12/16/22, 12:00 PM Crowdmark

Assignment 5

Due: Wednesday, December 7, 2022 11:59 pm (Atlantic Standard Time)

Thanks for your submission!

Your assignment has been received and is waiting to be graded.

Review your submission

Q1 (16 points) 3 pages submitted

Consider the function: $f(x) = e^x/(x-2)$.

- a. Find the exact value of the derivative f'(0.66)
- b. Estimate f'(0.66) using the central difference formula with h=0.1,0.05,0.025, giving the absolute error for each case. Show that the order of the approximation is $O(h^2)$.
- c. Estimate f'(0.66) using Richardson extrapolation with $h_1=0.1$ and $h_2=0.05$. What is the absolute error?

	0
	CS 3113 A5
1)	$f(x) = \frac{x}{e}/(x-2)$
	((0 (0)
	$e^{x}/(x-2) = e^{x}(x-2)^{-1}$ $f'(x) = f'S + fS' = e^{x}(x-2)^{-1} + e^{x}(x-2)^{-2}(-1)$
	$= e^{x} - e^{x}$ $(x-2) (x-2)^{2}$
	(0.66)
	$f'(0.66) = e^{(0.66)} = e^{(0.66)} = -2.521393441$ $(0.66-2) = (0.66-2)^{2}$
1) b)	$f'(0.66)$ CDF $h=0.1,0.05,0.025$ abs err $O(h^2)$ $h=0.1$
•	f'(0.66) = f(0.66 + 0.1) - f(0.66 - 0.1)
	2(0.1)
	$= \left(\frac{e^{0.76}}{-1.24} - \frac{e^{0.56}}{-1.44}\right) / 2(0.1)$
	2.543357575
	abs err = $(-2.543357575) - (-2.521393441)$ = 0.021964134

	(2)
	f'(0.66) = f(0.66 + 0.05) - f(0.66 - 0.05)
	$= \left(\frac{e^{0.71}}{-1.29} - \frac{e^{0.61}}{-1.39}\right) / 2(0.05)$
	= -2.526860438 abs err = $(-2.526860438) - (2.521393441)$ = 0.005466997
	h = 0.025
	$f'(0.66) = \frac{f(0.66 + 0.025) - f(0.66 - 0.025)}{2(0.025)}$ $= \frac{\left(e^{0.685} - e^{0.635}\right)}{-1.365} / 2(0.025)$
	= -2.522758696
V	abs evr = $\left(-2.522758696\right) - \left(-2.521393441\right)$ = 0.001365255
	$h \rightarrow 2(0.1) = 2(0.05) = 2(0.025)$ alos err $\rightarrow 0.21964134 \approx 4(0.005466997) \approx 4^{2}$ (0.001365255)
	$= 0.21964134 = 0.021867988 = 0.02184408$ $,', O(h^2)$

Q2 (16 points)

3 pages submitted

For the integral $\int_1^2 \frac{1}{x} dx$, verify that:

a. the composite trapezoid rule has a rate of convergence $O(h^2)$ using $h=0.5,\,0.25,\,0.125$

b. the composite Simpson's rule has a rate of convergence $O(h^4)$ using $h=0.5,\,0.25,\,0.125$

	(4)
2)	$S_1^2 \frac{1}{2} dx$
2)a)	0 (h2) h = 0.5, 0.25, 0.125 trapezoid
	1-1.5 2 h=0.5 m=2
	$\int_{1}^{1} \frac{1}{2} dx = 0.25 \left(\frac{1}{1} + \frac{2}{1.5} + \frac{1}{2} \right) = 0.70833333333$
	1-1.25-1.5-1.75-2 m=4 h=0.25
	$\int_{-2}^{2} dx = 0.125 \left(\frac{1}{1} + 2 \left(\frac{1}{1.25} + \frac{1}{1.5} + \frac{1}{1.75} \right) + \frac{1}{2} \right)$
	= 0.6970238095
	1 - 1.125 - 1.250 - 1.375 - 1.500 - 1.625 - $1.750 - 1.875 - 2 m = 8 h = 0.125$
	$\int_{1}^{2} \frac{1}{x} dx = 0.0625 \left(\frac{1}{1} + 2 \left(\frac{1}{1.125} + \frac{1}{1.250} + \frac{1}{1.375} \right) \right)$
	+ 1.5 + 1.625 + 1.75 + 1.875) + 2)
	= 0.6941218504
	integral (S) of = In (c)
	$\ln(2) - \ln(1) = 0.693147181$
	h = 0.5 = 2 (0.25) = 2 (0.125)

	<u>(5)</u>
	abs err of h = 0.5: 0.7083333333 - 0.6931471811 = 0.0151861523
	abs err of h = 0.25: 0.6970238095 - 0.693147181 = 0.0038766295
	abs err of h=0.125; 0.6941218505-0.6931471811 = 0.0009746695
	abs err > 0.0151861523 = 4 (0.0038766295) =
	-> 0.0151861523 ~ 0.015506518~ 0.015594712
	0 (h2) [because of abs err & h]
2)6)	Simpson $O(h^4)$ $h = 0.5, 0.25, 0.125$
	$\int_{-\infty}^{2} \frac{1}{x} dx = (0.5/3) \left(1 + 4\left(\frac{1}{1.5}\right) + 0.5\right) = \frac{25}{36}$ $= 0.6944444444$
	h=0.25 $1-1.25-1.5-1.75-2$ $m=2$
	$\int_{-1}^{2} dx = (0.25/3)(1 + 4(\frac{1}{1.25} + \frac{1}{1.75}) + 2(\frac{1}{1.5}) + \frac{1}{2})$
	= 1747 = 0.6932539683 2520

