제3장 정규 언어

- 정규언어: token을 기술하는데 사용
- 정규언어의 기술 방법: 정규문법, 정규표현, finite automata

3.1 정규 문법과 정규 언어

- 정규 문법
- ※ t=ε이면 $A \to B$ (단일 생성 규칙), $A \to ε$ (ε-생성규칙)
- 예1) G_1 은 우선형 문법이고, G_2 은 좌선형 문법이다.

$$G_1: S \to 000S / 000$$

$$G_2: S \rightarrow S11 / 11$$

※ 아래 문법은 정규 문법이 아님 --> 좌선형과 우선형이 혼합

$$G: S \to aR / c$$
$$R \to Sb$$

$$L(G) = \{ a^n c b^n / n \ge 0 \}$$

[정의 3.1] 정규 문법의 정의

- (1) $A \rightarrow aB$, $A \rightarrow a$, 이 때 $a \in V_T$, $A,B \in V_N$ 이다.
- (2) $S \rightarrow \epsilon$ 이면, S가 다른 생성규칙의 오른쪽에 나타나지 않아야 한다.

※ 우선형 문법 $A \rightarrow tB$, $t=a_1a_2...a_n$, $a_i \in V_T$ 을 [정의3.1] 형태로 변환

$$A \rightarrow a_1 A_1 \quad A_1 \rightarrow a_2 A_2 \quad \quad A_{n-1} \rightarrow a_n B$$

예2) <예1>의 G_I 을 정규문법 형태로 변환

$$G_1: S \to 000S \implies S \to 0S_1, S_1 \to 0S_2, S_2 \to 0S$$

 $S \to 000 \implies S \to 0S_3, S_3 \to 0S_4, S_4 \to 0$

예3) *L = {aⁿb^m / n,m≥1 }* 은 정규 언어이다.

$$G: S \to aS / aA$$
 $A \to bA / b$

3.2 정규표현 (Regular Expression)

[정의 3.2] 정규표현의 정의

- 1. 정규표현의 기본 요소는 ϕ , ϵ , 그리고 terminal symbol이다.
 - (1) Φ : 공집합을 나타내는 정규표현
 - (2) ε : 집합 {ε}을 나타내는 정규표현
 - (3) a(∈V_T) : 집합 {a}을 나타내는 정규표현
- $2. e_1, e_2$ 가 각각 정규 언어 L_1, L_2 를 표현하는 정규표현이라면,
 - (1) $(e_1)+(e_2)$ 는 L_1UL_2 를 나타내는 정규표현 (union)
 - (2) $(e_1) \cdot (e_2)$ 는 $L_1 \cdot L_2$ 를 나타내는 정규표현 (concatenation)
 - (3) $(e_l)^*$ 는 L_l^* ={ ε } $UL_l^1UL_l^2U\cdots UL_l^nU\cdots$ 에 대한 정규표현 (closure)
- 3. 1, 2 이외의 어떤 것도 정규표현이 될 수 없다.

단,
$$(e_1) \cdot (e_2) = (e_1)(e_2)$$
, $(e_1) + (e_2) = (e_1) \mid (e_2)$, $e_1^+ = e_1 \cdot e_1^*$

- ※ 정규표현의 우선 순위 : 괄호 > * > · > +
- 예4) 정규표현의 예
 - (1) 정규표현 ab^* \Rightarrow 언어 { $ab^n / n \ge 0$ }
 - (2) 정규표현 (0+1)* ⇒ 언어 {0, 1}*
 - (3) 정규표현 $(a+b)^*abb \Rightarrow a,b$ 반복 후에 abb로 끝나는 string 집합
- identifier의 정규표현 : letter(letter+digit)*
- [정의 3.3] 정규표현의 등가 ⇒ 두 정규표현이 같은 언어의 집합을 표현할 때
 - 즉, 정규표현 \mathfrak{a}, β 가 각각 언어 $L_\mathfrak{a}$ 와 $L_\mathfrak{p}$ 를 표현한다고 할 때 $L_\mathfrak{a} = L_\mathfrak{p}$ 이면 $\mathfrak{a} = \mathfrak{p}$ 이다.
- 예6) 정규표현 $a(ba)^*$ 가 나타내는 스트링의 형태는 ababa...ba 이고 $(ab)^*a$ 도 같은 스트링 형태(abab...a)를 표현하므로 $a(ba)^* = (ab)^*a$ 이다.

※ 정규표현은 아래와 같은 수학적인 성질을 만족한다.

