36.3 The Rational Canonical Form, Second Version

Let us now translate the Elementary Divisors Decomposition Theorem, Theorem 35.38, in terms of E_f . We obtain the following result.

Theorem 36.14. (Cyclic Decomposition Theorem, Second Version) Let $f: E \to E$ be an endomorphism on a K-vector space of dimension n. Then, E is the direct sum of of cyclic subspaces $E_j = Z(u_j; f)$ for f, such that the minimal polynomial of E_j is of the form $p_i^{n_{i,j}}$, for some irreducible monic polynomials $p_1, \ldots, p_t \in K[X]$ and some positive integers $n_{i,j}$, such that for each $i = 1, \ldots, t$, there is a sequence of integers

$$1 \leq \underbrace{n_{i,1}, \dots, n_{i,1}}_{m_{i,1}} < \underbrace{n_{i,2}, \dots, n_{i,2}}_{m_{i,2}} < \dots < \underbrace{n_{i,s_i}, \dots, n_{i,s_i}}_{m_{i,s_i}},$$

with $s_i \geq 1$, and where $n_{i,j}$ occurs $m_{i,j} \geq 1$ times, for $j = 1, \ldots, s_i$. Furthermore, the monic polynomials p_i and the integers $r, t, n_{i,j}, s_i, m_{i,j}$ are uniquely determined.

Note that there are $\mu = \sum m_{i,j}$ cyclic subspaces $Z(u_j; f)$. Using bases for the cyclic subspaces $Z(u_i; f)$ as in Theorem 36.6, we get the following theorem.

Theorem 36.15. (Rational Canonical Form, Second Version) Let $f: E \to E$ be an endomorphism on a K-vector space of dimension n. There exist t distinct irreducible monic polynomials $p_1, \ldots, p_t \in K[X]$ and some positive integers $n_{i,j}$, such that for each $i = 1, \ldots, t$, there is a sequence of integers

$$1 \leq \underbrace{n_{i,1}, \dots, n_{i,1}}_{m_{i,1}} < \underbrace{n_{i,2}, \dots, n_{i,2}}_{m_{i,2}} < \dots < \underbrace{n_{i,s_i}, \dots, n_{i,s_i}}_{m_{i,s_i}},$$

with $s_i \ge 1$, and where $n_{i,j}$ occurs $m_{i,j} \ge 1$ times, for $j = 1, ..., s_i$, and there is a basis of E such that the matrix M of f is a block matrix of the form

$$M = \begin{pmatrix} M_1 & 0 & \cdots & 0 & 0 \\ 0 & M_2 & \cdots & 0 & 0 \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & \cdots & M_{\mu-1} & 0 \\ 0 & 0 & \cdots & 0 & M_{\mu} \end{pmatrix},$$

where each M_j is the companion matrix of some $p_i^{n_{i,j}}$, and $\mu = \sum m_{i,j}$. The monic polynomials p_1, \ldots, p_t and the integers $r, t, n_{i,j}, s_i, m_{i,j}$ are uniquely determined

The polynomials $p_i^{n_{i,j}}$ are called the *elementary divisors* of f (and M). These polynomials are factors of the minimal polynomial.

Example 1 continued: Recall that f(x, y, z, w) = (x + w, y + z, y + z, x + w) has two nontrivial invariant factors $q_1 = x(x - 2) = q_2$. Thus the elementary factors of f are $p_1 = x = p_2$ and $p_3 = x - 2 = p_4$. Theorem 36.14 implies that

$$\mathbb{R}^4 = E_1 \oplus E_2 \oplus E_3 \oplus E_4,$$