Δομές Δεδομένων σε С

Μάθημα 7:

Δυαδικά Δένδρα Αναζήτησης

Δημήτρης Ψούνης

Περιεχόμενα Μαθήματος

Α. Θεωρία

- 1. Δυαδικό Δένδρο Αναζήτησης
 - 1. Ορισμός ΔΔΑ
 - 2. Βασικές Πράξεις
 - 3. Υλοποίηση σε C: Αναζήτηση σε ΔΔΑ
 - 4. Υλοποίηση σε C: Εισαγωγή σε ΔΔΑ
 - 5. Υλοποίηση σε C: Διαγραφή σε ΔΔΑ

Β. Ασκήσεις

1. Δυαδικό Δένδρο Αναζήτησης

1. Ορισμός Δυαδικού Δένδρου Αναζήτησης

Το «Δυαδικό Δένδρο Αναζήτησης» (ΔΔΑ) είναι ένα δένδρο στο οποίο σε κάθε κόμβο έχει αποθηκευτεί μία τιμή ν και επιπλέον:

- Στις κορυφές του αριστερού υποδένδρου, έχουν αποθηκευτεί τιμές μικρότερες της ν.
- Στις κορυφές του δεξιού υποδένδρου έχουν αποθηκευτεί τιμές μεγαλύτερες της ν.

Παραδείγματα Δυαδικών Δένδρων Αναζήτησης:

ΔΔΑ που αποθηκεύει αριθμούς

ΔΔΑ που αποθηκεύει συμβολοσειρές

Σημαντικό: Η ενδοδιατεταγμένη διαδρομή σε ένα ΔΔΑ επιστρέφει τους αριθμούς του ΔΔΑ σε αύξουσα σειρά

1. Δυαδικό Δένδρο Αναζήτησης

2. Βασικές Πράξεις

Οι **βασικές πράξεις** σε ένα δυαδικό δένδρο αναζήτησης (επεκτείνοντας το δυαδικό δένδρο) είναι:

- Εισαγωγή ενός στοιχείου στο δένδρο (insert_BST)
- **Αναζήτηση** ενός στοιχείου στο δένδρο (**search_BST**)
- Διαγραφή ενός στοιχείου από το δένδρο (delete_BST)

Παρατήρηση: Επεκτείνουμε τον ορισμό του Δυαδικού Δένδρου, αφού η εισαγωγή και η διαγραφή κόμβων από το ΔΔΑ θα ακολουθούν κάποιο συγκεκριμένο αλγόριθμο, ώστε μετά από την εκτέλεση των πράξεων το δένδρο να εξακολουθεί να έχει την ιδιότητα του ΔΔΑ.

1. Δυαδικό Δένδρο Αναζήτησης

3. Υλοποίηση σε C: Αναζήτηση σε ΔΔΑ

Η συνάρτηση «Αναζήτηση» ψάχνει για το στοιχείο Χ στο δυαδικό δένδρο αναζήτησης και επιστρέφει NAI/OXI ανάλογα με το αν το στοιχείο υπάρχει στο δένδρο:

Σκιαγράφηση αλγορίθμου:

```
Θέτει K = ρίζα του δένδρου

Επανέλαβε όσο K ≠ KENO

Αν (X = K)

Επέστρεψε ΝΑΙ

Αλλιώς αν (X > K)

Θέσε K=δεξί παιδί της K.

Αλλιώς αν (X < K)

Θέσε K=αριστερό παιδί της Κ.

Τέλος-Επανάληψης
Επέστρεψε ΟΧΙ
```

1. Δυαδικό Δένδρο Αναζήτησης

- 3. Υλοποίηση σε C: Αναζήτηση σε ΔΔΑ
- Παράδειγμα Αναζήτησης του δεδομένου 8 (κόκκινο χρώμα) και του 17 (μπλέ χρώμα)

- Αναζήτηση του 8: 10(αριστερά), 6(δεξιά), 7(δεξιά), 8 (βρέθηκε). Απάντηση: NAI
- Αναζήτηση του 17: 10(δεξιά), 14 (δεξιά), 19(αριστερά). ΚΕΝΟ. Απάντηση: ΟΧΙ

