Fundamental Concepts in Computational and Applied Mathematics

Juan Meza School of Natural Sciences University of California, Merced

Fall 2014

Homework 1 Discussion

Grid Terminology

- mesh
- cells, elements,
 e.g. triangles, quads,
 tetrahedrons, hex
- node, vertex
- edge, face
- Grid properties
 - quality of mesh
 - degeneracy
 - dof

Structured Grid Examples – Uniform

- (i, j, k) indexing
- What are the advantages/disadvantages?

Structured Grid Examples – Rectilinear

- Similar to uniform grid
- What is the main advantage here as compared to a uniform grid?
- What are the disadvantages?

Structured Grid Examples – Curvilinear

- Note that each node still has the same number of neighbors
- What is the main advantage here?
- What are the disadvantages?

Structured Grid Examples - Block Structured

- Used in Adaptive Mesh
 Refinement methods
- Solves problem of having too much resolution in places that you don't need it
- Software is more complicated
- Error analysis more difficult

Main properties of structured grids

- Number of adjacent mesh elements is always the same
- Generally more accurate per unknown/dof than unstructured
- Convergence of algorithms (linear solvers) well understood
- Better data layout, which is good for computation

Example: 5-Point Stencil

5-point stencil

- Simplest 2-D case
- Leads directly to a sparse (penta-diagonal) matrix
- Iterative methods easy to apply

5-Point Stencil Matrix for ${\cal N}=3$ grid

$$A_{9} = \begin{bmatrix} 4 & -1 & & -1 & & & & & \\ -1 & 4 & -1 & & -1 & & & & \\ & -1 & 4 & & & -1 & & & \\ \hline -1 & & 4 & -1 & & -1 & & & \\ & -1 & & 4 & -1 & & -1 & & \\ & & -1 & & -1 & 4 & & & -1 \\ \hline & & & -1 & & 4 & -1 & \\ & & & -1 & & -1 & 4 & -1 \\ \hline & & & & -1 & & -1 & 4 \end{bmatrix}$$

Question

What matrix properties can you name?

Structured Grid Applications: Climate Modeling

Summary

- Structured grids exist in many shapes and forms
- Well understood methods
- Well developed software available
- Work well on parallel and other high performance computing environments
- Don't work as well with complex geometries
- Also harder to use with multi-material, multi-block problems