

SLIIT ACADEMY

FCIT – Semester 1

PROGRAMMING SKILLS -I PROGRAMMING LANGUAGES

Ms. Ovini Seneviratne

Course Outline

• Module name: Programming Skills - I

• Credits: 3.5

• Duration: One Semester

Delivery method

Lectures : 2 hours/weekTutorial : 1 hour/weekSelf study : 2 hours/week

SLIIT ACADEMY PVT LTD. © 202

Assessment Criteria

Mid Term Examination : 30%

Assignment (in class) : 10%

Final Examination : 60%

To pass this module, need to obtain a pass mark in both "Continuous Assessments" and "End of the Semester Examination"

SLIIT ACADEMY PVT LTD. © 202

3

Programming Languages

LECTURE 01

Learning Outcomes

End of this lecture you will be able to learn,

LO1: To identify the use of programming languages

LO2: To Discuss different generations of computer languages.

LO3: To Discuss the role of translators

LO4: To Compare of different levels/generations of languages.

SUIT ACADEMY PVT LTD. © 202

What is a Programming Language?

- Vocabulary + Set of grammatical rules
- For instructing a computer or computing device
- To perform specific tasks.

SLIIT ACADEMY PVT LTD. © 202

Syntax and Semantics

Consider the following sentences

- 1. Snake is a mammal.
- 2. Snake not mammal is.
- 3. Snake is a reptile.

Which of the above statements are correct???

SLIIT ACADEMY PVT LTD. © 202

Generations and Levels

Languages are grouped into generations

- based on when they were first conceived.
- There are five such generations.

Languages are grouped by levels

- based on how much they are close to the machine language
- There are three such levels

SLIIT ACADEMY PVT LTD. © 202

9

Generations and Levels

SLIIT ACADEMY PVT LTD. © 2023

Language Generations

Language	Generation	Level
Machine Language	First	Low level
Assembly Languages (Mnemonics)	Second	Low level
Procedural Languages (FORTRAN, COBOL, C, C++, Visual Basic, Java)	Third	High level
Query Languages (SQL,Post Script)	Fourth	Very high level
Artificial Languages (Mercury, OPS5, and Prolog)	Fifth	Very high level

SLIIT ACADEMY PVT LTD. © 20

Machine Language - 1st Generation

- The most basic type of computer language.
- Different types of hardware use different machine code.

Example: IBM computers use different machine language than

Apple computers.

- Hardware dependent
- Easy to understand and execute.

SLIIT ACADEMY PVT LTD. © 2023

Assembly Language - 2nd Generation

- Somewhat easier to work with than machine languages.
- Use cryptic English-like phrases to represent strings of numbers.
- •Each numeric instruction is assigned a short name called mnemonics.

Example: 28 – LOAD 69 - ADD

 The instructions are translated into object code, using a translator called an assembler.

SLIIT ACADEMY PVT LTD. © 202

13

Assembly Language - Translation Process

Procedural Language—3rd Generation

- The first to use true English-like phrasing.
- 3GLs are **portable**, meaning the object code created for one type of system can be translated for use on a different type of system.
- Independent of hardware Can use Procedural Languages to write programs for many kinds of computers.
- Require translators

SLIIT ACADEMY PVT LTD. © 2023

Procedural Language— 3rd Generation

- The program code is written as a sequence of instructions.
- User has to specify "what to do" and also "how to do" (step by step procedure).

SLIIT ACADEMY PVT LTD. © 202

17

Example

```
int main ()
{
    int num1=10;
    int num2=20;
    int num3=30;
    int sum = 0;

    sum = num1 + num3;

    cout<<"Sum =" << sum<< endl;
    return 0;
}</pre>
```


SLIIT ACADEMY PVT LTD. © 202

Non - Procedural Languages - 4th Generation

- Non-procedural concentrate on what you want to do rather how you are going to do it.
- Consist of statements like statements in a human language.

