

Norges teknisk-naturvitenskapelige universitet Institutt for matematiske fag TMA4100 Matematikk 1 Høst 2014

Løsningsforslag — Øving 13

"Review Exercises 2", side 454

Vi starter med å tegne en figur av en skål med vann:

Skålen har bunn i z=0 og tverrsnittareal A(z). Volumet med vann i skåla finner vi ved å integrere tverrsnittarealet fra 0 til z,

$$V(z) = \int_0^z A(y) \, \mathrm{d}y.$$

Det er oppgitt i oppgaven at vannet fordamper med rate proporsjonal med overflatearealet. Siden vannet har overflateareal A(z), betyr dette at volumet derivert med hensyn på tiden t er lik en konstant k ganget med overflatearealet,

$$\frac{\mathrm{d}V}{\mathrm{d}t} = kA(z).$$

Vi setter inn for V(z) og bruker kjerneregelen for derivasjon sammen med analysens fundamentalteorem. Venstresiden kan da skrives som

$$\frac{\mathrm{d}V}{\mathrm{d}t} = \frac{\mathrm{d}V}{\mathrm{d}z}\frac{\mathrm{d}z}{\mathrm{d}t} = \left(\frac{\mathrm{d}}{\mathrm{d}z}\int_0^z A(y)\,\mathrm{d}y\right)\frac{\mathrm{d}z}{\mathrm{d}t} = A(z)\frac{\mathrm{d}z}{\mathrm{d}t}.$$

Vi setter dette lik høyresiden, kA(z), og ser da at

$$\frac{\mathrm{d}z}{\mathrm{d}t} = k.$$

Dette vil si at vannhøyden synker med konstant rate. Legg merke til at vi gjorde denne utregningen for et vilkårlig valgt tverrsnittareal. Resultatet er derfor uavhengig av formen på skålen.

"Review Exercises 8", side 455

Vi tegner en figur av disken:

Vi er ute etter å finne massesenteret, (\bar{x}, \bar{y}) , til den største sirkulære disken i figuren med den grå delen fjernet. Tettheten til skiven er konstant lik σ .

På grunn av symmetri ser vi at $\bar{y} = 0$. Vi forventer at $\bar{x} < 0$ siden delen vi fjerner ligger i området x > 0.

La oss kalle hele den største sirkulære disken for A, den minste sirkulære disken (den vi fjerner) for B, og disken med hull for C. Siden vi har konstant tetthet, σ , vet vi at massen og massesenteret til A og B er gitt som

$$m_A = \sigma \pi \cdot 3^2 = 9\sigma \pi, \quad (\bar{x}_A, \bar{y}_A) = (0, 0),$$

 $m_B = \sigma \pi \cdot 1^2 = \sigma \pi, \quad (\bar{x}_B, \bar{y}_B) = (1, 0).$

Videre vet vi at momentet til et legeme bestående av flere deler er summen av momentet til hver del. I vårt tilfelle vil det si at momentet om x = 0 til A er lik summen av momentet om x = 0 til B og C,

$$M_{x=0,A} = M_{x=0,B} + M_{x=0,C}$$
.

Vi vet også at momentet om x=0 til et legeme er produktet av armen, det vil avstanden fra massesenteret til x=0, og massen. Fra ligningen over kan vi nå finne et uttrykk for $M_{x=0,C}$,

$$M_{x=0,C} = M_{x=0,A} - M_{x=0,B} = \bar{x}_A m_A - \bar{x}_B m_B = 0 - 1 \cdot \sigma \pi = -\sigma \pi.$$

Massen til C er gitt som

$$m_C = m_A - m_B = 8\sigma\pi.$$

Det betyr at

$$\bar{x} = \frac{M_{x=0,C}}{m_C} = \frac{-\sigma\pi}{8\sigma\pi} = -\frac{1}{8}.$$

Massesenteret til disken med hull (C) er altså $(\bar{x}, \bar{y}) = (-1/8, 0)$. Dette virker som er rimelig resultat.

<u>Kommentar</u>: I denne oppgaven er det også mulig å regne ut massesenteret ved hjelp av integrasjon. På grunn av symmetrien i oppgaven er det enklere å bruke en mer grunnleggende forståelse av massesenter slik vi har gjort her.

9.4.10 Vi er gitt rekken

$$\sum_{n=1}^{\infty} a_n, \quad a_n = \frac{100\cos(n\pi)}{2n+3}.$$

Legg merke til at

$$\cos(n\pi) = \begin{cases} 1, & \text{for } n \text{ like,} \\ -1, & \text{for } n \text{ odde.} \end{cases}$$

Vi har altså en alternerende rekke. Derfor prøver vi med den alternerende rekketesten (*The alternating series test*, side 522 i boka). Vi har at

$$|a_{n+1}| = \left| \frac{100 \cos((n+1)\pi)}{2(n+1)+3} \right| = \frac{100}{2n+5},$$
$$|a_n| = \left| \frac{100 \cos(n\pi)}{2n+3} \right| = \frac{100}{2n+3}.$$

Altså er $|a_{n+1}| \leq |a_n|$ for alle n. Det vil si at leddene er synkende i størrelse (absolutt verdi). I grensen $n \to \infty$ har vi at

$$\lim_{n \to \infty} a_n = \lim_{n \to \infty} \frac{100 \cos(n\pi)}{2n+3} = 0.$$

Alle betingelsene for den alternerende rekke—testen er derfor oppfylt, og vi konkluderer med at rekken konvergerer.

