CS-GY 9223 I: Lecture 7
Preconditioning, acceleration, coordinate decent, etc.

NYU Tandon School of Engineering, Prof. Christopher Musco

SMOOTH AND STRONGLY CONVEX

Recall from last lecture: a convex function f is β -smooth and α -strongly convex if, for all $\mathbf{x}, \mathbf{y} \in \mathbb{R}^d$,

$$\frac{\alpha}{2} \|\mathbf{x} - \mathbf{y}\|_{2}^{2} \leq \nabla f(\mathbf{x})^{\mathsf{T}} (\mathbf{x} - \mathbf{y}) - [f(\mathbf{x}) - f(\mathbf{y})] \leq \frac{\beta}{2} \|\mathbf{x} - \mathbf{y}\|_{2}^{2}.$$

$$\nabla f(\mathbf{x})^{\mathsf{T}} (\mathbf{x} - \mathbf{y}) - [f(\mathbf{x}) - f(\mathbf{y})] \leq \frac{\beta}{2} \|\mathbf{x} - \mathbf{y}\|_{2}^{2}.$$

$$\nabla f(\mathbf{x})^{\mathsf{T}} (\mathbf{x} - \mathbf{y}) - [f(\mathbf{x}) - f(\mathbf{y})] \leq \frac{\beta}{2} \|\mathbf{x} - \mathbf{y}\|_{2}^{2}.$$

$$\nabla f(\mathbf{x})^{\mathsf{T}} (\mathbf{x} - \mathbf{y}) - [f(\mathbf{x}) - f(\mathbf{y})] \leq \frac{\beta}{2} \|\mathbf{x} - \mathbf{y}\|_{2}^{2}.$$

$$\nabla f(\mathbf{x})^{\mathsf{T}} (\mathbf{x} - \mathbf{y}) - [f(\mathbf{x}) - f(\mathbf{y})] \leq \frac{\beta}{2} \|\mathbf{x} - \mathbf{y}\|_{2}^{2}.$$

CONVERGENCE GUARANTEE

Theorem (GD for β -smooth, α -strongly convex.)

Let f be a β -smooth and α -strongly convex function. If we run GD for T steps (with step size $\eta = \frac{1}{\beta}$) we have:

$$\|\mathbf{x}^{(t)} - \mathbf{x}^*\|_2^2 \le e^{-(t-1)\frac{\alpha}{\beta}} \|\mathbf{x}^{(1)} - \mathbf{x}^*\|_2^2$$

Corollary: If
$$T = O(\kappa \log(1/\epsilon))$$
 we have:
$$\|x^{(T)} - x^*\|_2 \le \epsilon \|x^{(1)} - x^*\|_2. \qquad = \ell$$

$$e^{-O(\kappa \log(1/\epsilon))} = \ell \log(1/\epsilon) = \ell$$

FROM LAST CLASS

Let $f(\mathbf{x}) = \|\mathbf{D}\mathbf{x} - \mathbf{b}\|_2^2$ where **D** is a diagonal matrix.

$$\beta = 2 \max(D)^{2}$$

$$\alpha = 2 \min(D)^{2}$$

$$K = \frac{\max(D)^{2}}{\min(D)^{2}}$$

Gradient descent on f:

• $x^{(1)} - 0$

• For
$$t = 1, ..., T$$

• $\underline{\mathbf{x}^{(t+1)}} = \underline{\mathbf{x}^{(t)}} - \frac{1}{\beta} (2\mathbf{D}(\mathbf{D}\mathbf{x}^{(t)} - \mathbf{b}))$

$$6(x) = x'D^2x - 2x'Db + b'b$$

$$\nabla 6(x) = 2D(Dx - b)$$

IN-CLASS EXERCISE

Theorem (GD for β -smooth, α -strongly convex.)

Let f be a β -smooth and α -strongly convex function. If we run GD for T steps (with step size $\eta = \frac{1}{\beta}$) we have:

$$\|\mathbf{x}^{(t)} - \mathbf{x}^*\|_2 \le e^{-t/\kappa} \|\mathbf{x}^{(1)} - \mathbf{x}^*\|_2$$

Prove for $f(x) = \|Dx - b\|_2^2$. You may assume that $\min(D)^2 > 0$.

