Ryan Long DSC640

6.2 Exercises: Charts

Dataset used:

education.csv disney.xlsx

Summary

Histograms and Boxplots were a good refresher in Python and R, and new to me in Power BI. I much rather preferred them in the programming languages due to familiarity. I also think they would be used there more frequently during EDA. I think the inverse would be true for the bullet chart as I would set it more as a dashboard / KPI tracking which would get built out in Power BI. For the new charts, I did a Sankey in Power BI using a dataset of Disney Expenses. I used the same dataset in Python and R and created Violin charts. They were an option in a previous exercise, but I did not create them.

The following pages contain:

Power BI: Histogram

Box Plot

Bullet Chart

Sankey

Python:

Histogram

Box Plot

Bullet Chart

Violin Chart

R:

Histogram

Box Plot

Bullet Chart

Violin Chart

Appendix

Code support for both Python and R notebooks

Python - Bullet Chart: Nebraska SAT Section Scores

R - Histogram: Math Scores

R - Boxplot: SAT Scores in USA

R - Bullet Chart: Nebraska SAT Section Scores

APPENDIX

```
In [1]: #Load libraries
         import pandas as pd
         import seaborn as sns
         import numpy as np
         import matplotlib.pyplot as plt
         import plotly.graph objects as go
         #import squarify
         #import matplotlib.ticker as plticker # for plot ticks
In [ ]:
In [2]: #import data as dataframe
         bdf = pd.read csv('education.csv')
         ddf = pd.read_excel('disney.xlsx')
In [3]: #bdf.head()
         ddf.head()
Out[3]:
            Category Sub Category Amount
          0
              Disney
                         Fast Pass
                                    38.36
          1
              Disney
                         Fast Pass
                                    63.92
          2
              Disney
                         Fast Pass
                                    42.60
          3
                                     2.25
              Disney
                             Food
              Disney
                             Food
                                     2.25
In [4]: #bdf.info()
         #ddf.info()
```

Histogram

```
In [5]: # Plot the histogram thanks to the distplot function
    sns.distplot( a=bdf["math"], hist=True, kde=False, rug=False )
    plt.xlabel("Math Score")
    plt.ylabel("Frequency")
    plt.title("Python - Histogram: Distribution of SAT Math Scores")
```

C:\Users\longr\anaconda3\lib\site-packages\seaborn\distributions.py:2557: Futur eWarning: `distplot` is a deprecated function and will be removed in a future v ersion. Please adapt your code to use either `displot` (a figure-level function with similar flexibility) or `histplot` (an axes-level function for histogram s).

warnings.warn(msg, FutureWarning)

Out[5]: Text(0.5, 1.0, 'Python - Histogram: Distribution of SAT Math Scores')

Box Plot

```
In [6]: bpdf = bdf.drop(['percent_graduates_sat', 'pupil_staff_ratio', 'dropout_rate'], a
```

In [7]: bpdf

Out[7]:

	state	reading	math	writing
0	United States	501	515	493
1	Alabama	557	552	549
2	Alaska	520	516	492
3	Arizona	516	521	497
4	Arkansas	572	572	556
5	California	500	513	498
6	Colorado	568	575	555
7	Connecticut	509	513	512
8	Delaware	495	498	484
9	District of Columbia	466	451	461
10	Florida	497	498	480
11	Georgia	490	491	479
12	Hawaii	479	502	469
13	Idaho	541	540	520
14	Illinois	588	604	583
15	Indiana	496	507	480
16	lowa	610	615	588
17	Kansas	581	589	564
18	Kentucky	573	573	561
19	Louisiana	563	558	555
20	Maine	468	467	455
21	Maryland	500	502	495
22	Massachusetts	514	526	510
23	Michigan	584	603	575
24	Minnesota	595	609	578
25	Mississippi	567	554	559
26	Missouri	595	600	584
27	Montana	541	542	519
28	Nebraska	587	594	572
29	Nevada	501	505	479
30	New Hampshire	523	523	510
31	New Jersey	496	513	496
32	New Mexico	553	546	534
33	New York	485	502	478

