Project 3 Mathematics 512

Instructor: Ricardo Mancera Spring 2024

Due date: Wednesday March 27th

1.

Estimate the following expected value: $E(W_3^2 + \sin(W_3) + 2e^{W_3})$ Where W_t is a standard Wiener process, that is the drift parameter is zero and the Variance parameter $\sigma^2 = 1$.

2.

Let S_t be a Geometric Brownian Motion process: $S_t = S_0 e^{\left(\sigma W_t + \left(r - \frac{\sigma^2}{2}\right)t\right)}$ where r = 0.05, $\sigma = 0.20$, $S_0 = 90$ and W_t is a standard Wiener process. Estimate $E(S_3)$.

3.

Evaluate the following expected value and probability:

$$E(X_2^{0.6})$$
 , $P(X_2 > 2)$

Where the Ito's processes *X* evolve according to the following SDE:

$$dX_t = \left(\frac{1}{4} + \frac{1}{3}X_t\right)dt + \frac{3}{5}dW_t$$
, $X_0 = 2$

and W is a standard Wiener process.

4.

Consider the following SDE:

$$dX_t = aX_t dt + bX_t dW_t$$
, $X_0 = 100$, $a = 0.07$, $b = 0.12$

- a) Simulate this stochastic process using the discretization schemes of Euler-Maruyama
- b) Compare with the analytical solution.