Package 'Pareto'

April 18, 2023

2

Example1_EL		6
Excess_Frequency		6
Excess_Frequency.PGP_Model		7
Excess_Frequency.PPP_Model		7
Fit_PML_Curve		8
Fit_References		9
GenPareto_Layer_Mean		2
GenPareto_Layer_SM		
GenPareto_Layer_Var		
GenPareto_ML_Estimator_Alpha		-
is.PGP_Model		
is.PPP_Model		
is.valid.PGP_Model		
is.valid.PPP_Model		
Layer_Mean		
· · ·		
Layer_Mean.PGP_Model		
Layer_Mean.PPP_Model		
Layer_Sd		
Layer_Sd.PGP_Model		
Layer_Sd.PPP_Model		
Layer_Var		
Layer_Var.PGP_Model		-
Layer_Var.PPP_Model		
Local_Pareto_Alpha		
Pareto_CDF		7
Pareto_Extrapolation	2	7
Pareto_Find_Alpha_btw_FQs	2	9
Pareto_Find_Alpha_btw_FQ_Layer	30	0
Pareto_Find_Alpha_btw_Layers	3	1
Pareto_Layer_Mean		2
Pareto_Layer_SM		3
Pareto_Layer_Var		3
Pareto_ML_Estimator_Alpha		4
Pareto_PDF		6
pGenPareto		
PGP_Model		
PiecewisePareto_CDF		
PiecewisePareto_Layer_Mean		
PiecewisePareto_Layer_SM		
PiecewisePareto_Layer_Var		
PiecewisePareto_Match_Layer_Losses		_
PiecewisePareto_ML_Estimator_Alpha		
PiecewisePareto_PDF		
		_
pPareto		
pPiecewisePareto		
PPP_Model		
PPP_Model_Excess_Frequency		
PPP Model Exp Layer Loss	5	U.

dGenPareto 3

dGen	Pareto Density of the generalized Pareto Distribution	
Index	6	1
	Simulate_Losses.PPP_Model	U
	Simulate_Losses.PGP_Model	
	Simulate_Losses	
	rPiecewisePareto	
	rPareto	
	rGenPareto	
	qPiecewisePareto	5
	qPareto	4
	qGenPareto	4
	print.PPP_Model	3
	print.PGP_Model	3
	PPP_Model_Simulate	2
	PPP_Model_Layer_Var	2
	PPP_Model_Layer_Sd	1

Description

Calculates the density function of the generalized Pareto distribution

Usage

```
dGenPareto(x, t, alpha_ini, alpha_tail, truncation = NULL)
```

Arguments

x Numeric. The function evaluates the density at x.
 t Numeric. Threshold of the Pareto distribution.
 alpha_ini Numeric. Initial Pareto alpha.
 alpha_tail Numeric. Tail Pareto alpha.
 truncation Numeric. If truncation is not NULL and truncation > t, then the generalized Pareto distribution is truncated at truncation.

Value

Density function of the Pareto distribution with parameters t, alpha_ini and alpha_tail evaluated at x

```
x <- 0:10 * 1000

dGenPareto(x, 1000, 1, 3)

dGenPareto(x, 1000, 1, 3, truncation = 5000)
```

4 dPiecewisePareto

-11	n -			
d	۲а	re	Τ.	C

Density of the Pareto Distribution

Description

Calculates the density function of the Pareto distribution

Usage

```
dPareto(x, t, alpha, truncation = NULL)
```

Arguments

x Numeric. The function evaluates the density at x.t Numeric. Threshold of the Pareto distribution.

alpha Numeric. Pareto alpha.

truncation Numeric. If truncation is not NULL and truncation > t, then the Pareto distribu-

tion is truncated at truncation.

Value

Density function of the Pareto distribution with parameters t and alpha evaluated at x

Examples

```
x <- 0:10 * 1000

dPareto(x, 1000, 2)

dPareto(x, 1000, 2, truncation = 5000)
```

dPiecewisePareto

Density of the Piecewise Pareto Distribution

Description

Calculates the density function of the piecewise Pareto distribution

```
dPiecewisePareto(x, t, alpha, truncation = NULL, truncation_type = "lp")
```

Example1_AP 5

Arguments

x Numeric. The function evaluates the density at x.

t Numeric vector. Thresholds of the piecewise Pareto distribution.

alpha Numeric vector. alpha[i] is the Pareto alpha in excess of t[i].

truncation Numeric. If truncation is not NULL and truncation > t, then the Pareto distribu-

tion is truncated at truncation.

truncation_type

Character. If truncation_type = "wd" then the whole distribution is truncated. If truncation_type = "lp" then a truncated Pareto is used for the last piece.

Value

Density function of the piecewise Pareto distribution with parameter vectors t and alpha evaluated at x

Examples

```
t <- c(1000, 2000, 3000)
alpha <- c(1, 1.5, 2)
x <- 0:10 * 1000
dPiecewisePareto(x, t, alpha)
dPiecewisePareto(x, t, alpha, truncation = 5000, truncation_type = "lp")
dPiecewisePareto(x, t, alpha, truncation = 5000, truncation_type = "wd")</pre>
```

Example1_AP

Example data: Attachment Points

Description

Example data: Attachment Points

Usage

Example1_AP

Format

An object of class numeric of length 5.

Excess_Frequency

Example1_EL

Example data: Expected Losses

Description

Example data: Expected Losses

Usage

```
Example1_EL
```

Format

An object of class numeric of length 5.

Excess_Frequency

Expected Frequency in Excess of a Threshold

Description

Calculates the expected frequency in excess of a threshold for a collective model

Usage

```
Excess_Frequency(CollectiveModel, x = 0)
```

Arguments

CollectiveModel

A collective model object. Currently only PPP_Models are handled.

x Numeric. Threshold.

Value

The expected frequency in excess of x for the given CollectiveModel

```
PPPM <- PiecewisePareto_Match_Layer_Losses(Example1_AP, Example1_EL)
PPPM
Excess_Frequency(PPPM, c(-Inf, 0, 1000, 2000, 3000, Inf))
```

```
Excess_Frequency.PGP_Model
```

Expected Frequency in Excess of a Threshold

Description

Calculates the expected frequency in excess of a threshold for a PGP_model

Usage

```
## S3 method for class 'PGP_Model'
Excess_Frequency(CollectiveModel, x = 0)
```

Arguments

CollectiveModel

PGP_Model object.

Χ

Numeric. Threshold.

Value

The expected frequency in excess of x for the given CollectiveModel

Examples

```
PGPM <- PGP_Model(2, 1000, 1, 2, dispersion = 2)
PGPM
Excess_Frequency(PGPM, c(-Inf, 0, 1000, 2000, 3000, Inf))
```

```
Excess_Frequency.PPP_Model
```

Expected Frequency in Excess of a Threshold

Description

Calculates the expected frequency in excess of a threshold for a PPP_model

```
## S3 method for class 'PPP_Model'
Excess_Frequency(CollectiveModel, x = 0)
```

8 Fit_PML_Curve

Arguments

```
CollectiveModel
PPP_Model object.
x Numeric. Threshold.
```

Value

The expected frequency in excess of x for the given CollectiveModel

Examples

```
PPPM <- PiecewisePareto_Match_Layer_Losses(Example1_AP, Example1_EL)
PPPM
Excess_Frequency(PPPM, c(-Inf, 0, 1000, 2000, 3000, Inf))
```

Fit_PML_Curve

Fits a Collective Model to a PML Curve

Description

Fits a PPP_Model that matches the values of a PML curve

Usage

```
Fit_PML_Curve(
  return_periods,
  amounts,
  tail_alpha = 2,
  truncation = NULL,
  truncation_type = "lp",
  dispersion = 1
)
```

Arguments

return_periods Numeric vector. Vector containing the return periods of the PML curve.

Numeric vector. Vector containing the loss amounts corresponding to the return periods.

curve.

truncation Numeric. If truncation is not NULL and truncation > max(t), then the distri-

bution is truncated at truncation.

truncation_type

Character. If truncation_type = "wd" then the whole distribution is truncated. If truncation_type = "lp" then a truncated Pareto is used for the last piece.

dispersion Numerical. Dispersion of the claim count distribution in the resulting PPP_Model.

Fit_References 9

Value

A PPP_Model object that contains the information about a collective model with a Panjer distributed claim count and a Piecewise Pareto distributed severity. The object contains the following elements:

- FQ Numerical. Frequency in excess of the lowest threshold of the piecewise Pareto distribution
- t Numeric vector. Vector containing the thresholds for the piecewise Pareto distribution
- alpha Numeric vector. Vector containing the Pareto alphas of the piecewise Pareto distribution
- truncation Numerical. If truncation is not NULL and truncation > max(t), then the distribution is truncated at truncation.
- truncation_type Character. If truncation_type = "wd" then the whole distribution is truncated. If truncation_type = "lp" then a truncated Pareto is used for the last piece.
- dispersion Numerical. Dispersion of the Panjer distribution (i.e. variance to mean ratio).
- Status Numerical indicator: 0 = success, 1 = some information has been ignored, 2 = no solution found
- Comment Character. Information on whether the fit was successful

Examples

Fit_References

Fit a Collective Model to a Wishlist of References

Description

The function fits a collective model to a wishlist of references (expected layer losses and excess frequencies). The function allows to specify the family of the severity distribution that is used. Depending on this distribution family the function works slightly differently:

- For the severity distribution PiecewisePareto the function returns a PPP_Model that satisfies all the references
- For the severity distribution Pareto the function returns a PPP_Model that minimizes the squared relative deviations from the references
- For the severity distribution GenPareto the function returns a PGP_Model that minimizes the squared relative deviations from the references

10 Fit_References

Usage

```
Fit_References(
   Covers = NULL,
   Attachment_Points = NULL,
   Expected_Layer_Losses = NULL,
   Thresholds = NULL,
   Frequencies = NULL,
   model_threshold = min(c(Attachment_Points, Thresholds)),
   default_alpha = 2,
   dispersion = 1,
   alpha_max = 100,
   severity_distribution = "PiecewisePareto",
   ignore_inconsistent_references = FALSE
)
```

Arguments

Covers Numeric vector. Vector containing the covers of the layers from the wishlist.

Attachment_Points

Numeric vector. Vector containing the attachment points of the layers from the wishlist.

Expected_Layer_Losses

Numeric vector. Vector containing the expected losses of the layers from the

wishlist.

Thresholds Numeric vector. Contains the thresholds from the wishlist for which excess

frequencies are given.

