

			9			18		•							45			54
5'	GTG	GGC	ATG	GIG	GGC	AAC	GTC	CIG	CTG	GIG	CTG	GIG	ATC	GCG	CGG	GTG	CGC	CGG
	Val	Gly	Met	Val	Gly	Asn	Val	Leu	Leu	Val	Leu	Val	Ile	Ala	Arg	Val	Arg	Arg
			63		,	72			81			90			99			108
	CIG	CAC	AAC	GTG	ACG	AAC	TTC	CTC	ATC	GGC	AAC	CIG	GCC	TIG	TCC	GAC	GTG	CIC
	Leu	His	Asn	Val	Thr	Asn	Phe	Leu	Ile	Gly	Asn	Leu	Ala	Leu	Ser	Asp	Val	Leu
			117			126			135			144			153			162
	ATG	TGC	ACC	GCC	TGC	GTG	CCG	CTC	ACG	CTG	GCC	TAT	GCC	TTC	GAG	CCA	CGC	GGC
	Mot		 The	Δla		Val	Pro	Leu	Thr	Leu	 -Ala	 П\л	 -Δla	 Phe-	Glu	 Pro-		clv
	nec	C ₁ 3	1111	1114	C ₁ S	Vu_		عاد ت	****	عدم		-1-	11111	1110	014	110	111.9	OLY
	,		171												207			216
	TGG	GIG	TIC	GGC	GGC	GGC	CIG	TGC	CAC	CIG	GTC	TTC	TTC	CTG	CAG	CCG	GTC	ACC
	Trp	Val	Phe	Gly	Gly	Gly	Leu	Cys	His	Leu	Val	Phe	Phe	Leu	Gln	Pro	Val	Thr
		-	225			234			243			252			261		٠	270
	GTC	TAT		TCG	GTG		ACG	ĊTC					GTG	GAC		TAC	GTC	
	Val	Tyr	Val	Ser	Val	Pne	Inr	Leu	Inr	Thr	TTE	Ala	Val	Asp	Arg	ıyr	Val.	Val
			279			288			297						•			
	CIG	GTG	CAC	CCCG	CTG	AGG	CGG	CGC	ATC	3'								
	Tari	1721			Low	7~~	7~~	724										
	reu	AqT	nis	\$10	Leu	wrg	wrg	wrg	TTG									

FIG. 1

BEST AVAILABLE COPY

54	TAC	!	뀱	00	88	!	gJn		162	STS	ļ	Val					
	ğ	ł	Ser		SS SS	!	큪			g	į	Leu					
	CIG	1	Leu		GIG	i	Val			116	ł	Leu					
45	9	i	Lea	8	सु ध	i	Cys		153	33	1	ζζs	,		<u>~</u>		
	ATC	1	Ile		ည္ဟ	!	Gly		,	TE 1	-	Phe			TAC		弘
	STC	ŀ	Val		99	i	Pro			3 0	1	뀵			TAC	!	3
36	GG	!	Leu	6	215	!	Val		144	ဗ္ဗ	;	Arg		198	g	!	Pro
	5	i	Leu	_	Sign	-	Val		* -	පු	- -	Arg	•	-	[달-		Leu
	Ę	1	Pro		ဗ္ဗ	!	Arg			පි	1	Arg			33	!	ŢŢ
27	g	1 1	Leu	2	AAC A	!	Asn		135	පි	1	Arg		189	33	!	Cys
	g	1	Leu		ဗ္ဗ	!	Arg			ਉ	1	Ala			ATC	1	Ile
	TAC	!	17.		55	!	Leu			පි	1	Arg			g	1	Ala
18	ACC	!	Thr	5	AAG	1	Lys		126	Seg-	!	Asp		180	E	ļ	Phe
	35	-	Val		STS	!	Val			33		3			93	-	Val
	93	!	Leu		5	ļ	Ser			Seg	;	Asp			gg	ļ	Val Val
σ	g	1	Leu	Œ	38	1	Val	i	117	႘ွ	!	Ala		171	g	ļ	Val
	g	ł	Leu		8	ļ	Arg			BB	1	S F			g	:	Na.
	႘ၟ	i	G <u>l</u> y		25	i	Val			88	;	Ser			SE SE	į	Val
	-															•	

FIG. 2

50	100	, L	150	200	250
50 CVPLTLAVAF CLPFTFVVIII	100 LVHPLRRRI- IINPRGWRPN	150	FKDKYVCFDK	200 VVPGCVTQSQ NNNMMDKIRDS	250
20 30 40 50 LVIARVRRLH INVINFILICAL ALSDVIDACTA CVPLIKA VAF II ILKQKEMR INVINILIANIL SFSDLLVAVM CLPFTFVVIL	100 TTIAVORYU LUHPLRRRI- VLIAVERHQL IINPRGWRPN	140	EPFQNVSL	180 190 200 LSV VRVSVKLRNR VVPGCVTQSQ GPLCFIFICY FKIYIRLKRR NNMMDKIRDS	240
NVTNE LICHI NVTNE LICHI	80 Vivyyvsvete Vsitvsiese	130	PFVIYQILTD	180 LSX GPLCFIFICY	230 VPALCWLPYY - FAVCWLPLT
20 LV I ARVRRLH II I LKQKEMR	70 LCHLVFFLOP WIVYVSVFTL MCKLNPFVOC WSITVSIFSL	120	IWVLAVASSL	170 TYDEPLEVIL TTELVEXYF	220 230 TFCLLLVVVV VFALCWLPYY NVMLLSIVVA - FAVCWLPLT
10 VCMVCNVLLV LGVSCNLALI	60 EPRGWVFGGG MDH-WVFGET	110	NRHAYIGITV	160 GLULV FPSDSHRUSY	210 ADWDRARRRY KYRSSETKRI
त्तन	51	707	101	151 151	201 201
p19P2 S12863	p19P2 S12863	70DL~	\$12863	p19P2 S12863	p19P2 S12863

