ISM6218 Advanced Database Management FINAL PROJECT

Praneeth venkata sai Eluri

Comprehensive Analysis and Application of IPL Data: A Portfolio Project in Database Design and Implementation

Database Design:

The project entails creating a database system of Indian Premier League (IPL). It includes detailed records for each ball in every match, player performances, team details, and seasonal information. The "BALL_BY_BALL" entity captures specifics of each delivery, like which batsman faced it and the runs scored. "MATCH" details the match specifics, "PLAYER" contains details of each player, "PLAYER_MATCH" links players with specific matches, and "TEAM" and "SEASON" entities hold information about the IPL teams and the tournament years, respectively. This setup would be ideal for in-depth analysis of matches and player statistics over various IPL seasons that enables cricket fans as well as those in the sports industry such as journalists, bloggers, writers, etc, to be able to accurately and effectively lookup some of their favourite players and teams, the matches they were involved in, and other aspects on those leagues that they were involved in, such as the category under which it falls, winners, scores, etc.

To effectively balance overhead costs as well as retrieval times for reads from the database, appropriate indexing must be allocated to either a single or a combination of columns, while maintaining integrity and accuracy of the data retrieved.

A brief summary of the involved tables is as follows;

TABLE NAME	DESCRIPTION	PRIMARY KEY
------------	-------------	-------------

МАТСН	Contains records of various aspects about the	Composite primary key of Match_id,Match_Winner_i
	the	d

	match such as the Match Date, Venue, Winner, Team Ids, etc. This table has the most columns due to the several attributes a movie can have.	and Toss_Winner_Id
BALL_BY_BALL	This table accurately depicts the roles different personnel have on match, contributing in their respective positions	Composite primary key of Match_Id, innings_Id and Over Id
TEAM	This table expounds on teams those involved in the season, from their bio data.	Team_id
SEASON	This table records the details of which season, such as season_year, season_id, etc.	Season_Id
PLAYER	An associative entity table that enables mapping of the many-to-many relationships between Player_Match,season.	Player_Id
PLAYER_MATCH	This table records the details of the player in the particular match, such as match_id, player_id,team, etc.	Composite primary key of Match_Id and Player_Id

ER Diagram

Query Writing

/*Point Query*/

1) Finding a specific match details like overs, team, batsmen and runs scored using match id.

```
SELECT MATCH_ID, INNINGS_ID, OVER_ID, BALL_ID,
    TEAM_NAME AS BATTING_TEAM,
    PLAYER_NAME AS BATSMAN,
    BATSMAN_SCORED AS RUNS
FROM BALL_BY_BALL
INNER JOIN MATCH USING (MATCH_ID)
INNER JOIN PLAYER_MATCH USING (MATCH_ID)
INNER JOIN PLAYER USING (PLAYER_ID)
INNER JOIN TEAM USING (TEAM_ID)
WHERE MATCH_ID = 501271;
```


2) Finding the top-scoring batsman for each season

```
SELECT DISTINCT PLAYER_ID, PLAYER_NAME, BATTING_HAND, COUNTRY, season_year FROM BALL_BY_BALL INNER JOIN MATCH USING(MATCH_ID) INNER JOIN PLAYER_MATCH USING(MATCH_ID) INNER JOIN PLAYER USING(PLAYER_ID) INNER JOIN SEASON USING(SEASON_ID) WHERE PLAYER_ID=ORANGE_CAP_ID ORDER BY SEASON YEAR;
```

/*Scan Query*/

1) Finding the Players with most man of the match awards

SELECT PLAYER_ID, PLAYER_NAME, COUNT(*) AS MAN_OF_THE_MATCH_COUNT FROM MATCH INNER JOIN PLAYER_MATCH USING (MATCH_ID) INNER JOIN PLAYER USING (PLAYER_ID) GROUP BY PLAYER_ID, PLAYER_NAME HAVING COUNT(*) > 10 ORDER BY MAN OF THE MATCH COUNT DESC;

2) List all matches with total runs scored:

SELECT Match_Id, SUM(BATSMAN_Scored) AS Total_Runs FROM Match INNER JOIN Ball_by_Ball USING(MATCH_ID) GROUP BY Match Id;

/*RANGE QUERIES*/

1) Finding matches which was won by 50 runs or 3 wickets

SELECT MATCH_ID, MATCH_DATE, TEAM_NAME_ID, OPPONENT_TEAM_ID, WIN_TYPE, WON_BY FROM MATCH
WHERE (WIN_TYPE = 'by runs' AND WON_BY < 50)
OR (WIN_TYPE = 'by wickets' AND WON_BY < 3);

2) Find all players who have scored between 50 and 100 runs in a single-inning

SELECT Player_Name, Match_Id, SUM(BATSMAN_Scored) AS Runs_In_Inning FROM BALL_BY_BALL INNER JOIN MATCH USING(MATCH_ID) INNER JOIN PLAYER_MATCH USING(MATCH_ID) INNER JOIN PLAYER USING(PLAYER_ID) GROUP BY Player_Name, Match_Id, Innings_Id HAVING SUM(Batsman Scored) BETWEEN 50 AND 100;

/*Combined Range and Scan Query*/

SELECT MATCH_ID, SUM(BATSMAN_SCORED) AS RUNS, COUNT(DISTINCT OVER_ID) AS OVERS_FACED FROM BALL_BY_BALL INNER JOIN MATCH USING (MATCH_ID) INNER JOIN SEASON USING (SEASON_ID) INNER JOIN PLAYER_MATCH USING (MATCH_ID) INNER JOIN PLAYER USING (PLAYER_ID) WHERE SEASON_YEAR = 2016 AND PLAYER_NAME = 'V Kohli' GROUP BY MATCH_ID;

/*Aggregation with Join Query*/

SELECT TEAM.TEAM_NAME, SUM(BATSMAN_SCORED) AS
TOTAL_RUNS
FROM BALL_BY_BALL
JOIN MATCH ON BALL_BY_BALL.MATCH_ID = MATCH.MATCH_ID
JOIN SEASON ON MATCH.SEASON_ID = SEASON.SEASON_ID
JOIN TEAM ON BALL_BY_BALL.TEAM_BATTING_ID =
TEAM.TEAM_ID
WHERE SEASON.SEASON_YEAR = 2015
GROUP BY TEAM.TEAM_NAME
ORDER BY TOTAL RUNS DESC;

Performance Tuning

1)Indexing on Point Query

SELECT MATCH_ID, INNINGS_ID, OVER_ID, BALL_ID,
 TEAM_NAME AS BATTING_TEAM,
 PLAYER_NAME AS BATSMAN,
 BATSMAN_SCORED AS RUNS
FROM BALL_BY_BALL
INNER JOIN MATCH USING (MATCH_ID)
INNER JOIN PLAYER_MATCH USING (MATCH_ID)
INNER JOIN PLAYER USING (PLAYER_ID)
INNER JOIN TEAM USING (TEAM_ID)
WHERE MATCH_ID = 501271;

Indexing plan

ALTER TABLE BALL_BY_BALL ADD CONSTRAINT MATCH_ID PRIMARY KEY (MATCH_ID, INNINGS ID,OVER ID,BALL ID);

ALTER TABLE MATCH
ADD CONSTRAINT MATCHID PRIMARY KEY (MATCH ID);

ALTER TABLE PLAYER
ADD CONSTRAINT PLAYERID PRIMARY KEY (PLAYER ID);

Impact:

- ➤ Indexing on Match_Id column: It helps the where clause to filter matches based on match id.
- ➤ Indexing on Ball_By_Ball column: It helps the join operator to link match id with other columns.
- ➤ Indexing on Player column: It helps the join operator to link player id with other columns.

➤ We can see that in the Join Operator the cost reduced from 297 to 27 because of the indexing.

