

PROJET ESPADON

Présentation du 08/03/2024 FISE24

Contexte et objectifs

Docking d'un ROV dans une structure sous-marine

BlueROV de BlueRobotics

https://hhenriksen.com/launch-and-recovery-auv-underwater-docking/

Peut-on docker deux AUV afin d'échanger de l'énergie ou de l'information ?

Stratégie

Stratégie

Stratégie

Notre solution

ARCHITECTURE FONCTIONNELLE

CONTRÔLE

GUIDAGE ACOUSTIQUE

Guidage acoustique

Source émettrice

 Capteur acoustique équipé d'une centrale inertielle

- Fréquence de réception de données :

o Acoustiques: 0.5 à 10 Hz

o Inertielles: 10-30 Hz

Schéma de principe d'un USBL

Distance (m)	Précision (m)
5	0,1
100	0,5
1000	5

Précision des mesures acoustiques

Subsonus USBL de Advanced Navigation

- Stratégie de guidage en cap :

$$\overline{\theta_{ROV}} = \theta_{dock} + \alpha - \pi$$

- Equation de guidage :

$$w = k * f(\overline{\theta_{ROV}} - \theta_{ROV})$$

Schéma de principe du guidage acoustique

Guidage acoustique

Guidage acoustique au lac de Guerlédan

INTERFACE DE DOCKING

De métrique à centimétrique

Projet "NICHE"

Projet « ESPADON »

Réalisation

Améliorations pour Vision - Support pour Simulation

GUIDAGE PAR VISION

Détection d'ARUCO

Structure mécanique sous l'eau

Stratégie (rappel)

Prétraitement de l'image

Image brute

CLAHE

Two-step

Prétraitement de l'image

Image brute

CLAHE

Two-step

DÉTECTION D'ARUCOS

RECONSTRUCTION D'IMAGES AQUATIQUES

Calibration intrinsèque

Repère 3D
« physique » de la caméra
$$M_{i,homogène} = \begin{bmatrix} \frac{f}{h_x} & 0 & c_x & 0 \\ 0 & \frac{f}{h_y} & c_y & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix} \longrightarrow \text{Repère 2D}$$
Exemple de distorsion

Résultats du guidage par vision

Architecture de la simulation

Simulation sous Gazebo

CONCLUSION

POUR ALLER PLUS LOIN

A court terme

- Localisation par Kalman
- Simulation : ajout d'un bruit pour simuler les USBL

A long terme

- Réduction degrés de liberté -> AUV
- Docking en mouvement
- Nodes ROS2 : Python -> C++

Merci pour votre attention

→ Avez-vous des questions ?

ANNEXE

Stratégie de fusion des données

