Digital Signal Processing

Prof. Nizamettin AYDIN, PhD

naydin@yildiz.edu.tr nizamettinaydin@gmail.com nizamettinaydin@aydin.edu.tr http://www3.yildiz.edu.tr/~naydin

Course Details

Course Code : SEN522

• Course Name: Digital Signal Processing

(Sayısal İşaret İşleme)

• Instructor : Nizamettin AYDIN

1 2

MATLAB Tutorial

Content...

- ➤ What is Matlab?
- MATLAB Parts
- ➤ MATLAB Desktop
- Matrices
 - Numerical Arrays
 - String Arrays
- ➤ Elementary Math
 - Logical Operators
 - Math Functions
 - Polynomials and Interpolation

➤ Importing and Exporting Data

3

...Content...

- Graphics Fundamentals
 - 2D plotting
 - Subplots
 - 3D plotting
 - Specialized Plotting
- > Editing and Debugging M-files
- Script and Function Files
- > Basic Parts of an M-file
- ➤ Flow Control Statements
- ➤ M-file Programming

...Content

- Data types
 - Multidimensional Arrays
 - Structures
 - Cell Arrays
- ➤ Nonlinear Numerical Functions
- > Ordinary Differential Equations (ODE)
- ➤ Handle Graphics
- ➤ Graphic Objects
- ➤ Graphical User Interface (GUI)

5 6

Copyright 2000 N. AYDIN. All rights reserved.

MATLAB

- · high-performance software
 - Computation
 - Visualization
 - Easy-to-use environment.
- high-level language
 - Data types
 - Functions
 - Control flow statements
 - Input/output
 - Graphics
 - Object-oriented programming capabilities

MATLAB Parts

- Developed Environment
- Programming Language
- Graphics

8

- Toolboxes
- Application Program Interface

7

Toolboxes

- Collections of functions to solve problems of several applications.
 - DSP Toolbox
 - Image Toolbox
 - Wavelet Toolbox
 - Neural Network Toolbox
 - Fuzzy Logic Toolbox
 - Control Toolbox
 - Communication Toolbox

MATLAB Desktop Tools

- · Command Window
- · Command History
- Help Browser
- Workspace Browser
- Editor/Debugger
- Launch Pad

9 10

Calculations at the Command Line MATLAB as a calculator **Assigning Variables** -5/(4.8+5.32)^2 » a^b » (3+4i)*(3-4i) Results ans = 25 assigned to "ans" if name not specified 32 » cos(pi/2) » x = 5/2*pi; » y = sin(x) 6.1230e-017 >> exp(acos(0.3)) 3.5470 = asin(y) Numbers stored in double-precision floating point format

General Functions

- · whos: List current variables
- · clear: Clear variables and functions from memory
- · close: Closes last figures
- cd : Change current working directory
- dir : List files in directory
- · echo: Echo commands in M-files
- · format: Set output format

• help command	(>>help)	
11-f		
• <i>lookfor</i> command	(>>lookfor)	
 Help Browser 	(>>doc)	
• <i>helpwin</i> command	(>>helpwin)	
 Search Engine 		
• Printable Documen	ts	
"Matlabroot\help\pd	f_doc\"	
• Link to The MathW	Vorks	

13

Matrices

- Entering and Generating Matrices
- Subscripts
- · Scalar Expansion
- Concatenation
- · Deleting Rows and Columns
- · Array Extraction
- Matrix and Array Multiplication

15 16

21 22

Matrix Manipulation Functions...

zeros : Create an array of all zerosones : Create an array of all ones

• eye : Identity Matrix

rand
 Uniformly distributed random numbers
 diag
 Diagonal matrices and diagonal of a matrix

size : Return array dimensions
 fliplr : Flip matrices left-right
 flipud : Flip matrices up and down
 repmat : Replicate and tile a matrix

• transpose (') : Transpose matrix rot90 : rotate matrix 90 : Lower triangular part of a matrix tril • triu : Upper triangular part of a matrix cross : Vector cross product : Vector dot product dot det : Matrix determinant inv : Matrix inverse

eig : Evaluate eigenvalues and eigenvectors

... Matrix Manipulation Functions

• rank : Rank of matrix

Working with String Arrays String Comparisons - strcmp: compare whole strings - strncmp: compare first 'N' characters - findstr: finds substring within a larger string Converting between numeric & string arrays: - num2str: convert from numeric to string array - str2num: convert from string to numeric array

Elementary Math

- · Logical Operators
- Math Functions
- · Polynomial and Interpolation

27 28

Elementary Math Function... : Absolute value • abs • sign : Signum Function • sin, cos : Triangular functions (sinus, cosinus) • asin, acos: Triangular functions (arcsinus,...) • exp : Exponential • log : Natural logarithm • log10 : Common (base 10) logarithm ceil, floor: Round toward infinities • fix : Round toward zero

29 30

Copyright 2000 N. AYDIN. All rights reserved.

