Lecture 7 and beginning of 8:

STAT261: Introduction to Machine Learning

Linear Regression, Model Selection, Error & Bias

Outline: Lecture 7 April 11 (ovelap into 8)

- Linear Regression
 - MLE solution
 - Goodness of fit
- SE Analysis
 - Prediction error
 - Nonlinear and quadratic models
 - Bias and Variance
 - Model Order Selection
 - Overfitting
 - Cross validation

Lecture 7: Linear Regression

• Assume simple linear model:

•
$$y \approx f(x, \beta), \quad f(x, \beta) \coloneqq \beta_0 + \sum_{j=1}^p \beta_j x_j$$

ullet Goal: Learn the parameters $oldsymbol{eta}$ from noisy data

$$y_i = f(x_i, \beta) + w_i = \beta_0 + \sum_{i=1}^{n} \beta_i x_{ij} + w_i$$

- Noise is Gaussian $w_i \sim N(0, \sigma^2)$
- Variance may be unknown
- Can be placed in linear model matrix form:

$$y = X\beta + w$$

Regression

$$y = f(x) + \varepsilon$$
estimator: $g(x|\theta)$

$$\varepsilon \sim \mathcal{N}(0, \sigma^{2})$$

$$p(r|x) \sim \mathcal{N}(g(x|\theta), \sigma^{2})$$

$$= \log \prod_{t=1}^{N} p(x^{t}, y^{t})$$

$$= \log \prod_{t=1}^{N} p(y^{t}|x^{t}) + \log \prod_{t=1}^{N} p(x^{t})$$

Linear Regression

$$f(x^{t}|\beta_{1},\beta_{0}) = \beta_{1}x^{t} + \beta_{0}$$

$$\sum_{t} y^{t} = N\beta_{0} + \beta_{1}\sum_{t} x^{t}$$

$$\sum_{t} y^{t}x^{t} = \beta_{0}\sum_{t} x^{t} + \beta_{1}\sum_{t} (x^{t})^{2}$$

$$\mathbf{A} = \begin{bmatrix} N & \sum_{t} x^{t} \\ \sum_{t} x^{t} & \sum_{t} (x^{t})^{2} \end{bmatrix}, \beta = \begin{bmatrix} \beta_{0} \\ \beta_{1} \end{bmatrix}, z = \begin{bmatrix} \sum_{t} y^{t} \\ \sum_{t} y^{t}x^{t} \end{bmatrix}$$

$$\boldsymbol{\beta} = \mathbf{A}^{-1}z$$

MLE Solution

• Regression equivalent to a linear model:

$$y = X\beta + w$$

- Assume $w_i \sim N(0, \sigma^2)$ iid.
- MLE given by LS solution:

$$\hat{\beta} = \arg\min_{\beta} ||y - X\beta||^2 = \arg\min_{\beta} MSE(\beta)$$

- $MSE(\beta) = \frac{1}{n} \sum_{i=1}^{n} (y_i \hat{y}_i)^2$
- $\hat{y}_i = x_i^T \beta$ = "predicted" value of y_i
- MLE solution: $\hat{\beta} = (X^T X)^{-1} X^T y$
- Error variance: $var(\hat{\beta}|\beta) = \sigma^2(X^TX)^{-1}$

Regression: From LogL to Error

$$\mathcal{L}(\theta|\mathcal{X}) = \log \prod_{t=1}^{N} \frac{1}{\sqrt{2\pi}\sigma} \exp\left[-\frac{\left[y^{t} - f\left(x^{t}|\theta\right)\right]^{2}}{2\sigma^{2}}\right]$$

$$= -N \log \sqrt{2\pi}\sigma - \frac{1}{2\sigma^{2}} \sum_{t=1}^{N} \left[y^{t} - f\left(x^{t}|\theta\right)\right]^{2}$$

$$E(\theta|\mathcal{X}) = \frac{1}{2} \sum_{t=1}^{N} \left[y^{t} - f\left(x^{t}|\theta\right)\right]^{2}$$

 $\theta = [\beta_0 \beta_1]'$

Goodness of Fit

- $\hat{y}_i = x_i^T \beta$ = "predicted" value of y_i
- Average relative prediction error

$$R^{2} := 1 - \frac{\sum_{i=1}^{n} (y_{i} - \hat{y}_{i})^{2}}{\sum_{i=1}^{n} y_{i}^{2}}$$

- Value between 0 and 1
- $R^2 = 1 \Rightarrow \text{Perfect fit}$
- $R^2 = 0 \Rightarrow$ No relation between variables
- Interpretation: R^2 = fraction of variance not explained by the predictors

