第二章 向量与矩阵

第一节 n 维向量及运算

重点:向量的线性运算

难点:向量的内积

一、从几何向量说起(略讲)

向量: 既有大小又有方向的量(矢量).

向量表示: \vec{a} 或 $\overline{M_1M_2}$

以 M_1 为起点, M_2 为终点的有向线段.

向量的模: 向量的大小. $|\vec{a}|$ 或 $|\overline{M_1M_2}|$

自由向量: 不考虑起点位置的向量. 新疆政法学院

单位向量: 模长为1的向量. $\overrightarrow{a^0}$ 或 $\overrightarrow{M_1M_2^0}$

零向量:模长为0的向量. $\vec{0}$

相等向量:大小相等且方向相同的向量.

$$\vec{a} \longrightarrow \vec{b} \longrightarrow$$

负向量:大小相等但方向相反的向量. $-\vec{a}$

$$-\vec{a} \longleftarrow \vec{a}$$

二 向量的加(减)法

新疆政法学院

对于向量a、b,作有向线段

(三角形法则)

平行四边形法则

向量的加法符合下列运算规律:

(1) 交換律: $\vec{a} + \vec{b} = \vec{b} + \vec{a}$.

(2) 结合律:
$$\vec{a} + \vec{b} + \vec{c} = (\vec{a} + \vec{b}) + \vec{c} = \vec{a} + (\vec{b} + \vec{c})$$

三、数乘向量(标量乘法)

设 λ 是一个数,向量 \vec{a} 与 λ 的乘积 $\lambda \vec{a}$ 叫做向量的数乘。

向量的数乘符合下列运算规律:

(1) 结合律:
$$\lambda(\mu\vec{a}) = \mu(\lambda\vec{a}) = (\lambda\mu)\vec{a}$$

(2) 分配律:
$$(\lambda + \mu)\vec{a} = \lambda \vec{a} + \mu \vec{a}$$

$$\lambda(\vec{a} + \vec{b}) = \lambda \vec{a} + \lambda \vec{b}$$

四、向量的坐标表示(用代数方法解决几何问题)

1、分析 [0;x,y,z] ──[0;e₁,e₂,e₃]

2、定义: 称(x,y,z)为向量r的坐标

向量与其坐标一一对应,所以,关于向量(几何)的研究可转化为坐标(代数)的研究。

向量坐标与线性运算的关系

1、设
$$\vec{a} = (x_1, y_1, z_1), \vec{b} = x_2, y_2, z_2),$$
则
$$\vec{a} \pm \vec{b} = (x_1 \pm x_2, y_1 \pm y_2, z_1 \pm z_2)$$
2、 $\lambda \vec{a} = (\lambda x_1, \lambda y_1, \lambda z_1)$

所有三维向量组成的集合,按上述线性运算,满足:

(1)
$$\alpha + \beta = \beta + \alpha$$
;

(2)
$$(\alpha + \beta) + \gamma = \alpha + (\beta + \gamma);$$

(3)
$$\alpha$$
 +0 = α ;

(4)
$$\alpha + (-\alpha) = 0$$
;

(5) 1
$$\alpha$$
 = α ;

(6)
$$k(l \alpha) = (kl)\alpha$$
;

(7)
$$k(\alpha + \beta) = k\alpha + k\beta$$
;

(8)
$$(k+l)$$
 $\alpha = k \alpha + l \alpha$.

称这个集合构成一个三维向量空间,记为R3.

在许多实际问题中,只用二,三维几何向量是远远不够的。比如,在气象观测中,我们不仅要了解在某个时刻云团所处的位置,还希望知道温度,压强等物理参数。因此,有必要将这一概念进行推广,引入n元数组构成的n维向量的概念。 n > 3 时,n 维向量没有直观的几何形象.

一、n维向量的概念

定义1 n 个有次序的数 a_1, a_2, \dots, a_n 所组成的数组称为n维向量,这n个数称为该向量的n个分量,第i个数 a_i 称为第i个分量 . (a_1, a_2, \dots, a_n)

分量全为实数的向量称为实向量,

分量全为复数的向量称为复向量.

