1 Groups

A large number of sets endowed with a binary operation have properties like the set of integers with addition.

These systems are called groups defined as follows:

Groups:

A group is a set G, together with a binary operation *, satisfying the following properties:

- 1. G is closed under *, i.e for all $a, b \in G$, $a * b = c \in G$.
- 2. * is associative, i.e for all $a, b, c \in G$, we have (a*b)*c = a*(b*c)
- 3. G has a * identity element i.e $\exists e \in G$ such that for all $a \in G$ a * e = e * a = a
- 4. Every element in G has its * inverse i.e for all $a \in G$, $\exists b \in G$ such that a * b = b * a = e b is called the * inverse of a, denoted as, a^{-1} .

Note: Often a * b is written as ab. This should not be confused with ordinary multiplication in numbers.

Examples:

- $Eg.1 \langle \mathbb{Z}, + \rangle$
- $\underline{Eg.2}\langle \mathbb{Q}, + \rangle$
- $\underline{Eg.3} \langle \mathbb{Q}^*, \times \rangle$, where $\mathbb{Q}^* = \mathbb{Q} \{0\}$
- $Eg.4 G = \{a + b\sqrt{2}, a, b \in \mathbb{Q}\}$

$$\langle G, + \rangle$$
 is a group.

$$\langle G^*, \times \rangle$$
 where $G^* = G - \{0\}$?

Existence of $(a + b\sqrt{2})^{-1}$ if $a^2 = 2b^2$? Such elements are not in G. So it is a group.

- $Eg.5\langle \mathbb{C}, + \rangle$ and $\langle \mathbb{C}^*, \times \rangle$ are groups.
- $\underline{Eg.6}$ Set of all $n \times n$ real invertible matrices forms a group under the operation of matrix multiplication.

This group is called the general linear group of order n, denoted as $GL_n(\mathbb{R})$. Similarly $GL_n(\mathbb{C})$ is a group.

- <u>Eg. 7</u> Set of all permutations on the set of three elements: $\{1, 23\}$. Consider the permutations $e = \begin{pmatrix} 1 & 2 & 3 \\ 1 & 2 & 3 \end{pmatrix}$, $\sigma = \begin{pmatrix} 1 & 2 & 3 \\ 3 & 1 & 2 \end{pmatrix}$ and $\tau = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 1 & 3 \end{pmatrix}$. e is the identity permutation. Verify that $\sigma^3 = \tau^2 = e$. The permutations can then be written as $S_3 = \{e, \sigma, \sigma^2, \tau, \sigma\tau, \sigma^2\tau\}$. We can check that $\sigma\tau = \tau\sigma^2$.
- $\frac{Eg.8}{\mathbb{Z}_4} = \{0, 1, 2, 3\}.$

The binary operation is addition modulo 4.

$$a \oplus b = a + b \pmod{4}$$
.

By definition, \mathbb{Z}_4 is closed under \oplus .

$$1 \oplus 2 = 3, \quad 1 \oplus 3 = 0, \quad 2 \oplus 3 = 1, \quad 3 \oplus 3 = 2, \quad 2 \oplus 2 = 0, \quad$$

0 is the identity. 1 and 3 are inverses of each other. 2 is its own inverse.

For groups containing a small number of elements, a group table is a convenient way to specify the group completely.

We construct the group table of \mathbb{Z}_4

• Eg. 9The Klein 4 group (K_4) The group table of $K_4 = \{e, a, b, c\}$ is

The group table of any group with 4 elements either is similar to \mathbb{Z}_4 or to that of K_4 (exercise).

• Def: Abellian Group:

If $ab = ba \ \forall \ a, b \in G$ then G is an abellian group.

All the examples given above except eg.6, the group of matrices, and eg.7 are abellian groups.

