cosxu2ucv

May 1, 2023

TP Machine Learning INSA LYON

Copyright (C) 2023 Kanaan Kevin, Foltête François, Reis Alexis, Vote Robin

This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version.

This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details.

You should have received a copy of the GNU General Public License along with this program. If not, see https://www.gnu.org/licenses/>.

Le but du TP est de prédire les prix de maisons en fonction de différentes variables

0.1 Importation des libraries à utiliser

```
[130]: import datetime as dt
      import pandas as pd
      import numpy as np
       #Libraries for data visualization
      import matplotlib.pyplot as plt
      import seaborn as sns
      from sklearn.model_selection import train_test_split
      from sklearn.linear_model import LinearRegression
      from sklearn.metrics import mean_squared_error
      from sklearn.metrics import r2_score
      from sklearn.linear_model import Ridge
      from sklearn.linear_model import Lasso
      from sklearn.model_selection import GridSearchCV
      from sklearn.preprocessing import StandardScaler
      from sklearn.pipeline import make_pipeline
      from sklearn.ensemble import RandomForestRegressor
      from sklearn.model selection import KFold
      from sklearn.metrics import explained_variance_score
```

```
[131]: import warnings warnings.filterwarnings('ignore')
```

0.2 Visualisation générale des données

0.2.1 Read csv file

```
[132]: df = pd.read_csv('kc_house_data.csv')
```

0.2.2 Affichages des 5 premières lignes du dataset

```
[133]: df.head()
[133]:
                   id
                                   date
                                             price
                                                    bedrooms
                                                               bathrooms
                                                                           sqft_living \
         7129300520
                       20141013T000000
                                         221900.0
                                                            3
                                                                     1.00
                                                                                   1180
       1 6414100192
                       20141209T000000
                                         538000.0
                                                            3
                                                                     2.25
                                                                                   2570
                                                            2
       2 5631500400
                       20150225T000000
                                         180000.0
                                                                     1.00
                                                                                    770
                                                            4
       3 2487200875
                       20141209T000000
                                          604000.0
                                                                     3.00
                                                                                   1960
       4 1954400510
                       20150218T000000
                                         510000.0
                                                            3
                                                                     2.00
                                                                                   1680
                                                            sqft_above sqft_basement
          sqft_lot floors
                             waterfront
                                          view
                                                    grade
       0
               5650
                        1.0
                                       0
                                              0
                                                         7
                                                                  1180
               7242
                        2.0
                                       0
                                              0
                                                         7
                                                                  2170
                                                                                    400
       1
       2
              10000
                        1.0
                                       0
                                              0
                                                         6
                                                                   770
                                                                                      0
       3
               5000
                        1.0
                                       0
                                              0
                                                         7
                                                                  1050
                                                                                    910
       4
                                              0
               8080
                        1.0
                                       0
                                                         8
                                                                  1680
                                                                                      0
                                    zipcode
                                                                 sqft_living15
          yr_built
                     yr_renovated
                                                  lat
                                                           long
       0
               1955
                                 0
                                      98178
                                              47.5112 -122.257
                                                                           1340
       1
               1951
                              1991
                                      98125
                                              47.7210 -122.319
                                                                           1690
       2
               1933
                                 0
                                      98028
                                              47.7379 -122.233
                                                                           2720
       3
               1965
                                 0
                                      98136
                                              47.5208 -122.393
                                                                           1360
       4
               1987
                                 0
                                      98074 47.6168 -122.045
                                                                           1800
          sqft_lot15
                 5650
       0
       1
                 7639
       2
                 8062
       3
                 5000
                 7503
```

[5 rows x 21 columns]

0.2.3 Describe pour visualiser les données avec pandas

```
[134]: df.info()
       #Visualize the data that is in the csv
       df.describe()
      <class 'pandas.core.frame.DataFrame'>
      RangeIndex: 21613 entries, 0 to 21612
      Data columns (total 21 columns):
           Column
                           Non-Null Count
                                            Dtype
                           _____
       0
           iд
                           21613 non-null
                                            int64
       1
           date
                           21613 non-null
                                            object
       2
           price
                                            float64
                           21613 non-null
       3
           bedrooms
                           21613 non-null
                                            int64
       4
           bathrooms
                           21613 non-null
                                            float64
       5
           sqft_living
                           21613 non-null
                                            int64
       6
           sqft_lot
                           21613 non-null
                                            int64
       7
           floors
                           21613 non-null
                                            float64
       8
                                            int64
           waterfront
                           21613 non-null
       9
           view
                           21613 non-null
                                            int64
       10
           condition
                           21613 non-null
                                            int64
       11
           grade
                           21613 non-null
                                            int64
           sqft_above
                           21613 non-null
                                            int64
           sqft_basement
                           21613 non-null
       13
                                            int64
       14
           yr built
                           21613 non-null
                                            int64
           yr_renovated
                           21613 non-null
                                            int64
       16
           zipcode
                           21613 non-null
                                            int64
       17
           lat
                           21613 non-null
                                            float64
       18
           long
                           21613 non-null
                                            float64
           sqft_living15
                           21613 non-null
                                            int64
           sqft_lot15
                           21613 non-null
      dtypes: float64(5), int64(15), object(1)
      memory usage: 3.5+ MB
[134]:
                         id
                                    price
                                               bedrooms
                                                             bathrooms
                                                                          sqft_living
              2.161300e+04
                             2.161300e+04
                                           21613.000000
                                                          21613.000000
                                                                         21613.000000
       count
              4.580302e+09
                             5.400881e+05
                                               3.370842
                                                                          2079.899736
                                                              2.114757
      mean
       std
              2.876566e+09
                             3.671272e+05
                                               0.930062
                                                              0.770163
                                                                           918.440897
      min
              1.000102e+06
                             7.500000e+04
                                               0.000000
                                                              0.000000
                                                                           290.000000
       25%
              2.123049e+09
                             3.219500e+05
                                               3.000000
                                                              1.750000
                                                                          1427.000000
       50%
              3.904930e+09
                             4.500000e+05
                                               3.000000
                                                              2.250000
                                                                          1910.000000
       75%
              7.308900e+09
                             6.450000e+05
                                               4.000000
                                                              2.500000
                                                                          2550.000000
                                               33.000000
              9.900000e+09
                             7.700000e+06
                                                              8.000000
                                                                         13540.000000
       max
                                              waterfront
                                                                            condition
                  sqft_lot
                                   floors
                                                                   view
              2.161300e+04
                             21613.000000
                                           21613.000000
                                                          21613.000000
                                                                        21613.000000
       count
```

