Corso di Laurea in Matematica A.A. 2024-2025 Docente: Stefano Bonzio

Esercizi sulla teoria degli anelli

- 1. Sia \mathbb{H} l'insieme dei quaternioni, ovvero $\mathbb{H} = \{a + bi + cj + dk \mid a, b, c, d \in \mathbb{R}\}$. Si ricordi che, dato $q \in \mathbb{H}$, q = a + bi + cj + dk, $\overline{q} = a bi cj dk$ e che $||q|| = \sqrt{q\overline{q}}$.
 - a) si provino le seguenti uguaglianze: $\overline{q} = q$, $\overline{q+q_1} = \overline{q} + \overline{q_1}$, $\overline{q \cdot q_1} = \overline{q_1} \cdot \overline{q}$, $q\overline{q} = a^2 + b^2 + c^2 + d^2$, $\|q \cdot q_1\| = \|q\| \cdot \|q_1\|$.
 - b) si verifichi che \mathbb{H} forma un corpo (dove per $q \neq 0, q^{-1} = ||q||^{-2} \cdot \overline{q}$).
- 2. Sul gruppo abeliano $A = (\mathbb{R}, +) \times (\mathbb{R}, +)$ si consideri la moltiplicazione definita da

$$(x,y) \cdot (x',y') = (xx' + yy', xy' + x'y).$$

- (a) Dimostrare che in questo modo $(A, +, \cdot)$ risulta un anello unitario e $\mathbb{R} \times \{0\}$ è un suo sottoanello.
- (b) Caratterizzare gli elementi invertibili ed i divisori dello zero di A.
- (c) Dire se esistono elementi che non sono né divisori dello zero né invertibili.
- (d) Trovare gli ideali massimali di A.
- 3. Sia A un anello commutativo unitario e I e J ideali di A. Definiamo

$$IJ = \{i_1j_1 + \dots + i_nj_n \mid n \in \mathbb{N}, i_k \in I, j_k \in J, k = 1, \dots, n\}.$$

- (a) Provare che IJ è un ideale di A contenuto nell'ideale $I\cap J$ e mostrare con un esempio che $IJ\neq I\cap J$.
- (b) Provare che se A = I + J allora $IJ = I \cap J$.
- (c) Provare che l'affermazione in (b) non è vera se A non è un anello unitario.
- (d) se I e J sono due ideali massimali distinti, allora $IJ = I \cap J$;
- (e) se I e J sono ideali principali, I = (a) e J = (b), allora IJ = (ab).
- (f) descrivere IJ e $I \cap J$ in $A = \mathbb{Z}$ e dedurre quando $IJ = I \cap J$.
- 4. Sia $A = \{ \begin{pmatrix} a & -b \\ b & a \end{pmatrix} \mid a, b \in \mathbb{Z}_3 \}$. Provare che A è un sottocampo di $M_2(\mathbb{Z}_3)$. Dimostrare inoltre che (A^*, \cdot) è un gruppo ciclico, determinare l'ordine di A^* e un suo generatore.

- 5. Sia $A = \{ \begin{pmatrix} a & b \\ -b & a \end{pmatrix} \mid a, b \in \mathbb{R} \}$. Provare che A è un sottocampo di $M_2(\mathbb{R})$ isomorfo a \mathbb{C} .
- 6. Sia A un anello unitario e I un ideale bilatero di A. Dimostrare che l'insieme $U_I = \{x \in U(A) \mid x 1 \in I\}$ è un sottogruppo normale di U(A).
- 7. Sia $A = \{ \begin{pmatrix} a & b \\ 0 & a \end{pmatrix} \mid a, b \in \mathbb{R} \}.$
 - (a) Provare che A è un anello commutativo unitario, ma non è un dominio.
 - (b) Determinare l'ideale N(A) degli elementi nilpotenti di A.
 - (c) Mostrare che ogni ideale proprio di A è contenuto in N(A) e dedurre che A è un anello locale.
 - (d) Determinare tutti gli ideali di A.
- 8. Nell'anello $M_2(\mathbb{Z}_8),$ sia $A=\{\left(\begin{array}{cc}a&5b\\4b&a\end{array}\right)\ |\ a,b\in\mathbb{Z}_8\}.$
 - (a) Provare che A è un sottoanello commutativo di $M_2(\mathbb{Z}_8)$.
 - (b) Dire se A è un dominio.
- 9. Sia p un primo e $\mathbb{Z}_{(p)}=\{\frac{m}{n}\in\mathbb{Q}\mid p\nmid n,\ (m,n)=1\}.$
 - (a) Provare che $\mathbb{Z}_{(p)}$ è un sottoanello di $\mathbb{Q}.$
 - (b) Determinare gli elementi invertibili di $\mathbb{Z}_{(p)}$.
 - (c) Determinare gli ideali di $\mathbb{Z}_{(p)}$.
 - (d) Determinare gli ideali primi e massimali di $\mathbb{Z}_{(p)}$.
 - (e) Provare che $\mathbb{Z}_{(p)}$ è un anello locale.
- 10. Dimostrare che:
 - (a) ogni campo è un anello locale senza elementi nilpotenti non nulli;
 - (b) se \mathbb{Z}_m è locale e non ha elementi nilpotenti non nulli allora \mathbb{Z}_m è un campo;
 - (c) dare un esempio di anello locale senza elementi nilpotenti non nulli che non sia un campo.
- 11. Un anello commutativo unitario si dice regolare se per ogni $x \in A$ esiste $y \in A$ tale che $x = yx^2$. Dimostrare che:
 - (a) ogni campo è un anello regolare e se A è un dominio regolare allora A è un campo;

