

AON7544

30V N-Channel AlphaMOS

General Description

- Latest Trench Power AlphaMOS (αMOS LV) technology
- Very Low RDS(on) at 4.5V_{GS}
- Low Gate Charge
- High Current Capability
- RoHS and Halogen-Free Compliant

Product Summary

 $V_{\text{DS}} \\$ 30V I_D (at $V_{GS}=10V$) 30A $R_{DS(ON)}$ (at V_{GS} =10V) < 5m Ω $R_{DS(ON)}$ (at $V_{GS} = 4.5V$) $< 8.5 \text{m}\Omega$

100% UIS Tested 100% R_g Tested

- Application

 DC/DC Converters in Computing, Servers, and POL
- Isolated DC/DC Converters in Telecom and Industrial

Absolute Maximum Ratings T _A =25℃ unless otherwise noted							
Parameter		Symbol	Maximum	Units			
Drain-Source Voltage		V _{DS}	30	V			
Gate-Source Voltage		V _{GS}	±20	V			
Continuous Drain	T _C =25℃		30				
Current ^G	T _C =100℃	I _D	23	A			
Pulsed Drain Curren	nt ^C	I _{DM}	120				
Continuous Drain	T _A =25℃		20	A			
Current	T _A =70℃	^I DSM 16					
Avalanche Current C	lanche Current ^C		32	A			
Avalanche energy L	=0.05mH ^C	E _{AS}	26	mJ			
V _{DS} Spike	100ns	V _{SPIKE}	36	V			
	T _C =25℃		23	W			
Power Dissipation ^B	T _C =100℃	$\rightarrow P_D$	9	VV			
Power Dissipation A T_{A} =25 $^{\circ}$ C		Б	3	14/			
		P _{DSM}	2	W			
Junction and Storag	e Temperature Range	T _J , T _{STG}	-55 to 150	S.			

Thermal Characteristics								
Parameter		Symbol	Тур	Max	Units			
Maximum Junction-to-Ambient A	t ≤ 10s	D	30	40	°C/W			
Maximum Junction-to-Ambient AD	Steady-State	$R_{\theta JA}$	60	75	°C/W			
Maximum Junction-to-Case	Steady-State	$R_{\theta JC}$	4.5	5.4	C\M			

Electrical Characteristics (T_J=25℃ unless otherwise noted)

Symbol	Parameter	Conditions	Conditions		Тур	Max	Units
STATIC F	PARAMETERS						
BV _{DSS}	Drain-Source Breakdown Voltage	$I_D = 250 \mu A, V_{GS} = 0 V$		30			V
l	Zero Gate Voltage Drain Current	V_{DS} =30V, V_{GS} =0V				1	μА
I _{DSS}	Zero Gate Voltage Drain Gurrent		T _J =55℃			5	μΑ
I _{GSS}	Gate-Body leakage current	V_{DS} =0V, V_{GS} = ±20V				100	nA
$V_{GS(th)}$	Gate Threshold Voltage	$V_{DS}=V_{GS}$, $I_{D}=250\mu A$		1.2	1.8	2.2	V
		V_{GS} =10V, I_{D} =20A			4.1	5	mΩ
R _{DS(ON)}	Static Drain-Source On-Resistance		T _J =125℃		5.6	6.8	11122
		V_{GS} =4.5V, I_D =20A			6.7	8.5	mΩ
g _{FS}	Forward Transconductance	V_{DS} =5V, I_{D} =20A			91		S
V_{SD}	Diode Forward Voltage	I _S =1A,V _{GS} =0V			0.7	1	V
Is	Maximum Body-Diode Continuous Curr	ent				28	Α
DYNAMIC	PARAMETERS						
C_{iss}	Input Capacitance	V _{GS} =0V, V _{DS} =15V, f=1MHz			951		pF
Coss	Output Capacitance				373		pF
C _{rss}	Reverse Transfer Capacitance				62		pF
R_g	Gate resistance	V_{GS} =0V, V_{DS} =0V, f=1	MHz		1.5		Ω
SWITCHI	NG PARAMETERS						
Q _g (10V)	Total Gate Charge				15.7	22.5	nC
Q _g (4.5V)	Total Gate Charge	V _{GS} =10V, V _{DS} =15V, I	- - 20Δ		7.5	10.5	nC
Q_{gs}	Gate Source Charge	VGS-10V, VDS-13V, 1	D-20A		2.8		nC
Q_{gd}	Gate Drain Charge				3.2		nC
t _{D(on)}	Turn-On DelayTime				6.25		ns
t _r	Turn-On Rise Time	V_{GS} =10V, V_{DS} =15V, R_{L} =0.75 Ω ,			2.5		ns
t _{D(off)}	Turn-Off DelayTime	$R_{GEN}=3\Omega$			18.5		ns
t _f	Turn-Off Fall Time				4		ns
t _{rr}	Body Diode Reverse Recovery Time	I_F =20A, dI/dt=500A/ μ	s		10.2		ns
Q_{rr}	Body Diode Reverse Recovery Charge	I_F =20A, dI/dt=500A/ μ	s		13.6		nC

