

Centralna Komisja Egzaminacyjna w Warszawie

EGZAMIN MATURALNY 2010

MATEMATYKA POZIOM PODSTAWOWY

Klucz punktowania odpowiedzi

Zadania zamknięte

W zadaniach od 1. do 25. podane były cztery odpowiedzi: A, B, C, D. Zdający wybierał poprawną odpowiedź i zaznaczał ją na karcie odpowiedzi.

Zadanie 1.

Obszar standardów	Sprawdzane umiejętności	Poprawna odpowiedź (1 p.)
Wykorzystanie	Wykorzystanie interpretacji	C
i interpretowanie	geometrycznej wartości bezwzględnej	
reprezentacji	do wskazania zbioru rozwiązań	
	nierówności typu $ x-a \ge b$	

Zadanie 2.

Obszar standardów	Sprawdzane umiejętności	Poprawna odpowiedź (1 p.)
Modelowanie	Wykonywanie obliczeń procentowych	В
matematyczne		

Zadanie 3.

Obszar standardów	Sprawdzane umiejętności	Poprawna odpowiedź (1 p.)
Wykorzystanie	Wykorzystanie w obliczeniach praw	A
i interpretowanie	działań na potęgach	
reprezentacji		

Zadanie 4.

Obszar standardów	Sprawdzane umiejętności	Poprawna odpowiedź (1 p.)
Użycie i tworzenie	Obliczenie sumy logarytmów	В
strategii		

Zadanie 5.

Obszar standardów	Sprawdzane umiejętności	Poprawna odpowiedź (1 p.)
Wykorzystanie	Wykonanie dodawania wielomianów	A
i tworzenie informacji		

Zadanie 6.

Obszar standardów	Sprawdzane umiejętności	Poprawna odpowiedź (1 p.)
Wykorzystanie	Rozwiązanie prostego równanie	D
i tworzenie informacji	wymiernego, prowadzącego do równania liniowego	

Zadanie 7.

Obszar standardów	Sprawdzane umiejętności	Poprawna odpowiedź (1 p.)
Wykorzystanie	Sprawdzenie, czy dana liczba należy	D
i interpretowanie	do zbioru rozwiązań nierówności	
reprezentacji	kwadratowej	

Zadanie 8.

Obszar standardów	Sprawdzane umiejętności	Poprawna odpowiedź (1 p.)
Wykorzystanie	Odczytanie współrzędnych	В
i interpretowanie	wierzchołka paraboli z postaci	
reprezentacji	kanonicznej funkcji kwadratowej	

Zadanie 9.

Obszar standardów	Sprawdzane umiejętności	Poprawna odpowiedź (1 p.)
Wykorzystanie	Interpretowanie współczynników	В
i interpretowanie	we wzorze funkcji liniowej	
reprezentacji		

Zadanie 10.

Obszar standardów	Sprawdzane umiejętności	Poprawna odpowiedź (1 p.)
Wykorzystanie	Odczytywanie wartości funkcji z jej	C
i interpretowanie	wykresu	
reprezentacji		

Zadanie 11.

Obszar standardów	Sprawdzane umiejętności	Poprawna odpowiedź (1 p.)
Wykorzystanie i tworzenie informacji	Wyznaczanie wyrazów ciągu arytmetycznego	С

Zadanie 12.

Obszar standardów	Sprawdzane umiejętności	Poprawna odpowiedź (1 p.)
Wykorzystanie	Wyznaczanie wyrazów ciągu	В
i tworzenie informacji	geometrycznego	

Zadanie 13.

Obszar standardów	Sprawdzane umiejętności	Poprawna odpowiedź (1 p.)
Wykorzystanie	Obliczania liczby przekątnych	В
i interpretowanie	wielokąta	
reprezentacji		

Zadanie 14.

Obszar standardów	Sprawdzane umiejętności	Poprawna odpowiedź (1 p.)
Wykorzystanie	Stosowanie związków między	A
i interpretowanie	funkcjami trygonometrycznymi kąta	
reprezentacji	ostrego do obliczenia wartości	
	wyrażenia	

Zadanie 15.

Obszar standardów	Sprawdzane umiejętności	Poprawna odpowiedź (1 p.)
Wykorzystanie	Wyznaczanie długości boku kwadratu	A
i tworzenie informacji	wpisanego w okrąg	

Zadanie 16.

Obszar standardów	Sprawdzane umiejętności	Poprawna odpowiedź (1 p.)
Wykorzystanie	Wykorzystanie twierdzenia Pitagorasa	В
i tworzenie informacji	do wyznaczenia wysokości tego	
	trójkąta równoramiennego	

Zadanie 17.

