

basic education

Department:
Basic Education
REPUBLIC OF SOUTH AFRICA

SENIOR CERTIFICATE EXAMINATIONS/ NATIONAL SENIOR CERTIFICATE EXAMINATIONS

MATHEMATICS P2

MAY/JUNE 2023

MARKS: 150

TIME: 3 hours

This question paper consists of 13 pages and 1 information sheet.

INSTRUCTIONS AND INFORMATION

Read the following instructions carefully before answering the questions.

- 1. This question paper consists of 10 questions.
- 2. Answer ALL the questions in the SPECIAL ANSWER BOOK provided.
- 3. Clearly show ALL calculations, diagrams, graphs, etc. which you have used in determining your answers.
- 4. Answers only will NOT necessarily be awarded full marks.
- 5. You may use an approved scientific calculator (non-programmable and non-graphical), unless stated otherwise.
- 6. If necessary, round off answers correct to TWO decimal places, unless stated otherwise.
- 7. Diagrams are NOT necessarily drawn to scale.
- 8. An information sheet with formulae is included at the end of the question paper.
- 9. Write neatly and legibly.

(3)

QUESTION 1

1.1 The owner of a small company wishes to establish whether advertising in a regional newspaper is effective. The table below shows the amount spent on advertising and the corresponding sales figures for the last 9 years.

Amount spent on advertising (in rands) (x)	21 300	23 700	24 800	30 540	24 100	40 680	22 400	35 250	29 110
Sales (in rands) (y)	311 500	326 700	349 200	470 000	316 100	564 200	314 000	487 300	392 900

- 1.1.1 Determine the equation of the least squares regression line for the data.
- 1.1.2 Predict the sales for a year in which the company will spend R28 500 on advertising. (2)
- 1.1.3 Write down the correlation coefficient of the data. (1)
- Describe the association between the amount spent on advertising in the regional newspaper and the sales of this company. (1)
- 1.2 The profit that the small company made over the same 9 years is given in the table below.

Profit (in rands)	110 750	107 376	152 338	244 480	144 021	275 994	121 900	207 636	187 700
1.2.1 Calculate the mean profit made over the 9 years.						(2)			

- 1.2.2 Write down the standard deviation for the data. (1)
- 1.2.3 Determine the number of years in which the company made a profit that was greater than one standard deviation above the mean. (2)

 [12]

The ages of the people who attended a music concert was summarised in the table below.

AGE	NUMBER OF PEOPLE
$5 < x \le 15$	20
$15 < x \le 25$	25
$25 < x \le 35$	60
$35 < x \le 45$	90
45 < <i>x</i> ≤ 55	55
55 < x ≤ 65	40
$65 < x \le 75$	30

2.1 Write down the modal class of the data.

(1)

2.2 How many people attended the music concert?

- (1)
- On the grid provided in the ANSWER BOOK, draw a cumulative frequency graph (ogive) to represent the above data.
- (4)
- Use the cumulative frequency graph to determine the median age of the people who attended the music concert.
- (2) [8]

In the diagram, the equation of line AF is y = -x - 11. B, a point on the x-axis, is the midpoint of the straight line joining A(-1; t) and C. The angles of inclination of AF and AC are α and 63,43° respectively. AF cuts the x-axis in E. D is a point such that DE || AC.

3.1 Calculate the:

3.1.1 Value of
$$t$$
 (2)

3.1.2 Size of α (2)

3.1.3 Gradient of AC, to the nearest whole number (2)

3.2 Determine the equation of AC in the form y = mx + k. (2)

3.3 Calculate the:

3.3.2 Size of
$$F\hat{E}D$$
 (3)

3.4 G is a point such that EAGC, in that order, is a parallelogram.

Determine the equation of a circle centred at G and passing through the point B.

Write your answer in the form $(x-a)^2 + (y-b)^2 = r^2$. (4)

Copyright reserved

In the diagram, the equation of the circle centred at N(-12; 5) is $x^2 + y^2 + 24x - 10y + 153 = 0$. The equation of the circle centred at M is $(x+6)^2 + (y+3)^2 = 25$. PS and PR are tangents to the circle centred at M at S and R respectively. PR is parallel to the x-axis. K(-17; -5) is a point on PS. The straight line joining N and M cuts the smaller circle at T and the larger circle at S.

- 4.1 Write down the coordinates of M. (2)
- 4.2 Calculate the:
 - 4.2.1 Length of the radius of the smaller circle (2)
 - 4.2.2 Length of TS (4)
- 4.3 Determine the equation of the tangent:

4.3.2 PS, in the form
$$y = mx + c$$
 (5)

4.4 Quadrilateral PSMR is drawn. Calculate the:

4.4.2 Ratio of
$$\frac{\text{area of } \Delta \text{NPS}}{\text{area of quadrilateral PSMR}}$$
 (2)

[22]

5.1 **Without using a calculator**, simplify the following expression to a single trigonometry ratio:

$$\frac{1-\sin(-\theta)\cos(90^\circ + \theta)}{\cos(\theta - 360^\circ)} \tag{5}$$

5.2 Given that $\cos 20^{\circ} = p$

Without using a calculator, write EACH of the following in terms p:

$$5.2.1 \cos 200^{\circ}$$
 (2)

$$5.2.2 \sin(-70^{\circ})$$
 (2)

$$5.2.3 \sin 10^{\circ}$$
 (3)

