УДК 62

АНАЛИЗ ПЕРЕХОДНЫХ ХАРАКТЕРИСТИК СИСТЕМЫ ШЕСТОГО ПОРЯДКА С ШЕСТЬЮ КОРНЯМИ КРАТНОСТЬЮ ОДИН ХАРАКТЕРИСТИЧЕСКОГО УРАВНЕНИЯ

•••••

THE ANALYSIS OF TRANSIENT CHARACTERISTICS OF A SIXTH ORDER SYSTEM WITH SIX ONE-TIME SOLUTIONS OF THE CHARACTERISTIC EQUATION

Добробаба Юрий Петрович

кандидат технических наук, доцент, доцент кафедры электроснабжения промышленных предприятий, Кубанский государственный технологический университет

Мурлин Алексей Георгиевич

кандидат технических наук, доцент, доцент кафедры информационных систем и программирования, Кубанский государственный технологический университет

Печёнкин Олег Андреевич

студент, Кубанский государственный технологический университет pchn257@mail.ru

Аннотация. В статьях выполнен анализ переходных характеристик систем шестого порядка: с одним корнем кратносты шесть характеристического уравнения [1]; с одним корнем кратностью пять и с одним корнем кратностью один характеристического уравнения [2]; с одним корнем кратностью четыре и с одним корнем кратностью один характеристического уравнения [3]; с одним корнем кратностью один характеристического уравнения [4]; с двумя корнями кратностью один характеристического уравнения [5]; с одним корнем кратностью три, с одним корнем кратностью два и одним корнем кратностью один характеристического уравнения [6]; с одним корнем кратностью один характеристического уравнения [7]. В данной статье анализируются переходные характеристики системы шестого порядка с шестью корнями кратностью один характеристического уравнения

Найдены переходные характеристики системы шестого порядка с шестью корнями кратностью один характеристического уравнения с полиномом нулевой степени и с полиномом первой степени в числителе передаточной функции.

Ключевые слова: переходная характеристика, характеристическое уравнение системы шестого порядка, корни характеристического уравнения.

Dobrobaba Yury Petrovich

Candidate of technical sciences, Associate professor, Associate professor of department of power supply industrial enterprises, Kuban state technological university

Murlin Aleksey Georgievich

Candidate of technical sciences, Associate professor, Associate professor of department of information systems and programming, Kuban state technological university

Pechonkin Oleg Andreevich

Student, Kuban state technological university pchn257@mail.ru

Annotation. Articles analyze the transient characteristics of a sixth order systems: with six-time solution of the characteristic equation [1]; with five-time solution and one-time solutions of the characteristic equation [2]; with four-time solution and double solution of the characteristic equation [3]; with four-time solution and two one-time solutions of the characteristic equation [4]; with two triple solutions of characteristic equation [5]; with triple solution, double solution and one-time solution of characteristic equation [6]; with triple solution and three one-time solutions of characteristic equation [7]. This article analyzes the transient characteristics of a sixth order system with six one-time solutions of the characteristic equa-

Transitional characteristics of sixth order systems with six one-time solutions of the characteristic equation with a zero degree polynomial and a first degree polynomial in numerator of transfer function are found.

Keywords: transition characteristic, sixth order characteristic equation system, the solution of the characteristic equation.

ередаточная функция системы шестого порядка с шестью корнями кратностью один характеристического уравнения имеет вид:

$$W_{60}(p) = \frac{1}{(T_1p+1)\cdot(T_2p+1)\cdot(T_3p+1)\cdot(T_4p+1)\cdot(T_5p+1)\cdot(T_6p+1)},$$

где T_1, T_2, T_3, T_4, T_5 и T_6 – постоянные времени полинома знаменателя передаточной функции шестого порядка. При этом выполняются условия $T_1 > T_2 > T_3 > T_4 > T_5 > T_6$.

Корни характеристического уравнения системы шестого порядка с шестью корнями кратностью тин характеристического уравнения:

$$p_1 = -\frac{1}{T_1}$$
; $p_2 = -\frac{1}{T_2}$; $p_3 = -\frac{1}{T_3}$; $p_4 = -\frac{1}{T_4}$; $p_5 = -\frac{1}{T_5}$; $p_6 = -\frac{1}{T_6}$.

