Determinant

Seanie Lee, Jonghwan Jang

23 March 2019

Definition 1. $\mu : \mathbf{V} \times \mathbf{V} \times \cdots \mathbf{V} \longrightarrow \mathbb{R}$ is n-linear form on \mathbf{V} if $\mu(\ldots, \mathbf{v} + c\mathbf{w}, \ldots) = \mu(\ldots, \mathbf{v}, \ldots) + c\mu(\ldots, \mathbf{w}, \ldots)$

Definition 2. μ : n-linear form on V. μ is alternating n-linear from, if $\mu(\ldots, v, \ldots, v, \ldots) = 0$

Note. μ : alternating n-linear form on $V \iff \mu(\ldots, v, \ldots, w, \ldots) = -\mu(\ldots, w, \ldots, v, \ldots)$

Proof. \Longrightarrow Suppose that $\mu(\ldots, \mathbf{v} + \mathbf{w}, \ldots, \mathbf{v} + \mathbf{w}, \ldots) = 0$ $\mathbf{v}, \mathbf{w} \in \mathbf{V}, c \in \mathbb{R}$. Since μ is n-linear form,

$$\mu(\ldots, \boldsymbol{v}, \ldots, \boldsymbol{v} + \boldsymbol{w}, \ldots) + \mu(\ldots, \boldsymbol{w}, \ldots, \boldsymbol{v} + \boldsymbol{w}, \ldots) = 0$$

$$\mu(\ldots, \boldsymbol{v}, \ldots, \boldsymbol{w}, \ldots) + \mu(\ldots, \boldsymbol{v}, \ldots, \boldsymbol{v}, \ldots) + \mu(\ldots, \boldsymbol{w}, \ldots, \boldsymbol{v}, \ldots) + \mu(\ldots, \boldsymbol{w}, \ldots, \boldsymbol{v}) = 0$$

Since $\mu(\ldots, \boldsymbol{v}, \ldots, \boldsymbol{v}) = \mu(\ldots, \boldsymbol{w}, \ldots, \boldsymbol{w}, \ldots) = 0, \quad \mu(\ldots, \boldsymbol{v}, \ldots, \boldsymbol{w}, \ldots) = -\mu(\ldots, \boldsymbol{w}, \ldots, \boldsymbol{v}, \ldots)$ $\leftarrow \text{Suppose that } \mu(\ldots, \boldsymbol{v}, \ldots, \boldsymbol{v}, \ldots) = -\mu(\ldots, \boldsymbol{v}, \ldots, \boldsymbol{v}, \ldots)$

$$\mu(\dots, \boldsymbol{v}, \dots, \boldsymbol{v}, \dots) = -\mu(\dots, \boldsymbol{v}, \dots, \boldsymbol{v}, \dots)$$
$$2\mu(\dots, \boldsymbol{v}, \dots, \boldsymbol{v}) = 0$$
$$\mu(\dots, \boldsymbol{v}, \dots, \boldsymbol{v}) = 0$$

Note.

$$\mathbb{R}^n \times \cdots \times \mathbb{R}^n \approx \mathfrak{M}_{n \times n}(\mathbb{R})$$
$$(\mathcal{C}_1, \mathcal{C}_2, \dots, \mathcal{C}_n) \longleftrightarrow A = (\mathcal{C}_1, \mathcal{C}_2, \dots, \mathcal{C}_n)$$

Theorem 3. Alternating n-linear form on \mathbb{R}^n with $\mu(e_1,\ldots,e_n)=1$ is "determinant". i.e. $\mu=\det$

Definition 4. A group G consists of a set on which binary operation * is defined so that for each pair of elements a, b in G there is a unique element a * b in G, such that following conditions hold.

(1).
$$(a*b)*c = a*(b*c) \forall a,b,c \in G$$

(2).
$$\exists e \in \mathbf{G}a * e = e * a = a \quad \forall a \in \mathbf{G}$$

(3). For every $a \in G$, there is a $x \in G$ such that a * x = x * a = e where $e \in G$ denotes an identity.

Definition 5. The groups that obey the axiom of commutativity are abelian groups

Example 1. $(\mathbb{Z}, +), (\mathbb{Q}, +), (\mathbb{R}, +), (\mathbb{C}, +), (\mathfrak{M}_{n \times n}(\mathbb{R}), +)$ are abelian. But $(\mathfrak{M}_{n \times n}(\mathbb{R}), \times)$ is not abelian, because it is not guranteed an inverse always exits $\forall A \in \mathfrak{M}_{n \times n}$

Definition 6. $GL_n(R) := \{A \in \mathfrak{M}_{n \times n}(\mathbb{R}) | A \text{ is invertible} \}$ and it is called general linear group.

