Block Ciphers

Chanathip Namprempre

Computer Science Reed College

Agenda: Block ciphers

- 1. General idea
- 2. DES
- 3. AES
- 4. Modelling block ciphers
- 5. Attacks against block ciphers
- 6. Security notions for block ciphers (PRP)
- 7. Related security notion (PRF)
- 8. Example security analysis

Block ciphers: General idea

Properties

- \blacktriangleright Given M and K, it's easy to compute C.
- ightharpoonup Given C and K, it's easy to compute M.
- \blacktriangleright With C but without K, it should be hard to compute M.
- ▶ In fact, with *C* but without *K*, it should be hard to compute any partial information about *M*. (e.g. first bit, last bit, parity, in English?, etc.)

Block Ciphers

BLOCK CIPHERS are the main tool for doing symmetric-key cryptography.

If we use it well, we'll get something good. Otherwise, we won't even if the block cipher is excellent!

Our focus: how to use it. (How to design it is still kind of an art.)

Structure of real-world block cipher (forward direction)

Source: Boneh and Shoup, "A Graduate Course in Applied Cryptography," 2023.

Data Encryption Standard (DES)

DES: History

Every time you use the ATM , you're most likely using DES!

History

1972: NBS(now NIST) asks for something for encryption.
 1974: IBM replied with Lucifer algorithm ⇒ became DES.

later: ANSI, American Bankers Assoc. adopted DES.

Recertified every 5 years till AES.

DES: Key length k = 56, Block length n = 64 $\forall K \in \{0, 1\}^{56}$, DES_K(·) is a permutation.

DES is very fast in hardware!

DES structure

Source: Boneh and Shoup, "A Graduate Course in Applied Cryptography," 2023.

DES: forward direction

DES Algorithm

```
Algorithm DES_K(M)
    (K_1,...,K_{16}) \leftarrow \text{KeySchedule}(K) // |K_i| = 48 \text{ for all } 1 \leq i \leq 16
    M \leftarrow IP(M)
    Parse M as L_0||R_0|/||L_0| = |R_0| = 32
    for r = 1 to 16 do
         L_r \leftarrow R_{r-1}
         R_r \leftarrow f(K_r, R_{r-1}) \oplus L_{r-1}
    endfor
    C \leftarrow IP^{-1}(L_{16}||R_{16})
    return C
```

DES: forward direction

Feistel permutation: forward and backward directions

Source: Boneh and Shoup, "A Graduate Course in Applied Cryptography," 2023.

DES: Pictorially

DES: IP, IP^{-1}

Just permute bits.

```
IP^{-1}
                                                                                                            32
      52
             44
60
                                                                                       55
                                                                                              23
                                                                                                     63
                                                                                                            31
                   38
                                 22
62
      54
             46
                          30
                                       14
                                                                                 14
                                                                                              22
                                                                                                     62
                                                                                                            30
                   40
                          32
                                 24
                                       16
64
      56
             48
                                                                                       53
                                                                                              21
                                                                                                     61
                                                                                                            29
57
                   33
                          25
                                 17
      49
             41
                                                                                 12
                                                                                       52
                                                                                                           28
                                                                                              20
                                                                                                     60
                          27
      51
             43
                   35
                                 19
                                       11
                                                                                                           27
                                                                          43
                                                                                 11
                                                                                       51
                                                                                              19
                                                                                                     59
61
      53
             45
                   37
                          29
                                 21
                                       13
                                                                          42
                                                                                 10
                                                                                       50
                                                                                              18
                                                                                                            26
63
      55
             47
                          31
                                       15
                                                                                              17
                                                                                                     57
                                                                                                            25
```

How to read the tables:

- ► *IP*: 1st bit of output is the 58th bit of the input.
- ▶ IP^{-1} : 1st bit output is the 40th bit of the input.

