Tópicos em Otimização

Otimização Linear Definições e Solução Gráfica

PPL: Hipóteses

- Aditividade: se em 1kg do produto i houver 200g do componete k e em 2kg do produto j houver 100g do componente k, então, na mistura deverá (3kg) deverá haver 300g do componente k
- Linearidade: se aij for a quantidade do componente i em uma unidade da mistura j então a_{ij}x_j será a quantidade em x_j unidades da mistura
- Fracionamento: valores fracionários são aceitáveis

Definições

- Foma Padrão de um PPL:

Min
$$f(x_1, x_2,..., x_n) = c_1x_1 + c_2x_2 + ... + c_nx_n$$

 $a_{11}x_1 + a_{12}x_2 + ... + a_{1n}x_n = b_1$
 $a_{21}x_1 + a_{22}x_2 + ... + a_{2n}x_n = b_2$
....
 $a_{m1}x_1 + a_{m2}x_2 + ... + a_{mn}x_n = b_m$
 $x_j \ge 0, j = 1,2,..., n$

- Em notação matricial:

Min
$$f(x)=c^Tx$$

 $Ax=b$
 $x \ge 0$

C^T, x, b: vetores de dimensão n; A: matriz com m linhas e n colunas; 0: vetor nulo

Definições:

- Solução e Região Factível:
- x é solução factível se satisfizer todas as restrições e condições de não negatividade. O conjunto de todas as soluções factíveis é chamado de região factível.
- Solução Ótima: é uma solução factível que fornece o melhor valor para função objetivo. Denota-se x*
 f(x*) ≤ f(x), para qualquer x factível.

Transformações de problemas na forma padrão

• Existem variáveis não-positivas

Seja $x_k \le 0$:

Solução: Criar variável x_k ' tal que x_k ' = - x_k

Assim, modelo terá variável $x_k' \ge 0$

Transformações de problemas na forma padrão

• Restrições do tipo ≤

$$2x_1 + 3x_2 \le 5$$

$$2x_1 + 3x_2 + x_3 = 5$$

$$x_3 \ge 0$$

Restrições do tipo ≥

$$x_1 + 6x_2 \ge 7$$
 $x_1 + 6x_2 - x_4 = 7$

Transformações de problemas na forma padrão

• Existem variáveis livres, isto é, variáveis x_k que podem assumir qualquer valor real (negativo, nulo ou positivo)

Solução: Substituir x_k por $x_k^+ - x_k^-$, com $x_k^+ \ge 0$ e $x_k^- \ge 0$

• PPL é de maximização:

$$max f(x) = min \{-f(x)\}$$

Solução Gráfica de PPL's

- Passos para resolver graficamente um PPL:
 - a) Escolher uma solução x viável qualquer
 - b) Traçar o hiperplano definido pela função objetivo passando pelo ponto *x*
 - c) Determinar o gradiente da função objetivo no ponto *x*
 - d) Caminhar no sentido e direção do gradiente da função objetivo até tangenciar a região viável (maximização). Caminhar no sentido contrário ao gradiente em problemas de minimização.
 - e) O ponto de tangência representa a solução ótima x*

Solução Gráfica

Resolver o seguinte PPL:

Solução Gráfica

- O ótimo de um PPL, se existir, ocorre em pelo menos um vértice do conjunto de soluções viáveis.
- Situações que podem ocorrer com relação ao conjunto M de soluções viáveis:
 - 1) $M = \{ \}$

Neste caso não há solução viável => Não há solução ótima

2) Mé não vazio

a) M é limitado

Única solução ótima, a qual é vértice

Infinidade de soluções ótimas, sendo duas vértices

2) Mé não vazio

b) M é ilimitado

Única solução ótima, a qual é vértice

Infinidade de soluções ótimas, sendo uma vértice

2) Mé não vazio

b) M é ilimitado

Infinidade de soluções ótimas, sendo duas vértices

Não há soluções ótimas Solução ótima ilimitada

2) Mé não vazio

Dificuldades nos métodos de solução!!!

Vértice obtido com interseção de retas diferentes : soluções ótima degenerada