ENG272 FORMULAS FOR FINAL EXAM

ODE IN STANDARD FORM

$$\frac{dy}{dx} + P(x)y = f(x)$$

EXACT EQUATIONS

$$M(x, y)dx + N(x, y)dy = 0$$
$$\frac{\partial M}{\partial y} = \frac{\partial N}{\partial x}$$

WRONSKIAN

$$W(f_{1},\square,f_{n}) = \begin{vmatrix} f_{1} & f_{2} & \cdots & f_{n} \\ f'_{1} & f'_{2} & \cdots & f'_{n} \\ \vdots & \vdots & & \vdots \\ f_{1}^{(n-1)} & f_{2}^{(n-1)} & \cdots & f_{n}^{(n-1)} \end{vmatrix}$$

REDUCTION OF ORDER

$$y'' + P(x)y' + Q(x)y = 0$$

(Know how to get to the step below!!)

$$y_2 = y_1(x) \int \frac{e^{-\int P(x)dx}}{y_1^2(x)} dx$$

VARIATION OF PARAMETERS

(Know how to use these formulas!!)

$$u_1' = \frac{W_1}{W} \qquad u_2' = \frac{W_2}{W}$$

$$W_1 = \begin{vmatrix} 0 & y_2 \\ f(x) & y_2' \end{vmatrix} \qquad W_2 = \begin{vmatrix} y_1 & 0 \\ y_1' & f(x) \end{vmatrix}$$

$$y_p = u_1 y_1 + u_2 y_2$$

UNDETERMINED COEFFICIENTS

TABLE 3.4.1 Trial Particular Solutions

g(x)	Form of y _p
1. 1 (any constant)	A
2. $5x + 7$	Ax + B
3. $3x^2 - 2$	$Ax^2 + Bx + C$
4. $x^3 - x + 1$	$Ax^3 + Bx^2 + Cx + E$
5. sin 4x	$A \cos 4x + B \sin 4x$
6. cos 4x	$A \cos 4x + B \sin 4x$
7. e ^{5x}	Ae^{5x}
8. $(9x-2)e^{5x}$	$(Ax + B)e^{5x}$
9. x^2e^{5x}	$(Ax^2 + Bx + C)e^{5x}$
10. $e^{3x} \sin 4x$	$Ae^{3x}\cos 4x + Be^{3x}\sin 4x$
11. $5x^2 \sin 4x$	$(Ax^2 + Bx + C)\cos 4x + (Ex^2 + Fx + G)\sin 4x$
12. $xe^{3x}\cos 4x$	$(Ax + B)e^{3x}\cos 4x + (Cx + E)e^{3x}\sin 4x$

CRAMER'S RULE

$$\mathbf{A}_{k} = \begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1k-1} & b_{1} & a_{1k+1} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2k-1} & b_{2} & a_{2k+1} & \cdots & a_{2n} \\ \vdots & & & \vdots & & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nk-1} & b_{n} & a_{nk+1} & \cdots & a_{nn} \end{pmatrix}$$

$$x_{1} = \frac{\det \mathbf{A}_{1}}{\det \mathbf{A}}, \quad x_{2} = \frac{\det \mathbf{A}_{2}}{\det \mathbf{A}}, \quad \cdots \quad x_{n} = \frac{\det \mathbf{A}_{n}}{\det \mathbf{A}}$$

GRAM-SCHMIDT ORTHOGONALIZATION FOR ORTHONORMAL BASES

$$u_{1} = \frac{v_{1}}{\|v_{1}\|}, \quad w_{2} = v_{2} - (v_{2} \cdot u_{1}) u_{1}, \quad u_{2} = \frac{W_{2}}{\|w_{2}\|}$$

CAYLEY-HAMILTON THEORM FOR 2 X 2 MATRICES

$$\lambda^{m} = \mathbf{C}_{0} + \mathbf{C}_{1}\lambda$$
$$\mathbf{A}^{m} = \mathbf{C}_{0}\mathbf{I} + \mathbf{C}_{1}\mathbf{A}$$

CONIC SECTIONS

$$ax^{2} + 2bxy + cy^{2} = k$$
 $\mathbf{x}^{T}A\mathbf{x} = \begin{bmatrix} x & y \end{bmatrix} \begin{bmatrix} a & b \\ b & c \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = k$