Comparison of Machine Learning Classifiers on Integrated Transcriptomic Data

Irene Testa, Giuseppe Prencipe, Corrado Priami, Alina Sîrbu

Department of Computer Science, University of Pisa, Italy

IEEE BigData 2023 6th Special Session on Healthcare Data

Introduction

Background

- Omics data are a valuable resource for building automatic diagnostic tools
- Given the limited number of samples in each individual dataset, data integration is necessary
- ➤ A comprehensive comparison of Machine Learning methods on integrated omics data is still missing (currently limited to a single disease or to a few models)

Contribution

- We compared 7 classifiers on integrated data for 6 diseases, over 14 datasets
- ► Models were compared employing different pre-processing techniques, evaluating the effect of feature selection and analyzing the robustness and relevance of the extracted features

Methods Datasets

Table 1: Datasets information

Name	Platform			Classes (#samples)		#Features
LC1	Affymetrix Human Genome	U133 Plu	s 2.0 Array	LC (60), CTL (60)		54 675
LC2	Affymetrix Human Genome	e U133 Plu:	s 2.0 Array	SCLC (23), CTL (42)		54 675
PSO1	Affymetrix Human Genome	U133 Plu:	s 2.0 Array	PSO (61), CTL (21)		54 675
PSO2	Affymetrix Human Genome	U133 Plu:	s 2.0 Array	PSO (58), CTL (64)		54 675
SK1	Affymetrix Human Genome	U133 Plu	s 2.0 Array	PMEL (46), MMEL (12) (16)), CTL	44 137
SK2	Affymetrix Human Genome	■ U133A A	rray	PMEL (31), MMEL (73), C	TL (7)	22 215
LK1	Affymetrix Human Genome	U133A A	rray	AML (37), CLL (41), CM MDS (10), B-ALL (17), (12)		22 283
LK2	Affymetrix Human Genome	e U133B A	rray	AML (37), CLL (41), CM MDS (10), B-ALL (17), (13)		22 645
AD1	Illumina HumanHT-12 V3.	0 expressio	n beadchip	AD (145), CTL (104)		38 323
AD2	Illumina HumanHT-12 V4.	0 expressio	n beadchip	AD (140), CTL (135)		32 049
AD3	Rosetta/Merck Human 44	< 1.1 micro	array	AD (310), CTL (157)		38 734
AD4	Rosetta/Merck Human 44	< 1.1 micro	array	AD (129), CTL (101)		39 005
PD1	Invitrogen ProtoArray v5.0			PD (132), CTL (156)		9 480
PD2	Invitrogen ProtoArray v5.0			PD (174), CTL (80)		9 480
CTL LC SCLC PSO PMEL MMEL	Control Lung Cancer Small Cell Lung Cancer Psoriasis Primary Melanoma Metastatic Melanoma	AML CLL CML MDS B-ALL T-ALL	Chronic Lym Chronic Mye Myelodyspla B-cell Acute	oid Leukemia ophocytic Leukemia eloid Leukemia stic Syndrome Lymphoblastic Leukemia Lymphoblastic Leukemia	AD PD	Alzheimer's disease Parkinson's disease

Datasets were downloaded from Gene Expression Omnibus.

Methods

Pre-processing and Data Integration

Pre-processing

- log₂ transformation to reduce skewness
- z-score normalization of each sample to correct for batch effects

Data Integration

- genes were matched using GenBank accession numbers
- samples from datasets related to the same disease were simply stacked together, maintaining only the common genes and matching their labels

Table 2: Number of features and samples of the datasets after the integration

Dataset	#Features	Classes (#samples)
LC1+LC2	54 675	Lung Cancer (83), Control (102)
PSO1+PSO2	54 675	Psoriasis (119), Control (85)
SK1+SK2	19 819	Primary Melanoma (77), Metastati Melanoma (85), Control (23)
LK1+LK2	168	Acute Myeloid Leukemia (74 Chronic Lymphocytic Leukemi (82), Chronic Myeloid Leukemi (44), Myelodys-plastic Syndrom (20), Precursor B-cell Acute Lym phoblastic Leukemia (34), T-ce Acute Lymphoblastic Leukemia (25
AD1+AD2	22 614	Alzheimer's disease (285), Contro (239)
AD3+AD4	38 734	Alzheimer's disease (439), Contro (258)
AD1+AD2+AD3+AD4	224	Alzheimer's disease (724), Contro (497)
PD1+PD2	9 480	Parkinson's disease (306), Contro (236)

