Multiple Linear Regression for Predictive Modeling

Data Preparation

```
In [49]: import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sn
import statsmodels.api as sm
import statsmodels.formula.api as smf
from sklearn import metrics
import warnings
warnings.filterwarnings('ignore')
```

In [50]: df = pd.read_csv('/Users/ebeth/Desktop/Churn Data/churn_clean.csv')

Check the data set loaded and see the first 5 rows.

In [51]: df.head()

Out[51]:		CaseOrder	Customer_id	Interaction	UID	City	Sta
	0	1	K409198	aa90260b- 4141-4a24- 8e36- b04ce1f4f77b	e885b299883d4f9fb18e39c75155d990	Point Baker	,
	1	2	S120509	fb76459f- c047-4a9d- 8af9- e0f7d4ac2524	f2de8bef964785f41a2959829830fb8a	West Branch	
	2	3	K191035	344d114c- 3736-4be5- 98f7- c72c281e2d35	f1784cfa9f6d92ae816197eb175d3c71	Yamhill	(
	3	4	D90850	abfa2b40- 2d43-4994- b15a- 989b8c79e311	dc8a365077241bb5cd5ccd305136b05e	Del Mar	(
	4	5	K662701	68a861fd- 0d20-4e51- a587- 8a90407ee574	aabb64a116e83fdc4befc1fbab1663f9	Needville	

5 rows × 50 columns

Check to see the number of columns and rows

```
In [52]: df.shape
Out[52]: (10000, 50)
Look at the names and data types of each columns.
In [53]: df.info()
```

<class 'pandas.core.frame.DataFrame'> RangeIndex: 10000 entries, 0 to 9999 Data columns (total 50 columns):
Column Non-Null Co

#	Column	Non-Null Count	Dtype
0	CaseOrder	10000 non-null	 int64
1	Customer_id	10000 non-null	
2	Interaction	10000 non-null	_
3	UID	10000 non-null	_
4	City	10000 non-null	_
5	State	10000 non-null	-
6			
7	County	10000 non-null	
	Zip	10000 non-null	
8	Lat	10000 non-null	
9	Lng	10000 non-null	
10	Population	10000 non-null	
11	Area	10000 non-null	-
12	TimeZone	10000 non-null	-
13	Job	10000 non-null	_
14	Children	10000 non-null	
15	Age	10000 non-null	
16	Income	10000 non-null	
17	Marital	10000 non-null	
18	Gender	10000 non-null	,
19	Churn	10000 non-null	,
20	Outage_sec_perweek	10000 non-null	
21	Email	10000 non-null	
22	Contacts	10000 non-null	
23	Yearly_equip_failure	10000 non-null	
24	Techie	10000 non-null	-
25	Contract	10000 non-null	
26	Port_modem	10000 non-null	
27	Tablet	10000 non-null	
28	InternetService	10000 non-null	
29	Phone	10000 non-null	object
30	Multiple	10000 non-null	object
31	OnlineSecurity	10000 non-null	object
32	OnlineBackup	10000 non-null	object
33	DeviceProtection	10000 non-null	
34	TechSupport	10000 non-null	object
35	StreamingTV	10000 non-null	object
36	StreamingMovies	10000 non-null	object
37	PaperlessBilling	10000 non-null	object
38	PaymentMethod	10000 non-null	object
39	Tenure	10000 non-null	float64
40	MonthlyCharge	10000 non-null	float64
41	Bandwidth_GB_Year	10000 non-null	float64
42	Item1	10000 non-null	int64
43	Item2	10000 non-null	int64
44	Item3	10000 non-null	int64
45	Item4	10000 non-null	int64
46	Item5	10000 non-null	
47	Item6	10000 non-null	
48	Item7	10000 non-null	
49	Item8	10000 non-null	
dtyp	es: float64(7), int64(16), object(27)	

memory usage: 3.8+ MB

Drop columns that are not being used.

```
In [54]: df2 = df.drop(['CaseOrder','Customer_id','Interaction', 'UID','Lat','Lng','Ti
```

