Table 1.8. Commonly-observed lines from molecular clouds

Molecule	Transition	Frequency ν : GHz	Wavelength λ : mm	$E_{ m upper}/k_B \ { m K}$	a Typical $_{ m cm}^{-3}$
H_2	v=1-0, S(1)	$140\mathrm{THz}$	$2.128\mu\mathrm{m}$		
H_2 ortho	v=0-0, S(0)	$11\mathrm{THz}$	$28.2\mu\mathrm{m}$	510	
	v=0-0, S(2)	$24\mathrm{THz}$	$12.3\mu\mathrm{m}$	1682	
H_2 para	v=0-0, S(1)	$18\mathrm{THz}$	$17.1\mathrm{\mu m}$	1015	
CO	$J=1 \rightarrow 0$	115.3	2.6	5.5	~ 100
	$J=2 \rightarrow 1$	230.5	1.3	17	~ 1000
	$J=3 \rightarrow 2$	345.8	0.87	34	$10^3 - 10^4$
CS	$J=1 \rightarrow 0$	49	6.1	2.4	> 5000
	$J = 5 \rightarrow 4$	244	1.2	35	10^{6}
SiO	$J=2 \rightarrow 1$	86.8	3.5	6.3	$^c\mathrm{shocks}$
	$J = 5 \rightarrow 4$	217.1	1.4	31.3	$^c\mathrm{shocks}$
	$J=8 \rightarrow 7$	347.3	0.86	75	$^c\mathrm{shocks}$
HCO^{+}	$J=1 \rightarrow 0$	89	3.4	4.3	> 3000
	$J=3 \rightarrow 2$	268	1.1	26	> 30000
HCN	$J=1 \rightarrow 0$	89	3.4	4.3	> 10000
	$J=3 \rightarrow 2$	266	1.1	26	$> 10^5$
HNC	$J=1 \rightarrow 0$	91	3.3	4.3	> 10000
	$J=3 \rightarrow 2$	272	1.1	26	$> 10^5$
NH_3 para	(J, K) = (1, 1) - (1, 1)	23.69	12.7	23	2×10^3
	(J,K) = (2,2) - (2,2)	23.72	12.6	64	2×10^3
NH_3 ortho	(J, K) = (3, 3) - (3, 3)	23.87	12.6	122	
${\rm H_2CO}$ ortho	$2_{12} \rightarrow 1_{11}$	140.8	2.1	21.9	10^{5}
	$3_{12} \rightarrow 2_{11}$	225.7	1.3	33.5	5×10^5
	$5_{33} \rightarrow 4_{32}$	364.3	0.82	158.4	10^{6}
H_2CO para	$2_{02} \to 1_{01}$	145.6	2.1	10.5	2×10^5
	$3_{22} \rightarrow 2_{21}$	218.5	1.4	68.1	2×10^5
	$5_{23} \rightarrow 4_{22}$	365.4	0.82	99.7	2×10^6
$^b\mathrm{OH}$	$^{2}\Pi_{3/2}, J = 3/2$	1.7	176	0.1	$10^4 - 10^6$
${}^{b}\mathrm{H}_{2}\mathrm{O}$ ortho	$6_{16} \rightarrow 5_{23}$	22.2	13.5	640	$10^7 - 10^9$

 $[\]overline{a}$ This density depends on cloud size, temperature, radiation field, etc.

 $[^]b$ This line is often seen as a maser.

This line is often seen as a maser. c This line indicates that shocks at speeds of $10 - 40 \,\mathrm{km \, s^{-1}}$ have disrupted dust grains.