

of the accredited test laboratory

TÜV Nr.:M/EMV-08/155

about

the following EMC - test/- research

Applicant:

StreamUnlimited Engineering GmbH

High Tech Campus Vienna

Gutheil-Schoder-Gasse 10

A-1102 Wien

Product:

RFID Reader

Serial Number:

FCC ID:

TYR-MIRROR

Standard:

47 CFR Ch. I Part 15 (September 20, 2007)

RSS-210 Issue 7 (June 2007)

TÜV AUSTRIA SERVICES GMBH

Test laboratory for EMC

Supervisor of EMC-laboratory

Ing. Wilhelm Seier

Official seal Austria

26.05.2008

Checked by

Ing. Michael Emminger

Copy Nbr.: __//

A publication of this test report is only permitted literally.

Copying or reproduction of partial sections needs a written permission of

TÜV AUSTRIA SERVICES GMBH.

The results of this test report only refer to the provided equipment.

TUV

TÜV AUSTRIA SERVICES GMBH

Office:

Deutschstraße 10 A-1230 Vienna Tel.: +43(0)1 610 91-0 pzw@tuv.at

Division:

Medical Technology/ Communication Technology/ EMC

Department: Testing Body for Communication Technology/ EMC

TÜV®

Testing Laboratory, Inspection Body, Certification Body, Calibration Laboratory

Notified Body 0408 IC 4413

Chairman of the Supervisory Board: KR Dipl.-Ing. Johann MARIHART

Management: Dipl.-Ing. Dr. Hugo EBERHARDT Mag. Christoph WENNINGER

Registered Office: Krugerstrasse 16 1015 Vienna/Austria

Branch Office: Dornbirn, Graz, Innsbruck, Klagenfurt, Linz, Salzburg, St. Pölte Wels, Wien 1, Wien 20, Wien 23, Brixen (I) und Filderstadt (D)

Company Register Court / - Number: Vienna / FN 288476 f

Banking Connections: BA CA 52949 001 066 IBAN AT13120005294900106 BIC BKAUATWW RBI 001-04.093.282 IBAN AT15310000010409328 BIC RZBAATWW

UID ATU63240488 DVR 3002476

Contents

	Designation	page
1.	Applicant	3
2.	Description of EUT	4
3.	Standards / Final result	5
4.	Test results	
4.1.	Conducted emission	6
4.2	Radiated emission	7-8
4.3	Operation within the band 13,110 – 14,010 MHz	9-10
Appendix	Designation	pages
1	Test equipment used	3
2	Photodocumentation	8
3	Measurement diagrams	3

1. Applicant

Company:

StreamUnlimited Engineering GmbH

Department:

Address:

High Tech Campus Vienna

Gutheil-Schoder-Gasse 10

A-1102 Wien

Contact person:

Mr. Thomas Gruber

EUT received on:

19.05.2008

Tests were performed on: 19.05.2008

2. Description of EUT

EUT:

RFID Reader

Serial Number:

Manufacturer:

VIOLET SARL 8, rue du Dahomey Paris, 75011

France

Description:

StreamUnlimited Engineering GmbH provided the following

configuration for the measurements:

Pre-production model

For operation the following Notebook PC was used:

MacBook Pro 15" S/N: W87043AQW0H

Operating mode:

The measurements were carried out at the following running states:

normal operation

checked by:

3. Standards / Final result

Name	Title	Deviation	Result
47 CFR Ch. I Part 15 (September 20, 2007)	Radio Frequency Devices	none	PASS
RSS-210 Issue 7 (June 2007)	Low Power Licence-Exempt Radiocommunuication Devices (All Frequency Bands)	none	PASS

PASS EUT passed FAIL EUT failed

4. Test results

4. 1. Conducted emission

Measurement of conducted emission is not necessary, because it is powered through USB by PC etc.

checked by:

4. 2. Radiated emission

Limits according to 15.209 and A2.7 (Table 2+3)

	Detector C	Quasi Peak			
Frequency range	Limit	Measurement distance			
0,009 – 0,490 MHz	2400μV / f(kHz)	300 m			
0,490 – 1,705 MHz	24000μV / f(kHz)	30 m			
1,705 - 30 MHz	30	30 m			
30 – 88 MHz	100	3 m			
88 – 216 MHz	150	3 m			
216 – 960 MHz	200	3 m			
Above 960 MHz	500	3 m			
Remark: The Limit was increased for a constant measurement distance of 3m with a factor of 40 dB per Decade.					

ractor or 40 db per Decade.

