18.06 Recitation March 31

Kai Huang

Solving Ax = b

- If $A_{n\times n}$ has rank n, then Ax=b always has a unique solution.
- \bullet x is a least squares solution if _____ is as small as possible.
- \bullet x is a least norm if furthermore _____ is as small as possible.
- Given $A = U\Sigma V^T = U_1\Sigma_r V_1^T$, the solution $x = \underline{}$ is always a least-squares, least-norm solution.
- The matrix _____ is called the pseudoinverse of A and is also known as the Moore-Penrose inverse.

Basis, dimension

- The vectors $\vec{v_1}, \vec{v_2}, ..., \vec{v_n}$ are linearly independent if $c_1 \vec{v_1} + c_2 \vec{v_2} + ... + c_n \vec{v_n} = \vec{0}$ implies all $c_i = 0$.
- The vectors $\vec{v_1}, \vec{v_2}, ..., \vec{v_n}$ span the vector space S if S is all linear combinations of the $\vec{v_i}$.
- The vectors $\vec{v_1}, \vec{v_2}, ..., \vec{v_n}$ are a basis for S if they are linearly independent and they span S.
- Every basis has the same number of elements, this number is called the **dimension of a space** S.

Orthogonal complement

- If V and W are vector subspaces of \mathbb{R}^n , we say that V and W are orthogonal if for every $v \in V$, and $w \in W$, we have _____.
- V^{\perp} is the set of all $w \in \mathbb{R}^n$ such that w is perpendicular to each vector $v \in V$.
- $\bullet \ V = (V^{\perp})^{\perp}$
- $Col(A)^{\perp} = Leftnull(A)$
- $\operatorname{Row}(A)^{\perp} = \operatorname{Null}(A)$
- $\operatorname{Null}(A)^{\perp} = \operatorname{Row}(A)$
- Leftnull $(A)^{\perp} = \operatorname{Col}(A)$

Problems

- 1. Let $A = \begin{pmatrix} 1 & a & 0 \\ 0 & 1 & a \\ 0 & 0 & 1 \end{pmatrix}$, a is a real number (could be 0).
 - (a) What is the colume space of A? What is the rank of A?
 - (b) Does Ax = b always has a solution? (not just least norm) Why?

1

- (c) Solve the equation Ax = b where $b = \begin{pmatrix} 0 \\ 1 \\ 2 \end{pmatrix}$
- 2. Let $A = \begin{pmatrix} 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 \end{pmatrix}$.
 - (a) What is the rank of A?
 - (b) Write a basis for the solutions of Ax = 0. What is the dimension of this space?
 - (c) Does $A^Ty=\begin{pmatrix}1\\1\\0\\-1\end{pmatrix}$ has a solution? If not, find the least norm.
 - (d) Solve $A^Ty = 0$. Can you find the result without calculating A^Ty ?
- 3. (a) Show that $rank(A + B) \le rank(A) + rank(B)$
 - (b) Show that $rank(AB) \le min\{rank(A), rank(B)\}.$
- (c) Let A be an $m \times n$ matrix and B be an $n \times k$ matrix. Suppose we have AB = 0. Show that $\operatorname{rank}(A) + \operatorname{rank}(B) \leq n$.