Keyword Spotting Challenges/Constraints

What are we going to learn?

Challenges with Keyword Spotting The Keyword Spotting ML Pipeline

Hands-on training
of a Keyword
Spotting Model

LATENCY

Provide results quickly, respond in real-time to the user

BANDWIDTH

Minimize data sent over the network (slow and expensive)

ACCURACY

Listen
continuously,
but only trigger
at the right time

PERSONALIZATION

Trigger for the user and **not** for background noise

SECURITY

Safeguarding the data that is being sent to the cloud

PRIVACY

Safeguarding the data that is being sent to the cloud

BATTERY

Limited energy, operate on coin-cell type batteries

MEMORY

Run on resource constrained devices

+ MORE

further constraints

So **how** do companies do **Keyword Spotting** today?

Continuously listen on the microcontroller

2 Process the data with TinyML at the edge

Continuously listen on the microcontroller

2 Process the data with **TinyML** at the edge

Continuously listen on the microcontroller

3 Send the data to the cloud when triggered

2 Process the data with **TinyML** at the edge

Process the full speech data with a large model in the cloud

3 Send the data to the cloud when triggered

Continuously listen on the microcontroller

How do we scale to billions of users?

Cloud TPU

300 Watts

Source: Google

300 Watts

Cloud TPU

< 1 mWatt

TinyML