FIG. 5

6A	6B	29	9	52 52 54 54	108 CTC	162 GGC Gly
FIG. 6A	FIG. 6B	FIG. 6C	FIG.	CGC	GTG	000
			111	GTC	GAC ASP	र् छ । ध्र
	,			\$ 500 F. B.	99 TCC Ser	153 GAG Glu
				GCG 	TTG	TTC
-				ATC	GCC 	GCC
				36 GTC 	90 CTG	144 TAT 13x
				Cic	AAC 	GCC
				STS Val	660 613	CTG
				132 C. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.	81 ATC	135 ACG Thr
	•			ध । हु	CTC	CTC
				ATC 11e	TTC	000 Fr
				AAC ASh	72 AAT	126 GTG Val
				छ । द ि	ACG Thr	35 S2
		;		Gic	GIG	GCC
				ATG Met	AAC ASn	ACC Thr
				धु । द्रु	TAC	S S
				ord val	CTG	ATG

FIG. 6A

216 ACC Thr	270 GTG Val	324 GTG 	378 ACC 171	432 660 617
GTC	GTC 	GCT Ala	CAC His	
SCG Ala	TAC		GIG	
297 080 119	261 CGC 	315 GCC 	369 GCC 	423 GAG
Cic	GAC ASP	AGC	GCC Ha	GAG GLu
TTC	GIG 	CIC) 1 1 1	7 3C
198 TTC Phe	252 GCA 	306 CGC 	360 CTG	414 CTC
GTC Val	ATC Ile	ट्रिस हिस्स	GCG) } } }
GE I BE	ACC Thr	703	CIG	GTG
CAC CAC His	243 ACC Thr	297 ATC 11e	351 916 Val	405 GAC
135 175 175	Cer Cer	CGC 	GG Ala	CAC His
CIG	A	CGG 	TCC Ser	55 55 F
180 GGC 117	234 TTC	288 AGG 	342 CTG 	396 AAG Lys
양무경	on Val	E S	sts val	1 1 m
S 5	100 	£ B	3 3	GAG Glu
171 175 196	225 GTG 	279 CAC His	333 ATC 	
orc Val	智二艺	GTG	GCC Na	C&C
語:聲	GIC	हि । सु	E 3	智
				•

FIG. 6B

486 TAC 177	S40 CTC Leu	594 CGC 	648 ACC	
ACC 1計	AAG Lys	GAC	TTC	
GIC Val	GTG	8 8	GIC	
CHG CHG	531 7CA	585 GAC 	639 GTG 	
Cer Cle	GIG Val	GCC 	GTC	
हैं। वै	000 111	CAC 110	GTC 	
468 GGG	522 GCC Ala	S76 AGC	630 GTC Val	
2 是	TAC	S : 12	GTG 	
SCC Ala	1dg	ACC TPT	<u>Fe : 3</u>	
459 TAC 177	513 CTG	567 GTG Val	621 TTG	
हैं। व	Cic	GGC Arg	\$: \$ S	'n
용 ! 원	ATC 11e	8 4	TTC	TT Phe
450 CGC 	504 GTC	558 000 110 110	612 ACC Thr	777C Phe
8 B	ध । बु	GTG	SSC - SEG) 당 윤
SSC EX	हिं। यु	GTG Val	\$: \$	2 3
9441 GAG Glu	495 CCT PTO	549 CGC 	603 RFG 1 803	
8 8	धाउ	AAC Asn	33 74	2 2
Ser	813	S S	हार	ध । ड

FIG. 6C

50	100	150	200	250
50	100	150	200	250
CVPLTLAYAF	LVHPLRRRI-		QSQADWDRAR	
CVPLTLAYAF	LVHPLRRRIS	EFWGSQERQR	QSQADWDRAR	
40	90	140	190	240
ALSDVLMCTA	TTIAVDRYVV		RNRVVPGCVT	
ALSDVLMCTA	TTIAVDRYVV	LKPHDVRLCE	RNRVVPGRVT	
30 NVTNFLIGNL NVTNFLIGNL	80 VTVYVSVFTL VTVYVSVFTL	130 PAAVHTYHVE	180 LSYVRVSVKL LSYARVSVKL	230 PYY
20 INTARVRRDH INTARVRRDY	70 LCHLVFFLOP LCHLVFFLOP	120 IWVLSAVLAL	170 TYLLPLIVIL TYLLPLIVIL	220 WWWFAICWE WWWFILCWE
10	60	110	160	210
VGMVGNV[DLV	EPRGMVFGGG		GIDDIV	RRRTFCLLW
VGMVGNH [DLV	EPRGMVFGGG	LRLSAYAVLA	QLYAW GLIDIV	RRRTFCLLW
~ ~	51	101	151	201
p19P2	p19P2	p19P2	p19P2	p19P2
pG3-2/pG1-10	pG3-2/pG1-10	pG3-2/pG1-10	pG3-2/pG1-10	pG3-2/pG1-10

F1G. 7

			_					
FIG. 9A	FIG. 9B	FIG. 9C	FIG. 9	60	120	180	240	300
				1 CATCGTCAAGCAGATGAAGATCATCCACGAGGATGGCTACTCCGAGGGCCAGCAGAAATT 1	61 CTGCCCCTTCTTCCCGCGAGTGCTTTCCCGCTCTCCAAACCCCACTCCCAGGTGGCCATG 1	121 GCCTCATCGACCACTCGGGGCCCCCAGGGTTTCTGACTTATTTTCTGGGCTGCCGCGGGGGGGG	181 GTCACAACTCCCGCCAACCAGAGCGCAGAGGCCTCGGCGGGAACGGGTCGGTGGCTGGC	241 GCGGACGCTCCAGCCGTCACGCCCTTCCAGAGCCTGCAGCTGCATCAGCTGAAGGGG

