\Box

Ticker BBAS3.SA CSMG3.SA KLBN11.SA PETR4.SA TAEE11.SA VALE3.SA Date **2018-01-02** 100.000000 100.000000 100.000000 100.000000 100.000000 **2018-01-03** 101.275424 97.628277 98.736247 100.906351 100.139765 99.400775 **2018-01-04** 102.247215 96.123144 98.901095 101.087604 98.555430 99.808248 **2018-01-05** 102.247215 96.898488 97.967017 101.691857 99.021428 101.366232 2018-01-08 102.490169 97.491436 99.725279 102.900307 98.555430 103.619363 **2023-12-21** 235.461052 240.959337 153.854229 603.164896 311.920020 281.420937 **2023-12-22** 236.111589 242.038597 156.027106 608.966190 314.174863 279.300310 **2023-12-26** 238.280153 239.917524 155.813387 618.745453 314.842972 280.287519 **2023-12-27** 237.933198 238.149933 156.454572 619.242683 315.344037 282.993127 **2023-12-28** 240.231849 241.331565 158.306960 617.253699 320.521864 282.261850

nova_ordem = ['BBAS3.SA', 'PETR4.SA', 'CSMG3.SA', 'TAEE11.SA', 'KLBN11.SA', 'VALE3.SA']
dados = dados[nova_ordem]

dados.plot(figsize = (15,5));

1487 rows × 6 columns

dados_chg = dados.pct_change()
dados_chg = dados_chg.fillna(0)

```
ret_acc = (dados.iloc[-1] / dados.iloc[0])-1
print("Retorno acumulado:\n", ret_acc)
     Retorno acumulado:
      Ticker
     BBAS3.SA
                  1.402318
     PETR4.SA
                  5.172537
     CSMG3.SA
                  1.413316
     TAEE11.SA
                  2.205219
     KLBN11.SA
                  0.583070
     VALE3.SA
                  1.822618
     dtype: float64
ret_aa = ((dados.iloc[-1]/dados.iloc[0])**(1/5))-1
print("Retorno anualizado:\n", ret_aa)
     Retorno anualizado:
      Ticker
                  0.191588
     BBAS3.SA
     PETR4.SA
                  0.439106
     CSMG3.SA
                  0.192677
     TAEE11.SA
                  0.262326
     KLBN11.SA
                  0.096226
     VALE3.SA
                  0.230638
     dtype: float64
vol_aa = dados_chg.std()*np.sqrt(252)
print("Vol anualizada:\n", vol_aa)
     Vol anualizada:
     Ticker
     BBAS3.SA
                  0.390788
     PETR4.SA
                  0.463584
     CSMG3.SA
                  0.365302
     TAEE11.SA
                  0.205062
     KLBN11.SA
                  0.303409
     VALE3.SA
                  0.390549
     dtype: float64
```

#Calculo da correlação dos dados dados_chg.corr()

Ticker BBAS3.SA PETR4.SA CSMG3.SA TAEE11.SA KLBN11.SA VALE3.SA

Ticker						
BBAS3.SA	1.000000	0.640989	0.484127	0.439334	0.176719	0.354287
PETR4.SA	0.640989	1.000000	0.362899	0.337913	0.239288	0.421012
CSMG3.SA	0.484127	0.362899	1.000000	0.438240	0.170870	0.213889
TAEE11.SA	0.439334	0.337913	0.438240	1.000000	0.195351	0.192620
KLBN11.SA	0.176719	0.239288	0.170870	0.195351	1.000000	0.297905
VALE3.SA	0.354287	0.421012	0.213889	0.192620	0.297905	1.000000

dados[['CSMG3.SA', 'KLBN11.SA']].plot(figsize = (15,5));

port_pesos = [0, 0, 0.5, 0, 0.5, 0]
dados['PORT1'] = dados.dot(port_pesos)

display(dados)

Ticker	BBAS3.SA	PETR4.SA	CSMG3.SA	TAEE11.SA	KLBN11.SA	VALE3.SA	PORT1	
Date								
2018-01-02	100.000000	100.000000	100.000000	100.000000	100.000000	100.000000	100.000000	
2018-01-03	101.275424	100.906351	97.628277	100.139765	98.736247	99.400775	98.182262	
2018-01-04	102.247215	101.087604	96.123144	98.555430	98.901095	99.808248	97.512120	
2018-01-05	102.247215	101.691857	96.898488	99.021428	97.967017	101.366232	97.432753	
2018-01-08	102.490169	102.900307	97.491436	98.555430	99.725279	103.619363	98.608357	
2023-12-21	235.461052	603.164896	240.959337	311.920020	153.854229	281.420937	197.406783	
2023-12-22	236.111589	608.966190	242.038597	314.174863	156.027106	279.300310	199.032852	
2023-12-26	238.280153	618.745453	239.917524	314.842972	155.813387	280.287519	197.865456	
2023-12-27	237.933198	619.242683	238.149933	315.344037	156.454572	282.993127	197.302252	
2023-12-28	240.231849	617.253699	241.331565	320.521864	158.306960	282.261850	199.819262	
1487 rows × 7 columns								

