6-DoF Semantics-Aware Conditionand Viewpoint-Invariant Visual SLAM

Confirmation of Candidature
Sourav Garg

Principal Supervisor : Michael Milford

Associate Supervisor: Niko Sunderhauf

Contents

- Introduction
- Literature Review
- Research Questions
- Research Plan
- Work Progress
- Conclusion

Introduction

Social Domestic Industrial

SLAM: Is it solved?

- Simultaneous Localization and Mapping
- Solved (Thrun and Niera, 2010):
 - For Static Environments
 - Using Laser Rangefinder
- Unsolved:
 - Vision Only
 - Extreme Appearance Change
 - Dynamic Objects
 - Semantic Understanding

Visual SLAM

- Use only Visual cues
 - Monocular or Stereo Vision using Digital Cameras

- Visual Odometry
- Visual Place Recognition
- Representation Map

Visual Place Recognition

- Image Representation
 - Local Features SIFT, SURF, BRIEF, ORB etc.
 - Bag of Words in FAB-MAP, ORB-SLAM etc.
 - Global Representation ConvNet, Bit-Planes, HoG etc.
 - Direct Matching in LSD-SLAM, SeqSLAM etc.
- Challenges
 - Perceptual Aliasing
 - Different places appear similar
 - Conditions Variations (Weather, Season, Time of day)
 - Same place appears different
 - Viewpoint Variations

Environmental Conditions

Non-linear Intensity
Deformation by
Automatic Camera
Settings (Alismail
2017)

Seasonal Variations in Nordland (Sunderhauf 2013)

SeqSLAM - Sunny Days vs Stormy Nights (Milford 2012)

Perceptual Aliasing

Different Places with Similar Appearance (Cummins 2007)

Place Recognition – Review

- Local Image Features
 - Robust to viewpoint changes
 - Prone to appearance variations
- Global Representations
 - Robust to appearance variations
 - Prone to viewpoint variations
- Deep-learned features
 - Robust in both cases
 - Lack relative 3D pose estimation

Visual Odometry

- Matching consecutive images for Egomotion estimation
- Methods
 - Local Feature Tracking
 - FAST, SIFT, ORB etc. based feature correspondence
 - Direct Whole Image Matching
 - Deep VO
 - PoseNet, Deep Tracking, Sfm-Net etc.
- Challenges
 - Local Appearance variations
 - Low light environment
 - Rapid Camera Motion
 - Motion Blur
- VO Failure is catastrophic for Visual SLAM

Some Challenges in Visual Odometry

Motion Blur

Low Light Environment

Illumination Variation

(Alismail 2016)

Representation Map

- Types of Maps
 - Topological, Metric or Topometric
- 3D Reconstruction of Environment
 - 6-DoF Visual SLAM systems
 - Sparse, Semi-Dense or Dense Reconstruction
- Semantics in Maps
 - Meaningful interaction with environment
- Aim: Metric Map with Semantic Topology

Probabilistic Semi-Dense Mapping (Mur-Artal 2015)

Place Categorization and Semantic Mapping (Sunderhauf 2016)

Semantics in Visual SLAM

- Semantics within an Image
 - Object-Oriented
 - Deep-learned Object Recognition
 - Sparse or Dense Object Segmentation
 - Semantic Structures like wall, ceiling, floor etc.
- Place Semantics
 - Place-centric vs Object-centric Approach
 - Place Categories and Attributes
 - Structural Train Station, Kitchen, Bedroom etc.
 - Transient Night, Rain, Snow etc.

Object Detection Using Faster R-CNN (Ren 2015)

Scene Recognition Using Places Database (Zhou 2014)

Transient Attributes for Outdoor Scene Editing (Laffront 2014)

Research Gap

- Place Recognition
 - Viewpoint- and Condition-Invariance
 - With 3D Relative Pose Estimation
- Visual Odometry
 - Robustness to Environmental Conditions
 - Hybrid Approach for Rapid Camera Motion
- Representation Map
 - Semantic Maps on top of Geometric Maps
- Semantics in Visual SLAM
 - An integrated system where both can benefit

Problem Statement

How can we develop a general purpose 6-DoF semantics-aware condition- and viewpoint-invariant visual SLAM system?

Research Questions

- How can we characterize a visual SLAM system against variations in environment and egomotion, and make it more robust for both visual place recognition and visual odometry?
- How can semantic information related to images add value to a visual SLAM system?
- Can we develop a general purpose 6-DoF semanticsaware SLAM system robust to condition and viewpoint variations.

