Aula 10 – Séries Numéricas

Metas da aula: Definir séries numéricas. Apresentar os primeiros resultados para estabelecer a convergência e a divergência de séries numéricas bem como exemplos de aplicação dos mesmos.

Objetivos: Ao final desta aula, você deverá ser capaz de:

• Saber resultados básicos estabelecendo a convergência e a divergência de séries numéricas bem como suas aplicações em exemplos concretos.

Introdução às Séries Numéricas

Nesta aula iniciaremos nosso estudo sobre as séries numéricas. Estas nada mais são que seqüências (s_n) onde o termo geral é escrito na forma $s_n = x_1 + x_2 + \cdots + x_n$ para alguma seqüência de números reais (x_n) .

Definição 10.1

Se $\mathbf{x} = (x_n)$ é uma seqüência em \mathbb{R} , então a **série gerada por x** é a seqüência $\mathbf{s} = (s_n)$ definida por

$$s_1 := x_1$$
 e $s_{n+1} := s_n + x_{n+1}$.

Assim, temos

$$s_n = x_1 + x_2 + \dots + x_n$$
, para todo $n \in \mathbb{N}$.

Os números x_n são chamados os **termos** da série e os números s_n são chamados as **somas parciais** dessa série. Se $\lim s_n$ existe, dizemos que a série é convergente e chamamos esse limite a **soma** dessa série. Se o referido limite não existe, dizemos que a série **s** é **divergente**.

É usual se adotar as notações

$$\sum x_n \quad \text{ou} \sum_{n=1}^{\infty} x_n \tag{10.1}$$

para designar a série (s_n) gerada por (x_n) como na Definição 10.1.

No caso de uma série $\sum x_n$ convergente é usual também usar-se as notações em (10.1) para denotar o $\lim s_n$. Portanto, as expressões em (10.1)

poderão ser usadas tanto para denotar a série, seja ela convergente ou divergente, como o limite da mesma, no caso em que for convergente. Quando houver risco de confusão será mencionado explicitamente o significado dessas expressões no contexto em questão.

Em alguns casos, a sequência x geradora da série pode estar definida a partir de um índice inicial $n_0 \in \mathbb{N} \cup \{0\}$ diferente de 1, como $n_0 = 0, 2, 5,$ etc, isto é, $\mathbf{x} := (x_n)_{n=n_0}^{\infty}$. Em tais casos usaremos a notação

$$\sum_{n=n_0}^{\infty} x_n$$

para denotar tanto a série como o seu limite, no caso em que este existe. Por exemplo,

$$\sum_{n=0}^{\infty} \frac{1}{n!}, \qquad \sum_{n=4}^{\infty} \frac{n}{(n-1)(n-2)(n-3)}, \qquad \text{etc.}$$

Exemplos 10.1

(a) Você certamente já está bastante familiarizado com as séries geométricas. Uma tal série é gerada por uma seqüência da forma $\mathbf{x} := (r^n)_{n=0}^{\infty}$ onde $r \in \mathbb{R}$ e, portanto, se escreve

$$\sum_{n=0}^{\infty} r^n = 1 + r + r^2 + \dots + r^n + \dots$$
 (10.2)

Como já foi visto anteriormente, se |r| < 1, então a série converge a 1/(1-r). De fato, se $s_n := 1 + r + r^2 + \cdots + r^n$ para $n \ge 0$, tomando a diferença entre s_n e r vezes s_n , obtemos após simplificações

$$s_n(1-r) = 1 - r^{n+1}.$$

Portanto,

$$s_n = \frac{1}{1-r} - \frac{r^{n+1}}{1-r},$$

donde segue que

$$\left| s_n - \frac{1}{1-r} \right| \le \frac{|r|^{n+1}}{|1-r|}.$$

Como $|r|^{n+1} \to 0$ quando |r| < 1, concluímos que a série (10.2) converge a 1/(1-r) se |r| < 1.

