Beyond Sigmoid: Other Activations

New Activation: Hyperbolic Tangent

Basically a sigmoid from -1 to 1

New Activation: ReLU

A new nonlinearity: rectified linear units

it has the advantage of **large gradients** and **extremely simple** derivative

$$\frac{\partial}{\partial z}\phi(z) = \begin{cases} 1, & \text{if } z > 0 \\ 0, & \text{else} \end{cases}$$

Other Activation Functions

- Sigmoid Weighted Linear Unit
 SiLU (also called Swish)
- Mixing of sigmoid, σ, and ReLU

$$\phi(z) = \sigma(z) \cdot z$$

Figure 1: The Swish activation function.

$$\frac{\partial \phi(z)}{\partial z} = \frac{\partial}{\partial z} \sigma(z) \cdot z$$

$$= z \cdot \left[\frac{\partial}{\partial z} \sigma(z) \right] + \sigma(z) \cdot \left[\frac{\partial}{\partial z} z \right]$$

$$= z \cdot \sigma(z)(1 - \sigma(z)) + \sigma(z)$$

$$= z \cdot \sigma(z) + \sigma(z) \cdot (1 - z \cdot \sigma(z))$$

$$= \phi(z) + \sigma(z) \cdot (1 - \phi(z))$$

Elfwing, Stefan, Eiji Uchibe, and Kenji Doya. "Sigmoid-weighted linear units for neural network function approximation in reinforcement learning." Neural Networks (2018).

Ramachandran P, Zoph B, Le QV. Swish: a Self-Gated Activation Function. arXiv preprint arXiv:1710.05941. 2017 Oct 16

Glorot and He Initialization

We have solved this assuming the activation output is in the range -4 to 4 (for a sigmoid) and assuming that we use Gaussian for sampling.

This range is different depending on the activation and assuming Gaussian or Uniform sampling.

	Uniform	Gaussian	
Tanh	$w_{ij}^{(L)} \sim \sqrt{\frac{6}{n^{(L)} + n^{(L+1)}}}$	$w_{ij}^{(L)} \sim \sqrt{\frac{2}{n^{(L)} + n^{(L+1)}}}$	
Sigmoid	$w_{ij}^{(L)} \sim 4\sqrt{\frac{6}{n^{(L)} + n^{(L+1)}}}$	$w_{ij}^{(L)} \sim 4\sqrt{\frac{2}{n^{(L)} + n^{(L+1)}}}$	
ReLU SiLU	$w_{ij}^{(L)} \sim \sqrt{2} \sqrt{\frac{6}{n^{(L)} + n^{(L+1)}}}$	$w_{ij}^{(L)} \sim \sqrt{2} \sqrt{\frac{2}{n^{(L)} + n^{(L+1)}}}$	

Summarized by Glorot and He

Activations Summary

	Definition	Derivative	Weight Init (Uniform Bounds)
sigmoid Sigmoid	$\phi(z) = \frac{1}{1 + e^{-z}}$	$\nabla \phi(z) = a(1-a)$	$w_{ij}^{(L)} \sim \pm 4\sqrt{\frac{6}{n^{(L)} + n^{(L+1)}}}$
Hyperbolic Tangent	$\phi(z) = \frac{e^z - e^{-z}}{e^z + e^{-z}}$	$\nabla \phi(z) = \frac{4}{(e^z + e^{-z})^2}$	$w_{ij}^{(L)} \sim \pm \sqrt{\frac{6}{n^{(L)} + n^{(L+1)}}}$
ReLU	$\phi(z) = \begin{cases} z, & \text{if } z > 0 \\ 0, & \text{else} \end{cases}$	$\nabla \phi(z) = \begin{cases} 1, & \text{if } z > 0 \\ 0, & \text{else} \end{cases}$	$w^{(L)} = \pm \sqrt{2} \int_{-\infty}^{\infty} 6$
SiLU	$\phi(z) = \frac{z}{1 + e^{-z}}$	$\nabla \phi(z) = \phi(z) + \sigma(z) \cdot (1 - \phi(z))$	$w_{ij}^{(L)} \sim \pm \sqrt{2} \sqrt{\frac{6}{n^{(L)} + n^{(L+1)}}}$

More Adaptive Optimization

Going beyond changing the learning rate

Be adaptive based on Gradient Magnitude?