Take a closer look at state and zip. I am not sure if they should be included so I will look at how many distinct values are present. Having too many will make the final regression equation unwieldy.

```
In [55]:
          df2.nunique(axis = 0)
Out[55]: State
                                       52
                                     8583
          Zip
          Population
                                     5933
          Area
                                        3
          Children
                                       11
                                       72
          Age
          Income
                                     9993
          Marital
                                         5
          Gender
                                         3
          Churn
                                         2
                                     9986
          Outage_sec_perweek
          Email
                                       23
                                         8
          Contacts
          Yearly_equip_failure
                                         6
          Techie
                                         2
                                         3
          Contract
                                         2
          Port modem
                                         2
          Tablet
          InternetService
                                         3
          Phone
                                         2
                                         2
          Multiple
                                         2
          OnlineSecurity
                                         2
          OnlineBackup
                                         2
          DeviceProtection
          TechSupport
                                         2
                                         2
          StreamingTV
                                         2
          StreamingMovies
                                         2
          PaperlessBilling
          PaymentMethod
                                         4
                                     9996
          Tenure
          MonthlyCharge
                                      750
          Bandwidth_GB_Year
                                    10000
                                         7
          Item1
                                         7
          Item2
                                         8
          Item3
                                         7
          Item4
                                         7
          Item5
                                         8
          Item6
                                         7
          Item7
          Item8
                                         8
          dtype: int64
```

There are 52 states and 8583 unique zip codes present. For this overall look at tunure length having this many variables would not be helpful. Later, going back and exploring maybe state by state would be benifical. State and Zip will be dropped from the data set.

```
In [56]: df3 = df2.drop(['State', 'Zip'], axis = 1)
    df3.head()
```

Out[56]:		Population	Area	Children	Age	Income	Marital	Gender	Churn	Outage_sec_perv
	0	38	Urban	0	68	28561.99	Widowed	Male	No	7.978
	1	10446	Urban	1	27	21704.77	Married	Female	Yes	11.699
	2	3735	Urban	4	50	9609.57	Widowed	Female	No	10.752
	3	13863	Suburban	1	48	18925.23	Married	Male	No	14.913
	4	11352	Suburban	0	83	40074.19	Separated	Male	Yes	8.14

5 rows × 38 columns

Look for missing values, duplicates, and outliers.

```
df3.isnull().count()
In [57]:
Out[57]: Population
                                    10000
          Area
                                    10000
          Children
                                    10000
          Age
                                    10000
                                    10000
          Income
          Marital
                                    10000
          Gender
                                    10000
          Churn
                                    10000
          Outage sec perweek
                                    10000
          Email
                                    10000
          Contacts
                                    10000
          Yearly_equip_failure
                                    10000
          Techie
                                    10000
          Contract
                                    10000
          Port modem
                                    10000
          Tablet
                                    10000
          InternetService
                                    10000
          Phone
                                    10000
          Multiple
                                    10000
          OnlineSecurity
                                    10000
                                    10000
          OnlineBackup
          DeviceProtection
                                    10000
          TechSupport
                                    10000
          StreamingTV
                                    10000
          StreamingMovies
                                    10000
          PaperlessBilling
                                    10000
          PaymentMethod
                                    10000
          Tenure
                                    10000
                                    10000
          MonthlyCharge
          Bandwidth_GB_Year
                                    10000
          Item1
                                    10000
                                    10000
          Item2
                                    10000
          Item3
          Item4
                                    10000
          Item5
                                    10000
          Item6
                                    10000
          Item7
                                    10000
          Item8
                                    10000
          dtype: int64
```

```
Out[58]: 0
                  False
                  False
          2
                  False
          3
                  False
                  False
                  . . .
          9995
                  False
          9996
                  False
          9997
                  False
          9998
                  False
          9999
                  False
         Length: 10000, dtype: bool
```

In [59]: df3.describe(include=[np.number])

Out[59]:		Population	Children	Age	Income	Outage_sec_perweek	
	count	10000.000000	10000.0000	10000.000000	10000.000000	10000.000000	10000.
	mean	9756.562400	2.0877	53.078400	39806.926771	10.001848	12
	std	14432.698671	2.1472	20.698882	28199.916702	2.976019	3.
	min	0.000000	0.0000	18.000000	348.670000	0.099747	1.
	25%	738.000000	0.0000	35.000000	19224.717500	8.018214	10.
	50%	2910.500000	1.0000	53.000000	33170.605000	10.018560	12.
	75%	13168.000000	3.0000	71.000000	53246.170000	11.969485	14.
	max	111850.000000	10.0000	89.000000	258900.700000	21.207230	23.

There are no Nans or duplicates. From a glance, no minimum or maximum value seems unrealistic.

