Formalisme des stabilisateurs (Stabilizer formalism)

Léo Gagnon

July 7, 2021

Université de Montréal

Motivation et ordre du jour

Objectif:

Développer un nouveau langage pour parler de la correction d'erreur quantique et reformuler ce qu'on sait dans ce langage.

Comment on va faire ca? :

Utilisation astucieuse de la théorie des groupes.

Corolaires:

- Simulation classique efficace de certains calculs quantiques
- Calcul quantique résistant aux erreurs
- Description compacte des états utilisés dans le calcul quantique basé sur la mesure

• ...

Groupe de Pauli et éléments de

théorie des groupes

Rappel: Groupe

Un groupe est un ensemble, G, muni d'une opération \star ayant comme domaine $G \times G$. Pour être un groupe, les propriétés suivantes doivent être respectées pour tout $g,h \in G$:

- 1. $g \star h \in G$ (fermé)
- 2. $a \star (b \star c) = (a \star b) \star c$ (associatif)
- 3. $\exists e \in G \text{ tel que } e \star g = g \star e = g \text{ (neutre)}$
- 4. $\exists g^{-1} \in G$ tel que $g^{-1} \star g = g \star g^{-1} = e$ (inverse)

Groupe de Pauli : Définition

Le groupe de Pauli sur un seul qubit est

$$G = \{\pm I, \pm iI, \pm X, \pm iX, \pm Y, \pm iY, \pm Z, \pm iZ\}$$
$$= \langle X, Y, Z \rangle$$

avec comme opération la multiplication de matrice.

On peux ensuite définir le groupe de pauli sur n qubits

$$G_n = G^{\otimes n}$$

Groupe de Pauli : Propriétés

Le groupe de Pauli a les propriétés suivantes :

- 1. $G_n \subseteq U_n$
- 2. Pour tout $M \in G_n$, $M^2 = \pm I$.
- 3. N'importe quels deux éléments $N, M \in G_n$ commutent ou anti-commutent : $NM = \pm MN$.
- 4. Pour tout $M \in G_n$, $\lambda(M) = \{+1, -1\}$
- 5. Pour tout $M \in G_n \setminus \{I^{\otimes n}\}$, $\operatorname{tr}(M) = 0$

Rappel: Action de groupe

Une action d'un groupe ${\cal G}$ sur un ensemble ${\cal X}$ est une application

$$G \times X \to X$$

 $(g, x) \mapsto g \circ x$

telle que

- $\forall x \in X$, $id \circ x = x$
- $\bullet \ \forall g,h \in G, \forall x \in X, \quad gh \circ x = g \circ (h \circ x)$

Groupe de Pauli : Action sur \mathbb{C}^{2^n}

Le groupe de Pauli G_n agit sur \mathbb{C}^{2^n} de la façon suivante :

Pour $M \in G_n$ et $|\psi\rangle \in \mathbb{C}^{2^n}$

$$M \circ |\psi\rangle = M |\psi\rangle$$

On a bien

- $\bullet \quad I \circ |\psi\rangle = I \, |\psi\rangle = |\psi\rangle$
- $MN \circ |\psi\rangle = MN |\psi\rangle = M \circ (N \circ |\psi\rangle)$

Rappel: Stabilisateurs

Soit ${\cal G}$ un groupe agissant sur un ensemble ${\cal X}.$

On dit que $g \in G$ stabilise $x \in X$ ssi

$$g\circ x=x$$

On dit que $S \leq G$ stabilise $V_S \subseteq X$ ssi

$$(\forall x \in V_S)(\forall g \in S)[g \circ x = x]$$

.

Groupe de Pauli : Stabilisateurs

Une opération $M \in G_n$ stabilise $|\psi\rangle \in \mathbb{C}^{2^n}$ ssi

$$M |\psi\rangle = |\psi\rangle$$

Soit $S \leq G_n$ un sous-groupe de G_n , alors $V_S \subseteq \mathbb{C}^{2^n}$ est le sous-espace vectoriel stabilisé par S.