FIG. 9A

1		o
81	. GTGCTGGTGATCGCGGGTGCGCCGGCTGCACACGTGACGAACTTCCTCATCGGCAAC	10.
121	. CTGGCCTTGTCCGACGTGCTCATGTGCACCGCCTGCGTGCCGCTCACGCTGGCCTATGCC . LeuAlaLeuSerAspValLeuMetCysThrAlaCysValProLeuThrLeuAlaTyrAla	12.
181	. ${\tt TTCGACCCACGCGCGCGCGCGCCTGTGCCACCTGGTCTTCTTCTTCTGCCAG}$. ${\tt PheGluProArgGlyTrpValPheGlyGlyGlyLeuCysHisLeuValPhePheLeuGln}$	54 14.
44.	. CCGGTCACCGTCTATGTCTCGGTGTTCACGCTCACCACCACTCGCAGTGGACCGCTACGTC . ProvalThrValTyrValSerValPheThrLeuThrThrIleAlaValAspArgTyrVal	16.
501	. GIGCIGGIGCACCCGCIGAGGCGGCGCAICICGCIGCGCCICAGCGCCIACGCTGIGCIG . ValLeuValHisProLeuArgArgArgIleSerLeuArgLeuSerAlaTyrAlaValLeu	18.
361 81	. GCCATCTGGGGCGTTGCTGGCGCTGCCGCCGCCGCGTGCACCTATCACGTG . AlaileTrpAlaLeuSerAlaValLeuAlaLeuProAlaAlaValHisThrTyrHisVal	72
121	. GluLeuLysProHisAspValArgLeuCysGluGluPheTrpGlySerGlnGluArgGln	78
81 121	. CGCCAGCTCTACGCCTGGGGGCTGCTGGTCACCTACCTGCTCCCTCTGGTGGTCATC	84

133	1321 CCAGAGCTAGC 371	4
132(1261 TCCACTTCAACTGGCCTCCTAGGGCACCACTCGAGGTCAATCTGGTGCTTATTCTCAGCA 371	7
126(1201 CAGAATATGACCGTCAGCGTGGTCATCTGATGCCACTTAGCCAGGCCTTGGTCAAGGAGC 361 GlnAsnMetThrValSerValValIle***	₽''
120(1141 TICCGCGAGGAGCTGCGCAAACTGTTGGTCGCTTGGCCCCGCAAGATAGCCCCCCCATGGC 341 PheArgGluGluLeuArgLysLeuLeuValAlaTrpProArgLysIleAlaProHisGly	H '
1140	1081 TGGCTCGCCATGAGTTCGGCCTGCTACAACCCCTTCATCTACGCCTGGCTGCACGACAGC 321 TrpLeuAlaMetSerSerAlaCysTyrAsnProPheIleTyrAlaTrpLeuHisAspSer	ř.
108(1021 GACCTCGACCCCCACGCCATCGACCCTTACGCCTTTGGGCTGGTGCAGCTGCTCTGCCAC 301 AspLeuAspProHisAlaIleAspProTyrAlaPheGlyLeuValGlnLeuLeuCysHis	ਜੋ ' '
102(961 GTGGTCGTGGTGTTCGCCGTCTGCTGCCGCTGCACGTCTTCAACCTGCTGCGG 281 ValValValValValPheAlaValCysTrpLeuProLeuHisValPheAsnLeuLeuArg	
96(901 ACCCAGAGCCAGGCCGACTGGGACCGCGCCGCGGCGCGCGC	1 7
90(841 CTCCTGTCTTACGTCCGGGTGTCAGTGAAGCTCCGCAACCGCGTGGTGCCGGGCTGCTG 241 LeuLeuSerTyrValArgValSerValLysLeuArgAsnArgValValProGlyCysVal	• •

FIG. 9C

FIG. 10

5'	CTG	TGT	9 GTC	ATC	GCG								GIG				CGT	54 CGG
	 Leu	Cvs	Val	Ile	Ala	Val	Asp	Arg	Tyr	Val	Val	Leu	 Val	His	Pro	Leu	Arg	 Arg
	ccc	איזיי	63	CTG	ACC.)CC						ccc			CCAL		108
	Arg	He	Ser	Leu	Arg	Leu	Ser	ATG	ıyr	ATG	vaT	ren	GIŞ	TTE	'lrp	ALA	reu	Ser
	GCA	GTG	117 CTG	GCG	CTG								CAT					
	Ala	Val	Leu	Ala	Leu	Pro	Ala	Ala	Val	His	Thr	Tyr	His	Val	Glu	Leu	Lys	Pro
	CAC	GAC	171 GTG	AGC	CTC		GAG						CAG			CAA		
				Ser														
	UT2	wsp	vai	JEL.	nea	cys	GIU	Giu	riie,	TIŲ	GIĀ	ÿ∈1	GIII	Gin	wrd	GIII	wr	GIII
	እ ጥ ጉ	መአ <i>ር</i>	225 CCC	TGG		•	ىلىك						CTC		261 CTC	CTC:	CCC	270
	AIC																	
	Ile	Tyr	Ala	Trp	Gly	Ļeu	Leu	Leu	Gly	Thr	Tyr	Leu	Leu	Pro	Leu	Leu	Ala	Ile
	CTC	CTG		TAC			GTG			AAG			AAC		-	GTG		324 GGC
					 tra 1		 Ual	 C	 t/a 1	 T	 T			3	 17-1	 17-1	 D	 Cl
	rea	Leu	ser	Tyr	Val	arg	Val	ser	Val	гÃ2	reu	Arg	ASII	Arg	val	vai	PIO	Gly
	AGC	GTG		CAG			GCT						CGT		369 CGC		ACT	378 TTC
	Ser	Val	Thr	Gln	Ser	GIn	Ala	Asp	Trp	Asp	Arg	Ala	Arg	Arg	Arg	Arg	Thr	Phe
	TGT	CTG	387 CTG	GIG	GTG		GIG			TTC	ACG	414 ÇIC	TGC	TGG	423 CTG	CCC	TTC	432 TAC
	Cys	Leu	Leu	Val	Val	Val	Val	Val	Val	Phe	Thr	Leu	Cys	Trp	Leu	Pro	Phe	Tyr

