- Autómatos de Pilha
 - Conceitos básicos
 - Linguagem reconhecida por um AP

- $V = \{S\};$
- $A = \{a, b, c\};$

Seja G = (V, A, S, P) tal que:

- $V = \{S\};$
- $A = \{a, b, c\};$
- ullet $P: \mathcal{S} \longrightarrow a\mathcal{S}a \mid b\mathcal{S}b \mid c$

$$L(\mathcal{G}) = L(\mathcal{S}) = aL(\mathcal{S})a \cup bL(\mathcal{S})b \cup \{c\}$$

- $V = \{S\};$
- $A = \{a, b, c\};$

$$L(\mathcal{G}) = L(\mathcal{S}) = aL(\mathcal{S})a \cup bL(\mathcal{S})b \cup \{c\}$$
$$= \{u \in A^* \mid u = xcx^I, \ x \in \{a, b\}^*\}$$

- $V = \{S\};$
- $A = \{a, b, c\};$
- $lacktriangledown P: \mathcal{S} \longrightarrow a\mathcal{S}a \mid b\mathcal{S}b \mid c$

$$L(\mathcal{G}) = L(\mathcal{S}) = aL(\mathcal{S})a \cup bL(\mathcal{S})b \cup \{c\}$$
$$= \{u \in A^* \mid u = xcx^I, \ x \in \{a, b\}^*\}$$

а	b	b	 а	С	а	 b	b	а	

- $V = \{S\};$
- $A = \{a, b, c\};$
- $lacktriangledown P: \mathcal{S} \longrightarrow a\mathcal{S}a \mid b\mathcal{S}b \mid c$

$$L(\mathcal{G}) = L(\mathcal{S}) = aL(\mathcal{S})a \cup bL(\mathcal{S})b \cup \{c\}$$
$$= \{u \in A^* \mid u = xcx^I, \ x \in \{a, b\}^*\}$$

а	b	b	• • •	а	С	а	•••	b	b	а
十										

- $V = \{S\};$
- $A = \{a, b, c\};$
- $\bullet P : \mathcal{S} \longrightarrow a\mathcal{S}a \mid b\mathcal{S}b \mid c$

$$L(\mathcal{G}) = L(\mathcal{S}) = aL(\mathcal{S})a \cup bL(\mathcal{S})b \cup \{c\}$$
$$= \{u \in A^* \mid u = xcx^I, \ x \in \{a, b\}^*\}$$

_	_	_		_	_	_	_	
а	b	b	 а	С	а	 b	b	а
	4							

Seja G = (V, A, S, P) tal que:

- $V = \{S\};$
- $A = \{a, b, c\};$
- $lacktriangledown P: \mathcal{S} \longrightarrow a\mathcal{S}a \mid b\mathcal{S}b \mid c$

$$L(\mathcal{G}) = L(\mathcal{S}) = aL(\mathcal{S})a \cup bL(\mathcal{S})b \cup \{c\}$$
$$= \{u \in A^* \mid u = xcx^I, \ x \in \{a, b\}^*\}$$

а	b	b	 а	С	а	 b	b	а
		十						

Seja G = (V, A, S, P) tal que:

- $V = \{S\};$
- $A = \{a, b, c\};$
- $lacktriangledown P: \mathcal{S} \longrightarrow a\mathcal{S}a \mid b\mathcal{S}b \mid c$

$$L(\mathcal{G}) = L(\mathcal{S}) = aL(\mathcal{S})a \cup bL(\mathcal{S})b \cup \{c\}$$
$$= \{u \in A^* \mid u = xcx^I, \ x \in \{a, b\}^*\}$$

а	b	b	 а	С	а	• • •	b	b	а

- $V = \{S\};$
- $A = \{a, b, c\};$
- $P : S \longrightarrow aSa \mid bSb \mid c$

$$L(\mathcal{G}) = L(\mathcal{S}) = aL(\mathcal{S})a \cup bL(\mathcal{S})b \cup \{c\}$$
$$= \{u \in A^* \mid u = xcx^I, \ x \in \{a, b\}^*\}$$

а	b	b	 а	С	а	 b	b	а
			\uparrow					

- $V = \{S\};$
- $A = \{a, b, c\};$
- $\bullet P : \mathcal{S} \longrightarrow a\mathcal{S}a \mid b\mathcal{S}b \mid c$

$$L(\mathcal{G}) = L(\mathcal{S}) = aL(\mathcal{S})a \cup bL(\mathcal{S})b \cup \{c\}$$
$$= \{u \in A^* \mid u = xcx^I, \ x \in \{a, b\}^*\}$$

а	b	b	 а	С	а	 b	b	а
								

- $V = \{S\};$
- $A = \{a, b, c\};$
- $P : S \longrightarrow aSa \mid bSb \mid c$

$$L(\mathcal{G}) = L(\mathcal{S}) = aL(\mathcal{S})a \cup bL(\mathcal{S})b \cup \{c\}$$
$$= \{u \in A^* \mid u = xcx^I, \ x \in \{a, b\}^*\}$$

ć	3	b	b	• • •	а	С	а	 b	b	а
					↑	\uparrow	\uparrow			

- $V = \{S\};$
- $A = \{a, b, c\};$
- $lacktriangledown P: \mathcal{S} \longrightarrow a\mathcal{S}a \mid b\mathcal{S}b \mid c$

$$L(\mathcal{G}) = L(\mathcal{S}) = aL(\mathcal{S})a \cup bL(\mathcal{S})b \cup \{c\}$$
$$= \{u \in A^* \mid u = xcx^I, \ x \in \{a, b\}^*\}$$

					 а
	<u>↑</u>	<u></u>	<u></u>		

- $V = \{S\};$
- $A = \{a, b, c\};$
- ullet $P: \mathcal{S} \longrightarrow a\mathcal{S}a \mid b\mathcal{S}b \mid c$

$$L(\mathcal{G}) = L(\mathcal{S}) = aL(\mathcal{S})a \cup bL(\mathcal{S})b \cup \{c\}$$
$$= \{u \in A^* \mid u = xcx^I, \ x \in \{a, b\}^*\}$$

- $V = \{S\};$
- $A = \{a, b, c\};$
- $\bullet P : \mathcal{S} \longrightarrow a\mathcal{S}a \mid b\mathcal{S}b \mid c$

$$L(\mathcal{G}) = L(\mathcal{S}) = aL(\mathcal{S})a \cup bL(\mathcal{S})b \cup \{c\}$$
$$= \{u \in A^* \mid u = xcx^I, \ x \in \{a, b\}^*\}$$

- $V = \{S\};$
- $A = \{a, b, c\};$
- $\bullet P : \mathcal{S} \longrightarrow a\mathcal{S}a \mid b\mathcal{S}b \mid c$

$$L(\mathcal{G}) = L(\mathcal{S}) = aL(\mathcal{S})a \cup bL(\mathcal{S})b \cup \{c\}$$
$$= \{u \in A^* \mid u = xcx^I, \ x \in \{a, b\}^*\}$$

Um autómato de pilha é um 7-uplo

$$\mathcal{M} = (Q, A, \Sigma, \delta, q_0, Z_0, F)$$

Um autómato de pilha é um 7-uplo

$$\mathcal{M} = (Q, A, \Sigma, \delta, q_0, Z_0, F)$$

em que:

 Q é um conjunto finito e não vazio, designado o conjunto dos estados;

Um autómato de pilha é um 7-uplo

$$\mathcal{M} = (Q, A, \Sigma, \delta, q_0, Z_0, F)$$

- Q é um conjunto finito e não vazio, designado o conjunto dos estados;
- A é um alfabeto, designado o alfabeto de entrada;

Um autómato de pilha é um 7-uplo

$$\mathcal{M} = (Q, A, \Sigma, \delta, q_0, Z_0, F)$$

- Q é um conjunto finito e não vazio, designado o conjunto dos estados;
- A é um alfabeto, designado o alfabeto de entrada;
- Σ é um conjunto finito de símbolos, designado o alfabeto da pilha;

Um autómato de pilha é um 7-uplo

$$\mathcal{M} = (Q, A, \Sigma, \delta, q_0, Z_0, F)$$

- Q é um conjunto finito e não vazio, designado o conjunto dos estados;
- A é um alfabeto, designado o alfabeto de entrada;
- Σ é um conjunto finito de símbolos, designado o alfabeto da pilha;
- 4 $\delta: Q \times (A \cup \{\epsilon\}) \times \Sigma \longrightarrow \mathcal{P}_{\textit{fin}}(Q \times \Sigma^*)$ é uma função dita função de transição;

Um autómato de pilha é um 7-uplo

$$\mathcal{M} = (Q, A, \Sigma, \delta, q_0, Z_0, F)$$

- Q é um conjunto finito e não vazio, designado o conjunto dos estados;
- A é um alfabeto, designado o alfabeto de entrada;
- Σ é um conjunto finito de símbolos, designado o alfabeto da pilha;
- 4 $\delta: Q \times (A \cup \{\epsilon\}) \times \Sigma \longrightarrow \mathcal{P}_{fin}(Q \times \Sigma^*)$ é uma função dita função de transição;
- $oldsymbol{0} q_0 \in Q$ é o estado inicial;

Um autómato de pilha é um 7-uplo

$$\mathcal{M} = (Q, A, \Sigma, \delta, q_0, Z_0, F)$$

- Q é um conjunto finito e não vazio, designado o conjunto dos estados:
- A é um alfabeto, designado o alfabeto de entrada;
- Σ é um conjunto finito de símbolos, designado o alfabeto da pilha:
- $\delta: Q \times (A \cup \{\epsilon\}) \times \Sigma \longrightarrow \mathcal{P}_{fin}(Q \times \Sigma^*)$ é uma função dita função de transição:
- $oldsymbol{0} q_0 \in Q$ é o estado inicial;
- **1** $\mathbf{Z}_0 \in \Sigma$ é o símbolo inicial da pilha;

Um autómato de pilha é um 7-uplo

$$\mathcal{M} = (Q, A, \Sigma, \delta, q_0, Z_0, F)$$

- Q é um conjunto finito e não vazio, designado o conjunto dos estados:
- A é um alfabeto, designado o alfabeto de entrada;
- Σ é um conjunto finito de símbolos, designado o alfabeto da pilha:
- $\delta: Q \times (A \cup \{\epsilon\}) \times \Sigma \longrightarrow \mathcal{P}_{fin}(Q \times \Sigma^*)$ é uma função dita função de transição:
- $oldsymbol{0} q_0 \in Q$ é o estado inicial;
- **1** $\mathbf{Z}_0 \in \Sigma$ é o símbolo inicial da pilha;
- \bigcirc $F \subseteq Q$ é um conjunto de estados finais, também designados estados de aceitação.

Uma configuração é um triplo $(q, w, \alpha) \in Q \times A^* \times \Sigma^*$.

Uma configuração é um triplo $(q, w, \alpha) \in Q \times A^* \times \Sigma^*$.

A configuração inicial é (q_0, u, Z_0) onde u é a palavra a ser lida.

Uma configuração é um triplo $(q, w, \alpha) \in Q \times A^* \times \Sigma^*$.

A configuração inicial é (q_0, u, Z_0) onde u é a palavra a ser lida.

A configuração atual é uma configuração da forma (q_j, u', α) em que u' é um sufixo de u, que ainda está por identificar, e α é a informação guardada na pilha.

Uma configuração é um triplo $(q, w, \alpha) \in Q \times A^* \times \Sigma^*$.

A configuração inicial é (q_0, u, Z_0) onde u é a palavra a ser lida.

A configuração atual é uma configuração da forma (q_j, u', α) em que u' é um sufixo de u, que ainda está por identificar, e α é a informação guardada na pilha.

A configuração final é da forma (q, ε, α) em que $\alpha \in \{Z_0, \varepsilon\}$ e $q \in F$.

Uma configuração é um triplo $(q, w, \alpha) \in Q \times A^* \times \Sigma^*$.

A configuração inicial é (q_0, u, Z_0) onde u é a palavra a ser lida.

A configuração atual é uma configuração da forma (q_i, u', α) em que u' é um sufixo de u, que ainda está por identificar, e α é a informação guardada na pilha.

A configuração final é da forma (q, ε, α) em que $\alpha \in \{Z_0, \varepsilon\}$ e $q \in F$.

Definição

Uma transição é um quíntuplo (q, a, X, p, α) em que $q, p \in Q$, $a \in A \cup \{\varepsilon\}, X \in \Sigma e \alpha \in \Sigma^*$

Uma configuração é um triplo $(q, w, \alpha) \in Q \times A^* \times \Sigma^*$.

A configuração inicial é (q_0, u, Z_0) onde u é a palavra a ser lida.

A configuração atual é uma configuração da forma (q_j, u', α) em que u' é um sufixo de u, que ainda está por identificar, e α é a informação guardada na pilha.

A configuração final é da forma (q, ε, α) em que $\alpha \in \{Z_0, \varepsilon\}$ e $q \in F$.

Definição

Uma transição é um quíntuplo (q, a, X, p, α) em que $q, p \in Q$, $a \in A \cup \{\varepsilon\}$, $X \in \Sigma$ e $\alpha \in \Sigma^*$ são tais que $(p, \alpha) \in \delta(q, a, X)$,

Uma configuração é um triplo $(q, w, \alpha) \in Q \times A^* \times \Sigma^*$.

A configuração inicial é (q_0, u, Z_0) onde u é a palavra a ser lida.

A configuração atual é uma configuração da forma (q_j, u', α) em que u' é um sufixo de u, que ainda está por identificar, e α é a informação guardada na pilha.

A configuração final é da forma (q, ε, α) em que $\alpha \in \{Z_0, \varepsilon\}$ e $q \in F$.

Definição

Uma transição é um quíntuplo (q, a, X, p, α) em que $q, p \in Q$, $a \in A \cup \{\varepsilon\}$, $X \in \Sigma$ e $\alpha \in \Sigma^*$ são tais que $(p, \alpha) \in \delta(q, a, X)$, que se representa por:

Uma configuração é um triplo $(q, w, \alpha) \in Q \times A^* \times \Sigma^*$.

A configuração inicial é (q_0, u, Z_0) onde u é a palavra a ser lida.

A configuração atual é uma configuração da forma (q_i, u', α) em que u' é um sufixo de u, que ainda está por identificar, e α é a informação guardada na pilha.

A configuração final é da forma (q, ε, α) em que $\alpha \in \{Z_0, \varepsilon\}$ e $q \in F$.