DES: Round function f(K, R)

```
function f(K,R) // |K| = 48 and |R| = 32 R \leftarrow E(R); R \leftarrow R \oplus K Parse R as R_1 \| R_2 \| R_3 \| R_4 \| R_5 \| R_6 \| R_7 \| R_8 // |R_i| = 6 for 1 \le i \le 8 for i = 1, \ldots, 8 do R_i \leftarrow S_i(R_i) // Each S-box returns 4 bits R \leftarrow R_1 \| R_2 \| R_3 \| R_4 \| R_5 \| R_6 \| R_7 \| R_8 R \leftarrow P(R) Return R
```


DES: f(K, R)

input: 48-bit subkey K, 32-bit input R

output: 32-bit output R


```
2
6
10
                                       5
9
13
         13
                 14
                                       17
21
25
29
1
  16
         17
                 18
                        19
  20
         21
                 22
                        23
  24
         25
                 26
                        27
         29
                 30
                        31
Р
  16
                        21
17
         12
                 28
         15
                 23
                        26
         18
                 31
                        10
                 24
                        14
         27
         13
                        25
         11
```

Read the same way as *IP*.

DES: S-boxes

input: 6 bits $b_1b_2b_3b_4b_5b_6$

output: 4 bits

Read row b_1b_2 column $b_3b_4b_5b_6$ to get output an integer in the range $0, \ldots, 15$.

For example, take S_1 :

		0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
0	0	14	4	13	1	2	15	11	8	3	10	6	12	5	9	0	7
0	1	0	15	7	4	14	2	13	1	10	6	12	11	9	5	3	8
1	0	4	1	14	8	13	6	2	11	15	12	9	7	3	10	5	0
1	1	15	12	8	2	4	9	1	7	5	11	3	14	10	0	6	13

There are 8 tables for S_1, \ldots, S_8 .

DES: KeySchedule

```
inputs: key (56 bits)
 outputs: 16 round keys (48 bits each)
function KeySchedule(K) // |K| = 56
    K \leftarrow PC-1(K)
    Parse K as C_0 \parallel D_0
    For r = 1, ..., 16 do
         If r \in \{1, 2, 9, 16\} then j \leftarrow 1 else j \leftarrow 2
         C_r \leftarrow \text{leftshift}_i(C_{r-1})D_r \leftarrow \text{leftshift}_i(D_{r-1})
         K_r \leftarrow \text{PC-2}(C_r || D_r)
    Return (K_1, \ldots, K_{16})
For rounds \# 1,2,9,16, left shift by 1 bit.
```

For all other rounds, left shift by 2 bits.]

DES: KeySchedule (cont.)

PC-2 is read as usual. PC-1 is a little more complicated.

PC-1 (permut	es)		PC-2	PC-2 (shrink)							
57	49	41	33	25	17	9	14	17	11	24	1	5
1	58	50	42	34	26	18	3	28	15	6	21	10
10	2	59	51	43	35	27	23	19	12	4	26	8
19	11	3	60	52	44	36	16	7	27	20	13	2
63	55	47	39	31	23	15	41	52	31	37	47	55
7	62	54	46	38	30	22	30	40	51	45	33	48
14	6	61	53	45	37	29	44	49	39	56	34	53
21	13	5	28	20	12	4	46	42	50	36	29	32

How to read PC-1: Suppose input is $K[1] \dots K[56]$ and output is $L[1] \dots L[56]$. How to get L[1]?

- 1. The first entry of PC-1 is 57.
- 2. Write 57 in the form of 8q + r. So q = 7 and r = 1.
- 3. L[1] = K[57 q] = K[57 7] = K[50].
- 4. So the first bit of the output is the 50th bit of the input.

AES

AES (Advanced Encryption Standard)

- ► AES is a special case of Rijndael i.e. block length = 128 key length = 128 or 192 or 256
- ▶ More documented than DES with design rationales given.
- ► Vague security still (just like DES), i.e. it's good because we don't know how to break it.

AES structure

Source: Boneh and Shoup, "A Graduate Course in Applied Cryptography," 2023.

See animation.