(1)
$$\alpha + \beta = \beta + \alpha$$

(2)
$$(\alpha + \beta) + \gamma = \alpha + (\beta + \gamma)$$

$$(3) (\alpha \beta)_{\mathcal{V}} = \alpha(\beta \mathcal{V})$$

$$(4) \quad \alpha(\beta + \gamma) = \alpha\beta + \alpha\gamma$$

$$(5) (\beta + \gamma)\alpha = \beta\alpha + \gamma\alpha$$

(6)
$$\alpha + \alpha = \alpha$$

$$(7) \quad \alpha + \varphi = \alpha$$

(8)
$$\alpha \varphi = \varphi = \varphi \alpha$$

(9)
$$\varepsilon \alpha = \alpha = \alpha \varepsilon$$

$$(10) \quad \alpha^* = \epsilon + \alpha \alpha^*$$

$$(11) \ \alpha^* = (\epsilon + \alpha)^*$$

(12)
$$(\alpha^*)^* = \alpha^*$$

$$(13) \quad \alpha^* + \alpha = \alpha^*$$

(14)
$$a^* + a^+ = a^*$$

(15)
$$(\alpha + \beta)^* = (\alpha^* \beta^*)^*$$

[정의 3.5] 정규식의 정의 : 계수(coefficient)가 정규표현인 식

예7) $\alpha_i, \beta_i (i=1,2,3)$ 이 정규표현일 때 다음은 정규식이다.

$$X = \alpha_1 X + \alpha_2 Y + \alpha_3$$
 $Y = \beta_1 X + \beta_2 Y + \beta_3$

 $X = \alpha X + \beta$ 의 유일한 해는 $X = \alpha^* \beta$ 이다. $\Rightarrow X = \alpha^* \beta$ 를 준식에 대입.

예8) 아래 정규문법에 대한 정규표현을 구하시오.

$$S \rightarrow aS$$

$$S \rightarrow bR$$

$$S \rightarrow \epsilon$$

$$R \rightarrow aS$$

$$S = aS + bR + \varepsilon \qquad --- (1)$$

$$R = aS \qquad --- (2)$$

S = aS + b(aS) + ε: 식(2)를 (1)에 대입

$$= aS + baS + \epsilon$$

$$=(a+ba)S+\epsilon$$
 : $X=aX+\beta$ 의 유일한 해는 $X=a^*\beta$

$$S = (a+ba)^* \varepsilon = (a+ba)^*$$

$$L(G) = (a+ba)^*$$

예9) 아래 정규문법에 대한 정규표현을 구하시오.

$$S \rightarrow aA / bB / b$$

 $A \rightarrow bA / \epsilon$
 $B \rightarrow bS$

$$S = aA + bB + b$$
 --- (1)
 $A = bA + \epsilon$ --- (2) ==> $A = b^*$
 $B = bS$ --- (3)

$$S = a(b^*) + b(bS) + b$$
$$= bbS + (ab^* + b)$$

$$L(G) = (bb)^*(ab^*+b)$$

예10) 다음 정규식이 나타내는 정규표현은?

$$X = \alpha_1 X + \alpha_2 Y + \alpha_3, \qquad Y = \beta_1 X + \beta_2 Y + \beta_3$$

3.3 유한 오토마타 (Finite Automata: FA)

- 언어 인식기(language recognizer)
 - 입력 string이 그 언어의 문장이면 yes, 아니면 no
- 유한 자동(finite automata) : 언어 인식기 중에서 가장 간단한 형태

[정의 3.6] 유한 오토마타 M의 정의

$$M = (Q, \Sigma, \delta, q_0, F)$$

Q: 상태(state)들의 유한 집합

 Σ : input symbol들의 유한 집합

δ : 사상 함수(mapping function)

 $Q \times \Sigma \rightarrow 2^{\mathbb{Q}}$ (power set of Q), $\delta(q,a) = \{p_1, p_2, ..., p_n\}$

* DFA vs. NFA

 q_{θ} : start or initial state ($q_{\theta} \in Q$)

F: final state들의 집합 ($F \subseteq Q$)

3.3.1 DFA (Deterministic Finite Automata)

[정의 3.7] DFA 정의 ⇒ 정의 3.6에서 δ가 전이함수(transition function)

$$\delta : Q \times \Sigma \rightarrow Q, \quad \delta(q,a) = p$$

예11) 유한 오토마타 $M = (\{q_0, \ q_1, \ q_2\}, \ \{a, \ b\}, \ \delta, \ q_0, \ \{q_2\})$

$$\delta(q_0, a) = q_1 \qquad \delta(q_0, b) = q_2$$

$$\delta(q_1, a) = q_2 \qquad \delta(q_1, b) = q_0$$

$$\delta(q_2, a) = q_0 \qquad \delta(q_2, b) = q_1$$

※ 전이함수를 행렬로 표시한 것을 상태전이표(state-transition table)라 함.

