त्रेभुज (TRIANGLES)

आवश्यक तथ्य

- (I) किसी त्रिभुज के तीनों कोणों का योग 180° होता है. $\triangle ABC \stackrel{\text{di}}{=} \angle A + \angle B + \angle C = 180^{\circ}$.
- (II) किसी त्रिभुज की एक भुजा बढ़ाने पर बना बहिष्कोण (Exterior Angle) सदैव प्रत्येक सुदूर अन्त:कोण से बड़ा होता है. ΔABC में भुजा BC को D तक बढ़ाने पर
 - (i) (बहिष्कोण $\angle ACD$) > ($\angle BAC$)
 - (ii) (बहिष्कोण $\angle ACD$) > $(\angle ABC)$.
- (III) किसी त्रिभुज में दो भुजाओं का योग सदैव तीसरी भुजा से बड़ा होता है.
 - (i) AB + BC > AC (ii) AB + AC > BC (iii) BC + AC > AB
- (IV) किसी त्रिभुज में दो भुजाओं का अन्तर सदैव तीसरी भुजा से छोटा होता है :
 - (i) AB BC < AC (ii) AB AC < BC (iii) BC AC < AB.
- 2. (I) केन्द्रक (Centroid): किसी त्रिभुज की माध्यिकाओं का प्रतिच्छेद बिन्दु उस त्रिभुज
 - का केन्द्रक कहलाता है. ΔABC में भुजाओं BC, AC तथा AB के मध्य बिन्दु क्रमशः D, Eतथा F हैं. इन माध्यिकाओं AD, BE तथा CF का प्रतिच्छेद बिन्दु G इस त्रिभुज का केन्द्रक है.
 - (II) लम्ब केन्द्र (Orthocentre) : किसी त्रिभुज के प्रत्येक शीर्ष से विपरीत भुजा पर डाले गये तीनों लम्बों का प्रतिच्छेद बिन्दु त्रिभुज का लम्ब-केन्द्र कहलाता है. \triangle ABC में यदि $AL \perp BC$, $BM \perp AC$ तथा $CN \perp AB$ हो, तो इन तीनों लम्बों का प्रतिच्छेद बिन्दु H इस त्रिभुज का लम्ब-केन्द्र कहलाता है.
 - (III) अन्त:केन्द्र (Incentre) : किसी त्रिभुज के सभी कोणों के आन्तरिक समद्विभाजकों का प्रतिच्छेद बिन्दु इस त्रिभुज का अन्त:केन्द्र कहलाता है. ΔABC में $\angle A$, $\angle B$, $\angle C$ के समद्विभाजक क्रमशः AD, BE तथा CF हैं. इनका प्रतिच्छेद बिन्दु I इस त्रिभुज का अन्त:केन्द्र कहलाता है.
 - (IV) परिकेन्द्र (Circumcentre) : किसी त्रिभुज की भुजाओं के लम्ब अर्द्धकों का प्रतिच्छेद बिन्दु इस त्रिभुज का परिकेन्द्र कहलाता है.

 ΔABC में भुजाओं BC, CA तथा AB के लम्ब अर्द्धक क्रमशः OL, OMतथा ON परस्पर O पर काटते हैं. अत: बिन्दु O इस त्रिभुज का परिकेन्द्र है.

3. दो त्रिभुजों की सर्वांगसमता (Congruence):

 $\Delta ABC \cong \Delta DEF$ होगा यदि

(I) SAS-Axiom:

- (i) AB = DE, BC = EF तथा $\angle B = \angle E$.
- (ii) AB = DE, AC = DF तथा $\angle A = \angle D$.
- (iii) BC = EF, AC = DF तथा $\angle C = \angle F$.

(II) SSS-Axiom:

(i)
$$AB = DE$$
, $BC = EF$ तथा $AC = DF$.

(III) ASA-Axiom:

- (i) $\angle B = \angle E$, $\angle C = \angle F$ तथा BC = EF
- (ii) $\angle C = \angle F$, $\angle A = \angle D$ तथा AC = DF.
- (iii) $\angle A = \angle D$, $\angle B = \angle E$ तथा AB = DE.

(IV) RHS-Axiom:

 $\triangle ABC \cong \triangle DEF$ होगा यदि

- (i) $\angle B = \angle E = 90^{\circ}$, AB = DE, AC = DF
- (ii) $\angle B = \angle E = 90^\circ$, BC = EF, AC = DF.

- (ii) यदि AC = BC हो, तो ∠B = ∠A.
- (iii) यदि AB = BC हो, तो $\angle C = \angle A$.

4. दो त्रिभुजों की समरूपता (Similarity) :

(1) थेल का प्रमेय : △ ABC में यदि DE || BC हो, तो

(i)
$$\frac{AD}{DB} = \frac{AE}{EC}$$
 (ii) $\frac{AD}{AB} = \frac{AE}{AC}$

$$(ii) \frac{AD}{AB} = \frac{AE}{AC}$$

$$(iii) \frac{AB}{DB} = \frac{AC}{EC}$$

 ΔABC में भुजाओं AB तथा AC के मध्य बिन्दु क्रमशः

$$D$$
 तथा E हों, तो $DE = \frac{1}{2}BC$.

दी गई आकृति में 🛮 का समद्विभाजक AD है. अत:

$$\frac{BD}{DC} = \frac{AB}{AC}.$$

(I) $AAA - HH ROURTH : UC <math>\angle A = \angle D$, $\angle B = \angle E$, $\angle C = \angle F$ तथा $\frac{AB}{DE} = \frac{BC}{EF} = \frac{CA}{FD}$ हो, तो $\triangle ABC \sim \triangle DEF$.

(d) 105°

(II) AA - समरूपता :

यदि $\angle A = \angle D$ तथा $\angle B = \angle E$, तो $\triangle ABC \sim \triangle DEF$.

(III) SSS - समरूपता :

यदि
$$\frac{AB}{DE} = \frac{BC}{EF} = \frac{AC}{DF}$$
 हो, तो $\Delta ABC \sim \Delta DEF$.

(IV) SAS - समरूपता:

यदि
$$\angle A = \angle D$$
 तथा $\frac{AB}{DE} = \frac{AC}{DF}$ हो, तो $\Delta ABC \sim \Delta DEF$.

- (I) दो समरूप त्रिभुजों के क्षेत्रफलों का अनुपात उनकी संगत भुजाओं के वर्गों के अनुपात के बराबर होता है.
 - (II) दो समरूप त्रिभुजों के परिमापों का अनुपात उनकी संगत भुजाओं के अनुपात के बराबर होता है. (III) दो त्रिभुजों के संगत कोण बराबर हों तो उनकी संगत भुजाओं का अनुपात वही होता है जो कि संगत कोणों
 - (IV) दो त्रिभुजों के संगत कोण बराबर हों, तो उनकी संगत भुजाओं का अनुपात वहीं होता है जो कि संगत
 - (V) दो त्रिभुजों के संगत कोण बराबर हों, तो उनकी संगत भुजाओं का अनुपात वही होता है जो कि संगत

🐮 प्रश्नमाला 36 📸

निनितिखत प्रश्नों में से प्रत्येक में ठीक उत्तर को चिन्हांकित (✔) कीजिए :

- किसी त्रिभुज के तीनों कोणों का अनुपात 2:3:7 है. इनमें सबसे बड़े कोण की नाप क्या होगी? (a) 280° (b) 210°
- (c) 140°
- 1. किसी $\triangle ABC$ में यदि $2\angle A=3\angle B=4\angle C$ हो, तो A:B:C=?
- (a) 2:3:4 (b) 4:3:2(c) 6:4:3 (d) 3:4:6
- $^{3.}$ किसी $\triangle ABC$ में यदि $3\angle A = 4\angle B = 6\angle C$ हो, तो $\angle A = ?$
- (a) 60° (b) 80° (c) 30° (d) 40°
- ै किसी $\triangle ABC$ में यदि $\angle A \angle B = 40^\circ$ तथा $\angle B \angle C = 10^\circ$ हो, तो $\angle B = ?$
- $(c) 80^{\circ}$ (b) 60° ै किसी $\triangle ABC$ में यदि $\angle A - \angle B = 45^\circ$ तथा $\angle B - \angle C = 30^\circ$, तो $\angle A + \angle B = ?$
- (a) 150° (c) 145° (d) 135° (b) 155°
- ि किसी $\triangle ABC$ में यदि $\angle A + \angle B = 108^\circ$ तथा $\angle B + \angle C = 130^\circ$ हो, तो $\angle C = ?$ (a) 50°
- (c) 72° (d) 54° (b) 58°
- ै किसी $\triangle ABC$ में यदि $\angle A + \angle B = 125^\circ$ तथा $\angle A + \angle C = 115^\circ$ हो, तो $\angle B + \angle C = ?$ (a) 120° (d) 110°
- (c) 95° (b) 130°
- िक्सी $\triangle ABC$ में यदि 2A = 3B तथा 4B = 5C हो, तो A:B:C = ?(a) 8:12:15 (b) 6:5:4 (c) 15:10:8 (d) 15:12:8
-) एक त्रिभुज के दो कोणों का योग 116° तथा अन्तर 24° है. इस त्रिभुज के तीसरे कोण का माप कितना होगा?
- (0) 460 (c) 56° (b) 64° (b) 64° (c) 30 कि त्रिभुज के दो कोण बराबर हैं तथा तीसरा कोण इन दोनों में से प्रत्येक से 18° अधिक है. तीसरे कोण का नाप
 - (9) 540 (d) 82° (c) 72° (b) 64°

11. एक त्रिभुज के तीन कोणों में से एक कोण सबसे छोटे कोण का दुगुना तथा दूसरा कोण सबसे छोटे कोण का लिए

(a) 20°

(b) 30°

(c) 40°

(d) 60°

12. किसी त्रिभुज का प्रत्येक कोण शेष दो कोणों के योग से कम है. ऐसी त्रिभुज है :

(a) न्यूनकोण त्रिभुज (b) अधिककोण त्रिभुज (c) समकोण त्रिभुज

(d) विषमबाहु त्रिभुज

किसी त्रिभुज का एक कोण शेष दो कोणों के योग के बराबर है. ऐसी त्रिभुज है :

(a) न्युनकोण त्रिभुज (b) अधिककोण त्रिभुज (c) समकोण त्रिभुज

(d) समबाह त्रिभज

14. किसी त्रिभुज का एक कोण शेष दो कोणों के योग से बड़ा है. ऐसी त्रिभुज है :

(a) समकोण त्रिभुज (b) न्यूनकोण त्रिभुज

- (c) अधिककोण त्रिभुज (d) विषमबाह त्रिभुज
- Δ ABC મેં भुजा BC को D तक बढ़ाया गया है. यदि ∠ABC = 30° तथा ∠ACD = 110° हो, तो ∠BAC = ? (a) 80°

(b) 40°

(c) 70°

(d) 75°

 △ABC में भुजा BC को बार्यी ओर D तक तथा दार्यी ओर E तक इस प्रकार बढ़ाया गया है कि $\angle ABD = 110^{\circ}$ तथा ∠ACE = 120°, तब ∠BAC = ? (a) 70° (b) 60° (c) 50° (d) 65°

