PGT/JP95/01983 6

23.10.95

The Patent Office Cardiff Road Newport Gwent

NP9 1RH

08/809723

REC'D	0 6 NOV 1995
WIPO	PCT

I, the undersigned, being an officer duly authorised in accordance with Section 62(3) of the Patents and Designs Act 1907, to sign and issue certificates on behalf of the Comptroller-General, hereby certify that annexed hereto is a true copy of the documents as originally filed in connection with the patent application identified therein.

In accordance with the Patents (Companies Re-registration) Rules 1982, if a company named in this certificate and any accompanying documents has re-registered under the Companies Act 1980 with the same name as that with which it was registered immediately before re-registration save for the substitution as, or inclusion as, the last part of the name of the words "public limited company" or their equivalents in Welsh, references to the name of the company in this certificate and any accompanying documents shall be treated as references to the name with which it is so re-registered.

In accordance with the rules, the words "public limited company" may be replaced by p.l.c., plc, P.L.C. or PLC.

Re-registration under the Companies Act does not constitute a new legal entity but merely subjects the company to certain additional company law rules.

PRICHTY DOCUMENT

Signed

Dated

₽8 OCT 1995

W. Presill

An Executive Agency of the Department of Trade and Industry

01MAY95 E123324-7 000035... F01/7700 25.00

You reference RJG/JLB/177

28 APR 1995

Form 1/77

9508745.8

Notes

£25

Please type, or write in dark ink using CAPITAL letters. A prescribed fee is payable for a request for grant of a patent. For details, please contact the Patent Office (telephone 071–438 4700)

Rule 16 of the Patents Rules 1990 is the main rule governing the completion and filing of this form

Do not give trading styles, for example, 'Trading as XYZ company', nationality or former names, for example, 'formerly (known as) ABC Ltd' as these are not required

Warning

After an application for a Patent has been filed, the Comptroller of the Patent Office will consider whether publication or communication of the invention should be prohibited or restricted under Section 22 of the Patents Act 1977 and will inform the applicant if such prohibition or restriction is necessary. Applicants resident in the United Kingdom are also reminded that under Section 23, applications may not be filed abroad without written permission unless an application has been filed not less than 6 weeks previously in the United Kingdom for a patent for the same invention and either no direction prohibiting publication or communication has been given, or any such direction revoked.

Patent Office Request for grant of a Patent

Patents Act 1977

O Title of invention

1 Please give the title of the invention

NEW COMPOUND

Applicant's details

- ☐ First or only applicant
- 2a If you are applying as a corporate body please give:

 Corporate name FUJISAWA PHARMACEUTICAL CO LTD

Country (and State of incorporation, if JAPAN appropriate)

2b. If you are applying as an individual or one of a partnership please give in full

Surname

Forenames

2c In all cases, please give the following details:

Address 4-7 DOSHOMACHI 3-CHOME CHUO-KU, OSAKA-SHI OSAKA 541, JAPAN

UK postcode (if applicable)

Country JAPAN

ADP number

(if known)

•	
	☐ Se d applicant (if any)
2d, 2e and 2f: If there are further	2d If you are applying as a corporate body please give:
npplicants please provide details on a separate sheet of paper	Corporate name
Soprima shoot or paper.	
	Country (and State
	of incorporation, if
	appropriate)
	2e If you are applying as an individual or one of a partnership please give in full:
	Surname
•	Forenames
	2f In all cases, please give the following details:
	Address
,	UK postcode (if applicable)
	Country
	ADP number (if known)
An address for service in the	Address for service details
United Kingdom must be supplied	3a Have you appointed an agent to deal with your application?
Please mark correct box	Yes X No po to 3b
	please give details below
	Agent's name STEVENS, HEWLETT & PERKINS
	Agent's address 1 SERJEANTS' INN
	LEEL SIKEEL
	LONDON
	Postcode EC4Y 1LL
	Agent's ADP 1545003
	number
36: If you have appointed an agent, all	3b. If you have not appointed an agent please give a name and address in the
correspondence concerning your application will be sent to the agent's	United kingdom to which all correspondence will be sent:
United kingdom address	Name
	Address
	Daytime telephone
	Postcode number (if available)

ADP number

Г	O erence number			
	4 Agent's or applicant's reference number (if applicable)	RJG/JLB/177	•	
<i>(</i>	6 Claiming an earlier application date			
	5 Are you claiming that this application be treated as having been filed on the date of filing of an earlier application?			
Please mark correct box	Yes No X → go to 8 please give details below			
·	number of earlier application or patent number			
	(_) filing date	iday month seal	·	
	☐ and the Section of the	Patents Act 1977 under wh	ich you are claiming	
Please mark correct box	15(4) (Divisional) 8(3) 12(6) 37(4)			
If you are declaring priority from a PCT Application please enter 'PCT' as the country and enter the country	Declaration of priority If you are declaring priority from previous application(s), please give:			
code (for example, GB) as part of the application number.	Country of filing	Priority application number	Filing date (day, month, year)	
Ple: give the date in all number format, for example, 31/05/90 for 31 May 1990				
-			• •	

pplicant is a corporate body.	Please mark correct box A Statement of Inventorship on Patents	
ppilodin is a corporato body.	Yes No X A Statement of Inventorship on Patents No X Form 7/77 will need to be filed (see Rule 15).	
Please supply duplicates of	∩ W	
(s), abstract, description and drawing(s).	8a Please fill in the number of sheets for each of the following types of document contained in this application.	
	Continuation sheets for this Patents Form 1/77	
	Claim(s) 20 Description 89	
,	Abstract Drawing(s)	
	8b Which of the following documents also accompanies the application?	
	Priority documents (please state how many)	
•	Translation(s) of Priority documents (please state how many)	
•	Patents Form 7/77 - Statement of Inventorship and Right to Grant (please state how many)	
Please mark correct box(es	Patents Form 9/77 - Preliminary Examination/Search	
	Patents Form 10/77 - Request for Substantive Examination	
or your appointed agent (see 00 of the Patents Rules 1990	·	
must sign this request	I/We request the grant of a patent on the basis of this application.	
	Stevens, Hewill o berlins	
Please sign here	Signed Date 28 04 95	
	AGENTS FOR THE APPLICANT	
A completed fee sheet should referably accompany the fee		
	☐ The Comptroller or ☐ The Comptroller	
	The Patent Office The Patent Office	
	Cardiff Road 25 Southampton Buildings Newport London	
	Gwent WC2A 1AY	
	NP9 1RH	

NEW COMPOUND

The present invention relates to new polypeptide compound and a pharmaceutically acceptable salt thereof.

5

10

15

More particularly, it relates to new polypeptide compound and a pharmaceutically acceptable salt thereof, which have antimicrobial activities (especially, antifungal activities), inhibitory activity on β -1,3-glucan synthase, and further which are expected to be useful for the prophylactic and/or therapeutic treatment of Pneumocystis carinii infection (e.g. Pneumocystis carinii pneumonia) in a human being or an animal, to a process for preparation thereof, to a pharmaceutical composition comprising the same, and to a method for the prophylactic and/or therapeutic treatment of infectious diseases including Pneumocystis carinii infection (e.g. Pneumocystis carinii pneumonia) in a human being or an animal.

Accordingly, one object of the present invention is to provide new polypeptide compound and a pharmaceutically acceptable salt thereof, which are highly active against a

- 2 number of pathogenic microorganisms and further which are expected to be useful for the prophylactic and/or therapeutic treatment of Pneumocystis carinii infection (e.g. Pneumocystis carinii pneumonia) in a human being or 5 an animal. Another object of the present invention is to provide a process for the preparation of new polypeptide compound and a salt thereof. A further object of the present invention is to provide a pharmaceutical composition comprising, as an 10 active ingredient, said new polypeptide compound or a pharmaceutically acceptable salt thereof. Still further object of the present invention is to provide a method for the prophylactic and/or therapeutic treatment of infectious diseases including Pneumocystis 15 carinii infection (e.g. Pneumocystis carinii pneumonia) caused by pathogenic microorganisms, which comprises administering said new polypeptide compound or a pharmaceutically acceptable salt thereof to a human being 20 or an animal. An additional object of the present invention is to provide a use of said new polypeptide compound and a pharmaceutically acceptable salt thereof for the manufacture of a medicament for the prophylactic and/or therapeutic treatment of above-mentioned diseases in a 25 human being or an animal. A still additional object of the present invention is to provide a use of said new polypeptide compound and a pharmaceutically acceptable salt thereof for the prophylactic and/or therapeutic treatment of above-30 mentioned diseases in a human being or an animal. The object polypeptide compound used in the present invention are new and can be represented by the following 35 general formula [I] :

- 3 -

$$H_3$$
C
 H_3 C
 H_2
 H_0
 H_0
 H_1
 H_2
 H_1
 H_2
 H_1
 H_2
 H_3
 H_4
 H_4
 H_5
 H_5
 H_5
 H_6
 H_7
 H_8
 H_9
 H_1
 H_1
 H_2
 H_1
 H_2
 H_3
 H_4
 H_5
 H_5
 H_6
 H_7
 H_8
 H_9
 H_1
 H_1
 H_2
 H_1
 H_1
 H_2
 H_3
 H_1
 H_2
 H_3
 H_1
 H_2
 H_1
 H_2
 H_3
 H_1
 H_3
 H_1
 H_2
 H_3
 H_1
 H_2
 H_3
 H_3
 H_4
 H_1
 H_2
 H_3
 H_4
 $H_$

wherein R¹ is lower alkanoyl substituted with unsaturated 6-membered heteromonocyclic group containing at least one nitrogen atom which may have one or more suitable substituent(s);

lower alkanoyl substituted with 1,2,3,4tetrahydroisoquinoline which may have one or more suitable substituent(s);

lower alkanoyl substituted with unsaturated condensed heterocyclic group containing at least one oxygen atom which may have one or more suitable substituent(s);

lower alkanoyl substituted with unsaturated condensed heterocyclic group containing 1 to 3 sulfur atom(s) which may have one or more suitable substituent(s);

lower alkanoyl substituted with unsaturated condensed heterocyclic group containing 2 or more nitrogen atom(s) which may have one or more suitable substituent(s);

5

10

15

20

25

30

	3 to 8 membered heteromonocyclic group
÷	containing at least one nitrogen atom which
	may have one or more suitable
	<pre>substituent(s);</pre>
5	ar(lower)alkenoyl substituted with aryl
	which may have one or more suitable
	substituent(s);
	naphthyl(lower)alkenoyl which may have one
	or more higher alkoxy;
10	lower alkynoyl which may have one or more
	suitable substituent(s);
	(C_2-C_6) alkanoyl substituted with naphthyl
	having higher alkoxy;
	$ar(C_2-C_6)$ alkanoyl substituted with aryl
15	having one or more suitable substituent(s);
	aroyl substituted with heterocyclic group
	which may have one or more suitable
	<pre>substituent(s);</pre>
	aroyl substituted with aryl having
20	heterocyclic(higher)alkoxy;
	aroyl substituted with aryl having lower
	<pre>alkoxy(higher)alkoxy;</pre>
	aroyl substituted with aryl having lower
	<pre>alkenyl(lower)alkoxy;</pre>
25	aroyl substituted with 2 lower alkoxy;
	aroyl substituted with aryl having lower
	alkyl;
	aroyl substituted with aryl having higher
	alkyl;
30	aryloxy(lower)alkanoyl which may have one
	or more suitable substituent(s);
	ar(lower)alkoxy(lower)alkanoyl which may
	have one or more suitable substituent(s); o
	arylamino(lower)alkanoyl which may have
35	one or more suitable substituent(s).

one or more suitable substituent(s).

The new polypeptide compound [I] and a pharmaceutically acceptable salt thereof can be prepared by the process as illustrated in the following reaction scheme.

Process 1

10

5

15

20

25

or its reactive derivative at the amino group or a salt thereof

R¹-OH [III]

or its reactive derivative at the carboxy group or a salt thereof

HO O NH NH-R¹
HO O HN OH
HO OH
HO

or a salt thereof

- 6

wherein R^1 is as defined above.

25

30

35

Suitable pharmaceutically acceptable salts of the object polypeptide compound [I] are conventional non-toxic 5 salts and may include a salt with a base or an acid addition salt such as a salt with an inorganic base, for example, an alkali metal salt (e.g., sodium salt, potassium salt, etc.), an alkaline earth metal salt (e.g., calcium salt, magnesium salt, etc.), an ammonium salt; 10 a salt with an organic base, for example, an organic amine salt (e.g., triethylamine salt, pyridine salt, picoline salt, ethanolamine salt, triethanolamine salt, dicyclohexylamine salt, N, N'-dibenzylethylenediamine salt, etc.); an inorganic acid addition salt (e.g., 15 hydrochloride, hydrobromide, sulfate, phosphate, etc.); an organic carboxylic sulfonic acid addition salt (e.g., formate, acetate, trifluoroacetate, maleate, tartrate, fumarate, methanesulfonate, benzenesulfonate, toluenesulfonate, etc.); a salt with a basic or acidic 20 amino acid (e.g., arginine, aspartic acid, glutamic acid, etc.).

In the above and subsequent descriptions of the present specification, suitable examples and illustration of the various definitions which the present invention intends to include within the scope thereof are explained in detail as follows.

The term "lower" is used to intend a group having 1 to 6 carbon atom(s), unless otherwise provided.

The term "higher" is used to intend a group having 7 to 20 carbon atoms, unless otherwise provided.

Suitable example of "one or more" may be the number of 1 to 6, in which the preferred one may be the number of 1 to 3.

Suitable example of "lower alkanoyl" may include

straight or branched one such as formyl, acetyl, 2-methylacetyl, 2,2-dimethylacetyl, propionyl, butyryl, isobutyryl, pentanoyl, 2,2-dimethylpropionyl, hexanoyl, and the like.

Suitable example of "suitable substituent(s)" in the groups such as "lower alkanoyl substituted with unsaturated 6-membered heteromonocyclic group containing at least one nitrogen atom which may have one or more suitable substituent(s)", "lower alkanoyl substituted with 1,2,3,4-tetrahydroisoquinoline which may have one or more suitable substituent(s)", etc. may include lower alkoxy as mentioned below, higher alkoxy as mentioned below, lower alkyl as mentioned below, higher alkyl as mentioned below, higher alkoxy(lower)alkyl, lower alkoxycarbonyl, oxo, aryl which may have one or more lower alkoxy, aryl which may have one or more higher alkoxy, aryl which may have one or more lower alkyl, aryl which may have one or more higher alkyl, aryl substituted with aryl which may have one or more lower alkoxy, aryl substituted with aryl which may have one or more higher alkoxy, aryl substituted with aryl which may have one or more lower alkyl, aryl substituted with aryl which may have one or more higher alkyl, aroyl which may have one or more lower alkoxy, aroyl which may have one or more higher alkoxy, aroyl which may have one or more lower alkyl, aroyl which may have one or more higher alkyl, heterocyclic group which may have one or more lower alkoxy, heterocyclic group which may have one or more higher alkoxy, aryl having heterocyclic(higher)alkoxy, and the like.

Suitable example of "lower alkoxy" may include straight or branched one such as methoxy, ethoxy, propoxy, isopropoxy, butoxy, isobutoxy, tert-butoxy, pentyloxy, tert-pentyloxy, neo-pentyloxy, hexyloxy, and the like, in which the preferred one may be (C₃-C₆) alkoxy, and more preferred one may be butoxy, pentyloxy, and hexyloxy.

35

5

10

15

20

25

- 8 -Suitable example of "higher alkoxy" may include straight or branched one such as heptyloxy, octyloxy, 3,5-dimethyloctyloxy, 3,7-dimethyloctyloxy, nonyloxy, decyloxy, undecyloxy, dodecyloxy, tridecyloxy, tetradecyloxy, hexadecyloxy, heptadecyloxy, octadecyloxy, 5 nonadecyloxy, icosyloxy, and the like, in which the preferred one may be (C_7-C_{14}) alkoxy, and the more preferred one may be heptyloxy and octyloxy. Suitable example of "lower alkyl" may include straight or branched one having 1 to 6 carbon atom(s), 10 such as methyl, ethyl, propyl, isopropyl, butyl, isobutyl, sec-butyl, tert-butyl, pentyl, tert-pentyl, neo-pentyl, hexyl, and the like, in which the preferred one may be methyl, pentyl and hexyl. 15 Suitable example of "higher alkyl" may include straight or branched one having 7 to 20 carbon atoms, such as heptyl, octyl, 3,5-dimethyloctyl, 3,7-dimethyloctyl, nonyl, decyl, undecyl, dodecyl, tridecyl, tetradecyl, pentadecyl, hexadecyl, heptadecyl, octadecyl, nonadecyl, 20 icosyl, and the like, in which the preferred one may be (C7-C14) alkyl, and the more preferred one may be heptyl, octyl and nonyl. Suitable example of "aryl" and "ar" moiety may include phenyl which may have lower alkyl (e.g., phenyl, 25 mesityl, tolyl, etc.), naphthyl, anthryl, and the like, in which the preferred one may be phenyl and naphthyl. Suitable example of "aroyl" may include benzoyl, toluoyl, naphthoyl, anthrylcarbonyl, and the like, in which the preferred one may be benzoyl and naphthoyl. 30 Suitable example of "lower alkanoyl" in the term of "lower alkanoyl substituted with unsaturated 6-membered heteromonocyclic group containing at least one nitrogen atom which may have one or more suitable substituent(s)" 35

can be referred to aforementioned "lower alkanoyl", in which the preferred one may be (C_1-C_4) alkanoyl, and the more preferred one may be formyl.

Suitable example of "unsaturated 6-membered heteromonocyclic group containing at least one nitrogen atom" in the term of "lower alkanoyl substituted with unsaturated 6-membered heteromonocyclic group containing at least one nitrogen atom which may have one or more suitable substituent(s)" may include pyridyl,

dihydropyridyl, pyrimidyl, pyrazinyl, pyridazinyl, triazinyl (e.g., 4H-1,2,4-triazinyl, 1H-1,2,3-triazinyl, etc.), tetrazinyl (e.g., 1,2,4,5-tetrazinyl, 1,2,3,4-tetrazinyl, etc.), and the like,

15

20

25

30

35

in which the preferred one may be unsaturated 6-membered heteromonocyclic group containing 1 to 3 nitrogen atom(s), and the most preferred one may be pyridyl.

Suitable example of "suitable substituent(s)" in the term of "lower alkanoyl substituted with unsaturated 6-membered heteromonocyclic groups containing at least one nitrogen atom which may have one or more suitable substituent(s)" can be referred to aforementioned "suitable substituent(s)",

in which the preferred one may be higher alkoxy and higher alkoxy(lower)alkyl, and the more preferred one may be (C_7-C_{14}) alkoxy and (C_7-C_{14}) alkoxy(C_1-C_4)alkyl, and the most preferred one may be octyloxy and octyloxymethyl.

Suitable example of "lower alkanoyl" in the term of "lower alkanoyl substituted with 1,2,3,4-tetra-hydroisoquinoline which may have one or more suitable substituent(s)" can be referred to aforementioned "lower alkanoyl",

in which the preferred one may be (C_1-C_4) -alkanoyl, and the more preferred one may be formyl.

Suitable example of "suitable substituent(s)" in the

- 10 term of "lower alkanoyl substituted with 1,2,3,4tetrahydroisoguinoline which may have one or more suitable substituent(s)" can be referred to aforementioned "suitable substituent(s)", in which the preferred one may be lower alkoxy, higher 5 alkoxy, lower alkyl, higher alkyl and lower alkoxycarbonyl, and the more preferred one may be (C7- C_{14}) alkoxy and (C_1-C_4) alkoxycarbonyl, and the most preferred one may be octyloxy and tert-butoxycarbonyl. Suitable example of "lower alkanoyl" in the term of 10 "lower alkanoyl substituted with unsaturated condensed heterocyclic group containing at least one oxygen atom which may have one or more suitable substituent(s)" can be referred to aforementioned "lower alkanoyl", in which the preferred one may be (C_1-C_4) alkanoyl, and 15 the more preferred one may be formyl. Suitable example of "unsaturated condensed heterocyclic group containing at least one oxygen atom" in the term of "lower alkanoyl substituted with unsaturated condensed heterocyclic group containing at least one 20 oxygen atom which may have one or more suitable substituent(s) " may include unsaturated condensed heterocyclic group containing one or more oxygen atom(s) and, optionally, another hetero atom(s) except oxygen 25 atom. in which the preferred one may be unsaturated condensed heterocyclic group containing 1 to 3 oxygen atom(s), unsaturated condensed heterocyclic group containing 1 to 2 oxygen atom(s) and 1 to 2 sulfur atom(s) and unsaturated 30 condensed heterocyclic group 1 to 3 oxygen atom(s) and 1 to 3 nitrogen atom(s), and the more preferred one may be benzo[b] furanyl, isobenzofuranyl, chromenyl, xanthenyl, benzoxazolyl, benzoxadiazolyl, dihydrooxathiinyl, phenoxathiinyl, and the like, and the most preferred one 35 may be benzo[b] furanyl, chromenyl and benzoxazolyl.

- 11 -Suitable example of "suitable substituent(s)" in the term of "lower alkanoyl substituted with unsaturated condensed heterocyclic group containing at least one oxygen atom which may have one or more suitable 5 substituent(s)" can be referred to aforementioned "suitable substituent(s)", in which the preferred one may be lower alkoxy, higher alkoxy, lower alkyl, higher alkyl and oxo, and the more preferred one may be (C_7-C_{14}) alkoxy, (C_1-C_4) alkyl, (C_7-C_1) 10 C₁₄)alkyl and oxo, and the most preferred one may be octyloxy, methyl, nonyl, and oxo. Suitable example of "lower alkanoyl" in the term of "lower alkanoyl substituted with unsaturated condensed heterocyclic group containing 1 to 3 sulfur atom(s) which 15 may have one or more suitable substituent(s) " can be referred to aforementioned "lower alkanoyl", in which the preferred one may be (C_1-C_4) alkanoyl, and the more preferred one may be formyl. Suitable example of "unsaturated condensed heterocyclic group containing 1 to 3 sulfur atom(s)" in 20 the term of "lower alkanoyl substituted with unsaturated condensed heterocyclic group containing 1 to 3 sulfur atom(s) which may have one or more suitable substituent(s) " may include unsaturated condensed 25 heterocyclic group containing only 1 to 3 sulfur atom(s), in which the preferred one may be benzothienyl and benzodithiinyl, and the most preferred one may be benzothienyl. Suitable example of "suitable substituent(s)" in the 30 term of "lower alkanoyl substituted with unsaturated condensed heterocyclic group containing 1 to 3 sulfur atom(s) which may have one or more suitable substituent(s)" can be referred to aforementioned "suitable substituent(s)", 35 in which the preferred one may be lower alkoxy, higher

alkoxy, lower alkyl and higher alkyl, and more preferred one may be (C₇-C₁₄)alkoxy, and the most preferred one may be octyloxy.

Suitable example of "lower alkanoyl" in the term of "lower alkanoyl substituted with unsaturated condensed heterocyclic group containing 2 or more nitrogen atom(s) which may have one or more suitable substituent(s)" can be

in which the preferred one may be (C_1-C_4) alkanoyl, and the most preferred one may be formyl.

referred to aforementioned "lower alkanoyl",

10

15

30

35

Suitable example of "unsaturated condensed heterocyclic group containing 2 or more nitrogen atom(s)" in the term of "lower alkanoyl substituted with unsaturated condensed heterocyclic group containing 2 or more nitrogen atom(s) which may have one or more suitable substituent(s)" may include 1H-indazolyl, purinyl, phthalazinyl, benzoimidazolyl, naphthyridinyl, quinoxalinyl, quinazolyl, cinnolinyl, peteridinyl, and the like,

in which the most preferred one may be benzoimidazolyl.

Suitable example of "suitable substituent(s)" in the term of "lower alkanoyl substituted with unsaturated condensed heterocyclic group containing 2 or more nitrogen atom(s) which may have one or more suitable substituent(s)" can be referred to aforementioned "suitable substituent(s)",

in which the preferred one may be lower alkoxy, higher alkoxy, lower alkyl, higher alkyl, aryl which may have one or more lower alkoxy and aryl which may have one or more higher alkoxy, and the more preferred one may be (C_7-C_{14}) alkyl and phenyl which may have 1 to 3 (C_1-C_6) alkoxy, and the most preferred one may be nonyl and phenyl which may have 1 to 3 hexyloxy.

Suitable example of "lower alkanoyl" in the term of "lower alkanoyl substituted with saturated 3 to 8-membered

heteromonocyclic group containing at least one nitrogen atom which may have one or more suitable substituent(s)" can be referred to aforementioned "lower alkanoyl", in which the preferred one may be (C_1-C_4) alkanoyl, and the more preferred one may be formyl.

Suitable example of "saturated 3 to 8-membered heteromonocyclic group containing at least one nitrogen atom" in the term of "lower alkanoyl substituted with saturated 3 to 8-membered heteromonocyclic group containing at least one nitrogen atom which may have one or more suitable substituent(s)" may include pyrrolidinyl, imidazolidinyl, piperidyl, piperazinyl, pyrazolidinyl, morpholinyl, thiomorpholinyl, and the like, in which the preferred one may be piperidyl and piperazinyl.

