Statistica Applicata: richiami di analisi matematica

Paolo Vidoni

Dipartimento di Scienze Economiche e Statistiche, Università di Udine

Febbraio, 2019

1 Applicazioni

Definizione 1 Dati due insiemi qualsiasi Ω_1 ed Ω_2 , un'applicazione f da Ω_1 in Ω_2 , in simboli, $f: \Omega_1 \to \Omega_2$, è una relazione che associa ad ogni elemento $x \in \Omega_1$ uno ed un solo elemento $y \in \Omega_2$; in simboli, f(x) = y.

L'insieme Ω_1 è chiamato **dominio** di f, mentre l'insieme Ω_2 è il **codominio** di f. In particolare, l'applicazione $i_{\Omega_1}: \Omega_1 \to \Omega_1$ tale che $i_{\Omega_1}(x) = x$, $\forall x \in \Omega_1$, è chiamata **applicazione identica**. Inoltre, un'applicazione $f: \Omega_1 \to \Omega_2$ è detta

- suriettiva se $f(\Omega_1) = \Omega_2$, ovvero se, $\forall y \in \Omega_2, \exists x \in \Omega_1$ tale che y = f(x);
- iniettiva se, $\forall x_1, x_2 \in \Omega_1$, $f(x_1) = f(x_2)$ implica che $x_1 = x_2$. In modo equivalente, $\forall x_1, x_2 \in \Omega_1$, $x_1 \neq x_2$ implica che $f(x_1) \neq f(x_2)$;
- biettiva se è sia iniettiva che suriettiva.

Date due applicazioni $f: \Omega_1 \to \Omega_2$ e $g: \Omega_2 \to \Omega_3$, si chiama **applicazione composta** di f e g l'applicazione $g \circ f: \Omega_1 \to \Omega_3$ che associa ad ogni elemento $x \in \Omega_1$ uno ed un solo elemento $z \in \Omega_3$ tale che z = g(f(x)).

Un'applicazione $f: \Omega_1 \to \Omega_2$ è detta **invertibile** se e solo se esiste un'applicazione $h: \Omega_2 \to \Omega_1$ tale che $h \circ f = i_{\Omega_1}$, o, in modo equivalente, $f \circ h = i_{\Omega_2}$. È possibile dimostrare che un'applicazione $f: \Omega_1 \to \Omega_2$ è invertibile se e solo se è biunivoca, e che, se f ammette l'inversa, essa è unica.

Data l'applicazione $f: \Omega_1 \to \Omega_2$, si chiama **immagine** di $A \subseteq \Omega_1$ tramite f, in simboli f(A), l'insieme $B \subseteq \Omega_2$ costituito dagli elementi che corrispondono, tramite f, agli elementi di A. Più precisamente,

$$B = f(A) = \{ y \in \Omega_2 : \exists x \in A : y = f(x) \}.$$

Sia dato un insieme $B \subseteq \Omega_2$. Si definisce **immagine inversa** di B tramite f, e si indica con $f^{-1}(B)$, l'insieme $A \subseteq \Omega_1$ tale che

$$A = f^{-1}(B) = \{ x \in \Omega_1 : f(x) \in B \}.$$

Si noti che non è necessario che la funzione f sia invertibile per definire l'immagine inversa $f^{-1}(B)$.

2 Insiemi

Sia Ω un insieme di elementi; l'insieme Ω è detto **finito** se è in corrispondenza biunivoca con un sottoinsieme finito dell'insieme dei numeri naturali \mathbb{N} , ad esempio con $\{1, \ldots, n\}$, $n \in \mathbb{N}^+$, dove $\mathbb{N}^+ = \{1, 2, \ldots\}$. In tal caso, si dice che Ω ha cardinalità n e, usualmente, si utilizza la notazione $\Omega = \{\omega_1, \ldots, \omega_n\}$. L'**insieme vuoto** \emptyset ha, per definizione, cardinalità zero.

L'insieme Ω è detto **infinito numerabile** se esiste una corrispondenza biunivoca tra Ω e \mathbb{N} . In questo caso, si scrive $\Omega = \{\omega_1, \ldots, \omega_n, \ldots\}$ o, in alternativa, $\Omega = \{\omega_n\}_{n \in \mathbb{N}^+}$.

Se si considera, invece, un insieme Ω pari ad un intervallo di \mathbb{R} o ad \mathbb{R} stesso, non ci può essere alcuna corrispondenza biunivoca né con sottoinsiemi di \mathbb{N} né con \mathbb{N} stesso. In questo caso, e in casi simili, si dice che Ω è un insieme **infinito più che numerabile**, oppure che ha la **cardinalità del continuo**.