Methods Models

- ► Nearest Centroid (NC)
- ► K-Nearest Neighbors (KNN)
- Support Vector Machine (SVM)
- Gaussian Naive Bayes (GNB)
- Random Forest (RF)
- Extreme Gradient Boosting (XGB)
- Rank Aggregation Classifier (RAC)
 - Uses a ranked representation of features and rank aggregation methods to compute class centroids
 - Robust to noise

Methods

Rank Aggregation Classifier

Figure 1: Training and Classification of the Rank Aggregation Classifier

Methods

Model evaluation

Measurement of classification performance

- ▶ F1 score weighted by the number of samples per class
- Area Under ROC curve

Integration strategies

- Initial dataset merging followed by splitting into train and test folds
 - two nested loops of 5-fold cross validation (inner loop to select the best hyperparameters; outer loop to evaluate the model with the best hyperparameters on the remaining set of data)
- Use of one dataset for training and a separate one for testing
 - 5-fold cross-validation to selected the best hyperparameters on the training dataset
 - test of the best hyperparameter configuration on the test dataset

Methods Model evaluation

Feature ranking evaluation

- Comparison of SVM, RF, XGB and RAC after having selected the most relevant features using the Recursive Feature Elimination (RFE) algorithm
- ▶ 5-fold cross validation to validate results (the feature elimination process was repeated for each training fold, testing the classifiers with the reduced feature subset on the complementary test fold)

Performance on merged datasets

Table 3: F1 scores from nested cross validation on merged datasets

Dataset	RAC	NC	KNN	SVM	GNB	RF	XGB
LC1+LC2	0.930	0.795	0.929	0.968	0.604	0.962	0.930
LC1+LC2*	0.930	0.930	0.913	0.962	0.919	0.946	0.941
PSO1+PSO2	0.894	0.612	0.960	0.975	0.612	0.980	0.936
PSO1+PSO2*	0.894	0.894	0.966	0.985	0.894	0.971	0.946
SK1+SK2	0.677	0.664	0.898	0.935	0.683	0.892	0.885
SK1+SK2*	0.677	0.664	0.914	0.935	0.677	0.919	0.913
LK1+LK2	0.829	0.801	0.932	0.996	0.939	0.967	0.936
LK1+LK2*	0.829	0.421	0.920	0.996	0.701	0.960	0.939
AD1+AD2	0.596	0.535	0.695	0.744	0.535	0.692	0.692
AD1+AD2*	0.596	0.645		0.748	0.624	0.694	0.719
AD3+AD4	0.867	0.847	0.944	0.973	0.854	0.957	0.967
AD3+AD4*	0.867	0.881	0.947	0.971	0.883	0.955	0.966
AD1+AD2+AD3+AD4	0.695	0.557	0.796	0.792	0.557	0.790	0.808
AD1+AD2+AD3+AD4*	0.695	0.651	0.799	0.794	0.557	0.821	0.831
PD1+PD2	0.886	0.759	0.927	0.948	0.803	0.937	0.959
PD1+PD2*	0.886	0.873	0.916	0.943	0.843	0.946	0.939
Mean	0.797	0.696	0.885	0.916	0.698	0.897	0.889
Rank	5	7	4	1	6	2	3
Mean*	0.797	0.745	0.885	0.917	0.762	0.902	0.899
Rank*	5	7	4	1	6	2	3

