BLM312 Mikroişlemciler

Addressing Mode Byte

- 8086 çok geniş adresleme mod seçenekleri sunar.
- **Soru:** Bu adresleme modları amaç kodda (object code) nasıl gerçekleştirilmektedir?
- 8086, çoğu veri belleği adresleme modlarını komutun amaç kodundaki bir byte ile tanımlar
 - Adresleme mode baytı (Addressing mode byte) olarak bilinir
- Adresleme mode bayti
 - İlgili bir veya iki displacement byte'ına sahip olabilir.
 - <u>Her zaman komutun amaç kodunun 2. baytıdır</u> (komutun başlangıç amaç kodununa ön ek getirilmediği sürece).

Adresleme mod baytı şu şekilde gösterilebilir:

xx is two bits that form the mod field. The mod field is used to distinguish between memory and register addressing, and in the case of memory addressing, specifies how many displacement bytes follow the addressing mode byte.

yyy is three bits that form the reg field. The reg field defines which register will be used in the operation. In addition, these three bits may be used to specify instruction.

zzz is three bits that form the r/m field. The r/m field is used in conjunction with the mod field to specify the addressing mode.

yyy, reg alanını oluşturan 3 bittir. reg bitleri işlemde hangi registerin kullanılacağını tanımlar. İlaveten bu 3 bit komut tanımlamak için de kullanılabilmektedir.

xx, mod alanını oluşturan 2 bittir. Mod bitleri

için kullanılır. Bellek adresleme durumunda

baytının takip edeceğini belirtir.

adresleme mod baytını kaç tane displacement

bellek ve register adresleme modlarını ayırt etmek

zzz, r/m alanını oluşturan 3 bittir. r/m bitleri mod bitleriyle birlikte adresleme modunu belirtmek için kullanılır

mod =

- 00 <u>Memory addressing mode</u>. r/m «exact addressing» seçeneğini belirtir. Displacement baytı yoktur.
- Memory addressing mode. r/m adresleme seçeneğini belirtir. Bir diplacement byte'ı vardır.

 Displacement byte +127 ile -128 arasında işaretli sayı (signed number) olarak görülür. Bu sayı bellek adres hesaplamasında kullanıldığında işaretli bir şekilde 16 bite genişletilir. Adresleme mod baytı aşağıdaki gibi resmedilebilir.

burada mod=01 ve disp ise 8-bitlik işaretli displacement baytıdır.

Memory addressing mode. r/m adresleme seçeneğini belirtir. İki diplacement byte'ı vardır.

Displacement baytlarının ilki, displcament'ın alt 8-bitidir. İkinci displacement baytı, diplcament'ın üst 8-bitidir. Bu sayı bellek adres hesaplamasında kullanıldığında, işaretsiz (unsigned) 16-bit sayı olarak davranılır. Bu durumda adresleme mod baytları aşağıdaki gibi resmedilebilir.

burada mod=10 ve «disp low», displacement'ın alt 8 biti, «disp high» ise üst 8 bitidir.

mod =

11 <u>Register addressing mode</u>. r/m registeri belirtir. **w** biti ile birlikte kullanılarak 8-bitlik veya 16-bitlik bir register seçme durumunu belirler.

reg reg, işlemde kullanılacak registerin seçiminde, bir başka bit ile birlikte kullanılır, w biti. Komut opcode'unun bir parçası olan bu bit gerçekleştirilen işlemin 8-bitlik mi yoksa 16-bitlik mi olacağını seçer.

reg	w = 0	w = 1
000	AL	AX
001	CL	CX
010	DL	DX
011	BL	BX
100	AH	SP
101	CH	BP
110	DH	SI
111	BH	DI

r/m mod ile birlikte adresleme modunu aşağıdaki gibi belirler.

