◆ 正规表达式与正规语言

正规语言的不同表达形式

- ◆ 正规表达式
- ◆ 正规语言
- ◆ 正规表达式的代数性质

正视表达式

- ◆ 用代数的方法表示正规语言
- ◆ 语义 正规语言 (Regular Languages, RL) 作用于正规语言上的三种代数运算:
 - 联合 (union) $L \cup M = \{w \mid w \in L \lor w \in M\}$
 - 连接(concatenation)L·M = $\{w_1w_2 | w_1 \in L \land w_2 \in M\}$
 - (星) 闭包 (closure) L* = ∪_{i≥0}Lⁱ

◇ 语法

- 基本正规表达式 3 个运算符 vs.上述 3 个运算
- 对应不同应用形式会扩展一些助记运算符如 LEX 中的正规表达式

正视表达式

◆ 语法

- 设 Σ 为字母表。 Σ 上的正规表达式集合 R 递归定义 如下:

基础. $1.\epsilon, \phi \in \mathbb{R}$.

2. If $a \in \Sigma$, then $a \in R$.

3. 任一变量 L ∈ R.

归纳.

- 1. If $E \in R$ and $F \in R$, then $E + F \in R$.
- 2. If $E \in R$ and $F \in R$, then $EF \in R$.
- 3. If $E \in R$, then $E^* \in R$.
- 4. If $E \in R$, then $(E) \in R$.

正规表达式

◆ 语义

- 设R为 Σ 上的正规表达式集合。对每个不含变量的 $E \in R$, E的语言 L(E) 递归定义如下:

基础.

- 1. $L(\varepsilon)=\{\varepsilon\}$ and $L(\phi)=\phi$.
- 2. If $a \in \Sigma$, then L(a)={a}.

归纳.

- 1. If $E \in \mathbb{R}$ and $F \in \mathbb{R}$, then $L(E+F) = L(E) \cup L(F)$.
- 2. If $E \in \mathbb{R}$ and $F \in \mathbb{R}$, then L(EF) = L(E)L(F).
- 3. If $E \in \mathbb{R}$, then $L(E^*) = (L(E))^*$.
- 4. If $E \in \mathbb{R}$, then L((E)) = L(E).

正规表达式

◆ 正规表达式算符优先级

算符优先级 (precedence) 依次为

- _ *
- • 连接
- +

◇正规表达式的几个派生运算符

$$-L^{+} = LL^{*} = L^{*}L$$

$$-L? = \varepsilon + L$$

$$-L^{n} = LL^{n-1} \quad (n>0)$$

$$L^{0} = \varepsilon$$

◆ 正规表达式举例

设计表示如下语言的正规表达式:该语言中的每个字符串由交替的 0 和 1 构成

$$-(01)^* + (10)^* + 0(10)^* + 1(01)^*$$

$$- (\varepsilon + 1) (01)^* (\varepsilon + 0)$$

$$- (\varepsilon + 0) (10)^* (\varepsilon + 1)$$

正规表达式

◆ 正规表达式举例

课堂练习 设计如下语言的正规表达式:

- 从右端数第5个位置是1的所有0,1字符串的集合.
- 前 5 位至少包含一个 1 的所有 0, 1 字符串的集合。 (含长度小于 5 的字符串,至少含一个字符)

正规语言

- ◆ 正规语言(regular language)
 - 归纳定义

字母表∑上的正规语言归纳定义如下:

基础 $1\{\mathcal{E}\}$ 和 ϕ 是正规语言

2 若 a ∈ Σ , 则 {a} 是正规语言

归纳 1 若 L和 R 是正规语言,则 L∪R 是正规语言

2若L和R是正规语言,则LR是正规语言

3若 L 是正规语言,则 L*是正规语言

正规语言

- ◆ 正规语言(regular language)
 - 利用正规表达式定义 对于字母表 Σ 上的语言 R,若存在 Σ 上的正规表 达式 E,满足 L(E) = R,则 R 是正规语言