^{&#}x27;*' for z-score normalized data cells colored by score

▶ Good performance albeit slightly reduced compared to individual dataset

Performance on merged datasets

Table 4: F1 scores from nested cross validation on merged datasets

Dataset	RAC	NC	KNN	SVM	GNB	RF	XGB
LC1+LC2	0.930	0.795	0.929	0.968	0.604	0.962	0.930
LC1+LC2*	0.930	0.930	0.913	0.962	0.919	0.946	0.941
PSO1+PSO2	0.894	0.612	0.960	0.975	0.612	0.980	0.936
PSO1+PSO2*	0.894	0.894	0.966	0.985	0.894	0.971	0.946
SK1+SK2	0.677	0.664	0.898	0.935	0.683	0.892	0.885
SK1+SK2*	0.677	0.664	0.914	0.935	0.677	0.919	0.913
LK1+LK2	0.829	0.801	0.932	0.996	0.939	0.967	0.936
LK1+LK2*	0.829	0.421	0.920	0.996	0.701	0.960	0.939
AD1+AD2	0.596	0.535	0.695	0.744	0.535	0.692	0.692
AD1+AD2*	0.596	0.645	0.702	0.748	0.624	0.694	0.719
AD3+AD4	0.867	0.847	0.944	0.973	0.854	0.957	0.967
AD3+AD4*	0.867	0.881	0.947	0.971	0.883	0.955	0.966
AD1+AD2+AD3+AD4	0.695	0.557	0.796	0.792	0.557	0.790	0.808
AD1+AD2+AD3+AD4*	0.695	0.651	0.799	0.794	0.557	0.821	0.831
PD1+PD2	0.886	0.759	0.927	0.948	0.803	0.937	0.959
PD1+PD2*	0.886	0.873	0.916	0.943	0.843	0.946	0.939
Mean	0.797	0.696	0.885	0.916	0.698	0.897	0.889
Rank	5	7	4	1	6	2	3
Mean*	0.797	0.745	0.885	0.917	0.762	0.902	0.899
Rank*	5	7	4	1	6	2	3

^{&#}x27;*' for z-score normalized data

- ▶ Good performance albeit slightly reduced compared to individual dataset
- ▶ SVM, RF and XGB perform better than the other classification methods

cells colored by score on each row independently

Performance on merged datasets

Table 5: F1 scores from nested cross validation on merged datasets

Dataset	RAC	NC	KNN	SVM	GNB	RF	XGB
LC1+LC2	0.930	0.795	0.929	0.968	0.604	0.962	0.930
LC1+LC2*	0.930	0.930	0.913	0.962	0.919	0.946	0.941
PSO1+PSO2	0.894	0.612	0.961	0.975	0.612	0.980	0.936
PSO1+PSO2*	0.894	0.894	0.966	0.985	0.894	0.971	0.946
SK1+SK2	0.677	0.664	0.898	0.935	0.683	0.892	0.885
SK1+SK2*	0.677	0.664	0.914	0.935	0.677	0.919	0.913
LK1+LK2	0.829	0.801	0.932	0.996	0.939	0.967	0.936
LK1+LK2*	0.829	0.421	0.920	0.996	0.701	0.960	0.939
AD1+AD2	0.596	0.535	0.695	0.744	0.535	0.692	0.692
AD1+AD2*	0.596	0.645	0.702	0.748	0.624	0.694	0.719
AD3+AD4	0.867	0.847	0.944	0.973	0.854	0.957	0.967
AD3+AD4*	0.867	0.881	0.947	0.971	0.883	0.955	0.966
AD1+AD2+AD3+AD4	0.695	0.557	0.796	0.792	0.557	0.790	0.808
AD1+AD2+AD3+AD4*	0.695	0.651	0.799	0.794	0.557	0.821	0.831
PD1+PD2	0.886	0.759	0.927	0.948	0.803	0.937	0.959
PD1+PD2*	0.886	0.873	0.916	0.943	0.843	0.946	0.939
Mean	0.797	0.696	0.885	0.916	0.698	0.897	0.889
Rank	5	7	4	1	6	2	3
Mean*	0.797	0.745	0.885	0.917	0.762	0.902	0.899
Rank*	5	7	4	1	6	2	3

^{&#}x27;*' for z-score normalized data

- ▶ Good performance albeit slightly reduced compared to individual dataset
- ▶ SVM, RF and XGB perform better than the other classification methods
- ▶ The impact of z-score normalization varies depending on the model and on the dataset

cells colored by the difference between z-score normalized and non normalized scores (blue if performance increases, red if it decreases)

