# Graphical Models, Exponential Families and Variational Inference

4.2 - 4.3
Bethe Kikuchi and Expectation Propagation

Vincent Adam Alessandro Davide Ialongo

February 23, 2015

### Reminder chap.3

Set of realisable mean parameters

$$\mathcal{M} = \left\{ \mu \in \mathbb{R}^d | \exists p \text{ s.t. } \mathbb{E}_p \left[ \phi(X) \right] = \mu 
ight\}$$

▶ conjugate dual of the log partition function  $A(\theta) = \int dx \exp(\langle \theta, \phi(x) \rangle)$ 

$$A(\theta) = \sup_{\mu} \left\{ \langle \theta, \mu \rangle - A^*(\mu) \right\}$$

Bijection

$$\mu \longrightarrow (\nabla A)^{-1} \longrightarrow \theta(\mu) \longrightarrow A^*(\mu)$$

### Reminder chap.4

▶ Bethe Approximation to the Entropy (for a graph G = (V, E))

$$-A^*( au) pprox H_{\mathsf{Bethe}}( au) := \sum_{s \in V} H_s( au_s) - \sum_{(s,t) \in E} I_{st}( au_{st})$$

Bethe Variational problem

$$\max_{\tau \in \mathbb{L}(G)} \left\{ \langle \theta, \tau \rangle + H_{\mathsf{Bethe}}(\tau) \right\}$$

- Deriving the sum-product/belief propagation algorithm for (pairwise) graphs in general:
  - Exact on trees
  - Using the Bethe Variational Approximation on loopy graphs

# Section 4.2 (p98-109) Outline

- Computing marginals for a more general class of distributions
- Represented by Hypergraphs and Hypertrees (e.g. junction trees)
- Same kind of approximations as in the standard case:
  - Approximation of the hypergraph's actual entropy  $H_{app}(\tau) \approx H(p_{\mu})$
  - ▶ Constructing an outer bound  $\mathbb{L}_t(G)$  to the hypergraph's marginal polytope  $\mathbb{M}_t(G)$
- Leading to Generalized Belief Propagation

### 4.2.1 (p99)

### Hypergraphs and Hypertrees

- Generalization of pairwise MRF: edges can be between an arbitrary number of vertices
- ▶ Hypergraphs: G = (V, E):
  - V vertex set as before:  $\{1, ..., m\}$
  - ▶ *E* hyperedge set:  $E \subseteq P(V)$  = power set of *V*

• e.g. 
$$V = \{1, 2, 3, 4\}$$
 -  $E = \{\{1\}, \{2, 3\}, \{1, 2, 3\}, \{1, 3, 4\}\}$ 

- ► Maximal hyperedge: one not included into any other (i.e. {1,2,3}, {1,3,4})
- Hypertrees or acyclic hypergraphs: hypergraphs whose maximal hyperedges and their intersection specify a junction tree
  - ► Hypertree width = size of the largest hyperedge 1
- Hypergraph with maximal hyperedges of size two: generalization of pairwise MRF
- Hypertree: generalization of the Junction tree



### 4.2.1(p100)

#### Poset - Partially Ordered Set

- Set inclusion induces a partial ordering on the set of hyperedges E:
  - ▶ Only partial since not  $\forall g, \forall h \in E : g \subseteq h \lor h \subseteq g$ , i.e. we can have disjoint and partially disjoint hyperedges
- Visual representation, Poset diagram (displaying inclusion relations):



Figure: 4.4 (p100)

# Appendix E.1 (p286-287)

#### Moebius Function

- Associated with any poset there is a Moebius function:  $\omega : E \times E \to \mathbb{R}$  (Appendix E.1, p286):
  - ▶ Base cases:  $\omega(g,g) = 1$ ,  $\omega(g,h) = 0$  if  $g \nsubseteq h$
  - ► Recursively:  $\omega(g,h) = -\sum_{\{f|g \subseteq f \subset h\}} \omega(g,f)$
  - Also defined as the multiplicative inverse of the zeta function  $\zeta(g,h) = \begin{cases} 1 & \text{if } g \subseteq h \\ 0 & \text{otherwise} \end{cases}$ :
    - $\sum_{f \in E} \omega(g, f) \zeta(f, h) = \sum_{\{f \mid g \subseteq f \subseteq h\}} \omega(g, f) = \delta(g, h)$
    - ▶ So values of  $\omega(g,h)$  can be found by inverting the matrix of zeta values  $Z(i,j) = \zeta(g_i,g_j)$  for some indexing of the hyperedge set E

- ▶ If  $E = P(\{1,...,m\})$  then  $\omega(g,h) = (-1)^{|h\setminus g|}\mathbb{I}(g\subseteq h)$
- ► Example (4.4(b)):  $E = \{\{23\}, \{123\}, \{234\}\}$ :

$$Z^{-1} = \begin{bmatrix} 1 & 1 & 1 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}^{-1} = \begin{bmatrix} 1 & -1 & -1 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} = \Omega$$

### 4.2.2 (p100-101)

#### Hypertree-based Factorization

▶ By the Moebius inversion formula (Lemma E.1 p287), for real-valued functions  $\Upsilon$  and  $\Omega$  on a poset E:

$$\Omega(h) = \sum_{g \subseteq h} \Upsilon(g)$$
 and  $\Upsilon(h) = \sum_{g \subseteq h} \Omega(g)\omega(g,h)$   $\forall h \in E$ 

▶ Applying it to the set of marginals  $\mu = \{\mu_h | h \in E\}$  we gain a new set of functions  $\phi = \{\phi_h | h \in E\}$ :

$$\log \mu_h(x_h) = \sum_{g \subseteq h} \log \phi_g(x_g) \quad \text{and, conversely}$$
$$\log \phi_h(x_h) = \sum_{g \subseteq h} \omega(g, h) \log \mu_g(x_g)$$

