Solution for PS3-1.

- **a.** (2m) + (2n) = 2(m+n), which is even.
- **b.** (2m+1)+(2n+1)=2(m+n+1), which is even.
- c. (2m+1)+(2n)=2(m+n)+1, which is odd.
- **d.** $(2m) \cdot (n) = 2(mn)$, which is even.
- e. $(2m+1)\cdot(2n+1)=2(2mn+m+n)+1$, which is odd.

Solution for PS3-2.

- **a.** Since $3^b = 3^d$, we can simplify the equation to $2^a = 2^c$, which makes a = c. Thus, (a, b) = (c, d).
- **b.** Rearranging the equation, $2^{a-c} = 3^{d-b}$. So let p = a c, q = d b. By assumption, q > 0, so $q \in \mathbb{N}$.
- c. Each time we multiply an odd integer by three, the result must be odd. Since 3^q is obtained by starting with one (an odd integer) and multiplying by three q times, the final result must be odd.
- **d.** We have that $2^p = 3^q$, which is odd. If p < 0, 2p is not even an integer. If p > 0, $2^p = 2 \times 2^{p-1}$, which is two times an integer, so it is even. The only way that 2^p can be odd is if p = 0.
- **e.** Since p = a c = 0, we have a = c. Thus, $2^a = 2^c$ and the original equation simplifies to $3^b = 3^d$, which implies b = d. Thus, (a, b) = (c, d).
- f. We have shown that $f(a,b) = f(c,d) \Longrightarrow (a,b) = (c,d)$, so by definition, f is injective.

Solution for PS3-3. If A is countable, then we know there exists and injection $g: A \to \mathbb{N}$ by the definition of countability. If B is a subset of A we can define a function $f: B \to \mathbb{N}$ with f(x) = g(x). To prove that B is countable we will show that f is an injection.

Let x_1 and x_2 be any two elements of B. If $f(x_1) = f(x_2)$, then $g(x_1) = g(x_2)$. But g is injective, so this implies $x_1 = x_2$. Therefore f is also injective.

Solution for PS3-4.

a. If *A* and *B* are both countable then there are injections $g: A \to \mathbb{N}$ and $h: B \to \mathbb{N}$. We can define a function $f: (A \cup B) \to \mathbb{N}$ by the following:

$$f(x) = \begin{cases} 2g(x) + 1, & \text{if } x \in A, \\ 2h(x), & \text{otherwise (i.e., } x \in (B - A)). \end{cases}$$

We can show this function is an injection. Let x_1, x_2 be elements of $A \cup B$ with $f(x_1) = f(x_2)$. Either $f(x_1)$ will be odd, or it will be even.

If $f(x_1)$ is odd, then $f(x_1) = 2g(x_1) + 1$ (note that 2h(x) can never be odd because h(x) is a natural number). Similarly, $f(x_2)$ is odd (it is equal to $f(x_1)$ after all) so we have $f(x_2) = 2g(x_2) + 1$. This means $2g(x_1) + 1 = 2g(x_2) + 1$ which implies $g(x_1) = g(x_2)$. But we know g is an injective function, so $x_1 = x_2$. If $f(x_1)$ is even, then $f(x_1) = 2h(x_1)$ (again note that 2g(x) + 1 can never be even because g(x) is a natural number). We also know $f(x_2)$ is even so it equals $2h(x_2)$, therefore $2h(x_1) = 2h(x_2)$. This in turn implies $h(x_1) = h(x_2)$. We know h is an injection so $x_1 = x_2$.

So in either case we know if $f(x_1) = f(x_2)$ then $x_1 = x_2$. Therefore f is an injective function from $A \cup B$ to \mathbb{N} and there $A \cup B$ must be countable.

b. If A and B are both countable then there are injections $g:A\to\mathbb{N}$ and $h:B\to\mathbb{N}$. As in part a, we can define a function $f:(A\times B)\to\mathbb{N}$ by $f(a,b)=2^{g(a)}3^{h(b)}$. As before we can prove this is an injection. Let $f(a_1,b_1)=f(a_2,b_2)$, so $2^{g(a_1)}3^{h(b_1)}=2^{g(a_2)}3^{h(b_2)}$. From the uniqueness of prime factorization we know that this implies $g(a_1)=g(a_2)$ and $h(a_1)=h(a_2)$. But g and h are both injections so $a_1=a_2$ and $b_1=b_2$. This means the ordered pairs (a_1,b_1) and (a_2,b_2) are equal to each other. Therefore f is an injective function and $A\times B$ is countable.

Prof. Amit Chakrabarti Computer Science Department Dartmouth College

Solution for PS3-5. Let's repeatedly invoke the fact "A and B countable" $\Rightarrow A \times B$ countable".

Using it with $A = \mathbb{N}$ and $B = \mathbb{N}$ tells us that $\mathbb{N} \times \mathbb{N}$ is countable.

Now, using it with $A = \mathbb{N} \times \mathbb{N}$ and $B = \mathbb{N}$ tells us that $\mathbb{N} \times \mathbb{N} \times \mathbb{N}$ is countable.

