Study on Hallucination Detection by LLMs hidden state analysis

Final Presentation

Arianna Paolini - 1943164 Alessandro Scifoni - 1948810 Simone Sestito - 1937764

Advanced Machine Learning course a.y. 2024/2025

Related Works and Context

Baseline Model -SAPLMA

Starting from the original **SAPLMA** model [Azaria et al. 2023]

Recognize the **hallucinations** extracting information from LLM hidden states.

We proceeded:

- Improving from their model with modern techniques
- Reusing their benchmarks and dataset

Llama 3.2 1B Instruct

Decoder-only architecture for causal LM

16 x

 $h_{t,l}$

Hidden states at time-step t and decoder layer l

Shape: B x S x H

B = batch size

S = sequence length

H = hidden dim = 2048

Baseline Model - SAPLMA Architecture

True/false dataset 6,084 sentences from 6 different topics + 245 statements generated by the OPT 6.7b LLM paired with a binary truth label

SAPLMA

Statement Accuracy Prediction based on LLM Activations

LLM hidden states at time-step t and decoder layer l

for the last input token

Baseline Model - SAPLMA Training

Technical details:

- → number of epochs = 5
- → optimizer = AdamW
- → learning rate = 10^-5
- → batch size = 64
- train dataset: 4868 samples
- validation dataset: 1217 samples
- **test dataset** ("generated" topic): 245 samples

The dataset was split using:

- one topic as test set
- the remaining as train/val

Require SAPLMA to **extract the LLM's internal belief**, rather than learning how information must be aligned to be classified as true

Baseline Model - SAPLMA Training

Technical details:

- → number of epochs = 5
- → optimizer = AdamW
- learning rate = 10^-5
- → batch size = 64
- train dataset: 4868 samples
- validation dataset: 1217 samples
- **test dataset** ("generated" topic): 245 samples

Two strategies (*reductions*) for determining the **input of SAPLMA** based on Llama hidden states:

"Last" reduction

= take the hidden states of the last input token

$$X = h_{t,l}[\ :\ , -1,\ :\]$$

"Mean" reduction

= average the hidden states of all input tokens at the chosen layer

$$X = 1/S * \sum_{i=0}^{S-1} h_{t,l}[~:~,i,~:~]$$

Baseline Model - SAPLMA Training

Technical details:

- \rightarrow number of epochs = 5
- → optimizer = AdamW
- → learning rate = 10^-5
- → batch size = 64
- **train dataset**: 4868 samples
- validation dataset: 1217 samples
- **test dataset** ("generated" topic): 245 samples

We have run a sweep on Weights & Biases to try different combinations of:

- hidden layer index
- reduction type

and achieved a **best test accuracy of 76%**

What layer to consider? How to extract information?

Idea: hidden states from middle layers are better

What layer to consider? How to extract information?

Idea: hidden states from middle layers are better

Experiment: learn the weights in the aggregation

$$egin{aligned} w_{i,j}' &= egin{array}{ll} w_{i,j}' &= egin{array}{ll} w_{i,j} & if \ a_j = 1 \ -\inf & otherwise \end{aligned} \ X_{learnt} &= \sum_{i=0}^{L-1} \sum_{j=0}^{S-1} \ w_{i,j}' st h_{t,i}[:,j,:] \ \sum_{i=0}^{L-1} \sum_{j=0}^{S-1} \ w_{i,j}' = 1 \end{aligned}$$

Learnable Layers Contribution: inference

```
Input: Jauba is located at the junction of the Equator and the Nile., Prediction: False
Input: Plymouth's zip code is 02360., Prediction: False
Input: Austin is the capital of the state., Prediction: True
Input: Ottawa also has a large French-speaking population., Prediction: True
Input: Lima gets an average of 1 hour of sunshine per day., Prediction: False
Input: NewDelhi is also the capital city of Delhi., Prediction: False
Input: Ashgabat is located in Turkmenistan., Prediction: True
Input: Ottawa is located in Ontario, Canada., Prediction: True
Input: Georgetown was founded in 1836., Prediction: False
Input: Road town is the capital of Virgin Islands and the largest city in the British virgin islands., Prediction: False
```


Learnable Layers Contribution: evaluation

What threshold to use?

Idea: can we do better than using threshold = 0.5?

Visualize the confusion matrix

What threshold to use?

Idea: can we do better than using threshold = 0.5?

Visualize the confusion matrix

With threshold = 0.9, improving accuracy by 6%

What's the best NN architecture?

