Fair and Accurate Regression

Anna Deza¹, Andrés Gómez², Alper Atamtürk¹

¹Department of Industrial Engineering and Operations Research, University of California, Berkeley

²Department of Industrial and Systems Engineering, University of Southern California

Sunday, October 20 2024 INFORMS Annual Meeting

BUSINESS

U.S. Equal Employment Opportunity Commission

EDUCATION

The Princeton Review's pricing method has a terrible impact on Asians, study finds

Peter Jacobs Sep 2, 2015, 8:42 AM PDT

→ Share
□ Save

Asian families living in the US are almost twice as likely to be charged higher prices by college test prep service The Princeton Review, according to a new study from ProPublica.

Press Release 09-11-2023

iTutorGroup to Pay \$365,000 to Settle EEOC Discriminatory Hiring Suit

Settles Federal Charges Tutoring Provider Programmed its Online Software to

How a computer algorithm caused a grading crisis in British schools

PUBLISHED FRI, AUG 21 2020-7:18 AM EDT | UPDATED FRI, AUG 21 2020-8:45 AM EDT

Sam Shead #SAM_L_SHEAD WATCH LIVE

EY_

Approximately 39% of A-level results were downgraded by exam regulator

Racial bias found in widely used health care algorithm

An estimated 200 million people are affected each year by similar tools that are used in hospital networks

e the worst affected as the algorithm copied the J.K.'s education system.

Deza, Gómez, & Atamtürk Fair and Accurate Regression

$$P(\text{score} > 75) = 0.35$$

 $P(\text{score} > 75|\text{protected}) = 0.32$

$$P(\text{score} > 75) = 0.35$$

 $P(\text{score} > 75|\text{protected}) = 0.32$

$$P(\text{score} > 70) = 0.52$$

 $P(\text{score} > 70|\text{protected}) = 0.38$

- Fair Classification: fairness at a single b, vast existing literature
- Fair Regression: fairness at all b, far less work → problem we address

```
Data: observations i = 1, ..., m, consisting of:
```

 $\mathbf{x}_i \in \mathbb{R}^n$ feature vector

 $y_i \in \mathbb{R}$ target label

 $\textit{a}_{\textit{i}} \in \{0,1\}$ protected class status

Data: observations i = 1, ..., m, consisting of:

 $\mathbf{x}_i \in \mathbb{R}^n$ feature vector

 $y_i \in \mathbb{R}$ target label

 $a_i \in \{0,1\}$ protected class status

$$\min \ \sum_{i=1}^m \mathcal{L}(\hat{y}_i, y_i) + \lambda \ \max_{b \in \mathbb{R}} \left(\hat{P}(\hat{y} > b) - \hat{P}(\hat{y} > b|a = 1) \right)$$

Data: observations i = 1, ..., m, consisting of:

 $\mathbf{x}_i \in \mathbb{R}^n$ feature vector

 $y_i \in \mathbb{R}$ target label

 $a_i \in \{0,1\}$ protected class status

$$\min \sum_{i=1}^{m} \mathcal{L}(\hat{y}_i, y_i) + \lambda \max_{b \in \mathbb{R}} \left(\hat{P}(\hat{y} > b) - \hat{P}(\hat{y} > b | a = 1) \right)$$

$$P(\hat{y} > b) - P(\hat{y} > b | a = 1) = 0$$

$$\hat{y} \perp a$$

Data: observations i = 1, ..., m, consisting of:

 $\mathbf{x}_i \in \mathbb{R}^n$ feature vector

 $y_i \in \mathbb{R}$ target label

 $a_i \in \{0,1\}$ protected class status

$$\min \ \sum_{i=1}^m \mathcal{L}(\hat{y}_i, y_i) + \lambda \ \max_{b \in \mathbb{R}} \left(\frac{1}{m} \sum_{i=1}^m \mathbb{1}(\hat{y}_i > b) - \frac{1}{m_1} \sum_{i=1: a_i=1}^m \mathbb{1}(\hat{y}_i > b) \right)$$

Data: observations i = 1, ..., m, consisting of:

 $\mathbf{x}_i \in \mathbb{R}^n$ feature vector

 $y_i \in \mathbb{R}$ target label

 $a_i \in \{0,1\}$ protected class status

$$\min \ \sum_{i=1}^m \mathcal{L}(\hat{y}_i, y_i) + \lambda \max_{b \in \mathbb{R}} \left(\frac{1}{m} \sum_{i=1}^m \mathbb{1}(\hat{y}_i > b) - \frac{1}{m_1} \sum_{i=1: a_i=1}^m \mathbb{1}(\hat{y}_i > b) \right)$$

Data: observations i = 1, ..., m, consisting of:

 $\mathbf{x}_i \in \mathbb{R}^n$ feature vector

 $y_i \in \mathbb{R}$ target label

 $a_i \in \{0,1\}$ protected class status

Training problem:

$$\min \ \sum_{i=1}^m \mathcal{L}(\hat{y}_i, y_i) + \lambda \max_{j \in 1, ... \ell} \left(\frac{1}{m} \sum_{i=1}^m \mathbb{1}(\hat{y}_i > b_j) - \frac{1}{m_1} \sum_{i=1: a_i=1}^m \mathbb{1}(\hat{y}_i > b_j) \right)$$

Discretize \mathbb{R} , only consider fairness at ℓ points $b_1 < b_2 < \ldots < b_\ell$

Data: observations i = 1, ..., m, consisting of:

 $\mathbf{x}_i \in \mathbb{R}^n$ feature vector

 $y_i \in \mathbb{R}$ target label

 $a_i \in \{0,1\}$ protected class status

Training problem:

$$\min \sum_{i=1}^{m} \mathcal{L}_i(\boldsymbol{w}^{\top} \boldsymbol{x}_i) + \lambda \max_{j \in 1, \dots \ell} \left(\frac{1}{m} \sum_{i=1}^{m} \mathbb{1}(\boldsymbol{w}^{\top} \boldsymbol{x}_i > b_j) - \frac{1}{m_1} \sum_{i=1: a_i = 1}^{m} \mathbb{1}(\boldsymbol{w}^{\top} \boldsymbol{x}_i > b_j) \right)$$

Discretize \mathbb{R} , only consider fairness at ℓ points $b_1 < b_2 < \ldots < b_\ell$

This presentation will focus on **linear regression**: $\hat{y}_i = \mathbf{w}^{\top} \mathbf{x}_i$

Literature Overview

$$\min \sum_{i=1}^{m} \mathcal{L}(\hat{y}_{i}, y_{i}) + \lambda \max_{j \in 1, \dots \ell} \left(\frac{1}{m} \sum_{i=1}^{m} \mathbb{1}(\hat{y}_{i} > b_{j}) - \frac{1}{m_{1}} \sum_{i=1: a_{i}=1}^{m} \mathbb{1}(\hat{y}_{i} > b_{j}) \right)$$

Literature Overview

$$\min \sum_{i=1}^{m} \mathcal{L}(\hat{y}_{i}, y_{i}) + \lambda \max_{j \in 1, \dots \ell} \left(\frac{1}{m} \sum_{i=1}^{m} \mathbb{1}(\hat{y}_{i} > b_{j}) - \frac{1}{m_{1}} \sum_{i=1: a_{i}=1}^{m} \mathbb{1}(\hat{y}_{i} > b_{j}) \right)$$

Existing methods:

- Convex proxies for fairness: Berk et al. (2017), Do et al. (2022)
- Reduction-based algorthims: Agarwal, Dudik & Wu (2019)
- MIO approach: Ye, Hanasusanto & Xie (2024)

A First Formulation for Fair Regression

Introduce $z_{ij} \in \{0,1\}$ to model $\mathbb{1}(\boldsymbol{w}^{\top}\boldsymbol{x}_i > b_j)$

$$\begin{aligned} &\min \ \sum_{i=1}^m \mathcal{L}(\boldsymbol{w}^\top \boldsymbol{x}_i, y_i) + \lambda \max_{j \in 1, \dots \ell} \left(\frac{1}{m} \sum_{i=1}^m z_{ij} - \frac{1}{m_1} \sum_{i=1: a_i = 1}^m z_{ij} \right) \\ &\text{s.t. } (\boldsymbol{w}^\top \boldsymbol{x}_i - b_j) z_{ij} \geq 0 \qquad \quad j \in [\ell], \ i \in [m] \\ &(\boldsymbol{w}^\top \boldsymbol{x}_j - b_j) (1 - z_{ij}) \leq 0 \qquad \quad j \in [\ell], \ i \in [m] \\ &\boldsymbol{z} \in \{0, 1\}^{m \times \ell}. \end{aligned}$$