예12) <예11>의 전이함수를 상태전이표로 구성

δ	а	b
q_{θ}	q_{1}	q_2
q_1	q_2	q_{0}
q_2	q_{0}	q_1

※ 전이함수의 확장 (terminal symbol에서 terminal string으로)

$$Q \times \Sigma \to Q \implies Q \times \Sigma^* \to Q$$
 $\delta(q, \epsilon) = q, \quad \delta(q, xa) = \delta(\delta(q, x), a), \quad$ 단, $a \in \Sigma$ 이고 $x \in \Sigma^*$

예13) 상태 q_0 에서 input string aba가 나타났을 때

$$\delta(q_0, aba) = \delta(\delta(q_0, ab), a) = \delta(\delta(\delta(q_0, a), b), a)$$

※ <예11>의 상태전이표 적용

$$\delta(q_0, aba) = \delta(\delta(\delta(q_0, a), b), a) = \delta(\delta(q_1, b), a) = \delta(q_0, a) = q_1$$

※ 유한 오토마타에 의한 accept or reject

input string x에 대해 $\delta(q_0, x) = p$ 이고 $p \in F$ 이면 accept, 아니면 reject

[정의 3.8] DFA M에 의하여 인식되는 언어 : L(M)

$$L(M) = \{x \mid \delta(q_0, x) \in F\}$$

예14) $M = (\{p,q,r\}, \{0,1\}, \delta, p, \{r\})$ 는 string 1001, 0110을 인식하는가?

δ	0	1
p	q	p
q	r	p
r	r	r

- (1) $\delta(p, 1001) = \delta(p, 001) = \delta(q, 01) = \delta(r, 1) = r \in F$ 이旦로 accept
- (2) $\delta(p, 0110) = \delta(q, 110) = \delta(p, 10) = \delta(p, 0) = q 经F$ 이旦로 reject

[정의 3.9] 상태전이도 (state transition diagram)

node: automata의 각 state를 표시함.

arc : $\delta(q, a) = p$ 에 대하여 state q에서 p로 가고

label이 a인 directed arc

final state : double circle로 표시 start state : start 지시선으로 표시 예15) 예14에 대한 유한 자동을 상태전이도로 표현

예16) 명칭(identifier)에 대한 상태전이도

예17) 부동소수점(floating-point number)에 대한 상태전이도

※ DFA의 특징

- 1. no ε-transition
- 2. 한 상태에서 input symbol에 대해 0 or 1개의 next state

[정의 3.10] 유한 자동 $M=(Q, \Sigma, \delta, q_0, F)$ 이 모든 $q \in Q, a \in \Sigma$ 에 대하여 $\delta(q, a)$ 가 오직 1개의 next state를 가질 때, M은 completely specified.

```
Algorithm recognize;
begin

currentState := q<sub>0</sub>;
get(nextSymbol);
while input string not exhausted do
begin currentState := &(currentState, nextSymbol);
get(nextSymbol);
end;
if currentState in F then write('input recognized')
else write('input not recognized')
end.
```

3.3.2 NFA (Nondeterministic Finite Automata)

[정의 3.11] NFA 정의 ⇒ "[정의 3.6] FA 정의"와 동일

NFA $M = (Q, \Sigma, \delta, q_0, F)$

Q: 상태(state)들의 유한 집합

 Σ : input symbol들의 유한 집합

δ : 사상 함수(mapping function)

 $Q \times \Sigma \rightarrow 2^{\mathbb{Q}}$ (power set of Q), $\delta(q,a) = \{p_1, p_2, ..., p_n\}$

 q_0 : start or initial state ($q_0 \in Q$)

F: final state들의 집합 ($F \subseteq Q$)

예18) NFA $M = (\{q_0, q_1, q_2, q_3, q_t\}, \{0, 1\}, \delta, q_0, \{q_t\})$

δ	0	1
q_{θ}	$\{q_1, q_2\}$	$\{q_1, q_3\}$
q_1	$\{q_1, q_2\}$	$\{q_1, q_3\}$
q_2	$\{ \ q_f \ \}$	ф
q_3	ф	$\Set{q_f}$
q_f	$\Set{q_f}$	$\Set{q_f}$

※ 전이함수의 확장

[단계 1] 하나의 symbol을 string으로 확장

$$Q \times \Sigma \to 2^Q \implies Q \times \Sigma^* \to 2^Q$$

 $\delta(q, \epsilon) = \{q\}, \ \delta(q, xa) = \bigcup_{p \in \delta(p, a)} \delta(q, a)$

예19) 예18에서 주어진 NFA에 따라 q₀에서 스트링 1001을 다 본 상태

$$\delta(q_0, 1001) = \delta(q_1, 001) \cup \delta(q_3, 001)$$

$$= \delta(q_1, 01) \cup \delta(q_2, 01) \cup \phi$$

$$= \delta(q_1, 1) \cup \delta(q_2, 1) \cup \delta(q_6, 1)$$

$$= \{q_1, q_3, q_6\}$$

[단계 2] 하나의 state를 여러 state로 확장

$$Q \times \Sigma \to 2^Q \implies 2^Q \times \Sigma^* \to 2^Q$$

 $\delta(\{p_1, p_2, ..., p_k\}, X) = \bigcup_{i=1}^k \delta(p_i, a)$

예20)
$$\delta(q_0, 1001) = \delta(\{q_1, q_3\}, 001) = \delta(\{q_1, q_2\}, 01) = \delta(\{q_1, q_2, q_1\}, 1)$$

