# Reaction-diffusion spatial modeling of COVID-19 in Chicago

Trent Gerew

Illinois Institue of Technology

August 27, 2021



• The COVID Problem

- Project Context and Objectives
- Current Work



• The COVID Problem

- Project Context and Objectives
- Current Work

## The COVID Problem



Identified in Wuhan, China in December 2019. Caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2).

In the United States alone, we currently have

- **37,768,911** total cases
- **626,833** total deaths



## The COVID Problem



Transmission by exposure to infectious respiratory fluids:

- 1. Inhalation of virus
- 2. Deposition of virus on exposed mucus membranes
- 3. Touching mucous membranes with soiled hands contaminated with virus

## The COVID Problem



COVID-19 weekly cases per 100,000 population by race/ethnicity, United States



COVID-19 weekly case rate per 100,000 population by percentage of county population in poverty,





The COVID Problem

- Project Context and Objectives
- Current Work



Why make a mathematical study of COVID-19?

An epidemic model provides . . .

- a convenient summary of the data
- insight into the underlying processes of the disease spread
- a testing ground for assessing control procedures



Models of infectious diseases are usually variations on the **Kermack-McKendrick model** (1927).



#### Usual assumptions:

- Population is *homogeneous*
- Transmission is spatially independent



These assumptions don't match reality!

Level of community transmission by county



(a) 7/22/2021

(b) 7/29/2021







**Idea:** Use reaction-diffusion to build a spatially explicit model.

- The data clearly shows a diffusive pattern
- Spatial dependence can approximate demographic differences
- Spatially dependent data exists for many scales and regions





• The COVID Problem

- Project Context and Objectives
- Current Work

### Current Work



Original motivation from Summer 2020 IPRO with Prof. Robert Ellis and Mr. David Eads (NPR). Expanded over Summer 2021 with Prof. Chun Liu and Prof. Yiwei Wang.

## Start by defining the zero-dimension model:

- 1. Start with a population of susceptibles (S)
- 2. Some of the population may become infected (I) upon emergence of the virus
- 3. Infected individuals interact with susceptibles at rate eta to draw new members into I
- 4. A fraction of I recover or die at a rate  $\gamma$  moving to the removed (R) population



This represents processes that occur in a "well mixed" situation.

## Current Work



The population model at the PDE level is an autonomous diffusion with a source:

$$S_t = \nabla(\mathfrak{D}_s \nabla S) - \beta SI,$$
  

$$I_t = \nabla(\mathfrak{D}_I \nabla I) + \beta SI - \gamma I,$$
  

$$R_t = \gamma I.$$

#### Assumptions:

- The R population has immunity, so we assign  $\mathfrak{D}_R = 0$ .
- Diffusion performs all relevant spreading.
- Arriving infected individuals form local hotspots.



• The COVID Problem

- Project Context and Objectives
- Current Work