

Online Reconfiguration for TSN in Avionics Using Backup Paths and Integrated Mapping, Scheduling, and Analysis Tools

Daniel Bujosa, Mohammad Ashjaei, Saad Mubeen

Mälardalen University

Industrial challenge: Embedded reconfiguration of TSN

Industrial challenge: Embedded reconfiguration of TSN


```
TSN_Stream STR_ES1_ES2_A

STR_ES1_ES2_A.source = ES1

STR_ES1_ES2_A.period = 800000

STR_ES1_ES2_A.minFrameSize = 814

STR_ES1_ES2_A.maxFrameSize = 1273

STR_ES1_ES2_A.trafficClass = TC7

STR_ES1_ES2_A.utility = 7,2

STR_ES1_ES2_A.path = ES1_SW2_SW1_ES2
```

Reconfiguration constrains:

- Online computation
- Embedded computation
- Short reconfiguration time
- Continuous operation

Assumptions:

- Only port failure will be considered
- Fault detection out of the scope

Step 1: Mapping traffic into the three types of TSN traffic, including Scheduled, AVB, and BE traffic.

^{*}Bujosa, Daniel, et al. "LETRA: Mapping legacy ethernet-based traffic into TSN traffic classes." 2021 26th IEEE International Conference on Emerging Technologies and Factory Automation (ETFA). IEEE, 2021.

Step 1: Mapping traffic into the three types of TSN traffic, including Scheduled, AVB, and BE traffic.

^{*}Bujosa, Daniel, et al. "LETRA: Mapping legacy ethernet-based traffic into TSN traffic classes." 2021 26th IEEE International Conference on Emerging Technologies and Factory Automation (ETFA). IEEE, 2021.

Step 2: Scheduling Scheduled traffic.

^{*}Bujosa, Daniel, et al. "HERMES: Heuristic multi-queue scheduler for TSN time-triggered traffic with zero reception jitter capabilities." Proceedings of the 30th International Conference on Real-Time Networks and Systems. 2022.

Daniel Bujosa

Toolchain

Step 3: Analyzing AVB traffic to guarantee it meets its time requirements.

^{*}Bujosa, Daniel, et al. "An Improved Worst-Case Response Time Analysis for AVB Traffic in Time-Sensitive Networks." 2024 IEEE Real-Time Systems Symposium (RTSS). IEEE, 2024.

MDU

ST	AVB Class A	AVB Class B	AVB Class C	BE
ST streams	200000 ns			BE streams
	400000 ns			800000 ns
				1600000 ns
				3200000 ns
				6400000 ns
				12800000 ns

ST	AVB Class A	AVB Class B	AVB Class C	BE
ST streams	800000 ns			BE streams
200000 ns	1600000 ns			
400000 ns	3200000 ns			
	6400000 ns			
	12800000 ns			

1st iteration

ST	AVB Class A	AVB Class B	AVB Class C	BE
ST streams	800000 ns	1600000 ns		BE streams
200000 ns		3200000 ns		
400000 ns		6400000 ns		
		12800000 ns		

2nd iteration

ST	AVB Class A	AVB Class B	AVB Class C	BE
ST streams	800000 ns	1600000 ns		BE streams
200000 ns		3200000 ns		
400000 ns		6400000 ns		
		12800000 ns		

ST	AVB Class A	AVB Class B	AVB Class C	BE
ST streams	800000 ns	1600000 ns	3200000 ns	BE streams
200000 ns			6400000 ns	
400000 ns			12800000 ns	

3rd iteration


```
TSN_Stream STR_ES1_ES2_A

STR_ES1_ES2_A.source = ES1

STR_ES1_ES2_A.period = 800000

STR_ES1_ES2_A.minFrameSize = 814

STR_ES1_ES2_A.maxFrameSize = 1273

STR_ES1_ES2_A.trafficClass = TC7

STR_ES1_ES2_A.utility = 7,2

STR_ES1_ES2_A.path = ES1 SW2 SW1 ES2

STR_ES1_ES2_A.bpath = ES1 SW2 SW3 SW1 ES2
```


MDU

$$RBW_l^X = \left(1 - U_l^{BE} - U_l^{ST}\right) \times \frac{U_l^X}{U_l^{AVB}}$$

ST	Temp. ST	AVB	BE
		Classes	
ST streams	New ST Streams	AVB Streams	BE Streams
		New AVB Str.	New BE Streams

Reconfiguration

Evaluation and Conclusion

Evaluation and Conclusion

Online Reconfiguration for TSN in Avionics Using Backup Paths and Integrated Mapping, Scheduling, and Analysis Tools

Daniel Bujosa, Mohammad Ashjaei, Saad Mubeen

Mälardalen University

Reconfiguration

Reconfiguration

Configuration

1st iteration

2nd iteration

3rd iteration

+Reconfigurability

TSN

Ethernet with Hard and soft real-time capabilities, Fault tolerance mechanisms and Flexibility of the traffic for critical applications

TSN traffic

Scheduled Traffic	Audio-Video Bridging (AVB) Traffic	Best Effort (BE) Traffic
+ periodic traffic	+ periodic and aperiodic traffic	+ low resource consumption
+ low jitter	+ high adaptability	
+ different schedulers can	+ real-time capabilities	- No real-time guarantees
optimize different parameters	+ good QoS for lower priorities	
+ simple analysis		
	- high jitter	
- aperiodic traffic	- complex analysis	
- low adaptability		

Motivation

Why would the industry be interested in adopting TSN?

