HW5 ECE542

Ming Dai unityID: mdai3

 $March\ 26,\ 2017$

$\mathbf{Q}\mathbf{1}$

HWE

(A) Let
$$\vec{X}_{1} = (X_{2,1}, X_{2,2}, X_{2,3})^{T}$$
 $\vec{X}_{3} = (X_{31}, X_{32}, X_{2,3})^{T}$

We have $\vec{X}_{1}^{T} A \vec{X}_{2} = 0$

(1,0,0) $\begin{pmatrix} 1.0 & 0.5 & 0.1 \\ 0.5 & 1.0 & 0.5 \\ 0.1 & 0.5 & 1.0 \end{pmatrix}$
 $\begin{pmatrix} x_{2,1} \\ x_{2,2} \\ x_{3,3} \end{pmatrix} = 0$

Therefore, one possible value for \vec{X}_{1}^{T} is $\vec{X}_{2}^{T} = (-1, 2, 0)^{T}$

For \vec{X}_{3}^{T} , we have $\vec{X}_{1}^{T} A \vec{X}_{3}^{T} = 0$
 $\vec{X}_{2}^{T} A \vec{X}_{3}^{T} = 0$
 $\vec{X}_{3}^{T} + 0.5 \vec{X}_{32} + 0.7 \vec{X}_{33}^{T} = 0$
 $\vec{X}_{3}^{T} + 0.5 \vec{X}_{32} + 0.7 \vec{X}_{33}^{T} = 0$
 $\vec{X}_{3}^{T} = (-1, 2, 0)^{T}$

Therefore, one possible value for $\vec{X}_{1}^{T} = (-1, 0, 0)^{T}$
 $\vec{X}_{2}^{T} = (-1, 2, 0)^{T}$

One solution for $\vec{X}_{1}^{T} = (-1, 0, 0)^{T}$
 $\vec{X}_{3}^{T} = (-1, 2, 0)^{T}$
 $\vec{X}_{3}^{T} = (-1, 2, 0)^{T}$

Figure 1: Q1

$\mathbf{Q2}$

data set setting:

```
dist = 5.0, width = 6, radius = 10
train samples = 2000, test samples = 2000
```

experiments

- training method
 - gradient descent
 - conjugate descent
 - Levenverg-Marquart
- hidden neuron numbers
 - -5
 - -20

Result

- \bullet testing error
- training time (both epochs and real clock time)
- Repeat measure time = 5
- convergence criterion

MSE	Epochs	training time	convergence reason
parameters	hidden numbers $= 5$	trainFcn = trainlm	
4.152e-07	10	0.484s	performance goal reached
3.214 e-07	6	0.141s	performance gaol reached
3.196e-07	11	0.188s	performance goal reached
8.428e-08	11	0.188s	performance goal reached
4.041e-07	9	0.141s	performance gaol reached
parameters	hidden numbers $= 5$	trainFcn = traingd	
1.069e-03	10000	16.328s	maximum epoch reached
1.194e-03	10000	15.484s	maximum epoch reached
9.472e-04	10000	15.922s	maximum epoch reached
1.074e-03	10000	16.266s	maximum epoch reached
1.337e-03	10000	16.172s	maximum epoch reached
parameters	hidden numbers $= 5$	trainFcn = traincgf	
7.757e-05	110	0.563s	minimum step size reached
1.113e-04	109	0.531s	minimum step size reached
1.515e-04	89	0.531s	minimum step size reached
2.348e-05	232	1.094s	minimum step size reached
5.258 e-05	85	0.500s	minimum step size reached

Table 1: hidden number =5

MSE	Epochs	training time	convergence reason
parameters	hidden numbers $= 20$	trainFcn = trainlm	
6.104 e-07	33	0.500s	performance goal reached
4.686e-07	16	0.313s	performance goal reached
4.248e-07	6	0.188s	performance goal reached
5.168e-07	6	0.172s	performance goal reached
6.978e-08	8	0.188s	performance goal reached
parameters	hidden numbers $= 20$	trainFcn = traingd	
3.254 e-04	10000	19.953s	maximum epoch reached
3.179e-04	10000	20.719s	maximum epoch reached
3.429 e-04	10000	20.438s	maximum epoch reached
4.101e-04	10000	20.656s	maximum epoch reached
4.013e-04	10000	19.984s	maximum epoch reached
parameters	hidden numbers = 20	trainFcn = traincgf	
4.070 e-05	487	2.766s	minimum step size reached
3.727 e-05	568	3.156s	minimum step size reached
5.127 e-05	490	2.641s	minimum step size reached
5.668 e - 05	487	2.719s	minimum step size reached
1.226e-05	465	2.656s	minimum step size reached

Table 2: hidden number =20

Q3

Repeat mearsure number = 5

(a)

 ${\rm hidden~number} = \!\! 5$

plot:

Figure 2: hidden number =5, trainFcn = trainIm

Figure 3: hidden number =5, trainFcn = trainIm

Figure 4: hidden number =5, trainFcn = traingd

Figure 5: hidden number =5, trainFcn = traingd

Figure 6: hidden number =5, trainFcn = traingcf

Figure 7: hidden number =5, trainFcn = traingcf

MSE(5 runs)	Epochs	reason of termination
Levenberg-Marquardt(trainlm)		
1.767e-03	39	minimum gradient
6.390 e-04	23	minimum gradient
1.383e-03	100	maximum epoch(100)
1.640e-03	33	minimum gradient
3.169e-04	12	minimum gradient
gradient descent(traingd)		
2.121e-03	20000	maximum epoch(20000)
9.884e-04	20000	maximum epoch(20000)
2.050 e-03	20000	maximum epoch(20000)
1.082e-03	20000	maximum epoch(20000)
1.592e-03	20000	maximum epoch(20000)
conjugate gradient(traincgf)		
7.272e-04	257	minimum step size
1.142e-03	390	minimum step size
3.231e-03	561	minimum step size
5.618e-04	577	minimum step size
3.382e-03	513	minimum step size