0.007542

0.234303

3.409430

1.494309

1.510697e+04

mean

std	4.142051e+04	0.539989	0.086517	0.766318	0.650743	
min	5.200000e+02	1.000000	0.000000	0.000000	1.000000	
25%	5.040000e+03	1.000000	0.000000	0.000000	3.000000	
50%	7.618000e+03	1.500000	0.000000	0.000000	3.000000	
75%	1.068800e+04	2.000000	0.000000	0.000000	4.000000	
max	1.651359e+06	3.500000	1.000000	4.000000	5.000000	
	grade	sqft_above	sqft_basement	<pre>yr_built</pre>	${\tt yr_renovated}$	\
count	21613.000000	21613.000000	21613.000000	21613.000000	21613.000000	
mean	7.656873	1788.390691	291.509045	1971.005136	84.402258	
std	1.175459	828.090978	442.575043	29.373411	401.679240	
min	1.000000	290.000000	0.000000	1900.000000	0.000000	
25%	7.000000	1190.000000	0.000000	1951.000000	0.000000	
50%	7.000000	1560.000000	0.000000	1975.000000	0.000000	
75%	8.000000	2210.000000	560.000000	1997.000000	0.000000	
max	13.000000	9410.000000	4820.000000	2015.000000	2015.000000	
	zipcode	lat	long	sqft_living15	sqft_lot15	
count	21613.000000	21613.000000	21613.000000	21613.000000	21613.000000	
mean	98077.939805	47.560053	-122.213896	1986.552492	12768.455652	
std	53.505026	0.138564	0.140828	685.391304	27304.179631	
min	98001.000000	47.155900	-122.519000	399.000000	651.000000	
25%	98033.000000	47.471000	-122.328000	1490.000000	5100.000000	
50%	98065.000000	47.571800	-122.230000	1840.000000	7620.000000	
75%	98118.000000	47.678000	-122.125000	2360.000000	10083.000000	
max	98199.000000	47.777600	-121.315000	6210.000000	871200.000000	

[135]: df.isnull().sum()

0 [135]: id date 0 price 0 bedrooms 0 bathrooms 0 sqft_living 0 sqft_lot 0 floors 0 waterfront 0 view 0 condition 0 grade 0 sqft_above 0 sqft_basement yr_built yr_renovated 0 zipcode 0 lat 0

```
long 0
sqft_living15 0
sqft_lot15 0
dtype: int64
```

On constate qu'aucune variable ne contient de valeur nulle.

0.3 Visualisation par variable - On utilise pyplot pour afficher des infos utiles sur nos données

Pour chaque variable on affiche un histogramme pour en apprendre plus sur les variables

0.3.1 Price info

25%

50%

3.219500e+05

4.500000e+05

```
[136]: plt.figure(figsize=(20,10))
  plt.hist(df['price'], bins=300, color='green')
  plt.xlabel('Price')
  plt.ylabel('Number of houses')
  plt.show()
```



```
[137]: #price describe
df['price'].describe()

[137]: count    2.161300e+04
    mean    5.400881e+05
    std    3.671272e+05
    min    7.500000e+04
```

```
75% 6.450000e+05
max 7.700000e+06
```

Name: price, dtype: float64

La distribution des prix est normale.

0.3.2 Bedrooms info

```
[138]: plt.figure(figsize=(20,10))
   plt.hist(df['bedrooms'], bins=100, color='green')
   plt.xlabel('bedrooms')
   plt.ylabel('Number of houses')
   plt.show()
```



```
[139]: df['bedrooms'].describe()
[139]: count
                21613.000000
       mean
                    3.370842
       std
                    0.930062
                    0.000000
       min
       25%
                    3.000000
       50%
                    3.000000
       75%
                    4.000000
                   33.000000
       max
       Name: bedrooms, dtype: float64
[140]: df['bedrooms'].value_counts()
```

```
[140]: 3
            9824
            6882
      4
      2
            2760
      5
            1601
      6
             272
      1
             199
      7
              38
      0
              13
      8
              13
      9
              6
      10
               3
      11
               1
      33
               1
      Name: bedrooms, dtype: int64
[141]: # print info on the row with 33 bedrooms
      df[df['bedrooms'] == 33]
[141]:
                    id
                                   date
                                           price bedrooms bathrooms \
      15870 2402100895 20140625T000000 640000.0
                                                       33
                                                                1.75
             sqft_living sqft_lot floors waterfront view ... grade \
                   1620
                             6000 1.0
                                                        0 ...
      15870
                                                   0
             sqft_above sqft_basement yr_built yr_renovated zipcode
                  1040
                                 580
                                          1947
                                                          0 98103 47.6878
      15870
                long sqft_living15 sqft_lot15
      15870 -122.331
                             1330
                                    4700
      [1 rows x 21 columns]
[142]: df[df['bedrooms'] == 11]
[142]:
                                          price bedrooms bathrooms sqft_living \
                   id
                                  date
      8757 1773100755 20140821T000000 520000.0
                                                      11
                                                                3.0
                                                                           3000
            sqft_lot floors waterfront view ... grade sqft_above \
      8757
               4960
                        2.0
                                           0
                                                    7
                                                             2400
                                             ...
            sqft_basement yr_built yr_renovated zipcode
                                                          lat long \
      8757
                     600
                              1918
                                           1999
                                                   98106 47.556 -122.363
            sqft_living15 sqft_lot15
      8757
                    1420
                               4960
      [1 rows x 21 columns]
```

[143]: df[df['bedrooms'] == 0] #id 6994 valeur abérante

[440] .				3-4-		1	3	h - +h	_ \	
[143]:	875	id 6306400140	20140612T0	date	prio 1095000.		edrooms 0	bathrooms		
	3119	3918400017	2014061210 20150205T0		380000.		0	0.00		
			2013020510 20140805T0		288000.					
	3467	1453602309					0	1.50		
	4868	6896300380	20141002T0		228000.		0	1.00		
	6994	2954400190	20140624T0		1295650		0	0.00		
	8477	2569500210	20141117T0		339950		0	2.50		
	8484	2310060040	20140925T0		240000.		0	2.50		
	9773	3374500520	20150429T0		355000.		0	0.00		
	9854	7849202190	20141223T0		235000.		0	0.00		
	12653	7849202299	20150218T0		320000.		0	2.50		
	14423	9543000205	20150413T0		139950.		0	0.00		
	18379	1222029077	20141029T0		265000		0	0.75		
	19452	3980300371	20140926T0	00000	142000.	. 0	0	0.00)	
		sqft_living	sqft_lot	floors	wateri	front	view	grade	\	
	875	3064	-	3.5		0	_	7	•	
	3119	1470		3.0		0	_	8		
	3467	1430	1650	3.0		0	_	7		
	4868	390	5900	1.0		0	_	4		
	6994	4810	28008	2.0		0	•	12		
	8477	2290	8319	2.0		0	•	8		
	8484	1810	5669	2.0		0	0	7		
	9773	2460	8049	2.0		0	•	8		
	9854	1470	4800	2.0		0	•	7		
	12653	1490	7111	2.0		0	•	7		
	14423	844	4269	1.0		0	0	7		
	18379	384	213444	1.0		0	0	4		
	19452	290	20875	1.0		0	0	1		
	13402	250	20010	1.0		Ü	O	1		
		sqft_above	sqft_basem	ent yr	_built	yr_re	novated	zipcode	lat	. \
	875	3064		0	1990		0	98102	47.6362	2
	3119	1470		0	2006		0	98133	47.7145	· •
	3467	1430		0	1999		0	98125	47.7222	2
	4868	390		0	1953		0	98118	47.5260)
	6994	4810		0	1990		0	98053	47.6642	2
	8477	2290		0	1985		0	98042	47.3473	}
	8484	1810		0	2003		0	98038	47.3493	3
	9773	2460		0	1990		0	98031	47.4095	; ;
	9854	1470		0	1996		0	98065	47.5265	·
	12653	1490		0	1999		0	98065	47.5261	
	14423	844		0	1913		0	98001	47.2781	
	18379	384		0	2003		0	98070	47.4177	•
	19452	290		0	1963		0	98024	47.5308	3

	long	sqft_living15	sqft_lot15
875	-122.322	2360	4000
3119	-122.356	1470	1399
3467	-122.290	1430	1650
4868	-122.261	2170	6000
6994	-122.069	4740	35061
8477	-122.151	2500	8751
8484	-122.053	1810	5685
9773	-122.168	2520	8050
9854	-121.828	1060	7200
12653	-121.826	1500	4675
14423	-122.250	1380	9600
18379	-122.491	1920	224341
19452	-121.888	1620	22850

[13 rows x 21 columns]

On remarque que des maisons ont 0 et 33 chambres, ce sont des valeurs aberrantes que nous nettoierons.

