# STSCI 4780/5780 Decision theory & experimental design

Tom Loredo, CCAPS & SDS, Cornell University

© 2022-05-03

# **Agenda**

1 Decision theory

2 Experimental design

3 Recap

# **Naive Decision Making**

A Bayesian analysis results in probabilities for two hypotheses:

$$p(H_1|I) = 5/6;$$
  $p(H_2|I) = 1/6$ 

Equivalently, the odds favoring  $H_1$  over  $H_2$  are

$$O_{12} = 5$$

We must base future actions on either  $H_1$  or  $H_2$ .

Which should we choose?

Naive decision maker: Choose the most probable,  $H_1$ 

# Naive Decision Making—Deadly!

#### Russian Roulette



 $H_1 = \text{Chamber is empty};$ 

 $H_2 = Bullet in chamber$ 

What is your choice now?

Decisions should depend on consequences!

Unattributed JavaScript at http://www.javascriptkit.com/script/script2/roulette.shtml

# **Bayesian Decision Theory**

## Decisions depend on consequences

Might bet on an improbable outcome provided the payoff is large if it occurs and/or the loss is small if it doesn't

## Utility and loss functions

Compare consequences via *utility* quantifying the benefits of a decision, or via *loss* quantifying costs

$$\begin{array}{c} \textit{a} = & \text{Choice of action (decide b/t these)} \\ \text{Utility} = \textit{U(a,o)} \\ \textit{o} = & \text{Outcome (what we are uncertain of)} \end{array}$$

Loss 
$$L(a, o) = U_{\text{max}} - U(a, o)$$

## Russian Roulette Utility

Suppose you're offered \$6,000 to play

| Outo  | comes  |   |
|-------|--------|---|
| lick) | Bullat | 1 |

| Actions | Empty (click) | Bullet (BANG!) |
|---------|---------------|----------------|
| Play    | \$6,000       | −\$Life        |
|         | 0             | 0              |

## Uncertainty & expected utility

We are uncertain of what the outcome will be → Expected utility *averages over outcomes*:

$$\mathbb{E}U(a) = \sum_{\text{outcomes}} P(o|\ldots) \ U(a,o)$$

The best action *maximizes the expected utility*:

$$\hat{a} = \arg\max_{a} \mathbb{E}U(a)$$

I.e., minimize expected loss.

Axiomatized: von Neumann & Morgenstern; Ramsey, de Finetti, Savage

## Russian Roulette Expected Utility

#### **Outcomes**

| 0.000000      |                |                                                         |  |  |
|---------------|----------------|---------------------------------------------------------|--|--|
| Empty (click) | Bullet (BANG!) | $\mid \mathbb{E} U$                                     |  |  |
| \$6,000       | -\$Life        | \$5000-\$Life/6                                         |  |  |
| 0             | 0              | 0                                                       |  |  |
|               | ` '            | Empty ( <i>click</i> ) Bullet ( <i>BANG!</i> )  \$6,000 |  |  |

As long as Life > 30,000, don't play!

# **Decision theory and parametric models**

Decision theory can motivate specific posterior summaries:

- Point estimates for parameters ("Bayes estimators"):
  - ▶ Posterior median: best for absolute error loss
  - ▶ Posterior mean: best for squared error loss
  - ▶ Posterior mode: best for 0/1 loss ("all or nothing" prize)
- HPD regions best if penalize regions for increasing size

For model choice, *explanatory* vs. *predictive* criteria can lead to different choices

- They trade off bias vs. variance differently
- E.g., AIC comes from a predictive criterion, and BIC/Bayes factors from an explanatory criterion

# **Agenda**

1 Decision theory

2 Experimental design

3 Recap

# Experimental design as decision making

When we perform an experiment we have choices of actions:

- What sample size to use
- What times or locations to probe/query
- Whether to do one sensitive, expensive experiment or several less sensitive, less expensive experiments
- Whether to stop or continue a sequence of trials
- . . .

We must choose amidst uncertainty about the data we may obtain and the resulting consequences for our experimental results

⇒ Seek a principled approach for optimizing experiments, accounting for all relevant uncertainties

# Bayesian experimental design

Actions =  $\{e\}$ , possible experiments (sample sizes, sample times/locations, stopping criteria . . . ).

