Paul Gustafson

Texas A&M University - Math 447

Instructor: Dr. Johnson

HW 2, due February 7

16.58 Suppose that $m^*(E) < \infty$. Prove that E is measurable if and only if, for every $\epsilon > 0$, there is a finite union of bounded intervals A such that $m^*(E\triangle A) < \epsilon$ (where $E\triangle A$ is the symmetric difference of E and A).

Proof.

Lemma 1. If S, T, U are sets, then $S \triangle U \subset (S \triangle T) \cup (T \triangle U)$.

Proof.

$$\begin{split} S\triangle U &= (S\setminus U) \cup (U\setminus S) \\ &\subset (((S\setminus T) \cup T)\setminus U) \cup (((U\setminus T) \cup T)\setminus S) \\ &\subset (S\setminus T) \cup (T\setminus U) \cup (U\setminus T) \cup (T\setminus S) \\ &= (S\triangle T) \cup (T\triangle U) \end{split}$$

Suppose E is measurable. Let $\epsilon > 0$. Pick an open set $U \supset E$ with $m(U \setminus E) < \epsilon/2$. Since $m(U) < \infty$, $U = \bigcup_{n=1}^{\infty} I_n$ where the I_n are disjoint bounded open intervals. Pick N such that $\sum_{n=N+1}^{\infty} I_n < \epsilon/2$. Let $A := \bigcup_{n=1}^{N} I_n$. Then, by the lemma, $m(A \triangle E) \leq m(A \triangle U) + m(U \triangle E) = m(U \setminus A) + m(U \setminus E) < \epsilon$.

Conversely, let $\epsilon > 0$ and suppose such an A exists. Let $U \supset E \triangle A$ be an open set such that $m(U) < \epsilon$. There exists an open set $J \supset A$ such that $m(J \setminus A) < \epsilon$. Then $G := U \cup J$ is open, and $G \supset (E \triangle A) \cup A \supset E$. Moreover,

$$\begin{split} m^*(G \setminus E) &\leq m(U) + m^*(J \setminus E) \\ &\leq \epsilon + m^*(J \triangle E) \\ &\leq \epsilon + m(J \triangle A) + m^*(A \triangle E) \\ &= \epsilon + m(J \setminus A) + m^*(A \triangle E) \\ &< 3\epsilon \end{split}$$

16.60 If E is a measurable set, show that E+x and rE are measurable for any $x, r \in \mathbb{R}$. [Hint: Use Theorem 16.21].

Proof. If r=0, $rE=\{0\}$ is measurable, so we may assume $r\neq 0$. Let $\epsilon>0$, and let $U\supset E$ be open with $m(U\setminus E)<\epsilon$.

I claim that I is in open interval iff rI + x is an open interval. Let f(y) := ry + x. Since $r \neq 0$, f is a homeomorphism. It also preserves betweenness since a < b < c implies f(a) < f(b) < f(c) if r > 0, and f(a) > f(b) > f(c) if r > 0.

1

If f(I) is an interval, let a < b < c with a, c in I. Then f(b) is between f(a) and f(c), so $f(b) \in f(I)$ which implies $b \in I$. The converse follows from the fact that f^{-1} has the same form as f.

Hence, since U is a countable union of open intervals, rU + x is open. Moreover, (I_n) is a cover of $U \setminus E$ by open intervals iff $(rI_n + x)$ covers $(rU + x) \setminus (rE + x)$. Therefore, $m^*((rU + x) \setminus (rE + x)) = rm(U \setminus E)$.

16.70 Prove that an arbitrary union of positive-length intervals is measurable. [Hint: Let \mathcal{C} be the collection of all closed intervals J such that $J \subset I_{\alpha}$ for some α .]

Proof. Let (I_{α}) be an arbitrary collection of positive length intervals, and $U = \bigcup_{\alpha} I_{\alpha}$. Let \mathcal{C} be the collection of all closed intervals J such that $J \subset I_{\alpha}$ for some α .

Let (q_n) be a countable dense-in- \mathbb{R} set. Let $E_n = \bigcup \{J \in \mathcal{C} : q_n \in J\}$. I claim E_n is an interval. Suppose a < b < c with $a, c \in E_n$. Then there exists $J_a \in \mathcal{C}$ with $q_n, a \in J_a$ and J_c with $q_n, c \in J_c$. Hence, if $q_n \leq b$, then $b \in J_c$; and if $q_n > b$, then $b \in J_a$. Hence, E_n is an interval.

To see that $E := \bigcup_n E_n \supset U$, suppose $x \in U$. Then $x \in I_\alpha$ for some α . There exists a closed interval I such that $x \in I \subset I_\alpha$. There exists some q_n such that $q_n \in I$. Hence, $x \in I \subset E_n$.

The reverse inclusion, $E \subset U$, follows from the fact that each $E_n \subset U$. Hence, U = E is the countable union of intervals.

16.78 If E is a measurable subset of A, show that $m^*(A) = m(E) + m^*(A \setminus E)$. Thus $m^*(A \setminus E) = m^*(A) - m(E)$ provided that $m(E) < \infty$.

