

Αρχείο Εκφωνήσεων ΓΕ

ΜΑΘΗΜΑΤΙΚΑ ΓΙΑ ΠΛΗΡΟΦΟΡΙΚΗ Ι (Θ.Ε. ΠΛΗ 12) ΓΡΑΠΤΗ ΕΡΓΑΣΙΑ 5

Ημερομηνία ανάρτησης: Κυριακή 12 Απριλίου 2020 Καταληκτική ημερομηνία υποβολής: Τετάρτη 13 Μαΐου 2020 Ημερομηνία ανάρτησης ενδεικτικών λύσεων: Παρασκευή 15 Μαΐου 2020

Πριν από την εκπόνηση της εργασίας και τη λύση των ασκήσεων συνιστάται η μελέτη των παραδειγμάτων και των λυμένων ασκήσεων στο αντίστοιχο σύγγραμμα και στο βοηθητικό υλικό.

Οι ασκήσεις της $5^{\eta\varsigma}$ εργασίας αναφέρονται στα:

Κεφάλαιο 2, Ενότητες 2.1 - 2.5 (βασική πιθανοθεωρία)

Κεφάλαιο 3, Ενότητες 3.1, 3.3.1 (τυχαίες μεταβλητές και χαρακτηριστικά των κατανομών τους)

Κεφάλαιο 4, Ενότητες 4.1, 4.4 – 4.6 (χρήσιμα πρότυπα κατανομών)

του συγγράμματος του ΕΑΠ «Πιθανότητες και Στατιστική Ι» του Ι. Κουτρουβέλη.

Για την κατανόηση της ύλης αυτής να μελετηθεί επίσης το βοηθητικό υλικό που υπάρχει στο study.eap.gr: Συνοδευτικό Εκπαιδευτικό Υλικό: Πιθανότητες

- Κεφάλαιο Ι
- Κεφάλαιο ΙΙ.

Αλλο Εκπαιδευτικό Υλικό: Πιθανότητες

Σκοπός της εργασίας αυτής είναι η μελέτη και κατανόηση των παρακάτω εννοιών:

- Βασική πιθανοθεωρία: δειγματοχώροι και ενδεχόμενα, βασικά στοιχεία συνδυαστικής, αξιωματικός ορισμός της πιθανότητας, δεσμευμένη πιθανότητα, ανεξαρτησία ενδεχομένων, μέθοδοι υπολογισμού πιθανότητας.
- Τυχαίες μεταβλητές: μέση τιμή, διασπορά και τυπική απόκλιση, βασικές ιδιότητες.
- Χρήσιμα πρότυπα κατανομών: δοκιμές Bernoulli, διωνυμική κατανομή, κατανομή Poisson, εκθετική κατανομή, κανονική κατανομή, τυπική κανονική κατανομή.

Άσκηση 1 (Mov. 20)

- α) (μον. 4) Κάθε τεταρτοετής φοιτητής ενός προπτυχιακού προγράμματος καλείται να επιλέξει ακριβώς 3 από τις 12 προσφερόμενες θεματικές ενότητες. Δεδομένου ότι στο πρόγραμμα είναι εγγεγραμμένοι 661 τεταρτοετείς φοιτητές, να αποδειχθεί ότι υπάρχουν τουλάχιστον 4 φοιτητές που θα επιλέξουν ακριβώς τις ίδιες θεματικές ενότητες.
- β) (μον. 4) Ποιά είναι η πιθανότητα μια συνάρτηση $f: \{1, 2, ..., 2020\} \rightarrow \{1, 2, ..., 2020\}$ να μην είναι 1-1;
- γ) (μον. 4) Έστω n θετικός ακέραιος. Να αποδειχθεί ότι $\sum_{k=1}^n k \binom{n}{k} = n \, 2^{n-1}$.
- δ) (μον. 4) Πόσοι είναι οι διαφορετικοί αναγραμματισμοί της λέξης ΩΤΟΡΙΝΟΛΑΡΥΓΓΟΛΟΓΟΣ;
- ε) (μον. 4) Για να διεξαχθεί ένα τηλεπαιχνίδι τύχης, 50 ίδια χαρτονομίσματα πρέπει να μοιραστούν (όχι απαραίτητα με δίκαιο τρόπο) σε 10 διαφορετικά κουτιά. Με πόσους τρόπους μπορεί να γίνει η μοιρασιά υπό την προϋπόθεση ότι κανένα κουτί δεν θα μείνει άδειο;

Άσκηση 2 (Mov. 20)

