

UNITED STATES DEPARTMENT OF COMMERCE United States Patent and Trademark Office Address: COMMISSIONER FOR PATENTS P O Box 1450 Alexandria, Virginsa 22313-1450 www.msplo.gov

APPLICATION NO.	FILING DATE	FIRST NAMED INVENTOR	ATTORNEY DOCKET NO.	CONFIRMATION NO.
09/770,491	01/29/2001	Janne Kallio	800.0169.U1(US)	7373
29683 7590 09/20/2010 HARRINGTON & SMITH 4 RESEARCH DRIVE, Suite 202			EXAMINER	
			D AGOSTA, STEPHEN M	
SHELTON, C	Т 06484-6212		ART UNIT	PAPER NUMBER
			2617	
			MAIL DATE	DELIVERY MODE
			09/20/2010	PAPER

Please find below and/or attached an Office communication concerning this application or proceeding.

The time period for reply, if any, is set in the attached communication.

Application No. Applicant(s) 09/770,491 KALLIO, JANNE Office Action Summary Examiner Art Unit Stephen M. D'Agosta 2617 -- The MAILING DATE of this communication appears on the cover sheet with the correspondence address --Period for Reply A SHORTENED STATUTORY PERIOD FOR REPLY IS SET TO EXPIRE 3 MONTH(S) OR THIRTY (30) DAYS. WHICHEVER IS LONGER, FROM THE MAILING DATE OF THIS COMMUNICATION. Extensions of time may be available under the provisions of 37 CFR 1.136(a). In no event, however, may a reply be timely filed after SIX (6) MONTHS from the mailing date of this communication. If NO period for reply is specified above, the maximum statutory period will apply and will expire SIX (6) MONTHS from the mailing date of this communication. Failure to reply within the set or extended period for reply will, by statute, cause the application to become ABANDONED (35 U.S.C. § 133). Any reply received by the Office later than three months after the mailing date of this communication, even if timely filed, may reduce any earned patent term adjustment. See 37 CFR 1.704(b). Status 1) Responsive to communication(s) filed on 16 August 2010. 2a) This action is FINAL. 2b) This action is non-final. 3) Since this application is in condition for allowance except for formal matters, prosecution as to the merits is closed in accordance with the practice under Ex parte Quayle, 1935 C.D. 11, 453 O.G. 213. Disposition of Claims 4) Claim(s) See Continuation Sheet is/are pending in the application. 4a) Of the above claim(s) is/are withdrawn from consideration. 5) Claim(s) is/are allowed. 6) Claim(s) See Continuation Sheet is/are rejected. 7) Claim(s) 62 and 103 is/are objected to. 8) Claim(s) are subject to restriction and/or election requirement. Application Papers 9) The specification is objected to by the Examiner. 10) The drawing(s) filed on is/are; a) accepted or b) objected to by the Examiner. Applicant may not request that any objection to the drawing(s) be held in abevance. See 37 CFR 1.85(a). Replacement drawing sheet(s) including the correction is required if the drawing(s) is objected to. See 37 CFR 1.121(d). 11) The oath or declaration is objected to by the Examiner, Note the attached Office Action or form PTO-152. Priority under 35 U.S.C. § 119 12) Acknowledgment is made of a claim for foreign priority under 35 U.S.C. § 119(a)-(d) or (f). a) ☐ All b) ☐ Some * c) ☐ None of: Certified copies of the priority documents have been received. 2. Certified copies of the priority documents have been received in Application No. Copies of the certified copies of the priority documents have been received in this National Stage application from the International Bureau (PCT Rule 17.2(a)). * See the attached detailed Office action for a list of the certified copies not received. Attachment(s)

1) Notice of References Cited (PTO-892)

Paper No(s)/Mail Date

Notice of Draftsperson's Patent Drawing Review (PTO-948)

3) Information Disclosure Statement(s) (PTO/95/68)

Interview Summary (PTO-413)
 Paper No(s)/Mail Date. _____.

6) Other:

5) Notice of Informal Patent Application

Application No. 09/770,491

Continuation of Disposition of Claims: Claims pending in the application are 31,32,35,36,38,40,41,49,50,52,55,56,58-65,67,68,70,71,73,74,76,77,82-84,98-103 and 105.

Continuation of Disposition of Claims: Claims rejected are 31,32,35,36,38,40,41,49,50,52,55,56,58-61, 63-65,67,68,70,71,73,74,76,77,82-84,98-102 and 105.

