Benutze Multinomialformel

$$(X_1 + \dots + X_s)^n = \sum_{j_1,\dots,j_s} {n \choose j_1 \cdots j_s} X_1^{j_1} X_2^{j_2} \cdots X_s^{i_s}$$

$$\underline{n=2} \binom{n}{j_1 j_2} = \binom{n}{j_1} = \binom{n}{j_2}, \quad j_1 + j_2 = n$$

2.  $B_j := \bigcup_{k=1}^{\nu} A_j^{(i,k)} = \text{im } j\text{-ten Versuch liegt Erfolg mit Typ in } \{i_1, \dots, i_{\nu}\}$ 

 $B_1, \ldots, B_n$  sind unabhängig (!) und es gilt

$$\mathbb{P}(B_i) = p_{i_1} + \ldots + p_{i_{\nu}} =: q$$

Satz  $9.6 \rightsquigarrow$ 

$$X_{i_1} + \ldots + X_{i_{\nu}} \stackrel{d}{=} \sum_{j=1}^{n} 1_{B_j} \sim Bin(n, q)$$

3. 
$$Var(X_i + X_j) \stackrel{(2)}{=} n(p_i + p_j)(1 - p_i - p_j)$$
  

$$= Var(X_i) + Var(X_j) + 2Cov(X_i, X_j)$$

$$= np_i(1 - p) + np_j(1 - p_j)$$

$$\sim 2Cov(X_i, X_j) = -2np_ip_j$$

4.

$$\rho(X_i, X_j) = \frac{Cov(X_i, X_j)}{\sqrt{var(X_i)}\sqrt{Var(X_j)}} = \frac{-np_i p_j}{\sqrt{np_i(1 - p_i)}\sqrt{np_j(1 - p_j)}}$$
$$= -\frac{\sqrt{p_i}\sqrt{p_j}}{\sqrt{1 - p_i}\sqrt{1 - p_j}}$$

# Kapitel 13

# Bedingte Erwartungswerte und bedingte Verteilungen

 $(\Omega, \mathbb{P})$  diskreter Wahrscheinlichkeitsraum,  $X : \Omega \to \mathbb{R}$  mit  $\mathbb{E}(X) < \infty$ .

#### 13.1 Definition

1. Für  $A \subset \Omega$  mit  $\mathbb{P}(A) > 0$  heißt

$$\mathbb{E}[X|A] := \frac{1}{\mathbb{P}(A)} \cdot \sum_{\omega \in A} X(\omega) \mathbb{P}(\{\omega\})$$

bedingter Erwartungswert von X unter (der Bedingung) A.

2. Ist speziell  $A = \{Z = z\}, z \in \mathbb{R}^k$ , für einen Zufallsvektor  $Z \colon \Omega \to \mathbb{R}^k$ , so heißt

$$\mathbb{E}[X|Z=z] := \mathbb{E}[X|\{Z=z\}] = \frac{1}{\mathbb{P}(Z=z)} \cdot \sum_{\omega \colon Z(\omega)=z} X(\omega) \mathbb{P}(\omega)$$

bedingter Erwartungswert von X unter der Bedingung Z=z. (Annahme:  $\mathbb{P}(Z=z)>0)$ 

#### 13.2 Bemerkungen

1. Sei  $\mathbb{P}_A(B)=\mathbb{P}(B|A)=\frac{\mathbb{P}(A\cap B)}{\mathbb{P}(A)}$ . Dann ist  $\mathbb{P}_A$  ein Wahrscheinlichkeits-Maß.

Denn: 
$$\mathbb{E}[X|A] = \sum_{\omega \in \Omega} X(\omega) \mathbb{P}_A(\{\omega\})$$

2. 
$$\mathbb{E}[X|A]\mathbb{P}(A) = \mathbb{E}X1_A$$
  $\left(X = 1_B, \mathbb{E}[X|A] = \frac{\mathbb{P}(A \cap B)}{\mathbb{P}(A)} = \mathbb{P}(B|A)\right)$ 

13.3 Beispiel 58

#### 13.3 Beispiel

 $X_1,X_2$ unabhängig,  $\mathbb{P}(X_i=k)=\frac{1}{6},k=1,\ldots,6$  ( $\Omega=\{1,\ldots,6\}^2,\mathbb{P}=$ Gleichverteilung)

$$\mathbb{E}[X_1|X_1 + X_2 = 10] = ?$$

$$A = \{X_1 + X_2 = 10\} = \{(4,6), (5,5), (6,4)\}$$

$$\mathbb{P}(A) = \frac{3}{36} = \frac{1}{12}$$

$$\mathbb{E}[X_1|A] = 12(4 \cdot \frac{1}{36} + 5 \cdot \frac{1}{36} + 6 \cdot \frac{1}{36})$$

$$= \frac{1}{3}(15) = 5$$

Übung:  $\mathbb{E}[X_1|X_1+X_2\geq 10]$ 

#### 13.4 Satz (Formel vom totalen Erwartungswert)

Es gelte  $\Omega = \bigcup_j A_j$  mit  $A_i \cap A_j = \emptyset$  Für  $i \neq j$  und  $\mathbb{P}(A_j) > 0, j = 1, 2, \dots$ Dann

$$\mathbb{E}X = \sum_{j} \mathbb{E}[X|A_{j}]\mathbb{P}(A_{j})$$

 $(X = 1_B \rightsquigarrow \text{Formel der totalen Wahrscheinlichkeit})$ 

Beweis. Analog zur Formel der totalen Wahrscheinlichkeit!

#### 13.5 Beispiel

"Unendliche" Bernoulli-Kette.

Beobachte bis erstmalig "1 1" auftritt. Sei X die Anzahl der Versuche.

$$\mathbb{E}X = ?$$

Sei  $A_1 = \{ \text{Kette beginnt mit } 0 \}.$ 

$$\mathbb{E}[X|A_1] = 1 + \mathbb{E}X$$

 $A_2 := \{ \text{Kette beginnt "1,0"} \}$ 

$$\mathbb{E}[X|A_2] = 2 + \mathbb{E}X$$

 $A_3 = \{ \text{Kette beginnt mit "1,1"} \}$ 

$$\mathbb{E}[X|A_3] = 2$$

13.4 
$$\rightsquigarrow \mathbb{E}X = (1-p)(\mathbb{E}X+1) + p(1-p)(2+\mathbb{E}X) + p^2 \cdot 2$$

$$\mathbb{E}X(1-(1-p)-p(1-p)) = 1-p+2p(1-p)+2p^2$$

$$(\mathbb{E}X)p^2 = 1+p$$

$$\begin{array}{ll} \mathbf{Erinnerung} & \mathbb{E}[X|A] = \frac{1}{\mathbb{P}(A)} \sum_{\omega \in A} X(\omega) \mathbb{P}(\{\omega\}) \\ \mathbb{E}X = \sum_{j} \mathbb{E}[A|A_{j}] \mathbb{P}(A_{j}) \end{array}$$

#### 13.6 Satz (Eigenschaften)

 $\mathbb{E}|X| < \infty, \mathbb{E}|Y| < \infty, Z \colon \Omega \to \mathbb{R}^n, z \in \mathbb{R}^n \text{ mit } \mathbb{P}(Z=z) > 0.$ 

1. 
$$\mathbb{E}[X + Y|A] = \mathbb{E}[X|A] + \mathbb{E}[Y|A]$$

2. 
$$\mathbb{E}[aX|A] = a\mathbb{E}[X|A]$$

3. 
$$X \leq Y \Rightarrow \mathbb{E}[X|A] < \mathbb{E}[Y|A]$$

4. 
$$\mathbb{E}[1_A|B] = \mathbb{P}(A|B)$$

5. 
$$\mathbb{E}[X|A] = \sum_{j} x_j \mathbb{P}(X = x_j|A)$$
  $\sum_{j} \mathbb{P}(X = x_j) = 1$ 

6. 
$$\mathbb{E}[X|Z=z] = \sum_{j} x_j \mathbb{P}(X=x_j|Z=z)$$

7.  $\mathbb{E}[X|Z=z]=\mathbb{E}X$  falls X und Z stochastisch unabhängig

Beweis. 13.2 und Satz 5.4

#### 13.7 Satz (Substitutionsformel)

Sei  $X\colon\Omega\to\mathbb{R}^n,Z\colon\Omega\to\mathbb{R}^k,g\colon\mathbb{R}^n\to\mathbb{R}^k$  mit  $\mathbb{E}|g(X,Z)|<\infty$ . Dann gilt für  $z\in\mathbb{R}^k$  mit  $\mathbb{P}(Z=z>0)$ 

$$\mathbb{E}[g(X,Z)|Z=z] = \mathbb{E}[g(X,z)|Z=z]$$

Beweis.

$$\mathbb{E}[g(X,Z)|Z=z] = \frac{1}{\mathbb{P}(Z=z)} \sum_{\omega \in \Omega: \ Z(\omega)=z} g(X(\omega),Z(\omega)) \mathbb{P}(\{\omega\})$$

$$=\frac{1}{\mathbb{P}(Z=z)}\sum_{\omega\in\Omega\colon Z(\omega)=z}g(X(\omega),z)\mathbb{P}(\{\omega\})=\text{ rechte Seite der Behauptung}.$$

#### 13.8 Beispiel (Würfelwurf)

Falls k auftritt, wird noch k mal gewürfelt. Sei X die Gesamtaugensumme.  $\mathbb{E}X = ?$ 

Modell:  $\Omega = \{1, \dots, 6\}^7, \mathbb{P} = \text{Gleichverteilung}$   $X_j(\omega) = \omega_j \quad \omega = (\omega_0, \dots, \omega_6) \in \Omega$  $X_0, \dots, X_6$  stochastisch unabhängig. Dann

$$X = X_0 + \sum_{j=1}^{X_0} X_j$$

$$\mathbb{E}[X|X_0 = k] = \mathbb{E}[X_0 + \sum_{j=1}^{X_0} X_j | X_0 = k]$$

$$= \mathbb{E}[k + \sum_{j=1}^k X_j | X_0 = k]$$

$$= k + \sum_{j=1}^k \mathbb{E}[X_j | X_0 = k]$$

$$\stackrel{g}{=} k + \sum_{j=1}^k \mathbb{E}X_j = k + k \cdot 3, 5 = 4, 5k$$

$$\mathbb{E}X = \sum_{j=1}^6 \mathbb{E}[X | X_0 = k] \mathbb{P}(X_0 = k)$$

$$= 4, 5 \cdot \frac{1}{6} \cdot \sum_{j=1}^6 k = \frac{9}{2} + \frac{1}{6} \cdot \frac{42}{2} = \frac{63}{4}$$

#### 13.9 Definition

Es sei  $Z: \Omega \to \mathbb{R}^k$  mit  $\mathbb{P}(Z=z_j) > 0, j \geq 1, \sum_j \mathbb{P}(Z=z_j) = 1.$ 

Es sei X Zufallsvariable mit  $\mathbb{E}(X) < \infty$ . Dann heißt die durch

$$\mathbb{E}[X|Z](\omega) := \begin{cases} \mathbb{E}[X|Z = z_j], & \text{falls } Z(\omega) = z_j \\ 0, & \text{sonst.} \end{cases}$$

definierte <u>Zufallsvariable</u>  $\mathbb{E}[X|Z]$  die **bedingte Erwartung** von X bei gegebenem Z.

13.10 Beispiel 61

#### 13.10 Beispiel

In Bsp. 13.8 gilt

$$\mathbb{E}[X|X_0] = \frac{9}{2}X_0$$

#### 13.11 Satz

Sei  $\mathbb{E}X^2 < \infty$ ,  $Z: \Omega \to \mathbb{R}^k$  (wie in 13.9),  $h: \mathbb{R}^k \to \mathbb{R}$  mit  $\mathbb{E}h(Z)^2 < \infty$ . Dann wird

$$\mathbb{E}(X - h(Z))^2$$

minimal für  $h(Z) = \mathbb{E}[X|Z]$ .

Beweis. Beweis durch Verwirrung und Klammerchaos. (Ohne Gewähr)

$$\mathbb{E}(X - h(Z))^2$$

$$\stackrel{13.4}{=} \sum_j \mathbb{E}[(X - h(Z))^2 | Z = z_j] \mathbb{P}(Z = z_j)$$

$$= \sum_j \mathbb{E}[(X - h(z_j))^2 | Z = z_j] \mathbb{P}(Z = z_j)$$

$$= \sum_j (\mathbb{E}[(X - \mathbb{E}[X | Z = z_j]) + (\mathbb{E}[X | Z = z_j] - h(z_j))^2 | Z = z_j] \mathbb{P}(Z = z_j)$$

TODO: Rauskriegen, was das heißen soll

$$\sum_{j} \mathbb{E}[(X - \mathbb{E}[X|Z = z_j]))^2 | Z = z_j] \mathbb{P}(Z = z_j)$$

$$2 \sum_{j} \mathbb{E}[\underbrace{(\mathbb{E}[X|Z = z_j] - h(z_j))}_{\text{Vor den EW ziehen}} (X - \mathbb{E}[X|Z = z_j]) | Z = z_j) \mathbb{P}(Z = z_j)$$

$$+ \sum_{j} (\mathbb{E}[X|Z = z_j] - h(z_j))^2 \mathbb{P}(Z = z_j)$$

Nebenrechnung:  $\mathbb{E}[X - \mathbb{E}[X|Z = z_j]|Z = z_j] = 0$ 

$$\rightsquigarrow$$
 Minimierer:  $h(z_j) = \mathbb{E}[X|Z = z_j]$ 

## Kapitel 14

# Grenzwertsätze

# 14.1 Satz (Schwache Gesetz der großen Zahlen, SGGZ)

Seien  $X_1,X_2,\ldots$  unabhängige Zufallsvariablen mit gleicher Verteilung und  $\mathbb{E} X_1^2<\infty.$  Sei

$$\bar{X}_n := \frac{1}{n} \sum_{j=1}^n X_j$$

Dann gilt

$$\mathbb{P}(|\bar{X}_n - \mathbb{E}X_1| > \epsilon) \to 0$$

 $\lim n \to \infty, \epsilon > 0$ 

Beweis.

$$\mathbb{E}\bar{X_n} = \frac{1}{n}(\mathbb{E}X_1 + \ldots + \mathbb{E}X_n) = \mathbb{E}X_1$$

$$V(\bar{X}_n) = \frac{1}{n^2}V(X_1 + \dots + X_n) = \frac{1}{n^2}(V(X_1) + \dots + V(X_n)) = \frac{1}{n}V(X_1)$$

Tschebyschevsche Ungleichung (Satz 11.6)

$$\mathbb{P}(|\bar{X}_n - \mathbb{E}\bar{X}_n| > \epsilon) \le \frac{V(\bar{X}_n)}{\epsilon^2} = \frac{V(X_1)}{n\epsilon^2}$$

#### 14.2 Definition

Sind  $Y_1, Y_2, Y_3, \dots$  Zufallsvariablen, so schreibt man

$$Y_n \stackrel{\mathbb{P}}{\to} Y$$
 für  $n \to \infty$ 

$$\mathbb{P}(|Y_n - Y| > \epsilon) \to 0 \text{ für } n \to \infty \quad \forall \epsilon > 0.$$

 $(\operatorname{SGGZ}: \bar{X_n} \xrightarrow{\mathbb{P}} \mathbb{E} X_1)$ 

**Bemerkung** Auf einem diskreten Wahrscheinlichkeitsraum gibt es keine unendlichen Folgen von unabhängigen Zufallsvariablen. Lösung:

$$\mathbb{P} \to \mathbb{P}_n$$

→ Wahrscheinlichkeitstheorie-Vorlesung

#### 14.3 Folgerung (SGGZ von Jakob Bernoulli)

Seien  $A_1, A_2, \ldots$  unabhängige Ereignisse mit  $\mathbb{P}(A_j) = p, j \geq 1$ . Dann

$$R_n = \frac{1}{n} \sum_{j=1}^n 1_{A_j} \stackrel{\mathbb{P}}{\to} p$$

**Bemerkung**  $\forall \epsilon > 0 \forall \delta \in (0,1) \exists n \in \mathbb{N} \colon \mathbb{P}(|R_n - p| \le \epsilon) \ge 1 - \delta$  Das bedeutet nicht

$$\mathbb{P}(\bigcap_{n>=n_0} \{|R_n - p| \le \epsilon\}) \ge 1 - \delta!$$

→ Starkes GGZ (Wahrscheinlichkeitstheorie)

Es seien  $X_1, X_2, \ldots$  unabhängige Bern(p)-verteilte Zufallsvariablen. Setze

$$S_n := X_1 + \ldots + X_n, n > 1$$
 Irrfahrt,  $X_i \in \{-1, 1\}$  besser!

**Frage** Wie stark schwankt  $S_n$  um seinen Erwartungswert np? (TODO: Bild)

#### 14.4 Satz

Es sei  $(a_n)$  eine reelle Zahlenfolge. Dann gilt

$$\lim_{n \to \infty} \mathbb{P}(|S_n - np| \le a_n) = \begin{cases} 1, & \text{falls } \frac{a_n}{\sqrt{n}} \to \infty \\ 0 & \text{falls } \frac{a_n}{\sqrt{n}} \to 0 \end{cases}$$

 $<sup>^1</sup>$ Random Walk