1) Ve dimension of a Function is defined
by the Maximum point the Function con shotter.
con shotter.
Targed Fination
[a,b]= [xer a = x = b]
two points can be shattered using
two points can be shattered using the target Function. (-ve, tre) graphical representation
-ve : Ave
a b
the given target tenation cannot
Scatter 3 points in all the
coses like tue, -ve, tue
-ve atreb -ve. Can be scattered
but it con't scatter the Following case.
tre -re tre
So the Vedimension of the
given tineAlon 152.

$$F(x|\theta) = \frac{1}{\theta - 1} e^{-\frac{x}{\theta - 1}}$$

$$= \frac{1}{\theta - 1} e^{-\frac{x}{\theta$$

$$\begin{cases} (b) + (x|0) = (0-1) \cdot 2^{0-2} \\ (-1) + (-1) \cdot 2^{0$$

Scanned by CamScanner

$$\frac{3(c)}{p_{11}} = 0.6$$

$$\frac{p_{12}}{p_{21}} = 0.6$$

$$\frac{p_{22}}{p_{21}} = 0.6$$

$$\frac{p_{22}}{p_{21}} = 0.9$$

$$\frac{p_{21}}{p_{21}} = 0.9$$

$$\frac{p_{21}}{p_{21}} = 0.2$$

$$\frac{p_{21}}{p_{21}} = 0.2$$

$$\frac{p_{21}}{p_{21}} = 0.2$$

$$\frac{p_{21}}{p_{21}} = 0.8$$

$$\frac{p_{21}}{p_{21}} = 0.8$$

$$\frac{p_{21}}{p_{21}} = 0.6$$

$$\frac{p_{21}}{p_{21}} = 0.5$$

$$\frac{p_{21}}{p_{21}} = 0.5$$

$$\frac{p_{21}}{p_{21}} = 0.5$$

$$\frac{p_{21}}{p_{22}} = 0.6$$

$$\frac{p_{21}}{p_{21}} = 0.5$$

$$\frac{p_{21}}{p_{22}} = 0.6$$

$$\frac{p_{21}}{p_{21}} = 0.5$$

$$\frac{p_{21}}{p_{22}} = 0.6$$

$$\frac{p_{21}}{p_{22}} = 0.6$$

$$\frac{p_{21}}{p_{21}} = 0.5$$

$$\frac{p_{21}}{p_{22}} = 0.6$$

$$P(c_{2}/x) = P(c_{2}) \times P(x/c_{2})$$

$$P(c_{2}) \times P(x/c_{2})$$

$$P(c_{2}) \times P(x/c_{2}) + 2(c_{1}) + 2$$

$$P(c2/2) = \frac{0.048}{0.108 + 0.048}$$

$$= 0.30 = \frac{1 - P_{11}}{1 - P_{12}}$$

$$= 0.36$$

$$P(x/c_2) = \frac{1 - P_{21}}{1 - P_{22}} = \frac{0.2 \times 0.36}{0.2 \times 0.36 + 0.04}$$

