Tutorial for STA2002

 $\operatorname{Kun}\,\operatorname{HUANG}(\operatorname{SDS})$

2020-09-03

Contents

1	Prerequisites	5
2	Tutorial 1	7
	2.1 Q1	7
	2.2 Q2	8
	2.3 Q3	8

4 CONTENTS

Chapter 1

Prerequisites

Probability and Statistics I(STA2001) is the prerequisite, which mainly includes the following contents,

- Some usual distributions, like Binomial, Poisson, Normal, Exponential, Gamma, and Chi-square distributions (Relationships among some univariate distributions(Song, 2005));
- Basic terminologies, e.g.,independence, expectation, variation, correlation (coefficient), Bayes, and etc;
- Large number theorem, like Central Limit Theorem(CLT).

Chapter 2

Tutorial 1

2.1 Q1

• Moment-generating function M(t) of a random variable X defined in D that has a density function f(x).

$$M(t) = \mathbb{E}(e^{tx}) = \int_{D} e^{tx} f(x) dx \tag{2.1}$$

$$\mathbb{E}(X^s) = M^{(s)}(0) \tag{2.2}$$

- Relationship between $\bar{X}=\frac{1}{n}\sum_{i=1}^nX_i$ and $S^2=\frac{1}{n-1}\sum_{i=1}^n(X_i-\bar{X})^2,$ independent.
- How to derive a quantity following t distribution from a norm population.

$$T = \frac{\frac{\bar{X} - \mu}{\sigma / \sqrt{n}}}{\sqrt{\frac{(n-1)S^2}{\sigma^2} / (n-1)}} = \frac{\bar{X} - \mu}{S / \sqrt{n}}$$
 (2.3)

• The t distribution is symmetric, i.e., $t_q(n)=-t_{1-q}(n), q\in (0,1).$ For example,

```
qt(0.025, 8, lower.tail = F)
```

[1] 2.306004

$$-qt(1 - 0.025, 8, lower.tail = F)$$

[1] 2.306004

• Properties of F distribution.

2.2 Q2

- Standardize a norm distribution $X \in \mathcal{N}(\mu, \sigma^2),$ i.e., $\frac{X-\mu}{\sigma} \in \mathcal{N}(0, 1).$
- The distribution of \bar{X} and S^2 .

2.3 Q3

• Central Limit Theorem(CLT)

Theorem 2.1. (Central Limit Theorem) Let X_1, \ldots, X_n be independent, identically distributed (i.i.d.) random variables with finite expectation μ , and positive, finite variance σ^2 , and set $S_n = X_1 + X_2 + \cdots + X_n$, $n \ge 1$. Then

$$\frac{\bar{S}_n - n\mu}{\sigma\sqrt{n}} \xrightarrow{L} N(0,1) \text{ as } n \to \infty.$$

- The relationship between Binimial distribution and Poisson distribution
- Aware the power of CLT.

Bibliography

Song, W. T. (2005). Relationships among some univariate distributions. IIE Transactions, 37(7):651-656.