- Decelerate down regions that are steep
- Accelerate on plateaus

http://www.technologyuk.net/mathematics/differential-calculus/higher-derivatives.shtml 72

steepness (accumulate inverse magnitudes)

Be adaptive based on Gradient Magnitude?

Inverse magnitude of gradient in multiple directions?

$$\mathbf{W}_{k+1} \leftarrow \mathbf{W}_k + \eta \frac{1}{\sqrt{\mathbf{G}_k + \epsilon}} \odot \nabla J(\mathbf{W}_k) \qquad \mathbf{G}_k = \nabla J(\mathbf{W}_k) \odot \nabla J(\mathbf{W}_k) \\ \uparrow \qquad \qquad \qquad \text{same size as } \mathbf{W} \\ \text{new matrix for normalizing} \\ \mathbf{G} = \text{gradW1} * \text{gradW1}$$

Now we just need to add momentum to $\mathbf{G}_k^{(l)}$

Note: G exists for every layer, but we will abuse layer notation

Common Adaptive Strategies $W_{k+1} = W_k - \eta \cdot \rho_k$

Adjust each element of gradient by the steepness

AdaM

G updates with decaying momentum of J and J^2

NAdaM

same as Adam, but with nesterov's acceleration

None of these are "one-size-fits-all" because the space of neural network optimization varies by problem, AdaM is popular but not a panacea

Adaptive Momentum

All operations are element wise:

$$\beta_1 = 0.9, \, \beta_2 = 0.999, \, \eta = 0.001, \, \epsilon = 10^{-8}$$

$$k = 0, \mathbf{M}_0 = \mathbf{0}, \mathbf{V}_0 = \mathbf{0}$$

Published as a conference paper at ICLR 2015

ADAM: A METHOD FOR STOCHASTIC OPTIMIZATION

For each epoch:

Diederik P. Kingma* University of Amsterdam, OpenAI

Jimmy Lei Ba" University of Toronto

$$\begin{array}{c|c} & \text{update iteration} & k \leftarrow k+1 \\ & \text{get gradient} & \nabla J(\mathbf{W}_k) \end{array} \quad \text{for large } k, \ \hat{\mathbf{M}} \approx \mathbf{M}, \ \hat{\mathbf{V}} \approx \mathbf{V} \\ & \text{accumulated gradient} & \mathbf{M}_k \leftarrow \beta_1 \cdot \mathbf{M}_{k-1} + (1-\beta_1) \cdot \nabla J(\mathbf{W}_k) \\ & \text{accumulated squared gradient} & \mathbf{V}_k \leftarrow \beta_2 \cdot \mathbf{V}_{k-1} + (1-\beta_2) \cdot \nabla J(\mathbf{W}_k) \odot \nabla J(\mathbf{W}_k) \\ \end{array}$$

boost moments magnitudes (notice k in exponent)

$$\hat{\mathbf{M}}_k \leftarrow \frac{\mathbf{M}_k}{(1 - [\beta_1]^k)} \qquad \hat{\mathbf{V}}_k \leftarrow \frac{\mathbf{V}_k}{(1 - [\beta_2]^k)}$$

$$\hat{\mathbf{V}}_k \leftarrow \frac{\mathbf{V}_k}{(1 - [\beta_2]^k)}$$

update gradient, normalized by second moment similar to AdaDelta

$$\mathbf{W}_k \leftarrow \mathbf{W}_{k-1} - \eta \cdot \frac{\hat{\mathbf{M}}_k}{\sqrt{\hat{\mathbf{V}}_k + \epsilon}}$$

gradient with momentum

squared magnitude normalizer

Visualization of Optimization

https://ruder.io/optimizing-gradient-descent/

Takeaways:

- 1. **SGD** slows tremendously on plateau
- 2. **Momentum** and **Nesterov** drastically overshoot
- 3. Adaptive strategies are similar

