

Estatística Avançada - Aula 03

A Distribuição Normal

Kaique Matias de Andrade Roberto

Ciências Atuariais - Ciências Econômicas

HECSA - Escola de Negócios

FIAM-FAAM-FMU

Conteúdo

- 1. Conceitos que aprendemos em Aulas anteriores
- 2. Variável Aleatória Contínua
- 3. A Distribuição Normal
- 4. A Normal N(0,1)
- 5. A Normal $N(\mu, \sigma^2)$
- 6. Aproximando uma Binomial ou Poisson por uma Normal
- 7. Comentários Finais
- 8. Referências

Conceitos que aprendemos em

Aulas anteriores

Conceitos que aprendemos em Aulas anteriores

- variáveis aleatórias discretas e contínuas;
- distribuições de probabilidades discretas e contínuas.

Definição 2.1

Uma variável aleatória contínua é aquela que pode assumir diversos valores num intervalo de números reais.

Exemplo 2.2

Como exemplos de variáveis aleatórias contínuas, podemos citar a renda familiar, o faturamento da empresa ou a altura de determinada criança.

Para calcular probabilidades no contexto das variáveis contínuas vamos recorrer ao Cálculo Diferencial e Integral.

Definição 2.3

Uma variável aleatória contínua X está associada a uma função f(x), denominada função **densidade de probabilidade (f.d.p.)** de X, que satisfaz a seguinte condição:

$$\int_{-\infty}^{\infty} f(x) dx = 1, \ f(x) \ge 0.$$

Para quaisquer a e b, tal que $-\infty < a < b < \infty$, a probabilidade de que a variável aleatória X assuma valores nesse intervalo é:

$$P(a \le X \le b) = \int_a^b f(x) \, dx.$$

A esperança matemática (valor esperado ou médio) de uma variável aleatória contínua X com função densidade de probabilidade f(x) é dada pela expressão:

$$E(X) = \int_{-\infty}^{\infty} x f(x) \, dx.$$

A variância de uma variável aleatória contínua X com função densidade de probabilidade f(x) é calculada como:

$$Var(X) = \int_{-\infty}^{\infty} (x - E(x))^2 f(x) dx.$$

Como no caso de variáveis aleatórias discretas, podemos calcular probabilidades associadas a uma variável aleatória contínua X a partir de uma função de distribuição acumulada.

A função de **distribuição acumulada** F(x) de uma variável aleatória contínua X com função densidade de probabilidade f(x) é definida por:

$$F(x) = P(X \le x), -\infty < x < \infty.$$

A distribuição normal, também conhecida como distribuição Gaussiana, é uma das distribuições de probabilidade mais utilizadas, por pelo menos 2 motivos:

 permite modelar fenômenos naturais, estudos do comportamento humano, processos industriais, entre outros;

 possibilita o uso de aproximações para o cálculo de probabilidades de muitas variáveis aleatórias.

Definição 3.1

Uma variável aleatória X com média $\mu \in \mathbb{R}$ e desvio padrão $\sigma > 0$ tem **distribuição Normal** denotada $X \sim N(\mu, \sigma^2)$, se a sua função de distribuição de probabilidades for dada por:

$$f(x) = \frac{1}{\sigma\sqrt{2\pi}}e^{\frac{(x-\mu)^2}{2\sigma^2}}, x \in \mathbb{R}.$$

Do gráfico da densidade da Normal podemos concluir algumas propriedades básicas:

- f(x) é simétrica em relação a μ ;
- f(x) decresce a medida que |x| cresce;
- o valor máximo de f(x) se dá para $x = \mu$.

Note que, para calcular $P(a \le X \le b)$ devemos realizar a conta

$$P(a \le X \le b) = \int_a^b \frac{1}{\sigma \sqrt{2\pi}} e^{\frac{(x-\mu)^2}{2\sigma^2}} dx.$$

Também pode-se demostrar que se $X \sim \mathit{N}(\mu, \sigma^2)$ então

$$E(X) = \mu \text{ e Var}(X) = \sigma^2.$$

Claro, vocês em geral não fizeram cursos de Cálculo Diferencial e Integral. Mas mesmo se esse fosse o caso, essa integral **não é calculável** (não existe fórmula fechada).

Apesar disso, existem métodos para aproximação do cálculo integrais com excelente precisão, e para o caso da distribuição Normal, esses valores já estão tabelados.

Dito isso, vamos usar boa parte da Aula-03 para entender como calcular essas probabilidades usando a tabela "tabela-normal".

Definição 4.1

A Normal $\mathcal{N}(0,1)$ é denominada **Normal Padrão**. Denotamos $Z \sim \mathcal{N}(0,1)$.

Exemplo 4.2

Seja $Z \sim N(0,1)$ a Normal Padrão. Calcule:

a - P(Z < 1);

b - P(Z < 1.5).

Exemplo 4.3

Seja $Z \sim N(0,1)$ a Normal Padrão. Calcule:

a - P(Z > 2);

b - P(Z > 3).

Exemplo 4.4

Seja $Z \sim N(0,1)$ a Normal Padrão. Calcule:

a -
$$P(-1 < Z < 1)$$
;

b -
$$P(0.5 < Z < 1.7)$$
.