= $\{q_1, q_3, q_1\}$

※ final state가 하나라도 있으면 accept

예21) 예18의 NFA M은 string 1011을 인식하는가? yes

$$\delta(\{q_0\}, 1011) = \delta(\{q_1, q_3\}, 011) = \delta(\{q_1, q_2\}, 11)$$

= $\delta(\{q_1, q_3\}, 1) = \{q_1, q_3, q_t\}$

※ 위 과정을 tree형태로 나타내면 아래 그림과 같다. ⇒ terminal node에 final state가 하나라도 있으면 accept

※ state수가 m이고 input string의 길이가 n이면, tree의 node수는 mⁿ ⇒ exponential time (computationally intractable)

3.3.3 NFA를 DFA로 변환

모든 NFA는 같은 언어를 인식하는 DFA로 변환할 수 있다.

[정리 3.2] NFA M=(Q, Σ , δ , q_0 , F)을 DFA M'=(Q', Σ , δ' , q_0 , F)으로 변환

- (1) $Q' = 2^{Q}$ (Q의 power set) Q'의 한 상태는 $[q_1, q_2, ..., q_i]$ 의 형태로 표시한다.
- (2) $q_0' = [q_0]$
- (3) $F' = \{q \in Q' \mid q \in F \text{의 상태들 중에 적어도 하나를 포함}\}$
- (4) $\delta(\{q_1, q_2, ..., q_i\}, a) = \{p_1, p_2, ..., p_j\}$ 이면, $\delta'([q_1, q_2, ..., q_i], a) = [p_1, p_2, ..., p_i]이다.$

예22) NFA $M=(\{q_0, q_1\}, \{0, 1\}, \delta, q_0, \{q_1\})$ 을 DFA로 변환하시오.

δ	0	1
q_0	$\{q_0, q_1\}$	$\{q_{0}\}$
q_1	ф	$\{q_0, q_1\}$

- (1) 상태집합 $Q' = \{[q_0], [q_1], [q_0, q_1]\}$
- (2) start state $q_0' = [q_0]$
- (3) final states $F' = \{[q_1], [q_0, q_1]\}$
- (4) 전이함수 δ'

δ΄	0	1
$[q_0]$	$[q_0, q_1]$	$[q_0]$
$[q_1]$	ф	$[q_0, q_1]$
$[q_0, q_1]$	$[q_0, q_1]$	$[q_0, q_1]$

※ inaccessible state 발생 \Rightarrow 상태 B 제거 가능 $[q_0]=A, [q_1]=B, [q_0, q_1]=C로 했을 때 상태전이도$

- ※ accessible states만 생성하는 DFA로 변환 방법
 - 1. NFA의 start state q_0 을 DFA의 start state $[q_0]$ 로 놓는다. 초기에 $Q' = \{[q_0]\}$ 이 된다.
 - 2. Q'의 각 상태에서 input symbol을 보고 갈 수 있는 next state를 구한다.
 - 3. next state가 Q에 없으면 Q에 추가하고 input string에 directed arc 연결 next state가 Q에 있으면 input string에 대한 directed arc만 연결
 - 4. 과정 2,3을 반복하여 new state가 추가되지 않을 때까지 계속한다. new state가 NFA의 final state를 포함하고 있으면 DFA의 final state
- 예23) 다음 NFA로부터 동등한 언어를 인식하는 DFA를 구하시오.

1. NFA의 시작 상태가 0이므로 DFA의 시작 상태는 [0]이 된다.

2. (1) 상태 [0]에서 a를 보고 갈 수 있는 상태 집합은 (0,1)이고 [0,1]은 기존 의 상태와 다르므로 새로운 상태로 만들어 지시선을 연결한다.

(2) 상태 [0]에서 b를 보고 갈 수 있는 상태 집합은 {0}이고, [0]은 기존의 상태와 같으므로 지시선만 그린다.

3. (1) 상태 [0,1]에서 a를 보고 갈 수 있는 상태 집합은 {0, 1}이고, [0, 1]은 기존에 존재하는 상태이므로 지시선만 그린다.

(2) 상태 [0, 1]에서 b를 보고 갈 수 있는 상태 집합은 (0, 2)이고, [0, 2]는 새로운 상태이므로 추가하고 지시선을 연결한다.

