

Introduction

- "Avionics" refers to the on-board electronics that guide and control the Ares I Crew Launch Vehicle (CLV).
- NASA is leading the design of the Avionics System, and The Boeing Company is the Avionics production contractor.
- Design lead responsibility builds on the legacy of the Saturn development model (NASA design and IBM production).
- NASA Design Team (NDT) can establish an architectural philosophy and system design that provides for a low-risk development through:
 - Seeking available component solutions
 - Design for production
 - Design for obsolescence
 - An architecture that economically accommodates change
- Approach allows NASA to consider future Constellation vehicles and spacecraft and leverage opportunities.

IUA Team - Development Approach Roadmap

Ares I US Avionics and Software Development Approach

NASA designs and maintains design ownership throughout all phases

- NDT architects and specifies
- NDT assures a viable system design
- Instrument Unit Avionics (IUA) contract is awarded prior to US PDR
 - Influences design for manufacturability, producibility, and sustainability
 - Analysis and development plans for the manufacture, assembly, checkout, logistics, and sustaining
 - Provides development hardware
 - Integrates and Tests the Upper Stage Avionics System
 - Specifying the Upper Stage Electrical Ground Support Equipment
 - Providing the Upper Stage Avionics Systems and EGSE for flight tests and production flights
 - Establish the manufacturing and production areas
 - IUAC will transition to sustaining engineering role with NASA performing an insight role after Design Certification Review
- NDT leads the Flight Software Design Development Test & Evaluation

NDT Responsibilities

- The NASA Design Team is responsible for the US Avionics System Design, Development, and Test
 - Analyses, Trades, and establishment of margins and system resource management required to demonstrate Avionics System (including software) design meets mission requirements
 - Establishment and management of the system development and test program resulting in design certification
- The NASA Design Team is responsible for Avionics System-level requirements and specifications:
 - Upper Stage Element Level Requirements (Element Requirements Document)
 - Upper Stage Avionics System-level Architecture (Hardware and Software)
 - Avionics and Software Subsystem Specification
 - Component End Item Specifications
 - Electrical Ground Support System Requirements
- ♦ The NASA Design Team is responsible for Avionics System-level development and test plans:
 - Avionics System Development Plan
 - Avionics System Test Plan
- The NASA Design Team is responsible for Flight Software development:
 - All Flight Software Design, Development, Test, and Evaluation, through Certification for flight
- The NASA Design Team is responsible for development and test facilities:
 - Software Development Facility
 - System Integrated Test Facility
 - System Integrated Laboratory

Ares I Upper Stage Avionics Locations

Launch Abort System

Orion Crew Exploration Vehicle

Spacecraft Adapter

Upper Stage

J-2X Upper Stage Engine

First Stage Aft Skirt

Ares I

Instrumentation Unit

- Flight Computers
- Command & Telemetry Computers
- Vehicle Flight Software
- Inertial Navigation System
- Data Acquisition & Control Units
- Radio Frequency Communication System
- Power Distribution & Control Unit
- Battery Unit
- Flight Safety System
- Global Positioning System
- Operational Flight Instrumentation (OFI)
- Developmental Flight Instrumentation (DFI)

100

Aft Skirt

- Combined Control System Electronics
- Data Acquisition & Control Unit
- Power Distribution & Control Unit
- Battery Unit
- OFI & DFI

Interstage

- Roll Control System Electronics
- Rate Gyro Assemblies
- Pump Motor Inverter Unit
- Power Distribution & Control Unit
- Battery Unit
- OFI & DFI

Ares I Overall Avionics & Software Functions

- Upper Stage Avionics Primary Functional Responsibilities
 - Pre-flight Checkout
 - Guidance Navigation & Control of Integrated Vehicle
 - Vehicle Management
 - Command and Data Handling
 - Autonomous and Automated Control of Upper Stage Subsystems
 - Ground and Crew command capability
 - Fault Detection, Diagnostics, and Response (including Abort Recommendations)
 - OFI and DFI Telemetry
 - Support Range Tracking
 - Flight Termination Implementation

Block Diagram Version of Avionics Architecture

Upper Stage Avionics External Interfaces

Conclusion

- The NASA Design Team (NDT) has planned a development approach that implements within the larger Constellation framework.
- NASA-owned and led design has already resulted in cost savings through competition, and provides the mechanisms to further reduce cost through early design influence for production.
- NASA and Boeing personnel work are working together in a "One Team" approach
- This strategy leverages opportunities for NASA's future Constellation developments.
- Competition, system architecture, and design philosophy all contribute to the Avionics team objectives: (1) Successfully deliver a certified Upper Stage Avionics System to the Project, and (2) Maintain lower life-cycle cost.