CS109 – Data Science

Joe Blitzstein, Hanspeter Pfister, Verena Kaynig-Fittkau

vkaynig@seas.harvard.edu
staff@cs109.org

Announcements

- Story telling is important for data scientists
- Please make sure to target your audience as directed in the homework

Next Topics

- Classifier wrapup:
 - Some RF things
 - Regression
- ML best practices
 - model choice
 - imbalanced data
 - missing values
- Recommender systems
 - collaborative filtering
 - content-based filtering

So and so bought x, do you want x?

each tree tends to overfit: does not generalize introduce more randomness, then average.

Random Forest

- Builds upon the idea of bagging
- Each tree build from bootstrap sample
- Node splits calculated from random feature subsets

http://www.andrewbuntine.com/articles/about/fun

Bagging Idea

Random Forest

- All trees are fully grown
- No pruning

- Two parameters
 - Number of trees
 - Number of features

number of features: bagging uses all features, random forest uses random subset

Random Forest Error Rate

- Error depends on:
 - Correlation between trees (higher is worse)
 - Strength of single trees (higher is better)

- Increasing number of features for each split:
 - Increases correlation
 - Increases strength of single trees

Single decision tree: does perfect split with first column of x

Bagging: bootstrap from diff rows: returns same thing -> only need 1 split on one feature

Extreme Scenario

random forest: often fails with the noise columns, keeps doing until pure leaves

—> fragmented space: some trees only learn fitting to noise: inscrease number features:
better chance it can find non noise columns—> but then they look same (low variance)

1	1	@	&	•••
0	0	#	%	•••
1	1	\$	#	•••
1	1	%	٨	•••
0	0	٨	!	•••
1	1	*)	•••
0	0)	%	•••
•••	•••	•••	•••	•••

What would a single fully grown tree learn? How deep would it be? What would Bagging learn? How would it differ from the single tree? What would a Random Forest learn with max_feature=1?

Quick to plot and see how error falls w/ number of trees.

Out of Bag Error

Out of Bag Error

- Very similar to cross-validation
- Measured during training
- Can be too optimistic not a replacement for cross validation

From a Kaggle Forum

... it feels weird to be using cross-validation type methods with random forests since they are already an ensemble method using random samples with a lot of repetition. Using cross-validation on random forests feels redundant.

w/o cross-validation: doesn't work

—> use it all the time to avoid overfitting.

Variable Importance - 1

- Again use out of bag samples
- Predict class for these samples
- Randomly permute values of one feature

make one feature useless

- Predict classes again
- Measure decrease in accuracy

small decrease: feature unimportant big change: feature is very important.

Variable Importance - 1

shape

Variable Importance - 2

Gini performance

- Measure split criterion improvement
- Record improvements for each feature
- Accumulate over whole ensemble

Example: Spam classification

Randomization tends to spread out the variable importance more uniformly.

Overall both methods mainly agree on what is important.

Regression

 What is the difference between regression and classification?

 Think about handling 5 star ratings as classification or as regression problem.

regression assumes whole scale regression preserves distance between labels classification doesn't care: not weighted given distance, a mislabel is a mislabel

KNN Recap

How would you modify KNN to do regression? assign numerical values based on classes (ie dummy)

assign numerical values based on classes (ie dummy) then average k nearest neighbors

KNN for Regression

Average the values of the K nearest neighbors

 Or build a weighted average of the K nearest neighbors

KNN Example

Distance Weighting

Linear weights

Quadratic weights

Decision Tree

No classes —> now we use avg vote (all values numerical)

Regression Tree

Regression Tree

 Again we average, this time over all points in one of the cells.

 During training, split in the way that reduces the squared error the most. more depth —> split more —> fit to outliers (overfitting) solution: the random forest.

Regression Tree Training

Random Forest for Regression

- Same idea as before
- Train multiple trees in parallel and average
- Different defaults
- max_features = n_features default, it does bagging?
- square error not the Gini error.

hard for regression original design: purely for classification

distance to hyperplane tells how obvi classified but it's not a probability and w/o units

SVM for Regression

boosting: update weights: pay closer to attention to missed pts iterate and continue updating.