Переходная характеристика системы шестого порядка с шестью корнями кратностью один характеристического уравнения и её первых пяти производных соответственно равны:

$$\begin{split} h_{60}(t) &= K_1 \cdot e^{-\frac{t}{T_1}} + K_2 \cdot e^{-\frac{t}{T_2}} + K_3 \cdot e^{-\frac{t}{T_3}} + K_4 \cdot e^{-\frac{t}{T_4}} + K_5 \cdot e^{-\frac{t}{T_5}} + K_6 \cdot e^{-\frac{t}{T_6}} + K_7 \,; \\ h_{60}^{(1)}(t) &= -\frac{K_1}{T_1} \cdot e^{-\frac{t}{T_1}} - \frac{K_2}{T_2} \cdot e^{-\frac{t}{T_2}} - \frac{K_3}{T_3} \cdot e^{-\frac{t}{T_3}} - \frac{K_4}{T_4} \cdot e^{-\frac{t}{T_4}} - \frac{K_5}{T_5} \cdot e^{-\frac{t}{T_5}} - \frac{K_6}{T_6} \cdot e^{-\frac{t}{T_6}} \,; \\ h_{60}^{(2)}(t) &= \frac{K_1}{T_1^2} \cdot e^{-\frac{t}{T_1}} + \frac{K_2}{T_2^2} \cdot e^{-\frac{t}{T_2}} + \frac{K_3}{T_3^2} \cdot e^{-\frac{t}{T_3}} + \frac{K_4}{T_4^2} \cdot e^{-\frac{t}{T_4}} + \frac{K_5}{T_5^2} \cdot e^{-\frac{t}{T_5}} + \frac{K_6}{T_6^2} \cdot e^{-\frac{t}{T_6}} \,; \\ h_{60}^{(3)}(t) &= -\frac{K_1}{T_1^3} \cdot e^{-\frac{t}{T_1}} - \frac{K_2}{T_2^3} \cdot e^{-\frac{t}{T_2}} - \frac{K_3}{T_3^3} \cdot e^{-\frac{t}{T_3}} - \frac{K_4}{T_4^3} \cdot e^{-\frac{t}{T_4}} - \frac{K_5}{T_5^3} \cdot e^{-\frac{t}{T_5}} - \frac{K_6}{T_6^4} \cdot e^{-\frac{t}{T_6}} \,; \\ h_{60}^{(4)}(t) &= \frac{K_1}{T_1^4} \cdot e^{-\frac{t}{T_1}} + \frac{K_2}{T_2^4} \cdot e^{-\frac{t}{T_2}} + \frac{K_3}{T_3^4} \cdot e^{-\frac{t}{T_3}} + \frac{K_4}{T_4^4} \cdot e^{-\frac{t}{T_4}} + \frac{K_5}{T_5^4} \cdot e^{-\frac{t}{T_5}} + \frac{K_6}{T_6^4} \cdot e^{-\frac{t}{T_6}} \,; \\ h_{60}^{(5)}(t) &= -\frac{K_1}{T_1^5} \cdot e^{-\frac{t}{T_1}} - \frac{K_2}{T_2^5} \cdot e^{-\frac{t}{T_2}} - \frac{K_3}{T_3^5} \cdot e^{-\frac{t}{T_3}} - \frac{K_4}{T_4^5} \cdot e^{-\frac{t}{T_4}} - \frac{K_5}{T_5^5} \cdot e^{-\frac{t}{T_5}} - \frac{K_6}{T_6^6} \cdot e^{-\frac{t}{T_6}} \,. \end{split}$$

Так как начальные и конечные значения системы шестого порядка (с точки зрения физики) имеют вид:

$$h_{60}(0) = 0;$$

$$h_{60}^{(1)}(0) = 0;$$

$$h_{60}^{(2)}(0) = 0;$$

$$h_{60}^{(3)}(0) = 0;$$

$$h_{60}^{(4)}(0) = 0;$$

$$h_{60}^{(5)}(0) = 0;$$

а начальные и конечные значения системы шестого порядка (с точки зрения математики) имеют вид:

$$\begin{split} h_{60}(0) &= K_1 + K_2 + K_3 + K_4 + K_5 + K_6 + K_7; \\ h_{60}^{(1)}(0) &= -\frac{K_1}{T_1} - \frac{K_2}{T_2} - \frac{K_3}{T_3} - \frac{K_4}{T_4} - \frac{K_5}{T_5} - \frac{K_6}{T_6}; \\ h_{60}^{(2)}(0) &= \frac{K_1}{T_1^2} + \frac{K_2}{T_2^2} + \frac{K_3}{T_3^2} + \frac{K_4}{T_4^2} + \frac{K_5}{T_5^2} + \frac{K_6}{T_6^2}; \\ h_{60}^{(3)}(0) &= -\frac{K_1}{T_1^3} - \frac{K_2}{T_2^3} - \frac{K_3}{T_3^3} - \frac{K_4}{T_4^3} - \frac{K_5}{T_5^3} - \frac{K_6}{T_6^3}; \\ h_{60}^{(4)}(0) &= \frac{K_1}{T_1^4} + \frac{K_2}{T_2^4} + \frac{K_3}{T_3^4} + \frac{K_4}{T_4^4} + \frac{K_5}{T_5^4} + \frac{K_6}{T_6^4}; \\ h_{60}^{(5)}(0) &= -\frac{K_1}{T_5^5} - \frac{K_2}{T_5^5} - \frac{K_3}{T_5^5} - \frac{K_4}{T_5^5} - \frac{K_5}{T_5^5}; \end{split}$$

то справедлива зависимость: $K_7 = 1$.

 $h_{60}(\infty)=K_7,$

При этом справедлива система уравнений:

$$K_1 + K_2 + K_3 + K_4 + K_5 + K_6 + 1 = 0;$$
 (1)

$$-\frac{K_1}{T_1} - \frac{K_2}{T_2} - \frac{K_3}{T_3} - \frac{K_4}{T_4} - \frac{K_5}{T_5} - \frac{K_6}{T_6} = 0;$$
 (2)

$$\frac{K_1}{T_1^2} + \frac{K_2}{T_2^2} + \frac{K_3}{T_2^2} + \frac{K_4}{T_2^2} + \frac{K_5}{T_r^2} + \frac{K_6}{T_e^2} = 0;$$
 (3)

$$-\frac{K_1}{T_1^3} - \frac{K_2}{T_2^3} - \frac{K_3}{T_3^3} - \frac{K_4}{T_4^3} - \frac{K_5}{T_5^3} - \frac{K_6}{T_6^3} = 0; (4)$$

$$\frac{K_1}{T_1^4} + \frac{K_2}{T_2^4} + \frac{K_3}{T_2^4} + \frac{K_4}{T_2^4} + \frac{K_5}{T_2^4} + \frac{K_6}{T_2^4} = 0; (5)$$

$$-\frac{K_1}{T_1^5} - \frac{K_2}{T_2^5} - \frac{K_3}{T_3^5} - \frac{K_4}{T_4^5} - \frac{K_5}{T_5^5} - \frac{K_6}{T_6^5} = 0.$$
 (6)

Из уравнения (2) следует, что:

$$K_6 = -\frac{T_6}{T_1} \cdot K_1 - \frac{T_6}{T_2} \cdot K_2 - \frac{T_6}{T_2} \cdot K_3 - \frac{T_6}{T_4} \cdot K_4 - \frac{T_6}{T_7} \cdot K_5.$$
 (7)

Из уравнений (3) и (7) следует, что:

$$K_{5} = -\frac{T_{5}^{2}}{T_{7}^{2}} \cdot \frac{T_{1} - T_{6}}{T_{5} - T_{6}} \cdot K_{1} - \frac{T_{5}^{2}}{T_{7}^{2}} \cdot \frac{T_{2} - T_{6}}{T_{5} - T_{6}} \cdot K_{2} - \frac{T_{5}^{2}}{T_{7}^{2}} \cdot \frac{T_{3} - T_{6}}{T_{5} - T_{6}} \cdot K_{3} - \frac{T_{5}^{2}}{T_{2}^{2}} \cdot \frac{T_{4} - T_{6}}{T_{5} - T_{6}} \cdot K_{4} , \tag{8}$$

тогда уравнение (7) примет вид

$$K_{6} = \frac{T_{6}^{2}}{T_{1}^{2}} \cdot \frac{T_{1} - T_{5}}{T_{5} - T_{6}} \cdot K_{1} + \frac{T_{6}^{2}}{T_{2}^{2}} \cdot \frac{T_{2} - T_{5}}{T_{5} - T_{6}} \cdot K_{2} + \frac{T_{6}^{2}}{T_{3}^{2}} \cdot \frac{T_{3} - T_{5}}{T_{5} - T_{6}} \cdot K_{3} + \frac{T_{6}^{2}}{T_{4}^{2}} \cdot \frac{T_{4} - T_{5}}{T_{5} - T_{6}} \cdot K_{4} . \tag{9}$$