IN-CLASS EXERCISE

Alternate view:

$$(x^{(t+1)} - x^*) = \left(1 - \frac{2}{\beta}D^2\right)(x^{(t)} - x^*)$$

$$\chi^{(t+1)} = \chi^{(t)} - \frac{1}{6} 20 (D x^{(t)} - b)$$

$$\chi^{(1+1)} - \chi^{4} = \chi^{(1)} - \chi^{4} - \frac{2}{6} D^{2} \chi^{(1)} + \frac{2}{6} D^{5} \chi^{5}$$

$$D^{2} \chi^{5} = \chi^{5} + \frac{2}{6} D^{5} \chi^{5} + \frac$$

$$\chi^{(++1)} - \chi^{4} = I(\chi^{(+)} - \chi^{4}) - \frac{2}{6}D^{2}(\chi^{(+)} - \chi^{4})$$

IN-CLASS EXERCISE

0 = extris = (1-1/4) + = (1-1/4) 4 (+/h) = Te

(1-1/4) k & e-1

$$\|V^{+}(X^{(1)}-X^{2})\|_{2}$$

$$\leq e^{-t/4}\|X^{(1)}-X^{2}\|_{2}$$

GENERAL LINEAR REGRESSION

$$\min \|\mathbf{A}\mathbf{x} - \mathbf{b}\|_{2}^{2} = \min \mathbf{x}^{\mathsf{T}} \mathbf{A}^{\mathsf{T}} \mathbf{A}\mathbf{x} - \mathbf{x}^{\mathsf{T}} \mathbf{A}^{\mathsf{T}} \mathbf{b}$$

$$\nabla f(\mathbf{x}) = 2\mathbf{A}^{\mathsf{T}} (\mathbf{A}\mathbf{x} - \mathbf{y}) \qquad \mathbf{A}^{\mathsf{T}} \mathbf{A} \mathbf{x}^{\mathsf{T}} = \mathbf{A}^{\mathsf{T}} \mathbf{b}$$
Unrolling gradient decent updates leads to:
$$(\mathbf{x}^{(t+1)} - \mathbf{x}^{*}) = (\mathbf{I} - \eta \mathbf{A}^{\mathsf{T}} \mathbf{A})^{\mathsf{T}} (\mathbf{x}^{(1)} - \mathbf{x}^{*}).$$

$$\chi^{(t+1)} = \chi^{(t)} - u \mathbf{A}^{\mathsf{T}} \mathbf{A} \chi^{(t)} + u \mathbf{A}^{\mathsf{T}} \mathbf{b}$$

$$= u \mathbf{A}^{\mathsf{T}} \mathbf{A} \chi^{\mathsf{T}}$$

$$\chi^{(t+1)} = \chi^{(t)} - \lambda^{\mathsf{T}} - u \mathbf{A}^{\mathsf{T}} \mathbf{A} \chi^{(t)} + u \mathbf{A}^{\mathsf{T}} \mathbf{b}$$

$$= u \mathbf{A}^{\mathsf{T}} \mathbf{A} \chi^{\mathsf{T}}$$

$$\chi^{(t+1)} = \chi^{(t)} - \chi^{\mathsf{T}} - u \mathbf{A}^{\mathsf{T}} \mathbf{A} \chi^{(t)} - \chi^{\mathsf{T}}$$

GENERAL LINEAR REGRESSION

Quick linear algebra review:

- A^TA is <u>symmetric</u> so has an <u>orthogonal</u> eigendecomposition: $U\Lambda U^T$.
 - $\cdot \ \underline{U}^{\mathsf{T}}\underline{U} = \underline{U}\underline{U}^{\mathsf{T}} = \underline{I}. \quad \forall \ \ \text{is} \quad \text{of factorial}$
 - Λ is diagonal with entries $\lambda_1 \geq \lambda_2 \geq \dots, \lambda_d$.

Claim: $\lambda_d \geq 0$ (i.e., $\mathbf{A}^T \mathbf{A}$ is <u>positive semidefinite</u>).

Defin. At a 15 possitive real definite is for all
$$x$$
, $x^{T}A^{T}Ax \ge 0$.

