

DOSIMEX-GX 3.0

✓ APPLICATION NORME NF C15-160 (2018) ✓ DOSSIER DE VALIDATION

Secteur d'activi	té :	Medical	I	Calcul effectu	alcul effectué par : DOSIMEX		
Domaine	:	imagerie radiologiqu	e générale	Date	:	04/05/2019 09:59	9:50
Appareil:				Appareil			
HT utilisée (kV)	:	100		Local adjacent	: Lie	ux d'occupation tran	sitoire
Filtration	:	Aluminium 1mr	n	T occupation	:	0.2	
Γ_{R} (mGy.m2/mi	in/mA) :	1.59E+01		Paroi	: Be	eton cellulaire Ec	quivalent Pb
Largeur Faiscea	u I (cm) :			Epaisseur (mn	n) :	10	0
W mA.min/mois : 1600 Hmax μSv/mois : 80				80			
Rayonnement		R		a	Hp×T µSv/moi:	Fp	X _{Pb}
primaire		1 🔻		1	5.09E+0		3.5
Rayonnement	k (m²)	b		d	Hs×T μSv/moi:	Fs	X _{Pb}
diffusé	0.0022	1		1	1.12E+0	1.40E+02	1.1
Rayonnement	f	С	Q	Cg	Hg×T µSv/moi:	Fg	X _{Pb}
de fuite	1	1	180	1	1.78E+00		0.66
	Epai	sseur équivalente	de protection d	le plomb calculé	e (mm)		3.5

Alain VIVIER, Gérald LOPEZ
SEPTEMBRE 2019

SOMMAIRE

PARTIE	I. APPLICATION « FEUILLE DE CALCUL NF C15-160 »	3
I-1:	PREAMBULE : UN PETIT MOT SUR LA VERSION 2018 DE LA N	ORME
NF C 1	5-1603	
I-2:	LES LACUNES DE LA NORME NF C 15-160 (2018)	5
I-3:	MISE EN ŒUVRE DE L'APPLICATION DE LA NF C 15-160	8
I.3.1	Choix de l'application NF C 15-160	8
I-4:	ONGLET « ACTIVITE & LOCAL ADJACENT »	9
I-5:	ONGLET « GENERATEUR X »	14
I-6:	ONGLET « IMPACT DU AU RAYONNEMENT PRIMAIRE »	16
I-7:	ONGLET « IMPACT DU AU RAYONNEMENT DIFFUSE »	17
I-8:	ONGLET « IMPACT DU AU RAYONNEMENT DE FUITE »	18
I-9:	ONGLET « RESULTATS »	19
PARTIE	II. VALIDATION	20
II- 1:	METHODE DE VALIDATION	20
II-2:	RESULTATS AVANT MODIFICATION DU TABLEAUX	
D'EQU	JIVALENCE	22
II-3:	RESULTATS APRES MODIFICATION DU TABLEAUX	
D'EQU	JIVALENCE	28
II- 4:	ANNEXE: TABLEAU D'EOUIVALENCE ENRICHI	33

Partie I. APPLICATION « FEUILLE DE CALCUL NF C15-160 »

I-1: Preambule: UN PETIT MOT SUR LA VERSION 2018 DE LA NORME NF C 15-160

Tout d'abord nous tenons à remercier :

- Dr Dominique SCHIEDTS, Chirurgienne orthopédiste ? responsable du Service de Radioprotection
 Centre Hospitalier Public de Cherbourg
- pour le réseau PCR Dentaire GoogleGroup: Yann RAFFOUX dentiste et conseiller en radioprotection
 - ❖ Benjamin MENARD, PCR, Service de Radiophysique, CLCC François BACLESSE

Pour leur aide indispensable apportée pour la phase de validation de cet utilitaire

Les différences avec la version 2011 sont relativement nombreuses et d'importances variables. Parmi les plus importantes on peut citer :

- ➤ L'utilisation de l'équivalent de dose H*(10) en sievert en lieu et place du kerma air en gray. Cette modification n'est pas explicité dans la nouvelle norme et reste peu visible car la version de 2011 utilisait déjà l'unité « sievert » au lieu de « gray » pour des valeurs en kerma air. Cette modification est importante car elle modifié parfois significativement, notamment pour les faibles filtrations, les valeurs de rendement et d'atténuation. Notons aussi que sur l'aspect radioprotection, cette modification va dans le bon sens, le kerma air n'étant pas une grandeur de protection, mais une grandeur métrologique
- ➤ Les charges W pour les domaines médicaux et vétérinaires sont maintenant calculées sur 1 mois. (§ 5.3.1). Pour le domaine industriel, et en particuliers pour les utilisations en continus des générateurs X, la charge est rapportée à 1 heures (§ 5.3.2). Par contre la norme a omis de donner les tableaux des valeurs indicatives pur ces charges. Nous avons repris dans cette application les valeurs de la norme de 2011 et les avons rapporté respectivement à 1 mois (x 4) pour le domaine médical et vétérinaire et à 1 heure (/40) pour le domaine industriel)
- ➤ La prise en compte de la surface éclairée pour calculer le débit d'équivalent de dose en rétrodiffusé. La norme propose un jeu de coefficient alpha (voir manuel 2 sur le modèle physique du générateur X) tiré du rapport CEA R-6452 (Laurent Bourgois, Stéphanie Ménard, CEA 2017) . Ces coefficients sont donnés pour 5 milieux eau, TNT, Béton, fer, plomb- pour une filtration de 6

mm d'aluminium et 1 mm de béryllium. Cette dernière modification, même si elle reste assez limitée en données, représente une amélioration notable par rapport à la version de 2011

➤ Une extension des Hautes Tensions de 25 kV à 1 MV au lieu de 50 kV à 600 MV pour la version 2011.

I- 2: LES LACUNES DE LA NORME NF C 15-160 (2018)

La norme comportent quelques lacunes qu'il nous a fallut combler pour pouvoir réaliser une application automatisée qui réponde aux attentes et usages des utilisateurs :

- Lacune 1: les valeurs indicatives W ont été ni plus ni moins oubliées! Elles devaient apparaître dans le § 4.3 cité en référence, mais ce chapitre n'existe pas (voir § 5.3.2). Nous avons repris pour l'application de la version 2018 les valeurs indicatives de la version 2011 (tableau 1) en rapportant les valeurs à 1 mois pour le domaine médical et 1 h pour le domaine industriel
- ➤ Lacune 2: la règle d'arrondi introduite au § 5.7 est incomplète: la règle d'arrondi n'est pas précisée pour e > 3 mm. Pour les valeurs inférieures à 3 on a par exemple 2,1 mm arrondi à 2 mm et 2,11 mm arrondi à 2,5 mm.

