Algebraische Geometrie

Prof. Dr. Venjakob

Vorlesung 17, 19 Oktober 2018

Literatur

- \bullet Görtz, Wedhorn. Algebraic Geometry I
- \bullet Hartshorne. Algebraic Geometry
- \bullet Shajarevich. Basic Algebraic Geometry 1 u. 2
- \bullet Grothendieck. Eléments de géometrie algébrique, EGA I-IV

Kommutative Algebra

- Brüske, Ischebeck, Vogel. Kommutative Algebra
- Kunz. Einführung in die kommutative Algebra und algebraische Geometrie

Inhaltsverzeichnis

Ι	I Prä-Varietäten	4
1		4
	1.1 Frage	 4
	1.2 Beispiel 1	4
	1.3 Methoden	4
2	2 Die Zariski-Topologie	5
	2.1 Definition $2 \dots \dots \dots \dots$	 5
	2.2 Eigenschaften	 5
	2.3 Satz 3	5
	2.3.1 Beweis (Satz 3)	 5
3	3 Affine algebraische Mengen	5
	3.1 Definition 4	 5
	3.2 Beispiel 5	 6
	3.3 Beispiel 6	 6

4	Der 4.1	Hilbertsche Nullstellensatz Satz 7	6
		4.1.1 Beweis (Satz 7)	6
	4.2	Korollar 8	6
	1.2	4.2.1 Beweis (Korollar 8)	7
5		respondenz zwischen Radikalidealen und affinen algebrai-	·
		en Mengen	7
	5.1	Definition 9	7
	5.2	Satz 10	7
		5.2.1 Beweis (Satz 10)	7
	5.3	Korollar 11	8
6		duzibele topologische Räume	8
	6.1	Definition 11	8
	6.2	Satz 12	8
		6.2.1 Beweis (Satz 12)	9
	6.3	Lemma 13	9
		6.3.1 Beweis (Lemma 13)	9
	6.4	Definition 14	9
	6.5	Bemerkung 15	9
7	Irre	duzibele affine algebraische Mengen	9
	7.1	Lemma 16	9
		7.1.1 Beweis (Lemma 16)	10
	7.2	Bemerkung 17	10
8	Qua	sikompakte und noethersche topologische Räume	10
	8.1	Definition 18	10
	8.2	Lemma 19	10
		8.2.1 Beweis (Lemma 19)	10
	8.3	Satz 20	11
		8.3.1 Beweis (Satz 20)	11
	8.4	Korollar 21 (Primärzerlegung)	11
		8.4.1 Beweis (Korollar 21)	11
9	Mor	phismen von affinen algebraischen Mengen	12
10	\mathbf{Unz}	ulänglichkeiten des Begriffs der affinen algebraischen Men-	
	gen		13
11	Der	affine Koordinatensatz	13
12	Fun	ktorielle Eigenschaften von $\Gamma(X)$	15
13	Räu	me mit Funktionen	16

14 Der Raum mit Funktionen zu einer affin algebraischen Menge	17
15 Funktorialität der Konstruktion	20
16 Definition von Prävarietäten	21

Abbildung 1:
$$T_2^2 = T_1^2(T_1 - 1) = T_1^3 - T_1^2$$

Teil I

Prä-Varietäten

1 Einführung

Algebraische Geometrie kann man verstehen, als das Studium von Systemen polynomialer Gleichungen (in mehreren Variabelen). Damit ist die algebraische Geometrie eine Verallgemeinerung der linearen Algebra, also statt X auch X^n , und auch der Algebra, durch Polynome in mehreren Variabelen.

1.1 Frage

Sei k ein (algebraisch abgeschlossener) Körper, und $f_1, \ldots, f_m \in k[T_1, \ldots, T_n]$ gegeben. Was sind die "geometrischen Eigenschaften" der Nullstellenmenge

$$V(f_1, ..., f_n) := \{(t_1, ..., t_n) \in k^n \mid f_i(t_1, ..., t_n) = 0 \ \forall i \}$$

1.2 Beispiel 1

 $f = T_2^2 - T_1^2(T_1 - 1) \in k[T_1, T_2]$. Die Nullstellenmenge für $k = \mathbb{R}$ (aber: trügerisch, da \mathbb{R} nicht algebraisch abgeschlossen!)

Dimension 1. Glatte und singulären Punkten: (0,0) singulär. Alle anderen Punkte verletzen eine eindeutig bestimmte Tangente.

Abbildung 2: Spitze und Doppelpunkt

Vergleiche den **Satz über implizite Funktionen**. (Analysis, Differentialgeometrie)

V(f) ist lokal diffeomorph zu \mathbb{R} (= reelle Gerade) im Punkt (x_1,x_2) genau dann, wenn die Jacobi-Matrix

$$\left(\frac{\partial f}{\partial T_1}, \frac{\partial f}{\partial T_2}\right) = (T_1(3T_1 - 2), 2T_2)$$

hat Rang 1 in (x_1, x_2) . Das ist äquivalent dazu, dass $(x_1, x_2) \neq (0, 0)$. Dies lässt sich rein formal über beliebigen Grundkörpern **algebraisch** formulieren.

1.3 Methoden.

GAGA - Géometrie algébrique, géometrique analytique (Serre)

Komplexe Geometrie (\mathbb{C}), Differentialgeometrie (\mathbb{R})	Algebraische Geometrie
Analytische Hilfsmittel	Kommutative Algebra

2 Die Zariski-Topologie

2.1 Definition 2

Sei $M \subset k[T_1, \dots, T_n] =: k[\underline{T}]$ eine Teilmenge. Mit

$$V(M) = \{(t_1, \dots, t_n) \in k \mid f(t_1, \dots, t_n) = 0 \ \forall f \in M\}$$

bezeichnen wir die gemeinsame Nullstellen-(Verschwindungs-)Menge der Elemente aus M. (Manchmal auch $V(f_i, i \in I)$ statt $V(\{f_i, i \in I\})$.

2.2 Eigenschaften

- $V(M) = V(\mathfrak{A})$, wenn $\mathfrak{A} = \langle M \rangle$ das von M erzeugte Ideal in k[I] bezeichnet.
- Da $k[\underline{T}]$ noethersch (Hilbertscher Basissatz) ist, reichen stets endlich viele $f_1, \ldots, f_n \in M$:

$$V(M) = V(f_1, \dots, f_n)$$
 falls $\mathfrak{A} = \langle f_1, \dots, f_n \rangle$.

