ПЕРЕЧЕНЬ ВОПРОСОВ, ПОДЛЕЖАЩИХ РЕШЕНИЮ

Для удобства поэтапного контроля работы студентов курсовая работа 1 разделена на две части, каждая из которых состоит из трех задач.

ЧАСТЬ ПЕРВАЯ

Расчет электрической цепи переменного тока в установившемся режиме Срок сдачи отчета - конец второго месяца учебного семестра.

ЗАДАЧА 1. Провести анализ расчетной схемы цепи и рассчитать ее методом узловых напряжений.

Для этого:

- 1.1. Вычертить (с соблюдением ГОСТ) схему замещения цепи для мгновенных значений электрических величин.
- 1.2. Провести топологический анализ схемы (определить число ветвей и узлов в схеме).
- 1.3. Указав стрелками условно-положительные направления токов и напряжений на схеме, составить систему уравнений Кирхгофа для мгновенных значений токов и напряжений.

- 1.4. Вычертить комплексную схему замещения цепи и составить систему уравнений Кирхгофа для комплексов токов и напряжений (без решения системы).
- 1.5. Вычертить комплексную схему замещения цепи, выбрать базисный узел, заземлить его (например, узел θ , см. рис. 1) и указать условно-положительные направления узловых и межузловых напряжений.
- 1.6. Пользуясь методом узловых напряжений, составить и решить систему уравнений относительно узловых и межузловых напряжений. При этом учесть, что потенциал узла 3 (см. рис. 1) известен: он равен комплексу ЭДС \underline{E} .

Таблица 1 Элементы ветвей расчетной схемы

Номер	Для 1-й части курсовой работы	Для 2-й части курсовой работы
варианта	$p \cdot p \cdot I \cdot p \cdot C \cdot I \cdot p$	1/2 D · C · I · D
2	$R_1; R_2; L_2; R_3; C_3; L_4; R_5$	$1/2R_1$; C_2 ; L_3 ; R_4
3	$L_1; R_2; C_2; R_3; L_3; C_4; R_5$	$R_1; C_2; 1/2R_3; L_4$
4	$R_1; C_1; R_2; L_2; R_3; C_4; R_5$	$R_1; L_2; C_3; R_4$
5	$R_1; L_1; R_2; L_3; C_3; L_4; R_5$	$R_1; L_2; 2R_3; C_4$
6	C_1 ; R_2 ; R_3 ; L_3 ; R_4 ; C_4 ; R_5	$2R_1; C_2; R_3; L_4$
	C_1 ; R_2 ; L_2 ; C_3 ; R_4 ; L_4 ; R_5	$1/2R_1; L_2; R_3; C_4$
7	$L_1; R_2; L_2; C_3; R_4; C_4; R_5$	$C_1; R_2; L_2; R_3; R_4$
8	$L_1; C_2; R_3; L_3; R_4; C_4; R_5$	$L_1; R_2; R_3; C_3; R_4$
9	$R_1; C_1; R_2; R_3; L_4; R_5$	L_1 ; $1/2R_2$; R_3 ; C_4
10	$R_1; C_1; L_2; R_3; C_3; L_4; R_5$	$R_1; R_2; C_2; L_3; R_4$
11	$R_1; L_1; R_2; C_2; R_3; C_4; R_5$	$R_1; C_2; R_3; L_3; R_4$
12	L_1 ; R_2 ; C_2 ; R_3 ; R_4 ; L_4 ; R_5	$L_1; R_2; R_3; C_4$
13	$L_1; C_2; R_3; C_3; R_4; L_4; R_5$	$1/2R_1$; R_2 ; L_3 ; C_4
14	C_1 ; R_2 ; C_2 ; R_3 ; L_3 ; L_4 ; R_5	$R_1; L_2; R_3; C_3; R_4;$
15	C_1 ; R_2 ; L_2 ; R_3 ; C_3 ; L_4 ; R_5	$1/2R_1$; R_2 ; C_3 ; L_4
16	$L_1; R_2; C_2; R_3; L_3; R_4; R_5$	$1/2R_1$; R_2 ; R_3 ; L_3 ; C_4
17	$L_1; R_2; L_2; R_3; C_3; R_4; R_5$	R_1 ; C_2 ; $1/2R_3$; L_4
18	R_1 ; C_1 ; R_2 ; L_2 ; L_3 ; R_4 ; R_5	R_1 ; $1/2R_2$; L_2 ; R_3 ; C_4
19	$R_1; L_1; R_2; C_2; C_3; R_4; R_5$	$1/2R_1$; R_2 ; C_2 ; R_3 ; L_4
20	R_1 ; R_2 ; C_2 ; L_3 ; R_4 ; L_4 ; R_5	$R_1; L_2; 1/2R_3; C_4$
21	$R_1; R_2; L_2; C_3; R_4; L_4; R_5$	$R_1; L_2; 2R_3; C_4$
22	$L_1; R_2; C_2; R_3; R_4; L_4; R_5$	C_1 ; R_2 ; $2R_3$; L_4
23	$R_1; R_2; C_2; R_3; L_3; C_4; R_5$	$R_1; C_1; R_2; R_3; L_4$
24	$R_1; L_1; C_2; R_3; R_4; C_4; R_5$	$R_1; L_2; 3R_3; 2C_4$
25	$R_1; L_1; R_2; C_3; R_4; L_4; R_5$	$L_1; R_2; 3R_3; 2C_4$
26	$R_1; C_1; L_2; R_3; R_4; C_4; R_5$	$2L_1; R_2; R_3; C_4$
27	R_1 ; C_1 ; C_2 ; L_3 ; R_4 ; L_4 ; R_5	$1/2R_1$; C_2 ; R_3 ; L_4
28	$L_1; L_2; R_3; L_3; R_4; C_4; R_5$	$L_1; 2C_2; R_3; R_4$
29	C_1 ; C_2 ; R_3 ; C_3 ; R_4 ; L_4 ; R_5	$2L_1$; R_2 ; $1/2R_3$; C_4
30	L_1 ; R_2 ; R_3 ; L_3 ; R_4 ; L_4 ; L_5	$3L_1; 2R_2; C_3; R_4$

