Vettori in \mathbb{R}^n

• Analogamente a quanto abbiamo visto in dimensione 2 (il piano \mathbb{R}^2) e in dimensione 3 (lo spazio \mathbb{R}^3) un vettore di \mathbb{R}^n è una n-pla di numeri reali, che denotiamo normalmente come una colonna

$$V = \begin{bmatrix} X_1 \\ \vdots \\ X_n \end{bmatrix}$$

(anche se spesso, per risparmiare spazio, scriveremo $v = (x_1, \dots, x_n)$, ma torneremo su questo punto nella sezione riguardante il cambiamento di base).

• I vettori n dimensionali si sommano e si moltiplicano per scalari in \mathbb{R} in maniera analoga a quanto abbiamo visto nel piano e nello spazio.

$$(a_1, a_2, \ldots, a_n) + (b_1, b_2, \ldots, b_n) = (a_1 + b_1, a_2 + b_2, \ldots, a_n + b_n);$$

 $t(a_1, a_2, \ldots, a_n) = (ta_1, ta_2, \ldots, ta_n).$

L'operazione di somma e il prodotto per scalari godono delle proprietà (già viste in $\mathbb{R}^2, \mathbb{R}^3$), ovvero, se u, v sono vettori di \mathbb{R}^n , a, b sono scalari $(a, b \in \mathbb{R})$, $\vec{0}$ è il vettore nullo $(0, \dots, 0)$, allora:

$$u + v = v + u$$
 $(a + b)v = av + bv$
 $u + (v + w) = (u + v) + w$ $a(u + v) = au + av$
 $0 + v = v$ $a(bv) = (ab)v$
 $v + (-v) = 0$ $1v = v$

Combinazioni Lineari

Dati i vettori v_1, \ldots, v_k di \mathbb{R}^n , l'insieme delle loro combinazioni lineari si indica con $L(v_1, \ldots, v_k)$:

$$L(v_1,\ldots,v_k)=\{t_1v_1+\ldots+t_kv_k:t_1,\ldots,t_k\in\mathbb{R}\}$$

- se $v \neq \vec{0}$ allora L(v) è una retta che passa per l'origine, sia in \mathbb{R}^2 che in \mathbb{R}^3 ;
- se v₁, v₂ non hanno la stessa direzione allora L(v₁, v₂) è un piano che passa per l'origine;
 nel piano, se v₁, v₂ non hanno la stessa direzione allora L(v₁, v₂) = ℝ²;
- ullet se $v_1,v_2,v_3\in\mathbb{R}^3$ non appartengono allo stesso piano, allora $L(v_1,v_2,v_3)=\mathbb{R}^3$.

Siano

$$e_1 = \begin{bmatrix} 1 \\ 0 \\ \vdots \\ 0 \end{bmatrix}, e_2 = \begin{bmatrix} 0 \\ 1 \\ \vdots \\ 0 \end{bmatrix}, \ldots, e_n = \begin{bmatrix} 0 \\ 0 \\ \vdots \\ 1 \end{bmatrix}$$

$$L(e_1) =$$

Siano

$$e_1 = \begin{bmatrix} 1 \\ 0 \\ \vdots \\ 0 \end{bmatrix}, e_2 = \begin{bmatrix} 0 \\ 1 \\ \vdots \\ 0 \end{bmatrix}, \ldots, e_n = \begin{bmatrix} 0 \\ 0 \\ \vdots \\ 1 \end{bmatrix}$$

$$\textit{L}(\textit{e}_1) = \{(\textit{t}, 0, \ldots, 0) : \textit{t} \in \mathbb{R}\}$$

Siano

$$e_1 = \begin{bmatrix} 1 \\ 0 \\ \vdots \\ 0 \end{bmatrix}, e_2 = \begin{bmatrix} 0 \\ 1 \\ \vdots \\ 0 \end{bmatrix}, \ldots, e_n = \begin{bmatrix} 0 \\ 0 \\ \vdots \\ 1 \end{bmatrix}$$

$$L(e_1) = \{(t, 0, \dots, 0) : t \in \mathbb{R}\}$$

$$L(e_2) =$$

Siano

$$e_1 = \begin{bmatrix} 1 \\ 0 \\ \vdots \\ 0 \end{bmatrix}, e_2 = \begin{bmatrix} 0 \\ 1 \\ \vdots \\ 0 \end{bmatrix}, \dots, e_n = \begin{bmatrix} 0 \\ 0 \\ \vdots \\ 1 \end{bmatrix}$$

$$L(e_1) = \{(t, 0, \dots, 0) : t \in \mathbb{R}\}$$

$$L(e_2) = \{(0, t, \dots, 0) : t \in \mathbb{R}\}$$

Siano

$$e_1 = \begin{bmatrix} 1 \\ 0 \\ \vdots \\ 0 \end{bmatrix}, e_2 = \begin{bmatrix} 0 \\ 1 \\ \vdots \\ 0 \end{bmatrix}, \dots, e_n = \begin{bmatrix} 0 \\ 0 \\ \vdots \\ 1 \end{bmatrix}$$

$$L(e_1) = \{(t, 0, \dots, 0) : t \in \mathbb{R}\}$$

$$L(e_2) = \{(0, t, \dots, 0) : t \in \mathbb{R}\}$$

$$L(e_1, e_2) =$$

Siano

$$e_1 = \begin{bmatrix} 1 \\ 0 \\ \vdots \\ 0 \end{bmatrix}, e_2 = \begin{bmatrix} 0 \\ 1 \\ \vdots \\ 0 \end{bmatrix}, \dots, e_n = \begin{bmatrix} 0 \\ 0 \\ \vdots \\ 1 \end{bmatrix}$$

$$L(e_1) = \{(t, 0, \dots, 0) : t \in \mathbb{R}\}$$

$$L(e_2) = \{(0, t, \dots, 0) : t \in \mathbb{R}\}$$

$$L(e_1, e_2) = \{(t, s, \dots, 0) : t, s \in \mathbb{R}\}$$

Siano

$$e_1 = \begin{bmatrix} 1 \\ 0 \\ \vdots \\ 0 \end{bmatrix}, e_2 = \begin{bmatrix} 0 \\ 1 \\ \vdots \\ 0 \end{bmatrix}, \dots, e_n = \begin{bmatrix} 0 \\ 0 \\ \vdots \\ 1 \end{bmatrix}$$

