

BEST AVAILABLE COPY

IBMC ★ R58 C9609A/15 ★ DT 2743-765
Modular exchange network for speech and data transmission - has
identical autonomous processor controlled switching modules
operating independently
IBM CORP 04.10.76-FR-030659
(06.04.78) H04q-03/42

The modular exchange network for speech and data transmission provides simplified route searching and is capable of being easily expanded since each subscriber is connected to an identical module. The network com-

prised a number of coupling modules (E1-3) which are arranged in groups, the position of each group in the network being set by two coordinates and the position of a module in the group by a third coordinate.

Each module operates independently and contains a microprocessor, memory for storing the free and engaged coupling options and connection for various types of subscriber. Data is transmitted in digital form and contains information regarding the destination module address, the address of the originating module and through-switching information. An error-detection signal may also be included. 29.9.77 as 743765 (21pp1286).

WEST GERMANY
GROUP... 234
CLASS... 240
RECORDED

DE 27 43 765 A

- (11)
- (21)
- (22)
- (43)

Offenlegungsschrift**27 43 765**

Aktenzeichen: P 27 43 765.6
Anmeldetag: 29. 9. 77
Offenlegungstag: 6. 4. 78

- (30)

Unionspriorität:

(22) (31) (31)

4. 10. 76 Frankreich 7630659

- (54)

Bezeichnung: Modulares Verbindungsnetzwerk

- (71)

Anmelder: International Business Machines Corp., Armonk, N.Y. (V.St.A.)

- (74)

Vertreter: Lewit, L., Dipl.-Ing., Pat.-Ass., 7030 Böblingen

- (72)

Erfinder: Croisier, Alain, Cagnes-Mer; Lebizay, Gerald, Nizza;
Jean, Philippe Andre, Antibes (Frankreich)

DE 27 43 765 A 1

P A T E N T A N S P R Ü C H E

1. Modulares aus einer Vielzahl von Verbindungsmodulen bestehendes Verbindungsnetzwerk, dadurch gekennzeichnet, daß jedes Modul (E1-E3) einen Prozessor (PROC), einen Speicher (MEM) und eine Durchschalteeinrichtung (SW) aufweist, daß die Modulen in Gruppen zusammengefaßt sind, wobei die Lage der Gruppen im Verbindungsnetzwerk durch zwei Koordinaten und die Lage eines Moduls in der Gruppe durch eine dritte Koordinate bestimmt werden und daß die Modulen nach folgenden zwei Gesetzen untereinander verbunden sind:
1. Die Koordinaten aller verbundenen Modulen sind bis auf eine gleich, wobei sich der Wert dieser einen Koordinate für beide verbundenen Modulen nur um eine Einheit unterscheidet.
 2. Alle miteinander verbundenen Modulen weisen gleiche Koordinaten auf, bis auf eine bestimmte willkürlich gewählte, wobei der Unterschiedswert für die beiden Werte dieser Koordinate für jeweils zwei miteinander verbundene Modulen alle möglichen Werte annehmen kann.
2. Verbindungsnetzwerk nach Anspruch 1, dadurch gekennzeichnet, daß die zu übertragenden Nachrichten in digitaler Form übertragen werden und folgende Abschnitte aufweisen (Fig. 5): Adresse des Bestimmungsmoduls, Adresse des Ursprungsmoduls, eine Durchlaufanzeige sowie die eigentliche Nachricht.
3. Verbindungsnetzwerk nach Anspruch 1, dadurch gekennzeichnet, daß zur Steuerung und Überwachung aller Verbindungsmodulen eine Zentralsteuerung (SM) vorgesehen ist.

