Relacions d'ordre

1 Relacions d'ordre

Definició 1.1 (Relació antisimètrica). Sigui R una relació en A. R és antisimètrica si

$$\forall x, y \in A \quad xRy \land yRx \rightarrow x = y$$

Exemple 1.0.1. Sigui $A = \{0, 1, 2, 3\}$ i $R = \{(0, 0), (0, 1), (1, 2), (1, 3)\}$. R és antisimètrica ja que no hi ha cap cas en que no es compleixi la propietat.

Exemple 1.0.2. $S = \{(0,1), (1,0), (3,2), (3,3)\}$. S no és antisimètrica ja que 0R1 i 1R0 però $1 \neq 0$.

Observació 1.0.1. Sigui A un conjunt.

- $1. \varnothing$ és una relació antisimètrica.
- 2. Δ_A és antisimètrica.
- 3. Si R és antisimètrica si i només si $R \cap R^{-1} \subseteq \Delta_A$. R^{-1} també serà antisimètrica.

Definició 1.2 (Relació d'ordre). Sigui R una relació en A. R és una relació d'ordre reflexiva (parcial) si compleix les propietats

- \bullet R és reflexiva.
- R és transitiva.
- R és antisimètrica.

I el parell (A, R) és un conjunt ordenat.

Exemple 1.0.3. Exemples de relacions d'ordre reflexiu.

- 1. Ordre \subseteq a $\mathcal{P}(A)$.
- $2. \leq \mathrm{en} \, \mathbb{N}, \mathbb{Z}, \mathbb{Q}, \mathbb{R}.$
- 3. Ordre de divisibilitat n|m en \mathbb{N} i \mathbb{Z} .

Proposició 1.1. La relació inversa d'un ordre reflexiu \leq en A és també un ordre reflexiu \geq .

Demostració. Es comprova que compleix les propietats.

1. Reflexivitat:

$$\forall a \in A \quad a \le a \to a \ge a$$

.

2. Transitivitat: Suposem $a \ge b$ i $b \ge c$. Llavors $b \le a$ i $c \le b$. Com que \le és transitiva llavors $c \le a$, per tant $a \ge b$.

3. Antisimetria: Suposem $a \ge b$ i $b \ge a$. Per tant $b \le a$ i $a \le b$. Aleshores a = b.

Definició 1.3 (Ordre estricte). És una relació R en A tal que és transitiva i antisimètrica però NO és reflexiva.

Exemple 1.0.4. Exemples d'ordre estricte

- 1. L'ordre \subseteq en $\mathcal{P}(A)$.
- 2. L'ordre < en $\mathbb{N}, \mathbb{Z}, \mathbb{Q}, \mathbb{R}$.

Proposició 1.2. La relació inversa d'un ordre estricte també és un ordre estricte.

Observació 1.0.2. Si \leq és un ordre reflexiu en A, \leq dóna lloc a < en A definit per

$$x < y \leftrightarrow x \leq y \land x \neq y$$

2 Ordres totals

Definició 2.1 (Ordre total). (a) Un ordre reflexiu \leq en un conjunt A és total si $\forall a, b \in A$ es compleix $a \leq b$ o $b \leq a$.

(b) Un ordre estricte < és total si $\forall a, b \in A$ es compleix a < b, b < a o a = b. (Dos elements qualsevol del domini són comparables).

Proposició 2.1. Sigui \leq un ordre reflexiu en A i sigui < l'ordre estricte associat. Llavors

- $1. \le \text{és total si i només si} < \text{és total.}$
- 2. L'ordre invers \geq és total si i només si \leq és total.
- 3. L'ordre invers > és total si i només si < és total.

Exemple 2.0.1. Exemples d'ordre total.

- 1. Els ordres de $\mathbb{N}, \mathbb{Z}, \mathbb{Q}, \mathbb{R}$ són totals. (Els elements es poden col·locar en una recta).
- 2. Si A té almenys dos elements llavors \subseteq en $\mathcal{P}(A)$ no és total. (Els conjunts unitaris en $\mathcal{P}(A)$ no són comparables).
- 3. L'ordre de divisibilitat en \mathbb{N} i \mathbb{Z} no és total.