Presentazione modulo Machine Learning

Luca Mastrobattista 0292461

SonarCloud:

https://sonarcloud.io/summary/overall?id=lucaMastro_deliverable2

github: https://github.com/lucaMastro/ISW2-deliverables

Variabil

Progettazione

Risultati - BookKeeper

Discussione - BookKeeper

Risultati - OpenJpa

Discussione - OpenJPA

Contesto

Il *machine learnig* applicato all'ingegneria del software può avere diversi utilizzi:

- Learning association
- Classification
- Prediction

In ogni caso, una cosa di cui non si può fare a meno è la raccolta di informazioni.

Scopo del progetto

Il progetto ha come obiettivo quello di confrontare l'accuratezza di 3 modelli predittivi differenti, utilizzando la stessa tecnica di valutazione walk forward, in funzione di tecniche diverse di:

- sampling
- cost sensitive
- ► feature selection

Le fonti per la raccolta dei dati saranno Git e Jira.

Variabili

Progettazione

Risultati - BookKeeper

Discussione - BookKeeper

Risultati - OpenJpa

Discussione - OpenJPA

2/25

Progetti

I dati da utilizzare per i modelli dovranno essere recuperati dai progetti BookKeeper e uno ottenuto in base alla prima lettera del cognome, che nel mio caso risulta in OpenJPA ($M \equiv 13 \rightarrow X = 13 \% 6 = 1$):

```
switch (X) {
  case 0: project == AVRO;
  case 1: project == OPENJPA;
  case 2: project == STORM;
  case 3: project == ZOOKEEPER;
  case 4: project == SYNCOPE;
  case 5: project == TAJO;
}
```

Tipo di bug

Poiché lo scopo del progetto è quello di fare previsioni su quali classi risultano essere *buggy* nel presente o nel futuro a partire dai dati del passato, è necessario recuperare le informazioni giuste da Jira:

```
Type == "defect" AND

(status == "Closed" OR status == "Resolved")

AND Resolution == "Fixed"
```

Dove queste risultino insufficienti per la classificazione, il progetto prevede l'utilizzo dell'algoritmo Proportion per completare il labeling delle classi.

Features di valutazione

Le metriche utilizzate nel progetto sono le seguenti:

Metrica	Descrizione
LOC	Linee di codice presenti
NR	Numero di revisioni
NFix	Numero di bugs risolti
NAuth	Numero di autori che hanno lavorato alla classe
LOC_added	Somma su tutte le revisioni delle righe di codice aggiunte
MAX_LOC_added	La massima quantità di linee di codice aggiunte in una singola revisione
Churn	Somma delle differenze tra le linee aggiunte e quelle rimosse
MAX_churn	Il massimo valore di Churn fra tutte le revisioni
Age	Età del file in settimane (dall'inizio del progetto)

Variabil

Progettazione

Risultati - BookKeeper

Discussione - BookKeeper

Risultati - OpenJpa

Discussione - OpenJPA

Creazione del dataset e funzionalità

Pro:

- Utilizzo di libreria JGit per analisi dei dati del version control system
- ▶ Rimozione linee di commento nel calcolo della metrica LOC
- Rimozione righe duplicate all'interno dei file .arff
- Rimozione dei commit di revert
- ▶ I progetti target non sono stati hardcoded: il codice è riutilizzabile per qualsiasi nuovo progetto
- ► Gestione dei file rinominati nel corso delle versioni
- Semplice interfaccia grafica elementare
- Possibilità di clonare un nuovo repository
- facilmente mantenibile grazie a una struttura modulare: è facile aggiungere o rimuovere classificatori e algoritmi

Contro:

 Creazione del dataset e elaborazione dei dati tramite API di Weka potrebbe richiedere molto tempo

Problemi

Il codice funziona perfettamente sull'ultima versione del progetto openJPA, ma non sull'ultima del progetto BookKeeper: viene sollevata un'eccezione in corrispendenza della combinazione delle seguenti tecniche, con training set composto da 1 o 2 versioni:

- Sampling: SMOTE
- ► Features selection: BEST FIRST
- Cost sensitive classifier: SENSITIVE LEARNING

I risultati presentati per il progetto BookKeeper non tratteranno questa combinazione.

