Combinational ATPG

- Introduction
- Deterministic Test Pattern Generation
 - Boolean difference approach*
 - Path sensitization method**
 - D-Algorithm [Roth 1966] **
 - PODEM [Goel 1981] **
 - FAN [Fujiwara 1983]**
 - SAT-based [Larrabee 1992] *
- Acceleration Techniques
- Concluding Remarks

*Boolean-based methods

**path-based methods

D→PODEM →FAN

- D-algorithm decision at internal nodes → too many decisions, slow!
- PODEM decision at PI → too little information, mistake-prone!
- FAN decision at head lines and fanout stems → good trade-off

FAN [Fujiwara 1983]

- FANout-oriented test generation
- Four improvements over PODEM
 - #1. Make decision at head lines or fanout stem
 - #2. Forward/backward Implications
 - #3. Unique sensitization
 - #4. Multiple backtraces

Justify Head Line Is Easy

- Justification inside FFC (fanout-free cone) is linear time
 - Guaranteed to find an answer
- Example: a,b,c,e,f are PI, k is head line
 - objective k = 1

Can Make Decision at Head Line
Instead of PI

Head Line

- Bound line: line fed directly (i, k) or indirectly (m) by fanout stem
- Free Line: line that is not Bound (a~f, h, j)
- Head Line: free line that is either
 - Fanout stem (j), or
 - Input to a gate with bound output (h)

#1. Make Decision at Head Lines

- FFC can be isolated from rest of circuit by cutting head lines
- Assignment of Pl's that feed head lines are
 - deferred until other objectives have been achieved
 - Reduce search space

Head Lines Reduces Search Space

Example

- PODEM decision tree is big
 - ◆ A=1,B=0
 - No test, backtrack
 - ◆ B=1, C=0
 - No test, backtrack
 - ◆ C=1

- FAN decision tree is small
 - → J=0
 - No test, backtrack
 - → J=1

PODEM

Quiz

Q: Which are bound lines? free lines? head lines?

A:

#2. Forward/backward Implication

- PODEM does not assign internal values
 - Only forward implication, no backward implication
- FAN assigns internal values when they are uniquely implied
 - Both forward and backward implication
- Example: L SA1 fault
- FAN
 - Bwd: JKE=1, H=0, A=1, B=1
 - Fwd: G=1
 - Bwd: K=1, C=0
 - no backtrack needed
- PODEM
 - Backtrace to B=0
 - Forward implication
 - Wrong! backtrack

FAN Example

Quiz

Q: If we want *K*=1, apply implication to determine head lines *A*=? *E*=?

ANS:

FAN

- Four improvements over PODEM
 - #1. Make decision at head lines or fanout stem
 - #2. Forward/backward Implications
 - #3. Unique sensitization
 - #4. Multiple backtraces

#3. Unique Sensitization

- When there is only one gate in D-frontier
 - if unique path exists, set side inputs to non-controlling values
- Example:
 - FAN
 - * G2 is unique D-frontier, only one path to H
 - * G1 = 1, E = 1, F = 1, $A = 1 \rightarrow B = 0 \rightarrow success!$
 - PODEM
 - * Initial objective: $G1 = 1 \rightarrow$
 - * backtrace to A = 0 → X-path disappear!

#4. Multiple Backtraces

- PODEM uses depth-first search (DFS)
 - One single backtrace at a time
- FAN uses breadth first search (BFS)
 - Multiple parallel search at a time
- Example
 - PODEM needs 6 backtraces
 - FAN needs only 1 multiple backtrace

PODEM

FAN

Rules for Multiple Backtraces

- Objective: (x, n_0, n_1)
 - number of backtraced zeros (n_0) and ones (n_1) on signal x
- For AND gate
 - Easiest unspecified input x₁

*
$$(x_1, n_0, n_1) = (y, n_0, n_1)$$

- Other inputs x_2, x_3
 - * $(x_2, n_0) = 0$
 - * $(x_2, n_1) = (y, n_1)$
- For fanout Stem
 - * $(x, n_0) = \text{sum of } (y_i, n_0)$
 - * $(x, n_1) = \text{sum of } (y_i, n_1)$

Example

- Starting from (K,0,5), multiple backtrace to head lines A and E
 - So we get two assignments A=0, E=1

Quiz

Q: Starting from (K, 5, 0), multiple backtrace to head lines $(E, n_0, n_1)=?$ $(A, n_0, n_1)=?$ Suppose H is chosen over J

A:

Multiple Backtrace Conflict

- What if change G₂ to OR gate?
- Want K=1, perform multiple backtrace to headlines A and E
 - conflicting values at E!

