Generalised Regression Models

GRM: Useful Matrix Results Semester 1, 2022–2023

1 Notation

In what follows a matrix will be denoted by a bold capital letter and its elements by the corresponding lower case letter with suffices. Thus the element in row i and column j of \mathbf{A} , or element (i, j), is a_{ij} . The transpose of \mathbf{A} will be denoted by \mathbf{A}^T . Note, however, that some authors use a t or a prime rather than T and write \mathbf{A}^t or \mathbf{A}' . A column vector will be denoted by a bold lower case letter, e.g. \mathbf{x} . The transpose \mathbf{x}^T of \mathbf{x} is a row vector. Note that if \mathbf{x} is a column vector of order p with elements x_1, x_2, \ldots, x_p , then the product

$$\mathbf{x}^T \mathbf{x} = x_1^2 + x_2^2 + \ldots + x_p^2$$

is a scalar, whereas $\mathbf{x}\mathbf{x}^T$ is a $p \times p$ matrix. Any lower case letter that is not in bold will represent a scalar. The elements of all vectors and matrices are assumed to be real.

The *unit matrix*, which is a square matrix in which each diagonal element is 1 and each non-diagonal element is 0, will usually be denoted simply by **I**. If, however, it is important to indicate the order of the matrix, say p, it will be written as \mathbf{I}_p . Similarly the *unit vector* of order p, each of whose elements is 1, will be denoted by either **1** or $\mathbf{1}_p$. Note that $\mathbf{1}_p^T \mathbf{1}_p = p$.

2 Trace of a Matrix

The *trace* of a square matrix $\mathbf{A} = [a_{ij}]$, denoted by $\text{tr} \mathbf{A}$, is the sum of its diagonal elements. Thus, if \mathbf{A} is a $p \times p$ matrix, then

$$\operatorname{tr} \mathbf{A} = \sum_{i=1}^{p} a_{ii}.$$

It may easily be verified that, if c is any scalar,

$$tr \mathbf{A}^T = tr \mathbf{A},$$

 $tr(\mathbf{A} + \mathbf{B}) = tr \mathbf{A} + tr \mathbf{B},$
 $tr(c \mathbf{A}) = c tr \mathbf{A}.$

Suppose that **A** is a $p \times q$ matrix and that **B** is a $q \times p$ matrix, so that the products **AB** and **BA** both exist. Then it is easy to verify the following:

$$\operatorname{tr}(\mathbf{A}\mathbf{B}) = \sum_{i=1}^{p} \sum_{j=1}^{q} a_{ij} b_{ji} = \operatorname{tr}(\mathbf{B}\mathbf{A}), \qquad (2.1)$$

$$tr(\mathbf{ABC}) = tr(\mathbf{BCA}) = tr(\mathbf{CAB}), \qquad (2.2)$$

$$\mathbf{x}^T \mathbf{A} \mathbf{x} = \operatorname{tr}(\mathbf{x} \mathbf{x}^T \mathbf{A}) = \operatorname{tr}(\mathbf{A} \mathbf{x} \mathbf{x}^T). \tag{2.3}$$

3 Linear Equations and Transformations

For simultaneous linear equations in several variables, the notation of matrix algebra is particularly suitable. The set of p equations

$$a_{i1}x_1 + a_{i2}x_2 + \ldots + a_{ip}x_p = c_i \quad (i = 1, \ldots, p)$$

in the p unknowns x_1, x_2, \dots, x_p can be written concisely as

$$\mathbf{A}\mathbf{x} = \mathbf{c}\,,\tag{3.1}$$

where **A** is the $p \times p$ matrix with elements a_{ij} and where **x** and **c** are column vectors with elements x_i and c_i respectively.

Suppose that **A** is non-singular, i.e. that its determinant $|\mathbf{A}|$ is non-zero. Then **A** has a (true) inverse \mathbf{A}^{-1} satisfying

$$\mathbf{A}\mathbf{A}^{-1} = \mathbf{A}^{-1}\mathbf{A} = \mathbf{I}_p.$$

In this case the above set of equations has a unique solution which can be written as

$$\mathbf{x} = \mathbf{A}^{-1}\mathbf{c}$$
.

