COMPUTER SCIENCE

Database Management System

FD's & Normalization
Normal Forms

Part -1

Lecture_09

TOPICS
TO BE
COVERED

Dependency preserving

Normal Forms

RDBMS Concept

FD Concept & types

Attribute closure

Super key

Candidate | cer

Finding Multiple Condidate kay.

Membership set

Equality b/w 2 FDSet

Minimal Coner.

Pouperties of Decomposition

Tossless Join

2) Dependency Preserving.

Losslees Join

-

Consider the relation R (P, Q, S, T, X, Y, Z, W) with the following functional dependencies.

$$PQ \rightarrow X; P \rightarrow YX; Q \rightarrow Y; Y \rightarrow ZW$$

Consider the decomposition of the relation R into the constituent relations according to the following two decomposition schemes.

D₁: $R = [(P, Q, S, T); (P, T, X); (Q, Y); (Y, Z, W)] \rightarrow lossy (Lexist)$ D_2 : $R = [(P, Q, S); (T, X); (Q, Y); (Y, Z, W)] \rightarrow lossy (MCQ: 2021: 2M)$ Which one of the following options is correct?

D₁ is a lossless decomposition, but D₂ is a lossy decomposition.

 D_1 is a lossy decomposition, but D_2 is a lossless decomposition.

Both D_1 and D_2 are lossless decomposition.

Both D_1 and D_2 are lossy decomposition.

(i) Lossless Join

Dependency Preserving

Dependency Preserving let R be the Relational

Schema With FD Set F

is Decomposed in to Sub Relation R, Rz Rz... Rn With FD

Set Fi Fz Fr... Fn Respectively.

IB FIUFZUF3... Fn = F

Dependency Preserving Decomposition

FB FIUFZ UF3. UFn CF
Dependency Not Pregenuit

Dependency Preservation

- \square Let F_i be the set of dependencies F that include only attributes in R_i .
 - A decomposition is dependency preserving,

if
$$(F_1 \cup F_2 \cup ... \cup F_n) = F$$

Dependency Progerving.

Procedure to Find Dependency Preserving

(1) find all Non Toivial FD of each Sub Relation (Take a closure of Attributed Winter all Non Trivial FD)

Non Trivial: X M = 0But each Sub Relation

Dependency Preserved.

.

FD closure [F]

$$(A)^{+} = (AB) \Rightarrow 2^{2} = 4FD$$

$$(C)^{t} - (CD) = 2^{2} - 4FD$$

$$(D^{+}-CD) = 2! = 2FD \quad D \rightarrow \emptyset, D \rightarrow D$$

$$(F)^{+} = 12FD$$

$$A \rightarrow A$$

$$A \rightarrow B$$

$$A \rightarrow AB$$

$$\mathbb{R} \rightarrow \phi$$
, $\mathbb{R} \rightarrow \mathbb{R}$.

(8) R(ABCD) $(A \rightarrow B, C \rightarrow D)$ is Decomposed into $R_1(AB)$ & $R_2(CD)$ then Check D.P. E Not?

(A) = (AB)
(B)+= (B) X
(c)t: (c)
$(0)^{+} = (0)^{\times}$

RI(AB)	P2 (CD)
A→B	C→D

FIUFZ = F $(A \rightarrow B) U(C \rightarrow D) = F$ $(A \rightarrow B, C \rightarrow D)$

Dependency Breservist

Ang

. 11

Let R(A, B, C, D, E) be a relational schema with the following

function dependencies:

 $A \rightarrow B$, $B \rightarrow C$, $C \rightarrow D$ and $D \rightarrow BE$.

Decomposed into $R_1(AB)$ $R_2(BC)$ $R_3(CD)$ and $R_4(DE)$

				Chia
R ₁ (AB)	P2 (BC)	R3(CD)	Ry (DE)	VA-3B
$A \rightarrow B$	$B \rightarrow c$	C->D	D→E	B-SC CAD
	(C)B	(D-)C		D>BE
((A →B) U (B-C,C-B)U	(C-10) N(D-1E)	D-B D-JE	
A PR PS-	ZC, CZD,D	F C-B		D SBE
			02/2	

Let R(A, B, C, D, E) be a relational schema with the following function dependencies:

 $A \rightarrow B$, $B \rightarrow C$, $C \rightarrow D$ and $D \rightarrow BE$.

Decomposed into $R_1(AB)$ $R_2(BC)$ $R_3(CD)$ and $R_4(DE)$

itto K ₁ (AD)	N ₂ (DC) N ₃ (CL	\bigcap and $K_4(DE)$	(D-3B)
RI(AB)	P2 (BC)	R3(CD)	Ry (DE)
A->13	B-C	C->D	DAE

DE LESB	
(C) CDBE (C) (C) CDBE	
$\mathcal{D} \rightarrow \mathbb{R}$	
(DP) is Fred	irectla geoved

Let R(A, B, C, D, E) be a relational schema with the following function dependencies:

 $A \rightarrow B$, $B \rightarrow C$, $C \rightarrow D$ and $D \rightarrow BE$.

