Graphs

Graphs

A graph is a structure made of vertices and edges.

A graph with six vertices and seven edges

Haskell Graphs Notation

In Haskell, we can use several notations for representing Graphs.

Edge Notation

We represent the graph by its edges.

```
data Graph a = Edge [(a, a)]
deriving (Show, Eq)
```

Isolated nodes cannot be represented.

Example

Edge [(g,h), (k,f), (f,b), (f,c), (b,c)]

Graph Notation

We represent the graph by its nodes and its edges.

Example

Graph ([b,c,d,f,g,h,k],[(b,c),(b,f),(c,f),(f,k),(g,h)])

Adjacency List Notation

We represent the graph by its adjacency list.

```
data Graph a = Adj [(a, [a])]
deriving (Show, Eq)
```

Example


```
Adj [('b', "cf"), ('c', "bf"), ('d', ""), ('f', "bck"), ('g', "h"), ('h', "g"), ('k', "f")]
```

Instructor Youtube Channel: Lucas Science