◇正规表达式的代数定律

- 交换律和结合律
- 零元和幺元
- 分配律
- 等幂律
- 与闭包相关的定律
- ◇代数定律的具体化
 - 用于发现和测试定律

FL&A

正规表达式的代数定律

- ◆ 交换律 (commutativity) 和结合律 (associativeity)
 - -L+M=M+L
 - (L+M)+N = L+(M+N)
 - (LM)N = L(MN)
- ◆ 幺元 (identities) 和零元 (annihilators)
 - $\phi + L = L + \phi = L$
 - $-\varepsilon L = L\varepsilon = L$
 - $-\phi L = L\phi = \phi$

- - -L(M+N)=LM+LN
 - (M+N)L = ML+NL
- ◆ 等幂律 (idempotent law)
 - -L+L=L

◇与闭包相关的定律

- $-(L^*)^* = L^*$
- $-\phi^*=\varepsilon$
- $-\varepsilon^*=\varepsilon$
- L+=LL*=L*L (L+的定义)
- $-L^* = L^+ + \varepsilon$

◇与任选运算相关的定律

$$-L?=\varepsilon+L$$
 (L?的定义)

◇代数定律的具体化

- 具体化:将正规表达式中的每个变量用单个符号替换。
- 一般化:将具体表达式中的单个符号用变量表示。
- 结论: 正规表达式的一般形式所代表的任何语言与其对 应的具体表达式的语言之间可以建立特定的对应关系。
- 应用

用于发现和测试关于正规表达式的定律

◇代数定律的具体化

- 定理: 正规表达式的一般形式所代表的任何语言与 其对应的具体表达式的语言之间存在如下对应关系:

设E为正规表达式, $L_1, L_2, ..., L_m$ 为其中的变量. (这里,假设E中不含非变量符号,否则需推广) 将每一Li替换为符号ai,得到对应E的一个具体表 达式 C. 则对这些变量的任何实例语言 $S_1, S_2, ...,$ S_m , L(E)中的任何串 W可写成W= $W_1W_2...W_k$ 的 形式,其中 W_i 是某一语言 S_{ii} ($1 \le j_i \le m$) 中的串, 并且串 $a_{i1}a_{i2}...a_{ik}$ 属于语言 L(C); 另一方面, 若串 $a_{i1}a_{i2}...a_{ik}$ 属于语言L(C), W_i 是某一语言 S_{ii} ($1 \le j_i \le j_i$ m) 中的任意串,则 $W=W_1W_2...W_k$ 属于语言L(E)

◇代数定律的具体化

- 举例: 正规表达式 S*M 对应的一个具体表达式为 a*b. 任取 S和M的一个实例,比如设 $S=\{01,10\}$, M=L(2*). 则有: 任一 $W \in L(S*M)=\{01,10\}*L(2*)$,可以写成 $W_1W_2...W_k$ 的形式, W_i 是 S或 M中的串,且有 $C_1C_2...C_k \in L(a*b)$ (另一方面类似). 其中,若 W_i 是 S中的串,则有 C_i = a,否则

其中,若 W_i 是 S中的串,则有 $C_i = a$,否则 $C_i = b$.

(注: 默认的字母表包含了所涉及到的所有非变量符号。前述定理和后续证明皆视如此。)

◇代数定律的具体化

- (上述定理的)证明思路: (选讲) 归纳于正规表达式 E 的结构. (仅证一方面)

基础: 若 $E \rightarrow \varepsilon$, ϕ , 显然有 E = C, 定理成立;

注:因我们假设 E 中不含非变量符号,所以 E 不为 a

若 E 为 L ,将唯一的变量 L 替换为符号 C ,则其具体表达式为 C 。L 的任何一个实例语言中的串 W ,对应表达式 C 的语言 L(C) 中的串 C 。

(接下页)

◆代数定律的具体化 (接上页证明)

归纳:若 $E=E_1E_2$, E_1 中的变量为 L_1 , L_2 , ..., L_m , E_2 中的变量为 L_1 ', L_2 ',..., L_n ',可能有交叉. 分别用 a_1 , a_2 , ..., a_m , a_1 ', a_2 ',..., a_n '替换它们(也可能有交叉),则E具体化为 C, E_1 和 E_2 分别具体化为 C_1 和 C_2 ,并且 $C=C_1C_2$.

