STA 529 2.0 Data Mining

Dr Thiyanga S. Talagala

June 4, 2022

Lecture 1

What is Data Mining?

- Process of discovering interesting patterns of knowledge from huge amounts of data.
- KDD: Knowledge Discovery from Data/ Knowledge
 Discovery from Data Mining
- Process: Automatic or Semi-automatic
- Interesting patterns: Valid, Novel, Useful, Understandable

What do we mean by interesting patterns?

Example

- Retailers collect data about customer purchases at the checkout counters
- Customer purchasing patterns: Identify which items are frequently sold together?
- Products that are likely to be purchased together.

Why it is useful?

- Can make a purchase suggestion to their customers
- Gives an idea that how we can arrange items in a store to as a strategy for boosting sales.

Characteristics of Big Data: 5 V's of Big Data

- 1. Volume: size
- 2. Velocity: how quickly data is generated?
- 3. Variety: diversity
- 4. Veracity: quality of data
- 5. Value: how useful?

What motivates the development of data mining field?

- Scalability
- High dimensionality
- Heterogeneous and complex data
- Data ownership and distribution

Scalability: Example

Scalability: Example (cont.)

Scalability: Example (cont.)

Data Mining Tasks

- 1. **Predictive tasks:** Predict the value of a particular attribute based on the values of other attributes
- 2. **Descriptive tasks:** Find human-interpretable patterns that describe data

Data

Variables: Characteristic of an object

Features, Attributes, Dimension, Field

Object: Collection of attributes describe an object

Entity, Instance, Event case, Record, Observation

Question

5

	Sepal.Length	Sepal.Width	Petal.Length	Petal.Width	Spe
1	5.1	3.5	1.4	0.2	Se
2	4.9	3.0	1.4	0.2	se
3	4.7	3.2	1.3	0.2	se
4	4.6	3.1	1.5	0.2	Se

1.4

3.6

5.0

0.2

Data Quality

- 1. Range: How narrow or wide of the scope of these data?
- 2. Relevancy: Is the data relevant to the problem?
- 3. Recency: How recent the data is generated?
- 4. Robustness: Signal to noise ratio
- 5. Reliability: How accurate?

The Data Mining Process

The CRISP Data Mining Process

Applications

- 1. Web mining: recommendation systems
- 2. Screening images: Early warning of ecological disasters
- 3. Marketing and sales
- 4. Diagnosis
- 5. Load forecasting
- 6. Decision involving judgement

Many more...

Machine Learning Algorithms

- Supervised learning algorithms
 Deals with labelled dataset
- 2. Unsupervised learning algorithm Deals with labelled dataset

Evaluating Predicting Performance

- 1. Training set
- 2. Validation set
- 3. Test set

Hyperparameters

- Parameter whose value is used to control the learning process
- These values are set before training the model

Hyperparameters - Example

Decision trees levels

Supervised learning algorithms

Outcome could be

- Numeric
- Categorical
- Probability

Loss function

Function that calculates loss for a single data point

$$e_i = y - \hat{y}$$
$$e_i^2 = (y - \hat{y})^2$$

Cost function

Calculates loss for the entire data sets

$$ME = \frac{1}{n} \sum_{i=1}^{n} e_i$$

Numeric outcome: Evaluations

Prediction accuracy measures (cost functions)

Mean Error

$$ME = \frac{1}{n} \sum_{i=1}^{n} e_i$$

 Error can be both negative and positive. So they can cancel each other during the summation.

Mean Absolute Error (L1 loss)

$$MAE = \frac{1}{n} \sum_{i=1}^{n} |e_i|$$

Mean Squared Error (L2 loss)

$$MSE = \frac{1}{n} \sum_{i=1}^{n} e_i^2$$

Mean Percentage Error

$$MPE = \frac{1}{n} \sum_{i=1}^{n} \frac{e_i}{y_i}$$

Mean Absolute Percentage Error

$$MAPE = \frac{1}{n} \sum_{i=1}^{n} \left| \frac{e_i}{y_i} \right|$$

Accuracy Measures on Training Set vs Test Set

Accuracy measure on training set: Tells about the model fit Accuracy measure on test set: Model ability to predict new data

Example

Root Mean Squared Error

$$RMSE = \sqrt{\frac{1}{n} \sum_{i=1}^{n} e_i^2}$$

Visualizaion of error distribution

Graphical representations reveal more than metrics alone.

Evaluate Classifier Against Benchmark

Naive approach: approach relies soley on Y

Outcome: Numeric

Naive Benchmark: Average (\bar{Y})

A good prediction model should outperform the benchmark criterion in terms of predictive accuracy.

Outcome: Categorical

Can you give an example for a Naive rule?

Accuracy evaluation: Categorical

Confusion matrix/ Classification matrix

	Actual		
		Yes	No
Predicted	Yes	а	С
Fredicted	No	b	d

$$error = \frac{c+b}{n}$$

$$accuracy = \frac{a+d}{n}$$

Performance in Case of Unequal Importance of Classes

Suppose the most important class is "Yes"

sensitivity =
$$\frac{a}{a+b}$$

specificity =
$$\frac{d}{c+d}$$

False Discovery Rate =
$$\frac{b}{a+b}$$

False Omission Rate =
$$\frac{c}{c+d}$$

Your turn

What is ROC curve?

Accuracy measures for class imbalance datasets?