§2.2.7: Separable polynomials and perfect fields

§2.2.7: Separable polynomials and perfect fields

<u>Definition.</u> For a field K, a polynomial $f(x) \in K[x]$ is said to be separable over K if it has no repeated roots in its splitting field over K.

Example. $f(x) = x^3 - 2 \in \mathbb{Q}[x]$ is separable over \mathbb{Q} , but not when regarded as a polynomial over \mathbb{F}_3 :

$$f(x) = (x-2)^3 \in \mathbb{F}_3[x].$$

Example. $K = \mathbb{F}_2(t)$ and $f(x) = x^2 - t \in K[x]$. The splitting field of $L = K(\sqrt{t})$ of f over K has degree 2 over K, but

$$f(x) = x^2 - t = (x - \sqrt{t})^2 \in L[x],$$

so f is not separable. over $k = \sqrt{t}$

§2.2.7: Separable polynomials and perfect fields

<u>Lemma.</u> Let K be any field and let $f \in K[x]$ with positive degree. Then the following are equivalent:

- f is separable over K; Tutorial
- 2 f and f' are relatively prime as elements in K[x];
- \bullet f has no repeated roots in any field extension L of K.

Proof. Let $f = p_1^{n_1} p_2^{n_2} \cdots p_k^{n_k}$, $p_i \in K[x]$ irreducible, pairwise non-associates. Let L_f be the splitting field of f over K.

- 1) \Rightarrow 2): For each j, f and p_j share at least one root $a_j \in L_f$. Then $f'(a_j) \neq 0$ implies that $p_j \nmid f'$. Thus f and f' have no common irreducible factors in K[x], i.e., they are relatively prime in K[x].
- 2) \Rightarrow 3): f and f' are relatively prime in K[x] implies that they are relatively prime in L[x] for any extension $K \subset L$, so f has no repeated root in any extension L of K.
- 3) \Rightarrow 1): trivial.

Q.E.D.

§2.2.7: Separable polynomials and perfect fields

Perfect fields:

<u>Definition.</u> A field K is said to be perfect if every irreducible polynomial in K[x] is separable.

Example. $K = \mathbb{F}_2(t)$ is not perfect, as $p(x) = x^2 - t \in K[x]$ is irreducible but not separable.

Theorem: A field K is perfect if and only if either one of the following holds:

- **2** $\operatorname{char}(K) = p > 0$ but the Frobenious homomorphism $\sigma: K \to K, \sigma(a) = a^p$ is an isomorphism, or, equivalently, surjective.

Proof. See lecture notes.

Corollary. A field of characteristic 0 is perfect; A finite field is perfect.

§2.2.8: Separable extensions and the Primitive Element Theroem

§2.2.8: Separable extensions and the Primitive Element Theroem

<u>Definition.</u> An algebraic extension $K \subset L$ is said to be separable if for every $a \in L$, the minimal polynomial of a over K is separable over K.

<u>Lemma</u>. Every finite extension of a perfect field is separable.

<u>The Primitive Element Theroem.</u> A finite separable extension $K \subset L$ is simple.

Corollary. If K is a perfect field, then very finite extension of K is simple.

Corollary. If K has characteristic 0 or is a fintile field, then very finite extension of K is simple.

We now turn to Chapter 3. Introduction to Galois Theory.

Today:

■ §3.2.1: Automorphism groups of field extensions and roots of polynomials

What we need from group theory in this chapter:

- Definition of groups an subgroups;
- For a set R, the group $R = \{1, 2, \dots, n\}$

$$\underline{\underline{Perm}(R)} = \text{the set of all bijections from } R \longrightarrow R. \text{ as a group}$$

$$\underline{\underline{under} \quad composition}$$

• Group actions: when R is a finite set, a group action of a group G on R is a group homomorphism $G \to \operatorname{Perm}(R)$.

Definitions and notation.

• For a field *L*,

$$Aut(L)$$
 = the set of all field isomorphisms $L \longrightarrow L$.

