Probability and Statistics

Assignment -5 [29th Oct 2018]

- 1. Let X_1, X_2, \ldots be independent random variables with Bernouli(p) distribution. Find the maximum likihood estimator of p based on $X_1, X_2, \ldots X_n$. Is it unbiased? Is it consistent?
- 2. Let X_1, X_2, \ldots be independent random variables with normal distribution, mean 0 and variance θ , $0 < \theta < \infty$. Find the maximum likihood estimator of θ based on $X_1, X_2, \ldots X_n$. Is it unbiased? Is it consistent ?
- 3. Let X_1, X_2, \ldots be independent random variables with common density, for $\theta > 0$

$$f(x,\theta) = \frac{1}{\theta} \exp\{-\frac{x}{\theta}\}, \ \ 0 < x < \infty.$$

Find the maximum liklihood estimator of θ based on $X_1, X_2, \dots X_n$. Is it unbiased? Is it consistent?

4. Let X_1, X_2, \ldots be independent random variables with common density, for $\theta > 0$

$$f(x, \theta) = \frac{1}{\theta} \ 0 < x < \theta.$$

Find the maximum liklihood estimator of θ based on $X_1, X_2, \dots X_n$. Is it unbiased? Is it consistent?

- 5. Let X_1, X_2, \ldots be independent random variables with Poisson distribution, mean $\theta, \theta > 0$. Find the maximum likihood estimator of θ based on $X_1, X_2, \ldots X_n$. Is it unbiased? Is it consistent?
- 6. Let X_1, X_2, \ldots be independent random variables with common density, for $\theta > 0$

$$f(x, \theta) = \frac{1}{2} \exp\{-|x - \theta|\}, -\infty < x < \infty.$$

Find the maximum liklihood estimator of θ based on $X_1, X_2, \dots X_n$. Is it unbiased? Is it consistent?

7. Let X_1, X_2, \ldots be independent random variables with normal distribution, mean μ and variance θ , $-\infty < \mu < \infty$, $0 < \theta < \infty$. Find the maximum liklihood estimates of μ and θ based on $X_1, X_2, \ldots X_n$. Are they unbiased?