Univariate Visualizations

Target Variable Tenure

```
In [60]: df3['Tenure'].plot.hist(title = 'Tenure in Months');
```


Predictor Variables

```
In [61]: df3.hist(figsize = (15,15));
```


In [62]: df3['Area'].value_counts().plot.bar(title = 'Area Types');


```
In [63]: df3['Marital'].value_counts().plot.bar(title = 'Martial Status');
```



```
In [64]: df3['Gender'].value_counts().plot.bar(title = 'Gender');
```


In [65]: df3['Contract'].value_counts().plot.bar(title = 'Length of Contract');


```
In [66]: df3['PaymentMethod'].value_counts().plot.bar(title = 'Method of Payment');
```



```
In [67]: df3['InternetService'].value_counts().plot.bar(title = 'Internet Types');
```


Bivariate visualizations

```
In [68]: df3.plot.scatter('MonthlyCharge', 'Tenure', title = 'Tenure Length by Monthly
```


In [69]: df3.plot.scatter('Outage_sec_perweek', 'Tenure', title = 'Tenure Length by Ou


```
In [70]: df3.plot.scatter('Age', 'Tenure', title = 'Tenure Length by Age');
```


In [72]: df3.plot.scatter('Bandwidth_GB_Year', 'Tenure', title = 'Tenure Length by Ban


```
In [74]: sn.violinplot(df3['Gender'], df3['Tenure']).set_title('Tenure By Gender');
```


In [75]: sn.violinplot(df3['Marital'], df3['Tenure']).set_title('Tenure By Matrial Sta

In [76]: sn.violinplot(df3['Contract'], df3['Tenure']).set_title('Tenure By Contract L

In [77]: sn.violinplot(df3['PaymentMethod'], df3['Tenure']).set_title('Tenure By Payme

In [78]: sn.violinplot(df3['InternetService'], df3['Tenure']).set_title('Type of Inter

Create Dummy variables for all categorical columns and drop unneeded columns. (code used from: https://towardsdatascience.com/the-dummys-guide-to-creating-dummy-variables-f21faddb1d40)

```
dummy1 = pd.get dummies(df3.Area, prefix = 'Area', drop first = True)
In [79]:
          dummy2 = pd.get_dummies(df3.Marital, prefix = 'Marital', drop first = True)
          dummy3 = pd.get dummies(df3.Gender, prefix = 'Gender', drop first = True)
          dummy4 = pd.get_dummies(df3.Churn, prefix = 'Churn', drop_first = True)
          dummy5 = pd.get dummies(df3.Techie, prefix = 'Techie', drop first = True)
          dummy6 = pd.get_dummies(df3.Contract, prefix = 'Contract', drop_first = True)
          dummy7 = pd.get_dummies(df3.Port_modem, prefix = 'Port_modem', drop_first = T
          dummy8 = pd.get_dummies(df3.Tablet, prefix = 'Tablet', drop_first = True)
          dummy9 = pd.get_dummies(df3.InternetService, prefix = 'InternetService', drop
          dummy10 = pd.get dummies(df3.Phone, prefix = 'Phone', drop first = True)
          dummy11 = pd.get_dummies(df3.Multiple, prefix = 'Multiple', drop_first = True
          dummy12 = pd.get_dummies(df3.OnlineSecurity, prefix = 'OnlineSecurity', drop
          dummy13 = pd.get_dummies(df3.OnlineBackup, prefix = 'OnlineBackup', drop_firs
          dummy14 = pd.get_dummies(df3.DeviceProtection, prefix = 'DeviceProtection', d
          dummy15 = pd.get dummies(df3.TechSupport, prefix = 'TechSupport', drop first
          dummy16 = pd.get dummies(df3.StreamingTV, prefix = 'StreamingTV', drop_first
          dummy17 = pd.get dummies(df3.StreamingMovies, prefix = 'StreamingMovies', dro
          dummy18 = pd.get dummies(df3.PaperlessBilling, prefix = 'PaperlessBilling', d
          dummy19 = pd.get dummies(df3.PaymentMethod, prefix = 'PaymentMethod', drop_fi
          df3 = df3.drop(columns = 'Area').merge(dummy1, left index = True, right index
          df3 = df3.drop(columns = 'Marital').merge(dummy2, left index = True, right in
          df3 = df3.drop(columns = 'Gender').merge(dummy3, left_index = True, right ind
          df3 = df3.drop(columns = 'Churn').merge(dummy4, left_index = True, right_inde
          df3 = df3.drop(columns = 'Techie').merge(dummy5, left_index = True, right_ind
          df3 = df3.drop(columns = 'Contract').merge(dummy6, left_index = True, right_i
          df3 = df3.drop(columns = 'Port modem').merge(dummy7, left_index = True, right
          df3 = df3.drop(columns = 'Tablet').merge(dummy8, left_index = True, right_ind
          df3 = df3.drop(columns = 'InternetService').merge(dummy9, left index = True,
          df3 = df3.drop(columns = 'Phone').merge(dummy10, left index = True, right ind
          df3 = df3.drop(columns = 'Multiple').merge(dummy11, left index = True, right
          df3 = df3.drop(columns = 'OnlineSecurity').merge(dummy12, left index = True,
          df3 = df3.drop(columns = 'OnlineBackup').merge(dummy13, left_index = True, ri
          df3 = df3.drop(columns = 'DeviceProtection').merge(dummy14, left_index = True
          df3 = df3.drop(columns = 'TechSupport').merge(dummy15, left index = True, rig
          df3 = df3.drop(columns = 'StreamingTV').merge(dummy16, left index = True, rig
          df3 = df3.drop(columns = 'StreamingMovies').merge(dummy17, left_index = True,
          df3 = df3.drop(columns = 'PaperlessBilling').merge(dummy18, left_index = True
          df3 = df3.drop(columns = 'PaymentMethod').merge(dummy19, left_index = True, r
```

