Unification

Nao Hirokawa JAIST

1217: Functional Programming

1/15

3/15

Unification Problem

Definition (Unification Problem)

instance: terms s, t

question: $s\sigma = t\sigma$ for some substitution σ (σ is unifier of s and t)

Definition

≤-minimal unifier is called most general unifier (mgu)

Example

for x + (0 + s(y)) and s(z) + (0 + x)

- $\blacksquare \ \{x \mapsto \mathsf{s}(z)\} \text{ is not unifier}$
- $\blacksquare \{x \mapsto \mathsf{s}(z), y \mapsto z\} \text{ is mgu}$
- $\blacksquare \ \{x \mapsto \mathsf{s}(\mathsf{0}), \ y \mapsto \mathsf{0}, \ z \mapsto \mathsf{0}\}$ is unifier but not mgu

Composition of Substitutions and Subsumption

Definition

$$\mathbf{\sigma} \mathbf{\tau} = \{ x \mapsto (x\sigma)\tau \mid x \in \mathcal{V} \}$$

Example

$$\sigma = \{x \mapsto \mathsf{s}(y), y \mapsto x + \mathsf{s}(0)\} \qquad \tau = \{x \mapsto \mathsf{s}(0), z \mapsto \mathsf{s}(\mathsf{s}(y))\}\$$

$$\tau \sigma = \{x \mapsto \mathsf{s}(\mathsf{0}), y \mapsto x + \mathsf{s}(\mathsf{0}), z \mapsto \mathsf{s}(\mathsf{s}(x + \mathsf{s}(\mathsf{0})))\}$$

Definition

$$\sigma \leq \tau \iff \exists \rho : \sigma \rho = \tau$$

1217: Functional Programming

2/15

Unification Algorithm

let $s \approx t$ denote unordered pair of s and t

Definition (unification rules, $E \Rightarrow_{\sigma} E'$)

- $\blacksquare \frac{\{f(s_1,\ldots,s_n) \approx f(t_1,\ldots,t_n)\} \uplus E}{\{s_1 \approx t_1,\ldots,s_n \approx t_n\} \cup E}$

Theorem

- lacksquare s and t are unifiable if and only if $\{s \approx t\} \Rightarrow^* \varnothing$
- \bullet $\sigma_1 \sigma_2 \cdots \sigma_n$ is mgu of s and t if $\{s \approx t\} \Rightarrow_{\sigma_1} \cdots \Rightarrow_{\sigma_n} \varnothing$

$$\{x + (0 + \mathsf{s}(y)) \approx \mathsf{s}(z) + (0 + x)\}$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \qquad \downarrow \qquad \qquad \qquad \downarrow \qquad \qquad \downarrow \qquad \qquad \qquad \downarrow \qquad \qquad \downarrow$$

I217: Functional Programming

5/15

Type System

Exercise 1

Compute an mgu of E if it exists.

2
$$E = \{x + s(y) \approx s(y) + s(x)\}$$

$$\mathbb{3} \ E = \left\{ \begin{array}{ll} a & \approx & \mathsf{TArr}(\mathsf{TApp}(\mathsf{List}, b), c) \\ a & \approx & \mathsf{TArr}(c, c) \end{array} \right\}$$

Here x, y, z, a, b, and c are variables.

1217: Functional Programming

6/15

Type Inference (Type Reconstruction Problem)

Question

what is type of f in next Haskell program?

```
data List a = Nil | Cons a (List a)
f (Cons x y) z = Cons x (f y z)
f Nil z = z
```

Note

corresponding system is applicative TRS ${\cal R}$ over type environment Γ

$$\mathcal{R} = \left\{ \begin{array}{c} \mathsf{f} \ (\mathsf{c} \ x \ y) \ z \to \mathsf{c} \ x \ (\mathsf{f} \ y \ z) \\ \mathsf{f} \ \mathsf{nil} \ z \to z \end{array} \right\} \qquad \Gamma = \left\{ \begin{array}{c} \mathsf{c} : a \to \mathsf{List} \ a \to \mathsf{List} \ a \\ \mathsf{nil} : \mathsf{List} \ a \end{array} \right\}$$

Typing

Definition

polymorphic type τ is term of form:

■ type environment is partial function from symbols to types

Example

$$\left\{\begin{array}{l} x: \mathsf{Nat} \\ \mathsf{0}: \mathsf{Nat} \\ \mathsf{f}: a \to (a \to \mathsf{Bool}) \end{array}\right\} \text{ is type environment}$$

1217: Functional Programming

9/15

Definition

- term t is typable under Γ if $\Gamma \vdash t : \tau$ for some τ
- lacktriangledown rule $\ell o r$ is typable under Γ if $\Gamma dash \ell : au$ and $\Gamma dash r : au$ for some type au
- \blacksquare applicative TRS is typable under Γ if all rules are typable under Γ

Example

- lacksquare g g is typeable under $\{g:a
 ightarrow a\}$ but not under $\{g: \mathsf{List}\ a
 ightarrow \mathsf{List}\ a\}$
- {map $f(x:xs) \rightarrow f(x:map) f(xs)$ } is typable under {map: $(a \rightarrow b) \rightarrow \text{List } a \rightarrow \text{List } b, \ldots$ }

Fact (type preservation)

for every applicative TRS ${\mathcal R}$ typable under Γ

$$\Gamma \vdash s : \tau \& s \to_{\mathcal{R}} t \implies \Gamma \vdash t : \tau$$

Definition (type judgement)

given type environment Γ

$$\frac{\Gamma(x) = \tau}{x : \tau \sigma} \qquad \frac{t : \tau_1 \to \tau_2 \quad u : \tau_1}{t \quad u : \tau_2}$$

where σ is type version of substitution

Example

$$\Gamma = \left\{ \begin{array}{l} x: \mathsf{Nat} \\ \mathsf{0}: \mathsf{Nat} \\ \mathsf{f}: a \to a \to \mathsf{Bool} \end{array} \right\} \quad \frac{\Gamma(\mathsf{f}) = a \to a \to \mathsf{Bool}}{\frac{\Gamma \vdash \mathsf{f}: \mathsf{Nat} \to \mathsf{Nat} \to \mathsf{Bool}}{\Gamma \vdash x: \mathsf{Nat} \to \mathsf{Bool}}} \quad \frac{\Gamma(x) = \mathsf{Nat}}{\Gamma \vdash x: \mathsf{Nat}} \quad \frac{\Gamma(\mathsf{0}) = \mathsf{Nat}}{\Gamma \vdash \mathsf{0}: \mathsf{Nat}}$$

1217: Functional Programming

10/15

Exercise 2

1 Identify the type environment Γ and the applicative TRS $\mathcal R$ for the program:

data Nat = Zero | Succ Nat
data List
$$a = \text{Nil} \mid \text{Cons } a \text{ (List } a)$$

Len :: List $a \to \text{Nat}$
Len (Cons $x \mid xs$) = Succ (Len xs)

- 2 Prove $\Gamma \vdash \mathsf{Cons} \; \mathsf{Zero} \; \mathsf{Nil} : \mathsf{List} \; \mathsf{Nat}.$
- 3 Prove $\Gamma \vdash \text{Len } (\text{Cons } x \ xs) : \text{Nat.}$
- \blacksquare Prove $\Gamma \vdash \mathsf{Succ} (\mathsf{Len} \ \mathit{xs}) : \mathsf{Nat}.$

Definition (constraint typing)

let Γ be type environment and a, d_x, d_f type variables

$$\frac{\Gamma \vdash_{\mathcal{C}} x : a}{\Gamma \vdash_{\mathcal{C}} t : a} [a \approx d_x] \qquad \frac{\Gamma(f) = \tau}{\Gamma \vdash_{\mathcal{C}} f : a} [a \approx \tau'] \qquad \frac{\Gamma(f) = \bot}{\Gamma \vdash_{\mathcal{C}} f : a} [a \approx d_f]$$

$$\frac{\Gamma \vdash_{\mathcal{C}} t : b \qquad \Gamma \vdash_{\mathcal{C}} u : c}{\Gamma \vdash_{\mathcal{C}} t u : a} [b \approx c \rightarrow a]$$

where b, c are fresh variables, and τ' is renamed version of τ with fresh variables

