Camera Design: Pinhole

Figure 1: Representation of pinhole camera

• Simplest camera: put sensor in front of object, covered so that only a small hole lets light through.

Pinhole camera geometry

Figure 2: Camera geometry

- Image plane at Z = -f, "virtual" projection plane at Z = f
- Center of projection **p** at (0,0,f), with u=0,v=0

Perspective equations

Figure 3: Projection from (X, Y, Z)

We can understand the projection plane by looking at the triangles formed by (X,Y,Z) and (x,y,f).

x is the scaling of the X by a factor of $\frac{f}{z}$.

(1) From similar triangles:

$$(X,Y,Z)\mapsto \left(f\frac{X}{Z},f\frac{Y}{Z},f\right)$$

(2) Projection plane (image) coordinates:

$$(X, Y, Z) \mapsto (x, y)$$

where
$$x = f\frac{X}{Z}, y = f\frac{Y}{Z}$$

Notation

(X,Y,Z) is a point in 3D world. (x,y) is a point in 2D image plane (projection).

Perspective effect

Same object appears larger if closer (because Z)is smaller

Projections is a dimensionality reduction

Figure 4

Figure 5: Source: D. Hoiem

Fronto-parallel plane

Fronto-parallel plane Projection of a plane parallel to the image plane (perpendicular to the optical axis)

What happens to the projection of a pattern on a fronto-parallel plane? All points are at a fixed depth Z, but the pattern gets scaled by $\frac{f}{Z}$ while the angles and ratios of lengths/areas are preserved.

Vanishing points

Projections of all parallel (in 3D) lines converge to a vanishing point, except those parallel to the image plane.

Each direction in 3D maps to a vanishing point in the image.

Vanishing lines

Fact the set of vanishing points for all lines in a plane corresponds to a line in the image plane

Figure 6: Vanishing lines

Horizon The *horizon* is the vanishing line for the ground plane. Points higher than the camera project above the horizon. Points lower than the horizon project below the horizon.

Perspective distortion on a sphere

Consider the occluding contour of the sphere; it lies in a plane. If the plane is not fronto-parallel, we have distortion.

Modeling the projection

Recall we are mapping from (X,Y,Z) to (x,y) where $(x,y)=f\frac{X}{Z},f\frac{Y}{Z}$. But this is a non linear transformation.

A trick to make it linear is to add one more coordinate. Then

homogeneous scene coordinates

$$(x,y) \Rightarrow \begin{pmatrix} x \\ y \\ 1 \end{pmatrix}$$
 and $(X,Y,Z) \Rightarrow \begin{pmatrix} X \\ Y \\ Z \\ 1 \end{pmatrix}$

- 1. To homogeneous coordinates: just add 1
- 2. From homogeneous coordinates: divide by the last coordinate

$$\begin{pmatrix} x \\ y \\ w \end{pmatrix} \Rightarrow \left(\frac{x}{w}, \frac{y}{w}\right) \text{ and } \begin{pmatrix} X \\ Y \\ Z \\ W \end{pmatrix} \Rightarrow \left(\frac{X}{W}, \frac{Y}{W}, \frac{Z}{W}\right)$$

Perspective projection collapses an entire ray $\mathbb{C} + \lambda \cdot (X, Y, Z)$ to a point $\left(f\frac{X}{Z}, f\frac{Y}{Z}\right)$

Using homogeneous coordinates, projection is a linear operation.

$$\begin{pmatrix} f & 0 & 0 & 0 \\ 0 & f & 0 & 0 \\ 0 & 0 & 1 & 0 \end{pmatrix} \begin{pmatrix} X \\ Y \\ Z \\ 1 \end{pmatrix} = \begin{pmatrix} fX \\ fY \\ Z \end{pmatrix} \Rightarrow \left(f\frac{X}{Z}, f\frac{Y}{Z} \right)$$

In practice, need to handle different coordinate systems and the fact that pixrl coordinates are different from projection plane coordinates

Figure 7: Pixel Coordinates

- Principal point $p = p_x, p_y$: point in the image where the optical axis crosses the projection (image) plane
- \bullet Normalized coordinate system: origin at \mathbf{p}
- $\bullet\,$ Image coordinates: origin is the corner
- Want the principal point to map to (p_x, p_y) not (0,0)