Advances in Sequence Knowledge Distillation

(with Yoon Kim, Demi Guo, Sam Shleifer, and Victor Sanh)

(State of AI, 2020)

Edge Devices are Compute and Energy Limited

Research: Sustainability on the Edge

• Edge models that are fast and energy efficient

Hardware co-design to run NLP systems

Many Options for NLP Compression

(See et al, 2016)

- Weight Pruning
- Quantization
- Early exit
- Layer drop
- Adapters
- Knowledge Distillation
- ...

Knowledge Distillation is Particularly Appealing

Train small *student* to match larger *teacher*

No constraints on final model structure

Orthogonal to sparsity / quantization details

Can ship directly to edge devices

Topic: Sequence Knowledge Distillation

- Sequence Knowledge Distillation (SeqKD)
- High-level: Learn student model by regenerating training data
- Effective compression for text generation e.g. MT, Summarization, NLG, ...

Talk Overview

- Background: Knowledge Distillation
- Sequence KD: Challenges and Core Method
- Methodological Advances
- Applications Beyond Compression
- Research Suggestions

Background: Knowledge Distillation

Terminology: Knowledge Distillation

(Hinton et al, 2014)

- Conditional Classification: Three classes (a, b, c)
 - \circ Data points x,y
 - \circ One-hot representation δ_y

- Two models: teacher and student (typically "smaller")
 - \circ Teacher predictions $\mathbf{p}_{\theta} = p(y \mid x ; \theta)$
 - \circ Student predictions $\mathbf{p}_{\sigma} = p(y \mid x ; \sigma)$

Warmup: Standard MLE Training

$$\arg\min_{\sigma} \sum_{x,y} \mathrm{KL}(\delta_y \mid\mid \mathbf{p}_{\sigma})$$

Warmup: Standard MLE with Label Smoothing

$$\arg\min_{\sigma} \sum_{x,y} \mathrm{KL}(\lambda \delta_y + (1-\lambda)\mathbf{u} \mid\mid \mathbf{p}_{\sigma})$$

(Hinton et al, 2014)

$$\arg\min_{\sigma} \sum_{x} \mathrm{KL}(\mathbf{p}_{\theta} \mid\mid \mathbf{p}_{\sigma})$$

Knowledge Distillation + Soft Interpolation

$$\arg\min_{\sigma} \sum_{x,y} KL(\lambda \delta_y + (1-\lambda)\mathbf{p}_{\theta} \parallel \mathbf{p}_{\sigma})$$

Knowledge Distillation in NLP

KD is a strong technique for classification benchmarks

- Many successful approaches for distilling BERT
 - o DistilBERT, TinyBERT, MobileBERT, ...

Additional techniques for transferring parameters and pre-distilling

Sequence KD:

Challenges and Core Method

Distillation for Generation

Sequence generation tasks are different from classification

Little success with KD at the token level

Challenge: Sequential consistency with Teacher

Standard MLE Training with Autoregressive Model

$$\arg\min_{\sigma} \sum_{x,y} \mathrm{KL}(\delta_y \mid\mid \mathbf{p}_{\sigma})$$

$$\arg\min_{\sigma} \sum_{x} \sum_{i} KL(\delta_{y}^{(i)} \parallel \mathbf{p}_{\sigma}^{(i)})$$

MLE factors to local classification

Knowledge Distillation with Autoregressive Model

$$\arg\min_{\sigma} \sum_{x} \text{KL}(\mathbf{p}_{\theta} \parallel \mathbf{p}_{\sigma})$$

$$\arg\min_{\sigma} \sum_{x,y} \sum_{i} \text{KL}(\mathbf{p}_{\theta}^{(i)} \parallel \mathbf{p}_{\sigma}^{(i)})$$

KD does not factors to local KD

Can we hope to compute this KL?

$$\operatorname{arg\,min}_{\sigma} \sum_{r} \operatorname{KL}(\mathbf{p}_{\theta} \parallel \mathbf{p}_{\sigma})$$

Sum over sequences in a global model

Exponential number of vertices ->

Could approximate under assumption on teacher (see Struct Pred workshop)

Sequence Knowledge Distillation

$$\arg\min_{\sigma} \sum_{x} \mathrm{KL}(\mathbf{p}_{\theta}^{*} \mid\mid \mathbf{p}_{\sigma})$$

Sequence-Level Knowledge Distillation

Sequence Knowledge Distillation + Interpolation

$$\arg\min_{\sigma} \sum_{x,y} \mathrm{KL}((\lambda \delta_y + (1-\lambda)\mathbf{p}_{\theta})^* \mid\mid \mathbf{p}_{\sigma})$$

Sequence Knowledge Example

Original (x): Bis 15 Tage vor Anreise sind Zimmer-Annullationen kostenlos

Original (y): Room cancellation is free up to 15 days before arrival

SeqKD (p^*): Up to 15 days prior to arrival it is free

SeqInter $((y + p)^{h*})$: Up to 15 days prior to arrival <unk> is free

Does not always make it better but tends to be more direct.