Due insiemi Ω_1 e Ω_2 hanno uguale cardinalità se esiste un'applicazione f biunivoca da Ω_1 e Ω_2 . Usualmente si indica con $|\Omega|$ la cardinalità dell'insieme Ω .

Definizione 2 Dato un insieme Ω , si definisce **insieme delle parti** di Ω , e si indica con $\mathcal{P}(\Omega)$, l'insieme costituito da tutti e soli i sottoinsiemi, propri o impropri, di Ω .

Esempio 1 Se
$$\Omega = \{a, b\}$$
, allora l'insieme delle parti di Ω è $\mathcal{P}(\Omega) = \{\emptyset, \{a\}, \{b\}, \Omega\}$. Se $\Omega = \{a, b, c\}, \mathcal{P}(\Omega) = \{\emptyset, \{a\}, \{b\}, \{c\}, \{a, b\}, \{a, c\}, \{b, c\}, \Omega\}$.

Si noti che gli elementi dell'insieme $\mathcal{P}(\Omega)$ sono essi stessi insiemi. Come si vedrà nel seguito, se l'insieme Ω ha cardinalità n, allora $\mathcal{P}(\Omega)$ ha cardinalità 2^n . Dati due insiemi $A, B \subseteq \Omega$, le scritture A^c , $A \cap B$, $A \cup B$ e $A \setminus B$ indicano, rispettivamente, il complementare di A in Ω , l'intersezione, l'unione e la differenza tra A e B.

Definizione 3 Dato un insieme non vuoto Ω , si chiama **partizione** di Ω il sottoinsieme $\mathcal{F} = \{A_1, \ldots, A_n\}$ di $\mathcal{P}(\Omega)$ tale che $A_i \neq \emptyset$, $i = 1, \ldots, n$, e

- $\bigcup_{i=1}^n A_i = \Omega$;
- $A_i \cap A_j = \emptyset$, $\forall i \neq j$, $i, j = 1, \dots, n$.

La definizione di partizione si può estendere anche al caso di collezioni al più numerabili di sottoinsiemi di Ω . Due insiemi $A, B \subseteq \Omega$, tali che $A \cap B = \emptyset$, vengono detti **disgiunti**.

Si elencano ora le principali proprietà delle operazioni insiemistiche. Dati $A, B, C, A_1, \ldots, A_n, B_1, \ldots, B_n$ sottoinsiemi di un insieme Ω , vale quanto segue:

- 1. $A \cap A = A$, $A \cup A = A$ (proprietà di idempotenza);
- 2. $A \cap B = B \cap A$, $A \cup B = B \cup A$ (proprietà commutativa);
- 3. $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$ (proprietà distributiva di \cap rispetto a \cup), $A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$ (proprietà distributiva di \cup rispetto a \cap);
- 4. $A = (A \cap B) \cup (A \cap B^c), \quad A = (A \cup B) \cap (A \cup B^c);$
- 5. $A \setminus (B \cup C) = (A \setminus B) \cap (A \setminus C)$ e, in generale, $A \setminus (\bigcup_{i=1}^n B_i) = \bigcap_{i=1}^n (A \setminus B_i)$;

6.
$$A \setminus (B \cap C) = (A \setminus B) \cup (A \setminus C)$$
 e, in generale, $A \setminus (\bigcap_{i=1}^n B_i) = \bigcup_{i=1}^n (A \setminus B_i)$;

7.
$$A \cup B = (A^c \cap B^c)^c$$
 e, in generale, $\bigcup_{i=1}^n A_i = (\bigcap_{i=1}^n A_i^c)^c$, $A \cap B = (A^c \cup B^c)^c$ e, in generale, $\bigcap_{i=1}^n A_i = (\bigcup_{i=1}^n A_i^c)^c$ (leggi di De Morgan).

