Package 'diaQTL'

June 6, 2021

Title QTL Analysis in Diallel Populations

Author Jeffrey B. Endelman and Rodrigo R. Amadeu **Maintainer** Jeffrey Endelman endelman@wisc.edu>

Version 1.00

	n QTL analysis of diploid and autotetraploid diallel populations. Phenotypes are resed on genotype probabilities, and the regression coefficients are random effects.
Depends	R (>= 4.0)
License	PL-3 + file LICENSE
LazyDat	true
Roxygen	ote 7.1.1
Roxygen	list(markdown = TRUE)
Encoding	UTF-8
_	BGLR, ggplot2, methods, coda, Matrix, scam, parallel, arrangements, tidyr, ggfittext, ggden-labeling, rlang, reshape2, plyr
Suggests	knitr, rmarkdown
Vignette	uilder knitr
-	s documented:
	onvert_mappoly
	onvert_onemap
	onvert_polyorigin
	onvert_rabbit
	iallel_geno-class
	iallel_geno_pheno-class
	DIC_thresh
	iplo_freq
	1codes
	ne_map
	tQTL
	et map

2 BayesCI

Index		25
	set_params	22
	scan1_summary	21
	scan1_permute	20
	scan1	19
	S1codes	19
	read_data	17
	phased_parents	17
	IBDmat	16
	haplo_plot	15
	haplo_get	14

BayesCI

Bayesian Credible Interval for QTL position

Description

Bayesian Credible Interval for QTL position

Usage

```
BayesCI(scan1_data, data, chrom, CI.prob = 0.9)
```

Arguments

scan1_data data frame output from scan1

data variable of class diallel_geno_pheno

chrom chromosome

CI.prob probability for the credible interval

Details

Parameter CI. prob sets the probability for the Bayesian credible interval (e.g., 0.90, 0.95) using the profile likelihood (posterior mean).

Value

subset of scan1_data with markers in the CI

```
## Not run:
   BayesCI(scan1_example, diallel_example, chrom="10", CI.prob=0.9)
## End(Not run)
```

convert_mappoly 3

convert_mappoly	Generate diaQTL input files from MAPpoly
CONVEN C_Mappory	Generale diagram input files from min poty

Description

Generates diaQTL input files from the output of calc_genoprob or calc_genoprob_error in the MAP-poly package. The argument data is a list containing the results for each linkage group. Map distances are rounded to 0.01 cM, and genotype probabilties are rounded to three decimal places.

Usage

```
convert_mappoly(data, ploidy, outstem = "")
```

Arguments

data list of variables of class mappoly.genoprob (one for each linkage group)

ploidy Either 2 or 4

outstem prefix for the pedigree and genotype files for diaQTL

Examples

```
## Not run:
    # see MAPpoly tutorial for details on its functions
    MAP <- list(lg1, lg2, lg3) #list of linkage groups
    genoprob <- vector("list", 3) #if 3 linkage groups
    for(i in 1:length(genoprob))
        genoprob[[i]] <- mappoly::calc_genoprob_error(input.map = MAP[[i]], error = 0.05)
    convert_mappoly(genoprob, ploidy=4)

## End(Not run)</pre>
```

convert_onemap

Generate diaQTL input files from OneMap

Description

Generate diaQTL input files from 'onemap_progeny_haplotypes' object class of OneMap R package (version >2.2.0)

Usage

```
convert_onemap(data, digits = 4, outstem = "")
```

Arguments

data onemap_progeny_haplotypes object class

digits how many rounding digits for the probabilities output (default=4)

outstem prefix for the pedigree and genotype files for diaQTL

4 convert_polyorigin

Examples

convert_polyorigin

Create diaQTL input files from PolyOrigin output

Description

Create diaQTL input files from PolyOrigin output

Usage

```
convert_polyorigin(
  filename,
  mapfile = NULL,
  remove.outliers = TRUE,
  outstem = ""
)
```