- 1.7. Пользуясь обобщенным законом Ома, определить комплексы токов ветвей, а затем комплексы напряжений ветвей.
 - 1.8. Осуществить переход от комплексов токов и напряжений к их мгновенным значениям.

ЗАДАЧА 2. Провести проверку результатов расчета (см. п. 1.7) схемы:

- 2.1. Методом баланса мощностей. Допускается погрешность баланса как активных, так и реактивных мощностей не более 5 %.
- 2.2. С помощью векторной диаграммы напряжений и токов ветвей (построенной в масштабе), отметив на ней соответствующие фазные углы и выполнив проверку уравнений Кирхгофа: $\underline{I} = \underline{I}_1 + \underline{I}_5$ и $\underline{E} = \underline{U}_1 + \underline{U}_2$ (пунктирными линиями).

2.3. Воспользовавшись программой "*KURS1*" для персональных компьютеров, совместимых с IBM PC.

ВНИМАНИЕ! Категорически запрещается вместо расчетов "вручную" переписывать значения токов, напряжений и т. п. с экрана дисплея. При необходимости их можно напечатать с экрана дисплея на принтере, нажав клавишу "PRINT SCREEN" (предварительно загрузив утилиту "GRAPHICS" операционной системы DOS) и приложить к отчету о работе.

Таблица 2 Параметры входного сигнала и элементов расчетной схемы

Шифр	Значения параметров для 1-й части курсовой работы					
Группы	E_m , B	<i>ю</i> , рад/с	Ψ_e , рад	R_k^* , Om	L_k^* , м Γ н	C_k^* , мк Φ
A	14,1	25000	$\pi/6 = 0,5236$	10	0,4	4
Б	14,1	25000	$\pi/3 = 1,0472$	5	0,4	5
В	28,2	40000	$\pi/2 = 1,5708$	10	0,125	2,5
Γ	28,2	40000	$-\pi/3 = -1,0472$	5	0,075	6,25
Д	42,3	50000	$-\pi/2 = -1,5708$	4	0,08	6,65
Е	42,3	50000	$\pi = 3,1416$	10	0,12	2,5
Ж	14,1	100000	$-\pi/4 = -0.7854$	10	0,08	1,67

