o (6 pt.) Si risolva il sistema di congruenze:

$$\begin{cases} x \equiv 0 \bmod 0 \\ x \equiv 0 \bmod 0 \end{cases}$$

- 1. (2 pt.) Si risolva il sistema lineare $A(\alpha)x = b(\alpha)$ dipendente dal parametro $\alpha \in \mathbb{C}$
- 2. (1 pt.) trovare una base B dello spazio delle colonne C(A) di A
- 3. (2 pt.) trovare una base ortonormale C dello spazio delle colonne C(A) di A
- $\circ \text{ Sia } T: \mathbb{R}^2 \to \mathbb{R}^3 \text{ e } T\left(0\right) \to \left(0\right)$

Trovare la matrice A associata a T rispetto alle basi ordinate:

$$B = \left\{ \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix} \right\} \text{ ed } D = \left\{ \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix} \right\}$$

Non si richiede di dimostrare che è un'applicazione lineare.

$$\circ \text{ Sia } A = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$$

- 1. (1 pt.) Si provi che A è unitariamente diagonalizzabile
- 2. (5 pt.) Si trovi una matrice unitaria U ed una relativa matrice diagonale D tali che A = UHU^H
- o (6 pt.) Quale delle seguenti affermazioni è vera? Motivare brevemente ogni risposta: se falsa dare un contro esempio.
 - 1. Dato G(V, E) se G è hamiltoniano allora G è 2-connesso ($K(G) \ge 2$).
 - 2. Dato G(V, E) se G è 2-connesso allora G è hamiltoniano.
 - 3. Dato un grafo semplice G(V,E) se $d^{min}(G) \geq 2$ allora G contiene un ciclo.
 - 4. Dato un grafo semplice G(V,E) se $d^{min}(G) \geq 2$ allora G è 2-connesso.
 - 5. Un grafo G(V, E) è euleriano se e solo se è connesso e non contiene nodi di grado dispari.

- 6. Dato un grafo semplice G(V, E) se G è 2-connesso allora G è 2-arcoconnesso ($K^E(G) \ge 2$).
- o (5 pt.) Quanti modi di disporre su una scacchiera 8 x 8:
 - 1. Un re, una regina e un pedone (3 pezzi distinti).
 - 2. Due re e un pedone (2 pezzi uguali e il terzo distinto).
- o (7 pt.) Si risolva il sistema lineare $A(\alpha)x = b(\alpha)$ dipendente dal parametro $\alpha \in \mathbb{R}$

$$A(\alpha) = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix} e b(\alpha) = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$$

• Si consideri lo spazio vettoriale $V = M_2(\mathbb{C})$.

Siano
$$W = \left\{ \begin{pmatrix} a & 0 \\ 0 & b \end{pmatrix} \mid a, b \in \mathbb{C} \right\}$$
 ed $S = \left\{ \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix} \right\}$

- 1. (4 pt.) Si provi che W è un sottospazio vettoriale di V.
- 2. (4 pt.) Si dica se S è un insieme di generatori per W.
- \circ (5 pt.) Nel grafo seguente G(V, E) si determini la connettività K(G), la connettività sugli archi Ke(G) ed il grado minimo. Si evidenzino un taglio minimo ed un separatore minimo.
- o Quale delle seguenti affermazioni è vera? Motivare brevemente ogni risposta: se falsa dare un contro esempio. Se vera dire perchè. (La sequenza dei gradi di un grafo è la lista di tutti i gradi dei vertici, ordinata in modo crescente).
 - 1. (1 pt.) 3,3,3,3,3 è la sequenza di gradi di un grafo semplice?
 - 2. (1 pt.) 3,3,3,2,1 è la sequenza di gradi di un grafo semplice?
 - 3. (1 pt.) 3,3,3,3,3,3 è la sequenza di gradi di un grafo semplice?
 - 4. (1 pt.) 4,4,4,4 è la sequenza di gradi di un grafo planare semplice?
 - 5. (1 pt.) Se G_1 e G_2 sono isomorfi, allora le loro sequenze di gradi coincidono.
 - 6. (1 pt.) Dati i grafi G_1 e G_2 se le loro sequenze di grafi coincidono allora G_1 e G_2 sono isomorfi.