Next, using it with $A = \mathbb{N} \times \mathbb{N} \times \mathbb{N}$ and $B = \mathbb{N}$ tells us that $\mathbb{N} \times \mathbb{N} \times \mathbb{N} \times \mathbb{N}$ is countable.

Finally, using it with $A = \mathbb{N} \times \mathbb{N} \times \mathbb{N} \times \mathbb{N}$ and $B = \mathbb{N}$ tells us that $\mathbb{N} \times \mathbb{N} \times \mathbb{N} \times \mathbb{N} \times \mathbb{N}$ is countable.

Solution for PS3-6. Since *A* is infinite, there exists some element $a_0 \in A$.

Since *A* is infinite, it has at least two elements, so there exists some element $a_1 \in A$ distinct from a_0 .

Since A is infinite, it has at least three elements, so there exists some element $a_3 \in A$ distinct from a_0, a_1 .

Since A is infinite, it has at least four elements, so there exists some element $a_4 \in A$ distinct from a_0, a_1, a_2 .

Proceeding in this fashion, for each $n \in \mathbb{N}$ we have an element a_n distinct from all elements a_m where m < n. Now define a function $f : A \to \mathbb{N}$ as follows.

$$f(x) = \begin{cases} n, & \text{if } x = a_n \text{ for some } n \in \mathbb{N}, \\ 0, & \text{otherwise (i.e., } x \text{ is not in the list } (a_0, a_1, a_2, \ldots)). \end{cases}$$

This function is surjective because, given any $n \in \mathbb{N}$, there exists the element $a_n \in A$ for which $f(a_n) = n$.

Solution for PS3-7. Since S is finite, given any particular length ℓ , there are only a finite number of ℓ -length strings in S^* . (To be precise, there are $|S|^{\ell}$ such strings, though we don't need this fact.) Therefore, we can list all the elements of S^* as follows:

empty string, followed by all strings of length 1 in some arbitrary order, followed by all strings of length 2 in some arbitrary order, followed by all strings of length 3 in some arbitrary order, followed by

This listing implicitly defines a bijection $f: \mathbb{N} \to S^*$, proving that S^* is countable.

Solution for PS3-8. Every Python program is just a string over a certain alphabet: say, the alphabet of all Unicode characters.

Thus, the set of all Python programs is a subset of a countable set, so it is itself a countable set.

Solution for PS3-9. Let I = (0,1). We define f(x,y) as follows, for $(x,y) \in I \times I$. Let

$$x = 0.a_1 a_2 a_3 \cdots,$$

$$y = 0.b_1 b_2 b_3 \cdots$$

be the unique decimal representations of x and y, as defined in class. Now construct the number

$$z = 0.a_1b_1a_2b_2a_3b_3\cdots$$
.

The sequence of digits in this definition of z has infinitely many non-9s, so it is a legit decimal representation of a real number in I. Set f(x, y) = z.

Students: You should write up a formal proof that f is indeed an injection.

Solution for PS3-10. Consider the function $g:(0,1] \rightarrow (0,1)$ defined by:

$$g(x) = \begin{cases} \frac{x}{2}, & \text{if } \exists n \in \mathbb{Z} \text{ such that } x = 2^{-n}, \\ x, & \text{otherwise.} \end{cases}$$

To prove this is a bijection we will construct an inverse function. Define $h(x):(0,1)\to(0,1]$ to be:

$$h(x) = \begin{cases} 2x, & \text{if } \exists n \in \mathbb{Z} \text{ such that } x = 2^{-n}, \\ x, & \text{otherwise.} \end{cases}$$

To prove that g and h are inverses of each other (which, in turn, shows that g is a bijection) we must show that $g \circ h = \mathrm{id}_{(0,1)}$ and $h \circ g = \mathrm{id}_{(0,1)}$.

To show $g \circ h = \mathrm{id}_{(0,1)}$, let x be any element of (0,1). We must show g(h(x)) = x. If $x = 2^{-n}$ for some integer n, then g(h(x)) = g(2x), but $2x = 2^{1-n}$ and (n-1) is an integer, so $g(2x) = \frac{2x}{2} = x$. If instead $x \neq 2^{-n}$ for every integer n, we have g(h(x)) = g(x) = x. In either case g(h(x)) = x so $g \circ h = \mathrm{id}_{(0,1)}$.

Similarly To show $h \circ g = \mathrm{id}_{(0,1]}$, we let $x \in (0,1]$. Once again we have two cases either $x = 2^{-n}$ for some integer n, or $x \neq 2^{-n}$ for every integer n. In the former case, $h(g(x)) = h(\frac{x}{2})$. However $\frac{x}{2} = 2^{-(n+1)}$ and (n+1) is an integer so $h(\frac{x}{2}) = 2\frac{x}{2} = x$. In the latter case h(g(x)) = h(x) = x. Therefore h(g(x)) is always x and $h \circ g = \mathrm{id}_{(0,1]}$. So g and h are inverse functions of each other. Because g is a function with an inverse function it must be a bijection.