	Utech
<i>Name</i> :	
Roll No.:	As Alexand V Eleverately and Capitalist
Invigilator's Signature :	

CONTROL SYSTEM - II

2011

Time Allotted: 3 Hours Full Marks: 70

The figures in the margin indicate full marks.

Candidates are required to give their answers in their own words as far as practicable.

GROUP – A (Multiple Choice Type Questions)

1. Choose the correct alternatives for any *ten* of the following:

 $10 \times 1 = 10$

i) A system is described by

$$\frac{\mathrm{d}x}{\mathrm{d}t} = \begin{bmatrix} 0 & 1\\ -2 & -3 \end{bmatrix} x + \begin{bmatrix} 0\\ 1 \end{bmatrix} u$$

$$y = [1 \ 0] x$$

The system is

- a) controllable & observable
- b) uncontrollable & observable
- c) controllable & unobservable
- d) uncontrollable & unobservable.

6206 [Turn over

The state variable description of a linear autonomous system is $\dot{X} = AX$ when X is a state vector &

$$A = \begin{bmatrix} 0 & 2 \\ 2 & 0 \end{bmatrix}$$

The poles of the system are located at

a)
$$-2$$
 and $+2$

b)
$$-2 j$$
 and $+ 2 j$

d)
$$+ 2$$
 and $+ 2$.

The value of a matrix in $\frac{dx}{dt} = AX$

for the system described by the differential equation

$$\frac{\mathrm{d}^2 y}{\mathrm{d}t^2} + 2\frac{\mathrm{d}y}{\mathrm{d}t} + 3y = 0$$

a)
$$\begin{bmatrix} 1 & 0 \\ -2 & -1 \end{bmatrix}$$
 b)
$$\begin{bmatrix} 1 & 0 \\ -1 & -2 \end{bmatrix}$$

b)
$$\begin{bmatrix} 1 & 0 \\ -1 & -2 \end{bmatrix}$$

c)
$$\begin{bmatrix} 0 & 1 \\ -2 & -1 \end{bmatrix}$$

c)
$$\begin{bmatrix} 0 & 1 \\ -2 & -1 \end{bmatrix}$$
 d)
$$\begin{bmatrix} 1 & 0 \\ -3 & -2 \end{bmatrix}$$
.

The transfer function of a Z0H is iv)

a)
$$\frac{1-e^{st}}{s}$$

b)
$$\frac{1-e^{st}}{s^2}$$

c)
$$\frac{1-e^{s'}}{s}$$

d)
$$\frac{1-e^{sT}}{s^2}$$
.

- Describing function is based on v)
 - first harmonic approximation a)
 - b) approximation at an operating point
 - stability of an operating point c)
 - finding of Lyapunov function. d)

CS / B.TECH (EE-NEW) / SEM-6 /

vi) Stable focus is represented by

vii) The variable gradient method is used to find

- a) Lyapunov function
- b) describing function
- c) state transition matrix
- d) eigenvectors.

viii) Nonlinear system can display

- a) only one equilibrium point & limit cycle
- b) multiple equilibrium point & limit cycle
- c) only one equilibrium point
- d) only one limit cycle.
- ix) The curve traced out by all possible point $[x_1(t), x_2(t)]$ is called phase trajectory
 - a) at t is varied from 0 to α
 - b) at t is varied from $-\alpha$ to α
 - c) as t is varied from 0 to $-\alpha$
 - d) as t is varied from any value.

