

11 PHYSICS ATAR **TEST 4: ELECTRICITY**

NAME:	SOLUTIONS	MARK: —
		47

The diagram below represents a cathode ray tube that accelerates electrons between its 1. electrodes. Each second, 3.12 x 10² electrons move between electrodes X and Y. The accelerating voltage is 5.00 x 10² V.

- (a) On the diagram, draw the direction of the electric field in the tube. Explain why you chose this direction.
 - · Y is a positive potential.

 - · Electric field somes out of the possitive into the negative.

 A possibility-charged particle would move away from Y. (i)

Determine the size of the current that flows. (b)

$$T = \frac{9}{t} \qquad (1)$$

$$= \frac{(3.12 \times 10^{2})(1.60 \times 10^{19})}{1.00} \qquad (1)$$

$$= \frac{4.99 \times 10^{-17} A}{1.00} \qquad (1)$$

(3)

(c) Calculate the speed of the electrons as they reach the opposite electrode.

$$W = Vq = \frac{1}{2} m V^{2}$$

$$= V = \sqrt{\frac{2 Vq}{m}} \qquad (1)$$

$$= \sqrt{\frac{2 (5.00 \times 10^{2}) (1.60 \times 10^{-19})}{(9.11 \times 10^{-31})}} \qquad (1)$$

$$= 1.32 \times 10^{7} \text{ ms}^{-1} \qquad (1)$$

(3)

(d) What is the power developed by the power source of the tube?

$$P = VI$$

$$= (5.00 \times 10^{2})(4.99 \times 10^{-17}) \quad (1)$$

$$= 2.50 \times 10^{-14} \text{ W} \quad (1)$$

(3)

2. What is the cost of running a 5.50×10^2 W refrigerator for a year if it operates an average of 8.25 hours per day and electricity costs 26.5 cents per unit? (1.00 unit = $1.00 \text{ kWh} = 3.60 \times 10^6 \text{ J}$)

$$(ost = P(kwh) \times t(h) \times 26.5$$

$$= (0.550)(8.25 \times 365)(26.5)$$

$$= $438.90$$
(1)

3. How much heat energy is dissipated by a 48.0 k Ω resistor that has a current of 0.350 A flowing through it for a time of 40.0 minutes?

$$W = Q = VIt = I^{2}Rt$$
 (2)
= $(0.350)^{2}(48.0 \times 10^{3})(40.0 \times 60.0)$ (1)
= $1.41 \times 10^{7} J$. (1)

(4)

4. Determine the total resistance in each of the simple circuits shown below.

5. Describe how the following act as safety features to protect people from electric shock. Fuse · Melds due to the hear produced. (1) · Breaks the arcuit. Earth wire (b) . Connected externally to a pipe ("earth"). (1) · Allows werent to flow to earth takker than a person. Double insulation (c) · Everything electrical in the appliance is double-wrapped (1) in plastic. · No earth wire is required - have double protection.

(3)

6. The circuit below shows a complex circuit with 25.0 mA of current flowing in the 100 Ω resistor C.

(a) Find the potential difference across resistor C.

$$V_{c} = I_{c}R$$

$$= (25.0 \times 10^{3})(100) \quad (1)$$

$$= 2.50 \text{ V} \quad (1)$$

(b) What is the current flowing in resistor B?

$$V_{B} = V_{C} = \overline{I}_{2}R$$

$$\Rightarrow \overline{I}_{2} = \frac{2.50}{25.0} \quad (1)$$

$$= 0.100 A \quad (1)$$

(c) Determine the total current flowing in the circuit.

$$I_T = I_1 + I_2$$

= 0.025 + 0.100 (1)
= 0.125 A (1)

(2)

(2)

(2)

(d) What is the effective resistance of the circuit?

$$\frac{1}{R_{BC}} = \frac{1}{R_{B}} + \frac{1}{R_{C}}$$

$$= \frac{1}{25} + \frac{1}{100}$$

(e) What is the potential difference of the electricity source?

$$V = I_{T} R_{T}$$

$$= (0.125)(72.0) (1)$$

$$= 9.00 V (1)$$

(2)

(3)

7. A group of students were given the task of determining the value of an unknown ceramic resistor. Their results were as follows.

Voltage (V)	Current (A)
1.95	0.75
3.80	1.55
6.15	2.50
8.00	3.10
9.85	4.00

(a) Draw a circuit diagram to show how the students would measure the voltage and current through the resistor.

- (b) Graph these results on the grid provided. (4)
- (c) Determine the gradient of the graph and hence the value of the resistance.

gradient =
$$(9.60-0.20)$$
 (2) gradient = $\frac{\Delta V}{\Delta I} = R$
= 2.35Ω (1) $\Rightarrow R = 2.35 \Omega$
 $(\pm 0.20 \Omega)$

