Modelos de Linguagem Neurais Com Redes Recorrentes

"Time will explain"

Profa Aline Paes alinepaes@ic.uff.br

Sequências em NLP

"De casa eu decidi antes que as coisas mais difíceis ficassem mudar."

"De eu decidi casa antes que as coisas mais difíceis ficassem mudar todo dia."

"Casa de antes decidi casa eu as que coisas mais mudar ficassem difíceis."

Sequências em NLP

- Diversos problemas precisam considerar as dependências entre termos
 - Co-referência
 - Apesar das suas obrigações familiares, Wilma consegue se dedicar aos estudos.
 - Concordância de número e gênero
 - Lula e FHC foram presidentes do Brasil.
 - Coesão de textos
 - A caixa não coube na mala pois ela era muito...
 - Grande:
 - Pequena:

Contexto - de verdade

Contexto - de verdade

Contexto - "de verdade"

https://spotintelligence.com/2023/12/26/embeddings-from-language-models-elmo/

Embeddings contextualizados: Elmo (Peters et al., 2018)

Contextualized word-embeddings can give words different embeddings based on the meaning they carry in the context of the sentence.

Embeddings contextualizados

Rede neural recorrente (Elman, 1990)

Rede neural recorrente (Elman, 1990)

Redes Neurais Recorrentes (Elman, 1990)

- Contém um ciclo em suas conexões
 - O valor de uma unidade é direta ou indiretamente dependente de uma saída anterior
- Simulam memória
- Permitem entradas de tamanho variável

*Speech and Language Processing

*CMU Neural nets for NLP

Unfolding - Tagging, parsing

Resumo de tipos

^{*}The Unreasonable Effectiveness of Recurrent Neural Networks, Andrej Karpathy blog, 2015

Geração autorregressiva

Inferência - classificação de texto?

Inferência - classificação de texto

Inferência - classificação de texto

Pergunta

Como representar uma sentença com RNN?

- a) Média dos embeddings
- b) Saída no instante t
- c) Soma dos embeddings
- d) Concatenação dos embeddings

Inferência - classificação de texto

Rede neural recorrente

Fórmula de recorrência

Fórmula de recorrência

Fórmula de recorrência

$$y_t = f_{\mathbf{W'}}(h_t)$$
Estado novo

Vanilla RNN

$$h_t = f_W(h_{t-1}, x_t)$$
 \downarrow $h_t = anh(W_{hh}h_{t-1} + W_{xh}x_t)$ $y_t = W_{hy}h_t$

Vanilla RNN

cs231:Stanford

Vanilla RNN

https://cs231n.stanford.edu/slides/2024/lecture_7.pdf

Vanilla RNN

Grafo computational

Muitos para um

Um para muitos

Grafo computational

Rede neural recorrente

De onde vêm os pesos?

Forward para redes não recorrentes

https://www.geeksforgeeks.org/backpropagation-in-neural-network/

Backpropagation para redes não recorrentes

Muitos para muitos

Treinamento

*CMU Neural nets for NLP

Backpropagation through time

- O estado da camada escondida no instante de tempo t contribui para
 - A saída e seu erro associado no tempo t
 - A saída e o erro no instante de tempo t+1

Treinamento

Bengio et al, "Learning long-term dependencies with gradient descent is difficult", IEEE Transactions on Neural Networks, 1994 Pascanu et al, "On the difficulty of training recurrent neural networks", ICML 2013 Cs231n. Stanford 2022

Mas e se eu precisar processar uma dependência de longo prazo?

Memória de longo prazo

- Redes recorrentes têm dificuldade em lidar com dependência de longa distância
 - Camadas intermediárias devem
 - Fornecer informação útil para o instante corrente
 - Atualizar e carregar informação de contexto para decisões futuras

Vanishing gradient

- Redes recorrentes têm dificuldade em lidar com dependência de longa distância
 - Backpropagação do sinal do erro através do tempo
 - Camada escondida contribui para a perda do instante de tempo seguinte

Long Short-Term memory (LSTM) (Hochreiter and Schmidhuber, 1997)

- RNN com uma estrutura de "memória"
- A cada passo, existe um estado escondido e uma célula de estado (vetores)
 - Contexto explícito
- A célula armazena informação de "longo termo"

Long Short-Term memory (LSTM) (Hochreiter and Schmidhuber, 1997)

- A rede pode apagar, escrever e ler informação da célula
 - A seleção de qual informação passará por cada operação é controlada por gates (vetores)
 - Conexões aditivas
 - Camada feedforward + sigmoid + multiplicação
 - A cada passo, as operações nos gates podem ser: abrir
 (1), fechar (0) ou algo no meio do caminho
 - Gates são dinâmicos: seu valor é calculado com base no contexto corrente

Long Short-Term Memory (LSTM)

Long Short-Term Memory

Forget gate: o que eu não devo esquecer (ou o que eu devo lembrar do curto prazo)

Long Short-Term Memory (LSTM)

Long Short-Term Memory

Forget gate: o que eu não devo esquecer

Input gate: Escreve na célula? (escrita)

Sigmoid: valores entre 0 e 1

$$f_t = \sigma\left(W_f \cdot [h_{t-1}, x_t] + b_f\right)$$

$$i_t = \sigma\left(W_i \cdot [h_{t-1}, x_t] + b_i\right)$$

Long Short-Term Memory (LSTM)

Long Short-Term Memory

Forget gate: o que é armazenado vs o que é esquecido, a partir da célula anterior

Input gate: Escreve na célulA?