Modelling block ciphers

Modelling block ciphers: Pictorially

Modelling Block Ciphers

A block cipher = function $E: \{0,1\}^k \times \{0,1\}^n \rightarrow \{0,1\}^n$

k = key length

n = block length

But we often look at E as a **family of functions** where each function maps n bits to n bits and is indexed by $K \in \{0,1\}^k$

Modelling block ciphers: Pictorially

Modelling Block Ciphers

A block cipher = function $E: \{0,1\}^k \times \{0,1\}^n \rightarrow \{0,1\}^n$

k = key length

n = block length

But we often look at E as a **family of functions** where each function maps n bits to n bits and is indexed by $K \in \{0,1\}^k$

Modelling block ciphers: Pictorially

Modelling Block Ciphers

A block cipher = function $E: \{0,1\}^k \times \{0,1\}^n \rightarrow \{0,1\}^n$

k = key length

n = block length

But we often look at E as a **family of functions** where each function maps n bits to n bits and is indexed by $K \in \{0,1\}^k$.

Functions and permutations

What is a function?

- $ightharpoonup f: A \rightarrow B$
- ► Every member of A must be mapped to exactly one member in B under f.

What is a permutation?

- \triangleright $p:A\rightarrow B$
- p must be a function.
- p must be one-to-one and onto.

Pondering $E: \{0,1\}^k \times \{0,1\}^n \to \{0,1\}^n$

Try to think about what each of these objects look like, both as a function and a family of functions.

- 1. $\{0,1\}^1 \times \{0,1\}^1 \to \{0,1\}^1$
- 2. $\{0,1\}^2 \times \{0,1\}^2 \to \{0,1\}^1$
- 3. $\{0,1\}^2 \times \{0,1\}^1 \to \{0,1\}^2$
- 4. $\{0,1\}^2 \times \{0,1\}^2 \to \{0,1\}^2$
- 5. $\{0,1\}^2 \times \{0,1\}^3 \to \{0,1\}^2$
- 6. $\{0,1\}^3 \times \{0,1\}^2 \to \{0,1\}^2$

Modelling block Ciphers: notation

Notation:

Fix $K \in \{0,1\}^k$. Then,

- ► E_K : $\{0,1\}^n \to \{0,1\}^n$ where $E_K(M) = E(K,M)$
- ▶ E_K^{-1} : $\{0,1\}^n o \{0,1\}^n$ is the inverse permutation of $E_K(\cdot)$
- ▶ We require that $\forall x \in \{0,1\}^n$,

$$E_K^{-1}(E_K(x)) = x$$
 and $E_K(E_K^{-1}(x)) = x$

▶ E^{-1} : $\{0,1\}^k \times \{0,1\}^n \to \{0,1\}^n$ where, $\forall K \in \{0,1\}^k$,

$$E_K^{-1}(C) = E^{-1}(K, C)$$

Definition

 E^{-1} is the inverse block cipher to E.

Using the notation: Example

Let $E:\{0,1\}^2\times\{0,1\}^2\to\{0,1\}^2$ be a family of permutations with the following maps:

 E_{00} : (10,01,11,00) E_{01} : (01,00,11,10) E_{10} : (00,11,01,10) E_{11} : (01,10,00,11)

Questions

- 1. If K = 11 and you want to send the message 00, what ciphertext value should you send?
- 2. If K = 10 and you receive a ciphertext 11, what was the intended message?

Modelling Block Ciphers: desired properties

Note that

- **E** is **public** and fully specified.
- ightharpoonup E, E^{-1} are easily computable.

[There are public and efficient programs for this.] [i.e. given K, M, it is easy to find $C = E_K(M)$ and $M = E_K^{-1}(C)$.]

Modelling Block Ciphers: no talk of security yet

Notice:

- ► We've only talked about what a block cipher is.
- We have NOT said anything about what properties a good block cipher must have.

Example

Let $E_K(\cdot)$ be an identity function.

[i.e.
$$E_K(M) = M$$
 for all $M \in \{0, 1\}^n$]

This is syntactically a block cipher, but obviously not a good one.