- 17. दो गई आकृति में ∠BAC = 40°, ∠ACB = 90° तथा ∠BED = 100° . तब ∠BDE = ? (a) 50° (b) 30° (c) 40° (d) 20°
- 18. दी गई आकृति में ∠BAC = 30°, ∠ABC = 50° तथा ∠CDE = 25° हो तो ∠AED = ? (a) 105° (b) 115° (c) 95° (d) 75°

 दी गई आकृति में △ ABC की भुजा CB को D तक तथा भुजा BA को E तक बढ़ाया गया है. यदि $\angle ABD = 130^{\circ}$ तथा $\angle CAE = 80^{\circ}$ हो, तो $\angle ACB = ?$ (a) 50° (b) 25° (c) 30° (d) 40°

20. दी गई आकृति में BD ⊥ AC, ∠CAE = 30° तथा $\angle CBD = 40^{\circ}$ हो, तो $\angle AEB = ?$ (a) 50° (b) 60° (c) 70° (d) 80°

সিমুজ ● 747

 $_{21}$ बर्दि $\triangle ABC$ में $\angle A: \angle B: \angle C=2:3:1$ हो तथा CD⊥AC हो, तो ∠ECD=? (a) 30° (b) 45° (c) 60° (d) 75°

प्र दिवे गये चित्र में △ ABC की भुजायें BC, CA तथा BA क्रमशः बिन्दु D तक, बिन्दु E तक तथा बिन्दु F तक बढ़ाई गई हैं. यदि $\angle ACD = 140^{\circ}$ तथा $\angle EAF = 90^{\circ}$ हो, तो $\angle ABC = ?$

(a) 40° (b) 50°

(c) 65°

(d) 25°

8 री गई आकृति में AOB एक सरल रेखा है. यदि $\angle AOC = x^{\circ}$, $\angle COD = 90^{\circ}$, $\angle BOD = y^{\circ}$, $\angle AOE = 3x^{\circ}$ तथा $\angle BOE = 60^{\circ}$ हो, तो y का मान क्या होगा? (a) 40

(b) 45

(c) 50

(d) 60

^{कें} दीगई आकृति में AM⊥BC है तथा ∠A का समिद्धिभाजक AN है. यदि $\angle ABC = 70^{\circ}$ तथा $\angle ACB = 30^{\circ}$, तो $\angle MAN = ?$ (a) 40° (b) 20° (c) 30° (d) 55°

ि ABC के कोणों का अनुपात 3 : 5 : 7 है. ऐसी त्रिभुज है : (a) न्यूनकोण त्रिभुज (b) अधिककोण त्रिभुज (c) समकोण त्रिभुज

(d) समद्विबाहु त्रिभुज

- 28. △ ABC की भुजा BC को D तक तथा भुजा CA को E तक बढ़ाया गया है. यदि ∠ACD=120° तथा ∠BAE=110° हो, तो ∠ABC=?
 (a) 60° (b) 55° (c) 50° (d) 65°
- 29. दी गई आकृति में x का मान कितना होगा ? (a) 130 (b) 120 (c) 110 (d) 100
- दी गई आकृति में AB || CD है. यदि ∠EAB = 50° तथा
 ∠ECD = 60° हो, तो ∠AEB = ?
 (a) 50° (b) 55° (c) 60° (d) 70°
- 31. △ABC की भुजायें BC, CA तथा AB क्रमश: बिन्दु D, E तथा F तक बढ़ा दी गई हैं तथा बाह्य कोण ∠ACD, ∠BAE तथा ∠CBF बनाती हैं. तब ∠BAE+∠CBF+∠ACD =?
 (a) 240° (b) 300° (c) 320° (d) 360°
- 32. दी गई Δ ABC में DE || BC. यदि AD = 3·6 सेमी॰, AB = 10 सेमी॰ तथा AE = 4·5 सेमी॰ हो तो EC = ? (a) 6 सेमी॰ (b) 8 सेमी॰ (c) 12 सेमी॰ (d) 9 सेमी॰
- 33. दी गई Δ ABC में DE || BC. यदि AD = 2·4 सेमी॰, AE = 3·2 सेमी॰ तथा EC = 4·8 सेमी॰. तब, AB = ?
 (a) 3·6 सेमी॰ (b) 6 सेमी॰ (c) 6·4 सेमी॰ (d) 7·2 सेमी॰
- 34. दी गई Δ ABC में DE || BC. यदि AD = 4 सेमी॰, DB = 7 सेमी॰ तथा AC = 6·6 सेमी॰ हो तो AE = ?
 (a) 3·6 सेमी॰ (b) 2·4 सेमी॰ (c) 2·8 सेमी॰ (d) 3·3 सेमी॰

35. दी गई \triangle ABC में, $DE \mid\mid BC$, यदि $\frac{AD}{DB} = \frac{3}{5}$ तथा (a) 4·2 सेमी॰ (b) 3·1 सेमी॰ (c) 2·8 सेमी॰ (d) 2·1 सेमी॰

36. दी गई ∆ ABC में, DE || BC. यदि AD = x सेमीo, DB = (x - 2) सेमी॰, AE = (x+2) सेमी॰ तथा EC = (x-1) सेमी॰ हो, तो x = ?(a) x = 3 (b) x = 4 (c) x = 5(d) x = 6

37. दी गई ∆ ABC में, DE || BC. यदि AD = 4 सेमीo, DB = (x-4) सेमी॰, AE = 8 सेमी॰ तथा EC = (3x-19)सेमीo. तब, x = ? (a) 8 (b) 9 (c) 10 (d) 11

 दी गई ∆ABC में, DE || BC. यदि AB = 7·2 सेमी∘, AC = 6.4 सेमी॰ तथा AD = 4.5 सेमी॰ हो, तो AE = ?(a) 3·2 सेमी० (b) 3·6 सेमी० (c) 4 सेमी० (d) 5·4 सेमी०

39. \triangle ABC \sim \triangle DEF. यदि \triangle ABC तथा \triangle DEF की परिमिति क्रमशः 25 सेमी॰ और 15 सेमी॰ हों तथा (a) 3·6 सेमी॰ (b) 5·4 सेमीo

- (c) 7·2 सेमी॰
- (d) 6 सेमीo
- 40. $\triangle ABC \sim \triangle DEF$ इस प्रकार हैं कि AB=9.1 सेमी॰ तथा DE=6.5 सेमी॰. यदि $\triangle ABC$ की परिमिति 35 सेमी॰ हो, तो \(DEF की परिमिति कितनी होगी?

(a) 25 सेमीo

- (b) 30 सेमी॰
- (c) 21 सेमीo
- (d) 28 सेमी_०
- 41. यदि $\triangle ABC$ तथा $\triangle DEF$ में $\frac{AB}{EF} = \frac{BC}{DF} = \frac{CA}{DE}$ हो, तो निम्नलिखित में से सत्य कथन कौन-सा है ?
- (a) $\Delta DEF \sim \Delta CAB$ (b) $\Delta DEF \sim \Delta ABC$ (c) $\Delta DEF \sim \Delta CBA$ (d) $\Delta DEF \sim \Delta BCA$ 42. $\triangle ABC$ तथा $\triangle DEF$ में यदि $\angle B = \angle E$, $\angle C = \angle F$ तथा AB = 2DE हों, तो दोनों त्रिभुज :
- - (a) सवीगसम हैं परन्तु समरूप नहीं (b) समरूप हैं परन्तु सर्वांगसम नहीं
 - (c) न ही सर्वांगसम हैं तथा न ही समरूप
- (d) समरूप हैं तथा सर्वांगसम हैं
- 4). $\triangle ABC$ तथा $\triangle DEF$ में यदि $\angle A = \angle E$ तथा $\angle B = \angle F$, तब निम्नलिखित में से सत्य कथन कौन-सा है? (a) $\frac{BC}{DF} = \frac{AC}{DE}$ (b) $\frac{AB}{DE} = \frac{BC}{FD}$ (c) $\frac{AB}{EF} = \frac{AC}{DE}$ (d) $\frac{BC}{FD} = \frac{AB}{EF}$

- दी गई आकृति में ∠BAC = 90° तथा AD ⊥ BC हो, तो निम्नलिखित में से सत्य कथन कौन–सा है ?

 - (a) $AB \cdot AC = BC^2$ (b) $AB \cdot AC = AD^2$

 - (c) $BD \cdot CD = AD^2$ (d) $BD \cdot CD = AC^2$

750 • नवीन अंकमणित 45. यदि Δ4BC ~ ΔEDF हो, तो निम्नलिखित में से कौन-सा कथन सत्य नहीं है ? (a) $AB \cdot EF = AC \cdot DE$ (b) $BC \cdot DE = AB \cdot FD$ (c) $BC \cdot DE = AB \cdot EF$ (d) $BC \cdot EF = AC \cdot FD$ 46. एक समजाह AABC में यदि AB का मध्य बिन्दु D हो तथा AC का मध्य बिन्दु E हो, तो (ΔABC का क्षेत्रफल) : (ΔADE का क्षेत्रफल) = ? (a) 2:1 (b) 4:1(c) 3:1 (d) 3:247. थदि $\triangle ABC \sim \Delta DEF$ इस प्रकार हो कि $\triangle ABC$ का क्षेत्रफल = 25 सेमी \circ^2 तथा Δ DEF का क्षेत्रफल = 36 सेमीo2 तब इन त्रिभुजों की संगत भुजाओं का अनुपात क्या होगा? (a) 25:36 (b) 36:25 (c) 5:6 48. यदि Λ ABC ~ Δ DEF इस प्रकार हों कि इन त्रिभुजों की संगत भुजायें 4 : 5 के अनुपात में हैं. तब. $(\Delta ABC$ का क्षेत्रफल) : $(\Delta DEF$ का क्षेत्रफल) = ? (a) 4:5(b) 5:4 (c) 16:25 (d) 25:16 49. दिया है $\triangle ABC \sim \triangle DEF$ तथा $\frac{BC}{EF} = \frac{3}{5}$, तब $\frac{ar (\triangle DEF)}{ar (\triangle ABC)} = ?$ (a) $\frac{3}{5}$ (b) $\frac{5}{3}$ (c) $\frac{9}{25}$ 50. दो समद्भिबाहु त्रिभुजों के संगत कोण बराबर हैं तथा इनके क्षेत्रफलों का अनुपात 25 : 36 है. इनकी संगत कैंबाइयाँ का अनुपात क्या होगा? (a) 25:36 (b) 36:25 (c) 5:6 (d) 6:5 51. यदि $\triangle ABC \sim \triangle QRP$. $\frac{ar(\triangle ABC)}{ar(\triangle QRP)} = \frac{9}{4}$ तथा BC = 15 सेमी॰ हो, तो PR = ?(a) 8 सेमी० (d) 6²/₃ 社中1。 (b) 10 सेमीo (c) 12 सेमीo 52. यदि किसी समद्विबाहु \triangle ABC में AC = BC हो तथा $AB^2 = 2AC^2$ हो, तो $\angle C = ?$ (a) 30° (b) 45° (c) 60° (d) 90° (a) न्यूनकोण त्रिभुज (b) समकोण त्रिभुज (c) अधिककोण त्रिभुज (d) ज्ञात करना संभव नहीं 54. किसी △ ABC में निम्नलिखित में से सत्य कथन कौन-सा है ?

