Math 6266 Linear Statistical Models Lecture Notes Instructor: Prof. Vladimir Koltchinskii Student: Yuanzhe Ma (yma412@gatech.edu)

Contents

1	Regression Problems	1
2	Linear Algebgra	3
3	Probability	15
4	Linear Models	25
5	High-dimensional Linear Models	40

1 Regression Problems

Given random (X,Y) where $X \in S$ and $Y \in \mathbb{R}$, our goal is to approximate Y by a function g(X).

 $MSE(g) := \mathbb{E}(Y - g(X))^2$, optimal $g_* = \operatorname{argmin}_{g:S \to \mathbb{R}} MSE(g)$ where g is a measurable function.

Solution:

Assume $\mathbb{E}(Y^2) < \infty$, $g_*(X) = \mathbb{E}(Y|X)$, or $g_*(x) = \mathbb{E}(Y|X = x)$.

Proof

For any $g: S \to \mathbb{R}$, we have

$$\mathbb{E}(Y - g(X))^{2} = \mathbb{E}(Y - g_{*}(X) + g_{*}(X) - g(X))^{2}$$

$$= \mathbb{E}(Y - g_*(X))^2 + 2\mathbb{E}(Y - g_*(X))(g_*(X) - g(X)) + \mathbb{E}(g_*(X) - g(X))^2$$

Note that

$$\mathbb{E}(Y - g_*(X))(g_*(X) - g(X)) = \mathbb{E}(\mathbb{E}[(Y - g_*(X))(g_*(X) - g(X))|X])$$

When X is fixed, $(g_*(X) - g(X))$ is a constant and $E((Y - g_*(X)))$ given X = x is 0, so $\mathbb{E}(Y - g_*(X))(g_*(X) - g(X)) = 0$.

Therefore,

$$\mathbb{E}(Y - g(X))^{2} = \mathbb{E}(Y - g_{*}(X))^{2} + \mathbb{E}(g_{*}(X) - g(X))^{2} \ge \mathbb{E}(Y - g_{*}(X))^{2}$$

Moreover, if $\mathbb{E}(Y - g(X))^2 = \mathbb{E}(Y - g_*(X))^2$, then $\mathbb{E}(g(X) - g_*(X))^2 = 0 \implies g(X) = g_*(X)$ with probability 1.

Definition 1.1. Regression Function

 $g_*(x) := \mathbb{E}(Y|X=x)$ is the regression function.

Regression in Statistics:

Given *n* iid data (X_i, Y_i) , goal is to estimate $g_*(x)$ based on (X_i, Y_i) .

Definition 1.2. Least Square Estimator

Let \mathscr{G} be a set of function $g: S \to \mathbb{R}$ such that either $g_* \in \mathscr{G}$, or g_* has a reasonable approximation by the functions from \mathscr{G} . Define

$$\hat{g} := \operatorname{argmin}_{g \in \mathscr{G}} \frac{1}{n} \sum_{i=1}^{n} (Y_i - g(X_i))^2$$

A choice of : $h_1, \dots, h_N : S \to \mathbb{R}$ (a dictionary).

$$\mathscr{G} := \text{linear span}(\{h_1, \dots, h_N\}) = \{\sum_{j=1}^N c_j h_j; c_j \in \mathbb{R}, j = 1, 2, \dots, n\}$$

So \mathcal{G} is a linear space with dimension $\leq N$.

Example 1.1. $S = \mathbb{R}$, dictionary $(1, x, x^2, x^3, \dots, x^k)$, so \mathscr{G} is the true space of all polynomials of degree $\leq k$.

If
$$\mathbf{Y} = \begin{bmatrix} Y_1 \\ \cdots \\ Y_n \end{bmatrix} \in \mathbb{R}^n$$
 is the response vector, then

$$\forall g \in \Leftrightarrow g = \sum_{j=1}^{N} c_j h_j, \mathbf{c} = \begin{bmatrix} c_1 \\ \cdots \\ c_N \end{bmatrix} \in \mathbb{R}^N,$$

$$\begin{bmatrix} g(X_1) \\ \cdots \\ g(X_n) \end{bmatrix} = \begin{bmatrix} \sum_{j=1}^{N} c_j h_j(X_1) \\ \cdots \\ \sum_{j=1}^{N} c_j h_j(X_n) \end{bmatrix} = \mathbf{Ac}$$

where the design matrix $A := (h_j(X_i))_{i=1,\dots,n; j=1,c\dots,N}$ is a $n \times N$ matrix.

 $\text{Least Square} \Leftrightarrow \hat{\mathbf{c}} := \operatorname{argmin}_{\mathbf{c} \in \mathbb{R}^N} \|\mathbf{Y} - \mathbf{A}\mathbf{c}\|^2 \text{ and } \hat{g} = \sum_{j=1}^n \hat{c_j} h_j.$

Regression Model:

Given random (X,Y), $Y = g_*(X) + \xi$ where ξ is random noise.

Assumptions:

1) X and ξ are independent random variables.

2)
$$\mathbb{E}\xi = 0, \mathbb{E}\xi^2 = \sigma^2 < \infty.$$

So $\mathbb{E}(Y|X) = g_*(X)$. $(g_*(X))$ is the regression function).

$$(X_i, Y_i)$$
 iid, $Y_i = g_*(X_i) + \xi_i$ and ξ_i iid.

Conditionally on X_i , we can view this regression model as a model with fixed (non-random) design.

Suppose
$$g_* \in = \text{linear span}(\{h_1, \dots, h_N\})$$
, $g = \sum_{j=1}^N c_j^* h_j$, $\mathbf{c}^* = \begin{bmatrix} c_1^* \\ \cdots \\ c_N^* \end{bmatrix} \in \mathbb{R}^N$.

 $Y_i = \sum_{i=1}^N c_j^* h_j(X_i) + \xi_i$ and the design matrix $A := (h_j(X_i))_{i=1,\cdots,n; j=1,c\cdots,N}$ is a $n \times N$ matrix.

$$\mathbf{Y} = \begin{bmatrix} Y_1 \\ \cdots \\ Y_n \end{bmatrix} \in \mathbb{R}^n$$
, $\boldsymbol{\xi} := \begin{bmatrix} \xi_1 \\ \cdots \\ \xi_n \end{bmatrix} \in \mathbb{R}^n$ is the noise vector.

 $\mathbf{Y} = \mathbf{A}\mathbf{c}^* + \boldsymbol{\xi}$ is called linear regression model.

General Linear Regression (GLM): $Y = \mathbf{X}\boldsymbol{\beta}^* + \boldsymbol{\xi}$ with unknown variance of the noise.

2 Linear Algebgra

Definition 2.1. Minkowski sum

Suppose *V* is a vector space (linear space), $C_1, \dots, C_k \subset V$, define the Minkowski sum as $C_1 + \dots + C_k := \{x_1 + \dots + x_k : x_j \in C_j\}$.

If L_1, \dots, L_k are subspaces of V, then their Minkowski sum $L_1 + \dots + L_k = \text{linear span}(L_1 \cup \dots \cup L_k)$ is also a subspace of V. Note that $L_1 \cup \dots \cup L_k$ is not a linear space since it does not contain all linear combinations in it, but linear span $(L_1 \cup \dots \cup L_k)$ is a linear space and it's larger than $L_1 \cup \dots \cup L_k$.

Definition 2.2. Direct sum

 $L = L_1 \oplus L_2 \oplus \cdots \oplus L_k$ is the direct sum of L_1, \dots, L_k if and only if for any $x \in L$, there exists unique $x_1 \in L_1, \dots, x_k \in L_k$ such that $x = x_1 + \dots + x_k$.

$$L = L_1 \oplus L_2 \oplus \cdots \oplus L_k \Leftrightarrow [0 = x_1 + \cdots + x_k, x_j \in L_j \implies x_j = 0, \forall j]$$

Proposition 2.1. If $L_1, L_2 \subset V$, then $\dim(L_1 + L_2) = \dim(L_1) + \dim(L_2) - \dim(L_1 \cap L_2)$

Proof

Choose a basis l_1, \dots, l_m of $L_1 \cap L_2$, $m = \dim(L_1 \cap L_2)$, extend this basis to the basis $l_1, \dots, l_m, f_1, \dots, f_l$ of L_1 .

Extend the same basis to the basis of $L_2: l_1, \dots, l_m, g_1, \dots g_k$.

Need to prove that $l_1, \dots, l_m, f_1, \dots, f_l, g_1, \dots, g_k$ is the basis of $L_1 + L_2$.

$$\dim(L_1\cap L_2)=m$$

$$\dim(L_1)=m+l$$

$$\dim(L_2) = m + k$$

$$\dim(L_1 + L_2) = m + l + k$$

So

$$L = L_1 \oplus L_2 \Leftrightarrow L_1 \cap L_2 = \{0\} \Leftrightarrow \dim(L_1 \cap L_2) = 0 \Leftrightarrow \dim(L_1 + L_2) = \dim(L_1) + \dim(L_2)$$

Proposition 2.2. Suppose L_1, \dots, L_k are subspaces of V and $L = L_1 + \dots + L_k$, then the following statements are equivalent:

(i) $L = L_1 \oplus \cdots \oplus L_k$

(ii)
$$\forall i = 1, \dots, k-1, L_i \cap (L_{i+1} + \dots + L_k) = \{0\}$$

(iii) $\dim(L) = \dim(L_1) + \cdots + \dim(L_k)$

Example 2.1. If L_1, \dots, L_k are linear spaces, define the Cartesian product operation as follows: $L_1 \oplus \dots \oplus L_k := \{(x_1, \dots, x_k) : x_i \in L_i\}.$

Note that $(x_1, \dots, x_k) + (x_1', \dots, x_k') = (x_1 + x_1', \dots, x_k + x_k')$. Then let $L_j' = \{(0, \dots, 0, x, 0, \dots, 0), x \in L_j\}$ where x is in the j th position, then it's a subspace of $L_1 \oplus \dots \oplus L_k$.

In addition, $\underbrace{L_1'\oplus\cdots\oplus L_k'}_{\text{the usual direct sum}}=\underbrace{L_1\oplus\cdots\oplus L_k}_{\text{the Cartesian product we just defined}}.$

Theorem 2.1. Projection Theorem

Suppose $(v, \langle .,. \rangle)$ is an inner product space (A inner product space which is complete is called a **Hilbert space**), and $C \subset V$ is a closed convex set, then for all $x \in V$, there exists a unique $P_C(x) \in C$ such that

$$||x - P_C x|| = \inf_{y \in C} ||x - y||$$

Proof

Define $\Delta := \inf_{y \in C} \|x - y\|$, then there exists a sequence $\{y_n\}, y_n \in C$ such that $\|x - y_n\| \to \Delta$ as $n \to \infty$.

Also,

$$\Delta \le \|x - \frac{y_n + y_m}{2}\| = \frac{1}{2}(\|x - y_n\| + \|x - y_m\|) \to \Delta$$

So

$$\implies \|x - \frac{y_n + y_m}{2}\| \to \Delta$$

By the parallelogram identity $(\|u+v\|^2 + \|u-v\|^2 = 2(\|u\|^2 + \|v\|^2))$, take $u = x - y_n$ and $v = x - y_m$ We have $\|u\|^2 \to \Delta^2$, $\|V\|^2 \to \Delta^2$, $\|u+V\|^2 \to 4\Delta^2$

$$||y_n - y_m|| \to 0 \implies \exists \lim_n y_n := P_C x \in C$$

$$||x - P_C x|| = \lim_{n \to \infty} ||x - y_n|| = \inf_{y \in C} ||x - y||$$

Since $y \to ||x-y||^2$ is strictly convex (convex function: $f(\lambda x_1 + (1-\lambda)x_2) \le \lambda f(x_1) + (1-\lambda)f(x_2)$ for any $x_1 \ne x_2, \lambda \in (0,1)$), the minimum is unique.

Definition 2.3. Orthogonal projection onto an affine subspace

Let *S* be a subspace of a finite dimensional inner product space *V* and A = a + S be an affine subspace with parallel space *S*. The orthogonal projection $P_A : V \to A$ onto *A* is defined by $P_A(v) = a + P_S(v - a)$ where P_S is the corresponding orthogonal projection onto *S*.

Definition 2.4. Orthogonal Complement

Let $L \subset V$ be a subspace, define its orthogonal complement as $L^{\perp} = \{u \in V : u \perp L\}$.

Proposition 2.3. For any $x \in V$, there exists a unique vector $\hat{x} \in L$, such that $x - \hat{x} \in L^{\perp}$. Moreover, $\hat{x} = P_L x$.

Proof

Take $\hat{x} = P_L x$, we want to show that $x - \hat{x} \perp L$.

Suppose not! Then there exists a $h \in L$ such that $\langle x - \hat{x}, h \rangle \neq 0$ where $h \neq 0$.

Without loss of generality, assume that $\langle x - \hat{x}, h \rangle > 0$, if we can make $||x - \hat{x}||^2$ smaller, then we can get the contradiction.

To see this, note that for some small t > 0, we have

$$||x - (\hat{x} + th)||^2 = ||x - \hat{x}||^2 \underbrace{-2t\langle x - \hat{x}, h \rangle}_{<0} + t^2 ||h||^2$$

For t is small, $t >> t^2$, so $||x - (\hat{x} + th)||^2 < ||x - \hat{x}||^2$.

So $P_L x$ is the desired vector. Furthermore, for any $y = \hat{x} + a, a \in L, \langle x - y, l \rangle$ does not always equal to 0 for all $l \in L$, so $P_L x$ is the unique one.

Definition 2.5. self-adjoint operator

Suppose $(V, \langle ., . \rangle)$ is a inner product space and $A: V \to V$ is a linear operator (transformation).

We say A is self-adjoint if $\langle Ax, y \rangle = \langle x, Ay \rangle, x, y \in V$. (in matrix space self-adjoint is equivalent to Hermitian matrix).

Definition 2.6. range and kernel of a subspace

 $Im(A) = R(A) : \{Ax, x \in V\} \subset V$ is a subspace of V.

 $Ker(A) = n(A) = \{x : Ax = 0\} \subset V \text{ is a subspace of } V.$

Recall a previous proposition: if $L \subset V$ is a subspace of V, then for any $x \in V$, there exists a unique $P_L x$ such that $||x - P_L x|| = \inf_{v \in L} ||x - y||$. Moreover, $P_L x$ is uniquely characterized by the following relationship

- $(1) x P_L x \in L^{\perp}$
- (2) $P_L x \in L$

Theorem 2.2. 1. Suppose that $e_1, \dots, e_k \in L$ are orthonormal bases $(\langle e_i, e_j \rangle = \delta_{ij})$ of the subspace L, linear span (e_1, \dots, e_k)

- = L, then $P_L x = \sum_{j=1}^k \langle x, e_j \rangle e_j$.
- 2. Suppose that $e_1, \dots, e_k \in L$ are orthogonal bases $(\langle e_i, e_j \rangle = \delta_{ij} ||e_j||^2)$ of the subspace L, linear span $(e_1, \dots, e_k) = L$, then $P_L x = \sum_{j=1}^k \frac{\langle x, e_j \rangle}{\langle e_j, e_j \rangle} e_j$.
- 3. If matrix P projects a vector into the column space of A, then $P = A(A^TA)^{-1}A^T$.

Proof

Need to show:

(1) $x - P_L x \in L^{\perp}$ which is equivalent to $x - P_L x \perp e_j, j = 1, \dots, k$

$$\langle x - P_L x, e_j \rangle = \langle x, e_j \rangle - \langle P_L x, e_j \rangle = \langle x, e_j \rangle - \sum_{i=1}^k \langle x, e_i \rangle \langle e_i, e_j \rangle = \langle x, e_j \rangle - \sum_{i=1}^k \langle x, e_i \rangle \delta_{ij} = \langle x, e_j \rangle - \langle x, e_j \rangle = 0$$

 \Box

(2) $P_L x \in L$, obvious.

Proposition 2.4. For an orthogonal projection $P_L: V \to V$, the following properties hold (conversely also true, the following properties indicate it is an orthogonal projection):

- (i) P_L is a linear operator, $P_L(x+y) = P_L(x) + P_L(y)$.
- (ii) P_L is self-adjoint.

Proof: $\langle P_L x, y \rangle = \langle P_L x, P_L y + P_{L^{\perp}} y \rangle = \langle P_L x, P_L y \rangle = \langle P_L x + P_{L^{\perp}} x, P_L y \rangle = \langle x, P_L y \rangle.$

(iii) $P_L^2 = P_L$ (idempotent).

(iv) $Im(P_L) = L$, $Ker(P_L) = L^{\perp}$.

Proposition 2.5. Suppose $A: V \to V$ is a linear self-adjoint operator and $A^2 = A$, then $A = P_L$ where L = Im(A).

Proof

Clearly, for any $x \in V$, $Ax \in L$, it's sufficient to check that $x - Ax \perp L$.

For any $y \in V$, we need $\langle x - Ax, Ay \rangle = \langle x, Ay \rangle - \langle Ax, Ay \rangle = \langle x, Ay \rangle - \langle x, A^2y \rangle (\text{self - adjoint}) = \langle x, Ay \rangle - \langle x, Ay \rangle (\text{idempotent}) = 0.$

Proposition 2.6. Suppose P_1, \dots, P_k are orthogonal projections in V, say $P_j = P_{L_j}$, and let $P = P_1 + \dots + P_k$, then the following statements are equivalent:

- (i) P itself is an orthogonal projection.
- (ii) $P_i P_j = 0$ when $i \neq j$.
- (iii) $L_i \perp L_j$ when $i \neq j$.
- (iv) $P = P_L$ where $L = L_1 \oplus \cdots \oplus L_k$.

Proof

(i) to (ii): for any $x \in V$, $||x||^2 \ge ||Px||^2 = \langle Px, Px \rangle = \langle P^2x, x \rangle = \langle Px, x \rangle = \langle \sum_{j=1}^k P_jx, x \rangle = \sum_{j=1}^k \langle P_j^2x, x \rangle = \sum_{j=1}^k |P_jx|^2$.

For $x = P_j y, y \in V$, we have $||P_i y||^2 \ge \sum_{i=1}^k ||P_j P_i y||^2 = ||P_i y||^2 + \sum_{j \ne i} ||P_i P_j y||^2$ so $P_j P_j y = 0$ for $y \in V, j \ne i$, which means $P_j P_i = 0$ for $j \ne i$.

(ii) and (iii) are equivalent:

$$P_iP_j = 0 \Leftrightarrow \forall y \in V \ P_iP_jy = 0 \Leftrightarrow \forall y \in V \ P_iy \in Ker(P_i) = L_i^{\perp}.$$

This implies that $L_j = Im(P_j) \subset L_i^{\perp} \implies L_j \subset L_i^{\perp}, i \neq j \Leftrightarrow L_i \perp L_j$.

(iii) to (iv): Need to check P is an orthogonal projection, since P is self-adjoint, enough to check $P^2 = P$.

$$P^2 = \sum_{i=1}^{n} P_i^2 + \sum_{i \neq j} P_i P_j = \sum_{i=1}^{n} P_i^2 = \sum_{i=1}^{n} P_i = P.$$

 $Im(P) = L_1 \oplus \cdots \oplus L_k$. (direct sum is immediate because we are under assumptions that that $L_i \perp L_j$ so it will be direct sum, which means we can have a unique representation)

Corollary 2.3. Let I be identity operator (Ix = x thus an orthogonal projection) and P_1, \dots, P_k are orthogonal projections in V, say P_1, \dots, P_k is a resolution (split) of identity, $P_1 + \dots + P_k = I$.

We have the following properties:

$$P_iP_j=0, i\neq j.$$

$$P_i = P_{L_i} \implies L_i \perp L_j$$
.

$$V = L_1 \oplus \cdots \oplus L_k$$
.

Theorem 2.4. Algebraic form of Cochran Theorem: Suppose T_1, \dots, T_k are self-adjoint linear operators in V with $Im(T_j) = L_j$, let $P = T_1 + \dots + T_k$ (sum of operators), and P is an orthogonal projection, say $P = P_L, L \subset V$, then the following four statements are equivalent:

- (i) For any i, T_i is an orthogonal projection, in other words, $T_i = T_i^2$.
- (ii) $L_i \perp L_j$ if $i \neq j$, or $L = L_1 \oplus \cdots \oplus L_k$.
- (iii) $\dim(L) = \dim(L_1) + \cdots + \dim(L_k)$. (commonly used condition)
- (iv) $T_iT_j = 0$ if $i \neq j$.

Proof

Suppose P = I, L = V, otherwise we can define $T_{k+1} = P_{L^{\perp}}$ and the $T_1 + \cdots + T_{k+1} = P + T_{k+1}$ is the identity operator.

- (i) to (ii): See previous proposition (sum of T_i is an orthogonal projection, so it's obvious).
- (ii) to (iii): $L_1 \oplus \cdots \oplus L_k \implies \dim(L) = \dim(L_1) + \cdots + \dim(L_k)$, obvious.
- (iii) to (iv): P = I, we can write $x \in V$, $x = Ix = T_1x \in L_1 + \cdots + T_kx \in L_k \implies V = L_1 + \cdots + L_k$. In addition, $\dim(L) = \dim(L_1) + \cdots + \dim(L_k)$ from previous proposition, so $V = L_1 \oplus \cdots \oplus L_k$. So such representation is unique.

Take $x = T_i y, y \in V$, so $T_i y = \sum_{j=1}^n T_i T_j y = T_i y + \sum_{j \neq i} T_j T_i y$.

$$\implies T_i y = T_i^2 y, T_i T_i y = 0 (i \neq j) \implies T_i T_i = 0.$$

(iv) to (i): Enough to prove $T_i = T_i^2$, $T_i - T_i^2 = T_i(I - T_i) = T_i \sum_{j \neq i} T_j = \sum_{j \neq i} T_i T_j = 0 \implies T_i = T_i^2$.

Proposition 2.7. Given $A: V \to V$ is a finite-dimension linear operator, let $A \subset V$, we say L is an invariant subspace of A if $A(L) = \{Ax, x \in L\} \subset L$. If A is self-adjoint and $L \subset V$ is an invariant subspace, then L^{\perp} is also an invariant subspace.

Proof

Need to prove that for $x \in L^{\perp}$, $Ax \in L^{\perp}$, or $\langle Ax, \underbrace{y}_{\in L} \rangle = 0$ for all $y \in L$.

Note that
$$\langle Ax, y \rangle = \langle x, \underbrace{Ay}_{\in I} \rangle = 0.$$

Theorem 2.5. Spectral theorem for self-adjoint operator

Let $A: V \to V$ be a self-adjoint linear operator, then there exists a finite set $S \subset \mathbb{R}$ and a resolution of I (split of identity operator as sum of orthogonal operators $\{P_{\lambda}, \lambda \in S\}$, i.e. $\sum_{\lambda} P_{\lambda} = I, P_{\lambda} P_{\lambda'} = 0$ for $\lambda \neq \lambda'$ and $Im(P_{\lambda}) \perp Im(P_{\lambda'})$) such that $A = \sum_{\lambda \in S} \lambda P_{\lambda}$. Moreover, $S = \sigma(A)$ (the set of eigenvalues, might not all be distinct) and for any $\lambda \in \sigma(A), P_{\lambda} = P_{L_{\lambda}}$ where L_{λ} is the eigenspace of A for eigenvalue λ . P_{λ} are called spectral projections of our operator A.

Proof

 $f_A(x) = \langle Ax, x \rangle$ is the quadratic form of A (maps from $V \to \mathbb{R}$), and it's clearly continuous for any finite dimensional space, consider $\{x : ||x|| = 1\}$ (a compact set so attains max and min).

Define $e_1 := \operatorname{argmax}_{||x|=1} \langle Ax, x \rangle$ and $\lambda_1 := \operatorname{max}_{||x|=1} \langle Ax, x \rangle$ and $L_1 = \operatorname{linear span}(e_1)$, and we will prove that $Ae_1 = \lambda_1 e_1$.

We can write $Ae_1 = \lambda_1 e_1 + h$ for some vector h, need to show h = 0. $Ae_1 = \lambda_1 e_1 + h = 0$

 $(Ae_1,e_1)e_1$ +h, the residual of a orthogonal projection should be zero, so $h \perp L_1$. $\in P_{L_1}(Ae_1)$ because L_1 is spanned by e_1

Assume $h \neq 0$, let $v = \frac{e_1 + th}{||e_1 + th||}$ (t is small and positive), then we need to show that there exists a t such that $\langle Av, v \rangle > \langle Ae_1, e_1 \rangle = \lambda$, leading to a contradiction.

Note that $\langle Ae_1, h \rangle = \langle \lambda_1 e_1 + h, h \rangle = ||h||^2$

$$\langle Av, v \rangle = \frac{\langle A(e_1 + th), e_1 + th \rangle}{\langle e_1 + th, e_1 + th \rangle} = \frac{\langle Ae_1, e_1 \rangle + 2t \langle Ae_1, e_1 \rangle + t^2 \langle Ah, h \rangle}{1 + t^2 ||h||^2} = \frac{\lambda_1 + ||h||^2 + 2t \langle Ah, h \rangle}{1 + t^2 ||h||^2}$$

Plus, if we want $\frac{\lambda_1 + ||h||^2 + 2t\langle Ah, h\rangle}{1 + t^2||h||^2} > \lambda_1 \Leftrightarrow \lambda_1 + ||h||^2 + 2t\langle Ah, h\rangle > \lambda_1(1 + t^2||h||^2) \Leftrightarrow 2t||h||^2 > (\lambda_1||h||^2 - \langle Ah, h\rangle)t^2$

It follows for a positive t which is small enough, $\langle Av, v \rangle > \lambda_1$, which is contradiction. Therefore, h = 0 and λ_1 is an eigenvalue and e_1 is an eigenvector.

Consequently, $L_1 = \text{linear span}(e_1)$ is an invariant subspace of A (eigenvectors, so map L_1 to L_1). Since A is self-adjoint, by the previous proposition, L_1^{\perp} is also an invariant subspace of A. Define $P_1 = P_{L_1}$ and let $A_1 = A - \lambda_1 P_1$, then $A_1 = 0$ on L_1 and $A_1 = A$ on L_1^{\perp} (minus something irrelevant). Moreover, $A_1 : L_1^{\perp} \to L_1^{\perp}$ (dim $L_1 \perp = d - 1$) is a self-adjoint operator (this comes from the fact that A is self-adjoint). It means that we can continue proof again (replace A_1 with A) in the first proof.

Do the previous proof again, define $e_2 := \operatorname{argmax}_{||x|=1,x \in L_1} \langle Ax,x \rangle$ and $\lambda_2 := \operatorname{max}_{||x|=1,x \in L_1} \langle Ax,x \rangle$ and $L_2 := \operatorname{max}_{||x|=1,x \in L_1} \langle Ax,x \rangle$

linear span (e_2) , so $Ae_2 = \lambda_2 e_2$, again eigenvector, repeat this process, $L_2 = \text{linear span}(e_2), P_2 = P_{L_2}$. Let $A_2 = A - \lambda_1 P_1 - \lambda_2 P_2, A_2 : (L_1 \oplus L_2)^{\perp} \to (L_1 \oplus L_2)^{\perp}$ is self-adjoint and $(L_1 \oplus L_2)^{\perp}$ is invariant with dimension d-2.