Variabil

Progettazione

Risultati - BookKeeper

Discussione - BookKeeper

Risultati - OpenJpa

Discussione - OpenJPA

Proportion classification

Come potevamo aspettarci, la percentuale dei difetti identificati diminuisce al crescere delle versioni, fino ad arrivare a una percentuale del solo 11% nell'ultima versione:

Il numero di fix rimane a 0 da versione 14 in poi: questo spiega perché il numero di no aumenta drasticamente a release 17, dove vengono aggiunti anche molti files.

Massimi valori per i classificatori

L'obiettivo dell'analisi è valutare quali classificatori si comportano meglio in quali situazioni. Si ricerca per ogni metrica qual è il valore massimo assunto e quante volte questo si ripete.

Classificatore	Max Precision	Occorrenze Max Precision
RandomForest	1	5
NaiveBayes	1	27
lbk	1	7

Classificatore	Max Recall	Occorrenze Max Recall
RandomForest	1	93
NaiveBayes	1	166
lbk	1	36

Classificatore	Max AUC	Occorrenze Max AUC
RandomForest	0,978	1
NaiveBayes	0,985	1
lbk	0.958	3

Classificatore	Мах Карра	Occorrenze Max Kappa
RandomForest	0,747	1
NaiveBayes	0,632	1
lbk	0,783	5

Poiché analizzare tutte le combinazioni dei vari parametri sarebbe un lavoro lunghissimo, l'analisi si concentrerà fissando la variabile dataset; si analizzeranno i seguenti casi per il training set:

- ▶ 1 versione (step iniziale del walk forward)
- ➤ 24 versione (step finale del walk forward) quando possibile, alrimenti lo step che massimizza il training set

Variabil

Progettazione

Risultati - BookKeeper

Discussione - BookKeeper

Risultati - OpenJpa

Discussione - OpenJPA

Precision - minima dimensione training set

#TrainingRelease	%Defective in training	%Defective in testing	Classifier	Balancing	Feature Selection	Sensitivity	TP	FP	TN	FN	Precision	Recall	AUC	Карра
1	0,889	0,836	NaiveBayes	OVERSAMPLING	BEST_FIRST	NONE	34	0	11	22	1		0,871	0,337
1	0,889	0,836	RandomForest	UNDERSAMPLING	BEST_FIRST	NONE	34	0	11	22	1	0,607	0,842	0,337

I risultati sono interessanti perché anche applicando un bilanciamento di tipo *UNDERSAMPLING* si ottiene un'alta Precision.

#TrainingRelease	%Defective in training	%Defective in testing	Classifier	Balancing	Feature Selection	Sensitivity	TP	FP	TN	FN	Precision	Recall	AUC	Kappa
10	0,682	0,75	NaiveBayes	NONE	NONE	NONE	50	0	70	160	1	0,238	0,772	0,135
10	0,682	0,75	NaiveBayes	OVERSAMPLING	NONE	NONE	52	0	70	158	1	0,248	0,769	0,141
10	0,682	0,75	NaiveBayes	UNDERSAMPLING	NONE	NONE	50	0	70	160	1	0,238	0,77	0,135
10	0,682	0,75	NaiveBayes	SMOTE	NONE	NONE	48	0	70	162	1	0,229	0,771	0,129
10	0,682	0,75	NaiveBayes	OVERSAMPLING	NONE	SENSITIVE_LEARNING	45	0	70	165	1	0,214	0,763	0,12
10	0,815	0,88	NaiveBayes	OVERSAMPLING	BEST_FIRST	NONE	10	0	10	63	1	0,137	0,846	0,037
10	0,815	0,88	NaiveBayes	UNDERSAMPLING	BEST_FIRST	NONE	23	0	10	50	1	0,315	0,861	0,1
10	0,815	0,88	RandomForest	UNDERSAMPLING	BEST_FIRST	SENSITIVE_LEARNING	58	1	9	15	0,983	0,795	0,847	0,433
10	0,815	0,88	lbk	UNDERSAMPLING	BEST_FIRST	SENSITIVE_LEARNING	54	1	9	19	0,982	0,74	0,82	0,36

