Oraft O	1 Deep Learning In Signal Processing			
Ji ait C	dunie			
Week	Day 1	Lab	Day 2	Project Milestones
1	Course Introduction; DL Intro: classification/regression, loss functions: binary cross-entropy/MSE, deep networks, backpropagation	5%: Get a Rosie account; MATLAB Deep Learning Toolbox: Run "Get Started" Examples	DSP Intro: Signal types (audio,	
	DL: The training pipeline, optimization algorithms (SGD, ADAM), overfitting/generalization	10%: MATLAB on Rosie: Choice of signal representation /classification or transfer	DSP: system response, convolution, as projection onto basis functions (linear algebra)	
3	DL: Confusion matrices (accuracy, precision, recall, etc.), fully connected layers (FC), activations (nonlinear), NN as robust function approximation	learning 10%: Model pruning in MATLAB on Rosie	DSP: frequency content and response, Discrete Fourier Transform (DFT), FFT	5%: Topic Selection, Identify 3+ References
4	DL: Convolutional layers (conv1d, etc.); pooling layers; basic network structures	10%: Hyperparameter optimization in MATLAB on Rosie	DSP: spectrograms and windowing	15% Background Paper: Summarize reference propose implementation approach (data source, outline work to be done)
5	DL: Layers for robustness: dropout, batchnorm.	Project work	DSP: inverting the spectrogram, perfect reconstruction	
6	DL: Perceptial error measures and backprop.	Project work	(break day)	10% Preliminary results, updated work plan
7		Project work	TBD / catch up (maybe filter design)	10% Presentation Draft: Slides and notes, mostly complete, final results may be pendin
8 9 10		Project Presentations		10% Presentation execution 15% Writeup of final results
11		Finals Week		
	https://msoe.dev/ https://durant.io/	Rosie guide Professor's web site, schedule, co		
	https://d2l.ai/ https://www.dspguide.com/	Free deep learning textbook for r Free digital signal processing text		

Dr. Durant Exported 4/20/2022