Seminar 6

1. Let $n \in \mathbb{N}$, $n \geq 2$ and

$$SL_n(\mathbb{R}) = \{ A \in M_n(\mathbb{R}) \mid \det(A) = 1 \},$$

$$GL_n(\mathbb{R}) = \{ A \in M_n(\mathbb{R}) \mid \det(A) \neq 0 \}.$$

Show that $SL_n(\mathbb{R})$ is a normal subgroup of the group $(GL_n(\mathbb{R}), \cdot)$.

2. Show that the center

$$Z(G) = \{ x \in G \mid x \cdot q = q \cdot x, \forall q \in G \}$$

of a group (G, \cdot) is a normal subgroup.

- **3.** Determine the (normal) subgroups and the factor groups of the group $(\mathbb{Z}, +)$.
- **4.** Determine the (normal) subgroups of the group $(\mathbb{Z}_6,+)$, and draw the Hasse diagram of their lattice. Then determine the factor groups and fill in the operation table for one of them.
- **5.** Determine the (normal) subgroups of Klein's group (K, \cdot) , and draw the Hasse diagram of their lattice. Thus determine the factor groups, and fill in the operation table for one of them.
- **6.** Determine the subgroups and the normal subgroups of the group (S_3, \circ) (compute S_3/r_H and S_3/r_H' for $H \leq S_3$), and draw the Hasse diagrams of their lattices. Then determine the factor groups, and fill in the operation table for one of them.
- 7. Determine the subgroups and the normal subgroups of the quaternion group (Q, \cdot) , and draw the Hasse diagrams of their lattices. Then determine the factor groups, and fill in the operation table for one of them.
- 8. Show that the rotations from the dihedral group (D_4, \cdot) form a normal subgroup and determine the corresponding factor group.