Lettre de N. Grothendieck à P. Deligne (1)

7.8.74

Cher Deligne,

Étant peut-être empêché par mon jambe d'assurer un cours de 1^{er} cycle au 1^{er} trimestre, je vais peut-être à la place faire un petit séminaire d'algèbre, et envisage de le faire sur les fourbis de Mme Sinh, éventuellement transposés dans le contexte des "champs". À ce propos, je tombe sur le truc suivant, qui pour l'instant reste heuristique. Si M, N sont deux faisceaux abéliens sur un topos X, et $\tau_{\leq 2} \mathbf{R} \underline{\mathrm{Hom}}(M,N) = E(M,N)$ est le complexe ayant les invariants

$$\begin{cases} \underline{\mathbf{H}}^{i} = \underline{\mathbf{Ext}}^{i}(M, N) & \text{pour } 0 \leq i \leq 2\\ \underline{\mathbf{H}}^{i} = 0 & \text{si } i \notin [0, 2], \end{cases}$$

il doit y avoir un triangle distingué canonique

(T)
$$\underbrace{\operatorname{Hom}(M, {}_{2}N)[-2]}_{E(M,N), \longrightarrow E'(M,N),}$$

donc E'(M,N) est un complexe dont les invariants \underline{H}^i sont ceux de E(M,N) en degré $i \neq 2$, et qui en degré 2 donne lieu à une suite exacte

$$(*) \qquad 0 \longrightarrow \underline{\operatorname{Ext}}^2(M,N) \longrightarrow \underbrace{\overline{\operatorname{H}}^2(E'(M,N))}^{P(M,N)} \stackrel{\sigma}{\longrightarrow} \underline{\operatorname{Hom}}(M,{}_2N) \longrightarrow 0 \, .$$

¹Ce texte a été déchiffré et transcrit par Matthias Künzer

Heuristiquement, E'(M,N) est le complexe qui exprime le "2-champ de Picard strict" formé des 1-champs de Picard (pas nécessairement stricts) "épinglés" par M, N sur des objets variables de X, en admettant que ta théorie pour les 1champs de Picard stricts s'étend aux 2-champs de Picard stricts (ce qui pour moi ne fait guère de doute); de même E(M,N) correspond aux champs de Picard stricts épinglés par M, N. La suite exacte (*) se construit en tous cas canoniquement "à la main", où le terme médian est le faisceau des classes à "équivalence" près des champs de Picard épinglés par M, N, or étant l'invariant qui s'obtient en associant à toute section L d'un champ de Picard la symétrie de $L \otimes L$, interprété comme section de ₂N. Je sais prouver (sauf erreur) que tout homomorphisme $M \longrightarrow {}_{2}N$ provient d'un champ de Picard convenable (épinglé par M, N) (a priori l'obstruction est dans $\operatorname{Ext}^3(X;M,N)$, mais un argument "universel" prouve qu'elle est nulle). Cela prouve que l'extension (*) est bien proche d'être splittée : toute section du troisième faisceaux, sur un objet quelconque de X, se remonte – en d'autres termes, l'extension a une section "ensembliste". Bien sûr, il y a mieux en fait : toute section sur un $U \in \text{Ob } X$ "provient" d'un élément de $H^2(U, E'(M, N))$ (hypercohomolo - H^2).

Exemple. Soit A un anneau sur X, soient M, N respectivement les faisceaux K^0 , K^1 associés au champ additif des A-Modules projectifs de type fini (p. ex.). Alors la construction de Mme Sinh nous fournit un champ de Picard épinglé par M, N, d'où une section canonique du terme médian P(M,N) de (*).

NB. Tout ce qui précède a les fonctorialités évidentes en M, N, X, \ldots

Question. Le triangle exact (T) et la suite exacte (*) sont-ils connus par les compétences (Quillen, Breen, Illusie ...)? Connaissent-ils des variantes "supérieures"? (Un principe "géométrique" pour les obtenir pourrait être via des *n*-champs de Picard non nécessairement stricts ...)

