Contents

A	Acknowledgements					
Pr	eface			xiii		
1	Intr	oductio	n to Spatio-Temporal Statistics	1		
	1.1	Why S	Should Spatio-Temporal Models Be Statistical?	. 6		
	1.2	Goals	of Spatio-Temporal Statistics	. 7		
		1.2.1	The Two Ds of Spatio-Temporal Statistical Modeling	. 7		
		1.2.2	Descriptive Modeling	. 8		
		1.2.3	Dynamic Modeling	. 9		
	1.3	Hierar	chical Statistical Models	. 10		
	1.4	Structi	ure of the Book	. 14		
2	Exp	loring S	Spatio-Temporal Data	17		
	2.1	Spatio	-Temporal Data	. 17		
	2.2		sentation of Spatio-Temporal Data in R			
	2.3	Visual	ization of Spatio-Temporal Data	. 24		
		2.3.1	Spatial Plots			
		2.3.2	Time-Series Plots	. 26		
		2.3.3	Hovmöller Plots	. 28		
		2.3.4	Interactive Plots	. 28		
		2.3.5	Animations	. 29		
		2.3.6	Trelliscope: Visualizing Large Spatio-Temporal Data Sets	. 29		
		2.3.7	Visualizing Uncertainty	. 31		
	2.4	Explo	ratory Analysis of Spatio-Temporal Data	. 32		
		2.4.1	Empirical Spatial Means and Covariances	. 33		
		2.4.2	Spatio-Temporal Covariograms and Semivariograms			
		2.4.3	Empirical Orthogonal Functions (EOFs)	. 39		
		2.4.4	Spatio-Temporal Canonical Correlation Analysis	. 47		
	2.5	Chapte	er 2 Wrap-Up	. 50		
	Lab	_	ta Wrangling			

V1			Content
		2.2: Visualization	
	Lau	2.3. Exploratory Data Analysis	07
3	Spat	tio-Temporal Statistical Models	77
	3.1	Spatio-Temporal Prediction	78
	3.2	Regression (Trend-Surface) Estimation	84
		3.2.1 Model Diagnostics: Dependent Errors	88
		3.2.2 Parameter Inference for Spatio-Temporal Data	93
		3.2.3 Variable Selection	96
	3.3	Spatio-Temporal Forecasting	99
	3.4	Non-Gaussian Errors	100
		3.4.1 Generalized Linear Models and Generalized Additive Models .	101
	3.5	Hierarchical Spatio-Temporal Statistical Models	104
	3.6	Chapter 3 Wrap-Up	105
		3.1: Deterministic Prediction Methods	
	Lab	3.2: Trend Prediction	112
		3.3: Regression Models for Forecasting	
	Lab	3.4: Generalized Linear Spatio-Temporal Regression	130
4	Desc	criptive Spatio-Temporal Statistical Models	137
	4.1	Additive Measurement Error and Process Models	138
	4.2	Prediction for Gaussian Data and Processes	139
		4.2.1 Spatio-Temporal Covariance Functions	
		4.2.2 Spatio-Temporal Semivariograms	150
		4.2.3 Gaussian Spatio-Temporal Model Estimation	
	4.3	Random-Effects Parameterizations	154
	4.4	Basis-Function Representations	157
		4.4.1 Random Effects with Spatio-Temporal Basis Functions	158
		4.4.2 Random Effects with Spatial Basis Functions	161
		4.4.3 Random Effects with Temporal Basis Functions	162
		4.4.4 Confounding of Fixed Effects and Random Effects	164
	4.5	Non-Gaussian Data Models with Latent Gaussian Processes	165
		4.5.1 Generalized Additive Models (GAMs)	166
		4.5.2 Inference for Spatio-Temporal Hierarchical Models	167
	4.6	Chapter 4 Wrap-Up	170
	Lab	4.1: Spatio-Temporal Kriging with gstat	172
	Lab	4.2: Spatio-Temporal Basis Functions with FRK	175
	Lab	4.3: Temporal Basis Functions with SpatioTemporal	180
		4.4: Non-Gaussian Spatio-Temporal GAMs with mgcv	
	Lab	4.5: Non-Gaussian Spatio-Temporal Models with INLA	192

Contents					
5	Dvn	amic Sı	patio-Temporal Models	205	
	5.1	-	al Dynamic Spatio-Temporal Models	. 206	
		5.1.1	Data Model		
		5.1.2	Process Model		
		5.1.3	Parameters		
	5.2	Latent	Linear Gaussian DSTMs		
		5.2.1	Linear Data Model with Additive Gaussian Error		
		5.2.2	Non-Gaussian and Nonlinear Data Model		
		5.2.3	Process Model		
	5.3	Proces	ss and Parameter Dimension Reduction	. 218	
		5.3.1	Parameter Dimension Reduction		
		5.3.2	Dimension Reduction in the Process Model		
	5.4	Nonlin	near DSTMs		
	5.5	Chapte	er 5 Wrap-Up	. 228	
		-	plementing an IDE Model in One-Dimensional Space		
		-	atio-Temporal Inference using the IDE Model		
		•	atio-Temporal Inference with Unknown Evolution Operator		
6	Eval	uating	Spatio-Temporal Statistical Models	253	
v	6.1	_	aring Model Output to Data: What Do We Compare?		
	0.1	6.1.1	Comparison to a Simulated "True" Process		
		6.1.2	Predictive Distributions of the Data		
		6.1.3	Validation and Cross-Validation		
	6.2		Checking		
	٠	6.2.1	Extensions of Regression Diagnostics		
		6.2.2	Graphical Diagnostics		
		6.2.3	Sensitivity Analysis		
	6.3		Validation		
		6.3.1	Predictive Model Validation		
		6.3.2	Spatio-Temporal Validation Statistics		
		6.3.3	Spatio-Temporal Cross-Validation Measures		
		6.3.4	Scoring Rules		
		6.3.5	Field Comparison		
	6.4		Selection		
	٠	6.4.1	Model Averaging		
		6.4.2	Model Comparison via Bayes Factors		
		6.4.3	Model Comparison via Validation		
		6.4.4	Information Criteria		
	6.5		er 6 Wrap-Up		
		-	atio-Temporal Model Validation		

viii	Con	ntents	
Pergimu	us (Epilogue)	303	
Append	lices	307	
A	Some Useful Matrix-Algebra Definitions and Properties	. 307	
В	General Smoothing Kernels	. 311	
C	Estimation and Prediction for Dynamic Spatio-Temporal Models	. 312	
	C.1 Estimation in Vector Autoregressive Spatio-Temporal Models via		
	the Method of Moments	. 312	
	C.2 Prediction and Estimation in Fully Parameterized Linear DSTMs	. 313	
	C.3 Estimation for Non-Gaussian and Nonlinear DSTMs	. 318	
D	Mechanistically Motivated Dynamic Spatio-Temporal Models	. 318	
	D.1 Example of a Process Model Motivated by a PDE: Finite Difference	es 318	
	D.2 Example of a Process Model Motivated by a PDE: Spectral	. 320	
	D.3 Example of a Process Model Motivated by an IDE	. 321	
E	Case Study: Physical-Statistical Bayesian Hierarchical Model for Predict-		
	ing Mediterranean Surface Winds		
F	Case Study: Quadratic Echo State Networks for Sea Surface Temperature		
	Long-Lead Prediction	. 340	
List of F	R Packages	351	
Referen	ices	355	
Subject	Index	367	
Author	Index	373	
R Funct	tion Index	377	