Obszar standardów	Sprawdzane umiejętności	Poprawna odpowiedź (1 p.)
Wykorzystanie	Posługiwanie się własnościami figur	A
i tworzenie informacji	podobnych do obliczania długości	
	odcinków	

Zadanie 18.

Obszar standardów	Sprawdzane umiejętności	Poprawna odpowiedź (1 p.)
Wykorzystanie	Korzystanie ze związków między	A
i tworzenie informacji	kątem wpisanym i środkowym do	
	obliczenia miary kąta	

Zadanie 19.

Obszar standardów	Sprawdzane umiejętności	Poprawna odpowiedź (1 p.)
Wykorzystanie	Obliczanie pola figury płaskiej	C
i interpretowanie	z zastosowaniem funkcji	
reprezentacji	trygonometrycznych	

Zadanie 20.

Obszar standardów	Sprawdzane umiejętności	Poprawna odpowiedź (1 p.)
Wykorzystanie	Wskazanie współczynnika	В
i interpretowanie	kierunkowego prostej równoległej do	
reprezentacji	danej prostej	

Zadanie 21.

Obszar standardów	Sprawdzane umiejętności	Poprawna odpowiedź (1 p.)
Wykorzystanie	Wskazanie równania okręgu o podanej	D
i interpretowanie	długości promienia	
reprezentacji		

Zadanie 22.

Obszar standardów	Sprawdzane umiejętności	Poprawna odpowiedź (1 p.)
Wykorzystanie	Obliczanie odległości punktów na	C
i interpretowanie	płaszczyźnie	
reprezentacji		

Zadanie 23.

Obszar standardów	Sprawdzane umiejętności	Poprawna odpowiedź (1 p.)
Wykorzystanie	Obliczanie pola powierzchni	A
i tworzenie informacji	wielościanu	

Zadanie 24.

Obszar standardów	Sprawdzane umiejętności	Poprawna odpowiedź (1 p.)
Wykorzystanie	Obliczanie liczby krawędzi	D
i tworzenie informacji	wielościanu	

Zadanie 25.

Obszar standardów	Sprawdzane umiejętności	Poprawna odpowiedź (1 p.)
Wykorzystanie	Obliczanie średniej arytmetycznej	D
i tworzenie informacji		

Zadania otwarte

Za prawidłowe rozwiązanie każdego z zadań inną metodą niż przedstawiona w schemacie przyznajemy maksymalną liczbę punktów.

Zadanie 26. (0-2)

Obszar standardów	Sprawdzane umiejętności
Wykorzystanie	Rozwiązywanie nierówności kwadratowej
i interpretowanie	
reprezentacji	

Rozwiązanie

Znajdujemy pierwiastki trójmianu kwadratowego

• obliczamy wyróżnik trójmianu kwadratowego:

$$\Delta = 9$$

$$x_1 = \frac{1-3}{2} = -1$$

$$x_2 = \frac{1+3}{2} = 2$$

albo

• stosujemy wzory Viète'a: $x_1 + x_2 = 1$ oraz $x_1 \cdot x_2 = -2$ i stąd $x_1 = -1$, $x_2 = 2$

albo

- zapisujemy nierówność w postaci $(x+1)(x-2) \le 0$. Lewą stronę nierówności możemy uzyskać np.:
 - o grupując wyrazy i wyłączając wspólny czynnik,

o korzystając z postaci kanonicznej

$$\left(x-\frac{1}{2}\right)^2-\frac{9}{4}=\left(x-\frac{1}{2}+\frac{3}{2}\right)\cdot\left(x-\frac{1}{2}-\frac{3}{2}\right)=\left(x+1\right)\left(x-2\right),$$

o podając postać iloczynową

albo

• rysujemy fragment wykresu funkcji kwadratowej z zaznaczonymi miejscami zerowymi

albo

albo

• wskazujemy pierwiastki trójmianu $x_1 = -1$, $x_2 = 2$

Podajemy rozwiązanie nierówności: $-1 \le x \le 2$.