The second of the secon

GENERAL LINEAR REGRESSION

Verify outside of class:
$$\mathcal{N} = \frac{\lambda_1}{\lambda_d} = \frac{\lambda_1}{\mathbf{v} \cdot \mathbf{v} \cdot (\lambda)}$$

$$f(\mathbf{x}) = \|\mathbf{A}\mathbf{x} - \mathbf{b}\|_2^2 \text{ is } 2\lambda_1 \text{ smooth and } 2\lambda_d \text{ strongly convex. So we}$$

$$\text{have: } \kappa = \frac{\lambda_1}{\lambda_d}$$

$$\mathbf{I} \cdot \mathbf{U} \cdot \mathbf{V}^{\mathsf{T}} = \mathbf{U} \cdot \mathbf{I} \cdot \mathbf{V}^{\mathsf{T}}$$

$$\mathbf{A} \cdot \mathbf{V} \cdot \mathbf{V}^{\mathsf{T}}$$

$$\begin{array}{c}
\text{I.UU} & \text{I.UU} \\
\text{A.ULU} \\
\text{A.ULU} \\
\text{(X}^{(t+1)} - X^*) = (I - \eta A^T A)^t (X^{(1)} - X^*). \\
\text{(I - $\eta A^T A$)}^t = (U (I - ηA) U^T)^t = U (I - ηA)^t U^T$$

$$(\mathbf{x}^{(t+1)} - \mathbf{x}^*) = (\mathbf{I} - \eta \mathbf{A}^T \mathbf{A})^t (\mathbf{x}^{(1)} - \mathbf{x}^*).$$

$$(\mathbf{I} - \eta \mathbf{A}^T \mathbf{A})^t = (\mathbf{U} (\mathbf{I} - \eta \mathbf{\Lambda}) \mathbf{U}^T)^t = \underline{\mathbf{U} (\mathbf{I} - \eta \mathbf{\Lambda})^t \mathbf{U}^T}$$

$$(\mathbf{x}^{(t+1)} - \mathbf{x}^*) = (\mathbf{I} - \eta \mathbf{A}^T \mathbf{A})^t (\mathbf{x}^{(1)} - \mathbf{x}^*).$$

$$(\mathbf{I} - \eta \mathbf{A}^T \mathbf{A})^t = (\mathbf{U} (\mathbf{I} - \eta \mathbf{A}) \mathbf{U}^T)^t = \underline{\mathbf{U} (\mathbf{I} - \eta \mathbf{A})^t \mathbf{U}^T}$$

$$(\mathbf{V} \mathbf{V} \mathbf{U}^T)^t = \mathbf{U} (\mathbf{I} - \eta \mathbf{A})^t \mathbf{U}^T$$

$$(\mathbf{X}^{(t+1)} - \mathbf{X}^*)_2 = \mathbf{V} \mathbf{V}^T \mathbf{V}^T$$

$$(I - \eta A^{T}A)^{t} = (U(I - \eta \Lambda)U^{T})^{t} = U(I - \eta \Lambda)^{t}U^{T}$$

$$I - M \Lambda^{T}A \qquad (UVU^{T})^{t}$$

$$||x^{(t+1)} - x^{*}||_{2} = UVU^{T}U^{T}$$

||U(I-M/)+UT(x(1)-x+)||2 UV+UT = e-+/4
||(I-M/)+VT(x(1)-x+)||2 = e-+/4 ||UT(x(1)-x+)||2

IMPROVING GRADIENT DESCENT

We now have a really good understanding of gradient descent.

Number of iterations for ϵ error:

$$\begin{array}{c|cccc} \hline & G\text{-lipschitz} & \beta\text{-smooth} \\ \hline R \ bounded \ start & O\left(\frac{G^2R^2}{\epsilon^2}\right) & O\left(\frac{\beta R^2}{\epsilon}\right) \\ \hline \alpha\text{-strong convex} & O\left(\frac{G^2}{\alpha\epsilon}\right) & O\left(\frac{\beta}{\alpha}\log(1/\epsilon)\right) \\ \end{array}$$

How do we use this understanding to design faster algorithms?

LINEAR REGRESSION RUNTIME

 $nd \cdot \kappa \log(1/\epsilon)$ for $A \in \mathbb{R}^{n \times d}$ $\mathbf{x} \in \mathbb{R}^d$, $\mathbf{b} \in \mathbb{R}^n$.

