Y=
$$\phi X$$

mXN

Y.[1] Y.[2] Y.[N] Y_2[1] Y_2[2] Y_2[N] 	
ϕ_1 $\phi_2 - \phi_n$ V_2	NXN [X.[1] Y.X[2] Y,X,[N] [X_2[1] Y.X[2] Y_2X[N] (X_1] Y_2X[2] Y_n X_n[N]

M sensors, n sources. N sample points

$$Y = \phi X$$
 suphnown known to be solved

3 sensors, 2 sources (for every sample point) y_1, y_2, y_3 known Com we find a set of scalar $\{c_1, c_2, c_3\}$ holds $C_1 Y_1 + C_2 Y_2 + C_3 Y_3 = 0$? then G(Y,X,+Y2X2) + C2(Y,X,0,+Y2X202)+C3(Y,X,0,+ $(Y_1 X_1 \phi_1^2) = 0$ $(G+G\phi_1+C_3\phi_1^2)V_1\chi_1+(C_1+C_2\phi_2+C_3\phi_2^2)V_2\chi_2=0$ Hypothesis II. X1, X2 are linear independent $\Rightarrow [G C_1 C_3] \left[\begin{array}{ccc} \phi_1 & \phi_2 \\ \phi_1^2 & \phi_2^2 \end{array} \right] = 0$ then $(C_1 + C_2 \phi_1 + C_3 \phi_1^2 = 0)$ $(C_1 + C_2 \phi_2 + C_3 \phi_2^2 = 0)$

How to find a. Cz. Cs? $\begin{bmatrix}
\gamma_{i}E_{1} & \gamma_{2}E_{1} & \gamma_{3}E_{1} \\
\gamma_{i}E_{2} & \gamma_{2}E_{2} & \gamma_{3}E_{2}
\end{bmatrix}
\begin{bmatrix}
G_{1} & G_{2} \\
G_{2} & G_{3}
\end{bmatrix}
= 0$ $\begin{bmatrix}
\gamma_{i}E_{N} & \gamma_{2}E_{N} & \gamma_{3}E_{N}
\end{bmatrix}
\begin{bmatrix}
\gamma_{3}E_{N} & \gamma_{3}E_{N}
\end{bmatrix}$ Overdetermined homogeneous linear system Ax = 0solve it with SVD --then we have a.Cz.Cz $\phi_1, \phi_2 = \frac{-C_2 + \sqrt{C_2^2 + 4aC_3}}{2 \cdot C_3}$ $\Rightarrow \theta_1, \theta_2$ We can get exact solutions when there're only 3 sensors. but how can we solve the general case with equation of high degree? Test value method

			•	
Derste	P(0) =	m-n \$\frac{1}{2} \text{G} + \text{G} \text{D} \\ \text{i-1}	; +Gp; ++	Cmpin-1 -===================================
when	P(a) -	7 00	(maximum) the solution	220-2)
the	correspond	ding 8 is	the solution	M
		V		