Библиотека моделей аппаратов технологических процессов

Имя:	TechApp
Основан:	октябрь 2005г
Версия:	0.9.0
Cmamyc:	Открытый (GPL)
Автор:	Роман Савоченко, Максим Лысенко, Ксения Яшина
Описание:	Предоставляет библиотеку моделей технологических аппаратов.
Адрес:	БД в файле: SQLite.LibDB.techApp (LibsDB.OscadaLibs.db)

Оглавление

<u>моделей антаратов технологических процессов</u>	I
Про библиотеку	
1 Концепция	
2 Состав библиотеки	
Запаздывание (lag) <1.2>	4
Шум (2 гарм. + случ) (noise) <3.5>	4
<u> Шаровой кран (ballCrane) <1.4></u>	
<u>Сепаратор (separator) <14></u>	5
Клапан (klap) <19.5>	6
Запаздывание (чистое) (lagClean) <2.9>	7
Котёл: барабан (boilerBarrel) <30.5>	
Котёл: топка (boilerBurner) <50.5>	
Сеть (нагрузка) (net) <13>	
<u>Источник (давление) (src_press) <12></u>	10
Возд. холодильник (cooler) <16.5>	
Компрессор газовый (compressor) <12>	
<u>Источник (расход) (src_flow) <2.2></u>	
<u>Труба-база (ріреВаѕе) <11.5></u>	12
Труба 1->1 (pipe1_1) <36.5>	13
<u>Труба 2->1 (pipe2_1) <26></u>	
<u>Труба 3->1 (ріре3_1) <36></u>	14
Труба 1->2 (pipe1_2) <25.5>	
<u>Труба 1->3 (ріре1_3) <36.5></u>	
<u>Труба 1->4 (ріре1_4) <47.5></u>	16
Исполн. мех. клапана (klapMech) <3>	
<u>Диафрагма (diafragma) <14></u>	
<u>Теплообменник (heatExch) <28.4></u>	18

Про библиотеку

Библиотека создаётся для предоставления моделей аппаратов технологический процессов. Библиотека не является статической, а строится на основе модуля JavaLikeCalc, позволяющего создавать вычисления на Java-подобном языке.

К функциям этой библиотеки необходимо использовать адресации путь: <DAQ.JavaLikeCalc.lib techApp.*>. Где '*' идентификатор функции в библиотеке.

Подключить библиотеку моделей аппаратов к проекту станции OpenSCADA можно путём загрузки вложенного файла БД, размещения его в директории БД проекта станции и создания объекта БД для модуля БД "SQLite", указав файл БД в конфигурации.

Для каждой функции производилась оценка времени исполнения. Измерение производилось на системе со следующими параметрами: Athlon 64 3000+ (2000МГц) и ALTLinux 5.1-32бит путём замера общего времени исполнения функции при вызове её 1000 раз. Выборка производилась по наименьшему значению из пяти вычислений. Время заключается в угловые скобки и измеряется в микросекундах.

1 Концепция

В основе модели каждого аппарата лежит вычисление входного расхода и выходного давления исходя из входного давления и выходного расхода. В целом, модели аппаратов технологических процессов описываются разностными уравнениями для дискретных машин.

На основе функций этой библиотеки можно легко и быстро строить модели технологических процессов в модуле BlockCalc путём объединения блоков в соответствии с технологической схемой. Пример объединения части аппаратов технологической схемы приведено на рис. 1.

Рис. 1. Пример блочной схемы технологического процесса.

В основе модели любого аппарата ТП лежат две основные формулы, а именно формула расхода и давления среды. Каноническая формула расхода среды для сечения трубы или проходного сечения сужения имеет вид (1).

$$F = S * \sqrt{Or * \Delta P} \quad (1)$$

Гле:

F — массовый расход (т/час).

S — поперечное сечение (м2).

Or — реальная плотность среды (кг/м3).

 ΔP — перепад давления (ат).

Реальная плотность вычисляется по формуле (2).

$$Or = O0 + O0 * Kpr * (Pi - 1)$$
 (2)

Где:

Q0 — плотность среды при нормальных условиях (кг/м3).

Крг — коэффициент сжимаемости среды (0,001 — жидкость; 0,95 — газ).

Рі — входное давление (ат).

Любая труба представляет потоку динамическое сопротивление, связанное с трением о стенки трубы и которое зависит от скорости потока. Динамическое сопротивление трубы выражается формулой (3). Общий расход среды с учётом динамического сопротивления вычисляется по формуле (4).

$$\Delta Pr = Kr * \frac{l}{D} \frac{Qr * v^{2}}{2} = Ktr * \frac{l * Qr}{2 * D} * \left(\frac{F}{Qr * S}\right)^{2} = \frac{Ktr * l * F^{2} * \sqrt{\pi}}{4 * S * Qr}$$
(3)

Гле:

ΔР — перепад давления (ат), сопротивление потоку среды стенками трубопровода.

Kr — коэффициент трения стенок трубопровода.

D — диаметр трубопровода (м).

1 — длина трубопровода (м).

v — скорость потока в трубопроводе (м3/ч).

$$F = \frac{4 * S * Qr}{Ktr * lo * 1.7724 + 4 * Qr} * \sqrt{Qr * \Delta P}$$
 (4)

Формула (1) описывает ламинарное истечение среды до критических скоростей. В случае превышения критической скорости вычисление расхода осуществляется по формуле (5). Универсальная формула расчёта расхода на всех скоростях будет иметь формулы (6).

$$F = S * \sqrt{Qr * (Pi - 0.528 * Pi)}$$
 (5)

Где:

Pi — давление в начале трубы.

$$F = \frac{4 * S * Qr}{Ktr * lo * 1.7724 + 4 * Qr} * \sqrt{Qr * (Pi - max(Po, Pi * 0,528))}$$
(6)

Гле:

Ро — давление в конце трубы.

В динамических системах изменение расхода на конце трубы не меняется мгновенно, а запаздывает на время перемещения участка среды от начала трубопровода к концу. Это время зависит от длины трубы и скорости движения среды в трубе. Задержку изменения расхода на конце трубы можно описать формулой (7). Результирующая формула расчёта расхода в трубе, с учётом описанных выше особенностей, записывается в виде (8).

$$Fo = F * (1 - e^{\frac{-t * v}{l}})$$
 (7)

Гле:

Fo — расход на конце трубы.

t — время.

v — скорость потока среды = F/(Qr*S).

$$F = \frac{4 * S * Qr}{Ktr * lo * 1.7724 + 4 * Qr} * \sqrt{Qr * (Pi - max(Po, Pi * 0,528))} * (1 - e^{\frac{-i * F}{l * Qr * S}})$$
(8)

Давление среды в объеме обычно вычисляется идентично для всех случаев по формуле (9).

$$P = \int \Delta F \, dt = \int \frac{\Delta F}{(O0 * Kpr * S * l)} \, dt \qquad (9)$$

2 Состав библиотеки

В своём составе библиотека содержит около двух десятков моделей часто востребованных аппаратов технологических процессов и вспомогательных элементов. Названия функций и их параметров доступны на трёх языках: Английский, Русский и Украинский.

Запаздывание (lag) <1.2>

Описание: Модель задержки. Может использоваться для имитации запаздывания значений датчиков.

Параметры:

ID	Параметр	Тип	Режим	Скрытый	По умолчанию
out	Выход	Веществ.	Возврат	false	0
in	Вход	Веществ.	Вход	false	0
t_lg	Время запазд. (с)	Веществ.	Вход	false	10
f_frq	Частота обсчёта (Гц)	Веществ.	Вход	true	100

```
Программа:
   out-=(out-in)/(t lg*f frq);
```

Шум (2 гарм. + случ) (noise) <3.5>

Описание: Модель шума. Содержит три составляющие:

- первая гармоника;
- вторая гармоника;
- шум на основе генератора случайных чисел.

