Carga de Data Frames

Oscar Gerardo Hernández Martínez 14/8/2019

Carga de ficheros local

```
df = read.table("../../Cursos programación/Curso de R básico/data/bulls.dat",
                 header = FALSE,
                 col.names = c("breed", "sale_price",
                                "shoulder", "fat_free",
                                "percent_ff", "frame_scale",
                                "back_fat", "sale_height",
                                "scale weight"),
                 sep = "", dec=".")
head(df)
     breed sale_price shoulder fat_free percent_ff frame_scale back_fat
## 1
                            51.0
                                                 70.9
                                                                        0.25
         1
                  2200
                                     1128
                  2250
                            51.9
                                     1108
                                                 72.1
                                                                  7
                                                                        0.25
         1
                            49.9
                                                 71.6
                                                                  6
## 3
         1
                  1625
                                     1011
                                                                        0.15
## 4
         1
                  4600
                            53.1
                                      993
                                                 68.9
                                                                  8
                                                                        0.35
                                                                 7
## 5
                            51.2
                                                 68.6
                                                                        0.25
                  2150
                                      996
## 6
                  1225
                            49.2
                                      985
                                                 71.4
                                                                  6
                                                                        0.15
##
     sale_height scale_weight
## 1
             54.8
                           1720
## 2
             55.3
                           1575
## 3
             53.1
                           1410
## 4
             56.4
                           1595
## 5
             55.0
                           1488
## 6
             51.4
                           1500
```

Cuando colocamos las comillas, R automáticamente puede autocompletar la dirección dentro del ordenador si presionamos la tecla Tab. Si precisamos "subir" un nivel dentro de la estructura del ordenador, colocamos "../"

```
##
     breed sale_price shoulder fat_free percent_ff frame_scale back_fat
## 1
          1
                  2200
                             51.0
                                      1128
                                                   70.9
                                                                   7
                                                                          0.25
                                                                   7
                                                                          0.25
## 2
          1
                  2250
                             51.9
                                      1108
                                                   72.1
## 3
          1
                  1625
                             49.9
                                       1011
                                                   71.6
                                                                    6
                                                                          0.15
## 4
          1
                            53.1
                                                   68.9
                                                                   8
                                                                          0.35
                  4600
                                       993
                                                                    7
## 5
          1
                  2150
                             51.2
                                        996
                                                   68.6
                                                                          0.25
## 6
          1
                  1225
                            49.2
                                       985
                                                   71.4
                                                                          0.15
```

```
sale_height scale_weight
##
## 1
            54.8
                         1720
## 2
            55.3
                         1575
           53.1
## 3
                         1410
## 4
            56.4
                         1595
## 5
            55.0
                         1488
## 6
            51.4
                         1500
str(df2)
## 'data.frame':
                   76 obs. of 9 variables:
##
   $ breed
                  : int 111111111...
##
   $ sale price : int 2200 2250 1625 4600 2150 1225 2250 4000 1600 1525 ...
  $ shoulder
                  : num 51 51.9 49.9 53.1 51.2 49.2 51 51.5 50.1 49.6 ...
                        1128 1108 1011 993 996 985 959 1060 979 1083 ...
##
   $ fat_free
                  : int
                        70.9 72.1 71.6 68.9 68.6 71.4 72.1 69.3 71.2 75.8 ...
##
   $ percent_ff : num
##
   $ frame_scale : int
                        7768767766...
                 : num 0.25 0.25 0.15 0.35 0.25 0.15 0.2 0.3 0.25 0.3 ...
  $ back fat
##
  $ sale_height : num
                        54.8 55.3 53.1 56.4 55 51.4 54 55.6 51.5 54.6 ...
   $ scale_weight: int 1720 1575 1410 1595 1488 1500 1522 1765 1365 1640 ...
    Es recomendable terminar la carga con la innstrucción head() y la instruncción str() para que
```

Es recomendable terminar la carga con la innstrucción **head()** y la instruncción **str()** para que se pueda apreciar si los datos se cargaron de forma correcta o ha habido algún problema con la carga de los mismos.

Factores en un Data Frame

"X2" "75" "73" "54" ...

"X6" "36" "31" "31" ...

"X3" "226" "224" "246" ...

"X5" "672" "781" "549" ...

"X4" "7823" "7709" "8113" ...

