

Dénombrement

Cours		2
1	Insembles finis	2
	.1 Définition	2
	.2 Propriétés	2
	.3 Exemples de cardinaux	2
2	Dénombrement d'applications, de parties d'un ensemble	2
	.1 Nombre d'applications	2
	Nombre de parties d'un ensemble	
	.3 Fonction indicatrice	3
3	istes, nombre d'injections	3
4	Combinaisons	3
Exercio		4
Exe	ces et résultats classiques à connaître	4
	fombre de parties	4
Exe	ces du CCINP	5
Exe	ces	5
Pot	problèmes d'entrainement	5

1 Ensembles finis

1.1 Définition

Définition. On dit qu'un ensemble E est **fini** lorsqu'il est vide, ou qu'il existe $n \in \mathbb{N}^*$ tel que E soit en bijection avec $\{1, \ldots, n\}$.

Dans le premier cas, on définit Card(E) = 0. Dans le second cas, n est unique et on définit Card(E) = n.

1.2 Propriétés

 $\frac{\textbf{Proposition.}}{\text{ensembles}}$ Deux ensembles finis ont le même cardinal si et seulement s'il existe une bijection entre ces ensembles.

Proposition. Soit E un ensemble fini, et $A \subset E$. Alors :

- A est fini et $Card(A) \leq Card(E)$
- $A = E \iff \operatorname{Card} A = \operatorname{Card} E$.

Proposition. Soit E et F deux ensembles finis de même cardinal, et $\varphi: E \to F$. Alors :

$$\varphi$$
 bijective $\iff \varphi$ injective $\iff \varphi$ surjective

1.3 Exemples de cardinaux

Proposition. Soit E et F deux ensembles finis. Alors $E \times F$ est fini et :

$$Card(E \times F) = Card(E) Card(F)$$

Corollaire. Si E_1, E_2, \dots, E_p sont des ensembles finis, alors $E_1 \times E_2 \times \dots \times E_p$ est fini et :

$$Card(E_1 \times E_2 \times \cdots \times E_p) = Card(E_1) Card(E_2) \dots Card(E_p)$$

Proposition. Soit E et F deux ensembles finis. Alors $E \cup F$ est fini et :

- si l'union est disjointe, $Card(E \cup F) = Card(E) + Card(F)$;
- en général, $Card(E \cup F) = Card(E) + Card(F) Card(E \cap F)$.

Corollaire. Si E_1, E_2, \dots, E_p sont des ensembles finis deux à deux disjoints, alors $E_1 \cup E_2 \cup \dots \cup E_p$ est fini et :

$$\operatorname{Card}(\bigcup_{i=1}^{p} E_i) = \sum_{i=1}^{p} \operatorname{Card}(E_i)$$

2 Dénombrement d'applications, de parties d'un ensemble

2.1 Nombre d'applications

Théorème.

Soit E et F deux ensembles finis de cardinaux respectifs p et n. On note $\mathcal{F}(E,F) = F^E$ l'ensemble des applications : $E \to F$.

Alors F^E est fini et :

$$\operatorname{Card}(F^E) = p^n = \operatorname{Card}(F)^{\operatorname{Card} E}$$

2/6 http://mpi.lamartin.fr 2024-2025

2.2 Nombre de parties d'un ensemble

Théorème.

Soit E un ensemble fini de cardinal n. Alors l'ensemble de ses parties, $\mathcal{P}(E)$, est fini, et :

$$\operatorname{Card}(\mathcal{P}(E)) = 2^n = 2^{\operatorname{Card}(E)}$$

2.3 Fonction indicatrice

<u>Définition</u>. Soit E un ensemble et A une partie de E. On appelle fonction indicatrice de A (ou parfois fonction caractéristique de A) l'application :

$$\begin{array}{ccc} \mathbb{1}_A \,:\, E & \to & \{0,1\} \\ & x & \mapsto & \begin{cases} 1 & \text{si } x \in A \\ 0 & \text{si } x \not\in A \end{cases} \end{array}$$

3 Listes, nombre d'injections

<u>Définition.</u> Soit E un ensemble. On appelle p-liste d'éléments distincts de E tout p-uplet (x_1, \ldots, x_p) d'éléments de E deux à deux distincts.

Proposition. Si Card(E) = n et $p \le n$, le nombre de p-listes d'éléments distincts de E est :

$$n(n-1)\dots(n-p+1) = \frac{n!}{(n-p)!}$$

<u>Proposition.</u> Soit E et F deux ensembles finis, de cardinaux respectifs p et n. Le nombre d'applications injectives $E \to F$ est :

$$n(n-1)\dots(n-p+1) = \frac{n!}{(n-p)!}$$

Corollaire. Si E est un ensemble fini de cardinal n, alors :

$$Card(\mathfrak{S}(E)) = n!$$

où $\mathfrak{S}(E)$ désigne l'ensemble des permutations de E, c'est-à-dire les bijections : $E \to E$.

4 Combinaisons

Définition. Soit E un ensemble. On appelle p-combinaison une partie de E à p éléments.

Définition. Pour $n, p \in \mathbb{N}$, on appelle p **parmi** n et on note $\binom{n}{p}$ le nombre de p-combinaisons d'un ensemble à n éléments, c'est-à-dire le nombre de parties à p éléments.

Proposition. Lorsque
$$0 \le p \le n$$
, $\binom{n}{p} = \frac{n!}{p!(n-p)!}$

Remarque. Il est maladroit de systématiquement remplacer un coefficient binomial par son expression factorielle.

Proposition.

