

Facultad de Ciencias Exactas, Ingeniería y Agrimensura Escuela de Ciencias Exactas y Naturales Departamento de Matemática

ÁLGEBRA LINEAL (R211 - CE9)

2024

4.1 Autovalores y autovectores

Recuerdos:

• V F-ev con $dim V < \infty$, B, B' bases de V, $T \in L(V)$. Ents.

$$[T]_{B'} = (C_{B'B})^{-1} [T]_B C_{B'B}.$$

- $A, B \in F^{n \times n}$ son semejantes, y anotamos $A \sim B$, si existe $P \in F^{n \times n}$ invertible to $A = B = B^{-1}AP$.
- La relación de semejanza es una relación de equivalencia en $F^{n\times n}$.
- V F-ev con $dimV < \infty$, $T, S \in L(V)$. Existen B_1, B_2 bases de V tq $[S]_{B_1} = [T]_{B_2}$ sii existe $U \in L(V)$ invertible tq $T = USU^{-1}$. (Ver ejercicio 29 práctico 3).

El primer problema que abordaremos es determinar si una matriz es semejante a una matriz diagonal. Hacemos entonces la siguiente definición:

Definición 1 Una matriz $A \in F^{n \times n}$ se dice **diagonalizable** si existe $D \in F^{n \times n}$ matriz diagonal tal que $A \sim D$.

Equivalentemente, A es diagonalizable si existe $C \in F^{n \times n}$ invertible tal que CAC^{-1} es diagonal.

A nivel de tl tenemos la siguiente definición:

Definición 2 V F-ev con $dim V < \infty$, $T \in L(V)$ se dice que es diagonalizable si existe B base de V tq $[T]_B$ es diagonal.

Sigue que T es diagonalizable sii la matriz $[T]_B$ es diagonalizable para toda base B de V.

Supongamos ahora que T es diagonalizable y sea $B = \{v_1, \ldots, v_n\}$ una base de V tal que $[T]_B$ es diagonal:

$$[T]_B = \begin{pmatrix} \lambda_1 & 0 & \dots & 0 \\ 0 & \lambda_2 & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & \lambda_n \end{pmatrix}.$$

Tenemos aquí que pt i = 1, ..., n, $[T(v_i)]_B = [T]_B[v_i]_B = [T]_Be_i = \lambda_i e_i = \lambda_i [v_i]_B = [\lambda_i v_i]_B$. Luego $T(v_i) = \lambda_i v_i$ pt i = 1, ..., n.

Recíprocamente, si existen $\lambda_1, \ldots, \lambda_n \in F$ tq $Tv_i = \lambda_i v_i$ para $B = \{v_1, \ldots, v_n\}$ una base de V, entonces $[T]_B = diag(\lambda_1, \ldots, \lambda_n)$.

Esto nos lleva a la siguiente definición que eral (para ev cualquiera, no pedimos dimensión finita):

Definición 3 V F-ev, $T \in L(V)$, decimos que un vector $v \in V$ con $v \neq \overline{0}$ es un **autovector** de T si existe $\lambda \in F$ tq $T(v) = \lambda v$. El escalar λ se llama autovalor de T.

Observemos que si v es un autovector de T asociado a un autovalor λ , y $\alpha \in F$ es no nulo, entonces $T(\alpha \cdot v) = \alpha \cdot T(v) = \alpha(\lambda v) = \lambda(\alpha \cdot v)$, luego $\alpha \cdot v$ también es un autovector asociado al autovalor λ . Más aún, todo vector de $span(v)\setminus\{\overline{0}\}$ es autovector de T asociado al mismo autovalor λ . Profundizaremos en esto más adelante.

Volviendo a lo dicho anteriormente en cuanto a la definición de tl diagonalizable, concluímos la siguiente proposición para ev de dimensión finita:

Proposición 1 V F-ev $con\ dim V < \infty$, $T \in L(V)$. Entonces T es diagonalizable sii existe B base de V formada por autovectores de T.

