Matemática discreta

Universidade de Évora, ano 2014.

Lista de exercícios 5: O-grande.

Exercício 1 Determine o menor k tal que $f(n) = O(n^k)$, onde

- 1. $f(n) = (n^2 + 1)(2n^4 + 3n 8)$
- 2. $f(n) = (n^3 + 3n 1)^4$
- 3. $f(n) = \sqrt{n+1}$
- 4. $f(n) = \sqrt{n^2 + n}$

Exercício 2 1. Mostre que (n)! = O(n).

Exercício 3 Verdadeiras ou falsas?

- 1. $2^{n+1} = O(2^n)$
- 2. $(200n)^2 = O(n^2)$
- 3. $log_2^4(n) = O(\sqrt{n})$
- 4. $(\sqrt{n}+1)^4 = O(n^2)$
- 5. $40^n = O(2^n)$.

Exercício 4 $D\hat{e}$ estimações do tipo $O(\cdot):\sum_{j=n}^{2n}j, \Pi_{j=n}^{2n}j, \sum_{i=0}^{10}(-1)^i, \Pi_{i=1}^n\frac{i+1}{i}$.

Exercício 5 (o-pequeno). Diz-se que f(n) = o(g(n)) se $\lim_{n\to\infty} \frac{f(n)}{g(n)} = 0$. Quais relações de O-grande acima são de facto relações de o-pequeno? Mostre que se f(n) = o(g(n)), tem-se também f(n) = O(g(n)). Dê exemplos de sucessões f(n), g(n) tais que f(n) = O(g(n)), mas não f(n) = o(g(n)).