Matemática Atuarial II

Aula 16

Danilo Machado Pires danilo.pires@unifal-mg.edu.br Leonardo Henrique Costa leonardo.costa@unifal-mg.edu.br

Notas de aula da disciplina Matemática Atuarial II, oferecida pelo curso de Bacharelado em Ciências Atuariais da Universidade Federal de Alfenas, Campus Varginha.

PIRES,M.D. COSTA, L.H. Status Composto. [Notas de aula]. Universidade Federal de Alfenas, Curso de Ciências Atuariais, Alfenas, 2025. Disponível em: https://atuaria.github.io/portalhalley/notas_MatAtuarial2.html. Acessado em: 28 jun. 2025.

o O status composto refere-se a um produto atuarial que envolve várias vidas, onde se mescla os conceitos do status vida conjunta com os do status último sobrevivente.

o Estruturas mais complexas

Por exemplo, pode-se ter interesse em contratar uma anuidade postecipada cujos benefícios são pagos enquanto x ou y estiverem vivos desde que z ou w também estejam, ou seja:

$$a_{\overline{x},\overline{y},\overline{w},\overline{z}} = \sum_{t=1}^{\infty} v^t \,_t p_{\overline{x},\overline{y},\overline{w},\overline{z}}$$

Para b = 1.

$$a_{\overline{x,y}:\overline{w,z}} = \sum_{t=1}^{\infty} v^t \,_t p_{\overline{x,y},\overline{w,z}}$$

 $a_{1:2}$ O status falha quando o primeiro grupo "falhar" (seja o 1 ou o 2)

- $\boxed{1} = \overline{x, y}$ O status falha quando ocorrer a última morte entre $x \in y$
- $\boxed{2} = \overline{w}, \overline{z}$ O status falha quando ocorrer a última morte entre $w \in z$

$$a_{\overline{x,y},\overline{w,z}} = \sum_{t=1}^{\infty} v^t \,_t p_{\overline{x,y},\overline{w,z}}$$

1 indica vivo, 0 indica morto, (A) indica status ativo e a falha indica o fim do pagamento da anuidade

	x	y	W	Z	
1					
2					
3					
4					
5					
6					
7					
8					
9					
10					
11					
12					
13					
14					
15					
16					
				U	

$$a_{\overline{x},\overline{y},\overline{w},\overline{z}} = \sum_{t=1}^{\infty} v^t \,_t p_{\overline{x},\overline{y},\overline{w},\overline{z}}$$

1 indica vivo, 0 indica morto, (A) indica status ativo e a falha indica o fim do pagamento da anuidade

	x	у	W	Z	
1	1	1	1	1	Α
2	0	1	1	1	Α
3	1	0	1	1	Α
4	1	1	0	1	Α
5	1	1	1	0	Α
6	1	1	0	0	Falha
7	1	0	1	0	Α
8	1	0	0	1	Α
9	1	0	0	0	Falha
10	0	1	1	0	Α
11	0	1	0	1	Α
12	0	1	0	0	Falha
13	0	0	1	1	Falha
14	0	0	1	0	Falha
15	0	0	0	1	Falha
16	0	0	0	0	Falha

$$a_{\overline{x,y},\overline{w,z}} = \sum_{t=1}^{\infty} v^t {}_t p_{\overline{x,y},\overline{w,z}} = \sum_{t=1}^{\infty} v^t {}_t p_{\overline{x,y}} {}_t p_{\overline{w,z}},$$

$$a_{\overline{x,y},\overline{w,z}} = \sum_{t=1}^{\infty} v^{t} (_{t}p_{x} + _{t}p_{y} - _{t}p_{x} _{t}p_{y}) (_{t}p_{w} + _{t}p_{z} - _{t}p_{w} _{t}p_{z}),$$

$$a_{\overline{x,y},\overline{w,z}} = \sum_{t=1}^{\infty} \left[v^{t}(_{t}p_{x}_{t}p_{w}) + (_{t}p_{x}_{t}p_{z}) - (_{t}p_{x}_{t}p_{w}_{t}p_{z}) + v^{t}(_{t}p_{y}_{t}p_{w}) + v^{t}(_{t}p_{y}_{t}p_{w}_{t}p_{z}) - v^{t}(_{t}p_{y}_{t}p_{w}_{t}p_{z}) - v^{t}(_{t}p_{x}_{t}p_{y}_{t}p_{w}) - v^{t}(_{t}p_{x}_{t}p_{y}_{t}p_{z}) + v^{t}(_{t}p_{x}_{t}p_{y}_{t}p_{z}_{t}p_{w}) \right]$$

