

- (a) $|z z_1| = |z z_2|$ where $z_1, z_2 \in \mathbb{C}$.
- (b) $1/z = \overline{z}$.
- (c) Re(z) = 3.
- (d) $\operatorname{Re}(z) > c$, $(\operatorname{resp.}, \geq c)$ where $c \in \mathbb{R}$.
- (e) $\operatorname{Re}(az+b) > 0$ where $a, b \in \mathbb{C}$.
- (f) |z| = Re(z) + 1.
- (g) $\operatorname{Im}(z) = c \text{ with } c \in \mathbb{R}.$

(f)
$$|z| = |\text{Re}(z) + 1| \Leftrightarrow |\text{Re}(z)| \ge -1$$

and $|z|^2 = (|\text{Re}(z)| + 1)^2$
 $||z||^2 + ||z||^2 + ||z||^2 + 2||z|| + 1$

2. Let $\langle \cdot, \cdot \rangle$ denote the usual inner product in \mathbb{R}^2 . In other words, if $Z = (x_1, y_1)$ and $W = (x_2, y_2)$, then

$$\langle Z, W \rangle = x_1 x_2 + y_1 y_2.$$

Similarly, we may define a Hermitian inner product (\cdot, \cdot) in $\mathbb C$ by

$$(z, w) = z\overline{w}.$$

The term Hermitian is used to describe the fact that (\cdot,\cdot) is not symmetric, but rather satisfies the relation

$$(z, w) = \overline{(w, z)}$$
 for all $z, w \in \mathbb{C}$.

Show that

$$\langle z, w \rangle = \frac{1}{2}[(z, w) + (w, z)] = \operatorname{Re}(z, w),$$

where we use the usual identification $z = x + iy \in \mathbb{C}$ with $(x, y) \in \mathbb{R}^2$.

$$\langle z_1 w \rangle = \chi_1 \chi_2 + \gamma_1 \gamma_2$$

 $(z_1 w) = z \tilde{w} = (\chi_1 + i \gamma_1)(\chi_2 - i \gamma_2) = (\chi_1 \chi_2 + \gamma_1 \gamma_2) + i (\chi_2 \gamma_1 - \chi_1 \gamma_2)$
 $(w_1 z) = w z = (\chi_2 + i \gamma_2)(\chi_1 - i \gamma_1) = (\chi_1 \chi_2 + \gamma_1 \gamma_2) + i (\chi_1 \gamma_2 - \chi_2 \gamma_1)$
Then it's clear that
 $\langle z_1 w \rangle = \frac{1}{2} ((z_1 w) + (w_1 z)) = \Re(z_1 w)$

- **4.** Show that it is impossible to define a total ordering on \mathbb{C} . In other words, one cannot find a relation \succ between complex numbers so that:
 - (i) For any two complex numbers z, w, one and only one of the following is true: $z \succ w, \, w \succ z$ or z = w.
 - (ii) For all $z_1, z_2, z_3 \in \mathbb{C}$ the relation $z_1 \succ z_2$ implies $z_1 + z_3 \succ z_2 + z_3$.
 - (iii) Moreover, for all $z_1, z_2, z_3 \in \mathbb{C}$ with $z_3 \succ 0$, then $z_1 \succ z_2$ implies $z_1 z_3 \succ z_2 z_3$.

[Hint: First check if $i \succ 0$ is possible.]

Assume that there exists a total ordering > on G. By (i), we must have either i > o or o > i.

· Suppose ito.

By (iii), we have
$$-1 = i^2 > o^2 = 0$$
.

and $1 = (-1)^2 > o^2 = 0$.

By (ii), we have $0 = (-1) + 1 > o + 1 = 1$.

Contradíction.

Suppose 0 > i. By (ii), we have -i > 0.
 Then we can get a contradiction by the same argument. □

- 7. The family of mappings introduced here plays an important role in complex analysis. These mappings, sometimes called **Blaschke factors**, will reappear in various applications in later chapters.
 - (a) Let z, w be two complex numbers such that $\overline{z}w \neq 1$. Prove that

$$\left|\frac{w-z}{1-\overline{w}z}\right| < 1 \quad \text{if } |z| < 1 \text{ and } |w| < 1,$$

and also that

$$\left| \frac{w-z}{1-\overline{w}z} \right| = 1$$
 if $|z| = 1$ or $|w| = 1$.