Art Unit: 2617

DETAILED ACTION

Continued Examination Under 37 CFR 1.114

A request for continued examination under 37 CFR 1.114, including the fee set forth in 37 CFR 1.17(e), was filed in this application after final rejection. Since this application is eligible for continued examination under 37 CFR 1.114, and the fee set forth in 37 CFR 1.17(e) has been timely paid, the finality of the previous Office action has been withdrawn pursuant to 37 CFR 1.114. Applicant's submission filed on 8-16-2010 has been entered.

 Claim 52 is now objected to as being novel. The examiner notes that ONLY this combination (eg. 52 depends from 50 which depends from 49) is novel (and not claims 63 or 105 which recite "similar" material).

Claim Rejections - 35 USC § 112

The following is a quotation of the second paragraph of 35 U.S.C. 112:

The specification shall conclude with one or more claims particularly pointing out and distinctly claiming the subject matter which the applicant regards as his invention.

Claims 31, 49, 55, 82 and 98 rejected under 35 U.S.C. 112, second paragraph, as being incomplete for omitting essential steps, such omission amounting to a gap between the steps. See MPEP § 2172.01.

The newly added limitation(s) are not tied to any previous step and/or show how the limitation is used (eg. what is done with the measured data? how is it used in the previous step(s) to create an outcome/decision?)

The omitted step(s) are: i) stating what is done with the measured data and ii) how it is used to further the outcome/decision.

It would make sense to state that the mobile monitors/measures the information from the different radio technologies and then uses it in its calculation to do "something", eg. modify neighbor list, handoff, etc.. As written, that new limitation is merely a statement of a capability but there is nothing to tie it to the previous steps in any way.

Art Unit: 2617

Claim Rejections - 35 USC § 103

The following is a quotation of 35 U.S.C. 103(a) which forms the basis for all obviousness rejections set forth in this Office action:

(a) A patent may not be obtained though the invention is not identically disclosed or described as set forth in section 102 of this little, if the differences between the subject matter sought to be patential and the prior at are such that the subject matter sought to be patential and the prior at are such that the subject matter sought to be patential and the prior are subject matter possible. The subject matter possible sought sought to the patential and the prior to the subject matter possible sought sought possible s

Claims 31-32, 35-36, 38, 40-41, 49-50, 52, 55-56, 58-60, 62-65, 67-68, 70-71,

73-74, 76-77, 82-84, 98-102, 105 and 128 rejected under 35 U.S.C. 103(a) as being unpatentable over Ray et al. US 6,424,638 and further in view of {Keski-Heikkilaet et al. US 6.882,844 or Vikberg et al. US 6.925,074} and Ritter US 6,289,221.

As per claims 31, 36, 49, 55, 59, 62, 64-65, 67-68, 70-71, 77, 82, 84 98, 101, Ray teaches an apparatus/processor with memory and program code and transmitter for a first telecommunication network (Abstract teaches a mobile handing over between two different networks via two different base stations/appratuses/processors/access points), the apparatus comprising:

a data store/processor to store a and identify an access point (eg. cell identity information) for a cell/access point of the first telecommunication network (Figure 1, shows an HLR #26 and VLR #16),

wherein the apparatus/processor is configured to allow the cell/access point of the first telecommunication network to be identified as being a neighbor (eg. a neighboring cell) of the second telecommunication network (Abstract teaches serving and target MSC's which inherently infers a target BTS/cell which will support the mobile after handoff. The examiner notes that neighbor lists are well known in cellular networks and inherently include a list of BTS's the mobile can handoff to, depending upon their location and signal strength), and the first network using a different radio technology than the second network (eg. a dual mode phone communicating with two different BTS's supporting different protocols, AMPS vs. GSM or GSM vs. CDMA, etc);

Art Unit: 2617

and receive, from a mobile station, monitoring and measurement information associated with different radio technologies of at least the first telecommunication network and the second telecommunication network --- Ray clearly teaches a handoff from a GSM network to a D-AMPS network in figures 3-4 and the monitoring/reporting of signal/measurement "information" from BOTH networks:

With reference now to FIG. 2A of the drawings, which will be described in connection with the steps listed in FIG. 2B of the drawings, when an MS 20 is involved in a call connection with a called party (shown here as a wireline subscriber within the Public Switched Telephone Network), the MS 20 may roam from one cell 22a into another cell 22b. The process of changing cells during a call is referred to as a handover. In order to choose the best target cell 22b to handover the call to the MS 20 and BTSs 24a and 24b must collect measurements, which are processed in the serving BSC 23a (step 200). In this example, the two cells 22a and 22b are controlled by different MSCs 14a and 14b. (C3, L37-47)

