Lucrare de Laborator Nr. 1 "Elaborarea unui program MPI pentru generarea jocurilor bimatriceale si determinarea situatiilor Nash de echilibru in strategii pure"

Consideram un joc in urmatoarea forma normala $\Gamma = \langle I, J, A, B \rangle$, unde $I = \{1, 2, ..., n\}$ este multime de indici ale liniilor, $J = \{1, 2, ..., m\}$ este multimea de indici ale coloanelor $A = ||a_{ij}||_{i \in I}^{j \in J}$, $B = ||b_{ij}||_{i \in I}^{j \in J}$ sunt matricele de utilitate ale jucatorului 1 si r 2, respectiv.

1) Generarea jocurilor bimatriceale.

Vom construi un sir de numere $\mathbf{i} = i_1 i_2 ... i_j ... i_m$ si $\mathbf{j} = j_1 j_2 ... j_i ... j_n$ unde elementele $i_j = \mathbf{i}(j)$ (respectiv $j_i = \mathbf{j}(i)$) semnifica urmatoarele: daca jucatorul 2 (respectiv jucatorul 1) alege coloana $j \in J$ (alege linia $i \in I$) atunci jucatorul 1 (respectiv jucatorul 2) va alege linia $i_j \in I$ (va alege coloana $j_i \in J$). Notam $\mathbf{I} = \{\mathbf{i} = i_1 i_2 ... i_j ... i_m\}$ si $\mathbf{J} = \{\mathbf{j} = j_1 j_2 ... j_i ... j_n\}$ multimea tuturor sirurilor de acest tip, si $|\mathbf{I}| = n^m$ and $|\mathbf{J}| = m^n$

Pentru orice pereche (\mathbf{i}, \mathbf{j}) sa se genereze matricea $AB(\mathbf{i}, \mathbf{j}) = \|(\mathfrak{a}_{ij}, \mathfrak{b}_{ij})\|_{i \in I}^{j \in J}$, unde $\mathfrak{a}_{ij} \equiv a_{i_j j_i}$, $\mathfrak{b}_{ij} \equiv b_{i_j j_i}$.

Example 0.1 Consideram jocul bimatriceal
$$A = \begin{pmatrix} 3 & 5 & 4 \\ 6 & 7 & 2 \end{pmatrix}$$
, $B = \begin{pmatrix} 0 & 5 & 1 \\ 4 & 3 & 2 \end{pmatrix}$. Fie $\mathbf{I} = \{\mathbf{i}^1, \mathbf{i}^2\}$ si $\mathbf{J} = \{\mathbf{j}^1, \mathbf{j}^2\}$, unde $\mathbf{i}^1 = 1_1 1_2 2_3$, $\mathbf{i}^2 = 1_1 2_2 1_3$ si $\mathbf{j}^1 = 1_1 2_2$ and $\mathbf{j}^2 = 2_1 1_2$.

• Pentru $\mathbf{i}^1 = 1_1 1_2 2_3, \mathbf{j}^1 = 1_1 2_2$:

$$\begin{array}{l} \mathfrak{a}_{11} \equiv a_{i_{1}^{1}j_{1}^{1}} = a_{11} = 3; \ \mathfrak{a}_{12} \equiv a_{i_{2}^{1}j_{1}^{1}} = a_{11} = 3; \ \mathfrak{a}_{13} \equiv a_{i_{3}^{1}j_{1}^{1}} = a_{21} = 6 \\ \mathfrak{a}_{21} \equiv a_{i_{1}^{1}j_{2}^{1}} = a_{12} = 5; \ \mathfrak{a}_{22} \equiv a_{i_{2}^{1}j_{2}^{1}} = a_{12} = 5; \ \mathfrak{a}_{23} \equiv a_{i_{3}^{1}j_{2}^{1}} = a_{22} = 7 \\ \mathfrak{b}_{11} \equiv b_{i_{1}^{1}j_{1}^{1}} = b_{11} = 0; \ \mathfrak{b}_{12} \equiv b_{i_{2}^{1}j_{1}^{1}} = b_{11} = 0; \ \mathfrak{b}_{13} \equiv a_{i_{3}^{1}j_{1}^{1}} = b_{21} = 4 \\ \mathfrak{b}_{21} \equiv b_{i_{1}^{1}j_{2}^{1}} = b_{12} = 5; \ \mathfrak{b}_{22} \equiv b_{i_{2}^{1}j_{2}^{1}} = b_{12} = 5; \ \mathfrak{b}_{23} \equiv b_{i_{3}^{1}j_{2}^{1}} = b_{22} = 3 \end{array}$$

