明細書

CIP用洗浄剤組成物

本発明は、CIP用洗浄剤組成物及びCIP洗浄方法に関する。詳しくは、食品、飲料工場等の製造設備や製造機器類の洗浄に使用するCIP用洗浄剤組成物及びCIP洗浄方法に関する。

従来技術

食品工場、飲料工場等では、生産品種切り替え時や操業終了時等にその製造設備や機器類の洗浄を行っているが、配管、タンク等の取り外し洗浄が困難な個所に関してはCIP洗浄(定置洗浄)を行っている。このCIP洗浄とは、Cleaning in placeの頭文字を取った言葉で、装置を分解することなく洗浄剤を流すことにより洗浄する方法である。

CIP洗浄は食品工場や飲料工場等で幅広く使われている。中でも飲料工場では、生産品種切り替え時等において、前の充填物が製造ラインに残存しないよう、また前の充填物に配合されているフレーバーが次の充填物に混入しないよう、十分に洗浄することが重要である。

このため食品工場等では、時間をかけてCIP洗浄を行っているが、特に製造 ライン中、配管連結部などのパッキン部(シール部)にはフレーバーが残りやす く、フレーバーを十分に除去するためには大きな労力を要する。

1

また、近年、生産速度の上昇や飲料品種の増加により、切り替え頻度が高くなりてIP工程の時間ロスが生産性を著しく低下させる原因となっている。

従来、CIP洗浄では、製造設備や製造機器類の配管内部等の汚れに応じて、アルカリ洗浄、酸洗浄、これらを併用した洗浄が適宜行われているが、洗浄効率を高めるために、次亜塩素酸塩、イソシアヌール酸塩、過炭酸塩、過ホウ酸塩などの酸化剤を用いるケースもある。しかし、それでも十分な脱臭効果が得られておらず、使用状況によっては機器の損傷が発生する場合もある。

このような状況から、CIP洗浄における洗浄効率、フレーバー除去効率を更に向上させるための技術が提案されている。例えば、特開2003-49193 号公報には非イオン界面活性剤を用いて脱臭洗浄を行う技術が開示されている。

また、特開2001-49296号公報、特開2001-207190号公報、特開2002-105489号公報には、ビール醸造設備等の洗浄剤に、非イオン界面活性剤や両性界面活性剤を使用することが開示されている。

一方、特開2002-97494号公報には芳香族炭化水素による化学プラントの洗浄技術が、特開平10-183191号公報には有機溶剤を用いた工業装置用溶剤洗浄技術が公開されている。

発明の開示

本発明は、25℃でのSP値が6~9である溶剤(A) 〔以下、(A) 成分という〕及び界面活性剤(B) 〔以下、(B) 成分という〕を含有するCIP用洗浄剤組成物に関する。

また、本発明は、25℃でのSP値が6~9である溶剤(A)及び界面活性剤(B)を含有する洗浄媒体(I)を被洗浄物に接触させる工程を含むCIP洗浄方法に関する。

更に、本発明は、25℃でのS P 値が6~9 である溶剤(A)及び界面活性剤(B)を含有する洗浄媒体(I)を被洗浄物に接触させる工程(1)、並びに界面活性剤(B)を含有し、25℃でのS P 値が6~9 である溶剤(A)の濃度が 0.5 重量%未満である洗浄媒体(II)を被洗浄物に接触させる、前記工程(1)の後に行われる工程(2)を含むC I P 洗浄方法に関する。

本発明は上記組成物のCIP洗浄用途または上記組成物によってCIP対象物を洗浄する方法にも関する。

発明の詳細な説明

従来技術のフレーバー除去は十分でない。

特開2002-97494号公報、特開平10-183191号公報の技術では、基剤残留、残臭等の問題上、食品工場には適さない。

上記の状況を鑑み、本発明の目的は、現在行われているCIP工程において効率良く残存フレーバーを除去でき、洗浄後に溶剤臭が殆ど残存しないCIP用洗浄剤組成物及びCIP洗浄方法を提供することにある。

本発明によれば、CIP洗浄において、効率良くフレーバーが除去でき、洗浄 後も溶剤臭が殆どせず、従来より洗浄時間の短縮が可能となる。特に、食品工業 用プラントの洗浄に適している。

<(A)成分>

本発明の(A) 成分としては、25℃でのSP値が6~9の溶剤であり、鉱物油に代表される炭化水素化合物、アルコールと脂肪酸から合成されるエステル・食用油等に代表されるエステル化合物、高級アルコールに代表されるアルコール化合物等が挙げられる。 なかでも、脱臭性の観点から炭化水素化合物又はエステル化合物が好ましく、特に炭化水素化合物が好ましい。また、上記炭化水素化合物、エステル化合物、アルコール化合物は、それぞれ単独でも2種以上の混合でも用いることができる。

炭化水素化合物としては、炭素数5~24の炭化水素化合物が好ましい。炭化水素化合物としては脂肪族炭化水素、芳香族炭化水素等が挙げられるが、基剤臭と脱臭性の観点から、脂肪族炭化水素が好ましく、特に5~20の脂肪族炭化水素が好ましい。更に8~14の脂肪族炭化水素が好ましく、特に炭素数10~14の脂肪族炭化水素が好ましい。具体的には、ペンタン、イソペンタン、ヘキサン、イソヘキサン、シクロヘキサン、ヘプタン、イソヘプタン、オクタン、イソオクタン、イソオクタン、イソナン、デカン、イソデカン、イソデカン、イソウンデカン、イソトリデカン、テトラデカン、イソテトラデカン、ペンタデカン、イソペンタデカン、ヘキサデカン、イソトラデカン、イソヘプタデカン、オクタデカン、イソオクタデカン、イナデカン、イソノナデカン、C10 αオレフィン、C12 αオレフィン、C14 αオレフィン等が挙げられるが、好ましくはデカン、イソデカン、ウンデカン、イソウンデカン、ドデカン、イソドデカン、トリデカン、イソトリデカン、テト

ラデカン、イソテトラデカン、C 1 2 α オレフィン等が挙げられる。芳香族炭化水素としては、ドデシルベンゼン等のアルキル(炭素数 $1\sim 1$ 8 が好ましい)置換ベンゼン等が挙げられる。

エステル化合物としては、下記一般式(1)~(4)で表される一種以上のエステル化合物が好ましい。

$$\begin{array}{ccc}
O \\
\parallel \\
R^{11}-C-O-R^{21}
\end{array} (1)$$

〔式中、 $R^{11} \sim R^{16}$ は、それぞれ同一でも異なっていても良く、炭素数 $1 \sim 30$ のアルキル基、ヒドロキシル基で置換された炭素数 $1 \sim 30$ のアルキル基、炭素数 $2 \sim 30$ のアルケニル基、炭素数 $6 \sim 30$ のアリール基、炭素数 $7 \sim 30$ のアリ

ールアルキル基又は炭素数 7~30のアルキルアリール基を表す。R¹⁷は、炭素数 1~20のアルキレン基又は炭素数 2~20のアルケニレン基を表す。R²¹、R²⁴、R²⁵は、それぞれ同一でも異なっていても良く、炭素数 1~24のアルキル基、ヒドロキシル基で置換された炭素数 2~24のアルキル基、炭素数 2~24のアルケニル基、炭素数 6~24のアリール基、炭素数 7~24のアリールアルキル基又は炭素数 7~24のアルキルアリール基を表す。R²²は、炭素数 2~24のアルキレン基、炭素数 2~24のアルキレン基、炭素数 7~24のアリーレン基、炭素数 7~24のアリーレン基、炭素数 7~24のアリーレン基、炭素数 7~24のアルキルアリーレン基を表す。R²³は、炭素数 3~24の3価アルコールから水酸基を除いた基を表す。]

具体的には、一般式(1)のエステル化合物としては、ヘキサン酸メチル、酢酸ヘキシル、酪酸エチル、酢酸オクチル、酢酸イソアミル、ミリスチン酸エチル、ステアリン酸オクチル、ミリスチン酸イソオクチル、オレイン酸オレイル、オレイン酸イソオクチル、ラウリン酸メチル、ラウリン酸エチル、ステアリン酸メチル、ステアリン酸エチル、酪酸イソアミル、酢酸フェニルエチル、ギ酸ゲラニル、酢酸シトロネリル、安息香酸エチル、オレイン酸オクチルドデシル、ステアリン酸オクチルドデシル又はミリスチン酸オクチルドデシル等が挙げられ、ミリスチン酸エチル、ステアリン酸オクチル、ミリスチン酸イソオクチル、オレイン酸オレイル、オレイン酸イソオクチル、ラウリン酸メチル、ラウリン酸エチル、ステアリン酸メチル、ステアリン酸メチル、ステアリン酸メチル、ステアリン酸エチル、オレイン酸オクチルドデシル、ステアリン酸メチル、ステアリン酸オクチルドデシル又はミリスチン酸オクチルドデシルが好ましい。

