Step	Algorithm:		
1a			
4			
	where		
2			
3	while do		
2,3		٨	
5a			
	where		
6			
8			
5b			
7			
2			
	endwhile		
2,3		^ ¬()
1b			

Step	Algorithm: $[\alpha] := SAPDOT_UNB_VAR1(x, y, \alpha)$
1a	$\alpha = \hat{\alpha}$
4	$x \to \left(\frac{x_T}{x_B}\right), y \to \left(\frac{y_T}{y_B}\right)$ where x_T has 0 rows, y_T has 0 rows
2	$\alpha = \widehat{\alpha} + x_T^T y_T$
3	while $m(x_T) < m(x)$ do
2,3	$\alpha = \widehat{\alpha} + x_T^T y_T \wedge m(x_T) < m(x)$
5a	$ \left(\frac{x_T}{x_B}\right) \to \left(\frac{x_0}{\chi_1}\right), \left(\frac{y_T}{y_B}\right) \to \left(\frac{y_0}{\psi_1}\right) $ where χ_1 has 1 row, ψ_1 has 1 row
6	$\alpha = \widehat{\alpha} + x_0^T y_0$
8	$\alpha := \alpha + \chi_1 \psi_1$
5b	$\left(\frac{x_T}{x_B}\right) \leftarrow \left(\frac{x_0}{\chi_1}\right), \left(\frac{y_T}{y_B}\right) \leftarrow \left(\frac{y_0}{\psi_1}\right)$
7	$\alpha = \widehat{\alpha} + x_0^T y_0 + \chi_1 \psi_1$
2	$\alpha = \widehat{\alpha} + x_T^T y_T$
	endwhile
2,3	$\alpha = \widehat{\alpha} + x_T^T y_T \wedge \neg (m(x_T) < m(x))$
1b	$[\alpha] = \operatorname{Sapdot}(x, y, \widehat{\alpha})$

Algorithm: $[\alpha] := SAPDOT_UNB_VAR1(x, y, \alpha)$

$$x \to \left(\frac{x_T}{x_B}\right), y \to \left(\frac{y_T}{y_B}\right)$$

where x_T has 0 rows, y_T has 0 rows while $m(x_T) < m(x)$ do

$$\left(\frac{x_T}{x_B}\right) \to \left(\frac{x_0}{\chi_1}\right), \left(\frac{y_T}{y_B}\right) \to \left(\frac{y_0}{\psi_1}\right)$$

where χ_1 has 1 row, ψ_1 has 1 row

$$\alpha := \alpha + \chi_1 \psi_1$$

$$\left(\frac{x_T}{x_B}\right) \leftarrow \left(\frac{x_0}{\chi_1}\right), \left(\frac{y_T}{y_B}\right) \leftarrow \left(\frac{y_0}{\psi_1}\right)$$

endwhile

Step	Algorithm: $[\alpha] := \text{Sapdot_unb_var1}(x, y, \alpha)$
1a	$\alpha = \widehat{\alpha}$
4	
	where
2	
3	while do
2,3	\wedge
5a	
	where
6	
8	
5b	
7	
2	
	endwhile
2,3	$\wedge \neg ($
1b	$[\alpha] = \operatorname{Sapdot}(x, y, \widehat{\alpha})$

Step	Algorithm: $[\alpha] := SAPDOT_UNB_VAR1(x, y, \alpha)$
1a	$\alpha = \hat{\alpha}$
4	
	where
2	$\alpha = \widehat{\alpha} + x_T^T y_T$
3	while do
2,3	$\alpha = \widehat{\alpha} + x_T^T y_T \wedge$
5a	
	where
6	
8	
5b	
7	
2	$\alpha = \widehat{\alpha} + x_T^T y_T$
	endwhile
2	$\alpha = \widehat{\alpha} + x_T^T y_T \wedge \neg () $
1b	$[\alpha] = \operatorname{Sapdot}(x, y, \widehat{\alpha})$

Step	Algorithm: $[\alpha] := SAPDOT_UNB_VAR1(x, y, \alpha)$
1a	$\alpha = \hat{\alpha}$
4	
	where
2	$\alpha = \widehat{\alpha} + x_T^T y_T$
3	while $m(x_T) < m(x)$ do
2,3	$\alpha = \widehat{\alpha} + x_T^T y_T \wedge m(x_T) < m(x)$
5a	
	where
6	
8	
5b	
7	
2	$\alpha = \widehat{\alpha} + x_T^T y_T$
	endwhile
2,3	$\alpha = \widehat{\alpha} + x_T^T y_T \wedge \neg (m(x_T) < m(x))$
1b	$[\alpha] = \operatorname{Sapdot}(x, y, \widehat{\alpha})$