53. यदि △ ABC में AB = 16 सेमी∘, BC = 12 सेमी॰ तथा AC = 20 सेमी॰ हो तो △ ABC होगा :

(a) (AB - AC) = BC

(b) (AB - AC) > BC

(c)(AB-AC) < BC

(d) इनमें से कोई नहीं

55. किसी Δ ABC में निम्नलिखित में से सत्य कथन कौन-सा है ?

(a) (AB + AC) = BC (b) (AB + AC) > BC (c) (AB + AC) < BC

(d) इनमें से कोई नहीं

 दी गई Δ ABC में यदि AB = 8 सेमी∘, AC = 12 सेमी॰ तथा $\angle A$ का समद्विभाजक AD है तो BD:DC=? (a) 2:3 (b) 4:9 (c) $\sqrt{2}:\sqrt{3}$

57. एक Δ ABC में ∠A का अर्द्धक AD है. यदि BD = 5 सेमी॰, DC = 6 सेमी॰ तथा AB = 8 सेमी॰ हो, तो AC = ?(a) 9 सेमी॰ (b) 9·6 सेमी॰ (c) 7 सेमी॰ (d) 6 सेमी॰

58. एक ∆ ABC में ∠A का अर्द्धक AD है. यदि AB = 9 सेमी०. AC = 12 सेमी॰, BD = (7 - x) सेमी॰ तथा DC = x सेमी॰ हो. तो x=?(b) 4·8

(a) 4

(c) 3.5

(d) 2.5

59. एक त्रिभुज में शीर्ष से डाला गया लम्ब आधार को समद्विभाजित करता है. यह त्रिभुज है :

(b) एक अधिककोण त्रिभुज

(c) एक समद्भिबाहु त्रिभुज

(d) एक विषमबाह त्रिभ्ज

 $_{60}$, एक समबाहु $_{\Delta}ABC$ में यदि $_{AD}\perp_{BC}$ हो, तो निम्निलिखित में से सत्य कथन कौन-सा होगा ? (a) $2AB^2 = 3AD^2$ (b) $4AB^2 = 3AD^2$

 $(c) 3AB^2 = 4AD^2$

 $(d) 3AB^2 = 2AD^2$

 एक समद्विचाहु ∆ ABC में AB = AC = 13 सेमी० तथा A से BC पर डाले गये लम्ब AD की लम्बाई = 5 सेमी॰. तब BC = ?

(a) 12 सेमी॰ (b) 16 सेमी॰ (c) 18 सेमी॰ (d) 24 सेमी॰

62. एक समबाहु त्रिभुज की प्रत्येक भुजा 10 सेमी० लम्बी है. इस त्रिभुज की ऊँचाई कितनी है?

(a) 5√3 सेमी∘

(b) 6√2 सेमी∘

(c) 5√2 सेमी∘

(d) 6√3 सेमीo

63. दी गई आकृति में ΔPQR के अन्दर एक बिन्दु O ऐसा है कि $\angle POR = 90^{\circ}$, OP = 6 सेमी॰ तथा OR = 8 सेमी॰. यदि PQ = 24 सेमी॰ तथा $\angle QPR = 90^\circ$ हो, तो OR = ?

(a) 25 सेमी॰ (b) 26 सेमी॰ (c) 28 सेमी॰ (d) 32 सेमी॰

64. एक समकोण त्रिभुज के कर्ण की लम्बाई 25 सेमी० है. शेष दोनों भुजाओं में से एक भुजा दूसरी भुजा से 5 सेमी० बड़ी है. इन दो भुजाओं की लम्बाईयाँ हैं क्रमश:

(a) 10 सेमी॰, 15 सेमी॰ (b) 12 सेमी॰, 17 सेमी॰ (c) 13 सेमी॰, 18 सेमी॰ (d) 15 सेमी॰, 20 सेमी॰ 65. एक 25 मीटर लम्बी सीढ़ी एक 24 मीटर ऊँचे भवन की छत को छूती है. इस भवन से कितनी दूरी पर सीढ़ी के

(a) 1 मीटर

(b) 3·5 मीटर

(c) 6 मीटर

(d) 7 मीटर

66. एक व्यक्ति एक बिन्दु से 24 मीटर पश्चिम की ओर जाकर वहाँ से 10 मीटर उत्तर की ओर जाता है. वह प्रारम्भिक बिन्दु से कितनी दूरी पर है ?

(a) 17 मीटर

(b) 26 मीटर

(c) 28 मीटर

ा प्राप्त व्यक्ति एक बिन्दु से 12 मीटर दक्षिण की ओर जाकर वहाँ से 35 मीटर पश्चिम की ओर जाता है. वह प्रारम्भिक बिन्दु से कितनी दूरी पर है ?

(a) 23 मीटर

(b) 23·5 मीटर

(c) 47 मीटर

(b) 23-5 माटर (b) 23-5 माटर (c) निर्मात के बीच की क्षैतिज दूरी 8 मीटर है. इन खम्भों की चोटियों के बीच की दूरी कितनी है ?

^(a) 12 मीटर

(b) 11 मीटर

(c) 10 मीटर

(d) 9 मीटर

The second second	OZ - 1-11 1 -1-1-11	White the same of the same of the						
•	69. किसी समय पर एक उर्ध्वाधर खड़ी 1-8 मीटर लम्बी छड़ की जमीन पर परछाई 45 संमी० एक 6 मीटर ऊँचे खम्भे की परछाई की लम्बाई कितनी होगी ?							
	(a) 2·4 मीटर	(b) 1·8 मीटर	(c) 1·5 मीटर	(d) 4 मीटर				
7	0. किसी समय पर प	(य) 4 माटर बरछाई 3·6 मीटर है, इस मीनार को 🏞						
	1400 11 01 11 1 105	144 6711 71-14 1/016	an citals to airt or :					
	(a) 30 मीटर	(b) 24 माटर	(c) 28·8 मीटर	(d) 32·4 मीटर				
7	IOI OF MANIE			(a) 32:4 माटर तिखत में से कौन-मी नाप AC को क्षा				
	(a) 3·4 सेमी०	(b) 4 सेमीo	(c) 4·5 सेमी०	(d) 10 सेमीo				
72	 Δ ABC में यदि A नहीं हो सकती? 	IB = 6 सेमी० तथा <i>B</i>	C=3·2 सेमी० हो, तो निप्नरि -	(a) 10 समाः तिखत में से कौन-मां नाप AC की सम				
	(a) 3·8 सेमी०	(b) 2·8 सेमी॰	(c) 9 सेमी ॰	(d) 2·9 सेमी०				
73	 यदि ∆ ABC में . 	$\angle A = \angle B = 45^{\circ}$ हो	तो सबसे बड़ी भुजा कौन-सी	है?				
	(a) BC		(c) AB	(d) तीनों भुजायें वरावर है				
74			= 80° हो, तो त्रिभुज की सब	(स) आगा नुजाय वराबर ह				
	(a) BC	(b) AC	(a) AB	ति चड़ा नुपा कान-सा ह <i>े</i>				
75			= 40° हो, तो त्रिभुज की सर	(d) तीनों भुजार्ये बराबर 🝍				
-	(a) BC	(b) (D						
	(a) BC	(b) AB	(c) AC	(d) इनमें से कोई नहीं				
76	AD है. तब, निम्न (a) $\angle ADC = \angle$	AC > AB है तथा A लिखित में से सही का ADB (b) ∠AD ADB (d) ∠AD	$C < \angle ADB$	B				
77	 ΔABC में ∠B = BC को X पर व कथन सत्य है? (a) AX > BX > (c) BX > AX > 	B 35° X 65° C						
78	 Δ ABC में भुजा B से सत्य कथन कौ (a) AB + BC + (c) AB + BC + 	त–साहै? <i>CA = AD</i> (b)	ो, तो निम्नलिखित में AB + BC + CA > AD AB + BC + CA > 2AD					
79.	दी गई आकृति में कौन्-सा कथन सत (a) AB < AD (c) AB > AD	यदि AB > AC हो, र य है ? (b) AB = AD (d) निश्चित नहीं	तो निम्नलिखित में से किया जा सकता	B D A				
80.	दी गई \triangle ABC में र कौन-सा कथन सत (a) AC > BC (c) AB > BC	पदि ∠A > ∠B हो, प है ? (b) BC > AC (d) AB > AC	तो निम्नलिखित में से	C				

- ही गई ΔABC में दिया है कि AB > AC. यदि $\angle B$ तथा $\angle C$ के अईक क्रमश: BO तथा CO परस्पर O पर मिलें, तो निम्नलिखित में से सही कथन कौन-सा है ?
 - (a) OB > OC
- (b) OB < OC
- (c) OB = OC
- (d) इनमें से कोई नहीं
- g. ΔABC के अध्यन्तर में कोई बिन्दु O है. तब निम्नलिखित में से सही कथन कौन-सा है ?

$$(a)(OA + OB + OC) > (AB + BC + CA)$$

$$(a) (OA + OB + OC) > (AB + BC + CA)$$

$$(b) (OA + OB + OC) > \frac{1}{2} (AB + BC + CA)$$

$$(c)(OA + OB + OC) < \frac{1}{2}(AB + BC + CA)$$
 (d) इनमें से कोई नहीं

- $_{S}$. ΔABC तथा ΔDEF में यदि BC = EF तथा AC = DFहो. तो $\triangle ABC \cong \triangle DEF$ तभी होगा जबकि

 - (a) $\angle A = \angle D$ (b) $\angle B = \angle E$

 - (c) $\angle C = \angle F$ (d) इनमें से कोई नहीं

- M. $\triangle ABC$ तथा $\triangle DEF$ में यदि $\angle B = \angle E$ तथा $\angle C = \angle F$ हो. तो $\triangle ABC \cong \triangle DEF$ तभी होगा जबकि
 - (a) BC = EF
- (b) AB = DF
- (c)AC = DE
- (d) $\angle A = \angle D$

- 85. दो त्रिभुजों के सर्वांगसम होने के लिए निम्नलिखित में से कौन-सी प्रतिबंधता पर्योप्त नहीं है ?
 - (a) SSA
- (b) SAS
- (c) ASA
- (d) SSS
- 16. दी गई आकृति में BC का मध्य बिन्दु L है तथा $LM \perp AB$ एवं $LN \perp AC$ इस प्रकार है कि LM = LN. तब, निम्नलिखित कथनों में से कौन-सा कथन सत्य है ?
 - (a)AB = AC
- (b) AC = BC
- (c) AB = BC
- (d) इनमें से कोई नहीं

- 67 . दो गई आकृति में Δ ABC में $BL \perp AC$ तथा $CM \perp AB$ इस प्रकार हैं कि BL = CM. तब निम्नलिखित में से सत्य कथन कौन-सा है ?
 - (a) $\triangle ABL \cong \triangle ACM$
- (b) $\triangle ABL \cong \triangle AMC$
- (c) ΔABL ≅ ΔCAN
- (d) $\triangle ABC \cong \triangle EFD$
- 81 , दी गई आकृति में AE=DB, CB=EF तथा $\angle ABC=\angle FED$. ^{तब,} निम्नलिखित में से सत्य कथन कौन-सा है?

