$ce1Cl)Cl.Oc1cc(Cl)c(ce1Cl)Cl.[O-]c1cc(Cl)c(cc1Cl)Cl.CCn1/c(=C\C=C\c2sc3c([n+]2CC)cccc3)/sc2c1cccc2)$

1. Physicochemical Property

Property	Value	Comment	
Molecular Weight	951.88	Contain hydrogen atoms. Optimal:100~600	
Volume	823.7	Van der Waals volume	
Density	1.156	Density = MW / Volume	
nHA	5	Number of hydrogen bond acceptors. Optimal:0~12	
nHD	2	Number of hydrogen bond donors. Optimal:0~7	
nRot	4	Number of rotatable bonds. Optimal:0~11	
nRing	7	Number of rings. Optimal:0~6	
MaxRing	9	Number of atoms in the biggest ring. Optimal:0~18	
nHet	16	Number of heteroatoms. Optimal:1~15	
fChar	0	Formal charge. Optimal:-4 ~4	
nRig	40	Number of rigid bonds. Optimal:0~30	
Flexibility	0.1	Flexibility = nRot /nRig	
Stereo Centers	0	Optimal: ≤ 2	
TPSA	70.64	Topological Polar Surface Area. Optimal:0~140	
logS	-8.993	Log of the aqueous solubility. Optimal: -4~0.5 log mol/L	
logP	10.819	Log of the octanol/water partition coefficient. Optimal: 0~3	
logD	4.566	logP at physiological pH 7.4. Optimal: 1~3	

2. Medicinal Chemistry

Property	Value	Decision	Comment
QED	0.136	•	■ A measure of drug-likeness based on the concept of desirability; ■ Attractive: > 0.67; unattractive: 0.49~0.67; too complex: < 0.34
SAscore	3.746	•	 ■ Synthetic accessibility score is designed to estimate ease of synthesis of drug-like molecules. ■ SAscore ≥ 6, difficult to synthesize; SAscore <6, easy to synthesize
Fsp3	0.103	•	 ■ The number of sp3 hybridized carbons / total carbon count, correlating with melting point and solubility. ■ Fsp³ ≥0.42 is considered a suitable value.
MCE-18	64.0	•	■ MCE-18 stands for medicinal chemistry evolution.■ MCE-18≥45 is considered a suitable value.

NPscore	-0.557	-	■ Natural product-likeness score. ■ This score is typically in the range from −5 to 5. The higher the score is, the higher the probability is that the molecule is a NP.
Lipinski Rule	Rejected	•	 ■ MW ≤ 500; logP ≤ 5; Hacc ≤ 10; Hdon ≤ 5 ■ If two properties are out of range, a poor absorption or permeability is possible, one is acceptable.
Pfizer Rule	Rejected	•	logP > 3; TPSA < 75 Compounds with a high log P (>3) and low TPSA (<75) are likely to be toxic.
GSK Rule	Rejected	•	 ■ MW ≤ 400; logP ≤ 4 ■ Compounds satisfying the GSK rule may have a more favorable ADMET profile
Golden Triangle	Rejected	•	 ■ 200 ≤ MW ≤ 50; -2 ≤ logD ≤ 5 ■ Compounds satisfying the Golden Triangle rule may have a more favorable ADMET profile.
PAINS	1 alerts	-	Pan Assay Interference Compounds, frequent hitters, Alpha-screen artifacts and reactive compound.
ALARM NMR	3 alerts	-	Thiol reactive compounds.
BMS	4 alerts	-	Undesirable, reactive compounds.
Chelator Rule	0 alerts	-	Chelating compounds.

3. Absorption

Property	Value	Decision	Comment
Caco-2 Permeability	-6.228	•	Optimal: higher than -5.15 Log unit
MDCK Permeability	2e-06	•	 ■ low permeability: < 2 x 10⁻⁶ cm/s ■ medium permeability: 2-20 x 10⁻⁶ cm/s ■ high passive permeability: > 20 x 10⁻⁶ cm/s
Pgp-inhibitor	0.912	•	■ Category 1: Inhibitor; Category 0: Non-inhibitor; ■ The output value is the probability of being Pgp-inhibitor
Pgp-substrate	0.191	•	■ Category 1: substrate; Category 0: Non-substrate; ■ The output value is the probability of being Pgp-substrate
HIA	0.003	•	■ Human Intestinal Absorption ■ Category 1: HIA+(HIA < 30%); Category 0: HIA-(HIA < 30%); The output value is the probability of being HIA+
F _{20%}	0.003	•	■ 20% Bioavailability ■ Category 1: F _{20%} + (bioavailability < 20%); Category 0: F _{20%} - (bioavailability ≥ 20%); The output value is the probability of being F _{20%} +