Параметры:

ID	Параметр	Тип	Режим	Скрытый	По умолчанию
out	Выход	Веществ.	Возврат	false	0
off	Общее смещение	Веществ.	Вход	false	1
a_g1	Амплитуда гармоники 1	Веществ.	Вход	false	10
per_g1	Период гармоники 1 (сек)	Веществ.	Вход	false	10
a_g2	Амплитуда гармоники 2	Веществ.	Вход	false	5
per_g2	Период гармоники 2 (сек)	Веществ.	Вход	false	0.1
a_rnd	Амплитуда случ. значений	Веществ.	Вход	false	1
f_frq	Частота обсчёта функции (Гц)	Веществ.	Вход	true	100
tmp_g1	Счётчик гармоники 1	Веществ.	Вход	true	0
tmp_g2	Счётчик гармоники 2	Веществ.	Вход	true	0

```
tmp g1=(tmp g1>6.28)?0:tmp g1+6.28/(per g1*f frq);
tmp_g2=(tmp_g2>6.28)?0:tmp_g2+6.28/(per_g2*f_frq);
out=off+a_g1*sin(tmp_g1)+a_g2*sin(tmp_g2)+a_rnd*(rand(2)-1);
```

Шаровой кран (ballCrane) <1.4>

Описание: Модель шарового крана. Включает время хода и время отрыва.

Параметры:

ID	Параметр	Тип	Режим	Скрытый	По умолчанию
pos	Положение (%)	Веществ.	Выход	false	0
com	Команда	Логич.	Вход	false	0
st_open	Сост. "Открыто"	Логич.	Выход	false	0
st_close	Сост. "Закрыто"	Логич.	Выход	false	1
t_full	Время хода (с)	Веществ.	Вход	false	5
t_up	Время срыва (с)	Веществ.	Вход	false	0.5
f_frq	Частота обсчёта (Гц)	Веществ.	Вход	true	100
tmp_up	Счётчик срыва	Веществ.	Вход	true	0
lst_com	Последняя команда	Логич.	Вход	true	0

```
Программа:
```

```
if( !(st_close && !com) && !(st_open && com) )
 tmp_up=(pos>0&&pos<100)?0:(tmp_up>0&&lst_com==com)?tmp_up-1./f_frq:t_up;
 pos+=(tmp_up>0)?0:(100.*(com?1.:-1.))/(t_full*f_frq);
 pos=(pos>100)?100:(pos<0)?0:pos;
 st open=(pos>=100)?true:false;
 st close=(pos<=0)?true:false;</pre>
 lst com=com;
```

Сепаратор (separator) <14>

Описание: Модель сепаратора с двумя фазами, жидкой и газовой.

ID	Параметр	Тип	Режим	Скрытый	По умолчанию
Fi	Входн. расход (т/ч)	Веществ.	Выход	false	0
Pi	Входн. давление (ата)	Веществ.	Вход	false	1
Si	Входн. сечение (м2)	Веществ.	Вход	false	0.2
Fo	Выходн. расход (т/ч)	Веществ.	Вход	false	0
Po	Выходн. давление (ата)	Веществ.	Выход	false	1
So	Выходн. сеч. (м2)	Веществ.	Вход	false	0.2
lo	Выходн. длина (м)	Веществ.	Вход	false	10
Fo_ж	Выходн. расход жидк. (т/ч)	Веществ.	Вход	false	0
Ро_ж	Выходн. давление жидк. (ата)	Веществ.	Выход	false	1
Lж	Уровень жидкости (%)	Веществ.	Выход	false	0
РгосЖ	% жидкости.	Веществ.	Вход	false	0.01
Vap	Объём аппарата (м3)	Веществ.	Вход	false	10
Q0	Норм. плотн. среды (кг/м3)	Веществ.	Вход	false	1
Qж	Плотн. жидкости (кг/м3)	Веществ.	Вход	false	1000
f_frq	Частота обсчёта (Гц)	Веществ.	Вход	true	200

```
Программа:
```

```
Fx=max(0,Fi*ProcX);
```

```
DAQ.JavaLikeCalc.lib techApp.pipeBase(Fi,Pi,293,Si,Fo+Fx,Po,293,So,lo,Q0,0.95,0
 .01,f frq);
Lx = max(0, min(100, Lx+0.27*(Fx-Fo x)/(Vap*Qx*f frq)));
Po x = Po + Lx*Vap/Qx;
```

Клапан (klap) <19.5>

Описание: Модель клапана, учитывающая:

- два клапана в одном;
- сверхкритическое истечение;
- изменение температуры при дросселировании;
- работа только в одном направлении, обратный клапан;
- управляемая скорость изменения положения;
- нелинейность проходного сечения от положения.

Параметры:

ID	Параметр	Тип	Режим	Скрытый	По умолчанию
Fi	Входн. расход (т/ч)	Веществ.	Выход	false	0
Pi	Входн. давление (ата)	Веществ.	Вход	false	1
Ti	Входн. температура (К)	Веществ.	Вход	false	273
Fo	Выходн. расход (т/ч)	Веществ.	Вход	false	0
Po	Выходн. давление (ата)	Веществ.	Выход	false	1
То	Выходн. температура (К)	Веществ.	Выход	false	273
So	Выходн. сеч. трубы (м2)	Веществ.	Вход	false	.2
lo	Длина выходн. трубы (м)	Веществ.	Вход	false	10
S_kl1	Сечение клапана 1 (м2)	Веществ.	Вход	false	.1
1_k11	Полож. клапана 1 (%)	Веществ.	Вход	false	0
t_kl1	Время хода. клапана 1 (с)	Веществ.	Вход	false	10
S_kl2	Сечение клапана 2 (м2)	Веществ.	Вход	false	.05
1_k12	Полож. клапана 2 (%)	Веществ.	Вход	false	0
t_kl2	Время хода. клапана 2 (с)	Веществ.	Вход	false	10
Q0	Норм. плотн. ср. (кг/м3)	Веществ.	Вход	false	1
Kln	Коэфиц. нелинейности	Веществ.	Вход	false	1
Kpr	Коэфиц. сжим. среды	Веществ.	Вход	false	0.95
Ct	Теплоёмкость среды	Веществ.	Вход	false	20
Riz	Тепл. сопр. изоляции	Веществ.	Вход	false	20
noBack	Обратный клапан	Логич.	Вход	false	0
Fwind	Скорость воздуха	Веществ.	Вход	false	1
Twind	Темпер. воздуха	Веществ.	Вход	false	273
f_frq	Частота обсчёта (Гц)	Веществ.	Вход	true	200
tmp_11	Удержанное положение 1	Веществ.	Выход	true	0
tmp_l2	Удержанное положение 2	Веществ.	Выход	true	0

```
Qr=Q0+Q0*Kpr*(Pi-1);
tmp_11 += (abs(l_kl1-tmp_11) > 5)?
  100*sign(l_kl1-tmp_l1)/(t_kl1*f_frq) : (l_kl1-tmp_l1)/(t_kl1*f_frq);
tmp_12 += (abs(l_kl2-tmp_12) > 5)?
  100*sign(l_kl2-tmp_l2)/(t_kl2*f_frq) : (l_kl2-tmp_l2)/(t_kl2*f_frq);
Sr=(S_kl1*pow(tmp_l1,Kln)+S_kl2*pow(tmp_l2,Kln))/pow(100,Kln);
```

```
DAQ.JavaLikeCalc.lib techApp.pipeBase(Fi, Pi, Ti, Sr, EVAL REAL, Po, 293, So, lo, Q0, Kpr,
  0.01, f frq);
if ( noBack ) Fi = max(0, Fi);
Po = \max(0, \min(100, Po+0.27*(Fi-Fo)/(Q0*Kpr*So*lo*f frq)));
To = max(0, min(2e3, To + (abs(Fi) * (Ti*pow(Po/Pi, 0.02) - To) +
                (Fwind+1) * (Twind-To) / Riz) / (Ct * So * lo * Qr * f frq)));
```

Запаздывание (чистое) (lagClean) <2.9>

Описание: Модель чистого(транспортного) запаздывания. Реализуется путём включения нескольких простых цепей запаздывания. Предназначен для имитации запаздывания в длинных трубопроводах.

