

Controlling Autonomous Electric Fleets

Deep RL + OR Policies + Bound

Controlling Autonomous Electric Fleets

Some success so far

Control of Autonomous Electric Fleets for Ridehail Systems

Background

Ridehail explosion

NYC ridehail trips (M, avg/mo)

2016

10

Autonomy imminent

"From our standpoint... we think people [will] not need to touch the wheel... sometime probably around, I don't know, second quarter next year..."

With **regulatory approval** in some places starting around **end of 2020**

Elon Musk, CEO Tesla

Autonomy imminent

RIDE-SHARING APP

TESLA

Control of AEV Fleets is Centralized Today

Control of AEV Fleets is Centralized Today

Control of AEV Fleets is Centralized w/ AEVs

Assign vehicles to requests

Recharge/reposition vehicles

Real time decision making

Electrification constraints

Realistic instances

Past Studies

Past Studies

Al-Kanj et al. (2018)

Past Studies

How to Control a Fleet of AEVs

Past Studies

Al-Kanj et al. (2018)

Holler et al. (2018)

Bertsimas et al. (2019)

X

(

How to Control a Fleet of AEVs

Past Studies

Al-Kanj et al. (2018)

Holler et al. (2018)

Bertsimas et al. (2019) Hyland & Mahmassani (2018)

X

How to Control a Fleet of AEVs

Kullman et al. (2019)

Al-Kanj et al. (2018)

Model & Methods

Dynamic problem

Dynamic problem

Static Bound

Agent

Environment

State

Time

Vehicles':

Positions

Charges

Scheduled jobs

Request

State

Initial:

Time

Vehicles':

Positions

Charges

Scheduled jobs

Request

State

Initial:

Time

Vehicles':

Positions

Charges

Scheduled jobs

Request

At charging stations

q_{init}

Idle indefinitely

Ø

0

Assign vehicle to new request

For each vehicle:

New reposition/recharge instructions

Depends on state

Value of request, if served

Fixed + distance-dependent

Vehicles':

Terminal:

Positions

Charges

Scheduled jobs

Request

Vehicles':

Terminal:

Positions

Charges

Scheduled jobs

Request

Time expired

Find agent/policy maximizing E[sum of rewards]

1. Random

- 1. Random
- 2. Nearest (heuristic)

- 1. Random
- 2. Nearest

- 1. Random
- 2. Nearest

Assignment

Reposition

1. Random

2. Nearest

Assignment

Reposition

\

4

В

- 1. Random
- 2. Nearest

Assignment

Reposition

- 1. Random
- 2. Nearest
- 3. D3QN

- 1. Random
- 2. Nearest
- 3. D3QN

- 1. Random
- 2. Nearest

3. D3QN

- 1. Random
- 2. Nearest
- 3. D3QN

- 1. Random
- 2. Nearest
- 3. D3QN

Assignment

Immediate reward + reward-to-go

- 1. Random
- 2. Nearest
- 3. D3QN

- 1. Random
- 2. Nearest
- 3. D3QN

How does it learn?

- 1. Random
- 2. Nearest
- 3. D3QN

How does it learn?

2. Nearest

3. D3QN

How does it learn?

- 1. Random
- 2. Nearest
- 3. D3QN

- 1. Random
- 2. Nearest
- 3. D3QN

Input s

"Hidden"

Q(s, a)

- 1. Random
- 2. Nearest
- 3. D3QN

Input s

"Hidden"

Q(s, a)

Primary

Selection

Target

Evaluation

- 1. Random
- 2. Nearest
- 3. D3QN

- 1. Random
- 2. Nearest
- 3. D3QN**

Currently just responsible for vehicle-request pairing

Methods combine Deep RL and OR

Static Problem

Static Problem

Perfect Information

Perfect Info: OR tools

Master problem

Subproblem

Master problem

Subproblem

Assign requests to vehicles

Time feasibility

Master problem

Assign requests to vehicles

Time feasibility

Subproblem

Energy feasibility

Charging decisions

Master problem

Master problem

Subproblem

FRVCP: Froger et al. (2018)

Master problem

Subproblem

FRVCP: Froger et al. (2018)

Data & Empirical Results

```
Trips:
```

```
Yellow Taxi + Green Taxi + Ridehail (2017)
```

Business mornings

100 requests / hour

```
Trips:
Yellow Taxi + Green Taxi + Ridehail (2017)
CSs:
All current and planned CSs
```

```
Trips:
   Yellow Taxi + Green Taxi + Ridehail (2017)
CSs:
   All current and planned CSs
Vehicles:
   Mid-range Tesla Model 3
   Travel at ~avg NYC taxi speed
   ~40 vehicles
```


Concluding Remarks

TODO

Bigger instances

Implement "Full Control" agent

Thank you

