PK 2

Вопросы, оцениваемые в 1 балл

- 1) Сформулировать определение общего решения ОДУ n-го порядка.
 - **Опр.** Общим решением ДУ y' = f(x,y) называется функция $y = \varphi(x,C)$, обладающая следующими свойствами:
 - $\mathbb 1$. зависит от одной независимой переменной x и одной произвольной константы C
 - 2. при любом значение константы C является решением
 - 3. для любого начального условия $y(x_0)=y_0\ \exists C_0: y=\varphi(x,C_0)$ будет удовлетворять начальному условию
- 2) Сформулировать определение задачи Коши для ОДУ n-го порядка.
 - Опр. Задачей Коши называют задачу нахождения решения y=y(x) ДУ y'=f(x,y), удовлетворяющего начальному условию $y(x_0)=y_0\ (y|_{x=x_0}=y_0)$
- 3) Сформулировать определение линейного ОДУ n-го порядка.
 - **Опр.** Линейным ДУ n-ого порядка называется ДУ, линейное относительно неизвестной функции и всех её производных, т.е. ДУ вида:

$$a_0(x)y^{(n)} + a_1(x)y^{(n-1)} + a_2(x)y^{(n-2)} + \cdots + a_n(x)y = g(x),$$

где $a_0(x), a_1(x), \dots, a_n(x), g(x)$ - заданные на некотором интервале I функции.

- 4) Сформулировать определение линейной зависимости и линейной независимости системы функций на промежутке.
 - Опр. Функции $y_1(x),y_2(x),\ldots,y_n(x)$ называются линейно-зависимыми на [a,b], если существуют постоянные $\alpha_1,\alpha_2,\ldots,\alpha_n$ такие, что на [a,b] выполняется равенство $\alpha_1y_1(x)+\alpha_2y_2(x)+\cdots+\alpha_ny_n(x)\equiv 0$, где хотя бы одна $\alpha_i\neq 0 (i=1,2,\ldots,n)$. Если же это тождество выполняется только при условии, что $\alpha_1=\alpha_2=\cdots=\alpha_n=0$, то функции $y_1(x),y_2(x),\ldots,y_n(x)$ называются линейно-независимыми на [a,b].
- 5) Сформулировать определение определителя Вронского системы функций.
 - **Опр.** Определителем Вронского функций $y_1(x), y_2(x), \dots, y_n(x)$ называется определитель вида:

$$W = W[y_1, y_2, \ldots, y_n] = egin{array}{cccc} y_1(x) & y_2(x) & \ldots & y_n(x) \ y_1'(x) & y_2'(x) & \ldots & y_n'(x) \ dots & dots & dots \ y_1^{(n-1)}(x) & y_2^{(n-1)}(x) & \ldots & y_n^{(n-1)}(x) \ \end{array}$$

- 6) Сформулировать определение фундаментальной системы решений линейного однородного ОДУ
 - **Опр.** Совокупность любых n линейно независимых частных решений однородного уравнения n-ого порядка называются его фундаментальной системой решений (ФСР).

7) Сформулировать определение характеристического уравнения линейного ОДУ с постоянными коэффициентами.

Вопросы, оцениваемые в 3 балла

1) Сформулировать и доказать теорему о вронскиане системы линейно зависимых функций.

Теорема. Если функции $y_1(x),y_2(x),\dots,y_n(x)$ линейно зависимы на [a,b], то $\forall x\in [a,b]\ W[y_1,y_2,\dots,y_n]=0$

Доказательство.

По усл. $y_1(x),y_2(x),\ldots,y_n(x)$ линейно зависимы на $[a,b],\implies$, $\exists \alpha_i\neq 0$ такие, что $\alpha_1y_1+\alpha_2y_2+\cdots+\alpha_ny_n=0$. Дифференцируя n-1 раз получим систему:

$$egin{cases} lpha_1 y_1 + lpha_2 y_2 + \dots + lpha_n y_n = 0 \ lpha_1 y_1' + lpha_2 y_2' + \dots + lpha_n y_n' = 0 \ \dots \ lpha_1 y_1^{(n-1)} + lpha_2 y_2^{(n-1)} + \dots + lpha_n y_n^{(n-1)} = 0 \end{cases}$$

Получили СЛАУ с n неизвестными $\alpha_1, \alpha_2, \ldots, \alpha_n$

Так как хотя бы одна $\alpha_i \neq 0$, то эта система имеет ненулевое решение. Определителем такой системы является определитель Вронского $W[y_1,y_2,\dots,y_n]$. Полученная система имеет ненулевое решение лишь в том случаем, когда её определитель равен 0. То есть:

$$W(x) = egin{array}{c|cccc} y_1(x) & y_2(x) & \dots & y_n(x) \ y_1'(x) & y_2'(x) & \dots & y_n'(x) \ dots & dots & dots \ y_1^{(n-1)}(x) & y_2^{(n-1)}(x) & \dots & y_n^{(n-1)}(x) \ \end{array} egin{array}{c|cccc} orall & \forall x \in [a,b]_lacksquare \ \end{array}$$

2) Сформулировать и доказать теорему о вронскиане системы линейно независимых частных решений линейного однородного ОДУ.