Research Plan

- Characterizing and Adapting Visual SLAM system
 - Visual Odometry and Place Recognition
 - Adapting to Environment
 - Egomotion Estimation
- Utilizing Semantic Information
 - Holistic Semantic Representation
 - Semantics Across Places
 - Semantics Within Places
- 6-DoF Semantics-Aware Visual SLAM
 - Condition-Invariant 3D Relative Pose Estimation
 - Semantics for SLAM
 - SLAM for Semantics

Research Plan

Characterizing and Adapting Visual SLAM

- Characterizing Viewpoint and Condition Invariance
 - Place Recognition SeqSLAM
 - Visual Odometry ORB-SLAM
- Handling Variations within the Environment
 - Transitions in Environment
 - Indoor/Outdoor, Naturally-Lit/Artificially-Lit etc.
 - Environment Segmentation
 - Improve Place Recognition
- Egomotion Estimation in Low Light and Rapid Motion
 - Speed Estimation for Visual Odometry
 - Speed-Normalized Data Sampling for Place Recognition

Utilizing Semantic Information

Holistic Semantic Representation

- Place-CentricSemantics (Zhou 2014)
 - Environment Type
 - Outdoor
 - Categories
 - Harbor -0.44
 - Dock 0.33
 - Boat Deck 0.10
 - Attributes
 - Open Area
 - Natural Light
 - Far-Away Horizon
 - Man-Made

- Object-Centric Semantics (Jia 2014)
 - Vessel 1.26
 - Craft 1.17
 - Vehicle 0.80
 - Ship 0.76

- Transient Attributes (Laffront 2014)
 - Time of Day
 - Sunrise/Sunset 0.59
 - Weather
 - Sunny/Direct Sun 0.39
 - Clouds/Overcast 0.27
 - Season
 - Summer 0.34
 - Winter 0.07

Semantic Segmentation Across Places

- Semantic Map
 - Segment Environment
 - Office Space Cubicles, Canteen, Corridor, Restroom etc.
 - Vehicle on Roads Urban Canyon, Highway, Tunnel etc.
- Place Categorization and Place Recognition
 - Reduce Search Space
 - Coarse Semantic Localization
 - Seamless TransitionsWithin Environment
 - Indoor/Outdoor, Naturally/Artificially Lit, Bland/Cluttered

Indoor-Outdoor Seamless Localization

Semantic Segmentation Within Places

- Object Semantics
 - Deep CNN Object Recognition
 - Learn New Object Classes Online
- Place Semantics
 - Transient Environmental
 Conditions
 - Condition-Invariant Place Recognition
- Object/Patch Saliency Within Place
 - Dynamic Objects
 - Condition-Invariance

Object Oriented Semantic Mapping (Sunderhauf 2016)

6-DoF Semantics-Aware Visual SLAM

- Condition-Invariant 3D Relative Pose
 - Condition-Invariant Place Description
 - Exploring Bit-Planes Descriptor
- Semantics for SLAM
 - Improved Localization
 - Meaningful Maps
 - Scale to 3D
- SLAM for Semantics
 - Improve Semantic Labelling

An example of the LBP descriptor evaluated on a 3×3 neighborhood, which results in a 8-channel bit-plane descriptor. Unlike the classic LBP descriptor, the bit-plane descriptor can be employed within a multi-channel LK framework using a sum of squared differences (SSD) cost measure. (Alismail 2016)

Work Progress

- Performance Evaluation using High-Fidelity Simulation
 - Place Recognition SeqSLAM
 - Visual Odometry ORB-SLAM
- Semantic Segmentation of Environment
 - Transitions in Environment
 - Improve Condition-Invariant Place Recognition
- Egomotion Estimation in Unfavourable Conditions
 - Hybrid Visual Odometry
 - Speed-Normalized Data Sampling for Place Recognition

Characterizing Visual SLAM - Progress

- Performance Evaluation Using High-Fidelity Simulation
 - Viewpoint- and Condition-Invariance
 - Place Recognition using SeqSLAM
 - Visual Odometry using ORB-SLAM

SeqSLAM – Place Recognition

ORB-SLAM – Visual Odometry

Adapting to Environment

- Semantic Segmentation of Environment
- Improving Place Recognition

Performance Changes

- More pronounced with extreme variations within environment
- Global Conditions
 - If similar Global minima generally works
 - If different Depends on Query Image
- Semantics later
 replaced by
 segmentation based on
 image matching score

Egomotion for Unfavourable Conditions

- Speed Estimation
 - Low Light and Rapid Motion
 - Approximate Linear Relationship between Appearance and Geometry (Lukas and Kanade 1981)
 - Image Matching Score vs Frame Separation

Campus Indoor-Outdoor Dataset

Home Indoor-Outdoor Dataset

Night Traverse

Day Traverse

Kelvin Grove On-Foot Dataset featuring Low Light Environment and Rapid Motion

- Image Matching Using
 - Patch-Normalized Images with SAD Score
 - Bit-Plane Descriptor with SSD Score
- Polynomial fitting SAD score and Frame Separation
- Challenges
 - Depends on Environment
 - □ Is 1-D
- State-of-the-art VO failure reasons
 - Less features in low-light for ORB-SLAM
 - Mainly rapid motion for LSD-SLAM
- Possible Uses
 - Hybrid approach with state-of-the-art
 - Adapting parameters with change in speed

Improving Place Recognition

- Speed-Normalized Data Sampling
- Ground Truth Trajectory Comparison

Vehicle Moving in Heavy
Traffic Conditions

Varying Pedestrian Motion on Footpath

Vehicle Moving in Heavy
Traffic Conditions

Varying Pedestrian Motion on Footpath

Thank You!