Soham Chatterjee

Email: sohamc@cmi.ac.in

Roll: BMC202175 Course: Algebra and Computation Date: May 19, 2024

Assignment - 2

Problem 1 Problem Set 2: P1

Let p be a prime number and n a positive integer. Then by *explicit data* for \mathbb{F}_{p^n} we mean a set of n^3 elements $(a_{i,j,k})_{i,j,k=1}^n$ of the prime field \mathbb{F}_p such that \mathbb{F}_{p^n} becomes a field with the ordinary addition and multiplication by elements of \mathbb{F}_p and the multiplication determined by

$$e_i e_j = \sum_{k=1}^n a_{i,j,k} e_k$$

where e_1, e_2, \dots, e_n denotes the standard basis of \mathbb{F}_{p^n} over \mathbb{F}_p . If we know an irreducible polynomial of degree n, then such explicit data for \mathbb{F}_{p^n} can be directly computed. Show conversely, given explicit data for \mathbb{F}_{p^n} one can find an irreducble polynomial over $\mathbb{F}_p[x]$ of degree n via a dieterministic polynomial-time (in $\log p$ and

Lenstra gave a deterministic polynomial time to find an isomorphism between two explicitly given finite fields of the same cardinality. Till date, we do not know any deterministic polynomial time (in $\log p$, n) algorithm to find an irreducible polynomial in $\mathbb{F}_p[x]$ of degree n.

Solution: We will use the paper [Len91]. Suppose $n = \prod_{i=1}^k p_i^{t_i}$. Suppose γ_i be an t_i degree an element of \mathbb{F}_q where $q = p^n$ over \mathbb{F}_p . Then we can say

$$\mathbb{F}_p \subset \mathbb{F}_p(\gamma_1) \subset \mathbb{F}_p(\gamma_1, \gamma_2) \subset \cdots \subset \mathbb{F}_p(\gamma_1, \dots, \gamma_k) = \mathbb{F}_{p^n}$$

where γ_i has minimal polynomial $p_i^{t_i}$. Hence finding these γ_i and their minimal polynomials will help us find the polynomial f such that $\mathbb{F}_{p^n} \cong \mathbb{F}_p[x]/\langle f \rangle$.

1. Finding Minimal Polynomial of $\gamma = \sum_{i=1}^{k} \gamma_i$ from Minimal Polynomial of γ_i 's

Now suppose g_i is the minimal polynomial of γ_i of degree $p_i^{t_i}$. Then we have to find the minimal polynomial of $\gamma = \sum_{i=1}^{k} \gamma_i$. Now if α, β are numbers with minimal polynomial $h_1(x) = \sum_{l=0}^{m} a_l x^l$ and $h_2(x) = \sum_{l=0}^{n} b_l x^l$ then α is

eigen values of the corresponding matrix $A = \begin{bmatrix} 0 & -a_0 \\ I_{m-2} & \vdots \\ -a_{m-1} \end{bmatrix}$ since the characteristic polynomial of A is

 $h_1(x)$. Similarly we obtain B for β . Let u_1 and u_2 are the eigen vectors of A and B. Then the matrix $A \otimes I + I \otimes B$ has eigen vector $u_1 \otimes u_2$ with eigen value $\alpha + \beta$ since

$$(A \otimes I + I \otimes B)(u_1 \otimes u_2) = Au_1 \otimes Iu_2 + Iu_1 \otimes Bu_2 = \alpha(u_1 \otimes u_2) + \beta(u_1 \otimes u_2)$$

So $\alpha + \beta$ root of the characteristic polynomial of $A \otimes I + I \otimes B$ and since $\alpha + \beta$ should have minimal polynomial mn and degree of characteristic polynomial of $A \otimes I + I \otimes B$ is mn we have the characteristic polynomial as the minimal polynomial of $\alpha + \beta$. Using this way we can obtain the minimal polynomial of $\gamma = \sum_{i=1}^{n} \gamma_{i}$.

2. Finding g_i from γ_i for $i \in [k]$

Suppose we have γ_i . It has a $p_i^{t_i}$ degree minimal polynomial over \mathbb{F}_p . γ_i is an element of degree $p_i^{t_i}$ over \mathbb{F}_p . So let

$$\gamma_i^{p_i^{t_i}} = \sum_{k=0}^{p_i^{t_i}-1} c_k \gamma_i^k$$

with $c_k \in \mathbb{F}_p$. Then the polynomial $\tilde{g}_i = x^{p_i^{t_i}} - \sum_{k=0}^{p_i^{t_i}} c_k \gamma_i^k$ is minimal polynomial of γ_i . So $\tilde{g}_i = g_i$. This we can do in $poly(n, \log p)$ steps.