Performance when training and testing on different datasets

Table 6: F1 scores when training and testing on different datasets

Training	Test	RA	AC.	N	C		NN	sv	/M	Gì	NB	R	F	X	
dataset	dataset	Train score	Test score												
LC1	LC2	0.925	0.708	0.925	0.602	0.908	0.865	0.950	0.501	0.933	0.185	0.958	0.217	0.975	0.490
LC1*	LC2*	0.925	0.708	0.925	0.773	0.908	0.865	0.958	0.410	0.933	0.185	0.958	0.360	0.975	0.677
LC2	LC1	0.985	0.333	0.985	0.333	1.000	0.333	1.000	0.333	0.985	0.333	1.000	0.659	0.861	0.333
LC2*	LC1*	0.985	0.333	0.985	0.333	1.000	0.606	1.000	0.369	0.985	0.369	1.000	0.352	0.923	0.369
PSO1	PSO2	0.916	0.984	0.884	0.992	0.950	0.306	0.975	0.361	0.922	0.306	0.975	0.361	0.962	0.361
PSO1*	PSO2*	0.916	0.984	0.884	0.992	0.950	0.611	0.975	0.876	0.963	0.306	0.975	0.361	0.950	0.569
PSO2	PSO1	1.000	0.104	1.000	0.512	1.000	0.666	1.000	0.653	1.000	0.669	1.000	0.635	1.000	0.635
PSO2*	PSO1*	1.000	0.104	1.000	0.449	1.000	0.713	1.000	0.627	1.000	0.601	1.000	0.635	1.000	0.635
SK1	SK2	0.801	0.836	0.776	0.454	0.869	0.204	0.874	0.007	0.795	0.122	0.788	0.154	0.781	0.564
SK1*	SK2*	0.801	0.836	0.776	0.827	0.850	0.313	0.890	0.823	0.781	0.499	0.811	0.702	0.794	
SK2	SK1	0.938	0.535	0.929	0.532	0.938	0.629	0.955	0.535	0.904	0.397	0.936	0.627	0.927	0.680
SK2*	SK1*	0.938		0.929	0.481	0.930	0.728	0.964	0.634	0.911	0.045	0.936	0.666	0.918	0.526
LK1	LK2	0.861	0.809	0.819	0.595	0.956	0.986	0.993	0.879	0.940	0.335	0.971	0.440	0.928	0.331
LK1*	LK2*	0.861	0.809	0.785	0.133	0.941	0.133	0.993	0.324	0.921	0.133	0.964	0.198	0.971	0.411
LK2	LK1	0.857	0.828	0.787	0.649	0.914	0.700	1.000	0.894	0.900	0.753	0.964	0.642	0.909	0.560
LK2*	LK1*	0.857	0.828	0.762	0.126	0.942	0.051	1.000	0.144	0.942	0.134	0.957	0.164	0.935	0.062
AD1	AD2	0.706	0.593	0.684	0.640	0.750	0.655	0.830	0.343	0.685	0.343	0.741	0.323	0.816	0.343
AD1*	AD2*	0.706	0.593	0.684	0.621	0.750	0.608	0.834	0.343	0.685	0.579	0.730	0.323	0.816	0.486
AD2	AD1	0.625	0.665	0.621	0.693	0.658	0.680	0.712	0.429	0.633	0.625	0.694	0.246	0.711	0.246
AD2*	AD1*	0.625	0.665	0.617	0.695	0.662	0.651	0.713	0.246	0.633	0.701	0.691	0.582	0.696	0.387
AD3	AD4	0.865	0.857	0.823	0.808	0.889	0.887	0.957	1.000	0.844	0.830	0.904	1.000	0.914	1.000
AD3*	AD4*	0.865	0.857	0.874	0.870	0.901	0.931	0.946	0.996	0.882	0.883	0.913	0.987	0.925	1.000
AD4	AD3	0.879	0.875	0.874	0.882	0.874	0.898	0.913	0.961	0.866	0.877	0.909	0.937	0.896	0.950
AD4*	AD3*	0.879	0.875	0.879	0.876	0.892	0.941	0.913	0.963	0.883	0.884	0.913	0.932	0.904	0.950
PD1	PD2	0.782	0.288	0.750	0.431	0.840	0.973	0.903	1.000	0.635	0.802	0.885	1.000	0.924	1.000
PD1*	PD2*	0.782	0.288	0.764	0.199	0.827	0.953	0.920	1.000	0.792	0.795	0.879	1.000	0.906	1.000
PD2	PD1	1.000	0.726	0.934	0.706	1.000	0.669	1.000	0.675	1.000	0.587	1.000	0.572	1.000	0.536
PD2*	PD1*	1.000	0.726	0.988	0.608	1.000	0.614	1.000	0.625	1.000	0.657	1.000	0.572	1.000	0.545
Me		0.867	0.653	0.842	0.631	0.896	0.675	0.933	0.612	0.860	0.512	0.909	0.558	0.900	0.574
Ra	nk	5	2	7	3	4	1	1	4	6	7	2	6	3	5
Mea	m*	0.867	0.653	0.847	0.570	0.897	0.623	0.936	0.599	0.879	0.484	0.909	0.560	0.908	0.584
Rar	ık*	6	1	7	5	4	2	1	3	5	7	2	6	3	4