	state	reading	math	writing
34	North Carolina	495	511	480
35	North Dakota	590	593	566
36	Ohio	537	546	523
37	Oklahoma	575	571	557
38	Oregon	523	525	499
39	Pennsylvania	493	501	483
40	Rhode Island	498	496	494
41	South Carolina	486	496	470
42	South Dakota	589	600	569
43	Tennessee	571	565	565
44	Texas	486	506	475
45	Utah	559	558	540
46	Vermont	518	518	506
47	Virginia	511	512	498
48	Washington	524	531	507
49	West Virginia	511	501	499
50	Wisconsin	594	608	582
51	Wyoming	567	568	550

```
In [8]: sns.boxplot(data=bpdf)
plt.xlabel("SAT Sections")
plt.ylabel("Frequency")
plt.title("Python - Box Plot: SAT Scores")
```

Out[8]: Text(0.5, 1.0, 'Python - Box Plot: SAT Scores')

Bullet Chart

```
In [9]: bcdf=bpdf.loc[(bpdf['state'] == 'Nebraska') | (bpdf['state'] == 'United States')
In [10]: bcdf
```

Out[10]:

	state	reading	matn	writing
0	United States	501	515	493
28	Nebraska	587	594	572

```
In [11]: fig = go.Figure()
         fig.add trace(go.Indicator(
             mode = "number+gauge+delta", value = 587,
             delta = {'reference': 800},
             domain = {'x': [0.25, 1], 'y': [0.08, 0.25]},
             title = {'text': "Reading"},
             gauge = {'shape': "bullet"}))
         fig.add_trace(go.Indicator(
             mode = "number+gauge+delta", value = 594,
             delta = {'reference': 800},
             domain = \{'x': [0.25, 1], 'y': [0.4, 0.6]\},
             title = {'text': "Math"},
             gauge = {'shape': "bullet"}))
         fig.add trace(go.Indicator(
             mode = "number+gauge+delta", value = 572,
             delta = {'reference': 800},
             domain = \{'x': [0.25, 1], 'y': [0.7, 0.9]\},
             title = {'text' :"Writing"},
             gauge = {'shape': "bullet",}))
         fig.update_layout(title={
                  'text': "Python - Bullet Chart: Nebraska SAT Section Scores",
                  'y':1,
                  'x':0.5,
                  'xanchor': 'center',
                  'yanchor': 'top'},height = 400 , margin = {'t':0, 'b':0, 'l':0})
         fig.show()
```

Python - Bullet Chart: Nebraska SAT Sec

Violin

In [19]: ddf

Out[19]:

	Category	Sub Category	Amount
0	Disney	Fast Pass	38.36
1	Disney	Fast Pass	63.92
2	Disney	Fast Pass	42.60
3	Disney	Food	2.25
4	Disney	Food	2.25
57	Transportation	Parking	70.00
58	Transportation	Uber	53.01
59	Transportation	Uber	10.40
60	Transportation	Uber	9.14
61	Transportation	Uber	45.74

62 rows × 3 columns

```
In [33]: # Library & dataset
    import seaborn as sns
    import matplotlib.pyplot as plt
    sns.set(style="darkgrid")
    # plot
    sns.violinplot(x=ddf["Amount"],y=ddf["Category"])

plt.title("Python - Violin Chart: Disney Costs")
    plt.show()
```


In	[]	:	
In	[]	:	
In	[]	:	
In	[]	:	
In	[]	:	
In	[]	:	

Week 11 & 12

Code ▼

```
Hide
#load libraries
library(ggplot2)
Use suppressPackageStartupMessages() to eliminate package startup messages
                                                                                 Hide
library(dplyr)
Attaching package: 'dplyr'
The following objects are masked from 'package:stats':
   filter, lag
The following objects are masked from 'package:base':
   intersect, setdiff, setequal, union
                                                                                 Hide
library(tidyr)
library(tidyverse)
Registered S3 methods overwritten by 'dbplyr':
 method
              from
 print.tbl_lazy
 print.tbl_sql
-- Attaching packages ------
                     ------ tidyverse 1.3.1 --
v tibble 3.1.6
                v stringr 1.4.0
v readr 2.1.0
                v forcats 0.5.1
        0.3.4
v purrr
-- Conflicts ------
                                 ----- tidyverse conflicts() --
x dplyr::filter() masks stats::filter()
x dplyr::lag()
               masks stats::lag()
```

