Stat 235

Lab 2

WOOSAREE, Arun

Lab EL12

TA: Jessa Marley

October 10, 2018

1 Normal Density

1.a

as σ increases, the curve flattens, the and there is more variation in the tensile strength. makes sense, since $\sigma^2 = V(x)$

1.b

the mean changes

As μ increases, the fraction below 275 **increases/decreases** and the fraction below 295 **increases/decreases**.

2 How changes in the Mean and Std. Deviation affect the fraction of alloy slabs that do not meet the TS Specifications.

	Parameters	Problem	Answer
a)	$\mu = 285 \text{ and } \sigma = 5$	Fraction of unacceptable	0
	$\mu = 283 \text{ and } \sigma = 5$	Fraction of unacceptable	0
b)	$\mu = 285 \text{ and } \sigma = 6$	Fraction of unacceptable	0
c)	$\mu = 285 \text{ and } \sigma = 5$	Within 1 std. deviation	0
		Within 2 std. deviations	0
d)	$\mu = 285 \text{ and } \sigma = 5$	Strength exceeded by 95%	0
		Strength exceeded by 99%	0
e)	$\mu = 285$	σ so that 1% have $TS < 275$ or $TS > 295$	0

Table 1: My caption

3 Random Number Generator

3.a

3.b

k	Within k Std. Deviations of the mean $\mu = 285$	Frequency	Relative Frequency
1	(0,0)	0	0
2	(0,0)	0	0
3	(0,0)	0	0

Table 2: My caption

3.c

3.d

Using the Descriptive Statistics Tool, we find that

$$mean = XX.XXXX$$

 $std.\ deviation = XX.XXXX$

4 Changes in Manufacturing Process

4.a Summary Statistics

Using the Desctiptive Statistics Tool, we find that

$$mean = XX.XXXX$$

 $std.\ deviation = XX.XXXX$

This is consistent / inconsistent

- 4.b Histogram
- 4.c
- **4.**d
- 5 Binomial Probabilities
- 5.a
- **5.**b