

FCC ID:VS9-EX-11

# FCC PART 15C TEST REPORT FOR CERTIFICATION On Behalf of

Goodbetterbest Limited

Product: EX Wireless Dongle

Model Number: EX-11

FCC ID: VS9-EX-11

Prepared for: Goodbetterbest Limited

Suites 103-107, Devonshire Business Centre,

Works Road, Letchworth, SG6 1GJ, United Kingdom

Prepared By: Audix Technology (Shenzhen) Co., Ltd.

No. 6, Ke Feng Rd., 52 Block, Shenzhen Science & Industrial Park, Nantou, Shenzhen, Guangdong, China

Tel: (0755) 26639496

Report Number : ACS-F13286

Date of Test : Aug.26~Sep.21, 2013

Date of Report : Oct.16, 2013



FCC ID:VS9-EX-11

### TABLE OF CONTENTS

| escript      | scription                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |      |  |  |  |
|--------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|--|--|--|
| CII          | MMARY OF STANDARDS AND RESULTS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1 1  |  |  |  |
|              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |  |  |  |
| 1.1.         | <b>r</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |      |  |  |  |
|              | ENERAL INFORMATION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |      |  |  |  |
| 2.1.         | · · · · · · · · · · · · · · · · · · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |      |  |  |  |
| 2.2.         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |  |  |  |
| 2.3.<br>2.4. |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |  |  |  |
| 2.4.<br>2.5. | J control of the cont |      |  |  |  |
|              | WER LINE CONDUCTED EMISSION TEST                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |      |  |  |  |
|              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |  |  |  |
| 3.1.<br>3.2. | 1 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |      |  |  |  |
| 3.2.<br>3.3. |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |  |  |  |
| 3.4.         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |  |  |  |
| 3.5.         | · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |      |  |  |  |
| 3.6.         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |  |  |  |
| 3.7.         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |  |  |  |
| RA           | DIATED EMISSION TEST                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |      |  |  |  |
| 4.1.         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |  |  |  |
| 4.2.         | • •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |      |  |  |  |
| 4.3.         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |  |  |  |
| 4.4.         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |  |  |  |
| 4.5.         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |  |  |  |
| 4.6.         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |  |  |  |
| 4.7.         | Radiated Emission Test Results                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 4-4  |  |  |  |
| <b>20</b> ]  | DB BANDWIDTH TEST                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 5-1  |  |  |  |
| 5.1.         | Test Equipment                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 5-1  |  |  |  |
| 5.2.         | Limit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 5-1  |  |  |  |
| 5.3.         | Test Results                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 5-1  |  |  |  |
| BA           | ND EDGE COMPLIANCE TEST                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 6-1  |  |  |  |
| 6.1.         | Test Equipment                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 6-1  |  |  |  |
| 6.2.         | Limit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 6-1  |  |  |  |
| 6.3.         | Test Produce                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 6-1  |  |  |  |
| 6.4.         | Test Results                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 6-1  |  |  |  |
| AN           | TENNA REQUIREMENT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 7-1  |  |  |  |
| RA           | DIO FRREQUENCY EXPOSURE COMPLIANCE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 8-1  |  |  |  |
| DE           | VIATION TO TEST SPECIFICATIONS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 9-1  |  |  |  |
| PH           | OTOGRAPH OF TEST                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 10-1 |  |  |  |
|              | 1. Photos of Power Line Conducted Emission Test                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |  |  |  |
| 10.2         | 2. Photos of Radiated Emission Test (30-1000MHz)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 10-2 |  |  |  |
| PH           | OTOGRAPH OF EUT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 11-1 |  |  |  |



FCC ID: VS9-EX-11

TEST REPORT CERTIFICATION

Applicant

Goodbetterbest Limited

**EUT Description** 

EX Wireless Dongle

FCC ID

VS9-EX-11

(A) MODEL NO.

: EX-11

(B) SERIAL NO.

: N/A

(C) POWER SUPPLY: DC 5V

(D) TEST VOLTAGE: DC 5V From PC Input AC 120V/60Hz

Tested for comply with:

FCC Rules and Regulations Part 15 Subpart C: 2012

Test procedure used:

ANSI C63.10:2009

The device described above is tested by AUDIX TECHNOLOGY (SHENZHEN) CO., LTD. to confirm comply with all the FCC Part 15 Subpart C requirements.

The test results are contained in this test report and AUDIX TECHNOLOGY (SHENZHEN) CO., LTD. is assumed full responsibility for the accuracy and completeness of these tests. This report contains data that are not covered by the NVLAP accreditation. Also, this report shows that the Equipment Under Test (EUT) is to be technically compliant with the FCC requirements.

This Report is made under FCC Part 2.1075. No modifications were required during testing to bring this product into compliance.

This report applies to above tested sample only. This report shall not be reproduced in part without written approval of AUDIX TECHNOLOGY (SHENZHEN) CO., LTD.

The report must not be used by the client to claim product certification, approval, or endorsement by NVLAP, NIST, or any agency of the federal government.

| Date of Test:  | Aug.26 Sep.21, 2013     | Report of date:                        | Oct.16, 2013                 |
|----------------|-------------------------|----------------------------------------|------------------------------|
| Prepared by :  | Julia Zhu               | Reviewed by:                           |                              |
|                | Julia Zhu / Assistant D | Audix Technology<br>EMC 部門報告           | (Shenzhen) Co., Ltd. Manager |
|                |                         |                                        |                              |
|                |                         | tamp only for EMC<br>ignature: Dawid T |                              |
| Approved & Aut |                         | ignature: pquid (                      | in 10.11                     |
|                |                         | David Jin /                            | Manager                      |



FCC ID:VS9-EX-11 page 1-1

### 1. SUMMARY OF STANDARDS AND RESULTS

### 1.1.Description of Standards and Results

The EUT have been tested according to the applicable standards as referenced below.

| EMISSION                           |                                                                  |         |  |  |  |  |
|------------------------------------|------------------------------------------------------------------|---------|--|--|--|--|
| Description of Test Item           | Standard                                                         | Results |  |  |  |  |
| Power Line Conducted Emission Test | FCC Part 15C: 15.207<br>ANSI C63.10-2009                         | PASS    |  |  |  |  |
| Radiated Emission Test             | FCC Part 15C: 15.209<br>FCC Part 15C: 15.249<br>ANSI C63.10-2009 | PASS    |  |  |  |  |
| Band Edge Compliance Test          | FCC Part 15: 15.249<br>ANSI C63.10-2009                          | PASS    |  |  |  |  |
| 20dB Bandwidth Test                | FCC Part 15: 15.215<br>ANSI C63.10-2009                          | PASS    |  |  |  |  |



### 2. GENERAL INFORMATION

2.1.Description of Device (EUT)

