What causes the test error? Going beyond bias-variance via ANOVA

Edgar Dobriban joint work with Licong Lin

Wharton, UPenn

May 5, 2021

Collaborator

Licong Lin, Peking University undergraduate $'21 \rightarrow \mathsf{Berkeley}\ \mathsf{Stats}\ \mathsf{PhD}$

Overview

Background

Setup and Motivation

Main results

Linear activation

Experiments

Nonlinear activation

Proof ideas

Outline

Background

Setup and Motivation

Main results

Linear activation

Experiments

Nonlinear activation

Proof ideas

The scientific frontier?

50 years ago

▶ Based on problem components (data distribution, sample size, learning algorithm, ...)

- ▶ Based on problem components (data distribution, sample size, learning algorithm, ...)
- Predict:
 - test error, training dynamics

- ▶ Based on problem components (data distribution, sample size, learning algorithm, ...)
- Predict:
 - test error, training dynamics
 - fine-grained characteristics: bias, variance

- ▶ Based on problem components (data distribution, sample size, learning algorithm, ...)
- Predict:
 - test error, training dynamics
 - fine-grained characteristics: bias, variance
 - impact of changing each component

Current works

► Complexity-based generalization bounds

Current works

- Complexity-based generalization bounds
- Distribution-dependent bounds/asymptotics

Bias-variance decomposition

Choose \hat{f} based on the training set, and decompose the test error into bias and variance $(\mathbb{E}_{x,y} = \mathbb{E}_{(x,y) \sim \text{test}})$:

$$\begin{split} \mathbb{E}_{x,y} \mathbb{E} \|y - \hat{f}(x)\|^2 &= \mathbb{E}_{x,y} \mathbb{E} \|y - \mathbb{E} \hat{f}(x)\|^2 + \mathbb{E}_{x,y} \mathrm{Var}(\hat{f}(x)) \\ &= \mathrm{Bias}^2 + \mathrm{Variance}. \end{split}$$

Figure: Bias and variance contributing to total error.¹

Our approach

Variance depends on randomness in: initialization, input features, labels... and other aspects: randomness in optimization algorithm, ...

²Figure: www.graphpad.com/guides/prism/latest/statistics ← ₹ → ← ₹ → ← ₹ → ₹ → ○ € → ○

Our approach

- Variance depends on randomness in: initialization, input features, labels... and other aspects: randomness in optimization algorithm, ...
- ▶ Decompose the variance into its ANOVA components (R.A. Fisher, 1918)

Three-way ANOVA: how is a response affected by three factors?²

Double descent

[Belkin et al., 2018]

[Nakkiran et al., 2019]

Outline

Background

Setup and Motivation

Main results

Linear activation

Experiments

Nonlinear activatior

Proof ideas

Setting

Data: *n* datapoints (x_i, y_i) ∈ $\mathbb{R}^d \times \mathbb{R}$ i.i.d. from $y = f^*(x) + \varepsilon = x^\top \theta + \varepsilon$, where ε is label noise:

$$Y = X\theta + \mathcal{E}$$
.

Setting

Data: *n* datapoints (x_i, y_i) ∈ $\mathbb{R}^d \times \mathbb{R}$ i.i.d. from $y = f^*(x) + \varepsilon = x^\top \theta + \varepsilon$, where ε is label noise:

$$Y = X\theta + \mathcal{E}$$
.

► **Training**: Fit a two-layer linear (later nonlinear) "neural net" /random features model

$$f(x) = (\mathbf{W} x)^{\top} \beta.$$

Setting

Data: *n* datapoints (x_i, y_i) ∈ $\mathbb{R}^d \times \mathbb{R}$ i.i.d. from $y = f^*(x) + \varepsilon = x^\top \theta + \varepsilon$, where ε is label noise:

$$Y = X\theta + \mathcal{E}$$
.

Training: Fit a two-layer linear (later nonlinear) "neural net" /random features model

$$f(x) = (\mathbf{W}x)^{\top}\beta.$$

• Weights $W \in \mathbb{R}^{p \times d}$, $p \leq d$ drawn uniformly from partial orthonormal matrices, $WW^{\top} = I_p$. Train β with L_2 loss/regularization.

Bias-variance decomposition

Decompose the test error into irreducible noise, bias and variance:

$$\mathbb{E}||y - \hat{f}(x)||^2 = \mathbb{E}||y - \mathbb{E}y||^2$$

$$+ \mathbb{E}||\mathbb{E}y - \mathbb{E}\hat{f}(x)||^2 + \mathbb{E}||\mathbb{E}\hat{f}(x) - \hat{f}(x)||^2$$

$$= \sigma^2 + \text{Bias}^2 + \text{Variance},$$

where $\mathbb{E} = \mathbb{E}_{x,y,X,W,\mathcal{E}}$.

Bias-variance decomposition

Decompose the test error into irreducible noise, bias and variance:

$$\mathbb{E}||y - \hat{f}(x)||^2 = \mathbb{E}||y - \mathbb{E}y||^2$$

$$+ \mathbb{E}||\mathbb{E}y - \mathbb{E}\hat{f}(x)||^2 + \mathbb{E}||\mathbb{E}\hat{f}(x) - \hat{f}(x)||^2$$

$$= \sigma^2 + \text{Bias}^2 + \text{Variance},$$

where $\mathbb{E} = \mathbb{E}_{x,y,X,W,\mathcal{E}}$.

▶ The randomness of \hat{f} is due to X, W, \mathcal{E} . What are their contributions?

Hierarchical decomposition: d'Ascoli et al., 2020

d'Ascoli et al., 2020 decompose the variance of \hat{f} in the order of \mathcal{E}, W, X .

$$\begin{split} \mathbb{E}\|\hat{f}(x) - \mathbb{E}\hat{f}\|^2 &= \mathbb{E}\|\hat{f}(x) - \mathbb{E}\hat{f}(x|W,X)\|^2 \\ &+ \mathbb{E}\|\mathbb{E}\hat{f}(x|W,X) - \mathbb{E}\hat{f}(x|X)\|^2 \\ &+ \mathbb{E}\|\mathbb{E}\hat{f}(x|X) - \mathbb{E}\hat{f}\|^2 \\ &:= \Sigma_{label} + \Sigma_{init} + \Sigma_{sample}. \end{split}$$

Denote (X, W, \mathcal{E}) by (s, i, l) respectively. We decompose the variance of \hat{f} in a symmetric way via the analysis of variance (ANOVA):

$$Var[\hat{f}(x)] = V_s + V_l + V_i + V_{sl} + V_{si} + V_{li} + V_{sli},$$

where

$$\begin{split} V_{a} &= \mathbb{E}_{\theta,x} \mathrm{Var}_{a} [\mathbb{E}_{-a}(\hat{f}(x)|a)], & a \in \{s,l,i\} \\ V_{ab} &= \mathbb{E}_{\theta,x} \mathrm{Var}_{ab} [\mathbb{E}_{-ab}(\hat{f}(x)|a,b)] - V_{a} - V_{b}, & a,b \in \{s,l,i\}, a \neq b. \\ V_{abc} &= \mathbb{E}_{\theta,x} \mathrm{Var}_{abc} [\mathbb{E}_{-abc}(\hat{f}(x)|a,b,c)] - V_{a} - V_{b} - V_{c} - V_{ab} - V_{ac} - V_{bc} \\ &= \mathrm{Var}[\hat{f}(x)] - V_{s} - V_{l} - V_{i} - V_{sl} - V_{si} - V_{li}, & \{a,b,c\} = \{s,l,i\}. \end{split}$$

Denote (X, W, \mathcal{E}) by (s, i, l) respectively. We decompose the variance of \hat{f} in a symmetric way via the analysis of variance (ANOVA):

$$Var[\hat{f}(x)] = V_s + V_l + V_i + V_{sl} + V_{si} + V_{li} + V_{sli},$$

where

$$\begin{split} V_{a} &= \mathbb{E}_{\theta,x} \mathrm{Var}_{a} [\mathbb{E}_{-a}(\hat{f}(x)|a)], & a \in \{s,l,i\} \\ V_{ab} &= \mathbb{E}_{\theta,x} \mathrm{Var}_{ab} [\mathbb{E}_{-ab}(\hat{f}(x)|a,b)] - V_{a} - V_{b}, & a,b \in \{s,l,i\}, a \neq b. \\ V_{abc} &= \mathbb{E}_{\theta,x} \mathrm{Var}_{abc} [\mathbb{E}_{-abc}(\hat{f}(x)|a,b,c)] - V_{a} - V_{b} - V_{c} - V_{ab} - V_{ac} - V_{bc} \\ &= \mathrm{Var}[\hat{f}(x)] - V_{s} - V_{l} - V_{i} - V_{sl} - V_{li}, & \{a,b,c\} = \{s,l,i\}. \end{split}$$

 \triangleright V_a : the effect of varying a alone (main effect).

