Examen 2 Robin Enric Lopez Fonsecu

1 a) En on gas en expansión libre no hag combio en la energía Interna, g para este cuso el cambio en la entropía es

$$AS = C_V \ln \left(\frac{V_F}{V_o}\right)^{K}$$

Lenemos que $V_F = 3V_i$ $C_V = 5_R R$ $Y = \frac{3}{2}s$ for ser on gas diatónico

$$= 7 A S = \frac{5}{2} R \ln \left(\frac{3V_o}{V_o}\right)^{\frac{7}{2}s-1} R = \frac{8.314 \text{J/hol} \cdot R}{R}$$

$$= \frac{5}{2} R \ln \left(\frac{3}{V_o}\right)^{\frac{7}{2}s-1} R = \frac{8.314 \text{J/hol} \cdot R}{R}$$

$$= \frac{5}{2} R \ln \left(\frac{3}{V_o}\right)^{\frac{7}{2}s-1} R = \frac{8.314 \text{J/hol} \cdot R}{R}$$

$$= \frac{21.58 \text{J/k}}{R}$$

b) En este coso tenemos $dV = 0$ y $T_F = \frac{400 \text{K}}{R}$, $T_o = \frac{300 \text{K}}{R}$

$$dQ = dC - dC$$

Por Segunda leg

$$Tds = dC - dC$$

Otilizando la capacidad térmica g $dV = 0$

$$Tds = C_V dT - PdV$$

$$Tds = C_V dT - C_V = \frac{5}{2} R$$

$$S = C_V \ln \left(\frac{T_F}{T_o}\right)$$

S = 5/2 (8.314] In (400 k) = 5.97 J/K

Por otru punte de la ley

$$dQ = CvdT$$

$$= 5_{2} R(T_{2}-T_{2})$$

$$= 5_{2} (8.314 \frac{1}{m_{1}}) (400k.300k)$$

$$= 2.078.5J$$

C) En este caso $dT = 0 = dv$ por lo que la primer ley

Con la Segunda as

$$TdS = CvdT + PdV$$

$$TdS = PdV$$

$$dS = PdV$$

$$dS = PdV$$

$$con PV = nRT = 2P_{T} = \frac{nR}{V}$$

$$S = \int_{u_{0}}^{U_{R}} \frac{nRdV}{V} = nRLh(\frac{U_{R}}{V_{0}}) = RLh(\frac{1}{V_{0}}) = 8.314 \frac{3}{m_{1}} Lh(\frac{1}{S})$$

$$= -9.12 J/K$$

d) Partiendo de la eccución de/ gos ideal a presión constante

$$PV = nRT$$

$$d(PV) = d(nRT)$$

$$Pdv + yRP = nRdT$$

$$Pdv = nRdT$$

Ahora sustituyendo en la primera leg Tds = CudT+ Pdv Tds = Cvd7+nRdT = (Cu + n R) dT = CpdT $ds = C_{p} \frac{dT}{T}$ $5 = Cp \ln\left(\frac{Tf}{To}\right)$ = 7/2 Pu (300 K) -- 8.37 J/

10=C, 4T = 5 (8.314=1) (-700 A)

= - 2,078.55

Sabemos que por el Calor específico y la econción 1Q = MCp17 al muzela
des sustancias de Igual musa y color específico la temperatura de equilibrio
del proceso es el promedio de las temperatura sasciale, pues en el sistema
Solo Se comparte culor entre lus musos. 10++=0
$T_{F} = T_{1} + T_{2}$
3
Por otra parte el cambio en la entropía es la suma del cambio
de combos que depende de sos temperatoros inicial y final, pero como son igual
$AS = M C_p ln(\frac{I}{I_p}) + m C_p ln(\frac{I}{I_p})$
= m Cp In (II)
$= m \operatorname{Cp} \operatorname{In} \left(\frac{T^2}{\tau_{th}} \right)$
$= 2 M C_{\rho} \ln \left(\frac{T}{\sqrt{T_{c}}} \right)$
/ ⁽ सिन्)
= 2 m Cp ln (T, + Tz)
$\frac{1}{\sqrt{T_1}}$