Cette règle n'est pas précisée pour les valeurs supérieures à 3 où le pas d'arrondi est égal à 1 mm Nous avons alors adopté la règle suivante pour n entier :

$$n \le e' \le n + 0, 1 \implies e = n$$

 $n + 0, 1 < e' \le n + 1, 1 \implies e = n$

Exemple: e'=3,1 mm alors e=3 mme'=3,11 mm alors e=4 mm

Cette règle est discutable il nous fallait trancher en attendant une éventuelle et hypothétique correction. A noter qu'un tel arrondi va dans le sens de la surprotection donc respecte le principe fondamental de la surestimation en radioprotection

➤ Lacune 3 : La norme propose des équivalence plomb pour certains matériaux (tableaux C1, C2 et C3). Cette étape impacte fortement le résultat final. Mais un problème apparaît lorsque l'épaisseur réelle n'existe pas dans les tableaux, par exemple 200 mm de béton. Deux options sont alors possibles pour l'utilisateur : il peut choisir de prendre l'équivalence plomb pour l'épaisseur tabulée la plus proche, au risque de surestimer ou sous-estimer l'épaisseur équivalente. Si l'on prend le cas à 120 kV, on a pour 214 mm de béton : 3 mm de Pb et pour 156 mm de béton : 2 mm de béton. Quelle valeur choisir pour 200 mm ? La norme ne dit strictement rien là-dessus .Il peut aussi choisir d'interpoler linéairement entre les deux valeurs existantes, ce qui semble justifié en analysant l'évolution des valeurs. L'étape de validation nous a permis de constater que les pratiques pouvaient effectivement varier d'un utilisateur à l'autre. Nous avons alors choisi d'implémenter une méthode réalisant un mix de ces différentes pratiques : tout d'abord nous avons fortement enrichi le tableau d'équivalence en réduisant le pas des épaisseurs de plomb en calculant des valeurs intermédiaires par interpolation linéaire. Ensuite nous prenons comme épaisseur équivalente l'épaisseur correspondante à la valeur inférieure . Dans l'exemple précédent nous obtenons alors 2,7 mm de plomb pour 200 mm de béton amené à applique

➤ Lacune 4 : il existe des écarts entre les différentes représentations pour certaines valeurs de références pour les rendements

Par exemple des différences apparaissent entre certaines valeurs des abaques des rendements présentées dans la norme et les valeurs numériques des références indiquées, ici l'ouvrage Applied Physics of External Radiation Exposure (Rodolphe Antoni et Laurent Bourgois, Springer 2017)

A cette date (septembre 2019) ce défaut, qui proviendrait d'une erreur de fit, a été transmis aux auteurs de la norme, dans l'attente d'une solution

Ambient dose equivalent rate— $H^*(10)$ —to 1 m due to bremsstrahlung photons of a tungsten target bombarded with energy electron E and intensity 1 mA

Filtration	None	0.2 mm Al	0.5 mm Al	1 mm Al	2 mm Al	3 mm Al	0.2 mm Cu	0.5 mm Cu	1 mm Cu	2 mm Cu	3 mm Cu
E(KV)	mSv/min										
50	1.01E + 01	7.69E + 00	6.00E + 00	4.35E + 00	2.75E + 00	1.87E + 00	6.75 E01	1.28E - 01	1.69E - 02	5.72E - 04	2.92E - 05
100	2.73E + 01	2.31E + 01	1.94E + 01	1.59E + 01	1.22E + 01	9.94E + 00	5.97E + 00	3.02E + 00	1.46E + 00	6.41E - 01	2.79E - 01
120	-	-	-	-	_	-	-	-	-	1.31E + 00	0.91E = 01
150	4.60E + 01	4.07E + 01	3.63E + 01	3.13E + 01	2.53E + 01	2.18E + 01	1.57E + 01	9.50E + 00	5.78E + 00	3.05E + 00	1.89E + 00
200	6.28E + 01	5.74E + 01	5.24E + 01	4.67E + 01	3.97E + 01	3.57E + 01	2.76E + 01	1.90E + 01	1.32E + 01	8.92E + 00	5.63E + 00
250	8.44E + 01	7.95E + 01	7.38E + 01	6.72E + 01	5.82E + 01	5.21E + 01	4.29E + 01	3.11E + 01	2.30E + 01	1.56E + 01	1.20E + 01
300	1.04E + 02	9.97E + 01	9.40E + 01	8.67E + 01	7.68E + 01	7.03E + 01	6.01E + 01	4.56E + 01	3.48E + 01	2.52E + 01	2.02E + 01
350	1.25E + 02	1.23E + 02	1.17E + 02	1.10E + 02	9.93E + 01	9.14E + 01	8.02E + 01	6.28E + 01	5.06E + 01	3.78E + 01	3.08E + 01
400	1.46E + 02	1.44E + 02	1.37E + 02	1.29E + 02	1.18E + 02	1.10E + 02	9.74E + 01	7.86E + 01	6.30E + 01	4.91E + 01	4.12E + 01
450	1.83E + 02	1.74E + 02	1.67E + 02	1.58E + 02	1.46E + 02	1.37E + 02	1.25E + 02	1.02E + 02	8.42E + 01	6.61E + 01	5.52E + 01
500	2.07E + 02	2.02E + 02	1.94E + 02	1.85E + 02	1.72E + 02	1.63E + 02	1.50E + 02	1.26E + 02	1.05E + 02	8.37E + 01	7.09E + 01
600	2.69E + 02	2.62E + 02	2.54E + 02	2.43E + 02	2.30E + 02	2.18E + 02	2.03E + 02	1.73E + 02	1.49E + 02	1,22E + 02	1.05E + 02
700	3.55E + 02	3.48E + 02	3.43E + 02	3.33E + 02	3.17E + 02	3.02E + 02	2.88E + 02	2.54E + 02	2.22E + 02	1.87E + 02	1.61E + 02
800	4.22E + 02	4.15E + 02	4.07E + 02	3.97E + 02	3.79E + 02	3.65E + 02	3.52E + 02	3.13E + 02	2.77E + 02	2.41E + 02	2.14E + 02
900	5.02E + 02	4.91E + 02	4.84E + 02	4.73E + 02	4.59E + 02	4.44E + 02	4.24E + 02	3.81E + 02	3.43E + 02	2.95E + 02	2.66E + 02

Exemple : pour une filtration de 3 mm de cuivre et une HT de 100 kV le rendement « abaque » est de l'ordre de 0,15 mSv.m2.min⁻¹.mA⁻¹ et égal exactement à 0,279 mSv.m2.min⁻¹.mA⁻¹ dans le tableau de référence, soit 100 % d'écart.

