In [1]:

```
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns

from sklearn.model_selection import train_test_split, cross_val_score

from sklearn.neighbors import KNeighborsRegressor
from sklearn.linear_model import LinearRegression , Ridge , Lasso
from sklearn.svm import SVR

from sklearn.metrics import r2_score, mean_absolute_error, mean_squared_error
import warnings
warnings.filterwarnings("ignore")
```

In [2]:

```
df = pd.read_csv("cars.csv")
df.head()
```

Out[2]:

	symboling	normalized- losses	make	fuel- type	body- style	drive- wheels	engine- location	width	height	engine- type
0	3	?	alfa- romero	gas	convertible	rwd	front	64.1	48.8	dohc
1	3	?	alfa- romero	gas	convertible	rwd	front	64.1	48.8	dohc
2	1	?	alfa- romero	gas	hatchback	rwd	front	65.5	52.4	ohcv
3	2	164	audi	gas	sedan	fwd	front	66.2	54.3	ohc
4	2	164	audi	gas	sedan	4wd	front	66.4	54.3	ohc
4										•

In [3]:

#Checking the number of nan values

```
In [4]:
```

```
df.isna().sum()
```

Out[4]:

symboling 0 normalized-losses 0 make 0 fuel-type 0 body-style 0 drive-wheels 0 engine-location 0 width 0 height 0 0 engine-type 0 engine-size 0 horsepower 0 city-mpg highway-mpg 0 0 price dtype: int64

In [5]:

df.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 205 entries, 0 to 204
Data columns (total 15 columns):

#	Column	Non-Null Count	Dtype
0	symboling	205 non-null	int64
1	normalized-losses	205 non-null	object
2	make	205 non-null	object
3	fuel-type	205 non-null	object
4	body-style	205 non-null	object
5	drive-wheels	205 non-null	object
6	engine-location	205 non-null	object
7	width	205 non-null	float64
8	height	205 non-null	float64
9	engine-type	205 non-null	object
10	engine-size	205 non-null	int64
11	horsepower	205 non-null	object
12	city-mpg	205 non-null	int64
13	highway-mpg	205 non-null	int64
14	price	205 non-null	int64
dtyp	es: float64(2), int	64(5), object(8)	

memory usage: 24.1+ KB

In [6]:

```
df["normalized-losses"].value_counts()
Out[6]:
```

```
Out[6]:
?
       41
161
       11
91
        8
        7
150
104
        6
128
        6
134
        6
        5
85
94
        5
        5
65
        5
168
102
        5
74
        5
        5
103
        5
95
106
        4
118
        4
148
        4
        4
93
122
        4
        3
115
125
        3
154
        3
        3
101
        3
83
137
        3
192
        2
        2
129
        2
89
        2
153
81
        2
        2
87
        2
197
        2
194
        2
158
        2
108
145
        2
        2
164
        2
113
        2
119
        2
110
188
        2
        1
256
        1
107
98
        1
142
        1
78
        1
77
        1
90
        1
        1
121
231
        1
186
```

Name: normalized-losses, dtype: int64

In [7]:

```
df["horsepower"].value_counts()
```

Out[7]:

```
19
68
70
       11
69
       10
116
        9
         8
110
95
         7
88
         6
160
         6
101
         6
114
         6
62
         6
82
         5
         5
76
         5
97
102
         5
         5
84
145
         5
111
         4
         4
86
92
         4
         4
123
182
         3
121
         3
         3
85
         3
207
152
         3
         3
73
90
         3
         2
176
52
         2
         2
100
184
         2
         2
56
         2
?
         2
162
         2
94
161
         2
         2
112
156
         2
         2
155
72
         1
48
         1
200
         1
106
         1
         1
60
78
         1
115
         1
288
         1
120
         1
142
         1
143
         1
140
         1
         1
175
```

```
134 1
55 1
135 1
64 1
262 1
154 1
58 1
```

