Let me start by saying move about the last sentence of the proof of Thm. 5.2.1 (b).

$$(b) \int_{X^*} f d(\mu x \nu) = \int_{X} (\int_{X} f_x d\nu) d\mu$$

Applying the Monotone Convergence theorem to the integrals of simple functions gives part (6)."

We proved that funt where fur are simple functions and thus

simple functions and thus
$$\int_{XX} f_n d(\mu x \nu) = \int_{X} \left(\int_{Y} (f_n)_{\chi} d\nu \right) d\mu.$$

It follows that $\lim_{n\to\infty} \int_{X\times Y} f_n d(\mu x \nu) = \lim_{n\to\infty} \int_{X} \left(\int_{Y} (f_n)_x d\nu(y) d\mu(x) \right)$

The Monotone Convergence Thm. gives

\[
\lim_{n=10} \int f_n d(\mu x) = \int f d(\mu x).
\]

\[
\text{XY} \]

It also shows that for any fixed $x_0 \in X$ $\int_{X} (f_n)_{x_0} d\nu(y) \longrightarrow \int_{X} f_{x_0} d\nu(y).$

pointwise to the function:

$$x \mapsto \int_{\mathbb{T}} (f_n)_x \, d\nu(y) \quad \text{converge}$$

Pointwise to the function:

 $x \mapsto \int_{\mathbb{T}} f_x \, d\nu(y).$

This sequence of functions is non-decreasing so applying the MCT once more gives:

$$\int_{\mathbb{T}} \left(\int_{\mathbb{T}} (f_n)_x \, d\nu(y) \right) d\mu(x) \to \int_{\mathbb{T}} \left(\int_{\mathbb{T}} f_y \, d\nu(y) \, d\mu(x).$$

This says that the functions

$$(b) \int_{X^{*}} f d(\mu x \nu) = \int_{X} \left(\int_{X} f_{x} d\nu \right) d\nu$$

as claimed.

Thm. 5.2.2 (Fubini's Thm.) Let (X, a, m) and (Y, B, v) be or finite measure spaces and let f: Xxy -> [-ea, +ea] be an CxB measurable function which is may integrable. Then:

(a) for μ -a.e. $x \in X$ the section f_X is y-integrable and for y a.e. $y \in Y$ is μ -integrable.

Icx = { If the du if the is 2-integrable of therwise

then $T_{\xi} \in J'(Z, \mu)$, $J_{\xi} \in J'(Y, \nu)$.

(c)
$$\int_{X} f d(\mu x \nu) = \int_{X} I_{\xi} d\mu = \int_{X} J_{\xi} d\nu$$

Proof, Consider It and f. Prop. 5.1.2 implies that fx, (f+)x and (f), are B-measurable. Prop. 5.2.1 implies that the functions X -> ((1+), d> and x-) (+), d> are a-measurable,

Since f is my integrable we have It d(Mxx) cos and It d(Mxx) cos. Thm. 5.2. I applied to the non-negative functions f^+ and f^- gives: $\int \left(\int (f^+)_x \, dv(y) \right) d\mu(x) = \int f^+ d(\mu x \nu) \cos \alpha u dx$ $\int \left(\int_{x}^{\infty} \left(\int_{x}^{\infty} dy(y)\right) d\mu(x) = \int_{x}^{\infty} \int_{x}^{\infty} d\mu(x) d\mu(x) d\mu(x) = \int_{x}^{\infty} \int_{x}^{\infty} d\mu(x) d\mu(x) d\mu(x) d\mu(x) = \int_{x}^{\infty} \int_{x}^{\infty} d\mu(x) d\mu(x) d\mu(x) d\mu(x) d\mu(x) d\mu(x) d\mu(x) = \int_{x}^{\infty} \int_{x}^{\infty} d\mu(x) d\mu$ So $x \mapsto \int (f^4)_x \, dy(y)$ and $x \mapsto \int (f^-)_x \, dy(y)$ core μ - integrable. (2) (2) implies that the functions xm= (f+), dv(y) and xm= (f-), dv(y) are finite for u a.e. X. (car 2.3.14). So for mae. x (fx) dros and (fx) dros

and thus fx is sintegrable.
This is assertion (a) for fx.

Let N be the set of x for which
$$\int (f_x)^4 dv \cos \alpha u d \int (f_x)^4 dv \cos \alpha u (N) = 0.$$
Outside of N, $J_{\Sigma}(x) = \int f_{\Sigma} dv$

= [ft - fx dy

= | t*9n - lt*91

Since If(x) the diffourtions, by (2),	forence of two μ -integrable. If (x) is μ -integrable.
Since IgG takes If & 2'(X,a, µ).	values in (-co,co)
This is assention	(b) for It.

As we have seen Prop. 5.21 applied to the non-negative functions ft and f gives:

(3)

 $\int f^{+} d(\mu x \nu) = \int \left(\int (f^{+})_{x} d\nu \right) d\mu$

(f) d(uxv) = ((f) dx) du

50 . . .

$$\int f d(\mu x y) = \int f^{+} d(\mu x y) - \int f^{-} d(\mu x y)$$

$$= \int \left(\int (f^{+})_{x} dy \right) d\mu(x) - \int \left(\int (f^{-})_{x} dy \right) d\mu(x)$$

$$= \int \left(\int f_{x} dy \right) d\mu(x)$$

$$= \int \int f_{x} dy d\mu(x)$$

$$= \int \int f_$$

This is assention (ic) for Ic.
Similar arguments (b) and (c) for Jf.	give (a) for fy
This completes the	proof.

Example 5.3.1. Let
$$f: \mathbb{R} \rightarrow [0, +\infty]$$
 be a $y: f(x)$ won-negative function.

Let $E = \{(x,y) \in \mathbb{R}^2 : 0 \le y \le f(x)\}$.

So E is the vegion under the graph of f .

We claim that the area of E is equal to the integral of f . This follows from Prop. 5.1.4 and the fact that $z = z, zz$.

 $z(E) = (z, z), (E) = \int_{\mathbb{R}} z_1(E_x) d\lambda(x) = \int_{\mathbb{R}} f(x) d\lambda(x)$