Exemplo 4.5

Seja $Z \sim N(0,1)$ a Normal Padrão. Calcule:

a - P(Z < -0.7 ou Z > 0.7);

b - P(Z < -0.4 ou Z > 1).

Exercício 4.1

Seja $Z \sim N(0,1)$ a Normal Padrão. Calcule:

- a P(-1 < Z < 1);
- b P(-2 < Z < 2);
- c P(-3 < Z < 3);
- d P(-4 < Z < 4).

Vamos usar a Normal Padrão $Z \sim N(0,1)$ para calcular probabilidades para qualquer normal $X \sim N(\mu,\sigma^2)$.

Para obtermos, a partir da distribuição normal, a distribuição normal padrão ou distribuição normal reduzida, a variável original X é transformada em uma nova variável aleatória Z, com média zero ($\mu=0$) e variância 1 ($\sigma^2=1$):

$$\frac{X-\mu}{\sigma}\sim N(0,1).$$

Este tipo de transformação, conhecida por **zscore**, é muito utilizada para a padronização de variáveis, pois não altera a forma da distribuição da variável original e gera uma nova variável com média zero e variância 1.

Logo, para calcular P(X<0) para uma normal $N(\mu,\sigma^2)$ basta aplicar o zscore e calcular

$$P\left(\frac{X-\mu}{\sigma} \le \frac{0-\mu}{\sigma}\right)$$

e proceder da mesma maneira que fizemos para o caso $Z \sim \mathit{N}(0,1)$.

Vamos ilustrar as contas com a Normal $X \sim N(8,36)$.

Novamente, para calcular P(X < b) para uma normal $N(\mu, \sigma^2)$ basta aplicar o zscore e calcular

$$P\left(\frac{X-\mu}{\sigma} \le \frac{b-\mu}{\sigma}\right)$$

e proceder da mesma maneira que fizemos para o caso $Z \sim \mathit{N}(0,1)$.

Exemplo 5.1

Seja $X \sim N(8, 36)$. Calcule:

a - $P(X \le 12)$;

b - $P(X \le 20)$.

Exemplo 5.2

Seja $X \sim N(8,36)$. Calcule:

a - $P(X \ge 2)$;

b - $P(X \ge 5)$.

Exemplo 5.3

Seja $X \sim N(8, 36)$. Calcule:

a - $P(6 \le X \le 11)$;

b - $P(10 \le X \le 25)$.

A Normal $N(\mu, \overline{\sigma^2})$

Exemplo 5.4

Seja $X \sim N(8, 36)$. Calcule:

a - $P(X \le 3 \text{ ou } X \le 9)$;

b - $P(X \le 9 \text{ ou } X \le 20)$.

Exemplo 5.5

Os depósitos efetuados no Banco de Palmares durante o mês de Setembro são distribuídos normalmente, com média R\$10000,00 e desvio-padrão R\$1500,00. Um depósito é selecionado ao acaso dentre todos os referentes ao mês em questão. Encontre a probabilidade de que o depósito seja:

- a R\$10000,00 ou menos;
- b pelo menos R\$10000,00;
- c um valor entre R\$12000,00 e R\$15000,00;
- d maior que R\$20000,00.

Exercício 5.1

Seja $X \sim N(\mu, \sigma^2)$. Calcule:

a -
$$P(-\sigma + \mu < Z < \sigma + \mu)$$
;

b -
$$P(-2\sigma + \mu < Z < 2\sigma + \mu)$$
;

c -
$$P(-3\sigma + \mu < Z < 3\sigma + \mu);$$

d -
$$P(-4\sigma + \mu < Z < 4\sigma + \mu)$$
.

Aproximando uma Binomial ou

Poisson por uma Normal

Teorema 6.1 (Binomial converge para Normal)

Seja
$$X \sim b(n,p)$$
. Se $np o \infty$ e $n(1-p) o \infty$ então $X o N(np, np(1-p)).$

Alguns autores admitem que a aproximação da binomial pela normal é adequada quando np > 5 e n(1-p) > 5, ou ainda quando np(1-p) > 3. Uma regra ainda mais conservadora exige que np > 10 e n(1-p) > 10.

Teorema 6.2 (Poisson converge para Normal)

Seja
$$X\sim \mathsf{Poisson}(\lambda)$$
. Se $\lambda\to\infty$ e $\mathit{n}(1-p)\to\infty$ então
$$X\to \mathit{N}(\lambda,\lambda).$$

Em geral, admite-se que a aproximação da distribuição Poisson pela normal é adequada quando $\lambda>10$.

Em resumo, na aula de hoje nós:

- calculamos probabilidades associadas à Normal Padrão $Z \sim N(0,1)$;
- ullet extrapolamos essas contas para uma normal ${\it N}(\mu,\sigma^2)$ qualquer;
- esboçamos (empiricamente) a convergência de uma binomial e uma Poisson para uma normal.

Estamos nos aproximando do grande objetivo da disciplina: estudar Inferência Estatística. Nas próximas aulas nós vamos lidar com alguns Fundamentos da Inferência. Em particular, na próxima aula falaremos de:

- população e amostra;
- amostragem;
- distribuição amostral;
- tamanho da amostra.

ATIVIDADE PARA ENTREGAR (E COMPOR A NOTA N1)

Em grupos de até 4 integrantes resolva três dentre os Exercícios 3.1-3.5.

Referências

Referências

Referências

Bons Estudos!

