Cutting Stock Problem

Demetrios Papazaharias

Group for Applied Mathematical Modeling and Analytics Department of Industrial & Systems Engineering University at Buffalo, SUNY

April 29, 2020

Welcome!

- In this workshop we will cover the cutting stock problem
- At the end of this workshop you will know how to implement column generation with Gurobi
- Materials for this workshop can be found here:
 github.com/Dpapazaharias1/CSP
- Materials for prior workshops can be found here: github.com/Dpapazaharias1/UB-INFORMS-Gurobi-Seminar

Problem Description

- The cutting-stock problem is the problem of cutting standard-sized pieces of stock material into pieces of specified sizes while minimizing the number of pieces used.
- Consider a paper mill that has paper rolls with standard width 20 feet and customer demand:

Size	5-ft	7-ft	9-ft
Demand	25	20	15

• Some of the feasible cutting patterns to meet this demand are

Set Covering Formulation

- Parameters
 - ullet W fixed width of the standard stock material
 - q_i the number of rolls demanded for item j
 - w_i the width of item j
 - a_{ij} number of times item j is cut in pattern i
- Decisions
 - x_i number of times pattern i is used

$$\min \quad \sum_{i=1}^n x_i$$
 s.t.
$$\sum_{i=1}^n a_{ij} x_i \ge q_j \quad j=1,\ldots,m$$

$$x_i \in \mathbb{Z}_+ \quad i=1,\ldots,n$$

Why is Cutting Stock Hard?

- Each variable x_i is associated with one column in the constraint coefficient matrix A.
- For cutting stock, how many columns (patterns) are there?

$$\frac{m!}{k!(m-k)!}$$

Where k is the average number of items over all patterns

- For larger problems considering this many variables explicitly is intractable
- We will use column generation (CG) to solve the LP relaxation of this problem

Column Generation

- The premise of CG is that most of the variables will be non-basic and have a value of zero in the optimal solution
- As a result, only a subset of variables need to be considered
- We begin with a small subset of variables and only add new variables if they have a potential to improve the objective function
- The procedure is split into a master problem and subproblem
 - The master problem is a restricted version of the original LP
 - The objective function of the subproblem is the reduced cost of the new variable with respect to the current dual of the master problem

Definitions

• Given two minimization problems

$$P_1 = \min\{f(x) : x \in X\}, \quad P_2 = \min\{g(x) : x \in Y\}$$

- We say that P_2 is a **relaxation** of P_1 if:
 - 1. $X \subset Y$
 - 2. $f(x) \ge g(x)$ (\le if max)

Example: LP relaxation of an IP!

- We say that P_2 is a **restriction** of P_1 if:
 - 1. $X \supset Y$
 - 2. $f(x) \leq g(x)$ (\geq if max)

Primal-Dual Relationship

Consider the standard LP problem and its dual

The corresponding simplex tableau

x_B	x_N	RHS		x_B	x_N	RHS
B	N	b	\Rightarrow	I	$B^{-1}N$	$B^{-1}b$
c_B^{\top}	c_N^{\top}	0]	0	$c_N^{T} - c_B^{T} B^{-1} N$	$-c_B^{T}B^{-1}b$

- Recall from linear programming that $\pi^{\top} = c_{\scriptscriptstyle R}^{\top} B^{-1}$
- Reduced cost of a non basic variable: $r_i = c_i c_R^T B^{-1} a_i$. If $r_i < 0$ then we add x_i to the basis and improve the solution.
- This implies that there exists a constraint in the dual such that $\pi_i^{\top} a_i > c_i$ (No dual feasibility)
- Otherwise, $r_i \geq 0$ for all $j \in N$, and the solution is optimal.

Important Observations

- Since the master problem is a restriction on (\mathcal{P}) , the dual is a relaxation on (\mathcal{D})
- Given the current dual solution, the subproblem finds the most violated constraint of (\mathcal{D})
- When we add a new variable to the master problem, we are adding a constraint to the dual!
- Given an optimal solution for the master problem, it must be optimal in the dual relaxation. If the dual solution is feasible in (\mathcal{D}) then it must be optimal. Since you are optimal in (\mathcal{D}) , you must be optimal for (\mathcal{P}) .