If **A** is singular, i.e. if $|\mathbf{A}| = 0$, the equations do not have a unique solution. To obtain a solution, supposing that the equations are consistent, we can find a *generalized inverse* (or *pseudo-inverse*) of **A**, which is a matrix **G** satisfying

$$AGA = A$$
.

Then $\mathbf{x} = \mathbf{G}\mathbf{c}$ is a solution of the equations (3.1), but is not unique. Note that some authors require \mathbf{G} to satisfy one or more further conditions before it can be called a generalized inverse.

It is often necessary to transform linearly one set of variables, or coordinates, x_1, \ldots, x_p into another set y_1, \ldots, y_p . The transformation giving the y's in terms of the x's and the inverse transformation giving the x's in terms of the y's may be represented by the equations

$$\mathbf{y} = \mathbf{A}\mathbf{x}, \quad \mathbf{x} = \mathbf{A}^{-1}\mathbf{y},$$

where \mathbf{x} and \mathbf{y} are the vectors with elements x_i and y_i respectively and where \mathbf{A} is assumed to be non-singular.

4 Orthogonal Matrices and Transformations

In many cases both x's and y's represent rectangular, or orthogonal, coordinates. Both the transformation and the matrix defining it are then termed orthogonal. An orthogonal matrix \mathbf{U} is a square matrix satisfying

$$\mathbf{U}\mathbf{U}^T = \mathbf{U}^T\mathbf{U} = \mathbf{I},$$

so that the rows and the columns of U each form a set of orthonormal vectors; thus

$$\mathbf{U}^T = \mathbf{U}^{-1}, \quad \mathbf{U} = (\mathbf{U}^T)^{-1}.$$

In view of this, an orthogonal transformation is represented by

$$\mathbf{y} = \mathbf{U}\mathbf{x}, \quad \mathbf{x} = \mathbf{U}^T\mathbf{y}.$$

Note that

$$\mathbf{y}^T \mathbf{y} = (\mathbf{x}^T \mathbf{U}^T) (\mathbf{U} \mathbf{x}) = \mathbf{x}^T (\mathbf{U}^T \mathbf{U}) \mathbf{x} = \mathbf{x}^T \mathbf{I} \mathbf{x} = \mathbf{x}^T \mathbf{x}.$$

Considered geometrically, this expresses the fact that the distance of a point from the origin in a *p*-dimensional Euclidean space remains invariant under a change of coordinate axes.

For an orthogonal matrix **U** we have

$$|\mathbf{U}|^2 = |\mathbf{U}||\mathbf{U}^T| = |\mathbf{U}\mathbf{U}^T| = |\mathbf{I}| = 1$$
,

and thus $|\mathbf{U}| = \pm 1$. The sign can always be made positive by changing, if necessary, the signs of all elements in one row or column of \mathbf{U} .

5 Linear Independence and Rank

A set of vectors $\mathbf{x}_1, \dots, \mathbf{x}_k$ is said to be *linearly independent* if there exists no set of scalars c_1, \dots, c_k , not all zero, such that

$$c_1\mathbf{x}_1 + \ldots + c_k\mathbf{x}_k = \mathbf{0}$$
.

A matrix (not necessarily square) is said to be of $rank \ r$ if the maximum number of linearly independent rows (or, equivalently, the maximum number of linearly independent columns) is r. Alternatively and equivalently, the rank of \mathbf{A} is defined to be r if every minor of order r+1 formed from \mathbf{A} is zero and at least one minor of order r is not zero. If the rank of a square matrix \mathbf{A} is less than its order, then \mathbf{A} is singular, and conversely.

6 Eigenvalues and Eigenvectors of a Symmetric Matrix

Suppose that **A** is a symmetric $p \times p$ matrix. Then the *eigenvalues* (alternatively called *latent roots* or *characteristic roots*) of **A** are the values of λ (all real) satisfying the equation

$$|\mathbf{A} - \lambda \mathbf{I}| = 0$$
,

which is a polynomial equation of degree p in λ . We may suppose that the eigenvalues are arranged in descending order, so that $\lambda_1 \geq \lambda_2 \geq \ldots \geq \lambda_p$. Corresponding to the k-th value λ_k there is a vector \mathbf{u}_k , of order p, satisfying

$$\mathbf{A}\mathbf{u}_k = \lambda_k \mathbf{u}_k$$
.