Sigmoid: valores entre 0 e 1

$$f_t = \sigma\left(W_f \cdot [h_{t-1}, x_t] + b_f\right)$$

$$i_t = \sigma\left(W_i \cdot [h_{t-1}, x_t] + b_i\right)$$

Novo conteúdo a ser escrito na célula

$$\tilde{C}_t = \tanh(W_C \cdot [h_{t-1}, x_t] + b_C)$$

Long Short-Term Memory (LSTM)

Long Short-Term Memory

Forget gate: o que é armazenado vs o que é esquecido, a partir da célula anterior

Input gate: ESCRITA

Sigmoid: valores entre 0 e 1

$$f_t = \sigma\left(W_f \cdot [h_{t-1}, x_t] + b_f\right)$$

$$i_t = \sigma\left(W_i \cdot [h_{t-1}, x_t] + b_i\right)$$

Novo conteúdo a ser escrito na célula

Estado da célula: "esquece" algum conteúdo do estado anterior da célula e escreve algum conteúdo novo

$$\tilde{C}_t = \tanh(W_C \cdot [h_{t-1}, x_t] + b_C)$$

$$C_t = f_t * C_{t-1} + i_t * \tilde{C}_t$$

Produto de elemento a elemento

Long Short-Term Memory (LSTM)

Long Short-Term Memory

Forget gate: o que é armazenado vs o que é esquecido, a partir da célula anterior

Input gate: que partes do novo conteúdo são escritos para a célula (escrita)

Output gate: o que levar da célula? (leitura)

Novo conteúdo a ser escrito na célula

Estado da célula: "esquece" algum conteúdo do estado anterior da célula e escreve algum conteúdo novo

Sigmoid: valores entre 0 e 1

$$f_t = \sigma\left(W_f \cdot [h_{t-1}, x_t] + b_f\right)$$

$$i_t = \sigma\left(W_i \cdot [h_{t-1}, x_t] + b_i\right)$$

$$o_t = \sigma\left(W_o\left[h_{t-1}, x_t\right] + b_o\right)$$

$$\tilde{C}_t = \tanh(W_C \cdot [h_{t-1}, x_t] + b_C)$$

$$C_t = f_t * C_{t-1} + i_t * \tilde{C}_t$$

Produto de elemento a elemento

Long Short-Term Memory (LSTM)

Long Short-Term Memory

Forget gate: o que é armazenado vs o que é esquecido, a partir da célula anterior

Input gate: escrita

Output gate: leitura

Novo conteúdo a ser escrito na célula

Estado da célula: "esquece" algum conteúdo do estado anterior da célula e escreve algum conteúdo novo

Estado escondido: lê algum conteúdo da célula

Sigmoid: valores entre 0 e 1

$$f_t = \sigma \left(W_f \cdot [h_{t-1}, x_t] + b_f \right)$$

$$i_t = \sigma\left(W_i \cdot [h_{t-1}, x_t] + b_i\right)$$

$$o_t = \sigma(W_o [h_{t-1}, x_t] + b_o)$$

$$\tilde{C}_t = \tanh(W_C \cdot [h_{t-1}, x_t] + b_C)$$

$$C_t = f_t * C_{t-1} + i_t * \tilde{C}_t$$

$$h_t = o_t * \tanh(C_t)$$

Produto de elemento a elemento

v e t o r es d e

a m a

n h o

n

Gated Recurrent Units (GRUs) (Cho et al., 2014)

- LSTM pode ser bem custosa para treinar
 - 8 matrizes de peso (duas para cada gate)
- GRUs
 - Dispensam o vetor de contexto (célula)
 - Usam apenas dois gates
 - Reset
 - O que é relevante no estado anterior e o que pode ser ignorado?

Gated Recurrent Units (GRUs) (Cho et al., 2014)

- LSTM pode ser bem custosa para treinar
 - 8 matrizes de peso (duas para cada gate)
- GRUs
 - Dispensam o vetor de contexto (célula)
 - Usam apenas dois gates
 - Reset $r_t = \sigma(W_r[h_{t-1}; x_t])$

$$h'_t = tanh(U(r_t \odot h_{t-1}) + Wx_t$$

- Update
 - O que de h'_t será usado diretamente no novo estado escondido h_te o que precisa ser preservado de h_{t-1}

$$z_t = \sigma(U_z h_{t-1} + W_z x_t)$$

$$h_{t} = (1-z_{t}) h_{t-1} + z_{t}h't$$

Embeddings contextualizados: Elmo (Peters et al., 2018)

Contextualized word-embeddings can give words different embeddings based on the meaning they carry in the context of the sentence.

Embeddings contextualizados: Elmo (Peters et al., 2018)

Modelo de linguagem bidirecional

$$p(t_1, t_2, \dots, t_N) = \prod_{k=1}^{N} p(t_k \mid t_1, t_2, \dots, t_{k-1})$$

$$p(t_1, t_2, \dots, t_N) = \prod_{k=1}^{N} p(t_k \mid t_{k+1}, t_{k+2}, \dots, t_N)$$

 Embedding da palavra: combinação linear das camadas escondidas correspondentes

Treinamento genérico contextualizado

Elmo

Elmo

Elmo

ELMo

