Занятие № 8 «Способы относительно-фазовой манипуляции»

1. Относительно-фазовая манипуляция

Недостаток характерный для сигналов ФМн устранен в системах относительно-фазовой манипуляции (ОФМн). У данного метода манипуляции информация заложена не в абсолютном значении начальной фазы, которое имеет свойство неопределенности, а в разность начальных фаз соседних посылок, которая остается неизменной. Т.е. информация вложена в относительное значение между переданным в данный момент и предыдущим сигналом, что позволяет устранить или ослабить влияние непредсказуемых изменений параметров сигнала. В связи с этим для передачи первого двоичного символа в системах ОФМн необходима одна дополнительная посылка сигнала, передаваемая перед началом передачи информации и играющая роль отсчетной.

Относительно-фазовой манипуляцией (ОФМн) называется процесс изменения фазы несущего колебания в соответствии с законом изменения амплитуды дискретного информационного сигнала, предварительно перекодированного относительным кодом.

В соответствии с этим определением процесс формирование сигнала с ОФМн можно свести к случаю формирования сигнала с ФМн путем перекодирования передаваемой двоичной последовательности относительным кодом. Алгоритм перекодировки прост: если обозначить $s_c^n = \pm 1$ как информационный символ подлежащей передаче на n-ом единичном элементе сигнала, то перекодированный в соответствии с правилами ОФМн символ s_{omn}^n на n-ом единичном элементе сигнала определяется следующим рекуррентным правилом: $s_{omn}^n = s_c^n \in s_{omn}^{n-1} \in s_c^n$.

Для получения сигнала ОФМ достаточно умножить полученный (перекодированный) сигнал s^n_{omn} на несущее колебание.

На рисунке 1 представлены временные и спектральные диаграммы формирования сигналов ОФМн: а) непериодический информационный сигнал; б) информационный сигнал в относительном коде; в) несущее колебание; г) сигнал ОФМн на выходе модулятора.

Рис. 1. Временные и спектральные диаграммы формирования сигналов ОФМн

2. Принцип формирования сигнала с многократной относительной фазовой манипуляцией

Важным параметром на выходе модулятора является число вариантов модулируемого параметра (п) выходного сигнала. Это число называется позиционностью сигнала или способа модуляции.

Когда говорят: m-позиционная фазовая модуляция, это означает, что каждый элемент сигнала на выходе модулятора имеет одну из m допустимых начальных фаз. Если все m вариантов сигнала равновероятны, то производительность модулятора как источника информации на входе непрерывного канала связи прямо пропорционально двоичному логарифму числа m: $N = log_2 m$.

Эту величину называют кратностью модуляции, ибо она показывает, сколько двоичных единиц информации содержится в каждом элементе сигнала при данном способе модуляции или во сколько раз (крат) увеличится информационная емкость данной системы по сравнению с двухпозиционной (однократной) системой при той же длительности элементарного сигнала. Наиболее часто позиционность выбирают так, чтобы она равнялась целой степени числа два, тогда кратность N – целое число.

Например, N -кратная фазовая модуляция означает, что в каждом элементарном сигнале на выходе модулятора содержится N бит информации, а фаза сигнала на входе непрерывного канал имеет $m=2^N$ допустимых значений. Если длительность элементарного сигнала в модуляторе равна T, то скорость формирования элементов (скорость модуляции) равна $\frac{1}{T}$ элементов; эта скорость в бодах. Соответственно скорость формирования информации на выходе модулятора (бит/с) при равновероятных сигналах:

$$B = \frac{N}{T} = \log_2 \frac{m}{T} = V \cdot \log_2 m$$
 [бит/с],

Рис. 2. Векторное представление ФМн-m сигналов

под которой понимается количество кодовых символов в единицу времени. В зависимости от числа уровней модулирующего сигнала различают двухуровневую и многоуровневую манипуляции. Четырехпозиционная (двухуровневая) модуляция ФМн (ДФМн) предполагает передачу двух двоичных символов одновременно (рис. 2), в таблице 1 приведены допустимые значения начальных фаз для ФМн-2 и ФМн-4.

Таблица 1. Допустимые значения начальных фаз для ФМн-2 и ФМн-4

ФМн-2	ФМн-4		
$\varphi_i = 0; \pi$	$\varphi_i = 0; \frac{\pi}{2}; \pi; \frac{3\pi}{2}, \text{ или } \sqrt[4]{3\pi}/4; \frac{5\pi}{4}; \frac{7\pi}{4}$		

Ширина спектра ОФМн-m радиосигнала, определяемая длительностью радиоимпульса \mathfrak{C} зависит от скорости передачи информации \mathfrak{G} и числа уровней манипуляции \mathfrak{m} :

$$\Delta F_{O\Phi MH} = \frac{B}{\log_2 m}$$
.

Очевидно, что при увеличении числа уровней манипуляции полоса частот необходимая для ОФМн радиосигнала уменьшается. Так, при ОФМн-4 полоса частот вдвое меньше, чем при ОФМн-2 при одинаковой скорости передачи информации. Для двоичных сигналов m=2 длительность радиоимпульса m=2 длительности единичного элемента ПЭС m=2 длительность радиосигнала ОФМн-2 пропорциональна скорости передачи цифровой информации:

$$\Delta F_{O\Phi M_H} = B = V = rac{1}{T}$$
 [бод].

В случае многоуровневой манипуляции (m>2) длительность T сигнала оказывается равной $T=T_c\cdot\log_2 m$, что приводит к соответствующему сокращению в $\log_2 m$ полосы занимаемых частот.

3. Квадратурная относительная фазовая манипуляция (КОФМ).

Формирование модулируемого цифрового сигнала удобно описать на основе квадратурного представления сигналов. Смысл его заключается в представлении гармонического колебания с произвольной фазой — линейной комбинацией синусоидального и косинусоидального колебания, что вытекает из тригонометрического равенства: $\sin \phi + \phi = \cos \phi \sin \omega t + \sin \phi \cos \omega t$, где $\sin \phi$, и $\cos \phi - \cos \phi + \cos \phi = \cos \phi \sin \omega t$

Манипуляция осуществляется в двух каналах на несущих, которые имеют относительный угловой сдвиг 90° ($\sin \omega t$ и $\cos \omega t$ – базисные функции разложения), т.е. находящихся в квадратуре (откуда и название метода модуляции).

Метод ОФМ можно рассматривать как обычную фазовую модуляцию на 180° при условии предварительного перекодирования исходного сообщения:

$$x = x_1 + x_2$$
 (1)

Поэтому для простоты будем считать, что в сообщениях, представленных функциями $x_1 \bigcirc$ и $x_2 \bigcirc$ в (1) перекодирование произведено, и для передачи исходного сообщения теперь необходимо лишь осуществить ФМн на 180° соответствующих высокочастотных колебаний.

Исходная последовательность двоичных информационных символов разделяется на последовательности четных x_{2k} , и нечетных x_{2k+1} (по порядку следования) символов длительностью элементов $T = T_c \cdot \log_2 m$. Так например исходная последовательность двоичных элементов длительностью T_c с помощью кодера модулятора преобразуется в совокупность 2-х n=4 последовательностей двоичных элементов длительностью $2T_c$. Тогда передаваемое сообщение x (рис. 3,а), можно представить в виде суммы четных x_{2k} (рис. 3,б), и нечетных x_{2k+1} (рис. 3,в) составляющих:

Рис. 3. Диаграммы формирования сигналов: КОФМ и КОФМС

 $\frac{1}{\pi/2}$

Комбинации двоичных элементов полученных последовательностей x_{2k} и x_{2k+1} используются при кодировании фазового сдвига при ОФМн. Значения начальной фазы φ колебания S (рис. 3, г) в (2) при различных сочетаниях передаваемых символов x_{2k} и x_{2k+1} приведены в таблице 2.

Таблица 2. Значения начальной фазы колебания S (

t/T_c

t/T_c

x_{2k}	-1	+1	+1	-1
x_{2k+1}	+1	+1	-1	-1
φ	0	$\frac{\pi}{2}$	π	$-\pi/2$

-1

 $S_{\text{КОФМС}}(t)$

-1

При одновременной смене символов в обоих каналах модулятора в сигнале КОФМ происходят скачки начальной фазы на 180° (как, например, в момент $t = 7T_c$ на (рис. 3, г). При прохождении последовательности таких сигналов через узкополосные фильтры в моменты скачков фазы колебания на 180° возникает глубокая паразитная амплитудная модуляция огибающей сигнала (в ней появляются провалы огибающей до нуля), приводящая к дополнительным искажениям при нелинейных режимах усиления, может увеличить энергию боковых полос и увеличить помехи в соседних каналах.

Для снижения уровня такой паразитной амплитудной модуляции при m=4 разработана модификация метода КОФМн, называемая квадратурной относительной фазовой модуляцией со сдвигом (КОФМС). В этом случае колебание S (, и отличие от (2), формируется в виде:

$$S \stackrel{\frown}{=} S_{2k} \stackrel{\frown}{=} S_{2k+1} \stackrel{\frown}{\longleftarrow},$$
где
$$S_{2k} \stackrel{\frown}{=} \left(\frac{A_0}{\sqrt{2}}\right) \cdot x_{2k} \stackrel{\frown}{\longleftarrow} \cos \left(\phi_0 t + \frac{\pi}{4}\right),$$

$$S_{2k+1} \stackrel{\frown}{\longleftarrow} \left(\frac{A_0}{\sqrt{2}}\right) \cdot x_{2k+1} \stackrel{\frown}{\longleftarrow} \sin \left(\phi_0 t + \frac{\pi}{4}\right).$$
(3)

Как видно из (2) и (3), а также из рисунка 3, б и д, знак любой из функций x_{2k} или x_{2k+1} может меняться лишь в те моменты, когда значение другой функции сохраняется неизменным. Такой сдвиг по времени моментов возможной смены знака модулирующих последовательностей (чем и обусловлено название метода модуляции) приводит к существенному отличию результирующего колебания S (рис. 3, е) при КОФМС по сравнению с КОФМ.

Как следует из (рис. 3, е), скачки начальной фазы φ колебании S возможны лишь на $\pm \frac{\pi}{2}$, что снижает паразитную амплитудную модуляцию при прохождении сигнала через полосовые цепи. Заметим, что длительность радиосигнала T_c КОФМС равна длительности исходного информационного символа T_c , т.е. вдвое меньше, чем при КОФМ. Однако это не приводит к расширению спектра последовательности S по сравнению с использованием КОФМ. Последнее объясняется тем, что ширина спектра колебания S определяется шириной спектра квадратурных составляющих S_{2k} и S_{2k+1} в (3), которая остается той же, что и при КОФМ (2).