

ÁRBOLES AVL

- Adelson, Velskii y Landis
- Es una modificación de los árboles binarios de búsqueda.
- •El proceso que este tipo de árbol utiliza para agregar y borrar nodos, mantiene parcialmente balanceado al árbol por lo que se pueden realizar búsquedas más eficientes.

BALANCEO PARCIAL

- Una Árbol AVL debe cumplir las siguientes reglas:
- Para cualquier nodo del árbol, la diferencia entre la altura del subárbol derecho menos la altura del subárbol izquierdo, no debe de exceder a una unidad.
- Comportarse como un Árbol Binario de Búsqueda, es decir mantener las condiciones de un ABB

EJEMPLO....

Este Árbol NO ES AVL
La diferencia entre la altura del
subárbol derecho menos la del
subárbol izquierdo es mayor
que 1.

FACTOR DE BALANCEO

•Todo nodo del árbol AVL debe incluir un Factor de Balanceo que se obtiene de la siguiente manera:

Factor de Balanceo = Altura del subárbol derecho – Altura del subárbol izquierdo

- Si el Factor de Balanceo es:
- 0: las alturas son iguales.
- --1: el subárbol izquierdo es más alto.
- · 1: el subárbol derecho es más alto.
- En estos casos se trata de un árbol AVL

INSERTAR UN NODO AL AVL

- El nodo se agrega siguiendo las reglas de inserción de un Árbol Binario de Búsqueda.
- Si al agregar el nodo, el árbol cumple las reglas de un AVL el proceso termina de lo contrario se debe realizar una ROTACIÓN.

EJEMPLO....

Al agregar el valor 26 el árbol cumple con las reglas de un AVL (el Factor de Balanceo de todos los nodos es 0, 1 o -1).

Al agregar el valor 27 el árbol se DESBALANCEÓ (el Factor de Balanceo para el nodo con el valor 25 ahora es 2). Se requiere una ROTACIÓN a la Izq.

ROTACIÓN

- •Es el proceso que se realiza después de la inserción para balancear el árbol.
- •Sólo se realiza cuando el nodo que se agrega causa un desbalanceo.
- Para iniciar la Rotación se debe encontrar el NODO PIVOTE.
- NODO PIVOTE: Es el nodo ancestro más cercano del nodo recién insertado cuyo Factor de Balanceo es mayor que |1|

EJEMPLOS DE NODO PIVOTE.....

Factores iniciales

0 21 0 33 0

Cuando se agrega el 26, **No hay** nodo PIVOTE. Por lo que
el árbol no requiere una
ROTACIÓN.

EJEMPLOS DE NODO PIVOTE..... 1 1 1 1 1 1 33 0 10 11 13 2-0=2 0 40 10 18 25 1 26 0 27 Inicialmente Cuando se agrega el 27 el **nodo Pivote** es 25, porque su FB > |1|

el nodo Pivote es 33.

EJEMPLO ¿CUÁNDO ROTAR?....

TAD AVL: ROTACIONES

RotaciónD - Simple

RotaciónI – simple

TIPOS DE ROTACIÓN

- Rotación Simple
- Izquierda (RSI)
- Derecha (RSD)
- Requiere el movimiento de 3 apuntadores y ajustar los Factores de Balanceo de los nodos afectados

- Rotación Doble
- Izquierda (RDI)
- Derecha (RDD)

Requiere el movimiento de 5 apuntadores y ajustar los Factores de Balanceo de los nodos afectados

EJEMPLO ROTACIÓN A LA IZQUIERDA

ACTIVIDAD EN INDIVIDUAL

Calcular los factores de balanceo para todos los nodos.