任意取定上述各变量的实例语言. 设任何WEL(E),则存在 W_1 EL(E_1)和 W_2 EL(E_2),且满足 $W=W_1W_2$ E由归纳假设, W_1 可写成 $S_1S_2...S_k$ 的形式,其中 S_i 是某一语言 S_{ji} ($1 \le J_i \le m$)中的串,并且 $a_{j1}a_{j2}...a_{jk}$ 属于语言 $L(C_1)$; 同样, W_2 可写成 $t_1t_2...t_h$ 的形式,其中 t_i 是某一语言 S_{li} ($1 \le I_i \le n$)中的串,并且 a_{l1} " a_{l2} "… a_{lh} "属于语言 $L(C_2)$. 这样,W可写成 $W=S_1S_2...S_k$ $t_1t_2...t_h$ 的形式,并且有 $a_{j1}a_{j2}...a_{jk}$ a_{l1} " a_{l2} "… a_{lh} "属于语言L(C).

对于 $E=E_1+E_2$ 和 $E=E_1*$ 的情形,可以类似证明。

◇代数定律的具体化

- 推论:设 E, F为正规表达式,它们具有相同的变量集;采用同样的替换方式,得到对应于 E, F 的具体表达式分别为 C,D.则对 E, F 中的变量对应的所有语言,满足 L(E) = L(F) iff L(C) = L(D)

证明思路: 设E, F的变量集为L1, L2, ..., Lm.

- ⇒设 $C = C_1 C_2 ... C_k \in L(C)$,其中每个 C_i 均为单个符号. 任取 $w \in L(E)$,满足 $w = w_1 w_2 ... w_k$,且有 if $w_i \in L_j$,then E 具体化为C时使用 C_i 替换 L_i .
 - ∵ L(E) = L(F), ∴ W ∈ L(F). 因而,有C ∈ L(D).
 - ∴ $L(C) \subseteq L(D)$. 同理可证 $L(D) \subseteq L(C)$. ∴ L(C) = L(D).
- \leftarrow 假设 L(C) = L(D), 证明 L(E) = L(F). (留作思考)

令代数定律的具体化(应用举例)

- 用于发现和测试关于正规表达式的定律。
- 举例: 对于具体符号a, 容易证明 a a* = a* a, 由此可以发现定律 L L* = L* L, 其中 L 为变量,可以实例化为任何语言.
- 举例: 若要验证定律 L(M+N) = LM+LN, 只要验证, 对于具体符号a、b、c, a(b+c) = ab+ac 成立.
- 举例: 若要验证 L+ML = (L+M) L 是否成立,可以验证对于具体符号a、b, a+ba = (a+b)a 是否成立. 但后者不成立, aa 属于 (a+b)a 代表的语言,而不属于 a+ba 代表的语言.

课后练习

◇ 必做题:

- Ex.3.1.1 (b), (c)
- ! Ex.3.1.2 (b)
- *! Ex.3.1.5
- Ex.3.4.1 (c), (g)
- Ex.3.4.2 (b), (d)
- !!Ex.3.1.3(a), (b)

课后练习

◆ 自测题:

- 试给出下列每个正规语言的一个正规表达式:
- 1) $\{xwx^R \mid x, w \in (a+b)^+\},$ 其中 $(a+b)^+ = (a+b)(a+b)^*, x^R \rightarrow x$ 的反向(即反转)
- 2) $\{ w \mid w \in \{a, b\}^* \land \exists x, y(x, y \in \{a, b\}^* \land w = xy \land | y = 3 \land y = y^R \} \}$
- 3) { w∈{a, b}* | w 中既不包含子串 aa , 也不包含子串 bb }
- 4) { aⁿb^m | n, m ≥ 0 且 n + m 为偶数 }
- 5) { w | w∈{a, b}*, | w | ≥ 1, 且 w 的后20位至少有一个 a }
- 6) { w | w∈{a, b}*, | w | ≥ 1, 且当 w 以a结尾时,它的长度为奇数 }
- 7) { w | w∈{a, b}*, | w | ≥ 2, 且 w 的前5位至少有一个子串 aa }
- 8) { w | w∈{a, b}*, |w|≥2, 且 w 的第2位至第5位至少有一个 a }
- 9) { w | w∈{0,1}*, w至少含有3个1, 且倒数第3位为1}

That's all for today.

Thank You

