Association Between Two Categorical Variables (Ch. 11)

Basics of Contingency Tables

Contingency tables give us a way to study the relationship between two categorical variables. (e.g. relationships between gender and autoimmune disease, smoking and coronary heart disease, etc.).

- · Data is observed counts (i.e. # of observations in each group).
- · We present the data in the contingency table.
- We compare groups using percentages that are conditional probabilities.
- We also have χ² tests for independence of 2 categorical variables.

 $P(A|B) = \frac{P(AB)}{P(B)}$

Assumptions for Contingency Table Inference:

·SRS - sample random, representative of population of interest.

· Minimum of 5 observations per cell (True assumption:
min 5 expected wunts
per cell. In practice,

Example: Does money make people happy? The General Social Survey (GSS) collected data on 1993 we a individuals who were classified into three categories for family income: Above Average, Average, and Below Average. They surveyed these individuals for happiness level: Not Too Happy, Pretty Happy, or For 5065) Very Happy. The contingency table gives the following observed counts.

Happiness Level

	Happiness zever			
Family Income	Not Too Happy	Pretty Happy	Very Happy	Total
Above Average	26	233	164.	423
Average	117	473	293	883
Below Average	172	383	132	687
Total	315	1389	589	1993

1983 X 423

Z categorical variables: FAM Income, Happiness level. 1993 x 883

explanatory VAR: Income
restronse VAR: Happiness

Assumptions: SRS - CSSV American adults.
Year?

5 obs per cell
41

Test for Independence for Two Categorical Variables

- · Observed counts are given in the contingency table.
- Expected counts for each cell are computed as follows:

Our procedure for testing independence is as follows:

- Ho: Two categorical variables are independent (NUT ASSUCIATED)
 Ha: - are NUT independent (ASSUCIATED)
- TS, $\chi^2 = \frac{(obs exp)^2}{exp}$ · Test Statistic:
- · p-value:

- · Conclusions:
- · DF

Cautions:

- Small p-value -> strong evidence of association, NOT evidence of a strong association
- Large p-value -> not enough evidence of association, NOT proof the variables are independent
- Just because quantitative data can be turned into categories does NOT mean you should use χ^2 tests for everything!