Product Name : EX Wireless Dongle

Model Number : EX-11

FCC ID : VS9-EX-11

Operation frequency: 2405MHz-2478MHz

Antenna : Integrated PCB antenna, 0dBi gain

Modulation : GFSK

Applicant : Goodbetterbest Limited

Suites 103-107, Devonshire Business Centre, Works

Road, Letchworth, SG6 1GJ, United Kingdom

Audio Cable : Unshielded, Detachable, 1.0m

USB Cable : Unshielded, Detachable, 1.0m

AV In Cable : Unshielded, Detachable, 1.5m

Date of Test : Aug.26~Sep.21, 2013

Date of Receipt : Aug.25, 2013

Sample Type : Prototype production

page

2-2

# 2.2.Tested Supporting System Details

| No. | Description | ACS No.        | Manufacturer                                                                                                                                                                | Model | Serial Number | Approved type |  |  |  |
|-----|-------------|----------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|---------------|---------------|--|--|--|
|     |             | Test PC R      | DELL                                                                                                                                                                        | D430  | PP09S         | ☑ FCC DoC     |  |  |  |
| 1.  |             | Power Adopter: | Power Cord: Unshielded, Detachable, 1.8m  Power Adopter: Manufacture: DELL, M/N:LA65NS1-00  DVI Cable: Shielded, Detachable, 4.0m (Power Cord: Unshielded, Detachable, 1.8m |       |               |               |  |  |  |

# 2.3.EUT Configuration and operation conditions for test.



a: USB Cable

(EUT: EX Wireless Dongle)



### 2.4. Test Facility

Site Description

Name of Firm : Audix Technology (Shenzhen) Co., Ltd.

No. 6, Ke Feng Rd., 52 Block, Shenzhen

Science & Industrial Park, Nantou, Shenzhen, Guangdong, China

3m Anechoic Chamber : Certificated by FCC, USA

Registration Number: 90454 Valid Date: Feb.22, 2015

3m & 10m Anechoic Chamber : Certificated by FCC, USA

Registration Number: 794232 Valid Date: Dec.31, 2015

EMC Lab. : Certificated by Industry Canada

Registration Number: IC 5183A-1

Valid Date: Jun.13, 2014

Certificated by DAkkS, Germany Registration No: D-PL-12151-01-01

Valid Date: Feb.01, 2014

Accredited by NVLAP, USA NVLAP Code: 200372-0 Valid Date: Mar.31, 2014

### 2.5. Measurement Uncertainty (95% confidence levels, k=2)

| Test Item                                        | Uncertainty                     |
|--------------------------------------------------|---------------------------------|
| Uncertainty for Conducted emission test in No. 1 | 3.08 dB(9KHz to 150KHz)         |
| Conduction                                       | 3.10 dB(150KHz to 30MHz)        |
|                                                  | 3.22 dB(30~200MHz, Polarize: H) |
| Uncertainty for Radiation Emission test          | 3.23 dB(30~200MHz, Polarize: V) |
| in 3m chamber                                    | 3.49 dB(200M~1GHz, Polarize: H) |
|                                                  | 3.39 dB(200M~1GHz, Polarize: V) |
| Uncertainty for Radiation Emission test in 3m    | 5.04 dB(1~6GHz Distance: 3m)    |
| chamber (1GHz-18GHz)                             | 5.06 dB(6~18GHz Distance: 3m)   |
| Uncertainty for Conduction Spurious emission     | 2.00 dB                         |
| test                                             | 2.00 dB                         |
| Uncertainty for Power density test               | 2.00 dB                         |
| Uncertainty for Frequency range test             | $7x10^{-8}$                     |
| Uncertainty for Bandwidth test                   | 83 kHz                          |
| Uncertainty for DC power test                    | 0.038 %                         |
| Uncertainty for test site temperature and        | 0.6℃                            |
| humidity                                         | 3%                              |



### 3. POWER LINE CONDUCTED EMISSION TEST

### 3.1.Test Equipment

| Item | Equipment      | Manufacturer    | Model No.  | Serial No. | Last Cal.  | Cal. Interval |
|------|----------------|-----------------|------------|------------|------------|---------------|
| 1.   | Test Receiver  | Rohde & Schwarz | ESHS10     | 838693/001 | Oct.31, 12 | 1 Year        |
| 2.   | L.I.S.N.#1     | Rohde & Schwarz | ESH2-Z5    | 834066/011 | Oct.31, 12 | 1 Year        |
| 3.   | L.I.S.N.#3     | Kyoritsu        | KNW-242C   | 8-1920-1   | May.08, 13 | 1 Year        |
| 4.   | Terminator     | Hubersuhner     | $50\Omega$ | No. 1      | May.08, 13 | 1 Year        |
| 5.   | Terminator     | Hubersuhner     | $50\Omega$ | No. 2      | May.08, 13 | 1 Year        |
| 6.   | RF Cable       | Fujikura        | 3D-2W      | No.1       | May.08, 13 | 1Year         |
| 7.   | Coaxial Switch | Anritsu         | MP59B      | M50564     | May.08, 13 | 1 Year        |
| 8.   | Pulse Limiter  | Rohde & Schwarz | ESH3-Z2    | 100341     | May.08, 13 | 1 Year        |

#### 3.2.Block Diagram of Test Setup



#### 3.3. Power Line Conducted Emission Test Limits

|                 | Maximum RF Line Voltage |               |  |  |
|-----------------|-------------------------|---------------|--|--|
| Frequency       | Quasi-Peak Level        | Average Level |  |  |
|                 | $dB(\mu V)$             | dB(µV)        |  |  |
| 150kHz ~ 500kHz | 66 ~ 56*                | 56 ~ 46*      |  |  |
| 500kHz ~ 5MHz   | 56                      | 46            |  |  |
| 5MHz ~ 30MHz    | 60                      | 50            |  |  |

Notes: 1. \* Decreasing linearly with logarithm of frequency.

2. The lower limit shall apply at the transition frequencies.

### 3.4. Configuration of EUT on Test

The following equipment are installed on Power Line Conducted Emission Test to meet the commission requirement and operating regulations in a manner which tends to maximize its emission characteristics in a normal application.

3.4.1.EX Wireless Dongle (EUT)

Model Number : EX-11 Serial Number : N/A



#### 3.5. Operating Condition of EUT

- 3.5.1. Setup the EUT and simulator as shown as Section 3.2.
- 3.5.2. Turn on the power of all equipment.
- 3.5.3.Let the EUT work in test mode (TX Mode) and measure it.

#### 3.6.Test Procedure

The EUT was placed on a non-metallic table, 80cm above the ground plane. The EUT Power connected to the power mains through a line impedance stabilization network (L.I.S.N. #1). The other peripheral devices power cord connected to the power mains through a line impedance stabilization network (L.I.S.N.#3). this provided a 50-ohm coupling impedance for the EUT (Please refer to the block diagram of the test setup and photographs). Both sides of power line were checked for maximum conducted interference. In order to find the maximum emission, the relative positions of equipments and all of the interface cables were changed according to ANSI C63.4-2009 on conducted Emission test.

The bandwidth of test receiver (R&S TEST RECEIVER ESHS10) is set at 9kHz.

The frequency range from 150kHz to 30MHz is checked. The test result are reported on Section 3.7.

