REC'D 0.5 JAN 2005

WIPO

PCT

日本国特許庁 JAPAN PATENT OFFICE

別紙添付の書類に記載されている事項は下記の出願書類に記載されている事項と同一であることを証明する。

This is to certify that the annexed is a true copy of the following application as filed with this Office.

出願年月日 Date of Application:

2003年12月15日

出願番号 Application Number:

特願2003-417066

[ST. 10/C]:

[JP2003-417066]

出 願 人 Applicant(s):

出光興產株式会社

PRIORITY DOCUMENT

SUBMITTED OR TRANSMITTED IN COMPLIANCE WITH RULE 17.1(a) OR (b)

特許庁長官 Commissioner, Japan Patent Office 2004年11月12日

【書類名】 特許願 IK7403 【整理番号】 平成15年12月15日 【提出日】 特許庁長官 殿 【あて先】 H05B 33/00 【国際特許分類】 【発明者】 千葉県袖ケ浦市上泉1280番地 【住所又は居所】 岩隈 俊裕 【氏名】 【発明者】 千葉県袖ケ浦市上泉1280番地 【住所又は居所】 【氏名】 富田 誠司 【発明者】 千葉県袖ケ浦市上泉1280番地 【住所又は居所】 伊藤 光則 【氏名】 【特許出願人】 【識別番号】 000183646 出光興產株式会社 【氏名又は名称】 【代理人】 100078732 【識別番号】 【弁理士】 大谷 保 【氏名又は名称】 【選任した代理人】 100081765 【識別番号】 【弁理士】 東平 正道 【氏名又は名称】 【手数料の表示】 003171 【予納台帳番号】 21,000円 【納付金額】 【提出物件の目録】 特許請求の範囲 1 【物件名】 【物件名】 明細書 1 要約書 1 【物件名】 【包括委任状番号】 0000937

0000761

【包括委任状番号】

【書類名】特許請求の範囲

【請求項1】

下記一般式(1)~(3)のいずれかで表される化合物からなる有機エレクトロルミネッセンス素子用材料。

【化1】

$$\begin{pmatrix} R_1 & X \\ Cz & R_2 \end{pmatrix} \qquad \begin{pmatrix} Cz & X & R_1 & X & Cz \\ Cz & R_3 & Cz & R_2 & Cz \end{pmatrix} \qquad \begin{pmatrix} R_1 & X & Cz & Cz \\ Cz & R_3 & Cz & Cz & Cz \end{pmatrix} \qquad \begin{pmatrix} R_1 & X & Cz & Cz \\ R_2 & Cz & Cz & Cz \end{pmatrix} \qquad \begin{pmatrix} R_1 & X & Cz & Cz \\ R_2 & Cz & Cz & Cz \end{pmatrix} \qquad \begin{pmatrix} R_1 & X & Cz & Cz \\ R_2 & Cz & Cz & Cz \end{pmatrix} \qquad \begin{pmatrix} R_1 & X & Cz & Cz \\ R_2 & Cz & Cz & Cz \end{pmatrix} \qquad \begin{pmatrix} R_1 & X & Cz & Cz \\ R_2 & Cz & Cz & Cz \end{pmatrix} \qquad \begin{pmatrix} R_1 & X & Cz & Cz \\ R_2 & Cz & Cz & Cz \end{pmatrix} \qquad \begin{pmatrix} R_1 & X & Cz & Cz \\ R_2 & Cz & Cz & Cz \end{pmatrix} \qquad \begin{pmatrix} R_1 & X & Cz & Cz \\ R_2 & Cz & Cz & Cz \end{pmatrix} \qquad \begin{pmatrix} R_1 & X & Cz & Cz \\ R_2 & Cz & Cz & Cz \end{pmatrix} \qquad \begin{pmatrix} R_1 & X & Cz & Cz \\ R_2 & Cz & Cz & Cz \end{pmatrix} \qquad \begin{pmatrix} R_1 & X & Cz & Cz \\ R_2 & Cz & Cz & Cz \end{pmatrix} \qquad \begin{pmatrix} R_1 & X & Cz & Cz \\ R_2 & Cz & Cz & Cz \end{pmatrix} \qquad \begin{pmatrix} R_1 & X & Cz & Cz \\ R_2 & Cz & Cz & Cz \end{pmatrix} \qquad \begin{pmatrix} R_1 & X & Cz & Cz \\ R_2 & Cz & Cz & Cz \end{pmatrix} \qquad \begin{pmatrix} R_1 & X & Cz & Cz \\ R_2 & Cz & Cz & Cz \end{pmatrix} \qquad \begin{pmatrix} R_1 & X & Cz & Cz \\ R_2 & Cz & Cz & Cz \end{pmatrix} \qquad \begin{pmatrix} R_1 & X & Cz & Cz \\ R_2 & Cz & Cz & Cz \end{pmatrix} \qquad \begin{pmatrix} R_1 & X & Cz & Cz \\ R_2 & Cz & Cz & Cz \end{pmatrix} \qquad \begin{pmatrix} R_1 & X & Cz & Cz \\ R_2 & Cz & Cz & Cz \end{pmatrix} \qquad \begin{pmatrix} R_1 & X & Cz & Cz \\ R_2 & Cz & Cz & Cz \end{pmatrix} \qquad \begin{pmatrix} R_1 & X & Cz & Cz \\ R_2 & Cz & Cz & Cz \end{pmatrix} \qquad \begin{pmatrix} R_1 & X & Cz & Cz \\ R_2 & Cz & Cz & Cz \end{pmatrix} \qquad \begin{pmatrix} R_1 & X & Cz & Cz \\ R_2 & Cz & Cz & Cz \end{pmatrix} \qquad \begin{pmatrix} R_1 & X & Cz & Cz \\ R_2 & Cz & Cz & Cz \end{pmatrix} \qquad \begin{pmatrix} R_1 & X & Cz & Cz \\ R_2 & Cz & Cz & Cz \end{pmatrix} \qquad \begin{pmatrix} R_1 & X & Cz & Cz \\ R_2 & Cz & Cz & Cz \end{pmatrix} \qquad \begin{pmatrix} R_1 & X & Cz & Cz \\ R_2 & Cz & Cz & Cz \end{pmatrix} \qquad \begin{pmatrix} R_1 & X & Cz & Cz \\ R_2 & Cz & Cz & Cz \end{pmatrix} \qquad \begin{pmatrix} R_1 & X & Cz & Cz \\ R_2 & Cz & Cz & Cz \end{pmatrix} \qquad \begin{pmatrix} R_1 & X & Cz & Cz \\ R_2 & Cz & Cz & Cz \end{pmatrix} \qquad \begin{pmatrix} R_1 & X & Cz & Cz \\ R_2 & Cz & Cz & Cz \end{pmatrix} \qquad \begin{pmatrix} R_1 & X & Cz & Cz \\ R_2 & Cz & Cz & Cz \end{pmatrix} \qquad \begin{pmatrix} R_1 & X & Cz & Cz \\ R_2 & Cz & Cz & Cz \end{pmatrix} \qquad \begin{pmatrix} R_1 & X & Cz & Cz \\ R_2 & Cz & Cz & Cz \end{pmatrix} \qquad \begin{pmatrix} R_1 & X & Cz & Cz \\ R_2 & Cz & Cz & Cz \end{pmatrix} \qquad \begin{pmatrix} R_1 & X & Cz & Cz \\ R_2 & Cz & Cz & Cz \end{pmatrix} \qquad \begin{pmatrix} R_1 & X & Cz & Cz \\ R_2 & Cz & Cz & Cz \end{pmatrix} \qquad \begin{pmatrix} R_1 & X & Cz & Cz \\ R_2 & Cz & Cz & Cz \end{pmatrix} \qquad \begin{pmatrix} R_1 & X & Cz & Cz \\ R_2 & Cz & Cz & Cz \end{pmatrix} \qquad \begin{pmatrix} R_1 & X & Cz & Cz \\ R_2 & Cz & Cz & Cz \end{pmatrix} \qquad \begin{pmatrix} R_1 & X & Cz & Cz \\ R_2 & Cz & Cz & Cz \end{pmatrix} \qquad \begin{pmatrix} R_1 & X & Cz & Cz \\ R_2 & Cz & Cz & Cz \end{pmatrix} \qquad \begin{pmatrix} R_1 & X & Cz & Cz \\ R_$$

[式中、 $R_1 \sim R_3$ は、それぞれ独立に、水素原子、ハロゲン原子、置換基を有しても良い炭素数 $1 \sim 4$ 0 のアルキル基、置換基を有しても良い炭素数 $3 \sim 3$ 0 の複素環基、置換基を有しても良い炭素数 $1 \sim 4$ 0 のアルコキシ基、置換基を有しても良い炭素数 $6 \sim 4$ 0 のアリール基、置換基を有しても良い炭素数 $6 \sim 4$ 0 のアリールオキシ基、置換基を有しても良い炭素数 $1 \sim 8$ 0 のアルキルアミノ基、置換基を有しても良い炭素数 $1 \sim 8$ 0 のアルキルアミノ基、置換基を有しても良い炭素数 $1 \sim 8$ 0 のアルキルアミノ基、置換基を有しても良い炭素数 $1 \sim 8$ 0 のアラルキルアミノ基、置換基を有しても良い炭素数 $1 \sim 8$ 0 のアラルキルアミノ基、置換基を有しても良い炭素数 $1 \sim 8$ 0 のアリールシリル基、置換基を有しても良い炭素数 $1 \sim 8$ 0 のアリールシリル基、置換基を有しても良い炭素数 $1 \sim 8$ 0 のアリールシリル基又はシアノ基である。 $1 \sim 8$ は、それぞれ複数であっても良く、隣接するもの同士で飽和もしくは不飽和の環状構造を形成していても良い。

Xは、下記一般式 (4) \sim (9) のいずれかで表される基である。

【化2】

(式中、 $R_4 \sim R_{13}$ は、それぞれ独立に、水素原子、ハロゲン原子、置換基を有しても良い炭素数 $1 \sim 4$ 0のアルキル基、置換基を有しても良い炭素数 $3 \sim 3$ 0の複素環基、置換基を有しても良い炭素数 $1 \sim 4$ 0のアルコキシ基、置換基を有しても良い炭素数 $6 \sim 4$ 0のアリール基、置換基を有しても良い炭素数 $6 \sim 4$ 0のアリールオキシ基、置換基を有しても良い炭素数 $1 \sim 8$ 0のアルキルアミノ基、置換基を有しても良い炭素数 $1 \sim 8$ 0のアルキルアミノ基、置換基を有しても良い炭素数 $1 \sim 8$ 0のアルキルアミノ基、置換基を有しても良い炭素数 $1 \sim 8$ 0のアルキルアミノ基、置換基を有しても良い炭素数 $1 \sim 8$ 0のアルキルシリル基、置換基を有しても良い炭素数 $1 \sim 8$ 0のアルキルシリル基、置換基を有しても良い炭素数 $1 \sim 8$ 0のアルキルシリル基、置換基を有しても良い炭素数 $1 \sim 8$ 0のアルキルシリル基、置換基を有しても良い炭素数 $1 \sim 8$ 0のアリールシリル基又はシアノ基である。 $1 \sim 8$ 1のアリールシリル基又はシアノ基である。 $1 \sim 8$ 1のアリールシリルを可能を表現していても良い。

 $Y_1 \sim Y_3$ は、それぞれ独立に、-CR(Rは、水素原子、前記一般式(1) \sim (3)

においてXに結合している基又は前記 R_4 , R_5 , R_6 , R_8 , R_9 , R_{10} のいずれかである。)又は窒素原子であり、窒素原子である場合は、その数は同一環に少なくとも2つである。 C_2 は下記と同じである。

一般式 (9) において、 t は 0~1 の整数である。)

Czは下記一般式(10)又は(11)で表される基である。

【化3】

(式中、Aは、単結合、 $-(CR_{14}R_{15})_n$ $-(nt_{1}\sim 3$ の整数)、 $-SiR_{16}R_{17}-$ 、 $-NR_{18}-$ 、-O-又は-S-を表し、 R_{14} と R_{15} 、 R_{16} と R_{17} は互いに結合して飽和もしくは不飽和の環状構造を形成してもよい。 $R_{14}\sim R_{20}$ は、それぞれ独立に、水素原子、ハロゲン原子、置換基を有しても良い炭素数 $1\sim 4$ 0のアルキル基、置換基を有しても良い炭素数 $1\sim 4$ 0のアルコキシ基、置換基を有しても良い炭素数 $1\sim 4$ 0のアリールオキシ基、置換基を有しても良い炭素数 $1\sim 4$ 0のアリールオキシ基、置換基を有しても良い炭素数 $1\sim 4$ 0のアリール基、置換基を有しても良い炭素数 $1\sim 4$ 0のアリールを表。置換基を有しても良い炭素数 $1\sim 4$ 0のアルキルを表。 $1\sim 4$ 0のアルケニル基、置換基を有しても良い炭素数 $1\sim 4$ 0のアルキルアミノ基、置換基を有しても良い炭素数 $1\sim 4$ 0のアルキル基、置換基を有しても良い炭素数 $1\sim 4$ 0のアルキルアミノ基、置換基を有しても良い炭素数 $1\sim 4$ 0のアリールシリル基、置換基を有しても良い炭素数 $1\sim 4$ 0のアリールアミノ基、置換基を有しても良い炭素数 $1\sim 4$ 0のアリールアミノ基、電り、 $1\sim 4$ 0のアリールアミノ国、 $1\sim 4$ 0

Zは、置換しても良い炭素数 $1\sim20$ のアルキル基、置換しても良い炭素数 $6\sim18$ のアリール基、又は置換基を有しても良い炭素数 $7\sim40$ のアラルキル基を表す。)]

【請求項2】

下記一般式 (1')又は (3')で表される化合物からなる請求項1に記載の有機エレクトロルミネッセンス素子用材料。

【化4】

$$\begin{pmatrix} c_z & & \\ & &$$

[式中、 $R_1 \sim R_3$ 、X、Czは前記と同じ。]

【請求項3】

前記Czが、置換基を有していても良いカルバゾリル基、又は置換基を有していても良いアリールカルバゾリル基である前記一般式(1)~(3)のいずれかで表される化合物からなる請求項1記載の有機エレクトロルミネッセンス用材料。

【請求項4】

前記一般式(1)~(3)のいずれかで表される化合物が、有機エレクトロルミネッセンス素子の発光層に含まれるホスト材料である請求項1記載の有機エレクトロルミネッセ

ンス素子用材料。

【請求項5】

陰極と陽極間に少なくとも発光層を有する一層又は複数層からなる有機薄膜層が挟持されている有機エレクトロルミネッセンス素子において、該有機薄膜層の少なくとも一層が、請求項1記載の有機エレクトロルミネッセンス素子用材料を含有する有機エレクトロルミネッセンス素子。

