

13a. Global solution methods with aggregate risk

Adv. Macro: Heterogenous Agent Models

Jeppe Druedahl & Patrick Moran 2022

- **Previously:** Perfect foresight in sequence space
 - 1. Non-linear solution
 - 2. Linear solution \rightarrow simulation with aggregate risk

- **Previously:** Perfect foresight in sequence space
 - 1. Non-linear solution
 - 2. Linear solution \rightarrow simulation with aggregate risk
- Today: Aggregate risk

- **Previously:** Perfect foresight in sequence space
 - 1. Non-linear solution
 - 2. Linear solution \rightarrow simulation with aggregate risk
- Today: Aggregate risk
 - Local solution in state space (pertubation)
 Higher order terms can (in principle) be included
 Reference: Bayer and Luetticke (2020)

- Previously: Perfect foresight in sequence space
 - 1. Non-linear solution
 - 2. Linear solution \rightarrow simulation with aggregate risk
- Today: Aggregate risk
 - Local solution in state space (pertubation)
 Higher order terms can (in principle) be included
 Reference: Bayer and Luetticke (2020)
 - Global solution in state space (projection)

Problem: The distribution of households is a state variable **References:** Krusell and Smith (1998); Algan et al. (2014); Proehl (2019); Maliar et al. (2021); Azinovic et al. (2022); Kase et al. (2022)

- Previously: Perfect foresight in sequence space
 - 1. Non-linear solution
 - 2. Linear solution \rightarrow simulation with aggregate risk
- Today: Aggregate risk
 - Local solution in state space (pertubation)
 Higher order terms can (in principle) be included
 Reference: Bayer and Luetticke (2020)
 - Global solution in state space (projection)
 Problem: The distribution of households is a state variable
 References: Krusell and Smith (1998); Algan et al. (2014); Proehl
 (2019); Maliar et al. (2021); Azinovic et al. (2022); Kase et al. (2022)
- Code (with Emil Holst Partsch): github.com/JeppeDruedahl/GlobalHA

- Previously: Perfect foresight in sequence space
 - 1. Non-linear solution
 - 2. Linear solution \rightarrow simulation with aggregate risk
- Today: Aggregate risk
 - Local solution in state space (pertubation)
 Higher order terms can (in principle) be included
 Reference: Bayer and Luetticke (2020)
 - Global solution in state space (projection)
 Problem: The distribution of households is a state variable
 References: Krusell and Smith (1998); Algan et al. (2014); Proehl
 (2019); Maliar et al. (2021); Azinovic et al. (2022); Kase et al. (2022)
- Code (with Emil Holst Partsch): github.com/JeppeDruedahl/GlobalHA
- Disclaimer: This is advanced stuff!

Household problem with aggregate risk

$$\begin{aligned} v(Z_t, \boldsymbol{D}_t, z_{it}, a_{it-1}) &= \max_{c_{it}} \frac{c_{it}^{1-\sigma}}{1-\sigma} + \beta \mathbb{E}_t \left[v(Z_{t+1}, \boldsymbol{D}_{t+1}, z_{it+1}, a_{it}) \right] \\ \text{s.t. } a_{it} &= (1+r_t)a_{it-1} + w_t z_{it} - c_{it} \geq 0 \\ \log z_{it+1} &= \rho_z \log z_{it} + \psi_{it+1} \ , \psi_{it+1} \sim \mathcal{N}(\mu_{\psi}, \sigma_{\psi}), \ \mathbb{E}[z_{it}] &= 1 \\ K_{t-1} &= \int a_{it-1} d\boldsymbol{D}_t \\ L_t &= \int z_{it} d\boldsymbol{D}_t = 1 \\ r_t &= \alpha Z_t (K_{t-1}/L_t)^{\alpha-1} - \delta \\ w_t &= (1-\alpha) Z_t (K_{t-1}/L_t)^{\alpha} \\ \boldsymbol{D}_{t+1} &= \Gamma(Z_t, \boldsymbol{D}_t) \\ Z_{t+1} &\sim \Gamma_Z(Z_t) \end{aligned}$$