4. (1) 상태 [0, 2]에서 a를 보고 갈 수 있는 상태 집합은 {0, 1}이고, [0, 1]은 기존에 존재하는 상태이므로 지시선만 그린다.

(2) 상태 [0, 2]에서 b를 보고 갈 수 있는 상태 집합은 {0, 3}이고 [0, 3]은 새로운 상태이므로 다음과 같이 추가하고 지시선을 연결한다.

5. 상태 [0, 3]에서 a를 보고 갈 수 있는 상태 집합은 {0,1}이고, b를 보고 갈 수 있는 상태는 {0}이므로 새로 만들지 않고 지시선만 만든다.

6. 더 이상 새로운 상태가 추가되지 않기 때문에 종료된다. 그리고 NFA의 종 결 상태 3을 포함하는 상태 [0, 3]은 DFA의 종결 상태로 표시한다.

이상과 같은 일련의 과정을 상태 전이표를 이용하여 구현하면 다음과 같다.

δ	a	b
[0]	[0, 1]	[0]
[0, 1]	[0, 1]	[0, 2]
[0, 2]	[0, 1]	[0, 3]
[0, 3]	[0, 1]	[0]

예24) 예18의 NFA를 상태전이표를 이용하여 DFA로 변환

아래 오른쪽 상태전이표는 각 상태 이름을 A, B, C, D, E로 바꾼 것임.

δ	0	2.01.1.0
[q ₀]	[q ₁ , q ₂]	[q ₁ , q ₃]
[q ₁ , q ₂]	[q ₁ , q ₂ , q _d]	[q ₁ , q ₃]
[q ₁ , q ₃]	[q ₁ , q ₂]	[q1, q3, qt]
[q ₁ , q ₂ , q _d]	[q ₁ , q ₂ , q _t]	[q ₁ , q ₃ , q _f]
[q1, q3, qf]	[q1, q2, qt]	[q1, q3, qt]

δ	0	1
A	В	C
В	D	С
С	В	E
D	D	Е
E	D	Е

3.3.4 ε-NFA를 DFA로 변환

ε-NFA : ε-transition을 갖는 NFA

[정의 3.12] ϵ -NFA M=(Q, Σ , δ , q_0 , F)

ε-transition을 제외한 모든 정의는 NFA와 같다.

$$\delta: Q \times (\Sigma \cup \{\varepsilon\}) \to 2^Q$$

[정의 3.13] ε-CLOSURE의 정의

- 1. 임의의 state s에 대해서 ϵ -CLOSURE(s)는 s와 s로부터 ϵ -transition에 의하여 도달할 수 있는 모든 state들의 집합이다. ϵ -CLOSURE(s) = $\{s\}$ \cup $\{q \mid \delta(p,\epsilon) = q, p \in \epsilon$ -CLOSURE(s)}
- 2. T가 하나 이상의 state인 경우에 ϵ -CLOSURE(T)는 집합 T의 각 state에 대해 1과 같은 방법으로 CLOSURE 집합을 구하여 합집합을 구한다. ϵ -CLOSURE(T) = $\bigcup_{q \in T} \epsilon$ -CLOSURE(q)

예25) 다음 ε-NFA에 대하여 CLOSURE를 구하시오.

- ※ ε-NFA를 DFA로 변환하는 방법 (ε-CLOSURE 이용)
 - 1. start state에 대한 ε-CLOSURE를 구하고 이것을 DFA의 start state로 함
 - 2. ε-CLOSURE를 이용하여 next state를 구한다.
 - 3. 추가된 state들에 대해 새로운 state가 생성되지 않을 때까지 2.를 반복한다.

예26) 다음 ε-NFA를 상태전이표를 이용하여 DFA로 변환하시오. (p.97)

δ	a	b	c
$\begin{array}{c} \epsilon\text{-CLOSURE}(1)\text{=}\{1,\ 3,\ 4\} \\ \equiv [1,\ 3,\ 4] \end{array}$	ε-CLOSURE(2)	={2} φ =[2]	ε-CLOSURE(3)={3, 4} =[3, 4]
[2]	ф	ε-CLOSURE	(4)={4} φ ≡[4]
[3, 4]	φ	φ	ε-CLOSURE(3)={3,4} =[3,4]
[4]	φ	ϕ	PARI BARI

A = [1,3,4], B = [2], C = [3,4], D = [4] 로 치환한 오토마타

※ ε-NFA를 DFA로 변환하는 알고리즘 : LEX 알고리즘의 핵심적인 부분

LEX : 정규 문법을 DFA로 구성하는 Tool --> 어휘분석기 자동 생성

```
Algorithm NFA to DFA;
  assume NFA M = (Q, \Sigma, \delta, q<sub>0</sub>, F);
          DFA M'= (Q', \Sigma, \delta', q_0', F');
 begin
    q_0' := \varepsilon - CLOSURE(q_0);
  Q' := \{q_0'\}; \delta' := \{\};
 repeat
       for each q \in Q' do
         for each a \in \Sigma do
   q' := \varepsilon - CLOSURE(\delta(q, a));
           if q' \not\in Q' then Q' := Q' \cup \{q'\} fi
          \delta' := \delta' \cup \{\delta'(q, a) = q'\};
      end for
      end for
  until Q' does not change
    F' := { };
 for each q \in Q' do
    if q \cap F = \Phi then F' := F' \cup \{q\}; fi
end NFA_to_DFA.
```

