A solutions manual for Algebra by Thomas W. Hungerford

Introduction: Prerequisites and Preliminaries - 7. The Axiom of Choice, Order and Zorn's Lemma

Exercises

- 1. Let (A, \leq) be a partially ordered set and B a nonempty subset. A lower bound of B is an element $d \in A$ such that $d \leq b$ for every $b \in B$. A **greatest lower bound** (g.l.b.) of B is a lower bound d_0 of B such that $d \leq d_0$ for every other lower bound d of B. A **least upper bound** (l.u.b.) of B is an upper bound t_0 of B such that $t_0 \leq t$ for every other upper bound t of B. (A, \leq) is a **lattice** if for all $a, b \in A$ the set $\{a, b\}$ has both a greatest lower bound and a least upper bound.
- (a) If $S \neq \emptyset$, then the power set P(S) ordered by set-theoretic inclusion is a lattice, which has a unique maximal element.
 - (b) Give an example of a partially ordered set which is not a lattice.
- (c) Give an example of a lattice with no maximal element and an example of a partially ordered set with two maximal elements.

Proof. (a) Let $X,Y \in P(S)$. From $X \subset T,Y \subset T \iff X \cup Y \subset T$, and from $T \subset X,T \subset Y \iff T \subset X \cap Y, X \cap Y$ is the greatest lower bound and $X \cup Y$ is the least upper bound of $\{X,Y\}$. Therefore, P(S) is a lattice. Given any set $A \in P(S), A \cup S = S$, so S is a maximal element of P(S). Furthermore, any set $M \in P(S)$ that is maximal still has the property that $M \cup S = S$. Therefore, P(S) has a unique maximal element, S. \square

Examples. (b) The set $\{\emptyset, \{0, 2\}, \{1, 3\}\}$ ordered by inclusion.

- (c) The natural numbers ordered in the traditional way, and the set $\{\emptyset, \{0, 2\}, \{1, 3\}\}$ ordered by inclusion.
- 2. A lattice (A, \leq) (see Exercise 1) is said to be **complete** if every nonempty subset of A has both a least upper bound and a greatest lower bound. A map of partially ordered sets $f: A \to B$ is said to preserve order if $a \leq a'$ in A implies $f(a) \leq f(a')$ in B. Prove that an order-preserving map f of a complete lattice A onto itself has at least one fixed element (that is, an $a \in A$ such that f(a) = a).

Proof. Let $P = \{x \in A : f(x) \ge x\}$. Note that P is nonempty as the g.l.b of $A \in P$. Let a be the l.u.b of P. Since $a \ge x$ for all $x \in P$, $f(a) \ge f(x)$ for all $x \in P$, and so $f(a) \ge x$ for all $x \in P$; thus $f(a) \ge a$, and so $a \in P$. But then $a \le f(a)$ implies $f(a) \le f(f(a))$; thus $f(a) \in A$, and so $f(a) \le a$. Therefore, f(a) = a. \square

3. Exhibit a well-ordering of the set \mathbb{Q} of rational numbers.

Example.
$$\frac{1}{1}, \frac{1}{2}, \frac{2}{1}, \frac{1}{3}, \frac{3}{1}, \frac{1}{4}, \frac{2}{3}, \frac{3}{2}, \frac{4}{1}, \frac{1}{5}, \frac{5}{1}, \frac{1}{6}, \dots, -\frac{1}{1}, -\frac{1}{2}, -\frac{1}{2}, -\frac{1}{3}, -\frac{3}{1}, -\frac{1}{4}, -\frac{2}{3}, -\frac{3}{2}, -\frac{4}{1}, \dots$$

- 4. Let S be a set. A **choice function** for S is a function f from the set of all nonempty subsets of S to S such that $f(A) \in A$ for all $A \neq \emptyset, A \subset S$. Show that the Axiom of Choice is equivalent to the statement that every set S has a choice function.
- **Proof.** When $S = \emptyset$, there does not exist nonempty subset of S; vacuously true, so we suppose S is nonempty. Let $X = \{X_i \mid i \in I\}$ be the family of all nonempty subsets of S. Suppose that the Axiom of Choice is true, then we have $\prod_{i \in I} X_i$ which is nonempty; from each element of the product, $\langle x_i \mid i \in I \rangle$ which is a sequence of x_i such that $x_i \in X_i$, we have a function $f(i) = x_i$. So every set S has a choice function. Conversely, If there is a choice function f, then $\langle f(i) \mid i \in I \rangle$ is an element of the product $\prod_{i \in I} X_i$. So the product is nonempty. \square
- 5. Let S be the set of all points (x, y) in the plane with $y \leq 0$. Define an ordering by $(x_1, y_1) \leq (x_2, y_2) \iff x_1 = x_2$ and $y_1 \leq y_2$. Show that this is a partial ordering of S, and that S has infinitely many maximal elements.
- **Sketch of proof.** It's easy to show that the relation on S is reflexive, antisymmetric, and transitive. The elements (x,0) are all maximal elements.
- 6. Prove that if all the sets in the family $\{A_i \mid i \in I \neq \emptyset\}$ are nonempty, then each of the projections $\pi_k : \prod_{i \in I} A_i \to A_k$ is surjective.
- **Proof.** By definition, the product $\prod_{i \in I} A_i$ is the collection of all functions $f: I \to \bigcup_{i \in I} A_i$ such that $f(i) \in A_i$ for all $i \in I$. Then each of the projections $\pi_k : \prod_{i \in I} A_i \to A_k$ is given by $f \mapsto f(k)$. It is obvious that each of the projections is well-defined, and dom $\pi_k = A_k$, and so injective. \square FIXME: maybe not rigorous.
- 7. Let (A, \leq) be a linearly ordered set. The **immediate successor** of $a \in A$ (if it exists) is the least element in the set $\{x \in A \mid a < x\}$. Prove that if A is well-ordered by \leq , then at most one element of A has no immediate successor. Give an example of a linearly ordered set in which precisely two elements have no immediate successor.
- **Proof.** Given any $a \in A$. If a is not a maximal element of A, then $X_a = \{x \in A \mid x > a\}$ is nonempty; by well-orderedness, X_a has a least element m, which is the immediate successor of a. Otherwise, a has no immediate successor; given any two maximal elements M and N, either M < N, M = N, or N < M; thus M = N. \square

Example. Consider a subset of \mathbb{R} , $[0,1] \cup (1.1,2]$. 1, 2 have no immediate successor.