浙江大学 物理实验报告

实验名称:	误差配套
指导教师:	厉位阳

 专业:
 竺可桢学院混合班

 班级:
 混合 1903 班

 姓名:
 徐圣泽

 学号:
 3190102721

实验日期: 2 月 27 日 星期 四 下午

一、 实验目的:

对于直接测量量,通过改进仪器等措施获得更接近真值的测量值;对于间接测量量,需要独立测量多个物理量, 个物理测量量的不确定度都对最终结果产生影响。

本实验的目的正在于:

- 1、探究各个独立直接测量量的不确定度对最终结果不确定度的影响;
- 2、选择实验原理设计实验选择实验工具;
- 3、通过对各物理量相对不确定度的计算分析选择最合适的测量仪器。

二、 实验内容:

- 1. 测量带孔薄板的体积
- (1) 测量薄板的长度、宽度、不同部位的厚度各6次及不同孔直径累计6次,计算测量最佳值和不确定度。
 - (2) 根据上面测量的结果,求出薄板的体积,计算体积的相对不确定度及不确定度。
 - 2. 测量一张纸的体积

当所提供的仪器精确度不够时,可采用多数测量以减小误差。

三、 实验原理:

(一)根据带孔薄板给出的参数(L=14.00cm、B=3.80cm、H=0.20cm、D-0.70cm)计算得到下列 B 类不确定度

	UL	UB	UH	UD
钢直尺 (Ub=0.2mm)	6.80*10^-7	9. 23*10^-6	3. 33*10^-3	1. 42*10^-6
游标卡尺(Ub=0.02mm)	6.80*10^-9	9. 23*10^-8	3. 33*10^-5	1. 42*10^-8
千分尺(Ub=0.004mm)	2. 72*10^-10	3.69*10^-9	1. 33*10^-6	5. 70*10^-10

表 1

基于体积是间接测量量,而各直接测量量的不确定度都应对体积的不确定度有贡献的考虑,在此提出不确定度均分定理。根据体积公式可求出不确定度传递公式,依据不确定度均分原理,将测量结果的总不确定度均匀分配到各个分量中,由此分析各个物理量的测量方法和所应使用的仪器,并指导实验。一般情况下,对测量结果影响较大的物理量应采用精度较高的仪器,相反,对测量结果影响不大的物理量就不必追求高精度仪器,这样做比较经济。

以下为最后选择测量带孔薄板各物理量的仪器:

测量长度的仪器: 钢直尺;

测量宽度的仪器为:游标卡尺;

测量厚度的仪器为: 千分尺;

测量孔径的仪器为:钢直尺。

(二)根据 100 张纸给出的参数(L=24.00cm、B=17.00cm、H=0.75cm)计算得到下列 B 类不确定度

	UL	UB	UH
钢直尺 (Ub=0.2mm)	2. 31*10^-7	4. 6*10^-7	2. 37*10^-2
游标卡尺 (Ub=0.02mm)	2. 31*10^-9	4.6*10^-9	2. 37*10^-4
千分尺(Ub=0.004mm)	9. 26*10^-11	1.85*10^-10	9. 48*10^-6

表 2

以下为最后选择测量带孔薄板各物理量的仪器:

测量长度的仪器:钢直尺;

测量宽度的仪器为:钢直尺;

测量厚度的仪器为: 千分尺。

四、 实验数据原始记录:

(一)测得的带孔薄板的长、宽、厚和孔径记录

测量次数	1	2	3	4	5	6
L(mm)	137.5	137.6	137.8	137.5	137.7	137.9
B(mm)	38.10	38.12	38.12	38.12	38.12	38.12
H(mm)	2.012	2.011	2.013	2.012	2.011	2.012
D(mm)	7.2	7.1	7.3	7.0	7.1	7.0

表 3

(二)测得的100张纸的长、宽、厚记录

测量次数	1	2	3	4	5	6
L(mm)	240.0	240.2	240.0	240.2	240.0	240.0
B(mm)	169.0	169.1	169.2	169.2	169.0	169.2
H(mm)	7.500	7.501	7.501	7.500	7.501	7.501

表 4

五、 实验数据处理和结果分析:

(一) 带孔薄板的体积物理量数据处理

由
$$\frac{1}{x} = \frac{1}{6} \sum_{i=1}^{6} x_i$$
 可分别求出长、宽、厚和孔径的平均值(mm);由 $S = \sqrt{\frac{1}{n-1} \sum_{i=1}^{n} (x_i - \bar{x})^2}$ 可分别计算出长、宽、

厚和孔径的标准差 S; A 类不确定度由 $u_A = \sqrt{\frac{1}{n(n-1)}\sum_{i=1}^n \left(x_i - \overline{x}\right)^2}$ 得出; B 类不确定度由 $u_B = \frac{\Delta_{\emptyset}}{\sqrt{3}}$ 得出; 最

后不确定度 $u = \sqrt{u_A^2 + u_B^2}$

带孔薄板的长度、宽度、厚度、孔径数据处理

1 1 - 1 2 - 1						
	长度 L (mm)	宽度 B(mm)	厚度 H(mm)	孔径(mm)		
平均值	137.7	38. 12	2. 012	7. 1		
标准差S	0. 1633	0. 00816	0. 00075	0. 1169		
A 类不确定度 UA	6. 67*10^-2	3. 33*10^-3	3. 07*10^-4	4. 27*10^-2		
B 类不确定度 UB	1.15*10^-1	1.15*10^-2	2. 31*10^-3	1.15*10^-1		
不确定度 U	1.33*10^-1	1. 20*10^-2	2. 33*10^-3	1. 22*10^-1		

表 5

根据以下体积的计算公式和相对不确定度公式求得带孔薄板的体积平均值和不确定度,确定最终表达式。

$$\Delta V = BH\Delta L + LH\Delta B + LB\Delta H - \frac{n\pi D\Delta D}{2}H \frac{\Delta V}{V} = \sqrt{\left(\frac{\Delta L}{L}\right)^2 + \left(\frac{\Delta B}{B}\right)^2 + \left(\frac{\Delta H}{H}\right)^2 + \left(\frac{n\pi D\Delta D}{2LB}\right)^2}$$

带孔薄板的体积计算和数据处理

	平均值(mm^3)	相对不确定度(mm^3)	不确定度 U(mm^3)	表达式 U±u(mm^3)
体积 V	10162.9	2. 21*10^-3	22. 43	1.0*10 ⁴ ±2.2*10

表 6

由
$$x = \frac{1}{6} \sum_{i=1}^{6} x_i$$
 可分别求出长、宽和厚度的平均值(mm); 由 $S = \sqrt{\frac{1}{n-1} \sum_{i=1}^{n} (x_i - \bar{x})^2}$ 可分别计算出长、宽和厚

度的标准差 S; A 类不确定度由
$$u_A = \sqrt{\frac{1}{n(n-1)}\sum_{i=1}^{n} \left(x_i - \overline{x}\right)^2}$$
 得出; B 类不确定 $u_B = \frac{\Delta_{\emptyset}}{\sqrt{3}}$ 度由 得出; 最后不确

定度
$$u = \sqrt{u_A^2 + u_B^2}$$

100 张纸的长、宽、厚数据处理

	长度 L (mm)	宽度 B (mm)	厚度 H (mm)
平均值	240. 1	169. 1	7. 501
标准差S	0. 10328	0. 09832	0. 00052
A 类不确定度 UA	4. 22*10^-2	4. 01*10^-2	2. 11*10^-4
B 类不确定度 UB	1.15*10^-1	1.15*10^-1	2. 31*10^-3
不确定度 U	1. 22*10^-1	1.22*10^-1	2. 32*10^-3

表 7

根据以下体积的计算公式和体积相对不确定度公式求得100张纸的体积平均值和不确定度,最终确定表达式。

$$\Delta V = BH\Delta L + LH\Delta B + LB\Delta H \qquad \frac{\Delta V}{V} = \sqrt{\left(\frac{\Delta L}{L}\right)^2 + \left(\frac{\Delta B}{B}\right)^2 + \left(\frac{\Delta H}{H}\right)^2}$$

100 张纸的体积计算和数据处理

	平均值(mm^3)	相对不确定度(mm^3)	不确定度 U(mm^3)	表达式 U±u(mm^3)
体积 V	304547. 43	9. 35*10^-4	284. 78	3. 0*10 ⁵ ±2. 8*10 ²

