mitch. roddenberry. xyz mitch@rice.edu

Glaze, Segarra

$$A = \begin{bmatrix} 1 & 2 & 3 & 4 \\ 0 & 1 & 1 & 1 \\ 0 & 0 & 1 & 0 \\ 1 & 1 & 0 & 0 \\ 1 & 1 & 0 & 0 \end{bmatrix} \begin{bmatrix} 3 & -1 & -1 & -1 \\ -1 & 2 & -1 & 0 \\ -1 & 1 & 2 & 0 \\ 4 & -1 & 0 & 0 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & 2 & 3 & 4 \\ 3 & -1 & -1 & -1 \\ 1 & 0 & 0 & 1 \\ 4 & -1 & 0 & 0 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & 2 & 3 & 4 \\ 3 & -1 & -1 & -1 \\ 4 & -1 & 2 & -1 & 0 \\ -1 & 2 & 0 & 1 \\ 4 & -1 & 0 & 0 & 1 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & 2 & 3 & 4 \\ 3 & -1 & -1 & -1 \\ 4 & -1 & 2 & -1 & 0 \\ -1 & 0 & 0 & 1 \\ 4 & -1 & 0 & 0 & 1 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & 2 & 3 & 4 \\ 3 & -1 & -1 & -1 \\ 4 & -1 & 2 & -1 & 0 \\ -1 & 0 & 0 & 1 \\ 4 & -1 & 0 & 0 & 1 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & 2 & 3 & 4 \\ 3 & -1 & -1 & -1 \\ 4 & -1 & 2 & -1 & 0 \\ -1 & 0 & 0 & 1 \\ 4 & -1 & 0 & 0 & 1 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & 2 & 3 & 4 \\ 3 & -1 & -1 & -1 \\ 4 & -1 & 0 & 0 & 1 \\ -1 & 0 & 0 & 1 \\ 4 & -1 & 0 & 0 & 1 \\ -1 & 0 & 0 & 1 \\ 4 & -1 & 0 & 0 & 1 \\ -1 & 0 & 0 & 1 \\ 4 & -1 & 0 & 0 & 1 \\ -1 & 0 & 0 & 1 \\ 4 & -1 & 0 & 0 & 1 \\ -1 & 0 & 0 & 1 \\ 4 & -1 & 0 & 0 & 1 \\ -1 & 0 & 0 & 1 \\ 4 & -1 & 0 & 0 & 1 \\ -1 & 0 & 0 & 1 \\ 4 & -1 & 0 & 0 & 1 \\ -1 & 0 & 0 &$$

GNN:
$$f \rightarrow g$$

GNN(f) = $(---- \sigma \circ D \circ \sigma \circ D)(g)$

G: (v,f)
 $V_1 = V(v_0 \rightarrow (v,f))$

 $(V_0 \subseteq V \rightarrow (v,f,Q))$

divergence

harmonic

B. Vec. > 5calar
fields > fields

1-chains > 0-chains 1 > - 2.5

BT Vx: 1-chains -> 2-chains

By: derivative By: div B2: boundary BT: curl B, B, $\{B_1, B_2, B_3.$ L> homology BKBK+1=0 Bris Br=0 mitch.roddenberry.xyzlfiles

Eric Bunch et al BKBKH Claim nonlinearities are provably necessary