La release massima in cui si ha Precision pari a 1 è la decima e si ha solo per il calssificatore NaiveBayes. Tuttavia, a parità di dati, paragonando tutte le metriche di questo classificatore con quelle degli altri modelli, si nota che questi ultimi hanno una precision leggermente più bassa ma migliorano decisamente le altre metriche.

Recall - minima dimensione training set

#TrainingRelease	%Defective in training	%Defective in testing	Classifier	Balancing	Feature Selection	Sensitivity	TP	FP	TN	FN	Precision	Recall	AUC	Kappa
1	0,727	0,807	RandomForest	NONE	NONE	SENSITIVE_LEARNING	209	41	9	0	0,836	1	0,672	0,262
1	0,727	0,807	NaiveBayes	OVERSAMPLING	NONE	SENSITIVE_LEARNING	209	50	0	0	0,807	1	0,493	0
1	0,727	0,807	NaiveBayes	SMOTE	NONE	SENSITIVE_LEARNING	209	50	0	0	0,807	1	0,495	0
1	0,889	0,836	lbk	NONE	BEST_FIRST	NONE	56	11	0	0	0,836	1	0,586	0
1	0,889	0,836	RandomForest	NONE	BEST_FIRST	SENSITIVE_THRESHOLD	56	11	0	0	0,836	1	0,5	0
1	0,889	0,836	NaiveBayes	NONE	BEST_FIRST	SENSITIVE_THRESHOLD	56	11	0	0	0,836	1	0,5	0
1	0,889	0,836	lbk	NONE	BEST_FIRST	SENSITIVE_THRESHOLD	56	11	0	0	0,836	1	0,5	0
1	0,889	0,836	lbk	OVERSAMPLING	BEST_FIRST	SENSITIVE_THRESHOLD	56	11	0	0	0,836	1	0,5	0
1	0,889	0,836	RandomForest	UNDERSAMPLING	BEST_FIRST	SENSITIVE_THRESHOLD	56	11	0	0	0,836	1	0,5	0
1	0,889	0,836	NaiveBayes	UNDERSAMPLING	BEST_FIRST	SENSITIVE_THRESHOLD	56	11	0	0	0,836	1	0,5	0
1	0,889	0,836	lbk	UNDERSAMPLING	BEST_FIRST	SENSITIVE_THRESHOLD	56	11	0	0	0,836	1	0,5	0
1	0,889	0,836	RandomForest	SMOTE	BEST_FIRST	SENSITIVE_THRESHOLD	56	11	0	0	0,836	1	0,5	0
1	0,889	0,836	NaiveBayes	SMOTE	BEST_FIRST	SENSITIVE_THRESHOLD	56	11	0	0	0,836	1	0,5	0
1	0,889	0,836	RandomForest	NONE	BEST_FIRST	SENSITIVE_LEARNING	56	11	0	0	0,836	1	0,724	0
1	0,889	0,836	NaiveBayes	NONE	BEST_FIRST	SENSITIVE_LEARNING	56	11	0	0	0,836	1	0,866	0
1	0,889	0,836	lbk	NONE	BEST_FIRST	SENSITIVE_LEARNING	56	11	0	0	0,836	1	0,586	0
1	0,889	0,836	NaiveBayes	OVERSAMPLING	BEST_FIRST	SENSITIVE_LEARNING	56	11	0	0	0,836	1	0,473	0

Sebbene ci siano 17 casi in cui la recall è 1 con un training set minimale, l'unico caso degno di nota è il primo: gli altri, infatti, presentano tutti il valore di Kappa pari a 0.

