TheAnalyticsTeam

# Sprocket Central Pty Ltd

Data analytics approach

Priscilla Ng, Junior Consultant

### Agenda

- 1. Introduction
- 2. Data Exploration
- 3. RFM Analysis
- 4. Model Development
- 5. Interpretation
- 6. Conclusions
- 7. Next Actions

### Introduction

#### Introduction

## Conduct customer analysis and identify potential new customers with bigger purchasing power to boost sales.

#### **Background**

- Sprocket Central specializes in high quality bike and accessories.
- The Marketing Team is looking to boost sales and request KPMG to recommend which of the 1000 new customers will bring the highest sales value.

#### **Approach Adopted**

- Data exploration
- Feature engineering
- RFM analysis
- Modelling
- Recommendations
- Future actions

### **Data Exploration**

### Transactions, Customer Demographics & Customer Address

| Dataset             | Records in Dataset            | Data Quality Issue      | Data Cleaning            |
|---------------------|-------------------------------|-------------------------|--------------------------|
| Transactions        | '                             | Missing data            | Delete missing data < 2% |
|                     |                               | Incorrect data type     | Convert to correct       |
|                     | 3,494 unique customers        |                         | datatype                 |
| Customer            | 4,000 unique customer         | Missing data            | Delete missing data < 2% |
| Demographic         | records                       |                         |                          |
|                     |                               | Data error & unreadable | Delete these data        |
|                     |                               | information             |                          |
|                     |                               | Inconsistent values     | Rectify the value        |
| Customer<br>Address | 3,999 unique customer records | Inconsistent values     | Rectify the value        |
|                     |                               |                         |                          |

### **Age Group By Gender**

# Age group 40s has highest transactions in 2017 & bike purchases in last 3 years. Female customers observed to be in higher ratio





### Age Group By Wealth Segment

### Mass customer wealth segment observed to be in higher ratio





### **Age Group By Customers with Car**

### No significant different observed





### **State By Gender**

New South Wales has highest transactions in 2017 & bike purchases in last 3 years. Female customers observed to be in higher ratio





### **State By Wealth Segment**

### Mass customer wealth segment observed to be in higher ratio





### **Location By Customers with Car**

### NSW customers with car observed to be in slightly higher ratio



### **Top 3 Job Industry**

### Manufacturing, Financial Services, and Health are the top three industries with sales



### **Property Valuation**

### **Customers with property valuation between 7 to 10 generates** more sales



#### **Tenure**

### **Customers with tenure between 20 to 22 generates less sales**



### **RFM Analysis**

### **RFM Analysis**

### Recency (R)

freshness of the customer's activity (purchase or visit)

#### Frequency (F)

frequency of the customer's transactions or visits

#### Monetary value (M)

- intention of the customer to spend or the purchasing power of customer
- → Calculate **RFM Score** for each customer

### Modelling

### **Model Development**

### Identify best customer using RFM score

| Target             | Counts |  |
|--------------------|--------|--|
| Best Customer (1)  | 804    |  |
| Other Customer (0) | 2495   |  |

- Dataset is imbalanced
- Adopt SMOTE to create synthetic samples for sample balancing
- Models used: Logistics Regression, Random Forest, Gradient Boost, XgBoost
- Evaluation metric adopted: ROC-AUC score

### Interpretation

### Random Forest or Gradient Boost show better performance

All models have low ROC-AUC scores. The features available in the datasets may not be sufficient to train the model.

| Model                           | ROC-AUC Score | Accuracy |
|---------------------------------|---------------|----------|
| Logistics Regression (Baseline) | 0.4905        | 0.4945   |
| Random Forest                   | 0.5080        | 0.7200   |
| Gradient Boost                  | 0.4985        | 0.7515   |
| XgBoost                         | 0.4954        | 0.6933   |

### **Conclusions & Next Actions**

#### Conclusions

- Current high value customers are:
- ➤ Aged between 40 50
- currently living in New South Wales
- > Females
- Mass customers
- Working in Manufacturing, Financial Service, and Health
- The models developed have low ROC-AUC score.

#### **Next Actions**

- Consider to add in new features (e.g. distance from home to office) to improve the training of the model
- Try other sampling methods to handle the imbalanced dataset
- Perform hyper-tuning to optimize the parameters to improve the score

### Thank you