1796 LOGIC

5.280 non_overlap_sboxes

DESCRIPTION LINKS LOGIC

Origin Geometry, derived from [38]

 ${\bf Constraint} \qquad \qquad {\tt non_overlap_sboxes}({\tt K}, {\tt DIMS}, {\tt OBJECTS}, {\tt SBOXES})$

Synonyms non_overlapping.

INTEGERS : collection(v-int)
POSITIVES : collection(v-int)

Arguments K : int

DIMS : sint

 $\begin{array}{lll} \texttt{OBJECTS} & : & \texttt{collection}(\texttt{oid-int}, \texttt{sid-dvar}, \texttt{x} - \texttt{VARIABLES}) \\ \texttt{SBOXES} & : & \texttt{collection}(\texttt{sid-int}, \texttt{t} - \texttt{INTEGERS}, \texttt{1} - \texttt{POSITIVES}) \end{array}$

Restrictions

```
|VARIABLES| \ge 1
|INTEGERS| > 1
|POSITIVES| \ge 1
required(VARIABLES, v)
|VARIABLES| = K
required(INTEGERS, v)
|INTEGERS| = K
required(POSITIVES, v)
|POSITIVES| = K
{\tt POSITIVES.v}>0
K > 0
\mathtt{DIMS} \geq 0
{\tt DIMS} < {\tt K}
increasing_seq(OBJECTS, [oid])
required(OBJECTS, [oid, sid, x])
{\tt OBJECTS.oid} > 1
OBJECTS.oid \leq |OBJECTS|
{\tt OBJECTS.sid} \geq 1
\texttt{OBJECTS.sid} \leq |\texttt{SBOXES}|
required(SBOXES, [sid, t, 1])
{\tt SBOXES.sid} \geq 1
\mathtt{SBOXES.sid} \leq |\mathtt{SBOXES}|
```

1797 20070622

Holds if, for each pair of objects (O_i, O_j) , i < j, O_i and O_j do not overlap with respect to a set of dimensions depicted by DIMS. O_i and O_j are objects that take a shape among a set of shapes. Each shape is defined as a finite set of shifted boxes, where each shifted box is described by a box in a K-dimensional space at a given offset (from the origin of the shape) with given sizes. More precisely, a *shifted box* is an entity defined by its shape id sid, shift offset t, and sizes 1. Then, a shape is defined as the union of shifted boxes sharing the same shape id. An object is an entity defined by its unique object identifier oid, shape id sid and origin x.

An object O_i does not overlap an object O_j with respect to a set of dimensions depicted by DIMS if and only if, for all shifted box s_i associated with O_i and for all shifted box s_j associated with O_j , there exists a dimension $d \in DIMS$ such that the start of s_i in dimension d is greater than or equal to the end of s_j in dimension d, or the start of s_j in dimension d is greater than or equal to the end of s_i in dimension d.

```
2, \{0, 1\},
                          sid - 4 \quad x - \langle 5, 4 \rangle
      sid - 1 t - \langle 0, 0 \rangle
                                               1-\langle 1,1\rangle,
      sid - 1 t - \langle 1, 0 \rangle
                                                  1 - \langle 1, 3 \rangle,
                          t - \langle 0, 0 \rangle
                                                  1-\langle 1,2\rangle,
      \operatorname{sid} - 4
                          t - \langle 0, 0 \rangle
                                                  1 - \langle 1, 1 \rangle
```

Figure 5.586 shows the objects of the example. Since O_1 and O_2 do not overlap, since O_1 and O_3 do not overlap, and since O_2 and O_3 also do not overlap, the non_overlap_sboxes constraint holds.

Typical

|OBJECTS| > 1

Symmetries

- Items of OBJECTS are permutable.
- Items of SBOXES are permutable.
- Items of OBJECTS.x, SBOXES.t and SBOXES.1 are permutable (same permutation used).
- SBOXES.1.v can be decreased to any value ≥ 1 .

Arg. properties

Suffix-contractible wrt. OBJECTS.

Remark

In addition from preventing objects to overlap, the disjoint_sboxes constraint also enforces that borders and corners of objects are not directly in contact.

See also

common keyword: contains_sboxes. coveredby_sboxes. shifted covers_sboxes (geometrical constraint hetween boxes), diffn(geometrical constraint,non-overlapping), disjoint_sboxes,

Example

Purpose

1798 LOGIC

(D) Three objects where O_1 does neither overlap O_2 nor O_3 and where O_2 and O_3 also do not overlap

Figure 5.586: (D) the three pairwise non-overlapping objects O_1 , O_2 , O_3 of the **Example** slot respectively assigned shapes S_1 , S_3 , S_4 ; (A), (B), (C) shapes S_1 , S_2 , S_3 and S_4 are respectively made up from 3, 3, 1 and 1 disjoint shifted box.

```
equal_sboxes(geometrical constraint between shifted boxes), geost, geost_time(geometrical constraint,non-overlapping), inside_sboxes, meet_sboxes, overlap_sboxes(geometrical constraint between shifted boxes), visible(geometrical constraint).
```

implied by: disjoint_sboxes.

Keywords

constraint type: logic.

geometry: geometrical constraint, non-overlapping.

Logic

```
\bullet \; \mathtt{origin}(\mathtt{O1},\mathtt{S1},\mathtt{D}) \stackrel{\mathrm{def}}{=} \mathtt{O1}.\mathtt{x}(\mathtt{D}) + \mathtt{S1.t}(\mathtt{D})
• end(01,S1,D) \stackrel{\text{def}}{=} 01.x(D) + S1.t(D) + S1.1(D)
• non_overlap_sboxes(Dims, 01, S1, 02, S2) \stackrel{\text{def}}{=}
        \exists \mathtt{D} \in \mathtt{Dims}
                    end(01, S1, D) \leq
                     end(02, S2, D) \leq
 \bullet \quad \mathtt{non\_overlap\_objects}(\mathtt{Dims}, \mathtt{O1}, \mathtt{O2}) \overset{\mathrm{def}}{=} \\
        \forall \mathtt{S1} \in \mathtt{sboxes}([\mathtt{01.sid}])
          \forall \texttt{S2} \in \texttt{sboxes} ( [ \texttt{02.sid} ] )
                                                      Dims,
                                                       01,
          non_overlap_sboxes
                                                       S1,
                                                      02,
                                                      S2
 \bullet \  \  \, \texttt{all\_non\_overlap(Dims,OIDS)} \stackrel{\texttt{def}}{=} 
       \forall 01 \in \mathtt{objects}(\mathtt{OIDS})
          \forall 02 \in \mathtt{objects} (\mathtt{OIDS})
               01.oid < ⇒
               02.oid
            non_overlap_objects
• all_non_overlap(DIMENSIONS, OIDS)
```