Matricialmente lo anterior se traduce como sigue:

Definición 4 $A \in F^{n \times n}$, $v \in F^n$ tq $v \neq \overline{0}$ es un autovector de A si existe $\lambda \in F$ tq $Av = \lambda v$. En tal caso, decimos que λ es un autovalor de A.

Proposición 2 $A \in F^{n \times n}$ es diagonalizable sii existe una base de F^n formada por autovectores de A.

Ejemplos 1 1.
$$A = \begin{pmatrix} 2 & 3 \\ 2 & 1 \end{pmatrix} \in \mathbb{R}^{2 \times 2}$$
, ¿es diagonalizable?

Buscamos $x=(x_1,x_2)^t \in \mathbb{R}^2$, $x \neq \overline{0}$ y $\lambda \in \mathbb{R}$ tq $Ax=\lambda x$. Es decir, tales que que el sistema $Ax=\lambda x$ tenga solución no trivial. Esto podemos reescribirlo en términos de sistemas homogéneos como sigue: nos preguntamos si hay solución no trivial del sistema homogéneo

$$(\lambda I - A)x = \overline{0}.$$

Resolvamos entonces el sistema: $\lambda I - A = \begin{pmatrix} \lambda - 2 & -3 \\ -2 & \lambda - 1 \end{pmatrix}$. La matriz es entonces cuadrada,

luego ver que tenga solución no trivial se reduce a calcular su determinante y ver para qué valores de λ el determinante se anula:

$$det(\lambda I - A) = \lambda^2 - 3\lambda - 4 = (\lambda - 4)(\lambda + 1) = 0 \qquad sii \qquad \lambda = 4 \qquad y \qquad \lambda = -1.$$

Observemos que $det(\lambda I - A)$ es un polinomio, este polinomio será de interés, tiene nombre y todo, es un Very Important Polynomial! Es el polinomio característico de A. Ya lo veremos. Hemos encontrado entonces los dos autovalores de A. Busquemos para cada uno de ellos sus autovectores:

•
$$Si \ \lambda = -1, \ (-1)I - A = \begin{pmatrix} -3 & -3 \\ -2 & -2 \end{pmatrix}, \ cuya \ FER \ es \begin{pmatrix} 1 & 1 \\ 0 & 0 \end{pmatrix}, \ entonces \ el \ conjunto \ solución$$

es $Sol = \{(x, -x) : x \in \mathbb{R}\} = span\{(1, -1)\}$. Este conjunto (que es un subsepacio) lo llamaremos autoespacio asociado al autovalor -1, más adelante lo definiremos. Por ahora recordemos que Sol es un sev de \mathbb{R}^{\nvDash} , es decir, contiene al vector nulo, pero éste no es autovector. Luego, el conjunto de autovectores de A asociados al autovalor -1 es $span\{(-1, -1)\}\setminus\{\overline{0}\}$.

• Si $\lambda = 4$ tendremos que el conjunto de autovalores asociado a 4 es span $\{(1, \frac{3}{2})\}\setminus\{\overline{0}\}$. (EJERCICIO)

Puesto que $B=\{(1,-1),(1,\frac{3}{2})\}$ es li, es base de \mathbb{R}^2 , resulta A diagonalizable (pues existe una

base de autovectores). Más aún, para la matriz de cambio de base
$$C_{B_cB}AC_{B_cB}^{-1}=\begin{pmatrix} -1 & 0 \\ 0 & 4 \end{pmatrix}$$
.

