Полученное задание

Задача №2.

Для заданного набора данных проведите обработку пропусков в данных для одного категориального и одного количественного признака. Какие способы обработки пропусков в данных для категориальных и количественных признаков Вы использовали? Какие признаки Вы будете использовать для дальнейшего построения моделей машинного обучения и почему? Набор данных: https://scikit-

learn.org/stable/modules/generated/sklearn.datasets.load_wine.html#sklearn.datasets.load_wine

Дополнительные требования: для пары произвольных колонок данных построить график "Диаграмма рассеяния"

Анализ набора данных Wine

Набор данных Wine содержит информацию о химическом составе вин, выращенных в одном регионе Италии, но от трех разных культиваторов. Данные включают 13 количественных признаков (например, алкоголь, яблочная кислота, зола и т.д.) и целевую переменную - сорт винограда (3 класса). В этом анализе мы обработаем пропуски в данных и подготовим признаки для моделирования.

Импорт необходимых библиотек

```
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
from sklearn.datasets import load_wine
```

Загрузка и предварительный просмотр данных

```
# Загрузка данных
wine = load_wine()
wine_df = pd.DataFrame(data=wine.data, columns=wine.feature_names)
wine_df['target'] = wine.target

# Просмотр первых строк данных
print(wine_df.head())

# Проверка информации о данных
print("\nИнформация о данных:")
print(wine_df.info())

# Проверка наличия пропусков
print("\nКоличество пропусков в каждом столбце:")
print(wine_df.isnull().sum())
```

	alcohol	malic_acid	ash	alcali	.nity_of_ash	magnesium	total_phen	ols	\
0	14.23	1.71	2.43		15.6	127.0	2	.80	
1	13.20	1.78	2.14		11.2	100.0	2	. 65	
2	13.16	2.36	2.67		18.6	101.0	2	.80	
3	14.37	1.95	2.50		16.8	113.0	3	.85	
4	13.24	2.59	2.87		21.0	118.0	2	.80	
	flavanoid	s nonflava	noid_p	henols	proanthocya	nins colo	_intensity	hue	\
0	3.0	6		0.28	:	2.29	5.64	1.04	ļ
1	2.7	6		0.26	:	1.28	4.38	1.05	,
2	3.2	4		0.30	:	2.81	5.68	1.03	;
3	3.4	.9		0.24	;	2.18	7.80	0.86	i
4	2.6	9		0.39		1.82	4.32	1.04	,

	od280/od315_of_diluted_wines	proline	target
0	3.92	1065.0	0
1	3.40	1050.0	0
2	3.17	1185.0	0
3	3.45	1480.0	0
4	2.93	735.0	0

Информация о данных:

<class 'pandas.core.frame.DataFrame'>

RangeIndex: 178 entries, 0 to 177 Data columns (total 14 columns):

#	Column	Non-Null Count	Dtype
0	alcohol	178 non-null	float64
1	malic_acid	178 non-null	float64
2	ash	178 non-null	float64
3	alcalinity_of_ash	178 non-null	float64
4	magnesium	178 non-null	float64
5	total_phenols	178 non-null	float64
6	flavanoids	178 non-null	float64
7	nonflavanoid_phenols	178 non-null	float64
8	proanthocyanins	178 non-null	float64
9	color_intensity	178 non-null	float64
10	hue	178 non-null	float64
11	od280/od315_of_diluted_wines	178 non-null	float64
12	proline	178 non-null	float64
13	target	178 non-null	int64

dtypes: float64(13), int64(1)

memory usage: 19.6 KB

None

```
alcohol
                                   0
malic_acid
                                   0
ash
                                   0
alcalinity_of_ash
magnesium
                                   0
total_phenols
                                   0
flavanoids
                                   0
nonflavanoid_phenols
                                   0
proanthocyanins
                                   0
color_intensity
                                   0
hue
                                   0
od280/od315_of_diluted_wines
                                   0
proline
                                   0
target
dtype: int64
```

Искусственное создание пропусков для демонстрации

Поскольку в исходном наборе данных пропусков нет, мы искусственно создадим их в двух столбцах:

- 'alcohol' (количественный признак)
- 'hue' (категориальный признак после дискретизации)

```
# Создание пропусков в количественном признаке (alcohol)

np.random.seed(42)

missing_indices = np.random.choice(wine_df.index, size=10, replace=False)

wine_df.loc[missing_indices, 'alcohol'] = np.nan

# Дискретизация признака 'hue' для создания категориального признака

wine_df['hue_category'] = pd.cut(wine_df['hue'], bins=3, labels=['low', 'medium', 'high'])

# Создание пропусков в категориальном признаке (hue_category)

missing_indices = np.random.choice(wine_df.index, size=5, replace=False)

wine_df.loc[missing_indices, 'hue_category'] = np.nan

# Проверка созданных пропусков

print("\nКоличество пропусков после их создания:")

print(wine_df[['alcohol', 'hue_category']].isnull().sum())
```

```
Количество пропусков после их создания:
alcohol 10
hue_category 5
dtype: int64
```

Обработка пропусков

Обработка пропусков в количественном признаке (alcohol)

Для количественных признаков распространенные стратегии:

- 1. Замена средним/медианным значением
- 2. Использование предсказательных моделей
- 3. Удаление строк с пропусками

Мы используем замену медианным значением, так как оно устойчиво к выбросам.

```
# Замена пропусков в alcohol медианным значением (исправленная версия)
alcohol_median = wine_df['alcohol'].median()
wine_df['alcohol'] = wine_df['alcohol'].fillna(alcohol_median)

print(f"\nMeдианное значение alcohol: {alcohol_median:.2f}")
print("Количество пропусков в alcohol после обработки:",
wine_df['alcohol'].isnull().sum())
```

```
Медианное значение alcohol: 13.05
Количество пропусков в alcohol после обработки: 0
```

Обработка пропусков в категориальном признаке (hue_category)

Для категориальных признаков распространенные стратегии:

- 1. Замена модальным значением (наиболее частой категорией)
- 2. Создание отдельной категории для пропусков
- 3. Удаление строк с пропусками

Мы используем замену модальным значением, так как это сохраняет все наблюдения.

```
# Замена пропусков в hue_category модальным значением (исправленная версия) hue_mode = wine_df['hue_category'].mode()[0] wine_df['hue_category'] = wine_df['hue_category'].fillna(hue_mode)

print(f"\nMодальное значение hue_category: {hue_mode}")

print("Количество пропусков в hue_category после обработки:", wine_df['hue_category'].isnull().sum())
```

```
Модальное значение hue_category: medium
Количество пропусков в hue_category после обработки: 0
```

Визуализация данных: Диаграмма рассеяния

Построим диаграмму рассеяния для пары признаков 'alcohol' и 'malic_acid' с цветовой кодировкой по целевому классу.

```
plt.figure(figsize=(10, 6))
colors = {0: 'red', 1: 'green', 2: 'blue'}
plt.scatter(wine_df['alcohol'], wine_df['malic_acid'],
c=wine_df['target'].map(colors), alpha=0.6)
plt.title('Диаграмма рассеяния: Alcohol vs Malic Acid')
plt.xlabel('Alcohol')
plt.ylabel('Malic Acid')
plt.grid(True)
# Создание легенды
from matplotlib.lines import Line2D
legend_elements = [Line2D([0], [0], marker='o', color='w', label='Class 0',
markerfacecolor='red', markersize=8),
                   Line2D([0], [0], marker='o', color='w', label='Class 1',
markerfacecolor='green', markersize=8),
                   Line2D([0], [0], marker='o', color='w', label='Class 2',
markerfacecolor='blue', markersize=8)]
plt.legend(handles=legend_elements)
plt.show()
```


Выбор признаков для моделирования

Для построения моделей машинного обучения я выберу следующие признаки:

1. Все исходные количественные признаки (13 признаков), так как они содержат важную информацию о химическом составе вина.

2. Исключу созданный категориальный признак 'hue_category', так как он является производным от исходного количественного признака 'hue'.

Причины выбора:

- Количественные признаки хорошо подходят для большинства алгоритмов машинного обучения.
- Химические показатели напрямую влияют на качество и сорт вина.
- Все признаки уже масштабированы и не требуют дополнительной предобработки (кроме уже выполненной обработки пропусков).

```
# Подготовка финального набора данных для моделирования

X = wine_df[wine.feature_names] # Все исходные количественные признаки

y = wine_df['target'] # Целевая переменная

print("\nФорма итогового набора данных для моделирования:", X.shape)
```

Форма итогового набора данных для моделирования: (178, 13)