• For a field extension $K \subset L$, denote

$$\operatorname{Aut}_{\mathcal{K}}(L) = \{ \underline{\sigma} \in \operatorname{Aut}(\underline{L}) : \underline{\sigma}(\underline{k}) = \underline{k}, \, \forall \, \underline{k} \in \underline{K} \} \subset \operatorname{Aut}(\underline{L})$$

Also denote

$$\operatorname{Aut}_{K}(L) = \operatorname{Gal}_{K}(L) = \operatorname{Gal}(L/K) = \operatorname{Aut}(L/K).$$

• For non-constant $f(x) \in K[x]$ and L_f a splitting field of f over K,

$$\operatorname{Gal}_K(f) = \operatorname{Gal}(f/K) = \operatorname{Aut}_K(L_f)$$

is called the Galois group of f.

- 1) \forall field L, $Aut(L) \subseteq Perm(L)$ is a subgroup. Lemma: For any field extenion $K \subset L$, Aut(L) is a group and
- Aut_K(L) \subset Aut(L) a subgroup. Proof. 1) If σ_1 , σ_2 : L \longrightarrow L are isomorphism

 then SD is $\sigma_1 \circ \sigma_2$.
 - 2) If σ_i , $\sigma_i \in Aut_k(L)$, then $\forall k \in K$ $(\sigma_i \circ \sigma_i)(k) = \sigma_i(\sigma_i(k)) = \sigma_i(k) = k$
 - So OTO OT F Autr(L)

Examples. $\operatorname{Aut}_{\mathbb{R}}(\mathbb{C})$ and $\operatorname{Aut}_{\mathbb{O}}(\mathbb{R})$.

Side Remark: For any extension
$$K \subset L$$
, if $\sigma \in Aut_K(L)$, then $\forall k \in K$, we must have $a \in L$,

 $\sigma: \mathbb{C} \to \mathbb{C}, \quad \sigma(2) = \overline{2}.$

 $\begin{cases} \sigma(\xi_{1}+\xi_{1}) = \sigma(\xi_{1})+\sigma(\xi_{2}) \\ \sigma(\xi_{1}+\xi_{1}) = \sigma(\xi_{1})\sigma(\xi_{1}) \\ \sigma(\xi_{1}+\xi_{2}) = \sigma(\xi_{1})\sigma(\xi_{2}) \end{cases}$

 $\sigma(ka) = \sigma(k)\sigma(a) = k\sigma(a)$ $\sigma(a+b) = \sigma(a) + \sigma(b)$

Aut_{IR}(
$$C$$
) \ni {Id C , σ }, where

 $\sigma \circ \sigma = Idc$

Try: For $\alpha \in IR$
 $T(a+ib) = a+ib\alpha$,

 $T(a,b) = (a, \alpha b)$

Check: $T \in Aut_{IR}(C)$ iff $\alpha = \pm 1$

Claim: $Aut_{IR}(C) = \{Id_{C}, \sigma\}$

Examples.
$$Aut_{\mathbb{R}}(\mathbb{C})$$
 and $Aut_{\mathbb{Q}}(\mathbb{R})$: = $\{Id_{\mathbf{C}}, \sigma_{i} : 2 \mapsto \overline{Z}\}$.

Proof: Let $\sigma \in Aut_{\mathbb{R}}(\mathbf{C})$. Then

 $\sigma(a+ib) = \sigma(a) + \sigma(ib) = \sigma(a) + \sigma(i) \sigma(b)$
 $= a + \sigma(i) b$

But $\sigma(i) \cdot \sigma(i) = \sigma(i^{2}) = \sigma(-1) = -1$

So $\sigma(i) = i$ or $-i$.

Thus $\sigma = Id$ or $\sigma(i) : 2 \mapsto \overline{Z}$.

Examples. Auto(\mathbb{R}) and \mathbb{A} and $\mathbb{C}(\mathbb{R})$. Let $\sigma \in Aut_{\mathbb{Q}}(\mathbb{R})$ So $\sigma : \mathbb{R} \to \mathbb{R}$, and $\sigma(r) = r$ for all $r \in \mathbb{Q}$ and $\sigma(a+b) = \sigma(a) + \sigma(b)$, $\sigma(ab) = \sigma(a) \sigma(b)$ $\forall a, b \in \mathbb{R}$ Ex. $\sigma(a) = \begin{cases} a & \text{if } a \in \mathbb{Q} \\ 2a & \text{if } a \notin \mathbb{Q} \end{cases}$ Claim $\sigma(a) = \int_{\mathbb{R}} a \cdot \mathbf{r} \cdot \mathbf{r}$

Ex.
$$\sigma(a) =$$
 and $\sigma(a) =$ a

7 18 / 30