DEEP LEARNING FOR COMPUTER VISION

Summer School at UPC TelecomBCN Barcelona. June 28-July 4, 2018

Hake instance segmentation and size measurement

Our trained model: <u>link</u>

Outline

The problem

The team

Amaya Álvarez **Marine Science Doctor**

Christian Tutivén Data Scientist

/in/christian-tutiven/

Luis Salgueiro Ph.d. Candidate

in/luis-salgueiro

Martin Rais Computer Vision Engineer

in /in/martin-rais/

Oscar Mañas Computer Vision Engineer

/in/oscmansan/

PROBLEM

BIOLOGISTS + 2K fish images/day

- Artisanal fleet provides above 50% of total fish consumed all around the world.
- Mediterranean artisanal boats represent the 80% of the fleet but last decades are suffering continuous economical loss

GENERAL OBJECTIVE

 Reinforce the Mediterranean Artisanal fleet through the use of economical and ecological models

SPECIFIC OBJECTIVE

 Obtain the number and size of hake fish from images of harbour boxes

AI APROACH

INSTANCE SEGMENTATION

Mask RCNN

- Instance Segmentation
- Faster R-CNN with FCN on Rols

^{*} http://kaiminghe.com/iccv17tutorial/maskrcnn_iccv2017_tutorial_kaiminghe.pdf

Fine Tuning

Github fork:

https://github.com/matterport/Mask_RCNN

The repository includes:

- Source code of Mask R-CNN built on FPN and ResNet101.
- Training code for MS COCO
- Pre-trained weights for MS COCO
- Jupyter notebooks to visualize the detection pipeline at every step
- ParallelModel class for multi-GPU training
- Evaluation on MS COCO metrics (AP)
- Example of training on your own dataset

Datasets

Coco format

Train: 20 images segmented with Labelbox

• Test: 11 images

RESULTS & CONCLUSIONS

FIRST APPROACH

mAP-50: 0.65 (7 test images)

Github repo: https://github.com/telecombcn-dl/2018-dlcv-team5

Our trained model: link

fish 0: 321.08px, 38.73cm fish 1: 329.31px, 39.72cm fish 2: 301.25px, 36.34cm fish 3: 313.51px, 37.82cm

fish 0: 314.25px, 37.91cm fish 1: 316.21px, 38.14cm

fish 0: 268.49px, 32.39cm fish 1: 220.51px, 26.60cm fish 2: 294.60px, 35.54cm fish 3: 232.60px, 28.06cm

Measurement Results

fish 0: 173.00px, 20.87cm fish 1: 159.00px, 19.18cm fish 2: 128.00px, 15.44cm fish 3: 85.00px, 10.25cm

Conclusion

- Segmentation of Hake
 Instance Segmentation
- Acceptable results with tiny train dataset

Future Work

- Increase dataset
- Diversity of classes
- Fine-tuning

References

He et al, "Mask R-CNN", arXiv 2017. Consulted in July-2018. Available in https://arxiv.org/pdf/1703.06870.pdf

Github repo baseline: https://github.com/matterport/Mask_RCNN