

PRIPRAVA NA LABORATORIJSKE VAJE Vaja 9: Geometrijska poravnava slik

Obdelava slik in videa

prof. dr. Tomaž Vrtovec

GEOMETRIJSKA PORAVNAVA SLIK

Osnovna pristopa

Poravnava kontrolnih točk

Minimizacija razdalje med vsemi kontrolnimi točkami

Poravnava z optimizacijo podobnosti

Maksimizacija podobnosti med vsemi slikovnimi elementi

GEOMETRIJSKA PORAVNAVA SLIK

Optimizacija podobnosti

Poravnava kontrolnih točk (angl. point set registration):

- minimizacija geometrijske razdalje med vsemi pari korespondenčnih kontrolnih točk
- kontrolne točke lahko v določenih primerih določimo samodejno (z avtomatskim postopkom)

Poravnava z optimizacijo podobnosti (angl. similarity-based registration):

- maksimizacija podobnosti med sivinskimi vrednostmi vseh istoležnih slikovnih elementov
- zelo splošna
- ne zahteva določanja parov kontrolnih točk
- lahko jo relativno preprosto avtomatiziramo

Osnove

Na razpolago imamo znano **množico parov** pripadajočih kontrolnih točk na referenčni sliki a(x,y) in vhodni sliki b(u,v):

$$(x_k, y_k) \leftrightarrow (u_k, v_k)$$

Pripadajoči pari točk (*angl*. corresponding point pairs) morajo predstavljati iste objekte na obeh slikah:

- določimo jih lahko **ročno** → označimo izrazite značilnosti objektov, ki jih lahko zanesljivo razpoznamo in določimo (npr. oglišča, središča majhnih objektov, razcepišča, velike ukrivljenosti črt in robov)
 - povezava s t. i. **oslonilnimi točkami** (*angl.* landmarks)
- obstajajo tudi posebni **samodejni in polsamodejni postopki** za iskanje pripadajočih (oz. oslonilnih) točk

Mera razdalje

Mera razdalje (MR) je metrika, ki mora imeti naslednje lastnosti:

- nenegativnost:

$$MR(a,b) \ge 0$$

- identiteta:

$$MR(a,b) = 0$$
 pri $a = b$

- simetričnost:

$$MR(a,b) = MR(b,a)$$

- trikotniška neenakost:

$$MR(a,c) \ge MR(a,b) + MR(b,c)$$

Vrste poravnav kontrolnih točk

Iščemo preslikavo T, ki bo kontrolne točke čim boljše prekrila:

$$T(x_k, y_k) \leftrightarrow (u_k, v_k)$$

Interpolacijska poravnava

Aproksimacijska poravnava

Afina interpolacijska poravnava (v 2D)

Afina preslikava:

$$\begin{bmatrix} u \\ v \\ 1 \end{bmatrix} = T \begin{bmatrix} x \\ y \\ 1 \end{bmatrix} = \begin{bmatrix} a_{11} & a_{12} & t_x \\ a_{21} & a_{22} & t_y \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ 1 \end{bmatrix}$$

6 parametrov \rightarrow

→ potrebujemo 3 pare kontrolnih točk

Sistem 6 enačb za 6 neznanih parametrov:

$$\begin{bmatrix} u_1 & u_2 & u_3 \\ v_1 & v_2 & v_3 \\ 1 & 1 & 1 \end{bmatrix} = \begin{bmatrix} a_{11} & a_{12} & t_x \\ a_{21} & a_{22} & t_y \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x_1 & x_2 & x_3 \\ y_1 & y_2 & y_3 \\ 1 & 1 & 1 \end{bmatrix}$$

$$\begin{array}{llll} \text{Re\v{s}itev} \to \text{matrika} & T = \begin{bmatrix} a_{11} & a_{12} & t_x \\ a_{21} & a_{22} & t_y \\ 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} u_1 & u_2 & u_3 \\ v_1 & v_2 & v_3 \\ 1 & 1 & 1 \end{bmatrix} \begin{bmatrix} x_1 & x_2 & x_3 \\ y_1 & y_2 & y_3 \\ 1 & 1 & 1 \end{bmatrix}^{-1}$$

Afina aproksimacijska poravnava (v 2D)

Afina preslikava:

$$\begin{bmatrix} u \\ v \\ 1 \end{bmatrix} = T \begin{bmatrix} x \\ y \\ 1 \end{bmatrix} = \begin{bmatrix} a_{11} & a_{12} & t_x \\ a_{21} & a_{22} & t_y \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ 1 \end{bmatrix}$$

Kontrolne točke z afino preslikavo ne moremo popolnoma poravnati → lahko jih le približno poravnamo.