Data un'applicazione $f: \Omega_1 \to \Omega_2, \forall A, B \subseteq \Omega_1$ e $\forall C, D \subseteq \Omega_2$, vale quanto segue:

$$f(A \cup B) = f(A) \cup f(B);$$

$$f(A \cap B) \subseteq f(A) \cap f(B);$$

$$f(A \setminus B) = f(A) \setminus f(B);$$

$$f^{-1}(C^{c}) = (f^{-1}(C))^{c};$$

$$f^{-1}(C \cup D) = f^{-1}(C) \cup f^{-1}(D);$$

$$f^{-1}(C \cap D) = f^{-1}(C) \cap f^{-1}(D);$$

$$f^{-1}(C \setminus D) = f^{-1}(C) \setminus f^{-1}(D).$$

Definizione 4 Si chiama successione di sottoinsiemi di Ω un insieme numerabile $\{A_n\}_{n\in\mathbb{N}^+}$ di elementi di $\mathcal{P}(\Omega)$. Una successione $\{A_n\}_{n\in\mathbb{N}^+}$ è detta monotona non decrescente (crescente) se $A_n \subseteq A_{n+1}$ ($A_n \subset A_{n+1}$), $\forall n \in \mathbb{N}^+$; $\{A_n\}_{n\in\mathbb{N}^+}$ è, invece, detta monotona non crescente (decrescente) se $A_{n+1} \subseteq A_n$ ($A_{n+1} \subset A_n$), $\forall n \in \mathbb{N}^+$. Se $\{A_n\}_{n\in\mathbb{N}^+}$ è monotona non decrescente,

$$\lim_{n \to +\infty} A_n = \bigcup_{n \ge 1} A_n;$$

se $\{A_n\}_{n\in\mathbb{N}^+}$ è monotona non crescente,

$$\lim_{n \to +\infty} A_n = \bigcap_{n \ge 1} A_n.$$

Definizione 5 Dato un insieme $A \subseteq \Omega$, si chiama funzione indicatrice dell'insieme A l'applicazione $\mathbf{1}_A : \Omega \to \{0,1\}$ tale che

$$\mathbf{1}_{A}(x) = \begin{cases} 1 & se \ x \in A \\ 0 & se \ x \notin A. \end{cases}$$

Definizione 6 Dati un insieme Ω e una sua partizione $\{A_1, \ldots, A_n\}$, si chiama funzione semplice ogni funzione $f(\cdot)$ con dominio Ω della forma

$$f(x) = \sum_{i=1}^{n} \alpha_i \mathbf{1}_{A_i}(x),$$

 $con \ \alpha_i \in \mathbb{R}, \ i = 1, \dots, n.$

3 Calcolo combinatorio

Sia A un insieme costituito da $n \in \mathbb{N}$ elementi distinti e si supponga di voler formare, a partire dagli elementi di A, dei gruppi costituiti da uno stesso numero $k \in \mathbb{N}$ di elementi. Il numero di gruppi che si possono formare dipende, evidentemente, dalla legge di formazione dei gruppi stessi. Scopo del calcolo combinatorio è quello di fornire procedure per contare il numero di tali raggruppamenti. Quindi, con gli strumenti del calcolo combinatorio, si riesce a rispondere, con relativa facilità, a domande del tipo "quanti sono i possibili sottoinsiemi di un insieme avente cardinalità n", oppure "quante sono le possibili cinquine che si possono potenzialmente osservare in un'estrazione del lotto su una ruota prefissata".

Proposizione 1 Dati due insiemi A e B di cardinalità, rispettivamente, $n \in \mathbb{N}$ e $k \in \mathbb{N}$, l'insieme $A \times B = \{(a,b) : a \in A \ e \ b \in B\}$, dato dal **prodotto cartesiano** dei due insiemi di partenza, ha cardinalità nk.

Esempio 2 Si vuole determinare quanti sono i numeri naturali compresi tra 10 e 99, estremi esclusi, aventi prima cifra pari e seconda cifra dispari. Dal momento che sono quattro le cifre pari comprese tra 1 e 9 e cinque quelle dispari, la risposta è $4 \cdot 5 = 20$.

Proposizione 2 Dato un insieme A di $n \in \mathbb{N}$ elementi, il numero dei gruppi ordinati di n elementi che si possono formare con gli elementi di A, e che differiscono tra loro soltanto per l'ordine, è $n! = n(n-1)(n-2)\cdots 2\cdot 1$.

Questi insiemi ordinati vengono chiamati **permutazioni** degli n elementi di partenza. La quantità n! è detta **fattoriale** di n; si pone, per convenzione, 0! = 1.

Esempio 3 Si è interessati a contare quanti sono gli anagrammi della parola "stanze" che non cominciano con la lettera "a". Poiché tutti i possibili anagrammi della parola "stanze" sono 6! e, una volta fissata la lettera "a" al primo posto, tutti i possibili modi di disporre le restanti cinque lettere sono 5!, la loro differenza 6! - 5! è la risposta al quesito.

