Aula 06 – Classes de Complexidade

Prof. Eduardo Zambon

Departamento de Informática (DI) Centro Tecnológico (CT) Universidade Federal do Espírito Santo (Ufes)

Algoritmos e Fundamentos da Teoria de Computação (ToCE) Engenharia de Computação

Introdução

- Complexidade: estudo dos recursos (tempo e espaço) necessários para a computação de uma TM.
- Problemas tratáveis: resolvíveis por um algoritmo eficiente.
- Problemas intratáveis: possuem uma solução teórica, mas esta consome recursos demais.
- Estes *slides*: Caracterizar a separação dos problemas.
- **Objetivos**: Introduzir as classes de complexidade \mathcal{P} , \mathcal{NP} e seus problemas fundamentais.

Referências

Chapter 15 – P, NP, and Cook's Theorem

T. Sudkamp

Chapter 7 – Time Complexity

M. Sipser

Chapter 6 – Complexity Theory

A. Maheshwari

As Classes \mathcal{P} e \mathcal{NP}

Definição 15.2.1 (Sudkamp)

Uma linguagem L é decidível em tempo polinomial (determinístico) se existe uma DTM padrão M que decide L com $tc_{M}(n) \in O(n^{r})$, aonde r é um natural independente de n.

- A classe (conjunto) de linguagens decidíveis em tempo polinomial (determinístico) é denotada por P.
- Outros tipos de DTM poderiam ter sido usados na definição pois preservam as soluções polinomiais.
- Uma linguagem aceita por uma DTM multi-faixa em $O(n^r)$ também é aceita por uma DTM padrão em $O(n^r)$.
- Uma linguagem aceita por uma DTM multi-fita em O(n^r) é aceita por uma DTM padrão em O(n^{2r}).
- A robustez da classe P sob diferentes variação de DTMs justifica a sua escolha como fronteira entre problemas tratáveis e intratáveis.

As Classes \mathcal{P} e \mathcal{NP}

Definição 15.2.2 (Sudkamp)

Uma linguagem L é decidível em tempo polinomial não-determinístico se existe uma NTM M que decide L com $tc_{\rm M}(n) \in O(n^r)$, aonde r é um natural independente de n.

- A classe (conjunto) de linguagens decidíveis em tempo polinomial não-determinístico é denotada por NP.
- \blacksquare A classe \mathcal{NP} é um subconjunto das linguagens recursivas.
- O limite sobre o número de transições garante que todas as possíveis computações de M terminam.
- Como toda DTM também é uma NTM, temos que P ⊆ NP.
- NP ⊆ P? ⇒ Pergunta mais importante ainda em aberto da computação teórica.

Aceite de Palíndromos

Input: string u sobre alfabeto Σ .

Output: sim; se *u* é um palíndromo

não; caso contrário.

Complexidade: em \mathcal{P} ? Sim.

- Palíndromos são aceitos em $O(n^2)$ por uma DTM padrão, aonde n = length(u).
- Portanto o problema está na classe \mathcal{P} .

Caminho em Grafo Direcionado

Input: grafo direcionado G = (N, A), nós $v_i, v_j \in N$.

Output: sim; se existe um caminho de v_i para v_j em G não: caso contrário.

Complexidade: em P? Sim.

- O algoritmo de Dijkstra pode ser usado para descobrir se há um caminho entre dois nós em um grafo direcionado.
- A complexidade de tempo desse algoritmo está em $O(n^2)$, aonde n = card(N).
- Portanto o problema está na classe \mathcal{P} .

Satisfatibilidade

Input: fórmula Booleana u na forma normal conjuntiva

(CNF).

Output: sim; se existe uma atribuição de valores que

satisfaz u

não; caso contrário.

Complexidade: em \mathcal{P} ? Desconhecido. em \mathcal{NP} ? Sim.

- Uma NTM para o problema "advinha" uma atribuição de valores e testa se u é verdadeira.
- Esse teste pode ser feito em tempo polinomial (quadrático) em relação ao número de variáveis em u.

