直接LU分解

计算表格

$u_{11}=a_{11}$	$u_{12}=a_{12}$	$u_{13}=a_{13}$
$l_{21}=a_{21}/u_{11}$	$u_{22}=a_{22}-l_{21}u_{12}$	$u_{23}=a_{23}-l_{21}u_{13}$
$l_{31}=a_{31}/u_{11}$	$l_{32}=(a_{32}-l_{31}u_{12})/u_{22}$	$u_{33}=a_{33}-l_{31}u_{13}-l_{32}u_{23}$

- 。也可逐行算,或逐列算,或其它可行次序算
- ▶应用
 - 解Ax = b:分解A = LU解Ly = b求y解Ux = y求x
 - 计算 $det(A) = det(L) det(U) = u_{11}u_{22} \cdots u_{nn}$

其它形式的分解

A = LU(L下三角矩阵, U单位上三角矩阵)

$u_{11}=a_{11}$	$u_{12}=a_{12}$	$u_{13}=a_{13}$
$l_{21}=a_{21}/u_{11}$	$u_{22}=a_{22}-l_{21}u_{12}$	$u_{23}=a_{23}-l_{21}u_{13}$
$l_{31}=a_{31}/u_{11}$	$l_{32}=(a_{32}-l_{31}u_{12})/u_{22}$	$u_{33}=a_{33}-l_{31}u_{13}-l_{32}u_{23}$

LDR

分解

for
$$j=1$$
: n
for $i=2$: j
 $a_{ij} = a_{ij} - a_{i1}a_{1j} - a_{i2}a_{2j} - \dots - a_{i,i-1}a_{i-1,j}$ (计算 u_{ij})

end

for
$$i=j+1$$
: n

$$a_{ij} = (a_{ij} - a_{i1}a_{1j} - a_{i2}a_{2j} - \dots - a_{i,j-1}a_{j-1,j})/a_{jj} \quad (计算 l_{ij})$$

end

for
$$i=1:j-1$$

$$a_{ij}=a_{ij}/a_{ii}$$
(计算 r_{ij})

end

end

小主元扩大误差

▶ 例2 顺序消去法,用精确运算:

$$\begin{bmatrix} 0.0001 & 1 & 1 \\ 1 & 1 & 2 \end{bmatrix} \rightarrow \begin{bmatrix} 0.0001 & 1 & 1 \\ 0 & -9999 & -9998 \end{bmatrix}$$

得(10000/9999,9998/9999)≈(1.0001,0.9999)若在十进三位尾数舍入的浮点计算机系统中运算,第二行将是(0 – 10000|-10000)得到解 $x_2 = 1$, $x_1 = 0$.与真解相去甚远.

▶ 把两个方程(两行)交换次序再消元,得解 $x_2 = 1, x_1 = 1$,与 真解很近:

$$\begin{bmatrix} 0.0001 & 1 & | & 1 \\ 1 & 1 & | & 2 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 1 & | & 2 \\ 0.0001 & 1 & | & 1 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 1 & | & 2 \\ 0 & 1 & | & 1 \end{bmatrix}$$

主元素法

- 列主元素法:在每次消元前先选该列中绝对值最大的做主元(交换两行,每行包括右端项!)。
 - 。列主元素法乘数 m_{ik} 绝对值不大于1,不会增加误差
 - 。列主元素法用来求行列式时要注意两行交换行列式变号.

- 》全主元素法:在整个右下 $(n-k) \times (n-k)$ 矩阵找绝对值最大的做主元(交换行及列).
 - 。这对误差控制有利,但搜索太费时.通常列主元素法误差控制就已可以了.

