Module 3: Flow of Fluids and Bernoulli's Equation (CIVL 318)

Volume Flow Rate:	Q	=	Av
Mass Flow Rate:	М	=	ρQ
Weight Flow Rate:	W	=	γQ
Continuity Equation:	A_1v_1	=	A_2v_2
Bernoulli's Equation:	$\frac{p_A}{\gamma} + z_A + \frac{v_A^2}{2g}$	=	$\frac{p_B}{\gamma} + z_B + \frac{v_B^2}{2g}$

Table F: Schedule 40 Steel Pipe

Nominal Size	Inside Diameter	Nominal Size	Inside Diameter
(in)	(mm)	(in)	(mm)
$\frac{1}{8}$	6.8	4	102.3
$\frac{1}{4}$	9.2	5	128.2
$\frac{3}{8}$	12.5	6	154.1
$\frac{1}{2}$ $\frac{3}{4}$	15.8	8	202.7
$\frac{3}{4}$	20.9	10	254.5
1	26.6	12	303.2
$1\frac{1}{4}$	35.1	14	333.4
$1\frac{1}{2}$	40.9	16	381.0
2	52.5	18	428.7
$2\frac{1}{2}$	62.7	20	477.9
3	77.9	24	574.7
$3\frac{1}{2}$	90.1		

Table G: Dimensions of Steel Tubing

Outside Diameter	Outside Diameter	Wall Thickness	Inside Diameter
(in)	(mm)	(mm)	(mm)
$\frac{1}{8}$	3.18	0.813 0.889	1.549 1.397
$\frac{3}{16}$	4.76	0.813 0.889	3.137 2.985
$\frac{1}{4}$	6.35	0.889 1.24	4.572 3.861
$\frac{5}{16}$	7.94	0.889 1.24	6.160 5.448
$\frac{3}{8}$	9.53	0.889 1.24	7.747 7.036
$\frac{1}{2}$	12.70	1.24 1.65	10.21 9.46
<u>5</u> 8	15.88	1.24 1.65	13.39 12.57
$\frac{3}{4}$	19.05	1.24 1.65	16.56 15.75
$\frac{7}{8}$	22.23	1.24 1.65	19.74 18.92
1	25.40	1.65 2.11	22.10 21.18
$1\frac{1}{4}$	31.75	1.65 2.11	28.45 27.53
$1\frac{1}{2}$	38.10	1.65 2.11	34.80 33.88
$1\frac{3}{4}$	44.45	1.65 2.11	41.15 40.23
2	50.80	1.65 2.11	47.50 46.587

Example 1:

The average velocity of the flow at the nozzle C is $4.7\,\mathrm{m/s}.$ Determine:

- $\bullet\,$ the average flow velocity at A
- ullet the average flow velocity at B
- the volume flow rate, Q, through the system in L/s.

Example 2:

Water, at 70°C flows through $\frac{7}{8}\text{-in.}$ steel tubing, with $1.65\,\text{mm}$ wall thickness, at an average velocity of $5.7\,\text{m/s.}$ Determine:

- ullet the volume flow rate, Q
- ullet the mass flow rate, M
- ullet the weight flow rate, W

Example 3:

Oil, with a specific gravity of 0.83, flows under gravity from a tank, through a pipe system as shown, before entering the atmosphere through a nozzle at D. Determine:

- ullet the pressure at A
- ullet the pressure at B
- ullet the pressure at ${\cal C}$
- the volume flow rate through the system

Example 4:

Determine the pressure reading p_2 if $Q=25\,\mathrm{L/s}$

Exercise 1:

Determine the pressure reading p_2 if $Q=20\,\mathrm{L/s}$

Example 5:

Determine Q, the volume flow rate.

Example 6:

Determine Q, the volume flow rate.

Example 7:

Determine Q, the volume flow rate, if $h=210\ \mathrm{mm}.$

Exercise 2:

Determine Q, the volume flow rate, if $h=125\ \mathrm{mm}.$