Step-1

Consider the following matrices:

$$A_1 = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$

$$A_2 = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$$

$$A_3 = \begin{bmatrix} 1 & 1 \\ 0 & 0 \end{bmatrix}$$

$$A_4 = \begin{bmatrix} 0 & 0 \\ 1 & 1 \end{bmatrix}$$

$$A_5 = \begin{bmatrix} 1 & 0 \\ 1 & 0 \end{bmatrix}$$

$$A_6 = \begin{bmatrix} 0 & 1 \\ 0 & 1 \end{bmatrix}$$

Step-2

Determine the matrices which are similar.

Step-3

Recall that similar matrices have same Eigen values. Calculate the Eigen values of all the matrices. Matrix A_1 is triangular matrix so Eigen values of matrix A_1 will be $\lambda_1 = (1,1)$. Similarly Eigen values of matrices A_3 and A_6 are :

$$\lambda_3 = (1,0)$$

$$\lambda_6 = (0,1)$$

Therefore, A_3, A_6 are similar matrices.

Step-4

Calculate Eigen values of matrix A_2 ;

$$A_2 - \lambda I = \begin{bmatrix} 0 - \lambda & 1 \\ 1 & 0 - \lambda \end{bmatrix}$$
$$\det (A_2 - \lambda I) = 0$$
$$(-\lambda)(-\lambda) - 1 = 0$$
$$\lambda^2 - 1 = 0$$

On solving above equation following Eigen values are obtained:

$$\lambda_2 = (1,-1)$$

Step-5

Eigen values of matrix A_4 will be:

$$A_4 - \lambda I = \begin{bmatrix} 0 - \lambda & 0 \\ 1 & 1 - \lambda \end{bmatrix}$$
$$\det(A_4 - \lambda I) = 0$$
$$(-\lambda)(1 - \lambda) = 0$$
$$\lambda^2 - \lambda = 0$$

On solving above equation following Eigen values are obtained:

$$\lambda_4 = (1,0)$$

Step-6

Similarly, Eigen values of matrix A_5 will be $\lambda_5 = (1,0)$.

Step-7

Therefore, following matrices are similar:

0	0	[1	1	[1	0	0	1
1	1]	0	$\begin{bmatrix} 1 \\ 0 \end{bmatrix}$	1	0	`[0	1

Matrix A_1 and A_2 are similar to themselves.