【請求項6】

前記発光層がホスト材料とりん光性の発光材料を含有し、該ホスト材料が請求項1記載の有機エレクトロルミネッセンス素子用材料からなる請求項5に記載の有機エレクトロルミネッセンス素子。

【請求項7】

陰極と有機薄膜層との界面領域に、還元性ドーパントが添加されてなる請求項 5 に記載 の有機エレクトロルミネッセンス素子。

【請求項8】

前記発光層と陰極との間に電子注入層を有し、該電子注入層が含窒素環誘導体を主成分として含有する請求項5記載の有機エレクトロルミネッセンス素子。

【書類名】明細書

【発明の名称】有機エレクトロルミネッセンス素子用材料及びそれを用いた有機エレクトロルミネッセンス素子

【技術分野】

[0001]

本発明は、有機エレクトロルミネッセンス素子用材料及びそれを用いた有機エレクトロルミネッセンス素子に関し、特に、発光効率が高く、画素欠陥が無く、耐熱性に優れ、長寿命である有機エレクトロルミネッセンス素子用材料及び有機エレクトロルミネッセンス素子に関するものである。

【背景技術】

[0002]

有機エレクトロルミネッセンス素子(以下エレクトロルミネッセンスをELと略記することがある)は、電界を印加することより、陽極より注入された正孔と陰極より注入された電子の再結合エネルギーにより蛍光性物質が発光する原理を利用した自発光素子である。イーストマン・コダック社のC. W. Tangらによる積層型素子による低電圧駆動有機EL素子の報告(C.W. Tang, S.A. Vanslyke, アプライドフィジックスレターズ(Applied Physics Letters),51巻、913頁、1987年等)がなされて以来、有機材料を構成材料とする有機EL素子に関する研究が盛んに行われている。Tangらは、トリス(8-ヒドロキシキノリノールアルミニウム)を発光層に、トリフェニルジアミン誘導体を正孔輸送層に用いている。積層構造の利点としては、発光層への正孔の注入効率を高めること、陰極より注入された電子をブロックして再結合により生成する励起子の生成効率を高めること、発光層内で生成した励起子を閉じ込めること等が挙げられる。この例のように有機EL素子の素子構造としては、正孔輸送(注入)層、電子輸送発光層の2層型、又は正孔輸送(注入)層、発光層、電子輸送(注入)層の3層型等がよく知られている。こうした積層型構造素子では注入された正孔と電子の再結合効率を高めるため、素子構造や形成方法の工夫がなされている。

有機EL素子の発光材料としてはトリス(8-キノリノラート)アルミニウム錯体等のキレート錯体、クマリン誘導体、テトラフェニルブタジエン誘導体、ジスチリルアリーレン誘導体、オキサジアゾール誘導体等の発光材料が知られており、それらからは青色から赤色までの可視領域の発光が得られることが報告されており、カラー表示素子の実現が期待されている(例えば、特許文献1、特許文献2、特許文献3等参照)。

また、近年、有機EL素子の発光層に蛍光材料の他に、りん光材料を利用することも提案されている(例えば、非特許文献1、非特許文献2参照)。このように有機EL素子の発光層において有機りん光材料の励起状態の一重項状態と三重項状態とを利用し、高い発光効率が達成されている。有機EL素子内で電子と正孔が再結合する際にはスピン多重度の違いから一重項励起子と三重項励起子とが1:3の割合で生成すると考えられているので、りん光性の発光材料を用いれば蛍光のみを使った素子に比べて3~4倍の発光効率の達成が考えられる。

[0003]

また、その蒸着の際には、異物や電極の突起が存在する箇所等で結晶成長が生じ、耐熱 試験前の初期状態より、欠陥が生じ、経時的に増加することも見出された。また、3回対 称性を保有するカルバゾール誘導体もホストとして用いられている。しかし、これらも対

称性が良いので、蒸着の際、異物や電極突起の存在する箇所等で結晶が成長し、耐熱試験前の初期状態より欠陥が生じ、経時適に増加することは免れていない。

さらに、有機発光層にホスト化合物とりん光発光性の化合物が用いられてきた特許が開示されている(例えば、特許文献6、特許文献7、特許文献8等参照)。特許文献6では耐熱性は改善されているが、化合物を構成するフェニレン構造において、大部分がパラ位で結合する結合様式をとり、メタ位での結合が中心のベンゼン環のみであるので依然として対称性が良く、結晶化の問題が免れなかった。また、特許文献7、特許文献8では、カルバゾール骨格に加え、さらにトリアジン骨格等の複素環骨格を導入したホスト材料が開示されているが、カルバゾール骨格からフェニレンを介してパラ位でトリアジン環が結合しているため、化合物の直線性が高く、ホストの3重項励起状態のエネルギーが小さくなり、ホストからりん光発光性ドーパントへエネルギーが伝達されにくく、特に青色りん光発光性素子では発光効率の低下を引起こすという問題があった。さらに、特許文献9には、5個以上のベンゼン環を有する基がカルバゾール骨格と結合した化合物が開示されているが、この化合物は、骨格の対称性が高く、結晶化し易く、5個以上のベンゼン環を有する基の直線性が高いため、3重項励起状態のエネルギーが小さくなるという問題があった

[0004]

【特許文献1】特開平8-239655号公報

【特許文献2】特開平7-138561号公報

【特許文献3】特開平3-200289号公報

【特許文献4】米国特許第6,097,147号明細書

【特許文献5】国際公開W〇01/41512号公報

【特許文献6】特開平2003-31371号公報

【特許文献7】特開平2002-193952号公報

【特許文献8】 EP1202608号明細書

【特許文献9】特開2001-313179号公報

【非特許文献 1】 D.F.O'Brien and M.A.Baldo et al "Improved energy transferin electrophosphorescent devices" Applied Physics letters Vol. 74 No.3, pp442-44, January 18, 1999

【非特許文献 2】M.A.Baldo et al "Very high- efficiencygreen organic light-em itting devices based on electrophosphorescence" Applied Physics letters Vol. 75 No. 1, pp4-6, July 5, 1999

【発明の開示】

【発明が解決しようとする課題】

[0005]

本発明は、前記の課題を解決するためになされたもので、発光効率が高く、画素欠陥が無く、耐熱性に優れ、長寿命である有機EL素子用材料及びそれを用いた有機EL素子を提供することを目的とする。

【課題を解決するための手段】

[0006]

本発明者らは、前記目的を達成するために鋭意研究を重ねた結果、分子量が大きく、対 称性の低い化合物をホスト材料として用いることにより、高効率、高耐熱かつ長寿命であ る有機EL素子が得られることを見出し、本発明を解決するに至った。

[0007]

すなわち、本発明は、下記一般式(1) \sim (3) のいずれかで表される化合物からなる 有機EL素子用材料を提供するものである。

【化1】

[0008]

[式中、 $R_1 \sim R_3$ は、それぞれ独立に、水素原子、ハロゲン原子、置換基を有しても良い炭素数 $1\sim 40$ のアルキル基、置換基を有しても良い炭素数 $3\sim 30$ の複素環基、置換基を有しても良い炭素数 $1\sim 40$ のアルコキシ基、置換基を有しても良い炭素数 $6\sim 40$ のアリール基、置換基を有しても良い炭素数 $1\sim 80$ のアリールオキシ基、置換基を有しても良い炭素数 $1\sim 80$ のアルキルアミノ基、置換基を有しても良い炭素数 $1\sim 80$ のアルキルアミノ基、置換基を有しても良い炭素数 $1\sim 80$ のアルキルアミノ基、置換基を有しても良い炭素数 $1\sim 80$ のアカルキルアミノ基、置換基を有しても良い炭素数 $1\sim 80$ 0のアカルキルアミノ基、置換基を有しても良い炭素数 $1\sim 80$ 0のアカルキルアミノ基、置換基を有しても良い炭素数 $1\sim 80$ 0のアカルキルシリル基、置換基を有しても良い炭素数 $1\sim 80$ 0のアカルキルアミノ基、置換基を有しても良い炭素数 $1\sim 80$ 0のアカルキルアミノ基、置換基を有しても良い炭素数 $1\sim 80$ 0のアカルキルシリル基、置換基を有しても良い炭素数 $1\sim 80$ 0のアカルキルシリルを表しても良い炭素数 $1\sim 80$ 0のアカルキルシリルを表しても良い炭素数 $1\sim 80$ 0のアカルキルアミノ基、置換基を有しても良い炭素数 $1\sim 80$ 0のアカルキルアミノ基、電換基を有しても良い炭素数 $1\sim 80$ 0のアカルキルアミノ

[0009]

Xは、下記一般式(4)~(9)のいずれかで表される基である。

【化2】

[0010]

(式中、 $R_4 \sim R_{13}$ は、それぞれ独立に、水素原子、ハロゲン原子、置換基を有しても良い炭素数 $1 \sim 40$ のアルキル基、置換基を有しても良い炭素数 $3 \sim 30$ の複素環基、置換基を有しても良い炭素数 $1 \sim 40$ のアルコキシ基、置換基を有しても良い炭素数 $6 \sim 40$ のアリール基、置換基を有しても良い炭素数 $6 \sim 40$ のアリールオキシ基、置換基を有しても良い炭素数 $1 \sim 80$ のアルキルアミノ基、置換基を有しても良い炭素数 $1 \sim 80$ のアルキルアミノ基、置換基を有しても良い炭素数 $1 \sim 80$ のアルキルアミノ基、置換基を有しても良い炭素数 $1 \sim 80$ のアルキルアミノ基、置換基を有しても良い炭素数 $1 \sim 80$ 0のアルキルシリル基、置換基を有しても良い炭素数 $1 \sim 80$ 0のアカルキルアミノ基、置換基を有しても良い炭素数 $1 \sim 80$ 0のアカルキルアミノ基、置換基を有しても良い炭素数 $1 \sim 80$ 0のアカルキルアミノ基、置換基を有しても良い炭素数 $1 \sim 80$ 0のアカルキルアミノ基、置換基を有しても良い炭素数 $1 \sim 80$ 0のアカルキルシリル基、置換基を有しても良い炭素数 $1 \sim 80$ 0のアカルキルアミノ基、置換基を有しても良い炭素数 $1 \sim 80$ 0のアカルキルアミノ基、電換基を有しても良い炭素数 $1 \sim 80$ 0のアカルキルアミノ基、電換基を有しても良い炭素数 $1 \sim 80$ 0のアカルキルアミノ基、電換基を有しても良い炭素数 $1 \sim 80$ 0のアカルキルアミノ基、電換基を有しても良い炭素数 $1 \sim 80$ 0のアカルキルチェ

 $Y_1 \sim Y_3$ は、それぞれ独立に、 $-CR(Rは、水素原子、前記一般式(1) \sim (3)$ においてXに結合している基又は前記 R_4 , R_5 , R_6 , R_8 , R_9 , R_{10} のいずれかである。)又

一般式(9)において、tは0~1の整数である。)

[0011]

C z は下記一般式(10)又は(11)で表される基である。 【化3】

[0012]

Zは、置換しても良い炭素数 $1\sim 20$ のアルキル基、置換しても良い炭素数 $6\sim 18$ のアリール基、又は置換基を有しても良い炭素数 $7\sim 40$ のアラルキル基を表す。)]

また、本発明は、陰極と陽極間に少なくとも発光層を有する一層又は複数層からなる有機薄膜層が挟持されている有機EL素子において、該有機薄膜層の少なくとも一層が、前記有機EL素子用材料を含有する有機EL素子を提供するものである。

【発明の効果】

[0013]

本発明の有機EL素子用材料を用いた有機EL素子は、発光効率が高く、画素欠陥が無く、耐熱性に優れ、長寿命である。

【発明を実施するための最良の形態】

[0014]

本発明の有機EL素子用材料は、下記一般式(1)~(3)のいずれかで表される化合物からなる。

【化4】

[0015]

前記一般式(1)としては、下記構造のうちのいずれかである。 【化5】

$$\begin{pmatrix} & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & & \\$$

[0016]

前記一般式(3)としては、下記構造のうちのいずれかである。

【化6】

これらのうち、特に、前記一般式 (1')又は (3')で表される化合物からなるものが好ましい。

$[0\ 0\ 1\ 7]$

 $R_1 \sim R_3$ のハロゲン原子としては、例えば、フッ素、塩素、臭素、ヨウ素等が挙げられる。

[0018]

 $R_1 \sim R_3$ の置換基を有しても良い炭素数 $1 \sim 40$ のアルキル基としては、例えば、メチル基、エチル基、プロピル基、イソプロピル基、n-ブチル基、s-ブチル基、イソブチル基、t-ブチル基、n-ペンチル基、n-ペンチル基、n-ペンチル基、n-ペンデシル基、n-ペンデシル基、n-ドデシル基、n-トリデシル基、n-テトラデシル基、n-ペンタデシル基、n-ペンチアシル基、n-ペンチアシル基、n-ペンチアシル基、n-ペンチアシル基、n-ペンチアシル基、n-ペンチアシル基、n-オクタデシル基、n-オクタデシル基、n-オクタデシル基、n-

ル基、1-ペンチルヘキシル基、1-ブチルペンチル基、1-ヘプチルオクチル基、3-メチルペンチル基、ヒドロキシメチル基、1-ヒドロキシエチル基、2-ヒドロキシエチ ル基、2-ヒドロキシイソブチル基、1,2-ジヒドロキシエチル基、1,3-ジヒドロ キシイソプロピル基、2,3-ジヒドロキシーt-ブチル基、1,2,3-トリヒドロキ シプロピル基、クロロメチル基、1-クロロエチル基、2-クロロエチル基、2-クロロ イソブチル基、1,2-ジクロロエチル基、1,3-ジクロロイソプロピル基、2,3-ジクロローtーブチル基、1,2,3-トリクロロプロピル基、ブロモメチル基、1-ブ ロモエチル基、2-ブロモエチル基、2-ブロモイソブチル基、1.2-ジブロモエチル 基、1,3-ジブロモイソプロピル基、2,3-ジブロモーt-ブチル基、1,2,3-トリブロモプロピル基、ヨードメチル基、1-ヨードエチル基、2-ヨードエチル基、2 ーヨードイソブチル基、1,2ージョードエチル基、1,3ージョードイソプロピル基、 2, 3-ジョードー t-ブチル基、1, 2, 3-トリョードプロピル基、アミノメチル基 、1-アミノエチル基、2-アミノエチル基、2-アミノイソブチル基、1,2-ジアミ ノエチル基、1,3-ジアミノイソプロピル基、2,3-ジアミノー t ーブチル基、1, 2, 3-トリアミノプロピル基、シアノメチル基、1-シアノエチル基、2-シアノエチ ル基、2-シアノイソブチル基、1,2-ジシアノエチル基、1,3-ジシアノイソプロ ピル基、2,3ージシアノーtーブチル基、1,2,3ートリシアノプロピル基、ニトロ メチル基、1-ニトロエチル基、2-ニトロエチル基、1,2-ジニトロエチル基、2, 3-ジニトローt-ブチル基、1,2,3-トリニトロプロピル基、シクロペンチル基、 シクロヘキシル基、シクロオクチル基、3.5-テトラメチルシクロヘキシル基等が挙げ られる。

