Problem Set 2

Problem 1. Let I be an ideal with no embedded primes in a noetherian ring R. Show that there exists an ideal J, which we can take to be principal, such that $I^{(n)} = (I^n : J^{\infty})$ for all $n \ge 1$.

Problem 2. Let $R = \mathbb{Q}[x_1, x_2, x_3, x_4]$, and consider the ideal I you can define in Macaulay2 as follows:

Using only the packages that come preloaded with Macaulay2, compute $I^{(2)}$ and $I^{(3)}$. Is $I^{(2)} = I^2$? Is $I^{(3)} = I^3$?

Problem 3. Find all the symbolic powers of I = (6) in $\mathbb{Z}[\sqrt{-5}]$.

Problem 4. Let x be a regular element in a ring R, meaning that $xa = 0 \implies a = 0$.

- a) Show that $(x^n : x^{n-1}) = (x)$ for all $n \ge 1$.
- b) Show that $Ass(x^n) = Ass(x)$ for all $n \ge 1$.

Problem 5. Let $R = k[x, y, z]/(xy - z^c)$ where k is a field and $c \ge 2$, and let P = (x, z).

- a) Show that (x^n) is a primary ideal for all $n \ge 1$. What is its radical?
- b) Prove that $P^{(cn)} = (x^n)$ for all $n \ge 1$.
- c) Prove that $P^{(n)} \neq P^n$ for all $n \geq 2$.