Schemat oceniania

- poda zbiór rozwiązań nierówności w postaci: $-1 \le x \le 2$ lub $\langle -1,2 \rangle$ lub $x \in \langle -1,2 \rangle$ albo
 - sporządzi ilustrację geometryczną (oś liczbowa, wykres) i zapisze zbiór rozwiązań nierówności w postaci: $x \ge -1$, $x \le 2$

• poda zbiór rozwiązań nierówności w postaci graficznej z poprawnie zaznaczonymi końcami przedziałów:

Zadanie 27. (0–2)

Obszar standardów	Sprawdzane umiejętności
Wykorzystanie	Rozwiązanie równania wielomianowego
i tworzenie informacji	

I sposób rozwiązania (metoda grupowania)

Przedstawiamy lewą stronę równania w postaci iloczynowej stosując metodę grupowania wyrazów

$$x(x^2-4)-7(x^2-4)=0$$
 lub $x^2(x-7)-4(x-7)=0$
 $(x-7)(x^2-4)=0$

Stąd x = 7 lub x = -2 lub x = 2.

Schemat oceniania I sposobu rozwiązania

Zdający otrzymuje2 pkt gdy wyznaczy bezbłędnie wszystkie rozwiązania równania: x = 7 lub x = -2 lub x = 2.

II sposób rozwiązania (metoda dzielenia)

Stwierdzamy, że liczba 2 jest pierwiastkiem wielomianu $x^3 - 7x^2 - 4x + 28$. Dzielimy wielomian $x^3 - 7x^2 - 4x + 28$ przez dwumian (x-2). Otrzymujemy iloraz $(x^2 - 5x - 14)$.

Zapisujemy równanie w postaci $(x-2)(x^2-5x-14)=0$. Stąd (x-2)(x+2)(x-7)=0 i x=7 lub x=-2 lub x=2.

albo

Stwierdzamy, że liczba –2 jest pierwiastkiem wielomianu $x^3 - 7x^2 - 4x + 28$. Dzielimy wielomian $x^3 - 7x^2 - 4x + 28$ przez dwumian (x+2). Otrzymujemy iloraz $(x^2 - 9x + 14)$.

Zapisujemy równanie w postaci $(x+2)(x^2-9x+14) = 0$. Stąd (x+2)(x-2)(x-7) = 0i x = -2 lub x = 2 lub x = 7.

albo

Stwierdzamy, że liczba 7 jest pierwiastkiem wielomianu $x^3 - 7x^2 - 4x + 28$. Dzielimy wielomian $x^3 - 7x^2 - 4x + 28$ przez dwumian (x-7). Otrzymujemy iloraz (x^2-4) .

Zapisujemy równanie w postaci $(x-7)(x^2-4)=0$. Stąd (x-7)(x-2)(x+2)=0i x=7 lub x=-2 lub x=2.

Schemat oceniania II sposobu rozwiązania

Zdający otrzymuje 1 pkt gdy

• podzieli wielomian $x^3 - 7x^2 - 4x + 28$ przez dwumian (x-2), otrzyma iloraz $(x^2 - 5x - 14)$ i na tym poprzestanie lub dalej popełni błąd

albo

• podzieli wielomian $x^3 - 7x^2 - 4x + 28$ przez dwumian (x+2), otrzyma iloraz $(x^2 - 9x + 14)$ i na tym poprzestanie lub dalej popełni błąd

albo

• podzieli wielomian $x^3 - 7x^2 - 4x + 28$ przez dwumian (x-7), otrzyma iloraz (x^2-4) i na tym poprzestanie lub dalej popełni błąd albo

• podzieli wielomian $x^3 - 7x^2 - 4x + 28$ przez trójmian np. (x-2)(x-7) i na tym poprzestanie lub dalej popełni błąd.

• wyznaczy bezbłędnie wszystkie rozwiązania równania: x = 2, x = -2, x = 7

Zadanie 28. (0–2)

Obszar standardów	Sprawdzane umiejętności
Rozumowania i argumentacji	Przeprowadzenie dowodu geometrycznego składającego się z niewielkiej liczby kroków

Rozwiązanie

Dorysowujemy odcinki AD i BE. Pokazujemy, że trójkaty ACD i BCE są przystające:

- |AC| = |BC|, bo trójkat ABC jest równoramienny
- |CD| = |CE|, bo trójkąt CDE jest równoramienny
- $|\Box ACD| = 90^{\circ} |\Box DCB| = |\Box BCE|$
- Stosujemy cechę przystawania bkb

Schemat oceniania

Zdający otrzymuje 1 pkt gdy

• napisze, że trójkąty ACD i BCE są przystające i wyprowadzi stąd wniosek, że |AD| = |BE|

albo

• zapisze, że |AC| = |BC|, |CD| = |CE| i $\Box ACD = \Box BCE$

Zadanie 29. (0-2)

