

# OZ8930 DATASHEET Version 1.1



# **Table of Contents**

| FEATURES                                     |          |
|----------------------------------------------|----------|
| GENERAL DESCRIPTION                          |          |
| APPLICATIONS                                 |          |
| BLOCK DIAGRAM                                | 2        |
| PIN CONFIGURATION                            | 3        |
| PIN DESCRIPTION                              |          |
| TYPICAL APPLICATION SCHEMATICS               | 5        |
| Standalone Operation TSSOP24 package         | 5        |
| Standalone Operation QFN24 package           | 6        |
| With MCU Operation TSSOP24 package           | 7        |
| With MCU Operation QFN24 package             | 8        |
| ABSOLUTE MAXIMUM RATINGS                     | ç        |
| DISSIPATION RATINGS                          | <u>C</u> |
| RECOMMENDED OPERATING CONDITIONS             | 10       |
| ELECTRICAL CHARACTERISTICS                   | 10       |
| AC TIMING                                    |          |
| I <sup>2</sup> C Bus Timing                  |          |
| FUNCTIONAL DESCRIPTION                       |          |
| OZ8930 Power-Up Sequence                     |          |
| Reset Generation                             |          |
| OTP and Operation Registers                  |          |
| Measurements                                 |          |
| ADC Scan Operation                           |          |
| ADC Channel Description                      |          |
| ADC Self-Diagnostic                          |          |
| ADC Automatic Scan and Trigger Scan function | 10       |
| Time Slots Configuration                     | 10       |
| Cell Balance                                 |          |
| Battery Protection                           |          |
| Over-current (OC)                            |          |
| Short-circuit (SC)                           |          |
| Over-voltage (OV)                            |          |
| Under-voltage (UV)                           |          |
| Cell voltage Unbalance (UB)                  |          |
| Thermal Protection (OT and UT)               | 25       |
| Permanent Failure (PF)                       |          |
| Power Mode                                   |          |
| Internal Temperature Sensor.                 |          |
| External Temperature Sensor                  |          |
| Power MOSFET Driver                          |          |
| MOSFET Control                               |          |
| EFETC Control                                |          |
| Serial Communication Bus                     |          |
| Writing Data Access                          |          |
| Reading Data Access                          |          |
| Bus Timeout                                  |          |
| Bus Disconnection                            |          |
| OTP AND OPERATION REGISTERS MAP              |          |
| Operation Registers                          |          |
| Operation Registers Map                      |          |
|                                              |          |
| Detailed Operation Registers Information     |          |
| OTP Registers Man                            |          |
| OTP Registers MapPACKAGE INFORMATION         |          |
| I AUNAUL INI UNWATIUN                        | 02       |



# **Battery Pack Protection and Monitor IC**

## **FEATURES**

- Supports 3-6 Series Li-ion, Li-polymer and Phosphate Battery Cells.
- Operation voltage range from 4.5V to 28V
- Multi-channel ADC for current, voltage and temperature measurement
  - 6 channels for cell voltage measurement (12 bits) with effective accuracy of +/-20mV in working temperature range
  - 1 channel current measurement (14 bits), this programmable channel can be disabled to speed up the scan cycle
  - 1 channel for internal temperature measurement (12 bits)
  - 2 channels reserved for external temperature channels (12 bits)
  - ADC self-diagnostic
  - Supports ADC trigger scan by I<sup>2</sup>C control
- Supports JEITA Requirements for different Charging/Discharging Voltage and Current protection threshold settings under low, standard and high temperature ranges
- Built-in Protections include:
  - Over voltage (OV)
  - Under voltage (UV)
  - Over current (COC, DOC0, DOC1)
  - Short circuit (SC)
  - Over temperature (OT)
  - Under temperature (UT)
  - Cell Unbalance (UB)
  - Permanent Failure (PF)
- Embedded OTP (One-Time-Programmable Memory) for programming various settings of protection thresholds/timers and protection release thresholds/timers.
- Supports separate charge and discharge over temperature threshold settings Embedded Internal Bleeding for Cell balance
- Supports EFETC MOSFET control signal
- Supports hardware mode (without MCU) or software mode (with external MCU)
- Supports separate charge and discharge loop and serial discharge/charge loop
- Integrated 1.8V, 3.3V, 10V voltage regulator
- Integrated N-MOSFET driver
- Supports I<sup>2</sup>C serial interface, the max communication speed is 400 KHz.
- Low power consumption

 $I_{VCC}$  in Full Power Mode < 380uA

I<sub>VCC</sub> in Sleep Mode < 45uA

I<sub>VCC</sub> in Standby Mode < 10uA

I<sub>VCC</sub> in Power Down < 1uA

# **GENERAL DESCRIPTION**

OZ8930 is a highly integrated battery pack protection and monitor IC for managing Li-lon or Li-polymer pack in backup power supply, power tools applications etc, and supporting the JEITA spec. It supports 3-6 series Li-lon battery pack or Li-polymer or Phosphate battery pack applications.

Patent pending smart MOSFET driver is designed for controlling discharge N-MOSFET. Charge FET can be P-MOSFET or N-MOSFET through the design of external circuit. The driver also supports parallel and series charge and discharge loop.

With integrated multi-channel 14-bit ADC, OZ8930 works constantly to monitor each cell's voltage, the charge/discharge current and the pack temperature to provide over-voltage, under-voltage, charge over-current, over-temperature and under-temperature safety protection. Working with embedded FET driver, the protection circuits will independently shut off the FETs when the battery cells are experiencing extreme stress. OZ8930 can assert the Permanent Failure (PF) signal to blow an external fuse to cut off the power line or to issue an alarm to host/user when some extreme conditions happen. For example, when cell voltage is higher than the pre-set maximum rating voltage OVPF or cell temperature is higher than CELL OTPF. All of the protection thresholds and their related delay time are programmable in OTP for different battery types and different applications.

With independent OC/SC protection function, OZ8930 provides multiple level discharge over current protection with programmable pre-set threshold and programmable delay control. A short circuit protection uses a fixed threshold and programmable delay control.

"Bleeding on Demand (BOD)" technology has been embedded in the OZ8930 to support internal bleeding for cell voltage balance during charge state and idle state (no charge and discharge); BOD technology can achieve longer life cycle of the battery pack.

OZ8930 can be configured to work in hardware mode or software mode. In hardware mode OZ8930 can work independently for battery pack protection and monitoring. In software mode, OZ8930 can work with MCU to implement more complete battery protection functions and gas gauge algorithm.



# **APPLICATIONS**

#### Power Tools

## Backup Power Supply

# **ORDERING INFORMATION**

| Part Number | Temp Range    | Package |
|-------------|---------------|---------|
| OZ8930RN    | -40°C to 85°C | TSSOP24 |
| OZ8930LN    | -40°C to 75°C | QFN24   |

# **BLOCK DIAGRAM**





# **PIN CONFIGURATION**







# **PIN DESCRIPTION**

| FIN DES   |                    | - · •            |       |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |  |
|-----------|--------------------|------------------|-------|---------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| Name      | Pin No.<br>(TSSOP) | Pin No.<br>(QFN) | I/O   | Туре    | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |  |
| VCC       | 1                  | 22               | Power | Power   | Chip power supply                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |  |
| BAT6      | 2                  | 23               | ı     | Analog  | Cell 6 positive input                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |  |
| BAT5      | 3                  | 24               | ı     | Analog  | Cell 5 positive input                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |  |
| BAT4      | 4                  | 1                | I     | Analog  | Cell 4 positive input                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |  |
| BAT3      | 5                  | 2                | I     | Analog  | Cell 3 positive input                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |  |
| BAT2      | 6                  | 3                | I     | Analog  | Cell 2 positive input                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |  |
| BAT1      | 7                  | 4                | I     | Analog  | Cell 1 positive input                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |  |
| GND1      | 8                  | 5                | GND   | Ground  | Analog ground and current sense positive terminal                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |  |
| SRN       | 9                  | 6                | ı     | Analog  | OC/SC protection, current sense and current detection negative terminal                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |  |  |
| SCRL      | 10                 | 7                | I     | Analog  | Short circuit external automatic release input                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |  |
| WKUP      | 11                 | 8                | I     | Analog  | External charger detection pin or analog wake up detection pin.  If OZ8930 is in sleep, power down or standby mode, a positive pulse (Amplitude>3V, Width>10ms) on this pin will wake up it (charge-on wakeup).  If OZ8930 is in sleep mode, a negative pulse (Amplitude>0.6V, Width>0.45us) will also wake up it. (Refer to the application note "OZ8930 AN-8: How to use the WKUP pin?")                                                                                                                   |  |  |  |
| EFETC     | 12                 | 9                | I/O   | Digital | EFETC pin usage is as following:  EFETC EFETC pin function (bit [6:4] in Operation Register 1fh)  000 High active input to disable charge FET.  001 High active input to disable discharge FET.  010 High active input to disable charge FET and discharge FET.  011 Output discharge FET status (Open-Drain)  100 High active input as external standby input.  101 Output internal xx_fet_disable signal.  110, 111 Reserved  (Refer to the section "EFETC Control" in FUNCTIONAL DESCRIPTION for details) |  |  |  |
| SDA       | 13                 | 10               | I/O   | Digital | I <sup>2</sup> C data line                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |  |
| SCL/RSTN  | 14                 | 11               | I     | Digital | I <sup>2</sup> C clock line. When a low pulse with the width of 64ms or longer occurs at this pin, the chip will be reset                                                                                                                                                                                                                                                                                                                                                                                    |  |  |  |
| THERMV    | 15                 | 12               | 0     | Digital | Battery cell assembly condition: Pulling THERMV high to V33 before power on OZ8930 can disable ADC scan during battery assembly. Need to remove the pull-high after assembly.  Normal condition: External thermal sensor driver voltage                                                                                                                                                                                                                                                                      |  |  |  |
| THERM1    | 16                 | 13               | I     | Digital | External Temperature Sensor1 Input                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |  |
| THERM2    | 17                 | 14               | I     | Digital | External Temperature Sensor2 Input                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |  |
| PF/ALERTN | 18                 | 15               | 0     | Digital | Permanent failure protection signal; Protection event alert signal                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |  |
| GND2      | 19                 | 16               | Power | Ground  | Chip ground                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |  |
| V18       | 20                 | 17               | Power | Power   | 1.8V power supply for internal/external device                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |  |
| V33       | 21                 | 18               | Power | Power   | 3.3V power supply for internal/external device                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |  |



| PROG/V10 | 22 | 19 | Power | Power  | OTP external program VPP power (7.5V) in OTP programming mode; 10V regulator for internal use                         |
|----------|----|----|-------|--------|-----------------------------------------------------------------------------------------------------------------------|
| CHG      | 23 | 20 | 0     | Analog | Charge MOSFET control. CHG FET ON: Sink 5uA current CHG FET OFF: High impedance                                       |
| DSG      | 24 | 21 | 0     | Analog | Discharge MOSFET control, Push-pull structure. DSG FET ON: Drive to high level 10V DSG FET OFF: Drive to low level 0V |

# **TYPICAL APPLICATION SCHEMATICS**

# Standalone Operation TSSOP24 package



Note: The Application Note "OZ8930 AN-3: Application circuits for 3~6 cells Li-ion battery pack and External MOSFET Driver " describes the typical application circuits for 3S, 4S, 5S, and 6S cells Li-Ion battery pack.



# Standalone Operation QFN24 package





# With MCU Operation TSSOP24 package





# With MCU Operation QFN24 package





# **ABSOLUTE MAXIMUM RATINGS**

Over operating free-air temperature range (unless otherwise noted)

| Supply volta  | ge range                        | VCC                                                  | -0.3V to 32V  |
|---------------|---------------------------------|------------------------------------------------------|---------------|
|               | Analog                          | SRN                                                  | -0.3V to 5.5V |
|               | Analog                          | THERM1,THERM2                                        | -0.3V to 5.5V |
| Input         | Analog                          | BATn(n=1~6)                                          | -0.3V to 32V  |
| iliput        | Analog                          | BAT(n)-BAT(n-1) n=2~6, BAT1-GNDA                     | -0.3V to 32V  |
|               | Analog                          | SCRL                                                 | -0.3V to 32V  |
|               | Analog                          | WKUP                                                 | -0.3V to 5.5V |
|               |                                 |                                                      |               |
|               | Analog                          | CHG (5uA sink current)                               | -0.3V to 32V  |
| Output        | Analog                          | THERMV (power supply for temperature sense resistor) | -0.3V to 5.5V |
| Output        | Analog                          | DSG                                                  | -0.3V to 32V  |
|               | Digital                         | PF/ALERTN                                            | -0.3V to 5.5V |
| ESD Tolera    | nce                             | Human Body Model (HBM)                               | 2KV           |
| I/O           | Digital                         | EFETC, SDA, SCL/RSTN                                 | -0.3V to 5.5V |
| Operating fre | ee-air temper                   | ature range, TA                                      | -40℃ to 85℃   |
| Storage tem   | Storage temperature range, Tstg |                                                      | -55℃ to 150℃  |
| Lead temper   | rature(solderii                 | ng, 10 sec)                                          | 300℃          |

Note 1: All voltages are with respect to ground of this device except BATn - BAT(n-1), where n=2, 3, 4, 5, 6 cell

Note 2: Ground refers to common node of GND1, GND2

# **DISSIPATION RATINGS**

| PACKAGE | T <sub>A</sub> ≤25°C<br>POWER RATING | DERATING FACTOR ABOVE T <sub>A</sub> ≥70°C | T <sub>A</sub> =85°C<br>POWER RATING | T <sub>A</sub> =100°C<br>POWER RATING |
|---------|--------------------------------------|--------------------------------------------|--------------------------------------|---------------------------------------|
| QFN24   | 1080mW                               | 21mW/°C                                    | 842mW                                | 526mW                                 |
| TSSOP24 | 1333mW                               | 25mW/°C                                    | 1000mW                               | 625mW                                 |



# **RECOMMENDED OPERATING CONDITIONS**

| Parameter                                  |                                                                      | MIN  | NOM | MAX | UNIT |
|--------------------------------------------|----------------------------------------------------------------------|------|-----|-----|------|
| VCC                                        | Supply voltage                                                       | 4.5  |     | 28  | V    |
| C <sub>REG1</sub>                          | External 3.3-V regulator capacitor                                   | 2.2  |     |     | μF   |
| I <sub>REGOUT1</sub>                       | External 3.3-V regulator output                                      |      |     | 30  | mA   |
| C <sub>REG2</sub>                          | External 10-V regulator capacitor                                    | 0.47 |     |     | μF   |
| I <sub>REGOUT2</sub>                       | External 10-V regulator output                                       |      |     | 5   | mA   |
| C <sub>REG3</sub>                          | External 1.8V regulator capacitor                                    | 0.47 |     |     | μF   |
| I <sub>REGOUT3</sub>                       | External 1.8V regulator output                                       |      |     | 2   | mA   |
| R <sub>F</sub> For Internal Bleeding       | Series input resistor at the BATn pin, n=2 to 6 (see <b>Note 1</b> ) |      | 100 |     | Ω    |
| R <sub>F</sub> For<br>External<br>Bleeding | Series input resistor at the BATn pin, n=1 to 6                      |      | 300 |     | Ω    |
| C <sub>F</sub>                             | Input filter capacitor at the BATn pin, n=1 to 6                     |      | 0.1 |     | μF   |
| f <sub>I²C</sub>                           | I <sup>2</sup> C Bus Operating Frequency                             |      | 100 |     | kHz  |
| T <sub>OPR</sub>                           | Operating free-air temperature                                       | -40  |     | 85  | °C   |

**Note 1:**  $200\Omega$  is recommended for the series input resistor at the BAT1 pin.

# **ELECTRICAL CHARACTERISTICS**

The test conditions are Vcc=24V,  $T_A$ =25°C, 85°C respectively; and all time units are based on the internal 512kHz oscillator and have a  $\pm$ 10% tolerance (unless otherwise noted)

| Power Supply                       |                 |     |     |     |      |
|------------------------------------|-----------------|-----|-----|-----|------|
| Parameter                          | Test Conditions | MIN | TYP | MAX | Unit |
| Supply Voltage (VCC)               |                 | 4.5 |     | 28  | V    |
|                                    | Full Power Mode |     |     | 380 | uA   |
| Supply Current (I                  | Sleep Mode      |     |     | 45  | uA   |
| Supply Current (I <sub>VCC</sub> ) | Standby Mode    |     |     | 10  | uA   |
|                                    | Power Down      |     |     | 1   | uA   |

| Digital Inputs And Outputs   |                           |          |     |     |      |
|------------------------------|---------------------------|----------|-----|-----|------|
| Parameter                    | Test Conditions           | MIN      | TYP | MAX | Unit |
| VIH High-level Input Voltage |                           | 2        |     |     | V    |
| VIL Low-level Input Voltage  |                           |          |     | 0.8 | V    |
| VOH Output Voltage High      | I <sub>Load</sub> =-0.5mA | V3.3-0.5 |     |     | V    |
| VOL Output Voltage Low       | I <sub>Load</sub> =0.5mA  |          |     | 0.3 | V    |
| Current Drive Capability     |                           |          | 2   |     | mA   |

| 3.3V LDO Regulator                         |                                                                                                            |      |     |      |      |
|--------------------------------------------|------------------------------------------------------------------------------------------------------------|------|-----|------|------|
| Parameter                                  | Test Conditions                                                                                            | MIN  | TYP | MAX  | Unit |
| Regulator Output Voltage (Full power mode) | I <sub>Load</sub> <30mA,<br>6V <vcc<28v< td=""><td>2.97</td><td>3.3</td><td>3.63</td><td>V</td></vcc<28v<> | 2.97 | 3.3 | 3.63 | V    |



| Parameter                                                 | Test Conditions                                                                                        | MIN | TYP | MAX | Unit |
|-----------------------------------------------------------|--------------------------------------------------------------------------------------------------------|-----|-----|-----|------|
| Line Regulation (Full power mode)                         | I <sub>Load</sub> =13mA,<br>6V <vcc<28v< td=""><td></td><td>10</td><td>30</td><td>mV</td></vcc<28v<>   |     | 10  | 30  | mV   |
| Load Regulation (Full power mode)                         | 0.2mA <i<sub>load&lt;30mA<br/>Vcc=16V</i<sub>                                                          |     | 15  | 60  | mV   |
| 3.3V Current Limit (Full power mode)                      | 6V <vcc<28v< td=""><td></td><td></td><td>30</td><td>mA</td></vcc<28v<>                                 |     |     | 30  | mA   |
| Regulator Output Voltage (In Sleep Mode and Standby Mode) | I <sub>Load</sub> <150μA,<br>6V <vcc<28v< td=""><td>2.8</td><td>3.3</td><td></td><td>V</td></vcc<28v<> | 2.8 | 3.3 |     | V    |
| Current Limit (In Sleep Mode and Standby Mode)            | 6V <vcc<28v< td=""><td></td><td></td><td>150</td><td>μΑ</td></vcc<28v<>                                |     |     | 150 | μΑ   |

| Parameter                                                 | Test Conditions                                                                                           | MIN  | TYP | MAX  | Unit |
|-----------------------------------------------------------|-----------------------------------------------------------------------------------------------------------|------|-----|------|------|
| Regulator Output Voltage (Full power mode)                | I <sub>Load</sub> <2mA,<br>6V <vcc<28v< td=""><td>1.62</td><td>1.8</td><td>1.98</td><td>V</td></vcc<28v<> | 1.62 | 1.8 | 1.98 | V    |
| Line Regulation (Full power mode)                         | I <sub>Load</sub> =2mA,<br>6V <vcc<28v< td=""><td></td><td>5</td><td>20</td><td>mV</td></vcc<28v<>        |      | 5   | 20   | mV   |
| Load Regulation (Full power mode)                         | 0 <i<sub>load&lt;2mA<br/>Vcc=16V</i<sub>                                                                  |      | 5   | 30   | mV   |
| 1.8V Current Limit (Full power mode)                      | 6V <vcc<28v< td=""><td></td><td></td><td>2</td><td>mA</td></vcc<28v<>                                     |      |     | 2    | mA   |
| Regulator Output Voltage (In Sleep Mode and Standby Mode) | I <sub>Load</sub> <20μA,<br>6V <vcc<28v< td=""><td>1.62</td><td>1.8</td><td></td><td>V</td></vcc<28v<>    | 1.62 | 1.8 |      | V    |
| Current Limit (In Sleep Mode and Standby Mode)            | 6V <vcc<28v< td=""><td></td><td></td><td>20</td><td>μA</td></vcc<28v<>                                    |      |     | 20   | μA   |

| 10V LDO Regulator                          |                                                                                                          |     |     |      |      |  |  |  |
|--------------------------------------------|----------------------------------------------------------------------------------------------------------|-----|-----|------|------|--|--|--|
| Parameter                                  | Test Conditions                                                                                          | MIN | TYP | MAX  | Unit |  |  |  |
| Regulator Output Voltage (Full power mode) | I <sub>Load</sub> <5mA,<br>10V <vcc<28v< td=""><td>8.5</td><td>10</td><td>11.5</td><td>V</td></vcc<28v<> | 8.5 | 10  | 11.5 | V    |  |  |  |
| Line Regulation (Full power mode)          | I <sub>Load</sub> =3mA,<br>12V <vcc<28v< td=""><td></td><td>5</td><td>30</td><td>mV</td></vcc<28v<>      |     | 5   | 30   | mV   |  |  |  |
| Load Regulation (Full power mode)          | 0 <i<sub>load&lt;5mA,<br/>Vcc=16V</i<sub>                                                                |     | 15  | 80   | mV   |  |  |  |
| 10V Current Limit (Full power mode)        | 10V <vcc<28v< td=""><td></td><td></td><td>5</td><td>mA</td></vcc<28v<>                                   |     |     | 5    | mA   |  |  |  |
| Regulator Output Voltage (In Sleep Mode)   | I <sub>Load</sub> <50μA,<br>10V <vcc<28v< td=""><td>8.5</td><td>10</td><td></td><td>V</td></vcc<28v<>    | 8.5 | 10  |      | V    |  |  |  |
| Current Limit (In Sleep Mode)              | 10V <vcc<28v< td=""><td></td><td></td><td>50</td><td>μA</td></vcc<28v<>                                  |     |     | 50   | μA   |  |  |  |

| Multi-Channel ADC           |                        |                        |                                                  |              |          |      |
|-----------------------------|------------------------|------------------------|--------------------------------------------------|--------------|----------|------|
| Parameter                   |                        | <b>Test Conditions</b> | MIN                                              | TYP          | MAX      | Unit |
|                             | Input Voltage<br>Range |                        | -125                                             |              | 125      | mV   |
|                             | Resolution             |                        |                                                  | 14 bits      |          |      |
| Current Channel (1 channel) | Conversion Time        |                        |                                                  |              | 16       | ms   |
| (1 charmer)                 | Offset                 |                        | Auto                                             | offset cance | ellation |      |
|                             | Slope                  |                        | In operation with MCU, support slope calibration |              |          |      |

| Multi-Channel ADC                |                        |                 |                                                  |                               |          |      |
|----------------------------------|------------------------|-----------------|--------------------------------------------------|-------------------------------|----------|------|
| Parameter                        |                        | Test Conditions | MIN                                              | TYP                           | MAX      | Unit |
|                                  | Input Voltage<br>Range |                 | -0.3                                             |                               | 5        | V    |
| Walter Observed                  | Resolution             |                 |                                                  | 12 bits                       |          |      |
| Voltage Channel (6 channels)     | Conversion Time        |                 |                                                  |                               | 4.27     | ms   |
| (o onarmolo)                     | Offset                 |                 | Auto                                             | offset cance                  | ellation |      |
|                                  | Slope                  |                 |                                                  | eration with<br>rt slope cali |          |      |
|                                  | Input Voltage<br>Range |                 | 0.1                                              |                               | 2.5      | V    |
|                                  | Resolution             |                 |                                                  | 12 bits                       |          |      |
| Internal Temperature (1 channel) | Conversion Time        |                 |                                                  |                               | 4.27     | ms   |
| (1 chamici)                      | Offset                 |                 | Auto                                             | offset cance                  | ellation |      |
|                                  | Slope                  |                 |                                                  | eration with                  |          |      |
|                                  | Input Voltage<br>Range |                 | 0.1                                              |                               | 2.5      | V    |
|                                  | Resolution             |                 |                                                  | 12 bits                       |          |      |
| THERM1, THERM2                   | Conversion Time        |                 |                                                  |                               | 4.27     | ms   |
|                                  | Offset                 |                 | Auto offset cancellation                         |                               |          |      |
|                                  | Slope                  |                 | In operation with MCU, support slope calibration |                               |          |      |

