Problem 1

(a)

	>	
V only	V&M	M
36%	24%	only
	\mathcal{L}	167.

P(At least one of V and M) = 36 / + 24 / + 16 / = 76 /

(e)
$$P(V|M^c) = \frac{36\%}{(1-40\%)} = 60\%$$

(f) $P(V|M) = P(V|M^c) = P(V) = 60\% \Rightarrow V \text{ and } M \text{ are independent}$

9)

V° and M° can both be true They are non-disjoint.

Problem 2

(a) A = one roll shows 3 or more spots $P(A) = 4/6 = \frac{2}{3}$

P(All 4 rolls >3) = P(A) = 16/81 = 19.75%

(b) $P(A^c) = 1 - \frac{2}{3} = \frac{1}{3}$

P(AU 4 rolls <3) = P4(Ac) = 1/81 = 1.23%

(c) P(At least | roll shows 6) = 1 - P(All 4 rolls # 6)= $1 - (\frac{5}{6})^4 = \frac{671}{1296} = 51.77\%$

Problem 3
(a)
$$p = \frac{4-1}{52-4} = \frac{1}{16}$$

(b)
$$P = P(A) \times P(AB|A) \times P(ABC|AB) \times P(ABCD|ABC) \times P(ABCDE|ABCD)$$

= $\frac{4}{52} \times \frac{3}{51} \times \frac{2}{50} \times \frac{4}{49} \times \frac{3}{48} \approx 9.2 \times 10^{-7}$