Furthermore, note that Ray teaches the entire measuring/handoff process in Columns 4 thru 7 and shows in detail how the mobile roams, measures/reports and a decision is made to handoff from one network to a second/different network:

As an example, in FIG. 3, the handover is being performed from a GSM system 350 to a D-AMPS system 360. However, it should be understood that the below-described solution will work between any two types of wireless systems 350 and 360. However, the specific signaling messages used for handover procedures may vary between systems. C4, L27-39

but is silent on and a cell identity information structure of a second telecommunication network and wherein the transmitted identity information comprises a location area code associated with the second telecommunication network.

Application/Control Number: 09/770,491
Art Unit: 2617

The examiner notes that <u>Ray alludes to use of Location Areas (C2, L60-65) and Ray</u> teaches the need to translate protocols and data between the two networks:

With all of these different types of wireless communications systems available, seamless roaming from one type of system to another has posed significant problems for the industry. For example, if a mobile subscriber is involved in a wireless call, and the call needs to be handed over to another type of system in order to continue the call, conversion and interface devices are needed to perform this task. One device that exists today to perform such handovers between D-AMPS and GSM systems is a Roam-Free Gateway (RFG), formerly known as an Interworking Location Register (ILR). The RFG acts as a gateway that converts the protocols of the signaling and voice communications between the systems to enable the two systems to communicate effectively in order to perform call handovers. (C1, L39-56)

Therefore, in accordance with aspects of the present invention, the currently serving GSM MSC 14a sends an identity message 315, including location information 318, e.g., X, Y coordinates and preferably a coverage area radius, for the GSM base station 25a, to an Internet Gatekeeper 320 via an Internet Gateway 310a for the GSM system 350 (step 415). The GSM Internet Gateway 310a converts the GSM identity message 315 into Internet Protocol (IP) packets 335 containing the identity message 315 and location information 318, and routes the IP packets 335 through an Internet 330 to the Internet Gatekeeper 320 for the area that includes the GSM MSC 14a. This identity message 315 preferably inquires whether there are any other types of wireless systems nearby that the call can be handed over to. Alternatively, the GSM MSC 14a may have knowledge about the existence of another type of system nearby, and the identity message 315 may seek confirmation of the existence of the other type of system from the Internet Gatekeeper 320. (C4, L52 to C5, L5)

Vikberg teaches a High Speed access point which "mimics" a cellular BTS in regard to the information it broadcasts (C5, L5-30) -- and note that Vikberg teaches two different radio technologies, eq. Bluetooth and GSM:

The element of the fixed access network portion 10' adapted to communicate across the Bluetooth interface is designated a local or home base station (HBS) 104. This element handles the radio link protocols with the mobile terminal MT 1 and contains radio transceivers that define a cell in a similar manner to the

Art Unit: 2617

this message will also contain a location area identifier LAI of the HBS 104 and an Id of the HBS 104 (C6. L45-62).

In conventional public mobile systems, such as GSM, network coverage is divided into multiple location areas LA which may comprise one or several BTS cells. Each location area is assigned a unique code called a location area identifier LAI (C10, L1-10).

Keski-Heikkilaet teaches a permanent Cell ID (see C4, L39-46) which can be viewed as a "common" Cell ID format. Hence, the applicant is uses one network's structure to represent the Cell ID while Keski-Heikkilaet uses a method whereby his "permanent" format can be used in a similar manner, eg. sending the mobile the permanent Cell ID. Furthermore, Keski-Heikkilaet teaches generically modifying the Cell ID format/structure which broadly reads on the applicant's broad claims.

Ritter teaches a mobile system (Abstract) whereby coverage areas are supported by multiple wireless technologies (eg. figure 1 shows each "cell" supporting both GSM and TD/CDMA technologies which connect to a COMMON BSC/MSC architecture). The examiner notes that since the cells connect back to a common BSC/MSC architecture, that the system can inherently provide a handoff from one technology to the other which would thus occur if one system is being interfered with while the other is not. Hence These two BTS's can conceivably transmit either separate

Art Unit: 2617

beacons and/or dual beacons whereby each technology can look like the other technology simply because they use a common BSC/MSC architecture).

