Table 1: Endogenous

Variable	IAT _E X	Description
PIt	$ ilde{\pi}$	Inflation Rate
Pt	\hat{P}	Price Level
LAMt	$ ilde{\lambda}$	Real Marginal Cost
Ct	\hat{C}	Consumption
Lt	\hat{L}	Labor
Rt	\hat{R}	Interest Rate
Kt	\hat{K}	Capital
It	\hat{I}	Investment
Wt	\hat{W}	Wage
ZAt	\hat{Z}^A	Productivity
Yt	\hat{Y}	Production
ZMt	\hat{Z}^M	Monetary Policy

Table 2: Exogenous

Variable	IAT _E X	Description
epsilonA	$arepsilon_A$	productivity shock
${\tt epsilonM}$	$arepsilon_M$	monetary shock

Table 3: Parameters

Variable	Ŀ TEX	Description	
SIGMA	σ	Relative Risk Aversion	
PHI	ϕ	Labor Disutility Weight	
VARPHI	φ	Marginal Disutility of Labor Supply	
BETA	β	Intertemporal Discount Factor	
DELTA	δ	Depreciation Rate	
ALPHA	α	Output Elasticity of Capital	
PSI	ψ	Elasticity of Substitution between Intermediate Goods	
THETA	heta	Price Stickness Parameter	
gammaR	γ_R	Interest-Rate Smoothing Parameter	
${\tt gammaPI}$	γ_{π}	Interest-Rate Sensitivity to Inflation	
$\operatorname{\mathtt{gammaY}}$	γ_Y	Interest-Rate Sensitivity to Product	
${\tt rhoA}$	$ ho_A$	Autoregressive Parameter of Productivity Shock	
${\tt rhoM}$	$ ho_M$	Autoregressive Parameter of Monetary Policy Shock	
thetaC	$ heta_C$	Consumption weight in Output	
thetaI	$ heta_I$	Investment weight in Output	
${ t sigmaA}$	σ_A	Productivity-Shock Standard Error	

 $Table\ 3-Continued$

Variable	L ATEX	Description
sigmaM	σ_{M}	Monetary-Shock Standard Error

Table 4: Parameter Values

Parameter	Value	Description
σ	2.000	Relative Risk Aversion
ϕ	1.000	Labor Disutility Weight
arphi	1.500	Marginal Disutility of Labor Supply
eta	0.985	Intertemporal Discount Factor
δ	0.025	Depreciation Rate
α	0.350	Output Elasticity of Capital
ψ	8.000	Elasticity of Substitution between Intermediate Goods
heta	0.800	Price Stickness Parameter
γ_R	0.790	Interest-Rate Smoothing Parameter
γ_π	2.430	Interest-Rate Sensitivity to Inflation
γ_Y	0.160	Interest-Rate Sensitivity to Product
$ ho_A$	0.950	Autoregressive Parameter of Productivity Shock
$ ho_M$	0.900	Autoregressive Parameter of Monetary Policy Shock
$ heta_C$	0.800	Consumption weight in Output
$ heta_I$	0.200	Investment weight in Output
σ_A	0.010	Productivity-Shock Standard Error
σ_{M}	0.010	Monetary-Shock Standard Error

$$Ps = 1$$

$$PIs = 1$$

$$ZAs = 1$$

$$ZMs = 1$$

$$Rs = \frac{1}{\beta} - (1 - \delta)$$

$$LAMs = \frac{\psi - 1}{\psi}$$

$$Ws = (1 - \alpha) \left(\frac{\psi - 1}{\psi} \left(\frac{\alpha}{\frac{1}{\beta} - (1 - \delta)} \right)^{\alpha} \right)^{\frac{1}{1 - \alpha}}$$