$$a_{\overline{x,y},\overline{w,z}} = \sum_{t=1}^{\infty} v^{t} (_{t}p_{x} _{t}p_{w}) + \sum_{t=1}^{\infty} v^{t} (_{t}p_{x} _{t}p_{z}) - \sum_{t=1}^{\infty} v^{t} (_{t}p_{x} _{t}p_{w} _{t}p_{z})$$

$$+ \sum_{t=1}^{\infty} v^{t} (_{t}p_{y} _{t}p_{w}) + \sum_{t=1}^{\infty} v^{t} (_{t}p_{y} _{t}p_{z}) - \sum_{t=1}^{\infty} v^{t} (_{t}p_{y} _{t}p_{w} _{t}p_{z})$$

$$- \sum_{t=1}^{\infty} v^{t} (_{t}p_{x} _{t}p_{y} _{t}p_{w}) - \sum_{t=1}^{\infty} v^{t} (_{t}p_{x} _{t}p_{y} _{t}p_{z}) + \sum_{t=1}^{\infty} v^{t} (_{t}p_{x} _{t}p_{y} _{t}p_{z} _{t}p_{w})$$

$$a_{\overline{x,y},\overline{w,z}} = a_{x,w} + a_{x,z} - a_{x,w,z} + a_{y,w} + a_{y,z} + a_{y,w} - a_{y,w,z} - a_{x,y,w} - a_{x,y,z} + a_{x,y,z,w}$$

Como será o prêmio puro único de uma anuidade vitalícia de efeito imediato, que paga os benefícios de forma postecipada desde que \boldsymbol{x} esteja vivo e o último sobrevivente de \boldsymbol{w} ou \boldsymbol{z} estiver vivo.

Como será o prêmio puro único de uma anuidade vitalícia de efeito imediato, que paga os benefícios de forma postecipada desde que \boldsymbol{x} esteja vivo e o último sobrevivente de \boldsymbol{w} ou \boldsymbol{z} estiver vivo.

$$a_{x,\overline{w,z}}$$

 $a_{x,\overline{w,z}}$

	х	W	Z	$a_{x,\overline{w,z}}$
1				
2				
3				
4				
5				
6				
7				
8				

1indica vivo, 0indica morto, (\mathbf{A}) indica status ativo

1 indica vivo, 0 indica morto, (A) indica status ativo

	x	W	Z	$a_{x,\overline{w,z}}$
1	1	1	1	A/Paga
2	0	1	1	Falha
3	1	0	1	A/Paga
4	1	1	0	A/Paga
5	1	0	0	Falha
6	0	1	0	Falha
7	0	0	1	Falha
8	0	0	0	Falha

E caso esse status composto fosse feito para um seguro de vida vitalício, como seria os pagamentos?

	x	W	Z	$a_{x,\overline{w,z}}$	$A_{x,\overline{w,z}}$
1	1	1	1	A/Paga	Α
2	0	1	1	Falha	Falha/Paga
3	1	0	1	A/Paga	Α
4	1	1	0	A/Paga	Α
5	1	0	0	Falha	Falha/Paga
6	0	1	0	Falha	Falha/Paga
7	0	0	1	Falha	Falha/Paga
8	0	0	0	Falha	Falha/Paga

1 indica vivo, 0 indica morto, (A) indica status ativo

 $Como\ calcular\ o\ valor\ de\ a_{x,\overline{w},\overline{z}}\ e\ A_{x,\overline{w},\overline{z}}$?

- Portal Halley: https://atuaria.github.io/portalhalley/
- Bowers et al. **Actuarial Mathematics**, 2ª edição. SOA, 1997.
- D. C. M. Dickson, M. R. Hardy and H. R. Waters. Actuarial Mathematics for Life Contingent Risks. Cambridge University Press, 2019.
- CORDEIRO FILHO, Antônio. Cálculo Atuarial Aplicado: teoria e aplicações, exercícios resolvidos e propostos. São Paulo: Atlas, 2009.
- FERREIRA, P. P. Matemática Atuarial: Riscos de Pessoas. Rio de Janeiro: ENS, 2019
- PIRES,M.D.;COSTA,L.H.;FERREIRA,L.;MARQUES,R.
 Fundamentos da matemática atuarial: vida e pensões. Curitiba :CRV,2022.

