

Review: Types of machine learning problems

Review: Types of machine learning problems

Models

Linear Regression

Logistic Regression

kNN

Decision Trees

SVM

Neural Networks

Hyperparameters

X

X ,

Parameters

y = W1X, + W2X2+W0

X

Loss or Criteria

MSE/RSS

BCE

Review: Types of machine learning problems

Models Linear Regression	Hyperparameters ×	Parameters $y = w_1 x_1 + w_2 x_2 + w_3$	Loss or Criteria MSE / RSS
Logistic Regression	× ,	z = [w. K.	BCE
kNN Decision Trees	k * * * MaxJepth ,	X	gini entropu) dussified entropu) dussified MSEIRSS - regrossion
	thtree lr.	X	
SVM	C	X	\rightarrow
Neural Networks	V	V	

Support Vector Machine

- Use hyperplane
- Use kernel
- Performs well
- Regression, Classification (binary class)

Review: Binary Classification

Yes or No problem

- Creditcard Default
- Fradulant Insurance Claim
- Spam Filtering
- Medical Diagnosis
- Survival Prediction
- Customer Retention
- Image Recognition
- Sentiment analysis

Review: Logistic Function

$$P^{(i)} = \sigma(z^{(i)})$$

$$\sigma(z) = \frac{1}{1 + e^{-z}}$$

$$z^{(i)} = \boldsymbol{W} \cdot \boldsymbol{X} + b$$

$$P^{(i)} \in \mathbb{R}[0,1]$$

Called "logit" and is related to the decision boundary

Review: Logistic Regression Decision Boundary

$$z = 0.443 \times 1 + 2.76 \times 2 - 7.57 = 0$$

Hyperplane as a Decision Boundary

We can separate the two classes using a hyper plane!

This hyperplane is called "separating hyperplane"

Hyperplane as a Decision Boundary

But which hyperplane should we choose?

Maximum margin classifier

Which hyperplane should we choose?

The one with the least likely to misclassify the test data

= The one with the biggest margin

Maximum margin classifier

Support

Margin

Quiz

What happens to the separating hyperplane when adding new train data points?

Drawback of the hard margin

What happens to the separating hyperplane?

The impossible case...

Can you separate this with a hyperplane?