Laboratorio 3 (Respuestas) - Inferencia Estadística Distribuciones Muestrales

Laboratorista: Héctor Lira Talancón

Ago-Dic 2017

- 1. Una muestra aleatoria es:
 - a) Cualquier conjunto de variables aleatorias con la misma distribución.
 - b) Un conjunto de variables aleatorias independientes con la misma distribución.
 - c) Aquella que siempre da a lugar a un estimador insesgado.
 - d) Ninguna de las anteriores.
- 2. Un parámetro es:
 - a) Un valor fijo que nos permite estimar el verdadero valor de la población.
 - b) Una función de variables aleatorias.
 - c) Un valor fijo y desconocido que se desea estimar.
 - d) Una variable aleatoria cuyo valor es calculado a partir de los datos de la muestra aleatoria.
- 3. Considera las siguientes afirmaciones:
 - A: Una estadística es cualquier función de las variables aleatorias que se observaron en la muestra, que inclusive puede contener parámetros.
 - B: Un parámetro es una caraterística numérica de la distribución poblacional de una variable de interés.

Entonces:

- a) A v B son falsas.
- b) A es falsa pero B no.
- c) B es falsa pero A no.
- d) Ninguna de las anteriores.
- 4. Se lleva a cabo una auditoría por muestreo aleatorio simple (MAS) a las 10350 operaciones llevadas a cabo por una empresa. Se tomó una muestra de 120 operaciones las cuales se analizaron detenidamente. X es el ingreso total de la operación. Sea σ_X^2 la varianza poblacional de X. Considera las siguientes afirmaciones:
 - A. El MAS justifica que $Var(\bar{X}) = \sigma_X^2/120$.
 - B. El MAS justifica que $\sigma_X^2 = \frac{1}{N} \sum_{i=1}^{N} (X_i \mu_X)^2$.
 - C. El MAS es un elemento que justifica la normalidad aproximada del promedio muestral. Entonces:
 - a) A y B son apropiadas
 - b) A y C son apropiadas
 - c) A y B no son apropiadas
 - d) B y C son apropiadas

- 5. La distribución de muestreo de cualquier estadístico
 - a) Es aproximadamente normal para un tamaño de muestra grande.
 - b) Tiene un valor esperado igual al parámetro que se desea estimar.
 - c) Especifica cómo se comportan los diferentes valores del estadístico.
 - d) Todas las anteriores.
- 6. La varianza de un estimador es:
 - a) El cuadrado de la diferencia entre el estimador y la esperanza de dicho estimador.
 - b) La diferencia entre el error cuadrático medio del estimador y su sesgo.
 - c) Un promeido ponderado de los posibles valores del estimador.
 - d) El valor esperado del cuadrado de la diferencia entre el estimador y su valor esperado.
- 7. Cierto artículo tiene un precio de oferta en el mercado igual a p_o , el cual se distribuye normalmente con media de 50 pesos y desviación estándar de 5 pesos. El precio máximo que están dispuestos a pagar los consumidores (precio de demanda), también es una variable aleatoria p_d , cuya distribución es normal con media de 45 pesos y desviación estándar de 2.50 pesos. Calcule la probabilidad de que tenga lugar una transacción (sugerencia: las transacciones tendrán lugar si y solo si el precio de oferta es menor o igual al de demanda).
- 8. Sea $Y_1,...,Y_{10}$ una muestra aleatoria de una población con distribución N(0,1). Sea $U=\sum_{i=1}^{10}Y_i^2$ y $Q=\frac{3Y_{10}}{\sqrt{U}}$. El intervalo que contiene P(|Q|<2) es:
 - a) (0.95, 0.98]
 - b) (0.05, 0.1)
 - c) (0.90, 0.95)
 - d) Ninguno de los anteriores.
- 9. Sean $X_1, ..., X_m$ y $Y_1, ..., Y_n$ dos muestras aleatorias independientes tal que $X \sim N(\mu_x, \sigma^2)$ y $Y \sim N(\mu_y, \sigma^2)$. Sean $S_X^2 = \frac{1}{m-1} \sum_{i=1}^m (X_i \bar{X})^2$ y $S_Y^2 = \frac{1}{n-1} \sum_{i=1}^n (Y_i \bar{Y})^2$.
 - a) Encuentra el valor esperado de $S_p^2 = \frac{(m-1)S_X^2 + (n-1)S_Y^2}{m+n-2}.$
 - b) Encuentra la varianza de S_p^2 .