5.3 Determine, without using a calculator, the value of:

$$\cos(A + 55^{\circ})\cos(A + 10^{\circ}) + \sin(A + 55^{\circ})\sin(A + 10^{\circ})$$
 (3)

5.4 Consider:
$$\frac{\cos 2x + \sin 2x - \cos^2 x}{\sin x - 2\cos x} = -\sin x$$

5.4.2 Determine the value of
$$\frac{\cos 2x + \sin 2x - \cos^2 x}{-3\sin^2 x + 6\sin x \cos x}$$
 (3)

5.5 Given: $3\tan 4x = -2\cos 4x$

- 5.5.1 **Without using a calculator**, show that $\sin 4x = -0.5$ is the only solution to the above equation. (4)
- 5.5.2 Hence, determine the general solution of x in the equation $3 \tan 4x = -2 \cos 4x$ (3)

(3)

In the diagram below, the graph of $f(x) = \tan(x - 45^\circ)$ is drawn for $x \in [-90^\circ; 180^\circ]$.

6.1 Write down the period of f.

(1)

Draw the graph of $g(x) = -\cos 2x$ for the interval $x \in [-90^{\circ}; 180^{\circ}]$ on the grid given in the ANSWER BOOK. Show ALL intercepts with the axes, as well as the minimum and maximum points of the graph.

(3)

6.3 Write down the range of g.

(1)

6.4 The graph of g is shifted 45° to the left to form the graph of h. Determine the equation of h in its simplest form.

(2)

Use the graph(s) to determine the values of x in the interval $x \in [-90^{\circ}; 90^{\circ}]$ for which:

6.5.1 f(x) > 1 (2)

 $6.5.2 2\cos 2x - 1 > 0 (4)$

[13]

In the diagram, A, B and C are points in the same horizontal plane. D is a point directly above C, that is $DC \perp AC$ and $DC \perp BC$. It is given that $A\hat{C}B=100^{\circ}$, $C\hat{A}D=30^{\circ}$, AD=20 units and BC=8 units.

7.1 Calculate the length of:

7.1.1 AC
$$(2)$$

7.1.2 AB
$$(3)$$

7.2 If it is further given that
$$\hat{ABD} = 73.4^{\circ}$$
, calculate the size of \hat{ADB} . (3)

8.1 In the diagram, O is the centre of the circle. K, T and L are points on the circle. KT, TL, KL, OK and OT are drawn. OT intersects KL at M. ST is a tangent to the circle at T. $\hat{STK} = 36^{\circ}$ and $\hat{OKL} = 18^{\circ}$.

8.1.1 Determine, giving reasons, the size of:

(a)
$$\hat{T}_2$$

 $(b) \quad \hat{L} \tag{2}$

(c) KÔT (2)

8.1.2 Prove, giving reasons, that KM = ML. (3)

8.2 In the diagram, $\triangle RDS$ is drawn. A, B and C are points on RD, RS and DS respectively such that AB || DS and RB : BS = 5 : 3. DC = 20 units and CS = 12 units.

8.2.1 Prove, giving reasons, that BC \parallel AD. (3)

8.2.2 If it is further given that RD = 48 units, calculate, giving reasons, the value of the ratio AD: AB. (3)

[15]

9.1 In the diagram, O is the centre of the circle. ABCD is a cyclic quadrilateral.

Use the diagram in the ANSWER BOOK to prove the theorem which states that the opposite angles of a cyclic quadrilateral are supplementary, that is prove that $\hat{B} + \hat{D} = 180^{\circ}$.

(5)

9.2 In the diagram, DEFG is a cyclic quadrilateral such that EF \parallel DG. H is another point on the circle such that DH \parallel FG. Chord EH is drawn. Let $\hat{D}_1 = x$.

Prove, giving reasons, that $\hat{D}_1 = \hat{D}_2$.

(4)

[9]

In the diagram, TR is a diameter of the circle. PRKT is a cyclic quadrilateral. Chords TP and KR are produced to intersect at S. Chord PK is drawn such that PK = TK.

10.1 Prove, giving reasons, that:

10.1.1 SR is a diameter of a circle passing through points S, P and R (4)

10.1.2
$$\hat{S} = \hat{P}_2$$
 (5)

10.1.3 $\triangle SPK \parallel \triangle PRK$ (3)

10.2 If it is further given that SR = RK, prove that $ST = \sqrt{6}RK$. (5) [17]

TOTAL: 150

INFORMATION SHEET

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

$$A = P(1+ni) \qquad A = P(1-ni) \qquad A = P(1-i)^n \qquad A = P(1+i)^n$$

$$T_n = a + (n-1)d \qquad S_n = \frac{n}{2}[2a + (n-1)d]$$

$$T_n = ar^{n-1} \qquad S_n = \frac{a(r^n - 1)}{r - 1} ; r \neq 1 \qquad S_{\infty} = \frac{a}{1 - r}; -1 < r < 1$$

$$F = \frac{x[(1+i)^n - 1]}{i} \qquad P = \frac{x[1 - (1+i)^{-n}]}{i}$$

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

$$d = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2} \qquad M\left(\frac{x_1 + x_2}{2}; \frac{y_1 + y_2}{2}\right)$$

