#### Министерство науки и высшего образования Российской Федерации

Федеральное государственное автономное образовательное учреждение высшего образования



## «НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ ТОМСКИЙ ПОЛИТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ»

Инженерная школа информационных технологий и робототехники Отделение информационных технологий Направление подготовки 09.04.04 Программная инженерия

# Отчёт по лабораторной работе №4 СИНТЕЗ РЕГУЛЯТОРОВ СИСТЕМ АВТОМАТИЧЕСКОГО УПРАВЛЕНИЯ

по дисциплине Основы теории управления автономными системами

| Выполнил студент гр. 8ПМ4Л | Подпись        | Дата | Сокуров Р.Е. Фамилия И.О. |
|----------------------------|----------------|------|---------------------------|
| Проверил доцент ОАР        | ———<br>Подпись |      | Хожаев И.В.               |

#### Цель

Освоить основы работы с типовыми и модальными регуляторами систем автоматического управления.

#### Задачи

- Синтез типовых регуляторов:
- 1) задать на свое усмотрение передаточную функцию неизменяемой части исследуемой системы четвертого порядка;
- 2) настроить ПИД-регулятор для исследуемой системы любым известным методом;
- 3) увеличить и уменьшить каждый из коэффициентов ПИДрегулятора, построить переходные характеристики системы, оценить влияние изменения коэффициентов регулятора на время переходного процесса, перерегулирование и время нарастания переходной характеристики;
- 4) скорректировать полученные ранее настройки регулятора на основе найденных в предыдущем пункте закономерностей, привести переходную характеристику системы со скорректированным регулятором;
  - Синтез модального регулятора полного порядка:
- 1) задать модель объекта управления в форме передаточной функции третьего порядка, преобразовать модель к форме Коши, получить передаточную функцию системы с модальным регулятором полного порядка;
  - 2) задать желаемое значение времени переходного процесса;
- 3) рассчитать коэффициенты регулятора с помощью составления желаемого характеристического полинома;
- 4) рассчитать коэффициенты регулятора с помощью характеристического полинома, нормированного по распределению Баттерворта;
- 5) рассчитать коэффициенты регулятора с помощью характеристического полинома, нормированного по биномиальному распределению.

#### Ход работы

1. Аппроксимация объекта управления апериодическим звеном первого порядка с транспортной задержкой.

Предположим, что объект управления описан следующей передаточной функцией:  $W(s) = \frac{100}{24s^4 + 50s^3 + 35s^2 + 10s + 1}.$  Построим переходную характеристику исследуемого объекта и аппроксимируем этот объект моделью первого порядка.



Рисунок 1 – Переходная характеристика модели

По итогам анализа рисунка 1 получили, что

$$L = 4.28 c.$$

$$T + L = 10.97 c$$
.

$$T = 10.97 - 4.28 = 6.69 c$$
.

$$K = 100$$

В таком случае изображение аппроксимированной переходной характеристики имеет вид:  $H(s) = \frac{100 \cdot e^{-4.28s}}{s(6.69s+1)}$ . Точность аппроксимации можно оценить, построив в одних координатах исходную и аппроксимированную переходные характеристики (см. рисунок 2).



Рисунок 2 — Исходная и аппроксимированная переходные характеристики исследуемого объекта

Рассмотрим далее настройку ПИД-регулятора для управления данным объектом с помощью метода Циглера-Никольса и метода Чина-ХронесаРесвика. Выполним дополнительные построения на переходной характеристике объекта (см. рисунок 3).



Рисунок 3 — Дополнительные построения на переходной характеристике объекта управления

Исходя из рисунка 3, можно утверждать, что параметр a равен 63.9761. С учетом того, что время запаздывания L найдено ранее и принятого равным

4.28 с, можно утверждать, что все необходимые параметры для настройки ПИД-регулятора найдены. Найдем значения параметров регулятора:

$$\begin{split} W_{PID}\!\left(s\,,\!K_{p}\,,\!T_{i}\,,\!T_{d}\right) &:= K_{p} \cdot \! \left(1 + \frac{1}{T_{i} \cdot s} + T_{d} \cdot s\right) \\ W_{ZN}\!\left(s\right) &:= W_{PID}\!\left(s\,,\!\frac{1.2}{a}\,,\!2 \cdot L\,,\!0.5 \cdot L\right) \text{ float },\!6 \ \to 0.04014 \cdot s + \frac{0.00219124}{s} + 0.018757\right) \end{split}$$

Рисунок 4 — Расчет параметров регулятора и его передаточной функции средствами Mathcad

Для оценки качества регулирования построим переходную характеристику исследуемой системы с синтезированным регулятором:



Рисунок 5 — Переходная характеристика системы с синтезированным ПИД регулятором

Скорректируем вручную найденные значения параметров регулятора для улучшения динамических свойств системы, а именно для уменьшения времени переходного процесса. Увеличим пропорциональный коэффициент регулятора до 0.021, а интегральный коэффициент — до 0.07, дифференциальный — до 0.00319124. переходная характеристика системы с ним отображена пунктирной линией:



Рисунок 6 – Переходная характеристика системы со скорректированным ПИД-регулятором

Исходя из рисунка 1.6, можно утверждать, что за счет корректировки параметров ПИД-регулятора удалось сократить время переходного время переходного процесса.

