第一次作业:图像格式与基本操作

安晟男 自动化钱 61 2160405049

日期: 2019.2.26

摘要:本文介绍了BMP文件基本格式,并展示了图像的灰度级变换、均值与方差计算、放缩、侧切、旋转的基本操作。首先,介绍了BMP文件的四部分构成:位图头文件数据结构,位图信息数据结构,调色板和位图数据,并以7.bmp文件为示例进行了解释。然后,对lena.bmp文件进行了灰度级递减1~8级变换,并计算了原图像的均值与方差。随后,对lena.bmp文件基于近邻插值、双线性插值、双三次插值进行放大,并对lena.bmp和elainl.bmp进行了旋转、侧切和放大操作。最后,本文对三种插值方式的优缺点进行了探讨。

一、BMP 图像格式

1.1 BMP 格式简介

BMP(全称 Bitmap)是 Windows 操作系统中的标准图像文件格式,可以分成两类:设备有向量相关位图(DDB)和设备无向量相关位图(DIB),使用非常广。它采用位映射存储格式,除了图像深度可选以外,不采用其他任何压缩,因此,BMP文件所占用的空间很大。BMP文件的图像深度可选 1bit、4bit、8bit 及 24bit。BMP文件存储数据时,图像的扫描方式是按从左到右、从下到上的顺序。

1.2 BMP 图像文件组成

典型的 BMP 图像文件由四部分组成:

- 1: 位图头文件数据结构,它包含 BMP 图像文件的类型、显示内容等信息;
- 2: 位图信息数据结构,它包含有 BMP 图像的宽、高、压缩方法,以及定义颜色等信息;
- 3: 调色板,这个部分是可选的,有些位图需要调色板,有些位图,比如真彩色图(24位的BMP)就不需要调色板;
- 4: 位图数据,这部分的内容根据 BMP 位图使用的位数不同而不同,在 24 位图中直接使用 RGB,而其他的小于 24 位的使用调色板中颜色索引值。

1.3 7. bmp 文件示例

(1) 7. bmp 头文件与信息

利用 MATLAB 的 **imfinfo** 指令可获取位图相关信息的数据结构体。所获取信息与部分重要信息的解释如下表所示:

参数	值	解释
Filename	···/7.bmp	文件名与绝对路径
FileModDate	03-Jun-2011 11:17:32	文件最后修改日期
FileSize	1134	文件总大小 (字节)
Format	bmp	文件格式: 位图文件

FormatVersion	Version 3	
Width	7	图像宽度(像素)
Height	7	图像高度(像素)
BitDepth	8	图像灰度(8 表示 256 色位图)
ColorType	indexed	
FormatSignature	ВМ	
NumColormapEntries	256	颜色表中颜色项数
Colormap	[256×3 double]	
RedMask	[]	
GreenMask	[]	
BlueMask	[]	
ImageDataOffset	1078	图像数据区的偏移量
BitmapHeaderSize	40	图像文件头大小(固定为40字节)
NumPlanes	1	
CompressionType	none	图像是否压缩
BitmapSize	56	
HorzResolution	0	
VertResolution	0	
NumColorsUsed	0	使用到的颜色数(对索引位图,该值 表示颜色表中颜色项数,对真彩色位 图,该值表示图像实际用到颜色数)

NumImportantColors	0	重要颜色数
--------------------	---	-------

表 1 7. bmp 位图信息

(2) 7. bmp 位图数据与调色板

位图数据与调色板可通过 MATLAB 指令 imread 获取。对于 7. bmp 文件, 位图数据为 7x7 的矩阵数据,每一位大小为 8bit。调色板为 256x3 的矩阵数据,为位图数据提供颜色索引。位图数据与调色板数据如下所示:

82	82	73	59	55	80	90
97	89	90	95	71	40	69
104	71	63	105	93	76	42
88	75	85	101	90	91	70
97	92	91	99	72	71	82
98	101	102	86	69	71	95
103	99	100	84	86	98	98

表 2 7. bmp 位图数据

调色板数据附于附录。

二、lena 图像灰度级转换

2.1 灰度级概念及转换原理

图像灰度级指图像中的色度分量亮度的最大值与最小值之差的级别。

为改变图像灰度级,可将原图像的每一位灰度像素先除以要降低的等级 i,然后再乘以 i,由于像素数据格式为 uint8,先除后乘即可消去最低的 i 位数据,图像所包含的灰度值索引数量降低 2^i ,进而实现灰度级的降低 i 级。

