

Nombre:______ Nota:____/10

Sea $\phi \colon A \to B$ un homomorfismo de anillos. Sea

$$f = \operatorname{Spec} \phi \colon Y = \operatorname{Spec} B \to X = \operatorname{Spec} A$$

el correspondiente morfismo de esquemas.

1. (7 points) Explique cómo se define $f^{\#}$ en este caso.

Solution: Para definir el morfismo de haces $f^{\#}: \mathcal{O}_X \to f_*\mathcal{O}_Y$ basta hacerlo en la base de abiertos $\{D(g)\}_{f \in A}$. En tal caso, hay que definir un homomorfismo

$$f^{\#}(D(g)) : \mathcal{O}_X(D(g)) = A_g \to (f_*\mathcal{O}_Y)(D(g)) = B_{\phi(g)}.$$

Lo definimos como el único homomorfismo ϕ_g que hace que el diagrama

$$\begin{array}{ccc}
A & \xrightarrow{\phi} & B \\
\downarrow & & \downarrow \\
A_g & \xrightarrow{\phi_g} & B_{\phi(g)}
\end{array}$$

sea conmutativo—usando la propiedad universal de la localización: note que el homomorfismo $A \to B_{\phi(g)}$ envía a g a una unidad.

2. (3 points) Describa $f_y^\#$ para $y \in Y$.

Solution: El homomorfismo $f_y^\#$ es un homomorfismo local $\mathcal{O}_{X,f(y)} \to \mathcal{O}_{Y,y}$. Si y corresponde a un ideal primo \mathfrak{q} de B y $\mathfrak{p} = \phi^{-1}(\mathfrak{q}) \in \operatorname{Spec} A$ es su imagen, entonces $f_y^\#$ es un homomorfismo local $A_{\mathfrak{p}} \to B_{\mathfrak{q}}$. Este es el único homomorfismo $\phi_{\mathfrak{q}}$ que hace que el diagrama

$$\begin{array}{ccc}
A \xrightarrow{\phi} B \\
\downarrow & \downarrow \\
A_{\mathfrak{p}} \xrightarrow{\phi_{\mathfrak{q}}} B_{\mathfrak{q}}
\end{array}$$

sea conmutativo—usando la propiedad universal de la localización: note que el homomorfismo $A\to B_{\mathfrak{q}}$ envía el complemento de \mathfrak{p} en unidades.