4. Verbindungsnetzwerk nach Anspruch 1,
dadurch gekennzeichnet, daß zur Wegesuche durch das
Verbindungsnetzwerk Vergleichseinrichtungen vorgesehen
sind, die feststellen, ob die Bestimmungssadresse der
Nachricht gleich ist den Koordinaten des die Nachricht
aufnehmenden Verbindungsmoduls, durch einen Verbindungs-
speicher, in dem die zu Nachbarmodulen führenden freien
Wege angegeben sind sowie durch einen Zähler (C), der
um eine Einheit weiterzählt, wenn ein Weg zu einem Nach-
barmodul nicht frei ist und auf null zurückgestellt wird,
wenn die Nachricht im Wege der Übertragung zum Bestim-
mungsmodul zu einem Nachbarmodul übertragen werden kann.
5. Verbindungsnetzwerk nach Anspruch 4,
dadurch gekennzeichnet, daß jeweils für eine Koordinate
ein freier Verbindungsweg zu einem Nachbarmodul gesucht
wird.
6. Verbindungsnetzwerk nach Anspruch 5,
dadurch gekennzeichnet, daß der Wert der einen Koordinate
des Nachbarmoduls entweder um eine Einheit erhöht oder
um eine Einheit erniedrigt sein kann.
7. Verbindungsnetzwerk nach Anspruch 1,
dadurch gekennzeichnet, daß die Verbindungswege zwischen
den Verbindungsmodulen als Zeitmultiplexleitungen ausge-
bildet sind und die Nachrichtenübertragung in Pulscode
modulierter Form erfolgt.

2743765

Anmelderin:

International Business Machines
Corporation, Armonk, N.Y. 10504

Jw/se

- 3 -

Modulares Verbindungsnetzwerk

Die Erfindung betrifft ein modulares Verbindungsnetzwerk, das aus einer Vielzahl von Verbindungsmodulen aufgebaut ist.

Ein derartiges Verbindungsnetzwerk kann zur Sprach- oder auch zur Datenübertragung verwendet werden. Die einzelnen Teilnehmer sind dabei jeweils an ein Verbindungsmodul angeschlossen.

Es sind bereits Verbindungsnetzwerke bekannt geworden, die mehrere, geographisch verteilte Verbindungszentralen aufweisen, wie z.B. das Telefonie-Verbindungsnetzwerk eines Landes. Über die Verbindungsleitungen zwischen den Zentralen werden Sprachsignale in analoger Form oder in Pulscode modulierter Form, sowie auch Daten in digitaler Form übertragen. Der Ort, an dem sich solche Zentralen befinden, ist dabei geographisch bedingt, wobei die Anzahl der Verbindungsleitungen vom Ausmaß des Verkehrs zwischen den Zentralen bestimmt wird. Dabei sind jeweils nur geographisch benachbarten Zentralen untereinander verbunden, da einer extensiven Vermischung der Verbindungsleitungen die zu hohen Kosten für solche Leitungen entgegenstehen. Werden einem solchen Netzwerk neue Zentralen hinzugefügt, so geschieht dies ausschließlich durch Verbindung an die geographisch nächst gelegene Zentrale. Hierdurch ergibt sich eine unübersichtliche und inhomogene Anordnung der Zentralen, die eine Wegesuche durch das Verbindungsnetzwerk erschwert. Die Erweiterung eines solchen Verbindungsnetzwerkes wird auch dadurch erschwert, daß die einzelnen Zentralen verschiedene Größen aufweisen, so daß eine Umformung der zu übertragenden Nachrichten notwendig werden kann.

FR 976 005

809814 / 0742

Der Erfindung liegt daher die Aufgabe zugrunde, ein modular aufgebautes Verbindungsnetzwerk anzugeben, das eine einfache Wegesuche gestattet und zudem leicht erweiterbar ist.

Diese Aufgabe wird erfindungsgemäß durch die im Kennzeichen des Hauptanspruchs angegebene Einrichtung gelöst.

Da erfindungsgemäß das Verbindungsnetzwerk aus untereinander vollkommen gleichen Verbindungsmodulen aufgebaut ist, ergibt sich eine einfache Wegesuche, eine einfache Fehlersuche, sowie auch eine einfache Erweiterbarkeit des Verbindungsnetzwerkes, wenn zusätzliche Teilnehmer an das Netzwerk angeschlossen werden sollen. Dabei kann das Verbindungsnetzwerk vorzugsweise anstelle einer Nebenstellenanlage oder einer Amtscentrale verwendet werden. Die leichte Erweiterbarkeit des Systems ist in diesen Fällen besonders vorteilhaft. Dadurch daß die neu hinzugefügten Modulen nach den angegebenen Vorschriften verbunden werden, braucht in der übrigen Anlage nichts geändert zu werden und kann die Wegesuche auf die vorgesehene einfache Weise ausgeführt werden. Auch bei der Erzeugung der Einrichtung ergeben sich durch die Modularität die Vorteile, die aus der Verwendung von möglichst vielen gleichen Teilen resultieren. Zusätzlich tritt dabei der Effekt auf, daß die Störanfälligkeit eines solchen Systems durch die Verwendung von jeweils gleichen Modulen stark herabgesetzt wird. Fällt trotzdem eines der Verbindungsmodulen aus, sind nur die an dieses Modul angeschlossenen Teilnehmer betroffen, da die übrigen Teilnehmer über andere Modulen verbunden werden können. Für die Wegesuche durch das Verbindungsnetzwerk können in den einzelnen Modulen Mikroprozessoren verwendet werden, wobei auch für die zur Speicherung der Verbindungsinformationen und evtl. der Nachrichten notwendigen Speicher-einrichtungen keine umfangreichen Speicher vorgesehen werden müssen.

