Research Topic: Exploring Predictors of Cirrhosis Patient

Survival: An In-Depth Analysis Using Statistical Tests

Data Description

1. ID: unique identifier

2. N_Days: number of days between registration and the earlier of death, transplantation, or

study analysis time in July 1986

3. Status: status of the patient C (censored), CL (censored due to liver tx), or D (death)

4. Drug: type of drug D-penicillamine or placebo

5. Age: age in [days]

6. Sex: M (male) or F (female)

7. Ascites: presence of ascites N (No) or Y (Yes)

8. Hepatomegaly: presence of hepatomegaly N (No) or Y (Yes)

9. Spiders: presence of spiders N (No) or Y (Yes)

10. Edema: presence of edema N (no edema and no diuretic therapy

Introduction:

Cirrhosis, a chronic liver condition that scars liver tissue, is a global health issue. Optimizing patient care and therapy requires understanding cirrhosis patient survival, variables. This study conducts a comprehensive statistical analysis with three goals to add to existing knowledge. First, we want to examine gender-based differences in cirrhosis patients' survival time to determine prognostic factors.

Second, we will examine average survival time across illness phases to understand cirrhosis progression. Finally, we will explore the associations between major clinical variables—Albumin, Bilirubin, and Prothrombin—in the context of survival time. This multimodal research addresses significant gaps in current knowledge and may inform targeted therapies and improve cirrhosis patient management.

Li and Liu (2004) developed data-depth-based nonparametric tests for multivariate locations and scales. Advanced statistical methods for multivariate data analysis examined in this Statistical Science article. The research adds data depth metrics to the statistical toolbox, revealing multivariate dataset distributional features.

Etikan (2018) discusses critical survival analysis statistical test selection in "Choosing statistical tests for survival analysis. They provides useful recommendations on selecting statistical approaches for survival data analysis, improving biostatistics procedures.

Research Objective

- > To conduct a statistical analysis to examine the disparities in age among cirrhosis patients based on gender.
- > To assess whether there exist statistically significant variations in the average survival time across various phases of the disease.
- To conduct a statistical analysis in order to ascertain the presence of significant correlations between the variables of Albumin, Bilirubin, and prothrombin, within the specific context of survival time.

Hypothesis

- ➤ There is no significant difference in the age of male and female of cirrhosis patients.
- There is no significant correlation between Albumin, Bilirubin and prothrombin

➤ There is no significant difference in the mean survival time among difference disease stages.

Normality Analysis

Normality test for age

Null Hypothesis

H₀: Data about age is fellow the normal distribution

Alternative Hypothesis

H₁: Data about age is not fellow the normal distribution

Fitted Normal Distribution for Age					
Goodness-of	-Fit Test	s for Normal [Distribution		
Test	Statistic		p Value		
Kolmogorov-Smirnov	D 0.03305165		Pr > D	>0.150	
Cramer-von Mises	W-Sq	0.06870264	Pr > W-Sq	>0.250	
Anderson-Darling	A-Sq	0.58593726	Pr > A-Sq	0.131	

In our case Since P value is not less than 5%. So we will not reject Ho and concluded that data is normal about age.

Normality test for Bilirubin

Null Hypothesis

H₀: Data about Bilirubin is fellow the normal distribution

Alternative Hypothesis

H₁: Data about Bilirubin is not fellow the normal distribution

Fitted No	rmal Dis	tribution for B	ilirubin			
Goodness-of-Fit Tests for Normal Distribution						
Test	S	tatistic	p Value			
Kolmogorov-Smirnov	D	0.2569359	Pr > D	<0.010		
Cramer-von Mises	W-Sq	7.3535051	Pr > W-Sq	<0.005		
Anderson-Darling	A-Sq	39.0901771	Pr > A-Sq	<0.005		

In our case Since P value is less than 5%. So we will reject Ho and concluded that data is not normal about Bilirubin

Normality test for Albumin

Null Hypothesis

H₀: Data about Albumin is fellow the normal distribution

Alternative Hypothesis

H₁: Data about Albumin is not fellow the normal distribution

Fitted Normal Distribution for Albumin						
Goodness-of-Fit Tests for Normal Distribution						
S	tatistic	p Valu	ıe			
D	0.07124768	Pr > D	<0.010			
W-Sq	0.23188297	Pr > W-Sq	<0.005			
A-Sq	1.51762395	Pr > A-Sq	<0.005			
	-Fit Test S D W-Sq	Statistic D 0.07124768 W-Sq 0.23188297	-Fit Tests for Normal Distribution Statistic p Valu D 0.07124768 Pr > D W-Sq 0.23188297 Pr > W-Sq			

