SSD1961

Advance Information

675KB Embedded Display SRAM LCD Display Controller

Appendix: IC Revision history of SSD1961 Specification

Version	Change Items	Effective Date
0.10	1 st Release	02-Apr-08
27-Mar-08		_
0.20	1. Added Table 6-5.	28-Jul-08
17-Jul-08	2. Updated Table 12-1.	
	3. VSSIO and VSSD are tied together and renamed as VSS. Modified Figure 5-1,	
	Table 5-1 and Table 6-4.	
	4. Updated package information in Section 13.4.	
	5. Added Section 13.1.	
0.30	1. Added Section 11 and 11.1.	10-Sep-08
09-Sep-08	2. Updated Figure 13-1, Figure 13-2 and Figure 13-3.	
0.40	1. Added command descriptions in section 9	24-Nov-08
21-Nov-08	2. Added application circuit in section 13.4	
	3. Added SSD1961G40R part number	
	4. Added Tape & Reel drawing in section 15	
	5. Revised the VSS pin # (D5 and E5) in Table 6-4	
	6. Revised the Tape & Reel drawing in section 15	
	7. Updated maximum input clock frequency in Table 13-2	
	8. Updated 6-bit serial RGB in Table 6-5 9. Updated 9-bit interface in Table 7-1	
0.50	1. Changed the set_pll_mnk to set_pll_mn in section 7.2	10-Dec-08
0.50 08-Dec-08	2. Change register name in section 8	10-Dec-00
00-066-08	3. Removed ABC	
	4. Revised description for REG 0x00, 0x01, 0x0C, 0x0D, 0x0E, 0x10, 0x11,	
	0x21, 0x26, 0x28, 0x2A, 0x2B, 0x2C, 0x2E, 0x33, 0x34, 0x35, 0x36, 0x37,	
	0x3A, 0x3C, 0x3E, 0x44, 0x45, 0xA1, 0xB0, 0xB1, 0xB4, 0xB5, 0xB6, 0xB7,	
	0xB8, 0xB9, 0xBE, 0xBF, 0xD0, 0xD1, 0xD4, 0xE5.	
	5. Added max VIH in Table 12-1	
	6. Added Table 9-1	
	7. Added Table 11-1	
	8. Revised Figure 9-19	
	9. Revised Figure 14-2	
	10. Revised Figure 13-5	
	11. Corrected typo for Table 7-2	
1.0	12. Revised test condition for 12 and 13	10.34 00
1.0	1. Changed status to Advance Information	18-May-09
07-May-09	 Update min/max rating of VDDD and VDDPLL in Table 11-1 Added serial RGB interface timing in Section 13.4 	
	3. Added serial RGB interface timing in Section 13.44. Revised Section 13.2	
	5. Added 12 bit in Table 7-1	
	6. Removed TTL interface	
	7. Changed the serial TFT interface from 6 bit to 8 bit	
	8. Revised section 7.1.5	
	9. Change the title of section 7.2	
	10. Revised command description in section 8.	
	11. Removed the command 0x0C and 0x3A	
	12. Added figures in section 13.4	
	13. Revised MCU Interface Timing in section 13.2	
	14. Revised figures in section 13.3	
	15. Revise Table 6-1	
1.1	1. Updated Table 7-1	15-Jul-10
31-May-10	2. Revised section 9.72	
	3. Add table 13-7	
1.2	1. Update Section 7.2 reset timing	07-Dec-10
11-Nov-10	2. Correct Section 13.4 the serial RGB timing	
	3. Correct Table 6.1-6.5 Pin Mapping -> Pin description	

 Solomon Systech
 Jul 2011
 P 2/90
 Rev 1.3
 SSD1961

1.3 21-Jul-11	Update Section 9.45 SET_PWM_CONF Update Section 9.30 SET TEAR SCANLINE	25-Jul-11
21-Jui-11	opulie section 7.50 SET_TEAR_SCAREINE	

SSD1961 Rev 1.3 P 3/90 Jul 2011 **Solomon Systech**

CONTENTS

1 (GENERAL DESCRIPTION	9
2 F	FEATURES	9
3 (ORDERING INFORMATION	9
4 E	BLOCK DIAGRAM	10
5 F	PIN ARRANGEMENT	11
5.1	64 BALLS TFBGA	11
6 F	PIN DESCRIPTIONS	12
7 F	FUNCTIONAL BLOCK DESCRIPTIONS	14
7.1		
	7.1.1 6800 Mode	
7	7.1.2 8080 Mode	
7	7.1.3 Register Pin Mapping	
7	7.1.4 Pixel Data Format	
7	7.1.5 Tearing Effect Signal (TE)	
7.2		
7.3	Frame Buffer	16
7.4	SYSTEM CLOCK AND RESET MANAGER	16
7.5	LCD CONTROLLER	17
7	7.5.1 Display Format	17
7	7.5.2 General Purpose Input/Output (GPIO)	
0 (COMMAND TARE	10
8 (COMMAND TABLE	18
9 (COMMAND DESCRIPTIONS	21
9.1		
9.2		
9.3		
9.4		
9.5		
9.6		
9.7		
9.8		
9.9		
9.10		
9.11		
9.12		
9.13		
9.14		
9.15		
9.16		
9.17		
9.18		
9.19		
9.20		
9.21		
9.22		
9.23		
9.24		
9.25	5 SET_SCROLL_START	36

13	AC CHARACTERISTICS	77
12	DC CHARACTERISTICS	77
11.1		
11	RECOMMENDED OPERATING CONDITIONS	
10	MAXIMUM RATINGS	76
9.75		
9.74		
9.72		
9.71 9.72		
9.70		
9.69		
9.68		
9.67		
9.66		
9.65		
9.63		
9.62 9.63		
9.61 9.62		
9.60		
9.59	 	
9.58		
9.57		
9.56		
9.54 9.55		
9.53		
9.52	- -	
9.51		
9.50) GET_LCD_GEN1	57
9.49		
9.48		
9.40 9.47		
9.45 9.46	~	
9.44	 	
9.43		
9.42	- -	
9.41	1 SET_GPIO_VALUE	49
9.40		
9.39		
9.37		
9.36 9.37	 	
9.35		
9.34		
9.33	–	
9.32	-	
9.31	1 GET_SCANLINE	40
9.30		
9.29		
9.28		
9.26 9.27		
0.00	C	27

Jul 2011

	CLOCK TIMING	
	MCU Interface Timing	
13.	3.2.1 Parallel 6800-series Interface Timing	<i>7</i> 8
13.	3.2.2 Parallel 8080-series Interface Timing	80
13.3	PARALLEL LCD INTERFACE TIMING	82
13.4	SERIAL RGB INTERFACE TIMING	83
14	APPLICATION EXAMPLE	86
15	PACKAGE INFORMATION	88
	PACKAGE MECHANICAL DRAWING FOR TFBGA	
15.2	TAPE & REEL DRAWING FOR TFBGA	89

 Solomon Systech
 Jul 2011
 P 6/90
 Rev 1.3
 SSD1961

TABLES

TABLE 3-1: ORDERING INFORMATION	9
TABLE 5-1: TFBGA PIN ASSIGNMENT TABLE	
TABLE 6-1: MCU INTERFACE PIN DESCRIPTION	12
TABLE 6-2: LCD INTERFACE PIN DESCRIPTION	12
TABLE 6-3: CONTROL SIGNAL PIN DESCRIPTION	13
TABLE 6-4: POWER PIN DESCRIPTION	13
TABLE 6-5: LCD INTERFACE PIN MAPPING	13
Table 7-1: Pixel Data Format	
TABLE 7-2: FRAME BUFFER SETTINGS REGARDING TO SET_ADDRESS_MODE COMMAND 0x36	16
TABLE 9-1: ENTER IDLE MODE MEMORY CONTENT VS DISPLAY COLOR	
TABLE 10-1: MAXIMUM RATINGS (VOLTAGE REFERENCED TO V _{SS})	
TABLE 11-1: RECOMMENDED OPERATING CONDITION	
TABLE 12-1: DC CHARACTERISTICS	
TABLE 13-1: CLOCK INPUT REQUIREMENTS FOR CLK (PLL-BYPASS)	77
TABLE 13-2: CLOCK INPUT REQUIREMENTS FOR CLK (PLL-ENABLED)	
TABLE 13-3: CLOCK INPUT REQUIREMENTS FOR CRYSTAL OSCILLATOR XTAL (PLL-ENABLED)	
TABLE 13-4: PARALLEL 6800-SERIES INTERFACE TIMING CHARACTERISTICS (USE CS# AS CLOCK)	
TABLE 13-5: PARALLEL 6800-SERIES INTERFACE TIMING CHARACTERISTICS (USE E AS CLOCK)	
TABLE 13-6: PARALLEL 8080-SERIES INTERFACE TIMING CHARACTERISTICS	
TABLE 13-7: QUICK REFERENCE TABLE FOR LCD PARAMETER SETTING	

SSD1961 Rev 1.3 P 7/90 Jul 2011 **Solomon Systech**

FIGURES

Figure 4-1: SSD1961 Block Diagram	10
FIGURE 5-1: PINOUT DIAGRAM – 64 BALLS TFBGA (TOP VIEW)	11
FIGURE 7-1: RELATIONSHIP BETWEEN TEARING EFFECT SIGNAL AND MCU MEMORY WRITING	15
FIGURE 7-2: CLOCK CONTROL DIAGRAM	16
FIGURE 7-3: STATE DIAGRAM OF SSD1961	17
FIGURE 9-1: EXIT INVERT MODE EXAMPLE	25
FIGURE 9-2: ENTER INVERT MODE EXAMPLE	26
FIGURE 9-3: SET COLUMN ADDRESS EXAMPLE	27
Figure 9-4: Set Page Address example	28
Figure 9-5: Set Partial Area with set_address_mode (0x36) $A[4] = 0$ when End Row > Start Row	30
Figure 9-6: Set Partial Area with set_address_mode (0x36) $A[4] = 1$ when End Row > Start Row	30
Figure 9-7: Set Partial Area with set_address_mode (0x36) $A[4] = 0$ when Start Row > End Row	
Figure 9-8: Set Partial Area with set_address_mode (0x36) $A[4] = 1$ when Start Row > End Row	31
Figure 9-9: Set Scroll Area with set_address_mode $(0x36) A[4] = 0$	
Figure 9-10: Set Scroll Area with set_address_mode $(0x36)$ A[4] = 1	32
Figure 9-11: A[7] Page Address Order	
Figure 9-12: A[6] Column Address Order	
FIGURE 9-13: A[5] PAGE / COLUMN ADDRESS ORDER	
Figure 9-14: A[3] RGB Order	35
Figure 9-15: A[1] Flip Horizontal	
Figure 9-16: A[0] Flip Vertical	
Figure 9-17: Set Scroll Start with set_address_mode $(0x36) A[4] = 0$	
Figure 9-18: Set Scroll Start with set_address_mode $(0x36) A[4] = 1$	
Figure 9-19: PWM signal	
Figure 11-1: Power-up Sequence	
Figure 13-1: Parallel 6800-series Interface Timing Diagram (Use CS# as Clock)	
Figure 13-2: Parallel 6800-series Interface Timing Diagram (Use E as Clock)	
FIGURE 13-3: PARALLEL 8080-SERIES INTERFACE TIMING DIAGRAM (WRITE CYCLE)	
FIGURE 13-4: PARALLEL 8080-SERIES INTERFACE TIMING DIAGRAM (READ CYCLE)	
FIGURE 13-5: GENERIC TFT PANEL TIMING	
FIGURE 13-6: SERIAL RGB INTERFACE TIMING (WITHOUT DUMMY MODE)	
FIGURE 13-7: SERIAL RGB INTERFACE TIMING (WITH DUMMY MODE)	
FIGURE 14-1: APPLICATION CIRCUIT FOR SSD1961 (WITH DIRECT CLOCK INPUT)	
FIGURE 14-2: APPLICATION CIRCUIT FOR SSD1961 (WITH CRYSTAL OSCILLATOR INPUT)	87

 Solomon Systech
 Jul 2011
 P 8/90
 Rev 1.3
 SSD1961

1 GENERAL DESCRIPTION

SSD1961 is a display controller of 5,529,600 bit frame buffer to support up to 640 x 480 x 18bit graphics content. It also equips parallel MCU interfaces in different bus width to receive graphics data and command from MCU. Its display interface supports common RAM-less LCD driver of color depth up to 18 bit-per-pixel.

2 FEATURES

- Display feature
 - 675kbyte (5,529,600bit) built-in frame buffer. Support up to 640 x 480 at 18bpp display
 - Support TFT 18 bit generic RGB interface panel
 - Support 8-bit serial RGB interface
 - Hardware rotation of 0, 90, 180, 270 degree
 - Hardware display mirroring
 - Hardware windowing
 - Programmable brightness, contrast and saturation control
 - Dynamic Backlight Control (DBC) via PWM signal
- MCU connectivity
 - 8/9/16/18-bit MCU interface
 - Tearing effect signal
- I/O Connectivity
 - 4 GPIO pins
- Built-in clock generator
- Deep sleep mode for power saving
- 64 pin BGA package
- Core supply power (V_{DDPLL} and V_{DDD}): 1.2V±0.1V
- I/O supply power (V_{DDIO}): 1.65V to 3.6V
- LCD interface supply power (V_{DDLCD}): 1.65V to 3.6V

3 ORDERING INFORMATION

Table 3-1: Ordering Information

Ordering Part Number	Package Form
SSD1961G40	TFBGA-64 (Tray)
SSD1961G40R	TFBGA-64 (Tape & Reel)

SSD1961 | Rev 1.3 | P 9/90 | Jul 2011 | **Solomon Systech**

4 BLOCK DIAGRAM

CS# Registers ► LFRAME D/C# E(RD#) MCU LLINE R/W#(WR#) Interface D[17:0] LSHIFT LCD Interface TE ◀ **LCD** CONF LDATA[17:0] Controller Frame Buffer LDEN System Clock and Reset Mgr 5,529,600bit RESET# GPIO[3:0] Rotation/ Mirror GAMAS[1:0] Clock DBC PWM Generator

Figure 4-1: SSD1961 Block Diagram

 Solomon Systech
 Jul 2011
 P 10/90
 Rev 1.3
 SSD1961

5 PIN ARRANGEMENT

5.1 64 Balls TFBGA

Figure 5-1: Pinout Diagram – 64 balls TFBGA (Top view)

Table 5-1: TFBGA Pin Assignment Table

Pin#	Signal Name	Pin #	Signal Name Pin #		Signal Name	Pin #	Signal Name
A1	VDDLCD	C1	LDATA13	E1	LDATA5	G1	D[16]
A2	LDATA16	C2	LDATA12	E2	LDATA4	G2	D[14]
A3	GAMAS1	C3	LDATA11	E3	LDATA3	G3	D[12]
A4	TE	C4	LDATA10	E4	LDATA2	G4	D[9]
A5	LSHIFT	C5	LDEN	E5	VSS	G5	D[6]
A6	GPIO3	C6	LFRAME	E6	R/W#(WR#)	G6	D/C#
A7	VSSPLL	C7	GPIO1	E7	D[3]	G7	RESET#
A8	VDDPLL	C8	XTAL_IN	E8	CLK	G8	D[0]
B1	LDATA15	D1	LDATA9	F1	LDATA1	H1	D[17]
B2	LDATA14	D2	LDATA8	F2	LDATA0	H2	D[15]
В3	GAMAS0	D3	LDATA7	F3	D[13]	Н3	D[11]
B4	PWM	D4	LDATA6	F4	D[10]	H4	D[8]
B5	LLINE	D5	VSS	F5	D[7]	H5	D[5]
B6	GPIO2	D6	VDDD	F6	E(RD#)	Н6	CS#
В7	GPIO0	D7	D[4]	F7	D[2]	H7	CONF
В8	XTAL_OUT	D8	LDATA17	F8	D[1]	Н8	VDDIO

SSD1961 Rev 1.3 P 11/90 Jul 2011 **Solomon Systech**

6 PIN DESCRIPTIONS

Key:

I = Input

O =Output

IO = Bi-directional (input/output)

P = Power pin

Hi-Z = High impedance

Table 6-1: MCU Interface Pin Description

Pin Name	Туре	Reference Voltage Level	Pin#	Description
CLK	I	VDDIO	E8	TTL clock input. This pin should be tied to VSS if TTL clock input is not used
XTAL_IN	I	-	C8	Crystal oscillator input. This pin should be tied to VSS if not used
XTAL_OUT	О	-	В8	Crystal oscillator output. This pin should be floating if not used
CS#	I	VDDIO	Н6	Chip select
D/C#	I	VDDIO	G6	Data/Command select
E(RD#)	I	VDDIO	F6	6800 mode: E (enable signal) 8080 mode: RD# (read strobe signal)
R/W#(WR#)	I	VDDIO	Е6	6800 mode: R/W# 0: Write cycle 1: Read cycle 8080 mode: WR# (write strobe signal)
D[17:0]	Ю	VDDIO	D7, E7, F3-F5, F7-F8, G1-G5, G8, H1- H5	Data bus. Pins not used should be floating
TE	О	VDDLCD	A4	Tear effect

Table 6-2: LCD Interface Pin Description

Pin Name	Туре	Reference Voltage Level	Pin #	Description	
LFRAME	О	VDDLCD	C6	Vertical sync (Frame pulse)	
LLINE	О	VDDLCD	B5	Horizontal sync (Line pulse)	
LSHIFT	О	VDDLCD	A5	Pixel clock (Pixel shift signal)	
LDEN	О	VDDLCD	C5	Data valid	
LDATA[17:0]	0	VDDLCD	A2, B1- B2, C1- C4, D1- D4, D8, E1-E4, F1-F2	RGB data	
GPIO[3:0]	Ю	VDDLCD	A6, B6- B7, C7	These pins be configured for display miscellaneous signals or as general purpose I/O. Default as input	
GAMAS [1:0]	О	VDDLCD	A3, B3	Gamma selection for panel	
PWM	О	VDDLCD	B4	PWM output for backlight driver	

 Solomon Systech
 Jul 2011
 P 12/90
 Rev 1.3
 SSD1961

Table 6-3: Control Signal Pin Description

Pin Name	Туре	Reference Voltage Level	Pin #	Description
RESET#	I	VDDIO	G7	Master synchronize reset
CONF	I	VDDIO	Н7	MCU interface configuration 0: 6800 Interface 1: 8080 Interface

Table 6-4: Power Pin Description

Pin Name	Туре	Pin #	Description
VDDD	P	D6	Power supply for internal digital circuit
VDDLCD	P	A1	Power supply for LCD interface related pads
VDDPLL	P	A8	Power supply for internal analog circuit and analog I/O pads
VDDIO	P	Н8	Power supply for digital I/O pads
VSS	P	D5, E5	Ground for internal digital circuit
VSSPLL	P	A7	Ground for internal analog circuit and analog I/O pads

Table 6-5: LCD Interface Pin Mapping

Pin Names	18-bit TFT	8-bit Serial
LFRAME	FRA	AME
LLINE	LI	NE
LSHIFT	SH	IFT
LDEN	DI	EN
LDATA17	R5	Drive 0
LDATA16	R4	Drive 0
LDATA15	R3	Drive 0
LDATA14	R2	Drive 0
LDATA13	R1	Drive 0
LDATA12	R0	Drive 0
LDATA11	G5	Drive 0
LDATA10	G4	Drive 0
LDATA9	G3	Drive 0
LDATA8	G2	Drive 0
LDATA7	G1	D7
LDATA6	G0	D6
LDATA5	B5	D5
LDATA4	B4	D4
LDATA3	В3	D3
LDATA2	B2	D2
LDATA1	B1	D1
LDATA0	В0	D0

SSD1961 Rev 1.3 P 13/90 Jul 2011 **Solomon Systech**

Note(1) These pin mappings use signal names commonly used for each panel type, however signal names may differ between panel manufacturers.

