Reinforcement Learning 02

DS Development Group Presentations
Peter Nicholas S. Onglao | MNL

GOAL:

Make an RL algorithm for chess (>2 presentations away) that can beat me

Contents

- Planning by Dynamic Programming (DP)
- Monte Carlo (MC) Learning
- Temporal Difference (TD) Learning

Sources

- UCL Course on Reinforcement Learning, David Silver
- Reinforcement Learning An Introduction, Sutton and Barto
- Reinforcement Learning (GitHub repo), Denny Britz

1

Dynamic Programming

When the MDP is known

Programming Dynamic Programming

- Dynamic sequential/temporal component
- Programming optimizing a "program" (policy)
- Break down complex problems into subproblems
 - Solve the subproblems
 - Combine solutions to subproblems

🕜 Dynamic Programming

- DP is a general solution method for problems with two properties:
 - Optimal substructure
 - Principle of optimality applies
 - Optimal solution can be decomposed into subproblems
 - Bellman equation recursive decomposition
 - Overlapping subproblems
 - Subproblems recur many times
 - Solutions can be cached and reused
 - Value function

Dynamic Programming

- Assumes full knowledge of the MDP
- Used for planning
- Prediction
 - Input: MDP $\langle S, A, P, R, \gamma \rangle$ and policy π
 - ightharpoonup Output: **value function** v_{π}
- Control
 - □ Input: MDP $\langle S, A, P, R, \gamma \rangle$
 - ightharpoonup Output: optimal value function $oldsymbol{v}_*$ and optimal policy $oldsymbol{\pi}_*$

Generalized Policy Iteration (GPI)

- Given a policy π :
 - ightharpoonup Evaluate the policy π

$$v_{\pi}(s) = \mathbb{E}[R_{t+1} + \gamma R_{t+2} + \dots | S_t = s]$$

Improve the policy by acting greedily w/r v_{π}

$$\pi' = \operatorname{greedy}(v_{\pi})$$

- GPI: let policy-evaluation and policy-improvement interact
- Most RL methods are well described as GPI
- This process of policy iteration always converges to π^*

Generalized Policy Iteration (GPI)

Policy evaluation: Estimate v_{π} Iterative policy evaluation Policy improvement: Generate $\pi' \geq \pi$ Greedy policy improvement

Principle of Optimality

- An optimal policy can be subdivided into two components:
 - ightharpoonup An optimal first action A_*
 - ightharpoonup Followed by an optimal policy from successor state S'
- Theorem (Principle of Optimality)

 A policy $\pi(a|s)$ achieves the optimal value from state s, $v_{\pi}(s) = v_{*}(s)$,

 iff for any state s' reachable from s, π achieves the optimal value from state s', $v_{\pi}(s') = v_{*}(s')$

Deterministic Value Iteration

- If we know the solution to subproblems $v_*(s')$
- Then solution $v_*(s)$ can be found by one-step lookahead

$$v_*(s) \leftarrow \max_{a \in \mathcal{A}} \left(\mathcal{R}_s^a + \gamma \sum_{s' \in \mathcal{S}} \mathcal{P}_{ss'}^a v_*(s') \right)$$

- Value iteration: apply these updates iteratively
- Start with final rewards and work backwards

Synchronous DP Algorithms

Problem	Bellman Equation	Algorithm
Prediction	Bellman Expectation Equation	Iterative Policy Evaluation
Control	Bellman Expectation Equation + Greedy Policy Improvement	Policy Iteration
Control	Bellman Optimality Equation	Value Iteration

- Algorithms are based on state-value function $v_{pi}(s)$ or $v_*(s)$
- Complexity $O(mn^2)$ per iteration, for m actions and n states
- Could also apply to action-value function $q_{\pi}(s,a)$ or $q_*(s,a)$
- Complexity $O(m^2n^2)$ per iteration

Asynchronous Dynamic Programming

- The methods described so far used synchronous backups
 - All states are backed up at the same time
- Asynchronous DP backs up states individually, in any order
- Reduces computation time
- Guaranteed to converge if all states continue to be selected

