

CS 574, Fall 2014 Michael Conway and Zachary Harner

What it is and why you should care

- Bitcoin is a consensus network that enables the exchange of a decentralized and purely digital currency.
- From a user perspective, Bitcoin is just cash on the internet.
- Nobody owns the Bitcoin network much like no one owns the technology behind email.
- Bitcoins are not printed, they are mined.

The Bitcoin Exchange Landscape

- Third-party exchanges
- Historically high volatility

Exchange volume distribution

Based on the last 30 days.

by market

Objectives

- Model Bitcoin price dynamics on 10 minute intervals
 - Look at entire order book
 - Extract features based on technical indicators, correlated markets, and microstructure
- Buy low, sell high

```
1+1=2

1+2=3

2+3=5

3+5=8

5+8=13

8+13=21

13+21=34

21+34=55
```

The Fibonacci Sequence

fast-slow mov avg vs price 380 360 340 5 0 5 10

Methodology

- for minute=start:10:retirement
 - raw Data= streamFromBTCE();
 - features = extractFeatures(rawData);
 - predictedReturn = predictReturn(features);
 - if predictedReturn>=threshold
 - Long one BTC
 - else if predictedReturn<=-threshold
 - Short one BTC
 - wait 10 minutes
 - close out position

end

Implementation

- Auto-Regressive Model
- Auto-Regressive Model with Exogenous Inputs
- Adaptive ARX
- NARX
- KNN

AR

- No exogenous inputs
- Very simple--low variance, high bias
- Non-adaptive; fit via Least Squares
- Cross-validate over model order

ARX

- Fit via least square
- Non-adaptive

NARX

- Neural net with tap delay
- Adaptive

Adaptive Least Squares

- What if we fit a "new" model at every timestamp and use this model to predict the price at time t+1?
- Sliding window regression
- It looks good. But...

A classification approach: KNN

• In predicting up or down movements, can we turn this into a classification problem?

Conclusions

- Microstructure matters
- Must adapt
- Performance doesn't necessarily increase with model complexity

Future Work

- Collecting more data
- Adaptive filtering
- Practical market considerations