7 FUNCTIONAL BLOCK DESCRIPTIONS

7.1 MCU Interface

The MCU interface connects the MCU and SSD1961 graphics controller. The MCU interface can be configured as 6800 mode and 8080 mode by the CONF pin. By pulling the CONF pin to VSS, the MCU interface will be configured as 6800 mode interface. If the CONF pin is connected to VDDIO, the MCU interface will be configured as 8080 mode.

7.1.1 6800 Mode

The 6800 mode MCU interface consist of CS#, D/C#, E, R/W#, D[17:0], and TE signals (Please refer to Table 6-1 for pin multiplexed with 8080 mode). This interface supports both fixed E and clock E scheme to define a read/write cycle. If the E signal is kept high and used as enable signal, the CS# signal acts as a bus clock, the data or command will be latched into the system at the rising edge of CS#. If the user wants to use the E pin as the clock pin, the CS# pin then need to be fixed to logic 0 to select the chip. Then the falling edge of the E signal will latch the data or command. For details, please refer to the timing diagram in chapter 13.2.1.

7.1.2 8080 Mode

The 8080 mode MCU interface consist of CS#, D/C#, RD#, WR#, D[17:0] and TE signals (Please refer to Table 6-1 for pin multiplexed with 6800 mode). This interface use WR# to define a write cycle and RD# for read cycle. If the WR# goes low when the CS# signal is low, the data or command will be latched into the system at the rising edge of WR#. Similarly, the read cycle will start when RD# goes low and end at the rising edge of RD#. The detailed timing will show in the chapter **Error! Reference source not found.**

7.1.3 Register Pin Mapping

When user access the registers via the parallel MCU interface, only D[7:0] will be used regardless the width of the pixel data is. Therefore, D[17:8] will only be used to address the display data only. This provided the possibility that the pixel data format as shown in Table 7-1 can be configured by command 0xF0.

7.1.4 Pixel Data Format

Both 6800 and 8080 support 8 bit, 16 bit, 18 bit data bus. Depending on the width of the data bus, the display data are packed into the data bus in different ways.

D[17] D[16] D[15] D[14] D[13] D[12] D[11] D[10] D[9] D[8] D[7] D[6] D[5] D[4] D[3] D[2] D[1] D[0] G5 G2 G0 B5 В4 ВЗ B2 16 bits (565 format) G4 G3 G2 G1 G0 B5 B4 В3 G6 G5 G4 G3 G2 16 bits 2^{nd} В7 В6 B5 B4 ВЗ B2 В1 B0 3rd G3 G2 G1 G0 В7 B6 B5 B4 В3 B2 B1 B0 G7 G6 G4 12 bits G3 G2 G1 G0 B6 B5 B3 B2 В7 B4 B1 B0 G5 G3 9 bits B0 G2 GO B5 B3 G1 B4 B2 B1 R6 R5 R3 R0 2nd 8 bits G7 G6 G5 G3 G4 G2 G0 В6 B5 В3 B4 B2 B0

Table 7-1: Pixel Data Format

X: Don't Care

Solomon Systech Jul 2011 P 14/90 Rev 1.3 SSD1961

7.1.5 Tearing Effect Signal (TE)

The Tearing Effect Signal (TE) is a feedback signal from the LCD Controller to MCU. This signal reveals the display status of LCD controller. In the non-display period, the TE signal will go high. Therefore, this signal enables the MCU to send data by observing the non-display period to avoid tearing.

Figure 7-1 shows how the TE signal helps to avoid tearing. If the MCU writing speed is slower than the display speed, the display data should be updated after the LCD controller start to scan the frame buffer. Then the LCD controller will always display the old memory content until the next frame. However, if the MCU is faster than the LCD controller, it should start updating the display content in the vertical non-display period (VNDP) to enable the LCD controller will always get the newly updated data.

Figure 7-1: Relationship between Tearing Effect Signal and MCU Memory Writing

In SSD1961, users can configure the TE signal to reflect the vertical non-display period only or reflect both vertical and horizontal non-display period. With the additional horizontal non-display period information, the MCU can control the refresh action in more accurately by counting the horizontal line scanned by the LCD controller. Usually, a fast MCU will not need horizontal non-display period. But a slow MCU will need it to ensure the frame buffer update process always lags behind the LCD controller.

7.2 System Clock Generation

The system clock of SSD1961 is generated by the built-in PLL. The reference clock of the PLL can come from either the CLK pin or the external crystal oscillator. Since the CLK pin and the output of the oscillator was connected to PLL with an "OR" gate, the unused clock must be tied to VSS.

Before the PLL output is configured as the system clock by the bit 1 of "set_pll" command 0xE0, the system will be clocked by the reference clock. This enables the user to send the "set_pll_mn" command 0xE2 to the PLL for frequency configuration. When the PLL frequency is configured and the PLL was enabled with the

SSD1961 | Rev 1.3 | P 15/90 | Jul 2011 | **Solomon Systech**

bit 0 of "set_pll" command 0xE0, the user should still wait for 100us for the PLL to lock. Then the PLL is ready and can be configured as system clock with the bit 1 of "set_pll" command 0xE0.

Set_pll bit 0

CLK

REF PLL

YTAL_IN_
EXTERNAL
CRYSTAL

Figure 7-2: Clock Control Diagram

7.3 Frame Buffer

There are 5,529,600 bit built-in SRAM inside SSD1961 to use as frame buffer. When the frame buffer is written or read, the "address counter" will automatically increase by one or decrease by one depends on the frame buffer settings.

Option 1 Option 2 Option 3 Option 4 Horizontal: Increment Horizontal: Increment Horizontal: Decrement Horizontal: Decrement Vertical: Increment Vertical: Decrement Vertical: Increment Vertical: Decrement B6 = 0; B7 = 0B6 = 0; B7 = 1B6 = 1; B7 = 0B6 = 1; B7 = 1 00000h 00000h 00000h 00000h Horizontal Frame Buffer Mode B5 = 04B000h 4B000h 4B000h 4B000h 00000h 00000h 00000h 00000h Vertical Frame Buffer Mode B5 = 14B000h 4B000h 4B000h 4B000h

Table 7-2: Frame Buffer Settings regarding to set address mode command 0x36

7.4 System Clock and Reset Manager

The "System Clock and Reset Manager" distributes the reset signal and clock signal to the entire system. It controls the Clock Generator and contains clock gating circuitry to turn on and off the clock of each functional module. Also, it divides the root clock from Clock Generator to operation clocks for different module. The System Clock and Reset Manager also manage the reset signals to ensure all the module are reset to appropriate status when the system are in reset state, deep sleep state, sleep state and display state. Figure 7-3 shows a state diagram of four operation states of SSD1961.

Solomon Systech Jul 2011 P 16/90 Rev 1.3 SSD1961

Figure 7-3: State Diagram of SSD1961

Reset State: Clock Generator Stop Unable to Receive Command Unable to Update Frame Buffer Display Off All Settings Reset

Deep Sleep State: Clock Generator Stop Unable to Receive Command Unable to Update Frame Buffer Display Off All Settings Retain

Sleep State: Clock Generator On Able to Receive Command Able to Update Frame Buffer Display Off All Settings Retain Display State: Clock Generator On Able to Receive Command Able to Update Frame Buffer Display On All Settings Retain

7.5 LCD Controller

7.5.1 Display Format

The LCD controller reads the frame buffer and generates display signals according to the selected display panel format. SSD1961 supports common RAM-less TFT driver using generic RGB data.

7.5.2 General Purpose Input/Output (GPIO)

The GPIO pins can operate in 2 modes, GPIO mode and miscellaneous display signal mode. When the pins are configured as GPIOs, these pins can be controlled directly by MCU. Therefore, user can use these pins to emulate other interface such as SPI or I2C. If these pins are configured as display signals, they will toggle with display periodically according to the signal settings. They can be set to toggle once a frame, once a line or in arbitrary period. Therefore they can be configured as some common signal needed for different panels such as STH or LP.

SSD1961 | Rev 1.3 | P 17/90 | Jul 2011 | **Solomon Systech**

8 COMMAND TABLE

Hex Code	Command	Description
0x00	nop	No operation
0x01	soft_reset	Software Reset
0x0A	get_power_mode	Get the current power mode
0x0B	get_address_mode	Get the frame buffer to the display panel read order
0x0C	Reserved	Reserved
0x0D	get_display_mode	The SSD1961 returns the Display Image Mode.
0x0E	get_tear_effect_status	Get the Tear Effect status
0x0F	Reserved	Reserved
0x10	enter_sleep_mode	Turn off the panel. This command will pull low the GPIO0. If GPIO0 is configured as normal GPIO or LCD miscellaneous signal with command set_gpio_conf, this command will be ignored.
0x11	exit_sleep_mode	Turn on the panel. This command will pull high the GPIO0. If GPIO0 is configured as normal GPIO or LCD miscellaneous signal with command set_gpio_conf, this command will be ignored.
0x12	enter_partial_mode	Part of the display area is used for image display.
0x13	enter_normal_mode	The whole display area is used for image display.
0x20	exit_invert_mode	Displayed image colors are not inverted.
0x21	enter_invert_mode	Displayed image colors are inverted.
0x26	set_gamma_curve	Selects the gamma curve used by the display panel.
0x28	set_display_off	Blanks the display panel
0x29	set_display_on	Show the image on the display panel
0x2A	set_column_address	Set the column address
0x2B	set_page_address	Set the page address
0x2C	write_memory_start	Transfer image information from the host processor interface to the SSD1961 starting at the location provided by set_column_address and set_page_address
0x2E	read_memory_start	Transfer image data from the SSD1961 to the host processor interface starting at the location provided by set_column_address and set_page_address
0x30	set_partial_area	Defines the partial display area on the display panel
0x33	set_scroll_area	Defines the vertical scrolling and fixed area on display area
0x34	set_tear_off	Synchronization information is not sent from the SSD1961 to the host processor
0x35	set_tear_on	Synchronization information is sent from the SSD1961 to the host processor at the start of VFP
0x36	set_address_mode	Set the read order from frame buffer to the display panel
0x37	set_scroll_start	Defines the vertical scrolling starting point
0x38	exit_idle_mode	Full color depth is used for the display panel
0x39	enter_idle_mode	Reduce color depth is used on the display panel.
0x3A	Reserved	Reserved
0x3C	write_memory_continue	Transfer image information from the host processor interface to the SSD1961 from the last written location
0x3E	read_memory_continue	Read image data from the SSD1961 continuing after the last read_memory_continue or read_memory_start

 Solomon Systech
 Jul 2011
 P 18/90
 Rev 1.3
 SSD1961

Hex Code	Command	Description
		Synchronization information is sent from the SSD1961to the
0x44	set_tear_scanline	host processor when the display panel refresh reaches the
		provided scanline
0x45	get_scanline	Get the current scan line
0xA1	read_ddb	Read the DDB from the provided location
0xA8	Reserved	Reserved
0xB0	set_lcd_mode_	Set the LCD panel mode and resolution
0xB1	get_lcd_mode	Get the current LCD panel mode, pad strength and resolution
0xB4	set_hori_period	Set front porch
0xB5	get_hori_period	Get current front porch settings
0. D.6		Set the vertical blanking interval between last scan line and
0xB6	set_vert_period	next LFRAME pulse
0xB7	got wort pariod	Set the vertical blanking interval between last scan line and
UXB/	get_vert_period	next LFRAME pulse
		Set the GPIO configuration. If the GPIO is not used for LCD,
0xB8	set_gpio_conf	set the direction. Otherwise, they are toggled with LCD
		signals.
0xB9	get_gpio_conf	Get the current GPIO configuration
0xBA	set_gpio_value	Set GPIO value for GPIO configured as output
		Read current GPIO status. If the individual GPIO was
0xBB	get_gpio_status	configured as input, the value is the status of the
		corresponding pin. Otherwise, it is the programmed value.
0xBC	set_post_proc	Set the image post processor
0xBD	get_post_proc	Set the image post processor
0xBE	set_pwm_conf	Set the image post processor
0xBF	get_pwm_conf	Set the image post processor
0xC0	set_lcd_gen0	Set the rise, fall, period and toggling properties of LCD signal generator 0
0xC1	get_lcd_gen0	Get the current settings of LCD signal generator 0
0	act lad con1	Set the rise, fall, period and toggling properties of LCD signal
0xC2	set_lcd_gen1	generator 1
0xC3	get_lcd_gen1	Get the current settings of LCD signal generator 1
0v.C4	set led sen?	Set the rise, fall, period and toggling properties of LCD signal
0xC4	set_lcd_gen2	generator 2
0xC5	get_lcd_gen2	Get the current settings of LCD signal generator 2
0xC6	set_lcd_gen3	Set the rise, fall, period and toggling properties of LCD signal
	set_led_gens	generator 3
0xC7	get_lcd_gen3	Get the current settings of LCD signal generator 3
		Set the GPIO0 with respect to the LCD signal generators
0xC8	set_gpio0_rop	using ROP operation. No effect if the GPIO0 is configured as
		general GPIO.
0xC9	get_gpio0_rop	Get the GPIO0 properties with respect to the LCD signal
	6	generators.
		Set the GPIO1 with respect to the LCD signal generators
0xCA	set_gpio1_rop	using ROP operation. No effect if the GPIO1 is configured as
		general GPIO.
0xCB	get_gpio1_rop	Get the GPIO1 properties with respect to the LCD signal
	<u> </u>	generators.
0-00	ant amin2 we w	Set the GPIO2 with respect to the LCD signal generators
0xCC	set_gpio2_rop	using ROP operation. No effect if the GPIO2 is configured as general GPIO.
		guidai drīd.

SSD1961 Rev 1.3 P 19/90 Jul 2011 **Solomon Systech**

Hex Code	Command	Description
0xCD	get_gpio2_rop	Get the GPIO2 properties with respect to the LCD signal generators.
0xCE	set_gpio3_rop	Set the GPIO3 with respect to the LCD signal generators using ROP operation. No effect if the GPIO3 is configured as general GPIO.
0xCF	get_gpio3_rop	Get the GPIO3 properties with respect to the LCD signal generators.
0xD0	set_dbc_conf	Set the dynamic back light configuration
0xD1	get_dbc_conf	Get the current dynamic back light configuration
0xD4	set_dbc_th	Set the threshold for each level of power saving
0xD5	get_dbc_th	Get the threshold for each level of power saving
0xE0	set_pll	Start the PLL. Before the start, the system was operated with the crystal oscillator or clock input
0xE2	set_pll_mn	Set the PLL
0xE3	get_pll_mn	Get the PLL settings
0xE4	get_pll_status	Get the current PLL status
0xE5	set_deep_sleep	Set deep sleep mode
0xE6	set_lshift_freq	Set the LSHIFT (pixel clock) frequency
0xE7	get_lshift_freq	Get current LSHIFT (pixel clock) frequency setting
0xE8	Reserved	Reserved
0xE9	Reserved	Reserved
0xF0	set_pixel_data_interface	Set the pixel data format of the parallel host processor interface
0xF1	get_pixel_data_interface	Get the current pixel data format settings
0xFF	Reserved	Reserved

 Solomon Systech
 Jul 2011
 P 20/90
 Rev 1.3
 SSD1961

9 COMMAND DESCRIPTIONS

9.1 nop

Command 0x00 **Parameters** None

	D/C	D7	D6	D5	D4	D3	D2	D1	D0	Hex
Command	0	0	0	0	0	0	0	0	0	00

Description

No operation. .

9.2 soft_reset

Command 0x01 **Parameters** None

	D/C	D 7	D6	D5	D4	D3	D2	D1	D0	Hex
Command	0	0	0	0	0	0	0	0	1	01

Description

The SSD1961 performs a software reset. All the configuration register will be reset except command 0xE0 to 0xE5.

Note:

The host processor must wait 5ms before sending any new commands to a SSD1961 following this command.

9.3 get_power_mode

Command 0x0A **Parameters** 1

	D/C	D7	D6	D5	D4	D3	D2	D1	D0	Hex
Command	0	0	0	0	0	1	0	1	0	0A
Parameter 1	1	0	A_6	A_5	A_4	A_3	A_2	0	0	XX

Description

Get the current power mode

A[6]: Idle mode on/off (POR = 0)

0 Idle mode off 1 Idle mode on

A[5]: Partial mode on/off (POR = 0)

0 Partial mode off1 Partial mode on

A[4]: Sleep mode on/off (POR = 0)

Sleep mode onSleep mode off

A[3]: Display normal mode on/off (POR = 1)

0 Display normal mode off

SSD1961 Rev 1.3 | P 21/90 | Jul 2011 **Solomon Systech**

1 Display normal mode on (partial mode and vertical scroll off)

A[2]: Display on/off (POR = 0)

0 Display is off

1 Display is on

9.4 get_address_mode

Command 0x0B **Parameters** 1

	D/C	D7	D6	D5	D4	D3	D2	D1	D0	Hex
Command	0	0	0	0	0	1	0	1	1	0B
Parameter 1	1	A_7	A_6	A_5	A_4	A_3	A_2	0	0	XX

Description

Get the frame buffer to the display panel read order

A[7]: Page address order (POR = 0)

0 Top to bottom 1 Bottom to top

A[6]: Column address order (POR = 0)

0 Left to right1 Right to left

A[5]: Page / Column order (POR = 0)

0 Normal mode1 Reverse mode

A[4]: Line address order (POR = 0)

0 LCD refresh top to bottom1 LCD refresh bottom to top

A[3] : RGB / BGR order (POR = 0)

0 RGB 1 BGR

A[2]: Display data latch data (POR = 0)

0 LCD refresh left to right1 LCD refresh right to left

9.5 get_display_mode

Command 0x0D **Parameters** 1

	D/C	D7	D6	D5	D4	D3	D2	D1	D0	Hex
Command	0	0	0	0	0	1	1	0	1	0D
Parameter 1	1	A_7	0	A_5	0	0	A_2	A_1	A_0	XX

Description

The SSD1961 returns the Display Image Mode status.

A[7]: Vertical scrolling status on/off (POR = 0)

0 Vertical scrolling is off

1 Vertical scrolling is on

Solomon Systech Jul 2011 | P 22/90 | Rev 1.3 | SSD1961

A[5]: Invert mode on/off (POR = 0)

0 Inversion is off

1 Inversion is on

A[2:0]: Gamma curve selection (POR = 011)

000 Gamma curve 0

001 Gamma curve 1

010 Gamma curve 2

O11 Gamma curve 3

100 Reserved

101 Reserved

110 Reserved

111 Reserved

9.6 get_tear_effect_status

Command 0x0E **Parameters** 1

	D/C	D 7	D6	D5	D4	D3	D2	D1	D0	Hex
Command	0	0	0	0	0	1	1	1	0	0E
Parameter 1	1	A_7	0	0	0	0	0	0	0	XX

Description

Get the current Tear Effect mode from the SSD1961

A[7]: Tearing effect line mode (POR = 0)

0 Tearing effect off

1 Tearing effect on

SSD1961 Rev 1.3 | P 23/90 | Jul 2011 **Solomon Systech**

9.7 enter_sleep_mode

Command 0x10 **Parameters** None

	D/C	D7	D6	D5	D4	D3	D2	D1	D0	Hex
Command	0	0	0	0	1	0	0	0	0	10

Description

Turn off the panel. This command causes the SSD1961 to enter sleep mode and pull low the GPIO[0] if set_gpio_conf (0xB8) B0 = 0.

If GPIO[0] is configured as normal GPIO or LCD miscellaneous signal with command set_gpio_conf (0xB8), this command will not affect the GPIO[0].

Note:

The host processor must wait 5ms before sending any new commands to a SSD1961 following this command.

9.8 exit_sleep_mode

Command 0x11 **Parameters** None

	D/C	D7	D 6	D5	D4	D3	D2	D1	D0	Hex
Command	0	0	0	0	1	0	0	0	1	11

Description

Turn on the panel. This command causes the SSD1961 to exit sleep mode and will pull high the GPIO[0] if set_gpio_conf (0xB8) B0 = 0.

If GPIO[0] is configured as normal GPIO or LCD miscellaneous signal with command set_gpio_conf (0xB8), this command will not affect the GPIO[0].

Note: The host processor must wait 5ms after sending this command before sending another command.