#### 3.7. Conducted Disturbance at Mains Terminals Test Results

**PASS.** (All emissions not reported below are too low against the prescribed limits.)





Site no :1#conduction Data No :15

Dis./Ant. :\*\* 2012 ESH2-25 LINE

Limit :FCC PART 15 C

Env./Ins. :23.8\*C/51% Engineer :Nick\_Huang

EUT :EX Wireless Dongle

Power Rating :DC 5V From PC Input AC 120V/60Hz

Test Mode :Tx Mode EX-11

| No | Freq<br>(MHz) | LISN<br>Factor<br>(dB) | Cable<br>Loss<br>(dB) | Reading<br>(dBuV) | Emission<br>Level<br>(dBuV) | Limits<br>(dBuV) | Margin<br>(dB) | Remark |
|----|---------------|------------------------|-----------------------|-------------------|-----------------------------|------------------|----------------|--------|
| 1  | 0.15649       | 0.19                   | 0.01                  | 50.11             | 50.31                       | 65.65            | 15.34          | QP     |
| 2  | 0.40831       | 0.19                   | 0.02                  | 33.74             | 33.95                       | 57.68            | 23.73          | QP     |
| 3  | 0.77931       | 0.20                   | 0.03                  | 22.21             | 22.44                       | 56.00            | 33.56          | QP     |
| 4  | 3.964         | 0.29                   | 0.06                  | 22.13             | 22.48                       | 56.00            | 33.52          | QP     |
| 5  | 11.996        | 0.57                   | 0.11                  | 19.92             | 20.60                       | 60.00            | 39.40          | QP     |
| 6  | 22.896        | 1.28                   | 0.15                  | 26.58             | 28.01                       | 60.00            | 31.99          | QP     |

Remarks: 1.Emission Level=LISN Factor+Cable Loss+Reading.

2.If the average limit is met when useing a quasi-peak detector. the EUT shall be deemed to meet both limits and measurement with average detector is unnecessary.





Site no :1#conduction Data No :16

Dis./Ant. :\*\* 2012 ESH2-Z5 NEUTRAL

Limit :FCC PART 15 C

Env./Ins. :23.8\*C/51% Engineer :Nick\_Huang

EUT :EX Wireless Dongle

Power Rating :DC 5V From PC Input AC 120V/60Hz

Test Mode :Tx Mode EX-11

| No | Freq<br>(MHz) | LISN<br>Factor<br>(dB) | Cable<br>Loss<br>(dB) | Reading<br>(dBuV) | Emission<br>Level<br>(dBuV) | Limits<br>(dBuV) | Margin<br>(dB) | Remark |
|----|---------------|------------------------|-----------------------|-------------------|-----------------------------|------------------|----------------|--------|
| 1  | 0.15240       | 0.21                   | 0.01                  | 49.81             | 50.03                       | 65.87            | 15.84          | QP     |
| 2  | 0.41485       | 0.23                   | 0.02                  | 34.23             | 34.48                       | 57.55            | 23.07          | QP     |
| 3  | 1.310         | 0.26                   | 0.03                  | 24.99             | 25.28                       | 56.00            | 30.72          | QP     |
| 4  | 1.772         | 0.27                   | 0.04                  | 25.90             | 26.21                       | 56.00            | 29.79          | QP     |
| 5  | 4.874         | 0.34                   | 0.07                  | 25.89             | 26.30                       | 56.00            | 29.70          | QP     |
| 6  | 24.400        | 0.99                   | 0.16                  | 26.63             | 27.78                       | 60.00            | 32.22          | QP     |

Remarks: 1.Emission Level=LISN Factor+Cable Loss+Reading.

<sup>2.</sup>If the average limit is met when useing a quasi-peak detector. the EUT shall be deemed to meet both limits and measurement with average detector is unnecessary.



# 4. RADIATED EMISSION TEST

# 4.1.Test Equipment

Frequency rang: 30~1000MHz

| Item | Equipment      | Manufacturer    | Model No. | Serial No.      | Last Cal.  | Cal. Interval |
|------|----------------|-----------------|-----------|-----------------|------------|---------------|
| 1    | 3#Chamber      | AUDIX           | N/A       | N/A             | Nov.24, 12 | 1 Year        |
| 2    | EMI Spectrum   | Agilent         | E4407B    | MY41440292      | May.08, 13 | 1 Year        |
| 3    | Test Receiver  | Rohde & Schwarz | ESVS10    | 834468/011      | May.08, 13 | 1 Year        |
| 4    | Amplifier      | HP              | 8447D     | 2648A04738      | May.08, 13 | 1 Year        |
| 5    | Bilog Antenna  | TESEQ           | CBL6112D  | 35375           | May.30, 13 | 1 Year        |
| 6    | RF Cable       | MIYAZAKI        | CFD400-NL | 3# Chamber No.1 | May.08, 13 | 1 Year        |
| 7    | Coaxial Switch | Anritsu         | MP59B     | M74389          | May.08, 13 | 1 Year        |

Frequency rang: above 1000MHz

| Item | Equipment         | Manufacturer | Model No.   | Serial No. | Last Cal.  | Cal. Interval |
|------|-------------------|--------------|-------------|------------|------------|---------------|
| 1    | Spectrum Analyzer | Agilent      | E4407B      | MY41440292 | May.08, 13 | 1 Year        |
| 2    | Horn Antenna      | EMCO         | 3115        | 9510-4580  | May.28, 13 | 1 Year        |
| 3    | Amplifier         | Agilent      | 8449B       | 3008A00863 | May.08, 13 | 1 Year        |
| 4    | RF Cable          | Hubersuhner  | SUCOFLEX106 | 77980/6    | May.08, 13 | 1 Year        |
| 5    | RF Cable          | Hubersuhner  | SUCOFLEX106 | 77977/6    | May.08, 13 | 1 Year        |
| 6    | Horn Antenna      | EMCO         | 3116        | 00060089   | Aug.28, 13 | 1 Year        |



# 4.2.Block Diagram of Test Setup For frequency range 30MHz-1000MHz



For frequency range above 1GHz





#### 4.3. Radiated Emission Limit Standard: FCC 15.209 and 15.249

| FREQUENCY                                                          | DISTANCE | FIELD STRENGTHS LIMI                             |               |
|--------------------------------------------------------------------|----------|--------------------------------------------------|---------------|
| MHz                                                                | Meters   | μV/m                                             | $dB(\mu V)/m$ |
| 30 ~ 88                                                            | 3        | 100                                              | 40.0          |
| 88 ~ 216                                                           | 3        | 150                                              | 43.5          |
| 216 ~ 960                                                          | 3        | 200                                              | 46.0          |
| 960 ~ 1000                                                         | 3        | 500                                              | 54.0          |
| Above 1000MHz                                                      | 3        | 74.0 dB(μV                                       | /)/m (Peak)   |
|                                                                    |          | 54.0 dB(µV)/m (Average)                          |               |
| Field Strength of<br>fundamental emissions for<br>2.4GHz-2.4835GHz | 3        | 114.0 dB(μV)/m (Peak)<br>94.0 dB(μV)/m (Average) |               |

Remark : (1) Emission level  $dB\mu V = 20 \log Emission level \mu V/m$ 

- (2) The smaller limit shall apply at the cross point between two frequency bands.
- (3) Distance is the distance in meters between the measuring instrument, antenna and the closest point of any part of the device or system.
- (4) The emission limits shown in the above table are based on measurements employing a CISPR quasi-peak detector except for the frequency bands 9-90 kHz, 110-490 kHz and above 1000 MHz. Radiated emission limits in these three bands are based on measurements employing an average detector.

#### 4.4. EUT Configuration on Test

The following equipment are installed on Radiated Emission Test to meet the commission requirements and operating regulations in a manner which tends to maximize its emission characteristics in normal application.