2.2 实现效果

图 1 lena.bmp 原图

图 2 1ena.bmp 降低灰度级

三、计算图像的均值方差

均值反映了图像的亮度,均值越大说明图像亮度越大,反之越小;方差反映了图像像素值与均值的离散程度,方差越大说明图像的质量越好。

计算结果如下:

img_ave =

99.0512

img_var =

2.7960e+03

图 3 均值与方差计算结果

四、图像放大的三种方法

4.1 近邻插值

最邻近点插值算法是最简单也是速度最快的一种算法,其做法是將放大后未知的像素点 P,將其位置换算到原始影像上,与原始的邻近的 4 周像素点 A,B,C,D 做比较,令 P点的像素值等于最靠近的邻近点像素值即可。如上图中的 P点,由于最接近 D点,所以就直接取 P=D。

lena.bmp 使用近邻插值得到的结果如下:

图 4 近邻插值结果

4.2 双线性插值

其做法是將放大后未知的像素点 P,將其位置换算到原始影像上,计算的四個像素点 A,B,C,D 对 P点的影响(越靠近 P点取值越大,表明影响也越大)。

其具体的算法分三步:

第一步插值计算出 AB 两点对 P 点的影响得到 e 点的值。

对线性插值的理解是这样的,对于 AB 两像素点之间的其它像素点的色彩值,认定为直线变化的,要求 e 点处的值,只需要找到对应位置直线上的点即可。换句话说, A,B 间任意一点的值只跟 A,B 有关。

第二步,插值计算出 CD 两点对 P 点的影响得到 f 点的值。

第三步,插值计算出 ef 两点对 P 点的影响值。

双线性插值算法由于插值的结果是连续的,所以视觉上会比最邻近点插值算法要好一些,不过运算速度稍微要慢一点,如果讲究速度,是一个不错的折衷。

lena.bmp 使用双线性插值得到的结果如下:

图 5 双线性插值结果

4.3 双三次插值

双三次插值算法与双线性插值算法类似,对于放大后未知的像素点 P,将对 其影响的范围扩大到邻近的16个像素点,依据对 P点的远近影响进行插值计算, 因 P点的像素值信息来自16个邻近点,所以可得到较细致的影像,不过速度比 较慢。

lena.bmp 使用双三次插值得到的结果如下:

图 6 双三次插值结果

五、图像错切与旋转

5.1 图像错切数学原理

设原图像坐标为 x,y,侧切角度为 α ,则 x 方向错切变换的数学表达如下所示:

$$\begin{bmatrix} x' \\ y' \end{bmatrix} = \begin{bmatrix} 1 & -\tan\alpha \\ 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}$$

y 方向错切变换的数学表达如下所示:

$$\begin{bmatrix} x' \\ y' \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ -\tan\alpha & 1 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}$$

5.2 图像旋转数学原理

设原图像坐标为 x,y,侧切角度为 θ ,则旋转变换的数学表达如下所示:

$$\begin{bmatrix} x' \\ y' \\ 1 \end{bmatrix} = \begin{bmatrix} \cos \theta & \sin \theta & 0 \\ -\sin \theta & \cos \theta & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ 1 \end{bmatrix}$$

5.3 图像处理结果

5.3.1 lena. bmp 水平侧切 π/12 及放大结果如下:

图 7 lena. bmp 水平侧切

近邻插值

双线性插值

图 8 1ena. bmp 水平侧切放大

(由于原输出图像过大,故缩小显示)

双三次插值

5.3.2 elain1. bmp 垂直侧切 $\pi/12$ 及放大结果如下:

图 9 elain1.bmp 垂直侧切

图 10 elain1. bmp 垂直侧切放大 (由于原输出图像过大,故缩小显示)

5.3.3 lena. bmp 逆时针旋转 15°及放大结果:

图 11 lena. bmp 逆时针旋转 15°

图 12 lena. bmp 逆时针旋转 15° 放大 (由于原输出图像过大,故缩小显示)