Definição

Uma transição é um quíntuplo (q, a, X, p, α) em que $q, p \in Q$, $a \in A \cup \{\varepsilon\}, X \in \Sigma$ e $\alpha \in \Sigma^*$ são tais que $(p, \alpha) \in \delta(q, a, X)$, que se representa por: $a, X/\alpha$

NOTA

A transição acima está associada a uma mudança de configuração da forma: de $(q, au', X \cdots Z_0)$ para $(p, u', \alpha \cdots Z_0)$.

$$\mathcal{M} = (Q, A, \Sigma, \delta, q_0, Z_0, F)$$

$$\mathcal{M} = (Q, A, \Sigma, \delta, q_0, Z_0, F)$$

b	а	а	С	С	 а	b		 fita	de leitura
						_~			

cabeça de leitura

Configuração inicial $\longrightarrow (q_0, u, Z_0)$

Configuração atual $\longrightarrow (q_0, u, Z_0)$

$$\mathcal{M} = (Q, A, \Sigma, \delta, q_0, Z_0, F)$$

$$\mathcal{M} = (Q, A, \Sigma, \delta, q_0, Z_0, F)$$

$$\mathcal{M} = (Q, A, \Sigma, \delta, q_0, Z_0, F)$$

$$\mathcal{M} = (Q, A, \Sigma, \delta, q_0, Z_0, F)$$

$$\mathcal{M} = (Q, A, \Sigma, \delta, q_0, Z_0, F)$$

 $\mathcal{M} = (Q, A, \Sigma, \delta, q_0, Z_0, F)$

Configuração inicial $\longrightarrow (q_0, u, Z_0)$

$$\mathcal{M} = (Q, A, \Sigma, \delta, q_0, Z_0, F)$$

$$\mathcal{M} = (Q, A, \Sigma, \delta, q_0, Z_0, F)$$

$$\mathcal{M} = (Q, A, \Sigma, \delta, q_0, Z_0, F)$$

Configuração atual $\longrightarrow (q_i, ac^2 \cdots ab, X \cdots Z_0)$

Considere-se $L = \{u \in A^* \mid u = xcx^I, x \in \{a, b\}^*\}.$ Seja $u = a^2 bacaba^2$.

Considere-se $L = \{u \in A^* \mid u = xcx^I, x \in \{a, b\}^*\}$. Seja $u = a^2bacaba^2$.

Configuração : $(q_0, a^2bacaba^2, Z_0)$ (configuração inicial)

а	а	b	а	С	а	b	а	а				
				q	o (71						Z ₀

Considere-se $L = \{u \in A^* \mid u = xcx^I, x \in \{a, b\}^*\}.$ Seja $u = a^2 bacaba^2$.

Configuração: $(q_0, abacaba^2, aZ_0)$

а	а	b	а	С	а	b	а	а								
		_														
																1
		_											_,		Z_0	
9 0 9 1															Z 0	
				,	,	,.										
															:	

Considere-se
$$L = \{u \in A^* \mid u = xcx^I, x \in \{a, b\}^*\}$$
.
Seja $u = a^2bacaba^2$.

Configuração:
$$(q_0, bacaba^2, aaZ_0)$$

Considere-se $L = \{u \in A^* \mid u = xcx^I, x \in \{a, b\}^*\}.$ Seja $u = a^2 bacaba^2$.

Configuração : $(q_0, acaba^2, baaZ_0)$

Considere-se
$$L = \{u \in A^* \mid u = xcx^I, x \in \{a, b\}^*\}$$
.
Seja $u = a^2bacaba^2$.

Configuração : $(q_0, caba^2, abaaZ_0)$

Considere-se $L = \{u \in A^* \mid u = xcx^I, x \in \{a, b\}^*\}$. Seja $u = a^2bacaba^2$.

Configuração: $(q_1, aba^2, abaaZ_0)$

а	а	b	а	С	а	b	а	а							
					フ										1
		-													
															а
															b
				q	0 (71									а
															а
		<u> </u>											J		Z_0
															1:1

Considere-se $L = \{u \in A^* \mid u = xcx^I, x \in \{a, b\}^*\}$. Seja $u = a^2bacaba^2$.

Configuração : $(q_1, ba^2, baaZ_0)$

а	а	b	а	С	а	b	а	а						
						<u>ノ</u>								b
	9 ₀ 9 ₁													a a Z ₀
														:

Considere-se $L = \{u \in A^* \mid u = xcx^I, x \in \{a, b\}^*\}.$ Seja $u = a^2 bacaba^2$.

Configuração : (q_1, a^2, aaZ_0)

a	
q_0 q_1 Z_0	

Considere-se $L = \{u \in A^* \mid u = xcx^I, x \in \{a, b\}^*\}.$ Seja $u = a^2 bacaba^2$.

Configuração : (q_1, a, aZ_0)

Considere-se $L = \{u \in A^* \mid u = xcx^I, x \in \{a, b\}^*\}.$ Seja $u = a^2 bacaba^2$.

Configuração : (q_1, ε, Z_0)

Considere-se $L = \{u \in A^* \mid u = xcx^I, x \in \{a, b\}^*\}.$ Seja $u = a^2 bacaba^2$.

Configuração : $(q_0, a^2bacaba^2, Z_0)$

Considere-se $L = \{u \in A^* \mid u = xcx^I, x \in \{a, b\}^*\}.$ Seja $u = a^2 bacaba^2$.

Configuração: $(q_0, abacaba^2, aZ_0)$

Considere-se
$$L = \{u \in A^* \mid u = xcx^I, x \in \{a, b\}^*\}$$
.
Seja $u = a^2bacaba^2$.

Configuração : $(q_0, bacaba^2, aaZ_0)$

Considere-se $L = \{u \in A^* \mid u = xcx^I, x \in \{a, b\}^*\}.$ Seja $u = a^2 bacaba^2$.

Configuração : $(q_0, acaba^2, baaZ_0)$

Considere-se
$$L = \{u \in A^* \mid u = xcx^I, x \in \{a, b\}^*\}$$
.
Seja $u = a^2bacaba^2$.

Configuração : $(q_0, caba^2, abaaZ_0)$

Considere-se
$$L = \{u \in A^* \mid u = xcx^I, x \in \{a, b\}^*\}$$
.
Seja $u = a^2bacaba^2$.

Configuração : $(q_1, aba^2, abaaZ_0)$

Considere-se $L = \{u \in A^* \mid u = xcx^I, x \in \{a, b\}^*\}.$ Seja $u = a^2 bacaba^2$.

Configuração : $(q_1, ba^2, baaZ_0)$

Considere-se
$$L = \{u \in A^* \mid u = xcx^I, x \in \{a, b\}^*\}$$
.
Seja $u = a^2bacaba^2$.

Configuração : (q_1, a^2, aaZ_0)

Considere-se
$$L = \{u \in A^* \mid u = xcx^I, x \in \{a, b\}^*\}$$
.
Seja $u = a^2bacaba^2$.

Configuração :
$$(q_1, a, aZ_0)$$

Considere-se
$$L = \{u \in A^* \mid u = xcx^I, x \in \{a, b\}^*\}$$
.
Seja $u = a^2bacaba^2$.

Configuração :
$$(q_1, \varepsilon, Z_0)$$

Considere-se
$$L = \{u \in A^* \mid u = xcx^I, x \in \{a, b\}^*\}$$
.
Seja $u = a^2bacaba^2$.

Configuração : (q_f, ε, Z_0) (configuração final)

$$\mathcal{M} = (\textit{Q}, \{\textit{a}, \textit{b}, \textit{c}\}, \Sigma, \delta, \textit{q}_0, \textit{Z}_0, \textit{F})$$

$$\mathcal{M}$$
 :

$$\mathcal{M} = (\{q_0, q_1, q_f\}, \{a, b, c\}, \Sigma, \delta, q_0, Z_0, F)$$

$$\mathcal{M} = (\{q_0, q_1, q_f\}, \{a, b, c\}, \{Z_0, a, b\}, \delta, q_0, Z_0, F)$$

$$\mathcal{M} = (\{q_0, q_1, q_f\}, \{a, b, c\}, \{Z_0, a, b\}, \delta, q_0, Z_0, \{q_f\})$$

Considere-se
$$L = \{u \in A^* \mid u = xcx^I, x \in \{a, b\}^*\}.$$

$$\mathcal{M} = (\{q_0, q_1, q_f\}, \{a, b, c\}, \{Z_0, a, b\}, \delta, q_0, Z_0, \{q_f\})$$

$$\begin{cases} \delta(q_0, a, Z_0) = \\ \delta(q_0, b, Z_0) = \\ \delta(q_0, c, Z_0) = \end{cases}$$
 transições a partir da configuração inicial

transições a partir da configuração inicial

Considere-se $L = \{u \in A^* \mid u = xcx^I, x \in \{a, b\}^*\}.$

$$\mathcal{M} = (\{q_0, q_1, q_t\}, \{a, b, c\}, \{Z_0, a, b\}, \delta, q_0, Z_0, \{q_t\})$$

$$\delta(q_0, a, Z_0) = \{(q_0, aZ_0)\}$$

 $\begin{cases} \delta(q_0,a,Z_0) = \{(q_0,aZ_0)\} \\ \delta(q_0,b,Z_0) = \\ \delta(q_0,c,Z_0) = \end{cases}$ transições a partir da configuração inicial

Considere-se
$$L = \{ u \in A^* \mid u = xcx^I, \ x \in \{a, b\}^* \}.$$

$$\mathcal{M} = (\{q_0, q_1, q_f\}, \{a, b, c\}, \{Z_0, a, b\}, \delta, q_0, Z_0, \{q_f\})$$

$$\begin{cases} \delta(q_0, a, Z_0) = \{(q_0, aZ_0)\} \\ \delta(q_0, b, Z_0) = \{(q_0, bZ_0)\} \\ \delta(q_0, c, Z_0) = \end{cases}$$
 transições a partir da configuração inicial

Considere-se
$$L = \{u \in A^* \mid u = xcx^I, x \in \{a, b\}^*\}.$$

$$\mathcal{M} = (\{q_0, q_1, q_f\}, \{a, b, c\}, \{Z_0, a, b\}, \delta, q_0, Z_0, \{q_f\})$$

$$\delta(q_0, a, Z_0) = \{(q_0, aZ_0)\}$$

$$\delta(q_0, b, Z_0) = \{(q_0, bZ_0)\}$$

$$\delta(q_0, c, Z_0) = \{(q_f, Z_0)\}$$
transições a partir da configuração ir

transições a partir da configuração inicial

$$\mathcal{M} = (\{q_0, q_1, q_f\}, \{a, b, c\}, \{Z_0, a, b\}, \delta, q_0, Z_0, \{q_f\})$$

$$\begin{cases} \delta(q_0, a, Z_0) = \{(q_0, aZ_0)\} \\ \delta(q_0, b, Z_0) = \{(q_0, bZ_0)\} \\ \delta(q_0, c, Z_0) = \{(q_f, Z_0)\} \end{cases}$$
 transições a partir da configuração inicial
$$\begin{cases} \delta(q_0, a, X) = \\ \delta(q_0, b, X) = \end{cases}$$
 transições antes de encontrar a posição central
$$\begin{cases} \delta(q_0, b, X) = \\ \delta(q_0, b, X) = \end{cases}$$

Considere-se
$$L = \{u \in A^* \mid u = xcx^I, x \in \{a, b\}^*\}.$$

$$\mathcal{M} = (\{q_0, q_1, q_f\}, \{a, b, c\}, \{Z_0, a, b\}, \delta, q_0, Z_0, \{q_f\})$$

$$\begin{cases} \delta(q_0, a, Z_0) = \{(q_0, aZ_0)\} \\ \delta(q_0, b, Z_0) = \{(q_0, bZ_0)\} \\ \delta(q_0, c, Z_0) = \{(q_f, Z_0)\} \end{cases}$$
 transições a partir da configuração inicial
$$\begin{cases} \delta(q_0, a, X) = \{(q_0, aX)\} \\ \delta(q_0, b, X) = \end{cases}$$
 transições antes de encontrar a posição central com $X \in \{a, b\}$

$$\mathcal{M} = (\{q_0, q_1, q_f\}, \{a, b, c\}, \{Z_0, a, b\}, \delta, q_0, Z_0, \{q_f\})$$

$$\begin{cases} \delta(q_0, a, Z_0) = \{(q_0, bZ_0)\} \\ \delta(q_0, b, Z_0) = \{(q_0, bZ_0)\} \\ \delta(q_0, c, Z_0) = \{(q_f, Z_0)\} \end{cases}$$
 transições a partir da configuração inicial
$$\begin{cases} \delta(q_0, a, X) = \{(q_0, aX)\} \\ \delta(q_0, b, X) = \{(q_0, bX)\} \end{cases}$$
 transições antes de encontrar a posição central com $X \in \{a, b\}$

Considere-se $L = \{u \in A^* \mid u = xcx^I, x \in \{a, b\}^*\}.$

 $\mathcal{M} = (\{q_0, q_1, q_f\}, \{a, b, c\}, \{Z_0, a, b\}, \delta, q_0, Z_0, \{q_f\})$ $\begin{cases} \delta(q_0, a, Z_0) = \{(q_0, aZ_0)\} \\ \delta(q_0, b, Z_0) = \{(q_0, bZ_0)\} \\ \delta(q_0, c, Z_0) = \{(q_f, Z_0)\} \end{cases}$ transições a partir da configuração inicial $\begin{cases} \delta(q_0, a, X) = \{(q_0, aX)\} \\ \delta(q_0, b, X) = \{(q_0, bX)\} \end{cases}$ transições antes de encontrar a posição central com $X \in \{a, b\}$

 $\delta(q_0, c, X) =$ transição quando se atinge a posição central

Considere-se $L = \{u \in A^* \mid u = xcx^I, x \in \{a, b\}^*\}.$

 $\mathcal{M} = (\{q_0, q_1, q_t\}, \{a, b, c\}, \{Z_0, a, b\}, \delta, q_0, Z_0, \{q_t\})$ $\begin{cases}
\delta(q_0, a, Z_0) = \{(q_0, aZ_0)\} \\
\delta(q_0, b, Z_0) = \{(q_0, bZ_0)\}
\end{cases}$ transições a partir da configuração inicial $\delta(q_0, c, Z_0) = \{(q_f, Z_0)\}\$

 $\delta(q_0, a, X) = \{(q_0, aX)\}$ transições antes de encontrar a posição central $\delta(q_0, b, X) = \{(q_0, bX)\}\$ com $X \in \{a, b\}$