一般式(2)のエステル化合物としては、エチレングリコールジオレート、エチレングリコールジラウレート、エチレングリコールジステアレート、プロピレングリコールジラウレート又はプロピレングリコールジステアレート等が挙げられ、エチレングリコールジオレート、エチレングリコールジラウレート又はプロピレングリコールジラウレートが好ましい。

一般式(3)のエステル化合物としては、ナタネ油、オリーブ油、ヤシ油、ゴマ油、コーン油、大豆油等に代表される各種植物油中に存在するトリグリセリド、牛脂、ラード、骨油、鯨油、にしん油、いわし油等に代表される各種動物油中に存在するトリグリセリド、グリセリントリステアレートまたはグリセリントリラウレート等が挙げられ、ナタネ油、ヤシ油、大豆油中に存在するトリグリセリドまたはグリセリントリラウレートが好ましい。

一般式(4)のエステル化合物としては、アジピン酸ジメチル、アジピン酸ジエチル、フタル酸ジオクチル、アゼライン酸ジメチル又はアゼライン酸ジエチル等が挙げられ、アジピン酸ジメチル、アジピン酸ジエチル又はフタル酸ジオクチルが好ましい。

アルコール化合物としては、下記一般式で表される化合物であり、

R - OH

(式中、Rは、炭素数7~24のアルキル基、炭素数7~24のアルケニル基、 炭素数8~24のアリール基、炭素数8~24のアルキルアリール基又は炭素数 8~24のアリールアルキル基を表す。) 25℃での水への溶解度が10重量%以下であるものが好ましい。

具体的には、イソーヘプタノール、イソーオクタノール、n-ノナノール、n ーデカノール、イソーデカノール、n-ドデカノール、イソートリデカノール、 n-テトラデカノール、イソ-テトラデカノール、n-ヘキサデカノール、イソ - ヘキサデカノール、 n -オクタデカノール、イソ-オクタデカノール、オクチ ルドデシルアルコール、nードコサノール、オレイルアルコール、フィトール、 イソーフィトール、又はエチルベンジルアルコール等が挙げられる。好ましくは イソーヘプタノール、イソーオクタノール、n-ノナノール、n-デカノール、 イソーデカノール、n-ドデカノール、イソートリデカノール、n-テトラデカ ノール、イソーテトラデカノール、イソーヘキサデカノール、イソーオクタデカ ノール、オクチルドデシルアルコール、オレイルアルコール、イソ-フィトール、 ベンジルアルコール又はエチルベンジルアルコールであり、特に好ましくはイソ ーオクタノール、n-ノナノール、n-デカノール、イソ-デカノール、n-ド デカノール、イソートリデカノール、イソーテトラデカノール、イソーヘキサデ カノール、イソーオクタデカノール、オクチルドデシルアルコール又はオレイル アルコールである。これらにおいて、「n-」は直鎖であることを、「イソ-」 は分岐鎖を有することを意味する(以下同様)。

また、本発明の(A)成分は、25℃でのS P 値が6~9 である。S P 値は、物質間の相溶性の尺度として一般的に用いられる溶解度パラメーター δ 〔(cal /cc) $^{1/2}$ 〕であり、本発明の(A)成分としては、脱臭性(臭いの除去性能)に優れることから、25℃でのS P 値は6~9 であり、7~8.5 が好ましく、7

 ~ 8 が特に好ましい。 本発明の(A)成分としては、脱臭性の観点から融点が 100 ℃以下のものが好ましく、更に 80 ℃以下が好ましい。特に 65 ℃以下が 好ましい。

<(B)成分>

(B)成分としては、非イオン界面活性剤、陰イオン界面活性剤、両性界面活性剤、陽イオン界面活性剤が挙げられるが、(A)成分の乳化分散性を助ける観点から、非イオン界面活性剤及び陰イオン界面活性剤が好ましい。

非イオン界面活性剤としては、ポリオキシアルキレンアルキルエーテル、ポリオキシアルキレンアルキルアミン、ポリオキシアルキレン脂肪酸エステル、アルキルポリグリコシド、アルキルグリセリルエーテル、グリセリン脂肪酸エステル、ポリグリセリン脂肪酸エステル、ショ糖脂肪酸エステル、ポリオキシエチレンーポリオキシプロピレンブロックポリマー、ポリオキシアルキレン多価アルコール脂肪酸エステル等が挙げられるが、好ましくはポリオキシアルキレン脂肪酸エステル、ポリオキシアルキレンアルキルポリグリコシド、アルキルグリセリルエーテル、ポリオキシアルキレンアルキレンアルキレンアルにアミン、ポリオキシアルキレンアルキレンタ価アルコール脂肪酸エステル(ポリオキシアルキレンソルビタン脂肪酸エステル、ポリエチレングリコール脂肪酸エステル等)等が挙げられる。これら非イオン界面活性剤において、ポリオキシアルキレンは、ポリオキシエチレン、ポリオキシプロピレン及びこれらの混合が好ましく、アルキル基は炭素数8~18が好ましく、また、アルケニル基に変更できるものものある。脂肪酸の炭素数は8~18が好ましい。

非イオン界面活性剤、特にポリオキシアルキレンアルキルエーテルは、グリフィンの計算式によるHLB値が3以上8未満のものが好ましい。

陰イオン界面活性剤としては、脂肪酸塩(好ましくは炭素数8~24)、アルキル(好ましくは炭素数8~24)スルホン酸塩、アルキル(好ましくは炭素数8~24)硫酸 8~18)ベンゼンスルホン酸塩、アルキル(好ましくは炭素数8~24)硫酸 エステル塩、アルキル(好ましくは炭素数2~24)リン酸エステル塩、ポリオキシアルキレン(好ましくはポリオキシエチレン)アルキル(好ましくは炭素数8~18)硫酸エステル塩、ポリオキシアルキレン(好ましくはポリオキシエチレン)アルキル(好ましくは炭素数2~24)リン酸エステル塩、ポリオキシアレン)アルキル(好ましくは炭素数2~24)リン酸エステル塩、ポリオキシアルキレン(好ましくはポリオキシエチレン)アルキル(好ましくは炭素数8~18)カルボン酸塩、アルキル(好ましくは炭素数6~18)スルホコハク酸塩等がある。

両性界面活性剤としては、アルキル(好ましくは炭素数 $8 \sim 1$ 8)アミンオキサイド、アルキル(好ましくは炭素数 $8 \sim 1$ 8)ジメチルアミノ酢酸ベタイン、アルキル(好ましくは炭素数 $8 \sim 1$ 8)アミドプロピルベタイン、アルキル(好ましくは炭素数 $8 \sim 1$ 8)ヒドロキシスルホベタイン、アルキル(好ましくは炭素数 $8 \sim 1$ 8)カルボキシメチルヒドロキシエチルイミダゾリニウムベタイン等が挙げられる。

陽イオン界面活性剤としては、塩化アルキル(好ましくは炭素数6~24)トリメチルアンモニウム、塩化ジアルキル(好ましくは炭素数6~18)ジメチルアンモニウム、塩化ベンザルコニウム(好ましくは炭素数6~18)等が挙げら

れる。

<CIP用洗浄剤組成物>

本発明のCIP用洗浄剤組成物において、(A) 成分と(B) 成分の重量比は、(A) / (B) = 1/99~99/1が好ましく、より好ましくは20/80~90/10であり、特に好ましくは30/70~70/30である。(A) / (B) 重量比が99/1以下であれば、分散系の安定性が向上し配管等への吸着汚染がなくなる。また、(A) / (B) 重量比が1/99以上であれば、十分な脱臭効果が得られる。

本発明のCIP用洗浄剤組成物は、組成物の安定性、脱臭効果の観点から、(A) 成分を1~99%重量%、更に3~70重量%、特に5~50重量%含有することが好ましい。また、(B) 成分を1~99重量%、更に5~80重量%、特に10~70重量%含有することが好ましい。本発明のCIP用洗浄剤組成物は、水を含んでも含まなくてもよいが、取り扱い上の観点から好ましくは、水を1~99重量%、より好ましくは10~90重量%、更に好ましくは20~70重量%、特に好ましくは30~65重量%含む。