In [80]: df3

df3.head()

Out[80]:		Population	Children	Age	Income	Outage_sec_perweek	Email	Contacts	Yearly_equip_fa
	0	38	0	68	28561.99	7.978323	10	0	
	1	10446	1	27	21704.77	11.699080	12	0	
	2	3735	4	50	9609.57	10.752800	9	0	
	3	13863	1	48	18925.23	14.913540	15	2	
	4	11352	0	83	40074.19	8.147417	16	2	

Convert all columns to float type.

In [81]:

df4 = df3.astype(float)
df4

Out[81]:

	Population	Children	Age	Income	Outage_sec_perweek	Email	Contacts	Yearly_equ
0	38.0	0.0	68.0	28561.99	7.978323	10.0	0.0	
1	10446.0	1.0	27.0	21704.77	11.699080	12.0	0.0	
2	3735.0	4.0	50.0	9609.57	10.752800	9.0	0.0	
3	13863.0	1.0	48.0	18925.23	14.913540	15.0	2.0	
4	11352.0	0.0	83.0	40074.19	8.147417	16.0	2.0	
•••								
9995	640.0	3.0	23.0	55723.74	9.415935	12.0	2.0	
9996	77168.0	4.0	48.0	34129.34	6.740547	15.0	2.0	
9997	406.0	1.0	48.0	45983.43	6.590911	10.0	0.0	
9998	35575.0	1.0	39.0	16667.58	12.071910	14.0	1.0	
9999	12230.0	1.0	28.0	9020.92	11.754720	17.0	1.0	

10000 rows × 47 columns

In [82]:

df4.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 10000 entries, 0 to 9999
Data columns (total 47 columns):
Column

#	Column	Non-N	ull Count	Dtype
0	Population	10000	non-null	float64
1	Children	10000	non-null	float64
2	Age	10000	non-null	float64
3	Income	10000	non-null	float64
4	Outage_sec_perweek	10000	non-null	float64
5	Email	10000	non-null	float64
6	Contacts	10000	non-null	float64
7	Yearly_equip_failure	10000	non-null	float64
8	Tenure	10000	non-null	float64
9	MonthlyCharge	10000	non-null	float64
10	Bandwidth_GB_Year	10000	non-null	float64
11	Item1	10000	non-null	float64
12	Item2	10000	non-null	float64
13	Item3	10000	non-null	float64
14	Item4	10000	non-null	float64
15	Item5	10000	non-null	float64
16	Item6	10000	non-null	float64
17	Item7	10000	non-null	float64
18	Item8	10000	non-null	float64
19	Area_Suburban	10000	non-null	float64
20	Area_Urban	10000	non-null	float64
21	Marital_Married	10000	non-null	float64
22	Marital_Never Married	10000	non-null	float64
23	Marital_Separated	10000	non-null	float64
24	Marital_Widowed	10000	non-null	float64
25	Gender_Male	10000	non-null	float64
26	Gender_Nonbinary	10000	non-null	float64
27	Churn_Yes	10000	non-null	float64
28	Techie_Yes	10000	non-null	float64
29	Contract_One year	10000	non-null	float64
30	Contract_Two Year		non-null	float64
31	Port_modem_Yes		non-null	float64
32	Tablet_Yes		non-null	float64
33	InternetService_Fiber Optic		non-null	float64
34	InternetService_None		non-null	float64
35	Phone_Yes		non-null	float64
36	Multiple_Yes		non-null	float64
37	OnlineSecurity_Yes		non-null	float64
38	OnlineBackup_Yes		non-null	float64
39	DeviceProtection_Yes		non-null	float64
40	TechSupport_Yes		non-null	float64
41	StreamingTV_Yes		non-null	float64
42	StreamingMovies_Yes		non-null	float64
43	PaperlessBilling_Yes		non-null	float64
44	PaymentMethod_Credit Card (automatic)		non-null	float64
45	PaymentMethod_Electronic Check		non-null	float64
46	PaymentMethod_Mailed Check	10000	non-null	float64
	es: float64(47)			
memo	ry usage: 3.6 MB			

