Manual for Package: open-channel-flow Revision 1:6M

Karl Kästner

November 10, 2019

Contents

1	w/@B	ackwater1D	1
	1.1	Backwater1D	1
	1.2	backwater_approximation	1
	1.3	backwater_curve_iterative	1
	1.4	backwater_length	1
	1.5	dh_dx	2
	1.6	dh_dx	2
	1.7	dzs_dx	2
	1.8	gvf_x_chow	2
	1.9	invert	2
	1.10	solve	2
	1.11	solve_analytic	3
	1.12	solve_matrix	3
2	w/@P	otential_Flow	3
	2.1	Potential_Flow	3
	2.2	apply_boundary_potential_old	3
	2.3	assemble_discretization_matrix_rectilinear	3
	2.4	assemble_potential_matrix	3
	2.5	bc_dirichlet	4
	2.6	boundary_condition_side_outflow	4
	2.7	boundary_condition_side_outflow_1	4
	2.8	contour	4
	2.9	cut_boundary	4
	2.10	cut_rectangle	4
	2.11	infer_bed_level	5
	2.12	infer_bed_level2	5
	2.13	infer_bed_level3	5
	2.14	infer_bed_level_loop	5

	2.15	objective_bed_level 6
	2.16	old
	2.17	plot
	2.18	quiver
	2.19	sediment_transport 6
	2.20	solve_potential
	2.21	streamline
	2.22	surface_elevation
	2.23	test
	2.24	velocity_near_bed
	2.25	vertical_velocity
3	w/@P	otential_Flow_Analytic 7
	3.1	Potential_Flow_Analytic
	3.2	derive_lateral_outflow
	3.3	derive_lateral_outflow_finite_width
	3.4	lateral_outflow
	3.5	lateral_outflow_finite_width
	3.6	streamline
4	w/@S	WE 8
	4.1	SWE
	4.2	bc_incoming_non_reflecting
	4.3	bc_inflow
	4.4	bc_inflow_low_pass
	4.5	bc_inflow_non_reflecting
	4.6	bc_level
	4.7	bc_level_sommerfeld
	4.8	bc_nonreflecting
	4.9	bc_reflecting
	4.10	dot
	4.11	dt_cfl
	4.12	energy
	4.13	flux
	4.14	flux_lin
	4.15	fluxmateig
	4.16	jacobian
	4.17	lindot
	4.18	roe_average
	4.19	solve_analytic
	4.20	solve_stationary
	4.21	source_bed_level
	4.22	source_friction
	4.23	source_width