Denote (X, W, \mathcal{E}) by (s, i, l) respectively. We decompose the variance of \hat{f} in a symmetric way via the analysis of variance (ANOVA):

$$Var[\hat{f}(x)] = V_s + V_l + V_i + V_{sl} + V_{si} + V_{li} + V_{sli},$$

where

$$\begin{split} V_{a} &= \mathbb{E}_{\theta,x} \mathrm{Var}_{a} [\mathbb{E}_{-a}(\hat{f}(x)|a)], & a \in \{s,l,i\} \\ V_{ab} &= \mathbb{E}_{\theta,x} \mathrm{Var}_{ab} [\mathbb{E}_{-ab}(\hat{f}(x)|a,b)] - V_{a} - V_{b}, & a,b \in \{s,l,i\}, a \neq b. \\ V_{abc} &= \mathbb{E}_{\theta,x} \mathrm{Var}_{abc} [\mathbb{E}_{-abc}(\hat{f}(x)|a,b,c)] - V_{a} - V_{b} - V_{c} - V_{ab} - V_{ac} - V_{bc} \\ &= \mathrm{Var}[\hat{f}(x)] - V_{s} - V_{l} - V_{i} - V_{sl} - V_{si} - V_{li}, & \{a,b,c\} = \{s,l,i\}. \end{split}$$

- \triangleright V_a : the effect of varying a alone (main effect).
- \triangleright V_{ab} : the second-order interaction effect between a and b beyond their main effects.

Denote (X, W, \mathcal{E}) by (s, i, l) respectively. We decompose the variance of \hat{f} in a symmetric way via the analysis of variance (ANOVA):

$$Var[\hat{f}(x)] = V_s + V_l + V_i + V_{sl} + V_{si} + V_{li} + V_{sli},$$

where

$$\begin{split} V_{a} &= \mathbb{E}_{\theta,x} \mathrm{Var}_{a} [\mathbb{E}_{-a}(\hat{f}(x)|a)], & a \in \{s,l,i\} \\ V_{ab} &= \mathbb{E}_{\theta,x} \mathrm{Var}_{ab} [\mathbb{E}_{-ab}(\hat{f}(x)|a,b)] - V_{a} - V_{b}, & a,b \in \{s,l,i\}, a \neq b. \\ V_{abc} &= \mathbb{E}_{\theta,x} \mathrm{Var}_{abc} [\mathbb{E}_{-abc}(\hat{f}(x)|a,b,c)] - V_{a} - V_{b} - V_{c} - V_{ab} - V_{ac} - V_{bc} \\ &= \mathrm{Var}[\hat{f}(x)] - V_{s} - V_{l} - V_{i} - V_{sl} - V_{si} - V_{li}, & \{a,b,c\} = \{s,l,i\}. \end{split}$$

- \triangleright V_a : the effect of varying a alone (main effect).
- $ightharpoonup V_{ab}$: the second-order interaction effect between a and b beyond their main effects.
- V_{abc} : interaction effect among a, b, c beyond their pairwise interactions.

Consequence of symmetric variance decomposition

We can recover various orders of variance decompositions $(\{a,b,c\}=\{s,I,i\}).$

$$\begin{split} \Sigma^a_{abc} &:= \mathbb{E}_{\theta,x} \mathbb{E}_{a,b,c} [\hat{f}(x) - \mathbb{E}_a \hat{f}(x)]^2 & \Sigma^a_{abc} &= V_a + V_{ab} + V_{ac} + V_{abc} \\ \Sigma^b_{abc} &:= \mathbb{E}_{\theta,x} \mathbb{E}_{b,c} [\mathbb{E}_a \hat{f}(x) - \mathbb{E}_{a,b} \hat{f}(x)]^2 & \Sigma^b_{abc} &= V_{bc} + V_{b} \\ \Sigma^c_{abc} &:= \mathbb{E}_{\theta,x} \mathbb{E}_{c} [\mathbb{E}_{a,b} \hat{f}(x) - \mathbb{E}_{a,b,c} \hat{f}(x)]^2. & \Sigma^c_{abc} &= V_{c}. \end{split}$$

How to interpret these terms?

Consequence of symmetric variance decomposition

We can recover various orders of variance decompositions $(\{a,b,c\}=\{s,l,i\}).$

$$\begin{split} \Sigma^a_{abc} &:= \mathbb{E}_{\theta,x} \mathbb{E}_{a,b,c} [\hat{f}(x) - \mathbb{E}_a \hat{f}(x)]^2 & \Sigma^a_{abc} &= V_a + V_{ab} + V_{ac} + V_{abc} \\ \Sigma^b_{abc} &:= \mathbb{E}_{\theta,x} \mathbb{E}_{b,c} [\mathbb{E}_a \hat{f}(x) - \mathbb{E}_{a,b} \hat{f}(x)]^2 & \Sigma^b_{abc} &= V_{bc} + V_b \\ \Sigma^c_{abc} &:= \mathbb{E}_{\theta,x} \mathbb{E}_c [\mathbb{E}_{a,b} \hat{f}(x) - \mathbb{E}_{a,b,c} \hat{f}(x)]^2. & \Sigma^c_{abc} &= V_c. \end{split}$$

How to interpret these terms?

- \triangleright Σ_{abc}^{a} is all the variance related to a.
- Σ_{abc}^{b} is all the variance related to b after subtracting all the variance related to a in the total variance.
- Σ_{abc}^{c} is the part of the variance that depends only on c.

Outline

Background

Setup and Motivation

Main results

Linear activation

Experiments

Nonlinear activatior

Proof ideas

Details of setup

▶ **Data:** *n* datapoints $(x_i, y_i) \in \mathbb{R}^d \times \mathbb{R}$ i.i.d. from $y = f^*(x) + \varepsilon = x^\top \theta + \varepsilon$, where x has i.i.d. standardized entries, $\varepsilon \sim \mathcal{N}(0, \sigma^2)$ is label noise:

$$Y = X\theta + \mathcal{E}.$$

Details of setup

▶ **Data:** *n* datapoints $(x_i, y_i) \in \mathbb{R}^d \times \mathbb{R}$ i.i.d. from $y = f^*(x) + \varepsilon = x^\top \theta + \varepsilon$, where *x* has i.i.d. standardized entries, $\varepsilon \sim \mathcal{N}(0, \sigma^2)$ is label noise:

$$Y = X\theta + \mathcal{E}$$
.

