

Applications

- Electronic Warfare
- Commercial and Military Radar

Product Features

Frequency Range: 6 - 12 GHz
 POUT: > 45 dBm (PIN = 23 dBm)
 PAE: > 30 % (PIN = 23 dBm)
 Small Signal Gain: 35 dB

Bias: V_D = 20 V (CW), I_{DQ} = 2 A, V_G = -2.4 V typ.
 Package Dimensions: 15.24 x 15.24 x 3.5 mm

Functional Block Diagram

General Description

Qorvo's TGA2590-CP is a wideband MMIC power amplifier fabricated on Qorvo's production 0.25um GaN on SiC process. The TGA2590-CP operates from 6-12GHz and provides 30W of saturated output power with >22dB of large signal gain and >30% power-added efficiency.

The TGA2590-CP is offered in a Cu-base package that can either be bolted down or eutectically attached for superior thermal management.

The TGA2590-CP is fully matched to $50\,\Omega$ with DC blocking caps at both RF ports allowing for simple system integration. The broadband performance supports both electronic warfare and radar opportunities across defense and commercial markets.

Lead-free and RoHS compliant.

Evaluation boards are available upon request.

Pin Configuration

Symbol
V _G
Gnd
RF _{IN}
V _D
RFout

Ordering Information

Part	ECCN	Description
TGA2590-CP	3A001.b.2.b	6-12GHz 30W PA

RFMD + TriQuint = Qorvo

TGA2590-CP

6 to 12GHz, 30W GaN Power Amplifier

Absolute Maximum Ratings

Parameter	Value
Drain Voltage (V _D)	40 V
Gate Voltage Range (V _G)	–8 to 0 V
Drain Current (I _D)	8 A
Gate Current (I _G)	–20 to 200 mA
Power Dissipation (PDISS), 85 ℃	135 W
Input Power (P _{IN}), CW, 50 Ω, 85 ℃	30 dBm
Input Power (P _{IN}), CW, VSWR 6:1, $V_D = 20 \text{ V}$, 85°C	27 dBm
Channel Temperature (T _{CH})	275℃
Mounting Temperature (30 Seconds)	260℃
Storage Temperature	–55 to 150℃

Operation of this device outside the parameter ranges given above may cause permanent damage. These are stress ratings only, and functional operation of the device at these conditions is not implied.

Recommended Operating Conditions

Parameter	Value
Drain Voltage (V _D)	20 - 25 V
Drain Current (I _{DQ})	2 A
Drain Current @ Pin = 23 dBm (I _{D_DRIVE})	See plots p. 4
Gate Voltage (V _G)	–2.4 V (Typ.)
Gate Current @ Pin = 23 dBm (I _{G_DRIVE})	120 mA
Input Power (P _{IN})	+17 to +25 dBm

Electrical specifications are measured at specified test conditions. Specifications are not guaranteed over all recommended operating conditions.

Electrical Specifications

Test conditions unless otherwise noted: 25 °C, CW, V_D = 20 V, I_{DQ} = 2 A, V_G = −2.4 V Typ.,

Parameter	Min	Typical	Max	Units
Operational Frequency Range	6		12	GHz
Drain Voltage (V _D)	20		25	V
Load VSWR			2.0:1	
Input Power (P _{IN})	17		25	dBm
Output Power (P _{IN} = 23 dBm)		46		dBm
Power-Added Efficiency (P _{IN} = 23 dBm)		> 30		%
Small Signal Gain		35		dB
Input Return Loss		5		dB
Output Return Loss		5		dB
Gain Temperature Coefficient		-0.07		dB/°C
Power Temperature Coefficient		-0.015		dBm/℃

6 to 12GHz, 30W GaN Power Amplifier

Thermal and Reliability Information

Parameter	Test Conditions	Value	Units
Thermal Resistance (0 _{JC}) (1)	T _{BASE} = 85 °C, V _D = 20 V CW	1.17	°C/W
Channel Temperature (T _{CH}) (Under RF drive)	Freq = 9 GHz, P _{IN} = 23 dBm: I _{DQ} = 2 A, I _{D_Drive} = 5.55 A P _{OUT} = 45.5 dBm	173	℃
Median Lifetime (T _M)	P _{DISS} = 75.5 W	1.58E+8	Hrs

Notes:

1. Thermal resistance measured to back of package.

Test Conditions: V_D = 40 V; Failure Criteria = 10% reduction in I_{D MAX}

Typical Performance: Large Signal

Condition: CW

6 to 12GHz, 30W GaN Power Amplifier

Typical Performance: Small Signal

Condition: CW

RFMD + TriQuint = Qorvo

Condition: CW

Applications Information

Note: VG and VD must be biased from both sides of the EVB.