8/21/2021

Name: horsepower. dtvpe: int64

Handling the Nan values

In [8]:

```
#Replacing the values with np.nan
df["normalized-losses"].replace("?", np.nan, inplace=True)
df["horsepower"].replace("?", np.nan, inplace=True)

#Changing the datatype
df["normalized-losses"] = df["normalized-losses"].astype("float")
df["horsepower"] = df["horsepower"].astype("float")

#Getting the mean value
nmean = df["normalized-losses"].mean()
hmean = df["horsepower"].mean()

#Filling the missing values with mean values
df["normalized-losses"].fillna(nmean , inplace=True)
df["horsepower"].fillna(hmean , inplace=True)
```

In [9]:

```
df.info()
```

```
RangeIndex: 205 entries, 0 to 204
Data columns (total 15 columns):
 #
    Column
                       Non-Null Count Dtype
                        -----
    _____
- - -
                        205 non-null
                                        int64
 0
    symboling
 1
    normalized-losses 205 non-null
                                       float64
 2
    make
                       205 non-null
                                       object
 3
                       205 non-null
    fuel-type
                                       object
 4
    body-style
                       205 non-null
                                       object
 5
    drive-wheels
                       205 non-null
                                       object
 6
    engine-location
                       205 non-null
                                       object
 7
    width
                       205 non-null
                                       float64
 8
    height
                       205 non-null
                                       float64
 9
    engine-type
                        205 non-null
                                       object
 10
                       205 non-null
                                       int64
    engine-size
                       205 non-null
                                       float64
 11
    horsepower
 12
    city-mpg
                       205 non-null
                                       int64
                        205 non-null
 13
    highway-mpg
                                        int64
                        205 non-null
                                        int64
 14
    price
dtypes: float64(4), int64(5), object(6)
memory usage: 24.1+ KB
```

<class 'pandas.core.frame.DataFrame'>

- It is observed that the datatype of columns containing numeric values now have proper datatype.
- Also the operation of handling nan values is performed succesfully.

Outliers

• Extracting the outliers with the help of boxplot.

In [10]:

```
plt.figure(figsize=(12,8))
sns.boxplot(data=df , x="price" , y="make")
plt.grid(True)
plt.show()
```


Droping the rows containing outliers and cleaning the data.

```
In [11]:
```

```
df[(df["make"]=="dodge") & (df["price"]>11000)]
```

Out[11]:

	symboling	normalized- losses	make	fuel- type	body- style	drive- wheels	engine- location	width	height	engine- type	•
29	3	145.0	dodge	gas	hatchback	fwd	front	66.3	50.2	ohc	
4										>	

In [12]:

```
df.drop(29, inplace=True)
```

```
In [13]:
```

```
df[(df["make"]=="honda") & (df["price"]>11000)]
```

Out[13]:

	symboling	normalized- losses	make	fuel- type	body- style	drive- wheels	engine- location	width	height	engine- type	engi s
-	41 0	85.0	honda	gas	sedan	fwd	front	65.2	54.1	ohc	
4											•

In [14]:

```
df.drop(41, inplace=True)
```

In [15]:

```
df[(df["make"]=="isuzu") & (df["price"]>15000)]
```

Out[15]:

	symboling	normalized- losses	make	fuel- type	body- style	drive- wheels	engine- location	width	height	engine- type	engiı s
45	0	122.0	isuzu	gas	sedan	fwd	front	63.6	52.0	ohc	
4											•

In [16]:

```
df.drop(45, inplace=True)
```

In [17]:

```
df[(df["make"]=="mitsubishi") & (df["price"]>13000)]
```

Out[17]:

	symboling	normalized- losses	make	fuel- type	body- style	drive- wheels	engine- location	width	height	engine typ
83	3	122.0	mitsubishi	gas	hatchback	fwd	front	66.3	50.2	oh
84	3	122.0	mitsubishi	gas	hatchback	fwd	front	66.3	50.2	oh
4										•

In [18]:

```
df.drop([83,84], inplace=True)
```

```
In [19]:
```

```
df[(df["make"]=="plymouth") & (df["price"]>10000)]
```