[0019]

これらの中でも好ましくは、メチル基、エチル基、プロピル基、イソプロピル基、n-ブチル基、s-ブチル基、イソブチル基、t-ブチル基、n-ペンチル基、n-ペンチル基、n-ペンチル基、n-ペンチル基、n-ペンチル基、n-プチル基、n-プチル基、n-プチル基、n-プチル基、n-アトラデシル基、n-ペンタデシル基、n-ペンタデシル基、n-ペンタデシル基、n-ペンチル基、n-ペンチル基、n-ペンチル基、n-ペンチル基、n-ペンチル基、n-ペンチル本シル基、n-ペンチル本シル基、n-ペンチルペンチル基、n-ペンチルペンチル基、n-ペンチル本シル基、n-ペンチルペンチル基、n-ペンチルペンチル基、n-ペンチルペンチル基、n-ペンチルペンチル基、n-ペンチルペンチル基、n-ペンチルペンチル基、n-ペンチルペンチル基、n-ペンチル本シル基、n-ペンチル本シル基、n-ペンチル本・n-ペンチル本・n-ペンチルペンチル基、n-ペンチルペンチル基、n-ペンチルペンチル基、n-ペンチル本・n-ペンチル本・n-ペンチルペンチル基、n-ペンチルペンチル基、n-ペンチル本・n-ペンチル本・n-ペンチルペンチル基、n-ペンチルペンチル基、n-ペンチル本・n-ペンチル本・n-ペンチル本・n-ペンチルな・n-ペンタルな・n-ペンタルな・n-ペンタルな・n-ペンタルな・n-ペンタルな・n-ペンタルな・n-ペンタルな・n-ペンタルな・n-ペンタルな

[0020]

R1 ~ R3 の置換基を有しても良い炭素数3~30の複素環基としては、例えば、1-ピロリル基、2-ピロリル基、3-ピロリル基、ピラジニル基、2-ピリジニル基、1-イミダゾリル基、2-イミダゾリル基、1-ピラゾリル基、1-インドリジニル基、2-インドリジニル基、3-インドリジニル基、5-インドリジニル基、6-インドリジニル 基、7-インドリジニル基、8-インドリジニル基、2-イミダゾピリジニル基、3-イ ミダゾピリジニル基、5-イミダゾピリジニル基、6-イミダゾピリジニル基、7-イミ ダゾピリジニル基、8-イミダゾピリジニル基、3-ピリジニル基、4-ピリジニル基、 1ーインドリル基、2ーインドリル基、3ーインドリル基、4ーインドリル基、5ーイン ドリル基、6-インドリル基、7-インドリル基、1-イソインドリル基、2-イソイン ドリル基、3-イソインドリル基、4-イソインドリル基、5-イソインドリル基、6-イソインドリル基、7-イソインドリル基、2-フリル基、3-フリル基、2-ベンゾフ ラニル基、3-ベンゾフラニル基、4-ベンゾフラニル基、5-ベンゾフラニル基、6-ベンゾフラニル基、7-ベンゾフラニル基、1-イソベンゾフラニル基、3-イソベンゾ フラニル基、4-イソベンゾフラニル基、5-イソベンゾフラニル基、6-イソベンゾフ ラニル基、7-イソベンゾフラニル基、2-キノリル基、3-キノリル基、4-キノリル 基、5-キノリル基、6-キノリル基、7-キノリル基、8-キノリル基、1-イソキノ リル基、3-イソキノリル基、4-イソキノリル基、5-イソキノリル基、6-イソキノ リル基、7-イソキノリル基、8-イソキノリル基、2-キノキサリニル基、5-キノキ サリニル基、6-キノキサリニル基、1-カルバゾリル基、2-カルバゾリル基、3-カ

ルバゾリル基、4-カルバゾリル基、9-カルバゾリル基、β-カルボリン-1-イル、 β - カルボリン- 3 - イル、β - カルボリン- 4 - イル、β - カルボリン- 5 - イル、βーカルボリンー6ーイル、βーカルボリンー7ーイル、βーカルボリンー6ーイル、βー カルボリン-9-イル、1-フェナンスリジニル基、2-フェナンスリジニル基、3-フ ェナンスリジニル基、4-フェナンスリジニル基、6-フェナンスリジニル基、7-フェ ナンスリジニル基、8-フェナンスリジニル基、9-フェナンスリジニル基、10-フェ ナンスリジニル基、1-アクリジニル基、2-アクリジニル基、3-アクリジニル基、4 -アクリジニル基、9-アクリジニル基、1,7-フェナンスロリン-2-イル基、1, 7-フェナンスロリン-3-イル基、1,7-フェナンスロリン-4-イル基、1,7-フェナンスロリンー5ーイル基、1、7ーフェナンスロリンー6ーイル基、1、7一フェ ナンスロリン-8-イル基、1,7-フェナンスロリン-9-イル基、1,7-フェナン スロリン-10-イル基、1,8-フェナンスロリン-2-イル基、1,8-フェナンス ロリン-3-イル基、1,8-フェナンスロリン-4-イル基、1,8-フェナンスロリ ン-5-イル基、1,8-フェナンスロリン-6-イル基、1,8-フェナンスロリン-7-イル基、1,8-フェナンスロリン-9-イル基、1,8-フェナンスロリン-10 -イル基、1,9-フェナンスロリン-2-イル基、1,9-フェナンスロリン-3-イ ル基、1、9-フェナンスロリン-4-イル基、1、9-フェナンスロリン-5-イル基 、1、9-フェナンスロリンー6-イル基、1、9-フェナンスロリン-7-イル基、1 , 9-フェナンスロリン-8-イル基、1, 9-フェナンスロリン-10-イル基、1, 10-フェナンスロリン-2-イル基、1,10-フェナンスロリン-3-イル基、1, 10-フェナンスロリン-4-イル基、1,10-フェナンスロリン-5-イル基、2, 9-フェナンスロリン-1-イル基、2,9-フェナンスロリン-3-イル基、2,9-フェナンスロリンー4ーイル基、2,9ーフェナンスロリンー5ーイル基、2,9ーフェ ナンスロリンー6-イル基、2,9-フェナンスロリン-7-イル基、2,9-フェナン スロリン-8-イル基、2.9-フェナンスロリン-10-イル基、2,8-フェナンス ロリン-1-イル基、2,8-フェナンスロリン-3-イル基、2,8-フェナンスロリ ン-4-イル基、2,8-フェナンスロリン-5-イル基、2,8-フェナンスロリン-6-イル基、2、8-フェナンスロリン-7-イル基、2、8-フェナンスロリン-9-イル基、2.8-フェナンスロリン-10-イル基、2,7-フェナンスロリン-1-イ ル基、2,7-フェナンスロリン-3-イル基、2,7-フェナンスロリン-4-イル基 、2、7-フェナンスロリン-5-イル基、2、7-フェナンスロリン-6-イル基、2 , 7-フェナンスロリン-8-イル基、2, 7-フェナンスロリン-9-イル基、2, 7 -フェナンスロリン-10-イル基、1-フェナジニル基、2-フェナジニル基、1-フ ェノチアジニル基、2-フェノチアジニル基、3-フェノチアジニル基、4-フェノチア ジニル基、10-フェノチアジニル基、1-フェノキサジニル基、2-フェノキサジニル 基、3-フェノキサジニル基、4-フェノキサジニル基、10-フェノキサジニル基、2 -オキサゾリル基、4-オキサゾリル基、5-オキサゾリル基、2-オキサジアゾリル基 、5-オキサジアゾリル基、3-フラザニル基、2-チエニル基、3-チエニル基、2-メチルピロール-1-イル基、2-メチルピロール-3-イル基、2-メチルピロールー 4-イル基、2-メチルピロール-5-イル基、3-メチルピロール-1-イル基、3-メチルピロールー2-イル基、3-メチルピロールー4-イル基、3-メチルピロールー 5-イル基、2-t-ブチルピロール-4-イル基、3-(2-フェニルプロピル)ピロ ールー1ーイル基、2ーメチルー1ーインドリル基、4ーメチルー1ーインドリル基、2 -メチル-3-インドリル基、4-メチル-3-インドリル基、2-t-ブチル1-イン ドリル基、4-t-ブチル1-インドリル基、2-t-ブチル3-インドリル基、4-t ーブチル3ーインドリル基等が挙げられる。

[0021]

これらの中でも好ましくは、2-ピリジニル基、1-インドリジニル基、2-インドリジニル基、3-インドリジニル基、5-インドリジニル基、6-インドリジニル基、7-インドリジニル基、8-インドリジニル基、2-イミダゾピリジニル基、3-イミダゾピ

出証特2004-3102793

リジニル基、5-イミダゾピリジニル基、6-イミダゾピリジニル基、7-イミダゾピリジニル基、8-イミダゾピリジニル基、3-ピリジニル基、4-ピリジニル基、1-インドリル基、2-インドリル基、3-インドリル基、4-インドリル基、5-インドリル基、6-インドリル基、3-インドリル基、2-イソインドリル基、3-イソインドリル基、6-イソインドリル基、5-イソインドリル基、6-イソインドリル基、7-イソインドリル基、1-カルバブリル基、2-カルバブリル基、3-カルバブリル基、4-カルバブリル基、9-カルバブリル基等が挙げられる。

[0022]

 $R_1 \sim R_3$ の置換基を有しても良い炭素数 $1 \sim 40$ のアルコキシ基は-0 Y と表される基であり、Y の具体例としては、前記アルキル基で説明したものと同様のものが挙げられ、好ましい例も同様である。

[0023]

 $R_1 \sim R_3$ の置換基を有しても良い炭素数 $6 \sim 40$ のアリール基としては、例えば、フェニル基、1-ナフチル基、2-ナフチル基、1-アントリル基、2-アントリル基、2-アントリル基、3-フェナントリル基、4-アントリル基、1-フェナントリル基、2-フェナントリル基、2-プェナントリル基、2-プェナントリル基、2-プェナントリル基、2-ピレニル基、2-ピレニル基、2-ピレニル基、2-ピレニル基、2-ピレニル基、2-ピレニル基、2-ピフェニルイル基、2-ピフェニルイル基、2-ピフェニルイル基、2-ピフェニルイル基、2-ピフェニルイル基、2-ピフェニルイル基、2-ピフェニルイル基、2-ピフェニルー2-イル基、2-ピフェニルー2-イル基、2-ピフェニルー2-イル基、2-ピフェニルー2-イル基、2-ピフェニルー2-イル基、2-ピフェニルー2-イル基、2-ピロピル)フェニル基、2-ピルルンを、2-ピルンを、2-ピ

これらの中でも好ましくは、フェニル基、1ーナフチル基、2ーナフチル基、9ーフェナントリル基、2ービフェニルイル基、3ービフェニルイル基、4ービフェニルイル基、pートリル基、3,4ーキシリル基等が挙げられる。

[0024]

 $R_1 \sim R_3$ の置換基を有しても良い炭素数 $6 \sim 40$ のアリールオキシ基は-OAr と表される基であり、Ar の具体例としては、前記アリール基で説明したものと同様のものが挙げられ、好ましい例も同様である。

[0025]

これらの中でも好ましくは、ベンジル基、pーシアノベンジル基、mーシアノベンジル

[0026]

 $R_1 \sim R_3$ の置換基を有しても良い炭素数 $2 \sim 4$ 0 のアルケニル基としては、ビニル基、アリル基、1 - 7テニル基、2 - 7テニル基、3 - 7テニル基、1, 3 - 7タンジエニル基、1 - 7 ル基、1 - 7 ルンジェニル基、1 - 7 ルンジェニルビニル基、1 - 7 エルビニル基、1 - 7 エルアリル基、1 - 7 エーフェニルアリル基、1 - 7 エーフェニルアリル基、1 - 7 エーフェニルアリル基、1 - 7 エールアリル基、1 - 7 エールー 1 - 7 テニル基等が挙げられ、好ましくは、スチリル基、1 - 7 アニールビニル基等が挙げられる。

[0027]

 $R_1 \sim R_3$ の置換基を有しても良い炭素数 $1 \sim 80$ のアルキルアミノ基、置換基を有しても良い炭素数 $6 \sim 80$ のアリールアミノ基、置換基を有しても良い炭素数 $7 \sim 80$ のアラルキルアミノ基としては、 $-NQ_1Q_2$ と表され、 Q_1Q_2 の具体例としては、それぞれ独立に、前記アルキル基、前記アリール基、前記アラルキル基で説明したものと同様のものが挙げられ、好ましい例も同様である。

 $R_1 \sim R_3$ の置換基を有しても良い炭素数 $3 \sim 10$ のアルキルシリル基としては、トリメチルシリル基、トリエチルシリル基、 t - ブチルジメチルシリル基、ビニルジメチルシリル基、プロピルジメチルシリル基等が挙げられる。

 $R_1 \sim R_3$ の置換基を有しても良い炭素数 $6 \sim 30$ のアリールシリル基としては、トリフェニルシリル基、フェニルジメチルシリル基、t-ブチルジフェニルシリル基等が挙げられる。

また、 $R_1 \sim R_3$ が複数あった場合に形成される環状構造としては、ベンゼン環等の不飽和 6 員環の他、飽和もしくは不飽和の 5 員環又は 7 員環構造等が挙げられる。

[0028]

一般式(1)~(3)式において、Xは、下記一般式(4)~(9)のいずれかで表される基である。

【化7】

[0029]

