Exercise 1: Part 4

Compute

Python Programming Bootcamp by Dr Rohitash Chandra UNSW, 2021

Description

The rectangle method can be used to approximately calculate definite integrals as shown in the figures below:

$$\int_{a}^{b} f(x) dx \approx (b - a) f\left(\frac{a + b}{2}\right).$$

- 1. Write a program that, given a step size h, returns the sum of the areas of the rectangles as an approximation to the definite integral. (10 points)
- 2. We generally do not know what step size will be sufficient in order to approximate a definite integral within the precision available. Write an algorithm that iteratively determines a step size that approximates the integral with precision $\ \square$. (10 points)
- 3. An alternate method for approximating a definite integral uses trapezoids instead of rectangles:

$$\int_{a}^{b} f(x) dx \approx (b-a) \frac{f(a) + f(b)}{2}.$$

Modify your program from d. to use trapezoids instead of rectangles. (10 points)

Acknowledgment				
The assignment is adapted from initial exercise designed by Prof. Christian Omlin				