Introducción al análisis léxico

Clase 16

IIC2223 / IIC2224

Prof. Cristian Riveros

Outline

Propiedades de transductores (ant.)

Transductores deterministas

Análisis léxico

Outline

Propiedades de transductores (ant.)

Transductores deterministas

Análisis léxico

Transductores (recordatorio)

Definición de transductor (recordatorio)

Definición

Un transductor (en inglés, transducer) es una tupla:

$$\mathcal{T} = (Q, \Sigma, \Omega, \Delta, I, F)$$

- Q es un conjunto finito de estados.
- Σ es el alfabeto de input.
- \blacksquare Ω es el alfabeto de output.
- $\Delta \subseteq Q \times (\Sigma \cup \{\epsilon\}) \times (\Omega \cup \{\epsilon\}) \times Q$ es la relación de transición.
- $I \subseteq Q$ es un conjunto de estados iniciales.
- $F \subseteq Q$ es el conjunto de estados finales.

Función definida por un transductor (recordatorio)

Sea $\mathcal{T} = (Q, \Sigma, \Omega, \Delta, I, F)$ un transductor y $u, v \in \Sigma^*$.

Definiciones

■ \mathcal{T} entrega v con input u si existe una configuración inicial (q_0, u, ϵ) y una configuración final (q_f, ϵ, v) tal que:

$$(q_0, u, \epsilon) \vdash_{\mathcal{T}}^* (q_f, \epsilon, v)$$

■ Se define la función $[T]: \Sigma^* \to 2^{\Omega^*}$:

$$\llbracket \mathcal{T} \rrbracket (u) = \{ v \in \Omega^* \mid \mathcal{T} \text{ entrega } v \text{ con input } u \}$$

■ Se dice que $f: \Sigma^* \to 2^{\Omega^*}$ es una función racional si existe un transductor \mathcal{T} tal que $f = [\![\mathcal{T}]\!]$.

Un transductor define una función de palabras a conjunto de palabras.

Función definida por un transductor (recordatorio)

Funciones versus relaciones

Dos interpretaciones para un transductor

 $1. \ \mathcal{T} \ \text{define la función} \ [\![\mathcal{T}]\!] : \Sigma^* \to 2^{\Omega^*} :$

$$\llbracket \mathcal{T} \rrbracket (u) = \{ v \in \Omega^* \mid \mathcal{T} \text{ entrega } v \text{ con input } u \}$$

2. \mathcal{T} define la relación $[\mathcal{T}] \subseteq \Sigma^* \times \Omega^*$:

$$(u,v) \in \llbracket \mathcal{T}
rbracket$$
 si, y solo si, \mathcal{T} entrega v con input u

Desde ahora, hablaremos de función o relación **indistintamente** y hablaremos de las **relaciones racionales** (definidas por un transductor).

Lenguaje de input y lenguaje de output

Definiciones

Para una relación $R \subseteq \Sigma^* \times \Omega^*$ se define:

- $\blacksquare \pi_1(R) = \{ u \in \Sigma^* \mid \exists v \in \Omega^*. (u, v) \in R \}.$
- $\blacksquare \ \pi_2(R) \ = \ \big\{ \ v \in \Omega^* \ \big| \ \exists u \in \Sigma^*. \ (u,v) \in R \ \big\}.$

¿cuál es el lenguaje definido por $\pi_1(\llbracket \mathcal{T} \rrbracket)$ y $\pi_2(\llbracket \mathcal{T} \rrbracket)$?

Lenguaje de input y lenguaje de output

Definiciones

Para una relación $R \subseteq \Sigma^* \times \Omega^*$ se define:

- $\blacksquare \pi_1(R) = \{ u \in \Sigma^* \mid \exists v \in \Omega^*. (u, v) \in R \}.$

Teorema

Si $\mathcal T$ es un transductor, entonces $\pi_1(\llbracket \mathcal T \rrbracket)$ y $\pi_2(\llbracket \mathcal T \rrbracket)$ son lenguajes regulares sobre Σ y Ω , resp.

Demostración:
$$\pi_1(\llbracket \mathcal{T} \rrbracket)$$

Para
$$\mathcal{T} = (Q, \Sigma, \Omega, \Delta, I, F)$$
, defina $\mathcal{A}_1 = (Q, \Sigma, \Delta_1, I, F)$ tal que:

$$(p, a, q) \in \Delta_1$$
 si, y solo si, $\exists b \in \Omega \cup \{\epsilon\}. (p, a, b, q) \in \Delta$

y demuestre que
$$\mathcal{L}(\mathcal{A}_1)$$
 = $\pi_1(\llbracket \mathcal{T} \rrbracket)$.

Operaciones de relaciones

Teorema

Sea \mathcal{T}_1 y \mathcal{T}_2 dos transductores con Σ y Ω alfabetos de input y output.

Las siguientes son relaciones racionales.

- $1. \quad \llbracket \mathcal{T}_1 \rrbracket \cup \llbracket \mathcal{T}_2 \rrbracket = \{(u,v) \in \Sigma^* \times \Omega^* \mid (u,v) \in \llbracket \mathcal{T}_1 \rrbracket \vee (u,v) \in \llbracket \mathcal{T}_2 \rrbracket \}.$
- $2. \ \llbracket \mathcal{T}_1 \rrbracket \cdot \llbracket \mathcal{T}_2 \rrbracket = \{ (u_1u_2, v_1v_2) \in \Sigma^* \times \Omega^* \mid (u_1, v_1) \in \llbracket \mathcal{T}_1 \rrbracket \land (u_2, v_2) \in \llbracket \mathcal{T}_2 \rrbracket \}.$
- 3. $[\mathcal{T}_1]^* = \bigcup_{k=0}^{\infty} [\mathcal{T}_1]^k$.

