■ 반복이 있는 이원배치법

○ 실험 설계

- \circ 수준 수가 a인 요인 A, 수준 수가 b인 요인 B, 반복 수가 r
- \circ $a \times b \times r$ 실험 전체를 완전 확률화
- 반복이 없는 이원배치법과의 비교
 - 요인의 조합의 효과(**상호작용, 교호작용, interaction**)를 분리하여 계산
 - 실험오차를 줄일 수 있음
 - 반복한 자료로부터 실험의 관리 상태를 검토할 수 있음

○ 자료구조

요인 A	A_1	1	• • •	1
요인 B	A_1	A_2		A_a
B_1	$Y_{111},, Y_{11r}$	$Y_{211},, Y_{21r}$	• • •	$Y_{a11},, Y_{a1r}$
B_{2}	$Y_{121},, Y_{12r}$	$Y_{221},, Y_{22r}$	• • •	$egin{aligned} Y_{a11}, &, Y_{a1r} \ Y_{a21}, &, Y_{a2r} \end{aligned}$
:	:	:	٠.	:
B_b	$Y_{1b1},, Y_{1br}$	$Y_{2b1},, Y_{2br}$	• • •	$Y_{ab1},\;,Y_{abr}$

○ 구조식

$$\begin{aligned} Y_{ijk} &= \ \mu_{ij} + \varepsilon_{ijk} \\ &= \ \mu + (\mu_{i.} - \mu) + (\mu_{.j} - \mu) + (\mu_{ij} - \mu_{i.} - \mu_{.j} + \mu) + \varepsilon_{ijk} \end{aligned}$$

$$\Rightarrow Y_{ijk} = \mu + \alpha_i + \beta_j + (\alpha \beta)_{ij} + \varepsilon_{ijk}, \quad i = 1, ..., a, j = 1, ..., b, k = 1, ..., r,$$

- \circ μ : 전체 평균, α_i : 요인 A의 처리효과, β_i : 요인 B의 처리효과
 - A와 B를 주효과(main effect)라고 함
- \circ $(\alpha\beta)_{ij}$: 요인 A와 B의 상호작용 효과 (interaction effect)
- \circ $\varepsilon_{ij} \sim \mathsf{iid}\ N(0,\sigma^2)$: 오차항

$$\circ$$
 제약조건: $\sum_{i=1}^{a} \alpha_i = 0$, $\sum_{j=1}^{b} \beta_j = 0$

$$- \sum_{i=1}^{a} (\alpha \beta)_{ij} = 0, \quad j = 1, \dots, b, \quad \sum_{j=1}^{b} (\alpha \beta)_{ij} = 0, \quad i = 1, \dots, a$$

○ 상호작용

- 요인 B의 수준의 변화에 따라 요인 A의 효과가 변하는 경우 상호 작용이 존재한다고 함
 - (예) 요인 A : 촉매, 요인 B : 반응온도
 - 온도 B_1 에서 촉매 A_1 의 인장강도가 촉매 A_2 의 인장강도보다 높은데 반하여 온도 B_2 에서 촉매 A_2 의 인장강도가 촉매 A_1 의 인장강도보다 높을 때 A와 B간에 상호 작용이 있다고 함
- 상호작용이 존재하지 않을 경우, AB의 최적조건은 A 요인의 최적조건을 구하고 B의 최적조건을 구하여 합함
- \circ 상호작용이 존재하는 경우, 모든 수준의 조합 $A_i B_j$ 에서 모평균을 추정함

● 평균반응프로파일(average response profile, treatment means plot)

○ 변동의 분해

$$\begin{split} Y_{ijk} - \overline{Y}_{...} &= (\overline{Y}_{i...} - \overline{Y}_{...}) + (\overline{Y}_{.j.} - \overline{Y}_{...}) \\ &+ (\overline{Y}_{ij.} - \overline{Y}_{i...} - \overline{Y}_{.j.} + \overline{Y}_{...}) + (Y_{ijk} - \overline{Y}_{ij.}) \\ TSS &= SSA + SSB + SS(AB) + SSE \end{split}$$

$$\circ TSS = \sum_{i=1}^{a} \sum_{j=1}^{b} \sum_{k=1}^{r} (Y_{ijk} - \overline{Y}_{...})^2 = \sum_{i=1}^{a} \sum_{j=1}^{b} \sum_{k=1}^{r} Y_{ijk}^2 - \frac{Y_{...}^2}{N} : \forall \exists x \in N-1$$

$$\circ$$
 $SSA = br \sum_{i=1}^{a} (\overline{Y}_{i..} - \overline{Y}_{...})^2 = \sum_{i=1}^{a} \frac{Y_{i..}^2}{br} - \frac{Y_{...}^2}{N}$: 자유도= $a-1$

$$\circ$$
 $SSB = ar \sum_{j=1}^{b} (\overline{Y}_{.j.} - \overline{Y}_{...})^2 = \sum_{j=1}^{b} \frac{Y_{.j.}^2}{ar} - \frac{Y_{...}^2}{N} : 자유도=b-1$

$$\circ$$
 $SSTR = \sum_{i=1}^{a} \sum_{j=1}^{b} \frac{Y_{ij}^{2}}{r} - \frac{Y_{...}^{2}}{N}$: 자유도= $ab-1$

$$\circ SS(AB) = \sum_{i=1}^{a} \sum_{j=1}^{b} \sum_{k=1}^{r} (\overline{Y}_{ij.} - \overline{Y}_{i..} - \overline{Y}_{j.} + \overline{Y}_{...})^{2} = SSTR - SSA - SSB$$