$$y = mx + c$$
 $y - y_1 = m(x - x_1)$ $m = \frac{y_2 - y_1}{x_2 - x_1}$ $m = \tan \theta$

$$(x-a)^2 + (y-b)^2 = r^2$$

In
$$\triangle ABC$$
:
$$\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}$$
$$a^2 = b^2 + c^2 - 2bc \cdot \cos A$$
$$area \triangle ABC = \frac{1}{2}ab \cdot \sin C$$

$$\sin(\alpha + \beta) = \sin \alpha \cos \beta + \cos \alpha \sin \beta \qquad \qquad \sin(\alpha - \beta) = \sin \alpha \cos \beta - \cos \alpha \sin \beta$$
$$\cos(\alpha + \beta) = \cos \alpha \cos \beta - \sin \alpha \sin \beta \qquad \qquad \cos(\alpha - \beta) = \cos \alpha \cos \beta + \sin \alpha \sin \beta$$

$$\cos 2\alpha = \begin{cases} \cos^2 \alpha - \sin^2 \alpha \\ 1 - 2\sin^2 \alpha \\ 2\cos^2 \alpha - 1 \end{cases} \qquad \sin 2\alpha = 2\sin \alpha \cos \alpha$$

$$\bar{x} = \frac{\sum fx}{n}$$

$$\sigma^2 = \frac{\sum_{i=1}^n (x_i - \bar{x})^2}{n}$$

$$P(A) = \frac{n(A)}{n(S)}$$

$$P(A \text{ or } B) = P(A) + P(B) - P(A \text{ and } B)$$

$$\hat{y} = a + bx$$

$$b = \frac{\sum (x - \bar{x})(y - \bar{y})}{\sum (x - \bar{x})^2}$$

basic education

Department:
Basic Education
REPUBLIC OF SOUTH AFRICA

SENIOR CERTIFICATE EXAMINATIONS/ SENIORSERTIFIKAAT-EKSAMEN NATIONAL SENIOR CERTIFICATE EXAMINATIONS/ NASIONALE SENIORSERTIFIKAAT-EKSAMEN

MATHEMATICS P2/WISKUNDE V2

MARKING GUIDELINES/NASIENRIGLYNE

MAY/JUNE/MEI/JUNIE 2023

MARKS: 150 *PUNTE: 150*

These marking guidelines consist of 21 pages./
Hierdie nasienriglyne bestaan uit 21 bladsye.

NOTE:

- If a candidate answers a question TWICE, mark only the FIRST attempt.
- If a candidate has crossed out an attempt at an answer and not redone the question, mark the crossed-out version.
- Consistent accuracy applies in ALL aspects of the marking guidelines. Stop marking at the second calculation error.
- Assuming answers/values in order to solve a problem is NOT acceptable.

LET WEL:

- As 'n kandidaat 'n vraag TWEE KEER beantwoord, sien slegs die EERSTE poging na.
- As 'n kandidaat 'n antwoord van 'n vraag doodtrek en nie oordoen nie, merk die doodgetrekte poging.
- Volgehoue akkuraatheid word in ALLE aspekte van die nasienriglyne toegepas. Hou op nasien by die tweede berekeningsfout.
- Aanvaar van antwoorde/waardes om 'n probleem op te los, word NIE toegelaat nie.

	GEOMETRY • MEETKUNDE					
S	A mark for a correct statement (A statement mark is independent of a reason)					
	'n Punt vir 'n korrekte bewering ('n Punt vir 'n bewering is onafhanklik van die rede)					
R	A mark for the correct reason (A reason mark may only be awarded if the statement is correct)					
K	'n Punt vir 'n korrekte rede ('n Punt word slegs vir die rede toegeken as die bewering korrek is)					
S/R	Award a mark if statement AND reason are both correct					
	Ken 'n punt toe as die bewering EN rede beide korrek is					

1.1.1	a = 1730,22	✓ <i>a</i> =1730,22
	b = 13,96	$\checkmark b = 13,96$
	$\hat{y} = 1730,22 + 13,96x$	✓ equation
		(3)
1.1.2	$\hat{y} = 1730,22 + 13,96x$	
	$\hat{y} = 1730,22 + 13,96(28500)$	✓ substitution
	$\hat{y} = R399 590,22$	✓ answer
	y 11675 65 6,22	(2)
	OR/OF	
	$\hat{y} = R399 599,64 \text{ (calc)}$	√√ answer
1.1.0	0.00002	(2)
1.1.3	r = 0.98002	
	r = 0.98	✓ answer
1.1.1		(1)
1.1.4	There is a very strong positive correlation between	
	the amount spent on advertising and sales. /	✓ strong positive
	Daar is 'n baie sterk positiewe korrelasie tussen die	(1)
1.0.1	bedrag spandeer op advertensie en die verkope.	1.552105
1.2.1	$\bar{x} = \frac{1552195}{1}$	$\sqrt{\bar{x}} = \frac{1552195}{9}$
	9	~
	$\bar{x} = 172466,11$	✓ answer
	7.10.70.00	(2)
1.2.2	$\sigma = 56950,09$	✓ answer
1.0.0		(1)
1.2.3	$\bar{x} + \sigma$	
	=172466,11+56950,09	$\sqrt{\bar{x}} + \sigma$
	= 229416,20	$\mathbf{v} = \mathbf{x} + \mathbf{\sigma}$
		√ answer
	2 years/jaar	(2)
		[12]
		[12]

