topology - a categorical approach

Khanh Nguyen

June 2024

Chapter 1

FOUR CONSTRUCTIONS OF TOPOLOGY

Categorical definitions of some common topologies

Definition 1 (subspace topology). Let (X, \mathcal{T}_X) be a topological space and $i: A \to X$ be a monomorphism in Set. The subspace topology \mathcal{T}_A on A is defined as the coarsest topology such that the map $i: A \to X$ is continuous. Equivalently, the subset topology on A is characterized by universal property as follows: for any morphism $(Y, \mathcal{T}_Y) \to (X, \mathcal{T}_X)$ in Top, if there is a lift $Y \to X$ in Set then there is also a lift $(Y, \mathcal{T}_Y) \to (A, \mathcal{T}_A)$ in Top such that the diagram below commutes

$$\begin{array}{ccc}
Y & & (Y, \mathcal{T}_Y) \\
\downarrow & & \downarrow \\
A & \stackrel{i}{\longleftrightarrow} X & (A, \mathcal{T}_A) & \stackrel{i}{\longleftrightarrow} (X, \mathcal{T}_X)
\end{array}$$

Definition 2 (quotient topology). Let (X, \mathcal{T}_X) be a topological space and $p: X \to B$ be an epimorphism in Set. The quotient topology \mathcal{T}_B on B is defined as the finest topology such that the map $p: X \to B$ is continuous. Equivalently, the quotient topology on B is characterized by universal property as follows: for any morphism $(X, \mathcal{T}_X) \to (Y, \mathcal{T}_Y)$, if there is a lift $B \to Y$ in Set then there is also a lift $(B, \mathcal{T}_B) \to (Y, \mathcal{T}_Y)$ in Top such that the diagram below commutes

$$\begin{array}{cccc}
X & \xrightarrow{p} & B & (X, \mathcal{T}_X) & \xrightarrow{p} & (B, \mathcal{T}_B) \\
\downarrow & & \downarrow & & \downarrow \\
Y & (Y, \mathcal{T}_Y) & & & \end{array}$$

Definition 3 (product topology). Let $\{(X_{\alpha}, \mathcal{T}_{\alpha})\}_{\alpha}$ be an arbitrary collection of topological spaces, $X = \prod_{\alpha} X_{\alpha}$, and $p_{\alpha} : X \to X_{\alpha}$ be the natural projection. The product topology \mathcal{T}_{X} on X is defined as the coarsest topology such that every $p_{\alpha} : X \to X_{\alpha}$ is continuous. Equivalently, the product topology is characterized by universal property as follows: for any collection of morphisms $\{(Y, \mathcal{T}_{Y}) \to (X_{\alpha}, \mathcal{T}_{\alpha})\}_{\alpha}$, if there is a lift $Y \to X$ in Set then there is also a lift $(Y, \mathcal{T}_{Y}) \to (X, \mathcal{T}_{X})$ in Top such that the diagram below commutes

Definition 4 (coproduct topology). Let $\{(X_{\alpha}, \mathcal{T}_{\alpha})\}_{\alpha}$ be an arbitrary collection of topological spaces, $X = \coprod_{\alpha} X_{\alpha}$, and $i_{\alpha}: X_{\alpha} \to X$ be the natural inclusion. The coproduct topology \mathcal{T}_{X} on X is defined as the finest topology such that every $i_{\alpha}: X_{\alpha} \to i$ continuous. Equivalently, the coproduct topology is characterized by universal property as follows: for any collection of morphisms $\{(X_{\alpha}, \mathcal{T}_{\alpha}) \to (Y, \mathcal{T}_{Y})\}_{\alpha}$, if there is a lift $X \to Y$ in Set then there is also a lift $(X, \mathcal{T}_{X}) \to (Y, \mathcal{T}_{Y})$ in Top such that the diagram below commutes

$$X_{\alpha} \xrightarrow{i_{\alpha}} X \qquad (X_{\alpha}, \mathcal{T}_{\alpha}) \xrightarrow{i_{\alpha}} (X, \mathcal{T}_{X})$$

$$\downarrow \qquad \qquad \downarrow$$

$$Y \qquad (Y, \mathcal{T}_{Y})$$

testing birtual keybaord