➤ This gives us an alternative factorization for all hypertrees containing all (but not only) the intersections between maximal hyperedges (which includes junction trees):

$$p_{\mu}(x) = \prod_{h \in E} \phi_h(x_h; \mu) \qquad (4.42)$$

# 4.2.2 - Example 4.4 (p101-102) I

#### Hypertree Factorization

- ▶ If the hypergraph G = (V, E) is actually a tree, E contains the tree's vertices and its pairwise edges
- ▶ then, by (4.42):  $p_{\mu}(x) = \prod_{s \in V} \phi_s(x_s) \prod_{(s,t) \in E} \phi_{st}(x_s, x_t)$
- lacktriangledown and since orall g :  $\omega(g,g)=1$  and  $\omega(\{s\},\{s,t\})=-1$ ,
- ▶ and  $\log \phi_h(x_h) = \sum_{g \subseteq h} \omega(g, h) \log \mu_g(x_g)$ :

$$p_{\mu}(x) = \prod_{s \in V} \mu_{s}(x_{s}) \prod_{(s,t) \in E} \frac{\mu_{st}(x_{s}, x_{t})}{\mu_{s}(x_{s})\mu_{t}(x_{t})}$$

Recovering tree factorization (4.8)

# 4.2.2 - Example 4.4 (p101-102) II

#### Hypertree Factorization

Practical example (Figure 4.4(c)):

$$E \! = \! \{ \{5\}, \{2,5\}, \{4,5\}, \{5,6\}, \{5,8\}, \{1,2,4,5\}, \{2,3,5,6\}, \{4,5,7,8\} \}$$

- ► For vertices:  $\phi_s = \mu_s$ , e.g.  $\log \mu_5 = \sum_{g \subseteq \{5\}} \log \phi_g = \log \phi_5$
- Pairwise functions: e.g.  $\log \mu_{25} = \sum_{g \subseteq \{2,5\}} \log \phi_g = \log \mu_5 + \log \phi_{25} \Rightarrow \phi_{25} = \frac{\mu_{25}}{\mu_5}$
- ▶ Recurring over hyperedge size:  $\phi_{1245} = \frac{\mu_{1245}\mu_5}{\mu_{25}\mu_{45}}$
- Overall:

$$p_{\mu}(x) = \prod_{h \in E} \phi_h(x_h) = \frac{\mu_{1245}\mu_{2356}\mu_{4578}}{\mu_{25}\mu_{45}} = \frac{\prod_{c \in C} \mu_c(x_c)}{\prod_{s \in S} [\mu_s(x_s)]^{d(S)-1}} = (2.12)$$

### 4.2.2 (p102-103)

#### **Entropy Decomposition**

- From the hyperedge factorization of the joint  $p_{\mu}(x)$  (4.42) follows a **local decomposition of the entropy**. To see this we define:
- ▶ Hyperedge Entropy:  $H_h(\mu_h) = -\sum_{x_h} \mu_h(x_h) \log \mu_h(x_h)$
- ▶ Multi-information:  $I_h(\mu_h) = \sum_{x_h} \mu_h(x_h) \log \phi_h(x_h)$
- So, again by (4.42), on hypertrees:  $H_{hypertree}(\mu) = -\sum_{h \in F} I_h(\mu_h) \qquad (4.45)$
- ► Alternatively:  $H_{hypertree}(\mu) = \sum_{h \in F} c(h)H_h(\mu_h)$  (4.47)

where:  $c(h) = \sum_{\{e \mid h \subseteq e\}} \omega(h, e)$  the "overcounting numbers"

For trees:  $c(\{s\})=d(s)-1$  and  $c(\{s,t\})=1$ , giving us the reformulation of the Bethe entropy (4.15)

#### Kikuchi and Related Approximations

- ▶ In section 4.1 we formed tree-based approximations (both on entropy and marginal polytope)
- ▶ Now we form *hypertree*-based approximations
- ▶ Let  $\tau = \{\tau_{h \in E}\}$  be a collection of hyperedge local marginals:

$$H_{app}( au) = \sum_{h \in E} c(h) H_h( au_h) \Longrightarrow$$
 like Bethe, exact for (hyper)-trees

 $\mathbb{L}_t(G) = \text{set of pseudomarginals:}$ 

$$\left\{\tau \geq 0 \mid \sum_{x_h'} \tau_h(x_h') = 1, \text{ and } \sum_{\{x_h' \mid x_g' = x_g\}} \tau_h(x_h') = \tau_g(x_g); \ \forall h, g \subset h\right\}$$

# 4.2.3 (p104-105) II

#### Kikuchi and Related Approximations

- ▶ Again, the set of pseudomarginals  $\mathbb{L}_t(G)$  outer bounds the corresponding set of globally valid marginals  $\mathbb{M}_t(G)$ 
  - ▶ the subscript *t* is the treewidth (i.e. the minimum width across all possible tree decompositions of G)
- ► The above gives us the Hypertree Approximation of the Variational Principle:

$$\max_{\tau \in \mathbb{L}_{\mathbf{t}}(G)} \left\{ \langle \theta, \tau \rangle + H_{app}(\tau) \right\}$$
 (4.53)

- ▶ If G is a pairwise MRF,  $H_{app}(\tau) = H_{bethe}(\tau)$  (by the overcounting numbers) and  $\mathbb{L}_t(G) = \mathbb{L}(G)$  since they enforce the same constraints over the same set of (hyper-)edges
- ► Then the above approximation becomes the Bethe Variational Problem (BVP) (4.16)



### 4.2.3 - Example 4.6 (p105-106) I

### Kikuchi Approximation

▶ In figure 4.5 we use a Kikuchi clustering (a) to approximate the joint distribution of a 3 × 3 lattice. This produces a hypergraph (b):