9.9 enter_partial_mode

Command 0x12 **Parameters** None

	D/C	D 7	D 6	D5	D4	D3	D2	D1	D0	Hex
Command	0	0	0	0	1	0	0	1	0	12

Description

Once enter_partial_mode is triggered, the Partial Display Mode window is described by the set_partial_area (0x30). Once enter_normal_mode (0x13) is triggered, partial display mode will end.

9.10 enter_normal_mode

Command 0x13 **Parameters** None

Solomon Systech Jul 2011 P 24/90 Rev 1.3 SSD1961

^{**}This command will automatic trigger set_display_on (0x29)

	D/C	D7	D6	D5	D4	D3	D2	D1	D0	Hex
Command	0	0	0	0	1	0	0	1	1	13

Description

This command causes the SSD1961 to enter the normal mode. Normal mode is defined as partial display and vertical scroll mode are off. That means the whole display area is used for image display.

9.11 exit_invert_mode

Command 0x20 **Parameters** None

	D/C	D7	D6	D5	D4	D3	D2	D1	D0	Hex
Command	0	0	0	1	0	0	0	0	0	20

Description

This command causes the SSD1961 to stop inverting the image data on the display panel. The frame buffer contents remain unchanged.

Figure 9-1: Exit Invert mode example

9.12 enter_invert_mode

Command 0x21 **Parameters** None

	D/C	D7	D6	D5	D4	D3	D2	D1	D 0	Hex
Command	0	0	0	1	0	0	0	0	1	21

Description

This command causes the SSD1961 to invert the image data only on the display panel. The frame buffer contents remain unchanged.

SSD1961 | Rev 1.3 | P 25/90 | Jul 2011 | **Solomon Systech**

Figure 9-2: Enter Invert mode example

9.13 set_gamma_curve

Command 0x26 **Parameters** 1

	D/C	D 7	D6	D 5	D4	D3	D2	D1	D 0	Hex
Command	0	0	0	1	0	0	1	1	0	26
Parameter 1	1	0	0	0	0	A_3	A_2	A_1	A_0	XX

Description

Selects the gamma curve used by the display panel.

A[3:0]	Gamma curve selection (POR = 1000)	GAMAS[1]	GAMAS[0]
0000	No gamma curve selected (Same as 0001b)	0	0
0001	Gamma curve 0	0	0
0010	Gamma curve 1	0	1
0100	Gamma curve 2	1	0
1000	Gamma curve 3	1	1
Others	Reserved		·

9.14 set_display_off

Command 0x28 **Parameters** None

	D/C	D7	D 6	D5	D4	D3	D2	D1	D0	Hex
Command	0	0	0	1	0	1	0	0	0	28

Description

Blanks the display panel. The frame buffer contents remain unchanged.

9.15 set_display_on

Command 0x29 **Parameters** None

	D/C	D7	D6	D5	D4	D3	D2	D1	D0	Hex
Command	0	0	0	1	0	1	0	0	1	29

Description

Show the image on the display panel

Solomon Systech Jul 2011 | P 26/90 | Rev 1.3 | SSD1961

9.16 set_column_address

Command 0x2A **Parameters** 4

	D/C	D7	D 6	D5	D4	D3	D2	D1	D0	Hex
Command	0	0	0	1	0	1	0	1	0	2A
Parameter 1	1	SC_{15}	SC_{14}	SC_{13}	SC_{12}	SC_{11}	SC_{10}	SC ₉	SC_8	XX
Parameter 2	1	SC ₇	SC_6	SC_5	SC_4	SC_3	SC_2	SC_1	SC_0	XX
Parameter 3	1	EC ₁₅	EC_{14}	EC ₁₃	EC_{12}	EC ₁₁	EC_{10}	EC ₉	EC ₈	XX
Parameter 4	1	EC ₇	EC ₆	EC ₅	EC ₄	EC ₃	EC_2	EC ₁	EC_0	XX

Description

Set the column address of frame buffer accessed by the host processor with the $read_memory_continue$ (0x3E) and $write_memorty_continue$ (0x3C)..

SC[15:8]: Start column number high byte (POR = 00000000) SC[7:0]: Start column number low byte (POR = 00000000) EC[15:8]: End column number high byte (POR = 00000000) EC[7:0]: End column number low byte (POR = 00000000)

Note: SC[15:0] must always be equal to or less than EC[15:0]

Figure 9-3: Set Column Address example

9.17 set_page_address

Command 0x2B Parameters 4

	D/C	D 7	D6	D5	D4	D3	D2	D1	D0	Hex
Command	0	0	0	1	0	1	0	0	1	2B
Parameter 1	1	SP ₁₅	SP_{14}	SP_{13}	SP_{12}	SP_{11}	SP_{10}	SP ₉	SP_8	XX
Parameter 2	1	SP ₇	SP_6	SP ₅	SP_4	SP_3	SP_2	SP_1	SP_0	XX
Parameter 3	1	EP ₁₅	EP ₁₄	EP ₁₃	EP ₁₂	EP ₁₁	EP ₁₀	EP ₉	EP ₈	XX
Parameter 4	1	EP ₇	EP_6	EP ₅	EP_4	EP ₃	EP_2	EP_1	EP_0	XX

Description

Set the page address of the frame buffer accessed by the host processor with the read_memory_start (0x2C), write_memory_start (0x2E), read_memory_continue (0x3E) and write_memory_continue (0x3C))..

SSD1961 Rev 1.3 | P 27/90 | Jul 2011 **Solomon Systech**

SP[15:8]: Start page (row) number high byte (POR = 00000000) SP[7:0]: Start page (row) number low byte (POR = 00000000) EP[15:8]: End page (row) number high byte (POR = 00000000) EP[7:0]: End page (row) number low byte (POR = 00000000)

Note: SP[15:0] must always be equal to or less than EP[15:0]

Figure 9-4: Set Page Address example

9.18 write_memory_start

Command 0x2C **Parameters** None

	D/C	D7	D6	D5	D4	D3	D2	D1	D0	Hex
Command	0	0	0	1	0	1	1	0	0	2C

Description

Transfer image information from the host processor interface to the SSD1961 starting at the location provided by set_column _address (0x2A) and set _page_address (0x2B).

If $set_address_mode(0x36) A[5] = 0$:

The column and page address are reset to the Start Column (SC) and Start Page (SP), respectively.

Pixel Data 1 is stored in frame buffer at (SC, SP). The column address is then incremented and pixels are written to the frame buffer until the column address equals the End Column (EC) value. The column address is then reset to SC and the page address is incremented. Pixels are written to the frame buffer until the page address equals the End Page (EP) value and the column address equals the EC value, or the host processor sends another command. If the number of pixels exceeds (EC - SC + 1) * (EP - SP + 1) the extra pixels are ignored.

If $set_address_mode (0x36) A[5] = 1$:

The column and page registers are reset to the Start Column (SC) and Start Page (SP), respectively.

Pixel Data 1 is stored in frame buffer at (SC, SP). The page address is then incremented and pixels are written to the frame buffer until the page address equals the End Page (EP) value. The page address is then reset to SP and the column address is incremented. Pixels are written to the frame buffer until the column address equals the End column (EC) value and the page address equals the EP value, or the host processor sends another command. If the number of pixels exceeds (EC - SC + 1) * (EP - SP + 1) the extra pixels are ignored.

Solomon Systech Jul 2011 | P 28/90 | Rev 1.3 | SSD1961

9.19 read_memory_start

Command 0x2E **Parameters** None

	D/C	D7	D6	D5	D4	D3	D2	D1	D 0	Hex
Command	0	0	0	1	0	1	1	1	0	2E

Description

Transfer image data from the SSD1961 to the host processor interface starting at the location provided by set_column_address (0x2A) and set_page_address (0x2B).

If $set_address_mode A[5] = 0$:

The column and page address are reset to the Start Column (SC) and Start Page (SP), respectively.

Pixels Data1are read from frame buffer at (SC, SP). The column address is then incremented and pixels read from the frame buffer until the column address equals the End Column (EC) value. The column address is then reset to SC and the page address is incremented. Pixels are read from the frame buffer until the page address equals the End Page (EP) value and the column address equals the EC value, or the host processor sends another command.

If set_address_mode (0x36) A[5] = 1:

The column and page registers are reset to the Start Column (SC) and Start Page (SP), respectively.

Pixels Data1are read from frame buffer at (SC, SP). The page address is then incremented and pixels read from the frame buffer until the page address equals the End Page (EP) value. The page address is then reset to SP and the column address is incremented. Pixels are read from the frame buffer until the column address equals the End Column (EC) value and the page address equals the EP value, or the host processor sends another command.

9.20 set_partial_area

Command 0x30 Parameters 4

	D/C	D7	D6	D5	D4	D3	D2	D1	D0	Hex
Command	0	0	0	1	1	0	0	0	0	30
Parameter 1	1	SR ₁₅	SR ₁₄	SR ₁₃	SR ₁₂	SR ₁₁	SR ₁₀	SR ₉	SR_8	XX
Parameter 2	1	SR ₇	SR_6	SR_5	SR_4	SR_3	SR_2	SR_1	SR_0	XX
Parameter 3	1	ER ₁₅	ER ₁₄	ER ₁₃	ER ₁₂	ER ₁₁	ER ₁₀	ER ₉	ER_8	XX
Parameter 4	1	ER ₇	ER ₆	ER ₅	ER ₄	ER_3	ER_2	ER_1	ER_0	XX

Description

This command defines the Partial Display mode's display area. There are two parameters associated with this command, the first defines the Start Row (SR) and the second the End Row (ER). SR and ER refer to the Frame Buffer Line Pointer.

SR[15:8]: Start display row number high byte (POR = 00000000) SR[7:0]: Start display row number low byte (POR = 00000000)

ER[15:8]: End display row number high byte (POR = 00000000)

ER[7:0]: End display row number low byte (POR = 00000000)

Note: SR[15:0] and ER[15:0] cannot be 0000h nor exceed the last vertical line number.

SSD1961 | Rev 1.3 | P 29/90 | Jul 2011 | **Solomon Systech**

Figure 9-5: Set Partial Area with set_address_mode (0x36) A[4] = 0 when End Row > Start Row

Figure 9-6: Set Partial Area with set_address_mode (0x36) A[4] = 1 when End Row > Start Row

If Start Row > End Row

Figure 9-7: Set Partial Area with set_address_mode (0x36) A[4] = 0 when Start Row > End Row

 Solomon Systech
 Jul 2011
 P 30/90
 Rev 1.3
 SSD1961

Figure 9-8: Set Partial Area with set_address_mode (0x36) A[4] = 1 when Start Row > End Row

9.21 set_scroll_area

Command 0x33 **Parameters** 6

	D/C	D7	D 6	D5	D4	D3	D2	D1	D0	Hex
Command	0	0	0	1	1	0	0	1	1	33
Parameter 1	1	TFA ₁₅	TFA ₁₄	TFA ₁₃	TFA ₁₂	TFA ₁₁	TFA ₁₀	TFA ₉	TFA ₈	XX
Parameter 2	1	TFA ₇	TFA_6	TFA ₅	TFA ₄	TFA ₃	TFA ₂	TFA_1	TFA_0	XX
Parameter 3	1	VSA ₁₅	VSA_{14}	VSA ₁₃	VSA ₁₂	VSA ₁₁	VSA ₁₀	VSA ₉	VSA_8	XX
Parameter 4	1	VSA ₇	VSA ₆	VSA ₅	VSA ₄	VSA ₃	VSA ₂	VSA ₁	VSA ₀	XX
Parameter 5	1	BFA ₁₅	BFA ₁₄	BFA ₁₃	BFA ₁₂	BFA ₁₁	BFA ₁₀	BFA ₉	BFA ₈	XX
Parameter 6	1	BFA ₇	BFA ₆	BFA ₅	BFA_4	BFA ₃	BFA_2	BFA ₁	BFA_0	XX

Description

Defines the vertical scrolling and fixed area on display area

TFA[15:8]: High byte of Top Fixed Area number in lines from the top of the frame buffer (POR = 00000000) TFA[7:0]: Low byte of Top Fixed Area number in lines from the top of the frame buffer (POR = 00000000)

VSA[15:8]: High byte of Vertical scrolling area in number of lines of the frame buffer (POR = 00000000) VSA[7:0]: Low byte of Vertical scrolling area in number of lines of the frame buffer (POR = 00000000)

BFA[15:8]: High byte of Bottom Fixed Area in number of lines from the bottom of the frame buffer (POR = 00000000) BFA[7:0]: Low byte of Bottom Fixed Area in number of lines from the bottom of the frame buffer (POR = 00000000)

If set_address_mode (0x36) A[4] = 0:

The TFA[15:0] describes the Top Fixed Area in number of lines from the top of the frame buffer. The top of the frame buffer and top of the display panel are aligned.

The VSA[15:0] describes the height of the Vertical Scrolling Area in number of lines of frame buffer from the Vertical Scrolling Start Address. The first line of the Vertical Scrolling Area starts immediately after the bottom most line of the Top Fixed Area. The last line of the Vertical Scrolling Area ends immediately before the top most line of the Bottom Fixed Area.

The BFA[15:0] describes the Bottom Fixed Area in number of lines from the bottom of the frame buffer. The bottom of the frame buffer and bottom of the display panel are aligned.

TFA, VSA and BFA refer to the Frame Buffer Line Pointer.

SSD1961 | Rev 1.3 | P 31/90 | Jul 2011 | **Solomon Systech**

Figure 9-9: Set Scroll Area with set_address_mode (0x36) A[4] = 0

If $set_address_mode (0x36) A[4] = 1$:

The TFA[15:0], describes the Top Fixed Area in number of lines from the bottom of the frame buffer. The bottom of the frame buffer and bottom of the display panel are aligned.

The VSA[15:0] describes the height of the Vertical Scrolling Area in number of lines of frame buffer from the Vertical Scrolling Start Address. The first line of the Vertical Scrolling Area starts immediately after the top most line of the Top Fixed Area. The last line of the Vertical Scrolling Area ends immediately before the bottom most line of the Bottom Fixed Area.

The BFA[15:0] describes the Bottom Fixed Area in number of lines from the top of the frame buffer. The top of the frame buffer and top of the display panel are aligned.

TFA, VSA and BFA refer to the Frame Buffer Line Pointer.

(0,0)

Bottom Fixed Area

VSA[15:0]

VSA[15:0]

Top Fixed Area

First line read from memory

Figure 9-10: Set Scroll Area with set_address_mode (0x36) A[4] = 1

Note:

The sum of TFA, VSA and BFA must equal the number of the display panel's horizontal lines (pages), otherwise Scrolling mode is undefined.

In Vertical Scroll Mode, set_address_mode (0x36) A[5] should be set to '0' - this only affects the Frame Buffer Write.

Solomon Systech Jul 2011 | P 32/90 | Rev 1.3 | SSD1961

9.22 set_tear_off

Command 0x34 **Parameters** None

	D/C	D7	D 6	D5	D4	D3	D2	D1	D 0	Hex
Command	0	0	0	1	1	0	1	0	0	34

Description

TE signal is not sent from the SSD1961 to the host processor.

9.23 set_tear_on

Command 0x35 **Parameters** 1

	D/C	D7	D6	D5	D4	D3	D2	D1	D0	Hex
Command	0	0	0	1	1	0	1	0	1	35
Parameter 1	1	0	0	0	0	0	0	0	A_0	XX

Description

TE signal is sent from the SSD1961 to the host processor at the start of VFP.

A[0]: Tearing effect line mode (POR = 0)

0 The tearing effect output line consists of V-blanking information only.

The tearing effect output line consists of both V-blanking and H-blanking information by set tear scanline (0x44)...

The TE signal shall be active low when the display panel is in Sleep mode.

9.24 set_address_mode

Command 0x36 **Parameters** 1

	D/C	D7	D6	D5	D4	D3	D2	D1	D 0	Hex
Command	0	0	0	1	1	0	1	1	0	36
Parameter 1	1	A_7	A_6	A_5	A_4	A_3	A_2	A_1	A_0	XX

Description

Set the read order from host processor to frame buffer by A[7:5] and A[3] and from frame buffer to the display panel by A[2:0] and A[4].

A[7]: Page address order (POR = 0)

This bit controls the order that pages of data are transferred from the host processor to the SSD1961's frame buffer.

- Top to bottom, pages transferred from SP (Start Page) to EP (End Page).
- Bottom to top, pages transferred from EP (End Page) to SP (Start Page).

SSD1961 | Rev 1.3 | P 33/90 | Jul 2011 | **Solomon Systech**

Figure 9-11: A[7] Page Address Order

A[6]: Column address order (POR = 0)

This bit controls the order that columns of data are transferred from the host processor to the SSD1961's frame buffer.

- 0 Left to right, columns transferred from SC (Start Column) to EC (End Column).
- 1 Right to left, columns transferred from EC (End Column) to SC (Start Column).

Figure 9-12: A[6] Column Address Order

A[5]: Page / Column order (POR = 0)

This bit controls the order that columns of data are transferred from the host processor to the SSD1961's frame buffer.

- 0 Normal mode
- 1 Reverse mode

Figure 9-13: A[5] Page / Column Address Order

Solomon Systech Jul 2011 | P 34/90 | Rev 1.3 | SSD1961

A[4]: Line address order (POR = 0)

This bit controls the display panel's horizontal line refresh order. The image shown on the display panel is unaffected, regardless of the bit setting.

- 0 LCD refresh from top line to bottom line.
- 1 LCD refresh from bottom line to top line.

A[3] : RGB / BGR order (POR = 0)

This bit controls the RGB data order transferred from the SSD1961's frame buffer to the display panel.

- 0 RGB
- 1 BGR

Figure 9-14: A[3] RGB Order

A[2]: Display data latch data (POR = 0)

This bit controls the display panel's vertical line data latch order. The image shown on the display panel is unaffected, regardless of the bit setting.

- 0 LCD refresh from left side to right side
- 1 LCD refresh from right side to left side

A[1]: Flip Horizontal (POR = 0)

This bit flips the image shown on the display panel left to right. No change is made to the frame buffer.

- 0 Normal
- 1 Flipped

Figure 9-15: A[1] Flip Horizontal

SSD1961 | Rev 1.3 | P 35/90 | Jul 2011 | **Solomon Systech**

A[0]: Flip Vertical (POR = 0)

This bit flips the image shown on the display panel top to bottom. No change is made to the frame buffer.

- 0 Normal1 Flipped

Figure 9-16: A[0] Flip Vertical

9.25 set_scroll_start

Command 0x37 **Parameters** 2

	D/C	D7	D6	D5	D4	D3	D2	D1	D0	Hex
Command	0	0	0	1	1	0	1	1	1	37
Parameter 1	1	VSP ₁₅	VSP ₁₄	VSP ₁₃	VSP ₁₂	VSP ₁₁	VSP ₁₀	VSP ₉	VSP ₈	XX
Parameter 2	1	VSP ₇	VSP ₆	VSP ₅	VSP ₄	VSP ₃	VSP_2	VSP_1	VSP ₀	XX

Description

This command sets the start of the vertical scrolling area in the frame buffer. The vertical scrolling area is fully defined when this command is used with the set_scroll_area (0x33).

VSP[15:8]: High byte of the line number in frame buffer that is written to the display as the first line of the vertical scrolling area (POR = 00000000)

VSP[7:0]: Low byte of the line number in frame buffer that is written to the display as the first line of the vertical scrolling area (POR = 00000000)

If $set_address_mode (0x36) A[4] = 0$:

Example:

When Top Fixed Area = Bottom Fixed Area = 0, Vertical Scrolling Area = YY and VSP = 3.

Figure 9-17: Set Scroll Start with set_address_mode (0x36) A[4] = 0

Solomon Systech Jul 2011 | P 36/90 | Rev 1.3 | SSD1961

If $set_address_mode (0x36) A[4] = 1$:

Example:

When Top Fixed Area = Bottom Fixed Area = 0, Vertical Scrolling Area = YY and VSP = 3.

