NAME: UCINetID _____

1. (25 pts total) Machine Learning.

1.a. (15 pts) The probability distribution of random variables X, Y, and Z is shown in the graphs bellow. Each of these random variables can get 5 different values of a, b, c, d and e and the probability of each value is shown in the graphs.

P(X=a) = P(X=b) = P(X=c) = P(X=d) = P(X=e) = 0.2

P(Y=a) = 1, P(Y=b) = P(Y=c) = P(Y=d) = P(Y=e) = 0

P(Z=a) = 0.6, P(Z=b) = P(Z=c) = P(Z=d) = P(Z=e) = 0.1

1.a.i (5 pts) Which variable has the highest entropy H? (Write one of X, Y, or Z)

1.a.ii (5 pts) Which variable has the lowest entropy H? (Write one of X, Y, or Z)

1.a.iii (5 pts) Which variable has an intermediate entropy H? (Write one of X, Y, or Z)

1.b (10 pts) Assume we have a coin that can get the values of heads(H) and tails(T) after tossing. We do not know the probability of heads or tails for this coin (this may be a biased coin). P(H) = 1-P(T) = ?

Circle the values below that can be the value of entropy (H) for the output of this coin as a random variable?

a) 1 b) 0.34 c) -0.5 d) 2.5

2. (25 pts total, 5 pts each) Machine Learning. Label the following statements T (true) or F (false).

2a. _____ The information gain from an attribute A is how much classifier accuracy improves when attribute A is added to the example feature vectors in the training set.

2b. _____ Overfitting is a general phenomenon that occurs with most or all types of learners.

2c. When we are using labeled (with output) examples like (x_1, y_1) , (x_2, y_2) ... (x_n, y_n) for our learning algorithm we call it unsupervised learning.

2d. _____ An agent is learning if it improves its performance on future tasks after making observations about the world.

2e. ____ For a given dataset there <u>always will be a single unique</u> decision tree with the accuracy of 100%.

3. (50 points each, 10 pts each) Constraint Satisfaction Problems

BA = Banat

BU = Bucovina

CR = Crisana

DO = Dobrogea

MA = Maramures

MO = Moldova

TR = Transilvania

WA = Walachia

You are a map-coloring robot assigned to color this map of Romania regions. Adjacent regions must be colored a different color (R=Red, B=Blue, G=Green). The constraint graph is shown.

3a. (10 pts total, -5 each wrong answer, but not negative) FORWARD CHECKING. TR has been assigned value R, as shown. Cross out all values that would be eliminated by Forward Checking:

	BA	BU	CR	DO	MA	MO	TR	WA		
	RGB	RGB	RGB	RGB	RGB	RGB	R	RGB		

3b. (10 pts total, -5 each wrong answer, but not negative) ARC CONSISTENCY.

BA has been assigned R and TR has been assigned B, as shown; but no constraint propagation has been done. Cross out all values that would be eliminated by Arc Consistency (AC-3 in your book).

BA	BU	CR	DO	MA	MO	TR	WA
R	RGB	RGB	RGB	RGB	RGB	В	RGB

BA	BU	CR	DO	MA	MO	TR	WA
RG	RGB	RGB	RG	RGB	RG	RG	В

3d. (10 pts total, -5 each wrong answer, but not negative) DEGREE HEURISTIC. Consider the assignment below. (It is the same assignment as in problem 3c above.) WA has been assigned B and constraint propagation has been done, as shown. List all unassigned variables that might be selected by the Degree Heuristic:

BA	BU	CR	DO	MA	MO	TR	WA
RG	RGB	RGB	RG	RGB	RG	RG	В

3e. (10 pts total) MIN-CONFLICTS HEURISTIC. Consider the complete but inconsistent assignment below. TR has been selected to be assigned a new value. What new value would be chosen below for TR by the Min-Conflicts Heuristic?.

BA	BU	CR	DO	MA	МО	TR	WA
R	G	R	R	G	G	?	В