Colour the Graph

LUMS Students' Mathematics Society

14 March 2022

1 What is Colour the Graph?

The game consists of a planar graph drawn on a chart paper and a palette of counters of 5 different colours. Each player can place a counter on a vertex with the condition that counters of the same colour cannot be placed on neighbouring vertices. Player A tries to colour all vertices while Player B tries to disrupt this by ensuring that at least one vertex remains uncoloured. B will always have a strategy to win.

2 Explanation

2.1 Some Definitions

A simple connected graph is an ordered pair G = (V, E) containing members of a set of vertices V and a set of edges E.

An edge e connects 2 vertices v_1 and v_2 . v_1 and v_2 are then referred to as neighbouring vertices.

A face f is a region bounded by edges, including the outer infinitely large region.

A simple connected **planar** graph is one that can be drawn on a plane such that its edges don't cross over one another.

The **degree** of a vertex deg(v) is the number of edges associated with v.

The **chromatic number** $\chi(G)$ of a graph G is the minimum number of different colours required to colour its vertices such that no two neighbouring vertices have the same colour.

2.2 A Different Game

Suppose that only one player was colouring the vertices of a planar graph. Then, the following theorem has been proved (with help from a computer):

Theorem 1. A simple connected planar graph G has $\chi(G) \leq 4$.

Therefore, every such graph G can be coloured with at most 4 different colours and hence, the name "Four Colour Theorem".

Figure 1: The graph in question

2.3 The Original Game Revisited

In terms of the stated definitions, Player A's target is to colour all vertices of the simple connected planar graph G. Player B must stop this from happening. Let us label the vertices of the graph as shown in Figure 1. Let X be the set of 5 colours we have in our palette, denoting each colour with an integer.

$$X = \{1, 2, 3, 4, 5\}$$

Now, the labelled vertices form a **dominating set** $\{a_i, b_i\}$ where $i \in \{1, 2, 3, 4, 5, 6\}$. This means that for the set $\{a_i, b_i\}$, every other vertex is a neighbouring vertex for one of the elements in the set. Therefore, B follows a strategy where they colour a_i or b_i with the same colour that A just coloured b_i or a_i with, for every i. Therefore, no other vertex can be coloured with the same colour as a_i and b_i . It follows that a palette of at least 6 colours is required for A to win. (We say that the **game chromatic number** $\chi_g(G)$ of this graph is at least 6.) But A only has 5 different colours in their palette. Therefore, B will always win (provided they follow this strategy).

3 Further Reading

For further discussions on the game chromatic number, see Kierstead, H.A.; Trotter W.T. (1994), "Planar Graph Coloring with an Uncooperative Partner", *Journal of Graph Theory*, **18** (6): 569 – 584.