CS1382 Discrete Computational Structures

Lecture 09: Predicate Logic

Spring 2019

Richard Matovu

Propositional Logic Not Enough

• If we have:

```
"All men are mortal."
```

"Socrates is a man."

- Does it follow that "Socrates is mortal?"
- Can't be represented in propositional logic.
- Need a language that talks about objects, their properties, and their relations.
- Later we'll see how to draw inferences.

Predicates and Quantifiers

- Predicate Logic involves statements with variables
- Examples:
 - x > 3
 - Computer x is functioning properly

- These statements are neither true nor false when the values of the variables are not specified
- Propositions can be produced from such statements

- x is greater than 3
 - Variable: The subject of the statement
 - Predicate: Property that the subject of the statement can have

- Can be denoted by P(x)
 - P denotes the predicate
 "is greater than 3"
 - x is the variable

Introducing Predicate Logic

- Predicate logic uses the following new features:
 - Variables: x, y, z
 - Predicates: P(x), M(x)
 - Quantifiers (to be covered in a few slides)
- Propositional functions e.g., P(x)
 - They contain variables and a predicate, e.g. P(x)
 - Variables can be replaced by elements from their domain.

Examples – Propositional Functions

- Propositional functions become propositions (and have truth values) when their variables are each replaced by a value from the *domain* (or *bound* by a quantifier).
- For example, let P(x) denote "x > 0" and the domain be the integers. Then:
 - P(-3) is false.
 - P(0) is false.
 - P(3) is true.
- Often the domain is denoted by U. So in this example U is the integers.

Examples – Propositional Functions

Let "x + y = z" be denoted by R(x, y, z) and U
 (for all three variables) be the integers. Find
 these truth values:

• Now let "x - y = z" be denoted by Q(x, y, z), with U as the integers. Find these truth values:

- R(2,-1,5)
 - Solution: F
- R(3,4,7)
 - Solution: T
- R(x, 3, z)
 - Solution: Not a Proposition

- Q(2,-1,3)
 - Solution: T
- Q(3,4,7)
 - Solution: F
- Q(x, 3, z)
 - Solution: Not a Proposition

Compound Expressions

- Connectives carry over to predicate logic.
- If P(x) denotes "x > 0," find these truth values:
 - P(3) V P(-1)
 - Solution: T
 - P(3) ∧ P(-1)
 - Solution: F
 - $P(3) \to P(-1)$
 - Solution: F
 - $P(3) \rightarrow \neg P(-1)$
 - Solution: T

- Expressions with variables are not propositions.
 For example,
 - P(3) ∧ P(y)
 - $P(x) \rightarrow P(y)$
- When used with quantifiers (to be introduced next), these expressions (propositional functions) become propositions.

Quantifiers

- Quantifiers Express the meaning of English words including all and some:
 - "All men are Mortal."
 - "Some cats do not have fur."
- The two most important quantifiers are:
 - Universal Quantifier,
 - "For all," symbol: ∀
 - Existential Quantifier,
 - "There exists," symbol: ∃

- We write as in
 - $\forall x P(x)$
 - $\exists x P(x)$.
- $\forall x P(x)$ asserts P(x) is true for **every** x in the domain.
- $\exists x P(x)$ asserts P(x) is true for **some** x in the *domain*.
- The quantifiers are said to bind the variable x in these expressions.

Universal Quantifier

• $\forall x P(x)$ is read as "For all x, P(x)" or "For every x, P(x)"

- Examples:
 - If P(x) denotes "x > 0" and U is the integers
 - $\forall x P(x)$ is false.
 - If P(x) denotes "x > 0" and U is the positive integers
 - $\forall x P(x)$ is true.
 - If P(x) denotes "x is even" and U is the integers
 - $\forall x P(x)$ is false.

Existential Quantifier

- $\exists x P(x)$ is read as "For some x, P(x)", or as "There is an x such that P(x)," or "For at least one x, P(x)."
- Examples:
 - If P(x) denotes "x > 0" and U is the integers
 - $\exists x P(x)$ is true
 - It is also true if U is the positive integers.
 - If P(x) denotes "x < 0" and U is the positive integers
 - $\exists x P(x)$ is false.
 - If P(x) denotes "x is even" and U is the integers
 - $\exists x P(x)$ is true.

Properties of Quantifiers

• The truth value of *Quantifiers* depend on both the **propositional function** *P(x)* and on the **domain** *U*.

Examples:

- If U is the positive integers and P(x) is the statement "x < 2",
 - $\exists x \ P(x)$ is true BUT $\forall x \ P(x)$ is false.
- If U is the negative integers and P(x) is the statement "x < 2"
 - Both $\exists x P(x)$ and $\forall x P(x)$ are true.
- If U consists of 3, 4, and 5, and P(x) is the statement "x > 2"
 - Both $\exists x P(x)$ and $\forall x P(x)$ are true
- What if P(x) is the statement "x < 2"
 - Both $\exists x P(x)$ and $\forall x P(x)$ are false

Precedence of Quantifiers

- The quantifiers \forall and \exists have higher precedence than all the logical operators.
- Example
 - $\forall x P(x) \lor Q(x)$ means $(\forall x P(x)) \lor Q(x)$
 - $\forall x (P(x) \lor Q(x))$ means something different.
- Unfortunately, often people write $\forall x P(x) \lor Q(x)$ when they mean $\forall x (P(x) \lor Q(x))$.