Frequencies Numeric vector. Expected frequencies excess the Thresholds from the wishlist.

model_threshold

Numerical. Lowest threshold of the fitted piecewise Pareto distribution.

default_alpha Numerical. Default alpha for situations where an alpha has to be selected.

dispersion Numerical. Dispersion of the claim count distribution in the resulting PPP_Model.

alpha_max Numerical. Maximum alpha to be used for the matching.

severity_distribution

Character. Implemented distributions: "PiecewisePareto" (default), "Pareto" and

"GenPareto".

ignore_inconsistent_references

Logical. If TRUE then inconsistent references are ignored in case of the piecewise Pareto distribution and the other references are used to fit the model

Value

For severity_distribution = "PiecewisePareto" or "Pareto": A PPP_Model object that contains the information about a collective model with a Panjer distributed claim count and a Piecewise Pareto distributed severity. The object contains the following elements:

• FQ Numerical. Frequency in excess of the lowest threshold of the piecewise Pareto distribution

Fit_References 11

- t Numeric vector. Vector containing the thresholds for the piecewise Pareto distribution
- alpha Numeric vector. Vector containing the Pareto alphas of the piecewise Pareto distribution
- truncation Numerical. If truncation is not NULL and truncation > max(t), then the distribution is truncated at truncation.
- truncation_type Character. If truncation_type = "wd" then the whole distribution is truncated. If truncation_type = "lp" then a truncated Pareto is used for the last piece.
- dispersion Numerical. Dispersion of the Panjer distribution (i.e. variance to mean ratio).
- Status Numerical indicator: 0 = success, 1 = some information has been ignored, 2 = no solution found
- Comment Character. Information on whether the fit was successful

For severity_distribution = "GenPareto": A PGP_Model object that contains the information about a collective model with a Panjer distributed claim count and a Piecewise Pareto distributed severity. The object contains the following elements:

- FQ Expected claim count of the collective model.
- t Numeric. Threshold of the Pareto distribution.
- alpha_ini Numeric. Initial Pareto alpha (at t).
- alpha_tail Numeric. Tail Pareto alpha.
- truncation If truncation is not NULL and truncation > t, then the Pareto distribution is truncated at truncation.
- dispersion Numerical. Dispersion of the Panjer distribution (i.e. variance to mean ratio).
- Status Numerical indicator: 0 = success, 1 = some information has been ignored, 2 = no solution found
- Comment Character. Information on whether the fit was successful

Description

Calculates the expected loss of a generalized Pareto distribution in a reinsurance layer

Usage

```
GenPareto_Layer_Mean(
   Cover,
   AttachmentPoint,
   t,
   alpha_ini,
   alpha_tail,
   truncation = NULL
)
```

Arguments

Cover Numeric. Cover of the reinsurance layer. Use Inf for unlimited layers.

AttachmentPoint

Numeric. Attachment point of the reinsurance layer.

t Numeric. Threshold of the Pareto distribution. If t is NULL (default) then t <-

Attachment Point is used.

alpha_ini Numeric. Initial Pareto alpha (at t).

alpha_tail Numeric. Tail Pareto alpha.

truncation Numeric. If truncation is not NULL and truncation > t, then the Pareto dis-

tribution is truncated at truncation.

Value

The expected loss of the (truncated) Pareto distribution with parameters t and alpha in the layer Cover xs AttachmentPoint

```
GenPareto_Layer_Mean(4000, 1000, 1000, 1, 3)
GenPareto_Layer_Mean(4000, 1000, t = 1000, alpha_ini = 1, alpha_tail = 3)
GenPareto_Layer_Mean(4000, 1000, t = 5000, alpha_ini = 1, alpha_tail = 3)
GenPareto_Layer_Mean(4000, 1000, t = 1000, alpha_ini = 1, alpha_tail = 3, truncation = 5000)
GenPareto_Layer_Mean(9000, 1000, t = 1000, alpha_ini = 1, alpha_tail = 3, truncation = 5000)
```

GenPareto_Layer_SM

GenPareto_Layer_SM

Second Layer Moment of the Generalized Pareto Distribution

Description

Calculates the second moment of a generalized Pareto distribution in a reinsurance layer

Usage

```
GenPareto_Layer_SM(
   Cover,
   AttachmentPoint,
   t,
   alpha_ini,
   alpha_tail,
   truncation = NULL
)
```

Arguments

Cover Numeric. Cover of the reinsurance layer. Use Inf for unlimited layers.

AttachmentPoint

Numeric. Attachment point of the reinsurance layer.

t Numeric. Threshold of the Pareto distribution. If t is NULL (default) then t <-

Attachment Point is used

alpha_ini Numeric. Initial Pareto alpha (at t).

alpha_tail Numeric. Tail Pareto alpha.

truncation Numeric. If truncation is not NULL and truncation > t, then the Pareto dis-

tribution is truncated at truncation.

Value

The second moment of the (truncated) generalized Pareto distribution with parameters t, alpha_ini and alpha_tail in the layer Cover xs AttachmentPoint

```
GenPareto_Layer_SM(4000, 1000, 1000, 1, 2)
GenPareto_Layer_SM(4000, 1000, t = 1000, alpha_ini = 1, alpha_tail = 3)
GenPareto_Layer_SM(4000, 1000, t = 5000, alpha_ini = 1, alpha_tail = 3)
GenPareto_Layer_SM(4000, 1000, t = 1000, alpha_ini = 1, alpha_tail = 3, truncation = 5000)
GenPareto_Layer_SM(9000, 1000, t = 1000, alpha_ini = 1, alpha_tail = 3, truncation = 5000)
```

GenPareto_Layer_Var

Layer Variance of the Generalized Pareto Distribution

Description

Calculates the variance of a generalized Pareto distribution in a reinsurance layer

Usage

```
GenPareto_Layer_Var(
   Cover,
   AttachmentPoint,
   t,
   alpha_ini,
   alpha_tail,
   truncation = NULL
)
```

Arguments

Cover Numeric. Cover of the reinsurance layer. Use Inf for unlimited layers.

AttachmentPoint

Numeric. Attachment point of the reinsurance layer.

t Numeric. Threshold of the Pareto distribution. If t is NULL (default) then t <-

Attachment Point is used

alpha_ini Numeric. Initial Pareto alpha (at t).

alpha_tail Numeric. Tail Pareto alpha.

truncation Numeric. If truncation is not NULL and truncation > t, then the Pareto dis-

tribution is truncated at truncation.

Value

Variance of the (truncated) generalized Pareto distribution with parameters t, alpha_ini and alpha_tail in the layer Cover xs AttachmentPoint

```
GenPareto_Layer_Var(4000, 1000, 1000, 1, 2)
GenPareto_Layer_Var(4000, 1000, t = 1000, alpha_ini = 1, alpha_tail = 3)
GenPareto_Layer_Var(4000, 1000, t = 5000, alpha_ini = 1, alpha_tail = 3)
GenPareto_Layer_Var(4000, 1000, t = 1000, alpha_ini = 1, alpha_tail = 3, truncation = 5000)
GenPareto_Layer_Var(9000, 1000, t = 1000, alpha_ini = 1, alpha_tail = 3, truncation = 5000)
```

```
GenPareto_ML_Estimator_Alpha
```

Maximum Likelihood Estimation of the Pareto Alphas of a Generalized Pareto Distribution

Description

Calculates the maximum likelihood estimators of the parameters alpha_ini and alpha_tail of a generalized Pareto distribution with known threshold and (if applicable) known truncation

Usage

```
GenPareto_ML_Estimator_Alpha(
  losses,
  t,
  truncation = NULL,
  reporting_thresholds = NULL,
  is.censored = NULL,
  weights = NULL,
  alpha_min = 0.001,
  alpha_max = 10
)
```

Arguments

losses	Numeric vector. Losses that are used for the ML estimation.
t	Numeric or numeric vector. Threshold of the generalized Pareto distribution. Alternatively, t can be a vector of same length as losses. In this case $t[i]$ is the reporting threshold of losses[i].
truncation	Numeric. If truncation is not NULL and truncation $>$ t, then the generalized Pareto distribution is truncated at truncation.
reporting_thres	sholds
	Numeric vector. Allows to enter loss specific reporting thresholds. If NULL then all reporting thresholds are assumed to be less than or equal to ${\sf t}$.
is.censored	Logical vector. TRUE indicates that a loss has been censored by the policy limit. The assumption is that the uncensored losses are Generalized Pareto distributed with the alphas we are looking for. is.censored = NULL means that no losses are censored.
weights	Numeric vector. Weights for the losses. For instance weights[i] = 2 and weights[j] = 1 for j != i has the same effect as adding another loss of size loss[i].
alpha_min	Numeric. Lower bound for the estimated alphas.
alpha_max	Numeric. Upper bound for the estimated alphas.

is.PGP_Model

Value

Maximum likelihood estimator for the parameters alpha_ini and alpha_tail of a generalized Pareto distribution with threshold t given the observations losses

Examples

```
losses <- rGenPareto(1000, 1000, 2,3)
GenPareto_ML_Estimator_Alpha(losses, 1000)
losses <- rGenPareto(1000, 1000, 2, 1, truncation = 10000)
GenPareto_ML_Estimator_Alpha(losses, 1000)
GenPareto_ML_Estimator_Alpha(losses, 1000, truncation = 10000)
t <- 1000
alpha_ini <- 1
alpha_tail <- 3
losses <- rGenPareto(5000, t, alpha_ini, alpha_tail)</pre>
reporting_thresholds <- rPareto(5000, 1000, 3)</pre>
reported <- losses > reporting_thresholds
losses <- losses[reported]</pre>
reporting_thresholds <- reporting_thresholds[reported]</pre>
GenPareto_ML_Estimator_Alpha(losses, t)
GenPareto_ML_Estimator_Alpha(losses, t, reporting_thresholds = reporting_thresholds)
limit <- 3000
censored <- losses > limit
losses[censored] <- limit</pre>
reported <- losses > reporting_thresholds
losses <- losses[reported]</pre>
censored <- censored[reported]</pre>
reporting_thresholds <- reporting_thresholds[reported]</pre>
GenPareto_ML_Estimator_Alpha(losses, t, reporting_thresholds = reporting_thresholds)
GenPareto_ML_Estimator_Alpha(losses, t, reporting_thresholds = reporting_thresholds,
                              is.censored = censored)
losses <- c(190, 600, 120, 270, 180, 120)
w <- rep(1, length(losses))</pre>
w[1] < -3
losses2 <- c(losses, losses[1], losses[1])</pre>
GenPareto_ML_Estimator_Alpha(losses, 100, weights = w)
GenPareto_ML_Estimator_Alpha(losses2, 100)
```

is.PGP_Model

Check if an object is a PGP_Model

Description

Checks if the class of an object is 'PGP_Model'

```
is.PGP\_Model(x)
```

is.PPP_Model

Arguments

Object to be checked.