2.1	$35 < x \le 45$				✓ answer	
						(1)
2.2	320 people/mense				✓ answer	
						(1)
2.3		NUMBER OF	CUMULATIVE			(-)
2.5	AGE	PEOPLE	FREQUENCY			
	$5 < x \le 15$	20	20			
	$15 < x \le 25$	25	45			
	$25 < x \le 35$	60	105			
	$35 < x \le 45$		195			
	$45 < x \le 55$	*	250			
	$55 < x \le 65$	40	290			
	$65 < x \le 75$	30	320			
		OGIVE/OGIE	EF			
	Cumulative frequency/ Sumulative frequency/	20 30 40	50 60 70	80	 ✓ cumulative frequency ✓ grounding ✓ plotting at upper limit ✓ shape 	(4)
	Age	of people/Ouderdo	om van mense			
2.4	Median = 41				✓✓ answer	
						(2)
						[8]

3.1.1	y = -x - 11		
	A(-1;t)		
	t = -(-1) - 11		✓ substitution
	t = -10		\checkmark value of t
			(2)
3.1.2	$\tan \alpha = -1$		$\checkmark \tan \alpha = -1$
	$ref. \angle = 45^{\circ}$		
	$\therefore \alpha = 135^{\circ}$		✓ 135°
			(2)
3.1.3	$\tan 63,43^{\circ} = m_{\rm AC}$		$\checkmark \tan 63,43^\circ = m_{AC}$
	$m_{\rm AC} = 2$		✓ answer
			(2)
3.2	$m_{\rm AC} = 2$		
	A(-1;-10)		
	y = 2x + k OR/c	$\mathbf{OF} y - y_1 = 2(x - x_1)$	
	-10 = 2(-1) + k	y - (-10) = 2(x - (-1))	✓ substitution of m and A
	k = -8	y = 2x - 8	
	y = 2x - 8		✓ equation
			(2)

3.3.1	n – 2 v 0			
3.3.1	y = 2x - 8			
	0 = 2x - 8		$\sqrt{x_{\rm B}} = 4$	
	$x_{\rm B} = 4$		$\lambda_{\rm B} = 4$	
	x + (1)	10)		
	$\frac{x_{\rm C} + (-1)}{2} = 4$ $\frac{y_{\rm C} + (-1)}{2}$	$\frac{-10)}{}=0$		
	2		/ v = 0	
	$x_{\rm C} = 9 y_{\rm C} = 10$)	$\checkmark x_{\rm C} = 9 \checkmark y_{\rm C} = 10$	(2)
	OR / OF by translation / met translasi	ie		(3)
	$A \rightarrow B(x; y) \rightarrow (x+5; y+10)$		$\checkmark (x+5; y+10)$	
	$B \to C (4;0) \to (4+5;0+10) = (9;$	10)	$\checkmark x_C = 9 \lor y_C = 10$	
	2 / 5 (1,0) / (1.15, 0.15) (5,	10)		(3)
3.3.2	ABE = 63,43°	[vert. opp ∠'s =]	$\checkmark \hat{ABE} = 63,43^{\circ}$	(3)
	,		7 ADL = 03, 43	
	2	[corres. \angle 's, DE \parallel AB]	. ^	
	$\hat{\mathbf{E}}_1 = 45^{\circ}$	[∠s on a str line]	$\checkmark \hat{E}_1 = 45^{\circ}$	
	FÊD = 108,43°		✓ FÊD = 108,43°	
	OR/OF			(3)
	EÂB=135°-63,43°			
	EÂB = 71,57°		✓ EÂB = 71,57°	
			\checkmark DÊA = EÂB = 71,57	0
	$\hat{DEA} = \hat{EAB} = 71,57^{\circ}$		$\checkmark \hat{\text{FED}} = 108,43^{\circ}$	
	FÊD = 108,43°		V FED = 108,43	(2)
	OR/OF			(3)
	$\hat{ABE} = 63,43^{\circ}$	[vart onn /'a]	\checkmark ABE = 63,43°	
		[vert. opp ∠'s]	✓ DÊO = 116,57°	
	_	[co-int. \angle 's, DE \parallel AB]	220 110,01	
	$\hat{FED} = 360^{\circ} - (116,57^{\circ} + 135^{\circ})$		✓ FÊD = 108,43°	
	=108,43°			(3)
3.4	y = 0			
	$x_{\rm E} = -11$		$\checkmark x_{\rm E} = -11$	
	$\frac{x_G + (-11)}{2} = 4$			
	2			
	$x_{\rm G} = 19$		$\checkmark x_{\rm G} = 19$	
	(, , ,)			
	$(x-19)^2 + y^2 = 15^2$ $(x-19)^2 + y^2 = 225$		(10)2 2 (-	
	$(x-19)^2 + y^2 = 225$		$(x-19)^2 + y^2 \checkmark 225$	
				(4)
				[18]