3.3.5 DFA의 상태수 최소화 (state minimization)

방법: 동치관계(equivalence relation)를 이용하여 상태합침(state merge)

[정의 3.14] 동치관계(equivalence relation) 정의

 $\omega \in \Sigma^*$ 에 대해 q_1 에서 ω 를 다 본 상태가 q_3 이고 q_2 에서 ω 를 다 본 상태가 q_4 일 때, q_3 , q_4 중에서 하나만 final state에 속하면 q_1 은 q_2 로부터 구별 (distinguish)된다고 말한다.

DFA의 상태수 최소화 방법

- 1. 초기의 동치관계를 구성한다. 즉, 전체 상태를 final state와 nonfinal state의 두 동치류(equivalence class)로 분할(partition)한다.
- 2. 같은 input symbol에 대해 서로 다른 동치류로 가는 arc가 존재하면, 또 다른 분할을 하여 새로운 동치류를 만든다. (그 input symbol에 의해 구별된다고 함)
- 3. 2.를 반복하여 더 이상 분할이 일어나지 않을 때,

DFA $M' = (Q', \Sigma, \delta', q_0', F')$ 을 다음과 같이 구성한다.

- (1) Q': 동치류의 집합. Q'의 한 state를 [q]로 표시하며,그 의미는 상태 q를 포함하는 동치류를 나타낸다.
- (2) $q_0' = [q_0]$
- (3) [p], [q]를 임의의 동치류라고 할 때, δ(p,a)=q이면 δ'(p,a)=[q]이다.
- $(4) F' = \{ [q] \mid q \in F \}$

예27) 다음 DFA의 상태수를 최소화하시오.

1. final state인지 아닌지에 따라 동치 class {A, B, D}와 {C, E}로 분할한다.

	1: (A, B, D)	2: {C, E}
a	1 1 1	1 1
b	1 2 2	2 2

2. 각 동치 class가 각 input symbol에 대해 구별되는가를 조사하여 더 이상 분할이 일어나지 않을 때까지 반복한다.

동치 class 1:{A, B, D}는 input symbol b에 대하여 {A}와 {B, D}로 분할.

	1 : {A}	2: {B, D}	3: {C, E}
а	2	2 2	2 2
b	2	3 3	3 3

3. 더 이상 분할이 되지 않으므로 X=[A], Y=[B,D], Z=[C,E]로 놓고 DFA M'을 구성. 이를 상태전이도로 표현하면 다음과 같다.

$$M' = (\{X,Y,Z\}, \{a,b\}, \delta', X, \{Z\})$$

δ'	a	b
X	Y	Y
Y	Y	Z
Z	Y	Z

[정의 3.15] 축약된 유한 자동 (reduced finite automata)

- (1) 모든 상태가 start state로부터 도달 가능하다(accessible).
- (2) 모든 상태가 서로 구별 가능하다(distinguishable).
- 정의 3.15 다음 조건을 만족하는 유한 오토마타를 축약된 유한 오토마타(reduced finite automata)라 부른다.
 - (1) 모든 상태가 시작 상태로부터 도달 가능하다(accessible).
 - (2) 모든 상태가 서로 구별 가능하다(distinguishable).
- ※ 축약된 유한 자동으로 변환 방법
- [단계 1] 들어오는 arc가 없이 나가는 arc만 갖는 inaccessible state를 모두 제거
- [단계 2] 동치관계를 이용하여 구별되는 않는 상태들을 하나로 merge한 후에 새로운 automata를 구성.

3.3.6 유한 자동의 닫힘 성질

FAL: Finite Automata Language

[정리 3.3] L_1 , L_2 가 FAL이면 다음도 역시 FAL이다. \longrightarrow 증명은 교재 참조

- 1. $L_1 \cup L_2$
- 2. L_1L_2
- 3. L_1^*

※ 유한 자동 언어는 합집합, 접속(concatenation), closure에 대하여 닫혀 있다.

예28) 다음과 같은 두 F.A.를 merge하시오.

