SBML Model Report

Model name: "Chassagnole2001_Threonine Synthesis"

May 5, 2016

1 General Overview

This is a document in SBML Level 2 Version 1 format. This model was created by the following two authors: Jacky L Snoep¹ and Harish Dharuri² at August 29th 2006 at 10:11 a.m. and last time modified at May 16th 2012 at 10:20 a.m. Table 1 shows an overview of the quantities of all components of this model.

Table 1: Number of components in this model, which are described in the following sections.

Element	Quantity	Element	Quantity
compartment types	0	compartments	1
species types	0	species	11
events	0	constraints	0
reactions	7	function definitions	0
global parameters	0	unit definitions	7
rules	0	initial assignments	0

Model Notes

. .

¹Stellenbosh University, jls@sun.ac.za

 $^{{}^2} California\ Institute\ of\ Technology, {\tt hdharuri@cds.caltech.edu}$

SBML level 2 code generated for the JWS Online project by Jacky Snoep using PySCeS Run this model online at http://jjj.biochem.sun.ac.za

To cite JWS Online please refer to: Olivier, B.G. and Snoep, J.L. (2004) Web-based modelling using JWS Online, Bioinformatics, 20:2143-2144

Biomodels Curation: The model reproduces Fig 2f of the paper. The Vmax values for different reactions are obtained by multiplying the specific activites given in Table 3 of the paper with the protein concentration and an assay correction factor that was provided by the authors. The protein concentration is 202 mg/litre. The specific activities that need to be taken into consideration are those given for "variable threonine,, in Table 3. The following are the assay correction factors provided by the authors: vak1=1.49; vak3=1.12; vasd=1.14; vhsd=1.42; vts=1.15; vhk=1.13. The model was successfully tested on MathSBML and Jarnac

2 Unit Definitions

This is an overview of ten unit definitions of which three are predefined by SBML and not mentioned in the model.

2.1 Unit substance

Name millimole

Definition mmol

2.2 Unit time

Name min

Definition 60 s

2.3 Unit mM

Name mM

Definition $mmol \cdot l^{-1}$

2.4 Unit mM_per_min

Name mM_per_min

Definition $\text{mmol} \cdot 1^{-1} \cdot (60 \text{ s})^{-1}$

2.5 Unit litre_per_mg_per_min

Name litre_per_mg_per_min

Definition $1 \cdot mg^{-1} \cdot (60 \text{ s})^{-1}$

2.6 Unit millimole_per_mg_per_min

Name millimole_per_mg_per_min

Definition $mmol \cdot mg^{-1} \cdot (60 \text{ s})^{-1}$

2.7 Unit mg_per_litre

Name mg_per_litre

Definition $mg \cdot l^{-1}$

2.8 Unit volume

Notes Litre is the predefined SBML unit for volume.

Definition 1

2.9 Unit area

Notes Square metre is the predefined SBML unit for area since SBML Level 2 Version 1.

Definition m²

2.10 Unit length

Notes Metre is the predefined SBML unit for length since SBML Level 2 Version 1.

Definition m

3 Compartment

This model contains one compartment.

Table 2: Properties of all compartments.

Id	Name	SBO	Spatial Dimensions	Size	Unit	Constant	Outside
compartment			3	1	litre	Ø	

3.1 Compartment compartment

This is a three dimensional compartment with a constant size of one litre.

4 Species

This model contains eleven species. Section 6 provides further details and the derived rates of change of each species.

Table 3: Properties of each species.

Id	Name	Compartment	Derived Unit	Constant	Boundary Condi- tion
aspp	Aspartyl phosphate	compartment	$\operatorname{mmol} \cdot 1^{-1}$		
asa	Aspartate beta-semialdehyde	compartment	$\operatorname{mmol} \cdot 1^{-1}$		\Box
hs	Homoserine	compartment	$\operatorname{mmol} \cdot 1^{-1}$		
hsp	O-Phospho-homoserine	compartment	$\operatorname{mmol} \cdot 1^{-1}$		
phos	Phos	compartment	$\operatorname{mmol} \cdot 1^{-1}$		
thr	Threonine	compartment	$\operatorname{mmol} \cdot 1^{-1}$		
asp	Aspartate	compartment	$\operatorname{mmol} \cdot 1^{-1}$		
nadp	NADP	compartment	$\operatorname{mmol} \cdot 1^{-1}$		\Box
nadph	NADPH	compartment	$\operatorname{mmol} \cdot 1^{-1}$		\Box
adp	ADP	compartment	$\operatorname{mmol} \cdot 1^{-1}$		\Box
atp	ATP	compartment	$\operatorname{mmol} \cdot 1^{-1}$		