一般式(4)~(9)において、 R_4 ~ R_{13} は、それぞれ独立に、水素原子、ハロゲン原子、置換基を有しても良い炭素数 $1\sim40$ (好ましくは炭素数 $1\sim30$)のアルキル基、置換基を有しても良い炭素数 $3\sim30$ (好ましくは炭素数 $3\sim20$)の複素環基、置換基を有しても良い炭素数 $1\sim40$ (好ましくは炭素数 $1\sim30$)のアルコキシ基、置換基を有しても良い炭素数 $1\sim40$ (好ましくは炭素数 $1\sim30$)のアリール基、置換基を有しても良い炭素数 $1\sim40$ (好ましくは炭素数 $1\sim30$)のアリールオキシ基、置換基を有しても良い炭素数 $1\sim40$ (好ましくは炭素数 $1\sim30$)のアルケニル基、置換基を有しても良い炭素数 $1\sim40$ (好ましくは炭素数 $1\sim60$)のアルケニル基、置換基を有しても良い炭素数 $1\sim80$ (好ましくは炭素数 $1\sim60$)のアルキルアミノ基、置換基を有

しても良い炭素数 $6\sim80$ (好ましくは炭素数 $6\sim60$)のアリールアミノ基、置換基を有しても良い炭素数 $7\sim80$ (好ましくは炭素数 $7\sim60$)のアラルキルアミノ基、置換基を有しても良い炭素数 $3\sim10$ (好ましくは炭素数 $3\sim9$)のアルキルシリル基、置換基を有しても良い炭素数 $6\sim30$ のアリールシリル基(好ましくは炭素数 $8\sim20$)又はシアノ基である。 $R_4\sim R_{13}$ は、それぞれ複数であっても良く、隣接するもの同士で飽和もしくは不飽和の環状構造を形成していても良い。

 $R_4 \sim R_{13}$ の示す各基の具体例としては、前記 $R_1 \sim R_3$ で説明したものと同様のものが挙げられ、好ましい例も同様である。

一般式(4)~(9)において、 $Y_1 \sim Y_3$ は、それぞれ独立に、-CR (R は、水素原子、前記一般式(1)~(3)においてX に結合している基又は前記 R_4 , R_5 , R_6 , R_8 , R_9 , R_{10} のいずれかである。)又は窒素原子であり、窒素原子である場合は、その数は同一環に少なくとも 2 つである。

一般式(9)において、tは0~1の整数である。

[0030]

一般式(4)で表される基としては、下記構造のうちのいずれかであると好ましい。 【化8】

[0031]

一般式(5)で表される基としては、下記構造のうちのいずれかであると好ましい。

[0032]

一般式(6)で表される基としては、下記構造のうちのいずれかであると好ましい。 【化10】

[0033]

一般式(7)で表される基としては、下記構造のうちのいずれかであると好ましい。 【化11】

[0034]

一般式(8)で表される基としては、下記構造のうちのいずれかであると好ましい。

[0035]

一般式(9)で表される基としては、下記構造のうちのいずれかであると好ましい。 【化13】

[0036]

一般式 (1) ~ (3) 式において、Cz は下記一般式 (10) 又は (11) で表される基を表す。

【化14】

[0037]

一般式(10)又は(11)において、Aは、単結合、一(CR14R15) $_{\rm n}$ 一($_{\rm n}$ は1~3の整数)、 $_{\rm S}$ i R16 R17~、 $_{\rm N}$ R18~、 $_{\rm O}$ 一又は $_{\rm S}$ 一を表し、R14 と R15、R16 と R17 は互いに結合して飽和もしくは不飽和の環状構造を形成してもよい。R14~R20 は、それぞれ独立に、水素原子、ハロゲン原子、置換基を有しても良い炭素数 $_{\rm L}$ 1~30のアルキル基、置換基を有しても良い炭素数 $_{\rm L}$ 2~20のアルコキシ基、置換基を有しても良い炭素数 $_{\rm L}$ 2~20のアルコキシ基、置換基を有しても良い炭素数 $_{\rm L}$ 2~30のアルコキシ基、置換基を有しても良い炭素数 $_{\rm L}$ 2~30のアリール基、置換基を有しても良い炭素数 $_{\rm L}$ 2~30のアリール基、置換基を有しても良い炭素数 $_{\rm L}$ 2~40のアラルキル基、置換基を有しても良い炭素数 $_{\rm L}$ 2~40のアラルキル基、置換基を有しても良い炭素数 $_{\rm L}$ 2~80のアルキルアミノ基、置換基を有しても良い炭素数 $_{\rm L}$ 2~80のアリールアミノ基、置換基を有しても良い炭素数 $_{\rm L}$ 2~80のアリールアミノ基、置換基を有しても良い炭素数 $_{\rm L}$ 2~80のアリールアミノ基、置換基を有しても良い炭素数 $_{\rm L}$ 2~80のアリールアミノ基、置換基を有しても良い炭素数 $_{\rm L}$ 2~800アリールアミノ基、置換基を有しても良い炭素数 $_{\rm L}$ 2~800アリールアミノ基、置換基を有しても良い炭素数 $_{\rm L}$ 2~800アリールアミノ基、置換基を有しても良い炭素数 $_{\rm L}$ 2~800アリールアミノ基、置換基を有しても良い炭素数 $_{\rm L}$ 2~800アリールアミノ基、置換

基を有しても良い炭素数 $3\sim1$ 0のアルキルシリル基、置換基を有しても良い炭素数 $6\sim3$ 0のアリールシリル基又はシアノ基である。 $R_{19}\sim R_{20}$ は、それぞれ複数であっても良い。 $R_{14}\sim R_{20}$ の示す各基の具体例としては、前記 $R_1\sim R_3$ で説明したものと同様のものが挙げられ、好ましい例も同様である。

[0038]

Zは、置換しても良い炭素数 $1\sim 20$ のアルキル基、置換しても良い炭素数 $6\sim 18$ のアリール基、又は置換基を有しても良い炭素数 $7\sim 40$ のアラルキル基を表す。

[0039]

Zのアリール基としては、例えば、フェニル基、ナフチル基、トリル基、ビフェニル基、ターフェニル基等が挙げられ、好ましくは、フェニル基、ビフェニル基、トリル基等が挙げられる。

Zのアラルキル基としては、例えば、 α ーナフチルメチル基、 $1-\alpha$ ーナフチルエチル基、 $2-\alpha$ ーナフチルエチル基、 $1-\alpha$ ーナフチルイソプロピル基、 $2-\alpha$ ーナフチルイソプロピル基、 β ーナフチルメチル基、 $1-\beta$ ーナフチルエチル基、 $2-\beta$ ーナフチルエチル基、 $1-\beta$ ーナフチルイソプロピル基、 $2-\beta$ ーナフチルイソプロピル基、ベンジル基、 β ーシアノベンジル基、 β 0ーシアノベンジル基、 β 1ーフェニルエチル基、 β 1ーフェニルエチル基、 β 1ーフェニルイソプロピル基等が挙げられ、好ましくは、ベンジル基、 β 1ーファンブルンジル基等が挙げられる

[0040]

前記Czとしては、下記構造

のうちのいずれかであると好ましく、下記構造のうちのいずれかであるとさらに好ましい

【0041】 【化16】

また、Czが、置換基を有していても良いカルバゾリル基、又は置換基を有していても良いアリールカルバゾリル基であると特に好ましい。

前記一般式(1)~(3)において例示した各基の置換基としては、例えば、ハロゲン原子、ヒドロキシル基、アミノ基、ニトロ基、シアノ基、アルキル基、アルケニル基、シクロアルキル基、アルコキシ基、芳香族炭化水素基、芳香族複素環基、アラルキル基、アリールオキシ基、アルコシキカルボニル基等が挙げられる。

[0042]

本発明の一般式(1) \sim (3)のいずれかで表される化合物からなる有機EL素子用材料の具体例を以下に示すが、これら例示化合物に限定されるものではない。

【化17】

[0043]

【化18】

【0045】 【化20】

【0048】 【化23】

[0049]

また、本発明の有機EL素子用材料は、有機EL素子のホスト材料であると好ましい。また、3重項エネルギーが2.76 e V以上あれば、緑色、赤色発光の錯体を励起する能力を保有するので好ましい。なお、緑色、赤色発光する錯体を励起するためには、3重項エネルギーが2.82~2.92 e Vが特に好ましい。

[0050]

次に、本発明の有機EL素子について説明する。

本発明の有機EL素子は、陰極と陽極間に少なくとも発光層を有する一層又は複数層からなる有機薄膜層が挟持されている有機EL素子において、該有機薄膜層の少なくとも一層が、本発明の有機EL素子用材料を含有する。

多層型の有機EL素子の構造としては、例えば、陽極/正孔輸送層(正孔注入層)/発光層/陰極、陽極/発光層/電子輸送層(電子注入層)/陰極、陽極/正孔輸送層(正孔注入層)/発光層/電子輸送層(電子注入層)/陰極、陽極/正孔輸送層(正孔注入層)/発光層/正孔障壁層/電子輸送層(電子注入層)/陰極、等の多層構成で積層したものが挙げられる。

[0051]

前記発光層は、ホスト材料とりん光性の発光材料からなり、該ホスト材料が前記有機E L素子用材料からなると好ましい。

りん光性の発光材料としては、りん光量子収率が高く、発光素子の外部量子効率をより向上させることができるという点で、イリジウム錯体、オスミウム錯体、白金錯体等の金属錯体が好ましく、イリジウム錯体及び白金錯体がより好ましく、オルトメタル化イリジウム錯体が最も好ましい。オルトメタル化金属錯体のさらに好ましい形態としては、以下に示すイリジウム錯体が好ましい。

[0052]

【化25】

[0054]

本発明の有機EL素子は、陰極と有機薄膜層との界面領域に、還元性ドーパントが添加されてなると好ましい。

前記還元性ドーパントとしては、アルカリ金属、アルカリ金属錯体、アルカリ金属化合物、アルカリ土類金属、アルカリ土類金属錯体、アルカリ土類金属化合物、希土類金属、 希土類金属錯体、及び希土類金属化合物等から選ばれた少なくとも一種類が挙げられる。

[0055]

前記アルカリ金属としては、Na(仕事関数:2.36 e V)、K(仕事関数:2.28 e V)、Rb(仕事関数:2.16 e V)、Cs(仕事関数:1.95 e V)等が挙げられ、仕事関数が 2.9 e V以下のものが特に好ましい。これらのうち好ましくは K、Rb、Cs、さらに好ましくは Rb 又は Cs であり、最も好ましくは Cs である。

前記アルカリ土類金属としては、Ca(仕事関数:2.9 e V)、Sr(仕事関数:2.0 \sim 2.5 e V)、Ba(仕事関数:2.5 2 e V)等が挙げられ、仕事関数が 2.9 e V以下のものが特に好ましい。

前記希土類金属としては、Sc、Y、Ce、Tb、Yb等が挙げられ、仕事関数が 2 . 9e V以下のものが特に好ましい。

以上の金属のうち好ましい金属は、特に還元能力が高く、電子注入域への比較的少量の 添加により、有機EL素子における発光輝度の向上や長寿命化が可能である。

[0056]

前記アルカリ金属化合物としては、 Li_2O 、 Cs_2O 、 K_2O 等のアルカリ酸化物、 Li_F 、 Na_F 、 Cs_F 、KF等のアルカリハロゲン化物等が挙げられ、 Li_F 、 Li_2O 、 Na_F のアルカリ酸化物又はアルカリフッ化物が好ましい。

前記アルカリ土類金属化合物としては、BaO、SrO、CaO及びこれらを混合した Bax Sr_{1-x} O (0 < x < 1) や、Bax Ca_{1-x} O (0 < x < 1) 等が挙げられ、BaO、SrO、CaOが好ましい。

前記希土類金属化合物としては、YbF3、ScF3、ScO3、Y2O3、Ce2O3、GdF3、TbF3等が挙げられ、YbF3、ScF3、TbF3が好ましい。

[0057]

前記アルカリ金属錯体、アルカリ土類金属錯体、希土類金属錯体としては、それぞれ金属イオンとしてアルカリ金属イオン、アルカリ土類金属イオン、希土類金属イオンの少なくとも一つ含有するものであれば特に限定はない。また、配位子にはキノリノール、ベン

ゾキノリノール、アクリジノール、フェナントリジノール、ヒドロキシフェニルオキサゾール、ヒドロキシフェニルチアゾール、ヒドロキシジアリールオキサジアゾール、ヒドロキシジアリールチアジアゾール、ヒドロキシフェニルピリジン、ヒドロキシフェニルベンゾイミダゾール、ヒドロキシベンゾトリアゾール、ヒドロキシフルボラン、ビピリジル、フェナントロリン、フタロシアニン、ポルフィリン、シクロペンタジエン、 β ージケトン類、アゾメチン類、及びそれらの誘導体などが好ましいが、これらに限定されるものではない。

[0058]

還元性ドーパントの添加形態としては、前記界面領域に層状又は島状に形成すると好ましい。形成方法としては、抵抗加熱蒸着法により還元性ドーパントを蒸着しながら、界面領域を形成する発光材料や電子注入材料である有機物を同時に蒸着させ、有機物中に還元ドーパントを分散する方法が好ましい。分散濃度としてはモル比で有機物:還元性ドーパント=100:1~1:100、好ましくは5:1~1:5である。

還元性ドーパントを層状に形成する場合は、界面の有機層である発光材料や電子注入材料を層状に形成した後に、還元ドーパントを単独で抵抗加熱蒸着法により蒸着し、好ましくは層の厚み0.1~15nmで形成する。

還元性ドーパントを島状に形成する場合は、界面の有機層である発光材料や電子注入材料を島状に形成した後に、還元ドーパントを単独で抵抗加熱蒸着法により蒸着し、好ましくは島の厚み0.05~1nmで形成する。

また、本発明の有機EL素子における、主成分と還元性ドーパントの割合としては、モル比で主成分:還元性ドーパント=5:1~1:5であると好ましく、2:1~1:2であるとさらに好ましい。

[0059]

本発明の有機EL素子は、前記発光層と陰極との間に電子注入層を有し、該電子注入層が含窒素環誘導体を主成分として含有すると好ましい。

前記電子注入層に用いる電子輸送材料としては、分子内にヘテロ原子を1個以上含有する芳香族ヘテロ環化合物が好ましく用いられ、特に含窒素環誘導体が好ましい。

[0060]

この含窒素環誘導体としては、例えば、一般式(A)で表されるものが好ましい。

【化26】

$$\begin{bmatrix}
R^{6} & R^{7} \\
R^{5} & M & -0-L
\end{bmatrix}$$

$$\begin{bmatrix}
R^{5} & M & -0-L
\end{bmatrix}$$

$$\begin{bmatrix}
R^{3} & R^{2} & 2
\end{bmatrix}$$

$[0\ 0\ 6\ 1\]$

 $R^2 \sim R^7$ は、それぞれ独立に、水素原子、ハロゲン原子、オキシ基、アミノ基、又は炭素数 $1\sim40$ の炭化水素基であり、これらは置換されていてもよい。

