ICSPIS 2021

Perceptually-Optimized Loss Function for Image Super-Resolution

Amirhossein Arezoomand ¹ Pooryaa Cheraaqee ¹ Azadeh Mansouri ¹

¹Department of Electrical and Computer Engineering, Kharazmi University

December 29, 2021

Outline

- Problem Definition
 - Image Super-Resolution
 - Loss Function

Outline

- Problem Definition
 - Image Super-Resolution
 - Loss Function
- 2 Previous Attempts

Outline

- Problem Definition
 - Image Super-Resolution
 - Loss Function
- 2 Previous Attempts
- The Taken Approach

• increasing the dimension

- increasing the dimension
 - $\bullet \ \ \mathsf{input} \ (X_{M \times N}) \xrightarrow{\mathsf{upsampling} \ \mathsf{by} \ \mathsf{a} \ \mathsf{factor} \ \mathsf{of} \ 2 \ (\mathsf{i.e.} \ \ 2 \uparrow)} \mathsf{output} \ (Y_{2M \times 2N})$

- increasing the dimension
 - input $(X_{M \times N})$ $\xrightarrow{\text{upsampling by a factor of 2 (i.e. 2}\uparrow)}$ output $(Y_{2M \times 2N})$
 - BiLinear, BiCubic, etc.

increasing the dimension

• !! Preserving the quality !!

• increasing the dimension

• !! Preserving the quality !!

Input patch

Super-Resolver CNNs

ultimate result that an ideal-imaginary network could have achieved)

- Super-Resolver CNNs
- The Loss Function

- Super-Resolver CNNs
- The Loss Function
 X → Network's input

- Super-Resolver CNNs
- The Loss Function

 - $X o \mathsf{Network's}$ input $\hat{Y} o \mathsf{Network's}$ output

- Super-Resolver CNNs
- The Loss Function
 - $X \rightarrow \text{Network's input}$
 - $\hat{Y} \rightarrow \mathsf{Network's}$ output
 - $Y \rightarrow$ The correct answer

- Super-Resolver CNNs
- The Loss Function
 - $X \rightarrow \text{Network's input}$
 - $\hat{Y} \rightarrow \mathsf{Network's}$ output
 - $Y \rightarrow$ The correct answer
 - $W \rightarrow \mathsf{Current}$ network's weight

- Super-Resolver CNNs
- The Loss Function
 - $X \rightarrow \text{Network's input}$
 - $\hat{Y} \rightarrow \mathsf{Network's}$ output
 - $Y \rightarrow \mathsf{The}\ \mathsf{correct}\ \mathsf{answer}$
 - $W \rightarrow Current network's weight$
 - Y = F(X, W)

- Super-Resolver CNNs
- The Loss Function

 $X \rightarrow \text{Network's input}$

 $\hat{Y} \rightarrow \mathsf{Network's}$ output

 $Y \rightarrow \text{The correct answer}$

 $W \rightarrow \mathsf{Current}$ network's weight

Y = F(X, W)

The amount of update that must be applied to W (i.e. ΔW) = $E(Y, \hat{Y})$; where $E \in [0, 1]$

- Super-Resolver CNNs
- The Loss Function
 - $X \rightarrow \text{Network's input}$
 - $\hat{Y} \rightarrow \mathsf{Network's}$ output
 - $Y \rightarrow \mathsf{The}\ \mathsf{correct}\ \mathsf{answer}$
 - $W \rightarrow \mathsf{Current}$ network's weight
 - Y = F(X, W)

The amount of update that must be applied to W (i.e. ΔW) = $E(Y, \hat{Y})$; where $E \in [0, 1]$

The updated network's weights $(i.e.W') = W + \Delta W$

- Super-Resolver CNNs
- The Loss Function How to define $E(Y, \hat{Y})$?

Visible Error

Visible Error

$$E(Y, \hat{Y}) = \frac{1}{M \times N} \sum_{i=1}^{M} \sum_{j=1}^{N} (Y(i, j) - \hat{Y}(i, j))^{2}$$

Visible Error

$$E(Y, \hat{Y}) = \frac{1}{M \times N} \sum_{i=1}^{M} \sum_{j=1}^{N} (Y(i, j) - \hat{Y}(i, j))^{2}$$

Quality Metrics

Visible Error

$$E(Y, \hat{Y}) = \frac{1}{M \times N} \sum_{i=1}^{M} \sum_{j=1}^{N} (Y(i, j) - \hat{Y}(i, j))^{2}$$

• Quality Metrics $E(Y, \hat{Y}) = SSIM(Y, \hat{Y})$

Visible Error

$$E(Y, \hat{Y}) = \frac{1}{M \times N} \sum_{i=1}^{M} \sum_{j=1}^{N} (Y(i, j) - \hat{Y}(i, j))^{2}$$

 Quality Metrics $E(Y, \hat{Y}) = SSIM(Y, \hat{Y})$

(a) MSE=0, SSIM=1

(b) MSE=309, SSIM=0.576

(c) MSE=308, SSIM=0.641 (d) MSE=309, SSIM=0.580

(e) MSE=871, SSIM=0.404

DCT

- DCT
 - Expressive

- DCT
 - Expressive

- DCT
 - Expressive

- DCT
 - Expressive
 - Fast!

- DCT
 - Expressive
 - Fast!
- Further Purification