5 Reactions

This model contains seven reactions. All reactions are listed in the following table and are subsequently described in detail. If a reaction is affected by a modifier, the identifier of this species is written above the reaction arrow.

Table 4: Overview of all reactions

N⁰	Id	Name	Reaction Equation	SBO
1	vak	Aspartate Kinase	$atp + asp \stackrel{thr}{\rightleftharpoons} aspp + adp$	
2	vasd	Aspartate semialdehyde dehydrogenase	$nadph + aspp \Longrightarrow nadp + phos + asa$	
3	vhdh	Homoserine dehydrogenase	$nadph + asa \xrightarrow{asp, thr} hs + nadp$	
4	vtsy	Threonine synthase	$hsp \Longrightarrow thr + phos$	
5	vhk	Homoserine kinase	$hs + atp \stackrel{thr}{\Longrightarrow} hsp + adp$	
6	${\tt vnadph_endo}$	Endogenous consumption of NADPH	nadph ← nadp	
7	vatpase	ATPase	$atp \rightleftharpoons adp + phos$	

5.1 Reaction vak

This is a reversible reaction of two reactants forming two products influenced by one modifier.

Name Aspartate Kinase

Reaction equation

$$atp + asp \rightleftharpoons aspp + adp$$
 (1)

Reactants

Table 5: Properties of each reactant.

Id	Name	SBO
atp	ATP	
asp	Aspartate	

Modifier

Table 6: Properties of each modifier.

Id	Name	SBO
thr	Threonine	

Products

Table 7: Properties of each product.

	1 1	
Id	Name	SBO
aspp adp	Aspartyl phosphate ADP	

Kinetic Law

Derived unit contains undeclared units

Table 8: Properties of each parameter.

Id	Name	SBO	Value	Unit	Constant
vm11			0.150	mmol \cdot 1 ⁻¹ \cdot	\overline{Z}
				$(60 \mathrm{s})^{-1}$	
keqak			$6.4 \cdot 10^{-4}$	dimensionless	
k11			0.970	$\text{mmol} \cdot 1^{-1}$	
k1thr			0.167	$\text{mmol} \cdot 1^{-1}$	
nak1			4.090	dimensionless	
alpha			2.470	dimensionless	
k1aspp			0.017	$\text{mmol} \cdot 1^{-1}$	
k1atp			0.980	$\text{mmol} \cdot 1^{-1}$	
k1adp			0.250	$\text{mmol} \cdot 1^{-1}$	
vm13			0.072	$mmol \cdot 1^{-1} \cdot$	
				$(60 \text{ s})^{-1}$	
lys			0.460	$\text{mmol} \cdot 1^{-1}$	
k1lys			0.391	$\text{mmol} \cdot 1^{-1}$	
nak3			2.800	dimensionless	
k13			0.320	$\text{mmol} \cdot 1^{-1}$	
k13aspp			0.017	$\text{mmol} \cdot 1^{-1}$	
k13atp			0.220	$\text{mmol} \cdot 1^{-1}$	
k13adp			0.250	$\text{mmol} \cdot 1^{-1}$	

5.2 Reaction vasd

This is a reversible reaction of two reactants forming three products.

Name Aspartate semialdehyde dehydrogenase

Reaction equation

$$nadph + aspp \rightleftharpoons nadp + phos + asa$$
 (3)

Reactants

Table 9: Properties of each reactant.

Id	Name	SBO
nadph	NADPH	
aspp	Aspartyl phosphate	

Products

Table 10: Properties of each product.