Si $S = \langle M_1, \dots, M_k \rangle$ est généré par k matrices indépendantes, notons

$$V_i = \{ |\psi\rangle \in \mathbb{C}^{2^n} \mid M_i |\psi\rangle = |\psi\rangle \}$$

Alors

$$V_S = \bigcap_{i \in [k]} V_i$$

Exemple de stabilisateur

Exemple

Si

$$S = \{I, Z_1 Z_2, Z_2 Z_3, Z_1 Z_3\} = \langle Z_1 Z_2, Z_2 Z_3 \rangle \le G_3$$

alors

$$\begin{split} V_1 &= \mathsf{Vect}\{\left|001\right\rangle, \left|000\right\rangle, \left|110\right\rangle, \left|111\right\rangle\} \\ V_2 &= \mathsf{Vect}\{\left|100\right\rangle, \left|000\right\rangle, \left|011\right\rangle, \left|111\right\rangle\} \\ V_S &= \mathsf{Vect}\{\left|000\right\rangle, \left|111\right\rangle\} \end{split}$$

Description d'un sous-espace de \mathbb{C}^{2^n}

Propriétés nécéssaires du stabilisateur

Remarque

Le sous-groupe S doit avoir les propriétés suivantes pour que V_S soit non-trivial :

- 1. S est abélien
- 2. $-I \notin S$

Propriétés nécéssaires du stabilisateur

Remarque

Le sous-groupe S doit avoir les propriétés suivantes pour que V_S soit non-trivial :

- 1. S est abélien
- 2. $-I \notin S$

Preuve

- 1. Si $\exists M,N\in S$ tels que MN=-NM, alors $|\psi\rangle=MN\,|\psi\rangle=-NM\,|\psi\rangle=-|\psi\rangle$
- 2. Si $-I \in S$, alors $|\psi\rangle = -I \, |\psi\rangle = -\, |\psi\rangle$

Dimension du sous-espace stabilisé

Théorème

Soit $S=\langle M_1,\dots,M_{n-k}\rangle \leq G_n$ abélien généré par n-k éléments independents, et tel que $-I\not\in S$. Alors $V_S\subseteq \mathbb{C}^{2^n}$ est un sous-espace vectoriel de dimension 2^k

Dimension du sous-espace stabilisé

Preuve

Premièrement, $M_i \neq I^{\otimes n}$ puisque sinon $V_S = \mathbb{C}^{2^n}$. Définissons $P_1 = \frac{1}{2}(I+M_1)$ le projecteur sur V_1 . P_1 a donc seulement des valeurs propres +1 et

$$\dim(V_1) = \operatorname{tr}(P_1) = \frac{1}{2}\operatorname{tr}(\mathbb{I}) = 2^{n-1}$$

Ensuite, soit $P_{1,2}=\frac{1}{2^2}(I+M_2)(I+M_1)$ le projecteur sur $V_1\cap V_2$. Puisque $P_{1,2}$ a seulement des valeurs propres +1, alors

$$\dim(V_1 \cap V_2) = \operatorname{tr}(P_{1,2}) = \frac{1}{2^2} \operatorname{tr}(\mathbb{I}) = 2^{n-2}$$

On peux appliquer ce raisonnement inductivement pour arriver au résultat.

Corol(I)aire

Il faut un sous-groupe stabilisateur de dimension n pour représenter un n-qubit.

Application d'opérations unitaires

Application d'opérations unitaires

Considérons un sous-espace vectoriel V_S stabilisé par $S \leq G_n$ et une opération unitaire U. Alors pour tout $M \in S$ on a

$$U |\psi\rangle = UM |\psi\rangle = UMU^*U |\psi\rangle$$

et donc $U | \psi \rangle$ est stabilisé par UMU^* .

L'espace UV_S est donc stabilisé par le sous-groupe

$$USU^* = \{UMU^* : M \in S\} = \langle UM_1U^*, \dots, UM_{n-k}U^* \rangle$$

Application d'opérations unitaires

Pour que la description du sous-espace après l'application d'un opération unitaire U soit pratique et compacte on voudrait que $UM_iU^*\in G_n$ pour tout i.

Dans le language de la théorie des groupes, l'ensemble des tels U est le normalisateur de G_n :

$$N(G_n) = \{U : UG_nU^* = G_n\}$$

Normalisateur de G_n

Le normalisateur de G_n (souvent appelé groupe de Clifford) est

$$N(G_n) = \langle CNOT, H, S \rangle = \langle CNOT, H, \sqrt{Z} \rangle$$

Exemples

- $\blacksquare HXH^* = Z$
- $CNOT(X_1 \otimes I)CNOT^* = X_1X_2$
- $SXS^* = Y$

Mesure du système quantique

Mesure par un opérateur de Pauli

Supposons qu'on mesure un n-qubit décrit par $S = \langle M_1, \dots, M_n \rangle$ avec un opérateur de Pauli $g \in G_n$ (mesure projective sur les espaces propres ± 1 de g).

Cas 1 :
$$g \in C(S)$$
:

Puisque g commutent avec tout les M_i , alors il partage les mêmes vecteurs propres que les M_i . Ainsi, la mesure n'affecte pas l'état.

