2

Instructors: Purushottam Kar, Neeraj Misra

Authors: Gurpreet Singh Email: guggu@iitk.ac.in

CONDITIONAL PROBABILITY AND INDEPENDENCE

1. Conditional Probability

Conditional Probability simply defines the probability of an event A, given that another event B has already occurred. This is represented as $A \mid B$. We can formally define condition probability as follows.

Definition 2.1. Let A and B be two events. The conditional probability of A given B is defined by

$$\mathbb{P}\left[B \mid A\right] = \frac{\mathbb{P}\left[A \cap B\right]}{\mathbb{P}\left[B\right]}$$

Note. Conditional Probability $A \mid B$ is defined only if $\mathbb{P}[B] \neq 0$

Remark. For a probability space $(\Omega, \mathcal{F}, \mathbb{P})$, let $A \in \mathcal{F}$ be an event such that $\mathbb{P}[A] \neq 0$. Then, $\mathbb{P}[\cdot \mid A]$ is also a probability measure for the sample space Ω , as well as for A.

Theorem 2.1 (Total Probability Theorem). Let $\{E_n\}$ be a countable collection of mutually exclusive and exhaustive events. Then, for any other event E

$$\mathbb{P}[E] = \sum_{n} \mathbb{P}[E \cap E_{n}] \\
= \sum_{n} \mathbb{P}[E \mid E_{n}] \mathbb{P}[E_{n}]$$

Proof. Since the collection $\{E_n\}$ is exhaustive, we can say that

$$\mathbb{P}[E] = \mathbb{P}\left[E \cap \left(\bigcup_{n} E_{n}\right)\right] \\
= \mathbb{P}\left[\bigcup_{n} (E \cap E_{n})\right] \\
= \sum_{n} \mathbb{P}[E \cap E_{n}] \\
= \sum_{n} \mathbb{P}[E \mid E_{n}] \mathbb{P}[E_{n}]$$

Theorem 2.2 (Bayes' Theorem). Let $S = \{E_n\}$ be a countable collection of mutually exclusive and exhaustive events such that $\mathbb{P}[E] \ \forall E \in S$. Then, for any j such that $E_j \in S$

$$\mathbb{P}\left[E_{j} \mid E\right] = \frac{\mathbb{P}\left[E \mid E_{j}\right] \mathbb{P}\left[E_{j}\right]}{\sum_{n} \mathbb{P}\left[E \mid E_{i}\right] \mathbb{P}\left[E_{i}\right]}$$

Exercise 2.1. Give a proof of Bayes' Theorem

2. Independence of Events

Definition 2.2. Events $E_1, E_2 \dots E_n$ are said to be

(i) pairwise independent if

$$\mathbb{P}\left[E_i \cap E_j\right] = \mathbb{P}\left[E_i\right] \mathbb{P}\left[E_j\right]$$

(ii) mututally indpendent if $\forall k \in \{2,3\dots n\}$ and distinct $d_1,d_2\dots d_k \in \{1,2\dots,n\}$

$$\mathbb{P}\left[E_{d_1} \cap E_{d_2} \cdots \cap E_{d_k}\right] = \mathbb{P}\left[E_{d_1}\right] \cdot \mathbb{P}\left[E_{d_2}\right] \dots \mathbb{P}\left[E_{d_k}\right]$$

Note. Pairwise Independence does not imply Mutual Independence