OpenSDI: Spotting Diffusion-Generated Images in the Open World

Yabin Wang ¹ Zhiwu Huang ² Xiaopeng Hong ³

¹Xi'an Jiaotong University ²University of Southampton ³Harbin Institute of Technology iamwangyabin@stu.xjtu.edu.cn Zhiwu.Huang@soton.ac.uk hongxiaopeng@ieee.org

Problem & Challenge

The rapid advancement of Text-to-Image (T2I) diffusion models blurs the line between real and AI-generated content, posing a significant challenge to content authenticity. We identify this as the **Open-world Spotting of Diffusion Images (OpenSDI)** challenge, characterized by three key openworld settings:

- User Diversity: Wide range of user preferences in styles and intentions.
- Model Innovation: Rapid evolution of diffusion models with diverse architectures.
- Manipulation Scope: Broad spectrum from global synthesis to precise local edits.

Figure 1. OpenSDI Challenge Settings: (1) User Diversity, (2) Model Innovation, and (3) Full Manipulation Scope.

OpenSDID: A Benchmark for Open-World Diffusion Image Detection

Key Features of OpenSDID:

- User Diversity: Simulating real-world user intentions via diverse VLM prompts.
- Model Innovation: Incorporating SOTA diffusion models (SD1.5, SD2.1, SDXL, SD3, Flux.1).
- Manipulation Scope: Covering global synthesis and local edits.

Dataset	# Real	# Fake	User	Model	Fu]
DiffusionDB	_	14M	√	X	X
GenImage	1.3M	1.4M	X	√	X
AutoSplice	2.3K	3.6K	X	X	/
CocoGlide	_	512	X	X	X
HiFi-IFDL	_	$1M^*$	√	X	/
GIM	1.1M	1.1M	X	✓	X
TGIF	3.1K	75K	X	√	X
OpenSDID	300K	450K	√	√	/

| Training Set | Test Set |

Table 1. Overview of existing diffusion image datasets and the proposed OpenSDID.

Table 2. Dataset Statistics on OpenSDID.

Synergizing Pretrained Models (SPM): MaskCLIP

Tackling the OpenSDI challenge requires **detection** and **localization**, while generalizing to diverse, open-world scenarios. We introduce Synergizing Pretrained Models (SPM), a novel framework that achieves this by:

- **Prompting**: Efficiently adapting pretrained models to the OpenSDI task using learned prompts, preserving their existing knowledge.
- **Attending**: Creating synergy between multiple models through cross-attention, enhancing overall performance.

Leveraging SPM, we developed $\mathbf{MaskCLIP}^a$, a model that strategically fuses the strengths of \mathbf{CLIP} and \mathbf{MAE}

- Visual Cross-Attention (VCA): Aligns CLIP and MAE visual features.
- Textual-Visual Cross-Attention (TVCA): Integrates text semantics into localization.
- Visual Self-Attention (VSA): Enhances CLIP feature extraction.

Figure 3. MaskCLIP Architecture: Synergizing CLIP and MAE with Prompting and Attention Mechanisms.

Experiments

Key Performance Highlights:

- DRAMATICALLY SUPERIOR LOCALIZATION: Achieves a remarkable +14.23% IoU and +14.11% F1 relative improvement in average localization accuracy, outperforming the second-best method by a significant margin. This demonstrates MaskCLIP's unparalleled precision in pinpointing manipulated regions.
- **NEW SOTA DETECTION:** Demonstrates clear improvement over existing state-of-the-art image-level image detection methods.
- ROBUST OPEN-WORLD GENERALIZATION: Exhibits outstanding generalization, consistently surpassing state-of-the-art methods across all *unseen* diffusion models (SD2.1, SDXL, SD3, Flux.1) at both image and pixel levels. This highlights MaskCLIP's ability to adapt and perform reliably in truly open-world scenarios.

Quantitative Supremacy:

The tables below showcase a detailed performance breakdown.

Table 3. Pixel-level Localization Performance Comparison (IoU & F1)

Method	SD1.5		SD2.1		SDXL		SD3		Flux.1		AVG	
	IoU	F1	IoU	F1	IoU	F1	IoU	F1	IoU	F1	IoU	F1
2nd Best	0.665	0.736	0.448	0.506	0.215	0.260	0.236	0.284	0.0611	0.079	0.325	0.373
MaskCLIP	0.671	0.756	0.555	0.629	0.310	0.370	0.438	0.512	0.162	0.203	0.427	0.494

Table 4. Image-level Detection Performance Comparison (F1 & Accuracy)

Method	SD1.5		SD2.1		SDXL		SD3		Flux.1		AVG	
	F1	Acc	F1	Acc	F1	Acc	F1	Acc	F1	Acc	F1	Acc
2nd Best	0.911	0.910	0.875	0.881	0.734	0.788	0.721	0.768	0.559	0.670	0.760	0.803
MaskCLIP	0.926	0.927	0.887	0.895	0.780	0.812	0.731	0.780	0.565	0.685	0.778	0.820

Visual Confirmation:

Figure 4. Qualitative Localization Results on OpenSDID.

^aWe also developed SAMCLIP by replacing MAE with SAM, achieving a 0.7873 Pixel F1 on SD1.5, demonstrating the scalability of our SPM scheme.