- (b) l'anello quoziente di un anello regolare è regolare;
- (c) in un anello regolare ogni ideale primo e massimale;
- (d) in un anello regolare ogni ideale principale è generato da un idempotente;
- (e) se I e J sono due ideali di un anello regolare allora $IJ = I \cap J$;
- (f) per ogni insieme non vuoto S e per ogni campo K, l'anello K^S è regolare.
- 12. Sia G un gruppo abeliano ed $\operatorname{End}(G)$ l'insieme degli endomorfismi di G. Siano $f,g \in \operatorname{End}(G)$ e si definisca (f+g)(x)=f(x)+g(x), per $x\in G$. Sia \circ l'usuale composizione di funzioni, cioèè $(f\circ g)(x)=f(g(x))$ per $x\in G$.
 - (a) Si dimostri che $(\text{End}(G), +, \circ)$ è un anello unitario.
 - (b) Sia A un anello unitario. Si dimostri che A si può identificare con un sottoanello di $\operatorname{End}(G)$ per qualche gruppo abeliano G.
- 13. Sia G un gruppo abeliano e $f \in A = \text{End}(G)$.
 - (a) Dimostrare che se f è suriettivo, allora f non è divisore destro dello zero in A.
 - (b) Dimostrare che se f è iniettivo, allora f non è divisore sinistro dello zero in A.
 - (c) Trovare un anello dove esistono divisori sinistri dello zero che non sono divisori destri dello zero (suggerimento: considerare l'anello $\operatorname{End}(\mathbb{Z}^{\mathbb{N}})$).

14. Sia
$$A = \{ \begin{pmatrix} \alpha & \beta \\ -\bar{\beta} & \bar{\alpha} \end{pmatrix} \mid \alpha, \beta \in \mathbb{C} \}.$$

- (a) Dimostrare che A è un sottoanello di $M_2(\mathbb{C})$.
- (b) Sia q=a+bi+cj+dk un elemento del corpo dei quaternioni \mathbb{H} . Si dimostri che l'applicazione $\varphi:\mathbb{H}\to A$ definita da

$$\varphi(q) = \begin{pmatrix} \alpha & \beta \\ -\bar{\beta} & \bar{\alpha} \end{pmatrix}, \ \alpha = a + ib, \ \beta = c + id \in \mathbb{C}$$

è un isomorfismo di anelli e pertanto di corpi.

(c) Si verifichi che

$$\det(\varphi(q)) = ||q||^2 = a^2 + b^2 + c^2 + d^2.$$

Si deduca che $||q_1q_2|| = ||q_1|| ||q_2||$, per ogni $q_1, q_2 \in \mathbb{H}$.

- (d) Si verifichi che l'insieme dei quaternioni di norma 1 è un sottogruppo del gruppo moltiplicativo (\mathbb{H}^* , ·).
- 15. Determinare l'insieme degli endomorfismi unitari dei seguenti anelli: $\mathbb{Z}, \mathbb{Q}, \mathbb{R}, \mathbb{Z}[i], \mathbb{Z}[\sqrt{n}]$.