Problema do Circuito Hamiltoniano

Input: grafo direcionado G = (N, A).

Output: sim; se existe um ciclo que visita todos os vértices

exatamente uma vez não; caso contrário.

Complexidade: em \mathcal{P} ? Desconhecido. em \mathcal{NP} ? Sim.

- Uma NTM para o problema "advinha" uma sequência de n+1 vértices e testa se é um ciclo que satisfaz a condição.
- Esse teste pode ser feito em tempo polinomial (linear) em relação ao tamanho da sequência.

Problema da Soma do Subconjunto

Input: conjunto S, função $v : S \rightarrow N$, número k.

Output: sim; se existe um subconjunto S' de S cujo valor

total é k

não; caso contrário.

Complexidade: em \mathcal{P} ? Desconhecido. em \mathcal{NP} ? Sim.

- Uma NTM para o problema "advinha" um subconjunto S' e testa se a soma dos valores dos elementos de S' é k.
- Esse teste pode ser feito em tempo polinomial (linear) em relação ao tamanho do subconjunto S'.

- Para problemas cuja pertinência em P é desconhecida, uma solução determinística em geral degenera para uma busca exaustiva.
- Métodos força-bruta em geral são ineficientes (complexidade exponencial em DTM).
- Por isso, um problema cuja pertinência em P é desconhecida é considerado intratável (Tese de Cobham, 1965).

- Como \mathcal{NP} é um subconjunto (próprio) das linguagens recursivas, é de se esperar que existam linguagens cuja complexidade esteja além de \mathcal{NP} .
- Esse é o caso para o problema abaixo, cuja solução requer tempo e espaço exponenciais em relação ao tamanho da expressão regular α.

Expressões Regulares com Quadrados

Input: uma expressão regular α sobre um alfabeto Σ .

Output: sim; se $\alpha \neq \Sigma^*$ não; caso contrário.

Complexidade: em \mathcal{P} ? Não. em \mathcal{NP} ? Não.

Nota: as operações consideradas na ERs para esse problema são as usuais, além de $u^2 = uu$.

- O Problema do Circuito Hamiltoniano Hamiltonian Circuit Problem (HCP) foi proposto por William Hamilton (~1860).
- Dado um grafo (direcionado ou não), achar um caminho que percorre todos os vértices uma única vez e retorna à origem.

Vamos tratar do problema de decisão em grafos direcionados.

- Seja G um grafo direcionado com n vértices numerados de 1 a n.
- Um Circuito Hamiltoniano (HC) é um caminho $v_0, v_1, ..., v_n$ em G que satisfaz:
 - 1 $v_0 = v_n$
 - 2 $v_i \neq v_j$ sempre que $i \neq j$ e $0 \leq i, j < n$.
- Isto é, um HC é um caminho que visita cada vértice exatamente uma vez e termina no ponto inicial.
- Um HC também é chamado de tour.
- O HCP é o problema de determinar se um grafo direcionado tem um tour.
- Como um tour contém todos os vértices, assumimos que ele sempre começa e termina no vértice 1.

- A solução por DTM para o HCP é uma busca exaustiva pelas sequências de vértices para determinar se uma sequência é um tour.
- As sequências são sistematicamente geradas e testadas até que um tour seja encontrado ou todas as possibilidades sejam examinadas.
- Isso pode ser feito por uma DTM 4-fitas.
 - Fita 1: contém a entrada, a codificação do grafo G.
 - Fita 2: é usada para gerar a sequência de vértices a ser testada.
 - Fita 3: é usada para testar a sequência da fita 2.
 - Fita 4: contém a última sequência, que é a condição de parada.