Figure: 4.5 (p106)

# 4.2.3 - Example 4.6 (p105-106) II

#### Kikuchi Approximation

- As an example we try to find the structure of the approximate entropy  $H_{app} = \sum_{h \in E} c(h)H_h$  for the graph above
- We have:  $c(h) = \sum_{\{e \mid h \subseteq e\}} \omega(h, e)$ , so:
  - ▶ c(h) = 1 for the maximal edges  $(\{1245\}, \{2356\}, \{4578\}, \{5689\})$  since they have no supersets and  $\omega(g,g) = 1$
  - $c(\{25\}) = \sum_{e \in \{\{2,5\}, \{1245\}, \{2356\}\}} \omega(\{25\}, e) = 1 1 1 = -1$  (likewise for other pairwise hyperedges)
  - $c(\{5\}) = 1$  by a similar argument
- Therefore:

$$H_{app} = [H_{1245} + H_{2356} + H_{4578} + H_{5689}] - [H_{25} + H_{45} + H_{56} + H_{58}] + H_{5}$$

### 4.2.4 (p106-107)

#### Generalized Belief Propagation

- ▶ Different methods to solve the hypertree variational problem (4.53). As for sum-product W&J choose a Lagrangian approach (Yedidia [269]). In particular messages are passed from "parents" to "children"
- Define:
  - ▶ Ancestors:  $\mathcal{A}(h) = \{g \in E \mid h \subset g\}, \ \mathcal{A}^+(h) = \mathcal{A}(h) \cup h$
  - ▶ Descendants:  $\mathcal{D}(h) = \{g \in E \mid g \subset h\}, \ \mathcal{D}^+(h) = \mathcal{D}(h) \cup h$
- ▶ A message  $M_{f \to g}(x_g)$  from hyperedge f to g is a functions over the state space of  $x_g$

$$au_h(x_h) \propto \left[\prod_{g \in \mathcal{D}^+(h)} \exp( heta(x_g))
ight] \left[\prod_{g \in \mathcal{D}^+(h)} \prod_{f \in Par(g) \setminus \mathcal{D}^+(h)} M_{f 
ightarrow g}(x_g)
ight]$$

### 4.1 and 4.2

#### Comparing Salient Formulae

Entropies:

$$H_{app}( au) = \sum_{h \in E} c(h)H_h( au_h)$$
 $H_{Bethe}( au) = \sum_{s \in V} H_s( au_s) - \sum_{(s,t) \in E} I_{st}( au_{st}) = -\sum_{s \in V} (d_s - 1)H_s( au_s) + \sum_{(s,t) \in E} H_{st}( au_{st})$ 

Messages:

$$\tau_h(x_h) \propto \left[ \prod_{g \in \mathcal{D}^+(h)} \exp(\theta(x_g)) \right] \left[ \prod_{g \in \mathcal{D}^+(h)} \prod_{f \in Par(g) \setminus \mathcal{D}^+(h)} M_{f \to g}(x_g) \right]$$

$$M_{ts}(x_s) \propto \sum_{x_t} \left[ \exp(\theta_{st}(x_s, x_t) + \theta_t(x_t)) \prod_{u \in N(t) \setminus s} M_{ut}(x_t) \right]$$

### 4.2.4 - Example 4.7 (p108)

#### Parent to Child for Kikuchi

▶ Consider Kikuchi clustering of  $3 \times 3$  lattice:



Figure: 4.6 (p109)

(a) 
$$\tau_{1245} \propto \psi_{1245} \psi_{25} \psi_{45} \psi_{5} \times M_{(2356) \to (25)} M_{(4578) \to (45)} M_{(56) \to (5)} M_{(58) \to (5)}$$
  
(b)  $\tau_{45} \propto \psi_{45} \psi_{5} \times M_{(1245) \to (45)} M_{(4578) \to (45)} M_{(25) \to (5)} M_{(56) \to (5)} M_{(58) \to (5)} M_{(5$ 

# Appendix D (p280-285)



Figure : D.1 (p282)

### Expectation Propagation Algorithms

# Entropy Approximations Based on Term Decoupling (p111)

- $(X_1,...,X_m) \in \mathbb{R}^m$
- $\underbrace{\phi = (\phi_1,...,\phi_{d_T})}_{\textit{Tractable}} \text{ and } \underbrace{\Phi = (\Phi^1,...,\Phi^{d_I})}_{\textit{Intractable}} \text{ sufficient statistics}$

# Entropy Approximations Based on Term Decoupling (p111)

- $(X_1,...,X_m) \in \mathbb{R}^m$
- $\underbrace{\phi = (\phi_1,...,\phi_{d_T})}_{\textit{Tractable}} \text{ and } \underbrace{\Phi = (\Phi^1,...,\Phi^{d_I})}_{\textit{Intractable}} \text{ sufficient statistics}$

The  $(\phi, \Phi)$ -Exponential Family

- ▶ parameters  $\theta$ ,  $\tilde{\theta} \leftrightarrow \phi$ ,  $\Phi$
- ▶  $p(x; \theta, \tilde{\theta}) \propto f_0(x) \exp(\langle \theta, \phi(x) \rangle) \exp(\langle \tilde{\theta}, \Phi(x) \rangle)$
- ▶ base model  $p(x; \theta, \overrightarrow{0}) \propto f_0(x) \exp(\langle \theta, \phi(x) \rangle)$  (no intractable component)

# Entropy Approximations Based on Term Decoupling (p111)

- $(X_1,...,X_m) \in \mathbb{R}^m$
- $\underbrace{\phi = (\phi_1, ..., \phi_{d_T})}_{\textit{Tractable}} \text{ and } \underbrace{\Phi = (\Phi^1, ..., \Phi^{d_I})}_{\textit{Intractable}} \text{ sufficient statistics}$