Examples

```
PGPM <- PGP_Model(2, 1000, 1, 2, dispersion = 2)
PGPM
is.valid.PGP_Model(PGPM)
is.valid.PGP_Model(PGPM, comment = TRUE)

PGPM$alpha_tail <- -2
is.PGP_Model(PGPM)
is.valid.PGP_Model(PGPM)
is.valid.PGP_Model(PGPM, comment = TRUE)</pre>
```

is.PPP_Model

Check if an object is a PPP_Model

Description

Checks if the class of an object is 'PPP_Model'

Usage

```
is.PPP\_Model(x)
```

Arguments

Х

Object to be checked.

```
PPPM <- PPP_Model(2, c(1000,2000), c(1,2), dispersion = 2)
PPPM
is.valid.PPP_Model(PPPM)

PPPM$alpha <- 2
is.valid.PPP_Model(PPPM)
is.PPP_Model(PPPM)</pre>
```

18 is.valid.PPP_Model

is.valid.PGP_Model

Check if an object is a valid PGP_Model

Description

Checks if an object is a PGP_Model object and whether it is valid for the use in functions like Layer_Mean

Usage

```
is.valid.PGP_Model(x, comment = FALSE)
```

Arguments

x Object to be checked.

comment

If FALSE then the function returns a boolean indicating whether x is a valid

PGP Model. If TRUE then the function returns a comment instead.

Examples

```
PGPM <- PGP_Model(2, 1000, 1, 2, dispersion = 2)
PGPM
is.valid.PGP_Model(PGPM)
is.valid.PGP_Model(PGPM, comment = TRUE)

PGPM$alpha_tail <- -2
is.valid.PGP_Model(PGPM)
is.valid.PGP_Model(PGPM, comment = TRUE)</pre>
```

is.valid.PPP_Model

Check if an object is a valid PPP_Model

Description

Checks if an object is a PPP_Model object and whether it is valid for the use in functions like Layer_Mean

Usage

```
is.valid.PPP\_Model(x, comment = FALSE)
```

Arguments

x Object to be checked.

comment

If FALSE then the function returns a boolean indicating whether x is a valid PPP_Model. If TRUE then the function returns a comment instead.

Layer_Mean 19

Examples

```
PPPM <- PPP_Model(2, c(1000,2000), c(1,2), dispersion = 2)
PPPM
is.valid.PPP_Model(PPPM)
is.valid.PPP_Model(PPPM, comment = TRUE)

PPPM$alpha <- 2
is.valid.PPP_Model(PPPM)
is.valid.PPP_Model(PPPM, comment = TRUE)</pre>
```

Layer_Mean

Expected Loss of a Reinsurance Layer

Description

Calculates the expected loss of a reinsurance layer for a collective model

Usage

```
Layer_Mean(CollectiveModel, Cover = Inf, AttachmentPoint = 0)
```

Arguments

CollectiveModel

A collective model object. Currently only PPP_Models are handled.

Cover

Numeric. Cover of the reinsurance layer. Use Inf for unlimited layers.

AttachmentPoint

Numeric. Attachment point of the reinsurance layer.

Value

The expected loss of the layer Cover xs AttachmentPoint for the given CollectiveModel

```
PPPM <- PiecewisePareto_Match_Layer_Losses(Example1_AP, Example1_EL)
PPPM
Example1_Cov <- c(diff(Example1_AP), Inf)
Example1_AP
Example1_Cov
Example1_EL
Layer_Mean(PPPM, Example1_Cov, Example1_AP)</pre>
```

Layer_Mean.PGP_Model Expected Loss of a Reinsurance Layer

Description

Calculates the expected loss of a reinsurance layer for a PGP_Model

Usage

```
## S3 method for class 'PGP_Model'
Layer_Mean(CollectiveModel, Cover = Inf, AttachmentPoint = 0)
```

Arguments

CollectiveModel

PGP_Model object.

Cover Numeric. Cover of the reinsurance layer. Use Inf for unlimited layers.

AttachmentPoint

Numeric. Attachment point of the reinsurance layer.

Value

The expected loss of the layer Cover xs AttachmentPoint for the given CollectiveModel

Examples

```
PGPM <- PGP_Model(2, 1000, 1, 2, dispersion = 2)
PGPM
Example1_Cov <- c(diff(Example1_AP), Inf)
Example1_AP
Example1_Cov
Example1_EL
Layer_Mean(PGPM, Example1_Cov, Example1_AP)
```

Layer_Mean.PPP_Model Expected Loss of a Reinsurance Layer

Description

Calculates the expected loss of a reinsurance layer for a PPP_Model

```
## S3 method for class 'PPP_Model'
Layer_Mean(CollectiveModel, Cover = Inf, AttachmentPoint = 0)
```

Layer_Sd 21

Arguments

```
CollectiveModel
```

PPP_Model object.

Cover Numeric. Cover of the reinsurance layer. Use Inf for unlimited layers.

AttachmentPoint

Numeric. Attachment point of the reinsurance layer.

Value

The expected loss of the layer Cover xs AttachmentPoint for the given CollectiveModel

Examples

```
PPPM <- PiecewisePareto_Match_Layer_Losses(Example1_AP, Example1_EL)
PPPM
Example1_Cov <- c(diff(Example1_AP), Inf)
Example1_AP
Example1_Cov
Example1_EL
Layer_Mean(PPPM, Example1_Cov, Example1_AP)</pre>
```

Layer_Sd

Standard Deviation of a Reinsurance Layer

Description

Calculates the standard deviation of the loss in a reinsurance layer for a collective model

Usage

```
Layer_Sd(CollectiveModel, Cover = Inf, AttachmentPoint = 0)
```

Arguments

CollectiveModel

A collective model object. Currently only PPP_Models are handled.

Cover Numeric. Cover of the reinsurance layer. Use Inf for unlimited layers.

AttachmentPoint

Numeric. Attachment point of the reinsurance layer.

Value

The standard deviation of the loss in the layer Cover xs AttachmentPoint for the given CollectiveModel

Examples

```
PPPM <- PiecewisePareto_Match_Layer_Losses(Example1_AP, Example1_EL)
PPPM
Example1_Cov <- c(diff(Example1_AP), Inf)
Layer_Sd(PPPM, Example1_Cov, Example1_AP)</pre>
```

Layer_Sd.PGP_Model

Standard Deviation of a Reinsurance Layer

Description

Calculates the standard deviation of the loss in a reinsurance layer for a PGP_model

Usage

```
## S3 method for class 'PGP_Model'
Layer_Sd(CollectiveModel, Cover = Inf, AttachmentPoint = 0)
```

Arguments

CollectiveModel

PGP_Model object.

Cover

Numeric. Cover of the reinsurance layer. Use Inf for unlimited layers.

AttachmentPoint

Numeric. Attachment point of the reinsurance layer.

Value

The standard deviation of the loss in the layer Cover xs AttachmentPoint for the given CollectiveModel

```
PGPM <- PGP_Model(2, 1000, 1, 2, dispersion = 2)
PGPM
Example1_Cov <- c(diff(Example1_AP), Inf)
Layer_Sd(PGPM, Example1_Cov, Example1_AP)
```

Layer_Sd.PPP_Model

Layer_Sd.PPP_Model

Standard Deviation of a Reinsurance Layer

23

Description

Calculates the standard deviation of the loss in a reinsurance layer for a PPP_model

Usage

```
## S3 method for class 'PPP_Model'
Layer_Sd(CollectiveModel, Cover = Inf, AttachmentPoint = 0)
```

Arguments

CollectiveModel

PPP_Model object.

Cover

Numeric. Cover of the reinsurance layer. Use Inf for unlimited layers.

AttachmentPoint

Numeric. Attachment point of the reinsurance layer.

Value

The standard deviation of the loss in the layer Cover xs AttachmentPoint for the given CollectiveModel

Examples

```
PPPM <- PiecewisePareto_Match_Layer_Losses(Example1_AP, Example1_EL)
PPPM
Example1_Cov <- c(diff(Example1_AP), Inf)
Layer_Sd(PPPM, Example1_Cov, Example1_AP)</pre>
```

Layer_Var

Variance of a Reinsurance Layer

Description

Calculates the variance of the loss in a reinsurance layer for a collective model

```
Layer_Var(CollectiveModel, Cover = Inf, AttachmentPoint = 0)
```

Arguments

CollectiveModel

A collective model object. Currently only PPP_Models are handled.

Cover Numeric. Cover of the reinsurance layer. Use Inf for unlimited layers.

AttachmentPoint

Numeric. Attachment point of the reinsurance layer.

Value

The variance of the loss in the layer Cover xs AttachmentPoint for the given CollectiveModel

Examples

```
PPPM <- PiecewisePareto_Match_Layer_Losses(Example1_AP, Example1_EL)
PPPM
Example1_Cov <- c(diff(Example1_AP), Inf)
Layer_Var(PPPM, Example1_Cov, Example1_AP)
```

Layer_Var.PGP_Model

Variance of a Reinsurance Layer

Description

Calculates the variance of the loss in a reinsurance layer for a PGP_model

Usage

```
## S3 method for class 'PGP_Model'
Layer_Var(CollectiveModel, Cover = Inf, AttachmentPoint = 0)
```

Arguments

CollectiveModel

PGP_Model object.

Cover Numeric. Cover of the reinsurance layer. Use Inf for unlimited layers.

AttachmentPoint

Numeric. Attachment point of the reinsurance layer.

Value

The variance of the loss in the layer Cover xs AttachmentPoint for the given CollectiveModel

Layer_Var.PPP_Model 25

Examples

```
PGPM <- PGP_Model(2, 1000, 1, 2, dispersion = 2)
PGPM
Example1_Cov <- c(diff(Example1_AP), Inf)
Layer_Var(PGPM, Example1_Cov, Example1_AP)
```

Layer_Var.PPP_Model

Variance of a Reinsurance Layer

Description

Calculates the variance of the loss in a reinsurance layer for a PPP_model

Usage

```
## S3 method for class 'PPP_Model'
Layer_Var(CollectiveModel, Cover = Inf, AttachmentPoint = 0)
```

Arguments

CollectiveModel

PPP_Model object.

