flower-recognition

April 25, 2022

```
[1]: # !pip install tqdm
     import numpy as np
     import matplotlib.pyplot as plt
     import seaborn as sns
     import os
     from tqdm import tqdm
     from datetime import datetime
     %matplotlib inline
     start_time = datetime.now()
[2]: image_dir = '../input/flowers-recognition/flowers'
     labels = ['daisy','dandelion','rose','sunflower','tulip']
     nb = len(labels)
[3]: import tensorflow as tf
     from tensorflow.keras.models import Sequential
     from tensorflow.keras.preprocessing.image import load_img, img_to_array
     from tensorflow.keras.layers import Dense, Flatten, GlobalAveragePooling2D,
      →Conv2D, MaxPooling2D, MaxPool2D, \
     Input,Dropout,BatchNormalization
     from tensorflow.keras.preprocessing.image import ImageDataGenerator
     from tensorflow.keras.callbacks import ModelCheckpoint,
      →EarlyStopping,ReduceLROnPlateau
     from tensorflow.keras.utils import to_categorical
     from tensorflow.keras.optimizers import Adam
[4]: | #ref -> https://qithub.com/mrc03/Flower-Recognition-Kaggle-CNN-Keras/blob/
      →master/Flower_Recognition_VGG16(trans.%20learn).ipynb
     shape = 150
     input_shape = (shape, shape)
     def get_XandY(train_dir,labels):
         dataset = []
         count = 0
         for label in labels:
             folder = os.path.join(train_dir,label)
             for image in tqdm(os.listdir(folder)):
```

```
img=load_img(os.path.join(folder,image), target_size=input_shape)
                 img=img_to_array(img)
                 img=img/255.0
                 dataset.append((img,count))
             print(">>> ",label)
             count+=1
         np.random.shuffle(dataset)
         X, y = zip(*dataset)
         return np.array(X),np.array(y)
[5]: images,label = get_XandY(image_dir,labels)
    100%|
              | 764/764 [00:04<00:00, 182.44it/s]
    >>> daisy
    100%|
              | 1052/1052 [00:06<00:00, 170.41it/s]
    >>> dandelion
    100%|
              | 784/784 [00:04<00:00, 179.60it/s]
    >>> rose
              | 733/733 [00:04<00:00, 153.60it/s]
    100%|
    >>> sunflower
              | 984/984 [00:06<00:00, 163.41it/s]
    100%|
    >>> tulip
[6]: plt.figure(figsize = (15, 9))
     n = 0
     for i in range(15):
        n+=1
         plt.subplot(5 , 5, n)
         plt.subplots_adjust(hspace = 0.5 , wspace = 0.3)
         plt.imshow(images[i])
```

plt.title(f'Label: {labels[label[i]]}')

