Limbaje Formale, Automate și Compilatoare

Curs 6

2020-21

Curs 6

- Eliminarea regulilor de ştergere şi redenumirilor din gramatici de tip 2
- Forma normală Chomsky
- Problema recunoaşterii: algoritmul Cocke Younger Kasami
- Automate pushdown
- Legătura dintre automatele pushdown şi limbajele de tip 2
- Automate pushdown deterministe

Curs 6

- 1 Eliminarea regulilor de ştergere şi redenumirilor din gramatici de tip 2
- Forma normală Chomsky
- Problema recunoaşterii: algoritmul Cocke Younger Kasami
- 4 Automate pushdown
- 5 Legătura dintre automatele pushdown și limbajele de tip 2
- 6 Automate pushdown deterministe

Eliminarea regulilor de ştergere

- Intrare: G = (N, T, S, P)
- leşire: G' = (N, T, S, P'), L(G') = L(G), P' nu conţine reguli de ştergere (reguli de forma $A \to \epsilon$)

```
\label{eq:N0} \begin{split} N_0 &= \{A | A \in N, \ A \rightarrow \epsilon \in P\}; \ i = 0; \\ \text{do } \{ \\ i &= i+1; \\ N_i &= N_{i-1} \cup \{X | X \in N, \ \exists X \rightarrow \alpha \in P, \alpha \in N_{i-1}^*\}; \\ \} \text{ while } N_i \neq N_{i-1}; \\ N_\epsilon &= N_i; \end{split}
```

Eliminarea regulilor de ştergere

- Intrare: G = (N, T, S, P)
- leşire: G' = (N, T, S, P'), L(G') = L(G), P' nu conţine reguli de ştergere (reguli de forma $A \to \epsilon$)

```
\label{eq:N0} \begin{split} N_0 &= \{A | A \in N, \ A \rightarrow \epsilon \in P\}; \ i = 0; \\ \text{do } \{ \\ i &= i+1; \\ N_i &= N_{i-1} \cup \{X | X \in N, \ \exists X \rightarrow \alpha \in P, \alpha \in N_{i-1}^*\}; \\ \} \text{ while } N_i \neq N_{i-1}; \\ N_\epsilon &= N_i; \end{split}
```

Are loc:

- $\bullet \ \ N_0 \subseteq N_1 \ldots \subseteq N_i \subseteq N_{i+1} \subseteq \ldots N_{\epsilon} \subseteq N$
- \bullet $A \in N_{\epsilon} \iff A \Rightarrow^{+} \epsilon$

Eliminarea regulilor de ştergere

P' se obţine din P astfel:

• în fiecare regulă $A \to \alpha \in P$ se pun în evidență simbolurile din N_{ϵ} ce apar în α :

$$\alpha = \alpha_1 X_1 \alpha_2 X_2 \dots \alpha_n X_n \alpha_{n+1}, X_i \in N_{\epsilon}$$

 se înlocuieşte fiecare regulă de acest fel cu mulţimea de reguli de forma

$$A \rightarrow \alpha_1 \frac{Y_1}{A} \alpha_2 \frac{Y_2}{A} \dots \alpha_n \frac{Y_n}{A} \alpha_{n+1}$$
 unde $Y_i = X_i$ sau $Y_i = \epsilon$

în toate modurile posibile (2^n)

- se elimină toate regulile de ştergere
- pentru a obţine cuvântul nul (dacă S este în N_{ϵ}) se adaugă S' simbol de start nou şi regulile $S' \to S$, $S' \to \epsilon$

Exemplu

$$G = (\{S, A, B, C\}, \{a, b, c\}, S, P), \text{ unde P:}$$

- S → aAbC|BC
- A → aA|aB
- lacksquare B o bB|C
- $C \rightarrow cC | \epsilon$

$$G' = (\{S', S, A, B, C\}, \{a, b, c\}, S', P')$$
 unde P' :

- \bullet S' \rightarrow S| ϵ
- ullet S o aAbC|aAb|B|C
- $\bullet \ A \to aA|aB|a$
- lacksquare B o bB|b|C
- lacksquare C o cC|c