3.4 정규 언어의 속성

정규 문법 ⇔ 정규표현 ⇔ 유한 자동

3.4.1 정규 문법과 유한 자동

※ 정규 문법을 인식하는 유한 자동의 구성 방법

Given G = (V_N, V_T, P, S) , construct M = $(Q, \Sigma, \delta, q_0, F)$

- $1. Q: V_N \cup \{f\}$, f는 새로 만들어진 final state
- $2. \Sigma : V_T$
- 3. q_0 : S
- 4. $F : \varepsilon \not\in L(G)$, then $\{f\}$ else $\{S, f\}$
- 5. δ : if $A \to aB \in P$, then $\delta(A, a) \ni B$ if $A \to a \in P$, then $\delta(A, a) \ni f$

예29) 정규문법 G=({S, B}, {0, 1}, P, S)는 아래 FA로 변환된다.

$$P: S \to 0S$$
 $S \to 1B$ $S \to 0$ $S \to 1$
 $B \to 0S$ $B \to 0$

$$\Rightarrow M = (Q, \sum, \delta, q_0, F)$$

$$Q : V_N \cup \{f\} = \{S, B, f\}$$

 $\sum : V_T = \{0, 1\}$

 $q_0: S$ $F: \{f\}$

δ	0	1
S	{S, 1}	{B, 1}
B	{S, 1}	Ф
f	ф	ф

※ 유한 자동으로부터 정규 문법을 구성하는 방법

Given $M = (Q, \Sigma, \delta, q_0, F)$, construct $G = (V_N, V_T, P, S)$

- 1. V_N : Q
- 2. $V_T: \Sigma$
- 3. $S: q_0$
- 4. P: if $\delta(A, a) = r$ then $q \to ar$ if $q \in F$ then $q \to \epsilon$

예30) 다음 DFA를 정규문법으로 변환하시오.

3.4.2 유한 자동과 정규 수식

※ 유한자동으로부터 정규표현을 구하는 과정

- (1) 유한자동으로부터 정규문법으로 구한다.
- (2) 정규문법으로부터 정규표현을 구한다.

연습: <예30>의 유한 자동으로부터 정규표현을 얻는 과정.

δ	0	1
p	q	p
q	r	p
r	r	r

1) 상태전이표로부터 정규문법 구한다.

$$p \to 0q \qquad p \to 1p$$

$$q \to 0r \qquad q \to 1p$$

$$r \to 0r \qquad r \to 1r \qquad r \to \epsilon$$

2) 정규문법으로부터 정규표현식

$$p = 0q + 1p$$

$$q = 0r + 1p$$

$$r = 0r + 1r + \epsilon$$

3) 정규표현을 구한다.

$$L(M) = (01+1)*00(0+1)*$$

※ 정규표현으로부터 유한자동을 구하는 과정

- (1) 정규표현의 정의로부터 NFA(ε-NFA)를 구성한다.
- (2) simplification 방법을 적용하여 크기를 줄인다.
- (3) ε-NFA를 DFA로 변환한다.
- 1. 정규표현 ε, a에 대하여
 - (1) ε을 인식하는 NFA

(2) 심벌 a를 인식하는 FA

- 2. 정규표현 N₁+N₂, N₁ N₂, N*에 대하여
 - (1) N₁+N₂ 구성하는 방법

(2) N₁ • N₂ 구성하는 방법

(3) N* 구성하는 방법

예31) 정규표현 $(a+b)^*$ 를 인식하는 유한자동을 구성하시오.

(1) a를 인식하는 FA

(2) b를 인식하는 FA

(3) a+b를 인식하는 FA

(4) (a+b)*를 인식하는 FA

※ ε-NFA를 간단화하는 방법

1. 상태 A에서 나가는 다른 지시선이 없을 때 A, B는 같은 상태로 취급

2. 다음과 같은 형태를 하나의 상태로 축약

3. 두 개의 경로가 같은 곳으로 이동하는 경우

4. a*를 인식하는 NFA

- 예32) 정규표현 *ab+c**를 *NFA*로 변환하시오.
 - (1) ab를 인식하는 FA

(2) 간단화 방법을 적용

(3) c*를 인식하는 NFA --> 간단화 방법 적용

(4) *ab+c**를 인식하는 NFA

(5) 간단화 방법을 적용

예33) 정규표현 (ab)*(ba)*를 인식하는 DFA를 고안하시오.

(1) (ab)*, (ba)*를 인식하는 NFA

(2) (ab)*(ba)*를 인식하는 NFA

(3) DFA로 변환하여 상태전이표 구성

δ	a	b
A=[1, 3]	[2]	[4]
B=[2]	φ	[1,3]
	[3]	φ
C=[4] D=[3]	φ	[4]

(4) 상태전이도 구성

3.4.3 정규 언어의 닫힘 성질

[정리 3.4] L_{l} , L_{2} 가 정규언어이면 다음 언어도 역시 정규언어이다.