Cover

Numeric. Cover of the reinsurance layer. Use Inf for unlimited layers.

AttachmentPoint

Numeric. Attachment point of the reinsurance layer.

Value

The variance of the loss in the layer Cover xs AttachmentPoint for the given CollectiveModel

```
PPPM <- PiecewisePareto_Match_Layer_Losses(Example1_AP, Example1_EL)
PPPM
Example1_Cov <- c(diff(Example1_AP), Inf)
Layer_Var(PPPM, Example1_Cov, Example1_AP)
```

Local_Pareto_Alpha

Local_Pareto_Alpha Local Pareto Alpha

Description

Calculates the local Pareto alpha of the normal, lognormal and gamma distribution

Usage

```
Local_Pareto_Alpha(x, distribution, ...)
```

Arguments

x Numeric. Vector of thresholds at which the local Pareto alpha is calculated. distribution Character.

- 'lnorm' for lognormal distribution (arguments: meanlog, sdlog)
- 'norm' for normal distribution (arguments: mean, sd)
- 'gamma' for gamma distribution (arguments: shape, rate, scale)
- 'weibull' for Weibull distribution (arguments: shape, scale)
- 'exp' for exponential distribution (arguments: rate)
- 'Pareto' for Pareto distribution (arguments: t, alpha, truncation = NULL)
- 'GenPareto' for exp distribution (arguments: t, alpha_ini, alpha_tail, truncation = NULL)
- 'PiecewisePareto' for exp distribution (arguments: t, alpha, truncation = NULL, truncation_type = 'lp')

... Arguments for the selected distribution

Value

Local Pareto alpha of the selected distribution at x

References

Riegel, U. (2008) Generalizations of common ILF models. Blaetter der DGVFM 29: 45-71

Pareto_CDF 27

Pareto_CDF	Distribution Function of the Pareto Distribution	

Description

Calculates the cumulative distribution function of a Pareto distribution. This function is deprecated. Use pPareto instead.

Usage

```
Pareto_CDF(x, t, alpha, truncation = NULL)
```

Arguments

x Numeric. The function evaluates the CDF at x.
 t Numeric. Threshold of the Pareto distribution.
 alpha Numeric. Pareto alpha.
 truncation Numeric. If truncation is not NULL and truncation > t, then the Pareto dis-

tribution is truncated at truncation.

Value

Distribution function of the Pareto distribution with parameters t and alpha evaluated at x

Examples

```
x <- 0:10 * 1000
pPareto(x, 1000, 2)
pPareto(x, 1000, 2, truncation = 5000)</pre>
```

 ${\tt Pareto_Extrapolation} \quad \textit{Pareto_Extrapolation}$

Description

Uses a Pareto distribution to derive the expected loss of a layer from the expected loss of another layer

28 Pareto_Extrapolation

Usage

```
Pareto_Extrapolation(
   Cover_1,
   AttachmentPoint_1,
   Cover_2,
   AttachmentPoint_2,
   alpha,
   ExpLoss_1 = NULL,
   truncation = NULL
)
```

Arguments

Cover_1 Numeric. Cover of the layer from which we extrapolate. Use Inf for unlimited layers.

AttachmentPoint_1

Numeric. Attachment point of the layer from which we extrapolate.

Cover_2 Numeric. Cover of the layer to which we extrapolate. Use Inf for unlimited

layers.

AttachmentPoint_2

Numeric. Attachment point of the layer to which we extrapolate.

alpha Numeric. Pareto alpha used for the extrapolation.

ExpLoss_1 Numeric. Expected loss of the layer from which we extrapolate. If NULL (de-

fault) then the function provides only the ratio between the expected losses of

the layers.

truncation Numeric. If truncation is not NULL and truncation > AttachmentPoint_1,

then the Pareto distribution is truncated at truncation.

Value

The expected loss of the layer Cover_2 xs AttachmentPoint_2 given that Cover_1 xs AttachmentPoint_1 has expected loss ExpLoss_1 and assuming a (truncated) Pareto distribution with parameters t and alpha. If missing then ExpLoss_1 == 1 is assumed.

References

Riegel, U. (2018) Matching tower information with piecewise Pareto. European Actuarial Journal 8(2): 437–460

```
Pareto_Extrapolation(1000, 1000, 2000, 2000, 2, ExpLoss_1 = 100)
Pareto_Extrapolation(1000, 1000, 2000, 2000, 2) * 100
Pareto_Extrapolation(1000, 1000, 2000, 2000, 2, truncation = 5000, ExpLoss_1 = 100)
Pareto_Extrapolation(1000, 1000, 2000, 2000, 2, truncation = 5000) * 100
```

```
Pareto_Find_Alpha_btw_FQs
```

Pareto Alpha Between Two Frequencies

Description

Finds the Pareto alpha between two excess frequencies

Usage

```
Pareto_Find_Alpha_btw_FQs(
   Threshold_1,
   Frequency_1,
   Threshold_2,
   Frequency_2,
   max_alpha = 100,
   tolerance = 1e-10,
   truncation = NULL
)
```

Arguments

Threshold_1	Numeric. Threshold 1
Frequency_1	Numeric. Expected frequency in excess of Threshold_1
Threshold_2	Numeric. Threshold 2
Frequency_2	Numeric. Expected frequency in excess of Threshold_2
max_alpha	Numeric. Upper limit for the alpha that is returned.
tolerance	Numeric. Accuracy of the result.
truncation	Numeric. If truncation is not NULL then the Pareto distribution is truncated at truncation.

Value

The Pareto alpha between the expected number of claims Frequency_1 excess Threshold_1 and the expected number of claims Frequency_2 excess Threshold_2

References

Riegel, U. (2018) Matching tower information with piecewise Pareto. European Actuarial Journal 8(2): 437–460

```
Pareto_Find_Alpha_btw_FQs(1000, 1, 2000, 0.5)
Pareto_Find_Alpha_btw_FQs(1000, 1, 2000, 0.5, truncation = 5000)
```

```
Pareto_Find_Alpha_btw_FQ_Layer
```

Pareto Alpha Between a Frequency and a Layer

Description

Finds the Pareto alpha between an excess frequency and the expected loss of a layer

Usage

```
Pareto_Find_Alpha_btw_FQ_Layer(
   Threshold,
   Frequency,
   Cover,
   AttachmentPoint,
   ExpLoss,
   max_alpha = 100,
   tolerance = 1e-10,
   truncation = NULL
)
```

Arguments

Threshold Numeric. Threshold

Frequency Numeric. Expected frequency in excess of Thershold

Cover Numeric. Cover of the second layer.

AttachmentPoint

Numeric. Attachment point of the layer.

ExpLoss Numeric. Expected loss of the layer.

max_alpha Numeric. Upper limit for the alpha that is returned.

tolerance Numeric. Accuracy of the result.

truncation Numeric. If truncation is not NULL then the Pareto distribution is truncated at

truncation.

Value

The Pareto alpha between the expected number of claims Frequency excess Threshold and the layer Cover xs AttachmentPoint with expected loss ExpLoss

References

Riegel, U. (2018) Matching tower information with piecewise Pareto. European Actuarial Journal 8(2): 437–460

Examples

```
Pareto_Find_Alpha_btw_FQ_Layer(1000, 1, 1000, 1000, 500)
Pareto_Find_Alpha_btw_FQ_Layer(1000, 1, 1000, 1000, 500, truncation = 5000)
```

Pareto_Find_Alpha_btw_Layers

Pareto Alpha Between Two Layers

Description

Finds the Pareto alpha between two layers

Usage

```
Pareto_Find_Alpha_btw_Layers(
   Cover_1,
   AttachmentPoint_1,
   ExpLoss_1,
   Cover_2,
   AttachmentPoint_2,
   ExpLoss_2,
   max_alpha = 100,
   tolerance = 1e-10,
   truncation = NULL
)
```

Arguments

Cover_1 Numeric. Cover of the first layer.

AttachmentPoint_1

Numeric. Attachment point of the first layer.

ExpLoss_1 Numeric. Expected loss of the first layer.

Cover_2 Numeric. Cover of the second layer.

AttachmentPoint_2

Numeric. Attachment point of the second layer.

ExpLoss_2 Numeric. Expected loss of the second layer.

max_alpha Numeric. Upper limit for the alpha that is returned.

tolerance Numeric. Accuracy of the result.

truncation Numeric. If truncation is not NULL then the Pareto distribution is truncated at

truncation.

Value

The Pareto alpha between the layer Cover_1 xs AttachmentPoint_1 with expected loss ExpLoss_1 and the layer Cover_2 xs AttachmentPoint_2 with expected loss ExpLoss_2

32 Pareto_Layer_Mean

References

Riegel, U. (2018) Matching tower information with piecewise Pareto. European Actuarial Journal 8(2): 437–460

Examples

```
Pareto_Find_Alpha_btw_Layers(100, 100, 100, 200, 200, 50)
Pareto_Find_Alpha_btw_Layers(100, 100, 100, 200, 200, 50, truncation = 500)
```

Pareto_Layer_Mean

Layer Mean of the Pareto Distribution

Description

Calculates the expected loss of a Pareto distribution in a reinsurance layer

Usage

```
Pareto_Layer_Mean(Cover, AttachmentPoint, alpha, t = NULL, truncation = NULL)
```

Arguments

Cover Numeric. Cover of the reinsurance layer. Use Inf for unlimited layers.

AttachmentPoint

Numeric. Attachment point of the reinsurance layer.

alpha Numeric. Pareto alpha.

t Numeric. Threshold of the Pareto distribution. If t is NULL (default) then t <-

Attachment Point is used.

truncation Numeric. If truncation is not NULL and truncation > t, then the Pareto dis-

tribution is truncated at truncation.

Value

The expected loss of the (truncated) Pareto distribution with parameters t and alpha in the layer Cover xs AttachmentPoint

```
Pareto_Layer_Mean(4000, 1000, 2)
Pareto_Layer_Mean(4000, 1000, alpha = 2, t = 1000)
Pareto_Layer_Mean(4000, 1000, alpha = 2, t = 5000)
Pareto_Layer_Mean(4000, 1000, alpha = 2, t = 1000, truncation = 5000)
Pareto_Layer_Mean(9000, 1000, alpha = 2, t = 1000, truncation = 5000)
```

Pareto_Layer_SM 33

Description

Calculates the second moment of a Pareto distribution in a reinsurance layer

Usage

```
Pareto_Layer_SM(Cover, AttachmentPoint, alpha, t = NULL, truncation = NULL)
```

Arguments

Cover Numeric. Cover of the reinsurance layer. Use Inf for unlimited layers.

