Data Science - Practice 2

Problem

country 데이터는 국가별 지표와 대륙 정보를 담고 있는 데이터 프레임입니다.

The data frame called 'country' contains various national indicators and continental information.

variable	의미	mean
code country_name	국가 코드 국가 이름	country's code country's name
continent	대륙	continent
GDP	1인당 국내총생산	Gross Domestic Product per capita
$life_expect$	기대수명	life expectancy
population	인구 수	population
CO2	CO2 배출량 (추정치)	CO2 emission quantity (estimated)
$battle_death$	전투 중 사망자 (100,000명당)	a death in battle (per 100,000)
child.per.women programmable.aid	여성 1명당 아이의 수 국가별 프로그램 원조	number of children per woman national program aid

Loading data into R

다음 코드를 입력하여 데이터를 불러올 수 있습니다. 이번 과제에서는 'continent'와 'GDP'라는 두 가지 변수를 중점적으로 사용합니다.

If you type in the following code, you can import the necessary data. This practice assignment focuses on 'continent' and 'GDP' variables.

load(url('https://github.com/hbchoi/SampleData/raw/master/country.RData'))

< Question 1 >

country 데이터의 가장 위의 값 5개와 가장 밑의 값 5개를 각각 출력해보세요.

Try to output the top 5 values and bottom 5 values of the country data, respectively.

$Sample\ Result$

##	C	ode	country_nam	.e	conti	inent	GI	P li	fe_exp	ect j	popu:	lation		C02
##	1 :	afg	Afghanistan		Asia 1		175	57	61.22		354	35400000		3660
##	2 :	alb	Albania		Europe 1		1135	57	78.12		28	2890000		1540
##	3 (dza	Algeri	a	Africa 13		1394	<u> 0</u>			40	40600000 14		3000
##	4 :	arg	Argentin	a Sou	th Ame	erica 1864		15	76.54		43	43500000 20		0000
##	5 8	arm	Armeni	a		Asia 81		9	75.37		2	2940000		5180
##	6	6 aus Australia		a	Oceania 4460)6	82.50		243	24300000 413		3000	
##														
##	1		9.45		4.6	64	3	8663.	25163					
##	2		0.13		1.7	71		277.	18911					
##	3	3 3.41			2.7	78		108.27441						
##	4	4 0.00			2.2	29		59.06856						
##	5 0.00			1.63 373.09101										
##	6		0.00		1.8	35		850.	56700					
##		cod	e country_	name	co	ontine	nt	GDP	life	expe	ct p	opulat	ion	C02
##	121	us	a United St	ates	North	Ameri	.ca 5			78.				5310000
##	122	ur	y Uru	guay	South	Ameri	.ca 2	20210		77.	00	3420	000	6690
##	123	ve	n Venez	uela	South	Ameri	.ca 1	5219		75.3	32	29900	000	163000
##	124	vn	m Vie	tnam		As	sia	5896		74.	39	93600	000	184000
##	125	уе	m Y	emen		As	sia	2619		68.	07	27200	000	10300
##	126	ZW	e Zimb	abwe		Afri	.ca	2489		60.	52	14000	000	10800
##														
##	121		0.3380		1	L.92		85	0.5670	00				
##	122		0.0000		2	2.00		2	2.5957	72				
##	123		0.0000		2	2.32		2	1.9541	1				
##	124		0.0375		1	L.95		367	2.1806	66				
##	125		3.6000		4	1.00		51	2.2793	39				
##	126		0.5100		3	3.76		55	3.5855	52				

< Question 2 >

country 데이터에서 각 변수들의 데이터 타입을 확인하고, 10개 이하의 level로 이루어진 변수가 있다면 factor type으로 변환하세요.

Check the data type of each variable in the country data, and if there are any variables consisted of less than 10 levels, convert them to factor type.

$Sample\ Result$

##	code	country_name	continent	GDP
##	"character"	"character"	"factor"	"integer"
##	life_expect	population	C02	battle_death
##	"numeric"	"integer"	"numeric"	"numeric"
##	child.per.woman	<pre>programmable.aid</pre>		
##	"numeric"	"numeric"		

< Question 3 >

2번에서 factor로 수정된 변수의 요약값을 출력하여 데이터를 확인해보세요.

If you have a variable modified from question 2 to factor type, print out a summary of the variables to see how many data correspond to the factor.

