Grupo 50	Con	ntrol de Xarxe	s de Computadors	Q2: 02-05-2007					
Nombre:	Ape	llidos:							
Teoría. 4 puntos. Tiempo de resolución estimado: 4 minutos por respuesta. Las preguntas pueden ser con respuesta única (RU) o multirespuesta (MR). Una respuesta correcta 0.5 puntos, una respuesta parcialmente correcta (un solo error en una pregunta MR) 0.25 puntos, una respuesta equivocada 0 puntos.									
1. MR. Marca las afirmaciones correctas.			2. MR. Del rango 101.4.5.128/25, se pueden configurar						
 □ Ping usa mensajes ICMP □ El quinto nivel del modelo ISO/OSI es sesión □ Ping usa puertos UDP □ La clase A de IP tiene un netid de 8 bits 			 ☐ Una red de 200 hosts ☐ Una red de 50 hosts y 4 redes de 25 hosts ☐ 2 redes de 20 hosts y 6 redes de 10 hosts ☐ 8 redes de 12 hosts 						
3. MR. La red de la figura a la derecha usa RIPv1, marca las afirmaciones correctas. La tabla de encaminamiento de R4 es la tabla A			R1 R2 R3 R4 R3						
☐ Si la red N2 falla, el : mensaje de la tabla B a R poison reverse pero no trig ☐ Cada 30 segundos el route la tabla C si tiene split ho ☐ Si R2 tiene activo split ho la tabla D	3 si tiene activo s ggered update er R1 envía a R2 e rizon activo	plit horizon y el mensaje de	tabla A red gw hops N1 R2 3 N2 R2 2 N3 R3 2 N4 - 1 N5 - 1	tabla C tabla D red hops N1 1 N2 2 N3 1					
4. MR. La red de la figura us routers usan NAT dinámic 201.0.1.100-201.0.1.109. Ma ☐ Si PC1 hace un ping al servidor con dirección origen 201.0 ☐ Si PC3 hace un ping a F con dirección origen 201.0 ☐ Si PC2 hace un ping a datagramas con dirección 201.0.1.6 ☐ Si PC2 hace un ping datagramas con dirección 1.2.3.4	servidor, los data gen 201.0.1.2 PC2, por Internet p 0.1.100 y destino 2 PC1, por las rede tón origen 201.0 al servidor, pas	go de direcciones nes correctas agramas llegan al pasan datagramas 201.0.1.101 es privadas pasan 0.1.2 y destino san por Internet	10.0.1.10 201.0.1.2/30 201.0.1.6/30 PC2 PC1 PC3 servidor 1.2.3.4						
5. RU. Sabiendo que la MTU de una red es de 320 bytes y llega un datagrama de 1500 bytes, deducir el tamaño del último fragmento incluida la cabecera IP. 200 bytes 220 bytes 280 bytes 296 bytes 300 bytes 316 bytes 336 bytes			6. MR. Marca las afirmaciones correctas. □ Si el numero medio de transmisiones por PDU es de 1, Stop&Wait tiene eficiencia 1 □ En GBN con ventana W son suficientes para el campo de secuencia un numero de bits igual a log₂(W+1) □ El temporizador en GBN debe ser por lo menos dos veces mas grande que la ventana W □ Stop&Wait tiene eficiencia máxima cuando el tiempo de transmisión de una PDU es mucho mas grande que el tiempo de propagación						
 7. MR. Sabiendo que la velocidad de transmisión entre dos puntos distantes 100 km es de 1500 kbit/s, la velocidad de propagación es de 2×10⁸ m/s y las PDU de datos son de 1500 bytes, marcar las afirmaciones correctas. □ Con una perdida por bit de 5×10⁻⁶, el numero medio de transmisiones es de 1.064 □ El tiempo de ciclo es de 2 ms □ Si el sistema usa retransmisión selectiva y el numero medio de transmisiones es de 1.05, la eficiencia es del 95.2% □ La ventana óptima del sistema es de 18 PDUs 			8. MR. Marca las afirmaciones correctas. □ El three-way handshaking es el intercambio inicial de mensajes entre cliente y servidor para establecer una conexión TCP □ La longitud de la cabecera UDP es variable □ La cabecera IP es generalmente de 28 bytes □ El flag F del TCP se usa durante el three-way handshaking □ El campo checksum del TCP protege la cabecera IP, la cabecera TCP y el campo de datos de posibles errores de lectura						

Problema 1. 6 puntos.

La pregunta 1) vale 2 puntos, la 2) vale 4 puntos.

Una empresa dispone de la red privada de la figura. Una VPN conecta las dos partes a través de un túnel en Internet entre los routers R1 y R2. Las direcciones de los extremos del túnel son 101.0.9.25/30 y 101.0.9.33/30, respectivamente. Los routers R1 y R2 tienen activado un PAT para poder traducir las direcciones privadas a públicas.

1) Tiempo de resolución estimado: 10 minutos.

PC1 hace un ping a PC2. Completar la tabla a continuación indicando todos los mensajes que se intercambian los routers y los hosts para que el ping complete un recorrido de ida y vuelta. Tener en cuenta lo siguiente:

- Todas las tablas ARP están vacías.
- Hay un túnel entre R1 y R2. Entre estos no se necesita descubrir las direcciones físicas de las interfaces.
- Los routers usan RIPv2 así que las rutas son las de números de saltos mínimos.
- Inventarse las direcciones IP que faltan.
- Las direcciones físicas están indicadas en la figura como P1-01, R1-01, R4-03, etc. Usar FF-FF para la dirección física de broadcast.

