

What is claimed is:

1 1. A method for multiple store buffer forwarding in a system with a restrictive
2 memory model, the method comprising:
3 executing a plurality of store instructions;
4 executing a load instruction;
5 determining that a memory region addressed by the load instruction matches a cacheline
6 address in a memory;
7 determining that data stored by the plurality of store instructions completely covers the
8 memory region addressed by the load instruction; and
9 transmitting a store forward is OK signal.

1 2. The method of claim 1, wherein executing the plurality of store instructions
2 comprises:
3 performing a plurality of store operations to store a plurality of data values in contiguous
4 memory locations in the memory, wherein the size of the contiguous memory locations equals
5 the size of the memory region addressed by the load instruction.

1 3. The method of claim 2, wherein executing a load instruction comprises:
2 loading the data from the contiguous memory locations in the memory; and
3 generating the store forward is OK signal.

1 4. The method of claim 3, wherein loading the data from the contiguous memory
2 locations in the memory begins after performing the plurality of store operations begins, and
3 loading the data from the contiguous memory locations in the memory completes before the
4 plurality of store operations become globally observed in the system.

1 5. The method of claim 1, wherein executing the load instruction comprises:
2 loading the data from a write combining buffer; and
3 generating the store forward is OK signal.

1 6. The method of claim 1, wherein determining that a memory region addressed by
2 the load instruction matches a cacheline address in a memory comprises:
3 comparing an address of the memory region and the cacheline address; and
4 determining that the address of the memory region is the same address as the cacheline
5 address.

1 7. The method of claim 1, wherein determining that the data stored by the plurality
2 of store instructions completely covers the memory region addressed by the load instruction
3 comprises:

4 determining that a size of the data stored by the plurality of store instructions equals a
5 size of the memory region addressed by the load instruction.

1 8. The method of claim 1, further comprising:
2 terminating, if an address of the memory region and the cacheline address in the memory
3 are different.

1 9. The method of claim 1, further comprising:
2 re-executing the load instruction, if the memory region is incompletely covered by the
3 data stored by the plurality of store instructions.

1 10. The method of claim 1, wherein intermediate results from the plurality of store
2 instructions are invisible to other concurrent processes.

1 11. The method of claim 1, wherein the method operates within the restrictive
2 memory model.

1 12. A machine-readable medium having stored thereon a plurality of executable
2 instructions for multiple store buffer forwarding in a system with a restrictive memory model, the
3 plurality of instructions comprising instructions to:

4 execute a plurality of store instructions;

5 execute a load instruction;

6 determine that a memory region addressed by the load instruction matches a cacheline
7 address in a memory;

8 determine that data stored by the plurality of store instructions completely covers the
9 memory location in the memory specified by the load instruction; and

10 transmit a store forward is OK signal.

1 13. The machine-readable medium of claim 12, wherein the execute the plurality of
2 store instructions instruction comprises an instruction to:

3 perform a plurality of store operations to store a plurality of data values in contiguous
4 memory locations in the memory, wherein the size of the contiguous memory locations equals
5 the size of a the memory region addressed the load instruction.

1 14. The machine-readable medium of claim 13, wherein the execute a load instruction
2 instruction comprises instructions to:

3 load the data from the contiguous memory locations in the memory; and
4 generate the store forward is OK signal.

1 15. The machine-readable medium of claim 14, wherein the load data from the
2 contiguous memory locations in the memory instruction begins executing after the perform the
3 plurality of store operations instruction begins executing, and the load data from the contiguous
4 memory locations in the memory instruction completes executing before the plurality of store
5 operations become globally observed in the system.

1 16. The machine-readable medium of claim 12, wherein the execute the load
2 instruction comprises instructions to:
3 load the data from a write combining buffer; and
4 generate the store forward is OK signal.

1 17. The machine-readable medium of claim 12, wherein the determine that a memory
2 region addressed by the load instruction matches a cacheline address in a memory instruction
3 comprises instructions to:
4 compare the address of the memory region and the cacheline address; and
5 determine that the address of the memory region is the same address as the cacheline
6 address.

1 18. The machine-readable medium of claim 12, wherein the determine that data stored
2 by the plurality of store instructions completely covers the memory location in the memory
3 specified by the load instruction instruction comprises an instruction to:
4 determine that a size of the data stored by the plurality of store instructions equals a size
5 of the memory region addressed by the load instruction.

1 19. The machine-readable medium of claim 12, further comprising an instruction to:
2 terminate, if an address of the memory region and the cacheline address in the memory
3 are different.

1 20. The machine-readable medium of claim 12, further comprising an instruction to:
2 re-execute the load instruction, if the memory region is incompletely covered by the data
3 stored by the plurality of store instructions.

1 21. The machine-readable medium of claim 12, wherein the execute the plurality of
2 store instructions instruction comprises an instruction to:
3 execute the plurality of store instructions to produce intermediate results that are invisible
4 to other concurrent processes.

1 22. The machine-readable medium of claim 12, wherein the plurality of executable
2 instructions operate within the restrictive memory model.

1 23. A processor system, comprising:
2 a processor;
3 a system memory coupled to the processor; and
4 a non-volatile memory coupled to the processor in which is stored an article of
5 manufacture including instructions adapted to be executed by the processor, the instructions
6 which, when executed, encode instructions in an instruction set to enable multiple store buffer
7 forwarding in a system with a restrictive memory model, the article of manufacture comprising
8 instructions to:
9 execute a plurality of store instructions;
10 execute a load instruction;
11 determine that a memory region addressed by the load instruction matches a cacheline
12 address in a memory;
13 determine that data stored by the plurality of store instructions completely covers the
14 memory location in the memory specified by the load instruction; and
15 transmit a store forward is OK signal.

1 24. The processor system of claim 23, the processor comprising:
2 a write combining buffer, the write combining buffer including:
3 a comparator, the comparator being configured to receive and compare an
4 incoming load operation target address with all cacheline addresses of existing write combining

5 buffer entries;
6 an address and data buffer coupled to the comparator;
7 a data valid bits buffer coupled to the address and data buffer;
8 a multiplexer coupled to the data valid bits buffer; and
9 a comparison circuit coupled to the multiplexer.

1 25. The processor system of claim 24, the multiplexer being configured to:
2 receive a byte valid vector from the data valid bits buffer;
3 receive address bits from the load operation and output valid bits;
4 select a group of valid bits from the byte valid vector; and
5 output the group of valid bits.

1 26. The processor system of claim 24, the comparison circuit being configured to:
2 receive the group of valid bits;
3 receive an incoming load operation byte mask;
4 determine that it is acceptable to forward the data using the group of valid bits and the
5 incoming load operation byte mask; and
6 produce a forward OK signal.

1 27. The article of manufacture of claim 23, wherein the execute the plurality of store
2 instructions instruction comprises an instruction to:

3 perform a plurality of store operations to store a plurality of data values in contiguous
4 memory locations in the memory, wherein the size of the contiguous memory locations equals
5 the size of a the memory region addressed the load instruction.

1 28. The machine-readable medium of claim 27, wherein the execute a load instruction
2 instruction comprises instructions to:

3 load the data from the contiguous memory locations in the memory; and
4 generate the store forward is OK signal.

1 29. The machine-readable medium of claim 28, wherein the load data from the
2 contiguous memory locations in the memory instruction begins executing after the perform the
3 plurality of store operations instruction begins executing, and the load data from the contiguous
4 memory locations in the memory instruction completes executing before the plurality of store
5 operations become globally observed in the system.

1 30. The processor system of claim 23, wherein said processor is implemented as a
2 multi-processor having associated with each said multi-processor a separate set of hardware
3 resources.