Out[19]:

	symboling	normalized- losses		fuel- type	body- style	drive- wheels	engine- location	width	height	engine typ
124	3	122.0	plymouth	gas	hatchback	rwd	front	66.3	50.2	oh

```
→
```

In [20]:

```
df.drop(124, inplace=True)
```

In [21]:

```
df[(df["make"]=="toyota") & (df["price"]>12000)]
```

Out[21]:

	symboling	normalized- losses	make	fuel- type	body- style	drive- wheels	engine- location	width	height	engine- type
172	2	134.0	toyota	gas	convertible	rwd	front	65.6	53.0	ohc
178	3	197.0	toyota	gas	hatchback	rwd	front	67.7	52.0	dohc
179	3	197.0	toyota	gas	hatchback	rwd	front	67.7	52.0	dohc
180	-1	90.0	toyota	gas	sedan	rwd	front	66.5	54.1	dohc
181	-1	122.0	toyota	gas	wagon	rwd	front	66.5	54.1	dohc
4										•

In [22]:

```
df.drop([172,178,179,180,181], inplace=True)
```

Encoding the cleaned data.

```
In [23]:
```

```
df_cat = df.select_dtypes(object)
df_num = df.select_dtypes(["int64", "float64"])
```

In [24]:

df_num

Out[24]:

	symboling	normalized- losses	width	height	engine- size	horsepower	city- mpg	highway- mpg	price
0	3	122.0	64.1	48.8	130	111.0	21	27	13495
1	3	122.0	64.1	48.8	130	111.0	21	27	16500
2	1	122.0	65.5	52.4	152	154.0	19	26	16500
3	2	164.0	66.2	54.3	109	102.0	24	30	13950
4	2	164.0	66.4	54.3	136	115.0	18	22	17450
200	-1	95.0	68.9	55.5	141	114.0	23	28	16845
201	-1	95.0	68.8	55.5	141	160.0	19	25	19045
202	-1	95.0	68.9	55.5	173	134.0	18	23	21485
203	-1	95.0	68.9	55.5	145	106.0	26	27	22470
204	-1	95.0	68.9	55.5	141	114.0	19	25	22625

194 rows × 9 columns

In [25]:

df_cat

Out[25]:

	make	fuel-type	body-style	drive-wheels	engine-location	engine-type
0	alfa-romero	gas	convertible	rwd	front	dohc
1	alfa-romero	gas	convertible	rwd	front	dohc
2	alfa-romero	gas	hatchback	rwd	front	ohcv
3	audi	gas	sedan	fwd	front	ohc
4	audi	gas	sedan	4wd	front	ohc
200	volvo	gas	sedan	rwd	front	ohc
201	volvo	gas	sedan	rwd	front	ohc
202	volvo	gas	sedan	rwd	front	ohcv
203	volvo	diesel	sedan	rwd	front	ohc
204	volvo	gas	sedan	rwd	front	ohc

194 rows × 6 columns

```
In [26]:
```

```
from sklearn.preprocessing import LabelEncoder
```

```
In [27]:
```

```
for col in df_cat:
    le = LabelEncoder()
    df_cat[col] = le.fit_transform(df_cat[col])
```

In [28]:

```
df_cat
```

Out[28]:

	make	fuel-type	body-style	drive-wheels	engine-location	engine-type
0	0	1	0	2	0	0
1	0	1	0	2	0	0
2	0	1	2	2	0	5
3	1	1	3	1	0	3
4	1	1	3	0	0	3
200	21	1	3	2	0	3
201	21	1	3	2	0	3
202	21	1	3	2	0	5
203	21	0	3	2	0	3
204	21	1	3	2	0	3

194 rows × 6 columns

• Succesfully converted categorical data into numerical data using LabelEncoder.