dados[['CSMG3.SA', 'KLBN11.SA', 'PORT1']].plot(figsize = (15,5));

dados_chg = dados.pct_change()
dados_chg = dados_chg.fillna(0)

```
ret_acc = (dados.iloc[dados.count()[0]-1] / dados.iloc[0])-1
print("Retorno acumulado:\n", ret_acc)
ret_aa = ((dados.iloc[-1]/dados.iloc[0])**(1/5))-1
print("Ret aa:\n", ret_aa)
     Retorno acumulado:
      Ticker
     BBAS3.SA
                  1.402318
     PETR4.SA
                  5.172537
     CSMG3.SA
                 1.413316
     TAEE11.SA
                  2.205219
     KLBN11.SA
                  0.583070
     VALE3.SA
                 1.822618
     PORT1
                 0.998193
     dtype: float64
     Ret aa:
     Ticker
     BBAS3.SA
                  0.191588
     PETR4.SA
                 0.439106
     CSMG3.SA
                  0.192677
     TAEE11.SA
                 0.262326
     KLBN11.SA
                  0.096226
     VALE3.SA
                  0.230638
     PORT1
                 0.148491
     dtype: float64
vol_aa = dados_chg.std()*np.sqrt(252)
print("Vol aa:\n", vol_aa)
     Vol aa:
     Ticker
     BBAS3.SA
                  0.390788
                  0.463584
     PETR4.SA
     CSMG3.SA
                  0.365302
     TAEE11.SA
                  0.205062
     KLBN11.SA
                  0.303409
     VALE3.SA
                  0.390549
     PORT1
                  0.260533
     dtype: float64
#Calcular drawdown
ddown = pd.DataFrame()
for ativo in dados.columns:
 list = []
  for ind in range(dados.count()[0]):
   list.append((dados[ativo].iloc[ind]/dados[ativo].iloc[:ind+1].max()-1)*100)
 ddown[ativo]=list
ddown['Data']=dados.index.values
ddown.set_index(keys = 'Data', inplace = True)
#display(ddown)
print(ddown.min())
     BBAS3.SA
                -58,286996
     PETR4.SA
                -63.356055
     CSMG3.SA
                -54.029209
     TAEE11.SA
               -23.694037
     KLBN11.SA
                -42.009959
     VALE3.SA
                -43.724133
     PORT1
                 -46.258119
     dtype: float64
ddown[['CSMG3.SA', 'KLBN11.SA', 'PORT1']].plot(figsize = (15,5));
```



```
dados=dados.drop(['PORT1'], axis=1)
dados_chg=dados_chg.drop(['PORT1'], axis=1)
```

dados

Ticker	BBAS3.SA	PETR4.SA	CSMG3.SA	TAEE11.SA	KLBN11.SA	VALE3.SA
Date						
2018-01-02	100.000000	100.000000	100.000000	100.000000	100.000000	100.000000
2018-01-03	101.275424	100.906351	97.628277	100.139765	98.736247	99.400775
2018-01-04	102.247215	101.087604	96.123144	98.555430	98.901095	99.808248
2018-01-05	102.247215	101.691857	96.898488	99.021428	97.967017	101.366232
2018-01-08	102.490169	102.900307	97.491436	98.555430	99.725279	103.619363
		***	***	***		
2023-12-21	235.461052	603.164896	240.959337	311.920020	153.854229	281.420937
2023-12-22	236.111589	608.966190	242.038597	314.174863	156.027106	279.300310
2023-12-26	238.280153	618.745453	239.917524	314.842972	155.813387	280.287519
2023-12-27	237.933198	619.242683	238.149933	315.344037	156.454572	282.993127
2023-12-28	240.231849	617.253699	241.331565	320.521864	158.306960	282.261850

