

МИНОБРНАУКИ РОССИИ

Федеральное государственное бюджетное образовательное учреждение высшего образования

«МИРЭА – Российский технологический университет» РТУ МИРЭА

ИКБ направление «Киберразведка и противодействие угрозам с применением технологий искусственного интеллекта» 10.04.01

Кафедра КБ-4 «Интеллектуальные системы информационной безопасности»

Отчёт по лабораторной работе №2

по дисциплине: «Анализ защищенности систем искусственного интеллекта»

Группа:

ББМО-01-22

Выполнил:

Тимофеев И.О.

Проверил:

Спирин А.А.

Задачи:

- 1. Реализовать атаки уклонения на основе белого ящика против классификационных моделей на основе глубокого обучения.
- 2. Получить практические навыки переноса атак уклонения на основе черного ящика против моделей машинного обучения.

Реализовать атаки уклонения на основе белого ящика против классификационных моделей на основе глубокого обучения. Набор данных: Для этой части используйте набор данных GTSRB (German Traffic Sign Recognition Benchmark). Набор данных состоит примерно из 51 000 изображений дорожных знаков. Существует 43 класса дорожных знаков, а размер изображений составляет 32×32 пикселя.

Ход работы

```
Ipip install adversarial-robustness-toolbox

Collecting adversarial-robustness-toolbox

Comonisating adversarial_robustness_toolbox-117.0-py3-none-awy.whi (1.7 PM)

Domolosding adversarial_robustness_toolbox-117.0-py3-none-awy.whi (1.7 PM)

Domolosding adversarial_robustness_toolbox 1.17.0-py3-none-awy.whi (1.7 PM)

Domolosding science adversarial-robustness_toolbox (1.11.4)

Domolosding science adversarial-robustness_toolbox (1.11.4)

Collecting science adversarial-robustness_toolbox (1.11.4)

Domolosding science a
```

Рисунок 1- Импорт нужных библиотек

Подключаем google drive и загружаем в него dataset GTSRB.

```
from google.colab import drive
drive.mount("/content/drive")

Mounted at /content/drive

# разархивируем датасет, который находится на подключенном гугл диске
zip_file = '/content/drive/MyDrive/LAB2/archive.zip'
z = zipfile.ZipFile(zip_file, 'r')
z.extractall()

print(os.listdir())

['.config', 'Meta', 'drive', 'train', 'Test', 'Test.csv', 'meta', 'test', 'Train.csv', 'Meta.csv', 'Train', 'sample_data']

# задаем пути к разархивированным данным
data_path = '/content'
train_data_path = os.path.join(data_path, 'Train')
test_data_path = os.path.join(data_path, 'Test')
meta_data_path = os.path.join(data_path, 'Meta')
```

Рисунок 2- Работа с дата сетом

```
# предобработка
data = []
labels = []
                                                                              5
class_count = 43
for i in range(class_count):
    img_path = os.path.join(train_data_path, str(i))
                                                                             10
    for img in os.listdir(img_path):
       img = image.load_img(img_path + '/' + img, target_size=(32, 32))
        img_array = image.img_to_array(img)
                                                                             15
        img_array = img_array / 255
        data.append(img_array)
        labels.append(i)
                                                                             20
data = np.array(data)
labels = np.array(labels)
labels = to_categorical(labels, 43)
                                                                             25
# отобразим первый элемент
print("data[0]:\n",data[0])
plt.imshow(data[0])
                                                                                                      15
                                                                                                             20
                                                                                                                     25
                                                                                                                            30
```

Рисунок 3- Отображение первого элемента

Далее необходимо разделить данные на тренировочный и тестовый набор 70/30

Рисунок 4- Разделение данных

Задание 1. Обучить 2 классификатора на основе глубоких нейронных сетей на датасете GTSRB.

Создаем две модели нейронных сетей а именно ResNet50 и VGG16:

Рисунок 5- модели нейронной сети

Далее для этих моделей нужно построить графики, а также заполнить таблицу. Графики отражают зависимость метрики от эпохи для тренировочного и тестового наборов. В них отображена точность и потери.

Рисунок 6- Графики для двух моделей

Таблица точности.

