# Zadanie: SAT Satelity



#### XXXI OI, etap I. Plik źródłowy sat.\* Dostępna pamięć: 256 MB.

16.10-20.11.2023

Dwie firmy telekomunikacyjne z Bajtocji w niedługim czasie umieszczą na orbicie po n satelitów, które będą dostarczać Internet do całego kraju. Satelity pierwszej firmy numerowane będą od 1 do n, natomiast satelity drugiej firmy od n+1 do 2n.

W celu poprawnego działania systemu, każda para satelitów należących do tej samej firmy musi nawiązać między sobą bezpośrednią komunikację. Co prawda firmy będą ze sobą konkurować o klientów, ale na wypadek nieprzewidzianych awarii, zdecydowały, że niektóre pary satelitów należących do różnych firm również nawiążą między sobą bezpośrednią komunikację.

Każdemu z satelitów należy teraz przydzielić unikalny kod identyfikacyjny, będący ciągiem m liter ze zbioru  $\{A,B,C\}$ . To, które z satelitów będą się ze sobą komunikować, zależeć będzie od ich kodów: satelita o kodzie  $a_1a_2...a_m$  będzie się komunikował z satelitą o kodzie  $b_1b_2...b_m$  dokładnie wtedy, gdy kody te będą miały taką samą literę na co najmniej jednej pozycji (tzn. istnieje  $1 \le i \le m$ , że  $a_i = b_i$ ).

Twoim zadaniem jest przydzielenie kodów do satelitów.

#### Wejście

Pierwszy wiersz wejścia zawiera trzy liczby całkowite n, p i M  $(2 \le n \le 1000, 1 \le p \le n^2)$  oznaczające liczbę satelitów każdej z firm, liczbę połączeń wymaganych pomiędzy satelitami różnych firm oraz ograniczenie na długość kodów.

W kolejnych p wierszach znajdują się opisy połączeń: i-ty z tych wierszy zawiera dwie liczby całkowite  $a_i$  i  $b_i$  ( $1 \le a_i \le n < b_i \le 2n$ ) oznaczające, że satelity o numerach  $a_i$  i  $b_i$  muszą nawiązać bezpośrednie połączenie.

#### Wyjście

Twój program powinien w pierwszym wierszu wyjścia wypisać jedną liczbę całkowitą  $m \ (1 \le m \le M)$  oznaczającą długość kodów identyfikacyjnych przypisanych satelitom.

W kolejnych 2n wierszach należy wypisać kody; i-ty z tych wierszy powinien zawierać ciąg m liter ze zbioru  $\{A,B,C\}$ , będący kodem przypisanym satelicie o numerze i.

Wszystkie kody muszą być parami różne, a pary satelitów, które nawiążą połączenia, muszą odpowiadać wymaganiom z wejścia.

### Przykład

| Dla danych wejściowych: | jednym z poprawnych wyników jest: |
|-------------------------|-----------------------------------|
| 3 4 4                   | 3                                 |
| 1 4                     | ABA                               |
| 2 6                     | AAC                               |
| 3 4                     | BAA                               |
| 3 6                     | BBB                               |
|                         | CCB                               |
|                         | BCC                               |

**Wyjaśnienie przykładu:** Satelita numer 1 ma przypisany kod ABA, natomiast satelita numer 4 ma przypisany kod BBB; komunikują się między sobą, gdyż na drugiej pozycji w kodzie mają taką samą literę B.

**Testy przykładowe.** Test 0 to test z przykładu powyżej. Poza tym:

```
locen: n=p=100,\,M=10\,200,\, połączenia pomiędzy satelitami i oraz n+i dla 1\leq i\leq n; locen: n=1000,\,p=1\,000\,000,\,M=3000,\, połączenia pomiędzy satelitami i oraz n+j dla 1\leq i,j\leq n; locen: n=2,\,p=1,\,M=4,\, połączenie pomiędzy satelitami 1 oraz 4.
```

## Ocenianie

Zestaw testów dzieli się na następujące podzadania. Testy do każdego podzadania składają się z jednej lub większej liczby osobnych grup testów.

| Podzadanie | Ograniczenia                      | Punkty |
|------------|-----------------------------------|--------|
| 1          | $n \le 100, M = n^2 + 2n$         | 7      |
| 2          | M = 3n                            | 11     |
| 3          | $M = n + 2\lceil \log_2 n \rceil$ | 23     |
| 4          | M = n + 2                         | 41     |
| 5          | M = n + 1                         | 18     |

 ${\bf Uwaga.}$ Zmiany w stosunku do wersji 1.0 znajdują się w SIO w dziale Pliki~i~testy.