

Python calculation for heat pump SI8TU Parametric Heat Pump calculation

Dani Carbonell

dani. carbonell@solarenergy.ch

2019/03/12 at: 16:34:39 h

Table 1: Fitted coefficients for the heat pump.

Coefficient	Description	
	-	[kW]
PQ_1	1 st condenser polynomial coefficient	9.7100e+00
PQ_2	2^{st} condenser polynomial coefficient	7.1010e+01
PQ_3	3^{st} condenser polynomial coefficient	-1.4100e+01
PQ_4	4^{st} condenser polynomial coefficient	-7.1180e + 01
PQ_5	5^{st} condenser polynomial coefficient	1.7675e + 02
PQ_6	6^{st} condenser polynomial coefficient	1.4450e + 01
$PCOP_1$	1 st COP polynomial coefficient	9.6700e+00
$PCOP_2$	2^{st} COP polynomial coefficient	7.4780e + 01
$PCOP_3$	3 st COP polynomial coefficient	-4.5480e + 01
$PCOP_4$	4 st COP polynomial coefficient	-2.2890e+02
$PCOP_5$	5^{st} COP polynomial coefficient	1.3432e+02
$PCOP_6$	6 st COP polynomial coefficient	6.9780e + 01
\dot{m}_{cond}	$1400.00 \ [kg/h]$	
\dot{m}_{evap}	$1930.00 \ [kg/h]$	
COP_{nom} (B0W35)	4.97	
$Q_{c,nom}$ (B0W35)	$7.89~\mathrm{kW}$	
COP_{nom} (B2W35)	5.31	
$Q_{c,nom}$ (B2W35)	$8.32~\mathrm{kW}$	
COP_{nom} (B10W35)	6.81	
$Q_{c,nom}$ (B10W35)	$10.22~\mathrm{kW}$	

Table 2: Predicting results of the heat pump.

