1. Barycentres dans un espace affine

1. NOTATION. On considère un espace affine réel $\mathscr E$ de dimension finie de direction E.

1.1. Définitions et exemples

- 2. PROPOSITION. Soient $(A_i)_{i\in I}$ une famille de points de $\mathscr E$ et $(\alpha_i)_{i\in I}$ une famille réelle. Pour un point M, on considère le vecteur $v_M \coloneqq \sum_{i\in I} \alpha_i \overline{MA_i} \in E$. Alors
 - si $\sum_{i\in I} \lambda_i = 0$, alors les vecteurs v_M avec $M \in \mathscr{E}$ sont égaux.
 - sinon il existe un unique point $G \in \mathcal{E}$ tel que $v_G = 0$. Le point G est le barycentre du système pondéré $(A_i, \alpha_i)_{i \in I}$. On le note $\text{bar}\{A_i, \alpha_i\}_{i \in I}$. Les réels α_i sont les coefficients du barycentre.
- 3. Proposition. Avec les mêmes notations et dans le second cas, tout point $O \in \mathscr{E}$ vérifie l'égalité

$$\left(\sum_{i\in I}\alpha_i\right)\overrightarrow{OG} = \sum_{i\in I}\alpha_i\overrightarrow{OA_i}.$$

- 4. EXEMPLE. Dans l'espace \mathbb{R}^2 , le barycentre des quatre points $(\pm 1, \pm 1)$ avec les coefficients $\alpha_i = \frac{1}{4}$ est l'origine.
- 5. DÉFINITION. Lorsque les réels α_i sont tous égaux, on parle d'isobarycentre.
- 6. Exemple. L'isobarycentre de deux points A et B est le milieu du segment [AB].
- 7. PROPOSITION (homogénéité). Soient $A_1, \ldots, A_k \in \mathcal{E}$ des points et $\alpha_1, \ldots, \alpha_k \in \mathbf{R}$ des réels de somme non nulle. Soit $\lambda \in \mathbf{R}^*$ un réel non nul.

$$\operatorname{bar}\{(A_1,\lambda\alpha_1),\ldots,(A_k,\lambda\alpha_k)\}=\operatorname{bar}\{(A_1,\alpha_1),\ldots,(A_k,\alpha_k)\}.$$

8. Proposition (associativité). Pour chaque $i \in [\![1,r]\!]$, soient $A_{i,1},\ldots,A_{i,k_i} \in \mathscr{E}$ des points et $\alpha_{i,1},\ldots,\alpha_{i,k_i} \in \mathbf{R}$ des réels de somme non nulle; on note

$$B_i := \text{bar}\{(A_{i,1}, \alpha_{i,1}), \dots, (A_{i,k_i}, \alpha_{i,k_i})\}.$$

Alors

$$\operatorname{bar}\{(B_i, \sum_{i=1}^{k_i} \alpha_{i,j})\}_{i \in [\![1,r]\!]} = \operatorname{bar}\{(A_{i,j}, \alpha_{i,j})\}_{i \in [\![1,r]\!], j \in [\![1,k_r]\!]}.$$

- g. COROLLAIRE. Soit $\{(A,\alpha),(B,\beta),(C,\gamma)\}$ un système pondéré avec $\alpha+\beta+\gamma\neq 0$ et $\beta+\gamma\neq 0$. On note G son barycentre. Alors le point d'intersection des droites (AG) et (BC) est le barycentre du système $\{(B,\beta),(C,\gamma)\}$.
- 10. PROPOSITION. Soit $(P^k)_{k\in\mathbb{N}}$ une suite de \mathbb{C}^n qu'en notant $P^k=(z_1^k,\ldots,z_n^k)$ pour tout entier $k\in\mathbb{N}$, elle satisfasse la relation

$$P^{k+1} = \left(\frac{z_1^k + z_2^k}{2}, \frac{z_2^k + z_3^k}{2}, \dots, \frac{z_n^k + z_1^k}{2}\right), \qquad k \in \mathbf{N}.$$

Alors la suite $(P^k)_{k\in\mathbb{N}}$ converge vers l'isobarycentre des points z_i^0 .

