Telemetri

Roketin uçuşu sırasında toplanan verilerin (irtifa, ivme, sıcaklık, GPS konumu vb.) yer istasyonuna kablosuz olarak iletilmesini sağlamaktır.

Bu sistemlerde ESP32, Wi-Fi veya LoRa gibi kablosuz haberleşme seçenekleriyle kullanılır.

📡 STM32 Telemetri Sistemi (Blok Diyagram

Telemetri vs Telemetrium

Terim	Ne Anlama Geliyor?	Kullanımı	
Telemetri	Uzak bir cihazdan veri toplama ve iletme tekniği	Bilimsel/kavramsal terim	
Telemetrium	Telemetri yapan cihaz ya da sistemin adı	Uygulama/sistem adı	

1. Telemetri (Telemetri Sistemi - Kavram)

- Bir ölçüm ve iletişim tekniğidir.
- Uzaktaki bir nesneden (örneğin roket) veri alınması ve başka bir yerde görüntülenmesi anlamına gelir.
- Bu, bilimsel ve genel bir kavramdır.
- "Telemetri verisi", "telemetri sistemi", "telemetri bağlantısı" gibi kullanılır.

2. Telemetrium (Telemetri Cihazı/Sistemi)

- Telemetri işlemini gerçekleştiren sistemin donanım/cihaz adı gibi düşün.
- Örneğin, STM32 + sensörler + LoRa modülü ile yaptığın kutuya veya karta genellikle "telemetrium" denir.
- Telemetrium = Telemetri yapan donanım seti, uçuş bilgisayarı gibi.

- **Telemetri** = İşlem, yöntem, konsept
- **Telemetrium** = Bu işi yapan fiziksel cihaz

STM32 ile Kullanılabilecek Donanım Sistemleri

Protokol	Ne İçin Kullanılır?	Örnek Modül
I2C	Barometrik sensör, IMU	BMP280, MPU6050
SPI	SD kart, LoRa modülü	MicroSD, SX1278
UART	GPS modülü	NEO-6M. NEO-M8N

STM32 genelde HAL (Hardware Abstraction Layer) veya LL (Low Level) kütüphaneleri ile programlanır.

STM32 Blue Pill SPI Communication

STM32 Blue Pill I2C Communication

STM32 Blue Pill UART Data Transmit

X STM32 Telemetri Sistemi – Donanım Genel Yapı

STM32 mikrodenetleyicisi (örn. STM32F103C8T6), sensörler ve iletişim modülleriyle aşağıdaki gibi bir yapıda çalışır:

🧠 1. Ana Kontrolcü: STM32 Geliştirme Kartı

- Örnek: STM32F103C8T6 (Blue Pill), Nucleo-F401RE vs.
- Görev: Tüm sensörlerden veri toplar, işler, kaydeder ve kablosuz olarak gönderir.

🗩 2. Bağlanan Modüller ve Protokoller:

- MPU6050 → İvmeölçer + Jiroskop
- BMP280 / BME280 → Barometrik Basınç ve Sıcaklık Sensörü STM32 Pinleri (Blue Pill örneği):

SCL → PB6

SDA → PB7

★ UART (TX, RX)

- GPS Modülü (NEO-6M, M8N) → Konum ve hız bilgisi
- STM32 Pinleri:

 $TX \rightarrow PA2$

 $RX \rightarrow PA3$

(USART2 üzerinden)

★ SPI Bus (MOSI, MISO, SCK, CS)

- LoRa Modülü (SX1278) → Kablosuz veri gönderimi
- SD Kart Modülü → Uçuş verilerini yedekleme

STM32 Pinleri:

MOSI → PA7

MISO → PA6

 $SCK \rightarrow PA5$

CS → PA4 (LoRa) / PA3 (SD Kart)

▲ LoRa ve SD Kart aynı SPI hattını paylaşıyorsa, CS pinleri farklı olmalı.

🧠 STM32 Telemetrium Yazılım Akışı

- 1. I2C ile Sensör Verisi Oku
 - BMP280 → İrtifa, sıcaklık
 - MPU6050 → İvme, jiroskop
- 2. UART ile GPS Verisi Oku
 - NMEA protokolünü ayrıştır (GPGGA, GPRMC)
- 3. Veriyi SPI üzerinden SD Kart'a Kaydet
- 4. SPI ile LoRa Üzerinden Paket Gönder

📦 Telemetri Veri Paketi Örneği(C PROGRAMLAMA DİLİ İLE)

```
#include <stdio.h>
#include <string.h>
void generateTelemetryPacket(char *buffer, float altitude, float temperature,
                             float accelX, float accelY, float accelZ,
                             float latitude, float longitude, const char *time) {
    sprintf(buffer,
        "\"time\":\"%s\","
        "\"altitude\":%.2f,"
       "\"temperature\":%.2f,"
        "\"accelX\":%.2f,"
        "\"accelY\":%.2f,"
        "\"accelZ\":%.2f,"
        "\"latitude\":%.6f,"
        "\"longitude\":%.6f"
       time, altitude, temperature, accelX, accelY, accelZ, latitude, longitude
    );
}
```