It would have been obvious to one skilled in the art at the time of the invention to modify Ray, such using a cell identity information structure of a second telecommunication network and one network being either WLAN, Bluetooth or WCDMA, to provide means for using an "alternate" Cell ID to make the mobile think that a listing in the neighbor list is from the same network they are operating on currently and that they can connect to it in a handoff operation.

With further regard to claims 36, 59 and 77 84, and 101, the combination of Ray, Keski-Heikkilaet and Ritter together teaches wherein the cell identity of the second network comprises at least one of frequency, BTS ID or location area (eg. Ritter teaches transmitting frequency information, eg. carrier, see figures 4, 5 and 6).

With further regard to claims 49, the combination of Ray, Keski-Heikkilaet and Ritter together teach a method to support a seamless mobility/handoff between the two networks.

With further regard to claims 64-65, 67-68, 70-71 and 73-74, the combination of Ray, Keski-Heikkilaet and Ritter together teach a method to networks comprised of WLAN, Bluetooth and/or WCMDA and a handoff can occur between any of the combo's...

As per **claim 32**, Ray teaches claim 31/42, wherein the apparatus is a network element (Figure 1, shows an HLR #26 and VLR #16 which are network components/elements).

As per claim <u>128</u>, Ray teaches wherein the data store is a database (Figure 1, shows an HLR #26 and VLR #16 which are databases),

Art Unit: 2617

As per **claims 35 and 58 and 83, 100**, Ray teaches claim 35/42/55, wherein the second telecommunication network is GSM network (Abstract teaches GSM network(s)).

As per **claim 38**, Ray teaches claim 31, wherein the apparatus <u>is further caused to use</u> a handover algorithm which provides seamless mobility between the first telecommunication network and second telecommunication network (Abstract teaches handover).

As per claim 40, Ray teaches claim 38, wherein the mobile is in either IDLE or ACTIVE state (Ray teaches handoffs whereby the mobile can receive control/network data while either in ACTIVE or IDLE mode, eg. both active and idle-mode handoffs are well known).

As per **claim 41**, Ray teaches claim 32 wherein the apparatus is an access point (the storage unit can be located at the HLR and/or at each BTS proximate a second RF network).

As per claim 56 and 99, Ray teaches claim 42/55, further comprising means of measuring of signal level of radio transmitters in the first telecommunication network and the second telecommunication network (C3, L45-46 teaches "collecting measurements" which are signal level measurements).

As per claim 50, Ray teaches claim 49 further comprising storing the cell information in a neighbor list of neighboring cells of the second telecommunication network (neighbor lists are inherent to cellular networks and Official Notice is taken).

Art Unit: 2617

As per claims 52,-63 and 105, Ray teaches claim 49 wherein the transmitting is done in a cell of the second network (eg. the proximate network transmits a beacon which is received by a first network and it can be included in the neighbor list) AND Cell-ID information of the cell of the first network includes neighbor information given by the cell of the second network (see rejection(s) for independent claim(s), eg. claim 49 or 55), further comprising storing the cell.

As per claims 60 and 102, Ray teaches claim 55, wherein the mobile station has means for transmitting the signal level to at least one of the first telecommunication network and the second telecommunication network (C3, L45-46 teaches both the MS or BTS taking measurements. MAHO handoffs are well known and the mobile takes measurements and send them to the network)

Allowable Subject Matter

Claims 52, 61, 103 objected to as being dependent upon a rejected base claim, but would be allowable if rewritten in independent form including all of the limitations of the base claim and any intervening claims.

Art Unit: 2617

Conclusion

Any inquiry concerning this communication or earlier communications from the examiner should be directed to Stephen M. D'Agosta whose telephone number is 571-272-7862. The examiner can normally be reached on M-F, 8am to 5pm.

If attempts to reach the examiner by telephone are unsuccessful, the examiner's supervisor, Jinsong Hu can be reached on 571-272-3965. The fax phone number for the organization where this application or proceeding is assigned is 571-273-8300.

Information regarding the status of an application may be obtained from the Patent Application Information Retrieval (PAIR) system. Status information for published applications may be obtained from either Private PAIR or Public PAIR. Status information for unpublished applications is available through Private PAIR only. For more information about the PAIR system, see http://pair-direct.uspto.gov. Should you have questions on access to the Private PAIR system, contact the Electronic Business Center (EBC) at 866-217-9197 (toll-free). If you would like assistance from a USPTO Customer Service Representative or access to the automated information system, call 800-786-9199 (IN USA OR CANADA) or 571-272-1000.

/Stephen M. D'Agosta/ Primary Examiner, Art Unit 2617