Computational Mathematics - Assignment 1

Owen Burke, 15316452

February 21, 2019

Question 2.31

Write a user-defined MATLAB function that calculates the determinant of a square $(n \times n)$ matrix, where n can be 2, 3, or 4. For function name and arguments, use D = Determinant (A). The input argument A is the matrix whose determinant is calculated. The function Determinant should first check if the matrix is square. If it is not, the output D should be the message "The matrix must be square." Use Determinant to calculate the determinant of the following two matrices:

```
Tes = first - (A(1,2) * A(2,1)); %as described above.

D - res;
22 - D - res;
24 - res = 0;

Command Window

New to MATLARS see resources for Getting Started.

>> y = [1 5 4; 2 3 6; 1 1 1]; x = Determinant(y)

x =

13

f<sub>1</sub> >> |
```

Figure 1: Determinant a)

Figure 2: Determinant b)

```
a) \begin{bmatrix} 1 & 5 & 4 \\ 2 & 3 & 6 \\ 1 & 1 & 1 \end{bmatrix} b) \begin{bmatrix} 1 & 2 & 3 & 4 \\ 5 & 6 & 7 & 8 \\ 9 & 10 & 11 & 12 \\ 13 & 14 & 15 & 16 \end{bmatrix}
```

- function D = Determinant(A)
- 2 %Determinant Returns the determinant of the given matrix

```
з %
       Explanation: This solution is recursive to the point
       where
                   you're working with a 2*2 matrix A where
4 %
      the determinant
5 %
                   is simply (A(1,1) * A(2,2)) - (A(1,2) * A
      (2,1)).
  %
6
  %
                   For any larger matrix, we take the first
      row and for each
                    element in that row we multiply it by the
8 %
       determinant of
9 %
                   the submatrix that is the current matrix
      with the row and
10 %
                   column of the current element removed. We
       also multiply
                    this by -1 if the element coordinates ie.
11
       A(1,2), sum up to
  %
                   be odd (1+2 = 3 \text{ which is odd}).
12
  %
                   We do this for every element in the first
13
       row, summing up
14 %
                    the final values for each element which
      gives us our
  %
                    determinant
  [m, n] = size(A);
                                           %Checks that the
  if m = n
17
      matrix is square
      D = "The matrix must be square";
                                          %Returns the error
18
          message otherwise
   elseif m == 2
                                           %If matrix is 2*2,
                                           %performs the
       first = A(1,1) * A(2,2);
20
          determinant calculation
       res = first - (A(1,2) * A(2,1));
                                          %as described above
21
      D = res;
22
  else
23
       res = 0;
24
       for i = 1:m
                                   %For each element in first
25
           row
           tempMat = A;
                                   %temp mat forms the
26
              submatrix by removing
           tempMat(1,:) = [];
                                   %the row and column of the
27
                current element
           tempMat(:, i) = [];
28
                                    %Find if the coordinates
           \inf \mod((1+i),2) == 1
              are odd (described above)
```

```
temp = (A(1,i) * -1) * Determinant(tempMat); \%
30
                  Multiplies the current element by the
                  determinant of the
                                                               %
              res = res + temp;
                  submatrix, recursively, if the coordinates
                  are odd.
           else
32
              temp = A(1, i) * Determinant(tempMat);
                                                           %If
33
                  they are not odd
              res = res + temp;
           end
       end
      D = res;
37
38
  end
```

Question 3.2

Determine the root of $f(x) = x - 2e^{-x}$ by:

a) Using the bisection method. Start with a=0 and b=1, and carry out the first three iterations.

1st iteration:

Given a = 0 and b = 1, find the first numerical solution given by

$$X_{NS1} = \frac{a+b}{2} = \frac{0+1}{2} = 0.5$$

Now, Determine whether the true solution is between a and $X_{\rm NS1}$ or between $X_{\rm NS1}$ and b.