#### 4.5. Operating Condition of EUT

- 4.5.1. Setup the EUT and simulator as shown as Section 4.2.
- 4.5.2. Turned on the power of all equipment.
- 4.5.3.Let EUT work in Tx mode.

#### 4.6. Test Procedure

The EUT and its simulators are placed on a turn table, which is 0.8 meter high above ground. The turn table can rotate 360 degrees to determine the position of the maximum emission level. The EUT is set 3 meters away from the receiving antenna, which is mounted on a antenna tower. The antenna can be moved up and down between 1 meter and 4 meters to find out the maximum emission level. Broadband antenna (calibrated bilog antenna) is used as receiving antenna. Both horizontal and vertical polarization of the antenna is set on Test. In order to find the maximum emission levels, all of the interface cables must be manipulated according to ANSI C63.10-2009 on radiated emission Test.



page 4-4

During the pretest the EUT was rotated through three orthogonal axes to determine the attitude that maximizes the emissions.

After that the EUT was manually handled to find the orientation that has the maximum emission, which is the orientation show in the test setup photos.

The bandwidth of the EMI test receiver (R&S ESVS10) is set at 120kHz for frequency range from 30MHz to 1000 MHz.

The bandwidth of the Spectrum's RBW is set at 1MHz and VBW is set at 3MHz for peak emissions measurement above 1GHz

This device is pulse modulated, a duty cycle factor was used to calculate average level based measured peak level.

The frequency range from 30MHz to 10th harmonic (25GHz) are checked. and no any emissions were found from 18GHz to 25 GHz, So the radiated emissions from 18GHz to 25GHz were not record.

#### 4.7. Radiated Emission Test Results

#### PASS.

All the emissions from 30MHz to 25GHz were comply with the 15.209 Limit.

Note: The duty cycle factor for calculate average level is 50.75dB, and average limit is 20dB below peak limit, so if peak measured level comply with peak limit, the average level was deemed to comply with average limit.



*page* 4-5





page

4-6



4-7 page





Site no. : 3m Chamber

Data no. : 12 Ant. pol. : HORIZONTAL Dis. / Ant. : 3m 2013 CBL6112D 35375

: FCC PART 15 C (3M) Limit

Env. / Ins. : 24\*C/65% Engineer : Kevin

: EX Wireless Dongle

Power rating : DC 5V From PC Input AC 120V/60Hz

Test Mode : Tx Mode EX-11

| No. | Freq.<br>(MHz) | Ant.<br>Factor<br>(dB/m) | Cable<br>Loss<br>(dB) | Reading<br>(dBuV) | Emission<br>Level<br>(dBuV/m) | Limits<br>(dBuV/m) | Margin<br>(dB) | Remark |
|-----|----------------|--------------------------|-----------------------|-------------------|-------------------------------|--------------------|----------------|--------|
| 1   | 49.400         | 9.34                     | 1.18                  | 15.79             | 26.31                         | 40.00              | 13.69          | QP     |
| 2   | 167.740        | 10.41                    | 1.67                  | 18.79             | 30.87                         | 43.50              | 12.63          | QP     |
| 3   | 300.630        | 14.01                    | 2.17                  | 14.74             | 30.92                         | 46.00              | 15.08          | QP     |
| 4   | 335.550        | 14.82                    | 2.27                  | 15.01             | 32.10                         | 46.00              | 13.90          | QP     |
| 5   | 365.620        | 15.70                    | 2.36                  | 14.60             | 32.66                         | 46.00              | 13.34          | QP     |
| 6   | 499.480        | 17.99                    | 2.75                  | 12.59             | 33.33                         | 46.00              | 12.67          | QP     |

Remarks: 1. Emission Level= Antenna Factor + Cable Loss + Reading.

2. The emission levels that are 20dB below the official limit are not reported.

page



Engineer : Kevin

Site no. : 3m Chamber Data no. : 11 Dis. / Ant. : 3m 2013 CBL6112D 35375 Ant. pol. : VERTICAL

Limit : FCC PART 15 C (3M) Env. / Ins. : 24\*C/65%

EUT : EX Wireless Dongle

Power rating : DC 5V From PC Input AC 120V/60Hz

Test Mode : Tx Mode EX-11

| _ | No. | Freq.<br>(MHz) | Ant.<br>Factor<br>(dB/m) | Cable<br>Loss<br>(dB) | Reading<br>(dBuV) | Emission<br>Level<br>(dBuV/m) | Limits<br>(dBuV/m) | Margin<br>(dB) | Remark |
|---|-----|----------------|--------------------------|-----------------------|-------------------|-------------------------------|--------------------|----------------|--------|
|   | 1   | 49.400         | 9.34                     | 1.18                  | 16.01             | 26.53                         | 40.00              | 13.47          | QP     |
|   | 2   | 95.960         | 10.59                    | 1.39                  | 16.07             | 28.05                         | 43.50              | 15.45          | QP     |
|   | 3   | 216.240        | 10.41                    | 1.85                  | 16.54             | 28.80                         | 46.00              | 17.20          | QP     |
|   | 4   | 335.550        | 14.82                    | 2.27                  | 14.24             | 31.33                         | 46.00              | 14.67          | QP     |
|   | 5   | 499.480        | 17.99                    | 2.75                  | 12.91             | 33.65                         | 46.00              | 12.35          | QP     |
|   | 6   | 531.490        | 18.13                    | 2.84                  | 12.41             | 33.38                         | 46.00              | 12.62          | QP     |
|   |     |                |                          |                       |                   |                               |                    |                |        |

Remarks: 1. Emission Level= Antenna Factor + Cable Loss + Reading.

2. The emission levels that are 20dB below the official  $\,$ limit are not reported.

page 4-9



Site no. : 3m Chamber Data no. : 23

Dis. / Ant. : 3m 2012 3115 (4580) Ant. pol. : HORIZONTAL

Limit : FCC PART 15 PEAK 2.4

Env. / Ins. : 23 \*C/54% Engineer : Leo-Li

EUT : EX Wireless Dongle

Power supply : DC 5V From PC Input AC 120V/60Hz

Test mode : 2405MHz Tx

EX-11

|   | Freq.<br>(MHz) | Ant.<br>Factor<br>(dB/m) | loss | Factor | _     |       | Limits<br>(dBuV/m) | _     | Remark |
|---|----------------|--------------------------|------|--------|-------|-------|--------------------|-------|--------|
| 1 | 2405.000       | 26.79                    | 5.80 | 35.70  | 87.90 | 84.79 | 114.00             | 29.21 | Peak   |

- 1. Emission Level= Antenna Factor + Cable Loss -Amp Factor + Reading.
- 2. The emission levels that are 20dB below the official limit are not reported.

page 4-10



Site no. : 3m Chamber Data no. : 24
Dis. / Ant. : 3m 2012 3115 (4580) Ant. pol. : VERTICAL

Dis. / Ant. : 3m 2012 3115 (4580) Ant. pol. Limit : FCC PART 15 PEAK 2.4

Env. / Ins. : 23\*C/54% Engineer : Leo-Li

EUT : EX Wireless Dongle

Power supply : DC 5V From PC Input AC 120V/60Hz

Test mode : 2405MHz Tx

EX-11

| Freq.<br>(MHz) | Ant.<br>Factor<br>(dB/m) | loss | Factor | Reading<br>(dBuV) |       |        | Margin<br>(dB) | Remark |
|----------------|--------------------------|------|--------|-------------------|-------|--------|----------------|--------|
| 2405.000       | 26.79                    | 5.80 | 35.70  | 93.93             | 90.82 | 114.00 | 23.18          | Peak   |