A First Formulation for Fair Regression

Introduce $z_{ij} \in \{0,1\}$ to model $\mathbb{1}(\boldsymbol{w}^{\top}\boldsymbol{x}_i > b_j)$

$$\min \sum_{i=1}^{m} \mathcal{L}(\mathbf{w}^{\top} \mathbf{x}_{i}, y_{i}) + \lambda \max_{j \in 1, \dots \ell} \left(\frac{1}{m} \sum_{i=1}^{m} z_{ij} - \frac{1}{m_{1}} \sum_{i=1: a_{i}=1}^{m} z_{ij} \right)$$
s.t. $(\mathbf{w}^{\top} \mathbf{x}_{i} - b_{j}) z_{ij} \geq 0$ $j \in [\ell], i \in [m]$ $z_{ij} = 1 \Rightarrow \mathbf{w}^{\top} \mathbf{x}_{i} \geq b_{j}$

$$(\mathbf{w}^{\top} \mathbf{x}_{j} - b_{j}) (1 - z_{ij}) \leq 0 \qquad j \in [\ell], i \in [m] \quad z_{ij} = 0 \Rightarrow \mathbf{w}^{\top} \mathbf{x}_{i} \leq b_{j}$$

$$\mathbf{z} \in \{0, 1\}^{m \times \ell}.$$

A First Formulation for Fair Regression

Relax
$$z_{ij} \in \{0,1\}$$
 to model $\mathbb{1}(\boldsymbol{w}^{\top}\boldsymbol{x}_i > b_j)$

$$\min \sum_{i=1}^{m} \mathcal{L}(\boldsymbol{w}^{\top}\boldsymbol{x}_{i}, y_{i}) + \lambda \max_{j \in 1, \dots \ell} \left(\frac{1}{m} \sum_{i=1}^{m} z_{ij} - \frac{1}{m_{1}} \sum_{i=1: a_{i}=1}^{m} z_{ij} \right)$$
s.t. $(\boldsymbol{w}^{\top}\boldsymbol{x}_{i} - b_{j})z_{ij} \geq 0$ $j \in [\ell], \ i \in [m]$ $z_{ij} = 1 \Rightarrow \boldsymbol{w}^{\top}\boldsymbol{x}_{i} \geq b_{j}$
 $(\boldsymbol{w}^{\top}\boldsymbol{x}_{j} - b_{j})(1 - z_{ij}) \leq 0$ $j \in [\ell], \ i \in [m]$ $z_{ij} = 0 \Rightarrow \boldsymbol{w}^{\top}\boldsymbol{x}_{i} \leq b_{j}$

$$\boldsymbol{z} \in [0, 1]^{m \times \ell}.$$

Uninformative relaxation:

- Continuous relaxation solution is vanilla regression with no fairness
- Why? The closure of the convex hull has no links between \boldsymbol{w} and \boldsymbol{z}

Reformulation: Exploiting non-linear objective

$$\begin{split} \min \sum_{i=1}^{m} s_{i} + \lambda \max_{j \in 1, \dots, \ell} \left(\frac{1}{m} \sum_{i=1}^{m} z_{ij} - \frac{1}{m_{1}} \sum_{i=1: a_{i}=1}^{m} z_{ij} \right) \\ \text{s.t. } \mathcal{L}(\boldsymbol{w}^{\top} \boldsymbol{x}_{i}) \leq s_{i}, & i \in [m] \\ (\boldsymbol{w}^{\top} \boldsymbol{x}_{i} - b_{j}) z_{ij} \geq 0, & j \in [\ell], \ i \in [m] \\ (\boldsymbol{w}^{\top} \boldsymbol{x}_{i} - b_{j}) (1 - z_{ij}) \leq 0, & j \in [\ell], \ i \in [m] \\ z_{ij} \in \{0, 1\}, & j \in [\ell], \ i \in [m] \end{split}$$