Method

Assuming (strong) approximate aggregation

$$\begin{split} v(Z_t, K_{t-1}, z_{it}, a_{it-1}) &= \max_{c_{it}} \frac{c_{it}^{1-\sigma}}{1-\sigma} + \beta \mathbb{E}_t \left[v(Z_{t+1}, K_t, z_{it+1}, a_{it}) \right] \\ \text{s.t. } a_{it} &= (1+r_t)a_{it-1} + w_t z_{it} - c_{it} \geq 0 \\ \log z_{it+1} &= \rho_z \log z_{it} + \psi_{it+1} \ , \psi_{it+1} \sim \mathcal{N}(\mu_{\psi}, \sigma_{\psi}), \ \mathbb{E}[z_{it}] = 1 \\ r_t &= \alpha Z_t (K_{t-1})^{\alpha-1} - \delta \\ w_t &= (1-\alpha)Z_t (K_{t-1})^{\alpha} \\ K_t &= \text{PLM}(Z_t, K_{t-1}) \\ Z_{t+1} &\sim \Gamma_Z(Z_t) \end{split}$$

PLM ≡ »perceived law of motion«

Weak approximation in general

$$egin{aligned} v(oldsymbol{Z}_t, oldsymbol{S}_{t-1}, oldsymbol{z}_t, oldsymbol{a}_{t-1}, oldsymbol{z}_{t}, oldsymbol{a}_{t-1}) &= \max_{c_t} u(c_t) + \beta \mathbb{E}_t \left[v(oldsymbol{Z}_{t+1}, oldsymbol{S}_t, oldsymbol{z}_{t+1}, oldsymbol{a}_{t})
ight. \\ &= \operatorname{SL.} oldsymbol{S}_t, oldsymbol{P}_t &= \operatorname{PLM}(oldsymbol{Z}_t, oldsymbol{S}_{t-1}) \\ &= a_t + c_t &= m(oldsymbol{z}_t, oldsymbol{a}_{t-1}, oldsymbol{P}_t) \\ &= oldsymbol{z}_{t+1} \sim \Gamma_{oldsymbol{Z}}(oldsymbol{z}_t) \\ &= oldsymbol{Z}_{t+1} \sim \Gamma_{oldsymbol{Z}}(oldsymbol{Z}_t) \\ &= a_t \geq -b \end{aligned}$$

- 1. Z_t are exogenous aggregate shocks.
- 2. S_{t-1} are pre-determined (finite dimensional) aggregate states.
- 3. P_t are »prices«.
- 4. PLM(•) is the *Perceived-Law-of-Motion*.
- 5. z_t is stochastic and exogenous idiosyncratic states.
- 6. c_t is consumption providing utility $u(c_t)$ discounted by β .
- 7. a_t is end-of-period assets (borrowing constraint given by b).
- 8. $m(\bullet)$ is cash-on-hand with $\frac{\partial m(\bullet)}{\partial a_{k-1}} > 0$.

EGM can still be used

1. **EGM**

$$\begin{split} q(\boldsymbol{Z}_t, \boldsymbol{S}_{t-1}, \boldsymbol{z}_t, a_t) &= \mathbb{E}\left[v_a(\boldsymbol{Z}_{t+1}, \boldsymbol{S}_t, \boldsymbol{z}_{t+1}, a_t)\right] \\ \tilde{c}(\boldsymbol{Z}_t, \boldsymbol{S}_{t-1}, \boldsymbol{z}_t, a_t) &= (\beta q(\bullet))^{-\frac{1}{\sigma}} \\ \tilde{m}(\boldsymbol{Z}_t, \boldsymbol{S}_{t-1}, \boldsymbol{z}_t, a_t) &= a_t + c(\bullet) \\ c^{\star}(\boldsymbol{Z}_t, \boldsymbol{S}_{t-1}, \boldsymbol{z}_t, a_{t-1}) &= \text{interp } \tilde{m}(\bullet) \rightarrow \tilde{c}(\bullet) \text{ at } m(\boldsymbol{z}_t, a_{t-1}, \boldsymbol{P}_t) \\ a^{\star}(\boldsymbol{Z}_t, \boldsymbol{S}_{t-1}, \boldsymbol{z}_t, a_{t-1}) &= m(\bullet) - c^{\star}(\bullet) \\ v_a(\boldsymbol{Z}_t, \boldsymbol{S}_{t-1}, \boldsymbol{z}_t, a_{t-1}) &= \frac{\partial m(\bullet)}{\partial a_{t-1}} c^{\star}(\bullet)^{-\sigma} \end{split}$$

