

Punica: Multi-Tenant LoRA Serving

MLSys'24

Lequn Chen, Zihao Ye, Yongji Wu, Danyang Zhuo, Luis Ceze, Arvind Krishnamurthy

University of Washington, Duke University

Author

Research Interests

- Distributed Systems
- Machine Learning Systems
- Operating Systems

[1] Nexus: a GPU cluster engine for accelerating DNN-based video analysis. SOSP'19

[2] Atom: Low-bit quantization for efficient and accurate Ilm serving. MLSys'24

University of Washington

Contents

- Background
- Related Work
- Design
- Evaluation
- Thinking

Background

☐ Transformer过程

Background

☐ Transformer过程

Prefill: GPU充分利用

Decode: GPU利用率低

批处理提高GPU利用率

Background

- □ LoRA (Low-Rank Adaptation of LLMs)
 - ➤ 显著减少训练参数量 (e.g., r=16, d=4096)
 - 快速微调
 - 降低相同预训练模型不同LoRA模型存储 和内存开销
 - W' = W + AB
 - xW' = x(W + AB) = xW + xAB

- □ LLM推理优化
 - Orca: A Distributed Serving System for Transformer-Based
 - Generative Models. OSDI'22 提出通过在自注意力操作处分割连接的

批量输入来批量处理基于Transformer的文本生成

□ LLM推理优化

动

➤ FlashAttention: Fast and Memory-Efficient Exact Attention with IO-Awareness. NeurIPS'22 提出通过块状计算来减少Attention的数据移

□ LLM推理优化

➤ Efficient Memory Management for Large Language Model Serving with PagedAttention. SOSP'23 提出通过借鉴操作系统中的虚拟页面的概念来减少KvCache的内存碎片化

0. Before generation.

- □ 多模型推理服务
 - ➤ PetS: A Unified Framework for Parameter-Efficient Transformers
 Serving. USENIX ATC'22 允许预训练模型在GPU内存中为不同的下
 游任务共享,但是它不能让多个不同的模型同时运行

- 模型和KVCache压缩
 - ➤ Flexgen: High-throughput generative inference of large language models with a single GPU. ICML'23 模型和KVCache压缩节省了更多的内存消耗,使GPU能够处理更长序列的请求

■ 模型和KVCache压缩

➤ Efficient Streaming Language Models with Attention Sinks. ICLR'24 进一步减少了KVCache的内存IO,降低了推理延迟

- 模型和KVCache压缩
 - ➤ QLoRA: Efficient Finetuning of Quantized LLMs. NeurIPS'23 提出通过高精度格式存储LoRA权重,同时保留原始权重的量化格式,以在微调过程中节省内存占用

□总体设计

Frontends <===> Scheduler <===> Runner

- □总体设计
 - ➤ Q1: 如何在GPU上高效运行多个LoRA模型
 - 新的CUDA内核Segmented Gather Matrix-Vector Multiplication (SGMV) 实现对不同LoRA模型请求的批量处理
 - > Q2: 如何依靠任务调度实现工作负载集中
 - 对用户请求进行批处理,以提高GPU占用率
 - 实现按需LoRA模型加载,避免非活跃模型内存占用
 - 将用户请求调用到活跃的GPU上,以占用最少的GPU资源

- □ Q1: 如何在GPU上高效运行多个LoRA模型
 - ➤ KVCache 张量嵌套
 - HuggingFace Transformers 库的 KVCache 张量嵌套:

- □ Q1: 如何在GPU上高效运行多个LoRA模型
 - ➤ KVCache 张量嵌套
 - Punica 的 KVCache 张量嵌套:

$$\left[\sum_{i} \left[\frac{S_{i}}{P}\right], L, 2, N, P, D\right]$$

- □ Q1: 如何在GPU上高效运行多个LoRA模型
 - Segmented Gather Matrix-Vector Multiplication (SGMV)
 - xW' = x(W + AB) = xW + xAB

- □ Q1: 如何在GPU上高效运行多个LoRA模型
 - Segmented Gather Matrix-Vector Multiplication (SGMV)

blockIdx.y =

blockIdx.y = 2

- □ Q2: 如何依靠任务调度实现工作负载集中
 - ➤ 对用户请求进行批处理,以提高 Decode 环节 GPU 占用率
 - 以每个请求为单位进行调度
 - 每个批次中, Prefill数量限制为1
 - 当请求完成时, GPU将请求移除, 并接受下一个请求
 - 最大批处理大小为32 (A100)