- c) Encuentra dos números 0 < a < b tales que $a < P(\frac{S_X^2}{S_Y^2} > 20) < b$ si m = 5 y n = 4.
- 10. Marque con una 'x' las afirmaciones que sean falsas.
 - \square Si $Z \sim N(0,1)$ y $Y \sim \chi^2_{(n)}$ son independientes, entonces $T = \frac{Z}{(Y/n)} \sim t_n$.
 - \square Si $X_1,...,X_n$ son n variables aleatorias independientes tales que $X_i \sim N(0,1)$, para i=1,...,n entonces $S^2=\sum_{i=1}^n X_i^2 \sim \chi^2_{(n-1)}$.
 - \Box Si $U \sim \chi^2_{(n)}$ y $V \sim \chi^2_{(m)}$ son dos variables aleatorias independientes, sabemos que

$$F = \frac{(U/n)}{(V/m)} \sim F_{(n,m)}$$
. Entonces $G = \frac{(V/m)}{(U/n)} \sim F_{(m,n)}$.

- \square Si $X_1,...,X_n$ son n variables aleatorias tales que $X_i \sim N(0,\sigma^2)$, para i=1,...n, entonces $W = \frac{\sum\limits_{i=1}^n X_i}{n} \sim N(\mu,\frac{\sigma^2}{n}).$
- 11. Sean X_1 y X_2 una muestra aleatoria de tamaño 2 de una distribución N(1,1). Entonces, la distribución de $(X_2 + X_1 2)^2/(X_2 X_1)^2$ es:
 - a) $F_{(2,1)}$
 - b) $F_{(1,1)}$
 - c) $F_{(2,2)}$
 - d) Ninguna de las anteriores.
- 12. Sea $X_1,...,X_n$ una muestra aleatoria de una distribución $N(\mu,\sigma^2)$ y \bar{X} y S^2 la media y la varianza muestral, respectivamente. Sea $X_{n+1} \sim N(\mu,\sigma^2)$ y asuma que $X_1,...,X_{n+1}$ son independientes. Encuentre la distribución de:

$$\frac{X_{n+1} - \bar{X}}{S\sqrt{\frac{n+1}{n}}}$$

Sabemos que si $X_i \sim N(\mu, \sigma^2)$ entonces $\bar{X} \sim N(\mu, \frac{\sigma^2}{n})$.

Analizando el numerador

$$X_{n+1} - \bar{X} \sim N(0, \frac{\sigma^2}{n} + \sigma^2) \equiv N(0, \sigma^2(\frac{1}{n} + 1)) \equiv N(0, \sigma^2(\frac{n+1}{n}))$$

Entonces,

$$\frac{X_{n+1}-\bar{X}}{\sqrt{\frac{n+1}{n}}}\sim N(0,\sigma^2)$$

Esto implica que

$$\frac{X_{n+1} - \bar{X}}{\sigma \sqrt{\frac{n+1}{n}}} \sim N(0, 1)$$

Sabemos que

$$\frac{(n-1)S^2}{\sigma^2} \sim \chi^2_{(n-1)}$$

Reescribiendo la expresión original obtenemos

$$\frac{X_{n+1} - \bar{X}}{S\sqrt{\frac{n+1}{n}}} = \frac{X_{n+1} - \bar{X}}{\sqrt{\frac{n+1}{n}}} \cdot \frac{1}{\sqrt{S^2}} \cdot \frac{\sigma}{\sigma} \cdot \frac{\sqrt{n-1}}{\sqrt{n-1}}$$

