Computer Logic and Digital Circuit Design (PHYS306/COSC330): Unit 2

Jordan Hanson

October 12, 2021

Whittier College Department of Physics and Astronomy

Summary

Unit 2 Summary

Functions of Combinatorial Logic

Reading: 6-1 - 6-6 (Tuesday)

Reading: 6-7 - 6-11 (Thursday)

- 1. Half-Adders and Full-Adders
 - Example from study guide
 - Propagation delays
- 2. Comparators
 - The XNOR gate
 - Multi-bit comparators
 - Inequalities
- 3. Decoders/Encoders
 - Binary to decimal circuits
 - Decimal to binary circuits
- 4. Multiplexing and Demultiplexing

Half-Adders and Full-Adders,

Ripple-Carry

Figure 1: The desired inputs and outputs of the half-adder. There is no carry-input.

TABLE 6-1
Half-adder truth table.

\boldsymbol{A}	В	Cout	Σ		
0	0	0	0		
0	1	0	1		
1	0	0	1		
1	1	1	0		

 $\Sigma = sum$

 $C_{\text{out}} = \text{output carry}$

A and B = input variables (operands)

Figure 2: The truth table of the half-adder for 2-bits. What gate action does this match?

Figure 3: The logic function circuit diagram for the half-adder.

Figure 4: The desired inputs and outputs for the full-adder, with carry-input and carry-output.

	TABLE 6-2 Full-adder truth table.										
\boldsymbol{A}	В	$C_{\rm in}$	$C_{ m out}$	Σ							
0	0	0	0	0							
0	0	1	0	1							
0	1	0	0	1							
0	1	1	1	0							
1	0	0	0	1							
1	0	1	1	0							
1	1	0	1	0							
1	1	1	1	1							

 $C_{\rm in}=$ input carry, sometimes designated as CI $C_{\rm out}=$ output carry, sometimes designated as CO $\Sigma=$ sum

A and B = input variables (operands)

Figure 5: The truth table for the full-adder is more complex due to the increased number of inputs.

Figure 6: Circuit diagrams for the half-adder (left) and full-adder (right).

Figure 7: Two half-adders to form a full-adder.

Figure 8: Four FA (full-adders) to add bits to the numbers being added.

Figure 9: Propagation delays add serially in a full-adder with ripple carry topology.

Figure 10: Two 4-bit FA connected to form an 8-bit FA, accounting for carries.

Figure 11: The basic idea behind the comparator. (a) Review the truth table for the XNOR-gate, which is the conjugate of the XOR gate. (b) What is the function of the AND gate?

Figure 12: (a) Example of comparison of 2-bit binary numbers. (b) What is the truth table? (c) What is the logical representation of the function? (c) What is a logical representation for the inequality circuit?

Figure 13: (Left) One *component* that is really 8 comparators linked to the same AND gate. (Right) What is the correct ouput? How to determine the inequality functions?

Figure 14: Try some simple cases: (a) A=00 and B=01, (b) A=10 and B=01.

Decoders

Figure 15: The binary decoder circuit for 9. This circuit is true if the binary number is 1001. (Pay attention to the order of MSB and LSB).

Figure 16: (a) Which binary number is being decoded here? (b) What would it take to decode all binary numbers of n bits?

