Важно помнить, что при решении матричных уравнений:

1) Матрицы А, В, С, Х - таких размеров, что все используемые операции умножения возможны; 2) В матричных уравнениях АХ=В, ХА=В, АХС=В с обеих сторон от знака равенства находятся матрицы одинаковых размеров.

Алгоритмы и методы для решения задач по теме "Обратная матрица. Матричные уравнения"

$$\begin{pmatrix} 1 - 2 - 1 \\ -3 & 2 & 2 \\ 3 - 1 - 2 \end{pmatrix} \cdot X = \begin{pmatrix} 1 & 0 \\ 2 - 2 \\ -3 & 1 \end{pmatrix}$$

Работу выполнил: Стецук Максим 2гр. 1п.гр.

Нахождение обратной матрицы методом присоединённой матрицы

- 1)Проверяем, что: $detA \neq 0$
- 2) Находим все алгебраические дополнения A_{ij}
- 3) Составляем из них матрицу (A_{ij})
- 4)Находим присоединённую матрицу: $\widetilde{\mathbf{A}} = (\mathbf{A_{ii}})^{\mathrm{T}}$
- 5)Находим обратную матрицу:

$$A^{-1} = \frac{1}{\det A} * \tilde{A}$$

Примечание: $detA \neq 0$

Нахождение обратной матрицы методом элементарных преобразований. Метод Гаусса

1) К матрице " A_{n*n} " справа приписываем единичную матрицу E_{n*n} ;

Получаем: $\Gamma = (A|E)_{n*2n}$

- 2) Элементарными преобразованиями над строками приводим матрицу Γ к ступенчатому виду $\Gamma_1=(A_1|B)_{n*2n}$, где A_1 -треугольная;
- 3) Затем элементарными преобразованиями над строками получаем $\Gamma_2 = (E|A^{-1})_{n*2n}$!Прежде всего, необходимо проверить, что $detA \neq 0$

Матричные уравнения Пусть А, В, С, X – матрицы X – неизвестная матрица Решение уравнений простейшего вида:

$$A * X = B$$
: 1) $det A \neq 0$

$$2)A^{-1}$$

$$3)X = A^{-1} * B$$

$$X * A = B$$
: 1) $det A \neq 0$

$$(2)A^{-1}$$

$$3)X = B * A^{-1}$$

$$A * X * C = B:1) detA \neq 0$$

$$2)detC \neq 0$$

$$3)A^{-1}$$

$$4)C^{-1}$$

$$5)X = A^{-1} * B * C^{-1}$$