Id	Name	SBO
-	NADP Phos Aspartate beta-semialdehyde	

Kinetic Law

Derived unit contains undeclared units

$$v_2 = \text{vol}\left(\text{compartment}\right)$$

$$\cdot \frac{\text{vm2f} \cdot \left([\text{aspp}] \cdot [\text{nadph}] - \frac{[\text{asa}] \cdot [\text{nadp}] \cdot [\text{phos}]}{\text{k2eq}} \right)}{\left(\text{k2aspp} \cdot \left(1 + \frac{[\text{asa}]}{\text{k2asa}} \right) \cdot \left(1 + \frac{[\text{phos}]}{\text{k2p}} \right) + [\text{aspp}] \right) \cdot \left(\text{k2nadph} \cdot \left(1 + \frac{[\text{nadp}]}{\text{k2nadp}} \right) + [\text{nadph}] \right)}$$

$$\tag{4}$$

Table 11: Properties of each parameter.

Id	Name	SBO	Value	Unit	Constant
vm2f			0.181	$\begin{array}{cc} \text{mmol} & \cdot & l^{-1} \\ (60 \text{ s})^{-1} & \end{array}$. 🛛
k2eq			56.415	dimensionless	
k2aspp			0.022	$\operatorname{mmol} \cdot 1^{-1}$	
k2asa			0.110	$\operatorname{mmol} \cdot 1^{-1}$	

Id	Name	SBO	Value	Unit	Constant
k2p			10.000	$\operatorname{mmol} \cdot 1^{-1}$	Ø
k2nadph			0.029	$\operatorname{mmol} \cdot 1^{-1}$	
k2nadp			0.144	$mmol \cdot l^{-1}$	

5.3 Reaction vhdh

This is a reversible reaction of two reactants forming two products influenced by two modifiers.

Name Homoserine dehydrogenase

Reaction equation

$$nadph + asa \xrightarrow{asp, thr} hs + nadp \tag{5}$$

Reactants

Table 12: Properties of each reactant.

Id	Name	SBO
nadph	NADPH	
asa	Aspartate beta-semialdehyde	

Modifiers

Table 13: Properties of each modifier.

Id	Name	SBO
asp thr	Aspartate Threonine	

Products

Table 14: Properties of each product.

Id	Name	SBO
hs	Homoserine	
nadp	NADP	

Kinetic Law

Derived unit contains undeclared units

$$v_{3} = vol\left(compartment\right) \\ \cdot \frac{vm3f \cdot \left(\left[asa\right] \cdot \left[nadph\right] - \frac{\left[hs\right] \cdot \left[nadp\right]}{k3eq}\right)}{\frac{1 + \left(\frac{\left[thr\right]}{k3thr}\right)^{nhdh1}}{1 + \left(\frac{\left[thr\right]}{alpha3 \cdot k3thr}\right)^{nhdh1}} \cdot \left(k3asa + \left[asa\right] + \frac{\left[hs\right] \cdot k3asa}{k3hs}\right) \cdot \left(k3nadph \cdot \left(1 + \frac{\left[nadp\right]}{k3nadp}\right) + \left[nadph\right]\right)}$$

$$(6)$$

Table 15: Properties of each parameter.

		•			
Id	Name	SBO	Value	Unit	Constant
vm3f			1.001	mmol \cdot 1^{-1}	. 🗹
				$(60 \text{ s})^{-1}$	
k3eq			3162.278	dimensionless	
k3thr			0.097	$\operatorname{mmol} \cdot 1^{-1}$	
nhdh1			1.410	dimensionless	
alpha3			3.930	dimensionless	
k3asa			0.240	$\operatorname{mmol} \cdot 1^{-1}$	
k3hs			3.390	$\operatorname{mmol} \cdot 1^{-1}$	
k3nadph			0.037	$\operatorname{mmol} \cdot 1^{-1}$	
k3nadp			0.067	$\text{mmol} \cdot l^{-1}$	

5.4 Reaction vtsy

This is a reversible reaction of one reactant forming two products.

Name Threonine synthase

Reaction equation

$$hsp \rightleftharpoons thr + phos \tag{7}$$

Reactant

Table 16: Properties of each reactant.

Id	Name	SBO
hsp	O-Phospho-homoserine	

Products

Table 17: Properties of each product.

