Problemes d'Aritmètica. Llista 1

1. Sigui $a \ge 2$ un nombre enter, i considerem la successió recurrent determinada per

$$a_0 = a$$
 i $a_{n+1} = a_n^2 - a_n + 1$.

Demostreu que la successió és estrictament creixent, i que $a_n \equiv 1 \pmod{a_m}$ per a tot m < n.

Demostreu que per a tot $n \ge 1$ hi ha algun nombre primer p_n que divideix a_n però no a_m per cap m < n.

2. Demostreu el teorema de Wilson: si p és un nombre primer, aleshores

$$(p-1)! \equiv -1 \pmod{p}$$

És cert el recíproc?

3. Donat un nombre enter $n \geq 2$, denotem per $(\mathbb{Z}/n\mathbb{Z})^{\times}$ els enters invertibles mòdul n i per

$$T(n) \coloneqq (\mathbb{Z}/n\mathbb{Z})^{\times [2]} = \{ a \in \mathbb{Z}/n\mathbb{Z} \mid a^2 \equiv 1 \pmod{n} \}.$$

- a) Demostreu que T(n) és un subgrup, i, donats a i $b \in \mathbb{Z}_{\geq 2}$, primers entre si, descriviu un isomorfisme de grups explicit $T(ab) \cong T(a) \times T(b)$.
- b) Demostreu que per a tot $m \geq 2$,

$$\prod_{\substack{k=1\\\gcd(k,m)=1}}^{m-1}k\equiv\prod_{k\in T(m)}\ k\ (\mathrm{mod}\ m)$$

c) Demostreu que, per a tot $r \geq 1$ i tot primer senar p, tenim que

$$T(p^r) = \{+1\}$$
 i que $T(2p^r) = \{+1\}$.

d) Demostreu que, per a tot $r \geq 3$,

$$T(2^r) = \{1, 2^{r-1} - 1, 2^{r-1} + 1, 2^r - 1\}.$$

i deduïu que

$$\prod_{\substack{k=1 \text{gcd}(k,m)=1}}^{m-1} k \equiv 1 \pmod{m} \text{ si } m = 2^r \text{ amb } r \ge 3$$

e) Demostreu, usant els apartats anteriors, que

$$\prod_{\substack{k=1\\\gcd(k,m)=1}}^{m-1} k \equiv \begin{cases} -1 \pmod{m} & \text{si } m = 2,4, p^r, 2p^r\\ 1 \pmod{m} & \text{en cas contrari.} \end{cases}$$

4. Demostreu que si tenim $p_1,...,p_r$ amb r>2 primers diferents, i $N=p_1\cdots p_r$, aleshores $\sum_{i=1}^r \frac{N}{p_i}$ és un enter >1 i que no és divisible per cap dels primers p_i per $i=1,\cdots,r$. Deduïu d'aquí que hi ha infinits primers.

1

- 5. Demostreu que hi ha infinits nombres primers tals que:
 - a) $p \equiv 3 \pmod{4}$ (Ajuda: Considereu $N = 4p_1 \cdots p_r + 3$),
 - b) $p \equiv 5 \pmod{6}$ (Ajuda: Considereu $N = 6p_1 \cdots p_r + 5$),
 - c) $p \equiv 1 \pmod{4}$ (Ajuda: Considereu $N = (n!)^2 + 1$).

- 6. Sigui $G \subsetneq (\mathbb{Z}/m\mathbb{Z})^{\times}$ un subgrup del grup multiplicatiu de les unitats de $\mathbb{Z}/n\mathbb{Z}$ (que tenen representants a \mathbb{Z} enters primers amb m).
 - a) Demostreu que si $N \in \mathbb{Z}$ és un enter amb (N, m) = 1 tal que $\overline{N} \notin G$, aleshores N té un factor primer amb residu que no està a G.
 - b) Donat un conjunt $p_1,...,p_r$ amb $r\geq 1$ de primers diferents que no divideixen m, i una classe residual $a\pmod m$, existeix un enter N amb $N\equiv a\pmod m$ tal que p_i no divideix N per a tot i=1,...,r.
 - c) Demostreu que, donats $p_1, ..., p_r$ amb $r \ge 1$ primers diferents, hi ha algun primer q amb $\overline{q} \notin G$ i $q \ne p_i$ per a tot i = 1, ..., r.
 - d) Deduïu que el conjunt de primers q amb $q \pmod{m} \notin G$ és infinit.
 - e) Apliqueu-ho per veure que com a mínim dues de les successions aritmètiques

$$\left\{3+8m\right\}_{m\geq1}$$
 , $\left\{5+8m\right\}_{m>1}$ i $\left\{7+8m\right\}_{m>1}$

contenen infinits primers.

- f) Que podeu deduïr en el cas m = 10?
- 7. Siguin $a_1, a_2, ..., a_n$ i b enters, quines condicions s'han de complir per què l'equació

$$a_1x_1 + a_2x_2 + \dots + a_nx_n = b$$

tingui solució amb $x_1, ..., x_n$ enters? Com podem obtenir totes les solucions?