• V(-) ist inklusionsumkehrend, $M' \subset M \Rightarrow V(M) \subseteq V(M')$.

2.3 Satz 3

Die Mengen $V(\mathfrak{A})$, $\mathfrak{A} \subset k[\underline{T}]$ ein Ideal, sind die **abgeschlossenen** Mengen einer Topologie auf k^n , der sogenannten **Zariski-Topologie**.

- 1. $\emptyset = V((1)), k^n = V(0).$
- 2. $\bigcap_{i\in I}V(\mathfrak{A}_i)=V\left(\sum_{i\in I}\mathfrak{A}_i\right)$ für beliebige Familien (\mathfrak{A}_i) von Idealen.
- 3. $V(\mathfrak{A}) \cup V(\mathfrak{B}) = V(\mathfrak{AB})$ für $\mathfrak{A}, \mathfrak{B} \subset k[\underline{T}]$ Ideale.

2.3.1 Beweis (Satz 3)

Übung / Algebra II.

3 Affine algebraische Mengen

3.1 Definition 4

- \bullet $\mathbb{A}^n(k),$ der affine Raum der Dimension n (über k), bezeichne k^n mit der Zariski-Topologie.
- \bullet Abgeschlossene Teilmengen von $\mathbb{A}^n(k)$ heißen affine abgeschlossene Mengen.

3.2 Beispiel 5

Da k[T] ein Hauptidealring ist, sind die abgeschlossen Mengen in $\mathbb{A}^1(k)$: \emptyset , \mathbb{A}^1 , Mengen der Form V(f), $f \in k[T] \setminus \{k\}$ (endliche Teilmengen). Insbesondere sieht man, dass die Zariski-Topologie im Allgemeinen nicht Hausdorff ist.

3.3 Beispiel 6

 $\mathbb{A}^2(k)$ hat zumindestens als abgeschlossene Mengen:

- \emptyset , \mathbb{A}^2 ;
- Einpunktige Mengen: $\{(x_1, x_2) = V(T_1 x_1, T_2 x_2);$
- V(f), $f \in k[T_1, T_2]$ irreduzibel.

Ferner alle endliche Vereneigungen dieser Liste. (Dies sind in der Tat alle, denn später sehen wir: "irreduzibele" abgeschlossene Mengen entsprechen den Primidealen, und $k[T_1, T_2]$ hat "Krull-Dimension 2".)

4 Der Hilbertsche Nullstellensatz

4.1 Satz 7

Sei K ein (nicht notwendig algebraisch abgeschlossener) Körper, und A eine endlich erzeugte K-Algebra. Dann ist A Jacobson'sch, d.h. für jedes Primideal $\mathfrak{p} \subset A$ gilt:

$$\mathfrak{p}=\bigcap_{\mathfrak{m}\supseteq\mathfrak{p}}\mathfrak{m},\quad\mathfrak{m}\text{ max. Ideale}$$

Ist $\mathfrak{m} \subset A$ ein maximales Ideal, so ist die Körpererweiterung $K \subset A/\mathfrak{m}$ endlich.

4.1.1 Beweis (Satz 7)

Algebra II / kommutative Algebra.

4.2 Korollar 8

- 1. Sei A eine e.e. (endlich erzeugte) k-Algebra (k sei algebraisch abgeschlossen), $\mathfrak{m} \subseteq A$ ein maximales Ideal. Dann ist $A/\mathfrak{m} = k$.
- 2. Jedes maximale Ideal $\mathfrak{m} \subset k[\underline{T}]$ hat die Form $\mathfrak{m} = (T_1 x_1, \dots, T_n x_n)$ mit $x_1, \dots, x_n \in k$.
- 3. Für ein k-Ideal $\mathfrak{A} \subset k[\underline{T}]$ gilt:

$$\mathrm{rad}(\mathfrak{A}) = \sqrt{\mathfrak{A}} \stackrel{(i)}{=} \bigcap_{\mathfrak{A} \subseteq \mathfrak{p} \subseteq k[\underline{T}]} \mathfrak{p} = \bigcap_{\mathfrak{A} \subseteq \mathfrak{m} \ \mathrm{max.} \subseteq k[\underline{T}]} \mathfrak{m}$$

4.2.1 Beweis (Korollar 8)

- 1. $k \to A \to {}^A\!\!/_{\mathfrak{m}}$ ist Isomorphismus, da k keine echte algebraische Körpererweiterung besteht.
- 2. Es ist

$$k[T_1, \dots, T_n] \longrightarrow T_{\mathfrak{m}} = k$$
 $T_i \longmapsto x_i$

Es folgt: $\mathfrak{m} = (T_1 - x_1, \dots, T_n - x_n)$, da letztes bereits maximal. (\supseteq klar.)

3. (i) Algebra II. (ii) Theorem.

Korrespondenz zwischen Radikalidealen und af-5 finen algebraischen Mengen

Sei $V(\mathfrak{A})\subseteq \mathbb{A}^n(k)$ affin algebraische Menge, $\mathfrak{A}\subset k[\underline{T}]$. **Es gilt:** $V(\mathfrak{A})=V(\operatorname{rad}\mathfrak{A})$ mit $\operatorname{rad}\mathfrak{A}=\{f\in k[\underline{T}]\mid f^n\in\mathfrak{A} \text{ für } n>0\}$, da

$$f^n(x) = 0 \Leftrightarrow f(x) = 0,$$

d.h. verschiedene Ideale können dieselbe algebraische Menge beschreiben.

Definition 9 5.1

Für eine Teilmenge $Z \subseteq \mathbb{A}^n(k)$ bezeichne

$$I(Z) = \{ f \in k[T] \mid f(x) = 0 \ \forall x \in Z \}$$

das Ideal aller auf Z verschwindenden Polynomfunktionen.

5.2 Satz 10

- 1. $\mathfrak{A} \subset k[\underline{T}] \text{ Ideal} \Rightarrow I(V(\mathfrak{A})) = \text{rad}(\mathfrak{A}).$
- 2. $Z \subseteq \mathbb{A}^n(k)$ Teilmenge $\Rightarrow V(I(Z)) = \overline{Z}$, der Abschluss von Z.