| Internal Oscillator         |                 |       |     |       |      |
|-----------------------------|-----------------|-------|-----|-------|------|
| Parameter                   | Test Conditions | MIN   | TYP | MAX   | Unit |
| 512kHz Oscillator Frequency |                 | 460.8 | 512 | 563.2 | KHz  |

| Over-Current(OC) And Short-Circuit(SC) Protection (Note 1)                               |                 |         |       |                        |  |  |  |  |
|------------------------------------------------------------------------------------------|-----------------|---------|-------|------------------------|--|--|--|--|
| Parameter                                                                                | Test Conditions | MIN     | MAX   | Unit                   |  |  |  |  |
| COC Detection Threshold Range (4-bit setup); Support Low/Standard/High temperature range |                 | 2       | 80    | mV                     |  |  |  |  |
| COC Hysteresis Value                                                                     |                 | N/A     | 4     |                        |  |  |  |  |
| COC Delay Time (2-bit setup)                                                             |                 | 2       | 8     | Scan Cycle<br>(Note 2) |  |  |  |  |
| COC Detection Threshold Step                                                             |                 | Program | mable | (Note 3)               |  |  |  |  |
| COC Release Time (2-bit setup)                                                           |                 | 1       | 8     | S                      |  |  |  |  |
| DOC0 Detection Threshold Range (6-bit setup); Cover all temperature range                |                 | -285    | -30   | mV                     |  |  |  |  |
| DOC0 Detection Threshold Step                                                            |                 | 5       |       | mV                     |  |  |  |  |
| DOC0 Hysteresis Value                                                                    |                 | 20      |       | mV                     |  |  |  |  |
| DOC0 accuracy                                                                            | DOC0 <80mV      |         | 3.5   | mV                     |  |  |  |  |
| DOC0 Delay Time (4-bit setup)                                                            |                 | 2       | 16000 | ms                     |  |  |  |  |
| DOC0 Release Time (2-bit setup)                                                          |                 | 1       | 4     | S                      |  |  |  |  |



| Parameter                                                                 | Test Conditions | MIN                                                | MAX    | Unit |
|---------------------------------------------------------------------------|-----------------|----------------------------------------------------|--------|------|
| DOC1 Detection Threshold Range (6-bit setup); Cover all temperature range |                 | -620                                               | -50    | mV   |
| DOC1 Detection Threshold Step                                             |                 | 10                                                 |        | mV   |
| DOC1 Hysteresis Value                                                     |                 | 30                                                 |        | mV   |
| DOC1 accuracy                                                             | DOC1 < 80mV     |                                                    | 7.5    | mV   |
| DOC1 Delay Time (4-bit setup)                                             |                 | 32                                                 | 256000 | ms   |
| DOC1 Release Time (2-bit setup)                                           |                 | 4                                                  | 16     | S    |
| SC Detection Threshold Range                                              |                 | Pack- voltage<br>system g<br>0.95V±0.3<br>programi |        |      |
| SC Hysteresis Value                                                       |                 | N/A                                                |        |      |
| SC Delay Time (2-bit setup)                                               |                 | 0                                                  | 1      | ms   |
| SC Release Time (2-bit setup)                                             |                 | 8                                                  | 32     | S    |

Note 1: When DOC0/DOC1 thresholds are larger than 80mV, the error is +/- 4%.

**Note 2**: In current measurement mode, the scan cycle will be 55ms; In non-current measurement mode, the scan cycle will be 39ms.

Note 3: Refer to the Over-current (OC) section.

| Over-Voltage(OV) And Under-Voltage(UV) Protection                               |                |                              |                            |                                |            |  |  |  |  |
|---------------------------------------------------------------------------------|----------------|------------------------------|----------------------------|--------------------------------|------------|--|--|--|--|
| Parameter                                                                       | Test Condition | MIN                          | TYP                        | MAX                            | Unit/step  |  |  |  |  |
| OV Detection Threshold Value;<br>Support Low/Standard/High<br>temperature range |                | 12bits pr                    | 12bits programmable (0-5V) |                                |            |  |  |  |  |
| OV Release Value (6-bit setup)                                                  |                | OV<br>Threshold<br>- 312.3mV |                            | OV<br>Threshold                |            |  |  |  |  |
| OV Delay Time (2-bit setup)                                                     |                | 2                            |                            | 16                             | Scan Cycle |  |  |  |  |
| OV Release Time                                                                 |                | same                         | as OV dela                 | y time                         |            |  |  |  |  |
| UV Detection Threshold Value                                                    |                | 12bits pr                    | ogrammabl                  | e (0-5V)                       | V          |  |  |  |  |
| UV Release Value (6-bit setup)                                                  |                | UV<br>Threshold              |                            | UV<br>Threshold<br>+<br>1210mV |            |  |  |  |  |
| UV Delay Time (2-bit setup)                                                     |                | 2                            |                            | 16                             | Scan Cycle |  |  |  |  |
| UV Release Time                                                                 |                | same                         | as UV dela                 | y time                         | Scan Cycle |  |  |  |  |

| Cell Voltage Unbalance (UB) Prote | ection         |                              |     |                 |            |
|-----------------------------------|----------------|------------------------------|-----|-----------------|------------|
| Parameter                         | Test Condition | MIN                          | TYP | MAX             | Unit/step  |
| UB Detection Threshold Value      |                | 12bits programmable (0-5V)   |     |                 |            |
| UB Release Value (4-bit setup)    |                | UB<br>Threshold<br>- 312.3mV |     | UB<br>Threshold |            |
| UB Delay Time (2-bit setup)       |                | 2                            |     | 8               | Scan Cycle |
| UB Release Time                   |                | same as UB delay time Scan C |     |                 | Scan Cycle |



| Permanent failure (OVPF, CELL_O         | Permanent failure (OVPF, CELL_OTPF, FET_OTPF, INT_OTPF, ADC_PF) Protection |                                  |            |             |            |  |  |
|-----------------------------------------|----------------------------------------------------------------------------|----------------------------------|------------|-------------|------------|--|--|
| Parameter                               | Test Conditions                                                            | MIN                              | TYP        | MAX         | units/step |  |  |
| OVPF Threshold Range                    |                                                                            | 100mV larg according temperature | to Low/Sta | ındard/High |            |  |  |
| OVPF Delay Time (Not programmable)      |                                                                            |                                  | 8          |             | Scan Cycle |  |  |
| CELL_OTPF Threshold Range               |                                                                            | 12bits                           | s programm | nable       | (Note 1)   |  |  |
| CELL_OTPF Delay Time (Not programmable) |                                                                            |                                  | 8          |             | Scan Cycle |  |  |
| FET_OTPF Threshold Range                |                                                                            | 12bits                           | s programm | nable       | (Note 1)   |  |  |
| FET_OTPF Delay Time (Not programmable)  |                                                                            |                                  | 8          |             | Scan Cycle |  |  |
| INT_OTPF Threshold Range                |                                                                            | 12bits                           | s programm | nable       | 1°C /2.1mV |  |  |
| INT_OTPF Delay Time (Not programmable)  |                                                                            | 8                                |            | Scan Cycle  |            |  |  |
| ADC_PF Threshold Range                  |                                                                            |                                  | (Note 2)   |             |            |  |  |
| ADC_PF Delay Time                       |                                                                            |                                  | (Note 2)   |             |            |  |  |

Note 1: Depends on external temperature sensor characteristics, refer to the section External Temperature

<u>Sensor</u>. **Note 2:** Refer to the section <u>Permanent failure (PF)</u>.

| External Thermal Protection (OT & UT) |                        |                       |                              |          |            |  |  |  |
|---------------------------------------|------------------------|-----------------------|------------------------------|----------|------------|--|--|--|
| Parameter                             | <b>Test Conditions</b> | MIN                   | TYP                          | MAX      | Unit/Step  |  |  |  |
| OT Detection Threshold value          | Charge                 | 12bits                | Programm                     | able     | (Note1)    |  |  |  |
| Of Detection Theshold value           | Discharge              | 12bits                | Programm                     | able     | (Note I)   |  |  |  |
| OT Detection release Bange            | Charge                 | 4bits Prog            | rammable;                    | (Note 1) | (Note1)    |  |  |  |
| OT Detection release Range            | Discharge              | 4bits Prog            | 4bits Programmable; (Note 1) |          |            |  |  |  |
| OT Delay Time (2-bit setup)           |                        | 2                     |                              | 8        | Scan Cycle |  |  |  |
| OT Release Time                       |                        | same a                | s OT delay                   | time     |            |  |  |  |
| UT Detection Threshold Value          |                        | 12bits                | Programm                     | able     | (Note 2)   |  |  |  |
| UT Detection Release Value            |                        | 12bits Programmable   |                              |          | (Note 2)   |  |  |  |
| UT Delay Time                         |                        | same as OT delay time |                              |          |            |  |  |  |
| UT Release Time                       |                        | same a                | as OT delay                  | time     |            |  |  |  |

Note 1: Refer to the section <u>Thermal Protection (OT and UT)</u>.

Note 2: Depends on external temperature sensor characteristics, refer to the section <u>External Temperature</u> Sensor.

| Power MOSFET Driver Circuit                    |                        |     |     |      |      |  |  |
|------------------------------------------------|------------------------|-----|-----|------|------|--|--|
| Parameter                                      | <b>Test Conditions</b> | MIN | TYP | MAX  | Unit |  |  |
| CHG on, sink current (constant current source) |                        |     | 5   |      | uA   |  |  |
| CHG off, no sink current (high impedance)      |                        |     | 0   |      | uA   |  |  |
| DSG high level                                 |                        | 8.5 | 10  | 11.5 | V    |  |  |
| DSG low level                                  |                        | 0   |     | 0.5  | V    |  |  |



# **AC TIMING**

# I<sup>2</sup>C Bus Timing



|        |                                                                                             | Lir | nits |       |            |
|--------|---------------------------------------------------------------------------------------------|-----|------|-------|------------|
| Symbol | Parameter                                                                                   | Min | Max  | Units | Note       |
| FSMB   | I <sup>2</sup> C Bus Operating Frequency                                                    | 10  | 400  | KHz   |            |
| tO     | Bus free time between Stop and Start condition                                              | 1.3 | -    | μS    |            |
| t1     | Hold time after (Repeated) Start condition. After this period, the first clock is generated | 0.6 | -    | μЅ    |            |
| t2     | Repeated Start condition set up time                                                        | 0.6 |      | μS    |            |
| t3     | Stop Condition setup time                                                                   | 0.6 | -    | μS    |            |
| t4     | Data hold time                                                                              | 150 | -    | ns    |            |
| t5     | Data setup time                                                                             | 100 | -    | ns    |            |
| TIMOUT |                                                                                             | 25  | 35   | ms    | See Note 1 |
| t6     | Clock low period                                                                            | 1.3 | -    | μS    |            |
| t7     | Clock high period                                                                           | 0.6 |      | μS    |            |
| tF     | Clock/Data Fall time                                                                        | -   | 300  | ns    | See Note 2 |
| tR     | Clock/Data Rise Time                                                                        | -   | 300  | ns    | See Note 2 |

Note 1: A device will be timeout when any clock low duration exceeds this value.

Note 2: Rise and Fall times are measured between 10% and 90% of the signal amplitude.



## **FUNCTIONAL DESCRIPTION**

# OZ8930 Power-Up Sequence

Fig.1 shows the OZ8930 power up sequence. When power supply is applied to VCC>4.5V, the common bias starts first, followed by 1.8V, 3.3V and 10V regulators. When V3.3>2.4V, the power on reset block generates POR signal to enable the 512K oscillator and initializes the digital section. When power and clock are ready, the digital circuits will read the pin configuration and OTP data, which in turn determines the working state.

If ADC scan conditions are satisfied, OZ8930 will start the ADC scan and work in full power mode, otherwise OZ8930 will stay in the assembly state.

When VCC is lower than 4.5V, OZ8930 is in power off status. All Regulators (V1.8, V3.3 and V10) are disabled and all MOSFETs are off.

### **Reset Generation**

In OZ8930, there are 3 system reset methods: one is power on reset when V3.3>2.4V; the second reset is generated when the bits in Operation Register 13h don't meet the parity check requirement. The third reset is generated when the voltage level on pin SCL/RSTN is low and persists for 64ms. MCU or software utility can reset OZ8930 by simply writing Operation Register 13h of OZ8930 with a binary value which doesn't meet the parity check requirement.



Figure 1: OZ8930 Power-Up Sequence



# **OTP and Operation Registers**

OZ8930 has two types of registers. One type is Operation Registers, the other type is embedded OTP (One-Time-Programmable) Registers. Software can directly access OZ8930's Operation Registers via I<sup>2</sup>C bus, and access the OTP Registers indirectly through Operation Registers.

OTP Registers are used to store important battery pack, battery cell protection parameters which are used to configure the OZ8930 chip. When system is powered on, some of the data in OTP Registers are loaded into the Operation Registers respectively. Operation Registers are also used to store the ADC instant data, OZ8930 status information, and some parameters to control OZ8930 state-machine, etc. In the software mode, the Host MCU can also configure the chip by writing the Operation Registers through I<sup>2</sup>C.

# Measurements

OZ8930's multi-channel ADC (as shown in Figure 2) measures up to 6 cells' voltages, current, internal temperature and external temperature based on cyclic scan and time slot method. It can periodically measure all these values by predefined scan rate or use trigger scan function by setting the register bit through the I<sup>2</sup>C. In one measurement period, cell voltages, current, temperatures etc will be measured one by one in different time slot.

# **ADC Scan Operation**

There are two ADC scan modes: current measurement mode and non-current measurement mode, which can be programmed by **currt\_scan** (bit 4 of OTP Register 13h, mapped to Operation Registers).

- Current measurement mode
  - 6 channels cell voltage measurement
  - 1 channel internal temperature measurement
  - 2 channels external temperature measurement
  - 1 channel current measurement (14 bits)
  - Maximum scan cycle time: 55ms
- Non-current measurement mode
  - 6 channels cell voltage measurement
  - 1 channel internal temperature measurement
  - 2 channels external temperature measurement
  - Maximum scan cycle time: 39ms



Figure 2: Multi-Channel ADC



# **ADC Channel Description**

#### a. Cell Voltage Channel (3~6 channels)

These channels are designed for cell voltage measurement.

Resolution: 12bits (signed)
Input Voltage Range: -0.3V~5.0V

Auto offset cancellation

Slope calibration can be implemented in software mode for better accuracy.

#### b. Internal Temperature (1 channel)

This channel is designed for internal temperature sensor.

Resolution: 12bits (signed)
Input Voltage Range: 0.1V~2.5V

Auto offset cancellation

Slope calibration can be implemented in software mode for better accuracy.

#### c. GPIO Channel (2 channels)

GPIO Pin THERM1 and THERM2 can be configured for external temperature sensors or other analog input in software mode.

Resolution: 12bits (signed)
Input Voltage Range: 0.1V~2.5V

Auto offset cancellation

Slope calibration can be implemented in software mode for better accuracy.

#### d. Current measurement channel

This is a dedicated channel to measure the current across the sense resistor during charging and discharging for charge over current detection, coulomb counting or other purpose.

Resolution: 14-bit (signed)

Input Voltage Range: ± 125mV (LSB: 15.3μV)

Auto offset cancellation

Slope calibration can be implemented in software mode for better accuracy.

Note: Please refer to the application note "OZ8930 AN-6: Resolution and Accuracy of OZ8930 Cell Voltage, Current and Temperature Measurement and accuracy of OC/SC Protection" for offset cancellation technique and high accuracy measurement.

#### **ADC Self-Diagnostic**

OZ8930 will do ADC self-diagnostic in the 1st scan cycle after reset; it also will do ADC self-diagnostic in the 4th scan cycle after wakeup by 1min/4min sleep timer. In the ADC self-diagnostic cycle, the following ADC channels will be checked.

- cell1 offset (12-bit ADC)
- cell2 offset (12-bit ADC)
- cell3 offset (12-bit ADC)
- cell4 offset (12-bit ADC)
- cell5 offset (12-bit ADC)
- cell6 offset (12-bit ADC)
- cell6 high-side offset (12-bit ADC)
- TM1 offset (12-bit ADC)
- TM2 offset (12-bit ADC)
- current offset (14-bit ADC)
- reference 1.8v (12-bit ADC) (It is for digital power and fully independent with ADC voltage reference)

The offset detection path includes MUX switches, level shift and buffer blocks, the ADC block and reference voltage. The ideal offset value should be "0", however, if some fatal error occurs at the real signal path, big offset will happen. OZ8930 will accept the offset errors as listed below.

- between -100mV and 100mV for cell voltage offset
- between -100mV and +100mV for TM1 and TM2 offset
- between -20mV and 20mV for current offset

between -200mV and 200mV for reference 1.8V

That is, during ADC self-diagnostic cycle, if either cell voltage offset exceed +/-100mV, AND/OR TM1, TM2 offset exceed +/- 100mV, AND/OR 1.8V reference reading's error exceed +/- 200mV (less than 1600mV or larger than 2000mV), AND/OR current offset exceed +/-20mV, OZ8930 will treat the ADC as abnormal and the internal ADC\_PF counter will increase by one. If in next ADC self-diagnostic cycle, any abnormal condition of ADC also occurs, the internal ADC\_PF counter will increase by one again. Else, the internal ADC\_PF counter will be cleared. Not until the internal ADC\_PF counter reaches the predefined value in the ADC\_PF delay timer (bit [2:0] of OTP Register 1dh, customer can disable the ADC self-diagnostic (000), or programmed as 2 ~ 8 times delay count), will OZ8930 issue an ALERTN to external MCU, and then enter into standby mode. (Refer to the application note "OZ8930 AN-9: OZ8930 ADC self-diagnostic mechanism")

# **ADC Automatic Scan and Trigger Scan function**

OZ8930 has two ADC scan methods selected by **auto\_scan** (bit 5 of OTP Register 13h, mapped to Operation Registers). When **auto\_scan** = "1", OZ8930 selects auto scan in which ADC scan is automatically processed each scan cycle; when **auto\_scan** = "0", selects trigger scan in which ADC scan is processed one time triggered by writing "1" into **soft\_scan\_req** (bit 5 of Operation Register 01h) when **soft\_enable** (bit 7 of Operation Register 08h) is "1". To enable the ADC scan, OZ8930 needs to meet the following conditions:

- (a) Not in OTP mode
  In OTP mode, the ADC scan is disabled for software OTP access .
- (b) Auto\_Scan bit = "1"
  When auto\_scan = "1", OZ8930 selects auto scan mode; when auto\_scan = "0", select trigger scan mode
- (c) User\_freeze ((bit 7 of OTP Register 1fh, mapped to Operation Register) = "1")
  When user\_freeze is "1" indicating the user parameters are ready, the ADC scan is enabled.
- (d) Input voltage level of pin THERMV != "1" for 16-clocks (256 kHz)

To avoid unexpected protection error, it is needed to disable the ADC scan in battery assembly by keeping THERMV as "1". After battery assembly, the ADC scan can be started by driving "0" on pin THERMV.

OZ8930 provides 2 solutions to avoid unexpected protection error during battery assembly:

- Disable ADC scan in battery assembly. This can be implemented by pulling the pin THERMV to V33 before power on OZ8930. After getting power, OZ8930 will detect the voltage level at the pin THERMV before starting ADC scan. If it is "1", OZ8930 will not start ADC scan.
- Provide a PF delay mechanism in the assembly. To avoid unexpected OVPF detection in battery
  assembly, the OVPF detection will be ignored for 32 or 64 seconds (selected by bit 3 of OTP Register
  1dh) after power on reset.

# Time Slots Configuration ADC Normal Scan Time Slot



Note 1: the time slot's length is not in scale.

Note 2: max cell can be cell3, cell4, cell5 or cell6.

Note 3: IT indicates 12-bit internal temperature channel.

Note 4: GP1 indicates 12-bit THERM1 channel; GP2 indicates 12-bit THERM2 channel.

**Note 5:** THERM1, THERM2 and current channel are optional (Configured in OTP Registers). When any one of them is not used, the time slot for it will be removed. However, the idle time slot will be increased accordingly to keep the ADC scan cycle to be about 39ms (Non-current measurement mode) or 55ms (current measurement mode).



#### **ADC Self-Diagnostic Time Slot**



**Note 1:** in ADC self-diagnostic cycle, the time slots for THERM1, THERM2 and current channel always exist, no matter whether the channels are used. The sampled current signal is the internal 0v voltage level, and the sampled temperature signals is still THERM1 and THERM2 (THERMV is 0v at this moment).

#### **ADC 12-bit Current Time Slot**

After entering sleep mode, OZ8930 will wakeup by 2-s current measurement timer to check the current charge/discharge state by checking 12-bit current ADC value (It is noted that the 12-bit data will be left shifted 2 bit to store into the 14-bit current ADC register, so the LSB still is the same as the one of 14-bit ADC current data). If the charge current or discharge current (the thresholds are same as the ones in the full power mode) is detected, the chip will be woken up and kept in full power mode. The time slot for 12-bit current ADC is as following:



#### **Cell Balance**

OZ8930 has integrated internal bleeding function for cell balance. Bleeding occurs during charging process or in idle state and the start bleeding voltage point is programmable (12 bits in OTP Registers 3ch and 3dh), the bleeding current is around 15mA. This function can also be used to support external bleeding by adding some extra components (Figure 3). Balance accuracy can be configured within the range 9.76mV~39mV (2 bits in bit [1:0] of OTP Register 1eh). Please refer to the application note "OZ8930 AN-4: External Bleeding Application" for detail of external bleeding.



Fig.3 External Bleeding Diagram

# **Battery Protection**

OZ8930 includes a digital Battery Protection Engine (BPE), which can operate independently. The BPE constantly monitors data from the ADC and other protection circuits. If a protection error condition is detected and persists for certain time, the BPE will force the charge and/or discharge MOSFET off. The protection mechanism is to support the requirement of JEITA (Figure 4). If some vital safety condition occurs, such as extremely high cell voltage (OVPF), the BPE will assert the Permanent failure (PF) signal to instruct an optional external fuse circuit to permanently disable the battery pack. If working with MCU, OZ8930 provides an exclusive pin ALERTN to inform MCU while switching off the protection power MOSFET when error condition happens.



Source: A Guide to the Safe Use of Secondary Lithium Ion Batteries in Notebook-type Personal Computers April 20, 2007 (Japan Electronics and Information Technology Industries Association And Battery Association of Japan.)