(b) Consideremos a série gerada por $((-1)^n)_{n=0}^{\infty}$:

$$\sum_{n=0}^{\infty} (-1)^n = 1 - 1 + 1 - 1 + \cdots$$
 (10.3)

Temos então que $s_n = 1$ se $n \ge 0$ é par e $s_n = 0$ se n é impar; isto é, a seqüência de somas parciais é $(1,0,1,0,\ldots)$. Como essa seqüência não é convergente, a série (10.3) é divergente.

(c) Consideremos a série $\sum 1/n(n+1)$ e investiguemos a existência do limite

$$\sum_{n=1}^{\infty} = \frac{1}{1 \cdot 2} + \frac{1}{2 \cdot 3} + \frac{1}{3 \cdot 4} + \cdots$$
 (10.4)

O truque para analizar essa série é observar que

$$\frac{1}{k(k+1)} = \frac{1}{k} - \frac{1}{k+1}.$$

Portanto, somando-se essas igualdades de k=1 até n e notando-se que os membros à direita forma uma "soma telescópica", i.e., $(a_1-a_2)+(a_2-a_3)+(a_3-a_4)+\cdots+(a_{n-1}-a_n)+(a_n-a_{n+1})$, com $a_k=1/k$, obtemos

$$s_n = \frac{1}{1} - \frac{1}{n+1},$$

donde segue que $s_n \to 1$. Portanto, a série (10.4) converge a 1.

Apresentamos a seguir uma condição necessária imediata para a convergência de uma série, que é bastante útil para determinar casos em que há divergência, porém não é suficiente para determinar convergência.

Teorema 10.1

Se a série $\sum x_n$ converge, então $\lim x_n = 0$.

Prova: Pela Definição 10.1 a convergência de $\sum x_n$ significa que $\lim s_n$ existe. Agora, $x_n = s_n - s_{n-1}$. Com s_n e s_{n-1} convergem ao mesmo limite, x_n converge e $\lim x_n = \lim s_n - \lim s_{n-1} = 0$.

Exemplos 10.2

(a) A série geométrica (10.2) diverge se $|r| \ge 1$.

Isso segue imediatamente do fato de que o termo geral r^n não converge a 0 quando $|r| \ge 1$.

(b) A série harmônica $\sum 1/n$ diverge.

Esse fato foi visto em aula anterior no Exemplo 8.1 (d) onde mostramos que $s_{2^n} \ge 1 + n/2$ e, portanto, s_n não é limitada. Essa série constitui um dos mais simples exemplos de que a condição $\lim x_n = 0$ não é suficiente

para garantir a convergência da série, já que nesse caso $x_n = 1/n$ satisfaz tal condição.

O seguinte Critério de Cauchy é uma simples reformulação para séries do Teorema 9.1 homônimo para sequências. A prova é idêntica à do Teorema 9.1 e, portanto, vamos omitir.

Teorema 10.2 (Critério de Cauchy para Séries)

A série $\sum x_n$ converge se, e somente se, para todo $\varepsilon > 0$ existe $N_0 = N_0(\varepsilon) \in$ \mathbb{N} tal que se $m \geq n > N_0$, então

$$|s_m - s_n| = |x_{n+1} + x_{n+2} + \dots + x_m| < \varepsilon.$$
 (10.5)

O próximo resultado é consequência imediata do Teorema da Sequência Monótona e é de grande utilidade.

Teorema 10.3

Seja (x_n) uma seqüência de números reais não-negativos. Então a série $\sum x_n$ converge se e somente se a sequência $\mathbf{s} = (s_n)$ das somas parciais é limitada. Nesse caso,

$$\sum_{n=1}^{\infty} x_n = \lim s_n = \sup\{s_n : n \in \mathbb{N}\}.$$

Prova: Como $x_n \ge 0$, a seqüência $\mathbf{s} = (s_n)$ das somas parciais é monótona não-decrescente, $s_1 \leq s_2 \leq \cdots \leq s_n \leq \cdots$. Pelo Teorema 8.1 (da Seqüência Monótona), a sequência s converge se, e somente se, é limitada, em cujo caso seu limite é igual a sup $\{s_n : n \in \mathbb{N}\}.$

Exemplos 10.3

(a) Mostremos diretamente que a série harmônica $\sum 1/n$ não satisfaz o Critério de Cauchy para séries.

