PR

b. Jumlah 0 dpt dibagi 3 dan jumlah 1 dapat dibagi 2

c. bilangan biner, diawali angka 1, bernilai kelipatan 3

NFA (Nondeterministic Finite Automata)

Soal

 Buat FA utk Language yg menerima string dgn angka 1 pada posisi ke-3 dari kanan, contoh accepted string: 100, 0100, 101, dst

Language yg menerima string dgn angka 1 pada posisi ke-3 dari kanan

Contoh

Vending Machine

Pac Man

Keyword Indexing

TCP (Transmission Control Protocol)

Nondeterministic

- $\delta(\text{state, input symbol}) = \{\text{lebih dari satu state}\}$
- Notasi Formal
 - Q: sekumpulan state
 - Σ: input alphabet
 - δ: fungsi transisi
 - start state pada Q, biasanya q_0
 - sekumpulan final state (F dimana F \subseteq Q)

Fungsi Transisi pd NFA

- Basis: $\delta(q, \epsilon) = \{q\}$
- Induction: jika $\delta(q, w) = \text{sekumpulan}$ states (p); maka $\delta(q, wa) = \delta(\text{semua}$ states di p, a)

Language dari NFA

- string w diterima NFA jika salah satu state hasil dari $\delta(q_0, w)$ adalah final state
- language dari NFA adalah kumpulan string yang diterima NFA tsb

Contoh: Chessboard

1	2	3
4	5	6
7	8	9

		r	b
→	1	2,4	5
	2	4,6	1,3,5
	3	2,6	5
	4	2,8	1,5,7
	5	2,4,6,8	1,3,7,9
	6	2,8	3,5,9
	7	4,8	5
	8	4,6	5,7,9
*	9	6,8	5

← Accept, since final state reached₃

An NFA for the language of all strings over $\{a,b,c\}$ that end with one of $ab,\,bc$, and ca.

Latihan Soal

An NFA for the language of all strings over $\{a,b\}$ that contain ababb.

An NFA for the language of all strings over $\{a, b, c\}$ for which one of (the number of occurrences of a), (the number of occurrences of b), and (the number of occurrences of c) is a multiple of a.

An NFA for the language of all strings over $\{a,b\}$ that contain ababb.

An NFA for the language of all strings over $\{a, b, c\}$ for which one of (the number of occurrences of a), (the number of occurrences of b), and (the number of occurrences of c) is a multiple of a.

EKIVALENSI NFA - DFA

Ekivalensi DFA dan NFA

- DFA dapat diubah ke NFA
- Jika pada DFA, ada $\delta_D(q, a) = p$, maka pada NFA ditulis sbb: $\delta_N(q, a) = \{p\}$
- NFA yang diubah dari DFA hanya memiliki 1 state

Ekivalensi DFA dan NFA

- Untuk setiap NFA, juga ada DFA yang menerima language yang sama
- Metode: subset construction
- DFA akan memiliki
 - state yang lebih banyak (maksimum 2^Q)
 - input dan start state tetap
 - final state: semua state baru DFA yang memiliki informasi state F pada NFA

		r	b
	1	2,4	5
	2	4,6	1,3,5
	3	2,6	5
	4	2,8	1,5,7
	5	2,4,6,8	1,3,7,9
	6	2,8	3,5,9
	7	4,8	5
	8	4,6	5,7,9
*	9	6,8	5

	r	b
→ {1}	{2,4}	{5}
{2,4}		
{5 }		
Ç - J		

Alert: What we're doing here is the *lazy* form of DFA construction, where we only construct a state if we are forced to.

21

		r	b
\rightarrow	1	2,4	5
	2	4,6	1,3,5
	3	2,6	5
	4	2,8	1,5,7
	5	2,4,6,8	1,3,7,9
	6	2,8	3,5,9
	7	4,8	5
	8	4,6	5,7,9
*	9	6,8	5

	r	b
\rightarrow {1}	{2,4}	{5 }
{2,4}	{2,4,6,8}	{1,3,5,7}
{5}		
{2,4,6,8}		
{1,3,5,7}		

		r	b
	1	2,4	5
	2	4,6	1,3,5
	3	2,6	5
	4	2,8	1,5,7
	5	2,4,6,8	1,3,7,9
	6	2,8	3,5,9
	7	4,8	5
	8	4,6	5,7,9
*	9	6,8	5

		r	b
	→ {1}	{2,4}	{5 }
	{2,4}	{2,4,6,8}	{1,3,5,7}
	{5 }	{2,4,6,8}	{1,3,7,9}
	{2,4,6,8}		
	{1,3,5,7}		
*	{1,3,7,9}		

		r	b
→	1	2,4	5
	2	4,6	1,3,5
	3	2,6	5
	4	2,8	1,5,7
	5	2,4,6,8	1,3,7,9
	6	2,8	3,5,9
	7	4,8	5
	8	4,6	5,7,9
*	9	6,8	5

