Solve the following questions for Week 10.

There are 10 questions, for a total of 20 marks.

- 1. (2 marks) Who formulated Moore's Law, and what does it predict?
 - A. Gordon Ramsay; It predicts that the number of mobile phones will double every two years.
 - B. Gordon Freeman; It predicts that the speed of light in a vacuum will double every two years.
 - C. Gordon Moore; It predicts that the number of transistors on a microchip will double approximately every two years, leading to exponential growth in computing power.
 - D. Gordon Gecko; It predicts that the stock market will double in value every two years.

(For Q2-Q3) The evolution of various technology nodes over the years is given in the figure below.

2. (2 marks) Comment on the power dissipation in the technology nodes of $250\ nm$ and $90\ nm$. [Hint:

Consider α as the scaling factor down each of the technology nodes]

A. $P_{90} = \alpha P_{250}$ B. $P_{90} = 2\alpha P_{250}$ C. $P_{90} = \alpha^2 P_{250}$ D. $P_{90} = \alpha^6 P_{250}$ E. $P_{90} = 0.5\alpha P_{250}$ Scales as α^2 So, $P_{90} = (\alpha^2)^3$ Page 1250

Dr. Naresh Kumar Emani, EE @ IIT Hyderabad

F.
$$P_{90} = 4\alpha P_{250}$$

3. (2 marks) Comment on the gate capacitance per unit area in the technology nodes of $250 \ nm$ and $90 \ nm$.

[Hint: Consider α as the scaling factor down each of the technology nodes].

A.
$$C_{ox,90} = 3\alpha C_{ox,250}$$

A. $C_{ox,90} = 3\alpha C_{ox,250}$ (rate capacitamic

B.
$$C_{ox,90} = 2\alpha C_{ox,250}$$

has C. $C_{ox,90}=C_{ox,250}/\alpha$ give $C_{ox,90}=\alpha^6C_{ox,250}$

- 4. (2 marks) Choose the correct statement(s) in regard to the constant voltage scaling.
 - A. Supply voltage (V_{dd}) was scaled the same as the dimensions of the MOSFET.
 - B. Supply voltage (V_{dd}) was kept constant to maintain sufficient high and low noise margins (NM_h and NM_l).
 - \mathfrak{C} . Threshold voltage (V_T) was scaled down to double the dimensions of the MOSFET.
 - D. Both supply (V_{dd}) and threshold (V_T) voltages were increased.
 - E. Threshold voltage (V_T) was kept constant to maintain high I_{ON}/I_{OFF} ratio.
- 5. (2 marks) In a short channel MOSFET, as V_{DS} is increased -
 - A. Effective channel length $L_{eff} \downarrow$ and total drain current $I_D \downarrow$
 - B. Effective channel length $L_{eff} \downarrow$ and total drain current $I_D \uparrow$
 - C. Effective channel length L_{eff} \uparrow and total drain current I_D \uparrow
 - D. Effective channel length L_{eff} \uparrow and total drain current I_D \downarrow
 - E. Effective channel length $L_{eff} \downarrow$ and total drain current I_D remains constant
 - F. Effective channel length L_{eff} remains constant and total drain current I_D \downarrow

- 6. (2 marks) Consider two nMOSFETs M1 and M_2 with the following dimensions:
 - M1: Length $L1=8\mu m$, Width $W1=2\mu m$, and gate oxide thickness $t_{ox,1}=200nm$
 - M2: Length $L1=0.8\mu m$, Width $W1=8\mu m$, and gate oxide thickness $t_{ox,1}=180nm$

The electron diffusion length is $1 \mu m$. Choose the correct option(s) from the below.

- A. M1 is a short channel MOSFET.
- B. M2 is a short channel MOSFET.
- C. M1 is a long channel MOSFET.
- D. M2 is a long channel MOSFET.
- E. M1 is a tunnel FET.
- F. M2 is a tunnel FET.

(For Q7-Q8) The measured IV of a short-channel MOSFET is shown to scale in the figure below.

7. (2 marks) If the channel length is tripled to $3L_1$, choose the correct IV characteristics from the options given below. (You may assume that all other parameters are the same)

- 8. (2 marks) Choose the correct reasoning(s) for your answer in the previous question.
 - A. The current for a long channel MOSFET saturates at a larger V_{DS} as compared to short channel MOSFET
 - B. The long channel MOSFET reaches the critical field at larger applied biases in the absence of velocity saturation.
 - C. The current for a long channel MOSFET saturates at a smaller V_{DS} as compared to short channel MOSFET
 - D. The long channel MOSFET reaches the critical field at smaller applied biases leading to velocity saturation.

- E. The I_{ON}/I_{OFF} current ratio for a long channel MOSFET is lower as compared to short channel MOSFET
- F. The current in a long channel MOSFET follows the square law theory.
- 9. (2 marks) Given below are a few statements regarding the FinFET technology. Choose the correct statement(s).
 - A: FinFET offers better electrostatic control over the gate than planar MOSFETS
 - B: FinFET has lower I_{ON} to I_{OFF} ratio than planar MOSFETS
 - $C: \mathsf{Fin}\mathsf{FET}$ has lower leakage current than planar MOSFETS
 - D: For a similar operating voltage, planar MOSFETS offer much lower delays than FinFET.
 - A. B, C, D
 - B. A, B, D
 - C. A, C, D
 - D. A, B, C, D
 - **E.** A, C
- 10. (2 marks) What technological node is currently being used in Samsung smartphone Snapdragon Gen 8 processors?
 - A. Intel's 250 nm
 - B. Intel's 7 nm
 - C. Samsung's 14 nm
 - D. TSMC's 4 nm
 - E. Samsung's 10 nm