CT 3'

p19P2 pG3-2/pG1-10 p5S38	1 1 1 - 79	VGWVGNVÍDÍV VGMVGNÍTÍDÍV	20 INTARVRRIA INTARVRRIA 70	NVINIELIGNE	40 ALSDVLWCTA ALSDVLWCTA	SO CVPLTVLAYAF CVPLTVLAYAF	50 50 -30
p19P2 pG3-2/pG1-10 p5S38	51 51 -29	EPROMVFGGG EPROMVFGGG	LCHIVEELOP LCHIVEELOP	VIVYVSVETI VIVYVSVETI	TTTAVDRYVV TTTAVDRYVV CV IAVDRYVV	LVHPLRRRI- LVHPLRRRIS LVHPLRRRIS	100 100 21
p19P2 pG3-2/pG1-10 p5S38	101 101 22	110 LRLSAYAVLA LRLSAYAVLS	120 IWVESAVLAL IWALSAVLAL	130 РААУНТУНИЕ РААУНТУНИЕ	140 LKPHDVRICE LKPHDVSICE	150 EFWGSQERQR EFWGSQERQR	150 150 71
p19P2 pG3-2/pG1-10 p5S38	151 151 72	160 OLYAWGELLIV OILYAWGELLES	170 TYLLPLIVIL TYLLPLIVIL TYLLPLIAIL	LSYVRVSVKL LSYARVSVKL LSYVRVSVKL	190 RNRVVPGZVT RNRVVPGRVT RNRVVPGSVT	200 QSQADWDRAR QSQADWDRAR QSQADWDRAR	200 200 121
p19P2 pG3-2/pG1-10 p5s38	201 201 122	RRRTFCLLVV RRRTFCLLVV RRRTFCLLVV	220 VVVVFTLCWL VVVVFTLCWL	230 PYY	240	250	250 250 171

FIG. 13

FIG. 14

FIG. 15

rat whole brain extract
C18-column CH3CN elution (%)

FIG. 16

bovine hypothalamus extract C_{18} -column CH_3CN elution (%)

FIG. 17

40	E- 4 1	Tro Try				50	8 7	119	8 8	126	40	
10	BOL DOB 1	Ala				CCTG	aLeu	CAAC	eAsn			
4.5	CCCT	n Pro				GTGGAATGAAGGCGGTGGGCCTGGCTCCTCTGCCTGCTGCTGGGCCTGGCCTG	MetLysAlaValGlyAlaTrpLeuLeuCysLeuLeuLeuLeuGlyLeuAlaLeu	60 CAGGGGCTGCCAGCAGAGCCCACCAGCACTCCATGGAGATCCGCACCCCCGACATCAAC	19 GlnGlyAlaAlaSerArgAlaHisGlnHisSerMetGluIJeArgThrProAspIleAsn PDN		•	
	C AAC	e Asn				, 0099	Glyī		ProA			
	ATC	Ile				CTG	Leu	ACC				
36	GAC	A				GCTG	uLeu	CCGC	eArg			•
	ACC CCC	Thr Pro				TGCT	euLe	AGAT	Ini.		. 🏎 🚨	
					22	TGCC	CysL	ATGG	MetG			23
27)))	Arg	•		FIG. 22	יככדכ	uLeu	CTCC	sSer			FIG. 23
	GAG ATC	Ile	ლ ტ	!	Щ	7GGC1	lrple	CAGC	lnHi			LL_
A	GAG	. Glu	000	Fro		36001	yAla1	CCAC	aHis(
18	ATG	Met	72	Arg		TGGG	alGly	GAGC	rgAl			
	TCC	Ser	3 ATC	 / Ile		9505	Alav	AGCA	SerA			
	CAC	H:		J G13	5	GAAG	tLys.	IGCC	aAla			
6	CaC	His Gln His S	63 CGT	Gly Arg Gly I	P3-2	SAAT	Me	3660	lyal	CCT	la	· ,
P5-1	GCC CAC CAG CAC T		63 GCG GGC CGT GGG A	a G1)		GTG		ZAGG	3lnG	CCTG	ProAla	
Δ.	U U	Ala	33	Ala	5,7	H	ᆏ	09	19 (120 ccreccr	39	
	ŝ									• •		

80		8
380	360 AATAAAAGCAGCTGGCTTGTT	36(
86	88	8
٠ ٩	300 TAACAGCGGAGCCTGCCCCACCCTCCTCCACCAGCCACCTTCCAGGGAGCGAGC	30(
80	79 GlyGlyAlaGluProSerArgAlaLeuProGlyArgLeuThrAlaGlnLeuValGlnGlu	7.
299	240 GGCGGYGCTGAGCCCTCCCGAGCCCTCCCGGGGCGGCTGACGGCCCAGCTGGTCCAGGAA	24(
78) AlaProGlyAspGlyProArgProGlyProArgArgValProAlaCysPheArgLeuGlu	29
239	180 GCCCCGGGGACGCAGGCCTGGCCCCGGCGTGTGCCGGCCTGCTTCCGCCTGGAA	18(
58	ProAlaTrpTyrAlaGlyArgGlyIleArgProValGlyArgPheGlyArgArgArgAla	39
179	120 ccreccregracecresceresearcesecessesepecareseceseseseaseser	12(
38	19 GlnGlyAlaAlaBerArgAlaHisGlnHisSerMetGluIleArgThrProAspIleAsn	H
119	60 CAGGGGGCTGCCAGCAGCACCACCACCACCATCCAACCCCCCCGACATCAAC	9
198	L MetLysAlaValGlyAlaTrpLeuCeuCysLeuLeuLeuGlyLeuAlaLeu	• •
53	L GTGGAATGAAGGCGGTGGGCCTGGCTCCTCTGCCTGCTGCTGGCCTGGCCTGGCCTTG	• •