Outcomes =  $\{d_e\}$ , values of future data from experiment e.

Utility measures value of  $d_e$  for achieving experiment goals, possibly accounting for the cost of the experiment.

Choose the experiment that maximizes

$$\mathbb{E}U(e) = \sum_{d_e} p(d_e|\ldots) U(e, d_e)$$

To predict  $d_e$  we must consider various hypotheses,  $H_i$ , for the data-producing process  $\rightarrow$  Average over  $H_i$  uncertainty:

$$\mathbb{E}U(e) = \sum_{d_e} \left[ \sum_{H_i} p(H_i|\ldots) p(d_e|H_i,\ldots) \right] U(e,d_e)$$

## Information-based utility

Many scientific studies do not have a single, clear-cut goal.

Broad goal: Learn/explore, with resulting information made available for a variety of future uses.

Example: Astronomical measurement of orbits of minor planets or exoplanets

- Use to infer physical properties of a body (mass, habitability)
- Use to infer distributions of properties among the population (constrains formation theories)
- Use to predict future location (collision hazard; plan future observations)

Motivates using a "general purpose" utility that measures what is learned about the  $H_i$  describing the phenomenon

Lindley (1956, 1972) and Bernardo (1979) advocated using  $\mathcal{I}(D)$  as such a general-purpose utility

## MaxEnt sampling for parameter estimation

#### Setting:

- We have specified a model, M, with uncertain parameters  $\theta$
- We have data D o current posterior  $p(\theta|D, M)$
- The entropy of the noise distribution doesn't depend on  $\theta$

$$ightarrow \mathbb{E}\mathcal{I}(e) = \operatorname{\mathsf{Const}} - \sum_{d_e} p(d_e|D,I) \log p(d_e|D,I)$$

Maximum entropy sampling.

(Sebastiani & Wynn 1997, 2000)

To learn the most, sample where you know the least.

## Scientific method

Science is more than a body of knowledge; it is a way of thinking. The method of science, as stodgy and grumpy as it may seem, is far more important than the findings of science.

—Carl Sagan

## Classic hypothetico-deductive approach

- Form hypothesis (based on past observation/experiment)
- Devise experiment to test predictions of hypothesis
- Perform experiment
- ullet Analysis o
  - Devise new hypothesis if hypothesis fails
  - Devise new experiment if hypothesis corroborated

## **Bayesian Adaptive Exploration**



- Observation Gather new data based on observing plan
- Inference Interim results via posterior sampling
- Design Predict future data; explore where expected information from new data is greatest

## Locating a bump

Object is 1-d Gaussian of unknown loc'n, amplitude, and width. True values:

$$x_0 = 5.2$$
, FWHM = 0.6,  $A = 7$ 

Initial scan with crude ( $\sigma=1$ ) instrument provides 11 equispaced observations over [0, 20]. Subsequent observations will use a better ( $\sigma=1/3$ ) instrument.



# **Cycle 1 Interim Inferences**

Generate  $\{x_0, FWHM, A\}$  via posterior sampling.





# Cycle 1 Design: Predictions, Entropy



# Cycle 2: Inference, Design



# Cycle 3: Inference, Design



# **Cycle 4: Inferences**





## Inferences from non-optimal datum





# **Agenda**

Decision theory

2 Experimental design

3 Recap

## Recap: Bayesian inference in one slide

## Probability as generalized logic

Probability quantifies the strength of arguments

To appraise hypotheses, calculate probabilities for arguments from data and modeling assumptions to each hypothesis Use *all* of probability theory for this

## Bayes's theorem

$$p(\mathsf{Hypothesis} \mid \mathsf{Data}) \propto p(\mathsf{Hypothesis}) \times p(\mathsf{Data} \mid \mathsf{Hypothesis})$$

Data *change* the support for a hypothesis  $\propto$  ability of hypothesis to *predict* the data

## Law of total probability

$$p(\mathsf{Hypothes}\underline{\mathbf{es}} \mid \mathsf{Data}) = \sum p(\mathsf{Hypothes}\underline{\mathbf{is}} \mid \mathsf{Data})$$

The support for a *composite/compound* hypothesis must account for all the ways it could be true