ULTRA-LOW POWER 2.4GHz WI-FI + BLUETOOTH SMART SOC

AT/Debug UART Switch Command **Application Note**

http://www.opulinks.com/

Copyright © 2018, Opulinks. All Rights Reserved.

REVISION HISTORY

Date	Version	Contents Updated
018-10-11	0.1	 Initial Release

TABLE OF CONTENTS

TABLE OF CONTENTS

1.	介绍。		4
		文档应用范围	4
			4
		参考文献	4
2.			5
3.	6		
	3.1.	設定初始的狀態值	6
		指令函式	6
		設定 I○ 的功能	7

TABLE OF CONTENTS

LIST OF FIGURES

Figure 1: AT UART work mode			
g			
Figure 2: AT LIART switch to Debug LIART	_		

TABLE OF CONTENTS

LIST OF TABLES

Table 1: AT/Debug UART Switch Command5

1. 介绍

1.1. 文档应用范围

本文介紹在相同的 IO 腳位上, 如何利用指令切換 AT UART 和 Debug UART 模式。

1.2. 缩略语

Abbr.	Explanation
UART	Universal Asynchronous receiver-transmitter

1.3. 参考文献

- [1] DEVKIT 快速使用指南 OPL1000-DEVKIT-getting-start-guide.pdf
- [2] OPL1000 硬件设计手册 OPL1000-HDK.pdf

2. 如何使用

當固件設定的 IOO 和 IO1 是 AT UART · IO8 和 IO9 是 Debug UART · IO8 和 IO9 可以依照用戶設計而製定其它 IO 腳位。在 AT UART 打入"at+switchdbg" 可以改變 IOO 和 IO1 到 Debug UART。在 Debug UART 中 · 打入"switchat" 可以改變 IOO 和 IO1 到 AT UART。可以參考

,用戶在使用上可以更清楚明白。

Table 1: AT/Debug UART Switch Command

指令 IO 腳位	IO 0 · 1	IO 8 · 9
at+switchdbg	Debug UART	AT UART
Switchat	AT UART	Debug UART

當用戶一開始開機的時候·IOO 和 IO1 是 AT UART 功能。如 Figure 1 所示。敲入 at 的指令時,會出現ok 的回應。表示当前工作模式是 AT UART 功能。

Figure 1: AT UART work mode

```
><CHECK>
SPI load patch, last index 614 result 2
BootMode 10
>at
OK
```

在 AT UART 功能下,用戶可以透過 at+switchdbg 的指令切換到 Debug UART。當用戶切換到 Debug UART 時,可以敲 at 指令,會得到 at 的回應,如 Figure 2 所示。當用戶重新啟動板子時,必須在重新 敲入切換 Debug UART 的指令。

Figure 2: AT UART switch to Debug UART

>at+switchdbg
C!
Switch: Dbg UART
>
>atat

3. 如何設定與開發

3.1. 設定初始的狀態值

初始化的定義在 hal_pin_config_project.h

預設初始化 IOO 和 IO1 為 AT UART 模式,如下:

當使用者想要切換 IOO 和 IO1 為 Debug UART 時,必需修改如下:

3.2. 指令函式

下列函式皆為控制交換 AT UART 和 Debug UART 的行為:

- at_cmd_at_switch_to_dbg 函式在 at_cmd_table_ext.c 裡頭。
- ParseSwitchAT_DBGCommand_patch 函式在 cli_patch.c 裡頭。

3.3. 設定 IO 的功能

- 下表中的源碼定義在 *at_cmd_switch_uart1_dbguart* 的函式之中,在 at_cmd_common_patch.c 裡頭。
- 當前轉換範例的 IO 數字為 8、9・但用戶可以依據用戶的設計・設定成符合用戶的 IO 腳位・不侷限於 IO 腳位為 8、9。
 - a. UART 行為中·拉高電位表示不作動。Tx 會自主把 pin 腳位拉高或低·但 Rx 不會自主把 pin 腳位的電流拉高或拉低·並且外部也沒有接 pull high 的原件。要讓 Rx 的腳位在預設的情況下不作動·故在設定上必須設定為 PIN_DRIVING_HIGH。
 - b. 其它腳位設定為 float 的原因,當腳位設定為 HIGH 或 LOW 時,腳位必須提供較大的電流讓腳位作動或不作動,這也是因為腳位設定成 PIN_DRIVING_FLOAT 的原因。

```
if (g_eIOØ1UartMode == UART_AT)
{

    /* AT UART 在 0 · 1 switch to Debug UART */
    Hal_Pin_ConfigSet(0, PIN_TYPE_UART_APS_TX, PIN_DRIVING_FLOAT);
    Hal_Pin_ConfigSet(1,PIN_TYPE_UART_APS_RX,PIN_DRIVING_FLOAT);

    /* Debug UART 在 8 · 9 switch to AT UART */
    Hal_Pin_ConfigSet(8, PIN_TYPE_UART1_TX, PIN_DRIVING_FLOAT);
    Hal_Pin_ConfigSet(9, PIN_TYPE_UART1_RX, PIN_DRIVING_HIGH);
}
else
{
    /* AT UART 在 8 · 9 switch to Debug UART */
    Hal_Pin_ConfigSet(8, PIN_TYPE_UART_APS_TX, PIN_DRIVING_FLOAT);
    Hal_Pin_ConfigSet(9,PIN_TYPE_UART_APS_RX,PIN_DRIVING_HIGH);

    /* Debug UART 在 0 · 1 switch to AT UART */
    Hal_Pin_ConfigSet(0, PIN_TYPE_UART1_TX, PIN_DRIVING_FLOAT);
    Hal_Pin_ConfigSet(1, PIN_TYPE_UART1_RX, PIN_DRIVING_FLOAT);
}
```


CONTACT

sales@Opulinks.com