$$\textit{L}(\textit{e}_1) = \{(t,0,\ldots,0) : t \in \mathbb{R}\}$$

$$L(e_2) = \{(0, t, \dots, 0) : t \in \mathbb{R}\}$$

$$L(e_1, e_2) = \{(t, s, \dots, 0) : t, s \in \mathbb{R}\}$$

$$L(e_1,\ldots,e_n) =$$

Siano

$$e_1 = \begin{bmatrix} 1 \\ 0 \\ \vdots \\ 0 \end{bmatrix}, e_2 = \begin{bmatrix} 0 \\ 1 \\ \vdots \\ 0 \end{bmatrix}, \dots, e_n = \begin{bmatrix} 0 \\ 0 \\ \vdots \\ 1 \end{bmatrix}$$

I vettori e_1, \ldots, e_n si chiamano i vettori della base canonica . Si ha :

$$\textit{L}(\textit{e}_1) = \{(\textit{t}, 0, \ldots, 0) : \textit{t} \in \mathbb{R}\}$$

$$L(e_2) = \{(0, t, \dots, 0) : t \in \mathbb{R}\}$$

$$L(e_1, e_2) = \{(t, s, \dots, 0) : t, s \in \mathbb{R}\}$$

$$L(e_1,\ldots,e_n)=\mathbb{R}^n$$

4 aprile 2022 4 / 32

① Descrivere i seguenti sottoinsiemi di \mathbb{R}^n

$$L(e_1 + e_2), L(e_1 + e_2 + \ldots + e_n)$$

confrontandoli con

$$L(e_1,e_2), \qquad L(e_1,e_2,\ldots,e_n)$$

2 Trovare $v_1, v_2 \in \mathbb{R}^n$ tali che

$$L(v_1, v_2) = L(e_1, e_2, e_1 + e_2)$$

- Se $v \in L(e_1, e_2) \subseteq \mathbb{R}^n$ a cosa è uguale l'insieme $L(e_1, e_2, v)$?
- In \mathbb{R}^n , se $L(e_1, e_2, v) = L(e_1, e_2)$, cosa possiamo dire di v?
- 5 se $v_1 = w_1 + w_2$, cosa possiamo dire di $L(v_1)$ e $L(w_1, w_2)$?
- **⑤** se $L(v_1) \subseteq L(w_1, w_2)$ cosa possiamo concludere su v_1 e $L(w_1, w_2)$?
- Se $v_1, v_2 \in L(w_1, w_2)$ cosa possiamo concludere su tv_1 ? E su $v_1 + v_2$?

Proprietà delle Combinazioni Lineari

Lemma (1)

- 1 vettori v_1, \ldots, v_k appartengono all'insieme $L(v_1, \ldots, v_k)$, per ogni $v_1, \ldots, v_k \in \mathbb{R}^n$.
- 2 per ogni $v_1, \ldots, v_k, w_1, \ldots, w_h \in \mathbb{R}^n$:

$$L(v_1,\ldots,v_k)\subseteq L(w_1,\ldots,w_h) \ \Leftrightarrow \ v_1,\ldots,v_k\in L(w_1,\ldots,w_h),$$

.

③ L'insieme $L(v_1, ..., v_k)$ è chiuso per combinazioni lineari, per ogni $v_1, ..., v_k \in \mathbb{R}^n$:

se
$$w_1, \ldots, w_h \in L(v_1, \ldots, v_k)$$
 e $s_1, \ldots, s_h \in \mathbb{R}$ allora
$$s_1 w_1 + \ldots + s_h w_h \in L(v_1, \ldots, v_k).$$

Dimostrazione lasciata per esercizio.

Proprietà delle Combinazioni Lineari

anim. CombinazioniLineari

Sottospazi di \mathbb{R}^n

I sottoinsiemi $L(v_1, \ldots, v_k)$ si chiamano sottospazi di \mathbb{R}^n :

Definizione

Un sottoinsieme non vuoto W di \mathbb{R}^n che è chiuso per combinazioni lineari si dice un sottospazio (vettoriale) di \mathbb{R}^n . In altre parole, W è un sottospazio se è non vuoto e - $v_1, \ldots, v_k \in W$ $t_1, \ldots, t_k \in \mathbb{R} \Rightarrow t_1 v_1 + \ldots + t_k v_k \in W$.

In particolare

- un sottospazio è chiuso per somma di vettori e per moltiplicazione di un vettore per uno scalare;
- 2 se $v \in W$ allora anche $-v = (-1)v \in W$;
- ③ W è non vuoto e quindi esiste $v \in W$; ne segue $-v \in W$ e $v + (-v) = \vec{0} \in W$. Quindi ogni sottospazio contiene il vettore nullo.

Se W è un sottospazio di \mathbb{R}^n scriveremo $W < \mathbb{R}^n$

Esempi di sottospazi

• In \mathbb{R}^n i sottospazi sono tutti della forma $W = L(v_1, \dots, v_k)$ per $v_1, \dots, v_k \in \mathbb{R}^n$.

Esempi di sottospazi

- In \mathbb{R}^n i sottospazi sono tutti della forma $W = L(v_1, \dots, v_k)$ per $v_1, \dots, v_k \in \mathbb{R}^n$.
- Se $W = L(v_1, ..., v_k)$ si dice che i vettori $v_1, ..., v_k$ generano W.

