Control Systems

Mathias Balling & Mads Thede

Last updated: February 7, 2024

Contents

1	Line	near Time Invariant Systems
	1.1	Time-Domain models
	1.2	
		1.2.1 State space to transfer function
		1.2.2 Transfer function to state space
		1.2.3 Discrete-time transfer function
	1.3	Examples
2		Ability and Performance Analysis Basic System Classes
	2.1	Basic System Classes
		2.1.2 Second Order Systems
		2.1.2 Second Order Systems
	2.2	Performance specifications
	2.3	Stability
	2.4	Examples

1 Linear Time Invariant Systems

Overview

1.1 Time-Domain models

Linear Map

The map $f: \mathbb{R}^n \to \mathbb{R}^m$ is said to be linear if for any $x, y \in \mathbb{R}^n$ and $\alpha \in \mathbb{R}$, the following conditions hold

$$f(x+y) = f(x) + f(y)$$
 Super position $f(ax) = \alpha f(x)$ Homogeneity

The function has to go through (0,0) in 2D for it to be linear due to homogeneity.

Time-Invariant System

Let $\sigma: \mathbb{R} \times \mathbb{R}^m \to \mathbb{R}^p$ define the input-output behavior of a system model Σ . The system Σ is time-invariant if for any input signal $u: \mathbb{R} \to \mathbb{R}^m$ and any delay $\tau \in \mathbb{R}$ the following relation holds:

$$y(t - \tau) = \sigma(t, u(t - \tau))$$

for all times $t \in \mathbb{R}$, where y denotes the output signal of the system.

The importance is that the system does not change its behavior due to time. This can be seen as a canon firing at 8am it will not fire different compared to if you do the same at 5pm.

Two types of linear time-domain models.

Continous-time state space models (based on differential equations)

$$\dot{x} = Ax + Bu$$

$$y = Cx + Du$$

- $x \in \mathbb{R}^n$ is state. e.g. position or velocity
- $u \in \mathbb{R}^m$ is input
- $y \in \mathbb{R}^p$ is output
- $A \in \mathbb{R}^{n \times n}$ is system matrix

- $B \in \mathbb{R}^{n \times m}$ is input matrix
- $C \in \mathbb{R}^{p \times n}$ is output matrix
- $D \in \mathbb{R}^{p \times m}$ is the direct feedthrough matrix

Discrete-time state space models (based on difference equations)

$$x_{k+1} = \Phi x_k + \Gamma u_k$$

$$y_k = Cx_k + Du_k$$

1.2 Frequency-Domain models

Transfer function:

$$G(s) = \frac{Q(s)}{P(s)}$$

where Q(s) and P(s) are polynomials in s.

- The roots of P(s) are called the **poles** of G(s)
- The roots of Q(s) are called the **zeros** of G(s)

1.2.1 State space to transfer function

Taking Laplace transforms of the system and assuming $x_0 = 0$:

$$\dot{x}(t) = Ax(t) + Bu(t)$$

$$y(t) = Cx(t) + Du(t)$$

yields:

$$sX(s) = AX(s) + BU(s)$$

$$Y(s) = CX(s) + DU(s)$$

Which can be rewritten as (I is the identity matrix):

$$X(s) = (sI - A)^{-1} BU(s)$$

$$Y(s) = \left(C(sI - A)^{-1}B + D\right)U(s)$$

where

$$Y(s) = G(s)U(s)$$

$$G(s) = C (sI - A)^{-1} B + D$$

1.2.2 Transfer function to state space

1.2.3 Discrete-time transfer function

Discretization from s-domain to z-domain can be done using:

- Matched z-transform
- Bilinear z-transform
- $\bullet\,$ Impulse invariance z-transform

1.3 Examples

2 Stability and Performance Analysis

2.1 Basic System Classes

2.1.1 First Order Systems

State-space representation of first order system:

$$\dot{x} = -\frac{1}{\tau}x + \frac{k}{\tau}u$$

A first-order system has one pole and is described by:

$$H(s) = \frac{k}{\tau s + 1}$$

Where k is the DC-gain and τ is the time-constant. The system has a pole in $s=-\frac{1}{\tau}$ i.e., the smaller time-constant, the faster system response.

2.1.2 Second Order Systems

The transfer function of a second-order system is given by:

$$H(s) = \frac{k\omega_n^2}{s^2 + 2\zeta\omega_n s + \omega_n^2}$$

Where $\omega_n > 0$ is the natural frequency, $\zeta > 0$ is the damping ratio and k is the gain.

2.2 Performance specifications

2.3 Stability

The stability of the dynamical system can be determined from the eigenvalues of A in the time domain.

$$\dot{x} = Ax + Bu$$

$$y = Cx + Du$$

When the eigenvalues of A are in the left half plane, the system is stable.

In the frequency domain the stability can be determined from the poles of G(s) seen from the transfer function:

$$G(s) = \frac{Q(s)}{P(s)}$$

When the poles of G(s) are in the left half plane, the system is stable.

2.4 Examples