	4.24 4.25	0 0	11 11
5	w/@S	$ m WE_2d$	12
J	5.1		12
	5.2		12
	5.3		12
	5.4	e e e e e e e e e e e e e e e e e e e	12
	0.4	solve_stationary	12
6	w/@Si	$ m de_{-}Weir$	12
	6.1	Side_Weir	12
	6.2	dzs_dx	12
	6.3	surface_elevation	12
7	\mathbf{w}		13
	7.1	Potential_Flow_Map	13
	7.2	chezy2manning	13
	7.3	v S	13
	7.4		13
	7.5	-	13
	7.6		13
	7.7	manning2drag	14
8	w/mea	ander-bend/@Equilibrium_Bend	14
8	,	1	14 14
8	w/mea 8.1 8.2	Equilibrium_Bend	
8	8.1 8.2	Equilibrium_Bend	14 14
8	8.1 8.2 8.3	Equilibrium_Bend	14 14 14
8	8.1 8.2 8.3 8.4	Equilibrium_Bend	14 14 14 14
8	8.1 8.2 8.3 8.4 8.5	Equilibrium_Bend	14 14 14 14 14
8	8.1 8.2 8.3 8.4 8.5 8.6	Equilibrium_Bend bed_profile bed_profile_uniform calibrate dD_dr dr. dh_dr	14 14 14 14 14
8	8.1 8.2 8.3 8.4 8.5 8.6 8.7	Equilibrium_Bend bed_profile bed_profile_uniform calibrate dD_dr dh_dr dh_dr_uniform	14 14 14 14 14 14
	8.1 8.2 8.3 8.4 8.5 8.6 8.7 8.8	Equilibrium_Bend bed_profile bed_profile_uniform calibrate dD_dr dh_dr dh_dr grain_size_profile	14 14 14 14 14
	8.1 8.2 8.3 8.4 8.5 8.6 8.7 8.8	Equilibrium_Bend bed_profile bed_profile_uniform calibrate dD_dr dh_dr dh_dr grain_size_profile	14 14 14 14 14 14
	8.1 8.2 8.3 8.4 8.5 8.6 8.7 8.8	Equilibrium_Bend bed_profile bed_profile_uniform calibrate dD_dr dh_dr dh_dr grain_size_profile	14 14 14 14 14 14 15
	8.1 8.2 8.3 8.4 8.5 8.6 8.7 8.8 w/mea	Equilibrium_Bend bed_profile bed_profile_uniform calibrate dD_dr dh_dr dh_dr grain_size_profile ander-bend	14 14 14 14 14 14 15
	8.1 8.2 8.3 8.4 8.5 8.6 8.7 8.8 w/mea 9.1	Equilibrium_Bend bed_profile bed_profile_uniform calibrate dD_dr dh_dr dh_dr dh_dr_uniform grain_size_profile ander-bend Kinoshita	14 14 14 14 14 14 15 15
	8.1 8.2 8.3 8.4 8.5 8.6 8.7 8.8 w/mea 9.1 9.2	Equilibrium_Bend bed_profile bed_profile bed_profile_uniform calibrate dD_dr dh_dr dh_dr dh_dr dh_dr-uniform grain_size_profile Ander-bend Kinoshita bend_transverse_velocity	14 14 14 14 14 15 15 15
	8.1 8.2 8.3 8.4 8.5 8.6 8.7 8.8 w/mea 9.1 9.2 9.3	Equilibrium_Bend bed_profile bed_profile_uniform calibrate dD_dr dh_dr dh_dr dh_dr_uniform grain_size_profile Ander-bend Kinoshita bend_transverse_velocity bend_velocity_near_bed kinoshita_	14 14 14 14 14 15 15 15 15
	8.1 8.2 8.3 8.4 8.5 8.6 8.7 8.8 w/mea 9.1 9.2 9.3 9.4	Equilibrium_Bend bed_profile bed_profile_uniform calibrate dD_dr dh_dr dh_dr dh_dr grain_size_profile ander-bend Kinoshita bend_transverse_velocity bend_velocity_near_bed kinoshita_	14 14 14 14 14 15 15 15 15 15
9	8.1 8.2 8.3 8.4 8.5 8.6 8.7 8.8 w/mea 9.1 9.2 9.3 9.4 9.5 9.6	Equilibrium_Bend bed_profile bed_profile_uniform calibrate dD_dr dh_dr dh_dr dh_dr_uniform grain_size_profile ander-bend Kinoshita bend_transverse_velocity bend_velocity_near_bed kinoshita_ random_meander test_rozovskii	14 14 14 14 14 15 15 15 15 15 15
9	8.1 8.2 8.3 8.4 8.5 8.6 8.7 8.8 w/mea 9.1 9.2 9.3 9.4 9.5	Equilibrium_Bend bed_profile bed_profile_uniform calibrate dD_dr dh_dr dh_dr dh_dr_uniform grain_size_profile Ander-bend Kinoshita bend_transverse_velocity bend_velocity_near_bed kinoshita_ random_meander test_rozovskii	14 14 14 14 14 15 15 15 15 15 15 15

