Assignment Report: Material Reservation Prediction System

https://github.com/trietnm2/assignment

1. Time Difference Analysis in Material Demand

A comprehensive analysis was conducted to evaluate the time difference in material demand over daily, weekly, and monthly intervals. The key findings are as follows:

- 90% of materials experience demand within 1 month.
- 5% of materials have demand after 2 months.
- 4% of materials exhibit demand after 7 months.

	date_diff	week_diff	month_diff	
count	7392.000000	7392.000000	7392.000000	
mean	19.795049	2.434524	0.408279	
std	38.181163	5.443406	1.302237	
min	0.000000	0.000000	0.000000	
0%	0.000000	0.000000	0.000000	
10%	1.000000	0.000000	0.000000	
20%	2.000000	0.000000	0.000000	
30%	4.000000	0.000000	0.000000	
40%	6.000000	0.000000	0.000000	
50%	7.000000	1.000000	0.000000	
60%	11.000000	1.000000	0.000000	
70%	16.000000	2.000000	0.000000	
80%	25.000000	3.000000	0.000000	
90%	47.000000	6.000000	1.000000	
95%	74.000000	10.000000	2.000000	
97%	111.270000	15.270000	3.270000	
99%	201.000000	28.000000	7.000000	
max	567.000000	81.000000	20.000000	

Based on these insights, we utilized data from the preceding **7 months** to forecast the material demand for the upcoming **1 month**.

2. Feature Selection and Engineering

ChargingCC	MovementType	ReceivingLoc	Material Number	CreatedOn	ReserveQty	MaterialTypeCode
83070101	311	LSI-LSI	ZMZ003145GBA	1/2/23 1:28	105000.0	XZDRMY
83070101	311	LSI-LSI	ZMZ003145GBA	1/2/23 1:28	105000.0	XZDRMY
83070101	311	LSI-LSI	ZMZ003145GBA	1/2/23 1:28	105000.0	XZDRMY
83070101	311	LSI-LSI	ZMZ003147GBA	1/2/23 1:28	14000.0	XZDRMY
83070101	311	LSI-LSI	ZMZ003147GBA	1/2/23 1:28	14000.0	XZDRMY

The prediction model is based on a comprehensive set of features, including:

- Year and Month: Temporal features representing the observation period.
- **Metadata columns**: Available information related to the material's characteristics.
- 1D Feature Set: Individual features generated from each type of metadata.
- 2D Feature Set: Interaction-based features between different metadata variables.

A total of **12,820 features** were generated to support the prediction process.

The Meta columns:

- MaterialNumber
- MaterialTypeCode
- ChargingCC
- MovementType
- ReceivingLoc
- Year_month
- Date diff
- Week_diff
- Month_diff
- ReserveQty (Current Demand)
- ReserveQty_lag1
- ReserveQty_lag2
- ReserveQty_lag3
- ReserveQty_lag4
- ReserveQty_lag5
- ReserveQty_lag6
- ReserveQty_next (Demand in next month. Target value of Regression Model)
- Has_next (Has demand next month or not? Label value of Classification Model)

3. Problem Decomposition

The prediction problem was divided into two smaller tasks for efficient handling:

1. Demand Prediction (Binary Classification)

- This sub-task focuses on predicting whether there will be material demand in the next month.
- It is framed as a binary classification problem (Yes/No).
- The key metric for model performance is the AUC-ROC, which achieved a value of 0.94 (where values closer to 1 are ideal).
- 107 features were selected based on feature importance for the classification model.

2. Quantity Prediction (Regression)

- o In this sub-task, we predict the quantity of material demand for the next month, given that demand exists.
- It is treated as a regression problem.
- o The primary metric is R², which achieved **0.95** on scaled values and **0.65** on actual values (closer to 1 indicates better model performance).
- 107 features were selected for the regression model, also based on feature importance.

4. Prediction Pipeline Overview

The pipeline for predicting material demand follows a structured process:

- 1. Input data is combined with the extracted feature set.
- 2. The **classification model** first determines whether there will be demand for the next month.
- 3. If no demand is predicted, the system returns a prediction of **0**.
- 4. If demand is predicted, the **regression model** is used to estimate the quantity of material required for the next month.

5. Model Training, Testing, and Evaluation

- Training Phase: The models were trained using data from 12 months of 2023.
- **Testing Phase**: The trained models were tested on data spanning from **January to July 2024**.

Evaluation results show:

- R² values ranged from **0.83 to 0.93**, with the highest performance occurring in **January 2024** and the lowest in **April 2024**.
- **RMSE** (Root Mean Square Error) and **MAE** (Mean Absolute Error) demonstrated stable performance across the months.

6. Top Demand Prediction

• Top 10 Most Demand Materials

