

SenNet IoT Easy Meter

Energy Meter 3PH CT/Rogowski

&

Gateway for remote nodes

General description

SenNet IoT Easy Meter is a device that monitors 3PH energy electrical circuits, with two options of current transformer, 0.33Vac or flexible Rogowski. This device has the possibility to create a local RF Network with remote nodes with different features: Pulse Counter / Temperature-Humidity / CO2 / Particulate Matter etc.., and send all this information in one Sigfox message.

The configuration of all these features is possible by two ways:

- Micro-usb connection and console/terminal.
- Trough APP SenNet NFC (IOS or Android).

The end-user can select what kind of energy data and remote device wants to upload to the cloud, must select the type of message (see in the next section).

Power supply

The device uses voltage reference as the power supply (100-265VAC @ 50HZ), <u>it's important just to use Neutral Line Vn and V1.</u> There is an internal fuse to protect the device against surge damages.

Voltage power supply	100-265VAC @ 50HZ
Power	<1W

Basic steps to intall:

- 1. Set the type Current Transformer: CT-0.33Vac: 50A, 100A, 150A, 400A, 800A Flexible-Rogowski: 3500A, 3700A, 5000A
- Set the type of message to use and take note to parse this data on your preferred platform.
- 3. Take note ID / PAC to sign the device on Sigfox Cloud.
- 4. Connect voltage reference (feed internal power supply) and current reference.

Additional steps

- Define and install remotes devices that will join to Local Network
- Set an univoque ID at each remote device

Power Meter 3 Phase Class 1 (CT's 0.33v -Rogowski)

Local RF Network

Remotes Nodes

Type Message

SenNet IoT Easy Meter is a powerful Energy Meter, the client must select what kind of data will be uploaded to the platform. For that reason, the devices have been defined by default several types of message what includes the main information from each electricity measurement.

The main interest always is the total Energy accumulated, if your interest is on another parameter you can contact with our technical department to ask for it.

Depending on the type of load to be monitored (triphasic or monofasic) you may choose these types of uplink messages:

A common point in all types of messages is the head (defined with <u>2 bytes</u>) that includes important information embedded in the message (type device/type message/errors.. etc). In the next table are defined the mean of these info-fields.

Field I																		
Byte				Byte	1				Byte 2									
	Type	Master D	<u>Device</u>	Type Message g Type Remote Node:							Type Message c Type Remote Nod					Nodes	ID R	odes
					type 0	(info)	generation	error	<u>`</u> ъ					No Remote = 000			
	01 - E	asy Mete	er		typ	e 1		Jer		SAG / error	0x00 -	Info Rem	note					
	02 - PC LongNet				typ	e 2		ge a	enc	enc e /	0x01 - PC LongNet			Remot	e ID = 010) _b = 02 _d		
	03 - TH LongNet			type 3			se in g mode	secnence	tag.	0x02 -	TH LongN	let		= 011	_b = 03 _d			
	04 - CO2 LongNet		Net		typ	e 4		Phase		Overvoltage / S Internal meter	0x03 -	CO2 Long	Net		= 100	_b = 04 _d		
	05 - PM LongNet		let	type 5 (not defined)				Some	Voltage	o Ve	0x04 - PM LongNet			= 101 _b = 05 _d				
	06 – 6	W Mod	ous LN	type 6 (not defined)			Š	>		0x05 -	GW Mod	lbus LN		= 110	_b = 06 _d			
	07 – N	lot defin	ed							0x06 -	Analog II	nput	= 111 _b = 07 _d		.b = 07d			
				type 15 (not defined)		Fee	dback Eri	ror	0x07 -	Not defi	ned	(6 nc	des maxi	mum)				
Bit	7	6	5	4	4 3 2 1		0	7	6	5	4	3	2	1	0			
		Byte1			Ву	te1		Byte1	Ву	te2		Byte2			Byte2			
	Bit 7-6-5			Bit 4	3-2-1		Bit 0	Bit	7-6		Bit 5-4-3		Bit 2-1-0					

Table 1

	Type 1 : Active + Reactive Energy + Remote Node													
Field	In	fo	Active Energy PH1+PH2+PH3				activ 11+P		ergy PH3	Data from Remote node				
Type data	See Table 1		Float 32 bits					loat	32 b	its	Depending on Remote node typ			
Byte	1	2	3 4 5 6		7	7 8 9 10		10	11 12					

		Туре	2: Active	Energy P	H1 + Activ	ive Energy PH2 + Active Energy PH3								
Field	In	fo	Active Energy PH1			Activ	ve Energy	PH2	Acti	ve Energy	PH3			
Type data	Se Tab	ee le 1		lution=10 /lax. 1Mw			lution=10 /lax. 1Mw		resolution=100wh Max. 1Mwh					
Byte	1	2	3 4 5		6	7	8	8 9 10 1						

	Type 3: Active Energy PH1 + Active Energy PH2 + Remote Node Data													
Field	In	fo	Ac	tive En	ergy P	H1	Α	ctive E	nergy	PH2	Data from Remote Node			
Type data		ee le 1	Float 32 bits					Float	32 bit	s	Depending on Remote node type			
Byte	1	2	3 4 5 6		7	8	9	10	11	12				