Figure 9-18: Set Scroll Start with set_address_mode (0x36) A[4] = 1

Note:

If set_address_mode, (0x36) A[4] = 0, TFA[15:0] - 1 < VSP[15:0] < # of lines in frame buffer - BFA[15:0] If set_address_mode, (0x36) A[4] = 1, BFA[15:0] - 1 < VSP[15:0] < # of lines in frame buffer - TFA[15:0]

9.26 exit_idle_mode

Command 0x38 **Parameters** None

	D/C	D7	D 6	D5	D4	D3	D2	D1	D 0	Hex
Command	0	0	0	1	1	1	0	0	0	38

Description

This command causes the SSD1961 to exit Idle Mode.

Full color depth is used for the display panel.

9.27 enter_idle_mode

Command 0x39 **Parameters** None

	D/C	D7	D 6	D 5	D4	D3	D2	D1	D 0	Hex
Command	0	0	0	1	1	1	0	0	1	39

Description

This command causes the SSD1961 to enter Idle Mode.

In Idle Mode, color depth is reduced. Colors are shown on the display panel using the MSB of each of the R, G and B color components in the frame buffer.

SSD1961 | Rev 1.3 | P 37/90 | Jul 2011 | **Solomon Systech**

Table 9-1: Enter Idle Mode memory content vs display color

Color	$R_7 R_6 R_5 R_4 R_3 R_2 R_1 R_0$	G ₇ G ₆ G ₅ G ₄ G ₃ G ₂ G ₁ G ₀	B ₇ B ₆ B ₅ B ₄ B ₃ B ₂ B ₁ B ₀
Black	0XXXXXX	0XXXXXX	0XXXXXX
Blue	0XXXXXX	0XXXXXX	1XXXXXXX
Red	1XXXXXXX	0XXXXXX	0XXXXXX
Magenta	1XXXXXXX	0XXXXXX	1XXXXXXX
Green	0XXXXXX	1XXXXXXX	0XXXXXX
Cyan	0XXXXXX	1XXXXXXX	1XXXXXXX
Yellow	1XXXXXXX	1XXXXXXX	0XXXXXX
White	1XXXXXXX	1XXXXXXX	1XXXXXXX

9.28 write_memory_continue

Command 0x3C **Parameters** None

	D/C	D7	D 6	D5	D4	D3	D2	D1	D0	Hex
Command	0	0	0	1	1	1	1	0	0	3C

Description

Transfer image information from the host processor interface to the SSD1961 from the last write_memory_continue (0x3C) or write_memory_start (0x2C).

If $set_address_mode\ (0x36)\ A[5] = 0$:

Data is written continuing from the pixel location after the write range of the previous write_memory_start (0x2C) or write_memory_continue (0x3C). The column address is then incremented and pixels are written to the frame buffer until the column address equals the End Column (EC) value. The column address is then reset to SC and the page address is incremented. Pixels are written to the frame buffer until the page address equals the End Page (EP) value and the column register equals the EC value, or the host processor sends another command. If the number of pixels exceeds (EC – SC + 1) * (EP – SP + 1) the extra pixels are ignored.

If set_address_mode (0x36) A[5] = 1:

Data is written continuing from the pixel location after the write range of the previous write_memory_start (0x2C) or write_memory_continue (0x3C). The page address is then incremented and pixels are written to the frame buffer until the page register equals the End Page (EP) value. The page address is then reset to SP and the column address is incremented. Pixels are written to the frame buffer until the column register equals the End column (EC) value and the page address equals the EP value, or the host processor sends another command. If the number of pixels exceeds (EC – SC + 1) * (EP – SP + 1) the extra pixels are ignored.

Solomon Systech Jul 2011 | P 38/90 | Rev 1.3 | SSD1961

9.29 read_memory_continue

Command 0x3E **Parameters** None

	D/C	D7	D6	D5	D4	D3	D2	D1	D0	Hex
Command	0	0	0	1	1	1	1	1	0	3E

Description

Read image data from the SSD1961 to host processor continuing after the last read_memory_continue (0x3E) or read memory start (0x2E).

If $set_address_mode (0x36) A[5] = 0$:

Pixels are read continuing from the pixel location after the read range of the previous read_memory_start (0x2E) or read_memory_continue (0x3E). The column address is then incremented and pixels are read from the frame buffer until the column address equals the End Column (EC) value. The column address is then reset to SC and the page address is incremented. Pixels are read from the frame buffer until the page address equals the End Page (EP) value and the column address equals the EC value, or the host processor sends another command.

If $set_address_mode (0x36) A[5] = 1$:

Pixels are read continuing from the pixel location after the read range of the previous read_memory_start (0x2E) or read_memory_continue (0x3E). The page address is then incremented and pixels are read from the frame buffer until the page address equals the End Page (EP) value. The page address is then reset to SP and the column address is incremented. Pixels are read from the frame buffer until the column address equals the End Column (EC) value and the page address equals the EP value, or the host processor sends another command.

SSD1961 Rev 1.3 | P 39/90 | Jul 2011 **Solomon Systech**

9.30 set_tear_scanline

Command 0x44 **Parameters** 2

	D/C	D7	D6	D5	D4	D3	D2	D1	D0	Hex
Command	0	0	1	0	0	0	1	0	0	44
Parameter 1	1	N ₁₅	N ₁₄	N ₁₃	N ₁₂	N ₁₁	N ₁₀	N_9	N_8	XX
Parameter 2	1	N_7	N_6	N_5	N_4	N_3	N_2	N_1	N_0	XX

Description

TE signal is sent from the SSD1961 to the host processor when the display panel refresh reaches the provided scanline, N.

N[15:8]: High byte of the scanline (POR = 00000000) N[7:0]: Low byte of the scanline (POR = 00000000)

Note:

Valid setting for TE signal: 0x0000, 0x0002 to 0xFFFF.

The number of Tear Scanline = N[15:0] +1, except N = 0.

Set Tear Scanline with N = 0 is equivalent to set_tear_on (0x35) A[0] = 0.

When Tear Scanline, N >= Vertical panel size, TE signal will always pull high.

Program set_tear_scanline will automatic change the operating mode of set_tear_on (0x35) A[0] = 1.

This command takes affect on the frame following the current frame. Therefore, if the Tear Effect (TE) signal is already ON, the TE output shall continue to operate as programmed by the previous set_tear_on (0x35) or set_tear_scanline (0x44) until the end of the frame.

9.31 get_scanline

Command 0x45 **Parameters** 2

	D/C	D 7	D6	D5	D4	D3	D2	D1	D0	Hex
Command	0	0	1	0	0	0	1	0	1	45
Parameter 1	1	N ₁₅	N ₁₄	N ₁₃	N ₁₂	N ₁₁	N ₁₀	N_9	N_8	XX
Parameter 2	1	N_7	N_6	N_5	N_4	N_3	N_2	N_1	N_0	XX

Description

Get the current scan line, N.

 $\label{eq:N15:8} N[15:8]: High byte of the current scanline (POR = 00000000) \\ N[7:0]: Low byte of the current scanline (POR = 00000000)$

Solomon Systech Jul 2011 | P 40/90 | Rev 1.3 | SSD1961

9.32 read_ddb

Command 0xA1 **Parameters** 5

	D/C	D7	D6	D5	D4	D3	D2	D1	D0	Hex
Command	0	1	0	1	0	0	0	0	1	A1
Parameter 1	1	SSL_{15}	SSL_{14}	SSL_{13}	SSL_{12}	SSL_{11}	SSL_{10}	SSL ₉	SSL_8	XX
Parameter 2	1	SSL_7	SSL_6	SSL_5	SSL_4	SSL_3	SSL_2	SSL_1	SSL_0	XX
Parameter 3	1	PROD ₇	$PROD_6$	PROD ₅	$PROD_4$	PROD ₃	$PROD_2$	$PROD_1$	$PROD_0$	XX
Parameter 4	1	0	0	0	0	0	REV_2	REV ₁	REV ₀	XX
Parameter 5	1	1	1	1	1	1	1	1	1	FF

Description

Read the DDB (Device Descriptor Block) information of SSD1961.

SSL[15:8] : Supplier ID of Solomon Systech Limited high byte, always 01h (POR = 00000001) SSL[7:0] : Supplier ID of Solomon Systech Limited low byte, always 57h (POR = 01010111)

PROD[7:0]: Product ID, always 61h (POR = 01100001) REV[2:0]: Revision code, always 01h (POR = 001)

Exit code, always FFh (POR = 11111111)

9.33 set_lcd_mode

Command 0xB0 **Parameters** 7

	D/C	D7	D6	D 5	D4	D3	D2	D1	D0	Hex
Command	0	1	0	1	1	0	0	0	0	В0
Parameter 1	1	0	0	0	A_4	A_3	A_2	A_1	A_0	XX
Parameter 2	1	0	B_6	B_5	0	0	0	0	0	XX
Parameter 3	1	0	0	0	0	0	HDP_{10}	HDP ₉	HDP_8	XX
Parameter 4	1	HDP_7	HDP_6	HDP_5	HDP_4	HDP_3	HDP_2	HDP_1	HDP_0	XX
Parameter 5	1	0	0	0	0	0	VDP_{10}	VDP_9	VDP_8	XX
Parameter 6	1	VDP_7	VDP_6	VDP_5	VDP_4	VDP_3	VDP_2	VDP_1	VDP_0	XX
Parameter 7	1	0	0	G_5	G_4	G_3	G_2	G_1	G_0	XX

Description

Set the LCD panel mode and resolution

A[4]: TFT color depth enhancement enable (POR = 0)

0 Disable FRC or dithering

1 Enable FRC or dithering for color depth enhancement

A[3]: TFT FRC enable (POR = 0)

0 TFT dithering enable

1 TFT FRC enable

A[4]	A[3]	TFT FRC	TFT dithering
0	X	Disable	Disable
1	0	Disable	Enable
1	1	Enable	Disable

SSD1961 | Rev 1.3 | P 41/90 | Jul 2011 | **Solomon Systech**

```
A[2]: LSHIFT polarity (POR = 0)
Set the dot clock pulse polarity.
        0
                Data latch in falling edge
        1
                Data latch in rising edge
A[1]: LLINE polarity (POR = 0)
Set the horizontal sync pulse polarity.
                Active low
        0
        1
                Active high
A[0]: LFRAME polarity (POR = 0)
Set the vertical sync pulse polarity.
        0
                Active low
        1
                Active high
B[6:5] : TFT type (POR = 01)
        00, 01
                TFT mode
        10
                Serial RGB mode
        11
                Serial RGB+dummy mode
HDP[10:8]: High byte of the horizontal panel size (POR = 010)
HDP[7:0]: Low byte of the horizontal panel size (POR = 01111111)
        Horizontal panel size = (HDP + 1) pixels
VDP[10:8]: High byte of the vertical panel size (POR = 001)
VDP[7:0]: Low byte of the vertical panel size (POR = 11011111)
        Vertical panel size = (VDP + 1) lines
G[5:3]: Even line RGB sequence for serial TFT interface (POR = 000)
        000
                RGB
                RBG
        001
                GRB
        010
        011
                GBR
        100
                BRG
        101
                BGR
        11x
                Reserved
G[2:0] : Odd line RGB sequence for serial TFT interface (POR = 000)
        000
                RGB
        001
                RBG
        010
                GRB
                GBR
        011
                BRG
        100
        101
                BGR
        11x
                Reserved
```

 Solomon Systech
 Jul 2011
 P 42/90
 Rev 1.3
 SSD1961

9.34 get_lcd_mode

Command 0xB1 **Parameters** 7

	D/C	D7	D6	D5	D4	D3	D2	D1	D0	Hex
Command	0	1	0	1	1	0	0	0	1	B1
Parameter 1	1	0	0	0	A_4	A_3	A_2	A_1	A_0	XX
Parameter 2	1	0	B_6	\mathbf{B}_{5}	0	0	0	0	0	XX
Parameter 3	1	0	0	0	0	0	HDP_{10}	HDP_9	HDP_8	XX
Parameter 4	1	HDP ₇	HDP_6	HDP ₅	HDP_4	HDP ₃	HDP_2	HDP_1	HDP_0	XX
Parameter 5	1	0	0	0	0	0	VDP ₁₀	VDP_9	VDP_8	XX
Parameter 6	1	VDP ₇	VDP ₆	VDP ₅	VDP_4	VDP ₃	VDP_2	VDP_1	VDP_0	XX
Parameter 7	1	0	0	G_5	G_4	G_3	G_2	G_1	G_0	XX

Description

Get the current LCD panel mode and resolution

A[4]: TFT color depth enhancement enable(POR = 0)

0 Disable FRC or dithering

1 Enable FRC or dithering for color depth enhancement

A[3]: TFT FRC enable (POR = 0)

0 TFT dithering enable

1 TFT FRC enable

A[2]: LSHIFT polarity (POR = 0)

The dot clock pulse polarity.

0 Data latch in falling edge

1 Data latch in rising edge

A[1]: LLINE polarity (POR = 0)

The horizontal sync pulse polarity.

0 Active low

1 Active high

A[0]: LFRAME polarity (POR = 0)

The vertical sync pulse polarity.

0 Active low

1 Active high

B[6:5]: TFT type(POR = 01)

00, 01 TFT mode

10 Serial RGB mode

11 Serial RGB+dummy mode

HDP[10:8]: High byte of the horizontal panel size (POR = 010)

HDP[7:0]: Low byte of the horizontal panel size (POR = 01111111)

VDP[10:8]: High byte of the vertical panel size (POR = 001)

VDP[7:0]: Low byte of the vertical panel size (POR = 11011111)

G[5:3]: Even line RGB sequence (POR = 000)

000 RGB

001 RBG

010 GRB

011 GBR

SSD1961 | Rev 1.3 | P 43/90 | Jul 2011 | **Solomon Systech**

100 BRG101 BGR11x Reserved

G[2:0]: Odd line RGB sequence (POR = 000)

000 RGB 001 RBG 010 GRB 011 GBR 100 BRG 101 BGR 11x Reserved

9.35 set hori period

Command 0xB4 **Parameters** 8

	D/C	D 7	D6	D5	D4	D3	D2	D1	D0	Hex
Command	0	1	0	1	1	0	1	0	0	B4
Parameter 1	1	0	0	0	0	0	HT_{10}	HT ₉	HT_8	XX
Parameter 2	1	HT_{7}	HT_6	HT_5	HT_{4}	HT_3	HT_2	HT_1	HT_0	XX
Parameter 3	1	0	0	0	0	0	HPS_{10}	HPS ₉	HPS_8	XX
Parameter 4	1	HPS ₇	HPS_6	HPS ₅	HPS ₄	HPS ₃	HPS_2	HPS_1	HPS_0	XX
Parameter 5	1	0	HPW_6	HPW ₅	HPW_4	HPW_3	HPW_2	HPW_1	HPW_0	XX
Parameter 6	1	0	0	0	0	0	LPS_{10}	LPS ₉	LPS ₈	XX
Parameter 7	1	LPS ₇	LPS ₆	LPS ₅	LPS ₄	LPS ₃	LPS_2	LPS ₁	LPS_0	XX
Parameter 8	1	0	0	0	0	0	0	LPSPP ₁	LPSPP ₀	XX

Description

Set front porch and back porch

HT[10:8]: High byte of horizontal total period (display + non-display) in pixel clock (POR = 010)

HT[7:0]: Low byte of the horizontal total period (display + non-display) in pixel clock (POR = 10101111)

Horizontal total period = (HT + 1) pixels

HPS[10:8]: High byte of the non-display period between the start of the horizontal sync (LLINE) signal and the first

display data. (POR = 000)

HPS[7:0]: Low byte of the non-display period between the start of the horizontal sync (LLINE) signal and the first

display data. (POR = 00100000)

For TFT: Horizontal Sync Pulse Start Position = HPS pixels

For Serial TFT: Horizontal Sync Pulse Start Position = HPS pixels + LPSPP subpixels

HPW[6:0]: Set the horizontal sync pulse width (LLINE) in pixel clock. (POR = 0000111)

Horizontal Sync Pulse Width = (HPW + 1) pixels

LPS[10:8]: Set the horizontal sync pulse (LLINE) start location in pixel clock. (POR = 000)

LPS[7:0]: Set the horizontal sync pulse width (LLINE) in start. (POR = 00000000)

Horizontal Display Period Start Position = LPS pixels

LPSPP[1:0]: Set the horizontal sync pulse subpixel start position for serial TFT interface (POR = 00)

9.36 get_hori_period

Command 0xB5 **Parameters** 8

Solomon Systech Jul 2011 | P 44/90 | Rev 1.3 | SSD1961

	D/C	D 7	D6	D5	D4	D3	D2	D1	D0	Hex
Command	0	1	0	1	1	0	1	0	1	B5
Parameter 1	1	0	0	0	0	0	HT_{10}	HT ₉	HT_8	XX
Parameter 2	1	HT_7	HT_6	HT_5	HT_4	HT_3	HT_2	HT_1	HT_0	XX
Parameter 3	1	0	0	0	0	0	HPS ₁₀	HPS ₉	HPS ₈	XX
Parameter 4	1	HPS ₇	HPS ₆	HPS ₅	HPS ₄	HPS ₃	HPS_2	HPS_1	HPS_0	XX
Parameter 5	1	0	HPW_6	HPW_5	HPW_4	HPW_3	HPW_2	HPW_1	HPW_0	XX
Parameter 6	1	0	0	0	0	0	LPS ₁₀	LPS ₉	LPS ₈	XX
Parameter 7	1	LPS ₇	LPS ₆	LPS ₅	LPS ₄	LPS ₃	LPS_2	LPS ₁	LPS_0	XX
Parameter 8	1	0	0	0	0	0	0	LPSPP ₁	LPSPP ₀	XX

Description

Get current front porch and back porch settings

HT[10:8]: High byte of the horizontal total period (display + non-display) in pixel clock (POR = 010)

HT[7:0]: Low byte of the horizontal total period (display + non-display) in pixel clock (POR = 10101111)

HPS[10:8]: High byte of the non-display period between the start of the horizontal sync (LLINE) signal and the first

display data. (POR = 000)

HPS[7:0]: Low byte of the non-display period between the start of the horizontal sync (LLINE) signal and the first

display data. (POR = 00100000)

HPW[6:0]: The horizontal sync pulse width (LLINE) in pixel clock. (POR = 0000111)

LPS[10:8]: High byte of the horizontal sync pulse (LLINE) start location in pixel clock. (POR = 000)

LPS[7:0]: Low byte of the horizontal sync pulse width (LLINE) in start. (POR = 00000000)

LPSPP[1:0]: The horizontal sync pulse subpixel start position (POR = 00)

9.37 set_vert_period

Command 0xB6
Parameters 7

	D/C	D7	D6	D5	D4	D3	D2	D1	D0	Hex
Command	0	1	0	1	1	0	1	1	0	B6
Parameter 1	1	0	0	0	0	0	VT_{10}	VT_9	VT_8	XX
Parameter 2	1	VT_7	VT_6	VT_5	VT_4	VT_3	VT_2	VT_1	VT_0	XX
Parameter 3	1	0	0	0	0	0	VPS ₁₀	VPS ₉	VPS ₈	XX
Parameter 4	1	VPS ₇	VPS ₆	VPS ₅	VPS_4	VPS ₃	VPS ₂	VPS_1	VPS_0	XX
Parameter 5	1	0	VPW ₆	VPW ₅	VPW_4	VPW ₃	VPW ₂	VPW_1	VPW_0	XX
Parameter 6	1	0	0	0	0	0	FPS ₁₀	FPS ₉	FPS ₈	XX
Parameter 7	1	FPS ₇	FPS ₆	FPS ₅	FPS ₄	FPS ₃	FPS ₂	FPS ₁	FPS_0	XX

Description

Set the vertical blanking interval between last scan line and next LFRAME pulse

VT[10:8]: High byte of the vertical total (display + non-display) period in lines (POR = 001)
VT[7:0]: Low byte of the vertical total (display + non-display) period in lines (POR = 11101111)

Vertical Total = (VT + 1) lines

SSD1961 | Rev 1.3 | P 45/90 | Jul 2011 | **Solomon Systech**

VPS[10:8]: High byte the non-display period in lines between the start of the frame and the first display data in line.