\$ V3: chr

\$ V4: chr

\$ V5: chr \$ V6: chr

\$ V7: chr

##

##

```
df3 = read.table("https://maitra.public.iastate.edu/stat501/datasets/olive.dat")
str(df3)
  'data.frame':
                    573 obs. of 9 variables:
    $ V1: Factor w/ 10 levels "1","2","3","4",..: 10 1 1 1 1 1 1 1 1 1 ...
    $ V2: Factor w/ 310 levels "1010", "1020",...: 310 24 32 294 303 12 294 297 40 27 ...
   $ V3: Factor w/ 176 levels "100","101","102",...: 176 152 150 136 138 145 132 144 142 141 ...
   $ V4: Factor w/ 139 levels "152","156","158",...: 139 59 57 79 73 92 99 96 68 72 ...
    $ V5: Factor w/ 390 levels "6300", "6367",...: 390 351 327 388 373 341 366 384 332 336 ...
    $ V6: Factor w/ 345 levels "1000","1002",...: 345 230 265 203 219 230 231 218 248 242 ...
    $ V7: Factor w/ 46 levels "0","10","15",...: 46 21 16 16 35 35 36 34 24 31 ...
   $ V8: Factor w/ 77 levels "0","10","100",...: 77 38 39 41 56 58 48 34 42 61 ...
    $ V9: Factor w/ 45 levels "1","10","11",...: 45 22 22 22 29 40 38 22 29 27 ...
    En este ejemplo, todo se ha cargado como factores, por lo que, será necesario hacer la pertinente
    modificación con el comando stringsAsFactors
df4 = read.table("https://maitra.public.iastate.edu/stat501/datasets/olive.dat",
                 stringsAsFactors = FALSE)
str(df4)
## 'data.frame':
                    573 obs. of 9 variables:
    $ V1: chr
               "group.id" "1" "1" "1" ...
               "X1" "1075" "1088" "911" ...
##
   $ V2: chr
```

```
## $ V8: chr "X7" "60" "61" "63" ...
## $ V9: chr "X8" "29" "29" "29" ...
```

Ahora, observamos que también convierte como parte de los datos el título de las columnas, por lo que, será entonces necesario hacer uso del comando **header**

```
df5 = read.table("https://maitra.public.iastate.edu/stat501/datasets/olive.dat",
                stringsAsFactors = FALSE, header = TRUE)
str(df5)
## 'data.frame':
                   572 obs. of 9 variables:
## $ group.id: int 1 1 1 1 1 1 1 1 1 ...
             : int 1075 1088 911 966 1051 911 922 1100 1082 1037 ...
   $ X1
## $ X2
             : int 75 73 54 57 67 49 66 61 60 55 ...
             : int 226 224 246 240 259 268 264 235 239 213 ...
## $ X3
             : int 7823 7709 8113 7952 7771 7924 7990 7728 7745 7944 ...
## $ X4
## $ X5
             : int 672 781 549 619 672 678 618 734 709 633 ...
## $ X6
             : int 36 31 31 50 50 51 49 39 46 26 ...
## $ X7
             : int 60 61 63 78 80 70 56 64 83 52 ...
## $ X8
             : int 29 29 29 35 46 44 29 35 33 30 ...
```