	FIG. 24B	
8 6	360 AATAAAAGCAGCTTGTT 98	360 98
8 6 8	300 TAACAGCGGGAGCCTGCCCCCCCCTCCTCCTCCAGCCAGC	300 98
9 9	240 GGCGGYGCTGAGCCCTCCCGAGCCCTCCCGGGCGGCTGACGGCCCAGCTGGTCCAGGAA 79 GlyGlyAlaGluProSerArgAlaLeuProGlyArgLeuThrAlaGlnLeuValGlnGlu	240
23.7) GCCCTGGGGACGCAGGCCTGGCCCCCGGCGTGTGCCGGCCTGCTTCCGCCTGGAA) AlaLeuGlyAspGlyProArgProGlyProArgArgValProAlaCysPheArgLeuGlu	180 59
175	120 CCTGCCTGGTACGCRGGCCGTGGGATCCGGCCCGTGGGCCGCTTCGGCCGGCGAAGAGCT 39 ProAlaTrpTyrAlaGlyArgGlyIleArgProValGlyArgPheGlyArgArgAla	120
11.9	60 CAGGGGGTGCCAGCAGCCCACCACCACCATCCATGGAGATCCGCACCCCCGACATCAAC 19 GlnGlyAlaAlaBerArgAlaHisGlnHisSerMetGluIleArgThrProAspIleAsn	60
18 29	GTGGAATGAAGGCGGTGGGGCCTGGCTCTTGCCTGCTGCTGCTGGCCTGGCCTGGCCTTGCCTGGCCCTGGCCCTGGCCCTGGCCCTGGCCCTGGCCCTGCTG	н н
ŗ	GTGGAATGAAGGCGGGTGGGGCCTGCTCTCTGCTGCTGCTGCTGCTGGTGG	

FIG. 28

10 ATGAAGGCGG	20 TGGGGGCCTG	30 GCTCCTCTGC	40 CTGCTGCTGC	50 TGGGCCTGGC	60 CCTGCAGGGG
	80 GAGCCCACCA			110 GTGAGTGTCT	120 AGCCCCGCCC
130 CTGCCCCCAG				170 GGCTGGGACA	
				230 CTTCCCCCAG	
				290 GTCACTCCTC	
				350 TGTGAGGACA	
				410 AAGCCACCCC	
				470 CTGGCATGGC	
490 GGCAGCCATG				530 GGCTGTATGC	
550 AGGCCTCCAT	560 GCGCTCTTCT	570 CTCTCTTTCC	580 AGCCCCCGAC	590 ATCAACCCTG	600 CCTGGTACGC
				650 AGAGCTGCCC	
				710 CTGGAAGGCG	
				770 CAGGAATAA.	

				0.0	0.0	0.0	
30A	30B	30C	. 30 50 50	100	150	200	
FIG. 30A	FIG. 30B	FIG. 30C	FIG. 50 resecresecresecresec	100 GAGATCCGCA GAGATCCGCA	150 GGGGCCTGG	200 GTTGGGGTTT	
			40 crecrecrec crecrecrec	90 GCACTCCATG GCACTCCATG	140 GGTCACAGG	190 GCATCCTGGG	÷
			30 Geneenene Geneenenee	BO GAGCCCACCA GAGCCCACCA	130 CTGCCCCCAG	GGCTGGGACA TCCTTGCTAA	FIG. 30A
			20 TGGGGGCCTG TGGGGGCCTG	70 GCTGCCAGCA GCTGCCAGCA	120 AGCCCCGCC	170 GCTGGGACA	FIG
			10 1 ATGAAGGCGG 1 ATGAAGGCGG	60 51 CCTGCAGGGG 51 CCTGCAGGGG	110 GTGAGTGTCT	160 CCACTTCCTG	
		٠	ન ન	ស្តីស្ត	101	121	,
			genome cona	genome cDNA	genome	genome	

250	300	350 350	400 400	450 450	500
250	300	350	400	450	S00
CAGGTGCTCC	ACCACACGGG	TGTGAGGACA	CTACTTCCCA	TCCTGTGCGG	
240	290	340	390	440	490
GTGGCCCGGA	GTCACTCCTC	AGAACGGGGC	GTCTGAAATC	CGGGTGAACC	GGCAGCCATG
230	280	330	380	430	480
CTTCCCCCAG	ACGGGGGAGG	GTCACCCATG	CCTGGTGTGA	ATGGGCGCTC	CTGGGCGACA
220	270	320	370	AGCACCAGAA ATGGGCGCTC	470
TCCCCAGACC	GGCCCAGCAC	CTGAGTGCAC	GGGAGTGTGT		CTGGCATGGC
201 GGCCTCCTGT	260	310	360	401 AAGCCACCCC	460
201	CAAGGGTCCC	TGGCCTGGGG	GGAAAGGAAG	401	GICGGIGGIC
201	251	301	351 351	401	451
genome CDNA	genome	genome	genome	genome	genome

