Galois Field

Finite (Galois) Fields: GF(p)

Order of Finite Field must be a power of prime number $GF(p^n)$

When n = 1 we get

GF(p)

The structure is different then that of $GF(p^n)$

Else

n > 1

 $GF(p^n)$

- $GF(p) := \text{set of } Z_p \text{ integers } \{0,1,2 \dots p-1\}$ Eg: $GF(2) := F = \langle Z_p, +, * \rangle := GF(2^1)$

+	0	1	*	0	1
0	0	1	0	0	0
1	1	0	1	0	1
	XOR			AND	

The identity of additive inverse does multiplicative inverse

- Galois Field GF(p)
- Modular Polynomial Arithmetic
- Galois Field $GF(2^n)$

Finite (Galois) Fields: GF(p)

• Eg: $GF(7) := Z_7$

+	0	1	2	3	4	5	6
0	0	1	2	3	4	5	6
1	1	2	3	4	5	6	0
2	2	3	4	5	6	0	1
E2356			11.222.	100	0		
4	4	5	6	0	1	2	3
5	5	6	0	1	2	3	4
6	6	0	1	2	3	4	5

*	0	1	2	3	4	5	6
0	0	0	0	0	0	0	0
1	0	1	2	3	4	5	6
2	0	2	4	6	1	3	5
3	0	3	6	2	5	1	4
4	0	4	1	5	2	6	3
5	0	5	3	1	6	4	2
6	0	6	5	4	3	2	1

а	-a	a^{-1}
0	0	-
1	6	1
2	5	4
3	4	5
4	3	2
5	2	3
6	1	6

Integer	1	2	3	4	5	6	7
Frequency	4	8	4	12	4	8	4

Modulo 8 domain Z_8

Frequency of elements is evenly distributed in Addition

+	0	1	2	3	4	5	6	7
0	0	1	2	3	4	5	6	7
1	1	2	3	4	5	6	7	0
2	2	3	4	5	6	7	0	1
3	3	4	5	6	7	0	1	2
4	4	5	6	7	0	1	2	3
5	5	6	7	0	1	2	3	4
6	6	7	0	1	2	3	4	5
7	7	0	1	2	3	4	5	6

Frequency of elements is not evenly distributed in Multiplication

*	0	1	2	3	4	5	6	7
0	0	0	0	0	0	0	0	0
1	0	1	2	3	4	5	6	7
2	0	2	4	6	0	2	4	6
3	0	3	6	1	4	7	2	5
4	0	4	0	4	0	4	0	4
5	0	5	2	7	4	1	6	3
6	0	6	4	2	0	6	4	2
7	0	7	6	5	4	3	2	1

Multiplicative Inverse of elements does not exist

а	-a	a^{-1}
0	0	-
1	7	1
2	6	-
3	5	3
4	4	-
5	3	5
6	2	-
7	1	7

Justification for Galois Field

Better Solution $GF(2^n)$

- We need to perform +,-,* and \div . So we need something that qualifies for a field.
- Z_p qualifies to be a field.
- Problems:
 - But if we have 3 bits representation then the we are dealing with Z_8 domain.
 - For 8 bits representation we have Z_{256}
 - All of theses are even integer domains a \triangleright none of them, except Z_2 , are in Z_p
 - Z_{256} , Z_8 etc are Commutative Rings
- Solution: Not Good
 - We can opt for largest prime number in the given Z_n domain.
 - 3 bits can have Z_7 and 8 bits can have Z_{251} . But this leads to inefficiency.

GF(2³)
$$_{GF(2^n) \equiv GF(p^n)}$$

Integer	1	2	3	4	5	6	7
Frequency	7	7	7	7	7	7	7

Frequency of elements is evenly distributed in Addition

0		000	001	010	011	100	101	110	111
	+	0	1	2	3	4	5	6	7
000	0	0	1	2	3	4	5	6	7
001	1	1	0	3	2	5	4	7	6
010	2	2	3	0	1	6	7	4	5
011	3	3	2	1	0	7	6	5	4
100	4	4	5	6	7	0	1	2	3
101	5	5	4	7	6	1	0	3	2
110	6	6	7	4	5	2	3	0	1
111	7	7	6	5	4	3	2	1	0