(POR = 000)

VPS[7:0]: The non-display period in lines between the start of the frame and the first display data in line. (POR =

00000100)

Vertical Sync Pulse Start Position = VPS lines

VPW[6:0]: Set the vertical sync pulse width (LFRAME) in lines. (POR = 000001)

Vertical Sync Pulse Width = (VPW + 1) lines

FPS[10:8]: High byte of the vertical sync pulse (LFRAME) start location in lines. (POR = 000)

FPS[7:0]: Low byte of the vertical sync pulse (LFRAME) start location in lines. (POR = 00000000)

Vertical Display Period Start Position = FPS lines

9.38 get_vert_period

Command 0xB7 **Parameters** 7

	D/C	D7	D6	D5	D4	D3	D2	D1	D0	Hex
Command	0	1	0	1	1	0	1	1	1	В7
Parameter 1	1	0	0	0	0	0	VT_{10}	VT ₉	VT_8	XX
Parameter 2	1	VT_7	VT ₆	VT ₅	VT_4	VT_3	VT_2	VT_1	VT_0	XX
Parameter 3	1	0	0	0	0	0	VPS ₁₀	VPS ₉	VPS_8	XX
Parameter 4	1	VPS ₇	VPS ₆	VPS ₅	VPS_4	VPS ₃	VPS ₂	VPS_1	VPS_0	XX
Parameter 5	1	0	VPW ₆	VPW ₅	VPW_4	VPW ₃	VPW ₂	VPW_1	VPW_0	XX
Parameter 6	1	0	0	0	0	0	FPS ₁₀	FPS ₉	FPS ₈	XX
Parameter 7	1	FPS ₇	FPS ₆	FPS ₅	FPS ₄	FPS ₃	FPS ₂	FPS ₁	FPS_0	XX

Description

Get the vertical blanking interval between last scan line and next LFRAME pulse

VT[10:8]: High byte of the vertical total (display + non-display) period in lines (POR = 001)

VT[7:0]: Low byte of the vertical total (display + non-display) period in lines (POR = 01111111)

VPS[10:8]: High byte of the non-display period in lines between the start of the frame and the first display data in line.

(POR = 000)

VPS[7:0]: Low byte of the non-display period in lines between the start of the frame and the first display data in line.

(POR = 00000100)

VPW[6:0]: The vertical sync pulse width (LFRAME) in lines. (POR = 000001)

FPS[10:8]: High byte of the vertical sync pulse (LFRAME) start location in lines. (POR = 000) FPS[7:0]: Low byte of the vertical sync pulse (LFRAME) start location in lines. (POR = 00000000)

Low byte of the vertical sync pulse (LFRAWE) start location in files. (FOR = 00000000

Solomon Systech Jul 2011 | P 46/90 | Rev 1.3 | SSD1961

9.39 set_gpio_conf

Command 0xB8 **Parameters** 2

	D/C	D7	D6	D5	D4	D3	D2	D1	D0	Hex
Command	0	1	0	1	1	1	0	0	0	B8
Parameter 1	1	A ₇	A_6	A_5	A_4	A_3	A_2	A_1	A_0	XX
Parameter 2	1	0	0	0	0	0	0	0	B_0	XX

Description

Set the GPIOs configuration. If the GPIOs are not used for LCD, set the direction. Otherwise, they are toggled with LCD signals by 0xC0 - 0xCF.

A[7]: GPIO3 configuration (POR = 0)

O GPIO3 is controlled by host

1 GPIO3 is controlled by LCDC

A[6]: GPIO2 configuration (POR = 0)

0 GPIO2 is controlled by host

1 GPIO2 is controlled by LCDC

A[5]: GPIO1 configuration (POR = 0)

1

O GPIO1 is controlled by host

GPIO1 is controlled by LCDC

A[4]: GPIO0 configuration (POR = 0)

O GPIO0 is controlled by host

1 GPIO0 is controlled by LCDC

A[3]: GPIO3 direction (POR = 0)

O GPIO3 is input

1 GPIO3 is output

A[2]: GPIO3 direction (POR = 0)

0 GPIO2 is input

1 GPIO2 is output

A[1]: GPIO1 direction (POR = 0)

O GPIO1 is input

1 GPIO1 is output

A[0]: GPIO0 direction (POR = 0)

0 GPIO0 is input

1 GPIO0 is output

B[0]: GPIO0 direction (POR = 0)

O GPIO0 is used to control the panel power with Enter Sleep Mode 0x10 or Exit Sleep Mode 0x11.

1 GPIO0 is used as normal GPIO

SSD1961 | Rev 1.3 | P 47/90 | Jul 2011 | **Solomon Systech**

9.40 get_gpio_conf

Command 0xB9 **Parameters** 2

	D/C	D7	D6	D5	D4	D3	D2	D1	D0	Hex
Command	0	1	0	1	1	1	0	0	1	В9
Parameter 1	1	A ₇	A_6	A_5	A_4	A_3	A_2	A_1	A_0	XX
Parameter 2	1	0	0	0	0	0	0	0	B_0	XX

Description

Get the current GPIOs configuration

A[7]: GPIO3 configuration (POR = 0)

GPIO3 is controlled by hostGPIO3 is controlled by LCDC

A[6]: GPIO2 configuration (POR = 0)

GPIO2 is controlled by hostGPIO2 is controlled by LCDC

A[5]: GPIO1 configuration (POR = 0)

GPIO1 is controlled by hostGPIO1 is controlled by LCDC

A[4]: GPIO0 configuration (POR = 0)

GPIO0 is controlled by hostGPIO0 is controlled by LCDC

A[3]: GPIO3 direction (POR = 0)

0 GPIO3 is input1 GPIO3 is output

A[2]: GPIO3 direction (POR = 0)

0 GPIO2 is input1 GPIO2 is output

A[1]: GPIO1 direction (POR = 0)

0 GPIO1 is input1 GPIO1 is output

A[0]: GPIO0 direction (POR = 0)

GPIO0 is inputGPIO0 is output

B[0]: GPIOO direction (POR = 0)

GPIO0 is used to control the panel power with enter_sleep_mode (0x10) or exit_sleep_mode (0x11)

1 GPIO0 is used as normal GPIO

Solomon Systech Jul 2011 | P 48/90 | Rev 1.3 | SSD1961

9.41 set_gpio_value

Command 0xBA **Parameters** 1

	D/C	D 7	D6	D 5	D4	D3	D2	D1	D0	Hex
Command	0	1	0	1	1	1	0	1	0	BA
Parameter 1	1	0	0	0	0	A_3	A_2	A_1	A_0	XX

Description

Set GPIO value for GPIO configured as output

A[3]: GPIO3 value (POR = 0)

0 GPIO3 outputs 0 1 GPIO3 outputs 1

A[2]: GPIO2 value (POR = 0)

0 GPIO2 outputs 01 GPIO2 outputs 1

A[1]: GPIO1 value (POR = 0)

0 GPIO1 outputs 0 1 GPIO1 outputs 1

A[0]: GPIO0 value (POR = 0)

0 GPIO0 outputs 0 1 GPIO0 outputs 1

9.42 get_gpio_status

Command 0xBB **Parameters** 1

	D/C	D 7	D 6	D5	D4	D3	D2	D1	D 0	Hex
Command	0	1	0	1	1	1	0	1	1	BB
Parameter 1	1	0	0	0	0	A_3	A_2	A_1	A_0	XX

Description

Read current GPIO status. If the individual GPIO was configured as input, the value is the status of the corresponding pin. Otherwise, it is the programmed value.

A[3]: GPIO3 value (POR: depends on pad value)

0 GPIO3 is pulled low1 GPIO3 is pulled high

 $A[2]: GPIO2 \ value \ (POR: depends \ on \ pad \ value)$

GPIO2 is pulled lowGPIO2 is pulled high

A[1]: GPIO1 value (POR: depends on pad value)

0 GPIO1 is pulled low1 GPIO1 is pulled high

A[0]: GPIO0 value (POR: depends on pad value)

GPIO0 is pulled lowGPIO0 is pulled high

SSD1961 Rev 1.3 | P 49/90 | Jul 2011 **Solomon Systech**

9.43 set_post_proc

Command 0xBC **Parameters** 4

	D/C	D7	D6	D5	D4	D3	D2	D1	D0	Hex
Command	0	1	0	1	1	1	1	0	0	BC
Parameter 1	1	A ₇	A_6	A_5	A_4	A_3	A_2	A_1	A_0	XX
Parameter 2	1	B_7	B_6	B_5	\mathbf{B}_4	B_3	\mathbf{B}_2	\mathbf{B}_1	\mathbf{B}_0	XX
Parameter 3	1	C ₇	C_6	C_5	C_4	C_3	C_2	C_1	C_0	XX
Parameter 4	1	0	0	0	0	0	0	0	D_0	XX

Description

Set the image post processor

A[7:0]: Set the contrast value (POR = 01000000)

B[7:0]: Set the brightness value (POR = 10000000)

C[7:0]: Set the saturation value (POR = 01000000)

D[0]: Post Processor Enable (POR = 0)

0 Disable the postprocessor1 Enable the postprocessor

9.44 get_post_proc

Command 0xBD **Parameters** 4

	D/C	D7	D6	D5	D4	D3	D2	D1	D0	Hex
Command	0	1	0	1	1	1	1	0	1	BD
Parameter 1	1	A_7	A_6	A_5	A_4	A_3	A_2	A_1	A_0	XX
Parameter 2	1	\mathbf{B}_7	B_6	B_5	B_4	\mathbf{B}_3	\mathbf{B}_2	\mathbf{B}_1	B_0	XX
Parameter 3	1	C_7	C_6	C_5	C_4	C_3	C_2	C_1	C_0	XX
Parameter 4	1	0	0	0	0	0	0	0	D_0	XX

Description

Get the image post processor

A[7:0]: Get the contrast value (POR = 01000000)

B[7:0]: Get the brightness value (POR = 10000000)

C[7:0]: Get the saturation value (POR = 01000000)

D[0]: Post Processor Enable (POR = 0)

0 Disable the postprocessor1 Enable the postprocessor

Solomon Systech Jul 2011 P 50/90 Rev 1.3 SSD1961

9.45 set_pwm_conf

Command 0xBE **Parameters** 6

	D/C	D7	D6	D5	D4	D3	D2	D1	D0	Hex
Command	0	1	0	1	1	1	1	1	0	BE
Parameter 1	1	PWMF ₇	PWMF ₆	PWMF ₅	PWMF ₄	PWMF ₃	PWMF ₂	PWMF ₁	$PWMF_0$	XX
Parameter 2	1	PWM ₇	PWM_6	PWM_5	PWM_4	PWM ₃	PWM_2	PWM_1	PWM_0	XX
Parameter 3	1	0	0	0	0	C_3	0	0	C_0	XX
Parameter 4	1	D_7	D_6	D_5	D_4	D_3	D_2	D_1	D_0	XX
Parameter 5	1	E_7	E_6	E_5	E_4	E_3	E_2	\mathbf{E}_1	E_0	XX
Parameter 6	1	0	0	0	0	F_3	F_2	\mathbf{F}_{1}	F_0	XX

Description

Set the PWM configuration

PWMF[7:0]: Set the PWM frequency in system clock (POR = 00000000)

PWM signal frequency = PLL clock / (256 * (PWMF[7:0] + 1)) / 256

PWM[7:0]: Set the PWM duty cycle (POR = 00000000)

PWM duty cycle = PWM[7:0] / 256 for DBC disable (0xD0] A0 = 0

If DBC enable (0xD0] A0 = 1, these parameter will be ignored

Note: PWM always 0 if PWM[7:0] = 00h

Figure 9-19: PWM signal

C[3]: PWM configuration (POR = 0)

0 PWM controlled by host1 PWM controlled by DBC

C[0]: PWM enable (POR = 0)

0 PWM disable1 PWM enable

D[7:0] : DBC manual brightness (POR = 00000000)

Set the manual brightness level. When Manual Brightness Mode (0xD0) A[6] is enabled, the final DBC duty cycle output will be multiplied by this value / 255.

PWM duty cycle = DBC output * D[7:0] / 255

00 Dimmest FF brightest

E[7:0]: DBC minimum brightness (POR = 00000000)

Set the minimum brightness level. When Manual Brightness Mode (0xD0) A[6] is enabled, DBC duty cycle output will be limited by this value. This will prevent from backlight being too dark or off.

00 Dimmest

SSD1961 | Rev 1.3 | P 51/90 | Jul 2011 | **Solomon Systech**

FF Brightest

F[3:0]: Brightness prescaler (POR = 0000)

Set the brightness prescaler to control how gradually the manual brightness is changed between different levels. There is a filter will undergo a number of iterations before the manual brightness saturated. This parameter is valid when Transition Effect enable (0xD0) A5 = 1

The iteration ration = system frequency / Divcode / 32768

F[3:0]	Divcod
0000	off
0001	1
0010	2
0011	3
0100	4
0101	6
0110	8
0111	12
1000	16
1001	24
1010	32
1011	48
1100	64
1101	96
1110	128
1111	192

9.46 get_pwm_conf

Command 0xBF **Parameters** 7

	D/C	D7	D6	D5	D4	D3	D2	D1	D0	Hex
Command	0	1	0	1	1	1	1	1	1	BF
Parameter 1	1	PWMF ₇	PWMF ₆	PWMF ₅	PWMF ₄	PWMF ₃	PWMF ₂	$PWMF_1$	$PWMF_0$	XX
Parameter 2	1	PWM ₇	PWM_6	PWM_5	PWM_4	PWM_3	PWM_2	PWM_1	PWM_0	XX
Parameter 3	1	0	0	0	0	C_3	0	0	C_0	XX
Parameter 4	1	D_7	D_6	D_5	D_4	D_3	D_2	D_1	D_0	XX
Parameter 5	1	E_7	E_6	E_5	E_4	E_3	E_2	E_1	E_0	XX
Parameter 6	1	0	0	0	0	F_3	F_2	F_1	F_0	XX
Parameter 7	1	G_7	G_6	G_5	G_4	G_3	G_2	G_1	G_0	XX

Description

Get the PWM configuration

PWMF[7:0] : Get the PWM frequency in system clock (POR = 00000000)

PWM[7:0]: Get the PWM duty cycle (POR = 00000000)

C[3]: PWM configuration (POR = 0)

0 PWM controlled by host1 PWM controlled by DBC

C[0]: PWM enable (POR = 0) 0 PWM disable 1 PWM enable

D[7:0]: DBC manual brightness (POR = 00000000)

Get the brightness level

00 Dimmest FF brightest

Solomon Systech Jul 2011 | P 52/90 | Rev 1.3 | SSD1961

 $E[7:0]: DBC \ minimum \ brightness \ (POR = 00000000)$ Get the minimum brightness level. $00 \qquad Dimmest$

FF Brightest

F[3:0]: Brightness prescaler (POR = 0000)

Get the brightness prescaler

G[7:0]: Dynamic backlight duty cycle: Get the current PWM duty cycle controlled by PWM (POR = 00000000)

SSD1961 Rev 1.3 P 53/90 Jul 2011 **Solomon Systech**

9.47 set_lcd_gen0

Command 0xC0 **Parameters** 7

	D/C	D7	D6	D5	D4	D3	D2	D1	D0	Hex
Command	0	1	1	0	0	0	0	0	0	C0
Parameter 1	1	A_7	0	0	0	0	0	0	0	XX
Parameter 2	1	0	0	0	0	0	GF0 ₁₀	GF0 ₉	GF0 ₈	XX
Parameter 3	1	GF0 ₇	$GF0_6$	GF0 ₅	GF0 ₄	$GF0_3$	GF0 ₂	$GF0_1$	$GF0_0$	XX
Parameter 4	1	0	0	0	0	0	GR0 ₁₀	GR0 ₉	$GR0_8$	XX
Parameter 5	1	GR0 ₇	$GR0_6$	$GR0_5$	$GR0_4$	$GR0_3$	$GR0_2$	$GR0_1$	$GR0_0$	XX
Parameter 6	1	F_7	F_6	F_5	F_4	F_3	GP0 ₁₀	GP0 ₉	$GP0_8$	XX
Parameter 7	1	GP0 ₇	$GP0_6$	GP0 ₅	GP0 ₄	GP0 ₃	$GP0_2$	$GP0_1$	$GP0_0$	XX

Description

Set the rise, fall, period and toggling properties of LCD signal generator 0

A[7]: Reset LCD generator 0 at every frame start

The generator 0 will not reset in the starting point of a frame

1 The generator 0 will reset in the starting point of a frame

GF0[10:8]: The highest 3 bits of the generator 0 falling position (POR = 000) GF0[7:0]: The lower byte of the generator 0 falling position (POR = 00000001)

GR0[10:8]: The highest 3 bits of the generator 0 rising position (POR = 000) GR0[7:0]: The lower byte of the generator 0 rising position (POR = 00000000)

F[7]: Force the generator 0 output to 0 in non-display period

0 generator 0 is normal 1 generator 0 output is f

generator 0 output is forced to 0 in non-display period

F[6:5]: Force the generator 0 output to 0 in odd or even lines

generator 0 is normal in both odd and even lines
generator 0 output is force to 0 in odd lines
generator 0 output is force to 0 in even lines
generator 0 is normal in both odd and even line

F[4:3] : Generator 0 toggle mode

00 Disable

01 Toggle by pixel clock (LSHIFT)

Toggle by Line (LLINE)

Toggle by Frame (LFRAME)

GP0[10:8] : The highest 3 bits of the generator 0 period (POR = 100) GP0[7:0] : The lower byte of the generator 0 period (POR = 00000000)

Solomon Systech Jul 2011 P 54/90 Rev 1.3 SSD1961

9.48 get_lcd_gen0

Command 0xC1 **Parameters** 7

	D/C	D7	D6	D5	D4	D3	D2	D1	D0	Hex
Command	0	1	1	0	0	0	0	0	1	C1
Parameter 1	1	A_7	0	0	0	0	0	0	0	XX
Parameter 2	1	0	0	0	0	0	GF0 ₁₀	GF0 ₉	GF0 ₈	XX
Parameter 3	1	GF0 ₇	GF0 ₆	GF0 ₅	GF0 ₄	GF0 ₃	GF0 ₂	$GF0_1$	$GF0_0$	XX
Parameter 4	1	0	0	0	0	0	GR0 ₁₀	GR0 ₉	$GR0_8$	XX
Parameter 5	1	GR0 ₇	$GR0_6$	$GR0_5$	$GR0_4$	GR0 ₃	$GR0_2$	$GR0_1$	$GR0_0$	XX
Parameter 6	1	F_7	F_6	F_5	F_4	F_3	GP0 ₁₀	GP0 ₉	$GP0_8$	XX
Parameter 7	1	GP0 ₇	$GP0_6$	GP0 ₅	GP0 ₄	GP0 ₃	$GP0_2$	$GP0_1$	$GP0_0$	XX

Description

Get the rise, fall, period and toggling properties of LCD signal generator 0

A[7]: Reset LCD generator 0 at every frame start

The generator 0 will not reset in the starting point of a frame

The generator 0 will reset in the starting point of a frame

GF0[10:8]: The highest 3 bits of the generator 0 falling position (POR = 000) GF0[7:0]: The lower byte of the generator 0 falling position (POR = 00000001)

GR0[10:8]: The highest 3 bits of the generator 0 rising position (POR = 000) GR0[7:0]: The lower byte of the generator 0 rising position (POR = 00000000)

F[7]: Force the generator 0 output to 0 in non-display period

0 generator 0 is normal 1 generator 0 output is f

generator 0 output is forced to 0 in non-display period

F[6:5]: Force the generator 0 output to 0 in odd or even lines

generator 0 is normal in both odd and even lines
generator 0 output is force to 0 in odd lines
generator 0 output is force to 0 in even lines
generator 0 is normal in both odd and even line

F[4:3]: Generator 0 toggle mode

00 Disable

01 Toggle by pixel clock (LSHIFT)

Toggle by Line (LLINE)

Toggle by Frame (LFRAME)

GP0[10:8]: The highest 3 bits of the generator 0 period (POR = 100) GP0[7:0]: The lower byte of the generator 0 period (POR = 00000000)