▶ **Training**: Fit a two-layer linear (later nonlinear) neural net

$$f(x) = (Wx)^{\top} \beta.$$

Train β with L_2 loss, L_2 regularization λ to get predictor:

$$f(x) = (Wx)^{\top} \hat{\beta}_{\lambda, \mathcal{T}, W} = x^{\top} W^{\top} \left(\frac{WX^{\top} XW^{\top}}{n} + \lambda I_p \right)^{-1} \frac{WX^{\top} Y}{n}.$$

Details of setup

▶ **Data:** *n* datapoints $(x_i, y_i) \in \mathbb{R}^d \times \mathbb{R}$ i.i.d. from $y = f^*(x) + \varepsilon = x^\top \theta + \varepsilon$, where *x* has i.i.d. standardized entries, $\varepsilon \sim \mathcal{N}(0, \sigma^2)$ is label noise:

$$Y = X\theta + \mathcal{E}$$
.

▶ **Training**: Fit a two-layer linear (later nonlinear) neural net

$$f(x) = (Wx)^{\top} \beta.$$

Train β with L_2 loss, L_2 regularization λ to get predictor:

$$f(x) = (Wx)^{\top} \hat{\beta}_{\lambda, \mathcal{T}, W} = x^{\top} W^{\top} \left(\frac{WX^{\top} XW^{\top}}{n} + \lambda I_p \right)^{-1} \frac{WX^{\top} Y}{n}.$$

▶ Weights $W \in \mathbb{R}^{p \times d}$, $p \leq d$ drawn uniformly from partial orthonormal matrices, $WW^{\top} = I_p$. Assume $\theta \sim \mathcal{N}(0, \alpha^2 I_d/d)$.

Setup ctd

Asymptotic regime: data dimension d, number of random features p, sample size n

$$d \to \infty, \qquad \frac{p}{d} \to \pi \in (0,1], \qquad \frac{d}{n} \to \delta.$$

 π - parametrization level; δ - data aspect ratio.

Setup ctd

Asymptotic regime: data dimension d, number of random features p, sample size n

$$d \to \infty, \qquad \frac{p}{d} \to \pi \in (0,1], \qquad \frac{d}{n} \to \frac{\delta}{\delta}.$$

 π - parametrization level; δ - data aspect ratio.

Let $\gamma := \pi \delta = \lim p/n$ and the resolvent moments:

$$\theta_j(\gamma,\lambda) := \int \frac{1}{(x+\lambda)^j} dF_{\gamma}(x)$$

where $F_{\gamma}(x)$ is the Marchenko-Pastur distribution with parameter γ .

Setup ctd

Asymptotic regime: data dimension d, number of random features p, sample size n

$$d \to \infty, \qquad \frac{p}{d} \to \pi \in (0,1], \qquad \frac{d}{n} \to \delta.$$

 π - parametrization level; δ - data aspect ratio.

Let $\gamma := \pi \delta = \lim p/n$ and the resolvent moments:

$$\theta_j(\gamma,\lambda) := \int \frac{1}{(x+\lambda)^j} dF_{\gamma}(x)$$

where $F_{\gamma}(x)$ is the Marchenko-Pastur distribution with parameter γ .

▶ Let

$$\tilde{\lambda} := \lambda + \frac{1-\pi}{2\pi} \left[\lambda + 1 - \gamma + \sqrt{(\lambda + \gamma - 1)^2 + 4\lambda} \right],$$

and $\tilde{\theta}_1 := \theta_1(\delta, \tilde{\lambda}), \tilde{\theta}_2 := \theta_2(\delta, \tilde{\lambda}).$

Note

θ_1, θ_2 have closed form:

$$\begin{split} \theta_1 &= \frac{(-\lambda + \gamma - 1) + \sqrt{(-\lambda + \gamma - 1)^2 + 4\lambda\gamma}}{2\lambda\gamma}, \\ \theta_2 &= -\frac{d}{d\lambda}\theta_1 = \frac{(\gamma - 1)}{2\gamma\lambda^2} + \frac{(\gamma + 1) \cdot \lambda + (\gamma - 1)^2}{2\gamma\lambda^2\sqrt{(-\lambda + \gamma - 1)^2 + 4\lambda\gamma}}. \end{split}$$

Main result: ANOVA for two-layer linear NN

Theorem. Denoting s: features X; i: initialization W; I: label noise \mathcal{E} , we have

$$\begin{split} &\lim_{d\to\infty} V_s = \alpha^2 [1 - 2\tilde{\lambda}\tilde{\theta}_1 + \tilde{\lambda}^2\tilde{\theta}_2 - \pi^2 (1 - \lambda\theta_1)^2] \\ &\lim_{d\to\infty} V_l = 0 \\ &\lim_{d\to\infty} V_i = \alpha^2 \pi (1 - \pi) (1 - \lambda\theta_1)^2 \\ &\lim_{d\to\infty} V_{sl} = \sigma^2 \delta(\tilde{\theta}_1 - \tilde{\lambda}\tilde{\theta}_2) \\ &\lim_{d\to\infty} V_{li} = 0 \\ &\lim_{d\to\infty} V_{si} = \alpha^2 [\pi (1 - 2\lambda\theta_1 + \lambda^2\theta_2 + (1 - \pi)\delta(\theta_1 - \lambda\theta_2)) \\ &- \pi (1 - \pi) (1 - \lambda\theta_1)^2 - 1 + 2\tilde{\lambda}\tilde{\theta}_1 - \tilde{\lambda}^2\tilde{\theta}_2] \\ &\lim_{d\to\infty} V_{sli} = \sigma^2 \delta[\pi(\theta_1 - \lambda\theta_2) - (\tilde{\theta}_1 - \tilde{\lambda}\tilde{\theta}_2)]. \end{split}$$

ANOVA for two-layer linear NN

Left: Cumulative figure of the bias and variance components, as fn of $\delta = \lim d/n$.

Right: Variance components with numerical simulations.

Parameters: signal strength $\alpha=1$, noise level $\sigma=0.3$, regularization parameter $\lambda=0.01$, parametrization level $\pi=0.8$.

Interaction can dominate.

Monotonicity and unimodality

Theorem 2.7 (Bias and variance of ridge models given a fixed λ). Under the assumptions in our two layer setting, we have

- For any fixed λ > 0, lim_{d→∞} Bias²(λ) is monotonically decreasing as a function of π and is monotonically increasing as a function of δ.
- 2. When $\lambda \to 0$, $\lim_{\lambda \to 0} \lim_{d \to \infty} \mathbf{Var}(\lambda) = \infty$ on the curve $\delta = 1/\pi$ (the interpolation threshold where $\lim p/d = 1$).

$$\lambda = 0.01, \alpha = 1, \sigma = 0.3, \pi = p/d, \delta = d/n.$$

d: dimension of x, n: number of samples, p: hidden layer width.

▶ Model-wise and sample-wise non-monotonicity appear.

Monotonicity and unimodality

Theorem 2.7 (Bias and variance of ridge models given a fixed λ). Under the assumptions in our two layer setting, we have

- For any fixed λ > 0, lim_{d→∞} Bias²(λ) is monotonically decreasing as a function of π and is monotonically increasing as a function of δ.
- 2. When $\lambda \to 0$, $\lim_{\lambda \to 0} \lim_{d \to \infty} \mathbf{Var}(\lambda) = \infty$ on the curve $\delta = 1/\pi$ (the interpolation threshold where $\lim p/d = 1$).

$$\lambda = 0.01, \alpha = 1, \sigma = 0.3, \pi = p/d, \delta = d/n.$$

d: dimension of x, n: number of samples, p: hidden layer width.

- Model-wise and sample-wise non-monotonicity appear.
- Unimodal variance investigation inspired by Yang, Yu, You, Steinhardt, Ma, 2020.
- The non-monotonicity of MSE comes from the variance.

Monotonicity and unimodality, optimal regularization

Parameters: $\lambda = \lambda^*, \alpha = 1, \sigma = 0.3, \pi = p/d, \delta = d/n$. d: dimension of x, n: number of samples, p: hidden layer width.

Monotonicity and unimodality, optimal regularization

Parameters: $\lambda = \lambda^*, \alpha = 1, \sigma = 0.3, \pi = p/d, \delta = d/n$. d: dimension of x, n: number of samples, p: hidden layer width.