- A performance de pior caso da DTM ocorre quando o grafo não possui nenhum tour.
- Nesse caso, são geradas e testadas nⁿ⁻¹ sequências de vértices.
- Portanto, HCP é resolvível por DTM em tempo exponencial.
- Mas não podemos concluir que o problema não pode ser resolvido por DTM em tempo polinomial.
- Só sabemos que até agora nenhum algoritmo polinomial foi descoberto.
- Pode ser que nenhuma solução de fato exista ou só que ninguém foi esperto o suficiente até agora para encontrar uma solução eficiente.

- É possível construir uma NTM de 3-fitas que resolve o HCP.
- Basta adaptar a DTM anterior, descartando a fita 4.
- A computação da NTM é dada a seguir.
 - 1 Para e rejeita a entrada se o grafo tem menos de n + 1 arcos.
 - 2 Gera de forma não-determinística uma sequência de n + 1 vértices na fita 2.
 - 3 Usa as fitas 1 e 3 para testar se a sequência na fita 2 é um tour.
- A complexidade de tempo da computação da máquina acima é da ordem de $O(k^2 \log_2(k))$ aonde k é o número de arcos do grafo.
- Portanto $HCP \in \mathcal{NP}$.

Redução de Problemas

- Redução é uma técnica para solução de problemas usada para evitar "reinventar a roda".
- Objetivo da redução: transformar instâncias de um novo problema em instâncias de um problema já resolvido.
- Essencialmente, fazer uma redução requer a construção de uma função computável que mapeia instâncias.
- Redução é uma ferramenta importante para estabelecer a decidibilidade de problemas.
- Em particular, é usada para mostrar que certos problemas são indecidíveis.
- Além disso, redução pode ser usada para classificar um problema como tratável ou intratável.

Redução de Problemas

Definição – Redução de Problemas

Um problema de decisão **P** é redutível em muitos-para-um para um problema **P**' se existe uma TM M aonde:

- M recebe como entrada qualquer instância $p_i \in P$ e produz uma instância associada $p'_i \in P'$; e
- a resposta para a instância original p_i pode ser obtida a partir da resposta para p'_i .

Mapeamento por M não precisa ser injetivo: várias instâncias de **P** podem ser mapeadas na mesma instância de **P**'.

Redução de Problemas

Definição - Redução de Linguagens

Seja L uma linguagem sobre Σ_1 e L' uma linguagem sobre Σ_2 . L é redutível em muitos-para-um para L' se existe uma função computável $r: \Sigma_1^* \to \Sigma_2^*$ tal que $w \in L$ sss $r(w) \in L'$.

- Importante notar que R não determina a pertinência nem em L nem em L'. R só transforma strings de Σ₁* para Σ₂*.
- Pertinência em L' é determinada por M, e em L pela combinação de R e M.

Redução de Problemas - Exemplo

- A linguagem $L = \{x^i y^i z^k \mid i \ge 0, k \ge 0\}$ é redutível para $L' = \{a^i b^i \mid i \ge 0\}$.
- Uma redução de L para L′ pode ser descrita como abaixo.

Redução	Entrada	Condição
$L = \{x^i y^i z^k \mid i \ge 0, k \ge 0\}$	$\mathbf{w} \in \{\mathbf{x}, \mathbf{y}, \mathbf{z}\}^*$	$w \in L$
para	$\downarrow r$	se e somente se
$\underline{\qquad L' = \{ a^i b^i \mid i \geq 0 \}}$	$v \in \{a,b\}^*$	$r(w) \in L'$

Redução de Problemas – Exemplo

Uma string $w \in \{x, y, z\}^*$ é transformada na string $r(w) \in \{a, b\}^*$ como a seguir:

- 1 Se w não tem x ou y ocorrendo depois de um z, troque cada x por um a, cada y por um b e apague todos os z's.
- 2 Se w tem x ou y ocorrendo depois de um z, apague a string toda e escreva um único a na fita.

