[19]中华人民共和国专利局

[51]Int.Cf

H03K 17/687

[12] 发明专利申请公开说明书

[21] 申请号 98101926.9

[43]公开日 1998年12月23日

|11|| 公开号 CN 1202764A

|22|中頃日 98.5.18

|30|优先权

[32]97.5.16 [33]JP[31]143319 / 1997

[71]申请人 日本电气株式会社

地址 日本国东京都

[72]发明人 俁野达哉

[74]专利代理机构 中科专利代理有限责任公司 代理人 刘朓峰

权利要求书 4 页 说明书 25 页 附图页数 9 页

[54]发明名称 电平转换器电路 [57]摘要

本发明提供一种带有输入部分和驱动器部分的 电平转换器电路,其中位于驱动器部分且被连接到 输出端的一个驱动器场效应管的栅极直接被位于输 人部分且其栅极连接到输入端上的输入部分场效应 管所驱动,这样可以使得这种新型的电平转换器电 路能以高速度进行逻辑电平转换操作。

权 利 要 求 书

1、一种用于把一组原来的逻辑电平转换为另一组不同于所述原来的电压电平的转换后的电压电平的电压电平转换器电路,其特征在于其包括一个驱动器部分和一个连接到所述驱动器部分的输入部分,所述的驱动器部分带有一个输出输出信号的输出端,所述的输入部分带有一个输入输入信号的输入端,所述驱动器部分有选择地向所述输出端提供其中一个所述的转换后的电压电平,所述输入部分根据输入信号控制所述驱动器部分有选择地向所述输出端提供其中一个所述转换后的电压电平;

其中位于所述驱动器部分且直接连接到所述输出端的驱动器部分的 晶体管的栅极被连接到位于所述输入部分且栅极直接到所述输入端的输 入部分晶体管上,使得所述驱动器部分晶体管的栅极可以直接被所述输入 部分晶体管所驱动。

- 2、如权利要求1所述的电压电平转换器电路,其特征是所述转换后的电压电平的高电平比所述原来的电压电平的高电平高,且所述转换后的电压电平的低电平比所述原来的电压电平的低电平低。
- 3、如权利要求1所述的电压电平转换器电路,其特征是所述输入部分包括:
 - 一个带有连接到所述输入端的输入端的反相器:

串联于分别带有高电压电平和原来的低电压电平的高电压线和低电压线之间晶体管,且该晶体管的栅极连接到所述输入端和所述反相器的输出端,并且所述晶体管驱动位于所述驱动器部分的驱动器部分晶体管的栅极。

- 4、如权利要求1所述的电压电平转换器电路,其特征是所述输入部分包括:
 - 一个带有连接到所述输入端的输入端的反相器:

第一组串联于分别带有高的转换后电压电平和原来的低电压电平的

高电压线和低电压线之间的晶体管,且该晶体管的栅极被连接到所述输入端和所述反相器的输出端,并且所述晶体管驱动位于所述驱动器部分的其中一个驱动器部分晶体管的栅极。

第二组串联于分别带有原来的高电压电平和低的转换后电压电平的高电压线和低电压线之间的晶体管,且该晶体管的栅极被连接到所述输入端和所述反相器的输出端,并且所述晶体管驱动位于所述驱动器部分的另一个驱动器部分晶体管的栅极。

- 5、如权利要求1所述的电压电平转换器电路,其特征是所述输入部分包括:
 - 一个带有连接到所述输入端的输入端的反相器;

第一组串联于带有原来的低电压电平的低电压线和所述反相器输出端之间的晶体管且该晶体管的栅极连接到所述输入端和带有原来的高电压电平的高电压线路上,并且该晶体管驱动位于所述驱动器部分的其中一个驱动器部分晶体管的栅极;

第二组串联于带有原来的高电压电平的低电压线和所述反相器输出端之间的晶体管且该晶体管的栅极连接到所述输入端和带有原来的低电压电平的低电压线上,并且该晶体管驱动位于所述驱动器部分的另一个驱动器部分晶体管的栅极。

- 6、如权利要求1所述的电压电平转换器电路, 其特征是所述输入部分包括:
- 一个第一CMOS反相器位于带有原来的低电压电平的低电压线和连接到带有原来的高电压的高电压线之间,且所述第一CMOS反相器上带有连接到所述输入端的栅极,并且所述第一CMDOS反相器驱动位于所述驱动器部分的其中一个所述驱动器晶体管的栅极:
- 一个第二CMOS反相器位于带有原来的高电压电平的高电压线和连接到带有原来的低电压的低电压线之间,且所述第二CMOS反相器上带有连接到所述输入端的栅极,并且所述第二CMDOS反相器驱动位于所述驱动器部分的其中一个所述驱动器晶体管的栅极;
 - 7、一种包含于一个把一组原来的逻辑电平转换为另一组不同于所述

电压电平的另一组转换后的电压电平的电压电平转换器电路中且连接到驱动器部分的输入部分的电路系统,其特征在于其中所式驱动器部分带有一个输出输出信号的输出端,所述的输入部分带有一个输入输入信号的输入端,所述驱动器部分有选择地向所述输出端提供其中一个所述的转换后的电压电平,所述输入部分根据输入信号控制所述驱动器部分有选择地向所述输出端提供其中一个所述转换后的电压电平;

其中位于所述驱动器部分且被直接连接到所述输出端的驱动器部分的晶体管的栅极被连接到位于所述输入部分且栅极直接到所述输入端上的输入部分晶体管上,使得所述驱动器部分晶体管的栅极直接被所述输入部分晶体管所驱动。

- 8、如权利要求7所述的电路系统,其特征是所述转换后的电压电平的高电平比所述原来的电压电平的高电平高,且所述转换后的电压电平的低电平比所述原来的电压电平的低电平低。
- 9、如权利要求7所述的电压电平转换器电路,其特征是所述输入部分包括:
 - 一个带有连接到所述输入端的输入端的反相器:

串联于分别带有商电压电平和原来的低电压电平的高电压线和低电压线之间晶体管,且该晶体管的栅极连接到所述输入端和所述反相器的输出端,并且所述晶体管驱动位于所述驱动器部分的驱动器部分晶体管的栅极。

- 10、如权利要求7所述的电压电平转换器电路,其特征是所述输入部分包括:
 - 一个带有连接到所述输入端的输入端的反相器;

第一组串联于分别带有高的转换后电压电平和原来的低电压电平的 高电压线和低电压线之间的晶体管,且该晶体管的栅极被连接到所述输入 端和所述反相器的输出端,并且所述晶体管驱动位于所述驱动器部分的其 中一个驱动器部分晶体管的栅极:

第二组串联于分别带有原来的高电压电平和低的转换后电压电平的高电压线和低电压线之间的晶体管,且该晶体管的栅极被连接到所述输入

端和所述反相器的输出端,并且所述晶体管驱动位于所述驱动器部分的另一个驱动器部分晶体管的栅极。

- 11、如权利要求7所述的电压电平转换器电路,其特征是所述输入部分包括:
 - 一个带有连接到所述输入端的输入端的反相器:
- 第一组串联于带有原来的低电压电平的低电压线和所述反相器输出端之间的晶体管且该晶体管的栅极连接到所述输入端和带有原来的高电压电平的高电压线上,并且该晶体管驱动位于所述驱动器部分的其中一个驱动器部分晶体管的栅极;
- 第二组串联于带有原来的高电压电平的低电压线和所述反相器输出端之间的晶体管且该晶体管的栅极连接到所述输入端和带有原来的低电压电平的低电压线上,并且该晶体管驱动位于所述驱动器部分的另一个驱动器部分晶体管的栅极。
- 12、如权利要求7所述的电压电平转换器电路,其特征是所述输入部分包括:
- 一个第一CMOS反相器位于带有原来的低电压电平的低电压线和连接到带有原来的高电压的高电压线之间,且所述第一CMOS反相器上带有连接到所述输入端的栅极,并且所述第一CMDOS反相器驱动位于所述驱动器部分的其中一个所述驱动器晶体管的栅极;
- 一个第二CMOS反相器位于带有原来的高电压电平的高电压线和连接到带有原来的低电压的低电压线之间,且所述第二CMOS反相器上带有连接到所述输入端的栅极,并且所述第二CMDOS反相器驱动位于所述驱动器部分的其中一个所述驱动器晶体管的栅极;

