

Trench Gate Power MOSFET HiperFET™

IXFA102N15T IXFH102N15T IXFP102N15T

N-Channel Enhancement Mode Avalanche Rated

V _{DSS}	=	150V
I _{D25}	=	102A
R _{DS(on)}	≤	18m Ω
t _{rr}	≤	120ns

TO-263 (IXFA)

TO-220 (IXFP)

G	=	Gate	D	=	Drain
S	=	Source	TA	\B =	Drain

Features

- International Standard Packages
- Avalanche Rated

Advantages

- Easy to Mount
- Space Savings
- High Power Density

Applications

- DC-DC Converters
- Battery Chargers
- Switched-Mode and Resonant-Mode **Power Supplies**
- DC Choppers
- AC Motor Drives
- Uninterruptible Power Supplies
- High Speed Power Switching **Applications**

Symbol	Test Conditions		Maximum F	Ratings
V _{DSS} V _{DGR}	$T_{J} = 25^{\circ}\text{C to } 175^{\circ}\text{C}$ $T_{J} = 25^{\circ}\text{C to } 175^{\circ}\text{C}$		150 150	V
V _{GSS} V _{GSM}	Continuous Transient		± 20 ± 30	V
I _{D25} I _{LRMS} I _{DM}	$T_{c} = 25^{\circ}C$ Lead Current Limit, $T_{c} = 25^{\circ}C$, Pulse V	, RMS Vidth Limited by T _{JM}	102 75 300	A A A
I _A E _{AS}	$T_{c} = 25^{\circ}C$ $T_{c} = 25^{\circ}C$		51 750	A mJ
dV/dt	$I_{\text{S}} \leq I_{\text{DM}}, \ V_{\text{DD}} \leq V_{\text{DSS}}$, T _J ≤ 175°C	20	V/ns
P _D	T _c = 25°C		455	W
T _J T _{JM} T _{stg}			-55 +175 175 -55 +175	0° 0°
T _L T _{SOLD}	1.6mm (0.062 in.) f Plastic Body for 10		300 260	°C °C
M _d F _c	Mounting Torque Mounting Force		1.13 / 10 1065 / 2.214.6	Nmlb.in. N/lb.
Weight	TO-263 TO-220 TO-247		2.5 3.0 6.0	g g g

			cteristi Typ.	c Value: Max	
BV _{DSS}	$V_{GS} = 0V, I_D = 250\mu A$	150			V
V _{GS(th)}	$V_{DS} = V_{GS}, I_{D} = 1mA$	2.5		5.0	V
l _{GSS}	$V_{GS} = \pm 20V, V_{DS} = 0V$			± 200	nA
I _{DSS}	$V_{DS} = V_{DSS}, V_{GS} = 0V$			5	μΑ
	$T_J = 150$ °C			750	μΑ
R _{DS(on)}	$V_{GS} = 10V, I_{D} = 0.5 \cdot I_{D25}, \text{ Note 1}$			18	mΩ

Symbo (T _J = 25		Test Conditions Inless Otherwise Specified)	Cha Min.	racteris Typ.	tic Values Max.
g _{fs}		V _{DS} = 10V, I _D = 0.5 • I _{D25} , Note 1	50	80	S
C _{iss})			5220	pF
\mathbf{C}_{oss}	}	$V_{GS} = 0V, V_{DS} = 25V, f = 1MHz$		685	pF
\mathbf{C}_{rss}	J			95	pF
t _{d(on)}	١			20	ns
t,		Resistive Switching Times		14	ns
$\mathbf{t}_{d(off)}$	1	$V_{GS} = 10V$, $V_{DS} = 0.5 \cdot V_{DSS}$, $I_{D} = 0.5 \cdot I_{D25}$		25	ns
$\mathbf{t}_{_{\mathbf{f}}}$	J	$R_{_{\rm G}} = 3.3\Omega \text{ (External)}$		22	ns
$\mathbf{Q}_{g(on)}$)			87	nC
Q_{gs}	}	$V_{GS} = 10V$, $V_{DS} = 0.5 \cdot V_{DSS}$, $I_{D} = 25A$		23	nC
\mathbf{Q}_{gd}	J			31	nC
R _{thJC}					0.33 °C/W
\mathbf{R}_{thCH}		(TO-220)		0.50	°C/W
		(TO-247)		0.21	°C/W