#### Remarks:

1

- 1. Emission Level= Antenna Factor + Cable Loss -Amp Factor + Reading.
- 2. The emission levels that are 20dB below the official limit are not reported.

page 4-11



Site no. : 3m Chamber Data no. : 25

Dis. / Ant. : 3m 2012 3115 (4580) Ant. pol. : HORIZONTAL

Limit : FCC PART 15 PEAK 2.4

Env. / Ins. : 23\*C/54% Engineer : Leo-Li

EUT : EX Wireless Dongle

Power supply : DC 5V From PC Input AC 120V/60Hz

Test mode : 2405MHz Tx

EX-11

page 4-12



Site no. : 3m Chamber Data no. : 26

Dis. / Ant. : 3m 2012 3115 (4580) Ant. pol. : HORIZONTAL

Limit : FCC PART 15 PEAK 2.4

Env. / Ins. : 23\*C/54% Engineer : Leo-Li

EUT : EX Wireless Dongle

Power supply : DC 5V From PC Input AC 120V/60Hz

Test mode : 2405MHz Tx

EX-11

| Freq.<br>(MHz)       | Ant.<br>Factor<br>(dB/m) | loss          | Factor | _ | Level<br>(dBuV/m) |                | Margin<br>(dB) | Remark       |
|----------------------|--------------------------|---------------|--------|---|-------------------|----------------|----------------|--------------|
| 4810.000<br>7215.000 |                          | 8.57<br>10.97 |        |   | 57.28<br>63.33    | 74.00<br>74.00 | 16.72<br>10.67 | Peak<br>Peak |

- 1. Emission Level= Antenna Factor + Cable Loss -Amp Factor + Reading.
- 2. The emission levels that are 20dB below the official limit are not reported.

| Frequency (MHz) | Peak level (dBuv/m) | Duty cycle factor (dB) | AV level (dBuv/m) | Limit(dBuv/m) | Conclusion |
|-----------------|---------------------|------------------------|-------------------|---------------|------------|
| 4810.000        | 57.28               | 50.75                  | 6.53              | 54            | Pass       |
| 7215.000        | 63.33               | 50.75                  | 12.58             | 54            | Pass       |

page 4-13



Site no. : 3m Chamber Data no. : 27

Dis. / Ant. : 3m 2012 3115 (4580) Ant. pol. : VERTICAL

Limit : FCC PART 15 PEAK 2.4

Env. / Ins. : 23\*C/54% Engineer : Leo-Li

EUT : EX Wireless Dongle

Power supply : DC 5V From PC Input AC 120V/60Hz

Test mode : 2405MHz Tx

EX-11

page 4-14



Site no. : 3m Chamber Data no. : 28
Dis. / Ant. : 3m 2012 3115 (4580) Ant. pol. : VERTICAL

Limit : FCC PART 15 PEAK 2.4

Env. / Ins. : 23\*C/54% Engineer : Leo-Li

EUT : EX Wireless Dongle

Power supply : DC 5V From PC Input AC 120V/60Hz

Test mode : 2405MHz Tx

EX-11

| Freq.<br>(MHz)       | Ant.<br>Factor<br>(dB/m) | loss          | Factor | _ | Level<br>(dBuV/m) | Limits<br>(dBuV/m) | Margin<br>(dB) | Remark       |
|----------------------|--------------------------|---------------|--------|---|-------------------|--------------------|----------------|--------------|
| 4810.000<br>7215.000 |                          | 8.57<br>10.97 |        |   | 69.27<br>65.97    | 74.00<br>74.00     | 4.73<br>8.03   | Peak<br>Peak |

- 1. Emission Level= Antenna Factor + Cable Loss -Amp Factor + Reading.
- 2. The emission levels that are 20dB below the official limit are not reported.

| Frequency (MHz) | Peak level (dBuv/m) | Duty cycle factor (dB) | AV level (dBuv/m) | Limit(dBuv/m) | Conclusion |
|-----------------|---------------------|------------------------|-------------------|---------------|------------|
| 4810.000        | 69.27               | 50.75                  | 18.52             | 54            | Pass       |
| 7215.000        | 65.97               | 50.75                  | 15.22             | 54            | Pass       |

page 4-15



Site no. : 3m Chamber Data no. : 31

Dis. / Ant. : 3m 2012 3115 (4580) Ant. pol. : VERTICAL

Limit : FCC PART 15 PEAK 2.4

Env. / Ins. : 23\*C/54% Engineer : Leo-Li

EUT : EX Wireless Dongle

Power supply : DC 5V From PC Input AC 120V/60Hz

Test mode : 2438MHz Tx

EX-11

|   | Freq.    | Ant.<br>Factor<br>(dB/m) | loss | Factor | _     |       | Limits<br>(dBuV/m) | _     | Remark |
|---|----------|--------------------------|------|--------|-------|-------|--------------------|-------|--------|
| 1 | 2438.000 | 27.00                    | 5.85 | 35.70  | 95.05 | 92.20 | 114.00             | 21.80 | Peak   |

- 1. Emission Level= Antenna Factor + Cable Loss -Amp Factor + Reading.
- 2. The emission levels that are 20dB below the official limit are not reported.

page 4-16



Site no. : 3m Chamber Data no. : 32

Dis. / Ant. : 3m 2012 3115 (4580) Ant. pol. : HORIZONTAL

Limit : FCC PART 15 PEAK 2.4

Env. / Ins. : 23\*C/54% Engineer : Leo-Li

EUT : EX Wireless Dongle

Power supply : DC 5V From PC Input AC 120V/60Hz

Test mode : 2438MHz Tx

EX-11

|   | Freq.<br>(MHz) | Ant.<br>Factor<br>(dB/m) | loss | Factor | _     |       | Limits<br>(dBuV/m) | _     | Remark |
|---|----------------|--------------------------|------|--------|-------|-------|--------------------|-------|--------|
| 1 | 2438.000       | 27.00                    | 5.85 | 35.70  | 89.76 | 86.91 | 114.00             | 27.09 | Peak   |

- 1. Emission Level= Antenna Factor + Cable Loss -Amp Factor + Reading.
- 2. The emission levels that are 20dB below the official limit are not reported.

page 4-17



Site no. : 3m Chamber Data no. : 33

Dis. / Ant. : 3m 2012 3115 (4580) Ant. pol. : VERTICAL

Limit : FCC PART 15 PEAK 2.4

Env. / Ins. : 23\*C/54% Engineer : Leo-Li

EUT : EX Wireless Dongle

Power supply : DC 5V From PC Input AC 120V/60Hz

Test mode : 2438MHz Tx

EX-11

page 4-18



Site no. : 3m Chamber Data no. : 34

Dis. / Ant. : 3m 2012 3115 (4580) Ant. pol. : VERTICAL

Limit : FCC PART 15 PEAK 2.4

Env. / Ins. : 23\*C/54% Engineer : Leo-Li

EUT : EX Wireless Dongle

Power supply : DC 5V From PC Input AC 120V/60Hz

Test mode : 2438MHz Tx

EX-11

| Freq.<br>(MHz)       |               | Factor | _              | Emission<br>Level<br>(dBuV/m) |                | Margin<br>(dB) | Remark       |
|----------------------|---------------|--------|----------------|-------------------------------|----------------|----------------|--------------|
| 4876.000<br>7314.000 | 8.64<br>11.02 |        | 60.68<br>59.50 | 66.25<br>70.80                | 74.00<br>74.00 | 7.75<br>3.20   | Peak<br>Peak |

