

NOAA FISHERIES

Northwest Fisheries Science Center

A Bio-economic Model of Marine Recreational Fisheries off Washington and Oregon

Megan Stachura, Leif Anderson, and Owen Hamel December 11, 2015

Motivation

- Off the West Coast in 2013, more than 1.7 million recreational anglers took part in an estimated 7.5 million fishing trips.
 These anglers spent about \$1.9 billion on fishing trips and equipment, which supported over 21 thousand jobs
- Bring together biological and economic models to look at how management affects recreational fishing behavior and recreational fishing affects the stocks being fished
- Examine the effects of management on:
 - Staying within target population ranges
 - Economic value of the recreational fishery
 - The recovery of depleted populations

Related Research

- Bio-economic model of recreational cod and haddock fisheries in the Northeast U.S. (Steinback et al.)
- Bio-economic model looked at how changes in water quality may affect the Atlantic Coast summer flounder recreational fishery (Massey et al., 2006)
- Theoretical recreational bio-economic modeling work on the influence of fish life history, angler behavior, discard mortality, and non-compliance on optimal recreational fishery management (Johnston et al., 2010, 2013, and 2015)

Model Overview

Model Focus

- Oregon and Washington, not including Puget Sound
- Marine groundfish and salmon recreational fisheries
- Boat (private and charter) recreational fishing, not shore fishing

Economic sub-model

- Built on data from a discrete choice experiment survey conducted in 2007 in Washington and Oregon
- Simplified discrete choice experiment question:

	Trip A	Trip B	Trip C
Catch	1	1	2
Size	2 lb.	4 lb.	4 lb.
Cost	\$15	\$30	\$30

- Which trip do you prefer?
- Would you prefer to take a trip or do something else?

Suppose that you have the choice between two boat fishing trips in the Ocean area (Choice A or Choice B) or not taking a boat fishing trip in the Ocean area (Choice C). Below the table, indicate which of these three choices you like best and second best.

Area	Boat boarding area	
Salmon	Catch (weight per fish) Legal daily limit	
Cost	Fishing cost (per person per day) + Transportation cost + Lodging cost	

Choice A		
Ocean area		
2 hatchery kings (20 lb.) 1 wild king (10 lb.) 2 wild kings (20 lb.)		
4 salmon (combined), release all kings		
Private: \$80	Charter: \$175	
+ auto fuel / air	+ auto fuel / air	
+ motel / camp	+ motel / camp	

Choice A

Choice B		
Ocean area		
3 wild kings (20 lb.)		
2 salmon (combined), no more than 1 king, release wild kings		
Private: \$80	Charter: \$175	
+ auto fuel / air	+ auto fuel / air	
+ motel / camp	+ motel / camp	

Choice B

Choice C Do one of the following (other than boat fishing in the Ocean area): Inside area fishing Saltwater shore fishing WA freshwater fishing Non-WA fishing Do some activity other than fishing

Choice C

If you were presented these thre	e choices (A, B, C), which one	e would you choose to do?	
(mark only one)	OCEAN Choice A	OCEAN Choice B	NO OCEAN Fishing Trip Choice C
If your first choice was not available, what would be your second choice?			
(mark only one)	OCEAN	OCEAN	NO OCEAN Fishing Trip

Economic sub-model

- Logit random utility model
 - Anderson and Lee (2013)
 - Anderson, Lee, and Levin (2013)
- Incorporates many of the trade-offs important to anglers:
 - Number of fish caught
 - Size of fish caught
 - Number of fish that can be kept
 - Cost

Economic sub-model

$$U_{nij} = \delta Price_{nij} + \sum_{t} \alpha_{t} Opt_{tnij} + \sum_{s} \sum_{l} \beta_{ls} Catch_{lsij} + \sum_{s} \rho_{s} Catch_{sij}^{2} + \sum_{s} \gamma_{s} LbsRelease_{sij} + \sum_{k} \theta_{k} Type_{kij} + \epsilon_{nij}$$

