(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization International Bureau

(43) International Publication Date 2 August 2001 (02.08.2001)

PCT

(10) International Publication Number WO 01/54477 A2

(51) International Patent Classification: Not classified

(21) International Application Number: PCT/US01/02687

(22) International Filing Date: 25 January 2001 (25.01.2001)

(25) Filing Language: English

(26) Publication Language: English

(30) Priority Data:

 09/491,404
 25 January 2000 (25.01.2000)
 US

 09/617,746
 17 July 2000 (17.07.2000)
 US

 09/631,451
 3 August 2000 (03.08.2000)
 US

 09/663,870
 15 September 2000 (15.09.2000)
 US

(63) Related by continuation (CON) or continuation-in-part (CIP) to earlier applications:

US	09/491,404 (CIP)
Filed on	25 January 2000 (25.01.2000)
US	09/617,746 (CIP)
Filed on	17 July 2000 (17.07.2000)
US	09/631,451 (CIP)
Filed on	3 August 2000 (03.08.2000)
US	09/663,870 (CIP)
Filed on	15 September 2000 (15.09.2000)

(71) Applicant (for all designated States except US): HYSEQ, INC. [US/US]; 670 Almanor Avenue, Sunnyvale, CA 94086 (US).

(72) Inventors; and

[75] Inventors/Applicants (for US only): TANG, Y., Tom [US/US]; 4230 Ranwick Court, San Jose, CA 95118 (US).
LIU, Chenghua [CN/US]; 1125 Ranchero Way #14, San Jose, CA 95117 (US).
ZHOU, Ping [CN/US]; 1461 Japaur Lane, San Jose, CA 95132 (US).
QIAN, Xiaohong, B. [CN/US]; 3662 Tumble Way, San Jose, CA 95132 (US).
WANG, Zhiwei [CN/US]; 836 Alturas Avenue #B36,

Sunnyvale, CA 94085 (US). CHEN, Rui-Hong [US/US]; 1031 Flying Fish Street, Foster City, CA 94404 (US). ASUNDI, Vinod [US/US]; 709 Foster City Boulevard, Foster City, CA 94404 (US). CAO, Yicheng [CN/US]; 260 North Mathilda Avenue, Sunnyvale, CA 95086 (US). DRMANAC, Radoje, A. [YU/US]; 850 East Greenwich Place, Palo Alto, CA 94303 (US). ZHANG, Jie [CN/US]; 20800 Homestead Road #38B, Cupertino, CA 95014 (US). WERHMAN, Tom [US/US]; 300 Pasteur Drive, Edwards, R314, Stanford University Medical Center, Stanford, CA 94035 (US).

- (74) Agent: ELRIFI, Ivor, R.; Mintz, Levin, Cohn, Ferris, Glovsky and Popeo, P.C., One Financial Center, Boston, MA 02111 (US).
- (81) Designated States (national): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CR, CU, CZ, DE, DK, DM, DZ, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, TZ, UA, UG, US, UZ, VN, YU, ZA, ZW.
- (84) Designated States (regional): ARIPO patent (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZW), Eurasian patent (AM, ΛZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, TR), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG).

Published:

 with declaration under Article 17(2)(a); without classification and without abstract; title not checked by the International Searching Authority

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

1/544

(54) Title: NOVEL NUCLEIC ACIDS AND POLYPEPTIDES

(57) Abstract:

NOVEL NUCLEIC ACIDS AND POLYPEPTIDES

1. TECHNICAL FIELD

The present invention provides novel polynucleotides and proteins encoded by such polynucleotides, along with uses for these polynucleotides and proteins, for example in therapeutic, diagnostic and research methods.

2. BACKGROUND

5

10

15

20

25

30

35

Technology aimed at the discovery of protein factors (including e.g., cytokines, such as lymphokines, interferons, CSFs, chemokines, and interleukins) has matured rapidly over the past decade. The now routine hybridization cloning and expression cloning techniques clone novel polynucleotides "directly" in the sense that they rely on information directly related to the discovered protein (i.e., partial DNA/amino acid sequence of the protein in the case of hybridization cloning; activity of the protein in the case of expression cloning). More recent "indirect" cloning techniques such as signal sequence cloning, which isolates DNA sequences based on the presence of a now well-recognized secretory leader sequence motif, as well as various PCR-based or low stringency hybridization-based cloning techniques, have advanced the state of the art by making available large numbers of DNA/amino acid sequences for proteins that are known to have biological activity, for example, by virtue of their secreted nature in the case of leader sequence cloning, by virtue of their cell or tissue source in the case of PCR-based techniques, or by virtue of structural similarity to other genes of known biological activity.

Identified polynucleotide and polypeptide sequences have numerous applications in, for example, diagnostics, forensics, gene mapping; identification of mutations responsible for genetic disorders or other traits, to assess biodiversity, and to produce many other types of data and products dependent on DNA and amino acid sequences.

3. SUMMARY OF THE INVENTION

The compositions of the present invention include novel isolated polypeptides, novel isolated polynucleotides encoding such polypeptides, including recombinant DNA molecules, cloned genes or degenerate variants thereof, especially naturally occurring variants such as allelic variants, antisense polynucleotide molecules, and antibodies that specifically recognize one or more epitopes present on such polypeptides, as well as hybridomas producing such antibodies.

The compositions of the present invention additionally include vectors, including expression vectors, containing the polynucleotides of the invention, cells genetically engineered to contain such polynucleotides and cells genetically engineered to express such polynucleotides.

The present invention relates to a collection or library of at least one novel nucleic acid sequence assembled from expressed sequence tags (ESTs) isolated mainly by sequencing by hybridization (SBH), and in some cases, sequences obtained from one or more public databases. The invention relates also to the proteins encoded by such polynucleotides, along with therapeutic, diagnostic and research utilities for these polynucleotides and proteins. These nucleic acid sequences are designated as SEQ ID NO: 1-1009. The polypeptides sequences are designated SEQ ID NO: 1010-2018. The nucleic acids and polypeptides are provided in the Sequence Listing. In the nucleic acids provided in the Sequence Listing, A is adenosine; C is cytosine; G is guanine; T is thymine; and N is any of the four bases. In the amino acids provided in the Sequence Listing, * corresponds to the stop codon.

5

10

15

20

25

30

The nucleic acid sequences of the present invention also include, nucleic acid sequences that hybridize to the complement of SEQ ID NO:1-1009 under stringent hybridization conditions; nucleic acid sequences which are allelic variants or species homologues of any of the nucleic acid sequences recited above, or nucleic acid sequences that encode a peptide comprising a specific domain or truncation of the peptides encoded by SEQ ID NO:1-1009. A polynucleotide comprising a nucleotide sequence having at least 90% identity to an identifying sequence of SEQ ID NO:1-1009 or a degenerate variant or fragment thereof. The identifying sequence can be 100 base pairs in length.

The nucleic acid sequences of the present invention also include the sequence information from the nucleic acid sequences of SEQ ID NO:1-1009. The sequence information can be a segment of any one of SEQ ID NO:1-1009 that uniquely identifies or represents the sequence information of SEO ID NO:1-1009.

A collection as used in this application can be a collection of only one polynucleotide. The collection of sequence information or identifying information of each sequence can be provided on a nucleic acid array. In one embodiment, segments of sequence information is provided on a nucleic acid array to detect the polynucleotide that contains the segment. The array can be designed to detect full-match or mismatch to the polynucleotide that contains the segment. The collection can also be provided in a computer-readable format.

This invention also includes the reverse or direct complement of any of the nucleic acid sequences recited above; cloning or expression vectors containing the nucleic acid sequences; and host cells or organisms transformed with these expression vectors. Nucleic acid sequences (or their reverse or direct complements) according to the invention have numerous applications in a variety of techniques known to those skilled in the art of molecular biology, such as use as hybridization probes, use as primers for PCR, use in an array, use in computer-readable media, use in sequencing

full-length genes, use for chromosome and gene mapping, use in the recombinant production of protein, and use in the generation of anti-sense DNA or RNA, their chemical analogs and the like.

In a preferred embodiment, the nucleic acid sequences of SEQ ID NO:1-1009 or novel segments or parts of the nucleic acids of the invention are used as primers in expression assays that are well known in the art. In a particularly preferred embodiment, the nucleic acid sequences of SEQ ID NO:1-1009 or novel segments or parts of the nucleic acids provided herein are used in diagnostics for identifying expressed genes or, as well known in the art and exemplified by Vollrath et al., Science 258:52-59 (1992), as expressed sequence tags for physical mapping of the human genome.

10

15

20

25

30

The isolated polynucleotides of the invention include, but are not limited to, a polynucleotide comprising any one of the nucleotide sequences set forth in SEQ ID NO:1-1009; a polynucleotide comprising any of the full length protein coding sequences of SEQ ID NO:1 - 1009; and a polynucleotide comprising any of the nucleotide sequences of the mature protein coding sequences of SEQ ID NO: 1- 1009. The polynucleotides of the present invention also include, but are not limited to, a polynucleotide that hybridizes under stringent hybridization conditions to (a) the complement of any one of the nucleotide sequences set forth in SEQ ID NO:1-1009; (b) a nucleotide sequence encoding any one of the amino acid sequences set forth in the Sequence Listing (e.g., SEQ ID NO: 1010-2018); (c) a polynucleotide which is an allelic variant of any polynucleotides recited above; (d) a polynucleotide which encodes a species homolog (e.g. orthologs) of any of the proteins recited above; or (e) a polynucleotide that encodes a polypeptide comprising a specific domain or truncation of any of the polypeptides comprising an amino acid sequence set forth in the Sequence Listing.

The isolated polypeptides of the invention include, but are not limited to, a polypeptide comprising any of the amino acid sequences set forth in the Sequence Listing; or the corresponding full length or mature protein. Polypeptides of the invention also include polypeptides with biological activity that are encoded by (a) any of the polynucleotides having a nucleotide sequence set forth in SEQ ID NO:1-1009; or (b) polynucleotides that hybridize to the complement of the polynucleotides of (a) under stringent hybridization conditions. Biologically or immunologically active variants of any of the polypeptide sequences in the Sequence Listing, and "substantial equivalents" thereof (e.g., with at least about 65%, 70%, 75%, 80%, 85%, 90%, 95%, 98% or 99% amino acid sequence identity) that preferably retain biological activity are also contemplated. The polypeptides of the invention may be wholly or partially chemically synthesized but are preferably produced by recombinant means using the genetically engineered cells (e.g. host cells) of the invention.

The invention also provides compositions comprising a polypeptide of the invention. Polypeptide compositions of the invention may further comprise an acceptable carrier, such as a hydrophilic, e.g., pharmaceutically acceptable, carrier.

The invention also provides host cells transformed or transfected with a polynucleotide of the invention.

The invention also relates to methods for producing a polypeptide of the invention comprising growing a culture of the host cells of the invention in a suitable culture medium under conditions permitting expression of the desired polypeptide, and purifying the polypeptide from the culture or from the host cells. Preferred embodiments include those in which the protein produced by such process is a mature form of the protein.

10

15

20

25

30

35

Polynucleotides according to the invention have numerous applications in a variety of techniques known to those skilled in the art of molecular biology. These techniques include use as hybridization probes, use as oligomers, or primers, for PCR, use for chromosome and gene mapping, use in the recombinant production of protein, and use in generation of anti-sense DNA or RNA, their chemical analogs and the like. For example, when the expression of an mRNA is largely restricted to a particular cell or tissue type, polynucleotides of the invention can be used as hybridization probes to detect the presence of the particular cell or tissue mRNA in a sample using, e.g., in situ hybridization.

In other exemplary embodiments, the polynucleotides are used in diagnostics as expressed sequence tags for identifying expressed genes or, as well known in the art and exemplified by Vollrath et al., Science 258:52-59 (1992), as expressed sequence tags for physical mapping of the human genome.

The polypeptides according to the invention can be used in a variety of conventional procedures and methods that are currently applied to other proteins. For example, a polypeptide of the invention can be used to generate an antibody that specifically binds the polypeptide. Such antibodies, particularly monoclonal antibodies, are useful for detecting or quantitating the polypeptide in tissue. The polypeptides of the invention can also be used as molecular weight markers, and as a food supplement.

Methods are also provided for preventing, treating, or ameliorating a medical condition which comprises the step of administering to a mammalian subject a therapeutically effective amount of a composition comprising a polypeptide of the present invention and a pharmaceutically acceptable carrier.

In particular, the polypeptides and polynucleotides of the invention can be utilized, for example, in methods for the prevention and/or treatment of disorders involving aberrant protein expression or biological activity.

The present invention further relates to methods for detecting the presence of the polynucleotides or polypeptides of the invention in a sample. Such methods can, for example, be utilized as part of prognostic and diagnostic evaluation of disorders as recited herein and for the identification of subjects exhibiting a predisposition to such conditions. The invention provides a method for detecting the polynucleotides of the invention in a sample, comprising contacting the sample with a compound that binds to and forms a complex with the polynucleotide of interest for a period sufficient to form the complex and under conditions sufficient to form a complex and detecting the complex such that if a complex is detected, the polynucleotide of interest is detected. The invention also provides a method for detecting the polypeptides of the invention in a sample comprising contacting the sample with a compound that binds to and forms a complex with the polypeptide under conditions and for a period sufficient to form the complex and detecting the formation of the complex such that if a complex is formed, the polypeptide is detected.

The invention also provides kits comprising polynucleotide probes and/or monoclonal antibodies, and optionally quantitative standards, for carrying out methods of the invention. Furthermore, the invention provides methods for evaluating the efficacy of drugs, and monitoring the progress of patients, involved in clinical trials for the treatment of disorders as recited above.

The invention also provides methods for the identification of compounds that modulate (*i.e.*, increase or decrease) the expression or activity of the polynucleotides and/or polypeptides of the invention. Such methods can be utilized, for example, for the identification of compounds that can ameliorate symptoms of disorders as recited herein. Such methods can include, but are not limited to, assays for identifying compounds and other substances that interact with (*e.g.*, bind to) the polypeptides of the invention. The invention provides a method for identifying a compound that binds to the polypeptides of the invention comprising contacting the compound with a polypeptide of the invention in a cell for a time sufficient to form a polypeptide/compound complex, wherein the complex drives expression of a reporter gene sequence in the cell; and detecting the complex by detecting the reporter gene sequence expression such that if expression of the reporter gene is detected the compound the binds to a polypeptide of the invention is identified.

The methods of the invention also provides methods for treatment which involve the administration of the polynucleotides or polypeptides of the invention to individuals exhibiting symptoms or tendencies. In addition, the invention encompasses methods for treating diseases or disorders as recited herein comprising administering compounds and other substances that modulate the overall activity of the target gene products. Compounds and other substances can

effect such modulation either on the level of target gene/protein expression or target protein activity.

The polypeptides of the present invention and the polynucleotides encoding them are also useful for the same functions known to one of skill in the art as the polypeptides and polynucleotides to which they have homology (set forth in Table 2). If no homology is set forth for a sequence, then the polypeptides and polynucleotides of the present invention are useful for a variety of applications, as described herein, including use in arrays for detection.

4. DETAILED DESCRIPTION OF THE INVENTION

4.1 DEFINITIONS

10

15

20

25

30

35

It must be noted that as used herein and in the appended claims, the singular forms "a", "an" and "the" include plural references unless the context clearly dictates otherwise.

The term "active" refers to those forms of the polypeptide which retain the biologic and/or immunologic activities of any naturally occurring polypeptide. According to the invention, the terms "biologically active" or "biological activity" refer to a protein or peptide having structural, regulatory or biochemical functions of a naturally occurring molecule. Likewise "immunologically active" or "immunological activity" refers to the capability of the natural, recombinant or synthetic polypeptide to induce a specific immune response in appropriate animals or cells and to bind with specific antibodies.

The term "activated cells" as used in this application are those cells which are engaged in extracellular or intracellular membrane trafficking, including the export of secretory or enzymatic molecules as part of a normal or disease process.

The terms "complementary" or "complementarity" refer to the natural binding of polynucleotides by base pairing. For example, the sequence 5'-AGT-3' binds to the complementary sequence 3'-TCA-5'. Complementarity between two single-stranded molecules may be "partial" such that only some of the nucleic acids bind or it may be "complete" such that total complementarity exists between the single stranded molecules. The degree of complementarity between the nucleic acid strands has significant effects on the efficiency and strength of the hybridization between the nucleic acid strands.

The term "embryonic stem cells (ES)" refers to a cell that can give rise to many differentiated cell types in an embryo or an adult, including the germ cells. The term "germ line stem cells (GSCs)" refers to stem cells derived from primordial stem cells that provide a steady and continuous source of germ cells for the production of gametes. The term "primordial germ

cells (PGCs)" refers to a small population of cells set aside from other cell lineages particularly from the yolk sac, mesenteries, or gonadal ridges during embryogenesis that have the potential to differentiate into germ cells and other cells. PGCs are the source from which GSCs and ES cells are derived. The PGCs, the GSCs and the ES cells are capable of self-renewal. Thus these cells not only populate the germ line and give rise to a plurality of terminally differentiated cells that comprise the adult specialized organs, but are able to regenerate themselves.

The term "expression modulating fragment," EMF, means a series of nucleotides which modulates the expression of an operably linked ORF or another EMF.

5

10

15

20

25

30

35

As used herein, a sequence is said to "modulate the expression of an operably linked sequence" when the expression of the sequence is altered by the presence of the EMF. EMFs include, but are not limited to, promoters, and promoter modulating sequences (inducible elements). One class of EMFs are nucleic acid fragments which induce the expression of an operably linked ORF in response to a specific regulatory factor or physiological event.

The terms "nucleotide sequence" or "nucleic acid" or "polynucleotide" or "oligonculeotide" are used interchangeably and refer to a heteropolymer of nucleotides or the sequence of these nucleotides. These phrases also refer to DNA or RNA of genomic or synthetic origin which may be single-stranded or double-stranded and may represent the sense or the antisense strand, to peptide nucleic acid (PNA) or to any DNA-like or RNA-like material. In the sequences herein A is adenine, C is cytosine, T is thymine, G is guanine and N is A, C, G or T (U). It is contemplated that where the polynucleotide is RNA, the T (thymine) in the sequences provided herein is substituted with U (uracil). Generally, nucleic acid segments provided by this invention may be assembled from fragments of the genome and short oligonucleotide linkers, or from a series of oligonucleotides, or from individual nucleotides, to provide a synthetic nucleic acid which is capable of being expressed in a recombinant transcriptional unit comprising regulatory elements derived from a microbial or viral operon, or a eukaryotic gene.

The terms "oligonucleotide fragment" or a "polynucleotide fragment", "portion," or "segment" or "probe" or "primer" are used interchangeably and refer to a sequence of nucleotide residues which are at least about 5 nucleotides, more preferably at least about 7 nucleotides, more preferably at least about 11 nucleotides and most preferably at least about 17 nucleotides. The fragment is preferably less than about 500 nucleotides, preferably less than about 200 nucleotides, more preferably less than about 100 nucleotides, more preferably less than about 50 nucleotides and most preferably less than 30 nucleotides. Preferably the probe is from about 6 nucleotides to about 200 nucleotides, preferably from about 15 to about 50 nucleotides, more preferably from about 17 to 30 nucleotides and most preferably from about 20 to 25 nucleotides. Preferably the fragments can

be used in polymerase chain reaction (PCR), various hybridization procedures or microarray procedures to identify or amplify identical or related parts of mRNA or DNA molecules. A fragment or segment may uniquely identify each polynucleotide sequence of the present invention. Preferably the fragment comprises a sequence substantially similar to any one of SEQ ID NOs:1-1009.

5

10

15

20

25

30

Probes may, for example, be used to determine whether specific mRNA molecules are present in a cell or tissue or to isolate similar nucleic acid sequences from chromosomal DNA as described by Walsh et al. (Walsh, P.S. et al., 1992, PCR Methods Appl 1:241-250). They may be labeled by nick translation, Klenow fill-in reaction, PCR, or other methods well known in the art. Probes of the present invention, their preparation and/or labeling are elaborated in Sambrook, J. et al., 1989, Molecular Cloning: A Laboratory Manual, Cold Spring Harbor Laboratory, NY; or Ausubel, F.M. et al., 1989, Current Protocols in Molecular Biology, John Wiley & Sons, New York NY, both of which are incorporated herein by reference in their entirety.

The nucleic acid sequences of the present invention also include the sequence information from the nucleic acid sequences of SEQ ID NO:1-1009. The sequence information can be a segment of any one of SEQ ID NO:1-1009 that uniquely identifies or represents the sequence information of that sequence of SEQ ID NO:1-1009. One such segment can be a twenty-mer nucleic acid sequence because the probability that a twenty-mer is fully matched in the human genome is 1 in 300. In the human genome, there are three billion base pairs in one set of chromosomes. Because 4²⁰ possible twenty-mers exist, there are 300 times more twenty-mers than there are base pairs in a set of human chromosomes. Using the same analysis, the probability for a seventeen-mer to be fully matched in the human genome is approximately 1 in 5. When these segments are used in arrays for expression studies, fifteen-mer segments can be used. The probability that the fifteen-mer is fully matched in the expressed sequences is also approximately one in five because expressed sequences comprise less than approximately 5% of the entire genome sequence.

Similarly, when using sequence information for detecting a single mismatch, a segment can be a twenty-five mer. The probability that the twenty-five mer would appear in a human genome with a single mismatch is calculated by multiplying the probability for a full match $(1 \div 4^{25})$ times the increased probability for mismatch at each nucleotide position (3×25) . The probability that an eighteen mer with a single mismatch can be detected in an array for expression studies is approximately one in five. The probability that a twenty-mer with a single mismatch can be detected in a human genome is approximately one in five.

The term "open reading frame," ORF, means a series of nucleotide triplets coding for amino acids without any termination codons and is a sequence translatable into protein.

The terms "operably linked" or "operably associated" refer to functionally related nucleic acid sequences. For example, a promoter is operably associated or operably linked with a coding sequence if the promoter controls the transcription of the coding sequence. While operably linked nucleic acid sequences can be contiguous and in the same reading frame, certain genetic elements *e.g.* repressor genes are not contiguously linked to the coding sequence but still control transcription/translation of the coding sequence.

5

10

15

20

25

30

The term "pluripotent" refers to the capability of a cell to differentiate into a number of differentiated cell types that are present in an adult organism. A pluripotent cell is restricted in its differentiation capability in comparison to a totipotent cell.

The terms "polypeptide" or "peptide" or "amino acid sequence" refer to an oligopeptide, peptide, polypeptide or protein sequence or fragment thereof and to naturally occurring or synthetic molecules. A polypeptide "fragment," "portion," or "segment" is a stretch of amino acid residues of at least about 5 amino acids, preferably at least about 7 amino acids, more preferably at least about 9 amino acids and most preferably at least about 17 or more amino acids. The peptide preferably is not greater than about 200 amino acids, more preferably less than 150 amino acids and most preferably less than 100 amino acids. Preferably the peptide is from about 5 to about 200 amino acids. To be active, any polypeptide must have sufficient length to display biological and/or immunological activity.

The term "naturally occurring polypeptide" refers to polypeptides produced by cells that have not been genetically engineered and specifically contemplates various polypeptides arising from post-translational modifications of the polypeptide including, but not limited to, acetylation, carboxylation, glycosylation, phosphorylation, lipidation and acylation.

The term "translated protein coding portion" means a sequence which encodes for the full length protein which may include any leader sequence or any processing sequence.

The term "mature protein coding sequence" means a sequence which encodes a peptide or protein without a signal or leader sequence. The "mature protein portion" means that portion of the protein which does not include a signal or leader sequence. The peptide may have been produced by processing in the cell which removes any leader/signal sequence. The mature protein portion may or may not include the initial methionine residue. The methionine residue may be removed from the protein during processing in the cell. The peptide may be produced synthetically or the protein may have been produced using a polynucleotide only encoding for the mature protein coding sequence.

5

10

15

20

25

30

35

The term "derivative" refers to polypeptides chemically modified by such techniques as ubiquitination, labeling (e.g., with radionuclides or various enzymes), covalent polymer attachment such as pegylation (derivatization with polyethylene glycol) and insertion or substitution by chemical synthesis of amino acids such as ornithine, which do not normally occur in human proteins.

The term "variant" (or "analog") refers to any polypeptide differing from naturally occurring polypeptides by amino acid insertions, deletions, and substitutions, created using, e.g., recombinant DNA techniques. Guidance in determining which amino acid residues may be replaced, added or deleted without abolishing activities of interest, may be found by comparing the sequence of the particular polypeptide with that of homologous peptides and minimizing the number of amino acid sequence changes made in regions of high homology (conserved regions) or by replacing amino acids with consensus sequence.

Alternatively, recombinant variants encoding these same or similar polypeptides may be synthesized or selected by making use of the "redundancy" in the genetic code. Various codon substitutions, such as the silent changes which produce various restriction sites, may be introduced to optimize cloning into a plasmid or viral vector or expression in a particular prokaryotic or eukaryotic system. Mutations in the polynucleotide sequence may be reflected in the polypeptide or domains of other peptides added to the polypeptide to modify the properties of any part of the polypeptide, to change characteristics such as ligand-binding affinities, interchain affinities, or degradation/turnover rate.

Preferably, amino acid "substitutions" are the result of replacing one amino acid with another amino acid having similar structural and/or chemical properties, *i.e.*, conservative amino acid replacements. "Conservative" amino acid substitutions may be made on the basis of similarity in polarity, charge, solubility, hydrophobicity, hydrophilicity, and/or the amphipathic nature of the residues involved. For example, nonpolar (hydrophobic) amino acids include alanine, leucine, isoleucine, valine, proline, phenylalanine, tryptophan, and methionine; polar neutral amino acids include glycine, serine, threonine, cysteine, tyrosine, asparagine, and glutamine; positively charged (basic) amino acids include arginine, lysine, and histidine; and negatively charged (acidic) amino acids include aspartic acid and glutamic acid. "Insertions" or "deletions" are preferably in the range of about 1 to 20 amino acids, more preferably 1 to 10 amino acids. The variation allowed may be experimentally determined by systematically making insertions, deletions, or substitutions of amino acids in a polypeptide molecule using recombinant DNA techniques and assaying the resulting recombinant variants for activity.

Alternatively, where alteration of function is desired, insertions, deletions or non-conservative alterations can be engineered to produce altered polypeptides. Such alterations

can, for example, alter one or more of the biological functions or biochemical characteristics of the polypeptides of the invention. For example, such alterations may change polypeptide characteristics such as ligand-binding affinities, interchain affinities, or degradation/turnover rate. Further, such alterations can be selected so as to generate polypeptides that are better suited for expression, scale up and the like in the host cells chosen for expression. For example, cysteine residues can be deleted or substituted with another amino acid residue in order to eliminate disulfide bridges.

5

10

15

20

25

30

35

The terms "purified" or "substantially purified" as used herein denotes that the indicated nucleic acid or polypeptide is present in the substantial absence of other biological macromolecules, *e.g.*, polynucleotides, proteins, and the like. In one embodiment, the polynucleotide or polypeptide is purified such that it constitutes at least 95% by weight, more preferably at least 99% by weight, of the indicated biological macromolecules present (but water, buffers, and other small molecules, especially molecules having a molecular weight of less than 1000 daltons, can be present).

The term "isolated" as used herein refers to a nucleic acid or polypeptide separated from at least one other component (e.g., nucleic acid or polypeptide) present with the nucleic acid or polypeptide in its natural source. In one embodiment, the nucleic acid or polypeptide is found in the presence of (if anything) only a solvent, buffer, ion, or other component normally present in a solution of the same. The terms "isolated" and "purified" do not encompass nucleic acids or polypeptides present in their natural source.

The term "recombinant," when used herein to refer to a polypeptide or protein, means that a polypeptide or protein is derived from recombinant (e.g., microbial, insect, or mammalian) expression systems. "Microbial" refers to recombinant polypeptides or proteins made in bacterial or fungal (e.g., yeast) expression systems. As a product, "recombinant microbial" defines a polypeptide or protein essentially free of native endogenous substances and unaccompanied by associated native glycosylation. Polypeptides or proteins expressed in most bacterial cultures, e.g., E. coli, will be free of glycosylation modifications; polypeptides or proteins expressed in yeast will have a glycosylation pattern in general different from those expressed in mammalian cells.

The term "recombinant expression vehicle or vector" refers to a plasmid or phage or virus or vector, for expressing a polypeptide from a DNA (RNA) sequence. An expression vehicle can comprise a transcriptional unit comprising an assembly of (1) a genetic element or elements having a regulatory role in gene expression, for example, promoters or enhancers, (2) a structural or coding sequence which is transcribed into mRNA and translated into protein, and (3) appropriate transcription initiation and termination sequences. Structural units intended for use

in yeast or eukaryotic expression systems preferably include a leader sequence enabling extracellular secretion of translated protein by a host cell. Alternatively, where recombinant protein is expressed without a leader or transport sequence, it may include an amino terminal methionine residue. This residue may or may not be subsequently cleaved from the expressed recombinant protein to provide a final product.

5

10

15

20

25

30

35

The term "recombinant expression system" means host cells which have stably integrated a recombinant transcriptional unit into chromosomal DNA or carry the recombinant transcriptional unit extrachromosomally. Recombinant expression systems as defined herein will express heterologous polypeptides or proteins upon induction of the regulatory elements linked to the DNA segment or synthetic gene to be expressed. This term also means host cells which have stably integrated a recombinant genetic element or elements having a regulatory role in gene expression, for example, promoters or enhancers. Recombinant expression systems as defined herein will express polypeptides or proteins endogenous to the cell upon induction of the regulatory elements linked to the endogenous DNA segment or gene to be expressed. The cells can be prokaryotic or eukaryotic.

The term "secreted" includes a protein that is transported across or through a membrane, including transport as a result of signal sequences in its amino acid sequence when it is expressed in a suitable host cell. "Secreted" proteins include without limitation proteins secreted wholly (e.g., soluble proteins) or partially (e.g., receptors) from the cell in which they are expressed. "Secreted" proteins also include without limitation proteins that are transported across the membrane of the endoplasmic reticulum. "Secreted" proteins are also intended to include proteins containing non-typical signal sequences (e.g. Interleukin-1 Beta, see Krasney, P.A. and Young, P.R. (1992) Cytokine 4(2):134 -143) and factors released from damaged cells (e.g. Interleukin-1 Receptor Antagonist, see Arend, W.P. et. al. (1998) Annu. Rev. Immunol. 16:27-55)

Where desired, an expression vector may be designed to contain a "signal or leader sequence" which will direct the polypeptide through the membrane of a cell. Such a sequence may be naturally present on the polypeptides of the present invention or provided from heterologous protein sources by recombinant DNA techniques.

The term "stringent" is used to refer to conditions that are commonly understood in the art as stringent. Stringent conditions can include highly stringent conditions (*i.e.*, hybridization to filter-bound DNA in 0.5 M NaHPO₄, 7% sodium dodecyl sulfate (SDS), 1 mM EDTA at 65°C, and washing in 0.1X SSC/0.1% SDS at 68°C), and moderately stringent conditions (*i.e.*, washing in 0.2X SSC/0.1% SDS at 42°C). Other exemplary hybridization conditions are described herein in the examples.

In instances of hybridization of deoxyoligonucleotides, additional exemplary stringent hybridization conditions include washing in 6X SSC/0.05% sodium pyrophosphate at 37°C (for 14-base oligonucleotides), 48°C (for 17-base oligos), 55°C (for 20-base oligonucleotides), and 60°C (for 23-base oligonucleotides).

5

10

15

20

25

30

As used herein, "substantially equivalent" can refer both to nucleotide and amino acid sequences, for example a mutant sequence, that varies from a reference sequence by one or more substitutions, deletions, or additions, the net effect of which does not result in an adverse functional dissimilarity between the reference and subject sequences. Typically, such a substantially equivalent sequence varies from one of those listed herein by no more than about 35% (i.e., the number of individual residue substitutions, additions, and/or deletions in a substantially equivalent sequence, as compared to the corresponding reference sequence, divided by the total number of residues in the substantially equivalent sequence is about 0.35 or less). Such a sequence is said to have 65% sequence identity to the listed sequence. In one embodiment, a substantially equivalent, e.g., mutant, sequence of the invention varies from a listed sequence by no more than 30% (70% sequence identity); in a variation of this embodiment, by no more than 25% (75% sequence identity); and in a further variation of this embodiment, by no more than 20% (80% sequence identity) and in a further variation of this embodiment, by no more than 10% (90% sequence identity) and in a further variation of this embodiment, by no more that 5% (95% sequence identity). Substantially equivalent, e.g., mutant, amino acid sequences according to the invention preferably have at least 80% sequence identity with a listed amino acid sequence, more preferably at least 85% sequence identity, more preferably at least 90% sequence identity, more preferably at least 95% identity, more preferably at least 98% identity, and most preferably at least 99% identity. Substantially equivalent nucleotide sequences of the invention can have lower percent sequence identities, taking into account, for example, the redundancy or degeneracy of the genetic code. Preferably, nucleotide sequence has at least about 65% identity, more preferably at least about 75% identity, more preferably at least about 80% sequence identity, more preferably at least about 85% sequence identity, more preferably at least about 90% sequence identity, and most preferably at least about 95% identity, more preferably at least about 98% sequence identity, and most preferably at least about 99% sequence identity. For the purposes of the present invention, sequences having substantially equivalent biological activity and substantially equivalent expression characteristics are considered substantially equivalent. For the purposes of determining equivalence, truncation of the mature sequence (e.g., via a mutation which creates a spurious stop codon) should be disregarded. Sequence identity may be determined, e.g., using the Jotun Hein method (Hein, J.

(1990) Methods Enzymol. 183:626-645). Identity between sequences can also be determined by other methods known in the art, e.g. by varying hybridization conditions.

The term "totipotent" refers to the capability of a cell to differentiate into all of the cell types of an adult organism.

The term "transformation" means introducing DNA into a suitable host cell so that the DNA is replicable, either as an extrachromosomal element, or by chromosomal integration. The term "transfection" refers to the taking up of an expression vector by a suitable host cell, whether or not any coding sequences are in fact expressed. The term "infection" refers to the introduction of nucleic acids into a suitable host cell by use of a virus or viral vector.

As used herein, an "uptake modulating fragment," UMF, means a series of nucleotides which mediate the uptake of a linked DNA fragment into a cell. UMFs can be readily identified using known UMFs as a target sequence or target motif with the computer-based systems described below. The presence and activity of a UMF can be confirmed by attaching the suspected UMF to a marker sequence. The resulting nucleic acid molecule is then incubated with an appropriate host under appropriate conditions and the uptake of the marker sequence is determined. As described above, a UMF will increase the frequency of uptake of a linked marker sequence.

Each of the above terms is meant to encompass all that is described for each, unless the context dictates otherwise.

4.2 NUCLEIC ACIDS OF THE INVENTION

5

10

15

20

25

30

35

Nucleotide sequences of the invention are set forth in the Sequence Listing.

The isolated polynucleotides of the invention include a polynucleotide comprising the nucleotide sequences of SEQ ID NO:1-1009; a polynucleotide encoding any one of the peptide sequences of SEQ ID NO:1010-2018; and a polynucleotide comprising the nucleotide sequence encoding the mature protein coding sequence of the polypeptides of any one of SEQ ID NO:1010-2018. The polynucleotides of the present invention also include, but are not limited to, a polynucleotide that hybridizes under stringent conditions to (a) the complement of any of the nucleotides sequences of SEQ ID NO:1-1009; (b) nucleotide sequences encoding any one of the amino acid sequences set forth in the Sequence Listing; (c) a polynucleotide which is an allelic variant of any polynucleotide recited above; (d) a polynucleotide which encodes a species homolog of any of the proteins recited above; or (e) a polynucleotide that encodes a polypeptide comprising a specific domain or truncation of the polypeptides of SEQ ID NO: 1010-2018.

Domains of interest may depend on the nature of the encoded polypeptide; e.g., domains in receptor-like polypeptides include ligand-binding, extracellular, transmembrane, or cytoplasmic

domains, or combinations thereof; domains in immunoglobulin-like proteins include the variable immunoglobulin-like domains; domains in enzyme-like polypeptides include catalytic and substrate binding domains; and domains in ligand polypeptides include receptor-binding domains.

The polynucleotides of the invention include naturally occurring or wholly or partially synthetic DNA, e.g., cDNA and genomic DNA, and RNA, e.g., mRNA. The polynucleotides may include all of the coding region of the cDNA or may represent a portion of the coding region of the cDNA.

5

10

15

20

25

30

35

The present invention also provides genes corresponding to the cDNA sequences disclosed herein. The corresponding genes can be isolated in accordance with known methods using the sequence information disclosed herein. Such methods include the preparation of probes or primers from the disclosed sequence information for identification and/or amplification of genes in appropriate genomic libraries or other sources of genomic materials. Further 5' and 3' sequence can be obtained using methods known in the art. For example, full length cDNA or genomic DNA that corresponds to any of the polynucleotides of SEQ ID NO:1-1009 can be obtained by screening appropriate cDNA or genomic DNA libraries under suitable hybridization conditions using any of the polynucleotides of SEQ ID NO:1-1009 or a portion thereof as a probe. Alternatively, the polynucleotides of SEQ ID NO:1-1009 may be used as the basis for suitable primer(s) that allow identification and/or amplification of genes in appropriate genomic DNA or cDNA libraries.

The nucleic acid sequences of the invention can be assembled from ESTs and sequences (including cDNA and genomic sequences) obtained from one or more public databases, such as dbEST, gbpri, and UniGene. The EST sequences can provide identifying sequence information, representative fragment or segment information, or novel segment information for the full-length gene.

The polynucleotides of the invention also provide polynucleotides including nucleotide sequences that are substantially equivalent to the polynucleotides recited above. Polynucleotides according to the invention can have, e.g., at least about 65%, at least about 70%, at least about 75%, at least about 80%, 81%, 82%, 83%, 84%, more typically at least about 85%, 86%, 87%, 88%, 89%, more typically at least about 90%, 91%, 92%, 93%, 94%, and even more typically at least about 95%, 96%, 97%, 98%, 99%, sequence identity to a polynucleotide recited above.

Included within the scope of the nucleic acid sequences of the invention are nucleic acid sequence fragments that hybridize under stringent conditions to any of the nucleotide sequences of SEQ ID NO:1-1009, or complements thereof, which fragment is greater than about 5 nucleotides, preferably 7 nucleotides, more preferably greater than 9 nucleotides and most preferably greater than 17 nucleotides. Fragments of, e.g. 15, 17, or 20 nucleotides or more that

are selective for (*i.e.* specifically hybridize to any one of the polynucleotides of the invention) are contemplated. Probes capable of specifically hybridizing to a polynucleotide can differentiate polynucleotide sequences of the invention from other polynucleotide sequences in the same family of genes or can differentiate human genes from genes of other species, and are preferably based on unique nucleotide sequences.

5

10

15

20

25

30

35

The sequences falling within the scope of the present invention are not limited to these specific sequences, but also include allelic and species variations thereof. Allelic and species variations can be routinely determined by comparing the sequence provided SEQ ID NO:1-1009, a representative fragment thereof, or a nucleotide sequence at least 90% identical, preferably 95% identical, to SEQ ID NO:1-1009 with a sequence from another isolate of the same species. Furthermore, to accommodate codon variability, the invention includes nucleic acid molecules coding for the same amino acid sequences as do the specific ORFs disclosed herein. In other words, in the coding region of an ORF, substitution of one codon for another codon that encodes the same amino acid is expressly contemplated.

The nearest neighbor or homology result for the nucleic acids of the present invention, including SEQ ID NO:1-1009, can be obtained by searching a database using an algorithm or a program. Preferably, a BLAST which stands for Basic Local Alignment Search Tool is used to search for local sequence alignments (Altshul, S.F. J Mol. Evol. 36 290-300 (1993) and Altschul S.F. et al. J. Mol. Biol. 21:403-410 (1990)). Alternatively a FASTA version 3 search against Genpept, using Fastxy algorithm.

Species homologs (or orthologs) of the disclosed polynucleotides and proteins are also provided by the present invention. Species homologs may be isolated and identified by making suitable probes or primers from the sequences provided herein and screening a suitable nucleic acid source from the desired species.

The invention also encompasses allelic variants of the disclosed polynucleotides or proteins; that is, naturally-occurring alternative forms of the isolated polynucleotide which also encode proteins which are identical, homologous or related to that encoded by the polynucleotides.

The nucleic acid sequences of the invention are further directed to sequences which encode variants of the described nucleic acids. These amino acid sequence variants may be prepared by methods known in the art by introducing appropriate nucleotide changes into a native or variant polynucleotide. There are two variables in the construction of amino acid sequence variants: the location of the mutation and the nature of the mutation. Nucleic acids encoding the amino acid sequence variants are preferably constructed by mutating the polynucleotide to encode an amino acid sequence that does not occur in nature. These nucleic

acid alterations can be made at sites that differ in the nucleic acids from different species (variable positions) or in highly conserved regions (constant regions). Sites at such locations will typically be modified in series, e.g., by substituting first with conservative choices (e.g., hydrophobic amino acid to a different hydrophobic amino acid) and then with more distant choices (e.g., hydrophobic amino acid to a charged amino acid), and then deletions or insertions may be made at the target site. Amino acid sequence deletions generally range from about 1 to 30 residues, preferably about 1 to 10 residues, and are typically contiguous. Amino acid insertions include amino- and/or carboxyl-terminal fusions ranging in length from one to one hundred or more residues, as well as intrasequence insertions of single or multiple amino acid residues. Intrasequence insertions may range generally from about 1 to 10 amino residues, preferably from 1 to 5 residues. Examples of terminal insertions include the heterologous signal sequences necessary for secretion or for intracellular targeting in different host cells and sequences such as FLAG or poly-histidine sequences useful for purifying the expressed protein.

In a preferred method, polynucleotides encoding the novel amino acid sequences are changed via site-directed mutagenesis. This method uses oligonucleotide sequences to alter a polynucleotide to encode the desired amino acid variant, as well as sufficient adjacent nucleotides on both sides of the changed amino acid to form a stable duplex on either side of the site of being changed. In general, the techniques of site-directed mutagenesis are well known to those of skill in the art and this technique is exemplified by publications such as, Edelman et al., *DNA* 2:183 (1983). A versatile and efficient method for producing site-specific changes in a polynucleotide sequence was published by Zoller and Smith, *Nucleic Acids Res.* 10:6487-6500 (1982). PCR may also be used to create amino acid sequence variants of the novel nucleic acids. When small amounts of template DNA are used as starting material, primer(s) that differs slightly in sequence from the corresponding region in the template DNA can generate the desired amino acid variant. PCR amplification results in a population of product DNA fragments that differ from the polynucleotide template encoding the polypeptide at the position specified by the primer. The product DNA fragments replace the corresponding region in the plasmid and this gives a polynucleotide encoding the desired amino acid variant.

A further technique for generating amino acid variants is the cassette mutagenesis technique described in Wells et al., *Gene* 34:315 (1985); and other mutagenesis techniques well known in the art, such as, for example, the techniques in Sambrook et al., supra, and *Current Protocols in Molecular Biology*, Ausubel et al. Due to the inherent degeneracy of the genetic code, other DNA sequences which encode substantially the same or a functionally equivalent amino acid sequence may be used in the practice of the invention for the cloning and expression

of these novel nucleic acids. Such DNA sequences include those which are capable of hybridizing to the appropriate novel nucleic acid sequence under stringent conditions.

5

10

15

20

25

30

35

Polynucleotides encoding preferred polypeptide truncations of the invention can be used to generate polynucleotides encoding chimeric or fusion proteins comprising one or more domains of the invention and heterologous protein sequences.

The polynucleotides of the invention additionally include the complement of any of the polynucleotides recited above. The polynucleotide can be DNA (genomic, cDNA, amplified, or synthetic) or RNA. Methods and algorithms for obtaining such polynucleotides are well known to those of skill in the art and can include, for example, methods for determining hybridization conditions that can routinely isolate polynucleotides of the desired sequence identities.

In accordance with the invention, polynucleotide sequences comprising the mature protein coding sequences corresponding to any one of SEQ ID NO:1-1009, or functional equivalents thereof, may be used to generate recombinant DNA molecules that direct the expression of that nucleic acid, or a functional equivalent thereof, in appropriate host cells. Also included are the cDNA inserts of any of the clones identified herein.

A polynucleotide according to the invention can be joined to any of a variety of other nucleotide sequences by well-established recombinant DNA techniques (see Sambrook J et al. (1989) Molecular Cloning: A Laboratory Manual, Cold Spring Harbor Laboratory, NY). Useful nucleotide sequences for joining to polynucleotides include an assortment of vectors, e.g., plasmids, cosmids, lambda phage derivatives, phagemids, and the like, that are well known in the art. Accordingly, the invention also provides a vector including a polynucleotide of the invention and a host cell containing the polynucleotide. In general, the vector contains an origin of replication functional in at least one organism, convenient restriction endonuclease sites, and a selectable marker for the host cell. Vectors according to the invention include expression vectors, replication vectors, probe generation vectors, and sequencing vectors. A host cell according to the invention can be a prokaryotic or eukaryotic cell and can be a unicellular organism or part of a multicellular organism.

The present invention further provides recombinant constructs comprising a nucleic acid having any of the nucleotide sequences of SEQ ID NO:1-1009 or a fragment thereof or any other polynucleotides of the invention. In one embodiment, the recombinant constructs of the present invention comprise a vector, such as a plasmid or viral vector, into which a nucleic acid having any of the nucleotide sequences of SEQ ID NO:1-1009 or a fragment thereof is inserted, in a forward or reverse orientation. In the case of a vector comprising one of the ORFs of the present invention, the vector may further comprise regulatory sequences, including for example, a promoter, operably linked to the ORF. Large numbers of suitable vectors and promoters are

known to those of skill in the art and are commercially available for generating the recombinant constructs of the present invention. The following vectors are provided by way of example. Bacterial: pBs, phagescript, PsiX174, pBluescript SK, pBs KS, pNH8a, pNH16a, pNH18a, pNH46a (Stratagene); pTrc99A, pKK223-3, pKK233-3, pDR540, pRIT5 (Pharmacia). Eukaryotic: pWLneo, pSV2cat, pOG44, PXTI, pSG (Stratagene) pSVK3, pBPV, pMSG, pSVL (Pharmacia).

5

10

15

20

25

30

35

The isolated polynucleotide of the invention may be operably linked to an expression control sequence such as the pMT2 or pED expression vectors disclosed in Kaufman et al., Nucleic Acids Res. 19, 4485-4490 (1991), in order to produce the protein recombinantly. Many suitable expression control sequences are known in the art. General methods of expressing recombinant proteins are also known and are exemplified in R. Kaufman, Methods in Enzymology 185, 537-566 (1990). As defined herein "operably linked" means that the isolated polynucleotide of the invention and an expression control sequence are situated within a vector or cell in such a way that the protein is expressed by a host cell which has been transformed (transfected) with the ligated polynucleotide/expression control sequence.

Promoter regions can be selected from any desired gene using CAT (chloramphenicol transferase) vectors or other vectors with selectable markers. Two appropriate vectors are pKK232-8 and pCM7. Particular named bacterial promoters include lacI, lacZ, T3, T7, gpt, lambda PR, and trc. Eukaryotic promoters include CMV immediate early, HSV thymidine kinase, early and late SV40, LTRs from retrovirus, and mouse metallothionein-I. Selection of the appropriate vector and promoter is well within the level of ordinary skill in the art. Generally, recombinant expression vectors will include origins of replication and selectable markers permitting transformation of the host cell, e.g., the ampicillin resistance gene of E. coli and S. cerevisiae TRP1 gene, and a promoter derived from a highly-expressed gene to direct transcription of a downstream structural sequence. Such promoters can be derived from operons encoding glycolytic enzymes such as 3-phosphoglycerate kinase (PGK), a-factor, acid phosphatase, or heat shock proteins, among others. The heterologous structural sequence is assembled in appropriate phase with translation initiation and termination sequences, and preferably, a leader sequence capable of directing secretion of translated protein into the periplasmic space or extracellular medium. Optionally, the heterologous sequence can encode a fusion protein including an amino terminal identification peptide imparting desired characteristics, e.g., stabilization or simplified purification of expressed recombinant product. Useful expression vectors for bacterial use are constructed by inserting a structural DNA sequence encoding a desired protein together with suitable translation initiation and termination signals in operable reading phase with a functional promoter. The vector will comprise one or

more phenotypic selectable markers and an origin of replication to ensure maintenance of the vector and to, if desirable, provide amplification within the host. Suitable prokaryotic hosts for transformation include *E. coli*, *Bacillus subtilis*, *Salmonella typhimurium* and various species within the genera *Pseudomonas*, *Streptomyces*, and *Staphylococcus*, although others may also be employed as a matter of choice.

As a representative but non-limiting example, useful expression vectors for bacterial use can comprise a selectable marker and bacterial origin of replication derived from commercially available plasmids comprising genetic elements of the well known cloning vector pBR322 (ATCC 37017). Such commercial vectors include, for example, pKK223-3 (Pharmacia Fine Chemicals, Uppsala, Sweden) and GEM 1 (Promega Biotech, Madison, WI, USA). These pBR322 "backbone" sections are combined with an appropriate promoter and the structural sequence to be expressed. Following transformation of a suitable host strain and growth of the host strain to an appropriate cell density, the selected promoter is induced or derepressed by appropriate means (e.g., temperature shift or chemical induction) and cells are cultured for an additional period. Cells are typically harvested by centrifugation, disrupted by physical or chemical means, and the resulting crude extract retained for further purification.

Polynucleotides of the invention can also be used to induce immune responses. For example, as described in Fan et al., *Nat. Biotech.* 17:870-872 (1999), incorporated herein by reference, nucleic acid sequences encoding a polypeptide may be used to generate antibodies against the encoded polypeptide following topical administration of naked plasmid DNA or following injection, and preferably intramuscular injection of the DNA. The nucleic acid sequences are preferably inserted in a recombinant expression vector and may be in the form of naked DNA.

4.3 ANTISENSE

5

10

15

20

30

Another aspect of the invention pertains to isolated antisense nucleic acid molecules that are hybridizable to or complementary to the nucleic acid molecule comprising the nucleotide sequence of SEQ ID NO:1-1009, or fragments, analogs or derivatives thereof. An "antisense" nucleic acid comprises a nucleotide sequence that is complementary to a "sense" nucleic acid encoding a protein, *e.g.*, complementary to the coding strand of a double-stranded cDNA molecule or complementary to an mRNA sequence. In specific aspects, antisense nucleic acid molecules are provided that comprise a sequence complementary to at least about 10, 25, 50, 100, 250 or 500 nucleotides or an entire coding strand, or to only a portion thereof. Nucleic acid molecules encoding fragments, homologs, derivatives and analogs of a protein of any of SEO ID

NO:1010-2018 or antisense nucleic acids complementary to a nucleic acid sequence of SEQ ID NO:1-1009 are additionally provided.

In one embodiment, an antisense nucleic acid molecule is antisense to a "coding region" of the coding strand of a nucleotide sequence of the invention. The term "coding region" refers to the region of the nucleotide sequence comprising codons which are translated into amino acid residues. In another embodiment, the antisense nucleic acid molecule is antisense to a "noncoding region" of the coding strand of a nucleotide sequence of the invention. The term "noncoding region" refers to 5' and 3' sequences which flank the coding region that are not translated into amino acids (*i.e.*, also referred to as 5' and 3' untranslated regions).

5

10

15

20

Given the coding strand sequences encoding a nucleic acid disclosed herein (e.g., SEQ ID NO:1-1009), antisense nucleic acids of the invention can be designed according to the rules of Watson and Crick or Hoogsteen base pairing. The antisense nucleic acid molecule can be complementary to the entire coding region of a mRNA, but more preferably is an oligonucleotide that is antisense to only a portion of the coding or noncoding region of a mRNA. For example, the antisense oligonucleotide can be complementary to the region surrounding the translation start site of a mRNA. An antisense oligonucleotide can be, for example, about 5, 10, 15, 20, 25, 30, 35, 40, 45 or 50 nucleotides in length. An antisense nucleic acid of the invention can be constructed using chemical synthesis or enzymatic ligation reactions using procedures known in the art. For example, an antisense nucleic acid (e.g., an antisense oligonucleotide) can be chemically synthesized using naturally occurring nucleotides or variously modified nucleotides designed to increase the biological stability of the molecules or to increase the physical stability of the duplex formed between the antisense and sense nucleic acids, e.g., phosphorothioate derivatives and acridine substituted nucleotides can be used.

Examples of modified nucleotides that can be used to generate the antisense nucleic acid include: 5-fluorouracil, 5-bromouracil, 5-chlorouracil, 5-iodouracil, hypoxanthine, xanthine, 4-acetylcytosine, 5-(carboxyhydroxylmethyl) uracil, 5-carboxymethylaminomethyl-2-thiouridine, 5-carboxymethylaminomethyluracil, dihydrouracil, beta-D-galactosylqueosine, inosine, N6-isopentenyladenine, 1-methylguanine, 1-methylinosine, 2,2-dimethylguanine, 2-methyladenine, 2-methylguanine, 3-methylcytosine, 5-methylcytosine, N6-adenine, 7-methylguanine, 5-methylaminomethyluracil, 5-methoxyaminomethyl-2-thiouracil, beta-D-mannosylqueosine, 5'-methoxycarboxymethyluracil, 5-methoxyuracil, 2-methylthio-N6-isopentenyladenine, uracil-5-oxyacetic acid (v), wybutoxosine, pseudouracil, queosine, 2-thiocytosine, 5-methyl-2-thiouracil, 2-thiouracil, 4-thiouracil, 5-methyluracil, uracil-5-oxyacetic acid methylester, uracil-5-oxyacetic acid (v), 5-methyl-2-thiouracil, 3-(3-amino-3-N-2-carboxypropyl) uracil, (acp3)w, and 2,6-diaminopurine. Alternatively, the

antisense nucleic acid can be produced biologically using an expression vector into which a nucleic acid has been subcloned in an antisense orientation (i.e., RNA transcribed from the inserted nucleic acid will be of an antisense orientation to a target nucleic acid of interest, described further in the following subsection).

5

10

15

20

25

30

35

The antisense nucleic acid molecules of the invention are typically administered to a subject or generated in situ such that they hybridize with or bind to cellular mRNA and/or genomic DNA encoding a protein according to the invention to thereby inhibit expression of the protein, e.g., by inhibiting transcription and/or translation. The hybridization can be by conventional nucleotide complementarity to form a stable duplex, or, for example, in the case of an antisense nucleic acid molecule that binds to DNA duplexes, through specific interactions in the major groove of the double helix. An example of a route of administration of antisense nucleic acid molecules of the invention includes direct injection at a tissue site. Alternatively, antisense nucleic acid molecules can be modified to target selected cells and then administered systemically. For example, for systemic administration, antisense molecules can be modified such that they specifically bind to receptors or antigens expressed on a selected cell surface, e.g., by linking the antisense nucleic acid molecules to peptides or antibodies that bind to cell surface receptors or antigens. The antisense nucleic acid molecules can also be delivered to cells using the vectors described herein. To achieve sufficient intracellular concentrations of antisense molecules, vector constructs in which the antisense nucleic acid molecule is placed under the control of a strong pol II or pol III promoter are preferred.

In yet another embodiment, the antisense nucleic acid molecule of the invention is an α-anomeric nucleic acid molecule. An α-anomeric nucleic acid molecule forms specific double-stranded hybrids with complementary RNA in which, contrary to the usual β-units, the strands run parallel to each other (Gaultier et al. (1987) Nucleic Acids Res 15: 6625-6641). The antisense nucleic acid molecule can also comprise a 2'-o-methylribonucleotide (Inoue et al. (1987) Nucleic Acids Res 15: 6131-6148) or a chimeric RNA -DNA analogue (Inoue et al. (1987) FEBS Lett 215: 327-330).

4.4 RIBOZYMES AND PNA MOIETIES

In still another embodiment, an antisense nucleic acid of the invention is a ribozyme. Ribozymes are catalytic RNA molecules with ribonuclease activity that are capable of cleaving a single-stranded nucleic acid, such as a mRNA, to which they have a complementary region. Thus, ribozymes (e.g., hammerhead ribozymes (described in Haselhoff and Gerlach (1988) Nature 334:585-591)) can be used to catalytically cleave a mRNA transcripts to thereby inhibit translation of a mRNA. A ribozyme having specificity for a nucleic acid of the invention can be

designed based upon the nucleotide sequence of a DNA disclosed herein (i.e., SEQ ID NO:1-1009). For example, a derivative of a Tetrahymena L-19 IVS RNA can be constructed in which the nucleotide sequence of the active site is complementary to the nucleotide sequence to be cleaved in a SECX-encoding mRNA. See, e.g., Cech et al. U.S. Pat. No. 4,987,071; and Cech et al. U.S. Pat. No. 5,116,742. Alternatively, SECX mRNA can be used to select a catalytic RNA having a specific ribonuclease activity from a pool of RNA molecules. See, e.g., Bartel et al., (1993) Science 261:1411-1418.

Alternatively, gene expression can be inhibited by targeting nucleotide sequences complementary to the regulatory region (e.g., promoter and/or enhancers) to form triple helical structures that prevent transcription of the gene in target cells. See generally, Helene. (1991) Anticancer Drug Des. 6: 569-84; Helene. et al. (1992) Ann. N.Y. Acad. Sci. 660:27-36; and Maher (1992) Bioassays 14: 807-15.

10

15

20

25

30

35

In various embodiments, the nucleic acids of the invention can be modified at the base moiety, sugar moiety or phosphate backbone to improve, e.g., the stability, hybridization, or solubility of the molecule. For example, the deoxyribose phosphate backbone of the nucleic acids can be modified to generate peptide nucleic acids (see Hyrup et al. (1996) Bioorg Med Chem 4: 5-23). As used herein, the terms "peptide nucleic acids" or "PNAs" refer to nucleic acid mimics, e.g., DNA mimics, in which the deoxyribose phosphate backbone is replaced by a pseudopeptide backbone and only the four natural nucleobases are retained. The neutral backbone of PNAs has been shown to allow for specific hybridization to DNA and RNA under conditions of low ionic strength. The synthesis of PNA oligomers can be performed using standard solid phase peptide synthesis protocols as described in Hyrup et al. (1996) above; Perry-O'Keefe et al. (1996) PNAS 93: 14670-675.

PNAs of the invention can be used in therapeutic and diagnostic applications. For example, PNAs can be used as antisense or antigene agents for sequence-specific modulation of gene expression by, e.g., inducing transcription or translation arrest or inhibiting replication. PNAs of the invention can also be used, e.g., in the analysis of single base pair mutations in a gene by, e.g., PNA directed PCR clamping; as artificial restriction enzymes when used in combination with other enzymes, e.g., S1 nucleases (Hyrup B. (1996) above); or as probes or primers for DNA sequence and hybridization (Hyrup et al. (1996), above; Perry-O'Keefe (1996), above).

In another embodiment, PNAs of the invention can be modified, e.g., to enhance their stability or cellular uptake, by attaching lipophilic or other helper groups to PNA, by the formation of PNA-DNA chimeras, or by the use of liposomes or other techniques of drug delivery known in the art. For example, PNA-DNA chimeras can be generated that may

combine the advantageous properties of PNA and DNA. Such chimeras allow DNA recognition enzymes, e.g., RNase H and DNA polymerases, to interact with the DNA portion while the PNA portion would provide high binding affinity and specificity. PNA-DNA chimeras can be linked using linkers of appropriate lengths selected in terms of base stacking, number of bonds between the nucleobases, and orientation (Hyrup (1996) above). The synthesis of PNA-DNA chimeras can be performed as described in Hyrup (1996) above and Finn et al. (1996) Nucl Acids Res 24: 3357-63. For example, a DNA chain can be synthesized on a solid support using standard phosphoramidite coupling chemistry, and modified nucleoside analogs, e.g., 5'-(4-methoxytrityl)amino-5'-deoxy-thymidine phosphoramidite, can be used between the PNA and the 5' end of DNA (Mag et al. (1989) Nucl Acid Res 17: 5973-88). PNA monomers are then coupled in a stepwise manner to produce a chimeric molecule with a 5' PNA segment and a 3' DNA segment (Finn et al. (1996) above). Alternatively, chimeric molecules can be synthesized with a 5' DNA segment and a 3' PNA segment. See, Petersen et al. (1975) Bioorg Med Chem Lett 5: 1119-11124.

In other embodiments, the oligonucleotide may include other appended groups such as peptides (e.g., for targeting host cell receptors in vivo), or agents facilitating transport across the cell membrane (see, e.g., Letsinger et al., 1989, Proc. Natl. Acad. Sci. U.S.A. 86:6553-6556; Lemaitre et al., 1987, Proc. Natl. Acad. Sci. 84:648-652; PCT Publication No. W088/09810) or the blood-brain barrier (see, e.g., PCT Publication No. W089/10134). In addition, oligonucleotides can be modified with hybridization triggered cleavage agents (See, e.g., Krol et al., 1988, BioTechniques 6:958-976) or intercalating agents. (See, e.g., Zon, 1988, Pharm. Res. 5: 539-549). To this end, the oligonucleotide may be conjugated to another molecule, e.g., a peptide, a hybridization triggered cross-linking agent, a transport agent, a hybridization-triggered cleavage agent, etc.