电平转换器电路

本发明涉及一种逻辑电平转换器电路,特别是一种用于把高和低的逻辑电压电平转换为与原电平不同的高和低的逻辑电平。

现在已有一种字线驱动电路被用作为把高和低的电压电平转换为与原电平不同的高和低的逻辑电平的电平转换器电路。这种字线驱动电路已在《ISSCC'95技术论文文摘》的《用于低电压操作和/或千兆规模的动态随机存储器的电路设计》中公开。图 1 为说明这种用于把高和低的逻辑电压电平转换为与原来电平不同的高和低的逻辑电平的传统字线驱动器的电路图,其中对应于内部电源电压 V I N T 的高电平被转换为对应于辅助电源电压 V P P 的另一不同的高电压电平,而对应于地电平G N D 的低电平被转换为对应于浅电压电平 V B B 的另一不同的低电压电平。

为了减小阈值漏电流,可以在备用状态时把字线电压控制在一个负电压电平上,而在有效状态时把字线电压控制于一个高于内部操作电压电平的增高电压电平上。

在上述字线驱动电路中,节点A3被作为逻辑门的ROM解码器的输出所驱动。在这里考虑到节点A3可以间接地为来自另一设备中的驱动器的一个路由选择所驱动。图2为说明另一种用于把高和低的逻辑电压电平转换为与原电平不同的高和低的逻辑电平的传统字线驱动器电路的电路图,其中节点A3由来自另一设备中的驱动器的一个路由选择所驱动。既然一个来自反相器D3的输入信号通过线路H1的负载传输到输入部分VIN,则来自另一设备中的反相器D3的输入波形具有大的上升沿及全时。因此,该逻辑电压电平在输入部分VIN的转换时间较大,则在反相器D3输出的电压电平的下降沿时有一个较大的击穿电流I1从电源VPP经线路H1和晶体管Q2和Q5流到地GND。

另外,在反相器 D 3 输出的电压电平的上升沿时有一个较大的击穿电流 I 2 从电源 V I N T 经线路 H 1 和晶体管 Q 6 和 Q 4 流到电源 V B B 。 为了避免这一大击穿电流的问题,最好使节点 A 3 直接由该逻辑门的输出所驱动。

下面主要针对图 1 所示的传统电平转换电器电路的构造及其操作进行说明,其中节点 A 3 直接由反相器 D 2 所驱动。图 4 为说明图 1 所示的传统电平转换器电路的波形的时序图。该传统电平转换器具有一个输入部分和一驱动器部分。该传统电平转换电路的驱动器部分中有两个衬底电压为 V P P 的 P 沟道 M O S 场效应管 Q 1 和 Q 2 ,有两个衬底电压为 V B B 的 N 沟道 M O S 场效应管 Q 3 和 Q 4 。该传统电平转换器电路的输入部分中有一个衬底电压为地电平而栅极电压为 V I N T D N N 沟道 M O S 场效应管 Q 5 ,及一个衬底电压为 V I N T 且栅极电压为地电平的P沟道 M O S 场效应管。该传统电平转换器电路的输入部分中还有一个反相器 D 2 ,该反相器由分别与N沟道 M O S 场效应管 Q 5 和 P 沟道 M O S 场效应管 Q 6 相同尺寸的一个N沟道 M O S 场效应管 4 6 相同尺寸的一个N沟道 M O S 场效应管组成。

在该输入部分,反相器 D 2 上有一个与该传统电平转换器电路的输入端 V I N 相连的输入端及一个与节点 A 3 相连的输出端。 N 沟道 M O S 场效应管 Q 5 串接在节点 A 3 与节点 A 1 之间,而 P 沟道 M O S 场效应晶体管 Q 6 串接在节点 A 3 与节点 A 2 之间。

首先考虑输出电压VOUT升高时的操作情况,当输入电压VIN处于地电位GND,则在反相器D2输出端的节点A3的电压电平为VINT,输出端VOUT的电压电平为VINT,输出端VOUT的电压电平为VBB。晶体管Q5、Q1和Q4都处于截止状态(或关状态),而其余晶体管Q6、Q2和Q3处于导通状态(或开状态),因此各个节点都连接到电源电压上。

当输入电压VIN从地电平GND上升到电压电平VINT时,节点A3的电势则从电压电平VINT下降到地电平GND。既然此时的晶体管Q6处于开状态,则节点A2的电势下降到接近于P沟道晶体管的负阈值电压VIP的绝对值 | VTP | ,因此晶体管Q6的源极和漏极电压(或节点A2和A3的电压)下降。结果,晶体管Q6的驱动能

力下降且节点 A 2 的电势渐渐下降。

另一方面,由于节点A3的电势下降到由VINT-VTN(其中VTN为N沟道MOS场效应管的正阈值电压)的差值所限定的,则晶体管Q5处于导通状态或开状态,因此节点A1的电热上升。当节点A1的电势不高于电压电平VPP-|VTP|时,晶体管Q1导通,又由于晶体管Q3保持为导通状态或开状态,则输出VOUT的电压电平逐步上升。此后,当输出端VOUT的电压电平上升到不低于电压电平VBB+VTN时,晶体管Q4导通,因此,节点A2的电势下降到电压电平VBB,结果,晶体管Q3和Q6截止。此时,输出电压VOUT上升到电压电平VPP且晶体管Q1和Q5导通。

下面考虑输出电压VOUT下降时的操作情况。当输入电压VIN处于电压电平VINT时,则节点A3处于地电平GND,节点A2处于电压电平VBB,输出电压VOUT处于电压电平VPP。晶体管Q6、Q2和Q3截止,而其他晶体管Q5、Q1和Q4导通,这样各个节点被连接到电源压上。

当输入电压VIN从电压电平VINT下降到地电平GND时,则 节点A3的电压从地电平上升到电压电平VINT。由于这时的晶体管 Q5处于导通状态,则节点A1的电压电平上升到接近于电压电平 VINT-VIN。

由于晶体管Q5的源极和漏极上的电压(或节点A1和A3的电压)下降了,则晶体管Q5的驱动能力也下降,且节点A1的电势逐步下降。

另一方面,由于节点A3的电势上升到电压电平 | VTN | ,则晶体管Q6导通,因此节点A2的电势上升。当节点A2的电势变得不高于电压电平VBB+VTN时,则晶体管Q3导通,因此输出VOUT的电压电平逐步下降。此后,当输出端VOUT的电压电平下降到不高于电压电平VPP+ | VTN | 时,则晶体管Q2导通,因此节点A1的电势上升到电压电平VPP。结果,晶体管Q1和Q5导通。这时,输出电压VOUT下降到电压电平VBB且晶体管Q4处于截止状态,晶体管Q3和Q6处于导通状态。

在上述方式中,该电平转换器电路把逻辑电平(例如:高电平:对

应于内部电源电压的VINT和低电平:对应于地电平的GND)转换为与原电平不同的逻辑电平(例如,高电平:对应于辅助电源电压的VPP,和低电平:负的低电压VBB)。

在上述的传统电平转换器电路中,反相器 D 2 在输入部分被作为一个输入逻辑门使用,而晶体管 Q 5 和 Q 6 被作为传输门晶体管使用,用于防止节点 A 3 的逻辑电平被传输到电压电平 V P P 或 V B B。在上述传统电平转换器电路的输入部分,来自输入逻辑门或节点 A 3 的电压电平的输出被通过传输门晶体管 Q 5 和 Q 6 传输到节点 A 1 和 A 2 ,这样来自传输门晶体管 Q 5 和 Q 6 或节点 A 1 和 A 2 的电压电平的输出被输入到驱动器部分。

在上述传统电平转换器电路中有如下问题。

在输出电压VOUT的上升操作中,位于驱动器部分的P沟道MOS场效应管Q1被多个晶体管所驱动,例如,包括位于输入部分作为输入逻辑门的反相器D2中的N沟道MOS场效应晶体管和位于输入部分的N沟道传输门MOS场效应管Q5。

