Lecture 03: Word Representation

OVERVIEW

- 1. Word meaning
- 2. Sparse vector representation
- 3. Frequency based representation
- 4. Distributional semantics (dense) vector representation
- 5. Word2vec models

MACHINE LEARNING ON TEXT DATA!!!

To solve NLP task with ML we need to represent text data in a way that ML algorithms or statistical techniques can understand.

What should word representation capture?

WHAT IS MEANING (SEMANTICS)?

Meaning in natural language is conveyed by words

- A words is an atomic symbol
- Meaning
 - Idea that is represented by a word, phrase, sentence, etc.
 - Idea expressed in a work of writing, speech or art, etc.

In linguistics a *meaning* maps a word(s) to an idea

Signifier (symbol) ⇔signified (idea or thing)

WHAT IS MEANING (SEMANTICS)?

Corpus:

- 1. About the bird, the bird bird bird bird
- 2. You heard about the bird
- *3.* the bird is the word

Vocabulary:

V = {about, bird, heard, is, the, word, you}

	about	bird	heard	is	the	word	you
About the bird, the bird, bird bird bird	I	5			?		
You heard about the bird	I	1		?	?		
The bird is the word	0	1			?		

WHAT IS MEANING (SEMANTICS)?

Lexicographic meaning of a word.

What is the context of bar?

- is bar a place to have a drink?
- is bar a long rod?
- is *bar* to block it?

What is the context of bank?

- is *bank* a financial institution?
- is *bank* a river bank?

REPRESENTING WORDS AS DISCRETE SYMBOLS

- Traditionally NLP regarded words as discrete symbols or localist representation.
- Vector dimension = number of words in a vocabulary (e.g., 10,000+)
- Words are onehot vectors: position (index) of the word in vocabulary is

bird	car	length	long
0	0	0	0
0	0	0	0
0	0	0	1
0	0	0	0
1	0	0	0
0	0	1	0
0	0	0	0
0	1	0	0
0	0	0	0

LIMITATIONS OF SPARSE VECTOR REPRESENTATION

- Computationally expensive because one-hot vectors are very high-dimensional and sparse vectors
- have no concept of similarity each word vector is orthogonal to all others:
 - long/length are as different as long/car

$$v_{long}^T$$
 . $v_{length} = v_{long}^T$. $v_{car} = 0$

• This representation does not account for semantics, word usage, etc...

FREQUENCY BASED REPRESENTATION

Bag-of-words is a collection of all the words that are present in the document along with their frequencies.

- Corpus *C* of *D* documents
- Vocabulary of N unique tokens (features).
- Count vector (frequency matrix) is a DxN matrix M.

	about	bird	heard	is	the	word	you
About the bird, the bird, bird bird bird	1	5	0	0	2	0	0
You heard about the bird	1	1	1	0	1	0	1
The bird is the word	0	1	0	1	2	1	0

TERM FREQUENCY INVERSE DOCUMENT FREQUENCY (TF-IDF)

- A 2D matrix where each term denotes the relative frequency of a particular term (word) in a particular
 document as compared to other documents.
- Main objective of tf-idf is to penalize very frequent words and boost influence of rare words
- Term Frequency (tf): number of times a term t appears in a document d, where $d \in D$
- Inverse document frequency (idf): inverse count of occurances of term t in the document set D.

$$tfidf = tf(t,d) * idf(t,D)$$

where,

$$tf(t,d) = \frac{count \ of \ t \ in \ document \ d}{number \ of \ words \ in \ d}$$

df(t) = # of documents with t

$$idf(t) = \log(\frac{N(D)}{df(t) + 1})$$

add one to prevent division by zero.

This can occur when a word (feature) in our vocabulary (feature set) is not present in text at prediction time.

EXAMPLE OF TF-IDF

document A: The car is driven on the road.

document B: The truck is driven on the highway.

Word	TF		IDF	TF*IDF		
	Α	В	IDI	Α	В	
The	2/7	2/7	Log(2/2) = 0	0	0	
Car	1/7	0	Log(2/1) = 0.3	0.043	0	
Truck	0	1/7	Log(2/1) = 0.3	0	0.043	
ls	1/7	1/7	Log(2/2) = 0	0	0	
Driven	1/7	1/7	Log(2/2) = 0	0	0	
On	1/7	1/7	Log(2/2) = 0	0	0	
Road	1/7	0	Log(2/1) = 0.3	0.043	0	
Highway	0	1/7	Log(2/1) = 0.3	0	0.043	

- The word *is* and *driven* appears in both documents, it is not as informative.
- The word *car* is more informative because it appears in only one document.

LIMITATIONS OF FREQUENCY-BASED REPRESENTATION

- Ignore the meaning or semantics of the word
- Ignores word context
- Does not capture co-occurrences of words in different documents
- Loses the ordering of the words

"My name is John" is the same as "Is my name John?"

NOTE:

advantage of TF-IDF have some over raw counts is that rare words are not penalized.

DISTRIBUTIONAL SEMANTICS

A word's meaning is given by the words that frequently appears close-by

"You shall know a word by the company it keeps" John R. Firth 1957

When a word w appears in a text, its context is the set of words that appear nearby (within a fixed window).

Use the many context of word w to build a representation of w.

The contexts in which a word appears tells us a lot about what it means.

Words that appear in similar contexts have similar meanings

DISTRIBUTIONAL SEMANTICS – WORD EMBEDDINGS

A word embedding is a function that maps each word type to a single vector.

