DA Lab 1

Name: Dheeraj Chaudhary

Roll: 17BCS009

nw_read <- read.csv("/home/dheeraj/Desktop/Lecture/6th_sem_Academics/DataScience/
new_data.csv") #reading the csv file
nw_read nw_read\$X <- NULL nw_read</pre>

AI			3x Z							
r	A	В	С	D	E	F	G	Н		
1		year	event_Reg_LBirth	event_Reg_SBirth	event_Reg_Deaths	CRS_Births	CRS_deaths	percent_ofCRS_SRS_Births	percent_ofCRS_SRS_Deaths	
2	12	2011	1108562	6940	384745	18.72	6.5	99.47	91.55	
3	13	2012	1124490	6524	407015	18.62	6.74	100	94.93	
4	14	2013	1068671	5708	413635	17.54	6.79	95.85	97	
5	15	2014	1087530	5685	411533	17.21	6.51	94.04	93	
6	16	2015	1053248	5067	393731	16.44	6.15	92	95	
7	17	2016	1107258	4477	420774	16.42	6.28	92	95	
8										

```
> min(nw_read[["event_Reg_LBirth"]])
[1] 1053248
> max(nw_read[["event_Reg_LBirth"]])
[1] 1124490
> mean(nw_read[["event_Reg_LBirth"]])
[1] 1091626
```

```
> median(nw_read[["event_Reg_LBirth"]])
      [1] 1097394
     > mode(nw_read[["event_Reg_LBirth"]])
      [1] "numeric"
     > var(nw_read[["event_Reg_LBirth"]])
     [1] 725562028
     > sd(nw_read[["event_Reg_LBirth"]])
     [1] 26936.26
     > IQR(nw_read[["event_Reg_LBirth"]])
      [1] 34850.25
min(nw_read[["event_Reg_SBirth"]])
max(nw_read[["event_Reg_SBirth"]])
mean(nw_read[["event_Reg_SBirth"]])
median(nw_read[["event_Reg_SBirth"]])
mode(nw_read[["event_Reg_SBirth"]])
var(nw_read[["event_Reg_SBirth"]])
sd(nw_read[["event_Reg_SBirth"]])
IQR(nw_read[["event_Reg_SBirth"]])
    > min(nw_read[["event_Reg_SBirth"]])
      [1] 4477
     > max(nw_read[["event_Reg_SBirth"]])
     [1] 6940
     > mean(nw_read[["event_Reg_SBirth"]])
     [1] 5733.5
     > median(nw_read[["event_Reg_SBirth"]])
     [1] 5696.5
     > mode(nw_read[["event_Reg_SBirth"]])
     [1] "numeric"
     > var(nw_read[["event_Reg_SBirth"]])
     [1] 821309.9
     > sd(nw_read[["event_Reg_SBirth"]])
      [1] 906.2615
     > IQR(nw_read[["event_Reg_SBirth"]])
     [1] 1098.5
min(nw_read[["event_Reg_Deaths"]])
max(nw_read[["event_Reg_Deaths"]])
mean(nw_read[["event_Reg_Deaths"]])
median(nw_read[["event_Reg_Deaths"]])
mode(nw_read[["event_Reg_Deaths"]])
var(nw_read[["event_Reg_Deaths"]])
sd(nw_read[["event_Reg_Deaths"]])
IQR(nw_read[["event_Reg_Deaths"]])
    > min(nw_read[["event_Reg_Deaths"]])
```

```
[1] 384745
     > max(nw_read[["event_Reg_Deaths"]])
     [1] 420774
     > mean(nw_read[["event_Reg_Deaths"]])
     [1] 405238.8
     > median(nw_read[["event_Reg_Deaths"]])
     [1] 409274
     > mode(nw_read[["event_Reg_Deaths"]])
     [1] "numeric"
     > var(nw_read[["event_Reg_Deaths"]])
     [1] 181407151
     > sd(nw_read[["event_Reg_Deaths"]])
     [1] 13468.75
     > IQR(nw_read[["event_Reg_Deaths"]])
     [1] 16057.5
min(nw_read[["CRS_Births"]])
max(nw_read[["CRS_Births"]])
mean(nw_read[["CRS_Births"]])
median(nw_read[["CRS_Births"]])
mode(nw_read[["CRS_Births"]])
var(nw_read[["CRS_Births"]])
sd(nw_read[["CRS_Births"]])
IQR(nw_read[["CRS_Births"]])
 > min(nw_read[["CRS_Births"]])
     [1] 16.42
     > max(nw_read[["CRS_Births"]])
