

Virtual Reality

Team 2:

Akshay Mulay Xiting Wang Wenpei Wang Balaji Katakam Swapnil Panchal Jiancheng Zhao Jianjie Gao

Stevens Institute of Technology

MIS 760 – Fall 2017

Professor Michael Parfett

What is VR?

Virtual Reality

- •Three Dimensional, computer generated environment
- •A person becomes part of the environment, able to manipulate objects or perform actions
- •Sense of Presence : Hardware + Software + Sensory Synchronicity
- •Sensory Synchronicity is where person realizes of being in an artificial environment

Discovery

- •Ideas date back to 1930 by Stanley Weinbaum (Pygmalion's Spectacles)
- •1950s Morton Heilig's Sensorama
- •1960 First Head Mounted VR
- •1961 Headsight (First motion tracking HMD)
- •1965 Ultimate Display by Ivan Sutherland
- •1993 Vega announced new VR glasses

Applications

- Virtual Movies and Video games
- Architecture
- Sports

Akshay Mulay

Problem Statement

Current Issues

•1. MOTION SICKNESS

- People get uncomfortable pretty soon

MOVING IN VR

- Limited moving space

•3. HARDWARE COST

- HTC headset would cost \$599

•1.Integration of Constraints into a VR Environment

- -Geometry constraints
- -Virtual sensation

Examples and Applications:

Virtual Reality technology had been potential to change the world. Many industries can use this method to improve product performance and customer experience. Many companies have been invested in VR for expecting to increase working efficiency.

Examples and Applications:

Wenpei Wang

Education: Astronomy students can learn about the solar system and how it works by physical engagement with the objects within. They can move planets, see around stars and track the progress of a comet. This also enables them to see how abstract concepts work in a three dimensional environment which makes them easier to understand and retain.

Healthcare: A modern use of this technology is in robotic operation. This is where surgery is performed using a robotic device – controlled by a human surgeon, which reduces time and risk of complications. Virtual reality has also been used for training purposes and, in the field of remote telesurgery in which surgery is performed by the surgeon at a separate location to the patient.

Military: Virtual reality has been used by the military especially useful for training soldiers for battle situations or other dangerous settings where they have to learn how to react properly. They can re-enact a particular scenario, for example, engagement with an enemy in an environment in which they feel this but without the real world risks. This has proven to be safer and less costly than traditional training methods.

Examples and Applications:

Businesses: Companies can use this to test drive a product in the early stages of development but without any additional costs (or risks) to themselves. Also, it was useful for companies who produce dangerous or potentially harmful products which need to be estimated before use. They can test their product within a virtual environment but at no risk to themselves or their employees. And virtual reality technology has advanced to the stage where it has a high degree of efficiency.

Engineering: Car manufacturers use virtual reality for prototyping purposes during the design process. This enables them to create several versions which are then tested and changed as per the results. This removes the need to build a physical prototype and speeds up the development stage. The result is a cost effective streamlined process. This also allows the design team to observe their project within a safe environment and make changes as and where necessary. This saves both time and money.

Entertainment: The technology would create a view at different angles. Plus they can walk through this building, visiting different rooms to find out more about how people lived at that special time in history. They are using a tracking system which follows their movements and feeds this information back to a computer. The computer replies by changing the pictures in front of the person to match their change in perception.

SWOT Analysis

Chamba	
Call III III	l
1870	,

Balaji Katakam

Strengths	Weaknesses
Real-Time Performance Feedback	The Interface Challenge 1: Interaction Methods
Cuing Stimuli to Support "Error-Free Learning"	The Interface Challenge 2: Wires and Displays
Self-Guided Exploration and Independent	Immature Engineering Process
 Interface Modification Contingent on User's Impairments 	Platform Compatibility
Complete Naturalistic Performance Record	Front-End Flexibility
Safe Testing and Training Environment	Back-End Data Extraction, Management, Analysis, Visualization
Gaming Factors to Enhance Motivation	Side Effects
Low-Cost Environments That Can be Duplicated and Distributed	

Opportunities	Threats
Emerging Tech 1: Processing Power and Graphics/ Video Integration	Too Few Cost/Benefit Proofs Could Impact VR
Emerging Tech 2: Devices and Wires	Rehabilitation Adoption
Emerging Tech 3: Real-Time Data Analysis and Intelligence	Aftereffects Lawsuit Potential
Gaming-Industry Drivers	Ethical Challenges
Close-Knit VR Rehabilitation Scientific and Clinical Community	Limited Awareness/Unrealistic Expectations
Academic and Professional Acceptance	
Integration of VR with Physiological Monitoring and Brain Imaging	

CMM Model

CMM 0

Very few companies have developed applications in the field of VR with limited knowledge base

Balaji Katakam

CMM 1 (Initial Stage)

Analyzing the current environment and developing client specific requirement

CMM 2 (Repeatable, Opportunistic)

Process related to VR Application is defined

CMM 3 (Defined, Systematic)

Use, develop and integrate existing toolsets/technologies to develop VR based application

CMM 4 (Manageable, Measurable)

Application developed and deployed according to client requirement

CMM 5 (Optimization)

Gain feedback and insights from client and improve product accordingly

AS-IS TO-BE Analysis

As-IS	То-Ве
1. It offers a new way of seeing our world	1. Experience the world anywhere.
2. It will take a while for VR to gain traction	2. The future of VR could be our next computing platform.
3. VR Is The Evolution Of Communication	3. Virtual reality will eventually impact all of the senses.
4. Has not been adopted easily, since its expensive now.	4. Will be cheaper in the future.
5. VR currently focuses on Health, Communication and Entertainment.	5. We can see more applications in the future.
6. Currently it involves a lot of high end hardware components.	6. The Components would be more compact and portable.
7. Space Constraints in terms of portability.	7. Getting rid of space constraints.

ANSOFF Matrix

Products

Swapnil Panchal

Existing Products

New Products

Existing Markets

Market Penetration

Increase areas of application Increase customer base

Product Development

Design compact and portable devices Enhanced visualization and haptic feedback

Markets

New Markets

Market Development

Economical solutions to attract prospective customers Gain Global Share

Diversification

Enter new market segments Develop customer friendly products

IT Strategy

1870

Jiancheng Zhao

perspective

- 1) Be the leadership strategy in the enterprise
- 2) Make the strategy transparent to the customers

plan

- 1) Popularize the market
- 2) Develop new & easily available product
- 3) Infrastructure construction

PLOY

- 1) Catch up with the latest technology
- 2) Fix portability problem

position

- 1) Infinite possible
- 2) Better experience for customers --immersion & sense of reality
- 3) forefront of the newest technology

pattern

- 1) innovation
- 2) value customer experience
- 3) open source

Jiancheng Zhao

Strobe-Strois Matrix

Business Strategy

most competitive advantage

Product: high refresh

rate

ease use

Company: lots of

fundings from other

business

OpenVR software development kit

more open-source

Game player young

Entertainment

VR Alternatives

Jianjie Gao

What can we do?

VR: Alternative Details

Jianjie Gao

VR

AR

No VR

- VR needs strong hardware and software support
- Without sufficient support from infrastructures, VR will be meaningless.

MR

- AR could help the define and interact with the world
- Direct reflect messages on real world
- AR is transparent, an unfiltered view of the real world

GL/ISS

- Needs to continue increasing resolution to make video feeling real
- Increased waste on the processing ability of CPU and GPU

VR: Alternatives Evaluation

NEED	VR	AR	No VR
Transparent real world	✗ (Opaque)	√ (Transparent)	🗶 (Opaque)
Viewed objects	√ (Large)	X (Small)	X (Small)
Increase hardware availability	🗶 (Low)	√ (Higher)	√ (Higher)
Increase software availability	X	٧	√
Use of system ability	√ (Higher)	✔ (High)	X
Portability	×	٧	X
Price	X (Higher)	√ (High)	√ (Low)
Future	٧	v	X

Jianjie Gao

Recommendation

Next Steps

Jianjie Gao

Description	Assigned to	Issues	
Hardware Development	Researchers, Hardware Engineers	Portability, More Devices	
Software Development	Software Developers	Program Environment, Content	
Market Direction Decision	CEO, CIO, CTO	AR/VR, Technologies and Information included in the VR System	

References

- Schnipper, M., Compiled by Adi Robertson and Michael Zelenko, Hamburger, E., Thonis, C. M., Newton, C., & Text by Michael Zelenko, Photography by Sean O'Kane. (n.d.). The Rise and Fall and Rise of Virtual Reality. Retrieved October 01, 2017, from https://www.theverge.com/a/virtual-reality/oral_history
- 2. Sumra, S. C. (2017, July 12). Virtual reality v augmented reality: Which is the future? Retrieved October 01, 2017, from https://www.wareable.com/vr/virtual-reality-vs-augmented-reality-which-is-the-future
- Robertson, A. (2017, May 12). Replacing VR and AR with 'mixed reality' is good for Microsoft and bad for the rest of us. Retrieved October 01, 2017, from https://www.theverge.com/2017/5/12/15625972/microsoft-build-windows-mixed-reality-hololens-vr-confusing
- Oculus Rift Step Into The Rift Reveal Trailer https://www.youtube.com/watch?v=fHpxcCeK1vs

Questions, Comments, Concerns?