本発明では、(A)成分が炭素数10~14の脂肪族炭化水素、前記一般式(1)~(4)で表される一種以上のエステル化合物又は炭素数7~24の1価アルコールであり、(B)成分がアルキルポリグリコシド(具体的にはデシルグルコシド、ウンデシルグルコシド、ラウリルグルコシド、テトラデシルグルコシド等)、アルキルグリセリルエーテル(具体的には2-エチル-ヘキシルグリセリルエーテル、オクチルグリセリルエーテル、イソデシルグリセリルエーテル、デシルグ

リセリルエーテル、ドデシルグリセリルエーテル等)、ポリオキシアルキレン脂肪酸エステル(具体的にはポリオキシエチレンオレイン酸エステル、ポリオキシエチレンラウリン酸エステル等)、HLBが3以上8未満のポリオキシアルキレンアルキルエーテル、及びポリオキシアルキレンアルキルアミン(具体的には、ポリオキシエチレンラウリルアミン、ポリオキシエチレンステアリルアミン等)から選ばれる界面活性剤である組み合わせが、洗浄効果の点でより好ましい。

本発明のCIP用洗浄剤組成物には、(A)成分、(B)成分以外に、必要に 応じて消泡剤、防錆剤、キレート剤、(A)成分以外の水溶性溶剤等を添加して 使用することができる。

本発明のCIP用洗浄剤組成物は、非水系溶剤、水性溶剤、水等で希釈した洗 浄液としてCIP洗浄に用いられる。希釈媒体は、経済性、安全性の観点から水 が好ましい。希釈した該洗浄液は、洗浄性と経済性の観点から、(A)成分の濃 度が0.01~20重量%、更に0.1~10重量%、特に0.5~5重量%で あることが好ましい。また、(A)成分の乳化分散性の観点から、該洗浄液にお ける(B)成分の濃度は0.01~20重量%、更に0.1~15重量%、特に 0.5~10重量%であることが好ましい。

<CIP洗浄方法>

本発明のCIP用洗浄剤組成物は、上記の通り、希釈した洗浄液としてCIP洗浄に用いられるのが好ましい。該洗浄液は、10 C \sim 98 C の範囲で、CIP 洗浄における被洗浄物である配管内及び各種機器等と接触するように循環させ洗浄することが好ましい。 該洗浄剤の温度は40 \sim 98 C が特に好ましく、60

また、本発明では、(A)成分及び(B)成分を含有する洗浄媒体(I)を被洗浄物に接触させる工程を含むCIP洗浄方法を行うことができ、更に、(A)成分及び(B)成分を含有する洗浄媒体(I)を被洗浄物に接触させる工程(1)、並びに該工程(1)の後に行われる、(B)成分を含有する洗浄媒体(II)を被洗浄物に接触させる工程(2)を含むCIP洗浄方法を行うことができる。(A)成分、(B)成分としては前記のものが使用される。 前記洗浄媒体(I)での洗浄、あるいは洗浄媒体(I)及び(II)での洗浄を含む一連のCIP洗浄終了後、リンス水の官能評価を行い、残臭が強ければ臭いレベルが十分に低下するまで、再度CIP洗浄を繰り返すか、湯洗いを継続する。

この場合、媒体(I)は、本発明の洗浄剤組成物を希釈して得られた洗浄液が好ましい。媒体(I)において、(A)成分の濃度は0.01~20重量%、更に0.1~10重量%、特に0.5~5重量%が、(B)成分の濃度は0.01~20重量%、更に0.1~15重量%、特に0.5~10重量%が、(A)成分と(B)成分の合計は、経済性、脱臭性の観点から0.01~50重量%、更に0.1~30重量%、特に好ましくは0.2~10重量%が好ましい。

また、媒体 (II) に用いられる (B) 成分は、媒体 (I) で用いられるものと同じでも異なっていても良い。また、媒体 (II) において、 (B) 成分の濃度は、 $0.01\sim30$ 重量%、更に $0.1\sim20$ 重量%、特に $0.2\sim10$ 重量%が好ましい。また、媒体 (II) は、 (A) 成分を含有していてもよいが、脱臭性の観

点から、媒体(II)中の(A)成分の濃度は0.5重量%未満であり、更に0.3重量%以下、より更に0.2重量%以下、特に0.1重量%未満が好ましい。

工程(1)で用いられる(B)成分 或いは工程(1)及び工程(2)で用いられる少なくとも一方、特には両方の(B)成分は、非イオン界面活性剤から選ばれる1種以上であることが好ましい。非イオン界面活性剤は、前述のものが好ましく使用される。

例えば、飲料プラントにおけるCIP洗浄は、(a) 湯洗→(b) アルカリ洗浄→(c) 湯洗→(d) 酸洗浄→(e) 湯洗が行われ、最後の(e) 湯洗の後に、必要に応じて、更に次亜塩素酸塩による洗浄と湯洗が行われることがある。上記工程(1) はこのような洗浄工程の何れかで行われれば良く、具体的には上記(a)~(d)の何れかの工程の前及び/又は後に、あるいは何れかの工程と置換して、あるいは何れかの工程と同時に、行うことができる。工程(1)は(a)~(e)の工程間であれば単独或いは各工程と同時に行うことができるが、CIP総時間を考えると(a)~(e)のどれかの工程と同時に行うことが好ましい。更に脱臭性の観点から、アルカリ洗浄(b)或いは酸洗浄(d)と同時に行うことが好ましい。また、より一層脱臭性を高めるためには、工程(2)を併用することが好ましく、該工程(2)は、上記工程(1)の次であればよく、工程(1)の直後でも他の工程を挟んでもよい。なお、工程(1)、(2)は、それぞれ複数行っても良い。

実施例

実施例1

表1に示す組成でCIP用洗浄剤組成物を調製した。それらを用いて、下記の方法で脱臭性と基剤臭の試験を行った。結果を表1に示す。

(1)被試験体

パッキンと同一素材のEPDM(エチレン・プロピレン・ジエン・ゴム)シート(大阪サニタリー金属工業協同組合)を $5\,c\,m \times 0$. $5\,c\,m$ (厚さ $2\,m\,m$)に裁断、試験ピースとした。上記試験ピースをピーチフレーバー(長谷川香料)に $7\,0\,^{\circ}$ 、2時間浸績したものを被試験体とした。

(2) 試験方法

表1の洗浄剤組成物(有効分換算で2g)を、それぞれ100ccのスクリュー管に入れた後、水を加え合計100gとした。なお、スクリュー管中の内容物は、80℃でマグネティックスターラーにより攪拌した。そこに、上記の方法により着香した被試験体を、それぞれのスクリュー管に1枚投入して、以下の洗浄工程(a)~(e)を行った。なお、(a)~(e)の洗浄工程は、100ccのスクリュー管に洗浄液ないし温水を入れ、順次被試験体を投入することで行った。その際、各工程では、スクリュー管中の内容物を、80℃でマグネティックスターラーにより攪拌した。一連の洗浄工程後の試験ピースを乾燥、50ccのスクリュー管に移した後、室温にて12時間保管したものを評価用サンプルとした。なお、この方法は、下記洗浄工程の(a)で、表1の洗浄剤組成物による洗浄を行ったものである。

(洗浄工程)

(a) 洗浄剤洗浄:80℃、20分浸漬攪拌

(b) アルカリ洗浄:2%NaOH水溶液、80℃、20分浸漬攪拌

(c) 湯洗1:80℃、20分浸漬攪拌

(d)酸洗净:0.6%HNO3水溶液、20分浸漬攪拌

(e) 湯洗2:80℃、20分浸漬攪拌

(3)評価方法

2名のパネラーにより試験ピースのフレーバー臭及び基剤臭について5段階評価を実施した。その点数が少ないほど脱臭効果に優れているといえる。2名のパネラーによる評価点の平均値を「臭い残留度」として評価とした。判断基準は下記の通りである。

(評価点と判定基準)

5:強く臭いを感じる

4:かなり臭いを感じる

3:やや臭いを感じる

2:かすかに臭いを感じる

1:臭いを感じない

表1

	1-5		2	:					:				4	Ī
_	1-4							1.54	0.46				5	l
比較品	1-3								2				5	ĺ
	1-2							2					2	
	1-1						2						4	
	1-12			0.87								1.13	2.5	
	1-10		0.87								1.13		3	
	1-10	0.87								1.13			3	
	1-9		0.87				1.13						3	
	1-8		0.87 0.44 0.87	0.43				0.87	0.26				2	
本発明品	1-7		0.87						1.13				3	
本発	1-6		0.87					1.13					3	
	1-5					0.87		0.87	0.26				3	
	1-4				0.87			0.87 0.87 0.87	0.26				€.	L
	1-3			0.87				0.87	0.26				3	
	1-2		0.87		:			0.87	0.26				2	L
	1-1	0.87						0.87	0.26				2	
		ノルマルデカン*1	/ルマルウンデ・カン*2	/ルマルドデカン*3	分 ハレマルトリテ・カン*4	ノルマルテトラテ゛カン*5	非イオン界面活性剤A*6		非イン界面活性剤C*8	陰イオン界面活性剤A*9	陽イオン界面活性剤A*10	而性界面活性剤A*11	脱臭性	1 1
			<u> </u>	(社)					<u>@</u> 4	分分				
					- 3	超成	(∞)					L_	L