Hide

library(hrbrthemes)

```
Registering Windows fonts with R
NOTE: Either Arial Narrow or Roboto Condensed fonts are required to use these themes.
      Please use hrbrthemes::import_roboto_condensed() to install Roboto Condensed and
      if Arial Narrow is not on your system, please see https://bit.ly/arialnarrow
                                                                                               Hide
library(pivottabler)
library(areaplot)
library(plotly)
Attaching package: 'plotly'
The following object is masked from 'package:ggplot2':
    last plot
The following object is masked from 'package:stats':
    filter
The following object is masked from 'package:graphics':
    layout
                                                                                               Hide
library(readxl)
                                                                                               Hide
#import data
satdf = read.csv("C://Users//longr//Documents//DSC 640//Weeks 11 & 12//Exercises 6.2//education.
csv")
                                                                                               Hide
#Histogram
ggplot(satdf, aes(x=math)) +
  geom_histogram(binwidth=40)+
  xlab("Score Bins")+ylab("Count")+
  ggtitle("R - Histogram: Math Scores")
```

R - Histogram: Math Scores


```
#Box Plot
bpdf <- satdf[ -c(1,5:7)]#new df for boxplot
stacked_bpdf <- stack(bpdf)
```

Hide

```
#boxplot(stacked_bpdf$values ~ stacked_bpdf$ind,
# col = rainbow(ncol(bpdf)))
```

Hide

```
#https://r-coder.com/boxplot-r/

ggplot(stacked_bpdf, aes(x = ind, y = values)) +
    stat_boxplot(geom = "errorbar",width = 0.2) +
    geom_boxplot(fill = "#4271AE", colour = "#1F3552",alpha = 0.9, outlier.colour = "red") +
    scale_y_continuous(name = "") +
    scale_x_discrete(name = "") +
    ggtitle("R - Boxplot: SAT Scores in USA") +
    theme(axis.line = element_line(colour = "black", size = 0.25))
```

R - Boxplot: SAT Scores in USA

Hide

```
#Bullet Chart
fig <- plot ly()
fig <- fig %>%
  add_trace(
    type = "indicator",
    mode = "number+gauge+delta",
    value = 587,
    delta = list(reference = 800),
    domain = list(x = c(0.25, 1), y = c(0.08, 0.25)),
    title =list(text = "Reading"),
    gauge = list(shape = "bullet"))
fig <- fig %>%
  add trace(
    type = "indicator",
    mode = "number+gauge+delta",
    value = 594,
    delta = list(reference = 800),
    domain = list(x = c(0.25, 1), y = c(0.4, 0.6)),
    title = list(text = "Math"),
    gauge = list(shape = "bullet"))
fig <- fig %>%
  add trace(
    type = "indicator",
    mode = "number+gauge+delta",
    value = 572,
    delta = list(reference = 800 ),
    domain = list(x = c(0.25, 1), y = c(0.7, 0.9)),
    title = list(text = "Writing"),
    gauge = list(shape = "bullet"))
fig<- fig%>%
  layout(title = 'R - Bullet Chart: Nebraska SAT Section Scores', plot_bgcolor = "#e5ecf6")
fig
```

R - Bullet Chart: Nebraska SAT Section Scores

Hide

NA

Hide

#import data
ddf = read_excel("C://Users//longr//Documents//DSC 640//Weeks 11 & 12//Exercises 6.2//disney.xls
x")

Hide

```
# Most basic violin chart
ggplot(ddf, aes(x=Category, y=Amount)) + # fill=name allow to automatically dedicate a color for
each group
  geom_violin()+
    xlab("Categories")+ylab("Amount")+
    ggtitle("R - Violin Chart: Disney Expenses")
```

R - Violin Chart: Disney Expenses