Vorteilhafte Weiterbildungen der Erfindung sind den Unteran-sprüchen zu entnehmen.

Die Erfindung soll nun anhand eines Ausführungsbeispiels näher beschrieben werden.

Es zeigen:

Fig. 1 das erfindungsgemäße Verbindungsnetzwerk,

Fig. 2 die Verbindungsstruktur zwischen den einzelnen Verbindungsmodulen,

Fig. 2a u. 2b Beispiele für Verbindungsstrukturen,

Fig. 3 Beispiele für mögliche Verbindungswege im Verbindungsnetzwerk nach Fig. 2,

Fig. 4 alle möglichen Verbindungswege zwischen zwei Verbindungsmodulen des Netzwerkes nach Fig. 2, wobei drei Verbindungsmaschen Verwendung finden,

Fig. 5 das Format einer durch das Verbindungsnetzwerk zu übertragenden Nachricht,

Fig. 6 ein Verfahren zur Wegesuche durch das Verbindungsnetzwerk nach Fig. 2 und

Fig. 7 alle Verbindungswege, die mit Hilfe des in Fig. 6 gezeigten Verfahrens gefunden werden können.

Anhand der Figuren 1 und 2 soll nun das modulare Verbindungs-netzwerk näher beschrieben werden. Das Verbindungsnetzwerk weist eine Vielzahl von Verbindungsmodulen auf, die mit E1, E2

und E3 bezeichnet sind und untereinander nach bestimmten Regeln über Verbindungsleitungen DL verbunden sind. Der Nachrichtenverkehr über die Verbindungsleitungen kann dabei in digitaler Form durchgeführt werden. Die Verbindungsmodulen arbeiten autonom, d.h., sie können jeweils unabhängig von den übrigen Modulen eine Durchschaltung durch das Modul vornehmen. Hierzu weist jedes Modul eine Durchschalteeinrichtung WL, einen datenverarbeitenden Prozessor PROC (z.B. einen Mikroprozessor), einen Speicher MEM zur Speicherung der freien und belegten Verbindungsmöglichkeiten sowie an das Modul angeschlossene Telefonie-Teilnehmerleitungen der verschiedenen Arten (Teilnehmerleitungen EXT, externe Leitungen TK, Querverbindungsleitungen TL, Leitungen zum Verbindungsplatz OP usw.) auf.

Die Verbindungsoperationen werden entweder aufgrund von über die angeschlossenen Telefonieleitungen empfangenen Anforderungen oder aufgrund von von den benachbarten Modulen empfangenen Anforderungen ausgeführt.

Alle Verbindungsmodulen sind außerdem mit einer zentralen Steuereinrichtung SM verbunden, welche Überwaltungsfunktionen ausführt, die für alle Modulen gemeinsam sind. Dabei kann es sich um Prüf- und Verwaltungsprogramme handeln sowie um Verkehrsmessungen oder andere statistische Operationen, um Zähloperationen, um Rechnungserstellung, usw.

Fig. 2 zeigt das Verbindungsnetzwerk in einer speziellen Ausführungsform im einzelnen. Das Netzwerk weist 27 Verbindungsmodulen auf, die in neun Gruppen zu jeweils drei Modulen angeordnet sind. Die Adresse eines Verbindungsmoduls kann also durch drei Koordinaten i, j, k angegeben werden, wobei jede Koordinate drei Werte, nämlich 0, 1 oder 2 annehmen kann. Die erste Koordinate i gibt den Rang der Gruppe von unten nach oben an, die zweite Koordinate den Rang der Gruppe

von rechts nach links und die dritte Koordinate den Rang eines Moduls innerhalb einer Gruppe im Uhrzeigersinn.

