

디지털논리회로 [Digital Logic Circuits]

10강.

순서논리회로(2)

컴퓨터과학과 강지훈교수

제6장 | 순서논리회로

순서논리회로의 분석

- 순서논리회로의 분석 과정
- 순서논리회로의 분석 예
- 상태도

10강. 순서논리회로(2)

6.4

순서논리회로의 분석

6.4 순서논리회로의 분석

- 순서논리회로의 분석
 - 주어진 순서논리회로의 입출력 관계를 규명
 - 시간지연요소인 기억소자-플립플롭이 포함되어 있기 때문에 회로의 시간적 변화를 고려해야 함
 - 즉, 회로 동작의 시간적 변화를 상태(state), 현재 상태와 다음상태로 표현해야 함
 - 순서논리회로의 동작은 입출력 상태와 플립플롭의 상태에 따라 결정되기 때문에 입출력, 플립플롭의 상태에 대한 시간적 변화를 나타내야 함
 - 즉, 순서논리회로의 분석은 상태표(state table)를 완성하는 것을 의미함

- 순서회로도의 상태표 작성
 - 우선 순서논리회로의 플립플롭에 대한 상태 변화를 알아야 함
 - 플립플롭의 상태변화는 플립플롭에 들어오는 입력을 알면 구할 수 있음
 - 플립플롭의 입력은 입력 방정식으로 표현됨

• 입력 방정식의 유도

- 플립플롭의 입력으로는 조합논리회로의 출력이 연결됨
- 조합논리회로의 출력함수가 플립플롭의 입력함수가 되고 이는 플립플롭의 입력 방정식이라고 함

• 입력 방정식 유도 예시

구해진 입력 방정식(출력값 A를 갖는 J와 K)

$$J_A = \bar{W}X + \bar{Y}Z$$

$$K_A = \bar{X}Y + Z$$

• 상태표 작성

• 상태표

- 순서논리회로에서 플립플롭의 상태와 입력, 출력의 변화를 나타낸 표
- 상태표는 현재 상태, 입력, 다음상태, 출력으로 구성

현재상태와 입력

- 논리회로도의 입력과 플립플롭의 상태
- 입력과 현재상태에 대한 2진 조합으로 기입

현재상태		입력	다음	다음상태	
A	В	X	Α	В	Y
0	0	0	0	0	0
0	0	1	0	1	0
0	1	0	0	0	1
0	1	1	1	1	0
1	0	0	0	0	1
1	0	1	1	1	0
1	1	0	0	0	1
1	1	1	1	0	0

출력

- 출력값
- 조합논리회로의 부울함수에 의해 결정

다음 상태

• 플립플롭의 입력 방정식에 의해 결정

디지털<mark>논리</mark>회로 **■** 10.

• 상태표 작성을 위한 입력 방정식 유도

- 해당 회로도에서 입력은 X, 출력은 Y
- 플립플롭의 입력 방정식은

$$D_A = AX + BX$$

$$D_B = \bar{A}X + \bar{B}X$$

$$Y = (A + B)\bar{X}$$

- 여기서 구해진 D_A 와 D_B 는 두개의 D 플립플롭의 현재 상태값
- 출력 A 를 갖는 D 플립플롭의 현재상태는 A(t), 출력 B 를 갖는 D 플립플롭의 현재상태는 B(t) 로 표현

디지털<mark>논리</mark>회로 ▶ 10.

• 상태표 작성을 위해 입력방정식에서 다음 상태와 출력 결정

- D 플립플롭은 플립플롭의 입력이 출력에 그대로 전달
- D_A 와 D_B 의 다음 상태는 D_A 와 D_B 의 입력 방정식에 의해 결정

$$A(t+1) = D_A = AX + BX$$

$$B(t+1) = D_B = \bar{A}X + \bar{B}X$$

• 출력은 조합논리회로의 출력방정식에 의해 결정

$$Y = (A + B)\bar{X} = A\bar{X} + B\bar{X}$$

6.4.2 D 플립플롭을 가진 순서논리회로의 분석[○]

• 상태표 작성

현재	상태	입력 다음상태		상태	출력
A	В	X	A	В	Y
0	0	0	0	0	0
0	0	1	0	1	0
0	1	0	0	0	1
0	1	1	1	1	0
1	0	0	0	0	1
1	0	1	1	1	0
1	1	0	0	0	1
1	1	1	1	0	0

• 다음상태

$$A(t+1) = D_A = AX + BX$$
 $Y = A\overline{X} + B\overline{X}$
 $B(t+1) = D_B = \overline{AX} + \overline{BX}$

• 출력

$$Y = A\bar{X} + B\bar{X}$$

디지털**논리**회로 ☑ 10.

- JK 플립플롭을 가진 순서논리회로의 분석
 - 플립플롭의 특성을 나타내는 특성표가 필요함
 - JK 플립플롭을 가진 순서논리회로는 D 플립플롭과을 가진 순서논리회로와 다르게 다음 상태가 입력방정식만으로 구해지지 않음
 - ・ 따라서, 다음 상태를 구하기 위해서는 플립플롭의 특성표를 이용해서 플립플롭의 응답을 알아야 함

• 특성표

- 플립플롭의 논리적 성질을 정의하고, 그 동작 특성을 작성한 표
- 플립플롭의 함수표를 말함

S	R	Q(t+1)
0	0	Q(t)
0	1	0
1	0	1
1	1	?