Original Results

- Low absolute performance in retrospect (5 years ago)
- Relative results show >> KD, and major practical speed-ups

Ludicrously Fast Neural Machine Translation

(Kim et al, 2019)

- WNMT Efficiency Task
- Fancy SeqKD from Transformer to an fast RNN (SRU) model

SeqKD For Accuracy. MSR Asia at WMT 2019

Pipeline of noisy data augmentation techniques for increasing accuracy

 "We iterate back translation and knowledge distillation multiple times to boost the performance of the model"

Related to Born-Again Networks, repeated distillation

Why Might Distillation Improve Accuracy?

- Self-Training for Structured Prediction (McClosky et al, 2006)
 - Semi-supervised learning by training on automatically labeled data
 - Iteratively label data and retrain

- Hope and Fear Translation Training (Chiang, 2012)
 - MT training is often too hard
 - Use a model to adjust training to loss based on difficulty

Extensions and Advances

Ensemble Distillation

Goal: Learn a student with the accuracy of an ensemble

 Significant performance benefits for little inference cost

Multilingual Translation

(Tan et al, 2019)

Goal: Train a single multilingual model from many single pairs

Approach: Mimic each teacher in turn, if student is still worse

Language Pair 1

Language Pair 2

Language Pair 3

Original

Sample

(Dakwale and Monz, 2017)

Goal: Train an in-domain student model that doesn't forget how to translate

Approach: Alternate between domain fine-tuning and out-of-domain seqKD

Application: Model Stealing

Goal: Imitate a blackbox production model to make adversarial attacks

Utilizes seqKD style approaches to imitate models

Test	Model	Google	Bing	Systran		
WMT	Official	32.0	32.9	27.8		
	Imitation	31.5	32.4	27.6		
IWSLT	Official	32.0	32.7	32.0		
	Imitation	31.1	32.0	31.4		

Can we do better? Imitation Learning (Lin et al, EMNLP 2020)

- DAgger imitation distillation algorithm
- Intuition: Explores more of distribution based on student exploration

Further Edge Applications

Non-Autoregressive Translation

(Gu et al, 2018)

Autoregressive

Non-Autoregressive

Non-Autoregressive Translation

(Gu et al, 2018)

 "We see that training on the distillation corpus rather than the ground truth provides a fairly consistent improvement of around 5 BLEU points."

Still necessary in recent NAT systems (Deng and Rush, 2020)

	WMT14			WMT14		
	En-De	De-En		En-De	De-En	
	27.41	31.49		27.41	31.49	
Distillation			No			
	26.34	30.69	Distillation	21.34	26.91	Faster
	26.43	30.72		22.55	27.56	1
	26.52	30.73				
	26.80	31.22		23.09	27.79	1
	26.90	31.15		23.35	28.64	O laan
	26.92	31.23		24.40	29.43	Slower

Why does this work? Unimodality

(Zhou et al, 2020)

- Synthetic dataset where each src is paired with 3 outputs in different languages
- Hypothesis: NAT cannot fix its mode, will output words from all 3 languages
- Sequence Distillation from teacher fixes a mode of each input sentence

Application: Text-To-Speech

(Ren et al, 2019)

FastSpeech / WaveGlow - 2019

Trains a model analogous to non-autoregressive MT for generation

System	CMOS	
FastSpeech	0	
FastSpeech without 1D convolution in FFT block	-0.113	
FastSpeech without sequence-level knowledge distillation		

Table 4: CMOS comparison in the ablation studies.

Pretraining and Sequence Distillation?

(Shleifer and Rush, 2020)

Pretrained sequence models (BART, PEGASUS, ...) show impressive results

Early results show that seqKD may not be necessary c

Teacher	Size	Data	Teacher Score	Shrink		KD		SegKD	
				Score	Cost	Score	Cost	Score	Cost
BART †	12-3	XSUM	22.29	21.08	2.5	21.63	6	21.38	15
Pegasus	16-4	XSUM	24.56	22.64	13	21.92	22	23.18	34
BART	12-6	CNN	21.06	21.21	2	20.95	14	19.93	19.5
Pegasus	16-4	CNN	21.37	21.29	31	-	-	20.1	48
Marian	6-3	EN-RO	27.69	25.91	4	24.96	4	26.85	28
mBART	12-3	EN-RO	26.457	25.6083	16	25.87	24	26.09	50

Open Questions

Sequence Distillation is more than Compression

- Distillation for ensembling
- Distillation for model transfer
- Distillation for model stealing

Many other possibilities...

- Distillation for specialized architectures
- Distillation for energy use
- Distillation for more efficient pretraining?

Simplification

Results show that distillation is removing ambiguity and complexity

Is this a positive thing? Or is it just learning to exploit metrics?

How can we better measure what is being lost?

Distillation + Compression X

Results hint that distillation is partially orthogonal to other compression

However, distilled models tend to be more confident and less stable

Unclear how to tell when they are "too" compressed

Conclusions

• Sequence distillation is interesting, with many NLP specific challenges

More work to be done to decide how (and if) it works

Basic approach remains easy to do and surprisingly broad in use