Duration: 3 Hours	Maximum Marks: 35
Q.1) Implement a Binary search tree (BST) library (btr.) Write a menu driven program that performs the above of	
Q.2) Write a C program that accepts the vertices and edge matrix. Display the adjacency matrix. Implement functions	
Q.3) Multiple Choice Questions: (Using Microsoft Form)	[10]
Q.4) Viva	[5]

Maximum Marks: 35

Q.1) Implement a Binary search tree (BST) library (btree.h) with operations – create, search, pre- Write a menu driven program that performs the above operations.	order. [10]
Q.2) Write a C program which uses Binary search tree library and implements following function: int sumodd(T) – returnssum of all odd numbers from BST	[10]
Q.3) Multiple Choice Questions: (Using Microsoft Form)	[10]
O.4) Viva	[5]

Maximum Marks: 35

Q.1) Implement a Binary search tree (BST) library (btree.h) with operations – create, is Write a menu driven program that performs the above operations.	insert, postorder. [10]
Q.2) Write a program to sort n randomly generated elements using Heapsort method.	
Q.3) Multiple Choice Questions: (Using Microsoft Form)	[10]
O 4) Viva	[5]

Maximum Marks: 35

Q.1) Implement a Binary search tree (BST) library (btree.h) with operations – create, search, pre- Write a menu driven program that performs the above operations.	order. [10]
Q.2) Write a C program which uses Binary search tree library and implements following function: int sumeven(T) – returns sum of all even numbers from BST	[10]
Q.3) Multiple Choice Questions: (Using Microsoft Form)	[10]
O(4) Viva	[5]

Maximum Marks: 35

Q.1) Implement a Binary search tree (BST) library (btree.h) with operations – create, inser-	•
Write a menu driven program that performs the above operations.	[10]
Q.2) Write a C program that accepts the vertices and edges of a graph and store it as an adjace	ncy matrix.
Implement function to traverse the graph using Breadth First Search (BFS) traversal.	[10]
Q.3) Multiple Choice Questions: (Using Microsoft Form)	[10]
Q.4) Viva	[5]

Duration: 3 Hours	Maximum Marks: 35
Q.1) Implement a Binary search tree (BST) library (btree.h) w postorder. Write a menu driven program that performs the about	
Q.2) Write a C program that accepts the vertices and edges of display the adjacency list.	a graph. Create adjacency list and [10]
Q.3) Multiple Choice Questions: (Using Microsoft Form)	[10]
Q.4) Viva	[5]

Duration: 3 Hours	Maximum Marks: 35
Q.1) Implement a Binary search tree (BST) library (btree.h) wit a menu driven program that performs the above operations.	th operations – create, preorder .Write [10]
Q.2) Write a C program that accepts the vertices and edges of a matrix. Implement function to traverse the graph using Depth F	
Q.3) Multiple Choice Questions: (Using Microsoft Form)	[10]
Q.4) Viva	[5]

____ Slip 7 _

Duration: 3 Hours	Maximum Marks: 35
Q.1) Write a C program which uses Binary search tree librar node at each level and total levels in the tree.	y and displays nodes at each level, count of [10]
Q.2) Write a C program which uses Binary search tree library mirror(T) – converts given tree into its mirror image.	
Q.3) Multiple Choice Questions: (Using Microsoft Form)	[10]
Q.4) Viva	[5]

_____ Slip 8

Duration: 3 Hours		Maximum Marks: 35
Q.1) Write a C program which node at each level and total level	3	nd displays nodes at each level, count of [10]
Q.2) Write a C program which recursion:	uses Binary search tree library an	nd implements following function with
T copy(T) – create another BS	ST which is exact copy of BST v	which is passed as parameter. [10]
Q.3) Multiple Choice Questions	s: (Using Microsoft Form)	[10]
Q.4) Viva		[5]

Q.1) Write a C program which uses Binary search tree library and displays nodes at each level, count of node at each level and total levels in the tree. [10] Q.2) Write a C program that accepts the vertices and edges of a graph and store it as an adjacency matrix. Implement functions to print indegree of all vertices of graph. [10] Q.3) Multiple Choice Questions: (Using Microsoft Form) [10] Q.4) Viva [5]	Duration: 3 Hours	Maximum Marks: 35
Implement functions to print indegree of all vertices of graph. [10] Q.3) Multiple Choice Questions: (Using Microsoft Form) [10]		
Q.4) Viva [5]	Q.3) Multiple Choice Questions: (Using Microsoft Form)	[10]
	Q.4) Viva	[5]

Duration: 3 Hours	Maximum Marks: 35
Q.1) Write a C program that accepts the vertices and edges of a gramatrix. Implement function to traverse the graph using Breadth First	
Q.2) Implement a Binary search tree (BST) library (btree.h) with menu driven program that performs the above operations.	operations – create, inorder. Write a [10]
Q.3) Multiple Choice Questions: (Using Microsoft Form)	[10
Q.4) Viva	[5]

Duration: 3 Hours	Maximum Marks: 35
Q.1) Write a C program that accepts the vertices and edges of a graph an matrix. Implement function to traverse the graph using Depth First Search	
Q.2) Implement a Binary search tree (BST) library (btree.h) with opera a menu driven program that performs the above operations.	ntions – create, preorder. Write [10]
Q.3) Multiple Choice Questions: (Using Microsoft Form)	[10]
Q.4) Viva	[5]

