Summary before Midsem

Dhruva Sambrani

October 11, 2022

Can a Markov Chain be reversible but not symmetric

Does $\pi_i p_{ij} = \pi_j p_{ji}$ imply $p_{ji} = p_{ij}$?

No. Consider symmetric 1D chain.

Markov Chains (Homogeneous)

- 1. $\{X_n\}$ is $MC(\lambda, P, S)$ if $P(X_0 = i) = \lambda_i$ and $P(X_{n+1}|PATH) =$ $P(X_{n+1}|X_n)$
- 2. if $\forall n >= 0$, $P(PATH) = \lambda_{i_0} p_{i_0 i_1} \dots p_{i_{n-1} i_n}$ 3. Chapman Kolmogorov $=> p_{ij}^{n+m} = \sum p_{ik}^n p_{kj}^m$
- - a. $i \rightarrow j$ if exists PATH(i,j) st P(PATH(i,j)) > 0
 - b. i <-> j if i -> j and j -> i. This is an equivalence relation and partitions S into communicating classes
 - c. communicating class is closed if $\sum_{i \in C} p_{ij} = 1 \forall i \in C$
- 5. Absorbing State
 - a. i st $p_i i = 1$
 - b. {i} is closed communicating class
- 6. Irreducible chain S is a communicating class
- 7. Inessential state i: If i st i -> j but j \rightarrow i
- 8. Period of i
 - a. $d(i) = \gcd\{n > =0; p_i i^n > 0\}$
 - b. is a class property
 - c. i is aperiodic then exists N_0 st $p_i i^n > 0 \forall n \geq N_0$
 - d. Irreducible and a periodic => N_0 st $p_{ij}^n > 0 \forall n >= N_0$
 - e. New relation i <-d-> j iff $p_{ij}^{(nd)} > 0$ for some n >= 0. Equivalence.
 - 1. S decomposed to classes, st chain moves from one C to next.
- 9. A rv tau : $S \rightarrow RR$, st $\{tau=n\}$ in $sigma(X_0, ..., X_n)$ is called a stopping time.
- 10. SMP For T, $Z_n = X_{T+n}$ is also a MC.

- 11. $T_i_{-r} = \inf \{n > T_i_{-r-1}; X_n_=i\}$
- 12. $Chi_i^{\hat{r}}(r) = \{X_n : T_i^{\hat{r}}(r-1) \le n < T^{\hat{r}}(r)\}$
 - a. $\{Chi_i^r(r)\}$ are iid from the SMP
- 13. Hitting Time
 - a. $h_i^A = P_i(T_A < infty)$
 - b. h_i^A = 1 for i in A and = sum_j pij h_j^A if i notin A
 - c. $psi_i^A = E_i[T_A]$
 - d. psi_i^A = 0 for i in A and = $1 + \text{sum}_j$ pij psi_j^A if i notin A
- 14. Recurrence and Transience
 - a. Both are class properties
- 15. Stability theorem: irr, + recurrent $P(X_n = i)$ -n to infty-> pi_i
- 16. detailed balance <==> KLC
- 17. Metropolis algorithm