

November 1988 Revised October 1999

74AC573 • 74ACT573 Octal Latch with 3-STATE Outputs

General Description

The 74AC573 and 74ACT573 are high-speed octal latches with buffered common Latch Enable (LE) and buffered common Output Enable $(\overline{\text{OE}})$ inputs.

The 74AC573 and 74ACT573 are functionally identical to the 74AC373 and 74ACT373 but with inputs and outputs on opposite sides.

Features

- I_{CC} and I_{OZ} reduced by 50%
- Inputs and outputs on opposite sides of package allowing easy interface with microprocessors
- Useful as input or output port for microprocessors
- Functionally identical to 74AC373 and 74ACT373
- 3-STATE outputs for bus interfacing
- Outputs source/sink 24 mA
- 74ACT573 has TTL-compatible inputs

Ordering Code:

Order Number	Package Number	Package Description
74AC573SC	M20B	20-Lead Small Outline Integrated Circuit (SOIC), JEDEC MS013, 0.300" Wide Body
74AC573SJ	M20D	20-Lead Small Outline Package (SOP), EIAJ TYPE II, 5.3mm Wide
74AC573MTC	MTC20	20-Lead Thin Shrink Small Outline Package (TSSOP), JEDEC MO-153, 4.4mm Wide
74AC573PC	N20A	20-Lead Plastic Dual-In-Line Package (PDIP), JEDEC MS-001, 0.300" Wide
74ACT573SC	M20B	20-Lead Small Outline Integrated Circuit (SOIC), JEDEC MS013, 0.300" Wide Body
74ACT573SJ	M20D	20-Lead Small Outline Package (SOP), EIAJ TYPE II, 5.3mm Wide
74ACT573MTC	MTC20	20-Lead Thin Shrink Small Outline Package (TSSOP), JEDEC MO-153, 4.4mm Wide
74ACT573PC	N20A	20-Lead Plastic Dual-In-Line Package (PDIP), JEDEC MS-001, 0.300" Wide

Device also available in Tape and Reel. Specify by appending suffix letter "X" to the ordering code.

Logic Symbols

Connection Diagram

Pin Descriptions

Pin Names	Description		
D ₀ -D ₇	Data Inputs		
LE	Latch Enable Input		
ŌĒ	3-STATE Output Enable Input		
O ₀ -O ₇	3-STATE Latch Outputs		

FACT™ is a trademark of Fairchild Semiconductor Corporation.

Functional Description

The 74AC573 and 74ACT573 contain eight D-type latches with 3-STATE output buffers. When the Latch Enable (LE) input is HIGH, data on the D_{n} inputs enters the latches. In this condition the latches are transparent, i.e., a latch output will change state each time its D-type input changes. When LE is LOW the latches store the information that was

present on the D-type inputs a setup time preceding the HIGH-to-LOW transition of LE. The 3-STATE buffers are controlled by the Output Enable (\overline{OE}) input. When \overline{OE} is LOW, the buffers are enabled. When \overline{OE} is HIGH the buffers are enabled. ers are in the high impedance mode but this does not interfere with entering new data into the latches.

Truth Table

	Outputs		
ŌĒ	LE	D	O _n
L	Н	Н	Н
L	Н	L	L
L	L	X	O ₀
Н	Χ	Χ	Z

- H = HIGH Voltage L = LOW Voltage Z = High Impedance
- O_0 = Previous O_0 before HIGH-to-LOW transition of Latch Enable

Logic Diagram

Absolute Maximum Ratings(Note 1)

Supply Voltage (V_{CC}) -0.5V to +7.0V

DC Input Diode Current (I_{IK})

 $\begin{array}{c} \text{V}_{\text{I}} = -0.5 \text{V} & -20 \text{ mA} \\ \\ \text{V}_{\text{I}} = \text{V}_{\text{CC}} + 0.5 \text{V} & +20 \text{ mA} \\ \\ \text{DC Input Voltage (V_{\text{I}})} & -0.5 \text{V to V}_{\text{CC}} + 0.5 \text{V} \end{array}$

