K-Nearest Neighbors (KNN) Algorithm

Dr. Muhammad Wasim

K-nearest neighbors (KNN) algorithm

• Idea: If we can measure the distance of the unseen example with the examples in the training data, we can predict label for the unseen example.

K-nearest neighbors (KNN) algorithm for Classification

Training Dataset

Sepal Length	Sepal Width	Petal Length	Petal Width	Class / Label
5.1	3.5	1.4	0.2	Iris setosa
4.9	3.0	1.4	0.2	Iris setosa
7.0	3.2	4.7	1.4	Iris versicolor
6.4	3.2	4.5	1.5	Iris versicolor
6.3	3.3	6.0	2.5	Iris virginica
5.8	3.3	6.0	2.5	Iris viginica

Unseen Example

Sepal Length	Sepal Width	Petal Length	Petal Width	Class / Label
5.2	2.9	6.0	2.3	?

K-nearest neighbors (KNN) algorithm for Classification

0.0 -

Training Dataset

Petal Length	Petal Width	Class / Label
1.4	0.2	Iris setosa
1.4	0.2	Iris setosa
4.7	1.4	Iris versicolor
4.5	1.5	Iris versicolor
6.0	2.5	Iris virginica
6.0	2.5	Iris viginica

Petal.Length

6

Unseen Example

Petal Length	Petal Width	Class / Label
6.0	2.3	?

K-nearest neighbors (KNN) algorithm for Classification

K-nearest neighbors (KNN) algorithm for Regression

Distance Measure: Euclidean Distance

$$d(P,Q) = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$$

Similarity Measures

Minkowski Distance

$$\left(\sum_{i=1}^{n} \left| x_i - y_i \right|^p \right)^{1/p}$$

Manhattan Distance (p=1)

$$\left(\sum_{i=1}^{n} \left| x_i - y_i \right| \right)$$

• Euclidean Distance (p=2) $\left(\sum_{i=1}^{n} (x_i - y_i)^2\right)^{1/2}$

Nearest Neighbor: Example

Voronoi Diagram

 Voronoi Cell of x: All points in a Voronoi cell are closer to x than to any other instance

Nearest Neighbor: Example

- This is a Voronoi diagram
- Each cell contain one of our training examples
- All points within a cell are closer to that training example, than to any other training example
- Points on the Voronoi line segments are equidistant to one or more training examples

Nearest Neighbor: Example

Decision Boundary

Those edges across which the decision changes