cells colored by score

▶ Performance varies across models and datasets

Performance when training and testing on different datasets

Table 7: F1 scores when training and testing on different datasets

Training	Test	R			C		NN		/M		NB		F		GB
dataset	dataset	Train	Test	Train	Test	Train	Test	Train	Test	Train	Test	Train	Test	Train	Test
		score	score	score	score	score	score								
LC1	LC2	0.925	0.708	0.925	0.602	0.908	0.865	0.950	0.501	0.933	0.185	0.958	0.217	0.975	0.490
LC1*	LC2*	0.925	0.708	0.925	0.773	0.908	0.865	0.958	0.410	0.933	0.185	0.958	0.360	0.975	0.677
LC2	LC1	0.985	0.333	0.985	0.333	1.000	0.333	1.000	0.333	0.985	0.333	1.000	0.659	0.861	0.333
LC2*	LC1*	0.985	0.333	0.985	0.333	1.000	0.606	1.000	0.369	0.985	0.369	1.000	0.352	0.923	0.369
PSO1	PSO2	0.916	0.984	0.884	0.992	0.950	0.306	0.975	0.361	0.922	0.306	0.975	0.361	0.962	0.361
PSO1*	PSO2*	0.916	0.984	0.884	0.992	0.950	0.611	0.975	0.876	0.963	0.306	0.975	0.361	0.950	0.569
PSO2	PSO1	1.000	0.104	1.000	0.512	1.000	0.666	1.000	0.653	1.000	0.669	1.000	0.635	1.000	0.635
PSO2*	PSO1*	1.000	0.104	1.000	0.449	1.000	0.713	1.000	0.627	1.000	0.601	1.000	0.635	1.000	0.635
SK1	SK2	0.801	0.836	0.776	0.454	0.869	0.204	0.874	0.007	0.795	0.122	0.788	0.154	0.781	0.564
SK1*	SK2*	0.801	0.836	0.776	0.827	0.850	0.313	0.890	0.823	0.781	0.499	0.811	0.702	0.794	0.553
SK2	SK1	0.938	0.535	0.929	0.532	0.938	0.629	0.955	0.535	0.904	0.397	0.936	0.627	0.927	0.680
SK2*	SK1*	0.938	0.535	0.929	0.481	0.930	0.728	0.964	0.634	0.911	0.045	0.936	0.666	0.918	0.526
LK1	LK2	0.861	0.809	0.819	0.595	0.956	0.986	0.993	0.879	0.940	0.335	0.971	0.440	0.928	0.331
LK1*	LK2*	0.861	0.809	0.785	0.133	0.941	0.133	0.993	0.324	0.921	0.133	0.964	0.198	0.971	0.411
LK2	LK1	0.857	0.828	0.787	0.649	0.914	0.700	1.000	0.894	0.900	0.753	0.964	0.642	0.909	0.560
LK2*	LK1*	0.857	0.828	0.762	0.126	0.942	0.051	1.000	0.144	0.942	0.134	0.957	0.164	0.935	0.062
AD1	AD2	0.706	0.593	0.684	0.640	0.750	0.655	0.830	0.343	0.685	0.343	0.741	0.323	0.816	0.343
AD1*	AD2*	0.706	0.593	0.684	0.621	0.750	0.608	0.834	0.343	0.685	0.579	0.730	0.323	0.816	0.486
AD2	AD1	0.625	0.665	0.621	0.693	0.658	0.680	0.712	0.429	0.633	0.625	0.694	0.246	0.711	0.246
AD2*	AD1*	0.625	0.665	0.617	0.695	0.662	0.651	0.713	0.246	0.633	0.701	0.691	0.582	0.696	0.387
AD3	AD4	0.865	0.857	0.823	0.808	0.889	0.887	0.957	1.000	0.844	0.830	0.904	1.000	0.914	1.000
AD3*	AD4*	0.865	0.857	0.874	0.870	0.901	0.931	0.946	0.996	0.882	0.883	0.913	0.987	0.925	1.000
AD4	AD3	0.879	0.875	0.874	0.882	0.874	0.898	0.913	0.961	0.866	0.877	0.909	0.937	0.896	0.950
AD4*	AD3*	0.879	0.875	0.879	0.876	0.892	0.941	0.913	0.963	0.883	0.884	0.913	0.932	0.904	0.950
PD1	PD2	0.782	0.288	0.750	0.431	0.840	0.973	0.903	1.000	0.635	0.802	0.885	1.000	0.924	1.000
PD1*	PD2*	0.782	0.288	0.764	0.199	0.827	0.953	0.920	1.000	0.792	0.795	0.879	1.000	0.906	1.000
PD2	PD1	1.000	0.726	0.934	0.706	1.000	0.669	1.000	0.675	1.000	0.587	1.000	0.572	1.000	0.536
PD2*	PD1*	1.000	0.726	0.988	0.608	1.000	0.614	1.000	0.625	1.000	0.657	1.000	0.572	1.000	0.545
Me	ean	0.867	0.653	0.842	0.631	0.896	0.675	0.933	0.612	I 0.860	0.512	0.909	0.558	l 0.900	0.574
	nk	5	2	7	3	4	1	1	4	6	7	2	6	3	5
Me		0.867	0.653	0.847	0.570	0.897	0.623	0.936	0.599	0.879	0.484	0.909	0.560	0.908	0.584
	nk*	6	1	7	5	4	2	1	3	5	7	2	6	3	4