2

Monte-Carlo Learning

Learning from **complete** episodes with an **unknown MDP**

Monte-Carlo Learning

- Model-free no need to know MDP transitions/rewards
- Learn directly from **complete** episodes of experience
- Simplest idea: use empirical mean return instead of expected return

$$v_{\pi}(s) = \mathbb{E}_{\pi}[G_t|S_t = s]$$

$$V(s) = S(s)/N(s)$$

$$V(s) \rightarrow v_{\pi}(s)$$
 as $N(s) \rightarrow \infty$

Drawback: can only be applied to episodic MDPs - all episodes must terminate

Monte-Carlo Policy Evaluation

- First-Visit MC Policy Evaluation
 - ightharpoonup Update estimate the first time a state s is visited in an episode.
- Every-Visit MC Policy Evaluation
 - ightharpoonup Update estimate every time a state s is visited in an episode.

3

Temporal Difference Learning

Learning from **incomplete** episodes with an **unknown MDP**

Temporal-Difference Learning

- Model-free no need to know MDP transitions/rewards
- Learn directly from incomplete episodes of experience by bootstrapping
- Update a guess towards a guess

MC and TD

- Goal: learn v_{π} online from experience under policy π
- Incremental every-visit MC
 - ightharpoonup Update value toward **actual** return G_t

$$V(S_t) \leftarrow V(S_t) + \alpha(G_t - V(S_t))$$

- Simplest TD: TD(0)
 - ightharpoonup Update value toward **estimated** return $R_{t+1} + \gamma V(S_{t+1})$

$$V(S_t) \leftarrow V(S_t) + \alpha(R_{t+1} + \gamma V(S_{t+1}) - V(S_t))$$

TD target

Priving Home Example

Situation/State	Elapsed Time (min)	Predicted Time Left (min)	Predicted Time: Total (min)
Leaving office	0	30	30
Reach car, raining	5	35	40
Exit highway	20	15	35
Behind truck	30	10	40
Home street	40	3	43
Arrive home	43	0	43

Priving Home Example

MC vs. TD

- TD can learn **before** knowing the final outcome
 - ► TD: can learn online after every step
 - MC: must wait until end of episode
- TD can learn without final outcome
 - ➤ TD: can learn from incomplete sequences
 - MC: can only learn from complete sequences
 - TD: works in non-terminating environments
 - MC: only works for terminating environments

MC vs. TD

- MC has high variance, zero bias
 - Good convergence properties
 - Not very sensitive to initial value
 - Very simple to use & understand
 - Does not exploit Markov property
- TD has low variance, some bias
 - More efficient than MC
 - ightharpoonup TD(0) converges to $v_{\pi}(s)$
 - More sensitive to initial value
 - Exploits Markov property

Monte Carlo

$$V(S_t) \leftarrow V(S_t) + \alpha \left(G_t - V(S_t)\right)$$

Temporal Difference

$$V(S_t) \leftarrow V(S_t) + \alpha \left(R_{t+1} + \gamma V(S_{t+1}) - V(S_t) \right)$$

Dynamic Programming

$$V(S_t) \leftarrow \mathbb{E}_{\pi} \left[R_{t+1} + \gamma V(S_{t+1}) \right]$$

Unified View

n-step Lookahead

∞-step TD 1-step TD and Monte Carlo and TD(0) Look n steps 2-step TD 3-step TD n-step TD into the future

n-step Return

n-step return

$$G_t^{(n)} = R_{t+1} + \gamma R_{t+2} + \dots + \gamma^{n-1} R_{t+n} + \gamma^n V(S_{t+n})$$

n-step TD learning

$$V(S_t) \leftarrow V(S_t) + \alpha \left(G_t^{(n)} - V(S_t) \right)$$

n-step TD

Average RMS error over 19 states and first 10 episodes

\mathcal{L} TD(λ)