$w\in \Sigma_1^*$	Em L?	$r(w) \in \Sigma_2^*$	Em L'?
xxyy	sim	aabb	sim
XXYYZZZ	sim	aabb	sim
yxxyz	não	baab	não
xxzyy	não	а	não
ZYZX	não	а	não
λ	sim	λ	sim
ZZZ	sim	λ	sim

Redução de Problemas - Exemplo

Exemplos da tabela do slide anterior mostram porque a transformação é dita muitos-para-um: múltiplas strings de Σ_1^* podem ser mapeadas na mesma string em Σ_2^* .

TM que realiza a redução de L para L'.

y/B L z/B L

- Seja r a redução de L para L', computada pela máquina R.
- Se L' é decidida pela máquina M então L é decidida por uma máquina que:
 - 1 executa R sobre a string de entrada w; e
 - 2 executa M sobre r(w).
- A string r(w) é aceita por M sss $w \in L$.
- A complexidade de tempo da solução composta deve considerar o tempo gasto tanto por R quanto por M.
- Problemas com solução eficiente = complexidade de tempo polinomial.
- ⇒ Restrição de tempo sobre a redução.

Definição 15.6.1 (Sudkamp)

Sejam L e L' linguagens sobre os alfabetos Σ_1 e Σ_2 , respectivamente. Diz-se que L é redutível em tempo polinomial para L' se existe uma função $r: \Sigma_1^* \to \Sigma_2^*$, computável em tempo polinomial (determinístico), tal que $w \in L$ sss $r(w) \in L'$.

- Reduções em tempo polinomial são importantes porque o limite no número de transições de R restringe o tamanho da string r(w) que entra em M.
- Isto garante que a combinação de uma redução polinomial R com uma máquina polinomial M produz outra máquina polinomial R;M.
- Isso é formalizado no teorema a seguir.

Teorema 15.6.2 (Sudkamp)

Se L é redutível a L' em tempo polinomial e L' $\in \mathcal{P}$, então L $\in \mathcal{P}$.

- As complexidades de tempo tc_R e tc_M combinam para produzir um limite superior para a complexidade da máquina R;M.
- Se a string w para R tem tamanho n, então o tamanho de r(w) não tem como exceder $tc_R(n) \in O(n^s)$.
- Seja k = length(r(w)). A computação de M realiza no máximo $tc_M(k) \in O(k^t)$ transições.
- Considerando pior caso aonde $k = n^s$, a computação de R;M tem complexidade de tempo

$$tc_{\mathsf{R};\mathsf{M}}(n) \in O(n^{st}).$$

Relembrando: a máquina R abaixo realiza a redução de $L = \{x^i y^i z^k \mid i \ge 0, k \ge 0\}$ para $L' = \{a^i b^i \mid i \ge 0\}$.

- O pior caso para a computação de R ocorre quando um símbolo x ou y aparece depois de um z.
- Neste caso, a máquina anda até o final da string e depois retorna apagando todos os símbolos.
- No total, são feitas 2(n+2) transições e portanto

$$tc_{\mathsf{R}}(n)=2n+4.$$

 Uma máquina M pode ser construída para decidir L' com complexidade de tempo

$$tc_{\mathsf{M}}(n) \in O(n^2)$$
.

- Construção similar à DTM que aceita palíndromos.
- Com isso, a solução para o problema de pertinência em L tem complexidade de tempo

$$tc_{R;M}(n) = 2n + 4 + O(n^2) \in O(n^2).$$

Resultado acima corresponde ao esperado na prova do Teorema 15.6.2.

- Redução de problemas provê uma base para a comparação da dificuldade relativa de dois problemas.
- Vamos considerar que dois problemas têm dificuldade equivalente se a complexidade de tempo das soluções diferem apenas por um termo polinomial.
- Ênfase aqui é distinguir entre problemas tratáveis e intratáveis.
- Nesse aspecto, diferenças polinomiais na complexidade dos algoritmos não são significantes.
- Claro que do ponto de vista prático um algoritmo $O(n^2)$ é preferível a um $O(n^3)$, por exemplo.

