CRYPTOGRAPHY HANDOUT 14

SUMMARY: KEY NUMBER THEORY DEFINITIONS AND RESULTS

1. Divisibility and Congruences

Definition. Let a and b be integers with $a \neq 0$. We say a **divides** b if there is an integer k such that b = ak. This is denoted $a \mid b$.

Definition. Suppose a, b, n are integers with n > 0. We say a and b are congruent modulo n if and only if $n \mid (a - b)$ or $a \equiv b \mod n$. Alternatively, we can think of a - b as a multiple of n, or a - b = kn for some integer k.

Definition. The greatest common divisor of a and b is the largest positive integer dividing both a and b. This is denoted gcd(a, b).

Euclidean Algorithm. Suppose a and b are integers and a > b.

1. Divide a by b to get

$$a = q_1 b + r_1$$

where q_1 is the quotient and r_1 is the remainder.

2. If $r_1 = 0$, then $b \mid a$ and gcd(a, b) = b. If $r_1 \neq 0$, then divide b by r_1 to get

$$b = q_2 r_1 + r_2$$
.

3. Continue in this way until the remainder is 0.

$$a = q_1b + r_1$$
$$b = q_2r_1 + r_2$$
$$r_1 = q_3r_2 + r_3$$

:

$$r_{k-1} = q_{k+1}r_k$$

The conclusion is that $gcd(a, b) = r_k$.

Theorem 1. Let a and b be integers not both 0. There exist integers x and y such that $ax + by = \gcd(a, b)$.

Corollary. If p is a prime and $p \mid ab$, then either $p \mid a$ or $p \mid b$.

Theorem 2. Let a and n be integers with n > 0. If gcd(a, n) = 1, then a^{-1} exists modulo n.

2. Chinese Remainder Theorem

Definition. Let a and n be integers. If gcd(a, n) = 1, then we say a and n are relatively prime.

Chinese Remainder Theorem. Suppose gcd(m,n) = 1 for two integers m and n. Given integers a and b, there exists exactly one solution $x \mod mn$ to the simultaneous congruences:

$$x \equiv a \mod m$$

$$x \equiv b \mod n$$
.

3. Fermat's Little Theorem and Euler's Theorem

Definition. Let a and n be integers where n > 0. The smallest natural number k such that

$$a^k \equiv 1 \mod n$$

is the **order of a modulo** n and is denoted $k = \operatorname{ord}_n(a)$.

Fermat's Little Theorem. Let p be a prime number and let a be an integer such that gcd(a, p) = 1. Then $a^{p-1} \equiv 1 \mod p$.

Definition. For a natural number n, the Euler phi-function $\varphi(n)$ is equal to the number of natural numbers less than or equal to n that are relatively prime to n.

Euler's Theorem. Let a and n be integers with n > 0 such that gcd(a, n) = 1. Then $a^{\varphi(n)} \equiv 1 \mod p$.

4. Primitive Roots

Definition. Let p be a prime. An integer g such that $\operatorname{ord}_p(g) = p - 1$ is a **primitive** root modulo p.

Theorem 3. Every prime p has a primitive root.

Theorem 4. Every prime p has $\varphi(p-1)$ primitive roots.

5. Square Roots and Squares

Definition. If a is an integer, p is a prime, and $a \equiv b^2 \mod p$ for some integer b, then a is called a **quadratic residue modulo** p. If a is not congruent to any square modulo p, then a is a **quadratic non-residue modulo** p.

Theorem 5. Let p be a prime. Half the numbers not congruent to $0 \mod p$ in a complete residue system $\mod p$ are quadratic residues and half are quadratic non-residues.

Definition. For an odd prime p and a natural number a with p not dividing a, the **Legendre symbol** $\left(\frac{a}{p}\right)$ is defined to be:

Theorem 6. Suppose p is an odd prime and p does not divide the numbers a or b. Then

$$\left(\frac{ab}{p}\right) = \left(\frac{a}{p}\right) \left(\frac{b}{p}\right).$$

Euler's Criterion (Theorem). Suppose p is an odd prime and p does not divide the natural number a. Then a is a quadratic residue mod p if and only if $a^{(p-1)/2} \equiv 1 \mod p$, and a is a quadratic non-residue mod p if and only if $a^{(p-1)/2} \equiv -1 \mod p$. Quadratic Reciprocity. Let p and q be odd primes. Then

$$\left(\frac{p}{q}\right) = \begin{cases} \left(\frac{q}{p}\right) & p \equiv 1 \bmod 4 \text{ or } q \equiv 1 \bmod 4\\ \left(-\frac{q}{p}\right) & p \equiv q \equiv 3 \bmod 4 \end{cases}$$