F _{30%} 1.0	•	■ 30% Bioavailability ■ Category 1: $F_{30\%}$ + (bioavailability < 30%); Category 0: $F_{30\%}$ - (bioavailability ≥ 30%); The output value is the probability of being $F_{30\%}$ +
----------------------	---	---

4. Distribution

Property	Value	Decision	Comment
PPB	119.7%	•	■ Plasma Protein Binding■ Optimal: < 90%. Drugs with high protein-bound may have a low therapeutic index.
VD	3.714	•	■ Volume Distribution ■ Optimal: 0.04-20L/kg
BBB Penetration	0.0	•	■ Blood-Brain Barrier Penetration ■ Category 1: BBB+; Category 0: BBB-; The output value is the probability of being BBB+
Fu	1.194%	•	■ The fraction unbound in plasms ■ Low: <5%; Middle: 5~20%; High: > 20%

5. Metabolism

Property	Value	Comment
CYP1A2 inhibitor	0.857	■ Category 1: Inhibitor; Category 0: Non-inhibitor; ■ The output value is the probability of being inhibitor.
CYP1A2 substrate	0.2	■ Category 1: Substrate; Category 0: Non-substrate; ■ The output value is the probability of being substrate.
CYP2C19 inhibitor	0.883	■ Category 1: Inhibitor; Category 0: Non-inhibitor;■ The output value is the probability of being inhibitor.
CYP2C19 substrate	0.057	■ Category 1: Substrate; Category 0: Non-substrate;■ The output value is the probability of being substrate.
CYP2C9 inhibitor	0.871	■ Category 1: Inhibitor; Category 0: Non-inhibitor; ■ The output value is the probability of being inhibitor.
CYP2C9 substrate	0.963	■ Category 1: Substrate; Category 0: Non-substrate; ■ The output value is the probability of being substrate.
CYP2D6 inhibitor	0.658	■ Category 1: Inhibitor; Category 0: Non-inhibitor; ■ The output value is the probability of being inhibitor.
CYP2D6 substrate	0.928	■ Category 1: Substrate; Category 0: Non-substrate; ■ The output value is the probability of being substrate.
CYP3A4 inhibitor	0.175	■ Category 1: Inhibitor; Category 0: Non-inhibitor; ■ The output value is the probability of being inhibitor.
CYP3A4 substrate	0.916	■ Category 1: Substrate; Category 0: Non-substrate; ■ The output value is the probability of being substrate.

6. Excretion

Property	Value	Decision	Comment
CL	4.816	•	■ Clearance■ High: >15 mL/min/kg; moderate: 5-15 mL/min/kg; low: <5 mL/min/kg
T _{1/2}	0.002	-	 ■ Category 1: long half-life; Category 0: short half-life; ■ long half-life: >3h; short half-life: <3h ■ The output value is the probability of having long half-life.

7. Toxicity

Property	Value	Decision	Comment
hERG Blockers	0.048	•	■ Category 1: active; Category 0: inactive; ■ The output value is the probability of being active.
H-HT	0.02	•	 ■ Human Hepatotoxicity ■ Category 1: H-HT positive(+); Category 0: H-HT negative(-); ■ The output value is the probability of being toxic.
DILI	0.964	•	 ■ Drug Induced Liver Injury. ■ Category 1: drugs with a high risk of DILI; Category 0: drugs with no risk of DILI. The output value is the probability of being toxic.
AMES Toxicity	0.067	•	■ Category 1: Ames positive(+); Category 0: Ames negative(-);■ The output value is the probability of being toxic.
Rat Oral Acute Toxicity	0.434	•	 ■ Category 0: low-toxicity; Category 1: high-toxicity; ■ The output value is the probability of being highly toxic.
FDAMDD	0.951	•	 ■ Maximum Recommended Daily Dose ■ Category 1: FDAMDD (+); Category 0: FDAMDD (-) ■ The output value is the probability of being positive.
Skin Sensiti zation	0.063		 ■ Category 1: Sensitizer; Category 0: Non-sensitizer; ■ The output value is the probability of being sensitizer.
Carcinogen city	0.343	•	■ Category 1: carcinogens; Category 0: non-carcinogens;■ The output value is the probability of being toxic.
Eye Corrosion	0.003	•	■ Category 1: corrosives ; Category 0: noncorrosives ■ The output value is the probability of being corrosives.
Eye Irritation	0.892	•	■ Category 1: irritants; Category 0: nonirritants ■ The output value is the probability of being irritants.

