# **BIOS 635: Naive Bayes**

Kevin Donovan

1/28/2021

#### **Review**

- Homework 3 due on 2/12 at 11PM through GitHub Classroom
- Article Evaluation I assigned, due on 2/9 through GitHub Classroom
- Last lecture: linear and quadratic discriminant analysis

#### **Discriminant Analysis**

#### **Posterior Class Probability:**

$$\Pr(Y=k|X=x) = rac{f(x|k)*\Pr(Y=k)}{\sum_{l=1}^K f(x|l)*\Pr(Y=l)}$$

**Prediction Rule**: Given features  $x_0$ 

$$\hat{y_0} = rgmax_{k=1,\ldots,K} rac{f(x_0|k) * \Pr(Y=k)}{\sum_{l=1}^K f(x_0|l) * \Pr(Y=l)} = rgmax_{k=1,\ldots,K} f(x_0|k) * \Pr(Y=k)$$

#### LDA and QDA

$$\Pr(Y=k|X=x) = rac{f(x|k)*\Pr(Y=k)}{\sum_{l=1}^K f(x|l)*\Pr(Y=l)}$$

- Linear discriminant analysis (LDA)
  - Within classes, features are mutivariate normally distributed with **same** covariance structures  $\leftrightarrow$
  - $f(x|k) \sim \operatorname{Multivariate\ Normal}(\mu_k, \Sigma)$  for  $k=1,\ldots,K$
- Quadratic discriminant analysis (QDA)
  - Within classes, features are mutivariate normally distributed with **possibly different** covariance structures  $\leftrightarrow$
  - $f(x|k) \sim \text{Multivariate Normal}(\mu_k, \Sigma_k)$  for  $k = 1, \dots, K$

#### LDA vs logistic regression

For two-class prediction problem, can show for LDA, discriminant function ightarrow

$$\log\Biggl(rac{\Pr(Y=1|X=x)}{\Pr(Y=0|X=x)}\Biggr) = c_0 + c_1x_1 + \ldots + c_px_p$$

and from logistic regression:

$$ext{logit}(p) = \log \Biggl(rac{\Pr(Y=1|X=x)}{\Pr(Y=0|X=x)}\Biggr) = eta_0 + eta_1 x_1 + \ldots + eta_p x_p$$

so the two have the same form.

#### LDA vs logistic regression

#### Difference = how parameters are estimated

- ullet Logistic regression uses conditional likelihood based on  $\Pr(Y=1|X)$ , denoted discriminative learning
- ullet LDA uses **full likelihood** based on f(x,y) with Bayes Rule, denoted generative learning
- However, in practice results often very similar

#### LDA vs logistic regression differences

- When classes are well separated, i.e.  $\Pr(Y=1|X)$  near 0 or 1, logsitic regression coefficients are very unstable. Not the case with LDA
- LDA makes assumptions on the distribution of X|Y=k (Normality, same covariance)
  - ullet When assumptions hold, LDA can produce more stable decision boundaries, even with small n
- When K=2, due to a lack of assumptions on the distribution of X|Y=k, logisitic regression can be extended in many kinds of ways and is highly interpretable
  - ullet Hard to interpret/implement well for K>2 classes. LDA is largely the same implementation-wise regardless of K

**Recall**: Posterior class probability general form

$$\Pr(Y=k|X=x) = rac{f(x|k)*\Pr(Y=k)}{\sum_{l=1}^K f(x|l)*\Pr(Y=l)}$$

**Discriminant analysis**: alter form of f(x|k) to get new method

- lacktriangle With normal distribution but different  $\Sigma_k$  in each class o QDA
- Keeping normal distribution assumption, let's assume features are independent in each class
  - This is **not** assuming features are marginally independent, i.e. independent in the entire population
  - Denoted conditional independence
  - For multivariate normal, this means  $\Sigma_k$ , within-class feature correlations are 0
  - ullet In the likelihood, formulation is simplified as  $\Sigma_k$  are diagonal
  - Method denoted as Naive Bayes

- lacktriangle Simple structure very useful when number of predictors p is large
- Ex. imagine p=1000 and n=2000. With LDA and QDA, estimating within-class correlations of features very difficult, even if equal correlations across classes is assumed (LDA)
  - ullet Instead, Naive Bayes assumes components of  $X=(X_1,\ldots,X_p)$  are independent
- Under independence, within-class feature distribution simplifies to:

$$egin{aligned} f(x|k) &= f(x_1, x_2, \ldots, x_p|k) \ &= f(x_1|k) * \ldots * f(x_p|k) \ &= \prod_{j=1}^p f(x_j|k) \end{aligned}$$

lacktriangle Multivariate densities go away, only need to estimate p univariate densities  $f(x_j|k)$ 