另外,在输出电压VOUT的下降操作中,位于驱动器部分的N沟道MOS场效应晶体管Q3被多个晶体管所驱动,例如,包括位于输入部分作为输入逻辑门的反相器D2中的P沟通MOS场效应管和位于输入部分的P沟道传输门MOS场效应管Q6。

由于位于驱动器部分的每个驱动器晶体管被位于输入部分的多个晶体管所驱动,则上述的传统电平转换器电路不能够以高速度进行逻辑电平转换操作。

在上述情况中,要求开发一种能避免上述问题的新的电平转换器电路。

本发明的目的之一是提供一种能够避免上述问题的新的电平转换器电路。

本发明的目的之二是提供一种能够高速度进行电平转换操作的新的电平转换器电路。

本发明的目的之三是提供一种新的电平转换器电路, 使得其中的位于驱动器部分且连接到输出端的驱动器场效应管的栅极直接由一个其栅极连接到输入端的位于输入部分的场效应管所驱动。

本发明的上述目的以及其他未明述的目的、特点及优点在下面的说 明中将**变**得显而易见。

根据本发明,在此提供一种新型的具有输入部分和驱动器部分的电平转换器电路,其中一个位于驱动器部分且连接到输出端的驱动器场效应管的栅极由一个位于输入部分且栅极连接到输入端的输入部分场效应管所直接驱动,这样可使得该新型的电平转换器电路能以高速度进行电平转换操作。

下面将根据附图说明本发明的最佳实施例。

图 1 为说明这种用于把髙和低的逻辑电压电平转换为与原电平不同的高和低的逻辑电平的传统字线驱动器电路的电路图。

图 2 为说明另一种用于把高和低的逻辑电压电平转换为与原电平不同的高和低的逻辑电平的传统字线驱动器电路的电路图,其中节点 A 3 间接地由来自另一设备中的驱动器的路由选择所驱动。

图 3 为说明另一种用于把高和低的逻辑电压电平转换为与原电平不同的高和低的逻辑电平的传统字线驱动器电路的电路图,其中节点 A 3 间接地由来自另一设备中的驱动器的路由选择所驱动。

图 4 为说明图 1 所示的传统电平转换器电路的波形的时序图。

图 5 为说明根据本发明第一实施例的一种能以高速度进行逻辑电压电平转换操作的新型电平转换器电路的电路图。

图 6 为说明根据本发明第二实施例的一种能以高速度进行逻辑电压电平转换操作的新型电平转换器电路的电路图。

图7为说明根据本发明第三实施例的一种能以高速度进行逻辑电压电平转换操作的新型电平转换器电路的电路图。

图 8 为说明根据本发明第四实施例的一种能以高速度进行逻辑电压电平转换操作的新型电平转换器电路的电路图。

图 9 为说明图 5 所示的新型电平转换器电路的波形的时序图。

首先,本发明提供一种用于把一组原逻辑电压电平转换为另一组不同于原电平的另一组转换后的电压电平的电压电平转换器电路。该电压电平转换器电路中包括一个驱动器部分及一个连接到该驱动器部分的输入部分。该驱动器部分具有一个输出输出信号的输出端。该输入端部分具有一个输入输入信号的输入端。该驱动器部分有选择地向输出端输出

一个转换后的电压电平。该输入部分根据输入信号有选择地向输出端提供一个转换后的电压电平。位于驱动器部分且直接连接到输出端的驱动器部分晶体管的栅极连接到位于输入部分且栅极直接连接到输入端的输入部分晶体管上,这样使得驱动器部分晶体管的栅极可以被输入部分晶体管所直接驱动。

最好是转换后的电压电平的高电平比原电压电平的高电平高,且转换后的电压电平的低电平比原电压电平的低电平低。

其中输入部分可以是包括:一个带有连接到输入端的输入端的反相器;以及串联于分别具有高电压电平和原来的低电压电平的高和低电压线路之间的晶体管,且该晶体管的栅极分别连接到输入端和反相器的输出端,并且该晶体管驱动位于驱动器部分的驱动器晶体管的栅极。

该输入部分也可以包括:一个带有连接到输入端的输入端的反相器;第一组串联于分别具有转换后的高电压电平和原来的低电压电平的高压线路和低压线路之间的晶体管,且该晶体管的栅极连接到输入端和反相器的输出端,并且该晶体管驱动位于驱动器部分的一个驱动器晶体管的栅极;第二组串联于分别具有转换后的高电压电平和原来的低电压电平的高压线路和低压线路之间的晶体管,且该晶体管的栅极连接到输入端和反相器的输出端,并且该晶体管驱动位于驱动器部分的另一个驱动器晶体管的栅极;

该输入部分还可以是包括:一个带有连接到输入端的输入端的反相器:第一组串联于具有原来低电压电平的低电压线路与转换器的输出端之间的晶体管,该晶体管的栅极连接到输入端及具有原来的高电压电平的高压线路上,并且该晶体管驱动位于驱动器部分的一个驱动器晶体管的栅极;第二组串联于具有原来高电压电平的低电压线路与转换器的输出端之间的晶体管,该晶体管的栅极连接到输入端及具有原来的低电压电平的低压线路上,并且该晶体管驱动位于驱动器部分的另一个驱动器晶体管的栅极。

该输入部分还可以包括:一个连接于一条具有原来的低电压电平的低压线路与一个连接到具有原来的高电压电平的高压线路的晶体管之间第一CMOS反相器,且该第一CMOS反相器的栅极连接到输入端,并且该第一CMOS反相器驱动位于驱动器部分的一个驱动器晶体管的

栅极;一个连接于一条具有原来的高电压电平的高压线路与一个连接到具有原来的低电压电平的低压线路的晶体管之间第二CMOS反相器,且该第二CMOS反相器的栅极连接到输入端,并且该第二CMOS反相器驱动位于驱动器部分的一个驱动器晶体管的栅极;

第二,本发明提供一个输入部分的电路系统,该输入部分位于一个用于把一组原来的逻辑电压电平转换为另一组转换后的不同于原来电平的电压电平的电压电平转换器电路中,并连接到该电压电平转换器电路的驱动器部分。该驱动器部分具有一个输出输出信号的输出端。该输入部分具有一个输入输入信号的输入端。驱动器部分有选择地向输出端提供一个转换后的电压电平。输入部分根据输入信号控制驱动器部分有选择地向输出端提供一个转换后的电压电平。位于驱动器部分且被直接连接到输出端的驱动器部分晶体管的栅极连接到位于输入部分且其栅极直接连接到输入端的输入部分晶体管的栅极连接到位于输入部分且其栅极直以直接被输入部分晶体管所驱动。

最好是转换后的电压电平的高电平比原电压电平的高电平高,且转换后的电压电平的低电平比原电压电平的低电平低。

其中输入部分可以是包括:一个带有连接到输入端的输入端的反相器;具有串联于分别具有高电压电平和原来的低电压电平的高和低电压线路之间的晶体管,且该晶体管的栅极分别连接到输入端和反相器的输出端,并且该晶体管驱动位于驱动器部分的驱动器晶体管的栅极。

该输入部分也可以是包括:一个带有连接到输入端的输入端的反相器:第一组串联于分别具有转换后的高电压电平和原来的低电压电平的高压线路和低压线路之间的晶体管,且该晶体管的栅极连接到输入端和反相器的输出端,并且该晶体管驱动位于驱动器部分的一个驱动器晶体管的栅极;第二组串联于分别具有转换后的高电压电平和原来的低电压电平的高压线路和低压线路之间的晶体管,且该晶体管的栅极连接到输入端和反相器的输出端,并且该晶体管驱动位于驱动器部分的另一个驱动器晶体管的栅极;

该输入部分还可以是包括:一个带有连接到输入端的输入端的反相器:第一组串联于具有原来低电压电平的低电压线路与转换器的输出端之间的晶体管,该晶体管的栅极连接到输入端及具有原来的高电压电平

