开三番2 오

2025 하반기 LIG 넥스원 신입 공개채용 IPS(공통) 직무

자기 소개

지속적으로 성장하는 연구원 서민경입니다.

- 학력
 - 2020.03-2024.02 부산대학교 기계공학부 재학
 - **2023.03** 지능형 다중스케일 다기능 생산공정 연구실 연구생
 - **2024.03** 부산대학원 기계공학부 정밀가공시스템 전공(석사과정)

- 성적
 - 학부 3.82/4.5
 - 대학원 4.5/4.5
 - 컴퓨터비전 A+ -> 다양한 머신러닝 기법에 대한 이해 및 활용
 - 스마트팩토리 A+->스마트팩토리의 자동화 생산 과정에 대한 학습
 - 확률 및 통계 A+->확률 분포, 가설 검정 등 데이터 분석 기법 이해

- 개인 연구 & 교육이수
 - **2024** U-Net 모델을 이용한 DLP 공정 중 실시간 결함 감지
 - 2024-2025 DLP 프린팅 분리력 저감을 위한 강화학습 기반 공정 변수 최적화
 - 2025 DLP 프린팅 공정 마이크로 단위 정밀도 향상을 위한 강화학습 기반 마스크 이미지 최적화
- 참여 연구 과제
 - **2023** 하이드로젤-나노섬유의 복합 3D바이오프린팅을 통한 생체모사 배양 플랫폼 개발
 - -> 3D 프린팅 기반 난포 배양 플랫폼 설계
 - 2024 2025 머신러닝 기반 냉장고 가스켓 형상 최적화
 - 2025 휴머노이드 후각디스플레이센터
 - -> MWCNT+PANI 기반 후각 디스플레이 센서 제작
- 수상 경력
 - 2024.11 한국기계가공학회 추계학술대회 우수논문상
 - **2025.04** ICMDT 2025 베스트 포스터 어워드

딥러닝을 이용한 DLP 프린팅 공정 중 결함 검출

U-Net model & defect data collection and segmentation

DLP 3D Printer & Camera Setup Location

Data segmentation

Evaluation of model performance & detection of defective regions on the test set

Intersection of Under-Printed

and Resin-Limited Areas

Printing area

Mean IoU: 0.866

- DLP 프린팅 공정 중 레진 부족으로 인한 결함 카메라로 데이터 셋 획득 -> 데이터 segmentation 수행
- Train, validation 데이터 셋에 augmentation을 적용하여 딥러닝 모델 성능 향상 (mean IOU: 0.7->0.9)
- 실제 데이터 셋으로 평가 결과 mean IOU: 0.866으로, 학습 모델이 잘 작동하는 것을 확인
- ⇒실제 마스크 이미지와 딥러닝으로 예측한 레진 부족 영역이 겹치면 결함으로 감지하도록 파이썬 코드로 구현

강화학습기반 3D 프린팅 공정 변수 최적화

RL-based process optimization framework with separation force

Optimization of layer-wise bed lift speed via RL hyperparameters

- 강화학습 기반 DLP 프린팅 공정 중 출력물에 작용하는 분리력을 줄이기 위한 층별 플랫폼 상승 속도 최적화 framework 구현
- ANSYS 해석 기반 프린팅 상황을 시뮬레이션하는 물리 모델 구현 -> 파이썬을 통해 강화학습과 접목
- 생산성을 고려한 최적 공정변수 도출을 위한 하이퍼파라미터 튜닝 -> 안정적인 출력 조건 확보 및 제작 성공률 향상

강화학습기반 3D 프린팅 공정 변수 최적화

Modeling of Light Intensity Distribution in Layered Exposure

RL-based mask image grayscale optimization framework for precision enhancement

- 출력 정밀도 향상을 위한 픽셀 단위 마스크 이미지 grayscale 조절을 통한 강화학습 기반 framwork 구현
- 평면(x, y) 방향, 깊이(z) 방향 광 산란 분포를 중첩한 파이썬 기반 광 산란 시뮬레이션 구현
- 마스크 이미지(목표 형상)와 실제 출력 이미지 차이를 최소화하는 방향으로 강화학습 수행 예정

3D 프린팅 기반 난포 배양 플랫폼 설계

Precision Improvement of Channel Culture Platform via Grayscale Control

Fabrication of flexible microscale structures through particle leaching

MWCNT+PANI 기반 후각 디스플레이 센서 제작

Fabrication of 3D chemical sensors based on MWCNT and the effect of PANI on resistance

- Grayscale 및 조사 시간 등 공정 변수 조절을 통한 채널 형태 배양 구조물 정밀 구현
- DLP 3D 프린팅 기반 생체 물성 모사 맞춤형 배양 플랫폼 설계
- MWCNT + PANI 기반 가스 센서의 감지 성능 향상을 위해 3D 프린터를 통해 표면적을 넓힌 격자 구조로 감지부 설계
- 아세톤에 노출 시 저항 변화 측정 -> MWCNT only보다 MWCNT + PANI 기반 가스 센서가 급격한 저항 변화 감지 => 높은 센싱 성능