4.1	M(-6;-3)	√ -6 √ -3	
			(2)
4.2.1	$x^2 + y^2 + 24x - 10y + 153 = 0$		
	$(x+12)^2 + (y-5)^2 = -153 + 144 + 25$		
	$(x+12)^2 + (y-5)^2 = 16$		
	$r^2 = 16$	$\sqrt{r^2} = -153 + 144 + 25$	
	r = 4 units	✓ length of radius	
			(2)
4.2.2	$NM = \sqrt{(-12 - (-6))^2 + (5 - (-3))^2}$	✓ substitution into	
	$\begin{bmatrix} 1441 - \sqrt{(12 - (0))} + (3 - (3)) \end{bmatrix}$	distance formula	
	NM = 10 units	$\sqrt{NM} = 10 \text{ units}$	
	SM = 5 units	\checkmark SM = 5 units	
	TS = 10 - 5 - 4 = 1 unit	✓ answer	
			(4)
4.3.1	R(-6; -8)	$\checkmark y_R = -8$	
	y = -8	✓ answer	
			(2)

4.3.2	5 (2)	
4.3.2	$m_{\rm NM} = \frac{5 - (-3)}{-12 - (-6)}$	✓ substitution
	$m_{\rm NM} = -\frac{4}{3}$	$\checkmark m_{\text{NM}} = -\frac{4}{3}$
	$m_{\text{tangent}} = \frac{3}{4}$	$\sqrt{m_{\text{tangent}}} = \frac{3}{4}$
	$-5 = \frac{3}{4}(-17) + c \qquad \mathbf{OR/OF} \qquad y - y_1 = \frac{3}{4}(x - x_1)$	✓ substitution of m and N
	$c = \frac{31}{4}$ $y - (-5) = \frac{3}{4}(x - (-17))$ $y = \frac{3}{4}x + \frac{31}{4}$ $y = \frac{3}{4}x + \frac{31}{4}$	
	$y = \frac{3}{4}x + \frac{31}{4}$ $y = \frac{3}{4}x + \frac{31}{4}$	✓ equation (5)
	OR/OF	
	NS = SM = 5	✓ S midpoint
	$S\left(\frac{-12-6}{2} \; ; \; \frac{5-3}{2}\right)$ $S(-9 \; ; \; 1)$	✓ coordinates of S
	$m_{\rm SK} = \frac{1 - (-5)}{-9 + 17}$	
	$=\frac{6}{8}=\frac{3}{4}$	$\sqrt{m_{\text{tangent}}} = \frac{3}{4}$
	$y + 5 = \frac{3}{4}(x + 17)$	✓ substitution of m and $K(-17; -5)$ or S
	$y = \frac{3}{4}x + \frac{31}{4}$ or $y = \frac{3}{4}x + 7\frac{3}{4}$	✓ equation (5)
4.4.1	$-8 = \frac{3}{4}x + \frac{31}{4}$	$\sqrt{-8} = \frac{3}{4}x + \frac{31}{4}$
	-32 = 3x + 31 $3x = -63$ $x = -21$ $P(-21; -8)$	$\checkmark x = -21$
	R(-6; -8) $PR = PS = 15 units$ [tangents from same point] $MS = MR = 5 units$	✓ PR = PS = 15 units ✓ MS = MR = 5 units
	Perimeter PSMR = 15 + 15 + 5 + 5 = 40 units	✓ answer (5)

4.4.2	area of ΔNPS		
	area of quadrilateral PSMR		
	$\frac{1}{2}$ NS.SP		
	$\frac{1}{2}$ SP.MS + $\frac{1}{2}$ MR.PR		
	$=\frac{\frac{1}{2}(5)(15)}{(1)(15)}$	✓ substitution	
	$2\left(\frac{1}{2}\right)(5)(15)$		
	$=\frac{1}{2}$	✓ answer	(2)
	OR		
	$\Delta NPS \equiv \Delta SPM \equiv \Delta MPR$ area of ΔNPS	✓ congruent	
	area of quadrilateral PSMR		
	$=\frac{1}{-}$	✓ answer	
	2		(2)
			[22]