The  $(\phi, \Phi)$ -Exponential Family

- ▶ parameters  $\theta$ ,  $\tilde{\theta} \leftrightarrow \phi$ ,  $\Phi$
- ▶  $p(x; \theta, \tilde{\theta}) \propto f_0(x) \exp(\langle \theta, \phi(x) \rangle) \exp(\langle \tilde{\theta}, \Phi(x) \rangle)$
- ▶ base model  $p(x; \theta, \overrightarrow{0}) \propto f_0(x) \exp(\langle \theta, \phi(x) \rangle)$  (no intractable component)

The  $(\phi, \Phi^i)$ -Exponential Family : " $\Phi^i$ -Augmented"

### Example Tractable/Intractable Partitioning (p112)

#### Mixture Model

- ► Likelihood  $p(y|X = x) = (1 \alpha)\mathcal{N}(y; 0, \sigma_0^2\mathbb{I}) + \alpha\mathcal{N}(y; x, \sigma_1^2\mathbb{I})$
- Prior X ~ N(0, Σ)

### Example Tractable/Intractable Partitioning (p112)

#### Mixture Model

- Likelihood  $p(y|X = x) = (1 \alpha)\mathcal{N}(y; 0, \sigma_0^2 \mathbb{I}) + \alpha \mathcal{N}(y; x, \sigma_1^2 \mathbb{I})$
- ▶ Prior  $X \sim \mathcal{N}(0, \Sigma)$
- Posterior

$$p(x|y^{1}...,y^{n}) \propto \exp\left(-\frac{1}{2}x^{T}\Sigma^{-1}x\right) \prod_{i} p(y^{i}|X=x)$$

$$\propto \exp\left(-\frac{1}{2}x^{T}\Sigma^{-1}x\right) \exp\left\{\sum_{i} \log p(y^{i}|X=x)\right\}$$

$$Tractable=base$$
Intractable,  $d_{I}=|\mathcal{Y}|$ 

### Example Tractable/Intractable Partitioning (p112)

#### Mixture Model

- Likelihood  $p(y|X = x) = (1 \alpha)\mathcal{N}(y; 0, \sigma_0^2 \mathbb{I}) + \alpha \mathcal{N}(y; x, \sigma_1^2 \mathbb{I})$
- ▶ Prior  $X \sim \mathcal{N}(0, \Sigma)$
- Posterior

$$p(x|y^{1}...,y^{n}) \propto \exp\left(-\frac{1}{2}x^{T}\Sigma^{-1}x\right) \prod_{i} p(y^{i}|X=x)$$

$$\propto \exp\left(-\frac{1}{2}x^{T}\Sigma^{-1}x\right) \exp\left\{\sum_{i} \log p(y^{i}|X=x)\right\}$$

$$Tractable=base$$
Intractable,  $d_{I}=|\mathcal{Y}|$ 

" $\Phi^i$ —Augmented" corresponds to having a single observation and is a tractable case (2 components, otherwise  $2^{|\mathcal{Y}|}$ )



" $\Phi^i$ -Augmented", tractable

In the  $(\phi, \Phi^i)$ -Exponential Family

- Likelihood tractable
- Entropy tractable

" $\Phi^i$ -Augmented", tractable

In the  $(\phi, \Phi^i)$ -Exponential Family

- ► Likelihood tractable
- Entropy tractable

In what follows, use these 1-augmented families to

- ▶ approximate  $\mathbb{M}(G)$
- approximate the entropy

#### Notation

- $\mu = \mathbb{E}[\phi(x)], \ \tilde{\mu} = \mathbb{E}[\Phi(x)]$
- ► Same for base (Φ empty) or "Φ<sup>i</sup>−Augmented"

#### Notation

- $\mu = \mathbb{E}[\phi(x)], \ \tilde{\mu} = \mathbb{E}[\Phi(x)]$
- ► Same for base (Φ empty) or "Φ<sup>i</sup>−Augmented"

Projection operator ('cropping') on acceptable means

- acceptable mean:  $(\tau, \tilde{\tau}) \in \mathcal{M}(\phi, \Phi)$
- ▶ projection  $(\tau, \tilde{\tau}) \xrightarrow{\Pi^i} (\tau, \tilde{\tau}^i)$

#### Notation

- $\mu = \mathbb{E}[\phi(x)], \ \tilde{\mu} = \mathbb{E}[\Phi(x)]$
- ► Same for base (Φ empty) or "Φ<sup>i</sup>−Augmented"

### Projection operator ('cropping') on acceptable means

- acceptable mean:  $( au, ilde{ au}) \in \mathcal{M}(\phi, \Phi)$
- ▶ projection  $(\tau, \tilde{\tau}) \xrightarrow{\Pi^i} (\tau, \tilde{\tau}^i)$

### Approximating $\mathcal{M}(\phi, \Phi)$

$$\mathcal{L}(\phi, \Phi) = \{(\tau, \tilde{\tau}) | \tau \in \mathcal{M}(\phi), \quad \Pi^{i}(\tau, \tilde{\tau}) \in \mathcal{M}(\phi, \Phi^{i}) \quad \forall i = 1, ..., d_{I}\}$$
$$= \cap_{i} \{(\tau, \tilde{\tau}) | \tau \in \mathcal{M}(\phi), \quad \Pi^{i}(\tau, \tilde{\tau}) \in \mathcal{M}(\phi, \Phi^{i})\}$$

#### Notation

- $\mu = \mathbb{E}[\phi(x)], \ \tilde{\mu} = \mathbb{E}[\Phi(x)]$
- $\blacktriangleright \ \mathcal{M}(\phi, \Phi) = \{(\mu, \tilde{\mu}) \, | \, (\mu, \tilde{\mu}) = \mathbb{E} \left[ (\phi(x), \Phi(x)) \right] \text{ for some } p \}$
- ► Same for base (Φ empty) or "Φ<sup>i</sup>−Augmented"

