

Project Management for Managers

Lec - 11

Methods of Project Selection (MCDM - II)

Dr. M.K. Barua

Department of Management Indian Institute of Technology Roorkee

Pair wise comparison matrix and computations: evaluation criteria

Original matrix	Quality	Price	Service	Delivery
Quality	1	2	4	3
Price		1	3	3
Service			1	2
Delivery				1

Pair wise comparison matrix and computations: evaluation criteria

Original	Q	P	S	\mathbf{D}
matrix				
Q	1	2	4	3
P	1/2	1	3	3
S	1/4	1/3	1	2
D	1/3	1/3	1/2	1
Column	25/12	11/3	17/2	9
total				

Adjusted matrix	Q	P	S	D	Weights (row avg.)
Q	12/25	6/11	8/17	3/9	0.457
P	6/25	3/11	6/17	3/9	0.300
S	3/25	1/11	2/17	2/9	0.138
D	4/25	1/11	1/17	1/9	0.105
				Total	1.0

Supplier pair wise comparison matrices and priorities

A: wrt quality

A: wrt pr

	P1	P2	P3	P4	Wts
P1	1	5	6	1/3	?
P2		1	2	1/6	?
P3			1	1/8	?
P4				1	?

	P1	P2	P3	P4	Wts
P1	1	1/3	5	8	?
P2		1	7	9	?
P3			1	2	?
P4				1	?

Supplier pair wise comparison matrices and priorities

A: wrt service

A: wrt delivery

	P1	P2	P3	P4	Wts		P1	P2	P3	P4	Wts
P1	1	5	4	8	?	P1	1	3	1/5	1	?
P2		1	1/2	4	?	P2		1	1/8	1/3	?
P3			1	5	?	P3			1	5	?
P4				1	9	P4				1	?
1 7				T	•						

Calculation of the weights A: wrt quality

	P1	P2	P3	P4
P1	1.00	5.00	6.00	0.33
P2	0.20	1.00	2.00	0.17
P3	0.17	0.50	1.00	0.13
P4	3.00	6.00	8.00	1.00
Colu mn total	4.37	12.50	17.00	1.63

	P1	P2	P3	P4
P1	1/4.37	5.00/12.50	6.00/17	0.33/1.63
P2	0.20/4.37	1.00/12.50	2.00//17	0.17/1.63
Р3	0.17/4.37	0.50/12.50	1.00//17	0.13/1.63
P4	3.00/4.37	6.00/12.50	8.00//17	1.00/1.63

	P1	P2	Р3	P4	Row Sum	Normalized
P1	0.229008	0.4	0.352941	0.205128	1.187077	0.296769
P2	0.045802	0.08	0.117647	0.102564	0.346013	0.086503
P3	0.038168	0.04	0.058824	0.076923	0.213915	0.053479
P4	0.687023	0.48	0.470588	0.615385	2.252996	0.563249

		A wrt Price		
	P1	P2	P3	P4
P1	1.00	0.33	5.00	8.00
P2	3	1	7	9
P3	0.166667	0.142857	1	2
P4	0.125	0.111111	0.5	1
Column Sum	4.29	1.59	13.50	20.00

	P1	P2	P3	P4	Row Sum	Normailzed
P1	0.23301	0.21	0.37037	0.4	1.213380079	0.30334502
P2	0.699029	0.63	0.518519	0.45	2.297547645	0.574386911
Р3	0.038835	0.09	0.074074	0.1	0.302909026	0.075727256
P4	0.029126	0.07	0.037037	0.05	0.186163251	0.046540813

Supplier pair wise comparison matrices and priorities

A: wrt quality

	P1	P2	Р3	P4	Wts
P1	1	5	6	1/3	0.297
P2		1	2	1/6	0.08
P3			1	1/8	0.53
P4				1	0.563

A: wrt service

	P1	P2	Р3	P4	Wts
P1	1	5	4	8	0.597
P2		1	1/2	4	0.140
Р3			1	5	0.214
P4				1	0.050

A: wrt price

	P1	P2	Р3	P4	Wts
P1	1	1/3	5	8	0.303
P2		1	7	9	0.573
Р3			1	2	0.078
P4				1	0.046

A: wrt delivery

	P1	P2	P3	P4	Wts
P1	1	3	1/5	1	0.151
P2		1	1/8	1/3	0.060
P3			1	5	0.638
P4				1	0.151

Computation of weights: supplier alternatives

Adjusted matrix	Weights (row avg.)
Quality	0.457
Price	0.300
Service	0.138
Delivery	0.105

	Quality	Price	Service	Delivery	Wts (Q*P*S*D)
P1	.457*.297	.300*.303	.138*.597	.105*.151	.325
P2	.457*.087	.300*.573	.138*.140	.105*.060	.237
P3	.457*.053	.300*.078	.138*.214	.105*.638	.144
P4	.457*.563	.300*.046	.138*.050	.105*.151	.294

TOPSIS METHOD

TOPSIS METHOD

Technique of Order Preference by Similarity to Ideal Solution

This method considers three types of attributes or criteria

- Qualitative benefit attributes/criteria
- Quantitative benefit attributes/criteria
- Cost attributes or criteria

• In this method **two artificial alternatives** are hypothesized:

• Ideal alternative: the one which has the best level for all attributes considered.

• Negative ideal alternative: the one which has the worst attribute values.

• TOPSIS selects the alternative that is **closest** to the **ideal** solution and **farthest** from **negative** ideal alternative.

Input to TOPSIS

- TOPSIS assumes that we have m alternatives (options) and n criteria and we have the score of each option with respect to each criterion.
- Let x_{ij} score of option i with respect to criterion j We have a matrix $X = (x_{ij})$ m×n matrix.
- Let J be the set of **benefit attributes** or criteria (more is better???)
- Let J' be the set of **negative attributes** or criteria (less is better???)

- Step 1: Construct **normalized** decision matrix.
- This step transforms various attribute dimensions into nondimensional attributes, which allows comparisons across criteria.
- Normalize scores or data as follows:

$$r_{ii} = x_{ii}/(\Sigma x_{ii}^2)$$
 for $i = 1, ..., m; j = 1, ..., n$

- Step 2: Construct the weighted normalized decision matrix.
- Assume we have a set of weights for each criteria w_j for j = 1,...n.
- Multiply each column of the **normalized** decision **matrix** by its associated **weight**.
- An element of the new matrix is:

$$v_{ij} = w_i r_{ij}$$

- Step 3: Determine the **ideal and negative** ideal solutions.
- Ideal solution.

$$A^* = \{ v_1^*, ..., v_n^* \}, \text{ where } \\ v_j^* = \{ \max_i (v_{ij}) \text{ if } j \in J; \min_i (v_{ij}) \text{ if } j \in J' \}$$

• Negative ideal solution.

```
A' = { v_1', ..., v_n' }, where

v' = \{ \min_{i} (v_{ij}) \text{ if } j \in J ; \max_{i} (v_{ij}) \text{ if } j \in J' \}
```


• The separation from the **ideal** alternative is:

$$S_i^* = [\sum_i (v_j^* - v_{ij})^2]^{1/2}$$
 $i = 1, ..., m$

• Similarly, the separation from the **negative ideal** alternative is:

$$S'_{i} = \left[\sum_{j} (v'_{j} - v_{ij})^{2}\right]^{1/2}$$
 $i = 1, ..., m$

• Step 5: Calculate the **relative closeness** to the ideal solution C_i^*

$$C_i^* = S'_i / (S_i^* + S'_i)$$
, $0 < C_i^* < 1$

Select the option with C_i^* closest to 1.

Applying TOPSIS Method to Example

Weight	0.1	0.4	0.3	0.2
	Style	Reliability	Fuel Eco.	Cost
Civic	7	9	9	8
Saturn	8	7	8	7
Ford	9	6	8	9
Mazda	6	7	8	6

Applying TOPSIS to Example

- m = 4 alternatives (car models)
- n = 4 attributes/criteria
- x_{ij} = score of option i with respect to criterion j $X = \{x_{ii}\}$ 4×4 score matrix.
- J = set of **benefit** attributes: style, reliability, fuel economy (more is better)
- J' = set of **negative** attributes: cost (less is better)

• Step 1(a): calculate $(\Sigma x_{ij})^{1/2}$ for each column

			. ·	
	Style	Rel.	Fuel	Cost
Civic	49	81	81	64
Saturn	64	49	64	49
Ford	81	36	64	81
Mazda	36	49	64	36
$\Sigma \mathbf{x}_{ij}$	230	215	273	230
$(\Sigma x)^{1/2}$	15.17	14.6	6 16.52	2 15.17

Step 1 (b): divide each column by $(\Sigma x_{ii}^2)^{1/2}$

$\mathbf{r} = \mathbf{r}$					
to get $\mathbf{r_{ij}}$					
· · ·	Style	Rel.	Fuel	Cost	
Civic	D.46	0.61	0.54	0.53	
Saturn	0.53	0.48	0.48	0.46	
Ford	0.59	0.41	0.48	0.59	
Mazda	0.40	0.48	0.48	0.40	

• Step 1 (b): divide each column by $(\Sigma x^2_{ij})^{1/2}$ to get $\mathbf{r_{ii}}$

to get $\mathbf{r_{ij}}$				
O IJ	Style	Rel.	Fuel	Cost
Civic	0.46	0.61	0.54	0.53
Saturn	0.53	0.48	0.48	0.46
Ford	0.59	0.41	0.48	0.59
Mazda	0.40	0.48	0.48	0.40

7/15/17

• Step 2: multiply each column by w_j to get v_{ij}.

Weight		0.4		0.2
	Style	Rel.	Fuel	Cost
Civic	0.046	0.244	0.162	0.106
Saturn	0.053	0.192	0.144	0.092
Ford	0.059	0.164	0.144	0.118
Mazda	0.040	0.192	0.144	0.080
				0.000

• Step 3 (a): determine ideal solution A*.

$$A* = \{0.059, 0.244, 0.162, 0.080\}$$

	Style	Rel.	Fuel	Cost
Civic			0.162	
Saturn	0.053	0.192	0.144	0.092
Ford	0.059	0.164	0.144	0.118
Mazda	0.040	0.192	0.144	0.080

• Step 3 (a): find negative ideal solution A'.

$$A' = \{0.040, 0.164, 0.144, 0.118\}$$

	Style			
Civic	0.046	0.244	0.162	0.106
Saturn	0.053	0.192	0.144	0.092
Ford	0.059	0.164	0.144	0.118
Mazda	0.040	0.192	0.144	0.080

• Step 4 (a): determine separation from ideal solution $A^* = \{0.059, 0.244, 0.162, 0.080\}$

$$S_i^* = [\Sigma (v_j^* - v_{ij})^2]^{1/2}$$
 for each row

```
Style Rel. Fuel Cost

Civic (.046-.059)<sup>2</sup> (.244-.244)<sup>2</sup> (.162-.162)<sup>2</sup> (.106-.080)<sup>2</sup>

Saturn (.053-.059)<sup>2</sup> (.192-.244)<sup>2</sup> (.144-.162)<sup>2</sup> (.092-.080)<sup>2</sup>

Ford (.059-.059)<sup>2</sup> (.164-.244)<sup>2</sup> (.144-.162)<sup>2</sup> (.118-.080)<sup>2</sup>

Mazda (.040-.059)<sup>2</sup> (.192-.244)<sup>2</sup> (.144-.162)<sup>2</sup> (.080-.080)<sup>2</sup>
```

• Step 4 (a): determine separation from ideal solution S_i^*

	$\Sigma (v_j^* - v_{ij})^2$	$S_{i}^{*} = [\Sigma (v_{i}^{*} - v_{ii}^{})^{2}]^{1/2}$
Civic	0.000845	0.029
Saturn	0.003208	0.057
Ford	0.008186	0.090
Mazda	0.003389	0.058

• Step 4 (b): find separation from negative ideal solution $A' = \{0.040, 0.164, 0.144, 0.118\}$

$$S_{i}' = \begin{bmatrix} \Sigma & (v_{i}' - v_{ij})^{2} \end{bmatrix}^{\frac{1}{2}} \text{ for each row}$$

$$Style \quad \text{Rel.} \quad \text{Fuel} \quad \text{Cost}$$

$$\text{Civic} \quad (.046 - .040)^{2} \quad (.244 - .164)^{2} \quad (.162 - .144)^{2} \quad (.016 - .0118)^{2}$$

$$\text{Saturn} \quad (.053 - .040)^{2} \quad (.192 - .164)^{2} \quad (0)^{2} \quad (.092 - .118)^{2}$$

$$\text{Ford} \quad (.059 - .040)^{2} \quad (.164 - .164)^{2} \quad (0)^{2} \quad (0)^{2}$$

$$\text{Mazda} \quad (.040 - .040)^{2} \quad (.192 - .164)^{2} \quad (0)^{2} \quad (.080 - .118)^{2}$$

• Step 4 (b): determine separation from negative ideal solution S_i '

	$\Sigma (v_j'-v_{ij})^2$	$S_{i}' = [\Sigma (v_{j}' - v_{ij})^{2}]^{1/2}$	
Civic	0.006904	0.083	
Saturn	0.001629	0.040	
Ford	0.000361	0.019	
Mazda	0.002228	0.047	

• Step 5: Calculate the relative closeness to the ideal solution $C_i^* = S'_i / (S_i^* + S'_i)$

$$S'_{i}/(S_{i}^{*}+S'_{i}) \quad C_{i}^{*}$$
 Civic 0.083/0.112 0.74 \leftarrow BEST Saturn 0.040/0.097 0.41 Ford 0.019/0.109 0.17 Mazda 0.047/0.105 0.45

