CLAIMS

1. A compound of the formula

and pharmaceutically acceptable salts, solvates, stereoisomers and prodrugs thereof, in isolation or in mixture, where independently at each occurrence:

R¹ and R² are selected from hydrogen, oxygen so as to form nitro or oxime, amino, -SO₃-R, and organic groups having 1-30 carbons and optionally containing 1-6 heteroatoms selected from nitrogen, oxygen, phosphorous, silicon, and sulfur, where R² may be a direct bond to numeral 3, or R¹ and R² may, together with the N to which they are both bonded, form a heterocyclic structure that may be part of an organic group having 1-30 carbons and optionally containing 1-6 heteroatoms selected from nitrogen, oxygen and silicon; or R¹ may be a 2 or 3 atom chain to numeral 2 so that –N-R¹- forms part of a fused bicyclic structure to ring A;

R³ and R⁴ are selected from direct bonds to 6 and 7 respectively so as to form carbonyl groups, hydrogen, or a protecting group such that R³ and/or R⁴ is part of hydroxyl or carbonyl protecting group;

numerals 1 through 17 each represent a carbon, where carbons at numerals 1, 2, 4, 11, 12, 15, 16 and 17 may be independently substituted with

(a) one of: =O, $=C(R^5)(R^5)$, $=C=C(R^5)(R^5)$, $-C(R^5)(R^5)(C(R^5)(R^5))_n$ and $-(O(C(R^5)(R^5))_nO)$ - wherein n ranges from 1 to about 6; or

(b) two of the following, which are independently selected: -X, $-N(R^1)(R^2)$, $-R^5$ and $-OR^6$;

and where carbons at numerals 5, 8, 9, 10, 13 and 14 may be independently substituted with one of -X, -R⁵, -N(R¹)(R²) or -OR⁶;

in addition to the $-OR^3$ and $-OR^4$ groups as shown, each of carbons 6 and 7 may be independently substituted with one of -X, $-N(R^1)(R^2)$, $-R^5$ or $-OR^6$;

each of rings A, B, C and D is independently fully saturated, partially saturated or fully unsaturated;

 R^5 at each occurrence is independently selected from H, X, and C_{1-30} organic moiety that may optionally contain at least one heteroatom selected from the group consisting of boron, halogen, nitrogen, oxygen, silicon and sulfur; where two geminal R^5 groups may together form a ring with the carbon atom to which they are both bonded;

R⁶ is H or a protecting group such that -OR⁶ is a protected hydroxyl group, where vicinal -OR⁶ groups may together form a cyclic structure that protects vicinal hydroxyl groups, and where geminal -OR⁶ groups may together form a cyclic structure that protects a carbonyl group; and

X represents fluoride, chloride, bromide and iodide.

2. A compound of claim 1 wherein

numerals 1 through 16 each represent a carbon, where carbons at numerals 1, 2, 4, 11, 12, 15 and 16 may be independently substituted with

(a) one of:
$$=O$$
, $=C(R^5)(R^5)$, $=C=C(R^5)(R^5)$, $-C(R^5)(R^5)(C(R^5)(R^5))_n$ and $-(O(C(R^5)(R^5))_nO)$ - wherein n ranges from 1 to about 6; or

(b) two of the following, which are independently selected: -X, $-N(R^1)(R^2)$, - R^5 and $-OR^6$; and

numeral 17 represents a carbon substituted with

(a) one of:
$$=C(R^{5a})(R^{5a})$$
, $=C=C(R^{5a})(R^{5a})$, and

 $-C(R^{5a})(R^{5a})(C(R^{5a})(R^{5a}))_{n}$ - wherein n ranges from 1 to about 6; or

(b) two of the following, which are independently selected: -X, $-N(R^1)(R^2)$, and $-R^{5a}$;

where R^{5a} at each occurrence is independently selected from H, X, and C_{1-30} organic moiety that may optionally contain at least one heteroatom selected from the group consisting of boron, halogen, nitrogen, silicon and sulfur; where two geminal R^5 groups may together form a ring with the carbon atom to which they are both bonded.

