Assignment: Implementing Components of a DiT-based Diffusion Model in PyTorch

Objective:

To implement key functions and logic for a PyTorch-based diffusion model, focusing on a Diffusion Transformer (DiT) architecture. Follow principles from the <u>DiT paper</u> (https://arxiv.org/abs/2212.09748) and use the <u>Landscape Pictures dataset</u> from Kaggle (https://www.kaggle.com/datasets/arnaud58/landscape-pictures).

Instructions:

Implement the following functions, logic, and scripts in Python using PyTorch.

1. Forward Process and Input Preparation Components:

- o Implement a Python function to add noise to images per a diffusion schedule.
- o Implement or adapt a standard noise scheduler (e.g., linear, cosine), understanding its configuration.
- Implement a Time Embedding layer for DiT conditioning (e.g., sinusoidal positional embeddings).
- o Implement a Patchify layer to convert images into sequences of flattened patches.
- Experiment with various patch sizes (e.g., 2×2, 4×4, 8×8) and note their impact.

2. DiT Model Implementation:

Implement a simple DiT model architecture for DDPM (refer to DiT paper for guidance and configurations).

3. Basic Training Loop for DiT Model:

- Write a Python script for a one-epoch training loop using your DiT model (from Task 2).
- Follow the DiT paper (Peebles & Xie, 2022; https://arxiv.org/abs/2212.09748) for methodology.
- Script essentials:
 - Dataset/DataLoader setup (Kaggle Landscape dataset or similar).
 - Initialize your DiT model (Task 2), noise scheduler (Task 1), and optimizer.
 - Core training steps: noise prediction, loss calculation, backpropagation, optimizer update.
 - Basic loss trend visualization.

4. DiT Model Experiments and Visualization:

- Experiment with the number of diffusion timesteps (e.g., T=100,500,1000, or other values)
- Experiment with the number of DiT blocks in your model and observe the impact on performance/samples. (4, 6, 8 or other values)
- Experiment with the number of attention heads in your model and obser the impact on performance. (1, 2, 4 or other values)
- Utilize a pre-trained DiT-based diffusion model (e.g., FLUX.1-dev or a similar DiT architecture) with a DDIM sampler. Visualize the model's evolving prediction of the clean image (100 images in a 10X10 grid) at various time steps during the reverse sampling process, culminating in the final image. (Make sure to visualise the final approximation at each step without the drift)

5. Classifier-Free Guidance (CFG) Logic and Analysis:

- Implement CFG logic for combining conditional/unconditional predictions. (You may adapt your DiT model (Task 2) or use a pre-trained model. For DiT-based CFG, consider models like FLUX.1-dev or SD with DiT architecture can also be used for demonstration, noting architectural differences).
- Your code should show final noise prediction from conditional/unconditional outputs and guidance scale w, given conditional prediction and unconditional prediction.
- Perform a sensitivity analysis for the guidance scale w (e.g., w from 0-10) and observe effects on sample quality/diversity.

Submission Requirements:

- Submit Python code/scripts for all tasks.
- For all analysis on performance use FID.
- Submit a detailed report including:
 - o Description of your DiT architecture (Task 2), its components, and design choices.
 - For experiments present 100 images in a 10×10 grid showing parameter impacts.
 - Support visuals with brief quantitative or qualitative observations.
 - o Clear code explanations for all tasks.
 - o Discussion of significant design choices/assumptions.
 - o Summary of challenges and solutions.

NOTE: You may use the provided <u>video</u> as a reference to help your understanding, but please ensure the code you submit is your own original work.