This is done by checking the sign of the product $f(a)f(X_{NS1})$.

If the product is positive, then the true solution lies between $X_{\rm NS1}$ and b.

Otherwise, it is between a and X_{NS1} .

$$(0-2e^{-(0)}) * (\frac{1}{2}-2e^{-(\frac{1}{2})}) = 1.426$$

As this result is positive, we know that the true solution lies between $X_{\rm NS1}$ and b, so we make $a=X_{\rm NS1}$ and let b=b and we repeat for the next iteration with the same process.

2^{nd} iteration:

Given a = 0.5, b = 1

$$X_{NS2} = \frac{a+b}{2} = \frac{0.5+1}{2} = 0.75$$

Determine which sub-interval contains the true solution

$$(0.5-2e^{-(0.5)}) * (0.75-2e^{-(0.75)}) = 0.139$$

As this result is positive, we know that the true solution lies between $X_{\rm NS2}$ and b, so we make $a=X_{\rm NS2}$ and let b=b and we repeat for the next iteration with the same process.

3rd iteration:

Given a = 0.75, b = 1

$$X_{NS3} = \frac{a+b}{2} = \frac{0.75+1}{2} = \frac{7}{8}$$

Determine which sub-interval contains the true solution

$$(0.75-2e^{-(0.75)}) * (\frac{7}{8}-2e^{-(\frac{7}{8})}) = -0.008$$

As this result is negative, we know that the true solution lies between a and $X_{\rm NS3}$, so we make a=a and let $b=X_{\rm NS3}$ and we get the half way point between these two values as our final numerical solution.

$$X_{FNS} = \frac{a+b}{2} = \frac{0.75+0.875}{2} = 0.8125$$

b) Using the secant method. Start with the two points, $x_1 = 0$ and $x_2 = 1$, and carry out the first three iterations.

1^{st} iteration:

Given $x_1 = 0$ and $x_2 = 1$, using the identity (for the slope of the secant containing $(x_1f(x_1))$, $(x_2f(x_2))$, $(x_3f(x_3))$):

$$\frac{f(x_1) - f(x_2)}{x_1 - x_2}$$

solve for x_3

$$x_3 = x_2 - \frac{f(x_2)(x_1 - x_2)}{f(x_1) - f(x_2)}$$

This is given as

$$x_3 = 1 - \frac{(0.264)(1-0)}{(-2)-(0.264)} = 1.117$$

Now we use $(x_2f(x_2))$, $(x_3f(x_3))$ as points defining a new secant and repeat step 2.

2nd iteration:

Given $x_2 = 1$ and $x_3 = 1.117$,

solve for x_4

$$x_4 = x_3 - \frac{f(x_3)(x_2 - x_3)}{f(x_2) - f(x_3)}$$

This is given as

$$x_4 = 1.117 - \frac{(0.462)(1-1.117)}{(0.264)-(0.462)} = 0.844$$

Now we use $(x_3f(x_3))$, $(x_4f(x_4))$ as points defining a new secant and repeat step 2.

3rd iteration:

Given $x_3 = 1.117$ and $x_4 = 0.844$,

solve for x₅

$$x_5 = x_4 - \frac{f(x_4)(x_3 - x_4)}{f(x_3) - f(x_4)}$$

This is given as

$$x_5 = 0.844 - \frac{(-0.016)(1.117 - 0.844)}{(0.462) - (-0.016)} = 0.853$$

Final numerical solution after three iterations : x = 0.853

c) Using Newton's method. Start at $x_1 = 1$ and carry out the first three iterations.

Newton's method approximates the solution initially as the intercept of the tangent to the function, at an initial guess-point, with the x axis. Subsequent iterations approximate the solution as the intercept of the tangent to the function, at the point defined by the previous estimate, with the x axis. Note that it does not necessarily converge.