- 3. A compound of claim 2 wherein R^{5a} at each occurrence is independently selected from C_{1-30} hydrocarbon, C_{1-30} halocarbon, C_{1-30} hydrohalocarbon, C_{1-30}
- 4. A compound of claim 2 wherein R^{5a} at each occurrence is independently selected from C_{1-10} hydrocarbon, C_{1-10} halocarbon, C_{1-10} hydrohalocarbon, H, and X.
- 5. A compound of any of claims 1-4 wherein R¹ and R² are selected from hydrogen, oxygen so as to form nitro or oxime, amino, -SO₃-R, and organic groups having 1-30 carbons and optionally containing 1-6 heteroatoms selected from oxygen, phosphorous, silicon, and sulfur, where R² may be a direct bond to numeral 3, or R¹ and R² may, together with the N to which they are both bonded, form a heterocyclic structure that may be part of an organic group having 1-30 carbons and optionally containing 1-6 heteroatoms selected from oxygen and silicon; or R¹ may be a 2 or 3 atom chain to numeral 2 so that –N-R¹- forms part of a fused bicyclic structure to ring A.
- 6. A compound of any of claims 1-5 wherein carbons at numerals 1, 2, 4, 11, 12, 15 and 16 are each substituted with two hydrogens unless said carbon is part of an unsaturated bond;

carbons at numerals 5, 8, 9 and 14 are each substituted with one hydrogen unless said carbon is part of an unsaturated bond;

carbon at numeral 10 is substituted with methyl; and carbon at number 13 is substituted with methyl unless it is part of an unsaturated bond.

7. A compound of any of claims 1-6 wherein carbons at numerals 1, 2, 4, 11, 12, 15 and 16 are each substituted with two hydrogens;

carbons at numerals 5, 8, 9 and 14 are each substituted with one hydrogen; carbon at numeral 10 is substituted with methyl; and carbon at number 13 is substituted with methyl unless it is part of an unsaturated

bond.

8. A compound of claim 1 wherein

R¹ and R² are hydrogen;

R³ and R⁴ are selected from direct bonds to 6 and 7 respectively so as to form carbonyl groups, hydrogen, or a protecting group such that R³ and/or R⁴ is part of hydroxyl or carbonyl protecting group; and in addition to the -OR³ and -OR⁴ groups as shown, each of carbons 6 and 7 is substituted with hydrogen unless precluded because -OR³ or -OR⁴ represent a carbonyl group;

carbons at numerals 1, 2, 4, 11, 12, 15 and 16 are each substituted with two hydrogens unless said carbon is part of an unsaturated bond;

carbons at numerals 5, 8, 9 and 14 are each substituted with one hydrogen unless said carbon is part of an unsaturated bond;

carbon at numeral 10 is substituted with methyl;

carbon at number 13 is substituted with methyl unless it is part of an unsaturated bond;

carbon at numeral 17 is substituted with

- (a) one of: =O, $=C(R^5)(R^5)$, $=C=C(R^5)(R^5)$, $-C(R^5)(R^5)(C(R^5)(R^5))_n$ and $-(O(C(R^5)(R^5))_nO)$ wherein n ranges from 1 to about 6; or
- (b) two of the following, which are independently selected: -X, $-N(R^1)(R^2)$, $-R^5$ and $-OR^6$;

each of rings A, B, C and D is independently fully saturated, partially saturated or fully unsaturated;

R⁵ at each occurrence is independently selected from H, X, and C₁₋₃₀ organic moiety that may optionally contain at least one heteroatom selected from the group consisting of boron, halogen, nitrogen, oxygen, silicon and sulfur; where two geminal R⁵ groups may together form a ring with the carbon atom to which they are both bonded;

R⁶ is H or a protecting group such that -OR⁶ is a protected hydroxyl group, where vicinal -OR⁶ groups may together form a cyclic structure that protects vicinal hydroxyl groups, and where geminal -OR⁶ groups may together form a cyclic structure that protects a carbonyl group; and

X represents fluoride, chloride, bromide and iodide.

