

O que é logica?

- Lógica é a analise dos métodos de raciocínio (Mendelson, 1987).
- No nosso estudo de lógica, estamos interessados na forma de uma sentença e não no significado que ela traz.
- Em outras palavras, o que nos interessa é como um argumento está estruturado, e não o seu significado.

Argumento

- Chame-se argumento, a afirmação de que um conjunto de proposições iniciais resultem em uma proposição final, que será consequência das primeiras.
- As proposições iniciais, p₁, p₂, ..., p_n, são chamadas premissas, do argumento, e uma proposição c, é chamada de conclusão do argumento.

Estrutura de um argumento X seu conteúdo

- Considere os argumentos:
 - P1: Todo homem é mortal.
 - P2: Sócrates é um homem.
 - C: Portanto, Sócrates é mortal.
 - P1: Todo cachorro late.
 - P2: Bingo é um cachorro.
 - C: Portanto, Bingo late.

Estrutura de um argumento X seu conteúdo

- Do ponto de vista da lógica, estes dois argumentos tem a mesma estrutura:
 - P1: Todo X é Y.
 - P2: Z é X.
 - C: Portanto, Z é Y.
- Ou seja, a estrutura de um argumento é diferente do conteúdo de um argumento!

O que é logica?

Conhecimento das formas gerais e regras gerais do pensamento correto e verdadeiro, independente dos conteúdos pensados; regras para demonstração científica verdadeira; regras para pensamentos não-científicos; regras sobre o modo de expor conhecimento; regras para verificação da verdade ou falsidade de um pensamento etc. (Chauí, 2002).

Mais alguns exemplos de proposições

- Se está chovendo, então a rua está molhada.
 - Não está chovendo, então não pode-se dizer se a rua está molhada ou não.
 - Está chovendo, então com certeza, a rua está molhada.
 - A rua está molhada, mas não se sabe se foi causada pela chuva.
 - A rua não está molhada, então não está chovendo.
- Se José estuda e tem boa memória, então ele irá bem na prova.
 - Jose foi mal na prova, então ele não estuda ou não tem boa memória.
 - Jose foi mal na prova, mas ele estuda, então ele não tem boa memória.

Equivalências lógicas

- Se está chovendo, então a rua está molhada.
 - Não está chovendo ou a rua está molhada.
 - Se a rua não está molhada, então não está chovendo.
- Sou uma boa pessoa.
 - Não é verdade que não sou uma boa pessoa.
 - Não é verdade que é mentira que sou uma boa pessoa.

Equivalências lógicas

- Irei assistir o filme, ou não me chamo Luiz.
 - Se eu não assistir o filme, então não me chamo Luiz.
 - Se eu me chamo Luiz, então irei assistir o filme.
- É mentira que João faz medicina e Joana faz engenharia.
 - João não faz medicina ou Joana não faz engenharia.

Algumas aplicações para Lógica

Portas lógicas NAND

Calculadora digital, Full Adder

Flip Flop T

Multiplexador

Demultiplexador

Outras aplicações

- Cálculo de complexidade de algoritmos.
- Banco de dados. Simplificar comandos em SQL, que existem operações massivas (para bancos de dados grandes), e elevado custo computacional.
- Desenvolvimento de compiladores (Uso massivo de lógica).
- Conseguir ler artigos científicos nas áreas formais da computação.

Lógica proposicional

- A lógica proposicional, assim como qualquer outra linguagem, necessita de alguns elementos para ser definida:
 - Os símbolos que fazem parte da linguagem, no caso da língua portuguesa {a, b, ...,z, A, B, ...,Z}.
 - Em seguida, as palavras da linguagem devem ser definidas. Combinando os símbolos, porém, não é qualquer combinação, por exemplo, 'd' com 'e', forma 'de' que pertence a língua portuguesa.
 - Na lógica proposicional, o equivalente a uma palavra é uma fórmula.

Definição do alfabeto

- Símbolos de Verdade: true, false
- Símbolos proposicionais: P, Q, R, S, P1, Q1, R1, S1, P2,
- Conectivos proposicionais:
 - (¬) (~) "não": negação
 - (Λ) "e": conjunção
 - (V) "ou": disjunção
 - (→) "se...então": condicional, implicação
 - (↔) "se e somente se": bicondicional, bi-implicação.
 - (⊕) "ou exclusivo": XOR (Não usual)

Fórmulas

- As fórmulas da linguagem lógica proposicional são construídas à partir dos símbolos do alfabeto conforme as regras a seguir:
 - Todo símbolo de verdade é uma formula.
 - Todo símbolo proposicional é uma formula.
 - Se H é uma formula, então (¬H), a negação de H é uma formula.
 - Se H e G são formulas, então (H V G) é uma fórmula. Está formula é a disjunção das formulas H e G.
 - Se H e G são formulas, então (H Λ G) é uma fórmula. Está formula é a conjunção das formulas H e G.

Fórmulas

- As fórmulas da linguagem lógica proposicional são construídas à partir dos símbolos do alfabeto conforme as regras a seguir:
 - Se H e G são formulas, então (H → G) é uma fórmula. Nesse caso H é o antecedente e G é o consequente.
 - Se H e G são formulas, então (H ← G) é uma fórmula. Nesse caso H é o lado esquerdo e G é o lado direito.

Fórmulas

A partir da fórmula (P V Q) e da fórmula true, podemos obter a fórmula:

$$(P V Q) \rightarrow true$$

Exemplos de fórmulas mal formadas:

PQ
$$R true \rightarrow$$

$$true \rightarrow \longleftrightarrow (R true \rightarrow)$$

Utilização de parênteses

 Deve-se utilizar parênteses para distinguir as fórmulas, quando necessário:

$$(((P \lor R) \rightarrow true) \leftrightarrow (Q \land S))$$

Precedência de operadores

Assim como na matemática, que há precedência de operadores (multiplicação e divisão, vem antes de adição e subtração), na lógica também ocorre precedência de operadores:

$$2 + 3 * 4 = 2 + (3 * 4)$$

Ordem de precedência

- Maior precedência: ¬
- Precedência intermediaria: \rightarrow , \leftrightarrow
- Menor precedência: V, Λ

Ordem de precedência

- Por exemplo, a precedência do operador NOT:
 - ¬P V Q é equivalente à (¬P) V Q
- Ou ainda:
 - $P V Q \rightarrow R$ é equivalente à $P V (Q \rightarrow R)$
 - Observação: a ordem de precedência entre V, Λ e \rightarrow , \leftrightarrow , não é consenso na literatura (cada livro trata como quer).
 - Dessa forma, nesse caso, sempre é aconselhável a utilização de parênteses.

Ordem de precedência

Mesmo com ordem de precedência, alguns casos podem gerar confusão, por isso o uso de parênteses:

$$P \rightarrow Q \leftrightarrow R$$

- Possui duas interpretações:
 - $(P \rightarrow Q) \leftrightarrow R$
 - $P \rightarrow (Q \leftrightarrow R)$

Exercícios

- Quais fórmulas abaixo são válidas:
 - A) VQ
 - B) PQ V true
 - C) $(P \land Q) \rightarrow (Q \leftrightarrow \neg R)$
 - D) ¬¬P
 - E) $(P \land Q) \rightarrow ((Q \leftrightarrow P) \lor \neg \neg R)$