МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ

«МОСКОВСКИЙ АВИАЦИОННЫЙ ИНСТИТУТ (НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ)» (МАИ)

Отчёт о выполнении практического задания по курсу «Метрология, Стандартизация, Сертификация» Название вашего задания

Отчёт и материалы:	Отчёт выполнил(и): Студент(ы) гр. 3О-201С
	—————————————————————————————————————
	Принимал работу: Ст.преп. каф. 303
	Капырин Н.И. «» 2017 г

Содержание

\mathbf{C}_{1}	Список сокращений							
1	Введение	3						
2	Задание	3						
	2.1 Пример задания	3						
	2.2 Пример заключения по работе	3						
	2.3 Дополнительные условия	3						
3	Содержание отчёта	4						
4	Ход решения	4						
5	Варианты заданий	5						
	5.1 Приборы	5						
	5.2 Эффекты	6						
6	Распределение заданий	7						
\mathbf{C}_1	писок использованных источников	9						

Список сокращений

1 Введение

Данный курс практических занятий имеет целью приобретение навыков, важных для курса «Метрология, Стандартизация, Сертификация»:

- аккуратное оформление документации
- моделирование эксперимента (математическое описание),
- формирование модели погрешности эксперимента как функции влияния на результат некоторого шумового процесса,
- оценка степени влияния выбранного вида погрешности,
- оценка класса точности прибора, функционирующего в таких условиях.

2 Задание

Оформить *пояснительную записку к эксперименту*, в котором изучаются погрешности измерительного процесса, вызванные одним определённым фактором. Все неизвестные параметры принять на основе любого промышленного образца, условия считать нормальными для найденного в продаже типового прибора.

2.1 Пример задания

Оценить влияние суточного вращения Земли на измерения импульсного лазерного дальномера в сценарии измерения дальности от 1 до 100 м.

2.2 Пример заключения по работе

Вклад суточного вращения Земли в измерения лазерного дальномера составляет величину в 1 м (1% от предела шкалы) на заданном масштабе величин, поэтому прибор для измерений в $1\dots 100$ при воздействии заданного шума должен иметь класс точности 1.

2.3 Дополнительные условия

Оформление документа осуществить при помощи типографической системы LATeX [1]. Для оформления можно использовать пакет TexMaker, LyX или онлайн-редакторов, в качестве типового документа использовать макет данного задания, доступного по ссылке на первой странице.

Оформление библиографии осуществить в соответствие с ГОСТ 7.1-2003 «Библиографическая запись. Библиографическое описание. Общие требования и практика составления». Использовать справочники по оформлению библиографии [2].

По возможности, ограничить библиографию веб-страницами.

3 Содержание отчёта

- Титульный лист
- Задание работы
- Математические модели
 - Измерительный процесс (описание и структура прибора, математическая модель статической характеристики)
 - Шумовой фактор (описание, математическая модель)
 - Модель эксперимента (воздействие фактора на измерения)
- Оценка влияния погрешности
 - Разложение модели эксперимента в ряд Тейлора
 - Вычисление масштаба погрешности на границах интервала измерения
 - Класс точности прибора для работы в условиях эксперимента
- Заключение
- Библиография

4 Ход решения

- 1. Математическая модель измерительного процесса будет составлена после приведения описания работы прибора, её можно ограничить основным процессом, влияющим на измерений.
- 2. Математическая модель фактора вносящего погрешность (шума) должна быть описана на основе физических уравнений.
- 3. Формулировка измерительного процесса должна включать влияние шума, как ещё одного термина в уравнении.
- 4. Разложить математическую систему в ряд Тейлора до составляющих 1 уровня возможно как *от руки*, так и в математических макетах MathCAD, Python+SymPy, MATLAB, Mapple и других. Полученная математическая модель погрешности $f(x_{\text{входы}}, x_{\text{шум}})$ должна включать как влияние измеряемой величины, так и влияние шума.
- 5. Найти возможную величину шумового фактора для нормальных условий.
- 6. Найти возможную величину *погрешности на выходе* можно, подставив предельные значения работы прибора в ряд Тейлора, и вычислив Δf как функцию от Δx_{mym} .

5 Варианты заданий

5.1 Приборы

- 1. Фазовый лазерный дальномер для измерений в интервале 1...10 см
- 2. Фазовый лазерный дальномер для измерений в интервале 10...100 м
- 3. Импульсный лазерный дальномер для измерений в интервале 1...10 см
- 4. Импульсный лазерный дальномер для измерений в интервале 10...100 м
- 5. Светодиодный пирометр для измерений в интервале 0...273 К
- 6. Светодиодный пирометр для измерений в интервале 500...1000 К
- 7. Электромеханический амперметр для измерений в интервале 0...1 А
- 8. Электромеханический амперметр для измерений в интервале 0...100 А
- 9. Тензометрические весы для измерений в интервале ± 10 г
- 10. Тензометрические весы для измерений в интервале ± 10 кг
- 11. Маятниковый инклинометр для измерений в интервале $\pm 5^{\circ}$
- 12. Маятниковый инклинометр для измерений в интервале $\pm 45^{\circ}$
- 13. Пьезоэлектрический гироскоп для диапазона угловых скоростей $0\dots 0.01 \frac{\text{рад}}{c}$
- 14. Пьезоэлектрический гироскоп для диапазона угловых скоростей $0\dots 1 \frac{\mathrm{pag}}{\mathrm{c}}$
- 15. Деформационный манометр для диапазона ±10 Па
- 16. Деформационный манометр для диапазона $\pm 1000~\Pi a$
- 17. Оптический термометр для измерений в диапазоне $\pm 100~{
 m K}$
- 18. Ультразвуковой дальномер для измерений в диапазоне ± 5 см
- 19. Ультразвуковой дальномер для измерений в диапазоне ± 5 м
- 20. Биметаллический термометр для измерений в диапазоне ±50 К
- 21. Конденсаторный микрофон с чувствительностью 50 дБ
- 22. Электродинамический микрофон с чувствительностью 50 дБ