Eliminarea redenumirilor $(A \rightarrow B, A, B \in N)$

- Intrare: G = (N, T, S, P)
 leşire: G' = (N, T, S, P'), L(G') = L(G), P' nu conţine redenumiri
- for $(A \in N)$ $N_0 = \{A\}; i = 0;$ do{ i = i + 1: $N_i = N_{i-1} \cup \{C | C \in N, \exists B \rightarrow C \in P, B \in N_{i-1}\};$ } while $N_i \neq N_{i-1}$; $N_A = N_i$: $//N_A = \{X \in N | A \Rightarrow^* X\}$ $P' = \{X \to \alpha \in P | \alpha \notin N\}$ for $(X \to \alpha_1 | \alpha_2 | \dots | \alpha_n \in P')$ for $(A \in N \&\& X \in N_A, X \neq A)$ $P' = P' \cup \{A \rightarrow \alpha_1 | \alpha_2 | \dots | \alpha_n\}$

Exemplu

$$G = (\{x, y, z\}, \{a, b, c\}, x, P), \text{ unde P:}$$

- $x \rightarrow y|ax|a$
- $y \rightarrow z|by|b$
- lacktriangledown z
 ightarrow cz|c

$$N_x = \{x, y, z\}, N_y = \{y, z\}, N_z = \{z\}$$

Gramatica echivalentă fără redenumiri $G' = (\{x, y, z\}, \{a, b, c\}, x, P')$ unde P':

- $\bullet \ x \to ax|a|by|b|cz|c$
- $y \rightarrow by|b|cz|c$
- ullet $z \rightarrow cz|c$

Curs 6

- Eliminarea regulilor de ştergere şi redenumirilor din gramatici de tip 2
- Forma normală Chomsky
- Problema recunoaşterii: algoritmul Cocke Younger Kasami
- Automate pushdown
- Legătura dintre automatele pushdown şi limbajele de tip 2
- 6 Automate pushdown deterministe

Forma normală Chomsky

Definiție 1

O gramatică este în formă normală Chomsky dacă regulile sale au forma:

 $A \rightarrow BC$, $A \rightarrow a$ (şi eventual $S \rightarrow \epsilon$) ($A, B, C \in N$ şi $a \in T$).

Teorema 1

Orice limbaj independent de context poate fi generat de o gramatică în formă normală Chomsky.

Demonstraţie

• Se elimină regulile de ștergere și redenumirile

Demonstraţie

- Se elimină regulile de ştergere şi redenumirile
- Se elemină regulile care nu sunt în formă normală Chomsky: Dacă A → x₁x₂...x_n, n > 1 este o astfel de regulă atunci o înlocuim cu A → Y₁Y₂...Y_n unde:
 - $Y_i = x_i$, dacă $x_i \in N$ (neterminalii rămân la fel)
 - $Y_i = x_a$ dacă $x_i = a \in T$ (x_a este neterminal nou) și se adaugă regula $x_a \to a$

Demonstraţie

- Se elimină regulile de ştergere şi redenumirile
- Se elemină regulile care nu sunt în formă normală Chomsky: Dacă A → x₁x₂...x_n, n > 1 este o astfel de regulă atunci o înlocuim cu A → Y₁Y₂...Y_n unde:
 - $Y_i = x_i$, dacă $x_i \in N$ (neterminalii rămân la fel)
 - Y_i = x_a dacă x_i = a ∈ T (x_a este neterminal nou) şi se adaugă regula x_a → a
- O regulă de forma $A \rightarrow Y_1 Y_2 \dots Y_n$, dacă n > 2, o înlocuim cu:
 - $\bullet \ A \rightarrow Y_1Z_1$
 - $Z_1 \rightarrow Y_2Z_2$
 -
 - $Z_{n-3} \to Y_{n-2}Z_{n-2}$
 - $Z_{n-2} \rightarrow Y_{n-1} Y_n$, unde Z_1, Z_2, \dots, Z_{n-2} sunt neterminali noi.