Guardar un Data Frame

```
write.table(df5, file = "olive.txt", dec=".")
df6 = read.table(file = "data/olive.txt", header = TRUE, dec=".")
head(df6)
    group.id
                X1 X2 X3
                            X4 X5 X6 X7 X8
## 1
            1 1075 75 226 7823 672 36 60 29
## 2
            1 1088 73 224 7709 781 31 61 29
## 3
            1 911 54 246 8113 549 31 63 29
## 4
            1 966 57 240 7952 619 50 78 35
## 5
            1 1051 67 259 7771 672 50 80 46
## 6
            1 911 49 268 7924 678 51 70 44
\# {\it Crear} un Data Frame
gender = c("H", "M", "M", "M", "H")
age = c(23, 45, 20, 30, 18)
family = c(2, 3, 4, 2, 5)
df7 = data.frame(genero = gender, edad = age, familia = family,
                 stringsAsFactors = TRUE)
row.names(df7) = c("P1", "P2", "P3", "P4", "P5")
df7
##
      genero edad familia
## P1
               23
           Η
## P2
               45
                        3
           М
## P3
               20
                        4
           М
## P4
           М
               30
                        2
## P5
               18
str(df7)
## 'data.frame':
                    5 obs. of 3 variables:
## $ genero : Factor w/ 2 levels "H", "M": 1 2 2 2 1
## $ edad : num 23 45 20 30 18
```

```
## $ familia: num 2 3 4 2 5
dimnames(df7) = list(c("Manny", "Paulina", "Victoria", "Aranza", "Govea")
                   , c("Sexo", "Edad", "MiembrosFam")
)
df7
##
           Sexo Edad MiembrosFam
## Manny
            H 23
## Paulina
           M 45
                             3
## Victoria M 20
                             4
            M 30
                             2
## Aranza
## Govea
            H 18
df7 = rbind(df7, c("H", 30, 1))
df7
##
           Sexo Edad MiembrosFam
## Manny
            H 23
            M 45
## Paulina
                             3
## Victoria M 20
                             4
           M 30
                             2
## Aranza
## Govea
                             5
            H 18
## 6
             Н
                30
                             1
df7$Sexo = as.character(df7$Sexo)
df7$Ingresos = c(10000, 12000, 15000, 20000, 25000, 12000)
row.names(df7) = c("Manny", "Paulina", "Victoria", "Aranza", "Govea", "Gerardo")
df7
           Sexo Edad MiembrosFam Ingresos
## Manny
            H 23
                             2
                                  10000
                                  12000
## Paulina
            M 45
                             3
## Victoria M 20
                            4 15000
            M 30
## Aranza
                            2 20000
             H 18
                             5 25000
## Govea
## Gerardo
             Н 30
                             1
                                  12000
#Sub-Data Frames
gender = c("H", "M", "M", "M", "H")
age = c(23, 45, 20, 30, 18)
family = c(2, 3, 4, 2, 5)
df7 = data.frame(genero = gender, edad = age, familia = family,
              stringsAsFactors = TRUE)
df7[df7$genero == "M", ] -> df_m
str(df_m)
## 'data.frame': 3 obs. of 3 variables:
## $ genero : Factor w/ 2 levels "H", "M": 2 2 2
## $ edad : num 45 20 30
## $ familia: num 3 4 2
df_m = droplevels(df_m)
str(df m)
## 'data.frame':
                  3 obs. of 3 variables:
## $ genero : Factor w/ 1 level "M": 1 1 1
## $ edad : num 45 20 30
```

```
## $ familia: num 3 4 2
```

Observamos que este nuevo sub-data frame (df_m) hereda la estructura del data frame del cual fue obtenido (df7). Para modificar esta estructura, haremos uso del comando **droplevels()**

Tidyverse

```
library(tidyverse)
## Registered S3 methods overwritten by 'ggplot2':
    method
##
                  from
##
    [.quosures
                  rlang
##
    c.quosures
                  rlang
    print.quosures rlang
## -- Attaching packages ------ tidyverse 1.2.1 --
## v ggplot2 3.1.1
                     v purrr
                              0.3.2
                              0.8.1
## v tibble 2.1.3
                     v dplyr
## v tidyr
           0.8.3
                     v stringr 1.4.0
## v readr
           1.3.1
                     v forcats 0.4.0
## -- Conflicts ----- tidyverse_conflicts() --
## x dplyr::filter() masks stats::filter()
## x dplyr::lag()
                   masks stats::lag()
iris_petal = select(iris, starts_with("Petal"))
head(iris_petal)
##
    Petal.Length Petal.Width
## 1
            1.4
## 2
            1.4
                        0.2
## 3
            1.3
                        0.2
## 4
                       0.2
            1.5
                        0.2
## 5
            1.4
            1.7
                        0.4
## 6
iris_length = select(iris, ends_with("Length"))
head(iris_length)
    Sepal.Length Petal.Length
##
## 1
            5.1
## 2
            4.9
                         1.4
## 3
            4.7
                        1.3
## 4
            4.6
                        1.5
## 5
            5.0
                        1.4
## 6
            5.4
                         1.7
```