$T_{evap,in}$	$T_{evap,out}$	$T_{cond,in}$	$T_{cond,out}$	COP	Q_{cond}	Q_{evap}	W_{comp}	\dot{m}_{cond}	\dot{m}_{evap}	ΔT_{evap}	ΔT_{cond}
^{o}C	°C	°C	°C	[-]	[kW]	[kW]	[kW]	kg/h	kg/h	K	K
-7.00	-9.50	25.92	30.00	4.32	6.65	5.11	1.54	1400	1930	2.5	4.1
-7.00	-9.26	34.82	38.75	3.62	6.40	4.63	1.77	1400	1930	2.3	3.9
-7.00	-9.03	43.71	47.50	3.06	6.18	4.16	2.02	1400	1930	2.0	3.8
-7.00	-8.82	52.58	56.25	2.65	5.98	3.72	2.26	1400	1930	1.8	3.7
-7.00	-8.64	61.44	65.00	2.37	5.80	3.35	2.45	1400	1930	1.6	3.6
-4.00	-6.80	25.56	30.00	4.80	7.23	5.73	1.51	1400	1930	2.8	4.4
-4.00	-6.56	34.48	38.75	4.03	6.96	5.23	1.73	1400	1930	2.6	4.3
-4.00	-6.31	43.38	47.50	3.39	6.71	4.73	1.98	1400	1930	2.3	4.1
-4.00	-6.08	52.27	56.25	2.89	6.49	4.25	2.24	1400	1930	2.1	4.0
-4.00	-5.86	61.14	65.00	2.54	6.30	3.81	2.48	1400	1930	1.9	3.9
-1.00	-4.12	25.18	30.00	5.32	7.85	6.37	1.48	1400	1930	3.1	4.8
-1.00	-3.86	34.11	38.75	4.46	7.55	5.86	1.69	1400	1930	2.9	4.6
-1.00	-3.61 -3.36	43.03 51.93	47.50	3.75	7.28	5.34 4.82	1.94 2.22	1400	1930	$\frac{2.6}{2.4}$	4.5
-1.00			56.25	3.17	7.04			1400	1930		4.3 4.2
-1.00 2.00	-3.12 -1.45	60.81 24.78	65.00 30.00	$2.74 \\ 5.86$	$6.83 \\ 8.51$	4.33 7.06	$\frac{2.49}{1.45}$	$1400 \\ 1400$	1930 1930	2.1 3.4	5.2
2.00	-1.49	33.73	38.75	4.93	8.19	6.53	1.45	1400	1930	3.4	5.0
2.00	-0.93	42.66	47.50	4.93	7.89	5.99	1.00	1400	1930	2.9	4.8
2.00	-0.93	51.57	56.25	3.49	7.63	5.44	2.19	1400	1930	2.7	4.7
2.00	-0.40	60.46	65.00	2.97	7.40	4.91	2.19	1400	1930	2.4	4.5
5.00	1.20	24.35	30.00	6.44	9.20	7.77	1.43	1400	1930	3.8	5.6
5.00	1.47	33.32	38.75	5.43	8.86	7.23	1.63	1400	1930	3.5	5.4
5.00	1.74	42.26	47.50	4.56	8.54	6.67	1.87	1400	1930	3.3	5.2
5.00	2.02	51.18	56.25	3.83	8.26	6.10	2.16	1400	1930	3.0	5.1
5.00	2.30	60.09	65.00	3.24	8.00	5.53	2.47	1400	1930	2.7	4.9
8.00	3.83	23.91	30.00	7.06	9.93	8.52	1.41	1400	1930	4.2	6.1
8.00	4.11	32.88	38.75	5.96	9.56	7.96	1.60	1400	1930	3.9	5.9
8.00	4.39	41.84	47.50	5.01	9.23	7.39	1.84	1400	1930	3.6	5.7
8.00	4.68	50.77	56.25	4.21	8.92	6.80	2.12	1400	1930	3.3	5.5
8.00	4.97	59.69	65.00	3.54	8.64	6.20	2.45	1400	1930	3.0	5.3
11.00	6.45	23.44	30.00	7.70	10.70	9.31	1.39	1400	1930	4.5	6.6
11.00	6.73	32.42	38.75	6.53	10.31	8.73	1.58	1400	1930	4.3	6.3
11.00	7.02	41.39	47.50	5.50	9.95	8.14	1.81	1400	1930	4.0	6.1
11.00	7.32	50.34	56.25	4.61	9.62	7.54	2.09	1400	1930	3.7	5.9
11.00	7.62	59.28	65.00	3.87	9.32	6.91	2.41	1400	1930	3.4	5.7
14.00	9.05	22.94	30.00	8.38	11.50	10.13	1.37	1400	1930	4.9	7.1
14.00	9.34	31.94	38.75	7.13	11.09	9.53	1.56	1400	1930	4.7	6.8
14.00	9.63	40.93	47.50	6.02	10.71	8.93	1.78	1400	1930	4.4	6.6
14.00	9.94	49.89	56.25	5.05	10.36	8.31	2.05	1400	1930	4.1	6.4
14.00	10.25	58.84	65.00	4.23	10.04	7.67	2.38	1400	1930	3.7	6.2
17.00	11.63	22.43	30.00	9.09	12.34	10.98	1.36	1400	1930	5.4	7.6
17.00	11.93	31.44	38.75	7.76	11.91	10.37	1.54	1400	1930	5.1	7.3
17.00	12.23	40.44	47.50	6.57	11.51	9.76	1.75	1400	1930	4.8	7.1
17.00	12.54	49.42	56.25	5.53	11.14	9.12	2.02	1400	1930	4.5	6.8
17.00	12.87	58.38	65.00	4.62	10.79	8.46	2.34	1400	1930	4.1	6.6
20.00	14.20	21.89	30.00	9.83	13.22	11.87	1.34	1400	1930	5.8	8.1
20.00	14.50	30.92	38.75	8.42	12.76	11.25	1.52	1400	1930	5.5	7.8
20.00	14.81	39.93	47.50	7.16	12.34	10.62	1.72	1400	1930	5.2	7.6
20.00	15.13	48.92	56.25	6.03	11.95	9.97	1.98	1400	1930	4.9	7.3
20.00	15.46	57.89	65.00	5.05	11.58	9.29	2.29	1400	1930	4.5	7.1

Figure 1: COP Results for the heat pump at the selected points

Figure 2: Q_c Results for the heat pump at the selected points