• Pentru $\mathbf{i}^2 = 1_1 2_2 1_3$, $\mathbf{j}^1 = 1_1 2_2$:

$$\begin{array}{l} \mathfrak{a}_{11} \equiv a_{i_{1}^{2}j_{1}^{1}} = a_{11} = 3; \ \mathfrak{a}_{12} \equiv a_{i_{2}^{2}j_{1}^{1}} = a_{21} = 6; \ a_{13} \equiv a_{i_{3}^{2}j_{1}^{1}} = a_{11} = 3 \\ \mathfrak{a}_{21} \equiv a_{i_{1}^{2}j_{2}^{1}} = a_{12} = 5; \ \mathfrak{a}_{22} \equiv a_{i_{2}^{2}j_{2}^{1}} = a_{22} = 7; \ \mathfrak{a}_{23} \equiv a_{i_{3}^{2}j_{2}^{1}} = a_{12} = 5 \\ \mathfrak{b}_{11} \equiv b_{i_{1}^{2}j_{1}^{1}} = b_{11} = 0; \ \mathfrak{b}_{12} \equiv b_{i_{2}^{2}j_{1}^{1}} = b_{21} = 4; \ \mathfrak{b}_{13} \equiv a_{i_{3}^{2}j_{1}^{1}} = b_{11} = 0 \\ \mathfrak{b}_{21} \equiv b_{i_{1}^{2}j_{2}^{1}} = b_{12} = 5; \ \mathfrak{b}_{22} \equiv b_{i_{2}^{2}j_{2}^{1}} = b_{22} = 3; \ \mathfrak{b}_{23} \equiv b_{i_{3}^{2}j_{2}^{1}} = b_{12} = 5 \end{array}$$

• Pentrur $\mathbf{i}^1 = 1_1 1_2 2_3$, $\mathbf{j}^2 = 2_1 1_2$:

$$\begin{array}{l} \mathfrak{a}_{11} \equiv a_{i_{1}^{1}j_{1}^{2}} = a_{12} = 5; \ \mathfrak{a}_{12} \equiv a_{i_{2}^{1}j_{1}^{2}} = a_{12} = 5; \ \mathfrak{a}_{13} \equiv a_{i_{3}^{1}j_{1}^{2}} = a_{22} = 7 \\ \mathfrak{a}_{21} \equiv a_{i_{1}^{1}j_{2}^{2}} = a_{11} = 3; \ \mathfrak{a}_{22} \equiv a_{i_{2}^{1}j_{2}^{2}} = a_{11} = 3; \ \mathfrak{a}_{23} \equiv a_{i_{3}^{1}j_{2}^{2}} = a_{21} = 6 \\ \mathfrak{b}_{11} \equiv b_{i_{1}^{1}j_{1}^{2}} = b_{12} = 5; \ \mathfrak{b}_{12} \equiv b_{i_{2}^{1}j_{1}^{2}} = b_{12} = 5; \ \mathfrak{b}_{13} \equiv a_{i_{3}^{1}j_{1}^{2}} = b_{22} = 3 \\ \mathfrak{b}_{21} \equiv b_{i_{1}^{1}j_{2}^{2}} = b_{11} = 0; \ \mathfrak{b}_{22} \equiv b_{i_{2}^{1}j_{2}^{2}} = b_{11} = 0; \ \mathfrak{b}_{23} \equiv b_{i_{3}^{1}j_{2}^{2}} = b_{21} = 4 \end{array}$$

• For
$$\mathbf{i}^2 = 1_1 2_2 1_3$$
, $\mathbf{j}^2 = 2_1 1_2$:
 $\mathfrak{a}_{11} \equiv a_{i_1^2 j_1^2} = a_{12} = 5$; $\mathfrak{a}_{12} \equiv a_{i_2^2 j_1^2} = a_{22} = 7$; $\mathfrak{a}_{13} \equiv a_{i_3^2 j_1^2} = a_{12} = 5$
 $\mathfrak{a}_{21} \equiv a_{i_1^2 j_2^2} = a_{11} = 3$; $\mathfrak{a}_{22} \equiv a_{i_2^2 j_2^2} = a_{21} = 6$; $\mathfrak{a}_{23} \equiv a_{i_3^2 j_2^2} = a_{11} = 3$
 $\mathfrak{b}_{11} \equiv b_{i_1^2 j_1^2} = b_{12} = 5$; $\mathfrak{b}_{12} \equiv b_{i_2^2 j_1^2} = b_{22} = 3$; $\mathfrak{b}_{13} \equiv a_{i_3^2 j_1^2} = b_{12} = 5$
 $\mathfrak{b}_{21} \equiv b_{i_1^2 j_2^2} = b_{11} = 0$; $\mathfrak{b}_{22} \equiv b_{i_2^2 j_2^2} = b_{21} = 4$; $\mathfrak{b}_{23} \equiv b_{i_3^2 j_2^2} = b_{11} = 0$

