Comprehensive List of Tokens

Matthew J. Barry Philip B. Yasskin

 $March\ 30,\ 2012$

1 Tokens by Syntax Usage

1.1 Constants

Name	Symbol	Code	Description
Pi	π	#p, #pi	
Natural Exponential Base	e	#e	Euler's/Napier's Number, "e", etc.
Euler-Mascheroni Constant	γ	#gamma	
Imaginary Unit	i	#i	$\sqrt{-1}$
Infinity	∞	<pre>#infinity, infinity</pre>	
True	T	#T, #t, #true, true	
False	\mathbf{F}	#F, #f, #false, false	
Natural Numbers	N	#N	
Integer Ring	\mathbb{Z}	#Z	
Rational Field	Q	#Q	
Real Field	\mathbb{R}	#R	
Complex Field	\mathbb{C}	#C	
Quaternion Ring	H	#H	Hamilton numbers
Octonion Algebra	0	#0	Cayley numbers, Type "Oh".
Universal Set	\mathbb{U}	#U	
Empty Set	Ø	<pre>#empty, {}</pre>	
Zero Vector	$\vec{0}$	#v0	
x Unit Vector	\hat{i}	#vi	
y Unit Vector	ĵ	#vj	
z Unit Vector	$\hat{\hat{k}}$	#vk	
Zero Matrix	0	#0	Type "zero".
Unit Matrix	I	#1	

1.2 Unary Operators

Name	Symbol	Code	Description
Positive	+a	+a	
Negative	-a	-a	
Positive/Negative	$\pm a$	± a	
Natural Exponential	$\exp(a)$	exp(a)	
Natural Logarithm	$\ln(a)$	ln(a)	
Square Root	\sqrt{a}	sqrt(a)	
Factorial	n!	n!	
Logical Negation	$\neg p$	not p, ~p, !p	
Differential	$\mathrm{d}x$	&d x	
Partial Differential	∂x	&pd x	
Prime	f'	f,	
Dot derivative	\dot{x}	x.	Multiple dots are automatically grouped.
Vector	\vec{u}	&v u	
Unit Vector	\hat{u}	&u u	

1.3 Binary Operators

Name	Symbol	Code	Description
Addition	a+b	a+b	
Subtraction	a-b	a-b	
Plus/Minus	$a \pm b$	a ± b	
Multiplication	$a \cdot b$	a*b	
Division	$\frac{a}{b}$	a/b	
Modulus	$a \pmod{n}$	a%n, a mod n	
Exponentiation	a^b	a^b, a**b	
Logarithm with Base	$\log_b a$	log(a, b)	
nth Root	$\sqrt[n]{a}$	root(a, n)	
Subscript	a_b	a &_ b	Indexing
Superscript	a^b	a &^ b	Indexing
Set Union	$a \cup b$	a union b	
Set Intersection	$a \cap b$	a intersect b	
Set Difference	$a \setminus b$	a \ b	
Biconditional	$p \longleftrightarrow q$	p iff q, p <-> q	
Conditional	$p \rightarrow q$	p implies q, p -> q	
Conjunction	$p \wedge q$	p and q, p && q	Logical AND
Disjunction	$p \lor q$	p or q, p q	Logical OR
Exclusion	$p\oplus q$	p xor q	Logical XOR
Such That	$p:q,p\mid q$	p : q, p q	Used with set builder and quantifiers
Dot Product	$ec{u}\cdotec{v}$	&v u &. &v v	
Cross Product	$\vec{u} imes \vec{v}$	&v u &x &v v	
Function Composition	$f \circ g$	f @ g	

1.4 Relations

Name	Symbol	Code	Description
Equal	=	=, ==	
Not Equal	<i>≠</i>	!=, /=, <>	
Less than	<	<	
Greater than	>	>	
Less than or Equal to	\leq	<=	
Greater than or Equal to	\ \ \ \ \ \ \	>=	
Subset	\subseteq	subset	
Superset	\supseteq	superset, supset	
Proper Subset	\subset	propersubset, propsubset, psubset	
Proper Superset	\supset	propersuperset, propsuperset, psuperset	
		propersupset, propsupset, psupset	
Inclusion	\in	in	
Equivalent	=	===, equiv	
Not Equivalent	≢	!==, /==, nequiv	

