D. homogeneous mixture

E. compound

1) Lead (II) carbonate decomposes to give lead (II) oxide and carbon dioxide: 1) PbCO ₃ (s) → PbO (s) + CO ₂ (g) How many grams of lead (II) oxide will be produced by the decomposition of 2.50 g of lead (II) carbonate? A. 0.41 B. 2.61 C. 2.50	
How many grams of lead (II) oxide will be produced by the decomposition of 2.50 g of lead (II) carbonate? A. 0.41 B. 2.61	
carbonate? A. 0.41 B. 2.61	
D. 2.09 E. 0.00936	
2) The formula weight of potassium dichromate (K ₂ Cr ₂ O ₇) is amu. 2) A. 107.09 B. 255.08 C. 242.18 D. 294.18 E. 333.08	
3) A combination of sand, salt, and water is an example of a 3) A. solid B. heterogeneous mixture C. pure substance	

4)	When	the following	gequation	is balanced,	the coefficients	are
,			9 - 1	,		

|--|

$$C_8H_{18} + O_2 \rightarrow CO_2 + H_2O$$

- A. 2, 25, 16, 18
- B. 2, 12, 8, 9
- C. 1, 4, 8, 9
- D. 2, 3, 4, 4
- E. 4, 4, 32, 36

5) Which atom has the largest number of neutrons?

5) _____

6) _____

- A. potassium-39
- B. chlorine-37
- C. phosphorus-30
- D. argon-40
- E. calcium-40

- 6) There are _____ protons, _____ neutrons, and _____ electrons in ²³⁸U+5.
 - A. 92, 92, 87
 - B. 92, 146, 87
 - C. 92, 146, 92
 - D. 146, 92, 92
 - E. 146, 92, 146

7) Which one of the following is an intensive property? A. mass B. amount C. temperature D. volume E. heat content	7)
8) Which compounds do not have the same empirical formula? A. C ₂ H ₄ , C ₃ H ₆ B. CO, CO ₂ C. C ₂ H ₅ COOCH ₃ , CH ₃ CHO D. C ₂ H ₄ O ₂ , C ₆ H ₁₂ O ₆ E. C ₂ H ₂ , C ₆ H ₆	8)
 9) An element cannot A. be part of a heterogeneous mixture B. be part of a homogeneous mixture C. be a pure substance D. interact with other elements to form compounds E. be separated into other substances by chemical means 	9)
10) How many atoms of nitrogen are in 10 g of NH ₄ NO ₃ ? A. 3.5 B. 2 C. 3.0×10^{23} D. 1.5×10^{23} E. 1.8	10)

11) The correct answer (reported to the proper number of significant figures) to the following is

11) _____

- A. 17.4
- B. 17.0
- C. 17.37
- D. 17.40
- E. 17.367

12) Of the following, _____ is the largest mass.

12) _____

- A. 2.5×10^{-2} mg
- B. $2.5 \times 10^{15} \text{ pg}$
- C. 2.5×10^{10} ng
- D. 2.5×10^9 fg
- E. 25 kg

13) Elements _____ exhibit similar physical and chemical properties.

13) _____

- A. with similar chemical symbols
- B. with similar atomic masses
- C. on opposite sides of the periodic table
- D. in the same group of the periodic table
- E. in the same period of the periodic table

14) A cube of an unknown metal measures 0.250 cm on one side. The mass of the cube is 0.095 g.	14)
Which of the following is most likely the unknown metal?	
Which of the following is most likely the unknown metal? Metal Density (g/cm³) rhodium 12.4 copper 8.96 niobium 8.57 vanadium 6.11 zirconium 6.51 A. vanadium B. zirconium C. copper D. rhodium E. niobium	
15) Calculate the percentage by mass of hydrogen in PtCl ₂ (NH ₃) ₂ . A. 0.672 B. 2.016 C. 0.034 D. 1.008 E. 1.558	15)
16) The correct name for MgF ₂ is A. manganese bifluoride B. magnesium difluoride C. magnesium fluoride D. monomagnesium difluoride E. manganese difluoride	16)

The average atomic mass of silver is 107.8682 amu. The fractional abundance of the lighter of the two isotopes is _____.