Suitable example of "suitable substituent(s)" in the term of "lower alkanoyl substituted with saturated 3 to 8membered heteromonocyclic group containing at least one nitrogen atom which may have one or more suitable 20 substituent(s)" may include lower alkoxy, higher alkoxy, higher alkoxy(lower)alkyl, lower alkyl, higher alkyl, oxo, aryl which may have one or more lower alkoxy, aryl which may have one or more higher alkoxy, aryl which may have one or more lower alkyl, 25 aryl which may have one or more higher alkyl, aroyl which may have one or more lower alkoxy, aroyl which may have one or more higher alkoxy, aroyl which may have one or more lower alkyl, aroyl which may have one or more higher alkyl, 30 and the like,

in which the preferred one may be aryl which may have one or more lower alkoxy, aryl which may have one or more higher alkoxy, aroyl which may have one or more lower alkoxy and aroyl which may have one or more higher alkoxy, and the

35

5

10

more preferred one may be aryl which may have 1 to 3 higher alkoxy and aroyl which may have 1 to 3 higher alkoxy, and the much more preferred one may be phenyl which may have 1 to 3 (C_7-C_{14}) alkoxy and naphthoyl which may have 1 to 3 (C_7-C_{14}) alkoxy, and the most preferred one may be phenyl which may have 1 to 3 octyloxy and naphthoyl which may have 1 to 3 heptyloxy.

5

25

30

35

Suitable example of "ar(lower)alkenoyl" in the term of "ar(lower)alkenoyl substituted with aryl which may have 10 one or more suitable substituent(s) " may include phenyl (lower) alkenoyl (e.g., 3-phenylacryloyl, (2- or 3or 4-)phenyl-(2- or 3-)butenoyl, 3-phenylmethacryloyl, (2- or 3- or 4- or 5-) phenyl-(2- or 3- or 4-) pentanoyl, (2- or 3- or 4- or 5- or 6-)phenyl-(2- or 3- or 4- or 5-)hexanoyl, etc.), naphthyl(lower)alkenoyl (e.g., 15 3-naphthylacryloyl, (2- or 3- or 4-)naphthyl-(2- or 3-)butenoyl, (2- or 3- or 4- or 5-)naphthyl-(2- or 3- or 4-)pentanoyl, (2- or 3- or 4- or 5- or 6-)naphthyl-(2- or 3- or 4- or 5-)hexanoyl, etc.), and the like, 20 in which the preferred one may be 3-phenylacryloyl.

Suitable example of "suitable substituent(s)" in the term of "ar(lower)alkenoyl substituted with aryl which may have one or more suitable substituent(s)" can be referred to aforementioned "suitable substituent(s)",

in which the preferred "aryl which may have one or more suitable substituent(s)" may be aryl which may have one or more lower alkoxy, aryl which may have one or more lower alkyl and aryl which may have one or more higher alkyl, and the much more preferred one may be phenyl which may have 1 to 3 (C_1 - C_6) alkoxy, phenyl which may have 1 to 3 (C_1 - C_6) alkyl and phenyl which may have 1 to 3 (C_7 - C_1 4) alkyl, and the most preferred one may be phenyl which may have 1 to 3 pentyl which may have 1 to 3 pentyl which may have 1 to 3 pentyl and phenyl which may have 1 to 3 pentyl.

Suitable example of "naphthyl(lower)alkenoyl" in the

term of "naphthyl (lower) alkenoyl which may have one or more higher alkoxy" may include 3-naphthylacryloyl, (2- or 3- or 4-)naphthyl-(2- or 3-)butenoyl, (2- or 3- or 4- or 5-)naphthyl-(2- or 3- or 4-)pentanoyl, (2- or 3- or 4- or 5- or 6-)naphthyl-(2- or 3- or 4- or 5-)hexanoyl, and the like,

in which the preferred one may be 3-naphthylacryloyl.

Suitable example of "lower alkynoyl" in the term of "lower alkynoyl which may have one or more suitable substituent(s)" may include 2-propynoyl,

(2- or 3-)butynoyl, (2- or 3- or 4-)pentynoyl,
(2- or 3- or 4- or 5-)hexynoyl, and the like,
in which the preferred one may be 2-propynoyl.

5

10

15

20

25

30

35

Suitable example of "suitable substituent(s)" in the term of "lower alkynoyl which may have one or more suitable substituent(s)" can be referred to aforementioned "suitable substituent(s)",

in which the preferred one may be aryl which may have one or more lower alkoxy, aryl which may have one or more higher alkoxy, aryl substituted with aryl which may have one or more lower alkyl and aryl substituted with aryl which may have one or more higher alkyl, and the more preferred one may be aryl substituted with aryl which may have 1 to 3 lower alkyl and aryl which may have 1 to 3 higher alkoxy, and the much more preferred one may be phenyl substituted with phenyl which may have 1 to 3 (C_1 - C_6) alkyl and phenyl which may have 1 to 3 (C_7 - C_{14}) alkoxy, and the most preferred one may be phenyl substituted with phenyl which may have 1 to 3 pentyl and naphthyl which may have 1 to 3 heptyloxy.

Suitable example of "ar(C_2 - C_6) alkanoyl" in the term of "ar(C_2 - C_6) alkanoyl substituted with aryl having one or more suitable substituent(s)" may include phenyl(C_2 - C_6) alkanoyl (e.g., phenylacetyl, (2- or 3- phenylpropanoyl, 2- or 3- or 4-phenylbutanoyl, 2- or 3- or

4- or 5-)phenylpentanoyl, (2- or 3- or 4- or 5- or 6-phenylhexanoyl, etc.), naphthyl(C_2 - C_6)alkanoyl (e.g. naphthylacetyl, (2- or 3-)naphthylpropanoyl, (2- or 3- or 4-)naphthylbutanoyl, (2- or 3- or 4- or 5-

naphthylpentanoyl, (2- or 3- or 4- or 5- or 6naphthylhexanoyl, etc.), and the like,

5

10

15

30

in which the preferred one may be 3-phenylpropanoyl.

Suitable example of "suitable substituent(s)" in the term of "ar(C_2 - C_6) alkanoyl substituted with aryl having one or more suitable substituent(s)" may include lower alkoxy, higher alkoxy, lower alkyl, higher alkyl, higher alkoxy(lower) alkyl, oxo, aryl having one or more lower alkoxy, aryl having one or more higher alkoxy, aryl having one or more higher alkyl, aryl substituted with aryl having one or more lower alkoxy, aryl substituted with aryl having one or more higher alkoxy, aryl substituted with aryl having one or more higher alkoxy, aryl substituted with aryl having one or more lower alkyl, aryl substituted with aryl having one or more higher alkyl, aryl substituted with aryl having one or more higher alkyl, and the like,

in which the preferred one may be aryl having 1 to 3 lower alkoxy, aryl having 1 to 3 higher alkoxy, aryl having 1 to 3 lower alkyl and aryl having 1 to 3 higher alkyl, and the much more preferred one may be phenyl having 1 to 3 (C_1 - C_6) alkoxy and phenyl having 1 to 3 (C_1 - C_6) alkyl and the most preferred one may be phenyl having 1 to 3 pentyloxy and phenyl having 1 to 3 pentyl.

Suitable example of " (C_2-C_6) alkanoyl" in the term of " (C_2-C_6) alkanoyl substituted with naphthyl having higher alkoxy" may include acetyl, propanoyl, butanoyl, pentanoyl, hexanoyl, and the like,

in which the preferred one may be propanoyl.

Suitable example of "aroyl" in the term of "aroyl substituted with heterocyclic group which may have one or more suitable substituent(s)" may include benzoyl,

35 toluoyl, naphthoyl, and the like,

in which the preferred one may be benzoyl.

5

10

15

30

35

Suitable example of "heterocyclic group" in the term of "aroyl substituted with heterocyclic group which may have one or more suitable substituent(s)" may include unsaturated 3 to 8-membered (more preferably 5 or 6-membered) heteromonocyclic group containing 1 to 4 nitrogen atom(s), for example, pyrrolyl, pyrrolinyl, imidazolyl, pyrazolyl, pyridyl, dihydropyridyl, pyrimidyl, pyrazinyl, pyridazinyl, triazolyl (e.g., 4H-1,2,4-triazolyl, 1H-1,2,3-triazolyl, 2H-1,2,3-triazolyl, etc.), tetrazolyl (e.g., 1H-tetrazolyl, 2H-tetrazolyl, etc.), etc.;

saturated 3 to 8-membered (more preferably 5 or 6-membered) heteromonocyclic group containing 1 to 4 nitrogen atom(s), for example, pyrrolidinyl, imidazolidinyl, piperidyl, piperazinyl, etc.;

unsaturated condensed heterocyclic group containing 1 to 4 nitrogen atom(s), for example, indolyl, isoindolyl, indolinyl, indolizinyl, benzimidazolyl, quinolyl,

20 isoquinolyl, indazolyl, benzotriazolyl, etc.;

unsaturated 3 to 8-membered (more preferably 5 or 6-membered) heteromonocyclic group containing 1 to 2 oxygen atom(s) and 1 to 3 nitrogen atom(s), for example, oxazolyl, isoxazolyl, oxadiazolyl (e.g.,

1,2,4-oxadiazolyl, 1,3,4-oxadiazolyl, 1,2,5-oxadiazolyl, etc.), etc.;

saturated 3 to 8-membered (more preferably 5 or 6-membered) heteromonocyclic group containing 1 to 2 oxygen atom(s) and 1 to 3 nitrogen atom(s), for example, morpholinyl, sydnonyl, etc.;

unsaturated condensed heterocyclic group containing 1 to 2 oxygen atom(s) and 1 to 3 nitrogen atom(s), for example, benzoxazolyl, benzoxadiazolyl, etc.;

unsaturated 3 to 8-membered (more preferably 5 or 6-membered) heteromonocyclic group containing 1 to 2 sulfur

atom(s) and 1 to 3 nitrogen atom(s), for example, thiazolyl, isothiazolyl, thiadiazolyl (e.g., 1,2,3-thiadiazolyl, 1,2,4-thiadiazolyl, 1,3,4-thiadiazolyl, 1,2,5-thiadiazolyl, etc.), dihydrothiazinyl, etc.;

5

15

saturated 3 to 8-membered (more preferably 5 or 6-membered) heteromonocyclic group containing 1 to 2 sulfur atom(s) and 1 to 3 nitrogen atom(s), for example, thiazolidinyl, etc.;

unsaturated 3 to 8-membered (more preferably 5 or 6-membered) heteromonocyclic group containing 1 to 2 sulfur atom(s), for example, thienyl, dihydrodithiinyl, dihydrodithionyl, etc.;

unsaturated condensed heterocyclic group containing 1 to 2 sulfur atom(s) and 1 to 3 nitrogen atom(s), for example, benzothiazolyl, benzothiadiazolyl, etc.;

unsaturated 3 to 8-membered (more preferably 5 or 6-membered) heteromonocyclic group containing an oxygen atom, for example, furyl, etc.;

unsaturated 3 to 8-membered (more preferably 5 or 6-membered) heteromonocyclic group containing an oxygen atom and 1 to 2 sulfur atom(s), for example, dihydrooxathiinyl, etc.;

unsaturated condensed heterocyclic group containing 1 to 2 sulfur atom(s), for example, benzothienyl, benzodithiinyl, etc.;

unsaturated condensed heterocyclic group containing an oxygen atom and 1 to 2 sulfur atom(s), for example, benzoxathiinyl, etc.; and the like,

in which the preferred one may be saturated 3 to 8membered heteromonocyclic group containing 1 to 4 nitrogen
atom(s), and unsaturated 3 to 8-membered heteromonocyclic
group containing 1 to 2 oxygen atom(s) and 1 to 3 nitrogen
atom(s) and the most preferred one may be piperazinyl and
isoxazolyl.

Suitable example of "suitable substituent(s)" in the term of "aroyl substituted with heterocyclic group which may have one or more suitable substituent(s)" can be referred to aforementioned "suitable substituent(s)", in which the preferred one may be aryl which may have 1 to 3 higher alkoxy, and aryl which may have 1 to 3 lower alkoxy, and the more preferred one may be phenyl which may have 1 to 3 (C_7-C_{14}) alkoxy, phenyl which may have 1 to 3 (C_3-C_6) alkoxy, and the most preferred one may be phenyl

which may have 1 to 3 octyloxy, phenyl which may have 1 to

Suitable example of "aroyl" in the term of "aroyl substituted with aryl having heterocyclic(higher)alkoxy" may include benzoyl, toluoyl, naphthoyl, anthrylcarbonyl and the like,

3 pentyloxy, and phenyl which may have 1 to 3 hexyloxy.

in which the preferred one may be benzoyl.

5

10

15

20

25

30

35

Suitable example of "heterocyclic" moiety in the term of "aroyl substituted with aryl having heterocyclic(higher)alkoxy" can be referred to the ones as exemplified before for "heterocyclic group" in the term of "aroyl substituted with heterocyclic group which may have one or more suitable substituent(s)",

in which the preferred one may be unsaturated 3 to 8-membered heteromonocyclic group containing 1 to 4 nitrogen atom(s), and the most preferred one may be triazolyl.

Suitable example of "(higher)alkoxy" in the term of "aroyl substituted with aryl having heterocyclic(higher)-alkoxy" can be referred aforementioned higher alkoxy, in which the preferred one may be (C7-C14)alkoxy, and the most preferred one may be octyloxy.

Suitable example of "aryl" in the term of "aroyl substituted with aryl having heterocyclic(higher)alkoxy" can be referred to aforementioned "aryl",

in which the preferred one may be phenyl.

Suitable example of "aroyl" in the term of "aroyl

may include benzoyl, toluoyl, naphthoyl, anthrylcarbonyl and the like,

in which the preferred one may be benzoyl.

Suitable example of "aryl" in the term of "aroyl substituted with aryl having lower alkoxy(higher)alkoxy" can be referred to aforementioned "aryl",

in which the preferred one may be phenyl.

5

10

20

25

30

35

Suitable example of "lower alkoxy(higher)alkoxy" in the term of "aroyl substituted with aryl having lower alkoxy(higher)alkoxy" may be methoxyheptyloxy, methoxyoctyloxy, methoxynonyloxy, methoxydecyloxy, ethoxyheptyloxy, ethoxyoctyloxy, ethoxynonyloxy, ethoxydecyloxy, ethoxyundecyloxy, propoxyundecyloxy, butoxydodecyloxy, pentyloxytridecyloxy,

hexyloxytetradecyloxy, propoxyheptyloxy, propoxyoctyloxy, propoxynonyloxy, butoxydecyloxy, or the like, in which the preferred one may be (C_1-C_6) alkoxy (C_7-C_{14}) alkoxy, and the more preferred one may be methoxyoctyloxy.

Suitable example of "aroyl" in the term of "aroyl substituted with aryl having lower alkenyl(lower)alkoxy" may include benzoyl, toluoyl, naphthoyl, anthrylcarbonyl and the like,

in which the preferred one may be benzoyl.

Suitable example of "aryl" in the term of "aroyl substituted with aryl having lower alkenyl(lower)alkoxy" can be referred to aforementioned "aryl",

in which the preferred one may be phenyl.

- 21 -3-) butenylbutoxy, 1-(or 2- or 3-) butenylhexyloxy, 1-(or 2or 3- or 4-)pentenylpentyloxy, 1-(or 2- or 3- or 4-)pentenylhexyloxy, 1-(or 2- or 3- or 4- or 5-)hexenylbutoxy, 1-(or 2- or 3- or 4- or 5-)hexenylhexyloxy, or the like, 5 in which the preferred one may be (C_2-C_6) alkenyl (C_1-C_6) C₆) alkoxy, and the more preferred one may be vinylhexyloxy. Suitable example of "aroyl substituted with 2 lower alkoxy" may include benzoyl substituted with 2 lower 10 alkoxy and naphthoyl substituted with 2 lower alkoxy, in which the preferred one may be benzoyl substituted with 2 (C_1-C_6) alkoxy, and the most preferred one may be benzoyl substituted with 2 pentyloxy. Suitable example of "aroyl substituted with aryl 15

Suitable example of "aroyl substituted with aryl having lower alkyl" may include benzoyl substituted with phenyl having lower alkyl, benzoyl substituted with naphthyl having lower alkyl, naphthoyl substituted with phenyl having lower alkyl, naphthoyl substituted with naphthyl having lower alkyl, and the like,

in which the preferred one may be benzoyl substituted with phenyl having (C_1-C_6) alkyl, and the most preferred one may be benzoyl substituted with phenyl having hexyl.

20

25

30

35

Suitable example of "aroyl substituted with aryl having higher alkyl" may include benzoyl substituted with phenyl having higher alkyl, benzoyl substituted with naphthyl having higher alkyl, naphthoyl substituted with phenyl having higher alkyl, naphthoyl substituted with naphthyl having higher alkyl, and the like,

in which the preferred one may be benzoyl substituted with phenyl having (C_7-C_{14}) alkyl, and the most preferred one may be benzoyl substituted with phenyl having heptyl.

Suitable example of "aryloxy" moiety in the term of "aryloxy(lower)alkanoyl which may have one or more suitable substituent(s)" may include phenoxy, mesityloxy,

tolyloxy, naphthyloxy, anthryloxy, and the like, in which the preferred one may be phenoxy.

5

10

15

20

35

like,

Suitable example of "lower alkanoyl" moiety in the term of "aryloxy(lower)alkanoyl which may have one or more suitable substituent(s)" can be referred to aforementioned "lower alkanoyl",

in which the preferred one may be formyl, acetyl, 2,2-dimethylacetyl, propionyl, butyryl, isobutyryl and pentanoyl, hexanoyl, and the more preferred one may be (C_1-C_6) alkanoyl, and the much more preferred one may be formyl, acetyl, propionyl and 2,2-dimethylacetyl.

Suitable example of "suitable substituent(s)" in the term of "aryloxy(lower)alkanoyl which may have one or more suitable substituent(s)" can be referred to aforementioned "suitable substituent(s)",

in which the preferred one may be (C_7-C_{14}) alkoxy, and the more preferred one may be octyloxy.

Suitable example of "ar(lower)alkoxy" moiety in the term of "ar(lower)alkoxy(lower)alkanoyl which may have one or more suitable substituent(s)" may include phenyl(lower)alkoxy (e.g., phenylmethoxy, (1- or 2-phenylethoxy, phenylpropoxy, 2-phenyl-1-methylpropoxy, 3-phenyl-2,2-dimethylpropoxy,

(1- or 2- or 3- or 4-)phenylbutoxy, (1- or 2- or 3- or 4or 5-)phenylpentyloxy, (1- or 2- or 3- or 4- or 5- or 6phenylhexyloxy, etc.}, naphthyl(lower)alkoxy (e.g.
naphthylmethoxy, (1- or 2-)napthylethoxy, 1naphthylpropoxy, 2-naphthyl-1-methylpropoxy, 3-naphthyl2,2-dimetyylpropoxy, (1- or 2- or 3- or 4-)naphthylbutoxy,
(1- or 2- or 3- or 4- or 5-)naphthylpentyloxy, (1- or 2or 3- or 4- or 5- or 6-)naphthylhexyloxy, etc.}, and the

in which the preferred one may be naphthyl(C_1-C_4)alkoxy, and the more preferred one may be naphthylmethoxy.

Suitable example of "(lower)alkanoyl" moiety in the

- 23 term of "ar(lower)alkoxy(lower)alkanoyl which may have one or more suitable substituent(s)" can be referred to aforementioned "lower alkanoyl", in which the preferred one may be (C_1-C_4) alkanoyl, and 5 the more preferred one may be formyl. Suitable example of "suitable substituent(s)" in the term of "ar(lower)alkoxy(lower)alkanoyl which may have one or more suitable substituent(s)" can be referred to aforementioned "suitable substituent(s)", in which the preferred one may be lower alkoxy, higher 10 alkoxy, lower alkyl and higher alkyl, and the more preferred one may be higher alkoxy, and the much more preferred one may be (C_7-C_{14}) alkoxy, and the most preferred one may be heptyloxy. Suitable example of "arylamino" moiety in the term of 15 "arylamino(lower)alkanoyl which may have one or more suitable substituent(s)" may include phenylamino, mesitylamino, tolylamino, naphthylamino, anthrylamino and the like, in which the preferred one may be phenylamino and 20 naphthylamino. Suitable example of "lower alkanoyl" in the term of "arylamino(lower)alkanoyl which may have one or more suitable substituent(s)" can be referred to aforementioned "lower alkanoyl", 25 in which the preferred one may be (C_1-C_4) alkanoyl, and the more preferred one may be formyl. Suitable example of "suitable substituent(s)" in the term of "arylamino(lower)alkanoyl which may have one or more suitable substituent(s)" can be referred to 30 aforementioned "suitable substituent(s)", in which the preferred one may be lower alkoxy, higher alkoxy, lower alkyl, higher alkyl, aryl which may have 1 to 3 lower alkoxy and aryl which may have 1 to 3 higher 35 alkoxy, and the more preferred one may be (C7-C14) alkoxy,

and phenyl which may have 1 to 3 (C_7-C_{14}) alkoxy, and the most preferred one may be heptyloxy and phenyl which may have 1 to 3 heptyloxy.

The process for preparing the object polypeptide compound [I] or a salt thereof of the present invention are explained in detail in the following.

Process 1

5

The object polypeptide compound [I] or a salt thereof can be prepared by reacting the compound [II] or its reactive derivative at the amino group or a salt thereof with the compound [III] or its reactive derivative at the carboxy group or a salt thereof.

15 Suitable reactive derivative at the carboxy group of the compound [III] may include an acid halide, an acid anhydride, an activated amide, an activated ester, and the Suitable examples of the reactive derivatives may be an acid chloride; an acid azide; a mixed acid anhydride with an acid such as substituted phosphoric acid [e.g., 20 dialkylphosphoric acid, phenylphosphoric acid, diphenylphosphoric acid, dibenzylphosphoric acid, halogenated phosphoric acid, etc.], dialkylphosphorous acid, sulfurous acid, thiosulfuric acid, sulfuric acid, 25 sulfonic acid [e.g., methanesulfonic acid, etc.], aliphatic carboxylic acid [e.g., acetic acid, propionic acid, butyric acid, isobutyric acid, pivaric acid, pentanoic acid, isopentanoic acid, 2-ethylbutyric acid, trichloroacetic acid, etc.]; or aromatic carboxylic acid 30 [e.g., benzoic acid, etc.]; a symmetrical acid anhydride; an activated amide with imidazole, 4-substituted imidazole, dimethylpyrazole, triazole, tetrazole or 1hydroxy-1H-benzotriazole; or an activated ester [e.g., cvanomethyl ester, methoxymethyl ester,

dimethyliminomethyl [(CH₃) $_{2}$ \mathring{N} =CH-] ester, vinyl ester,

propargyl ester,

5

10

15

20

p-nitrophenyl ester, 2,4-dinitrophenyl ester,
trichlorophenyl ester, pentachlorophenyl ester,
mesylphenyl ester, phenylazophenyl ester, phenyl
thioester, p-nitrophenyl thioester, p-cresyl thioester,
carboxymethyl thioester, pyranyl ester, pyridyl ester,
piperidyl ester, 8-quinolyl thioester, etc.], or an ester
with a N-hydroxy compound [e.g. N,N-dimethylhydroxylamine,
1-hydroxy-2-(1H)-pyridone, N-hydroxysuccinimide,
N-hydroxyphthalimide, 1-hydroxy-1H-benzotriazole, etc.],
and the like. These reactive derivatives can optionally

and the like. These reactive derivatives can optionally be selected from them according to the mind of the compound [III] to be used.

Suitable salts of the compound [III] and its reactive derivative can be referred to the ones as exemplified for the object polypeptide compound [I].

The reaction is usually carried out in a conventional solvent such as water, alcohol [e.g., methanol, ethanol, etc.], acetone, dioxane, acetonitrile, chloroform, methylene chloride, ethylene chloride, tetrahydrofuran, ethyl acetate, N,N-dimethylformamide, pyridine or any other organic solvent which does not adversely influence the reaction. These conventional solvent may also be used in a mixture with water.

In this reaction, when the compound [III] is used in a free acid form or its salt form, the reaction is preferably carried out in the presence of a conventional condensing agent such as N,N'-dicyclohexylcarbodiimide; N-cyclohexyl-N'-morpholinoethylcarbodiimide;

N-cyclohexyl-N'-(4-diethylaminocyclohexyl)carbodiimide;
N,N'-diethylcarbodiimide, N,N'-diisopropylcarbodiimide;
N-ethyl-N'-(3-dimethylaminopropyl)carbodiimide,
N,N-carbonylbis-(2-methylimidazole);
pentamethyleneketene-N-cyclohexylimine;

35 diphenylketene-N-cyclohexylimine; ethoxyacetylene;

1-alkoxy-2-chloroethylene; trialkyl phosphite; ethyl polyphosphate; isopropyl polyphosphate; phosphorus oxychloride (phosphoryl chloride); phosphorus trichloride; thionyl chloride; oxalyl chloride; lower alkyl haloformate [e.g., ethyl chloroformate, isopropyl chloroformate, etc.]; triphenylphosphine; 2-ethyl-7-hydroxybenzisoxazolium salt; 2-ethyl-5-(m-sulfophenyl)isoxazolium hydroxide intramolecular salt; 1-(p-chlorobenzenesulfonyloxy)-6-chloro-1H-benzotriazole; so-called Vilsmeier reagent prepared by the reaction of N,N-dimethylformamide with thionyl chloride, phospene, trichloromethyl chloroformate, phosphorous oxychloride, methanesulfonyl chloride, etc.; or the like.

The reaction may also be carried out in the presence of an inorganic or organic base such as an alkali metal carbonate, alkali metal bicarbonate, tri(lower)alkylamine, pyridine, di(lower)alkylaminopyridine (e.g., 4-dimethylaminopyridine, etc.), N-(lower)alkylmorpholine, N,N-di(lower)alkylbenzylamine, or the like.

The reaction temperature is not critical, and the reaction is usually carried out under cooling to warming.

The starting compound [II] is a known compound. It can be prepared by fermentation and synthetic processes disclosed in EP 0462531 A2.