Nel primo caso notiamo il *sensitive learning* come tecnica di sensitivity: questo fatto, insieme alla alta percentuale di difetti nel testing, giustifica un numero di *false negative* pari a 0. Inoltre, queste osservazioni giustificano anche un valore di precision così alto.

Recall - massima dimensione training set

#TrainingRelease	%Defective in training	%Defective in testing	Classifier	Balancing	Feature Selection	Sensitivity	TP	FP	TN	FN	Precision	Recall	AUC	Kappa
24	0,394	0,198	RandomForest	NONE	NONE	SENSITIVE_THRESHOLD	173	188	511	0	0,479	1	0,866	0,519
24	0,394	0,198	RandomForest	UNDERSAMPLING	NONE	SENSITIVE_THRESHOLD	173	250	449	0	0,409	1	0,821	0,416
24	0,394	0,198	RandomForest	SMOTE	NONE	SENSITIVE_THRESHOLD	173	192	507	0	0,474	1	0,863	0,512
24	0,394	0,198	NaiveBayes	SMOTE	NONE	SENSITIVE_THRESHOLD	173	699	0	0	0,198	1	0,5	0
24	0,394	0,198	RandomForest	NONE	NONE	SENSITIVE_LEARNING	173	185	514	0	0,483	1	0,973	0,524
24	0,545	0,324	RandomForest	NONE	BEST_FIRST	SENSITIVE_THRESHOLD	47	40	58	0	0,54	1	0,796	0,485
24	0,545	0,324	NaiveBayes	NONE	BEST_FIRST	SENSITIVE_THRESHOLD	47	98	0	0	0,324	1	0,5	0
24	0,545	0,324	NaiveBayes	UNDERSAMPLING	BEST_FIRST	SENSITIVE THRESHOLD	47	98	0	0	0,324	1	0,5	0
24	0,545	0,324	RandomForest	NONE	BEST_FIRST	SENSITIVE_LEARNING	47	47	51	0	0,5	1	0,88	0,413
24	0,545	0,324	NaiveBayes	NONE	BEST FIRST	SENSITIVE LEARNING	47	98	0	0	0,324	1	0,809	0

Nel caso di training set massimale, si può notare che una recall pari a 1 si ha solo se utilizzate tecniche di sensitivity.

AUC

#TrainingRelease	%Defective in training	%Defective in testing	Classifier	Balancing	Feature Selection	Sensitivity	TP	FP	TN	FN	Precision	Recall	AUC	Kappa
5	0,845	0,962	NaiveBayes	OVERSAMPLING	BEST_FIRST	SENSITIVE_LEARNING	100	4	0	0	0,962	1	0,985	0
24	0,394	0,198	RandomForest	NONE	NONE	NONE	133	29	670	40	0,821	0,769	0,978	0,745
24	0,394	0,198	lbk	NONE	NONE	NONE	166	60	639	7	0,735	0,96	0,958	0,783
24	0,394	0,198	lbk	SMOTE	NONE	NONE	166	60	639	7	0,735	0,96	0,958	0,783
24	0,394	0,198	lbk	NONE	NONE	SENSITIVE_LEARNING	166	60	639	7	0,735	0,96	0,958	0,783
24	0,545	0,324	RandomForest	NONE	BEST_FIRST	NONE	33	17	81	14	0,66	0,702	0,882	0,52
24	0,545	0,324	lbk	NONE	BEST_FIRST	NONE	39	26	72	8	0,6	0,83	0,808	0,513
24	0,545	0,324	lbk	SMOTE	BEST_FIRST	NONE	38	24	74	9	0,613	0,809	0,811	0,52
24	0,545	0,324	lbk	NONE	BEST_FIRST	SENSITIVE_LEARNING	39	26	72	8	0,6	0,83	0,806	0,513

