Faculté Polydisciplinaire	Anal	yse Mathématique		
de Larache		Durée : 1 h 30 GROUPE B	$N^{\circ}Ins: SEG$	
SEG-S1/Année 2022-2023	o o o o o ó			Salle :
	CORRIGÉ	LES MAUVAISE	S RÉPONSES SERON	IT SANCTIONNÉES
1 (Finalize) Scit $f(x) = x$	1 - /1 1	(-) (
1. (5 points) Soit $f(x) = \frac{x}{x-1}$. Sélection	onner la/les l	conne(s) reponse(s)		.4 5-4
(a) $f(-1) = 1/2$ $\Box f(-1)$		1 . 1/4		+1,5pt
(b) f admet une asymptote horizon $\Box y = -1 \qquad \Box x = -1$	tale au voisi $y=1$	hage de $+\infty$ d'équation $\Box x = 1 \qquad \Box y = 0$	$\square \ x = 1$,5
(c) la fonction f au point $x = 1$:				
□ admet des limites à gauche e	t à droite fini	es n'est pas définie	+1pt	
💢 admet des limites à gauche e	t à droite infi	nies □ est bien défini	e 1pt	
2. (4 points) Soit $f(x) = \cos(4x^2) - x$ e	$\operatorname{t} g(x) = \frac{1}{\arctan}$	$\frac{1}{\ln(x)}$. Trouvez la bonne dériv	ée	
	-14		(0)	
$\Box f'(x) = -\sin(4x^2) + 8x \qquad \Box$				
$\Box g'(x) = \frac{-1}{x^2 + 1}$ $g'(x) = \frac{1}{(x^2 + 1)^2}$. ,	` '	2pts	
3. (6 points) Choisissez les bonnes résu	ıltats de chac	que intégrale		
(a) $\int_{0}^{2} -e^{x+1} dx =$				
$\Box e^3 - e \qquad \qquad \mathbf{\chi} \left[-e^{x+1} \right]_0^2$	$\Box e^2 -$	$1 \qquad \qquad \Box \ \left[-e^{x+1} \right]_2^0$	$e - e^3$	pt + 1pt
(b) $\int_{0}^{3} \frac{1}{\sqrt{x-1}} dx =$				
$ \begin{array}{ccc} & \int_{2} & \sqrt{x-1} & \text{div} & -\frac{1}{2} \\ & \Box & \left[\sqrt{x-1}\right]_{2}^{3} & \Box & \left[\sqrt{x-1}\right]_{2}^{3} \end{array} $	ı ²	r /	3	
$\Box \left[\sqrt{x-1} \right]_2 \qquad \Box \left[\sqrt{x-1} \right]_2$	$\Big]_3$	$\left\lfloor \frac{\sqrt{x-1}}{2} \right\rfloor_2$ $\left\lfloor 2\sqrt{x-1} \right\rfloor$	$ \begin{bmatrix} \sqrt{x-1} \\ 2 \end{bmatrix}_{3} $	1pt
(c) Soit h une fonction continue sur				
$\Box \int_{1}^{+\infty} h(x)dx \text{ est divergente}$	X nou	s n'avons pas suffisamment d	l'informations pour co	onclure sur $\int_{-\infty}^{+\infty} h(x) dx$
$\int_{1}^{1} f^{+\infty}$	* * * .	$\int_{-\infty}^{+\infty} f(x) dx$		+1,5pt ^{J₁}
$\Box \int_{1}^{+\infty} h(x)dx \text{ est absolument}$	convergente	$\sqcup \int_1 h(x)dx \text{ est se}$	emi-convergente	
$\Box \int_{1}^{+\infty} h(x)dx$ est convergente				
(d) Soit u une fonction continue sur	$J = [2, +\infty]$	telle que $u(x) \leq \frac{1}{x^2}$ alors	+1,5pt	
	$\Box \int_3$	u(x)dx est divergente		
$\bigvee \int_{3}^{+\infty} u(x)dx \text{ est convergente}$ $\square \int_{3}^{+\infty} u(x)dx \text{ est semi-convergente}$	gente		ent convergente	
□ nous n'avons pas suffisamme	ent d'informa	ations pour conclure sur \int_{2}^{+}	u(x)dx	
4. (5 points) Nous étudions D_f le dom				$\overline{1-1} \times \sqrt{y-2}$
(a) Sélectionner les bonnes réponse	s:			
$\square \ D_f = \{(x,y) \in \mathbb{R}^2 / x-1 > \}$	y-2	$D_f = [1, +\infty[\times[2, +\infty[$	$\square D_f =]1, +\infty$	$[\times]2,+\infty[$
		0.5pt		

Université Abdelmalek Essaâdi Contrôle Final (Session Normale) Nom : _____

(b) Parmi les dessins suivants, lequel est le mieux adapté pour représenter D_f (c'est la partie en pointillés

)?

(c) Soit $f(x,y) = x^3 + y^3 - x^2 + y^2 + 1$. Sélectionner les quatre points critiques de f.

$\mathbf{A}(0,0)$	$\square \ \left(\frac{3}{2}, \frac{-3}{2}\right)$	$(\frac{2}{3}, \frac{-2}{3})$	$(\frac{2}{3},0)$	+0,5 x 4
$\Box \left(\frac{3}{2},1\right)$	\square $(3,2)$	$(0,\frac{-2}{3})$	$\Box (1, \frac{-2}{3})$	

(d) Remplissez le tableau suivant selon la nature (min. local, max. local ou point selle) de chaque point critique en calculant la matrice hessienne, son déterminant et sa trace.

Point critique	Matrice Hessienne	Déterminant	Trace	Nature du point	
(0 , 0)	(-2	-4	<u>-</u>	selle	
(2/3),-2/3	2 0 0 -2	-4	<u></u>	selle	+2pts
(2/3, 0)		4	4	minimum local	
(0 ,-2/3)		4	-4	maximum local	

A

Interdit d'écrire sur le tableau suivant des notes

Question:	1	2	3	4	Total
Points:	5	4	6	5	20
Score:					