UNIVERSIDADE FEDERAL DO ABC

IEDO — 2013.1

Prova 1 — Diurno — horário: 8h-10h — tipo II

1. Considere a equação autônoma $\frac{dy}{dt} = 8y - 2y^2$. Esboce os gráficos das soluções y(t) dessa equação diferencial para diferentes condições iniciais $y(0) = y_0$. Determine os pontos críticos da equação e os classifique.

Resolução:

O gráfico do campo $\frac{dy}{dt}$ em função de y é o de uma parábola com concavidade para baixo e interseção com o eixo horizontal em y=0 e y=4. Se $y(0)=y_0<0$, então $\frac{dy}{dt}<0$ e a solução y(t) decresce, tendendo assintoticamente a $-\infty$. Se $0< y(0)=y_0<4$, então $\frac{dy}{dt}>0$ e a solução y(t) cresce, tendendo assintoticamente ao ponto fixo estável 4. Se $y(0)=y_0>4$, então $\frac{dy}{dt}<0$ e a solução y(t) decresce, tendendo assintoticamente ao ponto fixo estável 4. Finalmente, 0 é ponto fixo instável e 4 é ponto fixo estável. Note que as funções y(t) têm ponto de inflexão em y=2. O esboço das funções y(t) fica por sua conta.

- 2. Considere o seguinte Problema de Valor Inicial: sen(x)dy = ydx, y(0) = 0.
 - (a) Mostre que y(x)=0 e $y(x)=\frac{\sin x}{1+\cos x}$ são soluções do PVI.

Resolução:

Note que a equação dada equivale a sen(x)y' - y = 0.

Se $y(x) = 0 \ \forall x$, então $y'(x) = 0 \ \forall x$ e a substituição de y e y' no lado esquerdo da equação resulta zero para todo x. Além disso, y(0) = 0. Portanto, y(x) = 0 é solução do PVI.

Se $y(x) = \frac{\operatorname{sen}(x)}{1+\cos x}$, então a regra de derivação do quociente resulta, após simplificações, $y'(x) = \frac{1}{1+\cos(x)}$. Desse modo, o lado esquerdo da equação fica $\frac{\operatorname{sen}(x)}{1+\cos(x)} - \frac{\operatorname{sen}(x)}{1+\cos x} = 0$. Ademais, y(0) = 0 nesse caso. Portanto, $y(x) = \frac{\operatorname{sen}(x)}{1+\cos(x)}$ também é solução do PVI.

(b) Isso contradiz o Teorema de Existência e Unicidade? Explique.

Resolução:

Não. O teorema requer a continuidade das funções p(x) e g(x) na equação escrita na forma y' + p(x)y = g(x). O ponto em que a condição inicial é prescrita corresponde a $x_0 = 0$. Nesse ponto, a função $p(x) = \frac{-1}{\operatorname{sen}(x)}$ não é definida e, portanto, não é contínua.

3. Um novo produto é introduzido no mercado através de uma campanha publicitária cujo alvo são os N_0 habitantes de uma cidade X. A taxa com que a população fica sabendo sobre o produto é proporcional ao número de pessoas que ainda não ouviram falar sobre o produto. Supondo que, ao fim de um ano, metade da população tenha ouvido falar sobre o produto, qual será a fração da população que terá ouvido falar sobre o produto ao fim de três anos?

Resolução:

Chamando de y(t) o número de pessoas que já ouviram falar sobre o produto no instante t, a equação que descreve o processo é $y' = k(N_0 - y)$. Essa equação separável tem como solução

 $\int \frac{dy}{y-N_0} = -\int kdt + c$, que resulta $\ln|y-N_0| = -kt + c$. Segue que $N_0 - y = c_1e^{-kt}$. A condição inicial y(0) = 0 implica $c_1 = N_0$, donde $y(t) = N_0(1 - e^{-kt})$. Ao fim de um ano, metade da população terá ouvido falar sobre o produto, de modo que $N_0/2 = N_0(1 - e^k)$, o que implica $k = \ln 2$, de modo que $y(t) = N_0(1 - e^{-t \ln 2})$. Com isso, $y(3) = 7N_0/8$.

4. Resolva os Problemas de Valor Inicial abaixo:

(a)
$$y' = \frac{3\cos(3x)}{3+2y}$$
, $y(0) = -1$

Resolução:

A equação é separável, de modo que obtemos: $\int (3+2y)dy = 3\int \cos(3x)dx + c$. Resolvendo as integrais, chegamos a $y^2 + 3y - \sin(3t) = c$. A condição inicial nos dá c = -2 e também implica que $y(t) = \frac{-3+\sqrt{4} \sin(3t)+1}{2}$.

(b)
$$y' + (4/t)y = (3\cos t)/t^4$$
, $y(-\pi) = 0$, $t < 0$.

Resolução:

A equação é linear, tendo fator integrante $\mu(t) = \exp[\int \frac{4}{t} dt] = \exp[4 \ln |t|] = t^4$. Sua solução é $y(t) = \frac{\int 3 \cos(t) dt + c}{t^4} = \frac{3 \sin(t) + c}{t^2}$. A condição inicial implica c = 0, de modo que a solução do PVI é $y(t) = \frac{3 \sin(t)}{t^2}$.