Lab 4: Sensing Part 1

EECS 16B Spring 2024

Slides: http://links.eecs16b.org/lab4-slides

Administrivia

What's that

Lab 4 Overview

- Build and test mic board circuitry
 - Build biasing circuit
 - Tune mic board
 - Measure the frequency response of the speaker-microphone system
 - Build Low Pass Filter

BREADBOARD LAYOUT

A Powerful Note

- Do NOT power the 5V rail from the 5V output from the power supply
- Instead, use the 9V input rail to power the 9V \rightarrow 5V regulator which will power everything related to 5V off the rails
- Ensure your power rails are still 5V before starting

Mic Board Circuitry

An annoyingly loud journey

What's a Mic Board?

Mic board circuits pick up voice and sound signals and then convert them into

electrical signals, which are amplified.

We're building this!

1. Mic Gain

 Our mic is a variable current source, but we convert it to a voltage signal by placing it in series with a 10K resistor.

1. Mic Gain

 Our mic is a variable current source, but we convert it to a voltage signal by placing it in series with a 10K resistor.

2. Buffer

 This keeps the rest of the circuit from affecting our mic board signal

1. Mic Gain

 Our mic is a variable current source, but we convert it to a voltage signal by placing it in series with a 10K resistor.

2. Buffer

 This keeps the rest of the circuit from affecting our mic board signal

3. Removing Mic Drift

- The 1µF capacitor is a coupling capacitor, meaning it serves as a short to AC voltage but blocks DC voltage.
 Used to remove unpredictable mic offset so we can add our own via OS1
- **OS1** centers signal at 2.5V. Connected through a $100k\Omega$ resistor, since OS1's voltage isn't equal to our signal.

1. Mic Gain

 Our mic is a variable current source, but we convert it to a voltage signal by placing it in series with a 10K resistor.

2. Buffer

 This keeps the rest of the circuit from affecting our mic board signal

3. Removing Mic Drift

- The 1µF capacitor is a coupling capacitor, meaning it serves as a short to AC voltage but blocks DC voltage
- **OS1** centers signal at 2.5V. Connected through a $100k\Omega$ resistor, since OS1's voltage isn't equal to our signal.

4. Non-inverting amplifier

- Uses a potentiometer for variable gain
- OS2 serves as a virtual ground so we don't amplify the 2.5V offset

Review: Potentiometers

- Wiper divides resistive material, creating two resistors with variable length
- Resistance is proportional to length, so wiper changes the resistance ratio!
- Resistors form a voltage divider

Low Pass Filter Derivation

Frequency (He)

Everything that is less than fo gets through. Note that our cutoff isn't clean a perfect because the attenuation is gradual.

Circuit Schematic

- We use a unity gain buffer in between the LPF and LED to prevent loading.
- If your LED is not lighting up, but based on the waveform generator your frequencies are attenuating properly, change the unity gain buffer into a non-inverting amplifier. You may use any reasonable gain of choice.

REMINDER: BREADBOARD LAYOUT

Important Forms/Links

- Help request form: https://eecs16b.org/lab-help
- Checkoff request form: https://eecs16b.org/lab-checkoff
- Slides: http://links.eecs16b.org/lab4-slides
- Anon Feedback: https://eecs16b.org/lab-anon-feedback
- Checkoff Error: https://eecs16b.org/lab-checkoff-error