Параметры:

ID	Параметр	Тип	Режим	Скрытый	По умолчанию
out	Выход	Веществ.	Возврат	false	0
in	Вход	Веществ.	Вход	false	0
t_lg	Время запазд. (с)	Веществ.	Вход	false	10
f_frq	Частота обсчёта (Гц)	Веществ.	Вход	true	100
cl1	Звено 1	Веществ.	Вход	true	0
cl2	Звено 2	Веществ.	Вход	true	0
cl3	Звено 3	Веществ.	Вход	true	0

Программа:

```
cl1-=(cl1-in)/(t lg*f frq/4);
cl2-=(cl2-cl1)/(t_lg*f_frq/4);
cl3-=(cl3-cl2)/(t_lg*f_frq/4);
out-=(out-cl3)/(t_lg*f_frq/4);
```

Котёл: барабан (boilerBarrel) <30.5>

Описание: Модель барабана котлоагрегата.

Папаметры:

ID	Параметр	Тип	Режим	Скрытый	По умолчанию
Fi1	Вх. расход воды (т/ч)	Веществ.	Выход	false	22
Pi1	Вх. давление воды (ата)	Веществ.	Вход	false	43
Ti1	Вх. температура воды (К)	Веществ.	Вход	false	523
Si1	Вх. сечение труб с водой (м2)	Веществ.	Вход	false	0.6
Fi2	Вх. расход дымовых газов (т/ч)	Веществ.	Выход	false	
Pi2	Вх. давление дымовых газов (ата)	Веществ.	Вход	false	1.3
Ti2	Вх. температура дымовых газов (К)	Веществ.	Вход	false	1700
Si2	Вх. сечение трубы дымовых газов (м2)	Веществ.	Вход	false	10
Vi1	Объем барабана (м3)	Веществ.	Вход	false	3
Lo	Уровень в барабане(%)	Веществ.	Выход	false	10
S	Поверхность нагрева (м2)	Веществ.	Вход	false	15
k	Коэффициент теплоотдачи	Веществ.	Вход	false	0.8
Fo	Вых. расход пара (т/ч)	Веществ.	Вход	false	20
Po1	Вых. давление пара (ата)	Веществ.	Выход	false	41.68
To1	Вых. температура пара (К)	Веществ.	Выход	false	10
So1	Вых. сечение трубы по пару (м2)	Веществ.	Вход	false	0.5

ID	Параметр	Тип	Режим	Скрытый	По умолчанию
lo1	Вых. длина трубы пара (м)	Веществ.	Вход	false	5
Fo2	Вых. расход дымовых газов (т/ч)	Веществ.	Вход	false	180
Po2	Вых. давление дымовых газов (ата)	Веществ.	Выход	false	1
To2	Вых. температура дымовых газов (К)	Веществ.	Вход	false	0
Fpara	Расход пара в барабане(т/ч)	Веществ.	Выход	false	0
Tv	Температура воды в барабане(К)	Веществ.	Выход	false	0
f_frq	Частота обсчета(Гц)	Веществ.	Вход	false	200

```
// Water
DAQ.JavaLikeCalc.lib techApp.pipeBase(Fi1,Pi1,293,Si1,EVAL REAL,Po1,293,So1,lo
  1,1e3,0.001,0.01,f frq);
Fi1 = max(0, Fi1);
// Steam
Lo = \max(0, \min(100, \text{Lo}+(\text{Fil-Fpara})*100/(\text{Vil}*1000*f frq)));
To1 = (100*pow(Po1, 0.241) + 5) + 273;
if( Tv<To1 )
  Tv+=(k*S*(Ti2-Tv)-Fi1*0.00418*(Tv-Ti1))/f frq;
  Fpara=0;
if( Tv >= To1)
  Tv=To1;
  Lambda=2750.0-0.00418*(Tv-273);
  Fpara=(5*S*Fi2*(Ti2-Tv)-Fi1*0.00418*(Tv-Ti1))/(Po1*Lambda);
To2=Ti2-Tv/k;
Po1 = max(0, min(100, Po1+0.27*(Fpara-Fo)/(1.2*0.98*((1-
  Lo/100) *Vi1+So1*lo1) *f_frq)));
// Smoke gas
DAQ.JavaLikeCalc.lib techApp.pipeBase(Fi2,Pi2,293,Si2,Fo2,Po2,293,Si2,30,1.2,0
  .98,0.01,f frq);
```

Котёл: топка (boilerBurner) <50.5>

Описание: Модель топки котлоагрегата, работающего на трех видах топлива: доменном, коксовом и природном газе.

Папаметры.

ID	Параметр	Тип	Режим	Скрытый	По умолчанию
Fi1	Вх. расход доменного газа (т/ч)	Веществ.	Выход	false	
Pi1	Вх. давление доменного газа (ата)	Веществ.	Вход	false	
Ti1	Вх. температура доменного газа (К)	Веществ.	Вход	false	40
Si1	Вх. сечение трубы доменного газа (м2)	Веществ.	Вход	false	
Fi2	Вх. расход природного газа (т/ч)	Веществ.	Выход	false	
Pi2	Вх. давление природного газа (ата)	Веществ.	Вход	false	
Ti2	Вх. температура природного газа (К)	Веществ.	Вход	false	20
Si2	Вх. сечение трубы природного газа (м2)	Веществ.	Вход	false	
Fi3	Вх. расход коксового газа (т/ч)	Веществ.	Выход	false	

ID	Параметр	Тип	Режим	Скрытый	По умолчанию
Pi3	Вх. давление коксового газа (ата)	Веществ.	Вход	false	
Ti3	Вх. температура коксового газа (К)	Веществ.	Вход	false	0
Si3	Вх. сечение трубы коксового газа (м2)	Веществ.	Вход	false	
Fi4	Вх. расход воздуха (т/ч)	Веществ.	Выход	false	
Pi4	Вх. давление воздуха (ата)	Веществ.	Вход	false	
Ti4	Вх. температура воздуха (К)	Веществ.	Вход	false	20
Si4	Вх. сечение трубы воздуха (м2)	Веществ.	Вход	false	
Fo	Вых. расход дымовых газов (т/ч)	Веществ.	Вход	false	
Po	Вых. давление и в топке (ата)	Веществ.	Выход	false	
То	Вых. температура и в топке (К)	Веществ.	Выход	false	
So	Вых. сечение трубы (м2)	Веществ.	Вход	false	90
lo	Выходная длина трубы(м)	Веществ.	Вход	false	
V	Объём топки(м3)	Веществ.	Вход	false	830
СО	Процент содержания СО в уходящих дымовых газах(%)	Веществ.	Выход	false	
O2	Процент содержания О2 в уходящих дымовых газах(%)	Веществ.	Выход	false	
f_frq	Частота дискретизации(Гц)	Веществ.	Вход	false	200

```
using DAQ.JavaLikeCalc.lib techApp;
pipeBase(Fi1, Pi1, Ti1, Si1, EVAL REAL, Po, 293, So, lo, 1.2, 0.95, 0.01, f frq);
Fi1 = max(0, Fi1);
pipeBase(Fi2, Pi2, Ti2, Si2, EVAL REAL, Po, 293, So, lo, 0.7, 0.95, 0.01, f frq);
Fi2 = max(0, Fi2);
pipeBase(Fi3, Pi3, Ti3, Si3, EVAL REAL, Po, 293, So, lo, 1.33, 0.95, 0.01, f frq);
Fi3 = max(0, Fi3);
pipeBase(Fi4, Pi4, Ti4, Si4, EVAL REAL, Po, 293, So, lo, 1.293, 0.95, 0.01, f frq);
Fi4 = max(0, Fi4);
Neobhod vzd = Fi1+10*Fi2+4*Fi3;
F DG = Fi1+Fi2+Fi3+Fi4;
O2 = max(0, min(100, (Fi4-Neobhod vzd)*100/F DG));
CO = min(100, (02<1) ? (1.2*abs(02)) : 0);
koef = min(1,Fi4/Neobhod vzd);
Q = koef*(8050*Fi2+3900*Fi3+930*Fi1);
delta_t = Q/(F_DG*1.047);
To = \max(0, \min(2000, (delta_t + (Ti4-273) + (Ti3-273) * (Fi3/Fi1) + (Ti2-273) * (Fi2/Fi1) + (Ti2-273) * (Fi2/Fi1) + (Ti3-273) * (Fi3/Fi1) + (Ti3-273) *
         (Ti1-273)*(Fi1/Fi4))+273));
Po = \max(0, \min(10, Po+0.27*(F DG-Fo)/(1.2*0.95*(So*lo+V)*f frq)));
```

