Machine Learning in Finance Course Project

Topic 3 - Daily Stock Return Prediction

Data Pipeline

132 months of daily data, 1.5-2.0 GB per DF.

Used `tf.data.Dataset` to load parquet files piece by piece in parallel.

Custom generator function.

- Read 2 ** 13 records every batch
- Transformed the 2-digit SIC code features using one-hot encoding

Rearranged steps to reduce input time. Interleaving, prefetching for parallel processing but the input pipeline is still a bottleneck.

Hyperparameter Tuning

We manually picked (due to time limit)

- Size of rolling windows for tuner
- Batch size → decent GPU utilization
- Epoch
- Kernel initializer
- Kernel Regularizer

`BayesianOptimization` tuner is used to tune

- Number of layers: [4, 6, 8]
- Shape of network: [rectangle, pyramid]
- Activation function: [sigmoid, relu]
- Learning rate: scheduler with exp. Decay [.01,.02]

After experimenting on several training windows, we observe [4, rectangle, sigmoid, 0.02] is the best hyperparameter combination.

MSE

Train R²

Validation R²

MSE

Model Performance

Hardware Setup:

Tuning: AMD Ryzen 3800X + NVIDIA 1080Ti (11GB VRAM) + 32GB RAM

Training: (Colab pro) Tesla T4 (16GB VRAM) + 25 GB RAM

Finally, we choose the best hyperparameters to train the model with full data (epoch = 50): 108 months of training 12 months of validation 12 months of test

Validation R²

Thank!

Q&A

Chuang Yao Jianqi Zhu Zhaoning Qi