列主元素法

```
for k=1:n-1
       找 p: |a_{pk}| = \max(|a_{kk}|, |a_{k+1,k}|, \dots, |a_{nk}|)

      \bigcirc \longleftrightarrow \mathbb{k}

       i_k=p
       if a_{kk} \neq 0
             for i=k+1:n
                     m_{ik}=a_{ik}/a_{kk}
                     (i)=(i)-(k)\times m_{ik}
              end
       else
                     stop
       end
end
```

列主元素法算例

▶ 例3 列主元素法解方程组

$$\begin{bmatrix} 2 & 2 & 0 & | & 6 \\ 1 & 1 & 2 & | & 9 \\ 2 & 1 & 1 & | & 7 \end{bmatrix} \rightarrow \begin{bmatrix} 2 & 2 & 0 & | & 6 \\ (1/2) & 0 & 2 & | & 6 \\ (1) & -1 & 1 & | & 1 \end{bmatrix} \rightarrow \begin{bmatrix} 2 & 2 & 0 & | & 6 \\ (1) & -1 & 1 & | & 1 \\ (1/2) & 0 & 2 & | & 6 \end{bmatrix} \rightarrow \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}$$

括号内是乘数,k = 2时2,3行交换.

LU分解

$$\begin{bmatrix} 1 & & & \\ & & 1 \end{bmatrix} \begin{bmatrix} 2 & 2 & 0 \\ 1 & 1 & 2 \\ 2 & 1 & 1 \end{bmatrix} = \begin{bmatrix} 1 & & & \\ 1 & 1 & \\ 1/2 & 0 & 1 \end{bmatrix} \begin{bmatrix} 2 & 2 & 0 \\ & -1 & 1 \\ & & 2 \end{bmatrix}$$

即列主元素法实现了LU分解:PA = LU, P是行交换结果的排列阵.

列主元LU分解

- ▶ 列主元素法实现LU分解
 - 。如上例,只要记住交换历 史
- ▶ 直接列主元LU分解
 - 。修改直接LU分解加入选 主元
 - 。算法如右(可就地完成: I_{ik} , u_{ki} 置A中)

```
for k=1:n-1
       for i=kn
              a_{ik}=a_{ik}-l_{i1}u_{1k}-l_{i2}u_{2k}-\cdots-l_{ik-1}u_{k-1k}
       end
       找 p: |a_{pk}| = \max(|a_{kk}|, |a_{k+1,k}|, \dots, |a_{nk}|)
       (p) \leftrightarrow (k)
       i_k=p
       for j=k+1:n
              u_{ki} = a_{ki} - l_{k1}u_{1i} - l_{k2}u_{2i} - \cdots - l_{k,k-1}u_{k-1,i}
       end (u_{kk}=a_{kk})
       for i=k+1:n
              l_{ik} = a_{ik}/u_{kk}
        end
end
```

实对称阵分解

- 对称阵性质
 - 顺序主子式非零时可作LU分解A = LU,且有 $U = DL^T$, D是 U对角元构成的对角阵.因而 $A = LDL^T$, L单位下三角阵, D对角阵,称 LDL^T 分解或改进的Cholesky分解.
 - 。正定时,顺序主子式全正,D可开平方根,乃有 $A = LL^T$,L下 三角阵,对角元全正,称 LL^T 分解或Cholesky分解.
 - 。对称阵可只存储下(上)三角部分.

LDLT分解

) 计算表格.

。表格1

$d_1 = u_{11}$	$u_{12}=a_{12}$ $u_{13}=a_{13}$		
$=a_{11}$	$l_{21}=u_{12}/d_1$	$l_{31}=u_{13}/d_1$	
	$d_2 = u_{22} = a_{22} - l_{21}u_{12}$	$u_{23}=a_{23}-l_{21}u_{13}$	
		$l_{32}=u_{23}/d_2$	
		$u_{33}=a_{33}-l_{31}u_{13}-l_{32}u_{23}$	

• 表格2

$d_1 = a_{11}$		
$t_1 = a_{21} l_{21} = t_1/d_1$	$d_2 = a_{22} - t_1 l_{21}$	
$t_1 = a_{31} l_{31} = t_1/d_1$	$t_2 = a_{32} - t_1 l_{21}$ $l_{32} = t_2 / d_2$	$d_3 = a_{33} - t_1 l_{31} - t_2 l_{32}$

· 注意二表格关系,程序实现时,表格1宜逐列算,表格2宜逐行 算.