- Se L é redutível a L' em tempo polinomial, então L' pode ser vista como sendo um problema tão difícil quanto L.
- Uma solução para L' automaticamente provê uma solução para L.
- Além disso, se L' é tratável então L também é.
- A relação entre reduções e a dificuldade relativa das linguagens pode ser estendida para classes (conjuntos) de linguagens.

Definição 15.6.3 (Sudkamp)

Seja $\mathcal C$ uma classe (conjunto) de linguagens. Uma linguagem L' é difícil para a classe $\mathcal C$ se toda linguagem em $\mathcal C$ é redutível a L' em tempo polinomial.

Se L' é difícil para a classe \mathcal{C} e L' é decidível em tempo polinomial, então todas as linguagens em \mathcal{C} são decidíveis em tempo polinomial, e $\mathcal{C} \subseteq \mathcal{P}$.

- Uma linguagem decidível em tempo polinomial determinístico (i.e., aceita por uma DTM) está em P.
- Uma linguagem decidível em tempo polinomial não-determinístico (i.e., aceita por uma NTM) está em NP.
- A construção de uma DTM a partir de uma NTM causa um crescimento exponencial na complexidade de tempo.
- Diferença fundamental das TMs para o HCP:
 - DTM: gera todas as sequências de vértices e testa.
 - NTM: "advinha" uma sequência de vértices e testa.
- Interpretação intuitiva da pergunta $\mathcal{P} = \mathcal{NP}$?:
 - Construir uma solução para um problema é inerentemente mais difícil do que verificar se uma única possibilidade satisfaz as condições do problema?
- Considerando que a resposta parece ser sim para um grande número de problemas, acredita-se que $\mathcal{P} \neq \mathcal{NP}$.

- Suponha que alguém descubra uma solução polinomial determinística para o HCP.
- Se isso acontecesse, então poderíamos concluir que $HCP \in \mathcal{P}$.
- Isso seria suficiente para responder a pergunta $P = \mathcal{NP}$?
- Não. Descobriu-se apenas uma solução eficiente para um problema que antes era intratável.
- E os demais problemas em *NP*? Essa classe possui vários problemas.
- \Rightarrow É inviável tentar descobrir uma solução tratável para cada um dos problemas em \mathcal{NP} individualmente.

- É necessário um método que resolve a questão da existência de uma solução eficiente para todas as linguagens em \mathcal{NP} de uma única vez.
- A noção de uma linguagem ser difícil para a classe \mathcal{NP} permite transformar a pergunta sobre a existência de uma solução eficiente para todos os problemas em \mathcal{NP} em uma pergunta de um único problema.

Definição 15.7.1 (Sudkamp)

- Uma linguagem L' é dita NP-hard se para toda L ∈ \mathcal{NP} , L é redutível à L' em tempo polinomial.
- Uma linguagem NP-hard que também está em NP é dita NP-complete.

- Podemos considerar uma linguagem NP-complete como uma linguagem universal da classe \mathcal{NP} .
- A descoberta de uma DTM que decide uma linguagem NP-complete em tempo polinomial, levaria à decisão de todas as linguagens em NP em tempo polinomial determinístico
- Se isso acontecer, teremos que $\mathcal{P} = \mathcal{NP}$.

Teorema 15.7.2 (Sudkamp)

Se existe uma linguagem NP-complete que está em \mathcal{P} , então $\mathcal{P} = \mathcal{NP}$.

- Suponha L' uma linguagem NP-complete aceita por DTM em tempo polinomial (L' $\in \mathcal{P}$).
- L' é NP-hard (pré-condição para ser NP-complete) e portanto para qualquer $L \in \mathcal{NP}$, existe uma redução em tempo polinomial de L para L'.
- Como L' ∈ \mathcal{P} , pelo Teorema 15.6.2 temos que L ∈ \mathcal{P} , para qualquer L ∈ \mathcal{NP} , e portanto, $\mathcal{P} = \mathcal{NP}$.