0.3.3 Bathrooms info

```
[144]: plt.figure(figsize=(20,10))
   plt.hist(df['bathrooms'], bins=100, color='green')
   plt.xlabel('bathrooms')
   plt.ylabel('Number of houses')
   plt.show()
```



```
[145]: #print info about bathrooms
       df['bathrooms'].describe()
[145]: count
                 21613.000000
                     2.114757
       mean
       std
                     0.770163
       min
                     0.000000
       25%
                     1.750000
       50%
                     2.250000
       75%
                     2.500000
                     8.000000
       max
       Name: bathrooms, dtype: float64
[146]: df['bathrooms'].value_counts()
[146]: 2.50
                5380
       1.00
                3852
       1.75
                3048
       2.25
                2047
       2.00
                1930
       1.50
                1446
       2.75
                1185
       3.00
                753
       3.50
                 731
       3.25
                 589
       3.75
                 155
       4.00
                 136
       4.50
                 100
       4.25
                  79
       0.75
                  72
       4.75
                  23
       5.00
                  21
       5.25
                  13
       0.00
                  10
       5.50
                  10
       1.25
                   9
       6.00
                   6
       0.50
                   4
       5.75
                   4
       6.75
                   2
       8.00
                   2
       6.25
                   2
       6.50
                   2
       7.50
                   1
       7.75
       Name: bathrooms, dtype: int64
```

```
[147]: #Show the line where bathrooms is 8
       df[df['bathrooms'] == 8]
[147]:
                                               price bedrooms bathrooms \
                      id
                                     date
              6762700020 20141013T000000 7700000.0
                                                                       8.0
       7252
                                                             6
       12777 1225069038 20140505T000000 2280000.0
                                                             7
                                                                       8.0
              sqft_living sqft_lot floors waterfront
                                                        view ... grade \
       7252
                              27600
                                        2.5
                    12050
                                                      0
                                                            3 ...
                                                                      13
                    13540
                                        3.0
                                                      0
                                                            4
       12777
                             307752
                                                                      12
              sqft_above sqft_basement yr_built yr_renovated zipcode
                                             1910
       7252
                    8570
                                   3480
                                                           1987
                                                                    98102 47.6298
                    9410
                                   4130
                                             1999
                                                                    98053 47.6675
       12777
                                                              0
                 long sqft_living15 sqft_lot15
       7252 -122.323
                                3940
                                            8800
       12777 -121.986
                                4850
                                          217800
       [2 rows x 21 columns]
[148]: df[df['bathrooms'] == 0]
       #id 875 abbérant
[148]:
                      id
                                     date
                                               price bedrooms bathrooms \
              6306400140 20140612T000000
                                           1095000.0
       875
                                                             0
                                                                       0.0
       1149
              3421079032 20150217T000000
                                             75000.0
                                                              1
                                                                       0.0
       3119
              3918400017
                          20150205T000000
                                            380000.0
                                                             0
                                                                       0.0
       5832
              5702500050 20141104T000000
                                            280000.0
                                                              1
                                                                       0.0
       6994
              2954400190 20140624T000000
                                          1295650.0
                                                                       0.0
       9773
              3374500520 20150429T000000
                                            355000.0
                                                             0
                                                                       0.0
              7849202190 20141223T000000
       9854
                                            235000.0
                                                                       0.0
               203100435 20140918T000000
       10481
                                            484000.0
                                                              1
                                                                       0.0
       14423 9543000205 20150413T000000
                                            139950.0
                                                              0
                                                                       0.0
       19452
              3980300371 20140926T000000
                                            142000.0
                                                              0
                                                                       0.0
              sqft living sqft lot floors waterfront view ... grade \
       875
                     3064
                               4764
                                        3.5
                                                      0
                                                            0
       1149
                      670
                              43377
                                        1.0
                                                      0
                                                               ...
       3119
                     1470
                                        3.0
                                                      0
                                                                       8
                                979
                      600
                                                            0
       5832
                              24501
                                        1.0
                                                      0
                                                                       3
       6994
                     4810
                              28008
                                        2.0
                                                      0
                                                            0
                                                                      12
       9773
                     2460
                               8049
                                        2.0
                                                      0
                                                            0 ...
                                                                       8
                                        2.0
                                                            0 ...
                                                                       7
       9854
                     1470
                              4800
                                                      0
                              23244
                                        1.0
                                                            0
                                                                       7
       10481
                      690
                                                                       7
       14423
                      844
                              4269
                                        1.0
                                                      0
       19452
                      290
                              20875
                                        1.0
                                                                       1
```

	sqft_abov	ve sqft_baseme	nt	<pre>yr_built</pre>	<pre>yr_renovated</pre>	zipcode	lat	\
875	306	34	0	1990	0	98102	47.6362	
1149	67	70	0	1966	0	98022	47.2638	
3119	147	70	0	2006	0	98133	47.7145	
5832	60	00	0	1950	0	98045	47.5316	
6994	481	10	0	1990	0	98053	47.6642	
9773	246	30	0	1990	0	98031	47.4095	
9854	147	70	0	1996	0	98065	47.5265	
10481	69	90	0	1948	0	98053	47.6429	
14423	84	44	0	1913	0	98001	47.2781	
19452	29	90	0	1963	0	98024	47.5308	
	long	sqft_living15	sq	ft_lot15				
875	-122.322	2360		4000				
1149	-121.906	1160		42882				
3119	-122.356	1470		1399				
5832	-121.749	990		22549				
6994	-122.069	4740		35061				
9773	-122.168	2520		8050				
9854	-121.828	1060		7200				
10481	-121.955	1690		19290				
14423	-122.250	1380		9600				
19452	-121.888	1620		22850				

[10 rows x 21 columns]

On remarque ici nombre de bathrooms décimal que le est un etpas int parce que on considère plusieurs types de Bathrooms. Source : https://www.kaggle.com/datasets/harlfoxem/housesalesprediction/discussion/24804?resource=download On a des "full-bathrooms" des "semi" etc...