Из уравнений (4), (8) и (9) следует, что:

$$K_{4} = -\frac{T_{4}^{3}}{T_{1}^{3}} \cdot \frac{(T_{1} - T_{5}) \cdot (T_{1} - T_{6})}{(T_{4} - T_{5}) \cdot (T_{4} - T_{6})} \cdot K_{1} - \frac{T_{4}^{3}}{T_{2}^{3}} \cdot \frac{(T_{2} - T_{5}) \cdot (T_{2} - T_{6})}{(T_{4} - T_{5}) \cdot (T_{4} - T_{6})} \cdot K_{2} - \frac{T_{4}^{3}}{T_{3}^{3}} \cdot \frac{(T_{3} - T_{5}) \cdot (T_{3} - T_{6})}{(T_{4} - T_{5}) \cdot (T_{4} - T_{6})} \cdot K_{3} , \tag{10}$$

тогда уравнения (8) и (9) примут вид

$$K_{5} = \frac{T_{5}^{2}}{T_{1}^{3}} \cdot \frac{(T_{1} - T_{4}) \cdot (T_{1} - T_{6})}{(T_{4} - T_{5}) \cdot (T_{5} - T_{6})} \cdot K_{1} + \frac{T_{5}^{2}}{T_{2}^{3}} \cdot \frac{(T_{2} - T_{4}) \cdot (T_{2} - T_{6})}{(T_{4} - T_{5}) \cdot (T_{5} - T_{6})} \cdot K_{2} + \frac{T_{5}^{2}}{T_{3}^{3}} \cdot \frac{(T_{3} - T_{4}) \cdot (T_{3} - T_{6})}{(T_{4} - T_{5}) \cdot (T_{5} - T_{6})} \cdot K_{3};$$

$$(11)$$

$$K_{6} = -\frac{T_{6}^{3}}{T_{1}^{3}} \cdot \frac{(T_{1} - T_{4}) \cdot (T_{1} - T_{5})}{(T_{4} - T_{6}) \cdot (T_{5} - T_{6})} \cdot K_{1} - \frac{T_{6}^{3}}{T_{2}^{3}} \cdot \frac{(T_{2} - T_{4}) \cdot (T_{2} - T_{5})}{(T_{4} - T_{6}) \cdot (T_{5} - T_{6})} \cdot K_{2} - \frac{T_{6}^{3}}{T_{3}^{3}} \cdot \frac{(T_{3} - T_{4}) \cdot (T_{3} - T_{5})}{(T_{4} - T_{6}) \cdot (T_{5} - T_{6})} \cdot K_{3} . \tag{12}$$

Из уравнений (5), (9), (10), и (11) следует, что:

$$K_{3} = -\frac{T_{3}^{4}}{T_{1}^{4}} \cdot \frac{(T_{1} - T_{4}) \cdot (T_{1} - T_{5}) \cdot (T_{1} - T_{6})}{(T_{3} - T_{4}) \cdot (T_{3} - T_{5}) \cdot (T_{3} - T_{6})} \cdot K_{1} - \frac{T_{3}^{4}}{T_{4}^{4}} \cdot \frac{(T_{2} - T_{4}) \cdot (T_{2} - T_{5}) \cdot (T_{2} - T_{6})}{(T_{3} - T_{4}) \cdot (T_{3} - T_{5}) \cdot (T_{3} - T_{6})} \cdot K_{2} , \tag{13}$$

тогда уравнения (10), (11) и (12) примут вид:

$$K_4 = \frac{T_4^4}{T_1^4} \cdot \frac{(T_1 - T_3) \cdot (T_1 - T_5) \cdot (T_1 - T_6)}{(T_3 - T_4) \cdot (T_4 - T_5) \cdot (T_4 - T_6)} \cdot K_1 + \frac{T_4^4}{T_2^4} \cdot \frac{(T_2 - T_3) \cdot (T_2 - T_5) \cdot (T_2 - T_6)}{(T_3 - T_4) \cdot (T_4 - T_5) \cdot (T_4 - T_6)} \cdot K_2 , \tag{14}$$

$$K_{5} = -\frac{T_{5}^{4}}{T_{1}^{4}} \cdot \frac{(T_{1} - T_{3}) \cdot (T_{1} - T_{4}) \cdot (T_{1} - T_{6})}{(T_{3} - T_{5}) \cdot (T_{4} - T_{5}) \cdot (T_{5} - T_{6})} \cdot K_{1} - \frac{T_{5}^{4}}{T_{2}^{4}} \cdot \frac{(T_{2} - T_{3}) \cdot (T_{2} - T_{4}) \cdot (T_{2} - T_{6})}{(T_{3} - T_{5}) \cdot (T_{4} - T_{5}) \cdot (T_{5} - T_{6})} \cdot K_{2},$$