Die Verbindung zwischen zwei Verbindungsmodulen untereinander erfolgt dabei nach den beiden nachfolgenden Regeln:

1. Die Koordinaten zweier verbundener Verbindungsmodulen sind bis auf eine gleich, wobei der Wert dieser einen Koordinate für beide Modulen sich nur um eine Einheit unterscheidet. Dabei wird der um "1" erhöhte Wert einer Koordinate mit dem Wert 2=0 angenommen.
2. Es wird willkürlich eine bestimmte Koordinate ausgewählt und alle Verbindungsmodulen untereinander verbunden, deren Koordinaten mit Ausnahme dieser einen Koordinate gleich sind. Dabei können sich die Werte für diese eine spezielle Koordinate zweier verbundener Modulen um mehr als eine Einheit unterscheiden.

In einem Verbindungsnetzwerk mit drei Koordinaten, die jeweils die Werte 0 bis u, 0 bis v und 0 bis w annehmen können, ist das Modul mit den Koordinaten i, j, k, also mit folgenden Verbindungsmodulen verbunden:

Nach dem ersten Gesetz mit den Modulen

$$\begin{array}{lll} i+1, j, k & i, j+1, k & i, j, k+1 \\ i-1, j, k & i, j-1, k & i, j, k-1. \end{array}$$

Nach dem zweiten Gesetz:

$$\begin{array}{lll} i, j, k+1, & i, j, k+2, & i, j, k+3, \dots i, j, u \\ i, j, k-1, & i, j, k-2, & i, j, k-3, \dots i, j, 0. \end{array}$$

In den im in Fig. 2 gezeigten Netzwerk ist z.B. das Modul mit den Koordinaten 022 mit folgenden Modulen verbunden: 020, 021, 002, 012, 122 und 222 (die genannten Verbindungen sind in Fig. 2 stark ausgezogen).

Fig. 2 zeigt auch, daß alle Moduln in einer Gruppe zusammengefaßt sind, deren erste beide Koordinaten gleich sind, wie z.B. die Moduln 000, 001, 002; 200, 201, 202; usw.

Es kann jedoch auch festgestellt werden, daß die Anwendung des zweiten Gesetzes in dem in Fig. 2 gezeigten Netzwerk zu keinen zusätzlichen Verbindungen führt, die nicht schon bei Anwendung des ersten Gesetzes gegeben sind. Dies kommt daher, daß die dritte Koordinate nur drei Werte annehmen kann.

In den Fign. 2a und 2b ist deshalb eine Gruppe gezeigt, die aus vier Moduln besteht. Sie haben die Koordinaten 020, 021, 022 und 023. Die Fig. 2a zeigt dabei die Verbindungen, die bei Anwendung des ersten Gesetzes entstehen, während Fig. 2b die Verbindungen zeigt, die sich aus dem zweiten Gesetz ergeben. Bei Anwendung der beiden Gesetze ergeben sich bezüglich der Verbindungen gewisse Überlappungen, wobei sich jedoch das Ausmaß der Überlappung um so mehr vermindert, als die dritte Koordinate mehr mögliche Werte als drei annehmen kann. Unterhalb dieser Anzahl von drei Werten für die dritte Koordinate ergeben sich durch Anwendung des zweiten Gesetzes keine zusätzlichen Verbindungsmöglichkeiten.

Die bisherigen Ausführungen zeigen bereits, daß bei Anwendung der beiden Verbindungsgesetze ein äußerst homogenes und regelmäßig aufgebautes Verbindungsnetzwerk entsteht. Da der um "1" vermehrte höchste Wert für eine Koordinate gleich 0 ist, ergibt sich eine minimale Anzahl von Schleifen, um von einem Modul zu einem anderen zu kommen sowie eine erhöhte Anzahl von möglichen Verbindungswegen zwischen beiden Moduln.

In Fig. 3 sind mit dick ausgezogenen Linien mögliche Verbindungswege zwischen den Moduln 021 und 202 sowie zwischen den Moduln 010 und 221 gezeigt. Es ist zu sehen, daß jeder dieser Verbindungswege nur über drei Schleifen läuft und daß nie mehr als drei Schleifen zwischen zwei Verbindungs-

modulen liegen. Natürlich besteht auch die Möglichkeit, einen Weg über mehr als zwei Schleifen aufzubauen, wenn der kürzeste Weg durch bereits aufgebaute Verbindungen bereits belegt ist. Je mehr Schleifen für einen Weg zugelassen werden, desto mehr mögliche Verbindungswege können gefunden werden.