▶ Optimal ridge penalty makes MSE monotonic. (consistent with [Nakkiran et al., 2020])

Monotonicity and unimodality, optimal regularization

Parameters: $\lambda = \lambda^*, \alpha = 1, \sigma = 0.3, \pi = p/d, \delta = d/n$. d: dimension of x, n: number of samples, p: hidden layer width.

- ▶ Optimal ridge penalty makes MSE monotonic. (consistent with [Nakkiran et al., 2020])
- The variance can still be unimodal.

Monotonicity for optimal λ

For optimal $\lambda = \lambda^*$:

Variable Function	parametrization $\pi = \lim p/d$	aspect ratio $\delta = \lim d/n$
MSE	¥	7
\mathbf{Bias}^2	¥	7
Var	$\delta < 2\alpha^2/(\alpha^2 + 2\sigma^2): \land, \max$ at $[2 + \delta(1 + 2\sigma^2/\alpha^2)]/4$. $\delta \ge 2\alpha^2/(\alpha^2 + 2\sigma^2): \nearrow.$	$\pi \le 0.5 : \searrow$. $\pi > 0.5 : \land$, max at $2(2\pi - 1)/[1 + 2\sigma^2/\alpha^2]$.

Table 1: Monotonicity properties of bias, variance and mse as a function of π or δ , while holding all other parameters fixed. \nearrow : non-decreasing. \searrow : non-increasing. \land : unimodal. $\lambda = \lambda^*$ (optimal).

Heatmaps of components

Figure 5: Heatmaps of the performance characteristics for a fixed parameter $\lambda=0.01$. variance components, variance, bias and the MSE as functions of π and δ when $\alpha=1, \sigma=0.3$. (Var = $V_s+V_t+V_{st}+V_{st}+V_{st}$. MSE = Bias² + Var + σ^2 .)

Heatmaps of components, optimal λ^*

Figure 4: Heatmaps of the performance characteristics for the optimal regularization parameter $\lambda = \lambda^*$. variance components, variance, bias and the MSE as functions of π and δ when $\alpha = 1, \sigma = 0.3$. (Var = $V_i + V_i + V_{ij} + V_{si} + V_{si}$. MSE = Bias² + Var + σ^2 .)

What is the effect of regularization?

What is the effect of regularization?

ightharpoonup Large reduction in V_{si}

What is the effect of regularization?

- ightharpoonup Large reduction in V_{si}
- V_{si} : The part of variance that can be reduced via ensembling over the sample X or initialization W.

Decomposition order has large effect

where

$$\begin{split} \Sigma^a_{abc} &:= \mathbb{E}_{\theta,x} \mathbb{E}_{a,b,c} [\hat{f}(x) - \mathbb{E}_a \hat{f}(x)]^2 & \Sigma^a_{abc} &= V_a + V_{ab} + V_{ac} + V_{abc} \\ \Sigma^b_{abc} &:= \mathbb{E}_{\theta,x} \mathbb{E}_{b,c} [\mathbb{E}_a \hat{f}(x) - \mathbb{E}_{a,b} \hat{f}(x)]^2 & \Sigma^b_{abc} &= V_{bc} + V_b \\ \Sigma^c_{abc} &:= \mathbb{E}_{\theta,x} \mathbb{E}_c [\mathbb{E}_{a,b} \hat{f}(x) - \mathbb{E}_{a,b,c} \hat{f}(x)]^2. & \Sigma^c_{abc} &= V_c. \end{split}$$

Related Works

- early works in 1980/90s: Hertz et al. [1989], Opper et al. [1990], Hansen [1993], Barber et al. [1995], Duin [1995], Opper [1995], Opper and Kinzel [1996], Raudys and Duin [1998]
- Advani Saxe, 2017, ...
- Belkin, Rakhlin, Tsybakov, 2018, Belkin, Hsu, Xu, 2019
- Liang, Rakhlin, 2018
- Hastie, Montanari, Rosset, Tibshirani, 2019, Bartlett, Long, Lugosi, Tsigler, 2019
- Muthukumar, Vodrahalli, Sahai, 2019
- Mei and Montanari, 2019
- d'Ascoli, Refinetti, Biroli, Krzakala, 2020
- Nakkiran, Venkat, Kakade, Ma, 2020
- Yang, Yu, You, Steinhardt, Ma, 2020
- Many others... see paper for details.

Most closely related works

- Yang, Yu, You, Steinhardt, Ma, 2020: variance unimodality, different theoretical model
- d'Ascoli, Refinetti, Biroli, Krzakala, 2020: hierarchical decomposition, Gaussian, "physics-level" rigor
- Adlam and Pennington [2020]: parallel work, Gaussian initialization, different tools; study ensemble learning, do not focus on properties of the bias/variance/mse.

Three recent papers study "double descent" biasvariance tradeoff in random features regression by decomposing variance into three-way ANOVA parts.

Nicely shows how 100-year-old statistical methods can provide useful conceptual frameworks to study modern ML. [1/3]

Submindo on 2 Mar 2000 (v1). Natire reseat 3 Apr 2000 (file version, v3).

Double Trouble in Double Descent: Bias and Variance(s) in the Lazy Regime

Stéphane d'Ascoli, Maria Refinets, Cluido Biroli, Florent Krzakalis

What causes the test error? Going beyond bias-variance via ANOVA

Understanding Double Descent Requires a Fine-Grained Bias-Variance Decomposition
Ben Adlam, Jeffrey Pennington

10:59 AM - Nov 11, 2020 - Twitter Web App

Outline

Background

Setup and Motivation

Main results

Linear activation

Experiments

Nonlinear activation

Proof ideas

Numerical verification of MSE formula

▶ Generate k = 400 i.i.d. tuples $(x_i, \theta_i, \varepsilon_i, X_i, W_i)$, $1 \le i \le k$, X and x with i.i.d. $\mathcal{N}(0,1)$ entries.

Numerical verification of MSE formula

- ▶ Generate k = 400 i.i.d. tuples $(x_i, \theta_i, \varepsilon_i, X_i, W_i)$, $1 \le i \le k$, X and x with i.i.d. $\mathcal{N}(0,1)$ entries.
- With $\hat{f}_i(x_i) = x_i^\top W_i^\top \left(n^{-1} W_i X_i^\top y_i W_i^\top + \lambda I_p \right)^{-1} n^{-1} W_i X_i^\top y_i$, estimate MSE:

nMSE =
$$k^{-1} \sum_{i=1}^{k} (\hat{f}_i(x_i) - x_i^{\top} \theta_i)^2$$
.

Parameters: $\alpha = 1, \sigma = 0.3, \pi = 0.8, n = 150, d = \lfloor n\delta \rfloor, p = \lfloor d\pi \rfloor$

Numerical verification of formulas for variance components

Simulations verifying accuracy of the bias, variance, ANOVA components. \star : theory, $n\star$: numerical. Parameters: $\alpha=1,\sigma=0.3,\pi=0.8,n=150,d=\lfloor n\delta\rfloor,p=\lfloor d\pi\rfloor.$

- Superconductivity data set.³
 - ▶ Goal: predict critical temperature T_c below which material is superconductive.

³Hamidieh, 2018; archive.ics.uci.edu/ml/datasets/superconductivty+data = >

- Superconductivity data set.³
 - ▶ Goal: predict critical temperature T_c below which material is superconductive.
 - ightharpoonup d = 81 features: mean/entropy/SD of material properties: atomic mass, radius, thermal conductivity, ...