- *1:試薬品(純度99%)、25℃でのSP値7.6、融点20℃以下
- *2:試薬品(純度99%)、25℃でのSP値7. 7、融点20℃以下
- *3:試薬品(純度99%)、25℃でのSP値7.7、融点20℃以下
- *4:試薬品(純度99%)、25℃でのSP値7.7、融点20℃以下
- *5:試薬品(純度99%)、25℃でのSP値7.8、融点20℃以下
- *6 非イオン界面活性剤A:ポリエチレングリコール脂肪酸エステル〔花王(株) 製、

エマノーン4110]

*7 非イオン界面活性剤B:アルキルポリグリコシド(花王(株)製、マイドール12

)

- *8 非イオン界面活性剤C:アルキルグリセリルエーテル〔花王(株)製、2-エチル
- ヘキシルグリセリルエーテル〕
- *9 陰イオン界面活性剤A:ジアルキルスルホコハク酸ナトリウム (花王 (株) 製、ペレックスOT-P)
- *10 陽イオン界面活性剤A:ラウリルトリメチルアンモニウムクロライド〔花 王(株)製、コータミン24P〕
- * 1 1 両性界面活性剤A:ラウリルベタイン〔花王(株) 製、アンヒトール 2 4 B〕

実施例2

表2に示す組成で、洗浄工程(1)用の組成物1を調製した。それらを下記の洗浄工程(a)~(d)の何れかで用いて、下記の方法で脱臭性と基剤臭の試験を行った。その際、各工程では、スクリュー管中の内容物は、80℃でマグネティックスターラーにより攪拌した。結果を表2に示す。なお、表2中の成分は実施例1と同じものである。

(洗浄工程)

- (a) 湯洗1:80℃、20分浸漬攪拌
- (b) アルカリ洗浄:2%NaOH水溶液、80℃、20分浸漬攪拌
- (c) 湯洗2:80℃、20分浸漬攪拌
- (d)酸洗净:0.6%HNO3水溶液、20分浸漬攪拌
- (e)湯洗3:80℃、20分浸漬攪拌

(1)被試験体

実施例1と同じように調製したものを被試験体とした。

(2) 試験方法

表2の組成物1(有効分換算で3.8g)を、それぞれ100ccのスクリュー管に入れた後、工程(a)で使用する場合は水を、工程(b)で使用する場合は所定量のNaOHと水とを加え、それぞれ合計100gとしたものを用意して

おく。なお、スクリュー管中の内容物は、80℃でマグネティックスターラーにより攪拌した。

工程(a)で組成物1を使用する場合は、被試験体1枚を、上記で調製した組成物1を含む希釈液を入れたスクリュー管に投入して、以下の工程を行った。また、工程(b)で組成物1を使用する場合は、湯洗による工程(a)を終えた被試験体1枚を、上記で調製した組成物1とNaOHを含む希釈液を入れたスクリュー管に投入して、以下の工程を行った。工程(c)で組成物1を使用する場合は、湯洗による工程(a)、アルカリ洗浄による工程(b)を終えた被試験体1枚を、上記で調製した組成物1を含む希釈液を入れたスクリュー管に投入して、以下の工程を行った。工程(d)で組成物1を使用する場合は、湯洗による工程(a)、アルカリ洗浄による工程(b)、湯洗による工程(c)を終えた被試験体1枚を、上記で調製した組成物1とHNO3を含む希釈液を入れたスクリュー管に投入して、以下の工程を行った。

一連の洗浄工程後の試験ピースを乾燥、50ccのスクリュー管に移した後、 室温にて12時間保管したものを評価用サンプルとした。

(3)評価方法

実施例1と同様の評価方法及び基準とした。

						 *{	本発明品	π¤∷					比較例	
			2-1		2-2 2-3	2-4	2-2	2–6	2-7	2-8	56	2-1	2-2	2-3
		ノルマルデ・カン			1.65									
	<u>(</u>	ノルマルウンデ・カン	1.65	1.65 1.65					1.65		1.65			3.8
現代	超,	, ノルマルト・デ・カン				1.65								
	 	ノルマルトリテ・カン					1.65							
±0)		ノルマルテトラデ・カン						1.65		1.65				
	(A)	非イオン界面活性剤B	1.65	1.65	1.65	1.65 1.65 1.65 1.65 1.65	1.65	1.65	1.65	1.65	1.65			
	公	****	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	3.8	3.8	
	組成	組成物の使用工程	(p)	(P)	(q)	(p)	(p)	(p)	(a)	(a)	(c)	(p)	(a)	(p)
		脱臭性	2.5	2.5	2.5	1.5	1	2	3	3	3	3.5	4	3
		基剤臭	1	1,	2	1	1	1	1	1	2	3.5	3	4

表2

実施例3

表3に示す組成で、洗浄工程(1)用の組成物1と洗浄工程(2)用の組成物2を調製した。それらを下記の洗浄工程(a)~(e)の何れかで用いて、下記の方法で脱臭性と基剤臭の試験を行った。その際、各工程では、スクリュー管中の内容物は、80℃でマグネティックスターラーにより攪拌した。結果を表3に示す。なお、表3中の成分は実施例1と同じものである。

(洗浄工程)

- (a) 湯洗1:80℃、20分浸漬攪拌
- (b) アルカリ洗浄:2%NaOH水溶液、80℃、20分浸漬攪拌
- (c) 湯洗2:80℃、20分浸漬攪拌
- (d)酸洗净:0.6%HNO3水溶液、20分浸漬攪拌
- (e) 湯洗3:80℃、20分浸漬攪拌

(1)被試験体

実施例1と同じように調製したものを被試験体とした。

(2) 試験方法

表3の組成物1(有効分換算で3.8g)を、それぞれ100ccのスクリュー管に入れた後、工程(a)で使用する場合は水を、工程(b)で使用する場合は所定量のNaOHと水とを加え、それぞれ合計100gとしたものを用意しておく。なお、スクリュー管中の内容物は、80℃でマグネティックスターラーに

より攪拌した。

工程(a)で組成物1を使用する場合は、被試験体1枚を、上記で調製した組成物1を含む希釈液を入れたスクリュー管に投入して、以下の工程を行った。また、工程(b)で組成物1を使用する場合は、湯洗による工程(a)を終えた被試験体1枚を、上記で調製した組成物1とNaOHを含む希釈液を入れたスクリュー管に投入して、以下の工程を行った。

次に、表3の組成物2(有効分換算で3.0g)を、それぞれ100ccのスクリュー管に入れた後、工程(b)で使用する場合は所定量のNaOHと水とを、工程(c)で使用する場合は水を、工程(d)で使用する場合は所定量のHNO。 と水とを加え、それぞれ合計100gとしたものを用意しておく。その際、スクリュー管中の内容物は、80℃でマグネティックスターラーにより攪拌した。

工程(b)で組成物 2 を使用する場合は、工程(a)を終えた被試験体 1 枚を、上記で調製した組成物 2 とN a OHとを含む希釈液を入れたスクリュー管に投入して、以下の工程を行った。また、工程(c)で組成物 2 を使用する場合は、工程(a)及び工程(b)を終えた被試験体 1 枚を、上記で調製した組成物 2 を含む希釈液を入れたスクリュー管に投入して、以下の工程を行った。また、工程(d)で組成物 2 を使用する場合は、工程(a)~工程(c)を終えた被試験体 1 枚を、上記で調製した組成物 2 とHNO $_3$ とを含む希釈液を入れたスクリュー管に投入して、以下の工程を行った。