1.2. Liens avec la structure affine

11. DÉFINITION. Une sous-espace affine de $\mathscr E$ est une partie $\mathscr F\subset\mathscr E$ soit vide soit vérifiant qu'il existe un point $B\in\mathscr F$ tel que l'ensemble $\{\overrightarrow{BM}\mid M\in\mathscr F\}\subset E$ soit un

sous-espace vectoriel de E

- 12. Théorème. Soit $\mathscr{F}\subset\mathscr{E}$ une partie non vide. Alors les points sont équivalents :
 - la partie \mathscr{F} est un sous-espace affine de \mathscr{E} ;
 - tout barycentre d'une famille des points de \mathscr{F} appartient à \mathscr{F} ;
 - pour tous points $A, B \in \mathscr{F}$ et réels $\alpha, \beta \in \mathbf{R}$ avec $\alpha + \beta = 1$, on a $\lambda A + \beta B \in \mathscr{F}$.
- 13. COROLLAIRE. L'espace affine engendré par une partie $A \subset \mathscr{E}$ est l'ensemble des barycentres des familles de points de A.
- 14. DÉFINITION. Soit \mathscr{F} un espace affine de direction F. Une application $\varphi \colon \mathscr{E} \longrightarrow \mathscr{F}$ est affine s'il existe un point $O \in E$ et une application linéaire $f \colon E \longrightarrow F$ tels que

$$\forall M \in \mathscr{E}, \qquad \overrightarrow{f(O)f(M)} = \varphi(\overrightarrow{OM}).$$

Une telle application f ne dépend pas du point O et elle est unique : on la note $\vec{\varphi}$.

- 15. EXEMPLE. Dans le cas $\mathscr{E} = \mathscr{F} = \mathbf{R}$, les applications affines $\mathbf{R} \longrightarrow \mathbf{R}$ sont celles de la forme $x \longmapsto ax + b$ avec $a, b \in \mathbf{R}$.
- 16. Théorème. Soit $\varphi \colon \mathscr{E} \longrightarrow \mathscr{F}$ une application.
 - On suppose qu'elle est affine. Pour tout système pondéré $\{(A_1, \alpha_1), \dots, (A_k, \alpha_k)\}$ de $\mathscr E$ avec $\alpha_1 + \dots + \alpha_k \neq 0$, on a

$$\varphi(\operatorname{bar}\{(A_1,\alpha_1),\ldots,(A_k,\alpha_k)\}) = \operatorname{bar}\{(\varphi(A_1),\alpha_1),\ldots,(\varphi(A_k),\alpha_k)\}.$$

– On suppose que, pour tous points $A, B \in \mathcal{E}$ et tout réel $\alpha \in \mathbf{R}$, on a

$$\varphi(\operatorname{bar}\{(A,\alpha),(B,1-\alpha)\}) = \operatorname{bar}\{(\varphi(A),\alpha),(\varphi(B),1-\alpha)\}.$$

Alors l'application φ est affine.

17. COROLLAIRE. Une application affine envoie un segment sur un segment. Une application affine préservant les points d'un système pondéré préserve aussi son barycentre.

1.3. Coordonnées barycentriques

- 18. DÉFINITION. Un repère affine de \mathscr{E} est une famille (A_0, \ldots, A_n) de \mathscr{E} telle que la famille $(\overline{A_0}, \overline{A_1}, \ldots, \overline{A_0}, \overline{A_n})$ soit une base de E.
- 19. Remarque. Si l'espace vectoriel E est de dimension n, alors tout repère affine de $\mathscr E$ est de cardinal n+1.
- 20. Théorème. Soit (A_0, \ldots, A_n) un repère affine de \mathscr{E} . Alors tout point $M \in \mathscr{E}$ est le barycentre d'un système pondéré $\{(A_0, \alpha_0), \ldots, (A_n, \alpha_n)\}$ avec $\alpha_0, \ldots, \alpha_n \in \mathbf{R}$. Si l'on impose $\alpha_1 + \cdots + \alpha_n = 1$, alors le n-uplet $(\alpha_0, \ldots, \alpha_n)$ est unique et il est appelé les coordonnées barycentriques du point M dans le repère (A_0, \ldots, A_n) .
- 21. EXEMPLE. Dans l'espace \mathbf{R}^n , on considère sa base canonique $(\varepsilon_1, \ldots, \varepsilon_n)$. Alors les coordonnées d'un point $(x_1, \ldots, x_n) \in \mathbf{R}^n$ dans le repère affine $(0, \varepsilon_1, \ldots, \varepsilon_n)$ sont le n-uplet (x_1, \ldots, x_n) .

2. Notion de convexité

2.1. Parties convexes

22. DÉFINITION. Une partie $\mathscr{A} \subset \mathscr{F}$ est convexe si, pour tous points $A, B \in \mathscr{A}$, le segment [A, B] est inclus dans \mathscr{A} .

- 23. EXEMPLE. Les segments sont convexes. Les boules d'un espace vectoriel normé (et pas métrique putain!) sont convexes.
- 24. Exemple. Les convexes de l'espace ${\bf R}$ sont les intervalles.
- 25. Proposition. Une partie est convexe si et seulement si elle est étoilée par rapport à tous ces points.
- 26. Remarque. Dans un espace vectoriel normé, un convexe est connexe par arcs.
- 27. Proposition. Toute intersection de convexes est convexes.
- 28. Proposition. L'image et la pré-image d'un convexe par une application affine est convexe.

