Função Polinomial do 2º. grau

1-Definição:

Chama-se função polinomial do 2°. grau toda função f de IR em IR dada por uma lei da forma $f(x) = ax^2 + bx + c$, tal que a, b e c são números reais e $a \neq 0$.

Exemplos:

a)
$$f(x) = 3x^2 - 4x + 1$$
, tem-se a = 3, b = -4 e c = 1

b)
$$f(x) = x^2 - 1$$
, com a = 1, b = 0 e c = -1

c)
$$f(x) = -x^2 + 8x$$
, tal que a = -1, b = 8 e c = 0

d)
$$f(x) = -\frac{3x^2}{2}$$
, com a = $-\frac{3}{2}$, b = 0 e c = 0

2 - Gráfico:

O gráfico de uma função polinomial do 2° . grau, $y = ax^2 + bx + c$, com a $\neq 0$, é uma curva chamada **parábola**.

A parábola que representa uma função polinomial do 2° . grau tem sempre a concavidade voltada para baixo ou para cima e possui um eixo de simetria vertical, passando pelo vértice V, cuja equação é $x = x_{\nu}$.

As coordenadas do vértice V da parábola são dadas pelas fórmulas:

$$\mathbf{V} = \left(\frac{-b}{2a}, \frac{-\Delta}{4a}\right)$$

2.1 – Exemplos:

a)
$$f(x) = x^2 - 2x - 3$$

			Vérti		
Х					
Υ					

		Vértice		
Х				
V				

2.2- Observação:

2.2.1 - A parábola sempre corta o eixo y no ponto (0,c).

- 2.2.2 Ao construir o gráfico de uma função polinomial do 2º. grau, notaremos sempre que:
 - se **a > 0**, a parábola tem a **concavidade voltada para cima**;

• se **a < 0**, a parábola tem a **concavidade voltada para baixo**;

Fig.2

3 - Zeros (ou raízes) de uma

função polinomial do 2º. grau:

Os zeros (ou raízes) da função polinomial do 2° . grau são os valores reais x tais que f(x) = 0. Então as raízes da função $f(x) = ax^2 + bx + c$ são as soluções da equação do 2° . grau $ax^2 + bx + c = 0$, com $a \neq 0$. As raízes são determinadas pela fórmula:

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

A quantidade de raízes reais de uma função quadrática depende do valor obtido para o radicando $\Delta=b^2-4ac$, chamado discriminante, a saber:

Δ > 0 → as duas raízes são números reais distintos.

 $\Delta = 0 \rightarrow$ as duas raízes são números reais iguais.

 Δ < 0 \rightarrow não existem raízes reais.

4 – Conjunto Imagem:

O conjunto imagem I_m da função $y = ax^2 + bx + c$, $a \ne 0$, é o conjunto dos valores reais que y pode assumir. Há duas possibilidades:

1a.) Quando a > 0

$$\operatorname{Im} = \left\{ y \in \mathbb{R} \middle| y \ge y_{\pi} = \frac{-\Delta}{4a} \right\}$$

2^a.) Quando a < 0

$$\operatorname{Im} = \left\{ y \in \mathbb{R} \middle| y \le y_{\pi} = \frac{-\Delta}{4a} \right\}$$

5 – Resumindo:

Observando os valores de Δ e a tem-se que o gráfico de uma função polinomial do 2°. grau tem um dos seguintes aspectos:

$\triangle = 0$	△>0	△<0

		Δ	= 0	Δ	> 0	△<0
		7	\mathcal{T}	7	7	$\overline{\bigcirc}$
	j	l a	۱ <0	l a	 	/ \ a<0
\bigcup	\int	<u></u>		<u>/</u>	'	
a>0 a>		0	a>	0		

6 - Exercícios:

6.1 - Resolva em IR:

a)
$$x^2 + 5x = 0$$

b)
$$x^2 - \frac{x}{3} = 0$$

$$x^2 - 36 = 0$$

d)
$$2x^2 + 18 = 0$$

e)
$$2x^2 - 5x + 2 = 0$$

$$f) - \frac{x^2}{3} - x + 6 = 0$$

c)

g)
$$\frac{x^2}{3} + \frac{1}{2} \le 0$$

h)
$$x^2 + 3x - 10 > 0$$

i)
$$-x^2 + 4x + 5 \ge 0$$

- 6.2 Num retângulo, cuja área é $65~\text{m}^2$, a base é 3~m menor que o dobro da sua altura. Obtenha a medida da base do retângulo.
- 6.3 Para que valores reais da constante \mathbf{m} a equação $2x^2 mx + 8 = 0$ admite raízes reais e iguais?
- 6.4 Para que valores reais de x a expressão $\frac{1}{x^2-6x+8}$ representa um número real?
- 6.5 Esboce os gráficos das funções abaixo e determine o conjunto imagem de cada uma delas.

$$a) f(x) = -x^2 + 4x$$

b)
$$f(x) = x^2 - 49$$

c)
$$f(x) = x^2 - 2x - 3$$

- 6.6 Para que valores de m o gráfico de $f(x) = (m-4)x^2 2x + m$ é uma parábola com concavidade voltada para cima?
- 6.7 Determine os valores de m para que o gráfico da função não "corte" o eixo x.

$$f(x) = x^2 - 2x + m$$

6.8 - Calcule m de modo que o valor máximo da função

$$f(x) = mx^2 + (m$$

- -1)x + (m + 2) seja 2.
- 6.9 O gráfico abaixo representa a curva de equação y = $ax^2 10x + c$.

Determine os valores de *a* e *c*.

6.10 – O Instituto de Meteorologia de uma cidade no sul do país registrou a temperatura local nas doze primeiras horas de um dia de inverno. Uma lei que pode representar a temperatura (y), em graus Celsius, em função da hora (x) é:

$$y = \frac{1}{4}x^2 - \frac{7}{2}x + k, com \ 0 \le x \le 12$$

- e k uma constante real.
 - a) Determine o valor de k, sabendo que às 3 horas da manhã a temperatura indicou 0 $^{\circ}$ C.
 - b) Qual foi a temperatura mínima registrada no período?