#### 2. Синтез модального регулятора полного порядка

Известно, что обобщенный объект управления исследуемой системы описывается следующей передаточной функцией:

$$W(s) = \frac{10}{0.01s^3 + 0.17s^2 + 0.8s + 1}$$

Представим эту ПФ так, чтобы коэффициент при  $s^3$  стал равным единице, а к остальным коэффициентам добавим настраиваемый параметр:

$$W(s, k_1, k_2, k_3) = \frac{1000}{s^3 + (17 + k_3)s^2 + (80 + k_2)s + (100 + k_3)}$$

Пусть нужно обеспечить в синтезируемой системе перерегулирование 15% и переходной процесс длительностью в 5 секунд. Тогда, поскольку  $t_n \approx \frac{4}{\eta}$ 

и  $\sigma \leq e^{-\frac{\pi}{\mu}}$ , значит  $\eta \approx 0.800$ ,  $\mu \leq 1,656$ . Зададим желаемый характеристический полином, обеспечивающий найденные значения корневых показателей качества:

$$D(s) = (s + 0.8 + j \cdot 0.8)(s + 0.8 - j \cdot 0.8)(s + 10) =$$

$$= s^{3} + 11.6s^{2} + 17.28s + 12.8$$

С учетом того, что характеристический полином исследуемой системы имеет следующий вид:

$$D(s, k_1, k_2, k_3) = s^3 + (17 + k_3)s^2 + (80 + k_2)s + (100 + k_3)$$

То можем найти значения коэффициентов модального регулятора, обеспечивающего желаемое расположение полюсов:

$$k_1 = -87.2$$
  
 $k_2 = -67.72$   
 $k_3 = -5.4$ 



Рисунок 7 — Расположение полюсов системы с регулятором, синтезированным по желаемому характеристическому полиному



Рисунок 8 – Переходная характеристика исследуемой системы

#### 3. Синтез модального регулятора по Баттерворту

Нормированный полином Баттерворта для системы третьего порядка выглядит следующим образом:  $D(s) = s^3 + 2 \cdot \omega_0 \cdot s^2 + 2 \cdot \omega_0^2 \cdot s + \omega_0^3$ . Значения коэффициентов полинома выбираются в соответствии со значением среднегеометрического корня  $\omega_0$ , которое в свою очередь рассчитывается по формуле  $\omega_0 = \frac{\tau_n}{t_n}$ , где  $\tau_n$  — безразмерная величина, характеризующая время переходного процесса;  $t_n$  — желаемое время переходного процесса. Для системы третьего порядка  $\tau_n = 6, \sigma = 8.1\%$ . Пусть требуется создать систему с временем регулирования 10 секунд, тогда  $\omega_0 = 0.63$ , а характеристический полином  $D(s) = s^3 + 1.2s^2 + 0.72 \cdot s + 0.216$ . Для обеспечения найденных значений коэффициентов характеристического полинома коэффициенты регулятора должны принять следующие значения:

$$k_1 = -99.784$$
  
 $k_2 = -79.28$   
 $k_3 = -15.8$ 

Расположение полюсов синтезированной системы показано на рисунке ниже.



Рисунок 9 — Расположение полюсов системы с модальным регулятором, синтезированным по распределению Баттерворта



Рисунок 10 — Переходная характеристика системы с модальным регулятором, синтезированным по распределению Баттерворта

### 4. Синтез модального регулятора полного порядка по биномиальному распределению

Полиномы с биномиальным распределением задаются следующим выражением  $D(s)=(s+\omega_0)^n$ . Пусть потребуется создать систему с временем регулирования равным 5 секунд, тогда  $\omega_0=\frac{6.3}{5}=1.26$ , а значит полином выглядит следующим образом:  $D(s)=s^3+3.78s^2+4.7628\cdot s+2.000376$ . Для обеспечения таких значений коэффициентов характеристического полинома значения коэффициентов регулятора должны принять следующие значения:

$$k_1 = -97.999624$$
$$k_2 = -75.2372$$

$$k_3 = -13.22$$

Синтезированная система имеет три кратных полюса, расположение которых показано на рисунке 11. Переходная характеристика такой системы показана на рисунке 12.



Рисунок 11 — Расположение полюсов системы с модальным регулятором, синтезированным по биномиальному распределению



Рисунок 12 —Переходная характеристика системы с модальным регулятором, синтезированным по биномиальному распределению

#### Заключение

В ходе первой части данной лабораторной работы были успешно синтезирован ПИД регулятор для исследуемой системы, обеспечивший необходимые показатели качества. После этого коэффициенты регулятора были подрегулированы с целью уменьшения времени регулирования системы.

В ходе второй части работы был выполнен синтез модального регулятора полного порядка с помощью составления желаемого характеристического полинома, характеристического полинома нормированного по распределению Баттерворта и характеристического полинома, нормированному по биноминальному распределению.