Nathan Brooks CS4110 Homework 7 Due October 26

P01. CFG = PDA

Convert the giv en CFG to its CNF (I separated them out to make it easeir to convert)

S → XaaX

X → aX

X → bX

X → Λ

[Chompsky Normal Form: every non-terminal → double non-terminal (XX) or a single terminal (x)]

First remove any nullable non-terminals

nullable non-terminals: X

remove(X → /\)

Before, X could be replaced by \Lambda. From these rules that could contain null string:

S → XaaX

X → aX

 $X \rightarrow bX$

We can make new rules:

 $S \rightarrow Xaa$

 $S \rightarrow aaX$

 $\boldsymbol{S} \to \boldsymbol{a}\boldsymbol{a}$

 $X \rightarrow a$

 $X \rightarrow b$

So with no null productions our rules are now:

S → XaaX | Xaa | aaX | aa

 $X \rightarrow aX \mid bX \mid a \mid b$

There are no Unit Productions (non-terminal \rightarrow one non-terminal), so we can skip this step.

Now we need to replace any rule that does not have the form XX or x by introducing new non-terminals

 $A \rightarrow XC$

 $B \rightarrow CX$

 $C \rightarrow a$

 $D \rightarrow b$

and now our rules, including the modified versions, are:

 $S \rightarrow AB \mid XC \mid CX \mid CC$

 $X \rightarrow CX | DX | a | b$

 $A \,\to\, XC$

 $B \rightarrow CX$

C → a

 $D \,\to\, b$

Construct a PDA that accepts the same language generated by the given CFG using the algorithm of Theorem 30:

P02. CFL

Find a CFG for this language: All words that start with an a or are of the form a^n b^n

Just defining it so I can see it in a different way:

$$S \rightarrow a (a + b)* | a^n b^n$$

 $S \to a \mid aX \mid W$

 $X \rightarrow aX \mid bX \mid a \mid b$

 $W \rightarrow aWb \mid ab \mid \Lambda$