Creating new df by combining df_cat & df_num

In [29]:

df_num

Out[29]:

	symboling	normalized- losses	width	height	engine- size	horsepower	city- mpg	highway- mpg	price
0	3	122.0	64.1	48.8	130	111.0	21	27	13495
1	3	122.0	64.1	48.8	130	111.0	21	27	16500
2	1	122.0	65.5	52.4	152	154.0	19	26	16500
3	2	164.0	66.2	54.3	109	102.0	24	30	13950
4	2	164.0	66.4	54.3	136	115.0	18	22	17450
200	-1	95.0	68.9	55.5	141	114.0	23	28	16845
201	-1	95.0	68.8	55.5	141	160.0	19	25	19045
202	-1	95.0	68.9	55.5	173	134.0	18	23	21485
203	-1	95.0	68.9	55.5	145	106.0	26	27	22470
204	-1	95.0	68.9	55.5	141	114.0	19	25	22625

194 rows × 9 columns

In [30]:

df_cat

Out[30]:

	make	fuel-type	body-style	drive-wheels	engine-location	engine-type
0	0	1	0	2	0	0
1	0	1	0	2	0	0
2	0	1	2	2	0	5
3	1	1	3	1	0	3
4	1	1	3	0	0	3
200	21	1	3	2	0	3
201	21	1	3	2	0	3
202	21	1	3	2	0	5
203	21	0	3	2	0	3
204	21	1	3	2	0	3

194 rows × 6 columns

```
In [31]:
```

```
df = pd.concat([df_cat, df_num], axis=1)
```

In [32]:

```
df.info()
```

<class 'pandas.core.frame.DataFrame'>
Int64Index: 194 entries, 0 to 204
Data columns (total 15 columns):

#	Column	Non-Null Count	Dtype			
0	make	194 non-null	int32			
1	fuel-type	194 non-null	int32			
2	body-style	194 non-null	int32			
3	drive-wheels	194 non-null	int32			
4	engine-location	194 non-null	int32			
5	engine-type	194 non-null	int32			
6	symboling	194 non-null	int64			
7	normalized-losses	194 non-null	float64			
8	width	194 non-null	float64			
9	height	194 non-null	float64			
10	engine-size	194 non-null	int64			
11	horsepower	194 non-null	float64			
12	city-mpg	194 non-null	int64			
13	highway-mpg	194 non-null	int64			
14	price	194 non-null	int64			
11						

dtypes: float64(4), int32(6), int64(5)

memory usage: 19.7 KB

EDA & Preprocessing

In [33]:

from scipy.stats import skew

In [34]:

```
for col in df:
    print(col)
    print(skew( df[col] ))

plt.figure()
    sns.distplot(df[col])
    plt.show()
```

0.21386866184357742

normalized-losses 0.848205953606264

In [35]:

```
plt.figure(figsize=(12,12))
sns.heatmap(df.corr() , annot=True)
```

Out[35]:

<AxesSubplot:>

In [36]:

```
df.corr()["price"].sort_values()
```

Out[36]:

highway-mpg	-0.704846			
city-mpg	-0.680412			
make	-0.173792			
fuel-type	-0.115791			
symboling	-0.095905			
body-style	-0.065831			
engine-type	0.102758			
normalized-losses	0.129973			
height	0.147010			
engine-location	0.333620			
drive-wheels	0.584485			
width	0.730503			
horsepower	0.768921			
engine-size	0.869638			
price	1.000000			
Name: price, dtype:	float64			

In [37]:

sns.pairplot(df)

Out[37]:

<seaborn.axisgrid.PairGrid at 0x22476f2b520>

In [38]:

```
sns.pairplot(data=df , hue="price")
```

Out[38]:

<seaborn.axisgrid.PairGrid at 0x2247cc2f610>

Model Creation

In [39]:

```
df.head()
```

Out[39]:

	make	fuel- type	body- style	drive- wheels	engine- location	engine- type	symboling	normalized- losses	width	height	engine siz
0	0	1	0	2	0	0	3	122.0	64.1	48.8	13
1	0	1	0	2	0	0	3	122.0	64.1	48.8	13
2	0	1	2	2	0	5	1	122.0	65.5	52.4	15
3	1	1	3	1	0	3	2	164.0	66.2	54.3	10
4	1	1	3	0	0	3	2	164.0	66.4	54.3	13

```
4
```