### Projection operator ('cropping') on acceptable means

- acceptable mean:  $(\tau, \tilde{\tau}) \in \mathcal{M}(\phi, \Phi)$
- ▶ projection  $(\tau, \tilde{\tau}) \stackrel{\Pi^i}{\rightarrow} (\tau, \tilde{\tau}^i)$

### Approximating $\mathcal{M}(\phi, \Phi)$

$$\mathcal{L}(\phi, \Phi) = \{(\tau, \tilde{\tau}) | \tau \in \mathcal{M}(\phi), \quad \Pi^{i}(\tau, \tilde{\tau}) \in \mathcal{M}(\phi, \Phi^{i}) \quad \forall i = 1, ..., d_{I}\}$$
$$= \cap_{i} \{(\tau, \tilde{\tau}) | \tau \in \mathcal{M}(\phi), \quad \Pi^{i}(\tau, \tilde{\tau}) \in \mathcal{M}(\phi, \Phi^{i})\}$$

### Remark:

- intersection of convex sets
- $\blacktriangleright \mathcal{M}(\phi, \Phi) \subseteq \mathcal{L}(\phi, \Phi)$



### Approximating $\mathcal{M}$ and $H(\tau, \tilde{\tau})$ (pp. 114-115)

Approximating  ${\mathcal M}$ 

$$\mathcal{L}(\phi, \Phi) = \{(\tau, \tilde{\tau}) | \tau \in \mathcal{M}(\phi), \quad \Pi^i(\tau, \tilde{\tau}) \in \mathcal{M}(\phi, \Phi^i) \quad \forall i = 1, ..., d_I \}$$

# Approximating $\mathcal{M}$ and $H(\tau, \tilde{\tau})$ (pp. 114-115)

Approximating  $\mathcal{M}$ 

$$\mathcal{L}(\phi, \Phi) = \{(\tau, \tilde{\tau}) | \tau \in \mathcal{M}(\phi), \quad \Pi^i(\tau, \tilde{\tau}) \in \mathcal{M}(\phi, \Phi^i) \quad \forall i = 1, ..., d_I \}$$

Approximating  $H(\tau, \tilde{\tau})$ 

▶  $H(\tau, \tilde{\tau})$  is not tractable, but  $H(\tau, \tilde{\tau}^I)$  tractable

$$H_{ep}(\tau, \tilde{\tau}) = H(\tau) + \sum_{l} \left[ H(\tau, \tilde{\tau}^{l}) - H(\tau) \right]$$
$$= \sum_{l=1}^{d_{l}} H(\tau, \tilde{\tau}^{l}) - (d_{l} - 1) H(\tau)$$

# Approximating $\mathcal{M}$ and $H(\tau, \tilde{\tau})$ (pp. 114-115)

Approximating  $\mathcal{M}$ 

$$\mathcal{L}(\phi, \Phi) = \{(\tau, \tilde{\tau}) | \tau \in \mathcal{M}(\phi), \quad \Pi^{i}(\tau, \tilde{\tau}) \in \mathcal{M}(\phi, \Phi^{i}) \quad \forall i = 1, ..., d_{I}\}$$

Approximating  $H(\tau, \tilde{\tau})$ 

 $\blacktriangleright$   $H(\tau, \tilde{\tau})$  is not tractable, but  $H(\tau, \tilde{\tau}^I)$  tractable

$$H_{ep}(\tau, \tilde{\tau}) = H(\tau) + \sum_{l} \left[ H(\tau, \tilde{\tau}^{l}) - H(\tau) \right]$$
$$= \sum_{l=1}^{d_{l}} H(\tau, \tilde{\tau}^{l}) - (d_{l} - 1) H(\tau)$$

Final optimization problem

$$\max_{(\tau,\tau')\in\mathcal{L}(\phi,\Phi)} \left\{ \langle \tau,\theta\rangle + \langle \tilde{\tau},\tilde{\theta}\rangle + H_{ep}(\tau,\tau') \right\}, \text{ eq. (4.69)}$$

## Example 4.9 - Sum-Product and Bethe Approximation

Pairwise Markov random field on Graph G = (V, E)

- ▶ base:  $p(x; \theta, \overrightarrow{0}) \propto \prod_{s \in V} \exp(\theta_s(x_s))$
- $\Phi^{uv}$  augmented (one edge!):

$$p(x; \theta, \tilde{\theta}^{uv}) \propto \left[\prod_{s \in V} \exp\left(\theta_s(x_s)\right)\right] \exp\left(\tilde{\theta}^{uv}(x_u, x_v)\right)$$

## Example 4.9 - Sum-Product and Bethe Approximation

Pairwise Markov random field on Graph G = (V, E)

- ▶ base:  $p(x; \theta, \overrightarrow{0}) \propto \prod_{s \in V} \exp(\theta_s(x_s))$
- ▶  $\Phi^{uv}$  augmented (one edge!):  $p(x; \theta, \tilde{\theta}^{uv}) \propto \left[\prod_{s \in V} \exp(\theta_s(x_s))\right] \exp\left(\tilde{\theta}^{uv}(x_u, x_v)\right)$

Calulating entropies (for a parameterization through means)

$$H(\tau_1...\tau_m) = \sum_{s \in V} H(\tau_s)$$

► 
$$H(\tau_1...\tau_m, \tau_{uv}) = \sum_{s \in V} H(\tau_s) + \underbrace{[H(\tau_{uv}) - H(\tau_u) - H(\tau_v)]}_{-I(\tau_{uv})} = H_{ep}(\tau_1...\tau_m, \tau_{uv})$$

