n-gramy w analizie sekwencji biologicznych

Michał Burdukiewicz¹, Piotr Sobczyk²

¹Zakład Genomiki, Uniwersytet Wrocławski

²Instytut Matematyki i Informatyki, Politechnika Wrocławska

Outline

- n-gramy (k-mery)
 - n-gramy (k-mery)
 - Informacja o pozycji
 - Nieciągłe n-gramy
 - Wybór informatywnych n-gramów QuiPT
- 2 signalHSMM
 - Peptydy sygnałowe

n-gramy (k-mery, k-tuple) to wektory o długości n zawierające znaki z sekwencji wejściowych.

Pierwotnie analiza n-gramów rozwijana była na potrzeby analizy języka naturalnego, ale ma również zastosowania w genomice (Fang et al., 2011), transkryptomice (Wang et al., 2014) i proteomice (Guo et al., 2014).

	P1	P2	P3	P4	P5	P6
S1	С	Т	Т	Α	G	С
S2	C	Α	G	Α	C	G
S3	G	Т	G	Α	Т	Т

Przykładowe sekwencje. S - sekwencje, P - pozycja nukleotydu.

	Α	С	G	Т
S1	1	2	1	2
S2	2	2	2	0
S3	1	0	2	3

Zliczenia 1-gramów.

	P1	P2	P3	P4	P5	P6
S1	С	Т	Т	Α	G	С
S2	C	Α	G	Α	C	G
S3	G	Т	G	Α	Т	Т

Przykładowe sekwencje. S - sekwencje, P - pozycja nukleotydu.

	AA	CA	GA	TA	AC	CC	GC	TC
S1	0	0	0	1	0	0	1	0
S2	0	1	1	0	1	0	0	0
S3	0	0	1	0	0	0	0	0

Zliczenia 2-gramów (fragment tabeli).

n-gramy (k-mery) Informacja o pozycji Nieciągłe n-gramy Wybór informatywnych n-gramów - QuiP'

$$n_{\mathsf{max}} = u^n$$

 n_{max} : liczba wszystkich możliwych n-gramów

u: liczba liter w alfabecie.

n: długość n-gramu

n-gramy (k-mery) Informacja o pozycji Nieciągłe n-gramy Wybór informatywnych n-gramów - QuiPT

n-gramy mogą być przypisaną informację o pozycjach na których występują.

	P1	P2	P3	P4	P5	P6
S1	С	Т	Т	Α	G	С
S2	C	Α	G	Α	C	G
S 3	G	Т	G	Α	Т	Т

 ${\sf Przykładowe\ sekwencje},\ {\sf S\ -\ sekwencje},\ {\sf P\ -\ pozycja\ nukleotydu}.$

	1_A.A	2_A.A	3_A.A	4_A.A	5_A.A	1_C.A	2_C.A	3_C.A
S1	0	0	0	0	0	0	0	0
S2	0	0	0	0	0	1	0	0
S3	0	0	0	0	0	0	0	0

Zliczenia 2-gramów z informacją o pozycji (fragment tabeli).

$$n_{\mathsf{max}} = p \times u^n$$

 n_{max} : liczba wszystkich możliwych n-gramów

p: liczba możliwych pozycji.

u: liczba liter w alfabecie.

n: długość n-gramu

n-gramy (k-mery) Informacja o pozycji **Nieciągłe n-gramy** Wybór informatywnych n-gramów - QuiPT

n-gramy mogą być nieciągłe - pomiędzy elementami n-gramu mogą występować przerwy.

	P1	P2	P3	P4	P5	P6
S1	С	Т	Т	Α	G	С
S2	C	Α	G	Α	C	G
S3	G	Т	G	Α	Т	Т

Przykładowe sekwencje. S - sekwencje, P - pozycja nukleotydu.