Cas 2 :
$$g \notin C(S)$$
:

On peux montrer que chacun des résultats a probabilité $\frac{1}{2}$. L'état résultant est

$$\left|\psi^{(\pm)}\right\rangle = \frac{I \pm g}{\sqrt{2}} \left|\psi\right\rangle$$

Simulation classique

Remarque: Simulation classique

La description d'un système quantique à n qubits est très compacte si on le représente avec son sous-groupe stabilisateur (provenant de G_n).

Soit un n-qubit $|\psi\rangle\in\mathbb{C}^{2^n}$ représenté avec n générateurs $M_i\in G_n$ qui forment le sous-groupe stabilisateur. La description de chaque M_i nécéssaire 2n+1 bits : 2 pour chaque matrice de Pauli et 1 pour le signe. Ainsi, on peux représenter un tel système avec $n(2n+1)=O(n^2)$ bits.

Si l'évolution du système se fait seulement avec des portes de Clifford, alors l'évolution également peux être simulé efficacement : on doit seulement actualiser les n générateurs.

Théorème de Gottesman-Knill

Théorème

Tout calcul quantique constitué seulement d'une préparation dans la base de calcul, d'opérations tirées du groupe de Clifford et d'une mesure par un observable de G_n peux être simulé efficacement par un ordinateur classique.

Codes stabilisateurs

Code stabilisateurs

Définition

Un [n,k]-code stabilisateur est défini commme étant le sous-espace vectoriel V_S stabilisé par un sous-groupe abélien $S=\langle M_1,\ldots,M_{n-k}\rangle \leq G_n$ d'ordre n-k tel que $-I\not\in S$.

Code stabilisateurs : effet des erreurs

On se rappelle qu'une erreur arbitraire E_a peux être décomposé en éléments du groupe de Pauli (I,X,Z et Y). Ainsi, pour tout M_i ,

$$E_a M_i E_a^* = \pm M_i$$

En particulier, le stabilisateur M_i devient

- 1. M_i si E_a commute avec M_i .
- 2. $-M_i$ si E_a anti-commute avec M_i .

Dans le deuxième cas, une mesure des espaces propres ± 1 de M_i aura comme résultat -1 avec probabilité 100% donc l'erreur est détectable.

Code stabilisateurs : détection des erreurs

Dans un code stabilisateur, la détection des erreurs est effectuée en mesurant les générateurs du stabilisateur M_1, \ldots, M_{n-k} (mesure projective sur les espaces propres \pm 1) :

- Si E_a commute avec tout les M_i , l'erreur est indétectable puisque le résultat de toutes les mesures va être +1.
- Si E_a anti-commute avec au moins un M_i , alors le on aura $M_iE_a\,|\psi\rangle=-E_a\,|\psi\rangle$. Ainsi, $E_a\,|\psi\rangle$ sera dans l'espace propre -1 de M_i et la mesure de M_i le détectera.

Ainsi, le syndrome d'une erreur E_a sont les signes $s_{a,i}$ tels que

$$M_i E_a |\psi\rangle = s_{a,i} E_a |\psi\rangle$$

Code stabilisateur : détection des erreurs

Une erreur E_a est indétectable si et seulement si

$$E_a \in C(S)$$
 mais $E_a \not\in S$

Code stabilisateurs: conditions pour la correction d'erreur

Théorème

Soit S définissant un code stabilisateur. Supposons que $\{E_j\}$ est un ensemble d'opérateurs dans G_n tels que pour tout j,k on a

$$E_j^* E_k \not\in C(S) - S$$

Alors $\{E_j\}$ est un ensemble d'erreurs corrigibles pour le code défini par S.

Autrement dit, pour chaque E_j, E_k , un des deux critères suivants doit être satisfait :

- $E_j^* E_k \in S \implies \langle \psi | E_j^* E_k | \psi \rangle = 1$
- $E_j^* E_k \not\in C(S) \Longrightarrow$ $\langle \psi | E_j^* E_k | \psi \rangle = \langle \psi | E_j^* E_k M | \psi \rangle = -\langle \psi | E_j^* E_k | \psi \rangle$ $\Longrightarrow \langle \psi | E_j^* E_k | \psi \rangle = 0$

Code stabilisateurs : distance

Définition

On dit qu'un code stabilisateur défini par S a distance d ssi tout les éléments de C(S)-S ont un poids $\geq d$