Je profite de l'occasion pour soulever une question sur la "cohomologie relative". Soit $q: X \longrightarrow Y$ un morphisme de topos. Si F est un faisceau abélien (ou un complexe d'iceux) sur Y, peut-on définir fonctoriellement en F la cohomologie relative $\mathbf{R}\Gamma(Y \mod X, F)$ (de la catégorie dérivée de $\mathrm{Ab}(Y)$ dans celle de Ab)? L'interprétation "géométrique" en termes d'opérations sur des n-champs de Picard (n "grand") suggère que ça doit exister. Mais je ne vois de construction évidente

"à la main" que dans les deux cas extrêmes :

(a) q est "(-1)-acyclique", i.e. pour tout F sur Y, $F \longrightarrow q_*q^*F$ est injectif (NB C'est le cas de $Y/P \longrightarrow Y$ si $P \longrightarrow e_Y$ est un épimorphisme – c'est donc le cas de $B_e \longrightarrow B_G$ plus haut.)

On prend

$$\mathbf{R}\Gamma(\operatorname{Coker}(F \longrightarrow q_*(\underbrace{C(q^*(F)))}))[-1])$$
.

(b) \forall F injectif sur Y, $q^*(F)$ est injectif et $F \longrightarrow q_*q^*F$ est un épimorphisme (exemple: q inclusion d'un ouvert $U \hookrightarrow e_Y$). On prend

$$\mathbf{R}\Gamma_{\!Y}(\operatorname{Ker}(\underbrace{C(F)}_{\text{r\'esolution injective}}q_*q^*(C(F))))\,.$$

Dans le cas général, la difficulté provient du fait que le cône d'un morphisme de complexes (tel que

$$F \longrightarrow q_*(q^*(F))$$

n'est pas fonctoriel (dans la catégorie dérivée) par rapport à la flèche dont on veut prendre le cône. Et pourtant, dans le cas particulier actuel, il devrait y avoir un choix fonctoriel. Est-ce évident?

Question pour Illusie: Dans sa théorie des déformations de schémas en groupes plats, il tombe sur des $H^3(B_G/X,-)$ resp. des $Ext^2(X;-,=)$. Peut-on court-circuiter sa théorie via la théorie (supposée écrite) des Gr-champs – resp. via ta théorie des champs de Picard? J'ai [phrase incomplète]

Je te signale que j'ai réfléchi aux Gr-champs sur X. Si G est un Groupe sur X, N un G-Module, les Gr-champs sur X "épinglés par G, N" forment a priori une 2-catégorie et même une 2-catégorie de Picard stricte, grâce à l'opération évidente à la Baer. On trouve que le complexe (de cochaînes) tronqué à 1 échelon à qui lui correspond est le tronqué

$$\tau_{\leq 2}(\mathbf{R}\Gamma(\mathbf{B}_G \bmod X, N)[1])$$
.

(NB la cohomologie de $\mathbf{R}\Gamma(\mathbf{B}_G \mod X, N)$ commence en degré 1.) Plus géométriquement, un Gr-champ sur X épinglé par (G, N) est essentiellement "la

même chose" qu'une 2-gerbe sur B_G , liée par N, et munie d'une trivialisation au dessus de $X \approx B_e = (B_G)/P$ (où P est l'objet de B_G "torseur universel sous G"). Ces 2-gerbes forment en fait une 3-catégorie de Picard a priori, mais il se trouve que dans celle-ci, les 3-flèches sont triviales (i.e. si source = but, ce sont des identités) – cela ne fait qu'exprimer $H^0(B_G/X,N) = 0$ (i.e. $H^0(B_G,N) \longrightarrow H^0(X,N)$ injectif...). Donc la 3-catégorie peut être regardée comme une 2-catégorie – et "c'est" celle des Gr-champs sur X épinglés par G, N. Si on veut localiser sur X, et décrire le 2-champs de Picard sur X des champs de Picard (sur des objets variables de X) épinglés par G, N, on trouve qu'il est exprimé par le complexe

$$\tau_{\leqslant 2}(\mathbf{R}\,p_{G\,*}\operatorname{Coker}(N\,\longrightarrow\,\mathbf{R}q_{G\,*}\overbrace{C(q_G^*N)}))\,,$$

où $p_G: B_G \longrightarrow X$ et $q_G: B_e \approx X \simeq (B_G)_P \longrightarrow B_G$. Toutes ces descriptions étant compatibles avec des variations de G, N, X, cela donne en principe une description de la 2-catégorie des Gr-champs, avec X, G, N variables . . .