

Full resolution photo on my Instagram @feenafoto

1

ECOR1043: Circuits

Additional Analysis Techniques

Source Transformation & Superposition

Source Transformation

- The Thévenin and Norton equivalent circuits both represent the same circuit
 - They have the same voltage-current characteristics

Source Transformation

- We can equate the two representations $v = i R_{TH} + V_{oc}$ $i = \frac{v}{R_{TH}} - i_{sc}$
- Solving for *i* from the Thévenin equivalent

$$v=i\,R_{TH}+V_{oc}$$
 Thevenin
$$i=\frac{v}{R_{TH}}-\frac{V_{oc}}{R_{TH}}$$

• Substituting this *i* in the Norton equivalent equation

$$i = \frac{v}{R_{TH}} - i_{SC}$$

$$\frac{v}{R_{TH}} - \frac{V_{OC}}{R_{TH}} = \frac{v}{R_{TH}} - i_{SC}$$

$$v - V_{OC} = v - i_{SC}R_{TH}$$
• Solving for V_{OC} :

Source Transformation

• Any voltage source in series with a resistance can be modeled as a current source in parallel with the same resistance and vice-versa

10

Superposition

• If a linear circuit has multiple inputs (sources), we can determine the response (the current or the voltage at any point) to each input individually and sum the responses to get the net response.

- Analyzing a circuit containing multiple sources using superposition:
 - Determine the output response to each source
 - Eliminate all other sources (short-circuit voltage sources, open-circuit current sources)
 - Analyze resulting circuit (using the techniques we have learned) to determine response to the one remaining source
 - Repeat the process for each source
 - Sum contributions of responses from all sources

12

Superposition

- Ex. 3: Determine the current *i* in the circuit using superposition
 - First, we eliminate the current source (open-circuit) and find i'

Solve for i' using a simple mesh

$$-2 + 2i' + 4i' = 0$$

$$-2 + 6i' = 0$$

$$i' = \frac{2}{6} = \frac{1}{3}A$$

- Ex. 3 (cont.): Determine the current i in the circuit using superposition
 - Now, we eliminate the voltage source (short-circuit) and find i''

Solve for i'' using current divider

$$i'' = \frac{2\Omega}{2\Omega + 4\Omega} \times 1A = \frac{1}{3}A$$

14

Superposition

• Ex. 3 (cont.): Determine the current i in the circuit using superposition

- Sum contributions of responses from both sources

So the total current due both sources

$$i = i' + i'' = \frac{1}{3} + \frac{1}{3} = \frac{2}{3}A$$

Homework: Try using Mesh/Node analysis or source transformation to double-check your answer

15

- Ex. 4: Compute V_o using source superposition
 - First, we eliminate the voltage source (short-circuit) and find V'_0

Solve for I_o current division

$$I_o = \frac{1k + 2k}{1k + 2k + 6k} \times (2 \times 10^{-3}) = \frac{2}{3} mA$$

Solve for V_0' Ohm's law

$$V_o' = I_o \times 6k = \frac{2}{3}mA \times 6k = 4V$$

16

16

Superposition

- Ex. 4 (cont.): Compute V_o using source superposition
 - Then, we eliminate the current source (open-circuit) and find $V_0^{\prime\prime}$

Find $V_0^{"}$ Voltage Divider

$$V_0'' = \frac{6k}{1k + 2k + 6k} \times 3 = 2V$$

- Ex. 4 (cont.): Compute V_o using source superposition
 - Sum contributions of responses from both sources

Therefore, the total output voltage V_0

$$V_0 = V_0' + V_0'' = 6 V$$

Homework: Try it using source transformation to double-check your results

18

18

Practice Problems

• Prob 2: Use superposition to find V_o in the circuit

• Let $V_0 = V_1 + V_2 + V_3$, where V_1 , V_2 , and V_3 are due to the three sources.

Superposition

• Prob 2(cont.): Use superposition to find V_o in the circuit

Then we consider 4A current source only $I_1 = \frac{8}{8+5+10} \times 4 = 1.39A$ Solve for V_1 $V_2 = IR = 1.39 \times 5 = 6.96V$

Superposition • Prob 2(cont.): Use superposition to find V_o in the circuit

$$V_3 = \frac{5}{5 + 10 + 8} \times -12$$

$$V_3 = -2.61V$$

Thank You!