This is known as the k-th eigenvector of \mathbf{A} (or the k-th latent or characteristic vector). If the λ_k are distinct, the vectors \mathbf{u}_k are unique except that each may be multiplied by an arbitrary scalar. The vectors are also orthogonal to one another, i.e. are such that if $k \neq l$ then

$$\mathbf{u}_k^T \mathbf{u}_l = 0 \tag{6.1}$$

Even if the λ_k are not distinct, we may still choose the vectors \mathbf{u}_k to be orthogonal to one another. We shall also suppose that they are *standardized*, i.e. that, for each value of k,

$$\mathbf{u}_k^T \mathbf{u}_k = 1. \tag{6.2}$$

Let **U** be the $p \times p$ matrix whose k-th column is \mathbf{u}_k . Then, in view of properties (6.1) and (6.2), **U** is an orthogonal matrix. Let Λ be the diagonal matrix of order p whose k-th diagonal element is λ_k . Then $\lambda_k \mathbf{u}_k$ is the k-th column of **U** Λ . Since $\mathbf{A}\mathbf{u}_k$ is the k-th column of $\mathbf{A}\mathbf{U}$, it follows that the equations satisfied by the \mathbf{u}_k are equivalent to the matrix equation

$$AU = U\Lambda$$
.

Post-multiplication of this by \mathbf{U}^T gives

$$\mathbf{A} = \mathbf{U}\Lambda\mathbf{U}^T,\tag{6.3}$$

since $UU^T = I$. It follows that the determinant of **A** is

$$|\mathbf{A}| = |\mathbf{U}\Lambda\mathbf{U}^{T}|$$

$$= |\mathbf{U}||\Lambda||\mathbf{U}^{T}|$$

$$= |\Lambda|$$

$$= \lambda_{1}\lambda_{2}...\lambda_{p},$$
(6.4)

and that

$$tr \mathbf{A} = tr(\mathbf{U}\Lambda \mathbf{U}^{T})$$

$$= tr(\Lambda \mathbf{U}^{T} \mathbf{U})$$

$$= tr \Lambda$$

$$= \lambda_{1} + \lambda_{2} + \dots + \lambda_{n}.$$
(6.5)

Thus the determinant of A is the product of its eigenvalues, while the trace equals their sum.

The rank of **A** is equal to the number of non-zero eigenvalues. If none of these is zero, **A** is non-singular, and conversely. In that case A^{-1} exists and we have

$$\mathbf{A}^{-1} = (\mathbf{U}\Lambda\mathbf{U}^{T})^{-1}$$

$$= (\mathbf{U}^{T})^{-1}\Lambda^{-1}\mathbf{U}^{-1}$$

$$= \mathbf{U}\Lambda^{-1}\mathbf{U}^{T}.$$
(6.6)

The equations for **A** and A^{-1} in terms of Λ and **U** may alternatively be written as

$$\mathbf{A} = \sum_{k=1}^{p} \lambda_k \mathbf{u}_k \mathbf{u}_k^T \tag{6.7}$$

and

$$\mathbf{A}^{-1} = \sum_{k=1}^{p} \lambda_k^{-1} \mathbf{u}_k \mathbf{u}_k^T. \tag{6.8}$$

These are termed the *spectral decompositions* of **A** and \mathbf{A}^{-1} respectively. Note that the eigenvalues of \mathbf{A}^{-1} are $\lambda_1^{-1}, \ldots, \lambda_p^{-1}$ and that the eigenvectors of \mathbf{A}^{-1} are the same as those of **A**.

7 Quadratic Forms

The expression

$$\mathbf{x}^T \mathbf{A} \mathbf{x} = \sum_{i} \sum_{j} a_{ij} x_i x_j,$$

where $\mathbf{A} = [a_{ij}]$ is symmetric, is known as a *quadratic form* in \mathbf{x} . Note that, if $i \neq j$, the coefficient of $x_i x_j$ is $2a_{ij}$, since $a_{ji} = a_{ij}$, whereas that of x_i^2 is a_{ii} .

Both the quadratic form and the matrix \mathbf{A} are termed *positive definite* if $\mathbf{x}^T \mathbf{A} \mathbf{x} > 0$ for all non-null vectors \mathbf{x} . If > is replaced by \geq , they are termed *non-negative definite*. They are called *positive semi-definite* if $\mathbf{x}^T \mathbf{A} \mathbf{x} \geq 0$ for all \mathbf{x} and $\mathbf{x}^T \mathbf{A} \mathbf{x} = 0$ for some non-null \mathbf{x} .