- 자유도:
$$ab-1-(a-1)-(b-1)=(a-1)(b-1)$$

$$\circ$$
 $SSE = \sum_{i=1}^{a} \sum_{j=1}^{b} \sum_{k=1}^{r} (Y_{ijk} - \overline{Y}_{ij.})^2$: 자유도 $ab(r-1)$

- 자유도:
$$N-1-(ab-1)=ab(r-1)$$

○ 가설 검정

○ 요인 A의 처리 효과의 동일성 검정

$$H_0: \alpha_1 = \alpha_2 = \cdots = \alpha_a = 0$$

○ 요인 B의 처리 효과의 동일성 검정

$$H_0: \beta_1 = \beta_2 = \cdots = \beta_b = 0$$

○ 상호작용의 효과

$$H_0: (\alpha \beta)_{11} = (\alpha \beta)_{12} = \cdots = (\alpha \beta)_{ab} = 0$$

○ 분산분석표

	변인	자유도	제곱합	평균제곱	F
	처리	ab-1	SSTR	MSTR	MSTR/MSE
	처리 A	a-1	SSA	MSA	MSA/MSE
	처리 B	b-1	SSB	MSB	MSB/MSE
	상호작용	(a-1)(b-1)	SS(AB)	MS(AB)	MS(AB)/MSE
오	차	ab(r-1)	SSE	MSE	
전	체	N-1	TSS		

● 상호작용효과가 유의하면 주효과가 유의하지 않더라도 주효과를 모형에서 생략하지 않음

사이의 조승규	B요인과의		
A요인 주효과	상호작용효과	A요인의 효과	
있음	있음	있음	
있음	없음	있음	
없음	있음	있음	
없음	없음	없음	

- B요인의 적어도 한 수준에서 A요인의 효과가 있으면 A요인은 효과 있음
- B요인의 모든 수준에서 A요인의 효과가 없으면 A요인은 효과 없음

○ 분산분석후의 추정 (모수 모형)

- \circ $\mu(A_i)$ 와 $\mu(B_i)$ 의 구간추정
 - $\overline{Y}_{i..} \pm t_{\alpha/2,ab(r-1)} \sqrt{MSE/br}$
 - $\overline{Y}_{.j.} \pm t_{\alpha/2,ab(r-1)} \sqrt{MSE/ar}$
- \circ $\mu(A_iB_i)$ 의 구간추정
 - \overline{Y}_{ij} $\pm t_{\alpha/2,ab(r-1)} \sqrt{MSE/r}$

○ 상호작용이 있는 경우 다중비교

- $H_0: \mu_{ij} = \mu_{kl}$ vs $H_1: \mu_{ij} \neq \mu_{kl}$ 또는 $\mu_{ij} \mu_{kl}$ 의 신뢰구간
- \bullet $\overline{Y}_{ij.}$ $-\overline{Y}_{kl.} \pm c\sqrt{MSE}\sqrt{1/r+1/r}$
 - \circ 최소유의차: $c = t_{\alpha/2,ab(r-1)}$
 - \circ Bonferroni: $c=t_{lpha/(2k),ab(r-1)}$, k= 비교검정의 경우의 수
 - \circ Scheffe: $c = \sqrt{(ab-1)F_{\alpha,ab-1,ab(r-1)}}$
 - \circ Tukey: $\frac{1}{\sqrt{2}}q_{\alpha,ab,ab(r-1)}$

■ 강낭콩의 비타민-C 함량 비교

○ 요인 A: 저장 온도 F^0 (0, 10, 20)

○ 요인 B: 저장 기간 (2주, 4주, 6주, 8주)

○ 반복 수: 3 ⇨ 총 36개의 강낭콩을 완전 확률화 계획법으로 시험

○ 조합별 합계만을 표시

저장기간 저장온도	2주	4주	6주	8주	합계	평균
0	45	47	46	46	184	46.0
10	45	43	41	37	166	41.5
20	34	28	21	16	99	24.8
합계	124	118	108	99	449	
평균	41.3	39.3	36.0	33.0		37.8

$$-\sum_{i}\sum_{j}\sum_{k}y_{ijk}^{2} = 6025.95$$

○ 변동분해

$$- TSS = 425.92$$

- 보정항: CT =
$$449^2/36 = 5600.03$$

-
$$SSAB = \frac{1}{3}(45^2 + 47^2 + \dots + 16^2) - CT = 408.97$$

-
$$SSA = \frac{1}{12}(184^2 + 166^2 + 99^2) - CT = 334.39$$

-
$$SSB = \frac{1}{9}(124^2 + 118^2 + 108^2 + 99^2) - CT = 40.53$$

-
$$SS(AB) = SSAB - SSA - SSB = 408.97 - 334.39 - 40.53 = 34.05$$

-
$$SSE = 425.92 - 408.97 = 16.95$$

○ 분산분석표

변인	자유도	제곱합	평균제곱	F
온도	2	334.39	167.20	236.83
기간	3	40.53	13.51	19.14
상호작용	6	34.05	5.68	8.04
오차	24	16.95	0.706	
전체	35	425.92		

- 5% 유의수준에서 모든 처리 효과가 유의
- 처리평균그림(treatment mean plot) 작성해보기
- 처리평균그림에 의하면 비타민 C의 함유량이 저장온도가 높아질수록 감소하고 있는 것은 사실이지만 그 감소 경향이 저장기간에 따라 같지 않다는 것을 보여줌