 - (a) $\triangle ABC \cong \triangle DEF$ (b) $\triangle ABC \cong \triangle EDF$
 - (c) $\triangle ABC \cong \triangle FED$
 - (d) $\triangle ABC \cong \triangle EFD$

- हैं। विश्व के दो शीषों से विपरीत भुजाओं पर डाले गये लम्ब बराबर हों, तो ऐसी त्रिभुज होगी :
 - (a) समबाहु त्रिभुज
 - (b) समद्विबाह् त्रिभुज
- (d) समकोण त्रिभुज

	754	• नवीन अंकगणित		- 10	HELES STATES OF THE STATES	VICE TALL CO.					
	90.	निम्नलिखित में से	सत्य कथन कौन–स	ाहै?							
		 (a) एक त्रिभुज में दो कोण समकोण हो सकते हैं. (b) एक त्रिभुज में दो कोण अधिक कोण हो सकते हैं. 									
		(c) एक त्रिभुज में दो न्यूनकोण हो सकते हैं.									
		(d) किसी त्रिभुज की एक भुजा को बढ़ाने पर बना बाह्यकोण प्रत्येक आन्तरिक कोण से छोटा होता है. किसी त्रिभुज के तीनों शीपों से विपरीत भुजाओं पर डाले गये लम्बों का प्रतिच्छेद बिन्दु उस त्रिभुज का कीन-क्र									
	91.	किसी त्रिभुज के ती केन्द्र है ?	नों शीषों से विपरीत	भुजाओं पर	डाले गये लम्बी क	न प्रतिच्छेद बिन्तु	उस त्रिभुज का कौन-सा				
		(a) केन्द्रक	(b) लम्ब-केन्द्र	. (0) अन्त:केन्द्र	(d) परि	केन्द्र				
92	92.	किसी त्रिभुज के तीनों शीर्षों से खींचे गये कोणों के समद्विभाजकों का प्रतिच्छेद बिन्दु उस त्रिभुज का कौन-मा									
	30,805.00	केन्द्र है ?				71 236	2 4114-11				
		(a) केन्द्रक	(b) लम्ब केन्द्र	(0) परिकेन्द्र	. (d) अन्त	ा:केन्द्र				
	93.	93. किसी त्रिभुज की तीनों माध्यिकाओं का प्रतिच्छेद बिन्दु निम्नलिखित में से कौन-सा है ?									
			(b) अन्तःकेन्द्र								
	94.	किसी त्रिभुज की भ्	CONTROL INCOME.	400000000000000000000000000000000000000							
			(b) परिकेन्द्र								
33	95.	∆ ABC में BC का	मध्यबिन्द D है. त	व निम्न में से	, सत्य कथन कौन-	सा है ?					
90		Δ ABC में BC का मध्यबिन्दु D है, तब निम्न में से सत्य कथन कौन-सा है ? (a) $AB + AC > AD$ (b) $AB + AC = AD$ (c) $AB + AC = 2AD$ (d) $AB + AC > 2AD$									
	96.	Δ ABC की तीन माध्यिकार्ये AD, BE तथा CF हों, तो निम्नलिखित कथनों में से सत्य कथन कौन-सा है?									
		(a) $(AB + BC + CA) = (AD + BE + CF)$ (b) $(AB + BC + CA) < (AD + BE + CF)$									
		(c)(AB + BC + CA) > (AD + BE + CF) (d) इनमें से कोई नहीं									
	97.	Δ ABC की तीन	शीर्षों से ऊँचाईयाँ ह	हमश: AL, B	M तथा CN हों	तो निप्नलिखित	कथनों में से सत्य करन				
		कौन-सा है ? (a) $(AB + BC + CA) = (AL + BM + CN)$ (b) $(AB + BC + CA) < (AL + BM + CN)$									
		(a) (AB + BC +	CA) = (AL + B)	M + CN) (1) (AB + BC +	CA) < (AL +	BM + CN)				
	00	(c)(AB + BC + CA) > (AL + BM + CN) (d) इनमें से कोई नहीं									
	98.	. किसी त्रिभुज की भुजाओं की लम्बाईयाँ क्रमश: p, q, r हैं. यदि $p^2+q^2+r^2=pq+qr+pr$ हो, तो पा									
		त्रिभुज कौन-सा है				(लोक सेवा	आयोग परीक्षा, 2008)				
	00	(a) समाद्वबाहु ।त्रभु	ज़ (b) समबाहु त्रि	भुज (त	:) समकोण त्रिभुः	ৰ (d) अधि	वककोण त्रिभुज				
	99,	ाकसा ।त्रभुज का भ्	रुजाय 3 : 4 : 6 के व	अनुपात में हैं.	यह त्रिभज है :	(UHOU	प्रत्यीत परीक्षा 2007)				
	9.1	(a) न्यूनकाणाय	(b) समकाणाय	6	:) अधिक कोणीर	(क) राज	कोणीय अथवा समकोणीय				
	100.	० माटर तथा 11 मा	टर ऊच दा खम्भ स	मतल पर खड़े	हैं. यदि उनके पा	द 12 मीटर की	दूरी पर हों, तो उनके शीर्ष				
		क जान का दूरा वि	भवना ह ?								
	101	(a) 12 HIZT	(b) 13 मीटर	(6	:) 14 मीटर	(d) 15	मीटर				
	101.	(a) 12 मीटर (b) 13 मीटर (c) 14 मीटर (d) 15 मीटर एक समकोण त्रिभुज का कर्ण त्रिभुज की छोटी भुजा के दुगुने से 1 मीटर कम है. यदि तीसरी भुजा सबसे छोटी भुजा कितनी है? (बी०एड० प्रवेश परीक्षा, 2007)									
		Jan 41 1 4154 34	।थक हा, ता त्रिभुज	की सबसे छो	टी भुजा कितनी है	? (बी क्स	० प्रवेश परीक्षा, 2007				
		(-) 5 1141	(0) 4 4124	(6	:) 5 मीटर	(d) 67	ीटर				
	102.	एक समकोण त्रिभुः	न की सबसे बड़ी भ	जा, सबसे छो	ਟੀ ਮਗਾ ਨਹ 5		भाग की लाखाई 8 सेमीव				
		एक समकोण त्रिभुज की सबसे बड़ी भुजा, सबसे छोटी भुजा का $\frac{5}{3}$ है. इसकी तीसरी भुजा की लम्बाई 8 सेमी है इस त्रिभुज की सबसे बड़ी तथा सबसे छोटी भुजाओं का योग कितना है ? (बैंक पी०ओ० परीक्षा, 2010)									
		(a) 16 सेमी० (ल छाटा भुजा	आ का योग कित	नाहै? (बैंक प	गै०ओ० परीक्षा, या				
	103.	एक त्रिभज के सब	ये बहे तथा उपने -	(c) 18 स	मा ० (d)	12 सेमी०	(e) इनमें से कोई नहीं				
		एक त्रिभुज के सबसे बड़े तथा उससे छोटे कोण का अनुपात 3 : 2 है. सबसे छोटा कोण इन दोनों कोणों के भेण का 20% है. सबसे बड़े कोण को छोड़कर शेष दो कोणों का योग कितना है ?(बैंक पी०ओ० परीक्षा, 2010)									
		(a) 80° (ત્ર કે તમાન તમા છા લે જ	कर शष दा व	नेणों का योग कि	तना है ?(बैंक प	री०ओ० परीक्षा,				
		1	b) 60°	(c) 100°	(d)	90°	(e) इनमें से कोई नहीं				

- 117. किसी त्रिभुज में दो भुजाओं का योग सदैव होगा :
 - (a) तीसरी भुजा से छोटा (b) तीसरी भुजा से बड़ा (c) तीसरी भुजा के बराबर (d) तीसरी भुजा का दो-तिहा
- 118. एक व्यक्ति पहले 150 मीटर पूर्व की ओर जाता है और उसके बाद 200 मीटर उत्तर की ओर जाता है. वह अपने मूल स्थिति से कितनी दूर है ?
 - (a) 350 मीटर
- (b) 250 मीटर
- (c) 50 मीटर
- (d) 625 मीटर

उत्तरमाला (प्रश्नमाला 36)

- 9. (b) 10. (c) 7. (a) 1. (d) 2. (c) 3. (b) 4. (d) 5. (b) 6. (c) 8. (c)
- 19. (c) 20. (d) 11. (b) 12. (a) 13. (c) 14. (c) 15. (a) 16. (c) 17. (b) 18. (a) 21. (c) 22. (c) 23. (c) 24. (b) 25. (c) 26. (b) 27. (a)
- 28. (c) 29. (a) 30. (d) 34. (b) 35. (d) 36. (b) 37. (d) 38. (c) 39. (b) 46. (c) 31. (d) 32. (b) 33. (b)
- 41. (a) 42. (b) 43. (d)
- 44. (c) 45. (c) 46. (b) 47. (c) 48. (c) 49. (d) 50. (c) 54. (c) 55. (b) 56. (a) 57. (b) 58. (a) 59. (c) 60. (c) 51. (b) 52. (d) 53. (b)
- 64. (d) 65. (d) 66. (b) 67. (d) 68. (c) 69. (c) 70. (d) 61. (d) 62. (a) 63. (b)
- 71. (a) 72. (b) 73. (c) 74. (b) 75. (a) 76. (c) 79. (c) 80. (b) 77. (c) 78. (d)
- 83. (c) 84. (a) 85. (a) 86. (a) 87. (a) 88. (a) 89. (b) 90. (c) 81. (a) 82. (b)
- 91. (b) 92. (d) 93. (a) 94. (b) 95. (d) 96. (c) 97. (c) 98. (b) 99. (c) 100. (b)
- 101. (a) 102. (a) 103. (d) 104. (d) 105. (c) 106. (d) 107. (b) 108. (c) 109. (b) 110. (d)
- 111. (d) 112. (c) 113. (a) 114. (c) 115. (b) 116. (c) 117. (b) 118. (b)

दिये गये प्रश्नों के हल प्रश्नमाला 36

- 1. माना $\angle A = (2x)^{\circ}$, $\angle B = (3x)^{\circ}$ तथा $\angle C = (7x)^{\circ}$. तब, $\angle A + \angle B + \angle C = 180^{\circ} \Rightarrow 2x + 3x + 7x = 180 \Rightarrow 12x = 180 \Rightarrow x = 15$. सबसे बड़ा कोण = (7 × 15)° = 105°.
- 2. माना 2A = 3B = 4C = K. तब $A = \frac{K}{2}$, $B = \frac{K}{3}$, $C = \frac{K}{4}$ $\Rightarrow A:B:C=\frac{K}{2}:\frac{K}{3}:\frac{K}{4}=\frac{1}{2}:\frac{1}{3}:\frac{1}{4}=6:4:3.$
- 3. माना 3A = 4B = 6C = K. तब $A = \frac{K}{3}$, $B = \frac{K}{4}$, $C = \frac{K}{6}$. $A+B+C=180^{\circ} \Rightarrow \frac{K}{3} + \frac{K}{4} + \frac{K}{6} = 180 \Rightarrow 4K+3K+2K = (180 \times 12)$ \Rightarrow 9K = (180×12) \Rightarrow K = (20×12) = 240.

