Diagnostic Medical Image Processing Defect Pixel Interpolation

WS 2010/11

Joachim Hornegger, Dietrich Paulus, Markus Kowarschik

Lehrstuhl für Mustererkennung (Informatik 5)
Friedrich-Alexander-Universität Erlangen-Nürnberg

Diagnostic Medical Image Processing

- 1 Flat Panel Image Receptors
 - Concept of Flat Panel Image Receptors
 - Problem Statement: Defect Pixel Interpolation
 - Fourier Transform Revisited
 - Defect Pixel Correction by Spatial Interpolation
 - Defect Interpolation by Band Limitation
 - Defect Pixel Interpolation using Symmetry Properties
 - Take Home Messages
 - Further Readings

Flat Panel Image Receptors

- replace image intensifier technology and film
- implied profound changes in radiology
- are well established in
 - digital radiography
 - cardiology
 - mammography

Killer Applications of Flat Panel Detectors

With the introduction of flat panel detector technology, standard radiography systems could increase patient throughput and experienced a significant simplification of image archiving and image exchange with other hospitals and physicians.

Figure 1: Radiography system using flat panel detectors (image: Siemens Healthcare)

Killer Applications of Flatpanel Detectors I

- Cardiology: In cardiology flat panel detectors where introduced in 2002.
- Neuroradiology: Biplane flat panel detector C-arm systems are available on the market since beginning of 2006.
- Flat panel detectors allow for 3-D reconstruction of static, low contrast objects using C-arm systems.

Figure 2: Cardiac system using a flat panel detector (left), biplane neuroradiology system (image: Siemens Healthcare)

Killer Applications of Flatpanel Detectors II

The following images show examples of the contrast resolution achieved by today's C-arm CT devices and algorithms.

Figure 3: 3D low contrast C-arm reconstruction: Hepatocellular Carcinoma (image: Siemens Healthcare)

Killer Applications of Flatpanel Detectors III

In **magnetic navigation systems** the catheter is directed by a magnetic field. The manual control of its orientation is based on X-ray images. Obviously it is impossible to operate an image intensifier in a magnetic field. Flat panel technology thus is mandatory.

Figure 4: Niobe system for magnetic navigation (image: Siemens Healthcare)

Advantages of Flat Panel Detectors

- simple assembly and readout
- higher contrast resolution (high dynamic range)
- not sensitive to magnetic fields (no magnetic distortion)
- more robust with respect to under-/overexposure
- reduced space requirements (do not underestimate this advantage!)
- optimization of the clinical workflow
- mechanically rugged

Disadvantages of Flat Panel Detectors

- relatively slow readout
- still very expensive technology
- high rejection rate in production
- elimination of defects with digital image processing
- still expensive technology (will change over time)

Contrast Resolution

Figure 5: Higher contrast resolution using flat panel detectors: left image acquired on film, right image acquired with a digital detector (image: General Electrics)

Goals of Flat Panel Design

- digital imaging in all areas of radiology, i.e. replace film and image intensifiers
- cost reduction in health care (elimination of film!)
- improved image quality
- waste minimum amount of incoming X-ray (fill factor ca. 40 %)
- area sizes more than 40cm × 40cm
- \blacksquare spatial resolution of pixels 100 150 μ m

Detective Quantum Efficiency

Definition

The **detective quantum efficiency** (DQE) measures the decrease in SNR of a particular imaging system and is given by

$$DQE(f) = \frac{SNR^2(f)_{out}}{SNR^2(f)_{in}}$$
 (1)

- theoretical foundations by Albert Rose in 1946
- DQE named after R. Clark Jones of Polaroid

Flat Panel Detectors

Figure 6: Pixium 4600

Typical image data of a Pixium 4600:

■ area: 43cm × 43cm

■ resolution: 3121 × 3121

■ pixel size: 143µm

quantization: 14 bit (2 byte)

Different Flat Panel Detectors

Figure 7: Examples of different detectors (left, middle) and the inside view

Different Flat Panel Detectors

Figure 8: Different types of detectors

Figure 9: Structure of a flat panel detector

Figure 10: Csl based detectors

Flat Panel Detector Readout

Figure 11: Construction principle of flat panel detector J. Hornegger, D. Paulus, M. Kowarschik

Figure 12: Direct conversion using amorphous silicon

Artifacts of flat panel image receptors

- large detectors are composed by four detectors (butting cross)
- offset in intensities
- inactive pixels:
 - single pixels
 - pixel clusters
 - image columns
 - image rows