$$(15)$$

$$K_{6} = \frac{T_{6}^{4}}{T_{1}^{4}} \cdot \frac{(T_{1} - T_{3}) \cdot (T_{1} - T_{4}) \cdot (T_{1} - T_{5})}{(T_{3} - T_{6}) \cdot (T_{4} - T_{5}) \cdot (T_{5} - T_{6})} \cdot K_{1} + \frac{T_{6}^{4}}{T_{2}^{4}} \cdot \frac{(T_{2} - T_{3}) \cdot (T_{2} - T_{4}) \cdot (T_{2} - T_{5})}{(T_{3} - T_{6}) \cdot (T_{4} - T_{5}) \cdot (T_{5} - T_{6})} \cdot K_{2} . \tag{16}$$

Из уравнений (6), (13), (14), (15) и (16) следует, что

$$K_2 = -\frac{T_2^5}{T_1^5} \cdot \frac{(T_1 - T_3) \cdot (T_1 - T_4) \cdot (T_1 - T_5) \cdot (T_1 - T_6)}{(T_2 - T_3) \cdot (T_2 - T_4) \cdot (T_2 - T_5) \cdot (T_2 - T_6)} \cdot K_1,$$
(17)

тогда уравнения (13), (14), (15) и (16) примут вид:

$$K_3 = \frac{T_3^5}{T_1^5} \cdot \frac{(T_1 - T_2) \cdot (T_1 - T_4) \cdot (T_1 - T_5) \cdot (T_1 - T_6)}{(T_2 - T_3) \cdot (T_3 - T_4) \cdot (T_3 - T_5) \cdot (T_3 - T_6)} \cdot K_1 ;$$
(18)

$$K_4 = -\frac{T_4^5}{T_1^5} \cdot \frac{(T_1 - T_2) \cdot (T_1 - T_3) \cdot (T_1 - T_6)}{(T_2 - T_4) \cdot (T_3 - T_4) \cdot (T_4 - T_5) \cdot (T_4 - T_6)} \cdot K_1 ;$$
(19)

$$K_5 = \frac{T_5^5}{T_1^5} \cdot \frac{(T_1 - T_2) \cdot (T_1 - T_4) \cdot (T_1 - T_6)}{(T_2 - T_5) \cdot (T_3 - T_4) \cdot (T_4 - T_5) \cdot (T_5 - T_6)} \cdot K_1 ;$$
(20)

$$K_6 = -\frac{T_6^5}{T^5} \cdot \frac{(T_1 - T_2) \cdot (T_1 - T_3) \cdot (T_1 - T_4) \cdot (T_1 - T_5)}{(T_2 - T_6) \cdot (T_2 - T_6) \cdot (T_2 - T_6) \cdot (T_5 - T_6)} \cdot K_1.$$
(21)

Из уравнений (1), (17), (18), (19), (20) и (21) следует, что:

$$K_1 = -\frac{T_1^5}{(T_1 - T_2) \cdot (T_1 - T_3) \cdot (T_1 - T_5) \cdot (T_1 - T_6)},$$
(22)

тогда уравнения (17), (18), (19), (20) и (21) примут вид:

$$K_2 = \frac{T_2^5}{(T_1 - T_2) \cdot (T_2 - T_3) \cdot (T_2 - T_4) \cdot (T_2 - T_5) \cdot (T_2 - T_6)};$$
(23)

$$K_3 = -\frac{T_3^5}{(T_1 - T_3) \cdot (T_2 - T_3) \cdot (T_3 - T_4) \cdot (T_3 - T_5) \cdot (T_3 - T_6)};$$
(24)

$$K_4 = \frac{T_4^5}{(T_1 - T_4) \cdot (T_2 - T_4) \cdot (T_3 - T_4) \cdot (T_4 - T_5) \cdot (T_4 - T_6)};$$
(25)

$$K_5 = -\frac{T_5^5}{(T_1 - T_5) \cdot (T_2 - T_5) \cdot (T_3 - T_5) \cdot (T_5 - T_6)};$$
(26)

$$K_6 = \frac{T_6^5}{(T_1 - T_6) \cdot (T_2 - T_6) \cdot (T_3 - T_6) \cdot (T_5 - T_6)}.$$
 (27)

