Inferência Estatística II

Prof. Fernando de Souza Bastos fernando.bastos@ufv.br

Departamento de Estatística Programa de Pós-Graduação em Estatística Aplicada e Biometria Universidade Federal de Viçosa Campus UFV - Viçosa

Sumário

Testes Mais Poderosos

2 Exemplos

Teorema de Neyman-Pearson

Sejam X_1,\ldots,X_n variáveis aleatórias iid de uma distribuição dependendo de um vetor de parâmetros $\theta\in\Omega$. Assuma que $\theta\in W_0$ ou $\theta\in W_1$, com $W_0\cap W_1=\emptyset$ e $W_0\cup W_1=\Omega$. Com isso, definimos as hipóteses:

$$H_0: \theta \in W_0$$
 contra $H_1: \theta \in W_1$.

O teste de H_0 contra H_1 é baseado na amostra X_1, \ldots, X_n , considere um subconjunto (dependendo da amostra) $\mathcal C$ de $\mathcal S$, em que $\mathcal S$ é o suporte da amostra aleatória. Essa região $\mathcal C$ é conhecida como região crítica e sua correspondente regra de decisão é:

- Rejeite H_0 (Aceite H_1) se $(X_1, \ldots, X_n) \in \mathcal{C}$.
- Aceita H_0 (Rejeite H_1) se $(X_1, \ldots, X_n) \notin \mathcal{C}$ ($\in \mathcal{C}^c$).

O teste de H_0 contra H_1 é baseado na amostra X_1, \ldots, X_n , considere um subconjunto (dependendo da amostra) $\mathcal C$ de $\mathcal S$, em que $\mathcal S$ é o suporte da amostra aleatória. Essa região $\mathcal C$ é conhecida como região crítica e sua correspondente regra de decisão é:

- Rejeite H_0 (Aceite H_1) se $(X_1, \ldots, X_n) \in \mathcal{C}$.
- Aceita H_0 (Rejeite H_1) se $(X_1, \ldots, X_n) \notin \mathcal{C}$ $(\in \mathcal{C}^c)$.

O erro tipo I ocorre se H_0 é rejeitada quando ela é verdadeira, enquanto o erro tipo II ocorre se H_0 é aceita quando H_1 é verdadeira. Nível de significância é o erro do tipo I, isto é,

$$\alpha = \max_{\theta \in W_0} P_{\theta}[(X_1, \dots, X_n) \in \mathcal{C}].$$

Restrito a testes de tamanho α , queremos selecionar testes que minimizam o erro do tipo II, que é equivalente a maximizar a função poder. A função poder é definida por,

$$\gamma_{\mathcal{C}}(\theta) = P_{\theta}[(X_1, \dots, X_n) \in \mathcal{C}], \ \theta \in W_1$$

Definição 1

Seja C um subconjunto do suporte de (X_1, \ldots, X_n) . Dizemos que C é a melhor região critica de tamanho α se,

- a) $\alpha = \max_{\theta \in W_0} P((X_1, \dots, X_n) \in \mathcal{C})$
- b) Para qualquer outra região A com $lpha = P_{\theta \in W_0}((X_1, \dots, X_n) \in A),$

$$P_{\theta}((X_1,\ldots,X_n)\in\mathcal{C})\geq P_{\theta}((X_1,\ldots,X_n)\in\mathcal{A})$$
 quando $\theta\in W_1$

Considere $X \stackrel{\text{iid}}{\sim} \text{Binomial}(5, \theta)$. Seja $f(x; \theta)$ a função de probabilidade de X e considere $H_0: \theta = \frac{1}{2}$ e $H_1: \theta = \frac{3}{4}$. Além disso, considere:

Considere $X \stackrel{\text{iid}}{\sim} \text{Binomial}(5, \theta)$. Seja $f(x; \theta)$ a função de probabilidade de X e considere $H_0: \theta = \frac{1}{2}$ e $H_1: \theta = \frac{3}{4}$. Além disso, considere:

×	0	1	2	3	4	5
$f(x;\frac{1}{2})$	$\frac{1}{32}$	<u>5</u> 32	1 <u>0</u> 32	1 <u>0</u> 32	<u>5</u> 32	$\frac{1}{32}$
$f(x;\frac{3}{4})$	1 1024	15 1024	90 1024	270 1024	405 1024	243 1024
$\frac{f(x;\frac{1}{2})}{f(x;\frac{3}{4})}$	32	32 3	32 9	32 27	32 81	32 243

Considere o nível de significância do teste como $\alpha=\frac{1}{32}$. Buscamos uma melhor região crítica de tamanho $\alpha=\frac{1}{32}$. Se $A_1=\{x:x=0\}$ ou $A_2=\{x:x=5\}$, então $P_{\{\theta=\frac{1}{2}\}}(X\in A_1)=P_{\{\theta=\frac{1}{2}\}}(X\in A_2)=\frac{1}{32}$ e não há outro subconjunto A_3 do espaço $\{x:x=0,1,2,3,4,5\}$ tal que $P_{\{\theta=\frac{1}{2}\}}(X\in A_3)=\frac{1}{32}$. Portanto, ou A_1 ou A_2 é a melhor região crítica C de tamanho $\alpha=\frac{1}{32}$ para testar H_0 contra H_1 .

Observamos que $P_{\{\theta=\frac{1}{2}\}}(X\in A_1)=\frac{1}{32}$ e $P_{\{\theta=\frac{3}{4}\}}(X\in A_1)=\frac{1}{1024}$. Assim, se o conjunto A_1 for usado como região crítica de tamanho $\alpha=\frac{1}{32}$, temos a situação inaceitável de que a probabilidade de rejeitar H_0 quando H_1 é verdadeira (H_0 é falsa) é muito menor do que a probabilidade de rejeitar H_0 quando H_0 é verdadeira.

9 / 24

Por outro lado, se o conjunto A_2 for usado como região crítica, então $P_{\{\theta=\frac{1}{2}\}}(X\in A_2)=\frac{1}{32}$ e $P_{\{\theta=\frac{3}{4}\}}(X\in A_2)=\frac{243}{1024}$. Ou seja, a probabilidade de rejeitar H_0 quando H_1 é verdadeira é muito maior do que a probabilidade de rejeitar H_0 quando H_0 é verdadeira. Certamente, esta é uma situação mais desejável, e na verdade, A_2 é a melhor região crítica de tamanho $\alpha=\frac{1}{32}$. Esta última afirmação decorre do fato de que quando H_0 é verdadeira, existem apenas dois subconjuntos, A_1 e A_2 , do espaço amostral, cada um com medida de probabilidade igual a $\frac{1}{32}$, e do fato de que $\frac{243}{1024}=P_{\{\theta=\frac{3}{4}\}}(X\in A_2)>P_{\{\theta=\frac{3}{4}\}}(X\in A_1)=\frac{1}{1024}$.

https://est711.github.io/

Deve ser observado neste problema que a melhor região crítica $C=A_2$ de tamanho $\alpha = \frac{1}{32}$ é encontrada incluindo em C o ponto (ou pontos) em que $\frac{f(x;\frac{1}{2})}{f(x;\frac{3}{2})}$ é pequeno em comparação com $\frac{f(x;\frac{1}{2})}{f(x;\frac{3}{2})}$. Isso é observado ser verdadeiro uma vez que a razão $\frac{f(x;\frac{1}{2})}{f(x;\frac{3}{2})}$ é mínima em x=5. Assim, a razão $\frac{f(x;\frac{1}{2})}{f(x;\frac{3}{2})}$, que é dada na última linha da tabulação acima, nos fornece uma ferramenta precisa para encontrar uma melhor região crítica Cpara determinados valores dados de α . Para ilustrar isso, suponha $\alpha = \frac{6}{32}$. Quando H_0 é verdadeira, cada um dos subconjuntos $\{x : x = 1\}$ $\{0,1\}, \{x: x=0,4\}, \{x: x=1,5\}, \{x: x=4,5\} \text{ tem medida de}$ probabilidade $\frac{6}{32}$. Por cálculo direto, é encontrado que a melhor região crítica desse tamanho é $\{x: x=4,5\}$. Isso reflete o fato de que a razão $\frac{f(x;\frac{1}{2})}{f(x;\frac{3}{2})}$ tem seus dois valores mínimos em x=4 e x=5. O poder deste teste, que tem $\alpha = \frac{6}{32}$, é $P_{\{\theta = \frac{3}{4}\}}(X = 4, 5) = \frac{405}{1024} + \frac{243}{1024} = \frac{648}{1024}$.