     [1] 18.72
     > mean(nw_read[["CRS_Births"]])
     [1] 17.49167
     > median(nw_read[["CRS_Births"]])
     [1] 17.375
     > mode(nw_read[["CRS_Births"]])
     [1] "numeric"
     > var(nw_read[["CRS_Births"]])
     [1] 1.023617
     > sd(nw_read[["CRS_Births"]])
     [1] 1.011739
     > IQR(nw_read[["CRS_Births"]])
     [1] 1.7175
min(nw_read[["CRS_deaths"]])
max(nw_read[["CRS_deaths"]])
mean(nw_read[["CRS_deaths"]])
```

```
median(nw_read[["CRS_deaths"]])
mode(nw_read[["CRS_deaths"]])
var(nw_read[["CRS_deaths"]])
sd(nw_read[["CRS_deaths"]])
IQR(nw_read[["CRS_deaths"]])
   > min(nw_read[["CRS_deaths"]])
       [1] 6.15
      > max(nw_read[["CRS_deaths"]])
      [1] 6.79
       > mean(nw_read[["CRS_deaths"]])
       [1] 6.495
      > median(nw_read[["CRS_deaths"]])
      [1] 6.505
      > mode(nw_read[["CRS_deaths"]])
      [1] "numeric"
      > var(nw_read[["CRS_deaths"]])
      [1] 0.06251
      > sd(nw_read[["CRS_deaths"]])
      [1] 0.25002
      > IQR(nw_read[["CRS_deaths"]])
      [1] 0.3475
######## Basic statistics for column 7 i.e, percent_ofCRS_SRS_Births #########
min(nw_read[["percent_ofCRS_SRS_Births"]])
max(nw_read[["percent_ofCRS_SRS_Births"]])
mean(nw_read[["percent_ofCRS_SRS_Births"]])
median(nw_read[["percent_ofCRS_SRS_Births"]])
mode(nw_read[["percent_ofCRS_SRS_Births"]])
var(nw_read[["percent_ofCRS_SRS_Births"]])
sd(nw_read[["percent_ofCRS_SRS_Births"]])
IQR(nw_read[["percent_ofCRS_SRS_Births"]])
     > min(nw_read[["percent_ofCRS_SRS_Births"]])
      [1] 92
      > max(nw_read[["percent_ofCRS_SRS_Births"]])
      [1] 100
      > mean(nw_read[["percent_ofCRS_SRS_Births"]])
      [1] 95.56
      > median(nw_read[["percent_ofCRS_SRS_Births"]])
      [1] 94.945
      > mode(nw_read[["percent_ofCRS_SRS_Births"]])
      [1] "numeric"
      > var(nw_read[["percent_ofCRS_SRS_Births"]])
      [1] 12.54868
      > sd(nw_read[["percent_ofCRS_SRS_Births"]])
      [1] 3.542412
      > IQR(nw_read[["percent_ofCRS_SRS_Births"]])
      [1] 6.055
```

```
######## Basic statistics for column 8 i.e, percent_ofCRS_SRS_Deaths #########
min(nw_read[["percent_ofCRS_SRS_Deaths"]])
max(nw_read[["percent_ofCRS_SRS_Deaths"]])
mean(nw_read[["percent_ofCRS_SRS_Deaths"]])
median(nw_read[["percent_ofCRS_SRS_Deaths"]])
mode(nw_read[["percent_ofCRS_SRS_Deaths"]])
var(nw_read[["percent_ofCRS_SRS_Deaths"]])
sd(nw_read[["percent_ofCRS_SRS_Deaths"]])
IQR(nw_read[["percent_ofCRS_SRS_Deaths"]])
     > min(nw_read[["percent_ofCRS_SRS_Deaths"]])
      [1] 91.55
      > max(nw_read[["percent_ofCRS_SRS_Deaths"]])
      > mean(nw_read[["percent_ofCRS_SRS_Deaths"]])
      [1] 94.41333
      > median(nw_read[["percent_ofCRS_SRS_Deaths"]])
      [1] 94.965
      > mode(nw_read[["percent_ofCRS_SRS_Deaths"]])
      [1] "numeric"
      > var(nw_read[["percent_ofCRS_SRS_Deaths"]])
      [1] 3.568467
      > sd(nw_read[["percent_ofCRS_SRS_Deaths"]])
      [1] 1.889039
      > IQR(nw_read[["percent_ofCRS_SRS_Deaths"]])
      [1] 1.5175
```