0.3.4 sqft living info

Représente la superficie intérieure

```
[149]: plt.figure(figsize=(20,10))
   plt.hist(df['sqft_living'], bins=100, color='green')
   plt.xlabel('sqft_living')
   plt.ylabel('Number of houses')
   plt.show()
```



```
[150]: #print info about sqft_living
df['sqft_living'].describe()
```

```
[150]: count
                21613.000000
       mean
                 2079.899736
       std
                  918.440897
       min
                  290.000000
       25%
                 1427.000000
       50%
                  1910.000000
       75%
                 2550.000000
                13540.000000
       max
```

Name: sqft_living, dtype: float64

Avoir une visualisation des tranches de 100 square foot

```
[151]: # On arrondis au millier pour pouvoir compter la fréquence de chaque trancheu (de 100)

sqft_living_arrondis = [sq // 100 * 100 for sq in df['sqft_living']]

# Vérification de l'arrondis
# print(sqft_living_100[:100])
```

```
[152]: pd_sqft_living_arrondis = pd.DataFrame(sqft_living_arrondis, dtype=int) pd_sqft_living_arrondis.value_counts()
```

```
1800 1066 ....
200 1
9200 1
8600 1
7600 1
13500 1
```

Length: 83, dtype: int64

```
[153]: plt.figure(figsize=(20,10))
   plt.hist(sqft_living_arrondis, bins=100, color='green')
   plt.xlabel('sqft_living_arrondis')
   plt.ylabel('Number of houses')
   plt.show()
```


Vérification de la maison avec la valeur max pour sqft_living.

```
[154]: df[df['sqft_living'] == 13540.000000]
[154]:
                                               price
                                                      bedrooms
                                                                bathrooms \
                      id
                                     date
             1225069038
                         20140505T000000
                                          2280000.0
                                                                      8.0
       12777
                           sqft_lot floors waterfront
                                                                  grade \
              sqft_living
                                                         view
                             307752
                                        3.0
       12777
                    13540
              sqft_above sqft_basement yr_built yr_renovated
                                                                 zipcode
       12777
                    9410
                                   4130
                                             1999
                                                                   98053 47.6675
```

```
long sqft_living15 sqft_lot15
12777 -121.986 4850 217800
```

[1 rows x 21 columns]

Cette maison coûte 2 280 000 \$ cela parait cohérent.

Vérification de la maison avec la valeur **min** pour *sqft_living*.

```
[155]: df[df['sqft_living'] == 290]
[155]:
                                                                bathrooms
                      id
                                     date
                                              price
                                                     bedrooms
              3980300371
                          20140926T000000
       19452
                                           142000.0
                                                             0
                                                                      0.0
              sqft_living sqft_lot floors waterfront
                                                          view
       19452
                      290
                              20875
                                        1.0
                                                       0
                                                             0
                                                                       1
              sqft_above sqft_basement yr_built yr_renovated
                                                                  zipcode
                                                                               lat \
       19452
                     290
                                      0
                                              1963
                                                                    98024 47.5308
                 long sqft_living15
                                      sqft_lot15
       19452 -121.888
                                1620
                                           22850
       [1 rows x 21 columns]
```

En regardant sur google maps, on observe un cabanon autour d'un lac. De plus le terrain est grand. Le prix paraît cohérent.

0.3.5 sqft lot info

```
[156]: plt.figure(figsize=(20,10))
  plt.hist(df['sqft_lot'], bins=100, color='green')
  plt.xlabel('sqft_lot')
  plt.ylabel('Number of houses')
  plt.show()
```


On constate que cette variable ne suit pas une loi normale. Nous allons donc par la suite prendre son logarithme.

0.3.6 Floors info

```
[157]: plt.figure(figsize=(20,10))
   plt.hist(df['floors'], bins=100, color='green')
   plt.xlabel('floors')
   plt.ylabel('Number of houses')
   plt.show()
```


Nombre d'étages. Les demi-étages peuvent corresponde à des mezzanines.

0.3.7 Waterfront info

```
[158]: plt.figure(figsize=(20,10))
   plt.hist(df['waterfront'], bins=100, color='green')
   plt.xlabel('waterfront')
   plt.ylabel('Number of houses')
   plt.show()
```



```
[159]: df['waterfront'].value_counts()
[159]: 0
            21450
              163
       Name: waterfront, dtype: int64
[160]: df['waterfront'].describe()
[160]: count
                21613.000000
                    0.007542
       mean
       std
                    0.086517
                    0.000000
       min
       25%
                    0.000000
       50%
                    0.000000
       75%
                    0.000000
                    1.000000
       max
       Name: waterfront, dtype: float64
```

```
[161]: #Show the price of the houses with a waterfront
    df[df['waterfront'] == 1]['price'].describe()
    #Price histogramme of the houses with a waterfront
    plt.figure(figsize=(20,10))
    plt.hist(df[df['waterfront'] == 1]['price'], bins=100, color='green')
    plt.xlabel('Price')
    plt.ylabel('Number of houses')
    plt.show()
```



```
[162]: #Show the price of the houses without a waterfront
df[df['waterfront'] == 0]['price'].describe()
#Price histogramme of the houses without a waterfront
plt.figure(figsize=(20,10))
plt.hist(df[df['waterfront'] == 0]['price'], bins=100, color='green')
plt.xlabel('Price')
plt.ylabel('Number of houses')
plt.show()
```



```
[163]: #Select the house with waterfront
       waterfronts=df[df['waterfront'] == 1]
       #Get the row with the highest price in the waterfronts
       waterfronts[waterfronts['price'] == waterfronts['price'].max()]
[163]:
                     id
                                   date
                                             price bedrooms
                                                             bathrooms \
       3914 9808700762 20140611T000000 7062500.0
                                                           5
                                                                    4.5
             sqft_living sqft_lot floors waterfront view
                                                               grade sqft_above \
       3914
                   10040
                            37325
                                       2.0
                                                          2
                                                                             7680
                                                     1
                                                                    11
             sqft_basement
                           yr_built yr_renovated zipcode
                                                                       long \
                                                              lat
       3914
                      2360
                               1940
                                             2001
                                                     98004 47.65 -122.214
                           sqft_lot15
             sqft_living15
       3914
                      3930
                                25449
       [1 rows x 21 columns]
```

0 ou 1 en fonction de si la maison est en face de l'eau ou non.

0.3.8 View info

```
[164]: plt.figure(figsize=(20,10))
  plt.hist(df['view'], bins=100, color='green')
  plt.xlabel('view')
  plt.ylabel('Number of houses')
  plt.show()
```



```
[165]: df['view'].describe()
[165]: count
                21613.000000
       mean
                    0.234303
                    0.766318
       std
       min
                    0.000000
       25%
                    0.000000
       50%
                    0.000000
       75%
                    0.000000
                    4.000000
       max
       Name: view, dtype: float64
[166]: df['view'].value_counts()
[166]: 0
            19489
       2
              963
       3
              510
              332
       1
              319
       Name: view, dtype: int64
[167]: #Show the price of the houses with a view
       df[df['view'] == 1]['price'].describe()
       #Price histogramme of the houses with a view
       plt.figure(figsize=(20,10))
       plt.hist(df[df['view'] == 1]['price'], bins=100, color='green')
       plt.xlabel('Price')
```

```
[167]: Text(0.5, 0, 'Price')
```



```
[168]: #Choose the row with the highest price and view value of 4
views=df[(df['view'] == 4)]
views[views['price'] == views['price'].max()]
```

```
[168]:
                                    date
                                             price bedrooms
                                                             bathrooms
      9254
            9208900037 20140919T000000 6885000.0
                                                                    7.75
             sqft_living sqft_lot floors waterfront view ...
                                                                grade sqft_above \
       9254
                   9890
                            31374
                                       2.0
                                                     0
                                                           4
                                                                    13
                                                                              8860
             sqft_basement
                           yr_built yr_renovated zipcode
                                                                        long \
                                                                 lat
       9254
                      1030
                                2001
                                                0
                                                     98039 47.6305 -122.24
             sqft_living15
                           sqft_lot15
       9254
                      4540
                                 42730
       [1 rows x 21 columns]
```

Nombre de vue(s) de la maison (vue sur quelque chose).