Pour l'application de la norme 15-160 nos avons conservé les valeurs tableaux, proche des valeurs calculées avec le modèle physique (voir dossier de validation générateur X pour le primaire)

I-3: MISE EN ŒUVRE DE L'APPLICATION DE LA NF C 15-160

I.3.1 CHOIX DE L'APPLICATION NF C 15-160

Cliquez sur l'option générateur X :

Puis choisir l'option NF C 15-160

Une boite de dialogue avec 6 onglets apparait. Il faut renseigner les 5 premiers onglets avant de pouvoir lancer le calcul automatique :

I-4: ONGLET « ACTIVITE & LOCAL ADJACENT »

Cet onglet propose, après saisie de l'activité (1) et du domaine d'emplo (2) i, une valeur indicative de charge de travail W en mA.min

. Les valeurs données (3) ici sont extrapolées de la norme de 2011, les valeurs ayant été omises dans la version 2018 (voir préambule) :

Cette valeur est ajustable par l'opérateur en fonction de sa charge réelle de travail qu'il lui revient de déterminer.

La saisie du domaine d'activité conditionne la durée sur laquelle la dose est intégrée

Une dose maximale de 80 μSv :intégrée sur 1 mois pour les domaine médicaux et vétérinaire :

Une dose maximale de 0,5 µSv :intégrée sur 1 heure pour le domaine industriel :

L'utilisateur a toutefois la possibilité de modifier, sous sa responsabilité, ces valeurs de doses

Il faut ensuite caractériser le local adjacent (4) que l'on cherche à protéger (cf tableau B 1)

On notera que la dénomination des locaux a été modifiée : 3 types de locaux pour 6 dans la version 2011

Le choix d'un local conditionne la valeur du facteur d'occupation, modifiable si l'opérateur le souhaite:

Il faut ensuite choisir la nature (5) et l'épaisseur (6) de la cloison existante. On notera que la version 2018 propose un matériau supplémentaire : le béton cellulaire

Dans la calcul final, cette cloison sera convertie en « équivalent plomb » en fonction de la HT choisie, et retranchée à l'épaisseur totale de plomb nécessaire, en l'absence de la cloison, pour tenir la contrainte de dose. Ces équivalences sont données dans les tableaux C1, C2 et C3de la norme NF C 15-160 (2018). On peut noter que la norme précise que ces équivalences sont données pour une filtration donnée, mais que cette filtration n'est pas précisée.

L'épaisseur équivalente est donnée dans la feuille finale de calcul, mais un module indépendant (7) a été implémenté et permet d'avoir immédiatement la valeur équivalente donnée* par la norme :

Si les valeurs de HT et d'épaisseurs ne correspondent pas exactement aux valeurs des tableaux, les règles sont les suivantes :

Règle 1::si la HT n'existe pas, on prend la HT immédiatement supérieure

Règle 2: si l'épaisseur n'existe pas, on prend la valeur d'équivalence plomb inférieure.

Attention : si l'épaisseur est plus faible que l'épaisseur minimale donnée dans le tableau, l'équivalence plomb est alors prise à 0

Pour des épaisseurs de cloison n'existant pas dans la norme, l'épaisseur équivalente de plomb est obtenue par interpolation linéaire. Voir partie 2

La dernière étape sur cet onglet consiste à choisir les modes d'irradiation de la cloison :

Mode 1 :Par le faisceau primaire Et/ou

Mode 2 : Le rayonnement diffusé et les fuites de gaine

Mode 1 + 2:

- ✓ Local exposé par le rayonnement primaire
- ▼ Local exposé par le rayonnement diffusé et le rayonnement de fuite

Mode 1 seul:

- Local exposé par le rayonnement primaire
- Local exposé par le rayonnement diffusé et le rayonnement de fuite

Mode 2 seul

- Local exposé par le rayonnement primaire
- ▼ Local exposé par le rayonnement diffusé et le rayonnement de fuite

I-5: ONGLET « GENERATEUR X »

Les informations saisies dans cet onglet serviront principalement au calcul du rendement Γ_x associé au générateur X. Il faut tout d'abord pour cela saisir la valeur de la haute tension d'utilisation (HT en kV) :

La HT nominale est prise par défaut égale à la valeur d'utilisation. Mais elle peut être supérieure, diminuant alors le débit de fuite de gaine via le facteur f (cf 15-160 fig. A 8). Une utilisation à une tension inférieure à la tension nominale du générateur f permets de limiter le risque d'exposition en diminuant le paramètre de fuite f, il est donc préférable de saisir la valeur vrai de la tension nominale pour éviter de surdimensionner inutilement la protection.

On peut alors saisir les caractéristiques de la filtration (nature et épaisseur en **mm**). La valeur de la HT conditionne la nature possible de la filtration (*NF C 15-160 fig A 2 et A 3*):

✓ Filtration inhérente ou gaine (Acier)

Pour une nature de filtration donnée, un jeu d'épaisseurs possibles est proposé, conformément aux valeurs de rendement disponibles dans la norme

Les valeurs de rendements mis sous formes d'abaques dans la norme (fig A.3 et A.4) sont tirés de l'ouvrage Applied Physics of External Exposure (*Rodolphe Antoni, laurent Bourgois, Springer 2017*) :

Ambient dose equivalent rate— $H^*(10)$ —to 1 m due to bremsstrahlung photons of a tungsten target bombarded with energy electron E and intensity 1 mA