³Hamidieh, 2018; archive.ics.uci.edu/ml/datasets/superconductivty+data

- Superconductivity data set.³
 - ▶ Goal: predict critical temperature T_c below which material is superconductive.
 - ▶ d = 81 features: mean/entropy/SD of material properties: atomic mass, radius, thermal conductivity, ...
 - ightharpoonup N = 21,263 materials, e.g., ${
 m RbAsO_2}$: Rubidium arsenic dioxide

³Hamidieh, 2018; archive.ics.uci.edu/ml/datasets/superconductivty+data 😩 🗦

- Superconductivity data set.³
 - \triangleright Goal: predict critical temperature T_c below which material is superconductive.
 - ightharpoonup d = 81 features: mean/entropy/SD of material properties: atomic mass, radius, thermal conductivity, ...
 - N = 21,263 materials, e.g., RbAsO₂: Rubidium arsenic dioxide
- \triangleright Standard preprocessing: random 90-10% train-test split, feature standardization

³Hamidieh, 2018; archive.ics.uci.edu/ml/datasets/superconductivty+data 📳 👢 🔊 🤉 📀

- Superconductivity data set.³
 - ightharpoonup Goal: predict critical temperature T_c below which material is superconductive.
 - ▶ d = 81 features: mean/entropy/SD of material properties: atomic mass, radius, thermal conductivity, ...
 - ho N=21,263 materials, e.g., ${
 m RbAsO_2}$: Rubidium arsenic dioxide
- ▶ Standard preprocessing: random 90 10% train-test split, feature standardization
- ▶ Fitting: Randomly select n samples: X; map into random p-subspace with W; do ridge.

³Hamidieh, 2018; archive.ics.uci.edu/ml/datasets/superconductivty+data 📳 👢 🔊 🤉 🕑

Experiments on empirical data: estimating components

▶ Generate i.i.d. X_i , $1 \le i \le n_s$, W_j , $1 \le j \le n_i$, form (X_i, W_j) . Let

$$\hat{f}_{ij}(x) = x^{\top} \left(\frac{W_j X_i^{\top} X_i W_j^{\top}}{n} + \lambda I_p \right)^{-1} \frac{W_j X_i^{\top} y_i}{n}, \quad 1 \leq i, j \leq 50.$$

Experiments on empirical data: estimating components

▶ Generate i.i.d. X_i , $1 \le i \le n_s$, W_j , $1 \le j \le n_i$, form (X_i, W_j) . Let

$$\hat{f}_{ij}(x) = x^{\top} \left(\frac{W_j X_i^{\top} X_i W_j^{\top}}{n} + \lambda I_p \right)^{-1} \frac{W_j X_i^{\top} y_i}{n}, \quad 1 \leq i, j \leq 50.$$

• With $n_i = n_s = 50$, test set size L, test data x_k, y_k , estimate

$$\widehat{\mathsf{MSE}} = \frac{1}{L} \sum_{k=1}^{L} \hat{\mathbb{E}} (\hat{f}_{ij}(x_k) - y_k)^2,$$

$$\widehat{\mathsf{Var}} = \frac{1}{L} \sum_{k=1}^{L} \hat{\mathbb{E}} (\hat{f}_{ij}(x_k) - \hat{\mathbb{E}} \hat{f}_{ij}(x_k))^2, \ \widehat{\mathsf{Bias}}^2 = \frac{1}{L} \sum_{k=1}^{L} (\hat{\mathbb{E}} \hat{f}_{ij}(x_k) - y_k)^2,$$

$$\widehat{V}_s = \frac{1}{L n_s} \sum_{k=1}^{L} \sum_{i=1}^{n_s} (\hat{\mathbb{E}}_j \hat{f}_{ij}(x_k) - \hat{\mathbb{E}} \hat{f}_{ij}(x_k))^2,$$

$$\widehat{V}_i = \frac{1}{L n_i} \sum_{k=1}^{L} \sum_{i=1}^{n_i} (\hat{\mathbb{E}}_i \hat{f}_{ij}(x_k) - \hat{\mathbb{E}} \hat{f}_{ij}(x_k))^2.$$

Figure 8: Empirically estimated MSE, variance and bias as functions of number of samples n. We display the mean and one standard deviation of the numerical results over 10 repetitions. Left: $\pi=0.2, \lambda=0.01$. Right: $\pi=0.9, \lambda=0.01$.

Experiments: Decomposition order has large effect

Outline

Background

Setup and Motivation

Main results

Linear activation Experiments

Nonlinear activation

Proof ideas

▶ Data: n datapoints $(x_i, y_i) \in \mathbb{R}^d \times \mathbb{R}$ drawn i.i.d. from $y = f^*(x) + \varepsilon = x^\top \theta + \varepsilon$, $\theta \in \mathbb{R}^d$, where x has i.i.d. $\mathcal{N}(0, 1)$ entries, and $\varepsilon \sim \mathcal{N}(0, \sigma^2)$ is the label noise independent of x. In matrix form, $Y = X\theta + \mathcal{E}$.

- ▶ Data: n datapoints $(x_i, y_i) \in \mathbb{R}^d \times \mathbb{R}$ drawn i.i.d. from $y = f^*(x) + \varepsilon = x^\top \theta + \varepsilon$, $\theta \in \mathbb{R}^d$, where x has i.i.d. $\mathcal{N}(0, 1)$ entries, and $\varepsilon \sim \mathcal{N}(0, \sigma^2)$ is the label noise independent of x. In matrix form, $Y = X\theta + \mathcal{E}$.
- ▶ **Model**: Learn $f^*(x) = x^T \theta$ using a two-layer neural network,

$$f(x) = \sigma(Wx)^{\top}\beta.$$

Assume that the parameters θ are random: $\theta \sim \mathcal{N}(0, \alpha^2 I_d/d)$.

- ▶ Data: n datapoints $(x_i, y_i) \in \mathbb{R}^d \times \mathbb{R}$ drawn i.i.d. from $y = f^*(x) + \varepsilon = x^\top \theta + \varepsilon$, $\theta \in \mathbb{R}^d$, where x has i.i.d. $\mathcal{N}(0, 1)$ entries, and $\varepsilon \sim \mathcal{N}(0, \sigma^2)$ is the label noise independent of x. In matrix form, $Y = X\theta + \mathcal{E}$.
- ▶ **Model**: Learn $f^*(x) = x^T \theta$ using a two-layer neural network,

$$f(x) = \sigma(Wx)^{\top}\beta.$$

Assume that the parameters θ are random: $\theta \sim \mathcal{N}(0, \alpha^2 I_d/d)$.

▶ **Orthogonality**: The first-layer weight matrix W is drawn uniformly from matirces with orthonormal rows, i.e., $p \le d$, $WW^{\top} = I_p$.

- ▶ Data: n datapoints $(x_i, y_i) \in \mathbb{R}^d \times \mathbb{R}$ drawn i.i.d. from $y = f^*(x) + \varepsilon = x^\top \theta + \varepsilon$, $\theta \in \mathbb{R}^d$, where x has i.i.d. $\mathcal{N}(0, 1)$ entries, and $\varepsilon \sim \mathcal{N}(0, \sigma^2)$ is the label noise independent of x. In matrix form, $Y = X\theta + \mathcal{E}$.
- ▶ **Model**: Learn $f^*(x) = x^T \theta$ using a two-layer neural network,

$$f(x) = \sigma(Wx)^{\top}\beta.$$

Assume that the parameters θ are random: $\theta \sim \mathcal{N}(0, \alpha^2 I_d/d)$.

- **Orthogonality**: The first-layer weight matrix W is drawn uniformly from matirces with orthonormal rows, i.e., $p \le d$, $WW^{\top} = I_p$.
- ▶ **Training**: Train the second layer weight β with L_2 loss+penalty. Corresponds to random feature model.

