# 計算機結構 HW3

姓名:莊育權

學號:B03901142

系級:電機三

### I、作業報告

- SingleCycle\_MIPS
  - 1. 設計架構

(1) CPU



## (2) Control Signals

| Input/<br>Output | Signal name | R-form | 1w | SW | beq | jump | jal | jr |
|------------------|-------------|--------|----|----|-----|------|-----|----|
| Inputs           | 0p5         | 0      | 1  | 1  | 0   | 0    | 0   | 0  |
|                  | 0p4         | 0      | 0  | 0  | 0   | 0    | 0   | 0  |
|                  | 0p3         | 0      | 0  | 1  | 0   | 0    | 0   | 0  |
|                  | 0p2         | 0      | 0  | 0  | 1   | 0    | 0   | 0  |
|                  | 0p1         | 0      | 1  | 1  | 0   | 1    | 1   | 0  |
|                  | 0p0         | 0      | 1  | 1  | 0   | 0    | 1   | 0  |
| Outputs          | RegDst      | 1      | 0  | X  | X   | X    | X   | X  |
|                  | ALUSrc      | 0      | 1  | 1  | 0   | X    | X   | X  |
|                  | MemToReg    | 0      | 1  | X  | X   | X    | X   | X  |
|                  | RegWrite    | 1      | 1  | 0  | 0   | 0    | 1   | 0  |
|                  | MemRead     | 0      | 1  | 0  | 0   | 0    | 0   | 0  |
|                  | MemWrite    | 0      | 0  | 1  | 0   | 0    | 0   | 0  |
|                  | Branch      | 0      | 0  | 0  | 1   | X    | X   | X  |
|                  | ALUOp1      | 1      | 0  | 0  | 0   | X    | X   | X  |
|                  | ALUOp0      | 0      | 0  | 0  | 1   | X    | Х   | X  |
|                  | Jump        | 0      | 0  | 0  | 0   | 1    | 1   | X  |
|                  | jal         | 0      | 0  | 0  | 0   | 0    | 1   | X  |
|                  | jr          | 0      | 0  | 0  | 0   | 0    | 0   | 1  |

## (3) ALU Control Signals

| ALUOp1 | ALU0p0 | Function field | ALU control input |
|--------|--------|----------------|-------------------|
| 0      | 0      | XXXX           | 010               |
| 0      | 0      | XXXX           | 010               |
| 0      | 1      | XXXX           | 110               |
| 1      | 0      | 0000           | 010               |
| 1      | 0      | 0010           | 110               |
| 1      | 0      | 0100           | 000               |
| 1      | 0      | 0101           | 001               |
| 1      | 0      | 1010           | 111               |

#### 二、 模擬結果

#### 1. Timing

Set cycle = 6 (ns)

| clock CLK (rise edge) clock network delay (ideal) clock uncertainty output external delay data required time | 6.00<br>0.50<br>-0.10<br>-4.00 | 6.00<br>6.50<br>6.40<br>2.40<br>2.40 |
|--------------------------------------------------------------------------------------------------------------|--------------------------------|--------------------------------------|
| data required time<br>data arrival time                                                                      |                                | 2.40<br>-2.39                        |
| slack (MET)                                                                                                  |                                | 0.01                                 |

Simulated time = 5.51 (ns)

#### 2. Area

```
************
Report : area
Library(s) Used:
     typical (File: /home/raid7_2/course/cvsd/CBDK_IC_Contest/CIC,
Number of ports:
Number of nets:
Number of cells:
Number of combinational cells:
Number of sequential cells:
Number of macros:
Number of buf/inv:
Number of references:
                                                  530
                                                   35
                                                   19
                                                    Θ
                                                   16
                                                   24
Combinational area:
                               50151.379271
Noncombinational area:
                               34056.632446
Net Interconnect area:
                                 undefined (No wire load specified)
Total cell area:
                               84208.011717
Total area:
                                 undefined
```

Total cell area = 84208 (um<sup>2</sup>)

#### 3. AT 值

Area \* Time = 84208 \* 5.51 = 463986.08

#### 三、 問題與討論

#### 1. IR\_addr 與 IR 是 unknown

一開始寫完 RTL 時,去做測試,發覺 IR\_addr 都是 unknown,而且看了波形圖,IR 也是 unknown,檢查電路也是對的,事後才發現是自己忘記給 IR\_addr 一個初始值=0,給初始值,這樣 CPU 才知道一開始要做甚麼指令。

#### 2. 測試 timing

在做測試 testbench 的時候,去調整 testbench 的 time cycle 一開始從 10 開始往下調,調到 7 的時候發覺不行,但之後繼續往下調發覺居然可以。最後謝謝助教,原來打 7 的時候應該打成 7.0,如果直接打成 7,half cycle 會把 3.5 直接 truncate 成 3,就會造成測試不過。

#### 3. 合成電路

在做合成的時候,因為大家都是用相同的電路圖,合成出來的 area 我猜應該會是差不多,結果最後我自己合成出來發現自己都比別人還多。事後才知道,原來,RTL 裡面如果寫很多 submodule 的話,合成器是使用 module 當成 block 去做最佳化合成,而不是全部電路一起去做最佳化合成。因此才發現原來合成 tool 其實有提供一個功能是可以去 ungroup 所有 submodule,讓所有的一起去做最佳化設計。

#### 四、心得

這算是第二次寫 verilog,語法也比上次來的更加熟悉。這次都是按照老師講義上面 CPU 電路設計圖慢慢做,其中只需要再加幾個東西是給 jump, jal 和 jr 使用就好,在寫的過程中並沒有遇到甚麼太大的問題。但也藉由這一次的練習,讓我更熟悉 single cycle CPU 的運作,之前聽老師講,其實都沒有真的很懂,但當你要親手實作的時候,必須自己再去鑽研到要讓自己真的了解 CPU 是怎麼運作,這樣也才寫得出來,也因為這個作業,讓我在第一次小考幾乎不用去複習這部分!

而這次比較特別的是,是需要把電路真的合成出來,自己比較幸運的是合成出來的電路可以直接通過 testbench。可能是因為這次比較不需要做甚麼特別的事情,並竟是 single cycle 而已。也藉由這次作業讓我實地跑過一次合成,了解其流程是如何進行。