De fato, se m > n temos

$$s_m - s_n = \frac{1}{n+1} + \dots + \frac{1}{m} \le \frac{m-n}{m} = 1 - \frac{n}{m}.$$

Em particular, se m=2n temos $s_{2n}-s_n\leq 1/2$ para todo $n\in\mathbb{N}$, o que mostra que a série não satisfaz a condição (10.5) no Teorema 10.2 para $\varepsilon = \leq 1/2$.

Uma outra forma engenhosa de mostrar a divergência da série harmônica é a seguinte prova por contradição. Suponhamos que $\sum 1/n$ seja convergente e ponhamos $s = \sum_{n=1}^{\infty} 1/n$. Como $t_n = \sum_{k=1}^{n} 1/(2k-1) <$

 s_{2n-1} e $u_n=\sum_{k=1}^n 1/(2k) < s_{2n}$, temos então que as séries $\sum 1/(2n-1)$ e $\sum 1/(2n)$ também são convergentes (por quê?). Ponhamos $t=\lim t_n=\sum_{n=1}^\infty 1/(2n-1)$ e $u=\lim u_n=\sum_{n=1}^\infty 1/(2n)$. Como $u_n=s_n/2$ e $s_{2n}=t_n+u_n$, temos u=s/2 e t=s/2 (por quê?). Agora,

$$t_n - u_n = \sum_{k=1}^n \left(\frac{1}{2k-1} - \frac{1}{2k} \right) = \sum_{k=1}^n \frac{1}{2k(2k-1)} \ge \frac{1}{2},$$

e, portanto, temos

$$0 = \frac{s}{2} - \frac{s}{2} = \lim t_n - \lim u_n \ge \frac{1}{2} > 0,$$

o que nos dá uma contradição, provando que $\sum 1/n$ diverge.

(b) A 2-série $\sum_{n=1}^{\infty} \frac{1}{n^2}$ é convergente.

Como as somas parciais formam uma seqüência crescente (s_n) , basta mostrar que (s_n) possui uma subseqüência que é limitada (por quê?). Seja $k_n = 2^n - 1$ e mostremos que (s_{k_n}) é limitada. Temos $s_{k_1} = s_1 = 1$ e para n > 1

$$s_{k_n} = \frac{1}{1} + \left(\frac{1}{2^2} + \frac{1}{3^2}\right) + \left(\frac{1}{4^2} + \frac{1}{5^2} + \frac{1}{6^2} + \frac{1}{7^2}\right)$$

$$+ \dots + \left(\frac{1}{(2^{n-1})^2} + \dots + \frac{1}{(2^n-1)^2}\right)$$

$$< 1 + \frac{2}{2^2} + \frac{4}{4^2} + \dots + \frac{2^{n-1}}{(2^{n-1})^2}$$

$$= 1 + \frac{1}{2} + \frac{1}{2^2} + \dots + \frac{1}{2^{n-1}}$$

$$< \sum_{k=1}^{\infty} \left(\frac{1}{2}\right)^k = 2.$$

Logo (s_{k_n}) é limitada, o que mostra que $\sum 1/n^2$ converge.

(c) A p-série $\sum_{n=1}^{\infty} \frac{1}{n^p}$ converge quando p é um número real com p>1.

No caso em que p é irracional $n^p := e^{p \log n}$; a função exponencial e^x e sua inversa $\log x$ serão definidas rigorosamente e estudadas mais adiante neste curso. Por ora, se preferir, você pode pensar que p é racional.