Exemplu

$$G = (\{S, A\}, \{a, b, c\}, S, P), \text{ unde P:}$$

- $S \rightarrow aSb|cAc$
- \bullet $A \rightarrow cA|c$

Gramatica echivalentă în formă normală Chomsky

$$G = (\{S, A, x_a, x_b, Z_1, Z_2\}, \{a, b, c\}, S, P'), \text{ unde } P'$$
:

- $S \rightarrow x_a Z_1 | x_c Z_2$
- $Z_1 \rightarrow Sx_b$
- \bullet $Z_2 \rightarrow Ax_c$
- \bullet $A \rightarrow x_c A | c$
- ullet $x_a
 ightarrow a$
- \bullet $x_b \rightarrow b$
- \bullet $x_c \rightarrow c$

Curs 6

- Eliminarea regulilor de ştergere şi redenumirilor din gramatici de tip 2
- Forma normală Chomsky
- Problema recunoaşterii: algoritmul Cocke Younger Kasami
- 4 Automate pushdown
- 5 Legătura dintre automatele pushdown și limbajele de tip 2
- 6 Automate pushdown deterministe

Algoritmul Cocke Younger Kasami (CYK)

- Problema recunoaşterii în gramatici de tip 2: dată o gramatică de tip 2 si un cuvânt w, să se decidă dacă w ∈ L(G)
- Problema recunoaşterii în gramatici în formă normală Chomsky se poate rezolva cu algoritmul CYK în timp $O(n^3)$.
- Dacă $w = a_1 a_2 \dots a_n$ atunci se constuiesc mulţimile

$$V_{ij} = \{A|A \Rightarrow^+ a_i a_{i+1} \dots a_{i+j-1}\}$$

inductiv pentru $j = 1, \ldots, n$

$$w \in L(G) \Leftrightarrow S \in V_{1n}$$

Algoritmul Cocke Younger Kasami

- Pentru *j* = 1:
 - $V_{i1} = \{A|A \Rightarrow^+ a_i\} = \{A|\exists A \rightarrow a_i \in P\}$
- Pentru j > 1, V_{ij} :
 - Dacă $A \Rightarrow^+ a_i a_{i+1} \dots a_{i+j-1}$:

$$A \Rightarrow BC \Rightarrow^{+} a_{i}a_{i+1} \dots a_{i+j-1}$$
 \$i
$$B \Rightarrow^{+} a_{i}a_{i+1} \dots a_{i+k-1} (B \in V_{ik})$$

$$C \Rightarrow^{+} a_{i+k}a_{i+k+1} \dots a_{i+j-1} (C \in V_{i+k})_{j-k})$$
unde $1 < i < n+1-i, 1 < k < i-1$

•
$$V_{ii} = \bigcup_{k=1}^{j-1} \{A | A \to BC \in P, B \in V_{ik}, C \in V_{i+k, i-k}\}$$

Algoritmul Cocke Younger Kasami

Notaţie:

$$\{A|A \rightarrow BC \in P, B \in V_{ik}, C \in V_{i+k}\} = V_{ik} \circ V_{i+k}\}$$

Atunci:

pentru
$$2 \le j \le n, 1 \le i \le n + 1 - j$$
:

$$V_{ij} = \bigcup_{k=1}^{j-1} (V_{ik} \circ V_{i+k \ j-k})$$

Algoritmul Cocke Younger Kasami

- Intrare: G = (N, T, S, P) în formă normală Chomsky, $w = a_1 a_2 \dots a_n$
- leşire: $w \in L(G)$?

```
\begin{split} &\text{for}(\texttt{i} = 1 \text{; } \texttt{i} < = \texttt{n}; \texttt{ i} + \texttt{i}) \\ &V_{i1} = \{A | \exists A \to a_i \in P\}; \\ &\text{for}(\texttt{j} = 2; \texttt{j} < = \texttt{n}; \texttt{j} + \texttt{i}) \\ &\text{for}(\texttt{i} = 1; \texttt{i} < = \texttt{n} + 1 - \texttt{j}; \texttt{i} + \texttt{i}) \{ \\ &V_{ij} = \emptyset; \\ &\text{for}(\texttt{k} = 1; \texttt{k} < = \texttt{j} - 1; \texttt{k} + \texttt{i}) \\ &V_{ij} = V_{ij} \cup (V_{ik} \circ V_{i+k} \ j - \texttt{k}); \\ &\text{} \} \\ &\text{if}(S \in V_{1n}) \ w \in L(G) \ \text{else} \ w \not\in L(G) \end{split}
```

