Module 1 - Lesson 01: Number Systems

Number Systems

In any number system, symbols are used to represent quantitative values. The **base** of any number system is equivalent to the number of distinct, admissible symbols.

Decimal Number System (Base 10)

The decimal number system is the predominant number system used in society. It consists of **ten** symbols (also known as digits) and all decimal numbers are presented as some combination of these digits.

The symbols in the decimal number system: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9

Binary Number System (Base 2)

There are two symbols in the binary number system: 0, 1

Why are we learning about binary in this course?

The symbols in the binary number system are known as **bits** (*bi*nary digi*ts*). Digital computers use the binary number system because the components that store data within a computer are electronic switches with two stable states (on, off). These states are referenced by the symbols 0 (off) and 1 (on).

Hexadecimal Number System (Base 16)

The hexadecimal number system uses sixteen admissible digits, known as **hexits**. The hexadecimal system is commonly referred to as "hex".

The symbols in the hexadecimal number system: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F

Why are we learning about hexadecimal in this course?

Computer memory is divided into tiny storage locations known as **bytes**. A byte consists of eight bits. Each hexit can be written as <u>four</u> bits. Therefore, a byte can be written as two hexits.

Example:

One byte of data (8 bits)

Hexadecimal representation of the above byte of data

Number System Notation

There are numerous ways to distinguish between hexadecimal, binary and decimal numbers. For the purposes of this course, all binary numbers will be *succeeded* by a lowercase bin and hexadecimal numbers will be *succeeded* by a lowercase hex.

Examples: 10011bin, 101hex, 7A49Chex, FADEhex

Relationship between number systems

Decimal	Binary	Hex	Decimal	Binary	Hex	Decimal	Binary	Hex
0	0	00 _{hex}	16	1 0000	10 hex	32	10 0000	20 _{hex}
1	1	01 _{hex}	17	1 0001	11 _{hex}	33	10 0001	21 _{hex}
2	10	02 _{hex}	18	1 0010	12 hex	34	10 0010	22 _{hex}
3	11	03 _{hex}	19	1 0011	13 _{hex}	35	10 0011	23 _{hex}
4	100	04 _{hex}	20	1 0100	14 _{hex}	36	10 0100	24 _{hex}
5	101	05 _{hex}	21	1 0101	15 _{hex}	37	10 0101	25 _{hex}
6	110	06 _{hex}	22	1 0110	16 _{hex}	38	10 0110	26 _{hex}
7	111	07 _{hex}	23	1 0111	17 _{hex}	39	10 0111	27 _{hex}
8	1000	08 hex	24	1 1000	18 _{hex}	40	10 1000	28 _{hex}
9	1001	09 _{hex}	25	1 1001	19 _{hex}	41	10 1001	29 hex
10	1010	0A _{hex}	26	1 1010	1A hex	42	10 1010	2A hex
11	1011	OB hex	27	1 1011	1B hex	43	10 1011	2B _{hex}
12	1100	OC _{hex}	28	1 1100	1C _{hex}	44	10 1100	2C _{hex}
13	1101	0D _{hex}	29	1 1101	1D _{hex}	45	10 1101	2D _{hex}
14	1110	OE hex	30	1 1110	1E hex	46	10 1110	2E hex
15	1111	OF hex	31	1 1111	1F hex	47	10 1111	2F _{hex}

Can you identify any patterns?

Base 10 (Decimal) Place Values

Place value depends on the base of the number system, raised to a power dependent on position. For a decimal number, the base is 10, and is raised to a power numbered from right to left of 0, 1, 2, etc.

The place values for base 10 are as follows:

 10^{0} (ones), 10^{1} (tens), 10^{2} (hundreds), etc.

Example: The place values for the number 6,439 are:

6

3

9

10³

10²

10¹

10°

Base 10 (Decimal) Expanded Notation

Expanded notation means taking a number and writing it based on its place values.

Example:

832

Example 2:

7012

Exercise 1:

Write the following decimal numbers in expanded notation.

- a) 398
- b) 19640
- c) 500001

Base 2 (Binary) Place Values

Similar to the decimal system, base 2 place values are raised to a power from right to left starting at 0. The only difference is that the base is 2 instead of 10.

Example: 1 0 1 0 1

2⁴ 2³ 2² 2¹ 2⁰

Base 2 (Binary) Expanded Notation

Example 1: 1101

Example 2: 1010011

Exercise 2:

Write the following binary numbers in expanded notation and calculate its decimal equivalent.

a) 1111

b) 10010001

c) 011010

Base 16 (Hexadecimal) Place Values

Similar to the decimal system, base 16 place values are raised to a power from right to left starting at 0. The only difference is that the base is 16 instead of 10.

Example: B E 7 C A 16^4 16^3 16^2 16^1 16^0

Base 16 (Hexadecimal) Expanded Notation

Example 1: 1238 hex

Example 2: 40CAB hex

Exercise 3:

Write the following hexadecimal numbers in expanded notation.

a) 84A2 hex

b) 3EF64 hex

c) 1C0DE hex

Exercises

1.	Write the following numbers in expanded notation and calculate the equivalent decimal value.
	a) (363) _{dec}
	b) 10110 _{bin}
	c) D2A6 _{hex}
2.	Count from 10101 <i>bin</i> to 11010 <i>bin</i> , writing all binary numbers in between.
3.	Count from 1DA <i>hex</i> to 1F0 <i>hex</i> , writing all hexadecimal numbers in between.
4.	What number comes before FD0 <i>hex</i> in hexadecimal?
5.	What number comes after 10111 <i>bin</i> in binary?
6.	Which of the following is the smallest value? 110110111 <i>bin</i> 1B6 <i>hex</i> 437 _{dec}