Source-Drain Diode

			cteristic Typ.	Values Max		
Is		$V_{GS} = 0V$			102	Α
I _{sm}		Repetitive, Pulse Width Limited by $T_{_{\rm JM}}$			400	Α
V _{SD}		$I_{\rm F} = 100 {\rm A}, \ V_{\rm GS} = 0 {\rm V}, \ {\rm Note} \ 1$			1.3	V
t _{rr} I _{RM} Q _{RM}	}	$I_{_{\mathrm{F}}}=51\mathrm{A}, -\mathrm{di}/\mathrm{dt}=100\mathrm{A}/\mu\mathrm{s}$ $V_{_{\mathrm{R}}}=75\mathrm{V}, V_{_{\mathrm{GS}}}=0\mathrm{V}$		6.2 236	120	ns A nC

Note 1: Pulse test, $t \le 300\mu s$; duty cycle, $d \le 2\%$.

TO-220 (IXFP) Outline

Pins: 1 - Gate 2 - Drain

SYM	INCHES MIL		MILLIN	1ETERS
214	MIN	MAX	MIN	MAX
Α	.170	.190	4.32	4.83
b	.025	.040	0.64	1.02
b1	.045	.065	1.15	1.65
С	.014	.022	0.35	0.56
D	.580	.630	14.73	16.00
E	.390	.420	9.91	10.66
е	.100 BSC		2.54 BSC	
F	.045	.055	1.14	1.40
H1	.230	.270	5.85	6.85
J1	.090	.110	2.29	2.79
k	0	.015	0	0.38
L	.500	.550	12.70	13.97
L1	.110	.230	2.79	5.84
ØΡ	.139	.161	3.53	4.08
Q	.100	.125	2.54	3.18

Terminals: 1 - Gate 2 - Drain 3 - Source

Dim.	Milli	meter	Inc	hes
	Min.	Max.	Min.	Max.
Α	4.7	5.3	.185	.209
Α,	2.2	2.54	.087	.102
A ₂	2.2	2.6	.059	.098
b	1.0	1.4	.040	.055
b,	1.65	2.13	.065	.084
b ₂	2.87	3.12	.113	.123
С	.4	.8	.016	.031
D	20.80	21.46	.819	.845
E	15.75	16.26	.610	.640
е	5.20	5.72	0.205	0.225
L	19.81	20.32	.780	.800
L1		4.50		.177
ØP	3.55	3.65	.140	.144
Q	5.89	6.40	0.232	0.252
R	4.32	5.49	.170	.216
S	6.15	BSC	242	BSC

IXYS Reserves the Right to Change Limits, Test Conditions, and Dimensions.

Fig. 1. Output Characteristics @ 25°C

Fig. 3. Output Characteristics @ 150°C

Fig. 5. $R_{DS(on)}$ Normalized to $I_D = 51A$ Value vs. Drain Current

Fig. 2. Extended Output Characteristics @ 25°C

Fig. 4. $R_{DS(on)}$ Normalized to $I_D = 51A$ Value vs. Junction Temperature

Fig. 6. Drain Current vs. Case Temperature

Fig. 7. Input Admittance

Fig. 8. Transconductance

Fig. 9. Forward Voltage Drop of Intrinsic Diode

Fig. 10. Gate Charge

Fig. 11. Capacitance

Fig. 12. Forward-Bias Safe Operating Area

IXYS Reserves the Right to Change Limits, Test Conditions, and Dimensions.

Fig. 13. Resistive Turn-on Rise Time vs. Junction Temperature

Fig. 15. Resistive Turn-on Switching Times vs. Gate Resistance

Fig. 17. Resistive Turn-off
Switching Times vs. Drain Current

Fig. 14. Resistive Turn-on Rise Time vs. Drain Current

Fig. 16. Resistive Turn-off Switching Times vs. Junction Temperature

Fig. 18. Resistive Turn-off Switching Times vs. Gate Resistance

N 0.0001 0.001 0.01 1 1 10

Pulse Width - Seconds

Fig. 19. Maximum Transient Thermal Impedance

