2020/9/20 Problem - 1006

Robotic Class

Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 262144/262144 K (Java/Others)
Total Submission(s): 0 Accepted Submission(s): 0

Problem Description

Baby volcano is now at a robotic class. In this class, babies are required to program a special control system of a robot. This control system has a real-valued control variable x, which captures the behavior of this robot. In addition, this control system could be abstracted as an acyclic directed graph, with n node, the nodes are indexed from 1 to n. In this graph, the node n has no output edge, termed as the output node. Moreover, for each vertex $t, 1 \le t < n$, there is a number k_t , a set of integer-valued limits $a_{t,0} < a_{t,1} < a_{t,2} < \cdots < a_{t,k_t-1} < a_{t,k_t} := +\infty$, and a set of integer-valued coefficients, bias and destinations $c_{t,0}, b_{t,0}, d_{t,0}, c_{t,1}, b_{t,1}, d_{t,1}, c_{t,2}, b_{t,2}, d_{t,2} \cdots, c_{t,k_t}, b_{t,k_t}, d_{t,k_t}$. For every t and $i, 0 \le i \le k_t, -1 \le c_{t,i} \le 1$.

To use this system to control the robot, the user follows the steps below:

- 1. Choose x_0 and initialize $x := x_0$, then choose some node s_0 and set the currect node $t := s_0$
- 2. If t is the output node(t = n), then output $x_{out} := x$, else go to step 3.
- 3. The user finds the smallest i such that $a_{t,i} \ge x$ (Note that i always exists), then transform $x := c_{t,i} \times x + b_{t,i}$, and set $t := d_{t,i}$, and go back to step 2.

Note that for every fixed s_0 , the output value x_{out} is a function with respect to the initial value $x_0 \in \mathbb{R}$, we call this function $C_{s_0}(x_0)$.

To precisely control the robot, it is required that for every initial node s_0 , $C_{s_0}(x_0)$ is continuous with respect to x_0 .

A function $f(x), x \in \mathbb{R}$ is continuous with respect to x iff

$$\forall x \in \mathbb{R}, \forall \epsilon > 0, \exists \delta > 0, \forall x' \in \mathbb{R}, (|x - x'| \leq \delta \implies |f(x) - f(x')| \leq \epsilon)$$

You need to verify this requirement is satisfied or not. In other words, if for every initial node s_0 , $C_{s_0}(x_0)$ is continuous with respect to x_0 , you should output "YES". If there exists some node s^* such that $C_{s^*}(x_0)$ is not continuous, you should output "NO".

Input

In the first line there is one integer T, denotes the number of test cases.

The rest of input has T part, each part corresponds to a test case.

For each part, in the first line there is a number n, denotes the number of nodes.

 $\text{In the next } n-1 \text{ lines, the } i\text{-th line starts with } k_i \text{, follows with } 4k_i+3 \text{ integers, they are } c_{i,0}, b_{i,0}, d_{i,0}, a_{i,0}, c_{i,1}, b_{i,1}, d_{i,1}, a_{i,1}, \cdots, a_{i,k_i-1}, c_{i,k_i}, b_{i,k_i}, d_{i,k_i-1}, c_{i,k_i-1}, c_{i,k_i}, b_{i,k_i}, d_{i,k_i-1}, c_{i,k_i-1}, c_$

```
It guarantees that 1 \leq T \leq 100, and in a single test cases, 1 \leq n \leq 500, 1 \leq \sum k_i \leq 2000, -1 \leq c_{i,j} \leq 1, -10^6 \leq b_{i,j} \leq 10^6, -10^9 \leq a_{i,j} \leq 10^9, i+1 \leq d_{i,j} \leq n. And it guarantees that a_{i,j-1} < a_{i,j} for every 1 \leq j < k_i.
```

Output

For each test case, you should firstly output "Case #: "(without quotes), where t is the index of this test case, then if for every initial node s_0 , $C_{s_0}(x_0)$ is continuous with respect to x_0 , you should output "YES". If there exists some node s^* such that $C_{s^*}(x_0)$ is not continuous, you should output "NO".

Sample Input

```
3 4 1 1 1 2 -4 -1 -7 3 0 -1 -2 4 0 1 4 4 4 4 1 1 1 2 -4 -1 -7 3 0 -1 -3 4 0 1 4 4
```

2020/9/20 Problem - 1006

Sample Output

Case #1: YES Case #2: NO Case #3: YES

Statistic | Submit | Clarifications | Back

Hangzhou Dianzi University Online Judge 3.0
Copyright © 2005-2020 HDU ACM Team. All Rights Reserved.
Designer & Developer: Wang Rongtao Lin Le GaoJie GanLu
Total 0.000000(s) query 0, Server time: 2020-09-20 12:06:11, Gzip enabled Home | Top

Administration