

1

FIG. 1

FIG. 2

FIG. 3

FIG. 4

FIG. 5

FIG. 6

	F11	F12	F13	F14	F21	F22	F23	F24	F31	F32	F33	F34	F41	F42	F43	F44
F11	1	1	1	1	1	0	0	0	1	0	0	0	1	0	0	0
F12	1	1	1	0	0	1	0	0	0	1	0	0	0	1	0	0
F13	1	1	1	0	0	0	1	0	0	0	1	0	0	0	1	0
F14	1	1	1	0	0	0	1	0	0	0	1	0	0	0	0	1
F21	1	0	0	1	1	1	1	1	0	0	0	0	1	0	0	0
F22	0	1	0	0	1	1	1	1	0	1	0	0	0	1	0	0
F23	0	0	1	0	1	1	1	1	0	0	1	0	0	0	1	0
F24	0	0	1	1	1	1	1	1	0	0	0	1	0	0	0	1
F31	1	0	0	1	0	0	0	0	1	1	1	1	0	0	0	0
F32	0	1	0	0	0	1	0	0	1	1	1	1	0	1	0	0
F33	0	0	1	0	0	0	1	0	1	1	1	1	0	0	1	0
F34	0	0	0	1	0	0	0	1	1	1	1	1	0	0	0	1
F41	1	0	0	1	0	0	0	0	1	0	0	0	1	1	1	1
F42	0	1	0	0	0	1	0	0	0	1	0	0	1	1	1	1
F43	0	0	1	0	0	0	1	0	0	0	1	0	1	1	1	1
F44	0	0	0	1	0	0	0	1	0	0	0	1	1	1	1	1

FIG. 7

FIG. 8

FIG. 9(a)

FIG. 9(b)

FIG. 9(c)

06918500 DEDEZ-122

FIG. 10

FIG. 11

ADDRESS POINTER
INITIALIZATION

FIG. 13

FIG. 14

RECONFIGURABLE HARDWARE BOARD

470

FIG. 15

FIG. 16

FIG. 17

FIG. 18a

09918500 120304

FIG. 18b

FIG. 19

FIG. 21

FIG. 22 (2)

FPGA LOW BANK DATA

FIG. 24

FIG. 25

```

module register (clock, reset, d, q);
  input clock, d, reset;
  output q;
  reg q;

  always@(posedge clock or negedge reset)
    if(~reset)
      q = 0;
    else
      q = d;
endmodule

module example;
  wire d1, d2, d3;
  wire q1, q2, q3;
  reg signin;
  wire sigout;
  reg clk, reset;

  register reg1 (clk, reset, d1, q1);
  register reg2 (clk, reset, d2, q2);
  register reg3 (clk, reset, d3, q3);

  assign d1 = signin ^ q3;
  assign d2 = q1 ^ q3;
  assign d3 = q2 ^ q3;
  assign sigout = q3;

  // a clock generator
  always
  begin
    clk = 0;
    #5;
    clk = 1;
    #5;
  end

  // a signal generator
  always
  begin
    #10;
    signin = $random;
  end

  // initialization
  initial
  begin
    reset = 0;
    signin = 0;
    #1;
    reset =1;
    #5;
    $monitor($time, " %b, %b", signin, sigout);
    #1000 $finish;
  end
end module

```

Fig. 26

FIG. 27

```

module register (clock, reset, d, q);
  input clock, d, reset;
  output q;
  reg q;

  always@(post edge clock or negedge reset)
    if(~reset)
      q = 0
    else
      q = d;

endmodule

module example;
  wire d1, d2, d3; } Wire interconnection info
  wire q1, q2, q3; } 907
  reg signin; <-- Test-bench input -- 908
  wire signout; <-- Test-bench output -- 909
  reg clk, reset;

S1  register reg 1 (clk, reset, d1, q1); } Register component
S2  register reg 2 (clk, reset, d2, q2); } 901
S3  register reg 3 (clk, reset, d3, q3); } Register component
S4  assign d1 = signin ^ q3; } Combinational component
S5  assign d2 = q1 ^ 3;
S6  assign d3 = q2 ^ q3;
S7  assign signout = q3; } 902

S8 { // a clock generator
  always
  begin
    clk = 0;
    #5;
    clk = 1;
    #5;
  end } Clock component
  903

S9 { // a signal generator
  always
  begin
    #10;
    signin = $random;
  end } Test-bench component (Driver)
  904

S10 { // initialization
  initial
  begin
    reset = 0;
    signin = 0;
    #1;
  end } Test-bench component (initialization)
  905

S11 { reset = 1;
  #5;
} 906

S12 { Smonitor($time, "#b, #b", signin, signout);
  #1000 $finish;
end } Test-bench component (monitor)
end module

```

900
901
902
903
904
905
906

Fig. 28

FIG. 29

FIG. 30

HARDWARE MODEL

FIG. 31

FIG. 32

(IGNORE I/O AND CLOCK EDGE REGISTER)

FIG. 33

FIG. 34

FIG. 35a

FIG. 35b

139918500 - 120301

FIG. 35c

FIG. 35d

I/O PIN OVERVIEW OF FPGA LOGIC DEVICE

FPGA : 10K130V, 10K250V with 599-pin PGA package

FIG. 36

FPGA INTERCONNECT BUSES

FIG. 37

BOARD CONNECTION - SIDE VIEW

DUAL-BOARD
CONFIGURATION

FIG. 38(A)

SIX BOARD
CONFIGURATION

FIG. 38(B)

SIX-BOARD CONFIGURATION DIRECT-NEIGHBOR
AND ONE-HOP FPGA ARRAY – X TORUS, Y MESH

FIG. 39

FPGA ARRAY CONNECTION BETWEEN BOARDS

FIG. 40(A)

FIG. 40(B)

FIG. 41(A)

FIG. 41(B)

FIG. 41(C)

FIG. 41(D)

FIG. 41(E)

FIG. 41(F)

09918600-120301

FIG. 42

- 1840 2x30 Header, SMD, component side
- 1841 2x30 Receptacle, SMD, solder side
- 1842 2x45, 2x30 Header, thru hole, component side
- 1843 2x45, 2x30 Receptacle, thru hole, solder side
- 1844 R-pack, SMD, component side
- 1845 R-pack, SMD, solder side

FIG. 43

四庫全書

TWO-BOARD CONFIGURATION DIRECT-NEIGHBOR AND ONE-HOP FPGA ARRAY - X TORUS, Y MESH

FIG. 44

09918600,120301

99919600-120301

FIG. 46

FIG. 47

SIMULATION SERVER ARCHITECTURE

FIG. 48

FIG. 49

JOB SWAPPER

09918600.120301

FIG. 51

FIG. 52

FIG. 53

COMMUNICATION HANDSHAKE PROTOCOL

TOEGR "DOGST610

FIG. 54

FIG. 55

FIG. 56

**MEMFSM -
Memory Finite State
Machine in
CTRL_FPGA unit**

FIG. 58

EVALFSM - EVAL
Finite State Machine in
each FPGA logic device

FIG. 59

MEMORY READ DATA DOUBLE BUFFER

FIG. 60

SIMULATION WRITE/READ CYCLE

FIG. 61

SIMULATION DATA TRANSFER TIMING (WR_XSFR_EN=RD_XSFR_EN=1, WAIT_EVAL=0)

FIG. 62

FIG. 63

Typical User Design of PCI Add-on Cards

FIG. 64

Typical Hardware/Software Co-Verification

TOP SECRET//COMINT

FIG. 65

Typical Co-Verification by Using Emulator

FIG 66

: running time at emulation speed

The rest of the target system is running at full speed.

SIMULATION

FIG. 67

CO-VERIFICATION WITHOUT EXTERNAL I/O

FIG. 68

CO-VERIFICATION WITH EXTERNAL I/O

FIG. 69

CONTROL OF DATA-IN CYCLE

FIG. 70

CONTROL OF DATA-OUT CYCLE

FIG. 71

CONTROL OF DATA-IN CYCLE

TOEDE4100-D0981960

FIG. 72

CONTROL OF DATA-OUT CYCLE

FIG. 73

09918600 - 120301

FIG. 74

SHIFT REGISTER

FIG. 75(A)

HOLD TIME ASSUMPTION FOR SHIFT REGISTER

FIG. 75(B)

**MULTIPLE FPGA MAPPING
FOR SHIFT REGISTER**

**HOLD TIME VIOLATION
BY LONG CLOCK SKEW**

CLOCK GLITCH PROBLEM

FIG. 77(A)

FIG. 77(B)

TIMING ADJUSTMENT BY ADDING DELAY

(Prior Art)

FIG. 78

GLOBAL RETIMING

(Prior Art)

FIG. 79

TIGF LATCH

FIG. 80(A)

FIG. 80(B)

TIGF DFF

Original DFF

FIG. 81(A)

TIGF DFF and Edge Detector₂₄₉₁

FIG. 81(B)

TYPEDEFT "0098T660

GLOBAL TRIGGER SIGNAL

FIG. 82

RCC System

FIG. 83

FIG. 84

SINGLE-ROW FPGA PER BOARD

FIG. 85

TWO-ROW FPGA PER BOARD

FIG. 86

THREE-ROW FPGA PER BOARD

FIG. 87

FOUR-ROW FPGA PER BOARD

09918500 • 1200301

FIG. 88

INTERCONNECT FOR THREE-ROW PER BOARD

I/O Signals	Odd Board	Even Board	Common Board
	Connector-Group Pin-position	Connector-Group Pin-position	Connector-Group Pin-position
FPGA2_N	C1	S1	C1, S1
FPGA2_NH	C2	S3	C2, S3
FPGA1_NH	C3	S2	C3, S2
FPGA0_S	S4	C4	C4, S4
FPGA0_SH	S5	C6	C6, S5
FPGA1_SH	S6	C5	C5, S6

FIG. 89

FIG. 90

FIG. 91

FIG. 92

Clock Specification

FIG. 93

Clock Generation Scheduler w/ Slices

FIG. 94

Clock Generation Slice

FIG. 95

Clock Generation Scheduler and Slices

FIG. 96

TOEPLITZ-DQ8T660

FIG. 97

FIG. 98A

FIG. 98B

FIG. 99

FIG. 100

FIG. 101

FIG. 102

FIG. 103

FIG. 104

Xtrigger

FIG. 105