

Departamento de Matemática, Universidade de Aveiro

Cálculo II-Agrupamento 3 — 2º Teste (VERSÃO 1)

27 de junho de 2022 Duração: **2h00**

1. Nas all seguinte (i) respective (ii) respective (iii) aussisted (a) U	neas seguesta corrections a equação $3x + 2x = 3x + 2x $	2 [25pts] aintes as ta: 10 portes as aio do pla $2z + 7 = z - 7 = z - 1 = z$	3 [25pts] [ustifiq] sinale contos; ontos; ou responsano tang	4 [25pts] ue toda om uma	5a [15pts] as as rea	5b [15pts] espost opção cotos.	5c [05pts] as e incorreta.	6a [15pts]	6b [15pts] OS CÁICU ão a atrib	Classificação (valores) Llos efetuados buir a cada response 5 no ponto (1,0)
- Nas diseguinte (i) respective (ii) respective (iii) australia (a) U	[60pts] neas seguesta correspondencia de recursor a equação $3x + 2x = 3x + 2x + 2x = 3x + 2x +$	[25pts] anintes as ta: 10 portes anintes as ta: -3 portes anintes as $2z + 7 = z + 1 = z - 7 = z - 1 = z - 1 = z - 1 = z - 1$	[25pts] [ustifiq sinale contos; ontos; on response ano tang	ue toda om uma	as as real as	espost opção c	as e incorreta.	dique d	[15pts] OS CÁICU ão a atrib	(valores)
1. Nas all seguinte (i) respective (ii) respective (iii) aussisted (a) U	neas seguesta correctora de racciona equação $\begin{bmatrix} -3x + \\ 3x - 2x \end{bmatrix}$ $\begin{bmatrix} 3x + 2x \\ 3x + 2x \end{bmatrix}$	nintes as ta: 10 po da: -3 po resposta ão do pla $2z + 7 = z + 1 = z - 7 = z - 1 = z$	sinale contos; ontos; ou respo	om uma osta nula	a cruz a	opção c	orreta.	A cotaç	ão a atrib	buir a cada respo
seguinto (i) respo (ii) respo (iii) aus (a) U (b) So U	esta correctosta erractivamente equação esta erractivamente equação esta equação esta esta esta esta esta esta esta esta	ta: 10 po la: -3 po resposta ão do pla 2z + 7 = z + 1 = z - 7 = z - 1 =	ontos; ontos; ou respo	osta nula	a: 0 pon	tos.				
(b) Se	$\begin{bmatrix} -3x + \\ 3x - 2x \\ 3x + 2x \\ 3x + 2x \end{bmatrix}$	2z + 7 = z + 1 = z - 7 = z - 1 = z	ano tang = 0 0 0	gente à s	uperfíci	e de equ	ıação x^2	$-2y^2$	$+xz^2 =$: 5 no ponto (1, 0
U	$\lim_{x \to \infty} f(x)$									
	no ponto	y, z) = P = (0	$\operatorname{sen}(xy)$, $(1,2)$ é	$) + e^z e$ igual a:	$U = \left(\frac{1}{\sqrt{2}}\right)$	$\frac{1}{3}$, $\frac{1}{\sqrt{3}}$, $\frac{1}{\sqrt{3}}$	$\frac{1}{\sqrt{3}}$). A \dot{c}	erivada	directions	al de f segundo
(c) C	nsidere a	ı função								
				$(x,y) \in$	\mathbb{R}^2 : –	$2 < x \le$	$\leq 2 \wedge -$	-2 < y	≤ 1 }.	
	a função a função	o admite o admite o não ad	e mínim e máxim lmite má	o globa áximo o	l mas nã u mínim	o mínin o globa	no globa is.	1.	ínimo glo	obais uma vez q

(e) Sabendo que $y = \ln x$ é uma solução da equação diferencial $x^2y'' + xy' + y = \ln x$ e qu
$\{\cos(\ln x), \sin(\ln x)\}$ é um sistema fundamental de soluções da equação homogénea associada
qual é a solução geral da EDO completa?

$$y = C \ln x, C \in \mathbb{R}$$
.

qual e a solução geral da EDO completa?
$$y = C \ln x, C \in \mathbb{R}.$$

$$y = C_1 \ln x + C_2 \cos(\ln x) + C_3 \sin(\ln x), C_1, C_2, C_3 \in \mathbb{R}.$$

$$y = \ln x + C_1 \cos(\ln x) + C_2 \sin(\ln x), C_1, C_2 \in \mathbb{R}.$$

$$y = C_1 \cos(\ln x) + C_2 \sin(\ln x), C_1, C_2 \in \mathbb{R}.$$

$$F(s) = \frac{s}{s^2 + 9}, \ s > 0$$

$$F(s) = \frac{1}{s-2} \cdot \frac{s}{s^2+9}, \ s > 2.$$

$$F(s) = \frac{s-2}{s^4 - 4s + 13}, \ s > -2.$$

$$F(s) = \frac{s-2}{s^2-4s+13}, \ s>2.$$

[25pts] 2. Encontre os possíveis pontos de máximo e mínimo locais da função
$$f:\mathbb{R}^2\to\mathbb{R}$$
 definida por $f(x,y)=\frac{x^3}{3}+y^2+2xy-6x-3y+4.$

N° Mec:	Nomo	
11 IVICC:	Nome:	

[25pts]

3. Justifique que a função f definida por f(x,y)=5x-3y admite máximo e mínimo globais em $D=\{(x,y)\in\mathbb{R}^2: x^2+y^2\leq 136\}$ e determine-os.