r/m	mod - 00	mod - 01	mod - 10	mod	- 11
			inod a ro	w = 0	w = 1
000	BX + SI	BX + SI + DISP	BX + SI + DISP	AL	AX
001	BX + DI	BX + DI + DISP	BX + DI + DISP	CL	CX
010	BP + SI	BP + SI + DISP	BP + SI + DISP	DL	DX
011	BP + DI	BP + DI + DISP	BP + DI + DISP	BL	BX
100	SI	SI + DISP	SI + DISP	AH	SP
101	DI	DI + DISP	DI + DISP	СН	BP
110	Direct	BP + DISP	BP + DISP	DH	SI
	Address				77.1
111	BX	BX + DISP	BX + DISP	ВН	DI

mod 00 ve r/m 110 ise, ofset adresi adresleme mod baytını takip eden iki bayttan doğrudan alınır. Bu durum aşağıda tasvir edilmiştir.

mod reg r m addr-low addr-high

MEMORY ADDRESSING TABLE

r/m =	mod = 00	mode = 01	mod = 10
000	Base Relative Indexed BX + SI	Base Relative Indexed BX + SI + DISP	Base Relative Direct Indexed BX + SI + DISP
001	Base Relative Indexed BX + DI	Base Relative Direct Indexed BX + DI + DISP	Base Relative Direct Indexed BX + DI + DISP
010	Base Relative Indexed	Base Relative Direct	Base Relative Direct
	Stack	Indexed Stack	Indexed Stack
	BP + SI	BP + SI + DISP	BP + SI + DISP
011	Base Relative Indexed	Base Relative Direct	Base Relative Direct
	Stack	Indexed Stack	Indexed Stack
	BP + DI	BP + DI + DISP	BP + DI + DISP
100	Implied	Direct, Indexed	Direct, Indexed
	SI	SI + DISP	SI + DISP
101	Implied	Direct, Indexed	Direct, Indexed
	DI	DI + DISP	DI + DISP
110	Direct Direct Address	Base Relative Direct Stack BP + DISP	Base Relative Direct Stack BP + DISP
111	Base Relative	Base Relative Direct	Base Relative Direct
	BX	BX + DISP	BX + DISP

Bellek adresleme modları ve bellek adresleme byte bilgisi yandaki tabloda birleştirilmiştir.

ADC mem/reg, mem/reg,

Add Data With Carry From: Register to Register

- Register to Memory
- Memory to Register

Add the contents of the register or memory location specified by mem/reg2 and the Carry status to the contents of the register or memory location specified by mem/ reg₁. An 8- or 16-bit operation may be specified. Either mem/reg₁ or mem/reg₂ may be a memory operand, but one of the operands must be a register operand.

The encoding for this instruction is:

- mem/reg₂ ile belirtilen register veya bellek hücresi içeriğini ve Carry durumunu, mem/reg1 ile belirtilen register veya bellek hücresinin içeriğine ekler.
- 8-bitlik veya 16-bitlik işlem belirtilebilir.
- mem/reg1 ya da mem/reg2 bellek olabilir, fakat bu operandlardan biri register operand olmalıdır.

Adresleme mod baytı daha önce açıklanmıştır.

w=0 ise 8-bitlik işlem w=1 ise 16-bitlik işlem

d, yön bayrağıdır (direction flag).

- Eğer d=0 yapılırsa
 - \rightarrow mod ve r/m ile tanımlanan operand \rightarrow mem/reg1
 - reg ile tanımlanan operand → mem/reg2
- Eğer d=1 yapılırsa
 - \rightarrow mod ve r/m ile tanımlanan operand \rightarrow mem/reg2
 - reg ile tanımlanan operand → mem/reg1

ADD mem/reg,, mem/reg,

Add: 1. Register to Register

- Register to Memory
- Memory to Register

Add the contents of the register or memory location specified by mem/reg, to the contents of the register or memory location specified by mem/reg. An 8- or 16-bit operation may be specified. Either mem/reg, or mem/reg, may be a memory operand, but one of the operands must be a register operand.

The encoding for this instruction is:

- mem/reg² ile belirtilen register veya bellek hücresi içeriğini, mem/reg¹ ile belirtilen register veya bellek hücresinin içeriğine ekler.
- 8-bitlik veya 16-bitlik işlem belirtilebilir.
- mem/reg1 ya da mem/reg2 bellek olabilir, fakat bu operandlardan biri <u>register</u> operand olmalıdır.

Adresleme mod baytı daha önce açıklanmıştır.

w=0 ise 8-bitlik işlem w=1 ise 16-bitlik işlem

d, yön bayrağıdır (direction flag).