一連の洗浄工程後の試験ピースを乾燥、50ccのスクリュー管に移した後、 室温にて12時間保管したものを評価用サンプルとした。

(3) 評価方法

実施例1と同様の評価方法及び基準とした。

Kar Ican

/ ルマルデカン / ルマルゲデカン / ルマルドデカン / ルマルドデカン 非イオン界面活性剤A 非イオン界面活性剤B 非イオン界面活性剤B 非イオン界面活性剤B 非イオン界面活性剤B				İ		415,							比較例	ij	
wマルデカン wマルゲデカン vマルドデカン vマルデ・デガン vマルデ・デデカン イオン界面活性剤に イオン界面活性剤に イオン界面活性剤に イオン界面活性剤に イオン界面活性剤に イオン界面活性剤に	3-1	3-2	3-3	3-4	3-5	3-6	3-7	3–8	3–9	3-10	3-1	3-2	3-3	3-4	3-5
ルマルウンデカン ルマルトデカン ルマルテトデカン キイオン界面活性剤/ キイオン界面活性剤/ キイオン界面活性剤/ キイオン界面活性剤/ キイオン界面活性剤/ キイオン界面活性剤/ キイオン界面活性剤/					-	1.65									
/ルマルトデカン /ルマルトデカン #イオン界面活性剤/ #イオン界面活性剤/ #イオン界面活性剤(#イオン界面活性剤(#イオン界面活性剤(#イオン界面活性剤(#イオン界面活性剤(1.65	1.65	1.65	1.65	1.65					1.65				,	
/ルマルトリテ・カン ポマルテトテ・カン 非イオン界面活性剤/ キイオン界面活性剤(キイオン界面活性剤(キイオン界面活性剤/ ドイオン界面活性剤/ ドイオン界面活性剤/ ドイオン界面活性剤/ ドイオン界面活性剤/							1.65								
ルマルテトテ・カン 非イオン界面活性剤/ 非イオン界面活性剤(キイオン界面活性剤(キイオン界面活性剤/ ドイオン界面活性剤/ ドイオン界面活性剤/ ドイオン界面活性剤/								1.65							
非イオン界面活性剤/ 非イオン界面活性剤(非イオン界面活性剤/ 非イオン界面活性剤/ 非イオン界面活性剤/ 非イオン界面活性剤/									1.65				3.8		3.8
非イオン界面活性剤に 非イオン界面活性剤(非イオン界面活性剤/ 非イオン界面活性剤/ 非イオン界面活性剤に 非イオン界面活性剤に	A									2.15		3.8	į	3.8	
非イオン界面活性剤(非イオン界面活性剤/ 非イオン界面活性剤E 非イオン界面活性剤E	B 1.65	1.65	1.65	1.65	1.65	1.65	1.65	1.65	1.65		2.8				
非イオン界面活性剤/ 非イオン界面活性剤E 非イオン界面活性剤(C 0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5		П				
非イオン界面活性剤E 非イオン界面活性剤(٨											3	3	3	3
非イオン界面活性剤(3 0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.3				
	2 2.7	2.7	2.7.	2.7	2.7	2.7	2.7	2.7	2.7	2.7	2.7				
組成物1	(a)	(a)	(a)	(q)	(p)	(P)	(P)	(P)	(P)	(p)	(9)	(9)	(a)	(a)	(a)
組成物2	(b)	(c)	(p)	(c)	(g)	ਉ	ਉ	ਉ	(p)	(P)	(P)	(P)	(p)	<u> </u>	(3)
脱臭性	2	2.	2	2	2	2	1	0.5	1.5	2.5	3.5	3.5	2.5	4	33
基剤臭	1	1		1	2	2	1	-		2.5	2	3	2.5	3.5	3

苯3

実施例4

表4に示す組成で、洗浄工程(1)用の組成物1を調製した。それらを下記の洗浄工程(a)~(d)の何れかで用いて、下記の方法で脱臭性と基剤臭の試験を行った。その際、各工程では、ビーカー中の内容物は、80℃でマグネティックスターラーにより攪拌した。結果を表4に示す。なお、表4中の成分はn-ドデシルベンゼン以外は実施例1と同じものである。

(洗浄工程)

- (a) 湯洗1:80℃、20分浸漬攪拌
- (b) アルカリ洗浄:2%NaOH水溶液、80℃、20分浸漬攪拌
- (c) 湯洗2:80℃、20分浸漬攪拌
- (d)酸洗净:0.6%HNO3水溶液、20分浸漬攪拌
- (e) 湯洗3:80℃、20分浸漬攪拌

(1)被試験体

1 SのEPDMパッキン(大阪サニタリー金属工業協同組合)を市販飲料(桃の天然水: J T 社製)に70℃、2時間浸漬したものを被試験体とした。

(2) 試験方法

表4の組成物1(有効分換算で20g)を用いて、100ccのスクリュー管の代わりに1Lのビーカーを用い、合計液重量を100gの代わりに1000g とする以外は、実施例2と同様の方法で洗浄工程を行った。尚、評価用サンプル は以下の方法に変えて調製した。

一連の洗浄工程後の試験パッキンを、80℃のイオン交換水1000gに入れた1Lビーカーに30秒浸漬させた後引き上げ、この水を評価用サンプルとした。

(3)評価方法

パネラーを2名の代わりに6名にする以外は、実施例1と同様の評価方法及び 基準とした。

表4.

本発明品 本発明品 上較品品 (A) ハマルデガン (A) ハマルドデガン (A) カードデジルベンセン・**2 8.7 9.7 9.7 9.7					r -		,		 				
本発用品 (A) ハルマルヴンデカン 分 (ルマル・デカン かく かく トラデカン カンドカン カンドカン カンドラナカン カンドカンドカンド カンドラナカン カンドラナカン カンドラナカン カンドカンド カンドラナカン カンドラナカン カンドラナカン カンドラナカン カンドカンド カンドラナカン カンドカンド カンドラ カンドラナカン カンドラナカン カンドラナカン カンドラナカン カンドカンド カンドラ カンドラ カンドラ カンドラカン カンドラ カンドラ	먊	4-3		20							(b)	2.5	1
本発明品 本発明品 (A) /ルマルゲンデガン 8.7 8.7 4-1 4-2 4-3 4-4 4-6 4-7 4-8 (A) /ルマルゲンデガン 8.7 8.7 8.7 8.7 8.7 8.7 8.7 (A) /ルマルドデガン 1ルマルドデガン 8.7 8.7 8.7 8.7 8.7 8.7 (B) まイオン界面活性剤と 8.7 8.7 8.7 8.7 8.7 8.7 8.7 (B) 非イオン界面活性剤に 8.7 8.7 8.7 8.7 8.7 8.7 8.7 相応物の使用工程 (b) (d) (d) (b) (b) (b) (b) (b) (b) (b) (b) (b) (c) (d) (d) (d) (d) (d) (d) (d) (d) (d) (d	比較,	4-2								20	(a)	4	1.5
本発明品 (A) /ルマルデガン										20	(p)	4	2
本発明品 (A) / ルマルデガン (A) / ルマルデガン (A) / ルマルドデガン (A) / ルマルドデガン 8.7 8.7 8.7 8.7 8.7 8.7 8.7 8.7 8.7 8.7				8.7					8.7	2.6	(a)	2	1
(A) (B) (B) <t< td=""><td></td><td>4-7</td><td></td><td></td><td></td><td></td><td></td><td>8.7</td><td>8.7</td><td>2.6</td><td>(P)</td><td>2</td><td>1</td></t<>		4-7						8.7	8.7	2.6	(P)	2	1
本発 4-1 4-2 4-3 4-4 1ルマルゲガン 8.7 8.7 8.7 成人のマルドデガン 8.7 8.7 8.7 かマルドデガン 8.7 8.7 8.7 かマルドデガン 1ルマルドデガン 8.7 8.7 8.7 (B) 非イナン界面活性剤A 8.7 8.7 8.7 8.7 放射を使用工程 (b) (d) (d) (b) (d) (b) (d) (b) (d) (b) (d) 推成物の使用工程 1.5 1.5 1.5 1.5 1.5 1.5 推身性 1 1 1 1 1 1 1 1		4–6					8.7		8.7	2.6	(b)	2	1
(A) ハルマルデ・ガン 8.7 8.7 (A) ハルマルドデ・ガン 8.7 8.7 (A) ハルマルドデ・ガン 8.7 8.7 (A) ハルマルドデ・ガン 1.7 8.7 (B) 非イナン界面活性剤A 8.7 8.7 8.7 (B) 非イオン界面活性剤B 8.7 8.7 8.7 (B) 非イオン界面活性剤C 2.6 2.6 2.6 (B) 排化なり使用工程 (b) (d) (b) 施臭性 1.5 1.5 1.5 基剤臭 1 1 1	明品	4-5				8.7			8.7	2.6	(p)	2	1
(A) ハルマルデガン 8.7 8.7 (A) ハルマルドデガン 8.7 8.7 成分 ハルマルドデガン 1.5 1.5 かマルドデガン 1.5 1.5 1.5 (A) 非イオン界面活性剤A 8.7 8.7 (B) 非イオン界面活性剤B 8.7 8.7 (B) 非イオン界面活性剤C 2.6 2.6 組成物の使用工程 (b) (d) 超臭性 1.5 1.5 基剤臭 1 1 1	本発	4-4			8.7				8.7	2.6	(p)	1.5	1
4-1 ///マルデル/ 8.7 /// /// // // // 8.7 (A) ///マルトデル/ 8.7 /// // // // // // // // // // // // /			8.7						8.7	2.6	(p)	1.5	``1
(A) /ルマルデ・カン (A) /ルマルドデ・カン 成 /ルマルドデ・カン カートデ・シャーン・マ・ジャ12 ロードデ・シャー、ウェーン・マーン・マーン・マーン・マーン・マーン・マーン・フーン・フーン・フーン・フーン・フーン・フーン・フーン・フーン・フーン・フ				8.7					8.7	2.6	(d)	1.5	1
奥成分		4-1		8.7					8.7	2.6	(p)	1.5	1
			ハレマルデオン	ノルマルウンデ・カン	<u>₹</u>	一 一 分 分	及	2		分 非イヤン界面活性剤C	組成物の使用工程	脱臭性	基剤臭