- □ Q2: 如何依靠任务调度实现工作负载集中
 - > 实现LoRA模型按需加载,避免非活跃模型内存占用
 - 以PCIe GEN4 x16为例,加载一个模型时间只需要2ms
 - 当新的请求的LoRA权重尚未加载,可以在处理其他请求的同时异 步内存复制来加载LoRA权重

- □ 如何依靠任务调度实现工作负载集中
 - ➤ 将用户请求调度到活跃的GPU上,以占用最少的GPU资源
 - 调度器拥有全局信息,将新请求发往拥有最大批长度的GPU,且
 - 尚未到达最大批长度限制 (32)
 - 拥有足够的内存用于新请求的KVCache
 - 当存在多个GPU时,选取UUID最大的;当不存在时,排队,FCFS
 - 结果: 忙的持续忙, 闲的持续闲, 负载轻的会逐渐空闲

- □ 如何依靠任务调度实现工作负载集中
 - ▶ 请求迁移
 - token增加可能导致KVCache占据过多GPU内存
 - GPU内存不足时需要驱逐最新到达的请求,并添加到其他GPU中

- □ 实验设置
 - ➤ TestBoard #1: 一台配备 Nvidia A100 80G GPU的单卡服务器
 - GPU内存大,测试LoRA批处理效果
 - ➤ TestBoard #2: 两台服务器,每台8张Nvidia A100 40G GPU
 - 多机多卡,研究并行性和集群部署
 - ➤ 使用 Llama-2:7B, 13B, 70B 参数模型, LoRA Rank为16

- □ 实验设置
 - ➤ LoRA模型请求分布
 - Distinct: 每个请求对应单独一个LoRA模型
 - Uniform: 所有LoRA模型使用频率相同
 - Skewed: 使用频率遵循 $Zipf \alpha$ 分布, $\alpha = 1.5$
 - Identical: 所有请求都是同一个LoRA模型

- □ 实验设置
 - Baselines
 - HuggingFace Transformers, EMNLP'20
 - DeepSpeed, SC'22
 - Faster Transformer (backbone-only)
 - vLLM (backbone-only), SOSP'23

□ 模型请求分布 TestBoard #1

$$FLOP = s_n \times h_i \times h_o \times 2$$
$$I/O = [s_n \times (h_i + h_o) + n \times h_1 \times h_2] \times 2$$

28

- □ SGMV 内核性能 TestBoard #1
 - ➤ Loop: for-loop: 循环, 一个一个地处理这批数据
 - 效率极低, 没有利用 GPU 大规模并行计算的能力
 - ➤ Gather-BMM: 内存复制收集LoRA权重,之后实现批处理矩阵乘法
 - 大量的内存读写操作,并且会出现重复读写

- □ 不同Rank的时延特征 TestBoard #1
 - ➤ LoRA Rank设定为 8, 16, 32, 64
 - 存在权重共享时,时延几乎相同

- □ 模型大小和序列长度影响 TestBoard #1
 - ▶ 模型参数量与序列长度分别为[7B, 13B]; [512, 2048]
 - 不同请求分布的延迟差异小
 - 序列长度短时, 批处理效果更好, 模型参数量大小影响小

- Punica性能 TestBoard #1
 - ➤ 与Baselines对比,模型参数量为[7B, 13B]
 - ➤ 生成1000个请求,约101k个token
 - Punica在多LoRA中总是达到最佳性能

- □ Punica性能 TestBoard #2
 - ➤ 与vLLM对比,模型参数量为70B
 - Punica在多LoRA中总是达到最佳性能

- □工作负载变化 TestBoard #2
 - ➤ 模型参数量为7B
 - LoRA模型请求分布为Skewed

Conclusion

- □ Punica设计了一种新的CUDA内核 SGMV,对不同LoRA模型进行批处理
- □ 分离预训练模型与LoRA模型,减少内存占用,实现多LoRA模型载入
- □ 利用调度器整合GPU负载,提升单一GPU占用率,减少GPU占用数
- □ 实现了12倍不同LoRA模型服务吞吐量,每token仅增加2ms延迟(7%)

Thinking

- □ 能否泛化?
 - ▶ 个人用户(设备内存小)使用不同特化LoRA模型解决多维任务的能力 提高了!不必考虑LoRA求和的问题了!
 - 比如我有十个实现特别任务的LoRA模型都基于同一个预训练模型, 那么我只需要加载预训练模型和按需加载这十个LoRA模型即可
 - 单个LoRA模型相较于预训练模型内存消耗 < 1%,可以通过加载 LoRA模型而不去考虑通过LoRA求和的方式将多个特化模型组合

Q&A