Obszar standardów	Sprawdzane umiejętności
Użycie i tworzenie	Wyznaczanie wartości funkcji trygonometrycznych
strategii	kąta ostrego

<u>I sposób rozwiązania</u> (jedynka trygonometryczna)

$$\begin{cases} \frac{\sin \alpha}{\cos \alpha} = \frac{5}{12} \\ \sin^2 \alpha + \cos^2 \alpha = 1 \end{cases}$$

$$\begin{cases} \sin \alpha = \frac{5}{12} \cos \alpha \\ \left(\frac{5}{12} \cos \alpha\right)^2 + \cos^2 \alpha = 1 \end{cases}$$

$$\begin{cases} \cos \alpha = \frac{12}{5} \sin \alpha \\ \left(\frac{12}{5} \sin \alpha\right)^2 + \sin^2 \alpha = 1 \end{cases}$$

$$\frac{25}{144} \cos^2 \alpha + \cos^2 \alpha = 1$$

$$\cos^2 \alpha = \frac{144}{169} \quad i \quad \cos \alpha > 0$$

$$\sin^2 \alpha = \frac{25}{169} \quad i \quad \sin \alpha > 0$$

$$\cos \alpha = \frac{12}{13} \quad \sin \alpha = \frac{12}{13}$$

II sposób rozwiązania (trójkąt prostokątny)

Schemat oceniania

Zdający otrzymuje1 pkt

- przekształci dane wyrażenie do postaci wyrażenia zawierającego tylko $\cos\alpha$ i wykorzysta "jedynkę trygonometryczną", np. $\sin\alpha = \frac{5}{12}\cos\alpha$, $\frac{25}{144}\cos^2\alpha + \cos^2\alpha = 1$ i na tym poprzestanie lub dalej popełni błąd albo
- przekształci dane wyrażenie do postaci wyrażenia zawierającego tylko $\sin\alpha$ i wykorzysta "jedynkę trygonometryczną", np. $\cos\alpha=\frac{12}{5}\sin\alpha$, $\frac{144}{25}\sin^2\alpha+\sin^2\alpha=1$ i na tym poprzestanie lub dalej popełni błąd albo
 - przekształci dane wyrażenie do postaci wyrażenia zawierającego tylko $\sin\alpha$ np. $\frac{25}{144} = \frac{\sin^2\alpha}{1-\sin^2\alpha} \text{ lub } 25-25\sin^2\alpha = 144\sin^2\alpha \text{ i na tym poprzestanie lub dalej popełni błąd}$

albo

• przekształci dane wyrażenie do postaci wyrażenia zawierającego tylko $\sin \alpha$ i $tg\alpha$, np. $tg^2\alpha \cdot \cos^2\alpha + \cos^2\alpha = 1$ lub $\cos^2\alpha \left(tg^2\alpha + 1\right) = 1$ i na tym poprzestanie lub dalej popełni błąd

albo

 obliczy długość przeciwprostokątnej trójkąta prostokątnego o przyprostokątnych długości 12 i 5 (lub ich wielokrotności) z błędem rachunkowym oraz zapisze sin α i na tym zakończy

albo

 obliczy długość przeciwprostokątnej trójkąta prostokątnego o przyprostokątnych długości 12 i 5 (lub ich wielokrotności) z błędem rachunkowym i zapisze cos α

albo

ullet narysuje trójkąt prostokątny o przyprostokątnych długości 12 i 5 (lub ich wielokrotności), obliczy długość przeciwprostokątnej i zaznaczy w tym trójkącie poprawnie kąt lpha

albo

• odczyta z tablic przybliżoną wartość kąta α : $\alpha \approx 22^\circ$ (akceptujemy wynik $\alpha \approx 23^\circ$) i na tym zakończy lub dalej popełnia błędy

• obliczy wartość $\cos \alpha$: $\cos \alpha = \frac{12}{13}$

albo

• obliczy przybliżoną wartość $\cos \alpha$: $\cos 22^{\circ} \approx 0,9272$ lub $\cos 23^{\circ} \approx 0,9205$

Zadanie 30. (0-2)

Obszar standardów	Sprawdzane umiejętności
Rozumowania i argumentacji	Wykazanie prawdziwości nierówności

I sposób rozwiązania

Przekształcamy nierówność w sposób równoważny:

$\frac{a^2+1}{a+1} \ge \frac{a+1}{2}$	$\frac{a^2+1}{a+1} - \frac{a+1}{2} \ge 0$
$2\left(a^2+1\right) \ge \left(a+1\right)^2$	$\frac{2(a^2+1)-(a+1)^2}{2(a^2+1)-(a+1)^2} > 0$
$2a^2 + 2 \ge a^2 + 2a + 1$	2(a+1)
$a^2-2a+1\geq 0$	$a^2 - 2a + 1$
$\left(a-1\right)^2 \ge 0$	$\frac{a^2-2a+1}{2(a+1)} \ge 0$
co kończy dowód.	$\frac{\left(a-1\right)^2}{2\left(a+1\right)} \ge 0$
	co kończy dowód.