A culture of Coleophoma sp. F-11899, which is used in said fermentation process, has been deposited with National Institute of Bioscience and Human-Technology Agency of Industrial Science and Technology (former name: Fermentation Research Institute Agency of Industrial Science and Technology) (1-3, Higashi 1-chome, Tsukubashi, IBARAKI 305, JAPAN) on October 26, 1989 under the number of FERM BP-2635.

25

30

5

- 27 -

The compounds obtained by the above <u>Process 1</u> can be isolated and purified by a conventional method such as pulverization, recrystallization, column-chromatography, high-performance liquid chromatography (HPLC), reprecipitation, or the like.

The compounds obtained by the above <u>Process 1</u> may be obtained as its hydrate, and its hydrate is included within the scope of this invention.

10

15

5

It is to be noted that each of the object compound (I) may include one or more stereoisomer such as optical isomer(s) and geometrical isomer(s) due to asymmetric carbon atom(s) and double bond(s) and all such isomers and mixture thereof are included within the scope of this invention.

Biological property of the polypeptide compound [1] of the present invention

20

In order to show the usefulness of the polypeptide compound [I] of the present invention, the biological data of the representative compound is explained in the following.

25

Test 1 (Antimicrobial activity) :

In vitro antimicrobial activity of the compound of Example 1 (17) disclosed later was determined by the two-fold agar-plate dilution method as described below.

30

35

Test Method

One loopful of an overnight culture of each test microorganism in Sabouraud broth containing 2% Glucose (10⁵ viable cells per ml) was streaked on yeast nitrogen base dextrose agar (YNBDA) containing graded

the minimal inhibitory concentration (MIC) was expressed in terms of $\mu g/ml$ after incubation at 30°C for 24 hours.

Test Result

5

MIC (µg/ml)

Test compound	The compound of
Test organism	<u>Example 1(17)</u>
candida albicans FP-633	0.2

10

15

20

From the test result, it is realized that the object polypeptide compound [I] of the present invention has an antimicrobial activity (especially, antifungal activity).

The pharmaceutical composition of the present invention can be used in the form of a pharmaceutical preparation, for example, in solid, semisolid or liquid from, which contains the object polypeptide compound (I) or a pharmaceutically acceptable salt thereof, as an active ingredient in admixture with an organic or inorganic carrier or excipient which is suitable for rectal; pulmonary (nasal or buccal inhalation); ocular; external (topical); oral administration; parenteral (including subcutaneous, intravenous and intramuscular) administrations; insufflation (including aerosols from metered dose inhalator); nebulizer; or dry powder inhalator.

30

35

25

The active ingredient may be compounded, for example, with the usual non-toxic, pharmaceutically acceptable carriers in a solid form such as granules, tablets, dragees, pellets, troches, capsules, or suppositories; creams, ointments; aerosols; powders for insufflation;

- 29 -

creams, ointments; aerosols; powders for insufflation; in a liquid form such as solutions, emulsions, or suspensions for injection; ingestion; eye drops; and any other form suitable for use. And, if necessary, there may be included in the above preparation auxiliary substance such as stabilizing, thickening, wetting, emulsifying and coloring agents; perfumes or buffer; or any other commonly may be used as additives.

5

10

15

20

25

30

35

The object polypeptide compound [I] or a pharmaceutically acceptable salt thereof is/are included in the pharmaceutical composition in an amount sufficient to produce the desired antimicrobial effect upon the process or condition of diseases.

For applying the composition to human, it is preferable to apply it by intravenous, intramuscular, pulmonary, oral administration, or insufflation. While the dosage of therapeutically effective amount of the object polypeptide compound [I] varies from and also depends upon the age and condition of each individual patient to be treated, in the case of intravenous administration, a daily dose of 0.01-20 mg of the object polypeptide compound [I] per kg weight of human being in the case of intramuscular administration, a daily dose of 0.1-20 mg of the object polypeptide compound [I] per kg weight of human being, in case of oral administration, a daily dose of 0.5-50 mg of the object polypeptide compound [I] per kg weight of human being is generally given for treating or preventing infectious diseases.

Especially in case of the treatment of prevention of <u>Pneumocystis carinii</u> infection, the followings are to be noted.

For administration by inhalation, the compounds of the present invention are conveniently delivered in the form of an aerosol spray presentation from pressurized as powders which may be formulated and the powder - 30 -

compositions may be inhaled with the aid of an insufflation powder inhaler device. The preferred delivery system for inhalation is a metered dose inhalation aerosol, which may be formulated as a suspension or solution of compound in suitable propellants such as fluorocarbons or hydrocarbons.

Because of desirability to directly treat lung and bronchi, aerosol administration is a preferred method of administration. Insufflation is also a desirable method, especially where infection may have spread to ears and other body cavities.

Alternatively, parenteral administration may be employed using drip intravenous administration.

The following Preparations and Examples are given for the purpose of illustrating the present invention in more detail.

20

5

10

25

Preparation 1

5

10

15

20

25

30

35

To a suspension of 1-(4-hydroxyphenyl)-4-tert-butoxycarbonylpiperazine (3 g) and potassium carbonate (0.82 g) in N,N-dimethylformamide (15 ml) was added octyl bromide (1.87 ml). The mixture was stirred for 10 hours at 70°C. The reaction mixture was added to a mixture of water and ethyl acetate. The organic layer was taken, and dried over magnesium sulfate. The magnesium sulfate was filtered off, and the filtrate was evaporated under reduced pressure. The residue was subjected to column chromatography on silica gel, and eluted with (hexane: ethyl acetate = 9:1). The fractions containing the object compound were combined, and evaporated under reduced pressure to give 1-(4-n-octyloxyphenyl)-4-tert-butoxycarbonylpiperazine (2.71 g).

IR (KBr): 1687, 1513, 1241 cm⁻¹

NMR (CDCl₃, δ): 0.88 (3H, t, J=6.2Hz), 1.2-1.4 (10H, m), 1.48 (9H, s), 1.65-1.85 (2H, m), 3.00 (4H, t, J=5.2Hz), 3.57 (4H, t, J=5.2Hz), 3.90 (2H, t, J=6.5Hz), 6.83 (2H, dd, J=6.4 and 2.1Hz), 6.89 (2H, dd, J=6.4 and 2.1Hz)

Preparation 2

A solution of 1-(4-n-octyloxyphenyl)-4-tert-butoxycarbonylpiperazine (2.61 g) in trifluoroacetic acid (20 ml) was stirred for 4 hours at ambient temperature. The reaction mixture was evaporated under reduced pressure, and to the residue was added a mixture of 1N NaOH aqueous solution and ethyl acetate. The organic layer was taken, and dried over magnesium sulfate. The magnesium sulfate was filtered off, and the filtrate was evaporated under reduced pressure to give 1-(4-n-octyloxyphenyl)piperazine (0.86 g).

IR (KBr) : 2923, 1513, 1259, 831 cm⁻¹
NMR (CDCl₃, δ) : 0.88 (3H, t, J=6.4Hz), 1.2-1.53

- 32 -

(10H, m), 1.65-1.85 (2H, m), 3.03 (4H, s), 3.90 (2H, t, J=6.5Hz), 6.83 (2H, dd, J=6.4 and 2.9Hz), 6.90 (2H, dd, J=6.4 and 2.9Hz)APCI-MASS: e/z = 291 (M^++1)

5

10

15

20

25

30

35

Preparation 3

To a suspension of 1-(4-n-octyloxyphenyl) piperazine (1 g) and potassium carbonate (0.476 g) in N,N-dimethyl-formamide (1 ml) was added p-fluorobenzonitrile (0.347 g), and stirred for 5 hours at 160°C. The reaction mixture was added to a mixture of water and ethyl acetate. The organic layer was taken, and dried over magnesium sulfate. The magnesium sulfate was filtered off, and the filtrate was evaporated under reduced pressure to give 4-[4-(4-n-octyloxyphenyl) piperazin-1-yl] benzonitrile (0.93 g).

IR (KBr): 2848, 2217, 1604, 1511, 1241 cm⁻¹

NMR (CDCl₃, δ): 0.89 (3H, t, J=6.8Hz), 1.2-1.53

(10H, m), 1.65-1.85 (2H, m), 3.20 (4H, t, J=5.4Hz), 3.48 (4H, t, J=5.4Hz), 3.91 (2H, t, J=6.5Hz), 6.8-7.0 (6H, m), 7.52 (2H, d, J=8.9Hz)

APCI-MASS: e/z = 392 (M⁺+1)

Preparation 4 (1)

A mixture of 2,4-dihydroxybenzaldehyde (5.52 g), potassium carbonate (6.08 g) and octyl bromide (7.73 g) in acetonitrile (55 ml) was stirred for 16 hours at 60°C. The solvent of reaction mixture was removed under reduced pressure, and the residue was dissolved in ethyl acetate, and washed with water and brine. The separated organic layer was dried over magnesium sulfate. The magnesium sulfate was filtered off, and the filtrate was evaporated under reduced pressure. The residue was subjected to column chromatography on silica gel and eluted with (hexane: ethyl acetate = 9:1) to give 2-hydroxy-4-octyloxybenzaldehyde (6.73 g).

NMR (CDCl₃, δ): 0.89 (3H, t, J=8.8Hz), 1.2-1.5 (10H, m), 1.8-2.0 (2H, m), 4.0-4.2 (2H, m), 6.42 (1H, s), 6.52 (1H, d, J=8.7Hz), 7.79 (1H, d, J=8.7Hz), 10.33 (1H, s)

APCI-MASS: $e/z = 257 (M^++1)$

The following compound was obtained according to a similar manner to that of $\frac{1}{2}$

10 Preparation 4 (2)

5

15

Methyl 3,4-dipentyloxybenzoate

NMR (CDCl₃, δ): 0.93 (6H, t, J=6.0 and 9.0Hz), 1.3-2.0 (12H, m), 3.88 (3H, s), 4.04 (4H, m), 6.86(1H, d, J=8.4Hz), 7.53 (1H, d, J=2.0Hz), 7.63(1H, dd, J=8.4 and 2.0Hz)

APCI-MASS: $e/z = 309 (M^++1)$

Preparation 5 (1)

A mixture of 4-bromo-4'-pentylbiphenyl (5.04 g), 20 trimethylsilylacetylene (2.4 ml), tetrakis(triphenylphosphine)palladium (0.96 g), triphenylphosphine (0.22 g) and cuprous iodide (95 mg) in piperidine (10 ml) was heated for an hour under atmospheric pressure of nitrogen at 90°C. The reaction 25 mixture was poured into a mixture of cold water and ethyl acetate, and adjusted to about pH 1 with 6N hydrochloric acid. The separated organic layer was washed with water and brine, and dried over magnesium sulfate. magnesium sulfate was filtered off, and the filtrate was 30 evaporated under reduced pressure to give crude 2-[4-(4pentylphenyl)-1-trimethylsilylacetylene, which was used for the next reaction without further purification. Crude mixture was dissolved in a mixture of dichloromethane (10 ml) and methanol (10 ml), and to the 35 solution was added potassium carbonate (2.75 g) at 0°C.

The mixture was allowed to warm to ambient temperature, and stirred for another 2 hours. The reaction mixture was poured into a mixture of cold water and ethyl acetate, and the resultant precipitate was filtered off. The filtrate was adjusted to about pH 7 with 1N hydrochloric acid, and washed with brine, and dried over magnesium sulfate. The magnesium sulfate was filtered off, and the filtrate was evaporated under reduced pressure to give a crude powder, which was subjected to column chromatography on silica gel (300 ml), and eluted with a mixture of (n-hexane: ethyl acetate = 99:1 - 97:3, V/V) to give 4-(4-pentylphenyl)phenylacetylene (2.09g).

IR (Nujol): 3274, 1490 cm^{-1} NMR (CDCl₃, δ): 0.90 (3H, t, J=6.4Hz), 1.30-1.50

(4H, m), 1.50-1.80 (2H, m), 2.64 (2H, t, J=7.6Hz), 7.20-7.30 (2H, m), 7.45-7.60 (6H, m)

APCI-MASS: $e/z = 281 \text{ (M}^++1 + \text{MeOH)}$

The following compound was obtained according to a similar manner to that of <u>Preparation 5 (1)</u>.

Preparation 5 (2)

5

10

35

6-heptyloxynaphthalen-2-yl-acetylene

NMR (CDCl₃, δ): 0.90 (3H, t, J=6.5Hz), 1.20-1.60

(8H, m), 1.70-1.90 (2H, m), 3.10 (1H, s), 4.07

(2H, t, J=6.5Hz), 7.08 (1H, d, J=2.5Hz), 7.15

(1H, dd, J=2.5 and 8.9Hz), 7.47 (1H, dd, J=1.6

and 8.5Hz), 7.64 (1H, d, J=7.3Hz), 7.68 (1H, d, J=8.5Hz), 7.94 (1H, d, J=1.6Hz)

APCI-MASS: e/z = 267 (M+1)

Preparation 6 (1)

To a solution of 4-(4-pentylphenyl) phenylacetylene (2.09 g) in tetrahydrofuran (30 ml) was added dropwise a solution of lithium diisobutylamide in a mixture of

tetrahydrofuran and n-hexane (1.60 M, 5.6 ml) at -75°C, and the resultant mixture was stirred for an hour at -78°C. To the mixture was added methyl chloroformate (0.72 ml), and the reaction mixture was allowed to warm to ambient temperature. The solution was diluted with ethyl acetate, and washed in turn with water and brine, and dried over magnesium sulfate. The magnesium sulfate was filtered off, and the filtrate was evaporated under reduced pressure to give a crude product, which was subjected to column chromatography on silica gel (150 ml), and eluted with a mixture of (n-hexane: ethyl acetate = 100:0 - 9:1, V/V) to give methyl 3-[4-(4-pentylphenyl)phenyl]propionate (2.20 g).

IR (Nujol): 2225, 1712 cm⁻¹

NMR (CDCl₃, δ): 0.90 (3H, t, J=6.5Hz), 1.25-1.50 (4H, m), 1.52-1.80 (2H, m), 2.64 (2H, t, J=7.6Hz), 3.85 (3H, s), 7.20-7.35 (2H, m), 7.40-7.70 (6H, m)

20

15

5

10

The following compound was obtained according to a similar manner to that of $\frac{Preparation 6}{1}$.

APCI-MASS: $e/z = 307 (M^++1)$

Preparation 6 (2)

A mixture of 4-bromo-4'-pentylbiphenyl (5.0 g), methyl acrylate (2.2 ml), palladium acetate (0.11 g) and tris(o-tolyl)phosphine (0.60 g) in triethylamine (16 ml) was refluxed for 15 hours under nitrogen atmosphere. The reaction mixture was poured into a mixture of cold water and ethyl acetate, and adjusted to about pH 1.5 with 6N hydrochloric acid. The separated organic layer was washed in turn with water and brine, and dried over magnesium sulfate. The magnesium sulfate was filtered off, and the filtrate was evaporated under reduced pressure to give a crude powder, which was subjected to column chromatography on silica gel (200 ml), and eluted with a mixture of (n-hexane: ethyl acetate = 100:0 - 94:6, V/V) to give methyl 3-[4-(4-pentylphenyl)phenyl]-acrylate (4.48 g).

IR (Nujol): 1718, 1637 cm⁻¹

NMR (CDCl₃, δ): 0.91 (3H, t, J=6.7Hz), 1.20-1.50 (4H, m), 1.50-1.80 (2H, m), 2.65 (2H, t, J=7.4Hz), 3.82 (3H, s), 6.47 (1H, d, J=16.0Hz), 7.20-7.35 (2H, m), 7.45-7.68 (6H, m), 7.73 (1H, d, J=16.0Hz)

APCI-MASS: $e/z = 309 (M^++1)$

The following compounds [Preparations 7 (2) to (4)] were obtained according to a similar manner to that of Preparation 7 (1).

Preparation 7 (2)

Methyl 3-(6-heptyloxynaphthalen-2-yl)acrylate
IR (Nujol): 1716, 1625, 1459 cm⁻¹

NMR (CDCl₃, δ): 0.90 (3H, t, J=6.5Hz), 1.20-1.65
(8H, m), 1.76-1.93 (2H, m), 3.82 (3H, s), 4.07
(2H, t, J=6.5Hz), 6.49 (1H, d, J=16.0Hz), 7.05-7.20 (2H, m), 7.55-7.90 (5H, m)

APCI-MS: e/z = 327 (M+1)

5

10

15

20

Preparation 7 (3)

Methyl 3-[4-(4-heptylphenyl)phenyl]acrylate

NMR (CDCl₃, δ): 0.88 (3H, t, J=6.5Hz), 1.15-1.50 (8H, m), 1.50-1.75 (2H, m), 2.64 (2H, t, J=7.6Hz), 3.81 (3H, s), 6.46 (1H, d, J=16.0Hz), 7.26 (2H, d, J=8.2Hz), 7.52 (2H, d, J=8.2Hz), 7.59 (6H, s), 7.73 (1H, d, J=16.0Hz)

APCI-MASS: $e/z = 337 (M^++1)$

10 Preparation 7 (4)

5

15

Methyl 3-[4-(4-pentyloxyphenyl)phenyl]acrylate

NMR (CDCl₃, δ): 0.94 (3H, t, J=7.0Hz), 1.30-1.60

(4H, m), 1.70-1.93 (2H, m), 3.82 (3H, s), 4.00

(2H, t, J=6.7Hz), 6.45 (1H, d, J=16.0Hz), 6.90-7.05 (2H, m), 7.48-8.65 (6H, m), 7.72 (1H, d, J=16.0Hz)

APCI-MASS: $e/z = 325 (M^++1)$

Preparation 8

20 A mixture of 6-heptyloxynaphthalen-2-carboxylic acid (1.00 g) and thionvl chloride (5 ml) was stirredn for 18 hours at ambient temparature, and concentrated under reduced pressure to give crude 6-heptyloxy-2-naphthoyl chloride. To a mixture of ethyl isonipecotinate (605 mg), triethylamine (425 mg) and N, N-dimethylaminopyridine (10 25 mg) in dichloromethane (10 ml) was added crude 6heptyloxy-2-naphthoyl chloride, and the mixture was stirred for 2 hours at ambient temperature, and diluted with dichloromethane. The mixture was washed with water, 30 1N hydrochloric acid and brine, and dried over magnesium sulfate. The magnesium sulfate was filtered off, and filtrate was evaporated under reduced pressure. residue was subjected to column chromatography on silica gel, and eluted with (n-hexane : ethyl acetate = 3:1) to 35 give 4-ethoxycarbonyl-1-(6-heptyloxy-2naphthoyl)piperidine (1.20 g).

NMR (CDCl₃, δ): 0.90 (3H, t, J=6.6Hz), 1.2-2.0 (19H, m), 2.5-2.7 (1H, m), 3.0-3.2 (2H, m), 4.1-4.3 (4H, m), 7.1-7.2 (2H, m), 7.44 (1H, dd, J=8.4 and 1.7Hz), 7.72 (1H, d, J=3.9Hz), 7.77 (1H, d, J=3.9Hz), 7.82 (1H, s)

APCI-MASS: $e/z = 426 (M^++1)$

Preparation 9

5

30

35

10 To a mixture of methyl 3,4-diaminobenzoate (1.91 g) and triethylamine (0.56 g) in N, N-dimethylformamide (20 ml) was added decanoyl chloride (2.31 g), and the mixture was stirred for an hour at 0°C. The reaction mixture was diluted with ethyl acetate, and washed with water and 15 The separated organic layer was dried over magnesium sulfate. The magnesium sulfate was filtered off, and filtrate was evaporated under reduced pressure. The residue was dissolved in methanol (20 ml), and conc. sulfuric acid (0.05 ml) was added, and the mixture was stirred for 6 hours at 60°C. After cooling, the reaction 20 mixture was evaporated under reduced pressure. residue was diluted with ethyl acetate, and washed with water and brine. The separated organic layer was dried over magnesium sulfate. The magnesium sulfate was 25 filtered off, and filtrate was evaporated under reduced pressure. Purification of the residue by column chromatography on silica gel eluted with (n-hexane : ethyl acetate = 3:1) gave 5-methoxycarbonyl-2-nonylbenzimidazole (1.40 g).

IR (KBr pelet): 2923, 1718, 1623, 1544, 1438, 1413, 1288, 1213, 1085, 750 cm⁻¹

NMR (DMSO-d₆, δ): 0.84 (3H, t, J=6.7Hz), 1.1-1.4 (12H, m), 1.7-1.9 (2H, m), 2.83 (2H, t, J=7.4Hz), 7.56 (1H, d, J=8.4Hz), 7.78 (1H, d, J=8.4Hz), 8.07 (1H, s)

- 39 -

APCI-MASS: $e/z = 303 (M^++1)$

Preparation 10

5

10

15

20

25

30

35

To a mixture of dimethylmalonate (4 ml), 2-hydroxy-4-octyloxybenzaldehyde (2.50 g) and piperidine (0.1 ml) in methanol (10 ml) was added acetic acid (0.01 ml), and the mixture was stirred for 3 hours at 70°C. The solvents were removed under reduced pressure, and the residue was dissolved in ethyl acetate, and washed with 0.5N hydrochloric acid, water and brine, and dried over magnesium sulfate. The magnesium sulfate was filtered off, and filtrate was evaporated under reduced pressure, and the precipitate was collected by filtration, and washed with n-hexane, and dried to give methyl 7-octyloxycoumarin-3-carboxylate (0.94 g).

NMR (DMSO-d₆, δ): 0.86 (3H, m), 1.2-1.6 (10H, m), 1.7-1.8 (2H, m), 3.81 (3H, s), 4.11 (2H, t, J=6.4Hz), 6.9-7.1 (2H, m), 7.83 (1H, d, J=9.0Hz), 8.75 (1H, s)

APCI-MASS: e/z = 333 (M⁺+1)

Preparation 11

To a mixture of sodium hydride (423 mg) and 4-octylphenol (2.06 g) in tetrahydrofuran (16 ml) was added dropwise ethyl 2-chloroacetoacetate at ambient temperature. The mixture was stirred for 6 hours at 70°C under nitrogen atmosphere, and poured into saturated ammonium chloride aqueous solution. The solution was extracted with ethyl acetate, and the organic layer was washed with water and brine, and dried over magnesium sulfate. The magnesium sulfate was filtered off, and the filtrate was evaporated under reduced pressure. The residue was added to conc. H_2SO_4 (10 ml) at 0°C, and mixture was stirred for 10 minutes. The reaction mixture was poured into ice-water, and adjusted to pH 7.0 with 1N

NaOH aqueous solution, and extracted with ethyl acetate. The organic layer was washed with water and brine, and dried over magnesium sulfate. The magnesium sulfate was filtered off, and the filtrate was evaporated under reduced pressure. The residue was subjected to column-chromatography on silica gel, and eluted with (hexane: ethyl acetate = 95:5). The fractions containing the object compound were combined, and evaporated under reduced pressure to give ethyl 3-methyl 5-

octylbenzo[b]furan-2-carboxylate (1.44 g).

IR (Neat) : 2925, 2854, 1712, 1596, 1463, 1292, 1149, 1089 cm^{-1}

NMR (CDCl₃, δ): 0.88 (3H, t, J=6.7Hz), 1.2-1.5 (10H, m), 1.44 (3H, t, J=7.1Hz), 1.6-1.8 (2H, m), 2.58 (3H, s), 2.71 (2H, t, J=8.0Hz), 4.45 (2H, t, J=7.1Hz), 7.2-7.5 (3H, m)

APCI-MASS: $e/z = 317 (M^++1)$

Preparation 12

10

15

20 To a solution of ethyl 3-amino-4-hydroxybenzoate (1.81 g) and triethylamine (1.53 ml) in dichloromethane (20 ml) was dropwise added decanoyl chloride (2.01 ml) at 0°C. The reaction mixture was stirred for 48 hours at ambient temperature, and washed with water, 0.5N 25 hydrochloric acid, water and brine. The separated organic layer was dried over magnesium sulfate. The magnesium sulfate was filtered off, and the filtrate was evaporated under reduced pressure. To the residue dissolved in xylene (30 ml) was added p-tolune sulfonic acid 30 monohydrate (0.5 g), and the mixture was stirred for 4 hours at 130°C . Ethyl acetate was added to the mixture, and washed with water and brine. The separated organic layer was dried over magnesium sulfate. The magnesium sulfate was filtered off, and the filtrate was evaporated 35 under reduced pressure. Purification of the residue by

column chromatography on silica gel elluted with (n-hexane: ethyl acetate = 9:1, V/V) gave ethyl 2-nonyl benzo[b]oxazole-6-carboxylate (2.36 g).

IR (KBr pelet): 2914, 1722, 1621, 1575, 1470, 1429, 1365, 1290, 1203, 1151, 1115, 1081, 1022 cm⁻¹

NMR (CDCl₃, δ): 0.88 (3H, t, J=6.7Hz), 1.2-1.4 (12H, m), 1.42 (3H, t, J=7.2Hz), 1.90 (2H, m), 2.95 (2H, t, J=7.4Hz), 4.40 (2H, q, J=7.0Hz), 7.50 (1H, d, J=8.5Hz), 8.06 (1H, d, J=8.5Hz), 8.37 (1H, s)

APCI-MASS: $e/z = 318 (M^++1)$

Preparation 13

5

10

25

35

A mixture of methyl 3,4-diaminobenzoate (1.84 g) and 4-hexyloxy benzaldehyde (2.30 g) in nitrobenzene (40 ml) was stirred for 48 hours at 145°C. After cooling, the mixture was evaporated under reduced pressure.