- 16. Sia $f:A_1\to A_2$ un omomorfismo di anelli unitari.
 - (a) Provare che $f(U(A_1)) \subseteq U(A_2)$.
 - (b) Considerando l'omomorfismo canonico $f: \mathbb{Z} \to \mathbb{Z}_n$, mostrare che in (a) non vale l'uguaglianza se n > 6.
- 17. Sia A l'anello $\mathbb{Z}_3 \times \mathbb{Z}_4 \times \mathbb{Z}_5$
 - (a) Trovare la caratteristica di A.
 - (b) Descrivere gli ideali (primi, massimali e principali) di A.
 - (c) Determinare a quale degli anelli $\mathbb{Z}_4 \times \mathbb{Z}_{15}$, $\mathbb{Z}_6 \times \mathbb{Z}_{10}$ e \mathbb{Z}_{60} è isomorfo l'anello A.
 - (d) Descrivere quali sono gli elementi invertibili e gli elementi nilpotenti di A.
- 18. Sia \mathbb{K} un campo e $A = \mathbb{K} \times \mathbb{K} \times \cdots \times \mathbb{K}$ (*n* fattori). Trovare gli ideali primi e massimali di A e dire quanti sono.
- 19. Nell'anello $A=\mathbb{Z}[\sqrt{2}]$ si considerino gli ideali I=(2) e J=(3). Dire se gli anelli quoziente A/I e A/J sono campi.
- 20. Nell'anello $A = \mathbb{Z}[\sqrt{5}]$ sia I = (5) e si consideri l'anello quoziente A/I.
 - (a) Provare che se $a \equiv 0 \mod 5$, allora l'elemento $a + b\sqrt{5} + I$ èè nilpotente.
 - (b) Provare che se $a \not\equiv 0 \mod 5$, allora l'elemento $a + b\sqrt{5} + I$ èè invertibile.
 - (c) Determinare gli ideali di A/I.
- 21. Sia $A = \mathbb{Z}[\sqrt{5}]$. Per $\alpha = x + \sqrt{5}y \in A$ definiamo la norma di α come $N(\alpha) = x^2 5y^2$. Dimostrare che $M = \{\alpha \in A \mid N(\alpha) \text{ pari}\}$ è un ideale massimale di A.

Esercizi sui reticoli

- 1. Dimostrare che se un elemento di un reticolo distributivo e limitato ammette complemento, tale complemento è unico e che se $a \wedge b = 0$ e $a \vee b = 1$ allora $b = \overline{a}$.
- 2. Dimostrare che in ogni algebra di Boole B vale che $\overline{\overline{x}} = x$ e valgono le leggi di De Morgan, ovvero: $\overline{x \wedge y} = \overline{x} \vee \overline{y}$ e $\overline{x \vee y} = \overline{x} \wedge \overline{y}$, per ogni $x, y \in B$.
- 3. Dimostrare che l'insieme degli ideali di un reticolo limitato L forma un reticolo completo (suggerimento: mostrare che l'insieme è chiuso per intersezioni arbitrarie).
- 4. Un anello commutativo unitario A si dice Booleano, se, per ogni $a \in A$, vale $a^2 = a$.
 - (a) Provare che la caratteristica di $A \geq 2$ e che $A \geq 1$ un anello commutativo;
 - (b) Provare che A ha divisori dello zero qualora |A| > 2;
 - (c) Ogni ideale primo di A è massimale.
- 5. Sia $(B, \vee, \wedge, ^-, 0, 1)$ un'algebra di Boole: si dimostri che, definendo $a+b:=(a\wedge \overline{b})\vee(\overline{a}\wedge b)$ e $a\cdot b:=a\wedge b, (B,+,\cdot)$ è un anello Booleano. Viceversa, sia A un anello Booleano e si definiscano $a\vee b:=a+b+a\cdot b, \ a\wedge b=a\cdot b$ e $\overline{a}=1+a$: si dimostri che $(A,\vee,\wedge,^-,0,1)$ è un'algebra di Boole.
- 6. Sia I un ideale di un reticolo distributivo e limitato L. Dimostrare che esiste un ideale massimale che estende I (per massimale si intende la stessa nozione data per gli anelli).
- 7. Sia $f: L_1 \to L_2$ un omomorfismo di reticoli limitati. Dimostrare che l'insieme $I = \{x \in L_1 \mid f(x) = 0\}$ è un ideale di L_1 .
- 8. Sia L un reticolo distributivo e limitato. Un sottoinsieme non vuoto $F \subseteq L$ si dice un filtro di L se soddisfa le seguenti proprietà:
 - 1) $a \wedge b \in F$, per ogni $a, b \in F$;
 - 2) se $a \in F$ e a < x, per qualche $x \in L$, allora $x \in F$.