	Population	Children	Age	Income	Outage_sec_perweek	
count	10000.000000	10000.0000	10000.000000	10000.000000	10000.000000	10000.
mean	9756.562400	2.0877	53.078400	39806.926771	10.001848	12
std	14432.698671	2.1472	20.698882	28199.916702	2.976019	3.
min	0.000000	0.0000	18.000000	348.670000	0.099747	1.
25%	738.000000	0.0000	35.000000	19224.717500	8.018214	10.
50%	2910.500000	1.0000	53.000000	33170.605000	10.018560	12.
75%	13168.000000	3.0000	71.000000	53246.170000	11.969485	14.

89.000000 258900.700000

21.207230

23.

8 rows × 47 columns

max 111850.000000

Out[83]:

Save copy of prepared data

```
In [84]: df4.to_csv('multiple_prepared_churn.csv')
```

Construct Initial Multiple Regression Model

10.0000

define y and X variables. Some code borrowed from https://www.geeksforgeeks.org/select-all-columns-except-one-given-column-in-a-pandas-dataframe/.

```
In [85]: y = df4['Tenure']
    X = df4.loc[:, df4.columns != 'Tenure']
    X = sm.add_constant(X)

In [86]: regression = sm.OLS(y,X)

In [87]: allmodel = regression.fit()

In [88]: print(allmodel.params)
```

```
const
                                          -3.843090e+00
Population
                                          -7.835527e-08
                                          -3.755418e-01
Children
                                           3.998674e-02
Age
                                           1.563977e-08
Income
Outage sec perweek
                                           2.927557e-04
Email
                                          -6.710452e-05
                                          -5.939200e-04
Contacts
Yearly equip failure
                                           1.920471e-04
                                          -3.521020e-02
MonthlyCharge
Bandwidth GB Year
                                           1.220489e-02
                                           2.318052e-03
Item1
Item2
                                          -7.001376e-04
Item3
                                           1.005443e-03
Item4
                                           4.468566e-04
Item5
                                          -5.943479e-04
Ttem6
                                          -1.275849e-03
Item7
                                          -1.076200e-03
                                           7.958727e-05
Item8
Area Suburban
                                          -6.828673e-03
Area Urban
                                          -3.302096e-03
Marital Married
                                          -5.666849e-04
Marital Never Married
                                          -1.113461e-03
Marital_Separated
                                           2.638689e-03
Marital Widowed
                                           3.450319e-05
Gender Male
                                          -7.923645e-01
Gender Nonbinary
                                           2.618276e-01
Churn Yes
                                           1.951267e-03
Techie Yes
                                          -1.103595e-05
                                           1.119808e-03
Contract One year
Contract Two Year
                                           2.346317e-03
                                           2.686231e-03
Port modem Yes
Tablet_Yes
                                           6.531866e-04
                                           5.754226e+00
InternetService Fiber Optic
InternetService None
                                           4.600568e+00
Phone Yes
                                           1.692035e-03
Multiple Yes
                                           2.684380e-01
OnlineSecurity Yes
                                          -8.312509e-01
                                          -3.551574e-01
OnlineBackup Yes
DeviceProtection Yes
                                          -5.970609e-01
                                           3.850405e-01
TechSupport Yes
StreamingTV_Yes
                                          -1.298429e+00
                                          -7.226721e-01
StreamingMovies Yes
                                          -3.665722e-03
PaperlessBilling Yes
PaymentMethod Credit Card (automatic)
                                           2.058826e-03
PaymentMethod Electronic Check
                                           2.865085e-03
PaymentMethod Mailed Check
                                           7.316969e-03
dtype: float64
```

```
In [89]: allmodel.summary()
```

