Writing Solutions

David W. Lyons

Lebanon Valley College

Fall 2010

Sample Problems

Problem 1

Solve $x^2 + x - 2 = 0$.

Sample Problems

Problem 1

Solve $x^2 + x - 2 = 0$.

Problem 2

Suppose you know that the equation $ax^2 + bx + c = 0$ has exactly two solutions x = r, s. Explain how you can use that knowledge to find the line of symmetry of the graph $y = ax^2 + bx + c$.

Method 1: Factoring

$$0 = x^2 + x - 2$$

Method 1: Factoring

$$0 = x^2 + x - 2 = (x+2)(x-1)$$

Method 1: Factoring

$$0 = x^2 + x - 2 = (x + 2)(x - 1)$$

so $x = -2$ or $x = 1$

Method 1: Factoring

$$0 = x^2 + x - 2 = (x + 2)(x - 1)$$

so $x = -2$ or $x = 1$

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

Method 1: Factoring

$$0 = x^2 + x - 2 = (x + 2)(x - 1)$$

so $x = -2$ or $x = 1$

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$
$$= \frac{-1 \pm \sqrt{1^2 - 4(1)(-2)}}{2(1)}$$

Method 1: Factoring

$$0 = x^2 + x - 2 = (x + 2)(x - 1)$$

so $x = -2$ or $x = 1$

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

$$= \frac{-1 \pm \sqrt{1^2 - 4(1)(-2)}}{2(1)}$$

$$= \frac{-1 \pm \sqrt{9}}{2}$$

Method 1: Factoring

$$0 = x^2 + x - 2 = (x + 2)(x - 1)$$

so $x = -2$ or $x = 1$

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

$$= \frac{-1 \pm \sqrt{1^2 - 4(1)(-2)}}{2(1)}$$

$$= \frac{-1 \pm \sqrt{9}}{2}$$

$$= \frac{-1 \pm 3}{2}$$

Method 1: Factoring

$$0 = x^2 + x - 2 = (x + 2)(x - 1)$$

so $x = -2$ or $x = 1$

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

$$= \frac{-1 \pm \sqrt{1^2 - 4(1)(-2)}}{2(1)}$$

$$= \frac{-1 \pm \sqrt{9}}{2}$$

$$= \frac{-1 \pm 3}{2}$$

$$= -2, 1$$

The solutions to $ax^2 + bx + c = 0$ are the *x*-intercepts of the graph.

The solutions to $ax^2 + bx + c = 0$ are the *x*-intercepts of the graph. The line of symmetry is half-way between the intercepts.

The solutions to $ax^2 + bx + c = 0$ are the *x*-intercepts of the graph. The line of symmetry is half-way between the intercepts.

$$x = (r + s)/2$$

Problem 1

$$x = -2, 1$$

Problem 1

$$x = -2, 1$$

Bad: answer is correct, but no explanation. No credit.

Problem 1

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

$$= \frac{-1 \pm \sqrt{1^2 - 4(1)(-2)}}{2(1)}$$

$$= \frac{-1 \pm \sqrt{9}}{2}$$

$$= \frac{-1 \pm 3}{2}$$

$$= -2, 1$$

$$x = -2, 1$$

Problem 1

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

$$= \frac{-1 \pm \sqrt{1^2 - 4(1)(-2)}}{2(1)}$$

$$= \frac{-1 \pm \sqrt{9}}{2}$$

$$= \frac{-1 \pm 3}{2}$$

$$= -2, 1$$

$$x = -2, 1$$

Better: shows steps, but avoids English. Partial credit.

Problem 1

Since $x^2 + x - 2 = (x + 2)(x - 1)$, we see the solutions are x = -2, 1.

Problem 1

Since $x^2 + x - 2 = (x + 2)(x - 1)$, we see the solutions are x = -2, 1.

Good: Solves the problem, and the idea is crystal clear. Full credit.

Problem 1 write-up, try #3, alternative

Problem 2

We use the quadratic formula.

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

$$= \frac{-1 \pm \sqrt{1^2 - 4(1)(-2)}}{2(1)}$$

$$= \frac{-1 \pm \sqrt{9}}{2}$$

$$= \frac{-1 \pm 3}{2}$$

$$= -2, 1$$

$$x = -2.1$$

Problem 1 write-up, try #3, alternative

Problem 2

We use the quadratic formula.

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

$$= \frac{-1 \pm \sqrt{1^2 - 4(1)(-2)}}{2(1)}$$

$$= \frac{-1 \pm \sqrt{9}}{2}$$

$$= \frac{-1 \pm 3}{2}$$

$$= -2, 1$$

$$x = -2, 1$$

Good: Solves the problem, and the idea is crystal clear. Full credit.

Problem 2

$$x = (r + s)/2$$

Problem 2

$$x = (r + s)/2$$

Bad: Not responsive to the question. No credit.

Problem 2

The line is half-way between, x = (r + s)/2.

Problem 2

The line is half-way between, x = (r + s)/2.

Better: there is an attempt to express the idea. Partial credit.

Problem 2

The solutions x=r,s to the equation $ax^2+bx+c=0$ are the x-intercepts of a parabola $y=ax^2+bx+c$. The two x-intercepts are mirror reflections of one another across the line of symmetry, so the line of symmetry is half-way between them (see figure below). The half-way point along the x-axis between r and s is their average (r+s)/2, so the equation for the vertical line of symmetry is x=(r+s)/2.

Problem 2

The solutions x=r,s to the equation $ax^2+bx+c=0$ are the x-intercepts of a parabola $y=ax^2+bx+c$. The two x-intercepts are mirror reflections of one another across the line of symmetry, so the line of symmetry is half-way between them (see figure below). The half-way point along the x-axis between r and s is their average (r+s)/2, so the equation for the vertical line of symmetry is x=(r+s)/2.

Good: The important ideas are stated and the logical flow is clear. Full credit.

Do

• use complete sentences

Do

- use complete sentences
- use present tense

Do

- use complete sentences
- use present tense
- use appropriate vocabulary

Do

- use complete sentences
- use present tense
- use appropriate vocabulary

Don't

use past tense

Dο

- use complete sentences
- use present tense
- use appropriate vocabulary

Don't

- use past tense
- write "I did this" or "I did that", etc.

Dο

- use complete sentences
- use present tense
- use appropriate vocabulary

Don't

- use past tense
- write "I did this" or "I did that", etc.
- use the word "it"