Colle 18

Applications linéaires

- ➤ Après votre colle, il vous est demandé de reprendre les exercices traités et de les rédiger sur feuille. Ce travail est à déposer dans la boîte en B013 avant mardi prochain.
- ▶ Vous trouverez le sujet et des indications sur la page ci-contre.

Exercice 18.1

Soit E un \mathbb{K} -espace vectoriel. Soit $u \in L(E)$ tel que

$$u^2 - 3u - 10 \operatorname{Id}_E = 0_{L(E)}$$
.

- **1.** Montrer que u est bijectif et exprimer u^{-1} en fonction de u.
- 2. Montrer que

$$E = \operatorname{Ker}(u + 2 \operatorname{Id}_F) \oplus \operatorname{Ker}(u - 5 \operatorname{Id}_F).$$

Exercice 18.2

Soit E un espace vectoriel. Soient $f, g \in L(E)$ tels que $f \circ g = Id_E$.

- **1.** Montrer que $Ker(g \circ f) = Ker(f)$.
- **2.** Montrer que $Im(g \circ f) = Im(g)$.
- **3.** Montrer que $E = \text{Ker}(f) \oplus \text{Im}(g)$.

Exercice 18.3

On considère

$$\varphi: \left| \begin{array}{ccc} \mathbb{R}[\mathsf{X}] & \longrightarrow & \mathbb{R}[\mathsf{X}] \\ P & \longmapsto & P(\mathsf{X}^2) + (1 + \mathsf{X}^2)P(\mathsf{X}). \end{array} \right|$$

- **1.** Montrer que φ est une application linéaire.
- **2.** Montrer que φ est injective.
- **3.** L'application φ est-elle surjective?

Exercice 18.4

On note $\mathscr P$ l'ensemble des fonctions paires de $\mathscr F(\mathbb R,\mathbb R)$ et $\mathscr G$ l'ensemble des fonctions impaires de $\mathscr F(\mathbb R,\mathbb R)$.

- **1.** Montrer que \mathscr{P} et \mathscr{G} sont deux sous-espaces vectoriels supplémentaires dans $\mathscr{F}(\mathbb{R}, \mathbb{R})$.
- **2.** Déterminer le projeté de $f \in \mathcal{F}(\mathbb{R}, \mathbb{R})$ sur \mathscr{P} parallèlement à \mathscr{G} .

Exercice 18.5

Soit E un espace vectoriel. Soit $f \in L(E)$.

1. Montrer que

$$\mathsf{Im}(f)\cap\mathsf{Ker}(f)=\{\mathsf{0}_E\}\quad\Longleftrightarrow\quad\mathsf{Ker}(f)=\mathsf{Ker}(f^2).$$

2. Montrer que

$$Im(f) + Ker(f) = E \iff Im(f) = Im(f^2).$$

1

Exercice 18.6

Trouver un espace vectoriel E et deux endomorphismes $u, v \in L(E)$ tels que

$$u \circ v = \operatorname{Id}_{E}$$
 et $v \circ u \neq \operatorname{Id}_{E}$.

Exercice 18.7

Soit E un espace vectoriel. Soit $f \in L(E)$.

- **1.** Montrer que $\left(\operatorname{Im}(f^n)\right)_{n\in\mathbb{N}}$ est décroissante pour l'inclusion.
- **2.** Soit $k_0 \in \mathbb{N}$ tel que $\operatorname{Im}(f^{k_0}) = \operatorname{Im}(f^{k_0+1})$. Montrer que

$$\forall k \geqslant k_0, \quad \operatorname{Im}(f^k) = \operatorname{Im}(f^{k_0}).$$

3. Donner un espace E et un endomorphisme f dont la suite $\left(\operatorname{Im}(f^n)\right)_{n\in\mathbb{N}}$ n'est pas stationnaire.

Exercice 18.8

Soit E un \mathbb{K} -espace vectoriel. Soit $f \in L(E)$.

• On dit que f est une homothétie lorsque

$$\exists \lambda \in \mathbb{K} : \forall x \in E, f(x) = \lambda x.$$

• On dit que f est une pseudo-homothétie lorsque

$$\forall x \in E, \quad \exists \lambda_x \in \mathbb{K} : \quad f(x) = \lambda_x x.$$

1. Montrer que

f est une homothétie \iff f est une pseudo-homothétie.

2. Déterminer l'ensemble

$$C(E) := \{ u \in L(E) \mid \forall v \in L(E), u \circ v = v \circ u \}.$$

On pourra admettre que tout sous-espace vectoriel de E admet un supplémentaire.