Typical Pre-processing Problems

- offset and gain correction
- defect interpolation
- butting cross correction

Figure 13: Thorax image with defect pixels

Defect pixel interpolation

1 Interpolation in spatial domain:

- non-adaptive linear filtering
- non-linear filtering (like median)
- suitable for small defect areas
- unnatural appearance (amplified by post–processing)

Interpolation in frequency domain:

- enforce band-limitation by bandpass filtering
- defect interpolation corresponds to the deconvolution of defect and ideal image
- binary defect image is computed in a calibration step
- ideal image is multiplied with the binary defect image

Butting Cross Artifact

Figure 14: Artifacts appearing after butting cross correction

Butting Cross Artifact

Figure 15: Artifacts caused by improper correction method

Diagnostic Medical Image Processing

- 1 Flat Panel Image Receptors
 - Concept of Flat Panel Image Receptors
 - Problem Statement: Defect Pixel Interpolation
 - Fourier Transform Revisited
 - Defect Pixel Correction by Spatial Interpolation
 - Defect Interpolation by Band Limitation
 - Defect Pixel Interpolation using Symmetry Properties
 - Take Home Messages
 - Further Readings

Defect Pixels: Model

Defect pixels are caused by defect detector cells. The mathematical model for defect generation is just the multiplication of the original image with a defect mask:

- Let $f_{i,j}$ denote the intensity value at grid point (i,j) of the **ideal** image f that has no defect pixels
- Let $w_{i,j}$ denote the indicator value at (i,j) where w is **mask image** that indicates defect and uncorrupted pixels

$$w_{i,j} = \begin{cases} 0 & \text{if pixel is defect} \\ 1 & \text{otherwise} \end{cases}$$

Let $g_{i,j}$ denote the intensity value at grid point (i,j) of the **observed image** g that is acquired with the flat panel detector that has defect pixels.

Mathematical Modeling of Pixel Defects

By pixelwise multiplication of the ideal image with the mask image we get the observed image:

Figure 16: Ideal image (left) is multiplied with defect image mask (middle) and results in the output defect image (right)

Depot Pixel interpolation in Spatial domain

- · frequency domain interpolation

bilitear

$$f(x) = \frac{a}{2} + \sum_{n \ge 1} a_n \cos_n x + \sum_{n \ge 1} b_n \sin_n x$$

$$cosx + i \cdot \sin x = e^{ix}$$

$$q_n = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \cos_n x \, dx$$

Defect Pixel Interpolation

For simplicity and without loss of generality we limit the following discussion to 1-D signals of length *N* and use the following notation:

- discrete ideal signal: f(n)
- binary mask image: w(n)
- \blacksquare observed signal: g(n)

Diagnostic Medical Image Processing

1 Flat Panel Image Receptors

- Concept of Flat Panel Image Receptors
- Problem Statement: Defect Pixel Interpolation
- Fourier Transform Revisited
- Defect Pixel Correction by Spatial Interpolation
- Defect Interpolation by Band Limitation
- Defect Pixel Interpolation using Symmetry Properties
- Take Home Messages
- Further Readings

Fourier Transform Revisited

1

The following discussions will heavily make use of the Fourier transform and its properties.

The Fourier transform of a 1-D signal is defined by

$$F(\xi) = \sum_{n=0}^{N-1} f(\mathbf{h}) e^{\frac{-2\pi i n \xi}{N}}$$

$$\begin{cases} f(\mathbf{h}) = \sum_{n=0}^{N-1} f(\mathbf{h}) \\ f(\mathbf{h}) = \sum_{n=0}^$$

Defect Pixel Interpolation

The algorithms for defect pixel interpolation apply three important properties of the Fourier transform or results related to the Fourier transform:

- Nyquist Shannon sampling theorem
- convolution theorem
- symmetry property Fourier transform of real signals

Sampling Theorem

Theorem

Given the continuous function $f(n) \in \mathbb{R}$, $n \in \mathbb{R}$ with a limited bandwidth B, i.e. the Fourier transform of f(n) satisfies $F(\xi) = 0$ for $\xi > B$. The interpolation using discrete sampling points allows the reconstruction of f(n), if the function is sampled with a sampling rate that is larger than twice the bandwidth B, i.e.

$$f_{\mathsf{sampling}} > 2B$$

$$f(x) = \sum_{k} q_{k} \cos k x + b_{k} \sin kx$$

Convolution Theorem

$$f(\vec{x})$$
 is linear if $f(\lambda \vec{x}) = \lambda f(\vec{x}')$

$$f(\vec{x} + \vec{y}') = f(\vec{x} + f(\vec{y})) = \frac{1}{2} \lambda_1 f(\vec{x}'_1)$$