[7]: np.unique(label,return_counts=True)

```
[7]: (array([0, 1, 2, 3, 4]), array([764, 1052, 784, 733,
                                                                984]))
 [8]: label = to_categorical(label,5)
 [9]: from sklearn.model_selection import train_test_split
      xtrain, xtest, ytrain, ytest =_

¬train_test_split(images,label,stratify=label,random_state=42,test_size=0.25)

      print(f"Train length:{len(xtrain)} \n Test length: {len(xtest)}")
     Train length: 3237
      Test length: 1080
[10]: np.random.seed(42)
      tf.random.set_seed(42)
      np.random.seed()
[11]: datagen = ImageDataGenerator(
              featurewise_center=False, # set input mean to 0 over the dataset
              samplewise center=False, # set each sample mean to 0
              featurewise_std_normalization=False, # divide inputs by std of the_
       \hookrightarrow dataset
              samplewise_std_normalization=False, # divide each input by its std
              zca_whitening=False, # apply ZCA whitening
              rotation_range=10, # randomly rotate images in the range (degrees, O_{\square}
       →to 180)
              zoom_range = 0.1, # Randomly zoom image
              width_shift_range=0.2, # randomly shift images horizontally (fraction_
       ⇔of total width)
```

```
height_shift_range=0.2, # randomly shift images vertically (fraction_
       ⇔of total height)
             horizontal_flip=True, # randomly flip images
             vertical flip=False
      ) # randomly flip images
      datagen.fit(xtrain)
[12]: base_model = tf.keras.applications.VGG16(include_top=False,_
       weights='imagenet',input_shape=(shape,shape,3), pooling='avg')
     2022-04-25 03:57:36.886312: I
     tensorflow/stream_executor/cuda/cuda_gpu_executor.cc:937] successful NUMA node
     read from SysFS had negative value (-1), but there must be at least one NUMA
     node, so returning NUMA node zero
     2022-04-25 03:57:36.998234: I
     tensorflow/stream_executor/cuda/cuda_gpu_executor.cc:937] successful NUMA node
     read from SysFS had negative value (-1), but there must be at least one NUMA
     node, so returning NUMA node zero
     2022-04-25 03:57:36.999073: I
     tensorflow/stream_executor/cuda/cuda_gpu_executor.cc:937] successful NUMA node
     read from SysFS had negative value (-1), but there must be at least one NUMA
     node, so returning NUMA node zero
     2022-04-25 03:57:37.000360: I tensorflow/core/platform/cpu_feature_guard.cc:142]
     This TensorFlow binary is optimized with oneAPI Deep Neural Network Library
     (oneDNN) to use the following CPU instructions in performance-critical
     operations: AVX2 AVX512F FMA
     To enable them in other operations, rebuild TensorFlow with the appropriate
     compiler flags.
     2022-04-25 03:57:37.000674: I
     tensorflow/stream_executor/cuda/cuda_gpu_executor.cc:937] successful NUMA node
     read from SysFS had negative value (-1), but there must be at least one NUMA
     node, so returning NUMA node zero
     2022-04-25 03:57:37.001380: I
     tensorflow/stream_executor/cuda/cuda_gpu_executor.cc:937] successful NUMA node
     read from SysFS had negative value (-1), but there must be at least one NUMA
     node, so returning NUMA node zero
     2022-04-25 03:57:37.001995: I
     tensorflow/stream_executor/cuda/cuda_gpu_executor.cc:937] successful NUMA node
     read from SysFS had negative value (-1), but there must be at least one NUMA
     node, so returning NUMA node zero
     2022-04-25 03:57:38.817591: I
     tensorflow/stream_executor/cuda/cuda_gpu_executor.cc:937] successful NUMA node
```

read from SysFS had negative value (-1), but there must be at least one NUMA

node, so returning NUMA node zero

2022-04-25 03:57:38.818457: I

tensorflow/stream_executor/cuda/cuda_gpu_executor.cc:937] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero

2022-04-25 03:57:38.819164: I

tensorflow/stream_executor/cuda/cuda_gpu_executor.cc:937] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero

2022-04-25 03:57:38.820383: I

tensorflow/core/common_runtime/gpu/gpu_device.cc:1510] Created device
/job:localhost/replica:0/task:0/device:GPU:0 with 15403 MB memory: -> device:
0, name: Tesla P100-PCIE-16GB, pci bus id: 0000:00:04.0, compute capability: 6.0

[13]: base_model.summary()

Model: "vgg16"