Proof. Let $\epsilon > 0$. There exists an open set $U \supset A$ such that $m(U) \leq m^*(A) + \epsilon$. Thus, $m^*(A) \geq m(U) + \epsilon = m(E) + m(U \setminus E) + \epsilon \geq m(E) + m^*(A \setminus E) + \epsilon$. \square

J16.4 Prove that every set of positive outer measure contains a nonmeasurable subset.

Proof. Following Carothers' hint, let $A \subset \mathbb{R}$ with $m^*(A) > 0$. Then since $m^*(A) \geq \sum_n A \cap [n, n+1)$, some $A \cap [n, n+1)$ has positive outer measure. Let $N_r \subset [0,1)$ be defined as in Carothers' construction of an unmeasurable set. Since $\bigcup_r N_r + n = [n, n+1)$, some $A \cap (N_s + n) =: E$ must have positive outer measure.

Suppose E were measurable. Then $E-n\subset N_s$ has positive measure. Let $F_r:=(E-n+r(\text{mod}1)_r)$. Then $m(F_r)=m(E)$, and $F_r\subset N_r$. Hence, the F_r are disjoint, so $m([0,1))\geq m(\bigcup_r F_r)=\sum_r m(F_r)=\sum_r m(E)=\infty$, a contradiction.

J16.5 Prove that m is Lipschitz with constant 1 on (\mathcal{M}_1, d) , where \mathcal{M}_1 denotes the measurable subsets of [0,1], and $d(E,F) = m(E \triangle F)$. Prove that

 (\mathcal{M}_1,d) is complete. [Hint: If (E_n) is d-Cauchy, then, by passing to a subsequence, you may assume that $d(E_n,E_{n+1})<2^{-n}$. Now argue that (E_n) converges to, say, $\limsup_{n\to\infty} E_n$.]

Proof. Let $E, F \in \mathcal{M}_1$. WLOG, $m(E) \leq m(F)$. Then $|m(F) - m(E)| = m(F) - m(E) \leq m(F \setminus E) \leq m(E \triangle F) = d(E, F)$.

For the completeness, suppose (E_n) is d-Cauchy. By passing to a subsequence, assume $d(E_n, E_{n+1}) < 2^{-n}$. Let $E = \limsup_{n \to \infty} E_n$. For any k, we have

$$d(E_k, E) = m(E_k \triangle \bigcap_{m=1}^{\infty} \bigcup_{n=m}^{\infty} E_n)$$

$$\leq m(\bigcap_{m=1}^{\infty} E_k \triangle \bigcup_{n=m}^{\infty} E_n)$$

so $E_k \to E$.

J16.6 Let X be a metric space, $E \subset X$, and $\mathcal{B} := \{B_{r(x)}(x) : x \in S\}$ be a cover of E such that $\sup_{x \in S} r(x) < \infty$. Prove that there is a (finite or infinite) sequence $\{B_{r(x_i)}(x_i)\}_{i=1}^N$ of disjoint balls in \mathcal{B} so that either

- 1. $N = \infty$ and $\inf_i r(x_i) > 0$, or
- 2. $E \subset \bigcup_{n=1}^N B_{5r(x_i)}(x_i)$. (N can be either finite or infinite in this case.)

Hint: Greed is good.

Proof. Let $S_1 := S$. Recursively, for i = 1, 2, ...,

- 1. Choose $x_i \in S_i$ such that $r(x_i) > 1/2 \sup_{x \in S_i} r(x)$.
- 2. Let $S_{i+1} = \{x \in S : B_{r(x)}(x) \cap \bigcup_{j=1}^{i} B_{r(x_j)}(x_j) = \emptyset\}.$
- 3. If $S_{i+1} = \emptyset$, stop.

By (2), $\{B_{5r(x_i)}(x_i)\}_{n=1}^N$ are disjoint.

Let $y \in E$. There exists $x \in S$ such that $y \in B_{r(x)}(x)$.

Case $N < \infty$: Since $S_{N+1} = \emptyset$, we have $B_{r(x)}(x) \cap \bigcup_{j=1}^{N} B_{r(x_j)} \neq \emptyset$. Thus, for some minimal j, $B_{r(x_j)}(x_J) \cap B_{r(x)}(x) \neq \emptyset$. By construction step (1), since j is minimal, $r(x) < 2r(x_j)$. Thus, by the triangle inequality, $B_{r(x)}(x) \subset B_{5r(x_j)}(x_j)$.

Case $\inf_i r(x_i) = 0$: Suppose $B_{r(x)}(x) \cap \bigcup_{j=1}^N B_{r(x_j)} = \emptyset$. Since $\inf_i r(x_i) = 0$, there exists j such that $r(x_j) < 1/2r(x_i)$. But this contradicts the choice of x_j in construction step (1).

Hence, as in the previous case, $B_{r(x)}(x) \subset B_{5r(x_j)}(x_j)$ for some j.