Teorema de Neyman-Pearson

Teorema 1

Sejam X_1, \ldots, X_n uma amostra aleatória de uma distribuição dependendo de um vetor de parâmetros θ . Denote, $L(\theta, X) = \prod_{i=1}^n f(x_i, \theta)$

a função de verossimilhança e $\underline{x}=(x_1,\ldots,x_n)^{\top}$. Sejam θ' e θ'' dois valores distintos de θ , $\Omega=\{\theta',\theta''\}$, e k um número positivo, Seja $\mathcal C$ tal que,

- a) $\frac{L(\theta',\underline{x})}{L(\theta'',\underline{x})} \leq k$, para cada $\underline{x} \in \mathcal{C}, \ \underline{X} = (X_1,\ldots,X_n)^{\top}$
- b) $\frac{L(\theta',\underline{x})}{L(\theta'',\underline{x})} \ge k$, para cada $\underline{x} \in \mathcal{C}^c$
- c) $\alpha = P_{\theta'}(X \in \mathcal{C}).$

Então, C é a melhor região crítica de tamanho α para testar as hipóteses $H_0: \theta = \theta'$ contra $H_1: \theta = \theta''$.

Demonstração

Consideramos o caso em que X_1, \ldots, X_n são variáveis continuas (o caso discreto é análogo).

Notação Simplificada: $\int_{\mathbb{R}} \cdots \int_{\mathbb{R}} L(\theta, \chi) d\chi \equiv \int L(\theta)$

Demonstração

Consideramos o caso em que X_1, \ldots, X_n são variáveis continuas (o caso discreto é análogo).

Notação Simplificada: $\int_{\mathbb{R}}\cdots\int_{\mathbb{R}}L(\theta, X)dX\equiv\int L(\theta)$

Queremos mostrar que,

$$\int_{\mathcal{C}} L(\theta'') - \int_{A} L(\theta'') > 0, \text{ em que } A \text{ tem tamanho } \alpha.$$

Note que $C = (C \cap A) \cup (C \cap A^c)$ e $A = (C \cap A) \cup (C^c \cap A)$.

Logo,

$$\int_{\mathcal{C}} L(\theta'') - \int_{A} L(\theta'') = \int_{\mathcal{C} \cap A} L(\theta'') + \int_{\mathcal{C} \cap A^{c}} L(\theta'') - \int_{\mathcal{C} \cap A} L(\theta'') - \int_{\mathcal{C}^{c} \cap A} L(\theta'')$$

$$= \int_{\mathcal{C} \cap A^{c}} L(\theta'') - \int_{\mathcal{C}^{c} \cap A} L(\theta'')$$