Reformulation: Exploiting non-linear objective

$$\begin{aligned} \min \sum_{i=1}^{m} s_i + \lambda \max_{j \in 1, \dots, \ell} \left(\frac{1}{m} \sum_{i=1}^{m} z_{ij} - \frac{1}{m_1} \sum_{i=1: a_i = 1}^{m} z_{ij} \right) \\ \text{s.t.} \quad \mathcal{L}(\boldsymbol{w}^{\top} \boldsymbol{x}_i) \leq s_i, \\ (\boldsymbol{w}^{\top} \boldsymbol{x}_i - b_j) z_{ij} \geq 0, & j \in [\ell], \\ (\boldsymbol{w}^{\top} \boldsymbol{x}_i - b_j) (1 - z_{ij}) \leq 0, & j \in [\ell], \\ z_{ij} \in \{0, 1\}, & j \in [\ell], \\ \end{aligned}$$

 \rightarrow We will derive a strong reformulation by deriving a **compact extended** formulation for cl conv(X_i)

$$X_{i} = \{(\boldsymbol{w}, \boldsymbol{z}, s) \in \mathbb{R}^{n} \times \{0, 1\}^{\ell} \times \mathbb{R} : \\ \mathcal{L}_{i}(\boldsymbol{w}^{\top} \boldsymbol{x}_{i}) \leq s \\ (\boldsymbol{w}^{\top} \boldsymbol{x}_{i} - b_{j}) z_{j} \geq 0 \quad j \in [\ell] \\ (\boldsymbol{w}^{\top} \boldsymbol{x}_{i} - b_{j}) (1 - z_{j}) \geq 0 \quad j \in [\ell] \}$$

$$b_{1} \quad b_{2} \quad b_{3} \quad b_{4}$$

$$X_{i} = \{(\boldsymbol{w}, \boldsymbol{z}, s) \in \mathbb{R}^{n} \times \{0, 1\}^{\ell} \times \mathbb{R} : \\ \mathcal{L}_{i}(\boldsymbol{w}^{\top} \boldsymbol{x}_{i}) \leq s \\ (\boldsymbol{w}^{\top} \boldsymbol{x}_{i} - b_{j}) z_{j} \geq 0 \quad j \in [\ell] \} \\ (\boldsymbol{w}^{\top} \boldsymbol{x}_{i} - b_{j}) (1 - z_{j}) \geq 0 \quad j \in [\ell] \} \xrightarrow{p_{0}} \begin{array}{c} b_{1} & b_{2} & b_{3} & b_{4} \end{array}$$

Extended set:
$$X_i = \{(\boldsymbol{w}, \boldsymbol{z}, s) \in \mathbb{R}^n \times \{0, 1\}^\ell \times \mathbb{R} : \exists (\boldsymbol{p}_0, \boldsymbol{p}) \in \mathbb{R}_+^{\ell+1} :$$

$$\mathbf{w}^{ op}\mathbf{x}_i = b_1 + \sum_{i=1}^{\ell} p_j - p_0$$

$$X_{i} = \{(\boldsymbol{w}, \boldsymbol{z}, s) \in \mathbb{R}^{n} \times \{0, 1\}^{\ell} \times \mathbb{R} : \\ \mathcal{L}_{i}(\boldsymbol{w}^{\top} \boldsymbol{x}_{i}) \leq s \\ (\boldsymbol{w}^{\top} \boldsymbol{x}_{i} - b_{j}) z_{j} \geq 0 \quad j \in [\ell] \\ (\boldsymbol{w}^{\top} \boldsymbol{x}_{i} - b_{j}) (1 - z_{j}) \geq 0 \quad j \in [\ell] \}$$

$$z_{2} = 0$$

$$b_{1} \quad b_{2} \quad b_{3} \quad b_{4}$$

 $\Rightarrow p_2 = 0$

Extended set:
$$X_i = \{(\boldsymbol{w}, \boldsymbol{z}, \boldsymbol{s}) \in \mathbb{R}^n \times \{0, 1\}^\ell \times \mathbb{R} : \exists (p_0, \boldsymbol{p}) \in \mathbb{R}_+^{\ell+1} : \boldsymbol{w}^\top \boldsymbol{x}_i = b_1 + \sum_{i=1}^\ell p_i - p_0$$

$$X_{i} = \{(\boldsymbol{w}, \boldsymbol{z}, \boldsymbol{s}) \in \mathbb{R}^{n} \times \{0, 1\}^{\ell} \times \mathbb{R} : \\ \mathcal{L}_{i}(\boldsymbol{w}^{\top} \boldsymbol{x}_{i}) \leq \boldsymbol{s} \\ (\boldsymbol{w}^{\top} \boldsymbol{x}_{i} - b_{j}) z_{j} \geq \boldsymbol{0} \quad j \in [\ell] \\ (\boldsymbol{w}^{\top} \boldsymbol{x}_{i} - b_{j}) (1 - z_{j}) \geq \boldsymbol{0} \quad j \in [\ell] \}$$