$$Ys = \left(\frac{(1-\alpha)\left(\frac{\psi-1}{\psi}\left(\frac{\alpha}{\frac{1}{\beta}-(1-\delta)}\right)^{\alpha}\right)^{\frac{1}{1-\alpha}}}{\phi} \left(\frac{(1-\alpha)\left(\frac{\psi-1}{\psi}\left(\frac{\alpha}{\frac{1}{\beta}-(1-\delta)}\right)^{\alpha}\right)^{\frac{1}{1-\alpha}}}{(1-\alpha)\frac{\psi-1}{\psi}}\right)^{\psi} \left(\frac{\frac{1}{\beta}-(1-\delta)}{\frac{1}{\beta}-(1-\delta)-\delta\alpha\frac{\psi-1}{\psi}}\right)^{\sigma}\right)^{\frac{1}{\psi+\sigma}}$$

$$= \frac{\left(1-\alpha\right)\left(\frac{\psi-1}{\psi}\left(\frac{\alpha}{\frac{1}{\beta}-(1-\delta)}\right)^{\alpha}\right)^{\frac{1}{1-\alpha}}}{\phi} \left(\frac{\psi-1}{\psi}\left(1-\alpha\right)\left(\frac{(1-\alpha)\left(\frac{\psi-1}{\psi}\left(\frac{\alpha}{\frac{1}{\beta}-(1-\delta)}\right)^{\alpha}\right)^{\frac{1}{1-\alpha}}}{\phi}\left(\frac{(1-\alpha)\left(\frac{\psi-1}{\psi}\left(\frac{\alpha}{\frac{1}{\beta}-(1-\delta)}\right)^{\alpha}\right)^{\frac{1}{1-\alpha}}}{(1-\alpha)\left(\frac{\psi-1}{\psi}\left(\frac{\alpha}{\frac{1}{\beta}-(1-\delta)}\right)^{\alpha}\right)^{\frac{1}{1-\alpha}}}\right)^{\alpha}}\right)^{\frac{1}{1-\alpha}}}{\left(1-\alpha\right)\left(\frac{\psi-1}{\psi}\left(\frac{\alpha}{\frac{1}{\beta}-(1-\delta)}\right)^{\alpha}\right)^{\frac{1}{1-\alpha}}}\right)^{\alpha}}$$

$$Ks = \frac{\frac{\psi - 1}{\psi} \alpha \left(\frac{(1 - \alpha) \left(\frac{\psi - 1}{\psi} \left(\frac{\alpha}{\frac{1}{\beta} - (1 - \delta)} \right)^{\alpha} \right)^{\frac{1}{1 - \alpha}}}{\phi} \left(\frac{(1 - \alpha) \left(\frac{\psi - 1}{\psi} \left(\frac{\alpha}{\frac{1}{\beta} - (1 - \delta)} \right)^{\alpha} \right)^{\frac{1}{1 - \alpha}}}{(1 - \alpha) \frac{\psi - 1}{\psi}} \right)^{\psi} \left(\frac{\frac{1}{\beta} - (1 - \delta)}{\frac{1}{\beta} - (1 - \delta) - \delta \alpha \frac{\psi - 1}{\psi}} \right)^{\sigma} \right)^{\frac{1}{\psi + \sigma}}}{\frac{1}{\beta} - (1 - \delta)}$$

$$Ls = \frac{\frac{\psi - 1}{\psi} \left(1 - \alpha \right) \left(\frac{\left(1 - \alpha \right) \left(\frac{\psi - 1}{\psi} \left(\frac{\alpha}{\frac{1}{\beta} - (1 - \delta)} \right)^{\alpha} \right)^{\frac{1}{1 - \alpha}}}{\phi} \left(\frac{\left(1 - \alpha \right) \left(\frac{\psi - 1}{\psi} \left(\frac{\alpha}{\frac{1}{\beta} - (1 - \delta)} \right)^{\alpha} \right)^{\frac{1}{1 - \alpha}}}{\left(1 - \alpha \right) \frac{\psi - 1}{\psi}} \right)^{\psi} \left(\frac{\frac{1}{\beta} - (1 - \delta)}{\frac{1}{\beta} - (1 - \delta) - \delta \alpha \frac{\psi - 1}{\psi}} \right)^{\sigma} \right)^{\frac{1}{\psi + \sigma}}$$

