

$$det (AA - \lambda I_n) = \begin{vmatrix} 2 + \lambda & 0 & 2 \\ 0 & 2 + \lambda - 2 \\ 2 + -2 + -2 \end{vmatrix} = (2 - \lambda)(3 - 2) + (2 + \lambda)(4 - \lambda) - (-1 - 2) = 2 + (2 - \lambda)(3 - 2) + (2 + \lambda)(3 - 2) + (2 +$$

$$\frac{\partial f_{i}(\sigma)}{\partial \sigma_{j}} = (u_{j}u_{j}^{T} \times)_{i}$$

$$h_{i}(\sigma) = \frac{1}{2} ||f(\sigma) - y||^{2} ||f(\sigma) - y||^{2}$$

$$h_{i}(\sigma) = \frac{1}{2} ||f(\sigma) - y||^{2} ||f(\sigma) - y||^{2}$$

$$h_{i}(\sigma) = \frac{1}{2} ||f(\sigma) - y||^{2}$$

1567) (9 9°C4 1- ;) 721 i. cm 9 ; (1871) $| (1 - \alpha) + (1$ =>17; ->)12; C-e 11:67; >16; XX=(1-d)46 C; = C CL5(9 5 1'7711 110 X2 4 EC2 X JEC 111 (10 $A\left(\chi^{-1}\chi^{2}\right)+\left(1-\alpha\right)\left(\lambda^{-1}\chi^{2}\right)=a\chi^{-1}-\alpha\chi^{2}+\left(1-\alpha\right)\lambda^{-1}+\left(1-\alpha\right)\lambda^{2}=$ $= \left(\frac{1}{\alpha} \times \frac{1}{\alpha} \left(\frac{1-\alpha}{\alpha} \right) \right) \cdot \left(\frac{1}{\alpha} \times \frac{1}{\alpha} \left(\frac{1-\alpha}{\alpha} \right) \right) \cdot \left(\frac{1}{\alpha} \times \frac{1}{\alpha} \left(\frac{1-\alpha}{\alpha} \right) \right) \cdot \left(\frac{1}{\alpha} \times \frac{1}{\alpha} \left(\frac{1-\alpha}{\alpha} \right) \right) \cdot \left(\frac{1}{\alpha} \times \frac{1}{\alpha} \left(\frac{1-\alpha}{\alpha} \right) \right) \cdot \left(\frac{1}{\alpha} \times \frac{1}{\alpha} \left(\frac{1-\alpha}{\alpha} \right) \right) \cdot \left(\frac{1}{\alpha} \times \frac{1}{\alpha} \left(\frac{1-\alpha}{\alpha} \right) \right) \cdot \left(\frac{1}{\alpha} \times \frac{1}{\alpha} \left(\frac{1-\alpha}{\alpha} \right) \right) \cdot \left(\frac{1}{\alpha} \times \frac{1}{\alpha} \left(\frac{1-\alpha}{\alpha} \right) \right) \cdot \left(\frac{1}{\alpha} \times \frac{1}{\alpha} \left(\frac{1-\alpha}{\alpha} \right) \right) \cdot \left(\frac{1}{\alpha} \times \frac{1}{\alpha} \left(\frac{1-\alpha}{\alpha} \right) \right) \cdot \left(\frac{1}{\alpha} \times \frac{1}{\alpha} \left(\frac{1-\alpha}{\alpha} \right) \right) \cdot \left(\frac{1}{\alpha} \times \frac{1}{\alpha} \left(\frac{1-\alpha}{\alpha} \right) \right) \cdot \left(\frac{1}{\alpha} \times \frac{1}{\alpha} \left(\frac{1-\alpha}{\alpha} \right) \right) \cdot \left(\frac{1}{\alpha} \times \frac{1}{\alpha} \left(\frac{1-\alpha}{\alpha} \right) \right) \cdot \left(\frac{1}{\alpha} \times \frac{1}{\alpha} \left(\frac{1-\alpha}{\alpha} \right) \right) \cdot \left(\frac{1}{\alpha} \times \frac{1}{\alpha} \left(\frac{1-\alpha}{\alpha} \right) \right) \cdot \left(\frac{1}{\alpha} \times \frac{1}{\alpha} \left(\frac{1-\alpha}{\alpha} \right) \right) \cdot \left(\frac{1}{\alpha} \times \frac{1}{\alpha} \left(\frac{1-\alpha}{\alpha} \right) \right) \cdot \left(\frac{1}{\alpha} \times \frac{1}{\alpha} \left(\frac{1-\alpha}{\alpha} \right) \right) \cdot \left(\frac{1}{\alpha} \times \frac{1}{\alpha} \left(\frac{1-\alpha}{\alpha} \right) \right) \cdot \left(\frac{1}{\alpha} \times \frac{1}{\alpha} \left(\frac{1-\alpha}{\alpha} \right) \right) \cdot \left(\frac{1}{\alpha} \times \frac{1}{\alpha} \left(\frac{1-\alpha}{\alpha} \right) \right) \cdot \left(\frac{1}{\alpha} \times \frac{1}{\alpha} \left(\frac{1-\alpha}{\alpha} \right) \right) \cdot \left(\frac{1}{\alpha} \times \frac{1}{\alpha} \left(\frac{1-\alpha}{\alpha} \right) \right) \cdot \left(\frac{1}{\alpha} \times \frac{1}{\alpha} \left(\frac{1-\alpha}{\alpha} \right) \right) \cdot \left(\frac{1}{\alpha} \times \frac{1}{\alpha} \left(\frac{1-\alpha}{\alpha} \right) \right) \cdot \left(\frac{1}{\alpha} \times \frac{1}{\alpha} \left(\frac{1-\alpha}{\alpha} \right) \right) \cdot \left(\frac{1}{\alpha} \times \frac{1}{\alpha} \left(\frac{1-\alpha}{\alpha} \right) \right) \cdot \left(\frac{1}{\alpha} \times \frac{1}{\alpha} \left(\frac{1-\alpha}{\alpha} \right) \right) \cdot \left(\frac{1}{\alpha} \times \frac{1}{\alpha} \left(\frac{1-\alpha}{\alpha} \right) \right) \cdot \left(\frac{1}{\alpha} \times \frac{1}{\alpha} \left(\frac{1-\alpha}{\alpha} \right) \right) \cdot \left(\frac{1}{\alpha} \times \frac{1}{\alpha} \left(\frac{1-\alpha}{\alpha} \right) \right) \cdot \left(\frac{1-\alpha}{\alpha} \times \frac{1}{\alpha} \left(\frac{1-\alpha}{\alpha} \right) \right) \cdot \left(\frac{1-\alpha}{\alpha} \times \frac{1}{\alpha} \left(\frac{1-\alpha}{\alpha} \right) \right) \cdot \left(\frac{1-\alpha}{\alpha} \times \frac{1}{\alpha} \left(\frac{1-\alpha}{\alpha} \right) \right) \cdot \left(\frac{1-\alpha}{\alpha} \times \frac{1}{\alpha} \left(\frac{1-\alpha}{\alpha} \right) \right) \cdot \left(\frac{1-\alpha}{\alpha} \times \frac{1}{\alpha} \left(\frac{1-\alpha}{\alpha} \right) \right) \cdot \left(\frac{1-\alpha}{\alpha} \times \frac{1}{\alpha} \left(\frac{1-\alpha}{\alpha} \right) \right) \cdot \left(\frac{1-\alpha}{\alpha} \times \frac{1}{\alpha} \left(\frac{1-\alpha}{\alpha} \right) \right) \cdot \left(\frac{1-\alpha}{\alpha} \times \frac{1}{\alpha} \left(\frac{1-\alpha}{\alpha} \right) \right) \cdot \left(\frac{1-\alpha}{\alpha} \times \frac{1-\alpha}{\alpha} \left(\frac{1-\alpha}{\alpha} \right) \right) \cdot \left(\frac{1-\alpha}{\alpha} \times \frac{1-\alpha}{\alpha} \right) \cdot \left(\frac{1-\alpha}{\alpha} \times \frac{1$ XX-(1-0) Y E C1-C3

