Financial Frictions Macroeconomics B

Philippe Bacchetta

Spring 2024

Bacchetta Frictions Spring 2024 1/23

Introduction

- Growing role of financial frictions in international macroeconomic models
 - Especially after the 2008 global financial crisis
 - Computer power and techniques make it easier to introduce these frictions
- Financial frictions come from informational asymmetries, transactions costs, policy distortions, etc.
- Typically lead to borrowing constraints by firms, households, or financial intermediaries
- Can explain many features and have policy implications

Bacchetta Frictions Spring 2024 2 / 23

Financial Frictions and International Capital Flows

- Financial frictions are used to explain financial crises and the evolution of international capital flows
- Examples:
- Volatility in emerging markets, including credit booms and sudden stops
- Financial contagion
- Role of financial frictions in global imbalances
- Global Financial Cycle
- Exchange rate dynamics

Bacchetta Frictions Spring 2024 3 / 23

Policy Implications

- Financial frictions often generate externalities. Creates a role for optimal policy intervention
- May affect monetary, fiscal or exchange rate policies
- But also role for other policies
 - Macroprudential regulation
 - Capital controls
 - S FX intervention
- Example: IMF Integrated Policy Framework
 - New Keynesian open economy DSGE model with financial frictions
 - Combine optimal monetary policy with optimal macroprudential regulation, capital controls, FX intervention

Bacchetta Frictions Spring 2024 4/23

Borrowing Constraints

- The macroeconomic literature initially focused on credit constraints on entrepreneurs
 - In the spirit of Bernanke-Gertler (AER 1989) or Kyiotaki-Moore (JPE, 1997)
- But there could also be constrained consumers, e.g., for mortgages
- Or short-selling constraints on investors
- Recently the focus has shifted to constraints on financial intermediaries, i.e., banks or investors
 - Constraint on domestic banks or on international financial intermediaries
- Analyze some simple cases

Bacchetta Frictions Spring 2024 5 / 23

A Simple Model with Credit Market

- One of the first papers was Gertler and Rogoff (1990) with a two-period model. It is presented in ch. 6 of Obstfeld-Rogoff
- We will see a somewhat simpler two-period model with investment
- Agents are both consumers and entrepreneurs
- There is asymmetric information between lenders and borrowers, leading to moral hazard

Bacchetta Frictions Spring 2024 6 / 23

- Entrepreneurs have an incentive to cheat, either by not repaying or by not putting enough effort in their project
- Lender will typically lend less or charge a risk premium to limit moral hazard
- This limit in lending is similar to what happens with default in the sovereign debt literature
- But here the problem is at the level of entrepreneurs

Bacchetta Frictions Spring 2024 7/23

- Consider a country with high productivity that wants to borrow
- To focus on debt, we use the notation $D_2 = -B_2$
- Entrepreneurs invest I_1 to produce $Y_2 = F(I_1)$
- There is no initial capital stock $(K_1 = 0)$
- Budget constraints:

$$C_1 = Y_1 + D_2 - I_1 \tag{1}$$

$$C_2 = F(I_1) + I_1 - (1+r)D_2$$
 (2)

(ロト 4년) + 4분 + 4분 + - 분 - 9QC

- Assume that utility is $U = C_2$
- Then $C_1 = 0$
- Y_1 is also saving
- Investment is:

$$I_1=Y_1+D_2$$

- Y_1 : internal funds
- D_2 : external funds
- I_1/Y_1 : leverage ratio

Bacchetta Frictions Spring 2024 9 / 23

Moral Hazard

 Entrepreneurs have an incentive not to repay. Their cost of not repaying is

$$\phi I_1$$

- \bullet The cost increases with financial development, so that ϕ can measure financial development
- Repay when the cost is too high, i.e. when:

$$Y_2 - (1+r)D_2 \ge Y_2 - \phi I_1$$

Repay when

$$D_2 \le \frac{\phi I_1}{1+r} \tag{3}$$

10 / 23

This basically assumes that the lender does not seize the collateral

- We have $I_1 = Y_1 + D_2$
- We can rewrite (3) as:

$$D_2 \le \mu Y_1 \tag{4}$$

where:

$$\mu = \frac{\phi}{1 + r - \phi}$$

- \bullet μ is credit multiplier
- We can also write:

$$I_1 \le (1+\mu)Y_1 \tag{5}$$

ullet $1+\mu$ is maximum leverage ratio

Bacchetta Frictions Spring 2024 11 / 23

- ullet μ increases with financial development
- Constraint more likely to bind when
 - ullet μ small: low level of financial development
 - ullet Y_1 small: low level of economic development or of economic activity
- Credit constraint more likely to bind in less developed countries or in crisis times

 Bacchetta
 Frictions
 Spring 2024
 12 / 23

Optimal behavior

• max
$$C_2 + \lambda (\mu Y_1 - D_2)$$

• Substitute C_2 and write Lagrangian:

$$F(Y_1 + D_2) + Y_1 + D_2 - (1+r)D_2 + \lambda(\mu Y_1 - D_2)$$

FOC are:

$$F'(I_1)-r=\lambda \ \lambda(\mu Y_1-D_2)=0 \qquad \text{and} \qquad D_2\leq \mu Y_1$$

