Gated RNN & Sequence Generation Hung-yi Lee

李宏毅

Outline

- RNN with Gated Mechanism
- Sequence Generation
- Conditional Sequence Generation
- Tips for Generation

RNN with Gated Mechanism

Recurrent Neural Network

• Given function f: h', y = f(h, x)

h and h' are vectors with the same dimension

No matter how long the input/output sequence is, we only need one function f

Deep RNN
$$h', y = f_1(h, x)$$
 $b', c = f_2(b, y)$...

$$b^0 \rightarrow f_2 \rightarrow b^1 \rightarrow f_2 \rightarrow b^2 \rightarrow f_2 \rightarrow b^3 \rightarrow b^3 \rightarrow b^1 \rightarrow f_1 \rightarrow f_1$$

Bidirectional RNN

$$h', a = f_1(h, x)$$
 $b', c = f_2(b, x)$

Naïve RNN

• Given function f: h', y = f(h, x)

c changes slowly ct is ct-1 added by something

h changes faster h^t and h^{t-1} can be very different

c^{t-1}

LSTM: A Search Space Odyssey

LSTM: A Search Space Odyssey

- 1. No Input Gate (NIG)
- 2. No Forget Gate (NFG)
- 3. No Output Gate (NOG)
- 4. No Input Activation Function (NIAF)
- 5. No Output Activation Function (NOAF)
- 6. No Peepholes (NP)
- 7. Coupled Input and Forget Gate (CIFG)
- 8. Full Gate Recurrence (FGR)

Standard LSTM works well

Simply LSTM: coupling input and forget gate, removing peephole Forget gate is critical for performance

Output gate activation function is critical

An Empirical Exploration of Recurrent Network

Architectures

Arch.	Arith.	XML	PTB
Tanh	0.29493	0.32050	0.08782
LSTM	0.89228	0.42470	0.08912
LSTM-f	0.29292	0.23356	0.08808
LSTM-i	0.75109	0.41371	0.08662
LSTM-o	0.86747	0.42117	0.08933
LSTM-b	0.90163	0.44434	0.08952
GRU	0.89565	0.45963	0.09069
MUT1	0.92135	0.47483	0.08968
MUT2	0.89735	0.47324	0.09036
MUT3	0.90728	0.46478	0.09161

LSTM-f/i/o: removing forget/input/output gates

LSTM-b: large bias

Importance: forget > input > output

Large bias for forget gate is helpful

An Empirical Exploration of Recurrent Network Architectures

MUT1:

$$z = \operatorname{sigm}(W_{xz}x_t + b_z)$$

$$r = \operatorname{sigm}(W_{xr}x_t + W_{hr}h_t + b_r)$$

$$h_{t+1} = \operatorname{tanh}(W_{hh}(r \odot h_t) + \operatorname{tanh}(x_t) + b_h) \odot z$$

$$+ h_t \odot (1 - z)$$

MUT2:

$$z = \operatorname{sigm}(W_{xz}x_t + W_{hz}h_t + b_z)$$

$$r = \operatorname{sigm}(x_t + W_{hr}h_t + b_r)$$

$$h_{t+1} = \operatorname{tanh}(W_{hh}(r \odot h_t) + W_{xh}x_t + b_h) \odot z$$

$$+ h_t \odot (1 - z)$$

MUT3:

$$z = \operatorname{sigm}(W_{xz}x_t + W_{hz} \tanh(h_t) + b_z)$$

$$r = \operatorname{sigm}(W_{xr}x_t + W_{hr}h_t + b_r)$$

$$h_{t+1} = \tanh(W_{hh}(r \odot h_t) + W_{xh}x_t + b_h) \odot z$$

$$+ h_t \odot (1 - z)$$

Neural Architecture Search with Reinforcement Learning

Sequence Generation

你我他是很

y: 0 0 0.7 0.3 ····· 0

- Sentences are composed of characters/words
- Generating a character/word at each time by RNN

 y^1 : P(w|<BOS>)

y²: P(w|<BOS>,床)

y³: P(w|<BOS>,床,前)

- Sentences are composed of characters/words
- Generating a character/word at each time by RNN

: minimizing cross-entropy

Training

Training data: 春 眠 不 覺 曉

Consider as a sentence

blue red yellow gray

Train a RNN based on the "sentences"

- Images are composed of pixels
- Generating a pixel at each time by RNN

Generation - PixelRNN

3 x 3 images

• Images are composed of pixels

Conditional Sequence Generation

- We don't want to simply generate some random sentences.
- Generate sentences based on conditions:

Caption Generation

Given condition:

"A young girl is dancing."

Chat-bot

Given condition:

"Hello. Nice to see you."

 Represent the input condition as a vector, and consider the vector as the input of RNN generator

Sequence-tosequence learning

 Represent the input condition as a vector, and consider the vector as the input of RNN generator

• E.g. Machine translation / Chat-bot

Encoder ← Jointly train ← *Decoder*

M: Hello
U: Hi

Need to consider longer context during chatting

M: Hi

https://www.youtube.com/watch?v=e2MpOmyQJw4

 $w_{3,1}$... $w_{3,1}$... w_{2,N_2} $w_{2,1}$... w_{2,N_2} U: Hi

 $w_{3.1}$

M: Hello

Serban, Iulian V., Alessandro Sordoni, Yoshua Bengio, Aaron Courville, and Joelle Pineau, 2015 "Building End-To-End Dialogue Systems Using Generative Hierarchical Neural Network Models.

