Projeto 3 - Uso de listas circulares

ATP II

1 Definição

O chamado problema de Josephus é usado para eleger pessoas colocadas em um círculo. Sua ideia básica é determinar um certo número k e ir removendo do círculo pessoas que estejam k posições a partir da posição atual no círculo. Por exemplo, com um círculo de 7 pessoas, partindo da pessoa 1 e com k=4, eliminaremos sucessivamente as pessoas nas posições 4, 1, 6, 5, 7 e 3, escolhendo a pessoa 2, como mostrado na figura a seguir.

Claramente podemos pensar numa lista circular em que a cada iteração se remove um nó da lista, sendo declarado vencedor o elemento restante quando a lista tiver apenas um elemento.

2 O que deve ser feito

O problema a ser resolvido aqui é um pouco diferente. Agora o valor de k depende de um campo armazenado em cada elemento da lista. Além disso, a operação a ser realizada numa iteração pode ser de inserção de novo elemento na lista circular, o que complica o problema.

Nessa situação, cada elemento armazenado na lista terá três valores, além do ponteiro para o próximo elemento. Os valores I, K e O, são, respectivamente, seu identificador, o valor do próximo k, e um indicador de operação (remoção ou inserção).

Em particular, iniciando do elemento 1 da lista, faça $k=K_1$, contando então k elementos na lista, incluindo este primeiro. Para cada elemento encontrado a partir deste, primeiro anote o valor de K_i , que será o próximo passo k, e depois verifique o valor de O_i .

Se $O_i = 0$, remova o elemento da posição atual.

Se $O_i = 1$, reinsira, em seu lugar original na lista, o elemento removido na posição anterior, com O = 0 independente de seu valor anterior, além de remover o elemento atual.

3 Entrada de dados

O programa deve receber inicialmente uma linha contendo um inteiro N, representando o número de pessoas na lista. A seguir aparecem N linhas, com os valores de K_i e O_i $(1 \le i \le N)$ para cada uma das N pessoas.

Os valores possíveis são:

- $1 \le N \le 1000$
- $2 \leq K_i \leq 10$, sendo que K_1 deve ser usado como valor inicial de k.

4 Saída de dados

Seu programa deve produzir uma única linha, com o valor I_i do elemento final da lista.

5 Exemplo

Entrada	Saída
7	2
4 0	
4 0	
4 0	
4 0	
4 0	
4 0	
4 0	
7	7
2 0	
4 0	
3 0	
4 0	
2 0	
5 0	
4 0	
7	5
4 0	
4 0	
4 1	
4 0	
4 0	
4 1	
4 0	
7	6
2 0	
4 0	
3 1	
4 0	
2 1	
5 0	
4 1	

6 Entrega

Entregar o código fonte do programa, devidamente comentado, no classroom.

PRAZO: 20/12, até 23h59 no classroom.