Теорема. Если линейно независимые на [a,b] функции $y_1(x),y_2(x),\dots,y_n(x)$ являются решениями ЛОДУ с непрерывными на [a,b] коэффициентами $p_i(x)$ $(i=\overline{1,n})$, то определитель Вронского этих функций отличен от нуля $\forall x \in [a,b]$

Доказательство. (методом от противного)

Допустим, что для какой-то точки $x_0 \in [a,b] \; W(x_0) = 0$

Составим СЛАУ относительно $\alpha_1, \alpha_2, \ldots, \alpha_n$:

$$\left\{egin{aligned} &lpha_1 y_1(x_0) + lpha_2 y_2(x_0) + \dots + lpha_n y_n(x_0) = 0 \ &lpha_1 y_1'(x_0) + lpha_2 y_2'(x_0) + \dots + lpha_n y_n'(x_0) = 0 \ &\dots \ &lpha_1 y_1^{(n-1)}(x_0) + lpha_2 y_2^{(n-1)}(x_0) + \dots + lpha_n y_n^{(n-1)}(x_0) = 0 \end{aligned}
ight.$$

В силу допущения определитель этой системы $W(x_0)=0, x_0\in [a,b],\implies$, эта система имеет ненулевое решение, то есть хотя бы одно из $\alpha_1,\alpha_2,\dots,\alpha_n$ отлично от нуля

Рассмотрим $y=\alpha_1y_1(x)+\alpha_2y_2(x)+\cdots+\alpha_ny_n(x)$, то есть линейную комбинацию частных решений. Следовательно, эта функция сама является решением того же ЛОДУ, удовлетворяющим начальному условию $y(x_0)=y_0,y'(x_0)=y_0',\ldots,y^{(n-1)}(x_0)=y_0^{(n-1)}=0$

Но этим же начальным условиям удовлетворяет и тривиальное решение y=0

По теореме о единственности решения: $lpha_1 y_1(x) + lpha_2 y_2(x) + \dots + lpha_n y_n(x) = 0$ на [a,b] и $\exists lpha_i
eq 0$

По определению линейной зависимости функций $y_1(x), y_2(x), \dots, y_n(x)$ - линейно зависимые функции.

Но это противоречит условию теоремы. Следовательно, предположение неверно и $ot \exists x_0 \in [a,b]$ такой, что

To есть $W(x) \neq 0 \ \forall x \in [a,b]$ \blacktriangle

- 3) Сформулировать и доказать теорему о существовании фундаментальной системы решений линейного однородного ОДУ n-го порядка.
- 4) Сформулировать и доказать теорему о структуре общего решения линейного однородного ОДУ n-го порядка.

Теорема. Общее решение на [a,b] ЛОДУ n-ого порядка L[y]=0 с непрерывными на [a,b] коэффициентами $p_i(x)$ $(i=\overline{1,n})$ равно линейной комбинации ФСР с произвольными постоянными коэффициентами, т.е. ; $y_{o.o.}=C_1y_1(x)+C_2y_2(x)+\cdots+C_ny_n(x)$, где $y_1(x),y_2(x),\ldots,y_n(x)$ - ФСР ЛОДУ L[y]=0, а $C_1,C_2,\ldots,C_n-const$

Доказательство.

1) Докажем, что $C_1y_1+C_2y_2+\cdots+C_ny_n$ - решение ЛОДУ L[y]=0 Подставим его в ДУ:

$$L[y] = L[C_1y_1 + C_2y_2 + \dots + C_ny_n] = C_1L[y_1] + C_2L[y_2] + \dots + C_nL[y_n] = 0$$

Следовательно, $y=C_1y_1+C_2y_2+\cdots+C_ny_n$ является решением ЛОДУ L[y]=0

2) Докажем, что $y = C_1 y_1 + C_2 y_2 + \dots + C_n y_n$ - общее решение ЛОДУ L[y] = 0

По условию все коэффициенты есть непрерывные функции на $[a,b], \implies$, выполнены все условия теоремы Коши \exists и ! решения ЛОДУ L[y]=0.