Given $x_1 = 1$, our starting point is $(x_1,f(x_1)) = (1, 0.264)$. Using the identity for slope of the tangent at $(x_1,f(x_1))$:

$$f'(x_1) = \frac{f(x_1) - 0}{x_1 - x_2}$$

Solve for x_2 using:

$$x_2 = x_1 - \frac{f(x_1)}{f'(x_1)}$$

and repeat step 2 iteratively using the formula:

$$\mathbf{x}_{i+1} = \mathbf{x}_i - \frac{f(x_i)}{f'(x_i)}$$

To begin we must find f'(x).

$$f'(x) = \frac{dy}{dx}$$
, where $y = f(x)$

$$f'(x) = \frac{d}{dx} (x-2e^{-x})$$

$$f'(x) = \frac{d(x)}{dx} - 2 * \frac{d(e^{-x})}{dx}$$

$$f'(x) = 1 - 2 * (-e^{-x})$$

$$f'(x) = 1 + 2e^{-x}$$

1st iteration:

$$x_2 = 1 - \frac{0.264}{1 + 2e^{-(1)}} = 1 - \frac{0.264}{1.736} = \frac{184}{217}$$

 2^{nd} iteration:

$$x_3 = \frac{184}{217} - \frac{-0.009}{1.857} = 0.853$$

3rd iteration:

$$x_4 = 0.853 - \frac{0.0007}{1.852} = 0.853$$

Final numerical solution after three iterations : x = 0.853

Question 4.24

Write a user-defined MATLAB function that determines the inverse of a matrix using the Gauss-Jordan method. For the function name and arguments use Ainv =Inverse (A), where A is the matrix to be inverted, and Ainv is the inverse of the matrix. Use the Inverse function to calculate the inverse of:

Figure 3: Inverse a)

Figure 4: Inverse b)

```
a) \begin{bmatrix} -1 & 2 & 1 \\ 2 & 2 & -4 \\ 0.2 & 1 & 0.5 \end{bmatrix} b) \begin{bmatrix} -1 & -2 & 1 & 2 \\ 1 & 1 & -4 & -2 \\ 1 & -2 & -4 & -2 \\ 2 & -4 & 1 & -2 \end{bmatrix}
```

- $_{1}$ function Ainv = Inverse(A)
- 2 %Inverse Returns the inverse of the given matrix
- 3 % Explanation: This returns the inverse of the given matrix by solving
- $_{4}$ % the m equations (for a m*m matrix) where each equation is the matrix \boldsymbol{A}
- 5 % * n-th column of the inverse matrix = the n-th column of the identity matrix 6 %
- $_{7}$ % When each column of the inverse matrix is obtained, they form the
- s % inverse of the provided matrix. Each of these equations is solved

```
using gauss-jordan elimination.
  %
          For each equation, this is done iteratively. For
  %
11
      the i-th
12 %
          iteration, we take the element A(i,i). This is
      our pivot element and
13 %
          we divide each element in the current row (also
      denoted by the
  %
          current iteration) by this pivot element, as well
14
       as the identity
  %
          matrix column.
15
  %
          Then, for every OTHER row in the matrices (A and
16
      the identity), and for each element in
  %
17
          those rows, we subtract it from the element in
      the same column as the pivot in our
          current row * the element from our current column
18
       from the pivot
  %
          equation.
  %
20
  %
          And repeat for each row until we get all 1's on
21
      the diagonal and
  %
          zeros elsewhere. Then the elements in the
22
      identity column now equal
  %
          the elements that are from the inverse column.
23
  %
  %
          Repeat for all columns in the inverse and then
25
      form the matrix from
  %
          the resulting columns
26
27
28
29
   [m, n] = size(A);
   if m = n
31
      Ainv = "The matrix must be square";
32
  else
33
      tempRes = zeros(m,m);
34
       for i = 1:m
35
                                  %%%%%%%%%Forms
          copy = A;
              idCol = zeros(m, 1);
          idCol(i,1) = 1;
38
          %disp(idCol);
          for j = 1:m
40
          41
             -7777777777777777777777
               pivot = copy(j, j);
42
```

```
copy(j,:) = rdivide(copy(j,:), pivot);
43
              idCol(j,1) = idCol(j,1)/pivot;
44
          45
              other rows-%%%%%%%%
              for k = 1:m
46
                 if (k == j)
47
                      continue; %Skip the row corresponding
                         to the current iteration
                 end
49
                                          %%%%%Perform
                 fac = copy(k, j);
50
                     the elimination Gets the element
                     that will act as the factor
                 for c = 1:m
51
                                          %Gets the element
                      first = copy(k,c);
52
                          from the current row
                      third = copy(j, c);
                                          %Gets the element
53
                          from the pivot equation
                     temp = first - (fac*third); \%
54
                         eliminates
                                          %write-back
                     copy(k,c) = temp;
55
                 end
                 idCol(k,1) = idCol(k,1) - (fac * idCol(j))
57
                     ,1) ); %Perform the operation on the
                     identity column
              end
58
          end
59
          tempRes(:,i) = idCol; %Place the resulting
60
              inverse column in the result matrix
      end
61
      Ainv = tempRes; %return
62
  end
63
  end
```

