بهینه سازی ترکیبیاتی (پاییز ۹۵-۹۴) - تمرین سری سوم

سوال ١:

Apply the matching augmenting algorithm to the matchings in the following graphs:

سوال ۲:

Consider the perfect matching polytope $P = \text{conv}\{\chi_M : M \text{ is a perfect matching in } G\}$. An edge is a line segment between two vertices $s = [\chi_M, \chi_N]$ such that $s = H \cap P$ for some hyperplane $H = \{x : w^T x = \lambda\}$ such that $w^T x \leq \lambda$ for all $x \in P$. Prove that $[\chi_M, \chi_N]$ is an edge if and only if $M\Delta N$ is a single cycle.

سوال ۳:

Prove that in a matrix, the maximum number of nonzero entries with no two in the same line (=row or column), is equal to the minimum number of lines that include all nonzero entries.

سوال ۴:

Let G = (V, E) be a bipartite graph and let $b: V \to Z^+$. Show that G has a subgraph G' = (V, E') such that $\deg_{G'}(v) = b(v)$ for each $v \in V$ if and only if each $X \subseteq V$ contains at least $\frac{1}{2}(\sum_{v \in X} b(v) - \sum_{v \in V \setminus X} b(v))$ edges.

سوال ۵:

Let G = (V, E) be a graph. Show that the convex hull of the incidence vectors of matchings of size at least k and at most l is equal to the intersection of the matching polytope of G with the set $\{x|k \leq 1^T x \leq l\}$.

سوال ۶:

Let A_1, \ldots, A_n be a collection of nonempty subsets of the finite set X so that each element in X is in exactly two sets among A_1, \ldots, A_n . Show that there exists a set Y intersecting all sets A_1, \ldots, A_n , and satisfying $|Y| \leq t$ if and only if for each subset I of $\{1, \ldots, n\}$ the number of components of $(A_i|i \in I)$ containing an odd number of sets in $(A_i|i \in I)$ is at most 2t - |I|.

(Here a subset Y of X is called a component of $(A_i|i\in I)$ if it is a minimal nonempty subset of X with the property that for each $i\in I: A_i\cap Y=\emptyset or A_i\subseteq Y$.)

Let G = (V, E) be a graph and let T be a subset of V. Then G has a matching covering T if and only if the number of odd components of G - W contained in T is at most |W|, for each $W \subseteq V$.

سوال ۸:

Let G = (V, E) be a graph and let $b: V \to Z^+$. Show that there exists a function $f: E \to Z^+$ so that for each $v \in V: X \sum_{e \in E, v \in e} f(e) = b(v)$ if and only if for each subset W of V the number (W) is at most b(V|W).

(Here for any subset W of V, $b(W) := \sum_{v \in W} b(v)$. Moreover, (W) denotes the following. Let U be the set of isolated vertices in the graph G|W induced by W and let t denote the number of components C of the graph $G|W \setminus U$ with b(C) odd. Then (W) := b(U) + t.)

سوال ٩:

Let G=(V,E) be a graph and let $b:V\to Z^+$. Show that G has a subgraph G'=(V,E') such that $deg_{G'}(v)=b(v)$ for each $v\in V$ if and only if for each two disjoint subsets U and W of V one has $\sum_{v\in U}b(v)\geq q(U,W)+\sum_{v\in W}(b(v)-d_{G-U}(v))$

Here q(U, W) denotes the number of components K of $G - (U \cup W)$ for which b(K) plus the number of edges connecting K and W, is odd. Moreover, $d_{G-U}(v)$ is the degree of v in the subgraph induced by $V \setminus U$.

سوال ۱۰:

A partially ordered set (or poset) is defined to be a set S together with a partial order on S, i.e. a relation $R \subseteq S \times S$ that is reflexive $((x,x) \in R \text{ for all } x \in S)$, anti-symmetric (if $(x,y) \in R \text{ and } (y,x) \in R$ then x=y), and transitive (if $(x,y) \in R$ and $(y,z) \in R$ then $(x,z) \in R$). Two elements $x,y \in S$ are called comparable if $(x,y) \in R$ or $(y,x) \in R$, otherwise they are incomparable. A chain (an antichain) is a subset of pairwise comparable (incomparable) elements of S. Use König's Theorem to prove the following theorem of Dilworth [1950]:

In a finite poset the maximum size of an antichain equals the minimum number of chains into which the poset can be partitioned.

Hint: Take two copies v' and v'' of each $v \in S$ and consider the graph with an edge $\{v', w''\}$ for each $(v, w) \in R$. (Fulkerson [1956])

سوال ۱۱:

Prove that every 3-regular graph with at most two bridges has a perfect matching. Is there a 3-regular

graph without a perfect matching?

Hint: Use Tutte's Theorem.

سوال ۱۲:

Let G=(V,E) be a bipartite graph and let $b:V\to Z^+$. Show that the maximum number of edges in a subset F of E so that each vertex v of G is incident with at most b(v) of the edges in F, is equal to $\min_{X\subseteq V}\sum_{v\in X}b(v)+|E(V\backslash X)|$.

موفق باشيد