Section 11.1

Exercise (5). Here is a digram for a relation R on a set A. Write the sets A and R.

Solution:

Exercise (6). Congruence modulo 5 is a relation on the set $A = \mathbb{Z}$. In this relation xRy $x \equiv y \pmod{5}$. Write out the set R in set-builder notation.

Solution: Write your answer here. \Box

In the following exercises, subsets R of \mathbb{R}^2 or \mathbb{Z}^2 are indicated by gray shading. In each case, R is a familiar relation on \mathbb{R} or \mathbb{Z} . State it.

Exercise (12).

Proof: Write your answer here.

Section 11.2

Note: When a property does not hold, it suffices to describe a counterexample.

Exercise (2). Consider the relation $R = \{(a,b), (a,c), (c,c), (b,b), (c,b), (b,c)\}$ on the set $A = \{a,b,c\}$. Is R reflexive? Symmetric? Transitive? If a property does not hold, say why.

Solution: Write your answer here. \Box

Exercise (5). Consider the relation $R = \{(0,0), (\sqrt{2},0), (0,\sqrt[2]{}), (\sqrt{2},\sqrt{2}) \text{ on } \mathbb{R}$. Is R reflexive? Symmetric? Transitive? If a property does not hold, say why.

Solution: Write your answer here. \Box

Exercise (6). Consider the relation $R = \{(x, x) : x \in \mathbb{Z}\}$ on \mathbb{Z} . Is R reflexive? Symmetric? Transitive? If a property does not hold, say why.

Solution: Write your answer here. \Box

Exercise (8). Define a relation on \mathbb{Z} as xRy if |x-y| < 1. Is R reflexive? Symmetric? Transitive? If a property does not hold, say why. What familiar relation is this?

Exercise (12). Prove that the relation | (divides) on the set \mathbb{Z} is reflexive and transitive. (Use example 11.8 as a guide if you are unsure how to proceed.)

Solution: Write your answer here.

Exercise (14). Suppose R is a symmetric and transitive relation on a set A, and there is an element $a \in A$ for which aRx for every $x \in A$. Prove that R is reflexive.

Proof: Write your answer here.

Exercise (15). Prove or disprove: If a relation is symmetric and transitive, then it is also reflexive.

Solution: Write your answer here.

Section 11.3

Exercise (3). Let $A = \{a, b, c, d, e\}$. Suppose R is an equivalence relation on A. Suppose R has three equivalence classes. Also aRd and bRc. Write out R as a set.

Solution: Write your answer here.

Exercise (5). There are two different equivalence relations on the set $A = \{a, b\}$. Describe them. Diagrams will suffice.

Solution: Write your answer here.

Exercise (8). Define a relation R on \mathbb{Z} as xRy iff $x^2 + y^2$ is even. Prove R is an equivalence relation. Describe its equivalence classes.

Proof: Write your answer here.

Solution: Write your answer here.

Section 11.4

Exercise (1). List all the partitions of the set $A = \{a, b\}$. Compare your answer to the answer to Exercise 5 of Section 11.3.

Solution: Write your answer here.

Exercise (4). Suppose P is a partition of a set A. Define a relation R on A by declaring xRy if and only if $x, y \in X$ for some $X \in P$. Prove that R is an equivalence relation on A. Then prove that P is the set of equivalence classes of R.

Proof: Write your answer here.	
Exercise (Reflection Problem). • How long did it take you to complete each problem?	
Answer:	
• What was easy?	
Answer:	
• What was challenging? What made it challenging?	
Answer:	
• Compare your answers to the odd numbered exercises to those in textbook. What did you learn from this comparison?	the back of the
Answer:	

3