AttachmentPoint

Numeric. Attachment point of the reinsurance layer.

alpha Numeric. Pareto alpha.

t Numeric. Threshold of the Pareto distribution. If t is NULL (default) then t <-

Attachment Point is used

truncation Numeric. If truncation is not NULL and truncation > t, then the Pareto dis-

tribution is truncated at truncation.

Value

The second moment of the (truncated) Pareto distribution with parameters t and alpha in the layer Cover xs AttachmentPoint

Examples

```
Pareto_Layer_SM(4000, 1000, 2)

Pareto_Layer_SM(4000, 1000, alpha = 2, t = 1000)

Pareto_Layer_SM(4000, 1000, alpha = 2, t = 5000)

Pareto_Layer_SM(4000, 1000, alpha = 2, t = 1000, truncation = 5000)

Pareto_Layer_SM(9000, 1000, alpha = 2, t = 1000, truncation = 5000)
```

Pareto_Layer_Var

Layer Variance of the Pareto Distribution

Description

Calculates the variance of a Pareto distribution in a reinsurance layer

```
Pareto_Layer_Var(Cover, AttachmentPoint, alpha, t = NULL, truncation = NULL)
```

Arguments

Cover Numeric. Cover of the reinsurance layer. Use Inf for unlimited layers.

AttachmentPoint

Numeric. Attachment point of the reinsurance layer.

alpha Numeric. Pareto alpha.

t Numeric. Threshold of the Pareto distribution. If t is NULL (default) then t <-

Attachment Point is used.

truncation Numeric. If truncation is not NULL and truncation > t, then the Pareto dis-

tribution is truncated at truncation.

Value

The variance of the(truncated) Pareto distribution with parameters t and alpha in the layer Cover xs AttachmentPoint

Examples

```
Pareto_Layer_Var(4000, 1000, 2)

Pareto_Layer_Var(4000, 1000, alpha = 2, t = 1000)

Pareto_Layer_Var(4000, 1000, alpha = 2, t = 5000)

Pareto_Layer_Var(4000, 1000, alpha = 2, t = 1000, truncation = 5000)

Pareto_Layer_Var(9000, 1000, alpha = 2, t = 1000, truncation = 5000)
```

Pareto_ML_Estimator_Alpha

Maximum Likelihood Estimation of the Alpha of a Pareto distribution

Description

Calculates the maximum likelihood estimator for the parameter alpha of a Pareto distribution with a known threshold and (if applicable) a known truncation

```
Pareto_ML_Estimator_Alpha(
  losses,
  t,
  truncation = NULL,
  reporting_thresholds = NULL,
  is.censored = NULL,
  weights = NULL,
  alpha_min = 0.001,
  alpha_max = 10
)
```

Arguments

losses Numeric vector. Losses that are used for the ML estimation. t. Numeric. Threshold of the Pareto distribution. truncation Numeric. If truncation is not NULL, then the Pareto distribution is truncated at truncation. reporting_thresholds Numeric vector. Allows to enter loss specific reporting thresholds. If NULL then all reporting thresholds are assumed to be less than or equal to t. is.censored Logical vector. TRUE indicates that a loss has been censored by the policy limit. The assumption is that the uncensored losses are Pareto distributed with the alpha we are looking for. is.censored = NULL means that no losses are censored. weights Numeric vector. Weights for the losses. For instance weights[i] = 2 and weights[j] = 1 for j != i has the same effect as adding another loss of size lossΓi]. alpha_min Numeric. Lower bound for alpha (only used in truncated case). Numeric. Upper bound for alpha (only used in truncated case). alpha_max

Value

Maximum likelihood estimator for the parameter alpha of a Pareto distribution with threshold t given the observations losses

```
losses <- rPareto(100, 1000, 2)
Pareto_ML_Estimator_Alpha(losses, 1000)
losses <- rPareto(100, 1000, 2, truncation = 2000)
Pareto_ML_Estimator_Alpha(losses, 1000)
Pareto_ML_Estimator_Alpha(losses, 1000, truncation = 2000)
t <- 100
alpha <- 2
losses <- rPareto(10000, t, alpha)</pre>
reporting_thresholds <- rPareto(10000, t, 5)</pre>
index <- losses > reporting_thresholds
losses <- losses[index]</pre>
reporting_thresholds <- reporting_thresholds[index]</pre>
Pareto_ML_Estimator_Alpha(losses, t)
Pareto_ML_Estimator_Alpha(losses, t, reporting_thresholds = reporting_thresholds)
losses <- rPareto(10, 1000, 2)
w < - rep(1, 10)
w[1] < -3
losses2 <- c(losses, losses[1], losses[1])</pre>
Pareto_ML_Estimator_Alpha(losses, 1000, weights = w)
Pareto_ML_Estimator_Alpha(losses2, 1000)
```

pGenPareto

Рэ	reto	PDF
га	i e to	ГИΙ

Density of the Pareto Distribution

Description

Calculates the density function of the Pareto distribution. This function is deprecated. Use dPareto instead.

Usage

```
Pareto_PDF(x, t, alpha, truncation = NULL)
```

Arguments

x Numeric. The function evaluates the density at xt Numeric. Threshold of the Pareto distribution.

alpha Numeric. Pareto alpha.

truncation Numeric. If truncation is not NULL and truncation > t, then the Pareto dis-

tribution is truncated at truncation.

Value

Density function of the Pareto distribution with parameters t and alpha evaluated at x

Examples

```
x <- 0:10 * 1000
dPareto(x, 1000, 2)
dPareto(x, 1000, 2, truncation = 5000)</pre>
```

pGenPareto

Distribution Function of the generalized Pareto Distribution

Description

Calculates the cumulative distribution function of a generalized Pareto distribution

```
pGenPareto(x, t, alpha_ini, alpha_tail, truncation = NULL)
```

PGP_Model 37

Arguments

Χ	Numeric. The function evaluates the CDF at x.
t	Numeric. Threshold of the generalized Pareto distribution.
alpha_ini	Numeric. Initial Pareto alpha.
alpha_tail	Numeric. Tail Pareto alpha.
truncation	Numeric. If truncation is not NULL and truncation > t, then the generalized Pareto distribution is truncated at truncation.

Value

Distribution function of the generalized Pareto distribution with parameters t, alpha_ini and alpha_tail evaluated at x

Examples

```
x <- 0:10 * 1000
pGenPareto(x, 1000, 1, 3)
pGenPareto(x, 1000, 1, 3, truncation = 5000)</pre>
```

PGP_Model

PGP_Model (Collective Panjer & Generalized Pareto Model) Object

Description

Constructor function for the PGP_Model object

Usage

```
PGP_Model(
  FQ = NULL,
  t = NULL,
  alpha_ini = NULL,
  alpha_tail = NULL,
  truncation = NULL,
  dispersion = 1,
  Status = 0,
  Comment = "OK"
)
```

Arguments

FQ	Numerical. Expected claim count of the collective model.
t	Numeric. Threshold of the Pareto distribution. If t is NULL (default) then t <- Attachment Point is used
alpha_ini	Numeric. Initial Pareto alpha (at t).
alpha_tail	Numeric. Tail Pareto alpha.
truncation	Numeric. If truncation is not NULL and truncation $>$ t, then the Pareto distribution is truncated at truncation.
dispersion	Numerical. Dispersion of the Panjer distribution (i.e. variance to mean ratio).
Status	Numerical indicator if a function returns a PGP_Model object: $0 = \text{success}$, $1 = \text{some information has been ignored}$, $2 = \text{no solution found}$
Comment	Charakter. An optional comment.

Examples

```
\label{eq:pgpm} $$PGPM <- PGP\_Model(2, t = 1000, alpha\_ini = 1, alpha\_tail = 2, dispersion = 2)$$ PGPM
```

PiecewisePareto_CDF Distribution Function of the Piecewise Pareto Distribution

Description

Calculates the cumulative distribution function of a Piecewise Pareto Distribution. This function is deprecated. Use pPiecewisePareto instead.

Usage

```
PiecewisePareto_CDF(x, t, alpha, truncation = NULL, truncation_type = "lp")
```

Arguments

X	Numeric. The function evaluates the CDF at x.
t	Numeric vector. Thresholds of the piecewise Pareto distribution.
alpha	Numeric vector. alpha[i] is the Pareto alpha in excess of t[i].
truncation	Numeric. If truncation is not NULL and truncation > t, then the distribution is truncated at truncation.
truncation_type	

Character. If truncation_type = "wd" then the whole distribution is truncated. If truncation_type = "lp" then a truncated Pareto is used for the last piece.

Value

Distribution function of the piecewise Pareto distribution with parameter vectors t and alpha evaluated at x

References

Riegel, U. (2018) Matching tower information with piecewise Pareto. European Actuarial Journal 8(2): 437–460

Examples

```
t <- c(1000, 2000, 3000)
alpha <- c(1, 1.5, 2)
x <- 0:10 * 1000
pPiecewisePareto(x, t, alpha)
pPiecewisePareto(x, t, alpha, truncation = 5000, truncation_type = "lp")
pPiecewisePareto(x, t, alpha, truncation = 5000, truncation_type = "wd")</pre>
```

PiecewisePareto_Layer_Mean

Layer Mean of the Piecewise Pareto Distribution

Description

Calculates the expected loss of a piecewise Pareto distribution in a reinsurance layer

Usage

```
PiecewisePareto_Layer_Mean(
   Cover,
   AttachmentPoint,
   t,
   alpha,
   truncation = NULL,
   truncation_type = "lp"
)
```

Arguments

Cover Numeric. Cover of the reinsurance layer.

AttachmentPoint

Numeric. Attachment point of the reinsurance layer.

t Numeric vector. Thresholds of the piecewise Pareto distribution. alpha Numeric vector. alpha[i] is the Pareto alpha in excess of t[i].

truncation Numeric. If truncation is not NULL and truncation > t, then the Pareto dis-

tribution is truncated at truncation.

truncation_type

Character. If truncation_type = "wd" then the whole distribution is truncated. If truncation_type = "lp" then a truncated Pareto is used for the last piece.

