Tianshu Kuai

tkuai@cs.toronto.edu

647-671-2214

https://tianshukuai.github.io

Toronto, Canada

Education

Sep 2022 - 2024

Master of Science in Applied Computing, University of Toronto AI Concentration

Sep 2017 – Apr 2022

Bachelor of Applied Science in Engineering Science, University of Toronto

Robotics Major, Artificial Intelligence Minor

Major GPA: 3.80 / 4.00, cGPA: 3.73 / 4.00

University of Toronto Excellence Award, NSERC Undergraduate Student Research Awards, Dean's

Honour List

Experience

May 2022 - Ongoing

University of Toronto | 3D Computer Vision Researcher

Supervised by Prof. Igor Gilitschenski, Toronto Intelligent Systems Lab (TISL)

- Working on building neural representations for editable 3D objects and scenes
- Recently proposed a template-free method [3] for building animatable 3D models for arbitrary types of articulated and deformable objects from a collection of monocular videos, which allows users to animate reconstructed objects in 3D for content creation

May 2021 - Ongoing

University of Toronto | Computer Vision Researcher

Supervised by Prof. Steven L. Waslander, Toronto Robotics and Artificial Intelligence Lab (TRAILab)

- Working on self-supervised LiDAR semantic segmentation for autonomous driving, and contributed to the development of a novel method [2] that outperforms state-of-the-art 2D-to-3D representation learning frameworks
- Designed and supported the development of high-performance LiDAR 3D object detection models for autonomous vehicles. PDV [1] achieved state-of-the-art multi-class 3D object detection results on Waymo Open Dataset upon publication
- Undergraduate thesis on improving feature learning processes to get more robust features and more accurate bounding box refinement for 3D object detectors

July 2021 - June 2022

aUToronto | Computer Vision Engineer

University of Toronto Autonomous Driving Group, SAE/GM AutoDrive Challenge

- Research on fast and lightweight 3D perception models on collected data
- Worked on deploying real-time perception models on autonomous vehicles

May 2020 - May 2021

Qualcomm | Machine Learning Research Intern

Supervised by Dr. Shaojie Zhuo, Machine Learning Research Team

- Proposed several efficient deep learning models for audio processing
- Applied state-of-the-art methods for neural network compression
- Contributed to NPU software compiler pipeline development

May 2019 - Aug 2019

University of Toronto | Undergraduate Researcher

Supervised by Prof. Deepa Kundur, Department of Electrical and Computer Engineering

- Implemented machine learning models for early relapse detection in Youth Depression
- Worked on patients' data processing and imputations for missing data
- Developed pipeline to track patients' facial expressions for behaviour analysis

Publications

2022

- [3] **T. Kuai**, A. Karthikeyan, Y. Kant, A. Mirzaei, and I. Gilitschenski, "CAMM: Building Categoryagnostic and Animatable 3D Models from Monocular Videos," *Under Review*, 2022.
- [2] A. Mahmoud, J. S. K. Hu, **T. Kuai**, A. Harakeh, L. Paull, and S. L. Waslander, "Self-Supervised Image-to-Point Distillation via Semantically Tolerant Contrastive Loss," *Under Review*, 2022.
- [1] J. S. K. Hu, **T. Kuai**, and S. L. Waslander, "Point Density-Aware Voxels for LiDAR 3D Object Detection," *CVPR* 2022.

Honors

Jan 2020

University of Toronto Engineering Competition

• Awarded the second prize in the senior design competition

Mar 2019

NSERC Undergraduate Student Research Awards

• Undergraduate student research awards by Natural Sciences and Engineering Research Council of Canada (NSERC)

Feb 2019

University of Toronto Excellence Award

• Awarded to University of Toronto undergraduate students based on research aptitude

Sep 2017

University of Toronto Engineering Entrance Scholarship

Scholarship for top engineering candidates pursuing studies at the University of Toronto

Selected Projects

2021

Real Time Audio Denoiser

- A model built using convolutional neural networks with an encoder-decoder structure
- The model takes the noisy speech as input and produces a de-noised speech as the output
- Achieved good performance on various types of signals with only around 33k parameters

2020

Deep Learning Based COVID-19 Diagnosis Tool

- A finetuned ResNet-18 for COVID-19 diagnosis using Lung CT scan
- Finetuned U-Net for labelling the infection area on raw CT scans for COVID-19 patients
- Great potential to be a commercial software product for hospitals where COVID-19 testing kits are unavailable

2019

Autonomous Ball Dispensing Mobile Machine

- Started from literature and market survey, through professional engineering decision-making tools to successfully converge to a fully autonomous ball dispensing machine prototype
- Used PIC18F4620 with MPLAB X and Arduino Nano to enable movement of its components, real-time clock, user Interface, and IR Remote Control
- Can potentially be used for automatic delivery and dispensing in warehouses

Skills

Languages | (*Proficient*) Python, C/C++, MATLAB, LaTeX - (*Working*) PostgreSQL, Bash, Java, Verilog
Tools | Git, Linux, Unix, Docker, Anaconda, AutoCAD, OpenFace, OrCAD Pspice

Libraries | Pytorch, TensorFlow, TensorFlow Lite, ONNX, ROS, OpenCV, SciPy, Scikit-learn, Pandas