FIG. 30B

550 550	600	650	700	750	800
550 AGGCCTCCAT	600 CCTGGTACGC CCTGGTACGC	650 AGAGCTGCCC AGAGCTGCCC	700 CTGCTTCCGC CTGCTTCCGC	750 GGCTGACGGC GGCTGACGCC	800
540 TCCAGGGCAC	590 ATCAACCCTG ATCAACCCTG	640 CGGCCGGCGA CGGCCGGCGA	690 Grereceses Grereceses	740 creceseses creeceses	790
530 190	580 580 560 560 560 560 560 560 560 560 560 56	630 Crr	089 000 000 000	730 130 130 130 130 130 130 130 130 130 1	780
530 GGCTGTATGC	280 20000000000000000000000000000000000	EGGCCCCTT TCGCCCCTT	2552222255 2552222255 089	730 CTCCCGAGCC CTCCCGAGCC	• •
520 CGGCCACCAG	570 CICICITICC	620 ATCCGGCCCG	ACCCAGGCCT ACCCAGGCCT	720 GTGCTGAGCC GCGCTGAGCC	770 CAGGAATAA. CAGGAATAA.
501 ACACCCGGCC 501 ACACCCGGCC	560 GCGCICTICT	610 AGGCCGTGGG GGGCCGTGGG	660 TGGGGGACGG CGGGGACGG	710 701 CTGGAAGGCG 701 CTGGAAGGCG	751 CCAGCTGGTC 751 CCAGCTGGTC
501 501	551 (551 ·	601 601	651 651	701	751 751
genome	genome	genome	genome	genome	genome cDNA

FIG. 30C

27. T. I.	108 GAC D	162 GGC G	216 CGG	270 0GG	
900 A	00 04	E L	भू ।	99 5	3,7
GE 13	ACC T	8 8	स्र स	99 a	П
960	8 8 8 8	153 GGC 	207 CGG	261 CTC	
13	ATC	STS >		900 P 4	
13	GAG E	S d	ပ္ပ	R G	
36 CIG	ATG = M	144 063	198 CCT 198	252 TCC	
13		AIC	AGG R		
ည္သုပ္	CAC H	ဗ္ဗ ဗ		GAG E = E	- m
1 G 27	CAG CAG	135 CGT 	189 GGA - 1	243 GCT 	297 TAA *
E 1	CAC H	ပ္ပ	GAC 1	GGT G	GA E
TG x	8 4	हुं । स	8 5	ဗ္ဗ ဗ	SP O
A G 18	AGA 12	126 TAC TAC	180 CHG	234 GAA 	288 GIC V
ဗ္ဗ မ	AGC - I S	TGG W	80 A	SE 1	SE 1 1
55 >	8	800 F	GG A	\\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\	CAG
B G	9 H G 63	1117 CCT P	171 AGA 	225 TTC	279 GCC
AAG K	ဗ္ဗ ဗ	AAC 	8 R	ည္သု ၂ ပ	ACG
ATG	CAG	ATC 	80 R	GCC A	13

H	GGCATCATCCAGGAAGACGGAGCATGGCCCTGAAGACGTGGCTTCTGTGCTTGCT	Ň
H	MetalaLeuLysThrTrpLeuLeuCysLeuLeuLeu	H
9	CTAAGCTTGGTCCTCCCAGGGGCTTCCAGCCGAGCCCACCAGCACTCCATGGAGACAAGA	. 11
13	LeuSerLeuValLeuProGlyAlaSerSerArgAlaHisGlnHisSerMetGluThrArg	m
20	ACCCCTGATATCAATCCTGCCTGGTACACGGGCCGCGGGATCAGGCCTGTGGGCCGCTTC	17
33	ThrProAspIleAsnProAlaTrpTyrThrGlyArgGlyIleArgProValGlyArgPhe	in
80	GGCAGGAGAAGGGCAACCCCGAGGGATGTCACTGGACTTGGCCAACTCAGCTGCCTCCCA	23
53	GlyArgArgAlaThrProArgAspValThrGlyLeuGlyGlnLeuSerCysLeuPro	7
40	40 CTGGATGGACGCACCAAGTTCTCTCAGCGTGGATAACACCCCCAGCTCGAGAAGACAGTGC	29
73	LeuAspGlyArgThrLysPheSerGlnArgGly***	ω
000	00 recreasecceaseceaserecersrecesseseserecrerecr	35
83		∞
99	CTGCT	36
83		σ.

FIG. 32

⋖	
33	
\mathcal{C})
C)
正	

,	FIG. 33A FIG. 33B	EE 337	7/60	FIG. 33A
	32	100	132	182 200
	20 30 40 50 50GT GGAATGAAGG CGGTGGGGGC CTGGCTCCTC	L G L A L Q G A A S R A H 70 80 90 100 TGCTGGGCCT GGCCTGCAG GGGGCTGCCA TGCTAAGCTT GGTCCTCCA GGGCTTCCA GCCGAGCCCA TGCTAAGCTT GGTCCTCCA GGGGCTTCCA GCCGAGCCCA R1	M E I R T P D I N P A W Y A 120 130 140 150 ATGGAGATCC GCACCCCGA CATCAACCCT GCCTGGTACG ATGGAGACAA GAACCCCTGA TATCAATCCT GCCTGGTACA R3	V G R F G R R R A A 200 180 200 GTGGCCGCT TCGGCCGCG AAGAGCTGCC GTGGCCGCT TCGGCAGGAG AAGGGCAACC R4
	M K A 30 GGAATGAAGG AGCATGG	A L Q 80 GGCCTGCAG GGTCCTCCCA	T P D 130 GCACCCCCGA GAACCCCTGA	
	20 GT AGGAAGACGG	L G L 70 TGCTGGGCCT TGCTAAGCTT R1	• •	I R P 170 GATCCGGCCC GATCAGGCCT
	10 .8	C L L L 60 and recreeces 13 recreeces	Q H S 110 83 CCAGCACTCC 101 CCAGCACTCC	G R G 160 3 CGGCCGTGG 1 CGGCCGCGG
	-18	33	101	133
	bovine.aa bovine.seq rat.seq	bovine.aa bovine.seq rat.seq	bovine.aa bovine.seq rat.seq	bovine.aa bovine.seq rat.seq