Layer (type)	Output Shape	Param #
input_1 (InputLayer)	[(None, 150, 150, 3)]	0
block1_conv1 (Conv2D)	(None, 150, 150, 64)	1792
block1_conv2 (Conv2D)	(None, 150, 150, 64)	36928
block1_pool (MaxPooling2D)	(None, 75, 75, 64)	0
block2_conv1 (Conv2D)	(None, 75, 75, 128)	73856
block2_conv2 (Conv2D)	(None, 75, 75, 128)	147584
block2_pool (MaxPooling2D)	(None, 37, 37, 128)	0
block3_conv1 (Conv2D)	(None, 37, 37, 256)	295168
block3_conv2 (Conv2D)	(None, 37, 37, 256)	590080
block3_conv3 (Conv2D)	(None, 37, 37, 256)	590080
block3_pool (MaxPooling2D)	(None, 18, 18, 256)	0
block4_conv1 (Conv2D)	(None, 18, 18, 512)	1180160

```
_____
    block4_conv3 (Conv2D) (None, 18, 18, 512) 2359808
    block4_pool (MaxPooling2D) (None, 9, 9, 512) 0
    block5_conv1 (Conv2D) (None, 9, 9, 512)
                                                2359808
    block5_conv2 (Conv2D)
                        (None, 9, 9, 512)
                                                  2359808
    block5_conv3 (Conv2D) (None, 9, 9, 512) 2359808
    block5_pool (MaxPooling2D) (None, 4, 4, 512)
    global_average_pooling2d (Gl (None, 512)
    ______
    Total params: 14,714,688
    Trainable params: 14,714,688
    Non-trainable params: 0
[14]: epochs=50
     batch_size=128
     red_lr=ReduceLROnPlateau(monitor='val_acc', factor=0.1, epsilon=0.0001,__
     ⇒patience=2, verbose=1)
     filepath= "best_model.h5"
     ck = ModelCheckpoint(filepath, monitor='val_accuracy', verbose=1,_
      ⇒save_best_only=True, mode='max', save_weights_only=False)
     cb = [
        ck
[15]: %%time
     model=Sequential()
     model.add(base_model)
     model.add(Dense(256,activation='relu'))
     model.add(BatchNormalization())
     model.add(Dense(5,activation='softmax'))
     for layer in base_model.layers:
        layer.trainable=True
```