Модель	Обучение	Валидация	Тест
Resnet50	97.8467	94.2872	98.3848
VGG16	98.7588	99.6004	98.7588

Задание 2. Применить нецелевую атаку уклонения на основе белого ящика против моделей глубокого обучения. Реализовать следующие типы атак: Fast Gradient Sign Method (FGSM) и Projected Gradient Descent (PGD). Необходимо использовать следующие значения параметра искажения: $\epsilon \epsilon = [1/255, 2/255, 3/255, 4/255, 5/255, 8/255, 10/255, 20/255, 50/255, 80/255].$

Создаем атаки Fast Gradient Sign Method (FGSM) и Projected Gradient Descent (PGD)

```
attack_fgsm = FastGradientMethod(estimator=classifier, eps=0.3)
                                                                                                                                           attack_pgd = ProjectedGradientDescent(estimator=classifier, eps=0.3, max_iter=4, verbose=False)
                                                                                                                                           detact_pgu = [1/255, 2/255, 3/255, 4/255, 5/255, 8/255, 10/255, 20/255, 50/255, 80/255] true_accuracies = [] # для точности оригинальных данных adv_accuracises.pgd = []
eps_range = [1/255, 2/255, 3/255, 4/255, 5/255, 8/255, 10/255, 20/255, 50/255, 80/255]
true_accuracies = [] # для точности оригинальных данных
adv_accuracises_fgsm = []
                                                                                                                                           true_losses = [] # для потерь на оригинальных данны
adv_losses_pgd = []
adv_losses_fgsm = []
               имся по диапазону значений ерѕ
     eps in eps range:
attack_fgsm.set_params(**{'eps': eps}) # уствновка нового значения eps
                                                                                                                                           for eps in eps_range:
    attack_pgd.set_params(**{'eps': eps})
      print(f"Eps: {eps}")
x_test_adv = attack_fgsm.generate(x_test, y_test) # генерация адверсариал
                                                                                                                                                 print(f"Eps: {eps}")
x_test_adv = attack_pgd.generate(x_test, y_test)
                                                                                                                                                loss, accuracy = model.evaluate(x_test_adv, y_test)
adv_accuracises_pgd.append(accuracy)
      loss, accuracy = model.evaluate(x_test_adv, y_test) # оценка потерь и точн
       adv_accuracises_fgsm.append(accuracy)
adv_losses_fgsm.append(loss)
                                                                                                                                                aw_acumarise_pgd.append(loss)
print(f"Adv Loss: {loss}")
print(f"Adv Accuracy: {accuracy}")
loss, accuracy = model.evaluate(x_test, y_test)
true_accuracies.append(accuracy)
     aov_losses_rgsm.appeno(loss)
print("Adv Loss: (loss)")
print(f"Adv Accuracy: {accuracy}")
loss, accuracy = model.evaluate(x_test, y_test)
true_accuracies.append(accuracy)
true_losses.append(loss)
                                                                                                                                                  true_losses.append(loss)
                                                                                                                                                 print(f"True Loss: {loss}")
print(f"True Accuracy: {accuracy}")
      print(f"True Loss: {loss}")
print(f"True Accuracy: {accuracy}")
```

Рисунок 7- FGSM PGD

ResNet50

Далее потребуется переопределить eps для этого выведем изображение под номером 4 после атаки FGSM.

```
# отображаем исходные и адверсариальные изображения для разных значений ерѕ
eps_range = [1/255, 2/255, 3/255, 4/255, 5/255, 8/255, 10/255, 20/255, 50/255, 80/255]
pred = np.argmax(model.predict(x_test[4:5]))
plt.figure(4)
plt.title(f"Original img: Pred class[{pred}], Real calss[{np.argmax(y test[4])}]")
plt.imshow(x_test[4])
plt.show()
i = 1
# проходимся по каждому eps из заданного диапазона
for eps in eps_range:
    attack_pgd.set_params(**{ 'eps': eps})
   x_test_adv = attack_pgd.generate(x_test, y_test)
    pred = np.argmax(model.predict(x_test_adv[4:5]))
    plt.figure(i)
    plt.title(f"eps {eps}: Pred class[{pred}], Real class[{np.argmax(y_test[4])}]")
    plt.imshow(x test_adv[4])
    plt.show()
    i += 1
```