0.3.9 Condition info

```
[169]: plt.figure(figsize=(20,10))
   plt.hist(df['condition'], bins=100, color='green')
   plt.xlabel('condition')
   plt.ylabel('Number of houses')
```


Les notes varient de 1 à 5. Indique la condition de la propriété (1 = mauvaise, 5 = excellente).

0.3.10 Grade info

```
[170]: plt.figure(figsize=(20,10))
  plt.hist(df['grade'], bins=100, color='green')
  plt.xlabel('grade')
  plt.ylabel('Number of houses')
  plt.show()
```



```
[171]: df['grade'].describe()
[171]: count
                21613.000000
       mean
                     7.656873
       std
                     1.175459
       min
                     1.000000
       25%
                     7.000000
       50%
                     7.000000
       75%
                     8.000000
                    13.000000
       max
       Name: grade, dtype: float64
```

Les notes varient de 1 à 13. Elles représentent la qualité de la construction de la maison. On peut voir que la majorité des maisons ont une note comprise entre 7 et 8.

0.3.11 Sqft above info

```
[172]: plt.figure(figsize=(20,10))
  plt.hist(df['sqft_above'], bins=100, color='green')
  plt.xlabel('sqft_above')
  plt.ylabel('Number of houses')
  plt.show()
```


Surface vivable au dessus du niveau du sol (i.e. exclu le sous-sol). La distribution est normale.

0.3.12 Sqft basement info

```
[173]: plt.figure(figsize=(20,10))
   plt.hist(df['sqft_basement'], bins=100, color='green')
   plt.xlabel('sqft_basement')
   plt.ylabel('Number of houses')
   plt.show()
```


Surface du sous-sol. La distribution est normale si on ne considère pas les maisons sans sous-sol.

0.3.13 Year built info

```
[174]: plt.figure(figsize=(20,10))
  plt.hist(df['yr_built'], bins=100, color='green')
  plt.xlabel('Year built')
  plt.ylabel('Number of houses')
  plt.show()
```


50% 1975.000000 75% 1997.000000 max 2015.000000

25%

Name: yr_built, dtype: float64

1951.000000

Les maisons sont toutes construites entre 1900 et 2015. La moitié des maisons ont été construites après 1975.

0.3.14 Year renovated info

```
[225]: renovated_houses = df[df['yr_renovated'] != 0]
    plt.figure(figsize=(20,10))
    plt.hist(renovated_houses["yr_renovated"], bins=100, color='green')
    plt.xlabel('Year renovated')
    plt.ylabel('Number of houses')
    plt.show()
```



```
[177]: # Uniquement les maisons qui ont été rénovées
       renovated_houses['yr_renovated'].describe()
[177]: count
                 914.000000
                1995.827133
       mean
                  15.517107
       std
       min
                1934.000000
                1987.000000
       25%
       50%
                2000.000000
                2007.000000
       75%
                2015.000000
       max
       Name: yr_renovated, dtype: float64
[178]: # Toutes les maisons
       df['yr_renovated'].describe()
[178]: count
                21613.000000
                   84.402258
       mean
       std
                  401.679240
```

Name: yr_renovated, dtype: float64

0.000000

0.000000

0.000000

0.000000 2015.000000

min

25%

50%

75%

max

Cette variable nous permet de savoir quand est-ce qu'une maison a été rennovée. Les maisons qui n'ont pas été rennovées ont une valeur de 0. On peut voir que la majorité des maisons n'ont pas

été rennovées. Pour celles qui ont été rennovées, elles l'ont été entre 1934 et 2015.

0.3.15 Zipcode info

```
[179]: plt.figure(figsize=(20,10))
   plt.hist(df['zipcode'], bins=100, color='green')
   plt.xlabel('Zipcode')
   plt.ylabel('Number of houses')
   plt.show()
```


Rien de particulier à remarquer.

0.3.16 Latitude et longitude info

```
[180]: plt.figure(figsize=(20,10))
   plt.hist(df['lat'], bins=100, color='green')
   plt.xlabel('Lat')
   plt.ylabel('Number of houses')
   plt.show()
```



```
[181]: plt.figure(figsize=(20,10))
  plt.hist(df['long'], bins=100, color='green')
  plt.xlabel('Long')
  plt.ylabel('Number of houses')
  plt.show()
```


Rien de particulier à remarquer

0.3.17 Sqft living15 et Sqft lot15 info

```
[182]: plt.figure(figsize=(20,10))
  plt.hist(df['sqft_living15'], bins=100, color='green')
  plt.xlabel('sqft_living15')
  plt.ylabel('Number of houses')
  plt.show()
```



```
[183]: plt.figure(figsize=(20,10))
  plt.hist(df['sqft_lot15'], bins=100, color='green')
  plt.xlabel('sqft_lot15')
  plt.ylabel('Number of houses')
  plt.show()
```


La distribution de sqft_lot15 est exponentielle. On va donc prendre son logarithme. Celle de sqft_living15 est normale.

0.3.18 Taille de la maison et du terrain

SQDT Living 15 : Surface habitable moyenne des 15 voisins les plus proches. Maison qui sont 25% plus grande que la moyenne des 15 voisins les plus proches (3930 maisons) et donc avantagées :

```
[184]: # sqft_living15 : average size of 15 closest houses

# Houses that are 25% bigger than their neighbours in average

# Those houses have a comparatible advantage on their nearest neighbours

df[df['sqft_living'] > 1.25*df['sqft_living15']]
```

[184]:		id	a	2+0	nrico	hodrooma	bathrooms	\
[104]:		10		ate	price	bedrooms	bathrooms	\
	1	6414100192	20141209T000	000	538000.0	3	2.25	
	3	2487200875	20141209T000	000	604000.0	4	3.00	
	10	1736800520	20150403T000	000	662500.0	3	2.50	
	14	1175000570	20150312T000	000	530000.0	5	2.00	
	15	9297300055	20150124T000	000	650000.0	4	3.00	
	•••	•••	•••	•••	· · · · · · · · · · · · · · · · · · ·	•••		
	21593	8672200110	20150317T000	000 1	0.000880	5	3.75	
	21597	191100405	20150421T000	000 1	575000.0	4	3.25	
	21600	249000205	20141015T000	000 1	537000.0	5	3.75	
	21606	7936000429	20150326T000	000 1	007500.0	4	3.50	
	21609	6600060120	20150223T000	000	400000.0	4	2.50	
		a		_				
		sqft_living	$sqft_lot f$	loors	waterfrom	nt view	grade \	
	1	2570	7242	2.0		0 0	7	
	3	1960	5000	1.0		0 0	7	