- A. 0.24221
- B. 0.51835
- C. 0.75783
- D. 0.90474
- E. 0.48168

18) Which of the following are combustion reactions?

1)
$$CH_4(g) + O_2(g) - CO_2(g) + H_2O(l)$$

3)
$$PbCO_3$$
 (s) $\rightarrow PbO$ (s) + CO_2 (g)

4)
$$CH_3OH(l) + O_2(g) \rightarrow CO_2(g) + H_2O(l)$$

- A. 2, 3, and 4
- B. 3 and 4
- C. 1, 3, and 4
- D. 1 and 4
- E. 1, 2, 3, and 4

Answer Key
Testname: PRACTICE_EXAM_1

- 1) D 2) D 3) B
- 4) A 5) D 6) B 7) C 8) B 9) E 10) D 11) C 12) E 13) D

- 14) A 15) B 16) C 17) B 18) D

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

1) In which set of elements would all members be expected to have very similar chemical properties? A. Na, Mg, K B. Ne, Na, Mg C. O, S, Se D. N, O, F E. S, Se, Si
 2) Screening of the nuclear charge by core electrons in atoms is A. essentially identical to that by valence electrons B. more efficient than that by valence electrons C. less efficient than that by valence electrons D. responsible for a general decrease in atomic radius going down a group E. both essentially identical to that by valence electrons and responsible for a general decrease in atomic radius going down a group
3) Atomic radius generally decreases as we move A. down a group; the period position has no effect B. down a group and from right to left across a period C. up a group and from left to right across a period D. down a group and from left to right across a period E. up a group and from right to left across a period

- 4) Of the choices below, which gives the order for first ionization energies?
 - A. Ga > Ge > Se > Br > Kr
 - B. Br > Se > Ga > Kr > Ge
 - C. Kr > Se > Br > Ga > Ge
 - D. Ga > Br > Ge > Kr > Se
 - E. Kr > Br > Se > Ge > Ga

- 5) Which equation correctly represents the electron affinity of calcium?
 - A. $Ca^{-}(g) \rightarrow Ca(g) + e^{-}$
 - B. Ca (g) \rightarrow Ca+ (g) + e-
 - C. Ca (g) \rightarrow Ca⁻ (g) + e⁻
 - D. Ca (g) + $e^- \rightarrow Ca^-(g)$
 - E. $Ca^{+}(g) + e^{-} \rightarrow Ca(g)$

- 6) The list that correctly indicates the order of metallic character is _____.
 - $A.\ O\ >\ Se\ >\ S$
 - B. Sr > Ca > Mg
 - C. F > Cl > Br
 - D. Li > Na > K
 - E. C > Ge > Si

- 7) Which of the following has eight valence electrons?
 - A. Cl-
 - B. Ti⁴⁺
 - C. Na+
 - D. Kr
 - E. all of the above

The diagram below is the Born-Huber cycle for the formation of crystalline potassium fluoride.

- 8) Which energy change corresponds to the electron affinity of fluorine?
 - A. 2
 - B. 5
 - C. 1
 - D. 6
 - E. 4

- 9) Which of the following has the bonds correctly arranged in order of increasing polarity?
 - A. O–F, Be–F, Mg–F, N–F
 - B. Mg-F, Be-F, N-F, O-F
 - C. O-F, N-F, Be-F, Mg-F
 - D. N-F, Be-F, Mg-F, O-F
 - E. Be-F, Mg-F, N-F, O-F

- 10) Resonance structures differ by _____.
 - A. number of atoms only
 - B. placement of electrons only
 - C. number of electrons only
 - D. placement of atoms only
 - E. number and placement of electrons

- 11) A valid Lewis structure of _____ cannot be drawn without violating the octet rule.
 - A. NF₃
 - B. CF₄
 - C. PO₄3-
 - D. SeF₄
 - E. SiF₄

12) Using the table of average bond energies below, the ΔH for the reaction is _____ kJ.

$$H-C = C-H\left(g\right) + H-I\left(g\right) \rightarrow H_{2}C = CHI\left(g\right)$$