With U and Λ as defined in Section 6, consider the orthogonal transformation given by

$$\mathbf{y} = \mathbf{U}^T \mathbf{x}, \ \mathbf{x} = \mathbf{U} \mathbf{y}.$$

Under this transformation we have

$$\mathbf{x}^{T} \mathbf{A} \mathbf{x} = \mathbf{y}^{T} \mathbf{U}^{T} (\mathbf{U} \Lambda \mathbf{U}^{T}) \mathbf{U} \mathbf{y}$$

$$= \mathbf{y}^{T} (\mathbf{U}^{T} \mathbf{U}) \Lambda (\mathbf{U}^{T} \mathbf{U}) \mathbf{y}$$

$$= \mathbf{y}^{T} \Lambda \mathbf{y}$$

$$= \sum_{k=1}^{p} \lambda_{k} y_{k}^{2}$$
(7.1)

if **y** has elements y_1, \ldots, y_p . From this expression it is clear that a necessary and sufficient condition for **A** to be positive definite is that all its eigenvalues should be positive. For **A** to be non-negative definite the condition is that all eigenvalues should be non-negative. For **A** to be positive semi-definite all eigenvalues should be non-negative and at least one should be zero. If **A** is positive definite, then \mathbf{A}^{-1} exists and is also positive definite.

8 Idempotent Matrices

A $p \times p$ matrix **H** is termed *idempotent* if $\mathbf{H} = \mathbf{H}^2$. Two examples with p = 2 are

$$\left[\begin{array}{cc} 1 & 0 \\ 0 & 0 \end{array}\right], \quad \frac{1}{2} \left[\begin{array}{cc} 1 & 1 \\ 1 & 1 \end{array}\right].$$

If **H** has rank r, its eigenvalues consist of r unities and p-r zeros, since if λ and **u** are an eigenvalue of **H** and the corresponding eigenvector then

$$\lambda \mathbf{u} = \mathbf{H}\mathbf{u} = \mathbf{H}^2 \mathbf{u} = \mathbf{H}\lambda \mathbf{u} = \lambda^2 \mathbf{u}$$

so that $\lambda^2 = \lambda$ and each eigenvalue is either 0 or 1. Putting the eigenvalues in descending order, we have $\lambda_1 = \lambda_2 = \ldots = \lambda_r = 1$ and $\lambda_{r+1} = \lambda_{r+2} = \ldots = \lambda_p = 0$. Hence, from (6.5),

$$\operatorname{tr} \mathbf{H} = \lambda_1 + \lambda_2 + \ldots + \lambda_p = r. \tag{8.1}$$

Thus the rank of an idempotent matrix is the same as its trace, or the sum of its eigenvalues. In the trivial case where r = p, **H** is simply the unit matrix. If **H** is idempotent with rank r then I - H is idempotent with rank p - r.

If **H** is both symmetric and idempotent, it may be expressed as

$$\mathbf{H} = \mathbf{X}(\mathbf{X}^T \mathbf{X})^{-1} \mathbf{X}^T \,. \tag{8.2}$$

where **X** is a $p \times r$ matrix of rank r. In this form it represents the projection operator on the column space of **X**. If $\mathbf{u}_1, \dots, \mathbf{u}_r$ are the eigenvectors corresponding to the unit eigenvalues of **H** and the $p \times r$ matrix **U** has columns $\mathbf{u}_1, \dots, \mathbf{u}_r$ then, from equation (6.7),

$$\mathbf{H} = \sum_{k=1}^{r} \mathbf{u}_{k} \mathbf{u}_{k}^{T} = \mathbf{U} \mathbf{U}^{T}, \quad \mathbf{U}^{T} \mathbf{U} = \mathbf{I}_{r}.$$
(8.3)

Thus, if x is any p-vector and z denotes the r-vector $\mathbf{U}^T \mathbf{x}$, the quadratic form $\mathbf{x}^T \mathbf{H} \mathbf{x}$ becomes

$$\mathbf{x}^T \mathbf{H} \mathbf{x} = \mathbf{x}^T \mathbf{U} \mathbf{U}^T \mathbf{x} = \mathbf{z}^T \mathbf{z} = \sum_{k=1}^r z_k^2,$$
 (8.4)

a sum of squares of r variables.

