Introduction to Mathematical Modeling

Ramapo College of New Jersey
Instructor: Dr. Atul Anurag

Semester: Fall 2025 Date: September 22, 2025

1. What is a Maximization Problem?

In everyday life, we often try to get the **best outcome** with limited resources.

Examples:

- Running a business: maximize profit with limited time and materials.
- Shopping: get the most value for your money.
- Scheduling: make the most of limited hours in a day.

In math, we call this a **maximization problem**, where the goal is to make something (like profit or efficiency) as large as possible, *without breaking any rules*.

2. Understanding x- and y-Intercepts

x-intercept: Where the line crosses the x-axis. (Set y = 0) **y-intercept**: Where the line crosses the y-axis. (Set x = 0)

Example:

$$2x + 3y = 12$$

- To find the **x-intercept**, set y = 0: $2x = 12 \Rightarrow x = 6 \Rightarrow (6,0)$
- To find the **y-intercept**, set x = 0: $3y = 12 \Rightarrow y = 4 \Rightarrow (0, 4)$

We use intercepts to quickly draw lines when graphing constraints.

3. Understanding Quadrants in the XY-Plane

Plot $x \leq 2$

Plot $x \le 2, y \ge 0$

4. What Are Constraints?

Constraints are the rules or limits in a problem. They tell us what is allowed and what is not.

Example Constraints:

 $x + y \le 6$ (Cant make more than 6 items) $x \ge 0$ (Cant make negative items) $y \ge 0$ (Cant make negative items)

We graph each constraint using its intercepts.

5. Graphing Constraints Using Intercepts

Lets graph: $x + y \le 6$

Find Intercepts:

• x-intercept: $y = 0 \Rightarrow x = 6$ • y-intercept: $x = 0 \Rightarrow y = 6$

The shaded area is where all rules are followed. This is the **feasible region**.

Practice Problems Set 1

- 1. Where do the lines 3x + 5y = 26 and 2x + 3y = 16 intersect?
 - (a) At the point (2,4)
 - (b) At the point (6,2)
 - (c) At the point (4,2)
- 2. The x-coordinate and y-coordinate of the point where the line x=22 intersects the line 5y-3x=29are _____, respectively.
- 3. The y-coordinate of the point whose x-value is 3 on the line 3x + 2y = 12 is
 - (a) $\frac{3}{2}$ (b) 3

 - (c) 2
- 4. The lines x + 3y = 12 and y = 3 intersect at the point with x-coordinate _____ and y-coordinate ______.
- 5. The two lines 2x + 3y = 12 and 6x + 9y = 7
 - (a) intersect at (3, 2).
 - (b) intersect at (23, 22).
 - (c) are parallel.
- 6. The x-coordinate and y-coordinate of the points where the line 7x + 2y = 28 crosses the x-axis and y-axis, respectively, are _____ and ____.
- 7. Which of these points lie in the region defined by

$$4x + 3y \le 24$$
, $x \ge 0$, $y \ge 0$?

- (a) Points (2,5) and (3,4)
- (b) Points (5,2) and (3,4)
- (c) Points (5,2) and (2,5)

Practice Problems Set 2

1. Find the coordinates of all points where the lines

$$x + y = 8$$
, $y = 5$, and $x = 1$

intersect.

2. Find the x- and y-intercepts of the line

$$6y + 5x = 30.$$

- 3. Graph the lines x + y = 10, x = 3, and y = 4 on the same set of axes. For each pair of these three lines, find the x- and y-coordinates where the lines intersect.
- 4. Using intercepts, the points where the lines cross the axes, graph each line:
 - (a) 7x + 6y = 42
 - (b) x = 2
 - (c) y = 5
- 5. Using intercepts, graph each line:
 - (a) 2x + 3y = 12
 - (b) 3x + 5y = 30
 - (c) 4x + 3y = 24
- 6. (a) Graph the lines x = 2, y = 3, x = 4, and y = 7 on the same set of axes.
 - (b) The points where the four lines meet form what kind of geometric figure (shape)?
- 7. Graph both lines on the same axes. Put a dot where the lines intersect. Use algebra to find the x- and y-coordinates of the point of intersection.
 - (a) 4x + 6y = 18 and x = 0
 - (b) 5x + 3y = 45 and y = 25
 - (c) 5x + 3y = 45 and x = 3

Graphing Inequalities

Graph the line and half-plane corresponding to the inequality, a typical constraint from a mixture problem:

(a)
$$x \le 6$$

MATH 106: Introduction to Mathematical Modeling

- (b) $y \ge 4$
- (c) $5x + 3y \le 15$
- (d) $4x + 5y \le 30$

Graph the line and half-plane corresponding to the inequality, another set of typical mixture problem constraints:

- (a) $x \le 2$
- (b) $y \ge 8$
- (c) $3x + 2y \le 18$
- (d) $7x + 2y \le 42$

End of Lecture #7