Indexing on Scan Query

/*Scan Query*/
SELECT PLAYER_ID, PLAYER_NAME, COUNT(*) AS
MAN_OF_THE_MATCH_COUNT
FROM MATCH
INNER JOIN PLAYER_MATCH USING (MATCH_ID) INNER
JOIN PLAYER USING (PLAYER_ID)
GROUP BY PLAYER_ID, PLAYER_NAME
HAVING COUNT(*) > 10
ORDER BY MAN_OF_THE_MATCH_COUNT DESC;

Indexing Plan

ALTER TABLE PLAYER_MATCH ADD CONSTRAINT PLAYER_ID PRIMARY KEY (MATCH_ID,PLAYER_ID);

➤ We can see that in the Join Operator the cost reduced from 178 to 24 because of the indexing.

Indexing on Combined Range and Scan Query

/*Combined Range and Scan Query*/
SELECT MATCH_ID, SUM(BATSMAN_SCORED) AS RUNS, COUNT(DISTINCT
OVER_ID) AS OVERS_FACED
FROM BALL_BY_BALL
INNER JOIN MATCH USING (MATCH_ID)
INNER JOIN SEASON USING (SEASON_ID)
INNER JOIN PLAYER_MATCH USING (MATCH_ID) INNER
JOIN PLAYER USING (PLAYER_ID)
WHERE SEASON_YEAR = 2016 AND PLAYER_NAME = 'V Kohli'
GROUP BY MATCH_ID;

Indexing Plan

ALTER TABLE SEASON ADD CONSTRAINT SEASON_ID PRIMARY KEY (SEASON_ID);

ALTER TABLE TEAM ADD CONSTRAINT TEAM_ID PRIMARY KEY (TEAM_ID);

➤ We can see that in the Join Operator the cost reduced from 299 to 198 because of the indexing.

Data Visualisation

import pandas as pd import numpy as np import matplotlib.pyplot as plt import seaborn as sns

ball_by_ball_data=pd.read_csv("C:/Users/manvi/OneDrive/Desktop/Ball_by_Ball.csv") match_data=pd.read_csv("C:/Users/manvi/OneDrive/Desktop/Match.csv") player_data=pd.read_csv("C:/Users/manvi/OneDrive/Desktop/Player.csv") playermatch_data=pd.read_csv("C:/Users/manvi/OneDrive/Desktop/Player_Match.csv") season_data=pd.read_csv("C:/Users/manvi/OneDrive/Desktop/Season.csv") Team_data=pd.read_csv("C:/Users/manvi/OneDrive/Desktop/Team.csv")

1) Extras bowled in the entire IPL

```
ball_by_ball_data['Extra_Type'].replace('', np.nan, inplace=True)
ball_by_ball_data['Extra_Type'].dropna() plt.figure(figsize=(15,5))
sns.countplot(x='Extra_Type', data=ball_by_ball_data)
sns.set_context("talk")
plt.ylabel("No of Extras",fontsize = 20, weight = 'bold')
plt.xlabel("Types of extras",fontsize = 20, weight = 'bold')
plt.title("Extras bowled",fontsize = 20, weight = 'bold');
plt.show()
```


- ➤ As you can see most of the Extras are Wides which are nearly 3500.
- ➤ There are very less penalty runs.

2) Different types of Dismissals

```
ball_by_ball_data['Dissimal_Type'].replace('', np.nan, inplace=True) ball_by_ball_data['Dissimal_Type'].dropna() plt.figure(figsize=(25,5)) sns.countplot(x='Dissimal_Type', data=ball_by_ball_data) sns.set_context("talk") plt.ylabel("No of dismissals",fontsize = 20, weight = 'bold') plt.xlabel("Types of dismissals",fontsize = 20, weight = 'bold') plt.title("Total Dismissals",fontsize = 20, weight = 'bold'); plt.show()
```


3) Toss Decisions

```
plt.figure(figsize=(25,5))
sns.countplot(x='Toss_Decision', data=match_data)
sns.set_context("talk")
plt.ylabel("Toss Decisions",fontsize = 20, weight = 'bold')
plt.xlabel("Bat or Field",fontsize = 20, weight = 'bold')
plt.title("Total Dismissals",fontsize = 20, weight = 'bold');
plt.show()
```