3. Finding γ_i **for** $i \in [k]$

Now all is left to find γ_i . Define the map $\phi_d: \alpha \mapsto \alpha^d$. Denote the numbers $\delta_i = p^{p_i^{t_i}}$. Then $\gamma_i \in \ker\left(\phi_{\delta_i} - id\right)$. We create the matrix for frobenius Map i.e. the map $x \mapsto x^p$ and compose it with itself $p_i^{t_i}$ times which gives us the map for ϕ_{δ_i} , T_i which we can compute in $poly(n, \log p)$ steps. Then we compute the matrix $T_i - I$ and by guassian elimination we compute the basis of a kernel and find a basis element which is in $\mathbb{F}_{p^{p_i^{t_i}}} - \mathbb{F}_{p^{p_i^{t_{i-1}}}}$ which again we can do in $poly(\log p, n)$ steps.

Problem 2 Problem Set 2: P5

Let q be a prime power and $f \in \mathbb{F}_q[x]$ squarefree of degree n with $r \geq 2$ irreducible factors f_1, \ldots, f_r , each of degree $d = \frac{n}{r}$. We let $R := \mathbb{F}_q[x]/\langle f \rangle$, $R_1 = \mathbb{F}_q[x]/\langle f_1 \rangle, \ldots, R_r = \mathbb{F}_q[x]/\langle f_r \rangle$ and the Chinese Remainder Isomorphism $\chi = \chi_1 \times \cdots \times \chi_r$ where $\chi(a \bmod f) = (a \bmod f_1, \ldots, a \bmod f_r) = (\chi_1(a), \ldots, \chi_r(a))$. The norm on $R_i \cong \mathbb{F}_{q^d}$ is defined by $N(\alpha) = \alpha \alpha^q \alpha^{q^2} \cdots \alpha^{q^{d-1}} = \alpha^{\frac{q^d-1}{q-1}}$.

- (a) Let $\alpha \in R^{\times}$ be a uniform random element, $\beta = N(\alpha)$ and $1 \le i \le r$. Show that $\chi_i(\beta)$ is a root of $x^{q-1}-1$ and conclude that $\chi_i(\beta)$ is a uniform random element in \mathbb{F}_q^{\times} .
- (b) Provided that q > r, what is the probability that with the $\chi_i(\beta)$ are distinct for $1 \le i \le r$? Prove that the probability is at least $\frac{1}{2}$ if $q 1 \ge 2(r 1)^2$.
- (c) Let $u, v \in \mathbb{F}_q$ be distinct. Prove that probability at least $\frac{1}{2}$, u + t is a square (quadratic residue) and v + t is a nonsquare or vice versa, for a uniformly random $t \in \mathbb{F}_q$.
- (d) Use the above exercise to come up with a variant of Cantor-Zassenhaus's equal-degree splitting algorithm to factorize a squarefree monic polynomial $f \in \mathbb{F}_q[x]$ of degree n, where all the irredicble factors of f have degree d.

Hint: Use a polynomial $a \in \mathbb{F}_q[x]$ of degree less than n with $\chi_i(a) \in \mathbb{F}_q$ for all i. Choose $t \in \mathbb{F}_q$ at random. Take gcd of f with $(a+t)^{\frac{q-1}{2}} - 1$. Prove that the failure probability of the algorithm is at most $\frac{1}{2}$ if $a \neq \mathbb{F}_q$.

Solution:

(a) We know for any $i \in [r]$, $R_i = \mathbb{F}_q[x]/\langle f_i \rangle \cong \mathbb{F}_{q^d}$. For any element $\alpha \in R^{\times}$,

$$\chi_i(N(\alpha)) = N(\chi_i(\alpha)) = [\alpha \mod f_i]^{\frac{q^d - 1}{q - 1}} \equiv \alpha^{\frac{q^d - 1}{q - 1}} \mod f_i$$

Now for all $a \in R_i$, it is a root of the polynomial $x^{q^d-1} - 1$ or $a^{q^n-1} \equiv 1 \mod f_i$. Now

$$\left[\alpha^{\frac{q^d-1}{q-1}}\right]^{q-1} - 1 \equiv \alpha^{q^d-1} - 1 \equiv 1 - 1 \equiv 0 \mod f_i$$

Hence $\chi_i(\beta)$ is a root of $x^{q-1} - 1$

In the field \mathbb{F}_{q^d} we take the endomorphism $\phi_k: x \mapsto x^k$. Then the $\ker \phi_k = \{a \in \mathbb{F}_{q^d} \mid a^k \equiv 1\}$ which is set of all roots of the equation $x^k - 1$ which can have at most k many roots. So $|\ker \phi_k| \le k$. Let $S = \left\{ a^{\frac{q^a - 1}{q - 1}} \mid a \in \mathbb{F}_{q^d} \right\}$.

