مدارهای الکتریکی و الکترونیکی - دکتر شکفته

امیرحسین منصوری - ۹۹۲۴۳۰۶۹ - تمرین سری ۶

سوال ۱

در زمان $t=0^-$ خازن مثل مدار باز عمل میکند. بنابراین مدار به شکل روبهرو در میآید. بنابراین داریم:

$$3i - 5 + 2i = 0 \Rightarrow i = 1$$

 $\Rightarrow V_R = 2, V_C = -3$

در زمان $t=0^+$ ، خازن مثل منبع ولتاژ با مقدار $t=0^+$ عمل میکند. بنابراین مدار به شکل روبهرو در می
آید. داریم: + 3 + 2i' + - 5 + 2i' = 0 . 5 $V_{_{D}}(0^{+}) = 0.5 \times 2 = 1$

در زمان $t=+\infty$ خازن مثل مدار باز عمل میکند. بنابراین مدار به شکل روبهرو در میآید و واضح است که $V_{_{\scriptscriptstyle D}}(+\,\,\infty)\,=\,0$. همچنین داریم:

$$C_{eq} = 2$$
, $R_{eq} = 4$
 $\Rightarrow \tau = C_{eq}R_{eq} = 8$

بنابراین داریم:

$$V_{R}(t) = V(+ \infty) + (V(0^{+}) - V(+ \infty))e^{-\frac{t}{\tau}}, t > 0$$

سوال ۲

در زمان $t=0^-$ ، خازن مثل مدار بار سس دی در زمان $t=0^-$ مدار به شکل روبهرو در میآید. بنابراین داریم: $4i-2V_c+2i-6=0$ $V_c-2V_c+2i=0$ $\Rightarrow i=3, V_c=6$ در زمان $t=0^-$ ، خازن مثل مدار باز عمل میکند. بنابراین

$$4i - 2V_C + 2i - 6 = 0$$

$$V_C - 2V_c + 2i = 0$$

$$\Rightarrow i = 3, V_c = 6$$

ولتاژ خازن جهش ندارد. بنابراین در زمان $t=0^+$ 6، ا در زمان $\infty + = t$ ، مدار به شکل روبهرو در می آید. چون منبع ولتاژ مستقلی نداریم، بنابراین $V_{_{C}}=0$. همچنین داریم:

$$R_{eq} = 2||(2 + 4)| = \frac{6 \times 2}{6 + 2} = 1.5$$
 $C_{eq} = \frac{1}{3}$
 $\tau = R_{eq}C_{eq} = 0.5$

در نهایت داریم:

$$V_{c}(t) = V_{c}(+ \infty) + (V_{c}(0^{+}) - V_{c}(+ \infty))e^{-\frac{t}{\tau}}$$

= $6e^{-2t}$

سوال ۳

در زمان $t=3^-$ مدار به شکل روبهرو است. واضح است که $I_{_S}=0$. داریم:

$$I + 3I = 5 \Rightarrow I = 1.25$$

 $\Rightarrow V_R = 2I = 2.5$
 $\Rightarrow V_C = V_R = 2.5$

در زمان ⁺3 = t، خازن به شکل منبع ولتاژ عمل میکند. بنابراین مدار به شکل روبهرو در میآید. با استفاده از KVL در حلقه سمت راست داریم:

$$-2.5 + 2I_{s} - 12 = 0$$

 $\Rightarrow I_{s} = 7.25$

در زمان $\infty = t$ ، خازن مثل مدار باز عمل میکند. بنابراین مدار به شکل روبهرو در میآید. با استفاده از تحلیل مش داریم:

$$\begin{split} i_1 &= 5 \\ I &= i_1 - i_2 \\ 2I &+ 12 - 2i_3 = 0 \\ 3I &= i_2 - i_3 \end{split}$$

$$\Rightarrow I_S = i_3 = 5.8$$

همچنین داریم:

$$\begin{split} &C_{eq} = 5, R_{eq} = (2 \mid\mid 2) = 1 \\ &\Rightarrow \tau = C_{eq} R_{eq} = 5 \end{split}$$

در نهایت داریم:

$$I_{S}(t) = I_{S}(\infty) + (I_{S}(3^{+}) - I_{S}(\infty))e^{-\frac{t-3}{\tau}}, t > 3$$
$$= 5.8 + 1.45e^{-\frac{t-3}{5}}$$

سوال ۴

در زمان $t=0^-$ ، سلف مثل اتصال کوتاه عمل میکند. بنابراین مدار به شکل روبهرو میشود. بنابراین داریم: $I_L=10$

در زمان $t=0^+$ ، چون جریان گذرنده از سلف جهش ندارد، بنابراین $I_{_L}=10$

در زمان $\infty = t$ ، با فرض این که کلید سمت راست همواره باز میماند، مدار به شکل مقابل در میآید. بنابراین $I_{_L} = 0$

$$\tau = \frac{L}{R} = \frac{0.002}{2} = 0.001$$
 همچنین

بنابراین:

$$I_{L}(t) = I_{L}(\infty) + (I_{L}(0^{+}) - I_{L}(\infty))e^{-\frac{t}{\tau}}, 0 < t < 1ms$$

= $10e^{-1000t}$

$$\Rightarrow I_{I}(1ms^{-}) = 10e^{-1} = 3.68$$

 2Ω

 $I_{I}(1ms^{+}) = 3.68$ چون جریان سلف جهش ندارد، بنابراین

در زمان $x=\infty$ ، سلف مثل اتصال کوتاه عمل میکند. بنابراین مدار به شکل روبهرو در می آید. پس $I_L=0$

$$au = \frac{L}{R} = \frac{0.002}{(2||2)} = 0.002$$
 همچنین

بنابراین:

$$I_{L}(t) = I_{L}(\infty) + (I_{L}(1ms^{+}) - I_{L}(\infty))e^{-\frac{t - 0.001}{\tau}}, t > 1ms$$

$$= 3.68e^{-\frac{t - 0.001}{0.002}}$$