的高压线路上,并且该晶体管驱动位于驱动器部分的一个驱动器晶体管 的栅极; 第二组串联于具有原来低电压电平的低电压线路与转换器的输 出端之间的晶体管,该晶体管的栅极连接到输入端及具有原来的低电压 电平的低压线路上,并且该晶体管驱动位于驱动器部分的另一个驱动器 晶体管的栅极。

该输入部分还可以包括:一个连接于一条具有原来的低电压电平的 低压线路与一个连接到具有原来的高电压电平的高压线路的晶体管之间 第一CMOS反相器,且该第一CMOS反相器的栅极连接到输入端, 并且该第一СМОЅ反相器驱动位于驱动器部分的一个驱动器晶体管的 栅极;一个连接于一条具有原来的高电压电平的高压线路与一个连接到 具有原来的低电压电平的低压线路的晶体管之间第二 C M O S 反相器, 且该第二СМОS反相器的栅极连接到输入端,并且该第二СМОS反 相器驱动位于驱动器部分的一个驱动器晶体管的栅极。

第一实施例

下面参照图 5 和图 9 详细说明本发明的第一实施例。图 5 为说明一 种能以高速度进行逻辑电压电平转换操作的新型电平转换器电路的电路 图。图 9 为说明图所示的新型电平转换器电路的波形的时序图。下面介 绍这种新型电平转换器电路的电路结构。

这种新型电平转换器包括一个输入部分和一个驱动器部分。在输入 部分有一个输入输入电压 V I N的输入端,而在驱动器部分有一个输出 输出电压VOUT的输出端。输入部分与驱动器部分之间通过第一、第 二节点 B 1 和 B 2 相连接。在输入部分有一个偏置于内部电源电压 VINT与地电平GND之间的输入逻辑门。在驱动器部分有一个偏置 于一个高于内部电源电压VINT的高电源电压VPP与一个低于地电 平GND的低电源电压之间的驱动器电路。这种新型的电平转换器电路 把内部逻辑电平,例如,高电平:内部电源电压VINT,及低电平: 地电平GND转换为高电源电压VPP和低电源电压VBB。

这种新型电平转换器电路中的驱动器部分的电路结构与上述的传统 电平转换器电路的驱动器部分相同。即该新型电平转换器电路的驱动器 部分中包括第一第二P沟道MOS场效应管Q1和Q2及第三和第四N 沟道MOS场效应管Q3和Q4。第一P沟道MOS场效应管Q1串联

于一条带有高电源电压VPP的高电源电压线路VPP与输出端VOU T之间。第一P沟道MOS场效应管Q1的衬底电连接到高电源电压线 路VPP上,这样该衬底上就带有高电源电压VPP。第一P沟道 MOS场效应管Q1的栅极连接到第一节点B1。第三N沟道MOS场 效应管Q3串联于一条带有低电源电压VBB的低电源电压线路VBB 与输出端VOUT之间。该第三N沟道MOS场效应管Q3的一个衬底 电连接到该低电源电压线路VBB上,这样该衬底上就带有低电源电压 VBB。第三N沟道MOS场效应管Q3的一个栅极连接到第二节点 B2上。第二P沟道MOS场效应管Q2串联于带有高电源电压VPP 的髙电源电压线路VPP与第一节点B1之间。第二P沟道MOS场效 应管Q2的一个衬底电连接到高电源电压线路VPP上,这样该衬底上 就带有高电源电压VPP。第二P沟道MOS场效应管Q2的栅极连接 到输出端VOUT。第四N沟道MOS场效应管Q4串联于带有低电源 电压VBB的低电源电压线路VBB与第二节点B2之间。第四N沟道 MOS场效应管Q4的衬底电连接到低电源电压线路VBB上,这样该 衬底上就带有低电源电压VBB。第四N沟道MOS场效应管Q4的栅 极连接到输出端VOUT。

该新型电平转换器电路的输入部分中包括:一个反相器 D 1,第五 和第七 N 沟道 M O S 场效应管 Q 5 和 Q 7,以及第六和第八 P 沟道 M O S 场效应管 Q 6 和 Q 8。反相器 D 1 具有一个连接到输入端 V I N 的输入端和一个连接到第三节点 B 3 的输出端。第五 N 沟道 M O S 场效应管 Q 5 串联于第一节点 B 1 与带有地电压 G N D 的地线 D N D 上之间。第五 N 沟道 M O S 场效应管 Q 5 的衬底连接到地线 G N D 上,这样该衬底上带有地电压 G N D 。第五 N 沟道 M O S 场效应管 Q 5 的栅极连接到输入端 V I N。第六 P 沟道 M O S 场效应管 Q 6 串联于第二节点 B 2 与带有内部电源电压 V I N T 的一个内部电源电压线 V I N T 之间。第六 P 沟道 M O S 场效应管 Q 6 的衬底连接到内部电源电压线 V I N T 上,这样该衬底上带有内部电源电压 V I N T。第六 P 沟道 M O S 场效应管 Q 6 的栅极连接到输入端 V I N。第七 N 沟道 M O S 场效应管 Q 7 串联于第一节点 B 1 与带有内部电源电压 V I N T 的一个内部电源电压线 V I N T 之间。第七 N 沟道 M O S 场效应管 Q 7 的衬底连

接到內部电源电压线 V I N T 上,这样该村底上带有內部电源电压 V I N T。第七 N 沟道 M O S 场效应管 Q 7 的栅极连接到第三节点 B 3。第八 P 沟道 M O S 场效应管 Q 8 串联于第二节点 B 2 与带有地电压 G N D 的地线 D N D 上之间。第八 P 沟道 M O S 场效应管 Q 8 的衬底连接到地线 G N D 上,这样该村底上带有地电压 G N D。第八 P 沟道 M O S 场效应管 Q 8 的栅极连接到第三节点 B 3。第五和第七 N 沟道 M O S 场效应管 Q 5 和 Q 7 串联于内部电源电压线 V I N T 与地线 G N D 之间。第六和第八 P 沟道 M O S 场效应管 也串联于内部电源电压线 V I N T 与地线 G N D 之间。第六和第八 P 沟道 M O S 场效应管也串联于内部电源电压线 V I N T 与地线 G N D 之间。

与传统电平转换电路相比较,该新型电平转换器电路的晶体管Q1、Q2、Q3、Q4、Q5和Q6的尺寸分别与传统电平转换器电路中的晶体管Q1、Q2、Q3、Q4、Q5和Q6的尺寸相同。其余晶体管Q7和Q8的尺寸分别与晶体管Q5和Q6的尺寸相同或比它们小。反相器D1具有能够驱动晶体管Q7和Q8的尺寸。

下面首先说明输出电压VOUT的上升操作。

当输入电压VIN处于地电平GND,则位于反相器D1输出端的第三节点B3的电压电平为VINT,而第一节点B1的电压电平为VPP,第二节点B2的电压电平为VINT,输出端VOUT的电压电平为VBB。晶体管Q1、Q5、Q7、Q4和Q8截止,而其余晶体管Q6、Q2和Q3导通,因此各个节点就被连接到各电源电压上。

当输入电压VIN从地电平GND上升到电压电平VINT时,第三节点B3的电势从电压电平VINT下降到地电平GND。

当输入电压VIN变得不低于对应于N沟道MOS场效应管阈值电压的电压电平VTN时,则带有接收输入电压VIN的栅极的第五晶体管Q5导通,另外如果作为反相器D1输出端的第三节点B3的电势下降,则带有连接到第三节点B3的栅极的第七晶体管Q7截止,因此,第一节点B1的电势下降到地电平GND。

当輸入电压VIN变得不低于电压电平VINT-|VTP|时(其中VTP为P沟道MOS场效应管的阈值电压),则带有接收输入电压VIN的栅极的第六晶体管Q6截止,另外如果作为反相器D1输出端的第三节点B3的电势下降到地电平GND,则栅极连接到第三节

点B3的第八晶体管Q8导通,因此第二节点B2的电势下降到接近电压电平 | VTP | 。由于此时第八晶体管Q8的源极与栅极之间的电压差(或者第二节点B2与地电线GND之间的电压差)下降了,则第八晶体管Q8的驱动能力随之下降,因此第二节点B2的电压电平逐步下降。