Continue this process, and if we have the dimension of V to be d, we will get $A = \sum_{j=1}^{D} \lambda_j P_j$ where $P_j = P_{L_j}$ are orthogonal projections on some space L_j (1 dimension, linear span $(e_j), L_i \perp L_j$).

After d steps, we construct $\lambda_1 e_1, \lambda_2 e_2, \dots, \lambda_d e_d$ such that

- (i) $\lambda_i \in \mathbb{R}$.
- (ii) e_1, \dots, e_d is an orthonormal basis.
- (iii) $Ae_j = \lambda_j e_j$.
- (iv) $A = \sum_{j=1}^{d} \lambda_j P_j$ where P_j is a projection to L_j (linear span (e_j)).

The matrix of A in the basis of $\{e_j\}$ will be $\langle Ae_i, e_j \rangle_{i,j} = \langle \lambda_i e_i, e_j \rangle = \lambda_i \delta_{ij} = \operatorname{diag}(\lambda_1, \dots, \lambda_d)$ and some of them can be equal. $\sigma(A) = \{\lambda_1, \dots, \lambda_d\}$ (this is a list with no repitition), some of them could be repeated, so $\operatorname{card}(A) \leq d$.

A fact: eigenvalue of multiplicity k of a real symmetric matrix has exactly k linearly independent eigenvector

If one of the eigenvalues has multiplicity k, we can choose k linearly independent eigenvectors, each with dimension 1, together with dimension k, so essentially, multiplicity is not a problem.

For any
$$\lambda \in \sigma(A)$$
 define $J_{\lambda} := \{j : \lambda_j = \lambda\}, P_{\lambda} = \sum_{j \in J_{\lambda}} P_j$.

So $A = \sum \lambda_j P_j = \sum_{\lambda \in \sigma(A)} \lambda P_{\lambda}$, where each P_{λ} has dimension $\#(J_{\lambda})$ (number of multiplicity).

In addition, $\sum_{i=1}^{d} P_i = I \implies \sum_{\lambda \in \sigma(A)} P_{\lambda} = I$.

Clearly the spectral decomposition is not unique (essentially because of the multiplicity of eigenvalues). But the eigenspaces corresponding to each eigenvalue are fixed. So there is a unique decomposition in terms of eigenspaces and then any orthonormal basis of these eigenspaces can be chosen.

Definition 2.7. Similar Matrix

Suppose A and B are two square matrices of size n. Then A and B are similar if there exists a nonsingular matrix S of size n such that $A = S^{-1}BS$, then we can interpret A and B are the same linear transformation under different basis.

Corollary 2.6. SVD

Spectral theorem for self-adjoint operator, just like the polar decomposition for complex numbers, $z = |z|e^{i\theta}$, we can decompose a self-adjoint operator into product of some positive definite matrix and rotation matrix that preserves distance), we can get the singular value decomposition (SVD).

Definition 2.8. Bilinear Form

A bilinear form on a vector space V is a bilinear map $V \times V \to K$, where K is the field of scalars. In other words, a bilinear form is a function $V \times V \to K$ that is linear in each argument separately:

$$B(u+v,w) = B(u,w) + B(v,w)$$
 and $B(\lambda,v) = \lambda B(u,v)$.

$$B(u, v + w) = B(u, v) + B(u, w)$$
 and $B(u, \lambda v) = \lambda B(u, v)$.

Corollary 2.7. Suppose $A: V \to V$ be a linear operator with operator norm $||A|| := \sup_{||x||=1} ||Ax|| = \sup_{||x||=1, ||y||=1} |\langle Ax, y \rangle|$. (This is true since $|\langle Ax, y \rangle| \le ||Ax|| \cdot ||y|| = ||Ax|| \Longrightarrow \sup_{||x||=1, ||y||=1} |\langle Ax, y \rangle \le \sup_{||x||=1} ||Ax||$ and $\sup_{||x||=1} ||Ax|| = \sup_{||x||=1} |\langle Ax, \frac{Ax}{||Ax||} \rangle| \le \sup_{||x||=1} |\langle Ax, y \rangle|$.) If A is self-adjoint, we have $||A|| = \sup_{\lambda \in \sigma(A)} |\lambda|$.

Proof

Let eigenvectors e_1, \dots, e_d be the basis of A so $Ae_i = \lambda_i e_i$ and we can write $A = \text{diag}(\lambda_1, \dots, \lambda_d)$ in the new basis system.

We can write the bilinear form $\langle Ax, y \rangle = \sum_{j=1} \lambda_j x_j y_j$ (where $x_j = \langle x, e_j \rangle$ and $y_j = \langle y, e_j \rangle$) in the new basis system as well (in general $\langle Ax, y \rangle = \sum_{i,j} a_{ij} x_i y_j$).

So
$$|\langle Ax, y \rangle| = |\sum_{j=1} \lambda_j x_j y_j| \le \sum_{j=1} |\lambda_j| \cdot |x_j| \cdot |y_j| \le \max_j |\lambda_j| \sum_{j=1}^n |x_j| |y_j| \le \max_j |\lambda_j| (\sum_j x_j^2)^{\frac{1}{2}} (\sum_j y_j^2)^{\frac{1}{2}} = \max_j |\lambda_j| ||x|| \cdot ||y|| = \underbrace{\sum_{j=1}^n \lambda_j x_j y_j ||x_j|| \cdot ||x_j|| \cdot ||y_j||}_{\text{Cauchy Schwarz}}$$

 $\max_{i} |\lambda_{i}|$ since we are given the norm is 1.

$$||A|| > \max_{i} \langle Ae_{i}, e_{i} \rangle = \max_{i} |\lambda_{i}|.$$

So
$$||A|| = \max_{i} |\lambda_{i}|$$
.

Corollary 2.8. Define function of matrices based on spectral theorem: operator functional calculus.

We can, for any function $f : \mathbb{R} \to \mathbb{R}$, define f(A) where A is self-adjoint.

$$A = \sum_{\lambda} \lambda P_{\lambda}$$
.

Then $A^2 = (\sum_{\lambda} \lambda P_{\lambda})^2 = \sum_{\lambda} \lambda^2 P_{\lambda}$ since cross product is 0.

Similarly, $f(A) = \sum_{\lambda} f(\lambda) P_{\lambda}$ for any polynomial. Since any continuous function can be approximated by continuous functions, so we can define f(A) for any continuous f, the domain of f can be pretty small as long as it contains all the λ .

Definition 2.9. adjoint operator

If we have $A: V_1 \to V_2$ and both are inner product spaces, there exsits a unique $A^*: V_2 \to V_1$, where $\langle Ax, y \rangle = \langle x, A^*y \rangle$ for all $x \in V_1, y \in V_2$. We call A^* be the adjoint operator of A. In matrix form, it's Hermitian matrix and they satisfy the following properties.

- (i) $A^{**} = A$
- (iii) $A^* = A \Leftrightarrow A$ is self-adjoint
- (iii) $(A+B)^* = A^* + B^*$
- (iv) $(AB)^* = B^*A^*$
- (vi) If we have $A^*A: V_1 \to V_1$ and $AA^*: V_2 \to V_2$, they will be both self-adjoint and positive semi-definite. For example, $\langle A^*Ax, x \rangle = \langle Ax, Ax \rangle \geq 0$.

Definition 2.10. inverse

Let $A: V \to V$ be a linear opeartor, and $Ker(A) = \{x : Ax = 0\} = \{0\} \Leftrightarrow A$ is one to one.

In addition, $Im(A) = V \Leftrightarrow A$ is mapping onto V.

Then there exsits A^{-1} such that $AA^{-1} = A^{-1}A = I$, A is invertible and we call A^{-1} be the inverse of A.

Theorem 2.9. Suppose $A: V_1 \to V_2$ is a linear operator, then there exists a unique operator (Moore-Penrose pseudoinverse) $A^+: V_2 \to V_1$ such that

- $(i) AA^+A = A$
- (ii) $A^{+}AA^{+} = A^{+}$
- (iii) $A^+A: V_1 \rightarrow V_1$ and $AA^+: V_2 \rightarrow V_2$ are both self-adjoint. (the unique property for Moore-Penrose pseudoinverse).

If $V_1 = V_2 = V$ and A is invertible, then $A^+ = A^{-1}$, proof is obvious.

Proof

1: Prove uniqueness.

Assume there exists B such that properties (i) to (ii) hold, need to show $B = A^+$.

Define $C = AA^+ - AB$, then C is self-adjoint by (iii).

$$C^2 = (AA^+ - AB)(AA^+ - AB) = AA^+AA^+ - ABAA^+ - AA^+AB + ABAB$$

$$= AA^+ - AA^+ - AB - AB = 0$$

Since C is self-adjoint, we can use spectral theorem, we have $\lambda = 0$, it follows that C = 0. So $AA^+ = AB$.

Similarly, we have $A^+A = BA$.

$$A^+ = A^+AA^+ = BAA^+ = BAB = B$$
. So $A^+ = B$ and unique.

2: Then prove existence.

Suppose operator $A^*A: V_1 \to V_1$ is invertible, then $A^+ = (A^*A)^{-1}A^*$.

(i)
$$AA^+A = A(A^*A)^{-1}A^*A = A$$
.

(ii)
$$A^+AA^+ = (A^*A)^{-1}A^*A(A^*A)^{-1}A^* = (A^*A)^{-1}A^* = A^+$$
.

(iii)
$$A^+A = (A^*A)^{-1}A^*A = I_{V_1}$$
 is self-adjoint, $(AA^+)^* = (A(A^*A)^{-1}A^*)^* = AA^+$ is self-adjoint.

Similarly, suppose
$$AA^*: V_2 \to V_2$$
 is invertible, then $A^+ = A^*(AA^*)^{-1}$ and $(AA^+)^* = (A(A^*A)^{-1}A^*)^* = A^{**}((A^*A)^{-1})^*A^* = A(A^*A)^{-1}A^* = AA^+$ so AA^+ is self-adjoint.

What if A^*A and AA^* are not invertible? We will use regularization, add a number positive times identity matrix to a matrix so that matrix can be inverted. Note that A^*A is positive semidefinte ($x^TA^*Ax = \langle A^*Ax, x \rangle = \langle Ax, Ax \rangle \geq 0$), and for any t > 0, $A^*A + tI_{v_1}$ is positive definite (all eigenvalues > 0 so invertible).

Proposition: There always exists $\lim_{t\to 0} (A^*A + tI_{V_1})^{-1}A^*$ and exists $\lim_{t\to 0} A^*(AA^* + tI_{V_2})^{-1}$, moreover, they equal to each other and are the unique A^+ .

$$\lim_{t \to 0} (A^*A + tI_{V_1})^{-1}A^* = \lim_{t \to 0} A^*(AA^* + tI_{V_2})^{-1} = A^+$$

Proof

 A^*A is self-adjoint, its spectral is $\sigma(A^*A) \subset \mathbb{R}^+$, and use spectral theorem we can get that $A^*A = \sum_{\lambda \in \sigma(A^*A)} \lambda P_{\lambda}$ (P_{λ} is projection onto eigenspace of λ) and $\{P_{\lambda}, \lambda \in \sigma(A^*A)\}$ forms a resolution of identity $I_{V_1} = \sum_{\lambda \in \sigma(A^*A)} P_{\lambda}$. $A^*A + tI_{V_1} = \sum_{\lambda > 0} (\lambda + t) P_{\lambda}$, so $(A^*A + tI_{V_1})^{-1} = \sum_{\lambda > 0} \frac{1}{\lambda + t} P_{\lambda}$.

Because t > 0, $(A * A + tI_{V_1})^{-1} = \sum_{\lambda \ge 0} \frac{1}{\lambda + t} P_{\lambda}$ exists.

 $\lim_{t\to 0} (A^*A + tI_{V_1})^{-1}A^* = \lim_{t\to 0} \sum_{\lambda\geq 0} \frac{1}{\lambda+t} P_{\lambda}A^*$ and we are assuming that $0\in \sigma(A^*A)$ so we have trouble calculating this limit.

If we want the limit to exist, our only hope is that for $\lambda = 0$, $P_0A^* = 0$ where P_0 is the projection onto $Ker(A^*A)$.

 $P_0A^* = 0 \Leftrightarrow (P_0A^*)^* = 0 \Leftrightarrow AP_0 = 0$ (P_0 is projection hence self-adjoint).

Observe that $A^*AP_0 = 0$ because we can use the spectral theorem

$$A^*AP_0 = \sum_{\lambda > 0} \lambda P_{\lambda} P_0 = 0P_0^2 + \sum_{\lambda > 0} \lambda P_{\lambda} P_0 = 0 + 0 = 0$$

since for $\lambda \neq 0, P_{\lambda}P_0 = 0$.

 $P_0 = P_{L_0}$ where $L_0 = Ker(A^*A)$, for $x \in L_0$, $A^*Ax = 0 \implies \langle A^*Ax, x \rangle = 0 \implies \langle Ax, Ax \rangle = 0 \implies |Ax|| = 0 \implies Ax = 0 \implies AP_0 = 0$.

$$\lim_{t \to 0} (A^*A + tI_{V_1})^{-1}A^* = \lim_{t \to 0} \sum_{\lambda > 0} \frac{1}{\lambda + t} P_{\lambda}A^* = \lim_{t \to 0} \sum_{\lambda > 0} \frac{1}{\lambda + t} P_{\lambda}A^* = \sum_{\lambda > 0} \frac{1}{\lambda} P_{\lambda}A^*$$

So $(AA^+)^* = \sum_{\lambda>0} (\frac{1}{\lambda}AP_{\lambda}A^*)^* = \sum_{\lambda>0} \frac{1}{\lambda}(AP_{\lambda}A^*)^* = \sum_{\lambda>0} \frac{1}{\lambda}AP_{\lambda}A^* = AA^+$ is which self-adjoint, but not necessarily a projection because the identity resolution we construct is only on V_1 but AA^+ acts on V_2 .

Least square problem: We have linear transformations $A: V_1 \to V_2$ want $Ax \approx y, y \in V_2$.

(LS): $\min ||Ax - y||^2$ with respect to $x \in V_1$.

We are trying to project y on to $Im(A) = \{Ax : x \in V\}.$

- (i) If \hat{x} solves problem then $A\hat{x} = P_{Im(A)}y$. Note that \hat{x} is not necessarily unique, we can always add h such that Ah = 0.
- (i) If there are 2 solutions \hat{x}_1, \hat{x}_2 , then $\hat{x}_1 \hat{x}_2 \in Ker(A)$. (Indeed $A\hat{x}_1 = P_{Im(A)}y$ and $A\hat{x}_2 = P_{Im(A)}y$ so $A\hat{x}_1 = A\hat{x}_2 \implies A(\hat{x}_1 \hat{x}_2) = 0$.

Proposition 2.8. The set of all solutions $\operatorname{Argmin}_{x \in V_1} ||Ax - y||^2$ the set of all solutions of problem of $\operatorname{LS} = A^+ y + \operatorname{Ker}(A)$ where A^+ is Moore-Penrose pseudoinverse.

Proof

Enough to show that AA^+y is the projection $P_{Im(A)}y$, which is equivalent to show $y - AA^+y \perp Im(A)$. In other words, for any $x \in V_1, y - AA^+y \perp Ax$, or $\langle y - AA^+y, Ax \rangle = 0 \Leftrightarrow \langle y, Ax \rangle = \langle AA^+y, Ax \rangle \Leftrightarrow \langle A^*y, x \rangle = \langle A^*AA^+y, x \rangle \Leftrightarrow A^*y = A^*AA^+y, \forall y \in V_2 \Leftrightarrow A^* = A^*AA^+ \Leftrightarrow (A^*)^* = (A^*AA^+)^* \Leftrightarrow A = \underbrace{(AA^+)^*}_{\text{self-adjoint}} A \Leftrightarrow A = AA^+A$

which is the definition of Moore-Penrose pseudoinverse.

3 Probability

Random variables and covariance inner product spaces: $(V, \langle \cdot, \cdot \rangle)$ with finite finite space. Let X be a random variable with values in V, assume that $\mathbb{E}[\langle X, u \rangle]$ is finite for any $u \in V$ (equivalent to existence of moments).

 $u \in V \mapsto \mathbb{E}\langle X, u \rangle \in \mathbb{R}$ is a linear function on V.

So there exists $\mathbb{E}[X] \in V$ such that $\langle \mathbb{E}X, u \rangle = \mathbb{E}\langle X, u \rangle, u \in V$ and we call $\mathbb{E}[X]$ the expectation of V.

- $\mathbb{E}[c_1X_1 + c_2X_2] = c_1\mathbb{E}[X_1] + c_2\mathbb{E}[X_2]$
- For any $T: V \to V_1$ where V_1 is an inner product space, $\mathbb{E}[TX] = T\mathbb{E}[X]$. For any u, $\langle \mathbb{E}[TX], u \rangle = \mathbb{E}\langle TX, u \rangle = \mathbb{E}\langle X, T^*u \rangle = \langle \mathbb{E}X, T^*u \rangle = \langle T\mathbb{E}[X], u \rangle \implies \mathbb{E}[TX] = T\mathbb{E}[X]$.

Proposition 3.1. If B(u,v) is a bilinear form on V, then there exists a linear operator $B:V\to V$ such that $B(u,v)=\langle Bu,v\rangle$. We can fix u, then any linear functional can be written as an inner product.

Definition 3.1. Tensor product \otimes

Take $x, y \in V$, then $(x \otimes y)u := x\langle y, u \rangle$ for any $u \in V$. In matrix notations, $x \otimes y = xy^T$ with ij values x_iy_i .

Definition 3.2. Covariance operator

Recall that for $\xi, \eta \in \mathbb{R}$, $Cov(\xi, \eta) = \mathbb{E}[(\xi - \mathbb{E}[\xi])(\eta - \mathbb{E}[\eta])]$. The map from $u, v \in V$ to $Cov(\langle X, u \rangle, \langle X, v \rangle)$ is a bilinear form since linear to u and v. So there exists a linear operator $\Sigma : V \to V$ such that $\langle \Sigma u, v \rangle = Cov(\langle X, u \rangle, \langle X, v \rangle)$. We call Σ be the covariance operator of X and it satisfies the following properties:

- $\Sigma u = \mathbb{E}[\langle X \mathbb{E}[X], u \rangle (X \mathbb{E}[X])], u \in V$
- $\Sigma = \mathbb{E}(X \mathbb{E}[X]) \otimes (X \mathbb{E}[X])$, or $Cov(X_i, X_j)$ is the covariance matrix.

Proposition 3.2. Properties of covariance operators

- 1. $\Sigma = \Sigma^*$, self-adjoint.
- 2. Σ is positive semi-definite becasue for any $u \in V$, $\langle \Sigma u, u \rangle = \mathbb{V}ar(\langle X, u \rangle) \geq 0$.
- 3. Any self-adjoint, positive semi-definite operator $\Sigma: V \to V$ is a covariance operator of a normal random vector.

The linear space of positive semi-definite operators (we can add or multiply the covariance operators) forms a cone, a convex set S, which means $x \in S \implies cx \in S, c \ge 0$. Or it includes non-negative multiplies of vectors, which means that if we multiply the covariance operator with a non-negative number, it's still a covariance operator.

4. Let X be a random vector with covariance operator Σ_X and $T:V\to V_1$ which is a linear operator, $\Sigma_{TX}=T\Sigma_XT^*$.

Proof

For any $u, v \in V_1$, $\langle \Sigma_{TX} u, v \rangle = \text{Cov}(\langle TX, u \rangle, \langle TX, v \rangle) = \text{Cov}(\langle X, T^*u \rangle, \langle X, T^*v \rangle) = \langle \Sigma_X T^*u, T^*v \rangle = \langle T\Sigma_X T^*u, v \rangle$

Definition 3.3. Cross-covariannce operator

Suppose X is a random variable with values in the inner product space V_1 and Y is a random variable with values in V_2 , then define operator Σ_{XY} using the following relationship.

- 1. $\langle \Sigma_{XY}u, v \rangle = \text{Cov}(\langle X, u \rangle, \langle Y, v \rangle)$ where $u \in V_1, v \in V_2$.
- 2. $\Sigma_{XY}: V_1 \rightarrow V_2$.

Proposition 3.3. Some properties for Cross-covariannce

- 1. $\Sigma_{YX} = \Sigma_{XY}^*$
- 2. $\Sigma_{XX} = \Sigma_X$, the covariacne operator *X*
- 3. If X is a random variable in V, $T_1: V \to V_1$, $T_2: V \to V_2$, both linear operators, then $\Sigma_{T_1X,T_2X} = T_2\Sigma_{XX}T_1^*$.

Proof

$$\langle \Sigma_{T_1X,T_2X}u,v\rangle = \operatorname{Cov}(\langle T_1X,u\rangle,\langle T_2X,v\rangle) = \operatorname{Cov}(\langle X,T_1^*u\rangle,\langle X,T_2^*v\rangle) = \langle \Sigma_{XX}T_1^*u,T_2^*v\rangle = \langle T_2\Sigma_{XX}T_1^*u,v\rangle$$

Therefore, $\Sigma_{T_1X,T_2X} = T_2\Sigma_{XX}T_1^* = T_1\Sigma_{XX}T_2^*$ since Σ_{T_1X,T_2X} is self-adjoint.

Definition 3.4. Uncorrelated

If $X \in V_1$ and $Y \in V_2$ are uncorrelated $\Leftrightarrow \forall u \in V_1, v \in V_2, \langle X, u \rangle$ and $\langle Y, v \rangle$ are uncorrelated, or $\langle \Sigma_{XY} u, v \rangle = 0, \forall u \in V_1, v \in V_2$. This is equivalent to say $\Sigma_{XY} = 0$. T_1X and T_2X are uncorrelated if and only if $\Sigma_{T_1X,T_2X} = T_2\Sigma_{XX}T_1^* = 0$.

Theorem 3.1. Suppose X is a random variable in V and Σ is a covariance operator of X, since Σ is self-adjoint and positively semidefinite, by spectral theorem, $\Sigma = \sum_{\lambda \in \sigma(\Sigma)} \lambda P_{\lambda}$. Moreover, P_{λ} are mutually orthogonal and is a resolution of identity.

 $I = \sum_{\lambda \in \sigma(\Sigma)} P_{\lambda}$, apply this to X, get $X = \sum_{\lambda \in \sigma(\Sigma)} P_{\lambda} X$. If we take $\lambda, \lambda' \in \sigma(\Sigma), \sum_{P_{\lambda} X, P_{\lambda'} X} = P_{\lambda'} \sum P_{\lambda}^* = P_{\lambda'} \sum P_{\lambda} = P_{\lambda'} \sum_{\mu \in \sigma(\Sigma)} \mu P_{\mu} P_{\mu}$.

If
$$\lambda' \neq \lambda$$
, $\Sigma_{P_{\lambda}X,P_{\lambda'}X} = 0$.

If
$$\lambda' = \lambda$$
, $\Sigma_{P_{\lambda}X,P_{\lambda'}X} = \lambda P_{\lambda}$.

Corollary 3.2. $P_{\lambda}X, \lambda \in \sigma(\Sigma)$ are mutually uncorrelated.

Consider $u \in L_{\lambda}$, ||u|| = 1 where $L_{\lambda} = Im(P_{\lambda})$. Then we have $\mathbb{V}ar(\langle P_{\lambda}X, u \rangle) = \langle \Sigma_{P_{\lambda}X}u, u \rangle = \langle \lambda P_{\lambda}u, u \rangle = \langle \lambda P_{\lambda}u, P_{\lambda}u \rangle = \lambda ||P_{\lambda}u||^2 = \lambda ||u||^2 = \lambda \text{ since } P_{\lambda} \text{ projects to the eigen space.}$

Theorem 3.3. Principal Component Analysis

Let X be a random variable in V with covariance operator Σ with dimension d, then by spectral theorem, $\Sigma = \sum_{j=1}^{d} \lambda_j P_j$ where P_j is projection on linear span (l_j) are orthonormal eigenvectors of Σ , $\Sigma e_j = \lambda_j e_j$ where $\lambda_1 \geq \lambda_2 \cdots \geq \lambda_d$.

Then we can write $X = \sum_{j=1}^{d} X_j e_j, X_j = \langle X, e_j \rangle$ since e_j forms a basis of the linear space V.

In addition, $Cov(X_i, X_j) = Cov(\langle X, e_i \rangle, \langle X, e_j \rangle) = \langle \Sigma e_i, e_j \rangle = \langle \lambda_i e_i, e_j \rangle = \lambda_i \langle e_i, e_j \rangle = \lambda_i \delta_{ij}$.

Consequently, X_1, \dots, X_n are uncorrelated random variables with $\mathbb{V}ar(X_j) = \lambda_j$.

Definition 3.5. Normal random variables in inner product spaces

Suppose X be a random variable in an inner product space V, we say X is normal or Gaussian (often in infinite dimension spaces). It means that for any $u \in V$, $\langle X, u \rangle$ is a normal random variable.

Definition 3.6. Characteristic function

If ξ is random variable in \mathbb{R} , the characteristic function $\phi_{\xi}(t) = \mathbb{E}[e^{it\xi}]$, it's well defined for $t \in \mathbb{R}$. If $\xi \sim N(\mu, \sigma^2)$, then $\phi_{\xi}(t) = \exp(i\mu t - \frac{\sigma^2 t^2}{2})$. If X is normal in V, then $\mathbb{E}[\langle X, u \rangle]^2$ is finite, or there exists $\mathbb{E}[X] = a$ and Σ_X . Moreover, $\mathbb{E}[\langle X, u \rangle] = \langle a, u \rangle$, \mathbb{V} arc $(\langle X, u \rangle) = \langle \Sigma_X u, u \rangle$. It follows that the characteristic function of $\langle X, u \rangle$ is $\mathbb{E}[e^{it\langle X, u \rangle}] = \exp(i\langle a, u \rangle t - \frac{1}{2}\langle \Sigma_X u, u \rangle t^2)$.

The characteristic function is unique for each distribution, or $\phi_{X_1}(u) = \phi_{X_2}(u), u \in V \implies X_1 \stackrel{d}{=} X_2$.

If *X* is normal with mean *a* and covariance Σ . We have $\phi_X(u) = \mathbb{E}e^{i\langle X,u\rangle} = \exp(i\langle a,u\rangle - \frac{1}{2}\langle \Sigma u,u\rangle)$. It follows that the distribution of normal vector *X* is completely characterized by its mean *a* and covariance operator Σ .

Proposition 3.4. Suppose $X \sim N(a, \Sigma)$ in V. Let $T: V \to V_1$ be a linear operator. Then TX is normal with mean Ta and covariance $T\Sigma T^*$.

Proof

Enough to show that for any $u \in V_1$, $\langle TX, u \rangle_{V_1 \times V_1} = \langle X, T^*u \rangle_{V \times V}$ is a normal random variable.

Theorem 3.4. Assume V_1, V_2 are two inner product spaces, define the new space V as $V = V_1 \oplus V_2 = \{(x_1, x_2), x_1 \in V_1, x_2 \in V_2\}$ and $(x_1, x_2) + (y_1, y_2) = (x_1 + x_2, y_1 + y_2), c(x_1, x_2) = (cx_1, cx_2), \langle (x_1, x_2), (y_1, y_2) \rangle = \langle x_1, y_1 \rangle + \langle x_2, y_2 \rangle$ for some operations. Suppose X_1 is a random variable in V_1 and X_2 is a random variable in V_2 , and let $X_1 = (X_1, X_2) \in V$. Note that X_1, X_2 are linear transformations of X, so they are normal.

But X_1, X_2 are both normal does not imply that X is normal, see ISyE 7405 HW1 Q5 for a counter example.

Suppose X is normal in V, then the following 2 statements are equivalent.

- (1) X_1 and X_2 are uncorrelated.
- (2) X_1 and X_2 are independent.

Proof

Let $X_1 \sim N(a_1, \Sigma_1), X_2 \sim N(a_2, \Sigma_2), X \sim N(a, \Sigma). \ a = (a_1, a_2).$

Define $\langle \Sigma u, v \rangle = \text{Cov}(\langle X, u \rangle, \langle X, v \rangle) = \text{Cov}(\langle X_1, u_1 \rangle + \langle X_2, u_2 \rangle, \langle X_1, v_1 \rangle + \langle X_2, v_2 \rangle)$, which is equal to $\text{Cov}(\langle X_1, u_1 \rangle, \langle X_1, v_1 \rangle) + \text{Cov}(\langle X_1, u_1 \rangle, \langle X_2, v_2 \rangle) = \langle \Sigma_{X_1 X_1} u_1, v_1 \rangle + \langle \Sigma_{X_1 X_2} u_1, v_2 \rangle + \langle \Sigma_{X_2 X_1} u_2, v_1 \rangle + \langle \Sigma_{X_2 X_2} u_2, v_2 \rangle$.

Or $\langle \Sigma u, v \rangle = \langle \Sigma_{X_1 X_1} u_1, v_1 \rangle + \langle \Sigma_{X_1 X_2} u_1, v_2 \rangle + \langle \Sigma_{X_2 X_1} u_2, v_1 \rangle + \langle \Sigma_{X_2 X_2} u_2, v_2 \rangle$.

We can think Σ to be the following operator

$$\langle \Sigma u, v \rangle = \langle \begin{bmatrix} \Sigma_{X_1 X_1} & \Sigma_{X_1 X_2} \\ \Sigma_{X_2 X_1} & \Sigma_{X_2 X_2} \end{bmatrix} \begin{bmatrix} u_1 \\ u_2 \end{bmatrix}, \begin{bmatrix} v_1 \\ v_2 \end{bmatrix} \rangle$$

 X_1 and X_2 are uncorrelated, so $\Sigma_{X_1X_2} = \Sigma_{X_2X_1} = 0$. It follows that $\langle \Sigma u, v \rangle = \langle \Sigma_1 u_1, v_1 \rangle + \langle \Sigma_2 u_2, v_2 \rangle$.

And the characteristic function of X is $\phi_X(u) = \exp(i\langle a, u \rangle - \frac{1}{2}\langle \Sigma u, u \rangle) = \exp(i\langle a_1, u_1 \rangle - \frac{1}{2}\langle \Sigma_1 u_1, u_1 \rangle + i\langle a_2, u_2 \rangle - \frac{1}{2}\langle \Sigma_2 u_2, u_2 \rangle) = \exp(i\langle a_1, u_1 \rangle - \frac{1}{2}\langle \Sigma_1 u_1, u_1 \rangle) \cdot \exp(i\langle a_2, u_2 \rangle - \frac{1}{2}\langle \Sigma_2 u_2, u_2 \rangle) = \phi_{X_1}(u_1) \cdot \phi_{X_2}(u_2)$

Let Y_1,Y_2 be independent random variables, and $Y_1 \sim N(a_1,\Sigma_1),Y_2 \sim N(a_2,\Sigma_2)$, and $Y=(Y_1,Y_2)$. Then $\phi_Y(u) = \mathbb{E}e^{i\langle Y,u\rangle} = \mathbb{E}e^{i\langle Y_1,u_1\rangle + \langle Y_2,u_2\rangle} = \mathbb{E}(e^{i\langle Y_1,u_1\rangle}e^{i\langle Y_2,u_2\rangle}) = \mathbb{E}e^{i\langle Y_1,u_1\rangle}\cdot\mathbb{E}e^{i\langle Y_2,u_2\rangle} = \phi_{Y_1}(u_1)\phi_{Y_2}(u_2) = \phi_{X_1}(u_1)\phi_{X_2}(u_2) = \phi_{X_1}(u_1)\phi_{X_2}(u_1)\phi_{X_2}(u_2) = \phi_{X_1}(u_1)\phi_{X_2}(u_2) = \phi_{X_1}(u_1)\phi_{X_2}(u_$

Corollary 3.5. Let $X \sim N(a, \Sigma)$, the spectral representation is $\Sigma = \sum_{j=1}^{d} \lambda_j P_j$ where $P_j = e_j \otimes e_j$ ($e_1 \cdots e_d$ are orthonormal vectors) are orthogonal projection on linear span(e_j) where $\lambda_1 \geq \cdots \geq \lambda_d$ and e_j are orthonormal vectors, $\Sigma e_j = \lambda_j e_j$.

We can write $X = \sum_{\lambda \in \sigma(\Sigma)} P_{\lambda} X$. $P_{\lambda} X$ and $P_{\lambda'} X$ are uncorrelated, since normal, they are independent.

Moreover, $P_{\lambda}X \sim N(P_{\lambda}a, \lambda P_{\lambda})$. *Note that* $P_{\lambda}X \in L_{\lambda} = Im(P_{\lambda})$, *in* $Im(P_{\lambda}), P_{\lambda}X \sim N(P_{\lambda}a, \lambda I_{L_{\lambda}})$.

 $X = \sum_{j=1}^{n} X_{j} e_{j}, X_{j} = \langle X, e_{j} \rangle$ and different X_{i} are uncorrelated (can be checked by definition of covariance operators, also independent) and \mathbb{V} ar $(X_{j}) = \mathbb{V}$ ar $(\langle X, e_{j} \rangle) = \langle \Sigma e_{j}, e_{j} \rangle = \langle \lambda_{j} e_{j}, e_{j} \rangle = \lambda_{j} = \sigma_{j}^{2}$.

Let $a = \sum_{j=1}^{n} a_j e_j$, then $\mathbb{E}\langle X, e_j \rangle = a_j$ and $X_j \sim N(a_j, \sigma_j^2)$.

 $P_{X_1\cdots X_d}(x_1\cdots x_d)=P_{X_1}(x_1)\cdots P_{X_d}(x_d)$ by independence of components, and we need variance of each component to be positive.

Therefore, $P_{X_1...X_d}(x_1...x_d) = \prod_{i=1}^d \frac{1}{\sqrt{2\pi}\sigma_i} e^{-\frac{(x_j-a_j)^2}{2\sigma_j^2}} = \frac{1}{(2\pi)^{d/2}\sigma_1...\sigma_d} e^{-\frac{1}{2}\sum_{j=1}^d \frac{(x_j-a_j)^2}{\sigma_j^2}}$

$$= \frac{1}{(2\pi)^{d/2} \lambda_1 \cdots \lambda_d} e^{-\frac{1}{2} \sum_{j=1}^d \frac{(x_j - a_j)^2}{\lambda_j^2}} = \frac{1}{(2\pi)^{\frac{d}{2}} \det(\Sigma)} e^{-\frac{1}{2} \langle \Sigma^{-1}(x - a), (x - a) \rangle}$$

Since $\sum_{j=1}^{d} \frac{(x_j - a_j)^2}{\lambda_j} = \langle \Sigma^{-1}(x - a), (x - a) \rangle$ ($\langle \Sigma u, u \rangle = \sum_{j=1}^{d} \lambda_j u_j^2$ and $\langle \Sigma^{-1}u, u \rangle = \sum_{j=1}^{d} \lambda_j^{-1} u_j^2$) since change of basis does not change the inner product.

Definition 3.7. Chi-square χ^2 distribution

Let Z_1, \dots, Z_n i.i.d N(0,1), then $Z_1^2 + \dots + Z_d^2$ follows a Chi-square distribution with degree of freedom d, or χ_d^2 .

Take any $\mu \ge 0$, and write $(Z_1 + \mu)^2 + Z_2^2 + \cdots + Z_d^2 > \chi_{d,\mu}^2$ (non-central chi-square distribution).

Let $X \sim N(\mu, 1), X = \mu + Z$ where Z is standard normal,

$$\mathbb{E}e^{tX^2} = \frac{1}{\sqrt{2\pi}} \int_{\mathbb{R}} e^{tx^2} e^{-\frac{(x-\mu)^2}{2}} dx = \frac{1}{\sqrt{2\pi}} \int_{\mathbb{R}} e^{tx^2} e^{-\frac{x^2}{x}} e^{x\mu} e^{-\frac{\mu^2}{2}} dx = \frac{1}{\sqrt{2\pi}} e^{-\frac{\mu^2}{2}} \int_{\mathbb{R}} e^{-\frac{1}{2}(1-2t)x^2} e^{x\mu} dx$$

Which is the MGF of $N(0, \sigma^2 = \frac{1}{1-2t})$ at some value, $\mathbb{E}_Z e^{\mu \sigma Z} = e^{\frac{\mu^2 \sigma^2}{2}}$ where Z is standard normal since $M_X(t) = \exp(\mu t + \frac{\sigma^2 t^2}{2})$ if $X \sim N(\mu, \sigma^2)$.

Therefore.

$$\mathbb{E}e^{tX^2} = e^{-\frac{\mu^2}{2}} \sigma \underbrace{\int_{\mathbb{R}} \frac{1}{\sqrt{2\pi\sigma}} e^{-\frac{1}{2}(1-2t)x^2} e^{x\mu} dx}_{\exp(\frac{\mu^2\sigma^2}{2})} = e^{-\frac{\mu^2}{2}} e^{\frac{\mu^2}{2(1-2t)}} \frac{1}{\sqrt{1-2t}}$$

MGF for
$$\chi_d^2 = \mathbb{E}e^{t(Z_1^2 + \dots + Z_d^2)} = \prod_{i=1}^d \mathbb{E}e^{tZ_d^2} = \frac{1}{(1-2t)^{\frac{d}{2}}}$$
.

MGF for
$$\chi_{d,\mu}^2 = \mathbb{E}e^{t((Z_1+\mu)^2\cdots Z_d^2)} = \mathbb{E}e^{t(Z_1+\mu)^2}\prod_{i=2}^d \mathbb{E}e^{tZ_d^2} = e^{-\frac{\mu^2}{2}}e^{\frac{\mu^2}{2(1-2t)}}\frac{1}{(1-2t)^{\frac{d}{2}}} = e^{\frac{\mu^2t}{1-2t}}(1-2t)^{-\frac{d}{2}}.$$

The Taylor expansion for $e^{\frac{\mu^2}{2(1-2t)}}$ is $\sum_{k=0}^{\infty} \frac{(\frac{\mu^2}{2})^k}{k!} \frac{1}{(1-2t)^k}$.

So we have
$$\mathbb{E}e^{t((Z_1+\mu)^2+\cdots+Z_d^2)} = \sum_{k=0}^{\infty} e^{-\frac{\mu^2}{2}} \frac{(\frac{\mu^2}{2})^k}{k!} \frac{1}{(1-2t)^{\frac{2k+d}{2}}} = \sum_{k=0}^{\infty} e^{-\frac{\mu^2}{2}} \frac{(\frac{\mu^2}{2})^k}{k!} \mathbb{E}e^{t(Z_1^2+\cdots+Z_{2k+d}^2)}.$$

The first term is PGF of Poisson distribution with parameter $\frac{\mu^2}{2}$, and the second term is the MGF of χ^2_{2k+d} . We also have $F_{\chi^2_{d,\mu}} = \sum_{k=0}^{\infty} e^{-\frac{\mu^2}{2}} \frac{(\frac{\mu^2}{2})^k}{k!} F_{\chi^2_{d+2k}}$ since there is a one-to-one relation between CDF and MGF.

We start with non-central distribution, but we can view it as a Poisson mixture of Chi-square distribution.

Definition 3.8. \mathscr{F} distribution

Consider $S_1 \sim \chi^2_{d_1,\mu}, S_2 \sim \chi^2_{d_2}$, and S_1 and S_2 are independent, then $\frac{S_1}{S_2} \sim \mathscr{F}_{d_1,d_2,\mu}$.

Proposition 3.5. Suppose $Z \sim N(0, I_d)$ in V with dimension d, then $||Z||^2 = Z_1^2 + \cdots + Z_d^2 \sim \chi_d^2$, where Z_i are i.i.d. standard normal variable.

Suppose $A: V \to V$, then if A is self-adjoint, we can create quadratic form of $A: \langle AZ, Z \rangle$, if $Z \sim N(0, I)$.

We can write spectral decomposition of $\langle AZ,Z\rangle$, suppose $A=\sum_{k=1}^d \lambda_k e_k\otimes e_k$, then $\langle AZ,Z\rangle=\sum_{j=1}\lambda_j Z_j^2$ where $Z_j=\langle Z,e_j\rangle$ (since change of basis does not change the inner product).

The MGF is $\mathbb{E}e^{t\langle AZ,Z\rangle} = \mathbb{E}e^{t(\sum_{j=1}^d \lambda_j Z_j^2)} = \prod_{j=1}^d \mathbb{E}e^{t\lambda_j Z_j^2} = \prod_{j=1}^d \frac{1}{1-2\lambda_j t} = \sqrt{\frac{1}{\prod_{j=1}^d (1-2\lambda_j t)}} = \sqrt{\frac{1}{\det(I-2tA)}}$ if $2\lambda_j t < 1$ for all j since $1-2\lambda_j t$ are eigenvalues of I-2tA.

Proposition 3.6. Suppose $Z \sim N(0, I_d)$ in V with dimension d, and if $A : V \to V$ is self-adjoint, then $\langle AZ, Z \rangle \sim \chi_k^2 \Leftrightarrow A = P_L, L \subset V, \dim(L) = k, k \leq d$.

Proof

Assume that *A* has eigenvalues λ_k in decreasing order, with corresponding eigenvectors e_k , then $\mathbb{E}e^{t\langle AZ,Z\rangle} = \prod_{i=1}^d \frac{1}{\sqrt{1-2\lambda_i t}} = \frac{1}{(1-2t)^{k/2}} (MGF \ of \ \chi_k^2).$

$$\implies \prod_{i=1}^d (1-2\lambda_i t) = (1-2t)^k$$

The are polynomials, so they have the same roots, so $\lambda_j = 1, j \le k$ and $\lambda_j = 0, j > k$

 $\implies A = \sum_{j=1}^{d} \lambda_j e_j \otimes e_j = \sum_{j=1}^{k} e_j \otimes e_j = P_L \text{ where } L = \text{linear span}(e_1, \dots, e_k) \text{ by proposition 2.6.}$

Proposition 3.7. If $X \sim N(a,I)$ in V with $\dim(V) = d$, then $||X||^2 \sim \chi^2_{d,||a||}$.

Proof

Choose $v = \frac{a}{||a||}$ then $e_1 = v, e_2, \dots, e_d$ are the orthonormal bases.

 $X = a + Z = ||a||e_1 + \langle Z, e_1 \rangle e_1 + \dots + \langle Z, e_d \rangle e_d$ where $Z_j = \langle Z, e_j \rangle \sim N(0, 1)$, where this follows from corollary 3.5. Note that I has eigenvalues 1 and $\mu_Z = a = 0$.

Then
$$||X||^2 = ||(a+Z_1)e_1 + Z_2e_2 + \cdots + Z_de_d||^2 = (||a|| + |Z_1|)^2 + |Z_2|^2 + \cdots + |Z_d|^2 \sim \chi_{d,||a||}^2$$
.

Corollary 3.6. Let $X \sim N(a,I)$ in V, d = dim(V), $L \subset V$ is a subset of V. $||P_L X||^2 \sim \chi^2_{\dim(L),||P_L a||}$.

Proof

 $P_L X \sim N(P_L a, P_L)$. In space $L, P_L X \sim N(P_L a, I_L)$.

Corollary 3.7. If $X \sim N(a, \sigma^2 I)$ in V, then $\frac{X}{\sigma} \sim N(\frac{a}{\sigma}, I)$, and $||P_L X||^2 = \sigma^2 ||P_L \frac{X}{\sigma}||^2 \sim \sigma^2 \chi^2_{\dim(L), \frac{||P_L a||}{\sigma}}$.

If $Z \sim N(0,I)$ in V with dimension d. Consider arbitrary A, then $\langle AZ,Z\rangle = \langle Z,A^*Z\rangle = \langle A^*Z,Z\rangle \implies \langle AZ,Z\rangle = \frac{1}{2}(\langle AZ,Z\rangle + \langle A^*Z,Z\rangle) = \langle \underbrace{\frac{A+A^*}{2}}_{\text{self-adjoint}} Z,Z\rangle.$

So for quadratic forms, only considering self-adjoint operators is enough.

Use spectral decomposition of $A = \sum_{k=1}^{d} \lambda_k e_k \otimes e_k$.

So $\mathbb{E}\langle AZ,Z\rangle=\mathbb{E}\sum_{k=1}^d\lambda_kZ_k^2=\sum_{k=1}^d\lambda_k\mathbb{E}Z_k^2=\sum_{k=1}^d\lambda_k=tr(A)$. It's true for normal Z, but also for arbitrary Z with $\mathbb{E}Z=0$ and $\Sigma=I$.

Now to get variance, $\mathbb{V}\mathrm{ar}(\langle AZ,Z\rangle) = \mathbb{V}\mathrm{ar}(\sum_{k=1}^d \lambda_k Z_k^2) = \sum_{k=1}^d \mathbb{V}\mathrm{ar}(\lambda_k Z_k^2) = \sum_{k=1}^d \lambda_k^2 \mathbb{V}\mathrm{ar}(Z_k^2) = \sum_{k=1}^d \lambda_k^2 2 = 2tr(A^2) = 2tr(AA) = 2||A||_2^2$ (which is called the Hilbert-Schmidt norm) since the fourth central moment of a normal distribution is $3\sigma^4$.

If $X \sim N(0, \Sigma)$, then consider $X = \Sigma^{\frac{1}{2}} Z$.

 $\text{Then } \mathbb{E}\langle AX,X\rangle = \mathbb{E}\langle A\Sigma^{\frac{1}{2}}Z,\Sigma^{\frac{1}{2}}Z\rangle = \mathbb{E}\langle \Sigma^{\frac{1}{2}}A\Sigma^{\frac{1}{2}}Z,Z\rangle = tr(\Sigma^{\frac{1}{2}}A\Sigma^{\frac{1}{2}}) = tr(A\Sigma) = tr(\Sigma A).$

 $\text{And } \mathbb{V}\text{ar}(\langle AX,X\rangle) = \mathbb{V}\text{ar}(\langle \Sigma^{\frac{1}{2}}A\Sigma^{\frac{1}{2}}Z,Z\rangle) = 2tr(\Sigma^{\frac{1}{2}}A\Sigma^{\frac{1}{2}}A) = 2tr(A\Sigma A\Sigma) = 2tr(\Sigma A\Sigma A).$

If $X \sim N(\mu, \Sigma)$, then consider $X = \Sigma^{\frac{1}{2}}Z + \mu$. It can be shown that $\mathbb{E}\langle AX, X \rangle = tr(A\Sigma) + \mu^*A\mu$ and $\mathbb{V}ar(\langle AX, X \rangle) = 2tr(\Sigma A\Sigma A) + 4\mu^*A\Sigma A\mu$.

Definition 3.9. Weakly (strongly) spherical or isotropic vector

If *X* is a random vector *V*, $\mathbb{E}X = a, \Sigma_X = \sigma^2 I$, then *X* is called a weakly spherical or isotropic, and strongly spherical basically means normal variable.

If $L_1 \cdots L_k$ are subspaces and $L_i \perp L_j, i \neq j$, then $P_{L_1}X, \cdots, P_{L_k}X$ are uncorrelated random variable. Also for any j, $P_{L_i}X$ is weakly spherical in L_j .

In addition, $\mathbb{E}||P_jX||^2 = \sigma^2 \dim(L_j) + ||P_{L_j}a||^2$, the proof is quite similar to proposition 3.7. Just use bases $e_1 = \frac{P_{L_j}a}{||P_{L_j}a||}$ and $e_2, \dots, e_{\dim L_j}$.

Another fact is that if X is normal with mean a and variance $\sigma^2 I$, (strongly spherical), $L_1 \cdots L_k \subset V$, $L_i \perp L_j$ when $i \neq j$. $P_{L_1}(X), \cdots, P_{L_k}X$ will be uncorrelated hence independent. Each of $P_{L_i}(X) \sim N(P_{L_i}a, P_{L_i})$.

Therefore, $||P_{L_j}X||^2$, $j=1,\dots,k$ are also independent and $||P_{L_j}X||^2 \sim \sigma^2 \chi_{\dim(L_j),\frac{||P_{L_j}a||}{\sigma}}$.

Theorem 3.8. Cochran's theorem

Suppose $X \sim N(a, \sigma^2 I)$ in V, and $A, A_1, \dots, A_k : V \to V$ are self-adjoint operators, and $A = A_1 + \dots + A_k$.

If A is an orthogonal projection, then the following statements are equivalent:

(i) A_i is orthogonal projection for any i.

(ii)
$$A_i A_j = 0$$
 if $i \neq j$.

(iii)
$$Im(A_i) \perp Im(A_j)$$
, $i \neq j$.

(iv) rank(A) (the dimension of Im(A)) is equal to $rank(A_1) + \cdots + rank(A_k)$.

Moreover, if any of the conditions hold, then the quadratic forms $\langle A_i X, X \rangle \sim \sigma^2 \chi^2_{rank(A_i), \frac{\langle A_i a, a \rangle^{1/2}}{\sigma}}$. Moreover, these quadratic forms are independent. Note that $\langle A_i X, X \rangle = ||A_i X||^2$ since A_i is a projection. Also, $||P_L(a)|| = ||Aa|| = \langle Aa, Aa \rangle^{\frac{1}{2}} = \langle A^2a, a \rangle^{\frac{1}{2}} = \langle Aa, a \rangle^{\frac{1}{2}}$.

Remark: $A = P_L$ is orthogonal projection it's **equivalent** to say $\langle AX, X \rangle \sim \sigma^2 \chi^2_{rank(A), \frac{\langle Aa, a \rangle^{1/2}}{\sigma}}$. So we can change the condition that A is orthogonal projection to $\langle AX, X \rangle \sim \sigma^2 \chi^2_{rank(A), \frac{\langle Aa, a \rangle^{1/2}}{\sigma}}$.

We've proved it's true for mean of 0, but it's still true for any mean.

Example 3.1. Assume $X_1, \dots X_n$ are iid $N(\mu, \sigma^2)$, to test the hypothesis $H_0: \mu = 0$ and $H_1: \mu \neq 0$

The student t statistics is defined as $T = \sqrt{n} \frac{\bar{X}}{S} \sim t_{n-1}$ under H_0 where $S^2 = \frac{1}{n-1} \sum_{i=1}^n (X_i - \bar{X})^2$.

1. \bar{X} and S are independent random variables.

2.
$$\bar{X} \sim N(\mu, \frac{\sigma^2}{n})$$
.

3.
$$\frac{(n-1)S^2}{\sigma^2} \sim \chi_{n-1}^2$$
.

4.
$$T = \frac{\sigma Z}{\sigma \sqrt{\frac{\chi_{n-1}^2}{n-1}}} = \frac{Z}{\sqrt{\frac{\chi_{n-1}^2}{n-1}}}$$
 follows t_{n-1} (numerator and denominator are independent).

5. Under H_1 , T follows non-central t distribution, can be used to calculate type 2 error.

If $|T| \ge t_{\underline{\alpha}}$, we reject H_0 , otherwise not reject.

Derivation from Cochran theorem:

We have
$$\sum_{i=1}^{n} X_i^2 = \sum_{i=1}^{n} (X_i - \bar{X})^2 + n\bar{X}^2$$
.

Write
$$X = (X_1, \dots, X_n)$$
, then $X \sim N(a, \sigma^2 I_n)$ where $a = (\mu, \dots, \mu) \in \mathbb{R}^n$.

Define 3 quadratic terms, $Q(X) = \sum_{j=1}^{n} X_{j}^{2} = ||X||^{2} = \langle I_{n}X, X \rangle$ and $Q_{1}(X) = \sum_{i=1}^{n} (X_{i} - \bar{X})^{2} = \langle A_{1}X, X \rangle$. The A_{1} always exists (we can always write quadratic terms in self-adjoint operators) and $Q_{2}(X) = n\bar{X}^{2} = \langle A_{2}X, X \rangle$ where A_{1} and A_{2} are self-adjoint and positive semi-definite, plus, $Q(X) = Q_{1}(X) + Q_{2}(X) \implies I_{n} = A_{1} + A_{2}$ since we can get the bilinear form (one-to-one to operators) from quadratic form.

 $Im(A_1) = Ker(A_1)^{\perp}$ (since self-adjoint), $Q_1(X) = 0 \Leftrightarrow \langle A_1X, X \rangle = 0 \Leftrightarrow \langle A_1^{\frac{1}{2}}X, A_1^{\frac{1}{2}}X \rangle \Leftrightarrow ||A_1^{\frac{1}{2}}X||^2 = 0 \Leftrightarrow A_1^{\frac{1}{2}}X = 0 \Longrightarrow A_1X = 0 \Leftrightarrow X \in Ker(A_1) \Leftrightarrow Q_1(X) = 0 \Leftrightarrow Q_1(X) = 0 \Leftrightarrow X \in Ker(A_1) \text{ or } Q_1(X) = 0 \Leftrightarrow X_j = \bar{X}, j = 1, \cdots, n \text{ or we only have } n-1 \text{ independent equations.}$ This implies that $\dim(Ker(A_1)) = 1 \implies \dim(Im(A_1)) = n-1 \implies rank(A_1) = n-1$.

 $Q_2(X) = 0 \Leftrightarrow \langle A_2X, X \rangle = 0 \Leftrightarrow X \in Ker(A_2).$

 $Q_2(X) = 0 \Leftrightarrow \bar{X} = 0$, which is a hyperplane $X_1 + \cdots + X_n = 0$ with $\dim(Ker(A_2)) = n - 1$ and $rank(A_2) = \dim(Im(A_2)) = 1$.

So $rank(A) = rank(A_1) + rank(A_2)$.

It follows that A_1 and A_2 are orthogonal projections that $\langle A_1 X, X \rangle$ and $\langle A_2 X, X \rangle$ are independent where $\langle A_1 X, X \rangle \sim \sigma^2 \chi^2_{rank(A_1)=n-1, \frac{\langle A_1 \mu, \mu \rangle^{1/2}}{\sigma} = \frac{\varrho_1(\mu)}{\sigma} = 0} = \sigma^2 \chi^2_{n-1}$.

In addition, $\langle A_2 X, X \rangle \sim \sigma^2 \chi^2$ $rank(A_2) = 1, \frac{\langle A_2 \mu, \mu \rangle^{1/2}}{\sigma} = \frac{\sqrt{n\mu^2}}{\sigma} = \frac{\sqrt{n}|\mu|}{\sigma}.$

So 1) $\sum_{i=1}^{n} (X_i - \bar{X})^2$ and $n\bar{X}^2$ are independent random variables.

2) $\sum_{i=1}^{n} (X_i - \bar{X})^2 \sim \sigma^2 \chi_{n-1}^2$ (Pearson theorem).

3) $n\bar{X}^2 \sim \sigma^2 \chi^2_{1,\frac{\sqrt{n}|\mu|}{\sigma}}$. Under $H_0, \frac{n\bar{X}^2}{\sum_{j=1}^n (X_j - \bar{X})^2} \stackrel{d}{=} \frac{\chi^2_1}{\chi^2_{n-1}} \sim \mathscr{F}_{1,n-1}$ which reduces to the square of student-t test.

Example 3.2. $X_{ij}, i = 1, \dots, m, j = 1, 2 \dots n_i \text{ iid } N(\mu_i, \sigma^2) \text{ and } n = n_1 + \dots n_m.$

m samples from normal distribution with possibly different means and the same variance.

 $H_0: \mu_1 = \cdots \mu_m, H_1$: otherwise, exists two or more different means.

Denote \bar{X}_i be the sample mean for sample $i, \frac{X_{i1}+\cdots+X_{in_i}}{n_i}$ and $S_i^2=\frac{1}{n_i}\sum_{j=1}^{n_i}(X_{ij}-\bar{X}_i)^2$.

 $\bar{X} = \frac{\sum_{i,j} X_{ij}}{n}$, $S^2 = \frac{\sum_{i=1}^m n_i S_i^2}{\sum_{i=1}^m n_i}$, no need to normalize S for now.

 H_0 is equivalent to the equality $\sum_{i=1}^m n_i (\mu_i - \bar{\mu})^2 = 0$. We can create an estimator for this, $\sum_{i=1}^m n_i (\bar{X}_i - \bar{X})^2$.

Identity: $\sum_{i=1}^{m} \sum_{j=1}^{n_i} X_{ij}^2 = \sum_{i=1}^{m} n_i S_i^2 + \sum_{i=1}^{m} n_i (\bar{X}_i - \bar{X})^2 + n\bar{X}^2$.

 $X = (X_{ij}) \in \mathbb{R}^n \sim N(a, \sigma^2 I_n).$

a is a long vector with n_1 values of μ_1, \dots, n_m values of μ_m , i.e. $a = (\underbrace{\mu_1, \dots, \mu_1}_{n_1} \underbrace{\mu_2, \dots, \mu_2}_{n_2}, \dots, \underbrace{\mu_m, \dots, \mu_m}_{n_m})'$.

 $Q(X) = ||X||^2 = Q_1(X) + Q_2(X) + Q_3(X) \text{ where } Q_1(X) = \langle A_1X, X \rangle = \sum_{i=1}^m n_i S_i^2, \quad Q_2(X) = \langle A_2X, X \rangle = \sum_{i=1}^m \sum_{i=1}^m n_i (\bar{X}_i - \bar{X})^2, \quad Q_3(X) = \langle A_3X, X \rangle = n\bar{X}^2 \text{ and } A_i \text{ are self-adjoint, and positive semi-definite, } I_n = A_1 + A_2 + A_3.$

 $Q_1(X) = 0 \Leftrightarrow X \in Ker(A_1) \Leftrightarrow S_j^2 = 0, i = 1, \dots, m \Leftrightarrow X_{ij} = \bar{X}_i, i = 1, \dots, m$, we have n - m linear independent equations, the dimension of the kernel of $A_1 = m$, so $rank(A_1) = n - m$.

Similarly, $rank(A_2) = m - 1$, $rank(A_3) = 1$. (same as the last example) So $rank(A_1) + rank(A_2) + rank(A_3) = n = rank(I_n)$.

It follows Cochran theorem that $\sum_{i=1}^{m} n_i S_i^2$, $\sum_{i=1}^{m} n_i (\bar{X}_i - \bar{X})^2$, $n\bar{X}^2$ are independent random variables.

$$\sum_{i=1}^{m} n_i S_i^2 \sim \sigma^2 \chi^2_{n-m, \frac{\sqrt{\langle A_1 a, a \rangle}}{\sigma} = 0}.$$

$$\sum_{i=1}^{m} n_i (\bar{X}_i - \bar{X})^2 \sim \sigma^2 \chi^2 \underset{m-1, \frac{\sqrt{\langle A_2 a, a \rangle}}{\sigma} = \frac{\sqrt{\sum_{i=1}^{m} n_i (\mu_i - \bar{\mu})^2}}{\sigma}}{\sigma} \text{ where } \bar{\mu} = \frac{\sum_{i=1}^{m} n_i \mu_i}{\sum_{i=1}^{m} n_i} \text{ is the weighted average of } \mu_i.$$

The test statistics is based on

$$\frac{\sum_{i=1}^{m} n_{i} S_{i}^{2}}{\sum_{i=1}^{m} n_{i} (\bar{X}_{i} - \bar{X})^{2}} \frac{d}{2} \frac{\chi^{2}}{\chi_{n-m}^{2}} \frac{\chi^{2}}{\sigma^{2}} \sim \mathscr{F}_{m-1,n-m,\frac{\sqrt{\sum_{i=1}^{m} n_{i}(\mu_{i} - \bar{\mu})^{2}}}{\sigma^{2}}}{\chi_{n-m}^{2}} \sim \mathcal{F}_{m-1,n-m,\frac{\sqrt{\sum_{i=1}^{m} n_{i}(\mu_{i} - \bar{\mu})^{2}}}{\sigma^{2}}}$$

So under H_0 , $\frac{\sum_{i=1}^m n_i S_i^2}{\sum_{i=1}^m n_i (\bar{X}_i - \bar{X})^2} \sim \mathscr{F}_{m-1,n-m}$.

4 Linear Models

Our model form is $\mathbf{Y} = \mathbf{X}\boldsymbol{\beta}^* + \boldsymbol{\xi}$ with unknwn noise.

Basic assumption:

 $Y \in V, \beta \in W$ inner product space.

 $X: W \to V$, a linear operator. $Y \in V, \xi \in V$

$$\mathbb{E}\xi = 0, \Sigma_{\xi} = \sigma^2 I_V.$$

 $\hat{\beta} = \operatorname{argmin}_{u \in W} ||Y - Xu||^2$. $\hat{\beta}$ is not unique, we can add any kernel of X to $\hat{\beta}$.

Let $\mu = X\beta$, then $Y = \mu + \xi$, $\mu \in Im(X) = L \subset V$, called the **random shift model**.

$$\hat{\mu} = \operatorname{argmin}_{u \in I} ||Y - u||^2 = P_L Y$$
. So $\hat{\mu}$ is the estimator of μ .

We can write $\hat{\beta}$ is a LS-estimator which means that $X\hat{\beta} = \hat{\mu}$. Or $X\hat{\beta} = P_L Y \Leftrightarrow Y - X\hat{\beta} \perp L \Leftrightarrow Y - X\hat{\beta} \perp Xu, u \in W \Leftrightarrow \langle Y - X\hat{\beta}, Xu \rangle = 0 \Leftrightarrow \langle X\hat{\beta}, Xu \rangle = \langle Y, Xu \rangle, u \in W \Leftrightarrow \langle X^*X\hat{\beta}, u \rangle = \langle X^*Y, u \rangle, u \in W \Leftrightarrow X^*X\hat{\beta} = X^*Y$, which is called the **normal equation**.

So $\hat{\beta} \in X^+Y + Ker(X)$, and X^+ is the Moore-Penrose pseudoinverse of X. If X^*X is nonsingular, then we will ahve $\hat{\beta} = (X^*X)^{-1}X^*Y$ as the unique solution of the LS problem.

Esimation of liner function of μ : Let $f(\mu) = \langle \mu, c \rangle$, $\mu \in L \subset V$, c could be any vector in L (WLOG, otherwise $c \to P_L c$, or add anything orthogonal to L will get 0, $\langle \mu, c \rangle = \langle \mu, P_L c \rangle$, so only defining on L instead of V is OK).

Our goal is to estimate $f(\mu)$ based on Y.

Plug-in estimator: $\langle \hat{\mu}, c \rangle = \langle P_L Y, c \rangle = \langle Y, c \rangle$ for $c \in L$. Can we do any better?

Theorem 4.1. Gauss-Markov theorem

Suppose $\langle Y, d \rangle$ for some $d \in V$ is a linear (of Y), unbiased estimator of linear functional $\langle \mu, c \rangle, \mu \in L$, then the claim is that $\mathbb{V}ar(\langle Y, d \rangle) \geq \mathbb{V}ar(\langle \hat{\mu}, c \rangle), \mu \in L$. Plus, $\langle \hat{\mu}, c \rangle$ is the unique linear unbiased estimator with the smallest possible variance. $\langle \hat{\mu}, c \rangle$ is **BLUE** (the best linear unbiased estimator).

Proof

 $\langle Y, d \rangle$ is unbiased so $\mathbb{E} \langle Y, d \rangle = \langle \mu, c \rangle, \mu \in L$

$$\mathbb{E}\langle Y,d\rangle = \langle \mathbb{E}X,d\rangle = \langle \mu,d\rangle \implies \langle \mu,c\rangle = \langle \mu,d\rangle, \\ \mu \in L \implies d-c \perp L, c \in L \text{ (WLOG)}. \implies c = P_L d.$$

$$\mathbb{V}\operatorname{ar}(\langle Y, d \rangle) = \langle \Sigma_Y d, d \rangle = \sigma^2 \langle I_V d, d \rangle = \sigma^2 ||d||^2 \geq \sigma^2 ||P_L d||^2 = \sigma^2 ||c||^2 = \sigma^2 \langle I_C, c \rangle = \langle \Sigma_Y c, c \rangle = \mathbb{V}\operatorname{ar}(\langle y, \underline{c} \rangle) = \sigma^2 \langle I_C, c \rangle = \sigma^2 \langle I_C, c \rangle$$

 $\mathbb{V}ar(\langle P_L y, c \rangle) = \mathbb{V}ar(\langle \hat{\mu}, c \rangle)$ where we used the fact that projection should be shorter.

To have equality, we need $d = P_L d \implies d = c \implies \langle Y, d \rangle = \langle \hat{\mu}, c \rangle$.

A more general problem is that suppose now $C: L \to V_1$ (arbitrary space, a linear operator). Our goal is to estimate $C\mu$ for $\mu \in L$. Again, the plug-in estimator will be $C\hat{\mu}$.

Corollary 4.2. Suppose D is a mapping from V into V_1 which is a linear operator, and DY is an unbiased estimator of $C\mu, \mu \in L$, then we will have $\Sigma_{DY} \geq \Sigma_{C\hat{\mu}}$. (matrix $A \geq B$ means A - B is positive semi-definite, in other words, $\langle (A - B)u, u \rangle \geq 0$).

Proof

Unbiased means $\mathbb{E}DY = C\mu$, $\mu \in L \Leftrightarrow D\mu = C\mu$, $\mu \in L$. Take any inner product, we get $\langle D\mu, u \rangle = \langle C\mu, u \rangle \Longrightarrow \langle \mu, D^*u \rangle = \langle \mu, C^*u \rangle \Longrightarrow \langle Y, D^*u \rangle$ is an unbiased estimator of $\langle \mu, C^*u, \rangle$, or $\mathbb{E}\langle Y, D^*u \rangle = \langle \mu, D^*u \rangle = \langle \mu, C^*u \rangle$.

We need the following inequality: $\Sigma_{Dy} \ge \Sigma_{C\hat{\mu}} \Leftrightarrow \langle \Sigma_{DY} u, u \rangle \ge \langle \Sigma_{C\hat{\mu}} u, u \rangle \Leftrightarrow \mathbb{V}ar(\langle DY, u \rangle) \ge \mathbb{V}ar(\langle C\hat{\mu}, u \rangle) \Leftrightarrow \mathbb{V}ar(\langle Y, D^*u \rangle) \ge \mathbb{V}ar(\langle \hat{\mu}, C^*u \rangle)$ for any $u \in L$.

The last inequality holds since $\langle Y, D^*u \rangle$ is an unbiased estimator of $\langle \mu, C^*u, \rangle$ (reduction of Gauss-Markov)

Proposition 4.1. Let ξ be a random vector with mean $\mathbf{0}$, $\Sigma_{\xi} = \Sigma$, then $\mathbb{E}||\xi||^2 = tr(\Sigma_{\xi})$.

Proof

$$||\xi||^2 = \sum_{j=1}^d \langle \xi, e_j \rangle^2 \implies \mathbb{E}||\xi||^2 = \sum_{j=1}^d \mathbb{E}\langle \xi, e_j \rangle^2 = \sum_{j=1}^d \mathbb{V}\mathrm{ar}(\langle \xi, e_j \rangle) = \sum_{j=1}^d \langle \Sigma e_j, e_j \rangle = \sum_{j=1}^d \langle \lambda_j e_j, e_j \rangle = \sum_{j=1}^d \lambda_j$$

We get $\mathbb{E}\langle \xi, e_j \rangle^2 = \mathbb{V}\operatorname{ar}(\langle \xi, e_j \rangle)$ since $\mathbb{E}\xi = 0$.

Corollary 4.3. Let $D: V \to V_1$ a linear operator, DY is an unbiased estimator of $C\mu, \mu \in L$, then $\mathbb{E}||DY - C\mu||^2 \ge \mathbb{E}||C\hat{\mu} - C\mu||^2, \mu \in L$

Proof

We know that $\Sigma_{DY} \geq \Sigma_{C\hat{u}}$ by the previous corollary.

For any $A \geq B$, $\sum_{i} \langle Ae_i, e_i \rangle = \sum_{i} \langle \lambda_i e_i, e_i \rangle = \sum_{i} \lambda_{Ai} \geq \sum_{i} \langle Be_i, e_i \rangle = \sum_{i} \lambda_{Bi}$.

Set $A = \Sigma_{DY}$ and $B = \Sigma_{C\hat{\mu}}$, we have $tr(\Sigma_{DY}) \ge tr(\Sigma_{C\hat{\mu}})$.

By the preceding proposition, $tr(\Sigma_{DY}) = \mathbb{E}||DY - C\mu||^2$ and $tr(\Sigma_{C\hat{\mu}}) = \mathbb{E}||C\hat{\mu} - C\mu||^2$.

In particular, this applies to the case where $V_1 = V, C = I$. For any linear and unbiased estimator DY of μ , $\mathbb{E}||DY - \mu||^2 \ge \mathbb{E}||\hat{\mu} - \mu||^2$.

Theorem 4.4. We know that for any given linear functional ψ on M, there exists a unique vector $cv(\psi)$ in M, called the **coefficient vector of** ψ , such that $\psi(m) = \langle cv(\psi), m \rangle$ for all $m \in M$. Often the linear functional will be given initially in the form $\psi(m) = \langle x, m \rangle (m \in M)$ for some $x \in V$. Because $\langle x, m \rangle = \langle P_M x, m \rangle$ for all $m \in M$, we necessarily have $cv(\psi) = P_M x$ in this case. For ease of notation, it is convenient to define an inner product and norm for linear functionals on M as follows: $\langle \psi_1, \psi_2 \rangle = \langle cv(\psi_1), cv(\psi_2) \rangle, ||\psi|| = ||cv(\psi)||$.

Definition 4.1. The Gauss-Markov estimator (GME), $\hat{\psi}(Y)$, of a linear functional $\psi(\mu)$ of μ is defined by

$$\hat{\psi} = \hat{\psi}(Y) = \psi(P_M Y) = \langle cv(\psi), P_M Y \rangle = \langle cv(\psi), Y \rangle$$

Notice that for $x \in V$ the GME of the linear functional $\mu \to \langle x, \mu \rangle$ is

$$\langle P_M x, Y \rangle = \langle P_M x, P_M Y \rangle = \langle x, P_M Y \rangle$$

One must project either Y, or x, or both onto M before taking the inner product. In particular, when $x \in M$, $\langle x, Y \rangle$ is the GME of its expected value $\langle x, \mu \rangle$; this observation can frequently be used to obtain GMEs more or less at sight. To put it another way, if for a given linear functional ψ on M we can (aided by statistical intuition) guess at an $x \in M$ such that $\langle \mathbb{E}_{\mu} x, Y \rangle = \psi(\mu)$ for all $\mu \in M$, then $\hat{\psi}(Y) = \langle x, Y \rangle$.

Definition 4.2. Affine estimators

T(Y) is called an affine estimator if T(Y) = DY + d, $D: V \to V$, $d \in V$ and D is a linear operator.

Definition 4.3. Risk function

The risk function of T(Y) is defined as $R(Y, \mu) = \mathbb{E}||T(Y) - \mu||^2, \mu \in L = Im(X)$. This is also called the mean square error.

Proposition 4.2. Define $\mathscr{O} := \{T : \sup_{\mu \in L} R(T, \mu) < \infty \}$ where T is an affine estimator.

Then for any $T \in \mathcal{O}, R(T, \mu) \ge R(\hat{\mu}, \mu), \mu \in L$.

Proof

Let
$$T(Y) = DY + d$$
, then $R(T, \mu) = \mathbb{E}||DY + d - \mu||^2 = \mathbb{E}||DY - D\mu + d + D\mu - \mu||^2$
= $\mathbb{E}||DY - D\mu||^2 + 2\mathbb{E}\langle DY - D\mu, d + D\mu - \mu\rangle + ||d + D\mu - \mu||^2$.

Therefore, $R(T, \mu) = \mathbb{E}||DY - D\mu||^2 + ||d + D\mu - \mu||^2$.

 $\sup_{\mu \in L} R(T,\mu) < \infty \implies \sup_{\mu \in L} ||d+D\mu-\mu||^2 < \infty \implies D\mu = \mu. \text{ This is true since otherwise, there exists } \mu \in L, D\mu \neq \mu, \text{ and } ||d+t(D\mu-\mu)||^2 \text{ which is a quadratic function for } t \in \mathbb{R} \text{ and it's not bounded in } \mathbb{R}.$

Hence $R(T,\mu) = \mathbb{E}||DY - \mu||^2 + ||d||^2 \ge \mathbb{E}||\hat{\mu} - \mu||^2 + ||d||^2$ where DY is an unbiased estimator.

So $R(T,\mu) \ge R(\hat{\mu},\mu), \mu \in L$. Moreover, $R(T,\mu) = R(\hat{\mu},\mu) \implies d = 0 \implies T(Y) = \hat{\mu}$.

Unbiased estimation of σ^2 .

One candidate: RSS (Residue Sum of Squares) = $||Y - X\hat{\beta}||^2 = \sum_{i=1}^{\dim(V)} (Y_i - (X\hat{\beta})_i)^2$ where our model is $Y_j = (X\beta)_j + \xi_j$.

Proposition 4.3. Let $\tilde{\sigma^2} = \frac{||Y - X\hat{\beta}||^2}{\dim(V) - \dim(L)}$, then $\tilde{\sigma^2}$ is an unbiased estimator of σ^2 .

Proof

 $\mathbb{E}||Y-X\hat{\beta}||^2 = \mathbb{E}||Y-\hat{\mu}||^2 = \mathbb{E}||Y-P_LY||^2 = \mathbb{E}||P_{L^\perp}Y||^2 = \mathbb{E}||P_{L^\perp}(\mu+\xi)||^2 = \mathbb{E}||P_{L^\perp}\xi||^2 \text{ since } \mu \in L \implies P_{L^\perp}\mu = 0.$

So $\mathbb{E}||Y-X\hat{\beta}||^2=tr(\Sigma_{P_L^\perp}\xi)=tr(P_{L^\perp}\Sigma_\xi P_{L^\perp})=tr(P_{L^\perp}\sigma^2IP_{L^\perp})=\sigma^2tr(P_{L^\perp})=\sigma^2\dim(P_{L^\perp})=\sigma^2(P_L^\perp)=\sigma^2(P_L^\perp)=\sigma^2(P_L^\perp)=\sigma^2(P_L^\perp)=\sigma^2(P_L^\perp)=\sigma^2(P_L^\perp)=\sigma^2(P_L^\perp)=\sigma^2(P_L^\perp$

Linear regression model with normal noise.

$$\mathbf{Y} = \mathbf{X}\boldsymbol{\beta}^* + \boldsymbol{\xi}$$

Basic assumption:

 $Y \in V, \beta \in W$, inner product space.

 $X: W \to V$, a linear operator. $Y \in V, \xi \in V$

$$\sigma \sim N(0, \sigma^2 I)$$
.

$$\mu = X\beta \in L = Im(X) \subset V.$$

$$Y \sim N(X\beta, \sigma^2 I_V), \mu \in L.$$

Our **goal** is to estimate μ , $\sigma^2(\beta, \sigma^2)$ based on Y.

One method is to try maximum likelihood estimators of μ , σ^2 . We don't usually estimate β since it's not unique, hence we can not identify it.

$$L(\mu, \sigma^2, y) = P_{\mu, \sigma^2}(y) = \frac{1}{(2\pi)^{\frac{n}{2}} \sigma^n} \exp(-\frac{1}{2\sigma^2} ||y - \mu||^2), \\ \mu \in L, \\ \sigma^2 > 0 \text{ and } \log L(\mu, \sigma^2, y) = -\frac{n}{2} \log 2\pi - \frac{n}{2} \log \sigma^2 - \frac{1}{2\sigma^2} ||y - \mu||^2.$$

Then MLE is defined as the $\operatorname{argmax}_{\mu \in L, \sigma^2 > 0} L(\mu, \sigma^2, y)$.

Proposition 4.4. The MLE for the linear model is $\hat{\mu} = P_L Y$ and $\hat{\sigma^2} = \frac{||Y - X\hat{\beta}||^2}{\dim(V)}$.

Proof

First find μ , then find σ^2 .

- (i) minimize $||y \mu||^2$ with respect to $\mu \in L$, so $\hat{\mu} = P_L y$, the same as least square methods.
- (ii) minimize $\frac{n}{2}\log \sigma^2 + \frac{1}{2\sigma^2}||y \mu||^2$ with respect to $\sigma^2 > 0$.

$$\frac{\partial}{\partial \sigma^2} \frac{n}{2} \log \sigma^2 + \frac{1}{2\sigma^2} ||y - \mu||^2 = \frac{n}{2} \frac{1}{\sigma^2} - \frac{1}{2\sigma^2} ||y - \mu||^2 \frac{1}{\sigma^4} = 0 \implies \hat{\sigma^2} = \frac{||Y - \hat{\mu}||^2}{n} = \frac{||Y - \hat{\mu}||^2}{\dim(V)} \text{ which is biased.} \quad \Box$$

Proposition 4.5. Distribution of estimators

1. $\hat{\mu} \sim N(\mu, \sigma^2 P_L)$ normal distributions in V. Or $\hat{\mu} \sim N(\mu, \sigma^2 I_L)$ in space L.

2.
$$||\hat{\mu} - \mu||^2 \sim \sigma^2 \chi^2_{\dim(L)}$$
.

3. $\hat{\mu}$ and $\hat{\sigma}^2$ are independent random variables.

4.
$$\hat{\sigma}^2 \sim \frac{\sigma^2}{\dim(V)} \chi^2_{\dim(V) - \dim(L)}$$
.

Proof

Note that $Y \sim N(\mu, \sigma^2 I)$, $\hat{\mu} = P_L Y$, $\hat{\sigma^2} = \frac{||Y - X\hat{\beta}||^2}{\dim(V)}$. It's enough to prove that $\hat{\mu} = P_L Y$ and $Y - \hat{\mu} = Y - P_L Y = P_{L\perp} Y$ are independent.

It's enough to check $P_L Y$ and $P_{L^{\perp}} Y$ are uncorrelated since they are normal.

$$\Sigma_{P_LY,P_{L^{\perp}}Y} = P_L\Sigma_YP_{L^{\perp}} = \sigma^2P_LP_{L^{\perp}} = 0.$$

$$\hat{\sigma^2} = \frac{||Y - \hat{\mu}||^2}{\dim V} = \frac{||Y - P_L Y||^2}{\dim V} = \frac{||P_{L^\perp} Y||^2}{\dim V} = \frac{||P_{L^\perp} (\mu + \xi)||^2}{\dim V} = \frac{||P_{L^\perp} \xi||^2}{\dim V} \sim \frac{\sigma^2}{\dim(V)} \chi^2_{\dim(V) - \dim(L)} \text{ since } \mu \in L.$$

Minimaxity of least square estimators: For a model $Y = X\beta + \xi, \xi \sim N(0, \sigma^2 I_V)$ in space $V, \beta \in W, X : W \to V \implies Y \sim N(\mu, \sigma^2 I_V), \mu = X\beta, \mu \in L = Im(X) \subset V$.

Then we will have the least square estimator $\hat{\beta} = \operatorname{argmin}_{\beta \in W} ||Y - X\beta||^2$, then $\hat{\mu} = X\hat{\beta}$. And the risk is defined as $R(\mu, \hat{\mu}) = \mathbb{E}_{\mu} ||\hat{\mu} - \mu||^2 = \sigma^2 \dim(L)$ for any $\mu \in L$. Assume for now that σ^2 is known to us.

Definition 4.4. An estimator T(X) is a minimax estimator for θ if $\sup_{\theta \in \Theta} R(\theta, T) = \inf_{\tilde{T}} \sup_{\theta \in \Theta} R(\theta, \tilde{T})$.

Reduction from minimax estimator to Bayes estimator: Suppose $X \sim P_{\theta}, \theta \in \Theta \subset V$ (inner product space with finite dimension). We will look at some prior distribution Π such that $\Pi(d\theta) = \pi(\theta)d\theta$ and $\pi(\theta)$ is called the prior density.

Definition 4.5. Bayes risk

For any estimator T(X) of θ , define $R(\theta, T(X)) = \mathbb{E}_{\theta}||T(X) - \theta||^2$ and the Bayes risk with respect to the prior Π as $R_{\Pi}(T) = \int_{\Theta} R(\theta, T) \Pi(d\theta) = \int_{\Theta} R(\theta, T) \pi(\theta) d\theta$.

Definition 4.6. The estimator $T_{\Pi}(X)$ is Bayes with respect to the prior Π if for any estimators T(X), we have $R_{\Pi}(T) \ge R_{\Pi}(T_{\Pi})$.

Proposition 4.6. Suppose there exists an estimator T(X) and a sequence of prior Π_k distributions such that $R_{\Pi_k}(T_{\Pi_k}) \to \sup_{\theta \in \Theta} R(\theta, T)$ as $k \to \infty$ where $T_{\Pi} = \operatorname{argmin}_T R_{\Pi}(T)$ is the Bayes estimator, then T is minimax.

Proof

For any estimator \tilde{T} , we have $\sup_{\theta \in \Theta}(R, \tilde{T}) \ge R_{\Pi_k}(\tilde{T}) \ge R_{\Pi_k}(T_{\Pi_k}) \to \sup_{\theta \in \Theta}R(\theta, T) \implies \sup_{\theta \in \Theta}(R, \tilde{T}) \ge R_{\Pi_k}(T_{\Pi_k}) \to \sup_{\theta \in \Theta}R(\theta, T) = \sup_{\theta \in \Theta}R(\theta,$

 $\sup_{\theta \in \Theta} R(\theta, T)$ since T_{Π_k} is Bayes for Π_k . Hence T is minimax.

Definition 4.7. We have our prior $\Pi(d\theta) = \pi(\theta)d\theta$. Given θ , $X \sim P_{\theta}(dx) = P_{\theta}(x)dx$ where $P_{\theta}(x)$ is the density of X given θ . The posterior density is defined as $P(\theta|x) = \frac{P_{\theta}(x)\pi(\theta)}{\int_{\Theta}P_{\theta}(x)\pi(\theta)d\theta}$.

Proposition 4.7. If we define $T_{\Pi}(x) = \int \theta P(\theta|x) d\theta$ which is the posterior mean. Then $T_{\Pi}(x)$ is a Bayes estimator with respect to our prior Π .

Proof

Let $\tilde{\theta}$ be a random variable in Θ and $\tilde{\theta} \sim \Pi$. Given $\tilde{\theta} = \theta$, then $X \sim P(\cdot | \theta)$, and $(\tilde{\theta}, X)$ is a random couple in the space $\Theta \times S$ where space S is where X takes it values.

Note that $T_{\Pi}(x) = \int \theta P(\theta|x) d\theta = \mathbb{E}[\tilde{\theta}|x]$ where $\tilde{\theta}|x$ is the conditional density of $\tilde{\theta}$ given X = x. And $T_{\Pi}(X) = \mathbb{E}[\tilde{\theta}|x]$.

Plus, $R_{\Pi}(T) = \int_{\Theta} \mathbb{E}_{\theta} ||T(X) - \theta||^2 \pi(\theta) d\theta = \int_{\Theta} \mathbb{E}(||T(X) - \tilde{\theta}||^2 |\tilde{\theta} = \theta) \pi(\theta) d\theta = \mathbb{E}\mathbb{E}(||T(X) - \tilde{\theta}||^2 |\tilde{\theta}) = \mathbb{E}[|T(X) - \tilde{\theta}||^2]$.

We have $R_{\pi}(T) = \mathbb{E}||T(X) - \tilde{\theta}||^2 = \mathbb{E}||T(X) - T_{\Pi}(X) + T_{\Pi}(X) - \tilde{\theta}||^2 = \mathbb{E}||T(X) - T_{\Pi}(X)||^2 + \mathbb{E}||T_{\Pi}(X) - \tilde{\theta}||^2 + 2\mathbb{E}\langle T(X) - T_{\Pi}(X), T_{\Pi}(X) - \tilde{\theta}\rangle.$

Now, $\mathbb{E}\langle T(X) - T_{\Pi}(X), T_{\Pi}(X) - \tilde{\theta} \rangle = \mathbb{E}_{X} \mathbb{E}(\langle T(X) - T_{\Pi}(X), T_{\Pi}(X) - \tilde{\theta} \rangle | X = x) = \mathbb{E}_{X}(\langle T(x) - T_{\Pi}(x), T_{\Pi}(x) - \mathbb{E}(\tilde{\theta} | X = x))$ and $T_{\Pi}(x) - \mathbb{E}(\tilde{\theta} | X = x) = T_{\Pi}(x) - T_{\Pi}(x) = 0 \Longrightarrow \mathbb{E}\langle T(X) - T_{\Pi}(X), T_{\Pi}(X) - \tilde{\theta} \rangle = 0 \Longrightarrow R_{\Pi}(T) = \mathbb{E}||T(X) - T_{\Pi}(X)||^{2} + \mathbb{E}||T_{\Pi}(X) - \tilde{\theta}||^{2} \Longrightarrow R_{\Pi}(T) \ge R_{\Pi}(T_{\Pi}).$

Theorem 4.5. Suppose $Y \sim N(\mu, \sigma^2 I_V)$, $\mu \in L \subset V$ and $\hat{\mu} = P_L Y$. Then for any estimators T(Y) of μ , we have $\sup_{\mu \in L} \mathbb{E}_{\mu} ||T(Y) - \mu||^2 \ge \sup_{\mu \in L} \mathbb{E}_{\mu} ||\hat{\mu} - \mu||^2$. In other words, $\sup_{\mu \in L} R(\mu, \hat{\mu}) = \inf_T \sup_{\mu \in L} R(\mu, T)$, or $\hat{\mu}$ is a minimax estimator of μ . And we assume $\dim(V) = n$, $\dim(L) = d$.

Proof

Assume the prior distribution Π is $\mu \sim N(\theta, \tau^2 I_L), \theta \in L$ and $\tau^2 > 0$.

Note that the prior density $\pi(\mu) = \frac{1}{(\sqrt{2\pi}\tau)^d} e^{-\frac{|\mu-\theta||^2}{2\tau^2}}$ and the density of Y given μ is $P(y|\mu) = \frac{1}{(\sqrt{2\pi}\sigma)^n} e^{-\frac{||y-\mu||^2}{2\sigma^2}}$.

By the Bayes formula, $P(\mu|y)$ is proportional to $P(y|\mu)\pi(\mu) = Ce^{-\frac{|\mu-\theta||^2}{2\tau^2}-\frac{||y-\mu||^2}{2\sigma^2}}$ where C is a constant of μ which doesn't matter. Then, our guess is that $P(\mu|y) \sim N(a,b^2I_L)$ which will give us $e^{-\frac{-||\mu-a||^2}{2b^2}}$.

We need $\frac{|\mu-\theta||^2}{\tau^2} + \frac{||y-\mu||^2}{\sigma^2} = \frac{||\mu-a||^2}{b^2}$ up to a constant does not depend on μ .

Or $(\frac{1}{\tau^2} + \frac{1}{\sigma^2})||\mu||^2 = \frac{1}{b}||\mu||^2$ and $\frac{1}{\tau^2}\langle\mu,\theta\rangle + \frac{1}{\sigma^2}\langle\mu,y\rangle = \frac{1}{b^2}\langle\mu,a\rangle$ for any $\mu \in L$. Note that $\mu \in \theta$, the only term that could be outside L is y so we should replace y to $P_L y$, or $\frac{1}{\sigma^2}\langle\mu,\theta\rangle + \frac{1}{\sigma^2}\langle\mu,P_L y\rangle = \frac{1}{b^2}\langle\mu,a\rangle$ for any $\mu \in L$.

Therefore, $\langle \mu, \frac{1}{\tau^2}\theta + \frac{1}{\sigma^2}P_L y \rangle = \langle \mu, \frac{1}{h^2}a \rangle$ for any $\mu \in L \implies \frac{1}{\tau^2}\theta + \frac{1}{\sigma^2}P_L y = \frac{1}{h^2}a$.

So $\frac{1}{b^2} = \frac{1}{\tau^2} + \frac{1}{\sigma^2} \Longrightarrow b^2 = \frac{\tau^2 \sigma^2}{\tau^2 + \sigma^2}$ and $\frac{1}{\tau^2} \theta + \frac{1}{\sigma^2} P_L y = \frac{1}{b^2} a \Longrightarrow a = \frac{\sigma^2}{\sigma^2 + \tau^2} \theta + \frac{\tau^2}{\sigma^2 + \tau^2} P_L y$ and we can conclude that $\mu | Y = y \sim N(\frac{\sigma^2}{\sigma^2 + \tau^2} \theta + \frac{\tau^2}{\sigma^2 + \tau^2} P_L y, \frac{\tau^2 \sigma^2}{\tau^2 + \sigma^2} I_L)$.

The Bayes is given by posterior mean: $T_{\Pi}(Y) = \mathbb{E}[\tilde{\mu}|Y] = \frac{\sigma^2}{\sigma^2 + \tau^2}\theta + \frac{\tau^2}{\sigma^2 + \tau^2}\underbrace{P_L y}_{\hat{\mu}}.$

To prove minimaxity of $\hat{\mu}$, we can choose $\Pi_k \sim N(0, \tau_k^2 I_L)$ where $\tau_k^2 \to \infty$, then $T_{\Pi_k} = \frac{\tau_k^2}{\tau_k^2 + \sigma^2} \hat{\mu}$.

 $\text{First, let's consider the risk } R(\mu, T_{\Pi_k}) = \mathbb{E}_{\mu} ||T_{\Pi_k}(y) - \mu||^2 = \mathbb{E}_{\mu} ||\frac{\tau_k^2}{\tau_k^2 + \sigma^2} \hat{\mu} - \mu||^2 = \mathbb{E}_{\mu} ||\frac{\tau_k^2}{\tau_k^2 + \sigma^2} (\hat{\mu} - \mu) - \frac{\sigma^2}{\tau_k^2 + \sigma^2} \mu||^2.$

Which is equal to $\mathbb{E}_{\mu}(\frac{\tau_k^2}{\tau_k^2 + \sigma^2})^2(\hat{\mu} - \mu)^2 + (\frac{\sigma^2}{\tau_k^2 + \sigma^2})^2||\mu||^2 - \underbrace{2\mathbb{E}_{\mu}\langle\frac{\tau_k^2}{\tau_k^2 + \sigma^2}(\hat{\mu} - \mu), \frac{\sigma^2}{\tau_k^2 + \sigma^2}\mu\rangle}_{=2\langle\mathbb{E}_{\mu}\frac{\tau_k^2}{\tau_\ell^2 + \sigma^2}(\hat{\mu} - \mu), \frac{\sigma^2}{\tau_\ell^2 + \sigma^2}\mu\rangle = 0}$

So $R(\mu, T_{\tau k}) = \mathbb{E}_{\mu}(\frac{\tau_k^2}{\tau_k^2 + \sigma^2})^2 (\hat{\mu} - \mu)^2 + (\frac{\sigma^2}{\tau_k^2 + \sigma^2})^2 ||\mu||^2 = (\frac{\tau_k^2}{\tau_k^2 + \sigma^2})^2 \sigma^2 \dim(L) + (\frac{\sigma^2}{\tau_k^2 + \sigma^2})^2 ||\mu||^2$ since $P_L(y - \mu) = P_L(\mu + \xi) - \mu = P_L\xi$.

So
$$R_{\Pi_k}(T_k) = (\frac{\tau_k^2}{\tau_k^2 + \sigma^2})^2 \sigma^2 \dim(L) + (\frac{\sigma^2}{\tau_k^2 + \sigma^2})^2 \underbrace{\int_L ||\mu||^2 \Pi_k(d\mu)}_{\mathbb{E}||\mu||^2 = \tau_k^2 d} = (\frac{\tau_k^2}{\tau_k^2 + \sigma^2})^2 \sigma^2 d + (\frac{\sigma^2}{\tau_k^2 + \sigma^2})^2 \tau_k^2 d$$

And $\lim_{ au_k^2 o \infty} R_{\Pi_k}(T_k) = \sigma^2 d = \sup_{\mu \in L} \mathbb{E}_{\mu} ||\hat{\mu} - \mu||^2$.

It follows that $\hat{\mu}$ is minimax by proposition 4.6.

Remark: It's not hard to shown that for a proper prior distribution, the Bayes estimator will be biased. Since $\hat{\mu}$ is unbiased, we don't expect it to be a Bayes estimator.

Proposition 4.8. Let's go back to our model, $Y = X\beta + \xi$ where $\mathbb{E}\xi = 0$ and $\Sigma_{\xi} = \sigma^2 I_V$ and $\mu = X\beta = \mathbb{E}Y \in Im(X) = V \subset V$, $d = \dim(L)$.

Let P_{L,σ_0^2} be the family of distributions P satisfying the model $\mu = \mu(P)$ and $\sigma^2 = \sigma^2(P) \le \sigma_0^2$. Or we are bounding the variance.

Let T(Y) be an estimator of $\mu = \mu(P)$, and the risk $R(P,T) = \mathbb{E}_P ||T(Y) - \mu(P)||^2$. And $R(P,\hat{\mu}) = \mathbb{E}_P ||\hat{\mu} - \mu(P)||^2 = \sigma(P)^2 d$. Also, $\sup_{P \in P_{L,\sigma_0^2}} R(P,\hat{\mu}) = \sigma_0^2 d$ since we are taking sup on both sides.

For any estimator T(Y), $\sup_{P\in P_{L,\sigma_0^2}}\mathbb{E}_P||T(Y)-P||^2\geq \sigma_0^2d=\sup_{P\in P_{L,\sigma_0^2}}R(P,\hat{\mu}).$ It follows that $\hat{\mu}$ is minimax.

Proof

Consider $N_{L,\sigma_0^2}=\{N(\mu,\sigma_0^2I_L),\mu\in L\}$, then clearly $N_{L,\sigma_0^2}\subset P_{L,\sigma_0^2}$.

We can write down the following

$$\sup_{P \in P_{L,\sigma_0^2}} \mathbb{E}_P ||\hat{\mu} - \mu(P)||^2 = \sigma_0^2 d = \sup_{P \in N_{L,\sigma_0^2}} \mathbb{E}_P ||\hat{\mu} - \mu(P)||^2 \leq \sup_{P \in N_{L,\sigma_0^2}} \mathbb{E}_P ||T(Y) - \mu(P)||^2 \leq \sup_{P \in P_{L,\sigma_0^2}} \mathbb{E}_P ||T(Y) - \mu(P)||^2$$

which is true for any estimator T(Y).

Therefore, for any estimator T(Y), $\sup_{P\in P_{L,\sigma_0^2}}R(P,L)\geq \sup_{P\in P_{L,\sigma_0^2}}R(P,\hat{\mu})$. It follows that $\hat{\mu}$ is minimax. \square

Definition 4.8. An estimator T(Y) is admissible if there is no other T(Y) such that T improves \tilde{T} , or no T such that $\mathbb{E}_{\mu}||T(Y) - \mu||^2 \le \mathbb{E}_{\mu}||T(Y) - \mu||^2$, $\mu \in L$ with strict inequality for some μ .

Theorem 4.6. If T_{Π} is a unique Bayes estimator for some prior Π , then T_{Π} is admissible.

Proof

If there exists T(Y) such that $\mathbb{E}_{\mu}||T(Y) - \mu||^2 \leq \mathbb{E}_{\mu}||T_{\Pi}(Y) - \mu||^2$, $\mu \in L$, this imply that $R_{\Pi}(T) \leq R_{\Pi}(T_{\Pi})$, this means $R_{\Pi}(T) = R_{\Pi}(T_{\Pi})$ since T_{Π} is Bayes, so this imply that $T = T_{\Pi}$. So there's no better estimator than T_{Π} .

Proposition 4.9. Stein's Identity

Assume $X \sim N(\theta, \sigma^2 I_d)$, $\theta \in \mathbb{R}^d$, let g be a smooth function $\mathbb{R}^d \to \mathbb{R}^d$, then $\mathbb{E}_{\theta} \langle X - \theta, g(X) \rangle = \sigma^2 \mathbb{E}_{\theta} \text{div}(g(X))$ where $\text{div}(g(X)) = \frac{\partial g_1(X)}{\partial X_1} + \dots + \frac{\partial g_d(X)}{\partial X_d}$

Proof

For d = 1, we need to prove $\mathbb{E}_{\theta}(X - \theta)g(X) = \sigma^2 \mathbb{E}_{\theta}g'(X)$ which can be verified by integral by parts.

The left-hand side is

$$\mathbb{E}_{\theta}[g(X)(X-\theta)] = \frac{1}{\sqrt{2\pi}\sigma} \int_{\mathbb{R}} g(x)(x-\theta)e^{-\frac{(x-\theta)^2}{2\sigma^2}} dx$$

Use integration by parts with u = g(x) and $dv = (x - \theta)e^{-\frac{(x - \theta)^2}{2\sigma^2}}dx$ to get

$$\mathbb{E}_{\theta}[g(X)(X-\theta)] = \frac{1}{\sqrt{2\pi}\sigma} \left[-\sigma^2 g(x) e^{-\frac{(x-\theta)^2}{2\sigma^2}} \right] \Big|_{-\infty}^{\infty} + \sigma^2 \int_{\mathbb{R}} g'(x) e^{-\frac{(x-\theta)^2}{2\sigma^2}} dx$$

The condition on g' is enough to ensure that the first term is 0 and what remains on the right-hand side is $\sigma^2 \mathbb{E}_{\theta}[g'(X)]$.

For d > 1, we need to prove $\sum_{i=1}^{d} \mathbb{E}_{\theta}(X_i - \theta_i)g_i(X) = \sigma^2 \sum_{i=1}^{d} \mathbb{E}_{\theta} \frac{\partial g_i(X)}{\partial X_i}$, which can be proved by using previous results and condition on coordinates.

Definition 4.9. If $u : \mathbb{R}^n \to \mathbb{R}$, then the gradient is defined as $\nabla u = (\frac{\partial u}{\partial x_1}, \dots, \frac{\partial u}{\partial x_n})$. Note that $\operatorname{div}(\nabla u) = \Delta u = \sum_{i=1}^n \frac{\partial^2 u}{\partial x_i^2}$ is the Laplacian operator.

Theorem 4.7. Stein's theorem

For the model $Y = X\beta + \xi$ where $\mathbb{E}\xi = 0$ and $\Sigma_{\xi} = \sigma^2 I_V$ and $\mu = X\beta = \mathbb{E}Y \in Im(X) = L \subset V$, $d = \dim(L)$, and $\hat{\mu} = P_L Y$.

If $\dim(L) \geq 3$, then there exists a estimator T(Y) of μ such that for any $\mu \in L$, $\mathbb{E}_{\mu}||T(Y) - \mu||^2 < \mathbb{E}_{\mu}||\hat{\mu} - \mu||^2 = \sigma^2 \dim(L)$. Or $\hat{\mu}$ is an inadmissible estimator.

Proof

We can construct $T(Y) = \hat{\mu} + \sigma^2 g(\hat{\mu})$ where $g: L \to L$ is a smooth function, we can always identify L with \mathbb{R}^d by choosing coordinates.

Now, $\mathbb{E}_{\mu}||T(Y) - \mu||^2 = \mathbb{E}_{\mu}||\hat{\mu} - \mu + \sigma^2 g(\hat{\mu})||^2 = \mathbb{E}_{\mu}||\hat{\mu} - \mu||^2 + 2\sigma^2 \mathbb{E}_{\mu}\langle \hat{\mu} - \mu, g(\hat{\mu})\rangle + \sigma^4 \mathbb{E}_{\mu}||g(\hat{\mu})||^2$ so we need $\mathbb{E}_{\mu}\langle \hat{\mu} - \mu, g(\hat{\mu})\rangle$ to be negative to reduce the loss.

We have $\hat{\mu} = P_L Y \sim N(\mu, \sigma^2 I_L)$, by Stein's identity, we have $\mathbb{E}_{\mu} \langle \hat{\mu} - \mu, g(\hat{\mu}) \rangle = \sigma^2 \mathbb{E}_{\mu} \operatorname{div}(g(\hat{\mu}))$, so $\mathbb{E}_{\mu} ||T(Y) - \mu||^2 = \mathbb{E}_{\mu} ||\hat{\mu} - \mu||^2 + 2\sigma^4 \mathbb{E}_{\mu} \operatorname{div}(g(\hat{\mu})) + \sigma^4 \mathbb{E}_{\mu} ||g(\hat{\mu})||^2$.

Let's assume $L = \mathbb{R}^d$ by coordinates for simplicity, and we will choose $g(x) = \nabla \log \psi(x), x \in \mathbb{R}^d$, where $\psi : \mathbb{R}^d \to \mathbb{R} \ \psi(x) > 0$ and $\psi(x)$ is smooth and ψ is not a constant. Note that $g(x) = \nabla \log \psi(x) = \frac{\nabla \psi(x)}{\psi(x)}$, so

$$\operatorname{div}(g(x)) = \frac{\Delta \psi(x) \cdot \psi(x) - ||\nabla \psi||^2}{\psi^2(x)}. \text{ As a result, } \operatorname{div}(g(x)) = \underbrace{\frac{\Delta \psi(x)}{\psi(x)}}_{\psi(x)} - \underbrace{\frac{||\nabla \psi(x)||^2}{\psi^2(x)}}_{||g(x)||^2} = \underbrace{\frac{\Delta \psi(x)}{\psi(x)}}_{\psi(x)} - ||g(x)||^2.$$

 $\text{Then } \mathbb{E}_{\mu}||T(Y)-\mu||^2 = \mathbb{E}_{\mu}||\hat{\mu}-\mu||^2 + 2\sigma^4\mathbb{E}_{\mu} \frac{\Delta\psi(\hat{\mu})}{\psi(\hat{\mu})} - 2\sigma^4\mathbb{E}_{\mu}||g(\hat{\mu})||^2 + \sigma^4\mathbb{E}_{\mu}||g(\hat{\mu})||^2.$

So $\mathbb{E}_{\mu}||T(Y) - \mu||^2 = \mathbb{E}_{\mu}||\hat{\mu} - \mu||^2 + 2\sigma^4\mathbb{E}_{\mu}\frac{\Delta\psi(\hat{\mu})}{\psi(\hat{\mu})} - \sigma^4\mathbb{E}_{\mu}||g(\hat{\mu})||^2$. Next we should choose a harmonic function ψ to make $\Delta\psi(\hat{\mu}) = 0$ to improve the risk.

We need to have $\psi > 0$, ψ is not constant, ψ is smooth and ψ is harmonic, such functions only exist for $d \ge 3$, this is a **fact**.

For such choice of ψ and $g = \nabla \log \psi$, we have $\mathbb{E}_{\mu} ||T(Y) - \mu||^2 = \mathbb{E}_{\mu} ||\hat{\mu} - \mu||^2 - \sigma^4 \mathbb{E}_{\mu} ||g(\hat{\mu})||^2$.

To prove that $\mathbb{E}_{\mu}||T(Y) - \mu||^2 < \mathbb{E}_{\mu}||\hat{\mu} - \mu||^2$, $\mu \in L = \mathbb{R}^d$, it remains to show $\mathbb{E}_{\mu}||g(\hat{\mu})||^2 > 0$.

Since $g \neq 0$, and g is continuous, there exists $x_0 \in \mathbb{R}^d$ and a small $\delta > 0$ such that $||g(x)||^2 \geq c > 0$ for all $x \in B(x_0, \delta)$, the ball centered at x_0 with radius δ . It follows that $\mathbb{E}_{\mu} ||g(\hat{\mu})||^2 \geq c \mathbb{P}_{\mu} \{ \hat{\mu} \in B(x_0, \delta) \} > 0$ and $\mathbb{P}_{\mu} \{ \hat{\mu} \in B(x_0, \delta) \} > 0$ since $\hat{\mu}$ follows a nonsingular normal distribution on $L = \mathbb{R}^d$.

A choice of ψ can be $\psi(x) = ||x||^{-(d-2)}$ for $d \ge 3$ which is a potential field function and ψ is a harmonic function. Note ψ is not defined at 0, which is not a big trouble. Note that $\psi > 0$, ψ is not a constant. When d < 3, there will be change of signs and therefore ψ doesn't exist, a formal proof can be seen in some mathematical physics textbooks.

Now,
$$g(x) = \nabla \log \psi(x) = \frac{\nabla \psi(x)}{\psi(x)}$$
. Note that $\nabla \psi(x) = \nabla (||x||^2)^{1-\frac{d}{2}} = (1-\frac{d}{2})(||x||^2)^{-\frac{d}{2}}\underbrace{\nabla ||x||^2}_{2x} = (2-d)\frac{x}{||x||^d}$

and
$$g(x) = \frac{\nabla \psi(x)}{\psi(x)} = \frac{(2-d)\frac{x}{||x||^d}}{\frac{1}{||x||^d-2}} = (2-d)\frac{x}{||x||^2}.$$

And $T(Y) = \hat{\mu} + \sigma^2 g(\hat{\mu}) = \hat{\mu} - \sigma^2 (d-2) \frac{\hat{\mu}}{||\hat{\mu}||^2} = \hat{\mu} (1 - \frac{\sigma^2 (d-2)}{||\hat{\mu}||^2})$ which is called **James-Stein estimator**. It can also be constructed based on the Bayesian approach. Note that $\mathbb{E}_{\mu} ||T(Y) - \mu||^2 = \mathbb{E}_{\mu} ||\hat{\mu} - \mu||^2 - \sigma^4 \mathbb{E}_{\mu} ||g(\hat{\mu})||^2 = \mathbb{E}_{\mu} ||T(Y) - \mu||^2 = \mathbb{E}_{\mu} ||\hat{\mu} - \mu||^2 - \sigma^4 \mathbb{E}_{\mu} (2 - d)^2 \frac{||\hat{\mu}||^2}{||\hat{\mu}||^4} = \sigma^2 d - \sigma^4 (d - 2)^2 \mathbb{E}_{\mu} \frac{1}{||\hat{\mu}||^2}$ since $g(x) = (2 - d) \frac{x}{||x||^2}$.

Now
$$\hat{\mu} \sim N(\mu, \sigma^2) \implies ||\hat{\mu}||^2 \sim \sigma^2 \chi_{d, \frac{||\mu||}{\sigma}}^2$$
, we have $\mathbb{E}_{\mu} ||T(Y) - \mu||^2 = \sigma^2 d - \sigma^2 (d-2)^2 \mathbb{E} \frac{1}{\chi_{d}^2 \frac{||\mu||}{\mu}}$.

From previous lecture notes, we have

$$\chi_{d,\frac{||\mu||}{\sigma}}^2 = \sum_{k=0}^{\infty} e^{-\frac{||\mu||^2}{2\sigma^2}} \frac{{(\frac{||\mu||^2}{2\sigma^2})^k}}{k!} \chi_{d+2k}^2 \implies \mathbb{E} \frac{1}{\chi_{d,\frac{||\mu||}{\sigma}}^2} = \sum_{k=0}^{\infty} e^{-\frac{||\mu||^2}{2\sigma^2}} \frac{{(\frac{||\mu||^2}{2\sigma^2})^k}}{k!} \underbrace{\mathbb{E} \frac{1}{\chi_{d+2k}^2}}_{\frac{1}{2\sigma^2}}$$

where the last equation is true since chi-square distribution is a special case of Gamma distribution.

So we will end up with $\mathbb{E}_{\chi_d^2 \parallel \mu \parallel} = \sum_{k=0}^{\infty} e^{-\lambda} \frac{k}{k!} \frac{1}{d-2+2k} = \mathbb{E}_{v \sim \text{Poisson}(\lambda)} \frac{1}{d-2+2v}$ where $\lambda = \frac{\|\mu\|^2}{2\sigma^2}$.

So
$$\mathbb{E}_{\mu}||T(Y)-\mu||^2 = \sigma^2 d - \sigma^2 (d-2)^2 \mathbb{E}_{v \sim \text{Poisson}(\lambda)} \frac{1}{d-2+2v}$$
 where $\lambda = \frac{||\mu||^2}{2\sigma^2}$.

For $\mu = 0$, $\mathbb{E}_{\mu}||T(Y) - \mu||^2 = 2\sigma^2$, a great reduction for the variance from $d\sigma^2$ to $2\sigma^2$.

Orthogonal designs

Let $Y = X\beta + \xi, y \in \mathbb{R}^n, \xi \sim N(0, \sigma^2 I_n), \beta \in \mathbb{R}^p, X$ is a $n \times p$ matrix, also called the design matrix.

We can write as $x_1, \dots, x_p \in \mathbb{R}^n$, and $Y = \beta_1 x_1 + \dots + \beta_p x_p + \xi$. Then the least-square estimator is $\hat{\beta} = \operatorname{argmin}_{\beta \in \mathbb{R}^p} ||Y - X\beta||^2$ and $X\hat{\beta} = P_L Y, L = \operatorname{Im}(X) \subset \mathbb{R}^n$.

When X^TX is not singular, there is a unique solution by the normal equation, and $\hat{\beta} = (X^TX)^{-1}X^TY$.

We have $(X^TX)_{ij} = \sum_{k=1}^n X_{ik}^T X_{kj} = \sum_{k=1}^n X_{ki} X_{kj} = \langle x_i, x_j \rangle$. Or $X^TX = (\langle x_i, x_j \rangle)_p$ where we call this matrix **Gram**

matrix.

Note that X^TX is positive semidefinite since the quadratic form is $\sum_{i,j} \langle x_i, x_j \rangle c_i c_j = \langle \sum_i c_i x_i, \sum_j c_j x_j \rangle = ||\sum_i c_i x_i||^2 \geq 0$. If we assume that x_1, \dots, x_p are independent (or $\sum_i c_i x_i = 0 \implies c_i = 0$), then $||\sum_i c_i x_i||^2 = 0 \implies c_i = 0$, which is equivalent to that the Gram matrix X^TX is positive definite.

Proposition 4.10. If we have a nonsingular $p \times p$ matrix A, or $\det(A) \neq 0$. Let A has entries a_{ij} , so we can take the i th row and j th column. Note that \tilde{A} has entries $a_{ij} = (-1)^{i+j} \det(\tilde{A}_{ij})$ where \tilde{A}_{ij} is the minor. Then $A^{-1} = \frac{\tilde{A}^T}{\det A}$.

Theorem 4.8. Hotelling's Theorem

Let $\hat{\beta} = (\hat{\beta}_1, \dots, \hat{\beta}_p)$, suppose X^TX is nonsingular, then for any $j = 1, \dots, p$, $\mathbb{V}\operatorname{ar}(\hat{\beta}_j) \geq \frac{\sigma^2}{||x_j||^2}$. Moreover, if $\mathbb{V}\operatorname{ar}(\hat{\beta}_j) = \frac{\sigma^2}{||x_j||^2} \implies x_j \perp x_i$ for $i \neq j$.

Proof

Consider the Covariance $\Sigma_{\hat{\beta}} = (X^TX)^{-1}X^T\Sigma_YX(X^TX)^{-1} = (X^TX)^{-1}X^T\sigma^2I_nX(X^TX)^{-1} = \sigma^2(X^TX)^{-1}$.

Then $\mathbb{V}\mathrm{ar}(\hat{eta}_j) = \langle \Sigma_{\hat{eta}} e_j, e_j \rangle = \sigma^2 \langle (X^T X)^{-1} e_j, e_j \rangle = \sigma^2 (X^T X)_{jj}^{-1}$ where e_j is the canonical basis of \mathbb{R}^n .

Without loss of generality, we can take j = 1, then

$$X^T X = \begin{bmatrix} \langle x_1, x_1 \rangle & b^T \\ b & C \end{bmatrix}$$

where $b \in \mathbb{R}^{p-1}$ with entries $b_j = \langle x_1, x_j \rangle, 2 \leq j \leq n$ and C is a $(p-1) \times (p-1)$ Gram matrix with entries $C_{ij} = \langle x_i, x_j \rangle, 2 \leq i, j \leq p$.

Then
$$(X^T X)_{11}^{-1} = \frac{\det(C)}{\det(X^T X)}$$
.

And

$$\det(X^TX) = \det\left(\begin{bmatrix} \langle x_1, x_1 \rangle & b^T \\ b & C \end{bmatrix}\right) \underbrace{\det\left(\begin{bmatrix} 1 & 0 \\ -C^{-1}b & I_{p-1} \end{bmatrix}\right)}_{} = \det\left(\begin{bmatrix} \langle x_1, x_1 \rangle & b^T \\ b & C \end{bmatrix} \begin{bmatrix} 1 & 0 \\ -C^{-1}b & I_{p-1} \end{bmatrix}\right)$$

Note that

$$\begin{bmatrix} \langle x_1, x_1 \rangle & b^T \\ b & C \end{bmatrix} \begin{bmatrix} 1 & 0 \\ -C^{-1}b & I_{p-1} \end{bmatrix} = \begin{bmatrix} \langle x_1, x_1 \rangle - b^T C^{-1}b & b^T \\ \underbrace{0}_{b-CC^{-1}b} & C \end{bmatrix}$$

Use minor decomposition,

$$\det(\begin{bmatrix} \langle x_1, x_1 \rangle - b^T C^{-1} b & b^T \\ 0 & C \end{bmatrix}) = (\langle x_1, x_1 \rangle - \langle C^{-1} b, b \rangle) \det(C)$$

So
$$\operatorname{Var}(\hat{\beta}_1) = \sigma^2(X^TX)^{-1} = \sigma^2 \frac{\det(C)}{\det(X^TX)} = \sigma^2 \frac{1}{\langle x_1, x_1 \rangle - \langle C^{-1}b, b \rangle}$$
.

It follows that $\mathbb{V}\operatorname{ar}(\hat{\beta}_j) = \frac{\sigma^2}{\|x_j\|^2 - \langle C^{-1}b,b\rangle}$. Note that C and b depend on j, but for simplicity we don't use the subscripts for now. And C is a $(p-1)\times(p-1)$ a Gram matrix, positive semidefinite, and C is nonsingular.

If a matrix is positive definite, then by definition, its smaller part is also positive definite. So C^{-1} exists and is positive definite and $\langle C^{-1}b,b\rangle > 0$ for $b \neq 0$.

So
$$\mathbb{V}\operatorname{ar}(\hat{\beta}_1) \geq \frac{\sigma^2}{||x_1||^2}$$
 and $\mathbb{V}\operatorname{ar}(\hat{\beta}_1) = \frac{\sigma^2}{||x_1||^2} \Longrightarrow \langle C^{-1}b,b\rangle = 0 \Longrightarrow \langle C^{-1/2}b,C^{-1/2}b\rangle = 0 \Longrightarrow C^{-1/2}b = 0 \Longrightarrow b = 0 \Longrightarrow \langle x_1,x_j\rangle = 0, \forall j.$

Let $\mathscr{D}_{c_1,\cdots,c_p}$ be the set of $n\times p$ design matrix X such that X^TX is nonsingular and $||x_j||^2=c_j^2$, then the variance of least square estimator, $\hat{\beta}_j$ are minimized for the design X such that $x_i\perp x_j, i\neq j$. We call this orthogonal design. In this case, X^TX becomes a diagonal matrix with entries $c_1^2\cdots c_p^2$ and $\mathbb{V}\mathrm{ar}(\hat{\beta}_j)=\frac{\sigma^2}{c_i^2}$.

Suppose $Y \sim N(\mu, \sigma^2 I_V)$ in $V, \mu \in L \subset V$, $\dim(V) = n, \dim(L) = d$, say $L = Im(X), X : W \to V$.

Let $L_0 \subset L$, we want to test the hypothesis H_0 against H_a where $H_0 : \mu \in L_0$ and $H_a : \mu \notin L_0$. And we will use the **likelihood ratio test**.

Definition 4.10. Likelihood Ratio Test

The likelihood ratio is $\Lambda = \frac{\sup_{\mu \in L, \sigma^2 > 0} L(\mu, \sigma^2, y)}{\sup_{\mu \in L_0, \sigma^2 > 0} L(\mu, \sigma^2, y)}$ where we don't care about σ^2 . And we reject H_0 if $\Lambda \ge c$ and we don't reject H_0 if $\Lambda < c$. We need to choose c so that under H_0 , or $\mu \in L_0$, the probability to reject H_0 , or $\mathbb{P}_{\mu, \sigma^2} \{\Lambda \ge c\} = \alpha$ for any $\mu \in L_0$, $\sigma^2 > 0$. And σ is also called the significance level of the test. Generally, it's not possible to satisfy this equation since μ is arbitrary.

Recall the likelihood function is $L(\mu, \sigma^2, y) = \frac{1}{(2\pi)^{n/2}\sigma^n} \exp(-\frac{||y-\mu||^2}{2\sigma^2})$. And the maximum likelihood estimator for the whole model is $(\hat{\mu}, \hat{\sigma^2}) = \operatorname{argmax}_{\mu \in L, \sigma^2 > 0} L(\mu, \sigma^2, y) = (P_L y, \frac{||y-P_L y||^2}{n})$.

Similarly, we can write the maximum likelihood estimator for H_0 , is $(\hat{\mu_0}, \hat{\sigma_0^2}) = \operatorname{argmax}_{\mu \in L_0, \sigma^2 > 0} L(\mu, \sigma^2, y) = (P_{L_0}y, \frac{||y - P_{L_0}y||^2}{n})$.

Note that
$$L(\hat{\mu}, \hat{\sigma^2}, y) = \frac{1}{(2\pi)^{n/2}(\hat{\sigma^2})^{n/2}} \exp(-\frac{||Y - P_L y||^2}{2\hat{\sigma^2}}) = \frac{1}{(2\pi)^{n/2}(\hat{\sigma^2})^{n/2}} \exp(-\frac{n}{2})$$
 and $L(\hat{\mu_0}, \hat{\sigma_0^2}, y) = \frac{1}{(2\pi)^{n/2}(\hat{\sigma_0^2})^{n/2}} \exp(-\frac{n}{2})$

And
$$\Lambda = \frac{L(\hat{\mu}, \hat{\sigma^2}, y)}{L(\hat{\mu_0}, \hat{\sigma^2}, y)} = (\frac{\hat{\sigma^2_0}}{\hat{\sigma^2}})^{n/2}.$$

The likelihood ratio test is given as $\Lambda \geq c \Leftrightarrow (\frac{\hat{\sigma_0^2}}{\hat{\sigma}^2})^{n/2} \geq c \Leftrightarrow \frac{\hat{\sigma_0^2}}{\hat{\sigma}^2} \geq c' \Leftrightarrow \frac{||y - P_{L_0}y||^2}{||y - P_{L_y}y||^2} = \frac{||y - P_{L_y}y||^2 + ||P_{L_y} - P_{L_0}y||^2}{||y - P_{L_y}y||^2} = 1 + \frac{||P_{L_y} - P_{L_0}y||^2}{||y - P_{L_y}y||^2} \geq c' \Leftrightarrow \frac{||P_{L_y} - P_{L_y}y||^2}{||y - P_{L_y}y||^2} \geq c''.$

Now we can consider the statistic $T = \frac{||P_L Y - P_{L_0} Y||^2}{||Y - P_L Y||^2}$ and we reject H_0 if $T \ge c$. Note that $Y - P_L Y \perp P_L Y - P_{L_0} Y$ so they are uncorrelated and independent since they are normal. $||Y - P_L Y||^2 = ||P_{L^{\perp}} Y||^2 \sim \sigma^2 \chi_{n-d}^2$ since $L^{\perp} \mu = 0$ and $||P_L Y - P_{L_0} Y||^2 \sim \sigma^2 \chi_{n-d}^2$.

Since
$$T \sim rac{\chi^2}{\frac{d-d_0, \frac{||(P_L-P_{L_0})\mu||}{\sigma}}{\chi^2_{n-d}}}{\chi^2_{n-d}} \sim \mathscr{F}_{d-d_0,n-d, \frac{||(P_L-P_{L_0})\mu||}{\sigma}}$$
, we have the \mathscr{F} test.

Under H_0 , $\mu \in L_0$, $(P_L - P_{L_0})\mu = 0$. It follows that $T \sim \mathscr{F}_{d-d_0,n-d}$ and we have a parameter that's parameter-free with respect to μ and σ^2 .

So $\mathbb{P}_{\mu,\sigma^2}\{T\geq c\}=\mathbb{P}\{\mathscr{F}_{d-d_0,n-d}\geq c\}=\alpha$. Then we reject H_0 if $T\geq c(d-d_0,n-d)$ and we don't reject otherwise. To compute the power of the test, we need the non-central parameter $\frac{||(P_L-P_{L_0})\mu||}{\sigma}$.

Theorem 4.9. Gram Schmidt orthogonalization

Let V be a vector space with an inner product. Suppose x_1, x_2, \dots, x_n is a basis for V, and

 $v_1 = x_1$, then normalize it

$$v_2 = x_2 - \frac{\langle x_2, v_1 \rangle}{\langle v_1, v_1 \rangle} v_1$$
, then normalize it

$$v_3 = x_3 - \frac{\langle x_3, v_1 \rangle}{\langle v_1, v_1 \rangle} v_1 - \frac{\langle x_3, v_2 \rangle}{\langle v_2, v_2 \rangle} v_2$$
, then normalize it

. . .

$$v_n = x_n - \frac{\langle x_n, v_1 \rangle}{\langle v_1, v_1 \rangle} v_1 - \dots - \frac{\langle x_n, v_{n-1} \rangle}{\langle v_{n-1}, v_{n-1} \rangle} v_{n-1}$$
, then normalize it

Then v_1, v_2, \dots, v_n is an orthonormal basis for V.

Example 4.1. Consider now the simple linear models, $Y_i = \beta_0 + \beta_1 X_i + \xi_i$, $i = 1, \dots, n$ and ξ are iid $N(0, \sigma^2)$. Or we can write $Y = X\beta + \xi$. Where $Y \in \mathbb{R}^n$, $\beta \in \mathbb{R}^2$, $\xi \in \mathbb{R}^n \sim N(0, \sigma^2 I_n)$.

Let $\mathbf{1} \in \mathbb{R}^n$, we have $Y = \beta_0 \mathbf{1} + \beta_1 x + \xi$ and $L = \text{linear span}(\mathbf{1}, x)$ and $L_0 = \text{linear span}(\mathbf{1})$.

By **Gram Schmidt orthogonalization**: $e_1 = \frac{1}{\sqrt{n}} \mathbf{1}$ and $||e_1|| = 1$. Also $e_2 = \frac{x - \langle x, e_1 \rangle e_1}{||x - \langle x, e_1 \rangle e_1||}$ and $||e_2|| = 1, e_1 \perp e_2$.

Now,
$$\langle x, e_1 \rangle e_1 = \frac{1}{\sqrt{n}} \sum_{i=1}^n x_i \frac{1}{\sqrt{n}} \mathbf{1} = \bar{x} \mathbf{1}$$
 and $||x - \langle x, e_1 \rangle e_1||^2 = \sum_{i=1}^n (x_i - \bar{x})^2 = nS_x^2$ and $e_2 = \frac{x - \bar{x} \mathbf{1}}{\sqrt{\sum_{i=1}^n (x_i - \bar{x})^2}}$.

Also
$$P_L Y = \underbrace{\langle Y, e_1 \rangle}_{C_1} e_1 + \underbrace{\langle Y, e_2 \rangle}_{C_2} e_2.$$

Note that $\beta_0 \mathbf{1} + \beta_1 x = (\beta_0 + \beta_1 \bar{x}) \mathbf{1} + \beta_1 (x - \bar{x} \mathbf{1}) = (\beta_0 + \beta_1 \bar{x}) \sqrt{n} e_1 + \beta_1 \sqrt{n} S_x e_2$.

Therefore, $c_1 = (\beta_0 + \beta_1 \bar{x}) \sqrt{n}$ and $c_2 = \beta_1 \sqrt{n} S_x$, so $\beta_1 = \frac{c_2}{\sqrt{n} S_x}$ and $\beta_0 = \frac{c_1}{\sqrt{n}} - \beta_1 \bar{x}$.

It follows that $\hat{c_1} = \langle \hat{Y}, e_1 \rangle = \sqrt{n}\bar{Y}$ and $\hat{c_2} = \langle \hat{Y}, e_2 \rangle = \langle Y - \bar{Y}\mathbf{1}, e_2 \rangle = \frac{\sum_{i=1}^n (x_i - \bar{x})(y_i - \bar{y})}{\sqrt{n}S_x}$ since e_1 and e_2 are orthogonal.

Hence $\hat{\beta}_1 = \frac{\sum_{i=1}^n (x_i - \bar{x})(y_i - \bar{y})}{\sqrt{n}S_x}$ and $\hat{\rho} = \frac{\sum_{i=1}^n (x_i - \bar{x})(y_i - \bar{y})}{S_xS_y}$ is called the sample correlation coefficient so $\hat{\beta}_1 = \frac{\rho S_xS_y}{S_x^2} = \hat{\rho} \frac{S_y}{S_x}$.

And $\beta_1 = \hat{\rho} \frac{S_y}{S_x}$, $\beta_0 = \bar{Y} - \hat{\beta_1} \bar{x}$.

We can write $P_L Y = \hat{\beta}_0 \mathbf{1} + \hat{\beta}_1 x$ and $P_{L_0} y = \bar{Y}$ and we can then use the *F*-test.

Example 4.2. The least-square estimator for
$$Y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \varepsilon$$
 is $\hat{\beta}_1 = \frac{(\sum x_2^2)(\sum x_1 y) - (\sum x_1 x_2)(\sum x_2 y)}{(\sum x_1^2)(\sum x_2^2) - (\sum x_1 x_2)^2}$ and $\hat{\beta}_2 = \frac{(\sum x_1^2)(\sum x_2 y) - (\sum x_1 x_2)(\sum x_1 y)}{(\sum x_1^2)(\sum x_2^2) - (\sum x_1 x_2)^2}$ and $\hat{\beta}_0 = \bar{Y} - \hat{\beta}_1 \bar{X}_1 - \hat{\beta}_2 \bar{X}_2$.

Two-way ANOVA

There are two factors, say R and C. We observe random variables X_{ij} which are mutually independent. They have possible values of R_i , C_j . We observe a process acting on certain combination of R_i and C_j . We can extend this idea to n—way ANOVA.

For example, *R* are treatments and *C* are different patients.

Now, suppose $X_{ij} \sim N(\xi_{ij}, \sigma^2)$, $i = 1, \dots, n$ and $j = 1, \dots, s$. And σ^2 is unknown.

So $\xi_{ij} = \mathbb{E}X_{ij}$ and $\xi_{ij} = \mu + \alpha_i + \beta_j$, where μ is the general parameter, α_i is the corresponding effect of R_i and β_j is the corresponding effect of C_j .

When saying the additive combination $\alpha_i + \beta_j$, we assume there is no interaction between these two factors, or they are independent.

Note that a more general form is $\xi_{ij} = \mu + \alpha_i + \beta_j + \gamma_{ij}$ which allows interaction between two factors.

WLOG, assume that $\sum_{i=1}^r \alpha_i = 0$ and $\sum_{j=1}^s \beta_j = 0$. We can do this we can always set $\mu' = \mu + \sum_{i=1}^r \alpha_i + \sum_{j=1}^s \beta_j$, $\alpha'_i = \alpha_i - \sum_{i=1}^r \alpha_i$ and $\beta'_j = \beta_j - \sum_{j=1}^s \beta_j$.

In total, we have r+s-1-1+1+1=r+s parameters for α, β, μ and σ .

And $X_{ij} \stackrel{d}{=} \mu + \alpha_i + \beta_j + \varepsilon_{ij} \sigma$ and $\varepsilon_{ij} \sim N(0,1)$. This is similar to a linear regression.

A typical question in ANOVA is to test whether $\alpha_1 = \cdots = \alpha_r = 0$ or not? Similarly, we can also test whether $\beta_1 = \cdots = \beta_s = 0$ or not?

We can use LSE to estimate α_i , β_i and μ .

We need to minimize $S = \sum_{i=1}^r \sum_{j=1}^s (X_{ij} - \xi_{ij})^2$. Introduce notations $\bar{X}_{\cdot\cdot\cdot} = \frac{1}{rs} \sum_{i,j} X_{ij}$, $\bar{X}_{i\cdot\cdot} = \frac{1}{s} \sum_{j} X_{ij}$ and $\bar{X}_{\cdot\cdot j} = \frac{1}{r} \sum_{j} X_{ij}$, so $\sum_{i=1}^r \bar{X}_{i\cdot\cdot} = r\bar{X}_{\cdot\cdot\cdot}$ and $\sum_{j=1}^s \bar{X}_{\cdot\cdot j} = s\bar{X}_{\cdot\cdot\cdot}$

Then
$$S = \sum_{i,j} (X_{ij} - \mu - \alpha_i - \beta_j)^2 = \sum_{i,j} (X_{ij} - \mu - \alpha_i - \beta_j)^2$$

 $= \sum_{i,j} [(X_{ij} - \bar{X}_{i.} - \bar{X}_{.j} + \bar{X}_{..}) + (\bar{X}_{i.} - \bar{X}_{..} - \alpha_i) + (\bar{X}_{.j} - \bar{X}_{..} - \beta_j) + (\bar{X}_{..} - \mu)]^2$
 $= \sum_{i,j} (X_{ij} - \bar{X}_{i.} - \bar{X}_{.j} + \bar{X}_{..})^2 + s \sum_{i=1}^r (\bar{X}_{i.} - \bar{X}_{..} - \alpha_i)^2 + r \sum_{j=1}^s (\bar{X}_{.j} - \bar{X}_{..} - \beta_j)^2 + r s(\bar{X}_{..} - \mu)^2$ since all cross products are 0

Then S attains its minimum at $\hat{\alpha}_i = \bar{X}_i - \bar{X}_{..}$, $\hat{\beta}_j = \bar{X}_{.j} - \bar{X}_{..}$ and $\hat{\mu} = \bar{X}_{..}$. We have $\hat{\xi}_{ij} = \hat{\mu} + \hat{\alpha}_i + \hat{\beta}_j$. And $S_{\min} = \sum_{i,j} (X_{ij} - \hat{\xi}_{ij})^2 = \sum_{i,j} (X_{ij} - \bar{X}_{i.} - \bar{X}_{.j} + \bar{X}_{..})^2$ where $\hat{\mu} = \frac{1}{sr} \sum_{i,j} X_{ij} \sim N(\mu, \frac{\sigma^2}{sr})$ and $\xi_{..} = \frac{1}{sr} \sum_{i,j} \xi_{ij} = \mu$.

For $\hat{\alpha}_i$, we have $\bar{X}_{i\cdot} = \frac{1}{s} \sum_{i=1}^s X_{ij}$, $\mathbb{V}ar(\bar{X}_{i\cdot}) = \frac{\sigma^2}{s}$ and $\mathbb{E}\bar{X}_{i\cdot} = \mu = \mathbb{E}\bar{X}_{\cdot j\cdot}$

Also, $\mathbb{V}\text{ar}(\bar{X_{i\cdot}} - \bar{X_{\cdot\cdot}}) = \mathbb{V}\text{ar}(\bar{X_{i\cdot}} - \frac{1}{r}\sum_{k=1}^{n}\bar{X_{k\cdot}}) = \mathbb{V}\text{ar}(\bar{X_{i\cdot}}(1 - \frac{1}{r}) - \frac{1}{r}\sum_{k \neq i}\bar{X_{k\cdot}}) = (\frac{r-1}{r})^2\frac{\sigma^2}{s} + \frac{r-1}{r^2}\frac{\sigma^2}{s} = \sigma^2\frac{r-1}{rs}.$ So $\hat{\alpha}_i \sim N(0, \sigma^2\frac{r-1}{rs})$ and similarly $\hat{\beta}_j \sim N(0, \sigma^2\frac{s-1}{rs})$.

In order to construct a confidence set independent of σ^2 , we use the student's theorem for $X_i \sim N(\mu, \sigma^2)$, which states that $\frac{\bar{X} - \mu}{\sqrt{S/n}} \sim t_{n-1}$ and $\frac{(n-1)S^2}{\sigma^2} \sim \chi_{n-1}^2$ is independent to \bar{X} .

In our case, this reduces to

$$\frac{(\hat{\mu} - \mu)\sqrt{rs(r-1)(s-1)}}{\sqrt{S_{\min}}} \sim t_{(r-1)(s-1)}$$

This property follows for example, from the result for LSE in linear Gaussian regression, $\frac{\hat{\theta}_{i}-\theta_{j}}{\hat{\sigma}\sigma_{jj}}\sqrt{\frac{n-p}{n}}\sim t_{n-p}$. The model is $Y_{i}=X_{i}^{T}\theta+\underbrace{\varepsilon_{i}}_{\sim N(0,\sigma^{2})}$, $\theta\in\mathbb{R}^{p}$. And $q^{2}=\frac{1}{n}S_{\min}=\frac{1}{n}\sum_{i=1}^{n}(Y_{i}-X_{i}^{T}\theta)^{2}$, $\sigma_{jj}^{2}=\mathbb{V}\mathrm{ar}(\frac{\hat{\theta}_{j}}{\sigma^{2}})=(X^{T}X)_{jj}^{-1}$.

And

$$\frac{\hat{\alpha}_i \sqrt{rs(s-1)}}{\sqrt{S_{\min}}} \sim t_{(r-1)(s-1)}$$

$$\frac{\hat{\beta}_j \sqrt{rs(r-1)}}{\sqrt{S_{\min}}} \sim t_{(r-1)(s-1)}$$

Also, $\frac{S_{\min}}{(r-1)(s-1)}$ is an unbiased estimator of S^2 , and $\frac{S_{\min}}{\sigma^2} \sim \chi^2_{(r-1)(s-1)}$.

Now, consider the following hypothesis. $H_0: \alpha_1 = \cdots = \alpha_r = 0$ (a linear constraint). And $\sum_i \alpha_i = 0, \sum_j \beta_j = 0$ is a linear space in \mathbb{R}^{r+s-2} .

$$S = \sum_{i,j} (X_{ij} - \xi_{ij})^2$$
 and

$$S_T = \min_{\alpha_1 = \dots = \alpha_r = 0} S = S_{\min} + s \sum_{i=1}^r (\bar{X}_{i\cdot} - \bar{X}_{\cdot\cdot})^2 \ge S_{\min}$$

Let $F = \frac{(S_T - S_{\min})/(r-1)}{S_{\min}/[(r-1)(s-1)]} \sim F_{r-1,(r-1)(s-1)}$ under H_0 . Note that $S_T - S_{\min} \sim \sigma^2 \chi_{r-1}^2$ and $S_T \sim \sigma^2 \chi_{(r-1)(s-1)}^2$ are independent by Cochran theorem. Also $S_T - S_{\min} \sim \chi^2$ if H_0 is true and it will become larger than $s \sum_{i=1}^r (\bar{X}_i - \bar{X}_{..})^2$ if H_0 is false.

We reject H_0 at significance level α if $F \ge$ upper quantile of the $F_{(r-1)(s-1)}$ distribution.

Another hypethesis may be $\alpha_1 = \dots = \alpha_r = \beta_1 = \dots = \beta_s = 0$ and $F = \frac{(r-1)(s-1)}{r+s-2} \frac{s\sum_{i=1}^r (\bar{X_i} - \bar{X_.})^2 + r\sum_{j=1}^s (\bar{X_j} - \bar{X_.})^2}{S_{\min}} \sim F_{r+s-2,(r-1)(s-1)}$ under H_0 .

5 High-dimensional Linear Models

Let $Y = X\beta + \xi$, $y \in \mathbb{R}^n$, $\beta \in \mathbb{R}^N$ where X is a $n \times N$ matrix and $\xi \sim N(0, \sigma^2 I_n)$. Let $x_j, j = 1, \dots, N$ be the columns of X, then $Y = \sum_{j=1}^N \beta_j x_j + \xi$.

Introduce $L = \text{linear span}(x_1, \dots, x_N) \subset \mathbb{R}^n$. Also X_1, \dots, X_n be the rows of X. And $Y_i = \langle X_i, \beta \rangle + \xi_i, i = 1, \dots, n$. This is called the n noisy-linear measurements of β and ξ are iid $N(0, \sigma^2 I_n)$.

In image processing, we can often use some bases such as Fourier bases or wavelet bases and there are many coefficients. Therefore, the idea of compressed sensing is introduced.

The least-square estimator is $\hat{\beta} = \operatorname{argmin}_{\beta \in \mathbb{R}^N} ||Y - X\beta||^2$. We know that $X\hat{\beta} = P_L Y$. The error of this estimator is $\mathbb{E}||X\hat{\beta} - X\beta||^2 = \sigma^2 \dim(L)$.

If the *X* columns are linear independent, and the design matrix is full-rank rank(X) = N, or $n \ge N$, then β is identifiable.

And by proposition 4.1, $\mathbb{E}||\hat{\beta} - \beta||^2 = \sigma^2 tr((X^TX)^{-1}) \le \sigma^2 N \lambda_{\max}(X^TX)^{-1} = \frac{\sigma^2 N}{\lambda_{\min}(X^TX)}$ where $X^TX_{ij} = \langle x_i, x_j \rangle$ is strictly positive definite. In particular, if X is an orthogonal design, then $X^TX = I_N \Leftrightarrow x_1, \cdots, x_N$ will be orthonormal systems in \mathbb{R}^n , and $\lambda_{\min}(X^TX) = 1$, so $\mathbb{E}||\hat{\beta} - \beta||^2 = \sigma^2 N$. We are in trouble if n < N or if we are unable to collect that many samples.

Definition 5.1. degree of sparsity

Let $J_{\beta} = \text{supp}(\beta) = \{j = 1, \dots, N, \beta_j \neq 0\}, \beta \in \mathbb{R}^N \text{ and } d(\beta) = \text{card}(J_{\beta}) = \sum_{j=1}^N \mathbb{I}(\beta_j \neq 0) \text{ is called the$ **degree of sparsity** $of vector <math>\beta$. If $d(\beta) << N$, we say that β is sparse.

Then the problem is to $\min_{\beta \in \mathbb{R}^N} d(\beta)$ subject to $X\beta = Y$. We want to show that we can transform this non-convex problem to convex, $\min_{\beta \in \mathbb{R}^N} ||\beta||_1$ subject to $X\beta = Y$.

A natural question is whether there exists an estimator $\hat{\beta}$ such that $\mathbb{E}||\hat{\beta} - \beta||^2 \le \sigma^2 d(\beta)$.

A typical penalized least square estimators is $\hat{\beta} = \operatorname{argmin}_{\beta \in \mathbb{R}^N} ||Y - X\beta||^2 + c\sigma^2 d(\beta)$ where $c\sigma^2 d(\beta)$ is called the **complexity of penalty** for lack of sparsity.

It can also be used to do variable selection. To solve the above problem, we choose a subset $I \subset \{1, \dots, N\}$ and we have 2^N choices. We first solve $\hat{\beta}_I = \operatorname{argmin}_{\beta \in \mathbb{R}^N, \ \operatorname{supp}(\beta) = I} ||Y - X\beta||^2$. Then minimize $||Y - X\hat{\beta}_I||^2 + c\sigma^2 d(I)$ over all possible subsets I. But this is rather computationally intensive.

Definition 5.2. LASSO estimator

The LASSO estimator is defined as $\hat{\beta} = \operatorname{argmin}_{\beta \in \mathbb{R}^N} ||Y - X\beta||^2 + c\sigma^2 ||\beta||_{l_1}$ where $||\beta||_{l_1} = \sum_{i=1}^N |\beta_i|$.

We first look at noiseless cases: or sparse recovery problem.

Again we have a $n \times N$ design matrix X and we want to solve $X\beta = Y$ where $Y \in \mathbb{R}^n$, $\beta \in \mathbb{R}^N$ and n << N. In another way, $\sum_{i=1}^N \beta_i x_i = Y$ so we have N unkown variables. The solution will have dimensions of N - n.

Now $Y_j = \langle X_j, \beta \rangle$, $j = 1, \dots, n$ or we have n noiseless linear measurements of β and define $M = \{u \in \mathbb{R}^N, Xu = Y\}$ which is an affine subspace of \mathbb{R}^N of all solutions of the linear system. We want to minimize d(u) subject $u \in M$. Equivalently, find the sparsest vector in M.

We first look at the problem to minimize $||u||_{l_1}$ over all $u \in M$. This is a **linear programming** since it can be rephrased as $\min \sum_{i=1}^{N} c_i$ such that $c_j \ge 0, -c_i \le u_j \le c_j$ and Xu = Y. It is a convex problem, what's better, it's a linear programming problem. Then we can use some theorems to convert the problem to the original d(u) minimization.

Under **Restricted Isometry Property**, $\hat{\beta} = \operatorname{argmin}_{\beta \in \mathbb{R}^N} ||u||_{l_1} \Longrightarrow \hat{\beta} = \beta$ provided β is sufficiently sparse.

Definition 5.3. Let $J \subset \{1, \dots, N\}$ and define the cone $C_J = \{u \in \mathbb{R}^N : \sum_{j \notin J} |u_j| \le \sum_{j \in J} |u_j| \}$. For example $\{(x, y) : |x| \le |y|\}$ is a cone in \mathbb{R}^2 .

Definition 5.4. Let J be a subset and X be a $n \times N$ matrix, define $\gamma(J,X) = \inf\{C > 0 : \sum_{j \in J} u_j^2 \le C^2 ||Xu||^2, u \in C_J\}$. Or we are tyring to bound ||Xu|| away from 0.

Theorem 5.1. Suppose we have $Y = X\beta$ and $\gamma(J_{\beta}, X) < \infty$ and let $\hat{\beta} = \operatorname{argmin}_{Xu = Y} ||u||_{l_1}$. The claim is $\hat{\beta} = \beta$. We know that l_1 norm is convex so $\hat{\beta}$ is unique, and the theorem tells that β and $\hat{\beta}$ are both unique.

Proof

Let $\hat{u} = \hat{\beta} - \beta$. Note that $X\hat{\beta} = Y, X\beta = Y \implies X(\hat{\beta} - \beta) = 0 \implies X\hat{u} = 0 \implies \hat{u} \in Ker(X)$.

The second fact is $\hat{u} \in C_{J_{\beta}}$. To check this, note that by definition,

$$||\hat{\beta}||_{l_1} \leq ||\beta||_{l_1} \Leftrightarrow \sum_{j=1}^N |\hat{\beta_j}| \leq \sum_{j=1}^N |\beta_j| = \sum_{j \in J_B} |\beta_j| \Longrightarrow \sum_{j \notin J_B} |\hat{\beta_j}| \leq \sum_{j \in J_B} (|\beta_j| - |\hat{\beta_j}|) \leq \sum_{j \in J_B} |\hat{\beta_j} - \beta_j|$$

Since for $j \notin J_{\beta}$, $\beta_j = 0$, we have $\sum_{j \notin J_{\beta}} |\underbrace{\hat{\beta_j} - \beta_j}| \leq \sum_{j \in J_{\beta}} |\underbrace{\hat{\beta_j} - \beta_j}| \Longrightarrow \hat{u} \in C_{\beta}$.

Since $\gamma(J_{\beta},X) < \infty$, we have $(\sum_{j \in J_{\beta}} (u_j)^2)^{\frac{1}{2}} \le \gamma(J_{\beta},X) ||\underbrace{X\hat{u}}_{0}|| = 0$ by definition.

It follows that $\sum_{j \in J_B} (\hat{u_j})^2 = 0 \implies |\hat{u_j}| = 0, j \in J_B, \sum_{j \in J_B} |\hat{u_j}| = 0.$

Also, $\hat{u} \in C_{J_{\beta}} \implies \sum_{j \notin J_{\beta}} |\hat{u_j}| \leq \sum_{j \in J_{\beta}} |\hat{u_j}| \Longrightarrow |\hat{u_j}| = 0, j \notin J_{\beta} \implies \hat{\beta} = \beta.$

Definition 5.5. isometry property

Recall that X is orthogonal design $\Leftrightarrow X^TX = I_N \Leftrightarrow x_1, \dots, x_n$ are orthonormal. And $||Xu||^2 = ||u_1x_1 + \dots + u_Nx_N||^2 = ||u||^2$ by Pythagorean theorem. So $||Xu|| = ||u||, u \in \mathbb{R}^N$ and this is called **isometry property**.

Definition 5.6. Restricted isometry constant

Restricted isometry constant, introduced by Emmanuel Candes, Justin Romberg and Terence Tao, is defined as $\delta_d(X) = \inf_{\delta>0} \{u \in \mathbb{R}^N, d(u) \leq d, 1-\delta \leq \frac{||Xu||^2}{||u||^2} \leq 1+\delta \}$. It's clear that $\delta(d)$ is non-decreasing with respect to d.

Proposition 5.1. If $L_1, L_2 \subset V$, define $p = \sup_{x \in L_1, y \in L_2, x, y \neq 0} \frac{|\langle x, y \rangle|}{||x|| \cdot ||y||}$. Then for $\forall x \in L_2, ||P_{L_1}x|| \leq p||x||$.

Proposition 5.2. For $u, v \in \mathbb{R}^N$ with $d(u) \leq d, d(v) \leq d$ such that $\operatorname{supp}(u) \cap \operatorname{supp}(v) = \emptyset$, then $|\cos(Xu, Xv)| = \frac{|\langle Xu, Xv \rangle|}{||Xu|| \cdot ||Xv||} \leq c\delta_{2d}(X)$. Or the angles between Xu and Xv are close to 90 degress.

Proposition 5.3. Suppose $\delta_{3d}(X) \leq c$ where c > 0 is a small numerical constant. Then for any β with $d(\beta) \leq d$, $\gamma(J_{\beta}, X) < \infty$. Or we can recover any vector β with $d(\beta) \leq d$ and $Y = X\beta$ using $\beta = \hat{\beta} = \operatorname{argmin}_{Xu = Y} ||u||_{l_1}$.

Proof

Recall $C_J = \{u \in \mathbb{R}^N, \sum_{j \notin J} |u_j| \le \sum_{j \in J} |u_j| \}$. Suppose now card(J) = d << N. Then consider representation of vectors $u \in C_J$ as sum of d-sparse vectors.

First, set $J_0 = J$, for any $u \in C_J$, arrange $|u_j|$ for $j \in \{1, \dots, N\} \setminus J_0$ in non-increasing order.

And J_1 be the set of d largest coordinates in $j \in \{1, \dots, N\} \setminus J_0$.

And J_2 be the set of d next coordinates in $j \in \{1, \dots, N\} \setminus (J_0 \cup J_1)$.

Keep doing this until running out of coordinates.

Now, define $u^{(0)} = (u_j, j \in J_0)$, $u^{(1)} = (u_j, j \in J_1)$ and $u^{(k)} = (u_j, j \in J_k)$. Note that $u = u^{(0)} + u^{(1)} + \cdots$ and $d(u^{(i)}) \le d$ for all i.

<u>Claim:</u> For $u \in C_J$, $\sum_{k \geq 2} ||u^{(k)}|| \leq ||u^{(0)}||$.

Proof

For any $k \ge 1$ and $j \in J_{k+1}$, $|u_j| \le \min_{i \in J_k} |u_i| \le \frac{1}{d} \sum_{i \in J_k} |u_i|$ by our construction of J_k .

And
$$\sum_{j \in J_{k+1}} |u_j|^2 \le d \frac{1}{d^2} (\sum_{i \in J_k} |u_i|)^2 = \frac{1}{d} (\sum_{i \in J_k} |u_i|)^2$$
. So $||u^{(k+1)}|| = (\sum_{j \in J_{k+1}} |u_j|^2)^{1/2} \le \frac{1}{\sqrt{d}} \sum_{i \in J_k} |u_i|$.

Cauchy Schwarz

 $||u^{(0)}||$.

Proposition 5.4. For any
$$u \in C_J$$
, $u = u^{(0)} + u^{(1)} + \cdots = ||u^{(0)}|| \underbrace{\frac{u^{(0)}}{||u^{(0)}||}}_{v^{(0)}} + ||u^{(1)}|| \underbrace{\frac{u^{(1)}}{||u^{(1)}||}}_{v^{(1)}} + \cdots$ Note that $||v^{(i)}|| = 1$ and $d(v^{(i)}) \le d$ and for any $u \in C_J \cap \{||u|| = 1\}$, $u = \sum_{k \ge 0} ||u^{(k)}|| ||v^{(k)}||$ and $\sum_{k \ge 0} ||u^{(k)}|| = ||u^{(0)}|| + ||u^{(1)}|| + \sum_{k \ge 2} ||u^{(k)}|| \le 3$.

Therefore, we have the following corollary:

 $\geq ||(Xu^{(0)} + Xu^{(1)})|| - c'\delta_{3d}\sqrt{1 + \delta_d}||u^{(0)}||$ $> ||Xu^{(0)} + Xu^{(1)}|| - c'\delta_{3d}\sqrt{1 + \delta_d}||u^{(0)} + u^{(1)}||$

Corollary 5.2. For
$$C_J \cap \{||u|| \le 1\} \subset 3\text{conv}(\{v : ||v|| = 1, d(v) \le d\})$$

We have
$$\gamma(J, X) = \inf\{C > 0 : \sum_{j \in J} (u_j)^2 \le C^2 ||Xu||^2, u \in C_J\}.$$

Suppose card(J) = d, then $||Xu|| = ||\sum_j u_j x_j||$ where x_j are columns of the design matrix X. For any $I \subset \{1, \dots, N\}$, L_I = linear span($x_j, j \in I$) and now let's introduce the projection operator $P_I = P_{L_I}$.

For any $u \in C_J$,

$$||Xu|| \ge ||P_{J_0 \cup J_1}Xu|| = ||P_{J_0 \cup J_1}\sum_{k\ge 0}Xu^{(k)}||$$

$$= ||P_{J_0 \cup J_1}(Xu^{(0)} + Xu^{(1)}) + P_{J_0 \cup J_1}\sum_{k\ge 2}Xu^{(k)}||$$

$$\ge ||(Xu^{(0)} + Xu^{(1)})|| - ||P_{J_0 \cup J_1}\sum_{k\ge 2}Xu^{(k)}||$$

$$\ge ||(Xu^{(0)} + Xu^{(1)})|| - \sum_{k\ge 2}||P_{J_0 \cup J_1}Xu^{(k)}||$$

$$\ge ||(Xu^{(0)} + Xu^{(1)})|| - c'\delta_{3d}\sum_{k\ge 2}||Xu^{(k)}|| \text{ (Take } u = u^{(0)} + u^{(1)}, v = u^{(k)}, k \ge 2, \text{ then supp}(u) \cap \text{ supp}(v) = \emptyset,$$
and by proposition 5.2, $\frac{|\langle Xu, Xv \rangle|}{||Xu|| \cdot ||Xv||} \le c'\delta_{2d}(X) \le c'\delta_{3d}(X). \text{ Take } \{Xu, u = u^{(0)} + u^{(1)}\} = L_0 + L_1 \text{ and } \{Xv, v = u^{(k)}\} = L_k. \text{ Then by proposition 5.1, we have } \sup_{x \in (L_0 + L_1), y \in L_k} \frac{\langle x, y \rangle}{||x|| \cdot ||y||} = \sup_{x \in (L_0 + L_1), x \in Xu} \frac{\langle x, y \rangle}{||x|| \cdot ||x||} \le c'\delta_{3d}(X) \implies ||P_{J_0 \cup J_1}Xu^{(k)}|| \le c'\delta_{3d}(X)||Xu^{(k)}|| \text{ which holds for every } k \ge 2, \text{ since } Xu^{(k)} \in L_k.$

$$\ge ||(Xu^{(0)} + Xu^{(1)})|| - \sum_{k\ge 2} c'\delta_{3d}\sqrt{1 + \delta_d}||u^{(k)}|| \text{ because } ||Xu^{(k)}|| \le \sqrt{1 + \delta_d}||u^{(k)}|| \text{ since } d(u^{(k)}) \le d \text{ and by the definition of restricted isometry constant.}$$

$$\geq ||Xu^{(0)} + Xu^{(1)}|| - \frac{c'\delta_{3d}\sqrt{1+\delta_d}}{\sqrt{1-\delta_{2d}}}||Xu^{(0)} + Xu^{(1)}|| = ||Xu^{(0)} + Xu^{(1)}||(1 - \frac{c'\delta_{3d}\sqrt{1+\delta_d}}{\sqrt{1-\delta_{2d}}}) \text{ since } ||u^{(0)} + u^{(1)}|| \leq \frac{||Xu^{(0)} + Xu^{(1)}||}{\sqrt{1-\delta_{2d}}} \\ \geq (\sqrt{1-\delta_{2d}})(1 - \frac{c'\delta_{3d}\sqrt{1+\delta_d}}{\sqrt{1-\delta_{2d}}})||u^{(0)} + u^{(1)}|| \geq (1 - \frac{c'\delta_{3d}(1+\delta_d)}{1-\delta_{2d}})(1 - \delta_{2d})||u^{(0)}|| \geq (\sqrt{1-\delta_{2d}} - c'\delta_{3d}\sqrt{1+\delta_d})(\sum_{j \in J} |u_j|^2)^{1/2}$$

$$\implies \sum_{j \in J} |u_j|^2 \le \left(\frac{1}{\sqrt{1 - \delta_{2d}} - c' \delta_{3d} \sqrt{1 + \delta_d}}\right)^2 ||Xu||^2 \implies \gamma(J, X) \le \frac{1}{\sqrt{1 - \delta_{2d}} - c' \delta_{3d} \sqrt{1 + \delta_d}} < \infty$$

Also, δ_{3d} should be small so that every term in the proof is positive.

Proposition 5.5. Suppose $\delta_{3d}(X) \leq c$ where c is a small constant. Let $Y = X\beta, d(\beta) \leq d$, then the equation β is the only d-sparse solution of the equation Xu = Y. Moreover, $\beta = \operatorname{argmin}_{Xu = Y} ||u||_{l_1}$. Unfortunately, it's not easy to construct deterministic X such that $\delta_{3d}(X) \leq c$ but we can construct stochastic matrices satisfying $\delta_{3d}(X) \leq c$ with high probability. Details can be seen at theorem 5.5.

Restricted Isometry Property means $1 - \delta \le \frac{||Xu||^2}{||u||^2} \le 1 + \delta$ for any $u, d(u) \le d$.

Let's assume we are in some subspace and ignore the condition $d(u) \le d$ for now.

Note that $||Xu||^2 = \langle Xu, Xu \rangle = \langle X^TXu, u \rangle$ where X^TX is a symmetric matrix and let's call its eigenvalues $\lambda_1(X^TX) \leq \cdots \leq \lambda_N(X^TX) \geq 0$. We basically want $\sup_{u \neq 0} \frac{||Xu||^2}{||u||^2} = \sup_{||u||=1} \frac{||Xu||^2}{||u||^2} = \sup_{||u||=1} \langle X^TXu, u \rangle = \lambda_1(X^TX)$ and $\inf_{u \neq 0} \frac{||Xu||^2}{||u||^2} = \inf_{||u||=1} \frac{||Xu||^2}{||u||^2} = \inf_{||u||=1} \langle X^TXu, u \rangle = \lambda_N(X^TX)$.

Definition 5.7. $\sigma_j(X) = \sqrt{\lambda_j(X^TX)}$ is called the *j*-th singular value of *X*.

So
$$1 - \delta \le \frac{||Xu||^2}{||u||^2} \le 1 + \delta \Leftrightarrow \sigma_{\max}(X) \le \sqrt{1 + \delta}, \sigma_{\min}(X) \ge \sqrt{1 - \delta}.$$

We now look at a theorem about bounds on singular values of X.

Definition 5.8. Operator norm

Suppose *A* is a symmetric matrix, then the **operator norm** or **spectral norm** of *A* is defined as $||A|| = \sup_{||u|| \le 1} ||Au|| = \sup_{||u|| \le 1} \langle Au, u \rangle = \max_{1 \le j \le N} |\lambda_j(X)|$, where $\lambda_j(A)$ are the eigenvalues of *A*.

Proposition 5.6. $|\sigma_{\max}(X) - 1| \le \min(||X^TX - I||, \sqrt{||X^TX - I||})$ and $|\sigma_{\min}(X) - 1| \le \min(||X^TX - I||, \sqrt{||X^TX - I||})$. The key point is to note that for any $a \ge 0$, $|a - 1| \le \min(|a^2 - 1|, \sqrt{|a^2 - 1|})$.

Theorem 5.3. *Bernstein inequality*

Let ξ_1, \dots, ξ_n be the independent normal variables with $N(0, \sigma^2)$, then for t > 0, with probability $1 - e^{-t}$, the following will be true: $|\frac{1}{n}\sum_{j=1}^n (\xi_j^2 - \mathbb{E}\xi_j^2)| \lesssim \sigma^2(\sqrt{\frac{t}{n}} \vee \frac{t}{n})$ where $a \vee b = \max(a, b)$.

Theorem 5.4. Let
$$X$$
 be a $n \times N$ matrix and $X = \begin{bmatrix} \frac{X_1}{\sqrt{n}} \\ \cdots \\ \frac{X_n}{\sqrt{n}} \end{bmatrix}$ where X_i are iid $N(0, I_N)$ with entries X_{ij} iid $N(0, \frac{1}{\sqrt{n}})$. For

any t > 1, the following bounds hold with probability at least $1 - e^{-t}$:

 $|\sigma_{\max}(X) - 1| \lessapprox \sqrt{\tfrac{N}{n}} + \sqrt{\tfrac{t}{n}} \text{ and } |\sigma_{\min}(X) - 1| \lessapprox \sqrt{\tfrac{N}{n}} + \sqrt{\tfrac{t}{n}}. \text{ where } \lessapprox \text{ means the less than is up to a constant.}$

Proof

 $||X^TX - I|| = \sup_{||u|| \le 1} \langle (X^TX - I)u, u \rangle. \text{ Note that } \langle (X^TX - I)u, u \rangle = \langle X^TXu, u \rangle - ||u||^2 = \langle Xu, Xu \rangle - ||u||^2 = ||Xu||^2 - ||u||^2 = \sum_{j=1}^n \langle Xu, e_j \rangle^2 - ||u||^2 = \sum_{j=1}^n \langle Xu, e_$

 $||u||^2 = \frac{1}{n} \sum_{j=1}^n (\langle X_j, u \rangle^2 - \mathbb{E}\langle X_j, u \rangle^2)$ since $\mathbb{E}\langle X_j, u \rangle^2 = ||u||^2$ and if we choose e_1, \dots, e_n be the canonical orthonormal bases in \mathbb{R}^n .

By homework, $|\sigma_{\max}(X) - 1| \le ||X^T X - I||$ and $|\sigma_{\min}(X) - 1| \le ||X^T X - I||$ and here we use the operator norm.

Discretization: By homework, there exists a subset $M \subset \{u \in \mathbb{R}^N : ||u|| \le 1\}$ such that $\operatorname{card}(M) \le 9^N$ and for any u such that $||u|| \le 1$ there exists $u' \in M : ||u - u'|| \le \frac{1}{4}$, or M is a $\frac{1}{4}$ -net for $\{u : ||u|| \le 1\}$ of $\operatorname{card} \le 9^N$.

Claim: $||X^TX - I|| \le 2 \max_{u \in M} |\langle (X^TX - I)u, u \rangle|$.

Proof

For any u such that $||u|| \le 1$ there exists $u' \in M$ such that $||u - u'|| \le \frac{1}{4}$.

Let's consider the cost to replace u to u', $|\langle (X^TX-I)u,u\rangle - \langle (X^TX-I)u',u'\rangle| \le |\langle (X^TX-I)u,u\rangle - \langle (X^TX-I)u',u\rangle| + |\langle (X^TX-I)u',u\rangle - \langle (X^TX-I)u',u'\rangle| = |\langle (X^TX-I)(u-u'),u\rangle| + |\langle (X^TX-I)u',u-u'\rangle| \le ||X^TX-I|| \cdot \underbrace{||u-u'||}_{\le \frac{1}{4}} \cdot \underbrace{||u||}_{\le 1} + ||X^TX-I|| \cdot \underbrace{||u'||}_{\le 1} \cdot \underbrace{||u-u'||}_{\le \frac{1}{4}} \le \frac{1}{2} ||X^TX-I||.$

Now $||X^TX - I|| = \sup_{||u|| \le 1} |\langle (X^TX - I)u, u \rangle| \le \max_{u' \in M} |\langle (X^TX - I)u', u' \rangle| + \frac{1}{2} ||X^TX - I||$ by the previous parts.

$$\implies ||X^TX - I|| \le 2 \max_{u \in M} |\langle (X^TX - I)u, u \rangle|$$

Recall that $\langle (X^TX - I)u, u \rangle = \frac{1}{n} \sum_{j=1}^n (\langle X_j, u \rangle^2 - \mathbb{E}\langle X_j, u \rangle^2)$. Since $\langle X_j, u \rangle$ are independent $N(0, \underbrace{||u||^2}_{\leq 1})$, by

Bernstein inequality, with probability $\geq 1 - e^{-t}$, $|\frac{1}{n}\sum_{j=1}^{n}\langle X_j, u\rangle^2 - ||u||^2| \lesssim \sqrt{\frac{t}{n}} \vee \frac{t}{n}$ for each fixed u.

By using the probability union bound, for $\forall u \in M, |\langle (X^TX - I)u, u \rangle| \lesssim \sqrt{\frac{t}{n}} \vee \frac{t}{n}$ with probability $\geq 1 - \operatorname{card}(M)e^{-t}$ where $\operatorname{card}(M)$ is the number of points in M. This is true since for one particular u, the probability of the event that $|\langle (X^TX - I)u, u \rangle| \lesssim \sqrt{\frac{t}{n}} \vee \frac{t}{n}$ doesn't hold is e^{-t} and for arbitrary u, the probability this doesn't hold is less or equal to $\operatorname{card}(M)e^{-t}$.

Then with probability $\geq 1 - \operatorname{card}(M)e^{-t}, \ ||X^TX - I|| \leq 2 \max_{u \in M} |\langle (X^TX - I)u, u \rangle| \lesssim \sqrt{\frac{t}{n}} \vee \frac{t}{n}.$

Let's now replace t with $t + \log \underbrace{\operatorname{card}(M)}_{QN}$ or even more, to $t + N \log 9$, then with probability $\geq 1 - \operatorname{card}(M)e^{-t - \log \operatorname{card}(M)} = 0$

$$1 - e^{-t}$$
, we have $||X^TX - I|| \lesssim \sqrt{\frac{t+N}{n}} \vee \frac{t+N}{n}$.

From homework, $|\sigma_{\max}(X) - 1| \le ||X^T X - I|| \wedge ||X^T X - I||^{1/2}$ and $|\sigma_{\min}(X) - 1| \le ||X^T X - I|| \wedge ||X^T X - I||^{1/2}$.