Сеть (нагрузка) (net) <13>

Описание: Нагрузка с фиксированным давлением сети. Содержит параметр для подключения шума.

ID	Параметр	Тип	Режим	Скрытый	По умолчанию
Fi	Входн. расхода (т/ч)	Веществ.	Выход	false	10
Pi	Входн. давление (ата)	Веществ.	Вход	false	1
Po	Задание выходн. давления (ата)	Веществ.	Вход	false	1

ID	Параметр	Тип	Режим	Скрытый	По умолчанию
So	Сечение трубы на выходе (м2)	Веществ.	Вход	false	0.1
Kpr	Коэффициент сжимаемости (01)	Веществ.	Вход	false	0.95
Noise	Шум входн. расхода	Веществ.	Вход	false	1
Q0	Норм. плотн. среды (кг/м3)	Веществ.	Вход	false	1
f_frq	Частота обсчёта функции (Гц)	Веществ.	Вход	true	200

DAQ.JavaLikeCalc.lib techApp.pipeBase(Fi,Pi,293,So,EVAL REAL,Po,293,So,10,Q0,Kpr ,0.01,f frq);

Источник (давление) (src_press) <12>

Описание: Источник с фиксированным давлением. Содержит параметр для подключения шума.

Папаметры:

ID	Параметр	Тип	Режим	Скрытый	По умолчанию
Pi	Задание входного давления (ата)	Веществ.	Вход	false	10
Fo	Выходн. расхода (т/ч)	Веществ.	Вход	false	0
Po	Выходн. давление (ата)	Веществ.	Выход	false	1
So	Сечение трубы на выходе (м2)	Веществ.	Вход	false	0.1
lo	Длина трубы на выходе (м)	Веществ.	Вход	false	100
Noise	Шум входн. давления	Веществ.	Вход	false	1
Q0	Плотность среды в норм. услов. (кг/м3)	Веществ.	Вход	false	1
Kpr	Коэфиц. сжим. среды	Веществ.	Вход	false	0.95
f_frq	Частота обсчёта функции (Гц)	Веществ.	Вход	true	200
Fit	Вход. расход удержаный	Веществ.	Выход	true	0

Программа:

DAQ.JavaLikeCalc.lib techApp.pipeBase(Fit,Pi*Noise,293,So,Fo,Po,293,So,lo,Q0,Kpr ,0.01,f_frq);

Возд. холодильник (cooler) <16.5>

Описание: Модель воздушного охладителя газового потока.

ID	Параметр	Тип	Режим	Скрытый	По умолчанию
Fi	Входн. расход (т/ч)	Веществ.	Выход	false	0
Pi	Входн. давление (ата)	Веществ.	Вход	false	1
Ti	Входн. температура (К)	Веществ.	Вход	false	273
Si	Сечение трубок (м2)	Веществ.	Вход	false	0.05
li	Общая длина трубок (м)	Веществ.	Вход	false	10
Fo	Выходн. расход (т/ч)	Веществ.	Вход	false	0
Po	Выходн. давление (ата)	Веществ.	Выход	false	1
To	Выходн. температура (К)	Веществ.	Выход	false	273
So	Выходн. сеч. трубы (м2)	Веществ.	Вход	false	.2
lo	Длина выходн. трубы (м)	Веществ.	Вход	false	10
Tair	Темп. охложд. воздуха (К)	Веществ.	Вход	false	283
Wc	Производит. холод.	Веществ.	Вход	false	200

ID	Параметр	Тип	Режим	Скрытый	По умолчанию
Q0	Норм. плотн. ср. (кг/м3)	Веществ.	Вход	false	1
Ct	Теплоёмкость среды	Веществ.	Вход	false	100
Rt	Тепл. сопротивление	Веществ.	Вход	false	1
f_frq	Частота обсчёта (Гц)	Веществ.	Вход	true	200

```
DAQ. JavaLikeCalc.lib techApp.pipeBase(Fi, Pi, 293, Si, Fo, Po, 293, So, lo, Q0, 0.95, 0.01, f
   frq);
Qr = Q0+Q0*0.95*(Pi-1);
To+=(Fi*(Ti-To)+Wc*(Tair-To)/Rt)/(Ct*(Si*li+So*lo)*Qr*f frq);
```

Компрессор газовый (compressor) <12>

Описание: Модель газового компрессора. Учитывает эффект помпажа. Помпаж вычисляется по газо-динамической кривой, исходя из которой получается коэффициент запаса по помпажу.

_	аметры:		T_		I
ID	Параметр	Тип	Режим	Скрытый	По умолчанию
Fi	Входн. расход (т/ч)	Веществ.	Выход	false	0
Pi	Входн. давление (ата)	Веществ.	Вход	false	1
Ti	Входн. температура (К)	Веществ.	Вход	false	273
Fo	Выходн. расход (т/ч)	Веществ.	Вход	false	0
Po	Выходн. давление (ата)	Веществ.	Выход	false	1
То	Выходн. температура (К)	Веществ.	Выход	false	273
So	Выходн. сеч. трубы (м2)	Веществ.	Вход	false	0.2
lo	Длина выходн. трубы (м)	Веществ.	Вход	false	2
Kzp	Коэф. запаса по помпажу	Веществ.	Выход	false	0.1
N	Об. компр. (тыс. об./мин)	Веществ.	Вход	false	0
V	Объём компрессора (м3)	Веществ.	Вход	false	7
Kpmp	Коэф. помп. (точка помп.)	Веществ.	Вход	false	0.066
Kslp	Коэф. накл. помп. кривой	Веществ.	Вход	false	0.08
Q0	Норм. плотн. ср. (кг/м3)	Веществ.	Вход	false	1
Kpr	Коеф. сжимаемости среды	Веществ.	Вход	false	0.95
Ct	Теплоёмкость среды	Веществ.	Вход	false	100
Riz	Тепл. сопр. изоляции	Веществ.	Вход	false	100
Fwind	Скорость воздуха	Веществ.	Вход	false	1
Twind	Темпер. воздуха	Веществ.	Вход	false	273
f_frq	Частота обсчёта (Гц)	Веществ.	Вход	true	200
Fit	Вход. расход удержанный	Веществ.	Выход	true	0

```
Pmax = max(Pi, Po);
Pmin = min(Pi, Po);
Qr = Q0+Q0*Kpr*(Pi-1);
Qrf = Q0+Q0*Kpr*(Pmax-1);
Ftmp=(N>0.1)?(1-10*(Po-Pi)/(Qr*(pow(N,3)+0.1)*Kpmp)):1;
Kzp=1-Ftmp; //Коэффиц. запаса
Fi=V*N*Qr*sign(Ftmp)*pow(abs(Ftmp),Kslp)+
  0.3*(4*So*Qrf/(0.01*lo*1.7724+4*Qrf))*sign(Pi-Po)*pow(Qrf*(Pmax-
        max(Pmax*0.528, Pmin)), 0.5);
```

```
Fit -= (Fit-Fi)/max(1,(lo*f frq)/max(le-4,abs(Fi/(Qrf*So))));
Po = max(0, min(100, Po+0.27*(Fi-Fo)/(Q0*Kpr*So*lo*f frq)));
To+=(abs(Fi)*(Ti*pow(Po/Pi,0.3)-To)+(Fwind+1)*(Twind-To)/Riz)/
  (Ct*(V+So*lo)*Qr*f frq);
```

Источник (расход) (src flow) <2.2>

Описание: Источник с фиксированным расходом. Содержит параметр для подключения шума.

