「ファイバー束とホモトピー」 非公式誤植表¹ compiled on 2022 年 1 月 8 日

表でページ番号のマスが オレンジ になっているところは, 気をつけるべき誤植と感じたところです.

第1章 ファイバーを束ねる

p	位置	誤	正
5	15 行目	$TS^2 = \bigcup T_{\mathbf{x}}S^2$	$TS^2 = \bigcup T_{\mathbf{x}}S^2$
		$\mathbf{x} \in \mathbb{R}^3$	$\mathbf{x} \in S^2$

第2章 雛形としての被覆空間

р	位置	誤	正
6	19 行目	$p _{\widetilde{U_x}}\colon \widetilde{U_y} o U_x$ は同相写像である.	$p _{\widetilde{U_y}}\colon \widetilde{U_y} o U_x$ は同相写像である.
8	15 行目	$\{ e^{i\theta} \mid \frac{3\pi}{2} < \theta < 2\pi \}$	$\{ e^{i\theta} \mid \pi < \theta < \frac{3\pi}{2} \}$
8	20 行目	$\{ e^{i\theta} \mid \frac{3\pi}{2} < \theta < 2\pi \}$	$\{ e^{i\theta} \mid \pi < \theta < \frac{3\pi}{2} \}$
10	図 2.3	$\widetilde{l}(a)$	$\widetilde{l}(\pmb{b})$
10	15 行目	$x \subset V \subset X_0$	$x \in V \subset X_0$
12	14 行目	$W_i \subset U_{\alpha_i}$	$W_i \subset l^{-1}(U_{\alpha_i})$
14	22 行目	$\widetilde{H}(a,t)$ と $\widetilde{H}(b,t)$ は s によらず一定である.	$\widetilde{H}(a, {\color{red} s})$ と $\widetilde{H}(b, {\color{red} s})$ は ${\color{red} s}$ によらず一定である.
16	4 行目	$x_0, x_1 \in X$	$x_0, x_1 \in \underline{B}$
24	3 行目	$\frac{1}{2} < t < 1$	$\frac{1}{2} < s < 1$
25	10 行目	命題 2.2.12 と命題 2.2.11	例 2.2.12 と例 2.2.11
27	7 行目	$(f _{F_{x_0}})^{-1} \circ \sigma \circ (f _{F_{x_0}})$	$(f _{F_{x_0}})\circ\sigma\circ(f _{F_{x_0}})^{-1}$

第3章 ファイバー束の基本

p	位置	誤	正
50	8 行目	$\overline{V_x}$ はコンパクト	$\overline{V_y}$ はコンパクト
57	19 行目	X が局所コンパクトのときには $,$	X が局所コンパクト $rac{ ext{Hausdorff}}{ ext{Gaust}}$ のときには,
76	18 行目	$(p(s_{\alpha}(x)A), s_{\alpha}(p(s_{\alpha}(x)A)^{-1}s_{\alpha}(x)A))$	$(p(s_{\alpha}(x)A), s_{\alpha}(p(s_{\alpha}(x)A))^{-1}s_{\alpha}(x)A)$
85	14 行目	$\varphi_+^{-1}(p(z_1,z_2),\overline{\varphi}_+(z_1)w)$	$\varphi_+^{-1}(p(z_1,z_2),\overline{\varphi}_+(z_1,z_2)w)$

