

Área Departamental de Engenharia de Eletrónica e Telecomunicações e de Computadores

Ricardo Alexandre Ventura Matos	43321	2º Trabalho Prático
Samuel Sampaio Costa	43552	1-12-2016
Pedro Miguel Carvalho Rocha	43884	Grupo 4

Introdução

O presente relatório, referente ao segundo de três trabalhos práticos (Examinador), acompanha a realização do projeto de um examinador, de acordo com o enunciado proposto. Ao longo do documento apresenta-se (i) a descrição da solução adotada, tendo como ponto de partida o diagrama de blocos do sistema; (ii) breves conclusões sobre o funcionamento do sistema e a natureza das opções tomadas durante a realização do trabalho; (iii) o esquema de ligações da PAL; e, por fim, (iv) uma reprodução do ficheiro .PLD com o código CUPL gravado na PAL. Na figura 1 apresenta-se o diagrama de blocos do sistema.

O Examinador consiste num sistema para apoio à avaliação de álgebra de Boole, onde o examinador seleciona uma de três funções logicas através de três bits (um para cada função), estabelece as entradas da função A e B, estabelece a entrada R que corresponde ao resultado esperado da operação selecionada entre as entradas A e B, e que quando é ativada entrada VALIDAR obtém-se em OK a indicação de que R é ou não o resultado correto da função selecionada.

Figura 1

As funções a validar são (A + B), $(A \cdot B)e$ $(A \oplus B)$.

O Examinador deverá manter a saída OK com o valor logico 1 enquanto o examinador não ativar VALIDAR ou enquanto não for escolhido nenhuma função (NF).

Para tal propõe-se a implementação de três módulos:

- **Modulo Priority Function**
- Modulo Function Result
- Modulo Validar Result

, tal como representado no diagrama de blocos da figura 2:

Figura 2

Área Departamental de Engenharia de Eletrónica e Telecomunicações e de Computadores

Modulo Priority Function

Dadas três entradas F0, F1 e F2, é pretendido que o módulo indique a operação a realizar. No caso de ser ativada mais do que uma entrada, estabelece-se qual a operação prioritária. Optou-se por associar F0 à operação AND (•), F1 à operação OR (+) e F2 a XOR (⊕). Na álgebra de Boole, a operação AND é mais prioritária em relação quer a OR, quer a XOR, seguida de OR, que é prioritária em relação a XOR, e de XOR, que é a menos prioritária das três. Codificou-se como CF0 e CF1 os dois bits de saída do módulo que indicam a operação a ser realizada pelo módulo seguinte.

Adicionalmente, se não for ativada nenhuma das entradas, o módulo fornece o sinal NF, que, quando ativo, indica que nenhuma operação é realizada. A importância da inclusão deste sinal é explicitada na explicação do funcionamento do Módulo "Validar Result".

Fez-se a tabela de verdade para as variáveis do módulo, por forma a que seja respeitada a prioridade das operações.

F2	F1	FO	CF1	CF0	NF	Operação
0	0	0	0	0	1	Ver mód. Validar Result
-	-	1	0	1	0	AND
-	1	0	1	0	0	OR
1	0	0	1	1	0	XOR

Donde se obtém que:

$$CF0 = F0 + \overline{F0} \cdot \overline{F1} \cdot F2$$

 $CF1 = \overline{F0} \cdot F2 + F1 \cdot \overline{F0}$
 $NF = \overline{F0} \cdot \overline{F1} \cdot \overline{F2}$

Modulo Function Result

Com este modulo pretende-se realizar a operação determinada pelo modulo *Priority Function CFO e CF1*, para as entradas A e B e indicar o resultado na saída FR. De referir que quando CFO e CF1 igual a '0', não existe operação definida. Para tal elaborouse a seguinte tabela de verdade:

Aplicando o teorema de Karnaugh, obteve-se a seguinte expressão:

$$FR = \overline{CF0} \cdot CF1 \cdot B + CF1 \cdot A \cdot \overline{B} + CF0 \cdot \overline{CF1} \cdot A \cdot B + CF1 \cdot \overline{A} \cdot B$$

Operação	FR	Α	В	CF0	CF1	
NF				0	0	
	0	0	0	1	0	
AND	0	1	0	1	0	
	0	0	1	1	0	
	1	1	1	1	0	
	0	0	0	0	1	
OR	1	1	0	0	1	
	1	0	1	0	1	
	1	1	1	0	1	
	0	0	0	1	1	
XOR	1	1	0	1	1	
	1	0	1	1	1	
	0	1	1	1	1	