Таким образом, переходная характеристика системы шестого порядка с шестью корнями кратностью один характеристического уравнения и её первая производная соответственно равны:

$$h_{60}(t) = -\frac{T_1^5}{(T_1 - T_2) \cdot (T_1 - T_3) \cdot (T_1 - T_4) \cdot (T_1 - T_5) \cdot (T_1 - T_6)} \cdot e^{-\frac{t}{T_1}} + \frac{T_2^5}{(T_1 - T_2) \cdot (T_2 - T_3) \cdot (T_2 - T_4) \cdot (T_2 - T_5) \cdot (T_2 - T_6)} \cdot e^{-\frac{t}{T_2}} - \frac{T_3^5}{(T_1 - T_3) \cdot (T_2 - T_3) \cdot (T_3 - T_4) \cdot (T_3 - T_5) \cdot (T_3 - T_6)} \cdot e^{-\frac{t}{T_3}} + \frac{T_4^5}{(T_1 - T_4) \cdot (T_2 - T_4) \cdot (T_3 - T_4) \cdot (T_4 - T_5) \cdot (T_4 - T_6)} \cdot e^{-\frac{t}{T_4}} - \frac{T_5^5}{(T_1 - T_5) \cdot (T_2 - T_5) \cdot (T_3 - T_6) \cdot (T_4 - T_5) \cdot (T_5 - T_6)} \cdot e^{-\frac{t}{T_6}} + 1;$$

$$h_{60}^{(1)}(t) = \frac{T_1^4}{(T_1 - T_2) \cdot (T_1 - T_3) \cdot (T_1 - T_4) \cdot (T_1 - T_5) \cdot (T_1 - T_6)} \cdot e^{-\frac{t}{T_1}} - \frac{T_2^4}{(T_1 - T_2) \cdot (T_2 - T_3) \cdot (T_2 - T_4) \cdot (T_2 - T_5) \cdot (T_2 - T_6)} \cdot e^{-\frac{t}{T_3}} - \frac{t}{T_3^4} + \frac{T_3^4}{(T_1 - T_3) \cdot (T_2 - T_3) \cdot (T_3 - T_4) \cdot (T_3 - T_5) \cdot (T_3 - T_6)} \cdot e^{-\frac{t}{T_3}} - \frac{T_4^4}{(T_1 - T_3) \cdot (T_2 - T_4) \cdot (T_3 - T_5) \cdot (T_4 - T_6)} \cdot e^{-\frac{t}{T_5}} - \frac{T_6^4}{(T_1 - T_5) \cdot (T_2 - T_5) \cdot (T_3 - T_5) \cdot (T_4 - T_5) \cdot (T_5 - T_6)} \cdot e^{-\frac{t}{T_5}} - \frac{T_6^4}{(T_1 - T_5) \cdot (T_2 - T_5) \cdot (T_3 - T_5) \cdot (T_4 - T_5) \cdot (T_5 - T_6)} \cdot e^{-\frac{t}{T_6}}.$$

Передаточная функция системы шестого порядка с шестью корнями кратностью один характеристического уравнения с полиномом первой степени в числителе передаточной функции имеет вид:

$$W_{61}(p) = \frac{\tau p + 1}{(T_1 p + 1) \cdot (T_2 p + 1) \cdot (T_3 p + 1) \cdot (T_4 p + 1) \cdot (T_5 p + 1) \cdot (T_6 p + 1)}$$

где т – постоянная времени полинома числителя передаточной функции шестого порядка.

Переходная характеристика системы шестого порядка с шестью корнями кратностью один характеристического уравнения с полиномом первой степени в числителе передаточной функции принимает вид:

$$\begin{split} h_{61}(t) &= -\frac{T_1^4(T_1 - \tau)}{(T_1 - T_2) \cdot (T_1 - T_3) \cdot (T_1 - T_4) \cdot (T_1 - T_5) \cdot (T_1 - T_6)} \cdot e^{-\frac{t}{T_1}} + \\ &+ \frac{T_2^4(T_2 - \tau)}{(T_1 - T_2) \cdot (T_2 - T_3) \cdot (T_2 - T_4) \cdot (T_2 - T_5) \cdot (T_2 - T_6)} \cdot e^{-\frac{t}{T_2}} - \\ &- \frac{T_3^4(T_3 - \tau)}{(T_1 - T_3) \cdot (T_2 - T_3) \cdot (T_3 - T_4) \cdot (T_3 - T_5) \cdot (T_3 - T_6)} \cdot e^{-\frac{t}{T_3}} + \\ &+ \frac{T_4^4(T_4 - \tau)}{(T_1 - T_4) \cdot (T_2 - T_4) \cdot (T_3 - T_4) \cdot (T_4 - T_5) \cdot (T_4 - T_6)} \cdot e^{-\frac{t}{T_4}} - \\ &- \frac{T_5^4(T_5 - \tau)}{(T_1 - T_5) \cdot (T_2 - T_5) \cdot (T_3 - T_5) \cdot (T_4 - T_5) \cdot (T_5 - T_6)} \cdot e^{-\frac{t}{T_5}} + \\ &+ \frac{T_6^4(T_6 - \tau)}{(T_1 - T_6) \cdot (T_2 - T_6) \cdot (T_3 - T_6) \cdot (T_4 - T_6) \cdot (T_5 - T_6)} \cdot e^{-\frac{t}{T_6}} + 1 \,. \end{split}$$
 При этом, если $\tau = T_1$, то:
$$h_{61}(t) = - \frac{T_2^4}{(T_2 - T_3) \cdot (T_2 - T_4) \cdot (T_2 - T_5) \cdot (T_2 - T_6)} \cdot e^{-\frac{t}{T_2}} + \\ &+ \frac{T_3^4}{(T_2 - T_3) \cdot (T_3 - T_4) \cdot (T_3 - T_5) \cdot (T_3 - T_6)} \cdot e^{-\frac{t}{T_3}} - \end{split}$$