Operating mode	Measuring result
Normal operation	Measurement diagram 1-3

Test result:

4. 2.1.) Measurement in the frequency range 9 kHz to 1000 MHz

Frequency MHz	Level dBµV/m	Limit dBµV/m	Margin dB	Height cm	Azimuth deg	Polarization
72,00	33,3	40,0	6,7	100	315	VERTICAL
84,05	30,3	40,0	9,7	114	45	VERTICAL
96,05	32,7	43,5	10,8	373	316	HORIZONTAL
108,05	34,1	43,5	9,4	317	135	HORIZONTAL
120,05	33,3	43,5	10,2	269	316	HORIZONTAL
132,00	33,2	43,5	10,3	254	154	HORIZONTAL
144,05	39,5	43,5	4,0	237	147	HORIZONTAL
156,05	36,9	43,5	6,6	325	156	HORIZONTAL
168,10	34,2	43,5	9,3	100	110	VERTICAL
180,05	34,9	43,5	8,6	100	274	VERTICAL
332,35	27,5	46,0	18,5	175	316	VERTICAL
372,15	28,0	46,0	18,0	100	195	HORIZONTAL
480,10	31,2	46,0	14,8	100	280	HORIZONTAL
492,15	31,2	46,0	14,8	101	285	HORIZONTAL
663,90	33,0	46,0	13,0	100	5	VERTICAL
689,45	24,0	46,0	22,0	100	17	VERTICAL
911,50	26,8	46,0	19,2	100	101	VERTICAL

4.3. 15.225 Operation within the band 13,110 – 14,010 MHz RSS-210 A2.6 13,110 – 14,010 MHz

Limits:

15.225 (a) + A2. 6 (a):

The field strength of any emissions within the band 13,553 - 13,567 MHz shall not exceed 15.848 microvolts/meter ($84 \text{ dB}_{\mu}\text{V/m}$) at 30 meters.

15.225 (b) and A2.6 (b):

Within the bands 13.410-13.553 MHz and 13.567-13.710 MHz, the field strength of any emissions shall not exceed 334 microvolts/meter (50,5 dB μ V/m) at 30 meters.

15.225 (c) and A2.6 (c):

Within the bands 13.110-13.410 MHz and 13.710-14.010 MHz the field strength of any emissions shall not exceed 106 microvolts/meter (40,5 dB μ V/m) at 30 meters.

15.225 (d) and A2.6 (d):

30 microvolts/m (29,5 dBµV/m) at 30 m, outside the band 13.110-14.010 MHz

Test result:

The field strength at 13,564 MHz in 3 m distance was measured as 69,7 dB μ V/m. Extrapolated with 40 dB per decade to 30 meters distance it would be 29,7 dB μ V/m.

checked by:

15.225 (e) and A2.6:

The frequency tolerance of the carrier signal shall be maintained within \pm 0,01 % of the operating frequency over a temperature variation of -20 degrees to +50 degrees C at normal supply voltage, and for a variation of the primary supply voltage from 85 % to 115 % of the rated supply voltage at a temperature of 20 degrees C. For battery operated equipment, the equipment tests shall be performed using a new battery.

Measurement results:

Test conditions		Transmitter frequency			
		13,564 MHz			
T _{nom} (22)°C	V _{nom} (5)VDC	13,56423			
T _{nom} (22)°C	V _{min} (4,25)VDC	13,56423			
T _{nom} (22)°C		13,56423			
T _{min} (-20)°C		13,56434			
T _{max} (50)°C		13,56414			
Maximum deviation from nominal frequency under extreme test conditions (%)		0,0025			
Measurement uncertainty		<u>+</u> 10 Hz			

