Sampling Distributions Merlise Clyde

STA721 Linear Models

Duke University

September 3, 2015

Outline

Topics

- Normal Theory
- Chi-squared Distributions
- Student t Distributions

Readings: Christensen Apendix C, Chapter 1-2

Prostate Example

```
> library(lasso2); data(Prostate) # n = 97, 9 variables
> summary(lm(lpsa ~ ., data=Prostate))
Coefficients:
           Estimate Std. Error t value Pr(>|t|)
(Intercept)
           0.669399
                    1.296381 0.516 0.60690
lcavol 0.587023 0.087920 6.677 2.11e-09 ***
lweight 0.454461 0.170012 2.673 0.00896 **
age -0.019637 0.011173 -1.758 0.08229 .
         0.107054 0.058449 1.832 0.07040 .
lbph
svi
         0.766156  0.244309  3.136  0.00233 **
    -0.105474 0.091013 -1.159 0.24964
lcp
gleason
         0.045136  0.157464  0.287  0.77506
pgg45
           0.004525 0.004421 1.024 0.30885
Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' 1
```

Residual standard error: 0.7084 on 88 degrees of freedom Multiple R-squared: 0.6548, Adjusted R-squared: 0.6234

Summary of Distributions

Models: Full $\mathbf{Y} = \mathbf{X}\boldsymbol{\beta} + \boldsymbol{\epsilon}$

Assume ${\bf X}$ is full rank with the first column of ones ${\bf 1}_n$ and p additional predictors $r({\bf X})=p+1$

$$egin{aligned} \hat{oldsymbol{eta}} &\mid \sigma^2 \sim \mathsf{N}(oldsymbol{eta}, \sigma^2(\mathbf{X}^T\mathbf{X})^{-1}) \ & rac{\mathsf{RSS}}{\sigma^2} \sim \chi^2_{n-r(\mathbf{X})} \ & rac{\hat{eta}_j - eta_j}{\mathsf{SE}(\hat{eta}_i)} \sim t_{n-r(\mathbf{X})} \end{aligned}$$

where $SE(\hat{\beta})$ is the square root of the *j*th diagonal element of $\hat{\sigma}^2(\mathbf{X}^T\mathbf{X})^{-1}$ and $\hat{\sigma}^2$ is the unbiased estimate of σ^2

Sampling Distribution of $oldsymbol{eta}$

If
$$\mathbf{Y} \sim N(\mathbf{X}\boldsymbol{\beta}, \sigma^2 \mathbf{I}_n)$$

Then $\hat{\boldsymbol{\beta}} \sim N(\boldsymbol{\beta}, \sigma^2 (\mathbf{X}^T \mathbf{X})^{-1})$

Unknown σ^2

$$\hat{\beta}_j \mid \beta_j, \sigma^2 \sim \mathsf{N}(\beta, \sigma^2[(\mathbf{X}^T\mathbf{X})^{-1}]_{ii})$$

What happens if we substitute $\hat{\sigma}^2 = \mathbf{e}^t \mathbf{e}/(n-r(\mathbf{X}))$ in the above?

$$\frac{(\hat{\beta}_j - \beta_j)/\sigma\sqrt{[(\mathbf{X}^T\mathbf{X})^{-1}]_{ii}}}{\sqrt{\mathbf{e}^T\mathbf{e}/(\sigma^2(n-r(\mathbf{X}))}} \stackrel{\mathrm{D}}{=} \frac{N(0,1)}{\sqrt{\chi^2_{n-r(\mathbf{X})}/(n-r(\mathbf{X})}} \sim t(n-r(\mathbf{X}),0,1)$$

Need to show that $\mathbf{e}^T \mathbf{e}/\sigma^2$ has a χ^2 distribution and is independent of the numerator!

Central Student t Distribution

Definition

Let $Z \sim N(0,1)$ and $S \sim \chi_p^2$ with Z and S independent, then

$$W = \frac{Z}{\sqrt{S/p}}$$

has a (central) Student t distribution with p degrees of freedom

See Casella & Berger or DeGroot & Schervish for derivation - nice change of variables and marginalization problem!

Fitted Values and Residuals are Independent

If
$$\mathbf{Y} \sim N(\mathbf{X}\boldsymbol{\beta}, \sigma^2 \mathbf{I}_n)$$

Then $Cov(\hat{\boldsymbol{\beta}}, \mathbf{e}) = \mathbf{0}$ which implies independence

Chi-Squared Distribution

Definition

If $Z \sim N(0,1)$ then $Z^2 \sim \chi_1^2$ (A Chi-squared distribution with one degree of freedom)

Density

$$f(x) = \frac{1}{\Gamma(1/2)} (1/2)^{-1/2} x^{1/2 - 1} e^{-x/2} \qquad x > 0$$

Characteristic Function

$$E[e^{itZ^2}] = \varphi(t) = (1 - 2it)^{-1/2}$$

Chi-Squared Distribution with p Degrees of Freedom

If
$$Z_j \stackrel{\text{iid}}{\sim} \mathsf{N}(0,1) \ j=1,\dots p$$
 then $X \equiv \mathbf{Z}^T \mathbf{Z} = \sum_j^p Z_j^2 \sim \chi_p^2$

Characteristic Function

$$\varphi_X(t) = \mathbb{E}[e^{it \sum_{j=1}^{p} Z_j^2}]$$

$$= \prod_{j=1}^{p} \mathbb{E}[e^{it Z_j^2}]$$

$$= \prod_{j=1}^{p} (1 - 2it)^{-1/2}$$

$$= (1 - 2it)^{-p/2}$$

A Gamma distribution with shape p/2 and rate 1/2, G(p/2, 1/2)

$$f(x) = \frac{1}{\Gamma(p/2)} (1/2)^{-p/2} x^{p/2-1} e^{-x/2}$$
 $x > 0$

STA721 Linear Models

Quadratic Forms

$\mathsf{Theorem}$

Let $\mathbf{Y} \sim N(\mu, \mathbf{I}_n)$ with $\mu \in C(\mathbf{X})$ then if \mathbf{Q} is a rank k orthogonal projection on to $C(\mathbf{X})^{\perp}$, $\mathbf{Y}^T\mathbf{Q}\mathbf{Y} \sim \chi_k^2$

Proof.