2. Implied savings:

$$a^*(\boldsymbol{Z}_t, \boldsymbol{S}_{t-1}, \boldsymbol{z}_t, m_t) = a^*(\boldsymbol{Z}_t, \boldsymbol{S}_{t-1}, \boldsymbol{z}_t, a_{t-1})$$

 $a_{t-1} = m^{-1,a}(m_t, \boldsymbol{z}_t, \boldsymbol{P}_t)$

Simulation

- 1. Draw Z_t given Z_{t-1}
- 2. Find

$$a_t^{\star}(\boldsymbol{z}_t, m_t) = a^{\star}(\boldsymbol{Z}_t, \boldsymbol{S}_{t-1}, \boldsymbol{z}_t, m_t)$$

by interpolation over $oldsymbol{Z}_t$ and $oldsymbol{S}_{t-1}$

3. Search for P_t so

$$\int a_t^{\star}(\boldsymbol{z}_t, m(\boldsymbol{z}_t, a_{t-1}, \boldsymbol{P}_t)) d\boldsymbol{D}_t$$

clears the savings market

1. Draw shocks to be used in all simulations

- 1. Draw shocks to be used in all simulations
- 2. Solve and simulate a linearized version of the model

- 1. Draw shocks to be used in all simulations
- 2. Solve and simulate a linearized version of the model
- 3. Estimate the PLM on the simulated data

- 1. Draw shocks to be used in all simulations
- 2. Solve and simulate a linearized version of the model
- 3. Estimate the PLM on the simulated data
- 4. Given the PLM compute $m{\breve{S}}^0$ and $m{\breve{P}}^0$ on the grid of $m{Z}_t$ and $m{S}_{t-1}$

- 1. Draw shocks to be used in all simulations
- 2. Solve and simulate a linearized version of the model
- 3. Estimate the PLM on the simulated data
- 4. Given the PLM compute $reve{m{S}}^0$ and $reve{m{P}}^0$ on the grid of $m{Z}_t$ and $m{S}_{t-1}$
- 5. Set the PLM convergence iteration counter n=0

- 1. Draw shocks to be used in all simulations
- 2. Solve and simulate a linearized version of the model
- 3. Estimate the PLM on the simulated data
- 4. Given the PLM compute $reve{m{S}}^0$ and $reve{m{P}}^0$ on the grid of $m{Z}_t$ and $m{S}_{t-1}$
- 5. Set the PLM convergence iteration counter n = 0
- 6. Solve the approximate household problem given $\boldsymbol{\breve{S}}^n$ and $\boldsymbol{\breve{P}}^n$

- 1. Draw shocks to be used in all simulations
- 2. Solve and simulate a linearized version of the model
- 3. Estimate the PLM on the simulated data
- 4. Given the PLM compute $reve{m{S}}^0$ and $reve{m{P}}^0$ on the grid of $m{Z}_t$ and $m{S}_{t-1}$
- 5. Set the PLM convergence iteration counter n = 0
- 6. Solve the approximate household problem given $\boldsymbol{\breve{S}}^n$ and $\boldsymbol{\breve{P}}^n$
- 7. Simulate the model given household behavior

- 1. Draw shocks to be used in all simulations
- 2. Solve and simulate a linearized version of the model
- 3. Estimate the PLM on the simulated data
- 4. Given the PLM compute $\boldsymbol{\breve{S}}^0$ and $\boldsymbol{\breve{P}}^0$ on the grid of \boldsymbol{Z}_t and \boldsymbol{S}_{t-1}
- 5. Set the PLM convergence iteration counter n = 0
- 6. Solve the approximate household problem given $\boldsymbol{\breve{S}}^n$ and $\boldsymbol{\breve{P}}^n$
- 7. Simulate the model given household behavior
- 8. Estimate the PLM on the simulated data

- 1. Draw shocks to be used in all simulations
- 2. Solve and simulate a linearized version of the model
- 3. Estimate the PLM on the simulated data
- 4. Given the PLM compute $\boldsymbol{\breve{S}}^0$ and $\boldsymbol{\breve{P}}^0$ on the grid of \boldsymbol{Z}_t and \boldsymbol{S}_{t-1}
- 5. Set the PLM convergence iteration counter n = 0
- 6. Solve the approximate household problem given $\boldsymbol{\breve{S}}^n$ and $\boldsymbol{\breve{P}}^n$
- 7. Simulate the model given household behavior
- 8. Estimate the PLM on the simulated data
- 9. Given the PLM compute $m{\check{S}}_{NEW}$ and $m{\check{P}}_{NEW}$ on the grid of $m{Z}_t$ and $m{S}_{t-1}$

- 1. Draw shocks to be used in all simulations
- 2. Solve and simulate a linearized version of the model
- 3. Estimate the PLM on the simulated data
- 4. Given the PLM compute $\boldsymbol{\breve{S}}^0$ and $\boldsymbol{\breve{P}}^0$ on the grid of \boldsymbol{Z}_t and \boldsymbol{S}_{t-1}
- 5. Set the PLM convergence iteration counter n = 0
- 6. Solve the approximate household problem given $\boldsymbol{\breve{S}}^n$ and $\boldsymbol{\breve{P}}^n$
- 7. Simulate the model given household behavior
- 8. Estimate the PLM on the simulated data
- 9. Given the PLM compute $reve{m{S}}_{NEW}$ and $reve{m{P}}_{NEW}$ on the grid of $m{Z}_t$ and $m{S}_{t-1}$
- 10. Stop if $|\mathbf{\breve{S}}_{NEW} \mathbf{\breve{S}}^n|_{\infty} < \text{tol.}$ and $|\mathbf{\breve{P}}_{NEW} \mathbf{\breve{P}}^n|_{\infty} < \text{tol.}$

- 1. Draw shocks to be used in all simulations
- 2. Solve and simulate a linearized version of the model
- 3. Estimate the PLM on the simulated data
- 4. Given the PLM compute $reve{m{S}}^0$ and $reve{m{P}}^0$ on the grid of $m{Z}_t$ and $m{S}_{t-1}$
- 5. Set the PLM convergence iteration counter n = 0
- 6. Solve the approximate household problem given $\boldsymbol{\breve{S}}^n$ and $\boldsymbol{\breve{P}}^n$
- 7. Simulate the model given household behavior
- 8. Estimate the PLM on the simulated data
- 9. Given the PLM compute $reve{m{S}}_{NEW}$ and $reve{m{P}}_{NEW}$ on the grid of $m{Z}_t$ and $m{S}_{t-1}$
- 10. Stop if $|\mathbf{\breve{S}}_{NEW} \mathbf{\breve{S}}^n|_{\infty} < \text{tol.}$ and $|\mathbf{\breve{P}}_{NEW} \mathbf{\breve{P}}^n|_{\infty} < \text{tol.}$
- 11. Update $m{\breve{S}}$ and $m{\breve{P}}$ by relaxation with $\omega \in (0,1)$

$$\boldsymbol{\breve{S}}^{s+1} = \omega \boldsymbol{\breve{S}}_{NEW} + (1 - \omega) \boldsymbol{\breve{S}}^{s}$$

$$m{reve{P}}^{s+1} = \omega m{reve{P}}_{NEW} + (1 - \omega) m{reve{P}}^{s}.$$

- 1. Draw shocks to be used in all simulations
- 2. Solve and simulate a linearized version of the model
- 3. Estimate the PLM on the simulated data
- 4. Given the PLM compute $reve{m{S}}^0$ and $reve{m{P}}^0$ on the grid of $m{Z}_t$ and $m{S}_{t-1}$
- 5. Set the PLM convergence iteration counter n = 0
- 6. Solve the approximate household problem given $\boldsymbol{\breve{S}}^n$ and $\boldsymbol{\breve{P}}^n$
- 7. Simulate the model given household behavior
- 8. Estimate the PLM on the simulated data
- 9. Given the PLM compute $reve{m{S}}_{NEW}$ and $reve{m{P}}_{NEW}$ on the grid of $m{Z}_t$ and $m{S}_{t-1}$
- 10. Stop if $|\mathbf{\breve{S}}_{NEW} \mathbf{\breve{S}}^n|_{\infty} < \text{tol.}$ and $|\mathbf{\breve{P}}_{NEW} \mathbf{\breve{P}}^n|_{\infty} < \text{tol.}$
- 11. Update $m{\breve{S}}$ and $m{\breve{P}}$ by relaxation with $\omega \in (0,1)$

$$\mathbf{\breve{S}}^{s+1} = \omega \mathbf{\breve{S}}_{NEW} + (1 - \omega) \mathbf{\breve{S}}^{s}
\mathbf{\breve{P}}^{s+1} = \omega \mathbf{\breve{P}}_{NEW} + (1 - \omega) \mathbf{\breve{P}}^{s}.$$

12. Increment *n* and return to step 6

• Input: $X_{it} \in \mathbf{Z}_t, \mathbf{S}_{t-1}$, i'th input to the PLM for $i \in \{1, \dots, \#_{ZS}\}$

- Input: $X_{it} \in \mathbf{Z}_t, \mathbf{S_{t-1}}$, i'th input to the PLM for $i \in \{1, \dots, \#_{ZS}\}$
- **Output:** $Y_{jt} \in S_t, P_t, j$ 'th output for $j \in \{1, \dots, \#_{SP}\}$.

• Input: $X_{it} \in \mathbf{Z}_t, \mathbf{S}_{t-1}$, i'th input to the PLM for $i \in \{1, \dots, \#_{ZS}\}$

• **Output:** $Y_{jt} \in S_t, P_t, j$ 'th output for $j \in \{1, \dots, \#_{SP}\}$.

• Linear: Estimated by OLS

$$Y_{jt} = \Psi_{j0} + \sum_{i=1}^{\# zs} \Psi_{ji} X_{it}$$

■ **Input:** $X_{it} \in \mathbf{Z}_t, \mathbf{S_{t-1}}, i$ 'th input to the PLM for $i \in \{1, \dots, \#_{ZS}\}$

• **Output:** $Y_{jt} \in S_t, P_t, j$ 'th output for $j \in \{1, \dots, \#_{SP}\}$.

• Linear: Estimated by OLS

$$Y_{jt} = \Psi_{j0} + \sum_{i=1}^{\#zs} \Psi_{ji} X_{it}$$

Non-linear: Estimated with Radial Basis Functions (RBF)

$$Y_{jt} = \Psi_{j00} + \sum_{i=1}^{\#_{ZS}} \Psi_{j0i} X_{it} + \sum_{\tau=1}^{\mathcal{T}} \Psi_{jk} \phi \left(\sum_{i=1}^{\#_{ZS}} \sqrt{(X_{it} - X_{i\tau}^{sim})^2} \right)$$

 $X_{i\tau}^{\text{sim}}$ is simulation outcome

$$\phi(x) = x^2 \log x$$

- **Input:** $X_{it} \in \mathbf{Z}_t, \mathbf{S_{t-1}}, i$ 'th input to the PLM for $i \in \{1, \dots, \#_{ZS}\}$
- **Output:** $Y_{jt} \in S_t, P_t, j$ 'th output for $j \in \{1, \dots, \#_{SP}\}$.
- Linear: Estimated by OLS

$$Y_{jt} = \Psi_{j0} + \sum_{i=1}^{\# zs} \Psi_{ji} X_{it}$$

Non-linear: Estimated with Radial Basis Functions (RBF)

$$Y_{jt} = \Psi_{j00} + \sum_{i=1}^{\#zs} \Psi_{j0i} X_{it} + \sum_{\tau=1}^{\mathcal{T}} \Psi_{jk} \phi \left(\sum_{i=1}^{\#zs} \sqrt{(X_{it} - X_{i\tau}^{\text{sim}})^2} \right)$$

$$X_{i\tau}^{\text{sim}} \text{ is simulation outcome}$$

$$\phi(x) = x^2 \log x$$

Paper: Also neural net

Model

Firms

Technology shocks:

$$Z_{t+1} - Z_{ss} = \rho_Z(Z_t - Z_{ss}) + \epsilon_{t+1}^Z, \ \epsilon_{t+1}^Z \sim \mathcal{N}(0, \sigma_Z^2)$$

Production firm problem:

$$\max_{L_{t},K_{t-1},u_{t}} u_{t} Z_{t} K_{t-1}^{\alpha} L_{t}^{1-\alpha} - w_{t} L_{t} - r_{t}^{k} K_{t-1} - \chi_{1} (u_{t} - \tilde{u}) - \frac{\chi_{2}}{2} (u_{t} - \tilde{u})^{2}$$
s.t. $u_{t} \leq \bar{u}$.

implies

$$\begin{split} r_t^k &= \alpha u_t Z_t (K_{t-1}/L_t)^{\alpha - 1} \equiv r^k (u_t, Z_t, K_{t-1}, L_t) \\ w_t &= (1 - \alpha) u_t Z_t (K_{t-1}/L_t)^{\alpha} \equiv w(u_t, Z_t, K_{t-1}, L_t) \\ u_t &= \max \left[\frac{Z_t K_{t-1}^{\alpha} L_t^{1 - \alpha} - \chi_1 + \chi_2 \tilde{u}}{\chi_2}, \bar{u} \right] \equiv u(Z_t, K_{t-1}, L_t) \end{split}$$

Capital producers

Capital producer problem

$$\max_{\{l_t\}} \mathbb{E}_0 \sum_{t=0}^{\infty} \beta^t I_t \left\{ q_t \left[1 - \frac{\phi}{2} \left(\log \frac{I_t}{I_{t-1}} \right)^2 \right] - 1 \right\}$$

implies

$$q_t \left[1 - \phi \log rac{I_t}{I_{t-1}}
ight] = 1 - eta \mathbb{E}_t \left[q_{t+1} \phi \log \left(rac{I_{t+1}}{I_t}
ight)
ight]$$

- Accumulation: $K_t = I_t + (1 \delta) K_{t-1}$
- Real interest rate:

$$r_t = r_t^k - q_t \delta = r^k(u_t, Z_t, K_{t-1}, L_t) - q_t \delta \equiv r(u_t, Z_t, K_{t-1}, L_t, q_t).$$

Households

$$\begin{split} v(Z_t, K_{t-1}, I_{t-1}, z_t, a_{t-1}) &= \max_{c_t} \frac{c_t^{1-\sigma}}{1-\sigma} + \beta \mathbb{E}_t \left[v(Z_{t+1}, K_t, I_t, z_{t+1}, a_t) \right] \\ &\text{s.t.} \\ r_t, w_t, K_t, I_t &= \mathsf{PLM}(Z_t, K_{t-1}, I_{t-1}) \\ a_t + c_t &= (1+r_t)a_{t-1} + w_t z_t \\ \log z_{t+1} &= \rho_z \log z_t + \psi_{t+1} \ , \psi_{t+1} \sim \mathcal{N}(\mu_\psi, \sigma_\psi), \ \mathbb{E}[z_{t+1}] = 1 \\ Z_{t+1} &= Z_{ss} + \rho_Z(Z_t - Z_{ss}) + \epsilon_{t+1}^Z, \ \ \epsilon_{t+1}^Z \sim \mathcal{N}(0, \sigma_Z^2) \\ a_t &> 0 \end{split}$$

Solution method (1/2)

- 1. The shocks are $Z_t = \{Z_t\}$.
- 2. The aggregate states are $\mathbf{S}_t = \{K_t, I_t\}$.
- 3. The »prices« are $\mathbf{P}_t = \{r_t, w_t\}$,
- 4. The PLM is

$$\begin{split} \mathcal{K}_t &= \mathsf{PLM}_{\mathcal{K}}(Z_t, I_{t-1}, \mathcal{K}_{t-1}; \Psi) \\ q_t &= \mathsf{PLM}_q(Z_t, I_{t-1}, \mathcal{K}_{t-1}; \Psi) \\ u_t, w_t, r_t^k, r_t &= u(\bullet), w(\bullet), r_t^k(\bullet), r(\bullet) \end{split}$$

5. The cash-on-hand function is

$$m(z_t, a_{t-1}, \mathbf{P}_t) = (1 + r_t)a_{t-1} + w_t z_t.$$

Solution method (2/2)

6. The market clearing condition is

$$\int a_t^{\star}(\boldsymbol{z}_t, m(\boldsymbol{z}_t, a_{t-1}, w_t, r_t)) dD_t = K_t,$$

where we guess on I_t and get r_t from

$$\begin{aligned} q_t &= \frac{1 - \beta \mathbb{E}_t \left[q_{t+1} \phi \log \left(\frac{l_{t+1}}{l_t} \right) \right]}{1 - \phi \log \left(\frac{l_t}{l_{t-1}} \right)} \\ K_{t+1} &= \mathsf{PLM}_K(Z_{t+1}, l_t, K_t; \Psi) \\ l_{t+1} &= K_{t+1} - (1 - \delta) \, K_t \\ q_{t+1} &= \mathsf{PLM}_q(Z_{t+1}, l_t, K_t; \Psi) \\ u_t, w_t, r_t^k, r_t &= u(\bullet), w(\bullet), r_t^k(\bullet), r(\bullet) \end{aligned}$$

where expectations are evaluated using Gauss-Hermite quadrature

Results

Linear is wrong - IRF

Figure 1: Perfect foresight and linearized impulse responses

Linear is wrong - simulation

Figure 2: Simulation (in-sample): RBF vs. linear

OLS vs. RBF: Some differences

RBF much more precise (1/3)

Figure 4: One-step ahead PLM errors Capital, K_t Investment price, q_t OLS - OLS 120 --- RBF 120 --- RBF 100 100 80 pdf 40 40 20 20 0.3 00.3 -0.2 0.3 -0.2 0.0 0.2 0.3 one-step prediction errors, % one-step prediction errors, % - OLS - OLS --- RBF --- RBF 0.8 0.8 0.6 0.6 0.4 0.4 0.2 0.2 0.0 -0.3 -0.2-0.10.0 0.1 0.2 0.3 -0.3-0.2 0.0 0.1 0.2 0.3 one-step prediction errors, % one-step prediction errors, %

Method Model Results Conclusion

RBF much more precise (2/3)

Pure PLM simulation from
$$K_{-1}^{\rm PLM}=K_{-1}$$
 and $I_{-1}^{\rm PLM}=I_{-1}$

$$\begin{split} & K_t^{\text{PLM}} = \text{PLM}_K(Z_t, K_{t-1}^{PLM}, I_{t-1}^{PLM}) \\ & q_t^{\text{PLM}} = \text{PLM}_K(Z_t, K_{t-1}^{PLM}, I_{t-1}^{PLM}) \\ & I_t^{\text{PLM}} = K_t^{\text{PLM}} - (1 - \delta) K_{t-1}^{PLM}. \end{split}$$

RBF much more precise (3/3)

Table 1: HANC: Prediction Errors

	OLS	RBF	NN
	dynamic log prediction errors \times 100		
max	3.75	0.26	
mean	0.88	0.04	
median	0.79	0.03	
99th perc.	3.16	0.18	
90th perc.	1.62	0.07	
	timings (secs.)		
total	666.3	722.2	
- solve household problem	356.2	315.4	
- simulate with market clearing	310.0	356.3	
- estimate PLMs	0.0	50.5	
iterations	13	14	

Some differences in IRFs

Figure 8: Impulse-responses: Global vs. perfect foresight

A lot of state dependence

Conclusion

Conclusion (1/2)

Expanding literature:

1. Hardware: Graphic cards

2. Software: Automatic differentiation

3. Discretization: Polynomial chaos

4. Curse of dimensionality: ML and Al

Conclusion (1/2)

- Expanding literature:
 - 1. Hardware: Graphic cards
 - 2. Software: Automatic differentiation
 - 3. Discretization: Polynomial chaos
 - 4. Curse of dimensionality: ML and Al
- The fundamental problem: Modeling economic agents as perfect problem solvers → the model builder most solve the problem of each agent perfectly
 - 1. Behavioral biases: Complicate the problem
 - 2. Information(-processing) constraints: Complicate the problem

Conclusion (1/2)

- Expanding literature:
 - 1. Hardware: Graphic cards
 - 2. Software: Automatic differentiation
 - 3. Discretization: Polynomial chaos
 - 4. Curse of dimensionality: ML and Al
- The fundamental problem: Modeling economic agents as perfect problem solvers → the model builder most solve the problem of each agent perfectly
 - 1. Behavioral biases: Complicate the problem
 - 2. Information(-processing) constraints: Complicate the problem
- **Agent-based models:** ÷ intention, ÷ forward-looking

Conclusion (2/2)

My sapere aude project: **»Modeling economic agents as deep reinforcement learners** (optimizing \rightarrow »satisfying «)