Suppose that σ, σ' grows at most exponentially, i.e., there exist $c_1, c_2 > 0$ such that $|\sigma(x)|, |\sigma'(x)| \leq c_1 e^{c_2|x|}$. Assume $\mathbb{E}_{Z \sim \mathcal{N}(0,1)} \sigma(Z) = 0$. Define the moments

$$\mu := \mathbb{E}_{Z \sim \mathcal{N}(0,1)} Z \sigma(Z), \quad v := \mathbb{E}_{Z \sim \mathcal{N}(0,1)} \sigma^2(Z).$$

Suppose that σ, σ' grows at most exponentially, i.e., there exist $c_1, c_2 > 0$ such that $|\sigma(x)|, |\sigma'(x)| \leq c_1 e^{c_2|x|}$. Assume $\mathbb{E}_{Z \sim \mathcal{N}(0,1)} \sigma(Z) = 0$. Define the moments

$$\mu := \mathbb{E}_{Z \sim \mathcal{N}(0,1)} Z \sigma(Z), \quad v := \mathbb{E}_{Z \sim \mathcal{N}(0,1)} \sigma^2(Z).$$

▶ Training the second layer gives us the ridge estimator:

$$\hat{f}(x) := \sigma(Wx)^{\top} \hat{\beta} = \sigma(x^{\top}W^{\top}) \left(\frac{\sigma(WX^{\top})\sigma(XW^{\top})}{n} + \lambda I_p \right)^{-1} \frac{\sigma(WX^{\top})Y}{n}.$$

Main result #2: ANOVA for two-layer NN, non-linear activation

Theorem. As $d, p, n \to \infty$ proportionally:

$$\lim_{d \to \infty} \mathbf{MSE}(\lambda) = \alpha^2 \pi \left[\frac{1}{\pi} - 1 + \delta(1 - \pi)\theta_1 + \frac{\lambda}{v} \left(\frac{\lambda \mu^2}{v^2} - \delta(1 - \pi) \right) \theta_2 + (v - \mu^2) \left(\frac{\gamma}{v} \theta_1 + \frac{1}{v} - \frac{\lambda \gamma}{v^2} \theta_2 \right) \right] + \sigma^2 \gamma \left(\theta_1 - \frac{\lambda}{v} \theta_2 \right) + \sigma^2,$$
(16)

$$\lim_{d \to \infty} \mathbf{Bias}^2(\lambda) = \alpha^2 \left[\pi \frac{\mu^2}{v} \left(1 - \frac{\lambda}{v} \theta_1 \right) - 1 \right]^2, \tag{17}$$

$$\lim_{d\to\infty} \mathbf{Var}(\lambda) = \alpha^2 \pi \left[\frac{2\mu^2}{v} - 1 + \left(-\frac{2\lambda\mu^2}{v^2} + \delta(1-\pi) \right) \theta_1 + \frac{\lambda}{v} \left(\frac{\lambda\mu^2}{v^2} - \delta(1-\pi) \right) \theta_2 - \frac{\pi\mu^4}{v^2} \left(1 - \frac{\lambda}{v} \theta_1 \right)^2 + (v - \mu^2) \left(\frac{\gamma}{v} \theta_1 + \frac{1}{v} - \frac{\lambda\gamma}{v^2} \theta_2 \right) \right] + \sigma^2 \gamma \left(\theta_1 - \frac{\lambda}{v} \theta_2 \right), \quad (18)$$

where $\theta_1 := \theta_1(\gamma, \lambda/v)$, $\theta_2 := \theta_2(\gamma, \lambda/v)$, $\gamma = \pi \delta$. Similar to the linear case, the limiting MSE has a unique minimum at $\lambda^* := \frac{v^2}{\mu^2} \left[\delta(1 - \pi + \sigma^2/\alpha^2) + \frac{(v - \mu^2)\gamma}{v} \right]$.

Monotonicity properties

For the optimal penalty $\lambda = \lambda^*$, we have the same monotonicity properties as in the linear case:

Variable Function	parametrization $\pi = \lim p/d$	aspect ratio $\delta = \lim d/n$
MSE	7	7
\mathbf{Bias}^2	7	7
Var	$\delta < 2\frac{\mu^2}{v} \left(2\frac{\mu^2}{v} - 1 \right) / \left(1 + 2\sigma^2/\alpha^2 \right) : \wedge, \max$ at $\frac{v}{\mu^2} \left[2 + \frac{\delta v}{\mu^2} \left(1 + \frac{2\sigma^2}{\alpha^2} \right) \right] / 4$. $\delta \ge 2\frac{\mu^2}{v} \left(2\frac{\mu^2}{v} - 1 \right) / \left(1 + 2\sigma^2/\alpha^2 \right) : \nearrow.$	$\begin{split} \pi &\leq \frac{v}{2\mu^2}: \searrow. \\ \pi &> \frac{v}{2\mu^2}: \land, \text{ max at} \\ \frac{2\mu^2(2\pi\mu^2/v-1)}{v(1+2\sigma^2/\alpha^2)}. \end{split}$

Table 2: Monotonicity properties of various components of the risk for a two-layer network with nonlinear activation, as a function of π or δ , while holding all other parameters fixed. \nearrow : non-decreasing. \searrow : non-increasing. \land : unimodal. Thus, e.g., the MSE is non-increasing as a function of the parameterization level π , while holding δ fixed.

Monotonicity properties

Parameters:

 $\sigma(\cdot) = \text{ReLU}(\cdot) - \mathbb{E}\text{ReLU}, \lambda = 0.01, \alpha = 1, \sigma = 0.3, \pi = p/d, \delta = d/n.$ d: dimension of x, n: number of samples, p: hidden layer width.

Outline

Background

Setup and Motivation

Main results

Linear activation

Experiments

Nonlinear activation

Proof ideas

Proof techniques

► The proof uses techniques from asymptotic random matrix theory (Marchenko & Pastur, 1967, Bai & Silverstein, 2010, Couillet & Debbah, 2011, ...)

Proof techniques

- ► The proof uses techniques from asymptotic random matrix theory (Marchenko & Pastur, 1967, Bai & Silverstein, 2010, Couillet & Debbah, 2011, ...)
- ▶ We leverage deterministic equivalent results for Haar random matrices from [Couillet et al., 2012]. Have not been used in the area before?

Calculation of the variance components

Define

$$\tilde{M}_{X,W}(\lambda) := W^{\top} (n^{-1}WX^{\top}XW^{\top} + \lambda I_{\rho})^{-1}WX^{\top}/n
M_{X,W}(\lambda) := \tilde{M}_{X,W}(\lambda)X.$$

Then we have $f_{\lambda,\mathcal{T},W}(x) = x^{\top} \tilde{M} Y = x^{\top} M \theta + x^{\top} \tilde{M} \mathcal{E}$.

For V_s ,

$$\begin{split} V_s &= \mathbb{E}_{\theta,x} \mathsf{Var}_X(\mathbb{E}_{\mathcal{E},W}(\hat{f}(x)|X)) = \mathbb{E}_{\theta,x,X}[x^\top (\mathbb{E}_W M - \mathbb{E} M)\theta]^2 \\ &= \frac{\alpha^2}{d} \mathbb{E}_X \|\mathbb{E}_W M - \mathbb{E} M\|_F^2. \end{split}$$

Calculation of the variance components

 $= \sigma^2 \mathbb{E}_{\mathbf{Y}} || \mathbb{E}_{\mathbf{W}} \tilde{M} - \mathbb{E} \tilde{M} ||_F^2$

Similarly, we can write down all the variance components.