Then $S \subseteq \ker \psi$ where $\psi = \phi_{q-1}$. Hence $|S| \le |\ker \psi| \le q-1$. Now

$$q^{d} - 1 = |\mathbb{F}_{q^{d}}^{\times}| = \left|\ker\psi\right| \cdot \left|\mathrm{im}\psi\right| = \left|\ker\psi\right| \cdot |S| \le \frac{q^{d} - 1}{q - 1} \times (q - 1) = q^{d} - 1$$

Therefore |S| = q - 1. Since S exactly the nonzero elements of \mathbb{F}_q^{\times} each element of S occurs in different coset of $\mathbb{F}_{a^d}^{\times}/\ker \psi$. Then

$$\Pr_{a \in \mathbb{F}_{q^d}^{\times}} \left[a^{\frac{q^d - 1}{q - 1}} = \alpha \mid \alpha \in S \right] = \frac{\frac{q^d - 1}{q - 1}}{q^d - 1} = \frac{1}{q - 1}$$

Hence if we pick α uniformly at random then taking $\alpha^{\frac{q^d-1}{q-1}}$ is a uniformly random element of \mathbb{F}_a^{\times} .

(b) we know $\chi_i(\beta)$ is an uniformly random element of \mathbb{F}_q^{\times} . Now

$$Pr[\chi_{i}(\beta) \neq \chi_{j}(\beta) \ \forall \ i,j \in [r], i \neq j] = \frac{(q-1)(q-2)\cdots(q-r)}{(q-1)^{r}} = \prod_{i=0}^{r-1} \left(1 - \frac{i}{q-1}\right) = \prod_{i=1}^{r-1} \left(1 - \frac{i}{q-1}\right)$$

Given

$$q-1 \ge 2(r-1)^2 \implies \frac{1}{2(r-1)} \ge \frac{r-1}{q-1} \ge \frac{i}{q-1}$$
 where $i \in [r-1]$

Hence $1 - \frac{k}{q-1} \ge 1 - \frac{r-1}{q-1} \ge 1 - \frac{1}{2(r-1)}$. Therefore

$$Pr[\chi_i(\beta) \neq \chi_j(\beta) \ \forall \ i, j \in [r], i \neq j] \geq \left[1 - \frac{1}{2(r-1)}\right]^{r-1} \geq 1 - \frac{r-1}{2(r-1)} = \frac{1}{2}$$

(c) Since t is a uniformly random element of \mathbb{F}_q . Hence u + t and v + t is are uniformly random element of \mathbb{F}_q . Thereofore

$$\Pr_{t \in \mathbb{F}_q}[u + t \text{ is QR } \& v + t \text{ is NQR}] = \Pr[u + t] = \Pr_{t \in \mathbb{F}_q}[u + t \text{ is QR}] \Pr_{t \in \mathbb{F}_q}[v + t \text{ is NQR}] = \frac{1}{2} \cdot \frac{1}{2} = \frac{1}{4}$$

Similarly $\Pr_{t \in \mathbb{F}_2}[u+t \text{ is NQR } \& v+t \text{ is QR}] = \frac{1}{4}$. Hence probability that one of u+t, v+t is QR and other one is NQR is $\frac{1}{2}$.

(d) We give the algorithm first then we will show the correctness and calculate the probability

Algorithm 1: A Different Variant of Cantor-Zassenhaus Algorithm

Input: Squarefree monic polynomial f of degree n with r irreducible factors of degree d with $q-1 \ge 2(r-1)^2$

Output: Factor of *f* if exists otherwise 'FAIL'

- 1 begin
- Take $a \in \mathbb{F}_q[x] \mathbb{F}_q$ uniformly at random; 2
- Compute $\beta \leftarrow N(a) \mod f$ using Repeated-Squaring; 3
- Take $t \in \mathbb{F}_q$ uniformly at random; 4
- Compute $g \leftarrow (\beta + t)^{\frac{q-1}{2}} \mod f$ using Repeated-Squaring; 5
- Compute $h \leftarrow gcd(f,g)$; 6
- **if** $h \ne 1$ and h is nontrivial **then** 7
- return h 8
- else 9
- return 'FAIL' 10