$$\left(1 - \alpha \right) \left(\frac{\psi - 1}{\psi} \left(\frac{\alpha}{\frac{1}{\beta} - (1 - \delta)} \right)^{\alpha} \right)^{\frac{1}{1 - \alpha}}$$

$$Is = \delta \frac{\frac{\psi - 1}{\psi} \alpha \left(\frac{(1 - \alpha) \left(\frac{\psi - 1}{\psi} \left(\frac{\alpha}{\frac{1}{\beta} - (1 - \delta)} \right)^{\alpha} \right)^{\frac{1}{1 - \alpha}}}{\phi} \left(\frac{(1 - \alpha) \left(\frac{\psi - 1}{\psi} \left(\frac{\alpha}{\frac{1}{\beta} - (1 - \delta)} \right)^{\alpha} \right)^{\frac{1}{1 - \alpha}}}{(1 - \alpha) \frac{\psi - 1}{\psi}} \right)^{\psi} \left(\frac{\frac{1}{\beta} - (1 - \delta)}{\frac{1}{\beta} - (1 - \delta) - \delta \alpha \frac{\psi - 1}{\psi}} \right)^{\sigma} \right)^{\frac{1}{\psi + \sigma}}$$

$$Is = \delta \frac{1}{\beta} - (1 - \delta)$$

$$RHO = \frac{1}{1 + \frac{1}{\beta} - (1 - \delta)}$$

$$\tilde{\pi}_t = \hat{P}_t - \hat{P}_{t-1} \tag{1}$$

$$\tilde{\pi}_{t} = \tilde{\pi}_{t+1} \frac{1}{1 + \frac{1}{\beta} - (1 - \delta)} + \frac{\tilde{\lambda}_{t} (1 - \theta) \left(1 - \theta \frac{1}{1 + \frac{1}{\beta} - (1 - \delta)}\right)}{\theta}$$
(2)

$$\varphi \,\hat{L}_t + \sigma \,\hat{C}_t = \hat{W}_t - \hat{P}_t \tag{3}$$

$$\hat{C}_{t+1} - \hat{C}_t = \frac{\left(\frac{1}{\beta} - (1 - \delta)\right) \beta \left(\hat{R}_{t+1} - \hat{P}_{t+1}\right)}{\sigma}$$
(4)

$$\hat{K}_t = (1 - \delta) \hat{K}_{t-1} + \delta \hat{I}_t \tag{5}$$

$$\tilde{\lambda}_t = \alpha \,\hat{R}_t + (1 - \alpha) \,\hat{W}_t - \hat{Z}_t^A - \hat{P}_t \tag{6}$$

$$\hat{Y}_t = \hat{Z}_t^A + \alpha \, \hat{K}_{t-1} + (1 - \alpha) \, \hat{L}_t \tag{7}$$

$$\hat{K}_{t-1} - \hat{L}_t = \hat{W}_t - \hat{R}_t \tag{8}$$

$$\hat{Y}_t = \hat{C}_t \,\theta_C + \hat{I}_t \,\theta_I \tag{9}$$

$$\hat{R}_t = \gamma_R \,\hat{R}_{t-1} + (1 - \gamma_R) \,\left(\tilde{\pi}_t \,\gamma_\pi + \hat{Y}_t \,\gamma_Y\right) + \hat{Z}_t^M \tag{10}$$

$$\hat{Z}_t^A = \rho_A \, \hat{Z}_{t-1}^A + \varepsilon_{At} \tag{11}$$

$$\hat{Z}_t^M = \rho_M \, \hat{Z}_{t-1}^M + \varepsilon_{Mt} \tag{12}$$

$$Ps = 1$$

$$PIs = 1$$

$$ZAs = 1$$

$$ZMs = 1$$

$$Rs = Ps\left(\frac{1}{\beta} - (1 - \delta)\right)$$

$$LAMs = \frac{Ps \ (\psi - 1)}{\psi}$$

$$Ws = (1 - \alpha) \left(LAMs \, ZAs \, \left(\frac{\alpha}{Rs} \right)^{\alpha} \right)^{\frac{1}{1 - \alpha}}$$