Boosting

Best Practices

Typical Progress

Under Promise, Over Deliver!

General Best Practices

- it will be harder than it looks picking features hard.
- know your application:
 - zero values missing data?
 - outliers measurement mistakes, or points of interest?
 - where do labels come from human generated: uncertainty? avg over man ppl: gold standard
- Document, document, document
 - for yourself! And for others
- commit, pull, push, repeat

deep learning

SVM (# samples < # features)

Random Forest

KNN (slow w/ too many pts.)

Cross Validation

- Training data: train classifier
- Validation data: estimate hyper parameters
- Test data: estimate performance
- Be mindful of validation and test set, validation set might refer to test set in some papers.

5 – Fold Cross Validation

train model on 4 of 5, test on remainder, computer 5 errors —> error bar.

5 – Fold Cross Validation

Then test

now only have 1 split: maybe we get lucky and our fit matches one test but not generalized.

Last Step of Each Fold

- 1. Take best parameters
- 2. Train on training data and validation data together
- 3. Test performance on test data

This is the **final** result of your method.

5 – Fold Cross Validation

nested cross validation:

internal: hyperparameters; external: test prediction

5 – Fold Cross Validation

nested loops: bad for many features/large data -> chugs

Things to Keep in Mind

- How do you aggregate the parameters? don't do max or min, average, avoid getting lucky and losing generalizability
- What if the hyperparameters are all over the place? result may be sensitive to this: folds aren't large enough.

 What if the hyperparameters are at the border of your grid search window?

widen window, go again.

Scenario - 1

- 1. Screen the predictors: find a subset of "good" predictors that show fairly strong (univariate) correlation with the class labels
- 2. Using just this subset of predictors, build a multivariate classifier.
- 3. Use cross-validation to estimate the unknown tuning parameters and to estimate the prediction error of the final model.

Scenario - 2

- 1. Divide the samples into K cross-validation folds (groups) at random.
- 2. For each fold k = 1, 2, ..., K
 - Find a subset of "good" predictors that show fairly strong (uni-variate) correlation with the class labels, using all of the samplesexcept those in fold k.
 - Using just this subset of predictors, build a multivariate classifier, using all of the samples except those in fold k.
 - Use the classifier to predict the class labels for the samples in fold k.

Effect of Sample Size

5-fold cross validation:

- n=200 => 160 samples
- n=50 => 40 samples

Cross Validation Over Estimates Error

Normalization

- Be very careful.
- Do not leak into the test data.
- Think about what is useful.

Example PCA on MNIST

Example PCA on MNIST

Normalization - 1

training

Estimate mean values and normalize.

validation

Estimate mean values and normalize.

test

Estimate mean values and normalize.

Normalization - 2

Know Your Data

Imbalanced Data

- subsample
- oversample
- re-weight sample points
- use clustering to reduce majority class

re-calibrate classifier output

Beware the easy true negatives

Imbalanced Classes

• The Problem:

Oversample:

• Subsample:

Subsample for each tree in a random forest

Example: Random Forest Subsampling

Class Weights

http://scikit-learn.org/stable/_images/plot_separating_hyperplane_unbalanced_0011.png

Cross Validation with Imbalanced Classes

- Think about using stratified sampling to generate the folds
- The goal is to have the same class ratio in training, validation and test set.