Example 1: "Every student in this class has studied calculus"

Solution 1: Domain - Students in this class

- Rewrite the statement
 For every student in this class, that student has studied calculus
- Introduce a variable x
 For every student x in this class, x has studied calculus
- C(x) "x has studied calculus." and domain for x to be "the students in the class"
- We can translate our statement as

 ∀x C(x).

Example 1: "Every student in this class has studied calculus"

Solution 2: Domain – "All People"

Rewrite the statement:

For every person x, if person x is a student in this class then x has studied calculus.

- S(x) "person x is in this class" and C(x) "person x has studied calculus"
- Our statement can be expressed as

$$\forall x (S(x) \rightarrow C(x))$$

• $\forall x (S(x) \land C(x))$ is not correct. What does it mean?

Example 1: "Some student in this class has visited Mexico"

Solution 1: Domain – Students in this class

Rewrite the statement

There is a student in this class with the property that the student has visited Mexico

Introduce a variable x

There is a student x in this class having the property that x has visited Mexico

- M(x) "x has visited Mexico." and domain for x to be "the students in the class"
- We can translate our statement as

∃x M(x).

Example 1: "Some student in this class has visited Mexico"

Solution 1: Domain – "all people"

Rewrite the statement:

There is a person x having the properties that x is a student in this class and x has visited Mexico.

- S(x) "person x is in this class"
 M(x) "x has visited Mexico"
- Our statement can be expressed as

 $\exists x (S(x) \land M(x))$

• $\exists x (S(x) \rightarrow M(x))$ is not correct. What does it mean?

Equivalences in Predicate Logic

- Statements involving predicates and quantifiers are logically equivalent if and only if they have the same truth value
 - for every predicate substituted into these statements and
 - for every domain of discourse used for the variables in the expressions.
- The notation $S \equiv T$ indicates that S and T are logically equivalent.
- Example:

$$\forall x \neg \neg S(x) \equiv \forall x S(x)$$

Quantifiers as Conjunctions and Disjunctions

- If the domain is finite,
 - A universally quantified proposition
 is equivalent to a conjunction of
 propositions without quantifiers
 - An existentially quantified
 proposition is equivalent to a
 disjunction of propositions without
 quantifiers.

• If *U* consists of the integers 1,2, and 3:

$$\forall x P(x) \equiv P(1) \land P(2) \land P(3)$$

$$\exists x P(x) \equiv P(1) \lor P(2) \lor P(3)$$

• In general, for U with { 1, 2, 3,, n }

•
$$\forall x P(x) \leq P(1) \land P(2) \land ... \land P(n)$$

• $\exists x \ P(x) \iff P(1) \ VP(2) \ V \dots \ VP(n)$

Negating Quantified Expressions

• Show that $\neg \forall x P(x) \iff \exists x \neg P(x)$

•
$$\forall x P(x) = P(1) \land P(2) \land ... \land P(n)$$

•
$$\neg \forall x P(x) = \neg (P(1) \land P(2) \land ... \land P(n))$$

•
$$\neg \forall x P(x) = \neg P(1) \ V \neg P(2) \ V \dots \ V \neg P(n)$$

•
$$\neg \forall x P(x) = \exists x \neg P(x)$$

• Show that $\forall x P(x) \ll \exists x (\neg P(x))$

All Equivalencies

•
$$\forall x P(x) \ll \neg \exists x (\neg P(x))$$

•
$$\exists x P(x) \ll \neg \forall x (\neg P(x))$$

•
$$\neg \forall x P(x) \iff \exists x (\neg P(x))$$

•
$$\neg \exists x P(x) \iff \forall x (\neg P(x))$$

De Morgan's Laws for Quantifiers

The rules for negating quantifiers are:

TABLE 2 De Morgan's Laws for Quantifiers.			
Negation	Equivalent Statement	When Is Negation True?	When False?
$\neg \exists x P(x)$	$\forall x \neg P(x)$	For every x , $P(x)$ is false.	There is an x for which $P(x)$ is true.
$\neg \forall x P(x)$	$\exists x \neg P(x)$	There is an x for which $P(x)$ is false.	P(x) is true for every x .

The reasoning in the table shows that:

$$\neg \forall x P(x) \equiv \exists x \neg P(x)$$

$$\neg \exists x P(x) \equiv \forall x \neg P(x)$$

These are important and we will use these.

Negating Quantified Expressions

- Consider $\forall x J(x)$
 - "Every student in your class has taken a course in Java."
 - J(x) is "x has taken a course in Java"
 - the domain is students in your class.
- What is ¬ ∀x J(x) ?

Negation

- "It is not the case that every student in your class has taken Java"
- This implies that
 "There is a student in your class who has not taken
 Java
- Symbolically,
 - $\neg \forall x J(x)$ and $\exists x \neg J(x)$

"Every student in this class has visited Canada or Mexico."

Solution:

- M(x) denote "x has visited Mexico"
- S(x) denote "x is a student in this class"
- C(x) denoting "x has visited Canada."
- Domain be all people.

System Specification Example

- Predicate logic is used for specifying properties that systems must satisfy.
- For example, translate into predicate logic:
 - "Every mail message larger than one megabyte will be compressed."
 - "If a user is active, at least one network link will be available."

- Decide on predicates and domains (left implicit here) for the variables:
 - L(m, y): "Mail message m is larger than y megabytes."
 - C(m): "Mail message m will be compressed."
 - *A*(*u*): "User *u* is active."
 - S(n, x): "Network link n is state x.
- Now we have:

$$\forall m(L(m,1) \to C(m))$$

 $\exists u \, A(u) \to \exists n \, S(n, available)$

Questions?

Thank You!