6.5.4. Let X_1, X_2, \ldots, X_n and Y_1, Y_2, \ldots, Y_m be independent random samples from the two normal distributions $N(0, \theta_1)$ and $N(0, \theta_2)$.

- (a) Find the likelihood ratio Λ for testing the composite hypothesis $H_0: \theta_1 = \theta_2$ against the composite alternative $H_1: \theta_1 \neq \theta_2$.
- (b) This Λ is a function of what F-statistic that would actually be used in this test?

 $V = \frac{\Gamma(0)}{\Gamma(0)} = \frac{\Gamma(0)}{$

$$\sqrt{\frac{1}{2}} \frac{M_{\frac{N}{N}}}{(M+N)_{\frac{N+N}{N}}} \frac{\left(\sum_{i=1}^{k-1} \chi_{i}^{-1} + \sum_{i=1}^{k-1} \chi_{i}^{-1}\right)_{\frac{N}{N}}}{\left(\sum_{i=1}^{k-1} \chi_{i}^{-1}\right)_{\frac{N}{N}}} \frac{1}{\left(\sum_{i=1}^{k-1} \chi_{i}^{-1}\right)_{\frac{N}{N}}}$$

(b)
$$F = \frac{1}{N} \frac{\sum_{i=1}^{N} x_i^2}{\sum_{i=1}^{N} y_i^2}$$
 The relevant F statisfic $F = \frac{1}{N} \frac{\sum_{i=1}^{N} x_i^2}{\sum_{i=1}^{N} y_i^2}$