In [40]:

```
x = df.iloc[:,:-1]
y = df.iloc[:,-1]
```

In [41]:

```
xtrain, xtest, ytrain, ytest = train_test_split(x,y, test_size=0.2, random_state=1)
```

In [42]:

```
def mymodel(model):
    model.fit(xtrain, ytrain)
    ypred = model.predict(xtest)

ac = r2_score(ytest, ypred)
    mae = mean_absolute_error(ytest, ypred)
    mse = mean_squared_error(ytest, ypred)
    rmse = np.sqrt(mse)

train = model.score(xtrain,ytrain)
    test = r2_score(ytest,ypred)

print(f"Training accuracy :- {train}")
    print(f"Testing accuracy :- {test}")
    print()
    print()
    print(f"R2_score :- \n{ac}\n\nMAE :-\n{mae}\n\nMSE :-\n{mse}\n\nRMSE :-\n{rmse}")
```

```
In [43]:
```

```
models = []
models.append(("Linreg :- ", LinearRegression()))
                            :- ", KNeighborsRegressor()))
:- ", SVR(kernel="linear")))
models.append(("KNN
models.append(("SVM-1
                              :- ", SVR(kernel="rbf")))
models.append(("SVM-r
for name, model in models:
    print(name)
    mymodel(model)
    print("\n\n\n")
Linreg
               :-
Training accuracy :- 0.8941185334320063
Testing accuracy :- 0.7355527822266537
R2_score :-
0.7355527822266537
MAE :-
3184.5155994121515
MSE :-
21864056.153787263
RMSE :-
4675.901640730615
KNN
Training accuracy :- 0.9158165653923884
Testing accuracy :- 0.6671791815444368
R2 score :-
0.6671791815444368
MAE :-
3298.7692307692305
MSE :-
27517071.743589748
RMSE :-
5245.671715194323
SVM-1
Training accuracy :- 0.8339318161071796
```

localhost:8888/notebooks/Downloads/IT Vedant/Machine Learning/Assignments/Cars.csv.ipynb#Feature-Engineering

Testing accuracy :- 0.6151716897711921

R2_score :-

0.6151716897711921

```
MAE :-
```

3860.550037158177

MSE :-

31816964.667864848

RMSE :-

5640.652858301497

SVM-r :-

Training accuracy :- -0.13936583233415778
Testing accuracy :- -0.1791158963225512

R2_score :-

-0.1791158963225512

MAE :-

5925.926834043423

MSE :-

97487341.27774158

RMSE :-

9873.56780894027

In [44]:

```
accuracy=[]

for i in range(1,51):
    knn = KNeighborsRegressor(n_neighbors=i)
    knn.fit(xtrain , ytrain)
    ypred = knn.predict(xtest)
    accuracy.append(r2_score(ytest,ypred))
```

In [45]:

```
plt.plot(range(1,51),accuracy)
plt.grid(True)
plt.show()
```



```
In [46]:
```

```
n12 = []
for i in range(100):
    12 = Ridge(alpha=i)
    12.fit(xtrain,ytrain)
    nl2.append((i,l2.score(xtest,ytest)))
n12
```

Out[46]:

```
[(0, 0.7355527822266543),
 (1, 0.7016542422732281),
 (2, 0.6847205630664456),
 (3, 0.6751690951781149),
 (4, 0.6689336369274135),
 (5, 0.6644614007235592),
 (6, 0.6610439498857883),
 (7, 0.6583127977364198).
 (8, 0.6560570137239903),
 (9, 0.6541467733216799),
 (10, 0.6524975027598207),
 (11, 0.6510515309727207),
 (12, 0.6497680257188643),
 (13, 0.6486171525383218),
 (14, 0.6475765216649285),
 (15, 0.6466289392910423),
 (16, 0.6457609352149597),
 (17, 0.6449617700485919),
 (18, 0.6442227483265888),
 (19, 0.6435367323275265),
 (20, 0.6428977909174949),
 (21, 0.6423009412692836),
 (22, 0.6417419557549824),
 (23, 0.6412172154047594),
 (24, 0.6407235971861645),
 (25, 0.6402583862165862),
 (26, 0.6398192066102026),
 (27, 0.639403966428487),
 (28, 0.6390108134298362),
 (29, 0.6386380991777165),
 (30, 0.6382843496833958),
 (31, 0.6379482412052111),
 (32, 0.6376285801525738),
 (33, 0.6373242862842188),
 (34, 0.6370343785705443),
 (35, 0.636757963226026),
 (36, 0.6364942235212865),
 (37, 0.6362424110640186),
 (38, 0.6360018382995689),
 (39, 0.6357718720300747),
 (40, 0.6355519277888122),
 (41, 0.6353414649362952),
 (42, 0.6351399823684665),
 (43, 0.6349470147463903),
 (44, 0.6347621291722089),
 (45, 0.6345849222485911),
 (46, 0.6344150174690382),
 (47, 0.6342520628947241),
 (48, 0.6340957290803899),
```