RS 플립플롭

J	K	Q(t+1)
0	0	Q(t)
0	1	0
1	0	1
1	1	$\bar{Q}(t)$

JK 플립플롭

D	Q(t+1)
0	0
1	1

D 플립플롭

T	Q(t+1)
0	Q(t)
1	$ar{Q}(t)$

T플립플롭

디지털**논리**회로

■ 10.

- 특성표를 이용한 상태표 작성(1)
 - JK 플립플롭의 입력을 구하기 위해 입력 방정식 유도

• JK 플립플롭의 입력 방정식

$$J_A = AX + BX$$

$$K_A = \bar{A}BX + AB\bar{X}$$

$$J_B = \bar{X}$$

$$K_B = A\bar{X} + \bar{A}X$$

- 플립플롭의 다음 상태를 구하기 위해서는 플립플롭의 입력을 알아야 함
- 입력을 알기 위해서는 입력 방정식이 유도되어야 함

디지털<mark>논리</mark>회로 ☑ 10.

• 특성표를 이용한 상태표 작성(2)

• 플립플롭의 입력 방정식

$$J_A = AX + BX$$

$$K_A = \bar{A}BX + AB\bar{X}$$

$$J_B = \bar{X}$$

$$K_B = A\bar{X} + \bar{A}X$$

현재	상태	입력	플립플롭 입력			다음	상태	
A	В	X	J_A	K_A	J_B	K_B	A	В
0	0	0	0	0	1	0		
0	0	1	0	0	0	1		
0	1	0	0	0	1	0		
0	1	1	1	1	0	1		
1	0	0	0	0	1	1		
1	0	1	1	0	0	0		
1	1	0	0	1	1	1		
1	1	1	1	0	0	0		_

디지털<mark>논리</mark>회로 10.

• 특성표를 이용한 상태표 작성(3)

JK 플립플롭의 특성표

J	K	Q(t+1)
0	0	Q(t)
0	1	0
1	0	1
1	1	$\bar{Q}(t)$

현재	상태	입력		플립플	<u></u> 롭 입력		다음	<u></u> 상태
A	B	X	J_A	K_A	J_B	K_B	A	В
0	0	0	0	0	1	0	0	1
0	0	1	0	0	0	1	0	0
0	1	0	0	0	1	0	0	1
0	1	1	1	1	0	1	1	0
1	0	0	0	0	1	1	1	1
1	0	1	1	0	0	0	1	0
1	1	0	0	1	1	1	0	0
1	1	1	1	0	0	0	1	1

• 현재 상태와 특성표에 따라 다음 상태 입력

● 한글방송통신대학교

6.4.4 상태도

• 상태도

- 상태표를 그림으로 나타낸 것
- 상태표를 기반으로 만들어짐
- 상태도는 회로의 상태변화를 도형으로 나타내는 시각적 도구
 - 사람이 보기에 도표보다 더 직관적임
 - 특히, 반복되는 패턴이나 루프 등을 시각적으로 바로 확인할 수 있음

6.4.4 상태도

• 상태도 예시

\ <u> </u>	.= ¬/								
	현재	현재상태		입력 다음		출력			
	A	В	X	A	В	Y			
	0	0	0	0	0	0			
	0	0	1	0	1	0			
	0	1	0	0	0	1			
	0	1	1	1	1	0			
	1	0	0	0	0	1			
	1	0	1	1	1	0			
	1	1	0	0	0	1			
	1	1	1	1	0	0			
	◆ 한국방송통신대학교								

상태 간의 변화는 원을 연결 하는 선으로 표시

현재상태		입력	다음상태		출력
A	В	X	A	В	Y
0	0	0	0	0	0
0	0	1	0	1	0
0	1	0	0	0	1
0	1	1	1	1	0
1	0	0	0	0	1
1	0	1	1	1	0
1	1	0	0	0	1
1	1	1	1	0	0

- •상태 11에서 10으로 가는 선이 1/0인 경우
 - ▶ 상태가 11이고 입력이 1이면, 출력은 0이고 상태는 10으로 전이한다는 의미
 - ▶ 즉, 상태가 11일 때 입력이 1이면 출력은 0이고 다음 상태는 10이라는 말

• 상태도 작성(2)

현재	상태	입력	플립플롭 입력			다음	상태	
Α	В	X	J_A	K_A	J_B	K_B	A	В
0	0	0	0	0	1	0	0	1
0	0	1	0	0	0	1	0	0
0	1	0	0	0	1	0	0	1
0	1	1	1	1	0	1	1	0
1	0	0	0	0	1	1	1	1
1	0	1	1	0	0	0	1	0
1	1	0	0	1	1	1	0	0
1	1	1	1	0	0	0	1	1

내용 정리

Summary

10강 | 순서논리회로(2)

순서논리회로의 분석

- 순서논리회로의 분석 과정
- 순서논리회로의 분석 예시
- 상태도

디지털놀리회로 [Digital Logic Circuits]

11 강.

순서논리회로(3)