A demonstração é totalmente similar à que foi feita para o caso p = 2. De novo, vamos mostrar que a subsequência (s_{n_k}) é limitada, onde

 $n_k = 2^k - 1$ e $s_n = \sum_{k=1}^n 1/k^p,$ e dessa forma provar a convergência da seqüência crescente s_n . Como no caso p=2, temos

$$s_{k_n} = \frac{1}{1} + \left(\frac{1}{2^p} + \frac{1}{3^p}\right) + \left(\frac{1}{4^p} + \frac{1}{5^p} + \frac{1}{6^p} + \frac{1}{7^p}\right)$$

$$+ \dots + \left(\frac{1}{(2^{n-1})^p} + \dots + \frac{1}{(2^n - 1)^p}\right)$$

$$< 1 + \frac{2}{2^p} + \frac{4}{4^p} + \dots + \frac{2^{n-1}}{(2^{n-1})^p}$$

$$= 1 + \frac{1}{2^{p-1}} + \frac{1}{(2^{p-1})^2} + \dots + \frac{1}{(2^{p-1})^{n-1}}$$

$$< \sum_{k=1}^{\infty} \left(\frac{1}{2^{p-1}}\right)^k = \frac{1}{1 - 2^{-(p-1)}}.$$

Portanto, o Teorema 10.3 implica que a p-série converge quando p > 1.

(d) A p-série $\sum_{p=1}^{\infty} \frac{1}{n^p}$ diverge quando 0 .

Como $n^p \le n$ quando 0 , temos que as somas parciais da p-série $s_n = \sum_{k=1}^n 1/n^p$ são maiores que as somas parciais correspondentes da série harmônica $h_n = \sum_{k=1}^n 1/n; \ s_n \geq h_n$. Como a seqüência $h_n \rightarrow$ $+\infty$, o mesmo vale para s_n (por quê?), o que prova que a p-série diverge se 0 .

(e) A série harmônica alternada, dada por

$$\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n} = 1 - \frac{1}{2} + \frac{1}{3} - \dots + \frac{(-1)^n}{n} + \dots$$
 (10.6)

é convergente.

Ponhamos $s_n = \sum_{k=1}^n (-1)^{k+1}/k$. Temos

$$s_{2n} = \left(\frac{1}{1} - \frac{1}{2}\right) + \left(\frac{1}{3} - \frac{1}{4}\right) + \dots + \left(\frac{1}{2n-1} - \frac{1}{2n}\right),$$

o que mostra que a subseqüência (s_{2n}) é crescente. Da mesma forma, vemos que a subsequência (s_{2n-1}) é decrescente, já que

$$s_{2n+1} = \frac{1}{1} - \left(\frac{1}{2} - \frac{1}{3}\right) - \left(\frac{1}{4} - \frac{1}{5}\right) - \dots - \left(\frac{1}{2n} - \frac{1}{2n+1}\right).$$

Como $0 < s_{2n} < s_{2n} + 1/(2n+1) = s_{2n+1} \le 1$, concluímos que essas duas subsequências convergem, pois são limitadas inferiormente por 0 e superiormente por 1, e para o mesmo limite, devido a igualdade $s_{2n} + 1/(2n+1) = s_{2n+1}$. Logo a sequência de somas parciais (s_n) converge, provando que a série harmônica alternada é convergente.

Testes de Comparação

Em seguida vamos apresentar dois resultados simples que indicam como determinar a convergência de uma série por meio de comparação com uma série cuja convergência já esteja estabelecida.

Teorema 10.4 (Teste da Comparação)

Sejam $\mathbf{x}=(x_n)$ e $\mathbf{y}=(y_n)$ seqüências em \mathbb{R} e sonhamos que para algum $n_0\in\mathbb{N}$ se tenha

$$0 \le x_n \le y_n \qquad \text{para } n > n_0. \tag{10.7}$$

Então:

- (i) A convergência de $\sum y_n$ implica a convergência de $\sum x_n$;
- (ii) A divergência de $\sum x_n$ implica a divergência de $\sum y_n$.

