

300/400MHz BAND DOWN MIXEDR WITH AMPLIFIER

GENERAL DESCRIPTION

The NJM2288 is a low-current, low-voltage down mixer, which operates from 2V supply. It is very suitable for situations where small size, low cost, low parts count is important.

PACKAGE OUTLINE

NJM2288F1

FEATURES

Wide Operating Voltage 2V to 5.5V Low Operating Current 2.8mA type. @ V+=2.2V, 429MHz input Conversion Gain 9dB @V+=2.2V, 429MHz input Input Frequency 300MHz to Up to 500MHz (recommended range)

Excellent Thermal Stability Conversion Gain

2dB @ V+=2.2V, 429MHz input, -- 40 to + 85°C (reference range) Third - Order Intercept Point --12dBm @V+=2.2V, 429MHz input $9.1k\Omega$

Local Input Resistance

Bipolar Technology

Package Outline

SOT23-6 (MTP6), 2.8mm x 2.9mm

PIN CONFIGULATION

Pin Function

- 1. RF IN
- 2. GND
- 3. LO IN
- 4. CAP
- 5. V+
- 6. IF OUT

Simplified Block Diagram

■ ABSOLUTE MAXIMUM RATINGS

(Ta=25°C)

PARAMETER	SYMBOL	RATINGS	UNIT	
Supply Voltage	V+	7	V	
Power Dissipation	P _D	200	mW	
RF Input Level	Prfmax	6	dBm	
LO Input Level	Pl o max	6	dBm	
Operating Temperature	Topr	- 40 to + 85	°C	
Storage Temperature	Tstg	- 40 to +125	°C	

■ RECOMMENDED OPERATING CONDITIONS

(Ta=25°C)

PARAMETER	SYMBOL	TEST CONDITIONS	MIN.	TYP.	MAX.	UNIT
Supply Voltage	V+		2	2.2	5.5	V

■ ELECTRICAL CHARACTERISTICS

Ta=25°C, V+ =2.2V, frf = 429MHz, Prf = -35dBm, flo = 407.7MHz, Plo = -15dBm, fif = 21.3MHz, unless otherwise noted)

PARAMETER	SYMBOL	TEST CONDITIONS	MIN.	TYP.	MAX.	UNIT
Operating Current	lccq	No signal Test circuit 1	-	2.8	3.5	mA
Conversion Gain	CG	Test circuit 1	ı	9	-	dB
Mixer Intercept Point	IIP3	Test circuit 1	-	- 12	-	dBm
Noise Figure	NF	Test Circuit 2	-	9	-	dB
RF Input Return Loss	S11 ²	Test Circuit 3	-	- 0.8	-	dB
Impedance between LO IN and CAP Terminal	Zlo	Test Circuit 4 DC value	-	9.1		kΩ
LO Leakage at RF IN (1)	Plo-rf1	Test Circuit 3	-	- 40	-	dB
LO Leakage at RF IN (2)	Plo-rf2	Test Circui3 flo=800MHz, Plo= -15dBm	1	- 25	-	dB
LO Leakage at IF OUT	Plo-if	Test Circuit1	-	- 40	_	dB

■ TEMPERATURE DRIFT (Reference)

PARAMETER	SYMBOL	TEST CONDITIONS	MIN.	TYP.	MAX.	UNIT
Conversion Gain	_	Ta= - 40 to + 85°C	- 2	0	2	dB

■ TEST CIRCUIT

These test circuits allow the measurement of all parameters described in "ELECTRICAL CHARACTERISTICS".

• Test Circuit 1 for Iccq, CG, IIP3andPlo-if

CG is calculated from

CG=Pif - Prf

Where

Psa =the value of spectrum analyzer in dBm

Pif= Psa+10 log 820/50 (dBm)

Prf=input level in dBm

• Test Circuit 2 for NF

• Test Circuit 3 for IS111²,Plo-rf1andPlo-rf2

Test Circuit 4 for ZIo

• Test Circuit 5 for VCG (voltage conversion gain)

EVALUATION PC BOARD

The evaluation board is useful for your design and to have more understanding of the usage and performance of this device. This circuit is the same as TEST CIRCUIT. Note that this board is not prepared to show the recommendation of pattern and parts layout.

Circuit Diagram

Evaluation PC Board

External Components

Number	Value	Supplier	Number	Value	Supplier
IC1	NJM2288	New Japan Radio	C1	1000pF	Murata (GRM21 series)
			C2	5pF	Murata (GRM21 series)
R1	50Ω	KOA (RK73B series)	C3	1000pF	Murata (GRM21 series)
R2	820Ω	KOA (RK73B series)	C4	1000pH	Murata (GRM21 series)
R3	820Ω	KOA (RK73B series)	C5	0.01uF	Murata (GRM21 series)
			C6	0.01uF	Murata (GRM21 series)
L1	56nH	Taiyo Yuden (HK1608)	C7	1000pF	Murata (GRM21 series)
L2	15uH	Taiyo Yuden (LAP02)			

■ TERMINAL FUNCTION (Ta=25°C, V⁺=2.2 V)

Pin No.	SYMBOL	EQUIVARENT CIRCUIT	VOLTAGE	FUNCTION
1	RF IN	V+ (6)	1.18V	RF Input Recommended input frequency range is from 300 to 500MHz. For using at another frequency, please refer to the data shown in "TYPICAL CHARACTERISTICS".
6	IF OUT			IF Output Output frequency fif is calculated from fif = frf- flo. where frf=RF IN input signal frequency flo=LO IN input signal frequency
2	GND	_		Ground
3	LO IN	V+	2.03V	Local Input Input level of over –20dBm is recommended to obtain high IF output level, where IF output is saturated. Note that absolute maximum input level is 6dBm.
4	CAP		2.03V	Local Signal Reverse Input An external decoupling capacitor is placed between this pin and ground. The value of capacitance should be selected to be very low impedance at LO IN input signal frequency.
5	V+			Supply Voltage ESD protection transistor exists between V+ and ground.

■ TYPICAL CHARACTERISTICS (Ta=25°C, V+ =2.2V, frf = 429MHz, Prf = -35dBm, flo = 407.7MHz, Plo = -15dBm, fif = 21.3MHz, unless otherwise noted)

Conversion Gain CG versus

Ta [°C]

IF Output Level Pif versus

Intermodulation versus RF Input Level Prf

IP3 versus Ambient Temperature Ta

Noise Figure NF versus Supply Voltage V+

Noise Figure NF versus

Voltage Conversion Gain VCG versus RF Input Frequency frf

Circuit 5, Prf=-35dBm, Plo=-15dBm,

RF IN Characteristics

Circuit 3

LO IN Characteristics

Circuit 3

[CAUTION]
The specifications on this databook are only given for information, without any guarantee as regards either mistakes or omissions. The application circuits in this databook are described only to show representative usages of the product and not intended for the guarantee or permission of any right including the industrial rights.