 $\delta(q_0, c, X) = \{(q_1, X)\}\$ transição quando se atinge a posição central

Considere-se $L = \{u \in A^* \mid u = xcx^I, x \in \{a, b\}^*\}.$

$$\mathcal{M} = (\{q_0,q_1,q_f\},\{a,b,c\},\{Z_0,a,b\},\delta,q_0,Z_0,\{q_f\})$$

$$\delta(q_0,a,Z_0) = \{(q_0,aZ_0)\}$$

$$\delta(q_0,b,Z_0) = \{(q_0,bZ_0)\}$$

$$\delta(q_0,c,Z_0) = \{(q_f,Z_0)\}$$
 transições a partir da configuração inicial
$$\delta(q_0,a,X) = \{(q_0,aX)\}$$

$$\delta(q_0,b,X) = \{(q_0,bX)\}$$
 transições antes de encontrar a posição central com $X \in \{a,b\}$
$$\delta(q_0,c,X) = \{(q_1,X)\}$$
 transição quando se atinge a posição central
$$\delta(q_1,a,a) = \{(q_1,b,b) = \{(q_1,b,b) \in \{a,b\}, (q_1,b,b) \in \{a,b\}, (q_1,b) \in \{a,b\},$$

$$\mathcal{M} = (\{q_0, q_1, q_f\}, \{a, b, c\}, \{Z_0, a, b\}, \delta, q_0, Z_0, \{q_f\})$$

$$\delta(q_0, a, Z_0) = \{(q_0, bZ_0)\}$$

$$\delta(q_0, b, Z_0) = \{(q_0, bZ_0)\}$$

$$\delta(q_0, c, Z_0) = \{(q_f, Z_0)\}$$

$$\delta(q_0, a, X) = \{(q_0, aX)\}$$

$$\delta(q_0, b, X) = \{(q_0, bX)\}$$

$$\{(q_0, b, X) = \{(q_0, bX)\}$$
 transições antes de encontrar a posição central com $X \in \{a, b\}$
$$\delta(q_0, c, X) = \{(q_1, X)\}$$
 transição quando se atinge a posição central
$$\delta(q_1, a, a) = \{(q_1, \varepsilon)\}$$
 transições após encontrar a posição central
$$\delta(q_1, a, b, b) = \{(q_1, \varepsilon)\}$$
 transições após encontrar a posição central

$$\mathcal{M} = (\{q_0,q_1,q_f\},\{a,b,c\},\{Z_0,a,b\},\delta,q_0,Z_0,\{q_f\})$$

$$\delta(q_0,a,Z_0) = \{(q_0,bZ_0)\}$$

$$\delta(q_0,b,Z_0) = \{(q_0,bZ_0)\}$$

$$\delta(q_0,c,Z_0) = \{(q_f,Z_0)\}$$

$$\delta(q_0,a,X) = \{(q_0,aX)\}$$

$$\delta(q_0,b,X) = \{(q_0,bX)\}$$

$$\delta(q_0,c,X) = \{(q_0,bX)\}$$

$$\delta(q_0,b,X) = \{(q_1,x)\}$$

$$\delta(q_0,c,X) = \{(q_1,x)\}$$

$$\delta(q_0,c,X) = \{(q_1,x)\}$$
 transição quando se atinge a posição central
$$\delta(q_1,a,a) = \{(q_1,\varepsilon)\}$$

$$\delta(q_1,b,b) = \{(q_1,\varepsilon)\}$$
 transições após encontrar a posição central

$$\mathcal{M} = (\{q_0,q_1,q_f\},\{a,b,c\},\{Z_0,a,b\},\delta,q_0,Z_0,\{q_f\})$$

$$\begin{cases} \delta(q_0,a,Z_0) = \{(q_0,aZ_0)\}\\ \delta(q_0,b,Z_0) = \{(q_0,bZ_0)\}\\ \delta(q_0,c,Z_0) = \{(q_f,Z_0)\} \end{cases}$$
 transições a partir da configuração inicial
$$\begin{cases} \delta(q_0,a,X) = \{(q_0,aX)\}\\ \delta(q_0,b,X) = \{(q_0,bX)\} \end{cases}$$
 transições antes de encontrar a posição central
$$\begin{cases} \delta(q_0,c,X) = \{(q_1,X)\}\\ \delta(q_0,c,X) = \{(q_1,x)\} \end{cases}$$
 transição quando se atinge a posição central
$$\begin{cases} \delta(q_1,a,a) = \{(q_1,\varepsilon)\}\\ \delta(q_1,b,b) = \{(q_1,\varepsilon)\} \end{cases}$$
 transições após encontrar a posição central
$$\begin{cases} \delta(q_1,a,a) = \{(q_1,\varepsilon)\}\\ \delta(q_1,b,b) = \{(q_1,\varepsilon)\} \end{cases}$$
 transições após encontrar a posição central

$$\mathcal{M} = (\{q_0,q_1,q_f\},\{a,b,c\},\{Z_0,a,b\},\delta,q_0,Z_0,\{q_f\})$$

$$\begin{cases} \delta(q_0,a,Z_0) = \{(q_0,bZ_0)\}\\ \delta(q_0,b,Z_0) = \{(q_0,bZ_0)\}\\ \delta(q_0,c,Z_0) = \{(q_f,Z_0)\} \end{cases}$$
 transições a partir da configuração inicial
$$\begin{cases} \delta(q_0,a,X) = \{(q_0,aX)\}\\ \delta(q_0,b,X) = \{(q_0,bX)\} \end{cases}$$
 transições antes de encontrar a posição central com $X \in \{a,b\}$
$$\begin{cases} \delta(q_0,c,X) = \{(q_1,X)\}\\ \delta(q_1,a,a) = \{(q_1,\varepsilon)\}\\ \delta(q_1,b,b) = \{(q_1,\varepsilon)\} \end{cases}$$
 transições após encontrar a posição central
$$\begin{cases} \delta(q_1,a,a) = \{(q_1,\varepsilon)\}\\ \delta(q_1,b,b) = \{(q_1,z_0)\} \end{cases}$$
 transições após encontrar a posição central
$$\begin{cases} \delta(q_1,a,a) = \{(q_1,\varepsilon)\}\\ \delta(q_1,b,b) = \{(q_1,Z_0)\} \end{cases}$$
 transição para uma configuração final

$$\mathcal{M} = (\{q_0,q_1,q_f\},\{a,b,c\},\{Z_0,a,b\},\delta,q_0,Z_0,\{q_f\})$$

$$\delta(q_0,a,Z_0) = \{(q_0,bZ_0)\}$$

$$\delta(q_0,b,Z_0) = \{(q_0,bZ_0)\}$$

$$\delta(q_0,c,Z_0) = \{(q_f,Z_0)\}$$

$$\delta(q_0,a,X) = \{(q_0,aX)\}$$

$$\delta(q_0,b,X) = \{(q_0,bX)\}$$

$$\delta(q_0,c,X) = \{(q_1,X)\}$$

$$\delta(q_0,c,X) = \{(q_1,x)\}$$

$$\delta(q_1,a,a) = \{(q_1,\varepsilon)\}$$

$$\delta(q_1,a,b) = \{(q_1,\varepsilon)\}$$

$$\delta(q_1,b,b) = \{(q_1,z_0)\}$$
 transições após encontrar a posição central
$$\delta(q_1,a,a) = \{(q_1,c)\}$$
 transições após encontrar a posição central
$$\delta(q_1,a,a) = \{(q_1,c)\}$$
 transições após encontrar a posição central
$$\delta(q_1,c,Z_0) = \{(q_1,Z_0)\}$$
 transição para uma configuração final
$$\delta(q_1,c,Z_0) = \{(q_1,Z_0)\}$$
 transição para uma configuração final
$$\delta(q_1,c,Z_0) = \{(q_1,Z_0)\}$$
 transição para uma configuração final

$$\mathcal{M} = (\{q_0, q_1, q_f\}, \{a, b, c\}, \{Z_0, a, b\}, \delta, q_0, Z_0, \{q_f\})$$

$$\delta(q_0, a, Z_0) = \{(q_0, aZ_0)\}$$

$$\delta(q_0, b, Z_0) = \{(q_0, bZ_0)\}$$

$$\delta(q_0, c, Z_0) = \{(q_f, Z_0)\}$$

$$\delta(q_0, a, X) = \{(q_0, aX)\}$$

$$\delta(q_0, b, X) = \{(q_0, bX)\}$$

$$\delta(q_0, b, X) = \{(q_1, X)\}$$

$$\delta(q_0, c, X) = \{(q_1, X)\}$$

$$\delta(q_0, c, X) = \{(q_1, x)\}$$
 transição quando se atinge a posição central
$$\delta(q_1, a, a) = \{(q_1, \varepsilon)\}$$

$$\delta(q_1, b, b) = \{(q_1, \varepsilon)\}$$
 transições após encontrar a posição central
$$\delta(q_1, a, a) = \{(q_1, \varepsilon)\}$$

$$\delta(q_1, b, b) = \{(q_1, \varepsilon)\}$$
 transições após encontrar a posição central
$$\delta(q_1, c, Z_0) = \{(q_1, Z_0)\}$$
 transição para uma configuração final
$$\delta(q_1, c, Z_0) = \{(q_1, Z_0)\}$$
 nos restantes casos

Neste caso, podemos simplificar a descrição do autómato, porque as transições (q_0,c,Z_0,q_1,Z_0) e $(q_1,\varepsilon,Z_0,q_f,Z_0)$ produzem resultado idêntico à transição (q_0,c,Z_0,q_f,Z_0) .

Neste caso, podemos simplificar a descrição do autómato, porque as transições (q_0, c, Z_0, q_1, Z_0) e $(q_1, \varepsilon, Z_0, q_f, Z_0)$

produzem resultado idêntico à transição (q_0, c, Z_0, q_f, Z_0) .

$$\mathcal{M} = (\{q_0, q_1, q_f\}, \{a, b, c\}, \{Z_0, a, b\}, \delta, q_0, Z_0, \{q_f\})$$

Neste caso, podemos simplificar a descrição do autómato, porque as transições (q_0,c,Z_0,q_1,Z_0) e $(q_1,\varepsilon,Z_0,q_f,Z_0)$

produzem resultado idêntico à transição (q_0, c, Z_0, q_f, Z_0) .

$$\mathcal{M} = (\{q_0, q_1, q_f\}, \{a, b, c\}, \{Z_0, a, b\}, \delta, q_0, Z_0, \{q_f\})$$

Seja $X, Y \in \{a, b, Z_0\}$ e $x \in \{a, b, \varepsilon\}$.

Neste caso, podemos simplificar a descrição do autómato, porque as transições (q_0, c, Z_0, q_1, Z_0) e $(q_1, \varepsilon, Z_0, q_f, Z_0)$ produzem resultado idêntico à transição (q_0, c, Z_0, q_f, Z_0) .

$$\mathcal{M} = (\{q_0, q_1, q_t\}, \{a, b, c\}, \{Z_0, a, b\}, \delta, q_0, Z_0, \{q_t\})$$

Seja
$$X, Y \in \{a, b, Z_0\}$$
 e $x \in \{a, b, \varepsilon\}$.

$$\begin{array}{l} \delta(q_0,a,X) = \{(q_0,aX)\} \\ \delta(q_0,b,X) = \{(q_0,bX)\} \end{array} \right\} \ \ \text{transições antes de encontrar a posição central}$$

$$\delta(q_0, c, X) = \{(q_1, X)\}$$
 transição quando se atinge a posição central

$$\delta(q_1,a,a) = \{(q_1,\varepsilon)\}\$$
 $\delta(q_1,b,b) = \{(q_1,\varepsilon)\}\$ transições após encontrar a posição central

$$\delta(q_1, \varepsilon, Z_0) = \{(q_f, Z_0)\}\;$$
 transição para uma configuração final

$$\delta(q, x, Y) = \emptyset$$
 nos restantes casos

Neste caso, podemos simplificar a descrição do autómato, porque as transições (q_0, c, Z_0, q_1, Z_0) e $(q_1, \varepsilon, Z_0, q_f, Z_0)$ produzem resultado idêntico à transição (q_0, c, Z_0, q_f, Z_0) .

$$\mathcal{M} = (\{q_0, q_1, q_f\}, \{a, b, c\}, \{Z_0, a, b\}, \delta, q_0, Z_0, \{q_f\})$$

Seja
$$X, Y \in \{a, b, Z_0\}$$
 e $x \in \{a, b, \varepsilon\}$.

$$\begin{cases} \delta(q_0,a,X) = \{(q_0,aX)\} \\ \delta(q_0,b,X) = \{(q_0,bX)\} \end{cases}$$
 transições antes de encontrar a posição central

$$\delta(q_0,c,X)=\{(q_1,X)\}\;\;$$
 transição quando se atinge a posição central

$$\delta(q_1,a,a) = \{(q_1,\varepsilon)\}\$$
 $\delta(q_1,b,b) = \{(q_1,\varepsilon)\}\$ transições após encontrar a posição central

$$\delta(q_1, \varepsilon, Z_0) = \{(q_f, Z_0)\}$$
 transição para uma configuração final

$$\delta(q, x, Y) = \emptyset$$
 nos restantes casos

а	а	b											
		1											
												Z_0	
										1			
			9) (71								
					δ (q_1 ,	b, 2	$(Z_0) =$	Ø				
												:	

а	а	b													
		1											ı		
													v a	٦	
		Г											а		
			9	0	<i>q</i> ₁								Z_0)	
				,		<i>L</i> >		c/ .							
				(q_0 ,	pa)	€ (0(9	70,1	b, a)		:		

а	а	b	а	а													
		_		ノ													
																v a	
				a.	_									1		b	
				90	9	1										a	
														_		Z_0	
					(q_0 ,	aa	() ∈	8	§(q	0, é	ı, a))				
																:	

а	а	b	а	а	b	а	а				
		_					ノ				1
											\ -
											a
				~		~					b
				4	0 (/ 1					а
											а
		I									b
											а
											а
											Z_0
						(q 1,	ε)	$\in \delta(q_0, a, a)$	a)	:

а	а	b	а	а	b	а	а										
		_					_	ノ								Ţ	
																b	
													1		L	а	
				q_0	0 (71									L	а	
															L	b	
		-											_		L	а	
																а	
															2	Z_0	
							δ	(<i>q</i> ₁	$, \varepsilon$, b)) =	Ø				:	

а	а	b	а	а	b	а	а										
		_					7									1	
															ſ	v a	
														1		b	
				q_0) (71										а	
																а	
		<u> </u>												J		b	
																а	
																а	
																Z_0	
					(9	10, a	ıa),	(q	۱,٤	€) €	≣ δ((q 0	, a ,	a)		:	

а	а	b	а	а	b	а	а									
		_					_	ノ								
															a]
															а	
				q) (71									b	
															а	
		'											_'		а	
															b	
															а	
															а	
							δ	(q 0	, ε	, a) =	= Ø			<i>Z</i> ₀	

Considere-se
$$L = \{u \mid u = xx^I, x \in \{a, b\}^*\}.$$

а	а	b	а	а	b	а										
		_			_	<u>ر</u>									1	
															a]
				~		٧.									a	
				4	0 9	/1									Z_0	
		_														
							(q ₁	$, \varepsilon)$	\in	δ(q_1, i	a, a))			
															:	

Caradalana aa '

а	а	b	а	а	b	а	а			
				9	0 (71				a Z ₀
							(9	$_{1},arepsilon$	$)\in\delta(q_1,a,a)$	<u> </u>

EXEMPLO 3

EXEMPLO 3

EXEMPLO 3 - continuação Considere-se $L = \{u \mid u = xx^I, x \in \{a, b\}^*\}.$

Considere-se $L = \{u \mid u = xx^I, x \in \{a, b\}^*\}.$

Seja $X, Y \in \{a, b, Z_0\}$ e $x \in \{a, b, \varepsilon\}$.