CG for Cutting Stock

- Begin with a subset of cutting patterns \mathcal{P} , such that $|\mathcal{P}| = m$.
- ullet Each pattern will be dedicated to roll width w_j
- For each width w_j the pattern produces $\left \lfloor \frac{W}{w_j} \right \rfloor$ rolls
- Consider the primal-dual for the LP relaxation the CSP

$$\min \quad \sum_{i \in \mathcal{P}} x_i \qquad \max \quad \sum_{j=1}^m q_j \pi_j$$

$$\text{s.t.} \quad \sum_{i \in \mathcal{P}} a_{ij} x_i \ge q_j \quad j = 1, \dots, m \qquad \text{s.t.} \quad \sum_{j=1}^m a_{ij} \pi_j \le 1 \quad i \in \mathcal{P}$$

$$x_i \ge 0 \quad i \in \mathcal{P} \qquad \qquad \pi_j \ge 0 \quad j = 1, \dots, m$$

Generating Columns

- We wish to find a column in $\{1,\ldots,n\}\setminus \mathcal{P}$ that can improve the optimal solution of (RMP)
- Given the optimal solution $\bar{\pi}$ the reduced cost column of pattern $i \in \{1,\dots,n\} \setminus \mathcal{P}$

$$1 - \sum_{j=1}^{m} a_{ij} \pi_j$$

We want to add the column with most negative reduced cost.
 However we cannot list all of the cutting patterns. How can we generate the new column?

- ullet Let y_j be a variable that represents a_{pj} for the new x_p
- Given the current dual solution $\bar{\pi}_j$. We wish to find the column (cutting pattern) (y_1, \ldots, y_m) such that

min
$$1 - \sum_{j=1}^{m} \bar{\pi}_j y_j = 1 - \max \sum_{j=1}^{m} \bar{\pi}_j y_j$$

• However, we must ensure that y_j produces a feasible cutting pattern.

$$\sum_{j=1}^{m} w_j y_j \le W, \quad y_j \in \mathbb{Z}_+$$

Each pattern must yield an integer number of rolls and the combined width of the rolls obtained is no larger than ${\cal W}$

Our subproblem is the following integer program

$$z^{SP} = \max \quad \sum_{j=1}^{m} \bar{\pi}_j y_j$$
 s.t. $\sum_{j=1}^{m} w_j y_j \leq W$ $y_j \in \mathbb{Z}_+ \quad j = 1, \dots, m$

• Each y_j has some benefit $\bar{\pi}_j$, weight w_j and we cannot exceed limit W. What type of problem is this?

Our subproblem is the following integer program

$$z^{SP}=\max \quad \sum_{j=1}^m \bar{\pi}_j y_j$$
 s.t. $\sum_{j=1}^m w_j y_j \leq W$ $y_j \in \mathbb{Z}_+ \quad j=1,\ldots,m$

- Each y_j has some benefit $\bar{\pi}_j$, weight w_j and we cannot exceed limit W. What type of problem is this?
- This is a Knapsack Problem! An "easy" NP-Hard problem.

Our subproblem is the following integer program

$$z^{SP}=\max \quad \sum_{j=1}^m \bar{\pi}_j y_j$$
 s.t. $\sum_{j=1}^m w_j y_j \leq W$ $y_j \in \mathbb{Z}_+ \quad j=1,\ldots,m$

- Each y_j has some benefit $\bar{\pi}_j$, weight w_j and we cannot exceed limit W. What type of problem is this?
- This is a Knapsack Problem! An "easy" NP-Hard problem.
- ullet Knapsack can be solved with an O(mW) dynamic program

Updating the Master Problem

- If $z^{SP} \leq 1$, then $1 \sum_{j=1}^{m} \bar{\pi}_j y_j^* \geq 0$. LP is optimal.
- If $z^{SP}>1$, then $1-\sum_{j=1}^m \bar{\pi}_j y_j^*<0$. We have found the variable with the most negative reduced cost
- The new variable x_p is added to the model with coefficient $a_{pj}=y_j^*$ in the constraints:

$$\begin{aligned} & \min \quad & \sum_{i \in \mathcal{P}} x_i + x_p \\ & \text{s.t.} \quad & \sum_{i \in \mathcal{P}}^n a_{ij} x_i + a_{pj} x_p \geq q_j \quad j = 1, \dots, m \\ & x_i, \ x_p \geq 0 \quad i \in \mathcal{P} \end{aligned}$$

Algorithm for CSP

- \bullet Start with initial columns: x_j cuts $\left\lfloor \frac{W}{w_j} \right\rfloor$ rolls of width w_j
- Solve the master problem and subproblem. While $z^{SP} < 0$:
 - 1. Solve the master problem to obtain optimal multipliers $\bar{\pi}$
 - 2. Identify a new column by solving the knapsack subproblem
 - 3. Add the new column x_p to the master problem
- CG only solves the LP relaxation. We need to solve the IP!
- Take the LP relaxation and change the variables to integer and solve the branch and bound. At each relaxation columns may be added to the relaxation
- This procedure is known as branch-and-price

Caveats

- Gurobi and CPLEX cannot do branch-and-price
- In practice many people do early branching. Namely, they solve the LP relaxation at the root node using CG and then solve the IP with only those generated columns.
 - This is a heuristic procedure! You may never reach the optimal solution.
 - 2. Possible to have an infeasible IP solution
- In order to properly perform branch and price we must create our own branching scheme. Which is very difficult.
- In this workshop we will only focus on CG and early branching.