Managing data and code in the chemical biology laboratory

Sergio Martínez Cuesta

CAMBRIDGE INSTITUTE

The Balasubramanian laboratories

The chemistry and biology of nucleotide modifications and G-quadruplexes in DNA and RNA

90% Experimental 10% Computational

Projects and methods

Nucleotide modifications

- Mapping modified bases (e.g. 5hmC and 5fC) in genomes and transcriptomes
- Quantifying abundances using mass spectrometry
- Chemical synthesis

G-quadruplexes

- Mapping in DNA and RNA
- Biophysical characterization
- Drug discovery

Data

Illumina MiSeq and NextSeq

Primary: .fastq files

Containing raw sequencing reads

Secondary: .bam and .bed files

Containing processed (aligned) reads

Tertiary: tables and figures

Long-term storage importance

Data management

Compute nodes

Analysis/calculations on raw files

No backup 🧭

Archive

Primary

Backup 😬

Server

Secondary

Backup 😬

Limited (12TB)

Public folders

Tertiary

Backup 😁

To share with collaborators

Data management

But what if archive (and backup) fails?

Genomics core LIMS

BaseSpace SEQUENCE HUB

Does it work? Ideally ...

Primary Secondary Tertiary

Primary files naming convention

fk468 PCF-b2-oxhyd-1.fastq.gz e.g.

Collaborator: fk (Fumiko Kawasaki) Batch: b2

Experiment number: 468 Treatment: oxhyd

Life cycle stage: PCF Replicate: 1

Project timeline

Close data

Open data

Private code

Public code

Code management

From tests to computational method ...

Python R C Java Bash

Markdown (.md)

early stages of development

/epigenetics-of-glioblastoma

BRIEF COMMUNICATION

OPEN

Base resolution maps reveal the importance of 5-hydroxymethylcytosine in a human glioblastoma

Eun-Ang Raiber¹, Dario Beraldi¹, Sergio Martínez Cuesta¹, Gordon R. McInroy², Zoya Kingsbury³, Jennifer Becq³, Terena James³, Margarida Lopes³, Kieren Allinson⁴, Sarah Field¹, Sean Humphray³, Thomas Santarius⁵, Colin Watts⁵, David Bentley³ and Shankar Balasubramanian^{1,2,6}

/dna-secondary-struct-chrom-lands

genetics

G-quadruplex structures mark human regulatory chromatin

Robert Hänsel-Hertsch¹, Dario Beraldi¹, Stefanie V Lensing¹, Giovanni Marsico¹, Katherine Zyner¹, Aled Parry¹, Marco Di Antonio², Jeremy Pike¹, Hiroshi Kimura³, Masashi Narita¹, David Tannahill¹ & Shankar Balasubramanian^{1,2,4}

. . .

Challenges

What data/code to share? When?

What do we do with the private code when the project is finished?

Is internal peer review of code useful before public release?

Questions? Thanks!