* الموافقات-الأعداد الأولية

\mathbb{Z} الموافقات في

 \mathbb{Z} نقول أن العددين الصحيحين a ، a متو افقان بترديد a (طبيعي) إذا وفقط إذا كان a-b من مضاعفات a في a تعريف وَ نكتب a=b وَ يقرأ a يوافق a بترديد a .

- $a\equiv cigl[nigr]$ إذا كان: $a\equiv bigl[nigr]$ و $a\equiv bigl[nigr]$ فإن
- $a \times c \equiv b \times d[n]$ يَذَا كَانَ: $a \pm c \equiv b \pm d[n]$ فَإِنْ: $a \times c \equiv b \times d[n]$ وَ $a \pm c \equiv b \pm d[n]$
- $k \in \mathbb{Z}$ يذا كان: $a \equiv b$ فإن: a = b + k و $a \equiv b$ إذا كان $a \equiv b$
 - . $p \in \mathbb{N}$ جيث $a^p \equiv b^p ig[n ig]$ فإن $a \equiv b ig[n ig]$
 - $a \equiv b + k \, n [n]$ يذا كان: $a \equiv b + k \, n [n]$ فإن: $a \equiv b [n]$ فإن $a \equiv b [n]$
- . n وَ أُولِي مع $a\equiv 0$ $a\equiv 0$ وَ $a\equiv 0$ وَ $a\equiv 0$ وَ أُولِي مع $a\equiv 0$ إذا كان:
 - ي إذا كان: $a imes b \equiv 0$ فإن: $a imes b \equiv 0$ أوa imes 0 مع a imes a عدد أولي.

② القاسم المشترك الأكبر PGCD و المضاعف المشترك الأصغر

- . b على $a \ge b$ على $a \ge b$ على PGCD(a;b) = PGCD(b;r)
 - $k \in \mathbb{Z}^*$ حيث: $PGCD(k \ a; k \ b) = k \times PGCD(b; r)$
 - $PGCD(a;b) \times PPCM(a;b) = a \times b$
- $PGCD\left(a';b'\right)=1$ مع $\begin{cases} a=d\ a' \\ b=d\ b' \end{cases}$ مع $\begin{cases} a=d\ a' \\ b=d\ b' \end{cases}$ إذا كان: $PGCD\left(a;b\right)=d$ فإن: $PGCD\left(a;b\right)=d$

خواص

- . $k \in \mathbb{Z}^*$ مح PGCD(k|a;k|b) = |k|PGCD(a;b)
- $n\in\mathbb{N}^*$ اِذا كان: $PGCDig(a;b^nig)=1$ فإنPGCDig(a;b)=1 مع
- . $n \in \mathbb{N}^*$ مع $PGCD\left(a^n;b^n
 ight)=1$ إذا كان: $PGCD\left(a;b
 ight)=1$ مع
- . PGCD(a;bc)=1 فإن: PGCD(a;c)=1 و PGCD(a;c)=1

③ مبرهنة بيزو

 $a\,x+b\,y=1$ يكون العددان الطبيعيان غير المعدومين a وَ b أوليين فيما بينهما إذا و فقط إذا وجد عددان صحيحان x ويكون العددان الطبيعيان غير المعدومين عن المع

4 مبرهنة غوص

. c وَ كان a أولياً مع a ، فإن معدومة ، إذا كان a يقسم الجداء b و كان a أولياً مع a ، فإن معدومة ، إذا كان a

⑤ المبرهنة الصغيرة لفيرما

 $(a^{p-1}-1)$ إذا كان p عدداً أولياً و a عدداً طبيعياً لا يقبل القسمة على p فإن p يقسم العدد