このハロゲン原子の例としては、前記と同様のものが挙げられる。また、置換されていても良いアミノ基の例としては、前記アルキルアミノ基、アリールアミノ基、アラルキルアミノ基と同様のものが挙げられる。

炭素数 $1\sim40$ の炭化水素基としては、置換もしくは無置換のアルキル基、アルケニル基、シクロアルキル基、アルコキシ基、アリール基、複素環基、アラルキル基、アリールオキシ基、アルコキシカルボニル基等が挙げられる。このアルキル基、アルケニル基、シ

クロアルキル基、アルコキシ基、アリール基、複素環基、アラルキル基、アリールオキシ 基の例としては、前記と同様のものが挙げられ、アルコキシカルボニル基は一COOY' と表され、Y'の例としては前記アルキル基と同様のものが挙げられる。

[0062]

Mは、アルミニウム (A1)、ガリウム (Ga) 又はインジウム (In) であり、In であると好ましい。

一般式 (A) の L は、下記一般式 (A') 又は (A'') で表される基である。

【化27】

(式中、 $R^8 \sim R^{12}$ は、それぞれ独立に、水素原子又は置換もしくは無置換の炭素数 $1 \sim 40$ の炭化水素基であり、互いに隣接する基が環状構造を形成していてもよい。また、 $R^{13} \sim R^{27}$ は、それぞれ独立に、水素原子又は置換もしくは無置換の炭素数 $1 \sim 40$ の炭化水素基であり、互いに隣接する基が環状構造を形成していてもよい。)

[0063]

一般式(A')及び(A'')の $R^8 \sim R^{12}$ 及び $R^{13} \sim R^{27}$ が示す炭素数 $1 \sim 40$ の炭化水素基としては、前記 $R^2 \sim R^7$ の具体例と同様のものが挙げられる。

また、前記 $R^8 \sim R^{12}$ 及び $R^{13} \sim R^{27}$ の互いに隣接する基が環状構造を形成した場合の 2 価の基としては、テトラメチレン基、ペンタメチレン基、ヘキサメチレン基、ジフェニルメタン-2, 2'-ジイル基、ジフェニルエタン-3, 3'-ジイル基、ジフェニルプロパン-4, 4'-ジイル基等が挙げられる。

[0064]

一般式(A)で表される含窒素環の金属キレート錯体の具体例を以下に示すが、これら 例示化合物に限定されるものではない。

【化28】

[0065]

【化29】

$$\begin{array}{c|c}
 & 0 \\
 & N \\
 & CH_3
\end{array}$$

$$\begin{array}{c}
 & 2 \\
 & (A-7)
\end{array}$$

[0066]

【化30】

[0067]

【化31】

$$\begin{array}{c|c}
 & C_6 \\
 & H_5 \\
 & C_6 \\
 & H_5
\end{array}$$
(A-13)

$$\begin{array}{c|c}
 & C_6 & H_5 \\
 & & C_6 & H_5 \\
 & & C_6 & H_5
\end{array}$$

$$\begin{array}{c|c}
 & C_6 & H_5 \\
 & & C_6 & H_5
\end{array}$$

$$\begin{array}{c|c}
 & C_6 & H_5 \\
 & & C_6 & H_5
\end{array}$$

$$\begin{array}{c|c}
 & C_6 & H_5 \\
 & & C_6 & H_5
\end{array}$$

[0068]

【化32】

[0069]

$$\begin{bmatrix}
C_2 H_5 & & & \\
C_{13} & & & \\
C_{13} & & & \\
C_{13} & & & \\
C_{14} & & & \\
C_{15} & & & \\$$

[0070]

[0071]

[0072]

【化36】

$$\begin{bmatrix} c_2 H_5 & & & \\ C_2 H_5 & & & \\ C_3 & & & \\ C_4 & & & \\ C_5 & & & \\ C_7 &$$

$$\begin{bmatrix}
CH_3 & 0 & & & & & & \\
CH_3 & 0 & & & & & & \\
CH_3 & & & & & & \\
CH_3 & & & & & & \\
\end{bmatrix}_2 \qquad (A-34)$$

$$\begin{bmatrix}
NC & \longrightarrow & 0 \\
N & \longrightarrow & 0
\end{bmatrix}$$

$$\begin{bmatrix}
A & -3 & 5
\end{bmatrix}$$

$$\begin{bmatrix}
CH_3 & 2
\end{bmatrix}$$

$$\begin{bmatrix}
CH_3 & 2
\end{bmatrix}$$

$$\begin{bmatrix}
CF_3 & CF_3 \\
N & CH_3
\end{bmatrix}$$

$$CH_3 & CF_3 \\
CH_3 & CH_3$$

$$CH_3 & CH_3$$

$$CH_3 & CH_3$$

$$CH_3 & CH_3$$

$$CH_3 & CH_3$$

[0073]

前記電子注入層の主成分である含窒素環誘導体としては、含窒素 5 員環誘導体も好ましく、含窒素 5 員環としては、イミダゾール環、トリアゾール環、テトラゾール環、オキサジアゾール環、チアシアゾール環、オキサトリアゾール環、チアトリアゾール環等が挙げられ、含窒素 5 員環誘導体としては、ベンゾイミダゾール環、ベンゾトリアゾール環、ピリジノイミダゾール環、ピリジノイミダゾール環であり、特に好ましくは、下記一般式(B)で表されるものである。

[0074]

【化37】

$$L^{\frac{1}{2}} \left(\begin{array}{c} X^{B2} \\ X^{B2} \end{array} \right)_{n^{\frac{1}{2}}} (B)$$

.[0075]

一般式(B)中、L^B は二価以上の連結基を表し、例えば、炭素、ケイ素、窒素、ホウ素、酸素、硫黄、金属(例えば、バリウム、ベリリウム)、芳香族炭化水素環、芳香族複素環等が挙げられ、これらのうち炭素原子、窒素原子、ケイ素原子、ホウ素原子、酸素原子、硫黄原子、アリール基、芳香族複素環基が好ましく、炭素原子、ケイ素原子、アリール基、芳香族複素環基がさらに好ましい。

L^B のアリール基及び芳香族複素環基は置換基を有していてもよく、置換基として好ましくはアルキル基、アルケニル基、アルキニル基、アリール基、アミノ基、アルコキシ基、アリールオキシ基、アシルオキシ基、アシルを、アルコキシカルボニル基、アリールオキシカルボニルを、アシルオキシ基、アシルアミノ基、アルコキシカルボニルアミノ基、アリールオキシカルボニルアミノ基、スルホニルアミノ基、スルファモイル基、カルバモイル基、アルキルチオ基、アリールチオ基、スルホニル基、ハロゲン原子、シアノ基、芳香族複素環基であり、より好ましくはアルキル基、アリール基、アルコキシ基、アリールオキシ基、アリール基、アルコキシ基、アリールオキシ基、芳香族複素環基であり、特に好ましくはアルキル基、アルコキシ基、アリールオキシ基、芳香族複素環基である。

L^B の具体例としては、以下に示すものが挙げられる。

[0076]

[0077]

一般式 (B) における X^{B2} は、-O-、-S-又は $=N-R^{B2}$ を表す。 R^{B2} は、水素原子、脂肪族炭化水素基、アリール基又は複素環基を表す。

 R^{B2} の脂肪族炭化水素基は、直鎖、分岐又は環状のアルキル基(好ましくは炭素数 $1\sim 20$ 、より好ましくは炭素数 $1\sim 12$ 、特に好ましくは炭素数 $1\sim 8$ のアルキル基であり、例えば、メチル、エチル、iso-プロピル、tert-ブチル、n-オクチル、n-デシル、n-ヘキサデシル、シクロプロピル、シクロペンチル、シクロヘキシル等が挙げられる。)、アルケニル基(好ましくは炭素数 $2\sim 20$ 、より好ましくは炭素数 $2\sim 12$ 、特に好ましくは炭素数 $2\sim 8$ のアルケニル基であり、例えば、ビニル、アリル、2-ブテニル、3-ペンテニル等が挙げられる。)、アルキニル基(好ましくは炭素数 $2\sim 20$ 、より好ましくは炭素数 $2\sim 12$ 、特に好ましくは炭素数 $2\sim 8$ のアルキニル基であり、例えば、プロパルギル、3-ペンチニル等が挙げられる。)であり、アルキル基であると好ましい。

[0078]

 R^{B2} のアリール基は、単環又は縮合環であり、好ましくは炭素数 $6 \sim 30$ 、より好ましくは炭素数 $6 \sim 20$ 、さらに好ましくは炭素数 $6 \sim 12$ のアリール基であり、例えば、フェニル、2-メチルフェニル、3-メチルフェニル、4-メチルフェニル、2-メトキシフェニル、3-トリフルオロメチルフェニル、ペンタフルオロフェニル、1-ナフチル、2-ナフチル等が挙げられる。

[0079]

 R^{B2} の複素環基は、単環又は縮合環であり、好ましくは炭素数 $1 \sim 20$ 、より好ましくは炭素数 $1 \sim 12$ 、さらに好ましくは炭素数 $2 \sim 10$ の複素環基であり、好ましくは窒素原子、酸素原子、硫黄原子、セレン原子の少なくとも一つを含む芳香族へテロ環基である。この複素環基の例としては、例えば、ピロリジン、ピペリジン、ピペラジン、モルフォリン、チオフェン、セレノフェン、フラン、ピロール、イミダゾール、ピラゾール、ピリジン、ピラジン、ピリダジン、ピリミジン、トリアゾール、トリアジン、インドール、インダゾール、プリン、チアゾリン、チアゾール、チアジアゾール、オキサゾリン、オーチリン、インキノリン、フタラジン、ナフチリジン、カルバゾール、ベンゾチアゾール、ベンゾチアゾール、ベンゾトリアゾール、ベンゾイミダゾール、ベンゾオキサゾール、ベンゾチアゾール、ベンゾトリアゾール、テトラザインデン、カルバゾール、アゼピン等が挙げられ、好まジン、ナフテリジン、ナフチリジン、ピリジン、ピリダジン、トリアジン、キノリン、フタラジン、ナフチリジン、キノキサリン、キナゾリンであり、より好ましくはフラン、チオフェン、ピリジン、キノリンであり、さらに好ましくはキノリンである

[0080]

 R^{B2} で表される脂肪族炭化水素基、アリール基及び複素環基は置換基を有していてもよく、置換基としては前記 L^B で表される基の置換基として挙げたものと同様であり、また好ましい置換基も同様である。

 R^{B2} として好ましくは脂肪族炭化水素基、アリール基又は複素環基であり、より好ましくは脂肪族炭化水素基(好ましくは炭素数 6 ~ 3 0、より好ましくは炭素数 6 ~ 2 0、さらに好ましくは炭素数 6 ~ 1 2 のもの)又はアリール基であり、さらに好ましくは脂肪族炭化水素基(好ましくは炭素数 1 ~ 2 0、より好ましくは炭素数 1 ~ 1 2、さらに好ましくは炭素数 2 ~ 1 0 のもの)である。

 X^{B2} として好ましくは-O-、 $=N-R^{B2}$ であり、より好ましくは $=N-R^{B2}$ であり、特に好ましくは $=N-R^{B2}$ である。

[0081]

 Z^{B2} は、芳香族環を形成するために必要な原子群を表す。 Z^{B2} で形成される芳香族環は芳香族炭化水素環、芳香族複素環のいずれでもよく、具体例としては、例えば、ベンゼン環、ピリジン環、ピラジン環、ピリミジン環、ピリダジン環、トリアジン環、ピロール環、フラン環、チオフェン環、セレノフェン環、テルロフェン環、イミダゾール環、チアゾール環、セレナゾール環、テルラゾール環、チアジアゾール環、オキサジアゾール環、ピラゾール環などが挙げられ、好ましくはベンゼン環、ピリジン環、ピラジン環、ピリミジン環、ピリダジン環であり、より好ましくはベンゼン環、ピリジン環、ピラジン環であり、さらに好ましくはベンゼン環、ピリジン環であり、

[0082]

 Z^{B2} で形成される芳香族環は、さらに他の環と縮合環を形成してもよく、置換基を有していてもよい。置換基としては前記 L^B で表される基の置換基として挙げたものと同様であり、好ましくはアルキル基、アルケニル基、アルキニル基、アリール基、アミノ基、アルコキシ基、アリールオキシ基、アシル基、アルコキシカルボニル基、アリールオキシカルボニル基、アシルオキシ基、アシルアミノ基、アルコキシカルボニルアミノ基、アリールオキシカルボニルアミノ基、スルホニルアミノ基、スルファモイル基、カルバモイル基、アルキルチオ基、アリールチオ基、スルホニル基、ハロゲン原子、シアノ基、複素環基であり、より好ましくはアルキル基、アリール基、アルコキシ基、アリールオキシ基、ハ

ロゲン原子、シアノ基、複素環基であり、さらに好ましくはアルキル基、アリール基、アルコキシ基、アリールオキシ基、芳香族複素環基であり、特に好ましくはアルキル基、アリール基、アルコキシ基、芳香族複素環基である。

 n^{B2} は、 $1 \sim 4$ の整数であり、 $2 \sim 3$ であると好ましい。

[0083]

前記一般式(B)で表される含窒素 5 員環誘導体のうち、さらに好ましくは下記一般式(B')で表されるものが好ましい。

【化39】

[0084]

一般式(B)中、 R^{B71} 、 R^{B72} 及び R^{B73} は、それぞれ一般式(B)における R^{B2} と同様であり、また好ましい範囲も同様である。

 Z^{B71} 、 Z^{B72} 及び Z^{B73} は、それぞれ一般式(B)における Z^{B2} と同様であり、また好ましい範囲も同様である。

 L^{B71} 、 L^{B72} 及び L^{B73} は、それぞれ連結基を表し、一般式(B)における L^B の例を二価としたものが挙げられ、好ましくは、単結合、二価の芳香族炭化水素環基、二価の芳香族複素環基、及びこれらの組み合わせからなる連結基であり、より好ましくは単結合である。 L^{B71} 、 L^{B72} 及び L^{B73} は置換基を有していてもよく、置換基としては前記一般式(B)における L^B で表される基の置換基として挙げたものと同様であり、また好ましい置換基も同様である。

Yは、窒素原子、1,3,5-ベンゼントリイル基又は2,4,6-トリアジントリイル基を表す。1,3,5-ベンゼントリイル基は2,4,6-位に置換基を有していてもよく、置換基としては、例えば、アルキル基、芳香族炭化水素環基、ハロゲン原子などが挙げられる。

[0085]

