BIG OMEGA NOTATION WITH LIMITS -BIG OMEGA RATIO THEOREM

Definition: If the $\lim_{i\to\infty}\frac{f(n)}{g(n)}\neq 0$ holds good, then $f(n)=\Omega(g(n))$. This is also called the Omega Ratio Theorem.

Example: Let us consider that f(n) = 7n + 4. Prove that this is of the order of $\Omega(n)$.

Solution:

Here f(n) = 7n + 4 and g(n) = n.

We know by definition of Big Omega Ω notation:

 $f(n) = \Omega(g(n))$, if $0 \le c \times g(n) \le f(n)$ for all $n \ge n_0$, where c and n_0 are constants.

$$\Rightarrow$$
 0 \leq *c* \times *n* \leq 7*n* + 4

 $0r, f(n) \ge c \times g(n)$

$$\Rightarrow$$
 7 $n + 4 \ge c \times n$

$$\Rightarrow \frac{7n+4}{n} \geq c$$

By above definition, of Big Omega Ratio Theorem:

$$\lim_{i\to\infty}\frac{7n+4}{n}$$

$$\Rightarrow \lim_{i\to\infty}\frac{7n}{n}+\frac{4}{n}$$

$$\Rightarrow \lim_{i\to\infty} 7 + \frac{4}{n}$$

Distributing $\lim_{i \to \infty}$ in both the sides we get:

$$\Rightarrow \lim_{i\to\infty} 7 + \lim_{i\to\infty} \frac{4}{n}$$

Here $\lim_{x\to a}c=c$ and $\lim_{x\to\infty}\frac{c}{x^a}=0$ [Infinity property of Limit], where: c' is constant.

Hence:
$$\lim_{i\to\infty} 7=7$$
 and $\lim_{i\to\infty} \frac{4}{n}=0$

$$\Rightarrow$$
 7 + 0

$$\Rightarrow$$
 7 \neq 0

Therefore, one can conclude that $f(n) = \Omega(n)$