$\mathcal{P} = \mathcal{NP}$?

- A classe de linguagens (problemas de decisão) NP-complete é denotada por \mathcal{NPC} .
- A classe NPC é claramente uma classe importante de problemas.
- Mas qual seria um problema universal que está em NPC?
- \blacksquare \Rightarrow SAT.

- SAT foi o primeiro problema NP-complete.
- Provado por Cook em 1971.
- SAT recebe como entrada uma fórmula em lógica proposicional em CNF.
- CNF (Conjuntive Normal Form): uma fórmula que tem a forma

$$u_1 \wedge u_2 \wedge \cdots \wedge u_n$$

aonde cada cláusula u_i é uma disjunção (\vee) de literais.

- Um literal é uma proposição atômica ou sua negação.
- SAT é um problema de decisão que busca determinar se existe um conjunto de valores Booleanos (atribuição) para as proposições que torna a fórmula verdadeira.
- Se a resposta for sim então a fórmula é satisfatível.

- Uma solução determinística para SAT pode gerar e analisar cada possível atribuição de valores para as variáveis Booleanas (proposições).
- O número de atribuições possíveis é 2ⁿ, onde n é o número de variáveis.
- Claramente, a complexidade dessa solução é exponencial.
- Podemos então afirmar que SAT ∉ P?
- Não. Só podemos dizer que o método força bruta não é tratável.
- Com o exposto acima, podemos dizer que SAT ∈ NP?
- Não. Isso requer mostrar que existe uma solução por NTM com complexidade de tempo polinomial.

- O trabalho de gerar todas as atribuições é exponencial.
- Por outro lado, verificar se uma dada atribuição torna a fórmula satisfatível tem uma complexidade que cresce polinomialmente com relação ao número de variáveis e o comprimento da fórmula.
- Essa observação é o suficiente para se projetar uma NTM que resolve SAT em tempo polinomial.

Teorema 15.8.2 (Sudkamp)

O Problema da Satisfatibilidade está em \mathcal{NP} .

- Representação de fórmulas como strings de entrada para a NTM?
- Seja \underline{u} uma fórmula com variáveis x_1, \dots, x_n .
- Uma variável é codificada pela representação binária do seu subscrito.
- A codificação de um literal consiste na codificação da variável seguida de #1 se o literal é positivo, ou de #0 se é negativo.
- O número seguindo a codificação da variável especifica o valor Booleano que satisfaz o literal.

■ Exemplo: a fórmula CNF

$$(x_1 \vee \neg x_2) \wedge (\neg x_1 \vee x_3)$$

é codificada como

- A representação de uma instância de SAT é uma string sobre o alfabeto Σ = {0, 1, ∧, ∨, #}.
- A linguagem L_{SAT} é formada por todas as strings sobre Σ que representam fórmulas CNF satisfatíveis.

- Construímos uma NTM M de 2-fitas para resolver SAT.
- Construção segue o método padrão de NTM: guess-and-check.
- Inicialmente a fita 1 contém a fórmula a ser analisada e a fita 2 está vazia.
- Primeiramente, M testa a string de entrada e rejeita se não estiver no formato esperado. Isso pode ser feito com complexidade linear.
- A seguir, M "advinha" não-deterministicamente uma atribuição de valores para as variáveis da fórmula. Também requer complexidade linear.
- M verifica se a atribuição torna a fórmula verdadeira. Isso pode ser realizado em tempo $O(k \cdot n^2)$, com n o número de variáveis e k o comprimento da fórmula.
- Como a NTM M resolve SAT em tempo polinomial, concluímos que SAT ∈ NP.

