Języki formalne i techniki translacji

Lista nr 2

Zadanie 1

Zbuduj NFA M_1 akceptujący język $(ab)^*$ i M_2 akceptujący język $(ba)^*$. Połącz je ε -przejściami tak aby otrzymać NFA $_\varepsilon$ M akceptujący $(ab)^*(ba)^*$. Przekształć M do DFA i zminimalizuj.

Zadanie 2

Znaleźć DFA o minimalnej liczbie stanów równoważny automatowi

$$M = (\{a, b, c, d, e, f, g, h\}, \{0, 1\}, \delta, a, \{d\}),$$

gdzie δ ma następującą postać

	0	1
a	b	a
b	a	c
c	d	b
d	d	a
e	d	f
f	g	e
g	$\int f$	g
h	g	d

Zadanie 3

Udowodnij, że język $L = \{x : x \in \{0,1\}^* \land |x|_0 \le |x|_1 \le 2|x|_0\}$ nie jest regularny.

Zadanie 4

Czy język $\{0^{n!}:n\in N\}$ jest regularny?

Zadanie 5

Czy język $\{ww^Rx:w,x\in\{0,1\}^*\wedge w,x\neq\varepsilon\}$, gdzie w^R oznacza odwrócenie kolejności liter w słowie w, jest regularny?

Zadanie 6

Udowodnij, że jeśli dla pewnego języka L istnieje niedeterministyczny automat skończony rozpoznający go, to istnieje również niedeterministyczny automat skończony rozpoznający język $L^R=\{w:w^R\in L\}$.

Zadanie 7

Czy klasa języków regularnych jest zamknięta na sumę nieskończoną?

Zadanie 8

Udowodnij, że klasa języków regularnych jest zamknięta na operację różnicy (zbiorów).