where $\widetilde{\mathbf{\Pi}} = -\widetilde{p}\mathbb{1} + \eta \left(\widetilde{\nabla} \,\widetilde{\boldsymbol{v}} + \left[\widetilde{\nabla} \,\widetilde{\boldsymbol{v}}\right]^T\right)$ is the fluid stress tensor and $d\widetilde{\mathcal{S}} = ad\phi dz$, $d\widetilde{V} = rdrd\phi dz$ are the surface and volume elements in cylindrical coordinates respectively.

B. Non-dimensionalization

We express the displacements (r, z) in terms of half the length of the swimmer, l. We consider swimmers with concentration gradients generated by the colloids on a scale c^*/a . Hence we express the flux \widetilde{J} of reactant (product) particles in units of c^*D/a , the concentration field \widetilde{c} in units of c^* , (where D is the diffusion coefficient of the reactant/product particles), the interaction energy $\widetilde{\Psi}$ in the units of thermal energy k_BT , (k_B the Boltzmann constant and T is the temperature of the solution), the flow field \widetilde{v} with $U^* = \mu^*c^*/a$ (where $\mu^* = k_BTL^{*2}/\eta$ is the characteristic phoretic mobility coefficient, η is the viscosity of the fluid and L^* is the short-range interaction lengthscale of the reactant (product) molecules with the swimmer surface). We scale the pressure field \widetilde{p} with $\eta U^*/l$. We note that the problem has three length-scales; the swimmer characteristic length 2l, its cross-sectional radius a and the range L^* of the interaction between the molecules and swimmer surface. Consequently, we have three asymptotic near-field regions and in addition the scale on which the ends of the rod are rounded.

We therefore define the dimensionless parameters, $\epsilon = a/l$, the slenderness ratio and $\lambda = L^*/l$, the interaction layer thickness to the swimmer largest lengthscale, with $0 < \lambda \ll \epsilon \ll 1$. In addition, we define dimensionless fields $J = \widetilde{J}a/c^*D$, $c = \widetilde{c}/c^*$, $v = \widetilde{v}/U^*$, $p = \widetilde{p}l/\eta U^*$, $\psi = \widetilde{\psi}/k_BT$, and the dimensionless catalytic flux $\alpha = \widetilde{\alpha}a/c^*D$ on the swimmer surface.

$$\nabla \cdot \boldsymbol{J} = 0 \; ; \qquad \boldsymbol{J} = -\epsilon \left(\nabla c + c \nabla \psi \right) \; , \tag{8}$$

$$0 = \nabla \cdot \boldsymbol{v} \,\,\,\,(9)$$

$$\mathbf{0} = \nabla^2 \mathbf{v} - \nabla p - \epsilon \ \lambda^{-2} \ c \nabla \psi \ , \tag{10}$$

where $\lambda = L^*/l$ is the ratio of the interaction length-scale to half the length of the swimmer, $\epsilon = a/l$ is the swimmer slenderness ratio and $\psi(r - \epsilon S(z), z)$ is the short-range interaction potential between reactant (product) molecules and surface.

$$\hat{\boldsymbol{n}} \cdot \boldsymbol{J} = \alpha(z), \quad \text{at} \quad r = \epsilon \ S(z),$$
 (11)

and the concentration decays to its value far from the swimmer, $c \to c_{\infty}$, $\sqrt{r^2 + z^2} \to \infty$.

$$\mathbf{v} = \mathbf{0}, \quad \text{at} \quad r = \epsilon \ S(z),$$
 (12)

$$\mathbf{v} \to -U\hat{\mathbf{e}}_z, \quad \sqrt{r^2 + z^2} \to \infty.$$
 (13)

The zero torque and force conditions are

$$\iint_{r=\epsilon S(z)} \mathbf{\Pi} \cdot \hat{\boldsymbol{n}} \ d\mathcal{S} - \epsilon \ \lambda^{-2} \iiint_{-\infty}^{\infty} c \ \nabla \psi \ dV = \mathbf{0}$$
(14)

where $\mathbf{\Pi} = -p\mathbb{1} + (\nabla \mathbf{v} + [\nabla \mathbf{v}]^T)$ is the dimensionless stress tensor and $d\mathcal{S}$, dV are the surface and volume elements in cylindrical coordinates respectively.

C. The slender shape function