1. Δυαδικό Δένδρο Αναζήτησης

3. Υλοποίηση σε C: Αναζήτηση σε ΔΔΑ

```
/* TR search BST(): anazitisi tou x sto
        DDA me riza root */
int TR search BST(TREE PTR root, elem x)
   TREE PTR current;
   current=root;
   while (current!=NULL)
      if (x == current -> data)
         return TRUE;
      else if (x < current->data)
         current=current->left;
      else // x > current->data
         current=current->right;
   return FALSE;
```

<u>Α. Θεωρία</u>

1. Δυαδικό Δένδρο Αναζήτησης

4. Υλοποίηση σε C: Εισαγωγή σε ΔΔΑ

Ο αλγόριθμος «Εισαγωγής σε ΔΔΑ» δεδομένου ενός ΔΔΑ Τ και ενός δεδομένου χ:

- Αν το x υπάρχει στο δένδρο Τ επιστρέφει FALSE
- Αν το x δεν υπάρχει στο δένδρο T το εισάγει σε θέση που σέβεται το ΔΔΑ.

Σκιαγράφηση αλγορίθμου:

Αν Τ είναι άδειο, τοποθέτησε το x ως ρίζα. Επέστρεψε TRUE Θέσε Κ=ρίζα του δένδρου

Επανέλαβε:

Av x==K

Επέστρεψε FALSE

Αλλιώς αν x<Κ

Αν Κ δεν έχει αριστερό παιδί:

Κατασκεύασε αριστερό παιδί της Κ με δεδομένο x. Επέστρεψε TRUE

Αλλιώς

Θέσε Κ=αριστερό παιδί του Κ.

Αλλιώς // x>Κ

Αν Κ δεν έχει δεξί παιδί:

Κατασκεύασε δεξί παιδί του Κ με δεδομένο x. Επέστρεψε TRUE

Αλλιώς

Θέσε Κ=δεξί παιδί του Κ.

1. Δυαδικό Δένδρο Αναζήτησης

4. Υλοποίηση σε C: Εισαγωγή σε ΔΔΑ

> Παράδειγμα Εισαγωγής του δεδομένου 17

1. Δυαδικό Δένδρο Αναζήτησης

4. Υλοποίηση σε C: Εισαγωγή σε ΔΔΑ

```
/* TR insert BST(): eisagwgi tou x
        sto DDA me riza root */
int TR insert BST(TREE PTR *root, elem x)
  TREE PTR current;
  /* 1. Eisagwgi se adeio dentro */
  if (*root==NULL)
      TR insert root(root, x);
      return TRUE;
  /* 2. Anazitisi + Eisagwgi sto dendro */
  current=*root;
  while (1)
      if (x == current->data)
        return FALSE;
```

1. Δυαδικό Δένδρο Αναζήτησης

4. Υλοποίηση σε C: Εισαγωγή σε ΔΔΑ

```
else if (x < current->data)
    if (current->left==NULL)
       TR insert left(current, x);
       return TRUE;
    else
       current=current->left;
else // x > current->data
    if (current->right==NULL)
       TR insert right (current, x);
       return TRUE;
    else
       current=current->right;
```

1. Δυαδικό Δένδρο Αναζήτησης

5. Υλοποίηση σε C: Διαγραφή σε ΔΔΑ

Ο αλγόριθμος «Διαγραφής σε ΔΔΑ» παίρνει ως όρισμα ένα δένδρο Τ και ένα δεδομένο x (που υπάρχει στο δένδρο) και ξεχωρίζει 3 περιπτώσεις:

Αν ο κόμβος του x δεν έχει παιδιά, τότε διαγράφουμε τον κόμβο.

Παράδειγμα: Διαγραφή του «8»

1. Δυαδικό Δένδρο Αναζήτησης

- 5. Υλοποίηση σε C: Διαγραφή σε ΔΔΑ
- Αν ο κόμβος του x έχει ένα παιδί, τότε διαγράφουμε τον κόμβο και το παιδί του τον αντικαθιστά.