0(13)

V: Nuce (ATA)

(on be implemented Columb)

MU (A,v) -> AV

12

ACCELERATION

Theorem (Accelerated Iterative Regression)

Let $\mathbf{x}^* = \min_{\mathbf{x}} \|\mathbf{A}\mathbf{x} - \mathbf{b}\|_2^2$. There is an algorithm which finds $\tilde{\mathbf{x}}$ with $\|\tilde{\mathbf{x}} - \mathbf{x}^*\|_2 \le \epsilon \|\mathbf{x}^*\|_2$ in time:

$$O(nd \cdot \sqrt{\kappa \log(1/\epsilon)})$$

0 (46 %)

, degree &

Claim: For any η , polynomial $p(z) = c_1 z + c_2 z^2 + \ldots + c_q z^q$ with $p(1) = \sum_{j=1}^q c_q = 1$, there is an algorithm running in O(ndq) time which outputs $\tilde{\mathbf{x}}$ satisfying: $\mathbf{y}^{\mathbf{v}} - \tilde{\mathbf{x}}$ $p(\mathbf{z} - \mathbf{u} \mathbf{A}^{\mathbf{v}} \mathbf{A}) \mathbf{x}^{\mathbf{v}}$

$$\chi^{\mu} - \chi^{\nu} \qquad p \left(\mathbf{I} - \mathbf{M} \mathbf{A}^{\dagger} \mathbf{A} \right) \chi^{\mu}$$

$$\mathcal{M} \mathcal{M}^{*} = c_{1} \cdot (\mathbf{I} - \eta \mathbf{A}^{T} \mathbf{A}) \chi^{*} + c_{2} \cdot (\mathbf{I} - \eta \mathbf{A}^{T} \mathbf{A})^{2} \chi^{*} + \dots + c_{q} \cdot (\mathbf{I} - \eta \mathbf{A}^{T} \mathbf{A})^{q} \chi^{*}$$

Claim: $c_j \cdot (\mathbf{I} - \eta \mathbf{A}^T \mathbf{A})^j \mathbf{x}^* = \underline{c_j \cdot \mathbf{x}^*} + \underline{p_j'} (\mathbf{I} - \eta \mathbf{A}^T \mathbf{A}) \mathbf{A}^T \mathbf{A} \mathbf{x}^*$ where p_j is a polynomial with degree j-1.

$$C_{j} \left(I - M A^{T} A \right)^{j} X^{a} = G \left(I - M j A^{T} A + A^{T} A^{2} + \dots \right) X^{a}$$

$$= C_{j} X^{a} - \left(\right)$$

$$= C_{j} X^{a} - \left(\right) \underbrace{A^{T} A X^{a}}_{}$$

Claim: For any η , polynomial $p(z) = c_1z + c_2z^2 + \ldots + c_qz^q$ with $p(1) = \sum_{j=1}^q c_q = 1$, there is an algorithm running in O(ndq) time which outputs $\tilde{\mathbf{x}}$ satisfying: $\mathbf{x}^* - \tilde{\mathbf{x}} = \underbrace{(c_1 + c_2 + \ldots + c_q) \cdot \mathbf{x}^* + p'(\mathbf{I} - \eta \mathbf{A}^T \mathbf{A}) \mathbf{A}^T \mathbf{A} \mathbf{x}^*}_{\mathbf{y}^* : p_i^* + p_i^* + \ldots + p_g^*}$ $\tilde{\mathbf{x}} = p'(\mathbf{I} - \eta \mathbf{A}^T \mathbf{A}) \mathbf{A}^T \mathbf{b}$ where p' is a polynmial with degree q - 1.

$$X = -X^{2} + p'(I - MA^{T}A)A^{T}b$$
 $X = -p'(I - MA^{T}A)A^{T}b$

law complex in a couple of in a couple of

has degree 6-1

16

$$p'(z) = c_1'z + c_2z + \cdots - c_8'z^8$$

$$p'(V) \text{ I'b} = c_1' V \text{ I'b} + c_2' V^2 \text{ I'b} + \cdots V^8 \text{ I's}$$