5.3.4 elain1.bmp 顺时针旋转 15°及放大结果:

图 13 elain1.bmp 顺时针旋转 15°

图 14 elain1. bmp 顺时针旋转 15° 放大 (由于原输出图像过大,故缩小显示)

六、三种插值方法的比较结论

1、近邻插值计算量较小,速度快,但可能会造成插值生成的图像灰度上的不

连续,在灰度变化的地方可能出现明显的锯齿状;

- 2、双线性插值计算比最邻近点法复杂,计算量较大,但没有灰度不连续的缺点,结果基本令人满意。它具有低通滤波性质,使高频分量受损,图像轮廓可能会有一点模糊;
 - 3、双三次插值计算量最大,但插值后的图像效果最好。

附录: 7.bmp 调色板数据

索引	调色值			索引	调色值		
0	0.0000	0.0000	0.0000	128	0.5020	0.5020	0.5020
1	0.0039	0.0039	0.0039	129	0.5059	0.5059	0.5059
2	0.0078	0.0078	0.0078	130	0.5098	0.5098	0.5098
3	0.0118	0.0118	0.0118	131	0.5137	0.5137	0.5137
4	0.0157	0.0157	0.0157	132	0.5176	0.5176	0.5176
5	0.0196	0.0196	0.0196	133	0.5216	0.5216	0.5216
6	0.0235	0.0235	0.0235	134	0.5255	0.5255	0.5255
7	0.0275	0.0275	0.0275	135	0.5294	0.5294	0.5294
8	0.0314	0.0314	0.0314	136	0.5333	0.5333	0.5333
9	0.0353	0.0353	0.0353	137	0.5373	0.5373	0.5373
10	0.0392	0.0392	0.0392	138	0.5412	0.5412	0.5412
11	0.0431	0.0431	0.0431	139	0.5451	0.5451	0.5451
12	0.0471	0.0471	0.0471	140	0.5490	0.5490	0.5490
13	0.0510	0.0510	0.0510	141	0.5529	0.5529	0.5529
14	0.0549	0.0549	0.0549	142	0.5569	0.5569	0.5569
15	0.0588	0.0588	0.0588	143	0.5608	0.5608	0.5608
16	0.0627	0.0627	0.0627	144	0.5647	0.5647	0.5647
17	0.0667	0.0667	0.0667	145	0.5686	0.5686	0.5686
18	0.0706	0.0706	0.0706	146	0.5725	0.5725	0.5725

		1	1	1			
19	0.0745	0.0745	0.0745	147	0.5765	0.5765	0.5765
20	0.0784	0.0784	0.0784	148	0.5804	0.5804	0.5804
21	0.0824	0.0824	0.0824	149	0.5843	0.5843	0.5843
22	0.0863	0.0863	0.0863	150	0.5882	0.5882	0.5882
23	0.0902	0.0902	0.0902	151	0.5922	0.5922	0.5922
24	0.0941	0.0941	0.0941	152	0.5961	0.5961	0.5961
25	0.0980	0.0980	0.0980	153	0.6000	0.6000	0.6000
26	0.1020	0.1020	0.1020	154	0.6039	0.6039	0.6039
27	0.1059	0.1059	0.1059	155	0.6078	0.6078	0.6078
28	0.1098	0.1098	0.1098	156	0.6118	0.6118	0.6118
29	0.1137	0.1137	0.1137	157	0.6157	0.6157	0.6157
30	0.1176	0.1176	0.1176	158	0.6196	0.6196	0.6196
31	0.1216	0.1216	0.1216	159	0.6235	0.6235	0.6235
32	0.1255	0.1255	0.1255	160	0.6275	0.6275	0.6275
33	0.1294	0.1294	0.1294	161	0.6314	0.6314	0.6314
34	0.1333	0.1333	0.1333	162	0.6353	0.6353	0.6353
35	0.1373	0.1373	0.1373	163	0.6392	0.6392	0.6392
36	0.1412	0.1412	0.1412	164	0.6431	0.6431	0.6431
37	0.1451	0.1451	0.1451	165	0.6471	0.6471	0.6471
38	0.1490	0.1490	0.1490	166	0.6510	0.6510	0.6510
39	0.1529	0.1529	0.1529	167	0.6549	0.6549	0.6549
40	0.1569	0.1569	0.1569	168	0.6588	0.6588	0.6588
41	0.1608	0.1608	0.1608	169	0.6627	0.6627	0.6627
42	0.1647	0.1647	0.1647	170	0.6667	0.6667	0.6667
43	0.1686	0.1686	0.1686	171	0.6706	0.6706	0.6706
44	0.1725	0.1725	0.1725	172	0.6745	0.6745	0.6745
45	0.1765	0.1765	0.1765	173	0.6784	0.6784	0.6784
46	0.1804	0.1804	0.1804	174	0.6824	0.6824	0.6824
47	0.1843	0.1843	0.1843	175	0.6863	0.6863	0.6863
48	0.1882	0.1882	0.1882	176	0.6902	0.6902	0.6902