Appendix 1 Test equipment used

	Anechoic Chamber with 3m measurement distance	NT-100		Spectrumanalyzer – FSP7 9 kHz – 7 GHz	NT-200
	Stripline according to ISO 11452-5	NT-108		ESVP - Test receiver 20 - 1000 MHz	NT-201
\boxtimes	MA 240 - Antenna mast 1 - 4 m height	NT-110		ESPC - Test receiver 9 kHz - 2,5 GHz	NT-203
\boxtimes	DS 412 - Turntable 0 - 400 ° Azimuth	NT-111	\boxtimes	ESI26 – Test receiver 20 Hz – 26,5 GHz	NT-207
	HD 100 Controller Mast+Turntable	NT-112		Digital Radio Tester CTS55	NT-208
	HUF-Z2 - Bicon. Antennna 20 - 300 MHz	NT-120		Noise-gen., ITU-R 559-2 20 Hz – 20 kHz	NT-209
	HUF-Z3 - Log. Per. Antenna 200 - 1000 MHz	NT-121		CMTA - Radiocommunication analyzer; 0,1 - 1000 MHz	NT-210
\boxtimes	HFH-Z2 - Loop Antenna 9 kHz - 30 MHz	NT-122		3271 - Spectrum analyzer 100 Hz - 26,5 GHz	NT-211
	HFH-Z6 - Rod Antenna 9 kHz - 30 MHz	NT-123		Radiocommunicationanalyzer Marconi 2945A	NT-212
	3121C - Dipole Antenna 28 - 1000 MHz	NT-124		2855S - Communication analyzer	NT-213
	3115 - Horn Antenna 1 - 18 GHz (immunity)	NT-125		Mixer M28HW 26,5 GHz - 40 GHz	NT-214
	3116 - Horn Antenna 18 - 40 GHz	NT-126		Diode Detector 0,01 GHz - 26,5 GHz	NT-215
	SAS-200/543 - Bicon. Antenna 20 MHz - 300 MHz	NT-127	\boxtimes	RubiSource T&M Timing reference	NT-216
	AT-1080 - Log. Per. Antenna 80 - 1000 MHz	NT-128		Radiocommunicationanalyzer SWR 1180 MD	NT-217
\boxtimes	HK-116 - bicon. Antenna 20 MHz - 300 MHz	NT-129		Mixer M19HWD 40 GHz – 60 GHz	NT-218
	HK-116 - bicon. Antenna 20 MHz - 300 MHz	NT-130		Mixer M12HWD 60 GHz – 90 GHz	NT-219
\boxtimes	3146 - Log. Per. Antenna 200 – 1000 MHz	NT-131		TDS - 540 DSO Digital scope	NT-220
	Loop Antenna H-Field	NT-132		TPS 2014 Digital scope	NT-222
	Horn Antenna 500 MHz - 2900 MHz	NT-133		Artificial Ear according to IEC 60318	NT-224
	Horn Antenna 500 MHz - 6000 MHz	NT-133/1		1 kHz Sound calibrator	NT-225
	Log. per. Antenna 800 MHz - 2500 MHz	NT-134		B10 - Harmonics and flicker analyzer	NT-232
	Log. per. Antenna 800 MHz - 2500 MHz	NT-135		SRM-3000 Spectrumanalyzer	NT-233
	BiConiLog Antenna 26 MHz – 2000 MHz	NT-137		E-field probe SRM 75 MHz – 3 GHz	NT-234
	Conical Dipol Antenna PCD8250	NT-138		Hall-Teslameter ETM-1	NT-241
	HF 906 - Horn Antenna 1 - 18 GHz (emission)	NT-139		EFA-3 H-field- / E-field probe	NT-243
\boxtimes	HZ-1 Antenna tripod	NT-150		E-field measuring instrument EMR-200; 100 kHz – 3 GHz	NT-244
	BN 1500 Antenna tripod	NT-151		E-field probe 100 kHz – 3 GHz	NT-245
	Ant. tripod for EN61000-4-3 Model TP1000A	NT-156		Magneticfield-Sensor 300 kHz – 30 MHz	NT-246
	Power quality analyzer Fluke 1760 (complete set)	NT-160 - NT-172		E-field probe 3 MHz – 18 GHz	NT-247