$$\tilde{x}'' - \tilde{x}''' = p(I - \eta A^T A)x^* \qquad J \qquad O(ud8)$$

$$p(I - \eta A^T A) = Up(I - \eta \Delta)U^T \qquad U = (I - m A^T A)$$

$$cup^{n+1} O(ud8)$$

$$\tilde{x} - x^* |_2 = ||Up(I - \eta \Lambda)U^T x^*||_2$$

$$= ||p(I - \eta \Lambda)U^T x^*||_2$$

$$\|\tilde{\mathbf{x}} - \mathbf{x}^*\|_{\mathbf{z}} = \frac{\|\mathbf{U}p(\mathbf{I} - \eta \mathbf{\Lambda})\mathbf{U}^T\mathbf{x}^*\|_2}{\|p(\mathbf{I} - \eta \mathbf{\Lambda})\mathbf{U}^T\mathbf{x}^*\|_2}$$

$$= \frac{\|p(\mathbf{I} - \eta \mathbf{\Lambda})\mathbf{U}^T\mathbf{x}^*\|_2}{\|\mathbf{x} - \mathbf{x}^*\|_2}$$
As long as max $[p(\mathbf{I} - \eta \mathbf{\Lambda})] < \epsilon$,

As long as max $[p(I - \eta \Lambda)] \leq \epsilon$, = 4 | UTX+1/2

 $\|\mathbf{\tilde{x}} - \mathbf{x}^*\|_2 \le \epsilon \|\mathbf{x}^*\|_2$ = E) X + 11 ~

M = ____

[0,1-1/k] 14 I-MA are between

CONSTRUCTING A JUMP POLYNOMIAL

Goal: Find polynomial p such that p(1) = 1 and $p(z) \le \epsilon$ for $z \in [0, 1 - \frac{1}{\kappa}]$.

Gradient descent uses $p(z) = z^{O(\kappa \log(1/\epsilon))}$.

A BETTER JUMP POLYNOMIAL

Goal: Find polynomial p such that p(1) = 1 and $p(z) \le \epsilon$ for

brodient Descent for respession: Bichardson Iteration Accelerated:
"(Mebyshev
Iteration" 10

Can be done with degree $O(\sqrt{\kappa} \log(1/\epsilon))$ polynomial instead!

CHEBYSHEV POLYNOMIALS

What are these polynomials?

Chebyshev polynomials of the first kind.

$$T_0(x)=1$$

$$T_1(x) = x$$

$$T_2(x) = 2x^2 - 1$$

:

$$T_k(x) = 2xT_{k-1}(x) - T_{k-2}(x)$$

"There's only one bullet in the gun. It's called the Chebyshev polynomial." – Prof. Rocco Servedio

ACCELERATED GRADIENT DESCENT

Nesterov's accelerated gradient descent:

- $\cdot x^{(1)} = y^{(1)} = z^{(1)}$
- For t = 1, ..., T

•
$$\mathbf{y}^{(t+1)} = \mathbf{x}^{(t)} - \frac{1}{\beta} \nabla f(\mathbf{x}^{(t)})$$

•
$$\mathbf{x}^{(t+1)} = \left(1 + \frac{\sqrt{\kappa} - 1}{\sqrt{\kappa} + 1}\right) \mathbf{y}^{(t+1)} - \frac{\sqrt{\kappa} - 1}{\sqrt{\kappa} + 1} \mathbf{y}^{(t)}$$

Theorem (AGD for β -smooth, α -strongly convex.)

Let f be a β -smooth and α -strongly convex function. If we run AGD for T steps we have:

$$f(\mathbf{x}^{(t)}) - f(\mathbf{x}^*) \le \kappa e^{-(t-1)\sqrt{\kappa}} \left[f(\mathbf{x}^{(1)}) - f(\mathbf{x}^*) \right]$$

Corollary: If $T = O(\sqrt{\kappa} \log(\kappa/\epsilon))$ achieve error ϵ .

INTUITION BEHIND ACCELERATION

Level sets of $\|\mathbf{A}\mathbf{x} - \mathbf{b}\|_{2}^{2}$.

Other terms for similar ideas:

Momentum

· Heavy-ball methods

What if we look back beyond two iterates?

PRECONDITIONING

Main idea: Instead of minimizing f(x), find another function g(x) with the same minimum but which is better suited for first order optimization (e.g., has a smaller conditioner number).