Bias-up Procedure

- 1. Set ID limit to 8 A, IG limit to 200 mA
- 2. Apply -5 V to V_G
- 3. Apply +20 V to V_D ; ensure I_{DQ} is approx. 0 mA
- 4. Adjust V_G until $I_{DQ} = 2$ A ($V_G \sim -2.4$ V Typ.).
- 5. Turn on RF supply

Bias-down Procedure

- 1. Turn off RF supply
- 2. Reduce V_G to -5 V; ensure I_{DQ} is approx. 0 mA
- 3. Set V_D to 0 V
- 4. Turn off V_D supply
- 5. Turn off V_G supply

Pin Layout

Pin Description

Pin No.	Symbol	Description
1, 5	Gate	Gate; bias network is required; see recommended Application Information on page 8
2, 4, 7, 9	Gnd	Ground; connected to ground paddle; must be grounded on PCB
3	RF In	Input; matched to 50 Ω; DC blocked
6, 10	Drain	Drain; bias network is required; see recommended Application Information on page 8
8	RF Out	Input; matched to 50 Ω; DC blocked

Evaluation Board

Note: VG and VD must be biased from both sides of the EVB.

Bill of Material

Reference Des.	Value	Description	Manuf.	Part Number
C2, C5, C8, C11	0.1 μF	Cap, 0603, 50 V, 10%, X7R	Various	
C3, C4	10 μF	Cap, 1206, 50 V, 20%, X5R	Various	

Assembly Notes

- 1. Clean the board or module with alcohol; allow it to dry fully
- 2. Attach PCB to carrier using film epoxy (i.e Ablefilm 5028E)
- 3. Nylock screws are recommended for mounting the TGA2590-CP to the carrier.
- 4. To improve the thermal and RF performance, we recommend the following:
 - a. Apply thermal compound or 4 mils indium shim between the package and the carrier
 - b. Attach a heat sink to the bottom of the board and apply thermal compound or 4 mils indium shim between the heat sink and the board
- 5. Apply solder to each pin of the TGA2590-CP to PCB
- 6. Clean the assembly with alcohol

Product Compliance Information

Units: inches

Tolerances: unless specified

 $x.xx = \pm 0.01$ $x.xxx = \pm 0.005$

Materials:

Lid: Liquid Crystal Polymer (LCP)

Leads: Alloy 194 Base: Copper

Finish: All metalized features are gold plated; part is epoxy sealed

Marking:

TGA2590-CP: Part number

YY: Part assembly year WW: Part assembly week ZZZ: Serial number MXXX: Batch ID

TGA2590-CP

6 to 12GHz, 30W GaN Power Amplifier

ESD Sensitivity Ratings

Caution! ESD-Sensitive Device

ESD Rating: Class 1B (≤650V)

Human Body Model (HBM) Test: Standard: JEDEC Standard JESD22-A114

ESD Rating: Class C3 (≤1000V)

Charged Device Model (CDM) Test: Standard: JEDEC Standard JESD22-C101

MSL Rating

Level MSL 3 at 260 °C convection reflow The part is rated Moisture Sensitivity Level 3 at 260°C per JEDEC standard IPC/JEDEC J-STD-020.

ECCN

US Department of Commerce: 3A001.b.2.b

Solderability

Compatible with the latest version of J-STD-020, Leadfree solder, 210°C

RoHS Compliance

This part is compliant with EU 2002/95/EC RoHS directive (Restrictions on the Use of Certain Hazardous Substances in Electrical and Electronic Equipment).

This product also has the following attributes:

- Lead Free
- Halogen Free (Chlorine, Bromine)
- Antimony Free
- TBBP-A (C₁₅H₁₂Br₄O₂) Free
- **PFOS Free**
- **SVHC Free**

Contact Information

For the latest specifications, additional product information, worldwide sales and distribution locations, and information about Qorvo:

Web: www.qorvo.com Tel: +1.972.994.8465 Email: info-sales@gorvo.com Fax: +1.972.994.8504

For technical questions and application information: Email: info-products@gorvo.com

Important Notice

The information contained herein is believed to be reliable. Qorvo makes no warranties regarding the information contained herein. Qorvo assumes no responsibility or liability whatsoever for any of the information contained herein. Qorvo assumes no responsibility or liability whatsoever for the use of the information contained herein. information contained herein is provided "AS IS, WHERE IS" and with all faults, and the entire risk associated with such information is entirely with the user. All information contained herein is subject to change without notice. Customers should obtain and verify the latest relevant information before placing orders for Qorvo products. The information contained herein or any use of such information does not grant, explicitly or implicitly, to any party any patent rights, licenses, or any other intellectual property rights, whether with regard to such information itself or anything described by such information.

Qorvo products are not warranted or authorized for use as critical components in medical, life-saving, or lifesustaining applications, or other applications where a failure would reasonably be expected to cause severe personal injury or death.

- 11 of 11 -Disclaimer: Subject to change without notice © 2017 Qorvo www.gorvo.com