Als Beispiel hierfür sind in Fig. 4 alle möglichen Verbindungswege, die über drei Schleifen laufen und die beiden Module 010 und 212 verbunden, mit stark ausgezogener Linie angegeben. Fig. 4 zeigt sechs mögliche Verbindungswege. Läßt man vier Schleifen zur Verbindung der beiden Modulen zu, ergeben sich mehr als sechs mögliche Verbindungswege.

Aus diesen Eigenschaften des Netzwerkes resultieren eine Reihe von Vorteilen: Bei Verwendung der minimalen Anzahl von Schleifen kann der Umfang der Einrichtung stark herabgesetzt werden. Wenn außerdem viele Kurzwege zur Verfügung stehen, kann leichter ein freier Weg selbst bei starkem Verkehr gefunden werden, wobei jeder Weg jeweils nur eine beschränkte Anzahl von Verbindungsleitungen blockiert.

Die Anzahl der möglichen Verbindungswege zwischen zwei Modulen hängt von folgenden Eigenschaften ab:

- Anzahl der Modulen pro Gruppe,
- Anzahl der Koordinaten pro Modul und
- Anzahl der möglichen Werte für jede Koordinate.

Es stehen also viele Parameter zur Verfügung, um das System jeweils den gegebenen Ansprüchen anpassen zu können. Durch praktische Wahl der Parameter kann eine große Vielzahl von möglichen Verbindungsnetzwerken realisiert werden.

Wie bereits oben ausgeführt, stellt jedes Verbindungsmodul eine kleine Zentrale dar, die alle notwendigen Verbindungen zwischen den ankommenden und abgehenden Leitungen autonom durchführen kann. Jedoch können natürlich auch zwei Leitungen

miteinander verbunden werden, die an zwei verschiedene Modulen des Netzwerkes angeschlossen sind. Zwischen den einzelnen Modulen sind Verbindungsleitungen DL vorgesehen, über die die nötigen Steuer- und Nachrichteninformationen laufen. Vorzugsweise werden dabei pulscode-modulierte Signale übertragen, wobei die Verbindungsleitungen als Zeitmultiplex-Sammelschienen ausgeführt sind. Über diese Sammelleitungen werden also auch Signaltöne, Ruftöne, Wähltonen usw. übertragen. Die Erzeugung der Wahlinformationen erfolgt dabei auf bekannte Weise und zwar in dem Verbindungsmodul, an das z.B. die rufende Leitung angeschlossen ist.

Fig. 5 zeigt ein mögliches Format für die Art der Information, die über die Verbindungsleitungen übertragen werden soll. Das erste Feld im Format gibt die Bestimmungsadresse an, d.h., die Adresse desjenigen Verbindungsmoduls, an das der gerufene Teilnehmer angeschlossen ist sowie die Adresse der betreffenden Teilnehmerleitung.

Das zweite Feld gibt die Adresse der rufenden Leitung an. Wie beim ersten Feld besteht diese Adresse aus der Adresse des Teilnehmers selbst und der Adresse des Verbindungsmoduls an das dieser Teilnehmer angeschlossen ist.

Das dritte Feld, das aus einem einzelnen Bit bestehen kann, gibt an, ob die Nachricht als Durchgangsinformation behandelt werden soll und hat Einfluß auf die Reservierung einer Zeitlege im Zeitmultiplexzyklus.

Das vierte Feld gibt die Art der Nachricht an (Sprache, Daten, Bildinformation, usw.).

Das fünfte Feld enthält Prüfdaten zur Fehlererkennung.

Das sechste Feld schließlich enthält die eigentliche zu übertragende Nachricht.

Zur Nachrichtenübertragung muß von der Einrichtung ein freier Weg zwischen dem rufenden und gerufenen Teilnehmer gesucht werden. Oben wurde bereits festgestellt, daß es zwischen zwei zu verbindenden Verbindungsmodulen mehrere mögliche Verbindungswege gibt. Anhand der Fig. 2 und 6 soll nun ein einfaches Verfahren erläutert werden, nach dem, ausgehend von den Koordinaten der beiden zu verbindenden Modulen ein freier Verbindungs weg gefunden werden kann. Hierbei wird in Erinnerung gebracht, daß in jedem Modul die Verbindungs information der sechs angeschlossenen Verbindungswege gespeichert ist, d.h., die Angabe, ob und welcher dieser Wege frei ist. Im Falle einer Zeitmultiplex-verbindung muß außerdem festliegen, welches Zeitfach noch verwendet werden kann. Dieser Verbindungsspeicher in jedem Verbindungsmodul wird vom betreffenden Modul jeweils auf den neuesten Stand gebracht, was in autonomer Manier vom Modul durchgeführt werden kann, da dem Modul bekannt ist, welche Verbindungen zu den verbundenen Modulen bestehen.