Matemática Atuarial II

Aula 17

Danilo Machado Pires danilo.pires@unifal-mg.edu.br Leonardo Henrique Costa leonardo.costa@unifal-mg.edu.br

Como será o prêmio puro único de uma anuidade vitalícia de efeito imediato, que paga os benefícios de forma postecipada desde que x esteja vivo e o último sobrevivente de w ou z estiver vivo.

$$a_{x,\overline{w,z}}$$

	X	W	Z	$a_{x,\overline{w,z}}$	$A_{x,\overline{w,z}}$
1	1	1	1	A/Paga	Α
2	0	1	1	Falha	Falha/Paga
3	1	0	1	A/Paga	Α
4	1	1	0	A/Paga	Α
5	1	0	0	Falha	Falha/Paga
6	0	1	0	Falha	Falha/Paga
7	0	0	1	Falha	Falha/Paga
8	0	0	0	Falha	Falha/Paga

1 indica vivo, 0 indica morto, (A) indica status ativo

 $Como\ calcular\ o\ valor\ de\ a_{x,\overline{w},\overline{z}}\ e\ A_{x,\overline{w},\overline{z}}$?

Universidade Federal de Alfenas

Para esse cálculo é importante perceber que:

$$T_{\overline{w},\overline{z}} = T_w$$
 então $T_{w,z} = T_z$ logo $T_{x,\overline{w},\overline{z}} = T_{x,w}$ e $T_{x,w,z} = T_{x,z}$ $T_{\overline{w},\overline{z}} = T_z$ então $T_{w,z} = T_w$ logo $T_{x,\overline{w},\overline{z}} = T_{x,z}$ e $T_{x,w,z} = T_{x,w}$

Consequentemente

$$T_{x,\overline{w,z}} + T_{x,w,z} = T_{x,w} + T_{x,z}$$

Dessa forma...

$$v^{T_{x,\overline{w,z}}+1} + v^{T_{x,w,z}+1} = v^{T_{x,w}+1} + v^{T_{x,z}+1}$$

Tomando a esperança dos dois lados:

$$E(v^{T_{x,\overline{w},\overline{z}}+1}) + E(v^{T_{x,w,z}+1}) = E(v^{T_{x,w}+1}) + E(v^{T_{x,z}+1})$$

$$A_{x,\overline{w},\overline{z}} + A_{x,w,z} = A_{x,w} + A_{x,z}$$

em que $A_{x,\overline{w},\overline{z}}$ e um seguro onde o benefício é pago assim que a primeira pessoa morrer entre x e o último sobrevivente entre w e z, e $A_{x,w,z}$ é o seguro pago assim que ocorrer a primeira morte entre x, w e z.

O mesmo raciocínio serve para

$$a_{x,\overline{w,z}} + a_{x,w,z} = a_{x,w} + a_{x,z}$$

em que $a_{x,\overline{w},\overline{z}}$ e uma anuidade paga enquanto x estiver vivo e pelo menos um entre w e z estiver vivo, e $a_{x,w,z}$ é o anuidade paga enquanto todos os componentes do status $(x, w \in z)$ estiverem vivos.

	x	W	Z	$a_{x,\overline{w,z}}$	$A_{x,\overline{w,z}}$
1	1	1	1	A/Paga	Α
2	0	1	1	Falha	Falha/Paga
3	1	0	1	A/Paga	Α
4	1	1	0	A/Paga	Α
5	1	0	0	Falha	Falha/Paga
6	0	1	0	Falha	Falha/Paga
7	0	0	1	Falha	Falha/Paga
8	0	0	0	Falha	Falha/Paga

1 indica vivo, 0 indica morto, (A) indica status ativo

$$a_{x,\overline{w},\overline{z}} = a_{x,w} + a_{x,z} - a_{x,w,z}$$

$$A_{x,\overline{w},\overline{z}} = A_{x,w} + A_{x,z} - A_{x,w,z}$$

Exemplo: Qual prêmio puro único pago por um seguro de vida vitalício com benefício unitário para o status composto, formado por x = 30, y = 32, w = 12 e z = 10. Cujo benefício será pago quando a segunda morte ocorrer no par contrário ao da primeira morte ou à terceira morte, caso as duas primeiras ocorram no mesmo par?