- Naive Bayes: il valore massimo di AUC si ha quando il classificatore assegna sempre il valore Yes.
- ▶ **Ibk**: le tre configurazioni producono la stessa accuratezza, e in nessuna di queste è usata la features selection. È strano che non ci siano differenze nel caso di *SENSITIVE LEARNING* così come è strano che la tecnina di Best First porti a una diminuzione di circa il 10% su tutte.
- Random Forest: presenta una misura di AUC molto alta nonostante non sia applicata nessuna tecnica

Kappa

#TrainingRelease	%Defective in training	%Defective in testing	Classifier	Balancing	Feature Selection	Sensitivity	TP	FP	TN	FN	Precision	Recall	AUC	Карра
24	0,394	0,198	RandomForest	SMOTE	NONE	NONE	140	38	661	33	0,787	0,809	0,977	0,747
24	0,394	0,198	lbk	NONE	NONE	NONE	166	60	639	7	0,735	0,96	0,958	0,783
24	0,394	0,198	lbk	SMOTE	NONE	NONE	166	60	639	7	0,735	0,96	0,958	0,783
24	0,394	0,198	lbk	NONE	NONE	SENSITIVE_THRESHOLD	166	60	639	7	0,735	0,96	0,937	0,783
24	0,394	0,198	lbk	SMOTE	NONE	SENSITIVE_THRESHOLD	166	60	639	7	0,735	0,96	0,937	0,783
24	0,394	0,198	lbk	NONE	NONE	SENSITIVE LEARNING	166	60	639	7	0,735	0,96	0,958	0,783
3	0,802	0,929	NaiveBayes	OVERSAMPLING	BEST_FIRST	SENSITIVE_LEARNING	24	0	2	2	1	0,923	0,971	0,632

- Naive Bayes: il massimo valore di Kappa per questo classificatore è del 63%, e si verifica in presenza di un testing set molto semplice. In più, per ottenere questo valore è necessario applicare tattiche di ogni tipo
- Per gli altri classificatori il valore massimo è raggiunto in presenza della massima quantità dei dati nel training set con valori intorno al 75%.

Confronto generale classificatori - Feature selection

Confronto generale classificatori - Feature selection

Variabil

Progettazione

Risultati - BookKeeper

Discussione - BookKeeper

Risultati - OpenJpa

Discussione - OpenJPA

Proportion classification

Il numero di Yes è quasi sempre superiore a quelli di No.

Version	# Yes	# No	% Yes	% No
1	625	336	0,65	0,35
2	679	353	0,66	0,34
3	776	395	0,66	0,34
4	789	397	0,67	0,33
5	743	467	0,61	0,39
6	1546	392	0,8	0,2
7	804	415	0,66	0,34
8	1645	445	0,79	0,21
9	1617	426	0,79	0,21
10	1671	1415	0,54	0,46
11	1212	981	0,55	0,45
12	1713	1479	0,54	0,46
13	1706	1510	0,53	0,47
14	1663	1598	0,51	0,49
15	1657	1640	0,5	0,5
16	1559	1752	0,47	0,53
17	744	595	0,56	0,44
18	1620	1937	0,46	0,54
19	1593	1975	0,45	0,55
20	1487	2193	0,4	0,6

È interessante analizzare i picci e le cadute nel grafico precedenti; vengono riportate delle tabelle di supporto:

Version	# files
6	1938
7	1219
10	3086
11	2193
16	3311

Version	nfix tot
10	4409

Massimi valori per i classificatori

Classificatore	Max Precision	Occorrenze Max Precision
RandomForest	1	1
NaiveBayes	0,995	1
lbk	1	1

Classificatore	Max Recall	Occorrenze Max Recall
RandomForest	1	53
NaiveBayes	1	56
lbk	0,996	1

Classificatore	Max AUC	Occorrenze Max AUC
RandomForest	0,921	1
NaiveBayes	0,843	1
Ibk	0,906	1

Classificatore	Мах Карра	Occorrenze Max Kappa
RandomForest	0,576	1
NaiveBayes	0,473	1
lbk	0,543	1

Per la Recall, si analizzeranno i casi in cui la dimensione del training set è massima o minima.

