

BI

Cours 3- OLAP On-Line Analytical Processing

Sonia GUEHIS

Sonia.guehis@parisnanterre.fr

OLAP

- Définition (Caron, 1998):
- « Il s'agit d'une catégorie de logiciels axès sur l'exploration et l'analyse rapide des données selon une approche multidimentionnelle à plusieurs niveaux d'agrégation »
- Approche multidimentionnelle
 - Basée sur des thèmes d'analyse (dimensions)
 - > Intuitive
- Plusieurs niveaux d'agrégation :
 - Différents niveaux de granularité

OLTP/OLAP

- OLTP: On-Line Transaction Processing:
 - Informatique opérationnelle
- OLAP: On-Line Analytical Processing:
 - Informatique décisionnelle et accès immédiat.

	OLTP	OLAP
Contenu	Données instantanées	Données historique
Utilisateurs	Production	Décision
Format	Accès rapide	Redondance, tables plates
Accès	Concurrentiel, RW	Lecture seule

Analyse Multidimentionnelle

- Une collection de données orientées sujet, intégrées, non volatiles et historiées
- Organisées pour supporter un processus d'aide à la décision
- Comment : requêtes de type OLAP comportant
 - » de nombreuses opérations de jointures et
 - » d'agrégation sur des tables volumineuses
- Objectif : exploitation selon le besoin/simple/rapide d'accès

OLAP

- Représentation de l'information dans un format multidimentionnel : cube à N dimensions (Hyper Cube)
- 4 composants de base :
 - L'indicateur : nombre d'unités vendues, CA, Coût, Marge...
 - Les dimensions : Temps, Géographie, Produits, Clients, Canaux de

ventes....

- Les hiérarchies
- Les valeurs

Le data cube et les dimensions

Exemple de cube

Opérations typiques de l'OLAP

« Navigation » dans les cubes multidimensionnels :

- Forer (drill-down, Roll-up):
 - descendre ou remonter dans la hiérarchie d'une dimension.

Ex. visualiser la vente par année, ensuite par mois et inversement.

- Pivoter (swap):
 - inter changer deux dimensions
- Projection et sélection (slice et dice)
- Forer latéralement (drill-across) :
 - Permet de passer d'un membre de dimension à un autre. Ex. visualiser les données de Canada au lieu de celles de France

Opérations typiques de l'OLAP

Exemple

Représentation multidimensionnelle: 3-D Data cube

Vente	idprod	idmag	date	CA
	p1	m1	1	12
	p2	m1	1	11
	p1	m3	1	50
	p2 p1	m2	1	8
	p1	m1	2	44
	p1	m2	2	4

Exemple

Drill-down/ Roll-up

- Roll-up: forage vers le haut
- Représente les données à un niveau de granularité supérieur selon la hiérarchie de la dimension désirée
- Agréger selon une dimension:
 - Semaine -> mois

- Drill-down: forage vers le bas
- L'inverse de l'opération Roll-up
- Représente les données à un niveau de granularité inférieur
- Détailler selon une dimension:
 - Mois -> semaine

Drill-down/ Roll-up

p1

p2

110

19

Opérations de Sélection / Projection

Slice

- Sélection
- Tranche de cube obtenue par prédicats selon une dimension
- Ex: Année= 2020

Dice

- Projection selon un axe
- Sorte de cumuls de sélections
- Résultat: un sous-cube
- Ex: Projeter (Clients, Région)

Slicing

	m1	m2	m3
p1	12		50
p2	11	8	

Dicing

	Jour 1	Jour 2
P1	12	44
P2	11	

Matrice dense / creuse

- Matrice dense :
 - Toutes les cellules ont une valeur
- Matrice creuse :
 - Certaines valeurs absentes
 - Certaines dimensions n'ont pas de valeur pour chaque occurrence
 - Dimensions comportant des valeurs exclusives
 - Analyse des ventes par clients et par sexe

Avantages d'OLAP

Facilité

- Ne nécessite pas de maîtriser les langages d'interrogation et des interfaces complexes
- Interrogation directement des données, en interagissant avec celles-ci

Rapidité

- Exploite une dénormalisation maximale des données, sous la forme d'une pré-agrégation stockée
 - L'utilisateur devient opérationnel très vite
- → L'utilisateur se concentre sur son analyse et non sur le processus (les moyens utilisés pour l'analyse)

Implémentation

Multidimensional OLAP (MOLAP)

- Basé sur un stockage par matrice en mémoire
- Indexation rapide de données calculées
- Opérations : manipulation des vecteurs
- Accéder aux données via une API spécifique

Relationnel OLAP (ROLAP)

- Utilise un SGBD relationnel pour stocker les données ainsi qu'un middleware pour implémenter les opérations spécifiques de l'OLAP
- Schéma en étoile ou flocon
- Accéder aux données via SQL
- Indexe bitmap, index de jointure

Hybride OLAP (HOLAP)

• Combinaison de ROLAP et MOLAP

Avantages / Inconvénients

MOLAP

- Avantages
 - Toutes les agrégations sont calculées d'avance
 - Rapidité d'exécution
 - Accès direct aux données dans le cube
- Inconvénients
 - Plus complexe à mettre en place
 - Temps de chargement
 - Volume important
 - Analyses non-prevue

Avantages / Inconvénients

ROLAP

- Avantages
 - Définir des données multidimensionnelles avec un modèle simple
 - Permettre au DW d'évoluer avec relativement peu de maintenance
 - Peu couteux
 - Stockage de gros volumes
- Inconvénient
 - Temps de calcul
 - Moins performant dans les étapes de calcul

Quelques outils OLAP

Oracle

- OLAP API = Datacube
- Express = Analyse
- Report = Reporting

Business Object

- BusinessQuery = Requêtage
- BusinessObject = Requêtage+ Analyse + Reporting
- WebIntelligence = Datacube

Cognos

- Impromptu = Reporting
- Powerplay = Datacube
- Query = Requêtage

Hyperion

- ESS Base = Base MOLAP
- ESS Analysis= Analyse +Datacube

12 règles d'OLAP (Codd, 1993)

- Multidimensionnalité : Vue multidimensionnelle
- Transparence : L'emplacement physique du serveur OLAP est transparent
- Accessibilité : accès à toutes les données nécessaires à l'analyse
- Stabilité : Performance du système de Reporting est reste stable indépendamment du nombre de dimensions
- Architecture client/serveur
- Dimensionnement : générique
- Gestion complète : Gestion dynamique des matrices creuses
- Support multi-utilisateurs
- Inter Dimensions : Calculs à travers les dimensions
- Intuitif : Manipulation intuitive des données
- Flexibilité : Souplesse et facilité de constitution de rapports
- Analyse sans limites : Nombre illimité de niveaux d'agrégation et de dimensions