5.2.1 Beweis (Satz 10)

Algebra II, Übungsaufgabe.

 $\mathfrak A$ heißt Radikalideal, wenn $\mathfrak A=\mathrm{rad}(\mathfrak A),$ oder äquivalent wenn $k[\underline{T}]_{\mathfrak N}$ reduziert ist, d.h. keine nilpotente Elemente hat.

5.3 Korollar 11

Wir erhalten eine 1-1 Korrespondenz

{abg. Mengen
$$\subseteq \mathbb{A}^n$$
} \leftrightarrow {Radikalideale $\mathfrak{A} \subset k[\underline{T}]$ }
$$Z \mapsto I(Z)$$

$$V(\mathfrak{A}) \hookleftarrow \mathfrak{A}$$

die sich zu einer 1-1 Korrespondenz

{Punkte in
$$\mathbb{A}^n$$
} \leftrightarrow {max. Ideale in $k[\underline{T}]$ }
$$x = (x_1, \dots, x_n) \mapsto \begin{array}{c} \mathfrak{m}_x &= I(\{x\}) \\ &= \ker(k[\underline{T}] \to k, \ T_i \mapsto x_i) \end{array}$$

einschränkt.

6 Irreduzibele topologische Räume

Die folgenden topologische Begriffe sind nur interessant, da $\mathbb{A}^n(k)$ (n>0) kein Hausdorff'scher Raum ist.

6.1 Definition 11

Ein topologischer Raum X heißt **irreduzibel**, wenn $X \neq \emptyset$ und X sich *nicht* als Vereinigung zweier echter abgeschlossenen Teilmengen darstellen lässt, d.h

$$X = A_1 \cup A_2$$
, A_i abg. \Rightarrow $A_1 = X$ oder $A_2 = X$.

 $Z\subset X$ heißt irreduzibel, falls Zmit der induzierten Topologie irreduzibel ist.

6.2 Satz 12

Für einen topologischen Raum X sind äquivalent:

- 1. X ist irreduzibel.
- 2. Je zwei nichtleere offenen Teilmengen von X haben nicht-leeren Durchschnitt.
- 3. Jede nichtleere offene Teilmenge $U \subset X$ ist dicht in X.
- 4. Jede nichtleere offene Teilmenge $U\subset X$ ist zusammenhängend.
- 5. Jede nichtleere offene Teilmenge $U \subset X$ ist irreduzibel.

6.2.1 Beweis (Satz 12)

```
 \begin{aligned} &(i) \Leftrightarrow (ii) \text{ Komplementsmengen.} \\ &(ii) \Leftrightarrow (iii) \text{ da: } (U \subset X \text{ dicht} \Leftrightarrow U \cap O \neq \emptyset \text{ für jedes offene } \emptyset \neq O \subset X) \\ &(iii) \Rightarrow (iv) \text{ klar.} \\ &(iv) \Rightarrow (iii). \text{ Sei } \emptyset \neq U \text{ offen und zusammenhängend.} \\ &\Rightarrow U = U_1 \sqcup U_2 \\ &\emptyset \neq U_i \ \subset \ U \ \subset \ X \\ &\Rightarrow U_1 \cap U_2 = \emptyset, \text{ Widerspruch zu (iii).} \\ &(v) \Rightarrow (i) \text{ klar } (U = X). \\ &(iii) \Rightarrow (v). \text{ Sei } \emptyset \neq U \ \subset \ X. \text{ Ist } \emptyset \neq V \ \subset \ U \Rightarrow V \ \subset \ X \\ &\Rightarrow V \text{ dicht in } X, \text{ irreduzibel in } U \\ &\stackrel{(iii) \Rightarrow (i)}{\Rightarrow} U \text{ irreduzibel.} \end{aligned}
```

6.3 Lemma 13

Eine Teilmenge Y ist genau dann irreduzibel, wenn ihr Abschluss \overline{Y} dies ist.

6.3.1 Beweis (Lemma 13)

 $Y \text{ irreduzibel} \Leftrightarrow \forall U, V \subset X \text{ offen mit } U \cap Y \neq \emptyset \neq V \cap Y \text{ gilt } Y \cap (U \cap V) \neq \emptyset \\ \Leftrightarrow \overline{Y} \text{ irreduzibel}.$

6.4 Definition 14

Eine maximale irreduzibele Teilmenge eines topologischen Raumes X heißt irreduzibele Komponente von X.

6.5 Bemerkung 15

- 1. Jede irreduzibele Komponente ist abgeschlossen nach Lemma 14.
- 2. X ist Vereinigung seiner irreduzibelen Komponenten, denn:

die Menge der irreduzibelen Teilmengen von X ist **induktiv geordnet**: für jede aufsteigende Kette irreduzibeler Teilmengen ist die Vereinigung wieder irreduzibel. (Satz 13 (ii)). Mit dem **Lemma von Zorn** folgt: Jede irreduzibele Teilmenge ist in einer irreduzibelen Komponente enthalten. Damit ist jeder Punkt in einer irreduzibelen Komponente enthalten.

7 Irreduzibele affine algebraische Mengen

7.1 Lemma 16

Eine abgeschlossene Teilmenge $Z\subseteq \mathbb{A}^n(k)$ ist genau dann irreduzibel, wenn I(Z) ein Primideal ist. Insbesondere ist \mathbb{A}^n irreduzibel.

