

Linear Algebra (MT-1004)

Lecture # 38

Spectral Decomposition

If A is a symmetric matrix with real entries that is orthogonally diagonalized by

$$P = \begin{bmatrix} \mathbf{u}_1 & \mathbf{u}_2 & \cdots & \mathbf{u}_n \end{bmatrix}$$

$$A = PDP^T = \begin{bmatrix} \mathbf{u}_1 & \mathbf{u}_2 & \cdots & \mathbf{u}_n \end{bmatrix} \begin{bmatrix} \lambda_1 & 0 & \cdots & 0 \\ 0 & \lambda_2 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & \lambda_n \end{bmatrix} \begin{bmatrix} \mathbf{u}_1^T \\ \mathbf{u}_2^T \\ \vdots \\ \mathbf{u}_T^T \end{bmatrix}$$

$$= \begin{bmatrix} \lambda_1 \mathbf{u}_1 & \lambda_2 \mathbf{u}_2 & \cdots & \lambda_n \mathbf{u}_n \end{bmatrix} \begin{bmatrix} \mathbf{u}_1^T \\ \mathbf{u}_2^T \\ \vdots \\ \mathbf{u}_n^T \end{bmatrix}$$

Multiplying out, we obtain the formula

$$A = \lambda_1 \mathbf{u}_1 \mathbf{u}_1^T + \lambda_2 \mathbf{u}_2 \mathbf{u}_2^T + \dots + \lambda_n \mathbf{u}_n \mathbf{u}_n^T$$
(7)

which is called a spectral decomposition of A.*

NOTE:

The terminology spectral decomposition is derived from the fact that the set of all eigenvalues of a matrix A is sometimes called the spectrum of A

EXAMPLE 2 | A Geometric Interpretation of a Spectral Decomposition

The matrix

$$A = \begin{bmatrix} 1 & 2 \\ 2 & -2 \end{bmatrix}$$

has eigenvalues $\lambda_1 = -3$ and $\lambda_2 = 2$ with corresponding eigenvectors

$$\mathbf{x}_1 = \begin{bmatrix} 1 \\ -2 \end{bmatrix}$$
 and $\mathbf{x}_2 = \begin{bmatrix} 2 \\ 1 \end{bmatrix}$

(verify). Normalizing these basis vectors yields

$$\mathbf{u}_1 = \frac{\mathbf{x}_1}{\|\mathbf{x}_1\|} = \begin{bmatrix} \frac{1}{\sqrt{5}} \\ -\frac{2}{\sqrt{5}} \end{bmatrix} \quad \text{and} \quad \mathbf{u}_2 = \frac{\mathbf{x}_2}{\|\mathbf{x}_2\|} = \begin{bmatrix} \frac{2}{\sqrt{5}} \\ \frac{1}{\sqrt{5}} \end{bmatrix}$$

so a spectral decomposition of A is

$$\begin{bmatrix} 1 & 2 \\ 2 & -2 \end{bmatrix} = \lambda_1 \mathbf{u}_1 \mathbf{u}_1^T + \lambda_2 \mathbf{u}_2 \mathbf{u}_2^T = (-3) \begin{bmatrix} \frac{1}{\sqrt{5}} \\ -\frac{2}{\sqrt{5}} \end{bmatrix} \begin{bmatrix} \frac{1}{\sqrt{5}} & -\frac{2}{\sqrt{5}} \end{bmatrix} + (2) \begin{bmatrix} \frac{2}{\sqrt{5}} \\ \frac{1}{\sqrt{5}} \end{bmatrix} \begin{bmatrix} \frac{2}{\sqrt{5}} & \frac{1}{\sqrt{5}} \end{bmatrix}$$
$$= (-3) \begin{bmatrix} \frac{1}{5} & -\frac{2}{5} \\ -\frac{2}{5} & \frac{4}{5} \end{bmatrix} + (2) \begin{bmatrix} \frac{4}{5} & \frac{2}{5} \\ \frac{2}{5} & \frac{1}{5} \end{bmatrix}$$
(8)

where, as noted above, the 2×2 matrices on the right side of (8) are the standard matrices for the orthogonal projections onto the eigenspaces corresponding to the eigenvalues $\lambda_1 = -3$ and $\lambda_2 = 2$, respectively.

Now let us see what this spectral decomposition tells us about the image of the vector $\mathbf{x} = (1, 1)$ under multiplication by A. Writing \mathbf{x} in column form, it follows that

$$A\mathbf{x} = \begin{bmatrix} 1 & 2 \\ 2 & -2 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \end{bmatrix} = \begin{bmatrix} 3 \\ 0 \end{bmatrix} \tag{9}$$

and from (8) that

$$A\mathbf{x} = \begin{bmatrix} 1 & 2 \\ 2 & -2 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \end{bmatrix} = (-3) \begin{bmatrix} \frac{1}{5} & -\frac{2}{5} \\ -\frac{2}{5} & \frac{4}{5} \end{bmatrix} \begin{bmatrix} 1 \\ 1 \end{bmatrix} + (2) \begin{bmatrix} \frac{4}{5} & \frac{2}{5} \\ \frac{2}{5} & \frac{1}{5} \end{bmatrix} \begin{bmatrix} 1 \\ 1 \end{bmatrix}$$
$$= (-3) \begin{bmatrix} -\frac{1}{5} \\ \frac{2}{5} \end{bmatrix} + (2) \begin{bmatrix} \frac{6}{5} \\ \frac{3}{5} \end{bmatrix}$$
$$= \begin{bmatrix} \frac{3}{5} \\ -\frac{6}{5} \end{bmatrix} + \begin{bmatrix} \frac{12}{5} \\ \frac{6}{5} \end{bmatrix} = \begin{bmatrix} 3 \\ 0 \end{bmatrix}$$
(10)

Formulas (9) and (10) provide two different ways of viewing the image of the vector (1,1) under multiplication by A: Formula (9) tells us directly that the image of this vector is (3,0), whereas Formula (10) tells us that this image can also be obtained by projecting (1,1) onto the eigenspaces corresponding to $\lambda_1 = -3$ and $\lambda_2 = 2$ to obtain the vectors $\left(-\frac{1}{5}, \frac{2}{5}\right)$ and $\left(\frac{6}{5}, \frac{3}{5}\right)$, then scaling by the eigenvalues to obtain $\left(\frac{3}{5}, -\frac{6}{5}\right)$ and $\left(\frac{12}{5}, \frac{6}{5}\right)$, and then adding these vectors (see **Figure 7.2.1**).