Arguments

```
filename Name of polyancestry file

mapfile Optional name of CSV file containing the physical map (marker, chrom, bp)

remove.outliers

Should offspring flagged as outliers be removed (default is TRUE)

outstem prefix for output filenames
```

Details

Creates the pedigree (diaQTL_pedfile.csv) and genotype (diaQTL_genofile.csv) input files needed for read_data from the polyancestry output file generated by the PolyOrigin software. PolyOrigin outputs a genetic map in cM. To add a physical map in bp, use the option mapfile. The input file needed for phased_parents (diaQTL_parents.csv) is also created.

convert_rabbit 5

convert_rabbit

Generate diaQTL input files from RABBIT MagicReconstruct

Description

Generate diaQTL input files from RABBIT MagicReconstruct

Usage

```
convert_rabbit(rabbit.outfile, ped.file, outstem)
```

Arguments

rabbit.outfile name of RABBIT output file
ped.file name of RABBIT pedigree file
outstem prefix for the pedigree and genotype files for diaQTL

diallel_geno-class

S4 class with genotype data

Description

S4 class with genotype data

Slots

ploidy Either 2 or 4

input matrix of character strings from the genotype input file, one row per bin

Xa list of matrices (one for each offspring) with the expected haplotype dosage (rows) for each parental origin genotype (columns)

dominance Maximum dosage stored in slot geno. Integer 1-4 indicating 1 = additive, 2 = digenic dominance, 3 = trigenic dominance, 4 = quadrigenic dominance.

X.GCA Incidence matrix for GCA effects

map data frame with marker, chrom, position (cM and/or bp) and bin

geno list of length equal to the number of marker bins. Each element is a list of length dominance. The elements in the nested list are sparse matrices with dimensions (id x effects), containing the dosage for each effect.

A list with the additive relationship matrix for each chromosome

6 DIC_thresh

diallel_geno_pheno-class

S4 class with genotype and phenotype data

Description

S4 class with genotype and phenotype data

Slots

ploidy Either 2 or 4

input matrix of character strings from the genotype input file

Xa list of matrices with the expected haplotype dosage (rows) for each parental origin genotype (columns)

dominance Maximum dosage stored in slot geno. Integer 1-4 indicating 1 = additive, 2 = digenic dominance, 3 = trigenic dominance, 4 = quadrigenic dominance.

X.GCA Incidence matrix for GCA effects

map data frame with marker, chrom, position (cM and/or bp) and bin

geno list of length equal to the number of marker bins. Each element is a list of length dominance. The elements in the nested list are sparse matrices with dimensions (id x effects), containing the dosage for each effect.

A list with the additive relationship matrix for each chromosome

pheno data frame of phenotypes

X incidence matrix for fixed effects

Z incidence matrix for individuals

DIC_thresh

delta DIC thresholds for scan1

Description

delta DIC thresholds for scan1

Usage

```
DIC_thresh(genome.size, num.parents, ploidy, alpha = 0.05, dominance = 1)
```

Arguments

genome.size Genome size in Morgans (not centiMorgans)

num. parents Number of parents (2 to 10)

ploidy 2 or 4

alpha significance level (0.01, 0.05, 0.10, or 0.20)

dominance 1 (additive) or 2 (digenic dominance)

diplo_freq 7

Details

Thresholds to control the genome-wide false positive rate at alpha were determined for half-diallel mating designs with up to 10 parents.

Value

-deltaDIC threshold

Examples

diplo_freq

Diplotype frequencies

Description

Plot the frequency of individuals with diplotype dosage above a threshold

Usage

```
diplo_freq(data, diplotypes, dosage, position, chrom = NULL)
```

Arguments

data Variable inheriting from class diallel_geno

diplotypes Names of diplotypes dosage Dosage threshold

position Either "cM" or "bp" for plotting

chrom Names of chromosomes (default is all)

Details

Useful for visualizing selection in selfed populations.