Fig.4 JEITA Safety Battery User Guideline

| Parameter         | Description                                                                  | Value                                                                   |
|-------------------|------------------------------------------------------------------------------|-------------------------------------------------------------------------|
| JEITA Protection  | JEITA Protection Parameter                                                   |                                                                         |
| T1MinChgTemp      | JEITA T1 Minimum Temperature Allowed threshold of Low Temperature Range      | 12 bits setting (OTP Registers 20h, 21h)                                |
| T2StdChgTemp      | JEITA T2 Starting Temperature point of Standard Temperature Range            | 12 bits setting (OTP<br>Registers 24h, 25h)                             |
| T3MaxChgStartTemp | JEITA T3 Maximum Temperature point of Standard Temperature Range             | 12 bits setting (OTP<br>Registers 26h, 27h)                             |
| T4MaxChgTemp      | JEITA T4 Maximum Temperature Charging point of High Temperature Range        | 12 bits setting (OTP<br>Registers 28h, 29h)                             |
| HighTempChgOV     | Charge OV Voltage protection threshold in high Temperature Range (T3-T4)     | 12 bits setting (OTP Registers 30h, 31h)                                |
| StdTempChgOV      | Charge OV Voltage protection threshold in standard Temperature Range (T2-T3) | 12 bits setting (OTP Registers 2eh, 2fh)                                |
| LowTempChgOV      | Charge OV Voltage protection threshold in low Temperature Range (T1-T2)      | 12 bits setting (OTP Registers 2ch, 2dh)                                |
| HighTempChgOC     | Charge OC Current protection threshold in high Temperature Range (T3-T4)     | 0-80mV/Rs, 4 bits<br>setting (bit [7:4] of<br>OTP Registers 16h)        |
| StdTempChgOC      | Charge OC Current protection threshold in standard Temperature Range (T2-T3) | 0-80mV/Rs, 4 bits<br>setting (bit [7:4] of<br>OTP Registers 15h)        |
| LowTempChgOC      | Charge OC Current protection threshold in low Temperature Range (T1-T2)      | 0-80mV/Rs, 4 bits<br>setting (bit [3:0] of<br>OTP Registers 15h)        |
| CellUV            | Discharge UV Voltage protection threshold in all temperature range           | 12 bits setting (OTP Registers 34h, 35h)                                |
| DsgOC             | Discharge OC Current protection threshold in all temperature range           | 3 levels Discharge<br>Over-Current<br>protection (DOC0,<br>DOC1 and SC) |
| DsgOT             | Discharge Over Temperature protection threshold                              | 12 bits setting (OTP Registers 2ah, 2bh)                                |



## Over-current (OC)

OZ8930 includes two levels of discharge over-current protection and one level of charge over-current protection. OZ8930 also embeds SC protection function as the third level discharge over-current protection.

#### **OC Protection Setting**

OZ8930 includes an independent hardware over-current detector that monitors the voltage drop on the current sense resistor to detect over-current in discharge state. In charge state, OZ8930 uses the measured current value from ADC to compare with the pre-defined threshold, and then decide if over-current occurs. If the over-current condition continues for a pre-programmed delay, the protection circuit will turn off the charge and discharge MOSFETs.

The charge and discharge over-current thresholds are programmable in OTP registers. The over-current delay allows the system to momentarily accept a high current condition. The delay time is also programmable.

|               | programmable. |                                                                                                                                                           |  |  |
|---------------|---------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| OC Value      | coc           | <ul> <li>Support COC protection in Low/Standard/High temperature range respectively to meet JEITA requirement</li> <li>4 bits setting (Note 1)</li> </ul> |  |  |
| OC value      | DOC0          | OTP Control. Min: 30nV; Max: 285mV; Step: 5mV; Cover all temperature range                                                                                |  |  |
|               | DOC1          | OTP Control. Min: 50mV; Max: 620mV; Step: 10mV; Cover all temperature range                                                                               |  |  |
| Lluck         | COC           | N/A                                                                                                                                                       |  |  |
| value         | DOC0          | 10mV                                                                                                                                                      |  |  |
|               | DOC1          | 20mV                                                                                                                                                      |  |  |
|               | coc           | 2 bits delay time setting (bit [1:0] of OTP Register 16h): 2, 4, 6, 8 scan cycles                                                                         |  |  |
| Delay<br>Time | DOC0          | 4 bits delay time setting (bit [3:0] of OTP Register 18h) with the range of 2ms-16s                                                                       |  |  |
|               | DOC1          | 4 bits delay time setting (bit [3:0] of OTP Register 1ah) with the range of 32us-256ms                                                                    |  |  |
|               | COC           | 2 bits timer release control (bit [3:2] of OTP Register 16h). 00: 1s; 01: 2s; 10: 4s; 11: 8s                                                              |  |  |
| Release       | DOC0          | 2 bits control (bit [5:4] of OTP Register 18h). 00: external release; 01: 1s; 10: 2s; 11: 4s                                                              |  |  |
|               | DOC1          | 2 bits control (bit [5:4] of OTP Register 1ah). 00: external release; 01: 4s; 10: 8s; 11: 16s                                                             |  |  |

Note 1: the COC threshold can be set as the following table:

| 4-bit COC threshold setting | charge over current threshold |
|-----------------------------|-------------------------------|
| 4'b0000                     | 2mV (0.8A@2.5mohm)            |
| 4'b0001                     | 4mV (1.6A@2.5mohm)            |
| 4'b0010                     | 6mV (2.4A@2.5mohm)            |
| 4'b0011                     | 8mV (3.2A@2.5mohm)            |
| 4'b0100                     | 10mV (4.0A@2.5mohm)           |
| 4'b0101                     | 12mV (4.8A@2.5mohm)           |
| 4'b0110                     | 16mV (6.4A@2.5mohm)           |
| 4'b0111                     | 20mV (8.0A@2.5mohm)           |
| 4'b1000                     | 24mV (9.6A@2.5mohm)           |
| 4'b1001                     | 28mV (11.2A@2.5mohm)          |
| 4'b1010                     | 32mV (12.8A@2.5mohm)          |
| 4'b1011                     | 40mV (16A@2.5mohm)            |
| 4'b1100                     | 48mV (19.2A@2.5mohm)          |
| 4'b1101                     | 56mV (22.4A@2.5mohm)          |
| 4'b1110                     | 64mV (25.6A@2.5mohm)          |
| 4'b1111                     | 80mV (32A@2.5mohm)            |

#### Short-circuit (SC)

Short circuit detection is to independently sense the PACK- voltage when discharge MOSFET is on. When short circuit condition is detected, OZ8930 will turn off charge and discharge MOSFETs. Short circuit delay time and release time are programmable.



| SC threshold     | Pack- voltage higher than system ground 0.95V±300mV                                                                      |
|------------------|--------------------------------------------------------------------------------------------------------------------------|
| Hysteresis Value | N/A                                                                                                                      |
| Delay Time       | 2 bits control (bit [1:0] of OTP Register 1bh). "00": 0, immediately (nature delay); "01": 128us; "10": 512us; "11": 1ms |
| Release          | 2 bits control (bit [3:2] of OTP Register 1bh). "00": external release; "01": 8s; "10":16s; "11": 32s                    |



**Fig.5 Current Protection Chart** 

| Transition | Initial<br>State  | Condition & Action                                                                                                                                                                                                                                                                                       | Final State    |
|------------|-------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|
| 1          | Normal<br>Current | <ul> <li>OC event occurs (charge or discharge current ≥ respective OC threshold &amp; delay timer expires);</li> <li>Switch off charge and discharge FETs;</li> <li>Start release timer if timer release is chosen;</li> <li>Timer release circuit or external release circuit starts to work</li> </ul> | Over Current   |
| 2          | Over<br>Current   | <ul> <li>DOC0/DOC1: release timer expires or external release condition is satisfied;</li> <li>COC: release timer expires;</li> <li>Switch on charge and discharge FETs if no other protection events occur</li> </ul>                                                                                   | Normal Current |
| 3          | Normal<br>Current | <ul> <li>SC event occurs (PACK- voltage is higher than the threshold &amp; delay timer expires);</li> <li>Switch off charge and discharge FETs;</li> <li>Start release timer if timer release is chosen;</li> <li>Timer release circuit or external release circuit starts to work</li> </ul>            | Short Circuit  |
| 4          | Short<br>Circuit  | <ul> <li>Release timer expires or external release condition is satisfied;</li> <li>Switch on charge &amp; discharge FETs if no other protection events occur;</li> </ul>                                                                                                                                | Normal Current |

## Over-voltage (OV)

The protection engine performs over-voltage detection by comparing 12 bits values of cell voltage data from the ADC with an OV threshold, which is programmable in OTP. When over-voltage condition is detected, OZ8930 will turn off the charge FET after a delay time. This delay time is programmable in OTP.

| OV Threshold       | Support OV protection in Low/Standard/High temperature range respectively (12 bits)                                                                                                            |
|--------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| OV Delay Time      | 2 bits control: 2, 4, 8, 16 scan cycles (bit [1:0] of OTP Register 1ch)                                                                                                                        |
| Release Value      | OV release = ov_threshold+ov_hys*4; ov_hys is controlled by 6 bits (bit [5:0] of OTP Register 3eh), 1 LSB=2.44*4mV; theoretical range: -312.3mV ~ +302.56mV, application range: -312.3mV ~ 0mV |
| Release Delay Time | Same as OV delay time                                                                                                                                                                          |



## **Under-voltage (UV)**

Under-voltage detection operates in the same way as over-voltage detection. Its threshold also can be programmed in OTP.

| UV Threshold       | 12 bits                                                                                                                                                                                    |
|--------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| UV Delay Time      | 2 bits control: 2, 4, 8, 16 scan cycles (bit [7:6] of OTP Register 1dh)                                                                                                                    |
| Release Value      | UV release = uv_threshold+uv_hys*16; uv_hys is controlled by 6 bits (bit [5:0] of OTP Register 3fh), 1 LSB=2.44*16mV; theoretical range: -1249mV ~ +1210mV, application range: 0 ~ +1210mV |
| Release Delay Time | Same as UV delay time                                                                                                                                                                      |



Fig.6 Voltage Protection Chart

| Transition | Initial State  | Condition & Action                                                                                                                                                                                           | Final State    |
|------------|----------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|
| 1          | Normal Voltage | <ul> <li>OV event occurs (V<sub>CELL</sub> ≥ OV threshold &amp; delay timer expires);</li> <li>Switch off charge FET</li> </ul>                                                                              | Over Voltage   |
| 2          | Over Voltage   | <ul> <li>OV event clears (V<sub>CELL</sub> ≤ OV release voltage and delay timer expires);</li> <li>Switch on charge FET if no other protection events occur</li> </ul>                                       | Normal Voltage |
| 3          | Normal Voltage | <ul> <li>UV event occurs (V<sub>CELL</sub> ≤ UV threshold &amp; delay timer expires);</li> <li>Switch off discharge FET</li> <li>Start up the charger detection function</li> </ul>                          | Under Voltage  |
| 4          | Under Voltage  | <ul> <li>UV event clears (V<sub>CELL</sub> ≥ UV release voltage and delay timer expires);</li> <li>Charge on signal detected</li> <li>Switch on discharge FET if no other protection events occur</li> </ul> | Normal Voltage |
| 5          | Under Voltage  | <ul> <li>Stay in Under Voltage state for 1 minute AND no<br/>Charge on signal AND no charge current</li> <li>Switch off charge and discharge FET</li> </ul>                                                  | Power Down     |
| 6          | Power Down     | <ul> <li>Charge on signal detected</li> <li>Switch on charge and discharge FET if no other protection events occur</li> </ul>                                                                                | Normal Voltage |

When UV happens, it is required that the power consumption of OZ8930 is reduced to be the least to protect battery cells from extremely over-discharge. So OZ8930 will enter Power Down Mode if the following condition is satisfied.

In UV state and persists for 1 minute



- AND No charge on signal
- AND No charge current

## Cell voltage Unbalance (UB)

When voltage difference between cells is larger than the preset value (12 bits programmable in OTP Registers 32h, 33h) for a predefined delay time (bit [5:4] in OTP Register 1ch), OZ8930 will turn off the charge and discharge MOSFET. This function can be used to detect the fault of the cell voltage sense wire disconnection. When one or more cells' wires are disconnected, the sensed cells' voltage difference will be larger than 1.2V. (Please refer to the application note "OZ8930 AN-5: Unbalance and Wire disconnection Detection and Protection" for detail.)

| detinious distribution and reconstruction for detain. |                                                                                                                      |  |  |  |
|-------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|--|--|--|
| UB value                                              | 12 bits programmable (OTP Registers 32h and 33h)                                                                     |  |  |  |
| UB delay                                              | 2 bits Control (bit [5:4] of OTP Register 1ch): 2, 4, 6, 8 scan cycles                                               |  |  |  |
|                                                       | ub_release = ub+ub_rl_delta*16; ub_rl_delta is controlled by 4 bits (bit [3:0] of OTP Register 32h), 1 LSB=2.44*16mV |  |  |  |
| Release Delay Time                                    | Same as UB delay                                                                                                     |  |  |  |

## Thermal Protection (OT and UT)

There are 2 types of temperature protections, cell temperature protection and MOSFET temperature protection. Cell temperature protection includes OT, OTPF and UT protection while MOSFET temperature protection just includes OT or OTPF protection (configured by bit 7 of OTP Register 1ch). Therm1 channel is always used to monitor cell temperature. However, therm2 can be used to monitor cell or MOSFET temperature (configured by bit 6 of OTP Register 1ch). In charge, discharge or idle state, UT event will only make charge MOSFET off.

OZ8930 supports separate OT protection threshold settings and OT release threshold settings for charge state and discharge state.

Cell over-temperature protection:

| Sell Over-rell     | eli over-terriperature protection. |                                                                                                                                         |  |  |  |
|--------------------|------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| OT Value           | Charge                             | 12 bits programmable (OTP Registers 28h and 29h)                                                                                        |  |  |  |
|                    | Discharge                          | 12 bits programmable (OTP Registers 2ah and 2bh)                                                                                        |  |  |  |
| OT Delay Time      |                                    | 2 bits control (bit [3:2] of OTP Registers 1ch): 2, 4, 6, 8 scan cycles                                                                 |  |  |  |
| Release<br>Value   | Charge                             | 12 bits chg_ot_release = chg_ot+chg_ot_rl_delta, chg_ot_rl_delta is controlled by 4 bits (bit [3:0] of OTP Registers 28h), 1 LSB=1.22mV |  |  |  |
|                    | Discharge                          | 12 bits dsg_ot_release = dsg_ot+dsg_ot_rl_delta, dsg_ot_rl_delta is controlled by 4 bits (bit [3:0] of OTP Registers 2ah), 1 LSB=1.22mV |  |  |  |
| Release Delay Time |                                    |                                                                                                                                         |  |  |  |

Cell under-temperature protection:

| UT Value           | 12 bits programmable (OTP Registers 20h and 21h) |
|--------------------|--------------------------------------------------|
| UT Delay Time      | Same as OT delay time                            |
| Release Value      | 12 bits programmable (OTP Registers 22h and 23h) |
| Release Delay Time | Same as OT delay time                            |

Note: OT and UT use the same delay timer

Cell OTPF protection:

| OTPF Value | 12 bits programmable (OTP Registers 38h and 39h) |  |
|------------|--------------------------------------------------|--|
| OTPF delay | 8 scan cycles                                    |  |

If THERM2 is set to be MOSFET OT/OTPF protection, the respective OT/OTPF threshold and release delta value can be set independently (OTP Registers 3ah and 3bh); otherwise it shares the same parameter with cell temperature protection.

**Note:** When THERM1 is disabled for temperature protection, THERM2 can not be used to execute cell OT/UT and OTPF protection, but the FET OT/OTPF function is still effective.

Besides the THERM1 and THERM2 channels, OZ8930 provides the third channel to monitor the chip internal temperature. However, only OTPF protection is supported in the internal temperature channel. The internal OTPF threshold is also programmable (OTP Register 36h and 37h).



Fig.7 Temperature Protection Chart

| Transition | Initial State | Condition & Action                                                                                                                                                                                        | Final State  |
|------------|---------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|
| 1          | Normal Temp.  | OT event occurs (external temperature ≥ preset external OT threshold & delay timer expires);     Switch off charge & discharge FET                                                                        | Over Temp.   |
| 2          | Over Temp.    | <ul> <li>OT event clears (external temperature ≤ preset external OT release value &amp; delay timer expires)</li> <li>Switch on charge &amp; discharge FET if no other protection events occur</li> </ul> | Normal Temp. |
| 3          | Normal Temp.  | UT event occurs (external temperature ≤ preset external UT threshold & delay timer expires)     Switch off charge FET                                                                                     | Under Temp   |
| 4          | Under Temp    | <ul> <li>UT event clears (external temperature ≥ preset external UT release value &amp; delay timer expires):</li> <li>Switch on charge FET if no other protection events occur</li> </ul>                | Normal Temp. |

### Permanent Failure (PF)

There are 5 types of PF events: OVPF, CELL\_OTPF, FET\_OTPF, INT\_OTPF, ADC\_PF. If OVPF, CELL\_OTPF, FET\_OTPF, INT\_OTPF events persists for 8 scan cycles or ADC\_PF persists for pre-defined scan cycles, OZ8930 will make PF signal active to blow the external fuse for cutting off the power line or to signal an alarm to user. Once the PF is set to "1", it is kept until chip is reset.

In full power mode, the system will check the PF condition after safety check. If PF is active, the system will enter into standby mode to save power.

| Items              | Description                                                                                                                                                                                                                         |
|--------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                    | OVPF threshold is 100mV larger than OV and it is fixed for Low/Standard/High                                                                                                                                                        |
|                    | temperature range respectively                                                                                                                                                                                                      |
|                    | Delay time: 8 scan cycles.                                                                                                                                                                                                          |
| Value              | 12-bit threshold in OTP. When external temperature channels (THERM1/2) are set to be battery skin temperature measurement channels, the parameter is used to provide the CELL_OTPF protection function.  Delay time: 8 scan cycles. |
|                    | 12-bit threshold in OTP. When pin THERM2 is set to measure the temperature of the MOSFET and set to be PF protection, the parameter is used to provide the FET_OTPF protection function.  Delay time: 8 scan cycles.                |
| INT_OTPF Threshold | 12-bit threshold in OTP. The parameter is used to provide the INT_OTPF protection                                                                                                                                                   |



# **OZ8930**

| Value                     | function.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |
|---------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
|                           | Delay time: 8 scan cycles.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |
| ADC_PF Threshold<br>Value | OZ8930 will do ADC self-diagnostic in the 1st scan cycle after reset; it also will do ADC self-diagnostic in the 4th scan cycle after wakeup by 1min/4min sleep timer. When one of the following conditions is detected, OZ8930 will treat the ADC as abnormal and the internal ADC_PF counter will increase by one.  • Cell voltage offset abnormal: cell1~cell6 offset or cell 6 high-side offset < -100mV (12'hFD7, signed value, LSB = 2.44mV) or > 100mV (12'h029, signed value, LSB = 2.44mV);  • TM1, TM2 offset abnormal: TM1 offset or TM2 offset < -100mV (12'hFAE, signed value, LSB=1.22mV) or > 100mV (12'h052, signed value, LSB = 1.22mV).  • Current offset abnormal: current offset < -20mV (14'h3AE2, signed value, LSB = 15.3uV);  • Reference 1.8v abnormal: reference 1.8 voltage < 1600mV (12'h51F, signed value, LSB = 1.22mV).  Delay time controlled by 3-bit OTP-mapping register bits: "000": Disable ADC_PF check; "001": 2 ADC failed scan cycle; "010": 3 ADC failed scan cycles; "011": 4 ADC failed scan cycles; "100": 5 ADC failed scan cycles; "101": 6 ADC failed scan cycles; "110": 7 ADC failed scan cycles; "111": 8 ADC failed scan cycles.  Note: The 1.8V reference's design value is 1800mV. |  |  |



Note: (1) Safety events include OV, UV, OT, UT, UB, PF(OVPF, CELL\_OTPF, FET\_OTPF, INT\_OTPF), OC, SC

(2) Idle state: no charge current and no discharge current.

Fig.8 Power Mode Transition



## **Power Mode**

In OZ8930, there are 4 different modes: full power mode, sleep mode, standby mode and power down mode. The power consumption and typical features of them are as below.

Full Power Mode < 380uA Sleep Mode < 45uA Standby Mode < 10uA Power Down Mode < 1uA

#### In full power mode,

- ADC scan, voltage and temperature protection, current protection (over current and short circuit) work normally to provide the monitor function and the safety engine
- Charge and discharge MOSFET status are decided by the safety engine
- LDO works normally, drive ability: LDO33<30mA; LDO18<2mA; LDO10<5mA</li>

#### In sleep mode,

- The short circuit protection works for avoiding the critical safety issue
- Transition check (sleep timer, current measurement timer, SC event, I<sup>2</sup>C activity, EFETC standby, WKUP signal) from sleep mode to full power mode
- Charge and discharge MOSFET status are ON
- LDO drive ability: LDO33<150uA; LDO18<20uA; LDO10<50uA</li>

#### In standby mode,

- Transition check (I<sup>2</sup>C activity, EFETC standby release, WKUP signal) from standby mode to full power mode
- Charge and discharge MOSFET status are OFF
- LDO drive ability: LDO33<150uA; LDO18<20uA; LDO10=0</li>

#### In power down mode,

- · Transition check (WKUP signal)
- Charge and discharge MOSFET status are OFF
- LDOs (LDO18, LDO33, LDO10) disabled

## Detailed description of power mode transition

No.1: Transition from full power mode into sleep mode

## The condition

#### Condition 1:

- No safety events (OV, UV, OT, UT, UB, PF (OVPF, CELL\_OTPF, FET\_OTPF, INT\_OTPF), OC, SC)
- AND No bleeding events
- AND No I<sup>2</sup>C access
- AND Idle state (no charge current and no discharge current, i.e. measured current doesn't exceed charge/discharge current threshold) in consecutive 512 scan cycles

Condition 2 (for the pre-mode is sleep mode and woken up by sleep timer):

- · No safety events
- AND No bleeding events
- AND Idle state in consecutive 4 scan cycles

Condition 3 (for the pre-mode is sleep mode and woken up by 2-s current measurement timer):

• In idle state

#### Synchronization with MCU

Only when OZ8930 transitions from full power mode into sleep mode under condition 1 above, an interactive operation with MCU is needed. There are 2 I<sup>2</sup>C-writable registers (**mode\_evt\_enable**, **mode\_event**) to achieve the interrupt function.



#### a. In case mode\_evt\_enable = 1

- Before changing into sleep mode from full power mode, OZ8930 sets mode\_event register bit and the next\_mode to sleep mode then asserts PF/ALERTN signal to MCU;
- ii. After receiving the active ALERTN, MCU can check the bits of **mode\_event** and **next\_mode**(2bits) to know that OZ8930 will enter sleep mode (see **Note 1**). After some preparation steps, if MCU agrees to OZ8930 entering sleep mode, it will clear **mode\_event** by writing "1" to OZ8930:
- OZ8930 will wait until the mode\_event is cleared to "0". Once the mode\_event is "0", OZ8930 will enter into the sleep mode;
- iv. If MCU doesn't respond to the PF/ALERTN interrupt signal and does not clear the mode\_event for about 256ms, OZ8930 itself will enter into sleep mode.

#### b. In case mode\_evt\_enable = 0

- OZ8930 doesn't set mode event register bit and does not assert PF/ALERTN signal.
- ii. OZ8930 will enter sleep mode directly.

**Note 1:** When MCU accesses the mode\_event and next\_mode, the chip is woken by I<sup>2</sup>C access wakeup event, so the next\_mode is "full power mode" and the chip will enter sleep mode if it meets the sleep conditions again.

#### No. 2: Transition from full power mode to standby mode

The condition

- PF (OVPF, CELL\_OTPF, FET\_OTPF, INT\_OTPF) event
- **OR** ADC PF for the OTP-mapping ADC PF delay times
- **OR** EFETC standby (if EFETC is configured as external control pin)
- OR Software standby (MCU sends standby command thru I<sup>2</sup>C bus)

#### Synchronization with MCU

- a. In case mode evt enable = 1
  - i. Before entering into standby mode from full power mode, OZ8930 sets **mode\_event** register bit and **next\_mode** to standby mode, then asserts PF/ALERTN signal to MCU:
  - ii. After receiving the active ALERTN, MCU can check mode\_event and next\_mode to know that OZ8930 will enter standby mode (see Note 2). After some preparation steps, if MCU agrees OZ8930 entering standby mode, it will clear mode\_event by writing "1" to OZ8930;
  - iii. OZ8930 will wait until the **mode\_event** is cleared to "0". Once the **mode\_event** is "0", OZ8930 will enter standby mode;
  - iv. If MCU doesn't respond to the PF/ALERTN interrupt signal and not clear the mode\_event for about 256ms, OZ8930 itself will enter into standby mode.