Filtration	None	0.2 mm Al	0.5 mm Al	1 mm Al	2 mm Al	3 mm Al	0.2 mm Cu	0.5 mm Cu	1 mm Cu	2 mm Cu	3 mm Cu
E(KV)	mSv/min										
50	1.01E + 01	7.69E + 00	6.00E + 00	4.35E + 00	2.75E + 00	1.87E + 00	6.75 E01	1.28E - 01	1.69E - 02	5.72E - 04	2.92E - 05
100	2.73E + 01	2.31E + 01	1.94E + 01	1.59E + 01	1.22E + 01	9.94E + 00	5.97E + 00	3.02E + 00	1.46E + 00	6.41E - 01	2.79E - 01
120	_	_	_	_	_	_	_	_	_	1.31E + 00	6.91E - 01
150	4.60E + 01	4.07E + 01	3.63E + 01	3.13E + 01	2.53E + 01	2.18E + 01	1.57E + 01	9.50E + 00	5.78E + 00	3.05E + 00	1.89E + 00
200	6.28E + 01	5.74E + 01	5.24E + 01	4.67E + 01	3.97E + 01	3.57E + 01	2.76E + 01	1.90E + 01	1.32E + 01	8.92E + 00	5.63E + 00
250	8.44E + 01	7.95E + 01	7.38E + 01	6.72E + 01	5.82E + 01	5.21E + 01	4.29E + 01	3.11E + 01	2.30E + 01	1.56E + 01	1.20E + 01
300	1.04E + 02	9.97E + 01	9.40E + 01	8.67E + 01	7.68E + 01	7.03E + 01	6.01E + 01	4.56E + 01	3.48E + 01	2.52E + 01	2.02E + 01
350	1.25E + 02	1.23E + 02	1.17E + 02	1.10E + 02	9.93E + 01	9.14E + 01	8.02E + 01	6.28E + 01	5.06E + 01	3.78E + 01	3.08E + 01
400	1.46E + 02	1.44E + 02	1.37E + 02	1.29E + 02	1.18E + 02	1.10E + 02	9.74E + 01	7.86E + 01	6.30E + 01	4.91E + 01	4.12E + 01
450	1.83E + 02	1.74E + 02	1.67E + 02	1.58E + 02	1.46E + 02	1.37E + 02	1.25E + 02	1.02E + 02	8.42E + 01	6.61E + 01	5.52E + 01
500	2.07E + 02	2.02E + 02	1.94E + 02	1.85E + 02	1.72E + 02	1.63E + 02	1.50E + 02	1.26E + 02	1.05E + 02	8.37E + 01	7.09E + 01
600	2.69E + 02	2.62E + 02	2.54E + 02	2.43E + 02	2.30E + 02	2.18E + 02	2.03E + 02	1.73E + 02	1.49E + 02	1.22E + 02	1.05E + 02
700	3.55E + 02	3.48E + 02	3.43E + 02	3.33E + 02	3.17E + 02	3.02E + 02	2.88E + 02	2.54E + 02	2.22E + 02	1.87E + 02	1.61E + 02
800	4,22E + 02	4.15E + 02	4.07E + 02	3.97E + 02	3.79E + 02	3.65E + 02	3.52E + 02	3.13E + 02	2.77E + 02	2.41E + 02	2.14E + 02
900	5.02E + 02	4.91E + 02	4.84E + 02	4.73E + 02	4.59E + 02	4.44E + 02	4.24E + 02	3.81E + 02	3.43E + 02	2.95E + 02	2.66E + 02

Les valeurs comprises entre 50 kV et 100 kV, ont été interpolés linéairement par pas de 10 keV

I- 6: ONGLET « IMPACT DU AU RAYONNEMENT PRIMAIRE »

Si le local où doit être déterminée la protection est concerné par ce type de rayonnement (option préalablement sélectionnée dans l'onglet « *Activité & local adjacent* ») cet onglet sera alors visible, l'opérateur aura uniquement à saisir la distance **en mètre** séparant le générateur X du point de mesure considéré cette distance est notée « a » s'exprime en mètre.

I-7: ONGLET « IMPACT DU AU RAYONNEMENT DIFFUSE »

Si le local où doit être déterminé la protection est concerné par ce type de rayonnement (option préalablement sélectionnée dans l'onglet « *Activité & local adjacent* ») cet onglet sera alors visible, l'opérateur aura à saisir la distance « b » séparant le générateur X de l'élément radiographié et la distance « c » séparant l'objet radiographié du point de mesure considéré. Ces distances s'expriment en mètre.

Une différence notable (voir préambule) apparaît ici dans la version 218. Il est possible de prendre en considération la surface éclairée, lorsqu'elle es tconnue, par le faisceau primaire pour estimer l'intensité du rayonnement diffusé via le coefficient alpha (fig A.7):

Ces coefficients alpha proviennent du rapport CEA R-6452 Pour approfondir cet aspect, voir aussi le dossier de validation du générateur X.

Lorsque la surface n'est pas connue, le calcul utilise les valeurs par défaut du coefficient k donnée dans les tableaux B.2a et B.2b de la norme NF C 15-160

I-8: ONGLET « IMPACT DU AU RAYONNEMENT DE FUITE »

Si le local où doit être déterminée la protection est concerné par ce type de rayonnement (option préalablement sélectionnée dans l'onglet « *Activité & local adjacent* ») cet onglet sera alors visible, l'opérateur aura à saisir la distance « c » séparant le générateur X du point de mesure considéré.

De son côté l'application propose en fonction des données préalablement saisie par l'opérateur (domaine d'utilisation et haute tension) les valeurs indicatives de rendement de rayonnement de fuite (Cg¹), ainsi que la valeur « Q » correspondant au produit de l'intensité maximum d'alimentation du générateur X par le temps maximum d'utilisation par heure. Ces données indicatives données par la norme NF C 15-160 sont modifiables si nécessaire par l'opérateur.

Q : produit intensité.temps maximal par heure de fonctionnement (mA.min.h-1)

180

(valeur indicative NF C 15-160 tableau B4)

Cg : Débit d'équivalent de dose à 1 m pour le rayonnement de fuite (mSv.m2.h-1)

1

(valeur indicative NF C 15-160 tableau B 5)

¹ Outre les exceptions liées au domaine d'utilisation, la valeur de Cg est égale à 1 pour toutes les HT≤150kV

I-9: ONGLET « RESULTATS »

Après avoir rentré toutes les données nécessaires, les calculs s'effectuent à partir de cet onglet et présentent les résultats dans un tableau intégré à la boite de dialogue. Il est possible de modifier les paramètres d'entrés et relancer les calculs sans sortir de la boite de dialogue. Les mêmes résultats sont reportés sur la feuille de synthèse