Exemplo: ...cujo benefício será pago quando a segunda morte ocorrer no par contrário ao da primeira morte ou à terceira morte, caso as duas primeiras ocorram no mesmo par?

Solução

Em um primeiro momento é possível identificar dois pares do status vida conjunta, pois com a primeira morte em um par já busca-se a morte no segundo par, logo

$$(x,y)$$
 e (w,z)

Conclui-se que a relação desse seguro é

$$A_{\overline{(x,y),(w,z)}}$$

...cujo benefício será pago quando a segunda morte ocorrer no par contrário ao da primeira morte ou à terceira morte, 2 caso as duas primeiras ocorram no mesmo par?

 \boldsymbol{Z}

1 indica vivo, 0 indica morto

...cujo benefício será pago quando a segunda morte ocorrer no par contrário ao da primeira morte ou à terceira morte, caso as duas primeiras ocorram no mesmo par?

	x	y	W	\boldsymbol{Z}	$A_{\overline{(x,y),(w,z)}}$
1	1	1	1	1	Ativo
, 2	0	1	1	1	Ativo
3	1	0	1	1	Ativo
4	1	1	0	1	Ativo
5	1	1	1	0	Ativo
6	1	1	0	0	Ativo
7	1	0	1	0	Falha/Paga
8	1	0	0	1	Falha/Paga
9	1	0	0	0	Falha/Paga
10	0	1	1	0	Falha/Paga
11	0	1	0	1	Falha/Paga
12	0	1	0	0	Falha/Paga
13	0	0	1	1	Ativo
14	0	0	1	0 <	Falha/Paga
15	0	0	0	1	Falha/Paga
16	0	0	0	0	Falha/Paga

1 indica vivo, 0 indica morto

Exemplo: Qual prêmio puro único pago por um seguro de vida vitalício com benefício unitário para o status composto, formado por x = 30, y = 32, w = 12 e z = 10. Cujo benefício será pago quando a segunda morte ocorrer no par contrário ao da primeira morte, ou à terceira morte, caso as duas primeiras ocorram no mesmo par?

$$A_{\overline{(30,32),(12,10)}} = A_{30,32} + A_{12,10} - A_{30,32,12,10}$$

Considere um seguro de vida com benefício pago assim que vier a óbito o primeiro entres os segurados x e y, desde que o último entre w e z já tiver falecido, ou o último entre w e z vir a óbito desde que o primeiro entre x e y já tenha falecido. Ou seja:

Considere um seguro de vida com benefício pago assim que vier a óbito o primeiro entres os segurados x e y, desde que o último entre w e z já tiver falecido, ou o último entre w e z vir a óbito desde que o primeiro entre x e y já tenha falecido. Ou seja:

$$A_{\overline{(x,y),\overline{w,z}}} = \sum_{t=0}^{\infty} v^{t+1} t_{||} q_{\overline{(x,y),\overline{w,z}}}$$

em que
$$t \mid q_{\overline{(x,y)},\overline{w,z}} = P(T_{\overline{(x,y)},\overline{w,z}} = t)$$

$$A_{\overline{(x,y),\overline{w,z}}} = \sum_{t=0}^{\infty} v^{t+1} t_{|t|} q_{\overline{(x,y),\overline{w,z}}}$$

 $A_{\fbox{1:2}}$ O status falha quando o último grupo "falhar" (seja o 1 ou o 2)

- $\boxed{1} = x, y$ O status falha quando ocorrer a primeira morte entre $x \in y$
- $\boxed{2} = \overline{w}, \overline{z}$ O status falha quando ocorrer a última morte entre $w \in z$

$$A_{\overline{(x,y),\overline{w,z}}} = \sum_{t=0}^{\infty} v^{t+1} \,_{t|} q_{\overline{(x,y),\overline{w,z}}}$$

$$A_{\overline{(x,y)},\overline{w,z}} = \sum_{t=0}^{\infty} v^{t+1} \,_{t|} q_{\overline{(x,y)},\overline{w,z}}$$

1 indica vivo, 0 indica morto, (A) indica status ativo e a falha indica o pagamento do seguro

	х	у	W	Z
1				
2				
3				
4				
5				
6				
7				
8				
9				
10				
11				
12				
13				
14				
15				
16				

$$A_{\overline{(x,y),\overline{w,z}}} = \sum_{t=0}^{\infty} v^{t+1} \,_{t|} q_{\overline{(x,y),\overline{w,z}}}$$

