- 1. [20 pts.] The figure for this question (see below) shows the internal force F (in Newtons) on a particle of mass m versus its position x (shown in metres).
 - (a) [5 pts.] What is the internal work done on the particle, when it moves from $x = 0.0 \,\mathrm{m}$ to $x = 7.0 \,\mathrm{m}$?
 - (b) [5 pts.] Are there any **equilibrium points?** If so, state where they are, and whether they are stable or unstable.
 - (c) [10 pts.] **Sketch** U(x) versus x, assuming that U(0) = 0. Label both axes with approximate values.

- 2. [15 pts.] (See figure above:) A uniform cylinder of radius R and mass M starts from rest. It rolls without slipping down a ramp of height h_1 , across a flat table, and then off the edge of the table. The table has height h_2 . How far away from the table does the cylinder land?
- 3. [20 pts.] A 20 g bullet moving initial at $v_i = 300 \,\mathrm{m/s}$ is fired into (and passes through) a 8.0-kg block that is 2.0 cm thick. The exit velocity of the bullet is $50 \,\mathrm{m/s}$.
 - (a) [5 pts.] What is the **final velocity** of the block?
 - (b) [10 pts.] **Estimate the time** Δt it took the bullet to pass through the block. State your assumptions, and say why they are reasonable.
 - (c) [5 pts.] Estimate the average force of the bullet on the block, averaged across the Δt time of its passage through the block.
- 4. [10 pts.] The potential energy of a particle is $U(x) = 3.0 x^4 + 5.0$ (in mks units.) Initially, the particle is at rest ($v_0 = 0.0 \,\mathrm{m/s}$) and located at $x = 2.0 \,\mathrm{m}$. There are no external forces or frictional forces. The particle has mass $M = 10 \,\mathrm{kg}$.
 - (a) [5 pts.] What is the initial acceleration of the particle?
 - (b) [5 pts.] What is the **kinetic energy** of the particle when it is at $x = 0.0 \,\mathrm{m}$?

- 5. [20 pts.] A wheel of radius $R=0.50\,\mathrm{m}$ and moment of inertia $I_{\mathrm{CM}}=24\,\mathrm{kg}\,\mathrm{m}^2$ is mounted on a frictionless horizontal axel, as shown in the figure. A light (massless) cord wrapped around the wheel supports a block of mass $m=120\,\mathrm{kg}$. At $t=0.0\,\mathrm{s}$, the wheel is released, the block accelerates downward, and rope is uncoiled from the wheel.
 - (a) [10 pts.] What is the **acceleration** of the mass?
 - (b) [5 pts.] What is the **tension** in the rope?
 - (c) [5 pts.] Give an expression for the **angular velocity** versus time t.

- 6. [15 pts.] A pillow of mass $0.40 \,\mathrm{kg}$ is accelerated with a constant force $F = 8.0 \,\mathrm{N}$ (see figure above). The pillow is spherical at first, but after the centre of mass is moved by $d_{\mathrm{CM}} = 30 \,\mathrm{cm}$, the pillow deforms into an ellipsoidal shape (see drawing). The distance from the centre of mass to the point of contact, initially $10.0 \,\mathrm{cm}$, is only $5.0 \,\mathrm{cm}$ at t_f .
 - (a) [5 pts.] What is the **kinetic energy** of the pillow at time t_f ?
 - (b) [5 pts.] How much **work was done** on the pillow by F during the time interval?
 - (c) [5 pts.] Should the answer to (a) and (b) be the same? **Explain** why or why not.

END OF EXAM.

(I) By conservation of energy, Ligure out
before flying off the table Solve this Anoblem in (II) by kinematics, find the range of parabolic flight. (I): AU+AK=0, so + mgh, + Kp=0 For a rolling cylinder, $Kp = \pm MV_p^2 + \pm II w_p^2$ but for rolling wishout 8 lipping, wp = Vp/RSo Kp = 12M (1+ T) Vp = 3MVp thus 3 W/2 = Mgh, > 4 = V = 84, (I): Dropping hz takes a time = gt=hz In that time, the cylinder dies Vxt, So range = /zhz / / 3 gh, $=\sqrt{\frac{8}{2}}h,hz$

first, what relacity does the explinder have when it leaves the table? by cons. of energy for no slipping, w + 1 Mun, w= Vor/R Page

Across he all potential energy is converted into votational hinetic energy & linear hinetic energy

$$M_{g}h_{R} = \frac{1}{2} I \omega^{2} + \frac{1}{2} M \upsilon^{2}$$

$$= \frac{1}{2} I \frac{\upsilon^{2}}{R^{2}} + \frac{1}{2} M \upsilon^{2}$$

$$= \upsilon^{2} \left(\frac{1}{2} \frac{I}{R^{2}} + \frac{1}{2} M \right) \qquad |I = \frac{1}{2} M R^{2}$$

$$= \upsilon^{2} \left(\frac{1}{4} M + \frac{1}{2} M \right)$$

$$= \frac{3}{4} M \upsilon^{2}$$

$$\upsilon^{2} = \frac{4}{3} g h_{R}$$

$$\upsilon = \sqrt{\frac{1}{2} g h_{R}}$$

Time it takes cylinder to fall ho $\frac{1}{2}g(\Delta t)^{2}h_{T}; \Delta t = \sqrt{\frac{2h_{T}}{q}}$

The cylinder lands & hph- away from the table.

(a)
$$U = 3 \times 4 + 5$$

(b) At $x = 2.0 m$, what is F ?

 $F = -\frac{40}{3} \times -12 \times 3$, so $a(3) = \frac{-9.0 M}{40} = \frac{-9.0 M}{10 M_2} = \frac{-9.0 M}{10 M_2$