Bacchetta Frictions Spring 2024 13 / 23

Credit constraint

• Constraint not binding: $\lambda = 0$

$$F'(I_1) = r$$

• Constraint binding: $\lambda > 0$

$$F'(I_1) > r$$

$$D_2 = \mu Y_1$$

Suboptimal investment

Bacchetta Frictions Spring 2024 14 / 23

Constraint not binding

- When constraint is not binding, investment fully determined by productivity and by r
- Shocks to Y_1 have no impact as they can be smoothed by foreign borrowing D_2
- For example $Y_1 \uparrow$ implies $D_2 \downarrow$ and Y_2 constant
- ullet Also, independence between saving Y_1 and investment I_1

Bacchetta Frictions Spring 2024 15 / 23

Binding constraint

- When constraint is binding, shocks to Y_1 affect D_2 and I_1
- for example $Y_1 \uparrow$ implies $D_2 \uparrow$ and $I_1 \uparrow$. Then $Y_2 \uparrow$
- Shocks to Y_1 are amplified: C_2 varies more
- Shocks have a dynamic effect: financial accelerator
- Saving and investment are positively correlated: potential explanation to the Feldstein-Horioka puzzle
- Useful to look at a more dynamic model

4 D > 4 A > 4 B > 4 B > B 900

16/23

Bacchetta Frictions Spring 2024

Remarks on the credit constraint

- In the literature, there are different forms of credit constraints
- Often related to the stock of capital
- In our context we can write (3) as:

$$D_2 \le \frac{\phi K_2}{1+r} \tag{6}$$

- K₂ could be used as collateral
- There could be a time-varying price of capital q_t so that:

$$D_2 \le \frac{\phi K_2}{1+r} E(q_2) \tag{7}$$

• As in Kiyotaki-Moore (1997)

◆□▶◆□▶◆■▶◆■▶ ● 900

Bacchetta Frictions Spring 2024 17 / 23

Remarks on the credit constraint

• In some papers they use q_2 instead of $E(q_2)$:

$$D_2 \le \frac{\phi K_2}{1+r} q_2 \tag{8}$$

- Generates more volatility, but not really microfounded
- In recent models, it is the net worth of financial intermediaries that matters

Bacchetta Frictions Spring 2024 18 / 23

Role for capital controls and macroeconomic policies

• Consider a model with traded and non-traded goods. Total output in period 1 is $Y_1^T + p_1 Y_1^N$. Assume the following contraint:

$$D_2 \le \mu \left(Y_1^T + \rho_1 Y_1^N \right) \tag{9}$$

- \bullet p_1 is endogenous and is affected by external borrowing
- If D_2 increases for all households, p_1 increases (C_1^T increases). But individual households do not take into account the impact of their borrowing on p_1 : **externality**
- ⇒ Excessive borrowing
- ⇒ Role for policy (e.g. Bianchi, AER 2011)
 - Policies that restrict borrowing may be optimal
 - Macroprudential policies on banks
 - Capital Controls

Bacchetta Frictions Spring 2024 19 / 23

Demand for liquid assets

- Credit constraints may also create a demand for liquid assets
- For example a consumer thinks that income may be lower tomorrow, and knows he will be prevented to borrow due to a credit constraint
 - Implies a precautionary demand for assets
- Another example is a firm who knows it might have future expenditures on a project (working capital or further investment).
 - Generates a demand for liquid assets at the time of the investment
- Need a more dynamic model (at least three periods)
- Papers applying this idea:
 - Bacchetta-Benhima-Kalantzis (AEJMacro 2013, IMF Economic Review 2014) on China; (JME 2020) on liquidity traps
 - Bacchetta-Benhima (JEEA 2015) on global imbalance
 - Bacchetta-Benhima-Poilly (AEJMacro 2019) on corporate cash and unemployment

Bacchetta Frictions Spring 2024 20 / 23

Constrained Financial Intermediaries

- Investors buy and sell foreign assets through international financial intermediaries
 - Mutual funds, pension funds, hedge funds, investment banks
- Intermediaries may be constrained
 - regulation
 - moral hazard
- This limits capital flows and arbitrage
- ullet The supply of funds is no longer fully elastic at interest rate r

Bacchetta Frictions Spring 2024 21/23

The Gabaix-Maggiori Model

- Gabaix-Maggiori (QJE, 2015)
- Consider international financial intermediaries that arbitrage between domestic and foreign assets
- ullet They invest in domestic bonds B_{t+1}^{H*} and have a discount factor M_{t+1}^*
- The excess return in domestic currency is XS_{t+1}^*
- Assume their objective function is:

$$V_t^* = E_t \left[M_{t+1}^* B_{t+1}^{H*} X S_{t+1}^* \right]$$
 (10)

Bacchetta Frictions Spring 2024 22 / 23

- Assume intermediaries can divert a fraction ΓB_{t+1}^{H*} of foreign assets
- Participation constraint for investors: $V_t^* \ge \Gamma(B_{t+1}^{H*})^2$
- Using (10) assuming the constraint is binding gives optimal demand for foreign bonds:

$$B_{t+1}^{H*} = \frac{E_t \left[M_{t+1}^* X S_{t+1}^* \right]}{\Gamma}$$

Can also be rewritten as Gamma equation:

$$\Gamma B_{t+1}^{H*} = E_t [M_{t+1}^* X S_{t+1}^*]$$

- Discounted excess return depends on B_{t+1}^{H*} and Γ : limited arbitrage
- Gives a role for FX intervention and capital controls