Analys Problem 5

Robin Boregrim

November 5, 2017

Innehållsförteckning

1	$\mathbf{U}\mathbf{p}\mathbf{p}$	Uppgiften														2					
2	Lösning													6							
	2.1	Rotation runt x-axeln																			4
	2.2	Rotation runt y-axeln																			;
	2.3	Svar																			2

1 Uppgiften

Beräkna volymen av de områden som uppstår då det begränsade området i första kvadranten som begränsas av kurvorna $y=x^2$ och y=x får rotera runt x- respektive y-axeln.

2 Lösning

2.1 Rotation runt x-axeln

Vi vill beräkna rotationsvolymen runt x axeln av det begränsade området, vi kallar denna volym för V_{bx} .

Vi börjar särskillja de två funktionerna igenom att låta

$$f(x) = x$$

och

$$g(x) = x^2.$$

Sendan sätter vi funktionerna f(x) och g(x) lika varandra för att beräkna eventuella skärningspunkter mellan funktionerna.

$$f(x) = g(x) \Rightarrow$$
$$x = x^2$$

Villket betyder att x är:

$$\begin{cases} x_1 = 0 \\ x_2 = 1 \end{cases}.$$

Eftersom både f(x) och g(x) är kontinuerliga funktioner och de bara skär varandra i x = 0 och x = 1 vet vi att det begränsade området som vi vill rotera runt x-axeln ligger i intervallet $x \in [0, 1]$. Då vet vi att rotationsvolymen av det begränsade området V_{bx} är differensen av rotations volymerna för f(x) och g(x) över intervallet $x \in [0, 1]$.

Vi beräknar rotationsvolymerna V_f och V_q för f(x) respektive g(x).

$$V_g = \pi \int_0^1 x dx = \pi \left[\frac{x^2}{2} \right]_0^1 = \frac{\pi}{2}$$

$$V_f = \pi \int_0^1 x^2 dx = \pi \left[\frac{x^3}{3} \right]_0^1 = \frac{\pi}{3}$$

Vi kan nu beräkna V_{bx} igenom att ta differansen mellan V_g och V_f .

$$V_{bx} = V_g - V_f = \frac{\pi}{2} - \frac{\pi}{3} = \frac{3\pi}{6} - \frac{2\pi}{6} = \frac{\pi}{6}$$

Så

$$V_{bx} = \frac{\pi}{6}.$$

2.2 Rotation runt y-axeln

Vi vill även beräkna rotationsvolymen runt y axeln av det begränsade området, vi kallar denna volym för V_{bx} .

Vi börjar med att beräkna inverserna $f^{-1}(y)$ och $g^{-1}(y)$ till funktionerna f(x) respektive g(x).

$$f(x) = x \Rightarrow f^{-1}(y) = y$$

$$g(x) = x^2 \Rightarrow g^{-1}(y) = \sqrt{y}$$

Sendan sätter vi funktionerna $f^{-1}(y)$ och $g^{-1}(y)$ lika varandra för att beräkna eventuella skärningspunkter mellan funktionerna.

$$f^{-1}(y) = g^{-1}(y) \Rightarrow$$

$$y=\sqrt{y}$$

Vi tar båda led upphöjt i 2.

$$y^2 = y$$

Vilket då ger oss skärningspunkterna:

$$\begin{cases} y_1 = 0 \\ y_2 = 1 \end{cases}.$$

Eftersom både $f^{-1}(y)$ och $g^{-1}(y)$ är kontinuerliga funktioner och de bara skär varandra i y=0 och y=1 vet vi att det begränsade området som vi vill rotera runt y-axeln ligger i intervallet $y \in [0,1]$. Då vet vi att rotationsvolymen av det begränsade området V_{by} är differensen av rotations

volymerna för $f^{-1}(y)$ och $g^{-1}(y)$ över intervallet $x \in [0,1]$. Vi beräknar rotationsvolymerna $V_{f^{-1}}$ och Vg^{-1} för $f^{-1}(y)$ respektive $g^{-1}(y)$.

$$V_{g^{-1}} = \pi \int_0^1 \sqrt{y} dy = \pi \left[\frac{2y^{\frac{3}{2}}}{3} \right]_0^1 = \frac{2\pi}{3}$$

$$V_{f^{-1}} = \pi \int_0^1 y dy = \pi \left[\frac{y^2}{2} \right]_0^1 = \frac{\pi}{2}$$

Vi kan nu beräkna V_{bx} igenom att ta differansen mellan $V_{g^{-1}}$ och $V_{f^{-1}}$.

$$V_{by} = V_{g^{-1}} - V_{f^{-1}} = \frac{2\pi}{3} - \frac{\pi}{2} = \frac{4\pi}{6} - \frac{3\pi}{6} = \frac{\pi}{6}.$$

Så

$$V_{by} = \frac{\pi}{6}.$$

2.3 Svar

Rotations volymerna av det begränsade området mellan funktionerna y=x och $y=x^2$ när den roterar runt x-axeln, V_{bx} , och när den roterar runt y-axeln, V_{by} , är båda lika med $\frac{\pi}{6}$.

$$V_{bx} = V_{by} = \frac{\pi}{6}.$$