Cerrando Cafeterías de J

Las cafeterías de la calle J atienden a un gran número de clientes. Sin embargo, se tiene la certidumbre de que algunas de estas cafeterías podrían cerrar completamente (no brindar más servicios) sin que con ello se afecte a los clientes, pues las restantes cafeterías podrían asimilar los clientes que actualmente acudían a las cafeterías que cerrarían.

Se dispone por cada cafetería, de la cantidad de clientes que puede atender (capacidad) y la cantidad real de clientes que atiende, durante una misma franja de horario (por ejemplo de 9 am a 5 pm). Se quiere determinar el máximo de cafeterías que podrían cerrar permanentemente sin que se afecten sus clientes habituales, pues las cafeterías que queden abiertas podrían asimilarlos.

Implemente el método

int CafeteriasACerrar(int[,] capacidad, int[,] real)

donde capacidad y real son arrays bidimensionales donde las columnas son las cafeterías existentes (identifique a las cafeterías por el número de la columna) y una fila por cada hora de la franja horaria de servicio (en nuestro ejemplo de 9 am a 5 pm serían por tanto 8 filas). Cada celda i, j del array capacidad da el máximo número de personas que podría atender la cafetería j en la hora i, y cada celda i, j del array real da la cantidad real de clientes que actualmente atiende.

Considere que siempre el valor en una casilla del array real es menor o igual al valor de la casilla correspondiente del array capacidad. Considere igualmente que los arrays capacidad y real nunca serán null y que al menos tendrán un elemento (dimensión 1x1) y como máximo 10x10.

Ejemplo 1: cinco cafeterías, se pueden cerrar tres. La 2da, 3ra y 4ta (resaltadas en la figura).

capacidad

10	0	0	5	20
10	10	0	5	20
20	10	0	5	20
20	10	30	10	20
20	10	30	10	30
20	10	30	5	20
10	10	0	5	20
10	0	0	5	20

real

5	0	0	1	0
5	5	0	5	5
5	5	0	4	8
10	5	7	8	10
10	5	8	10	10
5	5	8	3	10
5	5	0	3	5
5	0	0	1	2

Ejemplo 2: tres cafeterías, no puede cerrarse ninguna. Los clientes de 12-1pm no se pueden redistribuir.

capacidad

10	0	20
10	10	20
20	15	20
20	15	20
20	15	30
20	10	20
10	10	20
10	0	20

real

5	0	0
5	5	5
5	5	8
10	15	18
10	5	10
5	5	10
5	5	5
5	0	2

Ejemplo 3: dos cafeterías, se puede cerrar una, la 2da.

capacidad		real	
10	0	5	0
10	10	5	5
20	15	5	12
20	15	10	10
20	15	10	5
20	10	5	5
10	10	5	5
10	0	5	0

Ejemplo 4: tres cafeterías, se pueden cerrar todas pues no existe demanda.

capacidad		real				
10	0	20		0	0	0
10	10	20		0	0	0
20	15	20		0	0	0
20	15	20		0	0	0
20	15	30		0	0	0
20	10	20		0	0	0
10	10	20		0	0	0
10	0	20		0	0	0

Ejemplo 5: dos cafeterías, se puede cerrar una, cualquiera de las dos.

capacidad		real		
10	8	5	2	
10	10	5	5	
20	15	5	7	
20	15	7	8	
20	15	9	5	
20	10	5	5	
10	10	5	5	
10	8	5	3	

NOTA: Para simplificar los ejemplos se han usado valores pequeños para las cantidades de clientes pero en los casos de prueba pueden ser valores cualesquiera (siempre mayores o iguales a cero).

Tenga en cuenta que pueden haber varias combinaciones de cierres de cafetería que valgan como respuesta para satisfacer el problema (que la cantidad de cafeterías posibles a cerrar sea el máximo), esto no importa a los efectos de su respuesta pues solo debe devolver la cantidad.