	11.1	ChezyRatingCurve
	11.2	DynamicKeuleganRC
	11.3	DynamicManningRC
	11.4	DynamicPowerRC
	11.5	KeuleganRatingCurve
	11.6	ManningRatingCurve
	11.7	PolyRatingCurve
	11.8	PowerRatingCurve
	11.9	PowerRatingCurveOffset
	11.10	RatingCurve
	11.11	csarea
	11.12	csdischarge
	11.13	csperimeter
	11.14	csradius
	11.15	cswidth
	11.16	test_PowerRatingCurve
	11.17	wfunc
	11.11	within the second secon
12	\mathbf{w}	18
	12.1	surface_slope
	12.2	sw_reflection
	12.3	sw_reflection_stepwise
		•
13	w/test	/test_Backwater1D 18
	13.1	test_bw1d_solve_matrix
14	337	19
14	14.1	test_inverse_backwater_curve
	14.1	test_nse_nz
	14.2	test_nse_nz
15	w/unii	form-stationary-flow 19
	15.1	chezy2drag
	15.2	critical_flow_depth
	15.3	drag2chezy
	15.4	normal_flow_depth
	15.5	normal_flow_depth
	15.6	normal_flow_discharge
	15.7	normal_flow_slope
	15.8	normal_flow_velocity
	, -	A
16	•	ocity-profile/@Log_profile 20
	16.1	Log_profile
	16.2	df_dh
	16.3	df dh

	16.4	$df_dln_z0 \ \dots \dots \dots \dots \dots$	20
	16.5	$df_dln_z0_\ldots$	20
	16.6	profile	21
	16.7	profile	21
	16.8	profile_bias	21
	16.9	$\operatorname{regmtx} \ \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots$	21
	16.10	ubar	21
17	w/velo	$ m profile/@Log_profile_with_bend_correction$	22
	17.1	$Log_profile_with_bend_correction\ .\ .\ .\ .\ .\ .\ .\ .$	22
	17.2	$df_dc \dots \dots \dots \dots \dots \dots \dots \dots \dots $	22
	17.3	$df_{-}dc_{-}\ldots\ldots\ldots\ldots\ldots$	22
	17.4	$du_dz\ \dots$	22
	17.5	fit	22
	17.6	profile	22
	17.7	regmtx	22
	17.8	u	22
	17.9	$u_{\scriptscriptstyle{-}} \ldots \ldots \ldots \ldots \ldots \ldots$	23
18	w/velo	ocity-profile/@Log_profile_with_cubic_wake	23
	18.1	Log_profile_with_cubic_wake	23
	18.2	$\mathrm{df}_{-\mathrm{dc}}$	23
	18.3	$\mathrm{df}_{-}\mathrm{dc}_{-}$	23
	18.4	profile	23
	18.5	regmtx	23
19	w/velo	ocity-profile/@Log_profile_with_dip	23
	19.1	Log_profile_with_dip	23
	19.2	fit	24
20	w/velo	$ m profile/@Log_profile_with_linear_bend_correction$	24
	20.1	Log_profile_with_linear_bend_correction	24
	20.2	df_dc	24
	20.3	$\mathrm{df}_{-}\mathrm{dc}_{-}\dots\dots\dots\dots\dots\dots$	24
	20.4	$\mathrm{du}_{-}\mathrm{dz}$	$\frac{1}{24}$
	20.5	profile	24
	20.6	regmtx	24
21	w/velc	ocity-profile/@Log_profile_with_wake	25
	21.1	Log_profile_with_wake	25
	21.1	df.dc	$\frac{25}{25}$
	21.2	$\mathrm{df}_{-}\mathrm{dc}_{-}\dots\dots\dots\dots\dots$	$\frac{25}{25}$
	21.4	$\mathrm{du}_{-}\mathrm{dz}$	$\frac{25}{25}$
	21.4	profile	$\frac{25}{25}$
	41.0	promo	40

21.6	regmtx	25
22 w/ve	locity-profile/@VP	25
22.1	VP	25
22.2	process_joint	26
22.3	process_transverse_profile	26
22.4	process_vertical_profile	26
22.5	profile_prediction_error	26
23 w/ve	locity-profile/@Vertical_profile	27
23.1	Vertical_profile	27
23.2	fit	27
23.3	u	27
24 w/ve	locity-profile	27
24.1	$fit_displacement_profile $	27
24.2		27
24.3	$test_law_of_the_wall_fit $	28
24.4	$transverse_profile_parameter $	28
24.5	$transverse_velocity_profile \ . \ . \ . \ . \ . \ . \ . \ . \ . \ $	28
24.6	$transverse_velocity_profile_olesen \ . \ . \ . \ . \ . \ . \ . \ . \ . \ $	28
24.7	$transverse_velocity_profile_rozovskii $	28
24.8	$transverse_velocity_profile_shiono_knight\ .\ .\ .\ .\ .\ .$	28
24.9	• · · · · · · · · · · · · · · · · · · ·	29
24.10	1 0	29
24.11	vertical_velocity_profile	29
24.12	z2s_rational	29
$25 \mathrm{w/wr}$	rapper	2 9
25.1	discharge2stage	29
25.2	$stage 2 discharge \dots \dots \dots \dots \dots \dots \dots$	29
1 w/	@Backwater1D	
1 W/	@Dackwater1D	
1.1 Ba	ackwater1D	
	ne gradually varied flow equation (backwater equation)	
In one c	ITHERSTON	
c.f. Cho	ow, Bresse	