- characteristic equation of x) is KG(s)H(s)=-1. Stability condition for such system is
 - $|G(j\omega)H(j\omega)| < 1/K$ a) and $\langle G(j\omega) H(j\omega) \rangle = -180^{\circ}$
 - $|G(j\omega)H(j\omega)| < K$ b) and $\langle G(j\omega) H(j\omega) \rangle = 180^{\circ}$
 - $|G(j\omega)H(j\omega)| < 1$ c) and $\langle G(j\omega) H(j\omega) \rangle = -180^{\circ}$
 - d) $|G(j\omega)H(j\omega)| > 1/K$ and $\langle G(j\omega) H(j\omega) \rangle = -180^{\circ}$.
- xi) The example of positive semi definite function is
 - a) $(x_1 + x_2)^2$ b) $x_1^2 + x_2^2$
 - c) $-x_1^2 (x_1 + x_2)^2$ d) $x_1x_2 + x_2^2$.
- xii) The describing function for \xrightarrow{m} with input $X \sin \omega t$ is

c)

GROUP - B

(Short Answer Type Questions)

Answer any three of the following.

- $3 \times 5 = 15$
- 2. The overall transfer function of a SISO system is given by $\frac{Y(s)}{U(s)} = \frac{s^2 + 4s + 4}{s^3 + 5s^2 + 4s}$. Obtain state model of the system.
- 3. The state space representation of a system is

$$\dot{x}_1 = -x_1 + v$$

$$\dot{x}_2 = x_1 - 2x_2 + v$$

Comment on controllability and observability of the system.

4. Solve the difference equation given below:

$$y(k+2)+3y(k+1)+2y(k)=0$$
 for $y(-1)=-\frac{1}{2}$, $y(-2)=\frac{3}{4}$.

5. Obtain pulse transfer function of the system shown below with T = 0.5 s and $G_p(s) = \frac{20}{s(s+5)}$.

6. Find state-transition matrix for the homogeneous state equation

$$X(k+1) = F X(k)$$
, where $F = \begin{bmatrix} 0 & 1 \\ -0.16 & -1 \end{bmatrix}$.

GROUP - C

(Long Answer Type Questions)

Answer any *three* of the following. $3 \times 15 = 45$

7. a) For the system represented by

$$\dot{X} = \begin{bmatrix} -7 & 1 \\ -12 & 0 \end{bmatrix} x + \begin{bmatrix} 2 \\ -1 \end{bmatrix} u$$

$$Y = [3 - 4]x + [2]u$$

Compute output response when $u(t) = 3e^{-t}$ and $X[0] = \begin{bmatrix} -6\\1 \end{bmatrix}$.

b) Determine the state feedback gain matrix so that the closed loop poles of the following system are located at $-2 \pm J3 \cdot 464$, -5. Give a block diagram of the control configuration.

$$\dot{X} = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ -6 & -11 & -6 \end{bmatrix} x + \begin{bmatrix} 0 \\ 0 \\ -1 \end{bmatrix} u$$

$$Y = \begin{bmatrix} 1 & 0 & 0 \end{bmatrix} x.$$
7 + 8

a) Derive describing function of a relay with saturation & dead zone nonlinearity.

6206

b) Investigate stability of a system shown below using describing function technique.

7 + 8

- 9. a) Explain jump resonance of a nonlinear system.
 - b) Explain the concept of limit cycle with a suitable example.
 - c) For a spring mass system, construct the phase trajectory on $X \dot{X}$ plane using isocline method with initial conditions x(0) = -1 and $\dot{x}(0) = 0$. Comment on the kind of singularity obtained. 3 + 3 + 9
- 10. a) Discuss the concept of Lyapunov's first and second stability analysis.
 - b) Investigate stability using Laypunov's second method for the system represented by

$$\dot{X} = \begin{bmatrix} 0 & 1 \\ -1 & -1 \end{bmatrix} X$$

$$\dot{X}_1 = x_1 - x_2 - x_2^3.$$

Investigate stability of the equilibrium points. 4 + 5 + 6

- 11. Write short notes on any *three* of the following: $3 \times 5 = 15$
 - i) Harmonic linearization
 - ii) Anti-aliasing filters
 - iii) Properties of state transition matrix
 - iv) Characteristics of common nonlinearities
 - v) Digital compensator design using frequency response.

=========

6206 8