Secteur d'activité	:	Medical		Calcul effectue	é par :	DOSIMEX	
Domaine	:	imagerie radiologique	e générale	Date	:	04/05/2019 19:04	1:08
Appareil:				Appareil			
HT utilisée (kV)	:	100		Local adjacent	: Lie	eux d'occupation trans	sitoire
Filtration	:	Aluminium 1mn	1	T occupation	:	0.2	
Γ_R (mGy.m2/min/mA)) :	1.59E+01		Paroi	: B	eton cellulaire Ec	quivalent Pb
Largeur Faisceau I (cm	n) :			Epaisseur (mn	n) :	100	0.2
W mA.min/mois	:	1600		Hmax μSv/mois : 80			
Rayonnement		R		а	Hp×T µSv/moi	Fp is	X _{Pb}
primaire	ſ	1 🔻		2	1.27E+0	1.59E+04	2.9
Dougnament	k m²)	b	•	d	Hs×T µSv/moi	Fs	X _{Pb}
diffusé 22.9	96E-04	1		1,5	5.19E+0	6.49E+01	0.9
Rayonnement	f	С	Q	Cg	Hg×T µSv/moi	Fg	X _{Pb}
de fuite	1	1	180	1	1.78E+0	0 2.23E+01	0.66
Epaisseur équivalente de protection de plomb calculée (mm)							2.9
	Epais	seur arrondie (§ 5.)	7) réelle de plo	mb nécessaire e	e' (mm)		3

On notera qu'un dernier paramètre, le facteur d'orientation R, peut être modifié dans la feuille de calcul. Il est pris par défaut égal à 1

Si les facteurs d'atténuations sont supérieurs aux valeurs maximales des abaques (variables suivant les HT), le calcul n'est pas réalisé. L'utilisateur peut alors utiliser le modèle physique proposé qui lui n'est pas limité en facteur d'atténuation

Partie II. VALIDATION

II- 1: METHODE DE VALIDATION

La seule référence pour l'utilitaire mettant en œuvre la norme « papier » reste l'application manuelle de la norme en question. Mais cette étape de validation doit prendre en compte la perception de la norme par les utilisateurs, notamment les lectures assez délicates des abaques en échelle logarithmiques, les règles d'arrondissage, la détermination des épaisseurs équivalentes etc.

Nous avons donc constitué une équipe de bêta-testeurs avec des utilisateurs qui ont accepté de jouer le jeu.

- ❖ Dr Dominique SCHIEDTS, Chirurgienne orthopédiste? responsable du Service de Radioprotection Centre Hospitalier Public de Cherbourg
- pour le réseau PCR Dentaire GoogleGroup: Yann RAFFOUX dentiste et conseiller en radioprotection
- ❖ Benjamin MENARD, PCR, Service de Radiophysique, CLCC François BACLESSE

Cette étape a été importante et nous a permis de supprimer un certains nombres de bug ou de défauts dus à la norme elle-même. Notamment dans l'étape de détermination des épaisseurs équivalentes, cette campagne de validation nous a amené à modifier significativement cette détermination en raison de la « lacune » 3 citée en préambule, que nous rappelons ici

➤ Lacune 3: La norme propose des équivalence plomb pour certains matériaux (tableaux C1, C2 et C3). Cette étape impacte fortement le résultat final. Mais un problème apparaît lorsque l'épaisseur réelle n'existe pas dans les tableaux, par exemple 200 mm de béton. Si l'on prend le cas à 120 kV, on a pour 214 mm de béton: 3 mm de Pb et pour 156 mm de béton: 2 mm de béton. Quelle valeur choisir pour 200 mm? La norme ne dit strictement rien là-dessus!

On ne peut prendre 3 mm de plomb, car cela revient à surestimer la protection présente..Dans un premier temps nous avions décidé de prendre la valeur immédiatement inférieure (**solution 1**), ce qui est légitime dans le sens d'une surestimation des épaisseurs à rajouter.

Il se trouve qu'une interpolation linéaire (*solution 2*), légitime ici lorsque l'on regarde l'évolution des équivalences (graphe ci-dessous), donne une épaisseur de 2,75 m de plomb pour 200 mm de béton.

La campagne de validations réalisée avec une équipe de bêta-testeurs a montré d'une part que certains d'entres eux faisaient naturellement cette interpolation, et les écarts obtenues en fin de calculs après arrondissage, amenait à des écarts significatifs : 4 mm de Pb à rajouter pour la solution 1 et 2,5 mm pour la solution 2 (cas « scanner »). Rappelons ici qu'en raison de l'arrondissage final, la valeur de 2,5 mm est déjà une surestimation.

Pour cette raison là nous avons décidé à l'issue de cette étape de validation de mettre en œuvre la solution 2, à savoir l'interpolation linéaire entre les 2 valeurs tableaux encadrant l'épaisseur réelle de la cloison

Nous présentons dans les pages suivantes quelques essais réalisés, dans un premier temps avec la solution 1, puis ensuite avec la solution 2

II- 2 : Ri	SULTATS AVANT MODIFIC		ON DU TABLEAUX (AS 1	D'EQUIVALENCE		
Calcul de	Calcul des protections selon norme NFC 15-160 pour :					
Paramètres d'entrée (ordre appli Dosimex)			Application manuelle 15-160	DOSIMEX Appli 15- 160	
Domaine d'activité	Médical					
Application	Imagerie radiologique au bloc opératoire		Hmax	80 μSv	80 μSv	
W	2400 mA.min		Facteur R	1	1	
Nature du local	Autre		Facteur d'occupation	1	1	
Cloison	Béton		Equivalent Pb (solution 1)	1.0 mm	1.0 mm	
Epaisseur	100 mm					
Tension Nominale:	100 kV					
Tension d'utilisation:	140 kV		facteur f	0.18	0.15	
filtration	Al 1 mm		Rendement	15 mSv.m2/min/mA	15.9 mSv.m2/min/mA	
prim	aire		Calcul pr	Appli		
Distance a	2.00 m		НрхТ	9.00E+03 mSv	9.54E+03 mSv	
			Fp	1.13E+05	1.19E+05	
			Pb Calculé	3.60 mm	3.8 mm	
			Epaisseur totale retenue	3.6 mm		
Calaul Strait			Epaisseur Pb à rajouter	2.6 mm	Appli	
Calcul final	primaire seul		Arrondi à	2.50 mm	3.00 mm	
		1				
Diffe	usé		Calcul di	Appli		
Distance b	0.80 m		Alpha	5.75E-06		

Distance d	2.00 m
calcul alpha (O/N)	oui
Surface	500 cm2
milieu diffuseur	eau

k=alpha*surf ou valeur norme	2.88E-03	2.70E-03
HsxT	40.4 mSv	42.8 mSv
Fs	5.05E+02	5.35E+02
Pb calculé(es)	1.6 mm	1.60 mm

