Q: If $a(\frac{1}{b} + \frac{1}{c})$, $b(\frac{1}{c} + \frac{1}{a})$, $c(\frac{1}{a} + \frac{1}{b})$ are in arithmetic progression (AP), prove that a, b, c are also in AP.

Solution: Using properties of AP,

$$a\left(\frac{1}{b} + \frac{1}{c}\right) + 1, b\left(\frac{1}{c} + \frac{1}{a}\right) + 1, c\left(\frac{1}{a} + \frac{1}{b}\right) + 1$$

$$\Rightarrow a\left(\frac{1}{b} + \frac{1}{c}\right) + \frac{a}{a}, b\left(\frac{1}{c} + \frac{1}{a}\right) + \frac{b}{b}, c\left(\frac{1}{a} + \frac{1}{b}\right) + \frac{c}{c}$$

$$\Rightarrow a\left(\frac{1}{a} + \frac{1}{b} + \frac{1}{c}\right), b\left(\frac{1}{a} + \frac{1}{b} + \frac{1}{c}\right), c\left(\frac{1}{a} + \frac{1}{b} + \frac{1}{c}\right)$$

$$\Rightarrow a, b, c$$

Hence proved that a, b, c are in AP.

parameter	value	description
<i>x</i> (0)	$a\left(\frac{1}{b}+\frac{1}{c}\right)$	First Term of given AP
d	$\frac{a^2(b-c)+b^2(c-a)}{abc}$	Common Difference of given AP
x(n)	(x(0) + nd)u(n)	General Term of given AP
TABLE I		

INPUT PARAMETER TABLE

From table I

$$X(z) = x(0)\frac{1}{1 - z^{-1}} + d\frac{z^{-1}}{(1 - z^{-1})^2} \quad |z| > 1$$
 (1)

Fig. 1. graph with value of a = 3, b = 5, c = 7