 $\delta(q_0, a, Z_0)$

Considere-se $L = \{u \mid u = xx^I, x \in \{a, b\}^*\}.$

Seja $X, Y \in \{a, b, Z_0\}$ e $x \in \{a, b, \varepsilon\}$.

$$\delta(q_0, a, Z_0) = \{(q_0, aZ_0)\}$$

Considere-se
$$L = \{u \mid u = xx^I, x \in \{a, b\}^*\}.$$

Seja
$$X, Y \in \{a, b, Z_0\}$$
 e $x \in \{a, b, \varepsilon\}$.

$$\delta(q_0, a, Z_0) = \{(q_0, aZ_0)\}\$$

 $\delta(q_0, b, Z_0) =$

Considere-se
$$L = \{u \mid u = xx^I, x \in \{a, b\}^*\}.$$

Seja
$$X, Y \in \{a, b, Z_0\}$$
 e $x \in \{a, b, \varepsilon\}$.

$$\delta(q_0, a, Z_0) = \{(q_0, aZ_0)\}$$

$$\delta(q_0, b, Z_0) = \{(q_0, bZ_0)\}\$$

Considere-se
$$L = \{u \mid u = xx^I, x \in \{a, b\}^*\}.$$

Seja
$$X, Y \in \{a, b, Z_0\}$$
 e $x \in \{a, b, \varepsilon\}$.

$$\delta(q_0, a, Z_0) = \{(q_0, aZ_0)\}$$

$$\delta(q_0, b, Z_0) = \{(q_0, bZ_0)\}\$$

$$\delta(q_0, a, b) =$$

Considere-se
$$L = \{u \mid u = xx^I, x \in \{a, b\}^*\}.$$

Seja
$$X, Y \in \{a, b, Z_0\}$$
 e $x \in \{a, b, \varepsilon\}$.

$$\delta(q_0, a, Z_0) = \{(q_0, aZ_0)\}$$

$$\delta(q_0, b, Z_0) = \{(q_0, bZ_0)\}\$$

$$\delta(q_0, a, b) = \{(q_0, ab)\}$$

Considere-se
$$L = \{u \mid u = xx^I, x \in \{a, b\}^*\}.$$

Seja
$$X, Y \in \{a, b, Z_0\}$$
 e $x \in \{a, b, \varepsilon\}$.

$$\delta(q_0, a, Z_0) = \{(q_0, aZ_0)\}\$$

$$\delta(q_0, b, Z_0) = \{(q_0, bZ_0)\}\$$

$$\delta(q_0, a, b) = \{(q_0, ab)\}$$

$$\delta(q_0, b, a) =$$

Considere-se
$$L = \{u \mid u = xx^I, x \in \{a, b\}^*\}.$$

Seja
$$X, Y \in \{a, b, Z_0\}$$
 e $x \in \{a, b, \varepsilon\}$.

$$\delta(q_0, a, Z_0) = \{(q_0, aZ_0)\}
\delta(q_0, b, Z_0) = \{(q_0, bZ_0)\}
\delta(q_0, a, b) = \{(q_0, ab)\}
\delta(q_0, b, a) = \{(q_0, ba)\}$$

Considere-se
$$L = \{u \mid u = xx^{I}, x \in \{a, b\}^{*}\}.$$

Seja
$$X, Y \in \{a, b, Z_0\}$$
 e $x \in \{a, b, \varepsilon\}$.

$$\begin{array}{l} \delta(q_0, a, Z_0) = \{(q_0, aZ_0)\} \\ \delta(q_0, b, Z_0) = \{(q_0, bZ_0)\} \\ \delta(q_0, a, b) = \{(q_0, ab)\} \\ \delta(q_0, b, a) = \{(q_0, ba)\} \\ \delta(q_0, a, a) = \end{array}$$

Considere-se $L = \{u \mid u = xx^I, x \in \{a, b\}^*\}.$

Seja $X, Y \in \{a, b, Z_0\}$ e $x \in \{a, b, \varepsilon\}$.

$$\delta(q_0, a, Z_0) = \{(q_0, aZ_0)\}
\delta(q_0, b, Z_0) = \{(q_0, bZ_0)\}
\delta(q_0, a, b) = \{(q_0, ab)\}
\delta(q_0, b, a) = \{(q_0, ba)\}
\delta(q_0, a, a) = \{(q_0, aa), (q_1, \varepsilon)\}$$

Considere-se $L = \{u \mid u = xx^I, x \in \{a, b\}^*\}.$

Seja
$$X, Y \in \{a, b, Z_0\}$$
 e $x \in \{a, b, \varepsilon\}$.

$$\delta(q_0, a, Z_0) = \{(q_0, aZ_0)\}
\delta(q_0, b, Z_0) = \{(q_0, bZ_0)\}
\delta(q_0, a, b) = \{(q_0, ab)\}
\delta(q_0, b, a) = \{(q_0, ba)\}
\delta(q_0, a, a) = \{(q_0, aa), (q_1, \varepsilon)\}$$

 $\delta(q_0, b, b) =$

Considere-se $L = \{u \mid u = xx^I, x \in \{a, b\}^*\}.$

Seja
$$X, Y \in \{a, b, Z_0\}$$
 e $x \in \{a, b, \varepsilon\}$.

$$\delta(q_0, a, Z_0) = \{(q_0, aZ_0)\}
\delta(q_0, b, Z_0) = \{(q_0, bZ_0)\}
\delta(q_0, a, b) = \{(q_0, ab)\}
\delta(q_0, b, a) = \{(q_0, ba)\}$$

antes do centro da palavra

$$\delta(q_0, a, a) = \{ (q_0, aa), (q_1, \varepsilon) \}$$

$$\delta(q_0, b, b) = \{ (q_0, bb), (q_1, \varepsilon) \}$$

momento em que é possível que se esteja no centro

Considere-se
$$L = \{u \mid u = xx^I, x \in \{a, b\}^*\}.$$

Seja
$$X, Y \in \{a, b, Z_0\}$$
 e $x \in \{a, b, \varepsilon\}$.

$$\begin{array}{l} \delta(q_0, a, Z_0) = \{(q_0, aZ_0)\} \\ \delta(q_0, b, Z_0) = \{(q_0, bZ_0)\} \\ \delta(q_0, a, b) = \{(q_0, ab)\} \\ \delta(q_0, b, a) = \{(q_0, ba)\} \end{array}$$

antes do centro da palavra

 $\delta(q_0, a, a) = \{(q_0, aa), (q_1, \varepsilon)\}\$ $\delta(q_0, b, b) = \{(q_0, bb), (q_1, \varepsilon)\}\$

momento em que é possível que se esteja no centro

$$\delta(q_1, a, a) =$$

Considere-se $L = \{u \mid u = xx^I, x \in \{a, b\}^*\}.$

Seja $X, Y \in \{a, b, Z_0\}$ e $x \in \{a, b, \varepsilon\}$.

$$\begin{array}{l} \delta(q_0, a, Z_0) = \{(q_0, aZ_0)\} \\ \delta(q_0, b, Z_0) = \{(q_0, bZ_0)\} \\ \delta(q_0, a, b) = \{(q_0, ab)\} \\ \delta(q_0, b, a) = \{(q_0, ba)\} \end{array}$$

antes do centro da palavra

 $\delta(q_0, a, a) = \{(q_0, aa), (q_1, \varepsilon)\}$ $\delta(q_0, b, b) = \{(q_0, bb), (q_1, \varepsilon)\}$

momento em que é possível que se esteja no centro

$$\delta(q_1,a,a)=\{(q_1,\varepsilon)\}$$

Considere-se
$$L = \{u \mid u = xx^{1}, x \in \{a, b\}^{*}\}.$$

Seja
$$X, Y \in \{a, b, Z_0\}$$
 e $x \in \{a, b, \varepsilon\}$.

$$\begin{array}{l} \delta(q_0, a, Z_0) = \{(q_0, aZ_0)\} \\ \delta(q_0, b, Z_0) = \{(q_0, bZ_0)\} \\ \delta(q_0, a, b) = \{(q_0, ab)\} \\ \delta(q_0, b, a) = \{(q_0, ba)\} \end{array}$$

antes do centro da palavra

 $\delta(q_0, a, a) = \{(q_0, aa), (q_1, \varepsilon)\}\$ $\delta(q_0, b, b) = \{(q_0, bb), (q_1, \varepsilon)\}\$

$$\delta(q_1, a, a) = \{(q_1, \varepsilon)\}$$

$$\delta(q_1, b, b) =$$

Considere-se $L = \{u \mid u = xx^I, x \in \{a, b\}^*\}.$

Seja
$$X, Y \in \{a, b, Z_0\}$$
 e $x \in \{a, b, \varepsilon\}$.

$$\begin{cases}
\delta(q_0, a, Z_0) = \{(q_0, aZ_0)\} \\
\delta(q_0, b, Z_0) = \{(q_0, bZ_0)\} \\
\delta(q_0, a, b) = \{(q_0, ab)\} \\
\delta(q_0, b, a) = \{(q_0, ba)\}
\end{cases}$$

antes do centro da palavra

 $\delta(q_0, a, a) = \{(q_0, aa), (q_1, \varepsilon)\}\$ $\delta(q_0, b, b) = \{(q_0, bb), (q_1, \varepsilon)\}\$

momento em que é possível que se esteja no centro

$$\begin{cases}
\delta(q_1, a, a) = \{(q_1, \varepsilon)\} \\
\delta(q_1, b, b) = \{(q_1, \varepsilon)\}
\end{cases}$$

Considere-se
$$L = \{u \mid u = xx^I, x \in \{a, b\}^*\}.$$

Seja
$$X, Y \in \{a, b, Z_0\}$$
 e $x \in \{a, b, \varepsilon\}$.

$$\begin{cases}
\delta(q_0, a, Z_0) = \{(q_0, aZ_0)\} \\
\delta(q_0, b, Z_0) = \{(q_0, bZ_0)\} \\
\delta(q_0, a, b) = \{(q_0, ab)\} \\
\delta(q_0, b, a) = \{(q_0, ab)\}
\end{cases}$$

antes do centro da palavra

 $\delta(q_0, a, a) = \{(q_0, aa), (q_1, \varepsilon)\}\$ $\delta(q_0, b, b) = \{(q_0, bb), (q_1, \varepsilon)\}\$

momento em que é possível que se esteja no centro

$$\delta(q_1, a, a) = \{(q_1, \varepsilon)\}
\delta(q_1, b, b) = \{(q_1, \varepsilon)\}$$

$$\delta(q_0, \varepsilon, Z_0) =$$

Considere-se
$$L = \{u \mid u = xx^I, x \in \{a, b\}^*\}.$$

Seja
$$X, Y \in \{a, b, Z_0\}$$
 e $x \in \{a, b, \varepsilon\}$.

$$\delta(q_0, a, Z_0) = \{(q_0, aZ_0)\}
\delta(q_0, b, Z_0) = \{(q_0, bZ_0)\}
\delta(q_0, a, b) = \{(q_0, ab)\}
\delta(q_0, b, a) = \{(q_0, ba)\}$$

antes do centro da palavra

 $\delta(q_0, a, a) = \{(q_0, aa), (q_1, \varepsilon)\}\$ $\delta(q_0, b, b) = \{(q_0, bb), (q_1, \varepsilon)\}\$

momento em que é possível que se esteja no centro

$$\delta(q_1, a, a) = \{(q_1, \varepsilon)\}\$$

$$\delta(q_1, b, b) = \{(q_1, \varepsilon)\}\$$

$$\delta(q_0,\varepsilon,Z_0) = \{(q_1,Z_0)\}$$

Considere-se $L = \{u \mid u = xx^I, x \in \{a, b\}^*\}.$

Seja
$$X, Y \in \{a, b, Z_0\}$$
 e $x \in \{a, b, \varepsilon\}$.

$$\delta(q_0, a, Z_0) = \{(q_0, aZ_0)\}
\delta(q_0, b, Z_0) = \{(q_0, bZ_0)\}
\delta(q_0, a, b) = \{(q_0, ab)\}
\delta(q_0, b, a) = \{(q_0, ba)\}
\delta(q_0, b, a) = \{(q_0, ba)\}$$

antes do centro da palavra

 $\delta(q_0, a, a) = \{(q_0, aa), (q_1, \varepsilon)\}\$ $\delta(q_0, b, b) = \{(q_0, bb), (q_1, \varepsilon)\}\$

momento em que é possível que se esteja no centro

$$\delta(q_1, a, a) = \{(q_1, \varepsilon)\}
\delta(q_1, b, b) = \{(q_1, \varepsilon)\}$$

$$\delta(q_0, \varepsilon, Z_0) = \{(q_1, Z_0)\}$$

$$\delta(q_1, \varepsilon, Z_0) =$$

Considere-se
$$L = \{u \mid u = xx^I, x \in \{a, b\}^*\}.$$

Seja
$$X, Y \in \{a, b, Z_0\}$$
 e $x \in \{a, b, \varepsilon\}$.

$$\delta(q_0, a, Z_0) = \{(q_0, aZ_0)\}
\delta(q_0, b, Z_0) = \{(q_0, bZ_0)\}
\delta(q_0, a, b) = \{(q_0, ab)\}
\delta(q_0, b, a) = \{(q_0, ba)\}$$

antes do centro da palavra

 $\delta(q_0, a, a) = \{(q_0, aa), (q_1, \varepsilon)\}$ $\delta(q_0, b, b) = \{(q_0, bb), (q_1, \varepsilon)\}$

momento em que é possível que se esteja no centro

$$\delta(q_1, a, a) = \{(q_1, \varepsilon)\}
\delta(q_1, b, b) = \{(q_1, \varepsilon)\}$$

após encontrar o centro

$$\begin{cases}
\delta(q_0, \varepsilon, Z_0) = \{(q_1, Z_0)\} \\
\delta(q_1, \varepsilon, Z_0) = \{(q_f, Z_0)\}
\end{cases}$$

transições para configuração final

Considere-se $L = \{u \mid u = xx^I, x \in \{a, b\}^*\}.$

Seja
$$X, Y \in \{a, b, Z_0\}$$
 e $x \in \{a, b, \varepsilon\}$.

$$\delta(q_0, a, Z_0) = \{(q_0, aZ_0)\}
\delta(q_0, b, Z_0) = \{(q_0, bZ_0)\}
\delta(q_0, a, b) = \{(q_0, ab)\}
\delta(q_0, b, a) = \{(q_0, ba)\}
\delta(q_0, a, a) = \{(q_0, ab)\}
\delta(q_0, a, a) = \{(q_0, ab)\}$$

antes do centro da palavra

 $\delta(q_0, a, a) = \{(q_0, aa), (q_1, \varepsilon)\}\$ $\delta(q_0, b, b) = \{(q_0, bb), (q_1, \varepsilon)\}\$

momento em que é possível que se esteja no centro

$$\delta(q_1, a, a) = \{(q_1, \varepsilon)\}
\delta(q_1, b, b) = \{(q_1, \varepsilon)\}$$

após encontrar o centro

$$\delta(q_0, \varepsilon, Z_0) = \{(q_1, Z_0)\}$$

$$\delta(q_1, \varepsilon, Z_0) = \{(q_f, Z_0)\}$$

transições para configuração final

$$\delta(q, x, Y) = \emptyset$$
 nos restantes casos

Considere-se $L = \{u \mid u = xx^{T}, x \in \{a, b\}^*\}.$

Seja
$$X, Y \in \{a, b, Z_0\}$$
 e $x \in \{a, b, \varepsilon\}$.

$$\begin{array}{l} \delta(q_0,a,Z_0) = \{(q_0,aZ_0)\} \\ \delta(q_0,b,Z_0) = \{(q_0,bZ_0)\} \\ \delta(q_0,a,b) = \{(q_0,ab)\} \\ \delta(q_0,b,a) = \{(q_0,ba)\} \end{array}$$

antes do centro da palavra

 $\delta(q_0, a, a) = \{(q_0, aa), (q_1, \varepsilon)\}\$ $\delta(q_0, b, b) = \{(q_0, bb), (q_1, \varepsilon)\}\$ momento em que é possível que se esteja no centro

$$\delta(q_1, a, a) = \{(q_1, \varepsilon)\}$$
 $\delta(q_1, b, b) = \{(q_1, \varepsilon)\}$
após encontrar o centro

$$\begin{array}{l} \delta(q_0,\varepsilon,Z_0) = \{(q_1,Z_0)\} \\ \delta(q_1,\varepsilon,Z_0) = \{(q_f,Z_0)\} \end{array} \right\} \quad \text{transições para configuração final}$$

 $\delta(q, x, Y) = \emptyset$ nos restantes casos

$$\mathcal{M} = (Q, A, \Sigma, \delta, q_0, Z_0, F)$$

$$\mathcal{M} = (\textit{Q},\textit{A},\Sigma,\delta,\textit{q}_0,\textit{Z}_0,\textit{F})$$

A configuração inicial é (q_0, u, Z_0) .

$$\mathcal{M} = (Q, A, \Sigma, \delta, q_0, Z_0, F)$$

A configuração inicial é (q_0, u, Z_0) .

