CSCI 5654-Fall16: Assignment #5 (Reading: Slides on ILP, Vanderbei Chapter 23).

Due Date: Friday, Nov. 4, 2016 (before class)

In-class: Assignment should be submitted on paper – no emails.

Distance Students: Assignment may be submitted on paper or by email.

Your Name:

P1. (10 points) Solve each of the problems below using a branch-and-bound method. Write down the solution obtained and the enumeration tree obtained. You may use any LP solver of your choice to solve the subproblems. Please do not use a ILP solver directly.

(A)

Hint: Use x_4 as the variable to branch on.

Branches	Solution	Optimal value
	x = [-5 -5 1.5 5]	2.5
$x_4 \leq -1$	$x = \begin{bmatrix} -5 & -5 & 2 & -1 \end{bmatrix}$	2
$x_4 \ge 0$	$x = \begin{bmatrix} -2 & -4 & 0 & 0 \end{bmatrix}$	2

The optimal value of the objective function is 2. One solution leads to this value:

$$x_1 = 1$$
 $x_2 = 1$ $x_3 = 1$ $x_4 = 1$

Branches	Solution	Optimal value
	x = [1.3333 1 1 .6667]	6.3333
$x_4 \ge 1$	$x = \begin{bmatrix} 1 & 1 & 1 & 1 \end{bmatrix}$	6
$x_4 \le 0$	x = [0 1 1 0]	3
$x_1 \leq 1$	$x = \begin{bmatrix} 1 & 1 & 1 & 1 \end{bmatrix}$	6
$x_1 \ge 2$	Infeasible	

The optimal value of the objective function is 6. One solution leads to this value:

$$x_1 = 1$$
 $x_2 = 1$ $x_3 = 1$ $x_4 = 1$

P2. (10 points) Consider the final dictionaries for the LP relaxation of a few ILPs. Assuming all variables are integers, write down all the cutting planes:

Dictionary #1:

$$\begin{array}{c|cccc} x_1 & 0.6666666666667 & -0.666667x_5 + 0.333333x_4 \\ x_2 & 1 & -1x_5 \\ x_3 & 2 & +4x_5 & -1x_4 \\ \hline z & 1 & -1x_5 \end{array}$$

Dictionary #2:

P3 (20 points). Consider the graph below which shows various locations and the driving times between them in hours:

Our goal is to decide whether or not to place a hospital at each node. The following are the cost of building a hospital at various nodes in millions of dollars:

Node	Cost
1	3
2	3
3	1.5
4	1
5	1.2
6	1.3
7	0.9
8	0.8

The following constraints should apply to our placement of hospitals: each node should either have a hospital or be within 1 hour driving distance of a hospital.

For your convenience, the table of pairwise shortest path distances is given as an excel spreadsheet.

- (A) Let G be a graph with n nodes and W(i, j) denote the shortest path weight between nodes i and j. Finally let c be a $n \times 1$ vector of node costs. Write down an integer linear programming formulation of the above problem.
- **(B)** Formulate and solve your ILP for the given example.

P4 (15 points) Consider a polyhedron P given by the constraints

$$A\mathbf{x} \leq \mathbf{b}, \ \ell \leq \mathbf{x} \leq \mathbf{u}.$$

- (a) Write down mixed integer programs that will find the point $\mathbf{x} \in P$ with the largest number of 0 entries in \mathbf{x} ,
- (b) Write down mixed integer programs that will find the point $\mathbf{x} \in P$ with the smallest number of 0 entries in \mathbf{x} .
- (c) Write down a mixed integer program that will search for a solution $\mathbf{x} \in P$ maximizing an objective function $\mathbf{c}^t \mathbf{x}$ such that \mathbf{x} does not satisfy $\mathbf{a} \leq \mathbf{x} \leq \mathbf{b}$, for given \mathbf{a}, \mathbf{b} .

P5 (10 points) We are given sets of numbers $\langle S_1, \ldots, S_k \rangle$ such that each $S_i \subseteq \{1, \ldots, n\}$. For example, n = 10 and the sets are

$$S_1: \{1,3,6\}, S_2: \{2,7,8\}, S_3: \{1,8,9\}, S_4: \{1,6,5,3\}.$$

Our goal is to select a subset $S \subseteq \{1, 2, ..., n\}$ such that $S \cap S_i \neq \emptyset$ for i = 1, ..., k and the sum of elements in the chosen set S is minimized.

Formulate a 0-1 ILP for the problem for given $n, k, \langle S_1, \ldots, S_k \rangle$. Also, solve it for the example above.