7.1.1 Beweis (Lemma 16)

$$\begin{split} Z \text{ irreduzibel} &\Leftrightarrow (Z = \underbrace{V(\mathfrak{A})}_{\bigcap V(f_i)} \cup \underbrace{V(\mathfrak{b})}_{\bigcap V(g_j)} \Rightarrow V(\mathfrak{A}) = Z \text{ oder } V(\mathfrak{b}) = Z) \\ &\Leftrightarrow \forall f,g \in k[\underline{T}] \text{ ist } V(fg) = V(f) \cup V(g) \supseteq Z \text{ gilt } V(f) \supset Z \text{ oder } V(g) \supseteq Z. \\ &\overset{V(I(Z)) = Z}{\iff}_{I(V(\mathfrak{A})) = \operatorname{rad}(\mathfrak{A})}} \forall f,g \in k[\underline{T}] \text{ ist } fg \in I(V(fg) \subseteq I(Z) \text{ gilt } f \in I(Z) \text{ oder } g \in I(Z). \\ &\Leftrightarrow I(Z) \text{ ist Primideal.} \end{split}$$

7.2 Bemerkung 17

Die Korrespondenz aus Korollar 11 schränkt sich ein zu

{irred. abg. Teilmengen
$$\subseteq \mathbb{A}^n$$
} $\stackrel{1:1}{\leftrightarrow}$ {Primideale in $k[\underline{T}]$ }

8 Quasikompakte und noethersche topologische Räume

8.1 Definition 18

Ein topologischer Raum X heißt **quasikompakt**, wenn jede offene Überdeckung von X eine endliche Teilüberdeckung enthält. ("quasi" deutet an, dass X in der Regel nicht Hausdorff'sch ist!). Er heißt **noethersch**, wenn jede absteigende Kette

$$X \supseteq Z_1 \supseteq Z_2 \supseteq \cdots$$

abgeschlossener Teilmengen von X stationär wird (\Leftrightarrow jede aufsteigende Kette offener Teilmengen wird stationär).

8.2 Lemma 19

Sei X ein noetherscher topologischer Raum. Dann gilt:

- 1. Jede abgeschlossene Teilmenge Z von X ist noethersch.
- 2. Jede offene Teilmenge U von X ist quasikompakt.
- 3. Jeder abgeschlossene Teilraum Z von X besitzt nur endlich viele irreduzibele Komponenten.

8.2.1 Beweis (Lemma 19)

1. Nach Definition, da abgeschlossene Mengen von Z auch solche von X sind.

2. $U=\bigcup_{i\in I}U_i$ offen ; $\mathbb A$ nicht quasikompakt. Dann ist $I_1\subset I_2\subset\cdots\subset I$ endliche Teilmenge mit

$$V_1 \subsetneq V_2 \subsetneq \cdots \neq U$$
 für $V_j = \bigcup_{i \in I} U_i$.

Widerspruch zu noethersch.

3. Es reicht zu zeigen: Jeder noethersche Raum ist Vereinigung endlich vieler irreduzibeler Teilmengen.

X noethersch $\stackrel{\text{Zorn}}{\Rightarrow}$ Jede nicht-leere Menge von algebraischen Teilmengen in X besitzt ein minimales Element.

$$\mathbb{A}: \emptyset \neq \mathcal{M} := \{Z \subset X \text{ abg. } | Z \text{ ist } \mathbf{nicht} \text{ endl. Ver. irred. Mengen} \}$$

- $\Rightarrow \exists$ minimales Element, sagen wir Z, in \mathcal{M} .
- $\Rightarrow Z$ ist nicht irreduzibel.
- $\Rightarrow Z = Z_1 \cup Z_2 \text{ mit } Z_1, Z_2 \subseteq Z \text{ abgeschlossen.}$
- $\overset{Z \text{ minimal}}{\Rightarrow} Z_1, Z_2 \notin \mathcal{M} \Rightarrow Z \notin \mathcal{M}$. Widerspruch.

8.3 Satz 20

Jeder abgeschlossene Teilraum $X \subseteq \mathbb{A}^n(k)$ ist noethersch.

8.3.1 Beweis (Satz 20)

Nach dem obigen Lemma ist nur zu zeigen, dass $\mathbb{A}^n(k)$ noethersch ist.

Absteigende Ketten abgeschlossener Teilmengen $\overset{I()}{\leftrightarrow}$ aufsteigende Ketten von (Radikal-)Ideale in $k[\underline{T}]$. Da $k[\underline{T}]$ nach dem Hilbertschen Basissatz noethersch ist, werden letzere Ketten stationär.

8.4 Korollar 21 (Primärzerlegung)

Sei $\mathfrak{A} = \operatorname{rad}(\mathfrak{A}) \subseteq k[\underline{T}]$ ein Radikalideal. Dann gilt: \mathfrak{A} ist Durchschnitt von endlich vielen Primidealen, die sich jeweils nicht enthalten; diese Darstellung ist eindeutig bis auf Reihenfolge.

8.4.1 Beweis (Korollar 21)

 $V(\mathfrak{A}) = \bigcup_{i=1}^n V(\mathfrak{b}_i),\, \mathfrak{b}_i$ Primideal, h

$$\mathfrak{A} = \operatorname{rad}(\mathfrak{A}) = I(V(\mathfrak{A})) = \bigcap_{i=1}^{n} \underbrace{I(V(\mathfrak{b}_i))}_{\mathfrak{b}_i' \text{ max. Primideale (L. 17)}}$$

9 Morphismen von affinen algebraischen Mengen

Definition 23

Seien $X \subseteq \mathbb{A}^m(k)$, $Y \subseteq \mathbb{A}^n(k)$ affine algebraische Mengen. Ein **Morphismus** $X \to Y$ affiner algebraischer Mengen ist eine Abbildung $f: X \to Y$ der zugrundeliegenden Mengen, sodass $f_1, \ldots, f_n \in k[T_1, \ldots, T_m]$ existieren, derart dass $\forall x \in X$ gilt:

$$f(x) = (f_1(x), \dots, f_n(x)).$$

Bezeichne dafür hom(X,Y) Menge der Morphismen $X \to Y$.

Bemerkung 24

 $f:X\to Y$ lässt sich immer fortsetzen zu einem Morphismus

$$f: \mathbb{A}^n(k) \to \mathbb{A}^m(k)$$

(aber nicht eindeutig, es sei denn $X = \mathbb{A}^m(k)$.

Komposition

$$X \xrightarrow[f_1, \dots, f_n \in k[T_1, \dots, T_m]{}]{} fY \xrightarrow[g_1, \dots, g_r \in k[T'_1, \dots, T'_m]{}]{} gZ$$

mit $X \subseteq \mathbb{A}^m(k)$, $Y \subseteq \mathbb{A}^n(k)$, $Z \subseteq \mathbb{A}^r(k)$. Es folgt:

$$g(f(x)) = (g_1(f_1(x), \dots, f_n(x)), \dots, g_r(f_1(x), \dots, f_n(x))$$

:= $h_1(x), \dots, h_r(x)$

d.h. $g \circ f$ ist durch Polynome $h_i \in k[T_1, \ldots, T_m]$ gegeben, d.h. $g \circ f$ ist wieder ein Morphismus affiner algebrasischer Mengen. Wir erhalten die **Kategorie** affiner algebraischer Mengen.