- 1. $L_1 \cup L_2$
- 2. $L_1 \cdot L_2$
- 3. L_{I}^{*}
- ※ 정규언어는 합집합, 접속(concatenation), closure에 대하여 닫혀 있다.
- 예34) 다음 두 문법이 생성하는 언어의 합집합을 생성하는 문법을 구성하시오.

$$P_1: S_1 \to 0S_1 \qquad S_1 \to 0$$

 $P_2: S_2 \to 0S_2 \qquad S_2 \to 1$

(1) 합집합 생성

$$P: S \to S_1 \qquad S \to S_2$$

$$S_1 \to \partial S_1 \qquad S_1 \to \partial$$

$$S_2 \to \partial S_2 \qquad S_2 \to 1$$

(2) 단일생성 규칙 제거

$$P: S \to 0S_1 \ / \ 0 \ / \ 0S_2 \ / \ 1$$

 $S_1 \to 0S_1 \ / \ 0$
 $S_2 \to 0S_2 \ / \ 1$

예35) 다음 두 FA를 접속한 FA를 구성하시오.

(1) M_1 의 final state B에 대해 다음을 구해서 지시선 추가

$$\delta(B, 0) = \delta_{1}(B, 0) \cup \delta_{2}(X, 0) = \phi.$$

$$\delta(B, 1) = \delta_{1}(B, 1) \cup \delta_{2}(X, 1) = \{B\} \cup \{Y\} = \{B, Y\}.$$

$$M: start \longrightarrow A \longrightarrow B$$

$$X \longrightarrow 1 \longrightarrow Y$$

(2) X가 inaccessible state이므로 제거

3.4.4 정규 언어에 대한 Pumping Lemma

Pumping Lemma -- 정규언어의 속성으로 어떤 언어가 정규언어가 아님을 증명 하는데 유용한 보조 정리.

[정리 3.5] 정규 언어의 속성

L이 정규언어라 하자. ω 가 L에 속하는 string이고 어떤 p에 대하여 $|\omega| \ge p$ 일 때, ω 는 xyz로 쓸 수 있으며, 모든 $i \ge 0$ 에 대해서 xy^iz 는 L에 속한다. 여기서, |y|는 p보다 작다.

(ω 는 충분히 큰 string이고 y는 ω 의 substring으로 반복되는 부분임)

(증명) 유한자동 언어 L을 인식하는 유한자동 M이 n개의 state를 가질 때길이가 n보다 큰 string ω 를 인식하려면 반드시 두 번 이상 경유하는 state가 있어야 한다. 이 때 두 번 이상 경유하는 state를 q_1 이라 하면,

$$\delta(q_0, Xyz) = \delta(q_1, yz) = \delta(q_1, z) = q_1 \in F$$

를 만족하는 $\omega=xyz$ 가 존재한다. 즉, q_I 에서 하나 이상의 state를 거쳐 y를 처리하고 나면 다시 q_1 으로 되돌아가는 substring y가 존재한다. 따라서 유한자동 M에 의하여 xy \dot{z} 를 인식할 수 있으며, xy \dot{z} 도 역시 유한자동 언어 L에 속한다.

※ 길이가 충분히 큰 string이 정규 언어에 속하려면 반드시 *xyz*의 형태로 표시되며, *xv/z*도 역시 그 정규 언어에 속한다.

예36) $L = \{a^nb^n \mid n \ge 1\}$ 은 정규언어가 아님을 증명하시오.

(증명) L을 인식하는 유한자동 M이 k개의 state로 구성된다고 가정할 때 k보다 큰 string $\omega = a^{k+1}b^{k+1}$ 을 인식하기 위하여 M은 반드시 같은 state를 두 번 이상 경유하게 된다.

이 때 두 번 경유되는 state를 p라 하면,

 $\delta(q_0, \omega_1) = p$, $\delta(p, \omega_2) = p$, $\delta(p, \omega_3) = q_f \in F$

를 만족하는 ω=ω1ω2ω3가 존재한다.

따라서 Pumping Lemma에 의해 M은 $\omega_1 \, \omega_2 \, \omega_2 \, \omega_3$ 을 인식하게 된다.

만약 반복되는 substring w2가 모두 a로 이루어져 있다면

ω₁ω₂ω₂ω₃는 b보다 a의 개수가 더 많아지고,

 ω_2 가 모두 b로 이루어져 있다면, $\omega_1 \omega_2 \omega_2 \omega_3$ 는 a보다 b의 개수가 더 많아진다.

 ω_2 가 모두 a,b로 이루어져 있다면, $\omega_1 \omega_2 \omega_2 \omega_3$ 는 $a^m b^n a^n b^n$ 형태가 된다. 따라서 $\omega_1 \omega_2 \omega_2 \omega_3$ 는 L에 속하지 않게 되는데 M이 이를 인식하는 것은 모순이므로 L을 인식하는 어떠한 유한자동도 존재하지 않으며 L은 정규언어가 될 수 없다.

<숙제> 3장 연습문제 풀이