# DATA AND ARTIFICIAL INTELLIGENCE



**Capstone Session 1** 

## **Capstone Project**

This capstone project is a platform for the learners to implement the skills learned through the program.



## Why Capstone?

The project will enable you to:

- Apply the skills learned through the program
- Build a project end-to-end
- Make better data-driven decisions
- Get an exposure to real-world data science challenges



## Milestones

The project milestones are as follows:



# Agenda

| <b>Data Analysis</b><br>Weeks 1 - 4 | <b>Modeling</b><br>Weeks 5 - 8                         | <b>Advanced Modeling</b><br>Weeks 9 - 12                    |
|-------------------------------------|--------------------------------------------------------|-------------------------------------------------------------|
| Import, export and clean data       | Supervised learning with regression                    | Solving a binary classification problem                     |
| Perform linear algebraic operations | Supervised learning with classification                | Solving a multiclass image classification problem using CNN |
| Working with Pandas                 | Modeling with unsupervised learning                    | Performing image classification and object detection        |
| Analyze and cleanse data            | Performing data<br>management and<br>ensemble learning | Building a CNN-LSTM<br>hybrid model                         |
| Visualize data                      | Developing recommendation engines                      | Denoising images with autoencoders                          |





Aura - The Intelligent Marketing Data Engine



#### Introduction

**ClickO** is a Boston, MA-based email marketing company. ClickO delivers integrated data analytics services to their customers - mostly large enterprises in the retail space.

ClickO plans to expand from being a pure email marketing platform to a full-fledged AI/ML-based digital marketing and recommendation platform with tools and analytics to help digital marketers predict demand, optimize content and custom-stitch digital campaigns that reach audiences on multiple channels.

Towards this end, ClickO is developing a new product called Aura. Aura collates audience information from multiple sources and provides a toolkit for digital marketers to market to similar audiences on multiple platforms.



### Introduction

## Among other tools, Aura toolkit consists of -

- 1. Real-time recommendation system to take in a disparate product, people, geographic and other data and make relevant recommendations.
- 2. Content optimization engine Aura's marketing ML algorithm can help you to estimate which types of content, questions, and headlines are most probable to become popular among your target audience.
- 3. Custom promotion engine Aura leverages deep learning to help customers tailor marketing promotions for new products or services.
- 4. Demand forecasting engine Based on input datasets of historical data, the engine can predict demand for certain products and services.



## **Project Goal**

Build Aura - The Intelligent Prediction and Recommendation Engine for Product Marketers.



Digital marketers can leverage the insights derived from Aura to:

- Predict demand
- Optimize content
- Custom-stitch digital campaigns



**Python for Data Analysis** 



## **Python End Goal**

Aura must be built to receive and process marketing campaign and user behavior data from various sources such as healthcare, technology and manufacturing domains.





## **Project Statement**

Build necessary data aggregation, wrangling and visualization modules for Aura using the Healthcare dataset.





# **Dataset Description**

#### NSMES1988.csv

| Variable  | Description                                        | Variable | Description                                                                                     |
|-----------|----------------------------------------------------|----------|-------------------------------------------------------------------------------------------------|
| visits    | Number of physician office visits                  | health   | Factor indicating self-perceived health                                                         |
| nvisits   | Number of non-physician office visits              | chronic  | Number of chronic conditions                                                                    |
| ovisits   | Number of physician hospital outpatient visits     | adl      | Factor indicating whether the individual has a condition that limits activities of daily living |
| novisits  | Number of non-physician hospital outpatient visits | region   | Factor indicating region                                                                        |
| emergency | Emergency room visits                              | age      | Age in years (divided by 10)                                                                    |

# **Dataset Description**

#### NSMES1988.csv

| Variable | Description                                    | Variable  | Description                                             |
|----------|------------------------------------------------|-----------|---------------------------------------------------------|
| hospital | Number of hospital stays                       | afam      | Factor. Is the individual African-American?             |
| gender   | Factor indicating gender                       | married   | Factor. Is the individual married?                      |
| school   | Number of years of education                   | income    | Family income in USD 10000                              |
| employed | Factor. Is the individual employed?            | insurance | Factor. Is the individual covered by private insurance? |
| medicaid | Factor. Is the individual covered by Medicaid? |           |                                                         |

### Week 1

#### Task: Import and Export data, clean data

- Import relevant python libraries necessary for Python programming and Numpy for doing Numerical operations.
- Import the CSV file NSMES1988.csv into a dataframe.
- Inspect the data and report the details from physical inspection rows, columns, data types etc.
- Find out if the data is clean or if the data has missing values.
- Comment on the data types, their values and their range, specifically on age and income columns.
- Export the data to JSON as NSMES1988.json format file and view and enter your comments.



#### Week 1

- Perform memory information on the data and recommend what non-default data types you would recommend to optimize memory settings for the dataframe.
- What changes you would recommend on the dataframe before attempting a detailed data analysis.
- Export the data frame as a new CSV file NSMES1988new.csv and store it in the local space for possible use in other assignments.
- Write a short report on the visual observations of the data.





Thank You