Proposizione 3 Dato un insieme A di $n \in \mathbb{N}$ elementi, il numero dei suoi sottoinsiemi ordinati aventi $k \in \mathbb{N}$ elementi, con $k \le n$, è

$$\frac{n!}{(n-k)!} = n(n-1)\cdots(n-k+1).$$

Questi sottoinsiemi vengono chiamati disposizioni semplici di n oggetti in gruppi di k.

Esempio 4 Si vuole contare quante parole di quattro lettere si possono formare a partire dalla parola "albergo". Per rispondere a tale domanda è necessario calcolare il numero di disposizioni semplici di 7 oggetti, le lettere della parola "albergo", in gruppi di 4, che sono $7 \cdot 6 \cdot 5 \cdot 4 = 840$. \Diamond

Proposizione 4 Dato un insieme A di $n \in \mathbb{N}$ elementi, il numero dei suoi sottoinsiemi, in cui l'ordine non è rilevante, aventi $k \in \mathbb{N}$ elementi, con $k \le n$, è

$$\binom{n}{k} = \frac{n!}{k!(n-k)!} = \frac{n(n-1)\cdots(n-k+1)}{k!}.$$

Tali sottoinsiemi sono chiamati **combinazioni semplici** di n oggetti in gruppi di k, mentre la quantità $\binom{n}{k}$ è detta **coefficiente binomiale**; per convenzione, $\binom{n}{0} = 1$.

Esempio 5 Si vogliono contare le potenziali cinquine, in un'estrazione del lotto su una determinata ruota, che comprendono i numeri 7 e 77. Poiché i due numeri 7 e 77 devono appartenere alla cinquina, è necessario calcolare soltanto il numero di gruppi di tre elementi che si possono formare a partire dagli 88 numeri rimasti. La risposta è pertanto $\binom{88}{3} = 109736$.

Valgono le seguenti proprietà dei coefficienti binomiali:

•
$$\binom{n}{k} = \binom{n}{n-k}, \forall n, k \in \mathbb{N}, k \leq n;$$

•
$$\binom{n}{k} = \binom{n-1}{k-1} + \binom{n-1}{k}, \quad \forall n, k \in \mathbb{N}, k \leq n;$$

•
$$(a+b)^n = \sum_{k=0}^n \binom{n}{k} a^k b^{n-k}$$
, con $a, b \in \mathbb{R}$ e $n \in \mathbb{N}^+$.

Quest'ultima formula è chiamata la formula del **binomio di Newton** e consente di determinare lo sviluppo di una qualsiasi potenza del binomio (a+b). Si osservi che, se a=b=1, si ottiene che $\sum_{k=0}^{n} \binom{n}{k} = 2^{n}$. Quindi, dato un insieme A costituito da $n \in \mathbb{N}$ elementi, la cardinalità di $\mathcal{P}(A)$ è 2^{n} .

Proposizione 5 Si supponga di avere $n \in \mathbb{N}^+$ oggetti di cui n_1 di un certo tipo, n_2 di un altro tipo e così via fino a n_k oggetti di un ultimo tipo, con $k \in \mathbb{N}^+$, $k \le n$ e $n_1 + \cdots + n_k = n$. Oggetti del medesimo tipo sono indistinguibili. I possibili modi in cui questi oggetti possono venire ordinati sono

$$\frac{n!}{n_1!\cdots n_k!}$$

Questi insiemi ordinati vengono chiamati permutazioni con ripetizione.

Esempio 6 Si è interessati a contare gli anagrammi della parola "vagheggiare". La risposta è data da

$$\frac{11!}{3! \cdot 2! \cdot 2! \cdot 1! \cdot 1! \cdot 1! \cdot 1!} = 3326400$$

 \Diamond

Proposizione 6 Dato un insieme A di $n \in \mathbb{N}$ elementi, si è interessati al numero di insiemi ordinati costituiti da $k \in \mathbb{N}$ elementi di A, eventualmente ripetuti. Il numero di tali insiemi è n^k .

Gli insiemi ottenuti in questo modo sono chiamati disposizioni con ripetizione di n oggetti in gruppi di k.

Esempio 7 Si vuole contare il numero delle possibili colonne di una schedina del Totocalcio. In tal caso si vuole determinare le disposizioni con ripetizione di n=3 elementi in gruppi di k=13. Pertanto la risposta è $3^{13}=1594323$.