Esempi di sottospazi

- In \mathbb{R}^n i sottospazi sono tutti della forma $W = L(v_1, \dots, v_k)$ per $v_1, \dots, v_k \in \mathbb{R}^n$.
- Se $W = L(v_1, ..., v_k)$ si dice che i vettori $v_1, ..., v_k$ generano W.
- In \mathbb{R}^n ci sono sempre due sottospazi banali: il sottospazio che contiene solo il vettore nullo

$$W = \{\vec{0}\} = L(\vec{0})$$

e quello che contiene tutti i vettori

$$W = \mathbb{R}^n = L(e_1, \ldots, e_n),$$

dove
$$e_1 = (1, 0, ..., 0), e_2 = (0, 1, 0, ..., 0), ..., e_n = (0, ..., 1).$$

• Come vedremo, l'insieme delle soluzioni di un sistema lineare omogeneo (cioè: la colonna dei termini noti è il vettore nullo) con m incognite è un sottospazio di \mathbb{R}^m .

Esempi di sottospazi nel piano \mathbb{R}^2 e nello spazio \mathbb{R}^3

- Come abbiamo visto, le rette per l'origine degli assi in \mathbb{R}^2 o \mathbb{R}^3 sono del tipo $L(v) = \{tv : t \in \mathbb{R}\}$ per un vettore non nullo v. Quindi le rette per l'origine sono sottospazi, sia in \mathbb{R}^2 che in \mathbb{R}^3 .
- Poiché, come abbiamo visto, ogni sottospazio deve contenere il vettore nullo, una retta del piano o dello spazio che non contiene l'origine degli assi non può essere un sottospazio.
- In \mathbb{R}^3 i sottospazi del tipo $L(v_1, v_2)$ dove v_1, v_2 non appartengono alla stessa retta sono piani per l'origine;

Esempi di sottospazi nel piano \mathbb{R}^2 e nello spazio \mathbb{R}^3

- Come abbiamo visto, le rette per l'origine degli assi in \mathbb{R}^2 o \mathbb{R}^3 sono del tipo $L(v) = \{tv : t \in \mathbb{R}\}$ per un vettore non nullo v. Quindi le rette per l'origine sono sottospazi, sia in \mathbb{R}^2 che in \mathbb{R}^3 .
- Poiché, come abbiamo visto, ogni sottospazio deve contenere il vettore nullo, una retta del piano o dello spazio che non contiene l'origine degli assi non può essere un sottospazio.
- In \mathbb{R}^3 i sottospazi del tipo $L(v_1, v_2)$ dove v_1, v_2 non appartengono alla stessa retta sono piani per l'origine;
- Viceversa, se p è un piano di \mathbb{R}^3 che passa per l'origine, ogni coppia di vettori v_1, v_2 che giacciono sul piano e non hanno la stessa direzione generano p:

$$p=L(v_1,v_2)$$

Considerare il sistema omogeneo:

$$z = 0$$

Dimostrare che l'insieme delle soluzioni W del sistema è un sottospazio di \mathbb{R}^3 . determinare inoltre se W è una retta passante per l'origine, un piano passante per l'origine, o tutto \mathbb{R}^3 .

Considerare il sistema omogeneo:

$$z = 0$$

Dimostrare che l'insieme delle soluzioni W del sistema è un sottospazio di \mathbb{R}^3 . determinare inoltre se W è una retta passante per l'origine, un piano passante per l'origine, o tutto \mathbb{R}^3 .

Risolvendo il sistema con il metodo di Gauss troviamo $W = \{(h, k, 0) : h, k \in \mathbb{R}\}$, ovvero, W è un piano di \mathbb{R}^3 di equazione parametrica

$$\begin{cases} x = h \\ y = k & h, k \in \mathbb{R} \\ z = 0 \end{cases}$$

Possiamo verificare che $W \leq \mathbb{R}^3$ se troviamo dei vettori v_1, \ldots, v_k di W tale che $L(v_1, \ldots, v_k) = W$. In questo caso è facile convincersi che i vettori cercati sono, ad esempio, $v_1 = (1, 0)$ e $v_2 = (0, 1)$, perché

$$\begin{split} L(v_1,v_2) &= \{hv_1 + kv_2 : h,k \in \mathbb{R}\} = \{h(1,0,0) + k(0,1,0) : h,k \in \mathbb{R}\} = \\ &= \{(h,0,0) + (0,k,0) : h,k \in \mathbb{R}\} = \{(h,k,0) : h,k \in \mathbb{R}\} = W. \end{split}$$

Considerare il sistema omogeneo:

$$\left\{x+y-z=0\right.$$

Dimostrare che l'insieme delle soluzioni è un sottospazio W di \mathbb{R}^3 . Determinare inoltre se W è una retta passante per l'origine, un piano passante per l'origine, o tutto \mathbb{R}^3 .

Considerare il sistema omogeneo:

$$\left\{x+y-z=0\right.$$

Dimostrare che l'insieme delle soluzioni è un sottospazio W di \mathbb{R}^3 . Determinare inoltre se W è una retta passante per l'origine, un piano passante per l'origine, o tutto \mathbb{R}^3 .

Risolvendo il sistema con il metodo di Gauss otteniamo che W è un piano per l'origine di equazione parametrica

$$\begin{cases} x = h \\ y = k \\ z = h + k \end{cases} t, s \in \mathbb{R}$$

Troviamo v_1, \ldots, v_k di W tale che $L(v_1, \ldots, v_k) = W$.

In questo caso è facile convincersi che i vettori cercati sono, ad esempio, $v_1 = (1, 0, 1)$ e $v_2 = (0, 1, 1)$, perché

$$L(v_1, v_2) = \{hv_1 + kv_2 : h, k \in \mathbb{R}\} = \{h(1, 0, 1) + k(0, 1, 1) : h, k \in \mathbb{R}\} =$$

$$= \{(h, 0, h) + (0, k, k) : h, k \in \mathbb{R}\} = \{(h, k, h + k) : h, k \in \mathbb{R}\} = W.$$

Considerare il sistema omogeneo:

$$\begin{cases} x + y - z = 0 \\ y = 2z \end{cases}$$

Dimostrare che l'insieme delle soluzioni è un sottospazio W di \mathbb{R}^3 . Determinare inoltre se W è una retta passante per l'origine, un piano passante per l'origine, o tutto \mathbb{R}^3 .