$$= \frac{X_{n+1} - \bar{X}}{\sigma\sqrt{\frac{n+1}{n}}} \cdot \frac{\sqrt{n-1}}{\sqrt{\frac{(n-1)S^2}{\sigma^2}}}$$

$$= N(0,1) \cdot \frac{1}{\sqrt{\frac{\chi^2_{(n-1)}}{n-1}}}$$

$$= \frac{N(0,1)}{\sqrt{\frac{\chi^2_{(n-1)}}{n-1}}}$$

Por lo tanto, la expresión sigue una distribución $t_{(n-1)}$.

13. Sean $X_1, ..., X_m$ y $Y_1, ..., Y_n$ dos muestras aleatorias independientes de distribuciones $N(\mu_1, \sigma^2)$ y $N(\mu_2, \sigma^2)$, respectivamente. Sean α y β dos números reales fijos. Si \bar{X}_m y \bar{Y}_m denotan las correspondientes medias muestrales, encuentre la distribución de:

$$\frac{\alpha(\bar{X}_m - \mu_1) + \beta(\bar{Y}_n - \mu_2)}{\sqrt{\frac{(m-1)S_1^2 + (n-1)S_2^2}{m+n-2}}\sqrt{\frac{\alpha^2}{m} + \frac{\beta^2}{n}}}$$

Analicemos el numerador de esta expresión:

$$\alpha(\bar{X}_m - \mu_1) + \beta(\bar{Y}_n - \mu_2) = \alpha \bar{X}_m - \alpha \mu_1 + \beta \bar{Y}_n - \beta \mu_2 = (\alpha \bar{X}_m + \beta \bar{Y}_n) - (\alpha \mu_1 + \beta \mu_2)$$

donde.

$$\alpha \bar{X}_m = \sum_{i=1}^m \tfrac{\alpha}{m} X_i \sim N(\sum_{i=1}^m \tfrac{\alpha}{m} \mu_1, \sum_{i=1}^m (\tfrac{\alpha}{m})^2 \sigma^2) \equiv N(\alpha \mu_1, \tfrac{\alpha^2 \sigma^2}{m})$$

У

$$\beta \bar{Y}_n = \sum\limits_{i=1}^n \frac{\beta}{n} Y_i \sim N(\sum\limits_{i=1}^n \frac{\beta}{n} \mu_2, \sum\limits_{i=1}^n (\frac{\beta}{n})^2 \sigma^2) \equiv N(\beta \mu_2, \frac{\beta^2 \sigma^2}{n})$$

Tenemos entonces que

$$(\alpha \bar{X}_m + \beta \bar{Y}_n) \sim N(\alpha \mu_1 + \beta \mu_2, \frac{\alpha^2 \sigma^2}{m} + \frac{\beta^2 \sigma^2}{n}) \equiv N(\alpha \mu_1 + \beta \mu_2, \sigma^2(\frac{\alpha^2}{m} + \frac{\beta^2}{n}))$$

De aquí, vemos fácilmente que

$$(\alpha \bar{X}_m + \beta \bar{Y}_n) - (\alpha \mu_1 + \beta \mu_2) \sim N(0, \sigma^2(\frac{\alpha^2}{m} + \frac{\beta^2}{n}))$$

Escalando esta normal obtenemos que

$$\frac{(\alpha \bar{X}_m + \beta \bar{Y}_n) - (\alpha \mu_1 + \beta \mu_2)}{\sqrt{\frac{\alpha^2}{m} + \frac{\beta^2}{n}}} \sim N(0, \sigma^2)$$

Esto implica que

$$\frac{(\alpha \bar{X}_m + \beta \bar{Y}_n) - (\alpha \mu_1 + \beta \mu_2)}{\sigma \sqrt{\frac{\alpha^2}{m} + \frac{\beta^2}{n}}} \sim N(0, 1)$$