	1	1		1	T		
49	0.1922	0.1922	0.1922	177	0.6941	0.6941	0.6941
50	0.1961	0.1961	0.1961	178	0.6980	0.6980	0.6980
51	0.2000	0.2000	0.2000	179	0.7020	0.7020	0.7020
52	0.2039	0.2039	0.2039	180	0.7059	0.7059	0.7059
53	0.2078	0.2078	0.2078	181	0.7098	0.7098	0.7098
54	0.2118	0.2118	0.2118	182	0.7137	0.7137	0.7137
55	0.2157	0.2157	0.2157	183	0.7176	0.7176	0.7176
56	0.2196	0.2196	0.2196	184	0.7216	0.7216	0.7216
57	0.2235	0.2235	0.2235	185	0.7255	0.7255	0.7255
58	0.2275	0.2275	0.2275	186	0.7294	0.7294	0.7294
59	0.2314	0.2314	0.2314	187	0.7333	0.7333	0.7333
60	0.2353	0.2353	0.2353	188	0.7373	0.7373	0.7373
61	0.2392	0.2392	0.2392	189	0.7412	0.7412	0.7412
62	0.2431	0.2431	0.2431	190	0.7451	0.7451	0.7451
63	0.2471	0.2471	0.2471	191	0.7490	0.7490	0.7490
64	0.2510	0.2510	0.2510	192	0.7529	0.7529	0.7529
65	0.2549	0.2549	0.2549	193	0.7569	0.7569	0.7569
66	0.2588	0.2588	0.2588	194	0.7608	0.7608	0.7608
67	0.2627	0.2627	0.2627	195	0.7647	0.7647	0.7647
68	0.2667	0.2667	0.2667	196	0.7686	0.7686	0.7686
69	0.2706	0.2706	0.2706	197	0.7725	0.7725	0.7725
70	0.2745	0.2745	0.2745	198	0.7765	0.7765	0.7765
71	0.2784	0.2784	0.2784	199	0.7804	0.7804	0.7804
72	0.2824	0.2824	0.2824	200	0.7843	0.7843	0.7843
73	0.2863	0.2863	0.2863	201	0.7882	0.7882	0.7882
74	0.2902	0.2902	0.2902	202	0.7922	0.7922	0.7922
75	0.2941	0.2941	0.2941	203	0.7961	0.7961	0.7961
76	0.2980	0.2980	0.2980	204	0.8000	0.8000	0.8000
77	0.3020	0.3020	0.3020	205	0.8039	0.8039	0.8039
78	0.3059	0.3059	0.3059	206	0.8078	0.8078	0.8078