(Nota:
$$\frac{4 \times 136}{34} = 16$$
).

Continua	na folha	suplementar	No

$y' + 4\frac{y}{x} = x^3 y^2, x > 0.$					

4. Resolva a seguinte equação diferencial de Bernoulli:

[25pts]

:	5. Con	sidere a EDO $y'' + y' - 6y = 6e^{2x}$.
15pts]	(a)	Resolva a EDO homogénea associada.
		Continua na folha suplementar N
15pts]	(b)	Determine uma solução particular da EDO completa.

[05pts]

(c) Indique a solução geral da EDO completa.

Continua na folha suplementar Nº

6. Considere o seguinte problema de valores iniciais:

$$\begin{cases} y'' + y' = \frac{1}{4}\mathbf{e}^{x} \\ y(0) = 0 \\ y'(0) = 0 \end{cases}$$

[15pts]

 $\text{(a)} \quad \text{Mostre que } \mathcal{L}\{y(t)\}(s) = \frac{1}{4s(s+1)^2}, \quad s>0.$

ts]	(b)	Usando a Transformada de Laplace inversa, resolva o problema de valores iniciais.

Formulário Transformada de Laplace

Continua na folha suplementar Nº

Função	Transformada	Função	Transformada	Função	Transformada
	$\frac{n!}{s^{n+1}}$ $(s>0)$	e^{at} $(a \in \mathbb{R})$	$\frac{1}{s-a}$ $(s>a)$	$ \begin{array}{c c} \operatorname{sen}(at) \\ (a \in \mathbb{R}) \end{array} $	$\frac{a}{s^2 + a^2}$ $(s > 0)$
$ \begin{array}{c} \cos(at) \\ (a \in \mathbb{R}) \end{array} $	$\frac{s}{s^2 + a^2}$ $(s > 0)$	$senh(at) $ $(a \in \mathbb{R})$	$ \begin{array}{c} a \\ \overline{s^2 - a^2} \\ (s > a) \end{array} $	$ \begin{array}{c} \cosh(at) \\ (a \in \mathbb{R}) \end{array} $	$ \begin{array}{c} s \\ s^2 - a^2 \\ s > a \end{array} $

Propriedades da transformada de Laplace

$$F(s) = \mathcal{L}{f(t)}(s)$$
, com $s > s_f$

$$\mathcal{L}\{f(t)+g(t)\}(s)=F(s)+G(s)\,,\;s>\max\{s_f,s_g\} \qquad \mathcal{L}\{\alpha f(t)\}(s)=\alpha F(s)\,,\;s>s_f\ \mathrm{e}\ \alpha\in\mathbb{R}$$

$$\mathcal{L}\{\mathrm{e}^{\lambda t}f(t)\}(s)=F(s-\lambda)\,,\;s>s_f+\lambda\ \mathrm{e}\ \lambda\in\mathbb{R} \qquad \mathcal{L}\{t^nf(t)\}(s)=(-1)^nF^{(n)}(s)\,,\;s>s_f\ \mathrm{e}\ n\in\mathbb{N}$$

$$\mathcal{L}\{H_a(t)\cdot f(t-a)\}(s)=\mathrm{e}^{-as}F(s)\,,\;s>s_f\ \mathrm{e}\ a>0 \qquad \mathcal{L}\{f(at)\}(s)=\frac{1}{a}\ F\left(\frac{s}{a}\right)\,,\;s>a\,s_f\ \mathrm{e}\ a>0$$

$$\mathcal{L}\{f^{(n)}(t)\}(s) = s^n F(s) - s^{n-1} f(0) - s^{n-2} f'(0) - \dots - s f^{(n-2)}(0) - f^{(n-1)}(0)$$
$$\cos s > \max\{s_f, s_{f'}, s_{f''}, \dots, s_{f^{(n-1)}}\}, n \in \mathbb{N}$$

Formulário de Primitivas

Função	Primitiva	Função	Primitiva	Função	Primitiva
$u^r u' $ $(r \neq -1)$	$\frac{u^{r+1}}{r+1}$	$\frac{u'}{u}$	$\ln u $	$u'e^u$	e^u
$u'a^u$	$\frac{a^u}{\ln a}$	$u'\cos u$	$\sin u$	$u'\sin u$	$-\cos u$
$u'\sec^2 u$	$\tan u$	$u'\csc^2 u$	$-\cot u$	$u' \sec u$	$ \ln \sec u + \tan u $
$u'\csc u$	$-\ln \csc u + \cot u $	$\frac{u'}{\sqrt{1-u^2}}$	$-\arccos u$ ou $\arcsin u$	$\frac{u'}{1+u^2}$	rctg u ou $-rccotg u$

Algumas fórmulas trigonométricas

$$sec x = \frac{1}{\cos x}$$

$$cos(x \pm y) = sen x cos y \pm cos x sen y$$

$$cos^{2} x = \frac{1 + cos(2x)}{2}$$

$$sec x = \frac{1}{\cos x}$$

$$cos(x \pm y) = cos x cos y \mp sen x sen y$$

$$sin^{2} x = \frac{1 - cos(2x)}{2}$$

$$sin^{2} x = \frac{1 - cos(2x)}{2}$$

$$1 + tan^{2} x = sec^{2} x$$

$$cos(2x) = cos^{2} x - sin^{2} x$$

$$1 + cot^{2} x = csc^{2} x$$