Parametre	Açıklama
char *buffer	JSON string'in yazılacağı alan (char dizi)
altitude	İrtifa (örnek: 523.4)
temperature	Sıcaklık (örnek: 25.7)
accelX/Y/Z	İvme değerleri
latitude	Enlem
longitude	Boylam
time	Zaman bilgisi (örnek; "12:35:21")

Gerekli Bileşenler (STM32 için)

- STM32 Geliştirme Kartı (Örn: STM32F103C8T6, Nucleo)
- LoRa Modülü (SX1278)
- **GPS Modülü** (NEO-6M, M8N)
- Barometrik Sensör (BMP280 / BME280)
- IMU Sensör (MPU6050 / BNO055)
- SD Kart Modülü
- Direnç, kondansatör, jumper kablo
- Lehimleme ekipmanları

STM32 Telemetri Sistemi – Pin Bağlantı Tablosu

Modül	Fonksiyon	Bağlantı Türü	STM32 Pin
MPU6050	İvmeölçer & Jiroskop	I2C	$SDA \rightarrow PB7$
			SCL → PB6
BMP280 / BME280	Barometrik Basınç ve Sıcaklık	I2C	$SDA \rightarrow PB7$
			SCL → PB6 (I2C aynı hatta bağlanır)
GPS (NEO-6M)	Konum ve Hız Verisi	UART	RX → PA3 (STM32 RX)
			$TX \rightarrow PA2 (STM32 TX)$
LoRa (SX1278)	Kablosuz Veri Gönderimi	SPI	MOSI → PA7
	Gondenini		$MISO \to PA6$
			SCK o PA5
			CS (NSS) → PA4
			RESET → PB1
			DIO0 → PB0
SD Kart	Yerel Veri Kaydı	SPI	MOSI → PA7
			MISO → PA6
			$SCK \rightarrow PA5$
			CS → PA3 (LoRa ile SPI paylaşılırsa farklı CS pinleri gerekir)
LED / Uyarıcı	Durum göstergesi	GPIO	Örn: PC13
ST-Link / FTDI	Kod Yükleme & Debug	USART	$TX \rightarrow PA9 RX \rightarrow PA10$

Q LoRa (Long Range) Nedir?

LoRa, "Long Range" (uzun menzilli) kablosuz iletişim teknolojisidir. STM32 gibi mikrodenetleyicilerle entegre edilerek, veri paketlerini kilometrelerce uzağa gönderebilmeyi sağlar.

Özellik	Açıklama
	Genellikle 433 MHz, 868 MHz, 915 MHz
Güç Tüketimi	Düşük (IoT için ideal)
Menzil	2–10 km arası (açık alanda)
🐢 Hız	Düşük veri hızı (ama yeterli)
Kullanım Alanı	IoT, tarım, akıllı şehir, roket, drone

Avantajları:

- Çok az enerji harcar.
- Çok uzak mesafelere veri gönderebilir.
- Parazitlere dayanıklıdır.
- LoRa ile neler gönderilebilir?

Roketlerde:

- İrtifa
- Konum (GPS)
- Hız
- İvme
- Sıcaklık
- Roket durumu (uçuş, iniş, kurtarma vs.)

LoRa sayesinde, roketten gelen telemetri verilerini 2-5 km uzaktaki bir yer istasyonunda anlık olarak görebiliriz.

https://how2electronics.com/interfacing-lora-sx1278-stm32-sender-receiver/#google_vignette (Bu bağlantıda kodlar ve lora için faydalı bilgiler bulunuyor.)

Bileşen	Açıklama
Mikrodenetleyici	STM32L151 ARM Cortex M3 tabanlı, roketin uçuş verilerini işler.
RF Transceiver	TI CC1200, telemetri downlink işlemleri için 70cm ham-band frekansını kullanır.
Barometrik Basınç Sensörü	Yaklaşık 100,000 feet MSL'ye kadar basınç ölçümü yapar.
İvmeölçer	1-eksenli 200-g ivmeölçer, motor karakterizasyonu için kullanılır.
GPS Alicisi	u-blox MAX-8Q, roketin konumunu belirlemek için entegre GPS sağlar.
Veri Depolama	On-board non-volatile bellek, uçuş verilerini saklar.
Güç ve Bağlantı	USB portu, güç temini, yapılandırma ve veri kurtarma işlemleri için kullanılır.
Batarya Desteği	LiPo şarj edilebilir bataryaları destekler; ayrıca ayrı bir pyro bataryası desteği olabilir.

 Tabloda TeleMetrum V3.0 sisteminin temel bileşenlerini ve her bir bileşenin işlevini açık bir şekilde göstermektedir.