Id	Name	SBO
thr	Threonine	
phos	Phos	

Kinetic Law

Derived unit $0.0010 \text{ mol} \cdot (60 \text{ s})^{-1}$

$$v_4 = \frac{\text{vol (compartment)} \cdot \text{vm5} \cdot [\text{hsp}]}{[\text{hsp}] + \text{k5hsp}}$$
(8)

Table 18: Properties of each parameter.

Id	Name	SBO	Value	Unit	Constant
vm5			0.043	mmol \cdot 1^{-1}	. 🗾
				$(60 \text{ s})^{-1}$	
k5hsp			0.310	$\text{mmol} \cdot 1^{-1}$	
попър			0.510	mmor i	

5.5 Reaction vhk

This is a reversible reaction of two reactants forming two products influenced by one modifier.

Name Homoserine kinase

Reaction equation

$$hs + atp \rightleftharpoons hsp + adp$$
 (9)

Reactants

Table 19: Properties of each reactant.

Id	Name	SBO
hs	Homoserine	
atp	ATP	

Modifier

Table 20: Properties of each modifier.

Id	Name	SBO
thr	Threonine	

Products

Table 21: Properties of each product.

Id	Name	SBO
-	O-Phospho-homoserine ADP	

Kinetic Law

Derived unit contains undeclared units

$$\begin{array}{c} v_{5} = vol\left(compartment\right) \\ \cdot \frac{vm4f \cdot [hs] \cdot [atp]}{\left(1 + \frac{lys}{k4lys}\right) \cdot \left([atp] + k4atp \cdot \left(1 + \frac{[hs]}{k4lhs}\right)\right) \cdot \left([hs] + k4hs \cdot \left(1 + \frac{[thr]}{k4thr}\right) \cdot \left(1 + \frac{[atp]}{k4iatp}\right)\right)} \end{array}$$

Table 22: Properties of each parameter.

Id	Name	SBO	Value	Unit	Constant
vm4f			0.100	$\begin{array}{ccc} \text{mmol} & \cdot & l^{-1} & \cdot \\ (60 \text{ s})^{-1} & & \end{array}$	Ø
lys			0.460	$\text{mmol} \cdot l^{-1}$	
k4lys			9.450	$\text{mmol} \cdot 1^{-1}$	
k4atp			0.072	$\text{mmol} \cdot 1^{-1}$	
k4ihs			4.700	$mmol \cdot l^{-1}$	
k4hs			0.110	$mmol \cdot l^{-1}$	
k4thr			1.090	$mmol \cdot l^{-1}$	\checkmark
k4iatp			4.350	$\text{mmol} \cdot 1^{-1}$	

5.6 Reaction vnadph_endo

This is a reversible reaction of one reactant forming one product.

Name Endogenous consumption of NADPH

Reaction equation

$$nadph \rightleftharpoons nadp \tag{11}$$

Reactant

Table 23: Properties of each reactant.

Id	Name	SBO
nadph	NADPH	

Product

Table 24: Properties of each product.

Id	Name	SBO
nadp	NADP	

Kinetic Law

Derived unit $(60 \text{ s})^{-1} \cdot \text{mmol}$

$$v_6 = \text{vol}\left(\text{compartment}\right) \cdot \text{prot} \cdot \text{knadph} \cdot [\text{nadph}]$$
 (12)

Table 25: Properties of each parameter.

Id	Name	SBO	Value	Unit	Constant
knadph prot	Protein		$5.4 \cdot 10^{-6} $ 202.000	$\frac{1 \cdot \text{mg}^{-1} \cdot (60 \text{ s})^{-1}}{\text{mg} \cdot 1^{-1}}$	

5.7 Reaction vatpase

This is a reversible reaction of one reactant forming two products.

Name ATPase

Reaction equation

$$atp \rightleftharpoons adp + phos$$
 (13)

Reactant

Table 26: Properties of each reactant.

Id	Name	SBO
atp	ATP	

Products

Table 27: Properties of each product.

Id	Name	SBO
adp	ADP	
phos	Phos	

Kinetic Law

Derived unit $mmol \cdot (60 \text{ s})^{-1}$

$$v_7 = \text{vol}\left(\text{compartment}\right) \cdot \text{prot} \cdot \text{katpase}$$
 (14)

Table 28: Properties of each parameter.