block4_conv2 (Conv2D) (None, 18, 18, 512) 2359808

```
model.
 -compile(optimizer=Adam(learning_rate=1e-4),loss='categorical_crossentropy',metrics=['accura
print("No fo Layers: ",len(model.layers))
History = model.fit(datagen.flow(xtrain,ytrain,__
 ⇒batch_size=batch_size),callbacks = cb,
                       epochs = 50, validation_data = (xtest,ytest),
                       verbose = 1, steps_per_epoch=xtrain.shape[0] //_
 ⇔batch_size)
No fo Layers: 4
2022-04-25 03:57:41.468580: I
tensorflow/compiler/mlir/mlir_graph_optimization_pass.cc:185] None of the MLIR
Optimization Passes are enabled (registered 2)
Epoch 1/50
2022-04-25 03:57:43.895753: I tensorflow/stream_executor/cuda/cuda_dnn.cc:369]
Loaded cuDNN version 8005
0.6777 - val_loss: 0.9232 - val_accuracy: 0.6935
Epoch 00001: val_accuracy improved from -inf to 0.69352, saving model to
best_model.h5
Epoch 2/50
accuracy: 0.8437 - val_loss: 0.6788 - val_accuracy: 0.7907
Epoch 00002: val_accuracy improved from 0.69352 to 0.79074, saving model to
best_model.h5
Epoch 3/50
accuracy: 0.8742 - val_loss: 0.7133 - val_accuracy: 0.7407
Epoch 00003: val_accuracy did not improve from 0.79074
Epoch 4/50
accuracy: 0.8874 - val_loss: 0.4707 - val_accuracy: 0.8685
Epoch 00004: val_accuracy improved from 0.79074 to 0.86852, saving model to
best_model.h5
Epoch 5/50
accuracy: 0.9161 - val_loss: 0.4596 - val_accuracy: 0.8500
Epoch 00005: val_accuracy did not improve from 0.86852
Epoch 6/50
```

```
accuracy: 0.9337 - val_loss: 0.4617 - val_accuracy: 0.8472
Epoch 00006: val_accuracy did not improve from 0.86852
Epoch 7/50
25/25 [============== ] - 19s 760ms/step - loss: 0.1763 -
accuracy: 0.9353 - val_loss: 0.4536 - val_accuracy: 0.8343
Epoch 00007: val_accuracy did not improve from 0.86852
Epoch 8/50
accuracy: 0.9485 - val_loss: 0.4908 - val_accuracy: 0.8231
Epoch 00008: val_accuracy did not improve from 0.86852
Epoch 9/50
25/25 [============ ] - 20s 783ms/step - loss: 0.1362 -
accuracy: 0.9543 - val_loss: 0.4171 - val_accuracy: 0.8546
Epoch 00009: val_accuracy did not improve from 0.86852
Epoch 10/50
25/25 [============= ] - 20s 793ms/step - loss: 0.1199 -
accuracy: 0.9579 - val_loss: 0.4515 - val_accuracy: 0.8583
Epoch 00010: val_accuracy did not improve from 0.86852
Epoch 11/50
accuracy: 0.9698 - val_loss: 0.4608 - val_accuracy: 0.8389
Epoch 00011: val_accuracy did not improve from 0.86852
Epoch 12/50
accuracy: 0.9617 - val_loss: 0.3500 - val_accuracy: 0.8889
Epoch 00012: val_accuracy improved from 0.86852 to 0.88889, saving model to
best_model.h5
Epoch 13/50
25/25 [============== ] - 20s 800ms/step - loss: 0.0696 -
accuracy: 0.9775 - val_loss: 0.4581 - val_accuracy: 0.8546
Epoch 00013: val_accuracy did not improve from 0.88889
Epoch 14/50
25/25 [============= ] - 19s 762ms/step - loss: 0.0476 -
accuracy: 0.9868 - val_loss: 0.3525 - val_accuracy: 0.8861
Epoch 00014: val_accuracy did not improve from 0.88889
Epoch 15/50
accuracy: 0.9836 - val_loss: 0.4217 - val_accuracy: 0.8824
```

```
Epoch 00015: val_accuracy did not improve from 0.88889
Epoch 16/50
accuracy: 0.9842 - val_loss: 0.4104 - val_accuracy: 0.8889
Epoch 00016: val_accuracy did not improve from 0.88889
Epoch 17/50
accuracy: 0.9813 - val_loss: 0.4500 - val_accuracy: 0.8750
Epoch 00017: val_accuracy did not improve from 0.88889
Epoch 18/50
25/25 [============ ] - 20s 796ms/step - loss: 0.0958 -