Por último, definamos

$$S_p^2 = \tfrac{(m-1)S_1^2 + (n-1)S_2^2}{m+n-2} = \tfrac{1}{m+n-2} \big[\sigma^2 \tfrac{(m-1)S_1^2}{\sigma^2} + \sigma^2 \tfrac{(n-1)S_2^2}{\sigma^2} \big] = \tfrac{\sigma^2}{m+n-2} \big[\tfrac{(m-1)S_1^2}{\sigma^2} + \tfrac{(n-1)S_2^2}{\sigma^2} \big]$$

$$= \frac{\sigma^2}{m+n-2} [\chi^2_{(m-1)} + \chi^2_{(n-1)}] = \frac{\sigma^2}{m+n-2} [\chi^2_{(m+n-2)}]$$

Esto nos sugiere que

$$\frac{(m+n-2)S_p^2}{\sigma^2} \sim \chi^2_{(m+n-2)}$$

Reescribiendo la expresión original obtenemos

$$\frac{\alpha(\bar{X}_m - \mu_1) + \beta(\bar{Y}_n - \mu_2)}{\sqrt{\frac{(m-1)S_1^2 + (n-1)S_2^2}{m+n-2}}} = \frac{\alpha(\bar{X}_m - \mu_1) + \beta(\bar{Y}_n - \mu_2)}{\sqrt{S_p^2} \sqrt{\frac{\alpha^2}{m} + \frac{\beta^2}{n}}}$$

$$= \frac{(\alpha \bar{X}_m + \beta \bar{Y}_n) - (\alpha \mu_1 + \beta \mu_2)}{\sigma \sqrt{\frac{\alpha^2}{m} + \frac{\beta^2}{n}}} \cdot \frac{\sqrt{m+n-2}}{\sqrt{\frac{(m+n-2)S_p^2}{\sigma^2}}}$$

$$= N(0,1) \cdot \frac{\sqrt{m+n-2}}{\sqrt{\chi_{(n+m-2)}^2}}$$

$$= \frac{N(0,1)}{\sqrt{\frac{\chi_{(n+m-2)}^2}{(n+m-2)}}}$$

Por lo tanto, la expresión sigue una distribución $t_{(n+m-2)}$.

14. Sean $Y_1,...,Y_n$ y $Z_1,...,Z_k$ dos muestras aleatorias independientes de distribuciones $N(\mu,\sigma^2)$ y N(0,1), respectivamente, y sea $W=c\frac{(\bar{Y}-\mu)}{\sqrt{\sum\limits_{i=1}^k Z_i^2}}$. El valor de c que hace que W tenga

distribución t-Student debe ser:

a)
$$c = 1$$

b)
$$c = \frac{\sqrt{nk}}{\sigma}$$

c)
$$c = \frac{\sqrt{k-1}}{\sigma}$$

d) Ninguna de las anteriores.

Sabemos que si $Y_i \sim N(\mu, \sigma^2)$ entonces $\bar{Y} \sim N(\mu, \frac{\sigma^2}{n})$ y $(\bar{Y} - \mu) \sim N(0, \frac{\sigma^2}{n})$.

Para obtener la distribución t-Student necesitamos tener una normal estándar en el numerador y la raíz de una Ji-cuadrada dividida entre sus grados de libertad en el denominador.

Para obtener la normal estándar en el numeriador necesitamos dividir $(\bar{Y} - \mu)$ entre $\frac{\sigma}{\sqrt{n}}$, esto es, que c contenga $\frac{\sqrt{n}}{\sigma}$ (para estar dividiendo a $(\bar{Y} - \mu)$ entre su desviación estándar).

Para obtener la raíz cuadrada de una variable $\chi^2_{(n)}$ dividida entre sus grados de libertad nos k

fijamos primero en que $\sum_{i=1}^{\kappa} Z_i^2$ sigue una distribución $\chi_{(k)}^2$. Esto nos indica que c debe de contener \sqrt{k} (para estar dividiendo al término del denominador).

Por lo tanto, c debe de ser $\frac{\sqrt{nk}}{\sigma}$.