n-ドデンルベンゼン*12:試薬品(純度99%)、25℃でのSP値8. 3、融点20℃以下

実施例5

表 5 に示す組成で、洗浄工程(1)用の組成物 1 と洗浄工程(2)用の組成物 2 を調製した。それらを下記の洗浄工程(a)~(e)何れかで用いて、下記の 方法で脱臭性と基剤臭の試験を行った。その際、ビーカー内の内容物は、80 $^{\circ}$ でマグネテイックスターラーにより攪拌した。結果を表 5 に示す。なお、表 5 中の成分は実施例 4 と同じものである。

(洗浄工程)

- (a) 湯洗1:80℃、20分浸漬攪拌
- (b) アルカリ洗浄:2%NaOH水溶液、80℃、20分浸漬攪拌
- (c) 湯洗2:80℃、20分浸漬攪拌
- (d)酸洗净:0.6%HNO3水溶液、20分浸漬攪拌
- (e) 湯洗3:80℃、20分浸漬攪拌

(1)被洗浄体

実施例4と同じように調製したものを被試験体とした。

(2)試験方法

表5の組成物1(有効分換算で20g)を用いて、100ccのスクリュー管の代わりに1Lのビーカーを用い、合計液重量を100gの代わりに1000gとする以外は、実施例3と同様の方法で洗浄工程を行った。

次に、表5の組成物2(有効分換算で20g)を用いて、100ccのスクリ

ュー管の代わりに1Lのビーカーを用い、合計液重量を100gの代わりに1000gとする以外は、実施例3と同様の方法で洗浄工程を行った。尚、評価用サンプルは、以下の方法に変えて調製した。

一連の洗浄工程後の試験パッキンを、80℃のイオン交換水1000gを入れた1Lビーカーに30秒浸漬させた後引き上げ、この水を評価用サンプルとした。

(3) 評価方法

パネラーを2名の代わりに6名にする以外は、実施例1と同様の評価方法及び 基準とした。

	2-2					20					20			(a)	<u></u>	3	۰
ات. ا	5-4							20	-		20			(a)	<u> </u>	4	2
比較例	5–3					20					20			9	ਉ	2.5	0
	5-2							20			20			(P)	(P)	3.5	c
	5-1								14.7	5.3		2	18	(q)	(p)	3.5	٥
	2-2		8.7					11.3				2	18	(p)	(p)	1	
	9-9						8.7		8.7	2.6		2	18	(p)	(p)	2	_
ᇛ	9-9					8.7			8.7	2.6		2	18	(p)	(þ)	2	-
本発明品	5-4				8.7				8.7	2.6		2	18	(p)	(p)	2	-
*	2–3			8.7					8.7	. 2.6		2	18	(P)	(p)	1.5	-
	2-5	8.7							8.7	2.6		2	18	(q)	(p)	1	-
	5-1		8.7						8.7	2.6		2	18	(a)	(q)	1	-
		ノルマルデカン	ノルマルウンデ・カン	ノルマルトデカン	ノルマルトリデカン	ノルマル テトラデ・カン	nードデシルヘンセン	非イオン界面活性剤A	非イオン界面活性剤B	非イオン界面活性剤C	非イオン界面活性剤A	非イオン界面活性剤B	非イオン界面活性剤C	組成物1	組成物2	脱臭性	基 割 阜
				€ 4				(B)	(任:	宋	ļ	松		H -	#		
					船.	組物		(20)		果!	—— 交 を	2	1919年第一部十四年			

TX C

実施例6

表6に示す組成で、洗浄工程(1)用の組成物1を調製した。それらを下記の洗浄工程(a)~(d)何れかで用いて、下記の方法で脱臭性と基剤臭の試験を行った。その際、各工程では、ビーカー中の内容物は、80℃でマグネティックスターラーにより攪拌した。結果を表6に示す。なお、表6中の(A)成分及び非イオン界面活性剤D以外は実施例1と同じものである。

(洗浄工程)

- (a) 湯洗1:80℃、20分浸漬攪拌
- (b) アルカリ洗浄:2%NaOH水溶液、80℃、20分浸漬攪拌
- (c) 湯洗2:80℃、20分浸漬攪拌
- (d)酸洗净:0.6%HNO3水溶液、20分浸漬攪拌
- (e) 湯洗3:80℃、20分浸漬攪拌

(1)被試験体

着香液体としてピーチフレーバーの代わりに市販飲料(桃の天然水:JT社製)を使用した以外は実施例1と同じように調製したものを被試験体とした。

(2) 試験方法

表6の組成物1(有効分換算で2.0g)を用いて、実施例2と同様の方法で 洗浄工程を行った。尚、評価用サンプルは以下の方法に変えて調製した。

一連の洗浄工程後の試験ピースを、80℃のイオン交換水50g入れた100

ccのスクリュー管に30秒浸漬させた後引き上げ、この水を評価用サンプルとした。

(3)評価方法

パネラーを2名の代わりに6名にする以外は、実施例1と同様の評価方法及び 基準とした。

6-1			• • • • • •	: : : : : :								5	
6-11			0.87		0.87	0.26					(P)	2	1
6-10			0.87		0.87	0.26					(2)	2	1
6-9			0.87		0.87	0.26					(a)	2	1
8-9		0.87								1.13	(a)	3	1
2-9									1.13		(a)	3	1
9-9		0.87						1.13			(a)	3	1
9-2		0.87					1.13				(a)	3	1.5
6-4				0.87	28.0	0.26					(a)	3	1
6-3			0.87		0.87	0.26		-			(a)	2	1
6-2		0.87			28.0	0.26					(a)	3	1
6-1	0.87				0.87	0.26					(a)	3	1
	ステアリン酸オクチル *13	(A) ミリスチン酸オクチルト・テシル *14	分 778油 *15			(00)) 分 アニオン界面活性剤A	陽イオン界面活性剤A	両性界面活性剤A	組成物の使用工程	脱臭性	基剤臭
	6-2 6-3 6-4 6-5 6-6 6-7 6-8 6-9 6-10 6-11	6-1 6-2 6-3 6-4 6-5 6-6 6-7 6-8 6-9 6-10 6-11 ステアリン酸オクチル *13 0.87 6-3 6-4 6-5 6-6 6-7 6-8 6-9 6-10 6-11	ステアリン酸オクチルトデシル *14 6-1 6-2 6-3 6-4 6-5 6-6 6-7 6-8 6-9 6-10 6-11 3リスチン酸オクチルトデシル *14 0.87 0.87 0.87 0.87 0.87 0.87 0.87	6-1 6-2 6-3 6-4 6-5 6-6 6-7 6-8 6-9 6-10 6-11 0.87 0.87 0.87 0.87 0.87 0.87 0.87 0.87	(A) シリスチン酸オクチルドデジル *15 (A) サタネ油 *15 (B) マラス (B)	(A) シリスチン酸オケチルドデジル *14 0.87 6-3 6-4 6-5 6-6 6-7 6-9 6-10 6-11 6	(A) 3リスチン酸オケチル・デンル *14 (A) 5	A子子リン酸オケル *13 6-1 6-2 6-3 6-4 6-5 6-6 6-7 6-8 6-9 6-10 6-11 オテナリン酸オケル・デンル *14 0.87 0.	(A) 以大沙酸オケチル *13 0.87 6-3 6-4 6-5 6-6 6-7 6-9 6-10 6-11 6-11 (A) 以大少酸オケチル *14 0.87<	(A)	(A)	(A) 以分少酸分介ル*13 6-1 6-2 6-3 6-4 6-5 6-6 6-7 6-8 6-9 6-10 6-11 (A) 以分少酸分介ル*13 0.87	(A) 以大少砂酸オケチル************************************