accuracy: 0.9685 - val_loss: 0.5636 - val_accuracy: 0.8546
Epoch 00018: val_accuracy did not improve from 0.88889
Epoch 19/50
25/25 [============= ] - 19s 771ms/step - loss: 0.0829 -
accuracy: 0.9736 - val_loss: 0.8642 - val_accuracy: 0.8074
Epoch 00019: val_accuracy did not improve from 0.88889
Epoch 20/50
accuracy: 0.9852 - val_loss: 0.3932 - val_accuracy: 0.8917
Epoch 00020: val_accuracy improved from 0.88889 to 0.89167, saving model to
best_model.h5
Epoch 21/50
accuracy: 0.9913 - val_loss: 0.4859 - val_accuracy: 0.8750
Epoch 00021: val_accuracy did not improve from 0.89167
Epoch 22/50
25/25 [============= ] - 20s 789ms/step - loss: 0.0238 -
accuracy: 0.9949 - val loss: 0.4619 - val accuracy: 0.8926
Epoch 00022: val_accuracy improved from 0.89167 to 0.89259, saving model to
best_model.h5
Epoch 23/50
accuracy: 0.9875 - val_loss: 0.4375 - val_accuracy: 0.8907
Epoch 00023: val_accuracy did not improve from 0.89259
Epoch 24/50
25/25 [============ ] - 20s 787ms/step - loss: 0.0447 -
accuracy: 0.9846 - val_loss: 0.6744 - val_accuracy: 0.8648
Epoch 00024: val_accuracy did not improve from 0.89259
```

```
Epoch 25/50
25/25 [============== ] - 20s 792ms/step - loss: 0.0489 -
accuracy: 0.9846 - val_loss: 0.4907 - val_accuracy: 0.8917
Epoch 00025: val_accuracy did not improve from 0.89259
Epoch 26/50
accuracy: 0.9865 - val_loss: 0.4617 - val_accuracy: 0.8861
Epoch 00026: val_accuracy did not improve from 0.89259
Epoch 27/50
25/25 [============== ] - 19s 771ms/step - loss: 0.0320 -
accuracy: 0.9881 - val_loss: 0.5112 - val_accuracy: 0.8843
Epoch 00027: val_accuracy did not improve from 0.89259
Epoch 28/50
25/25 [============ ] - 20s 788ms/step - loss: 0.0187 -
accuracy: 0.9949 - val_loss: 0.4101 - val_accuracy: 0.9056
Epoch 00028: val_accuracy improved from 0.89259 to 0.90556, saving model to
best_model.h5
Epoch 29/50
accuracy: 0.9916 - val_loss: 0.6405 - val_accuracy: 0.8509
Epoch 00029: val_accuracy did not improve from 0.90556
Epoch 30/50
25/25 [============ ] - 19s 770ms/step - loss: 0.0270 -
accuracy: 0.9913 - val_loss: 0.6000 - val_accuracy: 0.8620
Epoch 00030: val_accuracy did not improve from 0.90556
Epoch 31/50
25/25 [============= ] - 20s 801ms/step - loss: 0.0155 -
accuracy: 0.9955 - val_loss: 0.4184 - val_accuracy: 0.9074
Epoch 00031: val_accuracy improved from 0.90556 to 0.90741, saving model to
best_model.h5
Epoch 32/50
accuracy: 0.9916 - val_loss: 0.9371 - val_accuracy: 0.8361
Epoch 00032: val_accuracy did not improve from 0.90741
Epoch 33/50
accuracy: 0.9965 - val_loss: 0.5235 - val_accuracy: 0.9000
Epoch 00033: val_accuracy did not improve from 0.90741
Epoch 34/50
```

```
accuracy: 0.9971 - val_loss: 0.6042 - val_accuracy: 0.8750
Epoch 00034: val_accuracy did not improve from 0.90741
Epoch 35/50
accuracy: 0.9961 - val_loss: 0.6587 - val_accuracy: 0.8769
Epoch 00035: val_accuracy did not improve from 0.90741
Epoch 36/50
accuracy: 0.9881 - val_loss: 0.7761 - val_accuracy: 0.8500
Epoch 00036: val_accuracy did not improve from 0.90741
Epoch 37/50
accuracy: 0.9855 - val_loss: 0.6049 - val_accuracy: 0.8778
Epoch 00037: val_accuracy did not improve from 0.90741
Epoch 38/50
accuracy: 0.9820 - val_loss: 0.6200 - val_accuracy: 0.8787
Epoch 00038: val_accuracy did not improve from 0.90741
Epoch 39/50
accuracy: 0.9907 - val_loss: 0.5843 - val_accuracy: 0.8778
Epoch 00039: val_accuracy did not improve from 0.90741