- Assume each feature is normally distributed in each class
  - Discriminant function:

$$\begin{split} \delta_k(x) &\propto \log \Big[ \Pr(Y=k) f(x|k) \Big] \\ &= \Pr(Y=k) \prod_{j=1}^p f(x_j|k) \text{ by independent features within class} \\ &= -\frac{1}{2} \sum_{j=1}^p \Big[ \frac{(x_j - \mu_{kj})^2}{\sigma_{kj}^2} + \log(\sigma_{kj}^2) \Big] + \log[\Pr(Y=k)] \text{ by independent normality within class} \end{split}$$

- Notice: Use of independence provides more flexibility on choice of distribution for each feature within the class
  - ullet Naive Bayes can be used for mixed feature vectors (qualitative **and** quantitative). If quantitative, model  $f(x_j|k)$  using probability mass function
  - Can also set other continuous densities for specific features (ex. variable is skewed within classes)
- Distributional flexibility comes at cost of independence assumption

- Ex. Heart disease prediction
- **Recall**: Had non-normal/categorical features





- Ex. Heart disease prediction
- Recall: Had non-normal/categorical features
- **Note**: Need R package klaR to do in caret

```
# Need to set categorical values to "factor" to get correct modeling of densities
heart data <-
  heart data %>%
  mutate(Sex=factor(Sex),
         Chest Pain=factor(Chest Pain),
         Exercised_Induced_Angina=factor(Exercised_Induced_Angina))
# Partition Data
set.seed(12)
train_test_indices <- createDataPartition(heart_data$heart_disease, p=0.6, list = FALSE)</pre>
heart_data_train <- heart_data[train_test_indices,]</pre>
heart_data_test <- heart_data[-train_test_indices,]</pre>
# Train
nb_fit <- train(heart_disease~Age+Sex+Chest_Pain+Resting_Blood_Pressure+Colestrol+</pre>
                MAX_Heart_Rate+Exercised_Induced_Angina,
                data = heart data train, method = "nb")
# Add in test set predictions
heart_data_test$estimated_prob_heart_disease <-
  predict(nb_fit, newdata=heart_data_test, type = "prob")$Yes
heart data test <-
  heart data test %>%
  mutate(pred_heart_disease =
           relevel(factor(ifelse(estimated prob heart disease>0.5, "Yes", "No")),
                   ref = "No"))
# Compute confusion matrix
confusionMatrix(data = heart_data_test$pred_heart_disease,
                reference = heart_data_test$heart_disease,
                positive = "Yes")
```

```
## Confusion Matrix and Statistics
##
## Reference
## Prediction No Yes
```

```
##
         No 44 11
##
         Yes 21 44
##
##
                 Accuracy : 0.7333
##
                   95% CI: (0.6449, 0.8099)
##
      No Information Rate: 0.5417
##
      P-Value [Acc > NIR] : 1.243e-05
##
##
                    Kappa: 0.4703
##
##
   Mcnemar's Test P-Value : 0.1116
##
              Sensitivity: 0.8000
##
              Specificity: 0.6769
##
##
           Pos Pred Value: 0.6769
           Neg Pred Value : 0.8000
##
##
               Prevalence: 0.4583
##
           Detection Rate: 0.3667
##
     Detection Prevalence : 0.5417
##
        Balanced Accuracy: 0.7385
##
##
         'Positive' Class : Yes
##
```

- Ex. Heart disease prediction
- Can use NaiveBayes function in klaR package to see estimated conditional densities/distributions for each feature

```
## $Age
##
           [,1]
## No 52.62626 9.725399
## Yes 56.21429 8.269659
## $Sex
           var
## grouping
                    0
        No 0.4242424 0.5757576
       Yes 0.1904762 0.8095238
## $Chest_Pain
           var
                                2
## grouping
                     1
        No 0.10101010 0.22222222 0.43434343 0.24242424
##
       Yes 0.07142857 0.04761905 0.09523810 0.78571429
## $Resting_Blood_Pressure
           [,1]
                    [,2]
## No 128.3030 15.82652
  Yes 135.1071 18.41753
## $Colestrol
           [,1]
                    [,2]
## No 243,4747 56,21684
## Yes 245.4048 46.99478
## $MAX Heart Rate
           [,1]
                    [,2]
## No 159.0303 19.78995
## Yes 136.9286 23.49611
```

```
##
## $Exercised_Induced_Angina
## var
## grouping 0 1
## No 0.8888889 0.1111111
## Yes 0.4523810 0.5476190
```