Maximum Marks: 35

Q.1) V	Write a C program which uses Binary search tree library and implements following function wit	h
int cor otherw	mpare(T1, T2) – compares two binary search trees and returns 1 if they are equal and 0 vise.	[10]
Q.2) matrix	Write a C program that accepts the vertices and edges of a graph and stores it as an adjacency . Display the adjacency matrix.	[10]
Q.3)	Multiple Choice Questions: (Using Microsoft Form)	[10]
Q.4)	Viva	[5]

Duration: 3 Hours	Maximum Marks: 35
Q.1) Write a C program that accepts the vertices and edges of a graph the adjacency list.	n. Create adjacency list and display [10]
Q.2) Write a program which uses binary search tree library and count count(T) – returns the total number of nodes from BST	ints the total nodes in the tree. [10]
Q.3) Multiple Choice Questions: (Using Microsoft Form)	[10]
Q.4) Viva	[5]

	Duration: 3 Hours Maximum Marks: 3	5
Q.1)	Write a program to sort n randomly generated elements using Heapsort method.	[10]
Q.2) int co	Write a program which uses binary search tree library and counts the total nodes in the tree. ount(T) – returns the total number of nodes from BST	[10]
Q.3)	Multiple Choice Questions: (Using Microsoft Form)	[10]
Q.4)	Viva	[5]

Duration: 3 Hours	Maximum Marks: 35
Q.1) Write a program to sort n randomly generated elements using	Heapsort method. [10]
Q.2) Implement a Binary search tree (BST) library (btree.h) with opmenu driven program that performs the above operations.	perations – create, preorder. Write a
Q.3) Multiple Choice Questions: (Using Microsoft Form)	[10]
Q.4) Viva	[5]

Duration: 3 Hours	Maximum Marks: 35
 Q.1) Write a program which uses binary search tree library and coun int countLeaf(T) – returns the total number of leaf nodes from BST Q.2) Write a C program that accepts the vertices and edges of a gramatrix. Display the adjacency matrix. 	[10]
Q.3) Multiple Choice Questions: (Using Microsoft Form)	[10]
Q.4) Viva	[5]

Duration: 3 Hours	Maximum Marks: 35
Q.1) Write a program which uses binary search tree library and on int countLeaf(T) – returns the total number of leaf nodes from BS	
Q.2) Write a C program that accepts the vertices and edges of matrix. Implement functions to print indegree of all vertices of grant programs are considered as a constant of the constant of	
Q.3) Multiple Choice Questions: (Using Microsoft Form)	[10]
Q.4) Viva	[5]

1
0 to 0
and [10]
. Write a
[10]
[5]

Duration: 3 Hours	Maximum Marks: 35
Q.1) Implement a Binary search tree (BST) library (btre Write a menu driven program that performs the above open	
Q.2) Write a C program that accepts the vertices and edges matrix. Display the adjacency matrix. Implement functions t	of a graph and stores it as an adjacency
Q.3) Multiple Choice Questions: (Using Microsoft Form)	[10]
Q.4) Viva	[5]

Maximum Marks: 35

Q.1) Implement a Binary search tree (BST) library (btree.h) with operations – create, search, pre- Write a menu driven program that performs the above operations.	order. [10]
Q.2) Write a C program which uses Binary search tree library and implements following function: int sumodd(T) – returnssum of all odd numbers from BST	[10]
Q.3) Multiple Choice Questions: (Using Microsoft Form)	[10]
O.4) Viva	[5]

Maximum Marks: 35

Q.1) Implement a Binary search tree (BST) library (btree.h) with operations – create, insert, pos Write a menu driven program that performs the above operations.	storder. [10]
Q.2) Write a program to sort n randomly generated elements using Heapsort method.	[10]
Q.3) Multiple Choice Questions: (Using Microsoft Form)	[10]
O(4) Vive	[5]

Maximum Marks: 35

Q.1) Implement a Binary search tree (BST) library (btree.h) with operations – create, search, pre- Write a menu driven program that performs the above operations.	order. [10]
Q.2) Write a C program which uses Binary search tree library and implements following function: int sumeven(T) – returns sum of all even numbers from BST	[10]
Q.3) Multiple Choice Questions: (Using Microsoft Form)	[10]
O.4) Viva	[5]

Maximum Marks: 35

Q.1) Implement a Binary search tree (BST) library (btree.h) with operations – create, insert Write a menu driven program that performs the above operations.	postorder.
Q.2) Write a C program that accepts the vertices and edges of a graph and store it as an adjacent Implement function to traverse the graph using Breadth First Search (BFS) traversal.	ncy matrix. [10]
Q.3) Multiple Choice Questions: (Using Microsoft Form)	[10]
Q.4) Viva	[5]

Duration: 3 Hours

Duration: 3 Hours	Maximum Marks: 35
Q.1) Implement a Binary search tree (BST) library (btree.h) wit	th operations – create, preorder and
postorder. Write a menu driven program that performs the above	-
Q.2) Write a C program that accepts the vertices and edges of a display the adjacency list.	graph. Create adjacency list and [10]
Q.3) Multiple Choice Questions: (Using Microsoft Form)	[10]
Q.4) Viva	[5]