Considerare il sistema omogeneo:

$$\begin{cases} x + y - z = 0 \\ y = 2z \end{cases}$$

Dimostrare che l'insieme delle soluzioni è un sottospazio W di \mathbb{R}^3 . Determinare inoltre se W è una retta passante per l'origine, un piano passante per l'origine, o tutto \mathbb{R}^3 .

Risolvendo il sistema con il metodo di Gauss otteniamo che W è una retta per l'origine di equazione parametrica

$$\begin{cases} x = -z \\ y = 2t & t, s \in \mathbb{R} \\ z = t \end{cases}$$

Avremo quindi W = L(v) per v = (-1, 2, 1).

Dipendenza e Indipendenza Lineare

Come abbiamo visto, a volte servono meno di k vettori per generare $L(v_1, \ldots, v_k)$:

$$L(e_1, 2e_1) = L(e_1), \quad L(e_1, e_2, e_1 + e_2) = L(e_1, e_2).$$

Inoltre, se

$$L(v_1,\ldots,v_k,v)=L(v_1,\ldots,v_k)\Leftrightarrow v\in L(v_1,\ldots,v_k)$$

DEFINIZIONE

- Se $v \in L(v_1, ..., v_k)$ diremo che v dipende linearmente da $v_1, ..., v_k$.
- I vettori w_1, \ldots, w_h si dicono linearmente dipendenti (o dipendenti) se uno di loro dipende linearmente dagli altri (nel caso di un singolo vettore w diremo che è dipendente se $w = \vec{0}$).
- I vettori w_1, \ldots, w_h si dicono linearmente indipendenti (o indipendenti) se non sono dipendenti, ovvero se nessuno di loro dipende linearmente dagli altri.

Nota bene: $\vec{0} \in L(v_1, \dots, v_k)$ per ogni v_1, \dots, v_k . Quindi i vettori $\vec{0}, v_1, \dots, v_k$ sono sempre dipendenti.

Esempio

• Se v = (1,0,1) e w = (2,0,2), i vettori v, w sono dipendenti perché $v = 2w \in L(v)$

Esempio

- Se v = (1, 0, 1) e w = (2, 0, 2), i vettori v, w sono dipendenti perché $v = 2w \in L(v)$
- Più in generale, due vettori v, w sono dipendenti se $v \in L(w)$ (o, equivalentemente, $w \in L(v)$).
- $v_1 = (1, 0, 0), v_2 = (0, 1, 0), v_3 = (1, 1, 0), i \text{ vettori } v_1, v_2, v_3 \text{ sono dipendenti perché } v_3 = v_1 + v_2, \text{ ovvero } v_3 \in L(v_1, v_2).$
- Piú in generale, tre vettori v_1, v_2, v_3 sono dipendenti se uno di loro appartiene al piano generato dagli altri due (ad esempio, $v_1 \in L(v_2, v_3)$).

Prime proprietà dei vettori dipendenti in \mathbb{R}^n

- v_1, \ldots, v_k sono dipendenti se e solo se esistono t_1, \ldots, t_k , non tutti nulli, con $t_1v_1 + \ldots t_kv_k = \vec{0}$.
- 2 v_1, \ldots, v_k sono dipendenti se e solo se $L(v_1, \ldots, v_k)$ può essere generato da meno di k vettori;
- 3 I vettori v_1, \ldots, v_k sono dipendenti se e solo se la trasformata a scala della matrice che ha per righe i vettori v_1, \ldots, v_k ha delle righe nulle (dove la trasformata a scala usa solo le operazioni di scambio di righe, moltiplicazione per un coefficiente non nullo di una riga e sostituzione di una riga con la riga stessa sommata ad un multiplo di un'altra riga).

```
Dimostrazione del punto 3. Se v_1, \ldots, v_k \in \mathbb{R}^n e c \neq 0 allora L(v_1, \ldots, v_i, \ldots, v_j, \ldots, v_k) = L(v_1, \ldots, v_j, \ldots, v_i, \ldots, v_k) L(v_1, \ldots, v_i, \ldots, v_k) = L(v_1, \ldots, v_i, \ldots, v_k) L(v_1, \ldots, v_i, \ldots, v_i, \ldots, v_k) = L(v_1, \ldots, v_i, \ldots, v_i, \ldots, v_k)
```

Quindi, le trasformazioni per portare la matrice a scala non cambiano lo spazio generato dalle righe delle matrici via via generate e lo spazio generato dalle righe della matrice a scala finale è uguale allo spazio generato dal v_1, \ldots, v_k . Se la matrice ha righe nulle, lo spazio generato dalle righe della matrice a scala può essere generato dalle righe non nulle, che sono meno di k. Per il primo punto segue che v_1, \ldots, v_k sono dipendenti. Se invece la matrice non ha righe nulle, si dimostra che ogni combinazione lineare dei vettori che daà il vettore nullo deve avere tutti i coefficienti nulli. Quindi i vettori sono indipendenti.

Nota bene: se k > n allora k vettori di \mathbb{R}^n sono sempre dipendenti: infatti in questo caso la matrice che ha per righe i vettori ha più righe (k) che colonne (n) e mettendo la matrice a scala otterremo sicuramente righe nulle.

Esempio 1

Utilizzando l'ultima proprietà enunciata nella slide precedente, mostriamo che i vettori $v_1 = (1, -1, 1), v_2 = (0, 2, 0), v_3 = (0, 1, 1)$ di \mathbb{R}^n non sono dipendenti (sono indipendenti).

Trasformando a scala la matrice che ha come righe i vettori otteniamo una matrice a scala senza righe nulle, quindi i vettori sono indipendenti:

$$\begin{bmatrix} 1 & -1 & 1 \\ 0 & 2 & 0 \\ 0 & 1 & 1 \end{bmatrix} \qquad (R_3 \leftarrow R_3 - (1/2)R_2) \qquad \begin{bmatrix} 1 & -1 & 1 \\ 0 & 2 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

Esempio 2

Utilizzando l'ultima proprietà enunciata nella slide precedente, mostriamo che i vettori $v_1 = (1, 0, 1), v_2 = (1, 2, 0), v_3 = (3, 2, 2)$ sono dipendenti.