1 indica vivo, 0 indica morto, (A) indica status ativo e a falha indica o pagamento do seguro

	x	y	W	Z	$A_{\overline{x,y},\overline{w,z}}$
1	1	1	1	1	Α
2	0	1	1	1	Α
3	1	0	1	1	Α
4	1	1	0	1	Α
5	1	1	1	0	Α
6	1	1	0	0	Α
7	1	0	1	0	Α
8	1	0	0	1	Α
9	1	0	0	0	Falha/Paga
10	0	1	1	0	Α
11	0	1	0	1	Α
12	0	1	0	0	Falha/Paga
13	0	0	1	1	Α
14	0	0	1	0 <	Α
15	0	0	0	1	Α
16	0	0	0	0	Falha/Paga

$$A_{\overline{(x,y),\overline{w,z}}} = \sum_{t=0}^{\infty} v^{t+1}_{t|} q_{\overline{(x,y),\overline{w,z}}}$$
em que $_{t|} q_{\overline{(x,y),\overline{w,z}}} = P(T_{\overline{(x,y),\overline{w,z}}} = t).$

Lembrando de matemática atuarial 1:

$$t|q_x = P(T_x = t) = P(t < T_x \le t + 1) = t p_x - t + 1 p_x = t p_x q_{x+t}$$

$$\operatorname{Assim} \quad {}_{t|}q_{\overline{(x,y),\overline{w,z}}} = P\big(T_{\overline{(x,y),\overline{w,z}}} = t\big) = \left(\,{}_{t}p_{\overline{(x,y),\overline{w,z}}} - \,{}_{t+1}p_{\overline{(x,y),\overline{w,z}}} \right) \, \operatorname{ent\~ao} :$$

$$A_{\overline{(x,y)},\overline{w,z}} = \sum_{t=0}^{\infty} v^{t+1} \left({}_{t} p_{\overline{(x,y)},\overline{w,z}} - {}_{t+1} p_{\overline{(x,y)},\overline{w,z}} \right)$$

$$A_{\overline{(x,y),\overline{w,z}}} = \sum_{t=0}^{\infty} v^{t+1} \left({}_{t} p_{\overline{(x,y),\overline{w,z}}} - {}_{t+1} p_{\overline{(x,y),\overline{w,z}}} \right)$$

$$A_{\overline{(x,y),\overline{w,z}}} = \sum_{t=0}^{\infty} v^{t+1} \left[\left(1 - {}_t q_{\overline{(x,y),\overline{w,z}}} \right) - \left(1 - {}_{t+1} q_{\overline{(x,y),\overline{w,z}}} \right) \right]$$

$$\begin{split} &A_{\overline{(x,y),\overline{w,z}}} \\ &= \sum_{t=0}^{\infty} v^{t+1} \{ \left[1 - \left(1 - t p_{x,y} \right) \left(1 - t p_{\overline{w,z}} \right) \right] - \left[1 - \left(1 - t p_{x,y} \right) \left(1 - t p_{\overline{w,z}} \right) \right] \}, \\ &= \left[1 - \left(1 - t p_{\overline{w,z}} - t p_{x,y} + t p_{x,y} t p_{\overline{w,z}} \right) \right] - \left[1 - \left(1 - t p_{\overline{w,z}} - t p_{x,y} + t p_{x,y} t p_{\overline{w,z}} \right) \right] \\ &= \left[\left(t p_{\overline{w,z}} + t p_{x,y} - t p_{x,y} t p_{\overline{w,z}} \right) \right] - \left[\left(t + 1 p_{\overline{w,z}} + t p_{x,y} - t p_{x,y} t p_{\overline{w,z}} \right) \right] \end{split}$$

Universidade Federal de Alfenas

$$A_{\overline{(x,y),\overline{w},\overline{z}}} = \sum_{t=0}^{\infty} v^{t+1} \{ [1 - (1 - {}_{t} p_{x,y})(1 - {}_{t} p_{\overline{w},\overline{z}})] - [1 - (1 - {}_{t+1} p_{x,y})(1 - {}_{t+1} p_{\overline{w},\overline{z}})] \},$$

. . .