1487 rows × 6 columns

```
def calc_ret_vol(ativos, ativos_chg, port_pesos):
   port = ativos.dot(port_pesos)
   port_chg =port.pct_change()
   port_chg = port_chg.fillna(0)
   ret = ((port.iloc[-1]/port.iloc[0])**(1/5))-1
   vol = port_chg.std()*np.sqrt(252)
   return ret, vol
```

port_pesos

```
[0, 0, 0.5, 0, 0.5, 0]
```

dados

```
BBAS3.SA PETR4.SA CSMG3.SA TAEE11.SA KLBN11.SA VALE3.SA
         Ticker
           Date
      2018-01-02 100.000000 100.000000 100.000000 100.000000 100.000000
      2018-01-03 101.275424 100.906351
                                        97.628277 100.139765
                                                                98.736247
                                                                           99.400775
                                                                98.901095
      2018-01-04 102.247215 101.087604
                                         96.123144
                                                    98.555430
                                                                           99.808248
      2018-01-05 102.247215 101.691857
                                         96.898488
                                                    99.021428
                                                               97.967017 101.366232
      2018-01-08 102.490169 102.900307
                                         97.491436
                                                    98.555430
                                                                99.725279 103.619363
      2023-12-21 235.461052 603.164896 240.959337 311.920020 153.854229 281.420937
      2023-12-22 236.111589 608.966190 242.038597 314.174863 156.027106 279.300310
      2023-12-26 238.280153 618.745453 239.917524 314.842972 155.813387 280.287519
      2023-12-27 237.933198 619.242683 238.149933 315.344037 156.454572 282.993127
      2023-12-28 240.231849 617.253699 241.331565 320.521864 158.306960 282.261850
     1487 rows × 6 columns
#Portfolio com 2 ativos: KLBN11 e TAEE11
points = []
min_vol_ret = [100, 0] #[vol, ret]
port_pesos = [0, 0, 0, 0, 0, 0]
for w in range(0, 101, 5):
  ret, vol = calc_ret_vol(dados, dados_chg, [0, 0, w/100, 0, (1-w/100), 0])
  print(f"Aloc:{round(w/100, 2):.2f} {round(1-(w/100),2):.2f} Ret:{round(ret, 3):.3f} Vol:{round(vol, 3):.3f}")
  points.append([ret, vol])
  if vol < min_vol_ret[0]:</pre>
   min vol ret[0] = vol
   min_vol_ret[1] = ret
    port_pesos[2] = w/100
   port_pesos[4] = 1-w/100
     Aloc:0.00 1.00 Ret:0.096 Vol:0.303
     Aloc:0.05 0.95 Ret:0.102 Vol:0.291
     Aloc:0.10 0.90 Ret:0.107 Vol:0.280
     Aloc:0.15 0.85 Ret:0.113 Vol:0.271
     Aloc:0.20 0.80 Ret:0.118 Vol:0.264
     Aloc:0.25 0.75 Ret:0.124 Vol:0.259
     Aloc:0.30 0.70 Ret:0.129 Vol:0.256
     Aloc:0.35 0.65 Ret:0.134 Vol:0.254
     Aloc:0.40 0.60 Ret:0.139 Vol:0.254
     Aloc:0.45 0.55 Ret:0.144 Vol:0.257
     Aloc:0.50 0.50 Ret:0.148 Vol:0.261
     Aloc:0.55 0.45 Ret:0.153 Vol:0.266
     Aloc:0.60 0.40 Ret:0.158 Vol:0.273
