PROGRAMACIÓN DINÁMICA DISCRETA DETERMINISTA

Objetivo— El estudiante, al finalizar el caso de estudio, debe ser capaz de optimizar la operación de sistemas simples usando el algoritmo de programación dinámica discreta determinística.

Tipo de actividad— Grupo de estudio.

Formato— Grupos de tres (3) personas.

Duración—30 min.

Descripción — Se desea optimizar la operación de un sistema de generación conformado por una planta hidráulica y una planta térmica. La información detallada del sistema es la siguiente:

Planificación: 4 etapas.

Planta hidráulica: Vol. máximo (V*) = 100, Caudal máx. turbinado (Q*) = 50, Factor conversión (ρ) = 1

Aporte por etapa $(A_i) = \{21, 15, 12, 18\}$, Volumen inicial (Vo) = 75.

Generación máxima (G^*) = 45, Costo combustible (CC) = 15. Planta térmica:

Racionamiento: Costo racionamiento (CR) = 1000 para todas las etapas.

Demanda: 50 para todas las etapas

Definición de variables:

V_p	Volumen al final de la etapa p .
\dot{Q}_p	Caudal turbinado en la etapa p .
S_p	Volumen vertido en la etapa p .
$\dot{G}H_p$	Generación hidráulica en la etapa p .
A_n	Aporte en la etapa p .

Generación térmica en la etapa p. R_n Energía racionada en la etapa p.

Función de costo inmediato para la etapa p. FCI_{p} Función de Costo Futuro para la etapa p. FCF_{p}

SOLUCIÓN

Metodología.

El paso inicial es discretizar el volumen del embalse: $V_p = \{0, 25, 50, 75, 100\}$. Luego, se soluciona la función objetivo:

$$z_p^* = \min\left(CR_pR_p + \sum_{t=1}^{T} CC_{t,p}G_{t,p} + z_{p+1}^*\right)$$

desde la última etapa hacia la primera ($p=P,P-1,\ldots,2,1$), considerando únicamente los valores discretizados del volumen. La función de costo futuro para la última etapa es siempre cero. El concepto clave del algoritmo es que en la etapa p calcula la función de costo futuro para cada valor discretizado de V_{p-1} .

Nótese que los cálculos están basados en considerar que el algoritmo pasa del volumen final de la etapa $p-1\,$ a la etapa p, y a partir del aporte se pueden calcular los volúmenes turbinado y vertido. Adicionalmente, se puede dar que la transición es infactible ya que el aporte puede ser insuficiente.

Solución numérica*.

\mathbf{E}	г Λ	n	Λ	1
н. 1	1 4	۱P	А	4

ETAP	A 4										
V_3	V_4	A_4	Q_4	S_4	GH_4	G_4	R_4	FCI ₄	FCF_4	FCI ₄ + FCF ₄	FCF ₃
0	0	18	18	0	18	32	0	480	0	480	480
0	25	18									
0	50	18									
0	75	18									
0	100	18									
25	0	18	43	0	43	7	0	105	0	105	105
25	25	18	18	0	18	32	0	480	0	480	
25	50	18									
25	75	18									
25	100	18									
50	0	18	50	18	50	0	0	0	0	0	0
50	25	18	43	0	43	7	0	105	0	105	
50	50	18	18	0	18	32	0	480	0	480	
50	75	18									
50	100	18									
75	0	18	50	43	50	0	0	0	0	0	0
75	25	18	50	18	50	0	0	0	0	0	
75	50	18	43	0	43	7	0	105	0	105	
75	75	18	18	0	18	32	0	480	0	480	
75	100	18									
100	0	18	50	68	50	0	0	0	0	0	0
100	25	18	50	43	50	0	0	0	0	0	
100	50	18	50	18	50	0	0	0	0	0	
100	75	18	43	0	43	7	0	105	0	105	
100	100	18	18	0	18	32	0	480	0	480	

^{*} Los renglones en blanco representan transiciones infactibles.

Tro-	ΓΔ	n	٨	-
н. 1	1 4	۱P	А	- 1

ET/	ETAPA 3											
	V_2	V_3	A_3	Q_3	S_3	GH_3	G_3	R_3	FCI ₃	FCF_3	FCI_3 + FCF_3	FCF_2
	0	0	12	12	0	12	38	0	570	480	1050	1050
	0	25	12	12	Ü	12	50	Ü	370	100	1050	1030
	0	50	12									
	0	75	12									
	0	100	12									
	25	0	12	37	0	37	13	0	195	480	675	675
	25	25	12	12	0	12	38	0	570	105	675	
	25	50	12									
2	25	75	12									
2	25	100	12									
	50	0	12	50	12	50	0	0	0	480	480	300
5	50	25	12	37	0	37	13	0	195	105	300	
5	50	50	12	12	0	12	38	0	570	0	570	
5	50	75	12									
5	50	100	12									
7	75	0	12	50	37	50	0	0	0	480	480	105
7	75	25	12	50	12	50	0	0	0	105	105	
7	75	50	12	37	0	37	13	0	195	0	195	
7	75	75	12	12	0	12	38	0	570	0	570	
7	75	100	12									
	00	0	12	50	62	50	0	0	0	480	480	0
	00	25	12	50	37	50	0	0	0	105	105	
	00	50	12	50	12	50	0	0	0	0	0	
	00	75	12	37	0	37	13	0	195	0	195	
1(00	100	12	12	0	12	38	0	570	0	570	

ETAP.	ETAPA 2										
V_1	V_2	A_2	Q_2	S_2	GH_2	G_2	R_2	FCI_2	FCF_2	FCI_2+	FCF_1
										FCF_2	
0	0	15	15	0	15	35	0	525	1050	1575	1575
0	25	15									
0	50	15									
0	75	15									
0	100	15									
25	0	15	40	0	40	10	0	150	1050	1200	1200
25	25	15	15	0	15	35	0	525	675	1200	
25	50	15									
25	75	15									
25	100	15									
50	0	15	50	15	50	0	0	0	1050	1050	825
50	25	15	40	0	40	10	0	150	675	825	
50	50	15	15	0	15	35	0	525	300	825	
50	75	15									
50	100	15									
75	0	15	50	40	50	0	0	0	1050	1050	450
75	25	15	50	15	50	0	0	0	675	675	
75	50	15	40	0	40	10	0	150	300	450	
75	75	15	15	0	15	35	0	525	105	630	
75	100	15									
100	0	15	50	65	50	0	0	0	1050	1050	255
100	25	15	50	40	50	0	0	0	675	675	
100	50	15	50	15	50	0	0	0	300	300	
100	75	15	40	0	40	10	0	150	105	255	
100	100	15	15	0	15	35	0	525	0	525	

ETAPA 1

_												
	V_0	V_1	A_1	Q_{1}	${\mathcal S}_1$	GH_1	G_1	R_1	FCI_1	FCF_1	FCI_1+	FCF_0
											FCF_1	
_	75	0	21	50	46	50	0	0	0	1575	1575	885
	75	25	21	50	21	50	0	0	0	1200	1200	
	75	50	21	46	0	46	4	0	60	825	885	
	75	75	21	21	0	21	29	0	435	450	885	
	75	100	21									