- Eğer d=0 yapılırsa
 - mod ve r/m ile tanımlanan operand → mem/reg1
 - reg ile tanımlanan operand → mem/reg2
- Eğer d=1 yapılırsa

 - ➤ reg ile tanımlanan operand → mem/reg1

SHL mem/reg,count SAL mem/reg,count

Shift Register or Memory Location Left

Shift the contents of the specified register or memory location left by the specified number of bits. The number of bits to shift, represented by the variable count, is either one or the number contained in the CL register. This is a logical left shift.

The encoding for this instruction is:

- Belirtilen register veya bellek hücresinin içeriğini belirtilen sayıda sola kaydırır.
- Sola kaydırılacak bit sayısı, count değişkeni ile temsil edilir. Bu ya 1'dir ya da CL registerindeki sayıdır.
- Mantıksal sola kaydırma işlemi (logical left shift)

Adresleme mod baytı daha önce açıklanmıştır.

w=0 ise 8-bitlik işlem w=1 ise 16-bitlik işlem

- c=0
 - Sola bir bit kaydırır
- c=1
 - CL registeri ile belirtilen bit sayısı kadar sola kaydırılır.

SHR mem/reg,count

Shift Register or Memory Location Right

Shift the contents of the specified register or memory location right by the specified number of bits. The number of bits to shift, represented by the variable count, is either one or the number contained in the CL register. The bit shifted into the high-order bit is a zero. This is a logical right shift.

The encoding for this instruction is:

- Belirtilen register veya bellek hücresinin içeriğini belirtilen sayıda sağa kaydırır.
- Sola kaydırılacak bit sayısı, count değişkeni ile temsil edilir. Bu ya 1'dir ya da CL registerindeki sayıdır.
- Mantıksal sola kaydırma işlemi (logical left shift)

Adresleme mod baytı daha önce açıklanmıştır.

w=0 ise 8-bitlik işlem w=1 ise 16-bitlik işlem

- c=0
 - > Sağa bir bit kaydırır
- c=1
 - CL registeri ile belirtilen bit sayısı kadar sağa kaydırılır.

ADC AX,BX	;	Opcode (binary) A	add. ModeByte (<i>binary</i>) ?	Machine Code(Hexadecimal) ?
ADC [BX],AX	;	?	?	?
SHR AX,1	;	?	?	?
SHR AX,CL	;	?	?	?
SHR BYTE PTR[BX],1	;	?	?	?
SHR WORD PTR[BX],1	;	?	?	?

Opcode (binary) Add. ModeByte (binary)

Machine Code(*Hexadecimal*)

0001 00**11**

11 000 011

13C3 veya 11D8(d=0)

ADC [BX],AX

ADC AX,BX

0001 00**01**

00 000 111

1107

reg	w = 0	w = 1
000	AL	AX
001	CL	CX
010	DL	DX
011	BL	BX
100	AH	SP
101	CH	BP
110	DH	SI
111	BH	DI

r/m	m mod - 00 mod - 0	mod - 01	mod - 10	mod - 11	
1,111	mod 01	mod - 10	w = 0	w = 1	
000	BX + SI	BX + SI + DISP	BX + SI + DISP	AL	AX
001	BX + DI	BX + DI + DISP	BX + DI + DISP	CL	CX
010	BP + SI	BP + SI + DISP	BP + SI + DISP	DL	DX
011	BP + DI	BP + DI + DISP	BP + DI + DISP	BL	BX
100	SI	SI + DISP	SI + DISP	AH	SP
101	DI	DI + DISP	DI + DISP	СН	BP
110	Direct	BP + DISP	BP + DISP	DH	SI
	Address				77.
111	BX	BX + DISP	BX + DISP	ВН	DI

ADC mem/reg, mem/reg,

Add Data With Carry From: • Register to Register

Register to Memory

Memory to Register

Add the contents of the register or memory location specified by mem/reg2 and the Carry status to the contents of the register or memory location specified by mem/ reg₁. An 8- or 16-bit operation may be specified. Either mem/reg₁ or mem/reg₂ may be a memory operand, but one of the operands must be a register operand.