$$z_{2} = 0 \qquad z_{3} = 1$$

$$\Rightarrow p_{2} = 0 \qquad \Rightarrow p_{2} = b_{3} - b_{2}$$

Extended set:
$$X_i = \{(\boldsymbol{w}, \boldsymbol{z}, \boldsymbol{s}) \in \mathbb{R}^n \times \{0, 1\}^\ell \times \mathbb{R} : \exists (\boldsymbol{p}_0, \boldsymbol{p}) \in \mathbb{R}_+^{\ell+1} : \boldsymbol{w}^\top \boldsymbol{x}_i = b_1 + \sum_{i=1}^\ell p_i - p_0$$

$$egin{aligned} egin{aligned} oldsymbol{X}_i =& \{(oldsymbol{w}, oldsymbol{z}, oldsymbol{s}) \in \mathbb{R}^n imes \{0,1\}^\ell imes \mathbb{R}: \ \mathcal{L}_i(oldsymbol{w}^ op oldsymbol{x}_i) \leq oldsymbol{s} \ (oldsymbol{w}^ op oldsymbol{x}_i - b_j) oldsymbol{z}_j \geq 0 & j \in [\ell] \ (oldsymbol{w}^ op oldsymbol{x}_i - b_j) (1 - z_j) \geq 0 & j \in [\ell] \} \end{aligned}$$

Extended set:
$$X_i = \{(\boldsymbol{w}, \boldsymbol{z}, \boldsymbol{s}) \in \mathbb{R}^n \times \{0, 1\}^\ell \times \mathbb{R} : \exists (\boldsymbol{\rho}_0, \boldsymbol{\rho}) \in \mathbb{R}_+^{\ell+1} : \\ \boldsymbol{w}^\top \boldsymbol{x}_i = b_1 + \sum_{i=1}^\ell p_i - p_0$$

$$egin{aligned} egin{aligned} oldsymbol{X}_i =& \{(oldsymbol{w}, oldsymbol{z}, oldsymbol{s}) \in \mathbb{R}^n imes \{0,1\}^\ell imes \mathbb{R}: \ \mathcal{L}_i(oldsymbol{w}^ op oldsymbol{x}_i) \leq oldsymbol{s} \ (oldsymbol{w}^ op oldsymbol{x}_i - b_j) oldsymbol{z}_j \geq 0 & j \in [\ell] \ (oldsymbol{w}^ op oldsymbol{x}_i - b_j) (1 - z_j) \geq 0 & j \in [\ell] \} \end{aligned}$$

Extended set:
$$X_i = \{(\boldsymbol{w}, \boldsymbol{z}, \boldsymbol{s}) \in \mathbb{R}^n \times \{0, 1\}^\ell \times \mathbb{R} : \exists (p_0, \boldsymbol{p}) \in \mathbb{R}_+^{\ell+1} : \\ \boldsymbol{w}^\top \boldsymbol{x}_i = b_1 + \sum_{j=1}^\ell p_j - p_0 \\ (b_{i+1} - b_i) z_{i+1} \leq p_i \leq (b_{i+1} - b_i) z_i, \ j \in [\ell-1] \}$$

$$X_{i} = \{(\boldsymbol{w}, \boldsymbol{z}, \boldsymbol{s}) \in \mathbb{R}^{n} \times \{0, 1\}^{\ell} \times \mathbb{R} :$$

$$\mathcal{L}_{i}(\boldsymbol{w}^{\top} \boldsymbol{x}_{i}) \leq \boldsymbol{s}$$

$$(\boldsymbol{w}^{\top} \boldsymbol{x}_{i} - b_{j}) z_{j} \geq 0 \qquad j \in [\ell]$$

$$(\boldsymbol{w}^{\top} \boldsymbol{x}_{i} - b_{j}) (1 - z_{j}) \geq 0 \quad j \in [\ell] \}$$

