Let's take another look at Example 1.88.

Example 1.88

primal

dual

min
$$y_1 + 55y_2 + 3y_3$$

 $y_1 + 5y_2 - y_3 \ge 4$
 $-y_1 + y_2 + 2y_3 \ge 1$
 $-y_1 + 3y_2 + 3y_3 \ge 5$
 $3y_1 + 8y_2 - 5y_3 \ge 3$
 $y_1 y_2 y_3 y_4 \ge 0$

optimal table au

_	$x_1(y_1^s)$	$x_3(y_3^s)$	$x_1^s(y_1)$	$x_3^s(y_3)$	1(w)
(1)z	1	- 2	\bigcirc 1)	<u>©</u>	29
$(y_2^s) x_2$	2	4	5	3	14
$(y_4^s) x_4$	1	1	2	1	- 5
$(y_2) x_2^s$	-5	- 9	-21	-11	1

optimal primal solution:
$$(x_1, x_2, x_3, x_4) = (0, 14, 0, 5)$$

optimal dual solution: $(y_1, y_2, y_3) = (11, 0, 6)$

primal objective value = $4 \cdot 0 + 1 \cdot 14 + 5 \cdot 0 + 3 \cdot 5 = 29$

dual objective value = $1 \cdot 11 + 55 \cdot 0 + 3 \cdot 6 = 29$

1.4.5 Complementary slackness

Theorem 1.90: Complementary slackness theorem

Consider a pair of primal and dual linear programs with finite optima:

Let \overline{x} be a feasible primal solution and \overline{y} a feasible dual solution. Then both \overline{x} and \overline{y} are optimal solutions (for the primal and dual, respectively) if and only if

(i)
$$(b - A\overline{x})^{\top} \overline{y} = 0$$
, and

(ii)
$$(A^{\top}\overline{y} - c)^{\top}\overline{x} = 0.$$

Proof

$$A^{T}y \ge c$$
 $x \ge 0$
 $y \ge 0$

Notice that the complementary slackness relations (i) & (ii) hold for any pair of basic primal/dual solution that are obtained from same tableau.

	$x_1(y_1^s)$	$x_3\left(y_3^s\right)$	$x_1^s(y_1)$	$x_3^s(y_3)$	1(w)
(1) z	1	2	11	6	29
$(y_2^s) x_2$	2	4	5	3	14
$(y_4^s) x_4$	1	1	2	1	5
$(y_2) x_2^s$	-5	- 9	-21	-11	1