4P - Extra

Exercicis addicionals als de classe, relacionats amb composició de moviments

Versió 1.2

Lluís Ros https://lluisros.github.io/mecanica

6 El vaixell avança amb moviment de translació rectilínia de celeritat constant \mathbf{v}_0 respecte del terra. El dofí \mathbf{Q} descriu un moviment circular al voltant del punt \mathbf{P} respecte del vaixell. Si la celeritat de \mathbf{Q} respecte del terra és $2\mathbf{v}_0$, quina és l'acceleració normal de \mathbf{Q} respecte del terra per a aquesta configuració?

A
$$v_0^2/R$$

B $3(v_0^2/R)$
C $4(v_0^2/R)$
D $(3\sqrt{3}/2)(v_0^2/R)$

$$\overline{v}_{AB}(q) = \overline{v}_{REL}(q) + \overline{v}_{AI}(q)$$

$$\left(?\ 2v_{o}\right) = \left(\uparrow v\right) + \left(\rightarrow v_{o}\right)$$

(→ √o)

Valor desconequt a priori

Dir. desconequal a priori

No sabem v, però sabem que |vas (Q) = zvo. Tenim el triangle:

Per tant $|\overline{\mathcal{J}}_{REL}(Q) = (\uparrow \mathcal{V}_0 \mathcal{J}_3)$ $|\overline{\mathcal{V}}_{AB}(Q) = (\uparrow \mathcal{V}_0 \mathcal{J}_3) + (\rightarrow \mathcal{V}_0)$

$$\overline{a}_{T}(Q) = \left(\underbrace{-\frac{\left(\sqrt{3}\sqrt{6}\right)^{2}}{R}}\right) + \overline{0} + \overline{0} = \left(\underbrace{-\frac{3\sqrt{6}^{2}}{R}}\right)$$

$$\overline{a}_{REL}(Q) = \overline{a}_{ac}(Q) = \overline{a}_{cc}(Q)$$

Separem component normal:

6 Un drone sobrevola una zòdiac que es mou en línia recta respecte de l'aigua (que es considera quieta respecte al terra - RT) amb celeritat constant v_0 . El punt $\mathbf Q$ del drone descriu un moviment circular vist des de la zòdiac (RZ), i en un cert instant té la velocitat representada a la figura. Quin és, per a aquest instant, el centre de curvatura de la trajectòria de $\mathbf Q$ respecte al terra?

Cal a fegir
"uniforme"

- A O
- в Р
- C R
- D S
- E T

Per ubicar $CC_{RT}(Q)$ calcularem:

$$\mathcal{R}_{RT}(Q) = \frac{J_{RT}^{2}(Q)}{|Q_{RT}^{n}(Q)|}$$

Vista en planta
$$\begin{array}{c}
V_{R2}(Q) = V_0
\end{array}$$

$$\begin{array}{c}
V_{R2}(Q) = V_0
\end{array}$$

$$\begin{array}{c}
V_{R2}(Q)
\end{array}$$

Farem comp. mov. amb AB = RT = "Ref. terra." REL = R2 = "Ref. 2òdiac"

$$\overline{\mathcal{V}}_{AB}(Q) = \overline{\mathcal{V}}_{REL}(Q) + \overline{\mathcal{V}}_{AC}(Q) = (\downarrow \mathcal{V}_0) + (\rightarrow \mathcal{V}_0) = (\searrow \sqrt{2} \mathcal{V}_0)$$

$$\overline{a}_{AB}(Q) = \overline{a}_{REL}(Q) + \overline{a}_{A\Gamma}(Q) + \overline{a}_{CO\Gamma}(Q) = \left(\rightarrow \frac{v_0^2}{R} \right)$$

$$\Rightarrow \mathcal{R}_{RT}(Q) = \frac{\left(\sqrt{2} v_o^2\right)^2}{\frac{v_o^2}{\sqrt{2} R}} = 2R\sqrt{2}$$

Des de Q, avanæm $2R\sqrt{2}$ en la dir. de $\bar{a}_{RT}^{n}(Q)$ i trobem que $CC_{RT}(Q) = T$ RESP = E

Els punts **P** i **Q** dels dos vehicles descriuen trajectòries circulars de radi R respecte del terra (T). Calcula $\overline{v}_{RP}(\mathbf{Q})$, $\overline{a}_{RP}(\mathbf{Q})$.