Subset

```
subset(iris, Species == "setosa") -> setosa
head(setosa, 5)

## Sepal.Length Sepal.Width Petal.Length Petal.Width Species
## 1 5.1 3.5 1.4 0.2 setosa
## 2 4.9 3.0 1.4 0.2 setosa
```

```
## 3
              4.7
                          3.2
                                       1.3
                                                   0.2 setosa
                                                   0.2 setosa
## 4
              4.6
                          3.1
                                       1.5
                                                   0.2 setosa
## 5
              5.0
                          3.6
                                       1.4
str(setosa)
                    50 obs. of 5 variables:
## 'data.frame':
## $ Sepal.Length: num 5.1 4.9 4.7 4.6 5 5.4 4.6 5 4.4 4.9 ...
## $ Sepal.Width : num 3.5 3 3.2 3.1 3.6 3.9 3.4 3.4 2.9 3.1 ...
## $ Petal.Length: num 1.4 1.4 1.3 1.5 1.4 1.7 1.4 1.5 1.4 1.5 ...
## $ Petal.Width : num 0.2 0.2 0.2 0.2 0.4 0.3 0.2 0.2 0.1 ...
                 : Factor w/ 3 levels "setosa", "versicolor", ..: 1 1 1 1 1 1 1 1 1 1 ...
setosa = droplevels(setosa)
str(setosa)
## 'data.frame':
                    50 obs. of 5 variables:
## $ Sepal.Length: num 5.1 4.9 4.7 4.6 5 5.4 4.6 5 4.4 4.9 ...
## $ Sepal.Width : num 3.5 3 3.2 3.1 3.6 3.9 3.4 3.4 2.9 3.1 ...
## $ Petal.Length: num 1.4 1.4 1.3 1.5 1.4 1.7 1.4 1.5 1.4 1.5 ...
## $ Petal.Width : num 0.2 0.2 0.2 0.2 0.2 0.4 0.3 0.2 0.2 0.1 ...
## $ Species
                 : Factor w/ 1 level "setosa": 1 1 1 1 1 1 1 1 1 1 ...
subset(iris, Species == "versicolor") -> versicolor
head(versicolor, 5)
##
      Sepal.Length Sepal.Width Petal.Length Petal.Width
                                                           Species
## 51
               7.0
                           3.2
                                        4.7
                                                    1.4 versicolor
## 52
               6.4
                           3.2
                                        4.5
                                                    1.5 versicolor
## 53
               6.9
                                        4.9
                           3.1
                                                    1.5 versicolor
## 54
               5.5
                           2.3
                                        4.0
                                                    1.3 versicolor
## 55
               6.5
                           2.8
                                        4.6
                                                    1.5 versicolor
str(versicolor)
## 'data.frame':
                    50 obs. of 5 variables:
## $ Sepal.Length: num 7 6.4 6.9 5.5 6.5 5.7 6.3 4.9 6.6 5.2 ...
## $ Sepal.Width : num 3.2 3.2 3.1 2.3 2.8 2.8 3.3 2.4 2.9 2.7 ...
## $ Petal.Length: num 4.7 4.5 4.9 4 4.6 4.5 4.7 3.3 4.6 3.9 ...
## $ Petal.Width : num 1.4 1.5 1.5 1.3 1.5 1.3 1.6 1 1.3 1.4 ...
## $ Species
                 : Factor w/ 3 levels "setosa", "versicolor", ...: 2 2 2 2 2 2 2 2 2 2 ...
    En este caso para modificar los nombres de las filas, haremos uso de la función rownames
subset(iris, Species == "versicolor") -> versicolor
rownames(versicolor) = 1:nrow(versicolor)
head(versicolor, 5)
     Sepal.Length Sepal.Width Petal.Length Petal.Width
                                                          Species
## 1
              7.0
                          3.2
                                       4.7
                                                   1.4 versicolor
## 2
                          3.2
              6.4
                                       4.5
                                                   1.5 versicolor
## 3
              6.9
                          3.1
                                       4.9
                                                   1.5 versicolor
## 4
              5.5
                          2.3
                                       4.0
                                                   1.3 versicolor
## 5
              6.5
                          2.8
                                       4.6
                                                   1.5 versicolor
str(versicolor)
## 'data.frame':
                    50 obs. of 5 variables:
## $ Sepal.Length: num 7 6.4 6.9 5.5 6.5 5.7 6.3 4.9 6.6 5.2 ...
```

```
## $ Sepal.Width : num 3.2 3.2 3.1 2.3 2.8 2.8 3.3 2.4 2.9 2.7 ...
## $ Petal.Length: num 4.7 4.5 4.9 4 4.6 4.5 4.7 3.3 4.6 3.9 ...
## $ Petal.Width : num 1.4 1.5 1.5 1.3 1.5 1.3 1.6 1 1.3 1.4 ...
## $ Species : Factor w/ 3 levels "setosa", "versicolor", ...: 2 2 2 2 2 2 2 2 2 2 ...
```