一般式(B)又は(B')で表される含窒素 5 員環誘導体の具体例を以下に示すが、これら例示化合物に限定されるものではない。

【化40】

$$(B-1)$$

$$N$$

$$N$$

$$N$$

$$N$$

$$N$$

$$(B-5)$$

$$N$$

$$N$$

【化41】

[0087]

また、前記電子注入層の構成成分として、前記含窒素環誘導体の他に無機化合物として、絶縁体又は半導体を使用することが好ましい。電子注入層が絶縁体や半導体で構成されていれば、電流のリークを有効に防止して、電子注入性を向上させることができる。 このような絶縁体としては、アルカリ金属カルコゲナイド、アルカリ土類金属カルコゲ

ナイド、アルカリ金属のハロゲン化物及びアルカリ土類金属のハロゲン化物からなる群から選択される少なくとも一つの金属化合物を使用するのが好ましい。電子注入層がこれらのアルカリ金属カルコゲナイド等で構成されていれば、電子注入性をさらに向上させることができる点で好ましい。具体的に、好ましいアルカリ金属カルコゲナイドとしては、例えば、Li2O、LiO、Na2S、Na2Se及びNaOが挙げられ、好ましいアルカリ土類金属カルコゲナイドとしては、例えば、CaO、BaO、SrO、BeO、BaS及びCaSeが挙げられる。また、好ましいアルカリ金属のハロゲン化物としては、例えば、LiF、NaF、KF、LiC1、KC1及びNaC1等が挙げられる。また、好ましいアルカリ土類金属のハロゲン化物としては、例えば、CaF2、BaF2、SrF2、MgF2及びBeF2等のフッ化物や、フッ化物以外のハロゲン化物が挙げられる。

また、本発明における電子注入層は、前述の還元性ドーパントを含有していても好ましい。

[0088]

本発明の有機EL素子は、前記発光層と陽極との間に正孔輸送層を有し、該正孔輸送層がアリールアミン誘導体を主成分として含有すると好ましい。また、正孔輸送層に含有される正孔輸送材料としては、3重項エネルギーが2.52~3.7 e V であると好ましく、2.8~3.7 e V であるとさらに好ましい。このような範囲の正孔輸送材料を用いることで、発光層の励起エネルギーが失活することを防ぐことができる。

[0089]

前記正孔輸送材料としては、下記一般式 (C) 及び (D) で表されるものが好ましい。 【化42】

$$Ar^7 - \left(N - Ar^8 \right)_m$$
 (C)

(式中、 Ar^7 は、炭素数が $6\sim 40$ の芳香族基であり、 Ar^8 及び Ar^9 は、それぞれ 水素原子又は炭素数が $6\sim 40$ の芳香族基であり、mは $1\sim 6$ の整数である。)

[0090]

【化43】

$$Ar^{10} \xrightarrow{\left(\begin{array}{c} N \\ Ar^{11} \end{array}\right)_{p}} \left(\begin{array}{c} Ar^{12} \\ q \\ Ar^{13} \end{array}\right)_{q} \left(\begin{array}{c} N \\ Ar^{14} \end{array}\right)_{r} \left(\begin{array}{c} N \\ Ar^{15} \end{array}\right)_{s} Ar^{16}$$
(D)

(式中、 $A r^{10}$ 及び $A r^{16}$ は、炭素数が $6 \sim 40$ の芳香族基であり、 $A r^{11} \sim A r^{15}$ は、それぞれ水素原子又は炭素数が $6 \sim 40$ の芳香族基であり、縮合数 p、q、r、s は、それぞれ0又は1である。)

[0091]

前記一般式(C)及び(D)において、炭素数が6~40の芳香族基のうち、好ましい 核原子数5~40のアリール基としては、フェニル、ナフチル、アントラニル、フェナン スリル、ピレニル、コロニル、ビフェニル、ターフェニル、ピローリル、フラニル、チオ フェニル、ベンゾチオフェニル、オキサジアゾリル、ジフェニルアントラニル、インドリ ル、カルバゾリル、ピリジル、ベンゾキノリル、フルオランテニル、アセナフトフルオラ ンテニル等が挙げられる。また、好ましい核原子数5~40のアリーレン基としては、フ ェニレン、ナフチレン、アントラニレン、フェナンスリレン、ピレニレン、コロニレン、 ビフェニレン、ターフェニレン、ピローリレン、フラニレン、チオフェニレン、ベンゾチ オフェニレン、オキサジアゾリレン、ジフェニルアントラニレン、インドリレン、カルバ ゾリレン、ピリジレン、ベンゾキノリレン、フルオランテニレン、アセナフトフルオラン テニレン等が挙げられる。なお、炭素数が6~40の芳香族基は、さらに置換基により置 換されていてもよく、好ましい置換基として、炭素数1~6のアルキル基(エチル基、メ チル基、i-プロピル基、n-プロピル基、s-ブチル基、t-ブチル基、ペンチル基、 ヘキシル基、シクロペンチル基、シクロヘキシル基等)、炭素数1~6のアルコキシ基(エトキシ基、メトキシ基、i-プロポキシ基、n-プロポキシ基、s-ブトキシ基、t-ブトキシ基、ペントキシ基、ヘキシルオキシ基、シクロペントキシ基、シクロヘキシルオ キシ基等)、核原子数5~40のアリール基、核原子数5~40のアリール基で置換され たアミノ基、核原子数5~40のアリール基を有するエステル基、炭素数1~6のアルキ ル基を有するエステル基、シアノ基、ニトロ基、ハロゲン原子が挙げられる。

[0092]

本発明において、有機EL素子の陽極は、正孔を正孔輸送層又は発光層に注入する役割を担うものであり、4.5 e V以上の仕事関数を有することが効果的である。本発明に用いられる陽極材料の具体例としては、酸化インジウム錫合金(ITO)、酸化錫(NESA)、金、銀、白金、銅等が適用できる。また陰極としては、電子注入層又は発光層に電子を注入する目的で、仕事関数の小さい材料が好ましい。陰極材料は特に限定されないが、具体的にはインジウム、アルミニウム、マグネシウム、マグネシウムーインジウム合金、マグネシウムーアルミニウム合金、アルミニウムーリチウム合金、アルミニウムースカンジウムーリチウム合金、マグネシウムー銀合金等が使用できる。

[0093]

本発明の有機EL素子の各層の形成方法は特に限定されない。従来公知の真空蒸着法、スピンコーティング法等による形成方法を用いることができる。本発明の有機EL素子に用いる、前記一般式(1)~(3)のいずれかで表される化合物を含有する有機薄膜層は、真空蒸着法、分子線蒸着法(MBE法)あるいは溶媒に解かした溶液のディッピング法、スピンコーティング法、キャスティング法、バーコート法、ロールコート法等の塗布法による公知の方法で形成することができる。

本発明の有機EL素子の各有機層の膜厚は特に制限されないが、一般に膜厚が薄すぎるとピンホール等の欠陥が生じやすく、逆に厚すぎると高い印加電圧が必要となり効率が悪くなるため、通常は数nmから 1μ mの範囲が好ましい。

【実施例】

[0094]

次に、実施例を用いて本発明をさらに詳しく説明する。

合成例1 (化合物 (С5) の合成)

化合物(C5)の合成経路を以下に示す。

【化44】

$$\begin{array}{c|c} & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\$$

[0095]

(1) 中間体(IM1)の合成

1リットルの三つ口フラスコに3,3'ージブロモビフェニル50g(160mmol)、カルバゾール18.4g(110mmol)、よう化銅3.0g(16mmol)、りん酸カリウム46.6g(220mmol)、トランス1,2ーシクロヘキサンジアミン18.2g(160mmol)、1,4ージオキサン500ミリリットルを入れ、アルゴン雰囲気下105℃で12時間攪拌した。その後、反応溶液を室温まで冷やし、水160ミリリットルを加え、ジクロロメタンで3回抽出した。有機層を無水硫酸マグネシウムで乾燥後、減圧濃縮した。

残さをシリカゲルカラムにかけ、ジカルバゾリル体、未反応物等を除去精製し、11.2gの中間体(IM1)を得た(28mmo1,収率25%)。得られた化合物について FD-MS(フィールドディソープションマススペクトル)を測定したところ、以下のようであった。

FD-MS : calcd for $C_{24}H_{16}BrN=398$, found, m/z=399 (100), 397 (90)

(2)中間体(IM2)の合成

200ミリリットルの三つ口フラスコに中間体(IM1)5.0g(12.6 mmol)を脱水トルエン30ミリリットルと脱水エーテル30ミリリットルの混合溶媒に溶解し、アルゴン雰囲気下-40℃でノルマルブチルリチウムへキサン溶液(1.6 M)10ミリリットル(16 mmol)を加え、-40℃から0℃で1時間撹拌した。次に反応溶液を-70℃まで冷却し、ホウ酸トリイソプロピル8.7ミリリットル(38 mmol)をエーテル12ミリリットルに希釈した溶液を20分かけて滴下し、-70℃で1時間撹拌した。その後室温まで昇温して6時間攪拌した。更に反応溶液に5%塩酸35ミリリットルを加えて室温で40分間攪拌した。反応溶液を二層に分離した後、有機層を飽和食塩水で洗浄し、無水硫酸ナトリウムで乾燥した。有機溶媒を5分の1程度まで減圧留去後、析出した結晶を濾過し、トルエンーノルマルへキサン混合溶媒、ノルマルへキサンで順次洗浄し、中間体 IM2 3.5g(9.6 mmol,収率76%)を得た。得られた化合物についてFD-MSの測定結果を以下に示す。

FD-MS : calcd for $C_{24}H_{18}BNO_{2}=363$, found, m/z=363 (M⁺, 100)

(3) 化合物 (C5) の合成

200ミリリットルの三つ口フラスコにアルゴン雰囲気下、メタジブロモベンゼン1.0g(4.2mmo1)、中間体(IM2)3.2g(8.8mmo1)、テトラキストリフェニルホスフィンパラジウム0価(Pd(PPh3)4)208mg(0.18mmo1)、ジメトキシエタン100ミリリットル、炭酸ナトリウム10重量%水溶液27g(25mmo1)を入れ、78℃で12時間攪拌した。反応終了後、室温まで冷やし、析出した結晶をろ別し、少量の水、メタノール、ヘキサンで洗浄した(収量3.4g)。ろ別した固体をトルエンに溶かし、シリカゲルカラムで分離精製し、2.2gの化合物(C5

)を得た(3.0 mm o 1,収率 7 4 %)。90 MH z NMR及び質量分析にて目的物であることを同定した。FD-MSの測定結果を以下に示す。

FD-MS : calcd for $C_{5.4}H_{3.6}N_{2}=712$, found, m/z=712 (M +, 100)

[0096]

合成例2(化合物(C8)の合成)

化合物(C8)の合成経路を以下に示す。

【化45】

[0097]

(1)中間体(IM3)の合成

200ミリリットルの三つ口フラスコにアルゴン雰囲気下、3,5ージブロモビフェニル6.2 g (20 mm o 1)、パラー (カルバゾリルー9ーイル)フェニルボロン酸5.8 g (20 mm o 1)、テトラキストリフェニルホスフィンパラジウム0価 (Pd (PP h 3) 4) 460 mg (0.4 mm o 1)、ジメトキシエタン100ミリリットル、炭酸ナトリウム10重量%水溶液64 g (60 mm o 1)を入れ、78℃で10時間攪拌した。反応終了後、室温まで冷却し、析出した固体をろ別した。ろ液にトルエン100ミリリットルを加え、分液ロートを用いて水、飽和食塩水で順に有機層を洗浄し、無水硫酸マグネシウムで乾燥、ろ過後、有機層を減圧濃縮し、褐色の粘性固体を得た。これをシリカゲルカラムで精製し、5.2 gの中間体 (IM3)を得た(11 mm o 1,収率55%)。得られた化合物についてFD-MSの測定結果を以下に示す。

FD-MS : calcd for $C_{30}H_{20}BrN=474$, found, m/z=475 (100), 473 (90)

(2) 中間体(IM4)の合成

200ミリリットルの三つ口フラスコに中間体(IM3)3.0g(6.3 mm o 1)を脱水トルエン30ミリリットルと脱水エーテル30ミリリットルの混合溶媒に溶解し、アルゴン雰囲気下-40℃でノルマルブチルリチウムへキサン溶液(1.6 M)4.3ミリリットル(6.8 mm o 1)を加え、-40℃から0℃で1時間撹拌した。次に反応溶液を-70℃まで冷却し、ホウ酸トリイソプロピル4.2ミリリットル(18 mm o 1)をエーテル6ミリリットルに希釈した溶液を20分かけて滴下し、-70℃で1時間撹拌した。その後室温まで昇温して6時間撹拌した。更に反応溶液に5%塩酸15ミリリットルを加えて室温で30分間攪拌した。反応溶液を二層に分離した後、有機層を飽和食塩水で洗浄し、無水硫酸ナトリウムで乾燥した。有機溶媒を5分の1程度まで減圧留去後、析出した結晶を濾過し、トルエンーノルマルへキサン混合溶媒、ノルマルへキサンで順次洗浄し、中間体(IM4)1.9g(4.3 mm o 1,収率69%)を得た。得られた化合物についてFD-MSの測定結果を以下に示す。

FD-MS : calcd for $C_{30}H_{22}BNO_{2}=439$, found, m/z=439 (M⁺, 100)

(3) 化合物 (C8) の合成

200ミリリットルの三つ口フラスコにアルゴン雰囲気下、メタジブロモベンゼン0.47g(2.0mmol)、中間体(IM4)1.8g(4.1mmol)、テトラキストリフェニルホスフィンパラジウム0価(Pd(PPh3)4)104mg(0.09mmol)、ジメトキシエタン50ミリリットル、炭酸ナトリウム10重量%水溶液14g(12mmol)を入れ、78℃で12時間攪拌した。反応終了後、室温まで冷やし、析出した結晶をろ別し、少量の水、メタノール、ヘキサンで洗浄した(収量1.8g)。ろ別した固体をトルエンに溶かし、シリカゲルカラムで分離精製し、1.4gの化合物(C8)を得た(1.6mmol,収率81%)。90MHzNMR及び質量分析にて目的物であることを同定した。FD-MSの測定結果を以下に示す。

FD-MS : calcd for $C_{6.6}H_{4.4}N_{2}=864$, found, m/z=864 (M⁺, 100)

[0098]

合成例3 (化合物 (C14) の合成)

化合物(C14)の合成経路を以下に示す。

【化46】

[0099]