SSD1961 | Rev 1.3 | P 55/90 | Jul 2011 | **Solomon Systech**

9.49 set_lcd_gen1

Command 0xC2 **Parameters** 7

	D/C	D7	D6	D5	D4	D3	D2	D1	D0	Hex
Command	0	1	1	0	0	0	0	1	0	C2
Parameter 1	1	A_7	0	0	0	0	0	0	0	XX
Parameter 2	1	0	0	0	0	0	GF1 ₁₀	GF1 ₉	GF1 ₈	XX
Parameter 3	1	GF1 ₇	GF1 ₆	GF1 ₅	GF1 ₄	GF1 ₃	GF1 ₂	GF1 ₁	GF1 ₀	XX
Parameter 4	1	0	0	0	0	0	GR1 ₁₀	GR1 ₉	GR1 ₈	XX
Parameter 5	1	GR1 ₇	GR1 ₆	GR1 ₅	GR1 ₄	GR1 ₃	GR1 ₂	$GR1_1$	GR1 ₀	XX
Parameter 6	1	F_7	F_6	F_5	F_4	F_3	GP1 ₁₀	GP1 ₉	GP1 ₈	XX
Parameter 7	1	GP1 ₇	GP1 ₆	GP1 ₅	GP1 ₄	GP1 ₃	GP1 ₂	GP1 ₁	GP1 ₀	XX

Description

Set the rise, fall, period and toggling properties of LCD signal generator 1

A[7]: Reset LCD generator 1 at every frame start

The generator 1 will not reset in the starting point of a frame

1 The generator 1 will reset in the starting point of a frame

GF1[10:8]: The highest 3 bits of the generator 1 falling position (POR = 000) GF1[7:0]: The lower byte of the generator 1 falling position (POR = 00000001)

GR1[10:8]: The highest 3 bits of the generator 1 rising position (POR = 000) GR1[7:0]: The lower byte of the generator 1 rising position (POR = 00000000)

F[7]: Force the generator 1 output to 0 in non-display period

0 generator 1 is normal 1 generator 1 output is f

generator 1 output is forced to 0 in non-display period

F[6:5]: Force the generator 1 output to 0 in odd or even lines

90 generator 1 is normal in both odd and even lines 91 generator 1 output is force to 0 in odd lines 10 generator 1 output is force to 0 in even lines 11 generator 1 is normal in both odd and even line

F[4:3]: Generator 1 toggle mode

00 Disable

01 Toggle by pixel clock (LSHIFT)

Toggle by Line (LLINE)

Toggle by Frame (LFRAME)

GP1[10:8] : The highest 3 bits of the generator 1 period (POR = 100) GP1[7:0] : The lower byte of the generator 1 period (POR = 00000000)

Solomon Systech Jul 2011 P 56/90 Rev 1.3 SSD1961

9.50 get_lcd_gen1

Command 0xC3 **Parameters** 7

	D/C	D7	D6	D5	D4	D3	D2	D1	D0	Hex
Command	0	1	1	0	0	0	0	1	1	C3
Parameter 1	1	A_7	0	0	0	0	0	0	0	XX
Parameter 2	1	0	0	0	0	0	GF1 ₁₀	GF1 ₉	GF1 ₈	XX
Parameter 3	1	GF1 ₇	GF1 ₆	GF1 ₅	GF1 ₄	GF1 ₃	GF1 ₂	GF1 ₁	GF1 ₀	XX
Parameter 4	1	0	0	0	0	0	GR1 ₁₀	GR1 ₉	GR1 ₈	XX
Parameter 5	1	GR1 ₇	GR1 ₆	GR1 ₅	GR1 ₄	GR1 ₃	GR1 ₂	$GR1_1$	GR1 ₀	XX
Parameter 6	1	F_7	F_6	F_5	F_4	F_3	GP1 ₁₀	GP1 ₉	GP1 ₈	XX
Parameter 7	1	GP1 ₇	GP1 ₆	GP1 ₅	GP1 ₄	GP1 ₃	GP1 ₂	GP1 ₁	GP1 ₀	XX

Description

Get the rise, fall, period and toggling properties of LCD signal generator 1

A[7]: Reset LCD generator 1 at every frame start

The generator 1 will not reset in the starting point of a frame

1 The generator 1 will reset in the starting point of a frame

GF1[10:8]: The highest 3 bits of the generator 1 falling position (POR = 000) GF1[7:0]: The lower byte of the generator 1 falling position (POR = 00000001)

GR1[10:8]: The highest 3 bits of the generator 1 rising position (POR = 000) GR1[7:0]: The lower byte of the generator 1 rising position (POR = 00000000)

F[7]: Force the generator 1 output to 0 in non-display period

0 generator 1 is normal 1 generator 1 output is f

generator 1 output is forced to 0 in non-display period

F[6:5]: Force the generator 1 output to 0 in odd or even lines

generator 1 is normal in both odd and even lines
 generator 1 output is force to 0 in odd lines
 generator 1 output is force to 0 in even lines
 generator 1 is normal in both odd and even line

F[4:3]: Generator 1 toggle mode

00 Disable

01 Toggle by pixel clock (LSHIFT)

Toggle by Line (LLINE)

Toggle by Frame (LFRAME)

GP1[10:8]: The highest 3 bits of the generator 1 period (POR = 100) GP1[7:0]: The lower byte of the generator 1 period (POR = 00000000)

SSD1961 | Rev 1.3 | P 57/90 | Jul 2011 | **Solomon Systech**

9.51 set_lcd_gen2

Command 0xC4 **Parameters** 7

	D/C	D7	D6	D5	D4	D3	D2	D1	D0	Hex
Command	0	1	1	0	0	0	1	0	0	C4
Parameter 1	1	A_7	0	0	0	0	0	0	0	XX
Parameter 2	1	0	0	0	0	0	GF2 ₁₀	GF2 ₉	GF2 ₈	XX
Parameter 3	1	GF2 ₇	GF2 ₆	GF2 ₅	GF2 ₄	GF2 ₃	GF2 ₂	GF2 ₁	GF2 ₀	XX
Parameter 4	1	0	0	0	0	0	GR2 ₁₀	GR2 ₉	GR2 ₈	XX
Parameter 5	1	GR2 ₇	GR2 ₆	GR2 ₅	GR2 ₄	GR2 ₃	GR2 ₂	GR2 ₁	GR2 ₀	XX
Parameter 6	1	F_7	F_6	F_5	F_4	F_3	GP2 ₁₀	GP2 ₉	GP2 ₈	XX
Parameter 7	1	GP2 ₇	GP2 ₆	GP2 ₅	GP2 ₄	GP2 ₃	GP2 ₂	GP2 ₁	GP2 ₀	XX

Description

Set the rise, fall, period and toggling properties of LCD signal generator 2

A[7]: Reset LCD generator 2 at every frame start

The generator 2 will not reset in the starting point of a frame

1 The generator 2 will reset in the starting point of a frame

GF2[10:8]: The highest 3 bits of the generator 2 falling position (POR = 000) GF2[7:0]: The lower byte of the generator 2 falling position (POR = 00000001)

GR2[10:8]: The highest 3 bits of the generator 2 rising position (POR = 000)

GR2[10:8]: The highest 3 bits of the generator 2 rising position (POR = 000) GR2[7:0]: The lower byte of the generator 2 rising position (POR = 00000000)

F[7]: Force the generator 2 output to 0 in non-display period

0 generator 2 is normal 1 generator 2 output is f

generator 2 output is forced to 0 in non-display period

F[6:5]: Force the generator 2 output to 0 in odd or even lines

generator 2 is normal in both odd and even lines
 generator 2 output is force to 0 in odd lines
 generator 2 output is force to 0 in even lines
 generator 2 is normal in both odd and even line

F[4:3]: Generator 2 toggle mode

00 Disable

01 Toggle by pixel clock (LSHIFT)

Toggle by Line (LLINE)

Toggle by Frame (LFRAME)

GP2[10:8]: The highest 3 bits of the generator 2 period (POR = 100) GP2[7:0]: The lower byte of the generator 2 period (POR = 00000000)

Solomon Systech Jul 2011 | P 58/90 | Rev 1.3 | SSD1961

9.52 get_lcd_gen2

Command 0xC5 **Parameters** 7

	D/C	D7	D6	D5	D4	D3	D2	D1	D0	Hex
Command	0	1	1	0	0	0	1	0	1	C5
Parameter 1	1	A_7	0	0	0	0	0	0	0	XX
Parameter 2	1	0	0	0	0	0	GF2 ₁₀	GF2 ₉	GF2 ₈	XX
Parameter 3	1	GF2 ₇	GF2 ₆	GF2 ₅	GF2 ₄	GF2 ₃	GF2 ₂	GF2 ₁	GF2 ₀	XX
Parameter 4	1	0	0	0	0	0	GR2 ₁₀	GR2 ₉	GR2 ₈	XX
Parameter 5	1	GR2 ₇	GR2 ₆	GR2 ₅	GR2 ₄	GR2 ₃	GR2 ₂	GR2 ₁	GR2 ₀	XX
Parameter 6	1	F_7	F_6	F_5	F_4	F_3	GP2 ₁₀	GP2 ₉	GP2 ₈	XX
Parameter 7	1	GP2 ₇	GP2 ₆	GP2 ₅	GP2 ₄	GP2 ₃	GP2 ₂	GP2 ₁	GP2 ₀	XX

Description

Get the rise, fall, period and toggling properties of LCD signal generator 2

A[7]: Reset LCD generator 2 at every frame start

The generator 2 will not reset in the starting point of a frame

1 The generator 2 will reset in the starting point of a frame

GF2[10:8]: The highest 3 bits of the generator 2 falling position (POR = 000) GF2[7:0]: The lower byte of the generator 2 falling position (POR = 00000001)

GR2[10:8]: The highest 3 bits of the generator 2 rising position (POR = 000) GR2[7:0]: The lower byte of the generator 2 rising position (POR = 00000000)

F[7]: Force the generator 2 output to 0 in non-display period

0 generator 2 is normal 1 generator 2 output is f

generator 2 output is forced to 0 in non-display period

F[6:5]: Force the generator 2 output to 0 in odd or even lines

generator 2 is normal in both odd and even lines generator 2 output is force to 0 in odd lines generator 2 output is force to 0 in even lines generator 2 is normal in both odd and even line

F[4:3]: Generator 2 toggle mode

00 Disable

01 Toggle by pixel clock (LSHIFT)

Toggle by Line (LLINE)

Toggle by Frame (LFRAME)

GP2[10:8]: The highest 3 bits of the generator 2 period (POR = 100) GP2[7:0]: The lower byte of the generator 2 period (POR = 00000000)

SSD1961 | Rev 1.3 | P 59/90 | Jul 2011 | **Solomon Systech**

9.53 set_lcd_gen3

Command 0xC6 **Parameters** 7

	D/C	D7	D6	D5	D4	D3	D2	D1	D0	Hex
Command	0	1	1	0	0	0	1	1	0	C6
Parameter 1	1	A_7	0	0	0	0	0	0	0	XX
Parameter 2	1	0	0	0	0	0	GF3 ₁₀	GF3 ₉	GF3 ₈	XX
Parameter 3	1	GF3 ₇	GF3 ₆	GF3 ₅	GF3 ₄	GF3 ₃	GF3 ₂	GF3 ₁	GF3 ₀	XX
Parameter 4	1	0	0	0	0	0	GR3 ₁₀	GR3 ₉	GR3 ₈	XX
Parameter 5	1	GR3 ₇	GR3 ₆	GR3 ₅	GR3 ₄	GR3 ₃	GR3 ₂	GR3 ₁	GR3 ₀	XX
Parameter 6	1	F_7	F_6	F_5	F_4	F_3	GP3 ₁₀	GP3 ₉	GP3 ₈	XX
Parameter 7	1	GP3 ₇	GP3 ₆	GP3 ₅	GP3 ₄	GP3 ₃	GP3 ₂	GP3 ₁	GP3 ₀	XX

Description

Set the rise, fall, period and toggling properties of LCD signal generator 3

A[7]: Reset LCD generator 3 at every frame start

The generator 3 will not reset in the starting point of a frame

The generator 3 will reset in the starting point of a frame

GF3[10:8]: The highest 3 bits of the generator 3 falling position (POR = 000) GF3[7:0]: The lower byte of the generator 3 falling position (POR = 00000001)

GR3[10:8]: The highest 3 bits of the generator 3 rising position (POR = 000) GR3[7:0]: The lower byte of the generator 3 rising position (POR = 00000000)

F[7]: Force the generator 3 output to 0 in non-display period

0 generator 3 is normal

generator 3 output is forced to 0 in non-display period

F[6:5]: Force the generator 3 output to 0 in odd or even lines

90 generator 3 is normal in both odd and even lines 91 generator 3 output is force to 0 in odd lines 10 generator 3 output is force to 0 in even lines 11 generator 3 is normal in both odd and even line

F[4:3]: Generator 3 toggle mode

00 Disable

01 Toggle by pixel clock (LSHIFT)

Toggle by Line (LLINE)

Toggle by Frame (LFRAME)

GP3[10:8] : The highest 3 bits of the generator 3 period (POR = 100) GP3[7:0] : The lower byte of the generator 3 period (POR = 00000000)

Solomon Systech Jul 2011 P 60/90 Rev 1.3 SSD1961

9.54 get_lcd_gen3

Command 0xC7 **Parameters** 7

	D/C	D 7	D6	D5	D4	D3	D2	D1	D0	Hex
Command	0	1	1	0	0	0	1	1	1	C7
Parameter 1	1	A_7	0	0	0	0	0	0	0	XX
Parameter 2	1	0	0	0	0	0	GF3 ₁₀	GF3 ₉	GF3 ₈	XX
Parameter 3	1	GF3 ₇	GF3 ₆	GF3 ₅	GF3 ₄	GF3 ₃	GF3 ₂	GF3 ₁	GF3 ₀	XX
Parameter 4	1	0	0	0	0	0	GR3 ₁₀	GR3 ₉	GR3 ₈	XX
Parameter 5	1	GR3 ₇	GR3 ₆	GR3 ₅	GR3 ₄	GR3 ₃	GR3 ₂	GR3 ₁	GR3 ₀	XX
Parameter 6	1	F_7	F_6	F_5	F_4	F_3	GP3 ₁₀	GP3 ₉	GP3 ₈	XX
Parameter 7	1	GP3 ₇	GP3 ₆	GP3 ₅	GP3 ₄	GP3 ₃	GP3 ₂	GP3 ₁	GP3 ₀	XX

Description

Get the rise, fall, period and toggling properties of LCD signal generator 3

A[7]: Reset LCD generator 3 at every frame start

The generator 3 will not reset in the starting point of a frame

1 The generator 3 will reset in the starting point of a frame

GF3[10:8]: The highest 3 bits of the generator 3 falling position (POR = 000) GF3[7:0]: The lower byte of the generator 3 falling position (POR = 00000001)

GR3[10:8]: The highest 3 bits of the generator 3 rising position (POR = 000) GR3[7:0]: The lower byte of the generator 3 rising position (POR = 00000000)

F[7]: Force the generator 3 output to 0 in non-display period

0 generator 3 is normal 1 generator 3 output is f

generator 3 output is forced to 0 in non-display period

F[6:5]: Force the generator 3 output to 0 in odd or even lines

generator 3 is normal in both odd and even lines generator 3 output is force to 0 in odd lines generator 3 output is force to 0 in even lines generator 3 is normal in both odd and even line

F[4:3]: Generator 3 toggle mode

00 Disable

01 Toggle by pixel clock (LSHIFT)

Toggle by Line (LLINE)

Toggle by Frame (LFRAME)

GP3[10:8] : The highest 3 bits of the generator 3 period (POR = 100) GP3[7:0] : The lower byte of the generator 3 period (POR = 00000000)

SSD1961 | Rev 1.3 | P 61/90 | Jul 2011 | **Solomon Systech**

9.55 set_gpio0_rop

Command 0xC8 **Parameters** 2

	D/C	D7	D6	D5	D4	D3	D2	D1	D0	Hex
Command	0	1	1	0	0	1	0	0	0	C8
Parameter 1	1	0	A_6	A_5	0	A_3	A_2	A_1	A_0	XX
Parameter 2	1	\mathbf{B}_7	B_6	\mathbf{B}_{5}	B_4	\mathbf{B}_3	B_2	B_1	\mathbf{B}_0	XX

Description

Set the GPIO0 with respect to the LCD signal generators using ROP operation. No effect if the GPIO0 is configured as general GPIO.

A[6:5]: Source 1 for GPIO0 when controlled by LCDC (POR = 00)

00 Generator 0 01 Generator 1 10 Generator 2 11 Generator 3

A[3:2]: Source 2 for GPIO0 when controlled by LCDC (POR = 00)

00 Generator 0 01 Generator 1 10 Generator 2 11 Generator 3

A[1:0]: Source 3 for GPIO0 when controlled by LCDC (POR = 00)

00 Generator 0 01 Generator 1 10 Generator 2 11 Generator 3

B[7:0] : ROP operation to mux the source 1, 2 and 3 for GPIO0 (POR = 00000000) Please refer to the Application note for the ROP operation

9.56 get_gpio0_rop

Command 0xC9 **Parameters** 2

	D/C	D7	D6	D5	D4	D3	D2	D1	D0	Hex
Command	0	1	1	0	0	1	0	0	1	C9
Parameter 1	1	0	A_6	A_5	0	A_3	A_2	A_1	A_0	XX
Parameter 2	1	\mathbf{B}_7	B_{6}	B_5	B_4	\mathbf{B}_3	B_2	B_1	B_0	XX

Description

Get the GPIO0 properties with respect to the LCD signal generators.

A[6:5]: Source 1 for GPIO0 when controlled by LCDC (POR = 00)

00 Generator 0 01 Generator 1 10 Generator 2 11 Generator 3

Solomon Systech Jul 2011 | P 62/90 | Rev 1.3 | SSD1961

A[3:2]: Source 2 for GPIO0 when controlled by LCDC (POR = 00)

00 Generator 0

01 Generator 1

10 Generator 2

11 Generator 3

A[1:0]: Source 3 for GPIO0 when controlled by LCDC (POR = 00)

00 Generator 0

01 Generator 1

10 Generator 2

Generator 3

B[7:0]: ROP operation to mux the source 1, 2 and 3 for GPIO0 (POR = 00000000)

Please refer to the Application note for the ROP operation

9.57 set_gpio1_rop

Command 0xCA **Parameters** 2

	D/C	D7	D6	D5	D4	D3	D2	D1	D0	Hex
Command	0	1	1	0	0	1	0	1	0	CA
Parameter 1	1	0	A_6	A_5	0	A_3	A_2	A_1	A_0	XX
Parameter 2	1	\mathbf{B}_{7}	B_6	B_5	B_4	B_3	B_2	B_1	B_0	XX

Description

Set the GPIO1 with respect to the LCD signal generators using ROP operation. No effect if the GPIO1 is configured as general GPIO.

A[6:5]: Source 1 for GPIO1 when controlled by LCDC (POR = 00)

00 Generator 0

01 Generator 1

10 Generator 2

11 Generator 3

A[3:2]: Source 2 for GPIO1 when controlled by LCDC (POR = 00)

00 Generator 0

01 Generator 1

10 Generator 2

Generator 3

A[1:0]: Source 3 for GPIO1 when controlled by LCDC (POR = 00)

00 Generator 0

01 Generator 1

10 Generator 2

11 Generator 3

B[7:0]: ROP operation to mux the source 1, 2 and 3 for GPIO1 (POR = 00000000)

Please refer to the Application note for the ROP operation

SSD1961 | Rev 1.3 | P 63/90 | Jul 2011 | **Solomon Systech**

9.58 get_gpio1_rop

Command 0xCB **Parameters** 2

	D/C	D7	D 6	D 5	D4	D3	D2	D1	D0	Hex
Command	0	1	1	0	0	1	0	1	1	СВ
Parameter 1	1	0	A_6	A_5	0	A_3	A_2	A_1	A_0	XX
Parameter 2	1	\mathbf{B}_{7}	B_6	B_5	B_4	B_3	B_2	B_1	B_0	XX

Description

Get the GPIO1 properties with respect to the LCD signal generators.