4) Number of Players from different countries

```
plt.figure(figsize=(12,6))
sns.countplot(x='Country', data=player_data)
sns.set_context('talk')
plt.xlabel("Country Names",fontsize=20,weight='bold')
plt.xticks( rotation=45, horizontalalignment='right')
plt.ylabel("Number of Players",fontsize=20,weight='bold')
plt.title("Total Number of Players that played IPL from each country",fontsize=25)
```

plt.show()

5) Host Countries of IPL

```
match_data['Host_Country'].unique()
array(['India', 'South Africa', 'U.A.E'], dtype=object)
```

6) Number of matches played in each stadium

```
plt.figure(figsize=(20,14))
sns.countplot(y='Venue_Name', data=match_data)
plt.yticks(rotation='horizontal')
plt.xlabel("Number of Matches",fontsize = 25, weight = 'bold')
plt.ylabel("Stadium Name",fontsize = 25, weight = 'bold')
plt.title("Number of Matches played in each Stadium",fontsize = 30, weight = 'bold');
plt.show()
```


Data Mining

Predicting the Result of the match based on team winning the Toss. We have considered the following columns "Toss_Decision","Match_Winner_Id","City_Name","Team_N ame Id","Opponent Team Id", for predicting of the result

```
import pandas as pd
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import LabelEncoder
from sklearn.ensemble import RandomForestClassifier, GradientBoostingClassifier
from sklearn.svm import SVC
from sklearn.metrics import accuracy_score, classification_report

data=match_data[["Toss_Decision","Match_Winner_Id","City_Name","Team_Name_Id"
,"Opponent_Team_Id"]]

# Drop rows with missing values
data = data.dropna()

# Convert categorical columns to numerical using Label Encoding
label_encoder = LabelEncoder()
data["Toss_Decision"] = label_encoder.fit_transform(data["Toss_Decision"])
data["City_Name"] = label_encoder.fit_transform(data["City_Name"])
```

```
# Separate features (X) and target variable (y)
X = data.drop("Match Winner Id", axis=1)
y = data["Match Winner Id"]
# Split the data into training and testing sets
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
# Initialize different classifiers
rf classifier = RandomForestClassifier(random state=42)
gb classifier = GradientBoostingClassifier(random state=42)
svm classifier = SVC(random state=42)
# Train and evaluate Random Forest classifier
rf classifier.fit(X train, y train)
rf predictions = rf classifier.predict(X test)
rf accuracy = accuracy score(y test, rf predictions)
print("Random Forest Classifier Accuracy:", rf accuracy)
print("Classification Report:")
print(classification_report(y_test, rf predictions))
# Train and evaluate Gradient Boosting classifier
gb classifier.fit(X train, y train)
gb predictions = gb classifier.predict(X test)
gb_accuracy = accuracy_score(y_test, gb_predictions)
print("\nGradient Boosting Classifier Accuracy:", gb accuracy)
print("Classification Report:")
print(classification report(y test, gb predictions))
# Train and evaluate Support Vector Machine classifier
svm classifier.fit(X train, y train)
svm predictions = svm classifier.predict(X test)
svm accuracy = accuracy score(y test, svm predictions)
print("\nSupport Vector Machine Classifier Accuracy:", svm accuracy)
print("Classification Report:")
print(classification report(y test, svm predictions))
# Logistic Regression
logreg classifier = LogisticRegression(random state=42)
logreg classifier.fit(X train, y train)
logreg predictions = logreg classifier.predict(X test)
logreg_accuracy = accuracy_score(y_test, logreg_predictions)
print("\nLogistic Regression Accuracy:", logreg accuracy)
print("Classification Report:")
print(classification report(y test, logreg predictions))
# K-Nearest Neighbors
knn classifier = KNeighborsClassifier()
knn classifier.fit(X train, y train)
knn predictions = knn classifier.predict(X test)
knn accuracy = accuracy score(y test, knn predictions)
print("\nK-Nearest Neighbors Accuracy:", knn accuracy)
print("Classification Report:")
print(classification report(y test, knn predictions))
```

```
# Naive Bayes
nb classifier = GaussianNB()
nb classifier.fit(X train, y train)
nb predictions = nb classifier.predict(X test)
nb_accuracy = accuracy_score(y_test, nb_predictions)
print("\nNaive Bayes Accuracy:", nb_accuracy)
print("Classification Report:")
print(classification_report(y_test, nb_predictions))
# Decision Tree
dt classifier = DecisionTreeClassifier(random state=42)
dt classifier.fit(X train, y train)
dt predictions = dt classifier.predict(X test)
dt_accuracy = accuracy_score(y_test, dt_predictions)
print("\nDecision Tree Classifier Accuracy:", dt_accuracy)
print("Classification Report:")
print(classification report(y test, dt predictions))
# AdaBoost
adaboost classifier = AdaBoostClassifier(random state=42)
adaboost classifier.fit(X train, y train)
adaboost predictions = adaboost classifier.predict(X test)
adaboost accuracy = accuracy score(y test, adaboost predictions)
print("\nAdaBoost Classifier Accuracy:", adaboost accuracy)
print("Classification Report:")
print(classification_report(y_test, adaboost_predictions))
```