例如新疆政法学院

(1,2,3,···,n) — n维实向量

二、n维向量的表示方法

n 维向量写成一行,称为**行向量**,通常用 $a^{T}, b^{T}, \alpha^{T}, \beta^{T}$ 等表示,如:

$$a^T = (a_1, a_2, \dots, a_n)$$
 n 维向量写成一列,称为列向量, $a_1 = \begin{pmatrix} a_1 \\ a_2 \\ \vdots \\ a_n \end{pmatrix}$

注意

1. 行向量和列向量总被看作是**两个不同的** 向量;

n 维向量的实际意义

确定飞机的状态,需要以下6个参数:

机翼的转角 ψ $(-\pi < \psi \leq \pi)$

机身的水平转角 θ (0 $\leq \theta < 2\pi$)

飞机重心在空间的位置参数P(x,y,z)

所以,确定飞机的状态,需用6维向量

$$a = (x, y, z, \varphi, \psi, \theta)$$

n维向量的线性运算:

新疆政法学院

向量相等:
$$\alpha = (a_1, a_2, ..., a_n), \beta = (b_1, b_2, ..., b_n)$$

 $\alpha = \beta \Leftrightarrow a_i = b_i$

零向量: $\alpha = (0, 0, ..., 0)$

负向量: $-\alpha = (-a_1, -a_2, ..., -a_n)$

 R^n : n 维向量的全体.

$$\alpha = (a_1, a_2, ..., a_n), \beta = (b_1, b_2, ..., b_n),$$

向量加法: $\alpha + \beta = (a_1 + b_1, a_2 + b_2, ..., a_n + b_n),$

向量数乘: $k \cdot \alpha = (ka_1, ka_2, ..., ka_n), k \in \mathbb{R}$

加法与数乘满足如下性质:

(1)
$$\alpha + \beta = \beta + \alpha$$
;

(2)
$$(\alpha + \beta) + \gamma = \alpha + (\beta + \gamma);$$

(3)
$$\alpha$$
 +0 = α ;

(4)
$$\alpha$$
 +(- α) = 0;

(5) 1
$$\alpha$$
 = α ;

(6)
$$k(l \alpha) = (kl)\alpha$$
;

(7)
$$k(\alpha + \beta) = k\alpha + k\beta$$
;

(8)
$$(k+1) \alpha = k \alpha + 1 \alpha$$
.

称 R^n 构成 n 维实向量空间.

线性方程组的n维向量表示:

新疆政法学院

$$\begin{cases} a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n = b_1 \\ a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n = b_2 \\ \dots \\ a_{m1}x_1 + a_{m2}x_2 + \dots + a_{mn}x_n = b_m \end{cases}$$

也即
$$x_1\alpha_1 + x_2\alpha_2 + \cdots + x_n\alpha_n = b$$
,

若记
$$X = \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix}, b = \begin{pmatrix} b_1 \\ b_2 \\ \vdots \\ b_m \end{pmatrix}$$
 则 $(\alpha_1, \alpha_2, \dots, \alpha_n)X = b$,

$$(\alpha_1, \alpha_2, \cdots, \alpha_n)X = b,$$

向量的长度、夹角等

问题的引入:

1、在解析几何中,向量的长度,夹角等度量性质还没有反映,

几何中这些是通过内积反映出来:

长度:
$$|\alpha| = \sqrt{\alpha \cdot \alpha}$$

夹角
$$<\alpha,\beta>$$
 : $\cos <\alpha,\beta> = \frac{\alpha \cdot \beta}{|\alpha||\beta|}$

2、需先引入向量的内积的概念并研究其代数性质.

一、内积

1.定义 ¹ 设
$$\alpha = (a_1, a_2, \dots, a_n), \beta = (b_1, b_2, \dots, b_n)$$
² $(\alpha, \beta) = a_1b_1 + a_2b_2 + \dots + a_nb_n$

 3 称为 α 与 β 的内积.

2.性质 5 (1)
$$(\alpha, \beta) = (\beta, \alpha)$$
;

$$(2) (\alpha + \beta, \gamma) = (\alpha, \gamma) + (\beta, \gamma)$$

$$(k\alpha,\beta)=k(\alpha,\beta);$$

⁸(3)
$$(\alpha,\alpha)$$
≥0,当且仅当 α =0时等号成立.

1)
$$(\alpha, k\beta) = k(\alpha, \beta), (k\alpha, k\beta) = k^2(\alpha, \beta)$$

2)
$$(\alpha, \beta + \gamma) = (\alpha, \beta) + (\alpha, \gamma)$$

推广:
$$(\alpha, \sum_{i=1}^s \beta_i) = \sum_{i=1}^s (\alpha, \beta_i)$$

3)
$$(0,\beta) = 0$$

3. 长度

新疆政法学院

(1) 定义
$$\|\alpha\| = \sqrt{{a_1}^2 + {a_2}^2 + \dots + {a_n}^2} = \sqrt{(\alpha, \alpha)}$$

单位向量 $|\alpha|=1$: α 为单位向量.

设
$$\alpha \neq 0$$
, 令 $\alpha_e = \frac{1}{\|\alpha\|} \alpha$,则

$$\|\boldsymbol{\alpha}_{e}\| = \sqrt{(\boldsymbol{\alpha}_{e}, \boldsymbol{\alpha}_{e})} = \sqrt{\frac{1}{\|\boldsymbol{\alpha}\|^{2}}(\boldsymbol{\alpha}, \boldsymbol{\alpha})} = 1.$$

(2) 性质 1° 非负性 $|\alpha| \geq 0$;

$$2^{\circ}$$
 齐次性 $||k\alpha|| = |k||\alpha||$;

$$3^o$$
 三角不等式 $\|\alpha + \beta\| \le \|\alpha\| + \|\beta\|$.

三、向量的夹角

1. 引入夹角概念的可能性与困难

1) 在 R^3 中向量 α 与 β 的夹角

$$<\alpha,\beta> = arc\cos\frac{\alpha \cdot \beta}{|\alpha||\beta|}$$
 (4)

2) 在一般n维空间中推广(4)的形式,首先

应证明不等式:
$$\left| \frac{(\alpha, \beta)}{|\alpha||\beta|} \right| \leq 1$$

此即:

2. 柯西一布涅柯夫斯基-施瓦茨不等式 新疆政法学院

对n维空间V中任意两个向量 α 、 β ,有

$$|(\alpha,\beta)| \le |\alpha||\beta| \tag{5}$$

当且仅当 α 、 β 满足 $\alpha = k\beta$ 时等号成立.

证明略

3. 柯西一布涅柯夫斯基不等式的应用

1)
$$\begin{vmatrix} a_{1}b_{1} + a_{2}b_{2} + \dots + a_{n}b_{n} \end{vmatrix}$$

$$\leq \sqrt{a_{1}^{2} + a_{2}^{2} + \dots + a_{n}^{2}} \sqrt{b_{1}^{2} + b_{2}^{2} + \dots + b_{n}^{2}}$$

$$a_{i}, b_{i} \in R, \quad i = 1, 2, \dots, n.$$

$$(6)$$

对欧氏空间中的任意两个向量 α , β , 有 $|\alpha+\beta| \le |\alpha|+|\beta|$ ° (7)

 $\mathbb{E}: \ |\alpha+\beta|^2 = (\alpha+\beta,\alpha+\beta)$ $=(\alpha,\alpha)+2(\alpha,\beta)+(\beta,\beta)$ $\leq |\alpha|^2 + 2|\alpha||\beta| + |\beta|^2 = (|\alpha| + |\beta|)^2$

两边开方,即得(7)成立.

4. 欧氏空间中两非零向量的夹角

新疆政法学院

定义1:设V为欧氏空间, α 、 β 为V中任意两非零

向量, α 、 β 的<mark>夹角</mark>定义为

$$\langle \alpha, \beta \rangle = arc \cos \frac{(\alpha, \beta)}{|\alpha| |\beta|}$$

$$(0 \le \langle \alpha, \beta \rangle \le \pi)$$

例 求向量 $\alpha = (1,2,2,3)$ 与 $\beta = (3,1,5,1)$ 的夹角.

解
$$:: \cos \theta = \frac{\alpha \cdot \beta}{\|\alpha\| \|\beta\|} = \frac{18}{3\sqrt{2} \cdot 6} = \frac{\sqrt{2}}{2}$$
 $\therefore \theta = \frac{\pi}{4}$.

定义2:设 α β 为n维空间中两个向量,著码积

$$(\alpha,\beta)=0$$

则称 α 与 β 正 交 或 互 相 垂 直 , 记 作 $\alpha \perp \beta$.

注: ① 零向量与任意向量正交.

②
$$\alpha \perp \beta \iff \langle \alpha, \beta \rangle = \frac{\pi}{2}$$
, $\otimes \cos \langle \alpha, \beta \rangle = 0$.

1. 正交向量组

若一个向量组中的向量两两正交,且不含零向量,则称此向量组为正交向量组。

如:
$$\alpha_1 = (1,1,1)$$
, $\alpha_2 = (-1,2,-1)$, $\alpha_3 = (-1,0,1)$
 $(\alpha_1,\alpha_2) = (\alpha_1,\alpha_3) = (\alpha_2,\alpha_3) = 0$
 $\alpha_1,\alpha_2,\alpha_3$ 为正交向量组.

标准(单位)正交向量组:均为单位向量的正交向量组.

$$\Sigma_1 = (1, 0, \dots, 0)^T, \varepsilon_2 = (0, 1, \dots, 0)^T, \dots, \varepsilon_n = (0, 0, \dots, 1)^T$$

新疆政法学院

5. 勾股定理

设V为n维空间, $\forall \alpha, \beta \in V$

$$|\alpha \perp \beta \iff |\alpha + \beta|^2 = |\alpha|^2 + |\beta|^2$$

$$\mathbb{E}: : |\alpha + \beta|^2 = (\alpha + \beta, \alpha + \beta)$$
$$= (\alpha, \alpha) + 2(\alpha, \beta) + (\beta, \beta)$$

$$\therefore |\alpha + \beta|^2 = |\alpha|^2 + |\beta|^2 \iff (\alpha, \beta) = 0 \iff \alpha \perp \beta.$$

推广: 若欧氏空间V中向量 $\alpha_1,\alpha_2,\cdots,\alpha_m$ 两两正交,

$$\exists \exists (\alpha_i, \alpha_j) = 0, \quad i \neq j, \quad i, j = 1, 2, \dots, m$$

则
$$\left|\alpha_1 + \alpha_2 + \dots + \alpha_m\right|^2 = \left|\alpha_1\right|^2 + \left|\alpha_2\right|^2 + \dots + \left|\alpha_m\right|^2$$

例3、已知 $\alpha = (2,1,3,2), \beta = (1,2,-2,1)$ 强政法学院

在通常的内积定义下, 求 $|\alpha|$, (α,β) , $\langle \alpha,\beta \rangle$, $|\alpha-\beta|$.

解:
$$|\alpha| = \sqrt{(\alpha,\alpha)} = \sqrt{2^2 + 1^2 + 3^2 + 2^2} = \sqrt{18} = 3\sqrt{2}$$

$$(\alpha,\beta) = 2 \times 1 + 1 \times 2 + 3 \times (-2) + 2 \times 1 = 0$$
 \therefore $\langle \alpha,\beta \rangle = \frac{\pi}{2}$

$$\chi$$
 $\alpha - \beta = (1,-1,5,1)$

$$\therefore |\alpha - \beta| = \sqrt{1^2 + (-1)^2 + 5^2 + 1^2} = \sqrt{28} = 2\sqrt{7}$$

通常称 $|\alpha-\beta|$ 为 α 与 β 的距离,记作 $d(\alpha,\beta)$.

四、本节课小结

新疆政法学院

- 1. n 维向量的概念,实向量、复向量;
- 2. 向量的表示方法: 行向量与列向量;
- 3. n维向量的线性运算及其性质;

向量相等、零向量、负向量

向量加法:
$$\alpha + \beta = (a_1 + b_1, a_2 + b_2, ..., a_n + b_n),$$

向量数乘 $k \cdot \alpha = (ka_1, ka_2, ..., ka_n), k \in \mathbb{R}$.

- (1) $\alpha + \beta = \beta + \alpha$;
- (2) $(\alpha + \beta) + \gamma = \alpha + (\beta + \gamma)$;
- (3) α +0 = α ;
- (4) α +(- α) = 0;
- (5) 1 α = α ;
- (6) $k(l \alpha) = (kl)\alpha$;
- (7) $k(\alpha + \beta) = k\alpha + k\beta$;
- (8) (k+l) $\alpha = k \alpha + l \alpha$.

线性方程组的n维向量表示:

新疆政法学院

$$\begin{cases} a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n = b_1 \\ a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n = b_2 \\ \dots \\ a_{m1}x_1 + a_{m2}x_2 + \dots + a_{mn}x_n = b_m \end{cases}$$

也 即
$$x_1\alpha_1 + x_2\alpha_2 + \cdots + x_n\alpha_n = b$$
,

若记
$$X = \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix}, b = \begin{pmatrix} b_1 \\ b_2 \\ \vdots \\ b_m \end{pmatrix}$$
 则 $(\alpha_1, \alpha_2, \dots, \alpha_n)X = b$,

$$(\alpha_1, \alpha_2, \cdots, \alpha_n)X = b,$$

一、内积

1.定义 ¹ 设
$$\alpha = (a_1, a_2, \dots, a_n), \beta = (b_1, b_2, \dots, b_n)$$
² $(\alpha, \beta) = a_1b_1 + a_2b_2 + \dots + a_nb_n$

- 3 称为 α 与 β 的内积.

2.性质 5 (1)
$$(\alpha, \beta) = (\beta, \alpha)$$
;

$$(2) (\alpha + \beta, \gamma) = (\alpha, \gamma) + (\beta, \gamma)$$

$$(k\alpha, \beta) = k(\alpha, \beta);$$

 8 (3)(α , α)≥0,当且仅当 α =0时等号成立.

推广及对称性又有:

3. 长度

新疆政法学院

(1) 定义
$$\|\alpha\| = \sqrt{{a_1}^2 + {a_2}^2 + \dots + {a_n}^2} = \sqrt{(\alpha, \alpha)}$$

单位向量 $|\alpha|=1$: α 为单位向量.

设
$$\alpha \neq 0$$
, $\Rightarrow \alpha_e = \frac{1}{\|\alpha\|} \alpha$,则
$$\|\alpha_e\| = \sqrt{(\alpha_e, \alpha_e)} = \sqrt{\frac{1}{\|\alpha\|^2} (\alpha, \alpha)} = 1.$$

(2) 性质 1° 非负性 $|\alpha| \geq 0$;

$$2^{\circ}$$
 齐次性 $||k\alpha|| = |k||\alpha||$;

 3^o 三角不等式 $\|\alpha + \beta\| \le \|\alpha\| + \|\beta\|$.

新疆政法学院

4. 柯西一布涅柯夫斯基-施瓦茨不等式

对n维空间V中任意两个向量 α 、 β ,有 $|(\alpha,\beta)| \le |\alpha||\beta|$ 当且仅当 α 、 β 满足 $\alpha = k\beta$ 时等号成立.

5. 向量 α 与 的夹角 $<\alpha,\beta>=arc\cos\frac{\alpha\cdot\beta}{|\alpha||\beta|}$ 柯西不等式 $|a_1b_1+a_2b_2+\cdots+a_nb_n|$ $\leq \sqrt{a_1^2+a_2^2+\cdots+a_n^2}\sqrt{b_1^2+b_2^2+\cdots+b_n^2} \quad a_i,b_i \in R, \quad i=1,2,\cdots,n.$

三角不等式 对欧氏空间中的任意两个向量 α 、 β ,有

$$|\alpha + \beta| \le |\alpha| + |\beta|$$

定义2: 设 α , β 为n维空间中两个向量, 若内积 $(\alpha,\beta)=0$

则称 α 与 β 正 交 或 互 相 垂 直 , 记 作 α 上 β .

注: ① 零向量与任意向量正交.

②
$$\alpha \perp \beta \iff \langle \alpha, \beta \rangle = \frac{\pi}{2}$$
, $\exists \beta \cos \langle \alpha, \beta \rangle = 0$.

正交向量组及标准(单位)正交向量组:

若一个向量组中的向量两两正交,且不含零向量,则称此向量组为正交向量组。

均为单位向量的正交向量组为标准正交向量组.

勾股定理及推广 设V为n维空间, $∀\alpha, \beta \in V$

$$\alpha \perp \beta \iff |\alpha + \beta|^2 = |\alpha|^2 + |\beta|^2$$

课堂练习

设
$$\boldsymbol{\alpha} = (1, 2, 4, -2)^T$$
和 $\boldsymbol{\beta} = (2, -4, -1, 2)^T$.

- (1) 求 $\|\boldsymbol{\alpha}\|$, $\|\boldsymbol{\beta}\|$ 及 $\|\boldsymbol{\alpha}+\boldsymbol{\beta}\|$,并使向量 $\boldsymbol{\alpha}$ 和 $\boldsymbol{\beta}$ 单位化;
- (2) 求 α 与 β 的内积,以及 $2\alpha+\beta$ 与 $\alpha-2\beta$ 的内积;
- (3)求 α 与 β 的夹角;
- (4)证明 $\alpha+\beta$ 与 $\alpha-\beta$ 正交.

课堂练习解答:

新疆政法学院

$$||\boldsymbol{\alpha}|| = \sqrt{1^2 + 2^2 + 4^2 + (-2)^2} = 5, \quad ||\boldsymbol{\beta}|| = \sqrt{2^2 + (-4)^2 + (-1)^2 + 2^2} = 5,$$

则 α , β 的单位向量为:

$$\alpha^{0} = \frac{1}{|\alpha|} \alpha = \left(\frac{1}{5}, \frac{2}{5}, \frac{4}{5}, -\frac{2}{5}\right)^{T}$$
, $\beta^{0} = \frac{1}{|\beta|} \beta = \left(\frac{2}{5}, -\frac{4}{5}, -\frac{1}{5}, \frac{2}{5}\right)^{T}$.

(2)
$$(\boldsymbol{\alpha}, \boldsymbol{\beta}) = \boldsymbol{\alpha}^{\mathrm{T}} \boldsymbol{\beta} = (1, 2, 4, -2)(2, -4, -1, 2)^{\mathrm{T}} = -14.$$

由
$$2\boldsymbol{\alpha} + \boldsymbol{\beta} = (4,0,7,-2)^{\mathrm{T}}, \boldsymbol{\alpha} - 2\boldsymbol{\beta} = (-3,10,6,-6)^{\mathrm{T}}, \ \$$
则

$$(2\alpha + \beta, \alpha - 2\beta) = (2\alpha + \beta)^{T}(\alpha - 2\beta) = (4, 0, 7, -2)(-3, 10, 6, -6)^{T} = 42.$$

也可由内积的性质计算:

$$(2\boldsymbol{\alpha} + \boldsymbol{\beta}, \boldsymbol{\alpha} - 2\boldsymbol{\beta}) = 2(\boldsymbol{\alpha}, \boldsymbol{\alpha}) - 3(\boldsymbol{\alpha}, \boldsymbol{\beta}) - 2(\boldsymbol{\beta}, \boldsymbol{\beta}) = 2 \times 25 + 3 \times 14 - 2 \times 25 = 42.$$

(3)
$$\boxtimes \cos \theta = \frac{(\alpha, \beta)}{\|\alpha\| \|\beta\|} = \frac{-14}{5 \cdot 5} = -\frac{14}{25}, \quad \emptyset \theta = \arccos\left(-\frac{14}{25}\right).$$

(4)
$$\boxtimes (\boldsymbol{\alpha} + \boldsymbol{\beta}, \boldsymbol{\alpha} - \boldsymbol{\beta}) = (\boldsymbol{\alpha} + \boldsymbol{\beta})^{\mathrm{T}} (\boldsymbol{\alpha} - \boldsymbol{\beta}) = (3, -2, 3, 0)(-1, 6, 5, -4)^{\mathrm{T}} = 0;$$
 $\overrightarrow{\mathfrak{D}}$

$$(\boldsymbol{\alpha} + \boldsymbol{\beta}, \boldsymbol{\alpha} - \boldsymbol{\beta}) = (\boldsymbol{\alpha}, \boldsymbol{\alpha}) - (\boldsymbol{\beta}, \boldsymbol{\beta}) = 25 - 25 = 0,$$

故 $\alpha + \beta = \alpha - \beta$ 正交.

新疆政法学院

作业P80: 1, 2

- (1) $7\alpha 3\beta 2\gamma$;
- (2) $2\alpha 3\beta + \gamma$.
- 2. 设 $\alpha = (1,-1,1,-1)^T$, $\beta = (1,2,2,1)^T$
 - (1) 将 α , β 化为单位向量;
 - (2) 向量 α , β 是否正交.