Vi undersøker så om rekken er absolutt konvergent ved å se på rekken

$$\sum_{n=1}^{\infty} |a_n| = \sum_{n=1}^{\infty} \frac{100}{2n+3}.$$

Vi bruker grensesammenligningstesten (A limit comparison test, side 515 i boka) og sammenligner med den divergente rekken $\sum_{n=1}^{\infty} b_n$, der $b_n = \frac{1}{n}$. Både $|a_n|$ og b_n er positive for alle n, og dessuten er

$$\lim_{n \to \infty} \frac{|a_n|}{b_n} = \lim_{n \to \infty} \frac{\frac{100}{2n+3}}{\frac{1}{n}} = \lim_{n \to \infty} \frac{100n}{2n+3} = 50.$$

Det følger at rekken $\sum_{n=1}^{\infty} |a_n|$ divergerer. Rekken $\sum_{n=1}^{\infty} a_n$ er derfor betinget konvergent.

9.4.16 Vi er gitt rekken

$$\sum_{n=0}^{\infty} a_n, \quad a_n = (-1)^n \frac{3^n}{n!}.$$

Teorem 15, side 523 i boka, gir en øvre grense på absoluttverdien av feilen,

$$|s - s_n| \le |a_{n+1}|.$$

For å kunne bruke denne må betingelsene i den alternerende rekke—testen være oppfylt, slik at rekken faktisk konvergerer. Vi ser at a_n er alternerende siden faktoren $(-1)^n$ alternerer mellom -1 og 1, mens faktoren $\frac{3^n}{n!}$ er positiv for alle n. Videre er

$$|a_{n+1}| = \frac{3^{n+1}}{(n+1)!} = \frac{3 \cdot 3^n}{(n+1)n!} = \frac{3}{n+1}|a_n|.$$

Det vil si at $|a_{n+1}| \leq |a_n|$ for $n \geq 2$. Til slutt kan vi vise at

$$\lim_{n \to \infty} a_n = \lim_{n \to \infty} (-1)^n \frac{3^n}{n!} = 0.$$

Vi har her brukt at n! vokser raskere enn x^n for alle reele tall x (se Teorem 3 side 502 i boka)¹.

Vi ønsker nå å finne den minste verdien av n slik at $|s - s_n| \le 0.001$. Fra ulikheten over er dette oppfylt når

$$|a_{n+1}| \le 0,001$$
$$\frac{3^{n+1}}{(n+1)!} \le 0,001.$$

Ved å sette inn for stigende verdier av n, ser vi at dette er oppfylt når $n \ge 12$. Vi må altså ta med minimum 13 ledd (husk å telle med n = 0) for å approksimere summen s med en feil mindre enn 0,001.

9.5.8 Vi starter med å skrive om rekka,

$$\sum_{n=1}^{\infty} \frac{(4x-1)^n}{n^n} = \sum_{n=1}^{\infty} \frac{4^n \left(x - \frac{1}{4}\right)^n}{n^n} = \sum_{n=1}^{\infty} a_n \left(x - \frac{1}{4}\right)^n,$$

der $a_n = \frac{4^n}{n^n}$. Vi gjenkjenner dette som en potensrekke med konvergenssentrum i $x = \frac{1}{4}$. For å finne konvergensradiusen, R, ser vi på grensen

$$L = \lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| = \lim_{n \to \infty} \frac{\frac{4^{n+1}}{(n+1)^{n+1}}}{\frac{4^n}{n^n}} = \lim_{n \to \infty} 4 \frac{n^n}{(n+1)^{n+1}}$$

$$= 4 \lim_{n \to \infty} \frac{n^n}{(n+1)(n+1)^n}$$

$$= 4 \lim_{n \to \infty} \frac{1}{n+1} \left(\frac{n}{n+1}\right)^n$$

$$= 4 \lim_{n \to \infty} \frac{1}{n+1} \lim_{n \to \infty} \left(\frac{n}{n+1}\right)^n$$

$$= 4 \cdot 0 \cdot 1 = 0$$

Dette betyr at $R = \infty$ (se side 529 i boka) og at rekken konvergerer for alle x.

¹Dette ble også demonstrert i oppgave 9.3.22 i forrige øving.

9.5.28 Vi er gitt rekka

$$\sum_{n=0}^{\infty} \frac{n+1}{2^n}.$$

La oss istedenfor studere potensrekka

$$\sum_{n=0}^{\infty} (n+1)x^n = \sum_{n=0}^{\infty} nx^n + \sum_{n=0}^{\infty} x^n.$$

Observer at ved å sette $x=\frac{1}{2}$ er denne lik rekka gitt i oppgaven.