10	3560	9796	1.0	0	0	8		
14	1810	4850	1.5	0	0	7		
15	2950	5000	2.0	0	3	9		
	•••		•••					
21593	4170	8142	2.0	0	2	10		
21597	3410	10125	2.0	0	0	10		
21600	4470	8088	2.0	0	0	11		
21606	3510	7200	2.0	0	0	9		
21609	2310	5813	2.0	0	0	8		
	sqft_above	sqft_basement	yr_built	yr_ren	ovated	zipcode	lat	\
1	2170	400	1951		1991	98125	47.7210	
3	1050	910	1965		0	98136	47.5208	
10	1860	1700	1965		0	98007	47.6007	
14	1810	0	1900		0	98107	47.6700	
15	1980	970	1979		0	98126	47.5714	
	•••	•••	•••	•••	•••	•••		
21593	4170	0	2006		0	98056	47.5354	
21597	3410	0	2007		0	98040	47.5653	
21600	4470	0	2008		0	98004	47.6321	
21606	2600	910	2009		0	98136	47.5537	
21609	2310	0	2014		0	98146	47.5107	
	long sq:	ft_living15 so	qft_lot15					
1	-122.319	1690	7639					
3	-122.393	1360	5000					
10	-122.145	2210	8925					
14	-122.394	1360	4850					
15	-122.375	2140	4000					
 21593	-122.181	3030	 7980					
21597	-122.223	2290	10125					
21600	-122.200	2780	8964					
21606	-122.398	2050	6200					
21609	-122.362	1830	7200					

[3930 rows x 21 columns]

0.4 Nettoyage des données

```
[185]: # Formatage date

df['date'] = df['date'].astype('datetime64[ns]')

df['date'] = pd.to_datetime(df['date'])

df['date']=df['date'].map(dt.datetime.toordinal)
```

On remarque certaines maisons sont plus grandes que les terrains sur lesquel elles sont construites \cdot

```
[186]: # Houses that are somehow bigger than the lot they are in..
       df[df['sqft_living']/df['floors'] > df['sqft_lot']]
[186]:
                       id
                              date
                                                bedrooms
                                                           bathrooms
                                                                       sqft_living \
                                         price
                           735514
       1549
               8816400885
                                      450000.0
                                                        4
                                                                 1.75
                                                                               1640
       3452
                            735710
                                                        2
                                                                 2.50
                                                                               2470
               2559950110
                                     1234570.0
       5800
               2770604103
                            735445
                                     450000.0
                                                        3
                                                                 2.50
                                                                               1530
       13253
               2877104196
                            735573
                                     760000.0
                                                        3
                                                                 2.00
                                                                               1780
                                                        3
       13278
              3277800845
                           735425
                                     370000.0
                                                                 1.00
                                                                               1170
       15743
               9828702895
                           735528
                                     700000.0
                                                        4
                                                                 1.75
                                                                               2420
       16931
               5016002275
                            735386
                                     610000.0
                                                        5
                                                                 2.50
                                                                               3990
                                                        2
       17434
              2062600020
                           735422
                                     530000.0
                                                                 2.50
                                                                               1785
               sqft lot
                         floors
                                  waterfront
                                               view
                                                         grade
                                                                 sqft_above
       1549
                   1480
                             1.0
                                            0
                                                   0
                                                      ...
                                                             7
                                                                        820
       3452
                    609
                             3.0
                                            0
                                                   0
                                                                       1910
                                                            11
       5800
                    762
                             2.0
                                            0
                                                   0
                                                             8
                                                                       1050
       13253
                   1750
                             1.0
                                            0
                                                   2
                                                             8
                                                                       1400
       13278
                   1105
                             1.0
                                            0
                                                   0
                                                             7
                                                                       1170
       15743
                    520
                             1.5
                                            0
                                                   0
                                                             7
                                                                       2420
       16931
                   3839
                             1.0
                                            0
                                                   0
                                                             8
                                                                       1990
                    779
                                                              7
       17434
                             2.0
                                                   0
                                                                       1595
               sqft_basement
                              yr_built yr_renovated
                                                         zipcode
                                                                                long \
                                                                       lat
       1549
                          820
                                   1912
                                                           98105
                                                                   47.6684 -122.314
                                                      0
       3452
                          560
                                   2011
                                                      0
                                                           98112
                                                                   47.6182 -122.312
                                                                   47.6420 -122.374
                          480
       5800
                                   2007
                                                      0
                                                           98119
       13253
                          380
                                   1927
                                                   2014
                                                           98103
                                                                   47.6797 -122.357
                                                                   47.5448 -122.375
       13278
                            0
                                   1965
                                                      0
                                                           98126
       15743
                                   1900
                                                      0
                                                           98112
                                                                   47.6209 -122.302
                            0
       16931
                         2000
                                                           98112
                                                                   47.6236 -122.299
                                   1962
                                                      0
       17434
                          190
                                   1975
                                                           98004 47.5959 -122.198
                               sqft_lot15
               sqft_living15
       1549
                         1420
                                     2342
       3452
                         2440
                                      1229
       5800
                        1610
                                     1482
       13253
                        1780
                                     3750
       13278
                         1380
                                     1399
       15743
                        1200
                                      1170
                                     5000
       16931
                        2090
       17434
                        1780
                                      794
       [8 rows x 21 columns]
```

[187]: # Maison qui sont plus grandes que le terrain sur lequel elles sont construites df = df.drop(df[df['sqft_living']/df['floors'] > df['sqft_lot']].index)

```
[188]: # Maison qui a 33 chambres pour une superficie d'environ 162m² et 1 seul étage
    df = df.drop(df[df['bedrooms'] == 33].index)
    df = df.drop(df[df['bedrooms'] == 0].index)
    df = df.drop(df[df['bathrooms'] == 0].index)

[189]: # Passage de la variable sqft_lot à son logarithme
    df["sqft_lot"] = np.log(df['sqft_lot'])

[190]: # Passage de la variable sqft_lot15 à son logarithme
    df["sqft_lot15"] = np.log(df['sqft_lot15'])
```

On constate qu'en prenant le logarithme de sqft_lot, l'ensemble des modèles sont plus performants.

0.5 Modèles prédictifs

0.5.1 Modèle simple de régression linéaire

```
[191]: #etude de la correlation
matrice_corr = df.corr().round(1)
sns.heatmap(data=matrice_corr, annot=True)
```

[191]: <Axes: >

Grâce à cette matrice de corrélation, on regarde la corrélation des différentes variables avec le prix. Il faut choisir les variables à retenir pour notre modèle en retenant celles qui sont le plus fort coefficient de corrélation. On constate que les coefficients vont de 0 à 0.7 (en valeurs absolues). On peut choisir de retenir les qui ont un coefficient supérieur ou égal à 0.4 en valeur absolue. On retient donc bathrooms, sqft_living, view, grade, sqfr_above et sqft_living15.

Mise en place du modèle

```
print(X_train.shape)
      print(X_test.shape)
      print(Y_train.shape)
      print(Y_test.shape)
     (17270, 6)
      (4318, 6)
      (17270,)
     (4318,)
     Entrainement du modèle
[193]: #entrainement du modèle
      lmodellineaire = LinearRegression()
      lmodellineaire.fit(X_train, Y_train)
[193]: LinearRegression()
     Evaluation du modèle
[194]: # Evaluation du training set
      y_train_predict = lmodellineaire.predict(X_train)
      rmse = (np.sqrt(mean_squared_error(Y_train, y_train_predict)))
      print("La performance du modèle sur la base d'apprentissage")
      print('----')
      print("L'erreur quadratique moyenne est {}".format(rmse))
      print('\n')
      # model evaluation for testing set
      y_test_predict = lmodellineaire.predict(X_test)
      rmse = (np.sqrt(mean_squared_error(Y_test, y_test_predict)))
      print('La performance du modèle sur la base de test')
      print('----')
      print("L'erreur quadratique moyenne est {}".format(rmse))
     La performance du modèle sur la base d'apprentissage
     L'erreur quadratique moyenne est 239994.52326066705
     La performance du modèle sur la base de test
     _____
     L'erreur quadratique moyenne est 235432.39753876044
     Le modèle n'est pas trop mauvais.
                                          L'erreur quadratique moyenne est d'environ
```

240000, cequiest del'ordredel' cart-type duprix desmaisons (370000).