Attacks against block ciphers

Attack types

► Known message attack:

Attacker gets q pairs of M and C.

$$\begin{array}{ccc} \hline \textbf{Attacker} & \longleftarrow & (M_1, C_1), \dots, (M_q, C_q) \\ & \Longrightarrow & T = ? \end{array}$$

► Chosen message attack:

Attacker gets a black box to which it can submit M_i to get C_i .

$$\begin{array}{ccc} \mathsf{Attacker} & \longleftarrow & E_T \\ & \Longrightarrow & T = ? \end{array}$$

Key recovery attacks against block ciphers

Let $q \ge 0$ be an integer parameter.

Attacker
$$\longleftarrow$$
 $(M_1, C_1), \dots, (M_q, C_q), E_T$
 \Longrightarrow $T = ?$

- ▶ K is consistent with the input-output examples $(M_1, C_1), ..., (M_q, C_q)$ if $\forall 1 \leq i \leq q, E_K(M_i) = C_i$
- ▶ Let $Cons_E(M_1, C_1), ..., (M_q, C_q)$ be the set of consistent keys for the input-output pairs.
- ► The adversary succeeds if she can find a key in this set (may have more than 1 element).

Exhaustive key search via known message attacks

Given $(M_1, C_1), \ldots, (M_q, C_q)$, the attacker can follow either of these two strategies:

Try $T_i \in \{0,1\}^k$ until $E_{T_i}(M_1) = C_1$.

Algorithm
$$\mathsf{EKS1}_\mathsf{E}(M_1, C_1)$$
 for $i = 1, \dots, 2^k$ do if $E(T_i, M_1) = C_1$ then return T_i

Notice

We can always do this! So no block cipher is perfectly secure!

Notice: This strategy could get us a wrong key.

Exhaustive key search via known message attacks (cont.)

Given $(M_1, C_1), \ldots, (M_q, C_q)$, the attacker can follow either of these two strategies:

Strategy 2 Try
$$T_i \in \{0,1\}^k$$
 until $E_{T_i}(M_1) = C_1$ and \dots and $E_{T_i}(M_q) = C_q$.

```
Algorithm \mathsf{EKS2}_\mathsf{E}(M_1, C_1) for i = 1, \dots, 2^k do if E(T_i, M_1) = C_1 \wedge \dots \wedge E(T_i, M_q) = C_q then return T_i
```

For DES, q = 2 is enough.

Runing time of exhaustive key search via known message attack

Suppose
$$\#$$
 of(M,C) pairs $=q=1$

worst case: # of block cipher applications = 2^k

average case:

Let i be the random variable for # of block cipher application.

$$E[i] = \sum_{i=1}^{2^{k}} i \cdot \Pr[K = T_{i}]$$

$$= \sum_{i=1}^{2^{k}} \frac{i}{2^{k}} = \frac{1}{2^{k}} \sum_{i=1}^{2^{k}} i = \frac{1}{2^{k}} \frac{2^{k} \cdot (2^{k} + 1)}{2}$$

$$\approx \frac{2^{k}}{2} = 2^{k-1}.$$

DES challenge

```
Given M_1M_2M_3, C_1, C_2, C_3, C_4, C_5, C_6, find K and compute M_4, M_5, M_6.
```

Summary from Dan Boneh:

1997 Internet search: 3 months

1998 EFF's Deep crack: 3 days (USD 250,000)

1999 Combined search: 22 hours

2006 COPACOBANA (120 FPGAs): 7 days (USD 10,000)

Exhaustive key search does not look inside DES. It's a black-box attack.

Cryptanalysis of DES

Differential crytanalysis: $q=2^{47}$ find key with chosen-msg attack Linear cryptanalysis: $q=2^{44}$ find key with known-msg attack

Practical? No. Require too many sample (M, C) pairs. i.e. $2^{44} * 64 * 64 = 2.81 * 10^4$ bits ≈ 281 terabytes

Linear & differential cryptanalysis decimated other ciphers but not DES!