^{*)} k - номер ветви: 1, 2, ... 5

Таблица 3 Параметры входного сигнала и элементов схемы

Шифр	Значения параметров для 2-й части курсовой работы				
Группы	$e = E_m = U, B$	R_k^* , Ом	L_k^* , м Γ н	C_k^* , мк Φ	
A	5	50	30	10	
Б	10	80	40	5	
В	15	100	15	2	
Γ	20	150	20	1,5	
Д	25	200	10	1	
Е	30	300	20	0,5	
Ж	40	50	5	1	

^{*)} *k* - номер ветви: 1, 2, 3, и 4.

ЗАДАЧА 3. Рассчитать методом эквивалентного генератора (МЭГ) ток в ветви, номер которой указан в табл. 4.

Таблица 4

Номер варианта	Номер ветви для расчета в ней тока по МЭГ
1, 6, 11, 16, 21, 26	1
2, 7, 12, 17, 22, 27	2
3, 8, 13, 18, 23, 28	3
4, 9, 14, 19, 24, 29	4
5, 10, 15, 20, 25, 30	5

ЧАСТЬ ВТОРАЯ

Расчет электрической цепи в переходных режимах.

Срок сдачи отчета - последняя неделя учебного семестра (перед зачетно-экзаменационной сессией).

ЗАДАЧА 4. Рассчитать классическим методом переходный ток $i_L(t)$ в индуктивной катушке, переходное напряжение на $u_C(t)$ конденсаторе и выходное напряжение $u_2(t)$ при подключении упрощенной электрической цепи (без ветви с R5) к источнику постоянного напряжения $e = U = E_m$ (при нулевых начальных условиях).

Для этого:

- 4.1. Вычертить (с соблюдением ГОСТ) расчетную электрическую схему и указать условно-положительные направления переходных токов и напряжений.
- 4.2. Составить систему уравнений Кирхгофа и на ее основе вывести дифференциальное уравнение относительно напряжения $u_C(t)$, а затем относительно тока $i_L(t)$.
- 4.3. Решить дифференциальные уравнения (см. п. 4.2). Для определения установившихся значений i_{Ly} и u_{Cy} , а также значений $di_L(0_+)/dt$ и $du_C(0_+)/dt$, вычертить соответствующие электрические схемы.
- 4.4. Определить выходное напряжение $u_2(t)$, используя полученные значения $u_C(t)$, $i_L(t)$ и одно из уравнений Кирхгофа (см. п. 4.2).
- 4.5. Построить в масштабе график $u_2(t)$, отметив на нем точки напряжения u_2 при t=0., 0+, $1/5\tau$, $2/5\tau$, $3/5\tau$, $4/5\tau$, τ , $1,5\tau$, 2τ , 3τ и ∞ , а также точки на оси времени: $1/4T_{c6}$, $1/2T_{c6}$, $3/4T_{c6}$ и T_{c6} , если переходный процесс носит колебательный характер.
- ЗАДАЧА 5. Рассчитать операторным методом выходное напряжение $u_2(t)$ цепи и сравнить его со значением $u_2(t)$, полученным в задаче 4.4.
 При этом воспользуйтесь рекомендациями, изложенными в приложении 1, и формулами соответствия, приведенными в приложении 2.
- ЗАДАЧА 6. Найти передаточную функцию $H_u(p)$ цепи по напряжению и на ее основе получить в аналитической форме амплитудно-частотную $H_u(\omega)$ и фазочастотную $\Psi(\omega)$ характеристики цепи и изобразить их на графике. Определить тип фильтра (по полосе пропускания).

ПРИМЕЧАНИЕ. Для контроля результата расчета напряжения $u_2(t)$, построенных графиков АЧХ и ФЧХ цепи по напряжению и наблюдения за характером изменения переходных величин $u_C(t)$ и $i_L(t)$, воспользуйтесь программой "KURS2".