Sto Daniel Alvarado ESPM Jo Título o Nombre de las notas J25 aniel Alvarado ESFM

10 de marzo de 2025 Cristo Daniel Alvarado

Cristo Daniel Alvarado ES

Índice general

Libros		2
Lenguajes de Programación		2
Páginas y Cursos en Línea		2
Cursos en Coursera		2
Otros Cursos y Recursos	, . , . , . ,	2
1. Introducción		3
1. Introduction		J
Aprendizaje Estadístico		3
Spam de Email		4
ST. L.		

Información y Recursos

§0.1 Libros

Escrito por ChatGPT: Si buscas un enfoque teórico y práctico para aprender Machine Learning, estos libros son altamente recomendados:

- "Pattern Recognition and Machine Learning" Christopher M. Bishop Matemáticamente riguroso, ideal para alguien con formación en matemáticas.
- "The Elements of Statistical Learning" Hastie, Tibshirani y Friedman Recomendado para obtener fundamentos teóricos sólidos.
- "Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow" Aurélien Géron Enfoque práctico con Python, excelente para comenzar con código.

§0.2 LENGUAJES DE PROGRAMACIÓN

- Python (Principal) Librerías clave: NumPy, Pandas, Scikit-Learn, TensorFlow, PyTorch.
- R Útil para estadística avanzada y visualización de datos.

§0.3 PÁGINAS Y CURSOS EN LÍNEA

§0.3.1 Cursos en Coursera

- Curso de Andrew Ng: Machine Learning Matemáticas y conceptos clave explicados de manera clara.
- Deep Learning Specialization Curso avanzado enfocado en redes neuronales.

§0.3.2 Otros Cursos y Recursos

- Fast.ai: Practical Deep Learning for Coders Curso gratuito con enfoque práctico en código.
- Kaggle Learn Mini cursos interactivos y competencias con datos reales.
- CS229 de Stanford Notas de clase de Andrew Ng en Stanford.
- StatQuest (YouTube) Explicaciones claras de teoría estadística aplicada a ML.

Capítulo 1

Introducción

El objetivo de estas notas es el de dar un panorama general sobre el Machine Learning.

§1.1 Aprendizaje Estadístico

Definición 1.1.1 (Aprendizaje Estadístico)

El aprendizaje estadístico consiste en

El aprendizaje estadístico juega un rol clave en muchas áreas de la ciencia, finanzas y la industria. Tales ejemplos pueden verse en los siguientes problemas:

- Predecir cuando un paciente hospitalizado debido a un ataque cardiaco tendrá un segundo ataque cardiaco. Esta predicción debe basarse en la deomgrafía del paciente.
- Predecir precios de acciones a 6 meses a futuro.
- Identificar números escritos a mano en códigos postales.
- Identificar factores de riesgo para cáncer de próstata, basado en variables clínicas y demográficas.

Definición 1.1.2 (Demografía)

La demografía es la ciencia que estudia las poblaciones humanas, su dimensión, estructura, evolución y características generales, así como los procesos que determinan su formación, conservación y desaparición.

El objetivo es tomar información, interpretarla y decir algo acerca de ella, más precisamente, se pretende dar una *predicción*.

Usando la información se construirá un **aprendedor** (o **learner**) que será la pieza clave para predecir la salida de nueva fuente de información. Queremos un *qood learner*.

Hay dos tipos de aprendizaje:

- Supervisado: En este tipo de aprendizaje hay la presencia de una variable de salida que nos permite guiar el proceso de aprendizaje.
- No Supervisado: Observamos solo las características y no tenemos medida de que tan buena es la salida del proceso.

Hablaremos de algunos ejemplos de aprendizaje supervisado:

§1.2 Spam de Email

Ejercicio 1.2.1 (Spam de Email)

Se tienen 4601 mensajes en email hacia una persona y pretendemos determinar si cada uno de ellos era un email basura o *spam*. Diseñar un detector de spam automático que pueda filtrar el spam antes de que las bandejas de entrada de los usuarios se llenen.

Solución:

Para cada uno de los 4601 mensajes, podemos asignar dos estados de salida:

(1.1)