•
$$\binom{n}{0} = 1$$

•
$$\binom{n}{n} = 1$$

• Pour
$$p > n$$
 ou $p < 0$, $\binom{n}{p} = 0$

$$\bullet \ \binom{n}{p} = \binom{n}{n-p}$$

$$\bullet \ \, \binom{n+1}{p+1} = \binom{n}{p} + \binom{n}{p+1} \ \, (\textit{formule de Pascal})$$

•
$$\binom{n}{p} = \frac{n}{p} \binom{n-1}{p-1}$$
 pour $n, p \ge 1$

$$\bullet \ \sum_{p=0}^{n} \binom{n}{p} = 2^n$$

Exercices et résultats classiques à connaître

Nombre de parties

81.1

- (a) Justifier que $\sum_{p=0}^{n} \binom{n}{p} = 2^{n}$.
- (b) Justifier que $\sum_{p=0}^{n} \binom{n}{p}^2 = \binom{2n}{n}$ en commençant par remarquer que $\binom{n}{p}^2 = \binom{n}{p} \binom{n}{n-p}$.

GNP 112

81.2

Soit $n \in \mathbb{N}^*$ et E un ensemble possédant n éléments. On désigne par $\mathcal{P}(E)$ l'ensemble des parties de E.

- 1. Déterminer le nombre a de couples $(A, B) \in (\mathcal{P}(E))^2$ tels que $A \subset B$.
- 2. Déterminer le nombre b de couples $(A, B) \in (\mathcal{P}(E))^2$ tels que $A \cap B = \emptyset$
- 3. Déterminer le nombre c de triplets $(A, B, C) \in (\mathcal{P}(E))^3$ tels que A, B et C soient deux à deux disjoints et vérifient $A \cup B \cup C = E$.

Exercices

81.3

Soit $n \in \mathbb{N}^*$ et $k \in \{1, \dots, n\}$. Montrer que : $k \binom{n}{k} = n \binom{n-1}{k-1}$.

81.4

Pour $n \in \mathbb{N}$, calculer $\sum_{k=0}^{n} k \binom{n}{k}$

81.5

On appelle main d'un joueur cinq cartes issues d'un jeu de 32 cartes.

- (a) Combien y a-t-il de mains différentes?
- (b) Combien comportent exactement un as?
- (c) Combien comportent au moins un as?
- (d) Combien comportent exactement un as et un cœur?
- (e) Combien comportent au moins un as ou un cœur?
- (f) Combien comportent au moins un as et au moins un cœur?

81.6

Pour E ensemble, on appelle **recouvrement** de E tout couple (A, B) tel que $A \cup B = E$. On note R_n le nombre de recouvrements d'un ensemble à n éléments.

- (a) Que valent R_0 et R_1 ?
- (b) Soit E un ensemble de cardinal n.
 - b1. Pour $k \in [0, n]$ et A une partie de E à k éléments, combien y a-t-il de parties B telles que $A \cup B = E$?
 - b
2. En déduire R_n sous la forme d'une somme, puis simplifier cette somme.

81.7

Soit $p, q \in \mathbb{N}$ et $n \in \{0, \dots, p+q\}$

- (a) Montrer que $\binom{p+q}{n} = \sum_{k=0}^{n} \binom{p}{k} \binom{q}{n-k}$.
- (b) En déduire que $\binom{2n}{n} = \sum_{k=0}^{n} \binom{n}{k}^{2}$.

81.8

Lorsque l'on énumère, en binaire, tous les entiers de 1 à 1024, combien de fois utilise-t-on le chiffre 1?

81.9

Soit $n \in \mathbb{N}$ et E un ensemble de cardinal n.

- (a) Combien y a-t-il de lois de composition interne sur E?
- (b) Combien y a-t-il de lois de composition interne commutatives sur E?
- (c) Combien y a-t-il de lois de composition interne sur ${\cal E}$ admettant un élément neutre ?

2025 MPI*

81.10

Soit $n, p \in \mathbb{N}$ avec $p \neq 0$, et E = [1, n].

- (a) Dénombrer les suites (x_1, \ldots, x_p) strictement croissantes d'éléments de E.
- (b) Dénombrer les suites (x_1, \ldots, x_p) croissantes d'éléments de E.

81.11

On appelle **partition** d'un ensemble E tout ensemble constitué de parties de E, deux à deux disjointes, non vides, et dont la réunion est E. On note B_n le nombre de partitions d'un ensemble fini à n éléments, et on pose $B_0 = 1$. Montrer que, pour tout $n \in \mathbb{N}$:

$$B_{n+1} = \sum_{k=0}^{n} \binom{n}{k} B_k$$

81.12

Soit E et F deux ensembles finis non vides, de cardinaux respectifs p et n. On note $S_{p,n}$ le nombre de surjections de E dans F.

(a) Déterminer $S_{p,1}$, $S_{n,n}$ et $S_{p,n}$ lorsque p < n.

(b) On suppose p > 1 et n > 1. On choisit $a \in E$. En étudiant la restriction à $E \setminus \{a\}$ d'une surjection, établir :

$$S_{p,n} = n(S_{p-1,n} + S_{p-1,n-1})$$

(c) En déduire que, pour tout $n, p \ge 1$:

$$S_{p,n} = \sum_{k=0}^{n} (-1)^{n-k} \binom{n}{k} k^p$$

81.13

Soit E un ensemble fini. On appelle **dérangement** de E toute permutation σ de E vérifiant $\sigma(x) \neq x$ pour tout $x \in E$. On note D_n le nombre de dérangements d'un ensemble à n éléments.

- (a) Montrer que, pour tout $n \ge 2$: $D_{n+1} = n(D_n + D_{n-1})$.
- (b) En déduire que, pour tout $n \ge 2$: $D_n = nD_{n-1} + (-1)^n$.
- (c) Conclure que, pour tout $n \ge 1$: $D_n = n! \sum_{k=0}^n \frac{(-1)^k}{k!}$.