 $^{^1}$ 玉木大, 『ファイバー束とホモトピー』 (森北出版),2020/4/30 発行 第 1 版第 1 刷 準拠

第4章 ファイバー束の分類

p	位置	誤	正	
93	19 行目	$1_G \times f$	$f imes 1_G$	
98	19 行目	$\operatorname{ad}(\beta) \circ \overline{\lambda}_{\alpha\beta}$	$\operatorname{ad}({\color{red}\mu})\circ\overline{\lambda}_{lphaeta}$	
103	19 行目	$\psi_{\lambda} \colon p^*(f)^{-1}(U_{\lambda}) \to f^{-1}(U_{\lambda}) \times F$	$\psi_{\lambda} \colon p^*(f)^{-1}(f^{-1}(U_{\lambda})) \to f^{-1}(U_{\lambda}) \times F$	
103	21 行目	U_{lpha}	V_{γ}	
103	25 行目	$\psi_{\lambda} \colon p^*(f)^{-1}(U_{\lambda}) \to U_{\lambda} \times F$	$\psi_{\lambda} \colon p^*(f)^{-1}(f^{-1}(U_{\lambda})) \to f^{-1}(U_{\lambda}) \times F$	
104	1 行目	$p^*(f)^{-1}(U_\lambda) \to U_\lambda \times F$	$p^*(f)^{-1}(f^{-1}(U_{\lambda})) \to f^{-1}(U_{\lambda}) \times F$	
104	8 行目	U_{lpha}	V_{γ}	
105	pullback の図式	Y o Z	$X \to Z$	
111	21 行目	$\widetilde{H}_j \colon E'_j \times [0,1] \to E$	$\widetilde{H}_j \colon \underline{E'_j} \to E$	
112	9 行目	$\widetilde{H}_j _{E'_{j-1}\times[0,1]}=\widetilde{H}_{j-1}$	$\widetilde{H}_j _{{\color{red}E'_{j-1}}}=\widetilde{H}_{j-1}$	
119	25 行目	$p^{-1}(S^n_+ \cap S^n) \to (S^n_+ \cap S^n) \times F$	$p^{-1}(S^n_+ \cap S^n) \to (S^n_+ \cap S^n) \times F \to F$	
120	17 行目	$S^n_+ \times G \succeq S^n \times G$	$S^n_+ \times F \succeq S^n \times F$	
120	23 行目	$\varphi_{\pm,\varepsilon} \colon p^{-1}(U_{\pm,\varepsilon}) \to U_{\pm,\varepsilon} \times G$	$\varphi_{\pm,\varepsilon} \colon p^{-1}(U_{\pm,\varepsilon}) \to U_{\pm,\varepsilon} \times F$	
120	24 行目	$\varphi_{\pm,\varepsilon}\colon (p')^{-1}(U_{\pm,\varepsilon})\to U_{\pm,\varepsilon}\times G$	$\varphi_{\pm,\varepsilon}\colon (p')^{-1}(U_{\pm,\varepsilon})\to U_{\pm,\varepsilon}\times F$	
122	9 行目	$G(x,t) = w_{-}(t)^{-1}B(p')(x)w_{+}(t)$	$F'(x,t) = w_{-}(t)^{-1}B(p')(x)w_{+}(t)$	
122	10 行目	G(x,0) = F(x,1),	F'(x,0) = F(x,1),	
122	10 11 🖂	G(x,1) = B(p')(x)	F'(x,1) = B(p')(x)	
151	17 行目	$(S^{n-1} \times [0,1]) \cup \{*\} \times [0,1]$	$(S^{n-1} \times [0,1] \cup \{*\} \times [0,1])$	
151	19 行目	$(S^{n-1}\times [0,1])\cup \{*\}\times [0,1]$	$(S^{n-1} \times [0,1] \cup \{*\} \times [0,1])$	
152	19 行目	$\widetilde{H} _{S^{n-1}\times\{0\}}=*\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $	$\widetilde{G} _{S^{n-1} \times \{0\}} = * \ \sharp \ \mathfrak{h} \ ,$	
102	10 11 日	$H _{S^{n-1}\times\{0\}}=*$	$G _{S^{n-1}\times\{0\}}=*$	
152	20 行目	\widetilde{H} が基点を保つホモトピー	$rac{\widetilde{G}}{G}$ が基点を保つホモトピー	
152	20 行目	<i>H</i> も基点を保つホモトピー	Gも基点を保つホモトピー	
152	21 行目	H は写像	G は写像	
152	24 行目	$f _{S^{n-1}} = H _{S^{n-1} \times \{1\}}$	$f _{S^{n-1}} = G _{S^{n-1} \times \{1\}}$	
153	24 行目	$H \colon X \times [0,1] \to B$	$H \colon X \times [0,1] \times [0,1] \to B$	
153	26 行目	$X \times [0,1] \to B$	$X \times [0,1] \times [0,1] \to B$	
170	定義 4.10.11	注 1	注 2	

注1(誤)

定義 4.10.11 G を位相群とする. n を非負整数または ∞ とし、

$$E_nG = \left(\prod_{k=0}^n \times \Delta^k\right)/_{\sim}$$

と定義する. ここで, 同値関係 ~ は次の四つの関係で生成されたものである: $(g_1,g_2,\dots,g_n,g_{n+1};t_0,\dots,t_n)\in G^{n+1}\times\Delta^n\ k$ に対し,

