Overheads: - Outline

Recap Friday:

Addition of H⁻ and Grignards

To Ketones/Aldehydes:

Reactions of R-C-LG with H + Grignards e.g. esters

usually use esters - less reactive, less dangerous

3) Addition of N Nucleophiles:

- 1° amines (R-NH₂) add to ketones / aldehydes

R'' = R, Ar, OH, NH_2 etc

- eg amino acid

Mechanism: another 6 easy steps!

- But no LG so instead turn the O into a LG (eventually)
- R- NH_2 good Nu^- (stronger base than H_2O) so do not need H^+ catalyst

* doesn't work with NH₃
$$\longrightarrow$$
 R $C=N-H$ = unstable
* 2° amines $\begin{pmatrix} H-N-R \\ R \end{pmatrix}$ can't make R $C=N-R$

in step 6, no H⁺ on N to remove!

eg
$$H_{3}C-C-C-CH_{3} + H_{3}C-N-CH_{3} \xrightarrow{5 \text{ easy steps}} H_{3}C-C-C-H_{3} \xrightarrow{H_{3}C-N-CH_{3}} H_{3}C-C-C-H_{3} \xrightarrow{H_{3}C-N-CH_{3}} H_{3}C-N-CH_{3} \xrightarrow{enamine} H_{3}C-C-C-H_{3}$$

4) Addition of O Nucleophiles:

- seen addition of OH
- can also be acid-catalyzed:

Addition of Alcohols (ROH)

Mechanism similar to hydrate, but in 2 "stages"

$$\begin{array}{c|c} \textbf{H}_{3}\textbf{C}-\textbf{C}-\textbf{C}\textbf{H}_{3} & \begin{array}{c} \textbf{H}^{+} \\ \hline \\ \textbf{ROH} \\ \hline \\ \end{array} & \begin{array}{c} \textbf{H}^{+} \\ \hline \\ \textbf{ROH} \\ \hline \\ \end{array} & \begin{array}{c} \textbf{OR} \\ \hline \\ \textbf{hemiacetal} \\ \hline \\ \textbf{(hemi=half)} \\ \hline \\ \end{array} & \begin{array}{c} \textbf{A} \\ \hline \\ \textbf{ROH} \\ \hline \\ \end{array} & \begin{array}{c} \textbf{OR} \\ \hline \\ \textbf{ROH} \\ \hline \\ \end{array} & \begin{array}{c} \textbf{OR} \\ \hline \\ \textbf{ROH} \\ \hline \\ \end{array} & \begin{array}{c} \textbf{OR} \\ \hline \\ \textbf{acetal} \\ \end{array} \\ \begin{array}{c} \textbf{another 4} \\ \textbf{steps} \\ \end{array} & \begin{array}{c} \textbf{except in rare cases = unstable} \\ \hline \\ \hline \\ \end{array} & \begin{array}{c} \textbf{Except in rare cases = unstable} \\ \hline \\ \hline \\ \end{array} & \begin{array}{c} \textbf{OR} \\ \hline \\ \end{array} & \begin{array}{c} \textbf{OR} \\ \hline \\ \textbf{OR} \\ \hline \\ \end{array} & \begin{array}{c} \textbf{OR} \\ \hline \\ \textbf{OR} \\ \hline \\ \end{array} & \begin{array}{c} \textbf{OR} \\ \hline \\ \textbf{OR} \\ \hline \\ \end{array} & \begin{array}{c} \textbf{OR} \\ \hline \\ \textbf{OR} \\ \hline \\ \end{array} & \begin{array}{c} \textbf{OR} \\ \hline \\ \end{array} & \begin{array}{c} \textbf{OR} \\ \hline \\ \textbf{OR} \\ \hline \\ \end{array} & \begin{array}{c} \textbf{OR} \\ \hline \end{array} & \begin{array}{c} \textbf{OR} \\ \end{array} & \begin{array}{c} \textbf{OR} \\ \hline \end{array} & \begin{array}{c} \textbf{OR} \\ \end{array} &$$

Full Mechanism: in 7 easy steps

- Add ROH (twice!)
- Remove H₂O
- Transfer $+H^{+}/-H^{+}/+H^{+}/-H^{+}$