Em cada etapa, sendo (p, w, α) a configuração, com w um sufixo de u da forma $w = a_i \cdots a_n$ ou $w = \varepsilon$, tem-se que

$$\mathcal{M} = (Q, A, \Sigma, \delta, q_0, Z_0, F)$$

A configuração inicial é (q_0, u, Z_0) .

Em cada etapa, sendo (p, w, α) a configuração, com w um sufixo de u da forma $w = a_i \cdots a_n$ ou $w = \varepsilon$, tem-se que

 \bullet se $\alpha = \varepsilon$, nenhuma transição é possível;

$$\mathcal{M} = (\textit{Q},\textit{A},\Sigma,\delta,\textit{q}_0,\textit{Z}_0,\textit{F})$$

A configuração inicial é (q_0, u, Z_0) .

Em cada etapa, sendo (p, w, α) a configuração, com w um sufixo de u da forma $w = a_i \cdots a_n$ ou $w = \varepsilon$, tem-se que

- **1** se $\alpha = \varepsilon$, nenhuma transição é possível;
- **2** se $\alpha = X\alpha'$, para $X \in \Sigma$, $\alpha' \in \Sigma^*$ e se lê a_i , então escolhe-se um elemento $(q,\gamma) \in \delta(p,a_i,X)$ e a configuração passa a ser

$$(q, a_{i+1} \cdots a_n, \gamma \alpha');$$

$$\mathcal{M} = (\textit{Q},\textit{A},\Sigma,\delta,\textit{q}_0,\textit{Z}_0,\textit{F})$$

A configuração inicial é (q_0, u, Z_0) .

Em cada etapa, sendo (p, w, α) a configuração, com w um sufixo de u da forma $w = a_i \cdots a_n$ ou $w = \varepsilon$, tem-se que

- **1** se $\alpha = \varepsilon$, nenhuma transição é possível;
- 2 se $\alpha = X\alpha'$, para $X \in \Sigma$, $\alpha' \in \Sigma^*$ e se lê a_i , então escolhe-se um elemento $(q,\gamma) \in \delta(p,a_b,X)$ e a configuração passa a ser

$$(q, a_{i+1} \cdots a_n, \gamma \alpha');$$

3 se $\alpha = X\alpha'$, para $X \in \Sigma$, $\alpha' \in \Sigma^*$ e $\delta(p, a, X) = \emptyset$ ou $w = \varepsilon$, então escolhe-se $(q, \gamma) \in \delta(p, \varepsilon, X)$ e a configuração passa a ser

$$(q, w, \gamma \alpha')$$
;

$$\mathcal{M} = (\textit{Q},\textit{A},\Sigma,\delta,\textit{q}_0,\textit{Z}_0,\textit{F})$$

A configuração inicial é (q_0, u, Z_0) .

Em cada etapa, sendo (p, w, α) a configuração, com w um sufixo de u da forma $w = a_i \cdots a_n$ ou $w = \varepsilon$, tem-se que

- **1** se $\alpha = \varepsilon$, nenhuma transição é possível;
- **2** se $\alpha = X\alpha'$, para $X \in \Sigma$, $\alpha' \in \Sigma^*$ e se lê a_i , então escolhe-se um elemento $(q,\gamma) \in \delta(p,a_i,X)$ e a configuração passa a ser

$$(q, a_{i+1} \cdots a_n, \gamma \alpha');$$

3 se $\alpha = X\alpha'$, para $X \in \Sigma$, $\alpha' \in \Sigma^*$ e $\delta(p, a, X) = \emptyset$ ou $w = \varepsilon$, então escolhe-se $(q, \gamma) \in \delta(p, \varepsilon, X)$ e a configuração passa a ser

$$(q, w, \gamma \alpha');$$

4 se $\delta(p, a_i, X) \cup \delta(p, \varepsilon, X) = \emptyset$, nenhuma transição é possível.

$$\mathcal{M} = (Q, A, \Sigma, \delta, q_0, Z_0, F)$$

A configuração inicial é (q_0, u, Z_0) .

Em cada etapa, sendo (p, w, α) a configuração, com w um sufixo de u da forma $w = a_i \cdots a_n$ ou $w = \varepsilon$, tem-se que

- **1** se $\alpha = \varepsilon$, nenhuma transição é possível;
- $oldsymbol{2}$ se $\alpha = X\alpha'$, para $X \in \Sigma$, $\alpha' \in \Sigma^*$ e se lê a_i , então escolhe-se um elemento $(q,\gamma) \in \delta(p,a_b,X)$ e a configuração passa a ser

$$(q, a_{i+1} \cdots a_n, \gamma \alpha');$$

3 se $\alpha = X\alpha'$, para $X \in \Sigma$, $\alpha' \in \Sigma^*$ e $\delta(p, a, X) = \emptyset$ ou $w = \varepsilon$, então escolhe-se $(q, \gamma) \in \delta(p, \varepsilon, X)$ e a configuração passa a ser

$$(q, w, \gamma \alpha');$$

• se $\delta(p, a_i, X) \cup \delta(p, \varepsilon, X) = \emptyset$, nenhuma transição é possível.

No conjunto dos configurações de um autómete d

No conjunto das configurações de um autómato de pilha

$$\mathcal{M} = (Q, A, \Sigma, \delta, q_0, Z_0, F)$$

define-se a relação 📙 do seguinte modo:

No conjunto das configurações de um autómato de pilha

$$\mathcal{M} = (Q, A, \Sigma, \delta, q_0, Z_0, F)$$

define-se a relação $\vdash_{\mathcal{M}}$ do seguinte modo:

No conjunto das configurações de um autómato de pilha

$$\mathcal{M} = (Q, A, \Sigma, \delta, q_0, Z_0, F)$$

define-se a relação $\frac{1}{M}$ do seguinte modo:

• (p, aw, $X\alpha$) $\vdash_{\mathcal{M}} (q, w, \gamma\alpha)$ se $(q, \gamma) \in \delta(p, a, X)$, ou seja, se (p, a, X, q, γ) é uma transição,

No conjunto das configurações de um autómato de pilha

$$\mathcal{M} = (Q, A, \Sigma, \delta, q_0, Z_0, F)$$

define-se a relação bodo seguinte modo:

- (p, aw, $X\alpha$) $\vdash_{\mathcal{M}}$ (q, w, $\gamma\alpha$) se (q, γ) $\in \delta(p, a, X)$, ou seja, se (p, a, X, q, γ) \acute{e} uma transição,
- ② $(p, w, X\alpha) \vdash_{\mathcal{M}} (q, w, \gamma\alpha)$ se $(q, \gamma) \in \delta(p, \varepsilon, X)$, ou seja, se $(p, \varepsilon, X, q, \gamma)$ é uma transição,

onde $p, q \in Q$, $a \in A$, $w \in A^*$, $X \in \Sigma$, $\alpha, \gamma \in \Sigma^*$.

No conjunto das configurações de um autómato de pilha

$$\mathcal{M} = (Q, A, \Sigma, \delta, q_0, Z_0, F)$$

define-se a relação 📙 do seguinte modo:

- $(p, aw, X\alpha) \vdash_{M} (q, w, \gamma\alpha)$ se $(q, \gamma) \in \delta(p, a, X)$, ou seja, se (p, a, X, q, γ) é uma transição,
- $(p, w, X\alpha) \vdash_{M} (q, w, \gamma\alpha) \text{ se } (q, \gamma) \in \delta(p, \varepsilon, X), \text{ ou seja, se}$ $(p, \varepsilon, X, q, \gamma)$ é uma transição,

onde $p, q \in Q, a \in A, w \in A^*, X \in \Sigma, \alpha, \gamma \in \Sigma^*.$

Por $\vdash_{\mathcal{M}}$ define-se o fecho reflexivo e transitivo de $\vdash_{\mathcal{M}}$

No conjunto das configurações de um autómato de pilha

$$\mathcal{M} = (Q, A, \Sigma, \delta, q_0, Z_0, F)$$

define-se a relação $\vdash_{\mathcal{M}}$ do seguinte modo:

- (p, aw, $X\alpha$) $\vdash_{\mathcal{M}} (q, w, \gamma\alpha)$ se $(q, \gamma) \in \delta(p, a, X)$, ou seja, se (p, a, X, q, γ) é uma transição,
- 2 $(p, w, X\alpha) \vdash_{\mathcal{M}} (q, w, \gamma\alpha)$ se $(q, \gamma) \in \delta(p, \varepsilon, X)$, ou seja, se $(p, \varepsilon, X, q, \gamma)$ é uma transição,

onde $p, q \in Q$, $a \in A$, $w \in A^*$, $X \in \Sigma$, $\alpha, \gamma \in \Sigma^*$.

Por $\stackrel{*}{\vdash}$ define-se o fecho reflexivo e transitivo de $\stackrel{\vdash}{\vdash}$ e por $\stackrel{+}{\vdash}$ define-se o fecho transitivo de $\stackrel{\vdash}{\vdash}$.

No conjunto das configurações de um autómato de pilha

$$\mathcal{M} = (Q, A, \Sigma, \delta, q_0, Z_0, F)$$

define-se a relação 📙 do seguinte modo:

- $(p, aw, X\alpha) \vdash_{M} (q, w, \gamma\alpha)$ se $(q, \gamma) \in \delta(p, a, X)$, ou seja, se (p, a, X, q, γ) é uma transição,
- $(p, w, X\alpha) \vdash_{M} (q, w, \gamma\alpha) \text{ se } (q, \gamma) \in \delta(p, \varepsilon, X), \text{ ou seja, se}$ $(p, \varepsilon, X, q, \gamma)$ é uma transição,

onde $p, q \in Q, a \in A, w \in A^*, X \in \Sigma, \alpha, \gamma \in \Sigma^*.$

Por \vdash define-se o fecho reflexivo e transitivo de \vdash e por \vdash define-se o fecho transitivo de $\vdash_{\mathcal{M}}$.

O símbolo $\vdash_{\mathcal{M}}$ lê-se deriva diretamente e o símbolo $\vdash_{\mathcal{M}}^{\hat{r}}$ lê-se deriva.

Um autómato de pilha

$$\mathcal{M} = (Q, A, \Sigma, \delta, q_0, Z_0, F)$$

diz-se determinista se a partir de uma qualquer configuração existe no máximo uma transição possível,

Um autómato de pilha

$$\mathcal{M} = (Q, A, \Sigma, \delta, q_0, Z_0, F)$$

diz-se determinista se a partir de uma qualquer configuração existe no máximo uma transição possível, ou seja,

 $|\delta(q, a, X)| \leq 1$, para quaisquer $q \in Q$, $a \in A \cup \{\varepsilon\}$, $X \in \Sigma$, e

Um autómato de pilha

$$\mathcal{M} = (Q, A, \Sigma, \delta, q_0, Z_0, F)$$

diz-se determinista se a partir de uma qualquer configuração existe no máximo uma transição possível, ou seja,

- **1** $|\delta(q, a, X)|$ ≤ 1, para quaisquer $q \in Q$, $a \in A \cup \{\varepsilon\}$, $X \in \Sigma$, e
- ② para cada $q \in Q$, $X \in \Sigma$ e $a \in A$, se $\delta(q, a, X) \neq \emptyset$, então $\delta(q, \varepsilon, X) = \emptyset$.

