Random Variables (rv)

Examples [Ross S4.5]

Example 11.1: [Friendship Paradox] There are n people named $1, 2, \ldots, n$.

Person i has f(i) friends. Let $m = \sum_{i=1}^{n} f(i)$.

Let X be a random person, equally likely to be any of the n people.

Let Z = f(X), i.e., Z is # of friends of random person X. Then

$$E[Z] = \sum_{i=1}^{n} f(i) \underbrace{P[X=i]}_{1/n} = \frac{m}{n}$$
 [by Prop. 10.1]
$$E[Z^{2}] = \sum_{i=1}^{n} (f(i))^{2} P[X=i] = \frac{1}{n} \sum_{i=1}^{n} (f(i))^{2}$$

sheet per friend). There are m sheets, and one sheet is drawn at random, each sheet being

Now, each person writes the names of their friends on a sheet of paper (one

equally likely to be chosen.

as opposed to $\frac{1}{n}$

[since $E[Z^2] \ge (E[Z])^2$]

Y = name of friend on drawn sheet

Now

$$P[Y=i] = \frac{f(i)}{m}$$

W = f(Y)

$$E[W] = E[f(Y)]$$

$$= \sum_{i} f(i) P[Y = i]$$

$$=\sum_{i}^{i}f(i)\times\frac{f(i)}{m}$$

$$=\frac{n}{m}\times\frac{1}{n}\sum_{i}\left(f(i)\right)^{2}$$

$$=\frac{E[Z^{2}]}{E[Z]}$$

$$\geq E[Z] \qquad \qquad [\text{since } E[Z^{2}]\geq (R)$$
 So:
$$(\text{expected \# of friends of random person } = E[Z])$$

Persons
$$1,2$$
 and 3 are independently born on day r with probability p_r , for $r=1,2,\ldots,n$. Let $A_{i,j}=\{\text{persons }i\text{ and }j\text{ born on same day}\}$

 \leq (expected # of friends of random friend = E[W])

a) Find $P[A_{1,3}]$

Example 11.2: There are n days in a year.

b) Find $P[A_{1,3} | A_{1,2}]$

- Solution: a)
- $P[A_{1,3}] = P[\cup_r \{1 \text{ and } 3 \text{ both born on day } r\}]$

$$= \sum_{r} P[\{1 \text{ born on day } r\}] P[\{3 \text{ born on day } r\}]$$

$$= \sum_{r} p_{r}^{2}$$

$$P[A_{1,3} \mid A_{1,2}] = \frac{P[A_{1,3}A_{1,2}]}{P[A_{1,2}]}$$

$$= \frac{P[\{1, 2 \text{ and } 3 \text{ born on same day}\}]}{P[\{1 \text{ and } 2 \text{ born on same day}\}]}$$

$$\sum_{r} p^{3}$$

 $= \sum P[\{1 \text{ and } 3 \text{ both born on day } r\}]$

b)

Remark 11.1: We had
$$E[aX+b]=aE[X]+b$$
. What about $Var[aX+b]$?
$$Var[aX+b]=E\left[\left(aX+b-E[aX+b]\right)^2\right]$$

where $Y = (X - E[X])^2$

 $= E\left[(aX + b - aE[X] - b])^2 \right]$

 $= E\left[\left(aX - aE[X] \right)^2 \right]$

 $= E\left[a^2 \left(X - E[X]\right)^2\right]$

 $= a^2 E \left[(X - E[X])^2 \right]$

 $= E \left[a^2 Y \right]$ $=a^2E[Y]$

 $=a^2 Var[X]$

• $Var[X] = \sigma_X^2$ has units of kg².

Remark 11.2: If X has units of, say, kg, then: • $E[X] = \mu_X$ has units of kg,

We also define $SD[X] = \sqrt{Var[X]} = \sigma_X$, called **standard deviation**.

SD[X] has units of kg again.