OBS: Considerarem que v es variable pq no diven q signi ct.

Fem comp. mov. amb $\begin{vmatrix} AB = T \\ REL = RP \end{vmatrix}$

$$\overline{v}_{REL}(Q) = \overline{v}_{AB}(Q) - \overline{v}_{al}(Q) =$$

$$= (\rightarrow v) - (\leftarrow 2v) = (\rightarrow 3v)$$

$$\overline{a}_{REL}(Q) = \overline{a}_{AB}(Q) - \overline{a}_{ar}(Q) - \overline{a}_{GC}(Q) =$$

$$= (\rightarrow \dot{v}) + (\uparrow \frac{v^2}{R}) - \left[(\leftarrow 2\dot{v}) + (\downarrow \frac{(2v)^2}{2R}) \right] - 2\left[(\odot \frac{v}{R}) \times (\rightarrow 3v) \right] = (\uparrow \frac{6v^2}{R})$$

$$= \left(\rightarrow \dot{v} \right) + \left(\uparrow \frac{v^2}{R} \right) + \left(\rightarrow 2\dot{v} \right) + \left(\uparrow \frac{2v^2}{R} \right) - \left(\uparrow \frac{6v^2}{R} \right) =$$

$$= \overline{\left(\rightarrow 3\mathring{v} \right) + \left(\downarrow \frac{3v^2}{R} \right)}$$

REL (Q) i CCREL (Q)

No els demanen, però calculem-los:

6 La mola cilíndrica es mou impulsada per un braç que gira amb velocitat angular $\dot{\Psi}$ constant respecte del terra, manté contacte puntual sense lliscament a **S** amb el sostre i llisca en el seu contacte amb el terra. Quina és la velocitat de lliscament del punt **Q** sobre el terra?

- **A** 0
- R 2Rψ
- c $(3/2)R\dot{\psi}$
- \mathbf{D} $(1/2)\mathbf{R}\dot{\mathbf{\psi}}$
- **E** 4Rψ

$$EI_{T}^{Mola} = recta$$
 So (ja que $\bar{v}_{T}(S_{Mola}) = \bar{v}_{T}(O_{Mola}) = \bar{0}$)

$$\overline{\Omega}_{T}^{\text{Mola}} = \overline{\Omega}_{\text{brag}}^{\text{Mola}} + \overline{\Omega}_{T}^{\text{brag}} = (\Rightarrow \dot{\varphi}) + (\uparrow \dot{\psi})$$

Ha de donal $\mathcal{A}\Omega$ alineada amb EI_T^{mola}

D'aquest 1 triangle de velocitats angulars deduim:

$$\dot{\varphi} = \frac{\dot{\varphi}}{t_3 \beta} = \frac{\dot{\varphi}}{\frac{R}{2R}} = z\dot{\varphi}$$

Obtenion $\overline{V}_T(Q)$ per comp. movim. and RE = Brag

$$\overline{v_T}(Q) = \overline{v_T}(s) + \overline{\Omega}_T^{Mola} \times \overline{SQ} =$$

$$= \left[(\Rightarrow 2\dot{\psi}) + (\uparrow \dot{\psi}) \right] \times (\downarrow 2R) = \left(\otimes 4R\dot{\psi} \right)$$

$$\overline{\Omega}_T^{Mola} = RESP = E$$

Parcial 26 octubre 2022

De l'auterior exercici

$$\overline{\Omega}_{T}^{\text{Mola}} = (\Rightarrow 2\dot{\psi}) + (1\dot{\psi}) \qquad (\dot{\psi} = ct)$$

Derivem-la geomètricament