Área Departamental de Engenharia de Eletrónica e Telecomunicações e de Computadores

Modulo Validar Result

Este módulo recebe como input os sinais FR (resultado da operação realizada entre operandos A e B), R (introduzido pelo examinando; valor lógico correspondente à função selecionada com os valores de entrada anteriores), NF, que é ativo quando não é indicado qual a operação a realizar e VALIDAR (que atualiza o valor de OK). Fornece como output o sinal OK, que indica se o resultado da operação realizada corresponde ao resultado introduzido pelo examinando.

Pretende-se que quando NF esteja ativo, i.e. não tenha sido indicada nenhuma operação a realizar, o valor de RESULT seja 1, por forma a que OK também seja 1. Pretende-se também que RESULT seja 1 quando o resultado da operação realizada coincida com o valor de R introduzido pelo examinando. Assim, foi preferida a utilização da função XNOR, que é um comparador por excelência. Obteve-se então que $RESULT = \overline{FR} \oplus \overline{R} + NF$.

Nas condições propostas, OK está ativo em duas situações: quando VALIDAR não está ativo; e quando o examinando introduziu corretamente o resultado da operação realizada e VALIDAR está ativo. Assim, foi obtida a seguinte expressão para OK. $OK = \overline{VALIDAR} + VALIDAR \cdot RESULT \equiv OK = RESULT + \overline{VALIDAR}$.

Conclusões

O projeto do Examinador foi implementado e montado em sala de aula (ver esquema de ligações na PAL). Os resultados obtidos encontram-se em conformidade com o enunciado.

Do ponto de vista da conceção, foi proposto o desafio de desenvolver um projeto partindo de um estágio anterior ao do primeiro trabalho prático (ALU), o que representou tanto uma novidade como um desafio acrescido. Para tal, revelaram-se úteis ferramentas como a divisão do projeto em módulos e a elaboração de tabelas de verdade e mapas de Karnaugh. Este relatório e a sua estrutura acabou por revelar-se um bom guião para o projeto.

Um dos requisitos a respeitar pela solução adotada era manter a saída OK ao valor lógico 1 enquanto o examinando não tivesse indicado a resposta, ou seja, enquanto a entrada VALIDAR estivesse inativa. Esta exigência foi respeitada na arquitetura do módulo Validar Result (ver mod. Validar Result), com recurso a uma porta XNOR e a introdução do sinal NF, gerado no módulo Priority Function.

F0		1		24	5V	VCC
F1	12	2		23	1010	OK
F2	13	3		22	109	
A	14	4	10	21	108	
В	15	5	2	20	107	NF
R	16		F2.	19	106	RESULT
VALIDAR	17	7	ATF22v10	18	105	
	18	8		17	104	
	19	9	PAL	16	103	FR
	110			15	102	
	111	11		14	101	
	1					
GROUND	GND	12		13	112	

Esquema de Ligações na PAL

Área Departamental de Engenharia de Eletrónica e Telecomunicações e de Computadores

```
Name
           EXAMINADOR ;
PartNo
                 0 ;
          17-10-2016;
Date
          01 ;
Revision
          G04 ;
Designer
Company
          CCISEL ;
Assembly
          None ;
Location
Device
                p22v10 ;
/************** INPUT PINS *****************/
PIN 1 = F0;
PIN 2 = F1 ;
PIN 3 = F2;
PIN 4 = A ;
PIN 5 = B;
PIN 6 = R;
PIN 7 = VALIDAR;
/************* OUTPUT PINS ***************/
PIN 16 = FR;
PIN 19 = RESULT ;
PIN 20 = NF;
PIN 23 = OK;
/**********MÓDULO PRIORITY FUNCTION**********/
CF0 = F0 # !F0 & !F1 & F2 ;
CF1 = !F0 \& F2 # F1 \& !F0;
NF = !F0 \& !F1 \& !F2;
/*************MÓDULO FUNCTION RESULT***********/
FR = !CF0 & CF1 & B #
     CF1 & A & !B #
     CFO & !CF1 & A & B #
     CF1 & !A & B;
/*************MÓDULO VALIDAR RESULT***********/
RESULT = !(FR\$R) # NF;
OK = RESULT # !VALIDAR;
```

Reprodução do ficheiro .PLD com código CUPL gravado na PAL