当第一节点B1的电压电平(或电势)不高于电压电平VINT-VTP时,则第一晶体管Q1导通,而第三晶体管Q3保持为导通状态,因此输出电压VOUT逐步上升。

当输出电压VOUT不低于电压电平VBB+VTN时,第四晶体管Q4导通,因此第二节点B2的电压电平下降到电压电平VBB。结果,第三和第八晶体管Q3和Q8截止。这时,输出电压VOUT上升到电压电平VPP且第二晶体管Q2截止,而第一和第五晶体管Q1和Q5保持为导通状态。

接着下面说明输出电压VOUT的下降操作。

当输入电压VIN处于电压电平VINT,则位于反相器D1输出端的第三节点B3的电压电平为地电平GND,而第一节点B1的电压电平为地电平GND,第二节点B2的电压电平为VBB,输出端VOUT的电压电平为VPP。晶体管Q2、Q3、Q6、Q7和Q8截止,而其余晶体管Q1、Q4和Q5导通,因此各个节点就被连接到各电源电压上。

当输入电压VIN从电压电平VINT下降到地电平GND时,第三节点B3的电势从地电平GND上升到电压电平VINT。

当输入电压VIN变得不高于电压电平VINT-|VTP|时,则带有接收输入电压VIN的栅极的第六晶体管Q6导通,另外如果作为反相器D1输出端的第三节点B3的电势上升到电压电平VINT,则带有连接到第三节点B3的栅极的第八晶体管Q8截止,因此,第二节点B2的电势上升电压电平VINT。

当输入电压VIN变得不高于电压电平VTN时,则带有接收输入VIN的栅极的第五晶体管Q5截止,另外如果作为反相器D1输出端的第三节点B3的电势上升到电压电平VINT,则栅极连接到第三节点B3的第七晶体管Q7导通,因此第一节点B1的电势上升到接近电

压电平VINTーVTN。

由于此时第七晶体管 Q 7 的源极和漏极的电压(或者第一节点 B 1 与内部电源电压线 V I N T 的电压)下降了,则第七晶体管 Q 7 的驱动能力随之下降,因此第一节点 B 1 的电压电平逐步上升。

当第二节点B2的电压电平(或电势)不低于电压电平VBB-VTN时,则第三晶体管Q3导通。

当输出电压VOUT不高于电压电平VPP-|VTP|时,第二晶体管Q2导通,因此第一节点B1的电压电平上升到电压电平VPP。结果,第一和第七晶体管Q1和Q7截止。这时,输出电压VOUT下降到电压电平VBB且第四晶体管Q4截止,而第三和第六晶体管Q3和Q6保持为导通状态。

在上述图 5 所示的新型电平转换器电路中,位于驱动器部分的第一晶体管 Q 1 的栅极由位于输入部分且带有接收输入电压 V I N的栅极的单个晶体管 Q 5 所驱动,而位于驱动器部分的第三晶体管 Q 3 的栅极由位于输入部分且带有接收输入电压 V I N的栅极的单个晶体管 Q 6 所驱动,因此,位于输入部分用于驱动位于驱动器部分的晶体管的栅极的晶体管的驱动能力得到提高,这使得该电平转换器电路可以以高速度进行输出电压电平转换操作。

第二实施例

下面参照图 6 详细说明本发明的第二实施例。图 6 为说明一种能以高速度进行逻辑电压电平转换操作的新型电平转换器电路的电路图。这种第二实施例的新型电平转换器与第一实施例的电路在电路结构上的不同点在于第七晶体管 Q 7 连接到较高的电源电压 V P P 上,而第八晶体管 Q 8 连接到较低的电源电压 V B B 上。第二实施例的新型电平转换器电路的时序波形与图 5 所示的第一实施例中的波形相同。这种新型电平转换器电路把内部逻辑电平,例如,高电平:内部电源电压 V I N T ,及低电平:地电平 G N D ,转换为高电源电压 V P P 和低电源电压 V B B 。

这种新型电平转换器包括一个输入部分和一个驱动器部分。在输入部分有一个输入输入电压VIN的输入端,而在驱动器部分有一个输出输出电压VOUT的输出端。输入部分与驱动器部分之间通过第一、第

二节点B1和B2相连接。

这种新型电平转换器电路中的驱动器部分的电路结构与上述的传统 电平转换器电路的驱动器部分相同。即该新型电平转换器电路的驱动器 部分中包括第一第二 P 沟道M O S 场效应管 Q 1 和 Q 2 及第三和第四 N 沟道MOS场效应管Q3和Q4。第一P沟道MOS场效应管Q1串联 于一条带有高电源电压VPP的高电源电压线路VPP与输出端 VOUT之间。第一P沟道MOS场效应管Q1的村底电连接到高电源 电压线路VPP上,这样该衬底上就带有高电源电压VPP。第一P沟 道MOS场效应管Q1的栅极连接到第一节点B1。第三N沟道MOS 场效应管Q3串联于一条带有低电源电压VBB的低电源电压线路 VBB与输出端VOUT之间。该第三N沟道MOS场效应管Q3的一 个村底电连接到该低电源电压线路VBB上,这样该村底上就带有低电 源电压VBB。第三N沟道MOS场效应管Q3的一个栅极连接到第二 节点B2上。第二P沟道MOS场效应管Q2串联于带有高电源电压 VPP的高电源电压线路VPP与第一节点B1之间。第二P沟道 MOS场效应管Q2的一个衬底电连接到高电源电压线路VPP上,这 样该衬底上就带有高电源电压VPP。第二P沟道MOS场效应管Q2 的栅极连接到输出端VOUT。第四N沟道MOS场效应管Q4串联于 带有低电源电压VBB的低电源电压线路VBB与第二节点B2之间。 第四N沟道MOS场效应管Q4的衬底电连接到低电源电压线路VBB 上,这样该衬底上就带有低电源电压VBB。第四N沟道MOS场效应 管Q4的栅极连接到输出端VOUT。

该新型电平转换器电路的输入部分中包括:一个反相器 D 1,第五和第七 N 沟道 M O S 场效应管 Q 5 和 Q 7,以及第六和第八 P 沟道 M O S 场效应管 Q 6 和 Q 8。反相器 D 1 具有一个连接到输入端 V I N 的输入端和一个连接到第三节点 B 3 的输出端。第五 N 沟道 M O S 场效应管 Q 5 串联于第一节点 B 1 与带有地电压 G N D 的地线 D N D 上之间。第五 N 沟道 M O S 场效应管 Q 5 的衬底连接到地线 G N D 上,这样该衬底上带有地电压 G N D。第五 N 沟道 M O S 场效应管 Q 5 的栅极连接到输入端 V I N。第六 P 沟道 M O S 场效应管 Q 6 串联于第二节点 B 2 与带有内部电源电压 V I N T 的一个内部电源电压线 V I N T 之

间。第六P沟道MOS场效应管Q6的衬底连接到内部电源电压线VINT上,这样该衬底上带有内部电源电压VINT。第六P沟道MOS场效应管Q6的栅极连接到输入端VIN。第七N沟道MOS场效应管Q7串联于第一节点B1与高电源电线VPP上,这样该衬底MOS场效应管Q7的衬底连接到高电源电压线VPP上,这样该衬底上带有高电源电压VPP。第七N沟道MOS场效应管Q7连接到节点B3上。第八P沟道MOS场效应管Q8的衬底连接到电压线VBB之间。第八P沟道MOS场效应管Q8的栅极连接到第三节点B3。第五和第七N沟道MOS场效应管Q5和Q7串联于高电源电压线VPP与地线GND之间。第六和第八P沟道MOS场效应管包售比等下内部电源电压线VINT与低电源电压线VBB之间。

与传统电平转换电路相比较,该新型电平转换器电路的晶体管Q1、Q2、Q3、Q4、Q5和Q6的尺寸分别与传统电平转换器电路中的晶体管Q1、Q2、Q3、Q4、Q5和Q6的尺寸相同。其余晶体管Q7和Q8的尺寸分别与晶体管Q5和Q6的尺寸相同或比其小。反相器D1具有能够驱动晶体管Q7和Q8的尺寸。