If r = 1, **H** has the form $\mathbf{u}\mathbf{u}^T$, where $\mathbf{u}^T\mathbf{u} = 1$.

9 Partitioned Matrices

It is often convenient to represent a matrix in a partitioned form by the juxtaposition of two or more submatrices. An example of a partitioned matrix A, not necessarily square, is

$$\mathbf{A} = \left[\begin{array}{cc} \mathbf{A}_{11} & \mathbf{A}_{12} \\ \mathbf{A}_{21} & \mathbf{A}_{22} \end{array} \right],$$

where A_{11} and A_{12} are submatrices having the same number of rows, A_{11} and A_{21} have the same number of columns, and so on. The transpose of A is

$$\mathbf{A}^T = \left[\begin{array}{cc} \mathbf{A}_{11}^T & \mathbf{A}_{21}^T \\ \mathbf{A}_{12}^T & \mathbf{A}_{22}^T \end{array} \right].$$

If both A_{11} and A_{22} are square and symmetric and $A_{12}^T = A_{21}$, then $A^T = A$, so that A is square and symmetric.

Suppose that in the partitioned matrix

$$\mathbf{B} = \left[\begin{array}{cc} \mathbf{B}_{11} & \mathbf{B}_{12} \\ \mathbf{B}_{21} & \mathbf{B}_{22} \end{array} \right],$$

not necessarily square, the submatrices B_{11} and B_{12} have as many rows as A_{11} and A_{21} have columns, and that B_{21} and B_{22} have as many rows as A_{12} and A_{22} have columns. Then the product AB exists and is given by

$$\mathbf{AB} = \begin{bmatrix} \mathbf{A}_{11} & \mathbf{A}_{12} \\ \mathbf{A}_{21} & \mathbf{A}_{22} \end{bmatrix} \begin{bmatrix} \mathbf{B}_{11} & \mathbf{B}_{12} \\ \mathbf{B}_{21} & \mathbf{B}_{22} \end{bmatrix}$$

$$= \begin{bmatrix} \mathbf{A}_{11}\mathbf{B}_{11} + \mathbf{A}_{12}\mathbf{B}_{21} & \mathbf{A}_{11}\mathbf{B}_{12} + \mathbf{A}_{12}\mathbf{B}_{22} \\ \mathbf{A}_{21}\mathbf{B}_{11} + \mathbf{A}_{22}\mathbf{B}_{21} & \mathbf{A}_{21}\mathbf{B}_{12} + \mathbf{A}_{22}\mathbf{B}_{22} \end{bmatrix}.$$
(9.1)

Thus the usual rule of matrix multiplication is applied with submatrices of $\bf A$ and $\bf B$ treated as elements.

Now suppose that A_{11} is a square $p \times p$ matrix and that A_{22} is a square $q \times q$ matrix (so that A_{12} is $p \times q$ and A_{21} is $q \times p$). Then, if A_{11} and $A_{22} - A_{21} A_{11}^{-1} A_{12}$ are non-singular, the inverse A^{-1} of the complete matrix A exists and there are convenient methods of finding it. Let the

inverse of **A** be denoted by **B**, where **B** is partitioned into submatrices \mathbf{B}_{11} , \mathbf{B}_{12} , \mathbf{B}_{21} and \mathbf{B}_{22} in exactly the same way as **A**. Then the submatrices of $\mathbf{B} = \mathbf{A}^{-1}$ are given by

$$\mathbf{B}_{22} = (\mathbf{A}_{22} - \mathbf{A}_{21} \mathbf{A}_{11}^{-1} \mathbf{A}_{12})^{-1},
\mathbf{B}_{21} = -\mathbf{B}_{22} \mathbf{A}_{21} \mathbf{A}_{11}^{-1},
\mathbf{B}_{12} = -\mathbf{A}_{11}^{-1} \mathbf{A}_{12} \mathbf{B}_{22},
\mathbf{B}_{11} = \mathbf{A}_{11}^{-1} + \mathbf{A}_{11}^{-1} \mathbf{A}_{12} \mathbf{B}_{22} \mathbf{A}_{21} \mathbf{A}_{11}^{-1}
= \mathbf{A}_{11}^{-1} - \mathbf{A}_{11}^{-1} \mathbf{A}_{12} \mathbf{B}_{21}.$$
(9.2)

These results may easily be verified by showing that **AB** equals I_{p+q} .

