计算方法实验

2022年4月12日

数据显示结果已保留 4 位小数。

1 实验题目 1: 拉格朗日(Lagrange)插值

1.1 问题分析

准确描述并总结出实验题目(摘要),并准确分析原题的目的和意义。

1.1.1 方法概要

给定平面上 n+1 个不同的数据点 $(x_k,f(x_k)), k=0,1,\cdots,n, x_i\neq x_j, i\neq j$ 则满足条件

$$P_n(x_k) = f(x_k), k = 0, 1, \cdots, n$$

的 n 次拉格朗日插值多项式

$$P_n(x) = \Sigma_{k=0}^n f(x_k) l_k(x)$$

是存在唯一的。若 $x_k \in [a,b], k=0,1,\cdots,n$,且函数 f(x) 充分光滑,则当 $x \in [a,b]$ 时,有误差估计式

$$f(x)-P_n(x)=\frac{f^{n+1}(\xi)}{(n+1)!}(x-x_0)(x-x_1)\cdots(x-x_n), \xi\in[a,b]$$

1.1.2 实验目的

利用拉格朗日插值多项式 $P_n(x)$ 求 f(x) 的近似值。

输入: n+1 个数据点 $x_k, f(x_k), k=0,1,\cdots,n$ 、插值点 x

输出: f(x) 在插值点 x 的近似值 $P_n(x)$

1.2 数学原理

数学原理表达清晰且书写准确。

1.2.1 证明 $P_n(x)$ 存在且唯一

证明: 使用归纳法证明。

当 n = 0, 一定存在 $P_0(x) = C = f_0(x)$ 满足要求。

假设当 n = k - 1 时,存在满足要求的 $P_{k-1}(x)$,则当 n = k,有

$$P_k(x) = P_{k-1}(x) + c(x-x_0)(x-x_1)\cdots(x-x_{k-1})(x-x_k)$$
, c 为系数

则 $:P_n(x_n)=f(x_n),:$ 参数 c 是可求的,故 $P_n(x)$ 是存在的。

由多项式基本定理, $:P_n(x)$ 的次数 $\leq n, :P_n(x)$ 是唯一存在的。

1.2.2 计算方法

对平面上 n+1 个点 $(x_k, f(x_k)), k=0,1,\cdots,n, x_i\neq x_i, i\neq j$ 定义 n 次多项式:

$$L_k(x) = \frac{(x-x_0)(x-x_1)\cdots(x-x_{k-1})(x-x_{k+1})\cdots(x-x_k)}{(x_k-x_0)(x_k-x_1)\cdots(x_k-x_{k-1})(x_k-x_{k+1})\cdots(x_k-x_n)}$$

则 $L_k(x_k)=1, L_k(x_m)=0, m\neq k$ 。

定义:

$$P_n(x) = f(x_0)L_0(x) + f(x_1)L_1(x) + \dots + f(x_n)L_n(x) = \sum_{k=0}^n f(x_k)L_x(x)$$

为 f(x) 的 n 次拉格朗日插值多项式。

1.3 程序设计流程

编译通过,根据输入能得到正确输出。

[14]: # 引入需要的包

import numpy as np

```
from pandas import DataFrame
from matplotlib import pyplot as plt
```