- 1. Emission Level= Antenna Factor + Cable Loss -Amp Factor + Reading.
- 2. The emission levels that are 20dB below the official limit are not reported.

| Frequency (MHz) | Peak level (dBuv/m) | Duty cycle factor (dB) | AV level (dBuv/m) | Limit(dBuv/m) | Conclusion |
|-----------------|---------------------|------------------------|-------------------|---------------|------------|
| 4876.000        | 66.25               | 50.75                  | 15.5              | 54            | Pass       |
| 7314.000        | 70.80               | 50.75                  | 20.05             | 54            | Pass       |

4-19 page



Site no. : 3m Chamber Dis. / Ant. : 3m 2012 3 Data no. : 35

2012 3115 (4580) Ant. pol. : HORIZONTAL

Limit : FCC PART 15 PEAK 2.4

Env. / Ins. : 23\*C/54% Engineer : Leo-Li

: EX Wireless Dongle

Power supply : DC 5V From PC Input AC 120V/60Hz

Test mode : 2438MHz

EX-11

page 4-20



Site no. : 3m Chamber Data no. : 36

Dis. / Ant. : 3m 2012 3115 (4580) Ant. pol. : HORIZONTAL

Limit : FCC PART 15 PEAK 2.4

Env. / Ins. : 23\*C/54% Engineer : Leo-Li

EUT : EX Wireless Dongle

Power supply : DC 5V From PC Input AC 120V/60Hz

Test mode : 2438MHz Tx

EX-11

| Freq.<br>(MHz)       | Ant.<br>Factor<br>(dB/m) | loss          | Factor | _ | Level<br>(dBuV/m) |                | Margin<br>(dB) | Remark       |  |
|----------------------|--------------------------|---------------|--------|---|-------------------|----------------|----------------|--------------|--|
| 4876.000<br>7314.000 |                          | 8.64<br>11.02 |        |   | 55.29<br>70.41    | 74.00<br>74.00 | 18.71<br>3.59  | Peak<br>Peak |  |

- 1. Emission Level= Antenna Factor + Cable Loss -Amp Factor + Reading.
- 2. The emission levels that are 20dB below the official limit are not reported.

| Frequency (MHz) | Peak level (dBuv/m) | Duty cycle factor (dB) | AV level (dBuv/m) | Limit(dBuv/m) | Conclusion |
|-----------------|---------------------|------------------------|-------------------|---------------|------------|
| 4876.000        | 55.29               | 50.75                  | 4.54              | 54            | Pass       |
| 7314.000        | 70.41               | 50.75                  | 19.66             | 54            | Pass       |

page 4-21



Site no. : 3m Chamber Data no. : 37

Dis. / Ant. : 3m 2012 3115 (4580) Ant. pol. : VERTICAL

Limit : FCC PART 15 PEAK 2.4

Env. / Ins. : 23\*C/54% Engineer : Leo-Li

EUT : EX Wireless Dongle

Power supply : DC 5V From PC Input AC 120V/60Hz

Test mode : 2478MHz Tx

EX-11

|   | Freq.<br>(MHz) | Ant.<br>Factor<br>(dB/m) | loss | Factor | _     |       | Limits<br>(dBuV/m) | _     | Remark |
|---|----------------|--------------------------|------|--------|-------|-------|--------------------|-------|--------|
| 1 | 2478.000       | 27.26                    | 5.91 | 35.70  | 96.74 | 94.21 | 114.00             | 19.79 | Peak   |

- 1. Emission Level= Antenna Factor + Cable Loss -Amp Factor + Reading.
- 2. The emission levels that are 20dB below the official limit are not reported.

page 4-22



Site no. : 3m Chamber Data no. : 38

Dis. / Ant. : 3m 2012 3115 (4580) Ant. pol. : HORIZONTAL

Limit : FCC PART 15 PEAK 2.4

Env. / Ins. : 23\*C/54% Engineer : Leo-Li

EUT : EX Wireless Dongle

Power supply : DC 5V From PC Input AC 120V/60Hz

Test mode : 2478MHz Tx

EX-11

|   | Freq.<br>(MHz) | Ant.<br>Factor<br>(dB/m) | loss | Factor | _     |       | Limits<br>(dBuV/m) | _     | Remark |
|---|----------------|--------------------------|------|--------|-------|-------|--------------------|-------|--------|
| 1 | 2478.000       | 27.26                    | 5.91 | 35.70  | 89.43 | 86.90 | 114.00             | 27.10 | Peak   |

- 1. Emission Level= Antenna Factor + Cable Loss -Amp Factor + Reading.
- 2. The emission levels that are 20dB below the official limit are not reported.

4-23 page



Data no. : 39

Site no. : 3m Chamber Dis. / Ant. : 3m 2012 3 2012 3115 (4580) Ant. pol. : VERTICAL

Limit : FCC PART 15 PEAK 2.4

Env. / Ins. : 23\*C/54% Engineer : Leo-Li

: EX Wireless Dongle

Power supply : DC 5V From PC Input AC 120V/60Hz

Test mode : 2478MHz

EX-11

page 4-24



Site no. : 3m Chamber Data no. : 40

Dis. / Ant. : 3m 2012 3115 (4580) Ant. pol. : VERTICAL

Limit : FCC PART 15 PEAK 2.4

Env. / Ins. : 23\*C/54% Engineer : Leo-Li

EUT : EX Wireless Dongle

Power supply : DC 5V From PC Input AC 120V/60Hz

Test mode : 2478MHz Tx

EX-11

| Freq.                |               | Factor | _              | Emission<br>Level<br>(dBuV/m) | Limits         | Margin<br>(dB) | Remark       |
|----------------------|---------------|--------|----------------|-------------------------------|----------------|----------------|--------------|
| 4956.000<br>7434.000 | 8.72<br>11.09 |        | 59.87<br>58.29 | 65.69<br>70.00                | 74.00<br>74.00 | 8.31<br>4.00   | Peak<br>Peak |

- 1. Emission Level= Antenna Factor + Cable Loss -Amp Factor + Reading.
- 2. The emission levels that are 20dB below the official limit are not reported.

| Frequency (MHz) | Peak level (dBuv/m) | Duty cycle factor (dB) | AV level (dBuv/m) | Limit(dBuv/m) | Conclusion |
|-----------------|---------------------|------------------------|-------------------|---------------|------------|
| 4956.000        | 65.69               | 50.75                  | 14.94             | 54            | Pass       |
| 7434.000        | 70.00               | 50.75                  | 19.25             | 54            | Pass       |