- α) (μον. 8) Επιλέγουμε τυχαία έναν αριθμό από το σύνολο {2,...,61}. Θεωρούμε τα εξής ενδεχόμενα:
- Α = ο αριθμός είναι ακέραιο πολλαπλάσιο του 10.
- Β = ο αριθμός είναι μεγαλύτερος ή ίσος του 42.
- C = ο αριθμός είναι πρώτος.
- i) Είναι τα ενδεχόμενα *A* και *B* ανεξάρτητα;
- ii) Είναι τα ενδεχόμενα *B* και *C* ανεξάρτητα;
- β) (μον. 3) Έστω A, B, C ενδεχόμενα ενός πειράματος τύχης με $P(A \cap B) \neq 0$. Να αποδειχθεί ότι $P(A \cap B \cap C) = P(C \mid A \cap B) P(B \mid A) P(A)$.
- γ) (μον. 9) Ένας συλλέκτης έργων τέχνης είχε στην κατοχή του 30 διαφορετικούς πίνακες ζωγραφικής, από τους οποίους 27 ήταν γνήσιοι και οι υπόλοιποι 3 ήταν πλαστοί. Πούλησε 10 από τους πίνακες στο μουσείο Α, 10 στο μουσείο Β και 10 στο μουσείο Γ. Ποιά είναι η πιθανότητα καθένα από τα τρία μουσεία να αγόρασε πλαστό πίνακα από τον συλλέκτη;

Ασκηση 3 (Mov. 20)

α) (μον. 11) Μια φαρμακευτική εταιρεία δοκιμάζει ένα νέο τεστ για τη διάγνωση κάποιας νόσου. Από κλινικά δείγματα προκύπτει ότι:

Το 2% όλων των ανθρώπων πάσχει από τη νόσο.

Το τεστ κάνει σωστή (θετική) διάγνωση στο 95% των ανθρώπων που πάσχουν από τη νόσο.

Το τεστ κάνει λανθασμένη (θετική) διάγνωση στο 1% των ανθρώπων που δεν πάσχουν από τη νόσο.

- Να υπολογιστεί το ποσοστό των ανθρώπων για τους οποίους το τεστ βγαίνει θετικό.
- ii) Ποιά είναι η πιθανότητα κάποιος να πάσχει από τη νόσο αν είναι δεδομένο ότι βγήκε θετικός στο τεστ;
- iii) Ποιά είναι η πιθανότητα κάποιος να μην πάσχει από τη νόσο αν είναι δεδομένο ότι βγήκε αρνητικός στο τεστ;
- β) (μον. 9) Έστω X τυχαία μεταβλητή η οποία ακολουθεί την εκθετική κατανομή με παράμετρο $\lambda=3$. Θεωρούμε την τυχαία μεταβλητή $Y=\sqrt{X}$.
- i) Να υπολογιστεί η πιθανότητα P(Y < 2).
- ii) Να δοθεί τύπος για την αθροιστική συνάρτηση κατανομής της Y.
- iii) Να υπολογιστεί η συνάρτηση πυκνότητας πιθανότητας της Y.

Άσκηση 4 (Mov. 20)

- α) (μον. 6) Έστω W διακριτή τυχαία μεταβλητή η οποία παίρνει μόνο τις τιμές -1,0,1 με πιθανότητες $P(W=-1)=\frac{2}{7},\ P(W=0)=\frac{1}{7}\ \text{και}\ P(W=1)=\frac{4}{7}\ .$ Να υπολογιστεί η μέση τιμή και η διασπορά της W .
- β) (μον. 6) Έστω X τυχαία μεταβλητή η οποία ακολουθεί την κατανομή Poisson με παράμετρο λ . Δίνεται ότι η τυπική απόκλιση της X ισούται με 2. Να υπολογιστεί η πιθανότητα $P(X \ge 3)$.
- γ) (μον. 8) Έστω Y τυχαία μεταβλητή η οποία ακολουθεί διωνυμική κατανομή με μέση τιμή 24 και διασπορά 8.
- i) Να υπολογιστούν οι παράμετροι της διωνυμικής κατανομής.
- ii) Να υπολογιστεί η πιθανότητα P(Y < 3).