5.1	$1-\sin(-\theta)\cos(90^\circ+\theta)$		
3.1	$\frac{1 \sin(\theta)\cos(\theta + \theta)}{\cos(\theta - 360^{\circ})}$		
	$1 - (-\sin\theta)(-\sin\theta)$		
	$=\frac{1-(-\sin\theta)(-\sin\theta)}{\cos\theta}$		$\sqrt{-\sin\theta} \sqrt{-\sin\theta}$
	$\cos \theta$ $1-\sin^2 \theta$		$\sqrt{\cos\theta}$
	=		
	$\cos \theta$		
	$=\frac{\cos^2\theta}{\cos\theta}$		$\sqrt{\cos^2\theta}$
	$\cos \theta$ $= \cos \theta$		✓ answer
	- cos o		(5)
5.2.1	cos 200°		
	$=-\cos 20^{\circ}$		✓ reduction
	=-p		✓ answer
5.2.2	: (700)		(2)
5.2.2	$\sin(-70^\circ)$		√ 1 ···
	$=-\sin 70^{\circ}$		reduction
	$= -\cos 20^{\circ}$ $= -p$		✓ answer
	P		(2)
	OR/OF	<i>y</i> ↑	(2)
		700	
	sin(-70°)	$\sqrt{1-p^2}$	
	$=-\sin 70^{\circ}$	$\langle \qquad \qquad \qquad \rangle x$	✓ reduction
	n		✓ answer
	=-p	↓	(2)
5.2.3	sin10°		(2)
3.2.3	$\cos(2(10^\circ)) = 1 - 2\sin^2 10^\circ$		✓ double angle
	$2\sin^2 10^\circ = 1 - \cos 20^\circ$		
	$\sin 10^\circ = \sqrt{\frac{1 - \cos 20^\circ}{2}}$		✓ sin 10° as subject
	V 2		J
	$\sin 10^\circ = \sqrt{\frac{1-p}{2}}$		
	$\int \int $		✓ answer
			(3)
	OR/OF		
	sin10°		
	$\sin(30^{\circ}-20^{\circ})$		✓ using enacial angle
		202	✓ using special angle
	$= \sin 30^{\circ} \cos 20^{\circ} - \cos 30^{\circ}$	J~s1n 20~	√ expanding
	$1 \sqrt{3} \sqrt{3} n$	$-\sqrt{3}\sqrt{1-p^2}$	✓ answer
	$=\frac{1}{2}p-\frac{\sqrt{3}}{2}\sqrt{1-p^2}=\frac{p}{2}$	2	(3)
	<i>L L</i>	<i>L</i>	
	OR/OF		

	sin10°	
	$\sin(70^{\circ} - 60^{\circ})$	
	$= \sin 70^{\circ} \cos 60^{\circ} - \cos 70^{\circ} \sin 60^{\circ}$	✓ using special angle✓ expanding
	$= p.\frac{1}{2} - \sqrt{1 - p^2} \times \frac{\sqrt{3}}{2} = \frac{p - \sqrt{3}\sqrt{1 - p^2}}{2}$	✓ answer (3)
	OR/OF	
	sin10°	
	$=\cos 80^{\circ}$	
	$\cos(60^{\circ} + 20^{\circ})$	✓ using special angle
	$=\cos 60^{\circ}\cos 20^{\circ} - \sin 60^{\circ}\sin 20^{\circ}$	✓ expanding
	$1 \sqrt{3}$	
	$= \frac{1}{2} p - \frac{\sqrt{3}}{2} \cdot \sqrt{1 - p^2}$	✓ answer (3)
5.3	$\cos(A + 55^{\circ})\cos(A + 10^{\circ}) + \sin(A + 55^{\circ})\sin(A + 10^{\circ})$	(0)
	$=\cos\left[A+55^{\circ}-\left(A+10^{\circ}\right)\right]$	√√ compound
	$=\cos 45^{\circ}$	identity
	$=\frac{1}{\sqrt{2}}$ or $\frac{\sqrt{2}}{2}$	√ answer
	VZ Z	(3)
5.4.1	LHS = $\frac{\cos 2x + \sin 2x - \cos^2 x}{\cos x}$ RHS = $-\sin x$	
	$\sin x - 2\cos x$	
	$= \frac{\cos^2 x - \sin^2 x + 2\sin x \cos x - \cos^2 x}{\sin x - 2\cos x}$	$\sqrt{\cos^2 x - \sin^2 x}$
	$-\sin^2 x + 2\sin x \cos x$	$\sqrt{2\sin x \cos x}$
	$=\frac{\sin x - 2\cos x}{\sin x - \cos x}$	
	$= \frac{-\sin x(\sin x - 2\cos x)}{2}$	✓ common factor of
	$ \sin x - 2\cos x \\ = -\sin x $	$-\sin x$
	∴ LHS = RHS	
5.4.2	$\cos 2x + \sin 2x - \cos^2 x$	(3)
	$\frac{\cos 2x + \sin 2x - \cos x}{-3\sin^2 x + 6\sin x \cos x}$	
	$\cos 2x + \sin 2x - \cos^2 x$	
	$= \frac{1}{-3\sin x(\sin x - 2\cos x)}$	✓ common factor of
	$\cos 2x + \sin 2x - \cos^2 x \qquad 1$	$-3\sin x$
	$= \frac{\cos 2x + \sin 2x - \cos^2 x}{\left(\sin x - 2\cos x\right)} \times \frac{1}{-3\sin x}$	
	$= \left(-\sin x\right) \times \frac{1}{-3\sin x}$	✓ substitution
	$-3\sin x$	
	$=\frac{1}{3}$	✓ answer
	J	(3)

5.5.1	$3\tan 4x = -2\cos 4x$	
	$3\left(\frac{\sin 4x}{\cos 4x}\right) = -2\cos 4x$	✓ identity
	$3\sin 4x + 2\cos^2 4x = 0$	
	$3\sin 4x + 2(1-\sin^2 4x) = 0$	$\sqrt{1-\sin^2 4x}$
	$-2\sin^2 4x + 3\sin 4x + 2 = 0$	
	$2\sin^2 4x - 3\sin 4x - 2 = 0$	✓ standard form
	$(2\sin 4x + 1)(\sin 4x - 2) = 0$	✓ factors
	$\sin 4x = -\frac{1}{2} \text{or} \sin 4x \neq 2$	(4)
5.5.2	$\sin 4x = -\frac{1}{2}$	
	ref. $\angle = 30^{\circ}$	
	rej. 2 – 30	
	$4x = 210^{\circ} + k.360^{\circ}$ or $4x = 330^{\circ} + k.360^{\circ}$	✓ 210°; 330° ✓ 52.5°, 22.5°
	$x = 52.5^{\circ} + k.90^{\circ}$; $k \in \mathbb{Z}$ $x = 82.5^{\circ} + k.90^{\circ}$; $k \in \mathbb{Z}$	\checkmark 52,5°; 82,5° \checkmark k.90°; k ∈ Z
		(3)
		[28]