Table 3: hidden number =5

(b)

hidden number = 20

plot:

Figure 8: hidden number =20, trainFcn = trainIm

Figure 9: hidden number =20, trainFcn = trainIm

Figure 10: hidden number =20, trainFcn = traingd

Figure 11: hidden number =20, trainFcn = traingd

Figure 12: hidden number =20, trainFcn = traingcf

Figure 13: hidden number =20, trainFcn = traingcf

MSE	Epochs	reason of termination
Levenberg-Marquardt(trainlm)		
7.672e-04	30	Performance goal met
1.061e-04	35	Performance goal met
9.617e-04	47	Performance goal met
3.427e-04	44	Performance goal met
4.245 e-03	26	Performance goal met
gradient descent(traingd)		
1.042e-03	20000	maximum epoch(20000)
3.077e-03	20000	maximum epoch(20000)
1.891e-03	20000	maximum epoch(20000)
1.686e-02	20000	maximum epoch(20000)
1.323 e-03	20000	maximum epoch(20000)
conjugate gradient(traincgf)		
7.388e-04	916	minimum step size
1.161e-03	551	minimum step size
8.459 e-04	675	minimum step size
7.019e-04	428	minimum step size
9.575 e-04	611	minimum step size

Table 4: hidden number =20

(c) Comment

Apparently, with more hidden neurons, the fitting of the sin function is better. And with more training samples, the training error will be smaller , but the testing error may be larger due to the overffiting effect.

So when the training sample is not enough, increase the complexity of model can not always give us a better result.

$\mathbf{Q4}$

(a)

Clearly, here the minimum value of K should be no greater than 4, since 4 is the sample number. And K should also be larger than 1 if we transform the data using radial function. So try K=2. And one possible solution is

$$\phi_1 = exp(-x^2), \phi_2 = exp(-(x-2)^2)$$

 $x = [0, 2, 1, 3]^T$ will be transformed into:

$$\begin{bmatrix} 1 & 0.0183 \\ 0.0183 & 1 \\ 0.368 & 0.368 \\ 1.234e - 4 & 0.368 \end{bmatrix}$$

The transformed data points and boundary is as follows:

Figure 14: K=2

As the figure shows, now the data can be separate by line.

And the boundary point in the original 1D space is 0.727, 1.273, 2.515. This was searched by matlab.

(b)

Here, I can find when K=3, the boundary has no bias term in the transformed space. Chosen radical functions:

$$\phi_1 = exp(-x^2), \phi_2 = exp(-(x-2)^2), \phi_3 = exp(-(x-1)^2/100),$$

 $x = [0, 2, 1, 3]^T$ will be transformed into:

$$x2 = \begin{bmatrix} 1.0000 & 0.0183 & 0.9900 \\ 0.0183 & 1.0000 & 0.9900 \\ 0.3679 & 0.3679 & 1.0000 \\ 0.0001 & 0.3679 & 0.9608 \end{bmatrix}$$

We can choose $w = [1, 1, -1]^T$, without bias term,

$$x2 * w = \begin{bmatrix} 0.0283 \\ 0.0283 \\ -0.2642 \\ -0.5928 \end{bmatrix}$$

And

$$sign(x2*w) = \begin{bmatrix} 1\\1\\-1\\-1 \end{bmatrix}$$

Here the boundary point is 0.242, 1.788, 2.182, which were also searched by matlab.

$\mathbf{Q5}$

HW5

(S) (a)

Using Non-linear transform as follows: $x_1 \rightarrow (1,0,0,\dots 0)^T$ $x_2 \rightarrow (0,1,0,\dots 0)^T$ $x_n \rightarrow (0,0,\dots 0)^T$ $x_n \rightarrow (0,0,\dots 0)^T$ Non

So \vec{x}_i will be transformed into $\vec{\psi}_i = (0,0,0,\dots 1,0,\dots 0)^T$, Only it element is 1.

Figure 15: Q5

$\mathbf{Q6}$

During the training, I disabled the validation and test dataset since here the number of training sample is so small (only 4).

two hidden nuerons

two typical plots

Figure 16: hidden number =2,trainFcn = trainIm

Figure 17: hidden number =2,trainFcn = trainIm

Figure 18: hidden number =2, trainFcn = trainIm

Figure 19: hidden number =2,trainFcn = trainIm

four hidden nuerons

Figure 20: hidden number =4,trainFcn = trainlm

Figure 21: hidden number =4,trainFcn = trainlm

Figure 22: hidden number =4,trainFcn = trainlm

Figure 23: hidden number =4,trainFcn = trainIm

Comment

Similar with MLPin the hw4, although 2 hidden neuron is enough, and the boundary of 4 hidden neurons may be similar to the one of 2 hidden neurons, we can not delete the some of the weights of the 4 hidden neurons.

Q7

```
HW5

7.

According to Cover's Theorem

We have P(4,z) = (\frac{1}{2})^3 [(\frac{3}{1}) + (\frac{3}{0})]

= \frac{1}{8} [3+1]

= \frac{1}{2}

So the probability is \frac{1}{2}
```

Figure 24: Q7