Παράδειγμα: Διαγραφή του «5»

1. Δυαδικό Δένδρο Αναζήτησης

- Αν ο κόμβος του x έχει δύο παιδιά, τότε: Βρίσκουμε τον επόμενο στην ενδοδιατεταγμένη διαδρομή και αντικαθιστούμε τον x με αυτόν.
 - Περίπτωση 1: Το δεξί παιδί του x δεν έχει αριστερό παιδί
 - Τότε ο χ αντικαθίσταται από το δεξί παιδί του (που διατηρεί το δεξί υποδένδρο του).

1. Δυαδικό Δένδρο Αναζήτησης

- Αν ο κόμβος του x έχει δύο παιδιά, τότε: Βρίσκουμε τον επόμενο στην ενδοδιατεταγμένη διαδρομή (y) και αντικαθιστούμε τον x με αυτόν.
 - Περίπτωση 2: Το δεξί παιδί του x έχει αριστερό παιδί
 - Ο y παίρνει τη θέση του x
 - Ο κόμβος του y αντικαθίσταται από το δεξί υποδένδρο του y

1. Δυαδικό Δένδρο Αναζήτησης

```
/* TR delete BST(): diagrafi tou x
          apo to DDA me riza root
int TR delete BST(TREE PTR *root, elem x)
   TREE PTR current, parent, nextOrdered;
   int p; /* 1. deksi paidi, 2. aristero paidi tou current */
   int temp;
   /* 1. Anazitisi tou komvou */
   parent=NULL;
   current=*root;
   while (current!=NULL)
      if (x == current->data)
         break;
      else if (x < current->data)
         parent=current;
         p=1;
         current=current->left;
```

1. Δυαδικό Δένδρο Αναζήτησης

```
else // x > current->data
      parent=current;
      p=2;
      current=current->right;
if (current==NULL)
   return FALSE;
/* 2.1 An den exei paidia */
if (current->left==NULL && current->right==NULL)
   free(current);
   if (parent==NULL)
      *root=NULL;
   else
      if (p==1)
         parent->left=NULL;
      else
         parent->right=NULL;
      return TRUE;
```

1. Δυαδικό Δένδρο Αναζήτησης

```
/* 2.2 Exei mono aristero paidi */
else if (current->left!=NULL && current->right==NULL)
   if (parent==NULL)
      *root=current->left;
   else
      if (p==1)
         parent->left=current->left;
      else
         parent->right=current->left;
   free(current);
   return TRUE;
/* 2.3 Exei mono deksi paidi */
else if (current->left==NULL && current->right!=NULL)
   if (parent==NULL)
      *root=current->right;
   else
      if (p==1)
         parent->left=current->right;
      else
         parent->right=current->right;
```

1. Δυαδικό Δένδρο Αναζήτησης

```
free (current);
          return TRUE;
/* 2.4 Exei aristero kai deksi paidi */
else
          /* 2.4.1 Vriskei ton epomeno stin endodiatetagmeni */
          p=1;
          nextOrdered=current->right;
          while (nextOrdered->left!=NULL)
                    parent=nextOrdered;
                    nextOrdered=nextOrdered->left;
                    p=2;
          /*2.4.2 Antallassei times me ton komvo pou diagrafetai */
          current->data=nextOrdered->data;
```

1. Δυαδικό Δένδρο Αναζήτησης

Β. Ασκήσεις Εφαρμογή 1: Μελέτη Προγράμματος

Μελετήστε το project tree.dev στο οποίο υλοποιούνται οι βασικές πράξεις των δυαδικών δένδρων αναζήτησης που μελετήσαμε στο μάθημα.

Β. Ασκήσεις Εφαρμογή 2: Εκτέλεση «με το χέρι»

1. Εισάγετε τα ακόλουθα δεδομένα σε ένα ΔΔΑ: «10 6 3 9 12 5 4 2 1 8».

2. Διαγράψτε τον κόμβο 12

3. Εισάγετε τον κόμβο 7

Β. Ασκήσεις Εφαρμογή 2: Εκτέλεση «με το χέρι»

4. Διαγράψτε τον κόμβο 3

5. Δώστε την ενδοδιατεταγμένη διαπέραση του δένδρου

6. Κατασκεύαστε πλήρες δυαδικό δένδρο αναζήτησης που να περιέχει τα περιεχόμενα του δένδρου .