6.1	Period = 180°	✓ answer (1)
6.2	$\frac{1}{2}$ $\frac{1}$	 ✓ x-intercepts ✓ turning points ✓ end points
		(3)
6.3	$y \in [-1;1]$ OR/OF $-1 \le y \le 1$	✓ answer (1)
6.4	$g(x) = -\cos 2x$ $g(x+45^\circ) = -\cos 2(x+45^\circ)$ $= -\cos(2x+90^\circ)$ $= \sin 2x$	$\checkmark -\cos 2(x+45^\circ)$ $\checkmark \text{ answer}$
6.5.1	$x \in (-90^{\circ}; -45^{\circ})$ OR/OF $-90^{\circ} < x < -45^{\circ}$	(2) $\checkmark \checkmark x \in (-90^\circ; -45^\circ)$
6.5.2	$2\cos 2x - 1 > 0$ $\cos 2x > \frac{1}{2}$ $-\cos 2x < -\frac{1}{2}$ $x \in (-30^{\circ}; 30^{\circ})$ OR/OF $-30^{\circ} < x < 30^{\circ}$	(2) $ \checkmark \cos 2x > \frac{1}{2} $ $ \checkmark -\cos 2x < -\frac{1}{2} $ $ \checkmark x = \pm 30^{\circ} \checkmark \text{ interval} $ (4) [13]
		[13]

7.1.1	$\frac{AC}{20} = \cos 30^{\circ}$	✓ trig ratio
	$AC = 20\cos 30^{\circ}$	
	$AC = 10\sqrt{3} = 17,32 \text{ units}$	✓ answer
	OR/OF	(2)
	ORIOF	
	$\frac{AC}{\sin 60^{\circ}} = \frac{20}{\sin 90^{\circ}}$	
	$\frac{1}{\sin 60^{\circ}} = \frac{1}{\sin 90^{\circ}}$	√ trig ratio
	\therefore AC = $20\sin 60 = 17,32$	✓ answer
		(2)
7.1.2	$AB^2 = AC^2 + BC^2 - 2AC.BC\cos A\hat{C}B$	✓ cosine formula
	$AB^{2} = (10\sqrt{3})^{2} + 8^{2} - 2(10\sqrt{3})(8)\cos 100^{\circ}$	✓ substitution into
		cosine formula
	AB = 20,30 units	✓ answer
7.2		(3)
7.2	$\frac{\sin A\hat{D}B}{AB} = \frac{\sin A\hat{B}D}{AD}$	✓ sine formula in \triangle ABD
	$\frac{\sin A\hat{D}B}{20.3} = \frac{\sin 73.4^{\circ}}{20}$	✓ substitution into sine formula
	· · · · · · · · · · · · · · · · · · ·	sine formula
	$\sin A\hat{D}B = \frac{20,3\sin 73,4^{\circ}}{20}$	
	$\hat{ADB} = 76,58^{\circ}$	✓ answer
		(3)
		[8]

8.1.1(a)	$\hat{T}_2 = 54^{\circ}$	[tan ⊥rad]	✓ S ✓R	(2)
8.1.1(b)	L=36°	[tan-chord theorem]	✓ S ✓R	(2)
8.1.1(c)	KÔT=72°	[\angle at centre = $2 \times \angle$ at circumference]	✓ S ✓R	(2)
	OR/OF			
	$O\hat{K}T = \hat{T}_2 = 54^{\circ}$		✓ S/R	
		[sum of int \angle 's of Δ]	✓ S	(2)
8.1.2	$\hat{KMO} = 180^{\circ} - (18^{\circ} + 72^{\circ})$		✓ S	
	=90°	[sum of int \angle 's of Δ]	✓ S	
	\therefore KM = ML	[line from centre \perp to chord]	✓ R	(3)
	OR/OF			(3)
	OKT=54°	[∠s opposite = radii]		
	$\hat{K}_1 = 54^{\circ} - 18^{\circ} = 36^{\circ}$		✓ S	
	$\hat{TMK} = 90^{\circ}$	[sum of int \angle 's of Δ]	✓ S	
	∴ KM = ML	[line from centre ⊥ to chord]	✓ R	(3)