$$\begin{split} V_t &= \mathbb{E}_{\theta,x} \mathrm{Var}_X(\mathbb{E}_{\mathcal{E},W}(\hat{f}(x)|X)) = \mathbb{E}_{\theta,x,X}[x^\top (\mathbb{E}_W M - \mathbb{E} M)\theta]^2 \\ &= \frac{\alpha^2}{d} \mathbb{E}_X \|\mathbb{E}_W M - \mathbb{E} M\|_F^2. \\ V_t &= \mathbb{E}_{\theta,x} \mathrm{Var}_{\mathcal{E}}(\mathbb{E}_{X,W}(\hat{f}(x)|\mathcal{E})) = \sigma^2 \|\mathbb{E} \tilde{M}\|_F^2. \\ V_t &= \mathbb{E}_{\theta,x} \mathrm{Var}_W(\mathbb{E}_{\mathcal{E},X}(\hat{f}(x)|\mathcal{E})) - V_t - V_t \\ &= \mathbb{E}_{\theta,x} \mathbb{E}_{W}[X^\top (\mathbb{E}_X M - \mathbb{E} M)\theta + x^\top \mathbb{E}_X \tilde{M}\mathcal{E}]^2 - V_t - V_t \\ &= \sigma^2 \mathbb{E}_W \|\mathbb{E}_X \tilde{M} - \mathbb{E} \tilde{M}\|_F^2. \\ V_t &= \mathbb{E}_{\theta,x} \mathrm{Var}_W(\mathbb{E}_{\mathcal{E},X}(\hat{f}(x)|W)) = \mathbb{E}_{\theta,x,W}[x^\top (\mathbb{E}_X M - \mathbb{E} M)\theta]^2 \\ &= \frac{\alpha^2}{d} \mathbb{E}_W \|\mathbb{E}_X M - \mathbb{E} M\|_F^2. \\ &= \mathbb{E}_{\theta,x,X,W}[x^\top (M - \mathbb{E} M)\theta]^2 - V_s - V_t \\ &= \mathbb{E}_{\theta,x,X,W}[x^\top (M - \mathbb{E} M)\theta]^2 - V_s - V_t \\ &= \frac{\alpha^2}{d} \left(\mathbb{E} \|M\|_F^2 - \mathbb{E}_X \|\mathbb{E}_W M\|_F^2 - \mathbb{E}_W \|\mathbb{E}_X M\|_F^2 + \|\mathbb{E} M\|_F^2 \right). \end{split}$$

 $= \sigma^{2}(\mathbb{E}\|\tilde{M}\|_{F}^{2} - \mathbb{E}_{W}\|\mathbb{E}_{X}\tilde{M}\|_{F}^{2} - \mathbb{E}_{X}\|\mathbb{E}_{W}\tilde{M}\|_{F}^{2} + \|\mathbb{E}\tilde{M}\|^{2}).$

Calculation of the variance components

It remains to calculate the following terms.

Lemma 6.1 (Behavior of $\mathbb{E}M$).

$$\lim_{d\to\infty}\frac{1}{d}\mathbb{E}\operatorname{tr}(M)=\pi(1-\lambda\theta_1),\quad\forall i\geq 1. \\ \qquad \lim_{d\to\infty}\frac{1}{d}\|\mathbb{E}M\|_F^2=\pi^2(1-\lambda\theta_1)^2.$$

Lemma 6.2 (Behavior of the Frobenius norm of M).

$$\lim_{d \to \infty} \frac{1}{d} \mathbb{E} \|M\|_F^2 = \pi \left[1 - 2\lambda \theta_1 + \lambda^2 \theta_2 + (1 - \pi)\delta(\theta_1 - \lambda \theta_2) \right].$$

Lemma 6.3 (Behavior of the Frobenius norm of \tilde{M}).

$$\lim_{d\to\infty} \mathbb{E} \|\tilde{M}\|_F^2 = \pi \delta(\theta_1 - \lambda \theta_2).$$

Lemma 6.4 (Behavior of the Frobenius norm of $\mathbb{E}_X M$).

$$\lim_{d\to\infty} \frac{1}{d} \mathbb{E}_W \|\mathbb{E}_X M\|_F^2 = \pi (1 - \lambda \theta_1)^2.$$

Lemma 6.5 (Behavior of the Frobenius norm of \tilde{M}).

$$\lim_{d\to\infty} \|\mathbb{E}\tilde{M}\|_F^2 = \lim_{d\to\infty} \mathbb{E}_W \|\mathbb{E}_X \tilde{M}\|_F^2 = 0.$$

Lemma 6.6 (Behavior of the Frobenius norm of $\mathbb{E}_W \tilde{M}$).

$$\lim_{d\to\infty} \mathbb{E}_X \|\mathbb{E}_W \tilde{M}\|_F^2 = \delta(\tilde{\theta}_1 - \tilde{\lambda}\tilde{\theta}_2).$$

Lemma 6.7 (Behavior of the Frobenius norm of $\mathbb{E}_W M$).

$$\lim_{d\to\infty} \frac{1}{d} \mathbb{E}_X \|\mathbb{E}_W M\|_F^2 = (1 - 2\tilde{\lambda}\tilde{\theta}_1 + \tilde{\lambda}^2\tilde{\theta}_2).$$

Marchenko Pastur theorem, 1967

Theorem (MP'67; Bai-Silverstein '95-'10)

Suppose $X \in R^{n \times d}$ has i.i.d. entries with zero mean and unit variance. If $d \to \infty, d/n \to \tau$, then with probability one, the empirical spectral distribution of $X^\top X/n$ weakly converges to the Marchenko Pastur distribution μ_{τ} .

$$\mu_{\tau}(A) = \begin{cases} \left(1 - \frac{1}{\tau}\right) \mathbf{1}_{0 \in A} + \nu_{\tau}(A), & \text{if } \tau > 1 \\ \nu_{\tau}(A), & \text{if } 0 \leq \tau \leq 1, \end{cases}$$

where

$$d\nu_{\tau}(x) = \frac{1}{2\pi} \frac{\sqrt{(\tau_{+} - x)(x - \tau_{-})}}{\tau x} 1_{x \in [\tau_{-}, \tau_{+}]} dx, \quad ^{0.1}$$

and

$$\tau_{\pm} = (1 \pm \sqrt{\tau})^2.$$

Deterministic equivalents

Definition (Serdobolskii, Girko, etc)

We say that the (deterministic or random) not necessarily symmetric matrix sequences A_n , B_n of growing dimensions are equivalent, and write

$$A_n \simeq B_n$$

if

$$\lim_{n\to\infty} |\operatorname{tr}\left[C_n\left(A_n - B_n\right)\right]| = 0 \tag{1}$$

almost surely, for any sequence C_n of not necessarily symmetric matrices with bounded trace norm, i.e., such that

$$\limsup \|C_n\|_{tr} < \infty.$$

Moreover, if (1) only holds almost surely for any sequence $C_n \in \mathbb{R}^{d_n \times d_n}$ of positive semidefinite matrices with $O(1/d_n)$ spectral norm, A_n and B_n are said to be *weak deterministic equivalents* and denoted by $A_n \stackrel{w}{\approx} B_n$.

Some techniques in the proof

Example 1. (Mestre et al., 2011)

Let $\hat{\Sigma} = X^{\top}X/n$, where $X = Z\Sigma^{1/2}$ and Z is an $n \times p$ random matrix with iid entries of zero mean, unit variance and finite $8+\eta$ moment. Also, $\Sigma^{1/2}$ is any sequence of $p \times p$ positive semi-definite matrices satisfying $\sup \|\Sigma\|_2 < \infty$. As $n, p \to \infty$ proportionally, for any $\lambda > 0$

$$(\widehat{\Sigma} + \lambda I_p)^{-1} \asymp (q_p \Sigma + \lambda I_p)^{-1}$$
,

where q_p is the solution of a fixed point equation.

Some techniques in the proof

Example 2. (Couillet et al., 2012)

Let $W \in \mathbb{R}^{p \times d}$ be the first p rows of a unitary Haar distributed random matrix. Suppose $R^{d \times d}$ is a sequence of positive semi-definite random matrices such that $\sup \|R\|_2 < \infty$, almost surely. As $p, d \to \infty$ proportionally, for any $\lambda > 0$

$$(R^{1/2}W^{\top}WR^{1/2} + \lambda I_d)^{-1} \stackrel{w}{\approx} (\bar{e}_d R + \lambda I_d)^{-1},$$

where \bar{e}_d is the solution of a fixed point equation.