II sposób rozwiązania

Dla każdej liczby rzeczywistej a prawdziwa jest nierówność $(a-1)^2 \ge 0$.

Przekształcamy tę nierówność w sposób równoważny:

$$(a-1)^{2} + (a+1)^{2} \ge (a+1)^{2}$$
$$2a^{2} + 2 \ge (a+1)^{2}$$
$$2(a^{2} + 1) \ge (a+1)^{2}$$

Ponieważ a > 0, więc $\frac{a^2 + 1}{a + 1} \ge \frac{a + 1}{2}$

co kończy dowód.

III sposób rozwiązania (dowód nie wprost)

Przypuśćmy, że dla pewnego a > 0 mamy $\frac{a^2 + 1}{a + 1} < \frac{a + 1}{2}$. Przekształcamy tę nierówność tak, jak w I sposobie rozwiązania do postaci, np. $(a - 1)^2 < 0$ i stwierdzamy, że otrzymaliśmy sprzeczność.

Schemat oceniania

Zdający otrzymuje1 pkt gdy

- otrzyma nierówność $a^2-2a+1 \ge 0$ lub $\frac{a^2-2a+1}{2(a+1)} \ge 0$ i na tym poprzestanie lub w dalszej części dowodu popełni błąd albo
 - stosując metodę dowodu nie wprost otrzyma nierówność $(a-1)^2 < 0$ i nie zapisze żadnych wniosków lub zapisze błędne wnioski
 - stosując II sposób rozwiązania otrzyma nierówność $2a^2 + 2 \ge (a+1)^2$ i nie zapisze żadnych wniosków lub zapisze błędne wnioski.

Zdający otrzymuje2 pkt gdy

• zapisze nierówność $a^2 - 2a + 1 \ge 0$ i uzasadni, że wszystkie liczby dodatnie a spełniają tę nierówność

albo

albo

• zapisze nierówność $\frac{a^2-2a+1}{2(a+1)} \ge 0$ i uzasadni, że wszystkie liczby dodatnie a spełniają tę nierówność

albo

• stosując metodę dowodu nie wprost otrzyma nierówność $(a-1)^2 < 0$ i zapisze, że otrzymana nierówność nie zachodzi dla żadnej liczby rzeczywistej a.

Zadanie 31. (0–2)

Obszar standardów	Sprawdzane umiejętności
Wykorzystanie	Wykorzystanie związków miarowych w trójkącie
i tworzenie informacji	prostokątnym i równobocznym

Rozwiązanie

Prowadzimy wysokość *CE* trójkąta równobocznego *ABC*.

Wówczas |AE| = 3 i stąd |CD| = |AE| = 3.

Następnie zapisujemy, że |BC| = |AB| = 6

oraz
$$|DA| = |CE| = \frac{6\sqrt{3}}{2} = 3\sqrt{3}$$
.

Stąd obwód trapezu jest równy

$$6+6+3+3\sqrt{3}=1$$
 $5 3\sqrt{3}$.

Schemat oceniania

Zdający otrzymuje 1 pkt gdy

• prawidłowo podzieli trapez na trójkąty i poprawnie obliczy długość krótszej podstawy trapezu (|DC|=3) i na tym zakończy lub popełni błędy rachunkowe przy obliczaniu obwodu trapezu

albo

• prawidłowo podzieli trapez na trójkąty i poprawnie obliczy wysokość trapezu $(h=3\sqrt{3})$ i na tym zakończy lub popełni błędy rachunkowe przy obliczaniu obwodu trapezu

Zadanie 32. (0-4)

Obszar standardów	Sprawdzane umiejętności
Użycie i tworzenie	Obliczanie objętości wielościanu
strategii	

Uwaga

<u>Strategia rozwiązania tego zadania</u> sprowadza się do realizacji następujących etapów rozwiązania:

- obliczenie długości krawędzi AB lub AC podstawy ostrosłupa bądź wysokości DE ściany bocznej BCD
- zastosowanie poprawnej metody obliczenia pola podstawy i obliczenie tego pola
- obliczenie objętości ostrosłupa

<u>I sposób rozwiązania</u> (krawędź podstawy, wysokość *AE* podstawy i "zwykły" wzór na pole trójkąta *ABC*)

Z twierdzenia Pitagorasa zastosowanego do trójkąta ABD wynika, że $\left|AB\right|^2 = \left|BD\right|^2 - \left|AD\right|^2 = 25$, stąd $\left|AB\right| = 5$. Podobnie z twierdzenia Pitagorasa zastosowanego do trójkąta ACD wynika, że $\left|AC\right| = 5$.