(1) 中間体 (IM5) の合成

300ミリリットルの三つ口フラスコにアルゴン雰囲気下、1-プロモー3-ヨードベンゼン5.0g(18mmol)、パラー(カルバゾリルー9-イル)フェニルボロン酸5.2g(18mmol)、テトラキストリフェニルホスフィンパラジウム0価(Pd($PPh_3)_4$)414mg(0.36mmol)、ジメトキシエタン100ミリリットル、炭酸ナトリウム10重量%水溶液58g(54mmol)を入れ、80℃で12時間攪拌した。反応終了後、室温まで冷却し、トルエン100ミリリットルを加え、分液ロートを用いて水、飽和食塩水で順に有機層を洗浄し、無水硫酸マグネシウムで乾燥、ろ過後、有機層を減圧濃縮し、黄褐色の固体を得た。これをシリカゲルカラムで精製し、5.1gの中間体(IM5)を得た(13mmol,収率72%)。得られた化合物についてFD-MSの測定結果を以下に示す。

FD-MS : calcd for $C_{24}H_{16}BrN=398$, found, m/z=399 (100), 397 (93)

(2)中間体(IM6)の合成

200ミリリットルの三つ口フラスコに中間体(IM5)5.0g(12.6 mm o l)を脱水トルエン30ミリリットルと脱水エーテル30ミリリットルの混合溶媒に溶解し、アルゴン雰囲気下-40℃でノルマルブチルリチウムへキサン溶液(1.6 M)10ミリリットル(16 mm o l)を加え、-40℃から0℃で1時間撹拌した。次に反応溶液を-70℃まで冷却し、ホウ酸トリイソプロピル8.7ミリリットル(38 mm o l)を

出証特2004-3102793

エーテル12ミリリットルに希釈した溶液を20分かけて滴下し、-70℃で1時間撹拌した。その後室温まで昇温して6時間攪拌した。更に反応溶液に5%塩酸30ミリリットルを加えて室温で40分間攪拌した。反応溶液を二層に分離した後、有機層を飽和食塩水で洗浄し、無水硫酸ナトリウムで乾燥した。有機溶媒を5分の1程度まで減圧留去後、析出した結晶を濾過し、トルエンーノルマルヘキサン混合溶媒、ノルマルヘキサンで順次洗浄し、中間体(IM6)3.8g(10mmol,収率79%)を得た。得られた化合物についてFD-MSの測定結果を以下に示す。

FD-MS : calcd for $C_{24}H_{18}BNO_{2}=363$, found, m/z=363 (M⁺, 100)

(3) 化合物 (C14) の合成

FD-MS : calcd for $C_{6.0}H_{4.0}N_{2}=788$, found, m/z=788 (M⁺, 100)

[0100]

合成例4 (化合物 (C22) の合成)

化合物(C22)の合成経路を以下に示す。

【化47】

[0101]

200ミリリットルの三つ口フラスコにアルゴン雰囲気下、2, 2' ージブロモビフェニル1.5g(4.8 mmol)、中間体(IM6)3.1g(8.5 mmol)、テトラキストリフェニルホスフィンパラジウム 0価(Pd(PPh_3)4)200 mg(0.17 mmol)、ジメトキシエタン60ミリリットル、炭酸ナトリウム10重量%水溶液58g(55 mmol)を入れ、78℃で36時間攪拌した。反応終了後、室温まで冷却し、析出した結晶をろ別した。得られた結晶を水、メタノール、ヘキサンで順に洗浄し、2.8gの結晶を得た。さらに化合物をトルエンに加熱溶解し、室温に放置して再結晶化させ、1.8gの化合物(C22)を得た(2.3 mmol,収率48%)。90 MHz NMR及び質量分析にて目的物であることを同定した。PD-MSの測定結果を以下に示す。FD-MS:calcd for C_{60} H40 N2=788,found,m/z=788 (M^+ , 100)

[0102]

合成例5 (化合物 (С66) の合成)

化合物(C66)の合成経路を以下に示す。

【化48】

[0103]

(1) 化合物 (IM7) の合成

2 リットルの三つ口フラスコにアルゴン雰囲気下、1, 3, 5 ートリブロモベンゼン 7 0 g (0.22 mo 1)、カルバゾール 7 3.6 g (0.44 mo 1)、よう化銅 4.2 g (22 mmo 1)、りん酸カリウム 187 g (0.88 mo 1)、トランス-1, 2 ーシクロヘキサンジアミン 25 g (0.22 mo 1)、1, 4 ージオキサン 700 ミリリットルを入れ、104 で 16 時間 攪拌した。その後室温まで冷却し、水 600 ミリリットル加えて塩化メチレンで抽出後、有機層を水で洗浄し、ついで無水硫酸マグネシウムで乾燥後、5 別し、スラリー状態になるまで減圧濃縮した。得られた固体を5 過し、5 液をさらに減圧濃縮した。残さをトルエン 100 のミリリットルに溶かし、シリカゲルカラムにて精製し、100 2 100 2 100 3 100 3 100 6 100 7 100 6 100 7 100 7 100 7 100 7 100 7 100 7 100 8 100 7 100 7 100 8 100 9 100

FD-MS : calcd for $C_{30}H_{19}BrN_{2}=487$, found, m/z=488 (100), 486 (95)

(2) 化合物 (IM8) の合成

300ミリリットルの三つ口フラスコに、アルゴン雰囲気下、化合物(IM7)9.0g(18 mm o 1)、脱水トルエン100ミリリットル、脱水ジエチルエーテル100ミリリットルを入れ、攪拌しながら-10 に冷却した。そこへノルマルブチルリチウム(1.6 Mへキサン溶液)14.8ミリリットル(23 mm o 1)を10分かけて滴下した。さらに2時間攪拌後、ホウ酸トリイソプロピル10.4g(56 mm o 1)をエーテル25ミリリットルに希釈した溶液を20分かけて滴下し、室温で8時間攪拌した。その後0℃に冷却し、濃塩酸4ミリリットルを水100ミリリットルで希釈した希塩酸を添加し、酸性とした。

分液ロートにて溶液を二層に分離した後、有機層を100ミリリットルの水、飽和食塩水で順に洗浄し、再度有機層を分離し、無水硫酸マグネシウムにて乾燥した。溶液をろ過後、減圧濃縮し、得られた粘性固体をTHF(テトラヒドロフラン)30ミリリットルに溶解させ、ヘキサン100ミリリットルを加え、減圧下析出晶をろ過した。さらにろ液を濃縮し、得られた粘性物をTHFに溶解させ、ヘキサンを加えて同様の操作をおこない、計 5.9gの中間体 (IM8) を得た (13mmol, 収率71%)。得られた化合物についてFD-MSの測定結果を以下に示す。

FD-MS : calcd for $C_{30}H_{21}BN_{2}O_{2}=452$, found, m/z=452 (100)

(3) 中間体 (IM9) の合成

FD-MS : calcd for $C_{37}H_{27}BrN_{2}=579$, found, m/z=580 (100), 578 (90)

(4) 中間体 (IM10) の合成

300ミリリットルの三つ口フラスコに、アルゴン雰囲気下、化合物(IM9)6.0g(10mmo1)、脱水トルエン70ミリリットルと脱水ジエチルエーテル70ミリリットルを入れ、攪拌しながら-10 ℃に冷却した。そこへノルマルブチルリチウム(1.6 Mへキサン溶液)7.5ミリリットル(12mmo1)を10分かけて滴下した。さらに2時間攪拌後、ホウ酸トリイソプロピル5.6g(30mmo1)をエーテル20ミリリットルに希釈した溶液を10分かけて滴下し、室温で6時間攪拌した。その後0℃に冷却し、濃塩酸4ミリリットルを水100ミリリットルで希釈した希塩酸を添加し、酸性とした。

分液ロートにて溶液を二層に分離した後、有機層を70ミリリットルの水、飽和食塩水で順に洗浄し、再度有機層を分離し、無水硫酸マグネシウムにて乾燥した。溶液をろ過後、減圧濃縮し、得られた粘性固体をTHF20ミリリットルに溶解させ、ヘキサン70ミリリットルを加え、減圧下析出晶をろ過した。さらにろ液を濃縮し、得られた粘性物をTHFに溶解させ、ヘキサンを加えて同様の操作をおこない、計4.1gの中間体(IM10)を得た(7.5mmo1,収率75%)。得られた化合物についてTD-MSの測定結果を以下に示す。

FD-MS : calcd for $C_{3.7}H_{2.9}BN_{2}O_{2}=544$, found, m/z=544 (100)

(5) 化合物(C66)の合成

200ミリリットルの三つ口フラスコにアルゴン雰囲気下、1, 3-ジブロモベンゼン 640mg (2.7mmo1)、中間体 (IM6) 3.0g (5.5mmo1)、テトラキストリフェニルホスフィンパラジウム 0 価 (Pd (PPh_3) $_4$) 127mg (0.11mmo1)、ジメトキシエタン 50 ミリリットル、炭酸ナトリウム 10 重量%水溶液 17g (16mmo1)を入れ、80で 14 時間攪拌した。反応終了後、室温まで冷却し、析出した結晶をろ別した。得られた結晶を水、メタノール、ヘキサンで順に洗浄し、2.5g の結晶を得た。さらに化合物をトルエンに加熱溶解し、室温に放置して再結晶化させ、2.0g の化合物 (C66)を得た(1.9mmo1,収率71%)。90MHzNMR 及び質量分析にて目的物であることを同定した。PD-MS の測定結果を以下に示す。PD-MS : calcd for $C_{78}H_{50}N_{4}=1042$, found, m/z=1042 (M^+ , 100), 1043 (80)

[0104]

合成例6 (化合物 (С26) の合成)

化合物(C26)の合成経路を以下に示す。

【化49】

[0105]

(1) 中間体(IM11)の合成

500ミリリットルの三つ口フラスコにアルゴン雰囲気下、1, 3, 5-トリブロモベンゼン30g (94 mm o 1)、カルバゾール18. 8g (60 mm o 1)、よう化銅0. 6g (3 mm o 1)、りん酸カリウム25. 5g (120 mm o 1)、トランス-1, 2-シクロヘキサンジアミン3. 4g (30 mm o 1)、1, 4-ジオキサン200ミリリットルを入れ、105 $\mathbb C$ で攪拌しながら16 時間加熱還流した。その後室温まで冷却し、水150 ミリリットル加えて塩化メチレンで抽出後、有機層を水で洗浄し、ついで無水硫酸マグネシウムで乾燥後、ろ別し、スラリー状態になるまで減圧濃縮した。得られた固体をろ過し、ろ液をさらに減圧濃縮した。残さをトルエンに溶かし、シリカゲルカラムにて精製し、17g の中間体(1 M 11)を得た(42 mm o 1,収率71%)。得られた化合物について1 F 1 P 1 M 1 S の測定結果を以下に示す。

FD-MS : calcd for $C_{18}H_{11}Br_{2}N=401$, found, m/z=401 (M⁺, 100)

(2) 化合物 (C 2 6) の合成

100ミリリットルの三つ口フラスコにアルゴン雰囲気下、中間体(IM11)1.2g(3.0 mm o 1)、中間体(IM6)2.2g(6 mm o 1)、テトラキストリフェニルホスフィンパラジウム 0 価(Pd (PPh3)4)173 mg(0.15 mm o 1)、ジメトキシエタン40ミリリットル、炭酸ナトリウム10重量%水溶液20g(18 mm o 1)を入れ、80℃で13時間攪拌した。反応終了後、室温まで冷却し、析出した結晶をろ別した。得られた結晶を水、メタノール、ヘキサンで順に洗浄し、1.9gの結晶を得た。さらに化合物をトルエンに加熱溶解し、室温に放置して再結晶化させ、1.4gの化合物(C26)を得た(1.6 mm o 1,収率53%)。90 MH z NMR及び質量分析にて目的物であることを同定した。FD-MSの測定結果を以下に示す。

FD-MS : calcd for $C_{6.6}H_{4.3}N_{3}=877$, found, m/z=877 (M⁺, 100)

[0106]

合成例7 (化合物 (С33) の合成)

化合物(C33)の合成経路を以下に示す。

$$\begin{array}{c|c} & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ &$$

[0107]

100ミリリットルの三つ口フラスコにアルゴン雰囲気下、中間体(IM11)1.2 g(3.0 mm o 1)、中間体(IM4)2.6 g(6 mm o 1)、テトラキストリフェニルホスフィンパラジウム 0 価(Pd(PPh3)4)172 mg(0.15 mm o 1)、ジメトキシエタン40ミリリットル、炭酸ナトリウム10重量%水溶液20g(18 mm o 1)を入れ、80℃で16時間攪拌した。反応終了後、室温まで冷却し、析出した結晶をろ別した。得られた結晶を水、メタノール、ヘキサンで順に洗浄し、2.7 gの結晶を得た。さらに化合物をトルエンに加熱溶解し、室温に放置して再結晶化させ、2.1 gの化合物(C33)を得た(2.0 mm o 1,収率68%)。90 MH z NMR及び質量分析にて目的物であることを同定した。FD-MSの測定結果を以下に示す。

FD-MS : calcd for $C_{78}H_{51}N_3=1029$, found, m/z=1029 (M⁺, 100)

[0108]

合成例8 (化合物 (С57) の合成)

化合物(C57)の合成経路を以下に示す。

【化51】

$$\begin{array}{c|c} & & & & \\ & &$$

[0109]

100ミリリットルの三つ口フラスコにアルゴン雰囲気下、中間体(IM6)2.0g (5.4 mmo1)、2,6-ジフェニルー4ー(3,5-ジブロモフェニル)ーピリミジン1.2g(2.6 mmo1)、テトラキストリフェニルホスフィンパラ・ジウム0価(Pd(PPh3)4)150mg(0.13mmo1)、ジメトキシエタン40ミリリットル、炭酸ナトリウム10重量%水溶液17g(16 mmo1)を入れ、80℃で16時間攪拌した。反応終了後、室温まで冷却し、析出した結晶をろ別した。得られた結晶を水、メタノール、ヘキサンで順に洗浄し、2.0gの結晶を得た。さらに化合物をトルエンに加熱溶解し、室温に放置して再結晶化させ、1.5gの化合物(C57)を得た(1.6 mmo1,収率61%)。90MHzNMR及び質量分析にて目的物であることを同定した。FD-MSの測定結果を以下に示す。

FD-MS : calcd for $C_{70}H_{46}N_{4}=942$, found, m/z=942 (M⁺, 100)

[0110]

合成例9 (化合物 (С5), の合成)

化合物 (C5), の合成経路を以下に示す。

【化52】

[0111]

