TP n°13

Dosages conductimétriques

Proposer une méthode expérimentale pour doser par conductimétrie, et à l'aide d'une solution de soude adaptée à préparer, trois solutions acides :

Acide maléique C₄H₄O₄ (environ 0,05 M)

Mélange d'un acide fort HCl (environ 0,1 M) et d'un acide faible CH₃CO₂H (environ 0,05 M).

Acide sulfurique H₂SO₄ (environ 0,1M)

A l'aide du tableau des conductivités ioniques à dilution infinie, prévoir théoriquement l'évolution du dosage conductimétrique envisagé.

On donnera une fiche de sécurité synthétique des produits suivants et rechercher les pKa:

Acide sulfurique

Acide maléique

Acide chlorhydrique

Acide acétique

Rédaction à l'aide du guide.

Données:

Acide maléique : $pKa_1 = 1,83 / pKa_2 = 6,59$

Acide acétique : pKa = 4.8

ions	Na ⁺	HO ⁻	Cl ⁻	CH ₃ COO ⁻	H_3O^+
λ° (mS.m ² .mol ⁻¹)	5.01	19.9	7.63	4.1	35.0

Vérifiez la présence, l'état et la propreté de votre matériel en début et en fin de séance.

Liste du matériel nécessaire :

1

- 1 agitateur magnétique
- 1 barreau aimanté
- 3 béchers de 100 cm^3
- 3 bécher de 250 cm³
- 1 burette graduée
- 1 fiole jaugée 100 mL
- 1 cellule de conductivité
- 1 conductimètre
- 1 entonnoir à liquide
- 1 pince de Mohr
- 1 petit cristallisoir (verre de montre)
- 1 micropipette
- 1 support burette
- 1 pissette d'eau distillée
- 1 poire à pipeter pour pipette pasteur

Liste des produits nécessaires :

- Diacide fort H_2SO_4 0,1 mol/L

- Mélange acide faible/acide fort CH₃COOH / HCl 0,05 / 0,1 mol/L

- Acide Maléique (diacide faible) (HOOC-CH=CH-COOH) 0,05 mol/L

- Hydroxyde de sodium NaOH pastilles ($M = 40,00 \text{ g.mol}^{-1}$) pur à 98%

- solution étalon KCl