Iščemo preslikavo T, ki bo **minimizirala povprečno kvadratno razdaljo** R^2 :

$$R^{2} = \frac{1}{K} \sum_{k=1}^{K} \left(T(x_{k}, y_{k}) - (u_{k}, v_{k}) \right)^{2} = \frac{1}{K} \sum_{k=1}^{K} \left((a_{11}x_{k} + a_{12}y_{k} + t_{x} - u_{k})^{2} + (a_{21}x_{k} + a_{22}y_{k} + t_{y} - v_{k})^{2} \right)$$

Afina aproksimacijska poravnava (v 2D)

Prileganje po postopku najmanjših kvadratov (angl. least squares fitting):

$$R^{2} = \frac{1}{K} \sum_{k=1}^{K} \left((a_{11}x_{k} + a_{12}y_{k} + t_{x} - u_{k})^{2} + (a_{21}x_{k} + a_{22}y_{k} + t_{y} - v_{k})^{2} \right)$$

Odvajamo po vseh parametrih in odvode postavimo na nič:

$$\frac{\partial R^2}{\partial a_{11}} = 0 \quad \frac{\partial R^2}{\partial a_{12}} = 0 \quad \frac{\partial R^2}{\partial t_r} = 0 \quad \frac{\partial R^2}{\partial a_{21}} = 0 \quad \frac{\partial R^2}{\partial a_{21}} = 0 \quad \frac{\partial R^2}{\partial t_u} = 0$$

Dobimo sistem 6 enačb za 6 neznanih parametrov:

Afina aproksimacijska poravnava (v 2D)

$$T^{-1}(b(u,v)) - a(x,y)$$

Toga interpolacijska poravnava (v 2D)

Toga preslikava:

$$\begin{bmatrix} u \\ v \\ 1 \end{bmatrix} = T \begin{bmatrix} x \\ y \\ 1 \end{bmatrix} = \begin{bmatrix} \cos \alpha & -\sin \alpha & t_x \\ \sin \alpha & \cos \alpha & t_y \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ 1 \end{bmatrix}$$
 3 parametri \rightarrow interpolacija ni možna: - 1 par kontrolnih točk je premalo \rightarrow 2 parametra

$$= \begin{bmatrix} \cos \alpha & -\sin \alpha & t_x \\ \sin \alpha & \cos \alpha & t_y \end{bmatrix}$$

- 2 para kontrolnih točk je preveč \rightarrow 4 parametri

2 para kontrolnih točk:

- s prvim parom določimo parametra translacije in točki interpoliramo
- z drugim parom določimo vektor za kot rotacije in točki aproksimiramo

Toga aproksimacijska poravnava (v 2D)

Če imamo več kot 1 par kontrolnih točk dobimo predoločen sistem enačb:

$$\begin{bmatrix} u_1 & u_2 & u_3 & \cdots & u_K \\ v_1 & v_2 & v_3 & \cdots & v_K \\ 1 & 1 & 1 & \cdots & 1 \end{bmatrix} = \begin{bmatrix} \cos \alpha & -\sin \alpha & t_x \\ \sin \alpha & \cos \alpha & t_y \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x_1 & x_2 & x_3 & \cdots & x_K \\ y_1 & y_2 & y_3 & \cdots & y_K \\ 1 & 1 & 1 & \cdots & 1 \end{bmatrix}$$

Iščemo preslikavo T, ki bo minimizirala povprečno kvadratno razdaljo R^2 :

$$R^{2} = \frac{1}{K} \sum_{k=1}^{K} \left((x_{k} \cos \alpha - y_{k} \sin \alpha + t_{x} - u_{k})^{2} + (x_{k} \sin \alpha + y_{k} \cos \alpha + t_{y} - v_{k})^{2} \right)$$

Odvajamo po vseh parametrih in odvode postavimo na nič:

$$\frac{\partial R^2}{\partial \alpha} = 0 \quad \frac{\partial R^2}{\partial t_m} = 0 \quad \frac{\partial R^2}{\partial t_m} = 0$$

