#### SOFTWARE QUALITY

**CPTS 583** 

Quality Models (II): Reliability (Rayleigh) Model

#### Outline

- Reliability Models
  - What & Why
- Rayleigh Model
  - Internals
  - Applications

Defects in software

#### Quality assurance





What are they?

models are used to assess a software product's reliability or to estimate the number of latent defects when it is available to the customers.

- Why do we need them?
  - (1) as an objective statement of the quality of the product
  - (2) for resource planning for the software maintenance phase

#### Prediction



• Static models

#defects / defect rate  $y = f(x_1, x_2, \dots, xi) + e$ Error term

- Dynamic models

Probability density function (PDF) y = f(t)time

Static versus Dynamic models

|                                        | Static                                                                                     | Dynamic                                                                |  |  |  |
|----------------------------------------|--------------------------------------------------------------------------------------------|------------------------------------------------------------------------|--|--|--|
| Data source<br>for model<br>parameters | Attributes of previous projects                                                            | Defect patterns of current project                                     |  |  |  |
| Application scope                      | Process/product line level: providing clues on improving design and implementation quality | Product level: resulting model specific to the current project/product |  |  |  |

- Dynamic models
- For the entire development process
  - Rayleigh Model





- A dynamic reliability model
- Based on Weibull distribution with m=2

PDF: 
$$\frac{m}{t} \left(\frac{t}{c}\right)^m e^{-\left(\frac{t}{c}\right)^m}$$

CDF: 
$$1 - e^{-\left(\frac{t}{c}\right)^m}$$

t: time

*m*: shape parameter

c: scale parameter

#### Lord Rayleigh



Physicist, discovered Argon and explained why the sky was blue

Wide applications



Probability density function (PDF)

Cumulative distribution function (CDF)

For software reliability

Defect density (rate) over time / defect arrival pattern

$$\mathsf{PDF} \colon \frac{2}{t} \left(\frac{t}{c}\right)^2 e^{-\left(\frac{t}{c}\right)^2}$$

CDF: 
$$1 - e^{-\left(\frac{t}{c}\right)^2}$$

**Cumulative defect arrival pattern** 

For software reliability

PDF: 
$$f(t) = \frac{2}{t} \left(\frac{t}{c}\right)^2 e^{-\left(\frac{t}{c}\right)^2}$$

$$f'(t) = 0$$

Time at which the PDF curve reaches its peak

$$t_{\rm m} = c/\sqrt{2}$$

$$c = t_{\rm m}\sqrt{2}$$

#### Rayleigh Model for software

 Projects follow a life-cycle pattern described by the Rayleigh density curve.



- Assumptions
- Defect rate during development positively correlated with Defect rate in the field



- Assumptions
- Defect rate during development positively correlated with Defect rate in the field



- Assumptions
- Given the same error injection rate, if more defects are discovered and removed earlier, fewer will remain in later stages



• IBM AS/400

- Defect data
  - for 65 components
  - for different stages of each component
    - IO, I1, I2, UT, CT, ST, GA
- Correlation analysis
  - Spearman Rank Order Correlation
  - Between development-time defects and field defects

• IBM AS/400

TABLE 7.1
Spearman Rank Order Correlations

| Phase                    | Rank-Order Correlation | n  | Significance Level |  |  |  |
|--------------------------|------------------------|----|--------------------|--|--|--|
| 10                       | .11                    | 65 | Not significant    |  |  |  |
| 11                       | .01                    | 65 | Not significant    |  |  |  |
| 12                       | .28                    | 65 | .02                |  |  |  |
| CT                       | .48                    | 65 | .0001              |  |  |  |
| ST                       | .49                    | 65 | .0001              |  |  |  |
| All (I0, I1, I2, CT, ST) | .31                    | 65 | .01                |  |  |  |

Strongly supported the first assumption.

- IBM AS/400
- Second assumption: also validated
- Significance even stronger at coarser levels

the more granular the unit of analysis, the less chance it will obtain statistical significance

- Collect defect data (#defects / defect rate)
- 2. Derive model parameters from the data
  - E.g., the scale parameter
  - Using a statistical software package (e.g., SAS)
- 3. Estimate end-product reliability by plugging data values into model

• Example implementation: STEER @IBM

| TABLE 7.2      |          |     |       |             |
|----------------|----------|-----|-------|-------------|
| Defect Removal | Patterns | and | STEER | Projections |

|         |       |          | Defects Per KLOC         |                         |      |              |                     |                |                               |                        |                   |
|---------|-------|----------|--------------------------|-------------------------|------|--------------|---------------------|----------------|-------------------------------|------------------------|-------------------|
| Project | LOC   | Language | High-<br>Level<br>Design | Low-<br>Level<br>Design | Code | Unit<br>Test | Integration<br>Test | System<br>Test | First-Year<br>Field<br>Defect | LOP<br>Field<br>Defect | STEER<br>Estimate |
| Α       | 680K  | Jovial   | 4                        |                         | 13   | 5            | 4                   | 2              | 0.3                           | 0.6                    | 0.6               |
| В       | 30K   | PL/1     | 2                        | 7                       | 14   | 9            | 7                   | _              | 3.0                           | 6.0                    | 6.0               |
| С       | 70K   | BAL      | 6                        | 25                      | 6    | 3            | 2                   | 0.5            | 0.2                           | 0.4                    | 0.3               |
| D       | 1700K | Jovial   | 4                        | 10                      | 15   | 4            | 3                   | 3              | 0.4                           | 0.8                    | 0.9               |
| E       | 290K  | ADA      | 4                        | 8                       | 13   |              | 8                   | 0.1            | 0.3                           | 0.6                    | 0.7               |
| F       | 70K   |          | 1                        | 2                       | 4    | 6            | 5                   | 0.9            | 1.1                           | 2.2                    | 2.1               |
| G       | 540K  | ADA      | 2                        | 5                       | 12   | 12           | 4                   | 1.8            | 0.6                           | 1.2                    | 1.1               |
| Н       | 700K  | ADA      | 6                        | 7                       | 14   | 3            | 1                   | 0.4            | 0.2                           | 0.4                    | 0.4               |

#### Validity

- Depends heavily on "data quality"
  - · Back-end data tends to have better quality than front end data
- Model estimates and actual outcomes must be compared and empirical validity must be established.
  - Empirical validity is essential, and context-specific

#### Summary

- Reliability model
  - As a particular quality model
  - Static vs Dynamic
  - Two kinds of Dynamic model
- Rayleigh model
  - Weibull distribution, m=2
  - Derive the model from past stage defect data
  - Apply the model to projects for reliability estimation
  - Validate the predictive accuracy of the model