2.2. Enveloppes convexes

- 29. DÉFINITION. L'enveloppe convexe d'une partie $S \subset \mathscr{E}$ est l'intersection de tous les convexes la contenant, notée Conv $S \subset \mathscr{E}$.
- 30. EXEMPLE. Dans l'espace \mathbb{R}^2 , l'enveloppe convexe des trois points (1,0), (-1,0) et (0,1) est l'intérieur du triangle dont les sommets sont ces trois points.
- 31. Proposition. L'enveloppe convexe d'une partie de $\mathscr E$ est le plus petit convexe qui la contient.
- 32. Théorème. L'enveloppe convexe d'une partie $S\subset\mathscr{E}$ est l'ensemble des barycentres à coefficients positifs ou nuls de points de S.
- 33. Proposition. Si la partie $S \subset \mathscr{E}$ est convexe et compacte, alors $S = \operatorname{Conv} \partial S$.
- 34. Théorème (Carathéodory). Dans un espace affine de dimension n, l'enveloppe convexe d'une partie S est l'ensemble des barycentres à coefficients positifs ou nuls de familles de n+1 points de S.
- $35.\ \mbox{APPLICATION}.$ Dans un espace vectoriel normé de dimension finie, l'enveloppe convexe d'un compact est compacte.
- 36. Exemple. L'enveloppe Conv $\mathrm{O}(n)\subset \mathscr{M}_n(\mathbf{R})$ est compacte.

2.3. Points extrémaux et théorème de Krein-Milmann

37. DÉFINITION. Un point extrémal d'une partie convexe $S \subset \mathscr{E}$ est un point $M \in S$ tel que, pour tous points $A, B \in S$ et tout réel $t \in [0, 1]$, on ait

$$M = tA + (1 - t)B \implies t \in \{0, 1\}.$$

On note $\operatorname{Ext} S$ l'ensemble des points extrémaux de S.

- 38. Exemple. Dans une espace vectoriel normé E, si la partie $B \subset E$ désigne une boule fermée, alors $\operatorname{Ext} B = \partial B$.
- 39. Proposition. Soient $S\subset \mathscr E$ une partie convexe et $M\in S$ un point. Alors les points suivants sont équivalents :
 - $-M \in \operatorname{Ext} S$;
 - la partie $S \setminus \{M\}$ est convexe.
- 40. Théorème (Krein-Milmann). Tout convexe compact non vide $S\subset \mathscr{E}$ vérifie $S=\operatorname{Conv}(\operatorname{Ext} S).$
- 41. PROPOSITION. Soit $S \subset \mathbf{R}^n$ une partie avec S = Conv(Ext S). Alors le groupe des isométries stabilisant Conv S stabilise aussi S et, en particulier, l'isobarycentre de S. 42. Application. Les groupes des isométries positives de l'espace stabilisant le cube unité est isomorphe au groupe \mathfrak{S}_4 et celui des isométries positives et négatives est

isomorphe au groupe $\mathfrak{S}_4 \times \mathbf{Z}/2\mathbf{Z}$.

3. Applications de la convexité

3.1. Fonctions convexes et optimisation

43. DÉFINITION. On considère un **R**-espace vectoriel E. Soit $C \subset E$ un convexe. Une fonction $f \colon C \longrightarrow \mathbf{R}$ est convexe si

$$\forall x, y \in C, \ \forall \lambda \in [0, 1], \qquad f(\lambda x + (1 - \lambda)y) \leq \lambda f(x) + (1 - \lambda)f(y).$$

Lorsque l'inégalité est stricte avec $x \neq y$ et $\lambda \in [0,1[$, elle est strictement convexe.

- 44. Exemple. Les fonctions $x \in \mathbf{R} \longrightarrow x^2$ et $x > 0 \longrightarrow -\ln x$ sont strict. convexes.
- 45. Proposition. Une fonction deux fois dérivable est convexe si et seulement si sa dérivée seconde est positive. Une fonction convexe sur un intervalle $I \subset \mathbf{R}$ est continue sur son intérieur \mathring{I} .
- 46. PROPOSITION. Soient $C \subset E$ un convexe et $f: C \longrightarrow \mathbf{R}$ une fonction strictement convexe. Alors elle admet au plus un minimum.
- 47. Contre-exemple. La seule convexité ne suffit pas à assurer au plus un minimum (le fonction nulle sur \mathbf{R}). La stricte convexité n'assure pas l'existence d'un minimum (la fonction exponentielle sur \mathbf{R}).
- 48. APPLICATION. Soient E un espace euclidien, $b \in E$ un vecteur et $u \in \mathcal{L}(E)$ un endomorphisme symétrique défini positif. Alors la fonction

$$f : \begin{vmatrix} E \longrightarrow \mathbf{R}, \\ x \longmapsto \frac{1}{2} \langle u(x), x \rangle - \langle b, x \rangle \end{vmatrix}$$

admet un unique point minimum.

