Data visualization and a grammar of graphics

Overview

A brief history of data visualization

The grammar of graphics and ggplot

Joining data tables

The Golden Age of Statistical Graphics, Friendly 2008

Data visualization

What are some reasons we visualize data rather than just reporting statistics?

Whatever relates to extent and quantity may be represented by geometrical figures. Statistical projections which speak to the senses without fatiguing the mind, possess the advantage of fixing the attention on a great number of important facts.

—Alexander von Humboldt, 1811

The age of modern statistical graphs began around the beginning of the 19th century

William Playfair (1759-1823) credited with inventing the line graph, bar chart and pie chart

According to Friendly, statistical graphics researched its golden age between 1850-1900

Joseph Minard (1781-1870)

John Snow (1813-1858)

Clusters of cholera cases in London epidemic of 1854

Florence Nightingale (1820-1910)

Diagram of the causes of mortality in the army in the east

Francis Galton (1822-1911)

WEATHER CHART, MARCH 31, 1875.

The dotted lines indicate the gradations of barometric pressure. The variations of the temperature are marked by figures, the state of the sea and sky by descriptive words, and the direction of the wind by arrows—barbed and feathered according to its force.

Odenotes

First weather map published in a newspaper (1875)

"Graphical dark ages" around 1950

Computer Age Statistical Inference, Efron and Hastie

Currently undergoing a "Graphical re-birth"

Survey question 1

Find an interesting data visualization on the web:

- 1. Write down the URL link to the image
- 2. Explain why you think it is interesting

Brief class share on Thursday

https://www.reddit.com/r/dataisbeautiful/

https://flowingdata.com/

Currently undergoing a "Graphical re-birth"

Hans Rosling's gapminder

- Simple version
- TV special effects
- Ted Talk

Gapminder tools:

https://www.gapminder.org/tools

> library('gapminder')

A grammar of graphics and ggplot

Review: plots of categorical data

Review: plots of quantitative data

Scatter plots

Min Temperature (F)

Line chart

Review: plots of quantitative data

Histograms

Survey question 2: What are some similarities between these graphs?

The grammar of graphics

Leland Wilkinson noticed similarities between many graphs and tried to generate a 'grammar' that could be used to express a graph

• i.e., a list elements that can be combined together to create a graph

First edition

Second edition

Graphs are composed of...

A Frame: Coordinate system on which data is placed

• E.g., Cartesian coordinate system, polar coordinates, etc.

Glyphs: basic graphic unit representing cases or statistics

- Contains visual properties (aesthetics) such as: shape, color, size, etc.
- Need to specify how properties of the data are mapped onto these aesthetics

Scales and guides: shows how to interpret axes and other properties of the glyphs

• i.e., gives information about how the data values were mapped into glyph properties

Plots can also contain...

Facets: allows for multiple side-by-side graphs based on a categorical variable

• Makes it easier to compare different conditions

Layers: allows for more than one types of data to be mapped onto the same figure

Theme: contains finer points of display

• E.g., font size, background color, etc.

The variables are:

- Log enzyme concentration
 - -3 to 5
- Target
 - CcpN, Uptake,...
- Flux
 - Zero or positive
- Gene
 - MaeN, PtsG, ...
- Molecule:
 - Glocose, Fructose, ...

Survey question 3: What all the mapping between variables and visual attributes?

• i.e., see if you can list the mappings from all variables to visual attributes.

Also see if you can sketch out the data frame that underlies this figure on a piece of paper

ggplot

ggplot2 is an R package that implements the grammar of graphics

• It builds up graphics by starting with a frame, adding glyphs, etc.

load the ggplot2 library

> library('ggplot2')