1.3.1 问题一

```
[16]: def problem1():
    print("问题 1: 拉格朗日插值多项式的次数 n 越大越好吗?")

    def sub(targets_x, targets_n, solve):
        return DataFrame({n: {x: solve(n, x) for x in targets_x} for n in_u stargets_n}).round(4)

print("(1) 考虑 f(x) = 1 / (1 + x^2) in [-5, 5]")
    targets_x_1 = [0.75, 1.75, 2.75, 3.75, 4.75]
    targets_n = [5, 10, 20]
    print(sub(
        targets_x=targets_x_1,
        targets_n=targets_n,
        solve=lambda n_i, x: P(
        lambda x_i: 1 / (1 + x_i ** 2), np.linspace(-5, 5, n_i), x
    )
    ))
```

```
print("差值: ")
  print(sub(
      targets_x=targets_x_1,
      targets_n=targets_n,
      solve=lambda n_i, x: ((1 / (1 + x ** 2)) - P(
          lambda x_i: 1 / (1 + x_i ** 2), np.linspace(-5, 5, n_i), x
      ))
  ))
  print("(2) 考虑 f(x) = e^x in [-1, 1]")
  targets_x_2 = [-0.95, -0.05, 0.05, 0.95]
  print(sub(
      targets_x=targets_x_2,
      targets_n=targets_n,
      solve=lambda n_i, x: P(lambda x_i: np.e ** x_i,
                             np.linspace(-1, 1, n_i), x)
  ))
  print("差值: ")
  print(sub(
      targets_x=targets_x_2,
      targets_n=targets_n,
      solve=lambda n_i, x: (np.e ** x - P(lambda x_i: np.e ** x_i,
                                          np.linspace(-1, 1, n_i), x)
  ))
  print("画出两个函数以及其拉格朗日多项式的图像:")
  slice_fluent_size = 1000
  x_linespace_2 = np.linspace(-1, 1, slice_fluent_size)
  x_linespace_10 = np.linspace(-5, 5, slice_fluent_size)
  y1 = 1 / (1 + x_linespace_10**2)
  Ls1 = \{n_i: np.array([P(lambda x_i: np.e ** x_i, np.linspace(-5, 5, n_i), x)\}
                      for x in x_linespace_10]) for n_i in targets_n}
  plt.figure(dpi=150)
  plt.title("(1) Consider f(x) = 1 / (1 + x^2)")
  plt.legend(handles=plt.plot(x_linespace_10, y1, label="f(x) = 1 / (1 + 1)"
\hookrightarrow x^2)$"), loc='best')
  plt.figure(dpi=150)
```

```
plt.title("(1) Consider f(x) = 1 / (1 + x^2), select n")
    plt.legend(handles=[*[plt.plot(x_linespace_10, Ls1[n_i],__
 \Rightarrowlabel=f"$P_n(x),n={n_i}$")[0] for n_i in Ls1],
                         plt.plot(x_linespace_10, y1, label="f(x) = 1 / (1 + 1)
 \rightarrowx^2)$")[0]], loc='best')
    y2 = np.e**x_linespace_2
    Ls2 = \{n_i: np.array([P(lambda x_i: np.e ** x_i, np.linspace(-5, 5, n_i), x)\}
                         for x in x_linespace_2]) for n_i in targets_n}
    plt.figure(dpi=150)
    plt.title("(2) Consider f(x) = e^x")
    plt.legend(handles=plt.plot(x_linespace_2, y2, label="$f(x) = e^x$"),__
 →loc='best')
    plt.figure(dpi=150)
    plt.title("(2) Consider $f(x) = e^x$, select n")
    plt.legend(handles=[*[plt.plot(x_linespace_2, Ls2[n_i],__
 \Rightarrowlabel=f"$P_n(x),n={n_i}$")[0] for n_i in Ls2],
                         plt.plot(x_linespace_2, y2, label="f(x) = e^x")[0]],__
 Gloc='best')
problem1()
```

```
问题 1: 拉格朗日插值多项式的次数 n 越大越好吗?
```

```
(1) 考虑 f(x) = 1 / (1 + x^2) in [-5, 5]
         5
                 10
                        20
0.75 0.9054 0.6907 0.6413
1.75 0.5258 0.2330 0.2491
2.75 0.0096 0.1122 0.1282
3.75 -0.3568 0.1084 0.1903
4.75 -0.1595 -0.2360 6.4150
差值:
         5
                 10
                         20
0.75 -0.2654 -0.0507 -0.0013
1.75 -0.2796  0.0132 -0.0029
2.75 0.1072 0.0045 -0.0114
```

(2) 考虑
$$f(x) = e^x in [-1, 1]$$

差值:

画出两个函数以及其拉格朗日多项式的图像:

1.3.2 问题二

```
))
  print("差值: ")
  print(sub(
      targets_x=targets_x_1,
      targets_n=targets_n,
      solve=lambda n_i, x: ((1 / (1 + x ** 2)) - P(
          lambda x_i: 1 / (1 + x_i ** 2), np.linspace(-5, 5, n_i), x
      ))
  ))
  print("(2) 考虑 f(x) = e^x in [-5, 5]")
  targets_x_2 = [0.75, 1.75, 2.75, 3.75, 4.75]
  print(sub(
      targets_x=targets_x_2,
      targets_n=targets_n,
      solve=lambda n_i, x: P(lambda x_i: np.e ** x_i,
                             np.linspace(-1, 1, n_i), x)
  ))
  print("差值: ")
  print(sub(
      targets_x=targets_x_2,
      targets_n=targets_n,
      solve=lambda n_i, x: (np.e ** x - P(lambda x_i: np.e ** x_i,
                                          np.linspace(-1, 1, n_i), x))
  ))
  print("画出两个函数以及其拉格朗日多项式的图像:")
  slice_fluent_size = 1000
  x_linespace_2 = np.linspace(-1, 1, slice_fluent_size)
  x_linespace_10 = np.linspace(-5, 5, slice_fluent_size)
  y1 = 1 / (1 + x_linespace_2**2)
  Ls1 = \{n_i: np.array([P(lambda x_i: np.e ** x_i, np.linspace(-5, 5, n_i), x)\}
                      for x in x_linespace_2]) for n_i in targets_n}
  plt.figure(dpi=150)
  plt.title("(1) Consider f(x) = 1 / (1 + x^2)")
  plt.legend(handles=plt.plot(x_linespace_2, y1, label="f(x) = 1 / (1 + 1)"
\rightarrow x^2)"), loc='best')
```

```
plt.figure(dpi=150)
    plt.title("(1) Consider f(x) = 1 / (1 + x^2), select n")
    plt.legend(handles=[*[plt.plot(x_linespace_2, Ls1[n_i],__
 \Rightarrowlabel=f"$P_n(x),n={n_i}$")[0] for n_i in Ls1],
                         plt.plot(x_linespace_2, y1, label="f(x) = 1 / (1 + 1)
 \rightarrow x^2)")[0]], loc='best')
    y2 = np.e**x_linespace_10
    Ls2 = \{n_i: np.array([P(lambda x_i: np.e ** x_i, np.linspace(-5, 5, n_i), x)\}
                         for x in x_linespace_10]) for n_i in targets_n}
    plt.figure(dpi=150)
    plt.title("(2) Consider f(x) = e^x")
    plt.legend(handles=plt.plot(x_linespace_10, y2, label="$f(x) = e^x$"),__

¬loc='best')
    plt.figure(dpi=150)
    plt.title("(2) Consider $f(x) = e^x$, select n")
    plt.legend(handles=[*[plt.plot(x_linespace_10, Ls2[n_i],__
 \Rightarrowlabel=f"$P_n(x),n={n_i}$")[0] for n_i in Ls2],
                         plt.plot(x_linespace_10, y2, label="f(x) = e^x")[0]],
 →loc='best')
problem2()
```

```
问题 2: 插值区间越小越好吗?
```

(2) 考虑
$$f(x) = e^x in [-5, 5]$$

	5	10	20
0.75	2.1180	2.1170	2.1170
1.75	5.6343	5.7546	5.7546
2.75	13.6951	15.6357	15.2270
3.75	29.7101	42.3238	-237.3955
4.75	58.1314	113.0561	-19138.6250
差值:			

5 10 20 0.75 -0.0010 0.0000 -0.0000 1.75 0.1203 0.0000 0.0000 2.75 1.9475 0.0069 0.4156 3.75 12.8110 0.1973 279.9166 4.75 57.4529 2.5282 19254.2093

画出两个函数以及其拉格朗日多项式的图像:

1.3.3 问题四

```
"差值": {x: f(x) - P(f, nodes, x) for x in target_x}
        }).round(4))
        mean = np.mean([f(x) - P(f, nodes, x) for x in target_x])
        print(f"平均差值: {mean:.4f}")
        return mean
    nodes_data = [
        [(i + 1) ** 2 for i in range(3)],
        [(i + 5) ** 2 for i in range(3)],
        [(i + 9) ** 2 for i in range(3)],
        [(i + 12) ** 2 for i in range(3)]
    ]
    means = [do_by_node(i + 1, nodes=nodes_data[i])
            for i in range(len(nodes_data))]
    return DataFrame({
        "x_0,x_1,x_2": [",".join([str(n) for n in nodes_data[i]]) for i in_{\sqcup}
 →range(len(nodes_data))],
        "平均差值": [means[i] for i in range(len(nodes_data))]
    }).round(4)
problem4()
问题 4: 考虑拉格朗日插值问题, 内插比外推更可靠吗?
考虑函数 f(x) = sqrt(x)
(1) 考虑以 x_0 = 1, x_1 = 4, x_2 = 9 为节点的拉格朗日插值多项式 P_2(x)
                  f(x)
                               差值
         函数值
      2.2667 2.2361 -0.0306
5
    -20.2333 7.0711 27.3044
50
115 -171.9000 10.7238 182.6238
185 -492.7333 13.6015 506.3348
平均差值: 179.0581
```

"f(x)": {x: f(x) for x in target_x},

(2) 考虑以 \times 0 = 25, \times 1 = 36, \times 2 = 49 为节点的拉格朗日插值多项式 P 2(\times)

差值

函数值

5

2.8205 2.2361 -0.5844

f(x)

- 50 7.0688 7.0711 0.0023
- 115 9.0385 10.7238 1.6853
- 185 5.6527 13.6015 7.9488

平均差值: 2.2630

- (3) 考虑以 $x_0 = 81$, $x_1 = 100$, $x_2 = 121$ 为节点的拉格朗日插值多项式 $P_2(x)$ 函数值 f(x) 差值
- 5 4.0952 2.2361 -1.8592
- 50 7.1742 7.0711 -0.1031
- 115 10.7256 10.7238 -0.0018
- 185 13.3659 13.6015 0.2356

平均差值: -0.4321

- (4) 考虑以 $x_0 = 144$, $x_1 = 169$, $x_2 = 196$ 为节点的拉格朗日插值多项式 $P_2(x)$ 函数值 f(x) 差值
- 5 5.1411 2.2361 -2.9050
- 50 7.6026 7.0711 -0.5316
- 115 10.7508 10.7238 -0.0270
- 185 13.6026 13.6015 -0.0012

平均差值: -0.8662

- [18]: x_0,x_1,x_2 平均差值
 - 0 1,4,9 179.0581
 - 1 25,36,49 2.2630
 - 2 81,100,121 -0.4321
 - 3 144,169,196 -0.8662

1.4 实验结果

准确规范地给出各个实验题目的结果,并对相应的思考题给出正确合理的回答与说明。

由题目(1)代码、数据和图像可知:

- **1**. 对 $f(x) = 1/(1+x^2)$ 函数而言,在 [-5,5] 范围内,并不是 n 越大越好,n 越大反而误差增大。
- **2.** 对 $f(x) = e^x$ 函数而言,在 [-1,1] 范围内,n 越大拟合效果越好。

所以不是n越大越好,需要结合具体函数考虑。

由题目(2)代码、数据和图像,并且结合题目(1)的数据可知:

- **1.** 对 $f(x) = 1/(1+x^2)$ 函数而言,[-1,1] 差值区间效果要比 [-5,5] 好。
- **2.** 对 $f(x) = e^x$ 函数而言,[-5,5] 差值区间效果要比 [-1,1] 好。

所以不是差值区间越小越好,需要结合具体函数考虑。

由题目(**4**)代码、数据和图像,对函数 $f(x) = \sqrt{x}$,内插确实比外推可靠。

思考题

对问题一存在的问题, 应该如何解决?

