SPLEX TME 4

Decision Trees and Random Forest

The goal of the TME is to develop practical skills to use decision trees and random forest for real biological applications.

We will use the <u>scikit-learn Python</u> library http://scikit-learn.org which is already installed on the computers.

Data

- Diabetes Remission Prediction. The problem is to predict whether a diabetic patient will resolve or will not resolve his diabetes after a gastric bypass surgery.
 - 1. patients_data.txt Observations: 200 patients, 4 clinical variables: age of patients (continuous), HbA1C (continuous), insuline taken (categorical, yes or not), other anti-diabetic drugs are taken (categorical, yes or not)
 - 2. patients_classes.txt Classes: 0 (Diabetes Remission) and 1 (Non-Remission) for 200 patients

Libraries

You will need to load the following packages:

```
import pandas as pd
import graphviz
from sklearn import tree
from sklearn.ensemble import RandomForestClassifier
```

Analysis

Read the data

```
data_diabetes = pd.read_table('patients_data.txt',sep='\t',header=None)
classes_diabetes = pd.read_table('patients_classes.txt',sep='\t',header=None)
```

1. Decision trees

- $\bullet\,$ You can learn more about decision trees in Python here:
 - http://scikit-learn.org/stable/modules/tree.html
- Run the classifier to learn a model

```
clf = tree.DecisionTreeClassifier()
clf = clf.fit(data_diabetes, classes_diabetes)
```

• Visualize the tree and save it as a .pdf

2. Random forest

- You can learn more about the Random Forest in Python:
 http://scikit-learn.org/stable/modules/generated/sklearn.ensemble.RandomForestClasshtml
- To estimate a model:

```
clf = RandomForestClassifier(max_depth=2, random_state=0)
clf.fit(data_diabetes, classes_diabetes)
```

• To make prediction with the random forest:

```
clf.predict(data_diabetes)
```

• To plot the influence of each variable in the model:

clf.feature_importances_

3. Comparison with the state-of-the-art clinical score DiaRem

The DiaRem (Diabetes Remission score) was introduced recently by *Still et al.*,2013 (see the references below), and can be summarized by the following table:

	Score
Age (years)	
<40	0
40-49	1
50–59	2
≥60	3
HbA _{1c} (%)	
<6.5%	0
6-5-6-9%	2
7-0-8-9%	4
≥9.0%	6
Other diabetes drugs	
No sulfonylureas or insulin-sensitising agent other than metformin	0
Sulfonylureas and insulin-sensitising agent other than metformin	3
Treatment with insulin	
No	0
Yes	10
Total score calculated by adding scores for each of the four variables	
Table 5: Calculation of DiaRem score for prediction of the pre diabetes remission after Roux-en-Y gastric bypass surgery	obability of

For a patient, if the sum of the scores over all clinical variables is < 7, we will classify this patient as one having the diabetes remission, otherwise, we will put him in the class of non-remission.

4. Compare the predictive power of the considered models (decision trees, random forest, and the DiaRem). What can you conclude?

References:

- 1. "The use of classification trees for bioinformatics"
 http://moult.ibbr.umd.edu/JournalClubPresentations/Maya/Maya-04Feb2011-paper.
 pdf
- 2. "Preoperative prediction of type 2 diabetes remission after Roux-en-Y gastric bypass surgery: a retrospective cohort study" https://www.ncbi.nlm.nih.gov/pubmed/24579062