Mathematical Modeling and Simulation

Exercise Sheet 1

Exercises will be discussed on 22.08

Exercise 1: [Blood flow in capillary network]

A capillary is a small blood vessel. Inside these vessels, the flow is laminar and depends on the pressure drop between entry point and exit point. Hence, for one capillary, the volumetric flow rate Q (m³/s) through a capillary of radius r (m) and length L (m) having pressures p_{entry} and p_{exit} (kg/ms²) at entry and exit, is

$$Q = \frac{\pi r^4}{8\mu} \frac{p_{\text{entry}} - p_{\text{exit}}}{L},$$

where μ (kg/ms) is the blood viscosity. We now consider a small capillary network, as seen in Figure 1. All capillaries have the same radius and viscosity is always the same, hence the flow between two connected points i and j can be written as

$$q_{ij} = \frac{p_i - p_j}{L_{ij}},$$

where L_{ij} is the distance between the two points. This new variable q_{ij} is not the volumetric flow rate itself, but is proportional to it through the (constant and assumed known) factor $\frac{\pi r^4}{8\mu}$, and we use it to represent the volumetric flow rate in the following. Note that $q_{ij} < 0$ means that flow goes from point j to point i. In the following we will set up equations to model the flow through this capillary network.

Figure 1: Capillary network: Black lines are the capillaries, while numbered circles (1-6) mark their connections, which are entry/exit points for the various capillaries. Numbers in red are the lengths of each capillary. Figure from Quarteroni and Gervasio.

- a) To formulate model equations we use a balance law: What flows into a connection point must flow out of it. Consider point number 3: Which q_{ij} are here relevant? Which balance law must these q_{ij} 's fulfill?
- b) Formulate the needed balance laws for all connection points 2-5. Insert what each q_{ij} is using the given lengths. You can additionally formulate equations saying that p_1 and p_6 are equal to some given pressures. This gives you a system of 6 linear equations for the pressures p_1, \ldots, p_6 .

- c) Formulate the linear system of equation from b) as matrix-vector system $\mathbf{Ap} = \mathbf{b}$, with $\mathbf{p} = \begin{bmatrix} p_1, p_2, p_3, p_4, p_5, p_6 \end{bmatrix}^T$ as the solution vector. If $p_1 = 1$ and $p_6 = 0$, how is the flow through the capillary network? That is, what are the q_{ij} 's?

 Hint: Solve matrix equation by row reduction or using python to find p_i 's, then find the q_{ij} 's.
- d) What are S, Q and M here? What are the state variables and system parameters for the capillary network?

Exercise 2: [Error when estimating integrals]

We here explore errors for numerical integration. For a continuous and smooth function f(x), we can approximate the integral $\int_a^b f(x)dx$ by

- Rectangle rule (midpoint rule): $\int_a^b f(x)dx \approx \sum_{k=1}^N f(\frac{x_{k-1}+x_k}{2})\Delta x_k$
- Trapezoidal rule: $\int_a^b f(x) dx \approx \sum_{k=1}^N \frac{f(x_{k-1}) + f(x_k)}{2} \Delta x_k$

where $a = x_0 < x_1 < \dots < x_{N-1} < x_N = b$, with $\Delta x_k = x_k - x_{k-1}$. We here use equidistant points, such that $x_k = a + \frac{b-a}{N}k$ and $\Delta x_k = \frac{b-a}{N} = h$.

- a) Make sketches with four-five intervals of how the midpoint rule and trapezoidal rule approximates the integral of some function. Which of the two rules do you expect to approximate the integral better?
- **b)** It is possible to show that the error is
 - Midpoint rule: $\left| \int_a^b f(x) dx \sum_{k=1}^N f(\frac{x_{k-1} + x_k}{2}) \Delta x_k \right| \le h^2 \frac{(b-a)}{24} \max_{\xi \in [a,b]} |f''(\xi)|$
 - Trapezoidal rule: $\left| \int_a^b f(x) dx \sum_{k=1}^N \frac{f(x_{k-1}) + f(x_k)}{2} \Delta x_k \right| \le h^2 \frac{(b-a)}{12} \max_{\xi \in [a,b]} |f''(\xi)|$.

Which type of error is this? Are the methods convergent? If so, which order?

- c) Implement the midpoint rule and trapezoidal rule in python, giving N as input. Make the implementation general so that it is easy to change which function f(x) to integrate and the interval to integrate over.
- d) Use $f(x) = e^x$ on $x \in [0, 1]$ and the scripts you made in c). By comparing to the known exact solution of this integral, how does the error for midpoint and trapezoidal rule behave as h becomes smaller? Does the observed error fit with the formulas in b)?
- e) Use f(x) = x on $x \in [0, 1]$ and the scripts you made in c). How does the error behave as h becomes smaller? Why is this case so different?
- f) What are S, Q and M when approximating integrals?