Complexité

235711131723

15 octobre 2022

1 Différents algorithmes de tri

1.1 Tri à bulle

Principe.

- On parcourt le tableau et on permute une case avec la suivante si elles ne sont pas dans le bon ordre
- À la fin du parcours, si on fait une permutation, on recommence le parcours.

Théorème. Le tri à bulle termine correctement en $\Theta(n^2)$.

Algorithme. Entrée : Tableau d'entiers T de taille n.

```
Entier temp
1
   Bool Permutation := Vrai
   Tant Que(Permutation):
3
4
        Permutation := Faux
5
       Pour(i := 0; i < n - 1; i := i + 1):
            Si(T[i] > T[i + 1]):
7
                temp := T[i]
                T[i] := T[i+1]
9
                T[i + 1] := temp
10
                Permutation := Vrai
            Fin Si
11
12
       Fin Pour
13
   Fin Tant Que
```

Démonstration du théorème. Posons $j \in \mathbb{N}$, pour $0 \le k \le n-1$, H(k): "Après k exécution de la boucle **Tant Que**, les j dernières cases du tableau contiennent les j plus grands éléments triés par ordre croissant.".

— **Initialisation de l'invariant.** Quand on arrive à la première exécution de la ligne 3, on a j = 0 et l'invariant est trivialement vrai.

— Sortie de la boucle <u>Tant Que</u>. On a Permutation := Faux. Puisqu'on avait initialement <u>Permutation</u> := Vrai alors j > 0.

Puisque Permutation := Faux à la fin de la boucle **Tant Que**, alors le test à la ligne 6 est faux et $\forall i \in [0, n-2], T[i] < T[i+1]$. Autrement dit, le tableau T[0...(n-1)] est trié dans l'ordre croissant.

Donc la boucle termine bel et bien correctement.

Tableau déjà entièrement trié. Supposons que j=n. Alors l'invariant H(k) devient, pour $0 \le k \le n-1$, H(k): "Le tableau est trié par ordre croissant à la k-ième itération.".

- Lors de la première itération de la boucle **Tant Que**, le test de la ligne 6 est toujours faux.
- On sort de cette boucle à la fin de la première itération. Je termine en O(n).
- Je termine.

Invariant de la boucle Pour. Supposons l'invariant H(k) vrai pour $k \in \mathbb{N}$ et supposons que nous sommes à la ligne 4 du code avec Permutation := Vrai. Montrons que H(k+1) est vrai.

Posons $M=\max_{i\in [\![0,n-(j+1)]\!]}T[i]$ et m tel que T[m]=M. Posons H'(i): "Les dernières cases du tableau sont triés par ordre croissant et $T[\min(n-(j+1),\max(i,m))]=M.$ ".

Initialisation. Pour i=0 et H(k), les j dernières cases sont triées et contiennent $T[\min(n-(j+1),\max(i,m))]=M$. De plus, $\min(n-(j+1),\max(i,m))=m$ et T[m]=M.

1.2 Tri par insertion

Principe.