表 8

从 100 张纸数据可得每 1 张纸的平均体积为: 304.55mm²3,体积表达式为: (304.55±2.8*10²-4) mm²3

结果分析:

从最终结果看,自己动手测得的数据和实验页面给出的参数没有较大的差别,但物理实验是严谨的,诚实地记录自己所观察到的数据。同时我比对了测量得到的数据,发现个别组的数据间差别较大,个别组的差别较小,这个我也分析了几点原因: 1、仪器的精度不同导致在测量和估读过程中数据差别不同; 2、本人的估读方法可以有进一步的优化; 3、由于网络和显示等原因造成的页面系统偏差(在这一点上我发现,在不同时间登录虚拟仿真试验系统,测得的数据和各组数据的偏差都不尽相同,我最终选择了网络较稳定时测得的数据)。

六、 实验心得:

思考题

- (1) 当测量不同精确度的测量对象时,根据什么原理选择测量仪器?
- 1、不确定度均分原理;
- 2、各测量仪器对测量结果的影响程度大小;
- 3、经济原理。
- (2) 为什么要使用直接测量量的相对不确定度配套?

为了使最终不确定度的计算结果与真值的误差更小,使实验结果更加可信。

在这个实验过程中,我们操作进行了两个实验,分别通过测量带孔薄板和 100 张纸的各物理量,达到了实验目的一一带孔薄板的体积和 100 张纸的体积。在这个实验中,我们独立测量了各物理量如长度、宽度、厚度、孔径等,再通过公式计算从而得到了间接测量量体积。

根据我对这个实验的理解,我将实验分为这样几部分:仪器选择,数据测量,数据处理和结果分析,在各部分

我都有所体会和收获。

- 一:在实验的仪器选择过程中,考虑了不确定度均分定理,并权衡多个因素,例如仪器对测量结果影响的程度因素、经济因素,综合分析确定了各物理量测量过程中应使用的仪器。
- 二:在实验的数据测量过程中,估读等步骤都对后来的结果产生了影响,尤其是精密仪器的估读中,各次测量中数据的不一致,都对最终标准差和 A 类不确定度的结果产生了影响。数据测量要求我们实事求是,抱着严谨求实的态度记录实验数据,不弄虚作假,这种态度,是做学问过程中所必须具备的品质。
- 三:在实验的数据处理和结果分析过程中,我亲手计算了实验结果所需的各项数据。虽然计算的步骤非常繁琐复杂,但是我在计算的过程中,对各物理量的计算公式有了更进一步的认识,对实验前较为陌生的概念和公式也更加熟悉,尤其是对 A 类和 B 类不确定度的概念和计算。我想,这也是老师在正式教学前让我们自己着手做实验并完成实验报告的良苦用心所在。

通过相对步骤较为简单的力学误差分析实验,大致了解了实验的步骤和实验报告的书写模式,同时对实验的整体框架有了更清晰的认识,对后面的物理实验学习做好铺垫工作。

L.). 实验影振记辛禾·分析·费几薄板伟积

	- '	ے	÷	ID	五	対、 .
K	137.5	137.6	137.8	137.5	137.7	137.9
冕	38.10	38.12	38.12	38.12	38.12	38.12
厅	2,012	2.011	2.013	2.012	2.011	2.012
80%	7.2	7.1	7.3	7.0	7.1	7.0.

由产物值江東公式·艾二点数、产品数、产品的 1.33×10⁻¹, 1.33×10⁻¹, 1.22×10⁻¹, 1.20×10⁻¹, 1.20×10⁻¹, 1.20×10⁻¹, 1.20×10⁻¹, 1.20×10

又V= LxBxH- n元D2H. 抱V=10162. mm3, AV - (でし)2+(AB)+(AH)2+(mDAD)2=2.21×103 => AV= AV ×V=22.43 mm3. おるなは、U+ x 号(1.0×104+2.2×101) mm

(ン)、实验影推记要新的、100张价体积。

51-)情况相同, 研. L=·240.1mm, B=169.1mm. H=7.501mm

信 V=304547.43mm3, 女=9.35×10-4, DV=284.78mm3. 教技式(3.0×105+218×102)mm3