Out[89]: OLS Regression Results

Dep. Variable: Tenure **R-squared:** 1.000

Model: OLS Adj. R-squared: 1.000

Method: Least Squares **F-statistic:** 1.316e+07

Date: Mon, 24 May 2021 Prob (F-statistic): 0.00

Time: 15:37:41 **Log-Likelihood:** 8140.4

No. Observations: 10000 **AIC:** -1.619e+04

Df Residuals: 9953 **BIC:** -1.585e+04

Df Model: 46

Covariance Type: nonrobust

	coef	std err	t	P> t	[0.025	0.975]
const	-3.8431	0.017	-231.335	0.000	-3.876	-3.811
Population	-7.836e- 08	7.46e- 08	-1.051	0.293	-2.25e- 07	6.78e- 08
Children	-0.3755	0.001	-748.384	0.000	-0.377	-0.375
Age	0.0400	5.2e-05	768.285	0.000	0.040	0.040
Income	1.564e- 08	3.82e- 08	0.410	0.682	-5.92e- 08	9.05e- 08
Outage_sec_perweek	0.0003	0.000	0.809	0.419	-0.000	0.001
Email	-6.71e-05	0.000	-0.189	0.850	-0.001	0.001
Contacts	-0.0006	0.001	-0.545	0.586	-0.003	0.002
Yearly_equip_failure	0.0002	0.002	0.113	0.910	-0.003	0.004
MonthlyCharge	-0.0352	0.000	-284.931	0.000	-0.035	-0.035
Bandwidth_GB_Year	0.0122	5.99e- 07	2.04e+04	0.000	0.012	0.012
Item1	0.0023	0.002	1.503	0.133	-0.001	0.005
Item2	-0.0007	0.001	-0.484	0.628	-0.004	0.002
Item3	0.0010	0.001	0.758	0.448	-0.002	0.004
Item4	0.0004	0.001	0.377	0.706	-0.002	0.003
Item5	-0.0006	0.001	-0.483	0.629	-0.003	0.002
Item6	-0.0013	0.001	-1.007	0.314	-0.004	0.001
Item7	-0.0011	0.001	-0.898	0.369	-0.003	0.001
Item8	7.959e- 05	0.001	0.070	0.944	-0.002	0.002
Area_Suburban	-0.0068	0.003	-2.593	0.010	-0.012	-0.002
Area_Urban	-0.0033	0.003	-1.251	0.211	-0.008	0.002
Marital_Married	-0.0006	0.003	-0.166	0.868	-0.007	0.006
Marital_Never Married	-0.0011	0.003	-0.329	0.742	-0.008	0.006
Marital_Separated	0.0026	0.003	0.785	0.432	-0.004	0.009
Marital_Widowed	3.45e-05	0.003	0.010	0.992	-0.007	0.007
Gender_Male	-0.7924	0.002	-362.915	0.000	-0.797	-0.788

Gender_Nonbinary	0.2618	0.007	36.143	0.000	0.248	0.276
Churn_Yes	0.0020	0.003	0.571	0.568	-0.005	0.009
Techie_Yes	-1.104e- 05	0.003	-0.004	0.997	-0.006	0.006
Contract_One year	0.0011	0.003	0.389	0.697	-0.005	0.007
Contract_Two Year	0.0023	0.003	0.855	0.393	-0.003	0.008
Port_modem_Yes	0.0027	0.002	1.248	0.212	-0.002	0.007
Tablet_Yes	0.0007	0.002	0.277	0.781	-0.004	0.005
InternetService_Fiber Optic	5.7542	0.004	1623.665	0.000	5.747	5.761
InternetService_None	4.6006	0.003	1363.478	0.000	4.594	4.607
Phone_Yes	0.0017	0.004	0.457	0.648	-0.006	0.009
Multiple_Yes	0.2684	0.005	59.120	0.000	0.260	0.277
OnlineSecurity_Yes	-0.8313	0.002	-365.801	0.000	-0.836	-0.827
OnlineBackup_Yes	-0.3552	0.004	-101.115	0.000	-0.362	-0.348
DeviceProtection_Yes	-0.5971	0.003	-224.678	0.000	-0.602	-0.592
TechSupport_Yes	0.3850	0.003	142.188	0.000	0.380	0.390
StreamingTV_Yes	-1.2984	0.006	-232.008	0.000	-1.309	-1.287
StreamingMovies_Yes	-0.7227	0.007	-106.938	0.000	-0.736	-0.709
PaperlessBilling_Yes	-0.0037	0.002	-1.675	0.094	-0.008	0.001
PaymentMethod_Credit Card (automatic)	0.0021	0.003	0.628	0.530	-0.004	0.008
PaymentMethod_Electronic Check	0.0029	0.003	0.975	0.329	-0.003	0.009
PaymentMethod_Mailed Check	0.0073	0.003	2.283	0.022	0.001	0.014

