Question 1. For each of the following functions, find the partial derivatives $\frac{\partial f}{\partial x}$ and $\frac{\partial f}{\partial y}$ (or $\frac{\partial g}{\partial x}$ and $\frac{\partial g}{\partial y}$, etc.).

i.
$$f(x,y) = e^{x^2 + y^2} \ln(xy)$$

2.
$$g(x,y) = (x^2 + y^2)^{3/2}$$

3.
$$h(x,y) = \int_0^{xy} e^{-t^2} dt$$

Question 2. Find the extrema of f(x, y, z) = x + 2y + 3z subject to the constraints $x^2 + y^2 = 1$ and x + z = 2. Hint: Use the method of Lagrange multipliers.

Question 3. Consider the following vector fields defined on \mathbb{R}^2 :

$$\mathbf{F}_1(x,y) = x\mathbf{i} + y\mathbf{j}$$

$$\mathbf{F}_2(x,y) = -x\mathbf{i} - y\mathbf{j}$$

$$\mathbf{F}_3(x,y) = y\mathbf{i} - x\mathbf{j}$$

$$\mathbf{F}_4(x,y) = -y\mathbf{i} + x\mathbf{j}$$

$$\mathbf{F}_5(x,y) = \mathbf{i}$$

$$\mathbf{F}_6(x,y) = x\mathbf{j}$$

- I. Match each to one of the plots and briefly explain the logic/calculation for matching each (it is not required to give complete arguments).
- 2. Calculate the divergence, $\nabla \cdot \mathbf{F}_n(x,y)$ for each of the vector fields.

Question 4. Calculate the path integral $\int_C \mathbf{F} \cdot d\boldsymbol{\alpha}$ where $\mathbf{F}(x,y) = xy\mathbf{i} + x^2\mathbf{j}$ and C is the path from (0,0) to (1,1) along the curve $y = x^2$.

- 1. Parametrize the curve C
- 2. Express ${f F}$ and $d{m lpha}$ in terms of the parameter
- 3. Set up and evaluate the path integral

Question 5. Evaluate the double integral using polar coordinates:

$$\iint_D \sqrt{x^2 + y^2} \, dA$$

where D is the region between the circles $x^2 + y^2 = 1$ and $x^2 + y^2 = 4$.

Question 6. Consider the cone

$$V = \{(x, y, z) : x^2 + y^2 \le 4, 0 \le z \le 2 - \sqrt{x^2 + y^2}\}\$$

and the cylinder

$$W = \{(x, y, z) : (x - 1)^2 + y^2 \le 1\}.$$

Let $D \subset \mathbb{R}^3$ be the subset of the cone V which is contained within the cylinder W. Calculate the volume of D.