

Fundação CECIERJ - Vice Presidência de Educação Superior a Distância

Curso de Tecnologia em Sistemas de Computação Disciplina: Computação Gráfica AP3 - 2° semestre de 2016.

Nome -

Assinatura –

Observações:

- i) Prova sem consulta e sem uso de máquina de calcular.
- ii) Use caneta para preencher o seu nome e assinar nas folhas de questões e nas folhas de respostas.
- iii) Você pode usar lápis para responder as questões.
- iv) Ao final da prova devolva as folhas de questões e as de respostas.
- Todas as respostas devem ser transcritas nas folhas de respostas. As respostas nas folhas de questões não serão corrigidas.

Na última página encontra-se a folha de respostas. Preencha corretamente e sem rasuras. Todas as questões tem o mesmo peso.

Seja I a intensidade da luz incidente em um ponto p, l o vetor que indica a direção de incidência da luz, v a posição do observador, n a normal em p e r o raio de luz refletido.
 Além disso seja k_d o coeficiente de reflexão difusa. A intensidade da reflexão difusa I_d é dada pela expressão

A
$$I_{d} = k_{d} < n, l >$$

B
$$I_{d} = k_{d} < 1, r >$$

$$C I_d = k_d < r, v >$$

D
$$I_{d} = k_{d} < n,r >$$

E
$$I_{a} = \langle n, l \rangle^{k_{d}}$$

- 2) O frustrum culling de polígonos consiste em:
 - A projetar o polígono no frustrum da camera
 - B rasterizar o interior do polígono
 - C recortar parte do polígono que ficou fora da área de projeção
 - D estratégia de eliminar polígonos não visíveis pela camera
 - E Transformar as coordenadas do polígono para espaço de frustrum
- 3) Sobre o CUDA, NÃO podemos afirmar
 - A função que é executada na GPU chama-se kernel
 - B é uma biblioteca gráfica do OpenGL
 - C cada kernel é instanciado em centenas ou até milhares de threads
 - D permite desenvolver algoritmos altamente paralelos

E requer que os dados da GPU sejam copiados a partir da memória da CPU

- 4) Malhas de terrenos podem ser bastante extensas e consumir bastante tempo de rendering. Para otimizá-los, podemos
 - A Usar pixel shaders
 - B Iluminar apenas alguns de seus vértices
 - C Criar uma amostragem estatística
 - D Usar Level Of Details
 - E Usar Portais
- 5) Se um artista lhe disser que o jogo está com um gargalo na rasterização, uma das soluções de otimização seria:
 - A alterar o modelo de iluminação aplicado aos vértices vértices
 - B Diminuir o número de transformações geométricas
 - C Diminuir a resolução da janela
 - D Retirar todas as operações de quaternions
 - E Melhorar as estratégias de culling
- 6) Não é uma estrutura de dados para geometria
 - A Quadtree
 - B Octree
 - C BPS
 - D Triangle Fans
 - E Cohen-Sutherland
- 7) São transformações que preservam distâncias e ângulos de objetos no plano e no espaço:
 - A Transformações projetivas
 - B Escalas e rotações
 - C Transformações lineares
 - D Translações e rotações
 - E Somente rotações
- 8) Sobre a tonalização de Phong pode-se afirmar:
 - A É um modelo de iluminação global
 - B Determina a tonalidade em um ponto p, em uma face f, calculando a interpolação das cores (tons) determinadas nos vértices de f
 - C Determina a tonalidade em um ponto p, em uma face f, calculando a interpolação das normais nos vértices da face, seguido da avaliação da equação de iluminação em p, baseada na normal n interpolada.
 - D Produz resultados menos precisos que o Flat Shading
 - E É menos custoso computacionalmente que a tonalização Flat Shading
- 9) Seja l o vetor correspondente a direção da luz incidente em um ponto p de uma superfície com normal n. O raio de luz refletido r é dado por:
 - A n < n, l > -1
 - B (1+n)/2

C 2n < n, l > -1

D 2n < n, l > -n

E -l

10) Destaque abaixo o método que **não pode** ser utilizado para construir um retalho de superfície:

A Método de Coons

B Interpolação bilinear

C Lofting

D Método do ponto médio

E Superfícies de Bézier

11) Assinale a opção que **não** descreve algoritmos de recorte (clipping)

A Cohen-Sutherland e Sutherland-Hodgeman

B Cyrus-Beck e Sutherland-Hodgeman

C Half-edge e Winged-Edge

D Cyrus-Beck e Cohen-Sutherland

E Weiler-Atherton e Cohen-Sutherland

12) Dada uma posição de uma câmera eye = (eye_x,eye_y,eye_z), um centro de visada center = (center_x,center_y,center_z) e um vetor que indique a direção para cima da câmera up = (up_x,up_y,up_z), um sistema de coordenadas de câmera dado pelos vetores x_e, y_e e z_e pode ser definido através das seguintes equações

$$A \quad X_e = \frac{\textit{up} \cdot \textit{z}_e}{\left\|\textit{up} \cdot \textit{z}_e\right\|}, \ \textit{y}_e = \frac{\textit{z}_e \cdot \textit{x}_e}{\left\|\textit{z}_e \cdot \textit{x}_e\right\|}, \ \textit{z}_e = \frac{(\textit{center} - \textit{eye})}{\left\|\textit{center} - \textit{eye}\right\|}$$

B
$$X_{e} = \langle up, Z_{e} \rangle, y_{e} = \langle X_{e}, y_{e} \rangle, Z_{e} = \frac{(center - eye)}{\|center - eye\|}$$

C $X_{e} = \frac{Z_{e} \cdot up}{\|Z_{e} \cdot up\|}, y_{e} = \frac{X_{e} \cdot y_{e}}{\|X_{e} \cdot Z_{e}\|}, Z_{e} = \frac{(center - eye)}{\|center - eye\|}$

D $X_{e} = \frac{Z_{e} \cdot up}{\|Z_{e} \cdot up\|}, y_{e} = \frac{X_{e} \cdot y_{e}}{\|X_{e} \cdot Z_{e}\|}, Z_{e} = \frac{(eye - center)}{\|eye - center\|}$

D
$$X_{e} = \frac{Z_{e} \cdot up}{\|Z_{e} \cdot up\|}, y_{e} = \frac{X_{e} \cdot y_{e}}{\|X_{e} \cdot Z_{e}\|}, Z_{e} = \frac{(eye-center)}{\|eye-center\|}$$

$$E \quad \textit{X}_{\text{e}} = \frac{\textit{up} \cdot \textit{Z}_{\text{e}}}{\left\|\textit{up} \cdot \textit{Z}_{\text{e}}\right\|}, \textit{y}_{\text{e}} = \frac{\textit{y}_{\text{e}} \cdot \textit{X}_{\text{e}}}{\left\|\textit{y}_{\text{e}} \cdot \textit{X}_{\text{e}}\right\|}, \textit{Z}_{\text{e}} = \frac{(\textit{center - eye})}{\left\|\textit{center - eye}\right\|}$$

Tabela de respostas. Preencha sem rasuras apenas uma resposta:

Questão	1	2	3	4	5	6	7	8	9	10	11	12
Resposta	Α	D	В	D	C	E	D	C	C	D	C	A