- These vectors are typically **dense** and have much **lower dimensionality** than the size of the vocabulary.
 - Dense vector dimension: 50 1024
- This mapping function typically ignores that the same string of letters may have different senses or parts of speech
 - *a table* in *a table of contents*
 - to table in table a motion
- This mapping function typically assumes a fixed size vocabulary

DISTRIBUTIONAL SEMANTICS

Distributional semantics: Word embeddings — dense vectors

$$long = \begin{pmatrix} 0.02 \\ -0.11 \\ 0.18 \\ 0.12 \\ -0.22 \\ -0.10 \\ 0.23 \end{pmatrix} \qquad lenght = \begin{pmatrix} 0.02 \\ -0.18 \\ 0.18 \\ 0.12 \\ -0.18 \\ -0.10 \\ 0.20 \end{pmatrix} \qquad car = \begin{pmatrix} -0.72 \\ 0.81 \\ -0.71 \\ 0.92 \\ 0.78 \\ -0.10 \\ -0.01 \end{pmatrix}$$

We want to capture concept of similarity such that, similarity(long, length) > similarity(long, car)

$$v_{long}^{T}$$
 . $v_{length} \gg v_{long}^{T}$. v_{car}

GENERATING DENSEVECTORS

Word2Vec (Mikolov et al. 2013): The first really influential dense word embeddings

Two ways to think about Word2Vec: a binary classifier

Variants of Word2Vec

- Two different context representations: CBOW or Skip-Gram
- Two different optimization objectives: Negative sampling (NS) or hierarchical softmax

GENERATING DENSEVECTORS - SKIP GRAM

Main idea:

- Use a binary classifier to predict which words appear in the context of a target word.
 - Word in the context of target words are the **positive** examples
 - Words not in context are negative examples

$$w_t = \theta X + e_t$$

- The parameter θ of that classifier provide a dense vector representation of the target word (embedding).
- Main assumption: words that appear in similar contexts (that have high distributional similarity) will
 have very similar vector representations.

SKIP GRAM TRAINING DATA

Training sentence

```
.. lemon, debt problems turning into banking crises as ... c1 c2 t c3 c4
```

Training data: input/output pairs centring on apricot (assume a +/-2 window)

- Positive examples (D+):
 - (into, problems), (into, turning), (into, banking), (into, crises)
- Negative examples (D-):
 - (into, aardvark), (into, puddle)

GENERATING DENSEVECTORS – SKIP GRAM

- Given a word fox, train a model to attempts to predict surrounding words (its context).
- After training discard the left and right blocks, keeping only the middle dense vector.

This vector represents can be used to embed this word for downstream language models.

GENERATING DENSEVECTORS – CBOW

• Continuous bag of words (CBOW) aims to predict a word based on its context.

GENERATING DENSEVECTORS – SKIP GRAM

- Single vector representation
 - Vocabulary size of 10,000 words
 - Embedding dimension of 300

$$\begin{bmatrix} 0 & 0 & 0 & 1 & 0 \end{bmatrix} \times \begin{bmatrix} 17 & 24 & 1 \\ 23 & 5 & 7 \\ 4 & 6 & 13 \\ 10 & 12 & 19 \\ 11 & 18 & 25 \end{bmatrix} = \begin{bmatrix} 10 & 12 & 19 \end{bmatrix}$$

DISTRIBUTIONAL SEMANTICS

Analogy: embeddings capture relational meaning

CHARACTERISTICS OF GOOD EMBEDDING MODELS

Non conflation: the embedding model should identify differences in the context and encode them into a meaningful representation e.g., domain, plural, singular, tense

Robust against lexical ambiguity: model should capture meaning of the word and find appropriate embeddings e.g., "the **bow** of a ship" and "**bow** and arrow" should have different embeddings Demonstrate a multifaceted representation: all properties of word e.g., morphology, syntax, phonetic etc. should contribute to the word representation e.g., representation should change when a prefix is added, or tense is changed

Reliable and consistent: when trained on same dataset even with random initialization the performance of various representation should score consistently.

EVALUATING THE WORD EMBEDDING MODEL

Intrinsic: evaluate quality of representation irrespective of NLP task

- word similarity measures the distance between word vectors and human perceived semantic similarity.
- Word analogy: given a pair of words a and a^* and a third word b can the analogy relationship between a and a^* can be used to find the corresponding word b^*
- Concept categorization: goal is to evaluate if the representations is such that words with similar concepts can be easily clustered together.

Extrinsic

- Evaluation on a real task
- Can take along time to compute accuracy
- Unclear if the subsystem is the problem or its interaction or other subsystems
- If replacing exactly one subsystem with another improves accuracy

COUNT BASED VS PREDICTION-BASED WORD VECTORS

- Count based vectors
 - Faster to train and it efficiently use word statistics
 - Primarily used to capture word similarity
 - Disproportionate importance given to large counts
- Word2vec
 - Scales with corpus size but with Inefficient usage of statistics
 - Generate improved performance on other tasks
 - Can capture complex patterns beyond word similarity

PRE-TRAINED WORD EMBEDDINGS

- Word2vec: https://code.google.com/archive/p/word2vec/
- Fasttext: http://www.fasttext.cc/
- Glove: http://nlp.stanford.edu/projects/glove/
- Gensim: https://radimrehurek.com/gensim/

READING MATERIALS

- 1. Efficient Estimation of Word Representations in Vector Space (https://arxiv.org/abs/1301.3781)
- 2. Distributed Representations of Words and Phrases and their Compositionality (https://arxiv.org/abs/1310.4546)
- 3. A Survey of Word Embeddings Evaluation Methods (https://www.semanticscholar.org/reader/fcf816d9e7b804f4201e4cbf5437e62d683c8a8e)