# MATH 5301 Elementary Analysis - Homework 1

### Jonas Wagner

### 2021, September 01

## 1 Problem 1

**Problem:** Prove the following tautologies by writing the true-false table. Also translate each of these statements into human language.

- a.  $A \lor \sim A$
- b.  $(A \lor B) \Rightarrow A$
- c.  $(A \wedge B) \Rightarrow A$
- d.  $(A \Rightarrow B) \iff (\sim B \Rightarrow \sim A)$
- e.  $\sim (A \vee B) \iff (\sim A \land \sim B)$
- f.  $((A \Rightarrow B) \Rightarrow A) \Rightarrow A$
- g.  $(A \Rightarrow (B \Rightarrow C)) \Rightarrow ((A \Rightarrow B) \Rightarrow (A \Rightarrow C))$

| 1: | anguage | i.    | , b)  | ( () | 1 1)                | (e)            | (t)             | g) (A >(e+1) => ((A>0) => (A>c) |     |  |  |
|----|---------|-------|-------|------|---------------------|----------------|-----------------|---------------------------------|-----|--|--|
| A  | B       | A + A | A+B=A | AB⇒A | (A = B) (B' = 3 K') | (A+B)`<⊅(A'B') | ((A >8)>>h) ⇒ A | C = 0                           | C=1 |  |  |
| (  | 1       | 1     |       | 1    | 1                   | 1              | 1               | l                               | l   |  |  |
| [  | 0       | 1     | )     | [ ]  | 1                   | 1              | 1               | l                               | 1   |  |  |
| 0  | 1       | 1     | 0     | [    | (                   | 1              | 1               | 1                               | 1   |  |  |
| 0  | 0       |       |       | 1    | 1                   |                |                 | [                               | 1   |  |  |

- a. A or not A
- b. A or B implies A
- c. A and B implies A
- d. A implying B implies not B implying not A
- e. Neither A nor B occurs if and only if not A and not B
- f. A implying B implies A which implies A
- g. A implying B implies C implies that A implying B implies A implying C

**Problem:** Prove the following identities for the set operations.

a. 
$$A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$$

b. 
$$(A \backslash B) \cup C = ((A \cup C) \backslash B) \cup (B \cap C)$$







**Problem:** Write the following statements using quantifiers.

- a. Even elements of the sequence  $\{a_n\}$  may be arbitrarly large.
- b. The sequence  $\{a_n\}$  contains arbitary large even elements.
- c. The sequence  $\{a_n\}$  contains infinitely many even elements.

- a.  $\forall n \in \mathbf{N} : a_n : 2 \Rightarrow \exists a \in \mathbf{N} : a_n \ge a$
- b.  $\exists n \in \mathbf{N} : a_n : 2 \Rightarrow \forall a \in \mathbf{N} : a_n > a$
- c.  $\forall n \in \mathbf{N} : a_n \stackrel{.}{:} 2 : \exists m \in \mathbf{N} : m > n : a_m \stackrel{.}{:} 2$

**Problem:** Show that:

a. 
$$\exists_x : (p(x) \lor q(x)) \iff (\exists_x : p(x)) \lor (\exists_x : q(x))$$

b. 
$$(\forall_x p(x) \lor \forall_x q(x)) \Rightarrow \forall_x (p(x) \lor q(x))$$

c. Why is there no left arror implication on the previous line?

### Solution:

Part a)

| = (n) = (v) | Ex(P(x) VQ(x)) | (3x P(x)) V(3x 9(v)) | $\exists_{\lambda}: \left( f(x) \lor g(x) \right) \Leftarrow \Rightarrow \left( \exists_{\chi}: f(x) \right) \lor \left( \exists_{\lambda}: g(x) \right)$ |
|-------------|----------------|----------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------|
|             |                | 1                    |                                                                                                                                                           |
| 10          | -              | 1                    | 1                                                                                                                                                         |
| 0   1       | 1              |                      | 1                                                                                                                                                         |
| 0 0         | 0              | 0                    | •                                                                                                                                                         |

Part b)

| (AG) | ( 4 <u>, 9</u> G) | $\forall_x (P(x) \lor P(x))$ | ( Yx P(xx) V (Yx q(x)) | $(\forall_{x}$ $P(x) \lor \forall_{x} q(x)) \Rightarrow \forall_{x} (P(x) \lor Q(x))$ | (x, pa) v x, q(x)) ( x, (P(x) v q(x)) |
|------|-------------------|------------------------------|------------------------|---------------------------------------------------------------------------------------|---------------------------------------|
| 1    | 1                 | 1                            | 1                      | ſ                                                                                     | 1                                     |
| 1    | 0                 | 1                            | 1                      | ĺ                                                                                     | 1                                     |
| U    | 1                 | 1                            |                        | 1                                                                                     | 1                                     |
| O    | 0                 | 0                            | 0                      | l                                                                                     | 1                                     |
| 0    | 0                 | !                            | 0                      |                                                                                       | 0                                     |

Part c)

This is becouse there are cases when p(x) and q(x) themselves are not satisfied  $\forall x$ , but together at least one of them are true  $\forall x$ .