Value

List containing

```
result Data frame with the map and frequency plot ggplot object
```

8 F1codes

diplo_get

Dosage of parental diplotypes

Description

Dosage of parental diplotypes

Usage

```
diplo_get(data, marker = NULL, id = NULL)
```

Arguments

data Variable inheriting from class diallel_geno

marker Name of marker id Name of individual

Details

Function can be used to get parental diplotype dosage estimates at a single marker for all individuals (in which case id should be NULL) or for a single individual for all markers (in which case marker should be NULL)

Value

Matrix of (id or markers) x parental diplotypes

Examples

F1codes

Genotype codes for F1 populations

Description

Character vector with the 100 possible tetraploid genotypes for a F1 population. Maternal haplotypes are denoted 1,2,3,4 and paternal haplotypes 5,6,7,8.

Usage

```
data(F1codes)
```

fine_map 9

Format

character vector

fine_map	Visualize haplotype switches for fine mapping	
----------	---	--

Description

Visualize haplotype switches for fine mapping

Usage

```
fine_map(data, haplotype, interval, trait = NULL, marker = NULL)
```

Arguments

data Variable inheriting from class diallel_geno

haplotype Name of parental haplotype
interval 2-vector with marker names
trait Name of trait to plot (optional)

marker Optional, marker to indicate with dashed line

Details

Function returns graphic for all individuals with a haplotype switch (defined as change in dosage from 0 to \geq 1 or vice versa) for haplotype within interval. If trait is included, the trait values for each individual are displayed on the right side. The function requires map positions in bp to be included in data.

Value

ggplot2 variable

10 fitQTL

fitQTL

Fit multiple QTL model

Description

Fit multiple QTL model

Usage

```
fitQTL(
  data,
  trait,
  qtl,
  epistasis = NULL,
  polygenic = FALSE,
  params = list(burnIn = 100, nIter = 5000),
  CI.prob = 0.9
)
```

Arguments

```
data variable of class diallel_geno_pheno
trait name of trait
qtl data frame, see Details
epistasis optional data frame, see Details
polygenic TRUE/FALSE whether to include additive polygenic effect
params list containing the number of burn-in (burnIn) and total iterations (nIter)
CI.prob probability for Bayesian credible interval
```

Details

Argument qtl is a data frame with columns marker and dominance to specify the marker name and highest order effect (1 = additive, 2 = digenic dominance, 3 = trigenic dominance, 4 = quadrigenic dominance). All effects up to the value in dominance are included. Optional argument epistasis is a data frame with columns marker1 and marker2, where each row specifies an additive x additive epistatic interaction. The number of burn-in and total iterations in params can be estimated using set_params. Parameter CI.prob sets the probability (e.g., 0.90, 0.95) for the Bayesian credible interval for the estimated effects (to disable plotting of the CI, use CI.prob=NULL).

Value

List containing

deltaDIC DIC relative to model with GCA but no QTL effects

resid residuals

var matrix with proportion of variance for the effects

effects list with two matrices, additive and digenic, with markers on the rows and effects on the columns

plots list of ggplot objects, one for each marker, containing elements additive and digenic. The digenic plot has digenic effects above the diagonal and the sum of additive and digenic effects below the diagonal.