We know by part (a) for all $i \in [r]$ $\chi_i(\beta)$ is an uniformly random element of \mathbb{F}_q^{\times} . Now By part (b) with probability $\geq \frac{1}{2}$ for $i \neq j$, $i, j \in [r]$ we have $\chi_i(\beta) \neq \chi_j(\beta)$. So By part (c) with probability $\frac{1}{2}$, one of $[\chi_i(\beta) + t]^{\frac{q-1}{2}}$ and $[\chi_j(\beta) + t]^{\frac{q-1}{2}}$ is QR and other one is NQR. Suppose $[\chi_i(\beta) + t]^{\frac{q-1}{2}}$ is QR. Then

$$f_i \mid [\chi_i(\beta) + t]^{\frac{q-1}{2}} - 1$$
 but $f_j \nmid [\chi_i(\beta) + t]^{\frac{q-1}{2}} - 1$

Hence $f_i \mid gcd\left(f, \left[\chi_i(\beta) + t\right]^{\frac{q-1}{2}}\right)$ but not f_j . Therefore the gcd is nontrivial. Hence the gcd h yields a nontrivial factor of f.

Problem 3 Problem Set 2: P6

Finding roots of a polynomial is clearly a special case of polynomial factorization. This exercise shows conversely how factoring over \mathbb{F}_{p^k} can be reduced to root finding over \mathbb{F}_p . Let $q = p^k$ be a prime power for some positive $k \in \mathbb{N}$, $f \in \mathbb{F}_q[x]$ monic squarefree of degree n, $R = \mathbb{F}_q[x]/\langle f \rangle$ and $\mathcal{B} = \{a \mod f \in R : a^p \equiv a \mod f\}$

- (a) Let $b \in \mathbb{F}_q[x]$ such that $b \mod f \in \mathcal{B}$. Prove that $f = \prod_{a \in \mathbb{F}_p} \gcd(f, b a)$
- (b) Let y be a new indeterminate and $r = \operatorname{Res}_x(f, b y) \in \mathbb{F}_q[x, y]$. Show that r has some roots in \mathbb{F}_p and that any root of r in \mathbb{F}_p leads to a nontrivial factor of f if $b \notin \mathbb{F}_p$.
- (c) Make this to a deterministic polynomial time reduction from factoring in $\mathbb{F}_q[x]$ to root finding in $\mathbb{F}_p[x]$

Solution:

(a) $b \mod f \in \mathcal{B}$. Hence

$$b^p - b \equiv 0 \mod f \implies \prod_{a \in \mathbb{F}_p} (b - a) \equiv 0 \mod f$$

Hence $gcd\left(f,\prod_{a\in\mathbb{F}_p}(b-a)\right)=f$. Now for any two $a,a'\in\mathbb{F}_p,\ a\neq a'$, we have gcd(b-a,b-a')=1 as $(a'-a)^{-1}((g-a)-(g-a'))=1$. Hence $gcd\left(f,\prod_{a\in\mathbb{F}_p}(b-a)\right)=\prod_{a\in\mathbb{F}_p}gcd(f,b-a)$. Therefore

$$f = \gcd\left(f, \prod_{a \in \mathbb{F}_p} (b - a)\right) = \prod_{a \in \mathbb{F}_p} \gcd(f, b - a)$$

(b) Since $f = \prod_{a \in \mathbb{F}_p} \gcd(f, b-a)$ there exists at least one $a \in \mathbb{F}_p$ such that $\gcd(f, b-a) \neq 1$. Hence we have $\operatorname{Res}(f, b-a) = 0$ in $\mathbb{F}_q[x]$. Now we can say

$$\operatorname{Res}(f, b-a) = 0 \iff \operatorname{Res}_{x}(f, b-y) \equiv 0 \pmod{y-a}$$

where the RHS is in the ring $\mathbb{F}_q[x,y]$. Hence we can say $\mathrm{Res}_x(f,b-y)$ has a root at y=a where $a\in\mathbb{F}_p$ in $\mathbb{F}_q[x,y]$. Therefore $\mathrm{Res}_x(f,b-y)$ has some roots in \mathbb{F}_p .