Beispiel 25

1. Sei die Abbildung

$$\mathbb{A}^{1}(k) \to V(T_{2} - T_{1}^{2}) \subseteq \mathbb{A}^{2}(k)$$
$$x \mapsto (x, x^{2}).$$

Diese Abbildung ist sogar ein ${\it Isomorphismus}$ affiner algebraischer Mengen, da die Umkehrabbildung

$$(x,y) \mapsto x$$

ebenfalls ein Morphismus ist.

2. Sei $\operatorname{char}(k) \neq 2$. Die Abbildung

$$\mathbb{A}^{1}(k) \to V(T_{2}^{2} - T_{1}^{2}(T_{1} + 1))$$
$$x \mapsto (x^{2} - 1, x(x^{2} - 1))$$

ist ein Morphismus, aber nichtbijektiv, da1,-1beide auf (0,0)abgebildet werden.

10 Unzulänglichkeiten des Begriffs der affinen algebraischen Mengen

- 1. Offene Teilmengen affiner algebraischer Mengen tragen nicht in natürlicher Weise die Struktur einer affinen algebraischen Menge.
- 2. Insbesondere können wir affine algebraische Mengen nicht entlang offener Teilmengen verkleben. (vgl. Mannigfaltigkeiten.)
- 3. Keine Unterscheidungsmöglichkeiten z.B. zwischen $\{(0,0)\}$, $V(T_1) \cap V(T_2)$ und $V(T_2) \cap V(T_1^2 T_2) \subseteq \mathbb{A}^2(k)$, obwohl die "geometrische Situation" offensichtlich verschieden ist.

Um die Punkte 1 und 2 zu verbessern, wird im folgenden dadurch gelöst, dass wir zu "Räumen mit Funktionen" übergehen, und darauf verzichten, dass sich diese in einem affinen Raum \mathbb{A}^n einbetten lassen.

Der Punkt 3 ist die Motivation dafür, später Schemata einzuführen. (subtiler)

Affine algebraische Mengen als Räume von Funktionen

11 Der affine Koordinatensatz

Sei $X\subseteq \mathbb{A}^n(k)$ abgeschlossen. Für den surjektiven (Def. von Morphismen) k-Algebren-Homomorphismus

$$k[I] \xrightarrow{\varphi} \text{hom}(X, \mathbb{A}^1(k))$$

 $f \mapsto (x \mapsto f(x)),$

wobei die Morphismen in folgende Weise eine k-Algebra bilden:

$$(f+g)(x) := f(x) + g(x)$$
$$(fg)(x) := f(x)g(x)$$
$$(\alpha f)(x) := \alpha f(x)$$

mit $f, g \in \text{hom}(X, \mathbb{A}^1(k)), \alpha \in k$. Es gilt:

$$\ker \varphi = I(X)$$

Definition 26

 $\Gamma(X) := k[I]/I(X) \cong \text{hom}(X, \mathbb{A}^1(k))$ heißt der affine Koordinatenring von X.

Für $x = (x_1, \ldots, x_n) \in X$ gilt:

$$\mathfrak{m}_x := \ker(\Gamma(X) \to k, f \mapsto f(x))$$

$$= \{ f \in \Gamma(X) \mid f(x) = 0 \}$$

$$= \text{Bild von } (T_1 - x_1, \dots, T_n - x_n)$$

$$= \ker(\Gamma(\mathbb{A}^n(k)) \to k)$$

unter der Projektion $\pi: k[\underline{T}] = \Gamma(\mathbb{A}^n(k)) \twoheadrightarrow \Gamma(X)$. Es ist \mathfrak{m}_x ein maximales Ideal von $\Gamma(X)$ mit $\Gamma(X)/\mathfrak{m}_x = k$.

Für ein Ideal $\mathfrak{A} \subset \Gamma(X)$ setze

$$V(\mathfrak{A}) = \{ x \in X \mid f(x) = 0 \ \forall f \in \mathfrak{A} \} = V(\pi^{-1}(\mathfrak{A})) \cap X.$$

Dies sind genau die abgeschlossenen Mengen von X als Teilraum in $\mathbb{A}^n(k)$ mit der induzierten Topologie, diese wird auch **Zariski-Topologie** genannt.

Für $f \in \Gamma(X)$ setze:

$$D(f) = \{x \in X \mid f(x) \neq 0\} = X \setminus V(f).$$

Lemma 27

Die offenen Mengen D(f), $f \in \Gamma(X)$, bilden eine Basis der Topologie, d.h.

$$\forall U \subset X \text{ offen } \exists f_i \in \Gamma(X), \ i \in I, \text{ mit } U = \bigcup_{i \in I} D(f_i)$$

Beweis (Lemma 27)

 $U = X \setminus V(\mathfrak{A})$ für ein $\mathfrak{A} \subset \Gamma(X)$, $\mathfrak{A} = \langle f_1, \dots, f_n \rangle$. Wegen

$$V(\mathfrak{A}) = \bigcap_{i=1}^{n} V(f_i)$$

folgt

$$U = \bigcup_{i=1}^{n} D(f_i)$$

Es reichen also sogar endlich viele f_i !

Satz 28

Der Koordinatenring $\Gamma(X)$ einer affinen algebraischen Menge X ist eine endlich erzeugte k-Algebra, die reduziert ist (d.h. keine nilpotenten Elemente $\neq 0$ enthält). Ferner:

$$X$$
 irreduzibel $\Leftrightarrow \Gamma(X)$ ist integer

Beweis (Satz 28)

 $k[\underline{T}] \twoheadrightarrow \Gamma(X)$ impliziert "endlich erzeugte k-Algebra". $\Gamma(X)$ irreduzibel ist äquivalent dazu, dass $I(X) = \operatorname{rad} I(X)$.

(Satz 10. ii) + Korollar 11:
$$X = V(\mathfrak{A})$$
: $I(X) = \operatorname{rad} \mathfrak{A} = I(X)$ $\Rightarrow \operatorname{rad} I(X) = \operatorname{rad} \operatorname{rad} \mathfrak{A} = \operatorname{rad} \mathfrak{A} = I(X)$.