A[6:5]: Source 1 for GPIO1 when controlled by LCDC (POR = 00)

00 Generator 0
01 Generator 1
10 Generator 2
11 Generator 3

A[3:2]: Source 2 for GPIO1 when controlled by LCDC (POR = 00)

00 Generator 0 01 Generator 1 10 Generator 2 11 Generator 3

A[1:0]: Source 3 for GPIO1 when controlled by LCDC (POR = 00)

00 Generator 001 Generator 110 Generator 211 Generator 3

B[7:0]: ROP operation to mux the source 1, 2 and 3 for GPIO1 (POR = 00000000) Please refer to the Application note for the ROP operation

9.59 set_gpio2_rop

Command 0xCC **Parameters** 2

	D/C	D7	D6	D5	D4	D3	D2	D1	D0	Hex
Command	0	1	1	0	0	1	1	0	0	CC
Parameter 1	1	0	A_6	A_5	0	A_3	A_2	A_1	A_0	XX
Parameter 2	1	\mathbf{B}_7	B_{6}	B_5	B_4	B_3	B_2	B_1	B_0	XX

Description

Set the GPIO2 with respect to the LCD signal generators using ROP operation. No effect if the GPIO2 is configured as general GPIO.

A[6:5]: Source 1 for GPIO2 when controlled by LCDC (POR = 00)

00 Generator 0 01 Generator 1 10 Generator 2 11 Generator 3

Solomon Systech Jul 2011 P 64/90 Rev 1.3 SSD1961

A[3:2]: Source 2 for GPIO2 when controlled by LCDC (POR = 00)

00 Generator 0

01 Generator 1

10 Generator 2

11 Generator 3

A[1:0]: Source 3 for GPIO2 when controlled by LCDC (POR = 00)

00 Generator 0

01 Generator 1

10 Generator 2

Generator 3

B[7:0]: ROP operation to mux the source 1, 2 and 3 for GPIO2 (POR = 00000000)

Please refer to the Application note for the ROP operation

9.60 get_gpio2_rop

Command 0xCD **Parameters** 2

	D/C	D7	D 6	D5	D4	D3	D2	D1	D0	Hex
Command	0	1	1	0	0	1	1	0	1	CD
Parameter 1	1	0	A_6	A_5	0	A_3	A_2	A_1	A_0	XX
Parameter 2	1	B_7	B_6	B_5	B_4	B_3	B_2	B_1	B_0	XX

Description

Get the GPIO2 properties with respect to the LCD signal generators.

A[6:5]: Source 1 for GPIO2 when controlled by LCDC (POR = 00)

00 Generator 0

01 Generator 1

10 Generator 2

11 Generator 3

A[3:2]: Source 2 for GPIO2 when controlled by LCDC (POR = 00)

00 Generator 0

01 Generator 1

10 Generator 2

Generator 3

A[1:0]: Source 3 for GPIO2 when controlled by LCDC (POR = 00)

00 Generator 0

01 Generator 1

10 Generator 2

Generator 3

B[7:0]: ROP operation to mux the source 1, 2 and 3 for GPIO2 (POR = 00000000)

Please refer to the Application note for the ROP operation

SSD1961 | Rev 1.3 | P 65/90 | Jul 2011 | **Solomon Systech**

9.61 set_gpio3_rop

Command 0xCE **Parameters** 2

	D/C	D 7	D 6	D 5	D4	D3	D2	D1	D0	Hex
Command	0	1	1	0	0	1	1	1	0	CE
Parameter 1	1	0	A_6	A_5	0	A_3	A_2	A_1	A_0	XX
Parameter 2	1	\mathbf{B}_7	B_6	B_5	B_4	\mathbf{B}_3	\mathbf{B}_2	\mathbf{B}_1	\mathbf{B}_0	XX

Description

Set the GPIO3 with respect to the LCD signal generators using ROP operation. No effect if the GPIO3 is configured as general GPIO.

A[6:5]: Source 1 for GPIO3 when controlled by LCDC (POR = 00)

00 Generator 0 01 Generator 1 10 Generator 2 11 Generator 3

A[3:2]: Source 2 for GPIO3 when controlled by LCDC (POR = 00)

00 Generator 0 01 Generator 1 10 Generator 2 11 Generator 3

A[1:0]: Source 3 for GPIO3 when controlled by LCDC (POR = 00)

00 Generator 0
01 Generator 1
10 Generator 2
11 Generator 3

B[7:0] : ROP operation to mux the source 1, 2 and 3 for GPIO3 (POR = 00000000) Please refer to the Application note for the ROP operation

9.62 get_gpio3_rop

Command 0xCF **Parameters** 2

	D/C	D7	D6	D5	D4	D3	D2	D1	D0	Hex
Command	0	1	1	0	0	1	1	1	1	CF
Parameter 1	1	0	A_6	A_5	0	A_3	A_2	A_1	A_0	XX
Parameter 2	1	\mathbf{B}_7	B_{6}	B_5	B_4	B_3	\mathbf{B}_2	B_1	B_0	XX

Description

Get the GPIO3 properties with respect to the LCD signal generators.

A[6:5]: Source 1 for GPIO3 when controlled by LCDC (POR = 00)

00 Generator 0 01 Generator 1 10 Generator 2 11 Generator 3

Solomon Systech Jul 2011 P 66/90 Rev 1.3 SSD1961

A[3:2]: Source 2 for GPIO3 when controlled by LCDC (POR = 00)

00 Generator 0

01 Generator 1

10 Generator 2

11 Generator 3

A[1:0]: Source 3 for GPIO3 when controlled by LCDC (POR = 00)

00 Generator 0

01 Generator 1

10 Generator 2

Generator 3

Please refer to the Application note for the ROP operation

B[7:0]: ROP operation to mux the source 1, 2 and 3 for GPIO3 (POR = 00000000)

9.63 set_dbc_conf

11

Command 0xD0 **Parameters** 1

	D/C	D7	D 6	D5	D4	D3	D2	D1	D0	Hex
Command	0	1	1	0	1	0	0	0	0	D0
Parameter 1	1	0	A_6	A_5	0	A_3	A_2	0	A_0	XX

Description

Set the Dynamic Backlight Control configuration.

A[6]: DBC Manual Brightness enable (POR = 1)

0 Enable 1 Disable

A[5]: Transition effect (POR = 0)

0 Transition effect disable

1 Transition effect enable

Transition effect is used to remove visible backlight flickering. If rapid brightness change is required, it is recommended to enable this bit.

A[3:2]: Energy saving selection for DBC (POR = 00)

00 DBC is disable

01 Conservative mode

Normal mode

11 Aggressive mode

A[0]: Master enable of DBC (POR = 0)

0 DBC disable

1 DBC enable

SSD1961 | Rev 1.3 | P 67/90 | Jul 2011 | **Solomon Systech**

The hardware pin, PWM is the output signal from SSD1961 to the system backlight driver. So it should configure PWM module before enable DBC.

WRITE COMMAND "0xBE"

WRITE DATA "0x0E" (set PWM frequency)

WRITE DATA "0xFF" (dummy value if DBC is used)

WRITE DATA "0x09" (enable PWM controlled by DBC)

WRITE DATA "0xFF" WRITE DATA "0x00"

WRITE DATA "0x00"

WRITE COMMAND "0xD4" (Define the threshold value)

WRITE DATA

WRITE COMMAND "0xD0"

WRITE DATA "0x0D" (Enable DBC with Aggressive mode)

9.64 get_dbc_conf

Command 0xD1 **Parameters** 1

	D/C	D7	D6	D5	D4	D3	D2	D1	D0	Hex
Command	0	1	1	0	1	0	0	0	1	D1
Parameter 1	1	0	A_6	A ₅	0	A_3	A_2	1	A_0	XX

Description

Get the current dynamic back light configuration.

A[6]: DBC Manual Brightness enable (POR = 1)

0 Enable 1 Disable

A[5]: Transition effect (POR = 0)

0 Transition effect disable1 Transition effect enable

A[3:2]: Energy saving selection for DBC (POR = 00)

00 DBC is disable
01 Conservative mode
10 Normal mode

11 Aggressive mode

A[0]: Master enable DBC (POR = 0)

0 DBC disable 1 DBC enable

Solomon Systech Jul 2011 | P 68/90 | Rev 1.3 | SSD1961

9.65 set_dbc_th

Command 0xD4 **Parameters** 9

	D/C	D7	D6	D5	D4	D3	D2	D1	D0	Hex
Command	0	1	1	0	1	0	1	0	0	D4
Parameter 1	1	0	0	0	0	0	0	0	DBC_TH1 ₁₆	XX
Parameter 2	1	DBC_TH1 ₁₅	DBC_TH1 ₁₄	DBC_TH1 ₁₃	DBC_TH1 ₁₂	DBC_TH1 ₁₁	DBC_TH1 ₁₀	DBC_TH19	DBC_TH1 ₈	XX
Parameter 3	1	DBC_TH17	DBC_TH1 ₆	DBC_TH1 ₅	DBC_TH1 ₄	DBC_TH1 ₃	DBC_TH1 ₂	DBC_TH1 ₁	DBC_TH1 ₀	XX
Parameter 4	1	0	0	0	0	0	0	0	DBC_TH2 ₁₆	XX
Parameter 5	1	DBC_TH2 ₁₅	DBC_TH2 ₁₄	DBC_TH2 ₁₃	DBC_TH2 ₁₂	DBC_TH2 ₁₁	DBC_TH2 ₁₀	DBC_TH29	DBC_TH2 ₈	XX
Parameter 6	1	DBC_TH27	DBC_TH2 ₆	DBC_TH2 ₅	DBC_TH2 ₄	DBC_TH2 ₃	DBC_TH2 ₂	DBC_TH2 ₁	DBC_TH2 ₀	XX
Parameter 7	1	0	0	0	0	0	0	0	DBC_TH3 ₁₆	XX
Parameter 8	1	DBC_TH3 ₁₅	DBC_TH3 ₁₄	DBC_TH3 ₁₃	DBC_TH3 ₁₂	DBC_TH3 ₁₁	DBC_TH3 ₁₀	DBC_TH3 ₉	DBC_TH3 ₈	XX
Parameter 9	1	DBC_TH3 ₇	DBC_TH3 ₆	DBC_TH3 ₅	DBC_TH3 ₄	DBC_TH3 ₃	DBC_TH3 ₂	DBC_TH3 ₁	DBC_TH3 ₀	XX

Description

Set the threshold for each level of power saving.

DBC_TH1[16]: High byte of the threshold setting for the Conservative mode of DBC. (POR = 0)

DBC_TH1[15:8]: 2nd byte of the threshold setting for the Conservative mode of DBC. (POR = 00000000) DBC_TH1[7:0]: Low byte of the threshold setting for the Conservative mode of DBC. (POR = 00000000)

TH1 = display width * display height * 3 * 0.1 / 16

DBC_TH2[16]: High byte of the threshold setting for the Normal mode of DBC. (POR = 0)

DBC_TH2[15:8]: 2nd byte of the threshold setting for the Normal mode of DBC. (POR = 00000000)

DBC_TH2[7:0]: Low byte of the threshold setting for the Normal mode of DBC. (POR = 00000000)

TH2 = display width * display height * 3 * 0.25 / 16

DBC_TH3[16]: High byte of the threshold setting for the Aggressive mode of DBC. (POR = 0)

DBC_TH3[15:8]: 2nd byte of the threshold setting for the Aggressive mode of DBC. (POR = 00000000)

DBC_TH3[7:0]: Low byte of the threshold setting for the Aggressive mode of DBC. (POR = 00000000)

TH3 = display width * display height * 3 * 0.6 /16

SSD1961 | Rev 1.3 | P 69/90 | Jul 2011 | **Solomon Systech**

9.66 get_dbc_th

Command 0xD5 **Parameters** 9

	D/C	D7	D6	D5	D4	D3	D2	D1	D0	Hex
Command	0	1	1	0	1	0	1	0	1	D5
Parameter 1	1	0	0	0	0	0	0	0	DBC_TH1 ₁₆	XX
Parameter 2	1	DBC_TH1 ₁₅	DBC_TH1 ₁₄	DBC_TH1 ₁₃	DBC_TH1 ₁₂	DBC_TH1 ₁₁	DBC_TH1 ₁₀	DBC_TH19	DBC_TH1 ₈	XX
Parameter 3	1	DBC_TH17	DBC_TH1 ₆	DBC_TH1 ₅	DBC_TH1 ₄	DBC_TH1 ₃	DBC_TH1 ₂	DBC_TH1 ₁	DBC_TH1 ₀	XX
Parameter 4	1	0	0	0	0	0	0	0	DBC_TH2 ₁₆	XX
Parameter 5	1	DBC_TH2 ₁₅	DBC_TH2 ₁₄	DBC_TH2 ₁₃	DBC_TH2 ₁₂	DBC_TH2 ₁₁	DBC_TH2 ₁₀	DBC_TH29	DBC_TH2 ₈	XX
Parameter 6	1	DBC_TH27	DBC_TH2 ₆	DBC_TH2 ₅	DBC_TH2 ₄	DBC_TH2 ₃	DBC_TH2 ₂	DBC_TH2 ₁	DBC_TH2 ₀	XX
Parameter 7	1	0	0	0	0	0	0	0	DBC_TH3 ₁₆	XX
Parameter 8	1	DBC_TH3 ₁₅	DBC_TH3 ₁₄	DBC_TH3 ₁₃	DBC_TH3 ₁₂	DBC_TH3 ₁₁	DBC_TH3 ₁₀	DBC_TH3 ₉	DBC_TH3 ₈	XX
Parameter 9	1	DBC_TH3 ₇	DBC_TH3 ₆	DBC_TH3 ₅	DBC_TH3 ₄	DBC_TH3 ₃	DBC_TH3 ₂	DBC_TH3 ₁	DBC_TH3 ₀	XX

Description

Get the threshold for each level of power saving.

DBC_TH1[16]: High byte of the threshold setting for the Conservative mode of DBC. (POR = 0)

DBC_TH1[15:8]: 2nd byte of the threshold setting for the Conservative mode of DBC. (POR = 00000000) DBC_TH1[7:0]: Low byte of the threshold setting for the Conservative mode of DBC. (POR = 00000000)

DBC_TH2[16]: High byte of the threshold setting for the Normal mode of DBC. (POR = 0)

DBC_TH2[15:8]: 2nd byte of the threshold setting for the Normal mode of DBC. (POR = 00000000) DBC_TH2[7:0]: Low byte of the threshold setting for the Normal mode of DBC. (POR = 00000000)

DBC_TH3[16]: High byte of the threshold setting for the Aggressive mode of DBC. (POR = 0) DBC_TH3[15:8]: 2nd byte of the threshold setting for the Aggressive mode of DBC. (POR = 00000000) DBC_TH3[7:0]: Low byte of the threshold setting for the Aggressive mode of DBC. (POR = 00000000)

9.67 set_pll

Command 0xE0 **Parameters** 1

	D/C	D7	D 6	D5	D4	D3	D2	D1	D 0	Hex
Command	0	1	1	1	0	0	0	0	0	E0
Parameter 1	1	0	0	0	0	0	0	A_1	A_0	XX

Description

Start the PLL. Before the start, the system was operated with the crystal oscillator or clock input.

A[1]: Lock PLL (POR = 0)

After PLL enabled for 100us, can start to lock PLL

Use reference clock as system clockUse PLL output as system clock

 $A[0]: Enable PLL (POR = 0) \\ 0 \qquad Disable PLL \\ 1 \qquad Enable PLL$

Solomon Systech Jul 2011 | P 70/90 | Rev 1.3 | SSD1961

Before enabling PLL, the PLL setting ("0xE2") have to be configured first. After PLL enabled for 100us, can start to lock PLL. SSD1961 needed to switch to PLL output as system clock after PLL is locked. The following is the program sequence.

WRITE COMMAND "0xE0"
WRITE DATA "0x01"
Wait 100us to let the PLL stable
WRITE COMMAND "0xE0"
WRITE DATA "0x03"
WRITE COMMAND "0x01"

9.68 set_pll_mn

Command 0xE2 **Parameters** 3

	D/C	D7	D6	D5	D4	D3	D2	D1	D0	Hex
Command	0	1	1	1	0	0	0	1	0	E2
Parameter 1	1	M_7	M_6	M_5	M_4	M_3	M_2	M_1	M_0	XX
Parameter 2	1	0	0	1	N_4	N_3	N_2	N_1	N_0	XX
Parameter 3	1	0	0	0	0	0	C_2	0	0	XX

Description

Set the MN of PLL

M[7:0]: Multiplier (M) of PLL. (POR = 00101101)

N[4:0]: Divider (N) of PLL. (POR = 00011)

C[2]: Effectuate MN value (POR = 0)

0 Ignore the multiplier (M) and divider (N) values

1 Effectuate the multiplier and divider value

VCO = Reference input clock x (M + 1)PLL frequency = VCO / (N + 1)

* Note: 250MHz < VCO < 800MHz

For a 10MHz reference clock to obtain 100MHz PLL frequency, user cannot program M=19 and N=1. The setting in this situation is setting M=29 and N=2, where $10 \times 30 / 3 = 100$ MHz.

WRITE COMMAND "0xE2" WRITE DATA "0x1D" (M=29) WRITE DATA "0x02" (N=2) WRITE DATA "0x54" (Dummy Byte)

SSD1961 | Rev 1.3 | P 71/90 | Jul 2011 | **Solomon Systech**

^{*} Note: SSD1961 is operating under reference clock before PLL is locked, registers cannot be set faster than half of the reference clock frequency. For instance, SSD1961 with a 10MHz reference clock is not allowed to be programmed higher than 5M words/s.

9.69 get_pll_mn

Command 0xE3 **Parameters** 3

	D/C	D7	D6	D5	D4	D3	D2	D1	D0	Hex
Command	0	1	1	1	0	0	0	1	1	E3
Parameter 1	1	M_7	M_6	M_5	M_4	M_3	M_2	M_1	M_0	XX
Parameter 2	1	0	0	1	N_4	N_3	N_2	N_1	N_0	XX
Parameter 3	1	0	0	0	0	0	C_2	0	0	XX

Description

Get the MN setting of PLL

M[7:0]: Multiplier (M) of PLL. (POR = 00101101)

N[4:0]: Divider (N) of PLL. (POR = 00011)

C[2]: Effectuate MN value (POR = 0)

0 Ignore the multiplier (M) and divider (N) values

1 Effectuate the multiplier and divider value

9.70 get_pll_status

Command 0xE4 **Parameters** 1

	D/C	D7	D6	D5	D4	D3	D2	D1	D0	Hex
Command	0	1	1	1	0	0	1	0	0	E4
Parameter 1	1	0	0	0	0	0	A_2	0	0	XX

Description

Get the PLL status A[2]: PLL Lock

0 Not locked1 Locked

9.71 set_deep_sleep

Command 0xE5 **Parameters** None

	D/C	D7	D6	D5	D4	D3	D2	D1	D0	Hex
Command	0	1	1	1	0	0	1	0	1	E5

Description

Set deep sleep mode. PLL would be stopped.

It needs to issue 2 dummy read to exit Deep Sleep mode.