DC Output Diode Current (I_{OK})

$$\begin{split} \text{V}_{\text{O}} &= -0.5 \text{V} & -20 \text{ mA} \\ \text{V}_{\text{O}} &= \text{V}_{\text{CC}} + 0.5 \text{V} & +20 \text{ mA} \end{split}$$

DC Output Voltage (V_O) -0.5V to $V_{CC} + 0.5V$

DC Output Source

or Sink Current (I_O) $\pm 50 \text{ mA}$

DC V_{CC} or Ground Current

per Output Pin (I_{CC} or I_{GND}) $\pm 50 \text{ mA}$

Storage Temperature (T_{STG}) $-65^{\circ}C$ to $+150^{\circ}C$

Junction Temperature (T_J)

(PDIP) 140°C

Recommended Operating Conditions

Supply Voltage (V_{CC})

 $\begin{array}{ccc} AC & 2.0V \text{ to } 6.0V \\ ACT & 4.5V \text{ to } 5.5V \\ \text{Input Voltage } (V_I) & 0V \text{ to } V_{CC} \\ \text{Output Voltage } (V_O) & 0V \text{ to } V_{CC} \\ \text{Operating Temperature } (T_A) & -40^{\circ}\text{C to } +85^{\circ}\text{C} \\ \end{array}$

Minimum Input Edge Rate $(\Delta V/\Delta t)$

AC Devices

 $V_{\mbox{\footnotesize{IN}}}$ from 30% to 70% of $V_{\mbox{\footnotesize{CC}}}$

 $V_{CC} @ 3.0V, 4.5V, 5.5V$ 125 mV/ns

ACT Devices

V_{IN} from 0.8V to 2.0V

 $V_{CC} @ 4.5V, 5.5V$ 125 mV/ns

Note 1: Absolute maximum ratings are those values beyond which damage to the device may occur. The databook specifications should be met, without exception, to ensure that the system design is reliable over its power supply, temperature, and output/input loading variables. Fairchild does not recommend operation of FACT™ circuits outside databook specifications.

DC Electrical Characteristics for AC

Symbol	Parameter	v_{cc}	$T_A = +25^{\circ}C$		$T_A = -40^{\circ}C$ to $+85^{\circ}C$	Units	Conditions
Oyiliboi	r arameter	(V)	Тур	Gu	Guaranteed Limits		
V _{IH}	Minimum HIGH Level	3.0	1.5	2.1	2.1		V _{OUT} = 0.1V
	Input Voltage	4.5	2.25	3.15	3.15	V	or V _{CC} – 0.1V
		5.5	2.75	3.85	3.85		
V _{IL}	Maximum LOW Level	3.0	1.5	0.9	0.9		V _{OUT} = 0.1V
	Input Voltage	4.5	2.25	1.35	1.35	V	or V _{CC} – 0.1V
		5.5	2.75	1.65	1.65		
V _{OH}	Minimum HIGH Level	3.0	2.99	2.9	2.9		I _{OUT} = -50 μA
	Output Voltage	4.5	4.49	4.4	4.4	V	
		5.5	5.49	5.4	5.4		
							$V_{IN} = V_{IL}$ or V_{IH}
		3.0		2.56	2.46	V	$I_{OH} = -12 \text{ mA}$
		4.5		3.86	3.76	V	$I_{OH} = -24 \text{ mA}$
		5.5		4.86	4.76		$I_{OH} = -24 \text{ mA (Note 2)}$
V _{OL}	Maximum LOW Level	3.0	0.002	0.1	0.1		
	Output Voltage	4.5	0.001	0.1	0.1	V	$I_{OUT} = 50 \mu A$
		5.5	0.001	0.1	0.1		
							$V_{IN} = V_{IL}$ or V_{IH}
		3.0		0.36	0.44	V	$I_{OL} = 12 \text{ mA}$
		4.5		0.36	0.44	•	$I_{OL} = 24 \text{ mA}$
		5.5		0.36	0.44		I _{OL} = 24 mA (Note 2)
I _{IN} (Note 3)	Maximum Input Leakage Current	5.5		±0.1	±1.0	μΑ	$V_I = V_{CC}$, GND
I _{OLD}	Minimum Dynamic	5.5			75	mA	V _{OLD} = 1.65V Max
I _{OHD}	Output Current (Note 4)	5.5			-75	mA	V _{OHD} = 3.85V Min
I _{cc}	Maximum Quiescent	5.5		4.0	40.0	μА	V _{IN} = V _{CC} or GND
(Note 3)	Supply Current	0.0		7.0	70.0	μι	
l _{oz}	Maximum 3-STATE						V_{I} (OE) = V_{IL} , V_{IH}
	Leakage Current	5.5		±0.25	±2.5	μΑ	$V_I = V_{CC}$, GND
							$V_O = V_{CC}$, GND
			•				