	1	1	1	1	1	ı	
79	0.3098	0.3098	0.3098	207	0.8118	0.8118	0.8118
80	0.3137	0.3137	0.3137	208	0.8157	0.8157	0.8157
81	0.3176	0.3176	0.3176	209	0.8196	0.8196	0.8196
82	0.3216	0.3216	0.3216	210	0.8235	0.8235	0.8235
83	0.3255	0.3255	0.3255	211	0.8275	0.8275	0.8275
84	0.3294	0.3294	0.3294	212	0.8314	0.8314	0.8314
85	0.3333	0.3333	0.3333	213	0.8353	0.8353	0.8353
86	0.3373	0.3373	0.3373	214	0.8392	0.8392	0.8392
87	0.3412	0.3412	0.3412	215	0.8431	0.8431	0.8431
88	0.3451	0.3451	0.3451	216	0.8471	0.8471	0.8471
89	0.3490	0.3490	0.3490	217	0.8510	0.8510	0.8510
90	0.3529	0.3529	0.3529	218	0.8549	0.8549	0.8549
91	0.3569	0.3569	0.3569	219	0.8588	0.8588	0.8588
92	0.3608	0.3608	0.3608	220	0.8627	0.8627	0.8627
93	0.3647	0.3647	0.3647	221	0.8667	0.8667	0.8667
94	0.3686	0.3686	0.3686	222	0.8706	0.8706	0.8706
95	0.3725	0.3725	0.3725	223	0.8745	0.8745	0.8745
96	0.3765	0.3765	0.3765	224	0.8784	0.8784	0.8784
97	0.3804	0.3804	0.3804	225	0.8824	0.8824	0.8824
98	0.3843	0.3843	0.3843	226	0.8863	0.8863	0.8863
99	0.3882	0.3882	0.3882	227	0.8902	0.8902	0.8902
100	0.3922	0.3922	0.3922	228	0.8941	0.8941	0.8941
101	0.3961	0.3961	0.3961	229	0.8980	0.8980	0.8980
102	0.4000	0.4000	0.4000	230	0.9020	0.9020	0.9020
103	0.4039	0.4039	0.4039	231	0.9059	0.9059	0.9059
104	0.4078	0.4078	0.4078	232	0.9098	0.9098	0.9098
105	0.4118	0.4118	0.4118	233	0.9137	0.9137	0.9137
106	0.4157	0.4157	0.4157	234	0.9176	0.9176	0.9176
107	0.4196	0.4196	0.4196	235	0.9216	0.9216	0.9216
108	0.4235	0.4235	0.4235	236	0.9255	0.9255	0.9255

					1		
109	0.4275	0.4275	0.4275	237	0.9294	0.9294	0.9294
110	0.4314	0.4314	0.4314	238	0.9333	0.9333	0.9333
111	0.4353	0.4353	0.4353	239	0.9373	0.9373	0.9373
112	0.4392	0.4392	0.4392	240	0.9412	0.9412	0.9412
113	0.4431	0.4431	0.4431	241	0.9451	0.9451	0.9451
114	0.4471	0.4471	0.4471	242	0.9490	0.9490	0.9490
115	0.4510	0.4510	0.4510	243	0.9529	0.9529	0.9529
116	0.4549	0.4549	0.4549	244	0.9569	0.9569	0.9569
117	0.4588	0.4588	0.4588	245	0.9608	0.9608	0.9608
118	0.4627	0.4627	0.4627	246	0.9647	0.9647	0.9647
119	0.4667	0.4667	0.4667	247	0.9686	0.9686	0.9686
120	0.4706	0.4706	0.4706	248	0.9725	0.9725	0.9725
121	0.4745	0.4745	0.4745	249	0.9765	0.9765	0.9765
122	0.4784	0.4745	0.4745	250	0.9804	0.9804	0.9804
122	0.4784	0.4784	0.4784	250	0.9804	0.9804	0.9804
123	0.4824	0.4824	0.4824	251	0.9843	0.9843	0.9843
124	0.4863	0.4863	0.4863	252	0.9882	0.9882	0.9882
125	0.4902	0.4902	0.4902	253	0.9922	0.9922	0.9922
126	0.4941	0.4941	0.4941	254	0.9961	0.9961	0.9961
127	0.4980	0.4980	0.4980	255	1.0000	1.0000	1.0000

参考文献

- 【1】郑利华, 张亚红. BMP 格式图像的教学价值[J]. 科技信息, 2010(30):642-643.
- 【2】宋叶未, 叶建芳. BMP 格式位图文件的分析及显示算法[J]. 现代电子技术, 2011, 34(20):5-7.
- 【3】符样, 郭宝龙. 图像插值技术综述[J]. 计算机工程与设计, 2009, 30(1):141-144.
- 【4】徐雨明, 文双春. 数字图像插值算法的分析与实现[J]. 福建电脑, 2007(1):94-94.
- 【5】李少芳, 陈德礼. 数字图像旋转实现的探讨[J]. 计算机与现代化, 2007, 2007(9):94-96.