8.2.1	$\frac{DC}{CS} = \frac{20}{12} = \frac{5}{3}$	✓ S
	$\therefore \frac{DC}{CS} = \frac{RB}{BS}$	✓ S
	 ∴ BC DR	✓ R
		(3)
8.2.2	$\frac{AR}{AD} = \frac{RB}{BS} \text{ [line one side of } \Delta \text{] } \mathbf{OR} \text{[Prop Theorem AB DS]}$ $\frac{AR}{AD} = \frac{5}{3}$ $\frac{48 - AD}{AD} = \frac{5}{3}$ $\therefore 5AD = 144 - 3AD$	$\checkmark \frac{AR}{AD} = \frac{5}{3}$
	AD = 18	✓ AD = 18
	AB = 20 [opp sides of parm]	
	\therefore AD : AB = 18 : 20 = 9 : 10	✓ ratio (3)

OR/OF	
$\frac{AR}{RD} = \frac{5}{8} \dots \text{prop thm AB } DS$ $\frac{AR}{48} = \frac{5}{8}$ $\therefore AR = 30 \text{ and } AD = 18$	$\checkmark \frac{AR}{RD} = \frac{5}{8}$ $\checkmark AD = 18$
$\therefore \frac{AR}{RD} = \frac{AB}{DS} \dots \ \Delta's$ $\therefore AB = 20$ $\therefore AB : AD = 18 : 20 = 9 : 10$	✓ ratio

9.1	Constr: Draw radii OA and OC.	✓ Construction
	Proof:	
	$\hat{O}_1 = 2\hat{B}$ [\angle at centre = $2 \times \angle$ at circumference]	✓ S ✓ R
	$\hat{O}_2 = 2\hat{D}$ [\angle at centre = $2 \times \angle$ at circumference]	V B V K
	$\hat{O}_1 + \hat{O}_2 = 360^{\circ}$ [revolution]	✓ S/R
	$2\hat{B} + 2\hat{D} = 360^{\circ}$ [revolution]	✓ S
	$\therefore \hat{\mathbf{B}} + \hat{\mathbf{D}} = 180^{\circ}$	(5)
		(5)

9.2	$\hat{EFG} = 180^{\circ} - \hat{D}_1$	[opp ∠'s of cyclic quad]	✓S ✓ R
	$\therefore \hat{EFG} = 180^{\circ} - x$		(a / p
	$\hat{G} = 180^{\circ} - \hat{G}$ $\hat{G} = x$	[co-int \angle 's; EF \parallel DG]	✓S / R
	But $\hat{G} = \hat{D}_2$	[alt ∠'s; DH FG]	✓ S/R
	$\therefore \hat{\mathbf{D}}_1 = \hat{\mathbf{D}}_2 = x$	r9 - 1	
			(4)
			[9]

10.1.1	TPR=90°	[∠ in semi-circle]	✓S ✓R	
	SPR =90°	[∠'s on a straight line]	✓S	
	∴ SR is a diameter	[converse ∠ in semi-circle]	✓R	
				(4)
	OR			(1)
	^			
	TKR=90°	[∠ in semi-circle]	✓S ✓R	
	SPR =90°	[ext \angle of cyclic quad]	✓S	
	∴ SR is a diameter	[converse \angle in semi-circle]	✓R	
		OR		(4)
		[chord subtends a right angle]		

10.1.2			
10.1.2	$\hat{\mathbf{R}}_1 = \mathbf{P}\hat{\mathbf{T}}\mathbf{K}$	[ext ∠ of cyclic quad]	✓S ✓R
	$\hat{P}_1 = \hat{P}TK = \hat{R}_1$	[∠s opp equal sides]	✓S /R
	$\hat{\mathbf{S}} + \hat{\mathbf{R}}_1 = \hat{\mathbf{P}}_1 + \mathbf{P}_2$	$[\operatorname{ext} \angle \operatorname{of} \Delta]$	✓S ✓R
	$\therefore \hat{S} = \hat{P}_2$	$[\hat{\mathbf{R}}_1 = \hat{\mathbf{P}}_1]$	
10.1.3	In \triangle SPK and \triangle PRK		(5)
10.1.3		[proved]	✓S
	$\hat{\mathbf{S}} = \hat{\mathbf{P}}_2$ $\hat{\mathbf{K}}_2 = \hat{\mathbf{K}}_2$	[common]	✓S
		[eommon]	
	$\Delta SPK \parallel \Delta PRK$	$[\angle, \angle, \angle]$	✓S/R
	OR/OF		(3)
	In \triangle SPK and \triangle PRK		
	$\hat{\mathbf{S}} = \hat{\mathbf{P}}_2$	[proved]	✓S
	$\hat{\mathbf{K}}_2 = \hat{\mathbf{K}}_2$	[common]	✓S
	SPK =PRK	[sum of \angle s in Δ]	✓S/R
	$\Delta SPK \parallel \Delta PRK$		(3)
10.2	$\frac{PK}{RK} = \frac{SK}{PK} [\Delta SPK \parallel]$	ΔPRK]	✓S
	$PK^2 = SK.RK$		
	$ST^2 = SK^2 + TK^2$	[Pythagoras]	✓S
	TK = PK	[Given]	
	$ST^2 = SK^2 + PK^2$		
	$ST^2 = SK^2 + SK.RK$		\checkmark PK ² =SK.RK
	$ST^2 = (2RK)^2 + 2RK.$	RK	✓SK = 2RK
	$ST^2 = 6RK^2$		\checkmark ST ² = 6RK ²
	$ST = \sqrt{6}RK$		(5)
			[17]

TOTAL/TOTAAL: 150