9. A compound of claim 8 wherein

R¹ and R² are hydrogen;

 R^3 and R^4 are selected from hydrogen and protecting groups such that R^3 and/or R^4 is part of hydroxyl protecting group;

carbons at numerals 1, 2, 4, 11, 12, 15 and 16 are each substituted with two hydrogens;

carbons at numerals 5, 8, 9 and 14 are each substituted with one hydrogen; carbon at numeral 10 is substituted with methyl;

carbon at number 13 is substituted with methyl unless it is part of an unsaturated bond;

carbon at numeral 17 is substituted with

- (a) one of: $=C(R^5)(R^5)$ and $=C=C(R^5)(R^5)$; or
- (b) two of the following, which are independently selected: -X, $-N(R^1)(R^2)$, and $-R^5$;

each of rings A, B, C and D is independently fully saturated or partially saturated; R^5 at each occurrence is independently selected from H, X, and C_{1-30} hydrocarbons, halocarbons and halohydrocarbons; and

X represents fluoride, chloride, bromide and iodide.

10. A compound of claim 9 wherein

R¹ and R² are hydrogen;

 $$\rm R^{3}$$ and $\rm R^{4}$ are selected from hydrogen and protecting groups such that $\rm R^{3}$ and/or $\rm R^{4}$ is part of hydroxyl protecting group;

carbons at numerals 1, 2, 4, 11, 12, 15 and 16 are each substituted with two hydrogens;

carbons at numerals 5, 8, 9 and 14 are each substituted with one hydrogen; carbon at numeral 10 is substituted with methyl;

carbon at number 13 is substituted with methyl unless it is part of an unsaturated

bond;

carbon at numeral 17 is substituted with

- (a) one of: $=C(R^5)(R^5)$; or
- (b) two of $-R^5$;

each of rings A, B, C and D is independently fully saturated or partially saturated;

and

 $\ensuremath{R^5}$ at each occurrence is independently selected from H and $\ensuremath{C_{1\text{--}10}}$ hydrocarbons.

11. A compound of any one of claims 1-10 of the formula

$$H_2N$$
 OH OH

12. A compound of any one of claims 1-10 of the formula

$$H_2N$$
 OH OH

13. A compound of any one of claims 1-10 of the formula

14. A compound of any one of claims 1-10 of the formula

15. A compound of any one of claims 1-10 of the formula

16. A compound of any one of claims 1-10 of the formula

$$H_2N^{m}$$
 OH OH

- 17. A compound of claim 1 wherein 17 is substituted with $=C(R^5)(R^5)$ and R^5 is selected from hydrogen, halogen, C_{1-6} alkyl, C_{1-6} hydroxyalkyl, and $-CO_2-C_{1-6}$ alkyl.
- 18. A compound of claim 1 wherein 17 is substituted with C_{1-6} alkyl or C_{1-6} haloalkyl.
- 19. A compound of claim 1 wherein 17 is substituted with $-OR^6$ or =O, wherein R^6 is hydrogen.
- 20. A compound of claim 1 wherein R¹ is selected from -C(=O)-R⁷, -C(=O)NH-R⁷; -SO₂-R⁷; wherein R⁷ is selected from alkyl, heteroalkyl, aryl and heteroaryl.

- 21. A compound of claim 20 wherein R^7 is selected from C_{1-10} hydrocarbyl.
- 22. A compound of claim 20 wherein R⁷ comprises biotin.
- 23. A compound of claim 1 wherein $(R^1)(R^2)N$ is selected from

- 24. A compound of claim 1 wherein R¹ is hydrogen and R² comprises a carbocycle.
 - 25. A compound of claim 24 wherein the carbocycle is phenyl.
- 26. A compound of claim 25 wherein R² is selected from 3-methylphenyl; 4-hydroxyphenyl; and 4-sulfonamidephenyl.
- 27. A compound of claim 1 wherein R^1 is hydrogen and R^2 comprises a C_{1-10} hydrocarbyl.
 - 28. A compound of claim 1 wherein R¹ is hydrogen and R² is heteroalkyl.
- 29. A compound of claim 28 wherein R^2 is selected from C_{1-10} alkylene- wherein W is selected from O and NH; HO- C_{1-10} alkylene-; and HO- C_{1-10} alkylene-W- C_{1-10} alkylene- where W is selected from O and NH.

