

_	$\sigma_{0}^{\#1}$	$ au_0^{\#1}$	$ au_{0}^{\#2}$	$\sigma_0^{\#1}$
$\sigma_{0^+}^{\sharp 1} \dagger$	$\frac{1}{(1+2k^2)^2t_3}$	$-\frac{i\sqrt{2} k}{(1+2k^2)^2 t_3}$	0	0
$\tau_{0}^{\#1}$ †	$\frac{i\sqrt{2} k}{(1+2k^2)^2 t_3}$	$\frac{2k^2}{(1+2k^2)^2t_3}$	0	0
$\tau_{0^{+}}^{\#2}$ †	0	0	0	0
$\sigma_0^{\sharp 1}$ †	0	0	0	$-\frac{1}{t_1}$

	#	1	1	3	3	3	2	16
Source constraints	SO(3) irreps	$\tau_{0+}^{#2} == 0$	$\tau_{0+}^{\#1} - 2 \bar{l} k \sigma_{0+}^{\#1} == 0$	$t_1^{\#2}{}^{\alpha} + 2ik \ \sigma_1^{\#2}{}^{\alpha} = 0$	$\tau_{1}^{\#1}{}^{\alpha} == 0$	$\tau_1^{\#1}{}^{\alpha\beta} + i k \sigma_1^{\#2}{}^{\alpha\beta} == 0$	$\tau_{2+}^{\#1}\alpha\beta - 2\overline{\imath}k\sigma_{2+}^{\#1}\alpha\beta == 0$	Total #:

	$\omega_{2}^{\#1}{}_{\alpha\beta}$	$f_{2}^{\#1}{}_{\alpha\beta}$	$\omega_{2}^{\#1}{}_{\alpha\beta\chi}$
$\omega_{2}^{\sharp 1} \dagger^{lphaeta}$	<u>t</u> 1 2	$-\frac{i k t_1}{\sqrt{2}}$	0
$f_{2}^{#1}\dagger^{\alpha\beta}$	$\frac{i k t_1}{\sqrt{2}}$	$k^2 t_1$	0
$\omega_2^{#1}$ † $^{\alpha\beta\chi}$	0	0	$k^2 r_1 + \frac{t_1}{2}$

	$\sigma^{\sharp 1}_{2^+ lpha eta}$	$ au_{2}^{\#1}_{lpha\beta}$	$\sigma_{2^{-}\alpha\beta\chi}^{\#1}$
$\sigma_{2}^{\#1}\dagger^{\alpha\beta}$	$\frac{2}{(1+2k^2)^2t_1}$	$-\frac{2i\sqrt{2}k}{(1+2k^2)^2t_1}$	0
$\tau_{2}^{\#1} \dagger^{\alpha\beta}$	$\frac{2 i \sqrt{2} k}{(1+2 k^2)^2 t_1}$	$\frac{4k^2}{(1+2k^2)^2t_1}$	0
$\sigma_2^{\#1} \dagger^{\alpha\beta\chi}$	0	0	$\frac{2}{2k^2r_1+t_1}$

-41

0

0

0

0

 $-i\sqrt{2}kt_3$

*t*³

 $f_{0}^{#2}$

0

0

 $2 k^2 t_3$

 $i\sqrt{2}kt_3$

 $f_{0}^{\#1}$ †

0

0

0

0

 $f_{0}^{\#2} \dagger$

	$\omega_{1^{+}lphaeta}^{\sharp1}$	$\omega_{1^{+}\alpha\beta}^{\#2}$	$f_{1^{+}\alpha\beta}^{\#1}$	$\omega_{1}^{\sharp 1}{}_{lpha}$	$\omega_{1}^{ extstyle 2}{}_{lpha}$	$f_{1-\alpha}^{\#1}$	$f_{1}^{#2}{}_{\alpha}$
$\omega_{\scriptscriptstyle 1}^{\scriptscriptstyle \#1}\dagger^{lphaeta}$	$k^2 (2r_1 + r_5) - \frac{t_1}{2}$	$-\frac{t_1}{\sqrt{2}}$	$-\frac{ikt_1}{\sqrt{2}}$	0	0	0	0
$\omega_{\scriptscriptstyle 1}^{\scriptscriptstyle \#2}\dagger^{lphaeta}$	$-\frac{t_1}{\sqrt{2}}$	0	0	0	0	0	0
$f_{1}^{#1} \dagger^{\alpha\beta}$	$\frac{i kt_1}{\sqrt{2}}$	0	0	0	0	0	0
$\omega_1^{\sharp_1} \dagger^{\alpha}$	0	0	0	$\frac{1}{6} \left(6 k^2 \left(r_1 + r_5 \right) + t_1 + 4 t_3 \right)$	$\frac{t_1-2t_3}{3\sqrt{2}}$	0	$\frac{1}{3} i k (t_1 - 2 t_3)$
$\omega_{1}^{#1} \uparrow^{\alpha}$ $\omega_{1}^{#2} \uparrow^{\alpha}$		0	0	$\frac{\frac{1}{6} (6 k^2 (r_1 + r_5) + t_1 + 4 t_3)}{\frac{t_1 - 2 t_3}{3 \sqrt{2}}}$	$\frac{t_1 - 2t_3}{3\sqrt{2}}$ $\frac{t_1 + t_3}{3}$		$\frac{1}{3} i k (t_1 - 2t_3)$ $\frac{1}{3} i \sqrt{2} k (t_1 + t_3)$
	0			0	<u>t1+t3</u>		3

Massive particle

Pole residue:	$-\frac{3(-2t_1t_3(t_1+t_3)+r_1(t_1^2+2t_3^2)+r_5(t_1^2+2t_3^2))}{2(r_1+r_5)(t_1+t_3)(-3t_1t_3+r_1(t_1+t_3)+r_5(t_1+t_3))}>0$
Polarisations:	3
Square mass:	$-\frac{3t_1t_3}{2(r_1+r_5)(t_1+t_3)} > 0$
Spin:	1
Parity:	Odd

Unitarity conditions $r_1 < 0 \&\& r_5 < -r_1 \&\& t_1 > 0 \&\& t_3 < -t_1 || t_3 > 0$

(No massless particles)