LDLT分解算例

▶ 例4

- 。按表格1计算, L帮助理解可不写
- 分解后依次求 $g,y,x(Lg=b,Dy=g,L^Tx=y)$

1	1	2	2		
(1)	5	0	-4		
(2)	(0)	14	16	y	X
1	(1),1	(2), <mark>2</mark>	2	2	2+1-2=1
1	5-1=4	(0-2), -2/4	-4-2=-6	-6/4=-3/2	-3/2+1/2=-1
2	-1/2	14-4-1=9	16-3-4=9	9/9=1	1

LLT分解

- **)** 计算表格
 - 。表格1

$l_{11}=a_{11}^{1/2}$	$l_{21} = a_{12}/l_{11}$	$l_{31}=a_{13}/l_{11}$
	$l_{22} = (a_{22} - l_{21}^2)^{1/2}$	$l_{32} = (a_{23} - l_{21}l_{31})/l_{22}$
		$l_{33} = (a_{33} - l_{31}^2 - l_{32}^2)^{1/2}$

• 表格2

$l_{11}=a_{11}^{1/2}$		
$l_{21} = a_{21}/l_{11}$	$l_{22} = (a_{22} - l_{21}^2)^{1/2}$	
$l_{31} = a_{31}/l_{11}$	$l_{32} = (a_{32} - l_{31}l_{21})/l_{22}$	$l_{33} = (a_{33} - l_{31}^2 - l_{32}^2)^{1/2}$

。二表格逐行逐列计算皆宜.

LLT分解算例

▶ 例5

- 。按表格2计算, L^T 帮助理解可不写
- 分解后依次求g, $x(Lg = b, L^T x = g)$

1	(1)	(2)	2	
1	5	(0)	-4	
2	0	14	16	
1	1	2	2	2+1-2=1
1	$(5-1=4)^{1/2}=2$	-1	(-4-2)/2=-3	(-3+1)/2=-1
2	(0-2)/2=-1	$(14-4-1=9)^{1/2}=3$	(16-3-4)/3=3	3/3=1

病态现象

▶ 例6:病态方程组

$$\begin{bmatrix} 1 & 1 & 2 \\ 1 & 1.0001 & 2 \end{bmatrix} \rightarrow \begin{bmatrix} 2 \\ 0 \end{bmatrix}, \quad \begin{bmatrix} 1 & 1 & 2 \\ 1 & 1.0001 & 2.0001 \end{bmatrix} \rightarrow \begin{bmatrix} 1 \\ 1 \end{bmatrix}$$

▶ 例7:病态矩阵

$$H_4 = \begin{bmatrix} 1 & 1/2 & 1/3 & 1/4 \\ 1/2 & 1/3 & 1/4 & 1/5 \\ 1/3 & 1/4 & 1/5 & 1/6 \\ 1/4 & 1/5 & 1/6 & 1/7 \end{bmatrix}, \quad H_4^{-1} = \begin{bmatrix} 16 & -120 & 240 & -140 \\ -120 & 1200 & -2700 & 1680 \\ 240 & -2700 & 6480 & -4200 \\ -140 & 1680 & -4200 & 2800 \end{bmatrix}$$

 H_4 取五位有效数字,其逆误差在前面第二、三位上:

向量和矩阵的范数

- > 向量范数
 - 设 $\|\cdot\|: x \in C^n \to \|x\| \in R$,满足
 - 正定性: $||x|| \ge 0$, ||x|| = 0 if f(x) = 0
 - 齐次性: ||cx|| = |c|||x||
 - 。 三角不等式: $||x + y|| \le ||x|| + ||y||$ 则称 C^n 中定义了向量范数, ||x||为向量x的范数.
- 矩阵范数
 - 设||·||: $X \in C^{n \times n} \rightarrow ||X|| \in R$, 满足
 - 。 正定性: $||X|| \ge 0$, ||X|| = 0 if f(X) = 0
 - 齐次性: ||cX|| = |c|||X||,
 - 。 三角不等式: $||X + Y|| \le ||X|| + ||Y||$
 - 相容性: ||XY|| ≤ ||X||||Y||

则称 $C^{n\times n}$ 中定义了矩阵范数, ||X||为矩阵X的范数.

向量和矩阵的范数

- **L**点注记
 - 。 范数是特殊性质的实值函数
 - 。 数域C可改成R
 - 。 易得|||x|| ||y||| ≤ ||x y||
 - 。 范数是分量的连续函数
 - 矩阵X可视为n^2维向量,故其范数有前三条性质,从而向量范数推出的事实矩阵范数也有
 - 。 矩阵范数第四条,是考虑到矩阵乘法关系而设

常用向量范数

- ▶ 常用向量范数: $x = (x_1, x_2, \dots, x_n)^T$
 - $1-范数 ||x||_1 = |x_1| + |x_2| + \cdots + |x_n|$
 - · 2-范数 $||x||_2 = (|x_1|^2 + |x_2|^2 + \dots + |x_n|^2)^{\frac{1}{2}}$
 - 。 ∞-范数 $\|x\|_{\infty} = \max(|x_1|, |x_2|, \dots, |x_n|)$
- **性质**

$$||x||_{\infty} \le ||x||_{2} \le ||x||_{1} \le n^{\frac{1}{2}} ||x||_{2} \le n ||x||_{\infty}$$

向量序列收敛性

- 向量范数等价性
 - C^n 中任意两种向量范数 $\|x\|_{\alpha}$, $\|x\|_{\beta}$ 是等价的,即有 m, M > 0使 $m\|x\|_{\alpha} \leq \|x\|_{\beta} \leq M\|x\|_{\alpha}$
- 向量序列收敛性等价表达
 - $\{x^{(k)}\}$ 收敛于 $x(k \to \infty)$
 - $x^{(k)} \to x(k \to \infty)$
 - $x_j^{(k)} x_j \to 0, j = 1, 2, \cdots, n(k \to \infty)$
 - $\|x^{(k)} x\| \to 0 (k \to \infty)$

其中 $x_j^{(k)}$ 是 $x^{(k)}$ 的第j个分量, x_j 是x的第j个分量

算子范数

- > 范数相容性定义
 - 。 矩阵范数向量范数相容, 若||Ax|| ≤ ||A||||x||
- 定理
 - 设A是 $n \times n$ 矩阵, $\|\cdot\|$ 是n维向量范数,则 $\|A\| = \max\{\|Ax\|: \|x\| = 1\}$ $= \max\left\{\frac{\|Ax\|}{\|x\|}: x \neq 0\right\}$

是一种矩阵范数,称为由该向量范数诱导出的矩阵范数或算子范数

。 它们具有相容性或者说是相容的

常用矩阵范数

- 注
 - 。 任一矩阵范数都有与之相容的向量范数
 - 单位矩阵算子范数为1
- > 常用矩阵范数
 - ∘ 1-范数: $||A||_1 = \max\{||Ax||_1: ||x||_1 = 1\} = \max_{1 \le j \le n} \sum_{i=1}^n |a_{ij}|$
 - 2-范数: $||A||_2 = \max\{||Ax||_2: ||x||_2 = 1\} = \sqrt{\lambda_1}$ λ_1 是 A^HA 的最大特征值
 - ∞ -范数: $||A||_{\infty} = \max\{||Ax||_{\infty}: ||x||_{\infty} = 1\} = \max_{1 \le i \le n} \sum_{j=1}^{n} |a_{ij}|$
 - Frobenius范数: $||A||_F = \left(\sum_{i,j=1}^n |a_{ij}|^2\right)^{\frac{1}{2}}$ 它与向量2-范数相容.但非算子范数