For an orthogonal projection $\mathbf{Q} = \mathbf{U} \boldsymbol{\Lambda} \mathbf{U}^T = \mathbf{U}_k \mathbf{U}_k^T$ where $C(\mathbf{Q}) = C(\mathbf{U}_k)$ and $\mathbf{U}_k^T \mathbf{U}_k = \mathbf{I}_k$ (Spectral Theorem)

$$\mathbf{Y}^{T}\mathbf{Q}\mathbf{Y} = \mathbf{Y}^{T}\mathbf{U}_{k}\mathbf{U}_{k}^{T}\mathbf{Y}$$

$$\mathbf{Z} = \mathbf{U}_{k}^{T}\mathbf{Y}/\sigma \sim N(\mathbf{U}_{k}^{T}\boldsymbol{\mu}, \mathbf{U}_{k}^{T}\mathbf{U}_{k})$$

$$\mathbf{Z} \sim N(\mathbf{0}, \mathbf{I}_{k})$$

$$\mathbf{Z}^{T}\mathbf{Z} \sim \chi_{k}^{2}$$

Since
$$U^T\mathbf{Y}/\sigma \stackrel{\mathrm{D}}{=} \mathbf{Z}$$
, $\frac{\mathbf{Y}^T\mathbf{Q}\mathbf{Y}}{\sigma^2} \sim \chi_k^2$

Residual Sum of Squares Example

Sum of Squares Error (SSE)

Let $\mathbf{Y} \sim \mathsf{N}(\boldsymbol{\mu}, \sigma^2 \mathbf{I}_n)$ with $\boldsymbol{\mu} \in \mathcal{C}(\mathbf{X})$.

Because $\mu \in C(\mathbf{X})$, $\mathbf{I} - \mathsf{P}_{\mathbf{X}}$ is a projection on $C(\mathbf{X})^{\perp}$

$$\frac{\mathbf{e}^T \mathbf{e}}{\sigma^2} = \mathbf{Y}^T \frac{\left(\mathbf{I}_n - \mathsf{P}_{\mathbf{X}}\right)^2}{\sigma} \mathbf{Y} \sim \chi^2_{n-r(\mathbf{X})}$$

Putting it all together

$$\hat{oldsymbol{eta}} \sim \mathsf{N}(oldsymbol{eta}, \sigma^2(\mathbf{X}^T\mathbf{X})^{-1})$$

- $(\hat{\beta}_i \beta_i)/\sigma[(\mathbf{X}^T\mathbf{X})^{-1}]_{ii} \sim \mathsf{N}(0,1)$
- $\mathbf{e}^T \mathbf{e} / \sigma^2 \sim \chi^2_{n-r(\mathbf{X})}$
- $\hat{\beta}$ and **e** are independent

$$\frac{(\hat{\beta}_j - \beta_j)/\sigma[(\mathbf{X}^T\mathbf{X})^{-1}]_{jj}}{\sqrt{\mathbf{e}^T\mathbf{e}/(\sigma^2(n - r(\mathbf{X})))}} \sim t(n - r(\mathbf{X}), 0, 1)$$

Inference

- 95% Confidence interval: $\hat{\beta}_j \pm t_{\alpha/2} SE(\hat{\beta}_j \text{ use qt(a, df)})$ for t quantile
- derive from pivotal quantity $t = (\hat{\beta}_j \beta_j)/SE(\hat{\beta}_j)$ where $P(t \in (t_{\alpha/2}, t_{1-\alpha/2})) = \alpha$

Prostate Example

 $\label{eq:mass} \mbox{\tt xtable(confint(prostate.lm))} \ \, \mbox{from library(MASS)} \ \, \mbox{and} \\ \mbox{\tt library(xtable)}$

	2.5 %	97.5 %
(Intercept)	-1.91	3.25
lcavol	0.41	0.76
lweight	0.12	0.79
age	-0.04	0.00
lbph	-0.01	0.22
svi	0.28	1.25
lcp	-0.29	0.08
gleason	-0.27	0.36
pgg45	-0.00	0.01

interpretation

- For a "1" unit increase in \mathbf{X}_j , expect \mathbf{Y} to increase by $\hat{\beta}_j \pm t_{\alpha/2} \mathrm{SE}(\hat{\beta}_j$
- for log transforms

$$\mathbf{Y} = \exp(\mathbf{X}oldsymbol{eta} + oldsymbol{\epsilon}) = \prod \exp(\mathbf{X}_jeta_j) \exp(oldsymbol{\epsilon})$$

- if **X** is logged $\mathbf{X}_j = \log(|W_j|)$ then look at 2-fold or % increases in **W**
- ifcavol increases by 10% then we expect PSA to increase by $1.10^{(CI)} = (1.0398, 1.0751)$ or by 3.98 to 7.51 percent

For a 10% increase in cancer volume, we are 95% confident that the PSA levels will increase by approximately 4 to 7.5%

Derivation