fitQTL 11

```
## Not run:
## getting minimum burnIn and nIter for one qtl
set_params(data = diallel_example,
           trait = "tuber_shape",
           q = 0.05,
           r = 0.025,
           qtl = data.frame(marker="solcap_snp_c2_25522",dominance=2),
           polygenic = TRUE)
## additive effects
fit1 <- fitQTL(data = diallel_example,</pre>
               trait = "tuber_shape",
               params = list(burnIn=100,nIter=5000),
               qtl = data.frame(marker="solcap_snp_c2_25522",dominance=1),
               CI.prob = 0.9)
## additive + digenic dominance effects
fit2 <- fitQTL(data = diallel_example,</pre>
               trait = "tuber_shape",
               params = list(burnIn=100,nIter=5000),
               qtl = data.frame(marker="solcap_snp_c2_25522",dominance=2),
               CI.prob=0.9)
## getting minimum burnIn and nIter for two qtl with epistasis
set_params(data = diallel_example,
           trait = "tuber_shape",
           q = 0.05,
           r = 0.025,
           qtl = data.frame(marker=c("PotVar0099535", "solcap_snp_c2_25522"),
                            dominance=c(2,1)),
          epistasis = data.frame(marker1="solcap_snp_c2_25522",marker2="PotVar0099535"),
           polygenic = TRUE)
## additive + digenic dominance effects for both QTL
fit3 <- fitQTL(data = diallel_example, trait = "tuber_shape",</pre>
               params = list(burnIn=100,nIter=5000),
               qtl = data.frame(marker=c("PotVar0099535", "solcap_snp_c2_25522"),
                                dominance=c(2,2)),
               polygenic = TRUE, CI.prob = 0.9)
## additive + digenic dominance effects for both QTL + their epistatic effects
fit4 <- fitQTL(data = diallel_example, trait = "tuber_shape",</pre>
               params = list(burnIn=100,nIter=5000),
               qtl = data.frame(marker=c("PotVar0099535", "solcap_snp_c2_25522"),
                                dominance=c(2,2)),
          epistasis = data.frame(marker1="solcap_snp_c2_25522",marker2="PotVar0099535"),
               polygenic = TRUE, CI.prob = 0.9)
## additive + digenic dominance effects for three QTL + all their epistatic effects
fit5 <- fitQTL(data = diallel_example, trait = "tuber_shape",</pre>
               params = list(burnIn=100,nIter=5000),
               qtl = data.frame(marker=c("PotVar0099535",
                                          "solcap_snp_c1_6427",
                                          "solcap_snp_c2_25522"),
                                 dominance=c(2,2,2)),
```

12 get_map

get_map

Get map summary from diallel_geno object

Description

Get map summary from diallel_geno object

Usage

```
get_map(data, summary = TRUE)
```

Arguments

data Variable inheriting from class diallel_geno

summary logical, if TRUE (default) returns total sizes per chromosome, if FALSE returns

the map

Value

data frame with map summary or the map

```
## Not run:
   get_map(diallel_example)
## End(Not run)
```

haplo_cluster 13

haplo_cluster

Cluster parental haplotypes

Description

Cluster parental haplotypes

Usage

```
haplo_cluster(filename, marker, haplotypes = NULL)
```

Arguments

filename Name of diaQTL_parents input file

marker Either target marker or marker interval (see Details).

haplotypes Vector of haplotype names (default is all)

Details

The argument marker can be either a single marker or vector of two markers. If a single marker, the function finds the smallest interval containing that marker such that the phased SNP haplotypes are all unique. If two markers are provided, that interval is used. Clustering utilizes hclust(method="average"). See also phased_parents for an additional visualization tool.

Value

List containing

haplo Data frame of haplotypesdendro Dendrogram

haplo_freq

Haplotype frequencies

Description

Plots the frequency of individuals with haplotype dosage above a threshold

Usage

```
haplo_freq(
  data,
  haplotypes,
  dosage,
  id = NULL,
  position = "cM",
  chrom = NULL,
  markers = NULL
)
```

14 haplo_get

Arguments

data Variable inheriting from class diallel_geno

haplotypes Names of haplotypes dosage Dosage threshold

id Vector of id names (default is entire population)

position Either "cM" (default) or "bp" for plotting chrom Names of chromosomes (default is all)

markers Optional, markers to indicate with dashed line. Only available when plotting a

single chromosome.

Details

Useful for visualizing selection in selfed populations. For multiple chromosomes, each haplotype is shown in its own panel using facet_wrap. For one chromosome, the haplotypes are shown on the same set of axes.

