

Brief overview of our exploration for the Data Mining project on bankruptcy prediction

Presented By

DARing ANAlysts

Darshan Upadhyay Ananth Mohan

Problem Statement

The goal is to develop a predictive model using different models in SAS EM to foresee a firm's financial condition and **probability of bankruptcy**, using 64 given financial metrics

Training Data	10,000 samples
Test Data	8,000 samples
Attributes	64 financial ratios and metrics, e.g., Net Profit / Total Assets, Total Liabilities / Total Assets, etc.
Response Variable	Binary classification - Class (Y): 0 (Did not bankrupt: 9,789), 1 (Bankrupt: 211)
Missing Values	No missing values in the dataset

Model Selection

Preprocessing

- Transformation
- Filtering
- Sampling
- Replacement
- Variable selection

- LASSO, and Logistic
 Regression (Forward,
 Backward, Stepwise)
- Decision Trees
- Neural Networks
- Gradient Boosting
- HP Models

----- Ensemble Models ------

Built ensemble models by merging predictions from the best individual models.

Training with 100% Data

 Decided to train our best model on the full 100% data, which performed really well on the public leaderboard

Validation ROC Index	0.909
Test ROC Index - Public	0.94303

Model

Ensemble Model comprising of:

- Gradient Boosting
- Backward Regression
- Neural Network

With selection statistic as average

Test ROC Index - Public	0.94303
Test ROC Index - Private	0.94145

ModelII

Ensemble Model comprising of:

- Gradient Boosting
- Backward Regression
- Neural Network
- HP Tree

With selection statistic as average

Test ROC Index - Public	0.94472
Test ROC Index - Private	0.94013

Key Learnings

Through this project, we were able to apply the concepts we learned in class and learned a few more things to and not to do

Overfitting

Where we ended up

0.94145

0.94303

On Friday Night

After Results

Thank You!