Omnibus: 34822.579 **Durbin-Watson:** 2.002

Prob(Omnibus): 0.000 Jarque-Bera (JB): 1633.265

Skew: -0.034 **Prob(JB):** 0.00

Kurtosis: 1.021 **Cond. No.** 8.31e+05

Notes:

^[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

^[2] The condition number is large, 8.31e+05. This might indicate that there are strong multicollinearity or other numerical problems.

The r-squared value is 1. The model is a perfect fit and explains all the variance. There are several predictors that have a p-value of more than 0.05. These warrent closer inspection to decide which to remove from the model. The condition number test is well above 30. Create a heatmap to look for High correlation between variables.

```
plt.figure(figsize = (30,30))
In [90]:
          heat_map = sn.heatmap(df4.corr(), vmin = -1, vmax = 1, annot = True, fmt = '.2
          heat_map.set_title('Correlation Heatmap');
In [91]:
          pred_y = allmodel.predict()
```

metrics.mean_absolute_error(y, pred_y)

In [92]:

```
Out[92]: 0.10692196984791037
In [93]: metrics.mean_squared_error(y, pred_y)
Out[93]: 0.011493740504174298
In [94]: np.sqrt(metrics.mean_squared_error(y, pred_y))
Out[94]: 0.10720886392539704
In [95]: residuals = y - pred_y
    ax = sn.residplot(x = y, y = residuals)
    ax.set(xlabel = 'Tenure', ylabel = 'Residuals');
```


Dimension Reduction

```
from sklearn.linear_model import Lasso
In [96]:
           lasso = Lasso(alpha = 0.01, normalize = True)
           lasso.fit(X, y)
In [97]:
Out[97]: Lasso(alpha=0.01, normalize=True)
In [98]:
           lasso.coef_
                              , -0.
                                                                          -0.
Out[98]: array([ 0.
                                             -0.
                                                              0.
                              , -0.
                                                                           -0.01338274,
                   0.01146681,
                                 0.
                                              -0.
                                                             0.
                                                                            0.
                   0.
                              , -0.
                                               0.
                                                            -0.
                                                                           -0.
                                 0.
                                                            -0.
                  -0.
                                               0.
                                                                            0.
                  -0.
                                 0.
                                              -1.18126788,
                                                             1.1795769 ,
                                                                            0.
                  -0.
                                 0.
                                              -0.
                   0.
                                -0.
                                              -0.
                                                            -0.
                                                                           -0.
                                -0.
                   0.
                                              -0.
                                                            0.
                   0.
                              , -0.
                                            ])
```

```
In [99]: print(list(zip(lasso.coef_, X)))
```