######## DESCRIPTION OF PLOT 1: It can be clearly seen from the plot that in year 2012 highest number of vital event registered

Number of vital events registered Live Birth VS Year

plot(year, percent_ofCRS_SRS_Deaths, main="Scatterplot_year vs percent_ofCRS_SRS_Deaths ", xlab="year ", ylab="percent_of_CRS_SRS_Deaths ", pch=19) ############### DESCRIPTION OF PLOT 2: It can be clearly seen from the plot that in year 2013 highest percentage rate of CRS vs SRS registered

Scatterplot_year vs percent_ofCRS_SRS_Deaths

original_data <- "/home/dheeraj/Desktop/Lecture/6th_sem_Academics/DataScience/CRS_2016.pdf" #
District_Urban <- extract_areas(original_data, pages = 16, output = "data.frame", header = F)</pre>

District_Urban District_Urban <- as.data.frame(District_Urban) colnames(District_Urban) <- c("Districts", "Reg_birth", "Birth_rate", "Reg_death", "Death_rate", "Reg_infant_death", "Reg_still_birth", "Still_birth_rate") District_Urban write.csv(District_Urban,

"/home/dheeraj/Desktop/Lecture/6th_sem_Academics/DataScience/district_urbn.csv", row.names = FALSE) dist_urban_read <-

read.csv("/home/dheeraj/Desktop/Lecture/6th_sem_Academics/DataScience/district_urbn.csv")
dist_urban_read

########### PLOT 3: Bar plot for visualizing registered death and birth for urban districts

Urban_analysis <data.frame(District_Urban\$Districts, District_Urban\$Reg_birth, District_Urban\$Reg_death)
colnames(Urban_analysis) <c("Districts", "Reg_birth_in_the_districts", "Reg_death_in_the_districts") Urban_analysis <melt(Urban_analysis,id.vars = "Districts") ggplot(Urban_analysis,aes(x = Districts , y =</pre>

```
value, fill = variable))+ylab("quantity") + geom_bar(stat = "identity", position = "dodge") +
theme(axis.text.x = element_text(angle = 90, hjust = 1))
```

########### DESCRIPTION OF PLOT 3: By seeing the plot we can conclude that Banglore distrist have highest number of registered birth and death, and all the district have higher registered birth then death

original_data <- "/home/dheeraj/Desktop/Lecture/6th_sem_Academics/DataScience/CRS_2016.pdf"
District_Rural <- extract_areas(original_data, pages = 17, output = "data.frame", header = F)
District_Rural District_Rural <- as.data.frame(District_Rural) colnames(District_Rural) <c("Districts", "Birth_reg", "Birth_rate", "Death_reg", "Death_rate", "Reg_infant_death", "Still_bi

rth_reg", "Still_birth_rate") District_Rural write.csv(District_Rural,
"/home/dheeraj/Desktop/Lecture/6th_sem_Academics/DataScience/district_rural.csv", row.names =
FALSE) dist_rural_read <read.csv("/home/dheeraj/Desktop/Lecture/6th_sem_Academics/DataScience/district_rural.csv")
dist_rural_read</pre>

########### PLOT 4: Box plot for visualizing registered infant death RuRAL District with OUTLIERS

boxplot(District_Rural\$Reg_infant_death) num = as.numeric(District_Rural\$Reg_infant_death)
outvalues = boxplot(num)\$out which(District_Rural\$Reg_infant_death %in% outvalues)

########### DESCRIPTION OF PLOT 4: By seeing the plot we got the median as 27 that means 75 percent of district have registered infant deaths above 27 and 25% have below 27, and a dot is shown which is outlier