Theorem

Convolution theorem: The convolution of two signals in the time domain, corresponds to a multiplication in the frequency domain:

$$g(n) = \sum_{k=0}^{N-1} f(k)h(n-k) = f \star h$$

$$G(\xi) = F(\xi)H(\xi)$$

$$g(\gamma) = \int_{-1}^{1} f(x) \cdot h(\gamma - x) dx$$

Convolution Theorem

The Fourier transform of
$$f \star h$$
 is
$$FT(f \star h)(\xi) = \sum_{n=0}^{N-1} \sum_{k=0}^{N-1} f(k)h(n-k) e^{\frac{-2\pi in\xi}{N}}$$

$$= \sum_{k=0}^{N-1} f(k) \sum_{n=0}^{N-1} h(n-k) e^{\frac{-2\pi in\xi}{N}}$$

$$= \sum_{k=0}^{N-1} f(k) e^{\frac{-2\pi ik\xi}{N}} H(\xi) = F(\xi)H(\xi) = G(\xi).$$

Convolution Theorem

Figure 17: Application of the convolution theorem

Symmetry Property of Fourier Transform

Theorem

If f(n) is a real valued discrete signal of length N, the Fourier transform $F(\xi)$ fulfills the symmetry property:

$$F(\xi) = \bar{F}(N - \xi),$$

where " - " denotes the conjugate complex.

Symmetry Property of Fourier Transform

Using the property that for real numbers $a \in \mathbb{R}$ complex and conjugate complex number are identical $a = \bar{a}$, we have $f(n) = \bar{f}(n)$ and thus

$$\bar{F}(N-\xi) = \sum_{k=0}^{N-1} \bar{f}(k) e^{\frac{2\pi i k(N-\xi)}{N}} = \sum_{k=0}^{N-1} f(k) e^{\frac{-2\pi i k(N-\xi)}{N}}$$

The N-th unit roots further fulfill

$$e^{\frac{2\pi ik\xi}{N}} = e^{\frac{2\pi ik(\xi+m\cdot N)}{N}}$$

where *m* is an integer, and thus we get:

$$\bar{F}(N-\xi) = F(\xi).$$

Some useful Properties of the Fourier Transform

	spatial domain	frequency domain
scaling	f(at)	$\frac{1}{ a }F(\frac{\xi}{a})$
shifting	$f(t-t_0)$	$e^{-i\xi t_0}F(\xi)$
symmetry	$-1/(2\pi)\cdot F(t)$	$f(-\xi)$
differentiation	$d^n f(t)/d t^n$	$(i\xi)^nF(\xi)$

Table 1: Summary of important properties of the Fourier transform

Diagnostic Medical Image Processing

1 Flat Panel Image Receptors

- Concept of Flat Panel Image Receptors
- Problem Statement: Defect Pixel Interpolation
- Fourier Transform Revisited
- Defect Pixel Correction by Spatial Interpolation
- Defect Interpolation by Band Limitation
- Defect Pixel Interpolation using Symmetry Properties
- Take Home Messages
- Further Readings

Diagnostic Medical Image Processing

1 Flat Panel Image Receptors

- Concept of Flat Panel Image Receptors
- Problem Statement: Defect Pixel Interpolation
- Fourier Transform Revisited
- Defect Pixel Correction by Spatial Interpolation (& Liu L ...)
- Defect Interpolation by Band Limitation
- Defect Pixel Interpolation using Symmetry Properties
- Take Home Messages
- Further Readings

O(Nlog N) Cutoff

Defect Interpolation by Band Limitation

The first idea for defect pixel interpolation using frequency domain methods is based on a fundamental result of signal theory:

- According to the sampling theorem the ideal signal f(n) is required to be band-limited regarding to a certain band frequency ξ .
- Defect detector elements bring intensities of corresponding pixels down to zero.
- Defect pixels cause high differences in intensities of neighboring pixels and thus imply higher frequencies in the 2-D image function. These higher frequencies cause a violation of the required band limitation.

Idea for defect interpolation: Replace defect pixels iteratively by enforcing band limitation.