- 30. A compound of claim 1 wherein R^1 is hydrogen and R^2 is $-CH_2-R^7$ wherein R^7 is selected from alkyl, heteroalkyl, aryl and heteroaryl.
- 31. A compound of claim 30 wherein R⁷ is selected from alkyl-substituted phenyl; halogen-substituted phenyl; alkoxy-substituted phenyl; aryloxy-substituted phenyl; and nitro-substituted phenyl.
 - 32. A compound of claim 1 wherein each of R^1 and R^2 is hydrogen.
 - 33. A compound of claims 1 or 32 wherein each of R³ and R⁴ is hydrogen.
- 34. A compound of claims 32 or 33 where the carbon at numeral 17 is substituted with
- (a) one of the following: $C(R^{5a})(R^{5a})$, =C= $C(R^{5a})(R^{5a})$, and $-C(R^{5a})(R^{5a})(C(R^{5a})(R^{5a}))_n$ wherein n ranges from 1 to about 6; or
- (b) two of the following, which are independently selected: -X, $-N(R^1)(R^2)$, and $-R^{5a}$;

where R^{5a} at each occurrence is independently selected from H, X, and C_{1-30} organic moiety that may optionally contain at least one heteroatom selected from the group consisting of boron, halogen, nitrogen, silicon and sulfur; where two geminal R^5 groups may together form a ring with the carbon atom to which they are both bonded.

35. A compound of claim 1 wherein R³ and R⁴ together form a ketal of the structure

36. A compound of claim 1 wherein -OR³ and -OR⁴ have the stereochemistry shown

- 37. A compound of claim 1 wherein $-N(R^1)(R^2)$ is in a salt form.
- 38. A compound of claim 1 wherein $-N(R^1)(R^2)$ is in a salt form and the salt is a halogen or acetate salt.
- 39. A compound of claim 1 which is a prodrug of the formula shown in claim 1.
- 40. A compound of claim 1 and pharmaceutically acceptable salts, solvates, stereoisomers but not prodrugs thereof, in isolation or in mixture.

- 41. A compound of claim 1 wherein at least one of the carbons at numerals 10 and 13 are substituted with methyl.
- 42. A compound of claim 1 wherein each of R¹ and R² are independently selected from hydrogen and organic groups having 1-20 carbons and optionally containing 1-5 heteroatoms selected from nitrogen, oxygen, silicon, and sulfur.

43. A compound of claim 1 wherein

 R^1 and R^2 are independently selected from hydrogen, R^8 , R^9 , R^{10} , R^{11} and R^{12} where R^8 is selected from alkyl, heteroalkyl, aryl and heteroaryl; R^9 is selected from $(R^8)_r$ -alkylene, $(R^8)_r$ -heteroalkylene, $(R^8)_r$ -arylene and $(R^8)_r$ -heteroarylene; R^{10} is selected from $(R^9)_r$ -alkylene, $(R^9)_r$ -heteroalkylene, $(R^9)_r$ -arylene, and $(R^9)_r$ -heteroarylene; R^{11} is selected from $(R^{10})_r$ -alkylene, $(R^{10})_r$ -heteroalkylene, $(R^{10})_r$ -arylene, and $(R^{10})_r$ -heteroarylene, $(R^{11})_r$ -heteroarylene, and $(R^{11})_r$ -heteroarylene, and an $(R^{11})_r$ -heteroarylene,

44. A compound of claims 1 or 43 wherein

 R^3 and R^4 are selected from hydrogen and protecting groups such that R^3 and/or R^4 is part of hydroxyl protecting group;

carbons at numerals 1, 2, 4, 11, 12, 15 and 16 are each substituted with two hydrogens unless said carbon is part of an unsaturated bond;

carbons at numerals 5, 8, 9 and 14 are each substituted with one hydrogen unless said carbon is part of an unsaturated bond;

carbon at numeral 10 is substituted with methyl;

carbon at number 13 is substituted with methyl unless it is part of an unsaturated bond;

carbon at numeral 17 is substituted with

(a) one of:
$$=C(R^5)(R^5)$$
 and $=C=C(R^5)(R^5)$; or

(b) two of -R⁵;each of rings A, B, C and D is independently fully saturated or partially saturated;

 R^5 at each occurrence is independently selected from H and $C_{1\text{--}10}$ hydrocarbons.

