S.E. (Computer) (Semester - III) (RC) Examination, May/June 2013 INTEGRATED ELECTRONICS

Duration: 3 Hours Total Marks: 100

> Instruction: Answer any five questions, selecting at least one question from each Module.

		MODULE-1	
1.	a)	Derive a equation for closed loop voltage gain for voltage-series feedback amplifier.	7
	b)	What is a feedback? List two types of feed back. Which type is used in linear applications? Give block diagram representation of current series and voltage short feed back.	7
	c)	Draw the block diagram of an op-amp and briefly descrieb the operation of each block.	6
2.	a)	Derive equation for summing, weighted, averaging amplifier along with a circuit diagram in inverting configuration.	8
	b)	Draw and explain integrator circuit and draw necessary waveforms.	8
	c)	How does negative feedback affect the performance of a inverting amplifier.	4
		To of the relative of the spency. MODULE - II	
3.	a)	Explain the working and applications of a free running multivibrator.	8
	b)	Explain the applications of IC 723 regulator.	8
	c)	Define and explain load regulation with respect to a voltage regulator.	4
4.	a)	Draw the Internal diagram of IC 555 fixed and explain its working.	8
	b)	Draw a block diagram and explain the basic operation of a phase-locked loop.	8
	c)	Describe in detail any two applications of PLL.	4

MODULE-III

5.	a)	Compare the characteristics of the following digital IC logic families:	8
		i) RTL ii) DTL 2000 (iii) HTL.	
	b)	Draw the circuit diagram of 2- input TTL NAND gate and explain its operation and state the conditions of the transistors in the circuit for all possible input combinations.	8
	c)	Explain why DCTL (Direct Coupled Transistor Logic) gate is not popular in Ic technology, although it is simpler than RTL (Resistor Transistor Logic).	4
6.	a)	Explain the working of a CMOS Inverter.	7
	b)	Calculate:	8
		i) Noise margin	
		ii) Fan out assess transcale and also revolutions golds sold and 4 million type	
		iii) Power-dissipation of HTL gate.	
		Assume h _{FE=} 40	
		Draw the circuit diagram of HTL gate.	
	c)	Compare the current spikes in ECL (Emitter Coupled Logic) and TTL (Transistor Transistor Logic) gates.	5
		methods growers to some MODULE - IV	
7.	a)	An 8-bit weighted resistor DAC produces an O/P voltage of 2.0 V for an i/p of 001 10110. What will be the value of v_{out} for an i/put code.	8
		i) 11000001 ii) 00011100	
	b)	Explain successive approximation type A/D converter and its advantages.	7
	c)	Describe 3 bit R-2R ladder D/A network. State its advantages.	5
8.	a)	Explain A/D converter using voltage to frequency converter, along with schematic and waveforms.	8
	b)	Give examples where A/D and D/A converters are used.	7
	c)	Explain the voltage to frequency converter and derive the necessary expressions.	5