

evel diagram em. See I for the med that As |J| increases, θ increases and the functions are mixed. The energy levels are separated by more than if there were no mixing. The other extreme of the AB system is reached when $\nu_A = \nu_B$, the A_2 system. Now θ is 45° and there is maximum mixing to give one state symmetric with respect to exchange of nuclei, $2^{-1/2}(\alpha\beta + \beta\alpha)$, with energy $\frac{1}{4}J$ and an anti-symmetric state $2^{-1/2}(\alpha\beta - \beta\alpha)$ with energy $-\frac{3}{4}J$ (Problem 2-11).

For like nuclides (i.e. those with the same magnetogyric ratio) the relative intensities of the transitions in the spectrum are given by (cf. Eqn 2-46).

$$|\langle s|\,\hat{F}_-|r\rangle|^2\tag{2-72}$$

where $\hat{F}_{-}(=\hat{I}_{A-}+\hat{I}_{B-})$ lowers the value of m_T by one unit, giving a selection rule

$$\Delta m_T = -1 \tag{2-73}$$

The AB system therefore has four allowed transitions which are shown in the energy-level diagram (Fig. 2-1). Their relative intensities are found by operating with \hat{F}_{-} on the lower state. For example

$$\hat{F}_{-}|3\rangle = \cos\theta \,\hat{F}_{-}|\alpha\beta\rangle + \sin\theta \,\hat{F}_{-}|\beta\alpha\rangle$$
 (2-74)

but

$$\hat{F}_{-}|\alpha\beta\rangle = \hat{I}_{A-}|\alpha\beta\rangle + \hat{I}_{B-}|\alpha\beta\rangle$$

$$= |\beta\beta\rangle + 0 \tag{2-75}$$

SO

$$\langle 4|\hat{F}_{-}|3\rangle = (\cos\theta + \sin\theta) \quad \beta \leq \gamma \tag{2-76}$$

and the intensity of this transition is proportional to $(1 + \sin 2\theta)$.

Table 2-3 shows the transition frequencies and intensities of the AB system. Figure 2-2 gives an example, and Fig. 2-3 shows the way in which the AB spectrum varies as θ increases. When $J/(\nu_B - \nu_A)$ is zero (the AX limit), the spectrum consists of four lines of equal intensity. Lines a and b arise from transitions in which the spin of the A nucleus changes and that of the X nucleus is unaltered. These can be described accurately as A lines, and are centred on ν_A and split by |J|. This is the first-order situation described in Chapter 1.

Table 2-3 NMR spectrum of the AB system

Transition	Frequency	Relative intensity
d 4←2	$\frac{1}{2}(\nu_A + \nu_B) + \frac{1}{2}J + \frac{1}{2}D$	$1-\sin 2\theta$
$b 4 \leftarrow 3$	$\frac{1}{2}(\nu_{A}+\nu_{B})+\frac{1}{2}J-\frac{1}{2}D$	$1 + \sin 2\theta$
$c 3 \leftarrow 1$	$\frac{1}{2}(u_{A} + u_{B}) - \frac{1}{2}J + \frac{1}{2}D$	$1 + \sin 2\theta$
$a 2 \leftarrow 1$	$\frac{1}{2}(u_{ m A} + u_{ m B}) - \frac{1}{2}J - \frac{1}{2}D$	$1-\sin 2\theta$