Fuite				
Distance c	2.00 m			

Calcul	Appli	
Q	180	180
Cg	1	1
HgxT	0.60 mSv	0.50 mSv
Fg	7.50	6.25
Pb calculé (eg)	0.7 mm	0.66 mm

Abs(es-eg)	0.9 mm
Couche déci :	0.84 mm
eg- es <=c.déci?	NON
Couche demi:	0.25 mm
épaisseur retenue diffusé+fuite	1.6 mm

		Appli
Epaisseur totale retenue	1.6 mm	1.6
Epaisseur Pb à rajouter	0.6 mm	
Arrondi à	1.00 mm	1.00 mm

Calcul final diffusé + fuite seul

On constate pour le calcul primaire un écart lié dans un premier temps à une différence de rendement conduisant à une différence dans le facteur d'atténuation puis l'épaisseur de plomb (écart 0,2 mm), écart accentué par la règle d'arrondissage, passant à 0,5 mm Aucune différence dans le calcul diffusé+ fuite de gaine

Cas 2					
Calcul des protections selon norme NFC 15-160 pour :			140 kV		
		Application manuelle 15- 160	DOSIMEX Appli 15-160		
Domaine d'activité	médical				
Application	Imagerie radiologique		Hmax	80 μSν	80 μSν
W	1400 mA.min		Facteur R	0.3	0.3
Nature du local	autre		Facteur d'occupation	1	1
Cloison	brique 150mm		Equivalent Pb	1.0 mm	1.0 mm
Epaisseur	150				
Tension Nominale:	150kV				0.0=
Tension d'utilisation:	140 kV		facteur f	0.8	0.87
filtration	Al 2mm		Rendement	24	23
primaire			Calcul primaire(§ 5.4.1)		Appli
Distance a	3.00 m		Нр	1120 mSv	1070 mSv
			Fp	1.40E+04	1.30E+04
			Pb Calculé	3.20 mm	3.2 mm
			Epaisseur totale retenue	3.2 mm	
			Epaisseur Pb à rajouter	2.2 mm	Appli
Calcul fina	Calcul final primaire seul		Arrondi à	2.50 mm	2.50 mm

Diffusé		
Distance b 1.20 m		
Distance d	3.00 m	

Calcul diffusé (§ 5.5.1)		Appli
Alpha 6.20E-06		
k=alpha*surf ou valeur norme	9.92E-03	9.64E-05

calcul alpha	oui
Surface	1600 cm2
milieu diffuseur	eau

Hs	25.7 mSv	24 mSv
Fs	321	300
Pb calculé(es)	1.8 mm	1.70 mm

Fuite		
Distance c	3.00 m	

Calcul fuite (§ 5.5.2)		Appli
Q	180	180
Cg	1	1
Hg	0.69 mSv	0.75 mSv
Fg	8.64	9.40
Pb calculé (eg)	1.59 mm	0.95 mm

Abs(es-eg)	0.21 mm
Couche déci :	0.96 mm
eg-es <=c.déci?	OUI
Couche demi:	0.29 mm
épaisseur retenue diffusé+fuite	2.09 mm

		Appli
Epaisseur totale retenue	2.09 mm	1.99
Epaisseur Pb à rajouter	1.09 mm	
Arrondi à	1.00 mm	1.00 mm

Calcul final diffusé + fuite seul

CAS 3 « SCANNER »

Calcul des protections selon norme NFC 15-160 pour :	120 kV
·	

Paramètres d'entrée (ordre appli Dosimex)

SIMEX Appli 15-160

Domaine d'activité	medical
Application	conventionnelle
W	40000 mA.min
Nature du local	poste de commande
Cloison	béton
Epaisseur	20cm

Hmax	0.08 μSv	0.08 μSν
Facteur R	1	1
Facteur d'occupation	1	1
Equivalent Pb	2.8 mm	2.0 mm

Tension Nominale:	150 kV
Tension d'utilisation:	120 kV
filtration	2 mm alu

facteur f	0.5	0.49
Rendement	16	17.9

primaire	
Distance a	2.00 m

Calcul primaire(§ 5.4.1)		Appli
Нр		179 mSv
Fp	2.00E+06	2240000
Pb Calculé	5.10 mm	5.2 mm

Calcul final primaire seul

Epaisseur totale retenue	5.1 mm	
Epaisseur Pb à rajouter	2.3 mm	Appli
Arrondi à	2.50 mm	4.00 mm

Diffusé		
Distance b	0.50 m	
Distance d	1.00 m	

Calcul diffusé (§ 5.5.1)		Appli
Alpha		
k=alpha*surf ou valeur norme	2.50E-03	2.50E-03

calcul alpha	
Surface	
milieu diffuseur	

Hs		7.16 mSv
Fs	80000	89500
Pb calculé(es)	3.7 mm	3.80 mm

Fuite	
Distance c	1.00 m

Calcul fuite (§ 5.5.2)		Appli
Q	180	
Cg	1	10
Hg		0.11 mSv
Fg	1389.00	1360.00
Pb calculé (eg)	3 mm	2.58 mm

Abs(es-eg)	0.7 mm
Couche déci :	0.96 mm
eg-es <=c.déci?	OUI
Couche demi:	0.29 mm
épaisseur retenue diffusé+fuite	3.3 mm

		Appli
Epaisseur totale retenue	4 mm	3.8
Epaisseur Pb à rajouter	1.2 mm	
Arrondi à	1.50 mm	2.00 mm

Calcul final diffusé + fuite seul

Ce cas montre l'écart significatif lié à la méthode d'estimation de l'équivalent plomb pour 200 mm de béton: 2,8 mm estimé par le bêta-testeur par interpolation linéaire dans une démarche qui nous parait légitime et qui de toute façon montre que le manque de précision de la norme ne peut que générer des écarts d'interprétation d'un utilisateur à l'autre.

A partir de ce cas nous avons décidé d'interpoler linéairement les équivalences plomb, ce qui en dehors de toute appréciation « intuitive », est plus juste sur un plan physique.