Rysujemy trójkąt ABC i prowadzimy w nim wysokość AE. Trójkąt ABC jest równoramienny ($\left|AB\right| = \left|AC\right|$), więc $\left|BE\right| = \left|EC\right| = 3$. Z twierdzenia Pitagorasa dla trójkąta ABE mamy $\left|AE\right|^2 = \left|AB\right|^2 - \left|BE\right|^2 = 16$, stąd $\left|AE\right| = 4$.

Zatem $P_{ABC} = \frac{1}{2} \cdot 6 \cdot 4 = 12$. Objętość ostrosłupa jest równa $V = \frac{1}{3} \cdot 12 \cdot 12 = 48$.

Schemat oceniania I sposobu rozwiązania

<u>Uwaga</u>

Zdający nie musi uzasadniać, że |BE| = |EC|, wystarczy, że poprawnie stosuje twierdzenie Pitagorasa do obliczenia wysokości AE trójkąta ABC.

<u>Uwaga</u>

Jeśli zdający przy obliczaniu wysokości trójkąta *ABC* lub pola tego trójkąta (pola podstawy ostrosłupa) nie stosuje poprawnej metody (co przekreśla poprawność strategii rozwiązania zadania), np. przyjmie, że środkowa *CF* trójkąta *ABC* jest jego wysokością, to za całe rozwiązanie przyznajemy co najwyżej **1 punkt** (zdający nie osiągnął istotnego postępu).

<u>II sposób rozwiązania</u> (krawędź podstawy, cosinus jednego z kątów trójkąta *ABC*, wzór z sinusem na pole trójkąta *ABC*)

 \mathbf{Z} twierdzenia Pitagorasa zastosowanego do trójkąta ABDwynika, że

 $\left|AB\right|^{2} = \left|BD\right|^{2} - \left|AD\right|^{2} = 25$, stąd $\left|AB\right| = 5$. Podobnie z twierdzenia Pitagorasa zastosowanego do trójkąta ACD wynika, że $\left|AC\right| = 5$.

Rysujemy trójkąt ABC i prowadzimy w nim wysokość AE i oznaczamy $\alpha = |\Box ABC|$.

Wariant I obliczenia pola podstawy.

Trójkąt ABC jest równoramienny (|AB| = |AC|), więc |BE| = |EC| = 3.

Stad
$$\cos \alpha = \frac{|BE|}{|BA|} = \frac{3}{5}$$
. Zatem $\sin \alpha = \sqrt{1 - \cos^2 \alpha} = \sqrt{1 - \left(\frac{3}{5}\right)^2} = \frac{4}{5}$.

Pole trójkąta ABC jest równe $P_{ABC} = \frac{1}{2} \cdot |BC| \cdot |BA| \sin \alpha = \frac{1}{2} \cdot 6 \cdot 5 \cdot \frac{4}{5} = 12$.

Wariant II obliczenia pola podstawy.

Z twierdzenia cosinusów dla trójkata ABC obliczamy $\cos \beta$:

$$6^2 = 5^2 + 5^2 - 2 \cdot 5 \cdot 5 \cos \beta$$
, stad $\cos \beta = \frac{7}{25}$.

Następnie obliczamy
$$\sin \beta = \sqrt{1 - \cos^2 \beta} = \sqrt{1 - \left(\frac{7}{25}\right)^2} = \frac{24}{25}$$
.

Pole trójkąta
$$ABC$$
 jest równe $P_{ABC} = \frac{1}{2} \cdot |AB| \cdot |AC| \sin \beta = \frac{1}{2} \cdot 5 \cdot 5 \cdot \frac{24}{25} = 12$.

Po obliczeniu pola podstawy obliczamy objętość V ostrosłupa

$$V = \frac{1}{3} \cdot 12 \cdot 12 = 48.$$

Schemat oceniania II sposobu rozwiązania

Obliczenie sinusa jednego z kątów trójkąta *ABC*: $\sin \alpha = \frac{4}{5}$ lub $\sin \beta = \frac{24}{25}$.