Dimostrare che:

- (a) $1 \in F$;
- (b) per ogni $a \in L$, l'insieme $\uparrow a = \{x \in L \mid a \le x\}$ è un filtro di L;
- (c) se L è finito ogni filtro è della forma $\uparrow a$;
- (d) se L è un'algebra di Boole, allora un sottoinsieme F di L è un filtro se e solo se l'insieme $I=\{\overline{x}\mid x\in F\}$ è un ideale di L, dove \overline{x} è l'unico complemento dell'elemento $x\in L$.

Esercizi su polinomi, domini fattoriali, principali ed euclidei

- 1. Sia A un anello commutativo unitario. Dimostrare che un polinomio $p(x) \in A[x]$ è nilpotente sse tutti i coefficienti di p sono nilpotenti.
- 2. Sia A un anello commutativo unitario e $p(x) \in A[x]$ con coefficiente direttivo invertibile e di grado n > 0. Dato l'ideale principale I = (p(x)), si dimostri che esiste una bigezione tra l'anello quoziente A[x]/I e le classi laterali r(x) + I, dove r(x) è un polinomio di grado minore di n oppure r(x) = 0.
- 3. Sia A un dominio. Dimostrare che U(A[x]) = U(A). L'uguaglianza è vera anche nel caso in cui A non sia un dominio?
- 4. Sia A un anello commutativo unitario e I un ideale di A. Sia J l'insieme di tutti i polinomi che hanno coefficienti in I. Dimostrare che J è un ideale di A[x] e che $A[x]/J \cong A/I[x]$.
- 5. Si consideri l'anello dei polinomi $\mathbb{Z}[x]$. Sia I l'insieme dei polinomi di $\mathbb{Z}[x]$ il cui termine di grado zero è pari. Verificare che I è un ideale di $\mathbb{Z}[x]$ e che non è principale.
- 6. Siano A un dominio e B un anello unitario isomorfo ad A quale anello unitario. Si dimostri che:
 - (a) Bè un dominio;
 - (b) se A è fattoriale, allora anche B è fattoriale;
 - (c) se A è principale, allora anche B è principale;
 - (d) se A è euclideo, allora anche B è euclideo.
- 7. Sia A un dominio euclideo e $a, b \in A^*$. Se b|a e $\delta(a) = \delta(b)$ allora a è associato a b.
- 8. Si fornisca una dimostrazione diretta del fatto che ogni dominio euclideo è fattoriale. (Suggerimento: considerare δ^* e ragionare per induzione).
- 9. Sia A un dominio a ideali principali e sia I un ideale di A non banale. Dimostrare che ogni elemento non invertibile del quoziente A/I è divisore dello zero.
- 10. Dimostrare che per $f(x), g(x) \in A[x]$ si ha $cont(f \cdot g) = cont(f) \cdot cont(g)$.
- 11. Sia K un campo, $f(x) \in K[x]$ un polinomio di grado 2 o 3. Allora f(x) è riducibile (non irriducibile) se e solo se f(x) ha radici in K.
- 12. Sia A un dominio principale e a un elemento di A che ha un divisore primo $p \in A$ tale che p^2 non divide a. Allora il polinomio $f(x) = x^n + a$ è irriducibile in A[x] per ogni n > 0.

- 13. Si dimostri che i polinomi $x^5 6x + 3$ e $x^7 60$ in $\mathbb{Z}[x]$ sono irriducibili.
- 14. Sia p un numero primo. Dimostrare che non esiste alcun omomorfismo di anelli unitari $\mathbb{Q}[x] \to \mathbb{Z}_p[x]$.
- 15. Dimostrare che il polinomio $x^4+x^3+1\in\mathbb{Z}[x]$ è irriducibile.
- 16. Calcolare il quoziente e il resto della divisione euclidea di f(x) per g(x) per i polinomi:
 - a) $f(x) = x^5 x^3 + 1$, $g(x) = x^2 + 1$ in $\mathbb{Z}[x]$;
 - b) $f(x) = 3x^4 + 2x^3 + 2x + 5$, $g(x) = 2x^2 + 5x 1$ in $\mathbb{Z}_7[x]$.
- 17. Sia $f(x) = x^3 + x + 1 \in \mathbb{Z}_5[x]$.
 - a) Provare che f(x) è irriducibile in $\mathbb{Z}_5[x]$;
 - b) Costruire un campo quoziente di $\mathbb{Z}_5[x]$ con 125 elementi;
 - c) Costruire un campo quoziente di $\mathbb{Z}_5[x]$ con 25 elementi.
- 18. Dire se i polinomi $f(x) = x^4 + 830x^3 + 1002x^2 + 213x + 71$ e $g(x) = x^4 + x^3 + 2x^2 + x + 4$ sono riducibili in $\mathbb{Q}[x]$.