25

30

35

5

10

4.5 HOSTS

The present invention further provides host cells genetically engineered to contain the polynucleotides of the invention. For example, such host cells may contain nucleic acids of the invention introduced into the host cell using known transformation, transfection or infection methods. The present invention still further provides host cells genetically engineered to express the polynucleotides of the invention, wherein such polynucleotides are in operative association with a regulatory sequence heterologous to the host cell which drives expression of the polynucleotides in the cell.

Knowledge of nucleic acid sequences allows for modification of cells to permit, or increase, expression of endogenous polypeptide. Cells can be modified (e.g., by homologous

recombination) to provide increased polypeptide expression by replacing, in whole or in part, the naturally occurring promoter with all or part of a heterologous promoter so that the cells express the polypeptide at higher levels. The heterologous promoter is inserted in such a manner that it is operatively linked to the encoding sequences. See, for example, PCT International Publication No. WO94/12650, PCT International Publication No. WO92/20808, and PCT International Publication No. WO91/09955. It is also contemplated that, in addition to heterologous promoter DNA, amplifiable marker DNA (e.g., ada, dhfr, and the multifunctional CAD gene which encodes carbamyl phosphate synthase, aspartate transcarbamylase, and dihydroorotase) and/or intron DNA may be inserted along with the heterologous promoter DNA. If linked to the coding sequence, amplification of the marker DNA by standard selection methods results in coamplification of the desired protein coding sequences in the cells.

10

20

25

30

35

The host cell can be a higher eukaryotic host cell, such as a mammalian cell, a lower eukaryotic host cell, such as a yeast cell, or the host cell can be a prokaryotic cell, such as a bacterial cell. Introduction of the recombinant construct into the host cell can be effected by calcium phosphate transfection, DEAE, dextran mediated transfection, or electroporation (Davis, L. et al., *Basic Methods in Molecular Biology* (1986)). The host cells containing one of the polynucleotides of the invention, can be used in conventional manners to produce the gene product encoded by the isolated fragment (in the case of an ORF) or can be used to produce a heterologous protein under the control of the EMF.

Any host/vector system can be used to express one or more of the ORFs of the present invention. These include, but are not limited to, eukaryotic hosts such as HeLa cells, Cv-1 cell, COS cells, 293 cells, and Sf9 cells, as well as prokaryotic host such as *E. coli* and *B. subtilis*. The most preferred cells are those which do not normally express the particular polypeptide or protein or which expresses the polypeptide or protein at low natural level. Mature proteins can be expressed in mammalian cells, yeast, bacteria, or other cells under the control of appropriate promoters. Cell-free translation systems can also be employed to produce such proteins using RNAs derived from the DNA constructs of the present invention. Appropriate cloning and expression vectors for use with prokaryotic and eukaryotic hosts are described by Sambrook, et al., in Molecular Cloning: A Laboratory Manual, Second Edition, Cold Spring Harbor, New York (1989), the disclosure of which is hereby incorporated by reference.

Various mammalian cell culture systems can also be employed to express recombinant protein. Examples of mammalian expression systems include the COS-7 lines of monkey kidney fibroblasts, described by Gluzman, Cell 23:175 (1981). Other cell lines capable of expressing a compatible vector are, for example, the C127, monkey COS cells, Chinese Hamster Ovary (CHO) cells, human kidney 293 cells, human epidermal A431 cells, human Colo205 cells, 3T3

cells, CV-1 cells, other transformed primate cell lines, normal diploid cells, cell strains derived from *in vitro* culture of primary tissue, primary explants, HeLa cells, mouse L cells, BHK, HL-60, U937, HaK or Jurkat cells. Mammalian expression vectors will comprise an origin of replication, a suitable promoter and also any necessary ribosome binding sites, polyadenylation site, splice donor and acceptor sites, transcriptional termination sequences, and 5' flanking nontranscribed sequences. DNA sequences derived from the SV40 viral genome, for example, SV40 origin, early promoter, enhancer, splice, and polyadenylation sites may be used to provide the required nontranscribed genetic elements. Recombinant polypeptides and proteins produced in bacterial culture are usually isolated by initial extraction from cell pellets, followed by one or more salting-out, aqueous ion exchange or size exclusion chromatography steps. Protein refolding steps can be used, as necessary, in completing configuration of the mature protein. Finally, high performance liquid chromatography (HPLC) can be employed for final purification steps. Microbial cells employed in expression of proteins can be disrupted by any convenient method, including freeze-thaw cycling, sonication, mechanical disruption, or use of cell lysing agents.

Alternatively, it may be possible to produce the protein in lower eukaryotes such as yeast or insects or in prokaryotes such as bacteria. Potentially suitable yeast strains include Saccharomyces cerevisiae, Schizosaccharomyces pombe, Kluyveromyces strains, Candida, or any yeast strain capable of expressing heterologous proteins. Potentially suitable bacterial strains include Escherichia coli, Bacillus subtilis, Salmonella typhimurium, or any bacterial strain capable of expressing heterologous proteins. If the protein is made in yeast or bacteria, it may be necessary to modify the protein produced therein, for example by phosphorylation or glycosylation of the appropriate sites, in order to obtain the functional protein. Such covalent attachments may be accomplished using known chemical or enzymatic methods.

In another embodiment of the present invention, cells and tissues may be engineered to express an endogenous gene comprising the polynucleotides of the invention under the control of inducible regulatory elements, in which case the regulatory sequences of the endogenous gene may be replaced by homologous recombination. As described herein, gene targeting can be used to replace a gene's existing regulatory region with a regulatory sequence isolated from a different gene or a novel regulatory sequence synthesized by genetic engineering methods. Such regulatory sequences may be comprised of promoters, enhancers, scaffold-attachment regions, negative regulatory elements, transcriptional initiation sites, regulatory protein binding sites or combinations of said sequences. Alternatively, sequences which affect the structure or stability of the RNA or protein produced may be replaced, removed, added, or otherwise modified by targeting. These sequence include polyadenylation signals, mRNA stability elements, splice

sites, leader sequences for enhancing or modifying transport or secretion properties of the protein, or other sequences which alter or improve the function or stability of protein or RNA molecules.

5

10

15

20

25

35

The targeting event may be a simple insertion of the regulatory sequence, placing the gene under the control of the new regulatory sequence, e.g., inserting a new promoter or enhancer or both upstream of a gene. Alternatively, the targeting event may be a simple deletion of a regulatory element, such as the deletion of a tissue-specific negative regulatory element. Alternatively, the targeting event may replace an existing element; for example, a tissue-specific enhancer can be replaced by an enhancer that has broader or different cell-type specificity than the naturally occurring elements. Here, the naturally occurring sequences are deleted and new sequences are added. In all cases, the identification of the targeting event may be facilitated by the use of one or more selectable marker genes that are contiguous with the targeting DNA. allowing for the selection of cells in which the exogenous DNA has integrated into the host cell genome. The identification of the targeting event may also be facilitated by the use of one or more marker genes exhibiting the property of negative selection, such that the negatively selectable marker is linked to the exogenous DNA, but configured such that the negatively selectable marker flanks the targeting sequence, and such that a correct homologous recombination event with sequences in the host cell genome does not result in the stable integration of the negatively selectable marker. Markers useful for this purpose include the Herpes Simplex Virus thymidine kinase (TK) gene or the bacterial xanthine-guanine phosphoribosyl-transferase (gpt) gene.

The gene targeting or gene activation techniques which can be used in accordance with this aspect of the invention are more particularly described in U.S. Patent No. 5,272,071 to Chappel; U.S. Patent No. 5,578,461 to Sherwin et al.; International Application No. PCT/US92/09627 (WO93/09222) by Selden et al.; and International Application No. PCT/US90/06436 (WO91/06667) by Skoultchi et al., each of which is incorporated by reference herein in its entirety.

4.6 POLYPEPTIDES OF THE INVENTION

30 The isolated polypeptides of the invention include, but are not limited to, a polypeptide comprising: the amino acid sequences set forth as any one of SEQ ID NO:1010-2018 or an amino acid sequence encoded by any one of the nucleotide sequences SEQ ID NO:1-1009 or the corresponding full length or mature protein. Polypeptides of the invention also include polypeptides preferably with biological or immunological activity that are encoded by: (a) a polynucleotide having any one of the nucleotide sequences set forth in SEQ ID NO:1-1009 or (b)

polynucleotides encoding any one of the amino acid sequences set forth as SEQ ID NO:1010-2018 or (c) polynucleotides that hybridize to the complement of the polynucleotides of either (a) or (b) under stringent hybridization conditions. The invention also provides biologically active or immunologically active variants of any of the amino acid sequences set forth as SEQ ID NO:1010-2018 or the corresponding full length or mature protein; and "substantial equivalents" thereof (e.g., with at least about 65%, at least about 70%, at least about 75%, at least about 80%, at least about 85%, 86%, 87%, 88%, 89%, at least about 90%, 91%, 92%, 93%, 94%, typically at least about 95%, 96%, 97%, more typically at least about 98%, or most typically at least about 99% amino acid identity) that retain biological activity. Polypeptides encoded by allelic variants may have a similar, increased, or decreased activity compared to polypeptides comprising SEQ ID NO:1010-2018.

10

15

20

25

30

35

Fragments of the proteins of the present invention which are capable of exhibiting biological activity are also encompassed by the present invention. Fragments of the protein may be in linear form or they may be cyclized using known methods, for example, as described in H. U. Saragovi, et al., Bio/Technology 10, 773-778 (1992) and in R. S. McDowell, et al., J. Amer. Chem. Soc. 114, 9245-9253 (1992), both of which are incorporated herein by reference. Such fragments may be fused to carrier molecules such as immunoglobulins for many purposes, including increasing the valency of protein binding sites.

The present invention also provides both full-length and mature forms (for example, without a signal sequence or precursor sequence) of the disclosed proteins. The protein coding sequence is identified in the sequence listing by translation of the disclosed nucleotide sequences. The mature form of such protein may be obtained by expression of a full-length polynucleotide in a suitable mammalian cell or other host cell. The sequence of the mature form of the protein is also determinable from the amino acid sequence of the full-length form. Where proteins of the present invention are membrane bound, soluble forms of the proteins are also provided. In such forms, part or all of the regions causing the proteins to be membrane bound are deleted so that the proteins are fully secreted from the cell in which they are expressed.

Protein compositions of the present invention may further comprise an acceptable carrier, such as a hydrophilic, e.g., pharmaceutically acceptable, carrier.

The present invention further provides isolated polypeptides encoded by the nucleic acid fragments of the present invention or by degenerate variants of the nucleic acid fragments of the present invention. By "degenerate variant" is intended nucleotide fragments which differ from a nucleic acid fragment of the present invention (e.g., an ORF) by nucleotide sequence but, due to the degeneracy of the genetic code, encode an identical polypeptide sequence. Preferred nucleic acid fragments of the present invention are the ORFs that encode proteins.

A variety of methodologies known in the art can be utilized to obtain any one of the isolated polypeptides or proteins of the present invention. At the simplest level, the amino acid sequence can be synthesized using commercially available peptide synthesizers. The synthetically-constructed protein sequences, by virtue of sharing primary, secondary or tertiary structural and/or conformational characteristics with proteins may possess biological properties in common therewith, including protein activity. This technique is particularly useful in producing small peptides and fragments of larger polypeptides. Fragments are useful, for example, in generating antibodies against the native polypeptide. Thus, they may be employed as biologically active or immunological substitutes for natural, purified proteins in screening of therapeutic compounds and in immunological processes for the development of antibodies.

5

10

15

20.

25

30

35

The polypeptides and proteins of the present invention can alternatively be purified from cells which have been altered to express the desired polypeptide or protein. As used herein, a cell is said to be altered to express a desired polypeptide or protein when the cell, through genetic manipulation, is made to produce a polypeptide or protein which it normally does not produce or which the cell normally produces at a lower level. One skilled in the art can readily adapt procedures for introducing and expressing either recombinant or synthetic sequences into eukaryotic or prokaryotic cells in order to generate a cell which produces one of the polypeptides or proteins of the present invention.

The invention also relates to methods for producing a polypeptide comprising growing a culture of host cells of the invention in a suitable culture medium, and purifying the protein from the cells or the culture in which the cells are grown. For example, the methods of the invention include a process for producing a polypeptide in which a host cell containing a suitable expression vector that includes a polynucleotide of the invention is cultured under conditions that allow expression of the encoded polypeptide. The polypeptide can be recovered from the culture, conveniently from the culture medium, or from a lysate prepared from the host cells and further purified. Preferred embodiments include those in which the protein produced by such process is a full length or mature form of the protein.

In an alternative method, the polypeptide or protein is purified from bacterial cells which naturally produce the polypeptide or protein. One skilled in the art can readily follow known methods for isolating polypeptides and proteins in order to obtain one of the isolated polypeptides or proteins of the present invention. These include, but are not limited to, immunochromatography, HPLC, size-exclusion chromatography, ion-exchange chromatography, and immuno-affinity chromatography. See, e.g., Scopes, Protein Purification: Principles and Practice, Springer-Verlag (1994); Sambrook, et al., in Molecular Cloning: A Laboratory Manual; Ausubel et al., Current Protocols in Molecular Biology. Polypeptide fragments that

retain biological/immunological activity include fragments comprising greater than about 100 amino acids, or greater than about 200 amino acids, and fragments that encode specific protein domains.

The purified polypeptides can be used in *in vitro* binding assays which are well known in the art to identify molecules which bind to the polypeptides. These molecules include but are not limited to, for *e.g.*, small molecules, molecules from combinatorial libraries, antibodies or other proteins. The molecules identified in the binding assay are then tested for antagonist or agonist activity in *in vivo* tissue culture or animal models that are well known in the art. In brief, the molecules are titrated into a plurality of cell cultures or animals and then tested for either cell/animal death or prolonged survival of the animal/cells.

In addition, the peptides of the invention or molecules capable of binding to the peptides may be complexed with toxins, e.g., ricin or cholera, or with other compounds that are toxic to cells. The toxin-binding molecule complex is then targeted to a tumor or other cell by the specificity of the binding molecule for SEQ ID NO:1010-2018.

The protein of the invention may also be expressed as a product of transgenic animals, e.g., as a component of the milk of transgenic cows, goats, pigs, or sheep which are characterized by somatic or germ cells containing a nucleotide sequence encoding the protein.

The proteins provided herein also include proteins characterized by amino acid sequences similar to those of purified proteins but into which modification are naturally provided or deliberately engineered. For example, modifications, in the peptide or DNA sequence, can be made by those skilled in the art using known techniques. Modifications of interest in the protein sequences may include the alteration, substitution, replacement, insertion or deletion of a selected amino acid residue in the coding sequence. For example, one or more of the cysteine residues may be deleted or replaced with another amino acid to alter the conformation of the molecule. Techniques for such alteration, substitution, replacement, insertion or deletion are well known to those skilled in the art (see, e.g., U.S. Pat. No. 4,518,584). Preferably, such alteration, substitution, replacement, insertion or deletion retains the desired activity of the protein. Regions of the protein that are important for the protein function can be determined by various methods known in the art including the alanine-scanning method which involved systematic substitution of single or strings of amino acids with alanine, followed by testing the resulting alanine-containing variant for biological activity. This type of analysis determines the importance of the substituted amino acid(s) in biological activity. Regions of the protein that are important for protein function may be determined by the eMATRIX program.

Other fragments and derivatives of the sequences of proteins which would be expected to retain protein activity in whole or in part and are useful for screening or other immunological

30

35

30

5

10

15

20

methodologies may also be easily made by those skilled in the art given the disclosures herein. Such modifications are encompassed by the present invention.

The protein may also be produced by operably linking the isolated polynucleotide of the invention to suitable control sequences in one or more insect expression vectors, and employing an insect expression system. Materials and methods for baculovirus/insect cell expression systems are commercially available in kit form from, e.g., Invitrogen, San Diego, Calif., U.S.A. (the MaxBatTM kit), and such methods are well known in the art, as described in Summers and Smith, Texas Agricultural Experiment Station Bulletin No. 1555 (1987), incorporated herein by reference. As used herein, an insect cell capable of expressing a polynucleotide of the present invention is "transformed."

5

10

15

20

25

30

The protein of the invention may be prepared by culturing transformed host cells under culture conditions suitable to express the recombinant protein. The resulting expressed protein may then be purified from such culture (*i.e.*, from culture medium or cell extracts) using known purification processes, such as gel filtration and ion exchange chromatography. The purification of the protein may also include an affinity column containing agents which will bind to the protein; one or more column steps over such affinity resins as concanavalin A-agarose, heparin-toyopearlTM or Cibacrom blue 3GA SepharoseTM; one or more steps involving hydrophobic interaction chromatography using such resins as phenyl ether, butyl ether, or propyl ether; or immunoaffinity chromatography.

Alternatively, the protein of the invention may also be expressed in a form which will facilitate purification. For example, it may be expressed as a fusion protein, such as those of maltose binding protein (MBP), glutathione-S-transferase (GST) or thioredoxin (TRX), or as a His tag. Kits for expression and purification of such fusion proteins are commercially available from New England BioLab (Beverly, Mass.), Pharmacia (Piscataway, N.J.) and Invitrogen, respectively. The protein can also be tagged with an epitope and subsequently purified by using a specific antibody directed to such epitope. One such epitope ("FLAG®") is commercially available from Kodak (New Haven, Conn.).

Finally, one or more reverse-phase high performance liquid chromatography (RP-HPLC) steps employing hydrophobic RP-HPLC media, e.g., silica gel having pendant methyl or other aliphatic groups, can be employed to further purify the protein. Some or all of the foregoing purification steps, in various combinations, can also be employed to provide a substantially homogeneous isolated recombinant protein. The protein thus purified is substantially free of other mammalian proteins and is defined in accordance with the present invention as an "isolated protein."

The polypeptides of the invention include analogs (variants). This embraces fragments, as well as peptides in which one or more amino acids has been deleted, inserted, or substituted. Also, analogs of the polypeptides of the invention embrace fusions of the polypeptides or modifications of the polypeptides of the invention, wherein the polypeptide or analog is fused to another moiety or moieties, *e.g.*, targeting moiety or another therapeutic agent. Such analogs may exhibit improved properties such as activity and/or stability. Examples of moieties which may be fused to the polypeptide or an analog include, for example, targeting moieties which provide for the delivery of polypeptide to pancreatic cells, *e.g.*, antibodies to pancreatic cells, antibodies to immune cells such as T-cells, monocytes, dendritic cells, granulocytes, etc., as well as receptor and ligands expressed on pancreatic or immune cells. Other moieties which may be fused to the polypeptide include therapeutic agents which are used for treatment, for example, immunosuppressive drugs such as cyclosporin, SK506, azathioprine, CD3 antibodies and steroids. Also, polypeptides may be fused to immune modulators, and other cytokines such as alpha or beta interferon.

15

35

10

5

4.6.1 DETERMINING POLYPEPTIDE AND POLYNUCLEOTIDE IDENTITY AND SIMILARITY

Preferred identity and/or similarity are designed to give the largest match between the sequences tested. Methods to determine identity and similarity are codified in computer 20 programs including, but are not limited to, the GCG program package, including GAP (Devereux, J., et al., Nucleic Acids Research 12(1):387 (1984); Genetics Computer Group, University of Wisconsin, Madison, WI), BLASTP, BLASTN, BLASTX, FASTA (Altschul, S.F. et al., J. Molec. Biol. 215:403-410 (1990), PSI-BLAST (Altschul S.F. et al., Nucleic Acids Res. vol. 25, pp. 3389-3402, herein incorporated by reference), eMatrix software (Wu et al., J. Comp. 25 Biol., Vol. 6, pp. 219-235 (1999), herein incorporated by reference), eMotif software (Nevill-Manning et al, ISMB-97, Vol. 4, pp. 202-209, herein incorporated by reference), pFam software (Sonnhammer et al., Nucleic Acids Res., Vol. 26(1), pp. 320-322 (1998), herein incorporated by reference) and the Kyte-Doolittle hydrophobocity prediction algorithm (J. Mol Biol, 157, pp. 105-31 (1982), incorporated herein by reference). The BLAST programs are publicly available 30 from the National Center for Biotechnology Information (NCBI) and other sources (BLAST Manual, Altschul, S., et al. NCB NLM NIH Bethesda, MD 20894; Altschul, S., et al., J. Mol. Biol. 215:403-410 (1990).

4.7 CHIMERIC AND FUSION PROTEINS

The invention also provides chimeric or fusion proteins. As used herein, a "chimeric protein" or "fusion protein" comprises a polypeptide of the invention operatively linked to

another polypeptide. Within a fusion protein the polypeptide according to the invention can correspond to all or a portion of a protein according to the invention. In one embodiment, a fusion protein comprises at least one biologically active portion of a protein according to the invention. In another embodiment, a fusion protein comprises at least two biologically active portions of a protein according to the invention. Within the fusion protein, the term "operatively linked" is intended to indicate that the polypeptide according to the invention and the other polypeptide are fused in-frame to each other. The polypeptide can be fused to the N-terminus or C-terminus.

5

10

30

35

For example, in one embodiment a fusion protein comprises a polypeptide according to the invention operably linked to the extracellular domain of a second protein.

In another embodiment, the fusion protein is a GST-fusion protein in which the polypeptide sequences of the invention are fused to the C-terminus of the GST (i.e., glutathione S-transferase) sequences.

In another embodiment, the fusion protein is an immunoglobulin fusion protein in which
the polypeptide sequences according to the invention comprises one or more domains are fused
to sequences derived from a member of the immunoglobulin protein family. The
immunoglobulin fusion proteins of the invention can be incorporated into pharmaceutical
compositions and administered to a subject to inhibit an interaction between a ligand and a
protein of the invention on the surface of a cell, to thereby suppress signal transduction *in vivo*.

The immunoglobulin fusion proteins can be used to affect the bioavailability of a cognate ligand.
Inhibition of the ligand/protein interaction may be useful therapeutically for both the treatment of
proliferative and differentiative disorders, *e,g.*, cancer as well as modulating (*e.g.*, promoting or
inhibiting) cell survival. Moreover, the immunoglobulin fusion proteins of the invention can be
used as immunogens to produce antibodies in a subject, to purify ligands, and in screening assays
to identify molecules that inhibit the interaction of a polypeptide of the invention with a ligand.

A chimeric or fusion protein of the invention can be produced by standard recombinant DNA techniques. For example, DNA fragments coding for the different polypeptide sequences are ligated together in-frame in accordance with conventional techniques, *e.g.*, by employing blunt-ended or stagger-ended termini for ligation, restriction enzyme digestion to provide for appropriate termini, filling-in of cohesive ends as appropriate, alkaline phosphatase treatment to avoid undesirable joining, and enzymatic ligation. In another embodiment, the fusion gene can be synthesized by conventional techniques including automated DNA synthesizers. Alternatively, PCR amplification of gene fragments can be carried out using anchor primers that give rise to complementary overhangs between two consecutive gene fragments that can subsequently be annealed and reamplified to generate a chimeric gene sequence (see, for

example, Ausubel et al. (eds.) CURRENT PROTOCOLS IN MOLECULAR BIOLOGY, John Wiley & Sons, 1992). Moreover, many expression vectors are commercially available that already encode a fusion moiety (e.g., a GST polypeptide). A nucleic acid encoding a polypeptide of the invention can be cloned into such an expression vector such that the fusion moiety is linked in-frame to the protein of the invention.

4.8 GENE THERAPY

5

30

Mutations in the polynucleotides of the invention gene may result in loss of normal function of the encoded protein. The invention thus provides gene therapy to restore normal 10 activity of the polypeptides of the invention; or to treat disease states involving polypeptides of the invention. Delivery of a functional gene encoding polypeptides of the invention to appropriate cells is effected ex vivo, in situ, or in vivo by use of vectors, and more particularly viral vectors (e.g., adenovirus, adeno-associated virus, or a retrovirus), or ex vivo by use of physical DNA transfer methods (e.g., liposomes or chemical treatments). See, for example, 15 Anderson, Nature, supplement to vol. 392, no. 6679, pp.25-20 (1998). For additional reviews of gene therapy technology see Friedmann, Science, 244: 1275-1281 (1989); Verma, Scientific American: 68-84 (1990); and Miller, Nature, 357: 455-460 (1992). Introduction of any one of the nucleotides of the present invention or a gene encoding the polypeptides of the present invention can also be accomplished with extrachromosomal substrates (transient expression) or 20 artificial chromosomes (stable expression). Cells may also be cultured ex vivo in the presence of proteins of the present invention in order to proliferate or to produce a desired effect on or activity in such cells. Treated cells can then be introduced in vivo for therapeutic purposes. Alternatively, it is contemplated that in other human disease states, preventing the expression of or inhibiting the activity of polypeptides of the invention will be useful in treating the disease 25 states. It is contemplated that antisense therapy or gene therapy could be applied to negatively regulate the expression of polypeptides of the invention.

Other methods inhibiting expression of a protein include the introduction of antisense molecules to the nucleic acids of the present invention, their complements, or their translated RNA sequences, by methods known in the art. Further, the polypeptides of the present invention can be inhibited by using targeted deletion methods, or the insertion of a negative regulatory element such as a silencer, which is tissue specific.

The present invention still further provides cells genetically engineered in vivo to express the polynucleotides of the invention, wherein such polynucleotides are in operative association with a regulatory sequence heterologous to the host cell which drives expression of the polynucleotides in

the cell. These methods can be used to increase or decrease the expression of the polynucleotides of the present invention.

Knowledge of DNA sequences provided by the invention allows for modification of cells to permit, increase, or decrease, expression of endogenous polypeptide. Cells can be modified (e.g., by homologous recombination) to provide increased polypeptide expression by replacing, in whole or 5 in part, the naturally occurring promoter with all or part of a heterologous promoter so that the cells express the protein at higher levels. The heterologous promoter is inserted in such a manner that it is operatively linked to the desired protein encoding sequences. See, for example, PCT International Publication No. WO 94/12650, PCT International Publication No. WO 92/20808, and PCT 10 International Publication No. WO 91/09955. It is also contemplated that, in addition to heterologous promoter DNA, amplifiable marker DNA (e.g., ada, dhfr, and the multifunctional CAD gene which encodes carbamyl phosphate synthase, aspartate transcarbamylase, and dihydroorotase) and/or intron DNA may be inserted along with the heterologous promoter DNA. If linked to the desired protein coding sequence, amplification of the marker DNA by standard selection methods results in 15 co-amplification of the desired protein coding sequences in the cells.

In another embodiment of the present invention, cells and tissues may be engineered to express an endogenous gene comprising the polynucleotides of the invention under the control of inducible regulatory elements, in which case the regulatory sequences of the endogenous gene may be replaced by homologous recombination. As described herein, gene targeting can be used to replace a gene's existing regulatory region with a regulatory sequence isolated from a different gene or a novel regulatory sequence synthesized by genetic engineering methods. Such regulatory sequences may be comprised of promoters, enhancers, scaffold-attachment regions, negative regulatory elements, transcriptional initiation sites, regulatory protein binding sites or combinations of said sequences. Alternatively, sequences which affect the structure or stability of the RNA or protein produced may be replaced, removed, added, or otherwise modified by targeting. These sequences include polyadenylation signals, mRNA stability elements, splice sites, leader sequences for enhancing or modifying transport or secretion properties of the protein, or other sequences which alter or improve the function or stability of protein or RNA molecules.

20

25

30

35

The targeting event may be a simple insertion of the regulatory sequence, placing the gene under the control of the new regulatory sequence, e.g., inserting a new promoter or enhancer or both upstream of a gene. Alternatively, the targeting event may be a simple deletion of a regulatory element, such as the deletion of a tissue-specific negative regulatory element. Alternatively, the targeting event may replace an existing element; for example, a tissue-specific enhancer can be replaced by an enhancer that has broader or different cell-type specificity than the naturally occurring elements. Here, the naturally occurring sequences are deleted and new sequences are

added. In all cases, the identification of the targeting event may be facilitated by the use of one or more selectable marker genes that are contiguous with the targeting DNA, allowing for the selection of cells in which the exogenous DNA has integrated into the cell genome. The identification of the targeting event may also be facilitated by the use of one or more marker genes exhibiting the property of negative selection, such that the negatively selectable marker is linked to the exogenous DNA, but configured such that the negatively selectable marker flanks the targeting sequence, and such that a correct homologous recombination event with sequences in the host cell genome does not result in the stable integration of the negatively selectable marker. Markers useful for this purpose include the Herpes Simplex Virus thymidine kinase (TK) gene or the bacterial xanthine-guanine phosphoribosyl-transferase (gpt) gene.

The gene targeting or gene activation techniques which can be used in accordance with this aspect of the invention are more particularly described in U.S. Patent No. 5,272,071 to Chappel; U.S. Patent No. 5,578,461 to Sherwin et al.; International Application No. PCT/US92/09627 (WO93/09222) by Selden et al.; and International Application No. PCT/US90/06436 (WO91/06667) by Skoultchi et al., each of which is incorporated by reference herein in its entirety.

4.9 TRANSGENIC ANIMALS

5

10

15

20

25

30

35

In preferred methods to determine biological functions of the polypeptides of the invention in vivo, one or more genes provided by the invention are either over expressed or inactivated in the germ line of animals using homologous recombination [Capecchi, Science 244:1288-1292 (1989)]. Animals in which the gene is over expressed, under the regulatory control of exogenous or endogenous promoter elements, are known as transgenic animals. Animals in which an endogenous gene has been inactivated by homologous recombination are referred to as "knockout" animals. Knockout animals, preferably non-human mammals, can be prepared as described in U.S. Patent No. 5,557,032, incorporated herein by reference. Transgenic animals are useful to determine the roles polypeptides of the invention play in biological processes, and preferably in disease states. Transgenic animals are useful as model systems to identify compounds that modulate lipid metabolism. Transgenic animals, preferably non-human mammals, are produced using methods as described in U.S. Patent No 5,489,743 and PCT Publication No. WO94/28122, incorporated herein by reference.

Transgenic animals can be prepared wherein all or part of a promoter of the polynucleotides of the invention is either activated or inactivated to alter the level of expression of the polypeptides of the invention. Inactivation can be carried out using homologous recombination methods described above. Activation can be achieved by supplementing or even replacing the homologous promoter to provide for increased protein expression. The homologous

36

promoter can be supplemented by insertion of one or more heterologous enhancer elements known to confer promoter activation in a particular tissue.

The polynucleotides of the present invention also make possible the development, through, e.g., homologous recombination or knock out strategies, of animals that fail to express polypeptides of the invention or that express a variant polypeptide. Such animals are useful as models for studying the *in vivo* activities of polypeptide as well as for studying modulators of the polypeptides of the invention.

In preferred methods to determine biological functions of the polypeptides of the invention *in vivo*, one or more genes provided by the invention are either over expressed or inactivated in the germ line of animals using homologous recombination [Capecchi, Science 244:1288-1292 (1989)]. Animals in which the gene is over expressed, under the regulatory control of exogenous or endogenous promoter elements, are known as transgenic animals. Animals in which an endogenous gene has been inactivated by homologous recombination are referred to as "knockout" animals. Knockout animals, preferably non-human mammals, can be prepared as described in U.S. Patent No. 5,557,032, incorporated herein by reference. Transgenic animals are useful to determine the roles polypeptides of the invention play in biological processes, and preferably in disease states. Transgenic animals are useful as model systems to identify compounds that modulate lipid metabolism. Transgenic animals, preferably non-human mammals, are produced using methods as described in U.S. Patent No 5,489,743 and PCT Publication No. WO94/28122, incorporated herein by reference.

Transgenic animals can be prepared wherein all or part of the polynucleotides of the invention promoter is either activated or inactivated to alter the level of expression of the polypeptides of the invention. Inactivation can be carried out using homologous recombination methods described above. Activation can be achieved by supplementing or even replacing the homologous promoter to provide for increased protein expression. The homologous promoter can be supplemented by insertion of one or more heterologous enhancer elements known to confer promoter activation in a particular tissue.

4.10 USES AND BIOLOGICAL ACTIVITY

10

15

20

25

30

35

The polynucleotides and proteins of the present invention are expected to exhibit one or more of the uses or biological activities (including those associated with assays cited herein) identified herein. Uses or activities described for proteins of the present invention may be provided by administration or use of such proteins or of polynucleotides encoding such proteins (such as, for example, in gene therapies or vectors suitable for introduction of DNA). The mechanism underlying the particular condition or pathology will dictate whether the

polypeptides of the invention, the polynucleotides of the invention or modulators (activators or inhibitors) thereof would be beneficial to the subject in need of treatment. Thus, "therapeutic compositions of the invention" include compositions comprising isolated polynucleotides (including recombinant DNA molecules, cloned genes and degenerate variants thereof) or polypeptides of the invention (including full length protein, mature protein and truncations or domains thereof), or compounds and other substances that modulate the overall activity of the target gene products, either at the level of target gene/protein expression or target protein activity. Such modulators include polypeptides, analogs, (variants), including fragments and fusion proteins, antibodies and other binding proteins; chemical compounds that directly or indirectly activate or inhibit the polypeptides of the invention (identified, e.g., via drug screening assays as described herein); antisense polynucleotides and polynucleotides suitable for triple helix formation; and in particular antibodies or other binding partners that specifically recognize one or more epitopes of the polypeptides of the invention.

The polypeptides of the present invention may likewise be involved in cellular activation or in one of the other physiological pathways described herein.

4.10.1 RESEARCH USES AND UTILITIES

5

10

15

20

25

30

35

The polynucleotides provided by the present invention can be used by the research community for various purposes. The polynucleotides can be used to express recombinant protein for analysis, characterization or therapeutic use; as markers for tissues in which the corresponding protein is preferentially expressed (either constitutively or at a particular stage of tissue differentiation or development or in disease states); as molecular weight markers on gels; as chromosome markers or tags (when labeled) to identify chromosomes or to map related gene positions; to compare with endogenous DNA sequences in patients to identify potential genetic disorders; as probes to hybridize and thus discover novel, related DNA sequences; as a source of information to derive PCR primers for genetic fingerprinting; as a probe to "subtract-out" known sequences in the process of discovering other novel polynucleotides; for selecting and making oligomers for attachment to a "gene chip" or other support, including for examination of expression patterns; to raise anti-protein antibodies using DNA immunization techniques; and as an antigen to raise anti-DNA antibodies or elicit another immune response. Where the polynucleotide encodes a protein which binds or potentially binds to another protein (such as, for example, in a receptor-ligand interaction), the polynucleotide can also be used in interaction trap assays (such as, for example, that described in Gyuris et al., Cell 75:791-803 (1993)) to identify polynucleotides encoding the other protein with which binding occurs or to identify inhibitors of the binding interaction.

The polypeptides provided by the present invention can similarly be used in assays to determine biological activity, including in a panel of multiple proteins for high-throughput screening; to raise antibodies or to elicit another immune response; as a reagent (including the labeled reagent) in assays designed to quantitatively determine levels of the protein (or its receptor) in biological fluids; as markers for tissues in which the corresponding polypeptide is preferentially expressed (either constitutively or at a particular stage of tissue differentiation or development or in a disease state); and, of course, to isolate correlative receptors or ligands. Proteins involved in these binding interactions can also be used to screen for peptide or small molecule inhibitors or agonists of the binding interaction.

Any or all of these research utilities are capable of being developed into reagent grade or kit format for commercialization as research products.

Methods for performing the uses listed above are well known to those skilled in the art. References disclosing such methods include without limitation "Molecular Cloning: A Laboratory Manual", 2d ed., Cold Spring Harbor Laboratory Press, Sambrook, J., E. F. Fritsch and T. Maniatis eds., 1989, and "Methods in Enzymology: Guide to Molecular Cloning Techniques", Academic Press, Berger, S. L. and A. R. Kimmel eds., 1987.

4.10.2 NUTRITIONAL USES

5

10

15

20

25

30

35

Polynucleotides and polypeptides of the present invention can also be used as nutritional sources or supplements. Such uses include without limitation use as a protein or amino acid supplement, use as a carbon source, use as a nitrogen source and use as a source of carbohydrate. In such cases the polypeptide or polynucleotide of the invention can be added to the feed of a particular organism or can be administered as a separate solid or liquid preparation, such as in the form of powder, pills, solutions, suspensions or capsules. In the case of microorganisms, the polypeptide or polynucleotide of the invention can be added to the medium in or on which the microorganism is cultured.

4.10.3 CYTOKINE AND CELL PROLIFERATION/DIFFERENTIATION ACTIVITY

A polypeptide of the present invention may exhibit activity relating to cytokine, cell proliferation (either inducing or inhibiting) or cell differentiation (either inducing or inhibiting) activity or may induce production of other cytokines in certain cell populations. A polynucleotide of the invention can encode a polypeptide exhibiting such attributes. Many protein factors discovered to date, including all known cytokines, have exhibited activity in one or more factor-dependent cell proliferation assays, and hence the assays serve as a convenient

confirmation of cytokine activity. The activity of therapeutic compositions of the present invention is evidenced by any one of a number of routine factor dependent cell proliferation assays for cell lines including, without limitation, 32D, DA2, DA1G, T10, B9, B9/11, BaF3, MC9/G, M+(preB M+), 2E8, RB5, DA1, 123, T1165, HT2, CTLL2, TF-1, Mo7e, CMK, HUVEC, and Caco. Therapeutic compositions of the invention can be used in the following:

5

10

15

35

Assays for T-cell or thymocyte proliferation include without limitation those described in: Current Protocols in Immunology, Ed by J. E. Coligan, A. M. Kruisbeek, D. H. Margulies, E. M. Shevach, W. Strober, Pub. Greene Publishing Associates and Wiley-Interscience (Chapter 3, *In Vitro* assays for Mouse Lymphocyte Function 3.1-3.19; Chapter 7, Immunologic studies in Humans); Takai et al., J. Immunol. 137:3494-3500, 1986; Bertagnolli et al., J. Immunol. 145:1706-1712, 1990; Bertagnolli et al., Cellular Immunology 133:327-341, 1991; Bertagnolli, et al., I. Immunol. 149:3778-3783, 1992; Bowman et al., I. Immunol. 152:1756-1761, 1994.

Assays for cytokine production and/or proliferation of spleen cells, lymph node cells or thymocytes include, without limitation, those described in: Polyclonal T cell stimulation, Kruisbeek, A. M. and Shevach, E. M. In Current Protocols in Immunology. J. E. e.a. Coligan eds. Vol 1 pp. 3.12.1-3.12.14, John Wiley and Sons, Toronto. 1994; and Measurement of mouse and human interleukin-γ, Schreiber, R. D. In Current Protocols in Immunology. J. E. e.a. Coligan eds. Vol 1 pp. 6.8.1-6.8.8, John Wiley and Sons, Toronto. 1994.

Assays for proliferation and differentiation of hematopoietic and lymphopoietic cells 20 include, without limitation, those described in: Measurement of Human and Murine Interleukin 2 and Interleukin 4, Bottomly, K., Davis, L. S. and Lipsky, P. E. In Current Protocols in Immunology. J. E. e.a. Coligan eds. Vol 1 pp. 6.3.1-6.3.12, John Wiley and Sons, Toronto. 1991; deVries et al., J. Exp. Med. 173:1205-1211, 1991; Moreau et al., Nature 336:690-692, 1988; Greenberger et al., Proc. Natl. Acad. Sci. U.S.A. 80:2931-2938, 1983; Measurement of mouse 25 and human interleukin 6--Nordan, R. In Current Protocols in Immunology. J. E. Coligan eds. Vol 1 pp. 6.6.1-6.6.5, John Wiley and Sons, Toronto. 1991; Smith et al., Proc. Natl. Aced. Sci. U.S.A. 83:1857-1861, 1986; Measurement of human Interleukin 11--Bennett, F., Giannotti, J., Clark, S. C. and Turner, K. J. In Current Protocols in Immunology. J. E. Coligan eds. Vol 1 pp. 6.15.1 John Wiley and Sons, Toronto. 1991; Measurement of mouse and human Interleukin 30 9--Ciarletta, A., Giannotti, J., Clark, S. C. and Turner, K. J. In Current Protocols in Immunology. J. E. Coligan eds. Vol 1 pp. 6.13.1, John Wiley and Sons, Toronto. 1991.

Assays for T-cell clone responses to antigens (which will identify, among others, proteins that affect APC-T cell interactions as well as direct T-cell effects by measuring proliferation and cytokine production) include, without limitation, those described in: Current Protocols in Immunology, Ed by J. E. Coligan, A. M. Kruisbeek, D. H. Margulies, E. M. Shevach, W Strober,

Pub. Greene Publishing Associates and Wiley-Interscience (Chapter 3, *In Vitro* assays for Mouse Lymphocyte Function; Chapter 6, Cytokines and their cellular receptors; Chapter 7, Immunologic studies in Humans); Weinberger et al., Proc. Natl. Acad. Sci. USA 77:6091-6095, 1980; Weinberger et al., Eur. J. Immun. 11:405-411, 1981; Takai et al., J. Immunol. 137:3494-3500, 1986; Takai et al., J. Immunol. 140:508-512, 1988.

4.10.4 STEM CELL GROWTH FACTOR ACTIVITY

5

10

15

20

25

30

35

A polypeptide of the present invention may exhibit stem cell growth factor activity and be involved in the proliferation, differentiation and survival of pluripotent and totipotent stem cells including primordial germ cells, embryonic stem cells, hematopoietic stem cells and/or germ line stem cells. Administration of the polypeptide of the invention to stem cells in vivo or ex vivo is expected to maintain and expand cell populations in a totipotential or pluripotential state which would be useful for re-engineering damaged or diseased tissues, transplantation, manufacture of bio-pharmaceuticals and the development of bio-sensors. The ability to produce large quantities of human cells has important working applications for the production of human proteins which currently must be obtained from non-human sources or donors, implantation of cells to treat diseases such as Parkinson's, Alzheimer's and other neurodegenerative diseases; tissues for grafting such as bone marrow, skin, cartilage, tendons, bone, muscle (including cardiac muscle), blood vessels, cornea, neural cells, gastrointestinal cells and others; and organs for transplantation such as kidney, liver, pancreas (including islet cells), heart and lung.

It is contemplated that multiple different exogenous growth factors and/or cytokines may be administered in combination with the polypeptide of the invention to achieve the desired effect, including any of the growth factors listed herein, other stem cell maintenance factors, and specifically including stem cell factor (SCF), leukemia inhibitory factor (LIF), Flt-3 ligand (Flt-3L), any of the interleukins, recombinant soluble IL-6 receptor fused to IL-6, macrophage inflammatory protein 1-alpha (MIP-1-alpha), G-CSF, GM-CSF, thrombopoietin (TPO), platelet factor 4 (PF-4), platelet-derived growth factor (PDGF), neural growth factors and basic fibroblast growth factor (bFGF).

Since totipotent stem cells can give rise to virtually any mature cell type, expansion of these cells in culture will facilitate the production of large quantities of mature cells. Techniques for culturing stem cells are known in the art and administration of polypeptides of the invention, optionally with other growth factors and/or cytokines, is expected to enhance the survival and proliferation of the stem cell populations. This can be accomplished by direct administration of the polypeptide of the invention to the culture medium. Alternatively, stroma cells transfected with a polynucleotide that encodes for the polypeptide of the invention can be used as a feeder

41

5

10

15

20

· 25

30

35

layer for the stem cell populations in culture or in vivo. Stromal support cells for feeder layers may include embryonic bone marrow fibroblasts, bone marrow stromal cells, fetal liver cells, or cultured embryonic fibroblasts (see U.S. Patent No. 5,690,926).

Stem cells themselves can be transfected with a polynucleotide of the invention to induce autocrine expression of the polypeptide of the invention. This will allow for generation of undifferentiated totipotential/pluripotential stem cell lines that are useful as is or that can then be differentiated into the desired mature cell types. These stable cell lines can also serve as a source of undifferentiated totipotential/pluripotential mRNA to create cDNA libraries and templates for polymerase chain reaction experiments. These studies would allow for the isolation and identification of differentially expressed genes in stem cell populations that regulate stem cell proliferation and/or maintenance.

Expansion and maintenance of totipotent stem cell populations will be useful in the treatment of many pathological conditions. For example, polypeptides of the present invention may be used to manipulate stem cells in culture to give rise to neuroepithelial cells that can be used to augment or replace cells damaged by illness, autoimmune disease, accidental damage or genetic disorders. The polypeptide of the invention may be useful for inducing the proliferation of neural cells and for the regeneration of nerve and brain tissue, *i.e.* for the treatment of central and peripheral nervous system diseases and neuropathies, as well as mechanical and traumatic disorders which involve degeneration, death or trauma to neural cells or nerve tissue. In addition, the expanded stem cell populations can also be genetically altered for gene therapy purposes and to decrease host rejection of replacement tissues after grafting or implantation.

Expression of the polypeptide of the invention and its effect on stem cells can also be manipulated to achieve controlled differentiation of the stem cells into more differentiated cell types. A broadly applicable method of obtaining pure populations of a specific differentiated cell type from undifferentiated stem cell populations involves the use of a cell-type specific promoter driving a selectable marker. The selectable marker allows only cells of the desired type to survive. For example, stem cells can be induced to differentiate into cardiomyocytes (Wobus et al., Differentiation, 48: 173-182, (1991); Klug et al., J. Clin. Invest., 98(1): 216-224, (1998)) or skeletal muscle cells (Browder, L. W. In: *Principles of Tissue Engineering eds*. Lanza et al., Academic Press (1997)). Alternatively, directed differentiation of stem cells can be accomplished by culturing the stem cells in the presence of a differentiation factor such as retinoic acid and an antagonist of the polypeptide of the invention which would inhibit the effects of endogenous stem cell factor activity and allow differentiation to proceed.

In vitro cultures of stem cells can be used to determine if the polypeptide of the invention exhibits stem cell growth factor activity. Stem cells are isolated from any one of various cell

sources (including hematopoietic stem cells and embryonic stem cells) and cultured on a feeder layer, as described by Thompson et al. Proc. Natl. Acad. Sci, U.S.A., 92: 7844-7848 (1995), in the presence of the polypeptide of the invention alone or in combination with other growth factors or cytokines. The ability of the polypeptide of the invention to induce stem cells proliferation is determined by colony formation on semi-solid support *e.g.* as described by Bernstein et al., Blood, 77: 2316-2321 (1991).

4.10.5 HEMATOPOIESIS REGULATING ACTIVITY

5

30

35

A polypeptide of the present invention may be involved in regulation of hematopoiesis 10 and, consequently, in the treatment of myeloid or lymphoid cell disorders. Even marginal biological activity in support of colony forming cells or of factor-dependent cell lines indicates involvement in regulating hematopoiesis, e.g. in supporting the growth and proliferation of erythroid progenitor cells alone or in combination with other cytokines, thereby indicating utility, for example, in treating various anemias or for use in conjunction with irradiation/chemotherapy to stimulate the production of erythroid precursors and/or erythroid 15 cells; in supporting the growth and proliferation of myeloid cells such as granulocytes and monocytes/macrophages (i.e., traditional CSF activity) useful, for example, in conjunction with chemotherapy to prevent or treat consequent myelo-suppression; in supporting the growth and proliferation of megakaryocytes and consequently of platelets thereby allowing prevention or 20 treatment of various platelet disorders such as thrombocytopenia, and generally for use in place of or complimentary to platelet transfusions; and/or in supporting the growth and proliferation of hematopoietic stem cells which are capable of maturing to any and all of the above-mentioned hematopoietic cells and therefore find therapeutic utility in various stem cell disorders (such as those usually treated with transplantation, including, without limitation, aplastic anemia and paroxysmal nocturnal hemoglobinuria), as well as in repopulating the stem cell compartment 25 post irradiation/chemotherapy, either in-vivo or ex-vivo (i.e., in conjunction with bone marrow transplantation or with peripheral progenitor cell transplantation (homologous or heterologous)) as normal cells or genetically manipulated for gene therapy.

Therapeutic compositions of the invention can be used in the following:

Suitable assays for proliferation and differentiation of various hematopoietic lines are cited above.

Assays for embryonic stem cell differentiation (which will identify, among others, proteins that influence embryonic differentiation hematopoiesis) include, without limitation, those described in: Johansson et al. Cellular Biology 15:141-151, 1995; Keller et al., Molecular and Cellular Biology 13:473-486, 1993; McClanahan et al., Blood 81:2903-2915, 1993.

Assays for stem cell survival and differentiation (which will identify, among others, proteins that regulate lympho-hematopoiesis) include, without limitation, those described in: Methylcellulose colony forming assays, Freshney, M. G. In Culture of Hematopoietic Cells. R. I. Freshney, et al. eds. Vol pp. 265-268, Wiley-Liss, Inc., New York, N.Y. 1994; Hirayama et al., Proc. Natl. Acad. Sci. USA 89:5907-5911, 1992; Primitive hematopoietic colony forming cells with high proliferative potential, McNiece, I. K. and Briddell, R. A. In Culture of Hematopoietic Cells. R. I. Freshney, et al. eds. Vol pp. 23-39, Wiley-Liss, Inc., New York, N.Y. 1994; Neben et al., Experimental Hematology 22:353-359, 1994; Cobblestone area forming cell assay, Ploemacher, R. E. In Culture of Hematopoietic Cells. R. I. Freshney, et al. eds. Vol pp. 1-21, Wiley-Liss, Inc., New York, N.Y. 1994; Long term bone marrow cultures in the presence of stromal cells, Spooncer, E., Dexter, M. and Allen, T. In Culture of Hematopoietic Cells. R. I. Freshney, et al. eds. Vol pp. 163-179, Wiley-Liss, Inc., New York, N.Y. 1994; Long term culture initiating cell assay, Sutherland, H. J. In Culture of Hematopoietic Cells. R. I. Freshney, et al. eds. Vol pp. 139-162, Wiley-Liss, Inc., New York, N.Y. 1994.

15

20

25

30

10

4.10.6 TISSUE GROWTH ACTIVITY

A polypeptide of the present invention also may be involved in bone, cartilage, tendon, ligament and/or nerve tissue growth or regeneration, as well as in wound healing and tissue repair and replacement, and in healing of burns, incisions and ulcers.

A polypeptide of the present invention which induces cartilage and/or bone growth in circumstances where bone is not normally formed, has application in the healing of bone fractures and cartilage damage or defects in humans and other animals. Compositions of a polypeptide, antibody, binding partner, or other modulator of the invention may have prophylactic use in closed as well as open fracture reduction and also in the improved fixation of artificial joints. De novo bone formation induced by an osteogenic agent contributes to the repair of congenital, trauma induced, or oncologic resection induced craniofacial defects, and also is useful in cosmetic plastic surgery.

A polypeptide of this invention may also be involved in attracting bone-forming cells, stimulating growth of bone-forming cells, or inducing differentiation of progenitors of bone-forming cells. Treatment of osteoporosis, osteoarthritis, bone degenerative disorders, or periodontal disease, such as through stimulation of bone and/or cartilage repair or by blocking inflammation or processes of tissue destruction (collagenase activity, osteoclast activity, etc.) mediated by inflammatory processes may also be possible using the composition of the invention.

5

10

15

20

25

30

35

Another category of tissue regeneration activity that may involve the polypeptide of the present invention is tendon/ligament formation. Induction of tendon/ligament-like tissue or other tissue formation in circumstances where such tissue is not normally formed, has application in the healing of tendon or ligament tears, deformities and other tendon or ligament defects in humans and other animals. Such a preparation employing a tendon/ligament-like tissue inducing protein may have prophylactic use in preventing damage to tendon or ligament tissue, as well as use in the improved fixation of tendon or ligament to bone or other tissues, and in repairing defects to tendon or ligament tissue. De novo tendon/ligament-like tissue formation induced by a composition of the present invention contributes to the repair of congenital, trauma induced, or other tendon or ligament defects of other origin, and is also useful in cosmetic plastic surgery for attachment or repair of tendons or ligaments. The compositions of the present invention may provide environment to attract tendon- or ligament-forming cells, stimulate growth of tendon- or ligament-forming cells, induce differentiation of progenitors of tendon- or ligament-forming cells, or induce growth of tendon/ligament cells or progenitors ex vivo for return in vivo to effect tissue repair. The compositions of the invention may also be useful in the treatment of tendinitis, carpal tunnel syndrome and other tendon or ligament defects. The compositions may also include an appropriate matrix and/or sequestering agent as a carrier as is well known in the art.

The compositions of the present invention may also be useful for proliferation of neural cells and for regeneration of nerve and brain tissue, *i.e.* for the treatment of central and peripheral nervous system diseases and neuropathies, as well as mechanical and traumatic disorders, which involve degeneration, death or trauma to neural cells or nerve tissue. More specifically, a composition may be used in the treatment of diseases of the peripheral nervous system, such as peripheral nerve injuries, peripheral neuropathy and localized neuropathies, and central nervous system diseases, such as Alzheimer's, Parkinson's disease, Huntington's disease, amyotrophic lateral sclerosis, and Shy-Drager syndrome. Further conditions which may be treated in accordance with the present invention include mechanical and traumatic disorders, such as spinal cord disorders, head trauma and cerebrovascular diseases such as stroke. Peripheral neuropathies resulting from chemotherapy or other medical therapies may also be treatable using a composition of the invention.

Compositions of the invention may also be useful to promote better or faster closure of non-healing wounds, including without limitation pressure ulcers, ulcers associated with vascular insufficiency, surgical and traumatic wounds, and the like.

Compositions of the present invention may also be involved in the generation or regeneration of other tissues, such as organs (including, for example, pancreas, liver, intestine,

kidney, skin, endothelium), muscle (smooth, skeletal or cardiac) and vascular (including vascular endothelium) tissue, or for promoting the growth of cells comprising such tissues. Part of the desired effects may be by inhibition or modulation of fibrotic scarring may allow normal tissue to regenerate. A polypeptide of the present invention may also exhibit angiogenic activity.

A composition of the present invention may also be useful for gut protection or regeneration and treatment of lung or liver fibrosis, reperfusion injury in various tissues, and conditions resulting from systemic cytokine damage.

A composition of the present invention may also be useful for promoting or inhibiting differentiation of tissues described above from precursor tissues or cells; or for inhibiting the growth of tissues described above.

Therapeutic compositions of the invention can be used in the following:

Assays for tissue generation activity include, without limitation, those described in: International Patent Publication No. WO95/16035 (bone, cartilage, tendon); International Patent Publication No. WO95/05846 (nerve, neuronal); International Patent Publication No.

WO91/07491 (skin, endothelium).

Assays for wound healing activity include, without limitation, those described in: Winter, Epidermal Wound Healing, pps. 71-112 (Maibach, H. I. and Rovee, D. T., eds.), Year Book Medical Publishers, Inc., Chicago, as modified by Eaglstein and Mertz, J. Invest. Dermatol 71:382-84 (1978).

20

25

30

5

10

4.10.7 IMMUNE STIMULATING OR SUPPRESSING ACTIVITY

A polypeptide of the present invention may also exhibit immune stimulating or immune suppressing activity, including without limitation the activities for which assays are described herein. A polynucleotide of the invention can encode a polypeptide exhibiting such activities. A protein may be useful in the treatment of various immune deficiencies and disorders (including severe combined immunodeficiency (SCID)), e.g., in regulating (up or down) growth and proliferation of T and/or B lymphocytes, as well as effecting the cytolytic activity of NK cells and other cell populations. These immune deficiencies may be genetic or be caused by viral (e.g., HIV) as well as bacterial or fungal infections, or may result from autoimmune disorders. More specifically, infectious diseases causes by viral, bacterial, fungal or other infection may be treatable using a protein of the present invention, including infections by HIV, hepatitis viruses, herpes viruses, mycobacteria, Leishmania spp., malaria spp. and various fungal infections such as candidiasis. Of course, in this regard, proteins of the present invention may also be useful where a boost to the immune system generally may be desirable, i.e., in the treatment of cancer.

5

10

15

20

25

30

35

Autoimmune disorders which may be treated using a protein of the present invention include, for example, connective tissue disease, multiple sclerosis, systemic lupus erythematosus. rheumatoid arthritis, autoimmune pulmonary inflammation, Guillain-Barre syndrome. autoimmune thyroiditis, insulin dependent diabetes mellitis, myasthenia gravis, graft-versus-host disease and autoimmune inflammatory eye disease. Such a protein (or antagonists thereof, including antibodies) of the present invention may also to be useful in the treatment of allergic reactions and conditions (e.g., anaphylaxis, serum sickness, drug reactions, food allergies, insect venom allergies, mastocytosis, allergic rhinitis, hypersensitivity pneumonitis, urticaria, angioedema, eczema, atopic dermatitis, allergic contact dermatitis, erythema multiforme. Stevens-Johnson syndrome, allergic conjunctivitis, atopic keratoconjunctivitis, venereal keratoconjunctivitis, giant papillary conjunctivitis and contact allergies), such as asthma (particularly allergic asthma) or other respiratory problems. Other conditions, in which immune suppression is desired (including, for example, organ transplantation), may also be treatable using a protein (or antagonists thereof) of the present invention. The therapeutic effects of the polypeptides or antagonists thereof on allergic reactions can be evaluated by in vivo animals models such as the cumulative contact enhancement test (Lastborn et al., Toxicology 125: 59-66, 1998), skin prick test (Hoffmann et al., Allergy 54: 446-54, 1999), guinea pig skin sensitization test (Vohr et al., Arch. Toxocol. 73: 501-9), and murine local lymph node assay (Kimber et al., J. Toxicol. Environ. Health 53: 563-79).

Using the proteins of the invention it may also be possible to modulate immune responses, in a number of ways. Down regulation may be in the form of inhibiting or blocking an immune response already in progress or may involve preventing the induction of an immune response. The functions of activated T cells may be inhibited by suppressing T cell responses or by inducing specific tolerance in T cells, or both. Immunosuppression of T cell responses is generally an active, non-antigen-specific, process which requires continuous exposure of the T cells to the suppressive agent. Tolerance, which involves inducing non-responsiveness or anergy in T cells, is distinguishable from immunosuppression in that it is generally antigen-specific and persists after exposure to the tolerizing agent has ceased. Operationally, tolerance can be demonstrated by the lack of a T cell response upon reexposure to specific antigen in the absence of the tolerizing agent.

Down regulating or preventing one or more antigen functions (including without limitation B lymphocyte antigen functions (such as, for example, B7)), e.g., preventing high level lymphokine synthesis by activated T cells, will be useful in situations of tissue, skin and organ transplantation and in graft-versus-host disease (GVHD). For example, blockage of T cell function should result in reduced tissue destruction in tissue transplantation. Typically, in tissue

transplants, rejection of the transplant is initiated through its recognition as foreign by T cells, followed by an immune reaction that destroys the transplant. The administration of a therapeutic composition of the invention may prevent cytokine synthesis by immune cells, such as T cells, and thus acts as an immunosuppressant. Moreover, a lack of costimulation may also be sufficient to anergize the T cells, thereby inducing tolerance in a subject. Induction of long-term tolerance by B lymphocyte antigen-blocking reagents may avoid the necessity of repeated administration of these blocking reagents. To achieve sufficient immunosuppression or tolerance in a subject, it may also be necessary to block the function of a combination of B lymphocyte antigens.

The efficacy of particular therapeutic compositions in preventing organ transplant rejection or GVHD can be assessed using animal models that are predictive of efficacy in humans. Examples of appropriate systems which can be used include allogeneic cardiac grafts in rats and xenogeneic pancreatic islet cell grafts in mice, both of which have been used to examine the immunosuppressive effects of CTLA4Ig fusion proteins in vivo as described in Lenschow et al., Science 257:789-792 (1992) and Turka et al., Proc. Natl. Acad. Sci USA, 89:11102-11105 (1992). In addition, murine models of GVHD (see Paul ed., Fundamental Immunology, Raven Press, New York, 1989, pp. 846-847) can be used to determine the effect of therapeutic compositions of the invention on the development of that disease.

Blocking antigen function may also be therapeutically useful for treating autoimmune diseases. Many autoimmune disorders are the result of inappropriate activation of T cells that are reactive against self tissue and which promote the production of cytokines and autoantibodies involved in the pathology of the diseases. Preventing the activation of autoreactive T cells may reduce or eliminate disease symptoms. Administration of reagents which block stimulation of T cells can be used to inhibit T cell activation and prevent production of autoantibodies or T cell-derived cytokines which may be involved in the disease process. Additionally, blocking reagents may induce antigen-specific tolerance of autoreactive T cells which could lead to long-term relief from the disease. The efficacy of blocking reagents in preventing or alleviating autoimmune disorders can be determined using a number of well-characterized animal models of human autoimmune diseases. Examples include murine experimental autoimmune encephalitis, systemic lupus erythmatosis in MRL/lpr/lpr mice or NZB hybrid mice, murine autoimmune collagen arthritis, diabetes mellitus in NOD mice and BB rats, and murine experimental myasthenia gravis (see Paul ed., Fundamental Immunology, Raven Press, New York, 1989, pp. 840-856).