Sample Result

##	Africa	Asia	Europe	North America	Oceania
##	31	34	35	13	4
##	South America				
##	9				

< Question 4 >

country 데이터에 있는 continent 변수의 levels를 아래와 같이 바꿔보세요.

Change the levels of the 'continent' variable in the country data as follows.

```
[ Africa \rightarrow AF, Asia \rightarrow AS, Europe \rightarrow EU, North America \rightarrow NA, Oceania \rightarrow OC, South America \rightarrow SA ]

Sample Result
```

```
## ## AC AS EU NA OC SA
## 31 34 35 13 4 9
```

< Question 5 >

country 데이터에서 GDP_group이라는 새로운 column을 생성할 것입니다. GDP_group은 국가의 GDP가 평균 GDP 보다 작으면 'LOW', 평균 이상이면 'HIGH' 입니다.

In the country data, we will generate a new column called 'GDP_group'. GDP_group is 'LOW' if the GDP of the country is smaller than the average GDP, and 'HIGH' if it is above average.

Sample Result

```
## .
## HIGH LOW
## 48 78
```

< Question 6 >

Find_continent()라는 함수를 선언하세요. 입력 값은 대륙의 코드이고, 출력값은 TRUE or FALSE입니다. 예를 들어 , Find_continent("AS") 를 입력하면 1번 국가부터 마지막 국가까지 Asia에 속하면 True, 속하지 않으면 False를 반환합니다. Find_continent("AS")와 Find_continent("EU")을 입력하고 결과갚이 아래 예시와 같게 나오면 됩니다.

Declare function named 'Find_continent()'. Input values are continent code, Output values are TRUE or FALSE. For example, if you type in Find_continent("AS"), function check the every country that is belongs to Aisa or not from first to end, If the country belongs to Asia, it return TRUE, otherwise return FALSE. The result of Find_continent("AS") and Find_continent("EU") are follows.

Sample Result

```
[1] TRUE FALSE FALSE TRUE FALSE FALSE TRUE TRUE TRUE FALSE FALSE
##
            [13] FALSE FALSE FALSE TRUE FALSE FALSE FALSE FALSE FALSE FALSE
           [25] FALSE FALSE TRUE FALSE FALSE FALSE TRUE FALSE FALSE FALSE FALSE
           [37] FALSE F
            [49] FALSE FALSE TRUE TRUE TRUE FALSE TRUE FALSE FALSE TRUE TRUE TRUE
           [61] FALSE TRUE TRUE FALSE FALSE FALSE FALSE FALSE FALSE TRUE FALSE
##
           [73] FALSE FALSE FALSE FALSE TRUE FALSE FALSE FALSE TRUE FALSE
           [85] FALSE FALSE FALSE TRUE TRUE FALSE FALSE FALSE TRUE FALSE FALSE
           [97] FALSE FALSE FALSE TRUE FALSE FALSE FALSE TRUE FALSE FALSE FALSE
## [109] TRUE FALSE FALSE TRUE FALSE TRUE FALSE FALSE FALSE FALSE
        [121] FALSE FALSE FALSE TRUE TRUE FALSE
                [1] FALSE TRUE FALSE FALSE FALSE TRUE FALSE FALSE TRUE TRUE
##
             [13] FALSE F
            [25] FALSE FALSE FALSE FALSE TRUE FALSE FALSE TRUE FALSE FALSE FALSE FALSE
            [37] FALSE TRUE FALSE FALSE TRUE TRUE FALSE TRUE FALSE TRUE FALSE FALSE
##
            [49] TRUE TRUE FALSE FALSE TRUE FALSE TRUE FALSE FALSE FALSE FALSE
         [61] FALSE FALSE FALSE TRUE FALSE FALSE TRUE TRUE FALSE FALSE FALSE FALSE
         [73] TRUE FALSE FALSE FALSE TRUE FALSE TRUE FALSE FALSE FALSE TRUE
        [85] FALSE FALSE FALSE TRUE FALSE FALSE FALSE FALSE FALSE TRUE
           [97] TRUE TRUE FALSE FALSE FALSE TRUE FALSE FALSE TRUE FALSE
## [109] FALSE TRUE TRUE FALSE FALSE FALSE FALSE FALSE FALSE TRUE TRUE
## [121] FALSE FALSE FALSE FALSE FALSE
```