Міністерство освіти і науки України Національний технічний університет України «Київський Політехнічний Інститут імені Ігоря Сікорського» Кафедра конструювання електронно-обчислювальної апаратури

Звіт З лабораторної роботи №2 по курсу "Основи теорії кіл"

Виконав:

Ст. гр. ДК-81

Шунь Павло

Перевірив:

ас. Короткий \in В.

Схема до лабораторної роботи:

Компоненти були підібрані наступним чином:

$$R_1 = R_2 = R_3 = 1 \text{ kOhm.}$$
 $L_1 = 1 \text{ mH.}$

Просимулювавши схему в LTspice IV отримали амплітудно-частотну характеристику схеми:

Після цього ми розіб'ємо область переходу амплітудно-частотної характеристики від частоти на якій $U_{\text{вих}}$ мінімальний до частоти $U_{\text{вих}}$ максимальний та оберемо на ній 7-10 точок.

f, kHz	U _{in} , V	U _{out} , V	Κυ	φ, º
6	1	0.5	0.5	-1.08
255	1	0.357	0.357	-9.54
503	1	0.34	0.34	-5.67
751	1	0.333	0.333	-3.92
1000	1	0.327	0.327	-2.98
1248	1	0.325	0.325	-2.41
1496	1	0.323	0.323	-2.02
1744	1	0.321	0.321	-1.73
2000	1	0.32	0.32	-1.49

ω, Рад/с	Κυ	φ,º
37.69	0.5	-1.08
1602	0.357	-9.54
3160	0.34	-5.67
4718	0.333	-3.92
6283	0.327	-2.98
7841	0.325	-2.41
9399	0.323	-2.02
10957	0.321	-1.73
12566	0.32	-1.49

 Φ азо-частотна характеристика

Провівши розрахунки, отримали такі вирази для визначення АЧХ та ФЧХ:

$$K_{U} = \frac{\sqrt{144*\omega^{4} + 148*10^{4}*\omega^{2} + 4*10^{^{2}}8}}{144*\omega^{2} + 4*10^{^{4}}4}$$

$$\varphi = -\arctan(\frac{10^{8}*\omega}{12*\omega^{2}+2*10^{11}})$$

Підставивши значення частоти, отриманої в симуляції в формулу, удостовіримося в правильності розрахунків.

Висновок: на цій лабораторній роботі я дослідив АЧХ і ФЧХ обраної схеми , а також побудував залежність Ки від циклічної частоти. Слід зазначити що, результати симуляції є ідеальними, тобто не враховують паразитну індуктивність і ємність на високих частотах. В реальній схемі результати могли б бути іншими через неідеальність компонентів.