In our case Since P value is less than 5%. So we will reject Ho and concluded that data is not normal about Albumin

Normality test for Prothrombin

Null Hypothesis

H₀: Data about prothrombin is fellow the normal distribution

Alternative Hypothesis

H₁: Data about prothrombin is not fellow the normal distribution

Goodness-of	-Fit Test	s for Normal [Distribution	
Test	S	tatistic	p Val	ue
Kolmogorov-Smirnov	D	0.12142217	Pr > D	<0.010
Cramer-von Mises	W-Sq	1.01661650	Pr > W-Sq	<0.005
Anderson-Darling	A-Sq	6.48376825	Pr > A-Sq	<0.005

In our case Since P value is less than 5%. So we will reject Ho and concluded that data is not normal about Prothrombin.

Two Sample T test

Null Hypothesis (H0):

There is no significant difference in the age of male and female of cirrhosis patients.

Alternative Hypothesis (H1):

There is a significant difference in the age of male and female of cirrhosis patients.

		ble: Age x = F		
	Tests fo	r Normality		
Test	St	atistic	p Va	ue
Shapiro-Wilk	W	0.989813	Pr < W	0.0106
Kolmogorov-Smirnov	D	0.039077	Pr > D	>0.1500
Cramer-von Mises	W-Sq	0.108644	Pr > W-Sq	0.0937
Anderson-Darling	A-Sq	0.81326	Pr > A-Sq	0.0370
Anderson-Daning	Varia	ble: Age		0.0010
	Varial Se	ble: Age x = M r Normality		
	Varial Se Tests fo	x = M	p Val	
-	Varial Se Tests fo	x = M r Normality	•	ue
Test	Varial Se Tests for	x = M r Normality atistic	p Val	ue 0.5955
Test Shapiro-Wilk	Varial Se Tests for St	x = M r Normality atistic 0.979036	p Val	

Sex	Met	hod	N	N	lean	Std	Dev	Std	Err	Mini	imum	N	1aximun
F			374	183	19.8	37	40.4	19	93.4	9	598.0		28018.0
М			44	203	48.3	40	09.6	60	04.5	12	227.0		28650.0
Diff (1-2)	Poo	led		-20	28.5	37	69.1	60	00.7				
Diff (1-2)	Sati	terthwaite		-20	28.5			6:	34.7				
Sex	Me	thod	N	Mean 95% CL Mean St		Std	Dev	95%	CL	Std Dev			
F			18319.8 179		1793	9.5	1870	3700.1 37		40.4	3490	.2	4029.6
М			203	348.3	1912	9.3	2156	37.4	40	09.6	3312	.9	5080.3
Diff (1-2)	Poo	oled	-20	28.5	-320	9.3	-84	7.7	37	69.1	3529	.5	4043.9
Diff (1-2)	Sat	terthwaite	-20	28.5	-330	2.0	-75	55.1					
		Method		Varia	nces		DF	t Va	lue	Pr>	t		
		Pooled		Equa	I		416	-3	.38	0.000	80		
		Satterthwa	aite	ite Unequal 52		52.	192	-3	.20	0.002	24		
				Equa	ality of	f Vari	ance	s					
		Method	ı	lum D	F De	en DF	F	Value	e F	r > F			
		Folded	F	4	3	373	3	1.15	5 0	.4961			

According to the findings of the T-test, there is a statistically significant gap between the ages of patients suffering from cirrhosis who are males and those who are females (p<0.001). Based on these findings, it appears that the ages of patients suffering from cirrhosis greatly differ depending on which gender they are.

