Kolokwium 1 Grupa B

Zadanie 1. Rozważmy przestrzeń probabilistyczną ([0,1], $\mathcal{B}_{[0,1]}$, λ), gdzie λ jest miarą Lebesgue'a. Niech $Y_n(\omega) = \omega^2 \cdot \mathbf{1}_{[0,1-1/n)} + \mathbf{1}_{[1-1/n,1]}$ oraz niech $X(\omega) =$

- Wyznacz postać filtracji generowanej przez proces $\{Y_n\}$.
- Wyznacz postać procesu $X_n = \mathbb{E}(X|Y_n)$. Czy proces $Y_n = X_n^2$ jest martyngałem?

Zadanie 2. Niech proces $\{X_n\}$ będzie procesem symetrycznego błądzenia losowego z czasem dyskretnym i niech $\{\mathcal{F}_n\}$ oznacza filtrację naturalną tego procesu. Znajdź deterministyczny ciąg $a_n \in \mathbb{R}$ taki, że proces zadany jako $Z_n = X_n^3 +$ $a_n X_n$ jest martyngalem względem filtracji $\{\mathcal{F}_n\}$.

Zadanie 3. Niech $X_i \in \mathcal{L}^2(\Omega)$, $\mathcal{F}_n = \sigma(X_1, X_2, \dots, X_n)$. Załóżmy, że $S_n = X_1 + X_2 + \dots + X_n$ jest martyngałem względem filtracji $\{\mathcal{F}_n\}$. Udowodnij, że $\mathbb{E}X_iX_j = 0 \ dla \ i \neq j.$

Zadanie 4. Niech S,T będą momentami stopu względem tej samej filtracji. Udowodnij, że zachodzi $\mathcal{F}_{\min\{T,S\}} = \mathcal{F}_T \cap \mathcal{F}_S$.

— Podaj definicję warunkowej wartości oczekiwanej zmiennej Zadanie 5. losowej względem σ - ciała.

— Co to jest trajektoria procesu stochastycznego?