下面首先说明输出电压VOUT的上升操作。

当输入电压VIN处于地电平GND,则位于反相器D1输出端的第三节点B3的电压电平为VINT,而第一节点B1的电压电平为VPP,第二节点B2的电压电平为VINT,输出端VOUT的电压电平为VBB。晶体管Q1、Q5、Q7、Q4和Q8截止,而其余晶体管Q6、Q2和Q3导通,因此各个节点就被连接到各电源电压上。

当输入电压VIN从地电平GND上升到电压电平VINT时,第三节点B3的电势从电压电平VINT下降到地电平GND。

当输入电压VIN变得不低于对应于N沟道MOS场效应管阈值电压的电压电平VTN时,则带有接收输入电压VIN的栅极的第五晶体管Q5导通,另外如果作为反相器D1输出端的第三节点B3的电势下降,则带有连接到第三节点B3的栅极的第七晶体管Q7截止,因此,第一节点B1的电势下降到地电平GND。

当输入电压VIN变得不低于电压电平VINT-|VTP|时

(其中VTP为P沟道MOS场效应管的阀值电压),则带有接收输入电压VIN的栅极的第六晶体管Q6截止,另外如果作为反相器D1输出端的第三节点B3的电势下降到地电平GND,则栅极连接到第三节点B3的第八晶体管Q8导通,因此第二节点B2的电势下降到接近电压电平 | VTP | 。由于第二节点B2(或第三晶体管Q3的栅极)与带有比地电平GND低的低电源电压电平VBB的低电源电压线VBB相导通,则用于下拉第二节点B2(或第三晶体管Q3的栅极)的电势的第八晶体管Q8的驱动能力比第一实施例中的强。第三晶体管Q3变到截止状态的转移时间变短,从而输出电压VOUT上升的时间缩短了。

当第一节点B1的电压电平(或电势)不高于电压电平VINT-VTP时,则第一晶体管Q1导通,而第三晶体管Q3保持为导通状态,因此输出电压VOUT逐步上升。

当输出电压VOUT不低于电压电平VBB+VTN时,第四晶体管Q4导通,因此第二节点B2的电压电平下降到电压电平VBB。结果,第三和第八晶体管Q3和Q8截止。这时,输出电压VOUT上升到电压电平VPP且第二晶体管Q2截止,而第一和第五晶体管Q1和Q5保持为导通状态。

接着下面说明输出电压VOUT的下降操作。

当输入电压VIN处于电压电平VINT,则位于反相器D1输出端的第三节点B3的电压电平为地电平GND,而第一节点B1的电压电平为地电平GND,第二节点B2的电压电平为VBB,输出端VOUT的电压电平为VPP。晶体管Q2、Q3、Q6、Q7和Q8截止,而其余晶体管Q1、Q4和Q5导通,因此各个节点就被连接到各电源电压上。

当输入电压VIN从电压电平VINT下降到地电平GND时,第三节点B3的电势从地电平GND上升到电压电平VINT。

则带有连接到第三节点 B 3 的栅极的第八晶体管 Q 8 截止, 因此, 第二节点 B 2 的电势上升电压电平 V I N T。

当输入电压VIN变得不高于电压电平VTN时,则带有接收输入VIN的栅极的第五晶体管Q5截止,另外如果作为反相器D1输出端的第三节点B3的电势上升到电压电平VINT,则栅极连接到第三节点B3的第七晶体管Q7导通,因此第一节点B1的电势上升到接近电压电平VINT一VTN。由于第一节点B1(或第一晶体管Q1的栅极)导通到带有比内部电源电压电平VINT高的高电源电压VPP的高电源电压线VPP上,则用于提升第一节点B1(或第一晶体管Q1的栅极)的电势的第七晶体管Q7的驱动能力比第一实施例中的强。第一晶体管Q1变为导通状态的转移时间缩短了,因此输出电压VOUT下降的时间也缩短了。

当第二节点B2的电压电平(或电势)不低于电压电平VBB+VTN时,则第三晶体管Q3导通。

当输出电压VOUT不高于电压电平VPP-|VTP|时,第二晶体管Q2导通,因此第一节点B1的电压电平上升到电压电平VPP。结果,第一和第七晶体管Q1和Q7截止。这时,输出电压VOUT下降到电压电平VBB且第四晶体管Q4截止,而第三和第六晶体管Q3和Q6保持为导通状态。

在上述图 6 所示的新型电平转换器电路中,位于驱动器部分的第一晶体管 Q 1 的栅极由位于输入部分且带有接收输入电压 V I N的栅极的单个晶体管 Q 5 所驱动,而位于驱动器部分的第三晶体管 Q 3 的栅极由位于输入部分且带有接收输入电压 V I N的栅极的单个晶体管 Q 6 所驱动,因此,位于输入部分用于驱动位于驱动器部分的晶体管的栅极的晶体管的驱动能力得到提高,这使得该电平转换器电路可以以高速度进行输出电压电平转换操作。

第三实施例

下面参照图7说明本发明的第三实施例。图7为说明一种能以高速度进行逻辑电压电平转换操作的新型电平转换器电路的电路图。

这种新型电平转换器包括一个输入部分和一个驱动器部分。在输入部分有一个输入输入电压VIN的输入端,而在驱动器部分有一个输出

输出电压VOUT的输出端。输入部分与驱动器部分之间通过第一、第二节点B1和B2相连接。在输入部分有一个偏置于内部电源电压VINT与地电平GND之间的输入逻辑门。在驱动器部分有一个偏置于一个高于内部电源电压VINT的高电源电压VPP与一个低于地电平GND的低电源电压之间的驱动器电路。这种新型的电平转换器电路把内部逻辑电平,例如,高电平:内部电源电压VINT,及低电平:地电平GND转换为高电源电压VPP和低电源电压VBB。

这种新型电平转换器电路中的驱动器部分的电路结构与上述的传统 电平转换器电路的驱动器部分相同。即该新型电平转换器电路的驱动器 部分中包括第一第二P沟道MOS场效应管Q1和Q2及第三和第四N 沟道MOS场效应管Q3和Q4。第一P沟道MOS场效应管Q1串联 于一条带有高电源电压VPP的高电源电压线路VPP与输出端 VOUT之间。第一P沟道MOS场效应管Q1的衬底电连接到高电源 电压线路VPP上,这样该衬底上就带有高电源电压VPP。第一P沟 道MOS场效应管Q1的栅极连接到第一节点B1。第三N沟道MOS 场效应管Q3串联于一条带有低电源电压VBB的低电源电压线路 VBB与输出端VOUT之间。该第三N沟道MOS场效应管Q3的一 个衬底电连接到该低电源电压线路VBB上,这样该衬底上就带有低电 源电压VBB。第三N沟道MOS场效应管Q3的一个栅极连接到第二 节点B2上。第二P沟道MOS场效应管Q2串联于带有高电源电压 V P P 的高电源电压线路 V P P 与第一节点 B 1 之间。第二 P 沟道 MOS场效应管Q2的一个衬底电连接到高电源电压线路VPP上,这 样该衬底上就带有高电源电压VPP。第二P沟道MOS场效应管Q2 的栅极连接到输出端VOUT。第四N沟道MOS场效应管Q4串联于 带有低电源电压VBB的低电源电压线路VBB与第二节点B2之间。 第四N沟道MOS场效应管Q4的衬底电连接到低电源电压线路VBB 上,这样该衬底上就带有低电源电压VBB。第四N沟道MOS场效应 管Q4的栅极连接到输出端VOUT。

该新型电平转换器电路的输入部分中包括:一个反相器 D 1, 第五和第七 N 沟道 M O S 场效应管 Q 5 和 Q 7, 以及第六和第八 P 沟道 M O S 场效应管 Q 6 和 Q 8。反相器 D 1 具有一个连接到输入端 V I N