## Example 4.9 - Sum-Product and Bethe Approximation

Pairwise Markov random field on Graph G = (V, E)

$$\mathcal{L}(\phi, \Phi) = \left\{ (\tau, \tilde{\tau}) | \underbrace{\tau \in \mathcal{M}(\phi)}_{\text{normalization}}, \underbrace{(\tau, \tau_{uv}) \in \mathcal{M}(\phi, \Phi^{uv})}_{\text{marginalization}}, \forall (u, v) \in E \right\}$$

$$= \mathbb{L}(G)$$

Recall

$$\mathcal{L}(\phi, \Phi) = \bigcap_{i} \left\{ (\tau, \tilde{\tau}) | \tau \in \mathcal{M}(\phi), \quad \Pi^{i}(\tau, \tilde{\tau}) \in \mathcal{M}(\phi, \Phi^{i}) \right\}$$

Recall

$$\mathcal{L}(\phi, \Phi) = \bigcap_{i} \left\{ (\tau, \tilde{\tau}) | \tau \in \mathcal{M}(\phi), \quad \Pi^{i}(\tau, \tilde{\tau}) \in \mathcal{M}(\phi, \Phi^{i}) \right\}$$

#### Another construction

▶ 1-Expand (and decouple)

$$\left\{ \boldsymbol{\tau} \in \mathcal{M}(\phi) \right\} \otimes_{i} \left\{ \left( \boldsymbol{\eta}^{i}, \boldsymbol{\tilde{\tau}}^{i} \right) | \boldsymbol{\Pi}^{i} \left( \boldsymbol{\eta}^{i}, \boldsymbol{\tilde{\tau}}^{i} \right) \in \mathcal{M}(\phi, \boldsymbol{\Phi}^{i}) \right\}$$

Recall

$$\mathcal{L}(\phi, \Phi) = \bigcap_{i} \left\{ (\tau, \tilde{\tau}) | \tau \in \mathcal{M}(\phi), \quad \Pi^{i}(\tau, \tilde{\tau}) \in \mathcal{M}(\phi, \Phi^{i}) \right\}$$

#### Another construction

► 1-Expand (and decouple)

$$\left\{\tau\in\mathcal{M}(\phi)\right\}\otimes_{i}\left\{\left(\eta^{i},\tilde{\tau}^{i}\right)|\Pi^{i}\left(\eta^{i},\tilde{\tau}^{i}\right)\in\mathcal{M}(\phi,\Phi^{i})\right\}$$

Expansion from  $(\tau, \tilde{\tau}) \rightarrow \{\tau, (\eta^i, \tilde{\tau}^i), i = 1..d_I\}$ 

Recall

$$\mathcal{L}(\phi, \Phi) = \bigcap_{i} \left\{ (\tau, \tilde{\tau}) | \tau \in \mathcal{M}(\phi), \quad \Pi^{i}(\tau, \tilde{\tau}) \in \mathcal{M}(\phi, \Phi^{i}) \right\}$$

#### Another construction

1-Expand (and decouple)

$$\{\tau \in \mathcal{M}(\phi)\} \otimes_i \{ (\eta^i, \tilde{\tau}^i) | \Pi^i (\eta^i, \tilde{\tau}^i) \in \mathcal{M}(\phi, \Phi^i) \}$$
 Expansion from  $(\tau, \tilde{\tau}) \to \{\tau, (\eta^i, \tilde{\tau}^i), i = 1..d_I \}$ 

▶ 2-Couple back

$$\{ au \in \mathcal{M}(\phi)\} \otimes_i \left\{ \left(\eta^i, ilde{ au}^i\right) | \Pi^i\left(\eta^i, ilde{ au}^i\right) \in \mathcal{M}(\phi, \Phi^i) \right\} \text{ and } \ orall i, j \quad ( au_i, ilde{ au}_i) = ( au_j, ilde{ au}_j)$$

No secret here, just more variables, coupled together.



### Constrained optimization problem

$$\max_{\left\{\tau, (\eta^i, \tilde{\tau}^i)\right\}} \left\{ \langle \tau, \theta \rangle + \sum_i \langle \tilde{\tau}^i, \tilde{\theta}^i \rangle + \underbrace{H(\tau) + \sum_i \left[H(\eta^i, \tilde{\tau}^i) - H(\eta^i)\right]}_{F(\tau, (\eta^i, \tilde{\tau}^i))} \right\}$$

subject to 
$$\left(\eta^i, ilde{ au}^i\right) \in \mathcal{M}(\phi, \Phi^i)$$
 and  $au = \eta^i$ 

### Constrained optimization problem

$$\max_{\left\{\tau,(\eta^{i},\tilde{\tau}^{i})\right\}} \left\{ \langle \tau,\theta \rangle + \sum_{i} \langle \tilde{\tau}^{i},\tilde{\theta}^{i} \rangle + F(\tau,(\eta^{i},\tilde{\tau}^{i})) \right\}$$
subject to  $(\eta^{i},\tilde{\tau}^{i}) \in \mathcal{M}(\phi,\Phi^{i})$ 
and  $\tau \in \mathcal{M}(\phi)$ 
and  $\tau = \eta^{i}$ 

