Analysis I WS 19/20

Blatt 12 24.01.2020

ARSnova-Code: 67 52 65 62

Abgabe bis Fr. 31.01.20, 11Uhr, in die Zettelkästen (INF 205, 1.Stock)

Informationen:

- Dieses Aufgabenblatt dürfen Sie GENAU DANN abgeben, wenn Sie auf den Blättern 1–11 insgesamt weniger als **117** Punkte erreicht haben.
- Zu jeder Aussage dürfen Sie genau eine der Möglichkeiten ("wahr" oder "falsch") ankreuzen. Jedes richtige Kreuz liefert einen Punkt, für falsche Kreuze werden keine Punkte vernichtet.
- Wenn Sie auf den Blättern 1–11 mindestens 117 Punkte erreicht haben, dient dieses Blatt der Prüfungsvorbereitung.
- Dieses Übungsblatt wird nicht in den Tutorien besprochen. Die Tutorien enden am 31.01.20. Dies ist das letzte Übungsblatt für dieses Semester.

Hinweise zur Bearbeitung:

- Achten Sie bei jeder Aussage genau auf die Voraussetzungen!
- Überlegen Sie, wie Sie Ihre Antworten begründen könnten.
- Immer wenn a und b als Intervallgrenzen genutzt werden, sei a < b, also auch das Intervall (a, b) nichtleer.

Nr.	Aussage	w	f
1.	Wenn $f:[a,b]\to\mathbb{R}$ stetig und in (a,b) differenzierbar ist, gibt es notwendigerweise ein $\xi\in(a,b)$ mit $f'(\xi)=\frac{f(b)-f(a)}{b-a}$.		
2.	Wenn $f:(a,b)\to\mathbb{R}$ stetig ist, ist f notwendigerweise gleichmäßig stetig.		
3.	Für $(a_n)_{n\in\mathbb{N}}\subset\mathbb{R}$ gilt: $\sum_{n=1}^{\infty}a_n$ konvergiert $\iff\sum_{n=1}^{\infty}2^na_{2^n}$ konvergiert.		
4.	Jede stetige Funktion $f:[a,b]\to\mathbb{R}$ ist Riemann-integrierbar.		
5.	Wenn $f:(a,b)\to\mathbb{R}$ differenzierbar ist mit $f'\geq 0$, ist f monoton wachsend.		

Nr.	Aussage	w	f
6.	Jede differenzierbare Funktion ist stetig.		
7.	Eine stetige Funktion $f:[a,b] \to \mathbb{R}$ nimmt notwendigerweise ihr Maximum an.		
8.	Für alle $a, b \in \mathbb{R}$ gilt: $a < b \iff a^2 < b^2$.		
9.	Wenn eine Funktion $f: \mathbb{R} \to \mathbb{R}$ in $x \in \mathbb{R}$ ein lokales Maximum besitzt und differenzierbar ist, gilt notwendigerweise $f'(x) = 0$.		
10.	$\left(\frac{n+1}{n}\right)^n \stackrel{n \to \infty}{\longrightarrow} 1.$		
11.	Wenn $f:(a,b)\to\mathbb{R}$ differenzierbar ist und $f'(x)>0$ für alle $x\in(a,b)$ gilt, ist $f^{-1}:f((a,b))\to\mathbb{R}$ differenzierbar.		
12.	Für $(a_k)_{k \in \mathbb{N}} \subset \mathbb{R} \setminus \{0\}$ gilt: $\forall k \in \mathbb{N} : \left \frac{a_{k+1}}{a_k} \right \leq 1 \Rightarrow \sum_{k=1}^{\infty} a_k$ konvergiert.		
13.	$0 \le a_n \xrightarrow{n \to \infty} 0 \Rightarrow \sum_{n=1}^{\infty} (-1)^n a_n$ konvergiert.		
14.	Jede konvergente Folge ist beschränkt.		
15.	Sei x_0 ein innerer Punkt eines Intervalls $I \subset \mathbb{R}$. Dann ist eine Funktion $f: I \to \mathbb{R}$ genau dann in x_0 stetig, wenn die einseitigen Grenzwerte $\lim_{x \nearrow x_0} f(x)$ und $\lim_{x \searrow x_0} f(x)$ existieren und mit $f(x_0)$ übereinstimmen.		
16.	Für $(a_k)_{k \in \mathbb{N}} \subset \mathbb{R} \setminus \{0\}$ gilt: Wenn $\left \frac{a_{k+1}}{a_k}\right \geq 1$ für unendlich viele $k \in \mathbb{N}$ gilt, ist $\sum_{k=1}^{\infty} a_k$ divergent.		
17.	Für $(a_k)_{k \in \mathbb{N}} \subset \mathbb{R}$ gilt: Wenn $\sqrt[k]{ a_k } \geq 1$ für unendlich viele $k \in \mathbb{N}$ gilt, ist $\sum_{k=1}^{\infty} a_k$ divergent.		
18.	Für $(a_n), (b_n) \subset \mathbb{R}$ gilt: Ist $\sum_{n=1}^{\infty} b_n$ konvergent und gilt $a_n \leq b_n$ für alle n , so ist auch $\sum_{n=1}^{\infty} a_n$ konvergent.		
19.	Die Reihe $\sum_{n=1}^{\infty} \frac{1}{n}$ ist konvergent.		
20.	Wenn $f:[a,b]\to\mathbb{R}$ stetig und in (a,b) differenzierbar ist mit beschränkter Ableitung, dann ist f zwangsläufig Lipschitz-stetig auf $[a,b]$.		