Cálculo Integral

Contenidos

1	Seri	ies numéricas e integrales impropias	1
	1.1	Series absolutamente convergentes y condicionalmente convergentes	1
	1.2	Series de potencias	1

1 Series numéricas e integrales impropias

1.1 Series absolutamente convergentes y condicionalmente convergentes

Demostración (1.3.10)

$$s_{2n+2} = s_{2n} + (-a_{2n+1} + a_{2n+2}) \le s_{2n} \to (s_{2n})$$
 decreixent
$$s_{2n+3} = s_{2n+1} + (a_{2n+2} - a_{2n+3}) \ge s_{2n+1} \to (s_{2n+1})$$
 creixent

Por tanto, tenemos que: $s_{2n+1} \le s_{2n} \le s_0 = a_0 \implies (s_{2n+1})$ es creciente i acotada $\implies (s_{2n+1})$ tiene limite s.

$$lim(s_{2n} - s_{2n-1}) = lim(a_n) = 0 \implies lim(s_{2n}) = s \implies lim(s_n) = s$$

Finalmente, como s esta dentro del intervalo de extremos s_n , s_{n+1} y su longitud es a_{n+1} , tenemos que $|s-s_n| \le a_{n+1}$.

1.2 Series de potencias

Demostración (1.4.2)

Si $0 \le s \le r$ y $\sum |a_n|r^n$ converge $\implies \sum |a_n|s_n$ también, porqué $|a_n|s^n \le |a_n|r^n$.

Demostración (1.4.4)

Caso $0 < R < +\infty$: Sea 0 < |x| < R, $\exists c$ tal que $|x| < cR \iff \frac{1}{R} < \frac{c}{|x|}$, si n suficientemente grande, $|a_n|^{1/n} \le \frac{c}{|x|} \iff |a_n x^n| \le c^n$ (serie geométrica de razón c < 1).

Sea $|x| > R \iff \frac{1}{R} > \frac{1}{|x|}$, hay infinitos n tales que $|a_n|^{1/n} > \frac{1}{|x|} \implies |a_n x^n| > 1 \to a_n x^n$ no tiende a $0 \implies \sum a_n x^n$ no converge.