PRINTABLE VERSION

Quiz 11

You scored 90 out of 100

Question 1

Your answer is CORRECT.

The congruence equation " $-79 \equiv -271 \mod 48$ " means

- a) -271 and 48 have the same remainder when they are divided by -79.
- **b)** \circ -79 and -271 have the same remainder when they are divided by 48.
- \mathbf{c}) ~ -79 and -271 have the same quotient when they are divided by 48.
- d) -79 and 48 have the same remainder when they are divided by -271.

Question 2

Your answer is CORRECT.

The integers -76 and -53 are congruent mod n for which value of n?

- **a)** 0 = 24
- **b)** \bigcirc n = -53
- d) \bigcirc There are no values of n for which these two integers are congruent (except n = 1).
- e) 0 = -76

Question 3

Your answer is CORRECT.

Consider the following proposition:

Proposition. If $a \equiv b \mod n$, then $a^4 \equiv b^4 \mod n$.

If you were writing a direct proof of this proposition, which of the following equations would be *most* helpful in your proof? (Hint: try to write a proof first!)

$$a) \odot a^3(a-b) = a^4 - a^3b$$

b)
$$\bigcirc a^4 - b^4 \ge b^4$$

$$c) \odot ab = ba$$

$$(a - b)^4 = (a - b)^4$$

Question 4

Your answer is CORRECT.

Is the following statement true or false?

 $\exists x, y, a, b \in Z, n \in N^*, (x \equiv a \mod n \land y \equiv b \mod n) \land ((x + y) \not\equiv (a + b) \mod n).$ (Note: for this problem N^* refers to the positive natural numbers $N^* = N - \{0\} = \{1, 2, 3, ...\}$.)

- a) This statement is false.
- **b)** O This statement is true.

Question 5

Your answer is INCORRECT.

A (direct) proof for a Proposition is presented below. Read through the proof and then determine which Proposition was proven.

Proposition.

Proof (Direct).

- (1) Let $x \in Z$ satisfy $x \equiv 0 \mod 3$.
- (2) By The Division Algorithm, there are only two cases to consider.
- (3) When x is divided by 3 either it has a remainder of 1 or of 2.

Case 1. $x \equiv 1 \mod 3$

(4) It follows that $x^2 \equiv 1^2 \mod 3 \equiv 1 \mod 3$.

Case 2. $x \equiv 2 \mod 3$

- (5) It follows that $x^2 \equiv 2^2 \mod 3 \equiv 4 \mod 3 \equiv 1 \mod 3$.
- (6) Therefore, in all cases $x^2 \equiv 1 \mod 3$.

a)
$$\bigcirc$$
 $\forall x \in Z, x \equiv 0 \mod 3 \Rightarrow x^2 \not\equiv 1 \mod 3$.

- **b)** $\bigcirc \forall x \in \mathbb{Z}, x \not\equiv 0 \mod 3 \Rightarrow x^2 \equiv 0 \mod 3.$
- \mathbf{c}) Technically no proposition was proven true since there is a mistake in Line (2); The Division Algorithm does *not* leave only two cases to consider.
- d) $\bigcirc \forall x \in \mathbb{Z}, x \not\equiv 0 \mod 3 \Rightarrow x^2 \equiv 1 \mod 3.$

Ouestion 6

Your answer is CORRECT.

Use the Euclidean Algorithm to find the inverse of $-25 \mod 10$ (if it exists).

- a) -1/25 is an inverse.
- **b)** -5 is an inverse.
- \mathbf{c}) -10/25 is an inverse.
- d) \bigcirc 2 is an inverse.
- e) \circ 25 does not have an inverse mod 10 because $gcd(-25, 10) \neq 1$.

Question 7

Your answer is CORRECT.

Of the options provided below, determine the one that best completes this sentence: "The modular equation $-31x \equiv 32 \mod 93$ "

- a) has exactly one solution.
- b) has no solutions.
- c) has multiple solutions.

Ouestion 8

Your answer is CORRECT.

Which steps should one take when solving a congruence equation $ax \equiv b \mod n$? A helpful summary is presented below, only one step is missing:

Steps for solving $ax \equiv b \mod n$.

- Step 1. Use the Euclidean Algorithm to compute gcd(a, n).
- Step 2. If $gcd(a, n) \mid b$, then proceed to step 3, otherwise there are no solutions.
- Step 3. Use work from Step 1 to calculate one solution $x_0 \in Z$.
- Step 4.

Of the following options, which could be used for the missing Step 3?

- a) \bigcirc Step 4. Add $\frac{a}{\gcd(a,n)}$ to x_0 to create other solutions.
- **b)** \bigcirc Step 4. Add $\frac{b}{\gcd(a,n)}$ to x_0 to create other solutions.
- c) \bigcirc Step 4. Add b to x_0 to create other solutions.
- d) \bigcirc Step 4. Add $\frac{\gcd(a, n)}{b}$ to x_0 to create other solutions.
- e) Step 4. Add $\frac{n}{\gcd(a, n)}$ to x_0 to create other solutions.

Question 9

Your answer is CORRECT.

Find a solution to the congruence equation $17x \equiv -15 \mod 5$.

- a) x = 25 is a solution.
- **b)** \bigcirc x = 5/17 is a solution.
- c) x = 6 is a soltuion.
- d) $\bigcirc x = 15/17$ is a solution.
- e) x = 14 is a solution.

Ouestion 10

Your answer is CORRECT.

Find a solution to the congruence equation $1x \equiv 2 \mod 14$.

- a) $\bigcirc x = 3$ is a solution.
- c) x = 0 is a solution.
- **d)** \bigcirc x = 1 is a solution.