Upregulation of an antigen function (e.g., a B lymphocyte antigen function), as a means of up regulating immune responses, may also be useful in therapy. Upregulation of immune responses may be in the form of enhancing an existing immune response or eliciting an initial

immune response. For example, enhancing an immune response may be useful in cases of viral infection, including systemic viral diseases such as influenza, the common cold, and encephalitis.

5

10

15

20

25

30

35

Alternatively, anti-viral immune responses may be enhanced in an infected patient by removing T cells from the patient, costimulating the T cells in vitro with viral antigen-pulsed APCs either expressing a peptide of the present invention or together with a stimulatory form of a soluble peptide of the present invention and reintroducing the in vitro activated T cells into the patient. Another method of enhancing anti-viral immune responses would be to isolate infected cells from a patient, transfect them with a nucleic acid encoding a protein of the present invention as described herein such that the cells express all or a portion of the protein on their surface, and reintroduce the transfected cells into the patient. The infected cells would now be capable of delivering a costimulatory signal to, and thereby activate, T cells in vivo.

A polypeptide of the present invention may provide the necessary stimulation signal to T cells to induce a T cell mediated immune response against the transfected tumor cells. In addition, tumor cells which lack MHC class I or MHC class II molecules, or which fail to reexpress sufficient mounts of MHC class I or MHC class II molecules, can be transfected with nucleic acid encoding all or a portion of (e.g., a cytoplasmic-domain truncated portion) of an MHC class I alpha chain protein and β₂ microglobulin protein or an MHC class II alpha chain protein and an MHC class II beta chain protein to thereby express MHC class I or MHC class II proteins on the cell surface. Expression of the appropriate class I or class II MHC in conjunction with a peptide having the activity of a B lymphocyte antigen (e.g., B7-1, B7-2, B7-3) induces a T cell mediated immune response against the transfected tumor cell. Optionally, a gene encoding an antisense construct which blocks expression of an MHC class II associated protein, such as the invariant chain, can also be cotransfected with a DNA encoding a peptide having the activity of a B lymphocyte antigen to promote presentation of tumor associated antigens and induce tumor specific immunity. Thus, the induction of a T cell mediated immune response in a human subject may be sufficient to overcome tumor-specific tolerance in the subject.

The activity of a protein of the invention may, among other means, be measured by the following methods:

Suitable assays for thymocyte or splenocyte cytotoxicity include, without limitation, those described in: Current Protocols in Immunology, Ed by J. E. Coligan, A. M. Kruisbeek, D. H. Margulies, E. M. Shevach, W. Strober, Pub. Greene Publishing Associates and Wiley-Interscience (Chapter 3, In Vitro assays for Mouse Lymphocyte Function 3.1-3.19; Chapter 7, Immunologic studies in Humans); Herrmann et al., Proc. Natl. Acad. Sci. USA 78:2488-2492, 1981; Herrmann et al., J. Immunol. 128:1968-1974, 1982; Handa et al., J.

Immunol. 135:1564-1572, 1985; Takai et al., I. Immunol. 137:3494-3500, 1986; Takai et al., J. Immunol. 140:508-512, 1988; Bowman et al., J. Virology 61:1992-1998; Bertagnolli et al., Cellular Immunology 133:327-341, 1991; Brown et al., J. Immunol. 153:3079-3092, 1994.

Assays for T-cell-dependent immunoglobulin responses and isotype switching (which will identify, among others, proteins that modulate T-cell dependent antibody responses and that affect Th1/Th2 profiles) include, without limitation, those described in: Maliszewski, J. Immunol. 144:3028-3033, 1990; and Assays for B cell function. In vitro antibody production, Mond, J. J. and Brunswick, M. In Current Protocols in Immunology. J. E. e.a. Coligan eds. Vol 1 pp. 3.8.1-3.8.16, John Wiley and Sons, Toronto. 1994.

Mixed lymphocyte reaction (MLR) assays (which will identify, among others, proteins that generate predominantly Th1 and CTL responses) include, without limitation, those described in: Current Protocols in Immunology, Ed by J. E. Coligan, A. M. Kruisbeek, D. H. Margulies, E. M. Shevach, W. Strober, Pub. Greene Publishing Associates and Wiley-Interscience (Chapter 3, In Vitro assays for Mouse Lymphocyte Function 3.1-3.19; Chapter 7, Immunologic studies in Humans); Takai et al., J. Immunol. 137:3494-3500, 1986; Takai et al., J. Immunol. 140:508-512, 1988; Bertagnolli et al., J. Immunol. 149:3778-3783, 1992.

Dendritic cell-dependent assays (which will identify, among others, proteins expressed by dendritic cells that activate naive T-cells) include, without limitation, those described in: Guery et al., J. Immunol. 134:536-544, 1995; Inaba et al., Journal of Experimental Medicine 173:549-559, 1991; Macatonia et al., Journal of Immunology 154:5071-5079, 1995; Porgador et al., Journal of Experimental Medicine 182:255-260, 1995; Nair et al., Journal of Virology 67:4062-4069, 1993; Huang et al., Science 264:961-965, 1994; Macatonia et al., Journal of Experimental Medicine 169:1255-1264, 1989; Bhardwaj et al., Journal of Clinical Investigation 94:797-807, 1994; and Inaba et al., Journal of Experimental Medicine 172:631-640, 1990.

Assays for lymphocyte survival/apoptosis (which will identify, among others, proteins that prevent apoptosis after superantigen induction and proteins that regulate lymphocyte homeostasis) include, without limitation, those described in: Darzynkiewicz et al., Cytometry 13:795-808, 1992; Gorczyca et al., Leukemia 7:659-670, 1993; Gorczyca et al., Cancer Research 53:1945-1951, 1993; Itoh et al., Cell 66:233-243, 1991; Zacharchuk, Journal of Immunology 145:4037-4045, 1990; Zamai et al., Cytometry 14:891-897, 1993; Gorczyca et al., International Journal of Oncology 1:639-648, 1992.

Assays for proteins that influence early steps of T-cell commitment and development include, without limitation, those described in: Antica et al., Blood 84:111-117, 1994; Fine et al., Cellular Immunology 155:111-122, 1994; Galy et al., Blood 85:2770-2778, 1995; Toki et al.,

35 Proc. Nat. Acad Sci. USA 88:7548-7551, 1991.

5

10

15

20

25

30

4.10.8 ACTIVIN/INHIBIN ACTIVITY

5

10

15

20

30

35

A polypeptide of the present invention may also exhibit activin- or inhibin-related activities. A polynucleotide of the invention may encode a polypeptide exhibiting such characteristics. Inhibins are characterized by their ability to inhibit the release of follicle stimulating hormone (FSH), while activins and are characterized by their ability to stimulate the release of follicle stimulating hormone (FSH). Thus, a polypeptide of the present invention, alone or in heterodimers with a member of the inhibin family, may be useful as a contraceptive based on the ability of inhibins to decrease fertility in female mammals and decrease spermatogenesis in male mammals. Administration of sufficient amounts of other inhibins can induce infertility in these mammals. Alternatively, the polypeptide of the invention, as a homodimer or as a heterodimer with other protein subunits of the inhibin group, may be useful as a fertility inducing therapeutic, based upon the ability of activin molecules in stimulating FSH release from cells of the anterior pituitary. See, for example, U.S. Pat. No. 4,798,885. A polypeptide of the invention may also be useful for advancement of the onset of fertility in sexually immature mammals, so as to increase the lifetime reproductive performance of domestic animals such as, but not limited to, cows, sheep and pigs.

The activity of a polypeptide of the invention may, among other means, be measured by the following methods.

Assays for activin/inhibin activity include, without limitation, those described in: Vale et al., Endocrinology 91:562-572, 1972; Ling et al., Nature 321:779-782, 1986; Vale et al., Nature 321:776-779, 1986; Mason et al., Nature 318:659-663, 1985; Forage et al., Proc. Natl. Acad. Sci. USA 83:3091-3095, 1986.

25 4.10.9 CHEMOTACTIC/CHEMOKINETIC ACTIVITY

A polypeptide of the present invention may be involved in chemotactic or chemokinetic activity for mammalian cells, including, for example, monocytes, fibroblasts, neutrophils, T-cells, mast cells, eosinophils, epithelial and/or endothelial cells. A polynucleotide of the invention can encode a polypeptide exhibiting such attributes. Chemotactic and chemokinetic receptor activation can be used to mobilize or attract a desired cell population to a desired site of action. Chemotactic or chemokinetic compositions (e.g. proteins, antibodies, binding partners, or modulators of the invention) provide particular advantages in treatment of wounds and other trauma to tissues, as well as in treatment of localized infections. For example, attraction of lymphocytes, monocytes or neutrophils to tumors or sites of infection may result in improved immune responses against the tumor or infecting agent.

A protein or peptide has chemotactic activity for a particular cell population if it can stimulate, directly or indirectly, the directed orientation or movement of such cell population. Preferably, the protein or peptide has the ability to directly stimulate directed movement of cells. Whether a particular protein has chemotactic activity for a population of cells can be readily determined by employing such protein or peptide in any known assay for cell chemotaxis.

Therapeutic compositions of the invention can be used in the following:

5

10

15

20

25

30

35

Assays for chemotactic activity (which will identify proteins that induce or prevent chemotaxis) consist of assays that measure the ability of a protein to induce the migration of cells across a membrane as well as the ability of a protein to induce the adhesion of one cell population to another cell population. Suitable assays for movement and adhesion include, without limitation, those described in: Current Protocols in Immunology, Ed by J. E. Coligan, A. M. Kruisbeek, D. H. Marguiles, E. M. Shevach, W. Strober, Pub. Greene Publishing Associates and Wiley-Interscience (Chapter 6.12, Measurement of alpha and beta Chemokines 6.12.1-6.12.28; Taub et al. J. Clin. Invest. 95:1370-1376, 1995; Lind et al. APMIS 103:140-146, 1995; Muller et al Eur. J. Immunol. 25:1744-1748; Gruber et al. J. of Immunol. 152:5860-5867, 1994; Johnston et al. J. of Immunol. 153:1762-1768, 1994.

4.10.10 HEMOSTATIC AND THROMBOLYTIC ACTIVITY

A polypeptide of the invention may also be involved in hemostatis or thrombolysis or thrombosis. A polynucleotide of the invention can encode a polypeptide exhibiting such attributes. Compositions may be useful in treatment of various coagulation disorders (including hereditary disorders, such as hemophilias) or to enhance coagulation and other hemostatic events in treating wounds resulting from trauma, surgery or other causes. A composition of the invention may also be useful for dissolving or inhibiting formation of thromboses and for treatment and prevention of conditions resulting therefrom (such as, for example, infarction of cardiac and central nervous system vessels (e.g., stroke).

Therapeutic compositions of the invention can be used in the following:

Assay for hemostatic and thrombolytic activity include, without limitation, those described in: Linet et al., J. Clin. Pharmacol. 26:131-140, 1986; Burdick et al., Thrombosis Res. 45:413-419, 1987; Humphrey et al., Fibrinolysis 5:71-79 (1991); Schaub, Prostaglandins 35:467-474, 1988.

4.10.11 CANCER DIAGNOSIS AND THERAPY

Polypeptides of the invention may be involved in cancer cell generation, proliferation or metastasis. Detection of the presence or amount of polynucleotides or polypeptides of the

invention may be useful for the diagnosis and/or prognosis of one or more types of cancer. For example, the presence or increased expression of a polynucleotide/polypeptide of the invention may indicate a hereditary risk of cancer, a precancerous condition, or an ongoing malignancy. Conversely, a defect in the gene or absence of the polypeptide may be associated with a cancer condition. Identification of single nucleotide polymorphisms associated with cancer or a predisposition to cancer may also be useful for diagnosis or prognosis.

5

10

15

20

25

30

35

Cancer treatments promote tumor regression by inhibiting tumor cell proliferation. inhibiting angiogenesis (growth of new blood vessels that is necessary to support tumor growth) and/or prohibiting metastasis by reducing tumor cell motility or invasiveness. Therapeutic compositions of the invention may be effective in adult and pediatric oncology including in solid phase tumors/malignancies, locally advanced tumors, human soft tissue sarcomas, metastatic cancer, including lymphatic metastases, blood cell malignancies including multiple myeloma, acute and chronic leukemias, and lymphomas, head and neck cancers including mouth cancer, larynx cancer and thyroid cancer, lung cancers including small cell carcinoma and non-small cell cancers, breast cancers including small cell carcinoma and ductal carcinoma, gastrointestinal cancers including esophageal cancer, stomach cancer, colon cancer, colorectal cancer and polyps associated with colorectal neoplasia, pancreatic cancers, liver cancer, urologic cancers including bladder cancer and prostate cancer, malignancies of the female genital tract including ovarian carcinoma, uterine (including endometrial) cancers, and solid tumor in the ovarian follicle, kidney cancers including renal cell carcinoma, brain cancers including intrinsic brain tumors, neuroblastoma, astrocytic brain tumors, gliomas, metastatic tumor cell invasion in the central nervous system, bone cancers including osteomas, skin cancers including malignant melanoma, tumor progression of human skin keratinocytes, squamous cell carcinoma, basal cell carcinoma, hemangiopericytoma and Karposi's sarcoma.

Polypeptides, polynucleotides, or modulators of polypeptides of the invention (including inhibitors and stimulators of the biological activity of the polypeptide of the invention) may be administered to treat cancer. Therapeutic compositions can be administered in therapeutically effective dosages alone or in combination with adjuvant cancer therapy such as surgery, chemotherapy, radiotherapy, thermotherapy, and laser therapy, and may provide a beneficial effect, e.g. reducing tumor size, slowing rate of tumor growth, inhibiting metastasis, or otherwise improving overall clinical condition, without necessarily eradicating the cancer.

The composition can also be administered in therapeutically effective amounts as a portion of an anti-cancer cocktail. An anti-cancer cocktail is a mixture of the polypeptide or modulator of the invention with one or more anti-cancer drugs in addition to a pharmaceutically acceptable carrier for delivery. The use of anti-cancer cocktails as a cancer treatment is routine.

Anti-cancer drugs that are well known in the art and can be used as a treatment in combination with the polypeptide or modulator of the invention include: Actinomycin D, Aminoglutethimide, Asparaginase, Bleomycin, Busulfan, Carboplatin, Carmustine, Chlorambucil, Cisplatin (cisDDP), Cyclophosphamide, Cytarabine HCl (Cytosine arabinoside), Dacarbazine, Dactinomycin,
Daunorubicin HCl, Doxorubicin HCl, Estramustine phosphate sodium, Etoposide (V16-213), Floxuridine, 5-Fluorouracil (5-Fu), Flutamide, Hydroxyurea (hydroxycarbamide), Ifosfamide, Interferon Alpha-2a, Interferon Alpha-2b, Leuprolide acetate (LHRH-releasing factor analog), Lomustine, Mechlorethamine HCl (nitrogen mustard), Melphalan, Mercaptopurine, Mesna, Methotrexate (MTX), Mitomycin, Mitoxantrone HCl, Octreotide, Plicamycin, Procarbazine HCl,
Streptozocin, Tamoxifen citrate, Thioguanine, Thiotepa, Vinblastine sulfate, Vincristine sulfate, Amsacrine, Azacitidine, Hexamethylmelamine, Interleukin-2, Mitoguazone, Pentostatin, Semustine, Teniposide, and Vindesine sulfate.

In addition, therapeutic compositions of the invention may be used for prophylactic treatment of cancer. There are hereditary conditions and/or environmental situations (e.g. exposure to carcinogens) known in the art that predispose an individual to developing cancers. Under these circumstances, it may be beneficial to treat these individuals with therapeutically effective doses of the polypeptide of the invention to reduce the risk of developing cancers.

In vitro models can be used to determine the effective doses of the polypeptide of the invention as a potential cancer treatment. These in vitro models include proliferation assays of cultured tumor cells, growth of cultured tumor cells in soft agar (see Freshney, (1987) Culture of Animal Cells: A Manual of Basic Technique, Wily-Liss, New York, NY Ch 18 and Ch 21), tumor systems in nude mice as described in Giovanella et al., J. Natl. Can. Inst., 52: 921-30 (1974), mobility and invasive potential of tumor cells in Boyden Chamber assays as described in Pilkington et al., Anticancer Res., 17: 4107-9 (1997), and angiogenesis assays such as induction of vascularization of the chick chorioallantoic membrane or induction of vascular endothelial cell migration as described in Ribatta et al., Intl. J. Dev. Biol., 40: 1189-97 (1999) and Li et al., Clin. Exp. Metastasis, 17:423-9 (1999), respectively. Suitable tumor cells lines are available, e.g. from American Type Tissue Culture Collection catalogs.

4.10.12 RECEPTOR/LIGAND ACTIVITY

15

20

25

30

35

A polypeptide of the present invention may also demonstrate activity as receptor, receptor ligand or inhibitor or agonist of receptor/ligand interactions. A polynucleotide of the invention can encode a polypeptide exhibiting such characteristics. Examples of such receptors and ligands include, without limitation, cytokine receptors and their ligands, receptor kinases and their ligands, receptor phosphatases and their ligands, receptors involved in cell-cell interactions

and their ligands (including without limitation, cellular adhesion molecules (such as selectins, integrins and their ligands) and receptor/ligand pairs involved in antigen presentation, antigen recognition and development of cellular and humoral immune responses. Receptors and ligands are also useful for screening of potential peptide or small molecule inhibitors of the relevant receptor/ligand interaction. A protein of the present invention (including, without limitation, fragments of receptors and ligands) may themselves be useful as inhibitors of receptor/ligand interactions.

The activity of a polypeptide of the invention may, among other means, be measured by the following methods:

Suitable assays for receptor-ligand activity include without limitation those described in: Current Protocols in Immunology, Ed by J. E. Coligan, A. M. Kruisbeek, D. H. Margulies, E. M. Shevach, W. Strober, Pub. Greene Publishing Associates and Wiley- Interscience (Chapter 7.28, Measurement of Cellular Adhesion under static conditions 7.28.1- 7.28.22), Takai et al., Proc. Natl. Acad. Sci. USA 84:6864-6868, 1987; Bierer et al., J. Exp. Med. 168:1145-1156, 1988; Rosenstein et al., J. Exp. Med. 169:149-160 1989; Stoltenborg et al., J. Immunol. Methods 175:59-68, 1994; Stitt et al., Cell 80:661-670, 1995.

By way of example, the polypeptides of the invention may be used as a receptor for a ligand(s) thereby transmitting the biological activity of that ligand(s). Ligands may be identified through binding assays, affinity chromatography, dihybrid screening assays, BIAcore assays, gel overlay assays, or other methods known in the art.

Studies characterizing drugs or proteins as agonist or antagonist or partial agonists or a partial antagonist require the use of other proteins as competing ligands. The polypeptides of the present invention or ligand(s) thereof may be labeled by being coupled to radioisotopes, colorimetric molecules or a toxin molecules by conventional methods. ("Guide to Protein Purification" Murray P. Deutscher (ed) Methods in Enzymology Vol. 182 (1990) Academic Press, Inc. San Diego). Examples of radioisotopes include, but are not limited to, tritium and carbon-14. Examples of colorimetric molecules include, but are not limited to, fluorescent molecules such as fluorescamine, or rhodamine or other colorimetric molecules. Examples of toxins include, but are not limited, to ricin.

5

10

15

20

25

30

35

4.10.13 DRUG SCREENING

This invention is particularly useful for screening chemical compounds by using the novel polypeptides or binding fragments thereof in any of a variety of drug screening techniques. The polypeptides or fragments employed in such a test may either be free in solution, affixed to a solid support, borne on a cell surface or located intracellularly. One method of drug screening

utilizes eukaryotic or prokaryotic host cells which are stably transformed with recombinant nucleic acids expressing the polypeptide or a fragment thereof. Drugs are screened against such transformed cells in competitive binding assays. Such cells, either in viable or fixed form, can be used for standard binding assays. One may measure, for example, the formation of complexes between polypeptides of the invention or fragments and the agent being tested or examine the diminution in complex formation between the novel polypeptides and an appropriate cell line, which are well known in the art.

5

10

15

20

25

30

35

Sources for test compounds that may be screened for ability to bind to or modulate (i.e., increase or decrease) the activity of polypeptides of the invention include (1) inorganic and organic chemical libraries, (2) natural product libraries, and (3) combinatorial libraries comprised of either random or mimetic peptides, oligonucleotides or organic molecules.

Chemical libraries may be readily synthesized or purchased from a number of commercial sources, and may include structural analogs of known compounds or compounds that are identified as "hits" or "leads" via natural product screening.

The sources of natural product libraries are microorganisms (including bacteria and fungi), animals, plants or other vegetation, or marine organisms, and libraries of mixtures for screening may be created by: (1) fermentation and extraction of broths from soil, plant or marine microorganisms or (2) extraction of the organisms themselves. Natural product libraries include polyketides, non-ribosomal peptides, and (non-naturally occurring) variants thereof. For a review, see *Science 282*:63-68 (1998).

Combinatorial libraries are composed of large numbers of peptides, oligonucleotides or organic compounds and can be readily prepared by traditional automated synthesis methods, PCR, cloning or proprietary synthetic methods. Of particular interest are peptide and oligonucleotide combinatorial libraries. Still other libraries of interest include peptide, protein, peptidomimetic, multiparallel synthetic collection, recombinatorial, and polypeptide libraries. For a review of combinatorial chemistry and libraries created therefrom, see Myers, Curr. Opin. Biotechnol. 8:701-707 (1997). For reviews and examples of peptidomimetic libraries, see Al-Obeidi et al., Mol. Biotechnol, 9(3):205-23 (1998); Hruby et al., Curr Opin Chem Biol, 1(1):114-19 (1997); Dorner et al., Bioorg Med Chem, 4(5):709-15 (1996) (alkylated dipeptides).

Identification of modulators through use of the various libraries described herein permits modification of the candidate "hit" (or "lead") to optimize the capacity of the "hit" to bind a polypeptide of the invention. The molecules identified in the binding assay are then tested for antagonist or agonist activity in *in vivo* tissue culture or animal models that are well known in the art. In brief, the molecules are titrated into a plurality of cell cultures or animals and then tested for either cell/animal death or prolonged survival of the animal/cells.

The binding molecules thus identified may be complexed with toxins, e.g., ricin or cholera, or with other compounds that are toxic to cells such as radioisotopes. The toxin-binding molecule complex is then targeted to a tumor or other cell by the specificity of the binding molecule for a polypeptide of the invention. Alternatively, the binding molecules may be complexed with imaging agents for targeting and imaging purposes.

4.10.14 ASSAY FOR RECEPTOR ACTIVITY

The invention also provides methods to detect specific binding of a polypeptide e.g. a ligand or a receptor. The art provides numerous assays particularly useful for identifying previously unknown binding partners for receptor polypeptides of the invention. For example, expression cloning using mammalian or bacterial cells, or dihybrid screening assays can be used to identify polynucleotides encoding binding partners. As another example, affinity chromatography with the appropriate immobilized polypeptide of the invention can be used to isolate polypeptides that recognize and bind polypeptides of the invention. There are a number of different libraries used for the identification of compounds, and in particular small molecules, that modulate (i.e., increase or decrease) biological activity of a polypeptide of the invention. Ligands for receptor polypeptides of the invention can also be identified by adding exogenous ligands, or cocktails of ligands to two cells populations that are genetically identical except for the expression of the receptor of the invention: one cell population expresses the receptor of the invention whereas the other does not. The response of the two cell populations to the addition of ligands(s) are then compared. Alternatively, an expression library can be co-expressed with the polypeptide of the invention in cells and assayed for an autocrine response to identify potential ligand(s). As still another example, BIAcore assays, gel overlay assays, or other methods known in the art can be used to identify binding partner polypeptides, including, (1) organic and inorganic chemical libraries, (2) natural product libraries, and (3) combinatorial libraries comprised of random peptides, oligonucleotides or organic molecules.

The role of downstream intracellular signaling molecules in the signaling cascade of the polypeptide of the invention can be determined. For example, a chimeric protein in which the cytoplasmic domain of the polypeptide of the invention is fused to the extracellular portion of a protein, whose ligand has been identified, is produced in a host cell. The cell is then incubated with the ligand specific for the extracellular portion of the chimeric protein, thereby activating the chimeric receptor. Known downstream proteins involved in intracellular signaling can then be assayed for expected modifications *i.e.* phosphorylation. Other methods known to those in the art can also be used to identify signaling molecules involved in receptor activity.

5

10

15

20

25

30

4.10.15 ANTI-INFLAMMATORY ACTIVITY

Compositions of the present invention may also exhibit anti-inflammatory activity. The anti-inflammatory activity may be achieved by providing a stimulus to cells involved in the inflammatory response, by inhibiting or promoting cell-cell interactions (such as, for example, 5 cell adhesion), by inhibiting or promoting chemotaxis of cells involved in the inflammatory process, inhibiting or promoting cell extravasation, or by stimulating or suppressing production of other factors which more directly inhibit or promote an inflammatory response. Compositions with such activities can be used to treat inflammatory conditions including chronic or acute conditions), including without limitation intimation associated with infection (such as septic 10 shock, sepsis or systemic inflammatory response syndrome (SIRS)), ischemia-reperfusion injury. endotoxin lethality, arthritis, complement-mediated hyperacute rejection, nephritis, cytokine or chemokine-induced lung injury, inflammatory bowel disease, Crohn's disease or resulting from over production of cytokines such as TNF or IL-1. Compositions of the invention may also be useful to treat anaphylaxis and hypersensitivity to an antigenic substance or material. 15 Compositions of this invention may be utilized to prevent or treat conditions such as, but not limited to, sepsis, acute pancreatitis, endotoxin shock, cytokine induced shock, rheumatoid arthritis, chronic inflammatory arthritis, pancreatic cell damage from diabetes mellitus type 1. graft versus host disease, inflammatory bowel disease, inflamation associated with pulmonary disease, other autoimmune disease or inflammatory disease, an antiproliferative agent such as for 20 acute or chronic mylegenous leukemia or in the prevention of premature labor secondary to intrauterine infections.

4.10.16 LEUKEMIAS

35

Leukemias and related disorders may be treated or prevented by administration of a

therapeutic that promotes or inhibits function of the polynucleotides and/or polypeptides of the invention. Such leukemias and related disorders include but are not limited to acute leukemia, acute lymphocytic leukemia, acute myelocytic leukemia, myeloblastic, promyelocytic, myelomonocytic, monocytic, erythroleukemia, chronic leukemia, chronic myelocytic (granulocytic) leukemia and chronic lymphocytic leukemia (for a review of such disorders, see

Fishman et al., 1985, Medicine, 2d Ed., J.B. Lippincott Co., Philadelphia).

4.10.17 NERVOUS SYSTEM DISORDERS

Nervous system disorders, involving cell types which can be tested for efficacy of intervention with compounds that modulate the activity of the polynucleotides and/or polypeptides of the invention, and which can be treated upon thus observing an indication of

therapeutic utility, include but are not limited to nervous system injuries, and diseases or disorders which result in either a disconnection of axons, a diminution or degeneration of neurons, or demyelination. Nervous system lesions which may be treated in a patient (including human and non-human mammalian patients) according to the invention include but are not limited to the following lesions of either the central (including spinal cord, brain) or peripheral nervous systems:

5

10

15

20

25

- (i) traumatic lesions, including lesions caused by physical injury or associated with surgery, for example, lesions which sever a portion of the nervous system, or compression injuries;
- (ii) ischemic lesions, in which a lack of oxygen in a portion of the nervous system results in neuronal injury or death, including cerebral infarction or ischemia, or spinal cord infarction or ischemia;
 - (iii) infectious lesions, in which a portion of the nervous system is destroyed or injured as a result of infection, for example, by an abscess or associated with infection by human immunodeficiency virus, herpes zoster, or herpes simplex virus or with Lyme disease, tuberculosis, syphilis;
 - (iv) degenerative lesions, in which a portion of the nervous system is destroyed or injured as a result of a degenerative process including but not limited to degeneration associated with Parkinson's disease, Alzheimer's disease, Huntington's chorea, or amyotrophic lateral sclerosis;
 - (v) lesions associated with nutritional diseases or disorders, in which a portion of the nervous system is destroyed or injured by a nutritional disorder or disorder of metabolism including but not limited to, vitamin B12 deficiency, folic acid deficiency, Wernicke disease, tobacco-alcohol amblyopia, Marchiafava-Bignami disease (primary degeneration of the corpus callosum), and alcoholic cerebellar degeneration;
 - (vi) neurological lesions associated with systemic diseases including but not limited to diabetes (diabetic neuropathy, Bell's palsy), systemic lupus erythematosus, carcinoma, or sarcoidosis;
- (vii) lesions caused by toxic substances including alcohol, lead, or particularneurotoxins; and
 - (viii) demyelinated lesions in which a portion of the nervous system is destroyed or injured by a demyelinating disease including but not limited to multiple sclerosis, human immunodeficiency virus-associated myelopathy, transverse myelopathy or various etiologies, progressive multifocal leukoencephalopathy, and central pontine myelinolysis.

Therapeutics which are useful according to the invention for treatment of a nervous system disorder may be selected by testing for biological activity in promoting the survival or differentiation of neurons. For example, and not by way of limitation, therapeutics which elicit any of the following effects may be useful according to the invention:

(i) increased survival time of neurons in culture;

5

10

15

20

25

30

35

- (ii) increased sprouting of neurons in culture or in vivo;
- (iii) increased production of a neuron-associated molecule in culture or *in vivo*, *e.g.*, choline acetyltransferase or acetylcholinesterase with respect to motor neurons; or
 - (iv) decreased symptoms of neuron dysfunction in vivo.

Such effects may be measured by any method known in the art. In preferred, non-limiting embodiments, increased survival of neurons may be measured by the method set forth in Arakawa et al. (1990, J. Neurosci. 10:3507-3515); increased sprouting of neurons may be detected by methods set forth in Pestronk et al. (1980, Exp. Neurol. 70:65-82) or Brown et al. (1981, Ann. Rev. Neurosci. 4:17-42); increased production of neuron-associated molecules may be measured by bioassay, enzymatic assay, antibody binding, Northern blot assay, etc., depending on the molecule to be measured; and motor neuron dysfunction may be measured by assessing the physical manifestation of motor neuron disorder, e.g., weakness, motor neuron conduction velocity, or functional disability.

In specific embodiments, motor neuron disorders that may be treated according to the invention include but are not limited to disorders such as infarction, infection, exposure to toxin, trauma, surgical damage, degenerative disease or malignancy that may affect motor neurons as well as other components of the nervous system, as well as disorders that selectively affect neurons such as amyotrophic lateral sclerosis, and including but not limited to progressive spinal muscular atrophy, progressive bulbar palsy, primary lateral sclerosis, infantile and juvenile muscular atrophy, progressive bulbar paralysis of childhood (Fazio-Londe syndrome), poliomyelitis and the post polio syndrome, and Hereditary Motorsensory Neuropathy (Charcot-Marie-Tooth Disease).

4.10.18 OTHER ACTIVITIES

A polypeptide of the invention may also exhibit one or more of the following additional activities or effects: inhibiting the growth, infection or function of, or killing, infectious agents, including, without limitation, bacteria, viruses, fungi and other parasites; effecting (suppressing or enhancing) bodily characteristics, including, without limitation, height, weight, hair color, eye color, skin, fat to lean ratio or other tissue pigmentation, or organ or body part size or shape (such as, for example, breast augmentation or diminution, change in bone form or shape);

effecting biorhythms or circadian cycles or rhythms; effecting the fertility of male or female subjects; effecting the metabolism, catabolism, anabolism, processing, utilization, storage or elimination of dietary fat, lipid, protein, carbohydrate, vitamins, minerals, co-factors or other nutritional factors or component(s); effecting behavioral characteristics, including, without limitation, appetite, libido, stress, cognition (including cognitive disorders), depression (including depressive disorders) and violent behaviors; providing analgesic effects or other pain reducing effects; promoting differentiation and growth of embryonic stem cells in lineages other than hematopoietic lineages; hormonal or endocrine activity; in the case of enzymes, correcting deficiencies of the enzyme and treating deficiency-related diseases; treatment of hyperproliferative disorders (such as, for example, psoriasis); immunoglobulin-like activity (such as, for example, the ability to bind antigens or complement); and the ability to act as an antigen in a vaccine composition to raise an immune response against such protein or another material or entity which is cross-reactive with such protein.

15 4.10.19 IDENTIFICATION OF POLYMORPHISMS

5

10

20

25

30

35

The demonstration of polymorphisms makes possible the identification of such polymorphisms in human subjects and the pharmacogenetic use of this information for diagnosis and treatment. Such polymorphisms may be associated with, e.g., differential predisposition or susceptibility to various disease states (such as disorders involving inflammation or immune response) or a differential response to drug administration, and this genetic information can be used to tailor preventive or therapeutic treatment appropriately. For example, the existence of a polymorphism associated with a predisposition to inflammation or autoimmune disease makes possible the diagnosis of this condition in humans by identifying the presence of the polymorphism.

Polymorphisms can be identified in a variety of ways known in the art which all generally involve obtaining a sample from a patient, analyzing DNA from the sample, optionally involving isolation or amplification of the DNA, and identifying the presence of the polymorphism in the DNA. For example, PCR may be used to amplify an appropriate fragment of genomic DNA which may then be sequenced. Alternatively, the DNA may be subjected to allele-specific oligonucleotide hybridization (in which appropriate oligonucleotides are hybridized to the DNA under conditions permitting detection of a single base mismatch) or to a single nucleotide extension assay (in which an oligonucleotide that hybridizes immediately adjacent to the position of the polymorphism is extended with one or more labeled nucleotides). In addition, traditional restriction fragment length polymorphism analysis (using restriction enzymes that provide differential digestion of the genomic DNA depending on the presence or

61

absence of the polymorphism) may be performed. Arrays with nucleotide sequences of the present invention can be used to detect polymorphisms. The array can comprise modified nucleotide sequences of the present invention in order to detect the nucleotide sequences of the present invention. In the alternative, any one of the nucleotide sequences of the present invention can be placed on the array to detect changes from those sequences.

Alternatively a polymorphism resulting in a change in the amino acid sequence could also be detected by detecting a corresponding change in amino acid sequence of the protein, e.g., by an antibody specific to the variant sequence.

10 4.10.20 ARTHRITIS AND INFLAMMATION

5

15

20

25

30

The immunosuppressive effects of the compositions of the invention against rheumatoid arthritis is determined in an experimental animal model system. The experimental model system is adjuvant induced arthritis in rats, and the protocol is described by J. Holoshitz, et at., 1983, Science, 219:56, or by B. Waksman et al., 1963, Int. Arch. Allergy Appl. Immunol., 23:129. Induction of the disease can be caused by a single injection, generally intradermally, of a suspension of killed Mycobacterium tuberculosis in complete Freund's adjuvant (CFA). The route of injection can vary, but rats may be injected at the base of the tail with an adjuvant mixture. The polypeptide is administered in phosphate buffered solution (PBS) at a dose of about 1-5 mg/kg. The control consists of administering PBS only.

The procedure for testing the effects of the test compound would consist of intradermally injecting killed Mycobacterium tuberculosis in CFA followed by immediately administering the test compound and subsequent treatment every other day until day 24. At 14, 15, 18, 20, 22, and 24 days after injection of Mycobacterium CFA, an overall arthritis score may be obtained as described by J. Holoskitz above. An analysis of the data would reveal that the test compound would have a dramatic affect on the swelling of the joints as measured by a decrease of the arthritis score.

4.11 THERAPEUTIC METHODS

The compositions (including polypeptide fragments, analogs, variants and antibodies or other binding partners or modulators including antisense polynucleotides) of the invention have numerous applications in a variety of therapeutic methods. Examples of therapeutic applications include, but are not limited to, those exemplified herein.

4.11.1 EXAMPLE

One embodiment of the invention is the administration of an effective amount of the polypeptides or other composition of the invention to individuals affected by a disease or disorder that can be modulated by regulating the peptides of the invention. While the mode of administration is not particularly important, parenteral administration is preferred. An exemplary mode of administration is to deliver an intravenous bolus. The dosage of the polypeptides or other composition of the invention will normally be determined by the prescribing physician. It is to be expected that the dosage will vary according to the age, weight, condition and response of the individual patient. Typically, the amount of polypeptide administered per dose will be in the range of about 0.01µg/kg to 100 mg/kg of body weight, with the preferred dose being about 0.1 µg/kg to 10 mg/kg of patient body weight. For parenteral administration, polypeptides of the invention will be formulated in an injectable form combined with a pharmaceutically acceptable parenteral vehicle. Such vehicles are well known in the art and examples include water, saline, Ringer's solution, dextrose solution, and solutions consisting of small amounts of the human serum albumin. The vehicle may contain minor amounts of additives that maintain the isotonicity and stability of the polypeptide or other active ingredient. The preparation of such solutions is within the skill of the art.

4.12 PHARMACEUTICAL FORMULATIONS AND ROUTES OF ADMINISTRATION

5

10

15

20

25

30

35

A protein or other composition of the present invention (from whatever source derived. including without limitation from recombinant and non-recombinant sources and including antibodies and other binding partners of the polypeptides of the invention) may be administered to a patient in need, by itself, or in pharmaceutical compositions where it is mixed with suitable carriers or excipient(s) at doses to treat or ameliorate a variety of disorders. Such a composition may optionally contain (in addition to protein or other active ingredient and a carrier) diluents. fillers, salts, buffers, stabilizers, solubilizers, and other materials well known in the art. The term "pharmaceutically acceptable" means a non-toxic material that does not interfere with the effectiveness of the biological activity of the active ingredient(s). The characteristics of the carrier will depend on the route of administration. The pharmaceutical composition of the invention may also contain cytokines, lymphokines, or other hematopoietic factors such as M-CSF, GM-CSF, TNF, IL-1, IL-2, IL-3, IL-4, IL-5, IL-6, IL-7, IL-8, IL-9, IL-10, IL-11, IL-12, IL-13, IL-14, IL-15, IFN, TNF0, TNF1, TNF2, G-CSF, Meg-CSF, thrombopoietin, stem cell factor, and erythropoietin. In further compositions, proteins of the invention may be combined with other agents beneficial to the treatment of the disease or disorder in question. These agents include various growth factors such as epidermal growth factor (EGF), platelet-derived growth

factor (PDGF), transforming growth factors (TGF- α and TGF- β), insulin-like growth factor (IGF), as well as cytokines described herein.

5

10

15

30

35

The pharmaceutical composition may further contain other agents which either enhance the activity of the protein or other active ingredient or complement its activity or use in treatment. Such additional factors and/or agents may be included in the pharmaceutical composition to produce a synergistic effect with protein or other active ingredient of the invention, or to minimize side effects. Conversely, protein or other active ingredient of the present invention may be included in formulations of the particular clotting factor, cytokine, lymphokine, other hematopoietic factor, thrombolytic or anti-thrombotic factor, or anti-inflammatory agent to minimize side effects of the clotting factor, cytokine, lymphokine, other hematopoietic factor, thrombolytic or anti-thrombotic factor, or anti-inflammatory agent (such as IL-1Ra, IL-1 Hy1, IL-1 Hy2, anti-TNF, corticosteroids, immunosuppressive agents). A protein of the present invention may be active in multimers (e.g., heterodimers or homodimers) or complexes with itself or other proteins. As a result, pharmaceutical compositions of the invention may comprise a protein of the invention in such multimeric or complexed form.

As an alternative to being included in a pharmaceutical composition of the invention including a first protein, a second protein or a therapeutic agent may be concurrently administered with the first protein (e.g., at the same time, or at differing times provided that therapeutic concentrations of the combination of agents is achieved at the treatment site). 20 Techniques for formulation and administration of the compounds of the instant application may be found in "Remington's Pharmaceutical Sciences," Mack Publishing Co., Easton, PA, latest edition. A therapeutically effective dose further refers to that amount of the compound sufficient to result in amelioration of symptoms, e.g., treatment, healing, prevention or amelioration of the relevant medical condition, or an increase in rate of treatment, healing, prevention or 25 amelioration of such conditions. When applied to an individual active ingredient, administered alone, a therapeutically effective dose refers to that ingredient alone. When applied to a combination, a therapeutically effective dose refers to combined amounts of the active ingredients that result in the therapeutic effect, whether administered in combination, serially or simultaneously.

In practicing the method of treatment or use of the present invention, a therapeutically effective amount of protein or other active ingredient of the present invention is administered to a mammal having a condition to be treated. Protein or other active ingredient of the present invention may be administered in accordance with the method of the invention either alone or in combination with other therapies such as treatments employing cytokines, lymphokines or other hematopoietic factors. When co- administered with one or more cytokines, lymphokines or other

hematopoietic factors, protein or other active ingredient of the present invention may be administered either simultaneously with the cytokine(s), lymphokine(s), other hematopoietic factor(s), thrombolytic or anti-thrombotic factors, or sequentially. If administered sequentially, the attending physician will decide on the appropriate sequence of administering protein or other active ingredient of the present invention in combination with cytokine(s), lymphokine(s), other hematopoietic factor(s), thrombolytic or anti-thrombotic factors.

4.12.1 ROUTES OF ADMINISTRATION

5

10

15

20

25

30

35

Suitable routes of administration may, for example, include oral, rectal, transmucosal, or intestinal administration; parenteral delivery, including intramuscular, subcutaneous, intramedullary injections, as well as intrathecal, direct intraventricular, intravenous, intraperitoneal, intranasal, or intraocular injections. Administration of protein or other active ingredient of the present invention used in the pharmaceutical composition or to practice the method of the present invention can be carried out in a variety of conventional ways, such as oral ingestion, inhalation, topical application or cutaneous, subcutaneous, intraperitoneal, parenteral or intravenous injection. Intravenous administration to the patient is preferred.

Alternately, one may administer the compound in a local rather than systemic manner, for example, via injection of the compound directly into a arthritic joints or in fibrotic tissue, often in a depot or sustained release formulation. In order to prevent the scarring process frequently occurring as complication of glaucoma surgery, the compounds may be administered topically, for example, as eye drops. Furthermore, one may administer the drug in a targeted drug delivery system, for example, in a liposome coated with a specific antibody, targeting, for example, arthritic or fibrotic tissue. The liposomes will be targeted to and taken up selectively by the afflicted tissue.

The polypeptides of the invention are administered by any route that delivers an effective dosage to the desired site of action. The determination of a suitable route of administration and an effective dosage for a particular indication is within the level of skill in the art. Preferably for wound treatment, one administers the therapeutic compound directly to the site. Suitable dosage ranges for the polypeptides of the invention can be extrapolated from these dosages or from similar studies in appropriate animal models. Dosages can then be adjusted as necessary by the clinician to provide maximal therapeutic benefit.

4.12.2 COMPOSITIONS/FORMULATIONS

Pharmaceutical compositions for use in accordance with the present invention thus may be formulated in a conventional manner using one or more physiologically acceptable carriers

comprising excipients and auxiliaries which facilitate processing of the active compounds into preparations which can be used pharmaceutically. These pharmaceutical compositions may be manufactured in a manner that is itself known, e.g., by means of conventional mixing, dissolving, granulating, dragee-making, levigating, emulsifying, encapsulating, entrapping or lyophilizing processes. Proper formulation is dependent upon the route of administration chosen. When a therapeutically effective amount of protein or other active ingredient of the present invention is administered orally, protein or other active ingredient of the present invention will be in the form of a tablet, capsule, powder, solution or elixir. When administered in tablet form, the pharmaceutical composition of the invention may additionally contain a solid carrier such as a gelatin or an adjuvant. The tablet, capsule, and powder contain from about 5 to 95% protein or other active ingredient of the present invention, and preferably from about 25 to 90% protein or other active ingredient of the present invention. When administered in liquid form, a liquid carrier such as water, petroleum, oils of animal or plant origin such as peanut oil, mineral oil, soybean oil, or sesame oil, or synthetic oils may be added. The liquid form of the pharmaceutical composition may further contain physiological saline solution, dextrose or other saccharide solution, or glycols such as ethylene glycol, propylene glycol or polyethylene glycol. When administered in liquid form, the pharmaceutical composition contains from about 0.5 to 90% by weight of protein or other active ingredient of the present invention, and preferably from about 1 to 50% protein or other active ingredient of the present invention.

10

15

20

25

30

35

When a therapeutically effective amount of protein or other active ingredient of the present invention is administered by intravenous, cutaneous or subcutaneous injection, protein or other active ingredient of the present invention will be in the form of a pyrogen-free, parenterally acceptable aqueous solution. The preparation of such parenterally acceptable protein or other active ingredient solutions, having due regard to pH, isotonicity, stability, and the like, is within the skill in the art. A preferred pharmaceutical composition for intravenous, cutaneous, or subcutaneous injection should contain, in addition to protein or other active ingredient of the present invention, an isotonic vehicle such as Sodium Chloride Injection, Ringer's Injection, Dextrose Injection, Dextrose and Sodium Chloride Injection, Lactated Ringer's Injection, or other vehicle as known in the art. The pharmaceutical composition of the present invention may also contain stabilizers, preservatives, buffers, antioxidants, or other additives known to those of skill in the art. For injection, the agents of the invention may be formulated in aqueous solutions, preferably in physiologically compatible buffers such as Hanks's solution, Ringer's solution, or physiological saline buffer. For transmucosal administration, penetrants appropriate to the barrier to be permeated are used in the formulation. Such penetrants are generally known in the art.

5

10

15

20

25

30

35

For oral administration, the compounds can be formulated readily by combining the active compounds with pharmaceutically acceptable carriers well known in the art. Such carriers enable the compounds of the invention to be formulated as tablets, pills, dragees, capsules, liquids, gels, syrups, slurries, suspensions and the like, for oral ingestion by a patient to be treated. Pharmaceutical preparations for oral use can be obtained from a solid excipient, optionally grinding a resulting mixture, and processing the mixture of granules, after adding suitable auxiliaries, if desired, to obtain tablets or dragee cores. Suitable excipients are, in particular, fillers such as sugars, including lactose, sucrose, mannitol, or sorbitol; cellulose preparations such as, for example, maize starch, wheat starch, rice starch, potato starch, gelatin, gum tragacanth, methyl cellulose, hydroxypropylmethyl-cellulose, sodium carboxymethylcellulose, and/or polyvinylpyrrolidone (PVP). If desired, disintegrating agents may be added, such as the cross-linked polyvinyl pyrrolidone, agar, or alginic acid or a salt thereof such as sodium alginate. Dragee cores are provided with suitable coatings. For this purpose, concentrated sugar solutions may be used, which may optionally contain gum arabic, talc, polyvinyl pyrrolidone, carbopol gel, polyethylene glycol, and/or titanium dioxide, lacquer solutions, and suitable organic solvents or solvent mixtures. Dyestuffs or pigments may be added to the tablets or dragee coatings for identification or to characterize different combinations of active compound doses.

Pharmaceutical preparations which can be used orally include push-fit capsules made of gelatin, as well as soft, sealed capsules made of gelatin and a plasticizer, such as glycerol or sorbitol. The push-fit capsules can contain the active ingredients in admixture with filler such as lactose, binders such as starches, and/or lubricants such as talc or magnesium stearate and, optionally, stabilizers. In soft capsules, the active compounds may be dissolved or suspended in suitable liquids, such as fatty oils, liquid paraffin, or liquid polyethylene glycols. In addition, stabilizers may be added. All formulations for oral administration should be in dosages suitable for such administration. For buccal administration, the compositions may take the form of tablets or lozenges formulated in conventional manner.

For administration by inhalation, the compounds for use according to the present invention are conveniently delivered in the form of an aerosol spray presentation from pressurized packs or a nebuliser, with the use of a suitable propellant, e.g., dichlorodifluoromethane, trichlorofluoromethane, dichlorotetrafluoroethane, carbon dioxide or other suitable gas. In the case of a pressurized aerosol the dosage unit may be determined by providing a valve to deliver a metered amount. Capsules and cartridges of, e.g., gelatin for use in an inhaler or insufflator may be formulated containing a powder mix of the compound and a suitable powder base such as lactose or starch. The compounds may be formulated for parenteral

administration by injection, e.g., by bolus injection or continuous infusion. Formulations for injection may be presented in unit dosage form, e.g., in ampules or in multi-dose containers, with an added preservative. The compositions may take such forms as suspensions, solutions or emulsions in oily or aqueous vehicles, and may contain formulatory agents such as suspending, stabilizing and/or dispersing agents.

Pharmaceutical formulations for parenteral administration include aqueous solutions of the active compounds in water-soluble form. Additionally, suspensions of the active compounds may be prepared as appropriate oily injection suspensions. Suitable lipophilic solvents or vehicles include fatty oils such as sesame oil, or synthetic fatty acid esters, such as ethyl oleate or triglycerides, or liposomes. Aqueous injection suspensions may contain substances which increase the viscosity of the suspension, such as sodium carboxymethyl cellulose, sorbitol, or dextran. Optionally, the suspension may also contain suitable stabilizers or agents which increase the solubility of the compounds to allow for the preparation of highly concentrated solutions. Alternatively, the active ingredient may be in powder form for constitution with a suitable vehicle, e.g., sterile pyrogen-free water, before use.

The compounds may also be formulated in rectal compositions such as suppositories or retention enemas, e.g., containing conventional suppository bases such as cocoa butter or other glycerides. In addition to the formulations described previously, the compounds may also be formulated as a depot preparation. Such long acting formulations may be administered by implantation (for example subcutaneously or intramuscularly) or by intramuscular injection. Thus, for example, the compounds may be formulated with suitable polymeric or hydrophobic materials (for example as an emulsion in an acceptable oil) or ion exchange resins, or as sparingly soluble derivatives, for example, as a sparingly soluble salt.

A pharmaceutical carrier for the hydrophobic compounds of the invention is a co-solvent system comprising benzyl alcohol, a nonpolar surfactant, a water-miscible organic polymer, and an aqueous phase. The co-solvent system may be the VPD co-solvent system. VPD is a solution of 3% w/v benzyl alcohol, 8% w/v of the nonpolar surfactant polysorbate 80, and 65% w/v polyethylene glycol 300, made up to volume in absolute ethanol. The VPD co-solvent system (VPD:5W) consists of VPD diluted 1:1 with a 5% dextrose in water solution. This co-solvent system dissolves hydrophobic compounds well, and itself produces low toxicity upon systemic administration. Naturally, the proportions of a co-solvent system may be varied considerably without destroying its solubility and toxicity characteristics. Furthermore, the identity of the co-solvent components may be varied: for example, other low-toxicity nonpolar surfactants may be used instead of polysorbate 80; the fraction size of polyethylene glycol may be varied; other biocompatible polymers may replace polyethylene glycol, e.g. polyvinyl pyrrolidone; and other

sugars or polysaccharides may substitute for dextrose. Alternatively, other delivery systems for hydrophobic pharmaceutical compounds may be employed. Liposomes and emulsions are well known examples of delivery vehicles or carriers for hydrophobic drugs. Certain organic solvents such as dimethylsulfoxide also may be employed, although usually at the cost of greater toxicity.

5

10

15

20

25

30

35

Additionally, the compounds may be delivered using a sustained-release system, such as semipermeable matrices of solid hydrophobic polymers containing the therapeutic agent. Various types of sustained-release materials have been established and are well known by those skilled in the art. Sustained-release capsules may, depending on their chemical nature, release the compounds for a few weeks up to over 100 days. Depending on the chemical nature and the biological stability of the therapeutic reagent, additional strategies for protein or other active ingredient stabilization may be employed.

The pharmaceutical compositions also may comprise suitable solid or gel phase carriers or excipients. Examples of such carriers or excipients include but are not limited to calcium carbonate, calcium phosphate, various sugars, starches, cellulose derivatives, gelatin, and polymers such as polyethylene glycols. Many of the active ingredients of the invention may be provided as salts with pharmaceutically compatible counter ions. Such pharmaceutically acceptable base addition salts are those salts which retain the biological effectiveness and properties of the free acids and which are obtained by reaction with inorganic or organic bases such as sodium hydroxide, magnesium hydroxide, ammonia, trialkylamine, dialkylamine, monoalkylamine, dibasic amino acids, sodium acetate, potassium benzoate, triethanol amine and the like.

The pharmaceutical composition of the invention may be in the form of a complex of the protein(s) or other active ingredient(s) of present invention along with protein or peptide antigens. The protein and/or peptide antigen will deliver a stimulatory signal to both B and T lymphocytes. B lymphocytes will respond to antigen through their surface immunoglobulin receptor. T lymphocytes will respond to antigen through the T cell receptor (TCR) following presentation of the antigen by MHC proteins. MHC and structurally related proteins including those encoded by class I and class II MHC genes on host cells will serve to present the peptide antigen(s) to T lymphocytes. The antigen components could also be supplied as purified MHC-peptide complexes alone or with co-stimulatory molecules that can directly signal T cells. Alternatively antibodies able to bind surface immunoglobulin and other molecules on B cells as well as antibodies able to bind the TCR and other molecules on T cells can be combined with the pharmaceutical composition of the invention.

The pharmaceutical composition of the invention may be in the form of a liposome in which protein of the present invention is combined, in addition to other pharmaceutically

acceptable carriers, with amphipathic agents such as lipids which exist in aggregated form as micelles, insoluble monolayers, liquid crystals, or lamellar layers in aqueous solution. Suitable lipids for liposomal formulation include, without limitation, monoglycerides, diglycerides, sulfatides, lysolecithins, phospholipids, saponin, bile acids, and the like. Preparation of such liposomal formulations is within the level of skill in the art, as disclosed, for example, in U.S. Patent Nos. 4,235,871; 4,501,728; 4,837,028; and 4,737,323, all of which are incorporated herein by reference.

5

10

15

20

25

30

The amount of protein or other active ingredient of the present invention in the pharmaceutical composition of the present invention will depend upon the nature and severity of the condition being treated, and on the nature of prior treatments which the patient has undergone. Ultimately, the attending physician will decide the amount of protein or other active ingredient of the present invention with which to treat each individual patient. Initially, the attending physician will administer low doses of protein or other active ingredient of the present invention and observe the patient's response. Larger doses of protein or other active ingredient of the present invention may be administered until the optimal therapeutic effect is obtained for the patient, and at that point the dosage is not increased further. It is contemplated that the various pharmaceutical compositions used to practice the method of the present invention should contain about 0.01 µg to about 100 mg (preferably about 0.1 µg to about 10 mg, more preferably. about 0.1 µg to about 1 mg) of protein or other active ingredient of the present invention per kg body weight. For compositions of the present invention which are useful for bone, cartilage, tendon or ligament regeneration, the therapeutic method includes administering the composition topically, systematically, or locally as an implant or device. When administered, the therapeutic composition for use in this invention is, of course, in a pyrogen-free, physiologically acceptable form. Further, the composition may desirably be encapsulated or injected in a viscous form for delivery to the site of bone, cartilage or tissue damage. Topical administration may be suitable for wound healing and tissue repair. Therapeutically useful agents other than a protein or other active ingredient of the invention which may also optionally be included in the composition as described above, may alternatively or additionally, be administered simultaneously or sequentially with the composition in the methods of the invention. Preferably for bone and/or cartilage formation, the composition would include a matrix capable of delivering the protein-containing or other active ingredient-containing composition to the site of bone and/or cartilage damage, providing a structure for the developing bone and cartilage and optimally capable of being resorbed into the body. Such matrices may be formed of materials presently in use for other implanted medical applications.

The choice of matrix material is based on biocompatibility, biodegradability, mechanical properties, cosmetic appearance and interface properties. The particular application of the compositions will define the appropriate formulation. Potential matrices for the compositions may be biodegradable and chemically defined calcium sulfate, tricalcium phosphate, hydroxyapatite, polylactic acid, polyglycolic acid and polyanhydrides. Other potential materials 5 are biodegradable and biologically well-defined, such as bone or dermal collagen. Further matrices are comprised of pure proteins or extracellular matrix components. Other potential matrices are nonbiodegradable and chemically defined, such as sintered hydroxyapatite, bioglass, aluminates, or other ceramics. Matrices may be comprised of combinations of any of the above 10 mentioned types of material, such as polylactic acid and hydroxyapatite or collagen and tricalcium phosphate. The bioceramics may be altered in composition, such as in calcium-aluminate-phosphate and processing to alter pore size, particle size, particle shape, and biodegradability. Presently preferred is a 50:50 (mole weight) copolymer of lactic acid and glycolic acid in the form of porous particles having diameters ranging from 150 to 800 microns. 15 In some applications, it will be useful to utilize a sequestering agent, such as carboxymethyl cellulose or autologous blood clot, to prevent the protein compositions from disassociating from the matrix.

A preferred family of sequestering agents is cellulosic materials such as alkylcelluloses (including hydroxyalkylcelluloses), including methylcellulose, ethylcellulose, 20 hydroxyethylcellulose, hydroxypropylcellulose, hydroxypropyl-methylcellulose, and carboxymethylcellulose, the most preferred being cationic salts of carboxymethylcellulose (CMC). Other preferred sequestering agents include hyaluronic acid, sodium alginate. poly(ethylene glycol), polyoxyethylene oxide, carboxyvinyl polymer and poly(vinyl alcohol). The amount of sequestering agent useful herein is 0.5-20 wt %, preferably 1-10 wt % based on 25 total formulation weight, which represents the amount necessary to prevent desorption of the protein from the polymer matrix and to provide appropriate handling of the composition, yet not so much that the progenitor cells are prevented from infiltrating the matrix, thereby providing the protein the opportunity to assist the osteogenic activity of the progenitor cells. In further compositions, proteins or other active ingredients of the invention may be combined with other 30 agents beneficial to the treatment of the bone and/or cartilage defect, wound, or tissue in question. These agents include various growth factors such as epidermal growth factor (EGF), platelet derived growth factor (PDGF), transforming growth factors (TGF-α and TGF-β), and insulin-like growth factor (IGF).

The therapeutic compositions are also presently valuable for veterinary applications.

Particularly domestic animals and thoroughbred horses, in addition to humans, are desired

35

patients for such treatment with proteins or other active ingredients of the present invention. The dosage regimen of a protein-containing pharmaceutical composition to be used in tissue regeneration will be determined by the attending physician considering various factors which modify the action of the proteins, e.g., amount of tissue weight desired to be formed, the site of damage, the condition of the damaged tissue, the size of a wound, type of damaged tissue (e.g., bone), the patient's age, sex, and diet, the severity of any infection, time of administration and other clinical factors. The dosage may vary with the type of matrix used in the reconstitution and with inclusion of other proteins in the pharmaceutical composition. For example, the addition of other known growth factors, such as IGF I (insulin like growth factor I), to the final composition, may also effect the dosage. Progress can be monitored by periodic assessment of tissue/bone growth and/or repair, for example, X-rays, histomorphometric determinations and tetracycline labeling.

Polynucleotides of the present invention can also be used for gene therapy. Such polynucleotides can be introduced either in vivo or ex vivo into cells for expression in a mammalian subject. Polynucleotides of the invention may also be administered by other known methods for introduction of nucleic acid into a cell or organism (including, without limitation, in the form of viral vectors or naked DNA). Cells may also be cultured ex vivo in the presence of proteins of the present invention in order to proliferate or to produce a desired effect on or activity in such cells. Treated cells can then be introduced in vivo for therapeutic purposes.

20

25

30

5

10

15

4.12.3 EFFECTIVE DOSAGE

Pharmaceutical compositions suitable for use in the present invention include compositions wherein the active ingredients are contained in an effective amount to achieve its intended purpose. More specifically, a therapeutically effective amount means an amount effective to prevent development of or to alleviate the existing symptoms of the subject being treated. Determination of the effective amount is well within the capability of those skilled in the art, especially in light of the detailed disclosure provided herein. For any compound used in the method of the invention, the therapeutically effective dose can be estimated initially from appropriate in vitro assays. For example, a dose can be formulated in animal models to achieve a circulating concentration range that can be used to more accurately determine useful doses in humans. For example, a dose can be formulated in animal models to achieve a circulating concentration range that includes the IC₅₀ as determined in cell culture (*i.e.*, the concentration of the test compound which achieves a half-maximal inhibition of the protein's biological activity). Such information can be used to more accurately determine useful doses in humans.

A therapeutically effective dose refers to that amount of the compound that results in amelioration of symptoms or a prolongation of survival in a patient. Toxicity and therapeutic efficacy of such compounds can be determined by standard pharmaceutical procedures in cell cultures or experimental animals, e.g., for determining the LD₅₀ (the dose lethal to 50% of the population) and the ED₅₀ (the dose therapeutically effective in 50% of the population). The dose ratio between toxic and therapeutic effects is the therapeutic index and it can be expressed as the ratio between LD₅₀ and ED₅₀. Compounds which exhibit high therapeutic indices are preferred. The data obtained from these cell culture assays and animal studies can be used in formulating a range of dosage for use in human. The dosage of such compounds lies preferably within a range of circulating concentrations that include the ED₅₀ with little or no toxicity. The dosage may vary within this range depending upon the dosage form employed and the route of administration utilized. The exact formulation, route of administration and dosage can be chosen by the individual physician in view of the patient's condition. See, e.g., Fingl et al., 1975, in "The Pharmacological Basis of Therapeutics", Ch. 1 p.1. Dosage amount and interval may be adjusted individually to provide plasma levels of the active moiety which are sufficient to maintain the desired effects, or minimal effective concentration (MEC). The MEC will vary for each compound but can be estimated from in vitro data. Dosages necessary to achieve the MEC will depend on individual characteristics and route of administration. However, HPLC assays or bioassays can be used to determine plasma concentrations.