Value

List containing

result Data frame with the map and frequency

plot ggplot object

Description

Dosage of parental haplotypes

Usage

```
haplo_get(data, marker = NULL, id = NULL)
```

Arguments

data Variable inheriting from class diallel_geno

marker Name of marker id Name of individual

Details

Function can be used to get parental haplotype dosage estimates at a single marker for all individuals (in which case id should be NULL) or for a single individual for all markers (in which case marker should be NULL)

Value

Matrix of (id or markers) x parental haplotypes

haplo_plot 15

Examples

haplo_plot

Plot parental haplotype dosage

Description

Plot parental haplotype dosages across the chromosome for one individual

Usage

```
haplo_plot(data, id, chrom, position = "cM", markers = NULL)
```

Arguments

data Variable inheriting from class diallel_geno
id Name of individual
chrom Name of chromosome
position Either "cM" (default) or "bp"

markers Optional, markers to indicate with dashed line

Details

For "cM" plotting, only one marker per bin is displayed. For "bp" plotting, all markers are included.

Value

ggplot object

16 IBDmat

IBDmat

Realized IBD relationship

Description

Calculates realized relationship matrices from founder genotype probabilities

Usage

```
IBDmat(
  data,
  dominance = 1,
  epistasis = FALSE,
  spacing = 1,
  chrom = NULL,
  n.core = 1
)
```

Arguments

data Variable inheriting from class diallel_geno
dominance One of 1,2,3,4
epistasis TRUE/FALSE
spacing spacing between marker bins, in cM
chrom Optional, vector of chromosome names to include
n.core number of cores for parallel execution

Details

Parameter dominance refers to 1 = additive, 2 = digenic, 3 = trigenic, 4 = quadrigenic. Can specify to use only a subset of the chromosomes (by default, all chromosomes are used). If epistasis is TRUE, then dominance must be 1 (additive x additive epistasis). Only pairs of markers on different chromosomes are used for epistasis.

Value

Relationship matrix

```
## Not run:
    IBD_example = IBDmat(data = diallel_example, dominance=1) #additive
    IBD_example = IBDmat(data = diallel_example, dominance=2) #digenic dominance
    IBD_example = IBDmat(data = diallel_example, epistasis=TRUE) #additive x additive epistasis
## End(Not run)
```

phased_parents 17

phased_parents

Visualize phased SNPs of parents

Description

Visualize phased SNPs of parents

Usage

```
phased_parents(filename, interval, markers, parents)
```

Arguments

filename Name of CSV input file

interval Vector of length 2 with the first and last marker names

markers Vector of marker names to plot parents Vector of parent names to plot

Details

The solid circles in the figure represent the allele counted by dosage.

Value

ggplot2 object

read_data

Read data files

Description

Reads genotype, pedigree, and phenotype data files

Usage

```
read_data(
  genofile,
  ploidy = 4,
  pedfile,
  phenofile = NULL,
  fixed = NULL,
  bin.markers = TRUE,
  dominance = NULL,
  n.core = 1
)
```

18 read_data

Arguments

genofile File with map and genotype probabilities

ploidy Either 2 or 4

pedfile File with pedigree data (id,parent1,parent2)

phenofile File with phenotype data (optional)

fixed If there are fixed effects, this is a character vector of "factor" or "numeric"

bin.markers TRUE/FALSE whether to bin markers with the same cM position

dominance Maximum value of dominance that will be used for analysis. Default = ploidy.

n.core Number of cores for parallel execution

Details

The first 3 columns of the genotype file should be the genetic map (labeled marker, chrom, cM), and a fourth column for a reference genome position (labeled bp) can also be included. The map is followed by the members of the population. The genotype data for each marker x individual combination is a string with the format "statelstatelstate...=>problproblprob...", where "state" refers to the genotype state and "prob" is the genotype probability in decimal format. Only states with nonzero probabilities need to be listed. The encoding for the states in tetraploids is described in the documentation for the F1codes and S1codes datasets that come with the package. For diploids, there are 4 F1 genotype codes, 1,2,3,4, which correspond to haplotype combinations 1-3,1-4,2-3,2-4, respectively; the S1 genotype codes 1,2,3 correspond to 1-1,1-2,2-2, respectively. For the phenotype file, first column is id, followed by traits, and then any fixed effects. Pass a character vector for the function argument "fixed" to specify whether each effect is a factor or numeric covariate. The number of traits is deduced based on the number of columns. Binary traits must be coded N/Y and are converted to 0/1 internally for analysis by probit regression. Missing data in the phenotype file should be coded as NA. The parameter dominance specifies the maximum value of dominance that can be used in subsequent analysis: 1 = additive, 2 = digenic dominance, 3 = trigenic dominance, 4 = quadrigenic dominance. The default is dominance = ploidy, which allows the full range of dominance models in functions such as scan1 and fitQTL, but this requires the most RAM. Output files from the BGLR package are stored in a folder named 'tmp' in the current directory.

