Resolution of FBA

S. Fischer - Biosys - MAIAGE October 21, 2016

Contents

1 Mathematical interpretation of FBA problems

3

1 Mathematical interpretation of FBA problems

We consider the following mathematical problem:

$$\begin{cases} \max c^T \nu \\ S\nu = b \\ \nu_i \ge 0 \text{ for some arbitrary } i \end{cases}$$

Biologically speaking, ν is the flux vector through metabolic reactions, b the exchange flux vector of metabolites with environment and other cell compartments. S is the stoichiometry matrix of the metabolism. The fact that a $\nu_i \geq 0$ indicates that this specific reaction is irreversible.

Structure of S Let C_1 , C_2 , ..., C_R be the columns of S. Each column represents a metabolic reaction. Let L_1 , L_2 , ..., L_M be the lines of S. Each line holds the fluxes of a specific metabolites through each reaction. Note that R is the number of reactions and M the number of metabolites. Generally R > M. Here are simple mathematical facts:

- $\operatorname{Im}(S) = \operatorname{Vect}\{C_1, ..., C_R\}$. There is a solution if and only if $b \in \operatorname{Im}(S)$.
- $L_i^T \perp \operatorname{Ker}(S)$.
- Ker (S) contains all futile cycles. However these cycles are not necessarily possible if they contain an irreversible reaction. Because R > M, the dimension of the kernel is pretty high.

Unicity Straightforward facts:

- If there are no irreversible reactions, the solution structure is $\nu_0 + \text{Ker}(S)$, so $\max c^T \nu = \infty$.
- Unicity does not depend on b. The idea is that $\operatorname{Ker}(S) \cap \{\nu_i \geq 0\}$ must be bounded in the direction pointed by c.
- Intuitively, unicity is broken if c maximizes the flux of a futile cycle that is thermodynamically possible. By rewriting S and/or c, it should always be possible to warrant unicity.

Properties of a unique solution Let

$$m = \max_{\text{Ker}(S) \cap \{\nu_i \ge 0\}} c^T \nu \ge 0$$

Suppose m is reached for some ν^* . Let $\lambda > 1$. $\lambda \nu^* \in \text{Ker}(S)$ and $\lambda \nu^* \in \{\nu_i \geq 0\}$. By definition of m, $c^T(\lambda \nu^*) \leq m$. This leads to $\lambda m \leq m$, hence m = 0. This means that if there is a unique solution, it is orthogonal to $\text{Ker}(S) \cap \{\nu_i \geq 0\}$. This is consistent with the view that c must points in a direction where $\text{Ker}(S) \cap \{\nu_i \geq 0\}$ is bounded.

Duality Let us now emphasize the role of L_i in association with c. Each line of the matrix equation reads

$$L_i^T \nu = b_i$$

This corresponds to a hyperplane orthogonal to L_i . (Fig. 1) (left) shows an example in 2 dimensions with 2 lines L_1 and L_2 . The maximal value in the direction of c is bounded if and only if c can be expressed as linear combination of L_1 and L_2 . For example, if L_1 and L_2 are colinear, there is a maximal value iff c is colinear to the two vectors. If there is a third dimension, there is a maximal solution iff c is coplanar with L_1 and L_2 . Put shortly, there is a solution iff

$$S^T \lambda = c$$

has a solution.

Figure 1: 2D illustration. (Left) Solution space of $S\nu = b$. (Right) Solution space of $S\nu \leq b$.

Inequalities instead of equalities I feel like the example above generalizes to inequalities except there is a solution iff there is a solution to

$$S^T \lambda = c, \quad \lambda \ge 0$$

Figure 1 (right) sums up this idea.