

UNIVERSIDAD DE GRANADA

Máster Universitario en Física y Matemáticas

EL TÍTULO DEL TRABAJO FIN DE MÁSTER

Trabajo Fin de Máster presentado por Nombre Apellido1 Apellido2

Curso 2016/17

UNIVERSIDAD DE GRANADA

Máster Universitario en Física y Matemáticas

EL TÍTULO DEL TRABAJO FIN DE MÁSTER

Trabajo Fin de Máster presentado por Nombre Apellido1 Apellido2

Curso 2016/17

Tutor: Nombre Apellido
1 Apellido 2 Departamento: Matemática Aplicada

Área de Conocimiento: Matemática Aplicada

(Página de agradecimientos si los hay) Thank you.

Índice

1.	Esféricos Armónicos	1
	1.1. Spherical Harmonics Through Primitive Spaces	1

Capítulo 1

Esféricos Armónicos

1.1. Spherical Harmonics Through Primitive Spaces

Definición 1. Sea $f: \mathbb{R}^d \to \mathcal{C}$ y $A \in \mathbb{R}^{dxd}$, se define f_A como: $f_A(x) = f(Ax)$

Proposición 2. Si $f_A = f$ para algún $A \in \mathcal{O}^d$ entonces f(x) depende de... y f es constante en la esfera

Demostraci'on.

Definición 3. Sea \mathcal{V} un subespacio de funciones definidas de \mathbb{R}^d a $A \subseteq \mathbb{R}^d$. Se dice que:

- \mathcal{V} es invariante si para $f \in \mathcal{V}$ y $A \in \mathcal{O}^d$, entonces $f_A \in \mathcal{V}$.
- \mathcal{V} es reducible si $\mathcal{V} = \mathcal{V}_1 + \mathcal{V}_2$ con $\mathcal{V}_1 \neq \emptyset$, $\mathcal{V}_2 \neq \emptyset$ verificando $\mathcal{V}_1, \mathcal{V}_2$ irreducibles y $\mathcal{V}_1 \perp \mathcal{V}_2$.
- \mathcal{V} es irreducible si no es reducible.
- \mathcal{V} es primitivo si es invariante e irreducible.

Definición 4. Dado $f: \mathbb{R}^d \to \mathbb{C}$ se define $span(f_A)$ como el espacio de las series convergentes $\sum c_j f_{A_j}$ con $A_j \in \mathcal{O}^d, c_j \in \mathbb{C}$

Si \mathcal{V} es un espacio finito dimensional $\mathcal{V} = span\{f_A\}$

Consideramos \mathcal{H}_n^d el espacio de polinomios homogéneos. Las funciones son de la forma: $\sum_{|\alpha|=n} a_{\alpha} x^{\alpha}$, $a_{\alpha} \in \mathbb{C}.\mathcal{H}_n^d$ es un espacio finito dimensional.