#### b. The case mode\_evt\_enable = 0

- i. OZ8930 doesn't set mode\_event register bit and not assert PF/ALERTN signal;
- ii. OZ8930 will enter standby mode directly.

**Note 2:** When MCU accesses the mode\_event and next\_mode, the chip is woken by I2C access wakeup event, so the next\_mode is "full power mode" and the chip will enter standby mode if it meets the standby conditions again.

#### No. 3: Transition from full power mode into power down mode

The condition

- UV shutdown (UV for 1 minute AND No charge-on signal AND No charge current)
- OR Software shutdown (MCU sends shutdown command thru I2C bus)

#### Synchronization with MCU

- a. In case mode evt enable = 1
  - Before changing into power down mode from full power mode, OZ8930 sets mode\_event register bit and next mode to power down mode, then asserts PF/ALERTN signal to MCU;
  - ii. After receiving the active ALERTN, MCU can check **mode\_event** and **next\_mode**, to know that OZ8930 will enter power down mode (see **Note 3**). After some preparation steps, if MCU agrees OZ8930 entering power down mode, it will clear **mode\_event** by writing "1" to OZ8930;



- iii. For UV shutdown, if mode\_event is set to "1", OZ8930 is kept in full-power mode; if mode\_event is set to "0", OZ8930 will enter power down mode after 1 minute (see Note 3). For software shutdown, OZ8930 will enter power down mode when mode\_event is "0" or after a 256mS timeout
- iv. After OZ8930 enters power down mode, all LDOs are shut down to save power. And MCU will lose the power supply;

Note 3: If MCU wants to enter power mode immediately, it can send out "software shutdown"

- b. the case **mode\_evt\_enable** = 0
  - i. OZ8930 doesn't set mode\_event register bit and does not assert PF/ALERTN signal;
  - ii. OZ8930 will enter power down mode directly.

#### No. 4: Transitions from sleep mode to full power mode

The condition

- Customer-setting 1-minute/4-minute sleep timer wakeup (after wakeup, do normal ADC and safety check)
- OR 2-second current measurement timer wakeup (after wakeup, do 14-bit current ADC and check current status)
- OR I<sup>2</sup>C access
- OR SC (short-circuit) event happened
- OR EFETC standby event happened (EFETC pin force OZ8930 to enter standby mode)
- **OR** WKUP signal detected (charge-on signal or analog wake up signal)

#### Synchronization with MCU

- Wakeup event such as sleep timer event, current wakeup event (if charge or discharge current is found, the current wakeup event is set), SC wakeup event, EFETC wakeup event will make PF/ALERTN active to inform MCU.
- In full power mode, scan event will be set in each scan cycle to assert PF/ALERTN signal to MCU.

#### No. 5: Transitions from standby mode to full power mode

The condition

- I<sup>2</sup>C access activity
- OR EFETC standby released
- OR charge-on signal detected

#### Synchronization with MCU

In full power mode, scan event will be set in each scan cycle to assert PF/ALERTN signal to MCU.

#### No. 6: Transitions from power down mode to full power mode

The condition

· Charge-on signal detected

#### Synchronization with MCU

- After OZ8930 startup from power down mode, the LDO33 will provide 3.3V power supply to external MCU.
- In full power mode, scan event will be set in each scan cycle to assert PF/ALERTN signal to MCU.



#### **Brief transition table:**

| Transition | Initial State | Condition                                                                                                                                                                                                                                                                                                                                                              | Final State   |
|------------|---------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|
|            |               |                                                                                                                                                                                                                                                                                                                                                                        |               |
| 1          | Full Power    | Condition 1:  No safety events (OV, UV, OT, UT, UB, PF (OVPF, CELL_OTPF, FET_OTPF, INT_OTPF), OC, SC)  AND No bleeding events  AND No I <sup>2</sup> C access  AND Idle state (no charge and no discharge current) in consecutive 512 scan cycles  Condition 2 (for the pre-mode is sleep mode and woken up by sleep timer):  No safety events  AND No bleeding events | Sleep         |
|            |               | AND Idle state in 4 scan cycles  Condition 3 (for the pre-mode is sleep mode and woken up by 2-s current measurement timer): In Idle state                                                                                                                                                                                                                             |               |
| 2          | Full Power    | PF (OVPF, CELL_OTPF, FET_OTPF, INT_OTPF)  OR ADC_PF for the OTP-mapping ADC_PF delay times  OR EFETC standby control  OR Software standby control by I <sup>2</sup> C access                                                                                                                                                                                           | Standby       |
| 3          | Full Power    | UV for 1 minute <i>AND</i> No charge-on signal <i>AND</i> No charge current  OR Software shutdown by I <sup>2</sup> C access                                                                                                                                                                                                                                           | Power<br>Down |
| 4          | Sleep         | Sleep timer expires (1-minute/4-minute)  OR Current measurement timer expires (2 seconds)  OR I <sup>2</sup> C access  OR SC event  OR EFETC standby control  OR WKUP signal detected (charge-on signal or analog wake up signal)                                                                                                                                      | Full Power    |
| 5          | Standby       | I <sup>2</sup> C access  OR Charge-on signal detected  OR EFETC standby release                                                                                                                                                                                                                                                                                        | Full Power    |
| 6          | Power<br>Down | Charge-on signal detected                                                                                                                                                                                                                                                                                                                                              | Full Power    |

# **Internal Temperature Sensor**

OZ8930 takes advantage of silicon device physics and circuit design technology for the internal temperature sensor. The internal temperature sensor generates a voltage level which is proportional to the temperature. As shown in Figure 9 below, with a temperature increase of 1°C, internal temperature sensor output voltage will increase by 2.0976mV. The offset can be from the 12-bit OTP which is measured in the ATE test stage. So, if at T0, ADC reads VT0, the characteristic transfer function is: VTS (mV) = 2.0976\*T+ (VT0 - 2.0976\*T0)

However, The internal temperature sensor's characteristics could be affected by fab process, please refer to OZ8930 Application Note for detailed calculation and compensation if high accuracy is required.



Fig.9 Internal Temperature Sensor Curve

# **External Temperature Sensor**

OZ8930 provides 2 ADC channels for external temperature detection; the application circuitry is shown in Figure 10. Our reference application uses 103-NTC thermistor. 103-NTC thermistor's RT characteristics are shown in Figure 11. The sensed voltage Vt characteristics are shown in Figure 12. For Example: Vt2=3.3V \* RT2 / (RB2 + RT2).



Fig.10 External Temperature Sensor Application





Fig.11 Thermistor RT characteristics

Fig.12 The sensed voltage Vt characteristics

## **Power MOSFET Driver**

Smart MOSFET driver supports N-type MOSFET for discharge control, and supports N-type MOSFET or P-type MOSFET for charge control. The driver also supports parallel and serial charge/discharge loop.

OZ8930 provides a 10V (typical) voltage at DSG pin for keeping the discharge MOSFET in ON state. It also has an embedded a 5uA current sink for P-type charge MOSFET driver or level shifter for N-type charge MOSFET driver. If the charge MOSFET is required to be in OFF state, this 5uA sink current circuit should be disabled and the CHG pin is in high impedance state. Otherwise, the 5uA sink current is enabled and then the charge MOSFET gate-to-source voltage is decided by external divider resistor. The MOSFET driver application circuits are shown in Fig. 13 and Fig. 14.



Fig.13 MOSFET drive circuit with P-type charge MOSFET



Fig.14 MOSFET drive circuit with N-type charge MOSFET

#### **MOSFET Control**

OZ8930 includes a Battery Protection Engine (BPE) used to control the charge and discharge MOSFET according to the protection events occurring at present and current charge/discharge state. The detail for charge and discharge control is summarized in the following control matrix.

|                    | safety                                                                                                                           | event                                                  |   | Charg         | e/discharge<br>state | MOSFET control    |                |
|--------------------|----------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------|---|---------------|----------------------|-------------------|----------------|
| pf_fet_<br>disable | sc_fet_disable or<br>coc_fet_disable or<br>doc0_fet_disable or<br>doc1_fet_disable or<br>ub_fet_disable or<br>dsg_ot_fet_disable | uv_fet_disable or ut_fet_disable or chg_ot_fet_disable |   | in_<br>charge | in_discharge         | dischg_<br>enable | chg_<br>enable |
| 1                  | x                                                                                                                                | Х                                                      | Х | Х             | Х                    | 0                 | 0              |
| 0                  | 1                                                                                                                                | Х                                                      | Х | Х             | Х                    | 0                 | 0              |
| 0                  | 0                                                                                                                                | 1                                                      | 0 | Х             | Х                    | 0                 | 1              |
| 0                  | 0                                                                                                                                | 1                                                      | 1 | Х             | Х                    | 0                 | 0              |
| 0                  | 0                                                                                                                                | 0                                                      | 1 | 0             | 0                    | 1                 | 0              |
| 0                  | 0                                                                                                                                | 0                                                      | 1 | 0             | 1                    | 1                 | 1              |
| 0                  | 0                                                                                                                                | 0                                                      | 1 | 1             | Х                    | 1                 | 0              |
| 0                  | 0                                                                                                                                | 0                                                      | 0 | Х             | Х                    | 1                 | 1              |

**Note 1:** pf\_fet\_disable, sc\_fet\_disable, coc\_fet\_disable, doc0\_fet\_disable, doc1\_fet\_disable, ub\_fet\_disable, ov\_fet\_disable, uv\_fet\_disable, ot\_fet\_disable, and ut\_fet\_disable are internal signals generated by Battery Protection Engine (BPE) embedded in OZ8930. The status of these signals is in fact decided by the safety events occurring at present.

Any time PF occurs, pf fet disable is "1", else it is "0";

Any time SC occurs, sc\_fet\_disable is "1", else it is "0";

Any time COC occurs, coc\_fet\_disable is "1", else it is "0";

Any time DOC0 occurs, doc0\_fet\_disable is "1", else it is "0";

Any time DOC1 occurs, doc1\_fet\_disable is "1", else it is "0";



Any time UB occurs, uv\_fet\_disable is "1", else it is "0";

Any time OV occurs, ov\_fet\_disable is "1", else it is "0";

Any time UV occurs, uv\_fet\_disable is "1", else it is "0";

Any time discharge OT occurs, dsg\_ot\_fet\_disable is "1", else it is "0";

Any time charge OT occurs, chg ot fet disable is "1", else it is "0";

Any time UT occurs, ut fet disable is "1", else it is "0".

**Note 2:** in\_charge and in\_discharge are internal signals in OZ8930. When in charge state, in\_charge is "1", else it is "0"; when in discharge state, in\_discharge is "1", else it is "0". (Refer to the description of Operation Register 01h for charge and discharge state definition)

**Note 3:** dischg\_enable and chg\_enable are MOSFET control signals in OZ8930. When dischg\_enable is "1", discharge MOSFET is enabled to be in "ON" state, else it is in "OFF". When chg\_enable is "1", charge MOSFET is enabled to be at "ON" state, else it is "OFF".

**Note 4:** If the OT is detected when the chip is in charge state (in\_charge is "1", in\_discharge is "0") or in idle state (in\_charge is "0" and in\_discharge is "0"), the OT is regarded as charge OT and chg\_ot\_fet\_disable is "1". If the OT is detected when the chip is in discharge state (in\_charge is "0", in\_discharge is "1"), the OT is regarded as discharge OT and dsg\_ot\_fet\_disable is "1".

Note 5: When DOC0, DOC1 is a time release, the OT after its release may be charge OT or discharge OT.

#### **EFETC Control**

OZ8930 also provides a pin (EFETC) for the charge and discharge MOSFET control. It's a multi-function pin. Efect\_mode2 : Efect\_mode0 (bit [6:4] in OTP Register [1fh]) are used to configure the pin's function. The following table gives the detail.

| Efect_mode2 : Efetc_mode0 | EFETC pin function mode                                                                                                                                                                             |  |  |  |  |  |  |
|---------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|
| 000                       | High active input to forcibly disable charge FET.                                                                                                                                                   |  |  |  |  |  |  |
| 001                       | High active input to forcibly disable discharge FET.                                                                                                                                                |  |  |  |  |  |  |
| 010                       | High active input to forcibly disable charge FET and discharge FET.                                                                                                                                 |  |  |  |  |  |  |
| 011                       | Output discharge FET status.                                                                                                                                                                        |  |  |  |  |  |  |
| 100                       | High active input as external standby.                                                                                                                                                              |  |  |  |  |  |  |
| 101                       | Output internal xx_fet_disable signal. xx_fet_disable = (ov_fet_disable & ov_out_enable))   (uv_fet_disable & uv_out_enable)   (ot_fet_disable & ot_out_enable)   (ut_fet_disable & ut_out_enable). |  |  |  |  |  |  |
| 110, 111                  | Reserved                                                                                                                                                                                            |  |  |  |  |  |  |

In the above table, ov\_out\_enable, uv\_out\_enable, ot\_out\_enable and ut\_out\_enable are the configuration bits in OTP Register 1eh. ov\_fet\_disable, uv\_fet\_disable, ot\_fet\_disable and ut\_fet\_disable are internal signals generated by Battery Protection Engine (BPE) embedded in OZ8930. The status of these signals is in fact decided by the safety events occurring at present. Any time OV occurs, ov\_fet\_disable is "1", else it is "0"; any time UV occurs, uv\_fet\_disable is "1", else it is "0"; any time UT occurs, ut\_fet\_disable is "1", else it is "0".

The EFETC pin can be used to simplify the application circuit when multiple OZ8930 chips are used to manage the battery with more than 6 cells in series.

#### **Serial Communication Bus**

OZ8930 supports I<sup>2</sup>C Bus communication interface. The I<sup>2</sup>C Bus master can access OZ8930's registers with I<sup>2</sup>C Bus protocol. In this condition, OZ8930 works as an I<sup>2</sup>C Bus slave device.

In OZ8930, the I<sup>2</sup>C Bus address can be configured by setting I<sup>2</sup>C\_addr1--I<sup>2</sup>C\_addr0 (bit [1:0] of OTP Register [14h]). OZ8930 I<sup>2</sup>C device address is specified by the 2-bit I<sup>2</sup>C address configuration as follows:

| Bit7 | bit6 | bit5 | bit4 | bit3 | bit2                       | bit1 | bit0 |
|------|------|------|------|------|----------------------------|------|------|
| 0    | 1    | 1    | 0    | 0    | I <sup>2</sup> C_addr[1:0] |      | r/wn |



The following table lists the available addresses and the corresponding settings.

| I <sup>2</sup> C_addr1-I <sup>2</sup> C_addr0 | I <sup>2</sup> C Address(Hex) |  |  |  |  |
|-----------------------------------------------|-------------------------------|--|--|--|--|
| 00                                            | 0x60                          |  |  |  |  |
| 01                                            | 0x62                          |  |  |  |  |
| 10                                            | 0x64                          |  |  |  |  |
| 11                                            | 0x66                          |  |  |  |  |

#### Writing Data Access

In writing data access, there are some bytes transmitted from master to slave as following:

Slave address byte: slv\_addr[6:0], r/wn;
 Register index byte: reg\_index[7:0];
 Written data bytes: written data.

slv\_addr[6:0] is the I²C address to select an I²C device. r/wn is the read/write bit. If "1", selects read access; if "0", selects write access. Here is writing data access, it is "0". Reg\_index[7:0] is used to indicate the register index. Written data is the data written into the device.



The above diagram shows the timing of writing data access. At first is the slave\_addr[6:0] to select one slave node; the next byte is the reg\_index to define the register index; the next bytes are the data for writing into the device. The first address to be written is indicated by the reg\_index. Once one byte is written successfully, the device's internal register address will be incremented by 1 automatically so that the next byte is written into the register of the next continuous address.

### **Reading Data Access**

In reading data access, the bytes are transmitted in the following order:

Slave address byte from master to slave: slv\_addr[6:0], r/wn;
 Register index byte from master to slave: reg\_index[7:0];
 Slave address byte from master to slave: slv\_addr[6:0], r/wn;

Data read out from slave to master: read data.



The above diagram shows the reading data access. The first time slot is the slave address to select one slave device; the next is the reg\_index to indicate the register index; next is the repeated start; next is slave address again, finally there is one byte of reading out data from slave device. After one byte is sent out successfully, the device internal register address will be automatically incremented by 1 so that the next byte is sent out.

**Note:** Continuous reading of data bytes is not recommended for OZ8930 because it may be affected by noise.

#### **Bus Timeout**

For the reliability consideration, if the SCL or SDA line keeps in low for more than 25ms, the I<sup>2</sup>C Bus engine and OZ8930 will be reset and the SCL and SDA lines will not be driven to low by OZ8930. This timeout function can be used to reset OZ8930 also.

#### **Bus Disconnection**

I<sup>2</sup>C Bus is actually board level communication bus and not recommended for hot plugging. Because hot plugging may induce surge current and other noise might cause wrong data to be written into certain registers, especially during I<sup>2</sup>C Bus access.



#### OTP AND OPERATION REGISTERS MAP

There are two types of register data: Operation Register data (00h~5fh) and OTP Register data (00h~7fh). Software can directly access the Operation Registers and indirectly access the OTP Registers via accessing the Operation Registers 05h~07h. OTP Registers 00h~12h are used to store the ATE data. In this section, only 0ch used to store DOC offset value can be accessed. In addition, Operation Registers 0fh~12h are also reserved for the chip vendor usage. Access to the user data in OTP Registers 13h~7fh and in Operation Registers 13h~1fh is controlled by **user\_freeze** and **user\_unlock** register bits. When **user\_freeze** is "1" and **user\_unlock** is "0", the user data are read only; otherwise, the user data are readable, writable. For the user data in OTP Registers, there are 2 pages: the default page in OTP Registers 13h~3fh and the backup page in OTP Registers 53h~7fh (so customers can modify the "User data" in OTP Registers for 2-time).

Some of the Operation Register values are mapped from OTP Registers, the mapping relationship is as following:



Use Data has 2 pages:

default page ( OTP register 13h~3fh) used when page\_sel = "0"; backup page( OTP register 53h~7fh) used when page sel = "1".

OTP register and Operation Register Diagram



## **Operation Registers**

**Operation Registers Map** 

| Operation Registers Map |                                       |                                                                                                    |                                                                                                                          |                            |                    |                            |                                                |                                  |                           |  |
|-------------------------|---------------------------------------|----------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------|----------------------------|--------------------|----------------------------|------------------------------------------------|----------------------------------|---------------------------|--|
| Register                | Register                              |                                                                                                    |                                                                                                                          |                            | Bit Nu             | ımber                      |                                                | •                                |                           |  |
| index<br>(hex)          | Name                                  | 7                                                                                                  | 6                                                                                                                        | 5                          | 4                  | 3                          | 2                                              | 1                                | 0                         |  |
| 00                      | Chip ID &<br>Revision                 |                                                                                                    | chip_i                                                                                                                   | d[3:0]                     |                    |                            | chip_                                          | rev[3:0]                         |                           |  |
| 01                      | System Status                         | soft_dischg_<br>enable                                                                             | soft_chg_<br>enable                                                                                                      | soft_scan_<br>req          | in_bld             | dischg_<br>enable          | chg_<br>enable                                 | in_dischg                        | in_chg                    |  |
| 02                      | Alert Event                           | safety_event                                                                                       | scan_event                                                                                                               | tm_wk_<br>event            | currt_wk_<br>event | sc_wk_<br>event            | efetc_wk_<br>event                             | mode_event                       | reserved                  |  |
| 03                      | Event Enable                          | reserved                                                                                           | scan_event_<br>enable                                                                                                    | tm_wk_<br>event_<br>enable | reserved           | reserved                   | reserved                                       | mode_event_<br>enable            | reserved                  |  |
| 04                      | Therm Data                            | Rese                                                                                               | rved                                                                                                                     | tm2_in                     | tm1_in             | tm2_oe                     | tm2_out                                        | tm1_oe                           | tm1_out                   |  |
| 05                      | OTP Data                              |                                                                                                    |                                                                                                                          |                            | otp_da             |                            |                                                |                                  |                           |  |
| 06                      | OTP Addr                              | reserved                                                                                           |                                                                                                                          |                            |                    |                            |                                                |                                  |                           |  |
| 07                      | OTP Control                           | otp_busy                                                                                           | Rese                                                                                                                     |                            |                    | otp_marg_rd                | otp_wr                                         | otp_map                          | otp_rd                    |  |
| 08                      | OTP Enable                            | soft_enable                                                                                        |                                                                                                                          |                            |                    | select_alert               |                                                |                                  | otp_enable                |  |
| 09                      | FET Disable                           | pf                                                                                                 | sc_fet_<br>disable                                                                                                       | oc_fet_<br>disable         | ub_fet_<br>disable | ut_fet_<br>disable         | ot_fet_ uv_fet_ ov_fe<br>disable disable disab |                                  |                           |  |
| 0a                      | Mode Change                           | reserved                                                                                           | reserved mode_timeout next_mode[1:0] reserved pf_type[2:0]                                                               |                            |                    |                            |                                                |                                  |                           |  |
| 0b                      | Reserved                              |                                                                                                    | reserved                                                                                                                 |                            |                    |                            |                                                |                                  |                           |  |
| 0c                      | Max Cell                              |                                                                                                    | max_cell_data[3:0] reserved max_cell_channel[2:0]                                                                        |                            |                    |                            |                                                |                                  |                           |  |
| 0d<br>0e                | reserved                              |                                                                                                    | max_cell_data[11:4] reserved                                                                                             |                            |                    |                            |                                                |                                  |                           |  |
|                         |                                       |                                                                                                    |                                                                                                                          | Dan                        |                    |                            | l                                              |                                  |                           |  |
| 0f                      | reserved                              |                                                                                                    |                                                                                                                          |                            |                    | vendor use                 |                                                |                                  |                           |  |
| 10                      | reserved                              |                                                                                                    |                                                                                                                          |                            |                    | vendor use                 | -                                              |                                  |                           |  |
| 11<br>12                | reserved                              |                                                                                                    |                                                                                                                          |                            |                    | vendor use                 | ,                                              |                                  |                           |  |
|                         | reserved                              | بامام بياسم                                                                                        |                                                                                                                          |                            |                    | vendor use                 | ,                                              |                                  | [4.0]                     |  |
| 13<br>14                | Scan Control<br>I <sup>2</sup> C Addr | prty_chk                                                                                           | reserved                                                                                                                 | auto_scan                  | currt_scan         | tm_sca                     | an[1:0]                                        | cell_nu<br>l²C_ad                |                           |  |
| 15                      | COC TH                                |                                                                                                    | coc mid                                                                                                                  | reser                      | veu                |                            | coc low                                        |                                  | ui[1.0]                   |  |
| 16                      | COC Time                              |                                                                                                    | coc_high                                                                                                                 |                            |                    | coc_rele                   | coc_low_t_th[3:0] ease[1:0]                    |                                  |                           |  |
| 17                      | DOC0 TH                               | rese                                                                                               |                                                                                                                          | _t_t1[0:0]                 |                    |                            | th[5:0]                                        | 000_00                           | ay[1.0]                   |  |
| 18                      | DOC0 Time                             | rese                                                                                               |                                                                                                                          | doc0 rele                  | ease[1:0]          |                            |                                                | lelay[3:0]                       |                           |  |
| 19                      | DOC1 TH                               | rese                                                                                               |                                                                                                                          | 4000_101                   | 0000[1:0]          | doc1                       | th[5:0]                                        | iolay[o.o]                       |                           |  |
| 1a                      | DOC1 Time                             | rese                                                                                               |                                                                                                                          | doc1_rele                  | ease[1:0]          |                            |                                                | lelay[3:0]                       |                           |  |
| 1b                      | SC Time                               | dischg                                                                                             |                                                                                                                          | chg_t                      |                    | sc_relea                   |                                                | sc_dela                          | av[1:0]                   |  |
| 1c                      | Safety Time                           | tm2_fet_ot_<br>sel                                                                                 | tm2_fet                                                                                                                  | ub_del                     |                    | ot_ut_de                   |                                                | ov_dela                          |                           |  |
| 1d                      | ADC PF Time                           | uv del                                                                                             | av[1:0]                                                                                                                  | rese                       | rved               | pf_ignr_shrt               | a                                              | dc_pf_delay[2:                   | 01                        |  |
| 1e                      | Bleeding<br>Control                   | ov_out_<br>enable                                                                                  | uv_out_<br>enable                                                                                                        | ot_out_<br>enable          | ut_out_<br>enable  | bld_support                | bld_idle                                       | bld_accu                         |                           |  |
| 1f                      | Sleep Control                         | user_freeze                                                                                        |                                                                                                                          | fetc_mode[2:0              |                    | rese                       | rved                                           | sleep_<br>support                | sleep_time                |  |
| 20                      |                                       |                                                                                                    | ut th                                                                                                                    | [3:0]                      |                    |                            | rese                                           | erved                            | l                         |  |
| 21                      | UT                                    | ut_th[11:4] (                                                                                      |                                                                                                                          |                            | ld for battery     | cell tube skin             |                                                | B, 2's complem                   | ent format)               |  |
| 22                      |                                       | <u> </u>                                                                                           | ut rl                                                                                                                    |                            | ia ioi battory     | l labo citin               |                                                | erved                            | ione ionnae,              |  |
| 23                      | UT_RL                                 | ut rl[11:4]                                                                                        | ut_rl[11:4] (under temperature release for battery cell tube skin, 1.22mV LSB, 2's complement forr                       |                            |                    |                            |                                                |                                  |                           |  |
| 24                      |                                       | <u> </u>                                                                                           | chq t                                                                                                                    |                            | o tot battory o    | Reserved                   |                                                |                                  |                           |  |
| 25                      | CHG_T2                                | chg_t2[11:4] (charge temperature point2 for battery cell tube skin, 1.22mV LSB, 2's complement for |                                                                                                                          |                            |                    |                            |                                                |                                  | ent format)               |  |
| 26                      |                                       | ong_tz[iiii                                                                                        | chg_tz[11:4] (charge temperature pointz for battery cell tube skin, 1.22mv LSB, 2's complement form chg_t3[3:0] Reserved |                            |                    |                            |                                                |                                  |                           |  |
| 27                      | CHG_T3                                | cha t3[11:4                                                                                        |                                                                                                                          |                            | t3 for battery     | cell tube skin             |                                                | 3, 2's complem                   | ent format)               |  |
| 28                      | CHG_OT                                | <u>g_</u> -ve[                                                                                     | chg_o                                                                                                                    |                            |                    | chg_ot_rl<br>release delta | _delta[3:0] (c<br>a, 1.22mV LS                 | harge over ter<br>B, 2's compler | nperature<br>ment format) |  |
| 29                      |                                       | chg_ot [11:                                                                                        | 4] (charge ov                                                                                                            | er temperatur              | e for battery      |                            |                                                | rge_ot + chg_o<br>s, 2's complem |                           |  |