Recorde-se a linguagem do Exemplo 3, $L=\{u\mid u=xx^I,\ x\in\{a,b\}^*\}$, e o autómato de pilha $\mathcal{M}=(\{q_0,q_1,q_f\},\{a,b,c\},\{Z_0,a,b\},\delta,q_0,Z_0,\{q_f\})$, com

```
 \begin{array}{ll} \delta(q_0,a,Z_0) &= \{(q_0,aZ_0)\} \\ \delta(q_0,b,Z_0) &= \{(q_0,bZ_0)\} \\ \delta(q_0,a,b) &= \{(q_0,ab)\} \\ \delta(q_0,b,a) &= \{(q_0,ba)\} \\ \end{array} \right\} \text{ antes do centro da palavra }  antes do centro da palavra  \begin{array}{ll} \delta(q_0,a,b) &= \{(q_0,ab)\} \\ \delta(q_0,b,a) &= \{(q_0,ba)\} \\ \delta(q_0,b,b) &= \{(q_0,bb),(q_1,\varepsilon)\} \\ \delta(q_1,a,a) &= \{(q_1,\varepsilon)\} \\ \delta(q_1,b,b) &= \{(q_1,\varepsilon)\} \\ \delta(q_1,c,Z_0) &= \{(q_1,Z_0)\} \\ \delta(q_1,\varepsilon,Z_0) &= \{(q_1,Z_0)\} \\ \delta(q_1,\varepsilon,Z_0) &= \{(q_1,Z_0)\} \\ \end{array} \right\} \text{ transições para configuração final }   \delta(q,x,Y) &= \emptyset \quad \text{nos restantes casos}
```

Recorde-se a linguagem do Exemplo 3, $L = \{u \mid u = xx^l, x \in \{a,b\}^*\}$, e o autómato de pilha $\mathcal{M} = (\{q_0,q_1,q_f\},\{a,b,c\},\{Z_0,a,b\},\delta,q_0,Z_0,\{q_f\})$, com

```
 \begin{array}{ll} \delta(q_0,a,Z_0) &= \{(q_0,aZ_0)\} \\ \delta(q_0,b,Z_0) &= \{(q_0,bZ_0)\} \\ \delta(q_0,a,b) &= \{(q_0,ab)\} \\ \delta(q_0,b,a) &= \{(q_0,ba)\} \end{array} \right\} \quad \text{antes do centro da palavra}   \begin{array}{ll} \delta(q_0,a,a) &= \{(q_0,aa),(q_1,\varepsilon)\} \\ \delta(q_0,b,b) &= \{(q_0,bb),(q_1,\varepsilon)\} \end{array} \right\} \quad \text{momento em que \'e poss\'evel } \\ \delta(q_0,b,b) &= \{(q_0,bb),(q_1,\varepsilon)\} \end{array} \right\} \quad \text{momento em que \'e poss\'evel } \\ \delta(q_1,a,a) &= \{(q_1,\varepsilon)\} \\ \delta(q_1,b,b) &= \{(q_1,\varepsilon)\} \end{aligned} \right\} \quad \text{ap\'os encontrar o centro}   \delta(q_0,\varepsilon,Z_0) &= \{(q_1,Z_0)\} \\ \delta(q_1,\varepsilon,Z_0) &= \{(q_1,Z_0)\} \end{aligned} \right\} \quad \text{transi\~c\~os para configura\~c\~ao final}   \delta(q,x,Y) &= \emptyset \quad \text{nos restantes casos}
```

 ${\cal M}$ não é determinista. Para provar basta considerar um dos seguintes factos:

•
$$|\delta(q_0, a, a)| = |\{(q_0, aa), (q_1, \varepsilon)\}| = 2$$
,

Recorde-se a linguagem do Exemplo 3, $L = \{u \mid u = xx^l, x \in \{a, b\}^*\}$, e o autómato de pilha $\mathcal{M} = (\{q_0, q_1, q_t\}, \{a, b, c\}, \{Z_0, a, b\}, \delta, q_0, Z_0, \{q_t\})$, com

```
 \begin{array}{ll} \delta(q_0,a,Z_0) &= \{(q_0,aZ_0)\} \\ \delta(q_0,b,Z_0) &= \{(q_0,bZ_0)\} \\ \delta(q_0,a,b) &= \{(q_0,ab)\} \\ \delta(q_0,b,a) &= \{(q_0,ba)\} \\ \end{array} \right\} \text{ antes do centro da palavra }  antes do centro da palavra  \begin{array}{ll} \delta(q_0,a,b) &= \{(q_0,ab)\} \\ \delta(q_0,b,a) &= \{(q_0,ba)\} \\ \delta(q_0,b,b) &= \{(q_0,bb),(q_1,\varepsilon)\} \\ \delta(q_0,b,b) &= \{(q_0,bb),(q_1,\varepsilon)\} \\ \delta(q_1,a,a) &= \{(q_1,\varepsilon)\} \\ \delta(q_1,b,b) &= \{(q_1,\varepsilon)\} \\ \delta(q_1,\varepsilon,Z_0) &= \{(q_1,Z_0)\} \\ \delta(q_1,\varepsilon,Z_0) &= \{(q_1,Z_0)\} \\ \delta(q_1,\varepsilon,Z_0) &= \{(q_1,Z_0)\} \\ \end{array} \right\} \text{ transições para configuração final }   \delta(q,x,Y) &= \emptyset \text{ nos restantes casos }
```

 ${\cal M}$ não é determinista. Para provar basta considerar um dos seguintes factos:

- $|\delta(q_0, a, a)| = |\{(q_0, aa), (q_1, \varepsilon)\}| = 2,$
- $|\delta(q_0, b, b)| = |\{(q_0, bb), (q_1, \varepsilon)\}| = 2,$

Recorde-se a linguagem do Exemplo 3, $L = \{u \mid u = xx^l, x \in \{a, b\}^*\}$, e o autómato de pilha $\mathcal{M} = (\{q_0, q_1, q_t\}, \{a, b, c\}, \{Z_0, a, b\}, \delta, q_0, Z_0, \{q_t\})$, com

```
 \begin{array}{ll} \delta(q_0,a,Z_0) &= \{(q_0,aZ_0)\} \\ \delta(q_0,b,Z_0) &= \{(q_0,bZ_0)\} \\ \delta(q_0,a,b) &= \{(q_0,ab)\} \\ \delta(q_0,b,a) &= \{(q_0,ba)\} \end{array} \right\} \quad \text{antes do centro da palavra}   \begin{array}{ll} \delta(q_0,a,a) &= \{(q_0,aa),(q_1,\varepsilon)\} \\ \delta(q_0,b,b) &= \{(q_0,bb),(q_1,\varepsilon)\} \end{array} \right\} \quad \text{momento em que \'e poss\'evel } \\ \delta(q_0,b,b) &= \{(q_0,bb),(q_1,\varepsilon)\} \end{array} \right\} \quad \text{momento em que \'e poss\'evel } \\ \delta(q_1,a,a) &= \{(q_1,\varepsilon)\} \\ \delta(q_1,b,b) &= \{(q_1,\varepsilon)\} \\ \delta(q_1,\varepsilon,Z_0) &= \{(q_1,Z_0)\} \\ \delta(q_1,\varepsilon,Z_0) &= \{(q_1,Z_0)\} \\ \delta(q_1,\varepsilon,Z_0) &= \{(q_1,Z_0)\} \end{array} \right\} \quad \text{transi\~cões para configura\~cão final} \\ \delta(q,x,Y) &= \emptyset \quad \text{nos restantes casos}
```

 ${\cal M}$ não é determinista. Para provar basta considerar um dos seguintes factos:

- $|\delta(q_0, a, a)| = |\{(q_0, aa), (q_1, \varepsilon)\}| = 2,$
- $|\delta(q_0, b, b)| = |\{(q_0, bb), (q_1, \varepsilon)\}| = 2,$
- $\delta(q_0, \varepsilon, Z_0) \neq \emptyset$ e $\delta(q_0, x, Z_0) \neq \emptyset$, para $x \in \{a, b\}$.

Recorde-se a lingugem do Exemplo 3: $L=\{u\mid u=xx^I,\ x\in\{a,b\}^*\}$ e o autómato de pilha $\mathcal{M}=(\{q_0,q_1,q_f\},\{a,b,c\},\{Z_0,a,b\},\delta,q_0,Z_0,\{q_f\}),$ com

$$\begin{array}{l} \delta(q_0,a,Z_0) &= \{(q_0,q_1,q_f\}, a,b,cf,\{Z_0,a,bf,\delta,q_0,Z_0,\{q_f\}\},\text{com}\}\\ \delta(q_0,a,Z_0) &= \{(q_0,bZ_0)\}\\ \delta(q_0,a,b) &= \{(q_0,ab)\}\\ \delta(q_0,b,a) &= \{(q_0,aa),(q_1,\varepsilon)\}\\ \delta(q_0,b,b) &= \{(q_0,bb),(q_1,\varepsilon)\}\\ \delta(q_1,a,a) &= \{(q_1,\varepsilon)\}\\ \delta(q_1,b,b) &= \{(q_1,\varepsilon)\}\\ \delta(q_1,b,b) &= \{(q_1,\varepsilon)\}\\ \delta(q_0,\varepsilon,Z_0) &= \{(q_1,Z_0)\}\\ \delta(q_1,\varepsilon,Z_0) &= \{(q_f,Z_0)\}\\ \delta(q_1,\varepsilon,Z_0) &= \{(q_f,Z_0)\}\\ \end{array} \right. \\ \text{transições para configuração final} \\ \delta(q,x,Y) &= \emptyset \quad \text{nos restantes casos} \end{array}$$

Recorde-se a lingugem do Exemplo 3: $L = \{u \mid u = xx^I, \ x \in \{a,b\}^*\}$ e o autómato de pilha $\mathcal{M} = (\{q_0,q_1,q_f\},\{a,b,c\},\{Z_0,a,b\},\delta,q_0,Z_0,\{q_f\})$, com $\delta(q_0,a,Z_0) = \{(q_0,aZ_0)\}$

$$\begin{array}{l} \delta(q_0,a,Z_0) &= \{(q_0,aZ_0)\}\\ \delta(q_0,b,Z_0) &= \{(q_0,bZ_0)\}\\ \delta(q_0,b,a) &= \{(q_0,ba)\}\\ \delta(q_0,b,a) &= \{(q_0,ba)\}\\ \delta(q_0,b,a) &= \{(q_0,aa),(q_1,\varepsilon)\}\\ \delta(q_0,b,b) &= \{(q_0,bb),(q_1,\varepsilon)\}\\ \delta(q_1,a,a) &= \{(q_1,\varepsilon)\}\\ \delta(q_1,b,b) &= \{(q_1,\varepsilon)\}\\ \delta(q_1,c,Z_0) &= \{(q_1,Z_0)\}\\ \delta(q_1,\varepsilon,Z_0) &= \{(q_1,Z_0)\}\\ \end{array} \end{array} \right. \\ \text{transições para configuração final}$$

Considerem-se as seguintes sequências de movimentos:

• (*q*₀, *baab*, *Z*₀)

Recorde-se a lingugem do Exemplo 3: $L = \{u \mid u = xx', x \in \{a, b\}^*\}$ e o autómato de pilha $\mathcal{M} = (\{q_0, q_1, q_f\}, \{a, b, c\}, \{Z_0, a, b\}, \delta, q_0, Z_0, \{q_f\}),$ com

$$\begin{array}{ll} \delta(q_0,a,Z_0) &= \{(q_0,a_1,q_f\},\{a,b,c_f,\{2_0,a,b\},\delta,q_0,2_0,\{q_f\}\},\text{ com} \\ \delta(q_0,a,Z_0) &= \{(q_0,bZ_0)\} \\ \delta(q_0,b,Z_0) &= \{(q_0,ab)\} \\ \delta(q_0,b,a) &= \{(q_0,ba)\} \\ \delta(q_0,a,a) &= \{(q_0,aa),(q_1,\varepsilon)\} \\ \delta(q_0,b,b) &= \{(q_0,bb),(q_1,\varepsilon)\} \\ \delta(q_1,a,a) &= \{(q_1,\varepsilon)\} \\ \delta(q_1,b,b) &= \{(q_1,\varepsilon)\} \\ \delta(q_1,c,Z_0) &= \{(q_1,Z_0)\} \\ \delta(q_1,\varepsilon,Z_0) &= \{(q_1,z_0)\} \\ \delta(q_1,\varepsilon,Z_0)$$

Recorde-se a lingugem do Exemplo 3: $L=\{u\mid u=xx^I,\ x\in\{a,b\}^*\}$ e o autómato de pilha $\mathcal{M}=(\{q_0,q_1,q_f\},\{a,b,c\},\{Z_0,a,b\},\delta,q_0,Z_0,\{q_f\})$, com

$$\begin{array}{ll} \delta(q_0,a,Z_0) &= \{(q_0,aZ_0)\}\\ \delta(q_0,b,Z_0) &= \{(q_0,bZ_0)\}\\ \delta(q_0,a,b) &= \{(q_0,ab)\}\\ \delta(q_0,b,a) &= \{(q_0,ba)\}\\ \delta(q_0,b,a) &= \{(q_0,ba)\}\\ \end{array} \qquad \text{antes do centro da palavra}$$

$$\begin{array}{ll} \delta(q_0,a,a) &= \{(q_0,aa),(q_1,\varepsilon)\}\\ \delta(q_0,b,b) &= \{(q_0,bb),(q_1,\varepsilon)\}\\ \delta(q_1,a,a) &= \{(q_1,\varepsilon)\}\\ \delta(q_1,b,b) &= \{(q_1,\varepsilon)\}\\ \delta(q_1,\varepsilon,Z_0) &= \{(q_1,Z_0)\}\\ \delta(q_1,\varepsilon,Z_0) &= \{(q_1,Z_0)\}\\ \end{array} \qquad \text{transições para configuração final}$$

$$\begin{array}{ll} \delta(q_0,x,Y) &= \emptyset \quad \text{nos restantes casos} \end{array}$$

•
$$(q_0, baab, Z_0) \vdash_{\mathcal{M}} (q_1, baab, Z_0) \vdash_{\mathcal{M}} (q_f, baab, Z_0)$$

Recorde-se a lingugem do Exemplo 3: $L = \{u \mid u = xx', x \in \{a, b\}^*\}$ e o autómato de pilha $\mathcal{M} = (\{q_0, q_1, q_f\}, \{a, b, c\}, \{Z_0, a, b\}, \delta, q_0, Z_0, \{q_f\}),$ com

$$\begin{array}{l} \delta(q_0,a,Z_0) &= \{(q_0,aZ_0)\}\\ \delta(q_0,b,Z_0) &= \{(q_0,bZ_0)\}\\ \delta(q_0,a,b) &= \{(q_0,ba)\}\\ \delta(q_0,b,a) &= \{(q_0,ba)\}\\ \delta(q_0,b,a) &= \{(q_0,ba),(q_1,\varepsilon)\}\\ \delta(q_0,b,b) &= \{(q_0,bb),(q_1,\varepsilon)\}\\ \delta(q_1,a,a) &= \{(q_1,\varepsilon)\}\\ \delta(q_1,b,b) &= \{(q_1,\varepsilon)\}\\ \delta(q_1,b,b) &= \{(q_1,\varepsilon)\}\\ \delta(q_1,c,Z_0) &= \{(q_1,Z_0)\}\\ \delta(q_1,\varepsilon,Z_0) &= \{(q_1,Z_0)\}\\ \delta(q_1,\varepsilon,Z_0) &= \{(q_1,Z_0)\}\\ \delta(q_1,\varepsilon,Z_0) &= \{(q_1,Z_0)\}\\ \end{array} \end{array} \quad \text{transições para configuração final} \\ \delta(q,x,Y) &= \emptyset \quad \text{nos restantes casos}$$

$$\bullet \ \, (q_0,baab,Z_0) \underset{\mathcal{M}}{\vdash} (q_1,baab,Z_0) \underset{\mathcal{M}}{\vdash} (q_f,baab,Z_0) \qquad \rightsquigarrow \text{leitura mal sucedida}$$