(1) $t_0 = 0$ のとき,

$$(g_1, g_2, \dots, g_n, g_{n+1}; 0, t_1, \dots, t_n) \sim (g_2, g_3, \dots, g_n, g_{n+1}; t_1, \dots, t_n)$$

(2) $1 \le k \le n-1$ に対し $t_k = 0$ のとき,

$$(g_1, \dots, g_{n+1}; t_0, \dots, t_{i-1}, 0, t_{i+1}, \dots, t_n) \sim (g_1, \dots, g_{k-1}, g_k g_{k+1}, g_{k+2}, \dots, g_n; t_0, \dots, t_{k-1}, t_{k+1}, \dots, t_n)$$

(3) $t_n = 0$ のとき,

$$(g_1, \ldots, g_{n-1}, g_n, g_{n+1}; t_0, \ldots, t_{n-1}, 0) \sim (g_1, \ldots, g_{n-1}, g_n, g_{n+1}; t_0, \ldots, t_{n-1})$$

(4) $1 \le k \le n$ に対し $g_k = e$ のとき,

$$(g_1, \ldots, g_{k-1}, e, g_{k+1}; t_0, \ldots, t_n) \sim (g_1, \ldots, g_{k-1}, g_{k+1}, \ldots, g_n; t_0, \ldots, t_{k-2}, t_{k-1} + t_k, t_{k+1}, \ldots, t_n)$$

また, G の E_nG への作用 μ : $E_nG \times G \to E_nG$ を

$$\mu((g_1,\ldots,g_n,g_{n+1};t_0,\ldots,t_n),g)=(g_1,\ldots,g_n,g_ng;t_0,\ldots,t_n)$$

で定義し, $B_nG = E_nG/G$ とおく. 位相は E_nG も B_nG も等化位相である.

注 2(正)

定義 4.10.11 G を位相群とする. n を非負整数または ∞ とし、

$$E_n G = \left(\coprod_{k=0}^n \times \Delta^k \right) /_{\sim}$$

と定義する. ここで, 同値関係 ~ は次の四つの関係で生成されたものである: $(g_1,g_2,\dots,g_k,g_{k+1};t_0,\dots,t_k)\in G^{k+1}\times\Delta^k \ \text{に対し},$

 $(1) t_0 = 0 のとき,$

$$(g_1, g_2, \dots, g_k, g_{k+1}; 0, t_1, \dots, t_k) \sim (g_2, g_3, \dots, g_k, g_{k+1}; t_1, \dots, t_k)$$

(2) $1 \le i \le k - 1$ に対し $t_i = 0$ のとき,

$$(g_1, \dots, g_{k+1}; t_0, \dots, t_{i-1}, 0, t_{i+1}, \dots, t_k) \sim (g_1, \dots, g_{i-1}, g_i g_{i+1}, g_{i+2}, \dots, g_k; t_0, \dots, t_{i-1}, t_{i+1}, \dots, t_k)$$

(3) $t_{k} = 0$ のとき,

$$(g_1, \dots, g_{k-1}, g_k, g_{k+1}; t_0, \dots, t_{k-1}, 0) \sim (g_1, \dots, g_{k-1}, g_k, g_{k+1}; t_0, \dots, t_{k-1})$$

(4) $1 \leq i \leq k$ に対し $g_i = e$ のとき、

$$(g_1, \dots, g_{i-1}, e, g_{i+1}, \dots g_{k+1}; t_0, \dots, t_k) \sim (g_1, \dots, g_{i-1}, g_{i+1}, \dots, g_{k+1}; t_0, \dots, t_{i-2}, t_{i-1} + t_i, t_{i+1}, \dots, t_k)$$

また, G の E_nG への作用 μ : $E_nG \times G \to E_nG$ を

$$\mu((g_1,\ldots,g_k,g_{k+1};t_0,\ldots,t_k),g)=(g_1,\ldots,g_k,g_{k+1}g;t_0,\ldots,t_k)$$

で定義し, $B_nG = E_nG/G$ とおく. 位相は E_nG も B_nG も等化位相である.

第5章 ファイブレーション

p	位置	誤	正
	行目		

第6章 あとがきに代えて

p	位置	誤	正
	行目		

付録 その他諸々の話題

p	位置	誤	正
	行目		