Demostración.

Operaciones de relaciones

Teorema

Existen transductores \mathcal{T}_1 y \mathcal{T}_2 sobre Σ y Ω tal que:

$$[\![\mathcal{T}_1]\!] \cap [\![\mathcal{T}_2]\!] = \{(u,v) \in \Sigma^* \times \Omega^* \mid (u,v) \in [\![\mathcal{T}_1]\!] \land (u,v) \in [\![\mathcal{T}_2]\!]\}$$

NO es una relación racional.

Demostración

Considere los siguientes transductores:

Outline

Propiedades de transductores (ant.)

Transductores deterministas

Análisis léxico

Definición

Decimos que un transductor ${\mathcal T}$ define una función (parcial) si:

para todo $u \in \Sigma^*$ se tiene que $|[T](u)| \le 1$.

Definición

Decimos que $\mathcal{T} = (Q, \Sigma, \Omega, \Delta, I, F)$ es determinista si cumple que:

- $1. \ \mathcal{T} \ \text{define una función parcial} \ [\![\mathcal{T}]\!]: \Sigma^* \to \Omega^*.$
- 2. para todo $(p, a_1, b_1, q_1) \in \Delta$ y $(p, a_2, b_2, q_2) \in \Delta$, si $a_1 = a_2$, entonces $b_1 = b_2$ y $q_1 = q_2$.
- 3. si $(p, \epsilon, b, q) \in \Delta$, entonces para todo $(p, a', b', q') \in \Delta$, se tiene que $(a', b', q') = (\epsilon, b, q)$.

Definición

Decimos que $\mathcal{T} = (Q, \Sigma, \Omega, \Delta, I, F)$ es determinista si cumple que:

- $1. \ \mathcal{T} \ \text{define una función parcial} \ [\![\mathcal{T}]\!]: \Sigma^* \to \Omega^*.$
- 2. para todo $(p, a_1, b_1, q_1) \in \Delta$ y $(p, a_2, b_2, q_2) \in \Delta$, si $a_1 = a_2$, entonces $b_1 = b_2$ y $q_1 = q_2$.
- 3. si $(p, \epsilon, b, q) \in \Delta$, entonces para todo $(p, a', b', q') \in \Delta$, se tiene que $(a', b', q') = (\epsilon, b, q)$.

Propiedad

Si $\mathcal T$ es un transductor determinista, entonces $\mathcal T$ define una función parcial.

ues verdad que si $\mathcal T$ define una función parcial, entonces $\mathcal T$ es deterministas?

Definición

Decimos que $\mathcal{T} = (Q, \Sigma, \Omega, \Delta, I, F)$ es determinista si cumple que:

- 1. \mathcal{T} define una función parcial $[T]: \Sigma^* \to \Omega^*$.
- 2. para todo $(p, a_1, b_1, q_1) \in \Delta$ y $(p, a_2, b_2, q_2) \in \Delta$, si $a_1 = a_2$, entonces $b_1 = b_2$ y $q_1 = q_2$.
- 3. si $(p, \epsilon, b, q) \in \Delta$, entonces para todo $(p, a', b', q') \in \Delta$, se tiene que $(a', b', q') = (\epsilon, b, q)$.

Contraejemplo

¿cuál es la ventaja de los transductores deterministas?

Outline

Propiedades de transductores (ant.)

Transductores deterministas

Análisis léxico

Sintaxis y semántica de un lenguaje de programación

Definición

1. La sintaxis de una lenguaje es un conjunto de reglas que describen los programas válidos que tienen significado.

¿cuáles son programas válidos en Python?

- myint = 7
 print myint
- mystring = 'hello"
 print(mystring)

Sintaxis y semántica de un lenguaje de programación

Definición

- 1. La sintaxis de una lenguaje es un conjunto de reglas que describen los programas válidos que tienen significado.
- 2. La semántica de un lenguaje define el significado de un programa correcto según la sintaxis.

¿cuál es la semántica de este programa en Python?

```
mylist = []
mylist.append(1)
mylist.append(2)
for x in mylist:
    print(x)
```

La estructura de un compilador

Verificación de sintaxis

En este proceso se busca:

- verificar la sintaxis de un programa.
- entregar la estructura de un programa (árbol de parsing).

Consta de tres etapas:

- 1. Análisis léxico (Lexer).
- 2. Análisis sintáctico (Parser).
- 3. Análisis semántico.

Por ahora, solo nos interesará el Lexer.

(el funcionamiento del Parser lo veremos cuando veamos gramáticas)

Análisis léxico (Lexer)

- El análisis léxico consta en dividir el programa en una sec. de tokens.
- Un token (o lexema) es un substring (válido) dentro de un programa.
- Un token esta compuesto por:
 - tipo.
 - valor (el valor mismo del substring).

Análisis léxico (Lexer)

Tipos usuales de tokens en lenguajes de programación:

- **number** (constante): 2, 345, 495, ...
- **string** (constante): 'hello', 'iloveTDA', ...
- **keywords**: if, for, ...
- identificadores: pos, init, rate ...
- **delimitadores**: '{', '}', '(', ')', ',', ...
- operadores: '=', '+', '<', '<=', ...</pre>

Análisis léxico (Lexer)

```
Ejemplo
pos = init + rate * 60
```

Tipo	Valor
id	pos
EQ	=
id	init
PLUS	+
id	rate
MULT	*
number	60

Todos los espacios, saltos de línea y caracteres de formato son omitidos

Cierre de clase

En esta clase vimos:

- 1. Propiedades de transductores.
- 2. Modelo de transductor determinista.
- 3. Introducción al análisis léxico.

Próxima clase: Aplicación de transductores al análisis léxico