The submatrices of $\mathbf{B} = \mathbf{A}^{-1}$ may alternatively be found by use of the formulae

$$\mathbf{B}_{11} = (\mathbf{A}_{11} - \mathbf{A}_{12} \mathbf{A}_{22}^{-1} \mathbf{A}_{21})^{-1},
\mathbf{B}_{12} = -\mathbf{B}_{11} \mathbf{A}_{12} \mathbf{A}_{22}^{-1},
\mathbf{B}_{21} = -\mathbf{A}_{22}^{-1} \mathbf{A}_{21} \mathbf{B}_{11},
\mathbf{B}_{22} = \mathbf{A}_{22}^{-1} + \mathbf{A}_{22}^{-1} \mathbf{A}_{21} \mathbf{B}_{11} \mathbf{A}_{12} \mathbf{A}_{22}^{-1}
= \mathbf{A}_{22}^{-1} - \mathbf{A}_{22}^{-1} \mathbf{A}_{21} \mathbf{B}_{12}.$$
(9.3)

Which set of formulae should be chosen depends on the relative sizes of p and q and on which inverses are easiest to find.

Now consider the evaluation of the determinant of the partitioned matrix **A**. The value of the determinant is unaltered if we subtract from the first p rows of **A**, i.e. $[\mathbf{A}_{11} \ \mathbf{A}_{12}]$, the result of pre-multiplying the last q rows of **A**, i.e. $[\mathbf{A}_{21} \ \mathbf{A}_{22}]$, by $\mathbf{A}_{12} \mathbf{A}_{22}^{-1}$. Thus

$$|\mathbf{A}| = \begin{vmatrix} \mathbf{A}_{11} & \mathbf{A}_{12} \\ \mathbf{A}_{21} & \mathbf{A}_{22} \end{vmatrix}$$

$$= \begin{vmatrix} \mathbf{A}_{11} - \mathbf{A}_{12} \mathbf{A}_{21}^{-1} \mathbf{A}_{21} & \mathbf{O} \\ \mathbf{A}_{21} & \mathbf{A}_{22} \end{vmatrix}$$

$$= |\mathbf{A}_{22}| |\mathbf{A}_{11} - \mathbf{A}_{12} \mathbf{A}_{21}^{-1} \mathbf{A}_{21} |. \tag{9.4}$$

Alternatively we can show in a similar manner that

$$|\mathbf{A}| = |\mathbf{A}_{11}| |\mathbf{A}_{22} - \mathbf{A}_{21} \mathbf{A}_{11}^{-1} \mathbf{A}_{12}|.$$
 (9.5)

10 Vector Differentiation

Let $f = f(\mathbf{x})$ be a scalar function of the elements x_1, \dots, x_p of a vector \mathbf{x} of order p. Then $df/d\mathbf{x}$ is the vector of order p whose i-th element is $\partial f/\partial x_i$.

Consider first differentiating the linear function

$$\mathbf{a}^T \mathbf{x} = \mathbf{x}^T \mathbf{a} = \sum_i a_i x_i \,,$$

in which **a** is a constant vector. The derivative of this with respect to x_i is a_i , which is element i of **a**. Hence

$$d(\mathbf{a}^{\mathsf{T}}\mathbf{x})/d\mathbf{x} = \mathbf{a}. \tag{10.1}$$

Next consider the quadratic form

$$\mathbf{x}^T \mathbf{A} \mathbf{x} = \sum_j \sum_k a_{jk} x_j x_k \,,$$

where $\mathbf{A} = [a_{ij}]$ is a constant $p \times p$ symmetric matrix. Since $a_{ji} = a_{ij}$, the derivative of this expression with respect to x_i is $2\sum_j a_{ij}x_j$, which is element i of the vector $2\mathbf{A}\mathbf{x}$. Hence

$$d(\mathbf{x}^{\mathsf{T}}\mathbf{A}\mathbf{x})/d\mathbf{x} = 2\mathbf{A}\mathbf{x}. \tag{10.2}$$