8. Contesteu les mateixes preguntes pel sistema d'equacions:

$$\begin{cases} a_{11} \ x_1 + a_{12} \ x_2 + \ldots + a_{1n} \ x_n = b_1 \\ a_{21} \ x_1 + a_{22} \ x_2 + \ldots + a_{2n} \ x_n = b_2 \\ \vdots \\ a_{m1} x_1 + a_{m2} x_2 + \ldots + a_{mn} x_n = b_m \end{cases}$$

- 9. a) Vegeu que si $d \ge 1$ divideix un enter n aleshores per a tot enter positiu b es té que $b^d 1$ divideix $b^n 1$.
 - b) Vegeu que si a més n és senar, aleshores $b^d + 1$ divideix $b^n + 1$ per a tot b > 0.
 - c) Siguin b i m naturals coprimers, i a i c dos naturals qualssevol, i definim d=(a,c). Vegeu que si $b^a\equiv 1\ (\mathrm{mod}\ m)$ i $b^c\equiv 1\ (\mathrm{mod}\ m)$ aleshores $b^d\equiv 1\ (\mathrm{mod}\ m)\}$.
- 10. Demostreu que si a, b i c són enters positius, aleshores

$$\gcd(c^a - 1, c^b - 1) = c^{\gcd(a,b)} - 1.$$

- 11. Demostreu que no hi ha cap enter positiu n > 1 tal que $n \mid (2^n 1)$. Indicació: proveu d'usar el teorema d'Euler i el problema anterior. Anàlogament, demostreu que no hi ha cap enter senar positiu n > 1 tals que $n \mid (3^n + 1)$.
- 12. Sigui $a \in \mathbb{Z}_{>1}$. Considereu el conjunt

$$S_a\coloneqq \big\{n\in \mathbb{Z}_{\geq 2}: n\mid (a^n+1)\big\}.$$

Demostreu que

- a) si p és un primer senar i $p \mid (a+1)$, aleshores $p^{k+1} \mid \left(a^{p^k}+1\right)$ per a tot $k \geq 0$.
- b) si a>1 és un enter senar, i considerem la successió $n_0:=2$ i $n_{i+1}:=a^{n_i}+1$ si i>0 aleshores $n_i\mid n_{i+1}$ per a tot i.
- c) el conjunt S_a té infinits elements per a tot a > 1.
- 13. Considereu el conjunt

$$S\coloneqq \left\{n\in 2\mathbb{Z}_{\geq 1}: n\mid \left(n^2+2\right) \neq (n-1)\mid (2^n+1)\right\}$$

Demostreu que si $n \in S$, aleshores $2^n + 2 \in S$. Deduïu que S té infinits elements.

- 14. Definim els nombres de Fermat com $F_n=2^{2^n}+1$. Tenim que $F_0=3,\ F_1=5,\ F_2=17,\ F_3=257,\ F_4=65537$ són primers. (Fermat va conjecturar que tots ho són...)
 - a) Demostreu que si $2^m + 1$ és primer, aleshores $m = 2^n$ per algun $n \in \mathbb{Z}$.
 - b) Demostreu que $F_n \mid F_m 2$ si n < m i deduïu que $(F_n, F_m) = 1$ si $n \neq m$.
 - c) Deduïu d'aquest últim fet que hi ha infinits primers.
- 15. Nombres primers de Mersenne:
 - a) Demostreu que si n > 1 i $a^n 1$ és primer, amb a > 1 enter, aleshores a = 2 i n és primer (aquests primers se'ls anomena primers de Mersenne)
 - b) Un nombre enter s'anomena perfecte si és igual a la suma dels seus divisors. Demostreu que si $2^n 1$ és primer, aleshores $2^{n-1}(2^n 1)$ és perfecte. (Se sap que tot nombre perfecte parell és d'aquesta forma, i es conjectura que no ni ha de senars).
 - c) Demostreu que si p és un primer senar, qualsevol divisor de $2^p 1$ és de la forma 2kp + 1, per algun enter positiu k.
- 16. En aquest exercici analitzem la descomposició en nombres primers dels nombres factorials. Donat un primer p i un enter N, direm que $v_{p(N)} = a \in \mathbb{Z}_{\geq 0}$ si $p^a \mid N$ i $p^{a+1} \nmid N$.
 - a) Proveu que $v_{p(n!)} = \sum_{i>1} \left\lfloor \frac{n}{p^i} \right\rfloor$, i doneu la factorització completa de 100!.
 - b) Vegeu que $v_2(n!) = n s_2(n)$, on $s_2(n)$ és la suma dels digits de n en base 2.
 - c) Descobriu una fórmula semblant per $v_{p(n!)}$ per a qualsevol primer p. (Ajuda: escriviu n en base p i utilitzeu la primera fórmula.
 - d) Proveu el següent teorema de Kummer: $v_p\left(\binom{n}{m}\right)$ és el nombre de vegades que "ens n'emportem" quan sumem n-m i m en base p.
- 17. Sigui p un primer tal que $p \mid b^n 1$ i $p \nmid b^d 1$ per a tot divisor no trivial d de n. Demostreu que $p \equiv 1 \pmod{n}$, i que si p > 2 i n és senar, aleshores que $p \equiv 1 \pmod{2n}$.
- 18. Sigui p un primer que divideixi $b^n + 1$. Demostreu que o bé p divideix $b^d + 1$ per algun divisor d no trivial de n tal que $\frac{n}{d}$ és senar, o bé $p \equiv 1 \pmod{2n}$. Factoritzeu $16777217 = 2^{24} + 1$.