UNIVERSIDAD DE CONCEPCION

FACULTAD DE CIENCIAS

FISICAS Y MATEMATICAS

DEPARTAMENTO DE INGENIERIA MATEMATICA

ALGEBRA Y ALGEBRA LINEAL 520142 Listado 3 (Inducción)

1. Pruebe por inducción que $\forall n \in \mathbb{N}$:

(En práctica c))

a)
$$\sum_{k=1}^{n} (2k-1)^2 = \frac{1}{3}n(4n^2-1)$$
 b) $\sum_{k=1}^{n} k(k+1) = \frac{1}{3}n(n+1)(n+2)$

c)
$$\sum_{k=1}^{n} \frac{1}{4k^2 - 1} = \frac{n}{2n+1}$$
 d) $\sum_{k=1}^{n} k(2k+1) = \frac{n(n+1)(4n+5)}{6}$

2. Sea $\{a_n\}_{n\in\mathbb{N}}\subseteq\mathbb{R}$ una sucesión de números reales y d una constante real positiva, tales

$$a_1 = d$$
, $a_n = a_{n-1} + d \cdot n$, cuando $n \ge 2$.

Demuestre, usando inducción, que $\forall n \in \mathbb{N}, n > 2 : a_n < d \cdot n^2$.

3. Sea $\{u_n\}_{n\in\mathbb{N}}\subseteq\mathbb{R}$ la sucesión de Fibonacci, definida por:

$$u_1 = 1$$
, $u_2 = 1$, $u_n = u_{n-1} + u_{n-2}$, cuando $n \ge 3$.

Demuestre por inducción que $\forall n \in \mathbb{N}$:

(En práctica b))

a)
$$\sum_{i=1}^{n} u_i = u_{n+2} - 1$$
 c)
$$\sum_{i=1}^{n} u_{2i-1} = u_{2n}$$

b)
$$\sum_{i=1}^{n} u_{2i} = u_{2n+1} - 1$$
 d)
$$\sum_{i=1}^{n} u_i^2 = u_n \cdot u_{n+1}$$

$$c) \quad \sum_{i=1}^{n} u_{2i-1} = u_{2n}$$

$$b) \quad \sum_{i=1}^{n} u_{2i} = u_{2n+1} - 1$$

$$l) \quad \sum_{i=1}^{n} u_i^2 = u_n \cdot u_{n+1}$$

- 4. Considere la sucesión $\{b_n\}_{n\in\mathbb{N}}\subseteq\mathbb{R}$ definido por $b_1=1$, $b_n=\frac{1}{4}(2b_{n-1}+3)$, cuando $n\geq 2$. Demuestre que
 - a) $\{b_n\}_{n\in\mathbb{N}}$ es una sucesión **estrictamente creciente**, es decir $\forall\,n\in\mathbb{N}\,:\,b_n< b_{n+1}$
 - b) $\forall n \in \mathbb{N} : 1 \leq b_n < 2$, es decir $\{b_n\}_{n \in \mathbb{N}}$ es una sucesión **acotada**.
- 5. Considere la sucesión $\{a_n\}_{n\in\mathbb{N}}\subseteq\mathbb{R}$ definido por $a_{n+1}=2-\frac{1}{a_n},$ con $n\in\mathbb{N}$ y $a_1=\alpha>1$ dado. Demuestre que
 - a) $\forall n \in \mathbb{N}, n \geq 2 : 1 < a_n < 2$. Concluya que $\{a_n\}_{n \in \mathbb{N}}$ es una sucesión acotada.
 - b) esta sucesión es **estrictamente decreciente**, es decir $\forall n \in \mathbb{N} : a_n > a_{n+1}$
- 6. Aplique la propiedad telescópica para probar que $\forall n \in \mathbb{N}$: (En práctica c))

a)
$$\sum_{k=1}^{n} \frac{1}{k(k+1)} = \frac{n}{n+1}$$
 b) $\sum_{k=1}^{n} \frac{1}{(2k-1)(2k+1)} = \frac{n}{2n+1}$

c)
$$\sum_{k=1}^{n} \frac{1}{k(k+3)} = \frac{11}{18} - \frac{3n^2 + 12n + 11}{3(n+1)(n+2)(n+3)}$$

7. Pruebe por inducción que $\forall\,n\in\mathbb{N}:\quad n^2+n$ es divisible por 2, y use este resultado para demostrar que $\forall n \in \mathbb{N} : n^3 + 11n$ es divisible por 6. (En práctica)

1

- 8. Considere la identidad $(k+1)^3 k^3 = 3k^2 + 3k + 1$, y deduzca una fórmula para $\sum_{k=0}^{\infty} k^2$ con $n \in \mathbb{N}$ arbitrario. (En práctica)
- 9. (mire, vea, conjeture). Considere las siguientes identidades:

En general, para $n \in \mathbb{N}$, ¿Qué identidad escribiría Ud.? Demuestre su conjetura utilizando el principio de inducción y las identidades vistas en clases.

10. Demuestre por inducción que

(En práctica d))

- a) $\forall n \in \mathbb{N}$: $n^5 n$ es divisible por 5. b) $\forall n \in \mathbb{N}$: $3^{2n} + 7$ es múltiplo de 8.

- c) $\forall n \in \mathbb{N}$: $n^3 + 2n$ es divisible por 3. d) $\forall n \in \mathbb{N}$: $3^{2n+1} + 2^{n+2}$ es divisible por 7.
- e) $\forall n \in \mathbb{N}$: $\forall x \ge -1, (1+x)^n \ge 1 + nx$.
- 11. Encuentre el mínimo valor de $m \in \mathbb{N}$ para el cual se verifica que $\forall n \geq m, \ 2^n > n^2$. Demuéstrelo por inducción. (En práctica)
- 12. Encuentre: (En práctica b))
 - a) el cuarto término en el desarrollo de $\left(\frac{x}{2} \frac{2}{x}\right)^6$.
 - b) el término constante (si existe) en el desarrollo de $(x^8 x^{-4})^{12}$
 - c) los términos centrales del desarrollo de $(y+y^{-1/2})^{15}$.
 - d) los términos que contienen $\frac{x^2}{y^3}$ y $\frac{x}{y}$ (si existen) en el desarrollo de $\left(x^2y \frac{x}{y}\right)^{16}$.
- 13. Determine el(los) valor(es) de r para que los términos de lugares (r^2+8) y 6r del desarrollo de $(x^2 + y^3)^{193}$ equidisten de los extremos.
- 14. En el desarrollo de $(5+2x^3)^n$, el coeficiente del término que contiene a x^{33} es quince veces el coeficiente del término que contiene a x^{36} . Determine el valor de n.
- a) Pruebe que: $\forall n \in \mathbb{N}, \ \forall k \in \{0, 1, ..., n\}, \ \binom{n}{k} \leq \frac{n^k}{k!}$ (En práctica a)) 15.
 - b) Use a) para probar que: $\forall n \in \mathbb{N}, \ \forall k \in \{0, 1, ..., n\}, \ \left(1 + \frac{1}{n}\right)^n \leq \sum_{k=0}^n \frac{1}{k!}$.
- 16. Demuestre que $\forall n \in \mathbb{N}$:

(En práctica b))

a)
$$\sum_{k=0}^{n} \binom{n}{k} = 2^n$$
, b) $\sum_{k=1}^{n} k \binom{n}{k} = n \cdot 2^{n-1}$, c) $\sum_{k=0}^{n} (-1)^k \binom{n}{k} = 0$.