6

 ${\bf 1.2}\quad {\bf backwater_approximation}$

approximation of the backwater curve by an exponential function note: this is not necessarily a good approximation in the case of tide, $\mathbb{Q}t$ can be given

1.3 backwater_curve_iterative

analytic solution of the gradually varied flow equation c.f. Bresse, Chow

1.4 backwater_length

backwater length

$1.5 \, dh_dx$

change of depth along channel for the backwater equation beta : momentum coefficient this is effectively an equation in h^3

$1.6 ext{dh}_{-} ext{dx}_{-}$

$1.7 dzs_dx$

change of surface elevation along channel

1.8 gvf_x_chow

analytical solution to the gradually varied flow equation (
 backwater equation)
c.f. Chow, Bresse

1.9 invert

determine bed level from surface elevation
 (inverse backwater equation)
 this is ill conditioned, as the surface is smooth for subcritical
 flow,
 even if the bed is not smoth

C : chezy
W : width
Q : discharge
S : bed slope
y0 : surface elevation at outflow
lateral inflow

1.10 solve

solve the gradually varied flow equation (backwater equation) C : chezy W : width Q : discharge S : bed slope y0 : surface elevation at outflow

1.11 solve_analytic

analytical solution to the gradually varied flow equation (bresse method) $u_.\,\hat{\ }(n-m)\,./(1-u_.\,\hat{\ }n)$

1.12 solve_matrix

2 w/@Potential_Flow

2.1 Potential_Flow

${\bf 2.2 \quad apply_boundary_potential_old}$

2.3 assemble_discretization_matrix_rectilinear

assemble the discretisation matrix

2.4 assemble_potential_matrix

assemble the discretisation matrix for potential flow

2.5 bc_dirichlet

apply Dirichlet boundary conditions

2.6 boundary_condition_side_outflow

```
apply boundary conditions for side outflow p*phi + (1-p)*d/db phi = rhs y : along channel coordinate
```

${\bf 2.7} \quad boundary_condition_side_outflow_1$

```
apply boundary conditions
p*phi + (1-p)*d/db phi = rhs
```

2.8 contour

contour plot of the potential flow solution

2.9 cut_boundary

```
cut the boundary from the domain
wa : width of inlet to side channel
wb : width of side channel
```

2.10 cut_rectangle

```
cut a rectangle from the domain
TODO, this requires also an adaptation of the derivative matrices
    -> step over to semi-unstructured mesh
```

2.11 infer_bed_level

```
note: this is pretty much a broken function for the inference of stationary morphology
```

Missing:

- rolling down of transverse slope to balance secondary flow in bends
- quasi time steippong

at stationary state:

- changes of discharge along the streamlines of discharge are balanced
 - by a change in depth, to keep the velocity and sediment transport constant along the streamline

```
\label{eq:dz_b/dt} \begin{split} dz_b/dt &= dqs/dx + dqs/dn = 0 & \text{(i)} \\ TODO \text{ this only true for infinite bends, as sediment can also move to the side} \\ dqs/ds &= d/s(q/h) = 1/h \ dq/ds - q/h^2 \ dh/ds = 0 \\ TODO \text{ this is only true in an ifinite bend (ikeda)} \\ dqs/dn &= 0 \\ \text{streamlines along discharge or velocity -> does not matter eq (i)} \\ \text{is direction independent} \end{split}
```