Band-aid

We want longer keys. Alternatives are

- ► Iterated DES : 2DES, 3DES3, 3DES2
- ► DESX

But we also want bigger blocks! ⇒ AES

Double DES: $2DES_{K1||K2}(M) = DES_{K2}(DES_{K1}(M))$

Effective key length = 57 < 112

Meet-in-the-middle, known-message attack against 2DES

Make two lists $DES(K1_i, M)$ and $DES^{-1}(K2_j, C)$ and look for K1, K2 such that the values are equal.

Try writing down the algorithm to perform the meet-in-the-middle attack and analyze the worst-case running time.

Source: Boneh and Shoup, "A Graduate Course in Applied Cryptography," 2023.

Triple DES: $3DES_{K1||K2||K3}(M) = DES_{K3}(DES_{K2}^{-1}(DES_{K1}(M)))$

Effective key length =112 < 168 due to a meet-in-the-middle attack

Security notions for block ciphers

Key-recovery security

Key-recovery security is **NOT** enough.

- Security against key recovery is necessary
 Without it: given C, just compute $E_K^{-1}(C) = M$.
- ▶ But security against key recovery is not sufficient!

Consider a block cipher that reveals message bits without revealing key bits.

Clearly, we can't use it to encrypt things!

Key-recovery security

Example

Define $E: \{0,1\}^{128} \times \{0,1\}^{256} \to \{0,1\}^{256}$ as $\forall K \in \{0,1\}^{128}, \forall M[1]M[2] \in \{0,1\}^{256}$ where |M[1]| = |M[2]|,

$$E_K(M) = AES_K(M[1])||M[2]$$

Key recovery is still hard [due to AES]. But half the message is revealed!

PRP

 ${\bf Q}$: So if what we need isn't hardness against key recovery, then what?

A: PRP

PRP-CPA

Definition (PRP-CPA)

Let k, n be positive integers, and let $E: \{0,1\}^k \times \{0,1\}^n \to \{0,1\}^n$ be a family of permutations. Let A be an adversary with access to an oracle. We define the following subroutines, experiment, and advantage function.

Subroutines

Subroutine Initialize

$$b \stackrel{\$}{\leftarrow} \{0,1\}$$

If
$$b = 1$$
 then $K \xleftarrow{\$} \{0, 1\}^k$ else $p \xleftarrow{\$} \mathsf{Perm}(n)$

Subroutine g(x)

If
$$b = 1$$
 then return $E_K(x)$ else return $p(x)$

Subroutine Finalize(d)

Return (d = b)

Experiment

Experiment $\operatorname{Exp}_E^{\operatorname{prp-cpa}}(A)$

Initialize

 $d \stackrel{\$}{\leftarrow} A^g$

Return Finalize(d)

We define the prp-cpa advantage of an adversary A mounting a chosen-plaintext attack against E as

$$\mathsf{Adv}_{\mathsf{E}}^{\mathrm{prp\text{-}cpa}}(\mathit{A}) = 2 \cdot \mathsf{Pr} \left[\; \mathsf{Exp}_{\mathsf{E}}^{\mathrm{prp\text{-}cpa}}(\mathit{A}) \Rightarrow \mathsf{true} \; \right] - 1 \; .$$

What does Perm(2) look like?

Perm(2) = set of all permutations mapping 2 bits to 2 bits.

```
(00,01,10,11)
              (01,00,10,11)
                              (10,00,01,11)
                                             (11,00,01,10)
(00,01,11,10)
             (01,00,11,10)
                             (10,00,11,01)
                                            (11,00,10,01)
(00,10,01,11) (01,10,00,11)
                             (10,01,00,11)
                                            (11,01,00,10)
(00,10,11,01) (01,10,11,00)
                             (10,01,11,00)
                                            (11,01,10,00)
(00,11,01,10) (01,11,00,10)
                             (10,11,00,01)
                                            (11,10,00,01)
(00,11,10,01)
              (01,11,10,00)
                             (10,11,01,00)
                                            (11,10,01,00)
```

What does Func(2, 1) look like?

