GPU Isosurface Extraction

Leonardo A. Schmitz

laschmitz@inf.ufrgs.br

In cooperation with Carlos A. Dietrich

cadietrich@inf.ufrgs.br

Advised by João Luiz Dihl Comba

comba@inf.ufrgs.br

Motivation: Isosurface Extraction

• 3D Volumes: large and increasing.

Ex.: www.volvis.org

- Head Aneuyrism
 - $-512 \times 512 \times 512$;
 - 256 MBytes (16 bits);
- Future?
 - $-2048 \times 2048 \times 2048$;
 - Available already;

Motivation: Isosurface Extraction

- 3D Volumes: large and increasing.
 - Fast polygonization of isosurfaces.
 - Real-time visualization.
 - On-the-fly input for applications.

Motivation: Isosurface Extraction

- 3D Volumes: large and increasing.
 - Fast polygonization of isosurfaces.
 - High quality triangle meshes (triangle aspect and distance).

Summary

- Motivation.
- Related Work.
 - Efficiency.
 - Quality.
- GPU Programming.
- Improvement Attempts.
- Results.
- References.

Related Work

- Isosurface extraction with Marching methods.
 - Simple and parallel.
 - Ex.: Marching Cubes [L&C 1988].

Related Work – Efficiency

- GPU Parallelism (brute force acceleration).
 - Divide-and-conquer strategy.
 - Marching Cubes [L&C 1988].
 - Dual Contouring [Ju2002].

Related Work – Efficiency

- Span Space (algorithmic acceleration).
 - Early detection of cut points.
 - Separation of maximum and minimum per cell.

Related Work - Quality

- Isosurface Approximation.
 - Dual Contouring [Ju2002].
 - Extended MC [Kobbelt2001].
- Triangle Quality.
 - MACET [Dietrich2008].
 - Stuffing [Labelle2007].
 - SnapMC [Ramam2008].

Summary

- Motivation.
- Related Work.
 - Efficiency.
 - Quality.
- GPU Programming.
- Improvement Attempts.
- Results.
- References.

GPU Programming

- Geometry Shader (GS).
 - Creation/deletion of primitives.

New Pipeline stage.

Geometry Program - More flexibility. FS Create **Vertex Program** GL_TRIANGLE_STRIP **GL POINT** (NULL)

GS & Marching Cubes

- Information inside GPU.
 - 3D Volume (GL_TEXTURE_3D).
 - Topology table.
- Linear interpolation on active edges.

GS & MACET & Span Space

- Algorithm speed.
 - Span Space on CPU.
- Triangle quality.
 - Tangent Transform.
 - Gradient Transform.

GS & Dual Contouring

- Topology table specified.
 - Each cell has a unique x, y and z axis.
 - Each axis can produce at most one quad.
- Particle based feature approximation.

Geometry Shader

- Pros.
 - Allows full isosurface extraction inside GPU.
 - Allows easy Marching implementations.
 - Only needs memory for dataset and topology table.
- Cons.
 - Is much slower than HistoPyramids (multipass technique).
 - Does not allow accessing neighbor triangles after creation.

Histogram Pyramids.

- Creates geometry with multipass rendering.
 - Frame Buffer Objects.
 - − *Flat3D* [Harris2003].

Histogram Pyramids.

- Each element is uniquely identified in base.
 - Top-down traversal with Vertex Buffer Object.
 - -Id's from i=0 to 47 (in the example).

HistoPyramids & Polygonizers.

- Base texture.
 - Vertex count and corresponding topology.
 - Each cell represented in one pixel.
 - Cut points determined in pixel program.

HistoPyramids & Polygonizers.

- Fragment Shader defines geometry which is accessed through the VBO's id.
- Ex.: 0x40H (topology) creates 1 triangle (3 vertices).

Histogram Pyramids

- Pros.
 - Extremely fast (33 FPS; bonsai; isovalue 40.5).
 - It is possible to access the whole mesh within each vertex.
- Cons.
 - Excessive memory use.
 - Square base texture.
 - Very complex to implement.

Summary

- Motivation.
- Related Work.
 - Efficiency.
 - Quality.
- GPU Programming.
- Improvement Attempts.
- Results.
- References.

Improvement Attemps

- How to accelerate even more HistoPyramids?
 - Instead of using *flat3d*, reorder volume in order to reach only cut-points.
 - Fixed Bucket Span Space [Waters2005].

Span Space Texture Red – active cells; Black – inside cells;

Improvement Attemps

- How to avoid needle-like triangles in DC?
- Two problem cases:
 - Finding Delauney edge.

Improvement Attemps

- How to avoid needle-like triangles in DC?
- Two problem cases:
 - Avoiding useless QEFs computations (with edge collapsing).

Summary

- Motivation.
- Related Work.
 - Efficiency.
 - Quality.
- GPU Programming.
- Improvement Attempts.
- Results.
- References.

Performance Results (Old)

Quality Results

Quality Results

References

- Dietrich, C. A., Comba, J. L. D., Nedel, L. P., Scheidegger, C., Schreiner, J., and Silva, C. T. (2007). Edge transformations for improving mesh quality of marching cubes. IEEE Transactions on Visualization and Computer Graphics.
- Dyken, C., Ziegler, G., Theobalt, C., and Seidel, H.-P. (2007b).
 Histopyramids in isosurface extraction. Technical Report MPI-I-2007-4-006, Max-Planck-Institut für Informatik.
- Ju, T., Losasso, F., Schaefer, S., and Warren, J. (2002). Dual contouring of hermite data. ACM Trans. Graph., 21(3):339–346.
- Lorensen, W. E. and Cline, H. E. (1987). Marching cubes: A high resolution 3d surface construction algorithm. In SIGGRAPH '87: Proceedings of the 14th annual conference on Computer graphics and interactive techniques, pages 163–169, New York, NY, USA. ACM Press.

GPU Isosurface Extraction

Questions?

Leonardo A. Schmitz

laschmitz@inf.ufrgs.br

In cooperation with Carlos A. Dietrich

cadietrich@inf.ufrgs.br

Advised by João Luiz Dihl Comba

comba@inf.ufrgs.br