表6

*13 ステアリン酸オクチル: 花王(株)製、エキセパールEH-S、溶解度(対水、25℃)1重量%以下、エステル基の数1、25℃でのSP値8.1、融点20℃以下

*14 ミリスチン酸オクチルドデシル: 花王(株)製、エキセパールOD-M、溶解度(対水、25℃)1重量%以下、エステル基の数1、25℃でのSP値8. 0、融点20℃以下

*15 ナタネ油: 試薬、溶解度(対水、25℃)1重量%以下、主成分であるト リグリセリドのエステル基の数3、25℃でのSP値8.3、融点20℃以下

*16 大豆油: 試薬、溶解度(対水、25℃)1重量%以下、主成分であるトリ グリセリドのエステル基の数3、25℃でのSP値8.5、融点20℃以下

*17 非イオン界面活性剤D:ポリオキシエチレンアルキルアミン (花王 (株) 製、アミート308)

実施例7

表7に示す組成で、洗浄工程(1)用の組成物1と洗浄工程(2)用の組成物2を調製した。それらを下記の洗浄工程(a)~(e)の何れかで用いて、下記の方法で脱臭性と基剤臭の試験を行った。その際、ビーカー内の内容物は、80℃でマグネティックスターラーにより攪拌した。結果を表7に示す。なお、表7中の成分は実施例6と同じものである。

(洗浄工程)

- (a) 湯洗1:80℃、20分浸漬攪拌
- (b) アルカリ洗浄:2%NaOH水溶液、80℃、20分浸漬攪拌
- (c) 湯洗2:80℃、20分浸漬攪拌
- (d)酸洗浄:0.6%HNO3水溶液、20分浸漬攪拌
- (e) 湯洗3:80℃、20分浸漬攪拌

(1)被洗浄体

実施例6と同じように調製したものを被試験体とした。

(2) 試験方法

表7の組成物1(有効分換算で2.0g)を用いて、実施例3と同様の方法で 洗浄工程を行った。

次に、表7の組成物2(有効分換算で3.0g)を用いて、実施例3と同様の 方法で洗浄工程を行った。尚、評価用サンプルは、以下の方法に変えて調製した。

一連の洗浄工程後の試験ピースを、80℃のイオン交換水50g入れた100 ccのスクリュー管に30秒浸漬させた後引き上げる。この水を評価用サンプル とした。

(3)評価方法

パネラーを2名の代わりに6名とする以外は、実施例1と同様の評価方法及び 基準とした。

表7

法比較方法	3 7-4 7-1		0.8	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	æ	6	3	1.2	2	1	- (9) (— (p) (2 5	1.5
本発明方法	7-2 7-3			0.8	0.8	6.0 6.0	0.3 0.3		2 2	1 1	(9) (9)	(p) (p)	$\begin{bmatrix} 2 \\ \end{bmatrix}$	$\begin{bmatrix} 1 & 1 \end{bmatrix}$
*	7-1 7	8.0				0.9	0.3		2.	1) ·(q)) (p)	2	
		ステアリン酸オクチル	ミリスチン酸オクチルド・デンル	ナタネ油	大豆油	非イオン界面活性剤B	非イオン界面活性剤C	非イオン界面活性剤D	非イオン界面活性剤B	非イヤン界面活性剤C	組成物1	組成物2	性	人
			<u> </u>	改分		(B)) 长:	(K	(B)	成分	C程		脱臭性	基剤臭
					組成物1					組成物2	組成物の使用工程			
			組成 (w)								₩.			

実施例8

表8に示す組成で、洗浄工程(1)用の組成物1を調製した。それらを下記の洗浄工程(a)~(d)何れかで用いて、下記の方法で脱臭性と基剤臭の試験を行った。その際、各工程では、ビーカー内の内容物は、80℃でマグネティックスターラーにより攪拌した。結果を表8に示す。なお、表8中の(B)成分は実施例6と同じものである。

(洗浄工程)

- (a) 湯洗1:80℃、20分浸漬攪拌
- (b) アルカリ洗浄:2%NaOH水溶液、80℃、20分浸漬攪拌
- (c) 湯洗2:80℃、20分浸漬攪拌
- (d)酸洗净:0.6%HNO3水溶液、20分浸漬攪拌
- (e) 湯洗3:80℃、20分浸漬攪拌

(1)被試験体

実施例6と同じように調製したものを被試験体とした。

(2) 試験方法

表8の組成物1(有効分換算で2.0g)を用いて、実施例2と同様の方法で 洗浄工程を行った。尚、評価用サンプルは、以下の方法に変えて調製した。

一連の洗浄工程後の試験ピースを、80℃のイオン交換水50g入れた100 ccのスクリュー管に30秒浸漬させた後引き上げる。この水を評価用サンプル とした。

(3)評価方法

パネラーを2名の代わりに6名とする以外は、実施例1と同様の評価方法及び基準とした。

本発明品 ル*18 8-1 8-2 8-3 8-4 8-5 8-6 8-7 8-9 8-10 ドデカノール*19 0.87 0.87 0.87 0.87 0.87 0.87 0.87 0.87 一二ル*20 0.87 0.87 0.87 0.87 0.87 0.87 0.87 0.87 面活性剤と面活性剤と 0.26	比較品	8-1 8-2		; ; ; ;		0.87	0.26		i			0.87	– (a)	7. 4.7.	
A N N N N N N N N N	-			.87		78.	.26	_					(P)	2	_
(A) n-デカノール*18 0.87 0.87 がスイルアル・デカノール*20 0.87 0.87 カレイルアルコール*20 0.87 0.87 非イン界面活性剤B 0.87 0.87 財子イン界面活性剤A 1.13 耐性界面活性剤A 1.13 耐性界面活性剤A 1.13 耐性界面活性剤A (a) (a) 組成物の使用工程 (a) (a) (a) 市埠枠 (a) (a) (a)		8 6-8		0.87		0.87	<u> </u>						├──	2	_
(A) n-デカノール*18 0.87 0.87 成2-オケチルトデカノール*20 0.87 0.87 オレイルアルコール*20 0.87 0.87 非イオン界面活性剤B 0.87 0.87 成7-オン界面活性剤A 1.13 扇性界面活性剤A 1.13 両性界面活性剤A 1.13 相成物の使用工程 (a) (a) (a) 服自体 3 3 3 財産財産 3 3 3				0.87		0.87					<u> </u>			2	_
(A) n-デカノール*18 0.87 0.87 成2-オケチルトデカノール*20 0.87 0.87 オレイルアルコール*20 0.87 0.87 非イオン界面活性剤B 0.87 0.87 成7-オン界面活性剤A 1.13 扇性界面活性剤A 1.13 両性界面活性剤A 1.13 相成物の使用工程 (a) (a) (a) 服自体 3 3 3 財産財産 3 3 3		2-8		0.87							1.13		(a)	2	
(A) n-デカノール*18 0.87 0.87 成2-オケチルトデカノール*20 0.87 0.87 オレイルアルコール*20 0.87 0.87 非イオン界面活性剤B 0.87 0.87 成7-オン界面活性剤A 1.13 扇性界面活性剤A 1.13 両性界面活性剤A 1.13 相成物の使用工程 (a) (a) (a) 服自体 3 3 3 財産財産 3 3 3	明品	9-8		0.87						1.13			(a)	2	
(A) n-デカノール *18 0.87	本発	8-5		0.87					1.13				(a)	2	
(A) n-デカノール*18 0.87		8-4		0.87				1.13					(a)	2	
(A) n-デカノール *18 0.87 成 2-オケチルドデカノール *19 1.87 かイルアルコール *20 非イオン界面活性剤D まイオン界面活性剤D 成 7-オン界面活性剤A 1.54 の使用工程 高性界面活性剤A コチルアルコール 出成物の使用工程 (a) 脱血性 地自性 は 1.84 に 1.54 に 1.		8–3			0.87	28.0	0.26						(a)	.3	
(A) n-デカノール *18 成 2-オケチル・デカノール *19 オレイルアルコール *20 非イオン界面活性剤B 非イオン界面活性剤C (B) 非イオン界面活性剤C 成 7-オン界面活性剤A 陽イオン界面活性剤A 同性界面活性剤A 高性界面活性剤A 調成物の使用工程 能良物の使用工程	•	8-2		0.87		0.87							(a)	2	
(<u>4) 成分</u> (<u>a) 成分</u> (<u>a) 成</u>		8–1	0.87			0.87	0.26						(a)	3	
75			n-デカノール *18	2-オクチルト・デ・カノール *19	オレイルアルコール *20	非イオン界面活性剤B	非イヤン界面活性剤C	非イオン界面活性剤D	アニオン界面活性剤A	陽イオン界面活性剤A	両性界面活性剤A	パーロルアルチエ	物の使用工程	脱臭性	
二 一 一 一 一 一 一 一 一 一 一 一 一 一		<u> </u>										組成			
縄伐 (ω)															