Bond: C=C C=C H-I C-I C-H D (kJ/mol): 839 614 299 240 413

- A. -931
- B. +506
- C. +129
- D. -506
- E. -129

Answer Key
Testname: PRACTICE_EXAM_3

- 1) C 2) B 3) C 4) E 5) D 6) B 7) E 8) E 9) C 10) B 11) D 12) E

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

- 1) In counting the electron domains around the central atom in VSEPR theory, a _____ is <u>not</u> included.
 - A. core level electron pair
 - B. single covalent bond
 - C. double covalent bond
 - D. triple covalent bond
 - E. nonbonding pair of electrons
- 2) The molecular geometry of the BrO₃⁻ ion is _____.
 - A. trigonal pyramidal
 - B. T-shaped
 - C. bent
 - D. trigonal planar
 - E. tetrahedral
- 3) The molecular geometry of the left-most carbon atom in the molecule below is _____.

- A. trigonal bipyramidal
- B. tetrahedral
- C. trigonal planar
- D. T-shaped
- E. octahedral

4) Of the following molecules, only is polar. A. BF3 B. Cl2 C. CBr4 D. BeCl2 E. SiH2Cl2
5) The hybridizations of iodine in IF3 and IF5 are and, respectively. A. sp^3d^2 , sp^3d B. sp^3d^2 , sp^3d^2 C. sp^3 , sp^3d D. sp^3d , sp^3d^2 E. sp^3d , sp^3
6) A typical triple bond A. consists of one σ bond and two π bonds B. consists of three shared electrons C. consists of six shared electron pairs D. is longer than a single bond E. consists of two σ bonds and one π bond
7) Based on molecular orbital theory, the bond orders of the H—H bonds in H ₂ , H ₂ +, and H ₂ - are respectively A. 1, 0, and 1/2 B. 1, 2, and 0 C. 1, 1/2, and 0 D. 1, 1/2, and 1/2

E. 1, 0, and 0

8) A sample of a gas originally at 29 °C and 1.25 atm pressure in a 3.0 L container is allowed to contract until the volume is 2.2 L and the temperature is 11 °C. The final pressure of the gas is atm. A. 0.38 B. 1.6 C. 2.1 D. 2.9 E. 2.8
9) The amount of gas that occupies 36.52 L at 68.0 °C and 672 mm Hg is mol. A. 1.15 B. 127 C. 12.7 D. 878 E. 24.4
10) The molecular weight of a gas is g/mol if 3.5 g of the gas occupies 2.1 L at STP. A. 5.5×10^3 B. 41 C. 37 D. 4.6×10^2 E. 2.7×10^{-2}
11) SO ₂ (5.00 g) and CO ₂ (5.00 g) are placed in a 750.0 mL container at 50.0 °C. The partial pressure of SO ₂ in the container was atm. A. 0.192 B. 4.02 C. 6.78 D. 2.76 E. 1.60

12) Automobile air bags use the decomposition of sodium azide as their source of gas for rapid inflation:

$$2NaN_3(s) \rightarrow 2Na(s) + 3N_2(g)$$
.

- What mass (g) of NaN₃ is required to provide 40.0 L of N₂ at 25.0 °C and 763 torr?
 - A. 1.64
 - B. 1.09
 - C. 71.1
 - D. 160
 - E. 107
- 13) Arrange the following gases in order of increasing average molecular speed at 25 °C.

- A. He $< O_2 < N_2 < CO_2$
- B. $CO_2 < He < N_2 < O_2$
- C. He $< N_2 < O_2 < CO_2$
- $\ \, \text{D. CO}_2 \, < \, \text{O}_2 \, < \, \text{N}_2 \, < \, \text{He}$
- $\text{E. CO}_2 \, < \, \text{N}_2 \, < \, \text{O}_2 \, < \, \text{He}$
- 14) A tank containing both HF and HBr gases developed a leak. The ratio of the rate of effusion of HF to the rate of effusion of HBr is _____.
 - A. 2.01
 - B. 16.3
 - C. 4.04
 - D. 0.247
 - E. 0.497

Answer Key
Testname: PRACTICE_EXAM_4

- 1) A 2) A 3) B 4) E 5) D 6) A 7) D 8) B 9) A 10) C 11) D 12) C 13) D

- 14) A