Missing data

- Delete data points
 - Can cause sample size to be way too small
- Use the mean of the feature
 - Does not change the sample mean, but is independent of the other features.
- Use regression to estimate the value
 - Values will be deterministic

Recommender Systems

We are already surrounded by them

PANDORA°

Good Resources (also for this lecture)

Survey on recommender systems by Michael D. Ekstrand et al.

http://files.grouplens.org/papers/FnT%20CF%
 20Recsys%20Survey.pdf

Good slides from Stanford lecture by Lester Mackey

 http://web.stanford.edu/~lmackey/papers/cf slides-pml09.pdf

Rating Matrix Completion Problem

Collaborative Filtering

Insight: Personal preferences are correlated

 If Jack loves A and B, and Jill loves A, B, and C, then Jack is more likely to love C

 Does not rely on item or user attributes (e.g. demographic info, author, genre)

Content-based Filtering

- Each item is described by a set of features
- Measure similarity between items
- Recommend items that are similar to the items the User liked

Comparison

- Collaborative filtering:
 - Items entirely described by user ratings
 - Good for new discoveries
 - People who like SciFi maybe also like Fantasy
- Content-based filtering:
 - Predictions are in users comfort zone
 - Can start with a single item
- Can do a hybrid approach

User Based Collaborative Filtering

Intuition:

- I like what people similar to me like
- Users give ratings
- People with similar ratings in the past assumed to have similar ratings in the future

Item-based Collaborative Filtering

- Similar, but looks at the items instead of the users
- Useful if the user base is way larger than the number of items.
- More useful: Items are relatively stable in their rating, users vary more.

Short Recap of Terminology

We Could Use Missing Data Strategies

All that we talked about earlier:

- Omitting samples
- Using the mean rating of an item
- Doing regression

CF as Regression

- Choose favorite regression algorithm
- Train a predictor for each item
- Each user who rated that item provides one sample
- To predict rating of an item A, apply predictor for A to the user's incomplete ratings vector.

Recommendation by Regression

Pros:

- Reduces recommendations to a well-studied problem
- Many good prediction algorithms available

Cons:

- Have to handle tons of missing data
- Training M predictors is expensive

KNN for Collaborative Filtering

- Widely used
- Item-based and User-based focus
- Represent each user as incomplete vector of item ratings
- Compute similarity between query user and all other users
- Find K most similar users who rated the query item
- Predict weighted average of ratings

Similarity Measures

- Pearson Correlation Coefficient
 - bound between 1 and -1
 - suffers from computing high similarity between users with few ratings in common
 - set threshold for minimum number of co-rated itemssuffers from computing high similarity between users with few ratings in common

$$s(u,v) = \frac{\sum_{i \in I_u \cap I_v} (r_{u,i} - \bar{r}_u)(r_{v,i} - \bar{r}_v)}{\sqrt{\sum_{i \in I_u \cap I_v} (r_{u,i} - \bar{r}_u)^2} \sqrt{\sum_{i \in I_u \cap I_v} (r_{v,i} - \bar{r}_v)^2}}$$

Similarity Measures

- Cosine similarity
 - vector-space approach based on linear algebra
 - Unknown ratings are considered to be 0
 - this causes them to effectively drop out of the numerator

$$sim(A, B) = cos(\theta) = \frac{A \cdot B}{\|A\| \|B\|}$$

Dimensionality Reduction

- We have treated item or user ratings as vectors
- In many dimensions
- With lots of missing data

 Can we find a low-dimensional sub-space that captures our data?

Eigentaste

http://eigentaste.berkeley.edu/index.html

PCA for Recomendations

- Compute PCA of a dense rating matrix
- Keep the k largest components
- Project users into k-dimensional subspace
- Cluster users in k-dimensions
- Recommend jokes based on users cluster

 This is what Simon Funk did for the Netflix prize: http://sifter.org/~simon/journal/20061027.2.htm

- Decomposes each matrix into three components
- Σ is diagonal and the entries are the singular values of the decomposition

- U and T are orthogonal
- As in PCA we can truncate Σ to compute a lower rank approximation of R.

- Rows of U are users interest in the k inferred topics
- Rows of T are the items relevance for each topic

 A user's preference for an item, therefore, is the weighted sum of the user's interest in each of the topics times that item's relevance to the topic.

- If we know the SVD, we could compute the missing values in R.
- Try to infer SVD from matrix with missing data, and reconstruct full matrix R