cells colored by score on each row independently

- Performance varies across models and datasets
- No method stands out

Performance when training and testing on different datasets

Table 8: F1 scores when training and testing on different datasets

Training	Test	R.A			C		NN	SV			VВ		F	X	
dataset	dataset	Train	Test												
		score	scor												
LC1	LC2	0.925	0.708	0.925	0.602	0.908	0.865	0.950	0.501	0.933	0.185	0.958	0.217	0.975	0.490
LC1*	LC2*	0.925	0.708	0.925	0.773	0.908	0.865	0.958	0.410	0.933	0.185	0.958	0.360	0.975	0.677
LC2	LC1	0.985	0.333	0.985	0.333	1.000	0.333	1.000	0.333	0.985	0.333	1.000	0.659	0.861	0.333
LC2*	LC1*	0.985	0.333	0.985	0.333	1.000	0.606	1.000	0.369	0.985	0.369	1.000	0.352	0.923	0.369
PSO1	PSO2	0.916	0.984	0.884	0.992	0.950	0.306	0.975	0.361	0.922	0.306	0.975	0.361	0.962	0.361
PSO1*	PSO2*	0.916	0.984	0.884	0.992	0.950	0.611	0.975	0.876	0.963	0.306	0.975	0.361	0.950	0.569
PSO2	PSO1	1.000	0.104	1.000	0.512	1.000	0.666		0.653		0.669		0.635		0.635
PSO2*	PSO1*	1.000	0.104	1.000	0.449	1.000			0.627	1.000	0.601		0.635		0.635
SK1	SK2	0.801	0.836	0.776	0.454	0.869	0.204	0.874	0.007	0.795	0.122	0.788	0.154	0.781	0.564
SK1*	SK2*					0.850	0.313	0.890	0.823	0.781	0.499	0.811	0.702		
SK2	SK1	0.938	0.535	0.929		0.938	0.629	0.955	0.535	0.904	0.397	0.936	0.627	0.927	
SK2*	SK1*	0.938	0.535	0.929	0.481	0.930	0.728	0.964	0.634	0.911	0.045			0.918	0.526
LK1	LK2	0.861	0.809	0.819	0.595	0.956	0.986	0.993	0.879	0.940	0.335	0.971	0.440	0.928	0.331
LK1*	LK2*	0.861	0.809	0.785	0.133	0.941	0.133	0.993	0.324	0.921	0.133	0.964	0.198	0.971	0.411
LK2	LK1	0.857	0.828	0.787	0.649	0.914	0.700	1.000	0.894	0.900	0.753	0.964	0.642	0.909	0.560
LK2*	LK1*	0.857	0.828	0.762	0.126	0.942	0.051	1.000	0.144	0.942	0.134	0.957	0.164	0.935	0.062
AD1	AD2	0.706	0.593	0.684	0.640	0.750	0.655	0.830	0.343	0.685	0.343	0.741	0.323	0.816	0.343
AD1*	AD2*	0.706	0.593	0.684	0.621	0.750	0.608	0.834	0.343	0.685	0.579	0.730	0.323	0.816	0.486
AD2	AD1	0.625	0.665	0.621	0.693	0.658	0.680	0.712	0.429	0.633	0.625	0.694	0.246	0.711	0.246
AD2*	AD1*			0.617	0.695	0.662	0.651	0.713	0.246	0.633	0.701	0.691	0.582	0.696	0.387
AD3	AD4	0.865	0.857	0.823	0.808	0.889	0.887	0.957	1.000	0.844	0.830	0.904	1.000	0.914	1.000
AD3*	AD4*	0.865	0.857	0.874	0.870	0.901	0.931	0.946	0.996	0.882	0.883	0.913	0.987	0.925	1.000
AD4	AD3	0.879	0.875	0.874	0.882	0.874	0.898			0.866	0.877	0.909	0.937	0.896	0.950
AD4*	AD3*	0.879	0.875	0.879	0.876	0.892	0.941			0.883	0.884	0.913	0.932	0.904	0.950
PD1	PD2	0.782	0.288	0.750	0.431	0.840	0.973	0.903	1.000	0.635	0.802	0.885	1.000	0.924	1.000
PD1*	PD2*	0.782	0.288	0.764	0.199	0.827	0.953	0.920	1.000	0.792	0.795	0.879	1.000	0.906	1.000
PD2	PD1	1.000	0.726	0.934	0.706	1.000	0.669	1.000	0.675	1.000	0.587	1.000	0.572	1.000	0.536
PD2*	PD1*			0.988		1.000	0.614	1.000	0.625	1.000	0.657	1.000		1.000	0.545
Me	an	0.867	0.653	0.842	0.631	0.896	0.675	0.933	0.612	0.860	0.512	0.909	0.558	0.900	0.574
	nk	5	2	7	3	4	1	1	4	6	7	2	6	3	5
Me		0.867	0.653	0.847	0.570	0.897	0.623	0.936	0.599	0.879	0.484	0.909	0.560	0.908	0.584
Rai		6	1	7	5	4	2	1	3	5	7	2	6	3	4

