April 2014

FSA1259A

Low-Voltage, 1 Ω Dual SPST Analog Switch with Power-Off Isolation

Features

- Power-Off Isolation (V_{CC}=0 V)
- 1 Ω On Resistance (R_{ON}) for 4.5V V_{CC}
- 0.25 Ω Maximum R_{ON} Flatness for 4.5 V V_{CC}
- Space-Saving, US8 Surface Mount Package
- Broad V_{CC} Operating Range: 1.65 V to 5.50 V
- Fast Turn-On and Turn-Off Times
- Break-Before-Make Enable Circuitry

Applications

- Cellular Phone
- Portable Media Player
- PDA

Description

The FSA1259A is a high-performance, dual, Single-Pole / Single-Throw (SPST) analog switch. The device features ultra-low R_{ON} of 1 Ω at 4.5 V V_{CC} and operates over the wide V_{CC} range of 1.65 V to 5.50 V.

The FS1259A allows for reduced input thresholds on the select pins.

The device is fabricated with sub-micron CMOS technology to achieve fast switching speeds and is designed for break-before-make operation.

Ordering Information

Part Number	Top Mark	Operating Temperature Range	Package	Packing Method
FSA1259AK8X	59A	-40°C to +85°C	8-Lead US8, JEDEC MO-187, Variation CA, 3.0 mm Wide	3000 Units Tape and Reel

Figure 1. Analog Symbols

Pin Assignments

Figure 2. Pin Assignments (Top View)

Pin Definitions

Pin#	Name	Description
1	1A	Data Port
2	1B	Data Port
3	2S	Control Input
4	GND	Ground
5	2A	Data Port
6	2B	Data Port
7	1S	Control Input
8	V _{CC}	Supply Voltage

Truth Table

Control Input (S)	Function
LOW	Disconnected
HIGH	A Connected to B

Absolute Maximum Ratings

Stresses exceeding the absolute maximum ratings may damage the device. The device may not function or be operable above the recommended operating conditions and stressing the parts to these levels is not recommended. In addition, extended exposure to stresses above the recommended operating conditions may affect device reliability. The absolute maximum ratings are stress ratings only.

Symbol	Parameter	Min.	Max.	Unit
V _{CC}	Supply Voltage	-0.5	7.0	V
V _{SW}	Switch Voltage ⁽¹⁾	-0.5	V _{CC} +-0.5	V
V _{IN}	Input Voltage ⁽¹⁾	-0.5	6.5	V
I _{IK}	Input Diode Current		-50	mA
I _{SW}	Switch Current (Continuous)		200	mA
I _{SWPEAK}	Peak Switch Current (Pulsed at 1 ms Duration, <10% Duty Cycle)		400	mA
P _D	Power Dissipation at 85°C		3.0	μW
T _{STG}	Storage Temperature Range	-65	+150	°C
TJ	Maximum Junction Temperature		+150	°C
T _L	Lead Temperature (Soldering, 10 seconds)		+260	°C
	Human Body Model (JEDEC: JESD22-A114)		8000	V
ESD	Charged Device Model (JEDEC: JESD22-C101)		2000	V
	Machine Model (JEDEC: JESD22-A115)		350	V

Note:

1. The input and output negative ratings may be exceeded if the input and output diode current ratings are observed.

Recommended Operating Conditions

The Recommended Operating Conditions table defines the conditions for actual device operation. Recommended operating conditions are specified to ensure optimal performance to the datasheet specifications. Fairchild does not recommend exceeding them or designing to Absolute Maximum Ratings.

Symbol	Parameter	Min.	Max.	Unit
V_{CC}	Supply Voltage	1.65	5.50	V
A _{SEL}	Control Input Voltage ⁽²⁾	0	V_{CC}	V
V_{SW}	Switch Input Voltage	0	V_{CC}	V
T _A	Operating Temperature	-40	+85	°C
θ_{JA}	Thermal Resistance, Still Air		215	°C/W

Note:

2. Control Input must be held HIGH or LOW; it must not float.

Electrical Characteristics

All typical values are at 25°C unless otherwise specified.

