Problem 7

Prove that for any natural number n, $2+2^2+2^3+\ldots+2^n=2^{n+1}-2$.

PROOF I am going to prove the statement by induction. Let n=1.

$$2^{1} = 2^{1+1} - 2$$
 $2^{1} = 2^{2} - 2$
 $2 = 2$

The both sides of the equation are identical for n=1, now let's prove if $A(n)\Longrightarrow A(n+1)$.

To do this, I will take an arbitrary number n and add 1, so n+1. Then I will replace the number n for n+1 in the equation, and I will add 2^{n+1} to it.

$$2^{n+1} - 2 + 2^{n+1} = 2^{n+2} - 2 \ 2 \cdot 2^{n+1} - 2 = 2^{n+2} - 2 \ 2^{n+2} - 2 = 2^{n+2} - 2$$

Both sides of the equation are equal to $2^{n+2}-2$. Hence, by induction, I have proved that for any natural number n, $2+2^2+2^3+\ldots+2^n=2^{n+1}-2$.