Algebra homologiczna, Lista 3

- 1. Uzasadnij, że w kategorii zbiorów istnieją wszystkie granice i kogranice.
- 2. Załóżmy, że w kategorii C istnieją:
 - (i) obiekt końcowy,
 - (ii) wszystkie ekwalizatory par morfizmów,
 - (iii) produkty dowolnych par obiektów.

Udowodnij, że wtedy w kategorii C istnieją wszystkie skończone granice (tj. granice funktorów $F: I \to C$ określonych na kategoriach I w których jest skończenie wiele obiektów i skończenie wiele morfizmów).

(Wsk. Najpierw rozwiąż poprzednie zadanie.)

- 3. Udowodnij, że w \widehat{C} istnieją wszystkie granice i kogranice (C mała kategoria).
- 4. Udowodnij następujący wariant lematu Yonedy: dla dowolnego $A \in Ob \mathbb{C}$ i dowolnego $X \in Ob \widehat{\mathbb{C}}$ zachodzi naturalny izomorfizm zbiorów $\operatorname{Hom}(h_A, X) \simeq X(A)$.
- 5. Ustalmy małą kategorię I i jakąś kategorię C. Funktor diagonalny $\Delta: C \to Funct(I, C)$ określamy tak:
 - (i) obiektowi A kategorii C przypisujemy funktor stały: $\Delta A(j) = A$ dla $j \in Ob I$, $\Delta A(\phi) = id_A$ dla morfizmów ϕ kategorii I;
 - (ii) morfizmowi $\varphi: A \to B$ kategorii C przypisujemy naturalne przekształcenie funktorów $\Delta \varphi: \Delta A \to \Delta B$ dane przez $\Delta \varphi(j) = \varphi: \Delta A(j) = A \to B = \Delta B(j)$ dla $j \in Ob \, \mathbb{I}$.

Niech $F: I \to C$ będzie funktorem. Udowodnij, że:

- (a) elementy $\text{Hom}(\Delta Y, F)$ odpowiadają stożkom o wierzchołku Y nad funktorem F (czyli rodzinom zgodnych odwzorowań które pojawiają się w definicji granicy F);
- (b) funktor $\mathbb{C}^{op} \to \mathbb{S}$ et zadany przez $Y \mapsto \operatorname{Hom}(\Delta Y, F)$ jest reprezentowalny wtedy i tylko wtedy gdy istnieje $\lim F$ a obiekt go reprezentujący jest właśnie tą granicą.
- 6. Opisz produkt i koprodukt pary obiektów w następujących kategoriach: zbiory; grupy; przestrzenie topologiczne; przestrzenie topologiczne z wyróżnionym punktem; pierścienie przemienne z 1; moduły nad ustalonym pierścieniem; zbiór częściowo uporządkowany.
- 7. Czy w kategorii ciał (ciał ustalonej charakterystyki) istnieją produkty/koprodukty? Morfizm $i: A \to B$ nazywamy monomorfizmem, jeśli dla każdej pary $f, g: C \to A$ z równości $i \circ f = i \circ g$ wynika równość f = g.
 - 8. Uzasadnij, że ekwalizator jest monomorfizmem. Zdefiniuj epimorfizm i uzasadnij, że koekwalizator jest epimorfizmem.
 - 9. Podaj przykład kategorii i morfizmu, który jest monomorfizmem i epimorfizmem, ale nie jest izomorfizmem.
- 10.* Niech C będzie małą kategorią. Udowodnij, że odwzorowanie Yonedy $h: \mathbb{C} \to \widehat{\mathbb{C}}$ jest ciągłe i ma kogęsty obraz.