# **OZ8930**

| Register       | Register            | Bit Number   |                                                                                                                        |                              |                                   |                                                           |                                           |                                                                     |                        |  |
|----------------|---------------------|--------------|------------------------------------------------------------------------------------------------------------------------|------------------------------|-----------------------------------|-----------------------------------------------------------|-------------------------------------------|---------------------------------------------------------------------|------------------------|--|
| index<br>(hex) | Name                | 7            | 6                                                                                                                      | 5                            | 4                                 | 3                                                         | 2                                         | 1                                                                   | 0                      |  |
| 2a             | DSG_OT              |              |                                                                                                                        | ot [3:0]                     |                                   | release delt<br>(disc                                     | a, 1.22mV LS<br>harge ot rela<br>dischg_c | scharge over to<br>SB, 2's comple<br>se = discharge<br>ot_rl_delta) | ment format)<br>e_ot + |  |
| 2b             |                     | dsg_ot [11:4 |                                                                                                                        |                              | ure for battery                   | y cell tube skin, 1.22mV LSB, 2's complement format)      |                                           |                                                                     |                        |  |
| 2c             | LOW_T_OV            | Janus A. an  |                                                                                                                        | ov[3:0]                      |                                   | reserved eshold for under T2 temperature, 2.44mV LSB, 2's |                                           |                                                                     |                        |  |
| 2d             | LOVV_1_OV           | iow_t_ov     |                                                                                                                        |                              |                                   | _ovpf = low_ov + 41(100mV)                                |                                           |                                                                     |                        |  |
| 2e             |                     |              | mid_t_                                                                                                                 | ov[3:0]                      |                                   |                                                           | res                                       | erved                                                               |                        |  |
| 2f             | Mid_T_OV            | mid_t_ov[    | 11:4] (middle                                                                                                          | -temperature<br>complement f | over voltage t                    | hreshold for                                              | T2~T3 tempe                               | erature, 2.44m\                                                     | / LSB, 2's             |  |
| 30             |                     |              |                                                                                                                        | _ov[3:0]                     | omiat, miu_t_                     | ovpi – iilia_o                                            |                                           | v)<br>erved                                                         |                        |  |
| 31             | High_T_OV           | high_t_ov    | <sup>(</sup> [11:4] (high-t                                                                                            | emperature o                 | ver voltage th                    | reshold for o                                             | er T3 tempe                               | rautre, 2.44m\                                                      | / LSB, 2's             |  |
| 01             |                     |              | CC                                                                                                                     | omplement for                | mat; high_t_c                     |                                                           |                                           |                                                                     | ana dalta              |  |
| 32             | UB                  |              | ub_rl_delta[3:0] (cell unbalance release<br>ub[3:0] 2.44*16mV LSB, 2's complement format) (u<br>= ub + ub_rl_delta*16) |                              |                                   |                                                           |                                           |                                                                     |                        |  |
| 33             |                     |              | ub[11:4] (cell unbalance threshold, 2.44mV LSB, 2's complement format) uv[3:0] Reserved                                |                              |                                   |                                                           |                                           |                                                                     |                        |  |
| 34             | UV                  |              | uv[3:0] Rese<br>uv[11:4] (under vlotage threshold, 2.44mV LSB, 2's complement                                          |                              |                                   |                                                           |                                           |                                                                     |                        |  |
| 35<br>36       |                     |              | int_otpf_th[3:0] Reserved                                                                                              |                              |                                   |                                                           |                                           |                                                                     |                        |  |
| 37             | INT_OTPF            | int_otpf_th[ | _otpf_th[11:4] (over temperature PF threshold for internal temperature, 1.22mV LSB, 2's comple format)                 |                              |                                   |                                                           |                                           |                                                                     |                        |  |
| 38             | 0511 0505           |              | cell_otpf[3:0] Reserved cell_otpf[11:4] (over temperature PF threshold for battery cell tube skin, 1.22mV LSB, 2's     |                              |                                   |                                                           |                                           |                                                                     |                        |  |
| 39             | CELL_OTPF           | cell_otpf[1  | 1:4] (over ten                                                                                                         | nperature PF                 | threshold for t<br>forr           | •                                                         | be skin, 1.22ı                            | mV LSB, 2's co                                                      | omplement              |  |
| 3a             | FET_OT/FET_<br>OTPF |              | fet_ot_delta[3:0] ( FET over tem delta, 1.22mV LSB, 2's complem relase = fet_otpf + fet_                               |                              |                                   |                                                           |                                           |                                                                     | nent format) (fet ot   |  |
| 3b             | OIPF                | fet_ot/fet_o | tpf[11:4] (ove                                                                                                         | r temperature                |                                   | erature PF thent format)                                  | reshold for M                             | IOSFET, 1.22r                                                       | nV LSB, 2's            |  |
| 3c             | Bld Start           |              |                                                                                                                        | art[3:0]                     |                                   |                                                           |                                           | served                                                              |                        |  |
| 3d<br>3e       | OV Hysteresis       | rese         |                                                                                                                        |                              | (over voltage<br>eory range: -3   | e release hyst                                            | eresis, 2.44*<br>302.56, applic           | 4mV LSB, 2's cation range: -3                                       |                        |  |
| 3f             | UV Hysteresis       | rese         | rved                                                                                                                   |                              | (under voltage<br>it; theory rang | e release hys<br>e: -1249mV ~                             | teresis, 2.44*<br>- +1210mV, a            | 16mV LSB, 2's application rans + uv_hys*16)                         |                        |  |
| 40             | Cell1 Data          |              | cell1_d                                                                                                                | lata[3:0]                    |                                   |                                                           | reserved                                  |                                                                     | cell1 offset<br>flag   |  |
| 41             | OCH I Bata          |              |                                                                                                                        |                              | cell1_da                          | ata[11:4]                                                 |                                           |                                                                     | llag                   |  |
| 42             | Cell2 Data          |              | cell2_d                                                                                                                | lata[3:0]                    |                                   |                                                           | reserved                                  |                                                                     | cell2 offset<br>flag   |  |
| 43             |                     |              |                                                                                                                        |                              | cell2_da                          | ata[11:4]                                                 |                                           |                                                                     |                        |  |
| 44             | Call2 Data          |              | cell3_d                                                                                                                | lata[3:0]                    |                                   |                                                           | reserved                                  |                                                                     | cell3 offset           |  |
| 45             | Cell3 Data          |              |                                                                                                                        |                              | cell3 da                          | L<br>ata[11:4]                                            |                                           |                                                                     | flag                   |  |
| 46             |                     |              | cell4 data[3:0] reserved                                                                                               |                              |                                   |                                                           |                                           |                                                                     |                        |  |
|                | Cell4 Data          |              | 00114_0                                                                                                                | lata[0.0]                    | 4-[44.4]                          | 10301704                                                  |                                           | flag                                                                |                        |  |
| 47<br>48       | Cell5 Data          |              | cell4_d                                                                                                                |                              |                                   |                                                           | reserved                                  |                                                                     | cell5 offset<br>flag   |  |
| 49             | Cono Data           |              | cell5_data[11:4]                                                                                                       |                              |                                   |                                                           |                                           |                                                                     |                        |  |
| 4a             | Cell6 Data          |              | cell6_d                                                                                                                | lata[3:0]                    | <u> </u>                          | reserved cell6 offse                                      |                                           |                                                                     |                        |  |
| 4b             |                     |              |                                                                                                                        |                              | cell6_da                          | ata[11:4]                                                 |                                           |                                                                     |                        |  |
| 4c             | INT Data            |              | int_da                                                                                                                 | ata[3:0]                     |                                   |                                                           | reserved                                  |                                                                     | cell6 high offset flag |  |
| 4d             | 1                   |              |                                                                                                                        |                              | int_dat                           | a[11:4]                                                   |                                           |                                                                     |                        |  |



| Register       | Register       |   |                          |               | Bit N          | ımber            |                  |          |   |  |
|----------------|----------------|---|--------------------------|---------------|----------------|------------------|------------------|----------|---|--|
| index<br>(hex) | Name           | 7 | 6                        | 5             | 4              | 3                | 2                | 1        | 0 |  |
| 4e             | TM1 Data       |   | tm1_da                   | ata[3:0]      |                |                  | rese             | erved    |   |  |
| 4f             | TIVIT Data     |   | tm1_data[11:4]           |               |                |                  |                  |          |   |  |
| 50             | TM2 Data       |   | tm2_data[3:0] reserved   |               |                |                  |                  |          |   |  |
| 51             | TIVIZ Dala     |   | tm2_data[11:4]           |               |                |                  |                  |          |   |  |
| 52             | Current Data   |   | current_data[5:0] reserv |               |                |                  |                  |          |   |  |
| 53             | Current Data   |   |                          |               | current_c      | data[13:6]       |                  |          |   |  |
| 54             | Group1 Offset  |   |                          |               | group1_c       | offset[7:0]      |                  |          |   |  |
| 55             | Group2 Offset  |   |                          |               | group2_c       | offset[7:0]      |                  |          |   |  |
| 56             | Current Offset |   | current_c                | offset[3:0]   |                |                  | rese             | erved    |   |  |
| 57             | Current Onset  |   |                          |               | current_o      | ffset[11:4]      |                  |          |   |  |
| 58             | Ref18 Data     |   | ref18_d                  | ata[3:0]      |                |                  | rese             | erved    |   |  |
| 59             | Rel lo Data    |   | _                        | -             | ref18_d        | ata[11:4]        |                  |          |   |  |
| 5a             | OV/UV timer    |   | ov_tim                   | er[3:0]       | <del>-</del>   |                  | uv_tim           | ner[3:0] |   |  |
| 5b             | OT/UT timer    |   | ot timer[3:0] ut ti      |               |                |                  |                  |          |   |  |
| 5c             | UB timer       |   | rese                     | rved          |                |                  | ub_tim           | ner[3:0] |   |  |
| 5d-5f          | Reserved       |   | Re                       | served for in | ternal use (Wr | iting this regis | ster is prohibit | ed)      |   |  |

#### **Detailed Operation Registers Information**

Register 00h - Chip ID & Revision Register

| Bit7    | Bit6    | Bit5    | Bit4    | Bit3     | Bit2     | Bit1     | Bit0     |
|---------|---------|---------|---------|----------|----------|----------|----------|
| CHP_ID3 | CHP_ID2 | CHP_ID1 | CHP_ID0 | CHP_REV3 | CHP_REV2 | CHP_REV1 | CHP_REV0 |
| (R)     | (R)     | (R)     | (R)     | (R)      | (R)      | (R)      | (R)      |

Default value is 8'h40.

Bit7 - Bit4 (CHP\_ID3 - CHP\_ID0) is chip ID (4'h4) which indicates OZ8930.

Bit3 – Bit0 (CHP\_REV3 – CHP\_REV0) is chip revision.

Register 01h - System Status

|                       | · · · · · · · · · · · · · · · · · · · |                   |        |                   |            |           |        |
|-----------------------|---------------------------------------|-------------------|--------|-------------------|------------|-----------|--------|
| Bit7                  | Bit6                                  | Bit5              | Bit4   | Bit3              | Bit2       | Bit1      | Bit0   |
| soft_dischg<br>enable | soft_chg_en<br>able                   | soft_scan_r<br>eq | In_bld | dischg_enabl<br>e | Chg_enable | in_dischg | In_chg |
| (RW)                  | (RW)                                  | (RW)              | (R)    | (R)               | (R)        | (R)       | (R)    |

Default value is 8'hC0.

Bit7 (soft\_dischg\_enable): Software discharge enable, software can forcibly turn off the discharge FET by setting "0" when soft\_enable is "1".

Bit6 (soft\_chg\_enable): Software charge enable, software can forcibly turn off the charge FET by setting "0" when soft\_enable is "1".

Bit5 (soft\_scan\_req): Soft scan request, in trigger scan mode (auto\_scan = 0), trigger one ADC scan when writing "1" into this bit. When read-out, always "0" is returned

Bit4 (in\_bld): a certain cell is in bleeding.

Bit3 (dischg\_enable): Discharge FET status: "1" means on; "0" means off.

Bit2 (chg\_enable): Charge FET status: "1" means on; "0" means off.



Bit1 (in\_dischg): In discharge state, i.e., the discharge current (negative value) is below the set discharge state threshold (bit [7:6] of OTP Register 1bh).

Bit0 (in\_chg): In charge state, i.e., the charge current (positive value) is above the set charge state threshold (bit [5:4] of OTP Register 1bh).

\_\_\_\_\_

Register 02h - Alert Event Register

| Bit7             | Bit6       | Bit5            | Bit4               | Bit3            | Bit2               | Bit1       | Bit0     |
|------------------|------------|-----------------|--------------------|-----------------|--------------------|------------|----------|
| safety_even<br>t | scan_event | tm_wk_even<br>t | currt_wk_eve<br>nt | sc_wk_even<br>t | efect_wk_eve<br>nt | mode_event | Reserved |
| (RW)             | (RW)       | (RW)t           | (R)                | (RW)            | (RW)               | (RW)       | (R)      |

Default value is 8'h00.

Bit7 (safety\_event): Safety event, set to "1" due to any of sc\_fet\_disable, oc\_fet\_disable, ub\_fet\_disable, ut\_fet\_disable, ov\_fet\_disable setting, cleared to "0" by software writing "1".

Bit6 (scan\_event): Scan event, set to "1" when ADC scan is finished, cleared to "0" by software writing "1". Bit5 (tm\_wk\_event): Timer wakeup event, set to "1" by timer wakeup, cleared to "0" by software writing "1".

Bit4 (currt\_wk\_event): Current wakeup event, set to "1" by current wakeup, cleared to "0" by software writing "1".

Bit3 (sc\_wk\_event): SC wakeup event, set to "1" by SC (short circuit) wakeup, cleared to "0" by software writing "1".

Bit2 (efetc wk event): Efetc wakeup event, set to "1" by efetc wakeup, cleared to "0" by software writing "1".

Bit1 (mode\_event): Mode change event, set to "1" when entering sleep mode, stand by mode or power down mode if mode\_event\_enable register bit is "1" and soft\_enable is "1", cleared to "0" by softwaring writing "1".

Bit0 (reserved): Reserved.

Register 03h - Event Enable Register

|   | Bit7     | Bit6       | Bit5       | Bit4     | Bit3     | Bit2     | Bit1        | Bit0     |
|---|----------|------------|------------|----------|----------|----------|-------------|----------|
| ĺ | reserved | scan_event | tm_event_e | reserved | reserved | reserved | mode_event_ | reserved |
|   |          | enable     | nable      |          |          |          | enable      |          |
|   | (R)      | (RW)       | (RW)t      | (R)      | (R)      | (R)      | (RW)        | (R)      |

Default value is 8'h00.

Bit7: Reserved.

Bit6 (scan\_event\_enable): Enable scan event interrupt, make ALERTN pin active due to scan event setting.

Bit5 (tm\_event\_enable): Timer wakeup event, set to "1" by timer wakeup, cleared to "0" by software writing "1".

Bit4 Bit2: Reserved.

Bit1 (mode\_event\_enable): Enable mode\_event interrupt, make ALERTN pin active due to mode event setting.

Bit0 (reserved): Reserved.

\_\_\_\_\_



Register 04h - THERM Data Register

| Bit7     | Bit6     | Bit5   | Bit4   | Bit3   | Bit2    | Bit1   | Bit0    |
|----------|----------|--------|--------|--------|---------|--------|---------|
| reserved | reserved | tm2_in | tm1_in | tm2_oe | tm2_out | tm1_oe | tm1_out |
| (R)      | (R)      | (R)    | (R)    | (RW)   | (RW)    | (RW)   | (RW)    |

Default value is 8'h00.

Bit7\_Bit6: Reserved.

Bit5 (tm2\_in): Therm2 input.

Bit4 (tm1\_in): Therm1 input.

Bit3 (tm2\_oe): High active to enable therm2 output (output tm2\_out to THERM2 pin) when therm2 is a digital

Bit2 (tm2\_out): Therm2 output data.

Bit1 (tm1\_oe): High active to enable therm1 output (output tm1\_out to THERM1 pin) when therm1 is a digital pin.

Bit0 (tm1 out): Therm1 output data.

\_\_\_\_\_

Register 05h - OTP Data Register

| riogram on an american |           |           |           |           |           |           |           |
|------------------------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|
| Bit7                   | Bit6      | Bit5      | Bit4      | Bit3      | Bit2      | Bit1      | Bit0      |
| Otp_data7              | Otp_data6 | Otp_data5 | Otp_data4 | Otp_data3 | Otp_data2 | Otp_data1 | Otp_data0 |
| (RW)                   | (RW)      | (RW)      | (RW)      | (RW)      | (RW)      | (RW)      | (RW)      |

Default value is 8'h00.

Bit7\_Bit0 (otp\_data7 – otp\_data0): The data written into OTP. In OTP mode, the read-back data is the OTP data; in non-OTP mode, the read-back data is the data written into these registers.

Register 06h - OTP Address Register

| Bit7     | Bit6      | Bit5      | Bit4      | Bit3      | Bit2      | Bit1      | Bit0      |
|----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|
| reserved | Otp_addr6 | Otp_addr5 | Otp_addr4 | Otp_addr3 | Otp_addr2 | Otp_addr1 | Otp_addr0 |
|          |           |           |           |           |           |           |           |
| (R)      | (RW)      |

Default value is 8'h00.

Bit7: Reserved.

Bit6\_Bit0 (otp\_addr6 – otp\_addr0): OTP address for OTP writing and OTP reading.

Register 07h - OTP Control Register

| Bit7     | Bit6     | Bit5     | Bit4     | Bit3       | Bit2   | Bit1    | Bit0   |
|----------|----------|----------|----------|------------|--------|---------|--------|
| Otp_busy | reserved | reserved | Otp_mode | Otp_marg_r | Otp_wr | Otp_map | Otp_rd |
|          |          |          | . —      | d          |        |         | . —    |
| (R)      | (R)      | (R)      | (RW)     | (RW)       | (RW)   | (RW)    | (RW)   |

Default value is 8'h00.



Bit7 (otp\_busy): OTP busy, it is "1" when OTP reading or writing is in progress.

Bit6 Bit5: Reserved.

Bit4 (otp\_mode): OTP mode, OTP access (OTP reading, OTP mapping, OTP writing, OTP margin reading) is available by setting "1" into this bit when otp\_enable is "1".

Bit3 (otp\_marg\_rd): OTP margin reading, writing "1" will start an OTP margin reading which has the 4<sup>th</sup> priority.

Bit2 (otp\_wr): OTP writing, writing "1" will start an OTP writing which has the 3<sup>rd</sup> priority to block OTP margin read.

Bit1 (otp\_map): OTP mapping, writing "1" will start an OTP mapping (map OTP data into internal registers) which has the 2<sup>nd</sup> priority to block OTP writing and OTP margin reading access.

Bit0 (otp\_rd): OTP reading, writing "1" will start an OTP reading which has the 1<sup>st</sup> priority to block OTP mapping, OTP writing and OTP margin reading.

\_\_\_\_\_

Register 08h - OTP Enable Register

| riogram to re-industrial designation |           |             |             |              |           |             |            |
|--------------------------------------|-----------|-------------|-------------|--------------|-----------|-------------|------------|
| Bit7                                 | Bit6      | Bit5        | Bit4        | Bit3         | Bit2      | Bit1        | Bit0       |
| Soft_enable                          | Soft_down | Soft_standb | Test_enable | Select_alert | No_wk_map | User_unlock | Otp_enable |
|                                      |           | У           |             |              |           |             |            |
| (RW)                                 | (RW)      | (RW)        | (RW)        | (RW)         | (RW)      | (RW)        | (RW)       |

Default value is 8'h00.

Bit7 (soft\_enable): Enable software control, enable "soft\_dischg\_enable", "soft\_chg\_enable", "tscan\_enable", "no\_wk\_map", "user\_unlock" and "soft\_down" register function.

Bit6 (soft\_down): Software power down, software requests power down by writing "1" when software\_enable is "1". When read-out, "0" is always returned

Bit5 (soft\_standby): Software standby, software requests standby by writing "1" when software\_enable is "1". When read-out, "0" is always returned

Bit4 (test\_enable): Enable test mode. Test mode is enabled by setting "1".

Bit3 (select\_alert): Select alert function of PF/ALERTN pin. If select\_alert is "1" and soft\_enabel is "1", select alert function; otherwise, select pf function.

Bit2 (no\_wk\_map): No wakeup mapping, the OTP mapping is not exectuted when wakeup if this bit is "1" when soft\_enable is "1"; otherwise, the OTP mapping is executed when wakeup.

Bit1 (user\_unlock): User unlock, permit to write the frozen user data (user\_freeze = 1) if this bit is "1" when software\_enable is "1".

Bit0 (otp\_enable): OTP check enable, check otp\_mode register bit only when this bit is "1". When this bit is "0", the otp\_mode will be ignored and the OTP access is prohibited.

\_\_\_\_\_\_

Register 09h - FET Disable Register

| Bit7 | Bit6          | Bit5               | Bit4          | Bit3          | Bit2          | Bit1          | Bit0               |
|------|---------------|--------------------|---------------|---------------|---------------|---------------|--------------------|
| Pf   | Sc_fet_disabl | Oc_fet_disab<br>le | Ub_fet_disabl | Ut_fet_disabl | Ot_fet_disabl | Uv_fet_disabl | Ov_fet_disab<br>le |
| (R)  | (R)           | (R)                | (R)           | (R)           | (R)           | (R)           | (R)                |



Default value is 8'h01.