(1) 中間体(IM12)の合成

1リットルの三つ口フラスコに、アルゴン雰囲気下、3-プロモー9-フェニルカルバゾール25g(78mmo1)、脱水トルエン250ミリリットルと脱水ジエチルエーテル250ミリリットルを入れ、攪拌しながら-20℃に冷却した。そこへノルマルブチルリチウム(1. 6Mへキサン溶液)50ミリリットル(80mmo1)を20分かけて滴下した。さらに2時間攪拌後、ホウ酸トリイソプロピル44g(234mmo1)をエーテル50ミリリットルに希釈した溶液を20分かけて滴下した後、室温まで昇温し、6時間攪拌した。その後0℃に冷却し、濃塩酸10ミリリットルを水200ミリリットルで希釈した希塩酸を添加し、酸性とした。

分液ロートにて溶液を二層に分離した後、有機層を200ミリリットルの水、飽和食塩水で順に洗浄し、再度有機層を分離し、無水硫酸マグネシウムにて乾燥した。溶液をろ過後、減圧濃縮し、得られた粘性固体をTHFに一端溶解させ、次いでヘキサンを加えて析出させ、減圧下析出晶をろ過した。さらにろ液を濃縮し、同様の操作をおこない、計16gの中間体(IM12)を得た(56mmo1,収率71%)。得られた化合物についてFD-MSの測定結果を以下に示す。

FD-MS : calcd for $C_{18}H_{14}BNO_2=414$, found, m/z=414 (100)

(2) 中間体 (IM13) の合成

1リットルの三つ口フラスコにアルゴン雰囲気下、1-プロモー3-ヨードベンゼン8. 5 g(3 0 mm o 1)、(I M 1 2) 1 2 g(2 9 mm o 1)、テトラキストリフェニルホスフィンパラジウム 0 価(P d(P P h_3) $_4$)1. 7 g(1. 4 5 mm o 1)、ジメトキシエタン 3 0 0 ミリリットル、炭酸ナトリウム 1 0 重量%水溶液 9 6 g(9 0 mm o 1)を入れ、8 0 \mathbb{C} で 1 2 時間攪拌した。反応終了後、室温まで冷却し、トルエン 2 5 0 ミリリットルを加え、分液ロートを用いて二層に分離した後、有機層を水、飽和食塩水で順に洗浄し、再度有機層を分離し、無水硫酸マグネシウムで乾燥、ろ過後、有機層を減圧濃縮し、茶褐色の粘性固体を得た。これをシリカゲルカラムで精製し、9. 7 gの中間体(I M 1 3)を得た(2 4 mm o 1,収率 8 4 %)。得られた化合物について F D F の測定結果を以下に示す。

FD-MS : calcd for $C_{24}H_{16}BrN=398$, found, m/z=399 (100), 397 (90)

(3) 中間体(IM14)の合成

500ミリリットルの三つ口フラスコに中間体 (IM13) 9.0g (22.7 mmo

1)を脱水トルエン60ミリリットルと脱水エーテル60ミリリットルの混合溶媒に溶解し、アルゴン雰囲気下-20 $\mathbb C$ でノルマルブチルリチウムへキサン溶液(1.6 M)18ミリリットル(29 mmo1)を加え、-20 $\mathbb C$ から0 $\mathbb C$ で2時間撹拌した。次に反応溶液を-40 $\mathbb C$ まで冷却し、ホウ酸トリイソプロピル15.7ミリリットル(68 mmol)をエーテル20ミリリットルに希釈した溶液を20分かけて滴下し、-40 $\mathbb C$ $\mathbb C$ $\mathbb C$ 間撹拌した。その後室温まで昇温して8時間撹拌した。更に反応溶液に4%塩酸を加えて室温で20分間攪拌した。反応溶液を二層に分離した後、有機層を飽和食塩水で洗浄し、無水硫酸ナトリウムで乾燥した。有機溶媒を5分の1程度まで減圧留去後、析出した結晶を濾過し、トルエンーノルマルへキサン混合溶媒、ノルマルへキサンで順次洗浄し、中間体(IM14)6.4g(17.6 mmol,収率78%)を得た。得られた化合物についてFD-MSの測定結果を以下に示す。

FD-MS : calcd for $C_{24}H_{18}BNO_{2}=363$, found, m/z=363 (M⁺, 100)

(4) 中間体(IM15)の合成

FD-MS : calcd for $C_{30}H_{20}BrN=474$, found, m/z=474 (100)

(5) 中間体(IM16)の合成

200ミリリットルの三つ口フラスコに中間体(IM15)4.0g(8.4 mmol)を脱水トルエン45ミリリットルと脱水エーテル45ミリリットルの混合溶媒に溶解し、アルゴン雰囲気下-20Cでノルマルブチルリチウムへキサン溶液(1.6 M)5.6ミリリットル(9.0 mmol)を加え、-20Cから0Cで1時間撹拌した。次に反応溶液を-20Cまで冷却し、ホウ酸トリイソプロピル5.5ミリリットル(24 mmol)をエーテル10ミリリットルに希釈した溶液を20分かけて滴下し、-20Cで1時間撹拌した。その後室温まで昇温して8時間攪拌した。更に反応溶液に4%塩酸を加えて酸性とし、室温で40分間攪拌した。反応溶液を二層に分離した後、有機層を飽和食塩水で洗浄し、無水硫酸ナトリウムで乾燥した。有機溶媒を5分の1程度まで減圧留去後、析出した結晶を濾過し、トルエンーノルマルへキサン混合溶媒、ノルマルへキサンで順次洗浄し、中間体(IM16)2.4g(5.5 mmol,収率65%)を得た。得られた化合物についてFD-MSの測定結果を以下に示す。

FD-MS : calcd for $C_{30}H_{22}BNO_{2}=439$, found, m/z=439 (M⁺, 100)

(6) 化合物 (C5), の合成

200ミリリットルの三つ口フラスコにアルゴン雰囲気下、メタジブロモベンゼン640mg(2.7mmo1)、(IM16)2.4g(5.5mmo1)、テトラキストリフェニルホスフィンパラジウム0価(Pd(PPh3)4)318mg(0.28mmo1)、ジメトキシエタン120ミリリットル、炭酸ナトリウム10重量%水溶液17g(16.5mmo1)を入れ、78℃で16時間攪拌した。反応終了後、室温まで冷やし、析出した結晶をろ別し、少量の水、メタノール、ヘキサンで洗浄した。ろ別した固体をトルエンに溶かし、シリカゲルカラムで分離精製し、1.9gの化合物(C5)、を得た(2.2mmo1,収率81%)。90MHzNMR及び質量分析にて目的物であることを同定した。FD-MSの測定結果を以下に示す。

FD-MS : calcd for $C_{6.6}H_{4.4}N_2=864$, found, m/z=864 (M⁺, 100)

[0112]

実施例1 (有機EL素子の作製:緑色発光)

この素子について、通電試験を行なったところ、電圧 5. 5 V、電流密度 0. 2 3 m A / c m^2 にて、発光輝度 1 0 2 c d / m 2 の緑色発光が得られ、色度座標は(0. 3 0, 0. 6 3)、発光効率は 4 4. 3 c d / A であった。またこの素子を初期輝度 5 0 0 0 c d / m 2 にて定電流駆動させ、輝度 2 5 0 0 c d / m 2 まで半減する時間は 8 2 1 時間であった。それらの結果を表 1 に示す。

【0113】 【化53】

[0114]

実施例2~8 (有機EL素子の作製:緑色発光)

実施例1において、発光層のホスト材料の化合物(C5)に代えて、表1に記載の化合物を使用したこと以外は同様の方法で有機EL素子を作製し、同様に電圧、電流密度、輝度、発光効率、色度、輝度半減寿命を測定し表1に示した。

[0115]

比較例1

実施例1において、発光層のホスト材料の化合物 (C5) に代えて、公知の下記化合物 (CBP) を使用したこと以外は同様の方法で有機EL素子を作製し、同様に電圧、電流 密度、輝度、発光効率、色度、輝度半減寿命を測定し表1に示した。

【化54】

CBP

比較例 2

実施例1において、発光層のホスト材料の化合物 (C5)に代えて、公知の下記化合物 (CMTTP)を使用したこと以外は同様の方法で有機EL素子を作製し、同様に電圧、電流密度、輝度、発光効率、色度、輝度半減寿命を測定し表1に示した。

【化55】

【0116】 【表1】

表 1

	発光層の ホスト材料	電 圧 (V)	電流密度 (mA/cm²)	輝度 (cd/m²)	発光 効率 (cd/A)	色度座標 (x, y)	輝度半減寿命 (時間) 初期輝度 5000cd/m²
実施例1	(C5)	5.5	0. 23	102	44.3	(0. 30, 0. 63)	821
実施例2	(C8)	5.4	0. 20	105	52. 5	(0.31, 0.62)	1210
実施例3	(C14)	5.5	0.24	103	42.9	(0.31, 0.62)	1336
実施例4	(C 2 2)	5.7	0. 26	100	38. 4	(0. 30, 0. 64)	984
実施例5	(C 2 6)	5.4	0. 22	101	45. 9	(0.31, 0.62)	816
実施例6	(C 5 7)	5.3	0. 23	102	44. 3	(0, 31, 0, 62)	920
実施例7	(C66)	5.4	0. 24	103	42.9	(0.31, 0.63)	895
実施例8	(C5)'	5.4	0.26	101	38.8	(0. 32, 0. 61)	886
比較例1	(CBP)	5.5	0.32	106	33. 1	(0. 32, 0. 61)	442
比較例2	(CMTTP)	5. 5	0.39	100	25.6	(0. 33, 0. 61)	403

表1に示したように本発明の化合物を用いた有機EL素子は、高効率かつ長寿命な緑色 発光が得られる。

[0117]

実施例9 (有機EL素子の作製:青色発光)

 $25\,\mathrm{mm}\times75\,\mathrm{mm}\times0$. $7\,\mathrm{mm}$ 厚のITO透明電極付きガラス基板をイソプロピルアルコール中で超音波洗浄を5分間行なった後、UVオゾン洗浄を30分間行なった。洗浄後の透明電極付きガラス基板を真空蒸着装置の基板ホルダーに装着し、まず透明電極が形成されている側の面上に前記透明電極を覆うようにして膜厚60nmで上記TPD232を成膜した。このTPD232膜は、正孔注入層として機能する。続けて、このTPD232膜上に膜厚10nmで下記TCTAを成膜した。このTCTA膜は正孔輸送層として機能する。さらに、TCTA膜上に膜厚30nmの上記化合物(C8)を蒸着し発光層を成膜した。同時にりん光性のIr金属錯体ドーパントとして上記(K-10)を添加した。発光層中における(K-10)の濃度は7.5重量%とした。この膜は、発光層として機能する。この膜上に膜厚30nmの上記(A-7)を成膜した。このA1 χ 展記を表着し、次いでアルミニウムを150nmの厚さに蒸着した。このA1/LiFは陰極として働く。このようにして有機EL素子を作製した。

この素子について、通電試験を行なったところ、電圧 6.8V、電流密度 0.37mA / cm^2 にて、発光輝度 103cd / m^2 の青色発光が得られ、色度座標は(0.18, 0.38)、発光効率は 27.8cd / acd / ac

【0118】 【化56】

[0119]

実施例10~12 (有機EL素子の作製:青色発光)

実施例9において、発光層のホスト材料の化合物(C8)に代えて、表2に記載の化合物を使用したこと以外は同様の方法で有機EL素子を作製し、同様に電圧、電流密度、輝度、発光効率、色度、輝度半減寿命を測定し表1に示した。

[0120]

比較例3

実施例9において、発光層のホスト材料の化合物(C8)に代えて、公知の上記化合物(CBP)を使用したこと以外は同様の方法で有機EL素子を作製し、同様に電圧、電流密度、輝度、発光効率、色度、輝度半減寿命を測定し表2に示した。 比較例4

実施例9において、発光層のホスト材料の化合物 (C8) に代えて、公知の上記化合物 (CMTTP) を使用したこと以外は同様の方法で有機EL素子を作製し、同様に電圧、電流密度、輝度、発光効率、色度、輝度半減寿命を測定し表2に示した。

実施例9において、発光層のホスト材料の化合物 (C8)に代えて、公知の下記化合物 (CTP)を使用したこと以外は同様の方法で有機EL素子を作製し、同様に電圧、電流密度、輝度、発光効率、色度、輝度半減寿命を測定し表2に示した。

【化57】

【0121】 【表2】

表 2

	発光層のおけ材料	電圧 (V)	電流密度 (mA/cm ²)	輝度 (cd/m²)	発光 効率 (cd/A)	色度座標 (x, y)	輝度半減寿命 (時間) 初期輝度 500cd/m²
実施例 9	(C8)	6.8	0, 37	103	27.8	(0. 18, 0. 38)	2 3 5
実施例 10	(C14)	6.8	0.35	101	28. 9	(0. 18, 0. 38)	238
実施例 11	(C 2 6)	6.5	0.32	101	31. 5	(0. 17, 0. 36)	2 4 2
実施例 12	(C 3 3)	6.6	0.32	104	32. 5	(0. 17, 0. 36)	284
比較例3	(CBP)	6.8	0. 63	100	15.8	(0. 17, 0. 38)	103
比較例4	(CMTTP)	6.8	0.44	103	23. 4	(0. 18, 0. 38)	118
比較例 5	(CTP)	10. 2	11.2	84	0.75	(0. 20, 0. 40)	6

表2に示したように本発明の化合物を用いた有機EL素子は、高効率かつ長寿命な緑色 発光が得られる。

【産業上の利用可能性】

[0122]

以上詳細に説明したように、本発明の一般式(1)~(3)のいずれかで表される化合物からなる有機エレクトロルミネッセンス素子用材料を利用すると、発光効率が高く、画素欠陥が無く、耐熱性に優れ、長寿命である有機エレクトロルミネッセンス素子が得られる。このため、本発明の有機エレクトロルミネッセンス素子は、各種電子機器の光源等として極めて有用である。

【書類名】要約書

【要約】

【課題】 発光効率が高く、画素欠陥が無く、耐熱性に優れ、長寿命である有機エレクトロルミネッセンス素子用材料及び有機エレクトロルミネッセンス素子を提供する。

【解決手段】 対称性が低い特定構造の化合物からなる有機エレクトロルミネッセンス素 子用材料、及び、陰極と陽極間に少なくとも発光層を有する一層又は複数層からなる有機 薄膜層が挟持されている有機エレクトロルミネッセンス素子において、該有機薄膜層の少なくとも一層が、前記有機エレクトロルミネッセンス素子用材料を含有する有機エレクトロルミネッセンス素子である。

【選択図】 なし

出 願 人 履 歴 情 報

識別番号

[000183646]

1. 変更年月日 [変更理由] 住 所

氏 名

1990年 8月 8日

新規登録

東京都千代田区丸の内3丁目1番1号

出光興産株式会社