Division Medical Technology/ Communication Technology/ EMC

Department: EMC

Test report number: M/EMV-08/155

Page: 1 of 3

Date: 26.05.2008

Checked by: _

Appendix 1 (continued) Test equipment used

[H-field probe 27 MHz – 1 GHz	NT-248	T82-50 RF-Amplifier 2 GHz – 8 GHz	NT-331	Division Medical Technology/
[ELT-400 1 Hz – 400 kHz	NT-249	500W1000M7 - RF-Amplifier 80 - 1000 MHz / 500 W	NT-332	Communication Technology/ EMC
[MDS 21 - Absorbing clamp 30 - 1000 MHz	NT-250	AS0102-65R - RF-Amplifier 1 GHz - 2 GHz	NT-333	Department: EMC
[FCC-203I EM Injection clamp	NT-251	APA01 – RF-Amplifier 0,5 GHz – 2,5 GHz	NT-334	Test report number: M/EMV-08/155
[FCC-203I-DCN Ferrite decoupling network	NT-252	Preamplifier 1 GHz - 4 GHz	NT-335	Page: 2 of 3
[PR50 Current Probe	NT-253	Preamplifier for GPS MKU 152 A	NT-336	Date: 26.05.2008
[PR630 Current Probe	NT-254	Preamplifier 100 MHz – 23 GHz	NT-337	Checked by:
[Fluke 87 V True RMS Multimeter	NT-260	DC Block 10 MHz – 18 GHz Model 8048	NT-338	
[Model 2000 Digital Multimeter	NT-261	2-97201 Electronic load	NT-341	
[]	Fluke 87 V Digital Multimeter	NT-262/1	TSX3510P - Power supply 0-30 V / 0 - 10 A	NT-344	
[ESH2-Z5-U1 Artificial mains network 4x25A	NT-300	TSX3510P - Power supply 0-30 V / 0 - 10 A	NT-345	
[ESH3-Z5-U1 Artificial mains network 2x10A	NT-301	VDS 200 Mobil-impuls-generator	NT-350	
[ESH3-Z6-U1 Artificial mains network 1x100A	NT-302	LD 200 Mobil-impuls-generator	NT-351	
[ESH3-Z4 T-Artificial network	NT-303	MPG 200 Mobil-Impuls-Generators	NT-352	
[PHE 4500/B Power amplifier	NT-304	EFT 200 Mobil-impuls-generator	NT-353	
[EZ10 T-Artificial Network	NT-305	AN 200 S1 Artificial Network	NT-354	
[ENY22 Artificial Network	NT-308	FP-EFT 32M 3 ph. Coupling filter (Burst)	NT-400/1	
[]	ENY41 Artificial Network	NT-309	PHE 4500 - Mains impedance network	NT-401	
[SMG - Signal generator 0,1 - 1000 MHz	NT-310	IP 6.2 Coupling filter for data lines (Surge)	NT-403	
[PM 5518 TXVPS Video generator	NT-311	TK 9421 High Power Volt. Probe 150 kHz - 30 MHz	NT-409	
[RefRad Reference generator	NT-312	ESH2-Z3 - Probe 9 kHz - 30 MHz	NT-410	
[]	SMP 02 Signal generator 10 MHz - 20 GHz	NT-313	IP 4 - Capacitive clamp (Burst)	NT-411	
[40 MHz Arbitrary Generator TGA1241	NT-315	Highpass-Filter 100 MHz – 3 GHz	NT-412	
[PEFT - Burst generator up to 4 kV	NT-320	Highpass-Filter 600 MHz – 4 GHz	NT-413	
[ESD 30 System up to 25 kV	NT-321	Highpass-Filter 1250 MHz – 4 GHz	NT-414	
[PSURGE 4.1 Surge generator	NT-324	Highpass-Filter 1800 MHz – 16 GHz	NT-415	
		TRANSIENT 1000 Immunity test system	NT-325	Highpass-Filter 3500 MHz – 18 GHz	NT-416	
[J	VCS 500-M6 Surge-Generator	NT-326	RF-Attenuator 10 dB DC – 18 GHz / 50 W	NT-417	
[BTA-250 - RF-Amplifier 9 kHz - 220 MHz / 250 W	NT-330	RF-Attenuator 6 dB DC – 18 GHz / 50 W	NT-418	

