ΛΥΣΗ

α) Η γραφική παράσταση της f αποτελείται από την $y = e^x$ για x < 0 και την $y = e^{-x}$ για $x \ge 0$ οπότε ο τύπος της είναι ο πρώτος από τους δοσμένους τύπους.

- β) Από την παραπάνω γραφική παράσταση της f συμπεραίνουμε ότι αυτή είναι:
 - γνησίως αύξουσα στο διάστημα $(-\infty, 0]$
 - γνησίως φθίνουσα στο διάστημα $[0, +\infty)$ και
 - παρουσιάζει ολικό μέγιστο για x=0, το f(0)=1
- γ) Διακρίνουμε τις παρακάτω δυνατές περιπτώσεις:
 - Av $\alpha \leq 0$, (ευθεία $\epsilon_{_1}$) τότε η $\,C_{_f}\,$ και η ευθεία $\,y = \alpha\,$ δεν έχουν κοινό σημείο.
 - Αν $0<\alpha<1$, (ευθεία ϵ_2) τότε η $C_{\rm f}$ και η ευθεία $\mathbf{y}=\alpha$ έχουν ακριβώς δυο κοινά σημεία.
 - Αν $\alpha = 1$, (ευθεία ϵ_3) τότε η C_f και η ευθεία $y = \alpha$ έχουν ένα μόνο κοινό σημείο.
 - Av $\alpha > 1$, (ευθεία $\epsilon_{_{4}}$) τότε η $C_{_{f}}$ και η ευθεία $y = \alpha$ δεν έχουν κοινό σημείο.

δ) Η παραβολή $y=x^2+1$ διέρχεται από το σημείο (0, 1) αφού για x=0 είναι $y=0^2+1=1$. Το

σημείο (0,1) είναι και σημείο της C_f , αφού f(0)=1. Με $x \neq 0$ έχουμε $x^2 > 0$, οπότε $y=x^2+1>1$ και $f(x) \leq 1$. Άρα η παραβολή και η C_f δεν έχουν άλλο κοινό σημείο, οπότε το μοναδικό κοινό σημείο τους είναι το (0,1).

Σχόλιο

Στο πλαίσιο μιας γραφικής λύσης θα μπορούσαμε να σχεδιάσουμε την παραβολή και τη γραφική παράσταση της f και να διαπιστώσουμε ότι έχουν μοναδικό κοινό σημείο το (0, 1) όπως φαίνεται στο σχήμα.