- How to handle a conflict ?
 - assign a value most requested, then start next backtrace
 - will backtrack if it is wrong

Multiple Backtrace (1/2)

```
MultipleBacktrace (Initial_objectives, Fanout_objectives) {
 Current_objectives = Initial_objectives
 while (Current_objectives \neq \phi or Fanout_objectives \neq \phi) {
   dequeue entry (k, v_k) from Current or Fanout_objectives
   switch (type of entry) { (k, v_k) = \text{want } v_k \text{ on signal } k
     1. HEAD_LINE:
        add (k, v_k) to Headline_objectives
     2. FANOUT BRANCH:
        j = stem(k);
        increment n_0 or n_1 at j for v_k; //sum of n_0, n_1
        add j to Fanout_objectives
     3. GATE:
                                        //page 15
        i = inversion of k; c = controlling value of k;
        if ((v_k \oplus i) == c) {
            select easiest input j with unknown value
            add( j, c) to Current_objectives;}
        else {
            for every input j of k with value
            add(j, c') to Current_objectives; }
   } // switch
```

Multiple Backtrace (2/2)

```
(cont'd from previous page)
                                            *simplified from Fig. 8 of FAN paper
   if(Fanout_objectives \neq \phi) {
      dequeue highest-level stem (k) from Fanout_Objectives
      v_k = 0 or 1, depends on which of (n_0, n_1) is larger
      if there is no conflict on k {
        add (k, v_k) to Current_objectives} // continue backtrace
      else { return (k, v_k) as the Final_objective} // stop backtrace
   else { // no fanout objective
      dequeue (k, v_k) from Headline_objectives
      return (k, v_k) as the Final_objective }
 } // while
  // MultipleBacktrace
```

MultipleBacktrace

final_objective (either a fanout or a headline)

initial_objectives fanout_objectives

Multiple Backtrace Example (1/3)

Current Obj.	processed entry	Fanout Obj.	Headline Obj.
$(m,1)(g_2,1)(q,1)$	(m,1)	-	(h,1)
$(g_2,1)(q,1)(g_1,1)$	(g ₂ ,1)	(g,n ₁ =1)	(h,1)
$(q,1)(g_1,1)$	(q,1)	(g,n ₁ =1)	(h,1)
$(g_1,1)(f_2,0)$	(g ₁ ,1)	(g,n ₁ =2)	(h,1)
$(f_2,0)$	$(f_2,0)$	$(g,n_1=2)(f,n_0=1)$	(h,1)
-	(g,1) consistent	$(f,n_0=1)$	(h,1)
(g,1)	(g,1)	$(f,n_0=1)$	(h,1)(a,1)
(f ₁ , 1)	(f ₁ ,1)	$(f,n_0=1 \ n_1=1)$	(h,1)(a,1)
-	f conflict!	-	(h,1)(a,1)

Multiple Backtrace Example (2/3)

because $n_0=n_1=1$, just choose randomly suppose we assign f=0 forward implication inconsistent with initial objectives! backtrack to f=1

Decision at Fanout Stem Detects Inconsistency Earlier

Multiple Backtrace Example (3/3)

Assign *f*=1
Forward implication, consistent.
Multiple_Backtrace again
This time, headline objectives: *h*=1, *a*=1, *e*=0, *c*=0
Forward implication
Initial objective achieved!

Multiple Backtrace is Fast

PODEM v.s. FAN

Difference highlighted in **Blue**

Summary

- 1. Make decision at head lines and fanout stem
 - Reduce search space
- 2. Forward/backward Implications
 - More information to make correct decision
- 3. Unique sensitization
 - Unique path to output
- 4. Multiple backtraces
 - BFS to search many paths together

Flowchart of PODEM

Flowchart of FAN