$$= \left[\left({}_{t}p_{\overline{w},\overline{z}} + {}_{t}p_{x,y} - {}_{t}p_{x,y} \, {}_{t}p_{\overline{w},\overline{z}} \right) \right] - \left[\left({}_{t+1}p_{\overline{w},\overline{z}} + {}_{t+1}p_{x,y} - {}_{t+1}p_{x,y} + {}_{t+1}p_{\overline{w},\overline{z}} \right) \right]$$

$$= \left[\left({}_{t}p_{\overline{w},\overline{z}} - {}_{t+1}p_{\overline{w},\overline{z}} \right) + \left({}_{t}p_{x,y} - {}_{t+1}p_{x,y} \right) - \left({}_{t}p_{x,y} \, {}_{t}p_{\overline{w},\overline{z}} - {}_{t+1}p_{x,y} \, {}_{t+1}p_{\overline{w},\overline{z}} \right) \right]$$

$$A_{\overline{(x,y),\overline{w},\overline{z}}}$$

$$= \sum_{t=0}^{\infty} v^{t+1} \left[\left(t p_{\overline{w},\overline{z}} - t p_{\overline{w},\overline{z}} \right) + \left(t p_{x,y} - t p_{x,y} \right) - \left(t p_{x,y} t p_{\overline{w},\overline{z}} - t p_{x,y} t p_{\overline{w},\overline{z}} \right) \right]$$

$$A_{\overline{(x,y),\overline{w,z}}} = \sum_{t=0}^{\infty} v^{t+1} \left({}_{t} p_{\overline{w,z}} - {}_{t+1} p_{\overline{w,z}} \right) + \sum_{t=0}^{\infty} v^{t+1} \left({}_{t} p_{x,y} - {}_{t+1} p_{x,y} \right) - \sum_{t=0}^{\infty} v^{t+1} \left({}_{t} p_{x,y} {}_{t} p_{\overline{w,z}} - {}_{t+1} p_{x,y} {}_{t+1} p_{\overline{w,z}} \right)$$

$$= \left[{}_{t}p_{x} {}_{t}p_{y} ({}_{t}p_{w} + {}_{t}p_{z} - {}_{t}p_{w} {}_{t}p_{z}) - {}_{t+1}p_{x} {}_{t+1}p_{y} ({}_{t+1}p_{w} + {}_{t+1}p_{z} - {}_{t+1}p_{w} {}_{t+1}p_{z}) \right]$$

 $= {}_{t} p_{x} {}_{t} p_{y} {}_{t} p_{w} + {}_{t} p_{x} {}_{t} p_{y} {}_{t} p_{z} - {}_{t} p_{x} {}_{t} p_{y} {}_{t} p_{w} {}_{t} p_{z} - {}_{t+1} p_{x} {}_{t+1} p_{y} {}_{t+1} p_{w} - {}_{t+1} p_{x} {}_{t+1} p_{y} {}_{t+1} p_{z} + {}_{t+1} p_{x} {}_{t+1} p_{y} {}_{t+1} p_{z}$

$$A_{\overline{(x,y),\overline{w,z}}}$$

$$= \sum_{t=0}^{\infty} v^{t+1} \left(t p_{\overline{w,z}} - t + 1 p_{\overline{w,z}} \right) + \sum_{t=0}^{\infty} v^{t+1} \left(t p_{x,y} - t + 1 p_{x,y} \right)$$

$$- \sum_{t=0}^{\infty} v^{t+1} \left[\left(t p_{x} t p_{y} t p_{w} - t + 1 p_{x} t + 1 p_{y} t + 1 p_{w} \right) + \left(t p_{x} t p_{y} t p_{z} - t + 1 p_{x} t + 1 p_{z} \right) - \left(t p_{x} t p_{y} t p_{w} t p_{z} - t + 1 p_{x} t + 1 p_{y} t + 1 p_{w} \right) \right]$$

$$A_{\overline{(x,y),\overline{w,z}}}$$

$$= \sum_{t=0}^{\infty} v^{t+1} \left({}_{t}p_{\overline{w,z}} - {}_{t+1}p_{\overline{w,z}} \right) + \sum_{t=0}^{\infty} v^{t+1} \left({}_{t}p_{x,y} - {}_{t+1}p_{x,y} \right)$$

$$- \sum_{t=0}^{\infty} v^{t+1} \left[\left({}_{t}p_{x} {}_{t}p_{y} {}_{t}p_{w} - {}_{t+1}p_{x} {}_{t+1}p_{y} {}_{t+1}p_{w} \right) + \left({}_{t}p_{x} {}_{t}p_{y} {}_{t}p_{z} - {}_{t+1}p_{x} {}_{t+1}p_{y} {}_{t+1}p_{z} \right)$$

