МИНОБРНАУКИ РОССИИ САНКТ-ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ ЭЛЕКТРОТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ «ЛЭТИ» ИМ. В.И. УЛЬЯНОВА (ЛЕНИНА) Кафедра МОЭВМ

ОТЧЕТ

по лабораторной работе №6

по дисциплине «Статистические методы обработки экспериментальных данных»

Тема: Кластерный анализ. Метод к-средних.

Студент гр. 5381	Лянгузов А. А
Преподаватель	Середа В. И.

Санкт-Петербург 2019

Цель работы.

Освоение основных понятий и некоторых методов кластерного анализа.

Задание

Дано конечное множество из объектов, представленных двумя признаками (в качестве этого множества принимаем исходную двумерную выборку, сформированную ранее в лабораторной работе №4). Выполнить разбиение исходного множества объектов на конечное число подмножеств (кластеров) с использованием метода k-средних. Полученные результаты содержательно проинтерпретировать.

Основные теоретические положения.

Кластерный анализ (англ. cluster analysis) — это метод классификации многомерных наблюдений на основе определения сходства или близости (расстояния) между объектами. Цель кластерного анализа заключается в определении однородных в некотором смысле групп, которые называются кластерами.

Алгоритм кластерного анализа включает пять этапов.

- 1 этап. Представление исходных данных в виде матрицы (таблицы "объект признак").
- 2 этап. Определение сходства объектов.
- 3 этап. Выбор метода объединения объектов в кластеры.
- 4 этап. Определение оптимального числа кластеров.
- 5 этап. Интерпретация кластеров и качества разбиения.

Меры расстояний:

Для того, чтобы сравнивать два объекта, необходимо иметь *критерий*, на основании которого будет происходить сравнение. Как правило, таким критерием является *расстояние* между объектами.

Есть множество мер расстояния, рассмотрим несколько из них: Евклидово расстояние — наиболее распространенное расстояние. Оно является геометрическим расстоянием в многомерном пространстве:

$$d(x, y) = \sqrt{\sum_{i=1}^{n} (x_i - y_i)^2}$$
Квадрат евклидова расстояния. Иногда может

возникнуть желание возвести в квадрат стандартное евклидово расстояние, чтобы придать большие веса более отдаленным друг от друга объектам. Расстояние городских кварталов (манхэттенское расстояние). Это расстояние является просто средним разностей по координатам. В большинстве случаев эта мера расстояния приводит к таким же результатам, как и для обычного расстояния Евклида. Однако отметим, что для этой меры влияние отдельных больших разностей (выбросов) уменьшается (так как они не возводятся в квадрат).

Расстояние Чебышева. Это расстояние может оказаться полезным, когда желают определить два объекта как «различные», если они различаются по какой-либо одной координате (каким-либо одним измерением).

Алгоритм k-means (k-средних)

Наиболее простой, но в то же время достаточно неточный метод кластеризации в классической реализации. Он разбивает множество элементов векторного пространства на заранее известное число кластеров k. Действие алгоритма таково, что он стремится минимизировать среднеквадратичное отклонение на точках каждого кластера. Основная идея заключается в том, что на каждой итерации перевычисляется центр масс для каждого кластера, полученного на предыдущем шаге, затем векторы разбиваются на кластеры вновь в соответствии с тем, какой из новых центров оказался ближе по выбранной метрике. Алгоритм завершается, когда на какой-то итерации не происходит изменения кластеров.

Экспериментальные результаты.