Code stabilisateurs : mots de code

Pour encoder le qubit logique $|\psi\rangle=|x_1,\dots,x_k\rangle_L$ avec un [n,k]-code stabilisateur, on choisi $\bar{Z}_1,\dots,\bar{Z}_k\in G_n$ de façon à ce que $M_1,\dots,M_{n-k},\bar{Z}_1,\dots,\bar{Z}_k$ forme un ensemble indépendent et commutant. Ensuite, $|\psi\rangle$ sera représenté par le stabilisateur suivant :

$$\langle M_1, \dots, M_{n-k}, (-1)^{x_1} \bar{Z}_1, \dots, (-1)^{x_n} \bar{Z}_k \rangle$$

Code stabilisateurs : correction des erreurs

Théorème

Soit $S=\langle M_1,\ldots,M_l\rangle$ un stabilisateur de dimension l tel que $-I\not\in S$ et soit $i\in\{1,\ldots,l\}$. Alors il existe $g\in G_n$ tel que $gg_ig^*=-g_i$ et $gg_jg=g_j$ pour tout $i\neq j$.

Corollaire

On peux définir $\bar{X_1},\dots,\bar{X_k}\in C(S)-S$ comme les opérateurs qui satifont $\bar{X_i}\bar{Z_i}\bar{X_i}^*=-\bar{Z_i}$ et $\bar{X_i}\bar{Z_i}\bar{X_i}^*=\bar{Z_j}$ pour tout $i\neq j$

Soit $S = \langle M_1, \dots, M_{n-k} \rangle$ définissant un [n,k]-code stabilisateur.

Encodage de l'état $|x_1,\ldots,x_k\rangle$:

1. On a applique les observables $M_1,\ldots,M_{n-k},\bar{Z}_1,\ldots,\bar{Z}_k$ sur l'état $|0\rangle^{\otimes n}$. L'état résultat est alors décrit par

$$\langle \pm M_1, \dots, \pm M_{n-k}, \pm \bar{Z}_1, \dots, \pm \bar{Z}_k \rangle$$

où les signes sont déterminés par le résultat des mesures.

2. On applique les éléments de G_n appropriés pour obtenir

$$\langle M_1,\ldots,M_{n-k},(-1)^{x_1}\bar{Z}_1,\ldots,(-1)^{x_n}\bar{Z}_k\rangle$$

Soit $S = \langle M_1, \dots, M_{n-k} \rangle$ définissant un [n, k]-code stabilisateur.

Effet d'une erreur E_i

- Si $E_j \in S$, l'erreur ne fait rien.
- Si $E_j \notin C(S) S$, l'erreur anti-commute avec au moins un générateur de M_i de S et le stabilisateur devient

$$\langle M_1, \ldots, -M_i, \ldots, M_{n-k} \rangle$$

et l'erreur est détectée en mesurant $-M_i$

 $\begin{tabular}{ll} \blacksquare & \begin{tabular}{ll} Si \end{tabular} $E_j = C(S) - S$, alors E_j laisse le stabilisateur inchangé mais modifie l'état : l'erreur est indétectable. \end{tabular}$

Soit $S = \langle M_1, \dots, M_{n-k} \rangle$ définissant un [n,k]-code stabilisateur.

Correction d'une erreur corrigible

- 1. On mesure tout les M_i et le résultat des mesures nous donne le syndrome de l'erreur.
- 2. On applique l'opération de récupération associé à l'erreur identifiée.

Soit $S = \langle M_1, \dots, M_{n-k} \rangle$ définissant un [n,k]-code stabilisateur.

Décodage de $|x_1,\ldots,x_k\rangle$

- Si on désire récupérer l'état quantique initial, il est possible de rouler un circuit (problème 10.3 du Nielsen & Chuang)
- Si on veux seulement mesurer l'état en base de calcul, on mesure les opérateurs $\bar{Z}_1,\ldots,\bar{Z}_k$ et les résultats ± 1 des mesures nous donne l'état encodé.

Exemple : Code de Shor

M_1	σ_z	σ_z	I	I	I	I	I	I	I
M_2	σ_z	I	σ_z	I	I	I	I	I	I
M_3	I	I	I	σ_z	σ_z	I	I	I	I
M_4	I	I	I	σ_z	I	σ_z	I	I	I
M_5	I	I	I	I	I	I	σ_z	σ_z	I
M_6	I	I	I	I	I	I	σ_z	I	σ_z
M_7	σ_x	σ_x	σ_x	σ_x	σ_x	σ_x	I	I	I
$M_1 \ M_2 \ M_3 \ M_4 \ M_5 \ M_6 \ M_7 \ M_8$	σ_x	σ_x	σ_x	I	I	I	σ_x	σ_x	σ_x

Figure 1: Générateur du stabilisateur pour le code de Shor

Fin