$$Ys = \left(\frac{Ws}{Ps\,\phi} \, \left(\frac{Ws}{(1-\alpha)\,\,LAMs}\right)^{\psi} \, \left(\frac{Rs}{Rs - LAMs\,\delta\,\alpha}\right)^{\sigma}\right)^{\frac{1}{\psi+\sigma}}$$

$$Cs = \left(\frac{Ws}{Ps\,\phi} \, \left(\frac{LAMs\,(1-\alpha)\,Ys}{Ws}\right)^{(-\psi)}\right)^{\frac{1}{\sigma}}$$

$$Ks = \frac{LAMs \, \alpha \, Ys}{Rs}$$

$$Ls = \frac{LAMs \ (1 - \alpha) \ Ys}{Ws}$$

$$Is = \delta Ks$$

$$RHO = \frac{1}{1 + Rs}$$

$$\tilde{\pi}_t = \hat{P}_t - \hat{P}_{t-1} \tag{13}$$

$$\tilde{\pi}_t = RHO\,\tilde{\pi}_{t+1} + \frac{\tilde{\lambda}_t\,(1-\theta)\,(1-RHO\,\theta)}{\theta} \tag{14}$$

$$\varphi \,\hat{L}_t + \sigma \,\hat{C}_t = \hat{W}_t - \hat{P}_t \tag{15}$$

$$\hat{C}_{t+1} - \hat{C}_t = \frac{Rs \,\beta \, \left(\hat{R}_{t+1} - \hat{P}_{t+1}\right)}{Ps \,\sigma} \tag{16}$$

$$\hat{K}_{t} = (1 - \delta) \ \hat{K}_{t-1} + \delta \ \hat{I}_{t} \tag{17}$$

$$\tilde{\lambda}_t = \alpha \,\hat{R}_t + (1 - \alpha) \,\hat{W}_t - \hat{Z}_t^A - \hat{P}_t \tag{18}$$

$$\hat{Y}_t = \hat{Z}_t^A + \alpha \, \hat{K}_{t-1} + (1 - \alpha) \, \hat{L}_t \tag{19}$$

$$\hat{K}_{t-1} - \hat{L}_t = \hat{W}_t - \hat{R}_t \tag{20}$$

$$\hat{Y}_t = \hat{C}_t \,\theta_C + \hat{I}_t \,\theta_I \tag{21}$$

$$\hat{R}_t = \gamma_R \,\hat{R}_{t-1} + (1 - \gamma_R) \,\left(\tilde{\pi}_t \,\gamma_\pi + \hat{Y}_t \,\gamma_Y\right) + \hat{Z}_t^M \tag{22}$$

$$\hat{Z}_t^A = \rho_A \, \hat{Z}_{t-1}^A + \varepsilon_{At} \tag{23}$$

$$\hat{Z}_t^M = \rho_M \, \hat{Z}_{t-1}^M + \varepsilon_{Mt} \tag{24}$$

$$Ps = 1$$

$$PIs = 1$$

$$ZAs = 1$$

$$ZMs = 1$$

$$Rs = \frac{1}{\beta} - (1 - \delta)$$

$$LAMs = \frac{\psi - 1}{\psi}$$

$$Ws = (1 - \alpha) \left(\frac{\psi - 1}{\psi} \left(\frac{\alpha}{\frac{1}{\beta} - (1 - \delta)} \right)^{\alpha} \right)^{\frac{1}{1 - \alpha}}$$

$$Ys = \left(\frac{(1-\alpha)\left(\frac{\psi-1}{\psi}\left(\frac{\alpha}{\frac{1}{\beta}-(1-\delta)}\right)^{\alpha}\right)^{\frac{1}{1-\alpha}}}{\phi} \left(\frac{(1-\alpha)\left(\frac{\psi-1}{\psi}\left(\frac{\alpha}{\frac{1}{\beta}-(1-\delta)}\right)^{\alpha}\right)^{\frac{1}{1-\alpha}}}{\frac{\psi-1}{\psi}\left(1-\alpha\right)}\right)^{\psi} \left(\frac{\frac{1}{\beta}-(1-\delta)}{\frac{1}{\beta}-(1-\delta)-\frac{\psi-1}{\psi}\delta\alpha}\right)^{\sigma}\right)^{\frac{1}{\psi+\sigma}}$$