Angenommen wird, daß ein freier Verbindungs weg zwischen einem beliebigen Verbindungsmodul i,j,k , in dem die zu übertragende Nachricht gerade ankommt und einen Bestimmungsmodul, mit den Koordinaten p,q,r gesucht werden soll. Das Prinzip der Wegesuche ist in Fig. 6 dargestellt und weist die nachfolgend geschilderten Schritte auf.

Da werden aufeinanderfolgend die Koordinaten des betrachteten Verbindungsmoduls einerseits (i,j,k) und des Bestimmungsmoduls andererseits (p,q,r) verglichen.

Wenn Übereinstimmung zwischen zwei einander entsprechenden Koordinaten gefunden wird, wird zum Vergleich eines folgenden Koordinatenpaars übergegangen.

Wird keine Übereinstimmung festgestellt, z.B. wenn $p \neq i$ ist, wird der Verbindungsspeicher ausgelesen, um feststellen, ob es vom Modul i,j,k zum Modul $i+1,j,k$ noch ein freies Zeitfach gibt. Ist dies der Fall, wird zu diesem neuen Modul übergegangen, indem in der betreffenden Schleife ein Zeitfach reserviert wird. Hierauf wird für dieses neue Modul die Wegesuche fortgesetzt. Schließlich gelangt man so zu einem Modul, dessen Koordinaten gleich sind den Koordinaten des Bestimmungsmoduls, d.h., es gilt $p=i, q=j, r=k$.

Wenn es keine freie Verbindung zum Modul $i+1,j,k$ gibt, wird untersucht, ob es noch ein freies Zeitfach zum Modul $i-1,j,k$ gibt. Wenn dies der Fall ist, wird ein freies Zeitfach zu diesem neuen Modul reserviert. Ist kein freier Weg mehr frei zu dem Modul $i-1,j,k$, wird die Wegesuche für die nächste Koordinate fortgesetzt und der Fehlerstand des Zählers C, dessen Funktionsweise weiter unten noch näher erläutert wird, um eine Einheit erhöht.

Bei der Untersuchung der zweiten Koordinate wird genau so vorgegangen wie für die erste Koordinate, wie auch aus Fig. 6 zu ersehen ist. Insbesondere wird festgestellt ob $q=j$ ist, oder ob diese beiden Koordinaten ungleich sind und ob ein freier Weg zum Modul $i,j+1,k$ oder $i,j-1,k$ verfügbar ist. Ist dies nicht der Fall, wird die Wegesuche für die nächste Koordinate fortgesetzt und der Zählerstand des Zählers C wiederum um eine Einheit erhöht.

Die Wegesuche schließlich für die dritte Koordinate wird ebenso wie für die zweite Koordinate ausgeführt, wobei für den Fall, daß ein freier Verbindungs weg gefunden wird, die Untersuchung beim Modul $i,j,k+1$ oder $i,j,k-1$ fortgesetzt wird.

Für den Fall, daß für eine der drei Koordinaten die Wegesuche bei einem Modul fortgesetzt wird, dessen Koordinate z.B. um Eins niedriger ist, als die Koordinate des gerade betrachteten Moduls kann gefordert werden, daß auch der nächste Schritt oder die nächsten Schritte in der gleichen Richtung, also in Richtung der erhöhten oder der erniedrigten Koordinate, fortgesetzt werden.

Bei der Untersuchung der dritten Koordinate ergeben sich jedoch Unterschiede im Verlauf der Wegesuche im Vergleich zu den vorhergehenden Koordinaten für die folgenden Fälle:

1. Fall: $r=k$. Es wird der Stand des Zählers C untersucht. Steht dieser Zähler auf 0, bedeutet dies, daß auch die beiden anderen Koordinatenpaare einander gleich waren, und daß infolge dessen das Bestimmungsmodul erreicht ist. Hierauf muß nurmehr der Gesamtweg unter Verwendung der reservierten Zeitintervalle durchgeschaltet und die Nachricht übertragen werden.