Value

The expected loss of the (truncated) piecewise Pareto distribution with parameter vectors t and alpha in the layer Cover xs AttachmentPoint

References

Riegel, U. (2018) Matching tower information with piecewise Pareto. European Actuarial Journal 8(2): 437–460

Examples

```
t <- c(1000, 2000, 3000)
alpha <- c(1, 1.5, 2)
PiecewisePareto_Layer_Mean(4000, 1000, t, alpha)
PiecewisePareto_Layer_Mean(4000, 1000, t, alpha, truncation = 5000)
PiecewisePareto_Layer_Mean(4000, 1000, t, alpha, truncation = 5000, truncation_type = "lp")
PiecewisePareto_Layer_Mean(4000, 1000, t, alpha, truncation = 5000, truncation_type = "wd")</pre>
```

PiecewisePareto_Layer_SM

Second Layer Moment of the Piecewise Pareto Distribution

Description

Calculates the second moment of a piecewise Pareto distribution in a reinsurance layer

Usage

```
PiecewisePareto_Layer_SM(
   Cover,
   AttachmentPoint,
   t,
   alpha,
   truncation = NULL,
   truncation_type = "lp"
)
```

Arguments

Cover of the reinsurance layer.

AttachmentPoint

Numeric. Attachment point of the reinsurance layer.

t Numeric vector. Thresholds of the piecewise Pareto distribution. alpha Numeric vector. alpha[i] is the Pareto alpha in excess of t[i].

truncation Numeric. If truncation is not NULL and truncation > t, then the Pareto dis-

tribution is truncated at truncation.

truncation_type

Character. If truncation_type = "wd" then the whole distribution is truncated. If truncation_type = "lp" then a truncated Pareto is used for the last piece.

Value

The second moment of the (truncated) piecewise Pareto distribution with parameter vectors t and alpha in the layer Cover xs AttachmentPoint

Examples

```
t <- c(1000, 2000, 3000)
alpha <- c(1, 1.5, 2)
PiecewisePareto_Layer_SM(4000, 1000, t, alpha)
PiecewisePareto_Layer_SM(4000, 1000, t, alpha, truncation = 5000)
PiecewisePareto_Layer_SM(4000, 1000, t, alpha, truncation = 5000, truncation_type = "lp")
PiecewisePareto_Layer_SM(4000, 1000, t, alpha, truncation = 5000, truncation_type = "wd")</pre>
```

PiecewisePareto_Layer_Var

Layer Variance of the Piecewise Pareto Distribution

Description

Calculate the variance of a piecewise Pareto distribution in a reinsurance layer

Usage

```
PiecewisePareto_Layer_Var(
   Cover,
   AttachmentPoint,
   t,
   alpha,
   truncation = NULL,
   truncation_type = "lp"
)
```

Arguments

Cover Numeric. Cover of the reinsurance layer.

AttachmentPoint

Numeric. Attachment point of the reinsurance layer.

t Numeric vector. Thresholds of the piecewise Pareto distribution. alpha Numeric vector. alpha[i] is the Pareto alpha in excess of t[i].

truncation Numeric. If truncation is not NULL and truncation > t, then the Pareto dis-

tribution is truncated at truncation.

truncation_type

Character. If truncation_type = "wd" then the whole distribution is truncated. If truncation_type = "lp" then a truncated Pareto is used for the last piece.

Value

The variance of the (truncated) piecewise Pareto distribution with parameter vectors t and alpha in the layer Cover xs AttachmentPoint

Examples

```
t <- c(1000, 2000, 3000)
alpha <- c(1, 1.5, 2)
PiecewisePareto_Layer_Var(4000, 1000, t, alpha)
PiecewisePareto_Layer_SM(4000, 1000, t, alpha) - PiecewisePareto_Layer_Mean(4000, 1000, t, alpha)^2
PiecewisePareto_Layer_Var(4000, 1000, t, alpha, truncation = 5000)
PiecewisePareto_Layer_Var(4000, 1000, t, alpha, truncation = 5000, truncation_type = "lp")
PiecewisePareto_Layer_Var(4000, 1000, t, alpha, truncation = 5000, truncation_type = "wd")</pre>
```

PiecewisePareto_Match_Layer_Losses

Match a Tower of Expected Layers Losses

Description

Matches the expected losses of a tower of reinsurance layers using a piecewise Pareto severity

Usage

```
PiecewisePareto_Match_Layer_Losses(
   Attachment_Points,
   Expected_Layer_Losses,
   Unlimited_Layers = FALSE,
   Frequencies = NULL,
   FQ_at_lowest_AttPt = NULL,
   FQ_at_highest_AttPt = NULL,
   TotalLoss_Frequencies = NULL,
   minimize_ratios = TRUE,
   Use_unlimited_Layer_for_FQ = TRUE,
   truncation = NULL,
   truncation_type = "lp",
   dispersion = 1,
```

```
tolerance = 1e-10,
alpha_max = 100,
merge_tolerance = 1e-06,
RoL_tolerance = 1e-06)
```

Arguments

Attachment Points

Numeric vector. Vector containing the attachment points of consecutive layers in increasing order

Expected_Layer_Losses

Numeric vector. Vector containing the expected losses of layers xs the attachment points.

Unlimited_Layers

Logical. If TRUE, then Expected_Layer_Losses[i] contains the expected loss of Inf xs Attachment_Points[i]. If FALSE then Expected_Layer_Losses[i] contains the expected loss of the layer Attachment_Points[i+1] xs Attachment_Points[i]

Frequencies

Numeric vector. Expected frequencies excess the attachment points. The vector may contain NAs. If NULL then the function calculates frequencies.

FQ_at_lowest_AttPt

Numerical. Expected frequency excess Attachment_Points[1]. Overrules first entry in Frequencies.

FQ_at_highest_AttPt

Numerical. Expected frequency excess Attachment_Points[k]. Overrules last entry in Frequencies.

TotalLoss_Frequencies

Numeric vector. TotalLoss_Frequencies[i] is the frequency of total losses to layer i (i.e. Attachment_Points[i+1] - Attachment_Points[i] xs Attachment_Points[i]). TotalLoss_Frequencies[i] is the frequency for losses larger than or equal to Attachment_Points[i+1], whereas Frequencies[i] is the frequency of losses larger than Attachment_Points[i]. TotalLoss_Frequencies[i] > Frequencies[i+1] means that there is a point mass of the severity at Attachment_Points[i+1].

minimize_ratios

Logical. If TRUE then ratios between alphas are minimized.

Use_unlimited_Layer_for_FQ

Logical. Only relevant if no frequency is provided for the highest attachment point by the user. If TRUE then the frequency is calculated using the Pareto alpha between the last two layers.

truncation

Numeric. If truncation is not NULL, then the distribution is truncated at truncation.

truncation_type

Character. If truncation_type = "wd" then the whole distribution is truncated. If truncation_type = "lp" then a truncated Pareto is used for the last piece.

dispersion Numerical. Dispersion of the claim count distribution in the resulting PPP_Model.

tolerance Numerical tolerance.

alpha_max Numerical. Maximum alpha to be used for the matching.

merge_tolerance

Numerical. Consecutive Pareto pieces are merged if the alphas deviate by less than merge_tolerance.

RoL_tolerance

Numerical. Consecutive layers are merged if RoL decreases less than factor 1 – RoL_tolerance.

Value

A PPP_Model object that contains the information about a collective model with a Panjer distributed claim count and a Piecewise Pareto distributed severity. The object contains the following elements:

- FQ Numerical. Frequency in excess of the lowest threshold of the piecewise Pareto distribution
- t Numeric vector. Vector containing the thresholds for the piecewise Pareto distribution
- alpha Numeric vector. Vector containing the Pareto alphas of the piecewise Pareto distribution
- truncation Numerical. If truncation is not NULL and truncation > max(t), then the distribution is truncated at truncation.
- truncation_type Character. If truncation_type = "wd" then the whole distribution is truncated. If truncation_type = "lp" then a truncated Pareto is used for the last piece.
- dispersion Numerical. Dispersion of the Panjer distribution (i.e. variance to mean ratio).
- Status Numerical indicator: 0 = success, 1 = some information has been ignored, 2 = no solution found
- Comment Character, Information on whether the fit was successful

References

Riegel, U. (2018) Matching tower information with piecewise Pareto. European Actuarial Journal 8(2): 437–460

```
AP <- Example1_AP
EL <- Example1_EL
PiecewisePareto_Match_Layer_Losses(AP, EL)
EL_unlimited <- rev(cumsum(rev(Example1_EL)))
PiecewisePareto_Match_Layer_Losses(AP, EL_unlimited, Unlimited_Layers = TRUE)
PiecewisePareto_Match_Layer_Losses(AP, EL, FQ_at_lowest_AttPt = 0.5)
Example1_FQ <- c(0.3, 0.15, 0.08, 0.02, 0.005)
PiecewisePareto_Match_Layer_Losses(AP, EL, Frequencies = Example1_FQ)
```

PiecewisePareto_ML_Estimator_Alpha

Maximum Likelihood Estimation of the Alphas of the Piecewise Pareto Distribution

Description

Calculates the maximum likelihood estimator of the parameter vector alpha for a a piecewise Pareto distribution with given vector t and (if applicable) a known truncation

Usage

```
PiecewisePareto_ML_Estimator_Alpha(
  losses,
  truncation = NULL,
  truncation_type = "lp",
  reporting_thresholds = NULL,
  is.censored = NULL,
  weights = NULL,
  alpha_min = 0.001,
  alpha_max = 10
)
```

Arguments

is.censored

weights

losses Numeric vector. Losses that are used for the ML estimation. Numeric vector. Thresholds of the piecewise Pareto distribution. t Numeric. If truncation is not NULL and truncation > max(t), then the distritruncation bution is truncated at truncation. truncation_type Character. If truncation_type = "wd" then the whole distribution is truncated. If truncation_type = "lp" then a truncated Pareto is used for the last piece. reporting_thresholds Numeric vector. Allows to enter loss specific reporting thresholds. If NULL then

all reporting thresholds are assumed to be less than or equal to t[1].

Logical vector. TRUE indicates that a loss has been censored by the policy limit. The assumption is that the uncensored losses are piecewise Pareto distributed with the alphas we are looking for. is.censored = NULL means that no losses

are censored.

Numeric vector. Weights for the losses. For instance weights[i] = 2 and weights[j] = 1 for j!= i has the same effect as adding another loss of size

loss[i].

alpha_min Numeric. Lower bound for the estimated alphas (only used in truncated case).