II- 3: RESULTATS APRES MODIFICATION DU TABLEAUX D'EQUIVALENCE

CAS 3BIS « SCANNER »

Calcul du cas précédent avec un tableau d'équivalence affiné (voir annexe)

Calcul des protections selon norme NFC 15-160 pour :	120 kV

Paramètres d'entrée (ordre appli Dosimex)

cation manuelle	MEX Appli 15-
15-160	160

Domaine d'activité	medical
Application	conventionnelle
W	40000 mA.min
Nature du local	poste de commande
Cloison	béton
Epaisseur	20cm

Hmax	0.08 μSν	0.08 μSν
Facteur R	1	1
teur d'occupation	1	1
Equivalent Pb	2.8 mm	2.0 mm

Tension Nominale:	150 kV
Tension d'utilisation:	120 kV
filtration	2 mm alu

facteur f	0.5	0.49
Rendement	16	17.9

primaire	
Distance a 2.00 m	

Calcul primaire(§ 5.4.1)		Appli
Нр		179 mSv
Fp	2.00E+06	2240000
Pb Calculé	5.10 mm	5.2 mm

Calcul final primaire seul

Arrondir

Epaisseur totale retenue	5.1 mm	
sseur Pb à rajouter	2.3 mm	Appli
Arrondi à	2.50 mm	2.50 mm

Diffusé	
Distance b	0.50 m
Distance d	1.00 m
calcul alpha	
Surface	
milieu diffuseur	

- 1 1 1 1 2 2 1 2 1)		
Calcul diffusé (§ 5.5.1)	Appli
Alpha		
pha*surf ou valeur norme	2.50E-03	2.50E-03
Hs		7.16 mSv
Fs	80000	89500
Pb calculé(es)	3.7 mm	3.80 mm

Fuite	
Distance c	1.00 m

Calcul fuite (§ 5.5.2)		Appli
Q	180	
Cg	1	10
Hg		0.11 mSv
Fg	1389.00	1360.00
Pb calculé (eg)	3 mm	2.58 mm

Abs(es-eg)	0.7 mm
Couche déci :	0.96 mm
eg-es <=c.déci?	OUI
Couche demi:	0.29 mm
oaisseur retenue diffusé+fuite	3.3 mm

Calcul	final	diffu	c Δ + ·	fuita	اريم

Arrondir

		Appli
Epaisseur totale retenue	4 mm	3.8
sseur Pb à rajouter	1.2 mm	
Arrondi à	1.50 mm	1.50 mm

On constate que les écarts ont disparus, ce qui montre qu'il est nécessaire d'utilisé un table « interpolé », ce qui est conforma à l'usage des utilisateurs ainsi qu'à la logique physique

Calcul des protections selon norme NFC 15-160 pour :

90 kV

Paramètres d'entrée (ordre appli Dosimex)

Application manuelle	DOSIMEX Appli 15-
15-160	160

Domaine d'activité	MEDICAL
Application	INTERVENTIONNEL
W	800 mA.min
Nature du local	AUTRES
Cloison	BRIQUE
Epaisseur	150 mm

Hmax	80 μSν	80 μSv
Facteur R	0.1	0.1
Facteur d'occupation T	1	1
Equivalent Pb	1.5 mm	1.4

Tension Nominale:	110 kV
Tension d'utilisation:	90 kV
filtration	3

facteur f	0.8	0.44
Rendement	6.5 mSv.m2/min/mA	8.41

CALCUL PRIMAIRE

primaire	
Distance a	2.00 m

Calcul pr	imaire(§ 5.4.1)	Appli
НрхТ	1.30E+02 mSv	1.68E+02 mSv
Fp	1.63E+03	2.10E+03
Pb Calculé	1.90 mm	2.0 mm

Calcul final primaire seul

Arrondir

Epaisseur totale retenue	1.9 mm	
Epaisseur Pb à rajouter	0.4 mm	Appli
Arrondi à	1.00 mm	1.00 mm

CALCUL DIFFUSE+ FUITE

Diff	⁻ usé
Distance b	0.30 m
Distance d	2.00 m
calcul alpha (O/N)	0
Surface	270 cm2
milieu diffuseur	eau
Cas scannographie largeur faisceau	0 cm
k scanographie	0

Calcul d	iffusé (§ 5.5.1)	Appli
Alpha	5.90E-06	
k=alpha*surf ou valeur norme	1.59E-03	2.20E-03
HsxT	23.0 mSv	41.1 mSv
Fs	2.88E+02	5.14E+02
Pb calculé(es)	1.2 mm	1.4

Fu	ite
Distance c	2.00 m

Calcul	fuite (§ 5.5.2)	Appli
Q	180	180
Cg	1	1
HgxT	0.89 mSv	0.49 mSv
Fg	11.11	6.11
Pb calculé (eg)	1 mm	0.66 mm

Abs(es-eg)	0.2 mm
Couche déci :	0.84 mm
eg-es <=c.déci?	OUI
Couche demi:	0.25 mm
épaisseur retenue diffusé+fuite	1.45 mm

Calcul final diffusé + fuite seul

Arrondir

		Appli
Epaisseur totale retenue	1.45 mm	1.3
Epaisseur Pb à rajouter	-0.05 mm	
Arrondi à	0,00 mm	0.00 mm

II- 4: ANNEXE: TABLEAU D'EQUIVALENCE ENRICHI

(EN BLEU: VALEURS INTERPOLEES, EN ROUGE: VALEURS EXTRAPOLEES)

	Epaisseur						Epaisse	ur en mm					
Matiere	équivalente de Plomb	35 kV	50 kV	80 kV	100 kV	120 kV	150 kV	200 kV	250 kV	300 kV	400 kV	500 kV	1000 kV
	0,0		0	0	0	0	0	0	0	0			
	0,1		42	36	33	36	41	46	39	43			
	0,2		84	72	66	72	82	92	77	86			
	0,3		132	110	93	104	121	119	106	108			
Platre Beton cellulaire Details	0,4		180	147	120	136	160	145	135	130			
	0,5		230	183	145	165	195	172	157	150			
	0,6		280	220	170	194	230	200	180	170			
	0,7		330	253	195	219	255	230	205	190			
	0,8		380	287	220	244	280	260	230	210			
	0,9		430	323	245	271	310	285	250	225			
	1,0		480	360	270	298	340	310	270	240			
	1,1				290	322	370	335	290	255			
	1,2				310	346	400	360	310	270			
	1,3				330	368	425	385	325	285			
	1,4				350	390	450	410	340	300			
	1,5				370	412	475	430	360	315			
	1,6				390	434	500	450	380	330			
	1,7				410	458	530	475	395	345			
	1,8				430	482	560	500	410	360			
	1,9				450	502	580	515	425	43 86 108 130 150 170 190 210 225 240 255 270 285 300 315 330 345 360 370 380 0 0 0 28 25 56 51 75 68 95 86 112 101 130 117 147 133 165 149			
	2,0				470	522	600	530	440	380			
	0,0	0	0	0	0	0	0	0	0	0	0		
	0,1	390 434 500 450 380 330 410 458 530 475 395 345 430 482 560 500 410 360 450 502 580 515 425 370 470 522 600 530 440 380 0 0 0 0 0 0 0 31 25 24 24 27 31 31 30 28 25											
	0,2	62	50	49	48	54	63	62	60	56	51		
	0,3	95	80	74	68	77	91	86	0 410 360 5 425 370 0 440 380 0 0 0 0 30 28 25 6 60 56 51				
ė.	0,4	129	110	100	89	101	120	110	105	95	86		
latr	0,5	162	140	125	109	124	147	132	125	112	101		00 kV 1000 kV
Ь	0,6	196	170	150	130	148	175	155	145	130	117		
	0,7	229	200	172	147	167	197	177	162	147	133		
	0,8	262	230	195	165	187	220	200	180	165	149	500 kV 1000 k	
	0,9	295	260	220	182	207	245	220	200	177	160		
	1,0	329	290	245	200	228	270	240	220	190	171		