SGD

Momentum

- NAG

Adagrad

Adadelta

— Rmsprop

Review

Review

$$\mathbf{W}_{k+1} = \mathbf{W}_k - \rho_k$$

Cross entropy

$$\mathbf{A}^{(3)} - \mathbf{Y}$$

new final layer update

Momentum

$$\rho_k = \alpha \nabla J(\mathbf{W}_k) + \beta \nabla J(\mathbf{W}_{k-1})$$

Nesterov's Accelerated Gradient

$$\rho_k = \beta \nabla J \left(\mathbf{W}_k + \alpha \nabla J(\mathbf{W}_{k-1}) \right) + \alpha \nabla J(\mathbf{W}_{k-1})$$
step twice

Mini-batching

←all data→

	batch 1	batch 2	batch 3	batch 4	batch 5	batch 6	batch 7	batch 8	batch 9
Epoch 1									
Epoch 2									
Epoch 3 Epoch 4									
Epoch 4									
•••									

shuffle ordering each epoch and update W's after each batch

Learning rate adaptation (eta)

$$\eta_e = \eta_0^{(1+e\cdot\epsilon)} \qquad \eta_e = \eta_0 \cdot d^{\lfloor \frac{e}{e_d} \rfloor}$$

Review: Activations Summary

	Definition	Derivative	Weight Init (Uniform Bounds)
Sigmoid	$\phi(z) = \frac{1}{1 + e^{-z}}$	$\nabla \phi(z) = a(1-a)$	$w_{ij}^{(L)} \sim \pm 4\sqrt{\frac{6}{n^{(L)} + n^{(L+1)}}}$
Hyperbolic Tangent	$\phi(z) = \frac{e^z - e^{-z}}{e^z + e^{-z}}$	$\nabla \phi(z) = \frac{4}{(e^z + e^{-z})^2}$	$w_{ij}^{(L)} \sim \pm \sqrt{\frac{6}{n^{(L)} + n^{(L+1)}}}$
ReLU	$\phi(z) = \begin{cases} z, & \text{if } z > 0 \\ 0, & \text{else} \end{cases}$	$\nabla \phi(z) = \begin{cases} 1, & \text{if } z > 0 \\ 0, & \text{else} \end{cases}$	$w_{ij}^{(L)} \sim \pm \sqrt{2} \sqrt{\frac{6}{n^{(L)} + n^{(L+1)}}}$
SiLU	$\phi(z) = \frac{z}{1 + e^{-z}}$	$\nabla \phi(z) = \phi(z) + \sigma(z) \cdot (1 - \phi(z))$	V

Demo

08a. Practical_NeuralNetsWithBias.ipynb

Momentum

Cooling

Cross Entropy

Smarter Weight Initialization

ReLU Nonlinearities

Adaptive training with AdaGrad

Revisiting Universality (if time)

 Neural networks can separate any data through multiple layers. The true realization of Rosenblatt:

"Given an elementary α -perceptron, a stimulus world W, and any classification C(W) for which a solution exists; let all stimuli in W occur in any sequence, provided that each stimulus must reoccur in finite time; then beginning from an arbitrary initial state, an error correction procedure will always yield a solution to C(W) in finite time..."

•Universality: No matter what function we want to compute, we know that there is a neural network which can do the job.

Universality

- •One nonlinear hidden layer with an output layer can perfectly train any problem with enough data, but might just be memorizing...
 - •... it might be better to have even more layers for decreased computation and generalizability

Agenda

- Now: Cross validation + Lab 4 Town Hall
- Next Time: Final Flipped Module!
- Then: Deep Learning

Revisiting Cross Validation (if time)

Trying to find the best parameters

NN: C1=[1, 10, 100] C2=[1e3, 1e4, 1e5]

	C1			
	(I, Ie3)	(10, le3)	(100, le3)	
C2	(I, Ie4)	(10, le4)	(100, 1e4)	
_	(I, Ie5)	(10, le5)	(100, le5)	

For each value, want to run cross validation...

Could perform iteratively

or at random...

