Academia Sabatina de Jóvenes Talento

Ecuaciones funcionales I

Encuentro: 08 Curso: Álgebra Nivel: Preolímpico IMO Fecha: 07 de junio de 2025

Semestre: I

Instructor: Kenny Jordan Tinoco Instructor Aux: Jonathan Gutiérrez

Índice

1	Fundamentos	•	•	•	 •	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•		1	L
2	Problemas																																			2	2

1. Fundamentos

Definición 1.1 (Función).

Ejemplo 1.1. Encontrar todas las funciones $f: \mathbb{R} \to \mathbb{R}$ tal que

$$f(xf(y) - f(x)) = 2f(x) + xy.$$

Solución. La única función que cumple es f(x) = 1 - x para todo $x \in \mathbb{R}$. Haciendo x = 1 en la ecuación obtenemos

$$f(f(y) - f(1)) = y + 2f(1),$$

de donde vemos que f es biyectiva. Por lo cual, existe un $a \in \mathbb{R}$ tal que f(a) = 0. Haciendo x = a en la ecuación original, obtenemos

$$f(af(y)) = ay,$$

Por lo cual, f(af(0)) = 0 = f(a) lo que implica que a(f(0) - 1) = 0. Si a = 0, al evaluar y = 0 en la ecuación original obtenemos

$$f(-f(x)) = 2f(x)$$

donde la única solución es f(x) = -2x, pero esta función no cumple. Por lo cual f(0) = 1. Haciendo x = y = 1 en la ecuación original, vemos que

$$f(f(1) - f(1)) = 2f(1) + 1 = f(0) = 1$$

Por lo cual, f(1) = 0 = f(a). Así, cuando x = 1 en la ecuación original, obtenemos

$$f(f(y)) = y$$

Haciendo y = 1, ecuación original, vemos

$$f(-f(x)) = 2f(x) + x$$

Ahora con $x \to f(x), f(-x) = f(x) + 2x$. Haciendo $y \to f(y)$ en la ecuación original, obtenemos

$$f(xy - f(x)) = 2f(x) + xf(y)$$

$$f(f(x) - xy) + 2(f(x) - xy) = 2f(x) + xf(y)$$

$$f(f(x) - xy) = xf(y) + 2xy = x(f(y) + 2y)$$

$$f(f(x) - xy) = xf(-y)$$

$$f(f(x) + xy) = xf(y)$$

Con y=1 en este último resultado, f(f(x)+x)=0=f(1) de donde obtenemos que f(x)=1-x para toda $x\in\mathbb{R}$.

2. Problemas

Ejercicio 2.1. Hallar $f: \mathbb{R} \to \mathbb{R}$ tales que 2f(x) - 5f(y) = 8, con $x, y \in \mathbb{R}$.

Ejercicio 2.2. Hallar $f: \mathbb{R} \to \mathbb{R}$ tales que f(x) + xf(1-x) = x, con $x \in \mathbb{R}$.

Ejercicio 2.3. Hallar $f: \mathbb{R} \to \mathbb{R}$ tales que f(x-y) = f(x) + f(y) - 2xy, con $x, y \in \mathbb{R}$.

Ejercicio 2.4. Hallar $f: \mathbb{R} \to \mathbb{R}$ tales que $f(x+y) + f(x)f(y) = x^2y^2 + 2xy$, con $x, y \in \mathbb{R}$.

Ejercicio 2.5. Hallar $f: \mathbb{R} \to \mathbb{R}$ tales que f(x-y) = f(x)f(y), con $x, y \in \mathbb{R}$.

Ejercicio 2.6. Hallar $f: \mathbb{R} \to \mathbb{R}$ tales que f(f(x+y)) = x + f(y), con $x, y \in \mathbb{R}$.

Ejercicio 2.7. Hallar $f: \mathbb{R} \to \mathbb{R}$ tales que f(f(x) + y) = 2x + f(f(y) - x), con $x, y \in \mathbb{R}$.

Ejercicio 2.8. Hallar $f: \mathbb{R} \to \mathbb{R}$ tales que (y+1)f(x) + f(xf(y) + f(x+y)) = y, con $x, y \in \mathbb{R}$.

Ejercicio 2.9. Hallar $f: \mathbb{R} \to \mathbb{R}$ tales que $f(f(x)^2 + f(y)) = xf(x) + y$, con $x, y \in \mathbb{R}$.

Ejercicio 2.10. Hallar $f: \mathbb{R}^+ \to \mathbb{R}$ tales que $2f(x) + f\left(\frac{1}{x}\right) = 3x - \frac{3}{x}$ para todo x > 0.

Ejercicio 2.11. Hallar $f: \mathbb{R} \to \mathbb{R}$ tales que $f(x^2 + yf(x)) = xf(x+y)$, con $x, y \in \mathbb{R}$.

Ejercicio 2.12. Hallar $f: \mathbb{R} \to \mathbb{R}$ tales que $f(x) + f(f(x) - y^3) = f(x^2 + y)$, con $x, y \in \mathbb{R}$.

Ejercicio 2.13. Hallar $f: \mathbb{R} \to \mathbb{R}$ tales que f(f(x)) + 2f(y) = 2f(x) + 4y, con $x, y \in \mathbb{R}$.

Ejercicio 2.14. Hallar $f: \mathbb{R} \to \mathbb{R}$ tales que $f(x^2 + f(xy)) = xf(x+y)$, con $x, y \in \mathbb{R}$.

Ejercicio 2.15. Hallar todas las funciones $f: \mathbb{Z} \to \mathbb{Z}$ con f(0) = 1 que satisfacen

$$f(f(n)) = f(f(n+2) + 2) = n,$$

para todo entero n.

Ejercicio 2.16. Encontrar todas las funciones $f: \mathbb{Z} \to \mathbb{Z}$ tales que

$$f(x+f(y))=f(x)+y$$
, para todo $x,y\in\mathbb{Z}$

Ejercicio 2.17. Sea $f:(0,\infty)\to\mathbb{R}$ una función tal que

- i) f es estrictamente decreciente,
- ii) $f(x) > -\frac{1}{x}$ para todo x > 0 y
- iii) $f(x)f(f(x) + \frac{1}{x}) = 1$ para todo x > 0.

Hallar f(1).

Ejercicio 2.18. Hallar todas las funciones $f, g : \mathbb{R} \to \mathbb{R}$ tales que g es inyectiva y

$$f(g(x) + y) = g(x + f(y))$$
, para todo $x, y \in \mathbb{R}$.

Problema 2.1 (India, 2010). Encontrar todas las funciones $f: \mathbb{R} \to \mathbb{R}$ que satisfacen

$$f(x+y) + xy = f(x)f(y)$$
, para todo $x, y \in \mathbb{R}$.

Problema 2.2 (IMO, 2002). Hallar todas las funciones $f : \mathbb{R} \to \mathbb{R}$ tales que, para cualesquiera x, y, u, v reales, se cumple

$$[f(x) + f(y)][f(u) + f(v)] = f(xu - yv).$$

Problema 2.3 (Korea, 2000). Hallar todas las funciones $f: \mathbb{R} \to \mathbb{R}$ que satisfacen

$$f(x^2 - y^2) = (x - y) (f(x) + f(y))$$
, para todo $x, y \in \mathbb{R}$.

Problema 2.4 (Lista corta IMO, 1988). Sea $f: \mathbb{N} \to \mathbb{N}$ una función que cumple

$$f(f(m) + f(n)) = m + n$$
, para todos m, n .

Hallar los posibles valores de f(1988).

Problema 2.5 (Lista corta IMO, 2002). Encontrar todas las funciones $f: \mathbb{R} \to \mathbb{R}$ tales que

$$f(f(x) + y) = 2x + f(f(y) - x)$$
, para todos $x, y \in \mathbb{R}$.

Problema 2.6 (Ibero, 1993). Encontrar todas las funciones estrictamente crecientes $f: \mathbb{N} \to \mathbb{N}$ que satisfacen

$$f(nf(m)) = m^2 f(mn)$$
, para todos $m, n \in \mathbb{R}$.

Problema 2.7 (Italia, 1999). Encontrar todas las funciones estrictamente monótonas $f: \mathbb{R} \to \mathbb{R}$ tal que

$$f(x+f(y)) = f(x) + y$$
, para $x, y \in \mathbb{R}$.

Problema 2.8. Hallar todas las funciones $f: \mathbb{R} \to \mathbb{R}$ tales que

$$f(xf(x) + f(y)) = f(x)^2 + y.$$