

Geometria Básica - EP04 - Tutor

Prezado(a) aluno(a),

o conteúdo desta semana referente a EP04, você encontra nos seguintes capítulos do livro de Geometria Básica - Módulo 1 - Volume 1, (autores: Arnaut, R.G.T. e Pesco, D.U.),

Aula 6: Pontos Notáveis de um Triângulo;

Aula 7: Complementos.

Você também pode encontrar o conteúdo dessas aulas na Plataforma, na seção Material Impresso.

Exercício 1: Considerando os quatro pontos notáveis de um triângulo,

- a) Quais os que podem ser externos ao triângulo?
- b) Qual o que pode ser ponto médio de um lado?
- c) Qual o que pode ser vértice de um triângulo?

Solução:

a) Considere um triângulo obtusângulo e vamos achar o ortocentro e o circuncentro.

Note que neste caso o ortocentro e o circuncentro são externos ao ΔABC .

b) Considere um triângulo retângulo ABC sendo $\hat{A}=90^{\circ}$. Seja M o ponto médio de BC.

Temos que $\overline{AM}=\overline{BM}=\overline{CM}$ (No triângulo retângulo a mediana relativa à hipotenusa é a metade da hipotenusa). Daí M é o circuncentro.

c) Considere um triângulo retângulo ABC com $\hat{A}=90^{\circ}$. Vamos achar o ortocentro.

Temos que A é o ortocentro que é um dos vértices do triângulo.

Exercício 2: A hipotenusa de um triângulo retângulo mede 20 cm e um dos ângulos 20°.

- a) Qual a medida da mediana relativa à hipotenusa?
- b) Qual a medida do ângulo formado por essa mediana e pela bissetriz do ângulo reto?

Solução:

Seja o triângulo retângulo cuja hipotenusa mede $20~{\rm cm}$ e um dos ângulos 20° . Seja $\hat{B}=20^{\circ}$.

- a) Considere M o ponto médio do lado BC, então AM é mediana e $\overline{BM}=\overline{MC}=10$ cm. Temos que $\overline{AM}=\frac{20}{2}=10$ cm.
- b) Seja AN a bissetriz do ângulo reto, então $B\hat{A}N=45^{\circ}$. Temos ainda que

$$90^{\circ} + 20^{\circ} + \hat{C} = 180^{\circ} \Rightarrow \hat{C} = 70^{\circ}$$

 $A\hat{N}C=45^\circ+20^\circ=65^\circ$ (ângulo externo de um triângulo é igual a soma dos ângulos internos não adjacentes).

 ΔAMC é isósceles, então $C\hat{A}M=A\hat{C}M=70^\circ$, daí $A\hat{M}C+70^\circ+70^\circ=180^\circ \Rightarrow A\hat{M}C=40^\circ.$ Logo $A\hat{N}M=70^\circ+45^\circ=115^\circ.$

Portanto, o ângulo procurado $M\hat{A}N=180^{\circ}-115^{\circ}-40^{\circ}=25^{\circ}.$

Exercício 3: Mostre que em um triângulo retângulo o raio do círculo inscrito é igual ao semiperímetro menos a hipotenusa.

Solução: Seja o triângulo retângulo ABC com lados a,b e c. Seja r o raio do círculo inscrito. Denomine os pontos de tangência de T,R e S.

Fundação CECIERJ Consórcio CEDERJ

Geometria Básica – EP04 Tutor 3

Por resultado anterior, $\overline{BT} = \overline{BS}$ e $\overline{CR} = \overline{CS}$.

Como $\overline{BT} = c - r$ e $\overline{CR} = b - r$, vem que

$$a = c - r + b - r \Rightarrow 2r = b + c - a \Rightarrow r = \frac{b + c - a}{2} \tag{1}$$

$$p - a = \frac{a+b+c}{2} - a = \frac{a+b+c-2a}{2} = \frac{b+c-a}{2}$$
 (2)

De (1) e (2), vem : r = p - a.

Exercício 4: Estude a possibilidade da existência de triângulos cujos lados pertençam a uma progressão geométrica de razão $\frac{1}{2}$.

Solução:

Temos que:

em qualquer triângulo a medida de cada lado é menor que a soma das medidas dos outros dois. (1)

Como os lados pertencem a uma progressão geométrica de razão $\frac{1}{2}$, vem que: os lados são $a, \frac{a}{2}$ e $\frac{a}{4}$ (2).

Usando (1) em (2) vem:

$$\frac{a}{2} < a + \frac{a}{4} \quad (3)$$

$$\frac{a}{4} < a + \frac{a}{2}$$
 (4)

$$a < \frac{a}{2} + \frac{a}{4}$$
 (5)

Mas (5) é uma afirmação falsa pois $a < \frac{3a}{4}$ (Falso).

Logo não há triângulos nessas condições.

Fundação CECIERJ Consórcio CEDERJ