Segue que,

$$\begin{split} \int_{\mathcal{C}\cap A^c} L(\boldsymbol{\theta}^{''}) - \int_{\mathcal{C}^c\cap A} L(\boldsymbol{\theta}^{''}) &\geq \int_{\mathcal{C}\cap A^c} \frac{1}{k} L(\boldsymbol{\theta}^{'}) - \int_{\mathcal{C}^c\cap A} \frac{1}{k} L(\boldsymbol{\theta}^{'}) \\ & \qquad \qquad \\ & \qquad \qquad \\ & = \frac{1}{k} \left(\int_{\mathcal{C}\cap A^c} L(\boldsymbol{\theta}^{'}) - \int_{\mathcal{C}^c\cap A} L(\boldsymbol{\theta}^{'}) \right) \\ & = \frac{1}{k} \left(\int_{\mathcal{C}\cap A^c} L(\boldsymbol{\theta}^{'}) - \int_{\mathcal{C}\cap A} L(\boldsymbol{\theta}^{'}) - \int_{\mathcal{C}\cap A} L(\boldsymbol{\theta}^{'}) \right) \\ & = \frac{1}{k} \left(\int_{\mathcal{C}} L(\boldsymbol{\theta}^{'}) - \int_{\mathcal{C}^c\cap A} L(\boldsymbol{\theta}^{'}) \right) \\ & = \frac{1}{k} \left(\int_{\mathcal{C}} L(\boldsymbol{\theta}^{'}) - \int_{A} L(\boldsymbol{\theta}^{'}) \right) \Rightarrow \operatorname{Sob} H_0 \\ & = \frac{1}{k} \left(\alpha - \alpha \right) = 0 \end{split}$$

Exemplo

$$X_1,\ldots,X_n \stackrel{\text{iid}}{\sim} N(\theta,1)$$

$$H_0: \theta = \theta' = 0$$

$$H_1: \theta = \theta'' = 1,$$

$$H_1: \theta = \theta'' = 1, \qquad L(\theta, X) = \left(\frac{1}{\sqrt{2\pi}}\right)^n \exp\left\{-\frac{1}{2}\sum_i (X_i - \theta)^2\right\}$$

$$\frac{L(\theta',\underline{x})}{L(\theta'',\underline{x})} \leq k,$$

$$\frac{L(\theta', \underline{x})}{L(\theta'', \underline{x})} = \exp\left\{-\sum_{i=1}^{n} x_i + \frac{n}{2}\right\} \le k$$

$$\Rightarrow -\sum_{i=1}^{n} x_i + \frac{n}{2} \le k' = \log k$$

$$\Rightarrow \sum_{\text{Região Crítica}} x_i \ge k''$$

Portanto, a melhor região crítica C é o conjunto de todas as amostras (x_1, x_2, \ldots, x_n) para as quais a soma dos x_i é maior ou igual a k''. O valor de k'' pode ser determinado de modo que o tamanho da região crítica seja igual ao nível de significância desejado α . Essa região crítica é dada por:

$$C = \{(x_1, x_2, \ldots, x_n) : \sum_{i=1}^n x_i \geq k''\}.$$

O teste pode ser baseado na estatística \bar{X} , pois $\sum_{i=1}^n x_i \geq k''$ é equivalente a $\bar{X} \geq c_1$. Se H_0 for verdadeira, ou seja, $\theta = \theta_0 = 0$, então \bar{X} segue uma distribuição N(0,1/n). Dado um nível de significância α , podemos calcular c_1 em R como $c_1 = qnorm(1-\alpha,0,1/\sqrt{n})$.

Portanto, se os valores experimentais de X_1, X_2, \ldots, X_n forem, respectivamente, x_1, x_2, \ldots, x_n , podemos calcular $\bar{x} = \frac{1}{n} \sum_{i=1}^n x_i$. Se $\bar{x} \geq c_1$, a hipótese simples $H_0: \theta = \theta_0 = 0$ será rejeitada no nível de significância α ; caso contrário, a hipótese H_0 será aceita. A probabilidade de rejeitar H_0 quando H_0 é verdadeira é igual a α , o nível de significância. A probabilidade de rejeitar H_0 quando H_0 é falsa, ou seja, o valor de poder do teste quando $\theta = \theta_1 = 1$, pode ser calculada como indicado na equação fornecida.

$$P_{H1}(ar{X} \geq c_1) = \int_{c_1}^{\infty} rac{1}{\sqrt{2\pi}} rac{1}{\sqrt{1/n}} \exp\left(-rac{(ar{x}-1)^2}{2(1/n)}
ight) \, dar{x}.$$