...Elementary Math Function...

 round : Round to the nearest integer gcd : Greatest common devisor

: Least common multiple 1cm : Square root function

real, imag: Real and Image part of complex

· Remainder after division rem

...Elementary Math Function

- max, min: Maximum and Minimum of arrays
- mean, median: Average and Median of arrays
- std, var: Standard deviation and variance
- sort: Sort elements in ascending order
- sum, prod: Summation & Product of Elements
- trapz: Trapezoidal numerical integration
- cumsum, cumprod: Cumulative sum, product
- diff, gradient; Differences and Numerical Gradient

32 31

Polynomials and Interpolation

· Polynomials

sqrt

- Representing
- Roots (>> roots)
- Evaluation (>> polyval)
- Derivatives (>> polyder)
- Curve Fitting (>> polyfit)
- Partial Fraction Expansion (residue)
- Interpolation
 - One-Dimensional (interp1)
 - Two-Dimensional (interp2

Example polysam=[1 0 0 8]; roots(polysam) ans =
 -2.0000
 1.0000 + 1.7321i
 1.0000 - 1.7321i
Polyval(polysam,[0 1 2.5 4 6.5]) Polyval (polysom,) - ans = 8.0000 9.0000 23.6250 72.0000 282.6250 [r p k]=residue(polysam,[1 2 1])
r = 3 7

33 34

```
Example
x = [0: 0.1: 2.5];
y = erf(x);
p = polyfit(x,y,6)
 0.0084 -0.0983 0.4217 -0.7435 0.1471
interp1(x,y,[0.45 0.95 2.2 3.0])
    0.4744
             0.8198
                       0.9981
```

Importing and Exporting Data · Using the Import Wizard • Using Save and **Load** command load fname save fname x y z save fname -ascii load fname -ascii load fname -mat

Input/Output for Text File

• Read formatted data, reusing the format string N times.

»[A1...An]=textread(filename,format,N)

• Import and Exporting Numeric Data with General ASCII delimited files

» M = dlmread(filename, delimiter, range)

Input/Output for Binary File

• fopen : Open a file for input/output

fclose : Close one or more open files

fread : Read binary data from file

fwrite : Write binary data to a file

fseek : Set file position indicator

» fid = fopen('mydata.bin', 'wb');
» fwrite (fid,eye(5) , 'int32');
» fclose (fid);
» fid = fopen('mydata.bin', 'rb');
» M = fread(fid, [5 5], 'int32')
» fclose (fid);

37 38

Graphics

· Basic Plotting

plot, title, xlabel, grid, legend, hold, axis

• Editing Plots

Property Editor

· Mesh and Surface Plots

meshgrid, mesh, surf, colorbar, patch, hidden

Handle Graphics

2-D Plotting

• Syntax:

40

```
plot(x1, y1, 'clm1', x2, y2, 'clm2', ...)
 x=[0:0.1:2*pi];
y=sin(x);
y=sin(x);
z=cos(x);
plot(x,y,x,z,'linewidth',2)
title('Sample Plot','fontsize',14);
xlabel('X values','fontsize',14);
ylabel('Y values','fontsize',14);
legend('Y data','Z data')
 grid on
```

39

Subplots subplot(rows,cols,index) subplot(2,2,1); subplot(2,2,2) subplot (2,2,3) subplot (2,2,4)

Editing and Debugging M-Files

- · What is an M-File?
- The Editor/Debugger
- Search Path
- · Debugging M-Files
 - Types of Errors (Syntax Error and Runtime Error)
 Using keyboard and ";" statement

 - Setting Breakpoints
 - Stepping Through
 - Continue, Go Until Cursor, Step, Step In, Step Out Examining Values
 - - Selecting the Workspace
 - Viewing *Datatips* in the Editor/Debugger
 Evaluating a Selection