4-25 page



Site no. : 3m Chamber Dis. / Ant. : 3m 2012 3 Data no. : 41

2012 3115 (4580) Ant. pol. : HORIZONTAL

Limit : FCC PART 15 PEAK 2.4

Env. / Ins. : 23\*C/54% Engineer : Leo-Li

: EX Wireless Dongle

Power supply : DC 5V From PC Input AC 120V/60Hz

Test mode : 2478MHz

EX-11

## AUDIX Technology (Shenzhen) Co., Ltd.

page 4-26



Site no. : 3m Chamber Data no. : 42

Dis. / Ant. : 3m 2012 3115 (4580) Ant. pol. : HORIZONTAL

Limit : FCC PART 15 PEAK 2.4

Env. / Ins. : 23\*C/54% Engineer : Leo-Li

EUT : EX Wireless Dongle

Power supply : DC 5V From PC Input AC 120V/60Hz

Test mode : 2478MHz Tx

EX-11

| Freq.<br>(MHz)       | Ant.<br>Factor<br>(dB/m) | loss          | Factor | _ | Level<br>(dBuV/m) |                | Margin<br>(dB) | Remark       |
|----------------------|--------------------------|---------------|--------|---|-------------------|----------------|----------------|--------------|
| 4956.000<br>7434.000 |                          | 8.72<br>11.09 |        |   | 56.18<br>69.58    | 74.00<br>74.00 | 17.82<br>4.42  | Peak<br>Peak |

- 1. Emission Level= Antenna Factor + Cable Loss -Amp Factor + Reading.
- 2. The emission levels that are 20dB below the official limit are not reported.

| Frequency (MHz) | Peak level (dBuv/m) | Duty cycle factor (dB) | AV level (dBuv/m) | Limit(dBuv/m) | Conclusion |
|-----------------|---------------------|------------------------|-------------------|---------------|------------|
| 4956.000        | 56.18               | 50.75                  | 5.43              | 54            | Pass       |
| 7434.000        | 69.58               | 50.75                  | 18.83             | 54            | Pass       |

5-1



5. 20 DB BANDWIDTH TEST

# 5.1. Test Equipment

| Item | Equipment | Manufacturer | Model No. | Serial No. | Last Cal.  | Cal. Interval |
|------|-----------|--------------|-----------|------------|------------|---------------|
| 1.   | Spectrum  | Agilent      | E4446A    | US44300459 | May.08, 13 | 1 Year        |

### 5.2. Limit

Intentional radiators operating under the alternative provisions to the general emission limits, as contained in §§ 15.217 through 15.257 and in Subpart E of this part, must be designed to ensure that the 20 dB bandwidth of the emission, or whatever bandwidth may otherwise be specified in the specific rule section under which the equipment operates, is contained within the frequency band designated in the rule section under which the equipment is operated.

### 5.3. Test Results

| EUT: EX Wireless Dongle |                         |                          |
|-------------------------|-------------------------|--------------------------|
| M/N:EX-11               |                         |                          |
| Test date: 2013-09-11   | Pressure: 101.3±1.0 kpa | Humidity: 52.8±3.0%      |
| Tested by: Leo-Li       | Test site: RF Site      | Temperature: 24 .2±0.6°C |

| Cable loss: 1 dB | Attenuator loss: 10 dB  |                |  |  |  |
|------------------|-------------------------|----------------|--|--|--|
| Frequency        | 20dB bandwidth<br>(KHz) | Limit<br>(KHz) |  |  |  |
| 2405             | 4763                    | N/A            |  |  |  |
| 2438             | 5138                    | N/A            |  |  |  |
| 2478             | 4023                    | N/A            |  |  |  |
| Conclusion: PASS |                         |                |  |  |  |











### 6. BAND EDGE COMPLIANCE TEST

### 6.1. Test Equipment

| Item | Equipment | Manufacturer | Model No.   | Serial No. | Last Cal.  | Cal. Interval |
|------|-----------|--------------|-------------|------------|------------|---------------|
| 1.   | Spectrum  | Agilent      | E4446A      | US44300459 | May.08, 13 | 1 Year        |
| 2.   | Amp       | HP           | 8449B       | 3008A08495 | May.08, 13 | 1 Year        |
| 3.   | Antenna   | EMCO         | 3115        | 9510-4580  | May.08, 13 | 1Year         |
| 4.   | HF Cable  | Hubersuhne   | Sucoflex104 | -          | May.08, 13 | 1 Year        |

#### 6.2. Limit

All the lower and upper band-edges emissions appearing within 2310MHz to 2390MHz and 2483.5MHz to 2500MHz restricted frequency bands shall not exceed the limits shown in 15.209, all the other emissions outside operation frequency band 2400MHz to 2483.5MHz shall be at least 20dB below the fundamental emissions, or comply with 15.209 limits.

### 6.3. Test Produce

- 1. The EUT is placed on a turntable, which is 0.8m above the ground plane and worked at highest radiated power.
- 2. The turntable was rotated for 360 degrees to determine the position of maximum emission level.
- 3. EUT is set 3m away from the receiving antenna, which is varied from 1m to 4m to find out the highest emission.
- 4. Set the spectrum analyzer in the following setting in order to capture the lower and upperband-edges of the emission:
  - (a) PEAK: RBW=1MHz; VBW=3MHz, PK detector, Sweep=AUTO
  - (b) This device is pulse modulated, a duty cycle factor was used to calculate average level based measured peak level

### 6.4. Test Results

Pass (The testing data was attached in the next pages.)

Note: If the PK measured levels comply with average limit, then the average level were deemed to comply with average limit.

Note: The duty cycle factor for calculate average level is 50.75dB, and average limit is 20dB below peak limit, so if peak measured level comply with peak limit, the average level was deemed to comply with average limit.



Site no. : 3m Chamber Data no. : 29

Dis. / Ant. : 3m 2012 3115 (4877) Ant. pol. : VERTICAL

Limit : FCC PART 15 PEAK 2.4

Env. / Ins. : 23\*C/54% Engineer : Leo-Li

EUT : EX Wireless Dongle

Power supply : DC 5V From PC Input AC 120V/60Hz

Test mode : 2405MHz Tx

EX-11

|                  | Freq.                                        | Ant.<br>Factor<br>(dB/m)         | Cable<br>loss<br>(dB)        | Amp.<br>Factor<br>(dB)           | Reading<br>(dBuV)                | Emission<br>Level<br>(dBuV/m)    | Limits                           | Margin<br>(dB)                   | Remark                       |
|------------------|----------------------------------------------|----------------------------------|------------------------------|----------------------------------|----------------------------------|----------------------------------|----------------------------------|----------------------------------|------------------------------|
| 1<br>2<br>3<br>4 | 2384.700<br>2390.000<br>2391.200<br>2400.000 | 23.81<br>23.80<br>23.80<br>23.79 | 5.77<br>5.78<br>5.78<br>5.80 | 35.70<br>35.70<br>35.70<br>35.70 | 52.42<br>45.97<br>53.21<br>52.39 | 46.30<br>39.85<br>47.09<br>46.28 | 74.00<br>74.00<br>74.00<br>74.00 | 27.70<br>34.15<br>26.91<br>27.72 | Peak<br>Peak<br>Peak<br>Peak |
| 5                | 2405.700                                     | 23.79                            | 5.81                         | 35.70                            | 90.66                            | 84.56                            | 114.00                           | 29.44                            | Peak                         |

- 1. Emission Level= Antenna Factor + Cable Loss -Amp Factor + Reading.
- 2. The emission levels that are 20dB below the official limit are not reported.

page 6-.