A. The value of $R_{\theta JA}$ is measured with the device mounted on 1in^2 FR-4 board with 2oz. Copper, in a still air environment with T_A =25° C. The Power dissipation P_{DSM} is based on R $_{\theta JA}$ and the maximum allowed junction temperature of 150 $^{\circ}$ C. The value in any given application depends on the user's specific board design.

THIS PRODUCT HAS BEEN DESIGNED AND QUALIFIED FOR THE CONSUMER MARKET. APPLICATIONS OR USES AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS ARE NOT AUTHORIZED. AOS DOES NOT ASSUME ANY LIABILITY ARISING OUT OF SUCH APPLICATIONS OR USES OF ITS PRODUCTS. AOS RESERVES THE RIGHT TO IMPROVE PRODUCT DESIGN, FUNCTIONS AND RELIABILITY WITHOUT NOTICE.

B. The power dissipation P_D is based on $T_{J(MAX)}$ =150° C, using junction-to-case thermal resistance, and is more useful in setting the upper dissipation limit for cases where additional heatsinking is used.

C. Single pulse width limited by junction temperature $T_{J(\text{MAX})}\!\!=\!\!150^\circ\,$ C.

D. The $R_{\theta JA}$ is the sum of the thermal impedance from junction to case $R_{\theta JC}$ and case to ambient.

E. The static characteristics in Figures 1 to 6 are obtained using <300µs pulses, duty cycle 0.5% max.

F. These curves are based on the junction-to-case thermal impedance which is measured with the device mounted to a large heatsink, assuming a maximum junction temperature of $T_{J(MAX)}$ =150° C. The SOA curve provides a single pulse rating. G. The maximum current rating is package limited.

H. These tests are performed with the device mounted on 1 in FR-4 board with 2oz. Copper, in a still air environment with $T_A=25^{\circ}$ C.

TYPICAL ELECTRICAL AND THERMAL CHARACTERISTICS

(Note E)

TYPICAL ELECTRICAL AND THERMAL CHARACTERISTICS

Figure 11: Normalized Maximum Transient Thermal Impedance (Note F)

TYPICAL ELECTRICAL AND THERMAL CHARACTERISTICS

Pulse Width (s)
Figure 14: Single Pulse Power Rating Junction-to-Ambient (Note H)

Gate Charge Test Circuit & Waveform

Resistive Switching Test Circuit & Waveforms

Unclamped Inductive Switching (UIS) Test Circuit & Waveforms

Diode Recovery Test Circuit & Waveforms

Document No.	PD-01863
Version	A
Title	AON7544 Marking Description

DFN3X3 PACKAGE MARKING DESCRIPTION

Green product

NOTE:

LOGO - AOS Logo

7544 - Part number code

F - Fab code

A - Assembly location code

Y - Year code W - Week code L&T - Assembly lot code

PART NO.	DESCRIPTION	CODE
AON7544	Green product	7544
AON7544L	Green product	7544

Document No.	PO-00047
Version	G

DFN3x3A_8L_EP1_P PACKAGE OUTLINE

RECOMMENDED LAND PATTERN

NOTE

gya mor g	DIMENS	IONS IN MILLI	METERS	DIMENSIONS IN INCHES			
SYMBOLS	MIN	NOM	MAX	MIN	NOM	MAX	
A	0.70	0.80	0. 90	0.028	0.031	0.035	
A1	0.00	0.025	0.05	0.000	0.001	0.002	
b	0. 24	0.30	0.35	0.009	0.012	0.014	
С	0.10	0. 15	0. 25	0.004	0.006	0.010	
D	2. 90	3.00	3. 10	0. 114	0.118	0.122	
D1	2. 25	2. 35	2.45	0.089	0.093	0.097	
D2	0.30	0.40	0.50	0.012	0.016	0.020	
D3	2.50	2.60	2.70	0.098	0.102	0.106	
D4	3.00	3. 10	3. 20	0. 118	0.122	0.126	
Е	2. 90	3.00	3. 10	0.114	0. 118	0.122	
E1	3. 10	3. 20	3.30	0.122	0.126	0.130	
E2	1. 65	1. 75	1.85	0.065	0.069	0.073	
E3	0.48	0. 58	0.68	0.019	0.023	0.027	
E4	0. 23	0. 33	0.43	0.009	0.013	0.017	
E5	0. 20	0.30	0.40	0.008	0.012	0.016	
E6	0.075	0. 125	0. 175	0.003	0.005	0.007	
e	0.60	0.65	0.70	0.024	0.026	0.028	
K	0.52	0.62	0.72	0.020	0.024	0.028	
L	0.30	0.40	0.50	0.012	0.016	0.020	
L1	0	0.05	0.10	0	0.002	0.004	
L2	0.33	0.43	0.53	0.013	0.017	0.021	
L3	0. 275	0.375	0.475	0.011	0.015	0.019	
θ1	0°	10°	12°	0°	10°	12°	

