Revisão - Prova 2

Algoritmos e Estrutura de Dados - IF672

Andreywid Yago Lima de Souza <ayls>
João Victor Nascimento <jvsn2>

O que veremos hoje:

- Encaminhamento em Grafos
 - BFS e DFS
 - MST
 - Kruskal
 - Prim
 - Menor caminho:
 - Dijkstra
 - Bellman-Ford
- Problemas NP-completo
 - Backtracking
- Programação Dinâmica
 - Knapsack

Busca em largura

Um grafo G = (V, E) é dito bipartido se seus vértices podem ser coloridos com duas cores, vermelho (R) e verde (G), de forma que nenhuma aresta ligue dois vértices com a mesma cor. Uma BFS pode receber as seguintes modificações para testar se um grafo é bipartido.

- Comece com todos os vértices sem cor (U).
- A visita a um vértice u só é iniciada se ele ainda não tiver cor. Nesse caso, a visita começa pintando-o de vermelho (R).
- Ao desenfileirar um vértcie u e considerar as arestas (u, v):
 - Se v ainda n\u00e3o tem cor, pinte-o com a cor oposta \u00e0 cor de u e enfileire-o.
 - Se v já estiver pintado com uma cor oposta a de u, ignore-o.
 - Se v já estiver colorido com a mesma cor de u, pára e retorna False (o grafo não é bipartido).
- Se o precurso chegar até o final com todos

os vértices coloridos normalmente, encerra e retorna True (o grafo é bipartido).

Ilustre a execução desse algoritmo sobre o grafo dado pelas listas de adjacências a seguir, completando o quadro abaixo.

$$0 \rightarrow 4,8$$
 $3 \rightarrow 6$ $6 \rightarrow 2,3,7$
 $1 \rightarrow 2,7$ $4 \rightarrow 0$ $7 \rightarrow 1,5,6$
 $2 \rightarrow 1,6$ $5 \rightarrow 7$ $8 \rightarrow 0$

	Cores									
Passo	Fila	0	1	2	3	4	5	6	7	8
0	Ø	U	U	U	U	U	U	U	U	U
1	0	R	U	U	U	U	U	U	U	U
1	:					:				

Indique claramente ao final se o grafo é bipartido.

Busca em profundidade:

Considere o seguinte grafo representado por listas de adjacências

$$0 \rightarrow (1,3), (2,5), (3,9)$$

 $1 \rightarrow (0,3), (2,3), (3,5), (4,7)$
 $2 \rightarrow (0,5), (1,3), (3,2), (4,6), (5,8)$
 $3 \rightarrow (0,9), (1,5), (2,2), (4,2), (5,3)$
 $4 \rightarrow (1,7), (2,6), (3,2), (5,5)$
 $5 \rightarrow (2,8), (3,3), (4,5)$

onde cada elemento numa dessas listas $u \to \dots (v,w) \dots$ indica uma aresta de u para v com peso w.

 a) Forneça a enumeração em *profundidade* dos nós desse grafo.

Algoritmo Prim

 b) Complete o diagrama a seguir correspondente à execução do *Algoritmo Prim* sobre esse grafo.

Iter.	Peso, Precursor						
#	0	1	2	3	4	5	
0	(0, -)	∞,?	∞,?	∞,?	∞,?	∞,?	
1	0,-	3,0					
:	:	:	:	:	:		

Bellman-Ford

Considere o grafo

Preencha o diagrama a seguir, correspondente à execução do *Algoritmo Bellman-Ford* sobre o grafo acima a partir do vértice de origem *A*. Indique se o grafo possui ciclos negativos com base na execução do algoritmo.

Iter.	Distância, Precursor						
#	A	В	C	D	E	F	
0	0, -	∞,?	∞,?	∞,?	∞,?	∞,?	
1	0, -	1, A					
:	:	:	:	:	:	:	
•							

Dijkstra

Considere o grafo

Preencha o diagrama a seguir, correspondente à execução do *Algoritmo Dijkstra* sobre o grafo acima a partir do vértice de origem *A*.

Iter.	Distância, Precursor					
#	A	В	C	D	E	F
0	0, -	∞,?	∞,?	∞,?	∞,?	∞,?
1	0, -	40, A				
:	:	:		:		

Kruskal

O Algoritmo de Kruskal é um algoritmo guloso para encontrar uma árvore geradora de custo mínimo (MST) de um grafo ponderado que faz uso da estrutura de dados *union-find* da seguinte maneira:

- 1. Inicie com a MST vazia e com cada vértice *u* numa componente isolada da union-find, make_set(*u*);
- 2. Ordene as arestas por 1º. peso, 2º. menor vértice, e 3º. maior vértice;
- 3. Para cada aresta (u, v) com peso w na ordem acima, se u e v não estão na mesma componente, una-as union(u, v), e adicione a aresta à MST.

Considerando a execução do Algoritmo Kruskal sobre o grafo

represente graficamente a estrutura *union-find C* ao final da execução do algoritmo, considerando o emprego das heurísticas de *união ponderada* e *compressão de caminhos*.

cin.ufpe.br

PD - Knapsack

Escreva a Matriz de Programação Dinâmica correspondente à execução do Algoritmo Knapsack-0/1 sobre os itens a seguir

Item (i)	0	1	2	3	4
Peso (w_i)	4	3	1	2	2
Valor (v_i)	40	25	10	20	15

com capacidade K = 7. Indique os itens escolhidos através da correspondente sequência de entradas da matriz de PD.

Dijkstra

Considere o diagrama a seguir correspondente a uma execução do Algoritmo Dijkstra.

	A	В	C	D	E	F
0	0	~	∞	∞	~	∞
1	0	(15)	∞	30	20	∞
2	0	(15)	55	25	(20)	∞
3	0	(15)	45	25)	20)	35
4	0	(15)	45	25)	20	(35)
5	0	15)	40	25)	20)	(35)

- a) Represente o grafo dirigido com 6 vértices e 8 arestas correspondente a essa execução do algoritmo.
- Represente também o vetor de precursores correspondentes a essa execução.

Backtracking

Um algoritmo baseado em *backtracking* para o problema de encontrar um *k*-clique num grafo *G* consiste em iniciar com um conjunto vazio de vértices *C* e ir acrescentando progressivamente vértices ao conjunto, interrompendo o processo assim que um vértice adicionado não esteja ligado a algum outro vértice de *C*. O primeiro vértice é escolhido na ordem 0,1,2,... Uma vez acrescentado um vértice *v*, os próximos a serem tentados são os vizinhos ainda não escolhidos de *v*, enquanto houver. Se, em algum momento, o algoritmo consegue escolher *k* vértices com sucesso, ele pára e retorna o clique *C*.

Ilustre a árvore de execução desse algoritmo backtracking para a o grafo a seguir para k = 4.

Busca em profundidade

Considere a codificação do mapa do Brasil a seguir como um grafo não dirigido nos qual cada estado é representado por um nó e dois estados vizinhos são ligados por uma aresta.

Qual o percurso adequado nesse grafo para determinar a menor quantidade de estados $\delta(s,t)$ a serem visitados numa viagem de Pernambuco (s=14) a cada um dos demais estados, $\delta(s=14,t)$ para $t=1,\ldots,27$?

a) Ilustre a execução desse percurso exibindo a árvore correspondente. b) Enumere os estados de acordo com esse percurso e c) Indique o menor número de estados visitados numa viagem de Pernambuco (*s* =

14) ao Paraná (t = 25).

cin.ufpe.br

Boa Prova!

