

Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

«Московский государственный технический университет имени Н.Э. Баумана (национальный исследовательский университет)» (МГТУ им. Н.Э. Баумана)

ФАКУЛЬТЕТ «Информатика и системы управления» КАФЕДРА «Программное обеспечение ЭВМ и информационные технологии»

Отчет по лабораторной работе № 1 «Метод поразрядного поиска»

По курсу «Методы вычислений» Вариант 1

Студент: Белоусова Ю.С.

Группа: ИУ7-21М

Преподаватель: Власов П.А.

Москва, 2022г.

1. Постановка задачи

Необходимо решить задачу одномерной минимизации:

$$\begin{cases} f(x) \rightarrow min \\ x \in [a,b] \end{cases}$$

методом поразрядного поиска.

Входные данные для варианта 1:

- Целевая функция $f(x) = \exp(\frac{x^4 + x^2 x + \sqrt{5}}{5}) + sh(\frac{x^3 + 21x + 9}{21x + 6})$
- Otpesok [a, b] = [0, 1]

2. Краткое описание метода поразрядного поиска

Метод поразрядного поиска — представляет собой модифицированный метод перебора. Реализованные в данном методе модификации исходят из следующих соображений:

- 1. Если оказывается, что $f(x_i) \le f(x_{i+1})$, то отпадает необходимость вычислять f(x) в точках x_{i+2} , x_{i+3} и т.д., так как $x^* <= x_{i+1}$.
- 2. Целесообразно сперва найти приближенное (грубо) значение x*, а затем уточнить это значение, используя более точный шаг.

Пусть ε - требуемая точность нахождения x^* . При реализации, обычно, сперва фиксируют $\Delta > \varepsilon$, вычисляют $f_i = f(x_i)$; $x_i = a + i\Delta$, до тех пор, пока не будет выполнено условие $f_{i+1} > f_i$. При выполнении этого условия шаг уменьшается (как правило в четыре раза, а процесс поиска запускается в обратную сторону).

Алгоритм работы метода поразрядного поиска

1.
$$\Delta = \frac{(b-a)}{4}$$
; $x_0 = a; f_0 = f(x_0);$

- 2. $x_1 = a + \Delta; f_1 = f(x_1);$
- 3. если $f_0 > f_1$, то $x_0 = x_1; f_0 = f_1;$, иначе к п.5
- 4. если $x_0 \in (a,b)$, то переход к п. 2, иначе к п.5
- 5. если $\Delta \le \varepsilon$, то $x^* = x_0$; $f^* = f_0$; иначе к п.6
- 6. $x_0 = x_1$; $f_0 = f_1$; $\Delta = \frac{-\Delta}{4}$; переход к п.2.

3. Текст программы

```
function lab1()
    clc;
    show points = 1;
    N = \overline{0};
    a = 0;
    b = 1;
    eps = 1e-6;
    x0 = a;
    f0 = f(a);
    delta = a-b;
    iter = 0;
    xarr = [];
    yarr = [];
    while abs(delta) > eps
        delta = -delta/4;
        fprintf("Итерация %d: x0=%.10f, f0=%.10f, delta=%.10f\n", iter,
x0, f0, delta);
        xarr = [xarr x0];
        yarr = [yarr f0];
        iter = iter + 1;
        x1 = x0 + delta;
        f1 = f(x1);
        while f0>f1 && a<=x1 && x1<=b
            x0 = x1;
            f0 = f1;
            xarr = [xarr x0];
            yarr = [yarr f0];
            x1 = x0 + delta;
            f1 = f(x1);
        end
        x0 = x1;
        f0 = f1;
    fprintf("x*=%.10f, f*=%.10f\n", x0, f0);
    fprintf("Количество вызовов f: %d\n", N);
    figure
    x = 0:1e-3:1;
    y = arrayfun(@(xi) f(xi), x);
    if show points
        plot(x, y, x0, f0, '*', xarr, yarr, 'o');
        plot(x, y, x0, f0, '*');
    end
    function y=f(x)
        y = \exp((x^4 + x^2 - x + 5^{(1/2)})/5) + \sinh((x^3 + 21*x + 9)/(21*x)
+ 6)) + 3.0;
        N = N + 1;
    end
end
```

4. Результаты работы

№ п/п	3	N	X*	f(x*)
1	1e-2	21	0.5664062500	5.9895939936
2	1e-4	37	0.5713500977	5.9895596651
3	1e-6	49	0.5713148117	5.9895596634