Dosage intervals can also be determined using MEC value. Compounds should be administered using a regimen which maintains plasma levels above the MEC for 10-90% of the time, preferably between 30-90% and most preferably between 50-90%. In cases of local administration or selective uptake, the effective local concentration of the drug may not be related to plasma concentration.

An exemplary dosage regimen for polypeptides or other compositions of the invention will be in the range of about $0.01~\mu g/kg$ to 100~mg/kg of body weight daily, with the preferred dose being about $0.1~\mu g/kg$ to 25~mg/kg of patient body weight daily, varying in adults and children. Dosing may be once daily, or equivalent doses may be delivered at longer or shorter intervals.

The amount of composition administered will, of course, be dependent on the subject being treated, on the subject's age and weight, the severity of the affliction, the manner of administration and the judgment of the prescribing physician.

4.12.4 PACKAGING

5

10

15

20

The compositions may, if desired, be presented in a pack or dispenser device which may contain one or more unit dosage forms containing the active ingredient. The pack may, for example, comprise metal or plastic foil, such as a blister pack. The pack or dispenser device may be accompanied by instructions for administration. Compositions comprising a compound of the invention formulated in a compatible pharmaceutical carrier may also be prepared, placed in an appropriate container, and labeled for treatment of an indicated condition.

4.13 ANTIBODIES

5

20

25

30

35

Also included in the invention are antibodies to proteins, or fragments of proteins of the
invention. The term "antibody" as used herein refers to immunoglobulin molecules and
immunologically active portions of immunoglobulin (Ig) molecules, *i.e.*, molecules that contain
an antigen binding site that specifically binds (immunoreacts with) an antigen. Such antibodies
include, but are not limited to, polyclonal, monoclonal, chimeric, single chain, F_{ab}, F_{ab}, and F_{(ab)2}
fragments, and an F_{ab} expression library. In general, an antibody molecule obtained from
humans relates to any of the classes IgG, IgM, IgA, IgE and IgD, which differ from one another
by the nature of the heavy chain present in the molecule. Certain classes have subclasses as well,
such as IgG₁, IgG₂, and others. Furthermore, in humans, the light chain may be a kappa chain or
a lambda chain. Reference herein to antibodies includes a reference to all such classes,
subclasses and types of human antibody species.

An isolated related protein of the invention may be intended to serve as an antigen, or a portion or fragment thereof, and additionally can be used as an immunogen to generate antibodies that immunospecifically bind the antigen, using standard techniques for polyclonal and monoclonal antibody preparation. The full-length protein can be used or, alternatively, the invention provides antigenic peptide fragments of the antigen for use as immunogens. An antigenic peptide fragment comprises at least 6 amino acid residues of the amino acid sequence of the full length protein, (for example the amino acid sequence shown in SEQ ID NO: 1010), and encompasses an epitope thereof such that an antibody raised against the peptide forms a specific immune complex with the full length protein or with any fragment that contains the epitope. Preferably, the antigenic peptide comprises at least 10 amino acid residues, or at least 15 amino acid residues, or at least 20 amino acid residues. Preferred epitopes encompassed by the antigenic peptide are regions of the protein that are located on its surface; commonly these are hydrophilic regions.

In certain embodiments of the invention, at least one epitope encompassed by the antigenic peptide is a region of -related protein that is located on the surface of the protein, e.g., a hydrophilic region. A hydrophobicity analysis of the human related protein sequence will

indicate which regions of a related protein are particularly hydrophilic and, therefore, are likely to encode surface residues useful for targeting antibody production. As a means for targeting antibody production, hydropathy plots showing regions of hydrophilicity and hydrophobicity may be generated by any method well known in the art, including, for example, the Kyte Doolittle or the Hopp Woods methods, either with or without Fourier transformation. See, e.g., Hopp and Woods, 1981, Proc. Nat. Acad. Sci. USA 78: 3824-3828; Kyte and Doolittle 1982, J. Mol. Biol. 157: 105-142, each of which is incorporated herein by reference in its entirety. Antibodies that are specific for one or more domains within an antigenic protein, or derivatives, fragments, analogs or homologs thereof, are also provided herein.

A protein of the invention, or a derivative, fragment, analog, homolog or ortholog thereof, may be utilized as an immunogen in the generation of antibodies that immunospecifically bind these protein components.

Various procedures known within the art may be used for the production of polyclonal or monoclonal antibodies directed against a protein of the invention, or against derivatives, fragments, analogs homologs or orthologs thereof (see, for example, Antibodies: A Laboratory Manual, Harlow E, and Lane D, 1988, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, incorporated herein by reference). Some of these antibodies are discussed below.

5.13.1 Polyclonal Antibodies

5

10

15

20

25

30

35

For the production of polyclonal antibodies, various suitable host animals (e.g., rabbit, goat, mouse or other mammal) may be immunized by one or more injections with the native protein, a synthetic variant thereof, or a derivative of the foregoing. An appropriate immunogenic preparation can contain, for example, the naturally occurring immunogenic protein, a chemically synthesized polypeptide representing the immunogenic protein, or a recombinantly expressed immunogenic protein. Furthermore, the protein may be conjugated to a second protein known to be immunogenic in the mammal being immunized. Examples of such immunogenic proteins include but are not limited to keyhole limpet hemocyanin, serum albumin, bovine thyroglobulin, and soybean trypsin inhibitor. The preparation can further include an adjuvant. Various adjuvants used to increase the immunological response include, but are not limited to, Freund's (complete and incomplete), mineral gels (e.g., aluminum hydroxide), surface active substances (e.g., lysolecithin, pluronic polyols, polyanions, peptides, oil emulsions, dinitrophenol, etc.), adjuvants usable in humans such as Bacille Calmette-Guerin and Corynebacterium parvum, or similar immunostimulatory agents. Additional examples of adjuvants which can be employed include MPL-TDM adjuvant (monophosphoryl Lipid A, synthetic trehalose dicorynomycolate).

The polyclonal antibody molecules directed against the immunogenic protein can be isolated from the mammal (e.g., from the blood) and further purified by well known techniques, such as affinity chromatography using protein A or protein G, which provide primarily the IgG fraction of immune serum. Subsequently, or alternatively, the specific antigen which is the target of the immunoglobulin sought, or an epitope thereof, may be immobilized on a column to purify the immune specific antibody by immunoaffinity chromatography. Purification of immunoglobulins is discussed, for example, by D. Wilkinson (The Scientist, published by The Scientist, Inc., Philadelphia PA, Vol. 14, No. 8 (April 17, 2000), pp. 25-28).

10 5.13.2 Monoclonal Antibodies

5

15

20

25

30

35

The term "monoclonal antibody" (MAb) or "monoclonal antibody composition", as used herein, refers to a population of antibody molecules that contain only one molecular species of antibody molecule consisting of a unique light chain gene product and a unique heavy chain gene product. In particular, the complementarity determining regions (CDRs) of the monoclonal antibody are identical in all the molecules of the population. MAbs thus contain an antigen binding site capable of immunoreacting with a particular epitope of the antigen characterized by a unique binding affinity for it.

Monoclonal antibodies can be prepared using hybridoma methods, such as those described by Kohler and Milstein, Nature, 256:495 (1975). In a hybridoma method, a mouse, hamster, or other appropriate host animal, is typically immunized with an immunizing agent to elicit lymphocytes that produce or are capable of producing antibodies that will specifically bind to the immunizing agent. Alternatively, the lymphocytes can be immunized in vitro.

The immunizing agent will typically include the protein antigen, a fragment thereof or a fusion protein thereof. Generally, either peripheral blood lymphocytes are used if cells of human origin are desired, or spleen cells or lymph node cells are used if non-human mammalian sources are desired. The lymphocytes are then fused with an immortalized cell line using a suitable fusing agent, such as polyethylene glycol, to form a hybridoma cell (Goding, Monoclonal Antibodies: Principles and Practice, Academic Press, (1986) pp. 59-103). Immortalized cell lines are usually transformed mammalian cells, particularly myeloma cells of rodent, bovine and human origin. Usually, rat or mouse myeloma cell lines are employed. The hybridoma cells can be cultured in a suitable culture medium that preferably contains one or more substances that inhibit the growth or survival of the unfused, immortalized cells. For example, if the parental cells lack the enzyme hypoxanthine guanine phosphoribosyl transferase (HGPRT or HPRT), the culture medium for the hybridomas typically will include hypoxanthine, aminopterin, and thymidine ("HAT medium"), which substances prevent the growth of HGPRT-deficient cells.

Preferred immortalized cell lines are those that fuse efficiently, support stable high level expression of antibody by the selected antibody-producing cells, and are sensitive to a medium such as HAT medium. More preferred immortalized cell lines are murine myeloma lines, which can be obtained, for instance, from the Salk Institute Cell Distribution Center, San Diego,

California and the American Type Culture Collection, Manassas, Virginia. Human myeloma and mouse-human heteromyeloma cell lines also have been described for the production of human monoclonal antibodies (Kozbor, J. Immunol., 133:3001 (1984); Brodeur et al., Monoclonal Antibody Production Techniques and Applications, Marcel Dekker, Inc., New York, (1987) pp. 51-63).

The culture medium in which the hybridoma cells are cultured can then be assayed for the presence of monoclonal antibodies directed against the antigen. Preferably, the binding specificity of monoclonal antibodies produced by the hybridoma cells is determined by immunoprecipitation or by an in vitro binding assay, such as radioimmunoassay (RIA) or enzyme-linked immunoabsorbent assay (ELISA). Such techniques and assays are known in the art. The binding affinity of the monoclonal antibody can, for example, be determined by the Scatchard analysis of Munson and Pollard, <u>Anal. Biochem.</u>, <u>107</u>:220 (1980). Preferably, antibodies having a high degree of specificity and a high binding affinity for the target antigen are isolated.

10

15

20

25

30

35

After the desired hybridoma cells are identified, the clones can be subcloned by limiting dilution procedures and grown by standard methods. Suitable culture media for this purpose include, for example, Dulbecco's Modified Eagle's Medium and RPMI-1640 medium. Alternatively, the hybridoma cells can be grown in vivo as ascites in a mammal.

The monoclonal antibodies secreted by the subclones can be isolated or purified from the culture medium or ascites fluid by conventional immunoglobulin purification procedures such as, for example, protein A-Sepharose, hydroxylapatite chromatography, gel electrophoresis, dialysis, or affinity chromatography.

The monoclonal antibodies can also be made by recombinant DNA methods, such as those described in U.S. Patent No. 4,816,567. DNA encoding the monoclonal antibodies of the invention can be readily isolated and sequenced using conventional procedures (e.g., by using oligonucleotide probes that are capable of binding specifically to genes encoding the heavy and light chains of murine antibodies). The hybridoma cells of the invention serve as a preferred source of such DNA. Once isolated, the DNA can be placed into expression vectors, which are then transfected into host cells such as simian COS cells, Chinese hamster ovary (CHO) cells, or myeloma cells that do not otherwise produce immunoglobulin protein, to obtain the synthesis of monoclonal antibodies in the recombinant host cells. The DNA also can be modified, for

example, by substituting the coding sequence for human heavy and light chain constant domains in place of the homologous murine sequences (U.S. Patent No. 4,816,567; Morrison, Nature 368, 812-13 (1994)) or by covalently joining to the immunoglobulin coding sequence all or part of the coding sequence for a non-immunoglobulin polypeptide. Such a non-immunoglobulin polypeptide can be substituted for the constant domains of an antibody of the invention, or can be substituted for the variable domains of one antigen-combining site of an antibody of the invention to create a chimeric bivalent antibody.

5.13.2 Humanized Antibodies

5

35

10 The antibodies directed against the protein antigens of the invention can further comprise humanized antibodies or human antibodies. These antibodies are suitable for administration to humans without engendering an immune response by the human against the administered immunoglobulin. Humanized forms of antibodies are chimeric immunoglobulins. immunoglobulin chains or fragments thereof (such as Fv, Fab, Fab', F(ab')2 or other antigen-15 binding subsequences of antibodies) that are principally comprised of the sequence of a human immunoglobulin, and contain minimal sequence derived from a non-human immunoglobulin. Humanization can be performed following the method of Winter and co-workers (Jones et al., Nature, 321:522-525 (1986); Riechmann et al., Nature, 332:323-327 (1988); Verhoeyen et al., Science, 239:1534-1536 (1988)), by substituting rodent CDRs or CDR sequences for the 20 corresponding sequences of a human antibody. (See also U.S. Patent No. 5,225,539.) In some instances, Fv framework residues of the human immunoglobulin are replaced by corresponding non-human residues. Humanized antibodies can also comprise residues which are found neither in the recipient antibody nor in the imported CDR or framework sequences. In general, the humanized antibody will comprise substantially all of at least one, and typically two, variable 25 domains, in which all or substantially all of the CDR regions correspond to those of a non-human immunoglobulin and all or substantially all of the framework regions are those of a human immunoglobulin consensus sequence. The humanized antibody optimally also will comprise at least a portion of an immunoglobulin constant region (Fc), typically that of a human immunoglobulin (Jones et al., 1986; Riechmann et al., 1988; and Presta, Curr. Op. Struct. Biol., 30 2:593-596 (1992)).

5.13.3 Human Antibodies

Fully human antibodies relate to antibody molecules in which essentially the entire sequences of both the light chain and the heavy chain, including the CDRs, arise from human genes. Such antibodies are termed "human antibodies", or "fully human antibodies" herein.

Human monoclonal antibodies can be prepared by the trioma technique; the human B-cell hybridoma technique (see Kozbor, et al., 1983 Immunol Today 4: 72) and the EBV hybridoma technique to produce human monoclonal antibodies (see Cole, et al., 1985 In: Monoclonal Antibodies and Cancer Therapy, Alan R. Liss, Inc., pp. 77-96). Human monoclonal antibodies may be utilized in the practice of the present invention and may be produced by using human hybridomas (see Cote, et al., 1983. Proc Natl Acad Sci USA 80: 2026-2030) or by transforming human B-cells with Epstein Barr Virus in vitro (see Cole, et al., 1985 In: Monoclonal Antibodies and Cancer Therapy, Alan R. Liss, Inc., pp. 77-96).

5

25

30

35

In addition, human antibodies can also be produced using additional techniques,
including phage display libraries (Hoogenboom and Winter, J. Mol. Biol., 227:381 (1991);
Marks et al., J. Mol. Biol., 222:581 (1991)). Similarly, human antibodies can be made by
introducing human immunoglobulin loci into transgenic animals, e.g., mice in which the
endogenous immunoglobulin genes have been partially or completely inactivated. Upon
challenge, human antibody production is observed, which closely resembles that seen in humans
in all respects, including gene rearrangement, assembly, and antibody repertoire. This approach
is described, for example, in U.S. Patent Nos. 5,545,807; 5,545,806; 5,569,825; 5,625,126;
5,633,425; 5,661,016, and in Marks et al. (Bio/Technology 10, 779-783 (1992)); Lonberg et al.
(Nature 368 856-859 (1994)); Morrison (Nature 368, 812-13 (1994)); Fishwild et al., (Nature
Biotechnology 14, 845-51 (1996)); Neuberger (Nature Biotechnology 14, 826 (1996)); and
Lonberg and Huszar (Intern. Rev. Immunol. 13 65-93 (1995)).

Human antibodies may additionally be produced using transgenic nonhuman animals which are modified so as to produce fully human antibodies rather than the animal's endogenous antibodies in response to challenge by an antigen. (See PCT publication WO94/02602). The endogenous genes encoding the heavy and light immunoglobulin chains in the nonhuman host have been incapacitated, and active loci encoding human heavy and light chain immunoglobulins are inserted into the host's genome. The human genes are incorporated, for example, using yeast artificial chromosomes containing the requisite human DNA segments. An animal which provides all the desired modifications is then obtained as progeny by crossbreeding intermediate transgenic animals containing fewer than the full complement of the modifications. The preferred embodiment of such a nonhuman animal is a mouse, and is termed the XenomouseTM as disclosed in PCT publications WO 96/33735 and WO 96/34096. This animal produces B cells which secrete fully human immunoglobulins. The antibodies can be obtained directly from the animal after immunization with an immunogen of interest, as, for example, a preparation of a polyclonal antibody, or alternatively from immortalized B cells derived from the animal, such as hybridomas producing monoclonal antibodies. Additionally, the genes encoding the

immunoglobulins with human variable regions can be recovered and expressed to obtain the antibodies directly, or can be further modified to obtain analogs of antibodies such as, for example, single chain Fv molecules.

An example of a method of producing a nonhuman host, exemplified as a mouse, lacking expression of an endogenous immunoglobulin heavy chain is disclosed in U.S. Patent No. 5,939,598. It can be obtained by a method including deleting the J segment genes from at least one endogenous heavy chain locus in an embryonic stem cell to prevent rearrangement of the locus and to prevent formation of a transcript of a rearranged immunoglobulin heavy chain locus, the deletion being effected by a targeting vector containing a gene encoding a selectable marker; and producing from the embryonic stem cell a transgenic mouse whose somatic and germ cells contain the gene encoding the selectable marker.

A method for producing an antibody of interest, such as a human antibody, is disclosed in U.S. Patent No. 5,916,771. It includes introducing an expression vector that contains a nucleotide sequence encoding a heavy chain into one mammalian host cell in culture, introducing an expression vector containing a nucleotide sequence encoding a light chain into another mammalian host cell, and fusing the two cells to form a hybrid cell. The hybrid cell expresses an antibody containing the heavy chain and the light chain.

In a further improvement on this procedure, a method for identifying a clinically relevant epitope on an immunogen, and a correlative method for selecting an antibody that binds immunospecifically to the relevant epitope with high affinity, are disclosed in PCT publication WO 99/53049.

5.13.4 Fab Fragments and Single Chain Antibodies

According to the invention, techniques can be adapted for the production of single-chain antibodies specific to an antigenic protein of the invention (see e.g., U.S. Patent No. 4,946,778). In addition, methods can be adapted for the construction of F_{ab} expression libraries (see e.g., Huse, et al., 1989 Science 246: 1275-1281) to allow rapid and effective identification of monoclonal F_{ab} fragments with the desired specificity for a protein or derivatives, fragments, analogs or homologs thereof. Antibody fragments that contain the idiotypes to a protein antigen may be produced by techniques known in the art including, but not limited to: (i) an $F_{(ab)2}$ fragment produced by pepsin digestion of an antibody molecule; (ii) an F_{ab} fragment generated by reducing the disulfide bridges of an $F_{(ab)2}$ fragment; (iii) an F_{ab} fragment generated by the treatment of the antibody molecule with papain and a reducing agent and (iv) F_{v} fragments.

35 5.13.5 Bispecific Antibodies

5

10

15

20

25

Bispecific antibodies are monoclonal, preferably human or humanized, antibodies that have binding specificities for at least two different antigens. In the present case, one of the binding specificities is for an antigenic protein of the invention. The second binding target is any other antigen, and advantageously is a cell-surface protein or receptor or receptor subunit.

5

10

15

20

25

30

35

Methods for making bispecific antibodies are known in the art. Traditionally, the recombinant production of bispecific antibodies is based on the co-expression of two immunoglobulin heavy-chain/light-chain pairs, where the two heavy chains have different specificities (Milstein and Cuello, Nature, 305:537-539 (1983)). Because of the random assortment of immunoglobulin heavy and light chains, these hybridomas (quadromas) produce a potential mixture of ten different antibody molecules, of which only one has the correct bispecific structure. The purification of the correct molecule is usually accomplished by affinity chromatography steps. Similar procedures are disclosed in WO 93/08829, published 13 May 1993, and in Traunecker *et al.*, 1991 *EMBO J.*, 10:3655-3659.

Antibody variable domains with the desired binding specificities (antibody-antigen combining sites) can be fused to immunoglobulin constant domain sequences. The fusion preferably is with an immunoglobulin heavy-chain constant domain, comprising at least part of the hinge, CH2, and CH3 regions. It is preferred to have the first heavy-chain constant region (CH1) containing the site necessary for light-chain binding present in at least one of the fusions. DNAs encoding the immunoglobulin heavy-chain fusions and, if desired, the immunoglobulin light chain, are inserted into separate expression vectors, and are co-transfected into a suitable host organism. For further details of generating bispecific antibodies see, for example, Suresh et al., Methods in Enzymology, 121:210 (1986).

According to another approach described in WO 96/27011, the interface between a pair of antibody molecules can be engineered to maximize the percentage of heterodimers which are recovered from recombinant cell culture. The preferred interface comprises at least a part of the CH3 region of an antibody constant domain. In this method, one or more small amino acid side chains from the interface of the first antibody molecule are replaced with larger side chains (e.g. tyrosine or tryptophan). Compensatory "cavities" of identical or similar size to the large side chain(s) are created on the interface of the second antibody molecule by replacing large amino acid side chains with smaller ones (e.g. alanine or threonine). This provides a mechanism for increasing the yield of the heterodimer over other unwanted end-products such as homodimers.

Bispecific antibodies can be prepared as full length antibodies or antibody fragments (e.g. F(ab')₂ bispecific antibodies). Techniques for generating bispecific antibodies from antibody fragments have been described in the literature. For example, bispecific antibodies can be prepared using chemical linkage. Brennan et al., Science 229:81 (1985) describe a procedure

wherein intact antibodies are proteolytically cleaved to generate F(ab')₂ fragments. These fragments are reduced in the presence of the dithiol complexing agent sodium arsenite to stabilize vicinal dithiols and prevent intermolecular disulfide formation. The Fab' fragments generated are then converted to thionitrobenzoate (TNB) derivatives. One of the Fab'-TNB derivatives is then reconverted to the Fab'-thiol by reduction with mercaptoethylamine and is mixed with an equimolar amount of the other Fab'-TNB derivative to form the bispecific antibody. The bispecific antibodies produced can be used as agents for the selective immobilization of enzymes.

Additionally, Fab' fragments can be directly recovered from E. coli and chemically coupled to form bispecific antibodies. Shalaby et al., J. Exp. Med. 175:217-225 (1992) describe the production of a fully humanized bispecific antibody F(ab')₂ molecule. Each Fab' fragment was separately secreted from E. coli and subjected to directed chemical coupling in vitro to form the bispecific antibody. The bispecific antibody thus formed was able to bind to cells overexpressing the ErbB2 receptor and normal human T cells, as well as trigger the lytic activity of human cytotoxic lymphocytes against human breast tumor targets.

10

15

20

25

30

35

Various techniques for making and isolating bispecific antibody fragments directly from recombinant cell culture have also been described. For example, bispecific antibodies have been produced using leucine zippers. Kostelny et al., J. Immunol. 148(5):1547-1553 (1992). The leucine zipper peptides from the Fos and Jun proteins were linked to the Fab' portions of two different antibodies by gene fusion. The antibody homodimers were reduced at the hinge region to form monomers and then re-oxidized to form the antibody heterodimers. This method can also be utilized for the production of antibody homodimers. The "diabody" technology described by Hollinger et al., Proc. Natl. Acad. Sci. USA 90:6444-6448 (1993) has provided an alternative mechanism for making bispecific antibody fragments. The fragments comprise a heavy-chain variable domain (V_H) connected to a light-chain variable domain (V_L) by a linker which is too short to allow pairing between the two domains on the same chain. Accordingly, the V_H and V_L domains of one fragment are forced to pair with the complementary V_L and V_H domains of another fragment, thereby forming two antigen-binding sites. Another strategy for making bispecific antibody fragments by the use of single-chain Fv (sFv) dimers has also been reported. See, Gruber et al., J. Immunol. 152:5368 (1994).

Antibodies with more than two valencies are contemplated. For example, trispecific antibodies can be prepared. Tutt et al., <u>J. Immunol.</u> 147:60 (1991). Exemplary bispecific antibodies can bind to two different epitopes, at least one of which originates in the protein antigen of the invention. Alternatively, an anti-antigenic arm of an immunoglobulin molecule can be combined with an arm which binds to a triggering molecule on

a leukocyte such as a T-cell receptor molecule (e.g. CD2, CD3, CD28, or B7), or Fc receptors for IgG (FcγR), such as FcγRI (CD64), FcγRII (CD32) and FcγRIII (CD16) so as to focus cellular defense mechanisms to the cell expressing the particular antigen. Bispecific antibodies can also be used to direct cytotoxic agents to cells which express a particular antigen. These antibodies possess an antigen-binding arm and an arm which binds a cytotoxic agent or a radionuclide chelator, such as EOTUBE, DPTA, DOTA, or TETA. Another bispecific antibody of interest binds the protein antigen described herein and further binds tissue factor (TF).

5.13.6 Heteroconjugate Antibodies

5

10

15

20

25

30

35

Heteroconjugate antibodies are also within the scope of the present invention.

Heteroconjugate antibodies are composed of two covalently joined antibodies. Such antibodies have, for example, been proposed to target immune system cells to unwanted cells (U.S. Patent No. 4,676,980), and for treatment of HIV infection (WO 91/00360; WO 92/200373; EP 03089). It is contemplated that the antibodies can be prepared in vitro using known methods in synthetic protein chemistry, including those involving crosslinking agents. For example, immunotoxins can be constructed using a disulfide exchange reaction or by forming a thioether bond. Examples of suitable reagents for this purpose include iminothiolate and methyl-4-mercaptobutyrimidate and those disclosed, for example, in U.S. Patent No. 4,676,980.

5.13.7 Effector Function Engineering

It can be desirable to modify the antibody of the invention with respect to effector function, so as to enhance, *e.g.*, the effectiveness of the antibody in treating cancer. For example, cysteine residue(s) can be introduced into the Fc region, thereby allowing interchain disulfide bond formation in this region. The homodimeric antibody thus generated can have improved internalization capability and/or increased complement-mediated cell killing and antibody-dependent cellular cytotoxicity (ADCC). See Caron et al., J. Exp Med., 176: 1191-1195 (1992) and Shopes, J. Immunol., 148: 2918-2922 (1992). Homodimeric antibodies with enhanced antitumor activity can also be prepared using heterobifunctional cross-linkers as described in Wolff et al. Cancer Research, 53: 2560-2565 (1993). Alternatively, an antibody can be engineered that has dual Fc regions and can thereby have enhanced complement lysis and ADCC capabilities. See Stevenson et al., Anti-Cancer Drug Design, 3: 219-230 (1989).

5.13.8 Immunoconjugates

The invention also pertains to immunoconjugates comprising an antibody conjugated to a cytotoxic agent such as a chemotherapeutic agent, toxin (e.g., an enzymatically active toxin of

bacterial, fungal, plant, or animal origin, or fragments thereof), or a radioactive isotope (i.e., a radioconjugate).

Chemotherapeutic agents useful in the generation of such immunoconjugates have been described above. Enzymatically active toxins and fragments thereof that can be used include diphtheria A chain, nonbinding active fragments of diphtheria toxin, exotoxin A chain (from Pseudomonas aeruginosa), ricin A chain, abrin A chain, modeccin A chain, alpha-sarcin, Aleurites fordii proteins, dianthin proteins, Phytolaca americana proteins (PAPI, PAPII, and PAP-S), momordica charantia inhibitor, curcin, crotin, sapaonaria officinalis inhibitor, gelonin, mitogellin, restrictocin, phenomycin, enomycin, and the tricothecenes. A variety of radionuclides are available for the production of radioconjugated antibodies. Examples include ²¹²Bi, ¹³¹I, ¹³¹In, ⁹⁰Y, and ¹⁸⁶Re.

Conjugates of the antibody and cytotoxic agent are made using a variety of bifunctional protein-coupling agents such as N-succinimidyl-3-(2-pyridyldithiol) propionate (SPDP), iminothiolane (IT), bifunctional derivatives of imidoesters (such as dimethyl adipimidate HCL), active esters (such as disuccinimidyl suberate), aldehydes (such as glutareldehyde), bis-azido compounds (such as bis (p-azidobenzoyl) hexanediamine), bis-diazonium derivatives (such as bis-(p-diazoniumbenzoyl)-ethylenediamine), diisocyanates (such as tolyene 2,6-diisocyanate), and bis-active fluorine compounds (such as 1,5-difluoro-2,4-dinitrobenzene). For example, a ricin immunotoxin can be prepared as described in Vitetta et al., Science, 238: 1098 (1987). Carbon-14-labeled 1-isothiocyanatobenzyl-3-methyldiethylene triaminepentaacetic acid (MX-DTPA) is an exemplary chelating agent for conjugation of radionucleotide to the antibody. See WO94/11026.

In another embodiment, the antibody can be conjugated to a "receptor" (such streptavidin) for utilization in tumor pretargeting wherein the antibody-receptor conjugate is administered to the patient, followed by removal of unbound conjugate from the circulation using a clearing agent and then administration of a "ligand" (e.g., avidin) that is in turn conjugated to a cytotoxic agent.

4.14 COMPUTER READABLE SEQUENCES

10

15

20

25

30

35

In one application of this embodiment, a nucleotide sequence of the present invention can be recorded on computer readable media. As used herein, "computer readable media" refers to any medium which can be read and accessed directly by a computer. Such media include, but are not limited to: magnetic storage media, such as floppy discs, hard disc storage medium, and magnetic tape; optical storage media such as CD-ROM; electrical storage media such as RAM and ROM; and hybrids of these categories such as magnetic/optical storage media. A skilled

artisan can readily appreciate how any of the presently known computer readable mediums can be used to create a manufacture comprising computer readable medium having recorded thereon a nucleotide sequence of the present invention. As used herein, "recorded" refers to a process for storing information on computer readable medium. A skilled artisan can readily adopt any of the presently known methods for recording information on computer readable medium to generate manufactures comprising the nucleotide sequence information of the present invention.

A variety of data storage structures are available to a skilled artisan for creating a computer readable medium having recorded thereon a nucleotide sequence of the present invention. The choice of the data storage structure will generally be based on the means chosen to access the stored information. In addition, a variety of data processor programs and formats can be used to store the nucleotide sequence information of the present invention on computer readable medium. The sequence information can be represented in a word processing text file, formatted in commercially-available software such as WordPerfect and Microsoft Word, or represented in the form of an ASCII file, stored in a database application, such as DB2, Sybase, Oracle, or the like. A skilled artisan can readily adapt any number of data processor structuring formats (e.g. text file or database) in order to obtain computer readable medium having recorded thereon the nucleotide sequence information of the present invention.

By providing any of the nucleotide sequences SEQ ID NO:1-1009 or a representative fragment thereof; or a nucleotide sequence at least 95% identical to any of the nucleotide sequences of SEQ ID NO:1-1009 in computer readable form, a skilled artisan can routinely access the sequence information for a variety of purposes. Computer software is publicly available which allows a skilled artisan to access sequence information provided in a computer readable medium. The examples which follow demonstrate how software which implements the BLAST (Altschul et al., J. Mol. Biol. 215:403-410 (1990)) and BLAZE (Brutlag et al., Comp. Chem. 17:203-207 (1993)) search algorithms on a Sybase system is used to identify open reading frames (ORFs) within a nucleic acid sequence. Such ORFs may be protein encoding fragments and may be useful in producing commercially important proteins such as enzymes used in fermentation reactions and in the production of commercially useful metabolites.

As used herein, "a computer-based system" refers to the hardware means, software means, and data storage means used to analyze the nucleotide sequence information of the present invention. The minimum hardware means of the computer-based systems of the present invention comprises a central processing unit (CPU), input means, output means, and data storage means. A skilled artisan can readily appreciate that any one of the currently available computer-based systems are suitable for use in the present invention. As stated above, the computer-based systems of the present invention comprise a data storage means having stored

therein a nucleotide sequence of the present invention and the necessary hardware means and software means for supporting and implementing a search means. As used herein, "data storage means" refers to memory which can store nucleotide sequence information of the present invention, or a memory access means which can access manufactures having recorded thereon the nucleotide sequence information of the present invention.

As used herein, "search means" refers to one or more programs which are implemented on the computer-based system to compare a target sequence or target structural motif with the sequence information stored within the data storage means. Search means are used to identify fragments or regions of a known sequence which match a particular target sequence or target motif. A variety of known algorithms are disclosed publicly and a variety of commercially available software for conducting search means are and can be used in the computer-based systems of the present invention. Examples of such software includes, but is not limited to, Smith-Waterman, MacPattern (EMBL), BLASTN and BLASTA (NPOLYPEPTIDEIA). A skilled artisan can readily recognize that any one of the available algorithms or implementing. software packages for conducting homology searches can be adapted for use in the present computer-based systems. As used herein, a "target sequence" can be any nucleic acid or amino acid sequence of six or more nucleotides or two or more amino acids. A skilled artisan can readily recognize that the longer a target sequence is, the less likely a target sequence will be present as a random occurrence in the database. The most preferred sequence length of a target sequence is from about 10 to 300 amino acids, more preferably from about 30 to 100 nucleotide residues. However, it is well recognized that searches for commercially important fragments, such as sequence fragments involved in gene expression and protein processing, may be of shorter length.

As used herein, "a target structural motif," or "target motif," refers to any rationally selected sequence or combination of sequences in which the sequence(s) are chosen based on a three-dimensional configuration which is formed upon the folding of the target motif. There are a variety of target motifs known in the art. Protein target motifs include, but are not limited to, enzyme active sites and signal sequences. Nucleic acid target motifs include, but are not limited to, promoter sequences, hairpin structures and inducible expression elements (protein binding sequences).

4.15 TRIPLE HELIX FORMATION

5

10

15

20

25

30

35

In addition, the fragments of the present invention, as broadly described, can be used to control gene expression through triple helix formation or antisense DNA or RNA, both of which methods are based on the binding of a polynucleotide sequence to DNA or RNA.

Polynucleotides suitable for use in these methods are preferably 20 to 40 bases in length and are designed to be complementary to a region of the gene involved in transcription (triple helix - see Lee et al., Nucl. Acids Res. 6:3073 (1979); Cooney et al., Science 15241:456 (1988); and Dervan et al., Science 251:1360 (1991)) or to the mRNA itself (antisense - Olmno, J. Neurochem. 56:560 (1991); Oligodeoxynucleotides as Antisense Inhibitors of Gene Expression, CRC Press, Boca Raton, FL (1988)). Triple helix-formation optimally results in a shut-off of RNA transcription from DNA, while antisense RNA hybridization blocks translation of an mRNA molecule into polypeptide. Both techniques have been demonstrated to be effective in model systems. Information contained in the sequences of the present invention is necessary for the design of an antisense or triple helix oligonucleotide.

4.16 DIAGNOSTIC ASSAYS AND KITS

5

10

15

20

25

30

35

The present invention further provides methods to identify the presence or expression of one of the ORFs of the present invention, or homolog thereof, in a test sample, using a nucleic acid probe or antibodies of the present invention, optionally conjugated or otherwise associated with a suitable label.

In general, methods for detecting a polynucleotide of the invention can comprise contacting a sample with a compound that binds to and forms a complex with the polynucleotide for a period sufficient to form the complex, and detecting the complex, so that if a complex is detected, a polynucleotide of the invention is detected in the sample. Such methods can also comprise contacting a sample under stringent hybridization conditions with nucleic acid primers that annual to a polynucleotide of the invention under such conditions, and amplifying annualed polynucleotides, so that if a polynucleotide is amplified, a polynucleotide of the invention is detected in the sample.

In general, methods for detecting a polypeptide of the invention can comprise contacting a sample with a compound that binds to and forms a complex with the polypeptide for a period sufficient to form the complex, and detecting the complex, so that if a complex is detected, a polypeptide of the invention is detected in the sample.

In detail, such methods comprise incubating a test sample with one or more of the antibodies or one or more of the nucleic acid probes of the present invention and assaying for binding of the nucleic acid probes or antibodies to components within the test sample.

Conditions for incubating a nucleic acid probe or antibody with a test sample vary.

Incubation conditions depend on the format employed in the assay, the detection methods employed, and the type and nature of the nucleic acid probe or antibody used in the assay. One skilled in the art will recognize that any one of the commonly available hybridization,

amplification or immunological assay formats can readily be adapted to employ the nucleic acid probes or antibodies of the present invention. Examples of such assays can be found in Chard, T., An Introduction to Radioimmunoassay and Related Techniques, Elsevier Science Publishers, Amsterdam, The Netherlands (1986); Bullock, G.R. et al., Techniques in Immunocytochemistry, Academic Press, Orlando, FL Vol. 1 (1982), Vol. 2 (1983), Vol. 3 (1985); Tijssen, P., Practice and Theory of immunoassays: Laboratory Techniques in Biochemistry and Molecular Biology, Elsevier Science Publishers, Amsterdam, The Netherlands (1985). The test samples of the present invention include cells, protein or membrane extracts of cells, or biological fluids such as sputum, blood, serum, plasma, or urine. The test sample used in the above-described method will vary based on the assay format, nature of the detection method and the tissues, cells or extracts used as the sample to be assayed. Methods for preparing protein extracts or membrane extracts of cells are well known in the art and can be readily be adapted in order to obtain a sample which is compatible with the system utilized.

In another embodiment of the present invention, kits are provided which contain the necessary reagents to carry out the assays of the present invention. Specifically, the invention provides a compartment kit to receive, in close confinement, one or more containers which comprises: (a) a first container comprising one of the probes or antibodies of the present invention; and (b) one or more other containers comprising one or more of the following: wash reagents, reagents capable of detecting presence of a bound probe or antibody.

In detail, a compartment kit includes any kit in which reagents are contained in separate containers. Such containers include small glass containers, plastic containers or strips of plastic or paper. Such containers allows one to efficiently transfer reagents from one compartment to another compartment such that the samples and reagents are not cross-contaminated, and the agents or solutions of each container can be added in a quantitative fashion from one compartment to another. Such containers will include a container which will accept the test sample, a container which contains the antibodies used in the assay, containers which contain wash reagents (such as phosphate buffered saline, Tris-buffers, etc.), and containers which contain the reagents used to detect the bound antibody or probe. Types of detection reagents include labeled nucleic acid probes, labeled secondary antibodies, or in the alternative, if the primary antibody is labeled, the enzymatic, or antibody binding reagents which are capable of reacting with the labeled antibody. One skilled in the art will readily recognize that the disclosed probes and antibodies of the present invention can be readily incorporated into one of the established kit formats which are well known in the art.

4.17 MEDICAL IMAGING

The novel polypeptides and binding partners of the invention are useful in medical imaging of sites expressing the molecules of the invention (e.g., where the polypeptide of the invention is involved in the immune response, for imaging sites of inflammation or infection). See, e.g., Kunkel et al., U.S. Pat. NO. 5,413,778. Such methods involve chemical attachment of a labeling or imaging agent, administration of the labeled polypeptide to a subject in a pharmaceutically acceptable carrier, and imaging the labeled polypeptide in vivo at the target site.

4.18 SCREENING ASSAYS

5

10

15

20

25

30

35

Using the isolated proteins and polynucleotides of the invention, the present invention further provides methods of obtaining and identifying agents which bind to a polypeptide encoded by an ORF corresponding to any of the nucleotide sequences set forth in SEQ ID NO:1-1009, or bind to a specific domain of the polypeptide encoded by the nucleic acid. In detail, said method comprises the steps of:

- (a) contacting an agent with an isolated protein encoded by an ORF of the present invention, or nucleic acid of the invention; and
 - (b) determining whether the agent binds to said protein or said nucleic acid.

In general, therefore, such methods for identifying compounds that bind to a polynucleotide of the invention can comprise contacting a compound with a polynucleotide of the invention for a time sufficient to form a polynucleotide/compound complex, and detecting the complex, so that if a polynucleotide/compound complex is detected, a compound that binds to a polynucleotide of the invention is identified.

Likewise, in general, therefore, such methods for identifying compounds that bind to a polypeptide of the invention can comprise contacting a compound with a polypeptide of the invention for a time sufficient to form a polypeptide/compound complex, and detecting the complex, so that if a polypeptide/compound complex is detected, a compound that binds to a polynucleotide of the invention is identified.

Methods for identifying compounds that bind to a polypeptide of the invention can also comprise contacting a compound with a polypeptide of the invention in a cell for a time sufficient to form a polypeptide/compound complex, wherein the complex drives expression of a receptor gene sequence in the cell, and detecting the complex by detecting reporter gene sequence expression, so that if a polypeptide/compound complex is detected, a compound that binds a polypeptide of the invention is identified.

Compounds identified via such methods can include compounds which modulate the activity of a polypeptide of the invention (that is, increase or decrease its activity, relative to

activity observed in the absence of the compound). Alternatively, compounds identified via such methods can include compounds which modulate the expression of a polynucleotide of the invention (that is, increase or decrease expression relative to expression levels observed in the absence of the compound). Compounds, such as compounds identified via the methods of the invention, can be tested using standard assays well known to those of skill in the art for their ability to modulate activity/expression.

5

10

15

20

25

30

35

The agents screened in the above assay can be, but are not limited to, peptides, carbohydrates, vitamin derivatives, or other pharmaceutical agents. The agents can be selected and screened at random or rationally selected or designed using protein modeling techniques.

For random screening, agents such as peptides, carbohydrates, pharmaceutical agents and the like are selected at random and are assayed for their ability to bind to the protein encoded by the ORF of the present invention. Alternatively, agents may be rationally selected or designed. As used herein, an agent is said to be "rationally selected or designed" when the agent is chosen based on the configuration of the particular protein. For example, one skilled in the art can readily adapt currently available procedures to generate peptides, pharmaceutical agents and the like, capable of binding to a specific peptide sequence, in order to generate rationally designed antipeptide peptides, for example see Hurby et al., Application of Synthetic Peptides: Antisense Peptides," In Synthetic Peptides, A User's Guide, W.H. Freeman, NY (1992), pp. 289-307, and Kaspczak et al., Biochemistry 28:9230-8 (1989), or pharmaceutical agents, or the like.

In addition to the foregoing, one class of agents of the present invention, as broadly described, can be used to control gene expression through binding to one of the ORFs or EMFs of the present invention. As described above, such agents can be randomly screened or rationally designed/selected. Targeting the ORF or EMF allows a skilled artisan to design sequence specific or element specific agents, modulating the expression of either a single ORF or multiple ORFs which rely on the same EMF for expression control. One class of DNA binding agents are agents which contain base residues which hybridize or form a triple helix formation by binding to DNA or RNA. Such agents can be based on the classic phosphodiester, ribonucleic acid backbone, or can be a variety of sulfhydryl or polymeric derivatives which have base attachment capacity.

Agents suitable for use in these methods preferably contain 20 to 40 bases and are designed to be complementary to a region of the gene involved in transcription (triple helix - see Lee et al., Nucl. Acids Res. 6:3073 (1979); Cooney et al., Science 241:456 (1988); and Dervan et al., Science 251:1360 (1991)) or to the mRNA itself (antisense - Okano, J. Neurochem. 56:560 (1991); Oligodeoxynucleotides as Antisense Inhibitors of Gene Expression, CRC Press, Boca Raton, FL (1988)). Triple helix-formation optimally results in a shut-off of RNA transcription

from DNA, while antisense RNA hybridization blocks translation of an mRNA molecule into polypeptide. Both techniques have been demonstrated to be effective in model systems. Information contained in the sequences of the present invention is necessary for the design of an antisense or triple helix oligonucleotide and other DNA binding agents.

Agents which bind to a protein encoded by one of the ORFs of the present invention can be used as a diagnostic agent. Agents which bind to a protein encoded by one of the ORFs of the present invention can be formulated using known techniques to generate a pharmaceutical composition.

10 4.19 USE OF NUCLEIC ACIDS AS PROBES

5

15

20

25

30

Another aspect of the subject invention is to provide for polypeptide-specific nucleic acid hybridization probes capable of hybridizing with naturally occurring nucleotide sequences. The hybridization probes of the subject invention may be derived from any of the nucleotide sequences SEQ ID NO:1-1009. Because the corresponding gene is only expressed in a limited number of tissues, a hybridization probe derived from of any of the nucleotide sequences SEQ ID NO:1-1009 can be used as an indicator of the presence of RNA of cell type of such a tissue in a sample.

Any suitable hybridization technique can be employed, such as, for example, in situ hybridization. PCR as described in US Patents Nos. 4,683,195 and 4,965,188 provides additional uses for oligonucleotides based upon the nucleotide sequences. Such probes used in PCR may be of recombinant origin, may be chemically synthesized, or a mixture of both. The probe will comprise a discrete nucleotide sequence for the detection of identical sequences or a degenerate pool of possible sequences for identification of closely related genomic sequences.

Other means for producing specific hybridization probes for nucleic acids include the cloning of nucleic acid sequences into vectors for the production of mRNA probes. Such vectors are known in the art and are commercially available and may be used to synthesize RNA probes in vitro by means of the addition of the appropriate RNA polymerase as T7 or SP6 RNA polymerase and the appropriate radioactively labeled nucleotides. The nucleotide sequences may be used to construct hybridization probes for mapping their respective genomic sequences. The nucleotide sequence provided herein may be mapped to a chromosome or specific regions of a chromosome using well known genetic and/or chromosomal mapping techniques. These techniques include in situ hybridization, linkage analysis against known chromosomal markers, hybridization screening with libraries or flow-sorted chromosomal preparations specific to known chromosomes, and the like. The technique of fluorescent in situ hybridization of

chromosome spreads has been described, among other places, in Verma et al (1988) Human Chromosomes: A Manual of Basic Techniques, Pergamon Press, New York NY.

Fluorescent in situ hybridization of chromosomal preparations and other physical chromosome mapping techniques may be correlated with additional genetic map data. Examples of genetic map data can be found in the 1994 Genome Issue of Science (265:1981f). Correlation between the location of a nucleic acid on a physical chromosomal map and a specific disease (or predisposition to a specific disease) may help delimit the region of DNA associated with that genetic disease. The nucleotide sequences of the subject invention may be used to detect differences in gene sequences between normal, carrier or affected individuals.

4.20 PREPARATION OF SUPPORT BOUND OLIGONUCLEOTIDES

10

15

20

25

30

Oligonucleotides, *i.e.*, small nucleic acid segments, may be readily prepared by, for example, directly synthesizing the oligonucleotide by chemical means, as is commonly practiced using an automated oligonucleotide synthesizer.

Support bound oligonucleotides may be prepared by any of the methods known to those of skill in the art using any suitable support such as glass, polystyrene or Teflon. One strategy is to precisely spot oligonucleotides synthesized by standard synthesizers. Immobilization can be achieved using passive adsorption (Inouye & Hondo, (1990) J. Clin. Microbiol. 28(6) 1469-72); using UV light (Nagata *et al.*, 1985; Dahlen *et al.*, 1987; Morrissey & Collins, (1989) Mol. Cell Probes 3(2) 189-207) or by covalent binding of base modified DNA (Keller *et al.*, 1988; 1989); all references being specifically incorporated herein.

Another strategy that may be employed is the use of the strong biotin-streptavidin interaction as a linker. For example, Broude *et al.* (1994) Proc. Natl. Acad. Sci. USA 91(8) 3072-6, describe the use of biotinylated probes, although these are duplex probes, that are immobilized on streptavidin-coated magnetic beads. Streptavidin-coated beads may be purchased from Dynal, Oslo. Of course, this same linking chemistry is applicable to coating any surface with streptavidin. Biotinylated probes may be purchased from various sources, such as, *e.g.*, Operon Technologies (Alameda, CA).

Nunc Laboratories (Naperville, IL) is also selling suitable material that could be used. Nunc Laboratories have developed a method by which DNA can be covalently bound to the microwell surface termed Covalink NH. CovaLink NH is a polystyrene surface grafted with secondary amino groups (>NH) that serve as bridge-heads for further covalent coupling. CovaLink Modules may be purchased from Nunc Laboratories. DNA molecules may be bound to CovaLink exclusively at the 5'-end by a phosphoramidate bond, allowing immobilization of more than 1 pmol of DNA (Rasmussen *et al.*, (1991) Anal. Biochem. 198(1) 138-42).

The use of CovaLink NH strips for covalent binding of DNA molecules at the 5'-end has been described (Rasmussen et al., (1991). In this technology, a phosphoramidate bond is employed (Chu et al., (1983) Nucleic Acids Res. 11(8) 6513-29). This is beneficial as immobilization using only a single covalent bond is preferred. The phosphoramidate bond joins the DNA to the CovaLink NH secondary amino groups that are positioned at the end of spacer arms covalently grafted onto the polystyrene surface through a 2 nm long spacer arm. To link an oligonucleotide to CovaLink NH via an phosphoramidate bond, the oligonucleotide terminus must have a 5'-end phosphate group. It is, perhaps, even possible for biotin to be covalently bound to CovaLink and then streptavidin used to bind the probes.

5

10

15

20

25

30

More specifically, the linkage method includes dissolving DNA in water (7.5 ng/ul) and denaturing for 10 min. at 95°C and cooling on ice for 10 min. Ice-cold 0.1 M 1-methylimidazole, pH 7.0 (1-MeIm₇), is then added to a final concentration of 10 mM 1-MeIm₇. A ss DNA solution is then dispensed into CovaLink NH strips (75 ul/well) standing on ice.

Carbodiimide 0.2 M 1-ethyl-3-(3-dimethylaminopropyl)-carbodiimide (EDC), dissolved in 10 mM 1-MeIm₇, is made fresh and 25 ul added per well. The strips are incubated for 5 hours at 50°C. After incubation the strips are washed using, *e.g.*, Nunc-Immuno Wash; first the wells are washed 3 times, then they are soaked with washing solution for 5 min., and finally they are washed 3 times (where in the washing solution is 0.4 N NaOH, 0.25% SDS heated to 50°C).

It is contemplated that a further suitable method for use with the present invention is that described in PCT Patent Application WO 90/03382 (Southern & Maskos), incorporated herein by reference. This method of preparing an oligonucleotide bound to a support involves attaching a nucleoside 3'-reagent through the phosphate group by a covalent phosphodiester link to aliphatic hydroxyl groups carried by the support. The oligonucleotide is then synthesized on the supported nucleoside and protecting groups removed from the synthetic oligonucleotide chain under standard conditions that do not cleave the oligonucleotide from the support. Suitable reagents include nucleoside phosphoramidite and nucleoside hydrogen phosphorate.

An on-chip strategy for the preparation of DNA probe for the preparation of DNA probe arrays may be employed. For example, addressable laser-activated photodeprotection may be employed in the chemical synthesis of oligonucleotides directly on a glass surface, as described by Fodor *et al.* (1991) Science 251(4995) 767-73, incorporated herein by reference. Probes may also be immobilized on nylon supports as described by Van Ness *et al.* (1991) Nucleic Acids Res. 19(12) 3345-50; or linked to Teflon using the method of Duncan & Cavalier (1988) Anal. Biochem. 169(1) 104-8; all references being specifically incorporated herein.

To link an oligonucleotide to a nylon support, as described by Van Ness *et al.* (1991), requires activation of the nylon surface via alkylation and selective activation of the 5'-amine of oligonucleotides with cyanuric chloride.

One particular way to prepare support bound oligonucleotides is to utilize the light-generated synthesis described by Pease *et al.*, (1994) PNAS USA 91(11) 5022-6, incorporated herein by reference). These authors used current photolithographic techniques to generate arrays of immobilized oligonucleotide probes (DNA chips). These methods, in which light is used to direct the synthesis of oligonucleotide probes in high-density, miniaturized arrays, utilize photolabile 5'-protected *N*-acyl-deoxynucleoside phosphoramidites, surface linker chemistry and versatile combinatorial synthesis strategies. A matrix of 256 spatially defined oligonucleotide probes may be generated in this manner.

4.21 PREPARATION OF NUCLEIC ACID FRAGMENTS

5

10

15

20

25

30

The nucleic acids may be obtained from any appropriate source, such as cDNAs, genomic DNA, chromosomal DNA, microdissected chromosome bands, cosmid or YAC inserts, and RNA, including mRNA without any amplification steps. For example, Sambrook *et al.* (1989) describes three protocols for the isolation of high molecular weight DNA from mammalian cells (p. 9.14-9.23).

DNA fragments may be prepared as clones in M13, plasmid or lambda vectors and/or prepared directly from genomic DNA or cDNA by PCR or other amplification methods. Samples may be prepared or dispensed in multiwell plates. About 100-1000 ng of DNA samples may be prepared in 2-500 ml of final volume.

The nucleic acids would then be fragmented by any of the methods known to those of skill in the art including, for example, using restriction enzymes as described at 9.24-9.28 of Sambrook *et al.* (1989), shearing by ultrasound and NaOH treatment.

Low pressure shearing is also appropriate, as described by Schriefer *et al.* (1990) Nucleic Acids Res. 18(24) 7455-6, incorporated herein by reference). In this method, DNA samples are passed through a small French pressure cell at a variety of low to intermediate pressures. A lever device allows controlled application of low to intermediate pressures to the cell. The results of these studies indicate that low-pressure shearing is a useful alternative to sonic and enzymatic DNA fragmentation methods.

One particularly suitable way for fragmenting DNA is contemplated to be that using the two base recognition endonuclease, *CviJI*, described by Fitzgerald *et al.* (1992) Nucleic Acids Res. 20(14) 3753-62. These authors described an approach for the rapid fragmentation and fractionation

of DNA into particular sizes that they contemplated to be suitable for shotgun cloning and sequencing.

The restriction endonuclease *Cvi*JI normally cleaves the recognition sequence PuGCPy between the G and C to leave blunt ends. Atypical reaction conditions, which alter the specificity of this enzyme (*Cvi*JI**), yield a quasi-random distribution of DNA fragments form the small molecule pUC19 (2688 base pairs). Fitzgerald *et al.* (1992) quantitatively evaluated the randomness of this fragmentation strategy, using a *Cvi*JI** digest of pUC19 that was size fractionated by a rapid gel filtration method and directly ligated, without end repair, to a lac Z minus M13 cloning vector. Sequence analysis of 76 clones showed that *Cvi*JI** restricts pyGCPy and PuGCPu, in addition to PuGCPy sites, and that new sequence data is accumulated at a rate consistent with random fragmentation.

As reported in the literature, advantages of this approach compared to sonication and agarose gel fractionation include: smaller amounts of DNA are required (0.2-0.5 ug instead of 2-5 ug); and fewer steps are involved (no preligation, end repair, chemical extraction, or agarose gel electrophoresis and elution are needed

Irrespective of the manner in which the nucleic acid fragments are obtained or prepared, it is important to denature the DNA to give single stranded pieces available for hybridization. This is achieved by incubating the DNA solution for 2-5 minutes at 80-90°C. The solution is then cooled quickly to 2°C to prevent renaturation of the DNA fragments before they are contacted with the chip. Phosphate groups must also be removed from genomic DNA by methods known in the art.

4.22 PREPARATION OF DNA ARRAYS

5

10

15

20

25

30

Arrays may be prepared by spotting DNA samples on a support such as a nylon membrane. Spotting may be performed by using arrays of metal pins (the positions of which correspond to an array of wells in a microtiter plate) to repeated by transfer of about 20 nl of a DNA solution to a nylon membrane. By offset printing, a density of dots higher than the density of the wells is achieved. One to 25 dots may be accommodated in 1 mm², depending on the type of label used. By avoiding spotting in some preselected number of rows and columns, separate subsets (subarrays) may be formed. Samples in one subarray may be the same genomic segment of DNA (or the same gene) from different individuals, or may be different, overlapped genomic clones. Each of the subarrays may represent replica spotting of the same samples. In one example, a selected gene segment may be amplified from 64 patients. For each patient, the amplified gene segment may be in one 96-well plate (all 96 wells containing the same sample). A plate for each of the 64 patients is prepared. By using a 96-pin device, all samples may be spotted on one 8 x 12 cm membrane.

Subarrays may contain 64 samples, one from each patient. Where the 96 subarrays are identical, the dot span may be 1 mm² and there may be a 1 mm space between subarrays.

Another approach is to use membranes or plates (available from NUNC, Naperville, Illinois) which may be partitioned by physical spacers e.g. a plastic grid molded over the membrane, the grid being similar to the sort of membrane applied to the bottom of multiwell plates, or hydrophobic strips. A fixed physical spacer is not preferred for imaging by exposure to flat phosphor-storage screens or x-ray films.

The present invention is illustrated in the following examples. Upon consideration of the present disclosure, one of skill in the art will appreciate that many other embodiments and variations may be made in the scope of the present invention. Accordingly, it is intended that the broader aspects of the present invention not be limited to the disclosure of the following examples. The present invention is not to be limited in scope by the exemplified embodiments which are intended as illustrations of single aspects of the invention, and compositions and methods which are functionally equivalent are within the scope of the invention. Indeed, numerous modifications and variations in the practice of the invention are expected to occur to those skilled in the art upon consideration of the present preferred embodiments. Consequently, the only limitations which should be placed upon the scope of the invention are those which appear in the appended claims.

All references cited within the body of the instant specification are hereby incorporated by reference in their entirety.

20 5.0 EXAMPLES

5

10

15

25

.30

5.1 EXAMPLE 1

Novel Nucleic Acid Sequences Obtained From Various Libraries

A plurality of novel nucleic acids were obtained from cDNA libraries prepared from various human tissues and in some cases isolated from a genomic library derived from human chromosome using standard PCR, SBH sequence signature analysis and Sanger sequencing techniques. The inserts of the library were amplified with PCR using primers specific for the vector sequences which flank the inserts. Clones from cDNA libraries were spotted on nylon membrane filters and screened with oligonucleotide probes (e.g., 7-mers) to obtain signature sequences. The clones were clustered into groups of similar or identical sequences. Representative clones were selected for sequencing.

In some cases, the 5' sequence of the amplified inserts was then deduced using a typical Sanger sequencing protocol. PCR products were purified and subjected to fluorescent dye terminator cycle sequencing. Single pass gel sequencing was done using a 377 Applied Biosystems

(ABI) sequencer to obtain the novel nucleic acid sequences. In some cases RACE (Random Amplification of cDNA Ends) was performed to further extend the sequence in the 5' direction.

5.2 EXAMPLE 2

5 Novel Contigs

10

15

The novel contigs of the invention were assembled from sequences that were obtained from a cDNA library by methods described in Example 1 above, and in some cases sequences obtained from one or more public databases. Chromatograms were base called and assembled using a software suite from University of Washington, Seattle containing three applications designated PHRED, PHRAP, and CONSED. The sequences for the resulting nucleic acid contigs are designated as SEQ ID NO: 1-1009 and are provided in the attached Sequence Listing. The contigs were assembled using an EST sequence as a seed. Then a recursive algorithm was used to extend the seed EST into an extended assemblage, by pulling additional sequences from different databases (i.e., Hyseq's database containing EST sequences, dbEST version 114, gb pri 114, and UniGene version 101) that belong to this assemblage. The algorithm terminated when there was no additional sequences from the above databases that would extend the assemblage. Inclusion of component sequences into the assemblage was based on a BLASTN hit to the extending assemblage with BLAST score greater than 300 and percent identity greater than 95%.

The nucleotide sequence within the assembled contigs that codes for signal peptide

sequences and their cleavage sites was determined from using Neural Network SignalP V1.1

program (from Center for Biological Sequence Analysis, The Technical University of Denmark).

The process for identifying prokaryotic and eukaryotic signal peptides and their cleavage sites are also disclosed by Henrik Nielson, Jacob Engelbrecht, Soren Brunak, and Gunnar von Heijne in the publication "Identification of prokaryotic and eukaryotic signal peptides and prediction of their cleavage sites" Protein Engineering, vol. 10, no. 1, pp.1-6 (1997) incorporated herein by reference, A maximum S score and a mean S score, as described in the Nielson et al. reference, are obtained from each assembled contig. Table 3 sets forth the nucleotide range for each sequence of SEQ ID NO: 1-1009 that encodes a corresponding amino acid sequence containing the signal peptide sequence and its cleavage site: the maximum S score and the mean S score obtained for each sequence.

A signal peptide or leader peptide is usually a segment of about 15 to 30 amino acids at the N terminus of protein that enables the protein to be targeted to a cell membrane or secreted from a cell. Generally, the signal peptide acts as an export lable and is removed as the protein is secreted in its final form.

The nearest neighbor result for the assembled contig was obtained by a BLASTX version 2.01al 19 MP-Washington University search against Genpept release 120 and Geneseq database (October 12, 2000, update 21 (Derwent)), using BLAST algorithm. The nearest neighbor result showed the closest homologue for each assemblage from Genpept (and contains the translated amino acid sequences for which the assemblage encodes). The nearest neighbor results for SEQ ID NO: 1-1009 are shown in Table 2.

Tables 1, 2 and 3 follow. Table 1 shows the various tissue sources of SEQ ID NO: 1-1009. Table 2 shows the nearest neighbor result for the assembled contig. The nearest neighbor result shows the closest homolog with an identifiable function for each assemblage. Table 3 contains the start and stop nucleotides for the translated amino acid sequence for which each assemblage encodes. Table 3 also provides a correlation between the amino acid sequences set forth in the Sequence Listing, the nucleotide sequences set forth in the Sequence Listing and the SEQ ID NO. in USSN 09/491,404.