### Associated Partial Lagrangian

$$L(\tau;\lambda) = \langle \tau, \theta \rangle + \sum_{i} \langle \tilde{\tau}^{i}, \tilde{\theta}^{i} \rangle + F(\tau, (\eta^{i}, \tilde{\tau}^{i})) + \sum_{i} \langle \lambda^{i}, \tau - \eta^{i} \rangle$$
subject to  $(\eta^{i}, \tilde{\tau}^{i}) \in \mathcal{M}(\phi, \Phi^{i})$ 
and  $\tau \in \mathcal{M}(\phi)$ 

$$\begin{split} \textit{L}(\tau;\lambda) &= \langle \tau,\theta \rangle + \sum_{i} \langle \tilde{\tau}^{i},\tilde{\theta}^{i} \rangle + \textit{F}(\tau,(\eta^{i},\tilde{\tau}^{i})) + \sum_{i} \langle \lambda^{i},\tau - \eta^{i} \rangle \\ \text{subject to } \left(\eta^{i},\tilde{\tau}^{i}\right) &\in \mathcal{M}(\phi,\Phi^{i}) \\ \text{and } \tau &\in \mathcal{M}(\phi) \end{split}$$

$$L(\tau; \lambda) = \langle \tau, \theta \rangle + \sum_{i} \langle \tilde{\tau}^{i}, \tilde{\theta}^{i} \rangle + F(\tau, (\eta^{i}, \tilde{\tau}^{i})) + \sum_{i} \langle \lambda^{i}, \tau - \eta^{i} \rangle$$
subject to  $(\eta^{i}, \tilde{\tau}^{i}) \in \mathcal{M}(\phi, \Phi^{i})$ 
and  $\tau \in \mathcal{M}(\phi)$ 

For an optimal solution  $\left\{ au, (\eta^i, ilde{ au}^i), i=1..d_I
ight\}$ 

$$abla_{ au}L( au,\lambda) = 0$$
 $abla_{(\eta^i, au^i)}L( au,\lambda) = 0, \quad \text{for } i = 1...d_I$ 
 $abla_{\lambda}L( au,\lambda) = 0 \quad \text{(constraint)}$ 

$$L(\tau;\lambda) = \langle \tau, \theta \rangle + \sum_{i} \langle \tilde{\tau}^{i}, \tilde{\theta}^{i} \rangle + F(\tau, (\eta^{i}, \tilde{\tau}^{i})) + \sum_{i} \langle \lambda^{i}, \tau - \eta^{i} \rangle$$
subject to  $(\eta^{i}, \tilde{\tau}^{i}) \in \mathcal{M}(\phi, \Phi^{i})$  and  $\tau \in \mathcal{M}(\phi)$ 

$$\begin{split} \textit{L}(\tau;\lambda) &= \langle \tau,\theta \rangle + \sum_{i} \langle \tilde{\tau}^{i}, \tilde{\theta}^{i} \rangle + \textit{F}(\tau,(\eta^{i},\tilde{\tau}^{i})) + \sum_{i} \langle \lambda^{i},\tau - \eta^{i} \rangle \\ \text{subject to } \left(\eta^{i},\tilde{\tau}^{i}\right) &\in \mathcal{M}(\phi,\Phi^{i}) \text{ and } \tau \in \mathcal{M}(\phi) \end{split}$$

For an optimal solution  $\left\{ au, (\eta^i, ilde{ au}^i), i=1..d_I
ight\}$ 

$$L(\tau;\lambda) = \langle \tau, \theta \rangle + \sum_{i} \langle \tilde{\tau}^{i}, \tilde{\theta}^{i} \rangle + F(\tau, (\eta^{i}, \tilde{\tau}^{i})) + \sum_{i} \langle \lambda^{i}, \tau - \eta^{i} \rangle$$
subject to  $(\eta^{i}, \tilde{\tau}^{i}) \in \mathcal{M}(\phi, \Phi^{i})$  and  $\tau \in \mathcal{M}(\phi)$ 

For an optimal solution  $\left\{ au, (\eta^i, ilde{ au}^i), i = 1..d_I\right\}$ 

$$\nabla_{\tau} L(\tau, \lambda) = 0$$
  
\Rightarrow q(x; \theta, \lambda) \propto f\_0(x) \exp\{\lambda\theta + \sum\_i \lambda\_i, \phi(x)\rangle\} \in \mathcal{M}(\phi)

$$L(\tau;\lambda) = \langle \tau, \theta \rangle + \sum_{i} \langle \tilde{\tau}^{i}, \tilde{\theta}^{i} \rangle + F(\tau, (\eta^{i}, \tilde{\tau}^{i})) + \sum_{i} \langle \lambda^{i}, \tau - \eta^{i} \rangle$$
subject to  $(\eta^{i}, \tilde{\tau}^{i}) \in \mathcal{M}(\phi, \Phi^{i})$  and  $\tau \in \mathcal{M}(\phi)$ 

For an optimal solution  $\left\{ au, (\eta^i, ilde{ au}^i), i = 1..d_I\right\}$ 

$$\begin{array}{l} \nabla_{\tau} L(\tau, \lambda) = 0 \\ \Rightarrow q(x; \theta, \lambda) \propto f_0(x) \exp\left\{ \langle \theta + \sum_i \lambda_i, \phi(x) \rangle \right\} \in \mathcal{M}(\phi) \end{array}$$

$$\begin{array}{l} \nabla_{(\eta^{i},\tilde{\tau}^{i})}L(\tau,\lambda) = 0 \\ \Rightarrow q^{i}(x;\theta,\tilde{\theta}^{i},\lambda) \propto f_{0}(x)\exp\left\{\langle \theta + \sum_{l \neq i}\lambda_{i},\phi(x)\rangle + \langle \tilde{\theta}^{i},\Phi^{i}(x)\rangle\right\} \in \mathcal{M}(\phi,\Phi^{i}) \end{array}$$

$$\begin{split} \textit{L}(\tau;\lambda) &= \langle \tau,\theta \rangle + \sum_{i} \langle \tilde{\tau}^{i},\tilde{\theta}^{i} \rangle + \textit{F}(\tau,(\eta^{i},\tilde{\tau}^{i})) + \sum_{i} \langle \lambda^{i},\tau - \eta^{i} \rangle \\ \text{subject to } \left(\eta^{i},\tilde{\tau}^{i}\right) &\in \mathcal{M}(\phi,\Phi^{i}) \text{ and } \tau \in \mathcal{M}(\phi) \end{split}$$