cells colored by the difference between train scores and test scores (blue if test performance increases, red if it decreases)

- ▶ Performance varies across models and datasets
- No method stands out

 Often test scores are significantly lower than train scores

Performance when training and testing on different datasets

Table 9: F1 scores when training and testing on different datasets

Training	Test	R			C		NN		/M		NB		tF.		GB
dataset	dataset	Train	Test score	Train	Test										
		score	score	score	score										
LC1	LC2	0.925	0.708	0.925	0.602	0.908	0.865	0.950	0.501	0.933	0.185	0.958	0.217	0.975	0.490
LC1*	LC2*	0.925	0.708	0.925	0.773	0.908	0.865	0.958	0.410	0.933	0.185	0.958	0.360	0.975	0.677
LC2	LC1	0.985	0.333	0.985	0.333	1.000	0.333	1.000	0.333	0.985	0.333	1.000	0.659	0.861	0.333
LC2*	LC1*	0.985	0.333	0.985	0.333	1.000	0.606	1.000	0.369	0.985	0.369	1.000	0.352	0.923	0.369
PSO1	PSO2	0.916	0.984	0.884	0.992	0.950	0.306	0.975	0.361	0.922	0.306	0.975	0.361	0.962	0.361
PSO1*	PSO2*	0.916	0.984	0.884	0.992	0.950	0.611	0.975	0.876	0.963	0.306	0.975	0.361	0.950	0.569
PSO2	PSO1	1.000	0.104	1.000	0.512	1.000	0.666	1.000	0.653	1.000	0.669	1.000	0.635	1.000	0.635
PSO2*	PSO1*	1.000	0.104	1.000	0.449	1.000	0.713	1.000	0.627	1.000	0.601	1.000	0.635	1.000	0.635
SK1	SK2	0.801	0.836	0.776	0.454	0.869	0.204	0.874	0.007	0.795	0.122	0.788	0.154	0.781	0.564
SK1*	SK2*	0.801	0.836	0.776	0.827	0.850	0.313	0.890	0.823	0.781	0.499	0.811	0.702	0.794	0.553
SK2	SK1	0.938	0.535	0.929	0.532	0.938	0.629	0.955	0.535	0.904	0.397	0.936	0.627	0.927	0.680
SK2*	SK1*	0.938	0.535	0.929	0.481	0.930	0.728	0.964	0.634	0.911	0.045	0.936	0.666	0.918	0.526
LK1	LK2	0.861	0.809	0.819	0.595	0.956	0.986	0.993	0.879	0.940	0.335	0.971	0.440	0.928	0.331
LK1*	LK2*	0.861	0.809	0.785	0.133	0.941	0.133	0.993	0.324	0.921		0.964	0.198	0.971	0.411
LK2	LK1	0.857	0.828	0.787	0.649	0.914	0.700	1.000	0.894	0.900	0.753	0.964	0.642	0.909	0.560
LK2*	LK1*	0.857	0.828	0.762	0.126	0.942	0.051	1.000	0.144	0.942	0.134	0.957	0.164	0.935	0.062
AD1	AD2	0.706	0.593	0.684	0.640	0.750	0.655	0.830	0.343	0.685	0.343	0.741	0.323	0.816	0.343
AD1*	AD2*	0.706	0.593	0.684	0.621	0.750	0.608	0.834	0.343	0.685	0.579	0.730	0.323	0.816	0.486
AD2	AD1	0.625	0.665	0.621	0.693	0.658	0.680	0.712	0.429	0.633	0.625	0.694	0.246	0.711	0.246
AD2*	AD1*	0.625	0.665	0.617	0.695	0.662	0.651	0.713	0.246	0.633	0.701	0.691	0.582	0.696	0.387
AD3	AD4	0.865	0.857	0.823	0.808	0.889	0.887	0.957	1.000	0.844	0.830	0.904	1.000	0.914	1.000
AD3*	AD4*	0.865	0.857	0.874	0.870	0.901	0.931	0.946	0.996	0.882	0.883	0.913	0.987	0.925	1.000
AD4	AD3	0.879	0.875	0.874	0.882	0.874	0.898	0.913	0.961	0.866	0.877	0.909	0.937	0.896	0.950
AD4*	AD3*	0.879	0.875	0.879	0.876	0.892	0.941	0.913	0.963	0.883	0.884	0.913	0.932	0.904	0.950
