De los problemas 14 al 20 determine si los vectores dados son ortogonales, paralelos o ninguno de los dos. Después esboce cada par.

14.
$$\mathbf{u} = 3\mathbf{i} - 12\mathbf{j}$$
; $\mathbf{v} = -8\mathbf{i} - 2\mathbf{j}$

15.
$$\mathbf{u} = \begin{pmatrix} -2 \\ 9 \end{pmatrix}; \mathbf{v} = \begin{pmatrix} 6 \\ 10 \end{pmatrix}$$

16.
$$\mathbf{u} = 2\mathbf{i} - 3\mathbf{j}; \mathbf{v} = -9\mathbf{i} + 6\mathbf{j}$$

17.
$$\mathbf{u} = \begin{pmatrix} 0 \\ -4 \end{pmatrix}; \mathbf{v} = \begin{pmatrix} -3 \\ 3 \end{pmatrix}$$

18.
$$\mathbf{u} = -\mathbf{i}\sqrt{3} + 2\mathbf{j}; \mathbf{v} = -\mathbf{i}2\sqrt{3} + 3\mathbf{j}$$

19.
$$\mathbf{u} = 7\mathbf{i}$$
; $\mathbf{v} = -23\mathbf{j}$

20.
$$\mathbf{u} = 2\mathbf{i} - 4\mathbf{j}$$
; $\mathbf{v} = -\mathbf{i} + 3\mathbf{j}$

21. Sean
$$\mathbf{u} = -3\mathbf{i} + 6\mathbf{j}$$
 y $\mathbf{v} = 2\mathbf{i} + \alpha\mathbf{j}$. Determine α tal que:

a) u y v son ortogonales.

- b) u y v son paralelos.
- c) El ángulo entre **u** y **v** es $\frac{\pi}{4}$.
- d) El ángulo entre **u** y **v** es $\frac{\pi}{3}$ 4.

22. Sean
$$\mathbf{u} = \alpha \mathbf{i} - 4\mathbf{j}$$
 y $\mathbf{v} = 2\mathbf{i} + \beta \mathbf{j}$. Determine α y β tales que:

a) u y v son ortogonales.

- b) u y v son paralelos.
- c) El ángulo entre **u** y **v** es $\frac{\pi}{4}$.
- d) El ángulo entre **u** y **v** es $\frac{\pi}{3}$ 4.

23. En el problema 21 demuestre que no existe un valor de
$$\alpha$$
 para el que \mathbf{u} y \mathbf{v} tienen direcciones opuestas.

24. Encuentre condiciones para α y β del problema 22 para que \mathbf{u} y \mathbf{v} tengan la misma dirección.

En los problemas 25 al 38 calcule proy_v u.

25.
$$u = 3i$$
; $v = i + j$

26.
$$\mathbf{u} = \begin{pmatrix} 3 \\ -5 \end{pmatrix}; \mathbf{v} = \begin{pmatrix} -10 \\ 5 \end{pmatrix}$$

27.
$$\mathbf{u} = 2\mathbf{i} - 3\mathbf{j}; \mathbf{v} = -9\mathbf{i} + 6\mathbf{j}$$

28.
$$u = 2i + j$$
; $v = i - 2j$

29.
$$\mathbf{u} = \begin{pmatrix} 7 \\ -4 \end{pmatrix}; \mathbf{v} = \begin{pmatrix} 8 \\ 6 \end{pmatrix}$$

30.
$$\mathbf{u} = -\mathbf{i} - 2\mathbf{j}$$
; $\mathbf{v} = 5\mathbf{i} + 7\mathbf{j}$

31.
$$\mathbf{u} = \mathbf{i} + \mathbf{j}$$
; $\mathbf{v} = 2\mathbf{i} - 3\mathbf{j}$

32.
$$\mathbf{u} = -\mathbf{i}\sqrt{3} + 2\mathbf{j}; \mathbf{v} = -\mathbf{i}2\sqrt{3} - 3\mathbf{j}$$

33.
$$\mathbf{u} = -\mathbf{i}\sqrt{5} + \mathbf{j}2\sqrt{3}; \mathbf{v} = -\mathbf{i}3\sqrt{3} - \mathbf{j}2\sqrt{5}$$

34.
$$\mathbf{u} = \alpha \mathbf{i} + \beta \mathbf{j}$$
; $\mathbf{v} = \mathbf{i} + \mathbf{j}$; $\alpha y \beta$ reales positivos

35.
$$\mathbf{u} = \begin{pmatrix} 2 \\ 9 \end{pmatrix}; \mathbf{v} = \begin{pmatrix} 4 \\ -1 \end{pmatrix}$$

36.
$$\mathbf{u} = 7\mathbf{i} + 2\mathbf{j}$$
; $\mathbf{v} = 4\mathbf{i} - 6\mathbf{j}$

37.
$$\mathbf{u} = \alpha \mathbf{i} - \beta \mathbf{j}$$
; $\mathbf{v} = \mathbf{i} + \mathbf{j}$; $\alpha y \beta$ reales positivos con $\alpha > \beta$

38.
$$\mathbf{u} = \begin{pmatrix} -1 \\ -2 \end{pmatrix}; \mathbf{v} = \begin{pmatrix} 6 \\ 6 \end{pmatrix}$$