X irreduzibel $\overset{Lem.17}{\Leftrightarrow} I(X)$ Primideal $\Leftrightarrow \Gamma(X) = k[T]/T(X)$ integer.

12 Funktorielle Eigenschaften von $\Gamma(X)$

Satz 29

Für einen Morphismus $X \xrightarrow{f} Y$ affiner algebraischer Mengen definiert

$$\Gamma(f): \hom(Y = \Gamma(Y), \mathbb{A}^1(k)) \to \hom(X = \Gamma(X), \mathbb{A}^1(k))$$

 $q \mapsto q \circ f$

ein Homomorphismus von $k\text{-}\mathsf{Algebren}.$ Der so definierte kontravariante Funktor

 $\Gamma: \{\text{affine algebraische Mengen}\} \rightarrow \{\text{red. endl. erz. } k\text{-Alg.}\}$

liefert eine Kategorienäquivalenz, der durch Einschränkung eine Äquivalenz

$$\Gamma: \{\text{irred. aff. alg. Meng.}\} \rightarrow \{\text{integere endl. erz. } k\text{-Alg.}\}$$

induziert.

Beweis (Satz 29)

 $Y\xrightarrow{g} \mathbb{A}^1(k) \in \Gamma(Y)$ ist Morphismus. $\Rightarrow g\circ f: X\xrightarrow{f} Y\xrightarrow{g} \mathbb{A}^1(k)$ ist ..., d.h. $\in \Gamma(X).$

 $\Gamma(f): \Gamma(Y) \to \Gamma(X)$ ist ein k-Alg.-Hom. und Kompositions.... (nach Bemerkung 24) mit $\Gamma(\mathrm{id}_X) = \mathrm{id}_{\Gamma(X)}$. Da ferner $\Gamma(f_1 \circ f_2) = \Gamma(f_2) \circ \Gamma(f_1)$ aus der Definition folgt, ist Γ ein kontravarianter Funktor.

Behauptung Γ ist volltreu, d.h.

$$\Gamma : \hom(X, Y) \to \hom(\Gamma(Y), \Gamma(X))$$
$$f \mapsto \Gamma(f)$$

ist bijektiv für alle affinen algebraischen Mengen X, Y.

Beweis Wir konstruieren eine Umkehrabbildung wie folgt: Zu $\varphi : \Gamma(Y) \to \Gamma(X)$ für $X \subseteq \mathbb{A}^n$, $Y \subseteq \mathbb{A}^n$ existiert:

$$k[T'_1, \dots, T'_k] \xrightarrow{\tilde{\varphi}} k[T_1, \dots, T_m]$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$\Gamma(Y) \xrightarrow{} \Gamma(X)$$

kommutiert ($\tilde{\varphi}(T_1') := \text{impede liften } \varphi(\pi(T_i')) \text{ in } k[\underline{T}]$). Definiere

$$f: X \to Y$$

$$x = (x_1, \dots, x_n) \mapsto (\tilde{\varphi}(T_1')(x_1, \dots, x_n), \dots, \tilde{\varphi}(T_n')(x_1, \dots, x_n))$$

Behauptung Γ ist essentiell surjektiv, d.h. zu jeder reduzierten endlich erzeugten k-Algebra A existiert eine affine algebraische Menge X mit $A \cong \Gamma(X)$.

Beweis Da nach Voraussetzung $A \cong k[T]/\mathfrak{A}$ für Radikalideal \mathfrak{A} , können wir etwa $X := V(\mathfrak{A}) \subseteq \mathbb{A}^n(k)$ setzen. Der Rest folgt aus Satz 28.

Satz 30

Sei $f: X \to Y$ ein Morphismus und $\Gamma(f): \Gamma(Y) \to \Gamma(X)$ der zugehörige Homomorphismus der Koordinatenringe. Dann gilt $\forall x \in X: \Gamma(f)^{-1}(\mathfrak{m}_x) = \mathfrak{m}_f(x)$.

Beweis (Satz 30)

Setting:

$$\mathfrak{m}_{f(x)} = \{g \mid g(f(x)) = 0\} \subset \hom(Y, \mathbb{A}^1) = \Gamma(Y) \xrightarrow{\Gamma(f)} \Gamma(X) = \hom(X, \mathbb{A}^1) \supset \{k \mid k(x)) = 0\}$$

$$g \mapsto g \circ f$$

$$\Gamma(f)^{-1}(\mathfrak{m}_x) = \{g \in \Gamma(Y) \mid g \circ f(x) \neq 0\} = \mathfrak{m}_{f(x)}, \text{ da } \Gamma(f)(g)(x) = g(f(x)).$$

13 Räume mit Funktionen

(Prototyp eines geometrischen Objektes, Spezialfall eines "geringten Raumes" später.)

Sei k ein nicht notwendig algebraisch abgeschlossenen Körper.

Definition 31

- 1. Ein Raum mit Funktionen besteht aus den folgenden Daten:
 - ullet ein topologischer Raum X

• eine Familie von Unter-K-Algebren

$$\mathcal{O}(U) \subseteq \text{Abb}(U, K), \quad \forall U \subseteq X \text{ offen } d.d$$

- (a) Sind $U' \subset U \subset X$ offen und $f \in G(U)$ so ist $f|_{U'} \in Abb(U', K)$ in $\mathcal{O}(U')$.
- (b) (Verklebungsaxiom) Sind $U_i \subset X$, $i \in I$, offen, ist $U = \bigcup_{i \in I} U_i$ und sind $f_i \in \mathcal{O}(U_i)$, $i \in I$ gegeben mit

$$f_i|_{U_i\cap U_j} = f_j|_{U_i\cap U_j} \ \forall i,j\in I$$

dann ist die eindeutige Abbildung

$$f: U \to K \text{ mit } f|_{U_i} = f_i$$

in
$$\mathcal{O}(U)$$
 (bzw. $\exists_1 f \in \mathcal{O}(U)$ mit $f|_{U_i} = f_i$)

Bezeichne \mathcal{O} oder \mathcal{O}_X bzw. den o.g. Familie (X, \mathcal{O}_X) o.g. Familie (X, \mathcal{O}_X) oder kurz X bez. den Raum mit Funktionen.