Numeric. Upper bound for the estimated alphas (only used in truncated case). alpha_max

46 PiecewisePareto_PDF

Value

Maximum likelihood estimator for the parameter alpha of a Pareto distribution with threshold t given the observations losses

Examples

```
losses <- rPiecewisePareto(10000, t = c(100,200,300), alpha = c(1,2,3))
PiecewisePareto_ML_Estimator_Alpha(losses, c(100,200,300))
losses <- rPiecewisePareto(10000, t = c(100, 200, 300), alpha = c(1, 2, 3),
                            truncation = 500, truncation_type = "wd")
PiecewisePareto_ML_Estimator_Alpha(losses, c(100,200,300))
PiecewisePareto_ML_Estimator_Alpha(losses, c(100,200,300),
                                  truncation = 500, truncation_type = "wd")
reporting_thresholds <- rPareto(10000, 100, 3)</pre>
index <- losses > reporting_thresholds
losses <- losses[index]</pre>
reporting_thresholds <- reporting_thresholds[index]</pre>
PiecewisePareto_ML_Estimator_Alpha(losses, c(100,200,300),
                                  truncation = 500, truncation_type = "wd")
PiecewisePareto_ML_Estimator_Alpha(losses, c(100,200,300),
                                  truncation = 500, truncation_type = "wd",
                                  reporting_thresholds = reporting_thresholds)
losses <- c(140, 240, 490, 200, 110, 710, 120, 190, 210, 310)
w <- rep(1, length(losses))</pre>
w[1] <- 2
losses2 <- c(losses, losses[1])</pre>
PiecewisePareto_ML_Estimator_Alpha(losses, c(100,200,300), weights = w)
PiecewisePareto_ML_Estimator_Alpha(losses2, c(100,200,300))
```

PiecewisePareto_PDF Density of the Piecewise Pareto Distribution

Description

Calculates the density function of the piecewise Pareto distribution. This function is deprecated. Use dPiecewisePareto instead.

Usage

```
PiecewisePareto_PDF(x, t, alpha, truncation = NULL, truncation_type = "lp")
```

Arguments

```
x Numeric. The function evaluates the density at x.t Numeric vector. Thresholds of the piecewise Pareto distribution.alpha Numeric vector. alpha[i] is the Pareto alpha in excess of t[i].
```

pPareto 47

truncation Numeric. If truncation is not NULL and truncation > t, then the distribution

is truncated at truncation.

truncation_type

Character. If truncation_type = "wd" then the whole distribution is truncated. If truncation_type = "lp" then a truncated Pareto is used for the last piece.

Value

Density function of the piecewise Pareto distribution with parameter vectors t and alpha evaluated at x

Examples

```
t <- c(1000, 2000, 3000) alpha <- c(1, 1.5, 2) x <- 0:10 * 1000 dPiecewisePareto(x, t, alpha) dPiecewisePareto(x, t, alpha, truncation = 5000, truncation_type = "lp") dPiecewisePareto(x, t, alpha, truncation = 5000, truncation_type = "wd")
```

pPareto

Distribution Function of the Pareto Distribution

Description

Calculates the cumulative distribution function of a Pareto distribution

Usage

```
pPareto(x, t, alpha, truncation = NULL)
```

Arguments

x Numeric. The function evaluates the CDF at x.t Numeric. Threshold of the Pareto distribution.

alpha Numeric. Pareto alpha.

truncation Numeric. If truncation is not NULL and truncation > t, then the Pareto dis-

tribution is truncated at truncation.

Value

Distribution function of the Pareto distribution with parameters t and alpha evaluated at x

48 pPiecewisePareto

Examples

```
x <- 0:10 * 1000
pPareto(x, 1000, 2)
pPareto(x, 1000, 2, truncation = 5000)
```

pPiecewisePareto

Distribution Function of the Piecewise Pareto Distribution

Description

Calculates the cumulative distribution function of a Piecewise Pareto Distribution

Usage

```
pPiecewisePareto(x, t, alpha, truncation = NULL, truncation_type = "lp")
```

Arguments

x Numeric. The function evaluates the CDF at x.

t Numeric vector. Thresholds of the piecewise Pareto distribution. alpha Numeric vector. alpha[i] is the Pareto alpha in excess of t[i].

truncation Numeric. If truncation is not NULL and truncation > t, then the distribution

is truncated at truncation.

truncation_type

Character. If truncation_type = "wd" then the whole distribution is truncated. If truncation_type = "lp" then a truncated Pareto is used for the last piece.

Value

Distribution function of the piecewise Pareto distribution with parameter vectors t and alpha evaluated at x

References

Riegel, U. (2018) Matching tower information with piecewise Pareto. European Actuarial Journal 8(2): 437–460

```
t <- c(1000, 2000, 3000)

alpha <- c(1, 1.5, 2)

x <- 0:10 * 1000

pPiecewisePareto(x, t, alpha)

pPiecewisePareto(x, t, alpha, truncation = 5000, truncation_type = "lp")

pPiecewisePareto(x, t, alpha, truncation = 5000, truncation_type = "wd")
```

PPP_Model 49

PPP_Model

PPP_Model (Collective Panjer & Piecewise Pareto Model) Object

Description

Constructor function for the PPP_Model object

Usage

```
PPP_Model(
  FQ = NULL,
  t = NULL,
  alpha = NULL,
  truncation = NULL,
  truncation_type = "lp",
  dispersion = 1,
  Status = 0,
  Comment = "OK"
)
```

Arguments

	FQ	Numerical. Expected claim count of the collective model.
	t	Numeric vector. Vector containing the thresholds of the Piecewise Pareto distribution.
	alpha	Numeric vector. Vector containing the alphas of the Piecewise Pareto distribution.
	truncation	Numerical. If truncation is not NULL and truncation $> \max(t)$, then the distribution is truncated at truncation.
truncation_type		
		Character. If truncation_type = "wd" then the whole distribution is truncated. If truncation_type = "lp" then a truncated Pareto is used for the last piece.
	dispersion	Numerical. Dispersion of the Panjer distribution (i.e. variance to mean ratio).
	Status	Numerical indicator if a function returns a PPP_Model object: $0 = \text{success}$, $1 = \text{some information has been ignored}$, $2 = \text{no solution found}$
	Comment	Charakter. An optional comment.

```
PPPM <- PPP_Model(2, c(1000,2000), c(1,2), dispersion = 2) PPPM
```

```
PPP_Model_Excess_Frequency
```

Expected Frequency in Excess of a Threshold

Description

Calculates the expected frequency in excess of a threshold for a PPP_Model

Usage

```
PPP_Model_Excess_Frequency(x, PPP_Model)
```

Arguments

x Numeric. Threshold.PPP_Model PPP_Model object.

Value

The expected frequency in excess of x for the given PPP_Model

Examples

```
PPPM <- PiecewisePareto_Match_Layer_Losses(Example1_AP, Example1_EL)
PPPM
Excess_Frequency(PPPM, c(-Inf, 0, 1000, 2000, 3000, Inf))</pre>
```

```
PPP_Model_Exp_Layer_Loss
```

Expected Loss of a Reinsurance Layer

Description

Calculates the expected loss of a reinsurance layer for a PPP_Model. This function is deprecated. Use Layer_Mean instead.

Usage

```
PPP_Model_Exp_Layer_Loss(Cover, AttachmentPoint, PPP_Model)
```

Arguments

Cover Numeric. Cover of the reinsurance layer. Use Inf for unlimited layers.

AttachmentPoint

Numeric. Attachment point of the reinsurance layer.

PPP_Model PPP_Model object.

51

Value

The expected loss of the layer Cover xs AttachmentPoint for the given PPP_Model

Examples

```
PPPM <- PiecewisePareto_Match_Layer_Losses(Example1_AP, Example1_EL)
PPPM
Example1_Cov <- c(diff(Example1_AP), Inf)
Example1_AP
Example1_Cov
Example1_Cov
Example1_EL
Layer_Mean(PPPM, Example1_Cov, Example1_AP)</pre>
```

PPP_Model_Layer_Sd

Standard Deviation of a Reinsurance Layer

Description

Calculates the standard deviation of the loss in a reinsurance layer for a PPP_Model

Usage

```
PPP_Model_Layer_Sd(Cover, AttachmentPoint, PPP_Model)
```

Arguments

Cover Numeric. Cover of the reinsurance layer. Use Inf for unlimited layers.

AttachmentPoint

Numeric. Attachment point of the reinsurance layer.

PPP_Model object.

Value

The standard deviation of the loss in the layer Cover xs AttachmentPoint for the given PPP_Model

```
PPPM <- PiecewisePareto_Match_Layer_Losses(Example1_AP, Example1_EL)
PPPM
Example1_Cov <- c(diff(Example1_AP), Inf)
Layer_Sd(PPPM, Example1_Cov, Example1_AP)</pre>
```

52 PPP_Model_Simulate

PPP_Model_Layer_Var

Variance of a Reinsurance Layer

Description

Calculates the variance of the loss in a reinsurance layer for a PPP_Model. This function is deprecated. Use Layer_Var instead.

Usage

```
PPP_Model_Layer_Var(Cover, AttachmentPoint, PPP_Model)
```

Arguments

Cover Numeric. Cover of the reinsurance layer. Use Inf for unlimited layers.

AttachmentPoint

Numeric. Attachment point of the reinsurance layer.

PPP_Model PPP_Model object.

Value

The variance of the loss in the layer Cover xs AttachmentPoint for the given PPP_Model

Examples

```
PPPM <- PiecewisePareto_Match_Layer_Losses(Example1_AP, Example1_EL)
PPPM
Example1_Cov <- c(diff(Example1_AP), Inf)
Layer_Var(PPPM, Example1_Cov, Example1_AP)
```

PPP_Model_Simulate

Simulate Losses with a PPP_Model

Description

Simulates losses of a PPP_Model

Usage

```
PPP_Model_Simulate(n, PPP_Model)
```

Arguments

n Integer. Number of Simulations.

PPP_Model PPP_Model object.

print.PGP_Model 53

Value

A matrix where row k contains the simulated losses of the kth simulation.

Examples

print.PGP_Model

Print a PGP_Model Object (Collective Panjer & Generalized Pareto Model) Object

Description

Print method for PGP_Model objects

Usage

```
## S3 method for class 'PGP_Model'
print(x, ...)
```

Arguments

x PGP_Model object.

... Other arguments, all currently ignored.

print.PPP_Model

Print a PPP_Model Object (Collective Panjer & Piecewise Pareto Model) Object

Description

Print method for PPP_Model objects

Usage

```
## S3 method for class 'PPP_Model'
print(x, ...)
```

Arguments

x PPP_Model object.