Choose the best layer, normalization, depth and width

Search best configuration, performing few tests and keep refining

SAPLMA CONFIG	Test accuracy	Training accuracy	Validation accuracy	
Layer 7 , layer norm, 256, 128, 64	0.78776	0.75	0.73213	
Layer 7, layer norm, 256, 128, 128, 64	0.78367	0.75	0.69597	
Layer 11, layer norm, 256, 64, 64, 64, 64	0.77551	1	0.71734	
Layer 11, batch norm, 256, 64, 64, 64, 64	0.76735	0.5	0.76335	
Layer 15, batch norm, 256, 128, 64	0.75102	0.5	0.77239	

Improved Architecture

Neural Networks can perform much better with the help of regularization

- Dropout
- LayerNorm

Hyperparameters found, performing a <u>grid search</u> with WandB Sweep

Enhanced SAPLMA

Result of architectural search on the original model

Improved Architecture

Neural Networks can perform much better with the help of regularization

- Dropout
- LayerNorm

Hyperparameters found, performing a <u>grid search</u> with WandB Sweep

Improved Architecture: evaluation

	precision	recall	f1-score	support
0	0.77	0.83	0.80	126
1	0.81	0.74	0.77	119
accuracy			0.79	245
macro avg	0.79	0.79	0.79	245
weighted avg	0.79	0.79	0.79	245

Can it detect while generating?

Ideally, we may want to detect the hallucinations while generating them, and not at the end:

• infer SAPLMA on every token while generating = the last one at any given time

Understand **why** it detects an hallucination:

• compute the gradients on the tokens, to understand their importance in hallucination detection

```
y_true: 0 (hallucination) -- y_pred: 0.33
SAPLMA infer on single tokens: Lima is a name of a country.
SAPLMA gradients on embeddings: Lima is a name of a country.
```

```
y_true: 0 (hallucination) -- y_pred: 0.11
    SAPLMA infer on single tokens: Bank of China has headquarters in France.
    SAPLMA gradients on embeddings: Bank of China has headquarters in France.
```


y_true: 0 (hallucination) -- y_pred: 0.58

SAPLMA infer on single tokens: The largest ocean in the world is the Indian Ocean.

SAPLMA gradients on embeddings: The largest ocean in the world is the Indian Ocean.

How does SAPLMA detect hallucinations?

Question: is there a specific set of **LLM hidden state features** that can give us information about the truthfulness of input sentences?

Experiment: Compute gradients of SAPLMA output on a big batch of prompts with respect to the features of the LLM hidden states

$$abla_b \ f(h_{0,l}) = \ \sum_{i=0}^{2047} \ rac{\partial f}{\partial \ h_{0,l}[b,64,i]} \ \hat{\imath_i} \, .$$

$$abla \, f(h_{0,l}) = \, 1/B * \sum_{b=0}^{B-1} \overline{
abla_b \, f(h_{0,l})}$$

How does SAPLMA detect hallucinations?

SAPLMA based on multiple hidden layers summed up with learnt weights

Enhanced SAPLMA (based only on the 7th hidden layer)

Final Evaluation

Baseline: Original
SAPLMA architecture
based on 12th LLM
hidden layer

Enhanced SAPLMA: architecture with layer normalization and dropout, based on 7th LLM hidden layer

Conclusions

Lesson learnt

- LLM hidden states are useful for revealing information about truthfulness of statements
- **different hidden layers** encode different information
- the best performance is given by using middle layers

Conclusions

Limitations

- LLM hidden states are not always available to access
- We experimented on a small dataset (6k total examples)
- We experimented on a "small" LLM (1B parameters)
- We did not include all modern training techniques (e.g. learning rate decay)

Future works

- Use an ensemble of SAPLMA and entropy-based methods
- Try to increase SAPLMA interpretability on real-time inference

Links & References

Our code

Implemented from scratch with PyTorch Lightning

Our GitHub repository with code and experiments

Dataset from:

<u>GitHub dataset repository</u>

Related Works

- The Internal State of an LLM Knows When It's Lying, Azaria and Mitchell, 2023 (https://arxiv.org/pdf/2304.13734)
- INSIDE: LLM's Internal State Retains the Power of Hallucination Detection,
 Chen et al., 2024 (https://arxiv.org/pdf/2402.03744)
- Do LLMs Know about Hallucination? An Empirical Investigation of LLM's Hidden States, Duan et al., 2024 (https://arxiv.org/pdf/2402.09733)
- Shifting Attention to Relevance: Towards the Predictive Uncertainty
 Quantification of Free-Form Large Language Models, Duan et al., 2024
 (https://arxiv.org/pdf/2307.01379)
- Cognitive Dissonance: Why Do Language Model Outputs Disagree with Internal Representations of Truthfulness?, Liu et al., 2023 (https://arxiv.org/pdf/2312.03729)
- Uncertainty Estimation and Quantification for LLMs: A Simple Supervised Approach, Liu et al., 2024 (https://arxiv.org/pdf/2404.15993)

Thank you!

Any questions?

GitHub repository with code and experiments: https://github.com/simonesestito/AML-project