Catch (β_{ls})	Halibut Small Medium Large	1.25866*** 1.50204*** 1.77075***
	Rockfish Small Medium Large	0.106269*** 0.131425*** 0.130522***
$Catch^{2}\left(ho _{s} ight)$	Halibut	-0.22859***
	Rockfish	-0.00334***
$LbsRelease(\gamma_s)$	Halibut	-0.0178***
	Rockfish	-0.00674

Biological sub-model

Biological sub-model

Biological sub-model

- Age-structured population dynamics model
 - Completed for lingcod
 - Planning to include black rockfish, yelloweye rockfish, and canary rockfish
- For additional species, only modeling the recreational catch based on catch from recent years
 - Wild and hatchery chinook and coho salmon
 - Pacific halibut
 - Other rockfish

Simulating "expected" catch for a trip

How many fishing trips will occur?

Simulating "actual" catch for a trip

How many fish are caught per trip?

- Modeled the catch-per-trip based on data from observed recreational fishing trips
 - Modeled each species, trip type, and area separately
- Considered four possible models:
 - Poisson
 - Negative binomial
 - Zero-inflated Poisson
 - Zero-inflated negative binomial
- In most cases, the zero-inflated negative binomial was chosen as the best model

Zero-inflated negative binomial model of catch-per-trip

 Probability of an inflated zero is modeled as a binomial process with a logit link:

$$p = \frac{e^{(\alpha_{zi} + \beta_{zi} X_{zi})}}{1 + e^{(\alpha_{zi} + \beta_{zi} X_{zi})}}$$

- α_{zi} is the intercept
- $oldsymbol{eta}_{zi}$ is a vector of coefficients for the covariates $oldsymbol{X}_{zi}$

Zero-inflated negative binomial model of catch-per-trip

 When there is not an inflated zero, catch is modeled as a negative binomial process with a log link, where the mean catch-per-trip is:

$$\mu = a \times e^{(\alpha_c + \beta_c X_c)}$$

- a is the number of anglers on the trip (constant offset)
- α_c is the intercept
- β_c is a vector of coefficients for the matrix of covariates X_c

Zero-inflated negative binomial model of catch-per-trip

- Same covariates considered for both the zero-inflated and negative binomial portions of the model:
 - Estimated number of fish available to the recreational fishery
 - Only for stocks for which the population dynamics are modeled
 - Calculated based on the number of fish in the population and recreational selectivity by length
 - Boat type: charter or private
 - Two month "wave"
 - Estuary or ocean trip (Oregon only)
 - Two-way interactions of boat type, wave, and estuary/ocean

Variable	Est.	S.E.		
Zero-inflation model coe	Zero-inflation model coefficients			
(Intercept)	1.672	0.146***		
log(LingcodAvailable)	-0.502	0.021***		
BoatTypePrivate	0.974	0.031***		
Negative binomial model coefficients				
(Intercept)	-2.053	0.061***		
log(LingcodAvailable)	0.312	0.008***		
Wave3	-0.414	0.026***		
Wave4	-0.712	0.028***		
Wave5	-0.923	0.039***		
BoatTypePrivate	0.179	0.030***		
Wave3:BoatTypePrivate	-0.185	0.032***		
Wave4:BoatTypePrivate	-0.187	0.035***		
Wave5:BoatTypePrivate	0.073	0.050		
Log(theta)	-0.157	0.013***		

Next steps

- Finish incorporating the catch-per-trip modeling into the bio-economic model
- Incorporate the full age-structured model for additional stocks
- Calibrate the number of "potential" trips (angler choice occasions) so the number of model predicted trips taken is similar to what has been observed under similar conditions

Next steps

- Examine what occurs under different management measures
 - Bag limits
 - Size limits
 - Open/closed seasons
- Simulate changes in catch rates for stocks we are not modeling (e.g. poor salmon returns) and see how that affects angler effort and other stocks

Potential future improvements

- Include California stocks and fisheries in the model once information is available from an updated economic survey
- Incorporate information from fully observed fishing trips (Oregon onboard charter survey)
- Account for changes in behavior with changes in regulations in modeling catch-per-trip