Trasformando a scala la matrice che ha come righe i vettori otteniamo una matrice a scala con righe nulle, quindi i vettori sono dipendenti:

$$\begin{bmatrix} 1 & 0 & 1 \\ 1 & 2 & 0 \\ 3 & 2 & 2 \end{bmatrix} \qquad (R_2 \leftarrow R_2 - R_1) \qquad \begin{bmatrix} 1 & 0 & 1 \\ 0 & 2 & -1 \\ 3 & 2 & 2 \end{bmatrix}$$

$$(R_3 \leftarrow R_3 - 3R_1) \qquad \begin{bmatrix} 1 & 0 & 1 \\ 0 & 2 & -1 \\ 0 & 2 & -1 \end{bmatrix} \qquad (R_3 \leftarrow -R_2) \qquad \begin{bmatrix} 1 & 0 & 1 \\ 0 & 2 & -1 \\ 0 & 0 & 0 \end{bmatrix}$$

Poicé i vettori $v_1 = (1, 0, 1), v_2 = (1, 2, 0), v_3 = (3, 2, 2)$ sono dipendenti, possiamo cercare una loro combinazione lineare che dia il vettore non nullo (con coefficienti non tutti nulli). Ovvero, cerchiamo dei coefficienti x_1, x_2, x_3 tali che

$$x_1v_1 + x_2v_2 + x_3v_3 = \vec{0}$$
, ovvero

$$(x_1, 0, x_1) + (x_2, 2x_2, 0) + (3x_3, 2x_3, 2x_3) = (x_1 + x_2 + 3x_3, 2x_2 + 2x_3, x_1 + 2x_3) = (0, 0, 0)$$

In altre parole, per trovare tutti i coefficienti che danno una combinazione lineare nulla, dobbiamo risolvere il sistema:

$$\begin{cases} x_1 + x_2 + 3x_3 = 0 \\ 2x_2 + 2x_3 = 0 \\ x_1 + 2x_3 = 0 \end{cases}$$

Notare che la matrice dei coefficienti di questo sistema $\begin{bmatrix} 1 & 1 & 3 \\ 0 & 2 & 2 \\ 1 & 0 & 2 \end{bmatrix}$, ha come colonne i vettori v_1, v_2, v_3 . Risolvendo il sistema con il metodo di Gauss otteniamo le soluzioni:

$$SOL = \{(-2h, -h, h) : h \in \mathbb{R}\}$$

Una qualsiasi soluzione fornisce i coefficienti di una combinazione lineare di v_1 , v_2 , v_3 uguale al vettore nullo. Ad esempio, ponendo h=1 otteniamo i coefficienti -2, -1, 1 ed infatti si può facilmente verificare che $-2v_1 - v_2 + v_3 = \vec{0}$.

4 aprile 2022 18 / 32

ESERCIZIO

Determinare se i seguenti vettori di \mathbb{R}^n sono dipendenti :

- $v_1 = e_1, \ldots, v_n = e_n;$
- 2 $V_1 = e_1 + e_2 + \ldots + e_n, V_2 = e_2 + e_3 + \ldots + e_n, \ldots, V_n = e_n;$
- 3 per n = 4, $v_1 = (1, 1, 1, 1)$, $v_2 = (1, 2, 1, 2)$, $v_3 = (2, 3, 2, 3)$;
- **4** per n = 3, $v_1 = (1, -1, 1)$, $v_2 = (1, 1, 1)$, $v_3 = (2, 0, 2)$.

Dipendenza e Indipendenza Lineare

La dipendenza lineare ha molte caratterizzazioni:

- I vettori $v_1, \ldots v_k$ sono dipendenti se e solo se esiste i tale che $v_i \in L(v_1, \ldots, v_k)$;
- I vettori $v_1, \ldots v_k$ sono dipendenti se e solo se esiste i tale che

$$L(v_1,\ldots,v_i,\ldots,v_k)=L(v_1,\ldots,v_k)$$

- I vettori v₁, . . . v_k sono dipendenti se e solo se esiste un vettore v ∈ L(v₁, . . . v_k) che si scrive in due modi diversi come combinazione lineare di v₁, . . . , v_k.
- I vettori v_1, \ldots, v_k sono dipendenti se $\vec{0}$ che si scrive in due modi diversi come combinazione lineare di v_1, \ldots, v_k .

Per l'indipendenza lineare quindi avremo:

- I vettori v_1, \ldots, v_k sono indipendenti se e solo se per ogni $i \ v_i \not\in L(v_1, \ldots, v_k)$;
- I vettori $v_1, \ldots v_k$ sono indipendenti se e solo se per ogni i vale

$$L(v_1,\ldots,v_i,\ldots,v_k)\neq L(v_1,\ldots,v_i,\ldots,v_k)$$

- I vettori v₁, . . . vk sono indipendenti se e solo sse ogni vettore v ∈ L(v₁, . . . vk) si scrive in un unico modo come combinazione lineare di v₁, . . . , vk.
- I vettori $v_1, \ldots v_k$ sono indipendenti se $\vec{0}$ che si scrive in un unico modo combinazione lineare di v_1, \ldots, v_k .

Altre proprietà di insiemi dipendenti e indipendenti

• l'insieme di vettori $\{v\}$ è dipendente se e solo se $v = \vec{0}$.

Altre proprietà di insiemi dipendenti e indipendenti

- l'insieme di vettori $\{v\}$ è dipendente se e solo se $v = \vec{0}$.
- Se i vettori v_1, \ldots, v_k sono indipendenti, allora ogni loro SOTTOINSIEME non vuoto è ancora indipendente, ovvero

L'INDIPENDENZA SI TRASMETTE AI SOTTOINSIEMI

Ad esempio, se v_1 , v_2 , v_3 , v_4 sono indipendenti, allora v_2 , v_4 sono indipendenti: se $\lambda_2 v_2 + \lambda_4 v_4 = \vec{0}$ allora anche $0v_1 + \lambda_2 v_2 + 0v_3 + \lambda_4 v_4 = \vec{0}$ e dall'indipendenza di v_1 , v_2 , v_3 , v_4 segue $\lambda_2 = \lambda_4 = 0$.