2.12 infer_bed_level2

infer the bed level

2.13 infer_bed_level3

2.14 infer_bed_level_loop

the bed level does not completely converge but starts to oscillate, this is presumably due to the non-compact kernel implementation of the laplacian oberator

2.15 objective_bed_level

objective function for determining the bed level

2.16 old

2.17 plot

surface plot

2.18 quiver

2.19 sediment_transport

compute the sediment transport

2.20 solve_potential

solve for the flow potential

2.21 streamline

compute a streamline

2.22 surface_elevation

compute surface elevation according to Bernoulli's law

2.23 test

2.24 velocity_near_bed

determine the velocity near the bed

2.25 vertical_velocity

determine the vertical velocity from continuity

3 w/@Potential_Flow_Analytic

3.1 Potential_Flow_Analytic

analytical solutions to various depth-averaged potential flow problems $% \left(1\right) =\left(1\right) +\left(1\right) +\left($

3.2 derive_lateral_outflow

derive potential flow solution to lateral outlfow from an
 infinitely
wide main channel

3.3 derive_lateral_outflow_finite_width

derive coefficients for lateral outflow in the case of potential flow

3.4 lateral_outflow

potential flow solution to the case of lateral outflow from an
 infinitely
wide channel

3.5 lateral_outflow_finite_width

analytical potential flow solution to lateral outflow from an
 infinitely
wide channel

3.6 streamline

numerically follow path along streamline by integrating the velocity $% \left(1\right) =\left(1\right) \left(1\right)$

4 w/@SWE

4.1 SWE

Class to solve the (cross sectionally averaged) shallow water equation (st venant equation)

4.2 bc_incoming_non_reflecting

set non-reflecting boundary condition for the 1D SWE

4.3 bc_inflow

inflow boundary condition

4.4 bc_inflow_low_pass

set low frequency Dirichlet, high frequency pass boundary condition

4.5 bc_inflow_non_reflecting

set non-reflecting boundary condition

4.6 bc_level

set surface level as Dirichlet boundary condition

4.7 bc_level_sommerfeld

set surface level as boundary condition by sommerfeld method

4.8 bc_nonreflecting

set non-reflecting boundary condition extrapolate $\ensuremath{\text{0-order}}$

4.9 bc_reflecting

set reflecting boundary condition extrapolate 0-order and invert \boldsymbol{v}

4.10 dot

time derivative (only for matlab internal ode-solver) TODO this is not swe specific continuity dA/dt + dQ/dx = I

momentum

```
dQ/dt + d/dx(Qu + 1/2 gh^2) = gA(S_f - S_b)

S_b = dz_b/dx

S_f = tau_x/rho_w = C_f u|u|
```

$4.11 dt_cfl$

determine time step required by cfl

4.12 energy

determine total energy as sump of potential and kinetic energy this is preserved for fricitionless flows

4.13 flux

st venant's shallow water equation fluw

4.14 flux_lin

linearised st-venant equation

4.15 fluxmateig

eigenvalues und vectors of the swe

4.16 jacobian

```
{\tt Jacobian\ of\ the\ SWE}
```

```
dq/dt + J dq/dx = sourceterm
note: d/dx(A*q) = J dq/dx
```

4.17 lindot

linearised SWE width variation not included, goes into rhs force term

[0, 1] [A] = [Q]
[
$$-u^2+gH$$
, $2u$] [Q] dx [Q $^2/A+1/2gA^2/w$] $dx - 1/2gA^2/w^2$ dw/dx force term

4.18 roe_average

roe average for the SWE

4.19 solve_analytic

linearised analytic solution of the swe

4.20 solve_stationary

stationary solution to the SWE

4.21 source_bed_level

source term of the SWE caused by a change of the bed level

Note: this term causes splitting and averaging methods to fail to give accurate predictions of the smooth surface at steps of the bed

4.22 source_friction

friction source term of the SWE

4.23 source_width

source term (reaction term) for channels with variable width

4.24 swe_geometry

predefined functions to set up channel geometry

4.25 swe_ic

predefined functions of channel geometries

5 w/@SWE_2d

5.1 SWE_2d

Dynamic solution of the shallow water equation (depth average, 2D)