Note. $(GL_n(\mathbb{R}), \times)$ is group but non-abelian

Definition 7. If $H \subseteq G$ and (H,*) is also group, then H is subgroup of G and wrote $H \subseteq G$

Theorem 8 (Subgroup Test). $H \leq G \iff ab^{-1} \in H \quad \forall a, b \in H$

Proof. \Longrightarrow it is trivial to prove. proof omitted \Longleftrightarrow Suppose that $ab^{-1} \in \mathbf{H} \quad \forall a, b \in \mathbf{H}$

$$b \coloneqq b^{-1}$$
, then $ab \in \mathbf{H}$
 $b \coloneqq a$, then $aa^{-1} = e \in \mathbf{H}$
 $a \coloneqq e$, then $b^{-1} \in \mathbf{H}$

 $\therefore H$ is group

Example 2. $2\mathbb{Z} := \{2a | a \in \mathbb{Z}\} \leq \mathbb{Z}$

Proof.
$$\forall a, b \in \mathbb{Z} \quad 2a + (-2b) = 2(a-b) \in 2\mathbb{Z} \quad \therefore 2\mathbb{Z} \leq \mathbb{Z}$$

Definition 9. $n \in \mathbb{N}, [n] := \{1, 2, \dots, n\}.$ σ is permutation if $\sigma : [n] \longrightarrow [n]$ is bijection.

Definition 10. $\mathfrak{S}_n := \{\sigma | \sigma : permutation \ on \ [n]\} \mathfrak{S}_n \ is \ symmetric \ group \ and \ (\mathfrak{S}_n, \circ) \ is \ a \ group.$

Definition 11. $\iota(a) = a \quad \forall a \in [n], \iota : [n] \longrightarrow [n]$

Note

- (1). \mathfrak{S}_n is non abelian group
- (2). For convenience, we will write $\sigma \in \mathfrak{S}_n$ as follows. $\sigma = \begin{pmatrix} 1 & 2 & \cdots & n \\ \sigma(1) & \sigma(2) & \cdots & \sigma(n) \end{pmatrix}$

Theorem 12. Define an equivalence relation on [n] for fixed $\sigma \in \mathfrak{S}_n$ as follows. $a \sim b \iff b = \sigma^k(a) \quad k \in \mathbb{Z}$. Then \sim is equivalence relation on [n]

Proof. 1. reflexive
$$a = \sigma^0(a) = a \quad \forall a \in [n]$$
$$\therefore a \sim a$$

2. symmetric

Suppose that
$$a \sim b$$
. i.e. $b = \sigma^k(a)$
Since $(\sigma^k)^{-1} = (\sigma^{-1})^k, a = \sigma^{-k}(b)$
 $\therefore b \sim a$

3. transitive

Suppose that
$$a \sim b, b \sim c$$
. i.e. $b = \sigma^k(a), c = \sigma^l(b)$
Since $c = \sigma^k(\sigma^l(a)), c = \sigma^{k+l}(a)$
 $\therefore c \sim a$

Definition 13. $[a]_{eq} := \{b \in [n] | a \sim b\}$ is orbit of a

Example 3.
$$\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 2 & 4 & 1 & 3 & 6 & 5 \end{pmatrix}$$
, $[1]_{eq} = \{1, 2, 4, 3\} = [2]_{eq} = [4]_{eq} = [3]_{eq}$ $[5]_{eq} = [6]_{eq} = \{5, 6\}$

Definition 14. $\mu \in \mathfrak{S}_n (n \geq 2)$ is a cycle if the number of orbit whose size is ≥ 2 is at most 1.

Theorem 15. Every permutation is the product of disjoint cycles

Note. disjoint cycle: the intersection of two maximum orbits in each cycle is empty and disjoint cycles are commutative

Definition 16. A cycle of $\sigma \in \mathfrak{S}_n$ is transposition if $|\sigma| = 2$

Theorem 17. Every cycle is a product of transpositions. In general, $(a_1 \cdots a_n) = (a_1 \ a_n) \cdots (a_1 \ a_2)$

Example 4. $\sigma = (2 \, 4 \, 5) = (2 \, 5)(2 \, 4) \in \mathfrak{S}_5$

$$2 \mapsto 4 \mapsto 4$$
$$4 \mapsto 2 \mapsto 5$$
$$5 \mapsto 5 \mapsto 2$$

Note.

$$\iota = (1\ 2)(1\ 2)$$

$$= (1\ 2)(1\ 2)(3\ 4)(3\ 4)$$

$$= (1\ 2)(1\ 2)(3\ 4)(3\ 4) \cdots (n-1\ n)(n-1\ n)$$

Definition 18. $\sigma \in \mathfrak{S}_n$ is even if it is a product of transpositions where the number of transition is even, otherwise σ is odd.

Definition 19. $\mathscr{A}_n := \{ \sigma \in \mathfrak{S}_n | \sigma \text{ is even} \}; \text{ the alternating subgroup of } \mathfrak{S}_n$

Theorem 20.

$$sgn:\mathfrak{S}_n \longrightarrow \{-1,1\}$$

$$\sigma \mapsto \begin{cases} -1 & \sigma \in \mathfrak{S}_n \setminus \mathscr{A}_n \\ +1 & \sigma \in \mathscr{A}_n \end{cases}$$

sgn is group homomorphism (operation preserving).

Definition 21. $\mathfrak{B} = \{V_1, \dots, v_n\}$: ordered basis for V, $\sigma \in \mathfrak{S}_n$, $\mathfrak{B}^{\sigma} \coloneqq \{v_{\sigma(1)}, \dots v_{\sigma(n)}\}$. Permutation matrix is $[Id]_{\mathfrak{B}}^{\mathfrak{B}^{\sigma}}$