问题一中, $f(x) = \frac{1}{1+x^2}$ 在 [-5,5] 的差值区间、 $n \in \{10,20\}$ 的情况下拟合效果并不好,n = 10, n = 20 的时候多项式在 x 较大的时候明显偏大。

由实验数据可知不应选择过大的插值多项式次数,n 应该 < 10。

对问题二中存在的问题的回答, 试加以说明。

插值区间不是越小越好,如这两个函数: $f(x) = \frac{1}{1+x^2}$ 和 $f(x) = e^x$,前者在 [-1,1] 上插值效果较好而在 [-5,5] 上效果不好;后者在 [-1,1] 上效果不好而在 [-5,5] 上效果较好。

如何理解插值问题中的内插和外推?

内插即只对已知数据集内部范围的点的插值运算,外推即对已知数据集外部范围的点进行插值运算。

内插运算比外推更可靠,偏差更小的原因是内插能够更加有效地利用已知数据集的限制条件,尽量利用已知的信息进行计算推测,故更加可靠。

2 实验题目 4: 牛顿迭代法

2.1 问题分析

准确描述并总结出实验题目(摘要),并准确分析原题的目的和意义。

2.1.1 方法概要

求非线性方程 f(x) = 0 的根 x^* , 牛顿分析法计算公式:

$$x_0 = \alpha, \ x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}, \ n = 0, 1, \cdots$$

一般地,牛顿迭代法具有局部收敛性,为了保证迭代收敛,要求,对充分小的 $\delta, \alpha \in O(x^*, \delta)$ 。如果 $f(x) \in C^2[a, b], f(x^*) = 0, f'(x^*) \neq 0$,那么,对充分小的 $\delta > 0$,当 $\alpha \in O(x^*, \delta)$ 时,由牛顿迭代法计算出的 $\{x_n\}$ 收敛于 x^* ,且收敛速度是 2 阶的;如果 $f(x) \in C^m[a, b], f(x^*) = f'(x^*) = \cdots =$

 $f^{(m-1)}(x^*)=0$, $f^{(m)}(x^*)\neq 0$ (m>1),那么,对充分小的 $\delta>0$,当 $\alpha\in O(x^*,\delta)$ 时,由牛顿迭代 法计算出的 $\{x_n\}$ 收敛于 x^* ,且收敛速度是 **1** 阶的。