${\bf 5.2} \quad apply_boundary_condition_stationary$

apply boundary condition for stationary flow

5.3 assemble_stationary

TODO, g should be replaced by gx,gy,gz, see chaudhri assemble discretisation matrix for stationary flow

5.4 solve_stationary

solve SWE for statinary flow (dU/dt = dQ/dt = 0)

6 w/@Side_Weir

6.1 Side_Weir

side weir, analytical solution to (critical) lateral outflow

$6.2 dzs_dx$

side weir, along channel surface gradient

6.3 surface_elevation

along-channel surface elevation for (critical) lateral outflow over a side-weir $\,$

7 w

7.1 Potential_Flow_Map

wrapper to store precomputed streamlines of potential flows

7.2 chezy2manning

7.3 diffusion_wave

```
propagation of a diffusion wave (flood wave), c.f. ponce advection diffusion where is the bed slope? friction slope eddy slope chow 1988 d(A+A0)/dt + dQ/dx = q dQ/dt + d/dx \ betaQ^2/A + gA(dh/dx + Sf + Se) - beta \ q_i \ v_i + Wf \ B = 0 A0 ignored inflow and wind shear ignored
```

7.4 friction_slope

friction slope (surface slope) for uniform stationary flow

7.5 $linear_wave$

linear wave routing (linearised kinematic wave)

7.6 manning2chezy

7.7 manning2drag

8 w/meander-bend/@Equilibrium_Bend

8.1 Equilibrium_Bend

Transverse profile of the bed level and bed material grain size in an equilibrium (infintely long) meander bend

8.2 bed_profile

predict transverse bed profile of an equilibrium meander bend

8.3 bed_profile_uniform

transverse profile of the bed level of an equilibrium meander bend with uniform grain size $\,$

8.4 calibrate

calibrate bend geometry to given profile

$8.5 ext{ dD_dr}$

$8.6 \, dh_dr$

across channel derivative of flow depth for a meandering river

8.7 dh_dr_uniform

transverse gradient of the bed level of an equilibrium meander bend for the case of uniform bed material ${\bf r}$

8.8 grain_size_profile

transverse (across channel) profile of the bed material grain size in a river meander

9 w/meander-bend

9.1 Kinoshita

- % Public properties
- % Public get properties
- % Private properties
- % Constructor
- % Setters and getters
- % generic methods

9.2 bend_transverse_velocity

transverse velocity profile in a meander bend

9.3 bend_velocity_near_bed

near-bed-velocity in a meander bend

9.4 kinoshita_

9.5 random_meander

generate a pseudo random meander

9.6 test_rozovskii

- 10 w/old
- 10.1 UniformFlow

11 w/rating-curve

11.1 ChezyRatingCurve

rating curve, Chezy formalism

11.2 DynamicKeuleganRC

Dynamic Rating Curve, Keulegan roughness formulation (dynamic = correction for hysteresis loop)

11.3 DynamicManningRC

Dynamic Rating Curve, Manning roughness formulation (dynamic = correction for hysteresis loop)

11.4 DynamicPowerRC

Dynamic Power Law Rating curve
(dynamic = correction for hysteresis loop)

11.5 KeuleganRatingCurve

11.6 ManningRatingCurve

11.7 PolyRatingCurve

11.8 PowerRatingCurve

stationary rating curve, power law

11.9 PowerRatingCurveOffset

stationary rating curve, stage-discharge follows power law

11.10 RatingCurve

Fri Feb 13 10:02:52 CET 2015 rating curve superclass

11.11 csarea

 $predict\ cross\ sectional\ area\ from\ transverse\ bed\ level\ profile$ and surface elevation

11.12 csdischarge

compute discharge

11.13 csperimeter

compute wetted perimeter

11.14 csradius

compute hydraulic radius of the cross section

11.15 cswidth

determine cross section width

11.16 test_PowerRatingCurve

11.17 wfunc

determine channel width

12 w

12.1 surface_slope

surface slope for uniform stationary flow

12.2 sw_reflection

reflection coefficients of shallow water waves at a sudden change of the cross section (sudden change of admittance) c.f. lighthill, ippen-harleman