Altre proprietà di insiemi dipendenti e indipendenti

 Se i vettori v₁,..., v_k sono dipendenti, allora ogni loro SOPRAINSIEME è ancora dipendente, ovvero

LA DIPENDENZA SI TRASMETTE AI SOPRAINSIEMI.

• La dipendenza, in generale, non si trasmette ai sottoinsiemi: se

$$v_1 = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}, v_2 = \begin{bmatrix} 2 \\ 2 \\ 2 \end{bmatrix}$$
, allora $\{v_1, v_2\}$ sono dipendenti, ma, ad esempio, $\{v_1\}$ non è un insieme di vettori dipendenti.

e un insieme di vellon dipendenti.

L'indipendenza, in generale, non si trasmette ai sovrainsiemi:

se v_1v_2 sono i vettori del punto precedente, allora $\{v_1\}$ è un insieme di vettori indipendenti, mentre l'insieme $\{v_1, v_2\}$ è un insieme di vettori dipendenti.

Se v_1, \ldots, v_k sono linearmente indipendenti, ogni vettore non nullo di $L(v_1, \ldots, v_k)$ si scrive in modo unico come combinazione lineare di v_1, \ldots, v_k . Questo permette assegnare delle coordinate ai vettori di $L(v_1, \ldots, v_k)$.

Se v_1, \ldots, v_k sono linearmente indipendenti, ogni vettore non nullo di $L(v_1, \ldots, v_k)$ si scrive in modo unico come combinazione lineare di v_1, \ldots, v_k . Questo permette assegnare delle coordinate ai vettori di $L(v_1, \ldots, v_k)$.

DEFINIZIONE: BASE DI UN SOTTOSPAZIO

Dato un sottospazio $W \leq \mathbb{R}^n$, un insieme ordinato (v_1, \dots, v_k) di vettori di W si dice una base di W se:

- v_1, \ldots, v_k sono linearmente indipendenti.

Se v_1, \ldots, v_k sono linearmente indipendenti, ogni vettore non nullo di $L(v_1, \ldots, v_k)$ si scrive in modo unico come combinazione lineare di v_1, \ldots, v_k . Questo permette assegnare delle coordinate ai vettori di $L(v_1, \ldots, v_k)$.

DEFINIZIONE: BASE DI UN SOTTOSPAZIO

Dato un sottospazio $W \leq \mathbb{R}^n$, un insieme ordinato (v_1, \dots, v_k) di vettori di W si dice una base di W se:

- v_1, \ldots, v_k sono linearmente indipendenti.

Se $B = (v_1, \dots, v_k)$ è una base di W e se $v \in W$, $v = \frac{\lambda_1}{\lambda_1} v_1 + \dots + \frac{\lambda_k}{\lambda_k} v_k \in W$, definiamo il vettore delle coordinate di v rispetto alla base W come:

$$||v||^B = \begin{bmatrix} \lambda_1 \\ \vdots \\ \lambda_k \end{bmatrix}$$

Se v_1, \ldots, v_k sono linearmente indipendenti, ogni vettore non nullo di $L(v_1, \ldots, v_k)$ si scrive in modo unico come combinazione lineare di v_1, \ldots, v_k . Questo permette assegnare delle coordinate ai vettori di $L(v_1, \ldots, v_k)$.

DEFINIZIONE: BASE DI UN SOTTOSPAZIO

Dato un sottospazio $W \leq \mathbb{R}^n$, un insieme ordinato (v_1, \dots, v_k) di vettori di W si dice una base di W se:

- v_1, \ldots, v_k sono linearmente indipendenti.

Se $B = (v_1, \dots, v_k)$ è una base di W e se $v \in W$, $v = \frac{\lambda_1}{\lambda_1} v_1 + \dots + \frac{\lambda_k}{\lambda_k} v_k \in W$, definiamo il vettore delle coordinate di v rispetto alla base W come:

$$||v||^B = \begin{bmatrix} \lambda_1 \\ \vdots \\ \lambda_k \end{bmatrix}$$

In particolare, una base di \mathbb{R}^n è un insieme di vettori linearmente indipendenti che genera \mathbb{R}^n .

ESERCIZIO

Sia $W = \{(x, x + y, 0) : x, y \in \mathbb{R}\}$. Dimostrare che W è un sottospazio e trovarne una base.

Teorema

Ogni sottospazio W di \mathbb{R}^n ha una base.

Se $B = (w_1, \dots, w_k)$ è una base del sottospazio W formata da k vettori allora k + 1 vettori di W sono sempre dipendenti.

(dimostrazione omessa)

Teorema

Ogni sottospazio W di \mathbb{R}^n ha una base.

Se $B = (w_1, \dots, w_k)$ è una base del sottospazio W formata da k vettori allora k + 1 vettori di W sono sempre dipendenti.

(dimostrazione omessa)

Teorema

Se $B = (w_1, \dots, w_k)$ e $B' = (u_1, \dots, u_h)$ sono due basi di W allora h = k. Ovvero, tutte le basi di W hanno lo stesso numero di vettori.

Dim. Se per assurdo fosse k < h, dal Teorema seguirebbe che i k+1 vettori u_1, \ldots, u_{k+1} sono dipendenti, e cosí anche $u_1, \ldots, u_{k+1}, \ldots, u_h$. Ma questo non è possibile perché per ipotesi $B' = (u_1, \ldots, u_h)$ è una base di W.

DEFINIZIONE

Il numero di vettori in una base del sottospazio W (e quindi di tutte) si chiama dimensione del sottospazio W e si indica con

dim(W)

(poniamo uguale a zero la dimensione del sottospazio nullo, ovvero $dim(\{\vec{0}\}) = 0$);

DEFINIZIONE

Il numero di vettori in una base del sottospazio W (e quindi di tutte) si chiama dimensione del sottospazio W e si indica con

(poniamo uguale a zero la dimensione del sottospazio nullo, ovvero $dim(\{\vec{0}\}) = 0$);

• Ad esempio, $dim(\mathbb{R}^3) = 3$, $dim(\mathbb{R}^2) = 2$, $dim(\mathbb{R}) = 1$.

