



### 大型电商分布式系统实践 第13周

#### 上节内容回顾





#### 数据分析对于大型网站的意义





#### 数据收集与同步





#### 日志收集—为何不使用轮询



对于日志的收集,最常用的方式便是文件轮询,也就是通过设置一定的时间间隔,不断的读日志文件,直到文件尾,然后再等待下一次轮询,这种方式很容易理解,实现起来也十分简单。但是,对于一些写入并不十分频繁的文件,如错误日志等等,轮询的效率显得十分低下,白白浪费了CPU时间片。

#### 日志收集—inotify的魅力



linux内核从2.6.13开始,引入了inotify机制。通过inotify机制,能够对文件系统的变化进行监控,如对文件进行删除、修改等等操作,可以及时通知应用程序进行相关事件的处理,这种响应性的处理机制,避免了频繁的文件轮询任务,提高了任务的处理效率。

#### 日志收集—转发与存储





#### Apache的日志解决方案



Chukwa是Yahoo!贡献给apache的基于hadoop开发的数据采集与分析的 框架,用来支持大型分布式系统的海量日志的收集与分析工作,它具有良好的适应 性和可扩展性,天生支持与MapReduce协同进行数据处理,能提供完整数据收集 与分析的解决方案。



#### 离线数据同步



数据分析的过程往往是这样,首先从在线的OLTP库中,以及日志系统 当中,提取和清洗所需要的数据到OLAP系统当中,如构建在hadoop上的 Hive, 然后在OLAP系统上进行多维度复杂的数据分析和汇总操作, 利用这些 数据构建数据报表,提供前端展现。

对于全量的数据同步操作,一般耗时较长,并且会占用一定的资源,比 如对于数据库来说很宝贵的连接资源,因此一般通过任务调度,将数据同步任 务安排在访问量最低的时候执行,由于数据同步需要较长时间,常常一天只能 够同步一到两次。对应的这部分数据,由于无法反映在线应用的实时状态,因 此也称为离线数据。

#### 离线数据同步





Sqoop是apache下的 一个开源数据同步工具,支持 关系型数据到hadoop的数据 导入和导出功能,既能够通过 Sqoop将关系型数据库(如 Mysql、Oracle)中的数据导 入到HDFS,也能够通过 Sqoop从HDFS中将数据同步 回关系型数据库。Sqoop使 用MapReduce来执行数据导 入和导出任务,提升了操作的 并行效率以及容错能力。

#### 实时数据同步



有的场景下,我们需要实时获取数据变更,同步到相应的数据库,如垂直搜索引擎的实时更新、高并发系统的数据迁移工作、实时统计等等。Sqoop在离线场景下能较好的满足要求,但是对于在线高并发读写的实时数据的处理,

则需要思考其他的解决方案。



#### 实时数据同步





#### 实时数据同步









#### 离线数据分析



作为全球搜索行业的领头羊,google需要对互联网上所有的网页建立搜 索索引,因此在大数据处理方面积累极为丰富经验,随着技术的成熟,它相继 发布的几篇介绍GFS、BigTable、MapReduce等产品的论文,对业界产生了极 为深远的影响,推动了整个互联网时代的变革。

然而,毕竟google是一个商业公司,作为google解决方案的开源替代, Hadoop是时下最流行大数据离线解决方案。hadoop目前的应用主要集中在大 数据的离线批处理分析领域,提供对海量的数据高可靠性、高容错性、高可扩 展性的存储解决方案,以及对海量数据进行分析的编程模型等等。

#### 离线数据分析—hadoop简介



hadoop是一个提供可伸缩的、可信赖的分布式计算的开源项目,包含多 个子项目。hadoop项目的核心便是分布式文件系统和编程模型MapReduce, HDFS用来对海量的数据提供高可靠性、高容错性、高可扩展性的存储解决方案, 而MapReduce则是一种用来处理海量数据的并行编程模型和计算框架,用于对 大规模的数据集进行并行计算。

随着时间的推移和项目的发展,hadoop的功能也越来越强大,发展出一 系列支撑分布式计算的关联项目,如前面提到的高性能分布式协作服务 zookeeper,可伸缩的支持大表结构化存储的分布式数据库Hbase,提供类SQL 查询功能的数据仓库平台Hive,大规模分布式系统的数据收集系统Chukwa,海 量数据并行计算的编程语言和执行框架Pig,可扩展的机器学习和数据挖掘库 Mahout等等。

#### 离线数据分析—HDFS



#### **HDFS Architecture**



#### 离线数据分析—MapReduce





#### 流式数据分析



互联网企业常常需要面对这样的需求,管理员需要了解服务器的负 网络traffic、磁盘IO等等状态信息,决策人员需要实时地获知站点交 易下单笔数、交易总金额、PV、UV等业务数据。这些都是源源不断产生的 流式数据,并且需要给用户实时响应计算结果,对于这种场景来说,尽管 MapReduce可以作一些实时性方面的改进,但仍很难稳定地满足需求。 流式数据的特征是数据会源源不断的从各个地方汇集过来,来源众 多,格式复杂,数据量巨大,对于流式数据的处理,有这样的一种观点 即数据的价值将随着时间的流逝而降低,因此数据生成后最好能够尽快的 进行处理,实时的响应计算结果,而非等到数据累积以后再定期地进行处 理,这样,对应的数据处理工具必须具备高性能,实时性,分布式和易用 性几个特征。

#### 流式数据分析—storm简介



storm是一个开源的分布式实时计算系统,可以简单的、可靠的对大量的流式数据进行分析处理。它有点类似于hadoop的MapReduce思想,不同的是,MapReduce执行的是批处理任务,而storm所提出的Topology原语,执行的是实时处理任务。批处理任务最终会结束,而Topology任务却会永远地运行,直到用户手动kill掉。storm在众多领域得到了广泛的使用,如实时分析、在线机器学习、持续计算、分布式RPC、ETL等等,它可以方便的进行系统扩容,具有很高的容错性,能够保障每个消息都会得到处理,并且有很高的处理效率。

#### 流式数据分析—storm集群架构





#### 流式数据分析—topology数据流向









#### 参考书籍











# Thanks

## FAQ时间

DATAGURU专业数据分析网站 25