Alex has two arrays defined as $A=[a_0,a_1,\ldots,a_{n-1}]$ and $B=[b_0,b_1,\ldots,b_{m-1}].$ He created an n imes m matrix, M, where $M_{i,j} = \gcd(a_i,b_j)$ for each i,j in M. Recall that $\gcd(a,b)$ is the greatest common divisor of \boldsymbol{a} and \boldsymbol{b} .

For example, if A = [2,3] and B = [5,6], he builds M = [[1,2],[1,3]] like so:

$$egin{array}{ll} (i,j) & 0 & 1 \ 0 & \gcd(2,5) = 1\gcd(2,6) = 2 \ 1 & \gcd(3,5) = 1\gcd(3,6) = 3 \end{array}$$

Alex's friend Kiara loves matrices, so he gives her q questions about matrix M where each question is in the form of some submatrix of M with its upper-left corner at M_{r_1,c_1} and its bottom-right corner at M_{r_2,c_2} . For each question, find and print the number of distinct integers in the given submatrix on a new line.

Input Format

The first line contains three space-separated integers describing the respective values of n (the size of array \boldsymbol{A}), \boldsymbol{m} (the size of array \boldsymbol{B}), and \boldsymbol{q} (Alex's number of questions).

The second line contains n space-separated integers describing $a_0, a_1, \ldots, a_{n-1}$.

The third line contains m space-separated integers describing $b_0, b_1, \ldots, b_{m-1}$.

Each line $m{i}$ of the $m{q}$ subsequent lines contains four space-separated integers describing the respective values of r_1 , c_1 , r_2 , and c_2 for the i^{th} question (i.e., defining a submatrix with upper-left corner (r_1,c_1) and bottom-right corner (r_2, c_2)).

Constraints

- $1 \le n, m \le 10^5$
- $egin{array}{l} \cdot \ 1 \leq a_i, b_i \leq 10^5 \ \cdot \ 1 \leq q \leq 10 \ \cdot \ 0 \leq r_1, r_2 < n \ \cdot \ 0 \leq c_1, c_2 < m \end{array}$

Scoring

- $1 \le n, m \le 1000$ for 25% of score.
- $1 \le n, m \le 10^5$ for 100% of score.

Output Format

For each of Alex's questions, print the number of *distinct* integers in the given submatrix on a new line.

Sample Input 0

- 1 2 3
- 2 4 6 0 0 1 1
- 0 0 2 2
- 1 1 2 2

Sample Output 0

2 3 3

Explanation 0

Given A = [1, 2, 3] and B = [2, 4, 6], we build the following M:

$$egin{array}{lll} (i,j) & 0 & 1 & 2 \ 0 & \gcd(1,2) = 1\gcd(1,4) = 1\gcd(1,6) = 1 \ 1 & \gcd(2,2) = 2\gcd(2,4) = 2\gcd(2,6) = 2 \ 2 & \gcd(3,2) = 1\gcd(3,4) = 1\gcd(3,6) = 3 \end{array}$$

The diagram below depicts the submatrices for each of the q=3 questions in *green*:

	1	1	1		1	1	1	1	1	1	
	2	2	2		2	2	2	2	2	2	
	1	1	3		1	1	3	1	1	3	
,	Query 1				C	uery 2	2	Query 3			

- 1. For the submatrix between $M_{0,0}$ and $M_{1,1}$, the set of integers is $\{1,2\}$. The number of distinct integers is 2.
- 2. For the submatrix between $M_{0,0}$ and $M_{2,2}$, the set of integers is $\{1,2,3\}$. The number of distinct integers is 3.
- 3. For the submatrix between $M_{1,1}$ and $M_{2,2}$, the set of integers is $\{1,2,3\}$. The number of distinct integers is 3.