Claim: Let
$$\underline{h(\mathbf{x})} : \mathbb{R}^d \to \mathbb{R}^d$$
 be an invertible function. Let $g(\mathbf{x}) = \underline{f(h(\mathbf{x}))}$. Then
$$\min_{\mathbf{x}} f(\mathbf{x}) = \min_{\mathbf{x}} g(\mathbf{x}) \quad \text{and} \quad \underset{\mathbf{x}}{\operatorname{arg\,min}} f(\mathbf{x}) = h\left(\underset{\mathbf{x}}{\operatorname{arg\,min}} g(\mathbf{x})\right).$$

PRECONDITIONING

First Goal: We need
$$g(x)$$
 to still be convex. $(u(x)) = S(x)$

Claim: Let P be an invertible $d \times d$ matrix and let g(x) = f(Px).

We call to prove: for all
$$x$$
, y , $\lambda \in (0,1]$

$$\lambda g(x) + (1-\lambda)g(y) \Rightarrow g(\lambda x + (1-\lambda)y)$$

$$\lambda f(P_X) + (1-\lambda)f(P_Z) \Rightarrow f(\lambda P_X + (1-\lambda)P_Z)$$

$$= f(p(\lambda x + (1-\lambda)J))$$

>> g(x+(1+1) b)

24

PRECONDITIONING

Second Goal:
$$q(x) = Px$$

uin x P PATAP x - x T P TAT b

(x T I x - x T P TAT b)

 $q(\mathbf{x})$ should have better condition number κ than $f(\mathbf{x})$.

Example:

DIAGONAL PRECONDITIONER

Third Goal: P should be easy to compute.

Many, many problem specific preconditioners are used in practice. There design is usually a heuristic process.

tokes O(4d)

• Intuitively, we roughly have that $\mathbf{D} \approx \mathbf{A}^T \mathbf{A}$.

• Let $P = \sqrt{D^{-1}}$,

P is often called a Jacobi preconditioner. Often works very well in practice!

DIAGONAL PRECONDITIONER

DIAGONAL PRECONDITIONER

Can you think of an example A where Jacobi preconditioning doesn't decrease a large κ ?

Can Jacobi preconditioning increase κ ?

ADAPTIVE STEPSIZES

Another view: If
$$g(\mathbf{x}) = f(\mathbf{P}\mathbf{x})$$
 then $\nabla g(\mathbf{x}) = \mathbf{P}^T \nabla f(\mathbf{P}\mathbf{x})$. $\nabla g(\mathbf{x}) = \mathbf{P} \nabla f(\mathbf{P}\mathbf{x})$ when \mathbf{P} is symmetric.

Gradient descent on
$$g$$
: $\nabla \mathcal{G}(X^{\{t\}})$

$$\cdot \text{ For } t = 1, \dots, T,$$

$$\nabla \underline{\chi^{(t+1)}} = \underline{\chi^{(t)}} - \eta P^{2} [\nabla f(PX^{(t)})]$$

$$\chi^{(t+1)} = \chi^{(t)} - \eta P^{2} [\nabla f(PX^{(t)})]$$

Site Gradient descent on **#** €:

For
$$t = 1, ..., T$$
,

$$y^{(t+1)} = y^{(t)} - \eta P^{2} \left[\nabla f(y^{(t)})\right]$$

 $y^{(t)} = P x^{(t)} \sim x^{4}$ $M P_{11}$ $M P_{22}$

When **P** is diagonal, this is just gradient descent with a different step size for each parameter!

ADAPTIVE STEPSIZES

Algorithms based on this idea:

- · AdaGrad
- RMSprop
- · Adam optimizer

(Pretty much all of the most widely used optimization methods for training neural networks.)

STOCHASTIC METHODS

Main idea: Trade slower convergence (more iterations) for cheaper iterations.

Stochastic Gradient Descent: When $\underline{f(x)} = \sum_{i=1}^{n} f_i(x)$, approximate $\nabla f(x)$ with $\nabla f_i(x)$ for randomly chosen i.

follows $\forall u$ of the fine to compute as $\nabla f(x)$

STOCHASTIC METHODS

Main idea: Trade slower convergence (more iterations) for cheaper iterations.