2. Ein **Morphismus** $(X, \mathcal{O}_X) \to (Y, \mathcal{O}_Y)$ von Räumen von Funktionen ist eine stetige Abbildung $g: X \to Y$, so dass fuer alle $V \subseteq Y$ offen und $f \in \mathcal{O}_Y$ gilt:

$$f \circ g|_{q^{-1}(V)} : g^{-1}(V) \to K$$

liegt in $\mathcal{O}_X(g^{-1}(V))$

Die Räume von Funktionen über K bilden eine Kategorie.

Definition 32 (offene Unterräume von Funktionen)

Für (X, \mathcal{O}_X) und $U \subset X$ offen bezeichne $(U, \mathcal{O}_{X|_U})$ den Raum mit Funktionen gegeben durch den topologischen Raum U mit Funktionen $\mathcal{O}_{X|_U}(V) := \mathcal{O}_X(V)$ für $V \subset U \subset X$.

Ab jetzt Betrachten wir Räume von Funktionen über k algebraisch abgeschlossen.

14 Der Raum mit Funktionen zu einer affin algebraischen Menge

Ziel. $X \subseteq \mathbb{A}^n(k) \mapsto (X, \mathcal{O}_X)$ als irreduzibele affine algebraische Menge bzw. Zariski-Topologie. D.h. wir müssen Menge von Funktionen $\mathcal{O}_X(U)$ auf U, $U \subset X$ offen, definieren. Diese werden als Teilmengen des Funktionenkörpers K(X) definiert (dazu X irreduzibel, später bei Schemata fällt diese Bedingung weg!)

Definition 33

 $K(X) := \operatorname{Quot}(\Gamma(X))$ heißt Funktionenkörper von X ($\Gamma(X)$ ist für X irreduzibel nullteilerfrei).

Elemente $\frac{f}{g} \in K(X), f, g \in \Gamma(X) = \text{hom}(X, \mathbb{A}^1(k)), g \neq 0$ lassen sich zumindest als Funktion auf der offenen Menge $\mathcal{D}(g) \subset X$ auffassen, wenn auch nicht i.A. auf ganz X.

Lemma 34

Gilt für $\frac{f_1}{g_1}, \frac{f_2}{g_2} \in K(X)$ $(f_i, g_i \in \Gamma(X))$ und einer offenen Teilmenge $\emptyset \neq U \subset \mathcal{D}(g_1g_2)$

$$\frac{f_1(x)}{g_1(x)} = \frac{f_2(x)}{g_2(x)} \qquad \forall x \in U,$$

dann folgt $\frac{f_1}{g_1} = \frac{f_2}{g_2}$ in K(X).

Beweis (Lemma 34)

Ohne Einschränkung der Allgemeinheit: $g_1 = g_2 = g$ (sonst Erweitern!)

$$\Rightarrow (f_1 - f_2)(x) = 0 \ \forall x \in U$$

$$\Rightarrow \emptyset \neq U \subset V(f_1 - f_2) \subset X \text{ dicht}$$

$$\text{d.h. } V(f_1 - f_2) = X.$$

$$f_1 - f_2 \in IV(f_1 - f_2) = I(X) \equiv (0) \text{ in } \Gamma(X)$$

 $\Rightarrow f_1 - f_2 = 0.$

Definition 35

Sei X eine irreduzibele affine algebraische Menge, $U \subset X$ offen. Sei $\Gamma(X)_{\mathfrak{m}_x}$ Lokalisierung von $\Gamma(X)$ bzgl. das maximale Ideal \mathfrak{m}_x in $x \in X$.

$$\mathcal{O}_X(U) := \bigcap_{x \in U} \Gamma(X)_{\mathfrak{m}_x} \subset K(X)$$

d.h. für jedes $x \in U$ lässt sich $f \in \mathcal{O}_X(U)$ schreiben als $\frac{h}{g}$ mit $g(x) \neq 0$.

(Wenn $f \in \Gamma(X)$ bezeichne $\Gamma(X)_f$ die Lokalisierung von $\Gamma(X)$ bzgl. der multiplikativ abgeschlossenen Teilmenge $\{1,f,f^2,\ldots,f^n\ldots\}.$ Dann lässt sich

$$\Gamma(X)_{\mathfrak{m}_x} = \bigcup_{f \in \Gamma(X) \backslash \mathfrak{m}_x} \Gamma(X)_f \subset K(X)$$

"⊃" klar, "⊂" $\frac{g}{f}$ mit $f(x)\neq 0$ d.h. $f\notin \mathfrak{m}_x\Rightarrow \frac{g}{f}\in \Gamma(X)_f.$

Es gilt:

- 1. $\mathcal{O}_x(U) \to \mathrm{Abb}(U,k), \ f \mapsto (x \mapsto f(x) := \frac{g(x)}{f(x)} \in k)$ ist injektiv (Lemma 34) und wohldefiniert (kürzen/Erweitern) wobei $g,h \in \Gamma(X)$ mit $h \notin \mathfrak{m}_x$ mit $f = \frac{g}{h}$ nach Definition von $\mathcal{O}_X(U)$ existiert.
- 2. F[r $V \subset U \subset X$ offen kommutiert das folgende Diagramm

3. Verklebungseigenschaft. Sei $U = \bigcup_{i \in I} U_i$. Nach Definition ist

$$\mathcal{O}_X(U) = \bigcap_i \mathcal{O}_X(U_i) \subset K(X)$$

$$\ni f: U \to k \quad \ni f_i: U_i \to k$$

. $\Rightarrow (X, \mathcal{O}_X)$ ist Raum mit Funktionen, der zur irreduziblen affin algebraische Menge gehörige Raum von Funktionen.

Satz 36 (orig. 33)

Für (X, \mathcal{O}_X) zu X wie oben und $f \in \Gamma(X)$ gilt:

$$\mathcal{O}_X(D(f)) = \Gamma(X)_f,$$

insbesondere $\mathcal{O}_X(X) = \Gamma(X)$.

Beweis (Satz 36)

 $\Gamma(X) \subset \mathcal{D}(f)$ klar, da $f(x) \neq 0 \ \forall x \in \mathcal{D}(f)$ bzw. $f \in P(X) \backslash \mathfrak{m}_x$.