12.3 sw_reflection_stepwise

time passes and phase shifts transmission and reflection coefficient depend on direction ! iterative (recursive) reflection and transmission

- 13 w/test/test_Backwater1D
- 13.1 test_bw1d_solve_matrix
- 14 w
- 14.1 test_inverse_backwater_curve
- 14.2 test_nse_nz
- 15 w/uniform-stationary-flow
- 15.1 chezy2drag
- 15.2 critical_flow_depth

critical flow depth in uniform stationary flow

15.3 drag2chezy

15.4 normal_flow_depth

normal flow depth for uniform stationary flow function $H = normal_flow_depth(Q,W,C,S)$

15.5 normal_flow_depth_

normal flow depth in uniform stationary flow

15.6 normal_flow_discharge

normal flow discharge for uniform stationary flow

15.7 normal_flow_slope

normal flow slope in uniform stationary flow

15.8 normal_flow_velocity

normal flow velocity in uniform stationary flow

$16 ext{ w/velocity-profile/@Log_profile}$

16.1 Log_profile

logarithmic profile of the streamwise velocity

$16.2 ext{d}f_{-}dh$

sensitivity of profile with respect to depth

16.3 df_dh_

sensitivity of profile with respect to depth

$16.4 df_dln_z0$

sensitivity of velocity profile with respect to roughness length

$16.5 ext{df_dln_z0_-}$

sensitivity of profile with respect to roughness length

16.6 profile

vertical profile of the streamwise velocity

16.7 profile_

scale of velocity at instrument depth to depth average velocity roughness length and associated standard error can change in time, i.e. may be passed as vectors

```
: [1xn] water surface level
zb
     : [1x1] bottom level
     : [1xn] or [1x1]
       level of velocity measurement,
       i.e. level of HADCP beam bin centre, coincides with
           instrument level,
       if the HADCP is horizontally aligned
       only needs to be passed as vector if instrument is
           redeployed or
       becomes misaligned
ln_z0 : [1xn] or [1x1]
       natural logarithm of the roughness length
     : [1xn] or [1x1]
       standard error of ln_z0
function [fz_mu fz_s fz_sp fz_bias fz_eps] = log_profile(zs,zb,za,
   ln_z0,s,sp,e)
```

16.8 profile_bias

16.9 regmtx

regression matrix

16.10 ubar

depth averaged velocity

17 w/velocity-profile/@Log_profile_with_bend_correction

17.1 Log_profile_with_bend_correction

vertical velocity profile corrected for bend flow

$17.2 ext{d}f_{-}dc$

sensitivity of the velocity profile with respect to the bend correction parameter c

17.3 df_dc_

$17.4 du_dz$

17.5 fit

fit the vertical velocity profile

17.6 profile_

vertical velocity profile

17.7 regmtx

regression matrix

17.8 u

streamwise velocity

17.9 u₋

streamwise velocity

$18 \quad w/velocity-profile/@Log_profile_with_cubic_wake$

$18.1 \quad Log_profile_with_cubic_wake$

log profile with cubic wake

$18.2 ext{d}f_{-}dc$

sensitivity of profile with respect to wave parameter $% \left(1\right) =\left(1\right) \left(1\right)$

 $18.3 ext{d}f_{-}dc_{-}$

sensitivity of profile with respect to wake parameter

18.4 profile_

vertical velocity profile

18.5 regmtx

regression matrix

19 w/velocity-profile/@Log_profile_with_dip

$19.1 \quad Log_profile_with_dip$

Logarithmic profile with dip

19.2 fit

fit the vertical velocity profile

20 w/velocity-profile/@Log_profile_with_linear_bend_correction

20.1 Log_profile_with_linear_bend_correction

log profile with linear bend correction

$20.2 ext{d}f_{-}dc$

sensitivity of profile with respect to wake parameter

$20.3 ext{ df_dc_}$

sensitivity of velocity profile with respect to wave parameter

$20.4 du_dz$

velocity shear along vertical

20.5 profile_

velocity profile

20.6 regmtx

regression matrix

${\bf 21} \quad {\bf w/velocity\text{-}profile/@Log_profile_with_wake}$

$21.1 \quad Log_profile_with_wake$

logarithmic velocity profile with wake correction ${\tt c.f.}$ coles

21.2 df_dc

sensitivity of profile with respect to wake parameter

21.3 df_dc_

sensitivity of velocity profile with respect to wake parameter

$21.4 \, du_dz$

velocity shear

21.5 profile_

predict velocity profile

21.6 regmtx

```
log law with wake u = us/k ln(z) - us/k ln(z0) + us/k (2/H^2 z - 3/H^3 z^2)
```