Brique pleine

0,0	0	0	0	0	0	0	0	0	0	
0,1	20	15	14	15	17	15	14	12	11	
0,2	40	30	28	30	34	30	27	25	22	
0,3	60	45	42	46	50	46	41	37	32	
0,4	80	60	56	61	67	61	54	50	43	
0,5	100	75	70	76	84	76	68	62	54	
0,6	120	92	80	87	97	86	78	70	61	
0,7	140	109	90	98	110	97	88	79	68	
0,8	160	126	100	109	123	108	99	87	76	
0,9	180	143	110	120	136	119	109	96	83	
1,0	200	160	120	132	150	130	120	105	91	
1,2		196	135	150	172	150	134	117	101	
1,4		233	150	168	194	170	148	129	112	
1,6		269	165	185	216	190	162	141	122	
1,8		306	180	203	238	210	176	153	133	
2,0		342	195	221	260	230	190	165	143	
2,2		380	208	235	276	246	202	174	148	
2,4		418	221	249	292	262	214	183	154	
2,6		457	234	263	308	278	226	192	159	
2,8		495	247	277	324	294	238	201	165	
3,0		534	260	292	340	310	250	210	171	
3,5			295	329	380	340	275	230	187	
4,0			330	366	420	370	300	250	203	
5,0			390	432	495	430	345	290	236	
6,0			450	498	570	490	390	330	268	
7,0						545	430	390	293	
8,0						600	470	450	317	
9,0							505	480	328	
10,0							540	510	338	
11,0							575	540	361	
12,0							610	570	383	
13,0								586	398	
14,0								603	413	
15,0								620	428	
16,0									466	

Beton

11,0		10,0				540	576	630	530	400	330	260	148	110
13,0		11,0							570	430	350	275	160	116
14,0		12,0							610	460	370	290	171	122
15,0		13,0								490	395	308	183	129
16,0		14,0								520	420	325	194	136
17,0		15,0								550	440	337	205	141
18,0		16,0								580	460	350	217	147
19,0		17,0								610	480	362	229	153
10		18,0								640	500	375	241	159
Parison Pari		19,0									525	387	252	165
1	Verre	20,0									550	400	264	171
1		21,0									570	413	277	176
14		22,0									590	425	290	181
1		0,0	0	0	0	0	0	0	0	0	0			
10,3		0,1	14	10	10	9	9	9	8	8	8			
0,4	Verre	0,2	26	20	19	18	18	18	15	15	15			
0,5		0,3			28	27	26	27	23	21	19			
0,6		0,4			38	36	35	36	32	27	24			
0,6		0,5						40	38	33	29			
0,8	>	0,6						45	44	39	34			
1,0		0,7							47	42	36			
1,0		0,8							50	45	38			
Column C		0,9								46	40			
No.		1,0								47	42			
0,2		0,0		0		0	0	0	0	0	0			
10.3 23 23 24 25 22 20 16 0,4 31 30 32 34 30 26 20 0,5 39 35 31 26 0,6 44 40 37 32 0,7 43 39 34		0,1		7,5		8	8	8,5	7,5	7	6	1	ı	
0,4 31 30 32 34 30 26 20 0,5 39 35 31 26 0,6 44 40 37 32 0,7 43 39 34								17	15					
0,7 43 39 34	٤								1			1	ı	
0,7 43 39 34	iur	0,4		31		30	32	34	30	26	20	36 38 40 42 0 6 12 16 20		
0,7 43 39 34	min	0,5		1		1	1	39	35	31	26	1	ı	
0,7 43 39 34	Alui	0,6						44	40	37	32			
0,8 46 42 37		0,7		1		1	1	1	1	39	34	1	ı	1
		0,8							46	42	37			
0,9 44 39		0,9				1	1			44	39	1	ı	1
1,0 46 42		1,0								46	42			

0,0

Beton barite

17,0 18,0

	0,0	0	0	0	0	0	0	0	0	0	0	
	0,1	0,600	0,600	0,600	0,600	0,900	1,200	1,600	1,700	1,900	2,200	
	0,2	1	1	1	1	2	2	3	3	4	4	
	0,3	1,6	1,8	1,8	1,8	2,6	3,8	4,6	4,9	5,5	6,2	
	0,4	2	2	2	2	4	5	6	6	7	8	
	0,5	2,7	3,1	3,2	3,2	4,6	6,6	7,6	7,9	8,6	9,5	
	0,6	3	4	4	4	6	8	9	9	10	11	
	0,7	3,7	4,5	4,6	4,6	6,6	9,5	10,6	10,7	11,5	12,5	
<u>_</u>	0,8	4	5	5	5	8	11	12	12	13	14	
Fer	0,9	4,7	5,9	5,9	5,8	8,5	12,5	14	14	14,5	15	
	1,0	5	7	7	6	9	14	16	16	16	16	
	1,1				7	11	16	18	17	17	17	
	1,2				8	12	17	19	18	18	18	
	1,4				9	14	20	23	21	20	18	
	1,6				10	15	23	26	23	22	20	
	1,8				12	18	26	29	26	24	21	
	2,0				13	19	28	32	29	26	21	
Carreau platre	0,0		0	0	0							
	0,1		25	17	15							
	0,2		50	35	30							
an b	0,3		70	50	50							
Carre	0,4		85	70	65							
.	0,5		100	85	80							
	0,6		100	100	95							
Cloison Bois dense alvéolée en platre	0,0	o	0	0	0							
	0,1	50	50	50	50							
	0,0	0	0	0	0							
	0,1	50	50	50	50							