Func(2,1) = set of all functions mapping 2 bits to 1 bit.(0,0,0,0) (0,0,0,1) (0,0,1,0) (0,0,1,1)(0,1,0,0) (0,1,0,1) (0,1,1,0) (0,1,1,1)

> (1,0,0,0) (1,0,0,1) (1,0,1,0) (1,0,1,1)(1,1,0,0) (1,1,0,1) (1,1,1,0) (1,1,1,1)

PRP-CCA

Definition (PRP-CCA)

Let k, n be positive integers, and let $E: \{0,1\}^k \times \{0,1\}^n \to \{0,1\}^n$ be a family of permutations. Let A be an adversary with access to two oracles. We define the following subroutines, experiment, and advantage function.

Subroutines

Subroutine Initialize

$$b \stackrel{\$}{\leftarrow} \{0,1\}$$

If
$$b = 1$$
 then $K \leftarrow \{0, 1\}^k$ else $p \leftarrow Perm(n)$

Subroutine g(x)

If
$$b = 1$$
 then return $E_K(x)$ else return $p(x)$

Subroutine $g^{-1}(x)$

If
$$b = 1$$
 then return $E_K^{-1}(x)$ else return $p^{-1}(x)$

Subroutine Finalize(d)Return (d = b)

Experiment

Experiment $\operatorname{Exp}_E^{\operatorname{prp-cca}}(A)$

Initialize

$$d \overset{\$}{\leftarrow} A^{g,g}{}^{-1}$$

Return Finalize(d)

We define the prp-cca advantage of an adversary A mounting a chosen-ciphertext attack against E as

$$\mathbf{Adv}_E^{\mathrm{prp\text{-}cca}}(A) = 2 \cdot \text{Pr} \left[\; \mathbf{Exp}_E^{\mathrm{prp\text{-}cca}}(A) \Rightarrow \mathsf{true} \; \right] - 1 \; .$$

A related security notion: PRF (Pseudorandom Function family)

Definition (PRF)

Let k, n be positive integers, and let $E: \{0,1\}^k \times \{0,1\}^n \to \{0,1\}^n$ be a family of permutations. Let A be an adversary with access to an oracle. We define the following subroutines, experiment, and advantage function.

Subroutines

Subroutine Initialize

$$b \stackrel{\$}{\leftarrow} \{0,1\}$$

If
$$b = 1$$
 then $K \leftarrow \{0, 1\}^k$ else $f \leftarrow \{0, n\}$

Subroutine g(x)

If b = 1 then return $F_K(x)$ else return f(x)

Subroutine Finalize(d)Return (d = b)

We define the prf advantage of an adversary A attacking F as

Experiment

Experiment $\operatorname{Exp}_F^{\operatorname{prf}}(A)$

Initialize $d \stackrel{\$}{\leftarrow} A^g$

Return Finalize(d)

$$\mathsf{Adv}^{\mathrm{prf}}_{\mathcal{F}}(\mathit{A}) = 2 \cdot \mathsf{Pr} \left[\; \mathsf{Exp}^{\mathrm{prf}}_{\mathcal{F}}(\mathit{A}) \Rightarrow \mathsf{true} \; \right] - 1 \; .$$

Try using these definitions to analyze candidates

Consider a family of permutations $F:\{0,1\}^{56}\times\{0,1\}^{64}\to\{0,1\}^{64}$ defined as follows: for any $K\in\{0,1\}^{56}$ and any $x\in\{0,1\}^{64}$,

$$F_K(x) = x$$
.

▶ Consider a family of permutations $F: \{0,1\}^{64} \times \{0,1\}^{64} \to \{0,1\}^{64} \text{ defined as follows: for any } K \in \{0,1\}^{64} \text{ and any } x \in \{0,1\}^{64},$

$$F_K(x) = K \oplus x$$
.