- 1. PACKAGE DIMENSION IS EXCLUSIVE OF MOLD GATE BURR
- 2. PACKAGE DIMENSION IS EXCLUSIVE OF MOLD FLASH AND CUTTING BURR
- 3. CONTROLLING DIMENSION IS MILLIMETER. CONVERTED INCH DIMENSIONS ARE NOT NECESSARILY EXACT.

DFN3x3_EP Tape and Reel Data

Unit Per Reel: 5000pcs

TRAILER TAPE

300mm MIN.

DFN3x3_EP Tape and Reel Data

LEADER TAPE

500mm MIN.

COMPONENTS TAPE

DRIENTATION IN POCKET

AOS Semiconductor Product Reliability Report

AON7544, rev A

Plastic Encapsulated Device

ALPHA & OMEGA Semiconductor, Inc www.aosmd.com

This AOS product reliability report summarizes the qualification result for AON7544. Accelerated environmental tests are performed on a specific sample size, and then followed by electrical test at end point. Review of final electrical test result confirms that AON7544 passes AOS quality and reliability requirements. The released product will be categorized by the process family and be routine monitored for continuously improving the product quality.

I. Reliability Stress Test Summary and Results

Test Item	Test Condition	Time Point	Total Sample Size	Number of Failures	Reference Standard
HTGB	Temp = 150°C , Vgs=100% of Vgsmax	168 / 500 / 1000 hours	924 pcs	0	JESD22-A108
HTRB	Temp = 150°C , Vds=100% of Vdsmax	168 / 500 / 1000 hours	924 pcs	0	JESD22-A108
Precondition (Note A)	168hr 85°C / 85%RH + 3 cycle reflow@260°C (MSL 1)	-	4620 pcs	0	JESD22-A113
HAST	130°C , 85%RH, 33.3 psia, Vds = 80% of Vdsmax	96 hours	924 pcs	0	JESD22-A110
H3TRB	85°C , 85%RH, Vds = 80% of Vdsmax	1000 hours	462 pcs	0	JESD22-A101
Autoclave	121°C , 29.7psia, RH=100%	96 hours	924 pcs	0	JESD22-A102
Temperature Cycle	-65°C to 150°C , air to air,	1000 cycles	924 pcs	0	JESD22-A104
HTSL	Temp = 150°C	1000 hours	924 pcs	0	JESD22-A103
Power Cycling	∆ Tj = 100°C	15000 cycles	462 pcs	0	AEC Q101

Note: The reliability data presents total of available generic data up to the published date. Note A: MSL (Moisture Sensitivity Level) 1 based on J-STD-020

II. Reliability Evaluation

FIT rate (per billion): 1.91 MTTF = 59839 years

The presentation of FIT rate for the individual product reliability is restricted by the actual burn-in sample size. Failure Rate Determination is based on JEDEC Standard JESD 85. FIT means one failure per billion hours.

Failure Rate = $\text{Chi}^2 \times 10^9 \text{/} [2 \text{ (N) (H) (Af)}] = 1.91 \text{MTTF} = 10^9 / \text{FIT} = 59839 \text{ years}$

Chi² = Chi Squared Distribution, determined by the number of failures and confidence interval

N = Total Number of units from burn-in tests

H = Duration of burn-in testing

Af = Acceleration Factor from Test to Use Conditions (Ea = 0.7eV and Tuse = 55°C)

Acceleration Factor [Af] = Exp [Ea / k (1/Tj u - 1/Tj s)]

Acceleration Factor ratio list:

	55 deg C	70 deg C	85 deg C	100 deg C	115 deg C	130 deg C	150 deg C
Af	259	87	32	13	5.64	2.59	1

Tis = Stressed junction temperature in degree (Kelvin), K = C+273.16

Tj u =The use junction temperature in degree (Kelvin), K = C+273.16

 \mathbf{k} = Boltzmann's constant, 8.617164 X 10⁻⁵eV / K