Problemen 3

a)
$$C_v = -T \left(\frac{\partial P}{\partial T} \right) \left(\frac{\partial V}{\partial T} \right)_S$$

Partimes de la diferencial de de

a volumen constante, Se simplifica

Of: lizamos la defininción $Cv = (\frac{\partial U}{\partial T})_{v}$

$$= > \left(\frac{\partial U}{\partial T}\right) = T\left(\frac{\partial S}{\partial T}\right) = C_V$$

Ahova Utilizamos el diferencial de y de=0

$$dS = \left(\frac{\partial S}{\partial T}\right)_{V} dT + \left(\frac{\partial S}{\partial V}\right)_{T} dV = 0$$

$$= > \left(\frac{\partial S}{\partial T}\right)_{V} dT = -\left(\frac{\partial S}{\partial V}\right)_{T} dV$$

$$\Rightarrow \left(\frac{\partial T}{\partial v}\right) = -\left(\frac{\partial S}{\partial U}\right) + \left(\frac{\partial T}{\partial S}\right) = -\left(\frac{\partial T$$

Ahora ctilicando la relación de maxwell

$$\left(\frac{\partial S}{\partial v}\right)_T = \left(\frac{\partial P}{\partial \tau}\right)_v$$

$$\left(\frac{\partial V}{\partial T}\right)_{s} = -\left(\frac{\partial S}{\partial T}\right)_{V} \left(\frac{\partial T}{\partial P}\right)_{V}$$

$$f: \text{Nalmente of: lizando } C_V = T\left(\frac{2s}{2T}\right)_V$$

$$\left(\frac{\partial V}{\partial T}\right)_{S} = -\frac{1}{7} C_{V} \left(\frac{\partial P}{\partial T}\right)_{V}$$

$$= > C_{0} = - T \left(\frac{\partial V}{\partial t} \right)_{S} \left(\frac{\partial P}{\partial T} \right)$$

b)
$$C_p = T \left| \frac{\partial V}{\partial T} \right|_p \left(\frac{\partial P}{\partial T} \right)_s$$

$$\left(\frac{\partial^{p}}{\partial T}\right)_{S} = \left(\frac{\partial^{S}}{\partial V}\right)_{p}$$

$$=\frac{T}{T}\begin{pmatrix} 2Q \\ \partial \tau \end{pmatrix}_{p}$$

Problema 4
a) R= 1000 T=300 K I=10A dt=300 S
Como dT = coust. Consideramos que no hay cambio en la energia Interna di resista, entonces todo el calor se disipa.
el Color disipado por chidud de trango es
P= PI ² = (7002) (704) ² = 10,000 J/s Ch 300 S Se Emite
d Q = P J t = 3,000,000 J
y como 7=300 k el cambio en la entropía es
$ds = \frac{3 \times 10^6 \text{J}}{300 \text{ k}} = 1 \times 10^4 \text{J/k}$
Como el proceso es liverenciale
el cumbio en la entropia del universo es al resistar, par la tenta es la memi pues el universa
al Ser on 313+ema may gravade no sofre cambios considentia

Mientrus que la entropía del Sistema es cero Asis=0 Porque el estado micial y final son ldénticos, solo hay Cambio en ca entropía del universo

(C) Por primera ley, la energia interna de en aistema
	cerrado se conserva y en este caso la energía electrica
	Se convierte en culor y como no huy trabajo
	20 _{cn/v=0}
	d) La energía libre de Hemboltz es
_	10 1. 7 10 1 10
	$df = dv - TdS$ $ds = \underline{dQ}$
	- dυ - <u>dα</u> τ Τ
	= do - do
	J da = du + da
	= du - da - du - du + du = du - du = du
	- 0
	Combro en
el	La energia libre de Helmholt es coro

Problem 5

Derivames respecto de T

$$\int Inulmente T(\frac{\partial S}{\partial T}) = Cp$$