Manteniendo la condición de un ABB y utilizando un balanceo AVL, insertar los siguientes elementos en el árbol: 1, 9, 40, 48

EJEMPLO ROTACIÓN A LA DERECHA

ACTIVIDAD INDIVIDUAL

- Calcular los factores de balanceo para todos los nodos
- Manteniendo la condición de un ABB y utilizando un balanceo AVL, insertar los siguientes elementos en el árbol: 27, 3, 50, 2, 1

EJEMPLO... AGREGAR

ROTACIONES DOBLES (RDI)

Rotación D-I doble

EJEMPLO....

ROTACIONES DOBLES (RID)

Rotación I-D doble

EJEMPLO....

ACTIVIDAD EN INDIVIDUAL

- •Calcular los factores de balanceo para todos los nodos.
- •Manteniendo la condición de un ABB y utilizando un balanceo AVL, insertar los siguientes elementos en el árbol: 33, 22, 38, 7

CUANDO ES ROTACIÓN SIMPLE Y CUANDO DOBLE?

- Para determinar esto podemos utilizar los siguientes criterios:
- Rotación Simple a la Izquierda (RSI)
- FE(pivote) = +2 y FE(Raiz de subárbol der) = +1
- Rotación Simple a la Derecha(RSD)
- FE(pivote) = -2 y FE(Raiz de subárbol izq) = -1
- Rotación Doble a la Izquierda (RDI)
- FE(pivote) = +2 y FE(Raiz de subárbol der) = -1
- Rotación Doble a la Derecha (RDD)
- FE(pivote) = -2 y FE(Raiz de subárbol izq) = 1

ACTIVIDAD INDIVIDUAL

- Insertar las siguientes secuencias de números en arboles AVL, manteniendo las condiciones de arboles parcialmente equilibrados
- •[15, 1, 9, 4, 7, 20, 5, 45, 12, 8, 3, 14, 35]
- **•**[20, 15, 35, 48, 55, 40, 9, 17, 19, 30, 93]

QUÉ HEMOS APRENDIDO?

PROCESO DE ELIMINACIÓN

- •Eliminar el valor como se hace en un Árbol Binario de Búsqueda.
- •Una vez realizada la baja, realizar el proceso de verificación del balanceo del AVL.
- •¿Qué puede ocurrir?
- La baja no provoca desbalanceo en el árbol, sólo hay necesidad de ajustar algunos factores de balanceo.
- La baja sí provoca desbalanceo en el árbol, por lo que se deberá recuperar el balance a través de rotaciones.

PROCESO DE ELIMINACIÓN

- •Cuidado... La eliminación de un nodo puede provocar un desbalanceo TOTAL en el AVL!!! por este motivo, no existe un NODO PIVOTE ya que, en muchas ocasiones será necesario analizar a todos los ancestros del nodo borrado.
- •El análisis para detectar un posible desbalanceo inicia en el padre del nodo recién eliminado.
- Si es necesario, una vez analizado el padre, sube al abuelo, y sigue hacia arriba, hasta que detecta que ya no hay problemas o bien, llega a la raíz del árbol.

PROCESO DE ELIMINACIÓN

- •Cuando se analiza un nodo:
- Si tiene un FB = 0, NO hay desbalanceo. Se puede asegurar que hacia arriba ya no habrá problemas.
- Si tiene un FB <> 0 y se borró del subárbol más largo. NO hay desbalanceo, sin embargo se debe analizar hacia arriba porque cambió la altura.
- Si tiene un FB <> 0 y se borró del subárbol más corto. SÍ hay desbalanceo, hay que hacer ROTACIÓN y seguir analizando hacia arriba.

ACTIVIDAD COLABORATIVA

•Generar el árbol AVL de la siguiente secuencia de números

[20, 18, 15, 12, 11, 9, 7, 6, 3, 1]

•Supóngase que se cuenta con el árbol AVL generado en el ejercicio anterior. Utilizar el algoritmo de eliminación de árboles AVL para eliminar los siguientes números: 3, 12, 6, 18 (en este orden). Dibujar los árboles resultantes al eliminar cada número.

QUÉ HEMOS APRENDIDO?

