17-Sz-Q1 Solution (i) O supply: S

O supply: 50+70+60=180

demand: 75 +65+40 = 180

So this is a balance transportation problem

3 Table

3

Row dif

		So	permarke	t		
		ſ	2	3	supply	
Factory	ſ	26)	<u>15</u>	40	50	(r) Max
	2	20	23	18	70	2
	3	24	24	20	 	
<u> </u>			-	r	160	4
Dema	Demand 75		65	40,	7	_
col	dif	4	1)_ 		
	J	•	l			

Supermarket Row diff supply 3 40 Factory 10 18 23 70 24 20 60 0 Demand 75 65 0 col dif 4 max 1

0 Supermarket supply 3 2 15 (O) 26) Factory_ 40 10 20 (70) 23 18 0 24 20 S 55 Demand 65 O

1 So the result is

		ſ	2	3	supply
Factory	١	26]	15 (e)	40	50
	2	70	23	18	70
	3	24 (5)	24 55	20	60
Demand		75	65	40	

1) Test the optimum

Since all blocks are nonegative, the result is optimum. (ii) Sensitivity analysis -> not within exam

3) cover all zero use minimue lines, adjust

1 assignment

$$J_1$$
 J_2 J_3 J_4 J_5 min cost
 P_1 8 0* 5 2 M = $15+16+12+12$
 P_2 M M 0* 0 0 = 55
 P_3 0* 0 0 M J
 P_4 0 M 2 4 0*

PS we can have a lot of solution can

Ji Jz Jz Ja Ja Ja

P4 0 * M