Stochastic Coordinate Descent: Only compute a <u>single random</u> entry of $\nabla f(\mathbf{x})$ on each iteration:

$$\nabla f(\mathbf{x}) = \begin{bmatrix} \frac{\partial f}{\partial x_1}(\mathbf{x}) \\ \frac{\partial f}{\partial x_2}(\mathbf{x}) \\ \vdots \\ \frac{\partial f}{\partial x_d}(\mathbf{x}) \end{bmatrix} \qquad \nabla_i f(\mathbf{x}) = \begin{bmatrix} 0 \\ \frac{\partial f}{\partial x_i}(\mathbf{x}) \\ \vdots \\ 0 \end{bmatrix}$$

Update:
$$\mathbf{x}^{(t+1)} \leftarrow \mathbf{x}^{(t)} + \eta \nabla_{i} \mathbf{x}^{(t)}$$

COORDINATE DESCENT

When **x** has d parameters, computing $\nabla_i f(\mathbf{x})$ often costs just a 1/d fraction of what it costs to compute $\nabla f(\mathbf{x})$

Example:
$$f(\mathbf{x}) = \|\mathbf{A}\mathbf{x} - \mathbf{b}\|_{2}^{2}$$
 for $\mathbf{A} \in \mathbb{R}^{n \times d}$, $\mathbf{x} \in \mathbb{R}^{d}$, $\mathbf{b} \in \mathbb{R}^{n}$.

$$\nabla f(\mathbf{x}) = 2\mathbf{A}^{T}\mathbf{A}\mathbf{x} - 2\mathbf{A}^{T}\mathbf{b}.$$

$$\nabla_{i}f(\mathbf{x}) = 2[\mathbf{A}^{T}\mathbf{A}\mathbf{x}]_{i} - 2[\mathbf{A}^{T}\mathbf{b}]_{i}$$

$$\nabla_{i}f(\mathbf{x}) = 2[\mathbf{A}^{T}\mathbf{A}\mathbf{x}]_{i} - 2[\mathbf{A}^{T}\mathbf{b}]_{i}$$

$$\nabla_{i}f(\mathbf{x}) = 2[\mathbf{A}^{T}\mathbf{A}\mathbf{x}]_{i} - 2[\mathbf{A}^{T}\mathbf{b}]_{i}$$

to coupte

STOCHASTIC COORDINATE DESCENT

Stochastic Coordinate Descent:

- Choose number of steps T and step size η .
- For i = 1, ..., T:
 - Pick random $j_i \in 1, \ldots, d$.

$$\cdot \mathbf{x}^{(i+1)} = \mathbf{x}^{(i)} - \eta \nabla_{j_i} f(\mathbf{x}^{(i)})$$

• Return $\hat{\mathbf{x}} = \frac{1}{T} \sum_{i=1}^{T} \mathbf{x}^{(i)}$.

COORDINATE DESCENT

Theorem (Stochastic Coordinate Descent convergence)

Given a G-Lipschitz function f with minimizer \mathbf{x}^* and initial point $\mathbf{x}^{(1)}$ with $\|\mathbf{x}^{(1)} - \mathbf{x}^*\|_2 \le R$, SCD with step size $\eta = \frac{1}{Rd}$ satisfies the guarantee:

antee:
$$\mathbb{E}[f(\hat{\mathbf{x}}) - f(\mathbf{x}^*)] \leq \frac{2GR}{\sqrt{T/d}}$$
distance to pphrase

IMPORTANCE SAMPLING

Often it doesn't make sense to sample i uniformly at random:

$$\mathbf{A} = \begin{bmatrix} 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 2 & 0 & 0 & 0 \\ 0 & 0 & -1 & 0 & 0 & 0 \\ 0 & 0 & -.5 & 0 & 0 & 0 \\ 0 & 0 & 3 & 0 & 0 & 0 \\ 0 & 0 & -2 & 0 & 0 & 0 \end{bmatrix} \qquad \mathbf{b} = \begin{bmatrix} 10 \\ 42 \\ -11 \\ -51 \\ 34 \\ -22 \end{bmatrix}$$

$$\mathbf{b} = \begin{bmatrix} 10 \\ 42 \\ -11 \\ -51 \\ 34 \\ -22 \end{bmatrix}$$

Select indices i proportional to $\|\mathbf{a}_i\|_2^2$:

$$Pr[select index i to update] = \frac{\|\mathbf{a}_i\|_2^2}{\sum_{i=1}^d \|\mathbf{a}_i\|_2^2} = \frac{\|\mathbf{a}_i\|_2^2}{\|\mathbf{A}\|_2^2}$$