... Other arguments, all currently ignored.

54 qPareto

-	<u> </u>	n -		
a	Ger	าrai	reto	۱

Quantile Function of the generalized Pareto Distribution

Description

Calculates the quantile function of a generalized Pareto distribution

Usage

```
qGenPareto(p, t, alpha_ini, alpha_tail, truncation = NULL)
```

Arguments

p Numeric. The function evaluates the inverse CDF at p.t Numeric. Threshold of the piecewise Pareto distribution.

alpha_ini Numeric. Initial Pareto alpha.
alpha_tail Numeric. Tail Pareto alpha.

truncation Numeric. If truncation is not NULL and truncation > t, then the generalized

Pareto distribution is truncated at truncation.

Value

Quantile function of the Pareto distribution with parameters t, alpha_ini and alpha_tail, evaluated at p

Examples

```
p <- 0:10 * 0.1
qGenPareto(p, 1000, 2, 3)
qGenPareto(p, 1000, 2, 3, truncation = 5000)</pre>
```

qPareto

Quantile Function of the Pareto Distribution

Description

Calculates the quantile function of a Pareto distribution

Usage

```
qPareto(p, t, alpha, truncation = NULL)
```

qPiecewisePareto 55

Arguments

p	Numeric. The function evaluates the inverse CDF at p.
t	Numeric. Threshold of the piecewise Pareto distribution.

alpha Numeric. Pareto alpha.

truncation Numeric. If truncation is not NULL and truncation > t, then the Pareto dis-

tribution is truncated at truncation.

Value

Quantile function of the Pareto distribution with parameters t and alpha, evaluated at p

Examples

```
p <- 0:10 * 0.1
qPareto(p, 1000, 2)
qPareto(p, 1000, 2, truncation = 5000)</pre>
```

qPiecewisePareto

Quantile Function of the Piecewise Pareto Distribution

Description

Calculates the quantile function of a piecewise Pareto distribution

Usage

```
qPiecewisePareto(p, t, alpha, truncation = NULL, truncation_type = "lp")
```

Arguments

Numeric. The function evaluates the quantile function at p.
 Numeric vector. Thresholds of the piecewise Pareto distribution.
 Numeric vector. alpha[i] is the Pareto alpha in excess of t[i].

truncation Numeric. If truncation is not NULL and truncation > t, then the distribution

is truncated at truncation.

truncation_type

Character. If truncation_type = "wd" then the whole distribution is truncated. If truncation_type = "lp" then a truncated Pareto is used for the last piece.

Value

Quantile function of the piecewise Pareto distribution with parameter vectors t and alpha evaluated at p

56 rGenPareto

Examples

```
t <- c(1000, 2000, 3000)
alpha <- c(1, 1.5, 2)
p <- 0:10 * 0.1
qPiecewisePareto(p, t, alpha)
qPiecewisePareto(p, t, alpha, truncation = 5000, truncation_type = "lp")
qPiecewisePareto(p, t, alpha, truncation = 5000, truncation_type = "wd")</pre>
```

rGenPareto

Simulation of the generalized Pareto Distribution

Description

Generates random deviates of a generalized Pareto distribution

Usage

```
rGenPareto(n, t, alpha_ini, alpha_tail, truncation = NULL)
```

Arguments

n	Numeric. Number of observations.
t	Numeric vector. Thresholds of the generalized Pareto distributions
alpha_ini	Numeric vector. Initial Pareto alphas of the generalized Pareto distributions.
alpha_tail	Numeric vector. Tail Pareto alphas of the generalized Pareto distributions.
truncation	NULL or Numeric vector. If truncation is not NULL and truncation > t, then the generalized Pareto distributions are truncated at truncation (resampled generalized Pareto)

Value

A vector of n samples from the (truncated) generalized Pareto distribution with parameters t, $alpha_ini$ and $alpha_tail$

```
rGenPareto(100, 1000, 2, 3) 
rGenPareto(100, 1000, 2, 3, truncation = 2000) 
rGenPareto(100, t = c(1, 10, 100, 1000), alpha_ini = 1, alpha_tail = c(2, 5))
```

rPareto 57

rPareto

Simulation of the Pareto Distribution

Description

Generates random deviates of a Pareto distribution

Usage

```
rPareto(n, t, alpha, truncation = NULL)
```

Arguments

n Numeric. Number of observations.

t Numeric vector. Thresholds of the Pareto distributionsalpha Numeric vector. Pareto alphas of the Pareto distributions.

truncation NULL or Numeric vector. If truncation is not NULL and truncation > t, then

the Pareto distribution is truncated at truncation (resampled Pareto)

Value

A vector of n samples from the (truncated) Pareto distribution with parameters t and alpha

Examples

```
rPareto(100, 1000, 2)
rPareto(100, 1000, 2, truncation = 2000)
rPareto(100, t = c(1, 10, 100, 1000, 10000), alpha = c(1, 2, 4, 8, 16))
```

rPiecewisePareto

Simulation of the Piecewise Pareto Distribution

Description

Generates random deviates of a piecewise Pareto distribution

Usage

```
rPiecewisePareto(
   n,
   t,
   alpha,
   truncation = NULL,
   truncation_type = "lp",
   scale_pieces = NULL
)
```

58 Simulate_Losses

Arguments

n Numeric. Number of simulations

t Numeric vector. Thresholds of the piecewise Pareto distribution.

alpha Numeric vector. alpha[i] is the Pareto alpha in excess of t[i].

truncation Numeric. If truncation is not NULL and truncation > t, then the distribution

is truncated at truncation.

truncation_type

Character. If truncation_type = "wd" then the whole distribution is truncated. If truncation_type = "lp" then a truncated Pareto is used for the last piece.

interval (t[i], t[i+1])) is scaled with the factor const * scale_pieces[i]

(where const is a normalization constant)

Value

A vector of n samples from the (truncated) piecewise Pareto distribution with parameter vectors t and alpha

Examples

```
t <- c(1000, 2000, 3000)
alpha <- c(1, 1.5, 2)
rPiecewisePareto(100, t, alpha)
rPiecewisePareto(100, t, alpha, truncation = 5000)
rPiecewisePareto(100, t, alpha, truncation = 5000, truncation_type = "lp")
rPiecewisePareto(100, t, alpha, truncation = 5000, truncation_type = "wd")</pre>
```

Simulate_Losses

Simulate Losses with a Collective Model

Description

Simulates losses with a collective model

Usage

```
Simulate_Losses(CollectiveModel, nyears = 1)
```

Arguments

CollectiveModel

A collective model object. Currently only PPP_Models are handled.

nyears Integer. Number of simulated years.

Value

A matrix where row k contains the simulated losses of the kth simulated year.

Examples

```
Simulate_Losses.PGP_Model
```

Simulate Losses with a PGP_Model

Description

Simulates losses with a PGP_Model

Usage

```
## S3 method for class 'PGP_Model'
Simulate_Losses(CollectiveModel, nyears = 1)
```

Arguments

```
CollectiveModel
```

PGP_Model object.

nyears

Integer. Number of simulated years.

Value

A matrix where row k contains the simulated losses of the kth simulated year.

```
PGPM <- PGP_Model(2, 1000, 1, 2, dispersion = 2)
PGPM
Simulate_Losses(PGPM, 100)</pre>
```

```
Simulate_Losses.PPP_Model
```

Simulate Losses with a PPP_Model

Description

Simulates losses with a PPP_Model

Usage

```
## S3 method for class 'PPP_Model'
Simulate_Losses(CollectiveModel, nyears = 1)
```

Arguments

CollectiveModel

PPP_Model object.

nyears Integer. Number of simulated years.

Value

A matrix where row k contains the simulated losses of the kth simulated year.

Index

* datasets	Pareto_Find_Alpha_btw_FQs, 29
Example1_AP, 5	Pareto_Find_Alpha_btw_Layers, 31
Example1_EL, 6	Pareto_Layer_Mean, 32
	Pareto_Layer_SM, 33
dGenPareto, 3	Pareto_Layer_Var, 33
dPareto, 4	Pareto_ML_Estimator_Alpha, 34
dPiecewisePareto, 4	Pareto_PDF, 36
ar recent ser ar eve, r	pGenPareto, 36
Example1_AP, 5	PGP_Model, 37
Example1_EL, 6	PiecewisePareto_CDF, 38
Excess_Frequency, 6	PiecewisePareto_Layer_Mean, 39
Excess_Frequency.PGP_Model, 7	PiecewisePareto_Layer_SM, 40
Excess_Frequency.PPP_Model, 7	
_ , ,	PiecewisePareto_Layer_Var, 41
Fit_PML_Curve, 8	PiecewisePareto_Match_Layer_Losses, 42
Fit_References, 9	PiecewisePareto_ML_Estimator_Alpha, 45
	PiecewisePareto_PDF, 46
GenPareto_Layer_Mean, 12	pPareto, 47
GenPareto_Layer_SM, 13	pPiecewisePareto, 48
GenPareto_Layer_Var, 14	PPP_Model, 49
<pre>GenPareto_ML_Estimator_Alpha, 15</pre>	PPP_Model_Excess_Frequency, 50
	PPP_Model_Exp_Layer_Loss, 50
is.PGP_Model, 16	PPP_Model_Layer_Sd, 51
is.PPP_Model, 17	PPP_Model_Layer_Var, 52
is.valid.PGP_Model, 18	PPP_Model_Simulate, 52
is.valid.PPP_Model, 18	print.PGP_Model, 53
	print.PPP_Model, 53
Layer_Mean, 19	aCarDanata 54
Layer_Mean.PGP_Model, 20	qGenPareto, 54
Layer_Mean.PPP_Model, 20	qPareto, 54
Layer_Sd, 21	qPiecewisePareto, 55
Layer_Sd.PGP_Model, 22	rGenPareto, 56
Layer_Sd.PPP_Model, 23	rPareto, 57
Layer_Var, 23	rPiecewisePareto, 57
Layer_Var.PGP_Model, 24	TI TECEWISEI AI ELO, 37
Layer_Var.PPP_Model, 25	Simulate_Losses, 58
Local_Pareto_Alpha, 26	Simulate_Losses.PGP_Model, 59
D 4 005 37	Simulate_Losses.PPP_Model, 60
Pareto_CDF, 27	
Pareto_Extrapolation, 27	
Pareto_Find_Alpha_btw_FQ_Layer, 30	