Extended set:
$$X_i = \{(\boldsymbol{w}, \boldsymbol{z}, s) \in \mathbb{R}^n \times \{0, 1\}^{\ell} \times \mathbb{R} : \exists (\rho_0, \boldsymbol{\rho}) \in \mathbb{R}_+^{\ell+1} : \\ \boldsymbol{w}^{\top} \boldsymbol{x}_i = b_1 + \sum_{j=1}^{\ell} \rho_j - \rho_0 \\ (b_{j+1} - b_j) z_{j+1} \leq \rho_j \leq (b_{j+1} - b_j) z_j, \ j \in [\ell - 1] \\ \rho_0 z_1 = 0, \rho_{\ell} (1 - z_{\ell}) = 0 \\ \mathcal{L}_i (\boldsymbol{w}^{\top} \boldsymbol{x}_i) \leq s \}$$

$cl conv(X_i)$

Write as disjunction: $X_i = \bigcup_{j=0}^{\ell} X_i^j$

$$X_i =$$

$$\left\{ (\boldsymbol{w},\boldsymbol{z},\boldsymbol{s}) \in \mathbb{R}^n \times \{0,1\}^\ell \times \mathbb{R} : \exists (p_0,\boldsymbol{p}) \in \mathbb{R}_+^{\ell+1} : \right.$$

$$\mathbf{w}^{\top}\mathbf{x}_i = b_1 + \sum_{i=1}^{\ell} p_j - p_0$$

$$(b_{j+1}-b_j)z_{j+1} \leq p_j \leq (b_{j+1}-b_j)z_j, \ j \in [\ell-1]$$

$$z_0 z_1 = 0 p_\ell (1 - z_\ell) = 0 \ \mathcal{L}_i(\boldsymbol{w}^\top \boldsymbol{x}_i) \leq s$$

$cl conv(X_i)$

Write as disjunction: $X_i = \bigcup_{j=0}^{\ell} X_i^j$

$$cl conv(X_i) =$$

$$\left\{ (\boldsymbol{w}, \boldsymbol{z}, s) \in \mathbb{R}^n \times [0, 1]^{\ell} \times \mathbb{R} : \exists (\rho_0, \boldsymbol{p}) \in \mathbb{R}_+^{\ell+1} : \right.$$

$$\mathbf{w}^{\top}\mathbf{x}_i = b_1 + \sum_{i=1}^{\ell} p_j - p_0$$

$$(b_{j+1}-b_j)z_{j+1} \leq p_j \leq (b_{j+1}-b_j)z_j, \ j \in [\ell-1]$$

$$(1-z_1)\mathcal{L}\left(b_1 - \frac{p_0}{1-z_1}\right) + \sum_{i=1}^{\ell-1} (z_j - z_{j+1})\mathcal{L}\left(b_i + \frac{p_i - z_{i+1}(b_{i+1} - b_i)}{z_i - z_{i+1}}\right) + z_\ell \mathcal{L}\left(b_\ell + \frac{p_\ell}{z_\ell}\right) \leq s \right\}$$

Strong Reformulation

Applying the strengthening to the fair regression problem:

$$\begin{aligned} \min \sum_{i=1}^m s_i + \lambda \max_{j \in 1, \dots, \ell} \left(\frac{1}{m} \sum_{i=1}^m z_{ij} - \frac{1}{m_1} \sum_{i=1: a_i = 1}^m z_{ij} \right) \\ \text{s.t. } \boldsymbol{w}^\top \boldsymbol{x}_i = b_1 + \sum_{j=1}^\ell p_{ij} - p_{i0} & i \in [m] \\ (\boldsymbol{w}, \boldsymbol{z}_i, s_i) \in X_i & i \in [m] \\ \boldsymbol{z}_i \in \{0, 1\}^\ell & i \in [m] \end{aligned}$$

Strong Reformulation

Applying the strengthening to the fair regression problem:

$$\begin{aligned} \min \sum_{i=1}^m s_i + \lambda \max_{j \in 1, \dots, \ell} \left(\frac{1}{m} \sum_{i=1}^m z_{ij} - \frac{1}{m_1} \sum_{i=1: a_i = 1}^m z_{ij} \right) \\ \text{s.t. } \boldsymbol{w}^\top \boldsymbol{x}_i = b_1 + \sum_{j=1}^\ell p_{ij} - p_{i0} & i \in [m] \\ (\boldsymbol{w}, \boldsymbol{z}_i, s_i) \in \mathbf{cl} \ \mathbf{conv}(\mathbf{X}_i) & i \in [m] \\ \boldsymbol{z}_i \in \{0, 1\}^\ell & i \in [m] \end{aligned}$$