- Concept: get the best of all worlds
- Average n-step returns over all n, using weight $(1 \lambda)\lambda^{n-1}$

$$G_t^{\lambda} = (1 - \lambda) \sum_{n=1}^{\infty} \lambda^{n-1} G_t^{(n)}$$

Forward-view $TD(\lambda)$

$$V(S_t) \leftarrow V(S_t) + \alpha \left(G_t^{\lambda} - V(S_t) \right)$$

4

Model Free Control

Optimizing with an unknown MDP

Model-free Reinforcement Learning

- Model-free prediction
 - **Estimate** the value function of an unknown MDP
- Model-free control
 - Optimise the value function of an unknown MDP

On and Off-Policy Learning

- On-policy learning
 - Learn about policy π from experience sampled from π
- Off-policy learning
 - Learn about policy π from experience sampled from μ

Generalized Policy Iteration (GPI)

Policy evaluation: Estimate v_{π} Iterative policy evaluation Policy improvement: Generate $\pi' \geq \pi$ Greedy policy improvement

Model-Free Policy Iteration

 \blacksquare Greedy policy improvement over V(s) requires model of MDP

$$\pi'(s) = \underset{a \in \mathcal{A}}{\operatorname{argmax}} \left(\mathcal{R}_s^a + \mathcal{P}_{ss'}^a V(s') \right)$$

Greedy policy improvement over Q(s, a) is model-free

$$\pi'(s) = \operatorname*{argmax}_{a \in \mathcal{A}} Q(s, a)$$

Generalised Policy Iteration with Q

Policy evaluation: MC policy evaluation, $Q=q_{\pi}$ Policy improvement: Greedy policy improvement?

Example of Greedy Action Selection

- There are two buttons:
- You press the left and get reward 0

$$V(left) = 0$$

You press the right and get reward +1

$$V(right) = +1$$

You press the right and get reward +3

$$V(right) = +2$$

You press the right and get reward +2

$$V(right) = +2$$

ϵ -Greedy Exploration

- Simplest idea for ensuring continual exploration
- \blacksquare All m actions are tried with non-zero probability
- With probability 1ϵ , choose the greedy action
- With probability ϵ , choose an action at random

$$\pi(a|s) = \begin{cases} \epsilon/m + 1 - \epsilon, & \text{if } a^* = \operatorname*{argmax} Q(s, a) \\ \epsilon/m, & \text{otherwise} \end{cases}$$

Monte-Carlo Policy Iteration

Policy evaluation: MC policy evaluation, $Q=q_{\pi}$ Policy improvement: ϵ -greedy policy improvement Note: we do this over multiple episodes

Monte-Carlo Control

Every episode (update with 'fresh' data):

Policy evaluation: MC policy evaluation, $Q \approx q_{\pi}$ Policy improvement: ϵ -greedy policy improvement

MC vs. TD Control

- TD has several advantages over MC:
 - Lower variance
 - Online
 - Incomplete sequences
- Use TD instead of MC in our control loop
 - ightharpoonup Apply TD to Q(S, A)
 - Use ϵ -greedy policy improvement
 - Update every time-step

Updating Q with SARSA

$$Q(S,A) \leftarrow Q(S,A) + \alpha \left(R + \gamma Q(S',|A') - Q(S,A)\right)$$

On-Policy Control with Sarsa

Every time-step:

Policy evaluation: Sarsa, $Q \approx q_{\pi}$

Policy improvement: ϵ -greedy policy improvement

Windy Gridworld Example

- Reward = -1 per time step, until goal is reached
- Undiscounted

Sarsa on the Windy Gridworld

Path taken

Action values increased by one-step Sarsa

Action values increased by 10-step Sarsa

Action values increased by Sarsa(λ) with λ =0.9

Q-Learning

- We now consider off-policy learning of action-values Q(s,a)
- No importance sampling is required
- Next action is chosen using behavior policy $A_{t+1} \sim \mu(\cdot | S_t)$
- But we consider alternative successor action $A' \sim \pi(\cdot | S_t)$
- And update $Q(S_t, A_t)$ towards value of alternative action

$$Q(S_t, A_t) \leftarrow Q(S_t, A_t) + \alpha \left(R_{t+1} + \gamma Q(S_{t+1}, A') - Q(S_t, A_t) \right)$$

