4.1. КАНОНИЧЕСКАЯ ФУНКЦИОНАЛЬНАЯ СТРУКТУРА КОНВЕЙРНОГО ПРОПЕССОРА

В конвейерных вычислительных системах основной объем операций по обработке данных выполняется одним или несколькими конвейерными процессорами (или кратко: конвейерами). Конвейеры оперируют с векторами данных. Такой вектор суть одномерный массив или одномерная упорядоченная совокупность элементов данных одного типа. Если воспользоваться терминами алгебры матриц, то вектор данных — это или столбец, или строка, или диагональ двумерной матрицы, либо матрица-столбец или матрица-строка вида:

$$A = ||A_1, A_2, ..., A_i, ..., A_n|| = (A_1, A_2, ..., A_i, ..., A_n)$$

где A_i есть i-ый компонент (или элемент, или элемент-операнд, или скалярная величина, или просто "скаляр" или число), $i=\overline{1,n}$.

В конвейере векторные операции реализуются аппаратурно, поэтому его называют также *векторным процессором*. При этом всегда предусматриваются операции покомпонентного сложения и покомпонентного умножения двух векторов, а также либо покомпонентное деление векторов, либо формирование вектора из чисел, обратных компонентам данного вектора. Могут иметься также векторные команды для более сложных операций (например, покомпонентного извлечения квадратного корня). В конвейеры может быть заложена возможность реализации "триад" (linked triad – "сцепленных триад"), т.е. операций вида

$$A + \alpha B$$

где \pmb{A} и \pmb{B} – векторы данных, α – скаляр, $\alpha \pmb{B}$ – вектор, компоненты которого равны соответствующим компонентам \pmb{B} , умноженным на α . Возможны и другие разновидности триады, например:

$$(A+\alpha)B$$

в которой через $A+\alpha$ обозначен вектор, получаемый из A путем прибавления числа α к каждому компоненту.

В основу функциональной организации конвейера кладется принцип конвейеризации [1,2], требующий явного сегментирования арифметико-логического устройства на "специализированные" части. Каждая из таких частей-сегментов должна быть ориентирована на реализацию вполне определенной операции (макро- или микрооперации, в частности) над парой скаряров-операндов (каждый из которых является элементом своего вектора).

Конвейер (pipeline) организуется, в общем случае, как цепочка из элементарных блоков обработки информации (ЭБО i) и памяти (ЭБП i), $^i=\overline{1,n}$ (рис.4.1). Каждый из блоков ЭБО i , $^i=\overline{1,n}$, осуществляет частичное преобразование $^{\phi_i(\pmb{A},\pmb{B})}$ компонентов векторов-операндов:

$$A = ||A_1, A_2, ..., A_i, ..., A_n||$$
 $B = ||B_1, B_2, ..., B_i, ..., B_n||$

Конвейер в целом обеспечивает реализацию достаточно сложного преобразования $\varphi(\pmb{A}, \pmb{B})$, являющегося результатом цепочки преобразований:

$$A, B \to \varphi_1(A, B) \to \cdots \to \varphi_n(A, B) \to \cdots \to \varphi_n(A, B) = \varphi(A, B).$$

Блоки ЭБП $_i$, $i=\overline{1,n-1}$, и блок ЭБП $_n$ используются для хранения промежуточных результатов $\varphi_i(\pmb{A},\pmb{B})$ и искомого результата $\varphi(\pmb{A},\pmb{B})$. Конструктивно блоки ЭБП $_i$, $i=\overline{1,n}$, могут быть объединены в единое целое: в оперативную память либо в векторные регистры.