Frequency of elements is not evenly distributed in Multiplication

001 010 011 100 101 110 111

-		000		0.0				***	
	*	0	1	2	3	4	5	6	7
000	0	0	0	0	0	0	0	0	0
001	1	0	1	2	3	4	5	6	7
010	2	0	2	4	6	3	1	7	5
011	3	0	3	6	5	7	4	1	2
100	4	0	4	3	7	6	2	5	1
101	5	0	5	1	4	2	7	3	6
110	6	0	6	7	1	5	3	2	4
111	7	0	7	5	2	1	6	4	3

а	-a	a^{-1}
0	0	-
1	1	1
2	2	5
3	3	6
4	4	7
5	5	2
6	6	3
7	7	4

Modular Polynomial Arithmetic

$$x^7 + x^4 + x^2 + x^0$$
$$x^7 + x^4 + x^2 + 1$$

000	0			
001	1			
010	x			
011	x + 1			
100	x ²			
101	$x^2 + 1$			
110	$x^2 + x$			
111	$x^2 + x + 1$			

$$x^6 + x^5 + x^3 + x^1$$
$$x^6 + x^5 + x^3 + x$$

For $GF(2^n)$ order of polynomial will never exceed n-1

If, after some operation, the order exceeds n-1 then perform mod order n Irreducible Polynomial

Irreducible Polynomial of order 3 is

$$x^3+x+1$$

Operation on Mod Poly. Arth.

Example in $GF(2^3)$

$$f(x) = x^2 + x + 1$$
 $g(x) = x^2 + 1$

$$g(x) = x^2 + 1$$

$$m(x) = x^3 + x + 1$$

Operation on Mod Poly. Arth.

Example in $GF(2^3)$

$$f(x) = x^2 + x + 1$$

$$g(x) = x^2 + 1$$

$$m(x) = x^3 + x + 1$$

Addition: =
$$f(x) + g(x)$$

= $(x^2 + x + 1) + (x^2 + 1)$
= $(x^2 + x + 1) + (x^2 + 1)$
= x

Multiplication:
$$= f(x) * g(x)$$

$$= (x^2 + x + 1) * (x^2 + 1)$$

$$= (x^4 + x^3 + x^2) + (x^2 + x + 1)$$

$$= (x^4 + x^3 + x^2) + (x^2 + x + 1)$$

$$= x^4 + x^3 + x + 1$$

$$= f(x) * g(x) \mod m(x)$$

$$= (x^4 + x^3 + x + 1) \mod (x^3 + x + 1)$$

$$= x^2 + x$$

Relevant Information Example in GF(28)

$$f(x) = x^6 + x^4 + x^2 + x + 1 \qquad g(x) = x^7 + x + 1 \qquad m(x) = x^8 + x^4 + x^3 + x + 1$$

$$f(x) + g(x) \qquad (x^6 + x^4 + x^2 + x + 1) + (x^7 + x + 1) \qquad = (x^7 + x^6 + x^4 + x^2) \qquad \text{Polynomial Notation}$$

$$(01010111) \oplus (10000011) \qquad = (11010100) \qquad \text{Binary Notation}$$

$$\{57\} \oplus \{83\} \qquad = \{D4\} \qquad \text{HexaDecimal Notation}$$

Inverse of
$$\{95\}$$
 in $GF(2^8)$ $\{95\} = (10010101) = x^7 + x^4 + x^2 + 1$

q	r1	r2	T .	t1	t2	t
x	$x^8 + x^4 + x^3 + x + 1$	$x^7 + x^4 + x^2 + 1$	$x^5 + x^4 + 1$	0	1	x
$x^2 + x + 1$	$x^7 + x^4 + x^2 + 1$	$x^5 + x^4 + 1$	Tx	1	x	$x^3 + x^2 + x + 1$
$x^4 + x^3$	$x^5 + x^4 + 1$	x	1	x	$x^3 + x^2 + x + 1$	$x^7 + x^3 + x$
x	x	1	0	$x^3 + x^2 + x + 1$	$x^7 + x^3 + x$	
	1	0		$x^7 + x^3 + x$	Ų.	