*

	232	250			282	300			332	350			382	400
C F R 250	ccrecracce	GCTGCCTCCC	7 T T A	300	CGCTGACGG	CCCAGCTCGA		350	CCCCICCICC	CCTGCAGACC	•	400	GCCTICIT	•
R V P A 240	CCGGGGGACG GACCCAGGCC TGGCCCCGG CGTGTGCCGG CCTGCTTCCG	CCGAGGGATG TCACTGGACT TGGCCAACTCA GCTGCCTCCC	LEG GAEP SRA LPGR LTA	290	conseables secentable concesses concesses esembaces	ACTIGGATIGGA CGCACCAAGT TCTCTCAGCG TGGATAACAC CCCAGCTCGA		340	CCCAGCTGGT CCAGGAATAA CAGGGGAGC CTGCCCCCCA CCCCTCCTCC	GAAGACAGTG CTGCTGAGCC CAAGCCCACA CTCCCTGTCC CCTGCAGACC		390	TCCACCAGCC ACCTTCCCTC CAGTCCTAAT AAAAGCAGCT GGCTTGTT	•
G P R 230	TGCCCCCGG	TGGC	S R R	280	CCTCCCGAGC	TCTCTCAGCG		330	CAGCGGGAGC	CAAGCCCACA		380	CAGTCCTAAT	CICCICIACC CICCCICICC ICIGCI
P R P 220	GACCCAGGCC	TCACTGGACT	E E B	270	GCCCTCAGC	CGCACCAAGT	* ы	320	CCAGGAATAA	CTGCTGAGCC	,	370	ACCITICCCTIC	CICCCICICC
PGDGPRPGPRVPACFR 210 220 230 240 25(183 CCGGGGGACG	201 CCGAGGGATG	ក ធ	260	233 CCTGGAAGGC	251 ACTGGATGGA	Q L V Q E	310	283 CCCAGCTGGT	301 GAAGACAGTG		360	333 TCCACCAGCC	351 CTCCTCTACC
bovine.aa	bovine.seq 1	rat.seq 2	bovine.aa		bovine.seq 2	rat.seq 2	bovine.aa		bovine.seq 2	rat.seq			bovine.seq	באר האת

FIG. 33B

	FIG. 34	
ω		ω
36.) CC	360
(A) (B) (C) (C) (C) (C) (C) (C) (C) (C) (C) (C	00 CAAGAAACTCACTCTGGAGCCTCCCCCACCCTCTCTCTCT	300
67	240 ACCIGCIFCCCCTGGAAGGGGGTGCTATGTCGTCCCAGGATGGCTGACAGCCAGC	47
72	53 PheGlyArgArgAlaThrLeuGlyAspValProLysProGlyLeuArgProArgLeu	Ŋ
		,
179	O CGCACCCTGACATCCTGCCTGGTACGCCAGTCGCGGATCAGGCCTGTGGGCCGC 3 ArgThrProAspIleAsnProAlaTrpTyrAlaSerArgGlyIleArgProValGlyArg	120
32	13 MetLeuGlyLeuAlaLeuArgGlyAlaAlaSerArgThrHisArgHisSerMetGluIle	-1
119	60 ATGCTGGGCCCTGCGGGGAGCTGCAAGTCGTACCCATCGGCACTCCATGGAGATC	9
12	l MetLysValLeuArgAlaTrpLeuLeuCysLeuLeu	
59	1 GGCCTCCTCGAGGAGGCATGAAGGTGCTGAGGGCCTGGCTCCTGTGCCTGCTG	-

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1000
50 WYAGRGIRPV WYTGRGIRPV WYASRGIRPV	100 LTAQLVQE*.
40 EIRTPDINPA ETRTPDINPA EIRTPDINPA	90 100 AEPSRALPGR LTAQLVQE* TRESQRG*.
30 AASRAHQHSM ASSRAHQHSM AASRTHRHSM	VPACERLEGG QLSCLPLDGR RLTCEPLEGG
20 LLLEGLALQG LLLESIVLPG LIMIGLALRG	70 GÖG FR FGP RR RUVTGL G GOV FK FGL RP
10 20 30 40 1 MKAVGAWLLC LLLLGLALOG AASRAHQHSM EIRTPDINPA WY 1 M-ALKTWLLC LLLLSLVLPG ASSRAHQHSM EIRTPDINPA WY 1 MKVLRAWLLC LIMLGLALRG AASRTHRHSM EIRTPDINPA WY	60 GREGRERAL GREGRERATE GREGRERATE
न न न	51 51 51
bovine.aa rat.aa human.aa	bovine.aa rat.aa human.aa

FIG. 35

Total binding

国 NSB

cells; 0.5×10^7 cells/ml

[125 []-19P2-L31; 200pM(avg.63857.3cpm)

NSB; 200nM(x 1,000)

reaction; RT, 2.5hr

in HBSS + 0.05% BSA + 0.05% CHAPS

in 100 µl

FIG. 36

FIG. 41A

FIG. 41B

FIG. 42A

FIG. 42B

FIG. 43A

FIG. 43B

FIG. 44A

FIG. 44B

FIG. 45

FIG. 46

direct blood pressure

FIG. 47A

mean blood pressure

FIG. 47B

FIG. 48

FIG. 49

-6

10ⁿ-fold diluted antiserum

-5

-3

-7

-8

FIG. 50

FIG. 51

			ν	56/60)		
FIG. 52A	FIG. 52B	FIG. 52C	FIG. 52D	FIG. 52E	FIG. 52	54 CCG 	108 AAT
Ĕ	Ä	FI	H	FIC]	666 	AGC Ser
						TCT Ser (GAG Glu
					·	45 TTT 	89 TCA Ser
					-	TTG Leu	GCT Ala
						GAT 	GAG Glu
						36 CCC 	90 GCA Ala
				·	<u>.</u>	GAC	AGT Ser
					FIG. 52A	GGG G1y	CAG Gln
					<u>Ö</u>	27 ACT 	81 AAC Asn
					Щ	ACC Thr	GCC Ala
						GGA 	CCA Pro
						18 CCT 	72 ACT Thr
						CCC Pro	TCC
						CIG Leu	GGC G1y
						TCA Ser	63 GCC
						ACC Thr	CCA Pro
		1			•	ATG ACC Met Thr	TCG ICG