NAME: Owen Burke

STUDENT NUMBER: 15316452

Please indicate your answers by entering the option ((i), (ii), (iii) or (iv)) where asked. You should append the completed document as a pdf with your type written worked solutions and upload to Blackboard by Friday 22nd of February 2019.

Q 2.31

Part (a):

- (i) 4
- (ii) 13
- (iii) 26
- (iv) 18

Your Answer: ii)

Part (b):

- (i) 0
- (ii) 12
- (iii) 7
- (iv) 4

Your Answer: i)

Q 3.2

Part (a):

- (i) 0.1241
- (ii) 0.8125
- (iii) 0.074995
- (iv) 0.003462

Your Answer: ii)

Part (b):

- (i) 0.72481
- (ii) 0.85261
- (iii) 0.62849
- (iv) 0.17238

Your Answer: ii)

Part (c):

- (i) 0.65782
- (ii) 0.59371
- (iii) 0.45802
- (iv) 0.85261

Your Answer: iv)

Q 4.24

(i) Inverse(a) Inverse(a)=				
-0.7143 0.2571 -0.2286	0.0 0.1000 -0.2000	1.4286 0.2857 0.8571			
Inverse(b)=					
1.6667 0.0 -0.3333 1.5000	2.8889 0.3333 -0.4444 2.0000	-2.2222 -0.3333 0.1111 -1.5000	1.0000 0.0 0.0 0.5000		
(ii)					
Inverse(a)=					
0.7243 1.2571 -0.2386	0.0 0.1000 -0.2010	1.3286 0.2757 0.9571			
Inverse(b)=					
1.6677 0.3433 -0.3433 1.2400	2.9889 -0.3433 -0.2879 2.0120	3.2222 0.3333 0.2111 -1.5783	1.01700 0.00371 0.0 0.5600		
(iii)					
Inverse(a)=					
0.7143 1.2671 -0.2486	0.003 0.1100 -0.2110	2.3276 0.3759 0.9771			
Inverse(b)=					
1.6877 0.3533 -0.3443 1.2420	3.9789 -0.4433 -0.2999 3.0130	3.2002 0.3333 0.3121 -1.5733	2.01800 0.02371 0.0382 0.5610		

(iv)

Inverse(a)=

0.8343	1.01	1.3336	
2.2572	0.1003	0.3857	
-0.2486	-0.2110	0.9671	
Inverse(b)=			

1.6777	4.9889	3.2232	1.11700
0.3443	-0.3443	0.3233	0.07371
-0.3443	-0.2979	0.3211	0.07800
1.2480	2.1220	-1.5883	0.5621

Your Answer: i)