15

10

TABLE 1

TISSUE ORIGIN	RNA SOURCE	HYSEQ LIBRARY NAME	SEQ ID NOS: OF NUCLEOTIDE(S)
adult brain	GIBCO .	AB3001	31 45 61 78 96 122 126 132 163 169 171-172 175-176 181 203 212 220 222 230 251-252 258 263 267 279 336 343 358 396 400-401 422 428-429 431 437 456 464 487 503 513 524 561 580 583 609 619 682 812 946 958 965 980 983 989 999
adult brain	GIBCO	ABD003	5 23 26 28-29 31 34-36 61 74 78 87 111-113 116 122-123 129 139 143 148 159 163 167 175-176 178 181 183 186 201-204 206 208-209 212 214 220 222 228 230 234-235 237 246 249-250 252 255 259 262- 264 266-267 279-280 286 329 336 351 358 379 396 422 429 431 437 439 444-445 450 452 456 467-468 479 484 503-504 507 513 523-524 526 533 550 553 559 561-562 578 580 583 636 638 640 683 711 759 764 769 772 799 803 824 830 842 865 885 900 902 906 910 922-924 932-933 941 945 951 955 958 965 971 983-984 989 999 1005
adult brain	Clontech	ABR001	81 122 148 181 183 204 207 233 237 250 267 301 346 394 396 437 439 457 505 563 618 653 655 721 764 795 885 942 949
adult brain	Clontech	ABR006	148 152 222 257 269 583 640 677 878
adult brain	Clontech	ABR008	2 10-11 13-14 19-20 23 28-29 34-35 37 39-40 45 49-50 52 60 73-74 78 83 87-91 94 98 101 109 114-117 122-123 143 145 148-150 152 156 162 168 173-178 181 183 187 189 194 204 206-209 212 214-215 220-221 228 231 233-238 246-247 249-253 255-260 262 266 269-270 272 276 278-281 284 294 301 313 316-320 335 337-338 343 363 372 379 388 390-392 396 400-401 403 405-407 414 417 422-423 425 427-428 433 437 441 443-446 452-453 456 464 467 469 473-479 482 484 487-488 491 497-498 500 502 504-505 507 519-520 523-526 533 544-545 553 555-556 563 570-571 574-576 578-580 583 615 618-619 637-638 643-644 653 655-656 661 663 678 680 689-690 695 699 702 705 717-718 720 722 725-726 742 746 752 754-755 759 761 763-765 767 769 772-774 776 784-789 792 795 799 809-810 812 814-815 817 834 840 842 844-846 852 855-856 858-860 870-873 875 877 885-886 888 890-897 903-904 910 928 930-932 939-942 946-947 951-952 955 957 960 964-965 967 971 975-976 978 986-
adult brain	Clontech	ARROLL	987 989 992 999 1001
addic Diain	CTOHEECH	ABR011	214 965

TABLE 1

TISSUE ORIGIN	RNA SOURCE	HYSEQ LIBRARY NAME	SEQ ID NOS: OF NUCLEOTIDE(S)
adult brain	BioChain	ABR012	152 498
adult brain	Invitrogen	ABR013	142 207 254 396 442 498
adult brain	Invitrogen	ABT004	2 23 31 34 78 96 116 129 141 160 176-177 181 183 202 214 231 233 248 256 258-260 262 278 310 336- 337 379 416 437 439 443-444 450 452 454 464 467 479 484 500 504 519 526 553 570 590 619 638 640 647 653 655 678 711 759 764 789 795 799 885 887 892 902 905 907 910 915 922 941-942 955 960 989
cultured	Strategene	ADP001	17 37 39 74 79 111 129 152 160
preadipocytes	buracegene	ADFOOL	200 222 248 252 268 274 358 385 450 456 504 526 571 583 619 633 640 740 803 816 829 842 887 939- 940 965 973 977 986
adrenal gland	Clontech	ADR002	4 6 19 36 39 49 51-53 74 76 118 122-123 147-148 152 156 160 167 171-172 181 183 204 206 212 223- 224 228 233-234 246 249-250 254- 255 262 274 278-279 284 287 294 317 336 355 358 366 379 392 401- 402 412 417 420 431-432 439 464 470 479-480 484 503-504 506 509 519 524 526-527 541 553 555 561 583 614 619 631 638 646 682 738- 739 756 760 764 770 800 802-803 816-817 838 847 852 863 881 887 905-906 910 923 926 932 941 950- 951 989 999 1002
adult heart	GIBCO	AHR001	6 20 26 29 31 34 37 39 41 46 61 74 78 101 114 116-118 122-124 128 145 147-148 152 155 163 175-176 178 181 183 200 204 206 210 212 215 228 230 234-235 237 246 248- 252 255-256 262-263 266-268 272 278 280 282-283 286 294 309 313 350-351 358 370 374 379 391-392 394 397 400-401 409 420 423 431- 432 434 436 438 441 443 452 455- 456 461 467-468 479-480 484 487 498 500 503 505 511 519 533 541 550 552-553 558 561-562 568 575 583 590 597-598 603 619 636-638 644-645 667-668 680 684 711-712 714-715 723 732 750 789 803 805 816 822 828 885 889 900 902 905 908 910 916-917 923-924 932 935 937 939 941 950 952 954 960 965 974 982 984 987 993 1005
adult kidney	GIBCO	AKD001	4 13-14 19-20 23 26-31 37 39 47 49 54 61 64 78 81 87 91 98 101 114 118 122-123 127 129-130 141- 143 145 148-149 155-158 160 163 168 171-172 175-176 178-181 183 197-198 200 203-206 208 212 215 221-222 228 230 234 237 241 245- 246 250-252 254-257 262-263 265- 269 278-279 282-284 286 297 301

TABLE 1

TISSUE ORIGIN	RNA SOURCE	HYSEQ LIBRARY NAME	SEQ ID NOS: OF NUCLEOTIDE(S)
			308 333 336 352-353 358 371-372 379 381 386 391 394 396-397 400-
			401 405 409 417 420 428-429 431 436-437 443 445 450 456 463-466
			468 475 479-480 484 487 495 498-
			499 503-505 507 511 513 517 523
			526 529 533 539 541-542 550 552- 553 555 561 570-572 575 577-578
			583 587 597 604 606 609 619 636
			638 640-642 648 680 682 701 706
			714 721 732 740 747 771 792 803
			805 809 811-812 829 838 842 862
			865 885 889 900 902 905-906 908 910-911 918-921 924 926 928-930
			937 939 941-942 950-951 953 955
			958 960 963 965 967 976 978-979
			982-984 1005
adult kidney	Invitrogen	AKT002	19 31 78 81 91 98-99 122 142 145 148 152 158 169 176 248 254 256
	•		262 266 279 296-297 301 321 353
			372 401 405 416 420 429-430 441
			456 464 498 504 507 523 526 533
		1	541 583 592-597 649 701 791 838
			862 868 911 926 933 946-947 958 960 971
adult lung	GIBCO	ALG001	19 33 48 61 96 98 101 108 111 114
			145 148 179 183 194 198 200 205
			212 220 228 234 246 248 250-251
			254-255 263 268 277 279 289 298
			306 337 343 372 379-380 385 401 405-406 408 410 420 431 440 443
			445 449 455 484 499 503 507 513
			517 571 590 597 617 636 640 714
			732 749-750 805 885 900 905 910
			918 941 955 958 960 977 980 1001 1005
lymph node	Clontech	ALN001	43 48 53 108 123 136 142 147 160
-			178 181 183 200 205 228 244 246
			250 254 268 270 291 379 399 419
			431 440 442 479-480 484 519 533
			539 553 559 565 583 616-617 619 636 662 701 740 805 833 910 913
			928 941 977
young liver	GIBCO	ALV001	19 42 45 61 64 84 98 107 109 122-
			123 129-130 133 142 148 168-169
			178
	•		263 265 268 279 317 336 371 377
			392 400 410 431 436-437 443 445
			448-450 484 487 513 533 545 559
			561 570 578 617 632 638 640 648 680 771 803 816 836-838 885 906
			926 940 986
adult liver	Invitrogen	ALV002	13-14 26 36 54 64 74 76 109 117
<u> </u>			122 179 181 183 187 204 215 221
			225 229 232 247-248 250 256-257
			275 304 307 315 317 321-322 371
			464 475 479 481 483-484 504 507
			526 553 557 570 619 627-629 632

TABLE 1

TISSUE ORIGIN	RNA SOURCE	HYSEQ LIBRARY NAMB	SEQ ID NOS: OF NUCLEOTIDE(S)
			638 640 653 655 675 680 701 752 768 827 848 865 882 885 889 910 951 955 959 963 967 978 989 999- 1000
adult ovary	Invitrogen	AOV001	4 12 19 23 28-32 34-37 39 45 48 52 54 60-61 64-65 67 76 78 87 96 98-100 108 111-112 114 116-118 122-123 126 129-130 132-134 137 139 142-145 147-149 152 162-163 169-172 176 178 180-183 187 191- 192 197-202 204-206 212 214-217 219-222 228 234-235 237 242 246- 248 250-252 254-256 262 265-269 274 279-280 282-284 294 308-309 313 317 336-337 346 358 361 364 371 374 379 391-392 394 396-397 400 408 414 418 420 423 425 428- 429 431 435-437 440-441 443-447 450 452 455-459 463-464 467-468 479-480 484 487 492 495 499-500 503 505 512-513 517 519 524 533 539 545 553 555 557-559 561 565- 566 568 571 575 577-578 581 583 590 597 605 610 613 616-617 619 636 638 640 645-646 649-650 654 662 671 680 682 694 697 701 711 732 735 739-741 750 753 760 764 771 780 785 789 792 803 806 810 812 821 831-832 838 841-842 879 885 887 900 902 905-906 908-912 917 921-922 924 928 936-939 941- 942 946 950-952 957-958 960 962- 965 979 982 987 989 994 998-999 1005 1008
adult placenta	Clontech	APL001	122 148 168 181 194 200 248 262 268 317 436 541 561 803 838 911 971
placenta	Invitrogen	APL002	38 61 78-79 142 149 176 187 194 206 215 246 252 278 337 346 379 400 456 464 478-479 484 487 504 519 526 553 571 638 640 732 842 910-911 918 941 958
adult spleen	GIBCO	ASP001	23 26 39 43 48 61 63 78 87 98 108 110 123 136 142 157 176 178 181 183 197-198 201-202 205-206 213 220 222 228 234 237 244 250-252 254-255 257 263 294 305 320 336-337 354 358 371-372 376 379 397 400 405 410 414 431 437 440 455-456 484 487 498-499 504 506-507 511-512 519 523 526 529 533 539 550 561 565 572 575 583 586 597 616-617 619 621 636 640 687 701 713 732 740 748 803 812 816 835 910 930 939 946 956 958
testis	GIBCO .	ATS001	20 23 29 61 64 76 114 123 126 143 145 148-149 175 178 182 200 203 206 209 235 248 252 257 263 268 279-281 283-284 333 358 371 391 396 400 418 423 431 438-439 441

TABLE 1

TISSUE ORIGIN	RNA SOURCE	HYSEQ	SEQ ID NOS: OF NUCLEOTIDE(S)
11550B ORIGIN	INA SOURCE	LIBRARY	SEQ ID NOS: OF NOCLEOTIDE(S)
		NAME	
	 	IVAPIE	445 456 479-480 487 490 505 507-
	Ì		508 516-517 521 524 533 550 559
			561-562 582 597 606 638 646 676
ļ			680 750 772 803 834 877 908 911
			914 937-938 950 989 999
adult bladder	Invitrogen	BLD001	23 37 77-78 84 160 176 178 181
210001	Invictogen	DEDOOL	215 218 248 252 262 274 299 334
			351 401 464 474 484 517 543 619
			663 692 729 908 910 918 937 941
			951 960 962
bone marrow	Clontech	BMD001	19 31 39 43 48 52-53 95-96 98 100
20120 111422011	Crosscoon	D. DOOL	108 111-112 114 117 122-123 136
			141-142 144-145 147-149 152 161
			163 169 181 183 187 194 201 204-
			205 208 213 222 228 234 241-242
1			244-246 248-251 254-255 257 267
1			
			272 274 282 286 288-289 292 294
	1		313 317 335 337 339 346-347 358
	1		363 365 374 379 391-392 395-398
			406 408 414 418 423 428 436 440-
			442 444-445 456 475 479 484 495
1			498-500 504 508 511 516 519 526
			533 539 541 553 556 559 561 565
			571 573 583 597 612 617 619 638
			640 646 649 651 677 681 685 707
			709-710 721 734 764 771 803 806
			811 838 852 858 869 885 908 910
			916 922 930 936-937 941 951 965
3		 	982 985 989 991 995 999 1005 1008
bone marrow	Clontech	BMD002	31 39 43 48 68 71 91 108 122-123
	1		134 136 142 148-150 152 161 169
			178 181 194 196 204-205 208 244
			246 254 262-263 265 267 272-273
			300 320 343 356 363 372 379 405
			408 413-414 430-431 436 440-441
			454 479 484 486 512-513 517 519
			533 553 559 570 583 590 617-619
			634 637 651 674 692 793-794 800
	-		803 818 852 880 904 910 930 936
hono	(1) cmt = -1-	DMD 6.5.	941 950
bone marrow	Clontech	BMD004	142 152 254 274
adult colon	Invitrogen	CLN001	26 29 48 61 108-109 129-130 144
1			176 194 215 221 252 401 436 440
			450 498 511 533 583 590 616-617
0.00-14	Di-Gh-i	1	706 764 905 939 955
adult cervix	BioChain	CVX001	6 16 19-20 29 35 37 43 45 64 73
			75-76 86 92 96-98 100-101 105 108
			111 113 122 143 145 147-149 163-
			165 167 172 174 178 181-183 187
			200-201 206 222 234 237-238 242-
		1	243 246 248 250-251 253 261-262
		1	265 268 270 274 279 283-284 294
		}	308 343 345 352 365 379 381 391
			400 409 420 423-424 428 436 443-
		1	444 463-464 473 479-480 484 487
			505 508 510-512 516-517 519 523-
		1	524 533 539 553-555 558-559 561-
		-	562 575 578 583 591 597 619 643
		}	645-646 650 657 671 680 740 764
			771 796 803 811 816 865 889 908
			

TABLE 1

TISSUE ORIGIN	RNA SOURCE	INCEO	CEO TO NOC OF STREET
TIDOOD ORIGIN	AMA SOURCE	HYSEQ LIBRARY	SEQ ID NOS: OF NUCLEOTIDE(S)
		NAME	.
		I I AN IE	910 926-927 933 937 941 960 963
			965 967-968 977 982 989 999 1008-
			1009
diaphragm	BioChain	DIA002	26 152 499 680
endothelial	Strategene	EDT001	13-14 19 23 26 30-32 34 39 67 73-
cells			74 76 78 91 101 109 114 116 118
			129 145 149 152 156 160-161 167
			176 180 183 187 197 201 203-204
			206 209 215 222 226 228 230 237
			246 248 250-252 256-257 262 266
ļ			276 279 282-283 286 309 312-313
			343 358 372 391-392 394 396 400-
			401 405 409 413 420 423 429-431
			436 438 443-445 450 455-456 479
			484 487 498-499 503 507 509 511
			513 523 561-562 571 575 583 619
			639 646 653 655 680 711 721 729
			739 771-772 775 779 795 803 805
			834 838-840 885 889 900 905-906
			911 917-918 922 924 930 942 946
Comemia =1		7771400-	955 958 960 977-979 982-984
Genomic clones from the short	Genomic DNA	EPM001	122 148 436
arm of	from Genetic Research		
chromosome 8	Research		}
Genomic clones	Genomic DNA	EPM003	122 148 379 436
from the short	from Genetic	EPMOOS	122 148 379 436
arm of	Research		
chromosome 8		İ	
Genomic clones	Genomic DNA	BPM004	122 148 436
from the short	from Genetic		
arm of	Research	i	
chromosome 8			
Genomic clones	Genomic DNA	BPM005	148
from the short	from Genetic		
arm of	Research		
chromosome 8			
esophagus	BioChain	ESO002	152 178 583
fetal brain	Clontech	FBR001	122 148 181 279 284 484 553 575
			619 668 911
fetal brain	Clontech	FBR004	122 190 212 379 479 484 541 905
forol bear	(2)	L	922 924 941 950
fetal brain	Clontech	FBR006	2 23 31 36 39 42 44 49 52 78 87
			114 117 122-123 145 148 176-177
	1		180-181 187 204 208 210 215 220
	ĺ		235 238-239 241 245-246 251 253
			256 259 266 270 278 280 286 314
]			317 337 372 379 392 396 400-401 405-406 410 414 423 428 439-440
		1	443 445 452 467 473 479 484 487
			491 497 500 504 517 519 524 526
1			544 553 556 561 563 568 570-571
			573 577 586 619 647 653 655 664-
		1	665 680 739 742 746 754 766 772-
			776 784 795 798 834 840 842 863
			878 885 892-893 898-899 910 930
			941-942 946 952 965 971 976 987
			993
fetal brain	Invitrogen	FBT002	19 31 34-35 44-45 78-79 87 96 101
	_		116 129 176 181 204 206 233 235
			· · · · · · · · · · · · · · · · · · ·

TABLE 1

TISSUE ORIGIN	RNA SOURCE	HYSEQ LIBRARY	SEQ ID NOS: OF NUCLEOTIDE (S)
		NAME	256-257 259 262 278 280 317 320 337 380 396-397 401 437 443 446 450 453 464 480 484 498-499 504 526 577 591 619 640 664 680 697 710 764 900 902 905 910 958
fetal heart	Invitrogen	FHR001	500 910
fetal kidney	Clontech	FKD001	39 47 96 98 122-123 148 156 181
,			200 207 246 268 274 279 283 300 379 411 445 464 468 479 484 506 542 553 561 583 619 680 686 712 747 910 941
fetal kidney	Clontech	FKD002	479 484 583 803 910 941
fetal kidney	Invitrogen	FKD007	864
fetal lung	Clontech	FLG001	64 96 143-144 168 194 206 234 266
[335 337 363 500 507 561 619 968
fetal lung	Invitrogen	FLG003	3 13-14 55 61 79 122-123 148 160 181 183 194 200 234 248 250 252 266 268 273 289 294 336 358 428 432 436 484 507 510 513-514 533 541 557-558 582-583 597 671 711 764 777 806 811 817 905 933 978
fetal lung	Clontech	FLG004	951
fetal liver-	Columbia	FLS001	13-15 19-21 23-26 28-30 32 34 37
spleen	University		39 45 47-49 56 67 72-74 78 84 87 91 96-98 101 103-104 108 111 114 116 122-123 126 129 131 133 142-145 147-149 151-152 156 160-161 166 168-169 172 176 178-179 181 183-185 192-194 197-202 204-206 208 215 221-222 224 228-229 232 234-235 237 246 248-252 254-257 262 266-268 272 274 278-280 282-287 294 313 315 321 333 336-337 343-344 358 372 377-379 386 391-393 397 400-402 404-405 409-410 418 420-421 429 431 436-437 440-441 443 445 448-450 456-457 464 473 475 478-481 483-484 487-488 498 500 503 505 507 509 513 522-523 528 533-534 541 551 553 558 560-562 564-565 570 575 577-578 583 586 590 597 600 605-607 617 619 632 636 638 640 644 646 672 677-680 705 711 729 732 735-738 740 742 748 760 763-764 771-772 792 802-803 805-806 812 816-817 820-821 824-827 834 838 842-843 848 853 861 865 878 885 887 889 900 902 904-906 908 910-911 917 924 926 928 930 934 936-937 941 944 946 950-951 955 958 960 963 965 974-980 982-983 988-990 999
fetal liver- spleen	Columbia University	FLS002	4 8 12 15-16 18-21 23-24 26 32 37 39 47 54 61 64 67 71-72 74 76 79 83-84 87 91 96-98 100-104 109 111-113 122-123 129 133 141 145 147-149 152 161 163 169 171-172 174 178-181 183 185 187-188 192-195 198-202 205 207-209 213 215 221-222 229 232 234-235 237 241

TABLE 1

TISSUE ORIGIN	RNA SOURCE	HYSEQ	SEQ ID NOS: OF NUCLEOTIDE(S)
		LIBRARY	
		*******	244-246 248 250 262 265 267-268
			270 274 278-280 283-284 290 294
			300 311 313-315 317 331 337 341
			346 351-352 358 360-361 371-372
			377 382 391-393 397 399-401 404-
			405 410 414 425 429 431 436 440-
			441 445-446 448-450 453 456 464
			473 475 479-480 487 492 498 500
1 .			503-504 507 512 517 519 523 526
			540 557 561-563 565 574-575 577-
			578 583 590 597 605-606 608 611
			614 616 619 631-634 636-638 640
			646 649-650 662 671-673 676-678
			682 684 701-702 704-705 711 716 732 735 748 760 762-764 768 771-
			772 779 790 802 805 815-816 834
			838 842 848 865 878-879 883 887-
			889 903 905-906 910 916-917 922
			924 928 930 939 944 946 950 955-
			956 958 960 965 975 977 982-983
			987-988 993-994 998 1004
fetal liver-	Columbia	FLS003	377 732 889 938
spleen	University		
fetal liver	Invitrogen	FLV001	23 29 39 84 109 194 208 221 232
			247-248 278 301 321 336-337 370-
			371 379 443 448-449 464 475 479-
			480 498 500 533 550 578 590 632
			636 640 678 680 683 751 763 803 882-883 885 887-889 910 921 942
			946 951 963 988
fetal liver	Clontech	FLV004	37 122 200 232 268 274 377 583
			946
fetal muscle	Invitrogen	FMS001	29 37 41 64 66 74 148 164 200 202
			208-209 252 257 259 262 265 268
			274 279 337 346 379 445 480-481
			505 507 553 555 561 571 606 640
}			676 781 801 838 910 926 928 951
fetal muscle	T	EMCOOD	957 960 963 965
fetal skin	Invitrogen Invitrogen	FMS002 FSK001	200 268 274 23 29 31 34 49 78 84 87 96 100
TECAT SKIII	TITATETOGEN	FOUNT	112 116 133 143 148 163 168 172
			176-177 181 193 199-202 208 215
}	ļ.	1	222 235 240 246 248 252 256-257
			262-268 274 280 282 294 309 314
		1	317 322 346 358 371 373-375 379
-	[414 417 419-420 436-437 441 445
	1		454 456 458 479-480 484 499-500
			504 507 513 519-520 526 533 539
			541 545-547 550 561 565 570-571
	1		575 577 583 590 598-599 619 644
	1		650 665 697 702 706 739 742 744
			784 790 792-793 812 816 861 877
1			889 906 910 918 922 941 949 951-
			952 955 962 964-965 968 979 983
fetal skin	Thyitman	FCVCCC	987 989 999
fetal skin	Invitrogen BioChain	FSK002 FSP001	200 257 265 268 274 513 688 39 431 523 533 617
umbilical cord	BioChain	FUC001	19 28-29 34 39 74 96 99 101 111
- COIU		1,00001	114 116 122 143 145 148 163 168
			175 178 181 183 197 200 205 212
L	l	1	

TABLE 1

### A SOURCE LIBRARY	THE COURT OF TAXA	777 60177 67	Tropo	OFF TO MOS. OF MISS POSTER AND
NAME	TISSUE ORIGIN	RNA SOURCE	HYSEQ	SEQ ID NOS: OF NUCLEOTIDE(S)
222 228 230 237-336 246 248 252-255 257 259 262 265 266-269 273 274 202 325 351 379 396 400-401 413 429 411 443 445 452 456-469 479 441 443 445 452 456-513 517 519 523 533 541 553 555 561 571 575 575 575 575 575 575 575 575 57			E I	
253 255 257 259 262 265 268-269 272 274 282 235 351 379 396 400-401 413 429 411 443 445 452 456-457 467-468 479 480 487 505 513 515 561			NAME	
272 274 282 325 351 379 396 400-401 413 429 441 443 445 452 456-457 467-468 479 484 487 505 513 517 519 523 533 541 553 555 561 571 575 577 583 590 601-602 605-606 619 636 645 680 693 698 711 757 759 764 803 814 816 821 883 888 990 906 908 910 924 926 932 937 941 943 946 581-592 955 958 976 997 941 943 946 581-592 955 958 976 997 941 943 946 581-592 955 958 976 997 949 949 999 944-45 61 67 74 78 88 100 114 122-123 126 129 148 152 163 167 169 171-172 175-176 180-181 187 201-204 206 209 212 215 202 222 227-228 230 233-235 237 246 249 251 258-259 262-263 266 269 279-802 022 284 286 333 337 340 342 355 358 362 363 379 391 394-397 406 422-422 428-429 431 436-437 443-446 450 452 456 467-468 479-480 479-880 44 989 504-505 513 517 523 526-527 533 539 541 558-559 561-562 574 580 583 605 619 635 638 643 600 682 708 711 739-740 742 764 776 803 812 823 855 885 900 902 905 910 917 924 928 932 939 941 945 958 960 964-965 974 976-979 994 995 910 917 924 928 932 939 941 945 958 960 964-965 974 976-979 994 995 910 917 924 928 932 939 941 945 958 960 964-965 974 976-979 994 995 910 917 924 928 932 939 941 945 958 960 964-965 974 976-979 994 995 910 917 924 928 932 939 941 945 958 960 964-965 974 976-979 994 995 910 917 924 928 932 939 941 945 958 960 964-965 974 976-979 994 995 910 917 924 928 932 939 944 945 958 960 964-965 974 976-979 992 995 910 917 924 928 931 933 944 945 958 960 964 965 974 976-979 992 995 910 917 924 930 932 941 942 951 958 960 962 967 974-975 979 992 998 999 999 999 999 999 999 999 99				I
### A				ı ı
### ### #### #########################				l
Si7 519 522 533 541 553 555 561 562 563 571 575 577 583 590 601-602 605-606 619 636 645 660 693 698 710 1757 759 764 803 814 816 821 823 885 889 900 906 908 910 324 926 932 937 941 943 946 951-952 955 958 976 987 989 993-994 999 955 955 955 976 987 989 993-994 999 955 955 955 976 987 989 993-994 999 955 944-945 610 141 122-123 126 129 148 152 163 167 169 171-172 175-176 180-181 187 201-202 206 209 212 215 220 222 227-228 230 232-325 337 340 342 355 388 362 366 379 391 394-397 406 422-423 428-429 331 343 43 446 450 452 456 467-468 479-488 44 488 504-505 513 517 523 526-527 533 539 541 556-559 561-562 574 580 583 605 619 635 638 643 680 682 708 711 739-740 742 764 776 803 812 823 865 885 900 902 905 910 917 924 928 932 939 941 945 958 960 964-965 974 978-979 984 101 1792-40 200 200 201 201 201 201 201 201 201 20				
ST1 575 577 583 590 601-602 605-606 606 69 366 645 680 693 698 711 T57 759 764 803 814 816 821 853 885 889 900 306 908 910 324 926 932 937 941 943 946 951-952 955 958 976 987 989 939-94 999 959 958 976 987 989 939-94 999 959 958 976 987 989 939-94 999 959 958 976 987 989 939-94 999 959 959 959 959 959 959 959 959 9		·		
Columbia	,			1
fetal brain GIBCO HFB001 HFB001 AFB001 Fetal brain GIBCO HFB001 Fetal brain Fetal brain GIBCO HFB001 Fetal brain Columbia Infant brain Columbia Fetal brain Fetal brain Columbia Fetal brain Fetal brain Columbia Fetal brain Fetal brain Fetal brain Fetal brain Columbia Fetal brain Fetal brain Fetal brain Fetal brain Columbia Fetal brain Fetal brain Fetal brain Fetal brain Fetal brain Columbia Fetal brain Fetal bra				
fetal brain GIBCO HFB001 GIBCO HFB001 GOING HFB001 GOING HFB001 GOING HFB001 GOING HFB001 GOING HFB001 HFFB001 HFFB01 HFFB001 HFFFB001 HFFB001 HFFB001 HFFB001 HFFFB001 HFFFB001				
fetal brain GIBCO HFB001 13-14 19 26 29 31-32 39 44-45 61 67 74 78 88 100 114 122-123 126 129 148 152 163 167 169 171-172 175-176 180-181 187 201-204 206 209 212 215 220 222 227-228 230 233-235 237 246 249 251 258-259 262-263 266 269 279-280 282 284 286 333 337 340 342 335 358 362 366 379 391 394-397 406 422-423 428-429 431 436-437 443-446 450 452 456 467-468 479-480 484 489 504-505 513 517 523 526-527 533 539 541 558-559 561-562 574 580 583 605 619 635 638 630 690 2905 910 917 924 928 932 939 941 945 958 macrophage Invitrogen HMF001 152 201 489 883 Infant brain Columbia University IB2002 182 02 20 23 26 28-29 31-32 31 73 94 44 57 448-484 478-79 111 118 122-123 126 129 143 145 148 155 168-169 175-176 178 181 185-166 191 200-202 208 212 214-215 220 222 224 228 230-231 235 237 239 248-249 252 255-260 622 266-269 272 2084 228 439 479 440 442 448 448 479 490 498 500 504-505 523 526 537 550 605 635 637 640 647 653 655 673 680 711 733 746 761 764 766 771 776 795 865 885 887 900-901 905 907 910 917 924 930 932 939 999 1003-1004 infant brain Columbia University IB2003 Infant brain Columbia University IB2003 Infant brain Columbia University IB8002 Infant brain Columbia University IB8003 IB8003 IB8003 INFANCE IB8004 IR8004 IB8005 IR8007 IR800				757 759 764 803 814 816 821 853
fetal brain GIBCO HFB001 HFB001 GIBCO HFB001 HB001 HB001 HB001 HB001 HB001 HB001 HB001 HB001 HB002 HB001				
### GIBCO HFB001 13-14 19 26 29 31-32 39 44-45 61 67 74 78 88 100 114 122-123 126 129 148 152 163 167 169 171-172 175-176 180-181 187 201-204 206 209 212 215 220 222 227-228 230 233-235 237 246 249 251 258-259 262-263 266 269 279-208 220 244 266 333 337 340 342 355 358 362 366 379 391 394-397 406 422-423 428-429 431 436-437 443-446 450 452 456 467-468 479-480 484 489 504-505 513 515 517 523 526-527 533 539 541 588-559 561-562 576 80 583 605 619 635 638 648 682 2708 711 739-740 742 764 776 803 812 888 890 90 90 91 924 929 932 939 941 945 958 960 964-965 974 978-979 984 174 788-791 11 118 122-123 126 129 143 145 148 155 168-169 175-176 178 181 185-186 191 200-202 208 212 214-215 220 222 224 228 230-231 235 237 239 248-249 252 255-260 262 266-269 272 280 284 286 289 313 323 326 329 346 358 361 379 396 400 412 422-423 428 437 445 452 456 479-489 498 500 962 967 974-975 998 2981 999 999 999 999 990 991 924 974-975 982 10 16 16 176 176 176 176 176 176 176 176 1				932 937 941 943 946 951-952 955
67 74 78 88 100 114 122-122 126 129 148 152 163 167 169 171-172 175-176 180-181 187 201-204 206 209 212 215 220 222 227-228 230 233-235 237 246 249 251 258-259 262-263 266 269 279-280 282 284 286 333 337 340 342 355 358 362 366 379 391 394-397 406 422-423 428-429 431 436-437 443-446 450 428-429 431 436-437 443-446 450 452 456 467-468 479-480 484 489 504-505 513 517 523 526-527 533 539 541 558-559 561-562 574 580 533 605 619 635 638 643 680 682 708 711 739-740 742 764 776 803 812 823 865 885 900 902 905 910 917 924 928 932 939 941 945 958 806 964-965 974 978-979 984 807 964-965 974 978-979 984 808 800 902 905 910 918 918 918 918 918 918 918 809 964-965 974 978-979 984 809 964-965 974 978-979 984 809 964-965 974 978-979 984 800 964-965 974 978-979 984 800 964-965 974 978-979 984 801 918 918 918 918 918 918 918 918 918 91				958 976 987 989 993-994 999
129 148 152 163 167 169 171-172 175-176 180-181 187 201-204 206 209 212 215 220 222 227-228 230 233-235 237 246 249 251 258-259 262-263 266 269 279-280 282 284 286 333 337 340 342 355 358 362 366 379 391 394-397 406 422-423 428-429 431 436-437 443-446 450 452 456 467-468 479-480 484 498 504-505 513 517 523 526-527 533 539 541 558-559 561-562 574 580 583 605 619 635 638 643 680 682 708 711 739-740 742 764 776 803 812 823 865 885 900 902 905 910 917 924 928 932 939 941 945 958 960 964-965 974 978-979 984 182002 182 201 498 983 182 201 201 201 201 201 201 201 201 201 20	fetal brain	GIBCO	HFB001	13-14 19 26 29 31-32 39 44-45 61
### Time				67 74 78 88 100 114 122-123 126
209 212 215 220 222 227-228 230 233-235 237 246 249 251 258-259 262-263 266 269 279-280 282 284 286 333 337 340 342 355 358 362 366 379 391 394-397 406 422-423 428-429 431 436-437 443-446 450 452 456 467-468 479-480 484 498 504-505 513 517 523 526-527 533 539 541 558-559 561-562 574 580 583 605 619 635 638 643 686 682 708 711 739-740 742 764 776 803 812 823 865 885 900 902 905 910 917 924 928 932 939 941 945 588 960 964-965 974 978-979 984 884 689 885 900 902 905 910 917 924 928 932 939 941 945 588 960 964-965 974 978-979 984 884 689 885 900 902 905 910 917 924 928 932 939 939 941 945 588 960 964-965 974 978-979 984 884 689 986 964-965 974 978-979 984 987 689 689 689 689 689 689 689 689 689 689		ł		129 148 152 163 167 169 171-172
233-235 237 246 249 251 258-259 262-263 266 269 279-280 282 284 286 333 337 340 342 355 388 362 366 379 391 394-397 406 422-423 428-429 431 436-437 443-446 450 452 456 467-468 479-480 484 498 504-505 513 517 523 526-527 533 539 541 558-559 561-562 574 580 583 605 619 635 638 643 680 682 708 711 739-740 742 64 776 803 812 823 865 885 900 902 905 910 917 924 928 932 939 944 945 958 960 964-965 974 978-979 984 985 910 910 917 924 928 932 939 944 57 910 917 924 928 932 939 944 945 958 960 964-965 974 978-979 984 985 910 910 917 924 928 932 939 944 57 911 1118 122-123 126 129 143 145 148 155 168-169 175-176 178 181 185-168 192 100-202 208 212 214-215 220 222 224 228 230-231 235 237 239 248-249 252 255-260 262 266-269 272 280 284 286 289 313 323 326 329 346 385 361 379 396 400 412 22-123 126 1467-468 479-480 484 487 490 498 500 504-505 523 526 533 541-542 547 561-562 571 574-575 580 605 635 637 640 647 653 655 678 680 711 733 746 761 764 766 771 776 795 865 885 887 900-901 905 907 910 917 924 930 932 941-942 951 958 960 962 967 974-975 979 982-983 989 999 900 1000-1004 1558 185 185 185 185 185 185 185 185 18		l		175-176 180-181 187 201-204 206
233-235 237 246 249 251 258-259 262-263 266 269 279-280 282 284 286 333 337 340 342 355 388 362 366 379 391 394-397 406 422-423 428-429 431 436-437 443-446 450 452 456 467-468 479-480 484 498 504-505 513 517 523 526-527 533 539 541 558-559 561-562 574 580 583 605 619 635 638 643 680 682 708 711 739-740 742 64 776 803 812 823 865 885 900 902 905 910 917 924 928 932 939 944 945 958 960 964-965 974 978-979 984 985 910 910 917 924 928 932 939 944 57 910 917 924 928 932 939 944 945 958 960 964-965 974 978-979 984 985 910 910 917 924 928 932 939 944 57 911 1118 122-123 126 129 143 145 148 155 168-169 175-176 178 181 185-168 192 100-202 208 212 214-215 220 222 224 228 230-231 235 237 239 248-249 252 255-260 262 266-269 272 280 284 286 289 313 323 326 329 346 385 361 379 396 400 412 22-123 126 1467-468 479-480 484 487 490 498 500 504-505 523 526 533 541-542 547 561-562 571 574-575 580 605 635 637 640 647 653 655 678 680 711 733 746 761 764 766 771 776 795 865 885 887 900-901 905 907 910 917 924 930 932 941-942 951 958 960 962 967 974-975 979 982-983 989 999 900 1000-1004 1558 185 185 185 185 185 185 185 185 18				
Columbia				
286 333 337 340 342 355 358 362 363 379 391 394-397 406 422-423 428-429 431 436-437 443-446 450 452-429 431 436-437 443-446 450 452 456 467-468 479-480 484 498 504-505 513 517 537 5326-527 533 539 541 558-559 561-562 574 580 583 605 619 635 638 643 680 682 708 711 739-740 742 764 776 803 812 823 865 885 900 902 905 910 917 924 928 932 939 941 945 958 960 964-965 974 978-979 984 Macrophage				
366 379 391 394-397 406 422-423 428-429 431 436-437 443-446 450 452 456 467-468 479-480 484 498 504-505 513 517 523 526-527 533 539 541 558-559 561-562 574 580 583 605 619 635 638 643 680 682 708 711 739-740 742 764 776 803 812 823 855 885 900 902 905 910 917 924 928 932 939 941 945 958 960 964-965 974 978-979 984 916 978 978-979 984 916 978 978-979 984 916 978 978-979 984 917 924 928 932 939 941 945 958 930 902 910 917 924 928 932 939 941 945 958 930 902 910 917 924 928 932 939 941 945 958 930 902 910 917 924 928 932 939 941 945 958 930 941 945 951 958 930 941 945 951 958 930 945 945 945 945 945 945 945 945 945 945				
### ##################################				
## 452 456 467-468 479-480 484 498 504-505 513 517 523 526-527 533 539 541 558-559 561-562 574 580 583 605 619 635 638 643 680 682 708 711 739-740 742 764 776 803 812 823 865 885 900 902 905 910 917 924 928 932 939 941 945 958 960 964-965 974 978-979 984 983 910 917 924 928 932 939 941 945 958 960 964-965 974 978-979 984 983 910 917 924 928 932 939 941 945 958 910 917 924 928 932 939 941 945 958 960 964-965 974 978-979 984 983 910 910 917 924 928 932 939 941 945 958 910 910 917 924 928 932 939 941 945 958 910 910 917 924 928 932 939 94 94 57 94 57 94 94 94 94 94 94 94 94 94 94 94 94 94				1
S04-505 513 517 523 526-527 533				1
S39 541 558-559 561-562 574 580	1			1
S93 605 619 635 638 643 680 682 708 711 739-740 742 764 776 803 812 823 865 885 900 902 905 910 917 924 928 932 939 941 945 958 960 964-965 974 978-979 984 945 958 960 964-965 974 978-979 984 945 958 960 964-965 974 978-979 984 945 958 960 964-965 974 978-979 984 945 958 960 964-965 974 978-979 984 945 958 960 964-965 974 978-979 984 945 958 960 964-965 974 978-979 984 945 958 960 964-965 974 978-979 984 945 958 960 964-965 974 978-979 984 945 958 960 964-965 974 978-979 984 945 978-979 984 945 958 983 946 948 983 946 948 983 946 948 948 948 948 948 948 948 948 948 948	1			
Tolerand				
### B12 823 865 885 900 902 905 910 917 924 928 932 939 941 945 958 960 964 965 974 978-979 984 macrophage				
macrophage Invitrogen HMP001 152 201 498 983 984 945 958 960 964-965 974 978-979 984 Infant brain Columbia IB2002 2 20 23 26 28-29 31 37 39 44 57 74 78-79 111 118 122-123 126 129 143 145 148 155 168-169 175-176 178 181 185-186 191 200-202 208 212 214-215 220 222 224 228 230-231 235 237 239 248-249 252 255-260 262 266-269 272 280 284 286 289 313 323 326 329 346 358 361 379 396 400 412 422-423 428 437 439 443 445 450 452 457 461 467-468 479-480 484 487 490 498 500 504-505 523 526 533 541-542 547 561-562 571 574-575 580 605 635 637 640 647 653 655 678 680 711 733 746 761 764 766 771 776 795 865 885 887 990-901 905 907 910 917 924 930 932 941-942 951 958 960 962 967 974-975 979 982-983 989 993 999 1003-1004 Infant brain Columbia University IB2003 23 31 53 87 107 123 160 175 185 197 202 207 215 222 237 252 256-258 274 284 289 326 358 396 400 437 445 452 462 464 467 487 500 504 526 575 583 590 605 630 653 655 703 733 757 764 795 865 884-885 900 905 919 924 974-975 982 Infant brain Columbia University University University 44 169 248 746 764 758 958 1980 905 919 924 974-975 982	1			t I
960 964-965 974 978-979 984	Ì			
Macrophage				
Infant brain Columbia IB2002 2 20 23 26 28-29 31 37 39 44 57	magrophago	Thuitrogon	UMIDOOT	4
University 74 78-79 111 118 122-123 126 129 143 145 148 155 168-169 175-176 178 181 185-186 191 200-202 208 212 214-215 220 222 224 228 230- 231 235 237 239 248-249 252 255- 260 262 266-269 272 280 284 286 289 313 323 326 329 346 358 361 379 396 400 412 422-423 428 437 439 443, 445 450 452 457 461 467- 468 479-480 484 487 490 498 500 504-505 523 526 533 541-542 547 561-562 571 574-575 580 605 635 637 640 647 653 655 678 680 711 733 746 761 764 766 771 776 795 865 885 887 900-901 905 907 910 917 924 930 932 941-942 951 958 960 962 967 974-975 979 982-983 989 993 999 1003-1004 infant brain Columbia University 1B2003 1B2003 23 31 53 87 107 123 160 175 185 197 202 207 215 222 237 252 256- 258 274 284 289 326 358 396 400 437 445 452 462 464 467 487 500 504 526 575 583 590 605 630 653 655 703 733 757 764 795 865 884- 885 900 905 919 924 974-975 982 infant brain Columbia University IBM002 44 169 248 746 764 958			l	
143 145 148 155 168-169 175-176 178 181 185-186 191 200-202 208 212 214-215 220 222 224 228 230- 231 235 237 239 248-249 252 255- 260 262 266-269 272 280 284 286 289 313 323 326 329 346 358 361 379 396 400 412 422-423 428 437 439 443 445 450 452 457 461 467- 468 479-480 484 487 490 498 500 504-505 523 526 533 541-542 547 561-562 571 574-575 580 605 635 637 640 647 653 655 678 680 711 733 746 761 764 766 771 776 795 865 885 887 900-901 905 907 910 917 924 930 932 941-942 951 958 960 962 967 974-975 979 982-983 989 993 999 1003-1004 infant brain Columbia University IB2003 I	intant brain		182002	1
178 181 185-186 191 200-202 208	1	University	}	
212 214-215 220 222 224 228 230-231 235 237 239 248-249 252 255-260 262 266-269 272 280 284 286 289 313 323 326 329 346 358 361 379 396 400 412 422-423 428 437 439 443 445 450 452 457 461 467-468 479-480 484 487 490 498 500 504-505 523 526 533 541-542 547 561-562 571 574-575 580 605 635 637 640 647 653 655 678 680 711 733 746 761 764 766 771 776 795 865 885 887 900-901 905 907 910 917 924 930 932 941-942 951 958 960 962 967 974-975 979 982-983 989 993 999 1003-1004		1		
231 235 237 239 248-249 252 255- 260 262 266-269 272 280 284 286 289 313 323 326 329 346 358 361 379 396 400 412 422-423 428 437 439 443 445 450 452 457 461 467- 468 479-480 484 487 490 498 500 504-505 523 526 533 541-542 547 561-562 571 574-575 580 605 635 637 640 647 653 655 678 680 711 733 746 761 764 766 771 776 795 865 885 887 900-901 905 907 910 917 924 930 932 941-942 951 958 960 962 967 974-975 979 982-983 989 993 999 1003-1004 infant brain				
260 262 266-269 272 280 284 286				
289 313 323 326 329 346 358 361 379 396 400 412 422-423 428 437 439 443 445 450 452 457 461 467- 468 479-480 484 487 490 498 500 504-505 523 526 533 541-542 547 561-562 571 574-575 580 605 635 637 640 647 653 655 678 680 711 733 746 761 764 766 771 776 795 865 885 887 900-901 905 907 910 917 924 930 932 941-942 951 958 960 962 967 974-975 979 982-983 989 993 999 1003-1004 infant brain Columbia University IB2003 IB2003 Z3 31 53 87 107 123 160 175 185 197 202 207 215 222 237 252 256- 258 274 284 289 326 358 396 400 437 445 452 462 464 467 487 500 504 526 575 583 590 605 630 653 655 703 733 757 764 795 865 884- 885 900 905 919 924 974-975 982 infant brain Columbia University IBM002 44 169 248 746 764 958				
379 396 400 412 422-423 428 437 439 443 445 450 452 457 461 467- 468 479-480 484 487 490 498 500 504-505 523 526 533 541-542 547 561-562 571 574-575 580 605 635 637 640 647 653 655 678 680 711 733 746 761 764 766 771 776 795 865 885 887 900-901 905 907 910 917 924 930 932 941-942 951 958 960 962 967 974-975 979 982-983 989 993 999 1003-1004 infant brain Columbia University 1B2003 1B2003 23 31 53 87 107 123 160 175 185 197 202 207 215 222 237 252 256- 258 274 284 289 326 358 396 400 437 445 452 462 464 467 487 500 504 526 575 583 590 605 630 653 655 703 733 757 764 795 865 884- 885 900 905 919 924 974-975 982 infant brain Columbia University IBM002 44 169 248 746 764 958	}		ļ	1
## 439 443 445 450 452 457 461 467- 468 479-480 484 487 490 498 500 504-505 523 526 533 541-542 547 561-562 571 574-575 580 605 635 637 640 647 653 655 678 680 711 733 746 761 764 766 771 776 795 865 885 887 900-901 905 907 910 917 924 930 932 941-942 951 958 960 962 967 974-975 979 982-983 989 993 999 1003-1004 infant brain Columbia University 182003				
## A # # # # # # # # # # # # # # # # #	1		1	
S04-505 523 526 533 541-542 547				
S61-562 571 574-575 580 605 635 637 640 647 653 655 678 680 711 733 746 761 764 766 771 776 795 865 885 887 900-901 905 907 910 917 924 930 932 941-942 951 958 960 962 967 974-975 979 982-983 989 993 999 1003-1004 IB2003	1		1	
637 640 647 653 655 678 680 711 733 746 761 764 766 771 776 795 865 885 887 900-901 905 907 910 917 924 930 932 941-942 951 958 960 962 967 974-975 979 982-983 989 993 999 1003-1004 182003 23 31 53 87 107 123 160 175 185 197 202 207 215 222 237 252 256-258 274 284 289 326 358 396 400 437 445 452 462 464 467 487 500 504 526 575 583 590 605 630 653 655 703 733 757 764 795 865 884-885 900 905 919 924 974-975 982 1961 197 208 208 208 208 208 208 208 208 208 208			1	i l
733 746 761 764 766 771 776 795 865 885 887 900-901 905 907 910 917 924 930 932 941-942 951 958 960 962 967 974-975 979 982-983 989 993 999 1003-1004 infant brain Columbia University IB2003 23 31 53 87 107 123 160 175 185 197 202 207 215 222 237 252 256- 258 274 284 289 326 358 396 400 437 445 452 462 464 467 487 500 504 526 575 583 590 605 630 653 655 703 733 757 764 795 865 884- 885 900 905 919 924 974-975 982 infant brain Columbia University IBM002 44 169 248 746 764 958				i e
865 885 887 900-901 905 907 910 917 924 930 932 941-942 951 958 960 962 967 974-975 979 982-983 989 993 999 1003-1004 infant brain Columbia University B2003 B23 31 53 87 107 123 160 175 185 197 202 207 215 222 237 252 256- 258 274 284 289 326 358 396 400 437 445 452 462 464 467 487 500 504 526 575 583 590 605 630 653 655 703 733 757 764 795 865 884- 885 900 905 919 924 974-975 982 infant brain Columbia University BM002 44 169 248 746 764 958			1	
917 924 930 932 941-942 951 958 960 962 967 974-975 979 982-983 989 993 999 1003-1004 infant brain			1	
960 962 967 974-975 979 982-983 989 993 999 1003-1004 infant brain Columbia University 1B2003 23 31 53 87 107 123 160 175 185 197 202 207 215 222 237 252 256- 258 274 284 289 326 358 396 400 437 445 452 462 464 467 487 500 504 526 575 583 590 605 630 653 655 703 733 757 764 795 865 884- 885 900 905 919 924 974-975 982 infant brain Columbia University TBM002 44 169 248 746 764 958	1		1	
989 993 999 1003-1004			1	
infant brain Columbia IB2003 23 31 53 87 107 123 160 175 185			1	
University 197 202 207 215 222 237 252 256- 258 274 284 289 326 358 396 400 437 445 452 462 464 467 487 500 504 526 575 583 590 605 630 653 655 703 733 757 764 795 865 884- 885 900 905 919 924 974-975 982 infant brain Columbia University TBM002 44 169 248 746 764 958		<u></u>		
258 274 284 289 326 358 396 400 437 445 452 462 464 467 487 500 504 526 575 583 590 605 630 653 655 703 733 757 764 795 865 884- 885 900 905 919 924 974-975 982 infant brain	infant brain	1	IB2003	3
437 445 452 462 464 467 487 500 504 526 575 583 590 605 630 653 655 703 733 757 764 795 865 884-885 900 905 919 924 974-975 982 infant brain		University		197 202 207 215 222 237 252 256-
S04 526 575 583 590 605 630 653				258 274 284 289 326 358 396 400
655 703 733 757 764 795 865 884- 885 900 905 919 924 974-975 982 infant brain Columbia IBM002 44 169 248 746 764 958 University 44 169 248 746 764 958				437 445 452 462 464 467 487 500
885 900 905 919 924 974-975 982 infant brain Columbia IBM002 44 169 248 746 764 958 University				504 526 575 583 590 605 630 653
infant brain Columbia IBM002 44 169 248 746 764 958 University				655 703 733 757 764 795 865 884-
University				885 900 905 919 924 974-975 982
	infant brain	Columbia	IBM002	44 169 248 746 764 958
		University		

TABLE 1

TISSUE ORIGIN	RNA SOURCE	HYSEQ LIBRARY NAME	SEQ ID NOS: OF NUCLEOTIDE(S)
	University		379 764 910 942 951
lung, fibroblast	Strategene	LFB001	13-14 26 78 84 91 98 114 122 148 176 197 204 222 246 251 266 379 387 431 437 441 464 479 484 533 553 571 583 619 645-646 711 739 752 910 926 950 965 978 984
lung tumor	Invitrogen	LGT002	13-14 19 31-32 34-39 43 48 64 67 74 76 87 93 95-96 101 111-112 116 122-123 134 138 142 144-145 147- 148 151-152 160 172 178-179 181- 183 187 191-194 197-198 200-202 205 208 210 218 226 228 234 237 246 248 250-252 254-255 257 260- 262 265 268 274 277-279 289 301 320-321 333 336 343 352 355 358 366-368 371 374 379 391-392 397 400-401 406 410 414 423 431 436 440-441 455-456 458 463-464 468 478-480 484 487 498 503-504 511 519 526-527 529 533 541 553 557 561 570-571 575 578 581 583-586 588-589 597 606 616 619 636 638 640 648 650 652 657 680 700 705- 706 708 716 721-722 729 732 739 744-745 752 762 764 782 795 803 812 816-817 838 863 874 877 906 910-911 922 926 941 951 955 957- 958 962-963 968-969 977-978 982- 983 996-997 1007
lymphocytes	ATCC	LPC001	13-14 35 66 79 95 106-107 112 122-123 149 152 178 181 201 205 246 251-252 267 293 299 358 379 384 400-401 409 415 418 439 443- 444 451 456 458 479 484 487 513 533 568 572 575 583 614 619 686 706 721 730-731 739 747 764 789 905 910 941-942 950 965 978-979 1007
leukocyte	GIBCO	LUC001	13-14 19 23 30-32 36 39 45 48-49 60-61 63 67 73-74 78-79 81-82 84 87 91 98-99 107-109 111-112 114 122-123 129 142 144-145 148-150 152 170 176 179 181 183 187-188 194 198 201-208 212-213 215 222 228 235 237 241-242 244-246 249- 251 254-257 263 267 278-280 282- 284 286 289-290 295 302 308-309 313 317 333 337 343 346 356-358 371 379 391-392 394 397 400-401 404 406-410 412-415 423-424 429 431 436 439-441 443-445 450 456 458 479-480 484 487-488 495 498- 500 503 505 511-514 519 523 530- 533 539 541 555 559 561 565-566 570 572 577-578 583 590 595 597 617 619 633 635-636 639-640 646 660 670 672 677 680-681 698 703 705 729 732 739-740 743 747 750 763-764 771 782 792-793 803-805 809 819 838 857 866-867 885 888

TABLE 1

TISSUE ORIGIN	RNA SOURCE	HYSEQ LIBRARY	SEQ ID NOS: OF NUCLEOTIDE(S)
		NAME	900 905 910-911 924 926 928 930 941 948 950-953 955 962-963 965
leukocyte	Clontech	LUC003	977-979 984 987 989 999 1008 19 26 68 76 96 122 147 152 198
			201 205 208 284 317 354 358 430 436 440 479 511 533 541 553 561 583 589 646 698 732 764 766 838
melanoma from	Clontech	MEL004	984 8 23 36 69 91 114 122-123 126 148
cell line ATCC #CRL 1424		ALLOV4	151 181 202 204 227 246 256-257 265 313 379 391 400 417 466 478- 479 487 496 519 521 523 561 570 583 590 669 728 764 784 838 842 910 941 950 965 970
mammary gland	Invitrogen	MMG001	4 19 23 26 29 34-39 43 45 48 55 64 66 74 78 87 96-97 114 116 126 129 136 142 149 151 155-156 160 164 168 173 175-176 178 180-181 183 192 197-200 202 204 207-208 215 222 226-228 230 232 235-238 242 246 248 250 252-257 261-262 268 272 274 278 280 301 303 322 329 335 337 343 363 368-371 374 379 381 391 397 400-401 417 426 429 431 437 439-441 443 445 449-450 455 464 475 478-479 484-485 487-488 498-499 504 507 512 517 519 523 526 532-533 553 557 565 570-571 573 575 577-578 590-591 606 617 619 636 640 646 648 663 677-678 680 691 697 702 708 711 732 744 764 792 803 811-813 817 875-877 885 887-888 900 902 905 908 910-911 918 921-922 934 937 939 941-942 946 951 958 960 965 968 983 989 993 999 1003 1008
induced neuron cells	Strategene	NTD001	39 122 148 152 181 212 246 266 313 337 358 379 452 467 479 484 519 553 561 583 621-626 680 872 881 910 924 941
retinoid acid induced neuronal cells	Strategene	NTR001	37 148 152 168 541 583
neuronal cells	Strategene	NTU001	29 37 147 202 221-222 237 246 262 337 361 391 400 429 439 460 487 504 526 541 583 772 816 924 945 965
pituitary gland	Clontech	PIT004	391 396 764
placenta	Clontech	PLA003	123 183 544 803
prostate	Clontech	PRT001	60-61 76 96 122 145-148 153-154 175 178 183 201 204 226 228 235 237 241 245 248 250-251 256 262 265 280 284 324-325 337 397 400 409 436-437 456 464 478 480 487 489-490 492 508 516-517 524 552 561 583 605 722 740 747 849 889 906 924 926 939 958 974 1005
rectum	Invitrogen	REC001	26 29 43 48 70 74 80 108 114 135- 136 140 168 178-179 208 226 257

TABLE 1

TISSUE ORIGIN	RNA SOURCE	HYSEQ LIBRARY NAME	SEQ ID NOS: OF NUCLEOTIDE(S)
			262 346 348 371 379 411 413 436- 437 475 479 484 499 504 517 526 534 548-549 555 570 577-578 606 636 697 729 764 778 793 885 900 906 908 910 937 941 951 965 989 999
salivary gland	Clontech	SAL001	7 38 43 74 87 98 112 122 136 142 148 162 169 181 183-185 207 215 228 235 250 254-255 265 280 349-350 394 437 443 464 508 515-516 519 559 598 614 619 658 666-667 680 724 762-763 771 803 816 842 930 933-934 953
salivary gland	Clontech	SALS03	48 108 515 617 900
skin fibroblast	ATCC	SFB001	39
skin fibroblast	ATCC	SFB002	222 803
skin	ATCC	SFB003	237
fibroblast			
small intestine	Clontech	SINOO1	16 19 29 39 48 56 65 73 96 108 122 136 148 152 155 160 162 165 168 172 181 191 208 234 244 246
			266 282 296 379 394 431 440 443 464 479-480 484 519 571 578 583 617 619 648 662 694 703 752 763 806 838 908 910 926 937 941 966 972 976
skeletal muscle	Clontech	SKM001	34 112 116 147 149 152 163 167 373 379 484 515 553 561-562 781 838 910 941
spinal cord	Clontech	SPC001	19 22 29 31 55 58 70-71 78 122 134 145 148 150 152 159-160 163 166 171 175-176 183 200-201 203- 204 220 222 224 235 237 246 248 250 257 262 266-268 279-280 327- 328 330 337 343 346 371 379 389 396 416 429-430 437 443 452-453 456 467 475 479 493-494 498 500 502 541 544 553 561 583 619 635- 636 638 640 680 682 696 764 785 900 902 910 941 950 982 994
	1	SPLc01	254 529 701
stomach	Clontech	STO001	48 53 72 74 122 142 152 161 178 181 200-202 204 208 240 251 254 265 268 309 347 397 410 437 512 539 550 583 616 636 657 659 720 722 921
thalamus	Clontech	THA002	35 53 78 114 123 156 176 181 228 235 246 252 255-256 265 280 329 331 343 379 437 452 457 467 479 484 496 507 519 553 571 593 619 692 723 754 758 764 853 910 925 941 950 967 981 1003
thymus	Clontech	THM001	29 78 112 122 148 151 160-161 169 176 180-181 183 188 198 201 204- 206 212 250 254 313 374 379 397 412 429 437 446 453 471-472 484 513 521 529 552-553 561 565 619 636 666 708 739 742 764 771 816

TABLE 1

TISSUE ORIGIN	RNA SOURCE	HYSBQ LIBRARY NAME	SEQ ID NOS: OF NUCLEOTIDE(S)
			838 910 941-942 944 947 958 969 979 982 989 999 1007
thymus	Clontech	THMc02	9 19 32 36 63 67 74 78 80 85-86 122-123 138 142 145 147-148 160- 161 169 175-176 181 183-184 187 194 198 202 204 208 211 238 244 246 250 252-254 257 262 265 270- 271 283-285 317 333 349 359-360 379 400-401 406 413 418 429 431 433 436 440-441 473 479 484 487 512-513 517-518 523 525 529 533 535-537 541 544 553 556 561 565 567-570 572-573 578 583 615-619 636 644 660-661 681 683 687 698 732 739 763-764 783 785 789 807- 808 811 816 842 852 864 868-869 900 904 906 910 924 926 930 938 941 965 968 974 979 992 1006-1007
thyroid gland	Clontech	THRO01	5 10 13-14 19 23 35 37 39 47 59-61 64 74 79 87 100 110 112 117 122-123 133 141-142 145 148 152 156 160 168 181 187 199-202 204-205 207-208 210 220 224-225 228 234-235 237 246-247 251-252 254-256 262 265 267-268 280-281 284 286 301 308 325 332-333 335 337 343 346 363 371 374 378-379 383 394 396-397 400 420 429 431-432 436 445 452 456 464 467-468 474 479-480 484 487 492 499 507 519 522 533 537 550 553 559 561 569 583 619 638 650 653 655 672 678 680 692 705 719 727 748 764 766-767 769 792 797 816 821 854 906 910-911 921 924 926 928 941 946 951 958 960-961 967 971 974-975 978 984 989 999
trachea	Clontech	TRC001	43 48 108 112 142 148 168 204 208 212 221-222 254 265 282 286 317 371 382 425 440 501 553 565 910
uterus	Clontech	UTR001	1 37 39 62 145 148 163 183 188 200 257 265 268 346 372 405 408 420 431 520 538 561-562 571 640 680 711 842 850-851 885 910 957