Rešitev sistema enačb → parametri preslikave

$$\alpha = -\arctan \frac{\overline{u}\overline{y} - \overline{v}\overline{x} - \overline{u} \cdot \overline{y} + \overline{v} \cdot \overline{x}}{\overline{u}\overline{x} + \overline{v}\overline{y} - \overline{u} \cdot \overline{x} - \overline{v} \cdot \overline{y}}$$

$$t_x = \overline{u} - \overline{x}\cos\alpha + \overline{y}\sin\alpha$$

$$t_y = \overline{v} - \overline{x}\sin\alpha - \overline{y}\cos\alpha$$

Poravnava z radialnimi funkcijami (v 2D)

Preslikava z radialnimi funkcijami:

$$u = a_0 + a_1 x + a_2 y + \sum_{k=1}^{K} \alpha_k U_k(x, y)$$

$$U_k(x, y) = U_k (\|(x_k, y_k) - (x, y)\|)$$

$$v = b_0 + b_1 x + b_2 y + \sum_{k=1}^{K} \beta_k U_k(x, y)$$

$$U(r) = -r^2 \log r, \qquad U(r) = e^{-(r/\sigma)^2}$$

- poravnava poljubnega števila parov pripadajočih kontrolnih točk
- lahko izvedemo interpolacijo ($\lambda = 0$) ali aproksimacijo ($\lambda > 0$)

$$\begin{bmatrix} u_1 & v_1 \\ u_2 & v_2 \\ \vdots & \vdots \\ u_K & v_K \\ 0 & 0 \\ 0 & 0 \end{bmatrix} = \begin{bmatrix} U(r_{11}) + \lambda_1 & U(r_{12}) & \cdots & U(r_{1K}) & 1 & x_1 & y_1 \\ U(r_{21}) & U(r_{22}) + \lambda_2 & \cdots & U(r_{2K}) & 1 & x_2 & y_2 \\ \vdots & \vdots & \ddots & \vdots & \vdots & \vdots & \vdots \\ U(r_{K1}) & U(r_{K2}) & \cdots & U(r_{KK}) + \lambda_K & 1 & x_K & y_K \\ 1 & 1 & \cdots & 1 & 0 & 0 & 0 \\ x_1 & x_2 & \cdots & x_K & 0 & 0 & 0 \\ y_1 & y_2 & \cdots & y_K & 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} \alpha_1 & \beta_1 \\ \alpha_2 & \beta_2 \\ \vdots & \vdots \\ \alpha_K & \beta_K \\ a_0 & b_0 \\ a_1 & b_1 \\ a_2 & b_2 \end{bmatrix}$$

 $\mathbf{Y} = \mathbf{L} \cdot \mathbf{W} \qquad \Rightarrow$

 $\mathbf{W} = \mathbf{L^{-1} \cdot Y}$

_

Poravnava z radialnimi funkcijami (v 2D)

Kontrolne točke

Interpolacija ($\lambda = 0$)

Ap:

Aproksimacija ($\lambda > 0$) Aproksimacija ($\lambda >> 0$)

 σ_1

Poravnava z radialnimi funkcijami (v 2D)

Poravnava z optimizacijo podobnosti

Dejanska geometrijska neskladja:

- deformacije, premikanje,...

Mera podobnosti:

- občutljiva na dejanska neskladja
- neobčutljiva na motilna neskladja

Motilna geometrijska neskladja:

- nepravilnosti, šum,...

Prožnost (stopnja svobode) preslikave:

- primerna glede na dejanska neskladja in
- glede na motilna neskladja

Mera podobnosti

Mera podobnosti (MP) je poljubna skalarna funkcija, določena nad vsemi istoležnimi slikovnimi elementi referenčne a(x,y) in lebdeče slike b(x,y):

- čim bolj občutljiva na geometrijska neskladja
- čim manj občutljiva na motilna neskladja
- smiselne, a ne nujne lastnosti so zveznost, metričnost in v nekaterih primerih neobčutljivost na specifične preslikave

Mera podobnosti ima lahko vse ali pa nobene od lastnosti metrike MR (nenegativnost, identiteta, simetričnost, trikotniška neenakost).