DEFINIZIONE

Il numero di vettori in una base del sottospazio W (e quindi di tutte) si chiama dimensione del sottospazio W e si indica con

(poniamo uguale a zero la dimensione del sottospazio nullo, ovvero $dim(\{\vec{0}\}) = 0$);

- Ad esempio, $dim(\mathbb{R}^3) = 3$, $dim(\mathbb{R}^2) = 2$, $dim(\mathbb{R}) = 1$.
- In \mathbb{R}^n , se $v \neq 0$ allora dim(L(v)) = 1, se $v \notin L(w)$ allora dim(L(v, w)) = 2.

DEFINIZIONE

Il numero di vettori in una base del sottospazio W (e quindi di tutte) si chiama dimensione del sottospazio W e si indica con

(poniamo uguale a zero la dimensione del sottospazio nullo, ovvero $dim(\{\vec{0}\}) = 0$);

- Ad esempio, $dim(\mathbb{R}^3) = 3$, $dim(\mathbb{R}^2) = 2$, $dim(\mathbb{R}) = 1$.
- In \mathbb{R}^n , se $v \neq 0$ allora dim(L(v)) = 1, se $v \notin L(w)$ allora dim(L(v, w)) = 2.
- Se $W = \{(h, k, h + k) : h, k \in \mathbb{R}\}$ allora $W \leq \mathbb{R}^3$ e dim(W) = 2: se

$$v = \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix}, w = \begin{bmatrix} 0 \\ 1 \\ 1 \end{bmatrix}$$
 allora v, w sono indipendenti e $W = L(v, w)$.

DEFINIZIONE

Il numero di vettori in una base del sottospazio W (e quindi di tutte) si chiama dimensione del sottospazio W e si indica con

(poniamo uguale a zero la dimensione del sottospazio nullo, ovvero $dim(\{\vec{0}\}) = 0$);

- Ad esempio, $dim(\mathbb{R}^3) = 3$, $dim(\mathbb{R}^2) = 2$, $dim(\mathbb{R}) = 1$.
- In \mathbb{R}^n , se $v \neq 0$ allora dim(L(v)) = 1, se $v \notin L(w)$ allora dim(L(v, w)) = 2.
- Se $W = \{(h, k, h+k) : h, k \in \mathbb{R}\}$ allora $W \leq \mathbb{R}^3$ e dim(W) = 2: se

$$v = \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix}, w = \begin{bmatrix} 0 \\ 1 \\ 1 \end{bmatrix}$$
 allora v, w sono indipendenti e $W = L(v, w)$.

Il concetto di dimensione corregge l'apparente paradosso delle cardinalità:

$$|\mathbb{R}| = |\mathbb{R}^2| = |\mathbb{R}^3| = \dots, \text{ ma } \textit{dim}(\mathbb{R}) < \textit{dim}(\mathbb{R}^2) < \textit{dim}(\mathbb{R}^3) \dots$$

PROPRIETÀ FONDAMENTALI DEL CONCETTO DI DIMENSIONE

n + 1 VETTORI DI UN SOTTOSPAZIO DI DIMENSIONE n SONO SEMPRE DIPENDENTI

PROPRIETÀ FONDAMENTALI DEL CONCETTO DI DIMENSIONE

n + 1 VETTORI DI UN SOTTOSPAZIO DI DIMENSIONE n SONO SEMPRE DIPENDENTI

CON MENO DI *n* VETTORI NON SI PUÒ PER GENERARE UNO SPAZIO DI DIMENSIONE *n*

PROPRIETÀ FONDAMENTALI DEL CONCETTO DI DIMENSIONE

n+1 VETTORI DI UN SOTTOSPAZIO DI DIMENSIONE n SONO SEMPRE DIPENDENTI

CON MENO DI *n* VETTORI NON SI PUÒ PER GENERARE UNO SPAZIO DI DIMENSIONE *n*

n VETTORI INDIPENDENTI IN UNO SPAZIO DI DIMENSIONE n FORMANO SEMPRE UNA BASE

Per trovare la dimensione e una base del sottospazio

$$W = \{(h, k, h + k) \in \mathbb{R}^3 : h, k \in \mathbb{R}\},\$$

Per trovare la dimensione e una base del sottospazio

$$W = \{(h, k, h + k) \in \mathbb{R}^3 : h, k \in \mathbb{R}\},\$$

basta notare che questo sottospazio NON può avere:

- dimensione 3: altrimenti sarebbe tutto \mathbb{R}^3 , mentre $\begin{bmatrix} 1\\1\\1\end{bmatrix} \not\in W$;

Per trovare la dimensione e una base del sottospazio

$$W = \{(h, k, h + k) \in \mathbb{R}^3 : h, k \in \mathbb{R}\},\$$

basta notare che questo sottospazio NON può avere:

- dimensione 3: altrimenti sarebbe tutto \mathbb{R}^3 , mentre $\begin{bmatrix} 1\\1\\1 \end{bmatrix} \not\in W$;
- dimensione 1: altrimenti due vettori di W sarebbero sempre uno multiplo dell'altro,

mentre i vettori
$$w_1 = \begin{bmatrix} 0 \\ 1 \\ 1 \end{bmatrix}$$
, $w_2 = \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix}$ di W non lo sono;

Per trovare la dimensione e una base del sottospazio

$$W = \{(h, k, h + k) \in \mathbb{R}^3 : h, k \in \mathbb{R}\},\$$

basta notare che questo sottospazio NON può avere:

- dimensione 3: altrimenti sarebbe tutto \mathbb{R}^3 , mentre $\begin{bmatrix} 1\\1\\1\end{bmatrix} \not\in W$;
- dimensione 1: altrimenti due vettori di W sarebbero sempre uno multiplo dell'altro,

mentre i vettori
$$w_1 = \begin{bmatrix} 0 \\ 1 \\ 1 \end{bmatrix}$$
, $w_2 = \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix}$ di W non lo sono;

- dimensione 0: perché W non è il sottospazio nullo {0}.