Get the book on GitHub

Example data: mtcars

PERFORMANCE	CADILLAC	LINCOLN	IMPERIAL	
Acceleration	420	207	4.2	
0-30 mph 0-50 mph	4.30 8.49	3.97	9.15	
0-60 mph	12.00	9.50	12.1	
Standing Start 1/4-mile	12.00	9.50	12.1	
Mph Start 1/4-mile	77.05	77.65	80.28	
Elapsed time	17.98	17.82	17.42	
Passing speeds				
40-60 mph	6.58	5.9	7.1	
50-70 mph	7.00 6.8		6.8	
Stopping distance				
From 30 mph	32′1″	31'4"	27'5"	
From 60 mph	182'7"	153'10"	129'3"	
Gas mileage range	10.43	10.42	14.7	
Width – in.	79.8	80.0	79.7	
Front Track – in.	63.5	64.3	64	
Rear Track – in.	63.3	64.3	63.7	
Wheelbase – in	133.0	127.0	124.0	
Overall length – in.	233.7	232.6	231.1	
Height – in.	55.6	55.4	54.7	
Curb Weight-Ibs.	5,250	5,425	5,345	
Fuel Capacity – gals.	27	22.5	25	
Oil Capacity – qts.	4(1)	4 (1)	4 (1)	
Storage Capacity – cu. ft.	19.27	20.9	20+	
Base Price	\$9,312	\$7,637	\$7,062	
Price as tested	\$11,435	\$9,452	\$8,737	
Engine:	OHV V-8	OHV V-8	OHV V-8	
Bore & Stroke – ins.	4.3x4.06	4.36x3.85	4.32x3.75	
Displacement – cu. in.	472	460	440	
HP @ RPM	205 @ 3600	215@4000	230 @ 4000	
Torque: lbsft. @ rpm	365 @ 2000	350 @ 2600	350@3200	
Compression Ratio	8.25:1	NA	8.2:1	
Carburetion	4V	4V	4V	
Transmission	Auto. Turbo Hydra-Matic	Auto. Select Shift	Auto. Torqueflite	
Final Drive Ratio	2.93	3.00	3.23 (?)	
Steering Type	Recirculating Ball & Nut Power	Recirculating Ball & Nut With Integral Power Unit	Recirculating Ba Power	
Steering Ratio	17.8-9.0	21.6 To 1	18.9:1	
Furning Diameter (curb-to-curb-ft.)	(Wall To Wall) 24.54'	46.7'	44.69'	
Wheel Turns (lock-to-lock)	2.83	3.99	3.5	
Fire Size	LR78X15 Steel Belted Radials	LR78X15 Steel Belted Radials	LR78X15 Steel Belted Radial Ply	
Brakes	Power Disc/Drum	Power Disc/Drum	Power Disc/Disc	
Front Suspension	Coils/Shocks Front Diagonal Tie Struts Stabilizer	Coils/Shocks Axial Strut Stabilizer	Torsion Bar Shocks Stabilizer	
Rear Suspension	4 Link, Coils/ Shocks	Three Link, Rubber Cushioned Pivots Coils/Shocks	Leaf Springs Shocks	
Body/Frame Construction	Perimeter Frame	Body On Perimeter Frame	Unitized Construction	

mtcars data frame

How can you determine what variables are in a data frame?

```
> View(mtcars) # only works in Rstudio, not in Markdown
```

- > glimpse(mtcars)
- > ? mtcars # this data frame as a code book

```
[, 1] mpg Miles/(US) gallon
[, 2] cyl Number of cylinders
[, 4] hp Gross horsepower
[, 6] wt Weight (1000 lbs)
[, 9] am Transmission (0 = automatic, 1 = manual)
```

Do cars that weigh more use more fuel?

Question: do cars that weigh more use more fuel?

What variables in the mtcars data frame are of interest?

- mpg
- wt

We can create a scatter plot using base graphics...

> plot(mtcars\$wt, mtcars\$mpg)

Creating a scatter plot in ggplot

Data frame to be used

Aesthetic mapping

Adds a layer with glyphs

_	wt [‡]	cyl [‡]	hp [‡]	mpg [‡]	disp [‡]
Mazda RX4	2.620	6	110	21.0	160.0
Mazda RX4 Wag	2.875	6	110	21.0	160.0
Datsun 710	2.320	4	93	22.8	108.0
Hornet 4 Drive	3.215	6	110	21.4	258.0
Hornet Sportabout	3.440	8	175	18.7	360.0

Creating a scatter plot in ggplot

Data frame to be used

Aesthetic mapping

> ggplot(mtcars, aes(x = wt, y = mpg)) + geom_point()

Adds a layer with glyphs

*	wt [‡]	cyl [‡]	hp [‡]	mpg [‡]	disp 🗦
Mazda RX4	2.620	6	110	21.0	160.0
Mazda RX4 Wag	2.875	6	110	21.0	160.0
Datsun 710	2.320	4	93	22.8	108.0
Hornet 4 Drive	3.215	6	110	21.4	258.0
Hornet Sportabout	3.440	8	175	18.7	360.0

A lot more that ggplot can do!

- More aesthetic mapping
- Multiple glyphs/layers
- Axis labels
- Facets
- Visual themes
- Different coordinate systems
- Etc.

The R Graph Gallery

Let's try the rest in R!

Adding labels to plots

We can add labels to the plots using the xlab("label1") and ylab("label2") functions

Add labels to your last plot

```
> ggplot(mtcars, aes(x = wt, y = mpg)) +
        geom_point() +
        xlab("Weight") +
        ylab("Miles per Gallon")
```


If you don't want an ex, label you axes!

More aesthetic mappings

Let's look at the relationship between weight, miles per gallon and transmission type on the same graph by plotting... (?)

```
> ggplot(mtcars, aes(x = wt, y = mpg, col = am)) + geom_point()
```

It is better if we make am a categorical variable

```
> ggplot(mtcars, aes(x = wt, y = mpg, col = factor(am))) + geom_point()
```

Notice the guides!!!

Try mapping am on to shape using:

- 1. shape = am
- 2. size using: size = am

Which is better to use color or shape or size?

Attributes vs. Aesthetics

Setting aesthetics map a variable to a glyph property

Setting attributes set a glyph property to a fixed value

Facets

Beyond comparing variables based on aesthetics you can compare categorical variables by splitting a plot into subplots (called facets) using facet_wrap

> ggplot(mtcars, aes(x = wt, y = mpg)) + geom_point() + facet_wrap(~am)

What do facets make it easy to see on this graph?