$$\frac{\left(1-\alpha\right)\left(\frac{\psi-1}{\psi}\left(\frac{\alpha}{\frac{1}{\beta}-(1-\delta)}\right)^{\alpha}\right)^{\frac{1}{1-\alpha}}}{\phi} = \frac{\left(\frac{\psi-1}{\psi}\left(1-\alpha\right)\left(\frac{(1-\alpha)\left(\frac{\psi-1}{\psi}\left(\frac{\alpha}{\frac{1}{\beta}-(1-\delta)}\right)^{\alpha}\right)^{\frac{1}{1-\alpha}}}{\phi}\left(\frac{(1-\alpha)\left(\frac{\psi-1}{\psi}\left(\frac{\alpha}{\frac{1}{\beta}-(1-\delta)}\right)^{\alpha}\right)^{\frac{1}{1-\alpha}}}{\frac{\psi-1}{\psi}\left(1-\alpha\right)}\right)^{\alpha}}{\left(1-\alpha\right)\left(\frac{\psi-1}{\psi}\left(\frac{\alpha}{\frac{1}{\beta}-(1-\delta)}\right)^{\alpha}\right)^{\frac{1}{1-\alpha}}}\right)^{\alpha}}\right)^{\alpha} + \frac{\left(1-\alpha\right)\left(\frac{\psi-1}{\psi}\left(\frac{\alpha}{\frac{1}{\beta}-(1-\delta)}\right)^{\alpha}\right)^{\frac{1}{1-\alpha}}}{\phi}}{\left(1-\alpha\right)\left(\frac{\psi-1}{\psi}\left(\frac{\alpha}{\frac{1}{\beta}-(1-\delta)}\right)^{\alpha}\right)^{\frac{1}{1-\alpha}}}\right)^{\alpha}}$$

$$Ks = \frac{\frac{\psi - 1}{\psi} \alpha \left(\frac{(1 - \alpha) \left(\frac{\psi - 1}{\psi} \left(\frac{\alpha}{\frac{1}{\beta} - (1 - \delta)} \right)^{\alpha} \right)^{\frac{1}{1 - \alpha}}}{\phi} \left(\frac{(1 - \alpha) \left(\frac{\psi - 1}{\psi} \left(\frac{\alpha}{\frac{1}{\beta} - (1 - \delta)} \right)^{\alpha} \right)^{\frac{1}{1 - \alpha}}}{\frac{\psi - 1}{\psi} (1 - \alpha)} \right)^{\psi} \left(\frac{\frac{1}{\beta} - (1 - \delta)}{\frac{1}{\beta} - (1 - \delta) - \frac{\psi - 1}{\psi} \delta \alpha} \right)^{\sigma} \right)^{\frac{1}{\psi + \sigma}}$$

$$Ls = \frac{\frac{\psi - 1}{\psi} \left(1 - \alpha \right) \left(\frac{\left(1 - \alpha \right) \left(\frac{\psi - 1}{\psi} \left(\frac{\alpha}{\frac{1}{\beta} - (1 - \delta)} \right)^{\alpha} \right)^{\frac{1}{1 - \alpha}}}{\phi} \left(\frac{\left(1 - \alpha \right) \left(\frac{\psi - 1}{\psi} \left(\frac{\alpha}{\frac{1}{\beta} - (1 - \delta)} \right)^{\alpha} \right)^{\frac{1}{1 - \alpha}}}{\frac{\psi - 1}{\psi} \left(1 - \alpha \right)} \right)^{\psi} \left(\frac{\frac{1}{\beta} - (1 - \delta)}{\frac{1}{\beta} - (1 - \delta) - \frac{\psi - 1}{\psi} \delta \alpha} \right)^{\sigma} \right)^{\frac{1}{\psi + \sigma}}$$