PD1	PD2	0.782	0.288	0.750	0.431	0.840	0.973	0.903	1.000	0.635	0.802	0.885	1.000	0.924	1.000
PD1*	PD2*	0.782	0.288	0.764	0.199	0.827	0.953	0.920	1.000	0.792	0.795	0.879	1.000	0.906	1.000
PD2	PD1	1.000	0.726	0.934	0.706	1.000	0.669	1.000	0.675	1.000	0.587	1.000	0.572	1.000	0.536
PD2*	PD1*	1.000	0.726	0.988	0.608	1.000	0.614	1.000	0.625	1.000	0.657	1.000	0.572	1.000	0.545
Me	ean	0.867	0.653	0.842	0.631	0.896	0.675	0.933	0.612	0.860	0.512	0.909	0.558	I 0.900	0.574
	nk	5	2	7	3	4	1	1	4	6	7	2	6	3	5
	an*	0.867	0.653	0.847	0.570	0.897	0.623	0.936	0.599	0.879	0.484	0.909	0.560	0.908	0.584
	nk*	6	1	7	5	4	2	1	3	5	7	2	6	3	4

cells colored by the difference between z-score normalized and non normalized scores (blue if performance increases, red if it decreases)

- Performance varies across models and datasets
- No method stands out

- ▶ Often test scores are significantly lower than train scores
- Again, the impact of z-score normalization varies depending on the model and on the dataset

The effect of feature selection

Figure 2: F1 scores when varying the number of features selected by RFE

- RFE typically does not improve the performance of classifiers
- Using 50 features the performance is already quite close to that obtained when using all features
- ▶ As opposed to RAC and SVM, RF and XGB still perform well with fewer features

Robustness in feature ranking

Figure 3: Total number of features selected by RFE on the five folds of cross validation

▶ RFE with XGB and RF is not robust to the change of the underlying samples (it tends to select different features over different folds)

Feature relevance

Table 10: Number of genes in the literature related to Psoriasis among the 5 genes selected by RFE

Dataset	RAC	SVM	RF	XGB
PSO1	5	5	2	2
PSO2	5	5	4	1
PSO1+PSO2	5	5	4	3

- ➤ All the features selected by RAC and SVM are supported by the literature
- ► The features selected by XGB are those less supported by the literature
- ► The number of features without support decreases when moving on to the integrated dataset

Conclusion

- Training on one dataset and testing on another may not produce a good classification
 - ► The high variability between models indicates that we cannot a-priori choose a best model
- Merging multiple datasets produces stable results
 - Re-training models as new data becomes available is needed to insure good performance on new data
 - SVM is the clear best classifier choice, followed closely by RF and XGB
- ► The features selected by RF and XGB vary highly from one cross validation fold to another, indicating limited robustness to changes in the underlying samples

Thank you!

Irene Testa i.testa@studenti.unipi.it

Scan the QR code to visit the GitHub repository