- Commonly used in database programming and scripts.
- Example: SQL, PostScript, Relational database-oriented languages, VisualAge, Perl, Maple, Mathematica, Python, Ruby

 4GLs may use a text-based environment (like a 3GL) or may allow the programmer to work in a visual environment, using graphical tools.

SLIIT ACADEMY PVT LTD. © 202

- 1

Fifth - Generation Languages

- Based around solving problems using constraints given to the program, rather than using an algorithm written by a programmer.
- Contain visual tools to help develop a program.
- Used mainly in artificial intelligence, knowledgebase systems, natural language processing.

Ex: Mercury, OPS5, and Prolog

SLIIT ACADEMY PVT LTD. © 2023

Translators

- Analyses the program (source code) and writes an equivalent machine language program (object code).
- Three kind of translators,
 - Compiler
 - Interpreter
 - Assembler
- Depends on two things; the programming language the program was created with and the processor it is being translated for

SLIIT ACADEMY PVT LTD. © 20

Compiler

- Compilers are translators used before a program is run.
- To produce a complete machine language program (stored inside disk).
- •The entire program is first translated to machine code, and this code is then executed.
- •Takes large amount of time to analyze the source code
- •Each language requires its own compiler.

Example: Pascal compiler and a Java compiler

SLIIT ACADEMY PVT LTD. © 2023

Main Functions of a Compiler

- Checks for syntax errors in a program, for statements which do not conform to the grammatical rules of the language.
- Produces a listing of the program, indicating errors, if any.
- If there are no syntax errors, it generates machine code equivalent to the given program.

SLIIT ACADEMY PVT LTD. © 2023

Interpreters

- As each statement of the high-level program is encountered it is translated and executed.
- Translation is done on the fly.

- Takes less amount of time to analyze the source code.
- No object code is created in the process, so no executable program file is stored on the disk for later use.

SLIIT ACADEMY PVT LTD. © 20

- 1

Summary of Translators

Interpreter	Compiler	Assembler
Translates high level language into machine code.	Translates high level language into machine code.	Translates assembly language into machine code.
Translate one statement at a time.	Translate whole code at once.	
Needed every time you run the program.	Only need once to create the object code.	
Once an error is encountered it is notified and no further code is scanned	Generates error report after translation of entire code.	
Takes less amount of time to analyze the source code but the overall execution time is comparatively high.	Takes high amount of time to analyze the source code but the overall execution time is less.	Runs quickly since the translation is in between two low level languages.

SLIIT ACADEMY PVT LTD. © 2023

Debugging

- Debugging is a process of identifying, analyzing and fixing errors
- •There are 3 types of errors
 - Syntax errors
 - Logical errors
 - Run-time errors

SHIT ACADEMY PVT LTD. © 201

27

Syntax Errors

- When the code given does not follow the syntax rules of the programming language.
- With compiled languages, you will run into any syntax errors at compile time, and they will have to be corrected before the program can run.
- For interpreted languages, a syntax error would pop up during run time.
- Examples include:

misspelling a statement, such as writing pint instead of print missing brackets, like opening a bracket, but not closing it.

SLIIT ACADEMY PVT LTD. © 201

Logical Errors

- The program can run but does not do what it is expected to do.
- Logic errors can be caused by the programmer:
 - incorrectly using logical operators.
 - incorrectly using Boolean operators.
 - unintentionally using the same variable name at different points in the program for different purposes
- Does not usually stop a program from running. The program will run, but not function as expected.

SLIIT ACADEMY PVT LTD. © 20

.

Run - time Errors

- An error that takes place during the running of a program.
- An example is writing a program that tries to access the sixth item in an array that only contains five items.
- A runtime error is likely to crash the program.
 - Ex Division by zero Never ending loops

SLIIT ACADEMY PVT LTD. © 202

Summary

- Levels & Generations
- Program Translators
- Debugging

SLIIT ACADEMY PVT LTD. © 20

3:

