DEPARTMENT OF ELECTRICAL ENGINEERING FIRST YEAR E.T. LAB EXP. NO. – 3

SERIES RLC Circuit

OBJECTIVE: To study the behavior of a series R-L-C circuit.

PROCEDURE:

- 1. Connect the circuit as shown in the diagram.
- 2. Adjust the rheostat for maximum resistance and the auto transformer to the position of zero-output voltage and switch on the supply.
- 3. Adjust the voltage across the circuit to about 70 V, the resistance to about $\geq 20\Omega$, and the Cap to 35 μ F, and the inductor to 35 μ H and note I, V_S, V_L, V_C, V_R and W.
- 4. Connect the Cap for $35\mu F$ and repeat step 3 for all five inductance values. Keep R at 20W.
- 5. Connect the Cap for $70\mu F$ and then $140 \,\mu F$ and repeat step 3 again for all inductance values with R held constant.
- 6. Steps 3,4 and 5 may be repeated for another value of resistance $\sim 40\Omega$.
- 7. Compare the values of phase angle as obtained from the meter readings and from the phasor diagrams. (From the phasor diagrams compute $\cos \theta$ and θ as given in the last two columns of the table)

OBSERVATION:

TABLE-1 Study of series R-L-C circuit

SI No		С	L (appx)	I	VR	Vc	VL	W	Remarks
Α	1	35 μF	7 mH						
	2		30 mH						
	3		33 mH						
	4		104 mH						
В	1	70 μF	7 mH						
	2		30 mH						
	3		33 mH						
	4		104 mH						
С	1	140 μF	7 mH						
	2		30 mH						
	3		33 mH						
	4		104 mH						

Draw phasor diagrams showing I, V_S, V_L, V_C, & V_R for:

- a. $C = 35\mu F$ and two inductances in cumulative, series (104 mH);
- b. $C = 140\mu F$ and two inductances in differential, parallel (7.4 mH);

Account for the resistance of the inductor coils also when drawing the phasor diagram

DISCUSSION:

- 1. Do you expect θ to be a constant? Is it so as per your experiment? Why?
- 2. Is IV_R equal to W? Compare the difference of wattmeter reading W with IV cos θ for a few readings and give your comments.
- 3. Discuss the phenomenon of series resonance in an electrical circuit.
- 4. Is it possible to have a voltage drop across the energy storage element greater than the supply?
- 5. How will you experimentally identify the different combinations of inductor connections?

Capacitance values available:

a. The two $70\mu F$ Caps in series ---- $35 \mu F$ b. One Cap only ---- $70 \mu F$ c. Two Caps in parallel ---- $140 \mu F$

Approximate Inductance values L_{eq} available**:

- a. Two inductances in differential, parallel ---- 7.4 mH $[L_{eq} = (L^2 M^2) / 2(L + M)]$
- b. Two inductances in differential, series ----- 30 mH $[L_{eq} = 2(L M)]$
- c. Two inductances in cumulative, parallel ----- 26 mH $[L_{eq} = (L^2 M^2) / 2(L M)]$
- d. Any one inductance only ----- 33 mH
- e. Two inductances in cumulative, series -----104 mH $[L_{eq} = 2(L + M)]$

**[assumed that the two inductances, L, are identical and the coupling factor is 0.57]