Kartkówka 4

gr.1, 15 stycznia 2014

- 1. Dany jest ciąg zmiennych losowych $(X_n)_{n\geqslant 0}$ o wartościach całkowitych taki, że $X_0=0, |X_n-X_{n-1}|\leqslant 1$, $\limsup_{n\to\infty}|X_n|=\infty$ p.n. oraz $(X_n^2-\frac{1}{10}n)$ jest martyngałem względem pewnej filtracji. Niech $\tau=\inf\{n\colon |X_n|=5\}$, oblicz $\mathbf{E}\tau$.
- 2. Niech X_n będzie łańcuchem Markowa o przestrzeni stanów $\{1,2,3\}$ i macierzy przejścia $P=\frac{1}{5}\begin{pmatrix}1&2&2\\3&1&1\\0&2&3\end{pmatrix}$, Oblicz $\mathbf{P}(X_2=1|X_0=1)$ i $\mathbf{P}(X_2=X_1|X_0=1)$.

Kartkówka 3

gr.2, 15 stycznia 2014

- 1. Niech X_n będzie łańcuchem Markowa o przestrzeni stanów $\{1,2,3\}$ i macierzy przejścia $P=\frac{1}{5}\begin{pmatrix}2&1&2\\1&1&3\\3&2&0\end{pmatrix}$, Oblicz $\mathbf{P}(X_2=2|X_0=1)$ i $\mathbf{P}(X_2=X_1|X_0=1)$.
- 2. Dany jest ciąg zmiennych losowych $(X_n)_{n\geqslant 0}$ o wartościach całkowitych taki, że $X_0=0, |X_n-X_{n-1}|\leqslant 1$, $\limsup_{n\to\infty}|X_n|=\infty$ p.n. oraz $(X_n^2-\frac{1}{5}n)$ jest martyngałem względem pewnej filtracji. Niech $\tau=\inf\{n\colon |X_n|=1\}$, oblicz $\mathbf{E}\tau$.