(49, 0.633945707217447), (50, 0.6338017074671669), (51, 0.6336634574607254), (52, 0.6335307009461641), (53, 0.6334031965650795), (54, 0.6332807167441894), (55, 0.633163046688879), (56, 0.6330499834675272), (57, 0.6329413351768225), (58, 0.6328369201795169), (59, 0.6327365664071011), (60, 0.6326401107208057), (61, 0.6325473983250953), (62, 0.6324582822285081), (63, 0.6323726227472874),(64, 0.632290287047744),(65, 0.6322111487237436), (66, 0.6321350874061213), (67, 0.6320619884011252), (68, 0.6319917423553328),(69, 0.6319242449447335), (70, 0.6318593965858967), (71, 0.6317971021673566),(72, 0.6317372707995456),(73, 0.6316798155817325), (74, 0.6316246533846166), (75, 0.631571704647304),(76, 0.6315208931875617), (77, 0.6314721460242934), (78, 0.6314253932113333), (79, 0.6313805676816733), (80, 0.6313376051013773), (81, 0.6312964437324361), (82, 0.6312570243039552), (83, 0.6312192898910409), (84, 0.6311831858008601), (85, 0.6311486594653745), (86, 0.6311156603402739), (87, 0.6310841398096971), (88, 0.631054051096347), (89, 0.631025349176634), (90, 0.6309979907005325), (91, 0.6309719339158172), (92, 0.630947138596424), (93, 0.6309235659746519), (94, 0.6309011786769745), (95, 0.6308799406632299), (96, 0.6308598171689843), (97, 0.6308407746508724), (98, 0.6308227807347309), (99, 0.6308058041663689)]

```
In [47]:
```

```
nl1 = []
for i in range(100):
    11 = Lasso(alpha=i)
    11.fit(xtrain,ytrain)
    nl1.append((i,l1.score(xtest,ytest)))
nl1
```

Out[47]:

```
[(0, 0.7355527822266535),
 (1, 0.7349043968321456),
 (2, 0.734224129247808),
 (3, 0.7335119482950561),
 (4, 0.7327678216112494),
 (5, 0.7319918069060299),
 (6, 0.7311838864554618),
 (7, 0.7303440009125781),
 (8, 0.7294722457664095),
 (9, 0.728568558705089),
 (10, 0.7276329142276274),
 (11, 0.7266654426694357),
 (12, 0.7256659278294073),
 (13, 0.7246344541902952),
 (14, 0.7235711776815625),
 (15, 0.7224758377877629),
 (16, 0.7213487164982898),
 (17, 0.7201895305351079),
 (18, 0.7189984282153095),
 (19, 0.7177754221166048),
 (20, 0.7165203766929641),
 (21, 0.71523345414556),
 (22, 0.7139146862983363),
 (23, 0.7125639314145946),
 (24, 0.7111812791847517),
 (25, 0.7097664480053986),
 (26, 0.7083200026249673),
 (27, 0.7068417949659476),
 (28, 0.7053387530630352),
 (29, 0.703825264895338),
 (30, 0.7022833223294923),
 (31, 0.7007156529267059),
 (32, 0.6991170851658983),
 (33, 0.6974860191261013),
 (34, 0.6958241390246818),
 (35, 0.6941295302583039),
 (36, 0.6924042214194559),
 (37, 0.690646107618992),
 (38, 0.6888562462795077),
 (39, 0.6870357825159619),
 (40, 0.6851823850675423),
 (41, 0.683298529611013),
 (42, 0.6813815856828743),
 (43, 0.6794343568301573),
 (44, 0.6774538635164875),
 (45, 0.6754432355182265),
 (46, 0.6734010488724398),
 (47, 0.6713249820637119),
```

