Министерство образования и науки Российской Федерации Университет ИТМО

Кафедра Систем Управления и Информатики

Лабораторная работа №2 Исследование переходных процессов в зависимости от расположения корней дискретной системы Вариант №2

Выполнил: студент группы Р4135,

Артемов Кирилл

Проверил: Литвинов Ю. В.

1 Цель работы

Исследование динамических свойств линейных дискретных систем второго порядка.

2 Задание

Таблица 1 - Вариант задания

No	Номер эксперимента											
J \ ≌	1		2		3		4		5		6	
	\boldsymbol{z}_1	\boldsymbol{z}_2										
2	0.9	1	-0.9	-1	0	0.2	0.1j	-0.1j	-0.2+0.8j	-0.2-0.8j	0.8+0.2j	0.8-0.2j

Время дискретности Т = 0.2 сек.

- 3 Ход работы
- а) Модель BCB для дифференциального уравнения $\dot{y} = u$.

Введем следующие переменные: $x_1 = y$, $\dot{x}_1 = \dot{y} = x_2$, $\dot{x}_2 = u$ Составим модель ВСВ:

$$\dot{x}=Ax+Bu$$

$$y=Cx$$
 где $A=\begin{bmatrix}0&1\\0&0\end{bmatrix};\ \mathrm{B}=\begin{bmatrix}0\\1\end{bmatrix};\ \mathrm{C}=\begin{bmatrix}1&0\end{bmatrix}$

б) Переход к дискретному описанию системы.

$$x(k+1) = A_d x(k) + B_d u(k)$$
$$y(k) = Cx(k)$$

где

$$A_d = e^{AT}$$

$$B_d = A^{-1}(e^{AT} - I)B$$

Так как матрица А вырождена, то матрицы $B_{\rm d}$ находится по следующей формуле: $B_{\rm d} \approx \sum_{i=1}^k \frac{A^{i-1} T^i}{i!} B$

$$B_d \approx \sum_{i=1}^{\kappa} \frac{A^{i-1}T^i}{i!} B_d$$

Вычисления производились в среде моделирования Scilab, при помощи следующего скрипта.

Листинг 1 – Скрипт расчета матриц дискретной системы

```
A = [0, 1; 0, 0];
B = [0; 1];
    Bd = Bd + (A^(i-1) * T^i) / prod(1:i) * B;
```

Получены матрицы:

$$A_d = \begin{bmatrix} 1 & 0.2 \\ 0 & 1 \end{bmatrix}; \ \mathbf{B}_d = \begin{bmatrix} 0.02 \\ 0.2 \end{bmatrix};$$

в) Получение описани дискретной системы.

Управляющее воздействие имеет вид:

$$u(k) = Kx(k) = \begin{bmatrix} k_1 & k_2 \end{bmatrix} \begin{bmatrix} x_1(k) \\ x_2(k) \end{bmatrix}$$

Матрица описания дискретной системы:

$$F_d = A_d - B_d K$$

где К – матрица линейных стационарных обратных связей.

Подставляя полученные матрицы
$$\mathbf{A_d}$$
 и $\mathbf{B_d}$, получим:
$$F_d = \begin{bmatrix} 1-0.02k_1 & 0.2-0.02k_2\\ -0.2k_1 & 1-0.2k_2 \end{bmatrix}$$

Вычислим характеристический полином

$$\det(\text{Iz-F}_d) = 0$$

$$z^2 + (0.2k_2 + 0.02k_1 - 2)z + (-0.2k_2 + 0.02k_1 + 1) = 0$$

г) Поиск дискретных характеристических уравнений.

Для системы второго порядка, характеристический полином матрицы описания имеет вид:

$$D(z) = det(Iz - F_d) = z^2 + a_1 z + a_0 = 0$$

В таблице 1 представленны шесть экспериментов для каждого из которых заданы по два корня характеристического полинома z_1 и z_2 .

Составим для них систему уравнений:

$$\begin{cases} z_1^2 + a_1 z_1 + a_0 = 0 \\ z_2^2 + a_1 z_2 + a_0 = 0 \end{cases}$$

Отсюда выразим коэффициенты a_0 и a_1 , тогда в матричном виде:

$$\begin{bmatrix} a_1 \\ a_0 \end{bmatrix} = \begin{bmatrix} z_1 & 1 \\ z_2 & 1 \end{bmatrix} - 1 \begin{bmatrix} -z_1^2 \\ -z_2^2 \end{bmatrix}$$

И рассчитаем в Scilab.