Mera podobnosti (monomodalna)

Srednja kvadratna napaka – **MSE** (*angl*. mean square error) (občutljiva zaradi kvadrata):

$$MSE(a,b) = \frac{1}{XY} \sum_{x=1}^{X} \sum_{y=1}^{Y} (a(x,y) - b(x,y))^{2}$$

Srednja absolutna napaka – **MAE** (*angl*. mean absolute error) (manj občutljiva kot MSE):

MAE
$$(a, b) = \frac{1}{XY} \sum_{x=1}^{X} \sum_{y=1}^{Y} |a(x, y) - b(x, y)|$$

Korelacijski koeficient – CC (*angl.* correlation coefficient) (neobčutljiv na linearne intenzitetne preslikave):

$$CC(a,b) = \frac{\sum_{x=1}^{X} \sum_{y=1}^{Y} \left(a(x,y) - \bar{a} \right) \left(b(x,y) - \bar{b} \right)}{\sqrt{\sum_{x=1}^{X} \sum_{y=1}^{Y} \left(a(x,y) - \bar{a} \right)^2 \sum_{x=1}^{X} \sum_{y=1}^{Y} \left(b(x,y) - \bar{b} \right)^2}}$$

Mera podobnosti (multimodalna)

Pri večmodalni poravnavi slik (npr. pri poravnavi CT, MR in PET slik), sivinske vrednosti slik niso funkcijsko, ampak so samo statistično odvisne, zato monomodalne mere podobnosti odpovedo.

Mera podobnosti (multimodalna)

Uveljavile so se mere podobnosti, ki izvirajo iz teorije informacij, med njimi je še najbolj razširjena **medsebojna informacija** – **MI** (angl. mutual information):

$$MI(a,b) = H(a) + H(b) - H(a,b)$$

Marginalni entropiji:

$$H(a) = -\sum_{s_a=0}^{L-1} p_a(s_a) \log p_a(s_a)$$

$$H(b) = -\sum_{a=0}^{L-1} p_b(s_b) \log p_b(s_b)$$

Skupna entropija:

$$H(a) = -\sum_{s_a=0}^{L-1} p_a(s_a) \log p_a(s_a) \qquad H(a,b) = -\sum_{s_a=0}^{L-1} \sum_{s_b=0}^{L-1} p_{ab}(s_a, s_b) \log p_{ab}(s_a, s_b)$$

Ocena skupne verjetnosti iz skupnega histograma:

$$p_{ab}(s_a, s_b) = \frac{h_{ab}(s_a, s_b)}{XV}$$

Optimizacija mere podobnosti

Optimizacija mere podobnosti predstavlja postopek iskanja tistih parametrov preslikave, ki maksimizirajo podobnost med slikama.

- cilj je poiskati optimalno podobnost oz. parametre v čim manj iteracijah:
 - podobnost je odvisna od vsebine in lastnosti slik
 - vpliv izvedbenih podrobnosti in numeričnih napak
 - lokalni optimumi → podoptimalne poravnave slik
- lokalni in globalni optimizacijski postopki:
 - globalni imajo večjo verjetnost, da najdejo pravi optimum, vendar so računsko zahtevnejši
- izbira pravega optimizacijskega postopka:
 - pomembno vpliva na hitrost in zanesljivost poravnav
 - temeljiti mora na analizi lastnosti mer podobnosti (točnost, število lokalnih optimumov, konvergenčno področje)

Globalna optimizacija

Izčrpno iskanje (*angl*. exhaustive search) po parametričnem prostoru predstavlja sistematično diskretno vzorčenje parametričnega prostora in izbiro tistih parametrov, pri katerih je podobnost med slikami največja.

Primer:

Lokalna optimizacija

Postopek najstrmejšega spusta oz. dviga (angl. gradient descent/ascent):

- izračunamo prvi odvod MP pri začetnih parametrih preslikave $\mathbf{x}_0(t_x, \alpha)$:

$$\mathbf{g}(\mathbf{x}_0) = \left. \frac{\partial M P(\mathbf{x})}{\partial \mathbf{x}} \right|_{\mathbf{x}_0}$$

- spremenimo parametre:

$$\mathbf{x}_1 = \mathbf{x}_0 - k\mathbf{g}(\mathbf{x}_0)$$

ponavljamo postopek:

$$\mathbf{x}_{i+1} = \mathbf{x}_i - k\mathbf{g}(\mathbf{x}_i)$$

- vse dokler:

$$\|\mathbf{x}_{i+1} - \mathbf{x}_i\| < \varepsilon$$
 oz. $i < i_{\text{max}}$

- → odvod MP izračunamo analitično
- → če to ni mogoče ga ocenimo numerično

LABORATORIJSKE VAJE

Geometrijska poravnava slik

Poravnava na podlagi kontrolnih točk:

- afina interpolacijska preslikava in afina aproksimacijska preslikava
- izračun mere razdalje \mathbb{R}^2 oz. mere podobnosti MSE

Poravnava na podlagi (optimizacije) **mere podobnosti**:

 izčrpno iskanje po parametričnem prostoru

