

Image Processing

Image Restoration (Part II)

Pattern Recognition and Image Processing Laboratory (Since 2012)

Approaches for Image Restoration

Lucy-Richardson Algorithm Blind Deconvolution

Note: - These approaches are nonlinear image restoration.
- PSF is NOT available.

ซ้ายไปชวา : ภาพคุณภาพดี ถูก degrade โดย H และเพิ่ม noise(แต่ในที่นี้ขอละไว้ก่อน) ถ้าอยากกู้มันคืนมาต้องใช้ restoration filter

Direct Invert Filtering

Direct Invert Filtering

Wiener Filtering

$$\hat{F}(u,v) = \begin{bmatrix} \frac{1}{H(u,v)} & \frac{|H(u,v)|^2}{|H(u,v)|^2 + S_{\eta}(u,v)/S_f(u,v)} \end{bmatrix} G(u,v)$$

$$\hat{F}(u,v) = \frac{G(u,v)}{H(u,v)}$$
Direct Inverse
Filtering

Wiener Filtering

>> fr = deconwnr(g, PSF) % Direct Inverse Filter

>> fr = deconwnr(g, PSF, NSPR) % Parametric Weiner Filter

>> fr = deconwnr(g, PSF, NACORR, FACORR) % Weiner Filter with

% Autocorrelation

>> degrad5_5 % See demonstration

Constrained Least Squares Filtering

 $\hat{F}(u,v) = \left[\frac{H^{*}(u,v)}{|H(u,v)|^{2} + \gamma |P(u,v)|^{2}}\right] G(u,v)$

if $y|P(u,v)|^2$ is close to 0 it will be the same at the So we must not let it be 0 by inserting gamma

 $\hat{F}(u,v) = \frac{G(u,v)}{H(u,v)}$ Direct Inverse F

iltering

Iterative Nonlinear Restoration Using the Lucy-Richardson Algorithm

>> degrad5_9 % See demonstration

Blind Deconvolution

One of the most difficult problems in image restoration is obtaining a suitable estimation of the PSF to use in restoration algorithm.

Don't know such a thing because you need to estimate the suitable PSF (estimate to the real problem (PSF(cause of blur)))

Blind Deconvolution

Image restoration methods that are NOT based on specific knowledge of the PSF are called "blind deconvolution" algorithm.

Blind Deconvolution

>> degrad5_10 % See demonstration