- 49. PROPOSITION. Soient H un espace de Hilbert et $C \subset H$ une partie convexe non bornée. Soit $J \colon C \longrightarrow \mathbf{R}$ une fonction convexe, continue et coercive. Alors cette dernière atteint sa borne inférieure.
- 50. Proposition. Soient $C \subset E$ un convexe ouvert et $f \colon C \longrightarrow \mathbf{R}$ une fonction convexe différentiable. Alors tout point critique de f en est un minimum global.

3.2. Inégalités de convexité

51. PROPOSITION (inégalité arithmético-géométrique). Soient $x_1, \ldots, x_n \ge 0$ des nombres réels positifs. Alors

$$(x_1 \cdots x_n)^{1/n} \leqslant \frac{x_1 + \cdots + x_n}{n}.$$

52. LEMME. Pour tous réels p,q>0 et $x,y\geqslant 0$ avec 1/p+1/q=1, on a

$$xy \leqslant x^p/p + y^q/q$$
.

53. THÉORÈME (inégalités de Hölder). Soient p,q>0 deux nombres réels tels que 1/p+1/q=1. Soient $a_1,\ldots,a_n,b_1,\ldots,b_n\geqslant 0$ des nombres réels positifs. Alors

$$\sum_{i=1}^{n} a_i b_i \leqslant \left(\sum_{i=1}^{n} a_i^p\right)^{1/p} \left(\sum_{i=1}^{n} b_i^q\right)^{1/q}.$$

54. THÉORÈME (Minkowski). Soient $p \ge 1$ un nombre réel et $x_1, \ldots, x_n, y_1, \ldots, y_n \ge 0$

des nombres réels positifs. Alors

$$\left(\sum_{i=1}^{n} (x_i + y_i)^p\right)^{1/p} \leqslant \left(\sum_{i=1}^{n} x_i^p\right)^{1/p} \left(\sum_{i=1}^{n} y_i^p\right)^{1/p}.$$

En particulier, l'espace $\ell^p(\mathbf{N})$ muni de la norme p est un espace vectoriel normé.

3.3. Résultats en analyse fonctionnelle

55. Théorème (Hahn-Banach, forme analytique). Soient E un \mathbf{R} -espace vectoriel et $p \colon E \longrightarrow \mathbf{R}$ une semi-norme. Soient $G \subset E$ un sous-espace vectoriel et $g \in G^*$ une forme linéaire vérifiant

$$\forall x \in G, \qquad g(x) \leqslant p(x).$$

Alors il existe une forme linéaire $f \in E^*$ prolongeant la forme linéaire g telle que

$$\forall x \in E, \qquad f(x) \leqslant p(x).$$

56. Lemme. Soit $C \subset E$ un ouvert convexe contenant le vecteur nul. La fonction

$$p: \begin{vmatrix} E \longrightarrow \mathbf{R}, \\ x \longmapsto \inf\{\alpha > 0 \mid \alpha^{-1}x \in C\}. \end{vmatrix}$$

est une semi-norme sur E et elle vérifie les points suivants :

- il existe une constante M > 0 telle que $0 \le p(x) \le M ||x||$ pour tout $x \in E$;
- $C = \{x \in E \mid p(x) < 1\}.$

57. COROLLAIRE. Soient E un espace vectoriel normé de dimension finie et $C \subset E$ un convexe ouvert non vide avec $C \neq E$. Soit $x_0 \in E \setminus C$ un point. Alors il existe une forme linéaire continue $f \in E^*$ telle que

$$\forall x \in C, \qquad f(x) < f(x_0).$$

58. APPLICATION. Munissons l'espace $\mathcal{M}_n(\mathbf{R})$ de la norme $\| \|_2$. Alors l'enveloppe convexe de O(n) est la boule unité fermé de $\mathcal{M}_n(\mathbf{R})$.

^[1] Michèle Audin. Géométrie. EDP Sciences, 2006.

Vincent Beck, Jérôme Malick et Gabriel Peyré. Objectif Agrégation. 2° édition. H&K, 2005.

^[3] Haïm Brézis. Analyse fonctionnelle. 2e tirage. Masson, 1983.

^[4] Philippe Caldero et Jérôme Germoni. Histoires hédonistes de groupes et de géométries. T. Tome premier. Calvage & Mounet, 2013.

Xavier Gourdon. Analyse. 2e édition. Ellipses, 2008.

^[6] Patrice Tauvel. Cours de géométrie. Dunod, 2000.