Recorde-se a lingugem do Exemplo 3: $L = \{u \mid u = xx', x \in \{a, b\}^*\}$ e o autómato de pilha $\mathcal{M} = (\{q_0, q_1, q_f\}, \{a, b, c\}, \{Z_0, a, b\}, \delta, q_0, Z_0, \{q_f\}),$ com

$$\begin{array}{l} \delta(q_0,a,Z_0) &= \{(q_0,aZ_0)\}\\ \delta(q_0,b,Z_0) &= \{(q_0,bZ_0)\}\\ \delta(q_0,a,b) &= \{(q_0,ba)\}\\ \delta(q_0,b,a) &= \{(q_0,ba)\}\\ \delta(q_0,b,a) &= \{(q_0,ba),(q_1,\varepsilon)\}\\ \delta(q_0,b,b) &= \{(q_0,bb),(q_1,\varepsilon)\}\\ \delta(q_1,a,a) &= \{(q_1,\varepsilon)\}\\ \delta(q_1,b,b) &= \{(q_1,\varepsilon)\}\\ \delta(q_1,b,b) &= \{(q_1,\varepsilon)\}\\ \delta(q_1,c,Z_0) &= \{(q_1,Z_0)\}\\ \delta(q_1,\varepsilon,Z_0) &= \{(q_1,Z_0)\}\\ \delta(q_1,\varepsilon,Z_0) &= \{(q_1,Z_0)\}\\ \end{array} \right\} \quad \text{transições para configuração final} \\ \delta(q,x,Y) &= \emptyset \quad \text{nos restantes casos} \end{array}$$

Considerem-se as seguintes seguências de movimentos:

•
$$(q_0, baab, Z_0) \stackrel{\vdash}{\underset{\mathcal{M}}{\vdash}} (q_1, baab, Z_0) \stackrel{\vdash}{\underset{\mathcal{M}}{\vdash}} (q_f, baab, Z_0) \longrightarrow \text{leitura mal sucedida}$$

 \bigcirc $(q_0, baab, Z_0)$

EXEMPLO 4 - continuação

Recorde-se a lingugem do Exemplo 3: $L = \{u \mid u = xx', x \in \{a, b\}^*\}$ e o autómato de pilha $\mathcal{M} = (\{q_0, q_1, q_f\}, \{a, b, c\}, \{Z_0, a, b\}, \delta, q_0, Z_0, \{q_f\}),$ com

$$\begin{array}{l} \delta(q_0,a,Z_0) &= \{(q_0,aZ_0)\}\\ \delta(q_0,b,Z_0) &= \{(q_0,bZ_0)\}\\ \delta(q_0,a,b) &= \{(q_0,ba)\}\\ \delta(q_0,b,a) &= \{(q_0,ba)\}\\ \delta(q_0,b,a) &= \{(q_0,ba),(q_1,\varepsilon)\}\\ \delta(q_0,b,b) &= \{(q_0,bb),(q_1,\varepsilon)\}\\ \delta(q_1,a,a) &= \{(q_1,\varepsilon)\}\\ \delta(q_1,b,b) &= \{(q_1,\varepsilon)\}\\ \delta(q_1,b,b) &= \{(q_1,\varepsilon)\}\\ \delta(q_1,c,Z_0) &= \{(q_1,Z_0)\}\\ \delta(q_1,\varepsilon,Z_0) &= \{(q_1,Z_0)\}\\ \delta(q_1,\varepsilon,Z_0) &= \{(q_1,Z_0)\}\\ \delta(q_1,\varepsilon,Z_0) &= \{(q_1,Z_0)\}\\ \end{array} \end{array} \quad \text{transições para configuração final} \\ \delta(q,x,Y) &= \emptyset \quad \text{nos restantes casos}$$

•
$$(q_0, baab, Z_0) \stackrel{\vdash}{\underset{\mathcal{M}}{\vdash}} (q_1, baab, Z_0) \stackrel{\vdash}{\underset{\mathcal{M}}{\vdash}} (q_f, baab, Z_0) \longrightarrow \text{leitura mal sucedida}$$

Recorde-se a lingugem do Exemplo 3: $L = \{u \mid u = xx^I, x \in \{a, b\}^*\}$ e o autómato de pilha $\mathcal{M} = (\{q_0, q_1, q_f\}, \{a, b, c\}, \{Z_0, a, b\}, \delta, q_0, Z_0, \{q_f\}),$ com

$$\begin{array}{l} \delta(q_0,a,Z_0) &= \{(q_0,q_1,q_1\},\{a,b,c\},\{z_0,a,b\},s,q_0,z_0,\{q_1\}\},\text{ som} \\ \delta(q_0,a,Z_0) &= \{(q_0,bZ_0)\}\\ \delta(q_0,a,b) &= \{(q_0,ab)\}\\ \delta(q_0,b,a) &= \{(q_0,ba)\} \end{array} \right\} \quad \text{antes do centro da palavra} \\ \delta(q_0,b,a) &= \{(q_0,aa),(q_1,\varepsilon)\}\\ \delta(q_0,b,b) &= \{(q_0,bb),(q_1,\varepsilon)\} \\ \delta(q_1,a,a) &= \{(q_1,\varepsilon)\}\\ \delta(q_1,b,b) &= \{(q_1,\varepsilon)\} \\ \delta(q_1,b,b) &= \{(q_1,z_0)\}\\ \delta(q_1,\varepsilon,Z_0) &= \{(q_1,Z_0)\}\\ \delta(q_1,\varepsilon,Z_0) &= \{(q_1,Z_0)\} \\ \delta(q_1,\varepsilon,Z_0) &= \{(q_1,Z_0)\} \\ \delta(q_1,\varepsilon,Z_0) &= \{(q_1,z_0)\} \\ \end{array} \quad \text{transições para configuração final} \\ \delta(q,x,Y) &= \emptyset \quad \text{nos restantes casos} \end{array}$$

•
$$(q_0, baab, Z_0) \vdash_{\mathcal{M}} (q_1, baab, Z_0) \vdash_{\mathcal{M}} (q_f, baab, Z_0)$$
 \leadsto leitura mal sucedida

$$\qquad (q_0, baab, Z_0) \; \underset{\mathcal{M}}{\vdash} \; (q_0, aab, bZ_0) \; \underset{\mathcal{M}}{\vdash} \; (q_0, ab, abZ_0)$$

EXEMPLO 4 - continuação

Recorde-se a lingugem do Exemplo 3: $L = \{u \mid u = xx^I, x \in \{a, b\}^*\}$ e o autómato de pilha $\mathcal{M} = (\{q_0, q_1, q_f\}, \{a, b, c\}, \{Z_0, a, b\}, \delta, q_0, Z_0, \{q_f\}),$ com

$$\begin{array}{l} \delta(q_0,a,Z_0) &= \{(q_0,aZ_0)\}\\ \delta(q_0,b,Z_0) &= \{(q_0,bZ_0)\}\\ \delta(q_0,a,b) &= \{(q_0,ba)\}\\ \delta(q_0,b,a) &= \{(q_0,ba)\}\\ \delta(q_0,b,a) &= \{(q_0,aa),(q_1,\varepsilon)\}\\ \delta(q_0,b,b) &= \{(q_0,bb),(q_1,\varepsilon)\}\\ \delta(q_1,a,a) &= \{(q_1,\varepsilon)\}\\ \delta(q_1,b,b) &= \{(q_1,\varepsilon)\}\\ \delta(q_1,b,b) &= \{(q_1,\varepsilon)\}\\ \delta(q_1,c,Z_0) &= \{(q_1,Z_0)\}\\ \delta(q_1,\varepsilon,Z_0) &= \{(q_1,Z_0)\}\\ \delta(q_1,\varepsilon,Z_0) &= \{(q_1,Z_0)\}\\ \end{array} \end{array} \right. \\ \text{transições para configuração final} \\ \delta(q,x,Y) &= \emptyset \quad \text{nos restantes casos} \\ \end{array}$$

- → leitura mal sucedida
- $(q_0, baab, Z_0) \vdash_{M} (q_0, aab, bZ_0) \vdash_{M} (q_0, ab, abZ_0) \vdash_{M} (q_1, b, bZ_0)$

Recorde-se a lingugem do Exemplo 3: $L = \{u \mid u = xx^I, x \in \{a, b\}^*\}$ e o autómato de pilha $\mathcal{M} = (\{q_0, q_1, q_f\}, \{a, b, c\}, \{Z_0, a, b\}, \delta, q_0, Z_0, \{q_f\}),$ com

$$\begin{array}{l} \delta(q_0,a,Z_0) &= \{(q_0,q_1,q_1\},\{a,b,c\},\{z_0,a,b\},s,q_0,z_0,\{q_1\}\},\text{ som} \\ \delta(q_0,a,Z_0) &= \{(q_0,bZ_0)\}\\ \delta(q_0,a,b) &= \{(q_0,ab)\}\\ \delta(q_0,b,a) &= \{(q_0,ba)\} \end{array} \right\} \quad \text{antes do centro da palavra} \\ \delta(q_0,b,b) &= \{(q_0,ba)\} \quad \text{momento em que \'e possível} \\ \delta(q_0,b,b) &= \{(q_0,bb),(q_1,\varepsilon)\} \quad \text{que se esteja no centro} \\ \delta(q_1,a,a) &= \{(q_1,\varepsilon)\}\\ \delta(q_1,b,b) &= \{(q_1,\varepsilon)\} \quad \text{ap\'os encontrar o centro} \\ \delta(q_0,\varepsilon,Z_0) &= \{(q_1,Z_0)\}\\ \delta(q_1,\varepsilon,Z_0) &= \{(q_1,Z_0)\} \quad \text{transi\~c\~oes para configura\~c\~ao final} \\ \delta(q,x,Y) &= \emptyset \quad \text{nos restantes casos} \end{array}$$

•
$$(q_0, baab, Z_0) \vdash_{\mathcal{M}} (q_1, baab, Z_0) \vdash_{\mathcal{M}} (q_f, baab, Z_0) \longrightarrow \text{leitura mal sucedida}$$

$$(q_0, baab, Z_0) \vdash_{\mathcal{M}} (q_0, aab, bZ_0) \vdash_{\mathcal{M}} (q_0, ab, abZ_0) \vdash_{\mathcal{M}} (q_1, b, bZ_0) \\ \vdash_{\mathcal{M}} (q_1, \varepsilon, Z_0)$$

EXEMPLO 4 - continuação

Recorde-se a lingugem do Exemplo 3: $L = \{u \mid u = xx^I, x \in \{a, b\}^*\}$ e o autómato de pilha $\mathcal{M} = (\{q_0, q_1, q_f\}, \{a, b, c\}, \{Z_0, a, b\}, \delta, q_0, Z_0, \{q_f\}),$ com

$$\begin{array}{l} \delta(q_0,a,Z_0) &= \{(q_0,aZ_0)\}\\ \delta(q_0,b,Z_0) &= \{(q_0,bZ_0)\}\\ \delta(q_0,a,b) &= \{(q_0,ba)\}\\ \delta(q_0,b,a) &= \{(q_0,ba)\}\\ \delta(q_0,b,a) &= \{(q_0,aa),(q_1,\varepsilon)\}\\ \delta(q_0,b,b) &= \{(q_0,bb),(q_1,\varepsilon)\}\\ \delta(q_1,a,a) &= \{(q_1,\varepsilon)\}\\ \delta(q_1,b,b) &= \{(q_1,\varepsilon)\}\\ \delta(q_1,b,b) &= \{(q_1,\varepsilon)\}\\ \delta(q_1,c,Z_0) &= \{(q_1,Z_0)\}\\ \delta(q_1,\varepsilon,Z_0) &= \{(q_1,Z_0)\}\\ \delta(q_1,\varepsilon,Z_0) &= \{(q_1,Z_0)\}\\ \delta(q_1,\varepsilon,Z_0) &= \{(q_1,Z_0)\}\\ \end{array} \right. \\ \text{transições para configuração final} \\ \delta(q,x,Y) &= \emptyset \quad \text{nos restantes casos} \end{array}$$

- $(q_0, baab, Z_0) \vdash (q_1, baab, Z_0) \vdash (q_f, baab, Z_0) \longrightarrow \text{leitura mal sucedida}$
- $(q_0, baab, Z_0) \vdash_{M} (q_0, aab, bZ_0) \vdash_{M} (q_0, ab, abZ_0) \vdash_{M} (q_1, b, bZ_0)$ $\vdash_{\mathcal{M}} (q_1, \varepsilon, Z_0) \vdash_{\mathcal{M}} (q_f, \varepsilon, Z_0)$

EXEMPLO 4 - continuação

Recorde-se a lingugem do Exemplo 3: $L = \{u \mid u = xx^I, x \in \{a, b\}^*\}$ e o autómato de pilha $\mathcal{M} = (\{q_0, q_1, q_f\}, \{a, b, c\}, \{Z_0, a, b\}, \delta, q_0, Z_0, \{q_f\}),$ com

$$\begin{array}{l} \delta(q_0,a,Z_0) &= \{(q_0,aZ_0)\}\\ \delta(q_0,b,Z_0) &= \{(q_0,bZ_0)\}\\ \delta(q_0,a,b) &= \{(q_0,ba)\}\\ \delta(q_0,b,a) &= \{(q_0,ba)\}\\ \delta(q_0,b,a) &= \{(q_0,aa),(q_1,\varepsilon)\}\\ \delta(q_0,b,b) &= \{(q_0,bb),(q_1,\varepsilon)\}\\ \delta(q_1,a,a) &= \{(q_1,\varepsilon)\}\\ \delta(q_1,b,b) &= \{(q_1,\varepsilon)\}\\ \delta(q_1,b,b) &= \{(q_1,\varepsilon)\}\\ \delta(q_1,c,Z_0) &= \{(q_1,Z_0)\}\\ \delta(q_1,\varepsilon,Z_0) &= \{(q_1,Z_0)\}\\ \delta(q_1,\varepsilon,Z_0) &= \{(q_1,Z_0)\}\\ \delta(q_1,\varepsilon,Z_0) &= \{(q_1,Z_0)\}\\ \end{array} \right. \\ \text{transições para configuração final} \\ \delta(q,x,Y) &= \emptyset \quad \text{nos restantes casos} \end{array}$$

•
$$(q_0, baab, Z_0) \underset{\mathcal{M}}{\vdash} (q_1, baab, Z_0) \underset{\mathcal{M}}{\vdash} (q_f, baab, Z_0)$$
 \longrightarrow leitura mal sucedida