Correlation Analysis

Null Hypothesis (H0):

There is no significant correlation between Albumin, Bilirubin and prothrombin

Alternative Hypothesis (H1):

There is significant correlation between Albumin, Bilirubin and prothrombin

3 Variable	s: Bilirubi	n Albumin P	rothrombin
Pearson	Correlation	Coefficient	s, N = 309
Pr	ob > r und	ler H0: Rho	=0
	Bilirubin	Albumin	Prothrombin
Bilirubin	1.00000	-0.33165	0.36107
		<.0001	<.0001
Albumin	-0.33165	1.00000	-0.23021
	<.0001		<.0001
Prothrombin	0.36107	-0.23021	1.00000
	<.0001	<.0001	
•	Correlation		•
	Bilirubin	Albumin	Prothrombin
Bilirubin	1.00000	-0.35708	0.29721
		<.0001	<.0001
Albumin	-0.35708	1.00000	-0.20531

<.0001

0.29721 <.0001

Prothrombin

-0.20531

0.0003

According to the findings of the correlation analysis, there is a statistically significant negative association between bilirubin and albumin. This suggests that as bilirubin levels rise, albumin levels often fall as result of the trend. Additionally, there is a statistically significant positive connection between bilirubin and prothrombin, which indicates that greater bilirubin levels related with elevated prothrombin levels. This association suggests that higher bilirubin levels connected with higher prothrombin levels. Additionally, a statistically significant inverse correlation can shown between albumin and prothrombin, which suggests that when albumin levels fall, prothrombin levels have a tendency to rise. This finding supported by the data presented in the previous section.

0.0003

1.00000

Kruskal Wallis Test

Null Hypothesis

H0: There is no significant difference in the median survival time among difference disease stages.

Alternative Hypothesis (H1):

H0: There is significant difference in the median survival time among difference disease stages.

Wilcoxon Scores (Rank Sums) for Variable Prothrombin Classified by Variable Stage						
Stage	N	Sum of Scores	Expected Under H0	Std Dev Under H0	Mean Score	
3	119	15951.00	18445.0	763.291389	134.042017	
2	66	8196.50	10230.0	642.858198	124.189394	
4	108	21520.50	16740.0	747.911116	199.263889	
1	16	2227.00	2480.0	347.563277	139.187500	
		Average so	cores were u	sed for ties.		

Kruskal-Wallis Test					
Chi-Square	DF	Pr > ChiSq			
41.5114	3	<.0001			

Pairwise	Two-Sided Mu	Iltiple Comparis	on Analysis			
Dw	ass, Steel, Crit	chlow-Fligner I	Method			
Variable: Prothrombin						
Stage	Wilcoxon Z	DSCF Value	Pr > DSCF			
3 vs. 2	0.5698	0.8059	0.9411			
3 vs. 4	-5.3971	7.6326	<.0001			
3 vs. 1	-0.1943	0.2748	0.9974			
2 vs. 4	-5.5996	7.9190	<.0001			
2 vs. 1	-0.3755	0.5310	0.9820			
4 vs. 1	2.3406	3.3102	0.0890			

The Kruskal-Wallis test for several stages of the disease demonstrates that there is a statistically significant variation in the mean amount of time patients survive between these stages (p < 0.01). According to the results of the pairwise comparisons, there is also no statistically significant difference in the amount of time spent alive between stages 3 and 2, stages 3 and 1, stages 2 and 1 (p > 0.05). Nevertheless, there is a statistically significant gap in the amount of time spent alive between every other possible pairing of illness phases (p <0.001).

TASK C

Data visualization

Conclusion:

In Conclusion the T-test, which show that there are significant gender-based disparities in age, this study emphasizes how important it is to take into account patients' ages as a vital aspect when dealing with cirrhosis patients. The findings of the association between Bilirubin, Albumin, and Prothrombin have shed light on the complicated linkages that exist between these clinical variables, hence providing useful insights into the convoluted course of cirrhosis. In addition, the stage of the disease has a major impact on the amount of time a patient expected to live; nevertheless, there was no significant difference in survival time between stages 3 and 2, stages 3 and 1, and stages 2 and 1. Nevertheless, the statistically significant changes in survival time that were found in other pairwise comparisons shed light on the necessity of individualized therapies and highlight the significance of taking into account the stage of the disease in order to maximize the likelihood of a positive outcome for patients being treated for cirrhosis. These findings make a sizeable contribution to a more nuanced knowledge of the factors influencing the outcomes of cirrhosis patients, so paving the way for treatment strategies that are more specifically focused and efficient.

Reference:

Li, J., & Liu, R. Y. (2004, November 1). New Nonparametric Tests of Multivariate Locations and Scales Using Data Depth. Statistical Science, 19(4). https://doi.org/10.1214/088342304000000594

Etikan, L. (2018, October 17). Choosing statistical tests for survival analysis. Biometrics & Biostatistics International Journal, 7(5). https://doi.org/10.15406/bbij.2018.07.00249