ME232: Dynamics

Vibration

Anshul Faye
afaye@iitbhilai.ac.in
Room # 106

Two degree of freedom system

Now, consider the system with two masses $(m_1 \text{ and } m_2)$ connected with springs as shown. Displacement of both the masses from the equilibrium position is measured as x_1 and x_2 . Similar to previous cases, let us first write the equation of motion for both masses as,

$$k_2(x_2 - x_1) - k_1 x_1 = m_1 \ddot{x}_1$$
 or $m_1 \ddot{x}_1 + (k_1 + k_2)x_1 - k_2 x_2 = 0$ (35)
 $-k_3 x_2 - k_2(x_2 - x_1) = m_2 \ddot{x}_2$

Equations (24) can be written in matrix form as,

$$M\ddot{x} + Kx = 0$$
, where, $M = \begin{bmatrix} m_1 & 0 \\ 0 & m_2 \end{bmatrix}$ and $K = \begin{bmatrix} k_1 + k_2 & -k_2 \\ -k_2 & k_2 + k_3 \end{bmatrix} = \begin{bmatrix} k_{11} & k_{12} \\ k_{12} & k_{22} \end{bmatrix}$

Here M is known as $mass\ matrix$ and K is known as $stiffness\ matrix$.

- These system of equations can be solved for assumed harmonic response and it can be shown that the system has two natural frequencies.
- Corresponding to each natural frequency there exists a particular type of oscillatory motion which is called mode shape of vibration. So there are two modes of vibration corresponding to two natural frequencies of the system.
- In case of forced vibration resonance occurs when the excitation frequency matches with any of the natural frequency of the system.
- With an appropriate combination of spring stiffness and masses vibration absorbers can be designed.

Equivalent spring constants

	Rod in axial deformation	$\frac{EA}{L}$
	Shaft in torsion	$\frac{GJ}{L}$
1900 1900 1900 1900 1900 1900 1900 1900	Cantilever beam with a moment at the tip	$\frac{EI}{L}$
* 40 % 6 % 6 % 6 % 6 % 6 % 6 % 6 % 6 % 6 %	Cantilever beam with a force at the tip	$\frac{3EI}{L^3}$

Equivalent spring constants

Component Sketch and Description		$k_{\rm eq}$
$ -\frac{L}{2} \rightarrow -\frac{L}{2} \rightarrow $	Pinned-pinned beam with a force at midspan	$\frac{48EI}{L^3}$
$\frac{L}{2} \rightarrow \frac{L}{2} \rightarrow $	Clamped-clamped beam with a force at midspan	$\frac{192EI}{L^3}$
$\begin{array}{c c} & & \\ \hline \\ \hline \\ \hline \\ \hline \\ \end{array}$	Pinned-pinned beam with an off-center force	$\frac{3EIL}{a^2b^2}$
$ L - \frac{L}{2} \rightarrow L - \frac{L}{2} \rightarrow $	Clamped-pinned beam with a force at midspan	$\frac{768EI}{7L^3}$

Equivalent spring constants

Modeling of continuous systems as discrete systems

Different models of automobile for vibration analysis