We know with probability $\geq 1 - e^{-t}, \, ||X^TX - I|| \lessapprox \sqrt{\frac{t+N}{n}} \lor \frac{t+N}{n}$

$$\implies |\sigma_{\max}(X) - 1| \leq ||X^TX - I|| \wedge ||X^TX - I||^{1/2} \lesssim (\sqrt{\frac{t+N}{n}} \vee \frac{t+N}{n}) \wedge (\sqrt{\frac{t+N}{n}} \vee \frac{t+N}{n})^{1/2} = \sqrt{\frac{t+N}{n}}.$$

We then get with probability $\geq 1 - e^{-t}$, $|\sigma_{\max}(X) - 1| \lesssim \sqrt{\frac{t+N}{n}}$ and $|\sigma_{\min}(X) - 1| \lesssim \sqrt{\frac{t+N}{n}}$.

Theorem 5.5. Let X be a $n \times N$ matrix and $X = \begin{bmatrix} \frac{X_1}{\sqrt{n}} \\ \cdots \\ \frac{X_n}{\sqrt{n}} \end{bmatrix}$ where X_i are iid $N(0, I_N)$ with entries X_{ij} iid $N(0, \frac{1}{\sqrt{n}})$.

Suppose d satisfies $\sqrt{\frac{d \log N/d}{n}} \le c'$ (small constant). Then with high probability (to be specified), $\delta_d(X) \le c$. More precisely, we can say that for any c, there exists a c' such that the inequality holds.

Proof

Recall that $\delta_d(X) = \inf_{\delta > 0} \{u \in \mathbb{R}^N, d(u) \le d, 1 - \delta \le \frac{||Xu||^2}{||u||^2} \le 1 + \delta \}$ and suppose $\sup(u) \subset I$ and $\operatorname{card}(I) = d$.

Let $X_I = (x_i : i \in I)$, or we pick columns belong to I from X.

Then
$$1 - \delta \le \frac{||Xu||^2}{||u||^2} \le 1 + \delta \Leftrightarrow 1 - \delta \le \frac{\langle X^TXu,u \rangle}{||u||^2} \le 1 + \delta \Leftrightarrow \text{eigenvalues of } X_I^TX_I \in (1 - \delta, 1 + \delta)$$

 \Leftrightarrow singular values of $X_I \in (\sqrt{1-\delta}, \sqrt{1+\delta})$

$$\Leftrightarrow \sqrt{1-\delta} \le \sigma_{\min}(X_I) \le \sigma_{\max}(X_I) \le \sqrt{1+\delta}$$

From the previous bounds $|\sigma_{\max}(X) - 1| \lesssim \sqrt{\frac{t+N}{n}}$ and $|\sigma_{\min}(X) - 1| \lesssim \sqrt{\frac{t+N}{n}}$, for any $I \subset \{1, \dots, N\}$, $\operatorname{card}(I) \leq d$, with probability $\geq 1 - e^{-t}$, $|\sigma_{\max}(X_I) - 1| \lesssim \sqrt{\frac{t+d}{n}}$ and $|\sigma_{\min}(X_I) - 1| \lesssim \sqrt{\frac{t+d}{n}}$.

Let
$$J_d = \{I \subset \{1, \dots, N\} : \operatorname{card}(I) \leq d\}$$
 and $\operatorname{card}(J_d) = \sum_{k=1}^d \binom{n}{k} = \binom{n}{\leq d} \leq (\frac{eN}{d})^d$.

By the union bound, with probability $\geq 1 - \operatorname{card}(J_d)e^{-t}$, $\max_{I \in J_d} |\sigma_{\max} - 1| \lesssim \sqrt{\frac{t+d}{n}}$ and $\max_{I \in J_d} |\sigma_{\min} - 1| \lesssim \sqrt{\frac{t+d}{n}}$.

Now let's replace t with $t + \log \operatorname{card}(J_d)$ and further change it to $t + d \log \frac{eN}{d}$.

Then with probability $\geq 1 - e^{-t}$, $\max_{I \in J_d} |\sigma_{\max} - 1| \lesssim \sqrt{\frac{t + d \log \frac{eN}{d}}{n}} \lesssim \sqrt{\frac{t + d \log \frac{eN}{d}}{n}}$, similarly, $\max_{I \in J_d} |\sigma_{\min} - 1| \lesssim \sqrt{\frac{t + d \log \frac{eN}{d}}{n}}$.

Now choose $t = d \log \frac{eN}{d}$, with probability $\geq 1 - (\frac{eN}{d})^{-d}$, we have $\max_{I \in J_d} |\sigma_{\max} - 1| \lesssim \sqrt{\frac{d \log \frac{eN}{d}}{n}}$ and $\max_{I \in J_d} |\sigma_{\min} - 1| \lesssim \sqrt{\frac{d \log \frac{eN}{d}}{n}}$.

So we should take δ such that $\sqrt{1-\delta} \leq 1-c\sqrt{\frac{d\log\frac{eN}{d}}{n}} \leq \sigma_{\min}(X) \leq \sigma_{\max}(X) \leq 1+c\sqrt{\frac{d\log\frac{eN}{d}}{n}} \leq \sqrt{1+\delta}$.

In fact, it's enough to take $\delta \approx c' \sqrt{\frac{d \log \frac{eN}{d}}{n}}$, we then have with probability $\geq 1 - (\frac{eN}{d})^{-d}$, $\delta_d(X) \lessapprox \sqrt{\frac{d \log \frac{eN}{d}}{n}}$.

Let's discuss sparsity problems with noise.

The model is $Y = X\beta_* + \xi, \beta_* \in \mathbb{R}^N$ where X is $n \times N$ design matrix, $\xi \sim N(0, \sigma^2 I_n)$ and n << N.

The error of LS is $\frac{N\sigma^2}{n}$.

Suppose β_* is sparse, or $d(\beta_*) = \sum_{i=1}^N \mathbb{I}(\beta_{i*} \neq 0) << N$.

One natural candidate to solve this problem is to use the penalized least square $||Y - X\beta||^2 + \varepsilon d(\beta)$ and min this over $\beta \in \mathbb{R}^N$. A typical choice ε is σ^2 . This is non-convex, not smooth, so not a good optimization.

This leads us to the convex relaxation.

Let $\hat{\beta} := \operatorname{argmin}_{\beta \in \mathbb{R}^N} \{||Y - X\beta||^2 + \varepsilon ||\beta||_{l_1}\}$ and a typical $\varepsilon = c\sqrt{\log N}$ and recall it's the **LASSO** estimator.

Proposition 5.7. For $J \subset \{1, \dots, N\}$ and b > 0, define $C_J^{(b)} = \{u \in \mathbb{R}^N : \sum_{j \notin J} |u_j| \le b \sum_{j \in J} |u_j| \}$ and $\gamma^{(b)}(J, X) = \inf\{C > 0 : \sum_{j \in J} |u_j|^2 \le C^2 ||Xu||^2, u \in C_J^{(b)}\}$. One can bound $\gamma^{(b)}(J, X)$ for J with $\operatorname{card}(J) = d$ in terms of restricted isometry constants $\delta_{3d}(X)$, as in the case of b = 1. For any $\beta \in \mathbb{R}^N$ with $J_\beta = \operatorname{supp}(\beta)$, let $\gamma(\beta) := \gamma^{(5)}(J_\beta, X)$.

Definition 5.9. For $u \in \mathbb{R}^N$, we denote $||u||_{l_p} = (\sum_{i=1}^n |u_i^p|)^{\frac{1}{p}}$ for $p \ge 1$ and $||u||_{l_{\infty}} = \max_{1 \le i \le n} |u_i|$.

Definition 5.10. Convex function

 $f: \mathbb{R}^N \to \mathbb{R}$ is convex if and only if for all $x_1, x_2 \in \mathbb{R}^N$ and all $\lambda \in [0, 1]$, $f(\lambda x_1 + (1 - \lambda)x_2) \le \lambda f(x_1) + (1 - \lambda)f(x_2)$. A function is convex if and only if it's always above its support line.

Definition 5.11. Subgradient and subdifferential

A vectors $w \in \mathbb{R}^N$ is a subgradient of a function f at point x means that $f(y) - f(x) \ge \langle w, y - x \rangle$. In other words, $f(x) + \langle w, y - x \rangle$ is a subgradient of f at $f(x) = \{w \in \mathbb{R}^N : w \text{ is a subgradient of } f \text{ at } x\}$. One can show this set is a convex set. This can be viewed as a function $f(x) = \{w \in \mathbb{R}^N : w \text{ is a subgradient of } f \text{ at } x\}$. One $f(x) = \{\nabla f(x)\}$. For example, suppose $f(x) = |x|, x \in \mathbb{R}$, then

$$\partial f(x) = \begin{cases} \{1\} & , x > 0 \\ [-1,1] & , x = 0 \\ \{-1\} & , x < 0 \end{cases}$$

Theorem 5.6. Sum rule for subdifferentials (Moreau-Rockeffellar theorem)

If $f_1, \dots, f_k : \mathbb{R}^N \to \mathbb{R}$ are convex functions where we assume they are bounded. Then $(f_1(x) + \dots + f_k(x)) = \partial f_1(x) + \dots + \partial f_k(x)$. Where + is the Minkowski sum defined in definition 2.1, $c_1 + \dots + c_k = \{x_1 + \dots + x_k, x_1 \in c_1, \dots, x_k \in c_k\}$. For example, $f(x) = ||x||_{l_1} = \sum_{i=1}^n |x_i|$, then

$$\partial ||x||_{l_1} = \sum_{i=1}^n \partial |x_i| = \{u \in \mathbb{R}^N\}$$

where

$$\partial u_j = \begin{cases} \{1\} & , x_j > 0 \\ [-1,1] & , x_j = 0 \\ \{-1\} & , x_j < 0 \end{cases}$$

Proposition 5.8. Suppose $x \in \mathbb{R}^N$ is a minimal point of a convex function $f : \mathbb{R}^N \to \mathbb{R}$. Or $f(x) = \min_{y \in \mathbb{R}^N} f(y)$. Then $0 \in \partial f(x)$. The proof is trivial. Just note that $\forall y, f(y) - f(x) \ge 0 = \langle 0, y - x \rangle \implies 0 \in f(x)$.

Theorem 5.7. Monontonicity of subdifferential

For any points $x_1, x_2 \in \mathbb{R}^N$, for $\forall w_1 \in \partial f(x_1), w_2 \in \partial f(x_2)$. We have $\langle w_1 - w_2, x_1 - x_2 \rangle \geq 0$. When N = 1 and f is smooth, $(w_1 - w_2)(x_1 - x_2) \geq 0 \Leftrightarrow (f(x_1) - f(x_2))(x_1 - x_2) \geq 0$. We can define monontonicity in \mathbb{R}^N in this way as well.

Theorem 5.8. Suppose $\varepsilon \geq 3||X^T\xi||_{\infty}$, then

$$||X\hat{oldsymbol{eta}}-Xoldsymbol{eta}_*||^2 \leq \inf_{oldsymbol{eta} \in \mathbb{R}^N} [||Xoldsymbol{eta}-Xoldsymbol{eta}_*||^2 + c\gamma(oldsymbol{eta})^2 d(oldsymbol{eta}) oldsymbol{arepsilon}^2]$$

where $\hat{\beta} := \operatorname{argmin}_{\beta \in \mathbb{R}^N} \{ ||Y - X\beta||^2 + \varepsilon ||\beta||_{l_1} \}$, c is a numerical constant and $\gamma(\beta) := \gamma^{(5)}(J_{\beta}, X)$. This is called sparsity oracle inequality. Here nothing is random and ξ is fixed.

Proof

Write $\mathscr{L}(\beta) = ||X\beta - Y||^2 + \varepsilon ||\beta||_{l_1}$. And $\hat{\beta} = \operatorname{argmin}_{\beta \in \mathbb{R}^n} \mathscr{L}(\beta)$. Then $\mathscr{L}(\beta)$ is a convex function on \mathbb{R}^N .

Since $\hat{\beta}$ is a minimizer of $\mathcal{L}(\beta)$, we have $0 \in \partial \mathcal{L}(\hat{\beta})$.

Also,
$$\partial \mathcal{L}(\beta) = 2X^T(X\beta - Y) + \partial ||\beta||_{l_1}$$
.

It follows that $0 \in \partial \mathcal{L}(\hat{\beta}) \implies \exists \hat{w} \in \partial ||\hat{\beta}||_{l_1}$ such that $2X^T(X\hat{\beta} - Y) + \varepsilon \hat{w} = 0$.

First, multiply both sides by $\hat{\beta} - \beta$, so

$$\langle 2X^T(X\hat{\boldsymbol{\beta}} - Y), \hat{\boldsymbol{\beta}} - \boldsymbol{\beta} \rangle + \varepsilon \langle \hat{w}, \hat{\boldsymbol{\beta}} - \boldsymbol{\beta} \rangle = 0$$

Suppose $w \in \partial ||\beta||_{l_1}$. Specifically, let

$$w_{j} = \begin{cases} 1 & , \beta_{j} > 0 \\ 0 & , \beta_{j} = 0 \\ -1 & , \beta_{j} < 0 \end{cases}$$

we have

$$2\langle X\hat{\beta} - Y, X\hat{\beta} - X\beta \rangle + \varepsilon \underbrace{\langle \hat{w} - w, \hat{\beta} - \beta \rangle}_{>0} = \varepsilon \langle w, \beta - \hat{\beta} \rangle$$

Let $Y = X\beta_* + \xi$, then $2\langle X\hat{\beta} - X\beta_*, X\hat{\beta} - X\beta \rangle + \varepsilon \langle \hat{w} - w, \hat{\beta} - \beta \rangle = \varepsilon \langle w, \beta - \hat{\beta} \rangle + 2\langle \xi, X\hat{\beta} - X\beta \rangle$.

Also,
$$2\langle X\hat{\beta} - X\beta^*, X\hat{\beta} - X\beta \rangle = ||X\hat{\beta} - X\beta_*||^2 + ||X\hat{\beta} - X\beta||^2 - ||X\beta - X\beta_*||^2$$
.

Now,

$$||X\hat{\boldsymbol{\beta}} - X\boldsymbol{\beta}_*||^2 + ||X\hat{\boldsymbol{\beta}} - X\boldsymbol{\beta}||^2 - ||X\boldsymbol{\beta} - X\boldsymbol{\beta}_*||^2 + \varepsilon\langle \hat{w} - w, \hat{\boldsymbol{\beta}} - \boldsymbol{\beta}\rangle = \varepsilon\langle w, \boldsymbol{\beta} - \hat{\boldsymbol{\beta}}\rangle + \underbrace{2\langle X^T\boldsymbol{\xi}, \hat{\boldsymbol{\beta}} - \boldsymbol{\beta}\rangle}_{\leq 2||X^T\boldsymbol{\xi}||_{\infty}||\hat{\boldsymbol{\beta}} - \boldsymbol{\beta}||_{l_1}}$$

which follows from $|\langle u, v \rangle| = |\sum_i u_i v_i| \le \max_i |u_i| \sum_i |v_i| = ||u||_{\infty} ||v||_{l_1}$.

When $||X\hat{\beta} - X\beta_*||^2 + ||X\hat{\beta} - X\beta||^2 - ||X\beta - X\beta_*||^2 \le 0$, we have $||X\hat{\beta} - X\beta_*||^2 \le ||X\beta - X\beta_*||^2$, and we finish the proof.

When $||X\hat{\beta} - X\beta_*||^2 + ||X\hat{\beta} - X\beta||^2 - ||X\beta - X\beta_*||^2 > 0$, we need the following:

Claim: $\hat{\beta} - \beta \in C_{J_{\beta}}^{(5)}$.

Proof

First, drop the first term, which is non-negative, we wave

$$\varepsilon \langle \hat{w} - w, \beta - \hat{\beta} \rangle \leq \varepsilon \langle w, \beta - \hat{\beta} \rangle + 2||X^T \xi||_{\infty}||\hat{\beta} - \beta||_{l_1}$$

$$\varepsilon \langle \hat{w} - w, \beta - \hat{\beta} \rangle = \varepsilon \sum_{j=1}^{N} \underbrace{(\hat{w_j} - w_j)(\hat{\beta_j} - \beta_j)}_{>0} \ge \varepsilon \sum_{j \notin J_{\beta}} \hat{w_j} \hat{\beta_j} = \varepsilon \sum_{j \notin J_{\beta}} |\hat{\beta_j}| = \varepsilon \sum_{j \notin J_{\beta}} |\hat{\beta_j} - \beta_j|$$

since each element is a subdifferential.

Now,
$$\varepsilon \langle w, \beta - \hat{\beta} \rangle = \varepsilon \sum_{j \in J_{\beta}} w_j (\hat{\beta}_j - \beta_j) \le \varepsilon \sum_{j \notin J_{\beta}} |\hat{\beta}_j - \beta_j|$$
.

Also,

$$2||X^T\xi||_{\infty}||\hat{\beta}-\beta\rangle||_{l_1} \leq \frac{2}{3}\varepsilon||\hat{\beta}-\beta||_{l_1} = \frac{2}{3}\varepsilon\sum_{j\in J_B}|\hat{\beta_j}-\beta_j| + \frac{2}{3}\varepsilon\sum_{j\not\in J_B}|\hat{\beta_j}-\beta_j|$$

As a result,

$$\varepsilon \sum_{j \notin J_{\beta}} |\hat{\beta_j} - \beta_j| \leq \frac{5}{3} \varepsilon \sum_{j \in J_{\beta}} |\hat{\beta_j} - \beta_j| + \frac{2}{3} \varepsilon \sum_{j \notin J_{\beta}} |\hat{\beta_j} - \beta_j|$$

Therefore,
$$\frac{1}{3}\varepsilon\sum_{j\not\in J_{\beta}}|\hat{\beta_{j}}-\beta_{j}|\leq \frac{5}{3}\varepsilon\sum_{j\in J_{\beta}}|\hat{\beta_{j}}-\beta_{j}|$$
. So $\hat{\beta}-\beta\in C_{J_{\beta}}^{(5)}$.

Let's go back to the inequality and call $2\langle X^T \xi, \hat{\beta} - \beta \rangle$ as the main identity.

It follows from the main identity, the following is ture:

$$||X\hat{\beta} - X\beta_*||^2 + ||X\hat{\beta} - X\beta||^2 + \varepsilon \sum_{j \notin J_{\beta}} |\hat{\beta_j} - \beta_j| \le ||X\beta - X\beta_*||^2 + \varepsilon \sum_{j \in J_{\beta}} |\hat{\beta_j} - \beta_j| + \frac{2}{3}\varepsilon \sum_{j \in J_{\beta}} |\hat{\beta_j} - \beta_j| + \frac{2}{3}\varepsilon \sum_{j \notin J_{\beta}} |\hat{\beta_j} - \beta_j|$$

since $\varepsilon \sum_{j
ot \in J_B} |\hat{\beta}_j - \beta_j|$ is the lower bound of the main identity.

Therefore,

$$\begin{split} &||X\hat{\beta}-X\beta_*||^2+||X\hat{\beta}-X\beta||^2+\frac{1}{3}\varepsilon\sum_{j\in J_\beta}|\hat{\beta}_j-\beta_j|\\ &\leq ||X\hat{\beta}-X\beta_*||^2+\frac{5}{3}\varepsilon\sum_{j\in J_\beta}|\hat{\beta}_j-\beta_j|\\ &\leq ||X\hat{\beta}-X\beta_*||^2+\frac{5}{3}\varepsilon(\sum_{j\in J_\beta}|\hat{\beta}_j-\beta_j|^2)^{1/2}\sqrt{d(\beta)} \text{ by Cauchy-Schwarz.} \end{split}$$

Since $\hat{\beta} - \beta \in C_{J_{\beta}}^{(5)}$, it follows that $(\sum_{j \in J_{\beta}} |\hat{\beta_j} - \beta_j|^2)^{1/2} \le \gamma^{(5)}(J_{\beta}, X) ||X\hat{\beta} - X\beta||$ and we will use $\gamma(\beta)$ to represent $\gamma^{(5)}(J_{\beta}, X)$.

So

$$||X\hat{\beta} - X\beta_*||^2 + ||X\hat{\beta} - X\beta||^2 \le ||X\beta - X\beta_*||^2 + \underbrace{\frac{5}{3\sqrt{2}}\varepsilon\gamma(\beta)\sqrt{d(\beta)}}_{a}\underbrace{||X\hat{\beta} - X\beta||\sqrt{2}}_{b}$$

Using $ab \le \frac{a^2+b^2}{2}$, we have

$$||X\hat{\beta} - X\beta_*||^2 + ||X\hat{\beta} - X\beta||^2 \le ||X\beta - X\beta_*||^2 + \frac{5^2}{3^2 \cdot 2 \cdot 2} \varepsilon^2 \gamma^2(\beta) d(\beta) + ||X\hat{\beta} - X\beta||^2$$

So

$$||X\hat{\beta} - X\beta_*||^2 \le ||X\beta - X\beta_*||^2 + \underbrace{\frac{5^2}{3^2 \cdot 2^2}}_{c} \varepsilon^2 \gamma^2(\beta) d(\beta)$$

Corollary 5.9. Take $\beta = \beta_*$, we get $||X\hat{\beta} - X\beta_*||^2 \le c\gamma(\beta_*)^2 d(\beta_*) \varepsilon^2$.

Note that X is $n \times N$, X^T is $N \times n$, so $X^T \xi \in \mathbb{R}^N$. Pick canonical bases of \mathbb{R}^N : e_1, \dots, e_N , then $||X^T \xi||_{\infty} = \max_{1 \le j \le N} |\langle X^T \xi, e_j \rangle| = \max_{1 \le j \le N} |\langle \xi, X^T e_j \rangle|$. Let $x_j = X^T e_j$ be the j-th column of X, then $||X^T \xi||_{\infty} = \max_{1 \le j \le N} |\langle \xi, e_j \rangle|$.

Note that $\langle \xi, e_j \rangle \sim N(0, \sigma^2 ||x_j||^2)$, so $\mathbb{P}(\langle \xi, e_j \rangle \geq \sigma ||x_j|| \sqrt{t}) \leq 2e^{-t/2}$.

Therefore, $\mathbb{P}(||X^T\xi||_{\infty} \geq \sigma \max_{1 \leq j \leq N} ||x_j|| \sqrt{t}) \leq 2Ne^{-t/2}$ by the union bound.

Let $t \to t + 2\log N$, then $\mathbb{P}(||X^T\xi||_{\infty} \ge \sigma \max_{1 \le j \le N} ||x_j|| \sqrt{t + 2\log N}) \le 2e^{-t/2}$.

Let's now assume that $\varepsilon \ge 3\sigma \max_{1 \le j \le N} ||x_j|| \sqrt{t + \log N}$, then with probability $\ge 1 - 2e^{-t/2}$, we have $\varepsilon \ge 3||X^T\xi||_{\infty}$.

Theorem 5.10. Assume that $\varepsilon \geq 3\sigma \max_{1 \leq j \leq N} ||x_j|| \sqrt{t + 2\log N}$, then with probability at least $1 - 2e^{-t/2}$, the following bound holds: $||X\hat{\beta} - X\beta_*||^2 \leq \inf_{\beta \in \mathbb{R}^N} [||X\beta - X\beta_*||^2 + c\gamma(\beta)^2 d(\beta)\varepsilon^2]$. In particular,

$$||X\hat{\beta} - X\beta_*||^2 \le c\varepsilon^2 \gamma^2(\beta_*) d(\beta_*) \le \max_{1 \le j \le N} ||x_j||^2 (t + \log 2N) \gamma^2(\beta_*) \sigma^2 d(\beta_*)$$

Let's now talk about some trace regression models examples.

1. Matrix completion (Netflix) problem

Let A be $m \times m$ matrix, (could be $m_1 \times m_2$, but for simplicity let's assume it's square for now).

The complexity is how do we consider this problem. For vector, we use sparsity. We will use rank for matrix.

Suppose A is symmetric, then we have $A = \sum_{j=1}^{r} \lambda_j (\phi_j \otimes \phi_j)$ where $\lambda_j \neq 0$ and r is the rank of the matrix A. For r eigenvectors, we need $r \times m$ for these eigenvectors and r for eigenvalues. So need about rm numbers to represent this matrix A. If r << m, we can let r be the number of freedom in this matrix problem. Note that we need about m^2 for a general symmetric matrix. A natural question is that whether we can recover a matrix with low-rank r and observations < r. Consider the matrix with one element 1 and 0 elsewhere. Then the probability we are missing this element is $(1 - \frac{1}{m})^n$ and we need $n = o(m^2)$ to recover the matrix.

2. Quantum State Tomography

Density matrix $\rho: \mathbb{C}^m \to \mathbb{C}^m$ is a $m \times m$ Hermitian (self-adjoint) matrix in the Hilbert space. Assume ρ is positive semi-definite. The assumption is $tr(\rho) = 1$, like $\int_{\mathbb{R}} f(x) dx = 1$.

Observables are represented by Hermitian (self-adjoint) $m \times m$ matrix.

Suppose *X* is an observable, we want to measure *X* in state ρ . Then $X = \sum_j \lambda_j P_j$, $P_j = \phi_j \otimes \phi_j$ where ϕ_j are eigenvectors and $\lambda_j \in \mathbb{R}$.

Let Y be the value of the observable X in state ρ , then $\mathbb{P}_{\rho}(Y = \lambda_j) = tr(\rho P_j) \geq 0, j = 1, \dots, m$. Then $\mathbb{E}_{\rho}Y = \sum_i \lambda_i tr(\rho P_i) = tr(\rho \sum_i \lambda_i P_j) = tr(\rho X)$.

Let X_1, \dots, X_n be observables and (by physicists), and n copies of quantum system are prepared in state ρ (this is often difficult to do). Let Y_1, \dots, Y_n be the values of X_1, \dots, X_n . The goal of **quantum state tomography** is to estimate ρ based on $(X_1, Y_1), \dots, (X_n, Y_n)$.

Recall that $\mathbb{E}_{\rho}(Y_j|X_j) = tr(\rho X_j)$, then we can write $Y_j = tr(\rho X_j) + \xi_j$ where $\mathbb{E}[\xi_j|X_j] = 0$. This is similar to linear regression. And the matrix is usually high-dimension, but they can often be **approximated** by low-rank matrix, since physicists often try to prepare system in pure states.

Definition 5.12. Trace regression model

The model is $Y_j = tr(\rho X_j) + \xi_j$ where ρ is the target matrix, Y is response and ξ_j is noise. We are assuming that ρ is low-rank, or can be well approximated by low-rank matrices.

Definition 5.13. Nuclear norm

 $||\rho||_1 = tr(\sqrt{\rho^2}) = \sum_{j=1}^m |\lambda_j(\rho_j)|$, it's the sum of singular values for rectangle matrices.

A typical method is called the **matrix LASSO**. Let

$$\hat{\rho} = \operatorname{argmin}_{\rho \in \mathbb{H}_m} \left[\frac{1}{n} (Y_i - \langle \rho, X_i \rangle)^2 + \varepsilon ||\rho||_1 \right]$$

and we can show that

$$\frac{1}{m^2}||\hat{\rho} - \rho||_2^2 \lessapprox \frac{\sigma_\xi^2 m \ rank(\rho)}{n}\log(factor)$$

where we are using the Hilbert-Schmidt norm, and it's similar to what we had before.