Двумерная выборка: n = 107

Таблица 1

v	501.00	369.00	344.00	473.00	426.00	528.00	497.00	467.00	506.00	431.00	454.00
Е	130.40	84.30	86.80	137.90	121.10	163.40	147.30	140.50	158.40	125.00	131.10
v	371.00	482.00	393.00	441.00	463.00	440.00	481.00	340.00	468.00	397.00	496.00
Е	89.20	139.90	103.20	122.80	129.10	128.50	135.20	85.10	142.00	108.60	143.10
v	434.00	541.00	352.00	438.00	453.00	423.00	351.00	525.00	409.00	469.00	386.00
Е	122.30	146.80	87.70	134.90	119.50	131.10	89.00	165.90	121.00	131.50	95.50
v	505.00	436.00	488.00	449.00	493.00	512.00	472.00	423.00	465.00	351.00	359.00
Е	137.50	114.30	134.10	124.50	129.70	169.90	134.20	130.80	140.70	102.90	71.90
v	457.00	467.00	400.00	418.00	492.00	434.00	510.00	392.00	463.00	459.00	397.00
Е	126.40	135.10	114.60	118.60	137.50	110.50	140.60	82.70	125.00	145.40	106.80
v	424.00	436.00	429.00	398.00	493.00	522.00	518.00	463.00	437.00	386.00	493.00
Е	119.00	116.70	112.90	109.00	154.50	154.50	144.40	121.20	121.80	105.80	151.20
v	414.00	480.00	585.00	562.00	508.00	421.00	463.00	422.00	406.00	544.00	345.00
Е	113.50	153.90	177.70	175.90	159.00	117.80	136.70	122.90	110.10	166.70	95.90
v	478.00	393.00	437.00	448.00	458.00	422.00	468.00	430.00	371.00	543.00	471.00
Е	126.60	122.80	115.10	121.90	121.70	115.70	144.90	104.30	91.90	155.40	143.90
v	475.00	521.00	353.00	437.00	362.00	490.00	484.00	459.00	480.00	482.00	522.00
Е	132.00	139.60	98.00	118.40	111.70	139.90	140.40	136.70	153.30	148.20	143.80
v	576.00	390.00	514.00	442.00	421.00	443.00	438.00	429.00			
Е	166.40	91.40	153.60	115.40	107.90	121.90	126.70	120.90			

Обработка результатов эксперимента.

1. Масштабирование выборки.

Масштабирование выборки осуществляется по формулам:

$$x_i = \frac{x_i - x_{min}}{x_{max} - x_{min}}, \ \forall i$$

$$y_i = \frac{y_i - y_{min}}{y_{max} - y_{min}}, \ \forall i$$

v	0.6571	0.1183	0.0163	0.5428	0.3510	0.7673	0.6408	0.5183	0.6775	0.3714	0.4653
	4286	6735	2653	5714	2041	4694	1633	6735	5102	2857	0612
Е	0.5529	0.1172	0.1408	0.6238	0.4650	0.8648	0.7126	0.6483	0.8175	0.5018	0.5595
	301	023	318	185	284	393	654	932	803	904	463
v	0.1265 3061	0.5795 9184	0.2163 2653	0.4122 4490	0.5020 4082	0.4081 6327	0.5755 1020	0.0000	0.5224 4898	0.2326 5306	0.6367 3469
Е	0.1635	0.6427	0.2958	0.4810	0.5406	0.5349	0.5982	0.1247	0.6625	0.3468	0.6729
	161	221	412	964	427	716	987	637	709	809	679
v	0.3836	0.8204	0.0489	0.4000	0.4612	0.3387	0.0448	0.7551	0.2816	0.5265	0.1877
	7347	0816	7959	0000	2449	7551	9796	0204	3265	3061	5510
Е	0.4763	0.7079	0.1493	0.5954	0.4499	0.5595	0.1616	0.8884	0.4640	0.5633	0.2230
	705	395	384	631	055	463	257	688	832	270	624
v	0.6734	0.3918	0.6040	0.4448	0.6244	0.7020	0.5387	0.3387	0.5102	0.0448	0.0775
	6939	3673	8163	9796	8980	4082	7551	7551	0408	9796	5102
Е	0.6200 378	0.4007 561	0.5879 017	0.4971 645	0.5463 138	0.9262 760	0.5888 469	0.5567 108	0.6502 836	0.2930 057	0.0000
v	0.4775	0.5183	0.2448	0.3183	0.6204	0.3836	0.6938	0.2122	0.5020	0.4857	0.2326
	5102	6735	9796	6735	0816	7347	7755	4490	4082	1429	5306
Е	0.5151	0.5973	0.4035	0.4413	0.6200	0.3648	0.6493	0.1020	0.5018	0.6947	0.3298
	229	535	917	989	378	393	384	794	904	070	677
v	0.3428	0.3918	0.3632	0.2367	0.6244	0.7428	0.7265	0.5020	0.3959	0.1877	0.6244
	5714	3673	6531	3469	8980	5714	3061	4082	1837	5510	8980
Е	0.4451	0.4234	0.3875	0.3506	0.7807	0.7807	0.6852	0.4659	0.4716	0.3204	0.7495
	796	405	236	616	183	183	552	735	446	159	274
v	0.3020	0.5714	1.0000	0.9061	0.6857	0.3306	0.5020	0.3346	0.2693	0.8326	0.0204
	4082	2857	0000	2245	1429	1224	4082	9388	8776	5306	0816
Е	0.3931 947	0.7750 473	1.0000	0.9829 868	0.8232 514	0.4338 374	0.6124 764	0.4820 416	0.3610 586	0.8960 302	0.2268 431
v	0.5632	0.2163	0.3959	0.4408	0.4816	0.3346	0.5224	0.3673	0.1265	0.8285	0.5346
	6531	2653	1837	1633	3265	9388	4898	4694	3061	7143	9388
Е	0.5170	0.4810	0.4083	0.4725	0.4706	0.4139	0.6899	0.3062	0.1890	0.7892	0.6805
	132	964	176	898	994	887	811	382	359	250	293
v	0.5510	0.7387	0.0530	0.3959	0.0897	0.6122	0.5877	0.4857	0.5714	0.5795	0.7428
	2041	7551	6122	1837	9592	4490	5510	1429	2857	9184	5714

Е	0.5680 529	0.6398 866	0.2466 919	0.4395 085	0.3761 815	0.6427 221	0.6474 480	0.6124 764	0.7693 762	0.7211 720	0.6795 841
v	0.9632 6531	0.2040 8163	0.7102 0408	0.4163 2653	0.3306 1224	0.4204 0816	0.4000 0000	0.3632 6531			
Е	0.8931 947	0.1843 100	0.7722 117	0.4111 531	0.3402 647	0.4725 898	0.5179 584	0.4631 380			

2. K-means кластеризация.

Количество кластеров взяли равным 7.

В качестве начальных центров кластеров взяли рандомные пары (v, E).

Пересчет центров кластеров после распределения всех пар осуществляется по формулам:

$$\bar{x} = \frac{\sum_{i=1}^{n_k} x_i}{n_k}$$

$$\bar{y} = \frac{\sum_{i=1}^{n_k} y_i}{n_k}, \ \textit{где} \ n_k - \textit{количество точек в кластере} \,.$$

Результаты представим графически.

1) Случайные центры:

2) Кластеризация по данным центрам:

3) Пересчет центров и кластеризация:

Avg cluster radius = 0.0767 . Avg internal distance = 0.1061

4) Пересчет центров осуществляется пока центры не перестанут меняться.

В данном случае конечный вариант:

Вывод.

В ходе выполнения лабораторной работы ознакомились кластерным анализом, в частности, k-means - методом k-средних.

К недостаткам k-means можно отнести:

- необходимость заранее знать количество кластеров;
- чувствительность к выбору начальных центров кластеров.

В отчете использовался вариант k-means, когда пересчет центров кластеров осуществляется после распределения всех пар (v, E) по кластерам, пока центры не перестанут меняться (кодовое название: "Lazy"). Однако, разработанный скрипт также содержит другой вариант метода k-средних, где пересчет центров происходит после каждого добавления точки (кодовое название: "Long").

В результате работы алгоритма k-средних, выборка была разделена на 7 кластеров.

