Student Information

Full Name: Batuhan Akçan

Id Number: 2580181

Answer 1

	p	q	$p \wedge q$	$\neg p \lor \neg q$	$(p \land q) \leftrightarrow (\neg p \lor \neg q)$
	T	T	T	F	F
a)	T	F	F	T	F
	\overline{F}	T	F	T	F
	F	F	F	T	F

The statement $(p \land q) \leftrightarrow (\neg p \lor \neg q)$ is false under every interpretation. Hence, the statement is a contradiction.

b)

$$\begin{array}{cccc} p \to ((q \vee \neg q) \to (p \wedge q)) & \text{given.} \\ p \to (T \to (p \wedge q)) & \text{TABLE 6, Negation laws, line 1.} \\ p \to (F \vee (p \wedge q)) & \text{TABLE 7, line 1.} \\ p \to (p \wedge q) & \text{TABLE 6, Identity laws, line 2.} \\ \neg p \vee (p \wedge q) & \text{TABLE 7, line 1.} \\ (\neg p \vee p) \wedge (\neg p \vee q) & \text{TABLE 6, Distributive laws, line 1.} \\ T \wedge (\neg p \vee q) & \text{TABLE 6, Negation laws, line 1.} \\ \neg p \vee q & \text{TABLE 6, Identity laws, line 1.} \end{array}$$

- a) $\forall x \exists y W(x, y)$
- b) $\exists x \exists y (\neg F(x, y))$
- c) $\forall x (W(x,P) \rightarrow A(Ali, x))$
- d) $\exists y (W(B\ddot{u}sra, y) \land F(TUBITAK, y))$
- e) $\exists x \exists y \exists z (S(x,y) \land S(x,z) \land y \neq z)$
- f) $\forall x \forall y \exists p \left(\neg(W(x,p) \land W(y,p) \land x \neq y) \right)$
- g) $\exists x \exists y \exists p \, (W(x,p) \wedge W(y,p) \wedge \forall z (W(z,p) \rightarrow x = z \oplus y = z))$

1	$p \rightarrow q$	
2	$(q \land \neg r) \to s$	
3	$\neg s$	
4	$q \land \neg r$	
5	$\frac{q \wedge \neg r}{s}$	\Rightarrow E, 2, 4
6		$\neg E, 3, 5$
7	$\neg (q \land \neg r)$	$\neg I, 4-6$
8		
9		
10		∨I, 9
11		$\neg E, 8, 10$
12	-q	$\neg I, 9-11$
13	q	$\neg \neg E$, 12
14		
15		∨I, 14
16		$\neg E, 8, 15$
17	-r	¬I, 14–16
18	$q \land \neg r$	∧I, 13, 17
19	上	$\neg E, 7, 18$
20	$\neg q \lor r$	$\neg I, 8-19$
21		
22		
23		$\neg E, 21, 22$
24	$ \neg r$	
25		R, 23
26		$\neg I, 24-25$
27		¬¬E, 26

Line 12 is the negation of what Barış said. Thus, Barış is lying.