6
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
$\int_{-\infty}^{2} dx$
= (0.125/3)(1 + 4(1.125 + 1.375 + 1.625 + 1.875) + 2(1.25 + 1.5 + 1.75) + 0.5)
$= 0.6931545307$ $h \to 0.5 = 2'(0.25) + 2^{2}(0.125)$
abs err of h=0.5: $ 0.69444444444444444444444444444444444444$
$= 0.000 0.67873$ abs err of h= 0.125; $ 0.6931545307 = 0.693147181 $ $= 0.00000073497$ abs err $\Rightarrow 0.0012972634 \approx 16(0.0001067873)$ $\approx 256(0.0000073497)$
$\rightarrow 0.0012972634 \approx 0.0017085968 \approx 0.0018815232$ $0(h^4)$

Q3 (12 points) 1 page submitted

Extrapolate to the limit (using Romberg integration), to get the integral of the following data between 0 and 1.0 (hint: extrapolate all the way to $R_{3,3}$):

12/16/22, 12:00 PM Crowdmark

x	0.0	0.25	0.50	0.75	1.00
f(x)	0.3989	0.3867	0.3521	0.3011	0.2420

	9
3)	R ₁ , R ₂ , 2 R ₃ , 3 R ₃ , 1 R ₃ , 2
	$R_{11} : h=1-0-1; m=1$ $R_{11} = 0.5(0.3989 + 0.2420) = 0.32045$
	$R_{2,1}$: $h = \frac{1-0}{2} = \frac{1}{2}$; $m = 2$
	$R_{2,1} = \frac{0.5}{2} \left(0.3989 + 2(6.352) + 0.2420 \right) = 0.336275$ $R_{3,1} : \frac{1 - 0}{4} = 0.25; m = 4$
	$R_{3,1} = \frac{0.25}{2} \left(0.39898 + 2 \left(0.3867 + 0.3521 + 0.3011 \right) + 0.2426 \right)$
	$= 0.3400975$ $R_{2,2} = 2^{2}(R_{2,1}) - (R_{1,1}) = 4(0.336275) - (0.32045)$
	$\frac{2^{2}-1}{2^{2}-1}$ = 0.34155
h=2	$R_{3,2} = \frac{2^2(R_{3,1}) - (R_{2,1})}{2^2 - 1} = \frac{4(0.3400975) - 0.336275}{3}$
n= 4	$R_{3,3} = 2^{4} (R_{3,2}) - (R_{2,2}) = (16 (0.3413716667))$ $R_{3,3} = 4^{4} - (0.3413716667)$
	= 0.3413597778

Q4 (12 points)

2 pages submitted

a. Manually perform three steps of Euler's method to solve the initial value problem at t=2.75 , 3.0, and 3.25

$$\frac{dy}{dt} = 2y^2(3-t), \qquad y(2.5) = 3$$

Crowdmark

with step size h=0.25 .

b. Repeat question 4a with the Explicit Trapezoid (Heun's) method.

			3
4)a) Eu	$\frac{dy}{dt} = 2y^2(3-1)$, 3.25 h=	0.25
	$\frac{1}{d+} = 2y(3-t)$	y (2,5)=3+	→ yo=3
	~ ~ ~ ~		
ÿ,-	- yo + h (dy);		
1		=21/4=5.2	
+, = 2.75	525.226/2/	$(26)^{2}(3 275)$	- 1112/104
	= 5.25 + 0.25(2(5) = 8.6953 25	(125) (1-2.15)	- 1117/120
+2=3 y 2=	8.6953125+0.25(2	2(8.6953125)2	(0)) =
	8.6953125		
t3 = 3.25			
	$= 2.5 y_0 = 3$	iA -	
0=	$F(2.5,3) = 2(3)^{2}(3)$	-2.5) = 9	
b = C =	3+0.25(a) = 5.2 = $f(2.75, 5.25) =$	5 $2(5.25)^{2}(3-3)$	2.75) = 13.78125
ỹ,=	$3 + \frac{0.25}{2}(\alpha + c)$	- 3+ 0.25 (9	+ 13.78125)
	= 5.84765625		2.75
a=	F(2.75, 5.8476	5625) = 2(5.8	4765625)2
_	17.09754181	(3-2.7	2)
b-	5 84765625+ 0.25	(a) = 10.1220	417
C=	F(3,10.1220417) =	2(10.1220417)	-(3-3)=0
y ₂	= 5.84765625 + 9	25 (a+C)	

	9
	$\tilde{y}_2 = 5.84765625 + 0.25 (17.09754181)$
	$=7.984848976$ $t_2=3$
	$a = F(3, 7.984848976) = 2(7.984848976)^{2}(3-3)$
	$\begin{array}{c} -0 \\ 6 - 7.984848976 + 0.25(0) - 7.984848976 \\ C - F(3.25, 7.984848976) - 2(7.984848976)^2 \\ \end{array}$
	= -31.87890658 $(3-3.25)$
	$\tilde{y}_3 = 7.984848976 + \frac{0.25}{2} (a + C)$ = 7.984848976 + 0.25 (-31.87890658)
	= 3.999985654 + 3 = 3.25
-	-711110505F 13=3165

♠ Back to top

12/16/22, 12:00 PM Crowdmark