Defect Interpolation by Band Limitation

compute FT of input signal g(n)

set $G(\xi) = 0$ for $\xi > B_u$ or $\xi < B_{\underline{l}}$,

compute inverse FT of corrected $G(\xi)$

Replace defect samples in g(n) by values of inverse FT

UNTIL changes are below a threshold

Figure 18: Interpolation by enforcing a band limited signal in $[B_l, B_u]$

Drawbacks of Band Limitation

The proposed method is quite simple and intuitive, but there exist a few ■ Band limitation B_u, B_v must be known

- The interpolation scheme is computationally expensive, because each iteration requires twice the Fourier transform of the signal. This prohibits its straightforward practical use.
- The proposed interpolation algorithm is not optimal w.r.t. minimum number of non-zero frequencies.
- Extrapolations decay outside observation interval
- The application of adaptive thresholding during interpolation is advantageous.

Diagnostic Medical Image Processing

1 Flat Panel Image Receptors

- Concept of Flat Panel Image Receptors
- Problem Statement: Defect Pixel Interpolation
- Fourier Transform Revisited
- Defect Pixel Correction by Spatial Interpolation
- Defect Interpolation by Band Limitation
- Defect Pixel Interpolation using Symmetry Properties
- Take Home Messages
- Further Readings

Defect Pixel Interpolation

- \bullet f(n), g(n), w(n) as previously defined are real valued signals.
- The images satisfy the following relationship:

$$g(n) = f(n) \cdot w(n) \Leftrightarrow G(\xi) = F(\xi) \star W(\xi)$$
 (3)

For the ideal, the mask, and the defect image, the Fourier transform satisfies the symmetry property:

$$F(\xi) = \overline{F}(N-\xi)$$

$$G(\xi) = \overline{G}(N-\xi)$$

$$W(\xi) = \overline{W}(N-\xi)$$

where the symbol \bar{z} denotes the conjugate complex of z.

Frequency Domain Defect Pixel Interpolation

We now we make explicit use of the symmetry property of the Fourier transform to derive an interpolation algorithm:

- Select a pair G(s) and G(N-s) of the Fourier transform of the corrupted image showing pixels defects.
- Select a pair F(s) and F(N-s) of the Fourier transform of the ideal image.
- We can thus rewrite the Fourier transform using Dirac's δ -function:

$$F(k) = \hat{F}(s)\delta(k-s) + \hat{F}(N-s)\delta(k-N+s)$$

where \hat{F} denotes an estimate of F, and the δ -function is defined by

$$\delta(n) = \begin{cases} 1; & \text{if } n = 0 \\ 0; & \text{otherwise} \end{cases}$$

Frequency Domain Defect Pixel Interpolation

(4)

RMIP

Let us assume that the Fourier transform of the ideal image F(k)consists only of two lines at s and N-s, where $s \neq 0$. The convolution of image with Fourier transform of the given mask image W leads to the Fourier transform of the observed corrupted image:

$$G(s) = F(s)W(0) + \hat{F}(s)W(2s)$$

$$G(s) = F(s)W(0) + \hat{F}(s)W(2s)$$

$$G(s) = F(s) \cdot W(m-k) = \hat{F}(s) \cdot W(m-s) + \hat{F}(N-s) \cdot W(m-p+s)$$

$$G(s) = f(s) \cdot W(s) + \hat{F}(s) \cdot W(s+s)$$

$$(\exists) \ \vec{G}(s) = \hat{\vec{F}}(s) \cdot \vec{\omega}(o) + \hat{\vec{F}}(s) \cdot \vec{\omega}(2s)$$

$$(\vec{X} = \vec{b} + \vec{X} \cdot \vec{b} \in \mathbb{R}^{2}$$

 $(I) G(s) = \hat{f}(s) \cdot \omega(0) + \hat{f}(s) \cdot \omega(2s) \left[x^{\frac{1}{2}-1} = 0 \right]$

For the conjugate complex Fourier transform of the observed image, we get:

$$\bar{G}(s) = \frac{1}{N} \left(\hat{\bar{F}}(s) \bar{W}(0) + \hat{F}(s) \bar{W}(2s) \right)$$
 (5)

■ Since W is known, we get two equations linear in $\hat{F}(s)$ and $\bar{F}(s)$. The final estimator for the Fourier transform of the ideal image:

$$\hat{F}(s) = N \frac{G(s)\bar{W}(0) - \bar{G}(s)W(2s)}{|W(0)|^2 - |W(2s)|^2}, \tag{6}$$

where |.| is the absolute value of the complex number.