Off-Policy Control with Q-Learning

- We now allow both behavior and target policies to improve
- The target policy π is greedy w/r Q(s, a)
- The behavior policy μ is ϵ -greedy w/r Q(s,a)
- Q-learning target simplifies as:

$$R_{t+1} + \gamma Q(S_{t+1}, A')$$

$$= R_{t+1} + \gamma Q\left(S_{t+1}, \operatorname{argmax}_{a'} Q(S_{t+1}, a')\right)$$

$$= R_{t+1} + \max_{a'} \gamma Q(S_{t+1}, a')$$

Q-Learning vs Sarsa

- Sarsa: on-policy, Q-Learning: off-policy
- We use Sarsa when we care about the agent's performance while learning (expensive robot)
- We use Q-learning when we don't mind the agent 'suffering'

Relationship Between DP and TD

	Full Backup (DP)	Sample Backup (TD)
Bellman Expectation	$v_{\pi}(s) \leftrightarrow s$ $v_{\pi}(s') \leftrightarrow s'$	
Equation for $v_\pi(s)$	Iterative Policy Evaluation	TD Learning
Bellman Expectation	$q_{\pi}(s, a) \leftrightarrow s, a$ r $q_{\pi}(s', a') \leftrightarrow a'$	S,A R S'
Equation for $q_{\pi}(s, a)$	Q-Policy Iteration	Sarsa
Bellman Optimality Equation for $q_*(s, a)$	$q_*(s,a) \leftrightarrow s,a$ $q_*(s',a') \leftrightarrow a'$ Q-Value Iteration	Q-Learning

5

Summary and Code

Examples of algorithms applied via Python

Summary

- Dynamic Programming (DP)
 - Assumes perfect knowledge of the MDP
- Monte Carlo (MC) and Temporal Difference (TD) Learning
 - When the MDP is unknown
 - MC and TD both learn directly from experience
 - MC uses full episodes
 - TD uses bootstrapping
 - SARSA: On-Policy TD Control
 - Q-Learning: Off-Policy TD Control

Dynamic Programming Example

Gambler's Problem (from Sutton and Barto); Goal: reach exactly \$100

54

Dynamic Programming Example

Value Iteration, for estimating $\pi \approx \pi_*$ Algorithm parameter: a small threshold $\theta > 0$ determining accuracy of estimation Initialize V(s), for all $s \in \mathcal{S}^+$, arbitrarily except that V(terminal) = 0Loop: $| \Delta \leftarrow 0 |$ $| Loop for each <math>s \in \mathcal{S}$: $| v \leftarrow V(s) |$ $| V(s) \leftarrow \max_a \sum_{s',r} p(s',r|s,a) [r + \gamma V(s')] |$ $| \Delta \leftarrow \max(\Delta,|v - V(s)|)$ until $\Delta < \theta$ Output a deterministic policy, $\pi \approx \pi_*$, such that $\pi(s) = \arg\max_a \sum_{s',r} p(s',r|s,a) [r + \gamma V(s')]$

```
while True:
    # Stopping condition
    delta = 0
    # Update each state...
    for s in range(1, 100):
        # Do a one-step Lookahead to find the best action
        A = one_step_lookahead(s, V, rewards)
        best_action_value = np.max(A)
        # Calculate delta across all states seen so far
        delta = max(delta, np.abs(best_action_value - V[s]))
        # Update the value function. Ref: Sutton book eq. 4.10.
        V[s] = best_action_value
# Check if we can stop
if delta < theta:
        break</pre>
```

```
# Create a deterministic policy using the optimal value function
policy = np.zeros(100)
for s in range(1, 100):
    # One step Lookahead to find the best action for this state
    A = one_step_lookahead(s, V, rewards)
    best_action = np.argmax(A)
    # Always take the best action
    policy[s] = best_action
```

Dynamic Programming Example

Sneak-Peak: Actor-Critic for Mountain Car

Thank you!

Sources

- UCL Course on Reinforcement Learning, David Silver
- Reinforcement Learning An Introduction, Sutton and Barto
- Reinforcement Learning (GitHub repo), Denny Britz

CREDITS

Special thanks to:

- Presentation template by <u>SlidesCarnival</u>
- Photographs by <u>Startup Stock Photos</u>