Random Forest Classifier Accuracy: 0.3652173913043478 Classification Report:

	precisio n	recall	f1- score	support
1.0	0.39	0.78	0.52	9
2.0	0.56	0.50	0.53	18
3.0	0.75	0.60	0.67	15
4.0	0.10	0.08	0.09	13
5.0	0.31	0.56	0.40	9
6.0	0.29	0.11	0.16	18
7.0	0.33	0.46	0.39	13
8.0	0.17	0.25	0.20	4
9.0	0.00	0.00	0.00	4
10.0	0.00	0.00	0.00	2
11.0	0.25	0.50	0.33	4
12.0	0.00	0.00	0.00	2
13.0	0.00	0.00	0.00	4
accuracy			0.37	115

macro avg	0.24	0.29	0.25	115
weighted avg	0.35	0.37	0.34	115

Gradient Boosting Classifier Accuracy: 0.4782608695652174 Classification Report:

	precisio n	recall	f1- score	support
1.0	0.47	0.78	0.58	9
2.0	0.55	0.33	0.41	18
3.0	0.53	0.53	0.53	15
4.0	0.18	0.15	0.17	13
5.0	0.54	0.78	0.64	9
6.0	0.53	0.50	0.51	18
7.0	0.50	0.62	0.55	13
8.0	0.50	0.50	0.50	4
9.0	0.00	0.00	0.00	4
10.0	0.00	0.00	0.00	2
11.0	0.50	0.75	0.60	4
12.0	1.00	0.50	0.67	2
13.0	0.67	0.50	0.57	4
accuracy			0.48	115
macro avg	0.46	0.46	0.44	115
weighted avg	0.47	0.48	0.46	115

Support Vector Machine Classifier Accuracy: 0.30434782608695654 Classification Report:

	precisio n	recall	f1- score	support
1.0	0.38	0.89	0.53	9
2.0	0.46	0.33	0.39	18
3.0	0.33	0.60	0.43	15
4.0	0.12	0.08	0.10	13
5.0	0.30	0.33	0.32	9
6.0	0.00	0.00	0.00	18
7.0	0.19	0.38	0.25	13
8.0	0.00	0.00	0.00	4
9.0	0.00	0.00	0.00	4
10.0	0.00	0.00	0.00	2
11.0	0.33	0.75	0.46 25	4

12.0	0.00	0.00	0.00	2
13.0	0.00	0.00	0.00	4
accuracy			0.30	115
macro avg	0.16	0.26	0.19	115
weighted avg	0.22	0.30	0.24	115

Logistic Regression Accuracy: 0.2782608695652174 Classification Report:

143311194019		recall	f1- score	support
1.	0.37	0.78	0.50	9
2.	0.56	0.28	0.37	18
3. 0	0.35	0.53	0.42	15
4. 0	0.13	0.15	0.14	13
5. 0	0.33	0.11	0.17	9
6. 0	0.00	0.00	0.00	18
7. 0	0.15	0.38	0.22	13
8.0	0.00	0.00	0.00	4
9.0	0.00	0.00	0.00	4
10.0	0.00	0.00	0.00	2
11.0	0.31	1.00	0.47	4
12.0	0.00	0.00	0.00	2
13.0	0.00	0.00	0.00	4
accuracy			0.28	115
macro avg	0.17	0.25	0.18	115
weighted avg	0.23	0.28	0.22	115

K-Nearest Neighbors Accuracy: 0.28695652173913044 Classification Report:

	precisio n	recall	f1- score	support
1.0	0.29	0.78	0.42	9
2.0	0.25	0.28	0.26	18
3.0	0.50	0.33	0.40	15
4.0	0.16	0.23	0.19	13
5.0	0.33	0.33	0.33	9
6.0	0.43	0.17	0.24	18
7.0	0.27	0.31	0.29	13
8.0	0.00	0.00	0.00	4
9.0	0.00	0.00	0.00	4
10.0	1.00	0.50	0.67	2
11.0	0.33	0.50	0.40	4
12.0	0.00	0.00	0.00	2
13.0	0.00	0.00	0.00	4
accuracy			0.29	115
macro avg	0.27	0.26	0.25	115
weighted avg	0.30	0.29	0.27	115

Naive Bayes Accuracy: 0.28695652173913044 Classification Report:

	precisio n	recall	f1- score	support
1.0	0.42	0.89	0.57	9
2.0	0.75	0.17	0.27	18
3.0	0.38	0.53	0.44	15
4.0	0.17	0.31	0.22	13
5.0	0.33	0.11	0.17	9
6.0	0.00	0.00	0.00	18
7.0	0.23	0.54	0.32	13
8.0	0.00	0.00	0.00	4
9.0	0.00	0.00	0.00	4
10.0	0.00	0.00	0.00	2
11.0	0.17	0.50	0.25	4
12.0	0.00	0.00	0.00	2
			27	

13.0	0.00	0.00	0.00	4
accuracy			0.29	115
macro avg	0.19	0.23	0.17	115
weighted avg	0.28	0.29	0.23	115

Decision Tree Classifier Accuracy: 0.40869565217391307 Classification Report:

	precisio n	recall	f1- score	support
1.0	0.37	0.78	0.50	9
2.0	0.58	0.39	0.47	18
3.0	0.73	0.73	0.73	15
4.0	0.08	0.08	0.08	13
5.0	0.33	0.56	0.42	9
6.0	0.44	0.22	0.30	18
7.0	0.41	0.54	0.47	13
8.0	0.33	0.25	0.29	4
9.0	0.00	0.00	0.00	4
10.0	0.20	0.50	0.29	2
11.0	0.60	0.75	0.67	4
12.0	0.00	0.00	0.00	2
13.0	0.00	0.00	0.00	4
accuracy			0.41	115
macro avg	0.31	0.37	0.32	115
weighted avg	0.40	0.41	0.39	115

AdaBoost Classifier Accuracy: 0.2608695652173913 Classification Report:

	precisio n	recall	f1- score	support
1.0	0.57	0.89	0.70	9
2.0	0.00	0.00	0.00	18
3.0	0.48	0.73	0.58	15
4.0	0.00	0.00	0.00	13
5.0	0.00	0.00	0.00	9
6.0	0.00	0.00	0.00	18
7.0	0.14	0.77	0.23	13
8.0	0.00	0.00	0.00	4
9.0	0.00	0.00	0.00	4
10.0	0.00	0.00	0.00	2
11.0	0.00	0.00	0.00	4

12.0	0.00	0.00	0.00	2
13.0	0.25	0.25	0.25	4
accuracy			0.26	115
macro avg	0.11	0.20	0.13	115
weighted avg	0.13	0.26	0.16	115

We have considered 7 different models for prediction, but only Gradient Boosting Classifier is giving an Accuracy of 0.5 which is best among the other models. It predicts that the team winning the toss has nearly 50% chance of winning the match.