

Calcolo delle soluzioni di un'equazione di secondo grado.

Dati di input:

coefficienti dell'equazione a, b, c

Dati di output:

soluzioni dell'equazione.

Analisi del problema

Un'equazione di secondo grado scritta nella forma ax 2 + bx + c = 0 è caratterizzata dai coefficienti a, b, c. Dopo aver calcolato il discriminante Δ (delta) con la formula

si possono riconoscere tre situazioni:

 Δ < 0 non esistono soluzioni reali,

 $\Delta = 0$ le due soluzioni reali sono coincidenti,

 $\Delta > 0$ ci sono due soluzioni reali, distinte.

Se esistono soluzioni reali, queste si ottengono dalla formula (-b $\pm \sqrt{\Delta}$)/(2 * a).

Perché il programma comprenda tutte le situazioni possibili, occorre prevedere anche che a sia uguale a zero. Infatti, se a=0 si deve procedere alla soluzione dell'equazione di primo grado:

$$bx + c = 0$$
.

In questa eventualità bisogna poi riconoscere i sottocasi:

b = 0 e c = 0 equazione indeterminata,

b = 0 equazione impossibile.