Point Clouds as 3D Representations:
Point clouds are sets of individual 3D coordinates captured by sensors like LiDAR or
depth sensors. They represent physical objects or environments in three-
dimensional space.
While point clouds can be derived from depth maps, they offer a more general and
unified representation. They abstract away the sensing modality, focusing instead
on the geometry they represent.
Properties and Challenges of Point Clouds:
Point clouds are unordered sets of points, meaning the order of points does not
change the underlying representation of the geometry.
Processing point clouds can be challenging, especially when using methods that
rely on the ordering of points, like certain deep learning algorithms.
Representation of Point Clouds and Meshes:
Meshes offer a more structured representation, consisting of vertices and faces,
often used to approximate the surface of objects.
Triangular meshes are commonly used because they guarantee planar faces,
making them easier to work with.
Non-Manifold Issues and Mesh Representation:
There are limitations and constraints in mesh representations, like ensuring each
edge is part of at most two faces. This restriction helps avoid non-manifold issues,
which can complicate the representation of surfaces.

Connectivity in Meshes:
Meshes explicitly model the connectivity between points, which is not inherently present
in point clouds. This makes them more informative for understanding the structure of
objects.
The orientation of vertices in a mesh is crucial and affects the representation of surfaces
and their properties.
Challenges in Transforming Meshes:
Modifying the structure or connectivity of a mesh is complex. Simple edits like moving a
vertex are easier compared to changing the connectivity or the number of faces.
Mesh transformations can be particularly challenging when dealing with topology
changes, like creating or removing holes in objects.
Parametric Surfaces and Their Advantages:
Parametric surfaces offer an alternative representation where changes in shape can be
achieved through functions that map points from one space to another.

Depth Maps and Point Clouds:
Depth maps are intuitive and generated from depth cameras, while point clouds are
typically generated from LiDARs.
Parametric surfaces are often created by graphics designers rather than captured
directly by sensors.
A depth map represents 3D points tied to specific pixels observed from one view,
whereas a point cloud is a more abstract set of points that can represent more full
3D structure.
Parametric Surfaces:
Discussed the representation of a sphere using 2D coordinates (U and V), which
essentially maps a 2D manifold to 3D space.
A parametric surface deforms one 2D manifold to another, where the resulting
manifold lives in 3D space.
Meshes and Their Limitations:
Meshes consist of vertices and faces and are used for approximating surfaces of
objects.
They are efficient for representing and rendering surfaces but have limitations,
especially when faces become non-planar or when trying to represent complex
structures like holes.