P425/1 S.6 PURE MATHEMATICS BELIEF TEST 2 TIME: 1 Hour			
1.	Solve the equation $\sqrt{(9-4x)} - \sqrt{(5-x)} = 2$	05 marks	
2.	Find the derivatives of the following; a) $\frac{x^2 \sin \sqrt{x}}{\cot 3x}$ b) $\frac{e^{4x} \tan^{-1} 5x}{\sqrt{4x^2 + 3\sin 7x}}$ c) $\log_3\left(\frac{e^{8x} \cos 6x}{\tan^{-1} 3x}\right)$	12 marks	
3.	R is a point which divides externally the line PQ with	05 marks	
	P(1,-2,1) and $Q(0,-1,2)$ in the ratio 3:2. Find the equation of the		
	line through R and M(1, 0, 3).		
		05 marks	
4.	Use Maclaurin's theorem to expand $e^{2x}tan^{-1}x$ as far as the term in x^3		
5.	Obtain the equation of the locus of a point P which moves so that 05 max		
	$\overline{PB} = 2\overline{PA}$, where A and B are the points $(1,0)$ and $(-1,0)$		
	respectively.		
6.	a) Express $7\cos x + 24\sin x$ in the form $R\cos(x - \alpha)$ and hence solve $7\cos x + 24\sin x = 10$ for $-180^{\circ} \le x \le 180^{\circ}$.	12 marks	
	b) Prove that $tan\theta + cot\theta = 2cosec2\theta$. Hence solve the equation		
	$tan\theta + cot\theta = 8cos2\theta \ for \ 0^0 \le x \le 180^0$		
	END.		

CHECK NOTE: As you attempt these questions, kindly identify the areas that are still challenging you.

Challenging area(s)	Strategy (Plan) to help you master them.