     Aloc:0.65 0.35 Ret:0.162 Vol:0.281
     Aloc:0.70 0.30 Ret:0.167 Vol:0.290
     Aloc:0.75 0.25 Ret:0.171 Vol:0.301
     Aloc:0.80 0.20 Ret:0.176 Vol:0.312
     Aloc:0.85 0.15 Ret:0.180 Vol:0.324
     Aloc:0.90 0.10 Ret:0.184 Vol:0.337
     Aloc:0.95 0.05 Ret:0.189 Vol:0.351
     Aloc:1.00 0.00 Ret:0.193 Vol:0.365
print(min_vol_ret)
print(port_pesos)
     \hbox{\tt [0.25409394048001854, 0.13380393119163303]}
     [0, 0, 0.35, 0, 0.65, 0]
                                 a) GRAFICO DA FRONTEIRA EFICIENTE
lp = np.array(points).T
plt.scatter(lp[[1][:]],lp[[0][:]]);
plt.ylabel("Retorno");
plt.xlabel("Volatilidade");
plt.scatter(vol_aa['CSMG3.SA'], ret_aa['CSMG3.SA'], color='red');
plt.text(vol_aa['CSMG3.SA'], ret_aa['CSMG3.SA'], 'CSMG3');
plt.scatter(vol_aa['KLBN11.SA'], ret_aa['KLBN11.SA'], color='red');
plt.text(vol_aa['KLBN11.SA'], ret_aa['KLBN11.SA'], 'KLBN11');
plt.scatter(min_vol_ret[0], min_vol_ret[1], color='green');
plt.text(min_vol_ret[0], min_vol_ret[1], 'Min. Vol.');
```



```
port pesos
     [0, 0, 0.35, 0, 0.65, 0]
dados['PORT1'] = dados.dot(port_pesos)
dados_chg = dados.pct_change()
dados_chg = dados_chg.fillna(0)
           c) A RENTABILIDADE ANUIZADA DOS ATIVOS QUE COMPÕE O PORTIFÓLIO E O PORTIFOLIO_1
ret_aa = (((dados.iloc[-1]/dados.iloc[0])**(1/5))-1)*100
print("RENTABILIDADE ANUIZADA:\n", ret_aa.round(2))
print("\n")
           d) A VOLATILIDADE ANUIZADA DOS ATIVOS QUE COMPÕE O PORTIFÓLIO E O PORTIFOLIO_1
vol_aa = (dados_chg.std()*np.sqrt(252))*100
print("VOLATILIDADE ANUIZADA:\n", vol_aa.round(2))
     Ret aa:
     Ticker
     BBAS3.SA
                  0.191588
     PETR4.SA
                  0.439106
     CSMG3.SA
                  0.192677
     TAEE11.SA
                  0.262326
     KLBN11.SA
                  0.096226
     VALE3.SA
                  0.230638
     PORT1
                  0.133804
     dtype: float64
     Vol aa:
      Ticker
     BBAS3.SA
                  0.390788
     PETR4.SA
                  0.463584
     CSMG3.SA
                  0.365302
     TAEE11.SA
                  0.205062
     KLBN11.SA
                  0.303409
     VALE3.SA
                  0.390549
     PORT1
                  0.254094
     dtype: float64
#Calcular drawdown
ddown = pd.DataFrame()
for ativo in dados.columns:
 list = []
  for ind in range(dados.count()[0]):
   list.append((dados[ativo].iloc[ind]/dados[ativo].iloc[:ind+1].max()-1)*100)
  ddown[ativo]=list
ddown['Data']=dados.index.values
ddown.set_index(keys = 'Data', inplace = True)
#display(ddown)
print(ddown.min())
     BBAS3.SA
                 -58.286996
                 -63.356055
     PETR4.SA
     CSMG3.SA
                 -54,029209
```

```
TAEE11.SA -23.694037
KLBN11.SA -42.009959
VALE3.SA -43.724133
PORT1 -44.136837
dtype: float64
```

```
# b) CRIANDO O GRÁFICO DE DRAWDOWN
ddown[['CSMG3.SA', 'KLBN11.SA', 'PORT1']].plot(figsize = (15,5));
```



```
dados=dados.drop(['PORT1'], axis=1)
dados_chg=dados_chg.drop(['PORT1'], axis=1)
```