5.2 Эффекты

- 1. Сезонное изменение температуры
- 2. Сезонное изменение влажности воздуха
- 3. Измерение температуры среды в пределах 10%
- 4. Измерение атмосферного давления в пределах 10%
- 5. Изменение гравитации в пределах 5%
- 6. Изменение магнитного поля Земли на 5%
- 7. Учёт суточного вращения Земли
- 8. Учёт неточности изготовления узлов прибора (на выбор, *напр.*, *входного сопро- тивления*)
- 9. Вибрации в диапазоне $\pm 0.01g$
- 10. Вибрации в диапазоне $\pm 1g$
- 11. Изменение высоты расположения прибора
- 12. Перемещение прибора из воздушной в подводную среду
- 13. Учёт влияния вакуума при работе в космическом пространстве
- 14. Учёт протонного излучения при работе в космическом пространстве
- 15. Внешнее электромагнитное поле

6 Распределение заданий

Задание формируется на основе двух чисел, первое обозначает изучаемый прибор, второе обозначает эффект, шумовое воздействие которого задано рассмотреть.

Группа 3О-207Б

Азеева — 1.1, Алоев — 2.2, Бетехтин — 3.3, Князев — 4.4, Колесникова — 5.5, Косаткин — 6.6, Липатов — 7.7, Литвинов — 8.8, Новиков — 9.9, Олейников — 10.10, Перевощиков — 11.11, Пузанов — 12.12, Савенко — 13.13, Севостьянов — 14.1, Семенихин — 15.2, Хаджимуратов — 16.13, Черненко — 17.14.

Группа 30-208Б

Байрамгалин — 6.1, Бердечевский — 7.2, Бирюкова — 8.3, Бурдин — 9.4, Воробьёва — 10.5, Ефремова — 11.6, Жарская — 12.7, Калинина — 13.8, Капустин — 14.9, Каратаев — 15.10, Макаров — 16.11, Родимов — 17.12, Самотоев — 18.13, Струнин — 19.14, Терзи — 20.15, Усов — 21.1, Шавандрин — 22.1.

Группа 30-209Б

Аксенов — 12.1, Анофриев — 13.2, Антонов — 14.3, Ахапкин — 15.4, Бакаев — 16.5, Басс — 17.6, Гулев — 18.7, Дараган — 19.8, Емельянов — 20.9, Зайцев — 21.10, Колчанова — 22.11, Кутузов — 1.12, Матеченкова — 2.13, Резниченко — 3.14, Санакоев — 4.15, Симачев — 5.1, Спицин — 6.2, Федулова — 7.3, Шабалов — 8.4, Шуржунов — 9.5, Юдин — 10.6.

Группа 3О-210Б

Бутаков — 9.1, Городилов — 10.2, Гриньков — 11.3, Иванов — 12.4, Казюлин — 13.5, Ким — 14.6, Константинов — 15.7, Крупский — 16.8, Лихачёв — 17.9, Михайлов Д. — 18.10, Михайлов Е. — 19.11, Мякота — 20.12, Нужденко — 21.13, Павлов — 22.14, Рожков — 1.15, Сидоров — 2.1, Трайнева — 3.2, Фомин — 4.3, Холупко — 5.4, Хомчик — 6.5, Шарко — 7.6.

		Тип эффекта														
		1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
	1	207-1											209-12			210-15
	2	210-16	207-2											209-13		
	3		210-17	207-3											209-14	
	4			210-18	207-4											209-15
	5	209-16			210-19	207-5										
	6	208-1	209-17			210-20	207-6									
	7		208-2	209-18			210-21	207-7								
	8			208-3	209-19			210-22	207-8							
	9	210-1			208-4	209-20				207-9						
opa	10		210-2			208-5	209-21				207-10					
Тип прибора	11			210-3			208-6					207-11				
	12	209-1			210-4			208-7					207-12			
Ē	13		209-2			210-5			208-8					207-13		
	14			209-3			210-6			208-9					207-14	
	15				209-4			210-7			208-10					207-15
	16	207-16				209-5			210-8			208-11				
	17		207-17				209-6			210-9			208-12			
	18							209-7			210-10			208-13		
	19								209-8			210-11			208-14	
	20									209-9			210-12			208-15
	21	208-16									209-10			210-13		
	22		208-17									209-11			210-14	

Список литературы

- 1. Leslie Lamport, *Lambort TeX: a document preparation system*, Addison Wesley, Massachusetts, 2nd edition, 1994.
- 2. Оформление библиографического списка [Электронный ресурс]. СПб.: ВШМ СПбГУ, 1993 . Режим доступа: http://gsom.spbu.ru/files/upload/library/list_of_literature.pdf, свободный. Загл. с экрана
- 3. https://ru.wikipedia.org/wiki/%D0%9B%D0%B0%D0%B7%D0%B5%D1%80%D0%BD%D1%8B%D0%B9_%D0%B4%D0%B0%D0%BB%D1%8C%D0%BD%D0%BE%D0%BC%D0%B5%D1%80