Step	Algorithm: $[\alpha] := SAPDOT_UNB_VAR1(x, y, \alpha)$
1a	$\alpha = \widehat{\alpha}$
4	$x \to \left(\frac{x_T}{x_B}\right), y \to \left(\frac{y_T}{y_B}\right)$ where x_T has 0 rows, y_T has 0 rows
2	$\alpha = \widehat{\alpha} + x_T^T y_T$
3	while $m(x_T) < m(x)$ do
2,3	$\alpha = \widehat{\alpha} + x_T^T y_T \wedge m(x_T) < m(x)$
5a	
	where
6	
8	
5b	
7	
2	$\alpha = \widehat{\alpha} + x_T^T y_T$
	endwhile
2,3	$\alpha = \widehat{\alpha} + x_T^T y_T \wedge \neg (m(x_T) < m(x))$
1b	$[\alpha] = \operatorname{Sapdot}(x, y, \widehat{\alpha})$

Step	Algorithm: $[\alpha] := SAPDOT_UNB_VAR1(x, y, \alpha)$
1a	$\alpha = \widehat{\alpha}$
4	$x \to \left(\frac{x_T}{x_B}\right), y \to \left(\frac{y_T}{y_B}\right)$ where x_T has 0 rows, y_T has 0 rows
2	$\alpha = \widehat{\alpha} + x_T^T y_T$
3	while $m(x_T) < m(x)$ do
2,3	$\alpha = \widehat{\alpha} + x_T^T y_T \wedge m(x_T) < m(x)$
5a	$ \left(\frac{x_T}{x_B}\right) \to \left(\frac{x_0}{\chi_1}\right), \left(\frac{y_T}{y_B}\right) \to \left(\frac{y_0}{\psi_1}\right) $ where χ_1 has 1 row, ψ_1 has 1 row
6	/ V
8	
5b	$\left(\frac{x_T}{x_B}\right) \leftarrow \left(\frac{x_0}{\chi_1}\right), \left(\frac{y_T}{y_B}\right) \leftarrow \left(\frac{y_0}{\psi_1}\right)$
7	
2	$\alpha = \widehat{\alpha} + x_T^T y_T$
	endwhile
2,3	$\alpha = \widehat{\alpha} + x_T^T y_T \wedge \neg (m(x_T) < m(x))$
1b	$[\alpha] = \operatorname{Sapdot}(x, y, \widehat{\alpha})$

Step	Algorithm: $[\alpha] := SAPDOT_UNB_VAR1(x, y, \alpha)$
1a	$\alpha = \hat{\alpha}$
4	$x \to \left(\frac{x_T}{x_B}\right), y \to \left(\frac{y_T}{y_B}\right)$ where x_T has 0 rows, y_T has 0 rows
2	$\alpha = \widehat{\alpha} + x_T^T y_T$
3	while $m(x_T) < m(x)$ do
2,3	$\alpha = \widehat{\alpha} + x_T^T y_T \wedge m(x_T) < m(x)$
5a	$ \left(\frac{x_T}{x_B}\right) \to \left(\frac{x_0}{\chi_1}\right), \left(\frac{y_T}{y_B}\right) \to \left(\frac{y_0}{\psi_1}\right) $ where χ_1 has 1 row, ψ_1 has 1 row
6	$\alpha = \widehat{\alpha} + x_0^T y_0$
8	
5b	$\left(\frac{x_T}{x_B}\right) \leftarrow \left(\frac{x_0}{\chi_1}\right), \left(\frac{y_T}{y_B}\right) \leftarrow \left(\frac{y_0}{\psi_1}\right)$
7	
2	$\alpha = \widehat{\alpha} + x_T^T y_T$
	endwhile
2,3	$\alpha = \widehat{\alpha} + x_T^T y_T \wedge \neg (m(x_T) < m(x))$
1b	$[\alpha] = \operatorname{Sapdot}(x, y, \widehat{\alpha})$