(48, 0.6692193955744843), (49, 0.6670797874674177), (50, 0.6649084727382653), (51, 0.6627054026816726), (52, 0.6604705772976398),(53, 0.6582040808387541), (54, 0.6559060756859811), (55, 0.6535910737116393), (56, 0.6512443878924672), (57, 0.6488660296640226), (58, 0.6464561105279234), (59, 0.644014572224729), (60, 0.6415413778776521), (61, 0.6390365387265051), (62, 0.6365160593232179),(63, 0.6340051835687787),(64, 0.6320858674588254), (65, 0.6319941472925529), (66, 0.6319023132801276), (67, 0.6318125461834823), (68, 0.6317200169467454), (69, 0.6316273948684725), (70, 0.6315345696511616),(71, 0.6314438329521539), (72, 0.6313504617482983), (73, 0.6312569097328515), (74, 0.6311631558307014),(75, 0.6310694268918934), (76, 0.6309754456784029), (77, 0.6308836678692045), (78, 0.630789171403301),(79, 0.6306943923956252), (80, 0.6305993617142169), (81, 0.6305040879516217), (82, 0.6304086000844271), (83, 0.6303128605110933), (84, 0.6302168863052457), (85, 0.630120682703242), (86, 0.6300242273703448), (87, 0.6299275197257057), (88, 0.6298305598564977), (89, 0.6297333708063313), (90, 0.6296359391984844), (91, 0.6295382558267923), (92, 0.6294427720509725), (93, 0.6293567923373555), (94, 0.6292773020643387), (95, 0.6291975819920547), (96, 0.629117638518707), (97, 0.6290374703564884), (98, 0.6289570770217647),

(99, 0.6288764657124297)]

```
In [48]:
```

```
models = []
                           :- ", LinearRegression()))
models.append(("Linreg
                             :- ", KNeighborsRegressor(n_neighbors=1)))
:- ", SVR(kernel="linear")))
models.append(("KNN
models.append(("SVM-1
models.append(("SVM-r
                              :- ", SVR(kernel="rbf")))
for name, model in models:
    print(name)
    mymodel(model)
    print("\n\n\n")
Linreg
Training accuracy :- 0.8941185334320063
Testing accuracy :- 0.7355527822266537
R2_score :-
0.7355527822266537
MAE :-
3184.5155994121515
MSE :-
21864056.153787263
RMSE :-
4675.901640730615
KNN
Training accuracy :- 0.9928862905865443
Testing accuracy :- 0.74027773895488
R2_score :-
0.74027773895488
MAE :-
2592.5384615384614
MSE :-
21473404.589743588
RMSE :-
4633.940503474725
SVM-1
               : -
Training accuracy :- 0.8339318161071796
Testing accuracy :- 0.6151716897711921
R2 score :-
```

0.6151716897711921

```
MAE :-
```

3860.550037158177

MSE :-

31816964.667864848

RMSE :-

5640.652858301497

SVM-r :-

Training accuracy :- -0.13936583233415778
Testing accuracy :- -0.1791158963225512

R2_score :-

-0.1791158963225512

MAE :-

5925.926834043423

MSE :-

97487341.27774158

RMSE :-

9873.56780894027

Cross Validation Score

```
In [49]:
```

Name Accuracy STD

Linreg :- 0.5155626638216251 0.29417502732645967 KNN :- 0.3998279418728215 0.3576296707751772 SVM-1 :- 0.5323432027166152 0.33526075240067404 SVM-r :- -0.1881168806138271 0.13892274676036426

In []: