LS2102 Diffusion in Biology

LS2102 (Autumn 2020) IISER Kolkata 13-11-2020

Very small plastic particles in water:

Pond water under the microscope:

Ink droplet in cold, normal and hot water:

Density (ink) > Density (water)

Quantitative Explanation

Brownian motion was discovered by **Robert Brown** in **1827**

5. Über die von der molekularkinetischen Theorie der Wärme geforderte Bewegung von in ruhenden Flüssigkeiten suspendierten Teilchen; • von A. Einstein.

The explanation was formulated by A. Einstein in 1905

(before the Laws of Thermodynamics were put forward)

Diffusion: movement of particles in unbiased random walks in any dimension

General Relationship:

$$\langle r_N^2 \rangle = (2d)DT$$

1A. Bulk Liquid - pure(Computer Simulation data)

1B. Bulk Liquid – mixture (Computer Simulation data)

2. Protein fragment within a DPPC Bilayer (Computer simulation data)

Frames spaced by $\Delta t = 10$ picoseonds

Pollen grain in water (Experimental data - Light microscopy)

Frames spaced by $\Delta t = 0.1$ seconds

Linear fits may still be done to extract and compare 'D'

1. Poor statistics

Figure 4.5: (Mathematical functions.) (a) Squared deviation $(x_j)^2$ for a single, one-dimensional random walk of 700 steps. Each step is one unit long. The solid line shows j itself; the graph shows that $(x_j)^2$ is not at all the same as j. (b) As (a), but this time the dots represent the average $\langle (x_j)^2 \rangle$ over thirty such walks. Again the solid line shows j. This time $\langle (x_j)^2 \rangle$ does resemble the idealized diffusion law (Equation 4.4).

2. Particle-Particle Interaction

Movement is not truly 'random'

3. Finite Diffusion Volume

Spatial restriction and interaction with boundaries (walls)

Time Correlation Formalism (TCF)

- ullet Time Dependent Physical Quantity: ${f A}(t)$
- Measurement or Computation at discrete time points

General Time Correlation Function (TCF) Formalism

- Part I
 Initialize the correlation function
 - Decide the correlation time.
 - General thumb rule: correlation time is (1/10)th of the data set
- Move time origin over the data set
 - Calculate correlation function over multiple time intervals
 - Find total correlation for a given time difference (Δt)
 - Collect the number of times TCF(∆t) is estimated
- Find the Average for each time difference (Δt)
 - Rescale or Normalize so that TCF(0)

 1.0
- Part IV Plot TCF
 - Extract physically meaningful quantities

Assignment

- Q1. Identify Part I, II, III and IV from tcf_av.py
- Copy the relevant parts and provide your own comments.

 Q2. Identify and write down the mathematical function used in tcf_av.py