TABLE 2

SEQ ID NO:	ACCESSION	SPECIES	DESCRIPTION	SMITH-	8
OF	NUMBER			WATERMAN	IDENTITY
NUCLEOTIDE	į			SCORE	
1	AF208846	Homo sapiens	BM-004	172	43
2	Y53871	Homo sapiens	A human brain-	574	99
			derived signalling		}
			factor polypeptide.		•
3	AE003620	Drosophila	CG8486 gene product	112	33
		melanogaster	1		
4	AF193807	Homo sapiens	Rh type B	1204	96
		_	glycoprotein		
5	Y87156	Homo sapiens	Human secreted	89	46
		_	protein sequence		
			SEQ ID NO:195.		
6	Y71062	Homo sapiens	Human membrane	135	30
			transport protein,		İ
			MTRP-7.		
7	AB047936	Macaca	hypothetical	81	38
		fascicularis	protein		<u> </u>
8	Y36156	Homo sapiens	Human secreted	158	68
		_	protein #28.	· I	
9	AB040964	Homo sapiens	KIAA1531 protein	495	100
10	U29725	Homo sapiens	BMK1 alpha kinase	114	35
11	X00822	Gallus gallus	collagen type III	54	52
12	Y27868	Homo sapiens	Human secreted	119	43
		-	protein encoded by		
	1		gene No. 107.		
13	W74813	Homo sapiens	Human secreted	722	92
		_	protein encoded by		-
			gene 85 clone		
			HSDFV29.	İ	ŀ
14	W74813	Homo sapiens	Human secreted	722	92
		-	protein encoded by		
			gene 85 clone		
			HSDFV29.		
15	AF119851	Homo sapiens	PRO1722	333	70
16	AF264750	Homo sapiens	ALR-like protein	133	100
17	X91014	Mus musculus	alpha 1 type XI	131	72
	1		collagen		
18	AF090930	Homo sapiens	PRO0478	109	90
19	Y86456	Homo sapiens	Human gene 46-	618	95
			encoded protein		
			fragment, SEQ ID		
			NO:371.		
20	AF084535	Homo sapiens	laforin	1809	100
21	Y27585	Homo sapiens	Human secreted	587	98
		_	protein encoded by	}	<u> </u>
			gene No. 19.	1	
22	268748	Caenorhabditi	Similairity to	214	37
	1	s elegans	Yeast hypothetical		
			protein YEH4	1	
			(SW:YEH4 YEAST)~cDN		
			A EST yk87c11.3		
			comes from this		-
			gene~cDNA EST		ŀ
			yk87cll.5 comes] .
	L	<u> </u>	7.13,011.3 COMCS	.1	L

TABLE 2

SEQ ID NO:	ACCESSION	SPECIES	DESCRIPTION	SMITH-	- %
OF	NUMBER	1		WATERMAN	IDENTITY
NUCLEOTIDE				SCORE	LEDDRILLI
·	<u> </u>		from this gene-cDNA		
			EST yk497d5.3 comes		
			from this gene~cDNA		
			EST yk186a5.5 comes		Į.
			from this gene~cDNA		
			EST yk243b10.5		ł
			comes from this		
			gene~cDNA EST		
			yk497d5.5 comes	1	
			from this gene]
23	D86973	Homo sapiens	similar to Yeast	12053	100
		*	translation		
			activator GCN1		
			(P1:A48126)		
24	Y09945	Rattus	putative integral	458	50
		norvegicus	membrane transport		
			protein		
25	U25739	Mus musculus	YSPL-1 form 1	719	77 .
26	AK024427	Homo sapiens	FLJ00016 protein	668	100
27 ·	AP001707	Homo sapiens	human gene for	603	100
		_	claudin-8,		
			Accession No.		
•			AJ250711		
28	U16030	Brugia malayi	cuticular collagen	78	37
		_	Bmcol-2		
29	G02479	Homo sapiens	Human secreted	442	100
•		_	protein, SEQ ID NO:		
			6560.		
30	Y13375	Homo sapiens	Amino acid sequence	1806	99
			of protein PRO262.		
31	AF077226	Homo sapiens	copine III	1757	65
32	W75198	Homo sapiens	Human secreted	208	100
			protein encoded by		}
			gene 3 clone		
			HCEDO84.		
33	AF151978	Homo sapiens	amino acid	3436	100
			transporter B0+		
34	Y66735 .	Homo sapiens	Membrane-bound	1006	100
			protein PRO1153.		
35	AC003093	Homo sapiens	OXYSTEROL-BINDING	764	60
			PROTEIN; 45%		ļ
			similarity to	1	ĺ
			P22059	İ	
			(PID:g129308)	İ	
36	AF286861	Fasciola	tegumental antigen-	79	30
		hepatica	like protein		
37	AF201945	Homo sapiens	HNOEL-iso	2152	100
38	AF258465	Homo sapiens	OTRPC4	1668	99
39	AF173003	Homo sapiens	apoptosis regulator	2421	100
40	Y53023	Homo sapiens	Human secreted	128	41
			protein clone		
		,	qf662_3 protein	1	
		1	sequence SEQ ID		
	<u></u>	<u></u>	1 1]	L

TABLE 2

SEQ ID NO: OF	ACCESSION NUMBER	SPECIES	DESCRIPTION	SMITH- WATERMAN	IDENTITY
NUCLEOTIDE				SCORE	1DBN1111
			NO:52.	<u> </u>	
41	M25750	Oryctolagus cuniculus	sarcolumenin precursor	2307	97
42	G03797	Homo sapiens	Human secreted protein, SEQ ID NO: 7878.	186	75
43	X57805	Homo sapiens	immunoglobulin lambda light chain	1102	91
44	AE003689	Drosophila melanogaster	CG4596 gene product	419	44
45	Y50934	Homo sapiens	Human fetal brain cDNA clone vc30_1 derived protein #1.	644	100
46	Y19562	Homo sapiens	Amino acid sequence of a human secreted protein.	80	45
47	AF016272	Homo sapiens	Ksp-cadherin	4263	99
48	R13111	Homo sapiens	1B1 IgG aberrant light chain with duplicated variable region.	1000	92
49	AK001636	Homo sapiens	unnamed protein product	1630	97
50	Y65155	Homo sapiens	Human 5' EST related polypeptide SEQ ID NO:1316.	78	34
51	G00471	Homo sapiens	Human secreted protein, SEQ ID NO: 4552.	281	91
52	AJ272050	Homo sapiens	transcription initiation factor IA protein	165	68
53	Y42388	Homo sapiens	Amino acid sequence of pt127_1.	668	73
54	AF193807	Homo sapiens	Rh type B glycoprotein	248	97
55	AF132611	Homo sapiens	monocarboxylate transporter MCT3	139	37
56	U43940	Rattus norvegicus	focal adhesion kinase	141	84
57	L17318	Rattus norvegicus	proline-rich proteoglycan	124	37
58	G02832	Homo sapiens	Human secreted protein, SEQ ID NO: 6913.	132	48
59	G00357	Homo sapiens	Human secreted protein, SEQ ID NO: 4438.	95	64
60	Y12723	Homo sapiens	Human 5' EST secreted protein SEQ ID NO:313.	91	50
61	Y19450	Homo sapiens	Amino acid sequence of a human secreted	406	100

TABLE 2

SEQ ID NO:	ACCESSION	SPECIES	DESCRIPTION	SMITH-	%
OF NUCLEOTIDE	NUMBER			WATERMAN SCORE	IDENTITY
			protein.		
62	AF156549	Mus musculus	putative E1-E2 ATPase	876	65
63	AL356276	Homo sapiens	bA367J7.5 (novel	655	84
	ļ		Immunoglobulin		1.
			domain containing		
			protein)		
64	AL133105	Homo sapiens	hypothetical protein	1783	99
65	U32189	Oryctolagus	histidine-rich	73	40
		cuniculus	glycoprotein		
			precursor		
66	Y91433	Homo sapiens	Human secreted	758	98
			protein sequence		
			encoded by gene 33		
			SEQ ID NO:154.		
67	W75198	Homo sapiens	Human secreted	208	100
		ĺ	protein encoded by	İ	
			gene 3 clone		
	<u> </u>		HCEDO84.		
68	AF020651	Homo sapiens	T cell receptor	742	93
			alpha chain		
			variable region		
69	AF118086	Homo sapiens	PRO1992	158	61
70	X52454	Drosophila melanogaster	rho	224	36
71	W40353	Homo sapiens	Human unspecified	146	67
	1		protein from		ł
_			US5702907.		
72	Y66690	Homo sapiens	Membrane-bound	971	98
			protein PRO813.	1	
73	AJ002744	Homo sapiens	UDP-	1518	98
			GalNAc:polypeptide		[
			N-		
			acetylgalactosaminy		
			ltransferase 7		
74	AC024792	Caenorhabditi	contains similarity	423	36
75	AB016088	s elegans Homo sapiens	to TR:P78316	100	
76	Y94953	Homo sapiens	RNA binding protein Human secreted	109	32
70	134333	nomo saprens	protein clone	2484	100
			fy356_14 protein		
			sequence SEQ ID	j]
			NO:112.		
77	AF107406	Homo sapiens	GW128	74	51
78	Y13401	Homo sapiens	Amino acid sequence	1681	96
			of protein PRO339.		
79	Y94290	Homo sapiens	Human myosin heavy chain homologue.	1819	99
80	AF007194	Homo sapiens	mucin	4875	100
81	AF229179	Homo sapiens	kidney-specific	949	99
			membrane protein		