El inciso correcto es b).

- 15. Sea $X_1,...,X_5$ una muestra aleatoria de una densidad $N(0,\sigma^2),\sigma^2$ conocida. Entonces la distribución de $Y=\sum\limits_{i=1}^5 \frac{X_i^2}{\sigma^2}$ es:
 - a) $F_{(4,1)}$

b)
$$F_{(5,1)}$$

c)
$$\chi^2_{(5)}$$

d)
$$\chi^2_{(4)}$$

Sabemos que si tenemos $Z_i \sim N(0,1)$ entonces $\sum_{i=1}^n Z_i^2 \sim \chi_{(n)}^2$.

Dado que
$$X_i \sim N(0, \sigma^2) \Rightarrow \frac{X_i}{\sigma} = Z_i \sim N(0, 1)$$
.

Por lo tanto,
$$Y = \sum_{i=1}^{5} \frac{X_i^2}{\sigma^2} = \sum_{i=1}^{5} (\frac{X_i}{\sigma})^2 = \sum_{i=1}^{5} Z_i^2 \sim \chi_{(5)}^2$$
.

El inciso correcto es c).

- 16. Sea X_1, X_2, \dots una sucesión de variable aleatorias i.i.d. con densidad Bernoulli con parámetro p. Definimos $T_n = \frac{(\sum\limits_{i=1}^n X_i) + 1}{n+2}$ como estimador de p.
 - a) Encuentra $Var(T_n)$.

$$Var(T_n) = Var(\frac{\sum_{i=1}^{n} X_i) + 1}{n+2}) = \frac{1}{(n+2)^2} Var(\sum_{i=1}^{n} X_i) + 1 = \frac{1}{(n+2)^2} Var(\sum_{i=1}^{n} X_i) = \frac{1}{(n+2)^2} \sum_{i=1}^{n} Var(X_i)$$

$$= \frac{1}{(n+2)^2} \sum_{i=1}^{n} p(1-p) = \frac{1}{(n+2)^2} (np(1-p)) = \frac{np(1-p)}{(n+2)^2}$$

b) Calcula el error cuadrático medio de T_n . ¿Cuál es el límite de esta cantidad cuando $n \to \infty$?

El error cuadrático medio se define como sigue:

$$ECM(T_n) = E[(T_n - p)^2]$$

Desarrollando la expresión obtenemos que

$$E[(T_n - p)^2] = E[T_n^2 - 2T_n p - p^2] = E[T_n^2] - 2E[T_n]p - p^2$$

$$= E[T_n^2] - 2E[T_n]p - p^2 + E^2[T_n] - E^2[T_n] = E[T_n^2] - E^2[T_n] + E^2[T_n] - 2E[T_n]p - p^2$$

$$= (E[T_n^2] - E^2[T_n]) + (E[T_n] - p)^2$$

$$= Var(T_n) + sesgo^2(T_n)$$

Ahora bien,

$$\operatorname{sesgo}(T_n) = E[T_n] - p = E\left[\frac{\sum_{i=1}^n X_i + 1}{n+2}\right] - p = \frac{1}{n+2}E\left[\left(\sum_{i=1}^n X_i + 1\right) - p\right]$$

$$= \frac{1}{n+2}\left(E\left[\sum_{i=1}^n X_i\right] + 1\right) - p = \frac{1}{n+2}\left(\sum_{i=1}^n E[X_i] + 1\right) - p$$

$$= \frac{1}{n+2}\left(\sum_{i=1}^n p + 1\right) - p = \frac{1}{n+2}(np+1) = \frac{np}{n+2} - \left(\frac{n+2}{n+2}\right)p$$

$$= \frac{np+1-np-2p}{n+2} = \frac{1-2p}{n+2}$$

Por lo tanto,

$$ECM(T_n) = \frac{np(1-p)}{(n+2)^2} + (\frac{1-2p}{n+2})^2 \to 0 \text{ si } n \to \infty.$$