Bit7 (pf): PF set to "1" due to ovpf, cell\_otpf, fet\_otpf, int\_otpf or adc\_pf.

Bit6 (sc fet disable): Confirmed SC set to "1" when SC set, cleared to "0" by SC release.

Bit5 (oc\_fet\_disable): Confirmed OC set to "1" by OC set, cleared to "1" by OC release.

Bit4 (ub\_fet\_disable): Confimed UB set to "1" by UB set, cleared to "0" by UB release.

Bit3 (ut\_fet\_disable): Confirmed UT set to "1" by UT set, cleared to "0" by UT release.

Bit2 (ot\_fet\_disable): Confirmed CHG\_OT or DSG\_OT set to "1" by OT set, cleared to "0" by OT release.

Bit1 (uv fet disable): Confirmed UV set to "1" by UV set, cleared to "0" by UV release.

Bit0 (ov\_fet\_disable): Confirmed OV, set to "1" by OV set, cleared to "0" by OV release. For the safety consideration, default ov\_fet\_disable is "1".

\_\_\_\_\_

Register 0ah - Mode Change Register

| . tog.oto. | Trogiotor van mode endinge regioter |            |            |          |          |          |          |  |  |
|------------|-------------------------------------|------------|------------|----------|----------|----------|----------|--|--|
| Bit7       | Bit6                                | Bit5       | Bit4       | Bit3     | Bit2     | Bit1     | Bit0     |  |  |
| reserved   | Mode_timeou<br>t                    | Next_mode1 | Next_mode0 | reserved | Pf_type2 | Pf_type1 | Pf_type0 |  |  |
| (R)        | (R)                                 | (R)        | (R)        | (R)      | (R)      | (R)      | (R)      |  |  |

Default value is 8'h00.

Bit7: Reserved.

Bit6 (mode\_timeout): When mode\_event is set to "1", OZ8930 wait for MCU to clear it or a 256ms time out is detected. If the time out is detected, this bit is set to "1" and cleared by MCU writing "1".

Bit5 Bit4 (next mode1 - next mode0): OZ8930's next working mode.

| next_mode1: next_mode0 | OZ8930's next working mode |
|------------------------|----------------------------|
| 00                     | Full power mode            |
| 01                     | Sleep mode                 |
| 10                     | Stand by mode              |
| 11                     | Power down mode            |

Bit3 (reserved): Reserved.

Bit2\_Bit0 (pf\_type2 – pf\_type0): Confirmed CHG\_OT or DSG\_OT set to "1" by OT set, cleared to "0" by OT release.

| pf_type2 : pf_type0 | Pf type    |
|---------------------|------------|
| 001                 | Ov_pf      |
| 010                 | cell_ot_pf |
| 011                 | fet_ot_pf  |
| 100                 | int_ot_pf  |
| 101                 | adc_pf     |

Register 0bh - Reserved Register

Reserved for future use

\_\_\_\_\_



Register 0ch & 0dh - Max Cell Register

| Address | Bit7       | Bit6       | Bit5       | Bit4       | Bit3       | Bit2       | Bit1       | Bit0       |
|---------|------------|------------|------------|------------|------------|------------|------------|------------|
| 0ch     | Max_cell_d | Max_cell_d | Max_cell_d | Max_cell_d | Reserved   | Max_cell_c | Max_cell_c | Max_cell_c |
|         | ata3       | ata2       | ata1       | ata0       |            | hannel2    | hannel1    | hannel0    |
|         | (R)        |
| 0dh     | Max_cell_d |
|         | ata11      | ata10      | ata9       | ata8       | ata7       | ata6       | ata5       | ata4       |
|         | (R)        |

Default value is 8'h00.

Max\_cell\_data11 - max\_cell\_data0: 12-bit max voltage cell data in 2's complement format with 2.44mV LSB.

Max\_cell\_channel2 - max\_cell\_channel0: max voltage cell's channel number.

\_\_\_\_\_

#### Register 0eh - Reserved Register

Reserved for future use

\_\_\_\_\_

#### Register 0fh -12: Reserved for chip vendor use only

\_\_\_\_\_

Register 13h - Scan Control Register

| 1 |          |          |           | ,          |          |          |           | ,         |
|---|----------|----------|-----------|------------|----------|----------|-----------|-----------|
|   | Bit7     | Bit6     | Bit5      | Bit4       | Bit3     | Bit2     | Bit1      | Bit0      |
|   | Prty_chk | Reserved | Auto_scan | Currt_scan | Tm_scan1 | Tm_scan0 | Cell_num1 | Cell_num0 |
|   | (RW)     | Reserved | (RW)      | (RW)       | (RW)     | (RW)     | (RW)      | (RW)      |

Default value is 8'h00.

Bit7 (prty\_chk): Even parity check bit. When writing this register, the software needs to count the number of "1" in the bit6~bit0. If the number of "1" is even, this bit should be set to "0"; if the number of "1" is odd, this bit should be set to "1". When OZ8930 finds this bit doesn't meet the above even parity check rule, it will generate an internal reset.

Bit6: Reserved. Note: Only "0" can be written into this bit. Writing "1" into this bit is prohibited.

Bit5 (auto scan): Auto scan selection: "0": select trigger scan mode; "1": select auto scan mode.

Bit4 (currt\_scan): Current channel scan enable, enable current channel scan by setting "1".

Bit3\_Bit2 (tm\_scan1 - tm\_scan0): Thermal channel therm1 and therm2 scan enable selection:

| tm_scan1: | Thermal scan                                                                            |
|-----------|-----------------------------------------------------------------------------------------|
| tm_scan0  |                                                                                         |
| 00        | disable therm2 scan, disable therm1 scan (therm2 is digital pin, therm1 is digital pin) |
| 01        | disable therm2 scan, enable therm1 scan (therm2 is digital pin, therm1 is analog pin)   |
| 10        | Note: This setting is disabled to be used.                                              |
| 11        | enable therm2 scan, enable therm1 scan (therm2 is analog pin, therm1 is analog pin)     |

Bit1\_Bit0 (cell\_num1 - cell\_num0): Cell number in the battery pack.

| cell_num1 : cell_num0 | cell number in the battery pack |
|-----------------------|---------------------------------|
| 00                    | 3 cells                         |
| 01                    | 4 cells                         |



| 10 | 5 cells |
|----|---------|
| 11 | 6 cells |

Register 14h – I<sup>2</sup>C Addr Register

| Bit7     | Bit6     | Bit5     | Bit4     | Bit3     | Bit2     | Bit1                   | Bit0                   |
|----------|----------|----------|----------|----------|----------|------------------------|------------------------|
| reserved | reserved | reserved | reserved | reserved | reserved | I <sup>2</sup> C_addr1 | I <sup>2</sup> C_addr0 |
| (R)      | (R)      | (R)      | (R)      | (R)      | (R)      | (RW)                   | (RW)                   |

Default value is 8'h00.

Bit7\_Bit2: Reserved.

Bit1\_Bit0 ( $I^2C_addr1 - I^2C_addr0$ ): Specify the 8-bit  $I^2C$  device address as 8'h60 + 2\*N. Here, N is specified by  $I^2C_addr1 - I^2C_addr0$ .

Register 15h - COC TH Register

| Bit7              | Bit6          | Bit5              | Bit4              | Bit3              | Bit2              | Bit1           | Bit0              |
|-------------------|---------------|-------------------|-------------------|-------------------|-------------------|----------------|-------------------|
| Coc_mid_t_t<br>h3 | Coc_mid_t_th2 | Coc_mid_t_th<br>1 | Coc_mid_t_t<br>h0 | Coc_low_t_t<br>h3 | Coc_low_t_t<br>h2 | Coc_low_t_th 1 | Coc_low_t_t<br>h0 |
| (RW)              | (RW)          | (RW)              | (RW)              | (RW)              | (RW)              | (RW)           | (RW)              |

Default value is 8'h00.

Bit7\_Bit4 (coc\_mid\_t\_th3 – coc\_mid\_t\_th0): Charge over current threshold for temperature T2~T3. Refer to the section Over-current (OC).

Bit3\_Bit0 (coc\_low\_t\_th3 - coc\_low\_t\_th0): Charge over current threshold for under T2 temperature.

Register 16h - COC Time Register

| Bit7          | Bit6          | Bit5         | Bit4          | Bit3       | Bit2        | Bit1       | Bit0       |
|---------------|---------------|--------------|---------------|------------|-------------|------------|------------|
| Coc_high_t_th | Coc_high_t_th | Coc_high_t_t | Coc_high_t_th | Coc_releas | Coc_release | Coc delav1 | Coc delav0 |
| 3             | 2             | h1           | 0             | e1         | 0           | (RW)       | (RW)       |
| (RW)          | (RW)          | (RW)         | (RW)          | (RW)       | (RW)        |            | (1744)     |

Default value is 8'h00.

Bit7\_Bit4 (coc\_high\_t\_th3 – coc\_high\_t\_th0): Charge over current threshold for over T3 temperature.

Bit3\_Bit2 (coc\_release1 – coc\_release0): Charge over current release control.

Bit1\_Bit0 (coc\_delay1 – coc\_delay0): Charge over current delay control.

Register 17h – DOC0 TH Register

| Bit7     | Bit6     | Bit5     | Bit4     | Bit3     | Bit2     | Bit1     | Bit0     |
|----------|----------|----------|----------|----------|----------|----------|----------|
| reserved | reserved | Doc0_th5 | Doc0_th4 | Doc0_th3 | Doc0_th2 | Doc0_th1 | Doc0_th0 |
| (R)      | (R)      | (RW)     | (RW)     | (RW)     | (RW)     | (RW)     | (RW)     |

Default value is 8'h00.



Bit7 Bit6: Reserved.

Bit5\_Bit0 (doc0\_th5 – doc0\_th0): Used to specify Level-0 discharge over current threshold. The real threshold can be calculated by the following formula:

DOC0 = (N+M)\*5mv (start value: 30mv, step: 5mv).

Here N is specified by doc0\_th5 – doc0\_th0; M is specified by 4-bit DOC0 offset (-6~+6) stored in OTP. Then we can get the following:

DOC0 =  $(N+6)^*5mv$  (N:  $0\sim63$ ) @M=6 (DOC0 offset is 30mv)  $\rightarrow$  the range is in  $30mv\sim345mv$ ; DOC0 =  $(N-6)^*5mv$  (N:  $12\sim63$ ) @M=-6 (DOC0 offset is -30mv)  $\rightarrow$  the range is in  $30mv\sim285mv$ .

It is noted that DOC0 is in the range 30mv~285mv in any case.

\_\_\_\_\_

Register 18h - DOC0 Time Register

|                 | <del> 2000</del> | no ragioto.               |                       |                         |                         |                     |                     |
|-----------------|------------------|---------------------------|-----------------------|-------------------------|-------------------------|---------------------|---------------------|
| Bit7            | Bit6             | Bit5                      | Bit4                  | Bit3                    | Bit2                    | Bit1                | Bit0                |
| reserved<br>(R) | reserved<br>(R)  | Doc0_release<br>1<br>(RW) | Doc0_release0<br>(RW) | Doc0_delay<br>3<br>(RW) | Doc0_delay<br>2<br>(RW) | Doc0_delay1<br>(RW) | Doc0_delay0<br>(RW) |

Default value is 8'h00.

Bit7\_Bit6: Reserved.

Bit5 Bit4 (doc0 release1 - doc0 release0): Level-0 discharge over current release control.

Bit3\_Bit0 (doc0\_delay3 – doc0\_delay0): Level-0 discharge over current delay control.

Register 19h - DOC1 TH Register

|                 |                 | 11131111         |                  |                  |                  |                  |                  |
|-----------------|-----------------|------------------|------------------|------------------|------------------|------------------|------------------|
| Bit7            | Bit6            | Bit5             | Bit4             | Bit3             | Bit2             | Bit1             | Bit0             |
| reserved<br>(R) | reserved<br>(R) | Doc1_th5<br>(RW) | Doc1_th4<br>(RW) | Doc1_th3<br>(RW) | Doc1_th2<br>(RW) | Doc1_th1<br>(RW) | Doc1_th0<br>(RW) |

Default value is 8'h00.

Bit7 Bit6: Reserved.

Bit5\_Bit0 (doc1\_th5 – doc1\_th0): Used to specify Level-1 discharge over current threshold. The real threshold can be calculated by the following formula:

DOC1 = (N+M+2)\*10mv (start value: 50mv, step: 10mv).

Here N is specified by doc1\_th5 – doc1\_th0; M is specified by 4-bit DOC1 offset (-3~+3) stored in OTP. Then we can get the following:

DOC1 =  $(N+5)^*10mv$  (N:  $0\sim63$ ) @M=3 (DOC1 offset is 30mv)  $\rightarrow$  the range is in 50mv $\sim680mv$ ;

DOC1 = (N-1)\*10mv (N: 6~63) @M=-3 (DOC1 offset is -30mv)  $\rightarrow$  the range is in 50mv~620mv.

It is noted that DOC1 is in the range 50mv~620mv in any case.

Register 1ah - DOC1 Time Register

| Bit7            | Bit6            | Bit5                      | Bit4                  | Bit3                    | Bit2                    | Bit1                | Bit0                |
|-----------------|-----------------|---------------------------|-----------------------|-------------------------|-------------------------|---------------------|---------------------|
| reserved<br>(R) | reserved<br>(R) | Doc1_release<br>1<br>(RW) | Doc1_release0<br>(RW) | Doc1_delay<br>3<br>(RW) | Doc1_delay<br>2<br>(RW) | Doc1_delay1<br>(RW) | Doc1_delay0<br>(RW) |

Default value is 8'h00.

Bit7 Bit6: Reserved.

Bit5 Bit4 (doc0 release1 - doc0 release0): Level-1 discharge over current release control.

Bit3\_Bit0 (doc0\_delay3 – doc0\_delay0): Level-1 discharge over current delay control.

Register 1bh - SC Time Register

| Bit7               | Bit6               | Bit5            | Bit4            | Bit3                    | Bit2                | Bit1              | Bit0              |
|--------------------|--------------------|-----------------|-----------------|-------------------------|---------------------|-------------------|-------------------|
| Dischg_th1<br>(RW) | Dischg_th0<br>(RW) | Chg_th1<br>(RW) | Chg_th0<br>(RW) | Sc_release<br>1<br>(RW) | Sc_release0<br>(RW) | Sc_delay1<br>(RW) | Sc_delay0<br>(RW) |

Default value is 8'h00.

Bit7\_Bit6: Specify the discharge threshold. (Considering current ADC's LSB: 15.3uV, 6.12mA@2.5mohm). When the current (signed value) < the discharge threshold (signed value), the chip is in discharge state (in\_discharge=1); otherwise, the chip is not in discharge state (in\_discharge = 0).

| Dischg_th1 : dischg_th0 | the discharge threshold |  |  |  |
|-------------------------|-------------------------|--|--|--|
| 8←00                    | -48.8mA                 |  |  |  |
| 01→16                   | -97.7mA                 |  |  |  |
| 10→32                   | -195.3mA                |  |  |  |
| 11→64                   | -390.6mA                |  |  |  |

Bit5\_Bit4 (chg\_th1 – chg\_th0): Specify the charge threshold as following (Considering current ADC's LSB: 15.3uV, 7.7mA@2mohm). When the current (signed value) > the charge threshold (signed value), the chip is in charge state (in\_charge = 1); otherwise, the chip is not in charge state (in\_charge = 0).

| chg_th1: chg_th0 | the charge threshold |
|------------------|----------------------|
| 00→8             | 48.8mA               |
| 01→16            | 97.7mA               |
| 10→32            | 195.3mA              |
| 11→64            | 390.6mA              |

Bit3\_Bit2 (sc\_release1 – sc\_release0): Short circuit release control. Refer to SC (Short Circuit) Control Table.

Bit1\_Bit0 (sc\_delay1 - sc\_delay0): Short circuit delay control. Refer to SC (Short Circuit) Control Table.

Register 1ch – Safety Time Register

| Bit7                      | Bit6            | Bit5              | Bit4              | Bit3                     | Bit2                     | Bit1              | Bit0              |
|---------------------------|-----------------|-------------------|-------------------|--------------------------|--------------------------|-------------------|-------------------|
| Tm2_fet_ot_s<br>el<br>(R) | Tm2_fet<br>(RW) | Ub_delay1<br>(RW) | Ub_delay0<br>(RW) | Ot_ut_delay<br>1<br>(RW) | Ot_ut_delay<br>0<br>(RW) | Ov_delay1<br>(RW) | Ov_delay0<br>(RW) |

Default value is 8'h00.

Bit7 (tm2\_fet\_ot\_sel): When TM2 is FET temperature, if tm2\_fet\_ot\_sel = "1", check OT and release on TM2; if tm2\_fet\_ot\_sel = "0", check OTPF on TM2.

Bit6 (tm2\_fet): TM2 is FET temperature. If tm2\_fet is 0, TM1, TM2 both are battery cell tube skin temperature; if tm2\_fet is "1", TM1 is battery cell tube skin temperature and TM2 is FET temperature.



Bit5\_Bit4 (ub\_delay1 - ub\_delay0): Cell unbalance delay control.

| Ub_delay1 : ub_delay0 | Cell unbalance delay |
|-----------------------|----------------------|
| 00                    | 2 scan cycles        |
| 01                    | 4 scan cycles        |
| 10                    | 6 scan cycles        |
| 11                    | 8 scan cycles        |

Bit3\_Bit2 (ot\_ut\_delay1 - ot\_ut\_delay0): Over temperature, under temperature delay control.

| ot_ut_delay1 : ot_ut_delay0 | Over temperature, under temperature delay |
|-----------------------------|-------------------------------------------|
| 00                          | 2 scan cycles                             |
| 01                          | 4 scan cycles                             |
| 10                          | 6 scan cycles                             |
| 11                          | 8 scan cycles                             |

Bit1 Bit0 (ov delay1 – ov delay0): Over voltage delay control.

| uv_delay1 : ov_delay0 | Over voltage delay |  |  |  |  |
|-----------------------|--------------------|--|--|--|--|
| 00                    | 2 scan cycles      |  |  |  |  |
| 01                    | 4 scan cycles      |  |  |  |  |
| 10                    | 8 scan cycles      |  |  |  |  |
| 11                    | 16 scan cycles     |  |  |  |  |

-----

Register 1dh - ADC PF Delay Register

| . tog.oto.        |                   | . = 0.4,        | 9.0.0.          |                      |                           |                           |                           |
|-------------------|-------------------|-----------------|-----------------|----------------------|---------------------------|---------------------------|---------------------------|
| Bit7              | Bit6              | Bit6 Bit5 Bit4  |                 | Bit3                 | Bit2                      | Bit1                      | Bit0                      |
| uv_delay1<br>(RW) | uv_delay0<br>(RW) | reserved<br>(R) | reserved<br>(R) | pf_ignr_shrt<br>(RW) | Adc_pf_dela<br>y2<br>(RW) | Adc_pf_dela<br>y1<br>(RW) | Adc_pf_delay<br>0<br>(RW) |

Default value is 8'h00.

Bit7\_Bit6 (uv\_delay1 - uv\_delay0): Under voltage delay control.

| uv_delay1 : uv_delay0 | Under voltage delay |  |  |  |  |
|-----------------------|---------------------|--|--|--|--|
| 00                    | 2 scan cycles       |  |  |  |  |
| 01                    | 4 scan cycles       |  |  |  |  |
| 10                    | 8 scan cycles       |  |  |  |  |
| 11                    | 16 scan cycles      |  |  |  |  |

Bit5\_Bit4: Reserved.

Bit3 (pf\_ignr\_shrt): During the battery assembly, it is possible that the unexpected OVPF occurs. OZ8930 will ignore the unexpected OVPF during the assembly time. This bit defines the assembly time: if "1", set the short assembly time as 32s; if "0", set the long assembly time as 64s.

Bit2\_Bit0 (adc\_pf\_delay2 - adc\_pf\_delay0): ADC\_PF delay control.

| ADC_PF delay         |  |  |  |  |
|----------------------|--|--|--|--|
| Disable adc_pf check |  |  |  |  |
| 2 scan cycles        |  |  |  |  |
| 3 scan cycles        |  |  |  |  |
| 4 scan cycles        |  |  |  |  |
| 5 scan cycles        |  |  |  |  |
| 6 scan cycles        |  |  |  |  |
| 7 scan cycles        |  |  |  |  |
| 8 scan cycles        |  |  |  |  |
|                      |  |  |  |  |

\_\_\_\_\_



Register 1eh – Bleeding Control Register

| Bit7              | Bit6              | Bit5              | Bit4              | Bit3                | Bit2             | Bit1                      | Bit0                      |
|-------------------|-------------------|-------------------|-------------------|---------------------|------------------|---------------------------|---------------------------|
| ov_out_<br>enable | uv_out_<br>enable | ot_out_<br>enable | ut_out_<br>enable | Bld_support<br>(RW) | Bld_idle<br>(RW) | Bld_accurac<br>y1<br>(RW) | Bld_accuracy<br>0<br>(RW) |

Default value is 8'h00.

Bit7\_Bit4: When efetc\_mode[2:0] = 3'b101, enable to output the corresponding xx\_fet\_disable on EFETC pin. The output = (ov\_fet\_disable & ov\_out\_enable) | (uv\_fet\_disable & uv\_out\_enable) | (ot\_fet\_disable & ot\_out\_enable) | (ut\_fet\_disable & ut\_out\_enable).

Bit3 (bld\_support): Bleeding support, support bleeding function by setting "1".

Bit2 (bld\_idle): Eable idle/OV bleeding, allow bleeding in idle state (no charge current, no discharge current) and OV (over voltage) state when it is "1"; stop bleeding in idle state or OV state when it is "0".

Bit1 Bit0 (bld accuracy1 – bld accuracy0): Bleeding Accuracy control.

| · - | _= ( )                        |                           |  |  |  |  |  |  |
|-----|-------------------------------|---------------------------|--|--|--|--|--|--|
| ĺ   | Bld_accuracy1 : bld_accuracy0 | Bleeding Accuracy control |  |  |  |  |  |  |
|     | 00                            | 9.76mV                    |  |  |  |  |  |  |
|     | 01                            | 19.5mV                    |  |  |  |  |  |  |
|     | 10                            | 29.3mV                    |  |  |  |  |  |  |
| Ī   | 11                            | 39.0mV                    |  |  |  |  |  |  |

\_\_\_\_

Register 1fh - Sleep Control Register

| Bit7                | Bit6                    | Bit5                    | Bit4                    | Bit3            | Bit2            | Bit1                      | Bit0               |
|---------------------|-------------------------|-------------------------|-------------------------|-----------------|-----------------|---------------------------|--------------------|
| User_freeze<br>(RW) | Efetc_mode<br>2<br>(RW) | Efetc_mode<br>1<br>(RW) | Efetc_mode<br>0<br>(RW) | reserved<br>(R) | reserved<br>(R) | Sleep_suppo<br>rt<br>(RW) | Sleep_time<br>(RW) |

Default value is 8'h00.

Bit7 (user\_freeze): User data frozen, the user data (reg13h~reg1fh) is frozen to write by setting "1" unless user unlock is "1".

Bit6 Bit4 (efetc mode2 – effect mode0): EFETC pin function mode as following.

| Efect_mode2 : efetc_mode0 | EFETC pin function mode as following                                                                                                                                                                |  |  |  |  |
|---------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| 000                       | High active input to forcibly disable charge FET.                                                                                                                                                   |  |  |  |  |
| 001                       | High active input to forcibly disable discharge FET.                                                                                                                                                |  |  |  |  |
| 010                       | High active input to forcibly disable charge FET and discharge FET.                                                                                                                                 |  |  |  |  |
| 011                       | Output discharge FET status.                                                                                                                                                                        |  |  |  |  |
| 100                       | High active input as external standby.                                                                                                                                                              |  |  |  |  |
| 101                       | Output internal xx_fet_disable signal. xx_fet_disable = (ov_fet_disable & ov_out_enable))   (uv_fet_disable & uv_out_enable)   (ot_fet_disable & ot_out_enable)   (ut_fet_disable & ut_out_enable). |  |  |  |  |
| 110, 111                  | Reserved                                                                                                                                                                                            |  |  |  |  |

Bit3 Bit2: Reserved.