Purification of the residue by column chromatography on silica gel eluted with (n-hexane : ethyl acetate = 2:1) gave 5-methoxycarbonyl-2-(4-hexyloxyphenyl)-benzimidazole

NMR (CDCl₃, δ): 0.90 (3H, t, J=6.4Hz), 1.2-1.9 (8H, m), 3.92 (3H, s), 3.90-4.1 (2H, m), 6.93 (2H, d, J=8.9Hz), 7.5-7.8 (1H, br), 7.94 (1H, dd, J=8.5 and 1.5Hz), 8.03 (1H, d, J=8.9Hz), 8.2-8.4 (1H, br)

APCI-MASS: $353 (M^++1)$

30 Preparation 14

(1.19 g).

A mixture of methyl 3-[4-(4-pentylphenyl)phenyl]acrylate (2.0 g) and 10% palladium on carbon (50% wet, 0.2
g) in tetrahydrofuran (20 ml) was stirred for 8 hours
under atmospheric pressure of hydrogen at ambient
temparature. The catalyst was filtered off, and the

- 42 -

filtrate was evaporated under reduced pressure to give methyl 3-[4-(4-pentylphenyl)phenyl] propionate (1.93 g).

NMR (CDCl₃, δ): 0.90 (3H, t, J=6.8Hz), 1.25-1.50 (4H, m), 1.50-1.75 (2H, m), 2.55-2.75 (4H, m), 2.99 (2H, t, J=8.0Hz), 3.68 (3H, s), 7.10-7.30 (4H, m), 7.40-7.60 (4H, m)

APCI-MASS : $e/z = 311 (M^++1)$

Preparation 15 (1)

5

20

30

35

A mixture of methyl 3-[4-(4-pentyloxyphenyl)phenyl]acrylate (2.70 g) and platinum oxide (0.41 g) in
tetrahydrofuran (40 ml) was stirred for 8 hours under 3
atom of hydrogen at ambient temperature. The catalyst was
filtered off, and the filtrate was evaporated under
reduced pressure to give methyl 3-[4-(4pentyloxyphenyl)phenyl]-propionate (2.70 g).

NMR (CDCl₃, δ): 0.94 (3H, t, J=7.0Hz), 1.28-1.60 (4H, m), 1.60-1.95 (2H, m), 2.55-2.78 (2H, m), 2.98 (2H, t, J=7.8Hz), 3.98 (2H, t, J=6.5Hz), 6.85-7.05 (2H, m), 7.05-7.30 (2H, m), 7.40-7.55 (4H, m)

APCI-MASS: $e/z = 327 (M^++1)$

The following compound was obtained according to a similar manner to that of <u>Preparation 15 (1)</u>.

Preparation 15 (2)

Methyl 3-(6-heptyloxynaphthalen-2-yl)propionate

NMR (CDCl₃, δ): 0.90 (3H, t, J=6.5Hz), 1.20-1.70

(8H, m), 1.70-1.93 (2H, m), 2.70 (2H, t,

J=7.7Hz), 3.07 (2H, t, J=7.7Hz), 3.67 (3H, s),

4.05 (2H, t, J=6.5Hz), 7.02-7.20 (2H, m), 7.20
7.38 (2H, m), 7.55 (1H, s), 7.66 (1H, dd, J=3.0 and 8.5Hz)

APCI-MASS: $e/z = 329 (M^++1)$

Preparation 16 (1)

5

10

15

20

35

To a mixture of methyl 3-[4-(4-pentylphenyl)phenyl]-acrylate (0.41 g) in tetrahydrofuran (5 ml) was added 3N NaOH aqueous solution (1.3 ml), and the resultant mixture was heated to 85°C for 10 hours. The reaction mixture was poured into a mixture of cold water and ethyl acetate, and adjusted to about pH 2 with 6N hydrochloric acid. The separated organic layer was washed in turn with water and brine, and dried over magnesium sulfate. The magnesium sulfate was filtered off, and the filtrate was evaporated under reduced pressure to give 3-[4-(4-pentylphenyl)phenyl]acrylic acid (0.41 g).

NMR (DMSO-d₆, δ) : 0.87 (3H, t, J=7.5Hz), 1.15-1.46 (4H, m), 1.48-1.70 (2H, m), 2.61 (2H, t, J=7.4Hz), 6.56 (1H, d, J=16.0Hz), 7.29 (2H, d, J=8.2Hz), 7.60 (2H, d, J=4.0Hz), 7.66 (2H, d, J=4.0Hz), 7.68-7.85 (3H, m) APCI-MASS : e/z = 295 (M⁺+1)

The following compounds [Preparations 16 (2) to (9)] were obtained according to a similar manner to that of Preparation 16 (1).

Preparation 16 (2)

3-[4-(4-Pentyloxyphenyl)phenyl]propionic acid

IR (Nujol): 1697, 1606, 1500 cm⁻¹

NMR (CDCl₃, δ): 0.94 (3H, t, J=7.1Hz), 1.25-1.60

(4H, m), 1.70-1.95 (2H, m), 2.72 (2H, t,

J=7.5Hz), 3.00 (2H, t, J=7.5Hz), 3.99 (2H, t,

J=6.5Hz), 6.95 (2H, dd, J=2.1 and 6.7Hz), 7.25

(2H, d, J=8.2Hz), 7.40-7.60 (4H, m)

APCI-MASS: e/z = 313 (M⁺+1)

Preparation 16 (3)

3-[4-(4-Heptylphenyl)phenyl]propionic acid

NMR (CDCl₃, δ): 0.88 (3H, t, J=6.8Hz), 1.15-1.50 (8H, m), 1.50-1.78 (2H, m), 2.65 (2H, t, J=7.6Hz), 6.48 (1H, d, J=16.0Hz), 7.27 (2H, d, J=8.2Hz), 7.53 (2H, d, J=8.2Hz), 7.63 (4H, m), 7.83 (1H, d, J=16.0Hz)

APCI-MASS: $e/z = 323 (M^++1)$

Preparation 16 (4)

5

15

20

30

35

3-[4-(4-Pentylphenyl)phenyl]propionic acidNMR (CDCl₃, δ): 0.90 (3H, t, J=6.4Hz), 1.20-1.50 (4H, m), 1.50-1.75 (2H, m), 2.64 (2H, t, J=8.0Hz), 2.67 (2H, t, J=9.6Hz), 3.00 (2H, t, J=8.0Hz), 7.15-7.38 (4H, m), 7.38-7.60 (4H, m)

APCI-MASS: e/z = 297 (M⁺+1)

Preparation 16 (5)

3-(6-Heptyloxynaphthalen-2-yl) propionic acid NMR (CDCl₃, δ): 0.90 (3H, t, J=6.5Hz), 1.20-1.65 (8H, m), 1.75-2.00 (2H, m), 2.75 (2H, t, J=7.7Hz), 3.09 (2H, t, J=7.7Hz), 4.06 (2H, t, J=6.5Hz), 7.05-7.15 (2H, m), 7.15-7.35 (2H, m), 7.50-7.73 (2H, m) APCI-MASS: e/z = 315 (M++1)

25 Preparation 16 (6)

3-(6-Heptyloxynaphthalen-2-yl) acrylic acid NMR (CDCl₃, δ): 0.90 (3H, t, J=6.5Hz), 1.15-1.60 (8H, m), 1.75-1.95 (2H, m), 4.09 (2H, t, J=6.5Hz), 6.51 (1H, d, J=16.0Hz), 7.09-7.30 (2H, m), 7.65-8.00 (5H, m)

Preparation 16 (7)

 $3-[4-(4-Pentylphenyl)phenyl]propionic acid NMR (CDCl₃, <math>\delta$): 0.91 (3H, t, J=6.5Hz), 1.23-1.50 (4H, m), 1.50-1.80 (2H, m), 2.65 (2H, t,

J=7.6Hz), 7.27 (2H, d, J=8.2Hz), 7.51 (2H, d, J=8.2Hz), 7.58-7.80 (4H, m) APCI-MASS : $e/z = 325 (M^++1 + MeOH)$

5 Preparation 16 (8)

3-(6-Heptyloxynaphthalen-2-yl)propionic acid
IR (Nujol): 2645, 2198, 1670, 1627 cm⁻¹
NMR (DMSO-d₆, δ): 0.85 (3H, t, J=6.5Hz), 1.10-1.60 (8H, m), 1.65-1.90 (2H, m), 4.10 (2H, t, J=6.5Hz), 7.24 (1H, dd, J=2.4 and 8.9Hz), 7.39 (1H, d, J=2.5Hz), 7.55 (1H, dd, J=1.6 and 8.5Hz), 7.8-8.0 (2H, m), 8.22 (1H, d, J=1.6Hz)
APCI-MASS: e/z = 343 (M⁺+1 + MeOH)

Preparation 16 (9)

10

20

25

30

35

4-[5-(4-Pentyloxyphenyl)isoxazolyl-3-yl]benzoic acid IR (KBr): 2939, 2867, 1681, 1614, 1429, 1255, 1178, 821 cm⁻¹

NMR (DMSO-d₆, δ): 0.91 (3H, t, J=7.1Hz), 1.3-1.5 (4H, m), 1.6-1.8 (2H, m), 4.04 (2H, t, J=6.5Hz), 7.11 (2H, d, J=8.9Hz), 7.54 (1H, s), 7.85 (2H, d, J=8.9Hz), 7.98 (2H, d, J=8.6Hz), 8.11 (2H, d, J=8.6Hz)

 $APCI-MASS : 352 (M+H)^+$

Preparation 17 (1)

To a solution of ethyl 3-methyl 5-octylbenzo[b] furan-2-carboxylate (1.44 g) in ethanol (20 ml) was added 10% NaOH aqueous solution (2.2 ml), and stirred for 2 hours at ambient temperature, and evaporated under reduced pressure. The residue was adjusted to pH 3.0 with 1N hydrochloric acid, and extracted with ethyl acetate. The organic layer was washed with brine, and dried over magnesium sulfate. The magnesium sulfate was filtered off, and the filtrate was evaporated under reduced pressure to

give 3-methyl-5-octylbenzo[b]furan-2-carboxylic acid (1.00
g).

IR (KBr pelet): 2923, 1689, 1664, 1581, 1456, 1319, 1159, 933 cm⁻¹

NMR (DMSO-d₆, δ): 0.85 (3H, t, J=6.7Hz), 1.2-1.5 (10H, m), 1.5-1.8 (2H, m), 2.49 (3H, s), 2.69 (2H, t, J=7.9Hz), 7.32 (1H, dd, J=8.5 and 1.7Hz), 7.52 (1H, d, J=8.5Hz), 7.54 (1H, d, J=1.7Hz), 13.2-13.5 (1H, br)

 $APCI-MASS : e/z = 289 (M^{+}+1)$

The following compounds [Preparations 17(2) to (8)] were obtained according to a similar manner to that of Preparation 17(1).

15

20

10

5

Preparation 17 (2)

3,4-Dipentyloxybenzoic acid

NMR (DMSO-d₆, δ): 0.89 (6H, t, J=6.8Hz),

1.2-1.5 (8H, m), 1.6-1.8 (4H, m), 3.9-4.1 (4H,

m), 7.02 (1H, d, J=8.4Hz), 7.43 (1H, d,

J=1.7Hz), 7.53 (1H, dd, J=8.4 and 1.7Hz)

APCI-MASS: $e/z = 295 (M^++1)$

Preparation 17 (3)

25 l-(6-Heptyloxy-2-naphthoyl)piperidine-4-carboxylic acid

NMR (DMSO-d₆, δ): 0.88 (3H, t, J=6.7Hz), 1.2-2.0 (14H, m), 2.5-2.6 (1H, m), 2.9-3.2 (2H, br), 3.25 (2H, s), 4.09 (2H, t, J=6.5Hz), 7.20 (1H, dd, J=8.9 and 2.4Hz), 7.36 (1H, d, J=2.3Hz), 7.43 (1H, dd, J=8.4 and 1.5Hz), 7.8-8.0 (3H, m), 12.30 (1H, br)

APCI-MASS : $e/z = 398 (M^{+}+1)$

```
Preparation 17 (4)
            7-Octyloxycoumarin-3-carboxylic acid
            IR (KBr): 1748, 1625, 1558, 1467, 1430, 1386, 1360,
                        1257, 1217, 1120 cm<sup>-1</sup>
 5
            NMR (DMSO-d_6, \delta): 0.86 (3H, t, J=6.8Hz), 1.2-1.5
                 (10H, m), 1.6-1.8 (2H, m), 4.11 (2H, t,
                 J=6.4Hz), 6.9-7.1 (2H, m), 7.82 (1H, d,
                 J=8.9Hz), 8.72 (1H, s), 12.98 (1H, br)
           APCI-MASS: e/z = 319 (M^++1)
10
      Preparation 17 (5)
            4-(4-Pentyloxyphenyl)cinnamic acid
            IR (Nujol) : 2923, 1675, 1500, 1290, 1223, 985,
                          821 \text{ cm}^{-1}
15
           NMR (DMSO-d_6, \delta): 0.90 (3H, t, J=7.0Hz), 1.3-1.5
                 (4H, m), 1.6-1.8 (2H, m), 4.01 (2H, t, J=6.5Hz),
                 6.54 (1H, d, J=16.0Hz), 7.02 (2H, d, J=8.8Hz),
                 7.5-7.8 (7H, m)
           APCI-MASS: e/z = 311 (M^++1)
20
      Preparation 17 (6)
           2-Nonylbenzoxazole-6-carboxylic acid
           NMR (DMSO-d_6, \delta): 0.84 (3H, t, J=6.7Hz), 1.2-1.5
                 (12H, m), 1.7-1.9 (2H, m), 2.96 (2H, t,
25
                J=7.4Hz), 7.76 (1H, d, J=8.4Hz), 7.98 (1H, d,
                 J=8.4Hz), 8.19 (1H, s)
           APCI-MASS: e/z = 290 (M^{+}+1)
      Preparation 17 (7)
30
           2-(4-Hexyloxyphenyl)benzimidazole-5-carboxylic acid
           NMR (DMSO-d_6, \delta): 0.8-1.0 (3H, m), 1.3-1.6 (6H, m),
                1.7-1.8 (2H, m), 4.06 (2H, t, J=6.4Hz), 7.12
                (2H, d, J=8.8Hz), 7.6-7.9 (2H, m), 8.1-8.2 (3H,
                m), 13.00 (1H, br)
35
           APCI-MASS: e/z = 339 (M^++1)
```

Preparation 17 (8)

2-Nonylbenzimidazole-5-carboxylic acid NMR (DMSO-d₆, δ): 0.85 (3H, t, J=6.7Hz), 1.1-1.4 (12H, m), 2.7-2.9 (2H, m), 2.96 (2H, t, J=7.6Hz), 3.6-5.2 (1H, br), 7.66 (1H, d, J=8.4Hz), 7.90 (1H, d, J=8.4Hz), 8.15 (1H, s) APCI-MASS: $e/z = 289 \text{ (M}^++1)$

Preparation 18

5

25

35

A solution of 4-[4-(4-octyloxyphenyl)piperazin-1-yl]benzonitrile (0.5 g) in 20% H₂SO₄ aqueous solution (30 ml) and acetic acid (20 ml) was refluxed for 9 hours. The reaction mixture was pulverized with water. The precipitate was collected by filtration, and added to a mixture of water, tetrahydrofuran and ethyl acetate, and adjusted to pH 2.5 with 1N NaOH aqueous solution. The organic layer was taken, and dried over magnesium sulfate. The magnesium sulfate was filtered off, and the filtrate was evaporated under reduced pressure to give 4-[4-(4-octyloxyphenyl)piperazin-1-yl]benzoic acid (388 mg).

IR (KBr) : 2929, 1664, 1600, 1510, 1240 cm⁻¹

NMR (DMSO-d₆, δ) : 0.86 (3H, t, J=6.6Hz), 1.2-1.5 (10H, m), 1.5-1.8 (2H, m), 3.13 (4H, t, J=5.3Hz), 3.44 (4H, t, J=5.3Hz), 3.88 (2H, t, J=6.5Hz), 6.83 (2H, d, J=9.2Hz), 6.94 (2H, d, J=9.2Hz), 7.02 (2H, d, J=9.0Hz), 7.79 (2H, d, J=9.0Hz)

APCI-MASS: $e/z = 411 (M^++1)$

30 Preparation 19

To a suspension of sodium hydride (60% suspension in mineral oil) (0.296 g) in N,N-dimethylformamide (14 ml) was added 1,2,4-triazole (0.511 g) and 4-[4-(8-bromooctyloxy)phenyl]benzoic acid (1 g), and was stirred for 5 hours at 120°C. The reaction mixture was added to a

mixture of water and ethyl acetate, and adjusted to pH 2.5 with conc. hydrochloric acid. The organic layer was taken and dried over magnesium sulfate. The magnesium sulfate was filtered off, and the filtrate was evaporated under reduced pressure to give 4-[4-[8-(1,2,4-triazol-1-yl)octyloxy]phenyl]benzoic acid (0.81 g).

IR (KBr): 2940, 1689, 1604, 1297, 1189 cm⁻¹

NMR (DMSO-d₆, δ): 1.1-1.53 (8H, m), 1.6-1.9 (4H, m), 4.00 (2H, t, J=6.3Hz), 4.16 (2H, t, J=7.0Hz), 7.03 (2H, d, J=8.7Hz), 7.67 (2H, d, J=8.7Hz), 7.75 (2H, d, J=8.4Hz), 7.95 (1H, s), 7.99 (2H, d, J=8.4Hz), 8.51 (1H, s), 12.9 (1H, s)

APCI-MASS: $e/z = 394 (M^++1)$

15

20

25

30

35

10

5

Preparation 20

A mixture of 2-carbamoyl-5-methoxybenzo[b]thiophene (2.0 g), acetic acid (5 ml) and 48% hydrobromic acid (20 ml) was stirred for 16 hours at 110°C, and the mixture was poured into the ice-water. The resulting precipitate was collected by filtration, and dried to give 5-hydroxybenzo[b]thiophene-2-carboxylic acid (1.66 g).

NMR (DMSO-d₆, δ): 7.03 (1H, dd, J=8.8 and 0.6Hz), 7.31 (1H, d, J=0.6Hz), 7.81 (1H, d, J=8.8Hz), 7.96 (1H, s), 9.64 (1H, s), 13.32 (1H, s) APCI-MASS: $e/z = 195 \ (M^++1)$

Preparation 21 (1)

A solution of (S)-2-tert-butoxycarbonyl-1,2,3,4-tetrahydro-7-hydroxyisoquinoline-3-carboxylic acid (1 g) in a mixture of 103 NaOH aqueous solution (2.73 ml) and dimethylsulfoxide (11 ml) was stirred for half an hour at 80°C. Then, octyl bromide (0.589 ml) was added thereto, and stirred for 4 hours at 60°C. The reaction mixture was added to a mixture of water and ethyl acetate, and

adjusted to pH 2.5 with conc. hydrochloric acid. The organic layer was taken, and dried over magnesium sulfate. The magnesium sulfate was filtered off, and the filtrate was evaporated under reduced pressure to give (S)-2-tert-butoxycarbonyl-1,2,3,4-tetrahydro-7-octyloxyisoguinoline-3-carboxylic acid (1.30 g).

IR (Neat) : 2929, 1743, 1704, 1164 cm⁻¹

NMR (CDCl₃, δ) : 0.89 (3H, t, J=6.1Hz), 1.1-1.6

(10H, m), 1.41 + 1.51 (9H, s, cis + trans), 1.75

(2H, quint, J=6.5Hz), 3.10 (2H, m), 3.90 (2H, t, J=3.9Hz), 4.42 (1H, d, J=16.8Hz), 4.65 (1H, d, J=16.8Hz), 4.74 + 5.09 (1H, m, cis + trans), 6.5-6.8 (2H, m), 7.03 (1H, d, J=8.3Hz)

APCI-MASS : $e/z = 306 (M^++1)-Boc$

15

10

5

The following compounds [Preparations 21 (2) to (3)]. were obtained according to a similar manner to that of Preparation 21 (1).

20 Preparation 21 (2)

5-Octyloxybenzo[b]thiophene-2-carboxylic acid
IR (KBr): 1673, 1666, 1600, 1517, 1409, 1267, 1214,
1153, 865 cm⁻¹

NMR (DMSO- d_6 , δ): 0.86 (3H, t, J=6.7Hz), 1.2-1.5 (10H, m), 1.7-1.9 (2H, m), 4.02 (2H, t, J=6.4Hz), 7.13 (1H, dd, J=8.9 and 0.6Hz), 7.51 (1H, d, J=0.6Hz), 7.90 (1H, d, J=9.0Hz), 7.99 (1H, s)

APCI-MASS: $e/z = 307 (M^++1)$

30

25

Preparation 21 (3)

4-[4-(4-Hexyloxyphenyl) piperazin-l-yl] benzoic acid dihydrochloride

IR (KBr) : 1668, 1600, 1510, 1228 cm⁻¹

35 NMR (DMSO-d₆, δ): 0.88 (3H, t, J=6.9Hz), 1.2-1.5

(6H, m), 1.6-1.9 (2H, m), 3.0-3.2 (4H, m), 3.3-3.5 (4H, m), 3.88 (2H, t, J=6.3Hz), 6.83 (2H, d, J=9Hz), 6.9-7.1 (4H, m), 7.79 (2H, d, J=8.8Hz), 12.32 (1H, s)

APCI-MASS: $e/z = 383 (M+H^+)$

Preparation 22

5

25

To a suspension of dimethyl terephthalate (1.94 g) and potassium t-butoxide (2.24 g) in tetrahydrofuran (30 10 ml) was added 4-pentyloxyacetophenone (1.59 g) in tetrahydrofuran (10 ml) at 70°C dropwise. The mixture was refluxed for 30 minutes and poured into 1N HCl (50 ml). The mixture was extracted with ethyl acetate (100 ml) and the organic layer was washed with H_2O (100 ml), brine (100 15 ml) and evaporated under reduced pressure. The residue was triturated with acetonitrile (20 ml), collected by filtration and dried under reduced pressure to give 1-(4methoxycarbonylphenyl)-3-(4-pentyloxyphenyl)propane-1,3dione (2.41 g) as yellow solid.

20 IR (KBr): 3475, 2956, 2923, 1720, 1606, 1508, 1284, 1176, 1108, 769 cm⁻¹

NMR (CDCl₃, δ): 0.95 (3H, t, J=7.0Hz), 1.3-1.5 (4H, m), 1.7-2.0 (2H, m), 3.96 (3H, s), 4.04 (2H, t, J=6.5Hz), 6.82 (1H, s), 6.96 (2H, d, J=8.9Hz), 8.0-8.1 (4H, m), 8.14 (2H, m, J=8.7Hz), 12-13 (1H, br)

APCI-MASS: $369 (M+H^+)$

Preparation 23

The solution of 1-(4-methoxycarbonylphenyl)-3-(4-pentyloxyphenyl)propane-1,3-dione (1.00 g) and hydroxylamine hydrochloride (567 mg) in methanol (10 ml) was refluxed for 10 hours. The reaction mixture was diluted with ethyl acetate (50 ml) and washed with water (50 ml x 2), brine (50 ml). The organic layer was dried

over magnesium sulfate and the solvents were removed under reduced pressure. The residue was triturated with acetonitrile (10 ml), collected by filtration, and dried under reduced pressure to give methyl 4-[5-(4-pentyloxyphenyl)isoxazol-3-yl]benzoate (0.74 g).

IR (KBr) : 2942, 2873, 1716, 1616, 1508, 1280, 1108 cm⁻¹

NMR (CDCl₃, δ): 0.95 (3H, t, J=6.9Hz), 1.3-1.6 (4H, m), 1.8-2.0 (2H, m), 3.95 (3H, s), 4.02 (2H, t, J=6.5Hz), 6.74 (1H, s), 6.99 (2H, d, J=8.8Hz), 7.76 (2H, d, J=8.8Hz), 7.93 (2H, d, J=8.5Hz), 8.14 (2H, d, J=8.5Hz)

APCI-MASS : 366 (M+H) +

15 Preparation 24

10

20

25

30

35

A solution of 4-[4-(8-bromooctyloxy)phenyl]benzoic acid (1 g) in a mixture of sodium methylate (28% solution in methanol) (10 ml) and N,N-dimethylformamide (5 ml) was refluxed for 5 hours. The reaction mixture was added to a mixture of water and ethyl acetate and adjusted to pH 2.0 with conc. HCl. The organic layer was taken and dried over magnesium sulfate. The magnesium sulfate was filtered off, and the filtrate was evaporated under reduced pressure to give 4-[4-(8-methoxyoctyloxy)phenyl]-benzoic acid (0.77 g).

IR (KBr) : 2935, 1685, 835, 773 cm⁻¹
NMR (CDCl₃, δ) : 1.27-1.7 (10H, m), 1.7-1.95 (2H, m), 3.34 (3H, s), 3.38 (2H, t, J=6.4Hz), 4.01 (2H, t, J=6.5Hz), 6.99 (2H, d, J=8.7Hz), 7.58 (2H, d, J=8.7Hz), 7.66 (2H, d, J=8.4Hz), 8.15 (2H, d, J=8.4Hz)

APCI-MASS : $e/z = 339 (M^+ + H - H_2O)$

Preparation 25 (1)

To a suspension of 1-hydroxybenzotriazole (0.283 g)

and 6-octyloxymethylpicolinic acid (0.505 g) in dichloromethane (15 ml) was added 1-ethyl-3-(3'dimethylaminopropyl)carbodiimide hydrochloride (WSCD·HCl) (0.473 g), and stirred for 3 hours at ambient temperature. The reaction mixture was poured into water. The organic layer was taken, and dried over magnesium sulfate. magnesium sulfate was filtered off, and the filtrate was evaporated under reduced pressure to give 1-(6octyloxymethylpicolinoyl)benzotriazole 3-oxide (737 mg).