Review: Grid Searches in Scikit-learn

```
>>> from sklearn import sym, datasets
                         >>> from sklearn.model_selection import GridSearchCV
                         >>> iris = datasets.load_iris()
                         >>> parameters = {'kernel':('linear', 'rbf'), 'C':[1, 10]}
                         >>> svc = svm.SVC()
                         >>> clf = GridSearchCV(svc, parameters)
                         >>> clf.fit(iris.data, iris.target)
                         GridSearchCV(estimator=SVC(),
                                       param_grid={'C': [1, 10], 'kernel': ('linear', 'rbf')})
           OPTUNA
                                         Kev Features
                                                    Code Examples Installation
                                                                           Blog
                                                                                 Videos
                                                                                              Community
Pa
    Optuna is framework agnostic. You can use it with any machine learning or deep learning framework.
       翻 Quick Start 🌣 PyTorch PyTorch 💠 Chainer 🏗 TensorFlow 🔼 Keras 🐽 MXNet 📢 Scikit-Learn 💥 🖾 LightGBM.
                         >>> from sklearn.datasets import load_iris
  values, sampled
                          >>> from sklearn.linear_model import LogisticRegression
                          >>> from sklearn.model_selection import RandomizedSearchCV
                          >>> from scipy.stats import uniform
                          >>> iris = load_iris()
                          >>> logistic = LogisticRegression(solver='saga', tol=1e-2, max_iter=200,
                                                             random state=0)
                          >>> distributions = dict(C=uniform(loc=0, scale=4),
                                                    penalty=['l2', 'l1'])
                          >>> clf = RandomizedSearchCV(logistic, distributions, random_state=0)
                         >>> search = clf.fit(iris.data, iris.target)
                         >>> search.best params
                          {'C': 2..., 'penalty': 'l1'}
```

Review: Self Test

- Using the grid search parameters and testing on the same set...
- Is this data snooping?
 - A. True, this is snooping because it uses test set to define parameters
 - B. True, this is snooping because we can no longer reliably define the expected performance on new data
 - C. False, this is not snooping because we still separated train and test data
 - D. False, this is not snooping because hyper parameters are not trainable

A Costly Solution: Nested Cross Validation

Review: Nested Cross Validation: Hyper-parameters

Self Test

- What is the end goal of nested crossvalidation?
 - A. To determine hyper parameters
 - B. To estimate generalization performance
 - C. To estimate generalization performance when performing hyper parameter tuning
 - D. To estimate the variation in tuned hyper parameters

McNemar Testing for Comparing Performance

Few assumptions, **Null hypothesis**: predictions are not different!

One caveat: Statistical power depends upon B+C, which might be small, even with lots of test data.

McNemar and Edwards, 1948

$$\chi^2 \approx \frac{(|B-C|-1)^2}{B+C}$$

If predictions are drawn from the same distributions, then this equation follows χ squared statistic with

one DOF

Steps:

- 1. Compare each model's predictions on the same test data (2x2 matrix)
- 2. Calculate χ^2 statistic
- 3. Look up *critical value* associated with χ^2 statistic for given confidence
- 4. Are you confident enough to **reject the null hypothesis** that the performance is the same (p<0.05)?

McNemar Example

Model 2	Label	Matrix
T-shirt	T-shirt	А
T-shirt	Sneaker	В
Pullover	Pullover	С
Sneaker	Sneaker	Α
Sneaker	Sneaker	С
Pullover	T-shirt	D
T-shirt	Pullover	В
Sneaker	Sneaker	Α
Sneaker	Sneaker	А
	T-shirt T-shirt Pullover Sneaker Sneaker Pullover T-shirt Sneaker	T-shirt T-shirt T-shirt Sneaker Pullover Pullover Sneaker Sneaker Sneaker Sneaker Pullover T-shirt T-shirt Pullover Sneaker Sneaker

McNemar and Edwards, 1948

$$\chi^2 \approx \frac{(|B-C|-1)^2}{B+C}$$

https://www.itl.nist.gov/div898/handbook/eda/section3/eda3674.htm

Since 0.25 < 3.841, we cannot reject the null hypothesis. This means we should not say the models' performance are different based on the evidence.

Town Hall