Exemplu

$$G = (\{S, X, Y, Z\}, \{a, b, c\}, S, P), \text{ unde P:}$$

- \circ S \rightarrow XY
- $\bullet \ X \to XY|a$
- $\bullet \ \ Y \to YZ|a|b$
- ullet $Z \rightarrow c$

$$w = abc$$

Exemplu

$$G = (\{S, X, Y, Z\}, \{a, b, c\}, S, P), \text{ unde P:}$$

- \circ S \rightarrow XY
- X → XY|a
- $\bullet \ \ Y \to YZ|a|b$
- ullet $Z \rightarrow c$

$$w = abc$$

$V_{11} = \{X, Y\}$	$V_{12} = \{S, X\}$	$V_{13} = \{S, X\}$
$V_{21}=\{Y\}$	$V_{22}=\{Y\}$	
$V_{31} = \{Z\}$		

$$S \in V_{13} \Leftrightarrow abc \in L(G)$$

Curs 6

- Eliminarea regulilor de ştergere şi redenumirilor din gramatici de tip 2
- Forma normală Chomsky
- Problema recunoaşterii: algoritmul Cocke Younger Kasami
- Automate pushdown
- 5 Legătura dintre automatele pushdown și limbajele de tip 2
- 6 Automate pushdown deterministe

Automate pushdown

- Automat finit + memorie pushdown (stiva)
- Model fizic:

Automate pushdown-definiție

Definiție 2

Un automat pushdown este un 7-uplu: $M = (Q, \Sigma, \Gamma, \delta, q_0, z_0, F)$:

- Q este mulţimea (finită) a stărilor
- Σ este alfabetul de intrare
- Γ este alfabetul memoriei pushdown (stivei)
- $q_0 \in Q$ este starea iniţială
- $z_0 \in \Gamma$ este simbolul iniţial din stivă
- F ⊆ Q este mulţimea stărilor finale
- $\delta: \mathbb{Q} \times (\Sigma \cup \{\epsilon\}) \times \Gamma \to 2^{\mathbb{Q} \times \Gamma^*}$

Modelul este nedeterminist

Configurația unui automat pushdown

Configurație: $(q, w, \gamma) \in Q \times \Sigma^* \times \Gamma^*$

1 : γ (primul simbol din γ) reprezintă vârful stivei

Automate pushdown

Configurație inițială: $(q_0, w, z_0) \in Q \times \Sigma^* \times \Gamma^*$

Relația de tranziție între configurații

• Configurația curentă $(q, aw, z\beta)$ și $(q', \alpha) \in \delta(q, a, z)$ $(q, q' \in Q, a \in \Sigma \cup \{\epsilon\}, z \in \Gamma, \alpha, \beta \in \Gamma^*)$

Relația de tranziție între configurații

• $(q, aw, z\beta) \vdash (q', w, \alpha\beta)$

Relația de tranziție între configurații

Fie $M = (Q, \Sigma, \Gamma, \delta, q_0, z_0, F)$ un automat pushdown.

Relaţia de tranziţie între configuraţii:

$$(q, aw, z\beta) \vdash (q', w, \alpha\beta) \text{ dacă } (q', \alpha) \in \delta(q, a, z)$$

 $(q, q' \in Q, a \in \Sigma \cup \{\epsilon\}, z \in \Gamma, \alpha, \beta \in \Gamma^*)$

• Calcul: închiderea reflexivă şi tranzitivă a relaţiei de mai sus: dacă C_1, \ldots, C_n configuraţii astfel încât:

$$C_1 \vdash C_2 \vdash \ldots \vdash C_n$$

se scrie: $C_1 \vdash^+ C_n$ dacă $n \ge 2$, $C_1 \vdash^* C_n$, dacă $n \ge 1$

Limbajul recunoscut

Prin stări finale (dacă $F \neq \emptyset$)

$$L(M) = \{ w \in \Sigma^* | (q_0, w, z_0) \vdash^* (q, \epsilon, \gamma), \ q \in F, \ \gamma \in \Gamma^* \}$$

Prin golirea stivei (dacă $F = \emptyset$)

$$L_{\epsilon}(M) = \{ w \in \Sigma^* | (q_0, w, z_0) \vdash^* (q, \epsilon, \epsilon), \ q \in \mathsf{Q} \}$$

Exemplu

Automat care recunoaște limbajul $\{a^nb^n|n \ge 1\}$:

$$M = (\{q_0, q_1, q_2\}, \{a, b\}, \{a, z\}, \delta, q_0, z, \{q_2\})$$

- $\delta(q_0, a, z) = \{(q_0, az)\}$
- $\delta(q_0, a, a) = \{(q_0, aa)\}$
- **3** $\delta(q_0, b, a) = \{(q_1, \epsilon)\}$
- **4** $\delta(q_1, b, a) = \{(q_1, \epsilon)\}$
- $\delta(q_1,\epsilon,z)=\{(q_2,\epsilon)\}$

• Un automat pushdown ce recunoaşte limbajul $\{waw^R | w \in \{0,1\}^*\}$

- Un automat pushdown ce recunoaşte limbajul $\{waw^R | w \in \{0,1\}^*\}$
 - Fiecare 0 sau 1 citit se introduce în stivă
 - a la intrare produce pregătirea scoaterii a câte un simbol din stiva dacă el coincide cu cel din intrare

- Un automat pushdown ce recunoaște limbajul $\{waw^R|w\in\{0,1\}^*\}$
 - Fiecare 0 sau 1 citit se introduce în stivă
 - a la intrare produce pregătirea scoaterii a câte un simbol din stiva dacă el coincide cu cel din intrare

$$M = (\{q_0, q_1, q_2\}, \{0, 1, a\}, \{0, 1, z\}, \delta, q_0, z, \{q_2\})$$

- $\delta(q_0, i, j) = \{(q_0, ij)\}, (i, j \in \{0, 1\})$
- **3** $\delta(q_0, a, i) = \{(q_1, i)\}$
- $\delta(q_1,\epsilon,z)=\{(q_2,\epsilon)\}$

- Un automat pushdown ce recunoaşte limbajul $\{waw^R | w \in \{0,1\}^*\}$
 - Fiecare 0 sau 1 citit se introduce în stivă
 - a la intrare produce pregătirea scoaterii a câte un simbol din stiva dacă el coincide cu cel din intrare

$$M = (\{q_0, q_1, q_2\}, \{0, 1, a\}, \{0, 1, z\}, \delta, q_0, z, \{q_2\})$$

- $\delta(q_0, i, j) = \{(q_0, ij)\}, (i, j \in \{0, 1\})$
- **3** $\delta(q_0, a, i) = \{(q_1, i)\}$
- **4** $\delta(q_1, i, i) = \{(q_1, \epsilon)\}$
- $\delta(q_1,\epsilon,z)=\{(q_2,\epsilon)\}$
- Un automat pushdown ce recunoaște limbajul $\{ww^R | w \in \{0,1\}^*\}$?

Exemple

- Un automat pushdown ce recunoaște limbajul $\{waw^R | w \in \{0,1\}^*\}$
 - Fiecare 0 sau 1 citit se introduce în stivă
 - a la intrare produce pregătirea scoaterii a câte un simbol din stiva dacă el coincide cu cel din intrare

$$M = (\{q_0, q_1, q_2\}, \{0, 1, a\}, \{0, 1, z\}, \delta, q_0, z, \{q_2\})$$

- 2 $\delta(q_0, i, j) = \{(q_0, ij)\}, (i, j \in \{0, 1\})$
- **3** $\delta(q_0, a, i) = \{(q_1, i)\}$
- $\delta(q_1, i, i) = \{(q_1, \epsilon)\}$
- $\delta(q_1,\epsilon,z)=\{(q_2,\epsilon)\}$
- Un automat pushdown ce recunoaşte limbajul $\{ww^R | w \in \{0,1\}^*\}$?
- Un automat pushdown ce recunoaşte limbajul $\{ww|w\in\{0,1\}^*\}$?

Echivalența definițiilor privind recunoașterea

Teorema 2

Pentru orice automat pushdown M cu $F = \emptyset$, există un automat pushdown M' cu stări finale astfel ca $L(M') = L_{\epsilon}(M)$.

Teorema 3

Pentru orice automat pushdown M cu $F \neq \emptyset$, există un automat pushdown M' cu $F = \emptyset$ astfel ca $L_{\epsilon}(M') = L(M)$.

Curs 6

- Eliminarea regulilor de ştergere şi redenumirilor din gramatici de tip 2
- Forma normală Chomsky
- Problema recunoaşterii: algoritmul Cocke Younger Kasami
- Automate pushdown
- Legătura dintre automatele pushdown şi limbajele de tip 2
- 6 Automate pushdown deterministe

Automatul pushdown echivalent cu o gramatică de tip

Teorema 4

Pentru orice gramatică G există un automat pushdown M fără stări finale astfel încât $L_{\epsilon}(M) = L(G)$

Automatul pushdown echivalent cu o gramatică de tip

Teorema 4

Pentru orice gramatică G există un automat pushdown M fără stări finale astfel încât $L_{\epsilon}(M) = L(G)$

- Fie *G* = (*N*, *T*, *S*, *P*)
- Construim $M = (\{q\}, T, N \cup T, \delta, q, S, \emptyset)$ unde:

 - $\delta(q, a, a) = \{(q, \epsilon)\}, \forall a \in T$
 - $\delta(q, x, y) = \emptyset$, în restul cazurilor
- $\bullet \ \ w \in L(G) \Leftrightarrow S \Rightarrow^+ w \Leftrightarrow (q, w, S) \vdash^+ (q, \epsilon, \epsilon) \Leftrightarrow w \in L_{\epsilon}(M)$
- M simulează derivările extrem stângi din G

Exemplu

- $G = (\{x\}, \{a, b\}, x, \{x \to axb, x \to ab\})$
- Automatul pushdown echivalent:

$$M = (\{q\}, \{a, b\}, \{a, b, x\}, \delta, q, x, \emptyset)$$

- $\delta(q, a, a) = \{(q, \epsilon)\}$
- $\delta(q,b,b) = \{(q,\epsilon)\}$

Gramatica echivalentă cu un automat pushdown

Teorema 5

Pentru orice automat pushdown M există o gramatică G astfel încât $L(G) = L_{\epsilon}(M)$

Gramatica echivalentă cu un automat pushdown

Teorema 5

Pentru orice automat pushdown M există o gramatică G astfel încât $L(G) = L_{\epsilon}(M)$

- Fie $M = (Q, \Sigma, \Gamma, \delta, q_0, z_0, \emptyset)$
- Construim $G = (N, \Sigma, S, P)$ astfel:
 - $N = \{[qzp]|p, q \in Q, z \in \Gamma\} \cup \{S\}$
 - P conține toate regulile de forma:
 - $S \rightarrow [q_0 z_0 q], \forall q \in Q$
 - dacă $(p, \epsilon) \in \delta(q, a, z)$, atunci: $[qzp] \rightarrow a$
 - dacă $(p,z_1z_2\dots z_m)\in \delta(q,a,z)$, atunci, pentru orice secvență de stări $q_1,\dots,q_m\in Q$:

$$[qzq_m] \rightarrow a[pz_1q_1][q_1z_2q_2]\dots[q_{m-1}z_mq_m]$$

• Are loc: $[qzp] \Rightarrow^+ w \Leftrightarrow (q, w, z) \vdash^+ (p, \epsilon, \epsilon)$