Step	Algorithm: $[\alpha] := \text{Sapdot_unb_var1}(x, y, \alpha)$
1a	$\alpha = \hat{\alpha}$
4	$x \to \left(\frac{x_T}{x_B}\right), y \to \left(\frac{y_T}{y_B}\right)$ where x_T has 0 rows, y_T has 0 rows
2	$\alpha = \widehat{\alpha} + x_T^T y_T$
3	while $m(x_T) < m(x)$ do
2,3	$\alpha = \widehat{\alpha} + x_T^T y_T \wedge m(x_T) < m(x)$
5a	$ \left(\frac{x_T}{x_B}\right) \to \left(\frac{x_0}{\chi_1}\right), \left(\frac{y_T}{y_B}\right) \to \left(\frac{y_0}{\psi_1}\right) $ where χ_1 has 1 row, ψ_1 has 1 row
6	$\alpha = \widehat{\alpha} + x_0^T y_0$
8	
5b	$\left(\frac{x_T}{x_B}\right) \leftarrow \left(\frac{x_0}{\chi_1}\right), \left(\frac{y_T}{y_B}\right) \leftarrow \left(\frac{y_0}{\psi_1}\right)$
7	$\alpha = \widehat{\alpha} + x_0^T y_0 + \chi_1 \psi_1$
2	$\alpha = \widehat{\alpha} + x_T^T y_T$
	endwhile
2	$\alpha = \widehat{\alpha} + x_T^T y_T \wedge \neg (m(x_T) < m(x))$
1b	$[\alpha] = \operatorname{Sapdot}(x, y, \widehat{\alpha})$

Step	Algorithm: $[\alpha] := SAPDOT_UNB_VAR1(x, y, \alpha)$
1a	$\alpha = \hat{\alpha}$
4	$x \to \left(\frac{x_T}{x_B}\right), y \to \left(\frac{y_T}{y_B}\right)$ where x_T has 0 rows, y_T has 0 rows
2	$\alpha = \widehat{\alpha} + x_T^T y_T$
3	while $m(x_T) < m(x)$ do
2,3	$\alpha = \widehat{\alpha} + x_T^T y_T \wedge m(x_T) < m(x)$
5a	$ \left(\frac{x_T}{x_B}\right) \to \left(\frac{x_0}{\chi_1}\right), \left(\frac{y_T}{y_B}\right) \to \left(\frac{y_0}{\psi_1}\right) $ where χ_1 has 1 row, ψ_1 has 1 row
6	$\alpha = \widehat{\alpha} + x_0^T y_0$
8	$\alpha := \alpha + \chi_1 \psi_1$
5b	$\left(\frac{x_T}{x_B}\right) \leftarrow \left(\frac{x_0}{\chi_1}\right), \left(\frac{y_T}{y_B}\right) \leftarrow \left(\frac{y_0}{\psi_1}\right)$
7	$\alpha = \widehat{\alpha} + x_0^T y_0 + \chi_1 \psi_1$
2	$\alpha = \widehat{\alpha} + x_T^T y_T$
	endwhile
2,3	$\alpha = \widehat{\alpha} + x_T^T y_T \wedge \neg (m(x_T) < m(x))$
1b	$[\alpha] = \operatorname{Sapdot}(x, y, \widehat{\alpha})$

Step	Algorithm: $[\alpha] := SAPDOT_UNB_VAR1(x, y, \alpha)$
	$x \to \left(\frac{x_T}{x_B}\right), y \to \left(\frac{y_T}{y_B}\right)$ where x_T has 0 rows, y_T has 0 rows
	where we have theme, granded theme
	while $m(x_T) < m(x)$ do
	$ \left(\frac{x_T}{x_B}\right) \to \left(\frac{x_0}{\chi_1}\right), \left(\frac{y_T}{y_B}\right) \to \left(\frac{y_0}{\psi_1}\right) $ where χ_1 has 1 row, ψ_1 has 1 row
	$lpha:=lpha+\chi_1\psi_1$
	$\left(\frac{x_T}{x_B}\right) \leftarrow \left(\frac{x_0}{\chi_1}\right), \left(\frac{y_T}{y_B}\right) \leftarrow \left(\frac{y_0}{\psi_1}\right)$
	endwhile

Algorithm: $[\alpha] := SAPDOT_UNB_VAR1(x, y, \alpha)$

$$x \to \left(\frac{x_T}{x_B}\right), y \to \left(\frac{y_T}{y_B}\right)$$

where x_T has 0 rows, y_T has 0 rows

while $m(x_T) < m(x)$ do

$$\left(\frac{x_T}{x_B}\right) \to \left(\frac{x_0}{\chi_1}\right), \left(\frac{y_T}{y_B}\right) \to \left(\frac{y_0}{\psi_1}\right)$$

where χ_1 has 1 row, ψ_1 has 1 row

$$\alpha := \alpha + \chi_1 \psi_1$$

$$\left(\frac{x_T}{x_B}\right) \leftarrow \left(\frac{x_0}{\chi_1}\right), \left(\frac{y_T}{y_B}\right) \leftarrow \left(\frac{y_0}{\psi_1}\right)$$

endwhile