$$\therefore A = \left(\frac{240}{3}\right)^{\circ} = 80^{\circ}.$$

- (A B = 40 तथा B C = 10). जोड़ने पर : A C = 50. माना A = K. तब, B = K - 40 तथा C = K - 50. अव $A + B + C = 180^{\circ} \Rightarrow K + K - 40 + K - 50 = 180$ $\Rightarrow 3K = 270 \Rightarrow K = 90$.
 - $B = (K-40)^{\circ} = (90-40)^{\circ} = 50^{\circ}$.
- (A − B = 45 तथा B − C = 30). इन्हें जोड़ने पर A − C = 75. माना A = K. तब B = K - 45 तथा C = K - 75. जोड़ने पर 3K-120=180 ⇒ 3K = 300 ⇒ K = 100. A+B=K+K-45=(200-45)=155.

```
6 ब्राइने पा: (A+B+C)+B=238° ⇒ 180°+B=238°
                                                                                                                                   রিभुज ● 757
                                                           \Rightarrow B = (238^{\circ} - 180^{\circ}) = 58^{\circ}.
      _{58+C} = 130 \Rightarrow C = (130-58) = 72^{\circ}
   ्र बाइने पर : (A+B+C)+A=240^{\circ} \Rightarrow 180^{\circ}+A=240^{\circ} \Rightarrow A=60^{\circ} . B+C=(180^{\circ}+60^{\circ})-1200^{\circ}
                 B + C = (180^{\circ} + 60^{\circ}) = 120^{\circ}
  _{S} (2A = 3B तथा 4B = 5C) \Rightarrow 8A = 12B तथा 12B = 15C
                                          \Rightarrow 8A = 12B = 15C = K (माना)
                                          \Rightarrow A = \frac{K}{8}, B = \frac{K}{12}, C = \frac{K}{15}
 \Rightarrow A:B:C=\frac{K}{8}:\frac{K}{12}:\frac{K}{15}=\frac{1}{8}:\frac{1}{12}:\frac{1}{15}=15:10:8. 9, दिया है : A+B=116 तथा A-B=24.
    इन्हें हल करने पर A = 70°, B = 46°.
    C = 180^{\circ} - (70^{\circ} + 46^{\circ}) = (180 - 116)^{\circ} = 64^{\circ}
 _{10.} माना त्रिभुज के कोण x^{\circ}, x^{\circ} तथा (x+18)^{\circ} हैं. तब्,
    x+x+x+18 = 180 \Rightarrow 3x = 162 \Rightarrow x = 54.
    ्र तीसरा कोण = (54 + 18)° = 72°.
॥, माना त्रिभुज के कोण x°, (2x)° तथा (3x)° हैं. तब,
   x+2x+3x=180 \Rightarrow 6x=180 \Rightarrow x=30.
   अत: सबसे छोटा कोण = 30°.
12. A < (B+C) \Rightarrow 2A < (A+B+C) = 180^{\circ} \Rightarrow A < 90^{\circ}.
   B < (A+C) \Rightarrow 2B < (A+B+C) = 180^{\circ} \Rightarrow B < 90^{\circ}
    C < (A+B) \Rightarrow 2C < (A+B+C) = 180^{\circ} \Rightarrow C < 90^{\circ}
    ं ΔABC एक न्यूनकोण त्रिभुज है.
13. A = B + C \Rightarrow 2A = A + B + C = 180^{\circ} \Rightarrow A = 90^{\circ}.
A > B + C. तब 2A > A + B + C = 180^{\circ} \Rightarrow A > 90^{\circ}.
   ं ΔABC एक अधिक कोण त्रिभुज है.
15. \angle ABC + \angle BAC = \angle ACD \Rightarrow 30^{\circ} + \angle BAC = 110^{\circ} \Rightarrow \angle BAC = 80^{\circ}.
16. ∠ABC = (180°-110°) = 70° तथा ∠ACB = (180°-120°) = 60°.
    \angle ABC + \angle ACB + \angle BAC = 180^{\circ} \Rightarrow 70^{\circ} + 60^{\circ} + \angle BAC = 180^{\circ} \Rightarrow \angle BAC = 50^{\circ}.
^{\uparrow\uparrow} \angle BAC + \angle ABC + \angle ACB = 180^{\circ} \Rightarrow 40^{\circ} + \angle ABC + 90^{\circ} = 180^{\circ} \Rightarrow \angle ABC = 50^{\circ}.
  \triangle BDE \stackrel{\leftrightarrow}{\neq} \angle EBD + \angle BED + \angle BDE = 180^{\circ}
   \Rightarrow \angle ABC + \angle BED + \angle BDE = 180^{\circ} \Rightarrow 50^{\circ} + 100^{\circ} + \angle BDE = 180^{\circ} \Rightarrow \angle BDE = 30^{\circ},
^{\parallel k \parallel} \triangle ABC \stackrel{\rightarrow}{+} \angle BAC + \angle ABC + \angle ACB = 180^{\circ} \Rightarrow 30^{\circ} + 50^{\circ} + \angle ACB = 180^{\circ} \Rightarrow \angle ACB = 100^{\circ}.
   \angle ECD = \angle ACD = (180^{\circ} - 100^{\circ}) = 80^{\circ}.
  ^{\Delta}ECD \stackrel{\leftrightarrow}{\neq} \angle ECD + \angle EDC + \angle CED = 180^{\circ} \Rightarrow 80^{\circ} + 25^{\circ} + \angle CED = 180^{\circ} \Rightarrow \angle CED = 75^{\circ}.
  \angle AED = (180^{\circ} - 75^{\circ}) = 105^{\circ}.
\angle ABC = (180^{\circ} - 130^{\circ}) = 50^{\circ}, \angle BAC = (180^{\circ} - 80^{\circ}) = 100^{\circ}.
  ^4ABC \stackrel{\sim}{\neq} \angle ABC + \angle BAC + \angle ACB = 180^\circ \Rightarrow 50^\circ + 100^\circ + \angle ACB = 180^\circ \Rightarrow \angle ACB = 30^\circ.
^4AEC \stackrel{\rightarrow}{\neq} \angle EAC + \angle ACE + AEC = 180^\circ \Rightarrow 30^\circ + \angle BCD + \angle AEC = 180^\circ
                                                                \Rightarrow 50^{\circ} + \angle AEC = 150^{\circ} \Rightarrow \angle AEC = 100^{\circ}.
   \angle AEB = (180^{\circ} - 100^{\circ}) = 80^{\circ}.
```

- 21. $\angle ABC + \angle ACB = (180^{\circ} 40^{\circ}) = 140^{\circ}$ $\Rightarrow \frac{1}{2} \angle ABC + \frac{1}{2} \angle ACB = 70^{\circ} \Rightarrow \angle OBC + \angle OCB = 70^{\circ}$. $\therefore \angle BOC = (180^{\circ} - 70^{\circ}) = 110^{\circ}$.
- 22. $\triangle AOC \stackrel{\leftrightarrow}{\Rightarrow} \angle OAC + \angle OCA + \angle AOC = 180^{\circ} \Rightarrow 45^{\circ} + 65^{\circ} + \angle AOC = 180^{\circ} \Rightarrow \angle AOC = 70^{\circ}$. $\angle BOD = \angle AOC = 70^{\circ}$. $\triangle BOD \stackrel{\leftrightarrow}{\Rightarrow} \angle BOD + \angle BDO + \angle OBD = 180^{\circ} \Rightarrow 70^{\circ} + 85^{\circ} + \angle OBD = 180^{\circ}$. $\Rightarrow \angle OBD = (180^{\circ} - 155^{\circ}) = 25^{\circ}$.
- 23. माना $\angle A = (2x)^{\circ}$, $\angle B = (3x)^{\circ}$ तथा $\angle C = x^{\circ}$, तब $\angle A + \angle B + \angle C = 180^{\circ} \Rightarrow 2x + 3x + x = 180 \Rightarrow 6x = 180 \Rightarrow x = 30$. $\Rightarrow \angle C = 30^{\circ} \Rightarrow \angle ACE = (180^{\circ} 30^{\circ}) = 150^{\circ}$.
 - $\therefore \ \angle ECD = (\angle ACE \angle ACD) = (150^{\circ} 90^{\circ}) = 60^{\circ}.$
- 24. ∠ACB + ∠ACD = 180° ⇒ ∠ACB + 140° = 180° ⇒ ∠ACB = 40°.
 ∠BAC = ∠EAF 90° (शीर्षाभिमुख कोण)

 △ABC में, ∠BAC + ∠ABC + ∠ACB = 180°
 ⇒ 90° + ∠ABC + 40° = 180° ⇒ ∠ABC = 50°.
- 25. $\angle AOC + \angle COD + \angle BOD = 180^{\circ} \Rightarrow x^{\circ} + 90^{\circ} + y^{\circ} = 180^{\circ} \Rightarrow x + y = 90.$ $\angle AOE + \angle BOE = 180^{\circ} \Rightarrow 3x^{\circ} + 60^{\circ} = 180^{\circ} \Rightarrow 3x = 120 \Rightarrow x = 40.$ $\therefore 40 + y = 90 \Rightarrow y = (90 - 40) = 50.$
- 26. $\triangle AMB \stackrel{\sim}{\rightarrow}$, $\angle AMB + \angle ABM + \angle BAM = 180^{\circ}$ $\Rightarrow 90^{\circ} + 70^{\circ} \angle BAM = 180^{\circ} \Rightarrow \angle BAM = (180^{\circ} - 160^{\circ}) = 20^{\circ}$. $\triangle ABC \stackrel{\sim}{\rightarrow} \angle BAC + \angle ABC + \angle ACB = 180^{\circ}$
 - $\Rightarrow \angle BAC + 70^{\circ} + 30^{\circ} = 180^{\circ} \Rightarrow \angle BAC = (180^{\circ} 100^{\circ}) = 80^{\circ}.$ $\angle BAN = \frac{1}{2} \angle BAC = \frac{1}{2} \times 80^{\circ} = 40^{\circ}.$
 - $\therefore \angle MAN = \angle BAN \angle BAM = (40^{\circ} 20^{\circ}) = 20^{\circ}.$
- 27. माना दी गई त्रिभुज के कोण क्रमश: $(3x)^\circ$, $(5x)^\circ$ तथा $(7x)^\circ$ हैं. तब $3x+5x+7x=180 \Rightarrow 15x=180 \Rightarrow x=12$.
 - ∴ त्रिभुज के कोणों के माप हैं 36°, 60° तथा 84°. अतः यह एक न्यूनकोण त्रिभुज है.
- 28. $∠BAC = (180^{\circ} 110^{\circ}) = 70^{\circ}$ तथा $∠ACB = (180^{\circ} 120^{\circ}) = 60^{\circ}$. अब △ABC में, $∠BAC + ∠ABC + ∠ACB = 180^{\circ}$ $⇒ 70^{\circ} + ∠ABC + 60^{\circ} = 180^{\circ} ⇒ ∠ABC = (180^{\circ} - 130^{\circ}) = 50^{\circ}$.
- 29. A तथा D को मिलाकर आगे E तक बढ़ायें. $\angle CDE = y + 30$ तथा $\angle BDE = z + 45$ $\Rightarrow \angle CDE + \angle BDE = (y + z + 75)^\circ = (55 + 75)^\circ = 130^\circ$. $\therefore x = 130$.
- 30. AB || CD तथा तिर्यक रेखा BC इन्हें काटती है.
 ∴ ∠ABE = ∠DCE = 60°.
 △ ABE में, ∠EAB + ∠ABE + ∠AEB = 180°
 ⇒ 50° + 60° + ∠AEB = 180° ⇒ ∠AEB = 70°.