Prova: (i) Suponhamos que $\sum y_n$ seja convergente e, dado $\varepsilon > 0$, seja $N_1 = N_1(\varepsilon)$ tal que se $m > n \ge N_1$, então

$$y_{n+1} + \cdots + y_m < \varepsilon$$
.

Se $m > n > N_0 := \max\{n_0, N_1\}$, então segue que

$$0 \le x_{n+1} + \dots + x_m \le y_{n+1} + \dots + y_m < \varepsilon,$$

donde segue a convergência de $\sum x_n$.

A afirmação (ii) é a contrapositiva de (i).

O seguinte resultado é bastante útil em casos em que é difícil estabelecer as desigualdades em (10.7).

Teorema 10.5 (Teste da Comparação Limite)

Sejam $\mathbf{x} = (x_n)$ e $\mathbf{y} = (y_n)$ sequências de números estritamente positivos e suponhamos que existe o seguinte limite em \mathbb{R} :

$$r := \lim \left(\frac{x_n}{y_n}\right). \tag{10.8}$$

Temos:

- (i) Se $r \neq 0$ então $\sum x_n$ é convergente se e somente se $\sum y_n$ é convergente.
- (ii) Se r = 0 e se $\sum y_n$ é convergente, então $\sum x_n$ é convergente.

Prova: (i) Segue de (10.8) que existe $N_0 \in \mathbb{N}$ tal que $\frac{1}{2}r \leq x_n/y_n \leq 2r$ para $n > N_0$, donde

$$\frac{r}{2}y_n \le x_n \le 2ry_n \qquad \text{para } n > N_0.$$

Aplicando o Teste da Comparação 10.4 duas vezes, obtemos a afirmação (i).

(ii) Se r=0, então existe $N_0 \in \mathbb{N}$ tal que

$$0 < x_n \le y_n$$
 para $n > N_0$ (por quê?),

de modo que podemos aplicar diretamente o Teorema 10.4.

Exemplos 10.4

(a) A série $\sum 1/(n^2+n+1)$ é convergente.

Claramente temos

$$0 < \frac{1}{n^2 + n + 1} \le \frac{1}{n^2}.$$

Logo a convergência dessa série segue da convergência da 2-série pelo Teorema 10.4.

(b) A série $\sum 1/(n^2 - 3n + 3)$ é convergente.

De fato, seja $x_n = 1/(n^2 - 3n + 3)$ e $y_n = 1/n^2$. Observe que não vale $x_n \leq y_n$. Mas temos

$$\frac{x_n}{y_n} = \frac{n^2}{n^2 - 3n + 3} = \frac{1}{1 - (3/n) + (3/n^2)} \to 1.$$

Logo, podemos aplicar o Teste da Comparação Limite 10.5 para concluir que a série dada converge, como conseqüência da convergência da 2-série.

(c) A série $\sum 1/\sqrt{n+\sqrt{n}}$ é divergente.

Façamos $x_n := 1/\sqrt{n+\sqrt{n}}$ e $y_n := 1/\sqrt{n}$. A série $\sum y_n$ é a $\frac{1}{2}$ -série que é divergente. Temos

$$\frac{x_n}{y_n} = \frac{\sqrt{n}}{\sqrt{n + \sqrt{n}}} = \frac{1}{\sqrt{1 + 1/\sqrt{n}}} \to 1.$$

Logo, segue do Teste da Comparação Limite que a série dada diverge.

(d) A série $\sum_{n=0}^{\infty} \frac{1}{n!}$ é convergente. Aqui, usamos a convenção 0! := 1.

Já vimos em aula passada que a seqüência das somas parciais dessa série, $\left(\sum_{k=0}^{n} \frac{1}{k!}\right)^{\infty}$, converge e seu limite define o número e. Vamos, no entanto, dar outra prova desse fato, usando o Teorema 10.4. Com efeito, temos

$$\frac{1}{n!} \le \frac{1}{n(n-1)} \quad \text{para } n \ge 2.$$

Como a série $\sum_{n=2}^{\infty} \frac{1}{n(n-1)}$ coincide com a série $\sum_{n=1}^{\infty} \frac{1}{n(n+1)}$ (por quê?) e esta última converge, pelo Exemplo 10.1 (c), concluímos pelo Teorema 10.4 que a série dada converge.

