SPARK SQL

Shijie Zhang

OUTLINE

- > Background
- ➤ Spark SQL overview
- > Spark components
 - ➤ Data Source API
 - ➤ DataFrame API
 - Catalyst optimizer
- SparkSQL future
- ➤ Conclusion
- > References

WHY BIG DATA WITH SQL

- ➤ SQL is compatible with tooling
 - ➤ e.g. Connect to existing BI tools via JDBC/ODBC
- ➤ Large pool of engineers proficient in SQL
- ➤ Compared with MapReduce, SQL is more expressive/succinct

66

Spark SQL is more than SQL

-not so top secret

CHALLENGES

> Spark needs to perform ETL on various data source formats

- ➤ Solution: Data source APIs
- ➤ Implement SQL for Spark
 - ➤ In an extensible way
 - Solution: DataFrame API
 - ➤ In an efficient way
 - ➤ Solution: Catalyst optimizer

SPARK SQL OVERALL ARCHITECTURE

SPARK SQL WORKFLOW

➤ Read and write with a variety of formats

Built-In

JDBC

{ JSON }

External

and more...

Unified interface to reading/writing data in a variety of formats

```
df = sqlContext.read \
    .format("json") \
    .option("samplingRatio", "0.1") \
    .load("/home/michael/data.json")

df.write \
    .format("parquet") \
    .mode("append") \
    .partitionBy("year") \
    .saveAsTable("fasterData")
```

➤ Unified interface to reading/writing data in a variety of formats

```
df = sqlContext.read \
    .format("json") \
    .option("samplingRatio", "0.1") \
    .load("/home/michael/data.json")

df.write \
    .format("parquet") \
    .mode("append") \
    .partitionBy("year") \
    .saveAsTable("fasterData")
```

read and write functions create new builders for doing I/O

Unified interface to reading/writing data in a variety of formats

```
df = sqlContext.read \
    .format("json") \
    .option("samplingRatio", "0.1") \
    .load("/home/michael/data.json")

df.write \
    .format("parquet") \
    .mode("append") \
    .partitionBy("year") \
    .saveAsTable("fasterData")
```

Builder methods are used to specify:

- Format
- Partitioning
- Handling of existing data
- and more

Unified interface to reading/writing data in a variety of formats

```
df = sqlContext.read \
    .format("json") \
    .option("samplingRatio", "0.1") \
    .load("/home/michael/data.json")

df.write \
    .format("parquet") \
    .mode("append") \
    .partitionBy("year") \
    .saveAsTable("fasterData")
```

load(...), save(...) or
 saveAsTable(...)
 functions create
 new builders for
 doing I/O

SQL ON HADOOP

➤ Hive and Pig pipeline

- > Problems
 - ➤ Quite similar but implements its own optimizer/executor
 - ➤ No common data structure to use both Hive/Pig/Other DSL

- ➤ DataFrame as a front end
- ➤ Multiple DSL share same optimizer and executor
- Plug your own DSL too

MAJOR MILESTONE IN SPARK SQL

SparkSQL becomes Spark core distribution

MAJOR MILESTONE IN SPARK SQL

SparkSQL becomes Spark core distribution

- ➤ Idea borrowed from Python Panda
 - > single node tabular data with API for (math, stats, algebra...)
- ➤ Def:
 - ➤ RDD + Schema
 - ➤ RDDs with additional relational operators such as
 - selecting required columns
 - > joining different data sources
 - aggregation
 - filtering

➤ Writing less code

Using RDDs

```
data = sc.textFile(...).split("\t")
data.map(lambda x: (x[0], [int(x[1]), 1])) \
    .reduceByKey(lambda x, y: [x[0] + y[0], x[1] + y[1]]) \
    .map(lambda x: [x[0], x[1][0] / x[1][1]]) \
    .collect()
```

Using SQL

```
SELECT name, avg(age)
FROM people
GROUP BY name
```

Using DataFrames

```
sqlCtx.table("people") \
    .groupBy("name") \
    .agg("name", avg("age")) \
    .collect()
```

> Faster implementations

Time to Aggregate 10 million int pairs (secs)

- ➤ Goal: convert logical plan to physical plans
- > Process:
 - ➤ Logical plan is a tree representing data and schema
 - ➤ The tree is manipulated and optimized by catalyst rules

➤ An example query

```
SELECT name
FROM (
    SELECT id, name
    FROM People) p
WHERE p.id = 1
```


Native query planning

```
SELECT name
FROM (
    SELECT id, name
    FROM People) p
WHERE p.id = 1
```


- ➤ Optimization Rules example
 - Find filters on top of projections.
 - Check that the filter can be evaluated without the result of the project.
 - 3. If so, switch the operators.

- ➤ Optimization Rules continued
 - ➤ Allow defining customized rules

- Optimizing rules
 - ➤ Eliminate subqueries
 - Constant folding
 - Simplify filters
 - ➤ PushPredicate through filter
 - ➤ Project collapsing

- ➤ Tungsten Optimization for the next few years
- ➤ Begin with hardware trends

	2010	2015	
Storage	50+MB/s (HDD)	500+MB/s (SSD)	10X
Network	1Gbps	10Gbps	10X
CPU	~3GHz	~3GHz	\odot

- > Tungsten Optimization for the next few years
- ➤ Recall our SparkSQL workflow

- ➤ Tungsten Preparing Spark for next 5 years
- ➤ Begin with hardware trends

	2010	2015	
Storage	50+MB/s (HDD)	500+MB/s (SSD)	10X
Network	1Gbps	10Gbps	10X
CPU	~3GHz	~3GHz	

- ➤ Tungsten Preparing Spark for next 5 years
- > Substantially speed up execution by optimizing CPU efficiency via
 - ➤ Runtime code generation
 - Exploiting cache locality
 - ➤ Off-heap memory management

CONCLUSION

- ➤ SparkSQL intuition
- ➤ SparkSQL pipeline/ architecture

REFERENCES

- http://www.slideshare.net/datamantra/anatomy-of-data-frame-api
- http://www.slideshare.net/databricks/2015-0616-spark-summit
- http://www.slideshare.net/databricks/spark-sql-deep-divemelbroune
- http://www.slideshare.net/databricks/spark-sqlsse2015public
- http://www.slideshare.net/datamantra/introduction-to-structureddata-in-spark
- Data bricks official blog

MY LEARNING WORKFLOW

> Recently I gradually set up my workflow and reduced learning cycle

- Everyone has different learning workflows
- ➤ But let's share and make progress together

Knowledge collecting

Summarization

Sharing

Evernote web clipper

MindManager

Blog:Evernote+postach.io

Organize notes by tags

Evernote markdown doc with Marxico

Keynote/PowerPoint