OSSA - Lec 2 - Discussing General Concepts About an OS.

Learning Topics

- 1. Storage Structure
- 2. Booting Up Process
- 3. Multiprocessor System
- 4. Interrupts Handling
- 5. Operating System Structures

1. Storage Structure

Storage Systems Hierarchy

Storage System Features

- Speed
- Cost
- Volatility
- Size/Capacity

2. Booting Up Process

Bootstrap program,

- It's a Firmware stored inside ROM.
- Loading when we provide the power to the computer.
- Do POST (Power On Self Test) Operation.
 - o Purpose of the POST is checking all aspects of the system working or not.

3. Multiprocessor System

Single Processor → 1 CPU Only
Multiprocessor → Multiple CPUs

Single-Processor	Multiprocessor
Only 1 CPU.	Multiple CPUs.
Only 1 program execute inside the CPU at	Multiple programs can be allocated to
a time and other programs are waiting in	different CPUs at a time.
the RAM.	
It executes only 1 process.	It executes more processes within a
	certain time-period, called Increased
	throughput.
Economically not good.	Economically good
If 1 CPU fails, whole system fails.	If 1 CPU fail system still can perform
	processes, called Reliability.

2 Types of Multiprocessors,

Asymmetric Multiprocessing	Symmetric Multiprocessing
There is 1 CPU called Master CPU and other CPUs called Slave CPUs	There are No Masters or Slaves . all are providing user process execution services.
Master CPU allocating workload to the Slave CPUs.	Common memory system is using by different CPUs.
Master CPU is not executing user programs and It's monitoring other CPUs.	

Clustered System

- A Clustered System having multiple CPUs sometimes.
- It's a network of Computers connected through LAN include with storage device.
- Computers are known as **Nodes** that connected through the network.
- Provide High availability services.

4. Interrupts Handling

Interrupts

Signals sent to the CPU by external devices.

3 types of Interrupts

Interrupts Handling Steps

- → When CPU gets **INTERRUPT** signal, it immediately suspends the process
- → and gives control to the **OS** to find a solution
- → OS is reading table called **INTERRUPT VECTOR** from the **KERNAL** memory
- → Interrupt vector have specific **ADDRESS NUMBERS**
- → address numbers can be found in *INTERRUPT SERVICE ROUTINE*Hishen Perera

- → OS access and execute address files in ISR
- \rightarrow results of the execution will pass to the OS and OS send it to the CPU as a notification.
- → CPU get know OS finish in handling the interrupt and CPU finish the running program and come to suspended process
- → Resume the process.

5. Operating System Structures

Simple Structure – MS DOS

- Related to the BIOS Setup
- It consists of BIOS device drivers

Non-Simple Structure – UNIX

- Limited hardware and system services.
- 2 categories (System Programs / Kernel).

All the component in the OS are in one common area.

Layered Approach

Consist with layers.

- Layer 0 is always Hardware.
- Layer functionalities are not fixed it can change. ISSUE

Microkernel System

- Microkernel means size of the OS is in micro level.
- Few components are selected to kernel.
- Outside components from the microkernel called as System Programs.
- System programs communicate through a secure method called Message
 Passing but it Slow.

Modules Architecture

- Uses Object Oriented Concepts.
- In booting process Core Part loading first.
- Around the core part other components are gather, like main class and sub classes.
- Main components and subcomponents are communicate with Faster
 Communication method.