Recorde-se a lingugem do Exemplo 3: $L=\{u\mid u=xx^I,\ x\in\{a,b\}^*\}$ e o autómato de pilha $\mathcal{M}=(\{q_0,q_1,q_f\},\{a,b,c\},\{Z_0,a,b\},\delta,q_0,Z_0,\{q_f\})$, com

$$\begin{array}{l} \delta(q_0,a,Z_0) &= \{(q_0,aZ_0)\}\\ \delta(q_0,b,Z_0) &= \{(q_0,bZ_0)\}\\ \delta(q_0,a,b) &= \{(q_0,ba)\}\\ \delta(q_0,b,a) &= \{(q_0,ba)\}\\ \delta(q_0,b,a) &= \{(q_0,aa),(q_1,\varepsilon)\}\\ \delta(q_0,b,b) &= \{(q_0,bb),(q_1,\varepsilon)\}\\ \delta(q_1,a,a) &= \{(q_1,\varepsilon)\}\\ \delta(q_1,b,b) &= \{(q_1,\varepsilon)\}\\ \delta(q_1,b,b) &= \{(q_1,\varepsilon)\}\\ \delta(q_1,c,Z_0) &= \{(q_1,Z_0)\}\\ \delta(q_1,\varepsilon,Z_0) &= \{(q_1,Z_0)\}\\ \delta(q_1,\varepsilon,Z_0) &= \{(q_1,Z_0)\}\\ \delta(q_1,\varepsilon,Z_0) &= \{(q_1,Z_0)\}\\ \end{array} \right. \\ \text{transições para configuração final} \\ \delta(q,x,Y) &= \emptyset \quad \text{nos restantes casos} \end{array}$$

- $(q_0, baab, Z_0) \vdash_{\mathcal{M}} (q_1, baab, Z_0) \vdash_{\mathcal{M}} (q_f, baab, Z_0) \longrightarrow \text{leitura mal sucedida}$
- (q₀, baab, Z₀)

EXEMPLO 4 - continuação

Recorde-se a lingugem do Exemplo 3: $L = \{u \mid u = xx^I, x \in \{a, b\}^*\}$ e o autómato de pilha $\mathcal{M} = (\{q_0, q_1, q_f\}, \{a, b, c\}, \{Z_0, a, b\}, \delta, q_0, Z_0, \{q_f\}),$ com

$$\begin{array}{l} \delta(q_0,a,Z_0) &= \{(q_0,aZ_0)\}\\ \delta(q_0,b,Z_0) &= \{(q_0,bZ_0)\}\\ \delta(q_0,a,b) &= \{(q_0,ba)\}\\ \delta(q_0,b,a) &= \{(q_0,ba)\}\\ \delta(q_0,b,a) &= \{(q_0,aa),(q_1,\varepsilon)\}\\ \delta(q_0,b,b) &= \{(q_0,bb),(q_1,\varepsilon)\}\\ \delta(q_1,a,a) &= \{(q_1,\varepsilon)\}\\ \delta(q_1,b,b) &= \{(q_1,\varepsilon)\}\\ \delta(q_1,b,b) &= \{(q_1,\varepsilon)\}\\ \delta(q_1,c,Z_0) &= \{(q_1,Z_0)\}\\ \delta(q_1,\varepsilon,Z_0) &= \{(q_1,Z_0)\}\\ \delta(q_1,\varepsilon,Z_0) &= \{(q_1,Z_0)\}\\ \delta(q_1,\varepsilon,Z_0) &= \{(q_1,Z_0)\}\\ \end{array} \right. \\ \text{transições para configuração final} \\ \delta(q,x,Y) &= \emptyset \quad \text{nos restantes casos} \end{array}$$

- → leitura mal sucedida
- $(q_0, baab, Z_0) \vdash_{H} (q_0, aab, bZ_0) \vdash_{H} (q_0, ab, abZ_0) \vdash_{H} (q_1, b, bZ_0)$ → leitura bem sucedida $\vdash (q_1, \varepsilon, Z_0) \vdash (q_f, \varepsilon, Z_0)$
- $(q_0, baab, Z_0) \vdash_{\mathcal{M}} (q_0, aab, bZ_0)$

EXEMPLO 4 - continuação

Recorde-se a lingugem do Exemplo 3: $L = \{u \mid u = xx^I, x \in \{a, b\}^*\}$ e o autómato de pilha $\mathcal{M} = (\{q_0, q_1, q_f\}, \{a, b, c\}, \{Z_0, a, b\}, \delta, q_0, Z_0, \{q_f\}),$ com

$$\begin{array}{l} \delta(q_0,a,Z_0) &= \{(q_0,aZ_0)\}\\ \delta(q_0,b,Z_0) &= \{(q_0,bZ_0)\}\\ \delta(q_0,a,b) &= \{(q_0,ba)\}\\ \delta(q_0,b,a) &= \{(q_0,ba)\}\\ \delta(q_0,b,a) &= \{(q_0,aa),(q_1,\varepsilon)\}\\ \delta(q_0,b,b) &= \{(q_0,bb),(q_1,\varepsilon)\}\\ \delta(q_1,a,a) &= \{(q_1,\varepsilon)\}\\ \delta(q_1,b,b) &= \{(q_1,\varepsilon)\}\\ \delta(q_1,b,b) &= \{(q_1,\varepsilon)\}\\ \delta(q_1,c,Z_0) &= \{(q_1,Z_0)\}\\ \delta(q_1,\varepsilon,Z_0) &= \{(q_1,Z_0)\}\\ \delta(q_1,\varepsilon,Z_0) &= \{(q_1,Z_0)\}\\ \end{array} \end{array} \right. \\ \text{transições para configuração final} \\ \delta(q,x,Y) &= \emptyset \quad \text{nos restantes casos} \\ \end{array}$$

- → leitura mal sucedida
- $(q_0, baab, Z_0) \vdash_{M} (q_0, aab, bZ_0) \vdash_{M} (q_0, ab, abZ_0) \vdash_{M} (q_1, b, bZ_0)$ → leitura bem sucedida $\vdash_{\mathcal{M}} (q_1, \varepsilon, Z_0) \vdash_{\mathcal{M}} (q_f, \varepsilon, Z_0)$
- $(q_0, baab, Z_0) \vdash_{\mathcal{A}} (q_0, aab, bZ_0) \vdash_{\mathcal{A}} (q_0, ab, abZ_0)$

Recorde-se a lingugem do Exemplo 3: $L=\{u\mid u=xx^I,\ x\in\{a,b\}^*\}$ e o autómato de pilha $\mathcal{M}=(\{q_0,q_1,q_f\},\{a,b,c\},\{Z_0,a,b\},\delta,q_0,Z_0,\{q_f\})$, com

$$\begin{array}{l} \delta(q_0,a,Z_0) &= \{(q_0,aZ_0)\}\\ \delta(q_0,b,Z_0) &= \{(q_0,bZ_0)\}\\ \delta(q_0,a,b) &= \{(q_0,ba)\}\\ \delta(q_0,b,a) &= \{(q_0,ba)\}\\ \delta(q_0,b,a) &= \{(q_0,aa),(q_1,\varepsilon)\}\\ \delta(q_0,b,b) &= \{(q_0,bb),(q_1,\varepsilon)\}\\ \delta(q_1,a,a) &= \{(q_1,\varepsilon)\}\\ \delta(q_1,b,b) &= \{(q_1,\varepsilon)\}\\ \delta(q_1,b,b) &= \{(q_1,\varepsilon)\}\\ \delta(q_1,c,Z_0) &= \{(q_1,Z_0)\}\\ \delta(q_1,\varepsilon,Z_0) &= \{(q_1,Z_0)\}\\ \delta(q_1,\varepsilon,Z_0) &= \{(q_1,Z_0)\}\\ \end{array} \end{array} \right. \\ \text{transições para configuração final} \\ \delta(q,x,Y) &= \emptyset \quad \text{nos restantes casos} \\ \end{array}$$

- $(q_0, baab, Z_0) \vdash_{\mathcal{M}} (q_1, baab, Z_0) \vdash_{\mathcal{M}} (q_f, baab, Z_0)$ \leadsto leitura mal sucedida
- $\qquad (q_0, baab, Z_0) \; \underset{\mathcal{M}}{\vdash} \; (q_0, aab, bZ_0) \; \underset{\mathcal{M}}{\vdash} \; (q_0, ab, abZ_0) \; \underset{\mathcal{M}}{\vdash} \; (q_0, b, aabZ_0)$

EXEMPLO 4 - continuação

Recorde-se a lingugem do Exemplo 3: $L = \{u \mid u = xx^{I}, x \in \{a, b\}^{*}\}$ e o autómato de pilha $\mathcal{M} = (\{q_0, q_1, q_f\}, \{a, b, c\}, \{Z_0, a, b\}, \delta, q_0, Z_0, \{q_f\}),$ com

$$\begin{array}{l} \delta(q_0,a,Z_0) &= \{(q_0,aZ_0)\}\\ \delta(q_0,b,Z_0) &= \{(q_0,bZ_0)\}\\ \delta(q_0,a,b) &= \{(q_0,ba)\}\\ \delta(q_0,b,a) &= \{(q_0,ba)\}\\ \delta(q_0,b,b) &= \{(q_0,bb),(q_1,\varepsilon)\}\\ \delta(q_0,b,b) &= \{(q_0,bb),(q_1,\varepsilon)\}\\ \delta(q_1,a,a) &= \{(q_1,\varepsilon)\}\\ \delta(q_1,b,b) &= \{(q_1,\varepsilon)\}\\ \delta(q_1,c,Z_0) &= \{(q_1,Z_0)\}\\ \end{array} \right\} \quad \text{antes do centro da palavra}$$

 $\delta(q, x, Y) = \emptyset$ nos restantes casos

•
$$(q_0, baab, Z_0) \vdash_{\mathcal{M}} (q_1, baab, Z_0) \vdash_{\mathcal{M}} (q_f, baab, Z_0)$$
 \leadsto leitura mal sucedida

$$(q_0, baab, Z_0) \vdash_{\mathcal{M}} (q_0, aab, bZ_0) \vdash_{\mathcal{M}} (q_0, ab, abZ_0) \vdash_{\mathcal{M}} (q_0, b, aabZ_0) \\ \vdash_{\mathcal{M}} (q_0, \varepsilon, baabZ_0) \qquad \qquad \qquad \vdash_{\mathbb{M}} \text{ leitura mal sucedida } \underline{\quad} \underline{\quad}$$

EXEMPLO 4 - continuação

Recorde-se a lingugem do Exemplo 3: $L = \{u \mid u = xx^{I}, x \in \{a, b\}^{*}\}$ e o autómato de pilha $\mathcal{M} = (\{q_0, q_1, q_f\}, \{a, b, c\}, \{Z_0, a, b\}, \delta, q_0, Z_0, \{q_f\}),$ com

$$\begin{array}{l} \delta(q_0,a,Z_0) &= \{(q_0,aZ_0)\}\\ \delta(q_0,b,Z_0) &= \{(q_0,bZ_0)\}\\ \delta(q_0,a,b) &= \{(q_0,ba)\}\\ \delta(q_0,b,a) &= \{(q_0,ba)\}\\ \delta(q_0,b,b) &= \{(q_0,bb),(q_1,\varepsilon)\}\\ \delta(q_0,b,b) &= \{(q_0,bb),(q_1,\varepsilon)\}\\ \delta(q_1,a,a) &= \{(q_1,\varepsilon)\}\\ \delta(q_1,b,b) &= \{(q_1,\varepsilon)\}\\ \delta(q_1,c,Z_0) &= \{(q_1,Z_0)\}\\ \end{array} \right\} \quad \text{antes do centro da palavra}$$

 $\delta(q, x, Y) = \emptyset$ nos restantes casos

•
$$(q_0, baab, Z_0) \vdash_{\mathcal{M}} (q_1, baab, Z_0) \vdash_{\mathcal{M}} (q_f, baab, Z_0)$$
 \leadsto leitura mal sucedida

$$(q_0, baab, Z_0) \vdash_{\mathcal{M}} (q_0, aab, bZ_0) \vdash_{\mathcal{M}} (q_0, ab, abZ_0) \vdash_{\mathcal{M}} (q_0, b, aabZ_0) \\ \vdash_{\mathcal{M}} (q_0, \varepsilon, baabZ_0) \qquad \qquad \qquad \vdash_{\mathbb{M}} \text{ leitura mal sucedida } \underline{\quad} \underline{\quad}$$

Por linguagem reconhecida por um autómato de pilha entende-se o conjunto de todas as palavras que sendo colocadas na fita de leitura são lidas pelo autómato com sucesso.

Por linguagem reconhecida por um autómato de pilha entende-se o conjunto de todas as palavras que sendo colocadas na fita de leitura são lidas pelo autómato com sucesso.

Definição

Dois autómatos de pilha dizem-se equivalentes se reconhecem a mesma linguagem.

Por linguagem reconhecida por um autómato de pilha entende-se o conjunto de todas as palavras que sendo colocadas na fita de leitura são lidas pelo autómato com sucesso.

Definição

Dois autómatos de pilha dizem-se equivalentes se reconhecem a mesma linguagem.

O que significa 'lidas pelo autómato com sucesso'?

Por linguagem reconhecida por um autómato de pilha entende-se o conjunto de todas as palavras que sendo colocadas na fita de leitura são lidas pelo autómato com sucesso.

Definicão

Dois autómatos de pilha dizem-se equivalentes se reconhecem a mesma linguagem.

O que significa 'lidas pelo autómato com sucesso'?

Nos exemplos anteriores, quais as configurações em que se considerou que a leitura terminou com sucesso?

Por linguagem reconhecida por um autómato de pilha entende-se o conjunto de todas as palavras que sendo colocadas na fita de leitura são lidas pelo autómato com sucesso.

Definicão

Dois autómatos de pilha dizem-se equivalentes se reconhecem a mesma linguagem.

O que significa 'lidas pelo autómato com sucesso'?

Nos exemplos anteriores, quais as configurações em que se considerou que a leitura terminou com sucesso?

No final, em que estado se encontrava o autómato?

Por linguagem reconhecida por um autómato de pilha entende-se o conjunto de todas as palavras que sendo colocadas na fita de leitura são lidas pelo autómato com sucesso.

Definicão

Dois autómatos de pilha dizem-se equivalentes se reconhecem a mesma linguagem.

O que significa 'lidas pelo autómato com sucesso'?

Nos exemplos anteriores, quais as configurações em que se considerou que a leitura terminou com sucesso?

No final, em que estado se encontrava o autómato?

Em que posição se encontrava a cabeça de leitura?

Por linguagem reconhecida por um autómato de pilha entende-se o conjunto de todas as palavras que sendo colocadas na fita de leitura são lidas pelo autómato com sucesso.

Definicão

Dois autómatos de pilha dizem-se equivalentes se reconhecem a mesma linguagem.

O que significa 'lidas pelo autómato com sucesso'?

Nos exemplos anteriores, quais as configurações em que se considerou que a leitura terminou com sucesso?

No final, em que estado se encontrava o autómato?

Em que posição se encontrava a cabeça de leitura?

Qual era o conteúdo da pilha?

Por linguagem reconhecida por um autómato de pilha entende-se o conjunto de todas as palavras que sendo colocadas na fita de leitura são lidas pelo autómato com sucesso.

Definicão

Dois autómatos de pilha dizem-se equivalentes se reconhecem a mesma linguagem.

O que significa 'lidas pelo autómato com sucesso'?

Nos exemplos anteriores, quais as configurações em que se considerou que a leitura terminou com sucesso?

No final, em que estado se encontrava o autómato?

Em que posição se encontrava a cabeça de leitura?

Qual era o conteúdo da pilha?