Ist jedoch der Stand des Zählers C nicht gleich 0, bedeutet dies, daß $p \neq i$ und/oder $q \neq j$ ist und daß keine freie Verbindung gefunden wurde zu den Modulen $i+1, j, k$ oder $i-1, j, k$, oder $i, j+1, k$, oder $i, j-1, k$. In diesem Falle führt also die Wegesuche zu der Feststellung, daß es keinen freien Verbindungs- weg zwischen dem Ursprungsmodul und dem Bestimmungsmodul gibt und die Wegesuche wird beendet.

2. Fall: $r \neq k$, sowie kein freier Verbindungs- weg zu den Modulen $i, j, k+1$ und $i, j, k-1$. Auch in diesem Falle führt die Wegesuche zu der Feststellung, daß es keinen freien Verbindungs- weg zum Bestimmungsmodul gibt. In allen Fällen, in denen die Wegesuche erfolglos beendet wird, wird der Zähler C auf 0 zurückgestellt. Dies geschieht auch, wenn im Zuge der Wegesuche bei Untersuchung der zweiten und der dritten Koordinate ein freier Verbindungs- weg zum nächsten Modul

gefunden wird. (Für die erste Koordinate ist es nicht notwendig, da der Zähler noch nicht erhöht worden sein konnte und daher noch auf 0 steht.)

Die oben beschriebene Wegesuche stellt nur ein Beispiel von vielen Möglichkeiten dar und bezieht sich insbesondere auf das in Fig. 2 gezeigte Verbindungsnetzwerk. Für diese Wege- suchen wurde vorausgesetzt, daß nur Wege gesucht werden, die nicht mehr als eine bestimmte Anzahl von Schleifen (im vorliegenden Falle drei Schleifen) durchlaufen. Wenn z.B. das Modul 011 mit dem Modul 212 verbunden werden soll, kann einer der in Fig. 7 gezeigten acht Verbindungswege gefunden werden.

Es ist einzusehen, daß auch eine Wegesuche möglich ist, die zu einem freien Verbindungs weg führt, obwohl die oben beschriebene spezielle Wegesuche keinen freien Verbindungs weg ergeben hat. Hierzu genügt es z.B. einen Weg zu einem benachbarten Modul aufzubauen, obwohl Identität für eine Koordinate festgestellt wurde. Beispielsweise kann ein Weg zum Modul $i, j+1, k$ oder $i, j-1, k$ gesucht werden, obwohl ein Vergleich gezeigt hat, daß $q=j$ ist.

Ferner ist die Erfindung keinesfalls auf eine Anzahl von drei Verbindungsmodulen (E1, E2, E3) pro Gruppe beschränkt. Es können ohne weiteres mehr als drei Verbindungsmodulen pro Gruppe vorgesehen werden, wobei die dritte Koordinate dann die entsprechende Anzahl von Werten annehmen wird. Ebenso ist keinesfalls die Gesamtanzahl der Koordinaten auf drei beschränkt und können für alle Koordinaten beliebig viele diskrete Werte vorgesehen werden.

DERWENT PUBLICATIONS LTD.

15

Leerseite

FIG. 2.

FIG. 2a

FIG. 2b

FIG. 3

809814 / 0742

FIG. 4

809814 / 0742

FIG. 6

809814 / 0742

FIG. 7

809814 / 0742

2743765

- 21 -

Int. ...
Anmeldetag:
Offenlegungstag:

H 04 Q 3/42
29. September 1977
6. April 1978

FIG. 1

FIG. 5

BESTIMMUNGS- ADRESSE	HERKUNFTS- ADRESSE	DURCHGANGS- BEH.	TYPE	BESTÄT.	NACHRICHT
-------------------------	-----------------------	---------------------	------	---------	-----------

IBM - FR 976 005

809814 / 0742

**This Page is Inserted by IFW Indexing and Scanning
Operations and is not part of the Official Record**

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

- BLACK BORDERS
- IMAGE CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT OR DRAWING
- BLURRED OR ILLEGIBLE TEXT OR DRAWING
- SKEWED/SLANTED IMAGES
- COLOR OR BLACK AND WHITE PHOTOGRAPHS
- GRAY SCALE DOCUMENTS
- LINES OR MARKS ON ORIGINAL DOCUMENT
- REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY
- OTHER: _____

IMAGES ARE BEST AVAILABLE COPY.

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.