Решение $y = C_1 y_1 + C_2 y_2 + \cdots + C_n y_n$ будет общим решением, если найдутся единственным образом постоянные C_i при произвольно заданных начальных условиях $y(x_0) = y_0$,

$$y'(x_0) = y_0', \dots, y^{(n-1)}(x_0) = y_0^{(n-1)}$$
, где $x_0 \in [a,b]$

Пусть решение и его производные удовлетворяют этим условиям:

$$\left\{egin{aligned} C_1y_1(x_0)+C_2y_2(x_0)+\cdots+C_ny_n(x_0)&=y_0\ C_1y_1'(x_0)+C_2y_2'(x_0)+\cdots+C_ny_n'(x_0)&=y_0'\ \cdots\ C_1y_1^{(n-1)}(x_0)+C_2y_2^{(n-1)}(x_0)+\cdots+C_ny_n^{(n-1)}(x_0)&=y_0^{(n-1)} \end{aligned}
ight.$$

Это неоднородная СЛАУ относительно C_1,C_2,\ldots,C_n . Определитель этой системы является определителем Вронского $W(x_0)$ для линейно независимой системы функций y_1,y_2,\ldots,y_n (решение ЛОДУ L[y]=0) и тогда $W(x)\neq 0$. Следовательно, система имеет единственное решение C_1,C_2,\ldots,C_n для произвольной точки $(x_0,y_0,y_0',\ldots,y_0^{(n-1)})$ \Longrightarrow $y=C_1y_1+C_2y_2+\cdots+C_ny_n$ - общее решение ЛОДУ L[y]=0

- 5) Сформулировать и доказать теорему о структуре общего решения линейного неоднородного ОДУ n-го порядка.
- 6) Сформулировать и доказать теорему о наложении (суперпозиции) частных решений линейного неоднородного ОДУ.
- 7) Сформулировать и доказать свойства частных решений линейного однородного ОДУ

Теорема 1. Если функция $y_0(x)$ является решение ЛОДУ L[y]=0, то функция $Cy_0(x)$, где C=const, тоже является решением ЛОДУ L[y]=0

Доказательство.

 $y_0(x)$ - решение ЛОДУ L[y]=0 по усл., \implies , $L[y_0]=0$ Найдём (по свойству однородности): $L[Cy_0]=CL[y_0]=C\cdot 0=0$ $L[Cy_0]=0\implies Cy_0(x)$ является решение ЛОДУ L[y]=0

Теорема 2. Если функции $y_1(x)$ и $y_2(x)$ являются решениями ЛОДУ L[y]=0, то функция $y_1(x)+y_2(x)$

тоже является решение ЛОДУ L[y]=0

Доказательство.

$$y_1(x)$$
 и $y_2(x)$ - решения ЛОДУ $L[y]=0$ по усл., \implies , $L[y_1]=0, L[y_2]=0$ Найдём (по свойству аддитивности): $L[y_1+y_2]=L[y_1]+L_1[y_2]=0+0=0$ $L[y_1+y_2]=0 \implies (y_1(x)+y_2(x))$ является решение ЛОДУ $L[y]=0$ \blacktriangle

Следствие. Линейная комбинация с произвольными постоянными коэффициентами $C_1y_1(x)+C_2y_2(x)+\cdots+C_my_m(x)$ решений $y_1(x),y_2(x),\ldots,y_m(x)$ ЛОДУ L[y]=0 тоже является решением этого ЛОДУ.

Доказательство.

$$L[y_1]=0, L[y_2]=0,\dots, L[y_m]=0$$
 по условию Найдём
$$L[C_1y_1+C_2y_2+\dots+C_my_m]=L[C_1y_1]+L[C_2y_2]+\dots+L[C_my_m]=C_1L[y_1]+C_2L[y_2]+\dots+C_mL[y_m]=0$$
 $L[C_1y_1+C_2y_2+\dots+C_my_m]=0 \implies C_1y_1(x)+C_2y_2(x)+\dots+C_my_m(x)$ является решением ЛОДУ $L[y]=0$ \blacktriangle

Утверждение. ЛОДУ L[y]=0 всегда имеет тривиальное решение $y\equiv 0$ **Теорема.** Совокупность решений ЛОДУ L[y]=0 образует линейное пространство.

- 8) Вывести формулу Остроградского-Лиувилля для линейного ОДУ 2-го порядка
- 9) Вывести формулу для общего решения линейного однородного ОДУ 2-го порядка с постоянными коэффициентами в случае простых действительных корней характеристического уравнения.
- 10) Вывести формулу для общего решения линейного однородного ОДУ 2-го порядка с постоянными коэффициентами в случае комплексных корней характеристического уравнения.
- 11) Вывести формулу для общего решения линейного однородного ОДУ 2-го порядка с постоянными коэффициентами в случае кратных корней характеристического уравнения.
- 12) Описать метод Лагранжа вариации произвольных постоянных для линейного неоднородного ОДУ 2-го порядка и вывести систему соотношений для варьируемых переменных.