Variabil

Progettazione

Risultati - BookKeeper

Discussione - BookKeeper

Risultati - OpenJpa

Discussione - OpenJPA

Precision

#TrainingRelease	%Defective in training	%Defective in testing	Classifier	Balancing	Feature Selection	Sensitivity	TP	FP	TN	FN	Precision		AUC	
1	0,66	0,707	lbk	UNDERSAMPLING	NONE	SENSITIVE_LEARNING	10	0	232	549	1			0,011
8	0,838	0,864	RandomForest	UNDERSAMPLING	BEST_FIRST	NONE	425	0	99	204	1	0,676	0,874	0,362
8	0,838	0,864	NaiveBayes	UNDERSAMPLING	BEST_FIRST	SENSITIVE_LEARNING	161	1	98	468	0,994	0,256	0,838	0,082

I risultati sono particolari: presentano una precision pari (o quasi) a 1, ma la recall è bassissima nonostante sia applicata la tecnica di sensitive learning. Per questo motivo si è analizzato l'andamento dei falsi negativi nel corso delle versioni, fissando il balancing e la feature selection.

Andamento falsi negativi

Balancing: UNDERSAMPLING
Feature Selection: BEST_FIRST
Classificatore: NaiveBayes

Balancing: UNDERSAMPLING
Feature Selection: BEST_FIRST
Classificatore: Ibk

Altre configurazioni possibili sul foglio excell...

Recall

#	#TrainingRelease	%Defective in training	%Defective in testing	Classifier	Balancing	Feature Selection	Sensitivity	TP	FP	TN	FN	Precision	Recall	AUC	Kappa
Г	2	0,682	0,787	RandomForest	NONE	NONE	SENSITIVE_THRESHOLD	554	150	0	0	0,787	1	0,5	0
Г	2	0,682	0,787	RandomForest	NONE	NONE	SENSITIVE_LEARNING	554	150	0	0	0,787	1	0,784	0
Г	2	0,682	0,787	NaiveBayes	SMOTE	NONE	SENSITIVE_LEARNING	552	150	0	2	0,786	0,996	0,62	-0,006
Г	2	0.686	0.787	RandomForest	NONE	BEST FIRST	SENSITIVE LEARNING	550	149	0	0	0.787	1	0.779	0

La recall massima raggiunta dai classificatori con poche release è funzione della semplicità del dataset: infatti tutti funzionano come un classificatore random che classifica tutte le istanze come positive. La precision risulta alta, ma coincide con la percentuale di istanze positive nel testing set.

#TrainingRelease	%Defective in training	9iDefective in testing	Classifier	Balancing	Feature Selection	Sensitivity	TP	FP	TN	FN	Precision	Recall	AUC	Kappa
19	0,719	0,695	RandomForest	NONE	NONE	SENSITIVE_THRESHOLD	748	326	2	0	0,696	1	0,503	0,008
19	0,719	0,695	RandomForest	SMOTE	NONE	SENSITIVE_THRESHOLD	748	321	7	0	0,7	1	0,511	0,029
19	0,743	0,695	NaiveBayes	NONE	BEST_FIRST	SENSITIVE_THRESHOLD	748	328	0	0	0,695	1	0,5	0
19	0,743	0,695	NaiveBayes	OVERSAMPLING	BEST_FIRST	SENSITIVE_THRESHOLD	748	328	0	0	0,695	1	0,5	0
19	0,743	0,695	NaiveBayes	UNDERSAMPLING	BEST_FIRST	SENSITIVE_THRESHOLD	748	328	0	0	0,695	1	0,5	0
19	0,743	0,695	RandomForest	SMOTE	BEST_FIRST	SENSITIVE THRESHOLD	748	318	10	0	0,702	1	0,515	0,042
19	0,743	0,695	NaiveBayes	SMOTE	BEST FIRST	SENSITIVE THRESHOLD	748	328	0	0	0,695	1	0,5	0
19	0,743	0,695	NaiveBayes	NONE	BEST FIRST	SENSITIVE LEARNING	748	328	0	0	0,695	1	0,775	0
19	0,743	0,695	NaiveBayes	SMOTE	BEST FIRST	SENSITIVE LEARNING	748	328	0	0	0,695	1	0,781	0
9	0,809	0,616	lbk	SMOTE	NONE	SENSITIVE_LEARNING	1465	912	4	6	0,616	0,996	0,538	0