Graphical Interpretation for p = 1

- Consider case when p = 1.
- Display data points (x_i, y_i) , i = 1, ..., n in a scatter plot.
- Regression is fitting a line

MLE for p = 1

• Write in matrix form: $y = X\beta + w$

$$X = \begin{bmatrix} 1 & x_1 \\ \vdots & \vdots \\ 1 & x_n \end{bmatrix} = [\mathbf{1} \quad \mathbf{x}], \qquad \beta = \begin{bmatrix} \beta_0 \\ \beta_1 \end{bmatrix}$$

• Compute sample statistics:

•
$$\mu_{x} = \frac{1}{n} \sum x_{j}$$
, $\mu_{y} = \frac{1}{n} \sum y_{j}$

•
$$\sigma_x^2 = \frac{1}{n} \sum_j (x_j - \mu_x)^2$$
, $\sigma_y^2 = \frac{1}{n} \sum_j (y_j - \mu_y)^2$

•
$$\sigma_{xy} = \frac{1}{n} \sum_{j} (x_j - \mu_x) (y_j - \mu_y)$$

MLE Solution for p = 1

- MLE is:
 - $\beta_1 = \sigma_{xy}/\sigma_x^2 = \rho_{xy}\sigma_y/\sigma_x$
 - $\bullet \quad \beta_0 = \mu_x \beta_1 \mu_y$
- Prediction error: $R^2 = \rho_{xy}^2$
- Linear model:
 - $y = \sigma_{xy}/\sigma_x^2 (x \mu_x) + \mu_y$
 - Similar to the linear MMSE estimate
- Cross correlation ho_{xy} determines goodness of fit and slope

Graphical Interpretation of \mathbb{R}^2

Outline

- Linear Regression
 - MLE solution
 - Goodness of fit

MSE Analysis

- Prediction error
- Nonlinear models
- Bias and Variance
- Model Order Selection
 - Overfitting
 - Cross validation

Regression: Mean Squared Error with Independent Data

- Linear model $y = X\beta + w$
- Suppose that $X = [x_1 \cdots x_n]^T$ where
 - x_i are iid random vectors $x_i \sim x$. Assume E(x) = 0
- Sample covariance is

$$\frac{1}{n} \sum_{i=1}^{n} x_i x_i^T = \frac{1}{n} X^T X$$

• Variance for large n,

$$var(\hat{\beta}) = \sigma_w^2 (X^T X)^{-1} \approx \frac{\sigma_w^2}{n} var(x)^{-1}$$

MSE: Implications

- Error variance $var(\hat{\beta}) = \frac{\sigma_w^2}{n} var(x)^{-1}$
- Decreases linearly in number of samples n
- Increases linearly in σ_w^2
- If $var(x) = \sigma_x^2 I$ then $var(\hat{\beta}) = \frac{\sigma_w^2}{n\sigma_x^2} I$
 - Independent errors inversely proportional to SNR
- If $var(x) = diag(\sigma_1^2, \dots, \sigma_p^2)$, then $var(\widehat{\beta}_j) = \frac{\sigma_w^2}{n\sigma_j^2}$
 - Error is lower in "directions" where variance of x is larger.

Regression: Prediction Error

- Train a model with *n* samples
- Let (x, y) be a new sample
 - Drawn from the same distribution as training data
 - But independent.
- $\hat{y} = x^T \beta$ = "predicted" value of y
- Prediction error is (proof on board):

$$E(y - \hat{y})^2 = E(x^T(\beta - \hat{\beta}) + w)^2 = \left(1 + \frac{p}{n}\right)\sigma_w^2$$

Implications

- Prediction error: $E(y \hat{y})^2 = \left(1 + \frac{p}{n}\right)\sigma_w^2$
- Unpredictable term σ_w^2
- "Learnable" term: $p\sigma_w^2/n$
 - \bullet Decreases with samples n
 - ullet Increases with number of parameters p
 - Does not depend on distribution of x
 - Assumes training data and test data have same statistics

Outline

- Linear Regression
 - MLE solution
 - Goodness of fit
- Linear MSE Analysis
 - Prediction error
- Nonlinear and quadratic models
 - Bias and Variance
 - Model Order Selection
 - Overfitting
 - Cross validation

Nonlinear Models

- What if we want a nonlinear fit?
- Polynomial fit: $y_i = \sum_{j=0}^p \beta_j x_i^j + w_i$
- Define new data matrix:

$$H = \begin{bmatrix} 1 & x_1 & \cdots & x_1^p \\ \vdots & \vdots & \ddots & \vdots \\ 1 & x_n & \cdots & x_n^p \end{bmatrix}$$