Curs 6

- Eliminarea regulilor de ştergere şi redenumirilor din gramatici de tip 2
- Forma normală Chomsky
- Problema recunoaşterii: algoritmul Cocke Younger Kasami
- 4 Automate pushdown
- Legătura dintre automatele pushdown şi limbajele de tip 2
- 6 Automate pushdown deterministe

Automate pushdown deterministe

Definiție 3

Automatul pushdown $M=(Q,\Sigma,\Gamma,\delta,q_0,z_0,F)$ este determinist dacă funcția de tranziție $\delta:Q\times (\Gamma\cup\{\epsilon\})\times \Gamma\longrightarrow 2^{Q\times \Gamma^*}$ îndeplinește condițiile:

- ② Dacă $\delta(q, \epsilon, z) \neq \emptyset$ atunci $\delta(q, a, z) = \emptyset, \forall a \in \Sigma$

Un automat pushdown determinist poate avea ϵ -tranziji

Automate pushdown deterministe

Definiție 3

Automatul pushdown $M=(Q,\Sigma,\Gamma,\delta,q_0,z_0,F)$ este determinist dacă funcția de tranziție $\delta:Q\times (\Gamma\cup\{\epsilon\})\times \Gamma\longrightarrow 2^{Q\times \Gamma^*}$ îndeplinește condițiile:

- ② Dacă $\delta(q, \epsilon, z) \neq \emptyset$ atunci $\delta(q, a, z) = \emptyset, \forall a \in \Sigma$

Un automat pushdown determinist poate avea ϵ -tranziji

$$M = (\{q_0, q_1, q_2\}, \{0, 1, a\}, \{0, 1, z\}, \delta, q_0, z, \{q_2\})$$

- $\delta(q_0, a, i) = \{(q_1, i)\}$
- $\delta(q_1,i,i) = \{(q_1,\epsilon)\}$
- $\delta(q_1,\epsilon,z)=\{(q_2,\epsilon)\}$

$$L(M) = \{ waw^R | w \in \{0, 1\}^* \}$$

\mathcal{L}_{2DET} - Limbaje de tip 2 deterministe

 $\mathcal{L}_{2DET} = \{L | \exists M \text{ automat pushdown determinist astfel ca } L = L(M) \}.$

- Clasa L_{2DET} este o clasă proprie a clasei de limbaje L₂ (L_{2DET} ⊂ L₂).
- $\bullet \ \{ww^R | w \in \{0,1\}^*\} \in \mathcal{L}_2 \setminus \mathcal{L}_{2DET}$

\mathcal{L}_{2DET} - Limbaje de tip 2 deterministe

 $\mathcal{L}_{2DET} = \{L | \exists M \text{ automat pushdown determinist astfel ca } L = L(M) \}.$

- Clasa L_{2DET} este o clasă proprie a clasei de limbaje L₂ (L_{2DET} ⊂ L₂).
- - $\delta(q_0, i, z) = \{(q_0, iz)\}, (i \in \{0, 1\})$
 - $\delta(q_0, i, j) = \{(q_0, ij)\}, (i, j \in \{0, 1\}, i \neq j)$
 - $\delta(q_0, i, i) = \{(q_0, ii), (q_1, \epsilon)\}$
 - $\delta(q_1,i,i) = \{(q_1,\epsilon)\}$
 - $\delta(q_1, \epsilon, z) = \{(q_2, \epsilon)\}$

\mathcal{L}_{2DET} - Limbaje de tip 2 deterministe

Definiție 4

O gramatică G este deterministă dacă:

- Orice regulă este de forma $A \to a\alpha$, unde $a \in T$ iar $\alpha \in (N \cup T)^*$
- Pentru orice $A \in N$, dacă $A \to a\alpha$, $A \to b\alpha'$ sunt reguli, atunci $a \neq b$

Pentru orice gramatică deterministă G există un automat pushdown determinist M astfel ca L(G) = L(M)