Now we can assume $\deg b < \deg f$ since otherwise we can write b = qf + r where $\deg r < \deg f$ and now $\gcd(f,b-a) = \gcd(f,r-a)$. If $b \notin \mathbb{F}_p$. Then $\deg(b-r) < \deg f$ for any $r \in \mathbb{F}_p$. Hence if $\operatorname{Res}_x(f,b-a) = 0$ for some $a \in \mathbb{F}_p$ since $b-a \ne 0$ we have $\gcd(f,b-a)$ nontrivial which actually gives a factor of f. Hence finding a root leads to a anontrivial factor of f if $b \notin \mathbb{F}_p$

(c) So given f we have to find a nontrivial solution for the map $h^p - h \mod f$. Now the map $T : h \mapsto h^p - h$ for $h \in \mathbb{F}_q[x]$ is a linear map over \mathbb{F}_p . So we create the matrix for T modulo f. with respect to the polynomials basis $x^{n-1} \mod f$,..., $x \mod f$, $1 \mod f$. Now we will compute the basis of the kernel of this map using guassian elemination. Now

$$f$$
 is irreducible \iff rank $T = n - 1$

So if the computed basis has a non-constant polynomial g then that is our desired polynomial for a nontrivial solution of $h^p - h \equiv \mod f$. Using this g now we can try to find a root of the polynomial $\operatorname{Res}_{\chi}(f, g - y)$ in \mathbb{F}_p which will help us to find a factor as discussed in the part (b).

Problem 4 Problem Set 2: P9

Every prime $p \equiv 1 \pmod 4$ can be expressed as a sum of two squares. Give an efficient algorithm to find two integers x and y such that $p = x^2 + y^2$. Here *efficient* means randomized or deterministic polynomial time in the input size (number of bits to represent the given prime in binary).

Helpful keywords: Fermat sum of squares, quadratic non-residue, Euclid's GCD algorithm/Gauss-Lagrange 2-dimensional lattice reduction algorithm.

Solution:

Lemma 1. Let $c = \sqrt{-1} \pmod{p}$ and gcd(p, c - i) = a + bi. Then $p = a^2 + b^2$

Proof: First we will show if we find a nontrivial guassian integer which divides p then we can get the integers a, b. Let $\alpha \mid p$ completely. Then by conjugating we have $\overline{\alpha} \mid p$. Hence $\alpha \overline{e} \alpha \mid p^2$. Now $\alpha \overline{\alpha} \in \mathbb{Z}$. So $\alpha \overline{e} \alpha$ is a nontrivial factor of p. And the only nontrivial factor of p^2 is p. So $p = \alpha \overline{e} \alpha$. Let $\alpha = a + ib$. Then $\alpha \overline{\alpha} = a^2 + b^2$. So $p = a^2 + b^2$. Hence finding a nontrivial guassian integer which divides p is enough to find the integers whose square sum is p.

Now suppose we found α , β nontrivial guassian integers such that $pq = \alpha\beta$ and $p \nmid \alpha$, β . Then $gcd(\alpha,p)$ divides p completely. We will show if this is the case then $gcd(\alpha,p) \neq 1$, p. If gcd was p then $p \mid \alpha$ which contradicts the assumption that $p \nmid \alpha$. Hence the gcd is 1. Then $\alpha \mid q$. Therefore $\frac{q}{\alpha} = \frac{\beta}{p}$. Hence p divides β completely but that contradicts the assumption. So $gcd(\alpha,p) \neq 1$, p. So the gcd gives a nontrivial factor of p.

Now if we found $c \mod p$ such that $c^2 \equiv 1 \mod p$ or we can say $c^2 - 1 + pg = 0$ for some $g \in \mathbb{Z}[i]$. Then $c^2 + 1 + pg = (c+i)(c-i) + pg = 0$ in $\mathbb{Z}[i]$. Therefore

$$(c+i)(c-i) = -pg$$

Now $p \nmid c \pm i$. Hence by the above proof we have gcd(p, c + i) nontrivial factor of p in $\mathbb{Z}[i]$. From that we get the integers a, b such that $p = a^2 + b^2$

So now we have to find an element of a < p such that $a^2 \equiv -1 \mod p$. If we can find a quadratic non-residue $a \in \mathbb{Z}_p$ then we have $a^{\frac{p-1}{2}} \equiv -1 \mod p$ then we can take $a^{\frac{p-1}{4}}$ to be the desired element. Now in the group \mathbb{Z}_p we can select a non quadratic residue by picking an element uniformly at random and with probability $\frac{1}{2}$ we can obtain a quadratic non residue.

References

[Len91] Hendrik W Lenstra. Finding isomorphisms between finite fields. *mathematics of computation*, 56(193):329–347, 1991.