	A_A	C_A	G_A	T₋A	$A_{-}C$	C_C	$G_{-}C$	T₋C
S1	0	0	0	1	1	0	0	0
S2	1	0	0	0	0	0	1	0
S3	0	0	0	1	0	0	0	0

Zliczenia 2-gramów z przerwą 1 (fragment tabeli).

n-gramy (k-mery) Informacja o pozycji Nieciągłe n-gramy Wybór informatywnych n-gramów - QuiPT

Wielowymiarowa przestrzeń atrybutów jest filtrowana z pomocą QuiPT (**Qui**ck **P**ermutation **T**est) łączącego zalety testów permutacyjnych (brak założeń) z szybkością wykonania.

W trakcie testu permutacyjnego oznaczenia klas są losowo mieszane na potrzeby obliczania statystyki testowej.

$$\text{p-value} = \frac{\textit{N}_{\textit{T}_{\textit{P}} > \textit{T}_{\textit{R}}}}{\textit{N}}$$

gdzie $N_{T_P > T_R}$ to liczba losowań, kiedy T_P (permutowana statystyka testowa) miała wartość krytyczniejszą niż T_R (statystyka testowa dla niepermutowanych danych).

Outline

- 1 n-gramy (k-mery)
 - n-gramy (k-mery)
 - Informacja o pozycji
 - Nieciągłe n-gramy
 - Wybór informatywnych n-gramów QuiPT
- 2 signalHSMM
 - Peptydy sygnałowe

- n-region: głównie zasadowe aminokwasy (Nielsen and Krogh, 1998),
- h-region: silnie hydrofobowe reszty aminokwasy (Nielsen and Krogh, 1998),
- c-region: kilka polarnych aminokwasów bez ładunku (Jain et al., 1994).

Istnieje szereg programów przewidujących występowanie peptydu sygnałowego:

- signalP 4.1 (sieci neuronowe) Petersen et al. (2011),
- PrediSi (Position Weight Matrix) Hiller et al. (2004),
- Signal-3L (k-najbliszych sąsiadów) Shen and Chou (2007),
- Phobius (ukryte modele Markowa) KäII et al. (2004).

- Fang, Y.-C., Lai, P.-T., Dai, H.-J., and Hsu, W.-L. (2011). Meinfotext 2.0: gene methylation and cancer relation extraction from biomedical literature. BMC Bioinformatics, 12(1):471.
- Guo, S.-H., Deng, E.-Z., Xu, L.-Q., Ding, H., Lin, H., Chen, W., and Chou, K.-C. (2014). inuc-pseknc: a sequence-based predictor for predicting nucleosome positioning in genomes with pseudo k-tuple nucleotide composition. *Bioinformatics*, 30(11):1522–1529.
- Hiller, K., Grote, A., Scheer, M., MĂĽnch, R., and Jahn, D. (2004). PrediSi: prediction of signal peptides and their cleavage positions. Nucleic Acids Research, 32(suppl 2):W375ã WW379.
- Jain, R. G., Rusch, S. L., and Kendall, D. A. (1994). Signal peptide cleavage regions. functional limits on length and topological implications. The Journal of Biological Chemistry, 269(23):16305ã ₹ "16310.
- KäII, L., Krogh, A., and Sonnhammer, E. L. L. (2004). A combined transmembrane topology and signal peptide prediction method. Journal of Molecular Biology, 338(5):1027a 1036.
- Nielsen, H. and Krogh, A. (1998). Prediction of signal peptides and signal anchors by a hidden markov model. Proceedings / ... International Conference on Intelligent Systems for Molecular Biology; ISMB. International Conference on Intelligent Systems for Molecular Biology, 6:1223 2 130.
- Petersen, T. N., Brunak, S., von Heijne, G., and Nielsen, H. (2011). SignalP 4.0: discriminating signal peptides from transmembrane regions. *Nature Methods*, 8(10):785a € "786.
- Shen, H.-B. and Chou, K.-C. (2007). Signal-3l: A 3-layer approach for predicting signal peptides. Biochemical and Biophysical Research Communications, 363(2):297â ₹ "303.
- Wang, Y., Liu, L., Chen, L., Chen, T., and Sun, F. (2014). Comparison of metatranscriptomic samples based on jitalic¿k-j/italic¿tuple frequencies. PLoS ONE, 9(1):e84348.