22 w/velocity-profile/@VP

22.1 VP

velocity profile

22.2 process_joint

22.3 process_transverse_profile

process the transverse velocity profile

22.4 process_vertical_profile

predict vertical profile error distribution parameter for ${\tt HADCP}$ error estimate

22.5 profile_prediction_error

```
input :
     : [nbin x nens]
        - values for each bin (or across section) and ensemble (or
           reference measurement)
        this are estimates estimates of the discharge or the cross
           sectional averaged
        velocity from the raw values
        - the profile should be limited to the effective profiling
        abobj 75-100m for a 600kHz ADCP
    : distance between HADCP bins
width : cross section width
objput:
      sd_n : expected standard deviation for increasing profiling
function [s_rel s_err s_dat rho res m2 u_pred fdx] =
   velocity_variation(U)
hadcp_prediction_error
```

 ${\tt TODO}$ take scales and unscaled velocity to do combine with harmmean estimate

note: previus versions:

residual was computed with respect to the predicted local velocity

 $\ensuremath{\mathsf{mse}}$ was not upscaled to cs, as profile was expected to cover entire cs

finite width of cs was not considered

parametric estimate from moments, objliers should be filtered beforehand

Note that the median absolute deviation is not a good estimate, because it may excludes rare events like reverse flow of floods thus, the only acceptible more robust estimate would be mean absolute deviation

23 w/velocity-profile/@Vertical_profile

23.1 Vertical_profile

vertical profile of the streamwise velocity, superclass

23.2 fit

fit vertical velocity profile parameter
function obj = fit(obj,U,S,h,binmask)

23.3 u

predict velocity along the vertical based on profile

24 w/velocity-profile

24.1 fit_displacement_profile

fit the log profile to the vertical profile of the streamwise velocity

24.2 lateral_division_method

24.3 test_law_of_the_wall_fit

24.4 transverse_profile_parameter

24.5 transverse_velocity_profile

```
transverse profile of the streamwise velocity c.f. shiono knight
```

24.6 transverse_velocity_profile_olesen

transverse profile of the streamwise velocity in a meander bend

24.7 transverse_velocity_profile_rozovskii

```
transversal velocity distribution in a bend
Rososkii,
as in the book central differences along the radius and euler
forward in space
are used, note that since the advent of the computer more advanced
schemes
could be used (see build in solvers)
cfl condition is not explicitely checked
Rosovsky assumes a constant water level, e.g. does not consider
superelevation
```

```
I_theta = -1/r \, dz/d_theta (p. 22)

d_theta = 1/R \, ds|_R

=> I_theta = -R/r \, dz/ds = -R/r \, I_0

It : (1.32) drop of level per unit angle, identical across section
```

24.8 transverse_velocity_profile_shiono_knight

transverse profile of the streamwise velocity, determined
 analytically
by the method of shiono and knight
shape of velocity profile only dependent on lambda, f, H, not slope

24.9 transverse_velocity_profile_with_slope

```
stationary 1D shallow water equation across a river section 0 = -g h SO - tau_b/rho + d/dn (nu h du/dn) 0 = -g h SO + g u^2/C^2 + d/dn (nu h du/dn) includes tranvese gradient term
```

note that shiono/knight 1991 provide an <code>_analytic_</code> solution, which takes the form of an expontially decaying side wall effect

24.10 vertical_profile_of_velocity_vriend

vertical profile of the streamwise velocity, method of de vriend

24.11 vertical_velocity_profile

vertical profile of the streamwise velocity in non-uniform flow

24.12 z2s_rational

25 w/wrapper

25.1 discharge2stage

wrapper function

25.2 stage2discharge