Note 2: All outputs loaded; thresholds on input associated with output under test.

Note 3: I_{IN} and $I_{\text{CC}} @ 3.0 \text{V}$ are guaranteed to be less than or equal to the respective limit @ 5.5 V V_{CC} .

Note 4: Maximum test duration 2.0 ms, one output loaded at a time.

74AC573 • 74ACT573

AC Electrical Characteristics for AC

Symbol Parameter		V_{CC} $T_A = +25^{\circ}C$ $C_L = 50 \text{ pF}$				$T_A = -40^{\circ}\text{C to } +85^{\circ}\text{C}$ $C_L = 50 \text{ pF}$		Units
		(Note 5)	Min	Тур	Max	Min	Max	
t _{PHL}	Propagation Delay	3.3	0.5	8.5	10.5	2.5	11.0	ns
t _{PLH}	D _n to O _n	5.0	1.5	5.5	7.0	1.5	7.5	115
t _{PLH}	Propagation Delay	3.3	2.5	8.5	12.0	2.5	12.5	ns
t _{PHL}	LE to O _n	5.0	2.0	6.0	8.0	2.0	8.5	113
t _{PZL}	Output Enable Time	3.3	2.5	8.5	13.0	2.5	13.5	20
t _{PZH}		5.0	1.5	6.0	8.5	1.5	9.0	ns
t _{PHZ}	Output Disable Time	3.3	1.0	9.0	14.5	1.0	15.0	ns
t _{PLZ}		5.0	1.0	6.0	9.5	1.0	10.0	115

Note 5: Voltage Range 5.0 is $5.0V \pm 0.5V$ Voltage Range 3.3 is $3.3V \pm 0.3V$

AC Operating Requirements for AC

Symbol Parameter		V _{CC} (V)	$T_A = +25$ °C $C_L = 50 \text{ pF}$		$T_A = -40$ °C to +85°C $C_L = 50$ pF	Units
		(Note 6)	Тур	Guar	anteed Minimum	
t _S	Setup Time, HIGH or LOW	3.3	0	3.0	3.0	20
	D _n to LE	5.0	0	3.0	3.0	ns
t _H	Hold Time, HIGH or LOW	3.3	0	1.5	1.5	ns
	D _n to LE	5.0	0	1.5	1.5	115
t _W	LE Pulse Width, HIGH	3.3	2.0	4.0	4.0	ns
1		5.0	2.0	4.0	4.0	115

Note 6: Voltage Range 5.0 is $5.0V \pm 0.5V$ Voltage Range 3.3 is $3.3V \pm 0.3V$