[(0.0, 'const'), (-0.0, 'Population'), (-0.0, 'Children'), (0.0, 'Age'), (-0.0 , 'Income'), (-0.0, 'Outage_sec_perweek'), (-0.0, 'Email'), (-0.0, 'Contacts') , (0.0, 'Yearly_equip_failure'), (-0.013382742738548973, 'MonthlyCharge'), (0. 01146681220370866, 'Bandwidth GB Year'), (0.0, 'Item1'), (-0.0, 'Item2'), (0.0 , 'Item3'), (0.0, 'Item4'), (0.0, 'Item5'), (-0.0, 'Item6'), (0.0, 'Item7'), (-0.0, 'Item8'), (-0.0, 'Area_Suburban'), (-0.0, 'Area_Urban'), (0.0, 'Marital_ Married'), (0.0, 'Marital_Never Married'), (-0.0, 'Marital_Separated'), (0.0, 'Marital_Widowed'), (-0.0, 'Gender_Male'), (0.0, 'Gender_Nonbinary'), (-1.1812 67875545039, 'Churn Yes'), (0.0, 'Techie Yes'), (-0.0, 'Contract One year'), (-0.0, 'Contract_Two Year'), (0.0, 'Port_modem_Yes'), (-0.0, 'Tablet_Yes'), (1. 1795768973975804, 'InternetService_Fiber Optic'), (0.0, 'InternetService_None'), (0.0, 'Phone Yes'), (-0.0, 'Multiple Yes'), (-0.0, 'OnlineSecurity Yes'), (-0.0, 'OnlineBackup_Yes'), (-0.0, 'DeviceProtection_Yes'), (0.0, 'TechSupport_ Yes'), (-0.0, 'StreamingTV_Yes'), (-0.0, 'StreamingMovies_Yes'), (0.0, 'Paperl essBilling Yes'), (0.0, 'PaymentMethod Credit Card (automatic)'), (0.0, 'Payme ntMethod Electronic Check'), (-0.0, 'PaymentMethod Mailed Check')]

Reduced Model

```
In [100... df5 = df4[['Tenure', 'MonthlyCharge', 'Bandwidth_GB_Year', 'Churn_Yes', 'Intended df5
```

Out[100	Tenure		MonthlyCharge	Bandwidth_GB_Year	Churn_Yes	InternetService_Fiber Optic
	0	6.795513	172.455519	904.536110	0.0	1.0
	1	1.156681	242.632554	800.982766	1.0	1.0
	2	15.754144	159.947583	2054.706961	0.0	0.0
	3	17.087227	119.956840	2164.579412	0.0	0.0
	4	1.670972	149.948316	271.493436	1.0	1.0
	•••					
9:	995	68.197130	159.979400	6511.252601	0.0	0.0
9:	996	61.040370	207.481100	5695.951810	0.0	1.0
9	997	47.416890	169.974100	4159.305799	0.0	1.0
99	998	71.095600	252.624000	6468.456752	0.0	1.0
99	999	63.350860	217.484000	5857.586167	0.0	1.0

10000 rows × 5 columns

```
In [101... y = df5['Tenure']
   X = df5.loc[:, df5.columns != 'Tenure']
   X = sm.add_constant(X)
```

In [102... regression = sm.OLS(y,X)
 reducemodel = regression.fit()
 reducemodel.summary()

Out[102...

OLS Regression Results

Dep. Variable: Tenure **R-squared:** 0.993

Model: OLS Adj. R-squared: 0.993

Method: Least Squares F-statistic: 3.799e+05

Date: Mon, 24 May 2021 Prob (F-statistic): 0.00

Time: 15:37:50 **Log-Likelihood:** -21786.

No. Observations: 10000 **AIC:** 4.358e+04

Df Residuals: 9995 **BIC:** 4.362e+04

Df Model: 4

Covariance Type: nonrobust

	coef	std err	t	P> t	[0.025	0.975]
const	0.6918	0.093	7.406	0.000	0.509	0.875
MonthlyCharge	-0.0515	0.001	-85.638	0.000	-0.053	-0.050
Bandwidth_GB_Year	0.0121	1.16e-05	1042.589	0.000	0.012	0.012
Churn_Yes	-0.5324	0.063	-8.510	0.000	-0.655	-0.410
InternetService_Fiber Optic	4.3373	0.047	92.751	0.000	4.246	4.429

Omnibus: 52.378 Durbin-Watson: 1.982

Prob(Omnibus): 0.000 Jarque-Bera (JB): 51.770

Skew: 0.162 **Prob(JB):** 5.73e-12

Kurtosis: 2.859 **Cond. No.** 1.77e+04

Notes:

- [1] Standard Errors assume that the covariance matrix of the errors is correctly specified.
- [2] The condition number is large, 1.77e+04. This might indicate that there are strong multicollinearity or other numerical problems.

```
In [103... fig2 = sm.graphics.plot_partregress_grid(reducemodel)
```



```
In [104... y_pred = reducemodel.predict()
In [105... metrics.mean_absolute_error(y, y_pred)
Out[105... 1.7063725726823755
In [106... metrics.mean_squared_error(y, y_pred)
Out[106... 4.5691606765843575
```

Out[107... 2.13755951416197

```
In [109... residuals = y - y_pred
ax = sn.residplot(x = y, y = residuals)
ax.set(xlabel = 'Tenure', ylabel = 'Residuals');
```

