

Material Definition

Koi, Tatsumi

SLAC National accelerator Laboratory

Contents

SLAC

A volume in simulation geometry must have information that describes its material

How to define a material by hand

How to use predefined material database of Geant4

Geant4 Tutorial Cource

G4Material

G4Material contains material properties

- elemental, isotope composition
- density
- temperature, pressure and state(Solid, Liquid, Gas and Undefined) of the material
 - Several physics model use these information
- chemical formula
- ionization parameters
- MaterialPropertiesTable
 - For extension

G4Material can be created from

- Single G4Element
- Multiple G4Elements
- Other G4Materials

Various examples will be shown in later slides

Pointer of G4Material object will be registered into G4LogicalVolume

G4Element contains element properties

- Z as atomic number
- A as mass

G4Element be created from

- Z and A
 - Assuming natural abundance of isotope
 G4Element* elH =
 new G4Element("Hydrogen", symbol="H", z=1., a=1.01*g/mole);
- G4Isotope(s)
 - User can define isotope composition of an element
 - An example will be shown in slide #8

contains isotope properties

- Z as atomic number
- N as number of nucleon
- m as isomer level
 - Excitation energy for isomer level is not automatically defined

be created from

Z and N
 G4Isotope* isoU235 =
 new G4Isotope("U235", iz=92, in=235);

Examples of defining material #1

SLAC

Single element material

```
G4Material* IAr = new G4Material("liquidArgon",z=18.,a= 39.95*g/mole, density= 1.390*g/cm3);
```

Molecule is made of several elements

composition by number of atoms

```
G4Element* elH =
new G4Element("Hydrogen",symbol="H",z=1.,a=1.01*g/mole);
G4Element* elO =
new G4Element("Oxygen",symbol="O",z=8., a = 16.00*g/mole);
G4Material* H2O =
new G4Material("Water",density=1.000*g/cm3,ncomp=2);
H2O->AddElement(elH, natoms=2);
H2O->AddElement(elO, natoms=1);
```

Geant4 Tutorial Cource

Examples of defining material #2

SLAC

```
Compound: composition by fraction of mass
  G4Element*elN =
    new G4Element(name="Nitrogen",symbol="N",z= 7.,a = 14.01*g/mole);
  G4Flement*elO =
    new G4Element(name="Oxygen",symbol="O",z=8.,a=16.00*g/mole);
  G4Material* Air =
    new G4Material(name="Air",density=1.290*mg/cm3,ncomponents=2);
  Air->AddElement(elN, fracMass=70.0*perCent);
  Air->AddElement(elO, fracMass=30.0*perCent);
Composition of compound materials (and elements)
  G4Element* elC = ...: // define "carbon" element
  G4Material* SiO2 = ...; // define "quartz" material
  G4Material* H2O = ...; // define "water" material
  G4Material* Aerog =
     new G4Material("Aerogel", density 0.200*g/cm3, ncomponents=3);
  Aerog->AddMaterial(SiO2,fractionmass=62.5*perCent);
  Aerog->AddMaterial(H2O ,fractionmass=37.4*perCent);
  Aerog->AddElement(elC ,fractionmass= 0.1*perCent);
```

Examples of defining material #3

SLAC

```
A material from user defined abundance element
G4Isotope* isoU235 =
 new G4Isotope("U235", iz=92, ia=235, a=235.043*g/mole);
G4Isotope* isoU238 =
 new G4Isotope("U238", iz=92, ia=238, a=238.050*g/mole);
G4Flement* elenrichedU =
 new G4Element("enriched U", symbol="U", ncomponents=2);
elenrichedU->AddIsotope(isoU235, abundance=80.*perCent);
elenrichedU->AddIsotope(isoU238, abundance=20.*perCent);
G4Material* matenrichedU=
 new G4Material("U for nuclear power generation", density= 19.050*g/
cm3, ncomponents = 1, kStateSolid);
matenrichedU>AddElement( elenrichedU, fractionmass = 1.00);
```

Predefined material database in Geant4

NIST database for material is imported inside Geant4

http://physics.nist.gov/PhysRefData

Guarantee the best accuracy for major parameters

- Density
- Mean excitation potential
- Chemical bounds
- Element composition
- Isotope composition

Easy access through G4NistManager and UI commands

What materials are in the predefined database

SLAC

NIST elementary materials

Up to Californium (Cf, Z=98)

NIST compounds and mixtures

 A-150 Tissue-Equivalent Plastic, Air Dry (near sea level) and many others

HEP and Nuclear Materials

liquid Ar, PbWO4, CR39 and so on

Space Materials

Kevlar, Dacron and so on

Bio Chemical Materials

Cytosine, thymine and so on

Total number of predefined material in the database is 315

How to use predefined material data base

Get Manager

G4NistManager* manager = G4NistManager::GetPointer();

Get Element

```
G4Element* elm = manager->FindOrBuildElement( "C");
G4Element* elm = manager->FindOrBuildElement( Z=6 );
```

Get predefined material

```
G4Material* mat = manager->FindOrBuildMaterial( "G4_C");
G4Material* mat = manager->FindOrBuildMaterial( "G4_Galactic");
G4Material* mat = manager->FindOrBuildMaterial( "G4_WATER");
```

Get full list of predefined material

manager->ListMaterials("all");

UI commands

```
/material/nist/printElement --- print defined elements
/material/nist/listMaterials --- print defined materials
```

equivalent to manager->ListMaterials("all");

Tips for material implementation

- Geant4 does not allow pure vacuum (material has a density of zero).
 - Make an ultra-low density material.
 - G4_Galactic (density = 1.0⁻²⁵ [g/cm³]) in predefined database is one of such examples.
- Use the predefined material database as much as possible
 - Easy and acute
- Cast a density of material
 - Create new material from the material with a target density
 - predefined database has a method
 "BuildMaterialWithNewDensity" for converting density