$$\begin{split} & -\frac{T_{4}^{4}}{(T_{2}-T_{4})\cdot(T_{3}-T_{4})\cdot(T_{4}-T_{5})\cdot(T_{4}-T_{6})}\cdot e^{-\frac{t}{T_{4}}} + \\ & + \frac{T_{5}^{4}}{(T_{2}-T_{5})\cdot(T_{3}-T_{5})\cdot(T_{4}-T_{5})\cdot(T_{5}-T_{6})}\cdot e^{-\frac{t}{T_{5}}} - \\ & - \frac{T_{6}^{4}}{(T_{2}-T_{6})\cdot(T_{3}-T_{6})\cdot(T_{4}-T_{6})\cdot(T_{5}-T_{6})}\cdot e^{-\frac{t}{T_{6}}} + 1 \,. \end{split}$$

Предположим: $T_1 = 0.25T$, $T_2 = 0.2T$, $T_3 = 0.175T$, $T_4 = 0.15T$, $T_5 = 0.125T$, $T_6 = 0.1T$.

$$h_{61}(t) = -\frac{1250}{9} \cdot e^{-4\frac{t}{T}} + \frac{2048}{3} \cdot e^{-5\frac{t}{T}} - \frac{16807}{18} \cdot e^{-\frac{40}{T}\frac{t}{T}} + 486 \cdot e^{-\frac{20}{3}\frac{t}{T}} - \frac{625}{6} \cdot e^{-8\frac{t}{T}} + \frac{64}{9} \cdot e^{-10\frac{t}{T}} + 1.$$

Если
$$\tau = T_1$$
, то:
$$h_{61}(t) = -\frac{512}{3} \cdot e^{-5 \cdot \frac{t}{T}} + \frac{2401}{6} \cdot e^{-\frac{40}{7} \cdot \frac{t}{T}} - 324 \cdot e^{-\frac{20}{3} \cdot \frac{t}{T}} + \frac{625}{6} \cdot e^{-8 \cdot \frac{t}{T}} - \frac{32}{3} \cdot e^{-10 \cdot \frac{t}{T}} + 1.$$

Если
$$au = 2T_1$$
, то:
$$h_{61}(t) = \frac{1250}{9} \cdot e^{-4\frac{t}{T}} - 1024 \cdot e^{-5\frac{t}{T}} + \frac{31213}{18} \cdot e^{-\frac{40}{7}\frac{t}{T}} - 1134 \cdot e^{-\frac{20}{3}\frac{t}{T}} + \frac{625}{2} \cdot e^{-8\frac{t}{T}} - \frac{256}{9} \cdot e^{-10\frac{t}{T}} + 1.$$

Полученные зависимости изображены на рисунке 1 в относительных единицах.

Рисунок 1 – Зависимость h_{61} от $\frac{t}{T}$ при различных au

Вывод: получены переходные характеристики систем шестого порядка с шестью корнями кратностью один характеристического уравнения как с полиномом нулевой степени, так и с полиномом первой степени в числителе передаточной функции. Переходная характеристика системы шестого порядка с шестью корнями кратностью один характеристического уравнения с полиномом первой степени в числителе передаточной функции не имеет перерегулирования, если постоянная времени числителя меньше или равна большей по величине постоянной времени знаменателя.