DC Electrical Characteristics for ACT $T_A = +25^{\circ}C$ $T_A = -40^{\circ}C$ to $+85^{\circ}C$ V_{CC} Conditions Symbol Parameter Units Guaranteed Limits (V) Тур $V_{OUT} = 0.1V$ V_{IH} Minimum HIGH Level 4.5 1.5 Input Voltage 5.5 1.5 2.0 2.0 or V_{CC} – 0.1V Maximum LOW Level V_{OUT} = 0.1V 4.5 1.5 0.8 0.8 V_{IL} Input Voltage 5.5 1.5 0.8 or V_{CC} – 0.1V Minimum HIGH Level 4.5 4.49 4.4 4.4 V_{OH} $I_{OUT} = -50~\mu A$ Output Voltage 5.5 5.4 5.4 5.49 $V_{IN} = V_{IL} \text{ or } V_{IH}$ $I_{OH} = -24 \text{ mA}$ 4.5 3.86 3.76 $I_{OH} = -24 \text{ mA (Note 7)}$ 4.86 5.5 4.76 V_{OL} Maximum LOW Level 4.5 0.1 0.1 $I_{OUT} = 50 \mu A$ Output Voltage 0.001 0.1 $V_{IN} = V_{IL} \text{ or } V_{IH}$ 4.5 0.36 0.44 $I_{OL} = 24 \text{ mA}$ I_{OL} = 24 mA (Note 7) 5.5 0.36 0.44 Maximum Input I_{IN} 5.5 ±1.0 $V_I = V_{CC}$, GND μΑ Leakage Current Maximum 3-STATE I_{OZ} $V_I = V_{IL}, V_{IH}$ 5.5 ±0.25 ±2.5 μΑ Leakage Current $V_O = V_{CC}$, GND Maximum I_{CCT} $V_{I} = V_{CC} - 2.1V$ mΑ I_{CC}/Input 5.5 75 V_{OLD} = 1.65V Max Minimum Dynamic I_{OLD} Output Current (Note 8) 5.5 -75 $V_{OHD} = 3.85V Min$ I_{OHD} mΑ Maximum Quiescent I_{CC} 4.0 40.0 $V_{IN} = V_{CC}$ or GND Supply Current

Note 7: All outputs loaded; thresholds on input associated with output under test.

Note 8: Maximum test duration 2.0 ms, one output loaded at a time.

AC Electrical Characteristics for ACT

	Parameter	V _{CC}	$T_{A} = +25^{\circ}C$ $C_{L} = 50 \text{ pF}$			$T_A = -40$ °C to +85°C $C_L = 50$ pF		Units
Symbol		(V)						
		(Note 9)	Min	Тур	Max	Min	Max	
t _{PLH}	Propagation Delay	5.0	2.5	6.0	10.5	2.0	12.0	no
t _{PHL}	D _n to O _n	3.0	2.5	6.0	10.5	2.0	12.0	ns
t _{PLH}	Propagation Delay	5.0	3.0	6.0	10.5	2.5	12.0	ns
	LE to O _n	3.0		0.0	10.0	2.0	12.0	
t _{PHL}	Propagation Delay	5.0	2.5	5.5	9.5	2.0	10.5	ns
	LE to O _n	3.0	2.5	2.5 5.5	3.3		10.5	
t _{PZH}	Output Enable Time	5.0	2.0	5.5	10.0	1.5	11.0	ns
t _{PZL}	Output Enable Time	5.0	1.5	5.5	9.5	1.5	10.5	ns
t _{PHZ}	Output Disable Time	5.0	2.5	6.5	11.0	1.5	12.5	ns
t _{PLZ}	Output Disable Time	5.0	1.5	5.0	8.5	1.0	9.5	ns

Note 9: Voltage Range 5.0 is 5.0V ± 0.5V

AC Operating Requirements for ACT

Symbol	Symbol Parameter		T _A = +25°C C _L = 50 pF		$T_A = -40$ °C to $+85$ °C $C_L = 50$ pF	Units	
		(Note 10)	Тур	Guar	anteed Minimum		
t _S	Setup Time, HIGH or LOW D _n to LE	5.0	1.5	3.0	3.5	ns	
t _H	Hold Time, HIGH or LOW D _n to LE	5.0	-1.5	0	0	ns	
t _W	LE Pulse Width, HIGH	5.0	2.0	3.5	4.0	ns	

Note 10: Voltage Range 5.0 is 5.0V ± 0.5V

Capacitance

Symbol	Parameter	Тур	Units	Conditions
C _{IN}	Input Capacitance	5.0	pF	V _{CC} = OPEN
C _{PD}	Power Dissipation Capacitance for AC	25.0	pF	V _{CC} = 5.0V
	for ACT	42.0	Pi	VCC = 3.0 V

20-Lead Small Outline Integrated Circuit (SOIC), JEDEC MS-013, 0.300" Wide Body Package Number M20B

20-Lead Plastic Dual-In-Line Package (PDIP), JEDEC MS-001, 0.300" Wide Package Number N20A

Fairchild does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and Fairchild reserves the right at any time without notice to change said circuitry and specifications.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

- Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
- A critical component in any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

www.fairchildsemi.com