Pokonanie zasadniczych trudności zadania
Obliczenie pola podstawy ostrosłupa: $P_{ABC} = 12$.
Rozwiązanie pełne4 pkt
Obliczenie objętości ostrosłupa: $V = 48$.
<u>Uwaga</u> Jeśli zdający przy obliczaniu wysokości trójkąta <i>ABC</i> lub pola tego trójkąta (pola podstawy ostrosłupa) nie stosuje poprawnej metody (co przekreśla poprawność strategii rozwiązania zadania), np. zapisze, że $\sin \alpha = \frac{ BE }{ BA } = \frac{3}{5}$, to za całe rozwiązanie
przyznajemy co najwyżej 1 punkt (zdający nie osiągnął istotnego postępu).
III sposób rozwiązania (krawędź podstawy, wzór Herona na pole trójkąta <i>ABC</i>) Z twierdzenia Pitagorasa zastosowanego do trójkąta <i>ABD</i> wynika, że
$ AB ^2 = BD ^2 - AD ^2 = 25$, stąd $ AB = 5$. Podobnie z twierdzenia Pitagorasa zastosowanego
do trójkąta ACD wynika, że $ AC = 5$. Pole trójkąta ABC obliczamy ze wzoru Herona
$P_{ABC} = \sqrt{p(p-a)(p-b)(p-c)}$, gdzie $p = \frac{5+5+6}{2} = 8$, $p-a = 8-6 = 2$,
p-b=p-c=8-9=3.
$P_{ABC} = \sqrt{8 \cdot 2 \cdot 3 \cdot 3} = 12.$
Objętość ostrosłupa jest równa $V = \frac{1}{3} \cdot P_{ABC} \cdot AD = \frac{1}{3} \cdot 12 \cdot 12 = 48$.
Schemat oceniania III sposobu rozwiązania Rozwiązanie, w którym postęp jest niewielki, ale konieczny na drodze do pełnego
rozwiązania1 pkt
Obliczenie długości krawędzi AB lub AC podstawy ostrosłupa: $ AB = 5$, $ AC = 5$.
Pokonanie zasadniczych trudności zadania3 pkt
Obliczenie pola podstawy ostrosłupa: $P_{ABC} = 12$.
<u>Uwaga</u> Zdający otrzymuje 2 punkty , jeśli poprawnie zastosuje wzór Herona, popełni błąd rachunkowy przy obliczaniu pola trójkąta <i>ABC</i> i na tym zakończy. Rozwiązanie pełne 4 pkt Obliczenie objętości ostrosłupa: $V = 48$.
To the state of th

<u>IV sposób rozwiązania</u> (wysokość ściany bocznej *BCD*, wysokość *AE* podstawy i "zwykły" wzór na pole trójkąta *ABC*)

Przyjmijmy oznaczenia jak na rysunku.

Trójkąt BCD jest równoramienny, więc środek E boku BC jest spodkiem wysokości DE tego trójkąta. Z twierdzenia Pitagorasa zastosowanego do trójkąta BED wynika, że $|DE|^2 = |BD|^2 - |BE|^2 = 13^2 - 3^2 = 160$.

Z twierdzenia Pitagorasa w trójkącie *ADE* obliczamy wysokość *AE* trójkąta *ABC* $|AE|^2 = |DE|^2 - |AD|^2 = 160 - 12^2 = 16$, stąd |AE| = 4.

Pole trójkąta *ABC* jest równe $P_{ABC} = \frac{1}{2} \cdot 6 \cdot 4 = 12$.

Objętość ostrosłupa jest równa $V = \frac{1}{3} \cdot 12 \cdot 12 = 48$.

Schemat oceniania IV sposobu rozwiązaniaRozwiązanie, w którym postęp jest niewielki, ale konieczny na drodze do pełnegorozwiązania1 pktObliczenie wysokości DE ściany bocznej BCD ostrosłupa (lub kwadratu tej wysokości): $|DE| = 4\sqrt{10}$.UwagaZdający nie musi uzasadniać, że |BE| = |EC|, wystarczy, że poprawnie stosujetwierdzenia Pitagorasa do obliczenia wysokości DE trójkąta BCD.Rozwiązanie, w którym jest istotny postęp2 pktObliczenie wysokości AE trójkąta ABC: |AE| = 4.Pokonanie zasadniczych trudności zadania3 pktObliczenie pola podstawy ostrosłupa: $P_{ABC} = 12$.Rozwiązanie pełne4 pktObliczenie objętości ostrosłupa: V = 48.

