#### Wintersemester 2023/2024

### Physische Geographie 1

### (Grundkursvorlesung PG 1 – Vorlesungsteil Klimatologie)

**Prof. Dr. Christoph Beck** 

Lehrstuhl für Physische Geographie mit Schwerpunkt Klimaforschung

Institut für Geographie

Universität Augsburg



#### Adiabatische Zustandsänderungen:

<u>adiabatisch:</u> physikalischer oder chemischer Vorgang, bei dem zwischen System und Umgebung kein Wärmeaustausch stattfindet.

### Vertikale Aufwärtsbewegung:

**⇒ Expansion und Abkühlung der gehobenen Luft** 

# Grad der Abkühlung in Abhängigkeit davon ob:

Aggregatszustandsänderungen des Wassers (insbes. Kondensation + Freisetzung latenter Wärme) stattfinden

- 1) ohne Aggregatszustandsänderungen: trockenadiabatisch
- 1) mit Aggregatszustandsänderungen: feuchtadiabatisch

## Aggregatzustände von H₂O



Aus Gebhardt/Glaser/Radtke/Reuber: Geographie. 1. Aufl., © 2007 Elsevier GmbH

#### Verdunstungsenergie EV in Abhängigkeit von der Temperatur T:

| T [°C]                          | -10  | 0    | 10   | 20   | 30   | 40   | 100  |
|---------------------------------|------|------|------|------|------|------|------|
| $\mathbf{E}_{\mathrm{V}}$ [J/g] | 2524 | 2498 | 2478 | 2452 | 2427 | 2394 | 2256 |

### Adiabatische Zustandsänderungen:

#### **Trockenadiabatischer vertikaler Temperaturgradient:**

```
gilt für e < E ;
vertikaler Temperaturgradient: ≈ 1°C/100m
```

### Feuchtadiabatischer vertikaler Temperaturgradient:

```
gilt für e = E;
vertikaler Temperaturgradient: temperaturabhängig
am häufigsten: 0.5 bis 0.7°C/100m
```



**Thermodynamisches Diagramm** 

(nach Stüve 1927)



— Feuchtadiabaten

--- (maximale) spezifische Feuchte

— Trockenadiabaten

#### Trocken- und feuchtadiabatische Zustandsänderung



(Weischet 2002)

#### Adiabatische Zustandsänderungen:

Trockenadiabatischer und feuchtadiabatischer Temperaturgradient

Aus temperaturabhängigkeit des Sättigungsdampfdrucks ergibt sich:

Bei hohen Lufttemperaturen (warme Klimate, untere Troposphärenschichten):

⇒ feuchtadiabatischer Temperaturgradient wesentlich kleiner als der trockenadiabatische.

Bei niedrigen Lufttemperaturen (kalte Klimate, höhere Troposphärenschichten):

⇒ feuchtadiabatischer Temperaturgradient gleicht sich dem trockenadiabatischen immer mehr an.

#### Adiabatische Zustandsänderungen:

### **Das Föhnprinzip**



Adiabatische Zustandsänderungen:

## **Das Föhnprinzip**



Adiabatische Zustandsänderungen und thermische Vertikalschichtung in der Atmosphäre (geometrischer vertikaler Temperaturgradient):



Adiabate

labile Schichtung

stabile Schichtung

Stabilität und Labilität der vertikalen thermischen Schichtung

**Inversion** 

Stabilität und Labilität der vertikalen thermischen Schichtung:





#### **Ursachen für vertikale Luftbewegungen:**

- orographisch erzwungene Anhebung

#### Hebung von Luftmassen an orographischem Hindernis



(Tucker 2005)

### Ursachen für vertikale Luftbewegungen:

- orographisch erzwungene Anhebung
- Verwirbelung einer (horizontalen) Strömung ("dynamische Turbulenz")



- katabatischer Kaltluftabfluss
- Advektion unterschiedlich temperierter Luftmassen
  - Aufgleitbewegung
  - erzwungener Aufstieg

#### **Ursachen für vertikale Luftbewegungen:**

- Advektion unterschiedlich temperierter Luftmassen

## **Aufgleitbewegung:**

← warme Luft wird gegen kalte Luft geführt



(McKnight & Hess 2009)

### Ursachen für vertikale Luftbewegungen:

- Advektion unterschiedlich temperierter Luftmassen

### **Einbruchsprozess:**

← kalte Luft wird gegen warme Luft geführt



(McKnight & Hess 2009)

#### Ursachen für vertikale Luftbewegungen:

- orographisch erzwungene Anhebung
- Verwirbelung einer (horizontalen) Strömung ("dynamische Turbulenz")



- katabatischer Kaltluftabfluss
- Advektion unterschiedlich temperierter Luftmassen
  - Aufgleitbewegung
  - erzwungener Aufstieg
- labile Schichtung
- Konvergenzen und Divergenzen
  - → Massengewinn bzw. Massenverlust im horizontalen Strömungsfeld

|                    | носн                      | TIEF                       |  |
|--------------------|---------------------------|----------------------------|--|
| Rotation           | antizyklonal              | zyklonal                   |  |
| bodennahe Strömung | divergentes<br>Ausströmen | konvergentes<br>Einströmen |  |
| Vertikalbewegung   | absinkend                 | aufsteigend                |  |
| Bewölkung          | gering                    | stark                      |  |
| aber:              | Nebelbildung              | Hitzetiefs                 |  |

Witterungsphänomene bei ausgeprägter Stabilität / Labilität der Schichtung:

#### **Gewitter – Typen (ausgeprägte Labilität):**

- Luftmassengewitter ("Wärmegewitter")
- Frontalgewitter
- orographische Gewitter

#### **Inversions – Typen (ausgeprägte Stabilität):**

- Ausstrahlungsinversion
- Aufgleitinversion
- dynamische Absinkinversion

Witterungsphänomene bei ausgeprägter Stabilität / Labilität der Schichtung:

### dynamische Absinkinversion:





# **Inversionslage:**



Winterliche Inversionslage in Salt Lake City