Dynamic Conditional Generation

Attention-based model

Jointly learned with other part of the network

What is

match

?

Design by yourself

- Cosine similarity of z and h
- > Small NN whose input is z and h, output a scalar

$$\triangleright \alpha = h^T W z$$

Attention-based model

$$c^0 = \sum \hat{\alpha}_0^i h^i$$
$$= 0.5h^1 + 0.5h^2$$

Speech Recognition

Model	Clean WER	Noisy WER
CLDNN-HMM [22]	8.0	8.9
LAS	14.1	16.5
LAS + LM Rescoring	10.3	12.0

William Chan, Navdeep Jaitly, Quoc V. Le, Oriol Vinyals, "Listen, Attend and Spell", ICASSP, 2016

A woman is throwing a <u>frisbee</u> in a park.

A dog is standing on a hardwood floor.

A <u>stop</u> sign is on a road with a mountain in the background.

A little <u>girl</u> sitting on a bed with a teddy bear.

A group of <u>people</u> sitting on a boat in the water.

A giraffe standing in a forest with <u>trees</u> in the background.

Kelvin Xu, Jimmy Ba, Ryan Kiros, Kyunghyun Cho, Aaron Courville, Ruslan Salakhutdinov, Richard Zemel, Yoshua Bengio, "Show, Attend and Tell: Neural Image Caption Generation with Visual Attention", ICML, 2015

A large white bird standing in a forest.

A woman holding a clock in her hand.

A man wearing a hat and a hat on a skateboard.

A person is standing on a beach with a surfboard.

A woman is sitting at a table with a large pizza.

A man is talking on his cell phone while another man watches.

Kelvin Xu, Jimmy Ba, Ryan Kiros, Kyunghyun Cho, Aaron Courville, Ruslan Salakhutdinov, Richard Zemel, Yoshua Bengio, "Show, Attend and Tell: Neural Image Caption Generation with Visual Attention", ICML, 2015

Ref: A man and a woman ride a motorcycle A man and a woman are talking on the road

Ref: A woman is frying food **Someone** is **frying** a **fish** in a **pot**

Li Yao, Atousa Torabi, Kyunghyun Cho, Nicolas Ballas, Christopher Pal, Hugo Larochelle, Aaron Courville, "Describing Videos by Exploiting Temporal Structure", ICCV, 2015

Tips for Generation

Attention

Kelvin Xu, Jimmy Ba, Ryan Kiros, Kyunghyun Cho, Aaron Courville, Ruslan Salakhutdinov, Richard Zemel, Yoshua Bengio, "Show, Attend and Tell: Neural Image Caption Generation with Visual Attention", ICML, 2015

Good Attention: each input component has approximately the same attention weight

E.g. Regularization term: $\sum_{i} \left(\tau - \sum_{t} \alpha_{t}^{i} \right)^{2}$

For each component

Over the generation

Mismatch between Train and Test

• Training

$$C = \sum_{t} C_{t}$$

Minimizing cross-entropy of each component

: condition

Reference:

Mismatch between Train and Test

Generation

We do not know the reference

Testing: The inputs are the outputs of the last time step.

Training: The inputs are reference.

Exposure Bias

一步錯,步步錯

Modifying Training Process?

When we try to decrease the loss for both steps 1 and 2

Training is matched to testing.

In practice, it is hard to train in this way.

Scheduled Sampling

Caption generation on MSCOCO

	BLEU-4	METEOR	CIDER
Always from reference	28.8	24.2	89.5
Always from model	11.2	15.7	49.7
Scheduled Sampling	30.6	24.3	92.1

Samy Bengio, Oriol Vinyals, Navdeep Jaitly, Noam Shazeer, Scheduled Sampling for Sequence Prediction with Recurrent Neural Networks, arXiv preprint, 2015

Beam Search

The green path has higher score.

Not possible to check all the paths

Beam Search

Keep several best path at each step

Beam size = 2

Beam Search

The size of beam is 3 in this example.

https://github.com/tensorflow/tensorflow/issues/654#issuecomment-169009989

Better Idea?

Object level v.s. Component level

 Minimizing the error defined on component level is not equivalent to improving the generated objects

Ref: The dog is running fast

$$C = \sum_{t} C_{t}$$

Cross-entropy of each step

Optimize object-level criterion instead of component-level crossentropy. object-level criterion: $R(y, \hat{y})$ Gradient Descent?

y: generated utterance, \hat{y} : ground truth

Reinforcement learning?

Reinforcement learning?

reward:
R("BAA", reference)

Marc'Aurelio Ranzato, Sumit Chopra, Michael Auli, Wojciech Zaremba, "Sequence Level Training with Recurrent Neural Networks", ICLR, 2016

The action we take influence the observation in the next step

Concluding Remarks

- RNN with Gated Mechanism
- Sequence Generation
- Conditional Sequence Generation
- Tips for Generation

Sequence-to-sequence?

<u>Decoder</u>

Problem?

Sequence-to-sequence?

 $\begin{bmatrix} x_0 \\ y_0 \end{bmatrix}$: END

Output: 1

argmax from this distribution

What decoder can output depends on the input.

Output: 4

argmax from this distribution

What decoder can output depends on the input.

The process stops when "END" has the largest attention weights.

Applications - Summarization

More Applications

Machine Translation

Chat-bot

User: X寶你好,我是庫洛洛

Machine: 車洛洛你好,很高興認識你