的输入端和一个连接到第三节点B3的输出端。第五N沟道MOS场效 应管Q5串联于第一节点B1与带有地电压GND的地线GND之间。 第五N沟道MOS场效应管Q5的衬底连接到地线GND上,这样该衬 底上带有地电压GND。第五N沟道MOS场效应管Q5的栅极连接到 输入端VIN。第六P沟道MOS场效应管Q6串联于第二节点B2与 带有内部电源电压VINT的一个内部电源电压线VINT之间。第六 P沟道MOS场效应管Q6的衬底连接到内部电源电压线VINT上, 这样该衬底上带有内部电源电压VINT。第六P沟道MOS场效应管 Q6的栅极连接到输入端VIN。第七N沟道MOS场效应管Q7串联 于第一节点B1第三节点B3之间。第七N沟道MOS场效应管Q7的 衬底连接到地线GND上,这样该衬底上带有地电压GND。第七N沟 道MOS场效应管Q7的栅极连接到内部电源电压线VINT上。第八 P沟道MOS场效应管Q8串联于第二节点B2与第三节点B3之间。 第八P沟道MOS场效应管Q8的衬底连接到内部电源电压线VINT 上,这样该衬底上带有内部电源电压VINT。第八P沟道MOS场效 应管Q8的栅极连接到地线GND上。第五和第七N沟道MOS场效应 管Q5和Q7串联于第三节点B3与地线GND之间。第六和第八P沟 道MOS场效应管也串联于内部电源电压线VINT与第三节点B3之 间。

与传统电平转换电路相比较,该新型电平转换器电路和晶体管Q1、Q2、Q3、Q4、Q5和Q6的尺寸分别与传统电平转换器电路中的晶体管Q1、Q2、Q3、Q4、Q5和Q6的尺寸相同。其余晶体管Q7和Q8的尺寸分别与晶体管Q5和Q6的尺寸相同或比其小。反相器D1具有能够驱动晶体管Q7和Q8的尺寸。

上述图 7 所示的新型电平转换器电路的时序波形与图 5 所示电路的波形无本质的改变。

下面首先说明输出电压VOUT的上升操作。

当输入电压VIN处于地电平GND,则位于反相器D1输出端的第三节点B3的电压电平为VINT,而第一节点B1的电压电平为VPP,第二节点B2的电压电平为VINT,输出端VOUT的电压电平为VBB。晶体管Q1、Q5、Q7、和Q4截止,而其余晶体管

Q6、Q2、Q8和Q3导通,因此各个节点就被连接到各电源电压上。

当输入电压VIN从地电平GND上升到电压电平VINT时,第三节点B3的电势从电压电平VINT下降到地电平GND。

当输入电压VIN变得不低于对应于N沟道MOS场效应管阈值电压的电压电平VTN时,则带有接收输入电压VIN的栅极的第五晶体管Q5导通,另外如果作为反相器D1输出端的第三节点B3的电势下降到地电平GND,则带有连接到第三节点B3的栅极的第七晶体管Q7导通,因此,第一节点B1的电势下降到地电平GND。

当输入电压VIN变得不低于电压电平VINT-|VTP|时(其中VTP为P沟道MOS场效应管的阈值电压),则带有接收输入电压VIN的栅极的第六晶体管Q6截止,另外如果作为反相器D1输出端的第三节点B3的电势下降到地电平GND,则栅极连接到第三节点B3的第八晶体管Q8导通,因此第二节点B2的电势下降到接近电压电平|VTP|。由于此时第八晶体管Q8的源极与漏极的电压(或者第二节点B2与地电线GND的电压)下降了,则第八晶体管Q8的驱动能力随之下降,因此第二节点B2的电压电平逐步下降。

当第一节点B1的电压电平(或电势)不高于电压电平VINT-VTP时,则第一晶体管Q1导通,而第三晶体管Q3保持为导通状态,因此输出电压VOUT逐步上升。

当输出电压VOUT不低于电压电平VBB+VTN时,第四晶体管Q4导通,因此第二节点B2的电压电平下降到电压电平VBB。结果,第三和第八晶体管Q3和Q8截止。这时,输出电压VOUT上升到电压电平VPP且第二晶体管Q2截止,而第一和第五晶体管Q1和Q5保持为导通状态。

接着下面说明输出电压VOUT的下降操作。

当输入电压VIN处于电压电平VINT,则位于反相器D1输出端的第三节点B3的电压电平为地电平GND,而第一节点B1的电压电平为地电平GND,第二节点B2的电压电平为VBB,输出端VOUT的电压电平为VPP。晶体管Q2、Q3、Q6和Q8截止,而其余晶体管Q1、Q4、Q5和Q7导通,因此各个节点就被连接到

各电源电压上。

当输入电压VIN从电压电平VINT下降到地电平GND时,第三节点B3的电势从地电平GND上升到电压电平VINT。

当输入电压VIN变得不高于电压电平VINT-|VTP|时,则带有接收输入电压VIN的栅极的第六晶体管Q6导通,另外如果作为反相器D1输出端的第三节点B3的电势上升到电压电平VINT,则连接到第三节点B3的第八晶体管Q8导通,因此,第二节点B2的电势上升电压电平VINT。

当输入电压VIN变得不高于电压电平VTN时,则带有接收输入VIN的栅极的第五晶体管Q5截止,另外如果作为反相器D1输出端的第三节点B3的电势上升到电压电平VINT,则连接到第三节点B3的第七晶体管Q7导通,因此第一节点B1的电势下降到接近电压电平VINT-VTN。由于此时第七晶体管Q7的源极与漏极的电压(或者第一节点B1与第三节点B3的电压)下降了,则第七晶体管Q7的驱动能力随之下降,因此第一节点B1的电压电平逐步上升。

当第二节点B2的电压电平(或电势)不低于电压电平VBB+VTN时,则第三晶体管Q3导通。

当輸出电压VOUT不高于电压电平VPP-|VTP|时,第二晶体管Q2导通,因此第一节点B1的电压电平上升到电压电平VPP。结果,第一和第七晶体管Q1和Q7截止。这时,输出电压VOUT下降到电压电平VBB且第四晶体管Q4截止,而第三和第六晶体管Q3和Q6保持为导通状态。

在上述图 7 所示的新型电平转换器电路的电压上升操作中,第一节点 B 1 的电势或电压电平由平行操作第五第七晶体管 Q 5 和 Q 7 来升高。结果,第一节点 B 1 变到地电平 G N D 的转移时间缩短了,且第一晶体管 Q 1 的电流驱动能力提高了,因此相对于第一实施例来说输出电压 V O U T 的上升时间缩短了。

在上述图 7 所示的新型电平转换器电路的电压下降操作中,第二节点 B 2 的电势或电压电平被第六和第八晶体管 Q 6 和 Q 8 并行操作来上升。因此,第二节点 B 2 变到内部电源电压电平 V I N T 的转移时间缩短了,而且第三晶体管 Q 3 的电流驱动能力提高了,因此对于第一实施

例来说,输出电压VOUT的下降时间缩短了。 第四实施例

下面参照图 8 说明本发明的第四实施例。图 8 为说明一种能以高速度进行逻辑电压电平转换操作的新型电平转换器电路的电路图。下面将详细说明这种新电平转换器电路的电路结构。

这种新型电平转换器包括一个输入部分和一个驱动器部分。在输入部分有一个输入输入电压VIN的输入端,而在驱动器部分有一个输出输出电压VOUT的输出端。输入部分与驱动器部分之间通过第一、第二节点B1和B2相连接。在输入部分有一个偏置于内部电源电压VINT与地电平GND之间的输入逻辑门。在驱动器部分有一个偏置于一个高于内部电源电压VINT的高电源电压VPP与一个低于地电平GND的低电源电压之间的驱动器电路。这种新型的电平转换器电路把内部逻辑电平,例如,高电平,内部电源电压VINT,及低电平:地电平GND转换为高电源电压VPP和低电源电压VBB。