Параметры:

ID	Параметр	Тип	Режим	Скрытый	По умолчанию
Fi	Задание входн. расхода (т/ч)	Веществ.	Вход	false	10
Fo	Выходн. расхода (т/ч)	Веществ.	Вход	false	10
Po	Выходн. давление (ата)	Веществ.	Выход	false	1
So	Сечение трубы на выходе (м2)	Веществ.	Вход	false	0.1
lo	Длина трубы на выходе (м)	Веществ.	Вход	false	100
Noise	Шум входн. расхода	Веществ.	Вход	false	1
Q0	Плотность среды в норм. услов. (кг/м3)	Веществ.	Вход	false	1
Kpr	Коеф. сжимаемости среды	Веществ.	Вход	false	0.95
f_frq	Частота обсчёта функции (Гц)	Веществ.	Вход	true	100

```
Программа:
```

 $Po = \max(0, \min(100, Po+0.27*(Noise*Fi-Fo)/(Q0*Kpr*So*lo*f frq)));$

Труба-база (pipeBase) <11.5>

Описание: Реализация базовых основ модели трубы:

- Расход в трубе с учётом скорости движения, перепада давления, сопротивления за счёт трения и критического истечения.
- Расчёт давления.
- Учёт плотности среды и степени её сжимаемости как для газов, так и для жидкостей.

Параметры:

ID	Параметр	Тип	Режим	Скрытый	По умолчанию
Fi	Входн. расход (т/ч)	Веществ.	Выход	false	0
Pi	Входн. давление (ата)	Веществ.	Вход	false	1
Ti	Входн. температура (К)	Веществ.	Вход	false	293
Si	Входн. сечение (м2)	Веществ.	Вход	false	.2
Fo	Выходн. расход (т/ч)	Веществ.	Вход	false	0
Po	Выходн. давление (ата)	Веществ.	Выход	false	1
То	Выходн. температура (К)	Веществ.	Выход	false	293
So	Выходн. сеч. (м2)	Веществ.	Вход	false	.2
lo	Выходн. длина (м)	Веществ.	Вход	false	10
Q0	Норм. плотн. среды (кг/м3)	Веществ.	Вход	false	1
Kpr	Коеф. сжимаемости среды	Веществ.	Вход	false	0.98
Ktr	Коеф. трения	Веществ.	Вход	false	0.01
f_frq	Частота обсчёта (Гц)	Веществ.	Вход	false	100

```
Pmax = max(Pi, Po);
Pmin = min(Pi,Po);
```

```
Qr = Q0+Q0*Kpr*(Pmax-1);
Fit = 630*(4*Si*So*Qr/(Ktr*lo*1.7724*Si+4*So*Qr))*sign(Pi-Po)*pow(Qr*(Pmax-Po)*Pow(Qr*(Pmax-Po)*Pow(Qr*(Pmax-Po)*Pow(Qr*(Pmax-Po)*Pow(Qr*(Pmax-Po)*Pow(Qr*(Pmax-Po)*Pow(Qr*(Pmax-Po)*Pow(Qr*(Pmax-Po)*Pow(Qr*(Pmax-Po)*Pow(Qr*(Pmax-Po)*Pow(Qr*(Pmax-Po)*Pow(Qr*(Pmax-Po)*Pow(Qr*(Pmax-Po)*Pow(Qr*(Pmax-Po)*Pow(Qr*(Pmax-Po)*Pow(Qr*(Pmax-Po)*Pow(Qr*(Pmax-Po)*Pow(Qr*(Pmax-Po)*Pow(Qr*(Pmax-Po)*Pow(Qr*(Pmax-Po)*Pow(Qr*(Pmax-Po)*Pow(Qr*(Pmax-Po)*Pow(Qr*(Pmax-Po)*Pow(Qr*(Pmax-Po)*Pow(Qr*(Pmax-Po)*Pow(Qr*(Pmax-Po)*Pow(Qr*(Pmax-Po)*Pow(Qr*(Pmax-Po)*Pow(Qr*(Pmax-Po)*Pow(Qr*(Pmax-Po)*Pow(Qr*(Pmax-Po)*Pow(Qr*(Pmax-Po)*Pow(Qr*(Pmax-Po)*Pow(Qr*(Pmax-Po)*Pow(Qr*(Pmax-Po)*Pow(Qr*(Pmax-Po)*Pow(Qr*(Pmax-Po)*Pow(Qr*(Pmax-Po)*Pow(Qr*(Pmax-Po)*Pow(Qr*(Pmax-Po)*Pow(Qr*(Pmax-Po)*Pow(Qr*(Pmax-Po)*Pow(Qr*(Pmax-Po)*Pow(Qr*(Pmax-Po)*Pow(Qr*(Pmax-Po)*Pow(Qr*(Pmax-Po)*Pow(Qr*(Pmax-Po)*Pow(Qr*(Pmax-Po)*Pow(Qr*(Pmax-Po)*Pow(Qr*(Pmax-Po)*Pow(Qr*(Pmax-Po)*Pow(Qr*(Pmax-Po)*Pow(Qr*(Pmax-Po)*Pow(Qr*(Pmax-Po)*Pow(Qr*(Pmax-Po)*Pow(Qr*(Pmax-Po)*Pow(Qr*(Pmax-Po)*Pow(Qr*(Pmax-Po)*Pow(Qr*(Pmax-Po)*Pow(Qr*(Pmax-Po)*Pow(Qr*(Pmax-Po)*Pow(Qr*(Pmax-Po)*Pow(Qr*(Pmax-Po)*Pow(Qr*(Pmax-Po)*Pow(Qr*(Pmax-Po)*Pow(Qr*(Pmax-Po)*Pow(Qr*(Pmax-Po)*Pow(Qr*(Pmax-Po)*Pow(Qr*(Pmax-Po)*Pow(Qr*(Pmax-Po)*Pow(Qr*(Pmax-Po)*Pow(Qr*(Pmax-Po)*Pow(Qr*(Pmax-Po)*Pow(Qr*(Pmax-Po)*Pow(Qr*(Pmax-Po)*Pow(Qr*(Pmax-Po)*Pow(Qr*(Pmax-Po)*Pow(Qr*(Pmax-Po)*Pow(Qr*(Pmax-Po)*Pow(Qr*(Pmax-Po)*Pow(Qr*(Pmax-Po)*Pow(Qr*(Pmax-Po)*Pow(Qr*(Pmax-Po)*Pow(Qr*(Pmax-Po)*Pow(Qr*(Pmax-Po)*Pow(Qr*(Pmax-Po)*Pow(Qr*(Pmax-Po*(Pmax-Po*(Pmax-Po*(Pmax-Po*(Pmax-Po*(Pmax-Po*(Pmax-Po*(Pmax-Po*(Pmax-Po*(Pmax-Po*(Pmax-Po*(Pmax-Po*(Pmax-Po*(Pmax-Po*(Pmax-Po*(Pmax-Po*(Pmax-Po*(Pmax-Po*(Pmax-Po*(Pmax-Po*(Pmax-Po*(Pmax-Po*(Pmax-Po*(Pmax-Po*(Pmax-Po*(Pmax-Po*(Pmax-Po*(Pmax-Po*(Pmax-Po*(Pmax-Po*(Pmax-Po*(Pmax-Po*(Pmax-Po*(Pmax-Po*(Pmax-Po*(Pmax-Po*(Pmax-Po*(Pmax-Po*(Pmax-Po*(Pmax-Po*(Pmax-Po*(Pmax-Po*(Pmax-Po*(Pmax-Po*(Pmax-Po*(Pmax-Po*(Pmax-Po*(Pmax-Po*(Pmax-Po*(Pmax-Po*(Pmax-Po*(Pmax-Po*(Pmax-Po*(Pmax-Po*(Pmax-Po*(Pmax-Po*(Pmax-Po*
                \max(Pmax*0.528, Pmin)), 0.5);
Fi \rightarrow (Fi-Fit)/max(1,(lo*f frq)/max(1,abs(Fit/(Qr*So))));
if( !Fo.isEVal() ) Po = max(0,min(100,Po+0.27*(Fi-Fo)/(Q0*Kpr*So*lo*f frq)));
```

