Data Structures & Algorithms 2

Topic 7 – Graphs (part 1)

Lecturer: Dr. Hadi Tabatabaee

Materials: Dr. Phil Maguire & Dr. Hadi Tabatabaee

Maynooth University

Online at http://moodle.maynoothuniversity.ie

Aims

Introducing graphs and their properties

Overview

Learning outcomes: You should be able to...

- •Learn different types of graphs and their properties
- Learn Graph ADT and different presentations of graphs
- •Build edge list structure
- Build adjacency list
- Build adjacency matrix

Graphs

- Graphs are one of the most versatile structures used in computer programming and are used to solve the more interesting problems.
- There are two types of graphs:
 - Unweighted graphs where the links between nodes are equal.
 - Weighted graphs where the links are each associated with an individual weight.
- The shape of the graph is dictated by the problem you want to solve and represents some real-world situation.

Real-world problems

- Graphs are used to represent real-world problem such as airline routes, electrical circuits and job scheduling.
- For example, can you find a way to cross all seven bridges in Konigsberg only once?

Abstraction

Solution

- This problem inspired Leonhard Euler to invent graph theory during the 18th century.
- The trick was to represent the bridges in the form of a graph.

Konigsberg -> Kaliningrad

- Birthplace of Christian Goldbach (1690)
- Home of Immanuel Kant (1724)
- Bridges were used by Euler to develop graph theory (1736)
- Birthplace of David Hilbert (1862)

Graphs

- Nodes are called vertices.
- Edges link vertices.
- Vertices are labeled in some way, often with letters.
- Each edge has two vertices at its ends.
- The graph represents which vertices are connected to each other.

Graphs (cont.)

- A graph is a pair (V, E), where
 - V is a set of nodes called vertices.
 - E is a collection of pairs of vertices, called edges.
 - Vertices and edges are positions and store elements.
- Example:
 - A vertex represents an airport and stores the three-letter airport code.
 - An edge represents a flight route between two airports and stores the route's mileage.

Applications

- Electronic circuits
 - Printed circuit board
 - Integrated circuit
- Transportation networks
 - Highway network
 - Flight network
- Computer networks
 - Local area network
 - Internet
 - Web
- Databases
 - Entity-relationship diagram

Terminology

- End vertices (or endpoints) of an edge
 - Uand Vare the endpoints of a
- Edges incident on a vertex
 - a, d, and b are incident on V
- Adjacent vertices
 - Uand Vare adjacent
- Degree of a vertex
 - X has degree 5
- Parallel edges
 - h and i are parallel edges
- Self-loop
 - j is a self-loop

Graphs 11

Connectivity in graphs

- Connected graphs: A graph is said to be connected if there is at least one path from every vertex to every other vertex.
- Disconnected graph

The algorithms we will consider all assume a connected graph.

Connectivity in graphs (cont.)

Bi-partite graphs: a bipartite graph is a graph whose vertices can be divided into two disjoint and independent sets U and V, that is every edge connects a vertex in U to one in V.

Connectivity in graphs (cont.)

Complete graphs

- In a complete graph every vertex has an edge to all other.
- The complete graph with n graph vertices is denoted mn.
- The complete graph on n vertices has n(n-1)/2.

Terminology

Path

- The sequence of alternating vertices and edges
- begins with a vertex
- ends with a vertex
- each edge is preceded and followed by its endpoints

Simple path

A path such that all its vertices and edges are distinct

Examples

- P₁=(V,b,X,h,Z) is a simple path
- P₂=(U,c,W,e,X,g,Y,f,W,d,V) is a path that is not simple

Terminology (cont.)

Cycle

- circular sequence of alternating vertices and edges
- each edge is preceded and followed by its endpoints
- Simple cycle
 - cycle such that all its vertices and edges are distinct
- Examples
 - C₁=(V,b,X,g,Y,f,W,c,U,a,△) is a simple cycle
 - □ C_2 =(U,c,W,e,X,g,Y,f,W,d,V,a, \bot) is a cycle that is not simple

Edge Types

- Directed edge
 - Ordered pair of vertices (u,v)
 - First, vertex u is the origin
 - Second, vertex v is the destination
 - e.g., a flight
- Undirected edge
 - Unordered pair of vertices (u,v)
 - e.g., a flight route
- Directed graph
 - All the edges are directed
 - e.g., route network
- Undirected graph
 - All the edges are undirected
 - e.g., flight network

Directed and Weighted

- A non-directed graph means you don't have to go in a particular direction. You can follow an edge in both directions.
- Graphs are often used to model situations where you can go in only one direction along an edge – like a one-way street.
- These graphs are called directed, and the allowed direction is shown as an arrowhead.
- In some graphs, edges are given a weight that represents factors such as the physical distance between two vertices or the cost/time taken to get from one vertex to another.

Properties

Property 1:

 $\sum_{\mathbf{v}} \deg(\mathbf{v}) = 2\mathbf{m}$ Proof: each edge is counted twice

Property 2:

In an undirected graph with no self-loops and no multiple edges $m \le n (n - 1)/2$

Proof: each vertex has a degree at most (*n* - 1)

Notation

n m deg(**v**)

number of vertices number of edges degree of vertex **v**

Example n=4

$$\mathbf{m} = 6$$

$$\bullet \quad \deg(v) = 3$$

What is the bound for a directed graph?

Vertices and Edges

A graph is a collection of vertices and edges.