Solomon Systech Jul 2011 | P 72/90 | Rev 1.3 | SSD1961

9.72 set_lshift_freq

Command 0xE6 **Parameters** 3

	D/C	D7	D6	D5	D4	D3	D2	D1	D 0	Hex
Command	0	1	1	1	0	0	1	1	0	E6
Parameter 1	1	0	0	0	0	LCDC_FPR ₁₉	LCDC_FPR ₁₈	LCDC_FPR ₁₇	LCDC_FPR ₁₆	XX
Parameter 2	1	LCDC_FPR ₁₅	LCDC_FPR ₁₄	LCDC_FPR ₁₃	LCDC_FPR ₁₂	LCDC_FPR ₁₁	LCDC_FPR ₁₀	LCDC_FPR9	LCDC_FPR ₈	XX
Parameter 3	1	LCDC_FPR7	LCDC_FPR ₆	LCDC_FPR 5	LCDC_FPR ₄	LCDC_FPR 3	LCDC_FPR ₂	LCDC_FPR ₁	LCDC_FPR ₀	XX

Description

Set the LSHIFT (pixel clock) frequency

LCDC_FPR[19:16]: The highest 4 bits for the pixel clock frequency settings. (POR = 0111) LCDC_FPR[15:8]: The higher byte for the pixel clock frequency settings. (POR = 11111111) LCDC_FPR[7:0]: The low byte for the pixel clock frequency settings. (POR = 11111111)

Configure the pixel clock to PLL freq x ((LCDC_FPR + 1) $/ 2^{20}$)

To obtain PCLK = 5.3MHz with PLL Frequency = 100MHz, 5.3MHz = 100MHz *(LCDC_FPR + 1) / 2^{20} LCDC_FPR = 55574

WRITE COMMAND "0xE6"

WRITE DATA "0x00" (LCDC_FPR = 55574)

WRITE DATA "0xD9"

WRITE DATA "0x16"

For serial LCD interface:

Configure the pixel clock to PLL freq x ((LCDC_FPR + 1) $/ 2^{20}$) *4

To obtain PCLK = 5.3MHz with PLL Frequency = 100MHz, 5.3MHz = 100MHz * ((LCDC_FPR+ 1) / 2^{20})*4 LCDC_FPR = 13892

WRITE COMMAND "0xE6"

WRITE DATA "0x00" (LCDC_FPR = 13892)

WRITE DATA "0x36"

WRITE DATA "0x44"

9.73 get_lshift_freq

Command 0xE7 **Parameters** 3

	D/C	D7	D6	D5	D4	D3	D2	D1	D 0	Hex
Command	0	1	1	1	0	0	1	1	1	E7
Parameter 1	1	0	0	0	0	LCDC_FPR ₁₉	LCDC_FPR ₁₈	LCDC_FPR ₁₇	LCDC_FPR ₁₆	XX
Parameter 2	1	LCDC_FPR ₁₅	LCDC_FPR ₁₄	LCDC_FPR ₁₃	LCDC_FPR ₁₂	LCDC_FPR ₁₁	LCDC_FPR ₁₀	LCDC_FPR9	LCDC_FPR ₈	XX
Parameter 3	1	LCDC_FPR7	LCDC_FPR ₆	LCDC_FPR 5	LCDC_FPR ₄	LCDC_FPR 3	LCDC_FPR ₂	LCDC_FPR ₁	LCDC_FPR ₀	XX

Description

Get the current LSHIFT (pixel clock) frequency setting

SSD1961 | Rev 1.3 | P 73/90 | Jul 2011 | **Solomon Systech**

LCDC_FPR[19:16]: The highest 4 bits for the pixel clock frequency settings. (POR = 0111) LCDC_FPR[15:8]: The higher byte for the pixel clock frequency settings. (POR = 11111111) LCDC_FPR[7:0]: The low byte for the pixel clock frequency settings. (POR = 11111111)

 Solomon Systech
 Jul 2011 | P 74/90 | Rev 1.3 | SSD1961

9.74 set_pixel_data_interface

Command 0xF0 **Parameters** 1

	D/C	D7	D6	D5	D4	D3	D2	D1	D0	Hex
Command	0	1	1	1	1	0	0	0	0	F0
Parameter 1	1	0	0	0	0	0	A_2	A_1	A_0	XX

Description

Set the pixel data format to 8-bit / 9-bit / 12-bit / 16-bit / 16-bit (565) / 18-bit in the parallel host processor interface. This command is used for display data only, the command format is always 8 bit.

A[2:0]: Pixel Data Interface Format (POR = 101)

000 8-bit

001 12-bit

010 16-bit packed

011 16-bit (565 format)

100 18-bit 110 9-bit

Others Reserved

9.75 get_pixel_data_interface

Command 0xF1 **Parameters** 1

	D/C	D 7	D6	D5	D4	D3	D2	D1	D 0	Hex
Command	0	1	1	1	1	0	0	0	1	F1
Parameter 1	1	0	0	0	0	0	A_2	A_1	A_0	XX

Description

Get the current pixel data format settings in the parallel host processor interface.

A[2:0]: Pixel Data Interface Format (POR = 101)

000 8-bit

001 12-bit

010 16-bit packed

011 16-bit (565 format)

100 18-bit

110 9-bit

Others Reserved

SSD1961 | Rev 1.3 | P 75/90 | Jul 2011 | **Solomon Systech**

^{*} Note : The un-used data bus will be driven to ground by SSD1961, so don't connect the un-used data bus to MCU.

10 MAXIMUM RATINGS

Table 10-1: Maximum Ratings (Voltage Referenced to V_{SS})

Symbol	Parameter	Value	Unit
V_{DDD}	Digital Core power supply	-0.5 to 1.8	V
V_{DDPLL}	PLL power supply	-0.5 to 1.8	V
V_{DDLCD}	LCD Interface power supply	-0.5 to 4.6	V
$V_{\rm DDIO}$	I/O power supply	-0.5 to 4.6	V
V_{IN}	Input Voltage	-0.5 to 4.6	V
V_{OUT}	Output Voltage	-0.5 to 4.6	V
T_{A}	Solder Temperature / Time	225 for 40 sec max at solder ball	°C
T_{STG}	Storage temperature	-45 to 125	°C

Maximum ratings are those values beyond which damages to the device may occur. Functional operation should be restricted to the limits in the Electrical Characteristics tables or Pin Description section

This device contains circuitry to protect the inputs against damage due to high static voltages or electric fields; however, it is advised that normal precautions be taken to avoid application of any voltage higher than maximum rated voltages to this high impedance circuit. For proper operation it is recommended that V_{IN} and V_{OUT} be constrained to the range $V_{SS} < (V_{IN} \text{ or } V_{OUT}) < V_{DDIO}$. Reliability of operation is enhanced if unused input is connected to an appropriate logic voltage level (e.g., either V_{SS} or V_{DDIO}). Unused outputs must be left open. This device may be light sensitive. Caution should be taken to avoid exposure of this device to any light source during normal operation. This device is not radiation protected.

11 RECOMMENDED OPERATING CONDITIONS

Table 11-1: Recommended Operating Condition

Symbol	Parameter	Min	Тур	Max	Unit
$V_{ m DDD}$	Digital Core power supply	1.10	1.2	1.30	V
V_{DDPLL}	PLL power supply	1.10	1.2	1.30	V
V_{DDLCD}	LCD Interface power supply	1.65	3.3	3.6	V
$V_{ m DDIO}$	I/O power supply	1.65	3.3	3.6	V
T_A	Operating temperature	-30	25	85	°C

11.1 Power-up sequence

Figure 11-1: Power-up Sequence

Note

Clock reference is only applicable when CLK is used.

Solomon Systech Jul 2011 | P 76/90 | Rev 1.3 | SSD1961

12 DC CHARACTERISTICS

Conditions:

$$\begin{split} &Voltage\ referenced\ to\ V_{SS}\\ &V_{DDD},V_{DDPLL}=1.2V\\ &V_{DDIO},V_{DDLCD}=3.3V\\ &T_A=25^{\circ}C \end{split}$$

Table 12-1: DC Characteristics

Symbol	Parameter	Test Condition	Min	Тур	Max	Unit
PSTY	Quiescent Power			300	500	uW
Iız	Input leakage current		-1		1	uA
Ioz	Output leakage current		-1		1	uA
Vон	Output high voltage		$0.8V_{\mathrm{DDIO}}$			V
Vol	Output low voltage				$0.2V_{\rm DDIO}$	V
VIH	Input high voltage		$0.8V_{\mathrm{DDIO}}$		$V_{\rm DDIO} + 0.5$	V
VIL	Input low voltage				$0.2V_{\rm DDIO}$	V

13 AC CHARACTERISTICS

Conditions:

Voltage referenced to V_{SS}

 $V_{\text{DDD}}, V_{\text{DDPLL}} = 1.2V$

 V_{DDIO} , $V_{DDLCD} = 3.3V$

 $T_A = 25^{\circ}C$

C_L = 50pF (Bus/CPU Interface)

CL = 0pF (LCD Panel Interface)

13.1 Clock Timing

Table 13-1: Clock Input Requirements for CLK (PLL-bypass)

Symbol	l Parameter		Max	Units
F_{CLK}	Input Clock Frequency (CLK)		110	MHz
T_{CLK}	Input Clock period (CLK)	1/f _{CLK}		ns

Table 13-2: Clock Input Requirements for CLK (PLL-enabled)

Symbol	Parameter	Min	Max	Units
F_{CLK}	Input Clock Frequency (CLK)	2.5	50	MHz
T_{CLK}	Input Clock period (CLK)	1/f _{CLK}		ns

Table 13-3: Clock Input Requirements for crystal oscillator XTAL (PLL-enabled)

Symbol	Parameter	Min	Max	Units
F_{XTAL}	Input Clock Frequency	2.5	10	MHz
T_{XTAL}	Input Clock period	$1/f_{XTAL}$		ns

SSD1961 Rev 1.3 | P 77/90 | Jul 2011 **Solomon Systech**

13.2 MCU Interface Timing

13.2.1 Parallel 6800-series Interface Timing

Table 13-4: Parallel 6800-series Interface Timing Characteristics (Use CS# as clock)

Symbol	Parameter		Min	Тур	Max	Unit
f_{MCLK}	System Clock Frequency*		1	-	110	MHz
t_{MCLK}	System Clock Period*		1/f _{MCLK}	-	-	ns
+	Control Pulse High Width	Write	13	1.5* t _{MCLK}		no
t_{PWCSH}		Read	30	$3.5* t_{MCLK}$	-	ns
	Control Pulse Low Width	Write (next write cycle)	13	1.5* t _{MCLK}		
t_{PWCSL}		Write (next read cycle)	80	9* t _{MCLK}	-	ns
		Read	80	9* t _{MCLK}		
t_{AS}	Address Setup Time		2	-	-	ns
t_{AH}	Address Hold Time		2	-	-	ns
t_{DSW}	Data Setup Time		4	-	-	ns
$t_{ m DHW}$	Data Hold Time		1	-	-	ns
t_{PLW}	Write Low Time		14	-	-	ns
t_{PHW}	Write High Time		14	-	-	ns
t _{PLWR}	Read Low Time		38	-	-	ns
t _{ACC}	Data Access Time		32	-	-	ns
t_{DHR}	Output Hold time		1	-	-	ns
t_R	Rise Time		-	-	0.5	ns
$t_{\rm F}$	Fall Time		-	-	0.5	ns

^{*} System Clock denotes external input clock (PLL-bypass) or internal generated clock (PLL-enabled)

D/C t_{AS} t_{AH} t_{PLWR} / t_{PLW} CS# t_R . t_{PWCSH} t_{PWCSL} Е t_{DHW} t_{DSW} D[17:0] Valid Data (WRITE) t_{ACC} t_{DHR} V_{OH} D[17:0] Valid Data (READ)

Figure 13-1: Parallel 6800-series Interface Timing Diagram (Use CS# as Clock)

Solomon Systech Jul 2011 | P 78/90 | Rev 1.3 | **SSD1961**

Table 13-5: Parallel 6800-series Interface Timing Characteristics (Use E as clock)

Symbol	Parameter		Min	Тур	Max	Unit
f_{MCLK}	System Clock Frequency*		1	-	110	MHz
t _{MCLK}	System Clock Period*		1/f _{MCLK}	-	ı	ns
	Control Pulse Low Width	Write (next write cycle)	13	1.5* t _{MCLK}		
t_{PWCSH}		Write (next read cycle)	80	9* t _{MCLK}	-	ns
		Read	80	9* t _{MCLK}		
+	Control Pulse High Width	Write	13	1.5* t _{MCLK}		ne
t_{PWCSL}		Read	30	3.5* t _{MCLK}	•	ns
t_{AS}	Address Setup Time		2	-	ı	ns
t_{AH}	Address Hold Time		2	-	ı	ns
t_{DSW}	Data Setup Time		4	-	-	ns
$t_{ m DHW}$	Data Hold Time		1	-	-	ns
$t_{\rm PLW}$	Write Low Time		14	-	-	ns
t_{PHW}	Write High Time		14	-	-	ns
t _{PLWR}	Read Low Time		38	-	-	ns
t _{ACC}	Data Access Time		32	-	-	ns
t_{DHR}	Output Hold time		1	-	-	ns
t_{R}	Rise Time		-	-	0.5	ns
$t_{\rm F}$	Fall Time		-	-	0.5	ns

^{*} System Clock denotes external input clock (PLL-bypass) or internal generated clock (PLL-enabled)

Figure 13-2: Parallel 6800-series Interface Timing Diagram (Use E as Clock)

SSD1961 Rev 1.3 | P 79/90 | Jul 2011 **Solomon Systech**

13.2.2 Parallel 8080-series Interface Timing

Table 13-6: Parallel 8080-series Interface Timing Characteristics

Symbol	Parameter		Min	Тур	Max	Unit
f_{MCLK}	System Clock Frequency*		1	-	110	MHz
t _{MCLK}	System Clock Period*		1/ f _{MCLK}	-	-	ns
t_{PWCSL}	Control Pulse High Width	Write Read	13 30	$1.5* t_{MCLK}$ $3.5* t_{MCLK}$	-	ns
t _{PWCSH}	Control Pulse Low Width	Write (next write cycle) Write (next read cycle) Read	13 80 80	1.5* t _{MCLK} 9* t _{MCLK} 9* t _{MCLK}	-	ns
t_{AS}	Address Setup Time		1	-	-	ns
t_{AH}	Address Hold Time		2	-	-	ns
t_{DSW}	Write Data Setup Time		4	-	-	ns
$t_{ m DHW}$	Write Data Hold Time		1	-	-	ns
t _{PWLW}	Write Low Time		12	-	-	ns
t_{DHR}	Read Data Hold Time		1	-	-	ns
t _{ACC}	Access Time		32	-	-	ns
t_{PWLR}	Read Low Time		36	-	-	ns
t_R	Rise Time		-	-	0.5	ns
$t_{\rm F}$	Fall Time		-	-	0.5	ns
t_{CS}	Chip select setup time		2	-	=	ns
t _{CSH}	Chip select hold time to read signal		3	-	-	ns

^{*} System Clock denotes external input clock (PLL-bypass) or internal generated clock (PLL-enabled)

Figure 13-3: Parallel 8080-series Interface Timing Diagram (Write Cycle)

 Solomon Systech
 Jul 2011
 P 80/90
 Rev 1.3
 SSD1961

Figure 13-4: Parallel 8080-series Interface Timing Diagram (Read Cycle)

SSD1961 Rev 1.3 P 81/90 Jul 2011 **Solomon Systech**

13.3 Parallel LCD Interface Timing

Figure 13-5: Generic TFT Panel Timing

 Solomon Systech
 Jul 2011
 P 82/90
 Rev 1.3
 SSD1961

13.4 Serial RGB Interface Timing

Figure 13-6: Serial RGB Interface Timing (without dummy mode)

SSD1961 Rev 1.3 P 83/90 Jul 2011 **Solomon Systech**

VT (= 1 Frame) FPS VPW LFRAME VPS VDP LLINE LDEN LDATA[7:0] HT (= 1 Line) HPW LPS LLINE LSHIFT LDEN HPS HDP G G В LDATA[7:0] R

Figure 13-7: Serial RGB Interface Timing (with dummy mode)

 Solomon Systech
 Jul 2011
 P 84/90
 Rev 1.3
 SSD1961

Table 13-7: Quick reference table for LCD parameter setting

LCD Parameter	Corresponding Command	Register	Maximum Setting		
setting			Parallel mode	Serial mode	
VDP	0xB0	VDP[10:0]	2048		
VDI			Vertical panel size = $(VDP + 1)$ pixels		
HDP		HDP[10:0]	2048		
ПОГ			Horizontal panel size = $(HDP + 1)$ pixels		
LPS	0xB4	LPS[10:0]	2047	8188	
LFS			2047	(2047×4)	
HPW		HPW[6:0]	128	512	
111 44			(HPW + 1) pixels	(128 x4)	
HPS		HPS[10:0]	2047	8188	
1113				(2047×4)	
HT		HT[10:0]	2048		
111			Horizontal Total = $(HT + 1)$ lines		
FPS		FPS[10:0]	2047		
VPW	0xB6	VPW[6:0]	128		
VIW			Vertical Sync Pulse Width = $(VPW+1)$ lines		
VPS	UADO	VPS[10:0]	204	2047	
VT		VT[10:0]	2048		
V I			Vertical Total = $(VT + 1)$ lines		

SSD1961 Rev 1.3 P 85/90 Jul 2011 **Solomon Systech**

14 APPLICATION EXAMPLE

SSD1961 **RESET** CS# D/C# **MCU Dumb** E(RD#) **Display** R/W#(WR#)D[17:0] GPIO1 SCL TE GPIO2 SDA GPIO3 CS# **LFRAME VSYNC CONF** LLINE **HSYNC LDEN** DEN **LSHIFT PCLK** LDATA[17:12] R[5:0] CLK 2.5-10MHz -LDATA[11:6] G[5:0] LDATA[5:0] B[5:0] GPIO0 SHUT XTAL_IN **PWM PWM** 1.2V + / -10%**VDDD** 1uF Floated XTAL_OUT O 1.2V+/-10% **VDDPLL** 1uF 1.65-3.6V **VDDIO** 0.1uF○ 1.65-3.6V **VDDLCD** 0.1 uF

Figure 14-1: Application circuit for SSD1961 (With Direct clock input)

Solomon Systech Jul 2011 | P 86/90 | Rev 1.3 | SSD1961

Figure 14-2: Application circuit for SSD1961 (With crystal oscillator input)

SSD1961 Rev 1.3 P 87/90 Jul 2011 **Solomon Systech**

15 PACKAGE INFORMATION

15.1 Package Mechanical Drawing for TFBGA

Dimension in mm				
Symbol	Min	Typical	Max	
A	-		1.1	
A1	0.16		0.26	
A2		0.21		
A3		0.54		
b	0.27		0.37	
D		6.00 BSC		
Е		6.00 BSC		
e		0.65		
D1		4.55 BSC		
E1		4.55 BSC		

 Solomon Systech
 Jul 2011
 P 88/90
 Rev 1.3
 SSD1961

15.2 Tape & Reel Drawing for TFBGA

Αo	6.30 +/-0.1
Во	6.30 +/-0.1
Ko	1.50 +/-0.1
K1	0.90 +/-0.1
F	7.50 +/-0.1
P1	12.00 +/-0.1
W	16.00 +/-0.3

- (I) Measured from centreline of sprocket hole to centreline of pocket.
- (II) Cumulative tolerance of 10 sprocket holes is \pm 0.20 .
- (III) Measured from centreline of sprocket hole to centreline of pocket.
- (IV) Other material available.

ALL DIMENSIONS IN MILLIMETRES UNLESS OTHERWISE STATED.

SSD1961 Rev 1.3 | P 89/90 | Jul 2011 **Solomon Systech**

Solomon Systech reserves the right to make changes without notice to any products herein. Solomon Systech makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Solomon Systech assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any, and all, liability, including without limitation consequential or incidental damages. "Typical" parameters can and do vary in different applications. All operating parameters, including "Typical" must be validated for each customer application by the customer's technical experts. Solomon Systech does not convey any license under its patent rights nor the rights of others. Solomon Systech products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Solomon Systech product could create a situation where personal injury or death may occur. Should Buyer purchase or use Solomon Systech products for any such unintended or unauthorized application, Buyer shall indemnify and hold Solomon Systech and its offices, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Solomon Systech was negligent regarding the design or manufacture of the part.

The product(s) listed in this datasheet comply with Directive 2002/95/EC of the European Parliament and of the council of 27 January 2004 on the restriction of the use of certain hazardous substances in electrical and electronic equipment and People's Republic of China Electronic Industry Standard SJ/T 11363-2006 "Requirements for concentration limits for certain hazardous substances in electronic information products (电子信息产品中有毒有害物质的限量要求)". Hazardous Substances test report is available upon request.

http://www.solomon-systech.com

Solomon Systech Jul 2011 | P 90/90 | Rev 1.3 | SSD1961