2.1.2 实验目的

利用牛顿迭代法求 f(x) = 0 的根。

输入: 初值 α , 精度 $\varepsilon_1, \varepsilon_2$, 最大迭代次数 N

输出: 方程 f(x) = 0 根 x^* 的近似值或计算失败标志

2.2 数学原理

数学原理表达清晰且书写准确。

2.2.1 牛顿迭代法的几何意义

由上图所示,方程 f(x)=0 的根 α 是曲线 y=f(x) 与直线 y=0 的交点的横坐标。牛顿迭代法是取过 $(x_i,f(x_i))$ 点的切线方程

$$y = f(x_i) = f'(x_i)(x - x_i)$$

与 y=0 的交点的横坐标

$$x_{i+1} = x_i - \frac{f(x_i)}{f'(x_i)}$$

作为根的新的近似值。由此往复,只要初值取得接近根 α , $\{x_0,x_1,\cdots,x_n\}$ 会很快收敛于 α 。

2.3 程序设计流程

编译通过,根据输入能得到正确输出。

```
[52]: # 引入需要的包 import numpy as np from pandas import DataFrame from matplotlib import pyplot as plt from typing import *
```

```
[53]: def newton(
               f: Callable[[float], float],
               f_: Callable[[float], float],
               alpha: float,
               N: int,
               epsilon_1: float,
               epsilon_2: float,
               *args,
               **kwargs):# -> Optional[float]:
           history: List[float] = []
           n = 1
           x = alpha
           while n <= N:
               history.append(x)
               v, v_{-} = f(x), f_{-}(x)
               if abs(v) < epsilon_1:</pre>
                    return x, history
               if abs(v_) < epsilon_2:</pre>
                    return None, history
               x_ = x - v / v_
               if abs(x<sub>_</sub> - x) < epsilon_1:</pre>
                    history.append(x_)
                    return x_, history
               n = n + 1
               x = x_{\underline{}}
           return None, history
```

```
[54]: def show_history(title: str, history: List[float]):
                                   plt.figure(dpi=150)
                                   plt.title(title)
                                   plt.plot(range(len(history)), history)
[55]: def run_question(*args, **kwargs):
                                   res, history = newton(*args, **kwargs)
                                   if res is None:
                                                 print("拟合失败!")
                                   else:
                                                 print(f"x^* = \{res:.4f\}")
                                   show_history(kwargs.get('title', ''), history)
[56]: # 问题一
                     def question_1():
                                   print("问题 1 (1)")
                                   run_question(
                                                 f=lambda x: np.cos(x) - x,
                                                 f_=lambda x: -np.sin(x) - 1,
                                                 alpha=np.pi / 4,
                                                 N=10,
                                                 epsilon_1=1e-6,
                                                 epsilon_2=1e-4,
                                                 title="Q_1 (1): \cos\{x\} - x = 0, \alpha = " + f"{np.pi / 4:.9f}" + (1): \cos\{x\} - x = 0, \alpha = " + f"{np.pi / 4:.9f}" + (1): \cos\{x\} - x = 0, \alpha = " + f"{np.pi / 4:.9f}" + (1): \cos\{x\} - x = 0, \alpha = " + f"{np.pi / 4:.9f}" + (1): \cos\{x\} - x = 0, \alpha = " + f"{np.pi / 4:.9f}" + (1): \cos\{x\} - x = 0, \alpha = " + f"{np.pi / 4:.9f}" + (1): \cos\{x\} - x = 0, \alpha = " + f"{np.pi / 4:.9f}" + (1): \cos\{x\} - x = 0, \alpha = " + f"{np.pi / 4:.9f}" + (1): \cos\{x\} - x = 0, \alpha = " + f"{np.pi / 4:.9f}" + (1): \cos\{x\} - x = 0, \alpha = " + f"{np.pi / 4:.9f}" + (1): \cos\{x\} - x = 0, \alpha = " + f"{np.pi / 4:.9f}" + (1): \cos\{x\} - x = 0, \alpha = " + f"{np.pi / 4:.9f}" + (1): \cos\{x\} - x = 0, \alpha = " + f"{np.pi / 4:.9f}" + (1): \cos\{x\} - x = 0, \alpha = " + f"{np.pi / 4:.9f}" + (1): \cos\{x\} - x = 0, \alpha = " + f"{np.pi / 4:.9f}" + (1): \cos\{x\} - x = 0, \alpha = " + f"{np.pi / 4:.9f}" + (1): \cos\{x\} - x = 0, \alpha = " + f"{np.pi / 4:.9f}" + (1): \cos\{x\} - x = 0, \alpha = " + f"{np.pi / 4:.9f}" + (1): \cos\{x\} - x = 0, \alpha = " + f"{np.pi / 4:.9f}" + (1): \cos\{x\} - x = 0, \alpha = " + f"{np.pi / 4:.9f}" + (1): \cos\{x\} - x = 0, \alpha = " + f"{np.pi / 4:.9f}" + (1): \cos\{x\} - x = 0, \alpha = " + f"{np.pi / 4:.9f}" + (1): \cos\{x\} - x = 0, \alpha = " + f"{np.pi / 4:.9f}" + (1): \cos\{x\} - x = 0, \alpha = " + f"{np.pi / 4:.9f}" + (1): \alpha = " + f"{np.pi / 4:.9f}" + (1): \alpha = " + f"{np.pi / 4:.9f}" + (1): \alpha = " + f"{np.pi / 4:.9f}" + (1): \alpha = " + f"{np.pi / 4:.9f}" + (1): \alpha = " + f"{np.pi / 4:.9f}" + (1): \alpha = " + f"{np.pi / 4:.9f}" + (1): \alpha = " + f"{np.pi / 4:.9f}" + (1): \alpha = " + f"{np.pi / 4:.9f}" + (1): \alpha = " + f"{np.pi / 4:.9f}" + (1): \alpha = " + f"{np.pi / 4:.9f}" + (1): \alpha = " + f"{np.pi / 4:.9f}" + (1): \alpha = " + f"{np.pi / 4:.9f}" + (1): \alpha = " + f"{np.pi / 4:.9f}" + (1): \alpha = " + f"{np.pi / 4:.9f}" + (1): \alpha = " + f"{np.pi / 4:.9f}" + (1): \alpha = " + f"{np.pi / 4:.9f}" + (1): \alpha = " + f"{np.pi / 4:.9f}" + (1): \alpha = " + f"{np.pi
                         "$")
                                   print("问题 1 (2)")
                                   run_question(
                                                 f=lambda x: np.exp(-x) - np.sin(x),
                                                 f_=lambda x: -np.exp(x) - np.cos(x),
                                                 alpha=0.6,
                                                 N=10,
                                                 epsilon_1=1e-6,
                                                 epsilon_2=1e-4,
                                                 title="$Q_1 (2): e^{-1}-\sin{x} = 0, \alpha = 0.6$")
                     question_1()
```