Sei nun g in $\mathcal{O}_X(\mathcal{D}(f))$ gegeben, (*) und $\mathfrak{A} := \{h \in \Gamma(X) \mid hg \in \Gamma(X)\} \subset$ $\Gamma(X)$ Ideal.

 $\begin{array}{l} \text{Dazu: } g \in \Gamma(X)_g \\ \Leftrightarrow g = \frac{k}{g^n} \text{ für ein } n \text{ und } k \in \Gamma(X) \\ \Leftrightarrow f^n \in \mathfrak{A} \text{ für ein } n. \end{array}$

d.h. zu zeigen: $f \in rad(\mathfrak{A}) = IV(\mathfrak{A})$ (Hilbertsche Nullstellensatz)

 $\Leftrightarrow f(x) = 0 \ \forall x \in V(\mathfrak{A})$

Ist dazu $x \in X$ mit $f(x) \neq 0$, wo $x \in \mathcal{D}(f)$, so existiert nach Voraussetzung

(*) $f_1, f_2 \in \Gamma(X), f_2 \notin \mathfrak{m}_x \text{ mit } g = \frac{f_1}{f_2}$

 $\Rightarrow f_2 \in \mathfrak{A}$. Da $f_2(x) \neq 0$:

 $\Rightarrow x \notin V(\mathfrak{A}).$

Bemerkung 37 (orig. 34)

- 1. Im allgemeinen existierten für $f \in \mathcal{O}_x(U)$ nicht $g, h \in \Gamma(X)$ mit $f = \frac{g}{h}$ und $h(x) \neq 0 \ \forall x \in U$.
- 2. Alternative Definition von \mathcal{O}_X I.

$$\mathcal{O}_X(\mathcal{D}(f)) := \Gamma(X)_f \ \forall f \in \Gamma(X)$$

Da $\mathcal{D}(f)$ Basis der Topologie, kann es höchstens einen Raum mit Funktionen geben mit dieser Eigenschaft, es bleibt die Existenz zu zeigen.

3. Alternative Definition von \mathcal{O}_X II.

direkt von einer integeren endlich erzeugten k-Algebra A ausgehend (die X bis auf Isomorphie festlegt), aber ohne "Koordinaten" zu wählen.

$$X := {\mathfrak{m} \subseteq A \mid \text{max. Ideale}}$$

 $V(\mathfrak{A}):=\{\mathfrak{m}\subseteq A \text{ max. } | \mathfrak{m}\supseteq \mathfrak{A}\}, \mathfrak{A}\subset A \text{ Ideal, sind die abgeschlossenen Mengen.}$

 $\mathcal{O}_X(U) := \bigcap_{\mathfrak{m} \in U} A_{\mathfrak{m}} \subset \operatorname{Quot}(A)$ für $U \subset X$ offen (vgl. später Schemata).

15 Funktorialität der Konstruktion

Satz 38 (orig. 35)

Sei $f:X\to Y$ eine stetige Abbildung zwischen irreduzibler affiner algebraischen Mengen. Es sind äquivalent:

- 1. f ist ein Morphismus affiner algebraischen Mengen.
- 2. $\forall g \in \Gamma(Y)$ gilt $g \circ f \in \Gamma(X)$.
- 3. f ist ein von Räumen von Funktionen, d.h. für alle $U \subseteq Y$ offen und alle $g \in \mathcal{O}_Y(U)$ gilt $g \circ f \in \mathcal{O}_X(f^{-1}(U))$.

Beweis (Satz 38)

 $(i) \Leftrightarrow (ii) \text{ Satz } 29.$

 $(iii) \Rightarrow (ii) \ U := Y + \text{Satz } 33.$

 $(ii)\Rightarrow (iii)$ Betrachte $\varphi:\Gamma(Y)\to\Gamma(X),\ h\mapsto h\circ f$. Aufgrund des Verklebungsaxioms reicht es, die Bedingung für U von der Form $\mathcal{D}(g)$ zu zeigen: Es gilt

$$f^{-1}(\mathcal{D}(g)) = \{ x \in X \mid \underbrace{g(f(x))}_{=\varphi(g)(x)} \neq 0 \} = \mathcal{D}(\varphi(g))$$

Deswegen induziert φ

$$\begin{split} H &\longmapsto H \circ f \\ \mathcal{O}_Y(\mathcal{D}(g)) & \mathcal{O}_X(D(\varphi(g))) \\ &= \Gamma(Y)_g \longrightarrow = \Gamma(X)_{\varphi(g)} \\ \frac{h}{g} &\longmapsto \frac{h \circ f}{(g \circ f)^n} \end{split}$$

mit $h\circ f\in \Gamma(X)$ nach Voraussetzung und $\varphi(g)=g\circ f\in \Gamma(X)$ nach Voraussetzung.

Insgesamt haben wir:

Theorem 39 (orig. 36)

Die obige Konstruktion definiert einen volltreuen Funktor

{irred. aff. abg. Mengen über k} \rightarrow {Räume mit Funktionen über k}

Prävarietäten

Ziel. Klasse der affinen abgeschlossenen Mengen, aufgefasst als Räume mit Funktionen durch Verkleben vergrößern.

 (X, \mathcal{O}_X) heißt **zusammenhängend**, falls X als topologischer Raum zusammenhängend ist.

16 Definition von Prävarietäten

Definition 40 (orig. 37)

Eine affine Varietät ist ein Raum mit Funktionen, der isomorph ist zu den Raum mit Funktionen einer irreduziblen affinen algebraischen Menge.

Definition 41 (orig. 38)

Eine **Prävarietät** ist ein zusammenhängender Raum mit Funktionen (X, \mathcal{O}_X) , für den eine *endliche* Überdeckung $X = \bigcup_{i=1}^n U_i$ existiert, d.d. $\forall i = 1, \ldots, n$ $(U_i, \mathcal{O}_{X|_{U_i}})$ eine affine Varietät ist.

Ein Morphismus von Prävarietäten ist ein Morphismus der entsprechend Räume mit Funktionen. Insbesondere sind ... affine Varietäten Prävarietäten!

\mathbf{Index}

Algebraische Geometrie, 4

irreduzibel, 8 irreduzibele Komponente, 9

noethersch, 10 Nullstellen-Menge, 5

quasikompakt, 10

Radikalideal, 7

Zariski-Topologie, 5