Zadanie 33. (0-4)

Obszar standardów	Sprawdzane umiejętności
Modelowanie	Obliczanie prawdopodobieństwa z zastosowaniem
matematyczne	klasycznej definicji prawdopodobieństwa

Rozwiązanie (model klasyczny)

 Ω jest zbiorem wszystkich par (a,b) takich, że $a,b \in \{1,2,3,4,5,6\}$. Mamy model klasyczny. $|\Omega| = 36$.

Zdarzeniu A sprzyjają następujące zdarzenia elementarne:

$$(2,6), (4,3), (4,6), (6,2), (6,4), (6,6)$$

Zatem
$$|A| = 6$$
 i stąd $P(A) = \frac{|A|}{|\Omega|} = \frac{6}{36} = \frac{1}{6}$.

Schemat oceniania

Uwaga

Jeżeli zdający wypisze bezbłędnie wszystkie zdarzenia elementarne sprzyjające zdarzeniu A, ale błędnie zapisze ich liczbę (np. |A|=5 albo |A|=7) i konsekwentnie rozwiąże zadanie do końca, to otrzymuje 3 punkty.

Uwaga

Jeśli zdający ograniczy swoje rozwiązanie do zapisu $|\Omega| = 36$; |A| = 6 oraz $P(A) = \frac{1}{6}$, to otrzymuje 1 pkt.

Zadanie 34. (0–5)

Obszar standardów	Sprawdzane umiejętności
Modelowanie	Rozwiązanie zadania, umieszczonego w kontekście
matematyczne	praktycznym, prowadzącego do równania
	kwadratowego

Rozwiązanie

Oznaczmy przez x długość (w metrach) basenu w pierwszym hotelu i przez y szerokość (w metrach) tego basenu. Zapisujemy układ równań:

$$\begin{cases} x \cdot y = 240 \\ (x+5) \cdot (y+2) = 350 \end{cases}$$

Przekształcamy drugie równanie w sposób równoważny: $x \cdot y + 2x + 5y + 10 = 350$, podstawiamy do tego równania $x \cdot y = 240$ i wyznaczamy z tak przekształconego równania

niewiadomą $x: x = \frac{100 - 5y}{2}$. Wyznaczoną wartość x podstawiamy do pierwszego

równania $\frac{100-5y}{2}$ · y = 240, które następnie przekształcamy do postaci:

 $y^2 - 20y + 96 = 0$. Rozwiązaniami tego równania są: $y_1 = 8$, $y_2 = 12$.

Zatem:

- jeżeli y = 8, to x = 30 i wtedy basen w pierwszym hotelu ma wymiary: $30 \text{ m} \times 8 \text{ m}$, zaś basen w drugim hotelu: $35 \text{ m} \times 10 \text{ m}$,
- jeżeli y = 12, to x = 20 i wtedy basen w pierwszym hotelu ma wymiary: $20 \text{ m} \times 12 \text{ m}$, zaś basen w drugim hotelu: $25 \text{ m} \times 14 \text{ m}$.

Schemat oceniania

$$\begin{cases} x \cdot y = 240 \\ (x+5) \cdot (y+2) = 350 \end{cases}$$

Uwaga

Zdający nie musi zapisywać układu równań, może od razu zapisać równanie z jedną niewiadomą.

$$(x+5)\cdot\left(\frac{240}{x}+2\right) = 350$$
 albo $\left(\frac{240}{y}+5\right)\cdot(y+2) = 350$

$$x^2 - 50x + 600 = 0$$
, skąd $x = 20$ lub $x = 30$

albo

 $y^2 - 20y + 96 = 0$, skąd y = 8 lub y = 12

y 20 y + >0 0 , shequ y 0 100 y 12
Rozwiązanie zadania do końca, lecz z usterkami, które jednak nie przekreślają
poprawności rozwiązania (np. błędy rachunkowe) 4 pkt
Zdający popełnia błąd rachunkowy w rozwiązaniu równania (ale otrzymuje dwa
rozwiązania) i konsekwentnie do popełnionego błędu oblicza wymiary obu basenów.
Rozwiązanie pełne 5 pkt
Zapisanie wymiarów obu basenów:
Basen w pierwszym hotelu ma wymiary 30 m × 8 m i w drugim hotelu 35 m×10 m
lub basen w pierwszym hotelu ma wymiary 20 m×12 m i w drugim 25 m×14 m.