0.5.2 Modèle simple de régression linéaire avec toutes les variables

Mise en place du modèle

Entrainement du modèle

```
[196]: #entrainement du modèle

lmodellineaire = LinearRegression()
lmodellineaire.fit(X_train, Y_train)
```

[196]: LinearRegression()

Evaluation du modèle

La performance du modèle sur la base d'apprentissage

L'erreur quadratique moyenne est 200279.08702527333

La performance du modèle sur la base de test

L'erreur quadratique moyenne est 197664.4612274257

L'erreur quadratique moyenne est ici plus faible (200 000\$). Le modèle est meilleur. Il peut cependant être intéressant de pousser l'analyse en utilisant un modèle avec régularisation.

0.5.3 Ridge Regression

Mise en place du modèle

```
[198]: X = df.loc[:, ~df.columns.isin(['id','price'])]
Y = df['price']

X_train, X_test, Y_train, Y_test = train_test_split(X, Y, test_size = 0.2, \( \text{\textstar} \)
\( \text{\text{\textstar} \)
\( \text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\t
```

Recherche du meilleur hyperparameter alpha

alpha : 1e-08

Entrainement du modèle

```
[200]: ridgereg = make_pipeline(StandardScaler(), Ridge(alpha=alpha_ridge))
    ridgereg.fit(X_train,Y_train)
```

Evaluation du modèle

```
La performance du modèle sur la base d'apprentissage
```

L'erreur quadratique moyenne est 200279.08711811327

```
La performance du modèle sur la base de test
```

L'erreur quadratique moyenne est 197664.57293403274

Les performances de la Ridge Regression sont très similaires à celles de la régression linéaire simple. Nous allons donc explorer la régression Lasso.

0.5.4 Lasso

0.5.5 Mise en place du modèle

Recherche du meilleur hyperparameter alpha

```
[203]: # Attention : la recherche est longue (compter 10-15 minutes)
lasso=Lasso(normalize=True)
parameters = {'alpha': (np.logspace(-8, 8, 100))}
lasso_regressor=GridSearchCV(lasso,parameters,cv=3)
lasso_regressor.fit(X_train,Y_train)

lasso_alpha = lasso_regressor.best_params_["alpha"]

print(lasso_regressor.best_params_)
print(lasso_regressor.best_score_)
```

```
{'alpha': 1e-08}
      0.7000250726816066
      Entrainement du modèle
[204]: lassoreg = Lasso(alpha = lasso_alpha, normalize = True)
      lassoreg.fit(X_train, Y_train)
[204]: Lasso(alpha=1e-08, normalize=True)
      Evaluation du modèle
[205]: print(lassoreg.score(X_test, Y_test))
      0.7134943916492347
[206]: # Evaluation du training set
      Y_train_pred = lassoreg.predict(X_train)
      Y_test_pred = lassoreg.predict(X_test)
      #print('MSE train: %.3f, test: %.3f' % (mean_squared_error(Y_train,_
       → Y_train_pred), mean_squared_error(Y_test, Y_test_pred)))
      Y_train_predict = lassoreg.predict(X_train)
      rmse = (np.sqrt(mean_squared_error(Y_train, Y_train_predict)))
      print("La performance du modèle sur la base d'apprentissage")
      print('----')
      print("L'erreur quadratique moyenne est {}".format(rmse))
      print('\n')
      # model evaluation for testing set
      Y_test_predict = lassoreg.predict(X_test)
      rmse = (np.sqrt(mean_squared_error(Y_test, Y_test_predict)))
```

```
La performance du modèle sur la base d'apprentissage
```

print('La performance du modèle sur la base de test')

print("L'erreur quadratique moyenne est {}".format(rmse))

print('----')

L'erreur quadratique moyenne est 200279.08702527327

```
La performance du modèle sur la base de test
------
L'erreur quadratique moyenne est 197664.46122704283
```

De même, les résulats ne sont pas plus convaincants que ceux de la régression linéaire simple. Nous allons donc explorer la une régression non linéraire.

0.5.6 Random Forest

Mis en place du modèle

Entrainement du modèle

```
[208]: RFregressor = RandomForestRegressor(n_estimators = 100, random_state = 0)

# n_estimators = nombre d'arbres de décision, c'est-à-dire le nombre de modèles_

que l'on va construire

RFregressor.fit(X_train, Y_train)
```

[208]: RandomForestRegressor(random_state=0)

Evaluation du modèle

```
[209]: # Evaluation du training set
      Y_train_pred = RFregressor.predict(X_train)
      Y_test_pred = RFregressor.predict(X_test)
      #print('MSE train: %.3f, test: %.3f' % (mean_squared_error(Y_train,_
       → Y_train_pred), mean_squared_error(Y_test, Y_test_pred)))
      Y_train_predict = RFregressor.predict(X_train)
      rmse = (np.sqrt(mean_squared_error(Y_train, Y_train_predict)))
      print("La performance du modèle sur la base d'apprentissage")
      print('----')
      print("L'erreur quadratique moyenne est {}".format(rmse))
      print('\n')
      # model evaluation for testing set
      Y_test_predict = RFregressor.predict(X_test)
      rmse = (np.sqrt(mean_squared_error(Y_test, Y_test_predict)))
      print('La performance du modèle sur la base de test')
      print('----')
      print("L'erreur quadratique moyenne est {}".format(rmse))
```

La performance du modèle sur la base d'apprentissage

L'erreur quadratique moyenne est 48683.80612073758

La performance du modèle sur la base de test

L'erreur quadratique moyenne est 134276.95802832497

On a un bien meilleur résultat avec le Random Forest. L'erreur quadratique moyenne est de 120 000\$ sur le dataset de test. C'est donc un jeu de donnée qui est mieux prédit par un modèle non linéaire.

0.5.7 Kernel Ridge Regression

Mise en place du modèle

Entrainement du modèle

```
[218]: from sklearn.kernel_ridge import KernelRidge

# Création en entrainement du modèle

KRregressor = KernelRidge(kernel='rbf', alpha=0.1, gamma=0.1)

KRregressor.fit(X_train, Y_train)
```

[218]: KernelRidge(alpha=0.1, gamma=0.1, kernel='rbf')

Evaluation du modèle

```
[219]: Y_train_pred = KRregressor.predict(X_train)
    Y_test_pred = KRregressor.predict(X_train)
    Y_train_predict = KRregressor.predict(X_train)
    rmse = (np.sqrt(mean_squared_error(Y_train, Y_train_predict)))

print("La performance du modèle sur la base d'apprentissage")
    print('-----')
    print("L'erreur quadratique moyenne est {}".format(rmse))
    print('\n')

# model evaluation for testing set
    Y_test_predict = KRregressor.predict(X_test)
    rmse = (np.sqrt(mean_squared_error(Y_test, Y_test_predict)))

print('La performance du modèle sur la base de test')
    print('------')
```

```
print("L'erreur quadratique moyenne est {}".format(rmse))
```

La performance du modèle sur la base de test

L'erreur quadratique moyenne est 149889.87533226088

Dans l'état actuel, le modèle est moins bon que la régression linéaire simple, ce qui est étonnant. Il faudrait donc modifier les hyperparamètres pour obtenir un meilleur résultat. Cependant, les hyperparamètres présentés sont ceux qui donnent les meilleurs résultats pour un temps de calcul raisonnable.