Άσκηση 5 (Mov. 20)

- α) (μον. 12) Έστω c πραγματική σταθερά και X συνεχής τυχαία μεταβλητή με συνάρτηση πυκνότητας πιθανότητας η οποία δίνεται από τον τύπο $f(x) = \begin{cases} 0, & \text{av} \quad x < 0 \\ c \, (2x x^2), & \text{av} \quad 0 \leq x \leq 2. \\ 0, & \text{av} \quad 2 < x \end{cases}$
- i) Να υπολογιστεί η τιμή της σταθεράς c.
- ii) Να υπολογιστεί η πιθανότητα P(X < 1).
- iii) Να υπολογιστεί η τυπική απόκλιση της X.
- β) (μον. 8) Δύο ανεξάρτητες τυχαίες μεταβλητές Y_1 και Y_2 ακολουθούν την κανονική κατανομή με παραμέτρους $\mu_1=2$, ${\sigma_1}^2=9$ και $\mu_2=-1$, ${\sigma_2}^2=16$, αντίστοιχα.
- i) Ποιά κατανομή ακολουθεί η τυχαία μεταβλητή $Y = Y_1 + Y_2$;
- ii) Να υπολογιστεί η πιθανότητα $P(Y^2 \le 2Y + 1.89)$.

Υπόδειξη για το ii): Ισχύει η ταυτότητα $a^2 - 2a = (a-1)^2 - 1$.

Πίνακας Κανονικής Κατανομής

Τυποποιημένη Κανονική Κατανομή (Standardized Normal Distribution Function)

z	.00	.01	.02	.03	.04	.05	.06	.07	.08	.09
.0	.5000	.5040	.5080	.5120	.5160	.5199	.5239	.5279	.5319	.5359
.1	.5398	.5438	.5478	.5517	.5557	.5596	.5636	.5675	.5714	.5753
.2	.5793	.5832	.5871	.5910	.5948	.5987	.6026	.6064	.6103	.6141
.3	.6179	.6217	.6255	.6293	.6331	.6368	.6406	.6443	.6480	.6517
.4	.6554	.6591	.6628	.6664	.6700	.6736	.6772	.6808	.6844	6879
.5	.6915	.6950	.6985	.7019	.7054	.7088	.7123	.7157	.7190	.7224
.6	.7257	.7291	.7324	.7357	.7389	.7422	.7454	.7486	.7517	.7549
.7	.7580	.7611	.7642	.7673	.7704	.7734	.7764	.7794	.7823	.7852
.8	.7881	.7910	.7939	.7967	.7995	.8023	.8051	.8078	.8106	.8133
.9	.8159	.8186	.8212	.8238	.8264	.8289	.8315	.8340	.8365	.8389
1.0	.8413	.8438	.8461	.8485	.8508	.8531	.8554	.8577	.8599	.8621
1.1	.8643	.8665	.8686	.8708	.8729	.8749	.8770	.8790	.8810	.8830
1.2	.8849	.8869	.8888	.8907	.8925	.8944	.8962	.8980	.8997	.9015
1.3	.9032	.9049	.9066	.9082	.9099	.9115	.9131	.9147	.9162	.9177
1.4	.9192	.9207	.9222	.9236	.9251	.9265	.9279	.9292	.9306	.9319
1.5	.9332	.9345	.9357	.9370	.9382	.9394	.9406	.9418	.9492	.9441
1.6	.9452	.9463	.9474	.9484	.9495	.9505	.9515	.9525	.9535	.9545
1.7	.9554	.9564	.9573	.9582	.9591	.9599	.9608	.9616	.9625	.9633
1.8	.9641	.9649	.9656	.9664	.9671	.9678	.9686	.9693	.9699	.9706
1.9	.9713	.9719	.9726	.9732	.9738	.9744	.9750	.9756	.9761	.9767
2.0	.9772	.9778	.9783	.9788	.9793	.9798	.9803	.9808	.9812	.9817
2.1	.9821	.9826	.9830	.9834	.9838	.9842	.9846	.9850	.9854	.9857
2.2	.9861	.9864	.9868	.9871	.9875	.9878	.9881	.9884	.9887	.9890
2.3	.9893	.9896	.9898	.9901	.9904	.9906	.9909	.9911	.9913	.9916
2.4	.9918	.9920	.9922	.9925	.9927	.9929	.9931	.9932	.9934	.9936
2.5	.9938	.9940	.9941	.9943	.9945	.9946	.9948	.9949	.9951	.9952
2.6	.9953	.9955	.9956	.9957	.9959	.9960	.9961	.9962	.9963	.9964
2.7	.9965	.9966	.9967	.9968	.9969	.9970	.9971	.9972	.9973	.9974
2.8	.9974	.9975	.9976	.9977	.9977	.9978	.9979	.9979	.9980	.9981
2.9	.9981	.9982	.9982	.9983	.9984	.9984	.9985	.9985	.9986	.9986
3.0	.9987	.9987	.9987	.9988	.9988	.9989	.9989	.9989	.9990	.9990