Далее потребуется переопределить eps для этого выведем изображение под номером 4 после атаки PGD.

```
# отображаем исходные и адверсариальные изображения для разных значений ерѕ
eps_range = [1/255, 2/255, 3/255, 4/255, 5/255, 8/255, 10/255, 20/255, 50/255, 80/255]
pred = np.argmax(model.predict(x_test[4:5]))
plt.figure(4)
plt.title(f"Original img: Pred class[{pred}], Real calss[{np.argmax(y_test[4])}]")
plt.imshow(x_test[4])
plt.show()
i = 1
# проходимся по каждому eps из заданного диапазона
for eps in eps_range:
    attack_pgd.set_params(**{'eps': eps})
    x_test_adv = attack_pgd.generate(x_test, y_test)
    pred = np.argmax(model.predict(x_test_adv[4:5]))
    plt.title(f"eps {eps}: Pred class[{pred}], Real class[{np.argmax(y_test[4])}]")
    plt.imshow(x_test_adv[4])
    plt.show()
    i += 1
Original img: Pred class[11], Real calss[11]
```


ResNet50: График зависимости точности классификации от параметра искажения.

VGG16

Далее потребуется переопределить eps для этого выведем изображение под номером 4 после атаки FGSM.

```
# отображаем исходные и адверсариальные изображения для разных значений ерѕ
eps_range = [1/255, 2/255, 3/255, 4/255, 5/255, 8/255, 10/255, 20/255, 50/255, 80/255]
pred = np.argmax(model.predict(x_test[4:5]))
plt.title(f"Original img: Pred class[{pred}], Real calss[{np.argmax(y_test[4])}]")
plt.imshow(x_test[4])
plt.show()
# проходимся по каждому ерѕ из заданного диапазона
for eps in eps_range:
    attack_fgsm.set_params(**{'eps': eps})
    x_test_adv = attack_fgsm.generate(x_test, y_test)
    pred = np.argmax(model.predict(x_test_adv[4:5]))
    plt.figure(i)
    plt.title(f"eps {eps}: Pred class[{pred}], Real class[{np.argmax(y_test[4])}]")
    plt.imshow(x_test_adv[4])
    plt.show()
    i += 1
```


Далее потребуется переопределить eps для этого выведем изображение под номером 4 после атаки PGD.

```
# отображаем исходные и адверсариальные изображения для разных значений ерѕ
eps_range = [1/255, 2/255, 3/255, 4/255, 5/255, 8/255, 10/255, 20/255, 50/255, 80/255]
pred = np.argmax(model.predict(x_test[4:5]))
plt.figure(0)
plt.title(f"Original img: Pred class[{pred}], Real calss[{np.argmax(y_test[4])}]")
plt.imshow(x_test[4])
plt.show()
i = 1
for eps in eps_range:
    attack_pgd.set_params(**{'eps': eps})
    x_test_adv = attack_pgd.generate(x_test, y_test)
    pred = np.argmax(model.predict(x_test_adv[4:5]))
    plt.figure(i)
    plt.title(f"eps {eps}: Pred class[{pred}], Real class[{np.argmax(y_test[4])}]")
    plt.imshow(x_test_adv[4])
    plt.show()
```


VGG16: График зависимости точности классификации от параметра искажения.

Результаты.

Model	Original	eps = 1/255	eps = 5/255	eps = 10/255
	accuracy			
Resnet50	97.8467	71.1	35.1	18.1
FGSM				
Resnet50 PGD	97.8467	68.6	31.3	20.5
VGG16 FGSM	98.7588	82.6	52.7	38.7
VGG16 PGD	98.7588	80.8	52.4	42.7

Задание 3: Применение целевой атаки уклонения методом белого против моделей глубокого обучения. Используйте изображения знака «Стоп» (label class 14) из тестового набора данных.

Реализуем целевую атаку FGSM.

Реализуем целевую атаку PGD.

Искажение	PGD- attack – Stop sign images	FGSM- attack – Stop sign
		images
ε=1/255	97%	99%
ε=3/255	92%	84%
ε=5/255	90%	54%
€=10/255	82%	31%
€=20/255	59%	1%
€=50/255	34%	0%
€=80/255	1%	0%

Вывод: Метод FGSM плохо подходит для целевых атак. При растущем искажении классификация начинает давать сбой. Для целевой атаки подходит PGD. Хоть и с сильным искажением, но модель будет определять заданный нами класс.