45

Script and Function Files

• Script Files

46

- Work as though you typed commands into MATLAB prompt
- · Variable are stored in MATLAB workspace
- Function Files
 - Let you make your own MATLAB Functions
 - · All variables within a function are local
 - All information must be passed to functions as parameters
 - · Subfunctions are supported


```
Flow Control Statements...

• if Statement

if ((attendance >= 0.90) & (grade_average >= 60))

pass = 1;
end;

• while Loops

eps = 1;
while (1+eps) > 1
eps = eps/2;
end
eps = eps*2
```

M-file Programming Features

- SubFunctions
- · Varying number of input/output arguments
- · Local and Global Variables
- · Obtaining User Input
 - Prompting for Keyboard Input
 - Pausing During Execution
- Errors and Warnings
- Displaying error and warning Messages
- Shell Escape Functions (! Operator)
- · Optimizing MATLAB Code
 - Vectorizing loops
 - Preallocating Arrays

51 52


```
Cell Arrays
 Array for which the elements are cells and can hold
  other MATLAB arrays of different types.
   \gg A(1,1) = \{[1 \ 4 \ 3;
                                             Anne Smith
   0 5 8
    7 2 9]};
    » A(1,2) = {'Anne Smith'};
    \gg A(2,1) = {3+7i};
                                             [-pi:pi/10:pi]
                                    3+7
    » A(2,2) = {-pi:pi/10:pi};
• Using braces {} to point to elements of cell array
• Using celldisp function to display cell array
```

Nonlinear Numerical Functions • inline function » f = inline('3*sin(2*x.^2)','x') - Use *char* function Inline function: to convert inline $f(x) = 3*sin(2*x.^2)$ object to string » f(2) ans 2.9681 • Numerical Integration using quad $\gg Q = quad('1./(x.^3-2*x-5)',0,2);$ » F = inline('1./(x.^3-2*x-5)'); $\gg 0 = \operatorname{quad}(F.0.2)$: » Q = quad('myfun',0,2) Note: quad function use $y = 1./(x.^3-2*x-5);$ adaptive Simpson quadrature

57 58

```
Nonlinear Numerical Functions
• fzero finds a zero of a single variable function
        [x,fval] = fzero(fun,x0,options)
    fun is inline function or m-function
• fminbnd minimize a single variable function on a
  fixed interval. x_1 < x < x_2
       [x,fval]=
• fminbnd (fun. x1. x2. options)
• fminsearch minimize a several variable function
        [x,fval]=
• Use offinese to determine options parameter.
        options =
        optimset('param1',value1,...)
```

```
Ordinary Differential Equations
• An explicit ODE with initial value:
                   y' = f(t, y)
                   y(t_0) = y_0
• Using ode45 for non-stiff functions and ode23t for
  stiff functions.
   [t,y] = solver(odefun,tspan,y0,options)
  function dydt = odefun(t,y)
                                    Initialvalue
                [initialtime
                             finaltime]
• Use odeset to define options parameter
```


Handle Graphics

- Graphics in MATLAB consist of objects:
 - root, figure, axes, image, line, patch, rectangle, surface, text, light
- Creating Objects
- Setting Object Properties Upon Creation
- Obtaining an Object's Handles
- Knowing Object Properties
- Modifying Object Properties
 - Using Command Line
 - Using Property Editor

61 62

Obtaining an Object's Handle 1. Upon Creation h_line = plot(x_data, y_data, ...) 2. Utility Functions What is the current object? 0 - root object handle Last object created gcf - current figure handle • OR Last object clicked gca - current axis handle gco - current object handle 3. FINDOBJ h_obj = findobj(h_parent, 'Property', 'Value', ...) -Default = 0 (root object)

63 64

Modifying Object Properties

• Obtaining a list of current properties:

get(h_object)

• Obtaining a list of settable properties:

set(h_object)

- · Modifying an object's properties
 - Using Command Line

set(h_object,'PropertyName','New_Value',...)

Using Property Editor

Graphical User Interface

- · What is GUI?
- What is figure and *.fig file?
- Using guide command
- · GUI controls

· GUI menus

Conclusion

- ➤ Matlab is a language of technical computing.
- ➤ Matlab, a high performance software, a high-level language
- ➤ Matlab supports GUI, API, and ...
- ➤ Matlab Toolboxes best fits different applications
- ➤ Matlab ...

Getting more help

- Contact http://www.mathworks.com/support
 - You can find more help and FAQ about mathworks products on this page.
- Contact comp.soft-sys.matlab Newsgroup
 - Using Google Groups Page to Access this page
 - http://groups.google.com/