TABLE 2

SEQ ID NO:	ACCESSION	SPECIES	DESCRIPTION	SMITH-	
OF	NUMBER			WATERMAN	IDENTITY
NUCLEOTIDE				SCORE	
82	AL356173	Neurospora	hypothetical	83	29
		crassa	protein		
83	G00437	Homo sapiens	Human secreted	87	69
	İ		protein, SEQ ID NO:		
			4518.		
84	K03036	Mus musculus	alpha-1 type I	114	38
			procollagen		
85	AF233261	Homo sapiens	otoraplin	676	100
86	AF073519	Homo sapiens	small EDRK-rich	100	45
		1	factor 1, long	i	1
			isoform		
87	AC021640	Arabidopsis	putative	387	43
1		thaliana	phosphatidate	1	
			phosphohydrolase		
88	AB040812	Homo sapiens	protein kinase PAK5	1159	100
89	AL365409	Homo sapiens	similar to	694	100
			(NP_034322.1) sex-		
			determination	1	
			protein homolog		
00	1701 035	D-1-1	Pemla	100	
90	U81035	Rattus	ankyrin binding	189	63
		norvegicus	cell adhesion		
			neurofascin		1
91	W88684	Homo sapiens	Secreted protein	134	65
J1	W00004	nomo saprens	encoded by gene 151	134	00
			clone HNHED86.		
92	Y66734	Homo sapiens	Membrane-bound	297	70
			protein PRO1097.]	"
93	AB031051	Homo sapiens	organic anion	283	40
		_	transporter OATP-E		
94	B08976	Homo sapiens	Human secreted	71	27
			protein sequence		
			encoded by gene 28		
			SEQ ID NO:133.		
95	U83115	Homo sapiens	non-lens beta	245	97
-			gamma-crystallin		
			like protein		
96	AF156551	Mus musculus	putative E1-E2	3779	86
0.7	135066156		ATPase	L	
97	AF062476	Mus musculus	retinoic acid-	1091	74
		1	responsive protein;		1
98	V97072	Homo gandana	STRA6	100	100
70	Y87072	Homo sapiens	Human secreted	490	100
			protein sequence SEQ ID NO:111.		
99	AF116652	Homo sapiens	PRO0813	1015	99
100	AF118652 AF159567	Homo sapiens	C2H2 (Kruppel-type)	2176	100
~~~	ACTOUGI	TOMO Saptems	zinc finger protein	2110	1 200
101	D25328	Homo sapiens	platelet-type	109	95
		Daptens	phosphofructokinase	1	1
102	AB018563	Homo sapiens	TML1	98	68
103	X83107	Homo sapiens	bmx	232	85

TABLE 2

SEQ ID NO:	ACCESSION	SPECIES	DESCRIPTION	SMITH-	8
OF	NUMBER			WATERMAN	IDENTITY
NUCLEOTIDE				SCORE	
104	U49973	Homo sapiens	ORF1; MER37;	131	43
		1	putative		1
	]		transposase similar		
			to pogo element	1	
105	Y86472	Homo sapiens	Human gene 52-	150	54
			encoded protein		i
			fragment, SEQ ID		
	}		NO:387.	Ì	
106	AF020276	Homo sapiens	spinocerebellar	96	37
			ataxia 7	1	
107	W57901	Homo sapiens	Protein of clone	1499	96
			CT748_2.		
108	R13111	Homo sapiens	1B1 IgG aberrant	1210	84
			light chain with		
			duplicated variable		}
			region.		
109	W50192	Homo sapiens	Amino acid sequence	95	32
			of salivary protein		
			CON-1.	1	
110	AB046634	Macaca	hypothetical	282	75
		fascicularis	protein		
111	AF242432	Mus musculus	neuronal apoptosis	486	29
			inhibitory protein		
			6		
112	AB000280	Rattus	peptide/histidine	2490	88
	L	norvegicus	transporter	}	1
113	AF182443	Rattus	F-box protein FBL2	597	99
		norvegicus			
114	AJ245874	Homo sapiens	putative ATG/GTP	1242	100
			binding protein	<u> </u>	<u></u>
115	AF179828	Saimiri	olfactory receptor	444	66
		sciureus			
116	Y66735	Homo sapiens	Membrane-bound	1006	100
			protein PRO1153.		
117	Y94344	Homo sapiens	Human cell surface	892	90
			receptor protein		ĺ
		<u> </u>	#11.		
118	AJ238706	Drosophila	monocarboxylate	226	31
		melanogaster	transporter 1		
			homologue		
119	AF180728	Drosophila	sulfate transporter	312	45
		melanogaster			
120	AE004890	Pseudomonas	L-lactate permease	534	89
	<b>_</b>	aeruginosa			
121	X91837	Saccharomyces	cell division cycle	435	98
		cerevisiae	protein CDC55		
122	U93565	Homo sapiens	putative p150	1911	90
123	AJ000332	Homo sapiens	Glucosidase II	5043	99
124	AF204674	Homo sapiens	muscle disease-	377	72
	L		related protein		
125	S58722	Homo sapiens	X-linked	196	68
	1		retinopathy protein	1	ł
	1		{C-terminal, clone		

TABLE 2

SEQ ID NO:	ACCESSION	SPECIES	DESCRIPTION	SMITH-	<u> </u>
OF NUCLEOTIDE	NUMBER			WATERMAN	IDENTITY
			XEH.8c}	300.03	
126	S58722	Homo sapiens	X-linked retinopathy protein {C-terminal, clone XEH.8c}	196	68
127	J03848	Mesocricetus auratus	metallothionein II	147	51
128	G02994	Homo sapiens	Human secreted protein, SEQ ID NO: 7075.	93	64
129	AF116238	Homo sapiens	pseudouridine synthase 1	1927	99
130	G03411	Homo sapiens	Human secreted protein, SEQ ID NO: 7492.	183	65
131	AF222861	Sus scrofa	type X collagen	90	34
132	G03628	Homo sapiens	Human secreted protein, SEQ ID NO: 7709.	60	66
133	Y10529	Homo sapiens	olfactory receptor	766	61
134	AF164612	Homo sapiens	Gag protein	125	43
135	Y12713	Mus musculus	Pro-Pol-dUTPase polyprotein	181	47
136	X57816	Homo sapiens	immunoglobulin lambda light chain	550	57
137	U07808	Mus musculus	metallothionein IV	55	37
138	AB031227	Pisum sativum	PsAD1	68	50
139	AB035520	Oryctolagus cuniculus	parchorin	1324	57
140	AB007891	Homo sapiens	KIAA0431	117	46
141	Y00278	Homo sapiens	Human secreted protein encoded by gene 21.	234	92
142	Y68810	Homo sapiens	A rat heavy chain region and a human hinge region.	1124	92
143	M58526	Homo sapiens	alpha-5 type IV collagen	4597	97
144	AF119851	Homo sapiens	PRO1722	192	66
145	X84908	Homo sapiens	phosphorylase kinase	3798	97
146	Y76155	Homo sapiens	Human secreted protein encoded by gene 32.	81	52
147	<b>U</b> 13766	Murine . leukemia virus	gag-pol polyprotein	735	36
148	AF034198	Homo sapiens	IGSF1	7154	100
149	Y94343	Homo sapiens	Human cell surface receptor protein #10.	1331	100
150	Y87211	Homo sapiens	Human secreted	759	97
<del></del>		1	L	<u> </u>	l

TABLE 2

SEQ ID NO:	ACCESSION	SPECIES	DESCRIPTION	SMITH-	8
OF NUCLEOTIDE	NUMBER	Or Bellad	DESCRIPTION	WATERMAN	IDENTITY
NOCHEOTIDE				SCORE	
			protein sequence SEQ ID NO:250.		
151	AJ252258	human herpesvirus 2	glycoprotein G-2	115	30
152	V00662	Homo sapiens	URF 1 (NADH dehydrogenase subunit)	1283	85
153	G02872	Homo sapiens	Human secreted protein, SEQ ID NO: 6953.	142	61
154	A23786	Beta vulgaris	chitinase 1	138	41
155	Z34465	Zea mays	extensin-like protein	97	36
156	X79389	Homo sapiens	glutathione transferase T1	721	66
157	M22333	Homo sapiens	unknown protein	106	46
158	AL118502	Homo sapiens	bA371L19.1 (novel protein)	2471	100
159	AJ012582	Homo sapiens	hyperpolarization- activated cation channel HCN2	3076	100
160	D26351	Homo sapiens	human type 3 inositol 1,4,5- trisphosphate receptor	8901	99
161	AF067656	Homo sapiens	ZW10 interactor Zwint	951	97
162	AE003461	Drosophila melanogaster	CG11300 gene product	76	29
163	¥48518	Homo sapiens	Human breast tumour-associated protein 63.	355	100
164	G00517	Homo sapiens	Human secreted protein, SEQ ID NO: 4598.	83	34
165	G03786	Homo sapiens	Human secreted protein, SEQ ID NO: 7867.	251	53
166	Y00765	Homo sapiens	Prion protein CJAS.	63	37
167	¥21050	Homo sapiens	Human glial fibrillary acidic protein GFAP mutant fragment 59.	206	71
168	X74929	Homo sapiens	Keratin 8	1462	95
169	U29488	Caenorhabditi s elegans	similar to DNAJ protein	555	29
170	L27428	Homo sapiens	reverse transcriptase	145	45
171	W19932	Homo sapiens	Alzheimer's disease protein encoded by DNA from plasmid pGCS55.	362	100
172	AF178983	Homo sapiens	Ras-associated	497	100
		<del></del>	<u> </u>	<del></del>	<u> </u>

TABLE 2

SEQ ID NO: OF NUCLEOTIDE	ACCESSION NUMBER	SPECIES	DESCRIPTION	SMITH- WATERMAN SCORE	IDENTITY
			protein Rapl	<u> </u>	
173	U70136	Homo sapiens	megakaryocyte stimulating factor; MSF	206	28
174	G00352	Homo sapiens	Human secreted protein, SEQ ID NO: 4433.	109	64
175	U28143	Gallus gallus	synemin	1014	39
176	Y13401	Homo sapiens	Amino acid sequence of protein PRO339.	1978	96
177	AJ243396	Homo sapiens	voltage-gated sodium channel beta-3 subunit	947	99
178	M77812	Oryctolagus cuniculus	myosin heavy chain	4079	98
179	AF200344	Homo sapiens	aspartyl protease 3	956	91
180	AF200815	Homo sapiens	FUSED serine/threonine kinase	1597	99
181	G03786	Homo sapiens	Human secreted protein, SEQ ID NO: 7867.	147	83
182	Y00313	Homo sapiens	Human secreted protein encoded by gene 56.	56	29
183	X00699	Homo sapiens	precursor	583	66
184	AF269289	Homo sapiens	unknown	81	32
185	G03797	Homo sapiens	Human secreted protein, SEQ ID NO: 7878.	176	66
186	Y20298	Homo sapiens	Human apolipoprotein B mutant protein fragment 11.	110	34
187	AF161437	Homo sapiens	HSPC319	867	99
188	Y19684	Homo sapiens	SEQ ID NO 402 from WO9922243.	124	47
189	Y74050	Homo sapiens	Human prostate tumor EST fragment derived protein #237.	78	42
190	Y08986 ,	Brassica napus	oleosin-like protein	106	36
191	AF119851	Homo sapiens	PRO1722	173	66
192	AF116712	Homo sapiens	PRO2738	166	50
193	AF186084	Homo sapiens	epidermal growth factor repeat containing protein	2022	85
194	M59819	Homo sapiens	granulocyte colony- stimulating factor receptor	4232	100
195	Y86228	Homo sapiens	Human secreted protein HFXJX44,	250	100

TABLE 2

SEQ ID NO: OF NUCLEOTIDE	ACCESSION NUMBER	SPECIES	DESCRIPTION	SMITH- WATERMAN SCORE	% IDENTITY
NOCHEOTIDE	<del> </del>		SEQ ID NO:143.	SCORE	
196	Y45382	Homo sapiens	Human secreted protein fragment encoded from gene 28.	181	63
197	X94991	Homo sapiens	zyxin	566	41
198	M17236	Homo sapiens	MHC HLA-DQ alpha precursor	896	84
199	AC004659	Homo sapiens	BC62940_2	805	53
200	X14420	Homo sapiens	prepro-alpha-1 type 3 collagen	5521	99
201	AF180473	Homo sapiens	Not2p	1628	98
202	X85237	Homo sapiens	human splicing factor	1145	100
203	AL390114	Leishmania major	extremely cysteine/valine rich protein	309	58
204	D42138	Homo sapiens	PIG-B	1479	98
205	Y00062	Homo sapiens	precursor polypeptide (AA -23 to 1120)	3334	98
206	W93946	Homo sapiens	Human regulatory molecule HRM-2 protein.	1011	100
207	AB017563	Homo sapiens	IGSF4	2062	99
208	X54637	Homo sapiens	protein tyrosine kinase	5694	98
209	AF255910	Homo sapiens	vascular endothelial junction-associated molecule	1508	98
210	AF061324	Homo sapiens	sulfonylurea receptor 2A	7545	97
211	U93568	Homo sapiens	p40	197	50
212	AF250842	Drosophila melanogaster	multiple asters	506	32
213	X81479	Homo sapiens	EMR1	4469	99
214	X77748	Homo sapiens	metabotropic glutamate receptor type 3 (mGluR3)	4471	99
215	M60396	Homo sapiens	transcobalamin II	2218	99
216	W48351	Homo sapiens	Human breast cancer related protein BCRB2.	170	71
217	Y36203	Homo sapiens	Human secreted protein #75.	156	73
218	AF119851	Homo sapiens	PRO1722	144	63
219	AJ246002	Mus musculus	spastin protein orthologue	143	100
220	D49958	Homo sapiens	membrane glycoprotein M6	616	57
221	X83573	Homo sapiens	ARSE	2114	93

TABLE 2

SEO ID NO:	ACCESSION	SPECIES	DESCRIPTION	SMITH-	<u> </u>
OF	NUMBER			WATERMAN	IDENTITY
NUCLEOTIDE				SCORE	IDBNIIII
222	AF126062	Homo sapiens	Arf-like 2 binding	508	84
		lionio Dapaono	protein BART1	300	04
223	L22695	Canine oral	5' end derived by	83	51
		papillomaviru	splicing; putative		31
		s	Spiroing, publication		
224	R95913	Homo sapiens	Neural thread	262	64
		nome papers	protein.	202	04
225	AP001306	Arabidopsis	contains similarity	79	34
		thaliana	to cell wall-plasma	' -	133
•			membrane linker		1
			protein-gene id:MKA		
			23.3		
226	G01984	Homo sapiens	Human secreted	252	64
			protein, SEQ ID NO:	232	"
	ļ	<u> </u>	6065.		
227	X04614	human	IE110	83	35
	10,0	herpesvirus 1		"	33
228	AF151877	Homo sapiens	CGI-119 protein	1203	94
229	AF181467	Homo sapiens	protein Z-dependent	1483	88
	122 202 107	liomo Bupiens	protesse inhibitor	1403	
			precursor		
230	Z81326	Homo sapiens	neuroserpin	1763	99
231	AF111173	Homo sapiens	sodium/hydrogen	3512	99 .
	1 2 2 2 2 7 3	nomo suprens	exchanger isoform 5	3312	33
232	X67055	Homo sapiens	inter-alpha-trypsin	4429	98
	1.0700	nomo bapacno	inhibitor heavy	7725	1 30
		}	chain H3		
233	AB004064	Homo sapiens	tomoregulin	1783	98
234	AL096772	Homo sapiens	dJ365012.1	5465	98
			(KIAA0758 protein)	3233	
235	X83378	Homo sapiens	putative chloride	1620	99
		•	channel		
236	AF043644	Homo sapiens	receptor protein	5127	97
		1	tyrosine		
			phosphatase		
237	AF208536	Homo sapiens	nucleotide binding	1372	100
	•		protein; NBP		
238	AC005625	Homo sapiens	R27328_1	2435	93
239	X55687	Lycopersicon	extensin (class II)	58	50
		esculentum			
240	M23315	Sesbania	nodulin	61	36
		rostrata			
241	AF102851	Homo sapiens	dolichyl-P-	1881	99
		1	Glc:Man9GlcNAc2-PP-		
			dolichyl		
			glucosyltransferase		
242	G03793	Homo sapiens	Human secreted	202	67
		1	protein, SEQ ID NO:		l
•	1		7874.	1	
243	G03258	Homo sapiens	Human secreted	203	69
			protein, SEQ ID NO:	1	
			7339.	Ī	
244	AF048774	Homo sapiens	anti-HER3 scFv	903	81
	J		I	l	L

TABLE 2

SEQ ID NO:	ACCESSION	SPECIES	DESCRIPTION	SMITH-	ક
OF	NUMBER		1	WATERMAN	IDENTITY
NUCLEOTIDE		İ	1	SCORE	
245	AF102851	Homo sapiens	dolichyl-P-	1867	98
	1		Glc:Man9GlcNAc2-PP-		
			dolichyl		
			glucosyltransferase		
246	L00352	Homo sapiens	low density	3980	100
			lipoprotein		
			receptor		
247	Y79510	Homo sapiens	Human carbohydrate-	1394	100
			associated protein	i	
	}		CRBAP-6.		
248	AF202636	Homo sapiens	angiopoietin-like	2164	100
			protein PP1158	ļ	
249	X66533	Homo sapiens	guanylate cyclase	1641	97
250	M20504	Homo sapiens	MHC HLA-DR-beta-2	750	70
			precursor	1	
251	AF157326	Homo sapiens	TIP120 protein	4278	99
252	M25865	Homo sapiens	von Willebrand	10841	95
			factor		
253	AC005625	Homo sapiens	R27328_1	2435	93
254	A21385	synthetic	heavy chain	1786	94
		construct	antibody 3D6		
255	AF182414	Homo sapiens	MDS013	310	48
256	Y54041	Homo sapiens	Protein encOded by	1267	84
			a gene reduced in		
	1		metastatic melanoma		
			cells (grmm-1).		
257	AJ011415	Homo sapiens	plexin-B1/SEP	1580	60
_			receptor		
258	W55030	Homo sapiens	G-protein coupled	1493	100
	1		receptor, long		
	l		form.		1
259	AF227747	Homo sapiens	voltage-dependent	6158	100
			calcium channel		
	1		alpha 1G subunit		j
			isoform bc		
260	AF111173	Homo sapiens	sodium/hydrogen	3512	99
	L		exchanger isoform 5		
261	G01984	Homo sapiens	Human secreted	175	70
			protein, SEQ ID NO:	1	
			6065.		
262	Y00815	Homo sapiens	put. LAR preprotein	5648	100
			(AA -16 to 1881)		
263	Z34979	Homo sapiens	Human FIZZ3	582	100
			(inhibitor of		}
	1		neurotrophin	1	ĺ
364	1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	<del> </del>	action) cDNA.	1	
264	AF119851	Homo sapiens	PRO1722	189	73
265	AL049798	Homo sapiens	dJ797M17.1	1007	99
			(Dermatopontin)		<u> </u>
266	AL035684	Homo sapiens	dJ1114A1.1	1978	99
			(KIAA0611 (putative	1	
			E1-E2 ATPase)	1	
		L	protein)	1	L

TABLE 2

SEQ ID NO: OF	ACCESSION	SPECIES	DESCRIPTION	SMITH-	2
I I	NUMBER	,		WATERMAN	IDENTITY
NUCLEOTIDE				SCORE	
267	U49055	Rattus	rA8	4382	87
207	013033	norvegicus	1770	302	0,
268	X15332	Homo sapiens	alpha-1 (III)	4170	99
200		nomo suprems	collagen	**.70	1 33
269	Z98884	Homo sapiens	dJ467L1.1	2010	100
205	270004	nomo sapiens	(KIAA0833)	2010	100
270	AF085244	Homo sapiens	C2H2 type Kruppel-	7331	98
2,0	AF005244	nomo sapiens	like zinc finger	1,221	98
			protein splice		
			variant b	ł	
271 ·	Y00319		<u></u>	214	
2/1	100319	Homo sapiens	Human secreted	214	82
l l			protein encoded by		
			gene 63.		
272	X04434	Homo sapiens	IGF-I receptor	5832	99
273	AC005626	Homo sapiens	R29124_1	1129	89
274	X52046	Mus musculus	type III collagen	819	37
275	M22207	Tripneustes	217g protein	168	51
		gratilla			
276	M32317	Homo sapiens	HLA protein allele	1536	84
			B7	ļ.	
277	L05485	Homo sapiens	surfactant protein	1693	87
			D		į
278	W88504	Homo sapiens	Human epidermoid	1187	100
			carcinoma clone		}
			HP10428-encoded		
			membrane protein.		}
279	AF078850	Homo sapiens	steroid	794	100
1			dehydrogenase		•
			homolog		1
280	X83378	Homo sapiens	putative chloride	1620	99
ŀ			channel		
281	AL035701	Homo sapiens	dJ8B1.3 (similar to	2412	99
			PLASMA-CELL		
			MEMBRANE		
			GLYCOPROTEIN PC-1)		1
282	Y87068	Homo sapiens	Human secreted	528	100
			protein sequence		]
			SEQ ID NO:107.		l
283	L40806	Neurospora	Restriction enzyme	536	35
		crassa	inactivation of	•	
			met-10		
			complementation in		
			this region.		
			Sequence similarity		
			to S. cerevisiae		ŀ
			chromosome VIII		
			cosmid 9205,		
			accession no.		ľ
			U10556 CDS residues		
			22627-24126		<u> </u>
284	W88552	Homo sapiens	Secreted protein	3078	99
		•	encoded by gene 19		ŀ
			clone HSAVU34.	1	ļ.

TABLE 2

SEQ ID NO:	ACCESSION	SPECIES	DESCRIPTION	SMITH-	<u> </u>
OF	NUMBER	0130130	DEBCKII IION	WATERMAN	IDENTITY
NUCLEOTIDE				SCORE	10201111
285	G03790	Homo sapiens	Human secreted	108	50
		I I Supreme	protein, SEQ ID NO:	1200	1 30
			7871.		
286	X68060	Homo sapiens	DNA topoisomerase	8296	99
			II	0220	-
287	G00352	Homo sapiens	Human secreted	114	41
			protein, SEQ ID NO:		
,			4433.		
288	AC004602	Homo sapiens	F23487 2	202	49
289	AF196329	Homo sapiens	triggering receptor	1211	99
			expressed on	]	
			monocytes 1		i
290	G03789	Homo sapiens	Human secreted	202	62
			protein, SEQ ID NO:		
		ĺ	7870.		
291	G03043	Homo sapiens	Human secreted	93	62
,			protein, SEQ ID NO:		
		•	7124.		
292	Y12550	Homo sapiens	Human 5' EST	141	100
1		1	secreted protein		
			SEQ ID NO: 215 from		
			WO 9906553.		
293	D43756	Canis	fibrinogen A-alpha-	102	33
		familiaris	chain		
294	U38545	Homo sapiens	phospholipase D1	5681	99
295	W42076	Homo sapiens	The amino acid	236	100
ļ	ļ	<u>-</u>	sequence of the	Į.	
			0276_16 protein.		
296	AF090930	Homo sapiens	PRO0478	128	60
297	Y64747	Homo sapiens	Human 5' EST	471	98
	•		related polypeptide		
			SEQ ID NO:908.	•	
298	G01234	Homo sapiens	Human secreted	280	71
			protein, SEQ ID NO:		
ľ			5315.		1
299	G02514	Homo sapiens	Human secreted	94	76
ì			protein, SEQ ID NO:		
			6595.		
300	G02493	Homo sapiens	Human secreted	112	46
			protein, SEQ ID NO:		]
			6574.		
301	Z38061	Saccharomyces	mal5, stal, len:	340	27
		cerevisiae	1367, CAI: 0.3,	1	I
		1	AMYH_YEAST P08640		
<b>\</b>		}	GLUCOAMYLASE S1 (EC		1
			3.2.1.3)		
302	Y59672	Homo sapiens	Secreted protein	530	78
			108-006-5-0-E6-FL.		
303	Y95018	Homo sapiens	Human secreted	76	35
			protein vp19_1, SEQ		1
	<u> </u>		ID NO:76.		
304	W34623	Homo sapiens	Human C3 protein	117	46
			mutant FT-1.	<u> </u>	

TABLE 2

SEQ ID NO:	ACCESSION	SPECIES	DESCRIPTION	SMITH-	<b>8</b>
OF	NUMBER			WATERMAN	IDENTITY
NUCLEOTIDE	1100000	-		SCORE	
305	Y87292	Homo sapiens	Human signal	81	50
	<u> </u>		peptide containing protein HSPP-69 SEQ	ļ	
			ID NO:69.	1	ļ
306	AF210651	Homo sapiens	NAG18	135	60
307	Y14482	Homo sapiens	Fragment of human	212	58
		_	secreted protein		
			encoded by gene 17.		
308	Y76325	Homo sapiens	Fragment of human	343	93
			secreted protein		
			encoded by gene 35.		
309	Y36156	Homo sapiens	Human secreted	203	75
310	25000001		protein #28.		
311	AF090931	Homo sapiens	PRO0483	76	50
211	AC004943	Homo sapiens	alpha-fetoprotein enhancer-binding	351	85
			protein; 99%		1
	ļ		identical to A41948		
			(PID:g283975)		
312	G02558	Homo sapiens	Human secreted	144	52
		_	protein, SEQ ID NO:		
	ļ		6639.		
313	AK000128	Homo sapiens	unnamed protein	1338	100
<del></del>			product		
314	G03786	Homo sapiens	Human secreted	164	83
			protein, SEQ ID NO:	ļ	1
315	AF090942	Homo sapiens	7867. PRO0657	253	68
316	AF116712	Homo sapiens	PRO2738	181	52
317	AF043726	Mus musculus	PHD-finger protein	1605	64
318	Y99368	Homo sapiens	Human PRO1326	145	51
		347.5	(UNQ686) amino acid	***	
			sequence SEQ ID		
			NO:100.		
319	AF065314	Homo sapiens	cone photoreceptor	292	98
			cGMP-gated channel		ĺ
200	1700000		alpha subunit		
320	AF003389	Caenorhabditi	contains similarity	162	28
321	Y66755	s elegans Homo sapiens	to N-chimaerins Membrane-bound	003	100
J 4 4	100/33	AOMO Sapiens	protein PRO1185.	993	100
322	AF109906	Mus musculus	RD RD	118	69
323	AF199323	Rattus	RIM2-2A	364	85
		norvegicus		301	33
324	G02538	Homo sapiens	Human secreted	104	65
			protein, SEQ ID NO:		
	-		6619.	]	
325	G02872	Homo sapiens	Human secreted	138	65
			protein, SEQ ID NO:		
			6953.		
326	Y41266	Homo sapiens	Human T139 protein.	591	100
327	G02920	Homo sapiens	Human secreted	103	67
			protein, SEQ ID NO:		

TABLE 2

SEQ ID NO:	ACCESSION	SPECIES	DESCRIPTION	SMITH-	8
OF NUCLEOTIDE	NUMBER			WATERMAN SCORE	IDENTITY
<del></del>			7001.		
328	G00636	Homo sapiens	Human secreted protein, SEQ ID NO: 4717.	80	36
329	<del>0</del> 37769	Oryctolagus cuniculus	protein phosphatase 2A0 B' regulatory subunit alpha isoform	556	88
330	AE001424	Plasmodium falciparum	RESA-H3 antigen	208	21
331	AF090930	Homo sapiens	PRO0478	156	82
332	AF161356	Homo sapiens	HSPC093	169	64
333	G04055	Homo sapiens	Human secreted protein, SEQ ID NO: 8136.	425	100
334	D79985	Homo sapiens	putative hydrophobic domain in the central region.	371	86
335	¥41401	Homo sapiens	Human secreted protein encoded by gene 94 clone HLYCH68.	392	100
336	W18651	Homo sapiens	Human apolipoprotein E gene +1 frameshift mutant product.	478	88
337	Y20921	Homo sapiens	Human presentlin II wild type protein fragment 5.	2126	96
338	AF010144	Homo sapiens	neuronal thread protein AD7c-NTP	233	75
339	D28500	Homo sapiens	mitochondrial isoleucine tRNA synthetase	175	89
340	Y13357	Homo sapiens	Amino acid sequence of protein PRO227.	148	50
341	AL096677	Homo sapiens	dJ322G13.2 (similar to cystatin)	94	50
342	Y10843	Homo sapiens	Amino acid sequence of a human secreted protein.	186	86
343	X54134	Homo sapiens	protein-tyrosine phosphatase	3705	100
344	Z33908	Mus musculus	inositol 1,4,5- trisphosphate receptor	315	84
345	G00241	Homo sapiens	Human secreted protein, SEQ ID NO: 4322.	130	46
346	AF071172	Homo sapiens	HERC2	23705	99
347	AB015346	Homo sapiens	Eps15R	209	95
348	¥48596	Homo sapiens	Human breast	108	34

TABLE 2

SEQ ID NO: OF NUCLEOTIDE	ACCESSION NUMBER	SPECIES	DESCRIPTION	SMITH- WATERMAN SCORE	% IDENTITY
			tumour-associated protein 57.		
349	G03058	Homo sapiens	Human secreted protein, SEQ ID NO: 7139.	85	66
350	¥73443	Homo sapiens	Human secreted protein clone yb187_1 protein sequence SEQ ID NO:108.	90	36
351	G03793	Homo sapiens	Human secreted protein, SEQ ID NO: 7874.	126	66
352	G03789	Homo sapiens	Human secreted protein, SEQ ID NO: 7870.	324	73
353	¥64747	Homo sapiens	Human 5' EST related polypeptide SEQ ID NO:908.	527	98
354	AF255342	Homo sapiens	putative pheromone receptor V1RL1 long form	147	59
355	W48351	Homo sapiens	Human breast cancer related protein BCRB2.	85	61
356	G03060	Homo sapiens	Human secreted protein, SEQ ID NO: 7141.	191	72
357	AF124729	Mus musculus	acinusS'	124	31
358	U37352	Homo sapiens	protein phosphatase 2A B'alphal regulatory subunit	1016	95
359	AF280605	Triticum aestivum	omega gliadin storage protein	125	35
360	G03789	Homo sapiens	Human secreted protein, SEQ ID NO: 7870.	150	81
361	AL035398	Homo sapiens	dJ796I17.2 (CGI-51)	226	64
362	AK000307	Homo sapiens	unnamed protein product	882	97
363	Y41401	Homo sapiens	Human secreted protein encoded by gene 94 clone HLYCH68.	392	100
364	AF288480	Homo sapiens	tubby super-family protein	238	87
365	AL023706	Schizosacchar omyces pombe	possible pre-mRNA processing by similarity to yeast prp39	383	34
366	W48351	Homo sapiens	Human breast cancer related protein BCRB2.	85	61

TABLE 2

SEQ ID NO:	ACCESSION	SPECIES	DESCRIPTION	SMITH-	- 8
OF	NUMBER			WATERMAN	IDENTITY
NUCLEOTIDE	`			SCORE	
367	S68978	Oryctolagus	interleukin-1	53	58
		cuniculus	receptor antagonist		
	]		intracellular form		
368	AF047602	Equus zebra	luteinizing	68	37
		hartmannae	hormone/chorionic		
			gonadotrophin beta-		1
			subunit		)
369	AF119851	Homo sapiens	PRO1722	180	75
370	U15195	Homo sapiens	alpha-1 type II	59	43
		1	collagen	• •	1
371	U02082	Homo sapiens	guanine nucleotide	2648	100
•		1	regulatory protein		
372	AF096895	Homo sapiens	chemokine-like	508	100
			factor 1		1 200
373	G03786	Homo sapiens	Human secreted	315	65
		1	protein, SEQ ID NO:		
			7867.		
374	AF010144	Homo sapiens	neuronal thread	240	67
			protein AD7c-NTP		
375	U22376	Homo sapiens	alternatively	191	80
		•	spliced product		
			using exon 13A		
376	U08310	Saimiri	prion protein	245	66
		sciureus		1	1
377	A76867	unidentified	Chimere G.CSF-Gly4-	550	99
			SAH en aval region		
			prepro de SAH		
378	G00442	Homo sapiens	Human secreted	94	53
		_	protein, SEQ ID NO:		
			4523.		
379	AF010144	Homo sapiens	neuronal thread	355	53
			protein AD7c-NTP	1	į
380	AB023634	Rattus	Ca/calmodulin-	161	91
	}	norvegicus	dependent protein		
•		,	kinase phosphatase		
381	Y99437	Homo sapiens	Human PRO1508	805	100
			(UNQ761) amino acid		
	ĺ		sequence SEQ ID		
			NO:336.		
382	W48351	Homo sapiens	Human breast cancer	139	61
	1		related protein		
			BCRB2.		
383	M58511	Homo sapiens	iron-responsive	286	100
			element-binding		
			protein/iron		
	1		regulatory protein		
			2		
384	¥02671	Homo sapiens	Human secreted	99	71
	[		protein encoded by		
			gene 22 clone		
	<b>!</b>		HMSJW18.	1	
385	AJ012166	Canis	brain-specific	86	38
	1	familiaris	synapse associated		

TABLE 2

SEQ ID NO:	ACCESSION	SPECIES	DESCRIPTION	SMITH-	8
OF	NUMBER			WATERMAN	IDENTITY
NUCLEOTIDE			1	SCORE	
			protein, Bassoon		
386	L07809	Homo sapiens	dynamin	98	31
387	M15530	Homo sapiens	B-cell growth	158	69
			factor		
388	AF090172	Mycoplasma	revertant adhesin-	109	31
		pneumoniae	related protein P30		
389	AJ278964	Homo sapiens	cytosolic beta-	165	52
			glucosidase		
390	AF190642	Homo sapiens	phosphoinositide-	1095	98
			specific		
•			phospholipase C		l
204	111111111111111111111111111111111111111		PLC-epsilon		
391	X13238	Homo sapiens	cytochrome c	379	100
			oxidase subunit VIc		
392	AF225417	Vomo ganiona	preprotein 88.8 kDa protein	1634	0.0
393	Y02693	Homo sapiens	Human secreted	278	98 75
353	102033	nomo saprens	protein encoded by	278	/ 3
			gene 44 clone		
			HTDAD22		
394	AF151037	Homo sapiens	HSPC203	554	100
395	AJ276396	Homo sapiens	matrix	465	100
		_	extracellular		<u>{</u>
			phosphoglycoprotein		
396	X51405	Homo sapiens	pre-pro polypeptide	2536	100
			(AA -25 to 451)		
397	W78128	Homo sapiens	Human secreted	564	71
			protein encoded by		
			gene 3 clone		
398	Y87346	Homo sapiens	HOSBI96. Human signal	290	90
336	18/346	nomo sapiens	peptide containing	290	90
•			protein HSPP-123	,	
			SEQ ID NO:123.		
399	G03564	Homo sapiens	Human secreted	72	52
		1	protein, SEQ ID NO:		
		-	7645.		
400	U89436	Homo sapiens	tyrosyl-tRNA	2719	100
			synthetase		·
401	WB0993	Homo sapiens	Human RIP-	1724	100
			interacting factor		}
402	707005	77	RIF.	<u> </u>	
402	Y27907	Homo sapiens	Human secreted	95	59
			protein encoded by gene No. 119.	-	
403	AB033102	Homo sapiens	KIAA1276 protein	921	100
404	G03797	Homo sapiens	Human secreted	192	55
			protein, SEQ ID NO:		1
			7878.		
405	AF096895	Homo sapiens	chemokine-like	508	100
			factor 1		
406	Y29861	Homo sapiens	Human secreted	791	98
	1	I	protein clone	l	l

TABLE 2

SEQ ID NO: OF	ACCESSION NUMBER	SPECIES	DESCRIPTION	SMITH- WATERMAN	* IDENTITY
NUCLEOTIDE				SCORE	
			cb98_4.		
407	Y00293	Homo sapiens	Human secreted protein encoded by gene 36.	237	97
408	W40215	Homo sapiens	Human macrophage antigen.	1358	99
409	L36056	Homo sapiens	4E-binding protein 2	639	100
410	AJ130710	Homo sapiens	QA79 membrane protein, allelic variant airm-1b	2473	100
411	AF116661	Homo sapiens	PRO1438	146	57
412	W88761	Homo sapiens	Polypeptide fragment encoded by gene 19.	150	58
413	AK024434	Homo sapiens	FLJ00024 protein	574	97
414	Y10376	Homo sapiens	SIRP-betal	2069	99
415	Y07930	Homo sapiens	Human secreted protein fragment encoded from gene 79.	351	98
416	R99390	Homo sapiens	Human 030 gene (fohy030) product.	804	71
417	AB018253	Rattus norvegicus	voltage-gated ca channel	2419	88
418	AC006017	Homo sapiens	similar to ALR; similar to AAC51735 (PID:g2358287)	2150	97 .
419	X72925	Homo sapiens	Dsclb precursor	4390	99
420	AF205940	Homo sapiens	endomucin	1289	100
421	Y27868	Homo sapiens	Human secreted protein encoded by gene No. 107.	134	54
422	W74722	Homo sapiens	Human secreted protein er80_1.	2422	100
423	AF080470	Homo sapiens	pallid	872	100
424	G04072	Homo sapiens	Human secreted protein, SEQ ID NO: 8153.	201	63
425	W90961	Homo sapiens	Human CSGP-1 protein.	B69	86
426	M13180	Human herpesvirus 4	nuclear antigen (EBNA 1)	59	45
427	G00365	Homo sapiens	Human secreted protein, SEQ ID NO: 4446.	99	75
428	AF155819	Mus musculus	doublecortin-like kinase	3448	96
429	Y04315	Homo sapiens	Human secreted protein encoded by gene 23.	385	100
430	AB026891	Homo sapiens	cystine/glutamate transporter	2552	100

TABLE 2

SEQ ID NO:	ACCESSION	SPECIES	DESCRIPTION	SMITH-	
OF	NUMBER		•	WATERMAN	IDENTITY
NUCLEOTIDE				SCORE	
431	Y15286	Homo sapiens	vacuolar proton- ATPase subunit M9.2	459	100
432	X81053	Homo sapiens	type IV collagen	9706	99
			alpha 4 chain	9706	99
433	U41829	Macaca	MHC class I antigen	365	76
		mulatta	Mamu B*07		
434	G03371	Homo sapiens	Human secreted protein, SEQ ID NO: 7452.	100	41
435	AF233238	Gallus gallus	BMP signal transducer Smad1	170	74
436	X52425	Homo sapiens	interleukin 4 receptor	4492	99
437	Y06115	Homo sapiens	Human organic cation transporter OCT-3.	2593	96
438	G02872	Homo sapiens	Human secreted protein, SEQ ID NO: 6953.	130	54
439	L08239	Homo sapiens	located at OATL1	1304	95
440	X17115	Homo sapiens	precursor (AA -15 to 612)	2613	86
441	Y06816	Homo sapiens	Human Notch2 (humN2) protein sequence.	1471	98
442	AB019440	Homo sapiens	immunogloblin heavy chain variable region	545	88
443	¥87350	Homo sapiens	Human signal peptide containing protein HSPF-127 SEQ ID NO:127.	1061	100
444	AJ271736	Homo sapiens	synaptobrevin-like l protein	1128	100
445	Y11534	Homo sapiens	PEG1/MEST	1787	100
446	W85719	Homo sapiens	Novel protein (Clone AJ143 1).	271	100
447	Y07900	Homo sapiens	Human secreted protein fragment encoded from gene 49.	87	94
448	X14329	Homo sapiens	carboxypeptidase N precursor (AA -20 to 438)	2463	99
449	M36803	Homo sapiens	hemopexin	2603	100
450	AF116238	Homo sapiens	pseudouridine synthase 1	1927	99
451	AB031051	Homo sapiens	organic anion transporter OATP-E	444	42
452	X16841	Homo sapiens	precursor protein. (-19 to 742)	3958	100
453	AK022830	Homo sapiens	unnamed protein product	373	100

TABLE 2

SEQ ID NO: OF NUCLEOTIDE	ACCESSION NUMBER	SPECIES	DESCRIPTION	SMITH- WATERMAN SCORE	% IDENTITY
454	Ý94890	Homo sapiens	Human protein clone HP02798.	637	90
455	AL356014	Arabidopsis thaliana	putative protein	210	38
456	X60221	Homo sapiens	H+-ATP synthase subunit b	1297	99
457	G02532	Homo sapiens	Human secreted protein, SEQ ID NO: 6613.	168	69
458	AJ245375	Homo sapiens	PP35 act	1895	99
459	G00397	Homo sapiens	Human secreted protein, SEQ ID NO: 4478.	57	52
460	AE003708	Drosophila melanogaster	CG6194 gene product	234	65
461	W48352	Homo sapiens	Human breast cancer related protein BCFLT1.	80	60
462	U53420	Rattus norvegicus	sodium-calcium exchanger form 3	397	76
463	Y13402	Homo sapiens	Amino acid sequence of protein PRO310.	1075	63
464	Y27607	Homo sapiens	Human secreted protein encoded by gene No. 41.	610	100
465	L08666	Homo sapiens	porin	122	51
466	Y87084	Homo sapiens	Human secreted protein sequence SEQ ID NO:123.	232	.78
467	X16841	Homo sapiens	precursor protein (-19 to 742)	3958	100
468	¥48507	Homo sapiens	Human breast tumour-associated protein 52.	295	91
469	X07973	Ovis aries	MT-Ib protein	84	45
470	W48927	Homo sapiens	Schwannomin-binding protein C-terminal fragment.	78	60
471	АJ224171	Homo sapiens	lipophilin A	454	100
472	G01984	Homo sapiens	Human secreted protein, SEQ ID NO: 6065.	211	64
473	G03793	Homo sapiens	Human secreted protein, SEQ ID NO: 7874.	200	74
474	Y17829	Homo sapiens	Human PRO354 protein sequence.	1006	100
475	Y66706	Homo sapiens	Membrane-bound protein PRO1129.	2153	99
476	G03800	Homo sapiens	Human secreted protein, SEQ ID NO: 7881.	99	78
477	AF216389	Homo sapiens	semaphorin Rs	296	85

TABLE 2

SEQ ID NO:	ACCESSION	SPECIES	DESCRIPTION	SMITH-	8
OF NUCLEOTIDE	NUMBER			WATERMAN SCORE	IDENTITY
478	X93036	Homo sapiens	MAT8 protein	469	100
479	X53795	Homo sapiens	inducible membrane protein	1412	100
480	AF056195	Homo sapiens	neuroblastoma- amplified protein	4504	98
481	AF116715	Homo sapiens	PRO2829	96	46
482	Z24680	Homo sapiens	garp	167	43
483	¥76198	Homo sapiens	Human secreted protein encoded by gene 75.	82	80
484	AF010144	Homo sapiens	neuronal thread protein AD7c-NTP	324	59
485	Y91592	Homo sapiens	Human secreted protein sequence encoded by gene 6 SEQ ID NO:265.	738	100
486	Y94890	Homo sapiens	Human protein clone HP02798.	605	81
487	U89436	Homo sapiens	tyrosyl-tRNA synthetase	2719	100
488	W88579	Homo sapiens	Secreted protein encoded by gene 46 clone HCFMV39.	479	95
489	G02360	Homo sapiens	Human secreted protein, SEQ ID NO: 6441.	102	70
490	U70976	Homo sapiens	arrestin	1071	61
491	U80746	Homo sapiens	CAGH4	277	81
492	U26361	Helicobacter pylori	Hpn	80	83
493	Y19730	Homo sapiens	SEQ ID NO 448 from WO9922243.	135	53
494	Y27868	Homo sapiens	Human secreted protein encoded by gene No. 107.	185	50
495	AF090901	Homo sapiens	PRO0195	90	46
496	AF061529	Mus musculus	rjs	270	76
497	L34049	Rattus norvegicus	megalin	322	41
498	J04204	Bos taurus	32 kd accessory protein	1743	100
499	Y71118	Homo sapiens	Human Hydrolase protein-16 (HYDRL- 16).	2205	97
500	X13916	Homo sapiens	LDL-receptor related precursor (AA -19 to 4525)	715	92
501	Y00877	Homo sapiens	Human LAPH-2 protein sequence.	138	40
502	Y99368	Homo sapiens	Human PRO1326 (UNQ686) amino acid sequence SEQ ID NO:100.	156	48

TABLE 2

SEQ ID NO:	ACCESSION	SPECIES	DESCRIPTION	SMITH-	<u> </u>
OF	NUMBER	01 20220		WATERMAN	IDENTITY
NUCLEOTIDE				SCORE	IDBNIII
503	Y48308	Homo sapiens	Human prostate	901	100
		Supromo	cancer-associated	-02	100
			protein 5.		
504	U67060	Cricetulus	SREBP cleavage	6196	92
		griseus	activating protein	1 0250	~~
505	W75857	Homo sapiens	Human secretory	1761	99
		Jupini	protein of clone	-,0-	1
			C01020-1.		
506	X55764	Homo sapiens	11beta-hydrolase	2604	99
			precursor		
507	Y41685	Homo sapiens	Human PRO213	1344	94
			protein sequence.	-511	
508	X95240	Homo sapiens	cysteine-rich	1368	100
		IIIII Duproii	secretory protein-3	12300	100
509	AF065482	Homo sapiens	sorting nexin 2	517	77
510	AF135025	Homo sapiens	kallikrein-like	1301	100
510	11133023	nomo saprens	protein 5-related	1301	100
			protein 1		
511	AF220492	Homo sapiens	krueppel-like zinc	4100	99
		nomo saprens	finger protein HZF2	3200	"
512	X58397	Homo sapiens	variable region	670	100
312	130357	nomo saprens	V251 from V(H)5	370	100
			gene		
513	W95348	Homo sapiens	Human foetal kidney	406	90
010	1133340	nomo suprems	secreted protein	1 *00	1 30
			em397 2.		
514	AJ000479	Homo sapiens	putative G-Protein	1966	100
			coupled receptor,	=500	1 -00
		İ	EDG6		
515	L05514	Homo sapiens	histatin 3	280	100
516	X95240	Homo sapiens	cysteine-rich	1368	100
			secretory protein-3		
517	D00654	Homo sapiens	enteric smooth	1972	100
		1	muscle gamma-actin		
518	AJ005453	Mytilus	metallothionein 10	94	35
	:	edulis	II		
519	W37864	Homo sapiens	Human protein	362	98
		_	comprising	ļ	
			secretory signal		
			amino acid sequence		
			1.		
520	X76091	Homo sapiens	DNA binding protein	3743	99
		_	RFX2		
521	G03800	Homo sapiens	Human secreted	113	39
			protein, SEQ ID NO:		1
			7881.		
522	AJ289243	Mus musculus	calpain 12	147	53
523	D30037	Homo sapiens	phosphatidylinosito	1464	100
		_	1 transfer protein		[
524	AJ012370	Homo sapiens	NAALADase II	3872	99
			protein		
525	G03909	Homo sapiens	Human secreted	80	41
			protein, SEQ ID NO:		
		<del></del>	I		

TABLE 2

SEQ ID NO: OF	ACCESSION NUMBER	SPECIES	DESCRIPTION	SMITH- WATERMAN	* IDENTITY
NUCLEOTIDE				SCORE	
505	755050		7990.		
526	U67060	Cricetulus griseus	SREBP cleavage activating protein	6196	92
527	W48351	Homo sapiens	Human breast cancer related protein BCRB2.	85	61
528	AF093408	Homo sapiens	protein kinase A binding protein AKAP110	461	78
529	Y92182	Homo sapiens	Human partial TANGO 195 from clone T195Athpb93fl.	1682	100
530	M28200	Homo sapiens	MHC class II lymphocyte antigen beta chain	432	72
531	X58397	Homo sapiens	variable region V251 from V(H)5 gene	491	74
532	D88577	Mus musculus	Kupffer cell receptor	904	46
533	M84379	Homo sapiens	lymphocyte antigen	1922	97
534	AF279265	Homo sapiens	putative anion transporter 1	212	91
535	AF132035	Homo sapiens	core 2 beta-1,6-N-acetylglucosaminylt ransferase 3	852	92
536	G02958	Homo sapiens	Human secreted protein, SEQ ID NO: 7039.	512	98
537	¥07938	Homo sapiens	Human secreted protein fragment encoded from gene 87.	302	100
538	Y36203	Homo sapiens	Human secreted protein #75.	175	51
539	U16738	Homo sapiens	CAG-isl 7	472	75
540	AL161531	Arabidopsis thaliana	putative proline- rich protein	118	57
541	K00558	Homo sapiens	alpha-tubulin	2393	100
542	U20286	Rattus norvegicus	lamina associated polypeptide 1C	641	55
543	¥27907	Homo sapiens	Human secreted protein encoded by gene No. 119.	128	61
544	AF109674	Rattus norvegicus	late gestation lung protein 1	954	87
545	L35278	Homo sapiens	bone morphogenetic protein	92	40
546	G00541	Homo sapiens	Human secreted protein, SEQ ID NO: 4622.	94	68
547	AF190664	Mus musculus	LMBR2	246	78
548	Y12793	Homo sapiens	Human 5' EST	113	50

TABLE 2

SEQ ID NO: OF NUCLEOTIDE	ACCESSION NUMBER	SPECIES	DESCRIPTION	SMITH- WATERMAN SCORE	% IDENTITY
			secreted protein SEQ ID NO:383.		
549	AF133816	Homo sapiens	insulin-like peptide INSL5	714	100
550	X70910	Homo sapiens	tetranectin	1069	100
551	M11902	Mus musculus	proline-rich salivary protein	135	39
552	G03477	Homo sapiens	Human secreted protein, SEQ ID NO: 7558.	89	58
553	U63542	Homo sapiens	FAP protein	156	77
554	Y60497	Homo sapiens	Human normal bladder tissue EST encoded protein 169.	89	50
555	Y87303	Homo sapiens	Human signal peptide containing protein HSPP-80 SEQ ID NO:80.	275	100
556	Y17526	Homo sapiens	Human secreted protein clone AM349 2 protein.	1220	100
557	G04064	Homo sapiens	Human secreted protein, SEQ ID NO: 8145.	83	35
558	U51919	Rattus norvegicus	preprocortistatin	84	36
559	AF090901	Homo sapiens	PRO0195	92	66
560	J04031	Homo sapiens	MDMCSF (EC 1.5.1.5; EC 3.5.4.9; EC 6.3.4.3)	226	52
561	AL117237	Homo sapiens	hypothetical protein	4088	94
562	Y50931	Homo sapiens	Human fetal brain cDNA clone vc25_1 derived protein.	485	100
563	Y21631	Homo sapiens	Ligand binding domain of nuclear receptor hTRbeta.	1738	99
564	X90857	Homo sapiens	-14	177	69
565	W35904	Homo sapiens	Human haematopoietic- specific protein (HSP).	862	87
566	W99070	Homo sapiens	Human PIGR-1.	244	90
567	X61653	Homo sapiens	TCR V-beta 13.5	600	100
568	AF166350	Homo sapiens	ST7 protein	4711	99
569	Y07938	Homo sapiens	Human secreted protein fragment encoded from gene 87.	302	100
570	X85019	Homo sapiens	UDP- GalNAc:polypeptide	3069	100

TABLE 2

SEQ ID NO: OF NUCLEOTIDE	ACCESSION NUMBER	SPECIES	DESCRIPTION	SMITH- WATERMAN SCORE	# IDENTITY
			N- acetylgalactosaminy l transferase		
571	U89942	Homo sapiens	lysyl oxidase- related protein	2427	89
572	X04391	Homo sapiens	put. precursor polypeptide	2671	99
573	W36903	Homo sapiens	Human epididymis- specific receptor protein.	5352	100
574	U22816	Homo sapiens	LAR-interacting protein 1b	2042	57
575	Y58618	Homo sapiens	Protein regulating gene expression PRGE-11.	729	57
576	AJ278348	Homo sapiens	pregnancy- associated plasma protein-E	743	100
577	AK024512	Homo sapiens	unnamed protein product	471	100
578	AL031685	Homo sapiens	dJ963K23.4 (KIAA0939 (novel Sodium/hydrogen exchanger family member))	2010	100
579	AF183183	Mus musculus	cochlear otoferlin	116	91
580	W74722	Homo sapiens	Human secreted protein er80_1.	2422	100
581	G03356	Homo sapiens	Human secreted protein, SEQ ID NO: 7437.	. 114	44
582	Y82777	Homo sapiens	Human chordin related protein (Clone dw665 4).	610	98
583	J04988	Homo sapiens	90 kD heat shock protein	3702	100
584	K02576	Homo sapiens	salivary proline- rich protein 1	97	34
585	G03786	Homo sapiens	Human secreted protein, SEQ ID NO: 7867.	159	72
586	AK024490	Homo sapiens	FLJ00092 protein	204	57
587	U22231 .	Felis catus	ribosomal protein S3a	327	57
588	X55681	Lycopersicon esculentum	extensin (class I)	96	38
589	U68137	Rana ridibunda	prepro-somatostatin	81	33
590	Y19655	Homo sapiens	SEQ ID NO 373 from W09922243.	814	84
591	G03789	Homo sapiens	Human secreted protein, SEQ ID NO: 7870.	222	56

TABLE 2

OF NUMBER   NUMBER   NUMBER   NUMBER   NUMBER   NUMBER   Solution   Solution   Solution   Solution   Solution   Solution   Solution   Solution   Solution   Solution   Solution   Solution   Solution   Solution   Solution   Solution   Solution   Solution   Solution   Solution   Solution   Solution   Solution   Solution   Solution   Solution   Solution   Solution   Solution   Solution   Solution   Solution   Solution   Solution   Solution   Solution   Solution   Solution   Solution   Solution   Solution   Solution   Solution   Solution   Solution   Solution   Solution   Solution   Solution   Solution   Solution   Solution   Solution   Solution   Solution   Solution   Solution   Solution   Solution   Solution   Solution   Solution   Solution   Solution   Solution   Solution   Solution   Solution   Solution   Solution   Solution   Solution   Solution   Solution   Solution   Solution   Solution   Solution   Solution   Solution   Solution   Solution   Solution   Solution   Solution   Solution   Solution   Solution   Solution   Solution   Solution   Solution   Solution   Solution   Solution   Solution   Solution   Solution   Solution   Solution   Solution   Solution   Solution   Solution   Solution   Solution   Solution   Solution   Solution   Solution   Solution   Solution   Solution   Solution   Solution   Solution   Solution   Solution   Solution   Solution   Solution   Solution   Solution   Solution   Solution   Solution   Solution   Solution   Solution   Solution   Solution   Solution   Solution   Solution   Solution   Solution   Solution   Solution   Solution   Solution   Solution   Solution   Solution   Solution   Solution   Solution   Solution   Solution   Solution   Solution   Solution   Solution   Solution   Solution   Solution   Solution   Solution   Solution   Solution   Solution   Solution   Solution   Solution   Solution   Solution   Solution   Solution   Solution   Solution   Solution   Solution   Solution   Solution   Solution   Solution   Solution   Solution   Solution   Solution   Solution   Solutio	1 &	SMITH-	DESCRIPTION	SPECIES	ACCESSION	SEQ ID NO:
NUCLEOTIDE   SCORE   S92   AF067801   Homo sapiens   HDCGC21P   116   38   593   X67339   Neurospora crassa   ccg-2   82   37   3761.   SEQ ID NO: 7361.   SEQ ID NO: 7361.   SEQ ID NO: 7361.   SEQ ID NO: 7361.   SEQ ID NO: 7361.   SEQ ID NO: 7361.   SEQ ID NO: 7361.   SEQ ID NO: 7361.   SEQ ID NO: 7361.   SEQ ID NO: 7361.   SEQ ID NO: 7361.   SEQ ID NO: 7361.   SEQ ID NO: 7361.   SEQ ID NO: 7361.   SEQ ID NO: 7361.   SEQ ID NO: 7361.   SEQ ID NO: 7361.   SEQ ID NO: 7361.   SEQ ID NO: 7361.   SEQ ID NO: 7361.   SEQ ID NO: 7361.   SEQ ID NO: 7361.   SEQ ID NO: 7361.   SEQ ID NO: 7361.   SEQ ID NO: 7361.   SEQ ID NO: 7361.   SEQ ID NO: 6193.   SEQ ID NO: 6193.   SEQ ID NO: 6193.   SEQ ID NO: 6193.   SEQ ID NO: 6193.   SEQ ID NO: 6193.   SEQ ID NO: 6193.   SEQ ID NO: 6193.   SEQ ID NO: 6193.   SEQ ID NO: 6193.   SEQ ID NO: 6193.   SEQ ID NO: 6193.   SEQ ID NO: 6193.   SEQ ID NO: 6193.   SEQ ID NO: 6193.   SEQ ID NO: 6193.   SEQ ID NO: 6193.   SEQ ID NO: 6193.   SEQ ID NO: 6193.   SEQ ID NO: 6193.   SEQ ID NO: 6193.   SEQ ID NO: 6193.   SEQ ID NO: 6193.   SEQ ID NO: 6193.   SEQ ID NO: 6193.   SEQ ID NO: 6193.   SEQ ID NO: 6193.   SEQ ID NO: 6193.   SEQ ID NO: 6193.   SEQ ID NO: 6193.   SEQ ID NO: 6193.   SEQ ID NO: 6193.   SEQ ID NO: 6193.   SEQ ID NO: 6193.   SEQ ID NO: 6193.   SEQ ID NO: 6193.   SEQ ID NO: 6193.   SEQ ID NO: 6193.   SEQ ID NO: 6193.   SEQ ID NO: 6193.   SEQ ID NO: 6193.   SEQ ID NO: 6193.   SEQ ID NO: 6193.   SEQ ID NO: 6193.   SEQ ID NO: 6193.   SEQ ID NO: 6193.   SEQ ID NO: 6193.   SEQ ID NO: 6193.   SEQ ID NO: 6193.   SEQ ID NO: 6193.   SEQ ID NO: 6193.   SEQ ID NO: 6193.   SEQ ID NO: 6193.   SEQ ID NO: 6193.   SEQ ID NO: 6193.   SEQ ID NO: 6193.   SEQ ID NO: 6193.   SEQ ID NO: 6193.   SEQ ID NO: 6193.   SEQ ID NO: 6193.   SEQ ID NO: 6193.   SEQ ID NO: 6193.   SEQ ID NO: 6193.   SEQ ID NO: 6193.   SEQ ID NO: 6193.   SEQ ID NO: 6193.   SEQ ID NO: 6193.   SEQ ID NO: 6193.   SEQ ID NO: 6193.   SEQ ID NO: 6193.   SEQ ID NO: 6193.   SEQ ID NO: 6193.   SEQ ID NO: 6193.   SEQ ID NO: 6193.   SEQ ID N	1					
S92   AF067801   Homo sapiens   HDCGC21P   116   38   38   37   38   37   38   37   38   37   38   37   38   37   38   37   38   38	100000	i			4.4.	
Section	- 20		UDCCC21D	Homo saniens	AR067801	
Crassa   Human secreted protein, SEQ ID NO: 7361.   169   10		I				
Protein, SEQ ID NO: 7361.				crassa		
Protein encoded by gene 44 clone   HTDAD22.	100	169	protein, SEQ ID NO:	Homo sapiens	G03280	594
melanogaster	70	130	protein encoded by gene 44 clone	Homo sapiens	Y02693	595
AKO21847   Homo sapiens   unnamed protein product   178   94	56	247	CG9492 gene product		AE003683	596
Section	100	6205	M130 antigen	Homo sapiens	Z22968	597
AP000060   Aeropyrum   pernix   hypothetical   protein   protein	94	178	unnamed protein		AK021847	598
G02872   Homo sapiens   Human secreted protein, SEQ ID NO: 6953.   Homo sapiens   Human secreted protein, SEQ ID NO: 6953.   Homo sapiens   Human secreted protein, SEQ ID NO: 6619.   Homo sapiens   Human secreted protein, SEQ ID NO: 6619.   Homo sapiens   Tyanodine receptor 25918   99 2 2   172   35 2 2   172   35 2 2   172   35 2 2   172   35 2 2   172   35 2 2   172   35 2 2   172   35 2 2   172   35 2 2   172   35 2 2   172   172   35 2 2   172   172   172   172   172   172   172   172   172   172   172   172   172   172   172   172   172   172   172   172   172   172   172   172   172   172   172   172   172   172   172   172   172   172   172   172   172   172   172   172   172   172   172   172   172   172   172   172   172   172   172   172   172   172   172   172   172   172   172   172   172   172   172   172   172   172   172   172   172   172   172   172   172   172   172   172   172   172   172   172   172   172   172   172   172   172   172   172   172   172   172   172   172   172   172   172   172   172   172   172   172   172   172   172   172   172   172   172   172   172   172   172   172   172   172   172   172   172   172   172   172   172   172   172   172   172   172   172   172   172   172   172   172   172   172   172   172   172   172   172   172   172   172   172   172   172   172   172   172   172   172   172   172   172   172   172   172   172   172   172   172   172   172   172   172   172   172   172   172   172   172   172   172   172   172   172   172   172   172   172   172   172   172   172   172   172   172   172   172   172   172   172   172   172   172   172   172   172   172   172   172   172   172   172   172   172   172   172   172   172   172   172   172   172   172   172   172   172   172   172   172   172   172   172   172   172   172   172   172   172   172   172   172   172   172   172   172   172   172   172   172   172   172   172   172   172   172   172   172   172   172   172   172   172   172   172   172   172   172   172   172   172   172   172   172   172	39	80	134aa long hypothetical protein		AP000060	599
protein, SEQ ID NO: 6953.	92	558		Homo sapiens	AK001363	600
protein, SEQ ID NO: 6619.	49	147	protein, SEQ ID NO:	Homo sapiens	G02872	601
2	65	149	protein, SEQ ID NO:	Homo sapiens	G02538	602
Major	99	25918	ryanodine receptor	Homo sapiens	X98330	603
protein sequence #2.  606 AF041069 Equus fibronectin 109 56 caballus  607 Y54591 Homo sapiens Amino acid sequence of a human transferase designated HUTRAN-1.  608 G03172 Homo sapiens Human secreted protein, SEQ ID NO: 7253.  609 Y31730 Homo sapiens Human fused protein kinase-deletion	35	172	proteophosphoglycan		AJ243460	604
caballus  607  Y54591  Homo sapiens  Amino acid sequence of a human transferase designated HUTRAN-  1.  608  G03172  Homo sapiens  Human secreted protein, SEQ ID NO: 7253.  609  Y31730  Homo sapiens  Human fused protein sinase-deletion  Homo sapiens  Human fused protein kinase-deletion	63	2499	protein sequence	Homo sapiens	Y81807	605
of a human transferase designated HUTRAN- 1.  608 G03172 Homo sapiens Human secreted protein, SEQ ID NO: 7253.  609 Y31730 Homo sapiens Human fused protein kinase-deletion 99	56	109	fibronectin	, -	AF041069	606
protein, SEQ ID NO: 7253.  609 Y31730 Homo sapiens Human fused protein 561 99 kinase-deletion	77	153	of a human transferase designated HUTRAN-		Y54591	607
kinase-deletion	66	82	protein, SEQ ID NO:	Homo sapiens	G03172	608
term.	99	561	kinase-deletion mutant fused C-	Homo sapiens	¥31730	609
610 Y30163 Homo sapiens Human dorsal root 112 49 receptor 5 hDRR5.	49	112	1	Homo sapiens	Y30163	610
	70	171	Human secreted protein, SEQ ID NO:	Homo sapiens	G03714	611
	75	402		Homo sapiens	U58514	612

TABLE 2

SEQ ID NO:	ACCESSION	SPECIES	DESCRIPTION	SMITH-	8
OF	NUMBER			WATERMAN	IDENTITY
NUCLEOTIDE				SCORE	
613	AL122105	Homo sapiens	hypothetical protein	399	73
614	AF059198	Homo sapiens	protein	5093	99
			kinase/endoribonulc		
			ease		
615	X17531	Strongylocent	epidermal growth	234	54
		rotus	factor		
		purpuratus			
616	AF112982	Homo sapiens	group IID secretory	852	100
617	AJ006119	***	phospholipase A2	-	
618	W54097	Homo sapiens	1	675	97
919	W5409/	Homo sapiens	Homo sapiens B223	339	98
619	AF090930	Homo sapiens	sequence. PRO0478	141	79
620	W61624	Homo sapiens	Clone HHFEK40 of	564	98
020	W01024	nomo saprens	TM4SF superfamily.	364	98
621	AF119851	Homo sapiens	PRO1722	115	52
622	G03172	Homo sapiens	Human secreted	173	48
			protein, SEQ ID NO:		
			7253.		
623	Y41379	Homo sapiens	Human secreted	261	100
			protein encoded by		
			gene 72 clone		
			HE6GA29.		
624	UB6339	Drosophila	expanded	142	36
		grimshawi			
625	D86853	Catharanthus roseus	extensin	142	39
626	S58722	Homo sapiens	X-linked	116	49
020	556722	nomo saprens	retinopathy protein	110	43
			{C-terminal, clone		
	•		XEH.8c}		·
627	G02532	Homo sapiens	Human secreted	108	50
			protein, SEQ ID NO:		
			6613.		
628	G03790	Homo sapiens	Human secreted	129	61
			protein, SEQ ID NO:		·
	755555		7871.		
629	¥27665	Homo sapiens	Human secreted	345	100
			protein encoded by gene No. 99.		
630	G02837	Homo sapiens	Human secreted	78	75
	002037	nomo saprens	protein, SEQ ID NO:	'	,3
		·	6918.		
631	G03789	Homo sapiens	Human secreted	172	65
		_	protein, SEQ ID NO:		
			7870.		
632	X14329	Homo sapiens	carboxypeptidase N	2463	99
		İ	precursor (AA -20		
			to 438)		
633	¥87235	Homo sapiens	Human signal	867	100
			peptide containing		
	L	<u> </u>	protein HSPP-12 SEQ		

TABLE 2

SEQ ID NO: OF NUCLEOTIDE	ACCESSION NUMBER	SPECIES	DESCRIPTION	SMITH- WATERMAN SCORE	* IDENTITY
			ID NO:12.		
634	W88627	Homo sapiens	Secreted protein encoded by gene 94 clone HPMBQ32.	106	73
635	W74845	Homo sapiens	Human secreted protein encoded by gene 117 clone HBMUW78.	395	71
636	M16941	Homo sapiens	DR7 beta-chain glycoprotein	1412	100
637	W95634	Homo sapiens	Homo sapiens secreted protein.	1391	100
638	¥78801	Homo sapiens	Hydrophobic domain containing protein clone HP00631 amino acid sequence.	1277	100
639	G03789	Homo sapiens	Human secreted protein, SEQ ID NO: 7870.	191	76
640	W64535	Homo sapiens	Human leukocyte cell clone HP00804 protein.	2014	99
641	Y94621	Homo sapiens	Epidermal growth factor-like variant in skin-2 amino acid sequence.	529	91
642	G03646	Homo sapiens	Human secreted protein, SEQ ID NO: 7727.	81	42
643	Y87328	Homo sapiens	Human signal peptide containing protein HSPP-105 SEQ ID NO:105.	681	100
644	Y21386	Homo sapiens	Human HUPF-I mutant protein fragment 34.	78	31
645	G03790	Homo sapiens	Human secreted protein, SEQ ID NO: 7871.	140	55
646	Y35894	Homo sapiens	Extended human secreted protein sequence, SEQ ID NO. 143.	349	100
647	G00517	Homo sapiens	Human secreted protein, SEQ ID NO: 4598.	109	37
648	¥25716	Homo sapiens	Human secreted protein encoded from gene 6.	339	39
649	G01246	Homo sapiens	Human secreted protein, SEQ ID NO: 5327.	152	80
650	R95913	Homo sapiens	Neural thread	233	50

TABLE 2

SEQ ID NO:	ACCESSION	SPECIES	DESCRIPTION	SMITH-	<u> </u>
OF NUCLEOTIDE	NUMBER			WATERMAN SCORE	IDENTITY
			protein.		<del></del>
651	Y91469	Homo sapiens	Human secreted protein sequence encoded by gene 19 SEQ ID NO:142.	98	48
652	G03136	Homo sapiens	Human secreted protein, SEQ ID NO: 7217.	94	43
653	U14635	Caenorhabditi s elegans	weak similarity to NADH dehydrogenase	186	30
654	Y14482	Homo sapiens	Fragment of human secreted protein encoded by gene 17.	163	54
655	U14635	Caenorhabditi s elegans	weak similarity to NADH dehydrogenase	186	30
656	AB024565	Mus musculus	heparan sulfate 6- sulfotransferase 2	1128	79
657	G03789	Homo sapiens	Human secreted protein, SEQ ID NO: 7870.	243	70
658	Y14471	Homo sapiens	Fragment of human secreted protein encoded by gene 4.	95	65
659	AF135381	Homo sapiens	chemokine-like factor 3	89	59
660	U40407	synthetic construct	T cell receptor alpha chain	586	100
661	AF039712	Caenorhabditi s elegans	contains similarity to CDP-alcohol phosphotransferases	289	43
662	G03790	Homo sapiens	Human secreted protein, SEQ ID NO: 7871.	113	55
663	AF084467	Homo sapiens	heparanase	170	32
664	AF279890	Homo sapiens	2P domain potassium channel TREK2	1189	94
665	W63693	Homo sapiens	Human secreted protein 13.	243	84
666	AE003908	Xylella fastidiosa	hypothetical protein	120	28
667	B08948	Homo sapiens	Human secreted protein sequence encoded by gene 21 SEQ ID NO:105.	985	89
668	AF023158	Homo sapiens	tyrosine phosphatase	346	64
669	AF169257	Homo sapiens	sodium/calcium exchanger NCKX3	189	57
670	AF132969	Homo sapiens	CGI-35 protein	364	69
671	AF269286	Homo sapiens	HC6	112	50
672	X98494	Homo sapiens	M phase phosphoprotein 10	529	68
673	G03787	Homo sapiens	Human secreted	83	44

TABLE 2

SEQ ID NO: OF NUCLEOTIDE	ACCESSION NUMBER	SPECIES	DESCRIPTION	SMITH- WATERMAN SCORE	\$ IDENTITY
			protein, SEQ ID NO: 7868.		
674	AF119855	Homo sapiens	PRO1847	123	46
675	AJ242540	Volvox carteri f. nagariensis	hydroxyproline-rich glycoprotein DZ- HRGP	242	42
676	Y91666	Homo sapiens	Human secreted protein sequence encoded by gene 72 SEQ ID NO:339.	529	96
677	Y57936	Homo sapiens	Human transmembrane protein HTMPN-60.	669	100
678	G03789	Homo sapiens	Human secreted protein, SEQ ID NO: 7870.	156	72
679	W18878	Homo sapiens	Human protein kinase C inhibitor, IPKC-1.	98	68
680	Z12168	Canis familiaris	stimulatory GTP binding protein	980	88
681	G00517	Homo sapiens	Human secreted protein, SEQ ID NO: 4598.	160	48
682	W19932	Homo sapiens	Alzheimer's disease protein encoded by DNA from plasmid pGCS55.	362	100
683	Y30709	Homo sapiens	Amino acid sequence of a human secreted protein.	99	56
684	AF269286	Homo sapiens	HC6	137	72
685	M14362	Homo sapiens	T-cell surface antigen CD2 precursor	275	64
686	G02493	Homo sapiens	Human secreted protein, SEQ ID NO: 6574.	173	61
687	AF248635	Mus musculus	lymphocyte antigen 108 isoform l	303	50
688	D86983	Homo sapiens	similar to D.melanogaster peroxidasin(U11052)	288	55
689	Y59711	Homo sapiens	Secreted protein 58-20-4-G7-FL1.	895	91
690	W48848	Homo sapiens	Human receptor tyrosine kinase LMR3_h N-terminal polypeptide.	1056	89
691	W22652	Homo sapiens	64-863 antibody HSV863 light chain variable region.	459	77
692	AF098066	Homo sapiens	squamous cell carcinoma antigen	1001	98

TABLE 2

SEQ ID NO: OF NUCLEOTIDE	ACCESSION NUMBER	SPECIES	DESCRIPTION	SMITH- WATERMAN SCORE	* IDENTITY
			recognized by T	BCORE	
693	D83039	Homo sapiens	eti-1	426	98
694	¥79511	Homo sapiens	Human carbohydrate- associated protein CRBAP-7.	1245	99
695	U12623	Rattus norvegicus	cyclic nucleotide gated cation channel	857	83
696	AF229067	Homo sapiens	PADI-H protein	174	61
697	G03789	Homo sapiens	Human secreted protein, SEQ ID NO: 7870.	196	75
698	U10921	Macaca mulatta	T-cell receptor alpha chain	578	82
699	U31913	Homo sapiens	HBV-X associated protein	167	100
700	X99043	Mus musculus	brain-derived immunoglobulin superfamily molecule	348	82
701	X59770	Homo sapiens	type II interleukin-1 receptor	2130	100
702	AC018758	Homo sapiens	GPI-anchored metastasis- associated protein homolog	207	31
703	Y28816	Homo sapiens	pm4_13 secreted protein.	280	100
704	Y52386	Homo sapiens	Human transmembrane protein HP02000.	1077	100
705	U12392	Haematobia irritans	putative ATPase	481	55
706	U11265	Homo sapiens	HLA-B35	351	92
707	X64594	Homo sapiens	50 kDa erythrocyte plasma membrane glycoprotein	301	88
708	AB046048	Macaca fascicularis	unnamed portein product	260	67
709	G03807	Homo sapiens	Human secreted protein, SEQ ID NO: 7888.	119	60
710	G03315	Homo sapiens	Human secreted protein, SEQ ID NO: 7396.	314	100
711	Y50945	Homo sapiens	Human adult thymus cDNA clone vhl_1 derived protein #1.	742	100
712	G00564	Homo sapiens	Human secreted protein, SEQ ID NO: 4645.	271	98
713	G00125	Homo sapiens	Human secreted	373	80

TABLE 2

SEQ ID NO: OF NUCLEOTIDE	ACCESSION NUMBER	SPECIES	DESCRIPTION	SMITH- WATERMAN SCORE	% IDENTITY
			protein, SEQ ID NO: 4206.		
714	Y13352	Homo sapiens	Amino acid sequence of protein PRO228.	872	98
715	G02753	Homo sapiens	Human secreted protein, SEQ ID NO: 6834.	222	68
716	Y19588	Homo sapiens	Amino acid sequence of a human secreted protein.	329	100
717	AB030235	Canis familiaris	D4 dopamine receptor	79	35
.718	W74577	Homo sapiens	Human membrane protein BA2303.	748	100
719	Y02693	Homo sapiens	Human secreted protein encoded by gene 44 clone HTDAD22.	235	61
720	X97868	Homo sapiens	arylsulphatase	167	84
721	Y13215	Homo sapiens	Human secreted protein encoded by 5' EST SEQ ID NO: 229.	234	97
722	Y20298	Homo sapiens	Human apolipoprotein E mutant protein fragment 11.	152	39
723	Y86231	Homo sapiens	Human secreted protein HLTHR66, SEQ ID NO:146.	207	51
724	W75083	Homo sapiens	Human secreted protein encoded by gene 27 clone HSPAF93.	685	100
725	W88627	Homo sapiens	Secreted protein encoded by gene 94 clone HPMBQ32.	301	73
726	Y27868	Homo sapiens	Human secreted protein encoded by gene No. 107.	229	58
727	AK025470	Homo sapiens	unnamed protein product	130	64
728	G02872	Homo sapiens	Human secreted protein, SEQ ID NO: 6953.	159	46
729	¥25776	Homo sapiens	Human secreted protein encoded from gene 66.	334	43
730	AF116661	Homo sapiens	PRO1438	153	56
731	W48351	Homo sapiens	Human breast cancer related protein BCRB2.	106	72
732	ช77589	Homo sapiens	MHC class II HLA-	133	69

TABLE 2

SEQ ID NO: OF	ACCESSION NUMBER	SPECIES	DESCRIPTION	SMITH- WATERMAN	& TDENMARMS
NUCLEOTIDE	NOMBER			SCORE	IDENTITY
			DQ-alpha chain		
733	G00357	Homo sapiens	Human secreted protein, SEQ ID NO: 4438.	223	67
734	R28542	Homo sapiens	Human complement type 1 receptor SCR9.	152	96
735	¥27868	Homo sapiens	Human secreted protein encoded by gene No. 107.	150	65
736	AB036706	Homo sapiens	intelectin	368	76
737	¥74042	Homo sapiens	Human prostate tumor EST fragment derived protein #229.	206	65
738	Y36156	Homo sapiens	Human secreted protein #28.	153	77
739	W74802	Homo sapiens	Human secreted protein encoded by gene 73 clone HSQEL25.	1751	79
740	W85614	Homo sapiens	Secreted protein clone fr473 2.	224	91
741	Y13377	Homo sapiens	Amino acid sequence of protein PRO257.	394	98
742	Z69384	Caenorhabditi s elegans	Similarity to Salmonella regulatory protein UHPC (SW:UHPC SALTY)	515	45
743	W47589	Homo sapiens	T-cell receptor beta-chain.	681	92
744	G03786	Homo sapiens	Human secreted protein, SEQ ID NO: 7867.	243	71
745	Y50690	Homo sapiens	Human Hum4 VL ClaI- HindIII segment encoded protein.	540	81
746	U03414	Rattus norvegicus	neuronal olfactomedin- related ER localized protein	363	67
747	G00352	Homo sapiens	Human secreted protein, SEQ ID NO: 4433.	84	51
748	Y02671	Homo sapiens	Human secreted protein encoded by gene 22 clone HMSJW18.	145	60
749	AF026919	Homo sapiens	amyloid lambda light chain variable region	557	83
750	X76732	Homo sapiens	NEFA protein	297	100

TABLE 2

SEQ ID NO:	ACCESSION	SPECIES	DESCRIPTION	SMITH-	8
OF	NUMBER			WATERMAN	IDENTITY
NUCLEOTIDE				SCORE	
751	R92754	Homo sapiens	Human growth	628	100
			differentiation		
			factor-12.		Į.
752	Y91462	Homo sapiens	Human secreted	597	100
			protein sequence		İ
		1	encoded by gene 12		
· · · · · · · · · · · · · · · · · · ·			SEQ ID NO:135.		
753	Y66700	Homo sapiens	Membrane-bound	754	99
			protein PRO1137.		
754	G01648	Homo sapiens	Human secreted	281	100
	ļ		protein, SEQ ID NO:		
		ļ	5729.		
755	AB040434	Homo sapiens	hTROY	752	100
756	Y28680	Homo sapiens	Human nm214_3	178	44
757	L	\ <del>,</del>	secreted protein.		
757	W75100	Homo sapiens	Human secreted	203	66
			protein encoded by		
			gene 44 clone		
758	AF090930	77	HE8CJ26.		
759	D84336	Homo sapiens	PRO0478	87	45
159	D84336	Rattus	ZOG	484	48
760	W88627	norvegicus Homo sapiens	Secreted protein	150	81
760	W00027	nomo saprens	encoded by gene 94	120	87
			clone HPMBQ32.		
761	Y48616 ·	Homo sapiens	Human breast	569	70
, 51	110010	nomo sapiens	tumour-associated	305	'0
			protein 77.	ļ	1
762	Y87320	Homo sapiens	Human signal	918	100
		1	peptide containing	1	
			protein HSPP-97 SEO	1	
			ID NO:97.		
763	G03655	Homo sapiens	Human secreted	248	89
			protein, SEQ ID NO:		
			7736.		ĺ
764	AF031174	Homo sapiens	Ig-like membrane	428	45
			protein	ļ	
765	U08255	Rattus	glutamate receptor	802	99
		norvegicus	delta-1 subunit		
766	Y99369	Homo sapiens	Human PRO1249	4578	99
			(UNQ632) amino acid	İ	•
			sequence SEQ ID		
			NO:102.		
767	AK001586	Homo sapiens	unnamed protein	973	98
760	1	<del></del>	product	L	
768	AC007063	Arabidopsis	putative ABC	126	31
760	1 22202222	thaliana	transporter	-	
769	AF303378	Homo sapiens	sialic acid-	713	100
			specific		ŀ
770	G00517	Ilama aresiser	acetylesterase II	<u> </u>	127
, , , ,	G00517	Homo sapiens	Human secreted	90	37
			protein, SEQ ID NO: 4598.		1
	<u> </u>	L,	4536.	.l	L

TABLE 2

SEQ ID NO:	ACCESSION	SPECIES	DESCRIPTION	SMITH-	
OF	NUMBER			WATERMAN	IDENTITY
NUCLEOTIDE				SCORE	
771	Y59733	Homo sapiens	Human normal	1253	99
			ovarian tissue		
			derived protein 10.		
772	AF132856	Homo sapiens	suppressor of G2	163	86
	J	1	allele of skp1		ļ
			homolog		
773	AB029482	Mus musculus	JNK-binding protein JNKBP1	1082	97
774	G02108	Homo sapiens	Human secreted	134	62
			protein, SEQ ID NO:		
			6189.		
775	AB047818	Homo sapiens	Soggy	1239	100
776	Y66689	Homo sapiens	Membrane-bound	804	99
			protein PRO1136.		Ì
777	Y71107	Homo sapiens	Human Hydrolase	733	99
			protein-5 (HYDRL-		
770	7.000.500		5).		
778	AC005626	Homo sapiens	R29124_1	182	38
779	W88707	Homo sapiens	Secreted protein	126	56
			encoded by gene 174		
780	G03657	Homo sapiens	clone HE9FB42.	<u> </u>	
780	G03657	Homo sapiens	Human secreted	455	96
			protein, SEQ ID NO:		l
781	AJ001616	Mus musculus	myeloid associated	201	36
,01	AGGGIGIG	Hus Musculus	differentiation	201	36
	:		protein		
782	Y64942	Homo sapiens	Human 5' EST	86	65
			related polypeptide	1	"
			SEQ ID NO:1103.		
783	AL356276	Homo sapiens	bA367J7.2.1 (novel	845	91
			Immunoglobulin		}
			domains containing		
			protein (isoform		
			1))		
784	Y00876	Homo sapiens	Human LAPH-1	291	43
-			protein sequence.		
785	G00270	Homo sapiens	Human secreted	603	100
		İ	protein, SEQ ID NO:		j
786	AF154121	Vone conione	4351.	1054	7.00
700	NLT24171	Homo sapiens	sodium-dependent	864	100
			high-affinity dicarboxylate	1	
			transporter		
787	Y29804	Homo sapiens	Human GABA B	83	42
	223004	omo Baptens	receptor subunit	3	76
			HG20 peptide #6.		
788	AL080239	Homo sapiens	bG256022.1 (similar	599	100
-		Sapadilo	to IGFALS (insulin-		
			like growth factor		
			binding protein,		
		1	acid labile		
		j	subunit))	} .	J
	·	<del></del>	<del></del>		

TABLE 2

SEQ ID NO: OF NUCLEOTIDE	ACCESSION NUMBER	SPECIES	DESCRIPTION	SMITH- WATERMAN SCORE	t IDENTITY
789	AL031856	Schizosacchar omyces pombe	PUTATIVE GOLGI URIDINE DIPHOSPHATE-N- ACETYLGLUCOSAMINE TRANSPORTER	192	40
790	G03448	Homo sapiens	Human secreted protein, SEQ ID NO: 7529.	141	43
791	U81291	Xenopus laevis	oviductin	310	38
792	¥41332	Homo sapiens	Human secreted protein encoded by gene 25 clone HPIBO48.	295	50
793	L20315	Mus musculus	MPS1 protein	702	77
794	G01314	Homo sapiens	Human secreted protein, SEQ ID NO: 5395.	91	36
795	AF003136	Caenorhabditi s elegans	similar to 1-acyl- glycerol-3- phosphate acyltransferases	122	38
796	G00637	Homo sapiens	Human secreted protein, SEQ ID NO: 4718.	160	67
797	Y36144	Homo sapiens	Human secreted protein #16.	622	100
798	U09453	Cricetulus griseus	UDP-N- acetylglucosamine: dolichyl phosphate N-acetylglucosamine 1-phosphate transferase	178	66
799	¥76144	Homo sapiens	Human secreted protein encoded by gene 21.	633	100
800	¥73456	Homo sapiens	Human secreted protein clone yd145_1 protein sequence SEQ ID NO:134.	413	89
801	¥86540	Homo sapiens	Human gene 77- encoded protein fragment, SEQ ID NO:457.	443	96
802	U49973	Homo sapiens	ORF1; MER37; putative transposase similar to pogo element	311	53
803	M63573	Homo sapiens	secreted cyclophilin-like protein	700	88
804	AF091622	Homo sapiens	PHD finger protein	177	100

TABLE 2

SEQ ID NO: OF NUCLEOTIDE	ACCESSION NUMBER	SPECIES	DESCRIPTION	SMITH- WATERMAN SCORE	IDENTITY
			3		
805	W37869	Homo sapiens	Human protein comprising secretory signal amino acid sequence 6.	381	100
806	G03556	Homo sapiens	Human secreted protein, SEQ ID NO: 7637.	221	72
807	AF178941	Homo sapiens	ATP-binding cassette sub-family A member 2	583	87
808	Y91385	Homo sapiens	Human secreted protein sequence encoded by gene 40 SEQ ID NO:106.	786	100
809	Y00826	Rattus norvegicus	gp210 (AA 1-1886)	169	83
810	G03143	Homo sapiens	Human secreted protein, SEQ ID NO: 7224.	328	100
811	W00870	Homo sapiens	Polycystic kidney disease 1 (PKD1) polypeptide.	22446	99
812	¥73434	Homo sapiens	Human secreted protein clone yd51_1 protein sequence SEQ ID NO:90.	417	90
813	AB031996	Ralstonia sp. KN1	ferredoxin-like protein	94	44
814	AF201734	Mus musculus	testis specific serine kinase-3	800	87
815	Y01181	Homo sapiens	Polypeptide fragment encoded by gene 12.	68	55
816	¥76166	Homo sapiens	Human secreted protein encoded by gene 43.	724	94
817	AL109827	Homo sapiens	dJ309K20.2 (acrosomal protein ACR55 (similar to rat sperm antigen 4 (SPAG4)))	639	84
818	M62829	Homo sapiens	ETR103	137	53
819	Y38422	Homo sapiens	Human secreted protein.	526	100
820	AF119815	Homo sapiens	G-protein-coupled receptor	561	79
821	Y87101	Homo sapiens	Human secreted protein sequence SEQ ID NO:140.	628	100
822	M91463	Homo sapiens	glucose transporter	213	79

TABLE 2

SEQ ID NO:	ACCESSION	SPECIES	DESCRIPTION	SMITH-	8
OF	NUMBER			WATERMAN	IDENTITY
NUCLEOTIDE				SCORE	
823	L34938	Rattus	ionotropic	618	90
		norvegicus	glutamate receptor	į	
824	W17846	Homo sapiens	Cytosolic	209	64
			phospholipase A2/B	1	[
			(clone 19b		}
			product).		
825	Y66722	Homo sapiens	Membrane-bound	221	67
			protein PRO1104.		Ì
826	G02493	Homo sapiens	Human secreted	138	72
		1	protein, SEQ ID NO:		l
			6574.		
827	Y91423	Homo sapiens	Human secreted	671	54
			protein sequence		ł
	ł		encoded by gene 11		
			SEQ ID NO:144.		
828	U78090	Rattus	potassium channel	502	80
		norvegicus	regulator 1	<u> </u>	
829	U08813	Oryctolagus	597 aa protein	906	84
		cuniculus	related to		
			Na/glucose		•
830	3 7070063	   **	cotransporters		
	AJ272063	Homo sapiens	vanilloid receptor	630	90
831	U36898	Rattus	1	l	
021	036698	norvegicus	pheromone receptor	135	52
832	Z46973	Homo sapiens	phosphatidylinosito	396	80
	240373	HOMO Sapiens	1 3-kinase	396	80
833	Y95433	Homo sapiens	Human calcium	747	99
033	175455	nomo saprens	channel SOC-2/CRAC-	/4/	99
			1 C-terminal		
		•	polypeptide.		
834	AF132856	Homo sapiens	suppressor of G2	163	86
			allele of skp1		
			homolog	ļ	
835	AC006042	Homo sapiens	supported by human	195	87
	}	1	ESTS	ł	
			AI681256.1(NID:g489		
		;	1438),N32168.1(NID:		
			g1152567), and		
			genscan		
836	B01247	Homo sapiens	Human HE6 receptor.	371	45
837	G03788	Homo sapiens	Human secreted	196	59
		•	protein, SEQ ID NO:		
	<u> </u>		7869.		
838	U70136	Homo sapiens	megakaryocyte	6954	98
			stimulating factor;	1	
			MSF		
839	AF017153	Mus musculus	putative RNA	178	51
	ļ		helicase and RNA	1	
0.4.0			dependent ATPase		
840	Y31830	Homo sapiens	Human adult brain	244	56
			secreted protein		
	<u></u>		nh899_8.		L

TABLE 2

SEQ ID NO:	ACCESSION	SPECIES	DESCRIPTION	SMITH-	%
OF	NUMBER			WATERMAN	IDENTITY
NUCLEOTIDE				SCORE	
841	Y27593	Homo sapiens	Human secreted	437	81
			protein encoded by		
			gene No. 27.		
842	G01984	Homo sapiens	Human secreted	196	74
			protein, SEQ ID NO:		}
			6065.		
843	AL008723	Homo sapiens	dJ90G24.4 (SAAT1	183	92
			(low affinity		[
			sodium glucose cotransporter		
			(sodium:solute		
·			symporter family)))		
844	AF068065	Cryptosporidi	GP900; mucin-like	263	47
044	AFOOSOOS	um parvum	glycoprotein	263	· <del>4</del> /
845	Y00815	Homo sapiens	put. LAR preprotein	341	100
043	100013	nomo saprens	(AA -16 to 1881)	341	100
846	Y06816	Homo sapiens	Human Notch2	1224	99
	200020	nomo bapiens	(humN2) protein	1224	
			sequence.		
847	AF104923	Homo sapiens	putative	293	95
			transcription		
			factor		
848	Y09945	Rattus	putative integral	589	53
		norvegicus	membrane transport	İ	1
-			protein		İ
849	AL157874	Schizosacchar	similar to yeast	146	40
		omyces pombe	SCT1 suppressor of		
		•	a choline transport		
			mutant		
850	R71003	Homo sapiens	Human neuronal	141	89
			calcium channel		
851	X75756	TY	subunit alpha 1c-1.	3.70	
852	AF142676	Homo sapiens Drosophila	protein kinase C mu sodium-hydrogen	318 366	90
032	AF142676	melanogaster	exchanger NHE1	366	48
853	Y45381	Homo sapiens	Human secreted	139	73
033	143301	nomo saprens	protein fragment	139	′3
	ł		encoded from gene		
			28.		
854	G03789	Homo sapiens	Human secreted	121	60
		_	protein, SEQ ID NO:		
			7870.		
855	U65409	Yarrowia	Sla2p	109	25
		lipolytica		1	]
856	M19419	Mus musculus	proline-rich	109	36
			salivary protein	<u>                                     </u>	<u> </u>
857	Y99355	Homo sapiens	Human PRO1295	667	98
	1		(UNQ664) amino acid		
	1		sequence SEQ ID		
			NO:54.		
858	W19919	Homo sapiens	Human Ksr-1 (kinase	211	86
0.50			suppressor of Ras).		
859	¥95436	Homo sapiens	Human calcium	764	84

TABLE 2

SEQ ID NO: OF NUCLEOTIDE	ACCESSION NUMBER	SPECIES	DESCRIPTION .	SMITH- WATERMAN SCORE	% IDENTITY
			channel SOC-3/CRAC-2.		
860	AF070066	Mus musculus	Citron-K kinase	628	97
861	AF286095	Homo sapiens	IL-22 receptor	933	100
862	AF020195	Mus musculus	pancreas sodium bicarbonate cotransporter	475	68
863	G03712	Homo sapiens	Human secreted protein, SEQ ID NO: 7793.	240	100
864	AF195092	Homo sapiens	sialic acid-binding immunoglobulin-like lectin-8	288	87
865	AF208110	Homo sapiens	IL-17 receptor homolog precursor	2688	99
866	L42338	Mus musculus	sodium channel 25	733	98
867	G02360	Homo sapiens	Human secreted protein, SEQ ID NO: 6441.	101	70
868	AF065215	Homo sapiens	cytosolic phospholipase A2 beta	290	42
869	L43631	Homo sapiens	scaffold attachment factor B	106	95
870	G03034	Homo sapiens	Human secreted protein, SEQ ID NO: 7115.	108	54
871	221514	Rattus norvegicus	integral membrane glycoprotein	84	47
872	AF097518	Homo sapiens	liver-specific transporter	147	40
873	AF288223	Drosophila melanogaster	Crossveinless 2	136	39
874	U90126	Bos taurus	ABC transporter	245	36
875	AF099988	Mus musculus	Ste-20 related kinase SPAK	103	34
876	Y70400	Homo sapiens	Human cell- signalling protein- 2.	220	86
877	¥36300	Homo sapiens	Human secreted protein encoded by gene 77.	1863	99
878	AF151074	Homo sapiens	HSPC240	193	29
879	¥94951	Homo sapiens	Human secreted protein clone dw78_1 protein sequence SEQ ID NO:108.	251	89
880	AF165310	Homo sapiens	ATP cassette binding transporter 1	231	31
881	AF252281	Mus musculus	Kelch-like 1 protein	256	58

TABLE 2

SEQ ID NO:	ACCESSION NUMBER	SPECIES	DESCRIPTION	SMITH-	ક
NUCLEOTIDE	NUMBER			WATERMAN SCORE	IDENTITY
882	Y00931	Homo sapiens	Prostate-tumour	1039	98
883	Y27576	17	derived antigen #4.	-	
003	12/3/6	Homo sapiens	Human secreted protein encoded by	394	96
			gene No. 10.		
884	U00009	Escherichia	yeeF	153	30
_		coli	Yeer	155	30
885	Y57945	Homo sapiens	Human transmembrane protein HTMPN-69.	1543	100
886	Y28678	Homo sapiens	Human cw272 7	375	60
	120070	nomo saprens	secreted protein.	3/3	60
887	W95349	Homo sapiens	Human foetal brain	377	89
		-	secreted protein	ļ	
			fh170_7.		
888	Y87329	Homo sapiens	Human signal	285	89
			peptide containing		
			protein HSPP-106		
			SEQ ID NO:106.		
889	AL121845	Homo sapiens	dJ583P15.5.1 (novel	1399	99
			protein (isoform		-
000	255105		1))		
890	R75181	Homo sapiens	Partial peptide of human HMW kininogen	100	29
		fragment 1.2.			
891	AF105365	Homo sapiens	K-Cl cotransporter	680	100
	111103303	nomo sapiens	KCC4	000	100
892	Y91644	Homo sapiens	Human secreted	673	95
			protein sequence		
			encoded by gene 43		
			SEQ ID NO:317.		
893	S52051	Rattus sp.	neurotransmitter transporter	656	99
894	S52051	Rattus sp.	neurotransmitter	617	94
	032031	Maccas sp.	transporter	01,	7-
895	R47120	Homo sapiens	Partial human H13	343	60
		•	polypeptide.		
896	Z98046	Homo sapiens	dJ1409.2 (Melanoma-	332	49
			Associated Antigen		
			MAGE LIKE)		
897	AJ006203	Oryctolagus	capacitative	740	99
		cuniculus	calcium entry		1
			channel 2		
898	AF156547	Mus musculus	putative E1-E2	769	95
000	20004000	<u> </u>	ATPase		
900	AC004076	Homo sapiens	R30217_1	788	98
JUU	D00099	Homo sapiens	Na,K-ATPase alpha- subunit	753	94
901	R27648	Homo sapiens	Human calcium	536	85
			channel 27980/10.		
902	Y57955	Homo sapiens	Human transmembrane protein HTMPN-79.	606	100
903	AF155913	Mus musculus	putative E1-E2	1039	85
			ATPase		

TABLE 2

SEQ ID NO: OF	ACCESSION NUMBER	SPECIES	DESCRIPTION	SMITH- WATERMAN	identity
NUCLEOTIDE				SCORE	
904	¥73446	Homo sapiens	Human secreted protein clone yc27_1 protein sequence SEQ ID NO:114.	369	66
905	Y94903	Homo sapiens	Human secreted protein clone pt332_1 protein sequence SEQ ID NO:12.	3777	100
906	AB032470	Homo sapiens	seven transmembrane protein TM7SF3	2124	100
907	G00517	Homo sapiens	Human secreted protein, SEQ ID NO: 4598.	90	50
908	AF010144	Homo sapiens	neuronal thread protein AD7c-NTP	270	65
909	AF263912	Streptomyces noursei	NysA	113	25
910	Y53051	Homo sapiens	Human secreted protein clone dd119_4 protein sequence SEQ ID NO:108.	843	49
911	Y76179	Homo sapiens	Human secreted protein encoded by gene 56.	634	100
912	G00352	Homo sapiens	Human secreted protein, SEQ ID NO: 4433.	229	71
913	บ93569	Homo sapiens	p40	110	32
914	G02639	Homo sapiens	Human secreted protein, SEQ ID NO: 6720.	65	46
915	Y94951	Homo sapiens	Human secreted protein clone dw78_1 protein sequence SEQ ID NO:108.	100	38
916	G03263	Homo sapiens	Human secreted protein, SEQ ID NO: 7344.	80	47
917	W74887	Homo sapiens	Human secreted protein encoded by gene 160 clone HCELB21.	273	69
918	¥73464	Homo sapiens	Human secreted protein clone y14_1 protein sequence SEQ ID NO:150.	982	90
919	AF064801	Homo sapiens	multiple membrane spanning receptor TRC8	551	32

TABLE 2

SEQ ID NO:	ACCESSION NUMBER	SPECIES	DESCRIPTION	SMITH- WATERMAN	% IDENTITY
NUCLEOTIDE				SCORE	
920	Y87335	Homo sapiens	Human signal	622	99
			peptide containing protein HSPP-112	1	
			SEQ ID NO:112.		
921	AK000496	Homo sapiens	unnamed protein	342	74
			product		
922	Y41360	Homo sapiens	Human secreted	367	100
			protein encoded by		•
	{		gene 53 clone	ļ	
923	G02872	Homo sapiens	HJPAD75. Human secreted	328	75
923	G02672	HOMO Sapiens	protein, SEQ ID NO:	328	/3
			6953.		
924	Y53881	Homo sapiens	A suppressor of	1489	100
			cytokine signalling	:	
	1		protein designated		
925	AC004144	Homo sapiens	HSCOP-1.	100	-
926	AF119851	Homo sapiens	R34001_1 PRO1722	193	60 82
927	G02654	Homo sapiens	Human secreted	82	57
32 /	G02054	HOMO SAPIEMS	protein, SEO ID NO:	02	3′
			6735.		
928	Y30819	Homo sapiens	Human secreted	264	33
		_	protein encoded		•
			from gene 9.		
929	G01691	Homo sapiens	Human secreted	66	43
	1		protein, SEQ ID NO:		
930	AF187845	Homo sapiens	5772.	431	100
230	AF107045	nomo saprens	effector 1 of Cdc42	431	100
931	AL390114	Leishmania	extremely	113	40
		major	cysteine/valine		ļ
			rich protein		
932	AL080239	Homo sapiens	bG256022.1 (similar	1451	97
			to IGFALS (insulin-		
			binding protein.		
			acid labile		
			subunit))		
933	W85613	Homo sapiens	Secreted protein	234	100
			clone fm60_1.		L
934	AF009243	Homo sapiens	proline-rich Gla	223	42
		L	protein 2		
935	G03789	Homo sapiens	Human secreted	271	66
			protein, SEQ ID NO: 7870.		
936	AK000385	Homo sapiens	unnamed protein	193	64
			product		
937	AF010144	Homo sapiens	neuronal thread	270	65
			protein AD7c-NTP		ŀ
938	AF119851	Homo sapiens	PRO1722	170	71
939	Y07922	Homo sapiens	Human secreted	226	95
			protein fragment		

TABLE 2

SEQ ID NO: OF NUCLEOTIDE	ACCESSION NUMBER	SPECIES	DESCRIPTION	SMITH- WATERMAN SCORE	% IDENTITY
· · · · · · · · · · · · · · · · · · ·			encoded from gene		
940	Y41712	Homo sapiens	Human PRO724 protein sequence.	653	96
941	AF010144	Homo sapiens	neuronal thread protein AD7c-NTP	310	64
942	Y45318	Homo sapiens	Human secreted protein fragment encoded from gene 18.	502	98
943	¥07899	Homo sapiens	Human secreted protein fragment encoded from gene	309	98
944	X92485	Plasmodium vivax	pval	185	51
945	AJ289133	Mus musculus	chondroitin 4-0- sulfotransferase	565	43
946	AF151074	Homo sapiens	HSPC240	1337	99
		Saccharomyces cerevisiae	Weak similarity near C-terminus to RNA Polymerase beta subunit (Swiss Prot. accession number P11213) and CCAAT-binding transcription factor (PIR accession number A36368)		
948	¥87285	Homo sapiens	Human signal peptide containing protein HSPP-62 SEQ ID NO:62.	348	82
949	Y86230	Homo sapiens	Human secreted protein HKFBC53, SEQ ID NO:145.	368	80
950	AJ010346	Homo sapiens	RING-H2	333	87
951	Z56281	Homo sapiens	interferon regulatory factor 3	1573	81
952	Y57896	Homo sapiens	Human transmembrane protein HTMPN-20.	421	100
953	G03789	Homo sapiens	Human secreted protein, SEQ ID NO: 7870.	135	55
954	Y87103	Homo sapiens	Human secreted protein sequence SEQ ID NO:142.	83	50
955	¥87345	Homo sapiens	Human signal peptide containing protein HSPP-122 SEQ ID NO:122.	885	99
956	X81479	Homo sapiens	EMR1	1148	99

TABLE 2

SEQ ID NO: OF NUCLEOTIDE	ACCESSION NUMBER	SPECIES	DESCRIPTION	SMITH- WATERMAN SCORE	% IDENTITY
957	AF175406	Homo sapiens	transient receptor potential 4	4061	99
958	G03789	Homo sapiens	Human secreted protein, SEQ ID NO: 7870.	276	73
959	M63274	Plasmodium falciparum	malaria antigen	77	38
960	¥78795	Homo sapiens	Human antizuai-2 (AZ-2) amino acid sequence.	3384	83
961	AL133469	Streptomyces coelicolor A3(2)	putative secreted proline-rich protein	139	41
962	G03787	Homo sapiens	Human secreted protein, SEQ ID NO: 7868.	232	72
963	W74828	Homo sapiens	Human secreted protein encoded by gene 100 clone HLQAB52.	1016	99
964	W48351	Homo sapiens	Human breast cancer related protein BCRB2.	226	58
965	X63893	Sus scrofa	alpha-stimulatory subunit of GTP- binding protein	319	86
966	AB033019	Homo sapiens	KIAA1193 protein	245	97
967	Y36156	Homo sapiens	Human secreted protein #28.	223	85
968	AF119851	Homo sapiens	PRO1722	188	69
969	¥15224	Homo sapiens	Human receptor protein (HURP) 3 amino acid sequence.	214	42
970	G02754	Homo sapiens	Human secreted protein, SEQ ID NO: 6835.	81	62
971	U22376	Homo sapiens	alternatively spliced product using exon 13A	212	81
972	W74870	Homo sapiens	Human secreted protein encoded by gene 142 clone HTWCB92.	164	81
973	Y30817	Homo sapiens	Human secreted protein encoded from gene 7.	717	98
974 3 975	AF079529	Homo sapiens	cAMP-specific phosphodiesterase 8B; PDE8B1; 3',5'- cyclic nucleotide phosphodiesterase	2353	96
2/3	AF099028	Drosophila	putative	1061	52

TABLE 2

SEQ ID NO: OF NUCLEOTIDE	ACCESSION NUMBER	SPECIES	DESCRIPTION	SMITH- WATERMAN SCORE	\$ IDENTITY
		melanogaster	transmembrane protein cmp44E		
976	G03786	Homo sapiens	Human secreted protein, SEQ ID NO: 7867.	179	72
977	Y22495	Homo sapiens	Human secreted protein sequence clone ch4 11.	1629	100
978	W74813	Homo sapiens	Human secreted protein encoded by gene 85 clone HSDFV29.	722	92
979	AK023408	Homo sapiens	unnamed protein product	974	96
980	AF229178	Homo sapiens	leucine rich repeat and death domain containing protein	276	67
981	G03797	Homo sapiens	Human secreted protein, SEQ ID NO: 7878.	198	56
982	W74831	Homo sapiens	Human secreted protein encoded by gene 103 clone HEBDJ82.	153	100
983	G01335	Homo sapiens	Human secreted protein, SEQ ID NO: 5416.	157	96
984	¥73436	Homo sapiens	Human secreted protein clone ye43_1 protein sequence SEQ ID NO:94.	450	100
985	G00354	Homo sapiens	Human secreted protein, SEQ ID NO: 4435.	96	58
986	Y41712	Homo sapiens	Human PRO724 protein sequence.	639	88
987	Y57896	Homo sapiens	Human transmembrane protein HTMPN-20.	421	100
988	Y66691	Homo sapiens	Membrane-bound protein PRO809.	716	65
989	AF090943	Homo sapiens	PRO0659	926	100
990	G00403	Homo sapiens	Human secreted protein, SEQ ID NO: 4484.	80	46
991	G03411	Homo sapiens	Human secreted protein, SEQ ID NO: 7492.	62	57
992	G00270	Homo sapiens	Human secreted protein, SEQ ID NO: 4351.	143	96
993	AF026246	Homo sapiens	HERV-E integrase	361	80
994	Y36421	Homo sapiens	Fragment of human	83	37

TABLE 2

SEQ ID NO:	ACCESSION	SPECIES	DESCRIPTION	SMITH-	8
OF	NUMBER			WATERMAN	IDENTITY
NUCLEOTIDE				SCORE	
			secreted protein		
			encoded by gene 8.	1	
995	U22376	Homo sapiens	alternatively	175	78
		1	spliced product		ļ
			using exon 13A	ļ	ļ
996	G03790	Homo sapiens	Human secreted	87	35
			protein, SEQ ID NO:		
			7871.		
997	G00397	Homo sapiens	Human secreted	149	61
	1	1	protein, SEQ ID NO:	ļ	ł
···			4478.	<u> </u>	
998	J02642	Homo sapiens	glyceraldehyde 3-	429	69
		†	phosphate		
		1	dehydrogenase (EC		1
			1.2.1.12)	<u> </u>	
999	AF119851	Homo sapiens	PRO1722	204	50
1000	Y91423	Homo sapiens	Human secreted	393	53
			protein sequence		
			encoded by gene 11		•
			SEQ ID NO:144.		
1001	Y66695	Homo sapiens	Membrane-bound	1183	87
			protein PRO1344.		
1002	AF090931	Homo sapiens	PRO0483	149	68
1003	Y33261	Homo sapiens	Human p99 protein.	314	59
1004	U11494	Mus musculus	protein kinase	360	77
1005	AK021848	Homo sapiens	unnamed protein	186	69
			product		
1006	Y13892	Homo sapiens	PI-3 kinase	233	97
1007	W48351	Homo sapiens	Human breast cancer	144	65
			related protein		
			BCRB2		
1008	G03793	Homo sapiens	Human secreted	202	67
			protein, SEQ ID NO:		
			7874.		
1009	U91682	Aedes aegypti	vitelline membrane	88	42
		<u> </u>	protein homolog		<u></u>

TABLE 3

SEQ ID NO:	SEQ ID NO:	SEQ ID NO:	START	STOP
OF	OF AMINO	IN USSN	NUCLEOTIDE	NUCLEOTIDE
NUCLEOTIDE	ACID	09/491,404	OF CODING	OF CODING
			REGION	REGION
1	1010	100	299	535
2	1011	1002	19	267
3	1012	1003	31	423
4	1013	1007	148	840
5	1014	1009	139	318
6	1015	1010	413	748
7	1016	1012	357	154
8	1017	1014	133	285
9	1018	1016	61	441
10	1019	102	269	832
11	1020	1021	148	342
12	1021	1022	45	452
13	1022	1035	222	779
14	1023	1038	222	779
15	1024	1042	735	517
16	1025	1049	120	320
17	1026	1055	195	395
18	1027	1061	13	189
19	1028	1070	972	1109
20	1029	1071	1504	1686
21	1030	1077	425	574
22	1031	108	46	501
23	1032	1088	1949	7240
24	1033	1092	119	571
25	1034	1095	118	564
26	1035	1096	110	373
27	1036	1098	66	353
28	1037	1099	1	417
29	1038	11	764	573
30	1039	1100	157	1014
31	1040	1102	1526	1813
32	1041	1103	1529	1338
33	1042	1104	685	1929
34	1043	1105	887	744
35	1044	1110	880	443
36	1045	1111	696	538
37	1046	1113	52	1272
38	1047	1117	1357	554
39	1048	1118	1478	1654
40	1049	112	482	712
41	1050	1121	3	1424
42	1050	1130	131	271
43	1052	1132	849	151
44	1052	1137	265	705
45	1054	1137	13	381
46	1054	1140	51	416
47	1056	1146	2389	2541
48	1056	1148	1	738
49	L	1	1517	I
50	1058	115	179	334
	1059	1154	68	358

TABLE 3

SEQ ID NO:	SEQ ID NO:	SEQ ID NO:	START	STOP
OF	OF AMINO	IN USSN	NUCLEOTIDE	NUCLEOTIDE
NUCLEOTIDE	ACID	09/491,404	OF CODING	OF CODING
	1		REGION	REGION
51	1060	1155	34	330
52	1061	1157	242	433
53	1062	1160	410	856
54	1063	1161	154	342
55	1064	1163	202	477
56	1065	1167	72	272
57	1066	117	235	2
58	1067	1170	47	211
59	1068	1176	16	159
60	1069	1177	135	326
61	1070	118	1248	1466
62	1071	1183	431	886
63	1072	1187	191	529
64	1073	1189	1303	1148
65	1074	119	380	613
66	1075	1190	514	1272
67	1076	1192	1529	1338
68	1077	1197	93	533
69	1078	1199	227	391
70	1079	1202	117	407
71	1080	1204	12	413
72	1081	1204	49	603
73	1082	1216	487	1341
74	1083	1217	982	764
75	1084	1228	99	266
76	1085	1230	973	770
77	1086	1233	233	418
78	1087	1234	2959	2078
79	1088	1235	112	1542
80	1089	1239	3019	2822
81	1090	1242	1335	781
82	1091	1248	29	169
83	1092	125	542	405
84	1093	1250	1381	1572
85	1093	1252	480	226
86	1095	1255	19	İ.,
87	1096	1259	165	285 638
88	<u> </u>	ļ	<del>                                     </del>	<del> </del>
89	1097	126 1260	627 289	364 462
90	1098	1260	138	.1
91	1100		1	353
92		1264	1159	1299
93	1101	1266	13	402
94	1102	1269	296	805
95	1103	127	212	397
	1104 1105	1270	126	374
96	I	1272	2025	2396
97	1106	1273	1367	624
98	1107	1274	1108	746
99	1108	1275	919	1077
100	1109	1279	496	1272

TABLE 3

SEQ ID NO:	SEQ ID NO:	SEO ID NO:	START	STOP
OF	OF AMINO	IN USSN	NUCLEOTIDE	NUCLEOTIDE
NUCLEOTIDE	ACID	09/491,404	OF CODING	OF CODING
	İ		REGION	REGION
101	1110	1283	265	125
102	1111	1287	107	385
103	1112	1297	333	545
104	1113	13	187	47
105	1114	130	126	290
106	1115	1306	323	75
107	1116	1308	457	891
108	1117	1311	258	674
109	1118	1315	242	823
110	1119	1317	82	
111	1120	1319	781	435
112	1121	1323		3306
113	1121		1402	1671
113	1122	1329	279	665
114	1124	1336	37	765
116		1337	177	389
	1125	1338	887	744
117	1126	1339	248	724
118	1127	1341	298	525
119	1128	1342	26	445
120	1129	1344	23	370
121	1130	1345	160	402
122	1131	1351	2737	2600
123	1132	1353	655	792
124	1133	1354	94	354
125	1134	1356	679	849
126	1135	1358	679	849
127	1136	1359	32	346
128	1137	1361	271	426
129	1138	1362	637	1197
130	1139	1363	24	350
131	1140	1364	119	367
132	1141	1368	111	284
133	1142	1377	1221	1358
134	1143	1378	643	470
135	1144	138	99	539
136	1145	1382	994	686
137	1146	1384	34	264
138	1147	1386	124	477
139	1148	1389	1197	1
140	1149	139	94	294
141	1150	1390	1262	1053
142	1151	1393	1182	1325
143	1152	1394	1351	1542
144	1153	1395	229	411
145	1154	1396	923	1147
146	1155	1397	49	252
147	1156	1398	684	863
148	1157	1399	2613	286
149	1158	14	997	758
150	1159	1403	396	1
			<del></del>	

TABLE 3

SEQ ID NO:	SEQ ID NO:	SEO ID NO:	START	STOP
OF	OF AMINO	IN USSN	NUCLEOTIDE	NUCLEOTIDE
NUCLEOTIDE	ACID	09/491,404	OF CODING	OF CODING
1		,,	REGION	REGION
151	1160	1406	735	1235
152	1161	1407	967	716
153	1162	1408	75	314
154	1163	1409	101	313
155	1164	141	384	551
156	1165	1414	242	532
157	1166	142	158	15
158	1167	1421	604	1425
159	1168	1422	1146	1835
160	1169	1423	2657	3295
161	1170	1424	315	163
162	1171	1426	39	509
163	1172	1427	892	686
164	1173	1428	395	619
165	1174	1430	284	514
166	1175	1432	178	2
167	1176	1433	1136	972
168	1177	1435	1283	1540
169	1178	1436	1669	2235
170	1179	144	55	219
171	1180	1440	363	121
172	1181	1441	1991	2197
173	1182	1443	1765	3054
174	1183	1445	1023	865
175	1184	1446	5692	5859
176	1185	1447	2959	2078
177	1186	1448	775	945
178	1187	1451	858	1430
179	1188	1453	1370	723
180	1189	1455	480	1007
181	1190	1457	278	451
182	1191	1459	824	561
183	1192	1460	56	463
184	1193	1461	184	480
185	1194	1462	486	635
186	1195	1465	319	492
187	1196	1466	398	3.
188	1197	1468	262	453
189	1198	1476	526	684
190	1199	148	271	420
191	1200	1482	568	714 .
192	1201	1484	203	340
193	1202	1486	2185	1190
194	1203	1492	438	2912
195	1204	1493	82	225
196	1205	1501	210	347
197	1206	1508	1364	1101
198	1207	1509	56	613
199	1208	1512	828	965
200	1209	1515	3216	3812

TABLE 3

SEQ ID NO:	SEQ ID NO:	SEQ ID NO:	START	STOP
OF	OF AMINO	IN USSN	NUCLEOTIDE	NUCLEOTIDE
NUCLEOTIDE	ACID	09/491,404	OF CODING	OF CODING
			REGION	REGION
201	1210	1516	614	790
202	1211	1522	1709	1029
203	1212	1524	614	799
204	1213	1526	3917	4081
205	1214	1529	221	2146
206	1215	1530	644	390
207	1216	1532	16	1224
208	1217	1535	885	1031
209	1218	1536	245	1156
210	1219	1538	1617	4994
211	1220	154	97	
212	1221	1540	4325	234
213	1222	d		4158
214	1223	1541	2020	2778
214	<del></del>	1544	595	3168
<u> </u>	1224	1545	328	534
216	1225	1548	47	211
217	1226	1550	49	201
218	1227	1552	418	558
219	1228	1555	509	330
220	1229	1557	699	854
221	1230	1561	847	1932
222	1231	1563	775	933
223	1232	1565	286	453
224	1233	1567	807	974
225	1234	1568	1227	1601
226	1235	1569	113	328
227	1236	157	145	2
228	1237	1570	222	845
229	1238	1572	167	685
230	1239	1574	97	1167
231	1240	1575	581	2701
232	1241	1577	1246	953
233	1242	1578	1440	175
234	1243	1579	4738	4601
235	1244	1580	1431	1568
236	1245	1581	2491	3222
237	1246	1584	463	2157
238	1247	1585	156	2366
239	1248	1586	167	691
240	1249	1587	102	305
241	1250	1589	1157	1783
242	1251	159	812	639
243	1252	1592	270	521
244	1253	1593	92	310
245	1254	1594	814	188
246	1255	1595	101	2290
247	1256	1597	119	910
248	1257	1598	178	1398
249	1258	1600	2937	2578
250	1259	1604	47	526
	<del></del>		<del></del>	

TABLE 3

SEO ID NO:	SEQ ID NO:	SEQ ID NO:	START	STOP
OF	OF AMINO	IN USSN	NUCLEOTIDE	NUCLEOTIDE
NUCLEOTIDE	ACID	09/491,404	OF CODING	OF CODING
		1	REGION	REGION
251	1260	1606	2204	1872
252	1261	1608	235	603
253	1262	1609	156	2366
254	1263	1611	1992	2135
255	1264	1614	968	786
256	1265	1615	2578	2751
257	1266	1616	6256	5813
258	1267	1617	29	709
259	1268	1619	1123	4071
260	1269	1621	581	2704
261	1270	1626	43	321
262	1271	1629	3616	1673
263	1272	163	509	183
264	1273	1630	81	248
265	1274	1631	9	572
266	1275	1633	2565	2807
267	1276	1634	2373	2510
268	1277	1635	3216	4508
269	1278	1636	4239	4081
270	1278	1642	4239	4020
271	1280	1643	152	
272	1280	1644	47	304
273	1282	1645		478
274	1283	1646	121	921
275	1284	1647	3815	3030
276	1285		335	186
277	1286	1649 1654	34	974 951
278	1287	1655	491	1387
279	1288	1656	78	
280	1289	1657	1431	560
281		l		1568
282	1290	1658	2373	1015
283	1291 1292	1670	236	3
284	1292	1673 1685	95	1342
285			2124	1786
	1294	1690	245	415
286	1295	1691	977	774
288	1296	1699	50	247
289	1297	17	282	112
	1298	1710	943	239
290	1299	1711	127	318
291	1300	1718	99	338
292	1301	1719	122	382
293	1302	172	33	461
294	1303	1720	180	1
295 '	1304	1722	160	327
296	1305	1726	175	363
297	1306	1737	84	497
298	1307	1738	188	379
299	1308	174	138	332
300	1309	1743	560	784

TABLE 3

SEQ ID NO:	SEQ ID NO:	SEQ ID NO:	START	STOP
OF	OF AMINO	IN USSN	NUCLEOTIDE	NUCLEOTIDE
NUCLEOTIDE	ACID	09/491,404	OF CODING	OF CODING
			REGION	REGION
301	1310	1747	1824	1961
302	1311	1748	97	411
303	1312	1749	151	492
304	1313	177	59	322
305	1314	1776	68	262
306	1315	1779	43	255
307	1316	178	58	399
308	1317	1781	1179	907
309	1318	1786	579	385
310	1319	1789	56	193
311	1320	180	218	78
312	1321	1800	230	394
313	1322	1801	1778.	876
314	1323	181	174	428
315	1324	1829	179	428
316	1325	1846	525	785
317	1326	1848	5632	5838
318	1327	185	92	400
319	1328	1850	178	
320	1329	186	699	333
321	1330	1860		1310
322	1331	1868	376	604
323	1332	187	148	618
324	1333	1870		366
325	1334	1872	233	388
326	1334	188	181	206
327	1336	1884	549	516 863
328	1337	1886	128	
329	1338	189	28	298
330	1339	1891	11246	204 11097
331	1340	1895	175	
332	1341	1897	221	417
333	1342	1899	744	890
334	1343	191	77	286
335	1344	1914	403	699
336	1345	192	8	343
337	1346	1947	656	1735
338				
339	1347	1948	32 129	283
340	1348	196	129	323
341	1350	1962	554	295
342	1350	1962	L	733
343	1351	1976	110	277
344		J	348	2450
345	1353	198	93	239
346	1354	1980	137	310
347	1355	2	916	13698
	1356	20	112	303
348	1357	2005	88	420
349	1358	2007	525	385
350	1359	2008	266	484

TABLE 3

SEQ ID NO:	SEQ ID NO:	SEO ID NO:	START	STOP
OF	OF AMINO	IN USSN	NUCLEOTIDE	NUCLEOTIDE
NUCLEOTIDE	ACID	09/491,404	OF CODING	OF CODING
			REGION	REGION
351	1360	2013	64	234
352	1361	2016	99	329
353	1362	2018	84	401
354	1363	202	300	130
355	1364	2022	1240	1016
356	1365	2029	191	364
357	1366	2037	231	404
358	1367	2043	3206	3349
359	1368	2013	169	456
360	1369	2048	295	522
361	1370	2049	533	769
362	1371	205	4	684
363	1372	2051	403	699
364	1372	2051	173	
365	<del> </del>	2056		379
366	1374		270	1157
	1375	2061	949	725
367	1376	2064	127	309
368	1377	2065	248	577
369	1378	2070	204	344
370	1379	2071	374	793
371 .	1380	2074	945	796
372	1381	2076	300	67
373	1382	2078	416	586
374	1383	2081	316	507
375	1384	2082	20	220
376	1385	209	19	168
377	1386	210	27	395
378	1387	2102	258	452
379	1388	2104	1706	1539
380	1389	211	84	311
381	1390	212	677	231
382	1391	2120	40	414
383	1392	214	101	268
384	1393	2140	213	377
385	1394	2161	216	368
386 ·	1395	2162	106	420
387	1396	2164	104	250
388	1397	217	333	22
389	1398	218	80	325
390	1399	219	709	506
391	1400	2196	158	319
392	1401	2198	469	1164
393	1402	22	843	700
394	1403	2214	980	822
395	1404	2215	49	318
396	1405	2225	544	1974
397	1406	223	185	21
398	1407	2233	116	313
399	1408	224	189	16
400	1409	2240	2740	2525
<u> </u>	<u> </u>	<u> </u>	<del></del>	<u> </u>

TABLE 3

SEQ ID NO:	SEQ ID NO:	SEO ID NO:	START	STOP
OF	OF AMINO	IN USSN	NUCLEOTIDE	NUCLEOTIDE
NUCLEOTIDE	ACID	09/491,404	OF CODING	OF CODING
			REGION	REGION
401	1410	2244	1489	1647
402	1411	2254	72	317
403	1412	226	335	120
404	1413	2260	562	738
405	1414	2268	300	67
406	1415	227	103	615
407	1416	2273	114	344
408	1417	2275	239 .	985
409	1418	2276	1358	1164
410	1419	2288	56	1459
411	1420	2291	83	532
412	1421	2296	264	530
413	1422	2298	533	781
414	1423	2300	1684	1845
415	1424	2305	8	226
416	1425	231	86	820
417	1426	232	361	1920
418	1427	233	150	467
419	1428	2331	334	2856
420	1429	2334	168	953
421	1430	2341	198	395
422	1431	2344	122	1432
423	1432	2346	1345	1187
424	1433	2348	502	729
425	1434	235	338	844
426	1435	2351	228	713
427	1436	236	232	2
428	1437	2360	1611	1357
429	1438	2362	36	263
430	1439	2364	294	1568
431	1440	2365	103	312
432	1441	2378	209	5281
433	1442	238	53	511
434	1443	2380	207	380
435	1444	239	457	663
436	1445	2392	176	2653
437	1446	2399	940	2040
438	1447	2405	144	380
439	1448	2407	1875	2702
440	1449	2415	1927	137
441	1450	242	1813	986
442	1451	2421	43	405
443	1452	2423	1556	1413
444	1453	2424	673	1041
445	1454	2432	295	1275
446	1455	2438	607	437
447	1456	2444	294	437
448	1457	2447	212	1588
449	1458	2448	52	1440
450	1459	2449	637	1197
				<del></del>

TABLE 3

SEQ ID NO:	SEQ ID NO:	SEQ ID NO:	START	STOP
OF	OF AMINO	IN USSN	NUCLEOTIDE	NUCLEOTIDE
NUCLEOTIDE	ACID	09/491,404	OF CODING	OF CODING
1	1.022	03, 132, 101	REGION	REGION
451	1460	245	208	876
452	1461	2450	3740	4369
453	1462	2453	222	389
454	1463	246	566	763
455	1464	2466	179	778
456	1465	2471	532	669
457	1466	2473	817	650
458	1467	2474	236	1333
459	1468	2476	173	3
460	1469	248	331	2
461	1470	2486	709	885
462	1471	249	88	456
463	1472	2496	107	1054
464	1472	2498	413	607
465	1474	2501	103	267
466	1475	2503		<u> </u>
467	1476	2506	334 3740	717 4369
468	1477	2509		
469	1478		188	18
470		2512	78	368
471	1479	2514	16	354
472	1480	2523	53	325
473		2526	223	384
	1482	2532	596	763
474	1483	2533	62	667
475	1484	2535	89	1519
476	1485	2537	175	375
477 478	1486	254	299	21
	1487	2540	553	816
479	1488	2546	1905	1102
480	1489	2555	2046	4541
481	1490	2559	569	733
482	1491	256	9	410
483	1492	2560	288	76
484	1493	2565	3269	3502
485 486	1494	2569	116	478
	1495	257	203	475
487	1496	2571	2763	2548
488	1497	2572	65	652
489	1498	2575	70	294
490	1499	2576	1195	1010
491	1500	258	434	21
492	1501	2580	155	400
493	1502	2591	53	214
494	1503	2592	163	348
495	1504	26	261	398
496	1505	2605	277	420
497	1506	261	29	598
498	1507	2614	1331	1510
499	1508	2617	235	378
500	1509	262	204	458

TABLE 3

SEQ ID NO:	SEQ ID NO:	SEQ ID NO:	START	STOP
OF	OF AMINO	IN USSN	NUCLEOTIDE	NUCLEOTIDE
NUCLEOTIDE	ACID	09/491,404	OF CODING	OF CODING
1.00-2012-2		03, 131, 101	REGION	REGION
501	1510	2624	254	418
502	1511	263	247	570
503	1512	264	184	540
504	1513	2643	1108	4026
505	1514	2644	305	535
506	1515	2645	1952	1509
507	1516	2647	1225	404
508	1517	2648	41	778
509	1518	265	53	418
510	1519	2650	<u> </u>	
511	1520		190	936
512		2658	1576	2451
	1521	2659	44	430
513	1522	266	350	153
514	1523	2663	785	1177
515	1524	2665	395	550
516	1525	2666	41	778
517	1526	2667	244	384
518	1527	2668	174	527
519	1528	2669	27	302
520	1529	2678	1172	960
521	1530	2684	178	432
522	1531	269	341	520
523	1532	2699	1241	1083
524	1533	2701	402	2624
525	1534	2702	28	177
526	1535	2706	1108	4026
527	1536	2707	1240	1016
528	1537	271	59	346
529	1538	2714	34	987
530	1539	2715	1117	647
531	1540	2717	25	429
532	1541	2718	1670	1885
533	1542	2719	31	1137
534	1543	272	6	152
535	1544	2726	230	592
536	1545	2728	578	369
537	1546	2731	193	366
538	1547	2735	495	301
539	1548	274	352	119
540	1549	2741	94	255
541	1550	2798	1031	1240
542	1551	28	54	725
543	1552	2803	204	374
544	1553	2809	216	938
545	1554	2822	280	447
546	1555	2823	197	388
547	1556	2824	224	12
548	1557	2826	79	456
549	1558	2828	24	428
550	1559	2838	90	698
<del></del>	<u> </u>	<u></u>		

TABLE 3

SEQ ID NO:	SEQ ID NO:	SEQ ID NO:	START	STOP
OF	OF AMINO	IN USSN	NUCLEOTIDE	NUCLEOTIDE
NUCLEOTIDE	ACID	09/491,404	OF CODING	OF CODING
			REGION	REGION
551	1560	284	21	197
552	1561	2847	113	262
553	1562	285	146	292
554	1563	2852	233	439
555	1564	2854	830	988
556	1565	2855	336	1043
557	1566	2856	384	614
558	1567	2857	437	748
559	1568	2859	1295	1158
560	1569	286	30	179
561	1570	2860	2618	2469
562	1571	2864	1325	1176
563	1572	2867	1034	795
564	1573	288	190	345
565	1574	2884	856	257
566	1575	2886	15	167
567	1576	2891	34	405
568	1577	2900	104	2683
569	1578	2901	193	366
570	1579	2902	91	1806
571	1580	2907	268	498
572	1581	2908	83	1564
573	1582	2910	2131	3117
574	1583	2915	715	861
575	1584	2916	52	2064
576	1585	2919	62	1015
577	1586	292	615	854
578	1587	2923	332	1279
579	1588	2924	264	422
580	1589	2925	122	1432
581	1590	2930	195	341
582	1591	2931	221	3
583	1592	2934	1642	1827
584	1593	2937	38	421
585	1594	2940	520	383
586	1595	2944	325	68
587	1596	295	49	255
588	1597	2950	226	59
589	1598	2951	110	400
590	1599	2955	303	641
591	1600	2957	365	673
592	1601	2964	96	347
593	1602	2967	738	466
594	1603	2968	222	428
595	1604	2969	365	117
596	1605	2970	314	643
597	1606	2973	961	1176
598	1607	2975	975	799
599	1608	2979	89	442
600	1609	298	152	3

TABLE 3

SEQ ID NO:	SEQ ID NO:	SEQ ID NO:	START	STOP
OF	OF AMINO	IN USSN	NUCLEOTIDE	NUCLEOTIDE
NUCLEOTIDE	ACID	09/491,404	OF CODING	OF CODING
	11012	03,131,101	REGION	REGION
601	1610	2991	112	261
602	1611	2995	201	368
603	1612	3	13559	13335
604	1613	30	176	751
605	1614	3002	1807	2265
606	1615	3002	339	743
607	1616	3023	64	243
608	1617	3039	71	
609	1618			217
	<del></del>	304	50	334
610	1619	305	226	387
611	1620	3051	56	268
612	1621	307	9	278
613	1622	308	116	274
614	1623	3085	97	3030
615	1624	3088	801	634
616	1625	3089	18	455
617	1626	3094	92	1246
618	1627	3098	40	342
619	1628	310	142	354
620	1629	3101	48	383
621	1630	3105	188	328
622	1631	3107	177	413
623	1632	3109	184	327
624	1633	3114	70	243
625	1634	3115	295	459
626	1635	3116	115	348
627	1636	3119	70	222
628	1637	3120	163	531
629	1638	3122	60	266
630	1639	3129	226	501
631	1640	3146	190	363
632	1641	3151	212	1588
633	1642	3153	86	517
634	1643	3165	244	453
635	1644	317	97	342
636	1645	3179	106	873
637	1646	3181	108	896
638	1647	3182	554	775
639	1648	3192	268	441
640	1649	3194	923	1192
641	1650	3195	38	376
642	1651	32	185	334
643	1652	3200	199	561
644	1653	3200		
645	1654	<del></del>	516	848
646		3202	232	681
647	1655	3208	836	633
	1656	3210	202	384
648	1657	3214	349	588
649	1658	3215	859	380
650	1659	3216	51	320

TABLE 3

SEQ ID NO:	SEQ ID NO:	SEQ ID NO:	START	STOP
OF	OF AMINO	IN USSN	NUCLEOTIDE	NUCLEOTIDE
NUCLEOTIDE	ACID	09/491,404	OF CODING	OF CODING
			REGION	REGION
651	1660	3220	116	283
652	1661	3222	324	545
653	1662	3227	385	1197
654	1663	323	65	223
655	1664	3240	385	1197
656	1665	3243	65	916
657	1666	3250	263	463
658	1667	3252	244	480
659	1668	3253	136	297
660	1669	3254	83	439
661	1670	3255	573	920
662	1671	3257	548	757
663	1672	3259	34	822
664	1673	326	58	525
665	1674	3263	102	350
666	1675	3270	313	152
667	1676	3271	117	473
668	1677	3272	44	190
669	1678	3273	106	486
670	1679	3274	246	392
671	1680	3278	174	1
672	1681	3281	988	1134
673	1682	3282	101	334
674	1683	3291	129	284
675	1684	3294	101	595
676	1685	3296	107	565
677	1686	3298	130	552
678	1687	3299	333	515
679	1688	3300	324	121
680	1689	3303	378	157
681	1690	3306	296	637
682	1691	3307	1454	1660
683	1692	3309	163	471
684	1693	3311	335	478
685	1694	3312	5	280
686	1695	3313	298	546
687	1696	3314	50	526
688	1697	3315	99	413
689	1698	3322	101	685
690	1699	3323	66	356
691	1700	3324	76	462
692	1701	3328	248	904
693	1702	3335	136	393
694	1703	3336	47	733
695	1704	3338	181	786
696	1705	3339	58	231
697	1706	3342	226	390
698	1707	3349	72	488
699	1708	3356	208	384
700	1709	3358	194	436
	L	1 3330	1 -7-3	1 30

TABLE 3

SEQ ID NO:	SEO ID NO:	SEQ ID NO:	START	STOP
OF	OF AMINO	IN USSN	NUCLEOTIDE	NUCLEOTIDE
NUCLEOTIDE	ACID	09/491,404	OF CODING	OF CODING
		""	REGION	REGION
701	1710	3360	263	1459
702	1711	3366	55	816
703	1712	3367	364	735
704	1713	3370	237	878
705	1714	3371	188	721
706	1715	3372	14	241
707	1716	3373	42	290
708	1717	3387	32	202
709	1718	3389	29	256
710	1719	3390	181	393
711	1720	3396	520	822
712	1721	3410	10	153
713	1722	3412	82	291
714	1723	3414	453	292
715	1724	3421	158	337
716	1725	3427	430	618
717	1726	3430	210	380
718	1727	3431	295	432
719	1728	3440	419	556
720	1729	3444	402	256
721	1730	3445	281	430
722	1731	3445	42	722
723	1732	347	384	689
724	1733	3470	114	530
725	1734	3478	38	217
726	1735	3479	161	379
727	1736	348	37	231
728	1737	3482	156	296
729	1738	35	255	575
730	1739	3503	185	454
731	1740	3505	252	422
732	1741	3529	37	183
733	1742	353	262	522
734	1743	3537	127	273
735	1744	3539	98	268
736	1745	3542	25	312
737	1746	3543	70	228
738	1747	3544	31	177
739	1748	3548	972	385
740	1749	3553	27	164
741	1750	3560	113	358
742	1751	3563	483	764
743	1752	3564	6	434
744	1753	3566	316	507
745	1754	3570	6	377
746	1755	3574	108	440
747	1756	3574	569	348
748	1757	3579	293	442
749	1758	3579		388
750	1759		20	
7.30	1/33	3583	172	396

TABLE 3

SEQ ID NO: OF	SEQ ID NO: OF AMINO	SEQ ID NO:	START	STOP
l - i		IN USSN	NUCLEOTIDE	NUCLEOTIDE
NUCLEOTIDE	ACID	09/491,404	OF CODING	OF CODING
		05, 151, 151	REGION	REGION
751	1760	3587	84	449
752	1761	3596	91	459
753	1762	3599	40	474
754	1763	3606	335	1105
755	1764	3609	169	666
756	1765	3617	141	410
757	1766	3620	218	388
758	1767	3630	189	1
759	1768	3642	122	643
760	1769	3644	431	664
761	1770	3647	274	720
762	1771	3651	245	472
763	1772	3652	259	642
764	1773	3653	153	
765	1774	3654	87	1994
766	1775	3654	57	554
767	1776		<u> </u>	2744
768		3658	387	920
769	1777	366	402	578
	1778	3660	120	530
770	1779	3661	480	674
771	1780	3663	1096	938
772	1781	3669	689	1015
773	1782	3677	469	642
774	1783	3678	1194	889
775	1784	3685	406	1134
776	1785	3689	233	706
777	1786	3693	21	446
778	1787	3699	55	414
779	1788	370	59	262
780	1789	3707	38	436
781	1790	3711	229	474
782	1791	3713	314	463
783	1792	3717	178	675
784	1793	3720	258	695
785	1794	3721	96	548
786	1795	3722	32	562
787	1796	3724	220	513
788	1797	3726	180	467
789	1798	3729	251	523
790	1799	373	110	340
791	1800	3735	91	636
792	1801	3736	275	880
793	1802	3738	106	621
794	1803	3762	702	1175
795	1804	3768	293	598
796	1805	377	96	257
797	1806	3772	169	2
798	1807	3786	108	248
· -		4		<del> </del>
799	1808	3787	282	638

TABLE 3

SEQ ID NO:	SEQ ID NO:	SEQ ID NO:	START	STOP
OF	OF AMINO	IN USSN	NUCLEOTIDE	NUCLEOTIDE
NUCLEOTIDE	ACID	09/491,404	OF CODING	OF CODING
		1	REGION	REGION
801	1810	379	248	421
802	1811	38	146	3
803	1812	382	24	275
804	1813	385	138	1
805	1814	388	268	74
806	1815	39	302	3
807	1816	391	24	368
808	1817	395	51	482
809	1818	397	422	766
810	1819	399	102	311
811	1820	4	11219	13123
812	1821	405	253	2
813	1822	406	342	665
814	1823	411	321	542
815	1824	411	736	909
816	1825	422	1541	867
817	1826	43	330	
818	1827	434	207	686
819	1828	435	140	
820	1829	437	160	445
821	1830	439	347	423
822	1831	44		706
823	1832	450	91	282
824	1833	458	136	402
825	1834	459	169 99	348
826	1835	462	70	284
827	1836	465	462	282 791
828	1837	467	76	348
829	1838	470	35	637
830	1839	475	37	426
831	1840	477	242	382
832	1841	478	66	311
833	1842	485	196	426
834	1843	488	117	443
835	1844	490	231	485
836	1845	493	281	610
837	1846	496	90	371
838	1847	5	34	
839	1848	501	60	3933 368
840	1849	502	707	
841	1850	504	<del></del>	856
842	1851	505	208 165	459 317
843	1852	509		
844	1853		62	223
845		511	46	432
846	1854	515	13	582
847	1856	516	92	325
848		518	83	283
849	1857	519	365	685
	1858	521	12	413
850	1859	525	6	251

TABLE 3

SEQ ID NO:	SEQ ID NO:	SEQ ID NO:	START	STOP
OF	OF AMINO	IN USSN	NUCLEOTIDE	NUCLEOTIDE
NUCLEOTIDE	ACID	09/491,404	OF CODING	OF CODING
		1	REGION	REGION
851	1860	526	862	725
852	1861	532	207	590
853	1862	536	226	53
854	1863	537	49	198
855	1864	540	270	1
856	1865	541	38	412
857	1866	546	388	2
858	1867	555	199	438
859	1868	556	144	482
860	1869	559	380	165
861	1870	563	27	617
862	1871	566	158	382
863	1872	568	69	320
864	1873	57	6	158
865	1874	571	8	1516
866	1875	572	32	505
867	1876	573	139	456
868	1877	574	49	771
869	1878	576	519	370
870	1879	578	168	1
871	1880	580	159	641
872	1881	581	108	497
873	1882	582	80	403
874	1883	587	172	435
875	1884	589	27	374
876	1885	590	84	428
877	1886	595	68	1138
878	1887	598	1023	766
879	1888	61	65	208
880	1889	612	310	546
881	1890	614	166	918
882	1891	617	252	602
883	1892	62	969	661
884	1893	620	188	418
885	1894	622	877	1014
886	1895	629	202	687
887	1896	63	98	277
888	1897	632	221	367
889	1898	64	536	381
890	1899	640	338	3
891	1900	641	12	395
892	1901	642	194	397
893	1902	644	15	395
894	1903	646	132	380
895	1904	647	3	389
896	1905	650	135	413
897	1906	651	231	428
898	1907	653	128	442
899	1908	654	214	77
900	1909	656	49	465
	<del></del>	<del></del>	<del></del>	

TABLE 3

SEQ ID NO:	SEQ ID NO:	SEQ ID NO:	START	STOP
OF	OF AMINO	IN USSN	NUCLEOTIDE	NUCLEOTIDE
NUCLEOTIDE	ACID	09/491,404	OF CODING	OF CODING
		,,	REGION	REGION
901	1910	657	86	397
902	1911	66	267	614
903	1912	662	387	701
904	1913	666	76	498
905	1914	667	517	2184
906	1915	668	1423	788
907	1916	67	107	622
908	1917	678	172	387
909	1918	68	78	341
910	1919	680	832	671
911	1920	683	505	164
912	1921	687	105	521
913	1922	690	139	294
914	1923	691	244	456
915	1924	699	194	754
916	1925	701	371	520
917	1926	702	1888	2028
918	1927	704	1254	808
919	1928	705	1254	
920	<u> </u>	L	<del></del>	1463
921	1929 1930	706	31	390
922		707	367	2
923	1931	l	1152	934
	1932	715	744	541
924 925	1933	716	1360	1220
926	1934	722	173	430
926	1935	725	498	271
	1936	727	18	164
928	1937	729	230	3
929	1938	73	262	834
931	1939	731	491	246
	1940	740	20	322
932	1941	741	1430	1167
933	1942	747	660	523
934 935	1943	749	263	727
	1944	750	209	391
936	1945	751	753	517
937	1946	755	172	387
938	1947	756	209	376
939	1948	76	656	513
940	1949	760	131	538
941	1950	763	893	1126
942	1951	766	1271	1537
943	1952	771	458	318
944	1953	775	391	558
945	1954	781	410	1684
946	1955	791	967	1284
947	1956	793	554	970
948	1957	795	8	268
949	1958	796	342	199
950	1959	798	211	405

TABLE 3

SEQ ID NO:	SEQ ID NO:	SEQ ID NO:	START	STOP
OF	OF AMINO	IN USSN	NUCLEOTIDE	NUCLEOTIDE
NUCLEOTIDE	ACID	09/491,404	OF CODING	OF CODING
		05, 152, 101	REGION	REGION
951	1960	799	625	392
952	1961	8	1523	1293
953	1962	801	484	678
954	1963	802	331	489
955	1964	808	210	905
956	1965	812	162	920
957	1966	819	723	2669
958	1967	820	964	725
959	1968	825	182	328
960	1969	829	1843	2292
961	1970	830	58	201
962	1971	832	150	341
963	1972	835	130	
964	1972	836	449	762 291
965	1974			
966		838	175	324
967	1975	84	175	435
968	1976	842	73	393
	1977	844	423	824
969	1978	845	214	32
970	1979	846	120	317
971	1980	847	212	364
972	1981	85	190	426
973	1982	852	74	541
974	1983	855	1653	1465
975	1984	857	1964	2659
976	1985	858	598	1020
977	1986	861	58	933
978	1987	876	222	779
979	1988	878	2021	2161
980	1989	879	189	362
981	1990	88	39	278
982	1991	886	1165	1022
983	1992	891	158	310
984	1993	892	759	995
985	1994	895	224	379
986	1995	897	131	622
987	1996	9	1678	1448
988	1997	901	55	753
989	1998	906	450	623
990	1999	913	40	237
991	2000	918	17	334
992	2001	92	385	122
993	2002	926	772	518
994	2003	929	146	283
995	2004	932	23	175
996	2005	934	38	235
997	2006	935	286	423
998	2007	936	24	284
999	2008	939	450	623
1000	2009	94	139	2

TABLE 3

SEQ ID NO:	SEQ ID NO:	SEQ ID NO:	START	STOP	
OF	OF AMINO	IN USSN	NUCLEOTIDE	NUCLEOTIDE	
NUCLEOTIDE	ACID	09/491,404	OF CODING	OF CODING	
		<u> </u>	REGION	REGION	
1001	2010	944	156	860	
1002	2011	947	174	356	
1003	2012	957	80	400	
1004	2013	96	187	387	
1005	2014	964	1352	1528	
1006	2015	97	166	2	
1007	2016	98	535	344	
1008	2017	995	559	386	
1009	2018	997	34	231	

# WHAT IS CLAIMED IS:

An isolated polynucleotide comprising a nucleotide sequence selected from the group consisting of SEQ ID NO: 1-1009, a mature protein coding portion of SEQ ID NO: 1-1009, an active domain of SEQ ID NO: 1-1009, and complementary sequences thereof.

- 2. An isolated polynucleotide encoding a polypeptide with biological activity, wherein said polynucleotide hybridizes to the polynucleotide of claim 1 under stringent hybridization conditions.
- 3. An isolated polynucleotide encoding a polypeptide with biological activity, wherein said polynucleotide has greater than about 90% sequence identity with the polynucleotide of claim 1.
- 4. The polynucleotide of claim 1 wherein said polynucleotide is DNA.
- 5. An isolated polynucleotide of claim 1 wherein said polynucleotide comprises the complementary sequences.
- 6. A vector comprising the polynucleotide of claim 1.
- 7. An expression vector comprising the polynucleotide of claim 1.
- 8. A host cell genetically engineered to comprise the polynucleotide of claim 1.
- 9. A host cell genetically engineered to comprise the polynucleotide of claim 1 operatively associated with a regulatory sequence that modulates expression of the polynucleotide in the host cell.
- 10. An isolated polypeptide, wherein the polypeptide is selected from the group consisting of:
  - (a) a polypeptide encoded by any one of the polynucleotides of claim 1; and

(b) a polypeptide encoded by a polynucleotide hybridizing under stringent conditions with any one of SEQ ID NO:1-1009.

- 11. A composition comprising the polypeptide of claim 10 and a carrier.
- 12. An antibody directed against the polypeptide of claim 10.
- 13. A method for detecting the polynucleotide of claim 1 in a sample, comprising:
- a) contacting the sample with a compound that binds to and forms a complex with the polynucleotide of claim 1 for a period sufficient to form the complex;
   and
- b) detecting the complex, so that if a complex is detected, the polynucleotide of claim 1 is detected.
- 14. A method for detecting the polynucleotide of claim 1 in a sample, comprising:
- a) contacting the sample under stringent hybridization conditions with nucleic acid primers that anneal to the polynucleotide of claim 1 under such conditions;
- b) amplifying a product comprising at least a portion of the polynucleotide of claim 1; and
- c) detecting said product and thereby the polynucleotide of claim 1 in the sample.
- 15. The method of claim 14, wherein the polynucleotide is an RNA molecule and the method further comprises reverse transcribing an annealed RNA molecule into a cDNA polynucleotide.
- 16. A method for detecting the polypeptide of claim 10 in a sample, comprising:
- a) contacting the sample with a compound that binds to and forms a complex with the polypeptide under conditions and for a period sufficient to form the complex; and

b) detecting formation of the complex, so that if a complex formation is detected, the polypeptide of claim 10 is detected.

- . 17. A method for identifying a compound that binds to the polypeptide of claim 10, comprising:
  - a) contacting the compound with the polypeptide of claim 10 under conditions sufficient to form a polypeptide/compound complex; and
  - b) detecting the complex, so that if the polypeptide/compound complex is detected, a compound that binds to the polypeptide of claim 10 is identified.
  - 18. A method for identifying a compound that binds to the polypeptide of claim 10, comprising:
  - a) contacting the compound with the polypeptide of claim 10, in a cell, under conditions sufficient to form a polypeptide/compound complex, wherein the complex drives expression of a reporter gene sequence in the cell; and
  - b) detecting the complex by detecting reporter gene sequence expression, so that if the polypeptide/compound complex is detected, a compound that binds to the polypeptide of claim 10 is identified.
  - 19. A method of producing the polypeptide of claim 10, comprising,
  - a) culturing a host cell comprising a polynucleotide sequence selected from the group consisting of a polynucleotide sequence of SEQ ID NO: 1-1009, a mature protein coding portion of SEQ ID NO: 1-1009, an active domain of SEQ ID NO: 1-1009, complementary sequences thereof and a polynucleotide sequence hybridizing under stringent conditions to SEQ ID NO: 1-1009, under conditions sufficient to express the polypeptide in said cell; and
    - b) isolating the polypeptide from the cell culture or cells of step (a).
  - 20. An isolated polypeptide comprising an amino acid sequence selected from the group consisting of SEQ ID NO: 1010-2018, the mature protein portion thereof, or the active domain thereof.

21. The polypeptide of claim 20 wherein the polypeptide is provided on a polypeptide array.

- 22. A collection of polynucleotides, wherein the collection comprises the sequence information of at least one of SEQ ID NO: 1-1009.
- 23. The collection of claim 22, wherein the collection is provided on a nucleic acid array.
- 24. The collection of claim 23, wherein the array detects full-matches to any one of the polynucleotides in the collection.
- 25. The collection of claim 23, wherein the array detects mismatches to any one of the polynucleotides in the collection.
- 26. The collection of claim 22, wherein the collection is provided in a computerreadable format.
- 27. A method of treatment comprising administering to a mammalian subject in need thereof a therapeutic amount of a composition comprising a polypeptide of claim 10 or 20 and a pharmaceutically acceptable carrier.
- 28. A method of treatment comprising administering to a mammalian subject in need thereof a therapeutic amount of a composition comprising an antibody that specifically binds to a polypeptide of claim 10 or 20 and a pharmaceutically acceptable carrier.

### SEQUENCE LISTING

<110> Hyseq, Inc. Tang et al.