矩阵谱半径

- ▶ 谱半径
 - $\pi \rho(A) = \max |\lambda_i|$ 为A的谱半径, λ_i 是其特征值, $i = 1,2,\cdots n$.
 - 。 谱半径非矩阵范数(例如,无正定性)
 - $\circ \rho(A) \leq ||A||$
 - $||A||_2 = (\rho(A^H A))^{\frac{1}{2}}$
 - 若 $A^H = A$, 则 $||A||_2 = \rho(A)$
 - 矩阵序列 $I,A,A^2,\cdots,A^k,\cdots$ 收敛于零的充分必要条件是 $\rho(A) < 1$

扰动分析

- ト 方程 $Ax = b(b \neq 0)$ 一般扰动方程 $(A + \Delta A)(x + \Delta x) = b + \Delta b$
- ▶ 解的扰动(当 $\|A^{-1}\|\|\Delta A\| < 1$)
 - 。一般情况

$$\frac{\|\Delta x\|}{\|x\|} \le \frac{\|A\| \|A^{-1}\|}{1 - \|A^{-1}\| \|\Delta A\|} \left(\frac{\|\Delta b\|}{\|b\|} + \frac{\|\Delta A\|}{\|A\|}\right)$$

。特例:只右端项有扰动

$$\frac{\|\Delta x\|}{\|x\|} \le (\|A^{-1}\| \|A\|) \frac{\|\Delta b\|}{\|b\|}$$

。特例:只系数有扰动

$$\frac{\|\Delta x\|}{\|x\|} \le \frac{\|A\| \|A^{-1}\|}{1 - \|A^{-1}\| \|\Delta A\|} \left(\frac{\|\Delta A\|}{\|A\|}\right)$$

敏感性与条件数

条件数

$$Cond(A) = ||A^{-1}|| ||A||$$

- $Cond(A) \ge 1$
- $Cond(cA) = Cond(A), c \neq 0$
- $Cond(A)_2 = \|A^{-1}\|_2 \|A\|_2 = \left(\frac{\lambda_1}{\lambda_n}\right)^{\frac{1}{2}}$ 称为谱条件数, λ_1 , λ_n 分别是 A^HA 的最大和最小特征值.
- 正交矩阵,酉矩阵的谱条件数为1.
- 》 扰动分析表明:条件数不大, 扰动对解的影响不大;条件数 越大, 扰动对解的影响也越大, 这就是说条件数是方程组敏 感性以及病态或良态的度量.
- ▶ 系数矩阵的谱条件数: 例6中2.0001²×10⁴,例7中28000.

误差分析

- ▶ 后验误差估计--剩余量估计误差
 - 。设x和x*分别为非奇异方程组Ax = b(≠ 0)的准确解和近似解,r为x*的剩余量r = b Ax*则

$$\frac{1}{Cond(A)} \cdot \frac{||r||}{||b||} \le \frac{||x^* - x||}{||x||} \le Cond(A) \frac{||r||}{||b||}$$

。 病态方程组剩余量小时误差还可能很大:

$$0.780x_1 + 0.563x_2 = 0.217$$

$$0.913x_1 + 0.659x_2 = 0.254$$

$$x = (1, -1)^T, x^* = (0.341, -0.087)^T,$$

$$r = (-0.000001, 0)^T, x^* - x = (-0.659, 0.913)^T$$
这里

$$Cond(A)_{\infty} \approx 2.7 \times 10^6$$

病态的发现与处理

- 下述情况会出现病态
 - 。 行或列近似线性相关
 - 。 行列式接近零
 - 。 主元素法出现小主元
 - 。 条件数估算很大
- 病态方程组的计算
 - 用双精度或更高精度计算
 - 用迭代改善法