- Para concluir a prova de que SAT é NP-complete, é necessário mostrar que L_{SAT} é NP-hard.
- É preciso mostrar que toda linguagem em \mathcal{NP} é redutível em tempo polinomial para L_{SAT} .
- Isso pode parecer impossível, uma vez que NP contém infinitas linguagens.
- Inclusive, muitas dessas linguagens nem mesmo possuem um alfabeto em comum.
- Como fazer?
- Explorar o fato de que todas as linguagens em NP são aceitas por NTM em tempo polinomial.
- Em vez de se concentrar nas linguagens, a prova se baseia nas propriedades das NTMs que as aceitam.
- Provê um método geral de redução para L_{SAT} que funciona para qualquer linguagem em \mathcal{NP} .

Teorema 15.8.3 (Sudkamp) – Teorema de Cook

O Problema da Satisfatibilidade é NP-hard.

- Seja L uma linguagem decidida por uma NTM M cuja complexidade de tempo é limitada por um polinômio p(n).
- A redução de L para SAT transforma as computações de M com string de entrada u em uma fórmula CNF f(u) tal que u ∈ L(M) sss f(u) é satisfatível.
- Essa redução deve ser determinística e ter complexidade polinomial.

- A ideia geral da redução é criar uma fórmula f(u) formada por uma série de cláusulas que capturam toda a sequência de computação de M para a entrada u.
- Assim, se M aceita u, então f(u) é satisfatível; e se M rejeita u, então f(u) é insatisfatível.
- A fórmula f(u) é composta por três tipos de variáveis.

Variable		Interpretation (When Satisfied)
$Q_{i,k}$	$0 \le i \le m$ $0 \le k \le p(n)$	M is in state q_i at time k
$P_{j,k}$	$0 \le j \le p(n)$ $0 \le k \le p(n)$	M is scanning position j at time k
$S_{j,r,k}$	$0 \le j \le p(n)$ $0 \le r \le t$ $0 \le k \le p(n)$	Tape position j contains symbol a_r at time k

- As cláusulas da fórmula podem ser de oito tipos distintos.
- Algumas das cláusulas descrevem as condições necessárias para a existência de M, como abaixo.

	Clause	Conditions	Interpretation
i)	State $\bigvee_{i=0}^{m} Q_{i,k}$	$0 \le k \le p(n)$	For each time k , M is in at least one state.
	$\sim Q_{i,k} \vee \sim Q_{i',k}$	$0 \le i < i' \le m$ $0 \le k \le p(n)$	M is in at most one state (not two different states at the same time).

- Outros tipos de cláusulas cuidam da consistência da fita e dos efeitos de uma transição.
- A prova completa se encontra no livro do Sudkamp (8 páginas!). É bastante longa mas possível de ser entendida.

- A construção de f(u) a partir de M e u consiste na agregação de várias cláusulas.
- O número de cláusulas em f(u) é uma função:
 - do número de estados m de M e do número de símbolos t de Σ;
 - 2 do tamanho n da string de entrada u; e
 - 3 do limite p(n) sobre o tamanho da computação de M.
- O valores m e t são obtidos de M e são independentes da string de entrada.
- Portanto, o número de cláusulas é polinomial em p(n).
- Com isso, a fórmula f(u) pode ser construída em um número de passos que cresce polinomialmente em relação ao tamanho da string de entrada.
- Assim, a redução está em O(n^r). Vale notar que r em geral é um natural bastante grande. (De qualquer forma, a redução continua sendo polinomial.)

Relações Entre Classes de Complexidade

O diagrama abaixo ilustra como ficam as relações entre as classes de complexidade estudadas, se $\mathcal{P} \neq \mathcal{NP}$:

No caso improvável de $\mathcal{P} = \mathcal{NP}$, as duas classes se colapsam em uma só mas \mathcal{NPC} continua sendo um subconjunto próprio de $\mathcal{NP}(=\mathcal{P})$ pois a linguagem vazia \emptyset e seu complemento não são NP-complete.

Aula 06 – Classes de Complexidade

Prof. Eduardo Zambon

Departamento de Informática (DI) Centro Tecnológico (CT) Universidade Federal do Espírito Santo (Ufes)

Algoritmos e Fundamentos da Teoria de Computação (ToCE) Engenharia de Computação