Epoch 40/50
accuracy: 0.9942 - val_loss: 0.6398 - val_accuracy: 0.8778
Epoch 00040: val_accuracy did not improve from 0.90741
Epoch 41/50
accuracy: 0.9944 - val_loss: 0.6006 - val_accuracy: 0.8750
Epoch 00041: val_accuracy did not improve from 0.90741
Epoch 42/50
accuracy: 0.9887 - val_loss: 0.4629 - val_accuracy: 0.8907
Epoch 00042: val_accuracy did not improve from 0.90741
Epoch 43/50
accuracy: 0.9900 - val_loss: 0.6859 - val_accuracy: 0.8611
```

```
Epoch 00043: val_accuracy did not improve from 0.90741
    Epoch 44/50
    25/25 [============= ] - 20s 800ms/step - loss: 0.0397 -
    accuracy: 0.9884 - val_loss: 0.4536 - val_accuracy: 0.9019
    Epoch 00044: val_accuracy did not improve from 0.90741
    Epoch 45/50
    accuracy: 0.9920 - val_loss: 0.6217 - val_accuracy: 0.8713
    Epoch 00045: val_accuracy did not improve from 0.90741
    Epoch 46/50
    25/25 [============ ] - 20s 794ms/step - loss: 0.0164 -
    accuracy: 0.9952 - val_loss: 0.4825 - val_accuracy: 0.8870
    Epoch 00046: val_accuracy did not improve from 0.90741
    Epoch 47/50
    25/25 [============== ] - 20s 805ms/step - loss: 0.0146 -
    accuracy: 0.9955 - val_loss: 0.4631 - val_accuracy: 0.9009
    Epoch 00047: val_accuracy did not improve from 0.90741
    Epoch 48/50
    accuracy: 0.9961 - val_loss: 0.5520 - val_accuracy: 0.8870
    Epoch 00048: val_accuracy did not improve from 0.90741
    Epoch 49/50
    25/25 [============ ] - 20s 795ms/step - loss: 0.0154 -
    accuracy: 0.9945 - val_loss: 0.7223 - val_accuracy: 0.8667
    Epoch 00049: val_accuracy did not improve from 0.90741
    Epoch 50/50
    accuracy: 0.9952 - val_loss: 0.6283 - val_accuracy: 0.8759
    Epoch 00050: val_accuracy did not improve from 0.90741
    CPU times: user 21min 19s, sys: 1min, total: 22min 20s
    Wall time: 18min 15s
[16]: # model.save("ACCU_90_shape_150.h5")
[17]: transfer_learning_best_model = tf.keras.models.load_model('best_model.h5')
     from sklearn.metrics import classification_report
```

```
print(classification_report(np.argmax(ytest,axis = 1),np.
 →argmax(transfer_learning_best_model.predict(xtest),axis = 1),target_names =
 →labels))
pred = transfer_learning_best_model.predict(xtest)
pred = np.argmax(pred,axis = 1)
ytest = np.argmax(ytest,axis = 1)
plt.figure(figsize = (15 , 19))
n = 0
for i in range(15):
   if pred[i] == ytest[i]:
       n+=1
       plt.subplot(5, 5, n)
       plt.subplots_adjust(hspace = 0.5 , wspace = 0.3)
       plt.title(f'True Label: {labels[ytest[i]]} \n Predicted:__
 plt.imshow(xtest[i])
         plt.xlabel(f"",color="green")
   else:
       n+=1
       plt.subplot(5, 5, n)
       plt.subplots_adjust(hspace = 0.5 , wspace = 0.3)
       plt.title(f'True Label: {labels[ytest[i]]} \n Predicted: __
 plt.imshow(xtest[i])
```

	precision	recall	f1-score	support
daisy	0.89	0.92	0.91	191
dandelion	0.99	0.90	0.94	263
rose	0.91	0.85	0.88	196
sunflower	0.88	0.96	0.92	184
tulip	0.86	0.91	0.88	246
accuracy			0.91	1080
macro avg	0.91	0.91	0.91	1080
weighted avg	0.91	0.91	0.91	1080


```
[18]: np.save("xtrain.npy",xtrain)
    np.save("xtest.npy",xtest)
    np.save("ytrain.npy",ytrain)
    np.save("ytest.npy",ytest)

[19]: np.load("xtrain.npy").shape

[19]: (3237, 150, 150, 3)

[20]: print('Time elapsed (hh:mm:ss.ms) {}'.format(datetime.now() - start_time))
```

Time elapsed (hh:mm:ss.ms) 0:19:07.732549