**Problem:** Show that one needs only one logic operation to construct all the 16 binary operations on statements A and B.

| A | B | $A \star B$ |
|---|---|-------------|
| 0 | 0 | 1           |
| 0 | 1 | 0           |
| 1 | 0 | 0           |
| 1 | 1 | 0           |

Define  $A \star B$  via the following table: \_\_\_

Show that one can construct  $\sim A, A \vee B, \text{and} A \wedge B$  using only  $\star$ . Then show that any other binary operation can be obtained from  $\{\sim, \vee, \wedge\}.$ 



(using the notation learned in digital circuits)

| A   B | 10 | [] | 12 | 3 | 14 | 5 | 16 | 17 | 8 | Q | 10 | 111 | 12 | 13 | 14 | [15 |  |
|-------|----|----|----|---|----|---|----|----|---|---|----|-----|----|----|----|-----|--|
| 00    | 0  | l  | Ø  | 1 | 0  | 1 | 0  |    | 0 | I | 0  | 1   | 0  | 1  | O  | 1   |  |
| 0 1   | 0  | 0  | 1  | 1 | 0  | 0 | l  | 1  | 0 | 0 | 1  | l   | 0  | 0  | l  | 1   |  |
| 10    | 0  | 0  | 0  | 0 | 1  | Ī | 1  | L  | Ó | 0 | 0  | 0   |    |    |    | 1   |  |
| 1 1   | 0  | 0  | 0  | 0 | 0  | 0 | 0  | 0  | 1 | 1 | [1 |     | 1  | 11 | 1  | ) [ |  |

$$|:=(A+B)'$$

$$a := (A + 8)^{1}$$
  
 $3 := A^{1}$   
 $4 := (A^{1} + B)^{1}$ 

$$H:=(A'+B)'$$

**Problem:** How many subsets does the set  $A = \{a, p, p, l, e\}$  have?

**Solution:** On the surface this problem can be solved simply by considering the selection of each letter to be a part of a subset as a binary diget of T/F for inclusion, resulting in  $2^n = 2^5 = 32$ . However, due to the repeaterd element, p, this is not as simple but a similar combinatorics process can be used to account for this.

#### General Solution:

Let the following be defined:

n := number of elements within A

m := number of unique elements within A

 $a_i :=$  sequence of the unique elements within A ordered from the most occurring to the least occurring

 $n_i :=$  sequence of the number of unique elements,  $a_i$ , within A.

 $(a_i, n_i) := \text{set of ordered pairs of unique elements of a unique element, } a_i$ , within A paired with the number of  $a_i$  elements contained within A,  $n_i$ .

The calculation can split into the sum of all the possible subsets of lengths, l, from 0 to n.

For l = 0 the only possible subset is  $\emptyset$ , so

$$N_0 = \binom{n}{0} = 1.$$

Similarly, for l = n the only possible subset of A is A, so

$$N_n = \binom{n}{n} = 1.$$

For l = 1 there exists m unique sets consisting of the elements in  $\{a_i\}$ . Alternatively, this can be calculated as

$$N_1 = \binom{n}{1} - \sum_{i=1}^{m} (n_i - 1)$$

For l=2 (and all l>1) the computation becomes more complicated.

The collection of subsets with repeated elements for l=2 would be all possible combinations of the elements of A with l=2 elements,  $\left(N_{l=2}^{(all)} = \binom{n}{2}\right)$ .

The number of duplicated elements can be done by constructing the ordered pairs  $\{(b_i, n_i - 1)\}$ :  $b_i = a_i \forall i : n_i > 1$ . B can then be defined as the collection of  $n_i - 1$  copies of  $b_i$ .

The number of elements in B,  $n^{(l=2)}$  can then be used to determine the number of duplicated subsets included in  $N_{l=2}^{(all)}$ ,  $N_{l=2}^{(duplicates)} = n^{(l=2)} * N_{l=1}$ . Therefore,

$$N_{l=2} = N_{l=2}^{(all)} - N_{l=2}^{(duplicates)} = \binom{n}{2} - n^{(l=2)} * N_{l=1} = \binom{n}{2} - n^{(l=2)} * \left(\binom{n}{1} - \sum_{i=1}^{m} (n_i - 1)\right)$$

This process can be repeated for l > 2 until the newly constructed set (labeled B for l = 2) is empty, in which case  $N_l = \binom{n}{l}$ .

<sup>&</sup>lt;sup>1</sup>How do you do this with quantifiers?

For the given finite case of  $A=\{a,p,p,l,e\}$  the result is calculated as:

 $N_0 = 1$   $N_1 = 4$   $N_2 = 13$   $N_3 = 6$   $N_4 = 4$ 

 $N_5 = 1$ 

Therefore,

N = 29