Tpy6a 1->1 (pipe1 1) <36.5>

Описание: Модель узла труб по схеме: 1 -> 1.

Папаметры:

ID	Параметр	Тип	Режим	Скрытый	По умолчанию
Fi	Входн. расход (т/ч)	Веществ.	Выход	false	0
Pi	Входн. давление (ата)	Веществ.	Вход	false	1
Fo	Выходн. расход (т/ч)	Веществ.	Вход	false	0
Po	Выходн. давление (ата)	Веществ.	Выход	false	1
So	Выходн. сеч. (м2)	Веществ.	Вход	false	.2
lo	Выходн. длина (м)	Веществ.	Вход	false	10
Q0	Норм. плотн. среды (кг/м3)	Веществ.	Вход	false	1
Kpr	Коеф. сжимаемости среды	Веществ.	Вход	false	0.95
f_frq	Частота обсчёта (Гц)	Веществ.	Вход	true	200
Pti	Pti	Веществ.	Выход	true	1
Fto	Fto	Веществ.	Выход	true	0
Pt1	Pt1	Веществ.	Выход	true	1
Ft1	Ft1	Веществ.	Выход	true	0

Программа:

```
DAQ.JavaLikeCalc.lib techApp.pipeBase(Fi,Pi,293,So,Ft1,Pti,293,So,0.33*lo,Q0,Kpr
  ,0.01,f frq);
DAQ.JavaLikeCalc.lib techApp.pipeBase(Ft1,Pti,293,So,Fto,Pt1,293,So,0.33*lo,Q0,K
  pr, 0.01, f frq);
DAQ.JavaLikeCalc.lib techApp.pipeBase(Fto,Pt1,293,So,Fo,Po,293,So,0.33*lo,Q0,Kpr
  ,0.01,f frq);
```

Труба 2->1 (pipe2 1) <26>

Описание: Модель узла труб по схеме: 2 -> 1.

ID	Параметр	Тип	Режим	Скрытый	По умолчанию
Fi1	Входн. расход 1 (т/ч)	Веществ.	Выход	false	0
Pi1	Входн. давление 1 (ата)	Веществ.	Вход	false	1
Ti1	Входн. температура 1 (К)	Веществ.	Вход	false	273
Si1	Входн. сечение 1 (м2)	Веществ.	Вход	false	0.2
Fi2	Входн. расход 2 (т/ч)	Веществ.	Выход	false	0
Pi2	Входн. давление 2 (ата)	Веществ.	Вход	false	1
Ti2	Входн. температура 2 (К)	Веществ.	Вход	false	273
Si2	Входн. сечение 2 (м2)	Веществ.	Вход	false	0.2
Fo	Выходн. расход (т/ч)	Веществ.	Вход	false	0
Po	Выходн. давление (ата)	Веществ.	Выход	false	1
То	Выходн. температура (К)	Веществ.	Выход	false	273
So	Выходн. сечение 1 (м2)	Веществ.	Вход	false	.2

ID	Параметр	Тип	Режим	Скрытый	По умолчанию
lo	Выходн. длина 1 (м)	Веществ.	Вход	false	10
Q0	Норм. плотн. среды (кг/м3)	Веществ.	Вход	false	1
Kpr	Коеф. сжимаемости среды	Веществ.	Вход	false	0.95
Ct	Теплоёмкость среды	Веществ.	Вход	false	20
Riz	Тепл. сопр. изоляции	Веществ.	Вход	false	20
Fwind	Скорость воздуха	Веществ.	Вход	false	1
Twind	Температура воздуха (К)	Веществ.	Вход	false	273
f_frq	Частота обсчёта (Гц)	Веществ.	Вход	true	100

```
DAQ.JavaLikeCalc.lib_techApp.pipeBase(Fi1,Pi1,293,Si1,EVAL_REAL,Po,293,So,lo,Q0,
  Kpr, 0.01, f_frq);
DAQ.JavaLikeCalc.lib_techApp.pipeBase(Fi2,Pi2,293,Si2,EVAL_REAL,Po,293,So,lo,Q0,
 Kpr, 0.01, f_frq);
Po = \max(0, \min(100, Po+0.27*(Fi1+Fi2-Fo)/(Q0*Kpr*So*lo*f_frq)));
To = max(0, To + (Fi1 * (Ti1 - To) + Fi2 * (Ti2 - To) + (Fwind + 1) * (Twind - To) / Riz) /
  (Ct*So*lo*Q0*f frq));
```

Труба 3->1 (ріре3_1) <36>

Описание: Модель узла труб по схеме: 3 -> 1.

	аметры:		T_		
ID	Параметр	Тип	Режим	Скрытый	По умолчанию
Fi1	Входн. расход 1 (т/ч)	Веществ.	Выход	false	0
Pi1	Входн. давление 1 (ата)	Веществ.	Вход	false	1
Ti1	Входн. температура 1 (К)	Веществ.	Вход	false	273
Si1	Входн. сечение 1 (м2)	Веществ.	Вход	false	0.2
Fi2	Входн. расход 2 (т/ч)	Веществ.	Выход	false	0
Pi2	Входн. давление 2 (ата)	Веществ.	Вход	false	1
Ti2	Входн. температура 2 (К)	Веществ.	Вход	false	273
Si2	Входн. сечение 2 (м2)	Веществ.	Вход	false	0.2
Fi3	Входн. расход 3 (т/ч)	Веществ.	Выход	false	0
Pi3	Входн. давление 3 (ата)	Веществ.	Вход	false	1
Ti3	Входн. температура 3 (К)	Веществ.	Вход	false	273
Si3	Входн. сечение 3 (м2)	Веществ.	Вход	false	0.2
Fo	Выходн. расход (т/ч)	Веществ.	Вход	false	0
Po	Выходн. давление (ата)	Веществ.	Выход	false	1
То	Выходн. температура (К)	Веществ.	Выход	false	273
So	Выходн. сечение 1 (м2)	Веществ.	Вход	false	.2
lo	Выходн. длина 1 (м)	Веществ.	Вход	false	10
Q0	Норм. плотн. среды (кг/м3)	Веществ.	Вход	false	1
Kpr	Коеф. сжимаемости среды	Веществ.	Вход	false	0.95
Ct	Теплоёмкость среды	Веществ.	Вход	false	20
Riz	Тепл. сопр. изоляции	Веществ.	Вход	false	20
Fwind	Скорость воздуха	Веществ.	Вход	false	1
Twind	Температура воздуха (К)	Веществ.	Вход	false	273
f_frq	Частота обсчёта (Гц)	Веществ.	Вход	true	100

```
DAQ.JavaLikeCalc.lib techApp.pipeBase(Fi1,Pi1,293,Si1,EVAL REAL,Po,293,So,lo,Q0,
  Kpr, 0.01, f frq);
DAQ.JavaLikeCalc.lib techApp.pipeBase(Fi2,Pi2,293,Si2,EVAL REAL,Po,293,So,lo,Q0,
 Kpr, 0.01, f frq);
DAQ.JavaLikeCalc.lib techApp.pipeBase(Fi3,Pi3,293,Si3,EVAL REAL,Po,293,So,lo,Q0,
 Kpr, 0.01, f_frq);
Po = \max(0, \min(100, Po+0.27*(Fi1+Fi2+Fi3-Fo)/(Q0*Kpr*So*lo*f frq)));
To = max(0, To + (Fi1*(Ti1-To) + Fi2*(Ti2-To) + Fi3*(Ti3-To) + (Fwind+1)*(Twind+To)/Riz)/
  (Ct*So*lo*Q0*f frq));
```

Труба 1->2 (pipe1 2) <25.5>

Описание: Модель узла труб по схеме: 1 -> 2.