Таблица 2 – Коэффициенты характеристических полиномов

No	a_0	a_1
1	0.9	-1.9
2	0.9	1.9
3	0	-0.2
4	0.01	0
5	0.68	0.4
6	0.68	-1.6

Полиномы принимают вид:

$$D_1(z) = z^2 - 1.9z + 0.9$$

$$D_2(z) = z^2 + 1.9z + 0.9$$

$$D_3(z) = z^2 - 0.2z$$

$$D_4(z) = z^2 + 0.01$$

$$D_5(z) = z^2 + 0.4z + 0.68$$

$$D_6(z) = z^2 - 1.6z + 0.68$$

д) Поиск элементов МЛСОС.

МЛСОС представляет из себя:

$$K = \begin{bmatrix} k_1 & k_2 \end{bmatrix}$$

Приравнивая коэффициенты заданных полиномов системы, получсим систему:

$$\begin{cases} \frac{k_2}{5} + \frac{k_1}{50} &= a_1 + 2\\ -\frac{k_2}{5} + \frac{k_1}{50} &= a_0 - 1 \end{cases}$$

В матричном виде:

$$\begin{bmatrix} 0.2 & 0.02 \\ -0.2 & 0.02 \end{bmatrix} \begin{bmatrix} k_2 \\ k_1 \end{bmatrix} = \begin{bmatrix} a_1 + 2 \\ a_0 - 1 \end{bmatrix}$$

И, выражая вектор K, получаем:
$$\begin{bmatrix} k_2 \\ k_1 \end{bmatrix} = \begin{bmatrix} 0.2 & 0.02 \\ -0.2 & 0.02 \end{bmatrix} - 1 \begin{bmatrix} a_1 + 2 \\ a_0 - 1 \end{bmatrix}$$

Расчитываем МЛСОС для каждой из полученных пар коэффициентов полиномов из таблицы 2.

Таблица 3 – Результаты вычисления МЛСОС

№	\mathbf{k}_1	k_2
1	0	0.5
2	95	10
3	20	7
4	25.25	7.475
5	52	6.8
6	2	1.8

е) Моделирование.

Схема моделирования представлена на рисунке 1.

Рисунок 1 – Схемма моделирования

Моделирование производитя для каждой из пар коэффикиентов из таблицы 3. Начальные условия: $y(0)=1, \dot{y}(0)=0.$ На графиках пунктирной линией обозначена y(t), сплошной $\dot{y}(t)$.

- 1) Эксперимент №1. Так как коэффициент $k_1 = 0$, то на выходе системы также ноль.
 - 2) Эксперимент №2.

3) Эксперимент №3.

4) Эксперимент №4.

5) Эксперимент №5.

6) Эксперимент №6.

- ж) Построение фазовых траеткорий.
- 1) Фазовая траектория для начальных условий $y(0) = -3, \dot{y}(0) = 0.$ Для второго жксперимента

На выходе системы нет сигнала.

2) Фазовая траектория для начальных условий $y(0)=-2, \dot{y}(0)=0.$ Для второго эксперимента.

3) Фазовая траектория для начальных условий $y(0) = -1, \dot{y}(0) = 0.$ Для третьего эксперимента.

4) Фазовая траектория для начальных условий $y(0)=1, \dot{y}(0)=0.$ Для четвертого эксперимента.

5) Фазовая траектория для начальных условий $y(0)=2, \dot{y}(0)=0.$ Для пятого эксперимента.

6) Фазовая траектория для начальных условий $y(0)=3, \dot{y}(0)=0.$ Для шестого эксперимента.

4 Вывод

В ходе работы были исследованы динамические свойства дискретных систем второго порядка.

Исследованы модели «Вход-состояние-выход» для линейной дискретной системы второго порядка, в том числе — замкнутые и их характеристические полиномы. Построены графики для каждого из заданных полиномов и фазовые траектории с заданными начальными условиями.