162 CAA Gln	216 GTC 	270 CGG 	324 CTC Leu	378 GGC
CIG	GTG 	CGC Arg	GTG Val	CGT Arg
AGC Ser	GTG Val	GTG Val	GAT Asp	CCT Pro
153 CAG Gln	207 ATC 	261 CGC 	315 TCC Ser	369 GAA Glu
TTC	AGC	GCG	TTG	TTT
Phe	Ser	Ala	Leu	Phe
CCG	TAC	ATC	GCC	GCC
	Tyr	Ile	Ala	Ala
144 ACG Thr	198 CTG 	252 GTG 	306 CTG Leu	360 TAC TYr
GIC 	ATG Met	CTG Leu	AAC Asn	GCC Ala
GCA	GTG	GTG	66C	CTG
Ala	Val	Val	61y	Leu
135 GCA 	189 ATC Ile	243 CTT Leu	297 ATC Ile	351 ACG Thr
GCT	CTG	CTT	CIC	CIC
Ala	Leu	Leu	Leu	Leu
AGA	GCA	TGC	TIC	CCT
Arg	Ala	Cys	Phe	
126 CCC Pro	180 AAG Lys	234 AAC Asn	288 AAC Asn	342 GTG
GTT	CTG	GGC	ACC	TGT
Val	Leu	G1y		Cys
ACG	CAG	GTG	GTG	GCC
Thr	Gln	Val	Val	Ala
117 GCG 	171 CAC His	225 CTG Leu	279 AAC Asn	333 GCC
ICT	GTG	GGT	CAC	TGT
Ser	Val	G1y		Cys
GTG	CTA	GTG	CTG	ATG
Val	Leu	Val	Leu	Met

432 ACC	Thr	486 GTT 	540 GTG Val	594 ACC Thr	648 GGT G1y
GTC	 Va1	GTG Val	GCT 	CAC His	TGG Trp
900	Pro	TAT Tyr	TAC Tyr	GTG Val	TTC Phe
423 CAG	Gln	477 CGC 	531 GCC Ala	585 GCG Ala	639 GAG Glu
CTG	Leu	GAC Asp	AGC Ser	GCC Ala	GAG G1u
TIC	Phe	GTG Val	CTC	CCG III	16C Cys
414 TTC	Phe	468 GCT 	522 AAG Lys	576 CTG Leu	630 CTC Leu
GTT	Val	A II - II	L I G	GCG - A1a	CGC Arg
CTT	Leu	ACA Thr	TCA Ser	CTG Leu	GTG Val
405 CAC	His	459 ACC Thr	513 ATT 11e	567 GTG Val	621 GAC ASP
T C	Cys	CTC	CGC Arg	GCA Ala	CAC
CIG	Leu	ACA Thr	CGG Arg	TCT	CCC
396 GGC	<u> </u>	450 TTC Phe	504 CGT 	558 CTA	612 AAG Lys
GGA	Gly	GTG Val	CTA 	GCT Ala	CTC Leu
GGT	<u>-1-</u> G1y	TCG Ser	CCG	TGG 	GAG Glu
387 TTC	Phe	441 GTA 	495 CAC His	549 ATC Ile	603 GTA
GTG	Val	TAC Tyr	GTG Val	66C 61y	CAT His
TGG	Trp	GTC Val	CTG Leu	CTG	TAC Tyr

Arg Arg Thr Phe Cys Leu Leu Val Val 873 882 891 900 TGG CTG CCT CTG CAC ATT TTC AAC CTG CTG Trp Leu Pro Leu His Ile Phe Asn Leu Leu Trp Leu Pro Leu His Ile Phe Asn Leu Leu
Phe Cys Leu Leu 891 CAC ATT TTC AAC His Ile Phe Asn
Arg Arg CTG CCT Leu Pro
Ala Arg Arg 873 GTC TGC TGG Val Cys Trp

972 GCC	Ala	1026 TTC 	1080	His
CIT	Leu	AGC	C C C	он
TGG	Trp	GAC 	STG 	Val
963 CAC		1017 CTG CAC 		H I e
TGC	Cys			Lys
CIC	Leu	H G I G	ည်း (၁)	Arg 1
954 CTC	Leu	1008 TAT GCG		Trp Pro 1116 TGA TGA
CAG	G1n	TAT	1	FI FI
GTG	Val	ATC 		Ser ATC
945 CTG	Leu	THC THC	1053 CTG	1107 1107 GTC
999 1	G1y	CCC	CTT	Leu GTG
H H I I	Phe	AAC 		Met AGT
936	Ala	990 TAC 		1098 CC GTC
TAC	Tyr			מ, מ, ו בו
CC I	Asp Pro	GCC 		Leu ATG Met
927 GAC	Asp	981 TCC	1035 GAG GAG	Glu Glu 1089 CAG AAT Gln Asn
927 GCC ATC GAC	Ile	AGC Ser	GAG	Glu CAG Gln
0 0 0 1	Ala	ATG Met	CGA	Arg GGC Gly

FIG. 52E

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

BLACK BORDERS

IMAGE CUT OFF AT TOP, BOTTOM OR SIDES

FADED TEXT OR DRAWING

BLURRED OR ILLEGIBLE TEXT OR DRAWING

SKEWED/SLANTED IMAGES

COLOR OR BLACK AND WHITE PHOTOGRAPHS

GRAY SCALE DOCUMENTS

LINES OR MARKS ON ORIGINAL DOCUMENT

REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY

IMAGES ARE BEST AVAILABLE COPY.

☐ OTHER: ____

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.