Appendix 1 (continued) Test equipment used

	RF-Attenuator 3 dB DC – 18 GHz / 50 W	NT-419		95242-1 – Current probe 10 MHz – 400 MHz	NT-468
	RF-Attenuator 20 dB DC - 1000 MHz / 25 W	NT-421		94106-1L-1 – Current probe 20 Hz – 450 MHz	NT-471
	RF-Attenuator 30 dB DC - 1000 MHz / 1 W	NT-423	\boxtimes	PC P4 3 GHz Test computer	NT-500
	RF-Attenuator 30 dB	NT-424		PC P4 1700 MHz Notebook	NT-505
	RF-Attenuator 6 dB DC - 1000 MHz / 1 W	NT-425		PC Intel Centrino 1600 MHz Notebook	NT-506
	RF-Attenuator 6 dB DC - 1000 MHz / 1 W	NT-426		Monitoring camera with Monitor	NT-511
	RF-Attenuator 6 dB	NT-428		ES-K1 Version 1.71 SP2 Test software	NT-520
	RF-Attenuator 0 dB - 81 dB	NT-429		SRM-TS Version 1.3 software for SRM-3000	NT-522
	WRU 27 - Band blocking 27 MHz	NT-430		SPS-PHE Test software V2.4c voltage fluctuations/harmonics	NT-525
	WHJ450C9 AA - High pass 450 MHz	NT-431		SPS-EM Test software V2.4c EN61000-4-11	NT-527
	WHJ250C9 AA - High pass 250 MHz	NT-432		Noise power test apparatus according to EN 55014	NT-530
	RF-Load 150 W	NT-433		Vertical coupling plane (ESD)	NT-531
	Impedance transducer 1:4; 1:9; 1:16	NT-435		Test cable #4 for EN 61000-4-6	NT-553
	RF-Attenuator DC – 18 GHz 6 dB	NT-436		Test cable #3 for conducted emission	NT-554
	RF-Attenuator DC – 18 GHz 6 dB	NT-437		Test cable #5 ESD-cable (2x470k)	NT-555
	RF-Attenuator DC – 18 GHz 10 dB	NT-438		Test cable #6 ESD-cable (2x470k)	NT-556
	RF-Attenuator DC – 18 GHz 20 dB	NT-439		Test cable #8 Sucoflex 104EA	NT-559
	I+P 7780 Directional coupler 100 - 2000 MHz	NT-440		Test cable #9 (for outdoor measurements)	NT-580
	ESH3-Z2 - Pulse limiter 9 kHz - 30 MHz	NT-441		Test cable #10 (for outdoor measurements)	NT-581
	Power Divider 6 dB/1 W/50 Ohm	NT-443		Test cable #13 Sucoflex 104PE	NT-584
	Directional coupler 0,1 MHz – 70 MHz	NT-444		Test cable #21 for SRM-3000	NT-592
	Directional coupler 0,1 MHz – 70 MHz	NT-445		Shield chamber	NT-600
	Tube imitations according to EN 55015	NT-450		Climatic chamber	M-1200
	FCC-801-M2-50A Coupling decoupling network	NT-459		Control and simulation equipment for EUT	
	FCC-801-M5-25 Coupling decoupling network	NT-460			
	FCC-801-AF10 Coupling decoupling network	NT-461			
	FCC-801-S25 Coupling decoupling network	NT-462			
	FCC-801-T4 Coupling decoupling network	NT-463			
	FCC-801-C1 Coupling decoupling network	NT-464			
	F-16A - Current probe 1kHz - 70MHz	NT-465			

Division Medical Technology/ Communication Technology/ EMC

Department: EMC

Test report number: M/EMV-08/155

Page: 4 of 3

Date: 26.05.2008

Checked by:

Division Medical
Technology/ Communication
Technology/ EMC
Department: EMC

Pegel [dBµV/m]

x x :MES Mirror_F02_fin

MES Mirror_F02_pre
LIM FCC ClassB F QP 40dB FCC ClassB, field strength 3m

Measurement diagram:
2 of 3
Date: 26.05.2008
checked by:

Division Medical
Technology/ Communication
Technology/ EMC
Department: EMC
Test report reference:
M/EMV-08/155

x x : MES Mirror_F04_fin

____ MES Mirror_F04_pre

____ LIM FCC ClassB F QP 40dB FCC ClassB, field strength 3m

Measurement diagram:
_____of 3
Date: 26.05.2008
checked by:______

Division Medical
Technology/ Communication
Technology/ EMC
Department: EMC
Test report reference:
M/EMV-08/155