	r	b
→ {1}	{2,4}	{5 }
{2,4}	{2,4,6,8}	{1,3,5,7}
{5 }	{2,4,6,8}	{1,3,7,9}
{2,4,6,8}	{2,4,6,8}	{1,3,5,7,9}
{1,3,5,7}		
* {1,3,7,9}		
* {1,3,5,7,9}		

		r	b
	1	2,4	5
	2	4,6	1,3,5
	3	2,6	5
	4	2,8	1,5,7
	5	2,4,6,8	1,3,7,9
	6	2,8	3,5,9
	7	4,8	5
	8	4,6	5,7,9
*	9	6,8	5

	r	b
$\longrightarrow \{1\}$	{2,4}	{5 }
{2,4}	{2,4,6,8}	{1,3,5,7}
{5}	{2,4,6,8}	{1,3,7,9}
{2,4,6,8}	{2,4,6,8}	{1,3,5,7,9}
{1,3,5,7}	{2,4,6,8}	{1,3,5,7,9}
* {1,3,7,9}		
* {1,3,5,7,9}		

Example: Subset Construction

		r	b
	1	2,4	5
	2	4,6	1,3,5
	3	2,6	5
	4	2,8	1,5,7
	5	2,4,6,8	1,3,7,9
	6	2,8	3,5,9
	7	4,8	5
	8	4,6	5,7,9
*	9	6,8	5

	r t	Þ
$\longrightarrow \{1\}$	{2,4}	{5}
{2,4}	{2,4,6,8}	{1,3,5,7}
{5}	{2,4,6,8}	{1,3,7,9}
{2,4,6,8}	{2,4,6,8}	{1,3,5,7,9}
{1,3,5,7}	{2,4,6,8}	{1,3,5,7,9}
* {1,3,7,9}	{2,4,6,8}	{5}
* {1,3,5,7,9}		

Example: Subset Construction

		r	b
	1	2,4	5
	2	4,6	1,3,5
	3	2,6	5
	4	2,8	1,5,7
	5	2,4,6,8	1,3,7,9
	6	2,8	3,5,9
	7	4,8	5
	8	4,6	5,7,9
*	9	6,8	5

	ı r k)
$\longrightarrow \{1\}$	{2,4}	{5 }
{2,4}	{2,4,6,8}	{1,3,5,7}
{5 }	{2,4,6,8}	{1,3,7,9}
{2,4,6,8}	{2,4,6,8}	{1,3,5,7,9
{1,3,5,7}	{2,4,6,8}	{1,3,5,7,9
* {1,3,7,9}	{2,4,6,8}	{5}
* {1,3,5,7,9}	{2,4,6,8}	{1,3,5,7,9

NFA dgn ϵ -Transition

Contoh Soal

An NFA for the language of all strings over $\{0,1\}$ that end with one of $0110,\,010,\,$ and 00.

NFA dgn ϵ -Transition

 memungkinkan adanya transisi antar state dgn input €

Closure of States

 CL(q) = sekumpulan state yang bisa dicapai dari state q dengan hanya mengikuti busur berlabel €

- $CL(A) = \{A\}$
- CL(E) = {B, C, D, E}
- Closure dari kumpulan state:
 - gabungan closure setiap state

Extended Delta

- Basis: $\delta(q, \epsilon) = CL(q)$.
- Induction: $\delta(q, xa)$ sbb:
 - 1. misal $\delta(q, x) = S$.
 - 2. = union dari $CL(\delta(p, a))$ utk semua p di S.
- Intuisi: δ(q, w) adalah sekumpulan state yang dapat dicapai dari q dengan mengikuti path busur w

Cth: Extended Delta 1 B 1 C 1 D

- $\delta(A, \epsilon) = CL(A) = \{A\}.$
- $\delta(A, 0) = CL(\{E\}) = \{B, C, D, E\}.$
- $\delta(A, 01) = CL(\{C, D\}) = \{C, D\}.$
- Language dari sebuah ϵ -NFA adalah sekumpulan string w dimana $\delta(q_0, w)$ mengandung final state.

Ekivalensi antara NFA dan ϵ -NFA

- setiap NFA adalah ϵ -NFA, hny tnp transisi ϵ
- daftar state, state awal dan
- setiap fungsi transisi pd NFA: $\delta_N(q, a)$ adl:
 - misal S = CL(q) dimana S adl kumpulan state
 - $-\delta_N(q, a)$ adl union semua p pada S yaitu $\delta \epsilon$ (p, a)

Interesting

closures: CL(B)

 $= \{B,D\}; CL(E)$

€-NFA

 $= \{B,C,D,E\}$

Contoh: ∈-NFA-to-NFA

Krn closures dr B dan E meliputi final state D. Krn closure dr E mencakup B dan C; yg memiliki transisi 1 ke C dan D.