রি**भ**ুज ● 759

্যা.
$$\angle CAB + \angle BAE = 180^{\circ}$$
, $\angle ABC + \angle CBF = 180^{\circ}$ तथा $\angle ACB + \angle ACD = 180^{\circ}$
 $\Rightarrow (\angle CAB + \angle ABC + \angle ACB) + (\angle BAE + \angle CBF + \angle ACD) = 540^{\circ}$
 $\Rightarrow 180^{\circ} + (\angle BAE + \angle CBF + \angle ACD) = 540^{\circ}$

्र
$$(2CAD + 2ACB) + (\angle BAE + \angle CBF + \angle ACD) = 180^\circ$$

 $\Rightarrow 130^\circ + (\angle BAE + \angle CBF + \angle ACD) = 540^\circ$
अनुपातिकता प्रमेय से : $\frac{AD}{DB} = \frac{AE}{FC}$ माना $FC = 350^\circ$

$$_{12.}$$
 अनुपातिकता प्रमेय से : $\frac{AD}{DB} = \frac{AE}{EC}$. माना $EC \approx x$ सेमी॰.

$$DB = (AB - AD) = (10 - 3.6)$$
 सेमी $o = 6.4$ सेमी o

$$\frac{3.6}{6.4} = \frac{4.5}{x} \Rightarrow \frac{45x}{10x} = \frac{36}{64} = \frac{9}{16} \Rightarrow 90x = 45 \times 16$$

$$\Rightarrow x = \frac{45 \times 16}{90} = 8.$$

दिया है :
$$AE = 3.2$$
 सेमी॰ तथा $EC = 4.8$ सेमी॰.

अनुपातिकता प्रमेय से :

$$\frac{AD}{DB} = \frac{AE}{EC} \Rightarrow \frac{2 \cdot 4}{x} = \frac{3 \cdot 2}{4 \cdot 8} = \frac{32}{48} = \frac{2}{3}$$

$$\Rightarrow 2x = (3 \times 2 \cdot 4) \Rightarrow x = \frac{3 \times 2 \cdot 4}{2} = (3 \times 1 \cdot 2) = 3 \cdot 6.$$

अतः
$$AB = (AD + DB) = (2\cdot 4 + 3\cdot 6)$$
 सेमी० = 6 सेमी०.

$$\frac{AD}{DB} = \frac{AE}{EC} \Rightarrow \frac{4}{7} = \frac{6 \cdot 6 - x}{x} \left[\because AE = AC - EC = 6 \cdot 6 - x \right]$$

$$4x = 7(6 \cdot 6 - x) \Rightarrow 4x = 7 \times 6 \cdot 6 - 7x \Rightarrow 11x = \frac{7 \times 66}{10}$$

$$\Rightarrow x = \left(\frac{7 \times 66}{10} \times \frac{1}{11}\right) = \frac{42}{10} = 4 \cdot 2 \quad \text{Higho.}$$

35
. माना $AE = x$ सेमी o . तब $EC = (AC - AE) = (5.6 - x)$ सेमी o .

$$\frac{AD}{DB} = \frac{AE}{EC} \Rightarrow \frac{3}{5} = \frac{x}{5 \cdot 6 - x} \Rightarrow 3(5 \cdot 6 - x) = 5x$$

$$\Rightarrow 16 \cdot 8 - 3x = 5x \Rightarrow 8x = 16 \cdot 8 \Rightarrow x = 2 \cdot 1.$$

$$\frac{AD}{DB} = \frac{AE}{EC} \Rightarrow \frac{x}{x-2} = \frac{x+2}{x-1}$$

$$\Rightarrow x(x-1) = (x+2)(x-2) \Rightarrow x^2 - x = x^2 - 4 \Rightarrow x = 4.$$

^{3), अनुपातिकता प्रमेय से :}

$$\frac{AD}{DB} = \frac{AE}{EC} \Rightarrow \frac{4}{x-4} = \frac{8}{3x-19} \Rightarrow 4(3x-19) = 8(x-4)$$

$$\Rightarrow 12x - 76 = 8x - 32 \Rightarrow 4x = (76 - 32) = 44 \Rightarrow x = 11.$$

$$x-4 \quad 3x-19$$

$$\Rightarrow 12x-76=8x$$

$$\frac{4D}{AE} = x \text{ सेमीo. तब अनुपातिकता प्रमेय से :}$$

$$\frac{AE}{AC} \Rightarrow \frac{4\cdot 5}{7\cdot 2} = \frac{x}{6\cdot 4} \Rightarrow 7\cdot 2x = 4\cdot 5\times 6\cdot 4$$

$$\Rightarrow x = \left(\frac{45 \times 64}{72 \times 10}\right) = 4 \text{ संभी}.$$

39. $\frac{\Delta ABC}{\Delta DEF}$ की परिमिति $=\frac{BC}{EF}$. माना EF=x सेमी॰. तब,

$$\frac{25}{15} = \frac{9}{x} \Rightarrow 25x = 15 \times 9 \Rightarrow x = \frac{15 \times 9}{25} = \frac{27}{5} = 5 \cdot 4 \text{ Hiralo.}$$

40.
$$\frac{AB}{DE} = \frac{\Delta ABC}{\Delta DEF}$$
 की परिमित्ति
$$\Rightarrow \frac{9 \cdot 1}{6 \cdot 5} = \frac{35}{x} \Rightarrow \frac{35}{x} = \frac{7}{5}$$
$$\Rightarrow 7x = 175 \Rightarrow x = 25.$$

 $\therefore \Delta DEF$ की परिमिति = 25 सेमी॰.

41.
$$\frac{AB}{EF} = \frac{BC}{DF} = \frac{CA}{DE} \Rightarrow E \rightarrow A, F \rightarrow B, D \rightarrow C$$

∴ ∆DEF ~ ∆CAB.

42. $\angle B = \angle E$, $\angle C = \angle F$ तथा तीसरा कोण $\angle A =$ तीसरा कोण $\angle D$.

अत: Δ ABC तथा Δ DEF समरूप हैं.

परन्तु $AB = 2DE \Rightarrow AB \neq DE$.

ं. Δ ABC तथा Δ DEF सर्वांगसम नहीं हैं.

43. $(A \leftrightarrow E, B \leftrightarrow F, C \leftrightarrow D) \Rightarrow \triangle ABC \sim \triangle EFD$.

$$\therefore \frac{AB}{EF} = \frac{BC}{FD} \text{ सत्य } \hat{\mathbf{g}}.$$

44. $\triangle DBA$ तथा $\triangle DAC$ में $\angle ADB = \angle CDA = 90^{\circ}$, $\angle ABD = \angle CAD = (90^{\circ} - \angle C)$ तथा $\angle BAD = \angle ACD = 90^{\circ} - \angle B$.

$$\therefore \Delta DBA \sim \Delta DAC \Rightarrow \frac{BD}{AD} = \frac{AD}{CD} \Rightarrow BD \cdot CD = AD^2.$$

45. $(A \leftrightarrow E, B \leftrightarrow D तथा C \leftrightarrow F)$

$$\therefore \frac{AB}{AC} = \frac{DE}{EF}$$
 (सत्य); $\frac{BC}{AB} = \frac{FD}{DE}$ (सत्य); $\frac{BC}{AB} = \frac{EF}{DE}$ (असत्य);

$$\frac{BC}{AC} = \frac{FD}{FF}$$
 (सत्य).

अत: कथन (c) असत्य है.

46. स्पष्ट है कि
$$\frac{AD}{AB} = \frac{AE}{AC} = \frac{1}{2}$$
 तथा $\angle A = \angle A$.

$$\therefore \Delta ABC \sim \Delta ADE$$
तथा $\frac{AB}{AD} = \frac{2}{1}$.

$$\therefore (\triangle ABC$$
 का क्षेत्रफल) : $(\triangle ADE$ का क्षेत्रफल) = $\left(\frac{AB}{AD}\right)^2 = \left(\frac{2}{1}\right)^2 = \frac{4}{1} = 4:1.$

47.
$$\frac{\Delta ABC}{\Delta DEF}$$
 का क्षेत्रफल $=\frac{AB^2}{DE^2}$ \Rightarrow $\left(\frac{AB}{DE}\right)^2 = \frac{25}{36} = \left(\frac{5}{6}\right)^2$

$$\therefore \frac{AB}{DE} = \frac{5}{6} \Rightarrow AB : DE = 5 : 6.$$

48.
$$\frac{ar(\Delta ABC)}{ar(\Delta DEF)} = \left(\frac{AB}{DE}\right)^2 = \left(\frac{4}{5}\right)^2 = \frac{16}{25} = 16:25.$$

49.
$$\frac{\partial F(\Delta DEF)}{\partial F(\Delta ABC)} = \frac{EF^2}{BC^2} = \left(\frac{EF}{BC}\right)^2 = \left(\frac{5}{3}\right)^2 = \frac{25}{9}.$$

हा. माना इन त्रिभुजों की संगत ऊँचाईयाँ क्रमश: h तथा h हैं. तब

$$\frac{h_1^2}{h_2^2} = \frac{25}{36} \Rightarrow \left(\frac{h_1}{h_2}\right)^2 = \left(\frac{5}{6}\right)^2 \Rightarrow \frac{h_1}{h_2} = \frac{5}{6} \Rightarrow h_1 : h_2 = 5 : 6.$$

g. संगत भुजाओं का अनुपात = $\frac{\sqrt{9}}{\sqrt{4}} = \frac{3}{2}$.

$$\therefore \frac{BC}{PR} = \frac{3}{2} \Rightarrow 3 \times PR = (2 \times BC) = (2 \times 15) \text{ सेमी} \circ \Rightarrow PR = \frac{30}{3} \text{ सेमी} \circ = 10 \text{ सेमी} \circ.$$

17. दिया है AC = BC.

$$AB^{2} = 2AC^{2} \Rightarrow AB^{2} = AC^{2} + AC^{2} \Rightarrow AB^{2} = AC^{2} + BC^{2}$$

$$\Rightarrow \angle C = 90^{\circ}.$$

$$AB^{2} + BC^{2} = (16)^{2} + (12)^{2}$$

 $AB^2 + BC^2 = (16)^2 + (12)^2 = (256 + 144) = 400 = (20)^2 = AC^2.$:. ΔABC एक समकोण त्रिभुज है.

किसी त्रिभुज में किन्हीं दो भुजाओं का अन्तर सदैव तीसरी भुजा से छोटा होता है.

55. किसी त्रिभुज में किन्हीं दो भुजाओं का योग सदैव तीसरी भुजा से बड़ा होता है.

56. BD:DC = AB:AC = 8:12 = 2:3.

57.
$$\frac{AB}{AC} = \frac{BD}{DC} \Rightarrow \frac{8}{x} = \frac{5}{6} \Rightarrow x = \frac{6 \times 8}{5} = \frac{48}{5} = 9.6 \text{ Hello.}$$

58.
$$\overline{AB} = \frac{BD}{AC} \Rightarrow \frac{9}{12} = \frac{7 - x}{x} \Rightarrow 9x = 84 - 12x$$

$$\Rightarrow 21x = 84 \Rightarrow x = 4.$$

59. एक समद्विबाहु त्रिभुज में शीर्ष से डाला गया लम्ब आधार को समद्विभाजित करता है.

60. माना \triangle ABC एक समबाहु त्रिभुज है तथा $AD \perp BC$. तब

$$AB^{2} + AD^{2} + BD^{2} = AD^{2} + \left(\frac{1}{2}AB\right)^{2} \left[\because BD = \frac{1}{2}BC = \frac{1}{2}AB\right]$$

$$\Rightarrow AB^{2} - \frac{1}{4}AB^{2} = AD^{2} \Rightarrow \frac{3}{4}AB^{2} = AD^{2} \Rightarrow 3AB^{2} = 4AD^{2}.$$

61.
$$BD = \frac{1}{2}BC$$
 तथा $BD^2 = (AB)^2 - (AD)^2 = (13)^2 - 5^2 = (169 - 25) = 144$.
 $\therefore BD = \sqrt{144} = 12$ सेमी॰. अत: $BC = (12 \times 2)$ सेमी॰ = 24 सेमी॰.

 62 , माना Δ ABC एक समबाहु त्रिभुज है जिसमें AB=AC=BC=10 सेमी \circ

$$AD \perp BC$$
 खींचो. अब $BD = \frac{1}{2}BC = 5$ सेमीo.

$$\frac{\partial R}{\partial A} = AB^2 - BD^2 = (10)^2 - 5^2 = (100 - 25) = 75$$

⇒
$$AD = \sqrt{75} = \sqrt{25 \times 3} = 5\sqrt{3}$$
 सेमी•.

- 64. माना समकोण त्रिभुज की शेष दो भुजायें x सेमी० तथा (x + 5) सेमी० हैं. तब $x^{2} + (x+5)^{2} = (25)^{2} \Rightarrow x^{2} + (x^{2} + 10x + 25) = 625$ $2x^2 + 10x - 600 = 0 \Rightarrow x^2 + 5x - 300 = 0 \Rightarrow x^2 + 20x - 15x - 300 = 0$ $\Rightarrow x(x+20)-15(x+20)=0 \Rightarrow (x+20)(x-15)=0 \Rightarrow x=15.$ अत: शेष दो भुजायें 15 सेमी० तथा 20 सेमी० लम्बी हैं.
- 65. माना CB भवन है तथा AB सीढ़ी है. तब AB = 25 मीटर तथा CB = 24 मीटर, $AC^2 = (AB)^2 - (CB)^2 = (25)^2 - (24)^2 = (25 + 24)(25 - 24)$ $\Rightarrow AC^2 = (49 \times 1) = 49 = (7)^2 \Rightarrow AC = 7$ मीटर. अत: सीढ़ी के पाद भवन से 7 मीटर की दूरी पर हैं.

66. माना प्रारम्भिक बिन्दु 0 है. माना OW पश्चिम दिशा है तथा इस दशा में OA = 24 मीटर. अब AN उत्तर दिशा है तथा AB = 10 मीटर. OB को मिलायें $OB^2 = OA^2 + AB^2 = (24)^2 + (10)^2 = (576 + 100) = 676$ $\Rightarrow OB = \sqrt{676} = 26$ मीटर.

67. माना प्रारम्भिक बिन्दु O है. माना OS दक्षिण दिशा है तथा इस दशा में OA = 12 Hizt.अब AW पश्चिम दिशा है तथा AB = 35 मीटर. OB को मिलायें. अब $OB^2 = OA^2 + AB^2 = (12)^2 + (35)^2 = (144 + 1225) = 1369$ $\Rightarrow OB = \sqrt{1369} = 37$ मीटर

68. माना दो खम्भे AB तथा CD हैं. तब, AB = 7 मीटर तथा CD = 13 मीटर. $BE \perp CD$ खींचें तथा BD को मिलायें.

अब,
$$CE = AB = 7$$
 मीटर, $DE = (CD - CE) = (13 - 7)$ मीटर = 6 मीटर
तथा $BE = AC = 8$ मीटर.

समकोण त्रिभुज Δ BED में.

$$BD^2 = BE^2 + DE^2 = (8)^2 + (6)^2 = 64 + 36 = 100$$

$$\Rightarrow BD^2 = (10)^2 \Rightarrow BD = 10$$
 मीटर.

अत: इन खम्भों की चोटियों के बीच की दूरी 10 मीटर है.

69. माना खम्भे की परछाई की लम्बाई = x मीटर.

छंड़ तथा खंभे की ऊँचाइयों का अनुपात = इनकी परछाईयों की लम्बाईयों का अनुपात

$$\Rightarrow 1.8: 6 = \frac{45}{100}: x \Rightarrow \frac{1 \cdot 8}{6} = \frac{9}{20x} \Rightarrow \frac{18}{60} = \frac{9}{20x} \Rightarrow \frac{3}{10} = \frac{9}{20x} \Rightarrow 60x = 90 \Rightarrow x = \frac{90}{60} = \frac{3}{2} = 1.5$$

.: खम्भे की परछाई की लम्बाई = 1·5 मीटर.

माना मीनार की ऊँचाई = x मीटर. तब

खम्भे तथा मीनार की ऊँचाईयों का अनुपात = इनकी परछाईयों की लम्बाईयों का अनुपात

$$\Rightarrow$$
 6: $x = 3.6:18$

$$\Rightarrow 3 \cdot 6x = 6 \times 18 \Rightarrow x = \frac{6 \times 18}{3 \cdot 6} = \frac{6 \times 18 \times 10}{36} = 30.$$

अत: मीनार की ऊँचाई = 30 मीटर,


```
সিম্স ● 763
```

किसी त्रिभुज में किन्हों दो भुजाओं का योग तीसरी भुजा से बड़ा होता है परन्तु (3-5+3-4) < 7 है.

करी त्रिभुज में किन्हीं दो भुजाओं का योग तीसरी भुजा से बड़ा होता है.

बंदि AC = 2.8 लें, तो BC + AC = (3.2 + 2.8) = 6 सेमी $\circ = AB$. $\frac{\pi}{48}$ संभव नहीं है. अतः AC की लम्बाई 2.8 सेमी \circ नहीं हो सकती.

13. LC = 180° - (45° + 45°) = 90°. अत: सबसे बड़ी भुजा AB है.

 $_{14}$ $_{2}$ C = $180^{\circ} - (60^{\circ} + 80^{\circ}) = 40^{\circ}$

इनमें सबसे बड़ा कोण $\angle B$ है जिसके सामने की भुजा AC सबसे बड़ी है.

 $4.4 = 180^{\circ} - (120^{\circ} + 40^{\circ}) = 20^{\circ}$

ट्रिनमें सबसे छोटा कोण ∠A है जिसके सामने की भुजा BC सबसे छोटी है.

⇒ ∠ADC > ∠ADB.

7. $\angle A = (180^{\circ} - (35^{\circ} + 65^{\circ}) = (180^{\circ} - 100^{\circ}) = 80^{\circ} \Rightarrow \angle BAX = \angle CAX = 40^{\circ}$.

 $\triangle ABX \stackrel{\text{H}}{=} \angle ABX = 35^{\circ}, \angle BAX = 40^{\circ}, \angle AXB = 180^{\circ} - 75^{\circ} = 105^{\circ}.$ $\angle AXB > \angle BAX > \angle ABX \Rightarrow AB > BX > AX$

 $\triangle ACX$ ਜੋ $\angle ACX = 65^{\circ}$, $\angle CAX = 40^{\circ}$, $\angle AXC = 180^{\circ} - 105^{\circ} = 75^{\circ}$(1)

 $: \angle AXC > \angle ACX > \angle CAX \Rightarrow AC > AX > CX$

अब (i) तथा (ii) से $AB > BX > AX > CX \Rightarrow BX > AX > CX$(ii)

% ΔABD में, AB+BD>AD. [दो भुजाओं का योग तीसरी भुजा से बड़ा है] $\Delta ACD \stackrel{\leftrightarrow}{H}, AC + CD > AD$

बोड़ने पर $AB + (BD + CD) + AC > 2AD \Rightarrow (AB + BC + CA) > 2AD$.

M, $AB > AC \Rightarrow \angle ACB > \angle ABC$

बाह्य कोण $\angle ADB >$ आन्तरिक कोण $\angle ACD$

⇒ ∠ADB > ∠ACB > ∠ABC

[(i) स]

 $\Rightarrow \angle ADB > \angle ABD \Rightarrow AB > AD$.

🛝 हम जानते हैं कि बड़े कोण के सामने की भुजा छोटे कोण के सामने की भुजा से बड़ी होती है अतः $\angle A > \angle B \Rightarrow BC > AC$.

 $(AB > AC \Rightarrow \angle C > \angle B \Rightarrow \left(\frac{1}{2} \angle C\right) > \left(\frac{1}{2} \angle B\right)$ $\Rightarrow \angle OCB > \angle OBC \Rightarrow OB > OC$.

^{है, इम} जानते हैं कि किसी त्रिभुज में दो भुजाओं का योग तीसरी भुजा से बड़ा है.

(OB + OA) > AB, (OA + OC) > AC, (OB + OC) > BC

बेड़ने पर 2(OA+OB+OC) > (AB+AC+BC)

$$\Rightarrow (OA + OB + OC) > \frac{1}{2}(AB + BC + CA).$$

2 . अप्तर है कि दो त्रिभुज सर्वांगसम होने के लिए इनकी दो भुजायें तथा उनके बीच के कोण बराबर होने चाहियें. $^{\delta\eta_1}$: $\angle C = \angle F$ होना चाहिये.

 $\mathbb{Q}_{\mathbb{Q}_{2}^{\mathbb{Q}_{2}^{\mathbb{Q}_{2}}}}^{\mathbb{Q}_{2}^{\mathbb{Q}_{2}}}$ होना चाहिये. $\mathbb{Q}_{2}^{\mathbb{Q}_{2}}$ के $\mathbb{Q}_{2}^{\mathbb{Q}_{2}}$ कि दो त्रिभुज सर्वांगसम होने के लिए इनके दो कोण तथा उनके बीच की भुजा बराबर होने चाहियें. अत:

^{दिवे} गये प्रश्न में BC = EF होना चाहिये.

भिष्ठ है कि सर्वांगसमता के लिए SSA पर ंत प्रतिबन्ध नहीं है.

- 86. ΔLMB तथा ΔLNC में $\angle LMB = \angle LNC = 90^{\circ}$, LM = LN (दिया है), कर्ण BL =कर्ण CL. $\therefore \Delta LMB \cong \Delta LNC \Rightarrow \angle B = \angle C \Rightarrow AC = AB$.
- 87. △ ABL तथा △ ACM में

 BL = CM (दिया है), ∠BLA = ∠CMA = 90° तथा ∠A = ∠A.

 ∴ △ABL ≅ △ACM.
- 88. AB = (AD DB) = (AD AE) तथा DE = (AD AE).
 अब ∆ ABC तथा ∆ DEF में :
 AB = DE, CB = EF (दिया है) तथा ∠ABC = ∠FED.
 ∴ △ABC ≡ △DEF.
- 89. माना $\triangle ABC$ में $BL \perp AC$ तथा $CM \perp AB$, तब $\triangle ABL \cong \triangle ACM$ $\begin{bmatrix} \because BL = CM, \angle BAL = \angle CAM \\ \exists AB = AC \end{bmatrix}$ तथा $\angle ALB = \angle AMC = 90^{\circ}$ $\Rightarrow \triangle ABC$ एक समद्विवाहु त्रिभुज है.

- 90. स्पष्ट है कि एक त्रिभुज के दो कोण न्यूनकोण हो सकते हैं, एक सत्य कथन है.
- 91. हम जानते हैं कि किसी त्रिभुज के प्रत्येक शीर्ष से विपरीत भुजा पर डाले गये तीनों लम्ब जिस बिन्दु पर काटते हैं, उसे लम्ब-केन्द्र कहते हैं.
- 92. स्पष्ट है कि किसी त्रिभुज के प्रत्येक शीर्ष से कोणों के समद्विभाजक परस्पर अन्त:केन्द्र पर काटते हैं.
- 93. स्पष्ट है कि किसी त्रिभुज की तीनों माध्यिकाओं का प्रतिच्छेद बिन्दु उस त्रिभुज का केन्द्रक कहलाता है.
- 94. स्पष्ट है कि किसी त्रिभुज की भुजाओं के तीन लम्ब-अर्द्धकों का प्रतिच्छेद बिन्दु उस त्रिभुज का परिकेद कहलाता है.
- 95. ध्यान दें : (AB+AC) > 2AD सत्य है.
- एक त्रिभुज की परिमिति इसकी तीनों माध्यिकाओं के योग से बड़ी है. (AB+BC+CA) > (AD+BE+CF).
- 97. AL < AB, BM < BC तथा CN < CA $\Rightarrow (AL + BM + CN) < (AB + BC + CA)$.
- 98. दिया है : $p^2 + q^2 + r^2 = pq + qr + pr$ $\Rightarrow 2p^2 + 2q^2 + 2r^2 = 2pq + 2qr + 2pr$ $\Rightarrow (p^2 + q^2 - 2pq) + (q^2 + r^2 - 2qr) + (r^2 + p^2 - 2pr) = 0$ $\Rightarrow (p - q)^2 + (q - r)^2 + (r - p)^2 = 0 \Rightarrow p - q = 0, q - r = 0$ तथा r - p = 0 $\Rightarrow p = q, q = r$ तथा $r = p \Rightarrow p = q = r$. अत: दी गई त्रिभुज एक समबाह त्रिभुज है.
- 99. माना \triangle ABC में a=3x, b=4x तथा c=6x. तब $(a^2+b^2)=(3x)^2+(4x)^2=(9x^2+16x^2)=25x^2<(36x^2)=c^2$. \therefore $c^2>(a^2+b^2)$. अत: दिया गया त्रिभुज अधिककोणीय है.
- . 100. माना खम्भे AB = 6 मीटर तथा CD = 11 मीटर हैं. अब BE ⊥ CD खींचें. तब BE = 12 मीटर.

$$gD^2 = gE^2 + DE^2 = (12)^2 + (5)^2 =$$

$$(144-25) = 169 = (13)^2 \Rightarrow BD = 13$$
 \hat{H}_0 .

$$\pi$$
ाना Δ ABC में $\angle B = 90^\circ$. माना छोटी भुजा $BC < AB$.

$$\mu$$
ा $BC = x$ मीटर, तब,

$$4C = (2x-1)$$
 मीटर तथा $AB = (BC+1) = (x+1)$ मीo.

$$A(x^2 = AB^2 + BC^2) \Rightarrow (2x-1)^2 = (x+1)^2 + x^2$$

$$\Rightarrow 4x^2 - 4x + 1 = 2x^2 + 2x + 1$$

$$\Rightarrow 2x^2 - 6x = 0 \Rightarrow 2x(x-3) = 0 \Rightarrow x = 3.$$

$$|x|^2$$
 मान सबसे छोटी भुजा = x सेमी० तब, सबसे बड़ी भुजा = $\left(\frac{5x}{3}\right)$ सेमी०, तीसरी भुजा = 8 सेमी०.

$$\left(\frac{5x}{3}\right)^2 = x^2 + (8)^2 \Rightarrow \left(\frac{25x^2}{9} - x^2\right) = 64 \Rightarrow \frac{(25x^2 - 9x^2)}{9} = 64$$

$$\Rightarrow 16x^2 = (64 \times 9) \Rightarrow x^2 = (4 \times 9) = 36 = (6)^2 \Rightarrow x = 6.$$

. अभीष्ट योग =
$$\left(\frac{5x}{3} + x\right) = \frac{(5x + 3x)}{3} = \frac{8x}{3} = \frac{(8 \times 6)}{3}$$
 सेमी॰ = 16 सेमी॰.

सबसे छोटा कोण
$$[(3x+2x)$$
 का 20%]= $\left[(5x)\times\frac{20}{100}\right]^{\circ}=x^{\circ}$.

$$\Rightarrow 3x + 2x + x = 180 \Rightarrow 6x = 180 \Rightarrow x = 30.$$

$$4x + 5x + 9x \Rightarrow 180 \Rightarrow 18x = 180 \Rightarrow x = 10$$
.

$$x^2 = (126)^2 + (x - 42)^2 \Rightarrow x^2 = (126)^2 + x^2 - 84x + (42)^2$$

$$\approx 84x = (126)^2 + (42)^2 = (42 \times 3)^2 + (42)^2 = (42)^2 \times (3^2 + 1^2)$$

$$\Rightarrow 84x = 42 \times 42 \times 10 \Rightarrow x = \frac{42 \times 42 \times 10}{84} = 210.$$

$$\frac{\ln \alpha \cdot (\Delta ABC)}{\alpha \cdot (\Delta PQR)} = \frac{BC^2}{QR^2} \Rightarrow \frac{64}{121} = \left(\frac{BC}{QR}\right)^2.$$

$$\left(\frac{BC}{QR}\right)^2 = \frac{64}{121} = \left(\frac{8}{11}\right)^2 \Rightarrow \frac{BC}{QR} = \frac{8}{11} \Rightarrow \frac{x}{15 \cdot 4} = \frac{8}{11}, \text{ off } BC = x \text{ सोमीo.}$$

$$x = \frac{8 \times 15 \cdot 4}{11} = (8 \times 1 \cdot 4) = 11 \cdot 2.$$

108.
$$\angle A = \left(\frac{\pi}{4} \times \frac{180}{\pi}\right)^{\circ} = 45^{\circ}, \angle B = \left(\frac{\pi}{6} \times \frac{180}{\pi}\right)^{\circ} = 30^{\circ}.$$

 $\therefore \angle C = 180^{\circ} - (45^{\circ} + 30^{\circ}) = (180^{\circ} - 75^{\circ}) = 105^{\circ}.$

109.
$$(A \rightarrow F, B \rightarrow E, C \rightarrow D)$$

∴ $\triangle ABC \sim \triangle FED$.

110. त्रिभुज का क्षेत्रफल =
$$\frac{1}{2}$$
 × आधार × ऊँचाई.

$$\therefore \frac{1}{2} \times 5x \times (3x-1) = 60 \Rightarrow 5x(3x-1) = 120$$

$$15x^2 - 5x - 120 = 0 \Rightarrow 3x^2 - x - 24 = 0$$

$$\Rightarrow 3x^2 - 9x + 8x - 24 = 0 \Rightarrow 3x(x-3) + 8(x-3) = 0$$

$$\Rightarrow$$
 $(x-3)(3x+8)=0 \Rightarrow x=3$ [: x an मान ऋणात्मक नहीं हो सकता]

$$5x = (5 \times 3) = 15$$
 सेमी॰, $(3x - 1) = (3 \times 3 - 1)$ सेमी॰ = 8 सेमी॰.

तीसरी भुजा =
$$\sqrt{(15)^2 + 8^2} = \sqrt{225 + 64} = \sqrt{289} = 17$$
 सेमी॰.

अतः त्रिभुज की भुजायें 15 सेमी०, 8 सेमी० तथा 17 सेमी० हैं.

$$AB = 20$$
 मीटर, $CD = 28$ मीटर तथा $BD = 17$ मीटर.

समकोण ΔBED से :

$$BE^2 = (BD^2 - DE^2) = (17)^2 - (8)^2 = (289 - 64) = 225$$

$$\Rightarrow BE^2 = (15)^2 \Rightarrow BE = 15$$
 मीटर.

$$\Rightarrow AC = BE = 15$$
 मीटर.

112.
$$\frac{ar (\Delta ABC)}{ar (\Delta DEF)} = \frac{h_1^2}{h_2^2} = \left(\frac{h_1}{h_2}\right)^2 \Rightarrow \left(\frac{h_1}{h_2}\right)^2 = \frac{81}{225} = \left(\frac{4}{15}\right)^2 \Rightarrow \frac{h_1}{h_2} = \frac{9}{15} = \frac{3}{5}.$$

 $\therefore h_1: h_2 = 3:5.$

113.
$$\frac{BC}{BC} = \sin B \operatorname{deff} \frac{CD}{CA} = \sin A = \sin (90^{\circ} - B) = \cos B.$$

$$\sin^2 B + \cos^2 B = 1 \Rightarrow \frac{CD^2}{BC^2} + \frac{CD^2}{CA^2} = 1 \Rightarrow \frac{1}{CD^2} = \frac{1}{BC^2} + \frac{1}{CA^2}$$

$$h_1 < a, h_2 < b$$
 तथा $h_3 < c$

$$\Rightarrow (h_1 + h_2 + h_3) < (a+b+c) \Rightarrow p < q$$
.

115.
$$\angle C = 2 \angle A \Rightarrow \angle C + \angle A = 3 \angle A$$
.

परन्तु
$$\angle C + \angle A = 90^\circ$$
. अत: $3\angle A = 90^\circ \Rightarrow \angle A = 30^\circ$.

$$\therefore \angle C = (2 \times 30^{\circ}) = 60^{\circ}.$$

$$\frac{AB}{BC} = \tan C = \tan 60^{\circ} = \sqrt{3} \Rightarrow AB = \sqrt{3}BC$$
.

$$\therefore AB^2 = 3BC^2.$$

अब ΔADG में AD का मध्य बिन्दु E है तथा $DG \parallel EF$ $AE = ED \Rightarrow AF = FG$

BC का मध्य बिन्दु D है तथा DG || BF

अतः CF का मध्य बिन्दु G है.

$$CG = GF$$

3fd:
$$(AF = FG = GC) \Rightarrow AF = \frac{1}{3}AC$$
.

माना प्रारम्भिक बिन्दु O से पूर्व की ओर OA = 150 मीटर.

अब
$$A$$
 से उत्तर की ओर $AB = 200$ मीटर.

$$OB^2 = (OA)^2 + (AB)^2$$

$$= (150)^2 + (200)^2 = (22500 + 40000) = 62500$$

$$B = \sqrt{62500} = 250$$

⇒
$$OB = \sqrt{62500} = 250$$
 मीटर.

