

Bruce M. Boghosian

Recap of the method of moments

Poisson distribution

Normal

C

The Method of Moments:

The Poisson distribution and the normal distribution

Bruce M. Boghosian

Department of Mathematics
Tufts University

©2022, all rights reserved

- 1 Recap of the method of moments
- Poisson distribution
- Normal distribution
- Summary

The method of moments

Bruce M. Boghosian

Recap of the method of moments

Poisson distributior

distributio

■ Make *n* measurements of Y, $Y_i = y_i$ for j = 1, ..., n.

- Posited distribution has s parameters, $f_Y(y; \theta_1, \dots, \theta_s)$
- Set *s moments*, equal to corresponding *sample moments*

$$E(Y) = \int dy \ f_Y(y; \theta_1, \dots, \theta_s) y = \frac{1}{n} \sum_{j=1}^n y_j$$

$$E(Y^2) = \int dy \ f_Y(y; \theta_1, \dots, \theta_s) y^2 = \frac{1}{n} \sum_{j=1}^n y_j^2$$

$$\dots$$

$$E(Y^s) = \int dy \ f_Y(y; \theta_1, \dots, \theta_s) y^s = \frac{1}{n} \sum_{j=1}^n y_j^s$$

■ Yields *s* simultaneous equations for the *s* parameters.

Tufts The Poisson distribution and its moments

Poisson distribution

The Poisson distribution is

$$p_X(k) = \operatorname{Prob}(X = k) = e^{-\lambda} \frac{\lambda^k}{k!}$$

Moments of the Poisson distribution

Moment	Expression	Result
Normalization	$E(1) = \sum_{k=0}^{\infty} p_X(k)$	= 1
Mean	$E(X) = \sum_{k=0}^{\infty} p_X(k)k$	$=\lambda$

Method of moments for the Poisson distribution

Bruce M. Boghosian

Recap of the method of moments

Poisson distribution

lormal listribution

_

■ The Poisson distribution is

$$p_X(k) = \operatorname{Prob}(X = k) = e^{-\lambda} \frac{\lambda^k}{k!}$$

- The theoretical mean is $E(X) = \lambda$
- lacksquare One parameter, so estimate λ by the mean of data

$$\lambda_{\mathsf{e}} = \frac{1}{n} \sum_{j=1}^{n} k_{j}.$$

■ This is identical to our result from MLE.

MM estimators for the Poisson distribution

Poisson distribution

Since we have

$$\lambda_e = \frac{1}{n} \sum_{i=1}^n k_i$$

We define the estimator function

$$\hat{\lambda}(\vec{x}) = \frac{1}{n} \sum_{j=1}^{n} x_j$$

Again, this is identical to our result from MLE.

Tufts The normal distribution and its moments

Normal distribution

■ The normal distribution pdf is

$$f_X(x) = \frac{1}{\sqrt{2\pi v}} \exp\left[-\frac{(x-\mu)^2}{2v}\right],$$

Moments of the normal distribution

Moment	Expression	Result
Normalization	$E(1) = \int_{\mathbb{R}} dx \ f_X(x)$	= 1
Mean	$E(X) = \int_{\mathbb{R}} dx \ f_X(x)x$	$=\mu$
Mean square	$E(X^2) = \int_{\mathbb{R}} dx \ f_X(x) x^2$	$=\mu^2 + v$
Variance	$Var(X) = E(X^2) - [E(X)]^2$	= v

Method of moments for the normal distribution

Normal distribution

■ The normal distribution pdf is

$$f_X(x) = \frac{1}{\sqrt{2\pi \nu}} \exp\left[-\frac{(x-\mu)^2}{2\nu}\right],$$

- Theoretical mean is $E(X) = \mu$
- Theoretical mean square is $E(X^2) = \mu^2 + \nu$
- PDF has two parameters, so set

$$\mu_e = \frac{1}{n} \sum_{i=1}^n x_i$$
 and $\mu_e^2 + v_e = \frac{1}{n} \sum_{i=1}^n x_i^2$

- Solve for μ_e and ν_e
- MM estimates identical to MLE estimates for μ_e and ν_e .

Normal distribution (continued)

Bruce M. Boghosian

Recap of the method of moments

Poisson distribution

Normal distribution

Summary

■ To verify the last point for v_e , note

$$v_e = \frac{1}{n} \sum_{j=1}^n x_j^2 - \mu_e^2$$

$$= \frac{1}{n} \sum_{j=1}^n x_j^2 - 2\mu_e^2 + \mu_e^2$$

$$= \frac{1}{n} \sum_{j=1}^n x_j^2 - 2\mu_e \frac{1}{n} \sum_{j=1}^n x_j + \frac{1}{n} \sum_{j=1}^n \mu_e^2$$

$$= \frac{1}{n} \sum_{j=1}^n \left(x_j^2 - 2\mu_e x_j + \mu_e^2 \right)$$

$$= \frac{1}{n} \sum_{j=1}^n \left(x_j - \mu_e \right)^2$$

$$= \frac{1}{n} \sum_{j=1}^n \left[x_j - \left(\frac{1}{n} \sum_{k=1}^n x_k \right) \right]^2$$

MM estimators for the normal distribution

Normal distribution

Since we have

$$\mu_e = \frac{1}{n} \sum_{j=1}^n x_j$$

$$v_e = \frac{1}{n} \sum_{j=1}^n \left[x_j - \left(\frac{1}{n} \sum_{k=1}^n x_k \right) \right]^2$$

We define the estimator functions

$$\hat{\mu}(\vec{x}) = \frac{1}{n} \sum_{j=1}^{n} x_j$$

$$\hat{v}(\vec{x}) = \frac{1}{n} \sum_{j=1}^{n} \left[x_j - \left(\frac{1}{n} \sum_{k=1}^{n} x_k \right) \right]^2$$

Again, this is identical to our results from MLE.

Tufts Summary

- We reviewed the *method of moments* (MM).
- We applied MM to the *Poisson distribution*.
- We applied MM to the *normal distribution*.
- Our results, for estimates and estimators, were identical to those obtained from MLE.