Seminar 6

HIGH-DIMENSIONAL PROBABILITY AND STATISTICS HSE University, spring 2023

Talagrand's inequality

Theorem 1 (Talagrand's inequality, in this form [2]). Let X_1, \ldots, X_n be independent random variables and let \mathcal{F} be a separable family of zero-mean functions, taking their values in $[-1,1]^n$. Denote

$$Z = \sup_{f \in \mathcal{F}} \sum_{i=1}^{n} f_i(X_i), \quad f = (f_1, \dots, f_n).$$

Then, for any t > 0, it holds that

$$\mathbb{P}\left(Z \geqslant \mathbb{E}Z + t\right) \leqslant e^{-\frac{t^2}{2V + 3t}},$$

where

$$V = 2 \mathbb{E} Z + \sigma_{\mathcal{F}}^2$$
 and $\sigma_{\mathcal{F}}^2 = \sup_{f \in \mathcal{F}} \operatorname{Var} \left(\sum_{i=1}^n f_i(X_i) \right)$.

Problem 1. Let a random matrix $X \in \mathbb{R}^{m \times n}$ have independent zero-mean entries, taking their values in [-1,1]. Show that, for any $\delta \in (0,1)$, with probability at least $1-\delta$, it holds that

$$||X|| \le \mathbb{E}||X|| + \sqrt{(4\mathbb{E}||X|| + 2)\log(1/\delta)} + 3\log(1/\delta).$$

Remark 2. In [1], the author extended the Talagrand concentration inequality to the unbounded case.

Some properties of Gaussian random variables

Theorem 3 (Gaussian concentration of Lipschitz functions). Let X_1, \ldots, X_n be i.i.d. random variables with the Gaussian distribution $\mathcal{N}(0,1)$. Let $f: \mathbb{R}^n \to \mathbb{R}$ be a Lipschitz function (with respect to the Euclidean norm), that is,

$$|f(x) - f(y)| \le L||x - y||$$
 for all $x, y \in \mathbb{R}^n$.

Then, for any t > 0, it holds that

$$\mathbb{P}\left(f(X_1,\ldots,X_n)-\mathbb{E}f(X_1,\ldots,X_n)>t\right)\leqslant e^{-\frac{t^2}{2L^2}}.$$

Remark 4. The proof follows from the log-Sobolev inequality and the entropy method.

Theorem 5 (Sudakov-Fernique inequality). Let $X = (X_1, \dots, X_n)^{\top}$ and $Y = (Y_1, \dots, Y_n)^{\top}$ be centered Gaussian vectors, such that

$$\mathbb{E}(X_i - X_j)^2 \leqslant \mathbb{E}(Y_i - Y_j)^2$$
 for all $i, j \in \{1, \dots, n\}$.

Then it holds that

$$\mathbb{E} \max_{1 \le i \le n} X_i \le \mathbb{E} \max_{1 \le i \le n} Y_i.$$

Problem 2 (Gaussian contraction). Let ξ_1, \ldots, ξ_n be i.i.d. standard Gaussian random variables and let $\varphi_1, \ldots, \varphi_n$ be a collection of 1-Lipschitz univariate functions, such that $\varphi_i(0) = 0$ for all $i \in \{1, \ldots, n\}$. Prove that

$$\mathbb{E}\sup_{\theta\in\Theta}\sum_{i=1}^n\xi_i\varphi_i(\theta_i)\leqslant\mathbb{E}\sup_{\theta\in\Theta}\sum_{i=1}^n\xi_i\theta_i\quad\text{for any bounded set }\Theta\subset\mathbb{R}^n.$$

Problem 3 (Sudakov minoration). Let $X_{\theta}, \theta \in \Theta$ be a zero-mean Gaussian process defined on the non-empty set Θ . Let $\mathcal{M}(\Theta, \delta)$ be the packing number of Θ with respect to the metric $\rho(\theta, \theta') = \left(\operatorname{Var}(X_{\theta} - X_{\theta'}) \right)^{1/2}$. Then it holds that

$$\mathbb{E} \sup_{\theta \in \Theta} X_{\theta} \gtrsim \sup_{\delta > 0} \delta \sqrt{\log \mathcal{M}(\Theta, \delta)}.$$

References

- [1] R. Adamczak. A tail inequality for suprema of unbounded empirical processes with applications to Markov chains. *Electronic Journal of Probability*, 13:no. 34, 1000–1034, 2008.
- [2] T. Klein and E. Rio. Concentration around the mean for maxima of empirical processes. *The Annals of Probability*, 33(3):1060 1077, 2005.