Bit1 (sleep\_support): Sleep function support by setting "1".

Bit0 (sleep\_time): Sleep time control, select 1-minute sleep time by setting "0"; select 4-minute sleep time by setting "1"

-----



Register 20h ~ 21h -Under Temperature Threshold Register

| Address | Bit7      | Bit6      | Bit5     | Bit4     | Bit3     | Bit2     | Bit1     | Bit0     |
|---------|-----------|-----------|----------|----------|----------|----------|----------|----------|
| 20h     | ut_th[3]  | ut_th[2]  | ut_th[1] | ut_th[0] | reserved | reserved | reserved | reserved |
| 21h     | ut_th[11] | ut_th[10] | ut_th[9] | ut_th[8] | tu_th[7] | ut_th[6] | ut_th[5] | ut_th[4] |

These two registers set under temperature threshold for battery cell tube sink, 1.22mV LSB, 2's complement format.

\_\_\_\_\_

Register 22h ~ 23h - Under Temperature Release Register

|         |           | •         |          |              | •        |          |          |          |
|---------|-----------|-----------|----------|--------------|----------|----------|----------|----------|
| Address | Bit7      | Bit6      | Bit5     | Bit4         | Bit3     | Bit2     | Bit1     | Bit0     |
| 22h     | ut_rl[3]  | ut_rl[2]  | ut_rl[1] | ut_rl<br>[0] | reserved | reserved | reserved | reserved |
| 23h     | ut_rl[11] | ut_rl[10] | ut_rl[9] | ut_rl<br>[8] | tu_rl[7] | ut_rl[6] | ut_rl[5] | ut_rl[4] |

These two registers set under temperature release for battery cell tube sink, 1.22mV LSB, 2's complement format

\_\_\_\_\_

Register 24h ~ 25h - Charge Temperature Point2 Register

| Address | Bit7       | Bit6       | Bit5      | Bit4      | Bit3      | Bit2      | Bit1      | Bit0      |
|---------|------------|------------|-----------|-----------|-----------|-----------|-----------|-----------|
| 24h     | Chg_t2[3]  | Chg_t2[2]  | Chg_t2[1] | Chg_t2[0] | reserved  | reserved  | reserved  | reserved  |
| 25h     | Chg_t2[11] | Chg_t2[10] | Chg_t2[9] | Chg_t2[8] | Chg_t2[7] | Chg_t2[6] | Chg_t2[5] | Chg_t2[4] |

These two registers set charge temperature point2 for battery cell tube sink, 1.22mV LSB, 2's complement format.

\_\_\_\_\_

Register 26h ~ 27h - Charge Temperature Point3 Register

| Address | Bit7       | Bit6       | Bit5      | Bit4      | Bit3      | Bit2      | Bit1      | Bit0      |
|---------|------------|------------|-----------|-----------|-----------|-----------|-----------|-----------|
| 26h     | Chg_t3[3]  | Chg_t3[2]  | Chg_t3[1] | Chg_t3[0] | reserved  | reserved  | reserved  | reserved  |
| 27h     | Chg_t3[11] | Chg_t3[10] | Chg_t3[9] | Chg_t3[8] | Chg_t3[7] | Chg_t3[6] | Chg_t3[5] | Chg_t3[4] |

These two registers set charge temperature point3 for battery cell tube sink, 1.22mV LSB, 2's complement format.

\_\_\_\_\_

Register 28h ~ 29h - Charge over Temperature and release Register

| Address | Bit7       | Bit6       | Bit5      | Bit4      | Bit3                   | Bit2                   | Bit1                   | Bit0                   |
|---------|------------|------------|-----------|-----------|------------------------|------------------------|------------------------|------------------------|
| 28h     | Chg_ot[3]  | Chg_ot[2]  | Chg_ot[1] | Chg_ot[0] | Chg_ot_rl<br>_delta[3] | Chg_ot_rl<br>_delta[2] | Chg_ot_rl<br>_delta[1] | Chg_ot_rl<br>_delta[0] |
| 29h     | Chq ot[11] | Chq ot[10] | Chg ot[9] | Cha ot[8] | Chg ot[7]              | Cha ot[6]              | Cha ot[5]              | Cha ot[4]              |

These two registers set charge over temperature for battery cell tube sink, 1.22mV LSB, 2's complement format.

Reg28h\_Bit3 - Reg28h\_Bit0 (chg\_ot\_rl\_delta[3] - chg\_ot\_rl\_delta[0]) : Charge over temperature release delta, 1.22mV LSB, 2's complement format. (Charge ot release = charge\_ot + chg\_ot\_rl\_delta)

Register 2ah ~ 2bh - Discharge over Temperature and release Register

|       | IOCOI ZUII ZDII | Biodilai go o | roi roilipola | tare arra rere | ace i tegictei         |                        |                        |                        |
|-------|-----------------|---------------|---------------|----------------|------------------------|------------------------|------------------------|------------------------|
| Addre | ss Bit7         | Bit6          | Bit5          | Bit4           | Bit3                   | Bit2                   | Bit1                   | Bit0                   |
| 2ah   | dsg_ot[3]       | dsg_ot[2]     | dsg_ot[1]     | dsg_ot[0]      | dsg_ot_rl<br>_delta[3] | dsg_ot_rl<br>_delta[2] | dsg_ot_rl<br>_delta[1] | dsg_ot_rl<br>_delta[0] |
| 2bh   | dsg_ot[11]      | dsg_ot[10]    | dsg_ot[9]     | dsg_ot[8]      | dsg_ot[7]              | dsg_ot[6]              | dsg ot[5]              | dsg ot[4]              |



These two registers set discharge over temperature for battery cell tube sink, 1.22mV LSB, 2's complement format.

Reg2ah\_Bit3 - Reg28h\_Bit0 (dsg\_ot\_rl\_delta[3] - dsg\_ot\_rl\_delta[0]): Discharge over temperature release delta, 1.22mV LSB, 2's complement format. (Discharge ot release = discharge\_ot + chg\_ot\_rl\_delta)

Register 2ch ~ 2dh - Low Temperature over Voltage Threshold Register

| Address | Bit7             | Bit6             | Bit5            | Bit4            | Bit3            | Bit2            | Bit1            | Bit0            |
|---------|------------------|------------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|
| 2ch     | Low_t_ov<br>[3]  | Low_t_ov<br>[2]  | Low_t_ov<br>[1] | Low_t_ov<br>[0] | reserved        | reserved        | reserved        | reserved        |
| 2dh     | Low_t_ov<br>[11] | Low_t_ov<br>[10] | Low_t_ov<br>[9] | Low_t_ov<br>[8] | Low_t_ov<br>[7] | Low_t_ov<br>[6] | Low_t_ov<br>[5] | Low_t_ov<br>[4] |

These two registers set low temperature over voltage threshold for under T2 temperature, 2.44mV LSB, 2's complement format; low t ovpf = low ov + 41 (100mV).

Register 2eh ~ 2fh – Middle Temperature over Voltage Threshold Register

| Address | Bit7             | Bit6             | Bit5            | Bit4            | Bit3            | Bit2            | Bit1            | Bit0            |
|---------|------------------|------------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|
| 2eh     | mid_t_ov<br>[3]  | mid_t_ov<br>[2]  | mid_t_ov[<br>1] | mid_t_ov<br>[0] | reserved        | reserved        | reserved        | reserved        |
| 2fh     | mid_t_ov<br>[11] | mid_t_ov<br>[10] | mid_t_ov[<br>9] | mid_t_ov<br>[8] | mid_t_ov[<br>7] | mid_t_ov[<br>6] | mid_t_ov[<br>5] | mid_t_ov[<br>4] |

These two registers set middle temperature over voltage threshold for  $T2 \sim T3$  temperature, 2.44mV LSB, 2's complement format; mid t ovpf = mid ov + 41 (100mV).

Register 30h ~ 31h - High Temperature over Voltage Threshold Register

| Address | Bit7              | Bit6              | Bit5             | Bit4             | Bit3             | Bit2             | Bit1             | Bit0             |
|---------|-------------------|-------------------|------------------|------------------|------------------|------------------|------------------|------------------|
| 30h     | high_t_ov<br>[3]  | high_t_ov<br>[2]  | high_t_ov<br>[1] | high_t_ov<br>[0] | reserved         | reserved         | reserved         | reserved         |
| 31h     | high_t_ov<br>[11] | high_t_ov<br>[10] | high_t_ov<br>[9] | high_t_ov<br>[8] | high_t_ov<br>[7] | high_t_ov<br>[6] | high_t_ov<br>[5] | high_t_ov<br>[4] |

These two registers set high temperature over voltage threshold for voerT3 temperature, 2.44mV LSB, 2's complement format; high\_t\_ovpf = high\_ov + 41 (100mV).

Register 32h ~ 33h - Cell Unbalance Threshold and Release Register

| Address | Bit7   | Bit6   | Bit5  | Bit4  | Bit3               | Bit2               | Bit1               | Bit0               |
|---------|--------|--------|-------|-------|--------------------|--------------------|--------------------|--------------------|
| 32h     | Ub[3]  | Ub[2]  | Ub[1] | Ub[0] | Ub_rl_del<br>ta[3] | Ub_rl_del<br>ta[2] | Ub_rl_del<br>ta[1] | Ub_rl_del<br>ta[0] |
| 33h     | Ub[11] | Ub[10] | Ub[9] | Ub[8] | Ub[7]              | Ub[6]              | Ub[5]              | Ub[4]              |

These two registers set cell unbalance threshold, 2.44mV LSB, 2's complement format.

 $Reg32h\_Bit3 - Reg32h\_Bit0 \ (ub\_rl\_delta[3] - ub\_rl\_delta[0]) : cell \ unbalance \ release \ delta, \ 2.44*16mV \ LSB, \ 2's \ complement \ format. \ (ub \ release = ub + ubt\_rl\_delta*16)$ 

\_\_\_\_\_

Register 34h ~ 35h – Under Voltage Threshold Register

| Address | Bit7   | Bit6   | Bit5  | Bit4   | Bit3     | Bit2     | Bit1     | Bit0     |
|---------|--------|--------|-------|--------|----------|----------|----------|----------|
| 34h     | uv [3] | uv [2] | uv[1] | uv [0] | reserved | reserved | reserved | reserved |
| 35h     | uv[11] | uv[10] | uv[9] | uv [8] | uv[7]    | uv[6]    | uv[5]    | uv[4]    |

These two registers set under voltage threshold, 2.44mV LSB, 2's complement format.

\_\_\_\_\_

Register 36h ~ 37h - Over Temperature PF Threshold Register

| Address | Bit7                | Bit6                | Bit5                | Bit4               | Bit3                | Bit2                | Bit1                | Bit0                |
|---------|---------------------|---------------------|---------------------|--------------------|---------------------|---------------------|---------------------|---------------------|
| 36h     | Int_otpf_th<br>[3]  | Int_otpf_th<br>[2]  | Int_otpf_t<br>h [1] | Int_otpf_th<br>[0] | reserved            | reserved            | reserved            | reserved            |
| 37h     | Int_otpf_th<br>[11] | Int_otpf_th<br>[10] | Int_otpf_t<br>h [9] | Int_otpf_th<br>[8] | Int_otpf_t<br>h [7] | Int_otpf_t<br>h [6] | Int_otpf_t<br>h [5] | Int_otpf_t<br>h [4] |

These two registers set over temperature PF threshold for internal temperature, 1.22mV LSB, 2's complement format.

\_\_\_\_\_

Register 38h ~ 39h - Over Temperature PF Threshold Register

| Address | Bit7              | Bit6              | Bit5             | Bit4             | Bit3             | Bit2             | Bit1             | Bit0             |
|---------|-------------------|-------------------|------------------|------------------|------------------|------------------|------------------|------------------|
| 38h     | cell_otpf [3]     | cell_otpf [2]     | cell_otpf<br>[1] | cell_otpf<br>[0] | reserved         | reserved         | reserved         | reserved         |
| 39h     | cell_otpf<br>[11] | cell_otpf<br>[10] | cell_otpf<br>[9] | cell_otpf<br>[8] | cell_otpf<br>[7] | cell_otpf<br>[6] | cell_otpf<br>[5] | cell_otpf<br>[4] |

These two registers set over temperature PF threshold for battery cell tube sink, 1.22mV LSB, 2's complement format.

Register 3ah ~ 3bh - MOSFET Over Temperature PF Threshold and Release Register

| Address | Bit7        | Bit6        | Bit5       | Bit4        | Bit3       | Bit2       | Bit1       | Bit0       |  |
|---------|-------------|-------------|------------|-------------|------------|------------|------------|------------|--|
| 3ah     | Fet_ot/fet_ | Fet_ot/fet_ | Fet_ot/fet | Fet_ot/fet_ | Fet_ot_d   | Fet_ot_d   | Fet_ot_de  | Fet_ot_d   |  |
|         | otpf[3]     | otpf[2]     | _otpf[1]   | otpf[0]     | elta[3]    | elta[2]    | Ita[1]     | elta[0]    |  |
| 3bh     | Fet_ot/fet_ | Fet_ot/fet_ | Fet_ot/fet | Fet_ot/fet_ | Fet_ot/fet | Fet_ot/fet | Fet_ot/fet | Fet_ot/fet |  |
|         | otpf[11]    | otpf[10]    | _otpf[9]   | otpf[8]     | _otpf[7]   | _otpf[6]   | _otpf[5]   | _otpf[4]   |  |

These two registers set over temperature or over temperature PF threshold for MOSFET, 1.22mV LSB, 2's complement format.

Reg3ah\_Bit3 – Reg3ah\_Bit0 fet\_ot\_delta[3] – fet\_ot\_delta[0]) : FET over temperature release delta, 1.22mV LSB, 2's complement format. (fet ot release = fet\_otpf +fet\_ot\_delta)

Register 3ch ~ 3dh – Bleeding Star Point Register

| ixegiste | i Juli –          | Diecumy ota       | ı ı onu ixegi    | 3161             |                  |                  |                  |                  |
|----------|-------------------|-------------------|------------------|------------------|------------------|------------------|------------------|------------------|
| Address  | Bit7              | Bit6              | Bit5             | Bit4             | Bit3             | Bit2             | Bit1             | Bit0             |
| 3ch      | Bld_start[3]      | Bld_start<br>[2]  | Bld_start<br>[1] | Bld_start<br>[0] | reserved         | reserved         | reserved         | reserved         |
| 3dh      | Bld_start<br>[11] | Bld_start<br>[10] | Bld_start<br>[9] | Bld_start<br>[8] | Bld_start<br>[7] | Bld_start<br>[6] | Bld_start<br>[5] | Bld_start<br>[4] |

These two registers set bleeding start point, 2.44mV LSB, 2's complement format.

Register 3eh – Over Voltage Release Hysteresis Register

| Bit7     | Bit6     | Bit5      | Bit4      | Bit3      | Bit2      | Bit1      | Bit0      |
|----------|----------|-----------|-----------|-----------|-----------|-----------|-----------|
| Reserved | reserved | Ov_hys[5] | Ov_hys[4] | Ov_hys[3] | Ov_hys[2] | Ov_hys[1] | Ov_hys[0] |

Bit5\_Bit0 (ov\_hys[5] – ov\_hys[0]): Over voltage release hysteresis, 2.44\*4mV LSB, 2's complement format, theory range: -312.3mV  $\sim$  +302.56mV; application range: -312.3mV  $\sim$  0mV. Ov release = ov threshold + ov\_hys\*4.



Register 3fh - Under Voltage Release Hysteresis Register

| Bit7     | Bit6     | Bit5      | Bit4      | Bit3      | Bit2      | Bit1      | Bit0      |
|----------|----------|-----------|-----------|-----------|-----------|-----------|-----------|
| Reserved | reserved | uv_hys[5] | uv_hys[4] | uv_hys[3] | uv_hys[2] | uv_hys[1] | uv_hys[0] |

Bit5\_Bit0 (uv\_hys[5] – uv\_hys[0]): Under voltage release hysteresis, 2.44\*16mV LSB, 2's complement format, theory range:  $-1249mV \sim +1210mV$ ; application range:  $0mV \sim +1210mV$ . uv release = uv threshold + uv\_hys\*16.

Register 40h ~ 4bh - Cell1~Cell6 Data Register

| Registe | Register 40n ~ 4bn – Cell1~Cell6 Data Register |                    |                   |                   |                   |                   |                   |                      |  |  |  |  |
|---------|------------------------------------------------|--------------------|-------------------|-------------------|-------------------|-------------------|-------------------|----------------------|--|--|--|--|
| Address | Bit7                                           | Bit6               | Bit5              | Bit4              | Bit3              | Bit2              | Bit1              | Bit0                 |  |  |  |  |
| 40h     | Cell1_data<br>[3]                              | Cell1_data<br>[2]  | Cell1_data<br>[1] | Cell1_data<br>[0] | reserved          | reserved          | reserved          | Cell1 offset flag    |  |  |  |  |
| 41h     | Cell1_data<br>[11]                             | Cell1_data<br>[10] | Cell1_data<br>[9] | Cell1_data<br>[8] | Cell1_data<br>[7] | Cell1_data<br>[6] | Cell1_data<br>[5] | Cell1_data<br>[4]    |  |  |  |  |
| 42h     | Cell2_data<br>[3]                              | Cell2_data<br>[2]  | Cell2_data<br>[1] | Cell2_data<br>[0] | reserved          | reserved          | reserved          | Cell2<br>offset flag |  |  |  |  |
| 43h     | Cell2_data<br>[11]                             | Cell2_data<br>[10] | Cell2_data<br>[9] | Cell2_data<br>[8] | Cell2_data<br>[7] | Cell2_data<br>[6] | Cell2_data<br>[5] | Cell2_data<br>[4]    |  |  |  |  |
| 44h     | Cell3_data<br>[3]                              | Cell3_data<br>[2]  | Cell3_data<br>[1] | Cell3_data<br>[0] | reserved          | reserved          | reserved          | Cell3<br>offset flag |  |  |  |  |
| 45h     | Cell3_data<br>[11]                             | Cell3_data<br>[10] | Cell3_data<br>[9] | Cell3_data<br>[8] | Cell3_data<br>[7] | Cell3_data<br>[6] | Cell3_data<br>[5] | Cell3_data<br>[4]    |  |  |  |  |
| 46h     | Cell4_data<br>[3]                              | Cell4_data<br>[2]  | Cell4_data<br>[1] | Cell4_data<br>[0] | reserved          | reserved          | reserved          | Cell4<br>offset flag |  |  |  |  |
| 47h     | Cell4_data<br>[11]                             | Cell4_data<br>[10] | Cell4_data<br>[9] | Cell4_data<br>[8] | Cell4_data<br>[7] | Cell4_data<br>[6] | Cell4_data<br>[5] | Cell4_data<br>[4]    |  |  |  |  |
| 48h     | Cell5_data<br>[3]                              | Cell5_data<br>[2]  | Cell5_data<br>[1] | Cell5_data<br>[0] | reserved          | reserved          | reserved          | Cell5<br>offset flag |  |  |  |  |
| 49h     | Cell5_data<br>[11]                             | Cell5_data<br>[10] | Cell5_data<br>[9] | Cell5_data<br>[8] | Cell5_data<br>[7] | Cell5_data<br>[6] | Cell5_data<br>[5] | Cell5_data<br>[4]    |  |  |  |  |
| 4ah     | Cell6_data<br>[3]                              | Cell6_data<br>[2]  | Cell6_data<br>[1] | Cell6_data<br>[0] | reserved          | reserved          | reserved          | Cell6<br>offset flag |  |  |  |  |
| 4bh     | Cell6_data<br>[11]                             | Cell6_data<br>[10] | Cell6_data<br>[9] | Cell6_data<br>[8] | Cell6_data<br>[7] | Cell6_data<br>[6] | Cell6_data<br>[5] | Cell6_data<br>[4]    |  |  |  |  |

Store the calibrated cell1~cell6's 12-bit ADC data or corresponding cell offset in 2's complement format with 2.44mV LSB. When the corresponding offset flag is "0", it is the cell1~cell6's ADC data; when the corresponding offset flag is "1", it is the cell1~cell6's offset ADC data.

Register 4ch ~ 4dh - INT Data Register

| Address | Bit7             | Bit6             | Bit5            | Bit4            | Bit3            | Bit2            | Bit1            | Bit0                   |
|---------|------------------|------------------|-----------------|-----------------|-----------------|-----------------|-----------------|------------------------|
| 4ch     | Int_data<br>[3]  | Int_data<br>[2]  | Int_data<br>[1] | Int_data<br>[0] | reserved        | reserved        | reserved        | Cell6 high offset flag |
| 4dh     | Int_data<br>[11] | Int_data<br>[10] | Int_data<br>[9] | Int_data<br>[8] | Int_data<br>[7] | Int_data<br>[6] | Int_data<br>[5] | Int_data [4]           |

Store the internal temperature's 12-bit ADC data or cell6 high offset in 2's complement format with 1.22mV LSB. When cell6 high offset flag is "0", it is the internal temperature ADC data; when cell6 high offset flag is "1", it is the cell6 high side offset ADC data.



Register 4eh ~ 51h - TM1, TM2 Data Register

| Address | Bit7             | Bit6             | Bit5            | Bit4            | Bit3            | Bit2             | Bit1            | Bit0            |
|---------|------------------|------------------|-----------------|-----------------|-----------------|------------------|-----------------|-----------------|
| 4eh     | Tm1_data<br>[3]  | Tm1_data<br>[2]  | Tm1_data<br>[1] | Tm1_data<br>[0] | reserved        | reserved         | reserved        | reserved        |
| 4fh     | Tm1_data<br>[11] | Tm1_data<br>[10] | Tm1_data<br>[9] | Tm1_data<br>[8] | Tm1_data<br>[7] | Tm1_dat<br>a [6] | Tm1_data<br>[5] | Tm1_data<br>[4] |
| 50h     | Tm2_data<br>[3]  | Tm2_data<br>[2]  | Tm2_data<br>[1] | Tm2_data<br>[0] | reserved        | reserved         | reserved        | reserved        |
| 51h     | Tm2_data<br>[11] | Tm2_data<br>[10] | Tm2_data<br>[9] | Tm2_data<br>[8] | Tm2_data<br>[7] | Tm2_dat<br>a [6] | Tm2_data<br>[5] | Tm2_data<br>[4] |

Store the calibrated external temperature1, external temperature2's 12-bit ADC data in 2's complement format with 1.22mV LSB.

\_\_\_\_\_

Register 52h, 53h - Current Data Register

| Address | Bit7                  | Bit6                  | Bit5                  | Bit4                  | Bit3                 | Bit2                 | Bit1                 | Bit0                 |
|---------|-----------------------|-----------------------|-----------------------|-----------------------|----------------------|----------------------|----------------------|----------------------|
| 52h     | current_d<br>ata[5]   | current_da<br>ta [4]  | current_da<br>ta [3]  | current_dat<br>a [2]  | current_da<br>ta [1] | current_da<br>ta [0] | reserved             | reserve              |
| 53h     | current_d<br>ata [13] | current_da<br>ta [12] | current_da<br>ta [11] | current_dat<br>a [10] | current_da<br>ta [9] | current_da<br>ta [8] | current_da<br>ta [7] | current_d<br>ata [6] |

Store the calibrated current's 14-bit ADC data in 2's complement format with 15.3uv (7.7mA@2mohm) LSB.