- 45. A compound of claims 1, 43 or 44 wherein R^1 and R^2 are independently selected from hydrogen, R^8 , R^9 , R^{10} , R^{11} and R^{12} where R^8 is selected from C_{1-10} alkyl, C_{1-10} heteroalkyl comprising 1, 2 or 3 heteroatoms, C_{6-10} aryl and C_{3-15} heteroaryl comprising 1, 2 or 3 heteroatoms; R^9 is selected from $(R^8)_r$ - C_{1-10} alkylene, $(R^8)_r$ - C_{1-10} heteroalkylene comprising 1, 2 or 3 heteroatoms, $(R^8)_r$ - C_{6-10} arylene and $(R^8)_r$ - C_{3-15} heteroarylene comprising 1, 2 or 3 heteroatoms; R^{10} is selected from $(R^9)_r$ - C_{1-10} alkylene, $(R^9)_r$ - C_{1-10} heteroalkylene comprising 1, 2 or 3 heteroatoms; R^{11} is selected from $(R^{10})_r$ - C_{1-10} alkylene, $(R^{10})_r$ - C_{1-10} heteroalkylene comprising 1, 2 or 3 heteroatoms, $(R^{10})_r$ - $(R^{10}$
- 46. A compound of claims 1, 43 or 44 wherein R^1 and R^2 are selected from hydrogen, CH_3 -, $CH_3(CH_2)_2$ -, $CH_3(CH_2)_4$ -, CH_3CO -, C_6H_5CO (CH_3) $_2CHSO_2$ -, $C_6H_5SO_2$ -, C_6H_5NHCO -, $CH_3(CH_2)_2NHCO$ -, $CH_3(CH_2)_2NH(CH_2)_2$ -, (CH_3) $_2N(CH_2)_2$ -, $HOCH_2CH_2$ -, $HOCH_2$ -, $HOCH_2CH_2$ -, $HOCH_2CH_2$ -, $HOCH_2CH_2$ -, $HOCH_2$ -

$$O = \{ \{ \{ \{ \{ \} \} \} \} \}$$
 and
$$O = \{ \{ \{ \{ \} \} \} \} \}$$
 and
$$O = \{ \{ \{ \{ \} \} \} \} \}$$
 ; or R^1 and R^2 may join together with the nitrogen to which

they are both attached and form a heterocycle selected from:

47. A compound of claims 1 or 43 of the formula

48. A compound of claims 1 or 43 of the formula

49. A compound of claims 1 or 43 of the formula

50. A compound of claims 1 or 43 of the formula

51. A compound of claim 1 wherein R¹ is a 2, or 3 atom chain to numeral 2 so that -N-R¹- forms part of a fused bicyclic structure to ring A, the compound having the formula:

where Z represents 2 or 3 atoms, independently selected from C, N and O so long as a stable structure results, and the ring including Z may be saturated or unsaturated.

52. A compound of claim 51 selected from

- 53. A pharmaceutical composition comprising a compound of any of claims 1-52 and a pharmaceutically acceptable carrier, excipient or diluent.
- 54. A method of treating inflammation therapeutically comprising administering to a subject in need thereof a therapeutically-effective amount of a compound of any of claims 1-52.
- 55. A method of treating inflammation prophylactically comprising administering to a subject in need thereof a prophylactically-effective amount of a compound of any of claims 1-52.
- 56. A method of treating asthma comprising administering to a subject in need thereof a therapeutically-effective amount of a compound of any of claims 1-52.
- 57. A method of treating allergic disease including but not limited to dermal and ocular indications comprising administering to a subject in need thereof a therapeutically-effective amount of a compound of any of claims 1-52.

- 58. A method of treating chronic obstructive pulmonary disease comprising administering to a subject in need thereof a therapeutically-effective amount of a compound of any of claims 1-52.
- 59. A method of treating atopic dermatitis comprising administering to a subject in need thereof a therapeutically-effective amount of a compound of any of claims 1-52.
- 60. A method of treating solid tumours comprising administering to a subject in need thereof a therapeutically-effective amount of a compound of any of claims 1-52.
- 61. A method of treating AIDS comprising administering to a subject in need thereof a therapeutically-effective amount of a compound of any of claims 1-52.
- 62. A method of treating ischemia reperfusion injury comprising administering to a subject in need thereof a therapeutically-effective amount of a compound of any of claims 1-52.
- 63. A method of treating cardiac arrhythmias comprising administering to a subject in need thereof a therapeutically-effective amount of a compound of any of claims 1-52.