#28 Torque Post-class

Due: 11:00am on Monday, October 29, 2012

Note: You will receive no credit for late submissions. To learn more, read your instructor's Grading Policy

Exercise 10.1

Calculate the torque (magnitude and direction) about point O due to the force \vec{F} in each of the cases sketched in the figure . In each case, the force \vec{F} and

the rod both lie in the plane of the page, the rod has length 4.00 ${
m m}$, and the force has magnitude 13.0 N .

Part A

Calculate the magnitude of the torque in case (a).

ANSWER:

$$|\tau| = _{52.0} \mathrm{N \cdot m}$$

Correct

ъ	~ r	4	С
_	aı	L	С

Find the direction of the torque in case (a).

ANSWER:

- into the page
- out of the page
- to the right
- upward
- the torque is zero

Correct

Part C

Calculate the magnitude of the torque in case (b)

ANSWER:

$$|\tau| = 45.0 \text{ N} \cdot \text{m}$$

Correct

Part D

Find the direction of the torque in case (b).

ANSWER:

- into the page
- out of the page
- to the right
- upward
- the torque is zero

Part E

Calculate the magnitude of the torque in case (c)

ANSWER:

$$|\tau| = 26.0 \text{ N} \cdot \text{m}$$

Correct

Part F

Find the direction of the torque in case (c).

ANSWER:

	into	the	page
--	------	-----	------

- out of the page
- to the right
- upward
- the torque is zero

Part G

Calculate the magnitude of the torque in case (d)

ANSWER:

$$|\tau| = 22.5 \text{ N} \cdot \text{m}$$

Correct

Part H

Find the direction of the torque in case (d).

ANSWER:

0	into	the	page
---	------	-----	------

- out of the page
- to the right
- upward
- the torque is zero

Part I

Calculate the magnitude of the torque in case (e)

ANSWER:

$$|\tau| = 0 \text{ N} \cdot \text{m}$$

Correct

Part J

Find the direction of the torque in case (e).

ANSWER:

	into	the	page
--	------	-----	------

- out of the page
- to the right
- upward
- the torque is zero

Part K

Calculate the magnitude of the torque in case (f)

ANSWER:

$$|\tau| = 0 \text{ N} \cdot \text{m}$$

Correct

Part L

Find the direction of the torque in case (f).

ANSWER:

- into the page
- out of the page
- to the right
- upward
- the torque is zero

Exercise 10.4

Three forces are applied to a wheel of radius 0.350~m, as shown in the figure . One force is perpendicular to the rim, one is tangent to it, and the other one makes a 40.0~° angle with the radius.

Part A

What is the magnitude of the net torque on the wheel due to these three forces for an axis perpendicular to the wheel and passing through its center? ANSWER:

#28 Torque Post-class

$$\tau$$
 = 0.310 N·m

Correct

Part B

What is the direction of the net torque in part (A).

ANSWER:

- into the page
- out of the page.

Correct

Exercise 10.2

Part A

Calculate the net torque about point O for the two forces applied as in the figure . The rod and both forces are in the plane of the page. Take positive torques to be counterclockwise.

8 of 10

#28 Torque Post-class

ANSWER:

$$\tau$$
 = -28.0 N·m

Correct

Exercise 10.3

A square metal plate 0.180 m on each side is pivoted about an axis through point O at its center and perpendicular to the plate .

Part A

Calculate the net torque about this axis due to the three forces shown in the figure if the magnitudes of the forces are F_1 = 26.0N, F_2 = 16.1N, and

 F_3 = 14.9N . The plate and all forces are in the plane of the page. Take positive torques to be counterclockwise.

ANSWER:

$$\tau = 1.01 \text{ N} \cdot \text{m}$$

Correct

Score Summary:

Your score on this assignment is 98.1%.

You received 39.22 out of a possible total of 40 points.