Cumbal	Doromotor	V 00	Conditions	1	Γ _A =+25°	С	T _A =-40 to +85°C			
Symbol	Parameter	V _{cc} (V)	Conditions	Min.	Тур.	Max.	Min.	Max.	Unit	
		4.50 to 5.50					1.0			
V_{IH}	Input Voltage High	3.00 to 3.60					1.0		V	
VIH	iliput voltage riigii	2.30 to 2.70					0.95		V	
		1.65 to 1.95					0.95			
		4.50 to 5.50						0.75		
V_{IL}	Input Voltage Low	3.00 to 3.60						0.65	V	
VIL	input voltage Low	2.30 to 2.70						0.55	V	
		1.65 to 1.95						0.5		
		5.50	V _{IN} =0 or V _{CC}	-10		10	-50	50		
	Control Input	3.60	V _{IN} =0 or V _{CC}	-2		2	-20	20	nA	
I _{IN}	Leakage	2.70	V _{IN} =0 or V _{CC}	-2		2	-20	20	IIA	
/		1.95	V _{IN} =0 or V _{CC}	-2	A_{i}	2	-20	20		
. Off-Leakage	5.50	A=1 V, B=4.5V or B=4.5 V, A= 1V	-10		10	-50	50			
	3.60	A=1 V, B=3.0 V or B=3.0 V, A=1 V	-5		5	-50	50	nA		
INO(0FF)	Current	2.70	A=0.5 V, B=2.3 V or B=2.3, A=0.5 V	-5		5	-50	50	ПА	
		1.95	A=0.3 V, B=1.65 V or B=1.65, A=0.3 V	-5		5	-50	50		
		5.50	A=Floating; B=4.5 V, 1 V	-5		5	-50	50		
	On-Leakage	3.60	A=Floating; B=3.0 V, 1 V	-2		2	-20	20		
I _{NO(On)}	Current of Port B	2.70	A=Floating; B=2.3 V, 0.5 V	-2		2	-20	20	nA	
		1.95	A=Floating; B=1.65 V, 0.3 V	-2		2	-20	20		
		5.50	A=1 V, 4.5 V; B=Floating	-5		5	-50	50		
	On-Leakage	3.60	A=1 V, 3.0 V; B=Floating	-2		2	-20	20		
I _{A(ON)} Current of Port A		2.70	A=0.5 V, 2.3; B=Floating	-2		2	-20	20	- nA	
		1.95	A=0.3 V, 1.65 V; B=Floating	-2		2	-20	20		
I _{OFF}	Power Off Leakage Current of Port A & Port B	0	A=0 to 5.5 V; B=0 to 5.5 V	-1		1	-10	10	μА	

Electrical Characteristics (Continued)

All typical values are at 25°C unless otherwise specified.

Symbol	Parameter	V _{cc} (V)	Cond	ditions	T _A =+25°C			T _A =-40 to +85°C		Unit	
,					Min.	Тур.	Max.	Min.	Max.		
		4.50	I _{OUT} =-100 mA 1B or 2B=0 to			0.8	1.0		1.2		
	Davida On	3.00	I _{OUT} =-100 mA 1B or 2B=0 to	V _{CC}		1.0	1.5		1.8		
R_{PEAK}	Peak On Resistance	2.30	I _{OUT} =-8 mA, 1B or 2B=0 to	V _{CC}		1.5	2.0		2.5	Ω	
		1.65	I _{OUT} =-2 mA, 1B or 2B=0	T _A =25, 85°C		5.0	12.0		15.0		
			to V _{CC}	T _A =-40°C		20.0					
		4.50	I _{OUT} =-100 mA 1B or 2B=2.5			0.70	0.85		1.00	_	
Б	Switch On	3.00	I _{OUT} =-100 mA 1B or 2B=2.0			0.9	1.3		1.6	Ω	
R _{on}	Resistance ⁽³⁾	2.30	I _{OUT} =-8 mA, 1B or 2B=1.8	V		1.4	2.0		2.4	Ω	
	1.0		I _{OUT} =-2 mA, 1B or 2B=1.5	V		2.0	2.5		3.5		
	On Resistance	4.50	I _{OUT} =-100 mA 1B or 2B=2.5			0.05	0.10		0.10		
		3.00	I _{OUT} =-100 mA 1B or 2B=2.0			0.10	0.15		0.15		
ΔR_{ON}	Matching Between Channels ⁽⁴⁾	2.30	I=-8 mA, 1B or 2B=1.8	V		0.15	0.20		0.20	Ω	
		1.65	I _{OUT} =-2 mA 1B or 2B=1.5	V		0.15	0.40		0.40		
		4.50	I _{OUT} =-100 mA 2B=1.0 V, 1.5			0.10	0.25		0.25		
	On Resistance	3.00	I _{OUT} =-100 mA 1B or 2B=0.8	v, 2.0 V		0.1	0.3		0.3		
R _{FLAT(ON)}	Flatness ⁽⁵⁾	2.30	I _{OUT} =-8 mA, 1B or 2B=0.8	V, 1.8 V		0.2	1.0		1.0	Ω	
		1.65	I _{OUT} =-2 mA, 1B or 2B=0.6	V, 1.5 V		1.5					
		5.50	V _{IN} =0 or V _{CC} ,	I _{OUT} =0		5	50		500		
	Quiescent Supply	3.60	V _{IN} =0 or V _{CC} ,	I _{OUT} =0		1	25		300		
I _{cc}	Current	2.70	V _{IN} =0 or V _{CC} ,	I _{OUT} =0		1	20		250	nA	
		1.95	V_{IN} =0 or V_{CC} ,	I _{OUT} =0		1	15		150		
I _{CCT}	Increase in I _{CC} per Control Input	4.5 to 5.5	Asel=1.8 V			25			40	μA	

- On resistance is determined by the voltage drop between the A and B pins at the indicated current through
- ΔR_{ON}=R_{ON} maximum R_{ON} minimum; measured at identical V_{CC}, temperature, and voltage.
 Flatness is defined as the difference between the maximum and minimum value of on resistance over the specified range of conditions.