dados

Ticker	BBAS3.SA	PETR4.SA	CSMG3.SA	TAEE11.SA	KLBN11.SA	VALE3.SA
Date						
2018-01-02	100.000000	100.000000	100.000000	100.000000	100.000000	100.000000
2018-01-03	101.275424	100.906351	97.628277	100.139765	98.736247	99.400775
2018-01-04	102.247215	101.087604	96.123144	98.555430	98.901095	99.808248
2018-01-05	102.247215	101.691857	96.898488	99.021428	97.967017	101.366232
2018-01-08	102.490169	102.900307	97.491436	98.555430	99.725279	103.619363
		•••				
2023-12-21	235.461052	603.164896	240.959337	311.920020	153.854229	281.420937
2023-12-22	236.111589	608.966190	242.038597	314.174863	156.027106	279.300310
2023-12-26	238.280153	618.745453	239.917524	314.842972	155.813387	280.287519
2023-12-27	237.933198	619.242683	238.149933	315.344037	156.454572	282.993127
2023-12-28	240.231849	617.253699	241.331565	320.521864	158.306960	282.261850

1487 rows × 6 columns

```
#Portfolio com 3 ativos: CSMG3, KLBN11 e VALE3
points = []
min_vol_ret = [100, 0]
port_pesos = [0, 0, 0, 0, 0, 0]
for w1 in range(0, 101, 5):
       for w2 in range(0, 101-w1, 5):
               ret, vol = calc_ret_vol(dados, dados_chg, [0, 0, w1/100, 0, w2/100, (1-w1/100-w2/100)])
               \#print("Aloc:", round(w1/100, 2), round(w2/100, 2), round(1-w1/100-w2/100, 2), "Ret:", round(ret, 3), "Vol:", round(vol, 3))
               print(f"Aloc:\{round(w1/100, 2):.2f\} \ \{round(w2/100, 2):.2f\} \ \{round(1-w1/100-w2/100, 2):.2f\} \ Ret:\{round(ret, 3):.3f\} \ Vol:\{round(vol, 2):.2f\} \ \{round(w2/100, 2):.2
               points.append([ret, vol])
               if vol < min_vol_ret[0]:</pre>
                      min_vol_ret[0] = vol
                      min_vol_ret[1] = ret
                      port_pesos[2] = w1/100
                       port_pesos[4] = w2/100
                       port_pesos[5] = 1-w1/100-w2/100
print(min_vol_ret)
print(port_pesos)
```

PETR4.SA

CSMG3.SA TAEE11.SA

KLBN11.SA

dtype: float64

VALE3.SA

PORT1

46.36

20.51

30.34

39.05

24.07

```
[0.2406876025071771, 0.1507672473324957]
[0, 0, 0.3, 0, 0.55, 0.14999999999999]
```

```
# a) GRAFICO DA FRONTEIRA EFICIENTE

lp = np.array(points).T
plt.scatter(lp[[1][:]],lp[[0][:]]);
plt.ylabel("Retorno");
plt.xlabel("Volatilidade");

plt.scatter(vol_aa['CSMG3.SA'], ret_aa['CSMG3.SA'], color='red');
plt.text(vol_aa['CSMG3.SA'], ret_aa['CSMG3.SA'], 'CSMG3');

plt.scatter(vol_aa['KLBN11.SA'], ret_aa['KLBN11.SA'], color='red');
plt.text(vol_aa['KLBN11.SA'], ret_aa['KLBN11.SA'], 'KLBN11');

plt.scatter(vol_aa['VALE3.SA'], ret_aa['VALE3.SA'], color='red');
plt.text(vol_aa['VALE3.SA'], ret_aa['VALE3.SA'], 'VALE3');

plt.scatter(min_vol_ret[0], min_vol_ret[1], color='green');
plt.text(min_vol_ret[0], min_vol_ret[1], 'Min. Vol.');
```



```
dados['PORT1'] = dados.dot(port_pesos)
dados_chg = (dados - dados.shift(1)) / dados.shift(1)
dados_chg = dados_chg.fillna(0)
          c) A RENTABILIDADE ANUIZADA DOS ATIVOS QUE COMPÕE O PORTIFÓLIO E O PORTIFOLIO_1
ret_aa = (((dados.iloc[-1]/dados.iloc[0])**(1/5))-1)*100
print("RENTABILIDADE ANUIZADA:\n", ret_aa.round(2))
print("\n")
          d) A VOLATILIDADE ANUIZADA DOS ATIVOS QUE COMPÕE O PORTIFÓLIO E O PORTIFOLIO_1
vol_aa = (dados_chg.std()*np.sqrt(252))*100
print("VOLATILIDADE ANUIZADA:\n", vol_aa.round(2))
     RENTABILIDADE ANUIZADA:
     Ticker
     BBAS3.SA
                  19.16
     PETR4.SA
                  43.91
     CSMG3.SA
                  19.27
     TAEE11.SA
                  26.23
     KLBN11.SA
                   9.62
     VALE3.SA
                  23.06
     PORT1
                  15.08
    dtype: float64
     VOLATILIDADE ANUIZADA:
     Ticker
     BBAS3.SA
                  39.08
```

-20

```
#Calcular drawdown (valor de queda de um ativo em comparação ao valor máximo de cotação anterior)
ddown = pd.DataFrame()
for ativo in dados.columns:
 list = []
  for ind in range(dados.count()[0]):
   list.append((dados[ativo].iloc[ind]/dados[ativo].iloc[:ind+1].max()-1)*100)
 ddown[ativo]=list
ddown['Data']=dados.index.values
ddown.set_index(keys = 'Data', inplace = True)
#display(ddown)
print(ddown.min())
     BBAS3.SA
                -58.286996
     PETR4.SA
                -63.356055
     CSMG3.SA
                -54.029209
     TAEE11.SA -23.694037
     KLBN11.SA
                -42.009959
                -43.724133
     VALE3.SA
     PORT1
                -42.788396
     dtype: float64
                                b) CRIANDO O GRÁFICO DE DRAWDOWN
ddown[['CSMG3.SA', 'KLBN11.SA', 'VALE3.SA', 'PORT1']].plot(figsize = (15,5));
        0
      -10
```