Prof. Grit Behrens

gbehrens@fh-bielefeld.de

Name leserlich: Patrick Hünkelmann

Unterschrift: Patrick Hadum

Einführung in die Informatik WS 2020/21

Abgabe in ILIAS bis 19.01.2021 20:00 Uhr

Übungsblatt 10

Aufgabe 12.1:

Gegeben sei die Codierung C:{a, b, c, d, e, f, g} \rightarrow {0, 1}* mit $a \mapsto 10$, $b \mapsto 11$, $c \mapsto 000$, $d \mapsto 001$, $e \mapsto 010$, $f \mapsto 0110$, $g \mapsto 0111$.

- (a) Geben Sie den C entsprechenden Codebaum an.
- (b) Ist die Fano-Bedingung erfüllt?
- (c) Decodieren Sie die Bitfolge 0100110/11/11/010010/100000010111110110

Aufgabe 12.2:

Gegeben sei das Alphabet {a, b, c, d, e, f} mit den relativen Wahrscheinlichkeiten {0.3, 0.2, $0.15, 0.15, 0.1, 0.1\}$

- (a) Geben Sie den Codebaum für eine Huffman-Codierung an.
- (b) Bestimmen Sie die mittlere Wortlänge.
- (c) Codieren Sie das Wort "badecfa".
- (d) Führen Sie (a) und (b) für die Shannon-Fano-Codierung durch.

9

0,3 0

Q

0,2 0

0,15

011 O ဇ 0 +

N, O

0

0,2

51,0

5,0

0

0,2 0

0,3

9.3

c) b a d e c f a
01 11 101 000 100 001 11

3

Aufgabe 12.3:

Für einen dichten 7-Bit Blockcode werde ein Paritätsbit mit gerader Parität eingeführt.

(a) Warum ist eine 1-Bit-Fehlererkennung aber keine 2-Bit-Fehlererkennung möglich?

(b) Bestimmen Sie für die folgenden Codewörter das Paritätsbit (gerade Parität): 0010010, 11111111, 1010101, 0001000.

Aufgabe 12.4:

(a) Ist die ISB-Nummer (ISBN) 3-528-05783-6 oder die ISBN 3-528-05738-6 gültig?

3	5	2	8	0	5	7	8	3	6	
10	9	8	7	6	5	Y	γ	2	1	
30	45	16	56	0	25	28	24	6	6	236
	75	31	147	147	172	20 O	724	230	536	236
? gült:	ig / ni	cht gül	ltig							

3	5	2	8	0	5	7	3	8	6	
10	9	8	Υ		2	F	3	7	\wedge	
30	95	16	(6	0	25	7 /	٩	16	6	23/1
	7-5	91						115	12	•

[?] qultig / nicht gultig

231:11221 RD

(b) Ermitteln Sie die korrekte Prüfziffer x so, dass 281234554321x eine gültige GTIN wird.

2	8	1	2	3	4	5	5	4	3	2	1	x	
Λ	3	1	3	1		1	\sim	7	3	1	7		
4	24	1		3		5		4	٩	4	3	\bigcirc	
	28	23	35	7)	50	55	70	÷γ'	23	87	90		
	90.40×0.00												

90 ,10 = 9 R 0

Aufgabe 12.5:

Ein Wort aus 6 ASCII-Zeichen wird mit einem Rechteck-Code gegen Übertragungsfehler abgesichert. Es werden folgende 7 Bytes empfangen: 01000111, 01100101, 11101100, 01100101, 01101001, 11101101, 00101011. Dabei wird das vom ASCII-Code ungenutzte MSB für die Querparität eingesetzt und das 7. Byte für die Längsparität. In beiden Fällen gelte die gerade Parität.

(a) Trat ein Übertragungsfehler auf? (Annahme: Max. Ein-Bit-Fehler treten auf) Korrigieren Sie ggf. die Übertragung.

(b) Welches Wort wurde übertragen?

1000 111 -> 6 1100 101 -> e 1101000 -> h 1101001 -> e 1101001 -> i 1101001 -> i

Wort. Gehein

Alles Richtig