For e.g. in S_3 , $\sigma \tau \neq \tau \sigma$

• *Lemma 1:*

If $\langle G, * \rangle$ be a group, then we have the following

- (i) The identity element in $\langle G, * \rangle$ is unique.
- (ii) Every $a \in G$ has a unique inverse.
- $(iii) \ \forall \ a \in G, \ (a^{-1})^{-1} = a.$
- $(iv) \ \forall \ a, b \in G, \ (ab)^{-1} = b^{-1}a^{-1}.$

Proof: (i) Let if possible e and e' be two distinct identities.

Then e * e' = e' * e = e', since e is an identity Also e * e' = e' * e = e, since e' is an identity $\implies e = e'$.

• *Lemma* 2:

Let $a, b \in G$. Then there exist a unique solution to a * x = b and y * a = b in G. Also $\forall a, x, y \in G$

$$a*x = a*y \Longrightarrow x = y$$
 left cancelation law
and $x*a = y*a \Longrightarrow x = y$ right cancelation law

• Lemma 2 ensures that every row and every column of the group table contains each element of the group exactly once.

• Def. Order of a group:

The number of elements in a finite group G is called the order of the group, denoted as o(G).

3

• Notation: $a * a * \dots * a(i \text{ times}) = a^i$

$$(a^i)^{-1} = (a^{-1} * a^{-1} * \dots * a^{-1}) = (a^{-1})^i$$
 denoted as a^{-i}

With this notation we can write $a^i * (a^j)^{-1} = a^{i-j}$

2 Subgroups

Def. Subgroup:

Let $\langle G, * \rangle$ be a group. A non-empty subset H of G is called a subgroup of G if $\langle H, * \rangle$ is a group.

- $2\mathbb{Z} = \{...., -6, -4, -2, 0, 2, 4, 6,\} = \{2k | k \in \mathbb{Z}\}\$ $\langle 2\mathbb{Z}, + \rangle$ is a subgroup of $\langle \mathbb{Z}, + \rangle$
- $\langle \mathbb{Z}, + \rangle$ is a subgroup of $\langle \mathbb{R}, + \rangle$ is a subgroup of $\langle \mathbb{C}, + \rangle$.
- Let \mathcal{M} be the set of real 2×2 matrices with determinant =1. Then \mathcal{M} is a subgroup of $GL_2(\mathbb{R})$.
- Lemma 3: A non-empty subset H of a group ⟨G, *⟩ is a subgroup of G if and only if
 (i) H is closed under *.
 (ii) a ∈ H ⇒ a⁻¹ ∈ H.

Eg: Let $n \in \mathbb{Z}$ and consider the set $n\mathbb{Z}$.

Let $nk_1, nk_2 \in n\mathbb{Z}$ where $k_1, k_2 \in \mathbb{Z}$.

Then $nk_1 + nk_2 = n(k_1 + k_2) \in n\mathbb{Z}$ since \mathbb{Z} is closed under addition.

So $n\mathbb{Z}$ is closed under addition.

For any $nk \in n\mathbb{Z}$, $n(-k) \in n\mathbb{Z}$, which is its additive inverse.

So by Lemma 3 $\langle n\mathbb{Z}, + \rangle$ is a subgroup of $\langle \mathbb{Z}, + \rangle$.

• Lemma 4: If H is a non-empty $\underline{\text{finite}}$ subset of a group $\langle G, * \rangle$, and H is closed under * then H is a subgroup of G.

Proof:

Since H is non-empty, $\exists a \in H$. Since H is closed under $*, a, a^2, \ldots \in H$.

But H is finite. So $\exists r, p \in \mathbb{Z}, p > r$ such that $a^p = a^r \implies a^{p-r} = e \in H$.

So $e \in H$.

Now $a^{(p-r)-1} * a = a * a^{(p-r)-1} = a^{p-r} = e$.

So $a^{(p-r)-1} = a^{-1}$.

Hence $\forall a \in H, a^{-1} \in H$. By Lemma 3, H is a subgroup of G.