AC Electrical Characteristics

All typical values are at V_{CC} =1.8 V, 2.5 V, 3.0 V, 5.0 V at 25°C unless otherwise specified.

Symbol	Parameter	V _{cc} (V)	Conditions	T _A =+25°C		С		40 to 5°C	Unit	Figure	
1				Min.	Тур.	Max.	Min.	Max.			
		4.50 to 5.50		1.0	4.0	7.5	1.0	9.0			
	T 0 T	3.00 to 3.60	1B or 2 B=V _{CC} ,	1.5	6.0	9.5	1.0	10.0		F: 44	
t _{ON}	Turn-On Time	2.30 to 2.70	R_L =50 Ω , C_L =35 pF	2.0	8.0	10.0	1.0	12.0	ns	Figure 11	
		1.65 to 1.95		3.0	14.0	18.0	1.0	20.0			
		4.50 to 5.50		4.5	13.0	17.0	3.5	20.0			
	T 0"T	3.00 to 3.60	1B or 2B=V _{CC} ,	4.5	13.5	17.0	3.0	20.0		Figure 11	
t _{OFF}	Turn-Off Time	2.30 to 2.70	R_L =50 Ω , C_L =35 pF	4.5	16.0	20.0	3.0	23.0	ns		
		1.65 to 1.95		5.0	24.0	33.0	4.0	36.0			
		4.50 to 5.50			15						
	Observation	3.00 to 3.60	C _L =1.0 nF,		11				pC	Figure 13	
Q	Charge Injection	2.30 to 2.70	V_{GEN} =0 V, R _{GEN} =0 Ω		8						
		1.65 to 1.95			6						
OIRR	Off-Isolation	1.8 to 5.0	f=1 MHz, R _L =50 Ω		-60				dB	Figure 12	
Xtalk	Crosstalk	1.8 to 5.0	f=1 MHz, R _L =50 Ω		-73				dB	Figure 12	
		4.50 to 5.50			240						
BW	-3 db Bandwidth	3.00 to 3.60	D =50 O		240				l MII-		
DVV	-3 db Bandwidth	2.30 to 2.70	R _L =50 Ω		240				MHz	Figure 15	
		1.65 to 1.95			240						
THD	Total Harmonic	1.8	R _L =600 Ω, V _{IN} =0.5 V _{PP} ,		.003				%	Figure 16	
וווט	Distortion	5.0	f=20 Hz to 20 kHz		.001				70	Figure 16	

Capacitance

Complete	Downwoodow	V 00	Conditions		11!4			
Symbol	Parameter	V _{cc} (V)	V _{CC} (V) Conditions		Тур.	Max.	Unit	
C _{IN}	Control Pin Input Capacitance	0	f=1 MHz Figure 14		3		pF	
C _{OFF}	B Port Off Capacitance	1.65 to 5.50	f=1 MHz Figure 14		21		pF	
C _{ON}	A Port On Capacitance	1.65 to 5.50	f=1 MHz Figure 14		47	- /	pF	

Test Diagrams

 \mathbf{C}_{L} includes fixture and stray capacitance.

Logic input waveforms inverted for switches that have the opposite logic sense.

Figure 11. Turn On / Off Timing

Figure 12. Off Isolation and Crosstalk

Figure 13. Charge Injection

Test Diagrams (Continued)

Figure 14. On / Off Capacitance Measurement Setup

Figure 15. Bandwidth

Figure 16. Harmonic Distortion

Physical Dimensions

RECOMMENDED LAND PATTERN

SIDE VIEW

NOTES:

- A. CONFORMS TO JEDEC REGISTRATION MO-187
- B. DIMENSIONS ARE IN MILLIMETERS.
- C. DIMENSIONS ARE EXCLUSIVE OF BURRS, MOLD FLASH, AND TIE BAR EXTRUSIONS.
- D. DIMENSIONS AND TOLERANCES PER ANSI Y14.5M, 1994.
- E. FILE DRAWING NAME: MKT-MAB08Arev4

Figure 17. 8-Lead US8, JEDEC MO-187, Variation CA, 3.0 mm Wide Package

Package drawings are provided as a service to customers considering Fairchild components. Drawings may change in any manner without notice. Please note the revision and/or date on the drawing and contact a Fairchild Semiconductor representative to verify or obtain the most recent revision. Package specifications do not expand the terms of Fairchild's worldwide terms and conditions, specifically the warranty therein, which covers Fairchild products.