Interfa	Interfaz física ARP				IP		ICMP		
@src	@dst	Query / Response	MAC sender	IP sender	MAC receiver	IP receiver	@src	@dst	Echo RQ/RP

2) Tiempo de resolución estimado: **25 minutos**.

PC3 de la figura anterior ha abierto una conexión con el servidor Ser disponible en Internet. Se ha capturado la siguiente traza:

```
17:01:15.9887
               10.1.2.20.3413 > 147.3.4.7.22
                                               S 736252:736252(0) win 8192 <mss 1024>
17:01:16.1901
               147.3.4.7.22 > 10.1.2.20.3413
                                               S 2514272:2514272(0) ack 736253 win 4096 <mss 1024>
17:01:16:1906
               10.1.2.20.3413 > 147.3.4.7.22
                                               ack 1 win 8192
17:01:22:0918
               10.1.2.20.3413 > 147.3.4.7.22
                                               P 1:1025(1024) ack 1 win 8192
17:01:22:2901
               147.3.4.7.22 > 10.1.2.20.3413
                                               ack 1025 win 4096
                                               . 1025:2049(1024) ack 1 win 8192
17:01:22:2905
               10.1.2.20.3413 > 147.3.4.7.22
17:01:22:2951
               10.1.2.20.3413 > 147.3.4.7.22
                                                 2049:3073(1024) ack 1 win 8192
17:01:22:5001
               147.3.4.7.22 > 10.1.2.20.3413
                                               ack 2049 win 4096
                                               ack 3073 win 4096
17:01:22:5060
               147.3.4.7.22 > 10.1.2.20.3413
17:01:22:5070
               10.1.2.20.3413 > 147.3.4.7.22
                                                 3073:4097(1024) ack 1 win 8192
17:01:22:5081
               10.1.2.20.3413 > 147.3.4.7.22
                                                 4097:5121(1024) ack 1 win 8192
                                                 5121:6145(1024) ack 1 win 8192
17:01:22:5088
               10.1.2.20.3413 > 147.3.4.7.22
               10.1.2.20.3413 > 147.3.4.7.22
17:01:22:5096
                                                 6145:7169(1024)
                                                                 ack 1 win 8192
17:01:22:6991
               147.3.4.7.22 > 10.1.2.20.3413
                                               ack 4097 win 4096
17:01:22:7012
               147.3.4.7.22 > 10.1.2.20.3413
                                               ack 5121 win 4096
17:01:22:7033
               147.3.4.7.22 > 10.1.2.20.3413
                                               ack 6145 win 4096
17:01:22:7063
               10.1.2.20.3413 > 147.3.4.7.22
                                               . 7169:8193(1024) ack 1 win 8192
                                               ack 7169 win 4096
17:01:22:7065
               147.3.4.7.22 > 10.1.2.20.3413
                                               . 8193:9217(1024) ack 1 win 8192
17:01:22:7088
               10.1.2.20.3413 > 147.3.4.7.22
17:01:22:7095
               10.1.2.20.3413 > 147.3.4.7.22
                                                 9217:10241(1024) ack 1 win 8192
               10.1.2.20.3413 > 147.3.4.7.22
17:01:22:7106
                                               . 10241:11265(1024) ack 1 win 8192
17:01:22:9245
               147.3.4.7.22 > 10.1.2.20.3413
                                               ack 8193 win 4096
17:01:22:9251
               147.3.4.7.22 > 10.1.2.20.3413
                                               ack 9217 win 4096
17:01:22:9267
               147.3.4.7.22 > 10.1.2.20.3413
                                              ack 10241 win 4096
17:01:22:9279
               147.3.4.7.22 > 10.1.2.20.3413
                                               ack 11265 win 4096
                                               . 11265:12289(1024) ack 1 win 8192
17:01:22:9280
               10.1.2.20.3413 > 147.3.4.7.22
17:01:22:9288
               10.1.2.20.3413 > 147.3.4.7.22
                                               . 12289:13313(1024) ack 1 win 8192
                                               . 13313:14337(1024)
17:01:22:9295
               10.1.2.20.3413 > 147.3.4.7.22
                                                                   ack 1 win 8192
17:01:22:9301
               10.1.2.20.3413 > 147.3.4.7.22
                                               . 14337:15361(1024) ack 1 win 8192
17:01:23:1199
               147.3.4.7.22 > 10.1.2.20.3413
                                              ack 12289 win 4096
```

Sabiendo que el tiempo de propagación entre cliente y servidor es de 10 ms, se pide

- a. Deducir
 - La dirección IP y el puerto del cliente y del servidor.
 - El tamaño de los buffers de recepción de cliente y servidor
 - El MSS de los datos
- b. Deducir si la traza se ha capturado en el servidor o en el cliente. Motivar la respuesta. Conociendo la configuración de la red de la figura, deducir si hubiera cambiado algo en las direcciones IP del cliente o del servidor si la captura se hubiera hecho en el otro extremo.
- c. Transcribir el intercambio de mensajes entre cliente y servidor en un diagrama de tiempo como el ilustrado en la figura a continuación. Intentar ser lo mas claro posible e indicar claramente los números de secuencia de los datos y de las confirmaciones.

d. Dibujar la evolución de la ventana de transmisión, de congestión y anunciada en un grafico en función de los round-trip time (RTT) como el ilustrado a continuación.

e. Determinar la velocidad efectiva de la transmisión una vez alcanzado un régimen estacionario. Suponer la velocidad de los enlace infinitamente grande.