Comparison of \mathcal{L}_+ and \mathcal{L}_- Laplace Transforms

$$\mathcal{L}_{-}[f(t)] = \mathcal{L}_{+}[f(t)] + \int_{0^{-}}^{0^{+}} f(t)e^{-st}dt$$

$$\mathcal{L}_{-}[f(t)] = \mathcal{L}_{+}[f(t)] \text{ iff } \int_{0^{-}}^{0^{+}} f(t)e^{-st}dt = 0$$

Explanation:

- The blue curve represents f(t) for t < 0, and the red curve for t > 0.
- \mathcal{L}_{-} includes the integral from 0^{-} to ∞ (green and orange regions).
- \mathcal{L}_+ only includes the integral from 0^+ to ∞ (orange region).
- The difference Δf at t=0 contributes to the integral $\int_{0^{-}}^{0^{+}} f(t)e^{-st}dt$.
- If this integral is zero (i.e., no jump discontinuity at t = 0), then $\mathcal{L}_{-}[f(t)] = \mathcal{L}_{+}[f(t)]$.