```
In [1]: import numpy as np
   import pandas as pd
   import matplotlib.pyplot as plt
   import seaborn as sns
```

In [2]: df=pd.read_csv(r"C:\Users\Admin\Downloads\16_Sleep_health_and_lifestyle_dataset - 16_Sleep_health_and_lifestyle_dataset.org

Out[2]:

	Person ID	Gender	Age	Occupation	Sleep Duration	Quality of Sleep	Physical Activity Level	Stress Level	BMI Category	Blood Pressure	Heart Rate	Daily Steps	Sleep Disorder
0	1	Male	27	Software Engineer	6.1	6	42	6	Overweight	126/83	77	4200	None
1	2	Male	28	Doctor	6.2	6	60	8	Normal	125/80	75	10000	None
2	3	Male	28	Doctor	6.2	6	60	8	Normal	125/80	75	10000	None
3	4	Male	28	Sales Representative	5.9	4	30	8	Obese	140/90	85	3000	Sleep Apnea
4	5	Male	28	Sales Representative	5.9	4	30	8	Obese	140/90	85	3000	Sleep Apnea
369	370	Female	59	Nurse	8.1	9	75	3	Overweight	140/95	68	7000	Sleep Apnea
370	371	Female	59	Nurse	8.0	9	75	3	Overweight	140/95	68	7000	Sleep Apnea
371	372	Female	59	Nurse	8.1	9	75	3	Overweight	140/95	68	7000	Sleep Apnea
372	373	Female	59	Nurse	8.1	9	75	3	Overweight	140/95	68	7000	Sleep Apnea
373	374	Female	59	Nurse	8.1	9	75	3	Overweight	140/95	68	7000	Sleep Apnea

374 rows × 13 columns

In [3]: df.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 374 entries, 0 to 373
Data columns (total 13 columns):

Ducu	COTAMINIS (COCAT IS COTAMINI	٠,٠						
#	Column	Non-Null Count	Dtype					
0	Person ID	374 non-null	int64					
1	Gender	374 non-null	object					
2	Age	374 non-null	int64					
3	Occupation	374 non-null	object					
4	Sleep Duration	374 non-null	float64					
5	Quality of Sleep	374 non-null	int64					
6	Physical Activity Level	374 non-null	int64					
7	Stress Level	374 non-null	int64					
8	BMI Category	374 non-null	object					
9	Blood Pressure	374 non-null	object					
10	Heart Rate	374 non-null	int64					
11	Daily Steps	374 non-null	int64					
12	Sleep Disorder	374 non-null	object					
<pre>dtypes: float64(1), int64(7), object(5)</pre>								
memo	memory usage: 38.1+ KB							

In [4]: | df.describe()

Out[4]:

	Person ID	Age	Sleep Duration	Quality of Sleep	Physical Activity Level	Stress Level	Heart Rate	Daily Steps
count	374.000000	374.000000	374.000000	374.000000	374.000000	374.000000	374.000000	374.000000
mean	187.500000	42.184492	7.132086	7.312834	59.171123	5.385027	70.165775	6816.844920
std	108.108742	8.673133	0.795657	1.196956	20.830804	1.774526	4.135676	1617.915679
min	1.000000	27.000000	5.800000	4.000000	30.000000	3.000000	65.000000	3000.000000
25%	94.250000	35.250000	6.400000	6.000000	45.000000	4.000000	68.000000	5600.000000
50%	187.500000	43.000000	7.200000	7.000000	60.000000	5.000000	70.000000	7000.000000
75%	280.750000	50.000000	7.800000	8.000000	75.000000	7.000000	72.000000	8000.00000
max	374.000000	59.000000	8.500000	9.000000	90.000000	8.000000	86.000000	10000.000000

In [5]: df.columns

```
dtype='object')
In [6]: sns.pairplot(df)
Out[6]: <seaborn.axisgrid.PairGrid at 0x16187f451c0>
      9000
      7000
      6000
5000
```

```
In [7]: sns.distplot(df['Daily Steps'])
```

Out[7]: <matplotlib.axes._subplots.AxesSubplot at 0x161894d0700>

In [8]: df1=df[['Age','Sleep Duration','Quality of Sleep', 'Physical Activity Level', 'Stress Level','Heart Rate', 'Daily Steps
df1

Out[8]:

	Age	Sleep Duration	Quality of Sleep	Physical Activity Level	Stress Level	Heart Rate	Daily Steps
0	27	6.1	6	42	6	77	4200
1	28	6.2	6	60	8	75	10000
2	28	6.2	6	60	8	75	10000
3	28	5.9	4	30	8	85	3000
4	28	5.9	4	30	8	85	3000
369	59	8.1	9	75	3	68	7000
370	59	8.0	9	75	3	68	7000
371	59	8.1	9	75	3	68	7000
372	59	8.1	9	75	3	68	7000
373	59	8.1	9	75	3	68	7000

374 rows × 7 columns

In [9]: sns.heatmap(df1.corr())

Out[9]: <matplotlib.axes._subplots.AxesSubplot at 0x1618b4ee1f0>


```
In [10]: x=df1[['Age','Sleep Duration','Quality of Sleep', 'Physical Activity Level', 'Stress Level','Heart Rate']]
y=df[['Daily Steps']]
```

```
In [11]: from sklearn.model_selection import train_test_split
    x_train,x_test,y_train,y_test = train_test_split(x,y,test_size=0.3)
```

```
In [12]: from sklearn.linear_model import LinearRegression
         lr= LinearRegression()
         lr.fit(x_train,y_train)
Out[12]: LinearRegression()
In [13]: print(lr.intercept_)
          [14488.78481287]
In [14]: prediction= lr.predict(x_test)
         plt.scatter(y_test,prediction)
Out[14]: <matplotlib.collections.PathCollection at 0x1618bfd91f0>
          9000
           8000
           7000
           6000
          5000
          4000
           3000
                                                       10000
               3000
                     4000
                           5000
                                 6000
                                       7000
                                            8000
                                                  9000
In [15]: print(lr.score(x_test,y_test))
         0.8260503686207115
In [16]: print(lr.score(x_train,y_train))
         0.7913066187858898
In [17]: from sklearn.linear_model import Ridge,Lasso
In [18]: rr=Ridge(alpha=10)
         rr.fit(x\_train,y\_train)
Out[18]: Ridge(alpha=10)
In [19]: rr.score(x_test,y_test)
Out[19]: 0.8260302396054762
In [20]: la=Lasso(alpha=10)
         la.fit(x_train,y_train)
Out[20]: Lasso(alpha=10)
In [21]: la.score(x_test,y_test)
Out[21]: 0.8260864769394787
 In [ ]:
```