• Problem has p + 1 parameters

Polynomial Regression

$$f(x^{t}|\beta_{k},...,\beta_{2},\beta_{1},\beta_{0}) = \beta_{k}(x^{t})^{k} + \cdots + \beta_{2}(x^{t})^{2} + \beta_{1}x^{t} + \beta_{0}$$

$$\mathbf{H} = \begin{bmatrix} 1 & x^{1} & (x^{1})^{2} & \cdots & (x^{1})^{k} \\ 1 & x^{2} & (x^{2})^{2} & \cdots & (x^{2})^{k} \\ \vdots & & & & \\ 1 & x^{N} & (x^{N})^{2} & \cdots & (x^{N})^{2} \end{bmatrix} \quad \mathbf{y} = \begin{bmatrix} y^{1} \\ y^{2} \\ \vdots \\ y^{N} \end{bmatrix}$$

$$\boldsymbol{\beta} = \left(\mathbf{H}^T \mathbf{H}\right)^{-1} \mathbf{H}^T \mathbf{y}$$

Outline

- Linear Regression
 - MLE solution
 - Goodness of fit
- Linear MSE Analysis
 - Prediction error
- Nonlinear and quadratic models
- Model Order Selection:
 - Bias and Variance
 - Overfitting
 - Cross validation

Bayesian Model Selection

• Prior on models, *p*(model)

$$p(\text{model} | \text{data}) = \frac{p(\text{data} | \text{model}) p(\text{model})}{p(\text{data})}$$

- Regularization, when prior favors simpler models
- Bayes, MAP of the posterior, *p*(model | data)
- Could average over a number of models with high posterior

Model Selection: Motivating Example

- Consider polynomial model: $y_i = \sum_{j=0}^p \beta_j x_i^j + w_i$
- *p* is called the model order.
- What if p is unknown?
- Can we learn it?
- Simple idea:
 - ullet Try using different values of p
 - Measure prediction error (e.g. R^2) for each model order.
 - Select one with lowest prediction error
- This doesn't work. Why?

Feature space

- Often map data to a "feature space"
- Then perform linear fit on features
- Can incorporate much larger set of models
- But, number of parameters grows
- ullet For example: A quadratic function of k variables requires:
 - 1 constant term
 - *k* linear terms
 - k(k+1)/2 quadratic terms (all the x_ix_j pairs)
 - Total of $O(k^2)$ terms

Overfitting of Data

- Polynomial model: $y_i = \sum_{j=0}^p \beta_j x_i^j + w_i$
- ullet Prediction error will always decrease with p
- But, start to "fit noise"

Overfitting: What went wrong?

- Given data (x_i, y_i) and model $y \approx f(x, \beta)$
 - Example: $f(x, \beta)$ is a polynomial model for some degree
- Find $\hat{\beta}$ from data.
- Now suppose data samples are iid $(x_i, y_i) \sim (x, y)$
- Want to evaluate: $MSE(\hat{\beta}) \coloneqq E(y f(x, \hat{\beta}))^2$
 - Don't know true distribution
- Use training error: $MSE_{train}(\hat{\beta}) \coloneqq \frac{1}{n} \sum (y_i f(x_i, \hat{\beta}))^2$
 - Assume $MSE_{train}(\hat{\beta}) \to MSE(\hat{\beta})$
 - Not valid since $\hat{\beta}$ depends on data (x_i, y_i)

Under Modeling

- True relation: $y = f_0(x) + w$
 - $f_0(x)$ = "true" function
 - May not be exactly polynomial or within model class.
- Model: $\hat{y} = f(x, \beta) + w$
 - Example: Polynomial fit
- For a given β , prediction error is:

$$MSE(\beta) = E(y - \hat{y})^2 = \Delta(\beta) + \sigma^2$$

- Undermodeling error: $\Delta(\beta) = E((f_0(x) f(x, \beta))^2$
- Noise: σ^2

Effect of Model Order

Consider minimum model error:

$$\overline{\Delta} := \min_{\beta} \Delta(\beta) = \min_{\beta} E((f_0(x) - f(x, \beta))^2$$

- $\overline{\Delta}$ decreases with model order
 - Higher number of terms allows better approximation.
 - But, requires knowledge of $f_0(x)$ to find optimal β
- But, higher model order means:
 - More parameters to estimate
 - ullet Higher variance in \hat{eta}
 - Higher variance in $E\left((f_0(x) f(x, \hat{\beta}))^2\right)$