(EJERCICIO: chequear esta igualdad. Ayuda: rápidamente vemos que
$$C_{BB_c} = \begin{pmatrix} 1 & 1 \\ -1 & \frac{3}{2} \end{pmatrix}$$
.

$$2. \ A = \begin{pmatrix} 3 & 0 & 0 \\ 1 & 3 & 0 \\ 0 & 0 & 3 \end{pmatrix} \ \text{$\it jes diagonalizable?}$$

Buscamos λ tal que $Ax = \lambda x$ tiene solución no trivial. Como antes, necesitamos resolver el sistema homogéneo $(\lambda I - A)x = \overline{0}$, y para esto habrá que calcular su determinante: tenemos que

$$\lambda I - A = \begin{pmatrix} \lambda - 3 & 0 & 0 \\ -1 & \lambda - 3 & 0 \\ 0 & 0 & \lambda - 3 \end{pmatrix},$$

 $y \det(\lambda I - A) = (\lambda - 3)^3 = 0$ sii $\lambda = 3$. Así, A tiene un único autovalor. Calculemos sus autovectores asociados:

$$3I - A = \begin{pmatrix} 0 & 0 & 0 \\ -1 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix},$$

de donde sigue que $Sol = span\{(0,1,0), (0,0,1)\}$. Vemos entonces que no hay más de dos autovectores li, luego no hay una base de autovectores de A, con lo cual resulta A no diagonalizable.

Otra forma de ver esto es la siguiente: si fuera diagonalizable existiría una matriz C de cambio de base (luego invertible) tal que $CAC^{-1}=3I$, pero observemos que luego $A=C^{-1}3IC=\cdots=3I$, contradicción.

Este procedimiento en general podemos describirlo como sigue:

Definición 5 $A \in F^{n \times n}$. Llamamos **polinomio característico de** A al polinomio $\chi_A(X) = det(XI - A) \in F[X]$.

El polinomio característico es mónico y de grado menor o igual a $n: \chi_A(X) \in F_n[X]$.

Proposición 3 Si $A \in F^{n \times n}$ y $\lambda \in F$, entonces λ es un autovalor de A sii λ es raíz del polinomio característico χ_A .

Demostración: λ es un autovalor de A sii existe $x \in F^n \setminus \{\overline{0}\}$ tq $Ax = \lambda x$ sii $Ax = \lambda x$ tiene solución no trivial sii el sistema homogéneo $(\lambda I - A)x = \overline{0}$ tiene solución no trivial sii $det(\lambda I - A) = 0$ sii $\chi_A(\lambda) = 0$.

Luego, como máximo A tiene n autovalores.

Ejemplo 1 $A = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$. Calculemos su polinomio característico:

$$\chi_A(X) = det(XI - A) = \begin{vmatrix} X & -1 \\ 1 & X \end{vmatrix} = X^2 + 1.$$

Luego, si $\mathbb{F} = \mathbb{Q}$ o $\mathbb{F} = \mathbb{R}$, entonces no hay raíces de χ_A en \mathbb{F} , luego no existen autovalores de A, luego A no es diagonalizable. Si $\mathbb{F} = \mathbb{C}$, las raíces (los autovalores) son i y - i. Calculando de igual forma

los autovectores encontramos que $B = \{(1,i),(1,-i)\}$ es una base de \mathbb{C}^2 de autovectores de A. Luego A es diagonalizable en $\mathbb{C}^{2\times 2}$. EJERCICIO!

Para poner estos resultados en términos de transformaciones lineales, necesitamos pasar una vez más por el concepto de semejanza: la siguiente proposición nos dice que dos matrices semejantes tienen el mismo polinomio característico:

Proposición 4 $A \in F^{n \times n}$ $y \in F^{n \times n}$ invertible. Entonces $\chi_{CAC^{-1}} = \chi_A$.

Demostración: Observando que $XI - CAC^{-1} = CXIC^{-1} - CAC^{-1} = C(XI - A)C^{-1}$, tenemos que

$$\chi_{CAC^{-1}}(X) = \det(XI - CAC^{-1}) = \det(C(XI - A)C^{-1}) = \det(C)\det(XI - A)\det(C^{-1}) = \det(XI - A) = \chi_A.$$

Así definimos:

Definición 6 V F-ev $con <math>dimV < \infty$, $T \in L(V)$. El **polinomio característico asociado a** T es $\chi_T := \chi_{[T]_B}$ para cualquier B base de V.

Y sigue entonces que λ es autovalor de T sii λ es raíz de χ_T .