Computational Results on Synthetic Data

n=10 features, $\ell=40$, $m=\{15,30,50,100\}$

λ	Big-M				Strong			
χ	Relax Gap	End Gap	Time	Nodes	Relax Gap	End Gap	Time	Nodes
0.01	45.3%	2.1%	487	4.010.293	1.9%	0.0%	252	223,581
0.02	60.8%	9.0%	1,654	19,895,563	5.4%	0.7%	908	1,079,684
0.04	73.2%	19.1%	2,040	20,405,258	8.3%	1.9%	950	902,741
0.05	76.6%	28.4%	2,681	29,063,625	11.3%	2.6%	1,212	1,058,541
0.06	78.8%	30.7%	2,759	28,508,133	13.1%	2.9%	1,507	1,447,340
0.08	81.5%	38.1%	3,023	32,654,651	14.0%	4.0%	1,673	1,284,442
0.10	83.4%	47.4%	3,196	35,020,673	16.0%	4.6%	1,803	1,275,695
0.20	87.7%	55.3%	3,147	28,630,313	22.9%	8.6%	1,625	683,419
0.30	89.5%	62.8%	3,295	29,468,759	31.2%	10.8%	1,555	507,315
0.50	91.7%	73.6%	3,600	31,892,472	45.5%	12.7%	1,611	437,835
Avg	76.9%	36.6%	2588	25,954,974	16.9%	4.9%	1310	890,059

Relaxation is solved in 0.25s on average.

Goal: given \mathbf{w} , we want to improve upon by changing a single coordinate, $w_k \rightarrow \text{Minimize a univariate convex function} + \text{linear combination of indicators}$

Goal: given \mathbf{w} , we want to improve upon by changing a single coordinate, w_k → Minimize a univariate convex function + linear combination of indicators

$$1(\mathbf{w}^{\top}\mathbf{x}_{i} > b_{j}) = 1(\mathbf{w}_{k}\mathbf{x}_{ik} + \sum_{u \neq k} \mathbf{w}_{u}\mathbf{x}_{iu} > b_{j}) = 1(\operatorname{sign}(\mathbf{x}_{ik})\mathbf{w}_{k} > (\underbrace{b_{j} - \sum_{u \neq k} \mathbf{w}_{u}\mathbf{x}_{iu}}_{b_{r}})/\mathbf{x}_{ik})$$

Goal: given \mathbf{w} , we want to improve upon by changing a single coordinate, $w_k \rightarrow \text{Minimize a univariate convex function} + \text{linear combination of indicators}$

$$1(\mathbf{w}^{\top}\mathbf{x}_{i} > b_{j}) = 1(\mathbf{w}_{k}\mathbf{x}_{ik} + \sum_{u \neq k} \mathbf{w}_{u}\mathbf{x}_{iu} > b_{j}) = 1(\operatorname{sign}(\mathbf{x}_{ik})\mathbf{w}_{k} > (b_{j} - \sum_{u \neq k} \mathbf{w}_{u}\mathbf{x}_{iu})/\mathbf{x}_{ik})$$

$$\tilde{b}_{ij}$$

$$W_{k}$$

Goal: given \mathbf{w} , we want to improve upon by changing a single coordinate, $w_k \rightarrow \text{Minimize a univariate convex function} + \text{linear combination of indicators}$

$$1(\mathbf{w}^{\top}\mathbf{x}_{i} > b_{j}) = 1(\mathbf{w}_{k}\mathbf{x}_{ik} + \sum_{u \neq k} \mathbf{w}_{u}\mathbf{x}_{iu} > b_{j}) = 1(\operatorname{sign}(\mathbf{x}_{ik})\mathbf{w}_{k} > (b_{j} - \sum_{u \neq k} \mathbf{w}_{u}\mathbf{x}_{iu})/\mathbf{x}_{ik})$$