Параметры:

ID	Параметр	Тип	Режим	Скрытый	По умолчанию
Fi	Входн. расход (т/ч)	Веществ.	Выход	false	0
Pi	Входн. давление (ата)	Веществ.	Вход	false	1
Fo1	Выходн. расход 1 (т/ч)	Веществ.	Вход	false	0
Po1	Выходн. давление 1 (ата)	Веществ.	Выход	false	1
So1	Выходн. сеч. 1 (м2)	Веществ.	Вход	false	.2
lo1	Выходн. длина 1 (м)	Веществ.	Вход	false	10
Fo2	Выходн. расход 2 (т/ч)	Веществ.	Вход	false	0
Po2	Выходн. давление 2 (ата)	Веществ.	Выход	false	1
So2	Выходн. сеч. 2 (м2)	Веществ.	Вход	false	.2
lo2	Выходн. длина 2 (м)	Веществ.	Вход	false	10
Q0	Норм. плотн. среды (кг/м3)	Веществ.	Вход	false	1
Kpr	Коеф. сжимаемости среды	Веществ.	Вход	false	0.95
f_frq	Частота обсчёта (Гц)	Веществ.	Вход	true	100
F1tmp	Врем. расход 1	Веществ.	Выход	true	0
F2tmp	Врем. расход 2	Веществ.	Выход	true	0
Pot1	Вых. давл. удержанное	Веществ.	Выход	true	1
Pot2	Вых. давл. удержанное	Веществ.	Выход	true	1

Программа:

```
DAQ.JavaLikeCalc.lib_techApp.pipeBase(F1tmp,Pi,293,So1,Fo1,Po1,293,So1,lo1,Q0,Kp
  r,0.01,f_frq);
DAQ.JavaLikeCalc.lib techApp.pipeBase(F2tmp,Pi,293,So2,Fo2,Po2,293,So2,lo2,Q0,Kp
  r,0.01,f frq);
Fi=F1tmp+F2tmp;
```

Труба 1->3 (pipe1 3) <36.5>

Описание: Модель узла труб по схеме: 1 -> 3.

Inapo						
ID	Параметр	Тип	Режим	Скрытый	По умолчанию	
Fi	Входн. расход (т/ч)	Веществ.	Выход	false	0	
Pi	Входн. давление (ата)	Веществ.	Вход	false	1	
Fo1	Выходн. расход 1 (т/ч)	Веществ.	Вход	false	0	
Po1	Выходн. давление 1 (ата)	Веществ.	Выход	false	1	
So1	Выходн. сеч. 1 (м2)	Веществ.	Вход	false	.2	

ID	Параметр	Тип	Режим	Скрытый	По умолчанию
lo1	Выходн. длина 1 (м)	Веществ.	Вход	false	10
Fo2	Выходн. расход 2 (т/ч)	Веществ.	Вход	false	0
Po2	Выходн. давление 2 (ата)	Веществ.	Выход	false	1
So2	Выходн. сеч. 2 (м2)	Веществ.	Вход	false	.2
lo2	Выходн. длина 2 (м)	Веществ.	Вход	false	10
Fo3	Выходн. расход 3 (т/ч)	Веществ.	Вход	false	0
Po3	Выходн. давление 3 (ата)	Веществ.	Выход	false	1
So3	Выходн. сеч. 3 (м2)	Веществ.	Вход	false	.2
lo3	Выходн. длина 3 (м)	Веществ.	Вход	false	10
Q0	Норм. плотн. среды (кг/м3)	Веществ.	Вход	false	1
Kpr	Коеф. сжимаемости среды	Веществ.	Вход	false	0.95
f_frq	Частота обсчёта (Гц)	Веществ.	Вход	true	100
F1tmp	Врем. расход 1	Веществ.	Выход	true	0
F2tmp	Врем. расход 2	Веществ.	Выход	true	0
F3tmp	Врем. расход 3	Веществ.	Выход	true	0
Pot1	Вых. давл. удержанное	Веществ.	Выход	true	1
Pot2	Вых. давл. удержанное	Веществ.	Выход	true	1
Pot3	Вых. давл. удержанное	Веществ.	Выход	true	1

DAQ.JavaLikeCalc.lib techApp.pipeBase(F1tmp,Pi,293,So1,Fo1,Po1,293,So1,lo1,Q0,K pr,0.01,f frq);

DAQ.JavaLikeCalc.lib_techApp.pipeBase(F2tmp,Pi,293,So2,Fo2,Po2,293,So2,lo2,Q0,K pr,0.01,f_frq);

DAQ.JavaLikeCalc.lib_techApp.pipeBase(F3tmp,Pi,293,So3,Fo3,Po3,293,So3,lo3,Q0,K pr,0.01,f_frq);

Fi=F1tmp+F2tmp+F3tmp;

Труба 1->4 (pipe1 4) <47.5>

Описание: Модель узла труб по схеме: 1 -> 4.

ID	Параметр	Тип	Режим	Скрытый	По умолчанию
Fi	Входн. расход (т/ч)	Веществ.	Выход	false	0
Pi	Входн. давление (ата)	Веществ.	Вход	false	1
Fo1	Выходн. расход 1 (т/ч)	Веществ.	Вход	false	0
Po1	Выходн. давление 1 (ата)	Веществ.	Выход	false	1
So1	Выходн. сеч. 1 (м2)	Веществ.	Вход	false	.2
lo1	Выходн. длина 1 (м)	Веществ.	Вход	false	10
Fo2	Выходн. расход 2 (т/ч)	Веществ.	Вход	false	0
Po2	Выходн. давление 2 (ата)	Веществ.	Выход	false	1
So2	Выходн. сеч. 2 (м2)	Веществ.	Вход	false	.2
lo2	Выходн. длина 2 (м)	Веществ.	Вход	false	10
Fo3	Выходн. расход 3 (т/ч)	Веществ.	Вход	false	0
Po3	Выходн. давление 3 (ата)	Веществ.	Выход	false	1
So3	Выходн. сеч. 3 (м2)	Веществ.	Вход	false	.2
lo3	Выходн. длина 3 (м)	Веществ.	Вход	false	10