Always visit Fairchild Semiconductor's online packaging area for the most recent package drawings: http://www.fairchildsemi.com/packaging/. http://www.fairchildsemi.com/dwg/MA/MAB08A.pdf

For current packing container specifications, visit Fairchild Semiconductor's online packaging area: http://www.fairchildsemi.com/packing_dwg/PKG-MAB08A_HANABK.pdf

TRADEMARKS

The following includes registered and unregistered trademarks and service marks, owned by Fairchild Serriconductor and/or its global subsidiaries, and is not intended to be an exhaustive list of all such trademarks.

AccuPower^{TI} AX-CAP® BitSiC™ Build it Now™ CorePLUS™ CorePOWER** CROSSVOLT" CTL™ Current Transfer Logic™

DEUXPEED⁶ Dual Cool™ EcoSPARK® EfficientMa×™ ESBC™

Fairchild® Fairchild Semiconductor® FACT Quiet Series™

FACT® FAST® FastvCore™ FETBench™ **FPSTM**

FRFET®

Global Power Resource^{su} Green Bridge™ Green FPS™ Green FPS™ e-Series™

Gmax™ GTO™ IntelliMAX™ ISOPLANAR™

Making Small Speakers Sound Louder

and Better™ MegaBuck™ MICROCOUPLER™ MicroEET** MicroPak™

MicroPak2™ MillerDrive™ MotionMax™ mWSaver⁶ OptoHiT™ OPTOLOGIC® OPTOPLANAR® PowerTrench® PowerXS™

Programmable Active Droop™

QFET QSTM Quiet Series** RapidConfigure™ OTM.

Saving our world, 1mW/W/kW at a time™

SignalWise™ SmartMax™ SMART STARTM

Solutions for Your Success™ SPM®

STEALTH™ SuperFET® SuperSOT**3 SuperSOT™-6 SuperSOT™-8 SupreMOS® SyncFET** Svnc-Lock™

SYSTEM STERNES

TinyBoost® TinyBuck® TinyCalc™ TinyLogic[®] TINYOPTO** TinyPower™ TinyPVM™ TinyWire™ TranSiC™ TriFault Detect™ TRUECURRENT®* uSerDes™

UHC[™] Ultra FRFET™ UniFET™ VCXTM VisualMax™ VoltagePlus™ XSTM 仙童™

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION, OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS. THESE SPECIFICATIONS DO NOT EXPAND THE TERMS OF FAIRCHILD'S WORLDWIDE TERMS AND CONDITIONS, SPECIFICALLY THE WARRANTY THEREIN, WHICH COVERS THESE PRODUCTS

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION.

- Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury of the user
- 2. A critical component in any component of a life support, device, or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

ANTI-COUNTERFEITING POLICY

Fairchild Semiconductor Corporation's Anti-Counterfeiting Policy. Fairchild's Anti-Counterfeiting Policy is also stated on our external website, www.fairchildsemi.com, under Sales Support

Counterfeiting of semiconductor parts is a growing problem in the industry. All manufacturers of semiconductor products are experiencing counterfeiting of their parts. Customers who inadvertently purchase counterfeit parts experience many problems such as loss of brand reputation, substandard performance, failed applications, and increased cost of production and manufacturing delays. Fairchild is taking strong measures to protect ourselves and our customers from the proliferation of counterfeit parts. Fairchild strongly encourages customers to purchase Fairchild parts either directly from Fairchild or from Authorized Fairchild Distributors who are listed by country on our web page cited above. Products customers buy either from Fairchild directly or from Authorized Fairchild Distributors are genuine parts, have full traceability, meet Fairchild's quality standards for handling and storage and provide access to Fairchild's full range of up-to-date technical and product information. Fairchild and our Authorized Distributors will stand behind all warranties and will appropriately address any warranty issues that may arise. Fairchild will not provide any warranty coverage or other assistance for parts bought from Unauthorized Sources. Fairchild is committed to combat this global problem and encourage our customers to do their part in stopping this practice by buying direct or from authorized distributors

PRODUCT STATUS DEFINITIONS

Datasheet Identification	Product Status	Definition				
Advance Information	Formative / In Design	Datasheet contains the design specifications for product development. Specifications may change in any manner without notice.				
Preliminary	First Production	Datasheet contains preliminary data, supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve design.				
No Identification Needed	Full Production	Datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve the design.				
Obsolete	Not In Production	Datasheet contains specifications on a product that is discontinued by Fairchild Semiconductor. The datasheet is for reference information only.				

Rev. 168

^{*} Trademarks of System General Corporation, used under license by Fairchild Semiconductor,