For an optimal solution  $\left\{ au, (\eta^i, \tilde{ au}^i), i = 1..d_I \right\}$ 

$$\begin{array}{l} \nabla_{\tau} \mathcal{L}(\tau,\lambda) = 0 \\ \Rightarrow q(x;\theta,\lambda) \propto f_0(x) \exp\left\{ \langle \theta + \sum_i \lambda_i, \phi(x) \rangle \right\} \in \mathcal{M}(\phi) \end{array}$$

$$\begin{array}{l} \nabla_{(\eta^{i},\tilde{\tau}^{i})}L(\tau,\lambda) = 0 \\ \Rightarrow q^{i}(x;\theta,\tilde{\theta}^{i},\lambda) \propto f_{0}(x)\exp\left\{\langle \theta + \sum_{l \neq i}\lambda_{i},\phi(x)\rangle + \langle \tilde{\theta}^{i},\Phi^{i}(x)\rangle\right\} \in \mathcal{M}(\phi,\Phi^{i}) \end{array}$$

$$\nabla_{\lambda} L(\tau, \lambda) = 0 \Rightarrow \tau = \mathbb{E}_{q}[\phi(x)] \equiv \mathbb{E}_{q^{i}}[\phi(x)] = \eta^{i}$$



## **EP Summary**

### Expectation-propagation (EP) updates:

- (1) At iteration n = 0, initialize the Lagrange multiplier vectors  $(\lambda^1, \dots, \lambda^{d_I})$ .
- (2) At each iteration,  $n=1,2,\ldots,$  choose some index  $i(n)\in\{1,\ldots,d_I\},$  and
  - (a) Using Equation (4.78), form the augmented distribution  $q^{i(n)}$  and compute the mean parameter

$$\eta^{i(n)} := \int q^{i(n)}(x)\phi(x)\nu(dx) = \mathbb{E}_{q^{i(n)}}[\phi(X)]. \quad (4.80)$$

(b) Using Equation (4.77), form the base distribution q and adjust  $\lambda^{i(n)}$  to satisfy the moment-matching condition

$$\mathbb{E}_q[\phi(X)] = \eta^{i(n)}.\tag{4.81}$$



### Example 1:

▶ simple graph: (1)-(2)

$$p(x_1, x_2) \propto \exp \left( \theta_1(x_1) + \theta_2(x_2) + \underbrace{\theta(x_1, x_2)}_{intractable} \right)$$

#### Example 1:

▶ simple graph: (1)-(2)

$$p(x_1, x_2) \propto \exp \left(\theta_1(x_1) + \theta_2(x_2) + \underbrace{\theta(x_1, x_2)}_{intractable}\right)$$

#### Example 1:

▶ simple graph: (1)-(2)

$$p(x_1, x_2) \propto \exp \left(\theta_1(x_1) + \theta_2(x_2) + \underbrace{\theta(x_1, x_2)}_{intractable}\right)$$

• 
$$q(x_1, x_2; \theta, \lambda) \propto \exp(\theta_1(x_1) + \lambda_{12}(x_1)) \exp(\theta_2(x_2) + \lambda_{12}(x_2))$$

• 
$$q^{12}(x_1, x_2; \theta, \lambda) \propto \exp(\theta_1(x_1) + \theta_2(x_2) + \theta(x_1, x_2))$$

#### Example 1:

▶ simple graph: (1)-(2)

$$p(x_1, x_2) \propto \exp \left(\theta_1(x_1) + \theta_2(x_2) + \underbrace{\theta(x_1, x_2)}_{intractable}\right)$$

- $q^{12}(x_1, x_2; \theta, \lambda) \propto \exp(\theta_1(x_1) + \theta_2(x_2) + \theta(x_1, x_2))$
- $\mathbb{E}_{q^{12}(x_1)}(\phi(x_1)) = \mathbb{E}_{q(x_1)}(\phi(x_1))$  (message passing , board)

### Example 2: Mixture of Gaussians

- $\blacktriangleright \ \mathcal{M}(\phi, \Phi) = \left\{ \mathbb{E}[X], \mathbb{E}[XX^T], \mathbb{E}\left[\log \ p(y^i|X)\right], \ i = 1..n \right\}$
- ▶ Lagrange multipliers  $(\lambda^i, \Lambda^i) \in R^m \times R^{m \times m}$

### Example 2: Mixture of Gaussians

- $\blacktriangleright \ \mathcal{M}(\phi, \Phi) = \left\{ \mathbb{E}[X], \mathbb{E}[XX^T], \mathbb{E}\left[\log \ p(y^i|X)\right], \ i = 1..n \right\}$
- ▶ Lagrange multipliers  $(\lambda^i, \Lambda^i) \in R^m \times R^{m \times m}$

### Example 2: Mixture of Gaussians

- $\blacktriangleright \ \mathcal{M}(\phi, \Phi) = \left\{ \mathbb{E}[X], \mathbb{E}[XX^T], \mathbb{E}\left[\log \ p(y^i|X)\right], \ i = 1..n \right\}$
- ▶ Lagrange multipliers  $(\lambda^i, \Lambda^i) \in R^m \times R^{m \times m}$

- ▶  $q(x, \Sigma; (\lambda^i, \Lambda^i)) \propto \exp\left\{\langle \sum_i \lambda^i, x \rangle + \langle -\frac{1}{2}\Sigma^{-1} + \sum_i \Lambda^i, xx^T \rangle\right\}$
- $\begin{array}{l} \bullet \quad q^{i}(x,\Sigma;(\lambda^{i},\Lambda^{i})) \propto \\ \exp \left\{ \langle \sum_{l \neq i} \lambda^{l}, x \rangle + \langle -\frac{1}{2} \Sigma^{-1} + \sum_{l \neq i} \Lambda^{l}, x x^{T} \rangle + \langle \tilde{\theta}^{i}, \log \ p(y^{i}|x) \rangle \right\} \end{array}$

## That's it for today