1.5 Delimiters

Name	Symbol	Code	Description
Such That	$p:q, p \mid q$	p : q, p q	Used with set builder and quantifiers
Parentheses	()	()	Order of operation
Square Brackets	[]	[]	Lists
Curly Braces	{ }	{ }	Set Notation
Angle Brackets	()	< >, <: :>	Vectors
Vertical Bars			Absolute value, length, determinant, norm
Double Bars			Length or norm
Subscript	a_b	a &_ b	Indexing
Superscript	a^b	a &^ b	Indexing
Open Interval	(a,b)	(:a,b:)	Exclusive Range Delimiters
Closed Interval	[a,b]	[:a,b:]	Inclusive Range Delimiters
Half-Open Interval	[a,b)	[:a,b:)	Mixed Range Delimiters

Note that some delimiters have more than one format either with or without colons. Namely, absolute value can be written as $| \dots |$ or $| : \dots : |$, norm can be written as $| \dots |$ or $| : \dots : |$, and vector literals can be surrounded by either $| : \dots : |$. Of the listed alternate delimiters, those without colons are *context-aware* in that they have different meanings and therefore cannot be automatically matched by the Lexer. Additionally, if an expression opened with one type of delimiter, it must be closed with the same type (i.e. context-aware vs. specialized).

1.6 Functions

Name	Symbol	Code	Description
Trig	$\sin(\theta), \ldots$	sin(theta),	Also cos, tan, cot, sec, csc
Inverse Trig	$\arcsin(x), \ldots$	arcsin(x),	Also arccos, arctan, arccot, arcsec, arccsc
Hyperbolic Trig	$\sinh(\lambda), \ldots$	sinh(lambda),	Also cosh, tanh, coth, sech, csch
Inv. Hyp. Trig	$\operatorname{arcsinh}(x), \ldots$	arcsinh(x),	Also arccosh, arctanh, arccoth, arcsech, arccsch
Absolute Value	a	abs(a)	
Square Root	\sqrt{a}	sqrt(a)	
nth Root	$\sqrt[n]{a}$	root(a, n)	
Natural Exponential	$\exp(a)$	exp(a)	
Natural Logarithm	$\ln(a)$	ln(a)	
Logarithm & Base	$\log_b a$	log(a, b)	
Limit	$\lim_{x \to a} f(x)$	lim(f(x), a, x)	
		limit(f(x), x, a)	
Derivative	$\frac{\frac{\mathrm{d}}{\mathrm{d}x}(f(x))}{\frac{\partial}{\partial x_{t}}(f(x,y))}$	diff(f(x), x)	
Partial Derivative	$\frac{\partial}{\partial x}(f(x,y))$	pdiff(f(x,y), x)	
Indefinite Integral	$\int_{b} f(x) \mathrm{d}x$	int(f(x),x)	
Definite Integral	$\int_{a}^{b} f(x) \mathrm{d}x$	int(f(x),x,a,b)	
Sum Over Set	$\sum_{i} n_{i}$	sum(n&_i, i)	Can also be used with relations
Sum Over Range	$\sum_{i=a}^{b} n_i$	sum(n&_i,i,a,b)	
Product Over Set	$\prod_{n=a}^{n=a} n_i$	prod(n&_i, i)	Can also be used with relations
	b	product(n&_i,i,a,b)	
Product Over Range	$\prod_{n=a} n_i$	prod(n&_i,i,a,b)	
		<pre>product(n&_i,i,a,b)</pre>	
Universal Quantifier	$\forall x P(x)$	forall x : P(x)	"For all"; chain nested quantifiers with;
Existential Quantifier	$\exists x P(x)$	exists x : P(x)	"There exists"
Unique Quantifier	$\exists !xP(x)$	unique x : P(x)	"There exists a unique"