Facets along two dimensions

One can also do facets in two dimensions

Overplotting

Sometimes points overlap making it hard to estimate the number of points at a particular range of values

We can control the transparency of points by changing their alpha values

Overplotting

Geometries: line plot

So far we've only created scatter plots, but we can use different geoms to create other types of plots

Create a plot that shows the GDP in the United States as a function of the year using the geom geom_line()

• Hint: filter the gapminder data first...

Geometries: histograms

We can also make histograms using the geom_histogram() function.

Plot a histogram of the weights of cars

```
> ggplot(mtcars, aes(x = wt)) + geom_histogram()
```

Note the histogram geom only has an x aesthetic, and does not have a y aesthetic value.

Geometries: boxplot

There are many other geom as well, including geom_boxplot()

Plot a boxplot of the weights of cars

```
> ggplot(mtcars, aes(x = "", y = wt)) + geom_boxplot()
```

Side-by-side boxplots

Often it is useful to compare boxplots across different groups

> ggplot(mtcars, aes(x = factor(cyl), y = wt)) + geom_boxplot()

Violin and Joy plots

Violin and Joy plots are other ways to view distributions of data

Violin and Joy plots

Any ideas why they are called joy plots?

Multiple layers

We can also have multiple geom layers on a single graph by using the + symbol

E.g ggplot(...) + geom_type1() + geom_type2()

Create a scatter plot of miles per gallon as a function of weight and then add a smoothed line using geom_smooth()

Multiple layers

We can also have multiple geom layers on a single graph by using the + symbol

E.g ggplot(...) + geom_type1() + geom_type2()

Recreate a boxplot of weight (wt) grouped by the factor of cylinders (cyl), and then add points using geom_point()

```
> ggplot(mtcars, aes(x = factor(cyl), y = wt)) +
        geom_boxplot() +
        geom_point()
```


Multiple layers

Create a scatter plot of miles per gallon (mpg) as a function of weight (wt) and then add a smoothed line using geom_smooth()

Themes

We can also use different types to change the appearance of our plot

Add theme_classic() to your plot

```
> ggplot(mtcars, aes(x = wt, y = mpg)) +
        geom_point() +
        xlab("Weigth") +
        ylab("Miles per Gallon") +
        theme_classic()
```

Joining data frames

Left and right tables

Suppose we have two data frames called x and y

- x have two variables called key_x, and val_x
- y has two variables called key_y and val_y

SDS230:download_data('x_y_join.rda')

Left and right tables

Suppose we have two data frames called x and y

- x have two variables called key_x, and val_x
- y has two variables called key_y and val_y

Data frame x

Data frame y

Joins have the general form:

$$join(x, y, by = c("key_x" = "key_y"))$$

Left joins

Left joins keep all rows in the <u>left</u> table.

Data from <u>right</u> table is added when there is a matching key, otherwise NA as added.

> left_join(x, y, by = c("key_x" = "key_y"))

Right joins

Right joins keep all rows in the <u>right</u> table.

Data from <u>left</u> table added when there is a matching key, otherwise NA as added.

> right_join(x, y, by = c("key_x" = "key_y"))

Inner joins

Inner joins only keep rows in which there are matches between the keys in both tables.

> inner_join(x, y, by = c("key_x" = "key_y"))

Full joins

Full joins keep all rows in both table.

NAs are added where there are no matches.

> full_join(x, y, by = c("key_x" = "key_y"))

Summary

Duplicate keys are useful if there is a one-to-many relationship

• Duplicates are usually in the left table.

If both tables have duplicate keys you get all possible combinations of joined values (Cartesian product).

This is usually an error!

Always check the output after you join a table because even if there is not a syntax error you might not get the table you are expecting!

You can check how many rows a data frame has using the nrow() function

To deal with duplicate keys in both tables, we can join the tables using multiple keys in order to make sure that each row is uniquely specified.

We can do this using the syntax:

```
join(x2, y2, by = c("key1_x" = "key1_y", "key2_x" = "key2_y"))
```

```
> x2 < -data.frame(key1 x = c(1, 2, 2),
          key2 x = c("a", "a", "b"),
          val x = c("y1", "y2", "y3"))
> y2 <- y2 <- data.frame(key1 y = c(1, 2, 2, 3, 3),
          key2 y = c("a", "a", "b", "a", "b"),
          val y = c("y1", "y2", "y3", "y4", "y5"))
> left join(x2, y2, c("key1 x" = "key1 y"))
> left_join(x2, y2, c("key1_x" = "key1_y", "key2 x" = "key2 y"))
```

Structured Query Language

Having multiple tables that can be joined together is common in Relational Database Systems (RDBS).

A common language used by RDBS is Structured Query Language (SQL)

dplyr	SQL
$inner_join(x, y, by = "z")$	SELECT * FROM x INNER JOIN y USING (z)
<pre>left_join(x, y, by = "z")</pre>	SELECT * FROM x LEFT OUTER JOIN y USING (z)
right_join(x, y, by = "z")	SELECT * FROM x RIGHT OUTER JOIN y USING (z)
<pre>full_join(x, y, by = "z")</pre>	SELECT * FROM x FULL OUTER JOIN y USING (z)