An objective function to measure the quality of the interpolated image results from the least square error based on equation 2:

$$\Delta_{\epsilon} = \frac{1}{N} \sum_{n=0}^{N-1} (g(n) - w(n) \cdot f(n))^2$$
 (7)

The spectrum of the error in the i-th iteration step is given by:

$$g^{(i)}(n) = g^{(i-1)}(n) - \frac{1}{N} \hat{F}^{(i-1)}(s) \delta(n-s) + \hat{F}^{(i-1)}(s) \delta(n-N+s)$$
(8)

Interpolation Algorithm

compute FT of input signal $g(n)$		
Initialize $\hat{F}^{0}(k) = 0$, $G^{0}(k) = G(k)$, $i = 1$		
Randomly select a line pair $s \neq 0$ $G^{i-1}(s) =$		
$G^{i-1}(N-s)$		
Estimate $\hat{F}^i(s)$, $\hat{F}^i(N-s)$ using (6)		
Update spectrum $\hat{F}^i(k)$, compute error Δ_{ϵ} using (8)		
IF $\operatorname{error} \Delta_\epsilon$ above a threshold		
THEN Compute error spectrum $G^{i}(k)$, increment i		
UNTIL error are below a threshold		
Compute inverse FT of $\hat{F}^i(k)$		

Figure 19: Interpolation due to Aach and Metzler [?]

Figure 20: Synthetic image with a square artifact and the result of 100 iterations

Figure 21: Original image including defects and the result after 500 iterations

Figure 22: X-ray image with defects and the result of interpolation (500 iterations)

Figure 23: X-ray image with defects and the result of interpolation (1000 iterations)

Figure 24: Artificial noise image with defect pixels and the result of interpolation (1000 iterations)

Figure 25: Result of interpolation after 1000 (left) and 5000 iterations (right)

Application to Endoscopy

- endoscopy: wet surfaces lead to specular reflections
- segmentation of highlighted areas
- apply defect interpolation

Figure 26: Endoscopy image with reflections, segmentation result, result of interpolation (image: master thesis Xie Weiguo)

Application to Ophthalmology

Color images in Ophthalmology

- In Ophthalmology the early diagnosis of diseases is done on the basis of retina images as shown, for instance, in Figure 17.
- For the diagnosis of Glaucoma disease, sometimes vessel structures are less important and misleading.

Our approach to eliminate vessel structures:

- Perform a segmentation of vessels, i.e. identify all image points that belong to a vessel.
- Consider pixels of vessels as defects.
- Run a defect pixel interpolation algorithm on images with defects.

Application to Ophthalmology

In Ophthalmology the early diagnosis of diseases is done on the basis of retina images as shown in Figure 17

Application to Ophthalmology

In Ophthalmology the early diagnosis of diseases is done on the basis of retina images as shown in Figure 17

Diagnostic Medical Image Processing

1 Flat Panel Image Receptors

- Concept of Flat Panel Image Receptors
- Problem Statement: Defect Pixel Interpolation
- Fourier Transform Revisited
- Defect Pixel Correction by Spatial Interpolation
- Defect Interpolation by Band Limitation
- Defect Pixel Interpolation using Symmetry Properties
- Take Home Messages
- Further Readings

Take Home Messages

- Flat panel detectors are standard in digital X-ray systems
- There exist different principles to realize a flat panel image receptor
- Defect pixel interpolation can be done in spatial and frequency domain.
- Be careful by applying defect pixel interpolation.
- Properties of Fourier transform.
- Applications of defect pixel interpolation to other problems in medical image processing.

Diagnostic Medical Image Processing

1 Flat Panel Image Receptors

- Concept of Flat Panel Image Receptors
- Problem Statement: Defect Pixel Interpolation
- Fourier Transform Revisited
- Defect Pixel Correction by Spatial Interpolation
- Defect Interpolation by Band Limitation
- Defect Pixel Interpolation using Symmetry Properties
- Take Home Messages
- Further Readings

Further Readings

- Further details on flat panels can be found on the following web pages:
 - www.varian.com
 - www.trixell.com
- Basic information on DQE can be found in the original papers:
 - Albert Rose: A Unified Approach to the Performance of Photographic Film, Television Pickup Tubes, and the Human Eye, J. SMPE, 47, 273-294 (1946).
 - R. Clark Jones: On the Quantum Efficiency of Photographic Negatives, Photographic Science and Engineering, Vol. 2, No. 2, August, 1958, p. 57-65
- The method presented for defect pixel interpolation in the frequency domain was published in 2001 by Til Aach, Volker Metzler [?]
- X-ray imaging and image quality issues are discussed on the web-page http://lxi.leeds.ac.uk/.