[Hint: Why can one assume that z is real? It then suffices to prove that

$$(r-w)(r-\overline{w}) \le (1-rw)(1-r\overline{w})$$

with equality for appropriate r and |w|.]

(b) Prove that for a fixed w in the unit disc \mathbb{D} , the mapping

$$F: z \mapsto \frac{w-z}{1-\overline{w}z}$$

satisfies the following conditions:

- (i) F maps the unit disc to itself (that is, $F:\mathbb{D}\to\mathbb{D}$), and is holomorphic.
- (ii) F interchanges 0 and w, namely F(0) = w and F(w) = 0.
- (iii) |F(z)| = 1 if |z| = 1.
- (iv) $F:\mathbb{D}\to\mathbb{D}$ is bijective. [Hint: Calculate $F\circ F.]$

J.(a): Let 12/<1, |w|<1.

and let
$$\theta = arg(x)$$
.

Define $z' := e^{-i\theta}z$, $w' := e^{-i\theta}w$.

Then $z' \in \mathbb{R}$,

 $|w'-z'| = |e^{-i\theta}|w e^{-i\theta}| = |w-z|$
 $|1-w'|z'| = |1-e^{-i\theta}|w e^{-i\theta}| = |1-wz|$

Hence, it suffices to consider the case where z is replaced by z'

and w is replaced by w' , i.e.

we may assume $z \in \mathbb{R}$.

It suffice to pave
$$|w-3|^2 < |1-\overline{w}|^2$$
, If $|\partial|<1, |w|<1$
 $(w-\overline{x})(\overline{w}-\overline{x})$ $(1-\overline{w})(1-\overline{w})$
 $|w|^2+\overline{x}^2-\overline{x}(\overline{w}+\overline{w})$ $1-\overline{x}(\overline{w}+\overline{w})+|w|^2\overline{x}^2$
 $\Leftrightarrow (1-|w|^2)(1-\overline{x}^2)>0$.

Also, the equality holds if $|\overline{x}|=1$ or $|w|=1$. $|w|=1$

$$4\frac{\partial}{\partial z}\frac{\partial}{\partial \overline{z}} = 4\frac{\partial}{\partial \overline{z}}\frac{\partial}{\partial z} = \Delta,$$

where \triangle is the **Laplacian**

$$\triangle = \frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2}.$$

$$4\frac{\partial}{\partial z}\frac{\partial}{\partial z} = 4 \cdot \frac{1}{2}\left(\frac{\partial}{\partial x} - i\frac{\partial}{\partial y}\right) \cdot \frac{1}{2}\left(\frac{\partial}{\partial x} + i\frac{\partial}{\partial y}\right)$$

$$= \frac{\partial^{2}}{\partial x^{2}} + i\frac{\partial^{2}}{\partial x \partial y} - i\frac{\partial^{2}}{\partial y \partial x} + \frac{\partial^{2}}{\partial y^{2}} = \Delta.$$

The other equality can be checked similarly. [

11. Use Exercise 10 to prove that if f is holomorphic in the open set Ω , then the real and imaginary parts of f are **harmonic**; that is, their Laplacian is zero.

$$f hob. \Rightarrow \frac{\partial}{\partial x} f = 0 \Rightarrow \Delta f = 4 \frac{\partial}{\partial x} \frac{\partial}{\partial x} f = 0.$$

$$\frac{\partial}{\partial x} f = \frac{\partial f}{\partial x} = 0. \Rightarrow \Delta f = 4 \frac{\partial}{\partial x} \frac{\partial}{\partial x} f = 0.$$

Hence
$$\triangle (Ref) = \triangle (\frac{f+f}{2}) = 0$$
,

$$\Delta(Imf) = \Delta(\frac{f-f}{2i}) = 0.$$

Alternatively, write for utiv. .

CRelation => Ux= Vy, Uy= -Vx

$$\Rightarrow U_{xx} = V_{yx} = V_{xy} = -u_{yy}, \Rightarrow \Delta u = 0.$$

$$V_{xx} = -U_{yx} = -U_{xy} = -V_{yy}$$
 $\Rightarrow \Delta V = 0$.