Anche nel caso di training set massimale le cose non migliorano: recall massima, ma kappa pari a 0 sempre. È interessante come valori di recall così alta si verificano solo in presenza di tecniche di sensibility.

AUC

#TrainingRelease	%Defective in training	%Defective in testing	Classifier	Balancing	Feature Selection	Sensitivity	TP	FP	TN	FN	Precision	Recall		Kappa
8	0,802		RandomForest	NONE	NONE	NONE	580	44	55	49	0,929		0,921	
8	0,838	0,864	lbk	OVERSAMPLING	BEST_FIRST	NONE	518	3	96	111	0,994	0,824	0,906	0,543
8	0,838	0,864	NaiveBayes	OVERSAMPLING	BEST_FIRST	SENSITIVE_LEARNING	183	1	98	446	0,995	0,291	0,843	0,097

Il valore massimo di AUC si ha, per ogni classificatore, in corrispondenza di un training set composto da 8 versioni.

- ▶ Random Forest e lbk presentano delle ottime valutazioni anche per precision e recall, ma il valore di kappa non è molto alto
- NaiveBayes: presenta un valore kappa pari pressocché a 0, poco interessante

#TrainingRelease	%Defective in training	9iDefective in testing	Classifier	Balancing	Feature Selection	Sensitivity	TP	FP	TN	FN	Precision	Recall	AUC	Kappa
19	0,719	0,695	RandomForest	NONE	NONE	NONE	659	183	145	89	0,783	0,881	0,827	0,351
19	0,719	0,695	lbk	UNDERSAMPLING	NONE	NONE	559	117	211	189	0,827	0,747	0,759	0,368
19	0,719	0,695	NaiveBayes	NONE	NONE	NONE	462	39	289	286	0,922	0,618	0,786	0,412
19	0,719	0,695	NaiveBayes	NONE	NONE	SENSITIVE_LEARNING	746	327	1	2	0,695	0,997	0,786	0,001
19	0,719	0,695	NaiveBayes	OVERSAMPLING	NONE	SENSITIVE_LEARNING	334	24	304	414	0,933	0,447	0,786	0,28

Le stesse caratteristiche si verificano quando il training set è massimale.

Kappa

#TrainingRelease	%Defective in training	%Defective in testing	Classifier	Balancing	Feature Selection	Sensitivity	TP	FP	TN		Precision			Kappa
8	0,838	0,864	lbk	OVERSAMPLING	BEST_FIRST	NONE	518	3	96	111		0,824		
16	0,78	0,797	RandomForest	UNDERSAMPLING	BEST_FIRST	NONE	584	39	133	90	0,937	0,866	0,888	0,576
11	0,795	0,684	NaiveBayes	UNDERSAMPLING	BEST_FIRST	SENSITIVE_THRESHOLD	1029	133	520	387	0,886	0,727	0,762	0,473

Come si è visto già nella slide che riassume i *massimi valori dei classificatori*, il valore kappa massimo è comunque molto basso. Il valore massimo tra i tre classificatori è quello del Random Forest che, tra i tre casi, ha la massima dimensione del training set.

Confronto generale classificatori - Feature selection

Confronto generale classificatori - Feature selection