- We model the abstraction as a combination of three data types:
 Vertex, Edge, and Graph.
- A **Vertex** is a lightweight object that stores an arbitrary element provided by the user (e.g., an airport code)
 - We assume it supports a method, element(), to retrieve the stored element.
- An Edge stores an associated object (e.g., a flight number, travel distance, cost), retrieved with the element() method.

Graph ADT

numVertices(): Returns the number of vertices of the graph.

vertices(): Returns an iteration of all the vertices of the graph.

numEdges(): Returns the number of edges of the graph.

edges(): Returns an iteration of all the edges of the graph.

getEdge(u, v): Returns the edge from vertex u to vertex v, if one exists; otherwise return null. For an undirected graph, there is no difference between getEdge(u, v) and getEdge(v, u).

endVertices(e): Returns an array containing the two endpoint vertices of edge e. If the graph is directed, the first vertex is the origin and the second is the destination.

opposite(v, e): For edge e incident to vertex v, returns the other vertex of the edge; an error occurs if e is not incident to v.

outDegree(v): Returns the number of outgoing edges from vertex v.

in Degree (v): Returns the number of incoming edges to vertex v. For an undirected graph, this returns the same value as does out Degree (v).

outgoingEdges(v): Returns an iteration of all outgoing edges from vertex v.

incomingEdges(v): Returns an iteration of all incoming edges to vertex v. For an undirected graph, this returns the same collection as does outgoingEdges(v).

insertVertex(x): Creates and returns a new Vertex storing element x.

insertEdge(u, v, x): Creates and returns a new Edge from vertex u to vertex v, storing element x; an error occurs if there already exists an edge from u to v.

removeVertex(v): Removes vertex v and all its incident edges from the graph.

removeEdge(e): Removes edge e from the graph.

Representing Edges

- In a binary tree, each node contains a reference to two child nodes.
- However, graphs have a more free-form organization where they have an arbitrary number of edges.
- We need a special data structure for representing connections between vertices.

Three commonly used methods are:

- 1. Edge list structure
- 2. Adjacency list structure
- 3. Adjacency matrix

Edge list structure

The *edge list* structure is possibly the simplest, though not the most efficient, representation of a graph *G*. All vertex objects are stored in an unordered list *V*, and all edge objects are stored in an unordered list *E*.

- Vertex object
 - element
 - reference to the position in vertex sequence
- Edge object
 - element
 - origin vertex object
 - destination vertex object
 - reference to the position in edge sequence
- Vertex sequence
 - The sequence of vertex objects
- Edge sequence
 - The sequence of edge objects

Performance of the Edge List Structure

Method	Running Time
numVertices(), numEdges()	<i>O</i> (1)
vertices()	O(n)
edges()	O(m)
getEdge(u, v), $outDegree(v)$, $outgoingEdges(v)$	O(m)
insertVertex(x), insertEdge(u, v, x), removeEdge(e)	<i>O</i> (1)
removeVertex(v)	O(m)

For a graph of n vertices and m edges.

Adjacency List

- An adjacency list uses a linked list structure to represent edges.
- There is a linked list for each vertices, which contains a list of all the other vertices it is linked to.
- The order in the linked list has no particular significance.
- For a very sparse graph (few edges between vertices), you can speed up runtime by using an adjacency list (because you don't need to examine any 0 entries).
- However, the algorithms involving the adjacency matrix are simpler, so we'll use this method.

Adjacency List Structure

The adjacency list structure for a graph adds extra information to the edge list structure that supports direct access to the incident edges (and thus to the adjacent vertices) of each vertex.

- Incidence sequence for each vertex
 - sequence of references to edge objects of incident edges
- Augmented edge objects
 - references to associated positions in incidence sequences of end vertices

Performance of the Adjacency List Structure

Method	Running Time
numVertices(), numEdges()	<i>O</i> (1)
vertices()	O(n)
edges()	O(m)
getEdge(u, v)	$O(\min(\deg(u),\deg(v)))$
outDegree(v), $inDegree(v)$	<i>O</i> (1)
outgoingEdges(v), incomingEdges(v)	$O(\deg(v))$
insertVertex(x), $insertEdge(u, v, x)$	<i>O</i> (1)
removeEdge(e)	<i>O</i> (1)
removeVertex(v)	$O(\deg(v))$

Adjacency Matrix Structure

The adjacency matrix is a two-dimensional array in which the elements indicate whether an edge is present between two vertices.

If a graph has N vertices, then the adjacency matrix is an N x N array.

- Edge list structure
- Augmented vertex objects
 - Integer key (index) associated with vertex
- 2D-array adjacency array
 - Reference to edge object for adjacent vertices
 - Null for non-nonadjacent vertices
- The "old fashioned" version just has 0 for no edge and 1 for edge

			0	1	2	3
u		0		e	g	
v		1	e		f	
W		2	g	f		h
Z		3			h	

Performance

 n vertices, m edges no parallel edges no self-loops 	Edge List	Adjacency List	Adjacency Matrix
Space	n + m	n + m	n ²
incidentEdges(v)	m	deg(v)	n
areAdjacent (v , w)	m	$min(deg(\mathbf{v}), deg(\mathbf{w}))$	1
insertVertex(o)	1	1	n ²
insertEdge(v, w, o)	1	1	1
removeVertex(v)	m	deg(v)	n ²
removeEdge(e)	1	1	1

Questions