Decoders

Decimal	ecimal Binary Inputs		Decoding	Outputs																	
Digit	A_3	A_2	A_1	A_0	Function	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
0	0	0	0	0	$\overline{A}_3\overline{A}_2\overline{A}_1\overline{A}_0$	0	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
1	0	0	0	1	$\overline{A}_3\overline{A}_2\overline{A}_1A_0$	1	0	1	1	1	1	1	1	1	1	1	1	1	1	1	- 1
2	0	0	1	0	$\overline{A}_3 \overline{A}_2 A_1 \overline{A}_0$	1	1	0	1	1	1	1	1	1	1	1	1	1	1	1	1
3	0	0	1	1	$\overline{A}_3\overline{A}_2A_1A_0$	1	1	1	0	1	1	1	1	1	1	1	1	1	1	1	1
4	0	1	0	0	$\overline{A}_{3}A_{2}\overline{A}_{1}\overline{A}_{0}$	1	1	1	1	0	1	1	1	1	1	1	1	1	1	1	1
5	0	1	0	1	$\overline{A}_3 A_2 \overline{A}_1 A_0$	1	1	1	1	1	0	1	1	1	1	1	1	1	1	1	1
6	0	1	1	0	$\overline{A}_3 A_2 A_1 \overline{A}_0$	1	1	1	1	1	1	0	1	1	1	1	1	1	1	1	1
7	0	1	1	1	$\overline{A}_3A_2A_1A_0$	1	1	1	1	1	1	1	0	1	1	1	1	1	1	1	1
8	1	0	0	0	$A_3\overline{A}_2\overline{A}_1\overline{A}_0$	1	1	1	1	1	1	1	1	0	1	1	1	1	1	1	1
9	- 1	0	0	1	$A_3\overline{A}_2\overline{A}_1A_0$	1	1	1	1	1	1	1	1	1	0	1	1	1	1	1	1
10	1	0	1	0	$A_3\overline{A}_2A_1\overline{A}_0$	1	1	1	1	1	1	1	1	1	1	0	1	1	1	1	1
11	1	0	1	1	$A_3\overline{A}_2A_1A_0$	- 1	1	1	1	1	1	1	1	1	1	1	0	1	1	1	1
12	- 1	1	0	0	$A_3A_2\overline{A}_1\overline{A}_0$	1	1	1	1	1	1	1	1	1	1	1	1	0	1	1	1
13	1	1	0	1	$A_3A_2\overline{A}_1A_0$	1	1	1	1	1	1	1	1	1	1	1	1	1	0	1	1
14	1	1	1	0	$A_3A_2A_1\overline{A}_0$	1	1	1	1	1	1	1	1	1	1	1	1	1	1	0	1
15	1	1	1	1	$A_{2}A_{2}A_{1}A_{0}$	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	0

Figure 17: The decoding table for ACTIVE LOW 4-bit binary. Terms from linear algebra: this matrix has 0 trace, and is symmetric (we can exchange rows and columns).

Encoders

Figure 18: Recall the OR TT, and remember that this is a system in which there are forbidden or *don't care* states. Only one input line can be active at once.

Figure 19: A keypad system. The binary encoder accepts only 9 digits because 0 is redundant. Note the use of *pull-up* resistors (recall LEDs operations).

Figure 20: A general block diagram for a *multiplexer*. Parallel data input is successively rotated to the single output.

TABLE 6-8

Data selection for a 1-of-4-multiplexer.

Data-Sel	ect Inputs	
S_1	S_0	Input Selected
0	0	D_0
0	1	D_1
1	0	D_2
1	1	D_3

Figure 21: The desired TT for a 1-of-4 mux. The n-of-m jargon corresponds to inputs and outputs. We should also have *enable*, and one or more output lines.

Figure 22: The AND-enable behavior is used in this 1-of-4 mux. Note the interconnections are the key to generating the right output logic.

Figure 23: Exercise: verify the timing diagram output Y follows the 1-of-4 pattern. The data-select lines follow a 2-bit *counter* (coming soon).

Figure 24: Active LOW enabled, 1-of-8 mux with complemented output.

Figure 25: Active LOW enabled, 1-of-8 mux with complemented output, connected to another one. The overall system acts as a 1-of-16 with 4 data select lines.

Figure 26: In this example, the mux is a *quad* 1-of-2, to help switch between binary numbers A and B. The BCD decoder converts the inputs, and the 2-to-4 decoder grounds either display.

Figure 27: A mux can also be used to create any domain-N logic-function, provided we can connect HIGH and LOW to the desired input lines. Do you see the pattern?

Figure 28: The reverse operation to a multiplexer is a demultiplexer, or demux. Note the AND-enable is still there on the input line, but we need 4 ANDs: 1 for each possible input data line on the mux.

Figure 29: One data line in and four data lines out. *Note the cadence:* we cannot know what D_1 is until we know what D_0 is...

Figure 30: A decoder is very similar to a demux, but it has to have the data input lines at the bottom left.

Conclusion

Unit 2 Summary

Functions of Combinatorial Logic

Reading: 6-1 - 6-6 (Tuesday)

Reading: 6-7 - 6-11 (Thursday)

- 1. Half-Adders and Full-Adders
 - Example from study guide
 - Propagation delays
- 2. Comparators
 - The XNOR gate
 - Multi-bit comparators
 - Inequalities
- 3. Decoders/Encoders
 - Binary to decimal circuits
 - Decimal to binary circuits
- 4. Multiplexing and Demultiplexing