Register 54h - Group1 Offset Register

|             | · · · · · · · · · · · · · · · · · · · |             |             |             |             |             |               |
|-------------|---------------------------------------|-------------|-------------|-------------|-------------|-------------|---------------|
| Bit7        | Bit6                                  | Bit5        | Bit4        | Bit3        | Bit2        | Bit1        | Bit0          |
| Group1 offs | Group1_offs                           | Group1_offs | Group1_offs | Group1_offs | Group1_offs | Group1_offs | Group1 offset |
| et[7]       | et                                    | et          | et          | et          | et          | et          | roi           |
| Եվ/]        | [6]                                   | [5]         | [4]         | [3]         | [2]         | [1]         | ران           |

Store the group1's 8-bit offset in 2's complement format with 2.44mV LSB for the cell1, 2, 3's ADC auto calibration. The range is -312mV~310mV.

Register 55h - Group2 Offset Register

| Bit7        | Bit6        | Bit5        | Bit4        | Bit3        | Bit2        | Bit1        | Bit0          |
|-------------|-------------|-------------|-------------|-------------|-------------|-------------|---------------|
| Group2 offs | Group2_offs | Group2_offs | Group2_offs | Group2_offs | Group2_offs | Group2_offs | Group2 offset |
| et[7]       | et          | et          | et          | et          | et          | et          | [0]           |
| Եվ/]        | [6]         | [5]         | [4]         | [3]         | [2]         | [1]         | [0]           |

Store the group2's 8-bit offset in 2's complement format with 2.44mV LSB for the cell4, 5, 6's ADC auto calibration. The range is -312mV~310mV.

\_\_\_\_\_

Register 56h, 57h - Current Offset Register

| Address | Bit7                   | Bit6                   | Bit5                   | Bit4                   | Bit3                  | Bit2                  | Bit1                  | Bit0                  |
|---------|------------------------|------------------------|------------------------|------------------------|-----------------------|-----------------------|-----------------------|-----------------------|
| 56h     | current_o<br>ffset[3]  | current_off<br>set [2] | current_off<br>set [1] | current_off<br>set [0] | reserved              | reserve               | reserved              | reserve               |
| 57h     | current_o<br>ffset[11] | current_off<br>set[10] | current_off<br>set[9]  | current_off<br>set[8]  | current_off<br>set[7] | current_off<br>set[6] | current_off<br>set[5] | current_of<br>fset[4] |

Store the current's 12-bit offset in 2's complement format with 15.3uv (7.7mA@2mohm) LSB. The range is - 31.3mV~+31.3mV.

-----



Register 58h, 59h - Ref18 Data Register

| Address | Bit7               | Bit6               | Bit5              | Bit4              | Bit3              | Bit2              | Bit1              | Bit0              |
|---------|--------------------|--------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|
| 58h     | Ref18_da<br>ta[3]  | Ref18_dat<br>a[2]  | Ref18_dat<br>a[1] | Ref18_data<br>[0] | reserved          | reserve           | reserved          | reserve           |
| 59h     | Ref18_da<br>ta[11] | Ref18_dat<br>a[10] | Ref18_dat<br>a[9] | Ref18_data<br>[8] | Ref18_dat<br>a[7] | Ref18_dat<br>a[6] | Ref18_dat<br>a[5] | Ref18_da<br>ta[4] |

Store the reference 1.8v's 12-bit ADC data in 2's complement format with 1.22mV LSB.

Register 5ah - OV/UV Timer Register

| Bit7        | Bit6        | Bit5        | Bit4        | Bit3        | Bit2        | Bit1        | Bit0        |
|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|
| Ov_timer[3] | Ov_timer[2] | Ov_timer[1] | Ov_timer[0] | Uv_timer[3] | Uv_timer[2] | Uv_timer[1] | Uv_timer[0] |
| (R)         |

Default value is 8'h00.

Bit7\_Bit4 (ov\_timer[3] - ov\_timer[0]): OV down count delay or release timer.

Bit3\_Bit0 (uv\_timer[3] - uv\_timer[0]):UV down count delay or release timer.

Register 5bh - OT/UT Timer Register

| Bit7        | Bit6        | Bit5        | Bit4        | Bit3        | Bit2        | Bit1        | Bit0        |
|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|
| ot_timer[3] | ot_timer[2] | ot_timer[1] | ot_timer[0] | ut_timer[3] | ut_timer[2] | ut_timer[1] | ut_timer[0] |
| (R)         |

Default value is 8'h00.

Bit7\_Bit4 (ot\_timer[3] - ot\_timer[0]): OT down count delay or release timer.

Bit3\_Bit0 (ut\_timer[3] – ut\_timer[0]): UT down count delay or release timer.

\_\_\_\_\_

Register 5ch - UB Timer Register

| Bit7     | Bit6     | Bit5     | Bit4     | Bit3        | Bit2        | Bit1        | Bit0        |
|----------|----------|----------|----------|-------------|-------------|-------------|-------------|
| reserved | reserved | reserved | reserved | ub_timer[3] | ub_timer[2] | ub_timer[1] | ub_timer[0] |
| (R)      | (R)      | (R)      | (R)      | (R)         | (R)         | (R)         | (R)         |

Default value is 8'h00.

Bit7 Bit4: Reserved.

Bit3\_Bit0 (ub\_timer[3] – ub\_timer[0]): UB down count delay or release time.

#### Register 5dh – Test Mode 1 Register

Reserved for chip test (Writing this register is prohibited).

#### Register 5eh - Test Mode 2 Register

Reserved for chip test (Writing this register is prohibited).



#### Register 5fh -Test Mode 3 Register

Reserved for chip test (Writing this register is prohibited).



### **OTP Registers**

The OTP register are grouped into 2 sections: ATE data (OTP register 00h ~ 12h) and user data (OTP register 13h ~ 7fh). If **page\_sel** (bit 6 in OTP register 13h) is "0", the default OTP page (OTP Registers 13h~3fh) will be mapped into the Operation Registers 13h~3fh; if **page\_sel** is "1", the backup OTP page (OTP Registers 53h~7fh) will be mapped into Operation Registers 13h~3fh instead. Please refer to the application note "**OZ8930 AN-7: OTP Process Sequence**" for detailed OTP programming procedure.

#### **OTP Registers Map**

OTP registers 00h~0bh, 0dh~12h are reserved for chip vendor use only. 0ch is used to store the DOC offset value which is got at the ATE test stage.

| Reg            |                       | Bit Number                                                                                          |                   |                                  |                   |                                                                           |              |                     |             |  |
|----------------|-----------------------|-----------------------------------------------------------------------------------------------------|-------------------|----------------------------------|-------------------|---------------------------------------------------------------------------|--------------|---------------------|-------------|--|
| index<br>(hex) | Reg Name              | 7                                                                                                   | 6                 | 5                                | 4                 | 3                                                                         | 2            | 1                   | 0           |  |
| 00h-<br>0bh    | Reserved              |                                                                                                     |                   | Res                              | served for ch     | ip vendor use                                                             | only         |                     |             |  |
| 0с             | DOC offset            | doc1_offset                                                                                         |                   | v limited in -30<br>ment format) | 0mv∼+30mv,        | doc0_offset[3:0] (N*5mv limited in -30mv~+30mv,<br>2's complement format) |              |                     |             |  |
| 0dh-<br>12h    | Reserved              |                                                                                                     |                   | Res                              | served for ch     | ip vendor use                                                             | only         |                     |             |  |
| 13             | Scan Control          | prty_chk                                                                                            | page_sel          | auto_scan                        | currt_scan        | tm_sca                                                                    | an[1:0]      | cell_nu             | m[1:0]      |  |
| 14             | I <sup>2</sup> C Addr |                                                                                                     |                   | Rese                             | erved             |                                                                           |              | I <sup>2</sup> C_ad | dr[1:0]     |  |
| 15             | COC TH                |                                                                                                     | coc_mid           | _t_th[3:0]                       |                   |                                                                           | coc_low      | _t_th[3:0]          |             |  |
| 16             | COC Time              |                                                                                                     | coc_high          | _t_th[3:0]                       |                   | coc_release[1:0] coc_delay[1:0]                                           |              |                     | ay[1:0]     |  |
| 17             | DOC0 TH               | Rese                                                                                                | erved             |                                  |                   | doc0_th[5:0]                                                              |              |                     |             |  |
| 18             | DOC0 Time             | Rese                                                                                                | erved             | doc0_rel                         | ease[1:0]         | doc0_delay[3:0]                                                           |              |                     |             |  |
| 19             | DOC1 TH               | Rese                                                                                                | erved             |                                  |                   | doc1_th[5:0]                                                              |              |                     |             |  |
| 1a             | DOC1 Time             | Rese                                                                                                | erved             | doc1_rel                         | ease[1:0]         | doc1_delay[3:0]                                                           |              |                     |             |  |
| 1b             | SC Time               | dischg_                                                                                             | _th[1:0]          | chg_t                            | h[1:0]            | sc_release[1:0] sc_delay[1:0                                              |              |                     | ay[1:0]     |  |
| 1c             | Safety Time           | tm2_fet_ot_<br>sel                                                                                  | tm2_fet           | ub_del                           | ay[1:0]           | ot_ut_delay[1:0]                                                          |              | ov_delay[1:0]       |             |  |
| 1d             | ADC_PF Time           | uv_del                                                                                              | ay[1:0]           | rese                             | rved              | pf_ignr_shrt                                                              | a            | adc_pf_delay[2:0]   |             |  |
| 1e             | Bleeding Control      | ov_out_<br>enable                                                                                   | uv_out_<br>enable | ot_out_<br>enable                | ut_out_<br>enable | bld_support bld_idle bld_accur                                            |              | racy[1:0]           |             |  |
| 1f             | Sleep Control         | user_freeze                                                                                         | е                 | fetc_mode[2:                     | 0]                | rese                                                                      | rved         | sleep_<br>support   | sleep_time  |  |
| 20             | UT                    | ut_th[3:0]                                                                                          |                   |                                  |                   | reserved                                                                  |              |                     |             |  |
| 21             |                       | ut_th[11:4] ( under temperature threshold for battery cell tube skin, 1.22mV LSB, 2's complement fo |                   |                                  |                   |                                                                           | ment format) |                     |             |  |
| 22             | UT_RL                 | ut_rl[3:0]                                                                                          |                   |                                  |                   | reserved                                                                  |              |                     |             |  |
| 23             | 01_11                 | ut_rl[11:4]                                                                                         | (under tempe      | erature releas                   | e for battery     | cell tube skin,                                                           | 1.22mV LSB   | , 2's complem       | ent format) |  |
| 24             | CHG_T2                |                                                                                                     | chg_t             | 12[3:0]                          |                   |                                                                           | rese         | erved               |             |  |



# **OZ8930**

| Reg   |            | Bit Number                                                                                                |                                                                                                                      |                 |                                    |                                                                                                                                                              |                                                                                                                                                  |                       |              |  |
|-------|------------|-----------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|-----------------|------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|--------------|--|
| index | Reg Name   | -                                                                                                         |                                                                                                                      | F               | 4                                  |                                                                                                                                                              | _                                                                                                                                                |                       |              |  |
| (hex) |            | 7                                                                                                         | 6                                                                                                                    | 5               | 4                                  | 3                                                                                                                                                            | 2                                                                                                                                                | 1                     | 0            |  |
| 25    |            | chg_t2[11:4                                                                                               | ] (charge ten                                                                                                        | perature poir   | nt2 for battery                    | cell tube skir                                                                                                                                               | , 1.22mV LS                                                                                                                                      | B, 2's compler        | nent format) |  |
| 26    | CHG_T3     |                                                                                                           | chg_t                                                                                                                | 3[3:0]          |                                    |                                                                                                                                                              | res                                                                                                                                              | erved                 |              |  |
| 27    | 0110_13    | chg_t3[11:4                                                                                               | ] (charge ten                                                                                                        | perature poir   | nt3 for battery                    | cell tube skir                                                                                                                                               | ı, 1.22mV LS                                                                                                                                     | B, 2's compler        | nent format) |  |
| 28    | CHG_OT     |                                                                                                           | chg_ot [3:0]                                                                                                         |                 |                                    |                                                                                                                                                              | chg_ot_rl_delta[3:0] (charge over temperature release delta, 1.22mv LSB, 2's complement format) (charge ot relase = charge_ot + chg_ot_rl_delta) |                       |              |  |
| 29    |            | chg_ot [11:                                                                                               | 4] (charge ov                                                                                                        | er temperatu    | re for battery                     | cell tube skin                                                                                                                                               | , 1.22mV LSI                                                                                                                                     | 3, 2's complem        | ent format)  |  |
| 2a    | DSG_OT     |                                                                                                           | dsg_ot [3:0]                                                                                                         |                 |                                    | dsg_ot_rl_delta[3:0] (discharge over temperature release delta, 1.22mv LSB, 2's complement format) (discharge ot relase = discharge_ot + dischg_ot_rl_delta) |                                                                                                                                                  |                       |              |  |
| 2b    |            | dsg_ot [11:4                                                                                              | ] (discharge o                                                                                                       | over temperat   | ure for battery                    | y cell tube ski                                                                                                                                              | n, 1.22mV LS                                                                                                                                     | SB, 2's comple        | ment format) |  |
| 2c    |            |                                                                                                           | low_t_                                                                                                               | ov[3:0]         |                                    | reserved                                                                                                                                                     |                                                                                                                                                  |                       |              |  |
| 2d    | LOW_T_OV   | low_t_ov                                                                                                  |                                                                                                                      |                 | er voltage thre<br>format; low_t_  |                                                                                                                                                              |                                                                                                                                                  | rature, 2.44mV<br>V)  | LSB, 2's     |  |
| 2e    |            |                                                                                                           | mid_t_                                                                                                               | ov[3:0]         |                                    | reserved                                                                                                                                                     |                                                                                                                                                  |                       |              |  |
| 2f    | Mid_T_OV   | mid_t_ov[                                                                                                 |                                                                                                                      |                 | over voltage<br>ormat; mid_t_      |                                                                                                                                                              |                                                                                                                                                  | erature, 2.44m'<br>V) | V LSB, 2's   |  |
| 30    |            |                                                                                                           | high_t_                                                                                                              | _ov[3:0]        |                                    | reserved                                                                                                                                                     |                                                                                                                                                  |                       |              |  |
| 31    | High_T_OV  | high_t_o\                                                                                                 |                                                                                                                      |                 | over voltage the<br>rmat; high_t_c |                                                                                                                                                              |                                                                                                                                                  | rautre, 2.44m\<br>mV) | / LSB, 2's   |  |
| 32    | UB         |                                                                                                           | ub[                                                                                                                  | 3:0]            |                                    | ub_rl_delta[3:0] (cell unbalance release delta,<br>2.44*16mv LSB, 2's complement format)<br>(ub_release = ub + ub_rl_delta*16)                               |                                                                                                                                                  |                       |              |  |
| 33    |            |                                                                                                           | ub[11:4]                                                                                                             | (cell unbaland  | ce threshold, 2                    | 2.44mV LSB,                                                                                                                                                  | 2's complem                                                                                                                                      | ent format)           |              |  |
| 34    | UV         |                                                                                                           | uv[                                                                                                                  | 3:0]            |                                    | reserved                                                                                                                                                     |                                                                                                                                                  |                       |              |  |
| 35    | •          |                                                                                                           | uv[11:4]                                                                                                             | (under vlotag   | e threshold, 2                     | 2.44mV LSB,                                                                                                                                                  | 2's compleme                                                                                                                                     | ent format)           |              |  |
| 36    |            |                                                                                                           | int_otp                                                                                                              | _th[3:0]        |                                    |                                                                                                                                                              | res                                                                                                                                              | erved                 |              |  |
| 37    | INT_OTPF   | int_otpf_th[                                                                                              | 11:4] (over te                                                                                                       | mperature PF    |                                    | r internal tem<br>mat)                                                                                                                                       | perature, 1.2                                                                                                                                    | 2mV LSB, 2's (        | complement   |  |
| 38    |            |                                                                                                           | cell_o                                                                                                               | tpf[3:0]        |                                    | reserved                                                                                                                                                     |                                                                                                                                                  |                       |              |  |
| 39    | CELL_OTPF  | cell_otpf[11:4] (over temperature PF threshold for battery cell tube skin, 1.22mV LSB, 2's comple format) |                                                                                                                      |                 |                                    |                                                                                                                                                              | omplement                                                                                                                                        |                       |              |  |
| 3a    | FET_OT/    |                                                                                                           | fet_ot_delta[3:0] ( FET over t<br>fet_ot/fet_otpf[3:0] delta, 1.22mv LSB, 2's comp<br>relase = fet_ot + fet_ot_delta |                 |                                    |                                                                                                                                                              | mplement forn                                                                                                                                    |                       |              |  |
| 3b    | FET_OTPF   | fet_ot/fet_c                                                                                              | otpf[11:4] (Ov                                                                                                       | er temperatur   |                                    | erature PF th<br>ent format)                                                                                                                                 | reshold for M                                                                                                                                    | OSFET, 1.22n          | nV LSB, 2's  |  |
| 3c    | Bld Start  |                                                                                                           | bld_st                                                                                                               | art[3:0]        |                                    |                                                                                                                                                              | rese                                                                                                                                             | erved                 |              |  |
| 3d    | Did Otalit |                                                                                                           | bld_sta                                                                                                              | art[11:4] (blee | ding start poir                    | n, 2.44mV, 2's                                                                                                                                               | s complemen                                                                                                                                      | t format)             |              |  |
|       |            |                                                                                                           |                                                                                                                      |                 |                                    |                                                                                                                                                              |                                                                                                                                                  |                       |              |  |



# **OZ8930**

| Reg            |               |                                                                                                                                                                                          | Bit Number                                                                                                                                                                                                                                                                   |   |   |   |   |   |   |
|----------------|---------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|---|---|---|---|---|
| index<br>(hex) | Reg Name      | 7                                                                                                                                                                                        | 6                                                                                                                                                                                                                                                                            | 5 | 4 | 3 | 2 | 1 | 0 |
| 3e             | ov_hysteresis | rese                                                                                                                                                                                     | ov_hys[5:0] (over voltage release hysteresis, 2.44*4mv LSB, 2's complement format; theory range: -312.3mv ~ +302.56, application range: -312.3mv ~ 0m)(ov release = ov threshold + ov_hys*4)                                                                                 |   |   |   |   |   |   |
| 3f             | uv_hysteresis | uv_hys[5:0] (under voltage release hysteresis, 2.44*16mv LSB, 2's compreserved format; theory range: -1249mv ~ +1210mv, application range: 0 ~ +1210 release = uv threshold + uv_hys*16) |                                                                                                                                                                                                                                                                              |   |   |   |   |   |   |
| 40~41          | Rsense        |                                                                                                                                                                                          | 2-byte Rsense value used by software.                                                                                                                                                                                                                                        |   |   |   |   |   |   |
| 42~4f          | Reserved      |                                                                                                                                                                                          | reserved                                                                                                                                                                                                                                                                     |   |   |   |   |   |   |
| 53~7f          | Backup        | 53h~7fh will                                                                                                                                                                             | lackup for reg13h~3fh. When <b>page_sel</b> = 0, 13h~3fh will be used to control the chip; when <b>page_sel</b> = 1, 3h~7fh will be used to control the chip. <b>lote:</b> Bit 6 in OTP register 53h should be always written "0". (Writing "1" into the bit is prohibited). |   |   |   |   |   |   |



### **PACKAGE INFORMATION**

## 24L TSSOP 173mil Package Outline Drawing







|             | - D     |               |
|-------------|---------|---------------|
| + +         |         |               |
| 1           |         |               |
| A   A2      |         | SEATING PLANE |
| † † †<br>A1 | 1       |               |
|             | 0.10MAX |               |
|             |         |               |

 REFER TO JEDEC STD MO-153 AD
 DIMENSION "D" DOES NOT INCLUDE MOLD FLASH, PROTRUSIONS OR GATE BURRS. MOLD FLASH, PROTRUSIONS OR GATE BURRS. SHALL NOT EXCEED 0.15 mm PER END. DIMENSION "E1" DOES NOT INCLUDE INTERLEAD FLASH OR PROTRUSION. INTERLEAD FLASH OR PROTRUSION SHALL NOT EXCEED 0.25 mm PER SIDE

| SYMBOL   | DIMENSION (MM) |          |      |  |  |  |
|----------|----------------|----------|------|--|--|--|
| STIVIBUL | MIN            | NOR      | MAX  |  |  |  |
| Α        | -              | -        | 1.20 |  |  |  |
| A1       | 0.05           | -        | 0.15 |  |  |  |
| A2       | 0.80           | -        | 1.05 |  |  |  |
| b        | 0.19           | -        | 0.30 |  |  |  |
| С        | 0.09           | -        | 0.20 |  |  |  |
| D        | 7.70           | 7.80     | 7.90 |  |  |  |
| E        | 6.40 BSC       |          |      |  |  |  |
| E1       | 4.30           | 4.40     | 4.50 |  |  |  |
| е        |                | 0.65 BSC |      |  |  |  |
| L        | 0.45           | 0.60     | 0.75 |  |  |  |
| L1       | 1.00 REF       |          |      |  |  |  |
| θ        | 0°             | -        | 8°   |  |  |  |
| θ1       | 12 REF         |          |      |  |  |  |



### 24Ld QFN 4x4mm Package Outline Drawing







BOTTOM VIEW



| ₹ .              |               |    | - ⋖ |  |
|------------------|---------------|----|-----|--|
| 1 \( \nabla^2 \) | SEATING PLANE | A3 |     |  |

- Notes: 1. ALL DIMENSIONS ARE IN MILLIMETER 2. REFER TO JEDEC STD MO-220

| SYMBOL | DIMENSION<br>(MM) |      |      |  |  |  |
|--------|-------------------|------|------|--|--|--|
| SIMBUL | MIN.              | N□M. | MAX. |  |  |  |
| Α      | 0.70              | 0,75 | 0.80 |  |  |  |
| A1     | 0                 | 0.02 | 0.05 |  |  |  |
| A3     | 0.203 REF         |      |      |  |  |  |
| Ø      | 0,18              | 0,25 | 0,30 |  |  |  |
| D      | 3.90              | 4.00 | 4.10 |  |  |  |
| D2     | 1,90              | 2,00 | 2.10 |  |  |  |
| E      | 3.90              | 4,00 | 4.10 |  |  |  |
| E2     | 1,90 2,00 2,10    |      |      |  |  |  |
| е      | 0,50 BSC          |      |      |  |  |  |
| L      | 0.30              | 0.50 |      |  |  |  |



#### IMPORTANT NOTICE

No portion of O<sub>2</sub>Micro specifications/datasheets or any of its subparts may be reproduced in any form, or by any means, without prior written permission from O<sub>2</sub>Micro.

O<sub>2</sub>Micro and its subsidiaries reserve the right to make changes to their datasheets and/or products or to discontinue any product or service without notice, and advise customers to obtain the latest version of relevant information to verify, before placing orders, that information being relied on is current and complete. All products are sold subject to the terms and conditions of sale supplied at the time of order acknowledgment, including those pertaining to warranty, patent infringement, and limitation of liability.

 $O_2$ Micro warrants performance of its products to the specifications applicable at the time of sale in accordance with  $O_2$ Micro's standard warranty. Testing and other quality control techniques are utilized to the extent  $O_2$ Micro deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily performed, except those mandated by government requirements.

Customer acknowledges that  $O_2$ Micro products are not designed, manufactured or intended for incorporation into any systems or products intended for use in connection with life support or other hazardous activities or environments in which the failure of the  $O_2$ Micro products could lead to death, bodily injury, or property or environmental damage ("High Risk Activities").  $O_2$ Micro hereby disclaims all warranties, and  $O_2$ Micro will have no liability to Customer or any third party, relating to the use of  $O_2$ Micro products in connection with any High Risk Activities.

Any support, assistance, recommendation or information (collectively, "Support") that  $O_2$ Micro may provide to you (including, without limitation, regarding the design, development or debugging of your circuit board or other application) is provided "AS IS."  $O_2$ Micro does not make, and hereby disclaims, any warranties regarding any such Support, including, without limitation, any warranties of merchantability or fitness for a particular purpose, and any warranty that such Support will be accurate or error free or that your circuit board or other application will be operational or functional.  $O_2$ Micro will have no liability to you under any legal theory in connection with your use of or reliance on such Support.

COPYRIGHT © 2005-2010, O<sub>2</sub>Micro International Limited