: 2 2 (4)		- 6	, x, y	EC 31 (11
	X, yeC =	> XX XYE	λC	SA
	d /x +	(1-x) 24 =	= X (
			= x (xx-(1-	
		ildir t	$= \left(\alpha \times \cdot \left(\left -\alpha \right \right) \right)$	
$d \times \sqrt{(-\alpha)} \sqrt{\alpha}$				17 C '5
<u></u>	> 21 27/	77 \ \ \ C	C .	(1/c): 141G

$$||P(|A_{n}-A_{n}| \geq \epsilon) = 0 \quad ||S| = 0 \quad ||S| = 0$$

$$||P(|A_{n}-A_{n}| \geq \epsilon) \leq ||Var(|X_{n}|)| \leq ||P(|A_{n}| + ||A_{n}||) \leq ||P(|A_{n}-A_{n}| \geq \epsilon) ||Var(|X_{n}| + ||A_{n}||) \leq ||P(|A_{n}-A_{n}| \geq \epsilon) ||P(|A_$$

		V				/	2"}	لمحر	Į,	ر ا ا	0 %	()(,	٦ ٦	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	ſ	
			ίM	1P (. <i>j</i> //	_	ع دِ		_ ()				
		U	->o-	\	/	Λ 		/ \								
												<u> </u>	2081			

() 17> 29745 6 (1) 21/2) 51) e 20 20) suron log-likelihood ins > 158 J. 172162 ; 1.3 Fe :9:21 9:00 1 - May x 20 (50) 9:01 Σ $L(n\Sigma|x,...x_n) = f_{\mu,S}(x,...x_n) = \int_{i=1}^{n} f_{\mu,S}(x_i) =$ $= \int_{i=1}^{1} \left(\frac{1}{\sqrt{(1+\lambda)^{2} \cdot |\Sigma|}} e^{x} \rho \left(-\frac{1}{2} \left(x_{i} - \mu_{i} \right) \right) \right) \left(x_{i} - \mu_{i} \right) = 0$ $=\frac{1}{\left(\left(\frac{1}{2}\pi\right)^{2}\left[\frac{1}{2}\right]^{\frac{1}{2}}}e\times\rho\left(-\frac{1}{2}\left[\frac{1}{2}\left(x,-\mu\right)^{\frac{1}{2}}\right]^{\frac{1}{2}}\left(x,-\mu\right)\right)}$ $\log\left(L\left(\mu,\Sigma\left|x,\right.\right|\right) = \log\left(\frac{1}{(2x)^{2}|\Sigma||^{\frac{n}{2}}}\right) + \log\left(e\times\rho\left(-\frac{1}{2}\sum_{i=1}^{n}\left(x_{i}-\mu\right)^{T}\Sigma^{-1}\left(x_{i}-\mu\right)\right)\right)$ $=\frac{\pi}{2}\left(\log(1)-\log(2\pi)^{2}|\Sigma|\right)-\frac{1}{2}\sum_{i=1}^{n}(x_{i}-\mu)^{T}\Sigma^{T}(x_{i}-\mu)=$ $=-\frac{\pi}{2}\left(\log\left(2x\right)^{2}-\log\left(|\Sigma|\right)\right)-\frac{\pi}{2}\left(\sum_{i=1}^{n}\left(x_{i}-\mu\right)^{i}\Sigma^{-i}\left(x_{i}-\mu\right)\right)$

(1.0111270628421916, 9.957785999684369) (2

(2

(4

Empirical PDF of fitted model

0.4

0.33
0.23
0.35
0.1
0.10
0.95-

 $\mu = [-0.04339347 - 0.06314678 3.97132241 0.02595522]$

[[0.96227096 0.23840962 0.01354167 0.47540567] [0.23840962 1.96171282 0.01872518 0.02383669] [0.01354167 0.01872518 0.97800904 0.04238053] [0.47540567 0.02383669 0.04238053 0.95344068]]

 $\Sigma =$

(-0.05, 3.97) (6