Исследование эффекта Комптона.

Дедков Денис, Маслов Артём группа Б01-108а 06.11.2023

Цель и задачи работы:

1. С помощью сцинтилляционного спектрометра исследуется энергетический спектр γ -квантов, рассеянных на графите. Определяется энергия рассеянных γ -квантов в зависимости от угла рассеяния, а также энергия покоя частиц, на которых происходит комптоновское рассеяние.

Описание экспериментальной установки

Схема экспериментальной установки приведена на рисунке 1:

Рис. 1: Слева схема экспериментальной установки. Справа принципиальная схема измерительного комплекса.

Источником излучения 1 является ^{137}Cs , испускающий гамма-кванты с энергией 662 кэВ. Источник излучения помещён в толстостенный свинцовый контейнер с коллиматором. Сформированный коллиматором узкий пучок гамма-лучей попадает на графитовую мишень 2, которой является цилиндр высотой 100 мм и диаметром 40 мм. Кванты, испытывающее комптоновское рассеяние в мишени, регистрируются сцинтилляционным счётчиком (4-5). Счётчик состоит из фотоэлектронного умножителя $\Phi \ni Y$ 3 и сцинтиллятора 4. Сцинтиллятором служит кристалл NaI(Tl) цилиндрической формы высотой 40 мм, диаметром 40 мм, его выходное окно находится в оптическом контакте с фотокатодом $\Phi \ni Y$. Сигналы, возникающие на аноде $\Phi \ni Y$ подаются на $\ni BM$. $\Phi \ni Y$ расположен в светонепроницаемом блоке, закреплённом на штанге, которая может вращаться в горизонтальном направлении. Угол поворота измеряется по лимбу 6.

Оборудование и приборы

Стенд с экспериментальной установкой номер 1.2.3.

- 1. Лабораторная установка для исследования абсолютной активности кобальта-60 ЛУ -4.3-2. Заводской номер №1513. Инвентарный номер №410134174169.
- 2. Высоковольтный блок питания. Инвентарный номер №410134125762.
- 3. Блок оцифровки и обработки данных. Инвентарный номер №410136146940.
- 4. Сцинтилляционный детектор Радек. Инвентарный номер №4013.
- 5. Радиоактивный источник в свинцовой оболочке ^{137}Cs . Энергия гамма-квантов 662 кэВ. Инвентарный номер №11010712637.

Рис. 2: График зависимости $1/N(\theta)$ от $(1-\cos\theta)$.

Первичные экспериментальные данные

Первичные экспериментальные данные приведены в таблице:

	$\theta,^{\circ}$	N, кан.	ΔN , кан.
•	0	869	89
	10	830	79
	20	765	95
	30	721	91
	40	721	89
	50	614	83
	60	525	83
	70	463	79
	80	422	65
	90	387	56
	110	321	50
	120	303	49

 θ — угол между исходным направлением гамма-квантов и направлением наблюдения, N — номер канала, зарегистрировавшего наибольшее число частиц (фотопик), ΔN — ширина пика по половине высоты. Оценим погрешности измерения первичных экспериментальных данных. Погрешность, связанная с конечностью каналов АЦП (всего 1024 канала, ошибка попадания в канал ± 0.5 каналов): $\varepsilon = \frac{0.5}{1024} = 0.05\%$. Из-за шума, связанного с Пуассоновским распределением количества зарегистрированных частиц, возникает погрешность определения положения фотопика, которая оценивается как $\sigma = \pm 5$ каналов. Итоговая погрешность определения фотопика $\sigma_{\Phi} = \pm 5$ каналов и одинакова для всех измерений.

Обработка экспериментальных данных

Согласно теории, распределение рассеянных на углы θ гамма-квантов вследствие комптоновского рассеяние определяется соотношением:

$$\frac{1}{\varepsilon(\theta)} - \frac{1}{\varepsilon_0} = 1 - \cos\theta$$

Номер канала, зарегистрировавший гамма-квант пропорционален его энергии, тогда

$$\frac{1}{N(\theta)} - \frac{1}{N(0)} = A(1 - \cos \theta)$$

Построим график зависимости $1/N(\theta)$ от $(1-\cos\theta)$.

По пересечению графика с осью ординат определим N(0): $N(0) = 846 \pm 11$ Погрешность оценим по формуле косвенных измерений:

$$y_{\text{аппрокс}} = ax + b$$
$$N(0) = \frac{1}{b}$$

$$\varepsilon_{N(0)} = \frac{\sigma_b}{h}$$

 $y_{\text{аппрокс}}=ax+b$ $N(0)=rac{1}{b}$ $arepsilon_{N(0)}=rac{\sigma_b}{b}$ По пересечению графика с прямой $\cos heta=0$ определим N(90):

 $N(90) = 384 \pm 4$ Погрешность оценим по формулам:

$$y_{\text{аппрокс}} = ax + b$$

$$N(90) = \frac{1}{b+a}$$

$$y_{\text{аппрокс}} = ax + b$$

 $N(90) = \frac{1}{b+a}$
 $\sigma_{N(90)} = \frac{1}{(a+b)^2} \sqrt{\sigma_b^2 + \sigma_a^2}$

Определим энергию покоя электрона, на котором происходило рассеяние гамма-квантов:

$$mc^2=E_{\gamma}rac{N(90)}{N(0)-N(90)}=550\pm16$$
 кэВ

где $E_{\gamma}=(662\pm1)$ кэВ – энергия гамма-лучей, испускаемых источником. Оценим погрешность определения mc^2 : $\sigma_{mc^2}=\sqrt{(\frac{N(90)}{N(0)-N(90)}\sigma_{E_{\gamma}})^2+(\frac{N(90)E_{\gamma}}{(N(0)-N(90))^2}\sigma_{N(0)})^2+(E_{\gamma}\frac{N(0)}{(N(0)-N(90))^2}\sigma_{N(90)})^2}$

$$\sigma_{mc^2} = \sqrt{(\frac{N(90)}{N(0) - N(90)}\sigma_{E_\gamma})^2 + (\frac{N(90)E_\gamma}{(N(0) - N(90))^2}\sigma_{N(0)})^2 + (E_\gamma \frac{N(0)}{(N(0) - N(90))^2}\sigma_{N(90)})^2}$$

Обсуждение результатов и выводы

В работе был проверен закон комптоновского рассеяния:

$$\frac{1}{\varepsilon(\theta)} - \frac{1}{\varepsilon_0} = 1 - \cos\theta$$

Экспериментальные точки ложатся на прямую в пределах 2σ .

Определено значение энергии покоя электрона $mc^2 = 550 \pm 16$ кэВ.

Табличное значение энергии покоя электрона $mc_{{\scriptscriptstyle {
m Ta6}}{}_{
m I}}^2=510.998$ кэВ.