Литература

1. Добробаба Ю.П., Мурлин А.Г., Серкин А.Д., Анализ переходных характеристик системы шестого порядка с кратными корнями характеристического уравнения // Наука. Техника. Технологии (политехнический вестник). – Краснодар : Издательский Дом – Юг, 2019. – № 1. – С. 430–437.

- 2. Добробаба Ю.П., Мурлин А.Г., Печёнкин О.А., Анализ переходных характеристик системы шестого порядка с одним корнем кратностью пять и с одним корнем кратностью один характеристического уравнения // Наука. Техника. Технологии (политехнический вестник). Краснодар: Издательский Дом Юг, 2019. № 3 С. 234–239.
- 3. Добробаба Ю.П., Мурлин А.Г., Печёнкин О.А., Анализ переходных характеристик системы шестого порядка с одним корнем кратностью четыре и с одним корнем кратностью два характеристического уравнения // Наука. Техника. Технологии (политехнический вестник). Краснодар : Издательский Дом Юг, 2019. № 3. С. 240–247.
- 4. Добробаба Ю.П., Мурлин А.Г., Печёнкин О.А., Анализ переходных характеристик системы шестого порядка с одним корнем кратностью четыре и с двумя корнями кратностью один характеристического уравнения // Наука. Техника. Технологии (политехнический вестник). Краснодар : Издательский Дом Юг, 2019. № 3. С. 248–254.
- 5. Добробаба Ю.П., Мурлин А.Г., Печёнкин О.А., Анализ переходных характеристик системы шестого порядка с двумя корнями кратностью три характеристического уравнения // Наука. Техника. Технологии (политехнический вестник). Краснодар: Издательский Дом Юг, 2019. № 4. С. 376–381.
- 6. Добробаба Ю.П., Мурлин А.Г., Печёнкин О.А., Анализ переходных характеристик системы шестого порядка с одним корнем кратностью три, с одним корнем кратностью два и с одним корнем кратностью один характеристического уравнения // Наука. Техника. Технологии (политехнический вестник). Краснодар : Издательский Дом Юг, 2019. № 4. С. 382–390.
- 7. Добробаба Ю.П., Мурлин А.Г., Печёнкин О.А., Анализ переходных характеристик системы шестого порядка с одним корнем кратностью три и с тремя корнями кратностью один характеристического уравнения // Наука. техника. технологии (политехнический вестник). Краснодар: Издательский Дом Юг, 2019. № 4. С. 391–398.

References

- 1. Dobrobaba Yu.P., Murlin A.G., Serkin A.D., The analysis of transitional features of the system of the sixth order with multiple roots of the characteristic equation // Science. Engineering. Technology (polytechnical bulletin). Krasnodar : Publishing House South, 2019. N = 1. P.430-437.
- 2. Dobrobaba Yu.P., Murlin A.G., Pechonkin O.A., The analysis of transient characteristics of a sixth order system with five-time solution and one-time solution of the characteristic equation // Science. Engineering. Technology (polytechnical bulletin). − Krasnodar: Publishing House − South, 2019. − № 3. − P. 234–240.
- 3. Dobrobaba Yu.P., Murlin A.G., Pechonkin O.A., The analysis of transient characteristics of a sixth order system with four-time solution and double solution of the characteristic equation // Science. Engineering. Technology (polytechnical bulletin). Krasnodar: Publishing House South, 2019. № 3. P. 241–247.
- 4. Dobrobaba Yu.P., Murlin A.G., Pechonkin O.A., The analysis of transient characteristics of a sixth order system with four-time solution and two one-time solutions of the characteristic equation // Science. Engineering. Technology (polytechnical bulletin). − Krasnodar: Publishing House − South, 2019. − № 3. − P. 248–254.
- 5. Dobrobaba Yu.P., Murlin A.G., Pechonkin O.A., The analysis of transient characteristics of a sixth order system with two triple solutions of the characteristic equation // Science. Engineering. Technology (polytechnical bulletin). − Krasnodar: Publishing House − South, 2019. − № 4. − P. 376–381.
- 6. Dobrobaba Yu.P., Murlin A.G., Pechonkin O.A., The analysis of transient characteristics of a sixth order system with triple solution, double solution and one-time solution of the characteristic equation // Science. Engineering. Technology (polytechnical bulletin). − Krasnodar: Publishing House − South, 2019. − № 4. − P. 382–390.
- 7. Dobrobaba Yu.P., Murlin A.G., Pechonkin O.A., The analysis of transient characteristics of a sixth order system with triple solution and three one-time solutions of the characteristic equation // Science. Engineering. Technology (polytechnical bulletin). Krasnodar: Publishing House South, 2019. № 4. P. 391–398.