Decomposed into $R_1(AB)$ $R_2(BC)$ $R_3(CD)$ and $R_4(DE)$

F: Final Balance

It Not getting F from Directly 60 Indirectly then Dep. Not Pregenving.

R(ABCDEFG) $\{AB \rightarrow C, AC \rightarrow B, AD \rightarrow E, B \rightarrow D, BC \rightarrow A, E \rightarrow G\}$

Decomposed into R₁(ABC) R₂(ACDE) and R₃(ADG)

(Home Work)

Consider a schema R(A, B, C, D) and functional dependencies

 $A \rightarrow B$ and $C \rightarrow D$. Then the decomposition of R into $R_1(AB)$ and $R_2(CD)$ is [MCQ: 2M]

			4. 4.
A 1	Dependency	nrecerving and	locelace join
A	Dependency	preserving and	iossiess join

B Lossless join but not dependency preserving

	Danandana	, nuagaming hu	t not localoca join
8	Dependency	/ breserving bu	t not lossless join
	The state of the s		The state of the s

D Not dependency preserving and not lossless join

R,(AB)	R2 (CD)
ADB	CSD
D.P	

RILAB) 1 Re(CO)

No Common Attorbute

Let R(A, B, C, D) be a relational schema with the following

RIAB) AR2(BC) = B

function dependencies:

 $A \rightarrow B$, $B \rightarrow C$, $C \rightarrow D$ and $D \rightarrow B$.

(B)+: (BCD) Subcelley ab R2

The decomposition of D in

[MCQ: 2M]

The decomposition of R into (A, B), (B, C), (B, D)

Gives a lossless join, and is dependency preserving

- B Gives a lossless join, but is not dependency preserving
- Syloce lay of B
- Does not give a lossless join, but is dependency preserving
- Rn3(ABCD)
- Does not give a lossless join and is not dependency preserving

RIABCD) [A>B, B>C, C>D, D>B]

RI (AB)

R2(BC) R3(BD)

Q.

Let R(A, B, C, D) be a relational schema with the following

[MCQ: 2M]

function dependencies:

$$A \rightarrow B$$
, $B \rightarrow C$, $C \rightarrow D$ and $D \rightarrow B$

The decomposition of R into (A, B), (B, C), (B, D)

- A Gives a lossless join, and is dependency preserving
- B Gives a lossless join, but is not dependency preserving
- C Does not give a lossless join, but is dependency preserving
- Does not give a lossless join and is not dependency preserving

- 1 ROBMS Concept
- 2) FD Concept & its type
- 3) Attoibute closure (x)
- (4) Keys Concept Super kay

 Super kay

 Sondidate kay

 Ginding multiple (k
- 6) Membership Set

- 7 Equality blu 2FD.
- (8) minimal Cover
- 9 Closure & FD Set (F)
- (10) Binding Number of Subset Coy
- (i) Lossless Join
 - (ii) Dependency freserving

RIABEDED [AB ->C, C->D, D->E, E->F)

Which Attribute Not Present in R.t.S (Right Mond Side) that

Must be in a C.K.

(AR) = (ARCDEF)

(A) = (A)

(B) = (B)

AB is C.K.

Super lay?

AB

ARC

2 = 2

-16 Super lays

ABCDFF

Normal Forms

Normal Form is a Set of Rules Which are Used to Reduce/eliminate the Redundancy.

Redundancy is the Unnecessary Repeattion of DATA.

Normalization is a Process to Reduce the Redundancy.

With Need of Normalization ?

- (i) Insertion Anomalies
 - (11) Deletion Annomalies
 - (iii) update Anomalies

Normal Forms

These are Various Normal Forms

- O LNF (First Normal Form)
- 2NF (second Normal Form)
- 3 3NF (Third Normal Form)
- BCNF (Boyce Codd Normal Form)
- X (6) 5NF

(Note)
Every Higher Normal Form Contain the Lower Normal Form

If Relation R is in 2NF, that means its already in INF.

If Relation R is in 3NF, ie its already is in 2NF & INF also

ITO Relation R is in BCNF, that means R is in BNF, 2NF & LNF also.

FIRST NORMAL FORM (LNF)

A Relation R is in INF, if R does not Contain Any Multivalued Attroibute

(OR)

A Relation R is in INF ibb all ottribute of R are atomic

STUDENT

Rollino	Snaw	ne Rook
Sı	Х	Korth
S,	X	Galvin

NOM IS HINE

Default RDBMS is in INF

(Note RABMS Not Contain Any Multi Valued Attribute.

But In INF Redundancy Level is Too High.

Redundancy: LNF > 2NF > 3NF > BCNF

2NF

SNF

BCNF

Possible Non Trivial FD's Which Cause Redundancy:

Non Prime
Non Prime
Eliminated by 2NF CASEI of Canadidate kap

CASEIL

Non key Attribute Violation of 3NF Eliminated by 3NF

CASE I

Another Subset of Violation of BCNF.

Sanother Candidate lay Fliminated by BCNF.

Any Doubt ?

