ECE 490: Problem Set 3

Due: Tuesday February 28 through Gradescope by 11 AM
Reading: Lecture Notes 8-11; Secs 1.4, 3.1, 3.3, 4.1 and 4.2 of text.

1. [Linear Convergence in Newton's Method]

Consider Newton's method with stepsize α , i.e.,

$$x_{k+1} = x_k - \alpha \left(\nabla^2 f(x_k) \right)^{-1} \nabla f(x_k), \ \alpha > 0.$$

Suppose we apply this method to the function $f: \mathbb{R} \to \mathbb{R}$ given by $f(x) = |x|^3$.

- (a) Identify the range of α for which the method converges.
- (b) Show that for this range of α , the convergence is "linear".
- (c) Explain why the fact that the covergence is not "superlinear" for $\alpha = 1$ does not contradict the convergence result for Newton's method given in Lecture 8.

2. [Sensitivity to Initialization in Newton's Method]

Consider Newton's method with stepsize $\alpha = 1$, i.e.,

$$x_{k+1} = x_k - (\nabla^2 f(x_k))^{-1} \nabla f(x_k).$$

Suppose we apply this method to the function $f: \mathbb{R} \to \mathbb{R}$ given by

$$f(x) = \sqrt{x^2 + 1.1}$$
.

- (a) Find the stationary points of f and derive the recursion of Newton's method in closed form.
- (b) Run 5 steps of the iteration of part (a) with the following initializations: $x_0 = 1$ and $x_0 = 1.1$. You may use your favorite programming environment (Matlab, Python, etc.) Report your iterates for both cases, and comment on your results.

3. [Backpropagation Algorithm]

In lecture 9, we studied the back-propagation algorithm for computing the gradient of the empirical loss corresponding to each data-point with respect to the weights of the NN separately, with the understanding that the gradient of the total empirical loss J with respect to the weights is simply the sum of the gradients of the loss corresponding to each data-point. In this problem, you will develop a back-propagation algorithm for computing the gradient of J directly.

(a) Derive the back-propagation algorithm for directly computing the gradients:

$$\frac{\partial J}{\partial W_{i,j}^{(m)}}$$
 and $\frac{\partial J}{\partial b_i^{(m)}}$, for all i, j , and $m = 1, \dots, M$.

Hint: Using the Chain Rule:

$$\frac{\partial J}{\partial W_{i,j}^{(M)}} = \sum_{n=1}^{N} \frac{\partial J}{\partial y_i^{(M)}[n]} \frac{\partial y_i^{(M)}[n]}{\partial W_{i,j}^{(M)}}.$$

(b) Is there any computational advantage (or disadvantage) of running the back-propagation algorithm directly on J as opposed to running it on loss corresponding to the individual data-points?

4. [Moore-Penrose Psuedo-inverse]

Consider the problem of minimizing the function $f(x) = ||x||^2$ subject to the constraint $x \in \mathcal{S}$, where

$$\mathcal{S} = \{ x \in \mathbb{R}^n : Ax = b \}.$$

Here A is an $m \times n$ matrix, with $m \leq n$ and AA^{\top} being invertible. Note that S is closed and convex (make sure you know how to prove this), and f is (strictly) convex on \mathcal{H} .

Show that minimizer x^* is given by

$$x^* = A^{\top} (AA^{\top})^{-1} b.$$

5. [Projection]

Consider the set

$$\mathcal{S} = \{ y \in \mathbb{R}^n : Ay = b \}$$

where A is an $m \times n$ matrix with $m \leq n$, and AA^{\top} is invertible. Show that the projection of $z \in \mathbb{R}^n$ on S is given by

$$y^* = z - A^{\top} (AA^{\top})^{-1} (Az - b).$$

Hint: You need to show that $y^* \in \mathcal{S}$, and that it satisfies the necessary and sufficient condition for being the projection (see Lec 10 notes).

6. [Constrained Optimization]

Consider the function $f: \mathbb{R}^n_+ \to \mathbb{R}$ defined by:

$$f(x) = \sum_{i=1}^{n} x_i \ln x_i.$$

The set \mathbb{R}^n_+ consists of all vectors with non-negative components. Define $0 \log(0)$ to be 0. Suppose we wish to solve the following constrained optimization problem:

$$\min_{x \in \mathcal{S}} f(x)$$

where the constraint set is given by:

$$S = \left\{ x \in \mathbb{R}^n : \sum_{i=1}^n x_i = 1, \text{ and } x_i \ge 0, i = 1, 2, \dots, n \right\}.$$

- (a) Establish that f is a strictly convex function on S.
- (b) Use the first-order necessary and sufficient condition for optimality to establish that

$$x^* = \left(\frac{1}{n}, \frac{1}{n}, \dots, \frac{1}{n}\right)$$

is the *unique* minimizer of f on S.