来8

*18 n-デカノール:花王(株)製、カルコール1098、炭素数10、溶解度(対水、25℃)1重量%以下、水酸基の数1、25℃でのSP値8.9、融点20℃以下

*19 2-オクチルドデカノール:花王(株)製、カルコール200GD、炭素数20、溶解度(対水、25℃)1重量%以下、水酸基の数1、25℃でのSP値8.3、融点20℃以下

*20 オレイルアルコール: 試薬、炭素数18、溶解度(対水、25℃)1重量% 以下、水酸基の数1、25℃でのSP値8.6、融点20℃以下

実施例9

表9に示す組成で、洗浄工程(1)用の組成物 1 と洗浄工程(2)用の組成物 2 を調製した。それらを下記の洗浄工程(a)~(e)の何れかで用いて、下記の方法で脱臭性と基剤臭の試験を行った。その際、ビーカー内の内容物は、8 0 $\mathbb C$ でマグネティックスターラーにより攪拌した。結果を表 9 に示す。なお、表 9 中の成分は実施例 8 と同じものである。

(洗浄工程)

- (a) 湯洗1:80℃、20分浸漬攪拌
- (b) アルカリ洗浄:2%NaOH水溶液、80℃、20分浸漬攪拌
- (c) 湯洗2:80℃、20分浸漬攪拌
- (d)酸洗浄:0.6%HNO₃水溶液、20分浸漬攪拌
- (e) 湯洗3:80℃、20分浸漬攪拌

(1)被洗浄体

実施例6と同じように調製したものを被試験体とした。

(2) 試験方法

表9の組成物1 (有効分換算で2.0g)を用いて、実施例3と同様の方法で 洗浄工程を行った。

次に、表9の組成物2(有効分換算で3.0g)を用いて、実施例3と同様の 方法で洗浄工程を行った。尚、評価用のサンプルは以下の方法に変えて調製した。

一連の洗浄工程後の試験ピースを、80℃のイオン交換水50g入れた100 ccのスクリュー管に30秒浸漬させた後引き上げる。この水を評価用サンプル とした。

(3)評価方法

パネラーを2名の代わりに6名とする以外は、実施例1と同様の評価方法及び 基準とした。

			本	発明方	法	比較方法			
				9-1	9-2	9-3	9-1	9-2	
		(A)	n-テ*カノール			0.8			
		成	2ーオクチルト・テ・カノール	0.8					
		分	オレイルアルコール	カノール 0.8 レ 0.8 活性剤B 0.9 0.9 活性剤D 1.5 活性剤C 1 1 1 1 物1 (b) (b) (b) (b) (b) (b) (b) (b) (c) (d) (d) (d)					
	組成物1	(B)	非イオン界面活性剤B					0.9	
組成		成	非イオン界面活性剤C	(オン界面活性剤C 0.3 0.3 (オン界面活性剤D 1.2					
成(g)		分	非イオン界面活性剤D			1.2			
		エチル	アルコール		<u> </u>			0.8	
		(B)	非イオン界面活性剤B	2	2	2		2	
	組成物2 	組成物2 成						1	
	- 54 - 65	. 40	組成物1	(b)	(b)	(b)	_	(b)	
	組成物の使用工程 組成物2				(d)	(d)	_	(d)	
		2	2	2	5	4			
		1.5	1.5	1.5	1	1			

請求の範囲

- 25℃でのSP値が6~9である溶剤(A)及び界面活性剤(B)を含有するCIP用洗浄剤組成物。
- 2. 溶剤(A)が、炭素数 5~24の炭化水素化合物から選ばれる少なくとも1種である請求項1記載のCIP用洗浄剤組成物。
- 3. 溶剤(A)が、炭素数 5~20の脂肪族炭化水素から選ばれる少なくとも1種である請求項1記載のCIP用洗浄剤組成物。
- 4. 溶剤(A)の25℃でのSP値が7~8である請求項1~3のいずれか1項記載のCIP用洗浄剤組成物。
- 5. 界面活性剤(B)が、非イオン界面活性剤から選ばれる少なくとも1種である請求項1~4の何れか1項記載のCIP用洗浄剤組成物。
- 6. 25℃でのSP値が6~9である溶剤(A)及び界面活性剤(B)を含有する洗浄媒体(I)を被洗浄物に接触させる工程(1)を含むCIP洗浄方法。
- 7. 25℃でのSP値が6~9である溶剤(A)及び界面活性剤(B)を含有する洗浄媒体(I)をCIP工程のアルカリ洗浄剤の中に添加して使用する請求項6記載のCIP洗浄方法。
- 8. 25℃でのSP値が6~9である溶剤(A)及び界面活性剤(B)を含有する洗浄媒体(I)をCIP工程の酸洗浄剤の中に添加して使用する請求項6記載のCIP洗浄方法。

- 9. 25℃でのSP値が6~9である溶剤(A)及び界面活性剤(B)を含有する洗浄媒体(I)をCIP工程の洗浄水の中に添加して使用する請求項6記載のCIP洗浄方法。
- 10.25℃でのSP値が6~9である溶剤(A)及び界面活性剤(B)を含有する洗浄媒体(I)を60℃以上で被洗浄物に接触させる工程(1)を含む請求項6~9何れかの1項記載のCIP洗浄方法。
- 11. 溶剤(A)の含有量が0.01~20重量%、界面活性剤(B)の含有量が0.01~20重量%である洗浄媒体(I)を被洗浄物に接触させる工程(1)を含む請求項6~10のいずれか1項記載のCIP洗浄方法。
- 12.25℃でのSP値が6~9である溶剤(A)及び界面活性剤(B)を含有 する洗浄媒体(I)を被洗浄物に接触させる工程(1)、並びに界面活性剤(B) を含有し、25℃でのSP値が6~9である溶剤(A)の濃度が0.5重量%未 満である洗浄媒体(II)を被洗浄媒体に接触させる、前記工程(1)の後に行わ れる工程(2)を含むCIP洗浄方法。
- 13.25℃でのSP値が6~9である溶剤(A)及び界面活性剤(B)を含有する洗浄媒体(I)をCIP工程のアルカリ洗浄剤の中に添加し被洗浄物に接触させる工程(1)、並びに界面活性剤(B)を含有し、25℃でのSP値が6~9である溶剤(A)の濃度が0.5重量%未満である洗浄媒体(II)をCIP工程の酸洗浄剤中に添加し被洗浄物に接触させる、前記工程(1)の後に行われる工程(2)を含む請求項12記載のCIP洗浄方法。

- 14.25℃でのSP値が6~9である溶剤(A)及び界面活性剤(B)を含有する洗浄媒体(I)を60℃以上で被洗浄物に接触させる工程(1)、並びに界面活性剤(B)を含有し、25℃でのSP値が6~9である溶剤(A)の濃度が0.5重量%未満である洗浄媒体(II)を60℃以上で被洗浄物に接触させる、前記工程(1)の後に行われる工程(2)を含む請求項12又は13記載のCIP洗浄方法。
- 15. 溶剤(A)の含有量が0.01~20重量%、界面活性剤(B)の含有量が0.01~20重量%である洗浄媒体(I)、並びに界面活性剤(B)の含有量が0.01~30重量%である洗浄媒体(II)を被洗浄物に接触させる、前記工程(1)の後に行われる工程(2)を含む請求項12~14のいずれか1項記載のCIP洗浄方法。
- 16. 工程(1)で用いられる界面活性剤(B)、又は工程(1)で用いられる 界面活性剤(B)及び工程(2)で用いられる少なくとも一方の界面活性剤(B) が、非イオン界面活性剤から選ばれる1種以上の請求項6~15のいずれか1項 記載のCIP洗浄方法。
- 17. 洗浄媒体(I)を用いた後、又は洗浄媒体(I)及び洗浄媒体(II)を用いた後、リンス水を官能評価で合否を判定する工程を含む請求項6~16のいずれか1項記載のCIP洗浄方法。
- 18. 洗浄媒体(I) あるいは洗浄媒体(II) を含む洗浄液を0. 5~5m/秒の流速で流す請求項6~17のいずれか1項記載のCIP洗浄方法。

- 19. 請求項1記載の組成物のCIP洗浄用途。
- 20. 請求項1記載の組成物によってСІР対象物を洗浄する方法。

要約書

本発明は、25℃でのSP値が6~9である溶剤(A)及び非イオン界面活性 剤等の界面活性剤(B)を含有するCIP用洗浄剤組成物である。