Exercícios 10.1

- 1. Use o Critério de Cauchy para Séries para provar as seguintes proposições:
 - (a) Para todo $m \in \mathbb{N}$ a série $\sum x_n$ converge se, e somente se, a série $\sum x_{n+m}$ converge. Nesse caso, temos

$$\sum_{n=1}^{\infty} x_{n+m} = \sum_{n=m+1}^{\infty} x_n.$$

(b) Se $\sum x_n$ e $\sum y_n$ são séries convergentes e $a, b \in \mathbb{R}$, então a série $\sum (ax_n + by_n)$ converge e vale

$$\sum_{n=1}^{\infty} (ax_n + by_n) = a \sum_{n=1}^{\infty} x_n + b \sum_{n=1}^{\infty} y_n.$$

- 2. Use somas telescópicas para estabelecer os seguintes limites:
 - (a) $\sum_{n=0}^{\infty} \frac{1}{(n+1)(n+2)} = 1;$
 - (b) $\sum_{n=0}^{\infty} \frac{1}{(a+n)(a+n+1)} = \frac{1}{a}$, se $a \in \mathbb{R} \ e a \notin \mathbb{N} \cup \{0\}$;
 - (c) $\sum_{n=0}^{\infty} \frac{1}{n(n+1)(n+2)} = \frac{1}{4}$.
- 3. Use o Critério de Cauchy para Séries para mostrar que a série $\sum (\operatorname{sen} n)/n^2$ é convergente.
- 4. Use um argumento semelhante ao usado no Exemplo 10.3 (e) para mostrar que a série $\sum_{n=1}^{\infty} \frac{(-1)^n}{\sqrt{n}}$ é convergente.
- 5. Investigue a convergência ou divergência das seguintes séries:
 - (a) $\sum 1/(n^2-n+1)$;
 - (b) $\sum 1/\sqrt{n^2-3n+3}$;

(c)
$$\sum 1/(n^2+n+2)^{3/4}$$
;

(d)
$$\sum 1/(n^3-n^2+1)^{1/3}$$
.

6. Seja $\sum_{n=1}^{\infty} x_n$ tal que (x_n) é uma seqüência decrescente de números estritamente positivos. Se (s_n) denota a sequência das somas parciais mostre (agrupando os termos de s_{2^n} de dois modos distintos) que

$$\frac{1}{2}\left(x_1 + 2x_2 + \dots + 2^n x_{2^n}\right) \le s_{2^n} \le \left(x_1 + 2x_2 + \dots + 2^{n-1} x_{2^{n-1}}\right) + x_{2^n}.$$

Use essas desigualdades para mostrar que $\sum_{n=1}^{\infty} x_n$ converge se, e somente se, $\sum_{n=1}^{\infty} 2^n x_{2^n}$ converge.

Esse resultado é muito poderoso e é frequentemente chamado Teste da Condensação de Cauchy.

7. Use o Teste da Condensação de Cauchy para estabelecer a divergência das séries:

(a)
$$\sum_{n=2}^{\infty} \frac{1}{n \log n};$$

(b)
$$\sum_{n=3}^{\infty} \frac{1}{n(\log n)(\log \log n)};$$

(c)
$$\sum_{n=4}^{\infty} \frac{1}{n(\log n)(\log \log n)(\log \log \log n)}.$$

8. Use o Teste da Condensação de Cauchy para estabelecer a convergência das séries

$$\sum_{n=2}^{\infty} \frac{1}{n(\log n)^2}, \qquad \sum_{n=3}^{\infty} \frac{1}{n(\log n)(\log \log n)^2}.$$