Respiratory Toxicity	0.025	•	■ Category 1: respiratory toxicants; Category 0: respiratory nontoxicants ■ The output value is the probability of being toxic.
-------------------------	-------	---	---

8. Environmental toxicity

Property	Value	Comment	
Bioconcentration Factors	1.549	 ■ Bioconcentration factors are used for considering secondary poisoning potential and assessing risks to human health via the food chain. ■ The unit is -log10[(mg/L)/(1000*MW)] 	
IGC ₅₀	7.192	■ Tetrahymena pyriformis 50 percent growth inhibition concentration ■ The unit is -log10[(mg/L)/(1000*MW)]	
LC ₅₀ FM	7.136	■ 96-hour fathead minnow 50 percent lethal concentration ■ The unit is –log10[(mg/L)/(1000*MW)]	
LC ₅₀ DM	6.913	■ 48-hour daphnia magna 50 percent lethal concentration ■ The unit is -log10[(mg/L)/(1000*MW)]	

9. Tox21 pathway

Property	Value	Decision	Comment
NR-AR	0.004	•	 Androgen receptor Category 1: actives; Category 0: inactives; The output value is the probability of being active.
NR-AR-LBD	0.878	•	 Androgen receptor ligand-binding domain Category 1: actives; Category 0: inactives; The output value is the probability of being active.
NR-AhR	0.896	•	 ■ Aryl hydrocarbon receptor ■ Category 1: actives; Category 0: inactives; ■ The output value is the probability of being active.
NR-Aromatase	0.996	•	■ Category 1: actives; Category 0: inactives; ■ The output value is the probability of being active.
NR-ER	0.881	•	 ■ Estrogen receptor ■ Category 1: actives; Category 0: inactives; ■ The output value is the probability of being active.
NR-ER-LBD	0.99	•	 ■ Estrogen receptor ligand-binding domain ■ Category 1: actives; Category 0: inactives; ■ The output value is the probability of being active.
NR-PPAR- gamma	0.973	•	 ■ Peroxisome proliferator-activated receptor gamma ■ Category 1: actives; Category 0: inactives; ■ The output value is the probability of being active.
SR-ARE	0.994	•	 ■ Antioxidant response element ■ Category 1: actives; Category 0: inactives; ■ The output value is the probability of being active.
SR-ATAD5	0.592	•	 ■ ATPase family AAA domain-containing protein 5 ■ Category 1: actives; Category 0: inactives; ■ The output value is the probability of being active.

SR-HSE	0.991	•	 ■ Heat shock factor response element ■ Category 1: actives; Category 0: inactives; ■ The output value is the probability of being active.
SR-MMP	0.999	•	 ■ Mitochondrial membrane potential ■ Category 1: actives; Category 0: inactives; ■ The output value is the probability of being active.
SR-p53	0.997	•	■ Category 1: actives; Category 0: inactives; ■ The output value is the probability of being active.

10. Toxicophore Rules

Property	Value	Comment
Acute Toxicity Rule	0 alerts	20 substructuresacute toxicity during oral administration
Genotoxic Carcinogenicity Rule	1 alerts	■ 117 substructures ■ carcinogenicity or mutagenicity
NonGenotoxic Carcinogenicity Rule	0 alerts	■ 23 substructures ■ carcinogenicity through nongenotoxic mechanisms
Skin Sensitization Rule	2 alerts	■ 155 substructures ■ skin irritation
Aquatic Toxicity Rule	1 alerts	■ 99 substructures ■ toxicity to liquid(water)
NonBiodegradable Rule	1 alerts	■ 19 substructures ■ non-biodegradable
SureChEMBL Rule	2 alerts	■ 164 substructures■ MedChem unfriendly status