Examenul național de bacalaureat 2021 Proba E. c)

Matematică M tehnologic

BAREM DE EVALUARE ȘI DE NOTARE

Testul 9

Testul 9

Filiera tehnologică: profilul servicii, toate calificările profesionale; profilul resurse, toate calificările profesionale; profilul tehnic, toate calificările profesionale

- Pentru orice soluție corectă, chiar dacă este diferită de cea din barem, se acordă punctajul corespunzător.
- Nu se acordă fracțiuni de punct, dar se pot acorda punctaje intermediare pentru rezolvări parțiale, în limitele punctajului indicat în barem.
- Se acordă zece puncte din oficiu. Nota finală se calculează prin împărțirea la zece a punctajului total acordat pentru lucrare.

SUBIECTUL I (30 de puncte)

1.	$r=3 \Rightarrow a_1=2$, $a_4=11$	3 p
	$a_1 + a_2 + a_3 + a_4 = 2 + 5 + 8 + 11 = 26$	2p
2.	$f(a) = 3a - 8, \ f(1) = -5$	2p
	$a(3a-8) = -5 \Leftrightarrow 3a^2 - 8a + 5 = 0$, de unde obţinem $a = 1$ sau $a = \frac{5}{3}$	3p
3.	25 - x = x + 5	2p
	x = 10, care convine	3 p
4.	Cifra unităților poate fi aleasă în 4 moduri	2p
	Pentru fiecare alegere a cifrei unităților, cifra zecilor poate fi aleasă în câte 3 moduri, deci se pot forma $4 \cdot 3 = 12$ numere	3 p
5.	$3 = 2 \cdot 2 + a$	2n
3.	$\begin{vmatrix} 3-2\cdot 2+a \\ a=-1 \end{vmatrix}$	3p 2p
6.	$\sin 60^{\circ} = \frac{\sqrt{3}}{2}$, $tg60^{\circ} = \sqrt{3}$, $\cos 30^{\circ} = \frac{\sqrt{3}}{2}$	3p
	$4\sin 60^{\circ} (\operatorname{tg} 60^{\circ} - \cos 30^{\circ}) = 4 \cdot \frac{\sqrt{3}}{2} \left(\sqrt{3} - \frac{\sqrt{3}}{2} \right) = 2\sqrt{3} \cdot \frac{\sqrt{3}}{2} = 3$	2p

SUBIECTUL al II-lea (30 de puncte)

1.a)	$\det A = \begin{vmatrix} 2 & 1 \\ -1 & -3 \end{vmatrix} = 2 \cdot (-3) - 1 \cdot (-1) =$	3p
	=-6+1=-5	2p
b)	$B(1) = \begin{pmatrix} 1 & 1 \\ 3 & 6 \end{pmatrix}, \ B(-1) = \begin{pmatrix} -1 & -1 \\ 3 & 6 \end{pmatrix} \Rightarrow B(1)B(-1) + 3A = \begin{pmatrix} 2 & 5 \\ 15 & 33 \end{pmatrix} + \begin{pmatrix} 6 & 3 \\ -3 & -9 \end{pmatrix} = \begin{pmatrix} 8 & 8 \\ 12 & 24 \end{pmatrix}$	3 p
	$\begin{pmatrix} 8 & 8 \\ 12 & 24 \end{pmatrix} = 4 \begin{pmatrix} a & a \\ 3 & 6 \end{pmatrix}, \text{ de unde obținem } a = 2$	2p
c)	$A-2I_2 = \begin{pmatrix} 0 & 1 \\ -1 & -5 \end{pmatrix} \Rightarrow \det(A-2I_2) = 1$, deci matricea $A-2I_2$ este inversabilă și	200
	$\left(A - 2I_2\right)^{-1} = \begin{pmatrix} -5 & -1\\ 1 & 0 \end{pmatrix}$	3р
	$X = B(0) \cdot (A - 2I_2)^{-1}$, de unde obținem $X = \begin{pmatrix} 0 & 0 \\ -9 & -3 \end{pmatrix}$	2p
2.a)	$3*4=(2\cdot 3-4+1)(2\cdot 4-3+1)=$	3 p
	$= 3 \cdot 6 = 18$	2p
b)	x*y=(2x-y+1)(2y-x+1)=(2y-x+1)(2x-y+1)=	2p

Probă scrisă la matematică M tehnologic

Barem de evaluare și de notare

Ministerul Educației Centrul Național de Politici și Evaluare în Educație

	$= y * x$, pentru orice numere reale $x \neq y$, deci legea de compoziție "*" este comutativă	3p
c)	(2m)*n=(4m-n+1)(2n-2m+1), pentru orice numere naturale m și n	2p
	(4m-n+1)(2n-2m+1)=13 şi, cum m şi n sunt numere naturale, obţinem perechile $(2,8)$	3р
	sau (4,4)	_

SUBIECTUL al III-lea

1.a)	$f'(x) = \frac{2(x+5)-(2x+7)}{(x+5)^2} =$	3p
	$= \frac{2x+10-2x-7}{(x+5)^2} = \frac{3}{(x+5)^2}, \ x \in (-5,+\infty)$	2p
b)	$\lim_{x \to +\infty} f(x) = \lim_{x \to +\infty} \frac{2x+7}{x+5} = \lim_{x \to +\infty} \frac{x\left(2+\frac{7}{x}\right)}{x\left(1+\frac{5}{x}\right)} =$	2p
	$= \lim_{x \to +\infty} \frac{2 + \frac{7}{x}}{1 + \frac{5}{x}} = 2$, deci dreapta de ecuație $y = 2$ este asimptota orizontală spre $+\infty$ la graficul funcției f	3 p
c)	Tangenta la graficul funcției f în punctul $(a, f(a))$ este paralelă cu dreapta de ecuație	2p
	$y = 3x + 5 \Leftrightarrow f'(a) = 3, \ a \in (-5, +\infty)$	2p
	$\frac{3}{(a+5)^2} = 3 \text{ si, cum } a \in (-5, +\infty) \text{, obținem } a = -4$	3 p
2.a)	$\frac{3}{(a+5)^2} = 3 \text{ si, cum } a \in (-5, +\infty) \text{, obținem } a = -4$ $\int_{1}^{3} (f(x) + 2\sqrt{x}) dx = \int_{1}^{3} (x+2) dx = \left(\frac{x^2}{2} + 2x\right) \Big _{1}^{3} =$	3p
	$=\frac{21}{2}-\frac{5}{2}=8$	2p
b)	$f'(x) = (x - 2\sqrt{x} + 2)' = 1 - 2 \cdot \frac{1}{2\sqrt{x}} + 0 =$	3 p
	$=1-\frac{1}{\sqrt{x}}=\frac{\sqrt{x}-1}{\sqrt{x}}=g(x)$, pentru orice $x \in (0,+\infty)$, deci funcția f este o primitivă a funcției g	2p
c)	$\left \int_{1}^{2} \frac{1}{f(x^{2})} dx = \int_{1}^{2} \frac{1}{x^{2} - 2x + 2} dx = \int_{1}^{2} \frac{(x - 1)'}{(x - 1)^{2} + 1} dx = \arctan(x - 1) \right _{1}^{2} =$	3 p
	$= \arctan 1 - \arctan 9 = \frac{\pi}{4}$	2p

(30 de puncte)