Summary

- ANOVA decomposition of test error
 - 1. Surprising finding: interaction effect is large need to take into account interaction effects between initialization, input randomness, label noise
 - 2. Monotonicity, Unimodality
- What causes the test error? Going beyond bias-variance via ANOVA: arxiv.org/abs/2010.05170, to appear in JMLR
- code to reproduce numerical results: github.com/licong-lin/VarianceDecomposition
- Thanks!

References I

- Ben Adlam and Jeffrey Pennington. Understanding double descent requires a fine-grained bias-variance decomposition. arXiv preprint arXiv:2011.03321, NeurIPS 2020, 2020.
- David Barber, David Saad, and Peter Sollich. Finite-size effects and optimal test set size in linear perceptrons. *Journal of Physics A: Mathematical and General*, 28(5):1325, 1995.
- Romain Couillet, Jakob Hoydis, and Mérouane Debbah. Random beamforming over quasi-static and fading channels: A deterministic equivalent approach. *IEEE Transactions on Information Theory*, 58(10):6392–6425, 2012.
- Robert PW Duin. Small sample size generalization. In *Proceedings* of the Scandinavian Conference on Image Analysis, volume 2, pages 957–964. PROCEEDINGS PUBLISHED BY VARIOUS PUBLISHERS, 1995.
- Lars Kai Hansen. Stochastic linear learning: Exact test and training error averages. *Neural Networks*, 6(3):393–396, 1993.

References II

- JA Hertz, A Krogh, and GI Thorbergsson. Phase transitions in simple learning. *Journal of Physics A: Mathematical and General*, 22(12):2133, 1989.
- M Opper, W Kinzel, J Kleinz, and R Nehl. On the ability of the optimal perceptron to generalise. *Journal of Physics A: Mathematical and General*, 23(11):L581, 1990.
- Manfred Opper. Statistical mechanics of learning: Generalization. The Handbook of Brain Theory and Neural Networks,, pages 922–925, 1995.
- Manfred Opper and Wolfgang Kinzel. Statistical mechanics of generalization. In *Models of neural networks III*, pages 151–209. Springer, 1996.
- Sarunas Raudys and Robert PW Duin. Expected classification error of the fisher linear classifier with pseudo-inverse covariance matrix. *Pattern recognition letters*, 19(5-6):385–392, 1998.

Ridge is asy Bayes optimal

Theorem 2.8 (Ridge is optimal). Suppose that the samples are drawn from the standard normal distribution, i.e., x and X both have i.i.d. $\mathcal{N}(0,1)$ entries. Given the projection W, projected matrix XW^{\top} and response Y, we define the optimal regression parameter β_{opt} as the one minimizing the MSE over the posterior distribution $p(\theta|XW^{\top}, W, Y)$ of the parameter θ ,

$$\beta_{opt} := \operatorname{argmin}_{\beta} \mathbb{E}_{p(\theta|XW^{\top}, W, Y)} \mathbb{E}_{x, \varepsilon} [(Wx)^{\top} \beta - (x^{\top} \theta + \varepsilon)]^{2}, \tag{10}$$

where $x \sim \mathcal{N}(0, I_d)$, $\varepsilon \sim \mathcal{N}(0, \sigma^2)$ and x, ε are independent. We will check that this can be expressed in terms of the posterior of θ as

$$\beta_{opt} = W \cdot \mathbb{E}_{p(\theta|XW^{\top}, W, Y)} \theta. \tag{11}$$

The optimal ridge estimator $\hat{\beta} = (n^{-1}WX^{\top}XW^{\top} + \lambda^*I_p)^{-1}WX^{\top}Y/n$ (Theorem 2.3) satisfies the almost sure convergence in the mean squared error

$$\lim_{d \to \infty} \mathbb{E}_{XW^{\top}, W, Y} \|\hat{\beta} - \beta_{opt}\|_2^2 = 0, \tag{12}$$

and is thus asymptotically optimal. Here $d \to \infty$ means $p,d,n \to \infty$ proportionally as in Theorem 2.3.

Remarks:

Ridge is asy Bayes optimal

Theorem 2.8 (Ridge is optimal). Suppose that the samples are drawn from the standard normal distribution, i.e., x and X both have i.i.d. $\mathcal{N}(0,1)$ entries. Given the projection W, projected matrix XW^{\top} and response Y, we define the optimal regression parameter β_{opt} as the one minimizing the MSE over the posterior distribution $p(\theta|XW^{\top}, W, Y)$ of the parameter θ ,

$$\beta_{opt} := \operatorname{argmin}_{\beta} \mathbb{E}_{p(\theta|XW^{\top}, W, Y)} \mathbb{E}_{x, \varepsilon} [(Wx)^{\top} \beta - (x^{\top} \theta + \varepsilon)]^{2}, \tag{10}$$

where $x \sim \mathcal{N}(0, I_d)$, $\varepsilon \sim \mathcal{N}(0, \sigma^2)$ and x, ε are independent. We will check that this can be expressed in terms of the posterior of θ as

$$\beta_{opt} = W \cdot \mathbb{E}_{p(\theta|XW^{\top}, W, Y)}\theta. \tag{11}$$

The optimal ridge estimator $\hat{\beta} = (n^{-1}WX^{\top}XW^{\top} + \lambda^*I_p)^{-1}WX^{\top}Y/n$ (Theorem 2.3) satisfies the almost sure convergence in the mean squared error

$$\lim_{d \to \infty} \mathbb{E}_{XW^{\top}, W, Y} \|\hat{\beta} - \beta_{opt}\|_2^2 = 0, \tag{12}$$

and is thus asymptotically optimal. Here $d \to \infty$ means $p,d,n \to \infty$ proportionally as in Theorem 2.3.

Remarks:

 $ightharpoonup \mathbb{E}\|\hat{\beta}\|^2 o c_0 > 0$. Thus, the asymptotic result is non-trivial.

Ridge is asy Bayes optimal

Theorem 2.8 (Ridge is optimal). Suppose that the samples are drawn from the standard normal distribution, i.e., x and X both have i.i.d. $\mathcal{N}(0,1)$ entries. Given the projection W, projected matrix XW^{\top} and response Y, we define the optimal regression parameter β_{opt} as the one minimizing the MSE over the posterior distribution $p(\theta|XW^{\top}, W, Y)$ of the parameter θ ,

$$\beta_{opt} := \operatorname{argmin}_{\beta} \mathbb{E}_{p(\theta|XW^{\top}, W, Y)} \mathbb{E}_{x, \varepsilon} [(Wx)^{\top} \beta - (x^{\top} \theta + \varepsilon)]^{2}, \tag{10}$$

where $x \sim \mathcal{N}(0, I_d)$, $\varepsilon \sim \mathcal{N}(0, \sigma^2)$ and x, ε are independent. We will check that this can be expressed in terms of the posterior of θ as

$$\beta_{opt} = W \cdot \mathbb{E}_{p(\theta|XW^{\top}, W, Y)}\theta. \tag{11}$$

The optimal ridge estimator $\hat{\beta} = (n^{-1}WX^{\top}XW^{\top} + \lambda^*I_p)^{-1}WX^{\top}Y/n$ (Theorem 2.3) satisfies the almost sure convergence in the mean squared error

$$\lim_{d \to \infty} \mathbb{E}_{XW^{\top}, W, Y} \|\hat{\beta} - \beta_{opt}\|_2^2 = 0, \tag{12}$$

and is thus asymptotically optimal. Here $d \to \infty$ means $p,d,n \to \infty$ proportionally as in Theorem 2.3.

Remarks:

- $ightharpoonup \mathbb{E}\|\hat{\beta}\|^2 \to c_0 > 0$. Thus, the asymptotic result is non-trivial.
- ▶ Given X instead of XW^{\top} , ridge is not Bayes optimal.