Astfel am obtinut urmatoarele jocuri bimatriceale

$$AB\left(\mathbf{i}^{1},\mathbf{j}^{1}\right) = \begin{pmatrix} (3,0) & (3,0) & (6,4) \\ (5,5) & (5,5) & (7,3) \end{pmatrix},$$

$$AB\left(\mathbf{i}^{2},\mathbf{j}^{1}\right) = \begin{pmatrix} (3,0) & (6,4) & (3,0) \\ (5,5) & (7,3) & (5,5) \end{pmatrix},$$

$$AB\left(\mathbf{i}^{1},\mathbf{j}^{2}\right) = \begin{pmatrix} (5,5) & (5,5) & (7,3) \\ (3,0) & (3,0) & (6,4) \end{pmatrix},$$

$$AB\left(\mathbf{i}^{2},\mathbf{j}^{2}\right) = \begin{pmatrix} (5,5) & (7,3) & (5,5) \\ (3,0) & (6,4) & (3,0) \end{pmatrix}.$$

Sa se elaboreze un program MPI care va realiza urmatoarele:

- Procesul MPI cu rancul 0 va initializa matricele initiale A si B, si va transmite tuturor proceselor din comunicatorul MPI_COM_WORLD aceste matrici.
- \bullet Fiecare proces MPI cu rancul k, folosind un algoritm combinatorial, va genera perechea de siruri

$$(\mathbf{i}^k = i_1^k i_2^k ... i_i^k ... i_m^k, \mathbf{j}^k = j_1^k j_2^k ... j_i^k ... j_n^k)$$
.

Generarea sirurilor **i** este echivalent cu urmatoarea problema: pentru o multime de numere naturale $\{1, 2, ..., i, ...n\}$, sa se genereze siruri de lungimea m din aceste numere. De exemplu daca $I = \{1, 2\}$ si $J = \{1, 2, 3\}$ atunci

$$\mathbf{I} = \{1_1 1_2 1_3, 2_1 2_2 2_3, 1_1 1_2 2_3, 1_1 2_2 1_3, 2_1 1_2 1_3, 1_1 2_2 2_3, 2_1 1_2 2_3, 2_1 2_2 1_3\},\$$

$$\mathbf{J} = \{1_1 1_2, 2_1 2_2, 3_1 3_2, 1_1 2_2, 2_1 1_2, 1_1 3_2, 3_1 1_2, 2_1 3_2, 3_1 2_2\}.$$

So, to construct the set I for n=2, m=3, we must: a) generate the strings (1,1,1) and (2,2,2); b) having the numbers $\{1,2\}$ to generate all the sub-strings of length 3 with the elements in this set, that is the strings (1,1,2), (1,2,1), (2,1,1), (1,2,2), (2,1,2), (2,2,1). In mathematics, a multiset (or bag) is a generalization of the concept of a set that, unlike a set, allows multiple instances of the multiset's elements. For example, $\{a,a,b\}$ and $\{a,b\}$ are different multisets although they are the same set. However, order is important, so $\{a,a,b\}$ and $\{a,b,a\}$ are the different multiset. It can be easily noticed that any informational extended strategy is nothing more than a multiset, so their generation actually consists in generating multisets .

- Fiecare proces MPI cu rancul k construieste perechea de matrici (A^k, B^k) , unde $A^k = \|\mathfrak{a}_{ij}\|_{i \in I}^{j \in J}$, $B^k = \|\mathfrak{b}_{ij}\|_{i \in I}^{j \in J}$, si $\mathfrak{a}_{ij} \equiv a_{i_j j_i}$, $\mathfrak{b}_{ij} \equiv b_{i_j j_i}$.
- 2) Determinarea solutiilor de tip Nash pentru jocurile generate. Vezi fisierul "Modele de programare paralela pe clustere Programare MPI.pdf", pag. 113