Review of Mathematical Statistics

Chapter 10

Stat 477 - Loss Models

1 / 1

Concepts in mathematical statistics

- This is assumed knowledge (please review on your own!).
- Model estimation: parametric versus nonparametric
- Types of estimates: point estimates and interval estimates
- Properties of estimators: unbiasedness, consistency and efficiency
- Hypothesis testing: read section 12.4
- Chapter 12

Parametric versus nonparametric estimation

- In model estimation, we are interested in estimating the distribution of a random variable X.
- For the paramteric approach, the estimation involves determining usually a finite number of parameters:
 - Suppose X has CDF $F(x;\theta)$ and PDF $f(x;\theta)$ where θ is usually referred to as parameter (which could be a vector of parameters).
 - Parameter θ is usually unknown and must be estimated using observable data. The estimator is typically denoted by $\hat{\theta}$ and is a function of the observable sample.
 - ullet Once θ is estimated, the distribution of X is completely specified.
- In the nonparametric approach, the distribution (either through F(x) or f(x)) of X is estimated directly for all values of x without specifying a parametric form. The result is a nonparametric estimate of either of these functions.

Point and interval estimates

- Suppose X_1, \ldots, X_n denote a random sample from the distribution of X, with observed values often denoted by x_1, \ldots, x_n . Any function $h(X_1, \ldots, X_n)$ is often referred to as a statistic.
- A statistic $h(X_1, \ldots, X_n)$ that is used to estimate the parameter θ is called a point estimator and is often denoted by $\hat{\theta}$. Replacing the random sample with the corresponding observed values x_1, \ldots, x_n is often referred to as the point estimate.
- In contrast, an interval estimator of an unknown parameter is a random interval constructed from the sample data, which covers the true value of θ at a certain probability level.
- Suppose $\hat{\theta}_L$ and $\hat{\theta}_U$ be two statistics such that $\hat{\theta}_L < \hat{\theta}_U$. The interval $(\hat{\theta}_L, \hat{\theta}_U)$ is said to be a $100(1-\alpha)\%$ confidence interval of θ if

$$\Pr(\hat{\theta}_L \le \theta \le \hat{\theta}_U) \ge 1 - \alpha.$$

Normal distribution

Suppose X_1, \ldots, X_n is a random sample from a $N(\mu, \sigma^2)$ distribution where the variance σ^2 is unknown. Then:

- The sample mean $\bar{x} = \frac{1}{n} \sum_{i=1}^{n} x_i$ is a point estimate of the population mean μ .
- A $100(1-\alpha)\%$ confidence interval of μ is given by the expression

$$\left(\bar{x} - t_{n-1,\alpha/2} \frac{s}{\sqrt{n}}, \bar{x} + t_{n-1,\alpha/2} \frac{s}{\sqrt{n}}\right),\,$$

where $t_{n-1,\alpha/2}$ is the $100(1-\alpha/2)$ -th quantile of a t-distribution with n-1 degrees of freedom and s is the sample standard deviation.

Properties of an estimator

- **Unbiasedness** An estimator $\hat{\theta}$ is said to be **unbiased** if and only if $\mathsf{E}(\hat{\theta}) = \theta$ for all θ . The bias is defined to be $\mathsf{Bias}_{\hat{\theta}}(\theta) = \mathsf{E}(\hat{\theta}) \theta$.
- Asymptotically unbiased Let $\hat{\theta}_n$ be an estimator of θ based on a sample size of n. Then, the estimator is said to asymptotically unbiased if

$$\lim_{n\to\infty}\mathsf{E}(\hat{\theta})=\theta.$$

• Consistency An estimator $\hat{\theta}_n$ is said to be (weakly) consistent if for all $\varepsilon>0$ and θ , we have

$$\lim_{n\to\infty} \Pr(|\hat{\theta}_n - \theta| > \varepsilon) = 0.$$

• A sufficient (but not necessary) condition for weak consistency is that the estimator is asymptotically unbiased and $\lim_{n\to\infty} \operatorname{Var}(\hat{\theta}_n) = 0$.

|□ ▶ ◀∰ ▶ ◀불 ▶ ◀불 ▶ | 불 | 쒸 Q (

Illustrative example 1a

Suppose X has the Uniform distribution on $(0,\theta)$ and consider the estimator of θ

$$\hat{\theta}_n = \max(X_1, \dots, X_n).$$

- Show that this estimator is asymptotically unbiased.
- Prove that it is also a consistent estimator of θ .

Mean-squared error

 Mean-squared error The mean-squared error (MSE) of an estimator is defined to be

$$\mathsf{MSE}_{\hat{\theta}}(\theta) = \mathsf{E}[(\hat{\theta} - \theta)^2].$$

It can be shown that

$$\mathsf{MSE}_{\hat{\theta}}(\theta) = \mathsf{Var}(\hat{\theta}) + [\mathsf{Bias}_{\hat{\theta}}(\theta)]^2.$$

- **Efficient estimator** For any two unbiased estimators $\hat{\theta}_a$ and $\hat{\theta}_b$ of θ , $\hat{\theta}_a$ is said to be more efficient than $\hat{\theta}_b$ if $\mathsf{Var}(\hat{\theta}_a) < \mathsf{Var}(\hat{\theta}_b)$.
- **UMVUE** An estimator $\hat{\theta}$ is said to be uniformly minimum variance unbiased estimator (UMVUE) if
 - it is unbiased; and
 - for any true value of θ , there is no other unbiased estimator that has a smaller variance.

8 / 1

Illustrative example 1b

Suppose X has the Uniform distribution on $(0,\theta)$ and consider the estimator of θ

$$\hat{\theta}_n = \max(X_1, \dots, X_n).$$

- Calculate the mean and variance of this estimator.
- Evaluate the MSE of this estimator.
- Now consider the two estimators: $\hat{\theta}_a = 2\bar{X}$ and $\hat{\theta}_b = \frac{n+1}{n} \max(X_1, \dots, X_n)$. Compare the MSE of these two estimators.