R2_Score Values for file "insurance_pre,csv":

Input:

Age, bmi, children(0,1), sex_male(0,1), sex_female(0,1), smoker_no(0), smoker yes(1).

Output :

Charges.

Find the Method:

- 1) Input is number .so Machine Learning
- 2) Clear requirement to predict Charges .so Supervised learning
- 3) Out put is not a catogorical data . so Regression
- 4) Multiple inputs Simple Linear Regression Not applicable.
- 5) Models to check:
 - a) Multiple Linear Regression
 - b) Support Vector Machine
 - c) Decision tree
 - d) Random Forest

Method 1: Multiple Linear Regression: R2_score Value = 0.7894790349867009 = 0.7895 Method 2: Support Vector Machine: R2_score Value = 0.8774793560307 = 0.8775

Support Vector Machine				R2_SCORE VALUE		0.8775		
	STANDARDIZATION	Hyper Parameter	R2_SCORE VALUE					
S.NO.			LINEAR	POLY	RBF	SIGMOID	PRE COMPUTED	
1	NO	C0.01	-0.08	0.8255	-0.09	-0.0897		
2	NO	C10	0.1136	0.8627	-0.087	-0.0897		
3	NO	C1000	0.6893	-	-0.013	-0.0897		
4	NO	C2000	0.7651	-	0.0608	-0.0897		
5	NO	C3000	0.7649	-	0.1323	-0.0897		
6	NO	C4000	0.7442	-	0.1963	-0.0897		
7	NO	C10000	0.7417	-	0.4521	-0.0897		
8	NO	C20000	0.742	-	0.6406	-0.0897	X.shape[0]	
9	NO	C50000	0.7425	-	0.741	-0.0897	should be equal to	
10	NO	C100000	0.7438	-	0.7247	-0.0897	X.shape[1]	
11	YES	C0.01	-0.088	-0.089	-0.09	-0.0895		
12	YES	C10	0.5665	0.1594	-0.018	0.07306		
13	YES	C100	0.636	0.7508	0.3906	0.52756		
14	YES	C1000	0.7441	0.8606	0.8284	0.14378		
15	YES	C2000	0.7414	0.8602	0.8607	-2.584		
16	YES	C3000	0.7414	0.86	0.8685	-6.8262		
17	YES	C4000	0.7414	0.8594	0.8707	-12.298		

A10. Machine Learning Regression –Find the best model

18	YES	C10000	0.7414	0.8582	0.8775	-82.19
19	YES	C20000	0.7414	0.8579	0.8772	-
20	YES	C50000	0.7414	0.8578	0.8759	-
21	YES	C100000	0.7414	0.8579	0.8735	-

Method 3: Decision Tree:R2_score Value = 0.767056088869062 = 0.767

DEC	ISION TREE	R2_S	0.7671	
S.NO.	CRITERION	SPLITTER	MAX FEATURES	R2_SCORE
1	mse	best	auto	0.6815
2	mse	best	sqrt	0.7564
3	mse	best	Log2	0.7221
4	mse	random	auto	0.7254
5	mse	random	sqrt	0.6787
6	mse	random	Log2	0.7846
7	mae	best	auto	0.6507
8	mae	best	sqrt	0.7365
9	mae	best	Log2	0.7190
10	mae	random	auto	0.7660
11	mae	random	sqrt	0.7284
12	mae	random	Log2	0.6496
13	Friedman_mse	best	auto	0.7013
14	Friedman_mse	best	sqrt	0.7671
15	Friedman_mse	best	Log2	0.6425
16	Friedman_mse	random	auto	0.7621
17	Friedman_mse	random	sqrt	0.6383
18	Friedman_mse	random	Log2	0.7494

A10. Machine Learning Regression –Find the best model

Method4: Random Forest:

R2_score Value = 0.86988238146114= 0.8699

Rand	omForestRegression	R2_SCC	0.8699	
S.NO.	CRITERION	n_estimators	MAX FEATURES	R2_SCORE
1	mse	100	auto	0.8554
2	mse	100	sqrt	0.8699
3	mse	100	Log2	0.8699
4	mse	10	auto	0.8392
5	mse	10	sqrt	0.8570
6	mse	10	Log2	0.8570
7	mae	100	auto	0.8534
8	mae	100	sqrt	0.8670
9	mae	100	Log2	0.8670
10	mae	10	auto	0.8346
11	mae	10	sqrt	0.8350
12	mae	10	Log2	0.8350
13	Friedman_mse	100	auto	0.8549
14	Friedman_mse	100	sqrt	0.8681
15	Friedman_mse	100	Log2	0.8681
16	Friedman_mse	10	auto	0.8401
17	Friedman_mse	10	sqrt	0.8595
18	Friedman_mse	10	Log2	0.8595

Result:

1) The best model Having High r2_score value (0.8775) is Known as

Support Vector Machine, Standardized model, C=4000.

2) Next to SVM model ,r2_score value (0.8699) is known as

Random Forest Reegression,mse,100_estimators,Max_features (sqrt,log2)