

FIRE AND SMOKE DETECTION MODEL

Project Documentation

2024/2025 DEPI

Index

1.	Team Members	2
2.	Project Proposal	3
	Requirements	
	3.1.Functional Requirements	5
	3.2.Non-Functional Requirements	6

1. TEAM MEMBERS:

Menna Tarek Abdelhamid	Module 1
Amira Mostafa Mostafa	Module 2
Sadeem Ahmed Elsaied	Module 3
Habiba Mohamed Elnaggar	Module 4

2. PROJECT PROPOSAL

Overview:

The **Smoking and Fire Detection System** aims to develop a deep learning-based solution for identifying smoking activities and fire hazards from images. The project will leverage **image classification** and **object detection** techniques using **TensorFlow, Keras, and PyTorch** while utilizing **Azure** for cloud-based deployment and real-time monitoring.

Objectives:

- Develop an accurate image classification model to detect smoking and fire hazards.
- Build an efficient object detection model to identify cigarettes, smoke, and flames in images.
- Deploy the models on the **cloud** for real-time predictions.
- Develop a web-based interface for easy user interaction and alert notifications.
- Implement MLOps practices for continuous monitoring, logging, and improvement.

Scope:

1. Data Collection & Preprocessing

- Gather diverse datasets containing images of smoking, fire, and safe environments.
- Apply image augmentation and preprocessing techniques to improve model robustness.

2. Model Development

- o Train and fine-tune deep learning models for classification and detection.
- Evaluate model performance using accuracy, precision, recall, and F1-score.

3. Cloud Deployment & Real-Time Inference

- Deploy models on Azure for real-time detection.
- o Implement APIs for seamless integration with external applications.

4. User Interface Development

- Design a web-based dashboard for users to upload images and receive predictions.
- o Integrate alert systems (email/SMS) for detected fire or smoking activities.

5. Monitoring & Optimization

- o Implement logging and analytics for performance tracking.
- o Continuously refine models based on new data and feedback.

3.1 FUNCTIONAL REQUIREMENTS

1. Fire and Smoke Detection

- The system must accurately detect fire and smoke in images and videos using AI models such as **YOLO** or other deep learning-based approaches.
- It should identify and highlight the affected areas using **bounding boxes** for better visualization.

2. Real-Time Alerts

- Upon detecting fire or smoke, the system must immediately send alerts via email, SMS, or mobile app notifications.
- It should support integration with **fire alarm systems and sprinkler systems** for an automated response.

3. Classification Accuracy

- The system must differentiate between **smoke**, **fog**, **and steam** to reduce false alarms.
- It should classify fire incidents based on type, such as **forest fires**, **house fires**, **or vehicle fires**, to aid in appropriate response measures.

4. Integration with Security Cameras

- The system must support both thermal and regular cameras for comprehensive monitoring.
- It should allow **multiple camera connections** and provide a **centralized monitoring platform** for real-time surveillance.

5. Reporting and Analytics

- The system should generate detailed reports on fire incidents, including timestamps, locations, and severity levels.
- It must offer data analytics capabilities to identify high-risk areas and trends over time.

3.2 NON-FUNCTIONAL REQUIREMENTS

1. Real-Time Processing

• The system must detect fire and dispatch alerts **within five seconds** to ensure timely intervention.

2. Accuracy and Precision

• The fire and smoke detection model must achieve at least **95% accuracy** to minimize false positives and false negatives.

3. Scalability

- The system must support multiple camera feeds and be capable of handling a large number of users concurrently.
- It should be **deployable on cloud servers**, **edge devices**, **or on-premise systems** to meet various operational needs.

4. Security and Data Protection

- The system must implement **robust cybersecurity measures** to prevent unauthorized access or tampering.
- All **stored and transmitted data** must be **encrypted** to ensure privacy and compliance with security standards.

5. Reliability and Availability

- The system must maintain **99.9% uptime** to ensure continuous operation and fire detection.
- It should incorporate a backup system to store incident data in case of server failure.

6. Interoperability

- The system must seamlessly integrate with fire safety systems, IoT devices, and external APIs for enhanced functionality.
- It should provide a **REST API** to allow third-party applications to access fire detection data and alerts.

7. Usability

• The **user interface** must be **intuitive and user-friendly**, enabling easy operation for both technical and non-technical users.