Wydział Elektroniki i Technik Informacyjnych Politechnika Warszawska

Projektowanie układów sterowania (projekt grupowy)

Sprawozdanie z projektu nr 2, zadanie nr 11

Kamil Gabryjelski, Paweł Rybak, Paweł Walczak

Spis treści

1.	Opis obiektu	2
2.	Charakterystyka obiektu	3
3.	Odpowiedź skokowa DMC	6
4.	Regulacja	8

1. Opis obiektu

Badany obiekt jest obiektem o dwóch sygnałach wejściowych (u_1, u_2) , oraz dwóch sygnałach wyjściowych (y_1, y_2) . Obiekt jest obiektem dyskretnym, a jego okres próbkowania wynosi 0, 5s. Punktem pracy naszego obiektu, będzie zerowa wartość obydwu wejść. W takim przypadku obiekt stabilizuje się przy zerowej wartości wyjść.

2. Charakterystyka obiektu

Następnym punktem naszych badań było zbadanie zachowania wyjść obiektu przy różnych wartościach wejściowych. Eksperyment był przeprowadzany poprzez skok wartości sterującej przy drugiej wartości sterowania utrzymywanej w punkcie pracy. W ten sposób otrzymujemy cztery tory opisujące obiekt. Zachowanie dwóch wyjść na każdy z dwóch sygnałów wejściowych. Eksperymenty były przeprowadzane zaczynając z punktu pracy. Zbadane zostały skoki sygnałów steruących do wartości 1, 3, oraz 5. Wyniki przedstawiają wykresy 2.1, oraz 2.2. Wszystkie te wykresy zostały wyskalowane na takie same wartości, tak aby dobrze pokazywały zależności między wzmocnieniami sygnałów. Wzmocnienie statyczne jest w przybliżeniu liniowe. Zostało one opisane dalej zmienną k^{ij} , gdzie i oznacza numer wyjścia, natomiast j numer sygnału sterującego. Przy takim oznaczeniu: $k^{11} \approx 2,00, k^{12} \approx 0,75 k^{21} \approx 0,90, k^{22} \approx 0,99$.

Rys. 2.1. Odpowiedzi na skoki sygnału u_1

Rys. 2.2. Odpowiedzi na skoki sygnału u_2

3. Odpowiedź skokowa DMC

W kolejnym kroku poczyniliśmy przygotowania do zaprojektowania regulatora DMC dla obiektu. W tym celu zebraliśmy odpowiedzi skokowe podobnie jak w poprzednim punkcie. Wykonany został skok jednostkowy każdego sygnału sterującego z osobna. Wyniki przedstawiają wykresy poniżej.

Rys. 3.1. Wyjście y_1 , sygnał sterujący u_1 .

Rys. 3.2. Wyjście y_1 , sygnał sterujący u_2 .

Rys. 3.3. Wyjście y_2 , sygnał sterujący u_1 .

Rys. 3.4. Wyjście y_2 , sygnał sterujący u_2 .

4. Regulacja

Wykorzystując wcześniej zdobyte informacje stworzyliśmy dwa regulatory dla naszego obiektu — regulator PID, oraz regulator DMC. Porównaliśmy je dla zadanej ścieżki wartości zadanych. Została ona dobrana tak, aby uwzględniać zarówno jednoczesne skoki w przeciwnych kierunkach, oraz zmianę wartości zadanej dla jednego wyjścia przy stałej wartości zadanej drugiego wyjścia, aby zaobserwować ewentualny wpływ wartości zadanej wyjścia na sterowanie drugim wyjściem. Przebiegi, wraz z wartościami zadanymi ilustrują wykresy 4.1, oraz 4.2. Wskaźniki jakości regulacji dla tych dwóch przypadków wynoszą $E_{DMC} \approx 2875, 4$, oraz $E_{PID} \approx 3060, 3$. Nastawy obydwu regulatorów zostały dobrane eksperymentalnie. Dla regulatora PID wynoszą one:

$$K^1 = 1,5 T_i^1 = 20 T_d^1 = 0.1 (4.1)$$

$$K^{1} = 1,5$$
 $T_{i}^{1} = 20$ $T_{d}^{1} = 0.1$ (4.1)
 $K^{2} = 1,5$ $T_{i}^{2} = 20$ $T_{d}^{2} = 0.1$ (4.2)

Tory sterowania regulatora PID zostały ustalone $y_1 - u_1$, $y_2 - u_2$. Przy innym zestawieniu regulator w ogóle nie zdawał egzaminu. Dla regulatora DMC ustawiony został horyzont predykcji i horyzont sterowania równy horyzontowi dynamiki. Uznaliśmy, iż chcemy osiągnąć jak najlepsze rezultaty, podczas gdy mocy obliczeniowej mamy aż nadto. Parametr λ ustanowiliśmy taki sam dla obydwu sygnałów sterujących i równy 10. Celem takiego działania było ograniczenie zmian jednego wyjścia, przy skoku wartości zadanej drugiego wyjścia. Zgodnie z powyższym nastawy regulatora DMC prezentują się następująco:

$$D = 150$$
 $N = 150$ $N_u = 150$ $\lambda = 10$ (4.3)

4. Regulacja 9

Rys. 4.1. Regulacja PID.

4. Regulacja

Rys. 4.2. Regulacja DMC.