Coordinate desecent update: at iteration t, choose coordinate w_k and

evaluate objective at optimal solution ignoring fairness

Goal: given \mathbf{w} , we want to improve upon by changing a single coordinate, $w_k \rightarrow \text{Minimize a univariate convex function} + \text{linear combination of indicators}$

$$1(\mathbf{w}^{\top}\mathbf{x}_{i} > b_{j}) = 1(\mathbf{w}_{k}\mathbf{x}_{ik} + \sum_{u \neq k} \mathbf{w}_{u}\mathbf{x}_{iu} > b_{j}) = 1(\operatorname{sign}(\mathbf{x}_{ik})\mathbf{w}_{k} > (b_{j} - \sum_{u \neq k} \mathbf{w}_{u}\mathbf{x}_{iu})/\mathbf{x}_{ik})$$

Coordinate desecent update: at iteration t, choose coordinate w_k and

- evaluate objective at optimal solution ignoring fairness
- evaluate objective problem at $\tilde{b}_{ij}, \ \forall i \in [m], \ j \in [\ell]$

Deza, Gómez, & Atamtürk Fair and Accurate Regression 12

Goal: given \mathbf{w} , we want to improve upon by changing a single coordinate, $w_k \rightarrow \text{Minimize a univariate convex function} + \text{linear combination of indicators}$

$$1(\mathbf{w}^{\top}\mathbf{x}_{i} > b_{j}) = 1(\mathbf{w}_{k}\mathbf{x}_{ik} + \sum_{u \neq k} \mathbf{w}_{u}\mathbf{x}_{iu} > b_{j}) = 1(\operatorname{sign}(\mathbf{x}_{ik})\mathbf{w}_{k} > (b_{j} - \sum_{u \neq k} \mathbf{w}_{u}\mathbf{x}_{iu})/\mathbf{x}_{ik})$$

Coordinate desecent update: at iteration t, choose coordinate w_k and

- evaluate objective at optimal solution ignoring fairness
- evaluate objective problem at $\tilde{b}_{ij}, \ \forall i \in [m], \ j \in [\ell]$
- update to be the best out of $m \times \ell + 1$ options

Results on Real Data: Communities and Crime

Data: $n = 119, m = 1,994, \ell = 40$

- Benchmark: Agarwal, reduction-based algorithm
- Compare model produced by the convex relaxation and best model found by MIP in three hours
- Plot fairness metric vs relative test RMSE increase compared to vanilla regression model
- Reduce relative RMSE increase by 2.5%
- Average training time reduced from 200s to 6s

Results on Real Data: Law School

Data:
$$n = 12$$
, $m = 20,649$, $\ell = 40$

- Average training time reduced from 1445s to 70s
- Coordinate descent requires additional 2 seconds
- Coordinate descent is able to find fair solutions when relaxation fails

Conclusion

- Versatile framework: proposed methods can be adapted for generalized linear regression (ex: logistic regression) and for other popular fairness metrics
- Key substructure: piecewise convex function with indicators on intervals
- Relaxation + Coordinate Descent produce models **competitive** with state of the art at a fraction of the time ($\sim 30 \times$ speed- up)

Our Convex Relaxation vs Convex Approximations

Existing approaches consider convex approximations of the fairness measure
We better capture the shape of true objective by considering the **joint structure**of the loss function and fairness

Synthetic Data: Optimality Gaps of Different Methods

λ	relax	CD-0	CD-unfair	CD-relax	MICQO
0.01	7.9	6.3	3.5	2.1	0.0
0.02	13.4	9.0	5.9	4.1	0.7
0.04	19.5	13.6	10.0	7.8	1.9
0.05	24.0	16.1	10.9	8.6	2.6
0.06	24.6	16.3	11.9	9.3	2.9
0.08	26.3	22.2	17.0	13.3	4.0
0.10	32.1	23.9	21.7	15.8	4.6
0.20	44.1	37.1	31.0	24.6	8.6
0.30	50.0	57.5	38.3	28.9	10.8
0.50	56.2	65.4	44.2	36.5	12.7
Avg	29.8	26.7	19.4	15.1	4.9

Overcoming 'too relaxed to be fair'

Idea: approximate fair classification $\ell=1, b_1=0$ with a fair regression relaxation that artificially adds levels. This gives us a convex problem that can still produce fair models.

Overcoming 'too relaxed to be fair'

Idea: approximate fair classification $\ell=1, b_1=0$ with a fair regression relaxation that artificially adds levels. This gives us a convex problem that can still produce fair models.

Discretized Fairness vs Exact Fairness Measures

Figure: Training discretized unfairness (left) vs training exact unfairness (right).