START OF QUIZ Student ID: 97713317,Song,Shawn

Topic: Lecture 7 Source: Lecture 7

What impact does lemmatization or stemming have with respect to the Zipfian curve? How might that affect our algorithms? (1)

Topic: Lecture 8 Source: Lecture 8

Why should you get into the habit of using "with open()"? Are there any downsides? (1)

Topic: Lecture 5 Source: Lecture 5

There are two ways of matching a pattern against the start of a string. Describe them. (1)

Topic: Lecture 5 Source: Lecture 5

Imagine you have a block of text with paragraphs separated by blank lines. How would you use regex to find the start of each paragraph? What assumptions would you make about the formatting of the text? (1)

Topic: Lecture 6 Source: Lecture 6

XML can be opened by most plain-text text editors. Name a benefit and a disadvantage of this feature. (1)

Topic: Lecture 6 Source: Lecture 6

Suppose you've trained a Named Entity Recognition (NER) model using XML-annotated text data, but it consistently fails to recognize locations. What steps would you take to determine if the problem lies with the model, the training data, or both? What resources would you need to investigate further? (2)

Topic: Lecture 8 Source: Lecture 8

Imagine that you're working with a linguist who is not very good with technology. They store all of their data in .docx files, scattered across their desktop. What arguments would you make for them to convert to .tsv or .json, and how would you alleviate their worries that they wouldn't be able to access or modify their information (no, you can't teach them Python)? (2)

Topic: Lecture 7 Source: Lecture 7

I mentioned in class that POS tagging is often viewed as a pre-processing step for many CL tasks. What assumptions are we making (at least 3) when including it in our NLP pipeline? Do you think these are reasonable assumptions, and if they fail, is it worth the effort to solve the problem, or just ignore POS tagging? (2)

Topic: Long

Source: Lecture 8

Imagine that you find an important file buried on a hard drive found in the basement of a university. You are trying to access the data, but realize it is corrupted. Some of the bits have been flipped (switched from 0 to 1, or 1 to 0), and others have been completely deleted. You don't know the encoding, and you don't know the language the data is written in. What are some tests you could run to try to establish and restore at least some of the data? (Hint: remember that a "byte" is 8-bits, and that UTF-8 is 1 byte, or 8 bits, UTF-16 is 2 bytes, or 16 bits, and UTF-32 is 4 bytes, or 32 bits). (3)

END OF QUIZ