Fovea Segmentation using Deep Learning Project Report

Sahil Khose¹ Ankita Ghosh²

¹4th year, ICT Department Manipal Institute of Technology

²4th year, CSE Department Manipal Institute of Technology

04 Sept 2021

Table of Contents

- Dataset and Preprocessing
- 2 Literature Review
- 3 Architecture
- Pipeline
- 5 Evaluation and Results
- 6 Discussion

Dataset

We have trained the model on five datasets to perform binary segmentation. The datasets consist of coloured retina images and their corresponding masks:

① Drive: 40 datapoints

Messidor: 180 datapoints

IDRiD: 58 datapoints

diaretdb0: 127 datapoints

diaretdb1: 79 datapoints

Preprocessing

- For feature extraction for the deep learning model, we apply bilateral filter → two iterations of dilation → one iteration of erosion.
- For image augmentation we perform shuffling, rotation, scaling, shifting and brightness contrast.
- The images and masks are resized to 512×512 dimensions while training.
- We also added cropping to increase the number of datapoints by 20%.

Literature Review

- 1. Paper 1: Tan et al
 - Converted RGB to LUV then processing on L to RGB
 - LReLU, softmax, Xavier initialization is used
 - 7-layer custom network is trained
- 2. Paper 2: Sedai et al
 - 2 stage approach is used: coarse network followed by fine network
 - ImageNet pre-trained VGG-16 model is used
 - Class balanced cross entropy loss is used to fix the imbalance problem

Architecture

- We trained a DeepLabV3+ model with EfficientNet-B3 as the backbone.
 - DeepLabV3+ is a refinement of DeepLabV3 which uses atrous convolution. Atrous convolution is a powerful tool to explicitly adjust the filter's field-of-view as well as control the resolution of feature responses computed by Deep Convolution Neural Network.
 - We use encoder depth of 5 which refers to the number of stages used in encoder. The number of decoder channels used is 256.

Figure: DeepLab V3+

Loss

Binary Cross Entropy Loss

$$L_{BCE} = y \log(y_{hat}) + (1 - y) \log(1 - y_{hat})$$

Dice Loss

$$L_{Dice} = 1 - \frac{2TP}{2TP + FN + FP}$$

Tversky Loss

$$L_{Tversky} = 1 - \frac{TP}{TP + \alpha FN + \beta FP}$$
 where, $\alpha + \beta = 1$

Focal Tversky Loss

$$L_{FTL} = (L_{Tversky})^{\gamma}$$
 where, γ controls the non-linearity of the loss.

Final Loss

$$L_f = \lambda L_{BCE} + (1 - \lambda)L_{FTL}$$
 where, λ is the weight parameter.

Semi-supervised pipeline

```
Algorithm 1: Semi-supervised classification train
  loop
    Input: Sample image
    Output: Class of the given image
 1 for epoch \leftarrow 0 to E do
         if epoch < E_i^{\alpha} then
              \alpha \leftarrow \alpha:
 3
        else if epoch < E_f^{\alpha} then
             \alpha \leftarrow \frac{\alpha_f - \alpha_i}{E_i^{\alpha} - E_i^{\alpha}} * (epoch - E_i^{\alpha}) + \alpha_i
 5
         else
              \alpha \leftarrow \alpha_f
         end if
         Run the model on train set
         loss \leftarrow BCE(l, \hat{l}) + \alpha *BCE(u_{epoch}, u_{epoch-1})
10
         Generate the pseudo labels for unlabeled data
11
         Evaluate the model on validation set
13 end for
```

Figure: Semi-supervised algorithm

Evaluation and Results

Method	F1	MIoU	Sens	Spec	Acc
non-DL	0.804	0.688	0.816	0.998	0.996
Ours	0.824	0.705	0.917	0.997	0.997
Tan et al	-	-	0.885	0.991	-
Sedai et al	0.810	-	-	-	-

Table: Metrics Comparison

Image - Mask - Prediction

Figure: Image, Mask and Prediction (left to right)

Discussion

- We were able to get state-of-the-art results for fovea segmentation using our semi-supervised segmentation method.
- All our work for this 2.5 month project has been summarised in our
 5 bi-weekly reports in detail.
- We are currently working on AMD classification and are aiming to perform equally well on that task.