1 Potato Leafhopper (10 points)

By running the OpenBUGS code, we obtain the following results:

Equivalent Python solution:

es.	mean	sd	hdi_5%	 ess_bulk	ess_tail	r_hat
beta0	116.757	11.020	98.510	6173.0	6768.0	1.0
beta1	-1.285	0.153	-1.552	6086.0	6653.0	1.0
x_imputed_missing[0]	71.511	4.346	64.554	10012.0	6785.0	1.0
x_imputed_missing[1]	71.062	4.390	63.782	10262.0	8119.0	1.0
lik_missing[0]	29.889	6.063	19.888	10934.0	7725.0	1.0
lik_missing[1]	19.222	6.131	9.228	11280.0	7587.0	1.0
lik_missing[2]	1.487	6.774	-9.582	8656.0	8455.0	1.0
lik_missing[3]	20.508	6.144	10.462	12310.0	7517.0	1.0
tau	5.854	0.946	4.340	6204.0	7205.0	1.0

(a) (1 point)) The estimated parameter β_0 and β_1 are 116.6 and -1.282, respectively. The fitted linear regression model is

$$Develop = 116.6 - 1.282 \cdot Temp.$$

(b) (6 points, 0.5 for each mean and credible set of the missing values) The results for the imputed missing values are as follows:

develop[3] estimate is 29.92, and the 90% credible set is [20.14, 39.69] develop[17] estimate is 19.16, and the 90% credible set is [9.413, 29.01] develop[24] estimate is 1.578, and the 90% credible set is [-8.986, 12.39] develop[29] estimate is 20.52, and the 90% credible set is [-8.986, 12.39] temp[2] estimate is 71.48, and the 90% credible set is [64.57, 78.63] temp[30] estimate is 70.98, and the 90% credible set is [64.13, 78.16]

(c) (1 **point** for identifying what was problematic and 2 **points** for showing how a different model remedies this)

We plot temp vs develop to get a sense of the data:

A linear model seems appropriate for most of this domain, but large values of temp seem problematic as there cannot be a negative development time. For example, the imputed Develop time at Temp = 89.7 is only 1.578, and for higher temperatures this value could be negative. As such, a truncated likelihood or nonlinear models may allow for better predictions when the value of temp is large. All such discussions and results should receive credit. One quick formal solution is to use a lognormal likelihood instead of a normal likelihood. The updated predictions are more reasonable, especially develop [24] which corresponds to Temp = 89.7:

5 - 10 - 10 - 10 - 10 - 10 - 10 - 10 - 1	mean	sd	hdi_5%	 ess_bulk	ess_tail	r_hat
beta0	6.661	0.310	6.172	6865.0	6712.0	1.0
beta1	-0.050	0.004	-0.057	6769.0	6946.0	1.0
x imputed missing[0]	68.969	3.342	63.626	11425.0	7366.0	1.0
x imputed missing[1]	68.412	3.273	63.256	10615.0	7753.0	1.0
tau	0.164	0.027	0.122	6878.0	7562.0	1.0
lik missing[0]	27.727	4.759	19.890	11416.0	7624.0	1.0
lik missing[1]	18.309	3.133	13.109	10239.0	7370.0	1.0
lik missing[2]	9.311	1.742	6.547	10886.0	8376.0	1.0
lik missing[3]	19.314	3.331	14.064	10462.0	6935.0	1.0

2 Dukes' C Colorectal Cancer and Diet Treatment (10 points)

We run the OpenBUGS code and obtain the following results:

	mean	sd	MC error	val2.5pc	median	val97.5pc	start	sample	1
eta0	-10.97	1.57		-13.78	-10.96	-7.244	1001	100000	
eta1	-1.113	0.4598	0.009813	-2.015	-1.117	-0.2054	1001	100000	
beta2	0.09175	0.02113	0.00115	0.04688	0.09156	0.133	1001	100000	

(5 points) Based on the results, we see that the estimated values of the coefficients are -10.97, -1.113 and 0.09175 for β_0 , β_1 and β_2 respectively. Small numerical differences are acceptable for full credit. Equivalent python output:

```
hdi 2.5%
                                                               ess bulk
                                                                          ess tail
          mean
                    sd
                                   hdi 97.5%
                                                     mcse sd
      -10.196
                2.267
                          -14.612
                                       -5.819
                                                       0.036
                                                                 2019.0
                                                                            2721.0
beta0
                                                                                       1.0
beta1
       -1.090
                0.458
                          -1.981
                                       -0.173
                                                       0.004
                                                                 7673.0
                                                                            7133.0
                                                                                       1.0
                                                                 2105.0
beta2
        0.084
                0.029
                           0.024
                                       0.139
                                                       0.000
                                                                            2908.0
                                                                                       1.0
                           1.126
                                        2.208
                                                       0.003
                                                                 3300.0
                                                                            4223.0
alpha
         1.663
                0.277
                                                                                       1.0
```

(5 points) As the 95% credible set of coefficient β_1 is [-2.015, -0.2054], we conclude that linoleic acid treatment has a significant effect on survival time. Specifically since the mean and credible set are both negative, this means that the treatment is beneficial for survival time. Concluding that the treatment is significant is enough for full credit.

Python output for the median survival time of the 2 different groups (optional):

```
Median survival time (months) without treatment:
             17.854551
mean
sd
               5.226143
hdi 2.5%
              10.023245
hdi 97.5%
              28.130347
dtype: float64
Median survival time (months) with treatment:
             34.780082
mean
sd
             11.953286
hdi_2.5%
             17.539367
hdi 97.5%
             56.829571
dtype: float64
```

Python code snippet for median survival time of the 2 different groups (optional):

```
median0 = pm.Deterministic(
    "median0",
    (np.log(2) * (at.exp(beta0 + beta1 * 0 + beta2 * age)) ** (-1 / alpha)),
)
median1 = pm.Deterministic(
    "median1",
    (np.log(2) * (at.exp(beta0 + beta1 * 1 + beta2 * age)) ** (-1 / alpha)),
)
```