IR (Neat): 1793, 1654, 1591, 1039 cm^{-1}

The following compounds [Preparations 25 (2) to (18)] were obtained according to a similar manner to that of Preparation 25 (1).

15

10

5

Preparation 25 (2)

1-[4-(4-Octyloxyphenyl)piperazin-1-yl)benzoyl]benzotriazole 3-oxide

IR (KBr) : 1783, 1600, 1511, 1232, 1184 cm^{-1} NMR (CDCl₃, δ): 0.89 (3H, t, J=6.6Hz), 1.2-1.65 (10H, m), 1.65-1.9 (2H, m), 3.24 (4H, t, J=5.3Hz), 3.62 (4H, t, J=5.3Hz), 3.93 (2H, t, J=6.5Hz), 6.8-7.1 (6H, m), 7.35-7.63 (3H, m), 8.0-8.25 (3H, m)

25

20

Preparation 25 (3)

1-[4-[4-[8-(1,2,4-Triazol-1-yl)octyloxy]phenyl]benzoyl]benzotriazole 3-oxide

IR (KBr): 1776, 1600, 1193, 983 cm⁻¹ 30 NMR (CDCl₃, δ): 1.2-2.0 (12H, m), 4.03 (2H, t, J=6.4Hz), 4.18 (2H, t, J=7.1Hz), 7.02 (2H, d, J=8.7Hz), 7.4-7.63 (3H, m), 7.63 (2H, d, J=8.7Hz), 7.79 (2H, d, J=8.3Hz), 7.95 (1H, s), 8.06 (1H, s), 8.12 (1H, d, J=7.7Hz), 8.32 (2H, d, J=8.3Hz

APCI-MASS: $e/z = 511 (M^++1)$

Preparation 25 (4)

5

1.0

25

1-[2-Methyl-2-(4-octyloxyphenoxy)propionyl]benzotriazole 3-oxide

IR (Neat) : 2927, 1810, 1504, 1047 cm^{-1}

Preparation 25 (5)

1-[2-(4-Octyloxyphenoxy)propionyl]benzotriazole
3-oxide

IR (KBr) : 2954, 1812, 1513, 1232 cm⁻¹

Preparation 25 (6)

1-[(S)-2-tert-Butoxycarbonyl-1,2,3,4-tetrahydro-7octyloxyisoquinolin-3-ylcarbonyl]benzotriazole 3-oxide IR (Neat): 2929, 1816, 1739, 1704, 1392 cm⁻¹

Preparation 25 (7)

Succinimido 4-(4-n-octyloxyphenyl)piperazine-1-20 carboxylate

IR (KBr): 2925, 1758, 1743, 1513, 1241 cm⁻¹

NMR (CDCl₃, δ): 0.89 (3H, t, J=6.8Hz), 1.2-1.5 (10H, m), 1.65-1.85 (2H, m), 2.83 (4H, s), 3.0-3.2 (2H, m), 3.6-3.85 (2H, m), 3.91 (2H, t, J=6.5Hz), 6.84 (2H, dd, J=8.5 and 2.7Hz), 6.90 (2H, dd, J=8.5 and 2.7Hz)

APCI-MASS: e/z = 432 (M⁺+1)

Preparation 25 (8)

30 (6-Heptyloxy-2-naphthyl)methylsuccinimido carbonate IR (KBr): 1878, 1832, 1787, 1735, 1209 cm⁻¹ NMR (CDCl₃, δ): 0.90 (3H, t, J=6.2Hz), 1.2-1.6 (8H, m), 1.73-2.0 (2H, m), 2.83 (4H, s), 4.07 (2H, t, J=6.5Hz), 5.44 (2H, s), 7.13 (1H, d, J=2.4Hz), 7.17 (1H, dd, J=8.8 and 2.4Hz), 7.44 (1H, dd,

J=8.4 and 1.6Hz), 7.67-7.85 (3H, m)

Preparation 25 (9)

5

10

20

1-(3,4-Dipentyloxybenzoyl)benzotriazole 3-oxide

IR (KBr): 2952, 1774, 1594, 1515, 1430, 1272, 1147, 1089 cm⁻¹

NMR (CDCl₃, δ): 0.9-1.1 (6H, m), 1.3-1.6 (8H, m), 1.8-2.1 (4H, m), 4.0-4.2 (4H, m), 6.99 (1H, d, J=8.5Hz), 7.4-7.6 (3H, m), 7.68 (1H, d, J=2.0Hz), 7.92 (1H, dd, J=8.5 and 2.0Hz), 8.10

J=2.0Hz), 7.92 (1H, dd, J=8.5 and 2.0Hz), 8.10 (1H, d, J=8.5Hz)

APCI-MASS: $e/z = 412 (M^++1)$

Preparation 25 (10)

15 1-(7-Octyloxycoumarin-3-yl-carbonyl)benzotriazole 3-oxide

IR (KBr) : 2925, 1754, 1716, 1610, 1548, 1282, 1199, 1172, 1139, 1064, 781, 750 cm⁻¹

NMR (DMSO-d₆, δ): 0.86 (3H, t, J=7.8Hz), 1.2-1.5 (10H, m), 1.6-1.8 (2H, m), 4.11 (2H, t, J=6.5Hz), 6.9-7.1 (2H, m), 7.41 (1H, t, J=7.2Hz), 7.54 (1H, t, J=7.2Hz), 7.72 (1H, d,

J=8.3Hz), 7.82 (1H, d, J=8.3Hz), 7.99 (1H, d,

J=8.3Hz), 8.72 (1H, s)

25 APCI-MASS : $e/z = 436 (M^{+}+1)$

Preparation 25 (11)

1-[4-(4-Pentyloxyphenyl)cinnamoyl]benzotriazole 3oxide

30 IR (Nujol): 2854, 1778, 1708, 1620, 1597, 1494, 1459, 1434, 1377, 1350, 1250, 1188, 1138, 1086, 978 cm⁻¹

Preparation 25 (12)

35 1-(5-Octyloxybenzo[b]thiophen-2-ylcarbonyl)-

benzotriazole 3-oxide

IR (KBr): 2950, 1776, 1517, 1342, 1211, 1151 cm⁻¹

NMR (DMSO-d₆, δ): 0.86 (3H, t, J=6.7Hz), 1.2-1.5

(10H, m), 1.7-1.9 (2H, m), 4.01 (2H, t,

J=6.4Hz), 7.13 (1H, dd, J=8.8 and 2.4Hz), 7.42

(1H, d, J=7.1Hz), 7.5-7.6 (3H, m), 7.72 (1H, d,

J=8.4Hz), 7.89 (1H, d, J=8.8Hz), 7.9-8.1 (2H, m)

APCI-MASS: e/z = 424 (M⁺+1)

10 Preparation 25 (13)

5

1-(3-Methyl-5-octylbenzo[b]furan-2-yl-carbonyl)-benzotriazole 3-oxide

IR (KBr): 1776, 1575, 1469, 1363, 1324, 1276, 1114, 1027 cm⁻¹

NMR (CDCl₃, δ): 0.89 (3H, t, J=6.7Hz), 1.2-1.5 (10H, m), 2.6-2.8 (2H, m), 2.71 (3H, s), 2.76 (2H, t, J=7.4Hz), 7.4-7.6 (6H, m), 8.12 (1H, s) APCI-MASS: 406 (M⁺+1)

20 Preparation 25 (14)

1-(2-Nonylbenzoxazol 5-yl-carbonyl)benzotriazole
3-oxide

IR (KBr): 2980, 1783, 1623, 1573, 1276, 1151, 1091, 989 cm⁻¹

NMR (DMSO-d₆, δ): 0.84 (3H, t, J=6.8Hz), 1.1-1.4 (12H, m), 1.81 (2H, t, J=7.2Hz), 2.96 (3H, t, J=7.4Hz), 7.41 (1H, t, J=7.0Hz), 7.54 (1H, t, J=7.0Hz), 7.74 (2H, t, J=7.0Hz), 7.98 (2H, d, J=7.0Hz), 8.19 (1H, s)

30 APCI-MASS: $e/z = 407 (M^++1)$

Preparation 25 (15)

1-[2-(4-Hexyloxyphenyl)benzimidazol-5-yl-carbonyl]-benzotriazole 3-oxide

35 IR (KBr): 3160, 2931, 2863, 1778, 1612, 1502, 1448,

- 57 -1388, 1294, 1247, 1174, 1097, 1010, 732 cm⁻¹ NMR (DMSO- d_6 , δ): 0.89 (3H, t, J=6.7Hz), 1.2-1.5 (6H, m), 1.7-1.8 (2H, m), 4.08 (2H, t, J=6.4Hz), 7.16 (2H, d, J=8.7Hz), 7.6-8.4 (9H, m), 8.3-8.6 (1H, br) APCI-MASS: $e/z = 456 (M^++1)$ Preparation 25 (16) 1-[4-[4-(8-Methoxyoctyloxy)phenyl]benzoyl]benzotriazole-3-oxide IR (KBr): 2931, 1793, 1770, 1600 cm^{-1} NMR (CDCl₃, δ): 1.2-1.7 (10H, m), 1.7-1.93 (2H, m), 3.34 (3H, s), 3.38 (2H, t, J=6.4Hz), 4.03 (2H, t)t, J=6.5Hz), 7.03 (2H, d, J=8.8Hz), 7.4-7.7 (3H, m), 7.63 (2H, d, J=8.8Hz), 7.79 (2H, d, J=8.6Hz), 8.12 (1H, d, J=8.2Hz), 8.32 (2H, d, J=8.6Hz) Preparation 25 (17) 1-[4-[4-(4-Hexyloxyphenyl)piperazin-1vl]benzoyl]benzotriazole 3-oxide IR (KBr): 1770, 1604, 1510, 1232, 1186 cm⁻¹ NMR (CDCl₃, δ): 0.91 (3H, t, J=6.6Hz), 1.2-1.6 (6H, (-m), 1.6-1.9 (2H, m), 3.1-3.3 (4H, m), 3.5-3.7 (4H, m), 3.93 (2H, t, J=6.5Hz), 6.87 (2H, d, J=9.2Hz), 6.96 (2H, d, J=9.2Hz), 7.00 (2H, d, J=9.0Hz), 7.3-7.7 (3H, m), 8.10 (1H, d, J=8.2Hz), 8.15 (2H, d, J=9.0Hz) APCI-MASS: $e/z = 500 (M+H^+)$ Preparation 25 (18) 1-[4-[5-(4-Pentyloxyphenyl)isoxazol-3-yl]benzoyl]benzotriazole 3-oxide 2950, 2837, 1774, 1616, 1508, 1452, 1251, IR (KBr) :

 1006 cm^{-1}

5

10

15

20

25

30

NMR (CDCl₃, δ): 0.95 (3H, t, J=7.1Hz), 1.3-1.5 (4H, m), 1.8-2.0 (2H, m), 4.04 (2H, t, J=6.5Hz), 6.81 (1H, s), 7.0-7.1 (3H, m), 7.4-7.6 (3H, m), 7.80 (2H, d, J=8.8Hz), 8.0-8.2 (3H, m), 8.40 (2H, d, J=8.4Hz)

APCI-MASS: $469 (M+H)^+$

Preparation 26 (1)

5

25

35

and 4-(4-pentylphenyl)cinnamic acid (0.40 g) in dichloromethane (12.0 ml) was added 1-ethyl-3-(3'-dimethylaminopropyl)carbodiimide hydrochloride (0.33 g) (WSCD·HCl), and the mixture was stirred for 12 hours at ambient temperature. The reaction mixture was diluted with dichloromethane, and washed with brine, and dried over magnesium sulfate. After magnesium sulfate was filtered off, evaporation of the filtrate and trituration with acetonitrile gave 1-[4-(4-

pentylphenyl)cinnamoyl]benzotriazole 3-oxide (0.24 g).

NMR (CDCl₃, δ): 0.91 (3H, t, J=6.6Hz), 1.20-1.50 (4H, m), 1.50-1.75 (2H, m), 2.66 (2H, t, J=8.0Hz), 7.20-8.25 (11H, m), 8.55 (1H, d, J=8.4Hz)

APCI-MASS: $e/z = 412 (M^++1)$

The following compounds [Preparation 26 (2) to (7)] were obtained according to a similar manner to that of Preparation 26 (1).

30 Preparation 26 (2)

1-[3-[4-(4-Pentyloxyphenyl)phenyl]-2-propanoyl]-benzotriazole 3-oxide

NMR (CDCl₃, δ): 0.90-1.05 (3H, m), 1.30-1.65 (4H, m), 1.70-1.95 (2H, m), 3.10-3.60 (4H, m), 3.90-4.10 (2H, m), 6.88-7.08 (2H, m),

7.20-8.50 (10H, m)

```
APCI-MASS : e/z = 430 (M^{+}+1)
      Preparation 26 (3)
 5
            1-[4-(4-Heptylphenyl)cinnamoyl]benzotriazole 3-oxide
            NMR (CDCl<sub>3</sub>, \delta): 0.89 (3H, t, J=6.7Hz), 1.20-1.50
                 (8H, m), 1.50-1.80 (2H, m), 2.66 (2H, t,
                 J=7.6Hz), 6.70-8.60 (12H, m)
            APCI-MASS: e/z = 440 (M^++1)
10
      Preparation 26 (4)
            1-[3-[4-(4-Pentylphenyl)phenyl]-2-propanoyl]-
      benzotriazole 3-oxide
            NMR (CDCl<sub>3</sub>, \delta): 0.90 (3H, t, J=6.8Hz), 1.20-1.50
15
                 (4H, m), 1.50-1.76 (2H, m), 2.63 (2H, t,
                 J=7.4Hz), 3.21 (2H, t, J=7.3Hz), 3.51 (2H, t,
                 J=7.3Hz), 7.20-7.45 (4H, m), 7.45-7.70 (5H, m),
                 7.78 (1H, dt, J=1.0 and 7.2Hz), 8.00 (1H, d,
                 J=8.2Hz), 8.42 (1H, d, J=8.4Hz)
           APCI-MASS : e/z = 414 (M^{+}+1)
20
      Preparation 26 (5)
            1-[3-(6-Heptyloxynaphthalen-2-yl)propanoyl]-
      benzotriazole 3-oxide
25
           NMR (CDCl<sub>3</sub>, \delta): 0.80-1.10 (3H, m), 1.20-1.70 (8H,
                 m), 1.70-2.00 (2H, m), 3.10-3.70 (4H, m), 4.00-
                 4.18 (2H, m), 6.80-8.50 (10H, m)
           APCI-MASS: e/z = 432 (M^++1)
30
      Preparation 26 (6)
           1-[3-(6-Heptyloxynaphthalen-2-yl)propenoyl]-
      benzotriazole 3-oxide
           NMR (CDCl<sub>3</sub>, \delta): 0.90 (3H, t, J=6.5Hz), 1.20-1.65
                 (8H, m), 1.75-1.95 (2H, m), 4.10 (2H, d,
35
                 J=6.5Hz), 6.75-8.62 (8H, m)
```

APCI-MASS: $e/z = 430 (M^++1)$

Preparation 26 (7)

5

15

20

25

1-(4-Hexylphenylbenzoyl)benzotriazole 3-oxide

NMR (CDCl₃, δ): 0.90 (3H, t, J=4.4Hz), 1.2-1.5 (6H, m), 1.6-1.8 (2H, m), 2.68 (2H, t, J=8.0Hz), 7.32 (2H, d, J=8.2Hz), 7.4-7.7 (5H, m), 7.81 (2H, d, J=6.6Hz), 8.10 (2H, d, J=8.1Hz), 8.32 (2H, d, J=7.6Hz)

10 APCI-MASS: $e/z = 400 (M^{+}+1)$

Preparation 27

To a solution of 4-octyloxyphenol (1 g) in dimethylformamide (10 ml) and pyridine (0.364 ml) was added N,N'-disuccinimidylcarbonate (1.16 g). The mixture was stirred for 12 hours at ambient temperature. The reaction mixture was added to a mixture of water and ethyl acetate. The organic layer was taken, and dried over magnesium sulfate. The magnesium sulfate was filtered off, and the filtrate was evaporated under reduced pressure to give 4-octyloxyphenylsuccinimidyl carbonate (0.59 g).

IR (KBr) : 2927, 1876, 1832, 1735 cm⁻¹

NMR (CDCl₃, δ) : 0.89 (3H, t, J=6.3Hz), 1.2-1.55 (10H, m), 1.67-1.87 (2H, m), 2.87 (4H, s), 3.94 (2H, t, J=6.5Hz), 6.89 (2H, d, J=9.2Hz), 7.17 (2H, d, J=9.2Hz)

APCI-MASS : e/z = 364 (M⁺+1)

The Starting Compound and the Object Compounds in the following Examples are illustrated by chemical formulae as below.

The Starting Compound (the same in all Examples)

The Object Compounds

$$H_3$$
C
 H_3 C
 H_4
 H_5
 H_6
 H_7
 H_8
 $H_$

Example No.	. R ¹
1 (1)	-co————————————————————————————————————
1 (2)	-co-N-N-(CH ₂) ₇ CH ₃
1 (3)	-co-(cH ₂) ₈ -N _N
1 (4)	-co o-(cH ₂) ₇ CH ₃
1 (5)	-co -c- (CH ₂) ₇ CH ₃
1 (6)	—со — о- (сн ₂) 7сн ₃
1 (7)	-co-o-(CH ₂) ₇ CH ₃
1 (8)	-co-o-cH ₂ -o-(cH ₂) ₆ CH ₃

(·)		
	Example No.	R ¹
5	1 (9)	O-(CH ₂) ₄ CH ₃ -CO-(CH ₂) ₄ CH ₃
10	1 (10)	-со о- (сн ₂) 7сн ₃
	1 (11)	-co -(CH ₂) ₄ CH ₃
15	1 (12)	-co-(CH ₂) ₇ CH ₃
20	1 (13)	-co-(CH ₂) ₇ CH ₃
25	1 (14)	-co-(CH ₂) ₈ CH ₃
30	1 (15)	-co-(CH ₂) ₅ CH ₃

	Example No.	. R ¹
5	1 (16)	-co -c- (CH ₂) ₄ CH ₃
	1 (17)	-co (CH ₂) ₆ CH ₃
10	1 (18)	-co (CH ₂) ₄ CH ₃
15	1 (19)	-CO(CH ₂) ₄ CH ₃
20	1 (20)	-CO (CH ₂) ₆ CH ₃
25	1 (21)	-co -ccH ₂) 6CH ₃
	1 (22)	-co—(сн ₂) ₅ сн ₃
30	1 (23)	-co—N—N—O-(CH ₂) ₅ CH ₃
35	1 (24) major product	-co-(сн ₂) 8осн ₃

	Example No.	R ¹
5	1 (24) minor product	-co-(CH ₂) ₆ -CH=CH ₂
10	1 (25)	-co————————————————————————————————————
	2	-co-n n-(cH ₂) ₇ cH ₃
15	3 (1)	-co-ch ₂ -o-(ch ₂) ₇ сн ₃
20	3 (2)	-co-N-c-O-(CH ₂) ₆ CH ₃
25	3 (3)	-co-(CH ₂) ₈ CH ₃
30	3 (4)	-co-(CH ₂) ₇ CH ₃
2.5	3 (5)	-co-c≡c o-(cH ₂) ₆ cH ₃
35		

Example No.	R ¹
4 (1)	-co-N-O-(CH ₂) ₆ CH ₃
4 (2)	-co-N-(CH ₂) ₆ CH ₃
5	-CO-C≣C-(CH ₂) ₄ CH ₃
6	-co-(CH ₂) ₆ CH ₃

Example 1(1)

To a solution of The Starting Compound (1 g) and 1-(6-octyl-oxymethylpicolinoyl)benzotriazole 3-oxide (0.399 g) in N,N-dimethylformamide (10 ml) was added 4-(N,N-dimethylamino)pyridine (0.140 g), and stirred for 12 hours at ambient temperature. The reaction mixture was pulverized with ethyl acetate. The precipitate was collected by filtration, and dried under reduced pressure. The powder was dissolved in water, and subjected to column chromatography on ion exchange resin (DOWEX-50WX4 (Trademark: prepared by Dow Chemical)) eluting with water. The fractions containing the object compound were combined, and subjected to column chromatography on ODS (YMC-gel·ODS-AM·S-50) (Trademark: prepared by Yamamura

Chemical Lab.) eluting with 50% methanol aqueous solution. The fractions containing the object compound were combined, and evaporated under reduced pressure to remove methanol. The residue was lyophilized to give The Object Compound (1).

IR (KBr): 3347, 1664, 1629, 1517 cm⁻¹

NMR (DMSO-d₆, δ): 0.86 (3H, t, J=6.7Hz), 0.98 (3H, d, J=6.7Hz), 1.09 (3H, d, J=6.0Hz), 1.2-1.47 (10H, m), 1.47-1.67 (2H, m), 1.67-2.06 (3H, m), 2.06-2.5 (4H, m), 3.19 (1H, m), 3.53 (2H, t, J=6.4Hz), 3.5-3.85 (2H, m), 3.85-4.7 (13H, m), 5.35 (11H, m), 5.56 (1H, d, J=5.7Hz), 6.73 (1H, d, J=8.3Hz), 6.83 (1H, d, J=8.3Hz), 6.89 (1H, s), 7.05 (1H, s), 7.11 (1H, s), 7.32 (1H, m), 7.43 (1H, d, J=8.5Hz), 7.63 (1H, d, J=7.3Hz), 7.85-8.13 (4H, m), 8.66 (1H, d, J=7.8Hz), 8.84 (1H, s)

FAB-MASS: $e/z = 1228 (M^++Na)$

Elemental Analysis Calcd. for $C_{50}H_{72}N_{9}O_{22}SNa\cdot 6H_{2}O$: C 45.49, H 6.44, N 9.59 Found : C 45.89, H 6.52, N 9.69

Example 1 (2)

The Object Compound 1 (2) was obtained according to a similar manner to that of Example 1 (1).

IR (KBr): 3353, 1666, 1510, 1236 cm⁻¹

NMR (DMSO-d₆, δ): 0.86 (3H, t, J=6.7Hz), 0.96 (3H, d, J=6.7Hz), 1.06 (3H, d, J=5.8Hz), 1.2-1.5 (10H, m), 1.55-2.05 (5H, m), 2.11-2.7 (4H, m), 3.0-3.3 (5H, m), 3.3-3.5 (4H, m), 3.6-4.5 (15H, m), 4.6-5.6 (12H, m), 6.6-7.2 (10H, m), 7.2-7.5 (3H, m), 7.81 (2H, d, J=8.8Hz), 8.05 (1H, d, J=8.7Hz), 8.28 (1H, d, J=8.7Hz), 8.41 (1H, d, J=6.7Hz), 8.84 (1H, s)

FAB-MASS : $e/z = 1373 (M^++Na)$

35

30

5

10

15

20

Elemental Analysis Calcd. for $C_{60}H_{83}N_{10}O_{22}SNa\cdot 4H_2O$:

C 50.63, H 6.44, N 9.84

Found: C 50.59, H 6.59, N 9.79

5 <u>Example 1 (3)</u>

10

15

20

25

The Object Compound 1 (3) was obtained according to a similar manner to that of Example 1 (1).

IR (KBr) : 3350, 1664, 1627, 1047 cm^{-1}

NMR (DMSO-d₆, δ): 0.96 (3H, d, J=6.6Hz), 1.08 (3H, d, J=5.7Hz), 1.15-1.53 (8H, m), 1.55-2.1 (9H, m), 2.1-2.45 (3H, m), 2.5-2.7 (1H, m), 3.18 (1H, m), 3.6-3.83 (2H, m), 3.83-4.6 (17H, m), 4.7-5.4 (11H, m), 5.51 (1H, d, J=5.9Hz), 6.73 (1H, d, J=8.2Hz), 6.83 (1H, d, J=8.2Hz), 6.85 (1H, s), 7.03 (2H, d, J=8.4Hz), 7.05 (1H, s), 7.30 (1H, s), 7.2-7.5 (2H, m), 7.67 (2H, d, J=8.4Hz), 7.71 (2H, d, J=7.4Hz), 7.94 (1H, s), 7.96 (2H, d, J=7.4Hz), 8.06 (1H, d, J=8.0Hz), 8.25 (1H, d, J=6.7Hz), 8.50 (1H, s), 8.74 (1H, d, J=6.7Hz),

FAB-MASS : $e/z = 1356 (M^++Na)$

8.84 (1H, s)

Elemental Analysis Calcd. for $C_{58}H_{76}N_{11}O_{22}SNa\cdot 4H_2O$:

C 49.53, H 6.02, N 10.95

Found: C 49.26, H 6.22, N 10.77

Example 1 (4)

The Object Compound 1 (4) was obtained according to a similar manner to that of Example 1 (1).

IR (KBr) : 3350, 1660, 1631, 1047 cm^{-1}

NMR (DMSO-d₆, δ): 0.86 (3H, t, J=6.9Hz), 0.97 (3H, d, J=6.6Hz), 1.09 (3H, d, J=5.3Hz), 1.2-1.5 (10H, m), 1.37 (6H, s), 1.55-2.0 (5H, m), 2.1-2.6 (4H, m), 3.16 (1H, m), 3.73 (2H, m), 3.89 (2H, t, J=6.3Hz), 3.95-4.49 (11H, m), 4.68-5.21 (10H, m), 5.25 (1H, d, J=4.1Hz), 5.53 (1H, d,

J=5.7Hz), 6.73 (1H, d, J=8.2Hz), 6.75-6.85 (4H, m), 6.91 (1H, d, J=8.2Hz), 7.05 (1H, s), 7.15 (1H, s), 7.3-7.5 (2H, m), 7.9-8.2 (3H, m), 8.84 (1H, s)

FAB-MASS : $e/z = 1271 (M^++Na)$

Elemental Analysis Calcd. For $C_{53}H_{77}N_8O_{23}SNa\cdot 4H_2O$:

C 48.18, H 6.48, N 8.48

Found: C 48.04, H 6.51, N 8.38

10 <u>Example 1 (5)</u>

5

15

20

The Object Compound 1 (5) was obtained according to a similar manner to that of Example 1 (1).

IR (KBr) : 1666, 1629, 1222 cm⁻¹

NMR (DMSO-d₆, δ): 0.85 (3H, t, J=6.6Hz), 0.9-1.12 (6H, m), 1.12-1.52 (13H, m), 1.52-1.93 (5H, m), 2.08-2.55 (4H, m), 3.16 (1H, m), 3.6-5.3 (26H, m), 5.49 + 5.54 (1H, d, J=5.8Hz, mixture of diastereomer), 6.60-7.1 (7H, m), 7.04 (1H, s), 7.1 (1H, m), 7.2-7.5 (2H, m), 7.9-8.43 (3H, m), 8.83 (1H, s)

FAB-MASS: $e/z = 1257 (M^++Na)$

Elemental Analysis Calcd. for $C_{52}H_{75}N_8O_{23}SNa\cdot 3H_2O$:

C 48.44, H 6.33, N 8.69

Found: C 48.16, H 6.51, N 8.53

25

Example 1 (6)

The Object Compound 1 (6) was obtained according to a similar manner to that of Example 1 (1).

IR (KBr) : 3349, 1666, 1629, 1259 cm^{-1}

NMR (DMSO-d₆, δ): 0.86 (3H, t, J=6.7Hz), 0.9 (3H, d, J=5.7Hz), 0.96 (3H, d, J=6.7Hz), 1.1-1.55 (19H, m), 1.55-2.0 (5H, m), 2.0-2.47 (4H, m), 2.65-3.25 (3H, m), 3.5-5.13 (27H, m), 5.17 (1H, d, J=3.2Hz), 5.24 (1H, d, J=4.5Hz), 5.38 (1H, d, J=5.9Hz), 6.5-6.9 (5H, m), 6.9-7.1 (3H, m), 7.2-

7.46 (2H, m), 7.7-8.1 (3H, m), 8.83 (1H, s)

FAB-MASS: $e/z = 1368 (M^++Na)$

Elemental Analysis Calcd. for $C_{58}H_{84}N_9O_{24}SNa\cdot 5H_2O$:

C 48.50, N 6.60, N 8.78

Found: C 48.47, H 6.83, N 8.78

Example 1 (7)

5

15

20

30

The Object Compound 1 (7) was obtained according to a similar manner to that of Example 1 (1).

IR (KBr): 3350, 1666, 1502, 1199 cm^{-1}

NMR (DMSO-d₆, δ): 0.86 (3H, t, J=6.6Hz), 0.97 (3H,

d, J=6.7Hz), 1.06 (3H, d, J=5.7Hz), 1.2-1.5

(10H, m), 1.55-2.0 (5H, m), 2.1-2.6 (4H, m),

3.17 (1H, m), 3.7-4.5 (15H, m), 4.7-5.22 (10H,

m), 5.24 (1H, d, J=4.4Hz), 5.60 (1H, d,

J=5.9Hz), 6.68-7.03 (8H, m), 7.04 (1H, s), 7.2-

7.42 (2H, m), 7.85-8.1 (3H, m), 8.83 (1H, s)

FAB-MASS: $e/z = 1229 (M^++Na)$

Elemental Analysis Calcd. for $C_{50}H_{71}N_8O_{23}SNa\cdot 5H_2O$:

C 46.29, H 6.29, N 8.64

Found: C 46.39, H 6.05, N 8.72

Example 1 (8)

The Object Compound 1 (8) was obtained according to a similar manner to that of Example 1 (1).

IR (KBr) : 3350, 1666, 1631, 1513 cm⁻¹

NMR (DMSO- d_6 , δ): 0.88 (3H, t, J=6.2Hz), 0.97 (3H,

d, J=6.7Hz), 1.04 (3H, d, J=5.7Hz), 1.2-1.58

(8H, m), 1.58-2.0 (5H, m), 2.0-2.6 (4H, m), 3.17

(1H, m), 3.6-4.5 (15H, m), 4.63-5.33 (13H, m),

5.53 (1H, d, J=5.9Hz), 6.73 (1H, d, J=8.2Hz),

6.82 (1H, d, J=8.2Hz), 6.84 (1H, s), 6.95-7.52

(7H, m), 7.66 (1H, d, J=7.6Hz), 7.7-7.9 (3H, m),

8.05 (1H, d, J=9.1Hz), 8.15 (1H, d, J=7.6Hz),

35 8.85 (1H, s)

FAB-MASS : $e/z = 1279 \ (M^+ + Na)$ Elemental Analysis Calcd. for $C_{54}H_{73}N_8O_{23}SNa\cdot 5H_2O$:

C 48.14, H 6.21, N 8.32 Found: C 48.43, H 6.28, N 8.30

5

10

Example 1 (9)

The Object Compound 1 (9) was obtained according to a similar manner to that of Example 1 (1).

IR (KBr): 3347, 2956, 1664, 1633, 1508, 1444, 1268, 1047 cm⁻¹

NMR (DMSO-d₆, δ): 0.9-1.1 (9H, m), 1.06 (3H, d, J=5.9Hz), 1.3-1.5 (8H, m), 1.6-2.0 (7H, m), 2.1-2.4 (3H, m), 2.5-2.6 (1H, m), 3.1-3.3 (1H, m), 3.6-4.4 (17H, m), 4.7-5.0 (8H, m), 5.09 (1H, d, J=5.5Hz), 5.16 (1H, d, J=3.1Hz), 5.24 (1H, d, J=4.5Hz), 6.73 (1H, d, J=8.2Hz), 6.8-6.9 (2H, m), 6.98 (1H, d, J=8.3Hz), 7.05 (1H, d, J=1.7Hz), 7.3-7.6 (5H, m), 8.08 (1H, d, J=8.9Hz), 8.25 (1H, d, J=8.4Hz), 8.54 (1H, d, J=7.5Hz), 8.83 (1H, s)

20

15

FAB-MASS: $e/z = 1257 (M^++Na)$

Elemental Analysis Calcd. for $C_{52}H_{75}N_8O_{23}SNa\cdot 4H_2O$:

C 47.78, H 6.40, N 8.57

Found: C 47.88, H 6.71, N 8.53

25

30

35

Example 1 (10)

The Object Compound 1 (10) was obtained according to a similar manner to that of Example 1 (1).

IR (KBr): 3350, 2931, 1664, 1625, 1529, 1440, 1276, 1226, 1047 cm⁻¹

NMR (DMSO-d₆, δ): 0.86 (3H, t, J=6.8Hz), 0.97 (3H, d, J=6.7Hz), 1.12 (3H, d, J=5.9Hz), 1.2-1.5 (10H, m), 1.6-2.1 (5H, m), 2.1-2.4 (4H, m), 3.1-3.3 (1H, m), 3.5-4.6 (15H, m), 4.7-5.0 (3H, m), 5.0-5.2 (7H, m), 5.27 (1H, d, J=4.4Hz), 5.55

(1H, d, J=5.7Hz), 6.73 (1H, d, J=8.2Hz), 6.8-7.0 (2H, m), 7.0-7.2 (4H, m), 7.3-7.6 (2H, m), 7.90 (1H, d, J=8.8Hz), 8.0-8.2 (2H, m), 8.8-8.9 (2H, m), 9.06 (1H, d, J=7.2Hz)

FAB-MASS: $e/z = 1281 (M^++Na)$

Elemental Analysis Calcd. for $C_{53}H_{71}N_8O_{24}SNa\cdot 5H_2O$:

C 47.18, H 6.05, N 8.30

Found: C 46.97, H 6.27, N 8.22

10 <u>Example 1 (11)</u>

5

25

35

The Object Compound 1 (11) was obtained according to a similar manner to that of Example 1 (1).

NMR (DMSO-d₆, δ): 0.87-1.05 (6H, m), 1.10 (3H, d, J=5.7Hz), 1.3-1.5 (4H, m), 1.6-1.9 (5H, m), 2.2-2.5 (3H, m), 2.6 (1H, m), 3.1-3.2 (1H, m), 3.7-4.5 (15H, m), 4.8-5.1 (8H, m), 5.09 (1H, d, J=5.64Hz), 5.16 (1H, d, J=3.2Hz), 5.26 (1H, d, J=4.2Hz), 5.52 (1H, d, J=6.0Hz), 6.73 (2H, d, J=8.4Hz), 6.8-6.9 (2H, m), 7.0-7.1 (3H, m), 7.2-7.4 (4H, m), 7.6-7.8 (6H, m), 8.11 (1H, d, J=8.4Hz), 8.29 (1H, d, J=8.4Hz), 8.51 (1H, d, J=7.7Hz), 8.85 (1H, s)

FAB-MASS: $e/z = 1273 (M^++Na)$

Elemental Analysis Calcd. for $C_{55}H_{71}N_8O_{22}SNa\cdot 4H_2O$:

C 49.92, H 6.02, N 8.47

Found: C 49.79, H 6.14, N 8.45

Example 1 (12)

The Object Compound 1 (12) was obtained according to a similar manner to that of Example 1 (1).

IR (KBr): 3330, 2929, 1670, 1629, 1533, 1440, 1280, 1226, 1045, 804 cm⁻¹

NMR (DMSO-d₆, δ): 0.86 (3H, t, J=6.7Hz), 0.97 (3H, d, J=6.7Hz), 1.08 (3H, d, J=5.9Hz), 1.2-1.6 (10H, m), 1.6-2.0 (5H, m), 2.1-2.5 (4H, m), 3.1-

3.3 (1H, m), 3.6-4.5 (15H, m), 4.8-5.1 (9H, m), 5.17 (1H, d, J=3.0Hz), 5.25 (1H, d, J=4.5Hz), 5.56 (1H, d, J=5.6Hz), 6.73 (1H, d, J=8.2Hz), 6.83 (1H, d, J=6.8Hz), 7.1-7.2 (3H, m), 7.3-7.5 5 (3H, m), 7.85 (1H, d, J=8.8Hz), 8.0-8.2 (3H, m), 8.84 (1H, s), 8.96 (1H, d, J=7.2Hz)FAB-MASS: $e/z = 1269 (M^++Na)$ Elemental Analysis Calcd. for $C_{52}H_{71}N_8O_{22}S_2Na\cdot 4H_2O$: C 47.34, H 6.04, N 8.49 Found: C 47.21, H 5.96, N 8.41 10 Example 1 (13) The Object Compound 1 (13) was obtained according to a similar manner to that of Example 1 (1). IR (KBr) : 3345, 2927, 1664, 1629, 1515, 1442, 15 1274, 1047 cm⁻¹ NMR (DMSO- d_6 , δ): 0.85 (3H, t, J=6.7Hz), 0.97 (3H, d, J=6.7Hz), 1.10 (3H, d, J=5.9Hz), 1.2-1.4 (10H, m), 1.5-2.5 (8H, m), 2.46 (3H, s), 2.6920 (2H, t, J=7.7Hz), 3.1-3.4 (2H, m), 3.6-4.5 (17H,m), 4.8-5.2 (8H, m), 6.7-7.0 (3H, m), 7.05 (1H, d, J=1.7Hz), 7.14 (1H, s), 7.3-7.6 (5H, m), 8.0-8.2 (2H, m), 8.47 (1H, d, J=7.0Hz), 8.84 (1H, s) FAB-MASS: $e/z = 1251 (M^+ + Na)$ Elemental Analysis Calcd. for $C_{53}H_{73}N_8O_{22}SNa\cdot 3H_2O$: 25 C 49.61, H 6.21, N 8.73 Found: C 49.88, H 6.44, N 8.74 Example 1 (14)

The Object Compound 1 (14) was obtained according to a similar manner to that of Example 1 (1).

35

IR (KBr) : 3340, 1672, 1627, 1542, 1513, 1440, 1268, 1045 cm⁻¹

NMR (DMSO-d₆, δ): 0.84 (3H, t, J=6.7Hz), 0.94 (3H, d, J=6.7Hz), 1.07 (3H, d, J=6.0Hz), 1.2-1.4

(12H, m), 1.6-2.0 (5H, m), 2.1-2.4 (3H, m), 2.6 (1H, m), 2.96 (2H, t, J=7.4Hz), 3.1-3.3 (1H, m), 3.6-4.5 (13H, m), 4.7-5.2 (11H, m), 5.50 (1H, d, J=5.7Hz), 6.73 (1H, d, J=8.2Hz), 6.8-6.9 (2H, m), 7.04 (1H, s), 7.2-7.5 (3H, m), 7.72 (1H, d, J=8.5Hz), 7.91 (1H, d, J=8.4Hz), 8.05 (1H, d, J=8.4Hz), 8.2-8.4 (1H, m), 8.80 (1H, d, J=7.7Hz), 8.83 (1H, s)

FAB-MASS: $e/z = 1252 (M^++Na)$

Elemental Analysis Calcd. for C₅₂H₇₂N₉O₂₂SNa·6H₂O:

C 46.67, H 6.33, N 9.42

Found: C 46.72, H 6.53, N 9.45

Example 1 (15)

5

20

35

The Object Compound 1 (15) was obtained according to a similar manner to that of Example 1 (1).

IR (KBr) : 3350, 2935, 1664, 1627, 1517, 1446, 1251, 1045 cm^{-1}

NMR (DMSO-d₆, δ): 0.90-1.1 (6H, m), 1.10 (3H, d, J=5.9Hz), 1.2-1.4 (6H, m), 1.6-2.4 (8H, m), 2.6-2.7 (1H, m), 3.1-3.3 (1H, m), 3.7-4.5 (16H, m), 4.7-5.4 (11H, m), 5.51 (1H, d, J=5.6Hz), 6.7-7.0 (3H, m), 7.0-7.6 (7H, m), 7.74 (1H, d, J=8.6Hz), 8.0-8.4 (5H, m), 8.7-8.8 (1H, m), 8.84 (1H, s)

25 FAB-MASS : $e/z = 1301 (M^++Na)$

Elemental Analysis Calcd. for $C_{55}H_{71}N_{10}O_{22}SNa\cdot6H_{2}O$: C 47.62, H 6.03, N 10.01

Found: C 47.65, H 6.03, N 10.03

30 <u>Example 1 (16)</u>

The Object Compound 1 (16) was obtained according to a similar manner to that of Example 1 (1).

IR (Nujol): 3353, 1668, 1627, 1540, 1515, 1500 cm⁻¹

NMR (DMSO-d₆, δ): 0.80-1.00 (6H, m), 1.06 (3H, d, J=5.9Hz), 1.20-1.53 (4H, m), 1.60-1.95 (5H, m),

2.00-2.65 (8H, m), 2.80 (2H, t, J=7.5Hz), 3.05-3.45 (1H, m), 3.50-3.85 (2H, m), 3.90-4.48 (11H, m), 4.65-5.38 (11H, m), 5.47 (1H, d, J=6.0Hz), 6.65-6.90 (2H, m), 6.90-7.10 (2H, m), 7.10-7.65 (11H, m), 7.90-8.25 (2H, m), 8.30 (1H, d, J=7.8Hz), 8.84 (1H, s)

FAB-MASS: $e/z = 1275.3 (M^++Na)$

Elemental Analysis Calcd. for $C_{55}H_{73}N_8O_{22}SNa\cdot 3H_2O$:

C 50.53, H 6.09, N 8.57

Found: C 50.48, H 6.39, N 8.57

Example 1 (17)

5

10

35

The Object Compound 1 (17) was obtained according to a similar manner to that of Example 1 (1).

IR (Nujol): 3351, 1656, 1623, 1538, 1515 cm⁻¹

NMR (DMSO-d₆, δ): 0.86 (3H, t, J=6.7Hz), 0.96 (3H, d, J=6.7Hz), 1.08 (3H, d, J=5.8Hz), 1.15-1.40

(8H, m), 1.50-2.00 (5H, m), 2.10-2.48 (4H, m), 2.52-2.70 (2H, m), 3.05-3.28 (1H, m), 3.60-4.50

(13H, m), 4.70-5.20 (9H, m), 5.25 (1H, d, J=4.6Hz), 5.52 (1H, d, J=6.0Hz), 6.68-6.92 (4H, m), 7.04 (1H, d, J=1.0Hz), 7.22-7.50 (5H, m), 7.55-7.82 (7H, m), 8.14 (1H, d, J=8.4Hz), 8.31 (1H, d, J=8.4Hz), 8.54 (1H, d, J=7.7Hz), 8.84

(1H, s)

Example 1 (18)

The Object Compound 1 (18) was obtained according to a similar manner to that of Example 1 (1).

FAB-MASS: $e/z = 1285 (M^++Na)$

IR (Nujol): 3351, 1668, 1627, 1540, 1515 cm⁻¹

NMR (DMSO-d₆, δ): 0.87 (3H, t, J=6.8Hz), 0.96 (3H, d, J=6.7Hz), 1.06 (3H, d, J=5.8Hz), 1.17-1.48

(4H, m), 1.50-1.95 (5H, m), 2.05-2.70 (8H, m), 2.70-2.95 (2H, m), 3.05-3.30 (1H, m), 3.60-3.90

(2H, m), 3.90-4.50 (11H, m), 4.65-5.10 (9H, m), 5.15 (1H, d, J=3.2Hz), 5.23 (1H, d, J=4.2Hz), 5.48 (1H, d, J=6.0Hz), 6.67-6.90 (3H, m), 7.03 (1H, d, J=1.5Hz), 7.15-7.80 (11H, m), 8.00-8.20(2H, m), 8.29 (1H, d, J=7.8Hz), 8.84 (1H, s)5 FAB-MASS: $e/z = -1259 (M^++Na)$ Elemental Analysis Calcd. for $C_{55}H_{73}N_8O_{21}SNa\cdot 6H_2O$: C 50.30, H 6.52, N 8.53 Found: C 50.42, H 6.50, N 8.45 10 <u>Example 1 (19)</u> The Object Compound 1 (19) was obtained according to a similar manner to that of Example 1 (1). IR (Nujol) : 3351, 1668, 1652, 1623, 1540 cm⁻¹ 15 NMR (DMSO- d_6 , δ): 0.87 (3H, t, J=6.7Hz), 0.96 (3H, d, J=6.7Hz), 1.07 (3H, d, J=6.0Hz), 1.25-1.45 (4H, m), 1.50-2.00 (5H, m), 2.05-2.48 (4H, m), 2.50-2.75 (2H, m), 3.60-4.50 (13H, m), 4.68-5.25 (10H, m), 5.27 (1H, d, J=4.5Hz), 5.53 (1H, d,20 J=6.0Hz), 6.67-6.98 (4H, m), 7.05 (1H, d, J=1.0Hz), 7.22-7.58 (5H, m), 7.58-7.90 (7H, m), 8.16 (1H, d, J=9.0Hz), 8.34 (1H, d, J=8.4Hz), 8.57 (1H, d, J=7.7Hz), 8.85 (1H, s) FAB-MASS: $e/z = 1258 (M^++Na)$ Elemental Analysis Calcd. for $C_{55}H_{71}N_8O_{21}SNa\cdot 5H_2O$: 25 C 49.84, H 6.15, N 8.45 Found: C 49.77, H 6.27, N 8.39 Example 1 (20) 30 The Object Compound 1 (20) was obtained according to a similar manner to that of Example 1 (1). IR (Nujol) : 3353, 1670, 1629, 1540, 1508 cm^{-1}

NMR (DMSO-d₆, δ): 0.88 (3H, t, J=6.5Hz), 0.97 (3H,

35

d, J=6.8Hz), 1.04 (3H, d, J=5.9Hz), 1.20-1.58

(8H, m), 1.60-1.96 (5H, m), 2.08-2.60 (6H, m),

2.70-3.00 (2H, m), 3.00-3.40 (1H, m), 3.60-3.85 (2H, m), 3.85-4.50 (13H, m), 4.50-5.60 (12H, m), 6.65-6.90 (3H, m), 7.00-7.15 (3H, m), 7.18-7.50 (4H, m), 7.59 (1H, s), 7.62-7.78 (2H, m), 7.95-8.20 (2H, m), 8.30 (1H, d, J=7.7Hz), 8.83 (1H, s)

FAB-MASS : $e/z = 1277 (M^++Na)$

Elemental Analysis Calcd. for $C_{55}H_{75}N_8O_{22}SNa\cdot 4H_2O$:

C 49.77, H 6.30, N 8.44

Found: C 49.67, H 6.31, N 8.40

Example 1 (21)

5

10

The Object Compound 1 (21) was obtained according to a similar manner to that of Example 1 (1).

IR (Nujol): 3351, 1654, 1623, 1538, 1515 cm⁻¹

NMR (DMSO-d₆, δ): 0.87 (3H, t, J=6.7Hz), 0.97 (3H, d, J=6.7Hz), 1.08 (3H, d, J=5.9Hz), 1.20-1.58

(8H, m), 1.66-1.95 (5H, m), 2.10-2.60 (4H, m), 3.09-3.30 (1H, m), 3.58-4.60 (15H, m), 4.69-5.20

(10H, m), 5.24 (1H, d, J=4.5Hz), 5.51 (1H, d, J=6.0Hz), 6.68-6.95 (4H, m), 7.04 (1H, d, J=1.0Hz), 7.10-7.73 (7H, m), 7.73-7.90 (2H, m), 7.98 (1H, d, J=1.9Hz), 8.10 (1H, d, J=8.4Hz), 8.32 (1H, d, J=8.4Hz), 8.32 (1H, d, J=8.4Hz), 8.50 (1H, d, J=7.7Hz), 8.84 (1H, s)

FAB-MASS: $e/z = 1275 (M^++Na)$

Elemental Analysis Calcd. for $C_{55}H_{73}N_8O_{22}SNa\cdot 5H_2O$:

C 50.38, H 6.38, N 8.55

Found: C 49.98, H 6.37, N 8.41

Example 1 (22)

30

35

The Object Compound 1 (22) was obtained according to a similar manner to that of Example 1 (1).

IR (KBr): 3340, 2931, 1664, 1627, 1531, 1444, 1278, 1047 cm⁻¹

NMR (DMSO- d_6 , δ): 0.86 (3H, t, J=6.6Hz), 0.96 (3H, d, J=6.8Hz), 1.08 (3H, d, J=5.9Hz), 1.2-1.4 (6H, m), 1.5-1.7 (2H, m), 1.7-2.1 (3H, m), 2.2-2.4 (3H, m), 2.6-2.7 (3H, m), 3.1-3.2 (1H, m), 3.7-4.6 (13H, m), 4.78 (1H, d, J=6.0Hz), 4.8-5.1 5 (1H, m), 5.09 (1H, d, J=5.6Hz), 5.16 (1H, d, d)J=3.2Hz), 5.24 (1H, d, J=4.4Hz), 5.52 (1H, d, J=6.0Hz), 6.73 (1H, d, J=8.2Hz), 6.83 (2H, d, J=8.3Hz), 7.05 (1H, s), 7.3-7.5 (5H, m), 7.65 10 (2H, d, J=8.2Hz), 7.74 (2H, d, J=8.4Hz), 7.98(2H, d, J=8.4Hz), 8.11 (1H, d, J=8.4Hz), 8.31(1H, d, J=8.4Hz), 8.79 (1H, d, J=7.7Hz), 8.84(1H, s)FAB-MASS: $e/z = 1245 (M^++Na)$ Elemental Analysis Calcd. for $C_{54}H_{71}N_8O_{21}SNa\cdot 4H_2O$: 15 C 50.07, H 6.15, N 8.65 Found: C 50.26, H 6.44, N 8.67 Example 1 (23)

The Object Compound 1 (23) was obtained according to a similar manner to that of Example 1 (1).

NMR (DMSO-d₆, δ): 0.91 (3H, t, J=6.7Hz), 0.96 (3H, d, J=6.8Hz), 1.05 (3H, d, J=5.6Hz), 1.2-1.5 (6H, m), 1.6-2.1 (5H, m), 2.1-2.7 (4H, m), 3.0-3.5 (9H, m), 3.6-4.5 (15H, m), 4.6-5.6 (11H, m), 6.73 (1H, d, J=8.2Hz), 6.8-6.9 (4H, m), 6.95 (2H, d, J=8.6Hz), 7.02 (2H, d, J=9.2Hz), 7.04 (1H, s), 7.2-7.5 (3H, m), 7.82 (2H, d, J=8.6Hz), 8.06 (1H, d, J=8Hz), 8.25 (1H, d, J=6.7Hz), 8.43 (1H, d, J=6.7Hz), 8.85 (1H, s)

IR (KBr) : 3350, 1668, 1629, 1510 cm^{-1}

FAB-MASS: e/z = 1345 (M+Na)

Elemental Analysis Calcd. for $C_{58}H_{79}N_{10}O_{22}SNa\cdot 6H_2O$:

C 48.67, H 6.41, N 9.78

Found: C 48.80, H 6.46, N 9.82

Example 1 (24)

The Object Compound 1 (24) was obtained according to a similar manner to that of Example 1 (1).

5 Major product

10

15

IR (KBr) : 3350, 1668, 1631, 1047 cm⁻¹

NMR (DMSO-d₆, δ) : 0.96 (3H, d, J=6.7Hz), 1.08 (3H, d, J=5.7Hz), 1.2-1.6 (10H, m), 1.6-2.4 (8H, m), 2.5-2.7 (1H, m), 3.18 (1H, m), 3.21 (3H, s), 3.29 (2H, t, J=6.4Hz), 3.6-3.83 (2H, m), 3.83-4.6 (13H, m), 4.7-5.4 (11H, m), 5.51 (1H, d, J=5.9Hz), 6.73 (1H, d, J=8.2Hz), 6.83 (1H, d, J=8.2Hz), 6.85 (1H, s), 7.04 (2H, d, J=8.4Hz), 7.06 (1H, s), 7.31 (1H, s), 7.2-7.5 (2H, m), 7.67 (2H, d, J=8.4Hz), 7.71 (2H, d, J=8.4Hz), 7.96 (2H, d, J=8.4Hz), 8.06 (1H, d, J=8Hz), 8.25 (1H, d, J=6.7Hz), 8.74 (1H, d, J=6.7Hz), 8.84 (1H, s)

FAB-MASS: e/z = 1319 (M+Na)

Elemental Analysis Calcd. for $C_{57}H_{77}N_8O_{23}SNa\cdot 4H_2O$: C 49.99, H 6.26, N 8.18 Found : C 49.74, H 6.27, N 8.06

Minor product

25 IR (KBr): 3350, 1668, 1631 cm⁻¹

NMR (DMSO-d₆, δ): 0.96 (3H, d, J=6.7Hz), 1.08 (3H, d, J=5.7Hz), 1.2-1.6 (6H, m), 1.6-2.1 (7H, m),

2.1-2.5 (3H, m), 2.5-2.7 (1H, m), 3.18 (1H, m),

3.6-3.8 (2H, m), 3.8-4.6 (13H, m), 4.6-5.2 (12H, m), 5.26 (1H, d, J=4.6Hz), 5.53 (1H, d, J=5.8Hz), 5.6-6.0 (1H, m), 6.73 (1H, d, J=8.2Hz), 6.83 (1H, d, J=8.3Hz), 6.85 (1H, s),

7.04 (2H, d, J=8.5Hz), 7.06 (1H, s), 7.30 (1H, s), 7.2-7.5 (2H, m), 7.68 (2H, d, J=8.5Hz), 7.72 (2H, d, J=8.5Hz), 7.96 (2H, d, J=8.5Hz), 8.06

(1H, d, J=8Hz), 8.25 (1H, d, J=6.7Hz), 8.74 (1H, d, J=6.7Hz), 8.85 (1H, s)

FAB-MASS : e/z = 1287 (M+Na)

Elemental Analysis Calcd. for $C_{56}H_{73}N_8NaO_{22}S\cdot 7H_2O$:

C 48.34, H 6.30, N 8.05

Found: C 48.19, H 6.19, N 7.99

Example 1 (25)

The object Compound 1 (25) was obtained according to a similar manner to that of Example 1 (1).

IR (KBr): 3350, 2935, 2873, 1668, 1629, 1538, 1506, 1438, 1257, 1049 cm⁻¹

NMR (DMSO-d₆, δ): 0.9-1.0 (6H, m), 1.08 (3H, d, J=5.7Hz), 1.2-1.6 (4H, m), 1.6-2.0 (5H, m), 2.1-2.4 (3H, m), 2.5-2.6 (1H, m), 3.1-3.2 (1H, m), 3.6-4.6 (15H, m), 4.7-5.2 (10H, m), 5.26 (1H, d J=4.5Hz), 5.55 (1H, d, J=5.9Hz), 6.7-6.9 (3H, m), 7.0-7.6 (7H, m), 7.85 (2H, d, J=8.6Hz), 7.9-8.2 (4H, m), 8.26 (1H, d, J=7.7Hz), 8.8-9.0 (2H, m)

FAB-MASS : $1314.3 (M+Na)^{+}$

Elemental Analysis Calcd. for $C_{56}H_{70}N_9O_{23}NaS\cdot 7H_2O$:

C 47.42, H 5.97, N 8.89

Found: C 47.33, H 5.85, N 8.73

25

30

35

15

20

5

Example 2

To a solution of The Starting Compound (1 g) and succinimido 4-(4-octyloxyphenyl)piperazine-1-carboxylate (0.45 g) in N,N-dimethylformamide (10 ml) was added 4-dimethylaminopyridine (0.141 g), and stirred for 5 days at 50°C. The reaction mixture was pulverized with ethyl acetate. The precipitate was collected by filtration, and dried under reduced pressure. The powder was dissolved in water, and subjected to column chromatography on ion exchage resin (DOWEX-50WX4) eluting with water. The

fractions containing the object compound were combined, and subjected to column chromatography on ODS (YMCgel·ODS-AM·S-50) eluting with 50% acetonitrile aqueous solution. The fractions containing the object compound 5 were combined, and evaporated under reduced pressure to remove acetonitrile. The residue was lyophilized to give crude The Object Compound (23). The powder of crude The Object Compound (23) was purified by preparative HPLC utilizing a C₁₈ µ Bondapak resin (Waters Associates, Inc.) 10 which was eluted with a solvent system comprised of (acetonitrile-pH 3 phosphate buffer = 40:60) at a flow rate of 80 ml/minute using a Shimadzu LC-8A pump. column was monitored by a UV detector set at 240 um. fractions containing the object compound were combined, 15 and evaporated under reduced pressure to remove acetonitrile. The residue was subjected to column chromatography on ion exchange resin (DOWEX-50WX4) eluting with water. The fractions containing the object compound were combined, and subjected to column chromatography on 20 ODS (YMC-gel·ODS-AM·S-50) eluting with 50% acetonitrile aqueous solution. The fractions containing the object compound were combined, and evaporated under reduced pressure to remove acetonitrile. The residue was lyophilized to give The Object Compound (23) (60 mg). 25 IR (KBr) : 3347, 1629, 1511, 1245 cm⁻¹ NMR (DMSO- d_6 , δ): 0.86 (3H, t, J=6.7Hz), 0.95 (3H, d, J=6.8Hz), 1.06 (3H, d, J=5.9Hz), 1.2-1.5 (10H, m), 1.55-1.92 (5H, m), 2.0-2.65 (4H, m), 2.8-3.05 (5H, m), 3.2-4.47 (17H, m), 4.6-5.6 30 (12H, m), 6.6-7.0 (7H, m), 7.03 (1H, s), 7.2-7.5(3H, m), 7.9-8.3 (3H, m), 8.84 (1H, s) FAB-MASS: $e/z = 1297 (M^++Na)$

Elemental Analysis Calcd. for $C_{54}H_{79}N_{10}O_{22}SNa\cdot 6H_2O\cdot CH_3CN$:

C 47.22, H 6.65, N 10.82

Found: C 47.58, H 7.05, N 10.85

Example 3 (1)

To a suspension of 1-hydroxybenzotriazole (0.53 g) and 2-(4-octyloxyphenoxy) acetic acid (1 g) in dichlormethane (30 ml) was added 1-ethyl-3-(3'dimethylaminopropyl)carbodiimide hydrochloride (WSCD·HCl) (0.886 g), and stirred for 3 hours at ambient temperature. The reaction mixture was added to water. The organic layer was taken, and dried over magnesium sulfate. magnesium sulfate was filtered off, and the filtrate was evaporated under reduced pressure to give 1-[2-(4octyloxyphenoxy)acetyl]benzotriazole 3-oxide (892 mg). a solution of 1-[2-(4-octyloxyphenoxy)acetyl]benzotriazole 3-oxide (892 mg) in N, N-dimethylformamide (18 ml) was added 4-(N,N-dimethylamino)pyridine (0.297 g), and stirred for 12 hours at ambient temperature. The reaction mixture was pulverized with ethyl acetate. The precipitate was collected by filtration, and dried under reduced pressure. The powder was added to water, and subjected to ionexchange column chromatography on DOWEX-50WX4, and eluted with water. The fractions containing the object compound were combined, and subjected to column chromatograph on ODS (YMC-gel·ODS-AM·S-50), and eluted with 50% methanol aqueous solution. The fractions containing the object compound were combined, and evaporated under reduced pressure to remove methanol. The residue was lyophilized to give The Object Compound (24) (1.75 g).

IR (KBr): 3350, 1666, 1629, 1228 cm⁻¹

NMR (DMSO-d₆, δ): 0.86 (3H, t, J=6.9Hz), 0.95 (3H, d, J=6.7Hz), 1.04 (3H, d, J=5.7Hz), 1.15-1.5 (10H, m), 1.55-2.0 (5H, m), 2.05-2.5 (4H, m), 3.16 (1H, m), 3.72 (2H, m), 3.88 (3H, t, J=6.3Hz), 4.41 (2H, s), 3.93-4.6 (11H, m), 4.69-5.25 (10H, m), 5.28 (1H, d, J=4.3Hz), 5.57 (1H, d, J=5.7Hz), 6.73 (1H, d, J=8.2Hz), 6.8-7.0 (5H, m), 7.04 (1H, s), 7.09 (1H, s), 7.3-7.4

35

10

15

20

25

(2H, m), 7.92-8.17 (2H, m), 8.29 (1H, d), J=7.5Hz, 8.84 (1H, s)

FAB-MASS: $e/z = 1243 (M^++Na)$

Elemental Analysis Calcd. for $C_{51}H_{73}N_8O_{23}SNa\cdot 4H_2O$:

C 47.36, H 6.31, N 8.66

Found: C 47.22, H 6.44, N 8.37

Example 3 (2)

5

10

15

20

25

30

35

The Object Compound 3 (2) was obtained according to a similar manner to that of Example 3 (1).

IR (KBr): 3350, 2933, 1664, 1628, 1446, 1205, 1045 cm⁻¹

NMR (DMSO-d₆, δ): 0.8-1.1 (9H, m), 1.2-2.0 (19H, m), 2.1-2.3 (3H, m), 3.6-3.8 (4H, m), 3.9-4.4 (13H, m), 4.6-5.0 (8H, m), 5.07 (1H, d, J=5.6Hz), 5.14 (1H, d, J=3.2Hz), 5.23 (1H, d, J=4.3Hz), 5.46 (1H, d, J=6.7Hz), 6.7-6.9 (3H, m), 7.04 (1H, s), 7.2-7.5 (6H, m), 7.8-8.0 (3H, m), 8.05 (1H, d, J=8.4Hz), 8.2-8.4 (2H, m), 8.83 (1H, s)

FAB-MASS: $e/z = 1360 (M^++Na)$

Elemental Analysis Calcd. for $C_{59}H_{80}N_{9}O_{23}SNa\cdot 6H_{2}O$:

C 48.99, H 6.41, N 8.72

Found: C 48.92, H 6.37, N 8.64

Example 3 (3)

The Object Compound 3 (3) was obtained according to a similar manner to that of Example 3 (1).

IR (KBr): 3350, 2927, 1668, 1627, 1535, 1515, 1452, 1440, 1286, 1045 cm⁻¹

NMR (DMSO-d₆, δ): 0.83 (3H, t, J=6.7Hz), 0.95 (3H, d, J=6.7Hz), 1.07 (3H, d, J=5.9Hz), 1.2-1.4 (12H, m), 1.6-2.0 (5H, m), 2.1-2.4 (3H, m), 2.6 (1H, m), 2.82 (2H, t, J=7.4Hz), 3.1-3.2 (1H, m), 3.6-4.5 (13H, m), 4.7-5.2 (11H, m), 5.4-5.6 (1H,

m), 6.72 (1H, d, J=8.2Hz), 6.82 (2H, d, J=8.1Hz), 7.03 (1H, s), 7.2-7.4 (3H, m), 7.47 (1H, d, J=8.5Hz), 7.69 (1H, d, J=8.5Hz), 8.1-8.2 (2H, m), 8.23 (1H, d, J=8.4Hz), 8.62 (1H, d, J=7.8Hz), 8.83 (1H, s)

FAB-MASS: $e/z = 1251 (M^++Na)$

Elemental Analysis Calcd. for $C_{52}H_{73}N_{10}O_{21}SNa\cdot 5H_2O$:

C 47.34, H 6.34, N 10.61

Found: C 47.30, H 6.45, N 10.45

10

15

20

25

35

5

Example 3 (4)

The Object Compound 3 (4) was obtained according to a similar manner to that of Example 3 (1).

NMR (DMSO-d₆, δ): 0.86 (3H, t, J=6.8Hz), 0.96 (3H, t, J=6.7Hz), 1.05 (3H, t, J=5.8Hz), 1.2-1.5 (10H, m), 1.6-2.0 (5H, m), 2.2-2.4 (3H, m), 2.5-2.6 (1H, m), 3.1-3.2 (1H, m), 3.7-4.5 (15H, m), 4.7-5.0 (8H, m), 5.10 (1H, d, J=5.6Hz), 5.17 (1H, d, J=3.1Hz), 5.26 (1H, d, J=4.5Hz), 5.52 (1H, d, J=5.8Hz) 6.73 (1H, d, J=8.2Hz), 6.8-7.0 (3H, m), 7.04 (1H, s), 7.2-7.4 (3H, m), 8.0-8.3 (3H, m), 8.68 (1H, d, J=2.3Hz), 8.7-8.8 (1H, m), 8.85 (1H, m)

FAB-MASS: $e/z = 1214 (M^++Na)$

Elemental Analysis Calcd. for $C_{49}H_{70}N_{9}O_{22}SNa\cdot 4H_{2}O$: C 46.55, H 6.22, N 9.97

Found: C 46.29, H 6.18, N 9.71

Example 3 (5)

30 The Object Compound 3 (5) was obtained according to a similar manner to that of Example 3 (1).

IR (Nujol): 3342, 2210, 1668, 1623 cm⁻¹

NMR (DMSO-d₆, δ): 0.88 (3H, t, J=6.7Hz), 0.97 (3H, d, J=6.7Hz), 1.08 (3H, d, J=6.7Hz), 1.20-1.60 (8H, m), 1.60-2.00 (5H, m), 2.05-2.50 (4H, m),

3.05-3.30 (1H, m), 3.60-4.60 (15H, m), 4.65-5.18 (10H, m), 5.24 (1H, d, J=4.5Hz), 5.58 (1H, d, J=6.0Hz), 6.68-7.10 (4H, m), 7.15-7.65 (5H, m), 7.80-8.30 (6H, m), 8.84 (1H, s), 9.18 (1H, d, J=7.7Hz)

FAB-MASS : $e/z = 1273.5 (M^++Na)$

Example 4 (1)

5

10

15

20

25

30

To a solution of 6-heptyloxy-2-naphthoic acid (0.358 g) and triethylamine (0.174 ml) in N,N-dimethylformamide (10 ml) was added diphenylphosphoryl azide (0.4 ml), and stirred for an hour at ambient temperature. Then, the reaction mixture was stirred for an hour at 100°C. cooling, to the reaction mixture was added The Starting Compound (1 g) and 4-(N, N-dimethylamino)pyridine (0.140 g), and stirred for 10 hours at ambient temperature. reaction mixture was pulverized with ethyl acetate. The precipitate was collected by filtration, and dried under reduced pressure. The powder was dissolved in water, and subjected to column chromatography on ion exchange resin (DOWEX-50WX4) eluting with water. fractions containing the object compound were combined, and subjected to column chromatography on ODS (YMCgel·ODS-AM·S-50) eluting with 50% acetonitrile aqueous solution. The fractions containing the object compound were combined, and evaporated under reduced pressure to remove acetonitrile. The residue was lyophilized to give The Object Compound (29) (0.832 g).

IR (KBr): 3350, 1664, 1629, 1546, 1240 cm⁻¹

NMR (DMSO-d₆, δ): 0.88 (3H, t, J=6.6Hz), 0.97 (3H, d, J=6.7Hz), 1.08 (3H, d, J=5.9Hz), 1.2-1.55 (8H, m), 1.55-2.0 (5H, m), 2.1-2.5 (4H, m), 3.18 (1H, m), 3.6-3.8 (3H, m), 3.9-4.5 (13H, m), 4.7-4.95 (3H, m), 5.0-5.3 (7H, m), 5.59 (1H, d, J=5.8Hz), 6.52 (1H, d, J=8.1Hz), 6.73 (1H, d,

J=8.2Hz), 6.83 (1H, d, J=8.2Hz), 6.90 (1H, s), 7.0-7.15 (3H, m), 7.20 (1H, s), 7.27-7.4 (3H, m), 7.6-7.7 (2H, m), 7.87 (1H, s), 7.95-8.2 (2H, m), 8.69 (1H, s), 8.85 (1H, s)

 $FAB-MS : e/z = 1264 (M^++Na)$

Elemental Analysis Calcd. for C53H72N9O22SNa·5H2O:

C 47.78, H 6.20, N 9.46

Found: C 47.65, H 6.42, N 9.34

10 Example 4 (2)

5

The Object Compound 4 (2) was obtained according to a similar manner to that of Example 4 (1).

IR (KBr) : 3350, 1666, 1629, 1537, 1240 cm^{-1} NMR (DMSO- d_6 , δ): 0.87 (3H, t, J=6.7Hz), 0.97 (3H, d, J=6.7Hz), 1.09 (3H, d, J=5.8Hz), 1.2-1.55 15 (8H, m), 1.55-2.0 (5H, m), 2.07-2.6 (4H, m), 3.18 (1H, m), 3.6-3.85 (3H, m), 3.9-4.5 (13H, m), 4.7-4.98 (3H, m), 5.0-5.3 (7H, m), 5.57 (1H, d, J=5.9Hz), 6.50 (1H, d, J=8.1Hz), 6.73 (1H, d, J=8.2Hz), 6.82 (1H, dd, J=8.2 and 1.7Hz), 6.87 20 (1H, s), 6.97 (2H, d, J=8.8Hz), 7.05 (1H, d, J=1.7Hz), 7.10 (1H, s), 7.23-7.43 (2H, m), 7.38 (2H, d, J=8.8Hz), 7.50 (2H, d, J=8.8Hz), 7.52 (2H, d, J=8.8Hz), 8.0-8.15 (2H, m), 8.65 (1H,25 s), 8.84 (1H, s)

FAB-MASS: $e/z = 1290 (M^++Na)$

Elemental Analysis Calcd. for $C_{55}H_{74}N_9O_{22}SNa\cdot 7H_2O$:

C 47.38, H 6.36, N 9.04

Found: C 47.67, H 6.53, N 9.03

Example 5

30

35

A solution of The Starting Compound (2.45 g), 3-[4-(4-pentylphenyl)phenyl]propiolic acid (0.90 g), <math>1-ethyl-3-(3'-dimethylaminopropyl)carbodiimide hydrochloride (WSCD-HCl) (0.59 g) and triethylamine (0.43 ml) in N,N-

dimethylformamide (50 ml) was stirred for 15 hours at ambient temperature. The reaction mixture was diluted with ethyl acetate, and the resultant precipitate was collected by filtration, and washed in turn with ethyl acetate and diisopropyl ether, and dried under reduced pressure. The powder was dissolved in water, and was subjected to column chromatography on ion exchange resin (DOWEX-50WX4 (Na form, 50 ml)) eluting with water. The fractions containing the object compound were combined, and subjected to reversed phase chromatography on ODS (YMC-gel·ODS-AM·S-50, 50 ml) eluting with (water: acetonitrile = 10:0 - 7:3, V/V). The fractions containing the object compound were combined, and evaporated under reduced pressure to remove acetonitrile. The residue was lyophilized to give The Object Compound (31) (1.53 g).

IR (Nujol): 3351, 2212, 1668, 1627 cm⁻¹

NMR (DMSO-d₆, δ): 0.87 (3H, t, J=6.5Hz), 0.96 (3H, d, J=6.7Hz), 1.08 (3H, d, J=5.8Hz), 1.20-1.50 (4H, m), 1.50-2.00 (5H, m), 2.03-2.55 (4H, m), 2.62 (2H, t, J=7.5Hz), 3.17 (1H, t, J=8.4Hz), 3.55-4.57 (15H, m), 4.65-5.13 (9H, m), 5.16 (1H, d, J=3.2Hz), 5.24 (1H, d, J=4.5Hz), 5.58 (1H, d, J=5.8Hz), 6.67-6.90 (3H, m), 6.93-7.10 (2H, m), 7.15-7.50 (4H, m), 7.50-7.90 (6H, m), 8.06 (1H, d, J=8.4Hz), 8.15 (1H, d, J=7.7Hz), 8.84 (1H, s), 9.19 (1H, d, J=7.1Hz)

FAB-MASS: $e/z = 1255 (M^++Na)$

Elemental Analysis Calcd. for $C_{55}H_{69}N_8O_{21}SNa\cdot 4H_2O$: C 50.61, H 5.95, N 8.58 Found : C 50.47, H 6.00, N 8.54

Example 6

5

10

15

20

25

30

35

To a suspension of 1-hydroxybenzotriazole (501 mg) and 4-(4-heptylphenyl)benzoic acid (1 g) in dichloromethane (30 ml) was added 1-ethyl-3-(3'-

dimethylaminopropyl)carbodiimide hydrochloride (WSCD·HCl) (839 mg), and stirred for 3 hours at ambient temperature. The reaction mixture was added to water. The organic layer was separated, and dried over magnesium sulfate. 5 The magnesium sulfate was filtered off, and the filtrate was evaporated under reduced pressure to give 1-[4-(4heptylphenyl)benzoyl]benzotriazole 3-oxide. To a solution of The Starting Compound (2.49 g) and 1-[4-(4heptylphenyl)benzoyl]benzotriazole 3-oxide in N,N-10 dimethylformamide (25 ml) was added 4-(N,Ndimethylamino) pyridine (381 mg), and stirred for 12 hours at ambient temperature. The reaction mixture was pulverized with ethyl acetate. The precipitate was collected by filtration, and dried under reduced pressure. 15 The residue was dissolved in water, and subjected to column chromatography on ion exchange resin (DOWEX-50WX4) eluting with water. The fraction containing the object compound were combined, and subjected to column chromatography on ODS (YMC-gel·ODS-AM·S-50) eluting with 20 30% acetonitrile aqueous solution. The fractions containing the object compound were combined, and evaporated under reduced pressure to remove acetonitrile. The residue was lyophilized to give The Object Compound (32) (1.99 q). IR (Nujol): 3350, 2852, 1749, 1621, 1457, 1376,

25 1045 cm^{-1}

> NMR (DMSO- d_5 , δ): 0.86 (3H, t, J=6.7Hz), 0.96 (3H, d, J=6.7Hz), 1.08 (3H, d, J=5.9Hz), 1.5-1.7 (2H, m), 1.7-2.2 (3H, m), 2.2-2.5 (3H, m), 2.6-2.8 (3H, m), 3.1-3.2 (1H, m), 3.7-4.6 (13H, m), 4.7-5.2 (8H, m), 5.12 (1H, d, J=5.5Hz), 5.18 (1H, d, J=2.9Hz), 5.27 (1H, d, J=4.4Hz), 5.54(1H, d, J=5.8Hz), 6.7-6.9 (3H, m), 7.05 (1H, s),7.2-7.4 (5H, m), 7.65 (2H, d, J=8.0Hz), 7.74(2H, d, J=8.3Hz), 7.98 (2H, d, J=8.3Hz), 8.11

35

- 89 -

(1H, d, J=8.7Hz), 8.28 (1H, d, J=8.4Hz), 8.78

(1H, d, J=7.3Hz), 8.85 (1H, s)

FAB-MASS : $e/z = 1259 (M^++Na)$

Elemental Analysis Calcd. for $C_{55}H_{73}N_8O_{21}SNa\cdot 5H_2O$:

C 49.77, H 6.30, N 8.44

Found: C 49.98, H 6.44, N 8.41

10

5

15

20

25

What we claim is :

1. A polypeptide compound of the following general formula:

 H_3 C H_0 H_0

wherein R¹ is lower alkanoyl substituted with unsaturated 6-membered heteromonocyclic group containing at least one nitrogen atom which may have one or more suitable substituent(s);

lower alkanoyl substituted with 1,2,3,4-tetrahydroisoquinoline which may have one or more suitable substituent(s);

lower alkanoyl substituted with unsaturated condensed heterocyclic group containing at least one oxygen atom which may have one or more suitable substituent(s);

lower alkanoyl substituted with unsaturated condensed heterocyclic group containing 1 to 3 sulfur atom(s)

5

10

15

20

25

30

which may have one or more suitable substituent(s);

lower alkanoyl substituted with unsaturated condensed heterocyclic group containing 2 or more nitrogen atom(s) which may have one or more suitable substituent(s);

lower alkanoyl substituted with saturated 3 to 8-membered heteromonocyclic group containing at least one nitrogen atom which may have one or more suitable substituent(s);

ar(lower)alkenoyl substituted with
aryl which may have one or more
suitable substituent(s);

naphthyl(lower)alkenoyl which may
have one or more higher alkoxy;

lower alkynoyl which may have one or
more suitable substituent(s);

 $ar(C_2-C_6)$ alkanoyl substituted with aryl having one or more suitable substituent(s);

 (C_2-C_6) alkanoyl substituted with naphthyl having higher alkoxy;

aroyl substituted with heterocyclic
group which may have one or more
suitable substituent(s);

aroyl substituted with aryl having
heterocyclic(higher)alkoxy;

aroyl substituted with aryl having lower alkoxy(higher)alkoxy;

aroyl substituted with aryl having
lower alkenyl(lower)alkoxy;

aroyl substituted with 2 lower
alkoxy;

5

10

15

20

25

aroyl substituted with aryl having lower alkyl;

aroyl substituted with aryl having
higher alkyl;

aryloxy(lower)alkanoyl which may have
one or more suitable substituent(s);
 ar(lower)alkoxy(lower)alkanoyl which
may have one or more suitable
substituent(s);

arylamino(lower)alkanoyl which may
have one or more suitable
substituent(s); and

a pharmaceutically acceptable salt thereof.

15 2. A compound of claim 1, wherein

R1 is lower alkanoyl substituted with unsaturated 6membered heteromonocyclic group containing at
least one nitrogen atom which may have 1 to 3
substituent(s) selected from the group consisting
of lower alkoxy, higher alkoxy, lower alkyl,
higher alkyl, higher alkoxy(lower)alkyl, phenyl
having lower alkoxy, phenyl having higher alkoxy,
naphthyl having lower alkoxy, naphthyl having
higher alkoxy, phenyl having lower alkyl, phenyl
having higher alkyl, naphthoyl having higher
alkoxy, phenyl substituted with phenyl having
lower alkyl, and oxo;

lower alkanoyl substituted with 1,2,3,4tetrahydroisoquinoline having higher alkoxy and lower alkoxy carbonyl;

lower alkanoyl substituted with unsaturated condensed heterocyclic group containing at least one oxygen atom which may have 1 to 3 substituent(s) selected from the group consisting of lower alkoxy, higher alkoxy, lower alkyl,

5

10

20

25

30

higher alkyl, higher alkoxy(lower)alkyl, phenyl having lower alkoxy, phenyl having higher alkoxy, naphthyl having lower alkoxy, naphthyl having higher alkoxy, phenyl having lower alkyl, phenyl having higher alkyl, naphthoyl having higher alkoxy, phenyl substituted with phenyl having lower alkyl, and oxo;

lower alkanoyl substituted with unsaturated condensed heterocyclic group containing 1 to 3 sulfur atom(s) which may have 1 to 3 substituent(s) selected from the group consisting of lower alkoxy, higher alkoxy, lower alkyl, higher alkoxy, lower alkyl, higher alkoxy (lower) alkyl, phenyl having lower alkoxy, phenyl having higher alkoxy, naphthyl having hower alkoxy, naphthyl having higher alkoxy, phenyl having lower alkyl, phenyl having higher alkyl, naphthoyl having higher alkoxy, phenyl substituted with phenyl having lower alkyl, and oxo;

lower alkanoyl substituted with unsaturated condensed heterocyclic group containing 2 or more nitrogen atoms which may have 1 to 3 substituent(s) selected from the group consisting of lower alkoxy, higher alkoxy, lower alkyl, higher alkoxy, lower alkyl, higher alkoxy (lower) alkyl, phenyl having lower alkoxy, phenyl having higher alkoxy, naphthyl having lower alkoxy, naphthyl having higher alkoxy, phenyl having lower alkyl, phenyl having higher alkyl, naphthoyl having higher alkoxy, phenyl substituted with phenyl having lower alkyl, and oxo;

lower alkanoyl substituted with saturated 3 to 8-membered heteromonocyclic group containing at least one nitrogen atom which may have 1 to 3 substituent(s) selected from the group consisting

5

10

15

20

25

30

of lower alkoxy, higher alkoxy, lower alkyl, higher alkyl, higher alkoxy(lower)alkyl, phenyl having lower alkoxy, phenyl having higher alkoxy, naphthyl having lower alkoxy, naphthyl having higher alkoxy, phenyl having lower alkyl, phenyl having higher alkyl, naphthoyl having higher alkoxy, phenyl substituted with phenyl having lower alkyl, and oxo.

3. A compound of claim 1, wherein

higher alkoxy;

R1 is ar(lower)alkenoyl substituted with aryl which may have 1 to 3 substituent(s) selected from the group consisting of lower alkoxy, higher alkoxy, lower alkyl, higher alkyl, higher alkoxy(lower)alkyl, phenyl having lower alkoxy, phenyl having higher alkoxy, naphthyl having lower alkoxy, naphthyl having higher alkoxy, phenyl having lower alkyl, phenyl having higher alkyl, naphthoyl having higher alkoxy, phenyl substituted with phenyl having lower alkyl, and oxo; naphthyl(lower)alkenoyl which may have 1 to 3

lower alkynoyl which may have 1 to 3 substituent(s) selected from the group consisting of lower alkoxy, higher alkoxy, lower alkyl, higher alkoxy, lower alkyl, higher alkoxy(lower)alkyl, phenyl having lower alkoxy, phenyl having higher alkoxy, naphthyl having lower alkoxy, naphthyl having higher alkoxy, phenyl having lower alkyl, phenyl having higher alkyl, naphthoyl having higher alkoxy, phenyl substituted with phenyl having lower alkyl, and oxo;

 $ar(C_2-C_6)$ alkanoyl substituted with aryl having 1 to 3 substituent(s) selected from the group consisting of lower alkoxy, higher alkoxy, lower

20

15

5

25

30

alkyl, higher alkyl, higher alkoxy(lower)alkyl, phenyl having lower alkoxy, phenyl having higher alkoxy, naphthyl having lower alkoxy, naphthyl having higher alkoxy, phenyl having lower alkyl, phenyl having higher alkyl, naphthoyl having higher alkoxy, phenyl substituted with phenyl having lower alkyl, and oxo;

 (C_2-C_6) alkanoyl substituted with naphthyl having higher alkoxy.

10

15

20

25

30

35

5

4. A compound of claim 1, wherein

R1 is aroyl substituted with heterocyclic group which may have 1 to 3 substituent(s) selected from the group consisting of lower alkoxy, higher alkoxy, lower alkyl, higher alkyl, higher alkoxy(lower)alkyl, phenyl having lower alkoxy, phenyl having higher alkoxy, naphthyl having lower alkoxy, naphthyl having higher alkoxy, phenyl having lower alkyl, phenyl having higher alkyl, naphthoyl having higher alkoxy, phenyl substituted with phenyl having lower alkyl, and oxo; aroyl substituted with aryl having

aroyl substituted with aryl having heterocyclic(higher)alkoxy;

aroyl substituted with aryl having lower
alkoxy(higher)alkoxy;

aroyl substituted with aryl having lower
alkenyl(lower)alkoxy;

aroyl substituted with 2 lower alkoxy; aroyl substituted with aryl having lower alkyl; aroyl substituted with aryl having higher alkyl.

5. A compound of claim 1, wherein

R¹ is aryloxy(lower)alkanoyl which may have 1 to 3 substituent(s) selected from the group consisting of lower alkoxy, higher alkoxy, lower alkyl, higher alkyl, higher alkoxy(lower)alkyl, phenyl having lower alkoxy, phenyl having higher alkoxy, naphthyl having lower alkoxy, naphthyl having higher alkoxy, phenyl having lower alkyl, phenyl having higher alkyl, naphthoyl having higher alkoxy, phenyl substituted with phenyl having lower alkyl, and oxo.

6. A compound of claim 1, wherein

10 R¹ is ar(lower)alkoxy(lower)alkanoyl which may have 1 to 3 substituent(s) selected from the group consisting of lower alkoxy, higher alkoxy, lower alkyl, higher alkyl, higher alkoxy(lower)alkyl, phenyl having lower alkoxy, phenyl having higher alkoxy, naphthyl having lower alkoxy, naphthyl having higher alkoxy, phenyl having lower alkyl, phenyl having higher alkyl, naphthoyl having higher alkoxy, phenyl substituted with phenyl having lower alkyl, and oxo.

20

25

30

35

- 7. A compound of claim 1, wherein

 R1 is arylamino(lower)alkanoyl which may have 1 to 3
 substituent(s) selected from the group consisting
 of lower alkoxy, higher alkoxy, lower alkyl,
 higher alkyl, higher alkoxy(lower)alkyl, phenyl
 having lower alkoxy, phenyl having higher alkoxy,
 naphthyl having lower alkoxy, naphthyl having
 higher alkoxy, phenyl having lower alkyl, phenyl
 having higher alkyl, naphthoyl having higher
 alkoxy, phenyl substituted with phenyl having
 lower alkyl, and oxo.
- 8. A compound of claim 2, wherein R¹ is lower alkanoyl substituted with pyridyl which may have 1 to 3 substituent(s) selected from the

group consisting of lower alkoxy, higher alkoxy, lower alkyl, higher alkyl, higher alkoxy(lower)alkyl, phenyl having lower alkoxy, phenyl having higher alkoxy, naphthyl having lower alkoxy, naphthyl having higher alkoxy, phenyl having lower alkyl, phenyl having higher alkyl, naphthoyl having higher alkoxy, phenyl substituted with phenyl having lower alkyl, and oxo;

lower alkanoyl substituted with 1,2,3,4tetrahydroisoquinoline having higher alkoxy and lower alkoxy carbonyl;

lower alkanoyl substituted with coumarin which may have 1 to 3 substituent(s) selected from the group consisting of lower alkoxy, higher alkoxy, lower alkyl, higher alkyl, higher alkoxy(lower)alkyl, phenyl having lower alkoxy, phenyl having higher alkoxy, naphthyl having lower alkoxy, naphthyl having higher alkoxy, phenyl having lower alkyl, phenyl having higher alkyl, naphthoyl having higher alkoxy, phenyl substituted with phenyl having lower alkyl, and oxo;

lower alkanoyl substituted with benzothiophenyl which may have 1 to 3 substituent(s) selected from the group consisting of lower alkoxy, higher alkoxy, lower alkyl, higher alkyl, higher alkoxy(lower)alkyl, phenyl having lower alkoxy, phenyl having higher alkoxy, naphthyl having lower alkoxy, naphthyl having higher alkoxy, phenyl having lower alkyl, phenyl having higher alkyl, naphthoyl having higher alkoxy, phenyl substituted with phenyl having lower alkyl, and oxo;

lower alkanoyl substituted with benzo[b] furanyl which may have 1 to 3 substituent(s) selected from the group consisting of lower alkoxy, higher alkoxy, lower alkyl, higher alkyl, higher

5

(:)

10

15

20

25

30

alkoxy(lower) alkyl, phenyl having lower alkoxy, phenyl having higher alkoxy, naphthyl having lower alkoxy, naphthyl having higher alkoxy, phenyl having lower alkyl, phenyl having higher alkyl, naphthoyl having higher alkoxy, phenyl substituted with phenyl having lower alkyl, and oxo;

lower alkanoyl substituted with benzooxazolyl which may have 1 to 3 substituent(s) selected from the group consisting of lower alkoxy, higher alkoxy, lower alkyl, higher alkyl, higher alkoxy(lower)alkyl, phenyl having lower alkoxy, phenyl having higher alkoxy, naphthyl having lower alkoxy, naphthyl having higher alkoxy, phenyl having lower alkyl, phenyl having higher alkyl, naphthyl having higher alkoxy, phenyl substituted with phenyl having lower alkyl, and oxo;

lower alkanoyl substituted with benzimidazolyl which may have 1 to 3 substituent(s) selected from the group consisting of lower alkoxy, higher alkoxy, lower alkoyl, higher alkyl, higher alkoxy(lower)alkyl, phenyl having lower alkoxy, phenyl having higher alkoxy, naphthyl having lower alkoxy, naphthyl having higher alkoxy, phenyl having lower alkyl, phenyl having higher alkyl, naphthoyl having higher alkoxy, phenyl substituted with phenyl having lower alkyl, and oxo;

lower alkanoyl substituted with saturated 6-membered heteromonocyclic group containing at least one nitrogen atom which may have 1 to 3 substituent(s) selected from the group consisting of lower alkoxy, higher alkoxy, lower alkyl, higher alkoxy, lower alkyl, higher alkoxy(lower)alkyl, phenyl having lower alkoxy, phenyl having higher alkoxy, naphthyl having higher alkoxy, phenyl having lower alkyl, phenyl higher alkoxy, phenyl having lower alkyl, phenyl

5

10

15

20

25

30

having higher alkyl, naphthoyl having higher alkoxy, phenyl substituted with phenyl having lower alkyl, and oxo.

9. A compound of claim 3, wherein

R1 is phenyl(lower) alkenoyl substituted with phenyl which may have 1 to 3 substituent(s) selected from the group consisting of lower alkoxy, higher alkoxy, lower alkyl, higher alkyl, higher alkoxy(lower) alkyl, phenyl having lower alkoxy, phenyl having higher alkoxy, naphthyl having lower alkoxy, naphthyl having higher alkoxy, phenyl having lower alkyl, phenyl having higher alkyl, naphthoyl having higher alkoxy, phenyl substituted with phenyl having lower alkyl, and oxo;

naphthyl(lower)alkenoyl substituted with phenyl which may have 1 to 3 substituent(s) selected from the group consisting of lower alkoxy, higher alkoxy, lower alkyl, higher alkyl, higher alkoxy(lower)alkyl, phenyl having lower alkoxy, phenyl having higher alkoxy, naphthyl having lower alkoxy, naphthyl having higher alkoxy, phenyl having lower alkyl, phenyl having higher alkyl, naphthoyl having higher alkoxy, phenyl substituted with phenyl having lower alkyl, and oxo;

naphthyl(lower)alkenoyl which may have 1 to 3
higher alkoxy;

lower alkynoyl which may have 1 to 3 substituent(s) selected from the group consisting of lower alkoxy, higher alkoxy, lower alkyl, higher alkoxy(lower)alkyl, phenyl having lower alkoxy, phenyl having higher alkoxy, naphthyl having lower alkoxy, naphthyl having higher alkoxy, phenyl having lower alkyl, phenyl having higher alkyl, phenyl substituted with

20

5

10

15

25

30

phenyl having lower alkoxy, phenyl substituted with phenyl having higher alkoxy, naphthyl substituted with phenyl having lower alkoxy, naphthyl substituted with phenyl having higher alkoxy, naphthoyl having higher alkoxy, phenyl substituted with phenyl having lower alkyl, and oxo;

phenyl (C₂-C₆) alkanoyl substituted with phenyl which has 1 to 3 substituent(s) selected from the group consisting of lower alkoxy, higher alkoxy, lower alkyl, higher alkyl, higher alkoxy(lower) alkyl, phenyl having lower alkoxy, phenyl having higher alkoxy, naphthyl having lower alkoxy, naphthyl having higher alkoxy, phenyl having lower alkyl, phenyl having higher alkyl, napthoyl having higher alkoxy, phenyl substituted with phenyl having lower alkyl, and oxo;

naphthyl(C₂-C₆)alkanoyl substituted with phenyl which may have 1 to 3 substituent(s) selected from the group consisting of lower alkoxy, higher alkoxy, lower alkyl, higher alkyl, higher alkoxy(lower)alkyl, phenyl having lower alkoxy, phenyl having higher alkoxy, naphthyl having lower alkoxy, naphthyl having higher alkoxy, phenyl having lower alkyl, phenyl having higher alkyl, naphthoyl having higher alkoxy, phenyl substituted with phenyl having lower alkyl, and oxo;

 (C_2-C_6) alkanoyl substituted with naphthyl having higher alkoxy.

30

35

5

10

15

20

25

10. A compound of claim 4, wherein

R¹ is benzoyl substituted with saturated 6-membered heteromonocyclic group containing at least one nitrogen atom which may have 1 to 3 substituent(s) selected form the group consisting of lower

alkoxy, higher alkoxy, lower alkyl, higher alkyl, higher alkoxy(lower)alkyl, phenyl having lower alkoxy, phenyl having higher alkoxy, naphthyl having lower alkoxy, naphthyl having higher alkoxy, phenyl having lower alkyl, phenyl having higher alkyl, naphthoyl having higher alkoxy, phenyl substituted with phenyl having lower alkyl, and oxo;

benzoyl substituted with unsaturated 5-membered heteromonocyclic group containing 1 to 2 oxygen atom(s) and 1 to 3 nitrogen atom(s) which may have 1 to 3 substituent(s) selected from the group consisting of lower alkoxy, higher alkoxy, lower alkyl, higher alkyl, higher alkoxy(lower)alkyl, phenyl having lower alkoxy, phenyl having higher alkoxy, naphthyl having lower alkoxy, naphthyl, having higher alkoxy, phenyl having lower alkyl, phenyl having higher alkyl, naphthoyl having higher alkoxy, phenyl substituted with phenyl having lower alkyl, and oxo;

naphthoyl substituted with saturated 6-membered heteromonocyclic group containing at least one nitrogen atom which may have 1 to 3 substituent(s) selected from the group consisting of lower alkoxy, higher alkoxy, lower alkyl, higher alkyl, higher alkyl, higher alkoxy(lower)alkyl, phenyl having lower alkoxy, phenyl having higher alkoxy, naphthyl having lower alkoxy, naphthyl having higher alkoxy, phenyl having lower alkyl, phenyl having higher alkoxy, phenyl substituted with phenyl having lower alkyl, and oxo;

benzoyl substituted with phenyl having unsaturated 3 to 8-membered heteromonocyclic group containing at least one nitrogen atom substituted

5

10

15

20

25

30

with higher alkoxy;

benzoyl substituted with phenyl having lower alkoxy(higher)alkoxy;

benzoyl substituted with phenyl having lower alkenyl(lower)alkoxy;

benzoyl substituted with 2 lower alkoxy;
benzoyl substituted with phenyl having lower
alkyl;

naphthoyl substituted with phenyl having lower
alkyl;

benzoyl substituted with phenyl having higher alkyl;

naphthoyl substituted with phenyl having higher alkyl.

15

20

25

10

5

11. A compound of claim 5, wherein

R¹ is phenyloxy(lower)alkanoyl which may have 1 to 3 substituent(s) selected from the group consisting of lower alkoxy, higher alkoxy, lower alkyl, higher alkoxy, lower alkyl, phenyl having lower alkoxy, phenyl having higher alkoxy, naphthyl having lower alkoxy, naphthyl having higher alkoxy, phenyl having lower alkyl, phenyl having higher alkoxy, phenyl having higher alkyl, naphthoyl having higher alkoxy, phenyl substituted with phenyl having lower alkyl, and oxo;

napthyloxy(lower) alkanoyl which may have 1 to 3 substituent(s) selected from the group consisting of lower alkoxy, higher alkoxy, lower alkyl, higher alkoxy(lower) alkyl, phenyl having lower alkoxy, phenyl having higher alkoxy, naphthyl having lower alkoxy, naphthyl having higher alkoxy, phenyl having lower alkyl, phenyl having higher alkyl, naphthoyl having higher alkoxy, phenyl substituted with phenyl having

30

lower alkyl, and oxo.

12. A compound of claim 6, wherein

5

10

15

20

25

30

35

R1 is phenyl(lower)alkoxy(lower)alkanoyl which may have 1 to 3 substituent(s) selected from the group consisting of lower alkoxy, higher alkoxy, lower alkyl, higher alkyl, higher alkoxy(lower)alkyl, phenyl having lower alkoxy, phenyl having higher alkoxy, naphthyl having lower alkoxy, naphthyl having higher alkoxy, phenyl having lower alkyl, phenyl having higher alkyl, naphthoyl having higher alkoxy, phenyl substituted with phenyl having lower alkyl, and oxo;

naphthyl (lower) alkoxy (lower) alkanoyl which may have 1 to 3 substituent(s) selected from the group consisting of lower alkoxy, higher alkoxy, lower alkyl, higher alkyl, higher alkoxy (lower) alkyl, phenyl having lower alkoxy phenyl having higher alkoxy, naphthyl having lower alkoxy, naphthyl having higher alkoxy, phenyl having lower alkyl, phenyl having higher alkyl, naphthoyl having higher alkoxy, phenyl substituted with phenyl having lower alkyl, and oxo;

phenylamino(lower) alkanoyl which may have 1 to 3 substituent(s) selected from the group consisting of lower alkoxy, higher alkoxy, lower alkyl, higher alkoxy, lower alkyl, higher alkoxy(lower) alkyl, phenyl having lower alkoxy, phenyl having higher alkoxy, naphthyl having lower alkoxy, naphthyl having higher alkoxy, phenyl having lower alkyl, phenyl having higher alkyl, naphthoyl having higher alkoxy, phenyl substituted with phenyl having lower alkyl, and oxo;

naphthylamino(lower)alkanoyl which may have 1 to
3 substituent(s) selected from the group

consisting of lower alkoxy, higher alkoxy, lower alkyl, higher alkyl, higher alkoxy(lower)alkyl, phenyl having lower alkoxy phenyl having higher alkoxy, naphthyl having lower alkoxy, naphthyl having higher alkoxy, phenyl having lower alkyl, phenyl having higher alkyl, naphthoyl having higher alkoxy, phenyl substituted with phenyl having lower alkyl, and oxo.

10 13. A compound of claim 10, wherein

R¹ is benzoyl substituted with piperazine which may have 1 to 3 substituent(s) selected form the group consisting of lower alkoxy, higher alkoxy, lower alkyl, higher alkyl, higher alkoxy(lower)alkyl, phenyl having lower alkoxy, phenyl having higher alkoxy, naphthyl having lower alkoxy, naphthyl having higher alkoxy, phenyl having lower alkyl, phenyl having higher alkyl, naphthoyl having higher alkoxy, phenyl substituted with phenyl having lower alkyl, and oxo;

benzoyl substituted with isoxazolyl which may have 1 to 3 substituent(s) selected from the group consisting of lower alkoxy, higher alkoxy, lower alkyl, higher alkoxy, lower alkyl, higher alkoxy(lower)alkyl, phenyl having lower alkoxy, phenyl having higher alkoxy, naphthyl having higher alkoxy, phenyl having lower alkyl, phenyl having higher alkoxy, phenyl having having higher alkyl, naphthoyl having higher alkoxy, phenyl substituted with phenyl having lower alkyl, and oxo;

benzoyl substituted with phenyl having
triazolyl(higher)alkoxy;

benzoyl substituted with phenyl having lower alkoxy(higher)alkoxy;

benzoyl substituted with phenyl having lower

5

15

20

25

alkenyl(lower)alkoxy;

benzoyl substituted with 2 lower alkoxy;
benzoyl substituted with phenyl having lower
alkyl;

benzoyl substituted with phenyl having higher alkyl.

14. A process for the preparation of a polypeptide compound of the formula [I]:

10

15

20

5

$$H_3$$
C
 H_0
 H_0

25

wherein R¹ is lower alkanoyl substituted with unsaturated 6-membered heteromonocyclic group containing at least one nitrogen atom which may have one or more suitable substituent(s);

30

lower alkanoyl substituted with
1,2,3,4-tetrahydro-isoquinoline having
higher alkoxy;

lower alkanoyl substituted with unsaturated condensed heterocyclic

group containing at least one oxygen atom which may have one or more suitable substituent(s);

lower alkanoyl substituted with unsaturated condensed heterocyclic group containing 1 to 3 sulfur atom(s) which may have one or more suitable substituent(s);

lower alkanoyl substituted with unsaturated condensed heterocyclic group containing 2 or more nitrogen atom(s) which may have one or more suitable substituent(s);

lower alkanoyl substituted with saturated 3 to 8-membered heteromonocyclic group containing at least one nitrogen atom which may have one or more suitable substituent(s);

ar(lower)alkenoyl substituted with
aryl which may have one or more
suitable substituent(s);

naphthyl(lower)alkenoyl which may
have one or more higher alkoxy;

lower alkynoyl which may have one or
more suitable substituent(s);

 $ar(C_2-C_6)$ alkanoyl substituted with aryl having one or more suitable substituent(s);

 (C_2-C_6) alkanoyl substituted with naphthyl having higher alkoxy;

aroyl substituted with heterocyclic
group which may have one or more
suitable substituent(s);

aroyl substituted with aryl having
heterocyclic(higher)alkoxy;

5

10

15

20

25

30

aroyl substituted with aryl having lower alkoxy(higher)alkoxy; aroyl substituted with aryl having lower alkenyl(lower)alkoxy; aroyl substituted with 2 lower 5 alkoxy; aroyl substituted with aryl having lower alkyl; aroyl substituted with aryl having higher alkyl; 10 aryloxy(lower)alkanoyl which may have one or more suitable substituent(s); ar(lower)alkoxy(lower)alkanoyl which may have one or more suitable substituent(s); 15 arylamino(lower)alkanoyl which may have one or more suitable substituent(s); and a pharmaceutically acceptable salt thereof, which comprises 20

1) reacting a compound of the formula:

25

5

10

15

20

wherein R^1

25

30

$$H_3$$
C H_2 H_0 H_0 H_1 H_2 H_2 H_3 H_4 H_5 H_6 H_6 H_7 H_8 H_8 H_9 H_9

or its reactive derivative at the amino group or a salt thereof, with a compound of the formula :

 R^1 -OH [III]

wherein R^1 is defined above, or its reactive derivative at the carboxy group or a salt thereof, to give a compound [I] of the formula:

5

10

15

20

25

30

35

 H_{3} C H_{0} $H_{$

wherein R^1 is defined above, or a salt thereof.

- 15. A pharmaceutical composition which comprises, as an active ingredient, a compound of claim 1 or a pharmaceutically acceptable salt thereof in admixture with pharmaceutically acceptable carriers or excipients.
- 16. Use of a compound of claim 1 or a pharmaceutically acceptable salt thereof for use as a medicament.
- 17. A compound of claim 1 or a pharmaceutically acceptable salt thereof for use as a medicament.
- 18. A method for the prophylactic and/or the therapeutic treatment of diseases caused by pathogenic microorganism which comprises administering a compound of claim 1 or a pharmaceutically acceptable salt thereof to a human being or an animal.

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

M BLACK BORDERS
☐ IMAGE CUT OFF AT TOP, BOTTOM OR SIDES
☐ FADED TEXT OR DRAWING
☑ BLURRED OR ILLEGIBLE TEXT OR DRAWING
ZSKEWED/SLANTED IMAGES
COLOR OR BLACK AND WHITE PHOTOGRAPHS
☐ GRAY SCALE DOCUMENTS
☐ LINES OR MARKS ON ORIGINAL DOCUMENT
☐ REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY
□ OTHER:

IMAGES ARE BEST AVAILABLE COPY.

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.