$$\left(1 - \alpha \right) \left(\frac{\psi - 1}{\psi} \left(\frac{\alpha}{\frac{1}{\beta} - (1 - \delta)} \right)^{\alpha} \right)^{\frac{1}{1 - \alpha}}$$

$$Is = \delta \frac{\frac{\psi - 1}{\psi} \alpha \left(\frac{(1 - \alpha) \left(\frac{\psi - 1}{\psi} \left(\frac{\alpha}{\frac{1}{\beta} - (1 - \delta)} \right)^{\alpha} \right)^{\frac{1}{1 - \alpha}}}{\phi} \left(\frac{(1 - \alpha) \left(\frac{\psi - 1}{\psi} \left(\frac{\alpha}{\frac{1}{\beta} - (1 - \delta)} \right)^{\alpha} \right)^{\frac{1}{1 - \alpha}}}{\frac{\psi - 1}{\psi} (1 - \alpha)} \right)^{\psi} \left(\frac{\frac{1}{\beta} - (1 - \delta)}{\frac{1}{\beta} - (1 - \delta) - \frac{\psi - 1}{\psi} \delta \alpha} \right)^{\sigma} \right)^{\frac{1}{\psi + \sigma}}$$

$$Is = \delta$$

$$RHO = \frac{1}{1 + \frac{1}{\beta} - (1 - \delta)}$$

$$\tilde{\sigma} = 0 \tag{25}$$

$$\tilde{\pi} = 0 \tag{25}$$

$$\tilde{\pi} = \frac{1}{1 + \frac{1}{\beta} - (1 - \delta)} \tilde{\pi} + \frac{\tilde{\lambda} \left(1 - \theta\right) \left(1 - \frac{1}{1 + \frac{1}{\beta} - (1 - \delta)} \theta\right)}{\theta}$$

$$(26)$$

$$\varphi \,\hat{L} + \sigma \,\hat{C} = \hat{W} - \hat{P} \tag{27}$$

$$0 = \frac{\left(\frac{1}{\beta} - (1 - \delta)\right) \beta \left(\hat{R} - \hat{P}\right)}{\sigma} \tag{28}$$

$$\hat{K} = (1 - \delta) \hat{K} + \delta \hat{I} \tag{29}$$

$$\tilde{\lambda} = \alpha \,\hat{R} + (1 - \alpha) \,\hat{W} - \hat{Z}^A - \hat{P} \tag{30}$$

$$\hat{Y} = \hat{Z}^A + \alpha \,\hat{K} + (1 - \alpha) \,\hat{L} \tag{31}$$

$$\hat{K} - \hat{L} = \hat{W} - \hat{R} \tag{32}$$

$$\hat{Y} = \hat{C}\,\theta_C + \hat{I}\,\theta_I \tag{33}$$

$$\hat{R} = \hat{R} \gamma_R + (1 - \gamma_R) \left(\tilde{\pi} \gamma_\pi + \hat{Y} \gamma_Y \right) + \hat{Z}^M$$
(34)

$$\hat{Z}^A = \hat{Z}^A \, \rho_A + \varepsilon_A \tag{35}$$

$$\hat{Z}^M = \hat{Z}^M \, \rho_M + \varepsilon_M \tag{36}$$

$$\tilde{\pi} = 0 \tag{37}$$

$$\hat{P} = 0 \tag{38}$$

$$\tilde{\lambda} = 0 \tag{39}$$

$$\hat{C} = 0 \tag{40}$$

$$\hat{L} = 0 \tag{41}$$

$$\hat{R} = 0 \tag{42}$$

$$\hat{K} = 0 \tag{43}$$

$$\hat{I} = 0 \tag{44}$$

$$\hat{W} = 0 \tag{45}$$

$$\hat{Z}^A = 0 \tag{46}$$

$$\hat{Y} = 0 \tag{47}$$

$$\hat{Z}^M = 0 \tag{48}$$