#### **Overview:**

- Training Phase:
  - ullet For class k, estimate  $\pi_k = \Pr(Y=k)$  using  $\hat{\pi_k} = rac{1}{n} \sum_{i=1}^n I(Y_i=k)$
  - For feature  $X_j$ 
    - $\circ$  If  $X_j$  is continuous, estimate  $\mathrm{E}(X_j|Y=k)=\mu_{x_j|k}$  and  $\mathrm{Var}(X_j|Y=k)=\sigma_{x_j|k}^2$  using within-class sample mean and variance
    - $\circ$  If  $X_j$  is categorical, estimate  $\Pr(X_j = x_{jl}|Y = k) = heta_{jlk}$  where l is a category  $X_j$  can take
    - $\circ$  Do so for each class k in sample
- Testing Phase:
  - ullet For subject with features  $x_0=(x_{01},\ldots,x_{0p})$  , predict outcome  $y_0$  using

$$\hat{y_0} = rgmax_{k=1,\ldots,K} \hat{x_k} \prod_{j=1}^p \hat{f}\left(x_{0j}|k
ight)$$

- ullet Where  $\hat{f}\left(x_{0j}|k
  ight)$  is obtained by plugging in
  - ullet conditional probabilities obtained in training if  $X_i$  is categorical
  - ullet conditional means and variances obtained in training if  $X_i$  is continuous

• Ex. Heart disease prediction

```
# Plot "prior probabilities
prior_probs <- data.frame("heart_disease"=unname(names(nb_ests$apriori)),</pre>
                             "prior_prob"=as.numeric(nb_ests$apriori))
prior_probs_plot <-</pre>
  ggplot(data=prior_probs, mapping=aes(x=heart_disease, y=prior_prob,
                                       fill=heart_disease))+
  geom bar(stat="identity")+
 labs(x="Heart disease", y="Prior probability")+
  theme_classic()+
  theme(legend.position = "none",
        text=element_text(size=20))
# Plot density for max heart rate
max_heart_rate_density <-</pre>
  ggplot(data=heart_data_train, mapping=aes(x=MAX_Heart_Rate,
                                            fill=heart_disease))+
  geom density(alpha=0.5)+
 labs(fill="Heart disease", x="Max. heart rate")+
  theme_classic()+
  theme(text=element text(size=20))
# Plot distribution for Chest_Pain
chest pain density <-
  ggplot(data=heart_data_train, mapping=aes(x=Chest_Pain,
                                            group=heart disease))+
 geom_bar(aes(y = ..prop.., fill = factor(..x..)), stat="count")+
  geom_text(aes( label = scales::percent(..prop..),
                   y= ..prop.. ), stat= "count", vjust = -0.25,
            size=4) +
  facet_grid(~heart_disease)+
 labs(fill="", x="Chest pain")+
 theme_classic()+
  theme(legend.position = "none",
        text=element_text(size=20))
post_probs <-
  ggplot(data=heart_data_test,
         mapping=aes(x=heart disease, y=estimated prob heart disease,
                     fill=heart_disease))+
  geom_boxplot()+
 labs(x="Heart disease", y="Posterior probability")+
  theme_classic()+
```



#### Naive Bayes vs LDA vs QDA

- lacktriangle Naive Bayes scales well to problems where p is large
  - ullet Need large enough n to estimate univariate properties of each feature
  - ullet With LDA have K\*p parameters for  $\mathrm{E}(X_j|Y=k)$  and 0.5\*p\*(p+1) parameters for feature covariance matrix  $\Sigma$
  - With QDA have 0.5\*K\*p\*(p+1) parameters for the K covariance matrices  $\Sigma_k$
- However, LDA and QDA can capture and use interactions in features for prediction, Naive Bayes cannot

# Feature interaction example



## Songs of the session

Mexican Grand Prix by Mogwai

Your Hand in Mine by Explosion in the Sky

Pacific Theme by Broken Social Club

The Big Ship by Brian Eno