Bias-Variance Tradeoff

- Suppose we use a linear model: $f(x, \beta) = x^T \beta$

Model order selection trades off between bias & variance

Regression: Bias and Variance

$$E\left[\left(y-g\left(x\right)\right)^{2}|x\right] = E\left[\left(y-E\left[y|x\right]\right)^{2}|x\right] + \left(E\left[y|x\right] - f\left(x\right)\right)^{2}$$
noise
squared error

$$E_{\mathcal{X}}\left[\left(E\left[\mathbf{y}|x\right]-f\left(x\right)\right)^{2}|x\right]=$$

$$\left(E[\mathbf{y}|x] - E_{\chi}[f(x)]\right)^{2} + E_{\chi}[\left(f(x) - E_{\chi}[f(x)]\right)^{2}]$$
bias
variance

Simple Regression: Bias/Variance Example

- Example: $g_i(x)=2$ has no variance and high bias $g_i(x)=\sum_t r_i^t/N$ has lower bias with variance
- As we increase complexity,
 bias decreases (a better fit to data) and
 variance increases (fit varies more with data)
 (in this constant case, variance increase A LOT)

Fitting Higher Order Polynomials: Regression

Polynomial Regression

Polynomial Regression

Other Error Measures

Square Error:

$$E(\theta|\mathcal{X}) = \frac{1}{2} \sum_{t=1}^{N} \left[y^{t} - f(x^{t}|\theta) \right]^{2}$$

Relative Square Error:

$$E\left(\theta|\mathcal{X}\right) = \frac{\sum_{t=1}^{N} \left[y^{t} - f\left(x^{t}|\theta\right)\right]^{2}}{\sum_{t=1}^{N} \left[y^{t} - \overline{y}\right]^{2}}$$

- Absolute Error: $E(\theta \mid X) = \sum_{t} |y^{t} f(x^{t} \mid \theta)|$
- ε-sensitive Error:

$$E(\theta \mid X) = \sum_{t} 1(|y^{t} - g(x^{t}|\theta)| > \varepsilon)(|y^{t} - g(x^{t}|\theta)| - \varepsilon)$$

Outline

- Linear Regression
- Linear MSE Analysis
 - Prediction error
- Nonlinear and quadratic models
- Bias and Variance
- Model Order Selection
 - Overfitting and Underfitting

Cross validation

- Divide data into two components:
 - Training data \Rightarrow Learn parameters from first m samples
 - Test data \Rightarrow Test model on remaining n-m samples
- Model training: Take first m < n samples: $\hat{\beta} = \arg\min_{\beta} MSE_{train}(\beta)$, $MSE_{train}(\beta) = \frac{1}{m} \sum_{i=1}^{m} (y_i f(x_i, \beta))^2$
- Test model on remaining n m samples: $MSE_{test}(\beta) = \frac{1}{n m} \sum_{i=m+1}^{n} (y_i f(x_i, \beta))^2$
- Select model with lowest $MSE_{test}(\hat{\beta})$

Why Does Cross-Validation Work?

- Assume data (x_i, y_i) , i = 1, ..., n is iid
- MLE \hat{eta} depends on first m samples.
- Thus, $\hat{\beta}$ is independent of test data (remaining n-m samples)
- Therefore, if $n m \to \infty$, $MSE_{test}(\beta) = \frac{1}{n m} \sum_{i=m+1}^{n} (y_i f(x_i, \beta))^2 \to MSE_{true}(\beta)$
- Asymptotically correct estimate of true MSE:

$$MSE_{true}(\beta) = E(y - f(x, \beta))^{2}$$

Cross validation for model selection

 From https://www.maths.notti ngham.ac.uk/personal/p mzmig/researchtopics.html

Model order

Optimal model order

Variants on Cross Validation

- Hold out: Divide data into two parts: Train & test
 - Can optimize relative fractions of data
- K-fold validation
 - Divide data into K parts.
 - Use K-1 parts for training. Use remaining for test.
 - Average over the K test choices
 - More accurate, but requires K fits of parameters
- Leave one out cross validation (LOOCV)
 - Take K = N so one sample is left out.
 - Most accurate, but requires N model fittings

Model Selection: Other factors

- Cross-validation: Measure generalization accuracy by testing on data unused during training
- Regularization: Penalize complex models
 E'=error on data + λ model complexity
 Akaike's information criterion (AIC), Bayesian information criterion (BIC)
- Minimum description length (MDL): Kolmogorov complexity, shortest description of data
- Structural risk minimization (SRM)