ECE 4643: Power Electronics

Assignment 2

Q1:

- 1. What is the main concept of AC rectification?
- 2. The inductance behaves in steady-state as a short circuit to DC currents and voltages, why do inductive loads represent a major operational concern in AC-DC converters?
- 3. What are the main differences between the diodes used in an AC-DC rectifier and the freewheeling diodes?
- 4. What are the main requirements for operating and controlling AC-DC thyristor-based converters?
- 5. When designing input filters for AC-DC converters, what are the main trade-offs in selecting the components?
- 6. What are the main differences between designing input and output LC filters for 1ϕ and 3ϕ full-wave rectifiers?

Q2

A 1ϕ full-wave rectifier supplies an inductive load ($R_L=4~\Omega$ and $L_L=9$ mH) from a 60 Hz AC supply. Design an input LC filter that will limit the RF to $FF\leq 6\%$, and an output LC filter that will allow a voltage ripple as $\Delta v_o \leq 5\%$.

Q3:

A 3ϕ full-wave rectifier supplies a 25 kW, 300 Vdc load. If this rectifier is supplied from a 3ϕ 60 Hz feeder determine:

- a) The input AC line and phase rms and peak voltages;
- b) The values of $(I_O)_{rms}$, I_{dc} , and $(I_s)_{rms}$;
- c) The values for average and rms currents per diode;
- d) PIV for each diode;
- e) peak-to-peak ripple in $v_O(t)$ and its frequency;

Q4

A 3ϕ full-wave rectifier supplies an inductive load $R_L=9~\Omega$ and $L_L=3$ mH. The input AC voltage is supplied from a feeder at 660 V, 60 Hz. Design an input LC filter that will ensure an input side RF of $RF \le 6\%$, and an output LC filter for a ripple voltage $\Delta v_o \le 8\%$.

Q5

A 3ϕ full-wave controlled rectifier supplies a resistive load with 12 kW at 80% of the maximum possible output DC voltage. The input AC voltage is supplied from a Δ -connected feeder at 340 V, 60 Hz. For this controlled rectifier, determine:

- a) The firing angle α ;
- b) The values of $\left(I_{O}\right)_{rms}$, I_{dc} , and average current in each thyristor;
- c) the efficiency of this controlled rectifier;
- d) The input power factor and commutation angle u.

GOOD LUCK