Value

Variable of class diallel_geno if phenofile is NULL, otherwise diallel_geno_pheno

S1codes 19

```
phenofile = phenocsv)
```

```
## End(Not run)
```

S1codes

Genotype codes for S1 populations

Description

Character vector with the 35 possible tetraploid genotypes for a S1 population. Haplotypes are denoted 1,2,3,4.

Usage

```
data(S1codes)
```

Format

character vector

scan1

Single QTL scan

Description

Performs a linear regression for each position in the map.

Usage

```
scan1(
  data,
  trait,
  params = list(burnIn = 100, nIter = 1000),
  dominance = 1,
  covariate = NULL,
  chrom = NULL,
  n.core = 1
)
```

Arguments

data	variable of class diallel_geno_pheno
4	
trait	name of trait
params	list containing burnIn and nIter
dominance	maximum dominance for the scan, see Details
covariate	optional, to include markers as covariates. See Details
chrom	names of chromosomes to scan (default is all)
n.core	number of cores for parallel execution

20 scan1_permute

Details

Parameter dominance has possible values of 1 = additive, 2 = digenic dominance, 3 = trigenic dominance, 4 = quadrigenic dominance. MCMC params can be estimated using set_params. Optional argument covariate is used to include other markers in the model during the scan, which can improve statistical power with multiple QTL. It is a data frame with three columns: marker = name of the marker, dominance = 1 to 4, and epistasis = TRUE/FALSE. Function returns deltaDIC = DIC for the QTL model relative to null model with only GCA effects for the parents, as well as LL = posterior mean of the log-likelihood, which is used by BayesCI.

Value

Data frame containing the map, LL, and deltaDIC.

Examples

scan1_permute

Permutation test for scan1

Description

Permutation test for scan1

Usage

```
scan1_permute(
  data,
    trait,
  params,
  n.permute = 1000,
  chrom = NULL,
  dominance = 1,
  covariate = NULL,
  n.core = 1
)
```

scan1_summary 21

Arguments

data Variable of class diallel_geno_pheno

trait Name of trait

params List containing burnIn and nIter

n.permute Number of permutations

chrom Names of chromosomes to scan (default is all)

dominance Dominance degree (1-4)

covariate optional, to include markers as covariates. See Details.

n. core Number of cores for parallel execution

Value

Data frame with maximum LOD and minimum deltaDIC for each iteration

Examples

scan1_summary

Summary of scan1 result

Description

Summary of scan1 result

Usage

```
scan1_summary(scan1_data, thresh = NULL, chrom = NULL, position = "cM")
```

Arguments

scan1_data output from scan1

thresh optional -deltaDIC threshold for plotting chrom optional, subset of chromosomes to plot

position Either "cM" (default) or "bp"

22 set_params

Details

Plots the "score" (-deltaDIC) for each marker vs. genome position. The thresh argument should be a positive number.

