TP2: Tests d'hypothèses

Oumaima EL BOUROUMI, Matthieu Gomes

1 Préparation

On considère un échantillon (X_1, \ldots, X_n) constitué de n variables aléatoires indépendantes et identiquement distribuées selon une loi inconnue. Cet échantillon représente les résultats obtenus à un contrôle de synthèse de Statistiques. On en souhaite une étude statistique.

1.1 1. Coefficient d'asymétrie et kurtosis

Le **coefficient d'asymétrie** (ou skewness) mesure la symétrie d'une distribution par rapport à sa moyenne. Il est défini par :

$$\gamma_1 = \frac{E[(X - \mu)^3]}{\sigma^3}$$

où : - μ est la moyenne de la distribution, - σ est l'écart-type, - $E[(X-\mu)^3]$ est le moment centré d'ordre 3.

Dans le cas d'une loi normale $\mathcal{N}(\mu, \sigma^2)$, on peut démontrer que $\gamma_1 = 0$, ce qui signifie que la loi normale est parfaitement symétrique.

Le coefficient de kurtosis est donné par :

$$\gamma_2 = \frac{E[(X-\mu)^4]}{\sigma^4} - 3$$

où 3 est soustrait pour que la loi normale ait un kurtosis de 0.

1.2 2. Test d'adéquation du χ^2

Nous souhaitons savoir si l'échantillon (X_1, \ldots, X_n) suit une loi normale $\mathcal{N}(\mu, \sigma^2)$. Nous réalisons un test du χ^2 .

(A) Hypothèses du test

- H_0 : L'échantillon suit une loi normale $\mathcal{N}(\mu, \sigma^2)$.
- \bullet H_1 : L'échantillon ne suit pas une loi normale.

(B) Estimation du maximum de vraisemblance

Les estimateurs du maximum de vraisemblance pour μ et σ^2 sont :

$$\hat{\mu} = \frac{1}{n} \sum_{i=1}^{n} x_i, \quad \hat{\sigma}^2 = \frac{1}{n} \sum_{i=1}^{n} (x_i - \hat{\mu})^2$$

(C) Effectif théorique des classes

L'effectif théorique dans une classe [a,b] est donné par :

$$N_{[a,b]} = n \times (F(b) - F(a))$$

où F est la fonction de répartition de la loi normale $\mathcal{N}(\hat{\mu}, \hat{\sigma}^2)$.

(D) Condition pour appliquer le test du χ^2

Pour que le test soit valide :

- Chaque classe doit contenir un effectif théorique d'au moins 5 observations
- Si certaines classes ont un effectif inférieur à 5, il faut les regrouper.

(E) Influence de α et risque de première espèce

 α est le seuil de signification du test (5% par exemple), qui correspond au risque de première espèce (rejeter H_0 alors qu'elle est vraie). Plus α est grand, plus le test est sensible, mais le risque d'erreur de type I augmente.