Note Title

23/11/2024

[Criterio confronto asintofico]

Siano au e bn due successioni con au >0 e bn >0 definitivamente. Caso standard Supponiano che

$$\frac{\alpha_{\mathsf{l}}}{\mathsf{b}_{\mathsf{m}}} \to \mathcal{L} \neq 0$$

Allora I au e Zbm hauns Do stesso tipo di comportamento.

$$\frac{a_{ij}}{b_{m}} \rightarrow 0$$

Allora [an < 1 definitio, quindi an < b = definitio]

$$\sum b_m$$
 converge \Rightarrow $\sum a_m$ converge $\sum b_m = +\infty$ \Rightarrow BOH

Suppositante de du son Allora [an > 1 definitiv, quindi au > bn definitiv.]

Esempio 1 (Facile) $\sum_{m=1}^{\infty} \frac{\log_m}{m}$

Provo coufr assist can bon = in . Ossewo che

Dra I m diverge (annouica con a=1) => I au diverge

Escupio 2 (Facile)
$$\sum_{w=2}^{\infty} \frac{1}{m^2 \log n}$$

Roso C.A. Cou $\log \frac{1}{m^2}$. Ossewo che

 $\frac{\partial u}{\partial m} = \frac{1}{m^2 \log n}$ = 0 (caso Diwite)

 $\frac{\partial u}{\partial m} \Rightarrow 0$ quiudi $\partial u \leq \log n$ definitiv.]

Ora $\sum \log n = \sum_{m=2}^{\infty} cowerge$ (annouica con espanente $a = 2$)

Quiudi $\sum \partial u$ cowerge.

Escupio 3 (Più delicato) $\sum_{u=2}^{\infty} \frac{\log m}{m^2}$

Tentativo 1 C.A. con $\frac{1}{m^2} = \log m$
 $\sum \frac{1}{m^2} cowerge \Rightarrow \sum \partial u$ BoH \bigotimes

Tentativo 2 C.A. con $\log m = \frac{1}{m}$
 $\sum \frac{1}{m^2} cowerge \Rightarrow \sum \partial u$ BoH \bigotimes

Tentativo 2 C.A. con $\log m = \frac{1}{m}$
 $\sum \frac{1}{m^2} cowerge \Rightarrow \sum \partial u$ BoH \bigotimes

Tentativo 3 C.A. con $\log m = \frac{1}{m}$
 $\sum \log m = \sum \log m$

Come prima au « pm definitir.	
Ora pero	
$\sum b_m = \sum \frac{1}{m^{4/3}}$ couverge perché $\frac{4}{3} > 1$	
Quindi Dan couverge	
Juterpretazione brutale dei 3 esempi	
$\sum \frac{1}{m}$ diverge $\sum \frac{\log m}{n}$ diverge aucora di più, perdé $\log n$	
rende i termini più grandi	
I \frac{1}{m^2} couverge I \frac{1}{m^2 logn} couverge aucora di più, perdré	
logn collabora a rendere,	
termini più piccoli	
_ logn	
I \frac{1}{m^2} couverge \sum \frac{\log n}{m^2} Ora log n "rema contro la	•
couserspersa" perdié reende: termina	.
più grandi. Tuttavia log m è	
debole, quiudi sposta poco rispetto	
$\frac{a}{m^2}$	
$\frac{1}{m^{413}} \frac{1}{m^2} \frac{1}{m^3}$	
Oran 1	
Dogm m² Dogn	
Quello de abbiamo dimostrato nell'esempio 3 è else logn	
sta a destra di 1/m413.	
Oss. Juvece di 4 poters usare un quollemque esponente	
in (1,2)	

