Билет 49

Автор1,, Автор1
22 июня 2020 г.

Содержание

		_									
$^{\circ}$	Билет 49: Теорема	DITTOTTO									- 1
\mathbf{v}	рилет 49. теорема	т имана	 	 	 	 	 				

Билет 49 СОДЕРЖАНИЕ

0.1. Билет 49: Теорема Римана.

Теорема 0.1 (Римана).

 $a_n \in \mathbb{R} \sum a_n$ условно сходится.

Тогда для любого $S \in \mathbb{R}$ существует перестановка φ , т.ч. $\sum_{n=1}^{\infty} a_{\varphi(n)} = S$. Также существует перестановка φ , для которой ряд не имеет суммы.

Доказательство.

 $\sum b_n$ и $\sum c_n$ – ряды $\sum (a_n)_{\pm}$, из которых выкинули все нули.

 $\sum b_n$ и $\sum c_n$ – расходятся (т.к. есть условная сходимость), Более того, $\sum b_n = \sum c_n = +\infty$. При этом $\lim b_n = \lim c_n = 0$ (необходимое условие сходимости для ряда $\sum a_n$).

Пункты a),b),c) доказываются аналогично. Наверное, можно на экзамене расписать только пункт a), а про остальные сказать, что аналогично. Здесь на всякий случай расписаны все три пункта.

а) Пусть $S \in \mathbb{R}$. Будем набирать частичную сумму так, чтобы она поочередно превышала S и наоборот была меньше S. Мы можем это сделать, т.к. $\sum b_n = \sum c_n = +\infty$.

$$\begin{aligned} b_1 + b_2 + \ldots + b_{n_1 - 1} &\leqslant S < b_1 + b_2 + \ldots + b_{n_1} \\ b_1 + b_2 + \ldots + b_{n_1} - c_1 - \ldots - c_{m_1} &< S \leqslant b_1 + b_2 + \ldots + b_{n_1} - c_1 - \ldots - c_{m_1 - 1} \\ b_1 + \ldots + b_{n_1} - c_1 - \ldots - c_{m_1} + b_{n_1 + 1} + \ldots + b_{n_2 - 1} &\leqslant S < b_1 + \ldots + b_{n_1} - c_1 - \ldots - c_{m_1} + b_{n_1 + 1} + \ldots + b_{n_2} \\ b_1 + \ldots + b_{n_1} - c_1 - \ldots - c_{m_1} + b_{n_1 + 1} + \ldots + b_{n_2} - c_{m_1 + 1} - \ldots - c_{m_2} &< S \leqslant \\ &\leqslant b_1 + \ldots + b_{n_1} - c_1 - \ldots - c_{m_1} + b_{n_1 + 1} + \ldots + b_{n_2} - c_{m_1 + 1} - \ldots - c_{m_2 - 1} \end{aligned}$$

И так далее.

|частичная сумма — $S| \le |$ последнего взятого элемента $| \to 0$. Значит частичная сумма построенного ряда $\to S$.

b) Пусть $S=+\infty$. Мы знаем, что $\sum b_n=+\infty$. Поэтому мы можем нашу перестановку получить следующим образом:

 $b_1+b_2+...+b_{n_1}>1\geqslant b_1+b_2+...+b_{n_1-1}$ (раз $\sum b_n=+\infty$, то в какой-то момент сумма превысит 1)

$$b_1 + ... + b_{n_1} + c_1$$
 (добавили элемент из ряда c_n)

$$b_1 + \dots + b_{n_1} + c_1 + b_{n_1+1} + \dots + b_{n_2} > 2 \geqslant b_1 + \dots + b_{n_1} + c_1 + b_{n_1+1} + \dots + b_{n_2-1}$$

И так далее.

с) Пусть мы хотим получить перестановку φ , для которой ряд не имеет суммы. Будем набирать суммы так, чтобы она то была больше 1, то меньше -1. Это опять же можно сделать, т.к. $\sum b_n = \sum c_n = +\infty$.

$$\begin{aligned} b_1 + b_2 + \ldots + b_{n_1 - 1} &\leqslant 1 < b_1 + b_2 + \ldots + b_{n_1} \\ b_1 + b_2 + \ldots + b_{n_1} - c_1 - \ldots - c_{m_1} &< -1 \leqslant b_1 + b_2 + \ldots + b_{n_1} - c_1 - \ldots - c_{m_1 - 1} \\ b_1 + \ldots + b_{n_1} - c_1 - \ldots - c_{m_1} + b_{n_1 + 1} + \ldots + b_{n_2 - 1} &\leqslant 1 < b_1 + \ldots + b_{n_1} - c_1 - \ldots - c_{m_1} + b_{n_1 + 1} + \ldots + b_{n_2} \\ b_1 + \ldots + b_{n_1} - c_1 - \ldots - c_{m_1} + b_{n_1 + 1} + \ldots + b_{n_2} - c_{m_1 + 1} - \ldots - c_{m_2} < -1 \leqslant \end{aligned}$$

$$\leq b_1 + \dots + b_{n_1} - c_1 - \dots - c_{m_1} + b_{n_1+1} + \dots + b_{n_2} - c_{m_1+1} - \dots - c_{m_2-1}$$

И так далее.