to will my - IIII Decord

3. Additive rule

$$9 P(A') = 1 - P(A) = 1 - 0.3 = 0.7$$

$$P(AUB) = P(A) + P(B) - P(ANB)$$

= 0.3 + 6.2 - 0.1 = 0.4
d) $P[(AUB)'] = 1 - P(AUB)$
= 1 - 0.4 = 0.6
e) $P(AUB) = P(A) + P(B) - P(ANB)$

= 0.3+1-P(B)-0.2

= 0.3+1-0.2-0.2

$$\begin{array}{cccc}
 & P(A') = \frac{14}{100} = 0.14 \\
 & P(AB) = \frac{70}{100} = 0.7
\end{array}$$

$$P(AUB) = P(A) + P(B) - P(A \cap B)$$

$$= 0.86 + 0.79 - 0.2 - 0$$

$$P(A) = \frac{86}{100} = 0.86$$

 $P(B) = \frac{+9}{100} = 0.79$

$$= 0.86 + 0.79 - 0.7 = 0.95$$

$$= 0.86 + 0.79 - 0.7 = 0.95$$

$$= 0.86 + 0.79 - 0.7 = 0.95$$

$$= 0.86 + 0.79 - 0.7 = 0.95$$

$$= 0.86 + 0.79 - 0.7 = 0.95$$

$$= 0.86 + 0.79 - 0.7 = 0.95$$

$$= 0.95$$

$$= 0.86 + 0.79 - 0.7 = 0.95$$

$$= 0.95$$

$$= 0.95$$

$$= 0.95$$

$$= 0.95$$

$$= 0.95$$

$$= 0.95$$

$$= 0.95$$

$$= 0.95$$

$$= 0.95$$

$$= 0.95$$

$$= 0.95$$

$$= 0.95$$

$$= 0.95$$

$$= 0.95$$

$$= 0.95$$

$$= 0.95$$

$$= 0.95$$

$$= 0.95$$

$$= 0.95$$

$$= 0.95$$

$$= 0.95$$

$$= 0.95$$

$$= 0.95$$

$$= 0.95$$

$$= 0.95$$

$$= 0.95$$

$$= 0.95$$

$$= 0.95$$

$$= 0.95$$

$$= 0.95$$

$$= 0.95$$

$$= 0.95$$

$$= 0.95$$

$$= 0.95$$

$$= 0.95$$

$$= 0.95$$

$$= 0.95$$

$$= 0.95$$

$$= 0.95$$

$$= 0.95$$

$$= 0.95$$

$$= 0.95$$

$$= 0.95$$

$$= 0.95$$

$$= 0.95$$

$$= 0.95$$

$$= 0.95$$

$$= 0.95$$

$$= 0.95$$

$$= 0.95$$

$$= 0.95$$

$$= 0.95$$

$$= 0.95$$

$$= 0.95$$

$$= 0.95$$

$$= 0.95$$

$$= 0.95$$

$$= 0.95$$

$$= 0.95$$

$$= 0.95$$

$$= 0.95$$

$$= 0.95$$

$$= 0.95$$

$$= 0.95$$

$$= 0.95$$

$$= 0.95$$

$$= 0.95$$

$$= 0.95$$

$$= 0.95$$

$$= 0.95$$

$$= 0.95$$

$$= 0.95$$

$$= 0.95$$

$$= 0.95$$

$$= 0.95$$

$$= 0.95$$

$$= 0.95$$

$$= 0.95$$

$$= 0.95$$

$$= 0.95$$

$$= 0.95$$

$$= 0.95$$

$$= 0.95$$

$$= 0.95$$

$$= 0.95$$

$$= 0.95$$

$$= 0.95$$

$$= 0.95$$

$$= 0.95$$

$$= 0.95$$

$$= 0.95$$

$$= 0.95$$

$$= 0.95$$

$$= 0.95$$

$$= 0.95$$

$$= 0.95$$

$$= 0.95$$

$$= 0.95$$

$$= 0.95$$

$$= 0.95$$

$$= 0.95$$

$$= 0.95$$

$$= 0.95$$

$$= 0.95$$

$$= 0.95$$

$$= 0.95$$

$$= 0.95$$

$$= 0.95$$

$$= 0.95$$

$$= 0.95$$

$$= 0.95$$

$$= 0.95$$

$$= 0.95$$

$$= 0.95$$

$$= 0.95$$

$$= 0.95$$

$$= 0.95$$

$$= 0.95$$

$$= 0.95$$

$$= 0.95$$

$$= 0.95$$

$$= 0.95$$

$$= 0.95$$

$$= 0.95$$

$$= 0.95$$

$$= 0.95$$

$$= 0.95$$

$$= 0.95$$

$$= 0.95$$

$$= 0.95$$

$$= 0.95$$

$$= 0.95$$

$$= 0.95$$

$$= 0.95$$

$$= 0.95$$