$$P(c1/2) = \frac{0.072}{0.107} = 0.692$$

$$P(c2/2) = \frac{0.072}{0.107} = 0.692$$

$$P(c2/2) = \frac{0.072}{0.2 \times 0.36 + 0.04}$$

$$= \frac{0.072}{0.2 \times 0.36 + 0.04}$$

$$= \frac{0.307}{0.2 \times 0.36 + 0.04}$$

$$P(x|c_1) = (1-f_1)f_{12}$$

$$= (1-0.6) \cdot 0.1 = 0.04$$

$$P(x|c_2) = (1-f_{21})f_{22}$$

$$= 0.4 \times 0.9 = 0.36$$

$$P(c_1/x) = 0.2 \times 0.04$$

$$0.2 \times 0.04 + 0.8 \times 0.36$$

$$P(c_2/x) = 0.8 \times 0.36$$

$$0.2 \times 0.04 + 0.8 \times 0.36$$

$$= 0.8973$$

$$Second case$$

$$P(c_1) = 0.6$$

$$x = 0.0 P(c_2) = 0.4$$

$$P(x/c_1) = f_{11} \times f_{12} = 0.06$$

$$P(x/c_1) = f_{21} \times f_{22} = 0.54$$

$$P(x/c_1) = f_{21} \times f_{22} = 0.54$$

$$P(x/c_2) = f_{21} \times f_{22} = 0.54$$

$$f(x/c_2) = f_{$$

$$P(\alpha|c_1) = P_{11}(1-P_{12}) = 0.6 \times 0.9$$

$$P(\alpha|c_2) = P_{21}(1-P_{22}) = 0.6 \times 0.9$$

$$P(c_1/\alpha) = 0.6 \times 0.54$$

$$= 0.93 |$$

$$P(c_2/\alpha) = 0.4 \times 0.06$$

$$= 0.069$$

$$= 0.069$$

$$P(\alpha|c_1) = (1.-P_{11}) \cdot P_{12}$$

$$= 0.4 \times 0.91$$

$$= 0.36$$

$$= 0.36$$

$$P(c_{1}/2) = 0.04 \times 0.6$$

$$0.04 \times 0.64 \times 0.36 \times 0.4$$

$$P(c_{2}/2) = 0.36 \times 0.4$$

$$P(2/2) = (1-P_{11})(1-P_{12})$$

$$P(2/2) = (1-P_{21})(1-P_{22})$$

$$P(2/2) = (1-P_{21})(1-P_{22})$$

$$P(2/2) = 0.36 \times 0.6 = 0.93$$

$$P(2/2) = 0.04 \times 0.4$$

$$P(2/2) = 0.04 \times 0.4$$

$$P(2/2) = 0.068$$

$$Third P(c_{1}) = 0.8 P(c_{2}) = 0.2$$

$$P(1/2) = 0.8 P(c_{2}) = 0.06$$

$$P(a/c_2) = P_{21} \cdot {}^{1}_{22}$$

$$= 0.54$$

$$P(c_1/a) = 0.6 \times 0.8$$

$$= 0.307$$

$$P(c_2/a) = 0.54 \times 0.2$$

$$= 0.692$$

$$2) \propto = (0.1)$$

$$P(a/c_2) = P_{11}(1-P_{12}) = 0.54$$

$$P(a/c_2) = P_{21}(1-P_{22}) = 0.06$$

$$P(c_1/a) = 0.8 \times 0.54$$

$$= 0.97$$

$$P(c_2/a) = 0.2 \times 0.06$$

$$= 0.97$$

$$P(c_2/a) = 0.2 \times 0.06$$

$$= 0.97$$

$$= 0.027$$

3
$$x = (1,0)$$
 $p(x/c_1) = (1,0)$
 $p(x/c_2) = (1-P_{21})P_{22}$
 $= 0.36$
 $p(c_1/x) = 0.8 \times 0.04$
 $= 0.307$
 $= 0.307$
 $= 0.307$
 $= 0.307$
 $= 0.307$
 $= 0.307$
 $= 0.40.20$
 $= 0.692$
 $= 0.692$
 $= 0.36$
 $= 0.36$
 $= 0.36$
 $= 0.36$
 $= 0.36$
 $= 0.36$
 $= 0.36$
 $= 0.36$
 $= 0.36$
 $= 0.36$
 $= 0.36$
 $= 0.36$
 $= 0.972$

$$P(C_{2}/x) = 0.2 \times 0.07$$

$$0.8 \times 0.36 + 0.2 \times 0.04$$

$$\vdots$$

<u>.</u>				
[p1,p2,pc sigma	1,pc2]=Bay PC1	es_Learnin PC2	ng(TD,TV); error	
-5.0000	0.0067		23.5955	
-4.0000	0.0180	0.9820	20.2247	
-3.0000	0.0474	0.9526	22.4719	
-2.0000	0.1192	0.8808	21.3483	
-1.0000	0.2689	0.7311	23.5955	
0	0.5000	0.5000	28.0899	
1.0000	0.7311	0.2689	28.0899	
2.0000	0.8808	0.1192	32.5843	
3.0000	0.9526	0.0474	32.5843	
4.0000	0.9820	0.0180	32.5843	
5.0000	0.9933	0.0067	31.4607	
ERORRATE				

```
>> Bayes_Testing(TestData,p1,p2,pc1,pc2)
ans =
   'Error rate in percentage: 14.606742'
```