

BIOMHXANIKH HAEKTPONIKH

Α. Αντωνόπουλος

Διάλεξη 4

21/11/2022

Περιεχόμενο διάλεξης

- Ιδιότητες και χαρακτηριστικές θυρίστορ
- Χρήση θυρίστορ σε ανορθωτικές διατάξεις
- Ρυθμιστής εναλλασσόμενης τάσης
- Διάταξη ελεγχόμενης αυτεπαγωγής

Θυρίστορ

- Έναυση:
 - Θετική πόλωση Α-Κ
 - Σύντομος παλμός στην πύλη
- Σβέση από το εξωτερικό κύκλωμα

Κυκλώματα με θυρίστορ

$$V_s(\omega t) = \sqrt{2} V_s \sin(\omega t)$$

Μέση τιμή:

$$V_d = \frac{1}{2\pi} \int_{\alpha}^{\pi} \sqrt{2} V_S \sin \omega t \, d\omega t$$

$$V_d = \frac{\sqrt{2}}{2\pi} V_s (1 + \cos \alpha)$$

t [s]

Ανορθωτής θυρίστορ πλήρους γέφυρας

t [s]

Μέση τιμή:

$$V_d = \frac{1}{\pi} \int_{\alpha}^{\pi} \sqrt{2} V_S \sin \omega t \, d\omega t$$

$$V_d = \frac{\sqrt{2}}{\pi} V_s (1 + \cos \alpha)$$

500

Βιομηχανική Ηλεκτρονική

Ανορθωτής θυρίστορ πλήρους γέφυρας

0.02

t [s]

0.03

0.04

0.01

 T_2

 $i_d L \to \infty$

Μέση τιμή:

$$V_d = \frac{1}{\pi} \int_{\alpha}^{\pi + \alpha} \sqrt{2} V_s \sin \omega t \, d\omega t$$

$$V_d = \frac{2\sqrt{2}}{\pi} V_s \cos \alpha$$

LOV-METSOB-CON-METSOB-

Βιομηχανική Ηλεκτρονική

Τριφασικοί ανορθωτές με θυρίστορ

- Δύο ομάδες θυρίστορ
 - T₁, T₃, T₅ σε συνδεσμολογία κοινής καθόδου
 - *T₂, T₄, T₆* σε συνδεσμολογία κοινής ανόδου
- Συνθήκες για έναυση θυρίστορ:
 - > θετική πόλωση και κατάλληλος παλμός έναυσης στην πύλη

Τριφασικός ανορθωτής θυρίστορ πλήρους γέφυρας

- Η γωνία έναυσης α
 υπολογίζεται σε σχέση με τη
 στιγμή της «φυσικής»
 μεταγωγής (λειτουργία διόδου)
- ΠΡΟΣΟΧΗ: Σε αυτή την περίπτωση, ΔΕΝ συμπίπτει με το μηδενισμό της φασικής τάσης εισόδου.

- Η γωνία έναυσης α υπολογίζεται σε σχέση με τη στιγμή της «φυσικής» μεταγωγής (λειτουργία διόδου)
- ΠΡΟΣΟΧΗ: Σε αυτή την περίπτωση, ΔΕΝ συμπίπτει με το μηδενισμό της φασικής τάσης εισόδου.

 $V_d = \frac{3\sqrt{2}}{\pi} V_{LL} \cos \alpha$

 $V_{s,a}(\omega t)$ $V_{s,b}(\omega t)$ $V_{s,b}(\omega t)$ $V_{s,c}(\omega t)$

- Η γωνία έναυσης α υπολογίζεται σε σχέση με τη στιγμή της «φυσικής» μεταγωγής (λειτουργία διόδου)
- ΠΡΟΣΟΧΗ: Σε αυτή την περίπτωση, ΔΕΝ συμπίπτει με το μηδενισμό της φασικής τάσης εισόδου.

 $V_d = \frac{3\sqrt{2}}{\pi} V_{LL} \cos \alpha$

 $V_{s,a}(\omega t)$ $V_{s,b}(\omega t)$ $V_{s,c}(\omega t)$ $V_{s,c}(\omega t)$ T_{4} T_{5} T_{5} $V_{d} \geq R$ T_{6} T_{2}

- Η γωνία έναυσης α υπολογίζεται σε σχέση με τη στιγμή της «φυσικής» μεταγωγής (λειτουργία διόδου)
- ΠΡΟΣΟΧΗ: Σε αυτή την περίπτωση, ΔΕΝ συμπίπτει με το μηδενισμό της φασικής τάσης εισόδου.

 $V_d = \frac{3\sqrt{2}}{\pi} V_{LL} \cos \alpha$

 $V_{s,a}(\omega t)$ $V_{s,b}(\omega t)$ $V_{s,b}(\omega t)$ $V_{s,c}(\omega t)$ T_{4} T_{3} T_{5} + V_{d} T_{4} T_{6} T_{2}

ριφασικός ανορθωτής θυρίστορ πλήρους γέφυρας – φορτίο σταθερού ρεύματος

$$S = \sqrt{3}V_{LL}I_S = \sqrt{3}V_{LL}\sqrt{\frac{2}{3}}I_d = \sqrt{2}V_{LL}I_d$$

$$P = V_dI_d = \frac{3\sqrt{2}}{\pi}V_{LL}I_d\cos\alpha$$

$$P = V_d I_d = \frac{3\sqrt{2}}{\pi} V_{LL} I_d \cos \alpha$$

$$V_d = \frac{3\sqrt{2}}{\pi} V_{LL} \cos \alpha$$

$$\lambda = \frac{3}{\pi} \cos \alpha$$

Ρυθμιστής εναλλασσόμενης τάσης

t [s]