$$= 0.95$$

$$= 0.95$$

$$= 0.95$$

$$= 0.95$$

$$= 0.95$$

$$= 0.95$$

$$= 0.95$$

$$= 0.95$$

$$= 0.95$$

$$= 0.95$$

$$= 0.95$$

$$= 0.95$$

$$= 0.95$$

$$= 0.95$$

$$= 0.95$$

$$= 0.95$$

$$= 0.95$$

$$= 0.95$$

$$= 0.95$$

$$= 0.95$$

$$= 0.95$$

$$= 0.95$$

$$= 0.95$$

$$= 0.95$$

$$= 0.95$$

$$= 0.95$$

$$= 0.95$$

$$= 0.95$$

$$= 0.95$$

$$= 0.95$$

$$P(H) = \frac{n(H)}{n(S)} = \frac{4032000}{47174400} = 0.085$$

4) a)
$$P(A) + P(B) + P(C) = 1$$
 | b) $P(B) + P(B') = 1$ | c) $P(BUC) = P(B) + P(C)$ = 0.001 + $P(B') = 1$ | = 0.001 + 0.005 = $P(C) = 0.009$ | $P(B') = 0.999$ | = 0.01

(1) a)
$$P(ADB) = \frac{70}{100} = 0.7$$

b)
$$P(A/B) = \frac{P(A\cap B)}{P(B)} = \frac{0.7}{0.79} = 0.88$$

$$P(B) = \frac{79}{100} = 0.79$$

(2) A: he event that the votes who voted for Republican is a Permocrat

B: the event that the votes who voted for Republican is a Permocrat

$$P(H/B) = \frac{P(BB)}{P(B)} = \frac{50/100D}{600-60+50} = 0.085$$
(3) of $\{(1,1), (2,2), (3,3), (4,4), (5,5), (6,6)\} = A$

$$P(A) = \frac{6}{36} = \frac{1}{4}$$
b) -sum of $9 = \frac{6}{36} = \frac{1}{6}$
- dowhle rolled by $\{(1,1), (1,2), (1,3), (2,1), B(2,2)(3,1)\} = F$

$$P(F) = \frac{6}{36} = \frac{1}{6}$$
- dowhle rolled by $\{(1,1), (2,2)\} = E$

$$P(E/F) = \frac{2}{36}$$

$$P(E/F) = \frac{1(ENF)}{P(F)} = \frac{2/36}{116} = \frac{1}{3}$$
c) owners = $(1,6), (2,6), (3,6)$ $(3,6)$ $(3,6)$ $(4,1), (5,6), (6,4), (6,2), (6,3), (6,5)$

Robability = $\frac{11}{36}$

$$P(3aces are difficult) = \frac{30}{36}$$

$$P(3aces are difficult) = \frac{30}{36}$$

$$P(3aces are difficult) = \frac{30}{36}$$

P (gaces at least one 6 and gaces are different) = 10

P (at least on dice roll is a 6 / faces are different) = P(st least one adice is a 6 and sour legical) = 3

$$\begin{array}{ll}
A = \left\{ \left(5,1\right), \left(5,2\right), \left(5,3\right), \left(5,4\right), \left(5,5\right), \left(5,6\right), \left(1,5\right), \left(2,5\right), \left(3,5\right), \left(1,5\right), \left(5,5\right), \left(5,6\right), \left(3,5\right), \left(3,5\right), \left(3,5\right), \left(3,4\right), \left(3,4\right), \left(2,7\right), \left(1,3\right), \left(5,3\right), \left(4,3\right) \right\}$$

$$A \cap B = \left\{ \left(3,5\right), \left(5,3\right) \right\}$$

$$P(A \cap B) = \frac{2}{36}$$
 $P(B) = \frac{P(A \cap B)}{P(B)} = \frac{2/36}{7/36} = \frac{2}{7}$
 $P(B) = \frac{7/36}{36}$