Remote Node Data:

Type of Remote Node								
TH LongNet – 868	1 byte temperature	1 byte humidity						
	[-10ºC60ºC]	[0-100%]						
Pulse Counter LongNet – 868	2 bytes (integer type)							
CO2 LongNet – 868	2 bytes (integer type)							
Particulate Matter - 868	2 bytes (integer type)							
Gateway Modbus – 868	2 bytes (custom)							
Gateway Custom Protocol – 868	2 bytes (custom)							

Downlink Message

It's possible to set the device in the cloud without interacting with it locally, defining this type of downlink message on the sigfox backend or in your platform. That method is optional but it's not necessary.

Byte	1	2 - 5	6	7	8		
Field	SenNet Code (1byte)	Set time (4bytes)	Type uplink Message (1 byte)	Debug 1 (1 byte) Only for internal use	Debug 2 (1 byte) Only for internal use		
Value	0xAB	{Time-Epox}	01 02 03	00 disable 01 version HW/SW 02 – future use	00 disable 01 debug meter 02 – future use		

Local RF Network & types of Remotes Nodes

SenNet IoT Easy Meter can works like sigfox gateway for up to 6 remotes nodes.

An example for sending a message type 1 with 3 remotes devices defined in the local network. The data of each remote device is sent alternatively in this bucle. To parse the data from Remote node the client must use the **Info** field (see *table 1*). Pulse Counter value (Node ID=2) Temperature & humidity value CO2 value (Node ID=4) (Node ID=3) CO2 value (Node ID=4) value (Node ID=3)

SenNet Easy Meter works as Local Network coordinator and gateway for Remotes Nodes **Pulse Counter** Node ID=2 Temperature & Humidity Node ID=3 **Easy Meter** Coordinator ID=1 CO2 Node ID=4

Power Meter features

These devices include advanced technology for metering power electricity loads, using a current reference and voltage reference. It's possible to use this device like a 3 single-phase meter or 1 three-phase meter, it depends on the client's goal to monitor.

Type of load to monitorized	
3 single-phase loads independient	PH1 PH2 PH3
1 three-phase load	PH1 / PH2 / PH3

Led output pulse		(Current F	Reference	е		Vo	ltage Refer Power Sup			
Aparent Power Active Power	l1+ (1)	l1- (2)	12+ (3)	12- (4)	13+ (5)	13- (6)	Vn (19)	V1 (20)	V2 (21)	V3 (22)	
Reactive Power Aparent Power		11		12		13	Power	Supply AC @ 50HZ		1 , ,	Contract
1 pulse/seg = 1kw		e CT currei 60A, 100A) 5000A			DA,						
		m REAC	APA ACTV	보 호 호 CURRENT R	Ď ∯ PWI	G REF. & PW	€ R				

Voltage reference

Range	110-220/240VAC (CAT III – 400V)
Frequency	50-60Hz
Electrical isolation	2.5Kv @ 60second
Power supply requirement	0.1 VA per phase
Accuracy	Class 0.2 (+/-0.2%)
4	Recommend using electrical protection before connecting this reference.

Current reference

This device can use current transformers (CT) of two types 0.33Vac and flexible type (Rogowski), depending on each type has a different type of accuracy.

Types	Range of	Output	Accuracy
	measureament	type	
CT 50 A	150 A	0.33VAC	+/-1% (5%100% In)
CT 100 A	1100 A	0.33VAC	+/-1% (5%100% ln)
CT 150 A	1150 A	0.33VAC	+/-1% (5%100% In)
CT 400 A	1400 A	0.33VAC	+/-1% (5%100% ln)
CT 800 A	1800 A	0.33VAC	+/-1% (5%100% In)
Flexible 5000 A (7cm Ø) (*)	105000 A	Rogowski	+/-1% (centered)
Flexible 5000 A (12cm Ø) (*)	105000 A	Rogowski	+/-1% (centered)
Flexible 5000 A (20cm Ø) (*)	105000 A	Rogowski	+/-1% (centered)

(*)Must use flexible SenNet Rogowski model to certificate Class 1. (Factory Calibrated)

Accu	ra	aC'	y	on curre	ent	r	nea	S	ure	em	en	t	
_	_	_						_					

Easy Meter + SenNet CT 0.33Vac	Class 1	(Class 0.5 under requeriment)
Easy Meter + Flexible SenNet Rogowski	Class 1	Factory Calibrated

Elicidit (dal 1201/201/10)	Ш
Electrical isolation	1

SenNet CT 0.33Vac2.5KV / 0.5mA / 3secondFlexible SenNet Rogowski600V CAT IV

Holding case

IP Grade	IP-60	
Temperature details		
Working temperature	-20ºC+70ºC	
Store temperature	-20ºC+75ºC	
Holding		
Dimensions	119 x 111 x 53 mm	
Type mount	Wall or din rail	
Plastic Material	ABS – V0	