The End of the Beginning

First, Centering

Let's say you're going along blisfully with your multiple linear regression...

```
plankton <- read.csv("./data/planktonSummary.csv")
#
library(car)
alm <- lm(DIN ~ SAL*T, data=plankton)</pre>
```

First, Centering

```
vif(alm)
# SAL T SAL:T
# 4.421 27.413 33.299
```

First, Centering

```
vif(alm)
# SAL T SAL:T
# 4.421 27.413 33.299
```

```
cor(plankton$T, plankton$T*plankton$SAL)
# [1] 0.9325
```

Centering Before Nonlinear Transformation Reduces Variance Inflation

```
cent <- function(x) x-mean(x)

plankton$int <- with(plankton, cent(SAL) * cent(T))

alm2 <- lm(DIN ~ SAL + T + int, data=plankton)
vif(alm2)

# SAL T int
# 1.115 1.033 1.122</pre>
```

Centering Before Nonlinear Transformation Reduces Variance Inflation

```
cent <- function(x) x-mean(x)

plankton$int <- with(plankton, cent(SAL) * cent(T))

alm2 <- lm(DIN ~ SAL + T + int, data=plankton)
vif(alm2)

# SAL T int
# 1.115 1.033 1.122</pre>
```

Interpretation Changes

```
# Estimate Std. Error t value Pr(>|t|)
# (Intercept) 299.5726 2.90911 102.98 0.000e+00
# SAL -7.8375 0.09095 -86.17 0.000e+00
# T -2.4891 0.09154 -27.19 1.415e-149
# int 0.4166 0.01576 26.43 4.274e-142
```

Additive coefficients are evaluated at mean level of each other.

Where to from Here?

Never Stop Reading

- http://www.r-bloggers.com/
- ▶ http://andrewgelman.com/
- ▶ http://masi.cscs.lsa.umich.edu/~crshalizi/weblog/
- Methods in Ecology & Evolution
- Significance

Meta-Analysis

The analysis of results from previous studies - summarizes information to get a grand answer to big questions

Time & Space

Springer Texts in Statistics

Robert H. Shumway David S. Stoffer

Time Series Analysis and Its Applications

With R Examples

Third Edition

A whole different set of consideration in thinking about correlation structure in complex spatial and temporal landscapes

Zero Inflated or Censored Models

What if you have a LOT of zeroes...but otherwise things look Poisson, Negative Binomial, Normal, or more. What about censored data where an instrument only reads so high or low?

Generalized Additive Models

Multivariate Methods

Use R!

Daniel Borcard François Gillet Pierre Legendre

Numerical Ecology with R

What if you have MANY response variables? Structural Equation Modeling, Clustering, NDMS, and more!

Bayesian Methods

Bayesian Inference

with ecological applications

A different kind of inference with a huge amount of flexibility.

Digging into Causality

What is causal inference? When can we draw causal conclusions?

Closing Thoughts

Course Goals

- 1. Learn how to think about your research in a systematic way to design efficient observational & experimental studies.
- Understand how to get the most bang for your buck from your data.
- 3. Make you effective collaborators with statisticians.
- 4. Make you comfortable enough to learn and grow beyond this class.

We Are Fitting Models

Think Causally - When you Can

Does X Influence Y? Might X and Y be influences by a common cause? How can we design a study to cleanly determine the relationship/effect between X and Y?

$$Y \sim D(F(X))$$

$$Y = \beta X + \epsilon_i$$

- ► F(X) can take many forms
- ▶ D, ϵ_i need not just be normal.

Moving Beyond Simple Error Structures

$$y_i = \alpha_{j[i]} + \beta_{[j]i}X + \epsilon_{ij}$$

Moving Beyond Simple Error Structures

$$y_i = \alpha_{j[i]} + \beta_{[j]i}X + \epsilon_{ij}$$

$$cor(\epsilon) = \begin{pmatrix} 1 & \rho & \rho \\ \rho & 1 & \rho \\ \rho & \rho & 1 \end{pmatrix}$$

And this is just a start!

Think About What You Are Doing

Think About What You Are Doing

Amelia Hoover | CAN HAS ESTIMITS!!!

Thurs at 13:02 · Comment · Unlike

Rob Person BUT IZ THEY CANS BE KONSISTENT??? Thurs at 13:50

Amelia Hoover KONFUDUNS INNRVAL KONSISTENTLY INKLOOD ZERO. DO OVERS!!! Thurs at 13:52

David Mister ... GEEKcats? Thurs at 14:00

David January All I can say is "wow".

Amelia Hoover update: I CAN HAS INTERACKSHIN

Emily Clough BAYESMENT CAT ATTACK! Thurs at 22:23

Amelia Hoover oh snap. Thurs at 22:26

Thurs at 17:35

Fri at 00:16

Fri at 02:03

Branen Salmon This is the most amazing thing I have ever witnessed.

Amelia Hoover oh, this is nothing, a couple of years ago i wrote a whole program in LOLpython.

Rob Person COPS I HAZ MADE P-VALYOO ON TEH KARPITZ.

Jarrett Byrnes IM IN UR AICZ, MAXIMIZIN MAH LIKLIHOODZ! Fri at 11:34 - Delete

Think a priori

I think that Y is predicted by...

Consider Your Mode of Inference

Am I testing a null hypothesis? Why?

Do I want to evaluate the relative weight of evidence for multiple hypotheses?

Do I have prior information? Do I want to know about my degree of belief?

Can I even make parameteric assumptions about relationships?

Exploration and Verification are Both Valid

Let's go and build a model v. Let's test a single predictive framework

Sample Size

- How many points to fit a probability distribution?
- Ensure that your effect is not a fluke accident
- ▶ $\frac{p^{3/2}}{n}$ should approach 0 for Likelihood (Portnoy 1988 Annals of Statistics)
- ▶ i.e., \sim 10 samples per paramter (1 treatment = 1 parameter, but this is total # of samples)

Computational Tools Are Just That - Tools!

Coding Brings You Closer to Your Model

Which helps you understand the model you are fitting better?

Coding Brings You Closer to Your Model

Which helps you understand the model you are fitting better? Select the Model Menu. Select General Linear Model. Click Y as your response. Then click X and your predictor. Click Block. Scroll to a second menu. Select random effects model, and click Block again. Click Run.

Coding Brings You Closer to Your Model

Which helps you understand the model you are fitting better? Select the Model Menu. Select General Linear Model. Click Y as your response. Then click X and your predictor. Click Block. Scroll to a second menu. Select random effects model, and click Block again. Click Run.

```
lme(Y ~ X, random=~ 1|Block, data=mydata)
```

Screen Your Data

Visualize Your Work

It is likely that no one ever masters anything in which he has not known impotence; and if you agree, you will see that this impotence comes not at the beginning of or before the struggle with the subject, but at the heart of it.

- Walter Benjamin