这种新型电平转换器电路中的驱动器部分的电路结构与上述的传统 电平转换器电路的驱动器部分相同。即该新型电平转换器电路的驱动器 部分中包括第一第二 P 沟道 M O S 场效应管 Q 1 和 Q 2 及第三和第四 N沟道MOS场效应管Q3和Q4。第一P沟道MOS场效应管Q1串 联于一条带有高电源电压VPP的高电源电压线路VPP与输出端 VOUT之间。第一P沟道MOS场效应管Q1的衬底电连接到高电源 电压线路VPP上,这样该衬底上就带有高电源电压VPP。第一P沟 道MOS场效应管Q1的栅极连接到第一节点B1。第三N沟道MOS 场效应管Q3串联于一条带有低电源电压VBB的低电源电压线路 VBB与输出端VOUT之间。该第三N沟道MOS场效应管Q3的一 个衬底电连接到该低电源电压线路VBB上,这样该衬底上就带有低电 源电压VBB。第三N沟道MOS场效应管Q3的一个栅极连接到第二 节点B2上。第二P沟道MOS场效应管Q2串联于带有高电源电压 VPP的高电源电压线路VPP与第一节点B1之间。第二P沟道 MOS场效应管Q2的一个衬底电连接到高电源电压线路VPP上,这 样该衬底上就带有高电源电压VPP。第二P沟道MOS场效应管Q2 的栅极连接到输出端VOUT。第四N沟道MOS场效应管Q4串联于

带有低电源电压 V B B 的低电源电压线路 V B B 与第二节点 B 2 之间。 第四N沟道MOS场效应管Q4的衬底电连接到低电源电压线路VBB 上,这样该衬底上就带有低电源电压VBB。第四N沟道MOS场效应 管Q4的栅极连接到输出端VOUT。

该新型电平转换器电路的输入部分中包括: 第五、第十一、第十二 N沟道MOS场效应管Q5、Q11及Q12,以及第六、第九和第十 P沟道MOS场效应管Q6、Q9和Q10。第五N沟道MOS场效应 管Q5串联于第一节点B1与带有地电压GND的地线GND上之间。 第五N沟道MOS场效应管Q5的衬底连接到地线GND上,这样该衬 底上带有地电压GND。第五N沟道MOS场效应管Q5的栅极连接到 输入端VIN。第六P沟道MOS场效应管Q6串联于第二节点B2与 带有内部电源电压VINT的一个内部电源电压线VINT之间。第六 P沟道MOS场效应管Q6的衬底连接到内部电源电压线VINT上, 这样该衬底上带有内部电源电压VINT。第六P沟道MOS场效应管 Q 6 的栅极连接到输入端VIN。第九和第十P沟道MOS场效应管 Q9和Q10串联于第一节点B1与内部电源电压线VINT之间,使 得第九P沟道MOS场效应管Q9连接到内部电源电压线VINT,而 第十Р沟道МОЅ场效应管Q10连接到第一节点B1。第九Р沟道 MOS场效应管Q9的衬底连接到内部电源电压线VINT,使得该衬 底上带有内部电源电压VINT。第十P沟道MOS场效应管Q10也 连接到内部电源电压线VINT上,使得该衬底上带有内部电源电压 VINT。第九P沟道MOS场效应管Q9的栅极连接到第十P沟道 MOS场效应管Q10上。第十P沟道MOS场效应管Q10的栅极连 接到输入端VIN上。第十一和第十二N沟道MOS场效应管Q11和 Q 1 2 串联于第二节点B 2 与地线G N D之间, 使得第十一N沟道 MOS场效应管Q11连接到地线GND而第十二N沟道MOS场效应 管Q12连接到第二节点B2。第十一N沟道MOS场效应管Q11的 村底连接到地线GND,使得该衬底上带有地电压GND。第十二N沟 道MOS场效应管Q12的衬底连接到地线GND上,使得该衬底上带 有地电压GND。第十一N沟道MOS场效应管Q11的栅极连接到第 十二N沟道MOS场效应管Q12上。第十二N沟道MOS场效应管

Q12的栅极连接到输入端VIN上。

第九和第十晶体管 Q 9 和 Q 1 0 的尺寸与第六晶体管 Q 6 的尺寸相同。第十一和第十二晶体管 Q 1 1 和 Q 1 2 的尺寸与第五晶体管 Q 5 的尺寸相同。

下面首先说明输出电压VOUT的上升操作。

当输入电压VIN处于地电平GND,则第一节点B1的电压电平为VPP,而第二节点B2的电压电平为VINT,输出端VOUT的电压电平为VBB。晶体管Q1、Q5、Q4和Q12截止,而其余晶体管Q6、Q10、Q2和Q3导通,因此各个节点就被连接到各电源电压上。

当输入电压VIN变得不低于N沟道MOS场效应管阈值电压的电压电平时,则带有接收输入电压VIN的栅极的第五晶体管Q5导通,因此第一节点B1的电势下降到地电平GND,当输入电压VIN变成内部电源电压时,则第一节点B1的电势变得不高于电压电平VINT+|VTP|(其中VTP为P沟道MOS场效应管的阈值电压,因此带有接收输入电压VIN的栅极的第十晶体管Q10截止。

当第一节点B1的电压电平(或电势)不高于电压电平VINT-|VTP| 时,则第一晶体管Q1导通,而第三晶体管Q3保持为导通状态,因此输出电压VOUT逐步上升。

当输出电压VOUT不低于电压电平VBB+VTN时,第四晶体管Q4导通,因此第二节点B2的电压电平下降到电压电平VBB。结果,第三晶体管Q3截止。这时,输出电压VOUT上升到电压电平VPP且第二和第十晶体管Q2和Q10截止,而第一和第五晶体管Q1和Q5保持为导通状态。

接着下面说明输出电压VOUT的下降操作。

当输入电压VIN处于电压电平VINT,而第一节点B1的电压电平为地电平GND,第二节点B2的电压电平为VBB,输出端VOUT的电压电平为VPP。晶体管Q2、Q3、Q6和Q10截止,而其余晶体管Q1、Q4、Q5和Q12导通,因此各个节点就被连接到各电源电压上。

当输入电压VIN变得不高于电压电平VINT-|VTP|时,则带有接收输入电压VIN的栅极的第六晶体管Q6导通,因此第二节点B2的电势上升到电压电平VINT。当输入电压变为电平GND, 且第二节点B2的电势变为不低于电压电平GND-VTN时,则第十二晶体管Q12截止。

当输入电压VIN变得不高于电压电平VTN时,带有接收输入VIN的栅极的第五晶体管Q5截止,而且如果输入电压VIN变为地电平GND,则栅极连接到输入端VIN的第十晶体管Q10导通,因此第一节点B1的电势上升到接近于电压电平VINT一|VTN|。由于这时第十晶体管Q10的源极和添极的电压下降,则第十晶体管Q10的驱动能力下降,因此第一节点B1的电势或电压电平逐步上升。

当第二节点B2的电压电平(或电势)不低于电压电平VBB や VTN时,则第三晶体管Q3导通。

当输出电压VOUT不高于电压电平VPP--VTP-时,第二晶体管Q2导通,因此第一节点B1的电压电平上升到电压电平VPP。结果,第一晶体管Q1截止。这时,输出电压VOUT下降到电压电平VBB且第四和第十二晶体管Q4和Q12截止,而第三和第六晶体管Q3和Q6保持为导通状态。

在上述图 8 所示的新型电平转换器电路中,第九晶体管 Q 9 用于防止高电源电压线 V P P 与内部电源电压线 V I N T 相导通。另外,第十一晶体管 Q 1 1 用于防止地线 G N D 与低电源电压线 V B B 相导通。结果,位于驱动器部分的第一晶体管 Q 1 的栅极由包括第五和第十晶体管 Q 5 和 Q 1 0 的 C M O S 反相器电路所控制或驱动。位于驱动器部分的第三晶体管 Q 3 的栅极由另一个包括第六和第十二晶体管 Q 6 和 Q 1 2

的 C M O S 反相器电路所控制或驱动。这种电路结构使得可以以高速度改变第一和第二节点 B 1 和 B 2 的电势,因此本实施例的电平转换器电路能够执行高速度的电压电平转换操作。

对于专业人士还可对本发明作一些显而易见的改动,因此应当知道 本发明的范围不以说明书中所述的实施例为限,而权利要求书中则涵盖 了所有落入本发明的精神和范围内的所有对本发明的改动。

说明书附图

图 4

图 5

图 6

图 7

图 8

图 9