Notation

- \blacksquare $\mathcal{C}_{\Gamma}(t,a)$ is set of constraints in derivation of $\Gamma \vdash_{\mathcal{C}} t:a$
- $\mathcal{C}_{\Gamma}(\mathcal{R}) = \{e \mid e \in \mathcal{C}_{\Gamma}(\ell \to r) \text{ for some } \ell \to r \in \mathcal{R}\}$

1217: Functional Programming

13/15

variable-renamed applicative TRS \mathcal{R} over $\Gamma = \{c : a \to L \ a \to L \ a, \ nil : L \ a\}$:

$$\ell_1 = \operatorname{f} (\operatorname{c} x y) z \to \operatorname{c} x (\operatorname{f} y z) = r_1$$

 $\ell_2 = \operatorname{f} \operatorname{nil} \frac{\mathbf{w}}{\mathbf{w}} \to \frac{\mathbf{w}}{\mathbf{w}} = r_2$

 $\mathcal{C}_{\Gamma}(\mathcal{R}) = \mathcal{C}_{\Gamma}(\ell_1, a_0) \cup \mathcal{C}_{\Gamma}(r_1, a_{10}) \cup \{a_0 \approx a_{10}\} \cup \mathcal{C}_{\Gamma}(\ell_2, a_{20}) \cup \mathcal{C}_{\Gamma}(r_2, a_{25}) \cup \{a_{20} \approx a_{25}\}$

```
19: a_0 \approx a_{10}
                               22: a_{22} \approx d_{\rm f}
 20: a_{21} \approx a_{24} \rightarrow a_{20}
                                                       24: a_{24} \approx d_w
                         23: a_{23} \approx d_{\mathsf{nil}}
                                                                   25: a_{25} \approx d_w
21: a_{22} \approx a_{23} \rightarrow a_{21}
26: a_{20} \approx a_{25}
```

since $\mu(d_{\mathbf{f}}) = \mathsf{L} \ d_x \to \mathsf{L} \ d_x \to \mathsf{L} \ d_x$ for mgu μ of $\mathcal{C}_{\Gamma}(\mathcal{R})$, type of f is $\mathsf{L} \ a \to \mathsf{L} \ a \to \mathsf{L} \ a$

1217: Functional Programming 15/15

Example of (Monomorphic) Type Inference

let $\Gamma = \{c : a \to L \ a \to L \ a, \ nil : L \ a\}$

(below, $\Gamma \vdash_{\mathcal{C}}$ is omitted)

$$\frac{\Gamma(\mathsf{f}) = \bot}{\frac{\mathsf{f} : a_2}{\mathsf{f} : a_2}} \underbrace{\begin{bmatrix} \mathsf{G} : a_6 \to \mathsf{L} & a_6 \to \mathsf{L} & a_6 \\ \hline \frac{\mathsf{c} : a_5}{\mathsf{c} \times a_4} & [\mathsf{G}] & \frac{\Gamma(x) = \bot}{x : a_7} & [\mathsf{f}] \\ \hline \frac{\mathsf{c} x : a_4}{\mathsf{c} \times x y : a_3} & [\mathsf{g}] & \frac{\Gamma(y) = \bot}{y : a_8} & [\mathsf{g}] \\ \hline \frac{\mathsf{f} (\mathsf{c} x \ y) : a_1}{\mathsf{f} (\mathsf{c} x \ y) \ z : a_0} & [\mathsf{g}] & \frac{\Gamma(z) = \bot}{z : a_9} & [\mathsf{g}] \end{bmatrix}$$

 $\mathcal{C}_{\Gamma}(f(x,y),z,a_0)$ consists of following equations:

1: $a_1 \approx a_9 \rightarrow a_0$ 4: $a_4 \approx a_8 \rightarrow a_3$ 7: $a_7 \approx d_x$

2: $a_2 \approx a_3 \rightarrow a_1$ 5: $a_5 \approx a_7 \rightarrow a_4$ 8: $a_8 \approx d_y$

3: $a_2 \approx d_f$ 6: $a_5 \approx a_6 \rightarrow L \ a_6 \rightarrow L \ a_6$ 9: $a_9 \approx d_z$

1217: Functional Programming

14/15