Le modèle semble meilleur que la régression linéaire simple. Cependant, il est plus long à calculer et semble moins bon qu'une Random Forest. Nous essayons d'utiliser l'approximation de Nyström pour accélérer le calcul.

0.5.8 Approximation de nyström for kernel ridge regression

Mise en place de l'approximation

```
[220]: from sklearn.kernel_approximation import Nystroem
       # Création d'un objet Nystroem avec n components = 100
      nystroem = Nystroem(kernel='rbf', n_components=100)
      #On utilise la variable regressor de la partie précédente
      X_train_nystroem = nystroem.fit_transform(X_train)
       # Entraînement du modèle KernelRidge sur les données transformées par Nystroem
      KRregressor_nys = KernelRidge(kernel='rbf', alpha=0.1, gamma=0.1)
      KRregressor_nys.fit(X_train_nystroem, Y_train)
       # Prédiction sur les données d'entraînement
      Y_train_pred = KRregressor_nys.predict(X_train_nystroem)
       # Calcul de l'erreur quadratique moyenne sur les données d'entraînement
      rmse_train = np.sqrt(mean_squared_error(Y_train, Y_train_pred))
       # Transformation des données de test avec la méthode de Nystroem
      X_test_nystroem = nystroem.transform(X_test)
       # Prédiction sur les données de test
      Y_test_pred = KRregressor_nys.predict(X_test_nystroem)
```

```
# Calcul de l'erreur quadratique moyenne sur les données de test
rmse_test = np.sqrt(mean_squared_error(Y_test, Y_test_pred))

# Affichage des résultats
print("Performance du modèle sur la base d'apprentissage :")
print("Erreur quadratique moyenne : {:.2f}".format(rmse_train))
print('\n')
print("Performance du modèle sur la base de test :")
print("Erreur quadratique moyenne : {:.2f}".format(rmse_test))
```

Performance du modèle sur la base d'apprentissage : Erreur quadratique moyenne : 218868.57

```
Performance du modèle sur la base de test : Erreur quadratique moyenne : 187413.39
```

Les résultats sont moins bons avec l'approximation, ce qui est attendu et le temps de calcul est est même plus grand ce qui est étonnant (on regarde le temps d'exécution des cellules de code).

0.6 Comparaison des modèles

Nous allons maintenant nous intéresser à une comparaison détaillée des modèles.

Premièrment, il est intéressant d'observer que pour les modèles de régression linéaire, introduire de la régularisation n'améliore pas la prédiction en terme d'erreur quadratique moyenne, là où pour les modèles non linéaire Random Forest et Kernel Ridge, la prédiction est améliorée. Cela peut vouloir dire que : - Le jeu de données est assez propre et peu bruité - La forme intrinsèque d'un modèle linéaire ne permet pas de faire mieux que ce qui est obtenu et introduire de la régularisation n'améliore donc pas la prédiction

Choix du nombre de pli : Nous avons utilisé la source : https://machinelearningmastery.com/k-fold-cross-validation/ Nous avons choisi 10 plis car cette valeur est montrée efficace (empiriquement) et conseillée "par défaut". Notre jeu de données est assez grand pour que cette valeur ait du sens, il y a assez de données dans les 9 plis pour entrainer notre modèle.

```
[221]: X = df.loc[:, ~df.columns.isin(['id','price'])]
Y = df['price']

# Ensemble des erreurs pour les différents modèles
RF_errors = []
lasso_errors = []
ridge_errors = []
KRR_errors = []

# Mise en place des plis
kfold = KFold(n_splits=10, shuffle=True, random_state=7)
for train_index, test_index in kfold.split(X, Y):
    X_train_CV = [X.iloc[i] for i in train_index]
```

```
X_test_CV = [X.iloc[i] for i in test_index]
          Y_train_CV = [Y.iloc[i] for i in train_index]
          Y_test_CV = [Y.iloc[i] for i in test_index]
          RFregressor.fit(X_train_CV, Y_train_CV)
          Y_test_pred_RF = RFregressor.predict(X_test_CV)
          lassoreg.fit(X_train_CV, Y_train_CV)
          Y_test_pred_lasso = lassoreg.predict(X_test_CV)
          ridgereg.fit(X_train_CV, Y_train_CV)
          Y_test_pred_ridge = ridgereg.predict(X_test_CV)
          KRregressor.fit(X_train_CV, Y_train_CV)
          Y_test_pred_KRR = KRregressor.predict(X_test_CV)
          for i in range(len(Y_test_CV)):
              Y_test = Y_test_CV[i]
              RF_errors.append(Y_test_pred_RF[i]-Y_test)
              lasso_errors.append(Y_test_pred_lasso[i]-Y_test)
              ridge_errors.append(Y_test_pred_ridge[i]-Y_test)
              KRR_errors.append(Y_test_pred_KRR[i]-Y_test)
[222]: RF_errors = np.array(RF_errors)
      lasso_errors = np.array(lasso_errors)
      ridge_errors = np.array(ridge_errors)
      KRR_errors = np.array(KRR_errors)
      # summary of errors arrays
      print('RF_errors: mean=%.3f stdv=%.3f' % (np.mean(RF_errors), np.
        ⇔std(RF errors)))
      print('lasso_errors: mean=%.3f stdv=%.3f' % (np.mean(lasso_errors), np.
        ⇔std(lasso_errors)))
      print('ridge_errors: mean=%.3f stdv=%.3f' % (np.mean(ridge_errors), np.

std(ridge_errors)))
      print('KRR_errors: mean=%.3f stdv=%.3f' % (np.mean(KRR_errors), np.

std(KRR_errors)))
      RF errors: mean=-484.946 stdv=127218.182
      lasso_errors: mean=-1.864 stdv=200231.092
      ridge_errors: mean=-1.863 stdv=200231.067
      KRR errors: mean=-539436.173 stdv=367578.917
[223]: fig = plt.figure(figsize =(10, 10))
      boxplot_dict = {'RF':RF_errors, 'Lasso':lasso_errors, 'Ridge':ridge_errors, u
```

```
# Creating plot
plt.boxplot(boxplot_dict.values(), labels = boxplot_dict.keys())
# show plot
plt.show()
```


Premièrement, on constate que les régressions ridge et lasso ont des résultats égaux en terme de performance de prédiction. De plus, on constate que RandomForest a une erreur systématique en moyenne plus grande par rapport à ridge et lasso (-600 contre -20) mais c'est tout à fait négligeable considérant les ordres de grandeur du problème. A l'inverse, on constate que l'écart-type des erreurs est plus faible pour RandomForest que pour ridge et lasso (donc la variance également). Cependant, considérant les ordres de grandeurs du problème, un écart-type de 200 000€ pour ridge et lasso reste convenable, mais RandomForest est encore meilleur. La Kernel Ridge regression quant à elle

semblait meilleur que les régressions linéaires Ridge et Lasso sur son jeu d'entraînement mais avec le validation croisée, on se rend compte que ce modèle commet une grande erreur systématique et a un écart-type bien plus grand. Ce modèle n'est donc pas à garder. Finalement, le modèle le plus intéressant à utiliser est donc RandomForest.