Value

List containing

peaks data frame of markers with the highest score on each chromosome **plot** ggplot object

Examples

```
## Not run:
    scan1_summary( scan1_example )
    scan1_summary( scan1_example, chrom = "10" )
    scan1_summary( scan1_example, chrom = c( "10", "12" ) )
    scan1_summary( scan1_example, chrom = "10", thresh = 20)
## End(Not run)
```

set_params

Determine number of iterations for MCMC

Description

Determine number of iterations for MCMC

Usage

```
set_params(
  data,
  trait,
  qtl = NULL,
  epistasis = NULL,
  polygenic = FALSE,
  q = 0.5,
  r = 0.1,
  nIter = 2000
)
```

Arguments

```
data variable of class diallel_geno_pheno
trait name of trait
qtl optional data frame, see Examples
epistasis optional data frame, see Example
polygenic TRUE/FALSE whether to include additive polygenic effect
q quantile to estimate
r tolerance for quantile
nIter number of iterations
```

set_params 23

Details

Determines the burn-in and total number of iterations using the Raftery and Lewis diagnostic from R package coda, based on a 95% probability that the estimate for quantile q of the additive genetic variance is within the interval (q-r,q+r). If marker=NULL (default), the first marker of each chromosome is analyzed, and the largest value across this set is returned. Parameter dominance specifies which genetic model (1 = additive, 2 = digenic dominance, 3 = trigenic dominance, 4 = quadrigenic dominance) to use when determining the number of iterations, but this parameter must still be specified when calling functions such as scan1 or fitQTL. The default values of q=0.5 and r=0.1 are recommended for scan1 based on the idea of estimating the posterior mean. For estimating the 90% Bayesian CI with fitQTL, suggested values are q=0.05, r=0.025. Parameter nIter sets the number of iterations used to apply the Raftery and Lewis diagnostic; the default value is 2000, and if a larger number is needed, an error will be generated with this information.

Value

matrix showing the number of burn-in and total iterations for the genetic variances in the model

```
## Not run:
  # Parameters for scan1
  par1 <- set_params(data = diallel_example,</pre>
                     trait = "tuber_shape",
                     q=0.5,
                     r=0.1)
  # Parameters for fitQTL (specify the position)
  set_params(data = diallel_example,
             trait = "tuber_shape",
             q=0.05,
             r=0.025,
             qtl=data.frame(marker="solcap_snp_c2_25522",dominance=2))
  # Parameters for fitQTL (specify the position) with polygenic effects
  set_params(data = diallel_example,
             trait = "tuber_shape",
             q=0.05,
             r=0.025,
             qtl=data.frame(marker="solcap_snp_c2_25522",dominance=2),
             polygenic=TRUE)
  # Parameters for fitQTL with 2 QTLs
  set_params(data = diallel_example,
             trait = "tuber_shape",
             q=0.05,
             r=0.025.
         qtl=data.frame(marker=c("solcap\_snp\_c2\_25522", "solcap\_snp\_c2\_14750"), dominance=c(2,1)))
  # Parameters for fitQTL with epistasis
  set_params(data = diallel_example,
             trait = "tuber_shape",
             q=0.05,
             r=0.025,
         epistasis = data.frame(marker1="solcap_snp_c2_25522",marker2="solcap_snp_c2_14750"),
         qtl=data.frame(marker=c("solcap\_snp\_c2\_25522","solcap\_snp\_c2\_14750"), dominance=c(2,1)))
```

24 set_params

End(Not run)

Index

```
* datasets
    F1codes, 8
    S1codes, 19
BayesCI, 2, 20
convert_mappoly, 3
convert_onemap, 3
convert_polyorigin, 4
convert_rabbit, 5
diallel_geno, 7-9, 12, 14-16, 18
diallel_geno (diallel_geno-class), 5
diallel_geno-class, 5
diallel_geno_pheno, 2, 10, 18, 19, 21, 22
diallel_geno_pheno
         (diallel_geno_pheno-class), 6
\verb|diallel_geno_pheno-class|, 6
DIC_thresh, 6
diplo_freq, 7
{\tt diplo\_get}, \textcolor{red}{8}
F1codes, 8
fine_map, 9
fitQTL, 10, 18, 23
get_map, 12
haplo_cluster, 13
haplo_freq, 13
haplo_get, 14
haplo_plot, 15
IBDmat, 16
phased_parents, 4, 13, 17
read_data, 4, 17
S1codes, 19
scan1, 18, 19, 23
scan1_permute, 20
scan1_summary, 21
set_params, 10, 20, 22
```