$$- \left({}_{t}p_{x} {}_{t}p_{y} {}_{t}p_{w} {}_{t}p_{z} - {}_{t+1}p_{x} {}_{t+1}p_{y} {}_{t+1}p_{w} {}_{t+1}p_{z} \right) \right]$$

$$A_{\overline{(x,y),\overline{w,z}}} = \sum_{t=0}^{\infty} v^{t+1} \left({}_{t} p_{\overline{w,z}} - {}_{t+1} p_{\overline{w,z}} \right) + \sum_{t=0}^{\infty} v^{t+1} \left({}_{t} p_{x,y} - {}_{t+1} p_{x,y} \right) - \sum_{t=0}^{\infty} v^{t+1} \left({}_{t} p_{x} {}_{t} p_{y} {}_{t} p_{w} - {}_{t+1} p_{x} {}_{t+1} p_{y} {}_{t+1} p_{w} \right) - \sum_{t=0}^{\infty} v^{t+1} \left({}_{t} p_{x} {}_{t} p_{y} {}_{t} p_{z} - {}_{t+1} p_{x} {}_{t+1} p_{y} {}_{t+1} p_{z} \right) + \sum_{t=0}^{\infty} v^{t+1} \left({}_{t} p_{x} {}_{t} p_{y} {}_{t} p_{z} - {}_{t+1} p_{x} {}_{t+1} p_{y} {}_{t+1} p_{z} \right)$$

$$A_{\overline{(x,y),\overline{w,z}}} = \sum_{t=0}^{\infty} v^{t+1} \left({}_{t} p_{\overline{w,z}} - {}_{t+1} p_{\overline{w,z}} \right) + \sum_{t=0}^{\infty} v^{t+1} \left({}_{t} p_{x,y} - {}_{t+1} p_{x,y} \right) - \sum_{t=0}^{\infty} v^{t+1} \left({}_{t} p_{x,y,w} - {}_{t+1} p_{x,y,w} \right) - \sum_{t=0}^{\infty} v^{t+1} \left({}_{t} p_{x,y,z} - {}_{t+1} p_{x,y,z} \right) + \sum_{t=0}^{\infty} v^{t+1} \left({}_{t} p_{x,y,w,z} - {}_{t+1} p_{x,y,w,z} \right)$$

$$A_{\overline{(x,y),\overline{w,z}}} = \sum_{t=0}^{\infty} v^{t+1} \left({}_{t} p_{\overline{w,z}} - {}_{t+1} p_{\overline{w,z}} \right) + \sum_{t=0}^{\infty} v^{t+1} \left({}_{t} p_{x,y} - {}_{t+1} p_{x,y} \right)$$

$$- \sum_{t=0}^{\infty} v^{t+1} \left({}_{t} p_{x,y,w} - {}_{t+1} p_{x,y,w} \right) - \sum_{t=0}^{\infty} v^{t+1} \left({}_{t} p_{x,y,z} - {}_{t+1} p_{x,y,z} \right)$$

$$+ \sum_{t=0}^{\infty} v^{t+1} \left({}_{t} p_{x,y,w,z} - {}_{t+1} p_{x,y,w,z} \right)$$

resultando em

$$A_{\overline{(x,y),\overline{w,z}}} = A_w + A_z - A_{w,z} + A_{x,y} - A_{x,y,w} - A_{x,y,z} + A_{x,y,w,z}$$

Iniversidade Federal de Alfenas

- Portal Halley: https://atuaria.github.io/portalhalley/
- Bowers et al. **Actuarial Mathematics**, 2ª edição. SOA, 1997.
- D. C. M. Dickson, M. R. Hardy and H. R. Waters. Actuarial Mathematics for Life Contingent Risks. Cambridge University Press, 2019.
- CORDEIRO FILHO, Antônio. Cálculo Atuarial Aplicado: teoria e aplicações, exercícios resolvidos e propostos. São Paulo: Atlas, 2009.
- FERREIRA, P. P. Matemática Atuarial: Riscos de Pessoas. Rio de Janeiro: ENS, 2019
- PIRES,M.D.;COSTA,L.H.;FERREIRA,L.;MARQUES,R.
 Fundamentos da matemática atuarial: vida e pensões. Curitiba :CRV,2022.

