Experiment 6 Preliminary Work Operational Amplifiers - II

Ahmet Akman 2442366 December 13, 2021

Contents

1	Introduction	3
2	Step 1 2.1 a)	3 3 5
3	Step 2	6
4	Step 3 4.1 a) Darkness Sensor	
5	Step 4	8
6	Conclusion	12

1 Introduction

In preliminary work of the Experiment 6 , the steps for the pre-experiment are conducted and presented.

2 Step 1

For this step circuit given in Figure 1 is taken as the reference.

Figure 1: Circuit schematic for the step 1

2.1 a)

The expression relating $V_o(t)$ to V_{in} is obtained via hand calculations which is given in Figure 2.

Figure 2: Hand calculations for the expression relating $V_o(t)$ to V_{in} $V_o(t)vsV_{in}$ is sketched in the Figure 3 according to the calculations in Figure 2.

Figure 3: $V_o(t)vsV_{in}$ sketch

2.2 b)

The expression relating $V_o(t)$ to V_{in} without R3 is obtained via hand calculations which is given in Figure 2. $V_o(t)vsV_{in}$ is sketched in the Figure 4 according to the calculations in Figure 2.

Figure 4: $V_o(t)vsV_{in}$ sketch

3 Step 2

For this step circuit given in Figure 5 is taken as the reference.

Figure 5: Circuit for Step 2

Then $V_o v s V i n$ is plotted given in Figure 6 with its calculations.

Figure 6: $V_o(t)vsV_{in}$ sketch

4 Step 3

4.1 a) Darkness Sensor

The circuit given in Figure 7 is taken as the reference.

Figure 7: Darkness sensor circuit for the Step 3

The relation that express $V_o(t)vsR_{LDR}$ can be derived using voltage divider equations as follows.

$$V_{+} = 6Volts$$

$$V_{-} = 12 \frac{R_{3}}{R_{3} + R_{LDR}}$$

$$if(6 - 12 \frac{R_{3}}{R_{3} + R_{LDR}} > 0, V_{o} = +12V)$$

$$if(6 - 12 \frac{R_{3}}{R_{3} + R_{LDR}} < 0, V_{o} = -12V)$$

4.2 b) Lightness Sensor

so;

The lightness sensor can be designed via swapping the inverting and non-inverting terminals of Op-Amp in the circuit given in Figure 6. So the resulting circuit is given in the Figure 7.

Figure 8: Lightness sensor circuit for the Step 3

5 Step 4

The circuit in the Figure 1 is constructed in LTSpice environment, given in Figure 8.

Figure 9: LTSpice schematic for two stage amplifier

Then the plot, V_o vs V_{in} is obtained and illustrated in Figure 9.

Figure 10: V_o vs V_{in}

for the part b) of the Step 1 plot given in Figure 10 is obtained.

Figure 11: V_o vs V_{in}

By comparing the sketch in the Figure 3, it can be said that simulation result is consistent with our theoretical result.

The circuit in the Figure 5 is constructed in LTSpice environment, given in Figure 12.

Figure 12: LTSpice schematic for Step 2 circuit

Then the plot, V_o vs V_{in} is obtained and illustrated in Figure 13.

Figure 13: V_o vs V_{in}

By comparing the sketch in the Figure 6, it can be said that simulation result is consistent with our theoretical findings.

6 Conclusion

In conclusion, in preliminary work of experiment 6, "Operational Amplifiers-II" needed the expressions for the amplifier circuits are obtained and necessary data are plotted. Then and simulations are made and compared with theoretical results.