В простейшем случае элементарные блоки обработки конвейера могут реализовывать отдельные фазы операций (например, арифметических или вычисления элементарных функций), т.е. выполнять микрооперации. Например, при сложении двух вещественных (рациональных) чисел, представленных в форме с плавающей запятой, выполняются следующие микрооперации: сравнение порядков, выравнивание порядков, сложение мантисс, нормализация и т.п. В более общем случае блоки ЭБО могут отыскивать промежуточные результаты $\varphi_i(A,B)$, $i=\overline{1,n}$, являющиеся, например, или суммой, или разностью, или произведением, или частным для компонентов векторов A,B. Как правило, преобразование $\varphi(A,B)$ осуществляет одну из арифметических операций над элементами векторов A,B.

Элементы векторов подаются в конвейер в дискретные моменты времени и в соответствии с их расположением в векторах. На каждом временном шаге в ЭБО і конвейера заносится новая пара элементов-операндов текущих векторов A и B, а в ЭБО i, $i=\overline{2,n}$, — информация из ЭБП i-1 и, в общем случае, извне.

Каноническая структура

Функционирование

$A B > \alpha(A B)$				
$A_1, B_1 \to \varphi_1(A_1, B_1)$				
$A_2, B_2 \rightarrow \varphi_1(A_2, B_2)$				
	•••			
$A_i, B_i \to \varphi_1(A_i, B_i)$		$\varphi_{i-1}(A_1, B_1) \to \varphi_i(A_1, B_1)$		
$A_{i+1}, B_{i+1} \to \varphi_1(A_{i+1}, B_{i+1})$	•••	$\varphi_{i-1}(A_2, B_2) \to \varphi_i(A_2, B_2)$		
	•••		•••	
$A_n, B_n \to \varphi_1(A_n, B_n)$		$\varphi_{i-1}(A_{n-i+1},B_{n-i+1}) \to$		$\varphi_{n-1}(A_1, B_1) \to \varphi(A_1, B_1)$
		$\varphi_i(A_{n-i+1}, B_{n-i+1})$		
$A_{n+1}, B_{n+1} \to \varphi_1(A_{n+1}, B_{n+1})$		$\varphi_{i-1}(A_{n-i+2},B_{n-i+2}) \to$		$\varphi_{n-1}(A_2, B_2) \to \varphi(A_2, B_2)$
		$\varphi_i(A_{n-i+2}, B_{n-i+2})$	•••	

Рис.4.1. Конвейерный процессор

ЭБО — элементарный блок обработки информации, **ЭБП** — элементарный блок памяти, A, B_{-} векторы-операнды: $\varphi_i(A, B)_{-}$ частичное преобразование векторов A, B

Процесс вычисления $\varphi(A, B)$ для пары элементов векторов A и B разделен на n этапов. Все блоки конвейера работают параллельно, но каждый из них реализует свой этап вычислений и обрабатывает свои элементы-операнды в фиксированный момент времени. Очевидно, что время обработки на конвейере конкретных элементов векторов равно суммарному времени их пребывания во всех $\Im EO_i$, $i=\overline{1,n}$. Выдача результатов из "наполненного" конвейера осуществляется через промежутки времени, равные времени выполнения самого медленного этапа. Таким образом, параллелизм в работе блоков конвейера в принципе позволяет достичь производительности, недоступной $\Im EO$ вазирующимся на модели вычислителя.

Необходимость введения конвейеризации была осознана разработчиками ЭВМ к концу 50-х годов прошлого века. Так, например, в советской ЭВМ М-20 (см. 1.4.3), введенной в эксплуатацию в 1958 г., было реализовано совмещение работы арифметического устройства с выборной очередной команды. Далее, в машине второго поколения ATLAS, разработанной в 1963 г в Манчестерском университете США, выполнение команды было разбито на 4 этапа: выборку команды, вычисление адреса операнда, выборку операнда и выполнение операции. Конвейеризация позволила достичь в ЭВМ ATLAS времени выполнения операции, равного 1,6 мкс (в то время как для последовательной ЭВМ оно было бы равно 6 мкс). Машина БЭСМ-6 (см. 1.4.6), разработанная в 1966 г., характеризуется параллелизмом в работе устройств и конвейерной структурой процессора.