The encoding for this instruction is:

SHR AX,1;

SHR AX,CL ;

SHR [BX],1

SHR WORD PTR[BX],1

r/m	mod - 00	mod - 01	mod - 10	mod	- 11
17111	mod - o i	11100 - 10	w = 0	w = 1	
000	BX + SI	BX + SI + DISP	BX + SI + DISP	AL	AX
001	BX + DI	BX + DI + DISP	BX + DI + DISP	CL	CX
010	BP + SI	BP + SI + DISP	BP + SI + DISP	DL	DX
011	BP + DI	BP + DI + DISP	BP + DI + DISP	BL	BX
100	SI	SI + DISP	SI + DISP	АН	SP
101	DI	DI + DISP	DI + DISP	СН	BP
110	Direct	BP + DISP	BP + DISP	DH	SI
	Address				
111	BX	BX + DISP	BX + DISP	ВН	DI

reg	w = 0	w = 1
000	AL	AX
001	CL	CX
010	DL	DX
011	BL	BX
100	AH	SP
101	CH	BP
110	DH	SI
111	BH	DI

Opcode (binary)	<u> Add. ModeByte (<i>binary</i>)</u>	Machine Code(Hexadecima
1101 00 <u>01</u>	11 101 000	D1E8
1101 00 <u>11</u>	11 101 000	D3E8
1101 00 <u>00</u>	00 101 111	D02F
1101 00 01	00 101 111	D12F

SHR mem/reg,count Shift Register or Memory Location Right

Shift the contents of the specified register or memory location right by the specified number of bits. The number of bits to shift, represented by the variable count, is either one or the number contained in the CL register. The bit shifted into the high-order bit is a zero. This is a logical right shift.

The encoding for this instruction is:

Machine Code(Hexadecimal)	Opcode (binary)	Add. ModeByte (binary)	Assembly Language Instruction
03EAh	?	?	?
0001h	?	?	?
D1E0h	→ ?	?	?
D32Ch	→ ?	?	?

Machine Code(*Hexadecimal*)

Opcode (binary) Add. ModeByte (binary)

Assembly Language Instruction

03EAh 0000 0011 11 101 010 0001h 0000 0000 00 000 001 D1E0h 1101 0001 11 100 000

D32Ch 1101 0011 00 101 100

mem/reg,, mem/reg. Add: 1. Register to Register 2. Register to Memory 3. Memory to Register Add the contents of the register or memory location specified by mem/

contents of the register or memory location specified by mem/reg. An 8operation may be specified. Either mem/reg, or mem/reg, may be a memory but one of the operands must be a register operand.

The encoding for this instruction is:

mem/reg,count

Shift Register or Memory Location Right

Shift the contents of the specified register or memory location specified number of bits. The number of bits to shift, represented by the va is either one or the number contained in the CL register. The bit shifted is order bit is a zero. This is a logical right shift

The encoding for this instruction is:

SHL	mem/reg,co		
Shift Reg	jister or Memory	Location Left	
one or th	of bits. The numbe	ed in the CL r	gister or memory location left by ft, represented by the variable co- egister. This is a logical left shift :
	SHL	mem reg.count	
	110100cw	mod 100 r m	
	+ +		
			- Addressing mode byte(s) as described earlier in this chapter w = 0 8-bit operand

c = 0 Shift left one bit

Shift left the number of bit specified by the CL register

reg	w = 0	w = 1
000	AL	AX
001	CL	CX
010	DL	DX
011	BL	BX
100	AH	SP
101	CH	BP
110	DH	SI
111	BH	DI

r/m	mod - 00	mod - 01	mod - 10	mod - 11	
				w = 0	W =
000	BX + SI	BX + SI + DISP	BX + SI + DISP	AL	AX
001	BX + DI	BX + DI + DISP	BX + DI + DISP	CL	CX
010	BP + SI	BP + SI + DISP	BP + SI + DISP	DL	DX
011	BP + DI	BP + DI + DISP	BP + DI + DISP	BL	BX
100	SI	SI + DISP	SI + DISP	AH	SP
101	DI	DI + DISP	DI + DISP	CH	BP
110	Direct	BP + DISP	BP + DISP	DH	SI
	Address		- 5,0	D/11	81.
111	BX	BX + DISP	BX + DISP	ВН	DI