

CSI 436/536 (Spring 2025) Machine Learning

Lecture 6: Evaluation Criteria

Chong Liu

Department of Computer Science

Feb 10, 2025

Announcement

- TA office hour moved to podium!
 - New: Wed 11:45am-12:45pm at HU 25
 - Starting this week

- TA will give a tutorial on LaTeX and Python this Wed
 - LaTeX for your homework
 - Python for your course project

Recap: elements of machine learning

- Machine learning overview
 - Supervised learning
 - Unsupervised learning
 - Reinforcement learning
- Supervised learning: binary classification
 - Spam filtering
- Feature design and feature extraction
 - In contact list or not
 - Proportion of misspelled words
 - •
- Decision tree classifier

Recap: Decision tree

Recap: How is a decision tree specified?

- Parameters (built-in parameters of a model)
 - Which feature(s) to use when branching?
 - How to branch? Thresholding? Where to put the threshold?
 - Which label to assign at leaf nodes?

- Hyperparameters (parameters that you can set)
 - Max height of a decision tree?
 - Number of features the tree can use in each branch?

Today

Linear classifier

Performance metrics

Feature transformation

Linear classifiers

• Model:

- Score(x) = $w_0 + w_1x_1 + w_2x_2 + w_3x_3 + w_4x_4$
- $x_1 = 1$ (has hyperlinks)
- $x_2 = 1$ (on contact list)
- x_3 = proportion of misspelling
- $x_4 = \text{length}$

Indicator function:

$$f(x) = 1(\text{condition}) = \begin{cases} 1, & \text{if condition is true} \\ 0, & \text{if condition is false} \end{cases}$$

Question: why do we need w_0 ?

Linear classifiers

- Model:
 - Score(x) = $w_0 + w_1x_1 + w_2x_2 + w_3x_3 + w_4x_4$
- A linear classifier:
 - $h(x) = \begin{cases} 1, & \text{if } Score(x) \ge 0 \\ -1, & \text{if } Score(x) < 0 \end{cases}$
 - A compact representation: $h(x) = \operatorname{sign}(w^T[1;x])$
- Questions:
 - What are the parameters in a linear classifier?
 - Is there any hyperparameter?

Geometric view: Linear classifier is a decision line!

 $\{x|w_0+w_1x_1+w_2x_2+w_3x_3+w_4x_4>0\}$ The set of all "emails" that will be classified as "Spams"

Family of classifiers: Hypothesis class

- $oldsymbol{\cdot}$ Hypothesis class $\oldsymbol{\mathcal{H}}$
 - A family of classifiers
 - Also known as "concept class", "model", "decision rule book"
 - "Linear classifiers" and "neural networks" are hypothesis classes.
 - Typically we want this family to be large and flexible.
- The task of machine learning:
 - A selection problem to find a

$$h \in \mathcal{H}$$

that "works well" on this problem.

We will use the following notation to denote a classifier (hypothesis) specified by a specific parameter choice w

$$h_w:\mathcal{X} o\mathcal{Y}$$

- For any $x \in \mathcal{X}$
 - We can apply this classifier to get its predicted label

$$\hat{y} = h_w(x)$$

• The prediction doesn't have to be correct. It just need to be valid, i.e.,

$$\hat{y} \in \mathcal{Y}$$

Learning linear classifiers

Training data:

$$(x_1, y_1), ..., (x_n, y_n) \in \mathcal{X} \times \mathcal{Y}$$

- There is a clean cut boundary that distinguishes "spams" from "non-spams".
 - "Linearly separable" problem
 - Learning linear classifier: Finding vector w, such that the predictions of h_w is **consistent** with the observed training data.

Discussion: How can we evaluate a classifier (a spam filter)?

Confusion matrix for binary classification

TP – true positives <
FP – false positives Correct
TN – true negatives Errors
FN – false negatives

$$TP + FN = P$$

 $FP + TN = N$
 $TP + FP = \hat{P}$
 $FN + TN = \hat{N}$
 $P + N = TOTAL$
 $\hat{P} + \hat{N} = TOTAL$

In-class exercise: confusion matrix

$$\hat{y} = [1,1,1,1,0,0,0,1,1,1]$$

 $y = [1,0,0,0,0,1,1,0,0,0]$

Key criteria

•
$$Accuracy = \frac{TP + TN}{Total}$$

correct predictions / total

•
$$Precision = \frac{TP}{\widehat{P}}$$

 correctly predicted positive observations / total predicted positives

•
$$Recall = \frac{TP}{P}$$

Correctly predicted positive observations / all actual positives

•
$$F1 \ score = \frac{2 \cdot Precision \cdot Recall}{Precision + Recall}$$

$$\hat{y} = [1,1,1,1,0,0,0,1,1,1]$$

 $y = [1,0,0,0,0,1,1,0,0,0]$

		Actual class		
У		1	0	
Predicted class \hat{y}	1	TP	FP	Estimated positive \hat{P}
	0	FN	TN	Estimated negative \widehat{N}
		Positive P	Negative N	TOTAL

Key criterion: AUC (Area Under the ROC Curve)

• ROC Cure:

- Response Operator Characteristic (ROC) curve
- False positive rate (FPR) = $\frac{FP}{N}$
- True positive rate (TPR) = $\frac{TP}{P}$ = Recall

• AUC:

 Single number summary of any "score function"

In practice: many non-linearly separable case

How to learn LINEAR classifier in a non-linearly separable case?

Training data:

$$(x_1, y_1), ..., (x_n, y_n) \in \mathcal{X} \times \mathcal{Y}$$

Solving the following optimization problem:

$$\min_{w \in \mathbb{R}^d} \operatorname{Error}(w) = \frac{1}{n} \sum_{i=1}^n \mathbf{1}(h_w(x_i) \neq y_i)$$

 Learning: Find the linear classifier that makes the smallest number of mistakes on the training data.

What happens if the linear classifier with the smallest number of mistakes still makes a mistake 49% of the time?

There is no information about the label in the features.

No classifier can do well.

Case 2:

There are some nonlinear classifier that works. But no linear classifiers will do better than random.

Example: Feature transformation

What we can do:

$$(\tilde{x_1}, \tilde{x_2}) = \left(\sqrt{x_1^2 + x_2^2}, \arctan(x_2/x_1)\right)$$

In the redefined space, the two classes are now linearly separable.