Id	Name	SBO	Value	Unit	Constant
katpase		4.	$1 \cdot 10^{-5}$	$\begin{array}{ccc} \operatorname{mmol} & \operatorname{mg}^{-1} & \cdot \\ (60 \mathrm{s})^{-1} & \end{array}$	
prot	Protein	20	02.000	$mg \cdot l^{-1}$	

6 Derived Rate Equations

When interpreted as an ordinary differential equation framework, this model implies the following set of equations for the rates of change of each species.

6.1 Species aspp

Name Aspartyl phosphate

Initial concentration $0 \text{ mmol} \cdot l^{-1}$

This species takes part in two reactions (as a reactant in vasd and as a product in vak).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{aspp} = v_1 - v_2 \tag{15}$$

6.2 Species asa

Name Aspartate beta-semialdehyde

Initial concentration $0 \text{ mmol} \cdot l^{-1}$

This species takes part in two reactions (as a reactant in vhdh and as a product in vasd).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{asa} = v_2 - v_3 \tag{16}$$

6.3 Species hs

Name Homoserine

Initial concentration $0 \text{ mmol} \cdot l^{-1}$

This species takes part in two reactions (as a reactant in vhk and as a product in vhdh).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{hs} = v_3 - v_5 \tag{17}$$

6.4 Species hsp

Name O-Phospho-homoserine

Initial concentration $0 \text{ mmol} \cdot l^{-1}$

This species takes part in two reactions (as a reactant in vtsy and as a product in vhk).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{hsp} = v_5 - v_4 \tag{18}$$

6.5 Species phos

Name Phos

Initial concentration $0 \text{ } mmol \cdot l^{-1}$

This species takes part in three reactions (as a product in vasd, vtsy, vatpase).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{phos} = v_2 + v_4 + v_7 \tag{19}$$

6.6 Species thr

Name Threonine

Initial concentration $2 \text{ mmol} \cdot 1^{-1}$

This species takes part in four reactions (as a product in vtsy and as a modifier in vak, vhdh, vhk).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{thr} = v_4 \tag{20}$$

6.7 Species asp

Name Aspartate

Initial concentration $2 \text{ mmol} \cdot l^{-1}$

This species takes part in two reactions (as a reactant in vak and as a modifier in vhdh).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{asp} = -v_1 \tag{21}$$

6.8 Species nadp

Name NADP

Initial concentration $0 \text{ } \mathrm{mmol} \cdot l^{-1}$

This species takes part in three reactions (as a product in vasd, vhdh, vnadph_endo).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{nadp} = v_2 + v_3 + v_6 \tag{22}$$

6.9 Species nadph

Name NADPH

Initial concentration $2 \text{ mmol} \cdot 1^{-1}$

This species takes part in three reactions (as a reactant in vasd, vhdh, vnadph_endo).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{nadph} = -v_2 - v_3 - v_6 \tag{23}$$

6.10 Species adp

Name ADP

Initial concentration $0 \text{ mmol} \cdot l^{-1}$

This species takes part in three reactions (as a product in vak, vhk, vatpase).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{adp} = v_1 + v_5 + v_7 \tag{24}$$

6.11 Species atp

Name ATP

Initial concentration $10 \text{ } \mathrm{mmol} \cdot l^{-1}$

This species takes part in three reactions (as a reactant in vak, vhk, vatpase).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{atp} = -v_1 - v_5 - v_7 \tag{25}$$

SML2ATEX was developed by Andreas Dräger^a, Hannes Planatscher^a, Dieudonné M Wouamba^a, Adrian Schröder^a, Michael Hucka^b, Lukas Endler^c, Martin Golebiewski^d and Andreas Zell^a. Please see http://www.ra.cs.uni-tuebingen.de/software/SBML2LaTeX for more information.

^aCenter for Bioinformatics Tübingen (ZBIT), Germany

^bCalifornia Institute of Technology, Beckman Institute BNMC, Pasadena, United States

^cEuropean Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton, United Kingdom

^dEML Research gGmbH, Heidelberg, Germany