Site no. : 3m Chamber Data no. : 30

Dis. / Ant. : 3m 2012 3115 (4877) Ant. pol. : HORIZONTAL

Limit : FCC PART 15 PEAK 2.4

Env. / Ins. : 23 \*C/54% Engineer : Leo-Li

EUT : EX Wireless Dongle

Power supply : DC 5V From PC Input AC 120V/60Hz

Test mode : 2405MHz Tx

EX-11

|   | Freq.<br>(MHz) | Factor (dB/m) | loss<br>(dB) | Amp.<br>Factor<br>(dB) | Reading<br>(dBuV) | Lmission<br>Level<br>(dBuV/m) | Limits | Margin<br>(dB) | Remark |
|---|----------------|---------------|--------------|------------------------|-------------------|-------------------------------|--------|----------------|--------|
| 1 | 2387.700       | 23.80         | 5.78         | 35.70                  | 54.91             | 48.79                         | 74.00  | 25.21          | Peak   |
| 2 | 2390.000       | 23.80         | 5.78         | 35.70                  | 43.89             | 37.77                         | 74.00  | 36.23          | Peak   |
| 3 | 2397.300       | 23.79         | 5.79         | 35.70                  | 57.64             | 51.52                         | 74.00  | 22.48          | Peak   |
| 4 | 2400.000       | 23.79         | 5.80         | 35.70                  | 60.73             | 54.62                         | 74.00  | 19.38          | Peak   |
| 5 | 2404.500       | 23.79         | 5.80         | 35.70                  | 93.76             | 87.65                         | 114.00 | 26.35          | Peak   |
|   |                |               |              |                        |                   |                               |        |                |        |

- 1. Emission Level= Antenna Factor + Cable Loss -Amp Factor + Reading.
- 2. The emission levels that are 20dB below the official limit are not reported.

| Frequency (MHz) | Peak level (dBuv/m) | Duty cycle factor (dB) | AV level<br>(dBuv/m) | Limit(dBuv/m) | Conclusion |
|-----------------|---------------------|------------------------|----------------------|---------------|------------|
| 2400.000        | 54.62               | 50.75                  | 3.87                 | 54            | Pass       |

FCC ID:VS9-EX-11

## AUDIX Technology (Shenzhen) Co., Ltd.

page 6-4



Site no. : 3m Chamber Data no. : 43
Dis. / Ant. : 3m 2012 3115 (4580) Ant. pol. : VERTICAL

Limit : FCC PART 15 PEAK 2.4

Env. / Ins. : 23\*C/54% Engineer : Leo-Li

EUT : EX Wireless Dongle

Power supply : DC 5V From PC Input AC 120V/60Hz

Test mode : 2478MHz Tx

EX-11

|   |          | Ant.   | Cable | Amp.   |         | Emission | 1        |        |        |  |
|---|----------|--------|-------|--------|---------|----------|----------|--------|--------|--|
|   | Freq.    | Factor | loss  | Factor | Reading | Level    | Limits   | Margin | Remark |  |
|   | (MHz)    | (dB/m) | (dB)  | (dB)   | (dBuV)  | (dBuV/m) | (dBuV/m) | (dB)   |        |  |
|   |          |        |       |        |         |          |          |        |        |  |
| 1 | 2477.450 | 27.26  | 5.91  | 35.70  | 97.86   | 95.33    | 114.00   | 18.67  | Peak   |  |
| 2 | 2483.500 | 27.29  | 5.92  | 35.70  | 71.44   | 68.95    | 74.00    | 5.05   | Peak   |  |
| 3 | 2500.000 | 27.40  | 5.94  | 35.70  | 62.24   | 59.88    | 74.00    | 14.12  | Peak   |  |
|   |          |        |       |        |         |          |          |        |        |  |

- 1. Emission Level= Antenna Factor + Cable Loss -Amp Factor + Reading.
- 2. The emission levels that are 20dB below the official limit are not reported.

| Frequency (MHz) | Peak level (dBuv/m) | Duty cycle factor (dB) | AV level (dBuv/m) | Limit(dBuv/m) | Conclusion |
|-----------------|---------------------|------------------------|-------------------|---------------|------------|
| 2483.000        | 68.95               | 50.75                  | 18.2              | 54            | Pass       |
| 2500.000        | 59.88               | 50.75                  | 9.13              | 54            | Pass       |

6-5



Site no. : 3m Chamber Data no. : 44

Dis. / Ant. : 3m 2012 3115 (4580) Ant. pol. : HORIZONTAL

Limit : FCC PART 15 PEAK 2.4

Env. / Ins. : 23\*C/54% Engineer : Leo-Li

EUT : EX Wireless Dongle

Power supply : DC 5V From PC Input  $\Delta$ C 120V/60Hz

Test mode : 2478MHz Tx

EX-11

|   | Freq.<br>(MHz)                   | Ant.<br>Factor<br>(dB/m) | Cable<br>loss<br>(dB) | Amp.<br>Factor<br>(dB)  | Reading<br>(dBuV)       |                         |                          | Margin<br>(dB)          | Remark               |   |
|---|----------------------------------|--------------------------|-----------------------|-------------------------|-------------------------|-------------------------|--------------------------|-------------------------|----------------------|---|
| 2 | 2478.570<br>2483.500<br>2500.000 |                          | 5.92                  | 35.70<br>35.70<br>35.70 | 91.51<br>61.44<br>55.13 | 88.98<br>58.95<br>52.77 | 114.00<br>74.00<br>74.00 | 25.02<br>15.05<br>21.23 | Peak<br>Peak<br>Peak | - |

- 1. Emission Level= Antenna Factor + Cable Loss -Amp Factor + Reading.
- 2. The emission levels that are 20dB below the official limit are not reported.

| Frequency (MHz) | Peak level (dBuv/m) | Duty cycle factor (dB) | AV level (dBuv/m) | Limit(dBuv/m) | Conclusion |
|-----------------|---------------------|------------------------|-------------------|---------------|------------|
| 2483.500        | 58.95               | 50.75                  | 8.2               | 54            | Pass       |



## AUDIX Technology (Shenzhen) Co., Ltd.

*page* 7-1

## 7. ANTENNA REQUIREMENT

**RESULT**: PASS

Test Date : Aug.26~Sep.21, 2013

Test standard : FCC Part 15.203

Limit : the use of antennas with directional gains that do not exceed 6 dBi

According to the manufacturer declared, the EUT has an internal antenna, the directional gain of antenna is 0dBi, and the antenna connector is designed with permanent attachment and no consideration of replacement. Therefore the EUT is considered sufficient to comply the provision.

8-1

## 8. RADIO FRREQUENCY EXPOSURE COMPLIANCE

**RESULT**: PASS

Test standard : FCC KDB Publication 447498 D01 V05

Since maximum peak output power of the transmitter is<10mW, i.e.0.009346mW<10mW, hence the EUT is exclueded from SAR evaluation according to FCC KDB Publication 447498 D01:General RF Exposure Guidance V05.

9-1

| 9. DEVIATION TO TEST SPECIFICATIONS [NONE] |
|--------------------------------------------|
|                                            |
|                                            |
|                                            |
|                                            |
|                                            |
|                                            |
|                                            |
|                                            |