

مسائل جستجو

اندازه فضای حالت

□فضاي حالت:

- مکانهای ممکن برای عامل: ۱۲۰
- ◄ جهتهای ممکن برای عامل: ۴
- حالتهای ممکن برای هر کدام از ارواح: ۱۲
 - تعداد نقاط: ۳۰

اندازه فضای جستجو اگر مسئله شامل تمام متغیرهای ممکن (مکان عامل، وضعیت نقاط، وضعیت ارواح و جهت حرکت) باشد؟ $120x(2^{30})x(12^2)x4$

- تعداد حالتها اگر مسئله مسیریابی باشد؟ 120
- تعداد حالتها اگر مسئله خوردن تمام نقاط باشد؟ 120x(2³⁰)

گراف فضای حالت و درخت جستجو

گراف فضای حالت

□ گراف فضای حالت:

همهی حالات ممکن یک مسئله را نشان میدهد، و یالها در آن نشاندهندهی انتقال بین حالات هستند.(یک نمایش ریاضی از مسئله جستجو)

- رئوس: حالتهای محیط (انتزاعی)
- یالها: عملیات ممکن در هر رأس
- تابع حالت بعدی: رئوس همسایه
 - حالت شروع: یکی از ریوس
- تست هدف: مجموعه ای از یک یا چند رأس

- ادر گراف فضای حالت، رأس تکراری وجود ندارد! \Box
- ابه ندرت می توان گراف کامل را در حافظه ساخت (چون خیلی بزرگ است)، اما همچنان یک مفهوم ارزشمند برای درک فضا محسوب می شود.

گراف فضای حالت

- □گراف فضای حالت: یک نمایش ریاضی از مسئله جستجو
 - رئوس: حالتهای محیط (انتزاعی)
 - یالها: عملیات ممکن در هر رأس
 - تابع حالت بعدی: رئوس همسایه
 - حالت شروع: یکی از ریوس
 - تست هدف: مجموعه ای از یک یا چند رأس

 \Box در گراف فضای حالت، رأس تکراری وجود ندارد!

یک گراف فضای حالت کوچک که برای یک مسئله جستجوی کوچک است

□بهندرت میتوان گراف کامل را در حافظه ساخت (چون خیلی بزرگ است)، اما همچنان یک مفهوم ارزشمند برای درک فضا محسوب میشود.

مقایسه گراف فضای حالت و درخت جستجو

هر گره (NODE) در درخت جستجو یک مسیر کامل در گراف فضای حالت است.

درخت را به اندازهای که نیاز است میسازیم. لزومی ندارد درخت کامل ساخته شود.

درخت جستجو

□درخت جستجو

یک نمایش درختی از مسیرهای جستجو است که یک الگوریتم جستجو برای یافتن پاسخ ایجاد میکند.

- ریشه برابر با حالت شروع مسئله است.
- درخت از یک گره ریشه شروع شده و مسیرهای مختلف را بررسی می کند.
 - هر گره فقط یک والد دارد
- در اغلب مسائل، هرگز نمی توان کل درخت را ساخت، زیرا بیش از حد بزرگ است.!!!

مقایسه گراف فضای حالت و درخت جستجو

اندازه درخت جستجوی آن (با حالت شروع S) چقدر است؟

این گراف ۴-حالتی را در نظر بگیرید:

ساختارهای تکراری زیادی در درخت جستجو وجود دارد!

درخت جستجو

مثال جستجو: مسیریابی در رومانی

- 🗖 جستجو:
- انتخاب یک گره
 - تست هدف
- گسترش گره انتخاب شده

الگوریتم جستجوی عمومی درخت (General Tree Search)

```
function TREE-SEARCH( problem, strategy) returns a solution, or failure initialize the search tree using the initial state of problem loop do

if there are no candidates for expansion then return failure choose a leaf node for expansion according to strategy

if the node contains a goal state then return the corresponding solution else expand the node and add the resulting nodes to the search tree end
```

🗖 مفاهیم مهم:

- Fringe •
- مجموعهای از گرههایی است که در طول فرآیند جستجو تولید شدهاند ولی هنوز گسترش نیافتهاند. (این گرهها در صف انتظار هستند تا پردازش شوند.)
 - Expansion(گسترش گرهها)
- فرآیند گسترش یک گره یعنی انتخاب یک گره از حاشیه و تولید جانشینهای آن بر اساس actionهای موجود در مسئله. این گره دیگر گسترشیافته محسوب می شود و از حاشیه حذف می شود.
 - Exploration Strategy (استراتژی جستجو)
 - کدام گره از حاشیه انتخاب شود تا گسترش یابد. (بر اساس نوع جستجو)

مثال: درخت جستجو

مثال: درخت جستجو

Fringe:

 $s \rightarrow d$ $s \rightarrow e$ $s \rightarrow p$ $s \rightarrow d \rightarrow b$ $s \rightarrow d \rightarrow c$ $s \rightarrow d \rightarrow e$ $s \rightarrow d \rightarrow e \rightarrow h$ $s \rightarrow d \rightarrow e \rightarrow r$ $s \rightarrow d \rightarrow e \rightarrow r$ $s \rightarrow d \rightarrow e \rightarrow r \rightarrow f$ $s \rightarrow d \rightarrow e \rightarrow r \rightarrow f \rightarrow c$

 $s \rightarrow d \rightarrow e \rightarrow r \rightarrow f \rightarrow G$

روشهای جستجوی ناآگاهانه

(Uninformed Search Methods)

- (Depth-First Search DFS) جستجوى عمق اول
- 2. جستجوی سطح اول (Breadth-First Search BFS)
- 3. جستجوی عمقی افزایشی (ترکیب DFS و DFS) (BFS) و Iterative Deepening Search IDS) (BFS)
 - 4. جستجوی هزینه یکنواخت (Uniform-Cost Search UCS)

روشهای جستجوی ناآگاهانه (Uninformed Search Strategies)

□روشهای جستجوی ناآگاهانه (کور)

- تنها از اطلاعات موجود در تعریف مسئله برای جستجو استفاده می کند.
 - تنها میتواند حالتهای هدف را از حالات غیر هدف تشخیص دهد.

□انواع روشهای جستجوی ناآگاهانه:

- 1. جستجوى عمقى (DFS)
- 2. جستجوی سطحی (BFS)
- 3. جستجوی عمقی افزایشی (ترکیب DFS و BFS) (IDS)
 - 4. جستجوی هزینه یکنواخت (UCS)

ارزيابي الگوريتمهاي جستجو

ارزيابي الگوريتمهاي جستجو

- کامل بودن (Complete): آیا تضمین می کند که اگر راه حلی وجود داشته باشد، آن را پیدا کند؟
- بهینه بودن (Optimal): آیا تضمین می کند که کمهزینهترین راه (بهینهترین راه) را پیدا کند؟
 - پیچیدگی زمانی (Time complexity): مقدار زمان مورد نیاز برای اجرای الگوریتم جستجو
- پیچیدگی حافظه (Space complexity): مقدار حافظه مورد نیاز برای اجرای الگوریتم جستجو

لاپارامترهای مهم درخت جستجو:

- b ضریب انشعاب (تعداد فرزندان هر گره).
- m حداکثر عمق درخت (طولانی ترین مسیری که درخت جستجو می تواند داشته باشد) s تشان دهنده عمق اولین راه حل (کم عمق ترین راه حال) در درخت جستجو است.
 - - ✓ دقت شود راه حلها در عمقهای مختلف پراکنده هستند

□تعداد کل گرههای درخت جستجو:

 $1 + b + b^2 + \dots b^m = O(b^m)$

ا. جستجوى عمقى (Depth-First Search - DFS) عمقى

۱. جستجوی عمقی

استراتزی: ابتدا عمیق ترین گره را گسترش دهید.

پیادهسازی: حاشیه (Fringe) یک پشته LIFO است.

سوال: جستجوی عمقی کدام گرهها را گسترش میدهد؟ ✓ تمام گرههای قبل از چپترین گره راهحل.