THAMWAY PROT series hardware server software

A/D converter section

使用するポート

5026/TCP DV14U25 AD 用ポートです。

コマンドのデリミタについて

TCP/IP を用いたコマンドには必ずデリミタ文字をつけて下さい。 デリミタは、'CR', 'CR+LF', ';'の3つのうちのいずれかです。

使用する数値について

整数

"Ox"を頭につけると16進数とみなします。

"0"を頭につけると8進数とみなします。

"0b"を頭につけると2進数とみなします。

通常10進数とみなします。

例: 0x123 → 291

 $0b1100 \rightarrow 12$

 $0123 \rightarrow 83$

実数

数値の後ろに"u"をつけると1e-6とみなします。

数値の後ろに"m"をつけると1e-3とみなします。

数値の後ろに"k"をつけると1e+3とみなします。

例: 123k → 123000

1. $2u \rightarrow 0.0000012$

QPSK

送信パルスと同時にQPSKパルスを出力します。'QPSK1'と'QPSK2'の2本あります。

時間

時間の単位は(S)秒です。

周波数

周波数の単位は(Hz) ヘルツです。

電圧

電圧の単位は、(V)ボルトです。

AD コマンド一覧

TCP/IP PORT NUMBER: 5026

共通コマンド

機器情報を表示する。

[書式]

*idn?

[説明]

接続先のハードウェア・ソフトウェアの情報の表示を行います。

[表示例]

THAMWAY, N210-1026T AD, Version 2.00, DV14U25 , 101108, CLK=25MHZ, BIT=14, RAM=524288,

lua スクリプトファイルを実行する。

[書式]

run_lua〈ファイル名〉

[説明]

PC上の lua スクリプトファイルを実行します。

[例]

run_lua c:/myprograms/test1.lua

I/0ポートにデータを書き込む

[書式]

outb <I/0 アドレス>, <バイトデータ (8bit)>

outw 〈I/O アドレス〉,〈ワードデータ (16bit)〉

[説明]

各機器のレジスターを直接操作することができます。

I/0 ポートからデータを読み込む

[書式]

inb < I/0 アドレス>

inw <I/0 アドレス>

[説明]

各機器のレジスターを直接操作することができます。

inb: read 8bit data. inw: read 16bit data.

AD ボードコマンド

AD ボードの状態を読み出す。

[書式]

readstatus

[説明]

戻り値

	В7	В6	B5	B4	В3	B2	B1	В0
戻り値	0	PLL	SOVF	COVF	0	END	BUSY	SP

SP:サンプリング状態を示す。

SP	0	AD 停止状態
or or	1	AD サンプリング中

BUSY: サンプル開始コマンドを受けてから終了するまでの状態を示す。

BUSY	0	AD 停止状態
	1	待機+動作中

END: サンプル終了の状態を示す。

END	0	AD サンプル未完了
	1	AD サンプル終了

COVF: COS 側 AD が、過入力の状態を示す。

COVF	0	COS AD 入力レベルが、適正レベル
	1	COS AD 入力レベルが、過入力

SOVF: SIN側ADが、過入力の状態を示す。

SOVF	0	SIN AD 入力レベルが、適正レベル
	1	SIN AD 入力レベルが、過入力

PLL: PLL 回路の状態を示す。

PLL	0	PLL Lock 状態(正常)
	1	PLL Unlock 状態(異常)

AD変換準備を行う

[書式]

startad 〈サンプル回数〉、〈繰り返し回数〉、〈列数〉、〈flip モード〉

[説明]

AD コンバータをトリガー待ち状態にセットします。

サンプル回数 1...524272 (0x0001...0x7fff0)

繰り返し回数 1...65520 (0x0001..0xfff0)

列数 1...256

flip モード 0:使用しない。

1:使用する。

ADメモリーを読み出す

[書式]

readmemoryb〈スタートサンプル位置〉、〈サンプル数〉

[説明]

AD データを読み出します。スタートサンプル位置は必ず2の倍数を指定してください。

サンプリング周波数の書き込み

[書式]

setamplefreq〈周波数(整数)〉

「説明]

サンプリング周波数をセットします。単位はヘルツです。内部でセットできる近い周波数をセットしま す。セットした周波数を返します。

サンプリング周波数の読み出し

[書式]

getsamplefreq

[説明]

サンプリング周波数を読み出します。単位はヘルツです。

積算回数を読み出す

[書式]

gettriggercount

[説明]

いままで入ったトリガー回数を取得します。この数値で積算データを割り算することができます。 このコマンドを使用するとサンプリングを止めますので注意してください。

A/Dメモリー読み出しフォーマット("readmemoryb")

AD DATA の詳細(*IDN?の問い合わせ結果にBIT=14 が含まれる AD ボードの場合)

AD DATAの詳細(*IDN?の問い合わせ結果にBIT=16が含まれるADボードの場合)

Table 1: A/D Board Register MAP

Low-address	Register name	В7	В6	B5	B4	В3	B2	B1	В0
0x20	status	0	PLL	SOVF	COVF	0	END	BUSY	SP
0x21	control	0	0	0	TEST	0	0	S. TRG	SP ON
0x22	mode	0	INV	TC1	TC0	CS	C2	C1	CO
0x23	clock	CK7	CK6	CK5	CK4	CK3	CK2	CK1	CK0
0x24	サンプル数	S 7	S6	S 5	S4	S3	S2	S1	S0
0x25	サンプル数	S15	S14	S13	S12	S11	S10	S9	S8
0x26	サンプル数	0	0	0	0	0	S18	S17	S16
0x28	積算回数	D7	D6	D5	D4	D3	D2	D1	DO
0x29	積算回数	D15	D14	D13	D12	D11	D10	D9	D8
0x2A	積算回数	0	0	0	0	0	0	D17	D16
0x2C	フレーム数	F7	F6	F5	F4	F3	F2	F1	F0
0x30	COS RAM ADDR	CA7	CA6	CA5	CA4	CA3	CA2	CA1	CAO
0x31	COS RAM ADDR	CA15	CA14	CA13	CA12	CA11	CA10	CA9	CA8
0x32	COS RAM ADDR	0	0	0	0	0	CA18	CA17	CA16
0x34	SIN RAM ADDR	SA7	SA6	SA5	SA4	SA3	SA2	SA1	SA0
0x35	SIN RAM ADDR	SA15	SA14	SA13	SA12	SA11	SA10	SA9	SA8
0x36	SIN RAM ADDR	0	0	0	0	0	SA18	SA17	SA16
0x38	COS RAM DATA	CD7	CD6	CD5	CD4	CD3	CD2	CD1	CD0
0x39	SIN RAM DARA	SD7	SD6	SD5	SD4	SD3	SD2	SD1	SD0
0x3A	COS AD DATA	CAD7	CAD6	CAD5	CAD4	CAD3	CAD2	CAD1	CADO
0x3B	COS AD DATA	0	0	CAD13	CAD12	CAD11	CAD10	CAD9	CAD8
0x3C	SIN AD DATA	SAD7	SAD6	SAD5	SAD4	SAD3	SAD2	SAD1	SAD0
0x3D	SIN AD DATA	0	0	SAD13	SAD12	SAD11	SAD10	SAD9	SAD8
0x3E	revision	REV7	REV6	REV5	REV4	REV3	REV2	REV1	REV0
0x3F	board string	I D 7	I D 6	I D 5	I D 4	I D 3	I D 2	I D 1	I D 0