第一次编程作业

刘子源 无研223 2022310709

一.数据预处理

分析数据,共有10000个样本,每个样本有12个变量,其中churn是取值为0和1的标签, 其余11个变量为特征,我们要根据这11个变量来预测churn。

	customer_id	credit_score	country	gender	age	tenure	balance	products_number	credit_card
0	15634602	619	France	Female	42	2	0.00	1	1
1	15647311	608	Spain	Female	41	1	83807.86	1	0
2	15619304	502	France	Female	42	8	159660.80	3	1
3	15701354	699	France	Female	39	1	0.00	2	0
4	15737888	850	Spain	Female	43	2	125510.82	1	1
9995	15606229	771	France	Male	39	5	0.00	2	1
9996	15569892	516	France	Male	35	10	57369.61	1	1
9997	15584532	709	France	Female	36	7	0.00	1	0
9998	15682355	772	Germany	Male	42	3	75075.31	2	1
9999	15628319	792	France	Female	28	4	130142.79	1	1

观察发现,customer_id是无用的变量,需要将其去除。非数值的变量有国籍和性别。可知一共有3个国家: France、Spain和Germany,其样本量分别为5014、2477和2509;一共有2种性别: Male和Female,起样本量分别为5457、4543。对于balance等特征,不同国家的群体的均指和方差有较大的差异;对于estimated_salary等特征,男性群体和女性群体的均值方差也有差异。因此我们认为性别和国家是有信息量的特征,不应该去除,所以我将其进行编码,转化为数值变量。在数据归一化中,我尝试了均匀归一化、Z-score和不做处理三种方法,Z-score的方法得到的结果最好,后续实验均采用此方法。

	credit_score	country	gender	age	tenure	balance	products_number	credit_card	έ
0	-0.003375	-1.086832	-2.200969	0.027985	-0.360181	-1.964483e- 05	-1.567147	1.417293	
1	-0.004552	0.363244	-2.200969	0.018894	-0.479732	1.880593e- 06	-1.567147	-3.395246	
2	-0.015899	-1.086832	-2.200969	0.027985	0.357121	2.136285e- 05	4.344385	1.417293	
3	0.005189	-1.086832	-2.200969	0.000711	-0.479732	-1.964483e- 05	1.388619	-3.395246	
4	0.021352	0.363244	-2.200969	0.037077	-0.360181	1.259169e- 05	-1.567147	1.417293	
9995	0.012896	-1.086832	1.832325	0.000711	-0.001530	-1.964483e- 05	1.388619	1.417293	
9996	-0.014401	-1.086832	1.832325	-0.035655	0.596222	-4.909874e- 06	-1.567147	1.417293	

二、公式推导

对逻辑回归公式推导如下:

定义 σ 为sigmoid函数

$$\sigma(x) = \frac{1}{1 + e^{-x}} \tag{1}$$

记训练样本集为 $\{x_n,t_n\}_{n=1}^N$,则有负对数似然函数

$$E(\omega) = -\sum_{n=1}^{N} \{t_n ln y_n + (1-t_n) ln (1-y_n)\}$$

加入正则项后得到损失函数

对参数 ω 求导可得

$$rac{\partial L}{\partial \omega} = \sum_{n=1}^N (y_n - t_n) \phi_n + \lambda \omega = \sum_{n=1}^N (\sigma(\omega^T x) - t_n) x_n + \lambda \omega$$

记学习率为lpha,则随机梯度算法为 $\omega^{(k+1)}=\omega^{(k)}-lpharac{\partial L}{\partial \omega^k}$

对MSE回归公式推导如下:

使用MSE作为损失函数,有

$$L = rac{1}{2}\{\sum_{i=1}^{N}(\omega^{T}x_{i}-t_{i})^{2}+\lambda||\omega||^{2}\}$$
 (5)

$$rac{\partial L}{\partial \omega} = \sum_{i=1}^{N} (\omega^T x_i - t_i) x_i + \lambda \omega$$
 (6)

三、模型训练及结果

设置训练集、验证集和测试集,分别分配8000、1000、1000个数据,验证集用于选取参数 λ 。用上述推导公式进行前向传播和梯度反传训练,并进行了一系列<u>测试。</u>

最初选择每次传入batch进行训练,实验发现当batch取到2000以上时模型才会稳定,否则会出现如图所示的震荡现象

考虑到样本量并不大,故直接每次传入所有样本计算。为防止过拟合现象,另学习率随迭 代次数的增加而减小,即

$$lpha = lpha_0 e^{-T imes epoch}$$
 (7)

其中lpha=0.0001,T为下降速率,可选取0.0001,实验证明此方法可有效阻止过拟合现象。

对于逻辑回归模型,epoch为1000时,模型欠拟合

设置epoch为10000,模型可有效收敛,下图为loss和accuracy、recall、precision的变化:

accuracy很快达到了0.8以上,recall和precision也可以逐渐收敛,未出现过拟合现象,这是因为我们在目标函数中设置了正则项,以及逐渐减小的学习率。

对MSE回归模型,超参数设置与上述相同,设置epoch为10000,模型可有效收敛,下图为loss和accuracy、recall、precision的变化:

其整体的变化趋势与逻辑回归相似,但是曲线变化看起来更加稳定一些,可能是因为对于分类问题,回归中没有sigmoid激活函数,其相对而言更容易训练一些,当然泛化性自然会差一些,可通过增加二次项提高泛化能力。