Portanto, se os valores experimentais de X_1, X_2, \ldots, X_n forem, respectivamente, x_1, x_2, \ldots, x_n , podemos calcular $\bar{x} = \frac{1}{n} \sum_{i=1}^n x_i$. Se $\bar{x} \geq c_1$, a hipótese simples $H_0: \theta = \theta_0 = 0$ será rejeitada no nível de significância α ; caso contrário, a hipótese H_0 será aceita. A probabilidade de rejeitar H_0 quando H_0 é verdadeira é igual a α , o nível de significância. A probabilidade de rejeitar H_0 quando H_0 é falsa, ou seja, o valor de poder do teste quando $\theta = \theta_1 = 1$, pode ser calculada como indicado na equação fornecida.

$$P_{H1}(ar{X} \geq c_1) = \int_{c_1}^{\infty} rac{1}{\sqrt{2\pi}} rac{1}{\sqrt{1/n}} \exp\left(-rac{(ar{x}-1)^2}{2(1/n)}
ight) \, dar{x}.$$

Por exemplo, se n=25 e α for 0.05, então $c_1=\mathsf{qnorm}(0.95,0,1/5)=0.329$, usando R. Portanto, o poder do teste para detectar $\theta=1$, é calculado por $1-\mathsf{pnorm}(0.329,1,1/5)=0.9996$.

Exercício 8.1.2

Vamos considerar o problema de testar a hipótese simples $H_0: \theta = \theta_0 = 2$ contra a hipótese alternativa simples $H_1: \theta = \theta_1 = 4$ para a variável aleatória X, que possui a função de densidade de probabilidade (pdf) dada por $f(x;\theta) = \frac{1}{\theta}e^{-\frac{x}{\theta}}$, onde $0 < x < \infty$ e zero caso contrário. Seja X_1 e X_2 representam uma amostra aleatória de tamanho 2 desta distribuição. Mostre que o melhor teste de H_0 contra H_1 é usando a estatística $X_1 + X_2$!

A razão de verossimilhança é dada por:

$$\frac{L(\theta_0; X_1, X_2)}{L(\theta_1; X_1, X_2)} = \frac{\frac{1}{\theta_0} e^{-\frac{X_1}{\theta_0}} \frac{1}{\theta_0} e^{-\frac{X_2}{\theta_0}}}{\frac{1}{\theta_1} e^{-\frac{X_1}{\theta_1}} \frac{1}{\theta_1} e^{-\frac{X_2}{\theta_1}}}$$

$$= 4e^{-\left(\frac{X_1 + X_2}{4}\right)},$$

em que utilizamos as hipóteses $H_0: \theta=2$ e $H_1: \theta=4$. Agora, queremos encontrar a melhor região crítica C de tamanho α para testar H_0 contra H_1 . Neste caso, α representa o nível de significância do teste.

Usando a razão de verossimilhança, temos que:

$$\frac{L(\theta_0;X_1,X_2)}{L(\theta_1;X_1,X_2)} \leq k \quad \text{se, e somente se,} \quad 4e^{-\left(\frac{X_1+X_2}{4}\right)} \leq k,$$

ou seja, $X_1 + X_2 \ge k_3$. Portanto, a região crítica C pode ser definida como:

$$C = \{(X_1, X_2) : X_1 + X_2 \ge k_3\},\$$

em que k é escolhido de forma a controlar o nível de significância α . O teste de hipóteses consiste em verificar se a amostra cai dentro ou fora da região crítica C. Portanto, o melhor teste usa a estatística X_1+X_2 e a melhor região crítica C é definida por $C=\{(x_1,x_2)/x_1+x_2\leq k\}$.

Para 🕋

• Exercícios da seção 8.1: 2, 3, 5, 6, 8, 9, 10.

Referências I

Hogg, RV, J McKean e AT Craig (2019). Introduction to Mathematical Statistics.