Den andre summen i rekka er en geometrisk rekke, og vi vet at

$$\sum_{n=0}^{\infty} x^n = \frac{1}{1-x}, \quad \text{når } |x| < 1.$$

La oss nå følge fremgangsmåten i eksemplene 4 og 6 i boka. Vi deriverer uttrykket over med hensyn på x,

$$\frac{d}{dx} \sum_{n=0}^{\infty} x^n = \frac{d}{dx} \frac{1}{1-x}$$

$$\frac{d}{dx} \left(1 + x + x^2 + x^3 + \dots \right) = \frac{1}{(1-x)^2}$$

$$1 + 2x + 3x^2 + \dots = \frac{1}{(1-x)^2}$$

$$\sum_{n=1}^{\infty} nx^{n-1} = \frac{1}{(1-x)^2}.$$

Vær oppmerksom på at denne ligningen også gjelder for |x| < 1.

Legg så merke til at det første leddet i den første summen i potensrekka vår er null, slik at vi har at

$$\sum_{n=0}^{\infty} nx^n = \sum_{n=1}^{\infty} nx^n = x \sum_{n=1}^{\infty} nx^{n-1} = \frac{x}{(1-x)^2}.$$

I den siste likheten har vi brukt uttrykket vi fant ved derivasjon ovenfor.

Vi har altså vist at

$$\sum_{n=0}^{\infty} (n+1)x^n = \frac{x}{(1-x)^2} + \frac{1}{1-x}, \quad \text{når } |x| < 1.$$

Spesielt, for $x = \frac{1}{2}$, har vi vist at

$$\sum_{n=0}^{\infty} \frac{n+1}{2^n} = \frac{\frac{1}{2}}{\left(1 - \frac{1}{2}\right)^2} + \frac{1}{1 - \frac{1}{2}} = 4.$$

9.6.6 Vi bruker den trigonometriske identiteten $\cos^2 t = \frac{1+\cos 2t}{2}$ og skriver om det oppgitte uttrykket,

$$\cos^2\left(\frac{x}{2}\right) = \frac{1+\cos x}{2}.$$

Vi bruker så Maclaurin-rekka til $\cos x$.

$$\cos x = \sum_{n=0}^{\infty} \frac{(-1)^n}{(2n)!} x^{2n} = 1 - \frac{x^2}{2!} + \frac{x^4}{4!} - \frac{x^6}{6!} + \dots$$

Ved å sette denne inn i uttrykket over får vi at

$$\frac{1+\cos x}{2} = \frac{2 - \frac{x^2}{2!} + \frac{x^4}{4!} - \frac{x^6}{6!} + \dots}{2}$$
$$= 1 + \frac{1}{2} \sum_{n=1}^{\infty} \frac{(-1)^n}{(2n)!} x^{2n}.$$

Siden Maclaurin-rekka til $\cos x$ er gyldig for alle x, er også denne det.

9.7.24 Vi skal evaluere grensen

$$\lim_{x \to 0} \frac{(e^x - 1 - x)^2}{x^2 - \ln(1 + x^2)}$$

Observer at dette er et uttrykk er på ubestemt form [0/0]. Vi starter med å skrive om telleren ved å bruke Maclaurin-rekka til e^x ,

$$e^x = \sum_{n=0}^{\infty} \frac{x^n}{n!} = 1 + x + \frac{x^2}{2} + \frac{x^3}{6} + \dots$$

Denne gjelder for alle x, og telleren kan nå uttrykkes som

$$(e^x - 1 - x)^2 = \left(\frac{x^2}{2} + \frac{x^3}{6} + \dots\right)^2 = \frac{x^4}{4} + \mathcal{O}(x^5).$$

I den siste likheten har vi brukt at det eneste leddet med polynomgrad mindre enn 5 som fremkommer ved å kvadrere uttrykket i parantesen er $\frac{x^4}{4}$. Alle andre ledd inngår i leddet $\mathcal{O}(x^5)$.

For å forenkle nevneren, finner vi først Maclaurin-rekka til $\ln(1+x^2)$. Vi vet at

$$\ln(1+y) = \sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n} y^n, \quad \text{for } -1 < y \le 1.$$

Ved å la $y = x^2$ får vi at

$$\ln(1+x^2) = \sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n} x^{2n} = x^2 - \frac{x^4}{2} + \frac{x^6}{3} - \frac{x^8}{4} + \dots$$

Denne gjelder for $-1 < x^2 \le 1$ eller ekvivalent for $|x| \le 1$. Nevneren kan nå skrives som

$$x^{2} - \ln(1 + x^{2}) = \frac{x^{4}}{2} - \frac{x^{6}}{3} + \frac{x^{8}}{4} - \dots = \frac{x^{4}}{2} + \mathcal{O}(x^{6}).$$

Vi er nå klare for å evaluere grensen,

$$\lim_{x \to 0} \frac{(e^x - 1 - x)^2}{x^2 - \ln(1 + x^2)} = \lim_{x \to 0} \frac{\frac{x^4}{4} + \mathcal{O}(x^5)}{\frac{x^4}{2} + \mathcal{O}(x^6)} = \lim_{x \to 0} \frac{1 + \mathcal{O}(x)}{2 + \mathcal{O}(x^2)} = \frac{1}{2}.$$