GENERALITES SUR LES BARYCENTRES

Lajoie BENGONE AKOU

2024

TABLES DE MATIERES

I.	Barycentre de deux points pondérés	- 3
1.	Définition	- 3
2.	. Homogénéité	- 3
3.	Réduction d'une somme de vecteurs	- 3
4.	. Coordonnées de barycentre	- 3
II.	Barycentre de plus de deux points pondérés	- 4
5.	Définition	- 4
6.	. Homogénéité	- 4
7.	. Isobarycentre	- 4
8.	. Réduction de la somme des vecteurs	- 4
9.	. Coordonnées de barycentre	- 5
10	0. Barycentre partiels	- 5
III.	Application barycentre	- 5
11	1. Alignement	- 5
1′	2 Concours	- 5

I. Barycentre de deux points pondérés

1. Définition

Soit A et B, deux points plan et a, b deux réels. Pour tout couple (A, a) et (B, b) il existe un point G tel que :

$$\Rightarrow a\overrightarrow{GA} + b\overrightarrow{GB} = \overrightarrow{0}$$
$$\Rightarrow \overrightarrow{AG} = \frac{b}{a+b}\overrightarrow{AB}$$

Remarque: On dit que G est barycentre des point pondérés (A, a) et (B, b).

2. Homogénéité

G barycentre (A, a) et (B, b) alors pour tout réel k on a :

$$\Rightarrow a\overrightarrow{GA} + b\overrightarrow{GB} = \overrightarrow{0}$$
$$\Rightarrow ka\overrightarrow{GA} + kb\overrightarrow{GB} = \overrightarrow{0}$$

Remarque : La propriété reste inchangée.

3. Réduction d'une somme de vecteurs

G barycentre des points pondérés (A, a) et (B, b) alors on a, pour tout réel M appartenant au plan on a :

- Si $a + b \neq 0$: $a\overrightarrow{MA} + b\overrightarrow{MB} = (a + b)\overrightarrow{MG}$
- Si a + b = 0: la relation $a\overrightarrow{MA} + b\overrightarrow{MB}$ est indépendante de M

4. Coordonnées de barycentre

Soit les points $A\begin{pmatrix} x_a \\ y_a \end{pmatrix}$, $B\begin{pmatrix} x_B \\ y_B \end{pmatrix}$ et a, b leurs réels respectifs. G barycentre des points pondérés (A, a) et (B, b) alors, les coordonées de G sont :

$$G\left(\frac{ax_a + bx_b}{a + b}\right)$$

$$\frac{ay_a + by_b}{a + b}$$

II. Barycentre de plus de deux points pondérés

5. Définition

Soit A,B et C, trois points du plan et a, b et c des réels. Pour tout couple (A, a), (B, b) et (C, c) il existe un point G tel que :

$$\Rightarrow a\overrightarrow{GA} + b\overrightarrow{GB} + c\overrightarrow{GC} = \overrightarrow{0}$$
$$\Rightarrow \overrightarrow{AG} = \frac{b}{a+b}\overrightarrow{AB} + \frac{c}{a+b}\overrightarrow{AC}$$

6. Homogénéité

G barycentre (A, a), (B, b) et (C,c) alors pour tout réel k on a :

$$\Rightarrow a\overrightarrow{GA} + b\overrightarrow{GB} + c\overrightarrow{GC} = \overrightarrow{0}$$
$$\Rightarrow ka\overrightarrow{GA} + kb\overrightarrow{GB} + kc\overrightarrow{GC} = \overrightarrow{0}$$

7. Isobarycentre

G est isobarycentre des couples (A, a), (B, b) et (C, c) lorsque les coefficients respectifs de A, B et C sont égaux.

Remarques

- L'isobarycentre d'un segment [AB] est le milieu du segment
- L'isobarycentre d'un triangle ABC est le centre de gravité du triangle
- 8. Réduction de la somme des vecteurs

G barycentre des points pondérés (A, a), (B, b) et (C, c) alors pour tout réel M appartenant au plan on a :

- Si $a + b + c \neq 0$: $a\overrightarrow{MA} + b\overrightarrow{MB} + c\overrightarrow{MC} = (a + b + c)\overrightarrow{MG}$
- Si a + b + c = 0: la relation $a\overrightarrow{MA} + b\overrightarrow{MB} + c\overrightarrow{MC}$ est indépendante de M

9. Coordonnées de barycentre

Soit les points $A \begin{pmatrix} x_A \\ y_A \end{pmatrix}$, $B \begin{pmatrix} x_B \\ y_B \end{pmatrix}$ et $C \begin{pmatrix} x_C \\ y_C \end{pmatrix}$ et a, b, c. G barycentre des points pondérés (A, a), (B, b) et (C, c) alors, les coordonées de G sont :

$$G\begin{pmatrix} \frac{ax_a + bx_b + cx_c}{a + b + c} \\ \frac{ay_a + by_b + cy_c}{a + b + c} \end{pmatrix}$$

10. Barycentre partiels

Soit G barycentre des points pondérés (A, a), (B, b) et (C, c) avec $a + b + c \neq 0$. Si $a + b \neq 0$, alors il existe un unique point H barycentre des points pondérés (A, a) et (B, b). Par conséquent, G barycentre de (A, a), (B, b) et (C, c) devient G barycentre de (H, a + b), (C, c)

III. Application barycentre

11. Alignement

Les points A, B et C sont alignés si et seulement si, l'un des points est barycentre des deux autres.

12. Concours

G barycentre $\{(A, a), (B, b)\}$, $\{(C, c), (D, d)\}$ et $\{(E, e), (F, f)\}$ alors les droites (AB), (CD) et (EF) sont concourantes.

LAJOIE BENGONE AKOU 2024 5