问题 1 (1) x^* = 0.7391 问题 1 (2) 拟合失败!


```
[57]: # 问题二
      def question_2():
         print("问题 2 (1)")
          run_question(
             f=lambda x: x - np.exp(-x),
             f_=lambda x: 1 + np.exp(-x),
             alpha=0.5,
             N=10,
             epsilon_1=1e-6,
             epsilon_2=1e-4,
             title="$Q_2 (1): x-e^{-x}=0, \lambda = 0.5$"
         print("问题 2 (2)")
          run_question(
             f=lambda x: x**2 - 2 * x * np.exp(-x) + np.exp(-2 * x),
             f_=lambda x: -2*np.exp(-2*x) - 2*np.exp(-x) + 2*x + 2*np.exp(-x)*x,
             alpha=0.5,
             N=10,
              epsilon_1=1e-6,
```

```
epsilon_2=1e-4,
    title="$Q_2 (2): x^2-2xe^{-x}+e^{-2x} = 0, \\alpha = 0.5$")
question_2()
```

问题 2 (1) x^* = 0.5671 问题 2 (2) x^* = 0.5666

2.4 实验结果

准确规范地给出各个实验题目的结果,并对相应的思考题给出正确合理的回答与说明。

由问题 1 输出、图像可知:

- **1**. 第一问在第二次迭代即收敛到目标精度,得结果 $x^* = 0.7391$ (保留四位小数)
- 2. 第二问在 N 次数内收敛失败

由问题 2 输出、图像可知:

- **1**. 第一问在第二次迭代即收敛到目标精度,得结果 $x^* = 0.5671$ (保留四位小数)
- **2.** 第一问在第七次迭代才收敛到目标精度,得结果 $x^* = 0.5666$ (保留四位小数)

思考题:

1. 对实验 1,确定初值的原则是什么?实际计算中应如何解决?初值如果选择得偏离根太远,很可能出现迭代次数过多或者发散的情况。因此,初值最好选择在靠近根的位置。在实际计算中,如果仅仅使用牛顿迭代法收敛定理来选择初始值,往往比较复杂,一般使用简化方法:

对方程 f(x) = 0,如果

$$f''(x_0) \neq 0, |f'(x_0)|^2 > |\frac{f(x_0)f''(x_0)}{2}|$$

则可以保证大多数情况下的牛顿迭代法的收敛性。

2. 对实验 2, 如何解释在计算中出现的现象? 试加以说明由于牛顿迭代法的收敛阶都是 2, 而第二问所求函数是第一问的平方,即 $f_2(x)=f_1^2(x)$,平方后的函数的斜率相对原来小许多,所以第二问中收敛就比第一问慢。