ID	Параметр	Тип	Режим	Скрытый	По умолчанию
Fo4	Выходн. расход 4 (т/ч)	Веществ.	Вход	false	0
Po4	Выходн. давление 4 (ата)	Веществ.	Выход	false	1
So4	Выходн. сеч. 4 (м2)	Веществ.	Вход	false	.2
lo4	Выходн. длина 4 (м)	Веществ.	Вход	false	10
Q0	Норм. плотн. среды (кг/м3)	Веществ.	Вход	false	1
Kpr	Коеф. сжимаемости среды	Веществ.	Вход	false	0.95
f_frq	Частота обсчёта (Гц)	Веществ.	Вход	true	100
F1tmp	Врем. расход 1	Веществ.	Выход	true	0
F2tmp	Врем. расход 2	Веществ.	Выход	true	0
F3tmp	Врем. расход 3	Веществ.	Выход	true	0
F4tmp	Врем. расход 4	Веществ.	Выход	true	0
Pot1	Вых. давл. удержанное	Веществ.	Выход	true	1
Pot2	Вых. давл. удержанное	Веществ.	Выход	true	1
Pot3	Вых. давл. удержанное	Веществ.	Выход	true	1
Pot4	Вых. давл. удержанное	Веществ.	Выход	true	1

```
DAQ.JavaLikeCalc.lib techApp.pipeBase(F1tmp,Pi,293,So1,Fo1,Po1,293,So1,lo1,Q0,Kp
  r,0.01,f_frq);
DAQ.JavaLikeCalc.lib techApp.pipeBase(F2tmp,Pi,293,So2,Fo2,Po2,293,So2,lo2,Q0,Kp
  r,0.01,f frq);
DAQ.JavaLikeCalc.lib techApp.pipeBase(F3tmp,Pi,293,So3,Fo3,Po3,293,So3,lo3,Q0,Kp
  r,0.01,f frq);
DAQ.JavaLikeCalc.lib techApp.pipeBase(F4tmp,Pi,293,So4,Fo4,Po4,293,So4,lo4,Q0,Kp
  r,0.01,f frq);
Fi=F1tmp+F2tmp+F3tmp+F4tmp;
```

Исполн. мех. клапана (klapMech) <3>

Описание: Модель исполнительного механизма клапана. Включает время хода и время отрыва.

Параметры:

ID	Параметр	Тип	Режим	Скрытый	По умолчанию
pos	Положение (%)	Веществ.	Выход	false	0
pos_sensor	Положение по датчику (%)	Веществ.	Выход	false	0
com	Команда	Веществ.	Вход	false	0
st_open	Сост. "Открыто"	Логич.	Выход	false	0
st_close	Сост. "Закрыто"	Логич.	Выход	false	1
t_full	Время хода (с)	Веществ.	Вход	false	3
t_up	Время срыва (с)	Веществ.	Вход	false	1
t_sensor	Время задержки сенсора (с)	Веществ.	Вход	false	1
f_frq	Частота обсчёта (Гц)	Веществ.	Вход	true	100
tmp_up	Счётчик срыва	Веществ.	Выход	false	0
lst_com	Последняя команда	Веществ.	Выход	false	0

```
Программа:
  if((pos >= 99 \&\& com >= 99) || (pos <= 1 \&\& com <=1))
     tmp up = t up;
```

if(pos>=99) { pos=100; st open=true; }

```
else { pos = 0; st close=true; }
else if ( tmp up > 0 ) tmp up-=1./f frq;
 st open=st close=false;
 lst com+=(com-lst com)/(0.5*t full*f frq);
 pos+=(lst com-pos)/(0.5*t full*f frq);
pos_sensor+=(pos-pos_sensor)/(t_sensor*f_frq);
```

Диафрагма (diafragma) <14>

Описание: Модель диафрагмы.

Параметры:

ID	Параметр	Тип	Режим	Скрытый	По умолчанию
Fi	Входн. расход (т/ч)	Веществ.	Выход	false	0
Pi	Входн. давление (ata)	Веществ.	Вход	false	1
Fo	Выходн. расход (т/ч)	Веществ.	Вход	false	0
Po	Выходн. давление (ata)	Веществ.	Выход	false	1
dP	Перепад давления (кПа)	Веществ.	Выход	false	0
Sdf	Сеч. диафрагмы (м2)	Веществ.	Вход	false	0.1
So	Сеч. тр. на выходе (м2)	Веществ.	Вход	false	0.2
lo	Длина тр. на выходе (м)	Веществ.	Вход	false	10
Q0	Пл. при реальн. усл. (кг/м3)	Веществ.	Вход	false	1
Kpr	Коеф. сжимаемости среды	Веществ.	Вход	false	0.95
f_frq	Частота обсчёта (Гц)	Веществ.	Вход	true	100

```
Программа:
```

```
DAQ.JavaLikeCalc.lib_techApp.pipeBase(Fi,Pi,293,Sdf,Fo,Po,293,So,lo,Q0,Kpr,0.01,
  f frq);
dP = (dP-100*(Pi-Po))/f frq;
```

Теплообменник (heatExch) <28.4>

Описание: Модель теплообменника, рассчитывающая теплообмен двух потоков.

ID	Параметр	Тип	Режим	Скрытый	По умолчанию
Fi1	Вх. расход первого потока (т/ч)	Веществ.	Вход	false	20
Pi1	Вх. давление первого потока (ата)	Веществ.	Вход	false	1
Ti1	Вх. температура первого потока (К)	Веществ.	Вход	false	20
Si1	Вх. сечение труб первого потока (м2)	Веществ.	Вход	false	1
li1	Вх. длина труб первого потока (м)	Веществ.	Вход	false	10
Q0i1	Нормальная плотность первого потока(кг/м3)	Веществ.	Вход	false	1
Kpr1	Коэфиц. сжим. среды 1	Веществ.	Вход	false	0.9
Ci1	Теплоемкость первого потока(Дж/т*К)	Веществ.	Вход	false	1
Fi2	Вх. расход второго потока (т/ч)	Веществ.	Вход	false	20
Pi2	Вх. давление второго потока (ата)	Веществ.	Вход	false	1
Ti2	Вх. температура второго потока (К)	Веществ.	Вход	false	40

ID	Параметр	Тип	Режим	Скрытый	По умолчанию
Si2	Вх. сечение труб второго потока (м2)	Веществ.	Вход	false	1
li2	Вх. длина труб второго потока (м)	Веществ.	Вход	false	10
Q0i2	Нормальная плотность второго потока(кг/м3)	Веществ.	Вход	false	1
Kpr2	Коэфиц. сжим. среды 2	Веществ.	Вход	false	0.9
Ci2	Теплоемкость второго потока(Дж/т*К)	Веществ.	Вход	false	1
ki	Коэффициент теплоотдачи	Веществ.	Вход	false	0.9
Fo1	Вых. расход первого потока (т/ч)	Веществ.	Вход	false	0
Po1	Вых. давление первого потока (ата)	Веществ.	Выход	false	1
To1	Вых. температура первого потока (К)	Веществ.	Выход	false	273
So1	Вых. сечение труб первого потока (м2)	Веществ.	Выход	false	1
lo1	Вых. длина труб первого потока (м)	Веществ.	Выход	false	10
Fo2	Вых. расход второго потока (т/ч)	Веществ.	Вход	false	0
Po2	Вых. давление второго потока (ата)	Веществ.	Выход	false	1
To2	Вых. температура второго потока (К)	Веществ.	Выход	false	273
So2	Вых. сечение труб второго потока (м2)	Веществ.	Выход	false	1
lo2	Вых. длина труб второго потока (м)	Веществ.	Выход	false	10
f_frq	Частота обсчёта функции (Гц)	Веществ.	Вход	false	200

```
DAQ.JavaLikeCalc.lib techApp.pipeBase(Fi1,Pi1,Ti1,Si1,Fo1,Po1,293,So1,lo1,Q0i1,Kp
  r1,0.01,f_frq);
DAQ.JavaLikeCalc.lib_techApp.pipeBase(Fi2, Pi2, Ti2, Si2, Fo2, Po2, 293, So2, lo2, Q0i2, Kp
  r2,0.01,f_frq);
To1=max(0,min(1e4,(Fi1*Ti1*Ci1+ki*Fi2*Ti2*Ci2)/(Fi1*Ci1+ki*Fi2*Ci2)));
To2=max(0,min(1e4,(ki*Fi1*Ti1*Ci1+Fi2*Ti2*Ci2)/(ki*Fi1*Ci1+Fi2*Ci2)));
```