Per trovare la dimensione e una base del sottospazio

$$W = \{(h, k, h + k) \in \mathbb{R}^3 : h, k \in \mathbb{R}\},\$$

basta notare che questo sottospazio NON può avere:

- dimensione 3: altrimenti sarebbe tutto \mathbb{R}^3 , mentre $\begin{bmatrix} 1\\1\\1\end{bmatrix} \notin W$;
- dimensione 1: altrimenti due vettori di $\it W$ sarebbero sempre uno multiplo dell'altro,

mentre i vettori
$$w_1 = \begin{bmatrix} 0 \\ 1 \\ 1 \end{bmatrix}$$
, $w_2 = \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix}$ di W non lo sono;

- dimensione 0: perché W non è il sottospazio nullo $\{\vec{0}\}$.

Quindi W ha dimensione 2, ed è sufficiente considerare due vettori indipendenti in W per formare una base di W. Ad esempio $B = \langle w_1, w_2 \rangle_{\cdot, \cdot} = \langle w_1, w_2 \rangle_{\cdot, \cdot}$

Basi per \mathbb{R}^n

Consideriamo adesso il sottospazio dato da tutto \mathbb{R}^n . Si dimostra facilmente che i

vettori
$$e_1 = \begin{bmatrix} 1 \\ 0 \\ \vdots \\ 0 \end{bmatrix}, e_2 = \begin{bmatrix} 0 \\ 1 \\ \vdots \\ 0 \end{bmatrix}, \dots, e_n = \begin{bmatrix} 0 \\ 0 \\ \vdots \\ 1 \end{bmatrix}$$
 formano una base.

Basi per \mathbb{R}^n

Consideriamo adesso il sottospazio dato da tutto \mathbb{R}^n . Si dimostra facilmente che i

vettori
$$e_1 = \begin{bmatrix} 1 \\ 0 \\ \vdots \\ 0 \end{bmatrix}, e_2 = \begin{bmatrix} 0 \\ 1 \\ \vdots \\ 0 \end{bmatrix}, \dots, e_n = \begin{bmatrix} 0 \\ 0 \\ \vdots \\ 1 \end{bmatrix}$$
 formano una base.

sono indipendenti: infatti

$$\lambda_1 e_1 + \ldots + \lambda_n e_n = \begin{bmatrix} \lambda_1 \\ \lambda_2 \\ \vdots \\ \lambda_n \end{bmatrix}$$

quindi se $\lambda_1 e_1 + \ldots + \lambda_n e_n = \vec{0}$ allora $\lambda_1 = 0, \ldots, \lambda_n = 0$.

Basi per \mathbb{R}^n

Consideriamo adesso il sottospazio dato da tutto \mathbb{R}^n . Si dimostra facilmente che i

vettori
$$e_1 = \begin{bmatrix} 1 \\ 0 \\ \vdots \\ 0 \end{bmatrix}, e_2 = \begin{bmatrix} 0 \\ 1 \\ \vdots \\ 0 \end{bmatrix}, \dots, e_n = \begin{bmatrix} 0 \\ 0 \\ \vdots \\ 1 \end{bmatrix}$$
 formano una base.

sono indipendenti: infatti

$$\lambda_1 e_1 + \ldots + \lambda_n e_n = \begin{bmatrix} \lambda_1 \\ \lambda_2 \\ \vdots \\ \lambda_n \end{bmatrix}$$

quindi se $\lambda_1 e_1 + \ldots + \lambda_n e_n = \vec{0}$ allora $\lambda_1 = 0, \ldots, \lambda_n = 0$.

2 e_1, \ldots, e_n generano \mathbb{R}^n , perché un vettore qualsiasi $v = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix}$ si scrive come

$$V = X_1 e_1 + \ldots + X_n e_n$$
.

Base Canonica

 $\mathcal{E}_n = (e_1, \dots, e_n)$ è una base, chiamata *base canonica* di \mathbb{R}^n .

LA DIMESIONE DI \mathbb{R}^n È n

TUTTE LE BASI DI \mathbb{R}^n HANNO n VETTORI.

Data una base $B=(v_1,\ldots,v_n)$ di \mathbb{R}^n e un vettore $v\in\mathbb{R}^n$, per trovare le coordinate $||v||^B$ del vettore v rispetto alla base B è sufficiente trovare $t_1,\ldots t_k\in\mathbb{R}$ tali che $v=t_1v_1+\ldots+t_kv_k$, perché in questo caso

$$||v||^B = \begin{bmatrix} t_1 \\ \vdots \\ t_n \end{bmatrix}$$

Esercizi

• Dimostrare che i vettori $v_1 = \begin{bmatrix} 1 \\ 0 \\ -1 \end{bmatrix}$, $v_2 = \begin{bmatrix} 0 \\ 1 \\ -1 \end{bmatrix}$, $v_3 = \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix}$ formano una base

$$B = (v_1, v_2, v_3)$$
 di \mathbb{R}^3 . Trovare le coordinate del vettore $v = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$ rispetto a tale

base. **Risposta:**
$$||v||^B = \begin{bmatrix} -1/2 \\ -1/2 \\ 3/2 \end{bmatrix}$$

• Considerare il seguente sottoinsieme di \mathbb{R}^4 :

$$W = \{(h, h + k, h - k, k) : h, k \in \mathbb{R}\}.$$

Dimostrare che W è un sottospazio, determinarne una base e la sua dimensione.

• Considerare il seguente sottoinsieme di \mathbb{R}^3 :

$$W = \{(h + k, h + k, h + k) : h, k \in \mathbb{R}\}.$$

Dimostrare che W è un sottospazio, determinarne una base e la sua dimensione.

Esercizi

• Considerare il seguente sottoinsieme di \mathbb{R}^3 :

$$W = \{(x, y, z) : x + z = 0\}.$$

Dimostrare che W è un sottospazio, determinarne una base e la sua dimensione. Determinare l'equazione parametrica di tale sottospazio.