```
<120> Novel Nucleic Acids and Polypeptides
     <130> 21272-018 (785 contig)
     <140> not yet assigned
     <141> 2001-01-25
     <150> 09/491,404
     <151> 2000-01-25
     <160> 2018
     <170> FastSEQ for Windows Version 3.0
     <210> 1
     <211> 677
     <212> DNA
     <213> Homo sapiens
     <220>
     <221> misc_feature
     <222> (1) ... (677)
     <223> n = a,t,c or g
     <400> 1
eggacettae aagagggtta egeegegaee ggeacaeeae etaegtgeea tacatgaeae
                                                                      60
tactacgctg ttaaaccgca acccccaag cncgaccacc catttgaaac tttqaqaccn
                                                                     120
tegeacgnee ggaanneegg gnegaceeae gegngegeae ggetgeetee ateaetgeea
                                                                     180
tegegatect geagetatgt cetaceetgt gaccagteag ecceagtgeg ceaceaceag
                                                                     240
ctgctaccag acccagetca gtgactggca cacaggtete acggactget gcaacgacat
                                                                     300
geetgtetgg etgggeggea ettttgetee tetgtgeett geetgeegea teteegaega
                                                                     360
ctttggcgag tgctgctgcg cgccctacct gcccggaggc ctgcactcca tccgcaccgg
                                                                     420
catgoggag cgctaccaca tccagggctc cgtcgggcac gactgggcgg ccctcacctt
                                                                     480
ttggctgccc tgcgccctct gccagatggc gcgggaactg aagatccgag agtaaggaag
                                                                     540
ttecetgtet teccegteet tttecaccag tetegeetet ggeettetet ggecacteet
                                                                     600
gggagggact gcctcaccac ccctgtcccg ctgccagaaa taccccccca ataaaaacct
                                                                     660
gaaaaccaaa aaaaaaa
                                                                     677
     <210> 2
     <211> 649
     <212> DNA
     <213> Homo sapiens
     <400> 2
aatacatgct tgtgggagat gtcattgcct tqqactttca ctqtqctqat cttqqcccq
                                                                      60
tegetgteeg ggtetetgte gggeaagage tecacetgeg egeeggeece eteggeeceg
                                                                     120
ggatccaggt cctccggccc ccgcaggaac caccattgga tctccagata caccgaggcg
                                                                     180
gagecgetet ggaaggegea ggacatetee acattetgee ceteggtege egteacgtte
                                                                     240
```

```
cgcggaaact cggtaaattt tgcttgagaa gaaagccctt gttgtacata taaaacggaa
                                                                     300
aagaaaacaa atccaacata caccaaaaag atccccatca ttccaaaaag ggagggggt
                                                                      360
cacatcagtg tagccaacag ccgaaaagcc ctgaaagaaa ggcgtgcgag tggatggcag
                                                                      420
gctcagtctc agagccctgg gcgcgacact gcaaacatcc tgctgcttgc ttggcgaggg
                                                                      480
ctggctgtgg ggagaaggga ttgcgattct ggaaggttag aaccagctgg ctgggattca
                                                                      540
gcgaggette etgeggagee caggetggaa tegetgggaa gtgtetegge tgeetggetg
                                                                     600
cctgctttca gctacctggc agctcgtcca acgtcagccc gccacgaaa
                                                                     649
     <210> 3
     <211> 424
     <212> DNA
     <213> Homo sapiens
     <400> 3
ccctctgctc cgactcgccg gaccgacgcg atggcctcag aagtggtgtg cgggctcatc
ttcaggctgc tgctgcccat ctgcctggca gtagcatgtg cattccgata caatgggctc
                                                                     120
teetttgtet acettateta cetettgete atteetetgt tetcagaace aacaaaaacg
                                                                     180
acgatgcaag gacatacggg acggttatta aagtctctgt gcttcatcag tctttccttc
                                                                     240
ctgttgctgc acatcatttt ccacatcacg ttggtgagcc ttgaagctca acatcgtatt
                                                                     300
gcacctggct acaactgctc aacatgggaa aagacattcc ggcagatcgg ctttgaaagc
                                                                     360
ttaaagggag ctgatgctgg caatgggatc agagtgcttg tacccqacat cqqqatqqtc
                                                                     420
attg
                                                                     424
     <210> 4
     <211> 1222
     <212> DNA
     <213> Homo sapiens
     <220>
     <221> misc feature
    <222> (1) ... (1222)
    <223> n = a,t,c or g
    <400> 4
cccacgcgtc cggatgccgg aggctccatg actatccaca cctttggtgc ctacttcggg
                                                                      60
ctcgtccttg cgcgggttct gggcaggccc gagctggaga agagcaagca ccgccaqqqc
                                                                     120
teegtetace atteagacet ettegecatg attgggacea tetteetgtg gatettetgg
                                                                     180
cctagettea atgetgeact cacagegetg ggggetggge ageateggae ggeetteaac
                                                                     240
acatactact ccctggctgc cagcaccett ggcacctttg ccttgtcagc ccttqtaggq
                                                                     300
gaagatggga ggcttgacat ggtccacatc caaaatgcag cgctggctgg aggggttgtg
                                                                     360
gtggggacct caagtgaaat gatgctgaca ccctttgggg ctctggcagc tggcttcttg
                                                                     420
gctgggactg tctccacgct ggggtacaag ttcttcacgc ccatccttqa atcaaaattc
                                                                     480
aaagtccaag acacatgtgg agtccacaac ctccatggga tgccgggggt cctgggggcc
                                                                     540
ctcctggggg tccttgtggc tggacttgcc acccatgaag cttacggaga tggcctggag
                                                                     600
agtgtgtttc cactcatagc cgagggccag cgcagtgcca cgtcacaggc catgcaccag
                                                                     660
ctcttcgggc tgtttgtcac actgatgttt gcctctgtgg gcgggggcct tggaggcatc
                                                                     720
atattggtct tatgcctcct agacccctgt gccctgtggc actgggtggc accctcctcc
                                                                     780
atggtggggg gcagagaagc ctcacagatc ctcccctacc accaccaggg ctcctqctqa
                                                                     840
agctaccett tetggactee cececcaqae teccaqeaet acqaqqaeea agtteactqq
                                                                     900
caggigactg gegageatga ggataaagee caqaqaeete tgaqqqtqqa qqaqataete
                                                                     960
acttatgcct aacccactgc cagcccatga taggactttc ttcttttcga acaagatgac
                                                                    1020
tggctgttac aagaaaaatt tttttgagct ccccttgctc gacatgcaag aaaggaccca
                                                                    1080
tagacccata aggaggggg tttccacagg ctaangectc acccagtaga gggccctgag
                                                                    1140
```

```
aggaegggea etttttggaa aaggtgeeeg eetgtgetaa aaetggtttt teggaeteee
                                                                    1200
gttecegece eegeceeeee eg
                                                                    1222
     <210> 5
     <211> 574
     <212> DNA
     <213> Homo sapiens
     <400> 5
cagocatote agocteagee tittitetgit tetitiqetqq acaqqiqtiq etqteaqtiq
gagaaaaggg cacactetga ettttgagtt tteateattt ttgtgeeact teteatettt
                                                                     120
gtgggcttat ctatttcaat gtgtgagatt gctgaccttt ggatagggtt attgtqqtta
                                                                     180
ttttttgtta tttattgttt ttcttttaac agtctgacca ctgtgtgtag ggctgctgtg
                                                                     240
gttttctgga ggtctgctcc agaccctggt gcccttggct ttttcagtat ctggaagtat
                                                                     300
caccagttaa ggctgtgaaa cagcaaagat ggcagcetgc ccctttgtca ggtcagaatg
                                                                     360
catactgacc tgttgcctgc ctgaacacac ctgtagaagg tggctgaagg ctttggattg
                                                                     420
gaggtctcac ccaaccagga ggaatggggt cagcagccta cttaaagaag cagtctggct
                                                                     480
gtgttttggt agagcatctg tgctgtgttg tggattcctt cagctctcaa atggtttggg
                                                                     540
ctatccaaag cccacagtct gcactaactt acct
                                                                     574
     <210> 6
     <211> 947
     <212> DNA
     <213> Homo sapiens
     <400> 6
togaccoacg cgtccgaaag caatgottto togatotato tgtggtgaag gacaaaattg
tctttgctgt tgctttaatg ttaaataaat tgcaggctga tacttttgta aaatagaata
                                                                     120
aaattgtggc aatgtcagat teetgtaaaa gtttetgaac aettteggtt tetataetta
                                                                     180
cctcattgaa aaaatactta acaagtagtt gtggatgggc actagtccac aaaccacaat
                                                                     240
cggagtagca cctgtgttca aaataagcag aagacattcc attttatgaa tgtgtgtact
                                                                     300
gaatttgatt tttaacatga ceteattate tttettggat tagaattttt tagacaactt
                                                                     360
ccctagcagt gacaccctgt ccttcattgc aaggatattc ctgctgttcc agatgatgac
                                                                     420
tgtataccca ctcttaggct acctggctcg tgtccagctt ttgggccata tcttcggtga
                                                                     480
catttatcct agcattttcc atgtgctgat tcttaatcta attattgtgg gagctggagt
                                                                     540
gatcatggcc tgtttctacc caaacatagg agggatcata agatattcag gagcagcatg
                                                                     600
tggactggcc tttgtattca tatacccatc tctcatctat ataatttccc tccaccaaga
                                                                     660
agagegtetg acatggeeta aattaatett ceaegtttte ateateattt tgggegtgge
                                                                     720
taacctgatt gttcagtttt ttatgtgaaa tacctcaact gtttttttca agagctctca
                                                                     780
tgatattttg agcettgaca acagttetat acaaatteac ttgtaaaege tgetgttgeg
                                                                     840
taattotaaa cattototaa gatoatttga aagcacggga actagcggac cottcaagag
                                                                     900
catteettta ttgggeggee eecaggggge acacacgete geecete
                                                                     947
     <210> 7
     <211> 625
     <212> DNA
     <213> Homo sapiens
     <400> 7
aagtagagga cgttcagtac tattttatca tctttacaaa catgctagct agttaggaca
                                                                      60
```

```
gtgttttttt aacttcatct tattgcacta tgctgtctgc tagcttcagc tggtaatata
                                                                   120
agcagaatat taaactagaa aaattgtgtt ctctcagtaa aaataggtgc taaaattaaa
                                                                   180
aacacaatat attacacttc tgtttgtttt gtcttttggt tggccctgat attcttgtgc
                                                                   240
atagaattgt ttaatatcta tgtctgtgtg agatatgtgt gtatgtgtgc atgcatgtat
                                                                   300
atacatacac acacataggc tgaacaattt gaatgtcata cttgcatatt tagccataaq
                                                                   360
tctcaaatta atcctttct tgattctatc ttaacccatc actgactctt tcgatttaaa
                                                                   420
atgctccagg aaggcctgaa ttaaattgaa aggaaatttt ttaaaactca tatctgttcc
                                                                   480
tgatatcaag ttttctgttc taatacatcc tatctgccct tctcctgcct taaaaaaact
                                                                   540
gtaagaaaca agggttgaac tggaaagaaa qtttaaacaq qqatqqtttt tttttaacct
                                                                   600
aacttttqcc ccaaattctt caqaa
                                                                   625
     <210> 8
     <211> 1045
     <212> DNA
     <213> Homo sapiens
     <400> 8
gggcagggaa agtacagtca agtagcaata taatatatca tgttgacatt tcttagatgc
                                                                    60
ctactgcatg ccaagccccg tcctaggagg ttgctacatg ttatcccact taatcagtaa
                                                                   120
teccataate acatgagaet attattttea tgtaggggge gggggatgtt tetetteege
                                                                   180
agaaggatgt taccttcaag ggacaggtat tacaaagatg ttgaattaat tttcaattat
                                                                   240
ttgggcttct taatcgtatc tgggcttttg gatctcatat tttagtttta aaaccccatc
                                                                   300
agtttatagt taataacata agtttacaag tgtaataact caaaaattta tttcatttag
                                                                   360
ttgtataaaa tatgattggc ttattccaca tgcaaccatt tagttaaaaa aattgagaca
                                                                   420
ttacatttca ttttaaagct catctttgtt actttctttg aacctgaaaa tccttaatct
                                                                   480
gttactctaa aaaaatcttc actgagatat gactggcctc accacatgg tctatgtgaa
                                                                   540
tttgctgact tttaaggaca ttatagtcag agccaaggta gacaagctat gaagtatgtg
                                                                   600
tgctctcaca tttacatatt tatacaacta gaagagtatt tgcaaaqttt taatatttqq
                                                                   660
atcactttaa aaactattag aacgtattag aaaaactatt agaacatatt agaaaatgat
                                                                   720
780
ccaacacttt gggagcctga ggcgggtgga tcacaaggtc aagagattga qaccatcctq
                                                                   840
gctaacacag tgaaaccctg tctctactaa aaatacaaaa aaaatagctg ggcgtagtgg
                                                                   900
egggegeetg ttgteecage tactegggag getggageag gataatggee tggaeeetgg
                                                                   960
gaggegggae ettggeetga geceagaata aageeeetgg eetteeaege tgggggggga
                                                                  1020
acagaaaatg gtcttaaaaa aaaaa
                                                                  1045
     <210> 9
     <211> 442
     <212> DNA
     <213> Homo sapiens
     <400> 9
ggaggcagga gggcaccccc tccgcaagaa ggggaccccg ctctgcctac tcccagtcct
                                                                    60
atgctccggt tctatttgat cgctggaggg attccactca ttatctgtgg catcacagct
                                                                   120
geagteaaca tecacaacta cegggaceac ageecetact getqqetqqt qtqqeqteea
                                                                   180
ageottggeg cettetacat ceetgtgget ttgattetge teatcacetg gatetattte
                                                                   240
ctgtgcgccg ggctacgctt acggggtcct ctggcacaga accccaaggc gggcaacagc
                                                                   300
agggeeteec tggaggeagg ggaggagetg aqqqqtteea ceaqqeteaq qqqeaqeqqe
                                                                   360
cccctcctga gtgactcagg ttcccttctt qctactgqqa gcqcqcqaqt qqqqacqccc
                                                                   420
gggccccgg aggatggtga ca
                                                                   442
```

<210> 10 <211> 904 <212> DNA

```
<213> Homo sapiens
     <400> 10
tttcgtgcag gagccccttg tctttcaggt ggggggcagt atggtttttg ggggcacaag
                                                                       60
ctttcctcag tccctccact tggaggggaa ggaatgtggc ctggctggct ggttgggatc
                                                                      120
aaggaggage tttegggeag gaeggggeea gggeaggetg gggegaggge teetgetgqt
                                                                      180
actgtgttcg ctgctgcaca gcaaggccct gccacccaca ttcaggccat gcagccatgt
                                                                      240
teegggagee etaattgeac agaageeeat ggggagetee agaetggeag eeetgeteet
                                                                      300
gcctctcctc ctcatagtca tcgacctctc tgactctgct gggattggct ttcgccacct
                                                                      360
gccccactgg aacacccgct gtcctctggc ctcccacacg gatgacagtt tcactggaag
                                                                      420
ttctgcctat atcccttgcc gcacctggtg ggccctcttc tccacaaagc cttggtgtgt
                                                                      480
gegagtetgg cactgtteec getgtttgtg ceageatetg etgteaggtg geteaggtet
                                                                      540
tcaacggggc ctcttccacc tcctqqtqca qaaatccaaa aaqtcttcca cattcaaqtt
                                                                      600
ctataggaga cacaagatgc cagcacctgc tcagaggaag ctgctgcctc gtcgtcacct
                                                                      660
gtctgagaag agccatcaca tttccatccc ctccccagac atctcccaca agggacttcg
                                                                      720
ctctaaaagg accccacct teggtteeeg agacatggga aaggetttte ccaaatggga
                                                                      780
ctctccaacg ccagggggg accggccgtc ctcttttgaa ttgctgccct gaagccccgc
                                                                      840
gettatttcg gggcacgaat attttccgg accettgatg getetccgat cggtetettt
                                                                      900
ctcc
                                                                      904
     <210> 11
     <211> 880
     <212> DNA
     <213> Homo sapiens
     <400> 11
tttegtetgg gatgtggece ggcaaaacca cetgagcaga gacaacagtg ttgtaccetg
                                                                       60
ctggtagttt tggcaaaaca cagtgtgcca gggataacgt ggagttcggc ttattcatct
                                                                     120
gttatttgac ttaggtttat tgctgccatg attctgctct gtcccgggct cactgacctc
                                                                      180
agtgtgtttc tgtttagctt gaccattgga cacttctcca gggttcgtgg acagacqatt
                                                                      240
actgcatgtc caagttcaag aatacctgct ggattccagg atatagtgca ggggtcagca
                                                                      300
aactetggee caegggeeet ggeeegetge eegtgtttgt aaataaagtt ttaetgteae
                                                                      360
acagacacaa ccattecttt acatattgee tgtggetget ttteteacca caaaggeaga
                                                                     420
gttgagtatt catctgggat ggcctgcaaa atctgagatg gttgctgtct gaccctttgc
                                                                      480
agagagaatt taccaatgte tgaaatgaaa teggeeetee ggatetgeaa gtteeteate
                                                                     540
tggggtttca actaaccatg gattgaaaat acgtggggaa agaaaaaccc aaaaatgacc
                                                                     600
atacagcaat aaagegtaat ccacatttta agaatgcagg gtaaccatga tctacccagc
                                                                      660
atttacattg cattagggat aaggattcta aaaatgaatt ttcataggat atatgcccat
                                                                      720
aggaatcett tggacaatcg gggcettggg gatetggggg atttgggtee tteagggggg
                                                                      780
gatctgggac ccatcctccc cggattccca gggaaaggca ccttgcccca atcctggttt
                                                                      840
teettaaaaa etetatgeee ettteeettt qqtataqqqe
                                                                      880
     <210> 12
     <211> 795
     <212> DNA
     <213> Homo sapiens
     <400> 12
taccccctgt ggtggaattc gatccatcag tgattttcta agatatgccg ggatttaaat
                                                                      60
```

```
totgtagttc actgaggttt otttatttaa toaactttcc tattgggaag tttgtgtgtt
tagccattct tctgccacat ttcccccttc ttagctgttg tcccctccaa gatcatctgg
attttccagg caaggagtca aggtattcag ggtcatgctg gttgccatca tattctctga
                                                                240
gtgttgctgg gtctcccctt ggtcaccttc ccaacacgta catgcacaca cctagaacgt
                                                                300
totototott goccattoco catocotoog taaattggga etottttaaa coottotooa
                                                               360
tcagggaagc ccttgccact gtggagtctc taggacgcca ggccttccca aacacaccca
                                                                420
480
cacaccttgc tcttcctggg ctctagaatt attggaattc cggaattaag atggtaattg
                                                               540
gctgggtgca gtggctgata cctataattc cagcactttg ggaagccaag ggaggattgc
                                                               600
ttgagtccag gagtttaaga cccgccctgg gcaacatagg ggagacaccc ctctctacca
                                                               660
agagggtaa aaccacccac ccccccggg gtggggggt gccctgaaat actaaacctc
                                                               720
ccgggggaag gcttaagtgg ggaaaaaatt gctttgagcc ccccgcggg gggggcgcct
                                                               780
ctcctacgcc aaccq
                                                                795
```

<210> 13 <211> 1694 <212> DNA

<213> Homo sapiens

<400> 13

cggtatgcgt	ccgaattccc	gggtcgacga	tttcgtggca	ccagctcagg	actgcatctg	60
cctgccattt	cccttccact	cctcctttct	ggagtctgac	attagaaagc	cagcgagaag	120
gaagattcaa	acaaccaacc	ctgatttcct	gcttctcctt	ttcatgagtg	ttcctgtggt	180
ctctgcacct	cctttctgtc	ccccggcaga	gggcagtaga	gatggccggc	ccaaggcctc	240
ggtggcgcga	ccagctgctg	ttcatgagca	tcatagtcct	cgtgattgtg	gtcatctgcc	300
			gcaacctcac			360
tcggcttcta	taacttctgc	ctgtggaatg	aggacaccag	caccctacag	tgtcaccagt	420
			gggttggcct			480
tgtacgggtc	cctggtcctc	accctctttg	cccccagcc	tetectecta	gcccagtgca	540
			tgggcttcct			600
			atgtgtggaa			660
cggggcctgg	gtttctagct	ctgggcagcg	cccaggcctt	actcatcctc	ttgcttatag	720
ccatggctgt	gttccctctg	agggctgaga	gggctgagag	caagcttgag	agctgctaaa	780
ggcttacgtg	attgcaaggg	ttcagttcca	accatggtca	gaggtggcac	atctgctcag	840
			cagctccagc			900
aggtggggcc	cctgtgtcaa	agaggccgag	gggcagcaag	ggcagccagg	gcacctgtga	960
cttcttagta	caagattgtc	tgtccttcag	gacttccaag	gctcccaaag	actccctaaa	1020
ccatgcagct	cattgtcaca	ccaattcctg	ctttaattaa	tggatctgag	caaatcttcc	1080
tctagcttca	ggagggtggg	gagggagtga	ttgctgtcat	ggggccagac	ttccaggctg	1140
atttgccaaa	tgccaaaatg	aaacctagca	aagaacttac	ggcaacaaac	gaggacatta	1200
aaagagcgag	cacctcagtg	tctctgggga	catggttaag	gagcttccac	tcagcccacc	1260
atagtgagtg	ggccgccata	agccatcact	ggaactccaa	ccccagaggt	ccaggagtga	1320
			atggggtaca			1380
			ggcagaggcg			1440
			cgctgtgaac			1500
			cccagaactt			1560
tacgcattgg	ggaattgtgt	gtattttcta	gcacttgtgt	attggaaaac	ctgtatggca	1620
gtgatttatt	catatattcc	tgtccaaagc	cacactgaaa	acagaggcag	agacatgtaa	1680
aaaaaaaaa						1694

<210> 14

<211> 1694

<212> DNA

<213> Homo sapiens

```
<400> 14
eggtatgegt eegaatteee gggtegaega tttegtggea eeageteagg actgeatetq
                                                                      60
cctgccattt cccttccact cctcctttct ggagtctgac attagaaagc cagcqagaag
                                                                      120
gaagattcaa acaaccaacc ctgatttcct gcttctcctt ttcatgagtg ttcctgtggt
                                                                     180
ctctgcacct cctttctgtc ccccggcaqa gggcaqtaqa qatgqccqqc ccaaqqcctc
                                                                      240
ggtggcgcga ccagctgctg ttcatgagca tcatagtcct cgtgattgtg gtcatctgcc
                                                                     300
tgatgttata cgctcttctc tgggaggetg gcaacctcac tgacctgccc aacctgagaa
                                                                     360
teggetteta taaettetge etgtggaatg aggacaceag caccetacag tqtcaceagt
                                                                      420
teeetgaget ggaageeetg ggggtgeete gggttggeet gggeetggee aqqettqqeq
                                                                      480
tgtacgggtc cetggtcetc accetetttg cececagec tetectecta geccaqtgea
                                                                      540
acagtgatga gagagcgtgg cggctggcag tgggcttcct ggctgtgtcc tctqtqctqc
                                                                      600
tggcaggcgg cctgggcctc ttcctctcct atgtgtggaa gtgggtcagg ctctccctcc
                                                                      660
cggggcctgg gtttctagct ctgggcagcg cccaggcctt actcatcctc ttgcttatag
                                                                      720
ccatggctgt gttccctctg agggctgaga gggctgagag caagcttgag agctgctaaa
                                                                      780
ggcttacgtg attgcaaggg ttcagttcca accatggtca gaggtggcac atctgctcag
                                                                      840
ccatctcatt ttacagctaa cgctgatctc cagctccagc gatggaaccc actacagagg
                                                                      900
aggtggggcc cctgtgtcaa agaggccgag gggcagcaag ggcagccagg gcacctgtga
                                                                     960
cttcttagta caagattgtc tgtccttcag gacttccaag gctcccaaag actccctaaa
                                                                    1020
ccatgcagct cattgtcaca ccaattcctg ctttaattaa tggatctgag caaatcttcc
                                                                    1080
totagottca ggagggtggg gagggagtga ttgctgtcat ggggccagac ttccaggctg
                                                                    1140
atttgccaaa tgccaaaatg aaacctagca aagaacttac ggcaacaaac gaqqacatta
                                                                    1200
aaagagcgag cacctcagtg tctctgggga catggttaag gagcttccac tcagcccacc
                                                                    1260
atagtgagtg ggccgccata agccatcact ggaactccaa ccccagaggt ccaggagtga
                                                                     1320
tetetgagtg acteaacaaa gacaggacac atggggtaca aagacaagge ttgactgett
                                                                     1380
caaagettee etggaeetga ageeagaeag ggeagaggeg teegetgaea aateaeteee
                                                                    1440
atgatgagac cctggaggac tccaaatcct cgctgtgaac aggactggac ggttgcgcac
                                                                    1500
aaacaaacgc tgccaccctc cacttcccaa cccagaactt ggaaagacat tagcacaact
                                                                    1560
tacgcattgg ggaattgtgt gtattttcta gcacttgtgt attggaaaac ctgtatqqca
                                                                    1620
gtgatttatt catatattcc tgtccaaagc cacactgaaa acagaggcag agacatgtaa
                                                                    1680
aaaaaaaaa aagg
                                                                    1694
```

<210> 15 <211> 739 <212> DNA <213> Homo sapiens

## <400> 15

```
gcctagttga cgtatggatc ttttctaggt tgtaggattt ggtagtgtag atccccagag
                                                                      60
tcacactgta tctgttgcct atatttggct aggttgagtc atgtcaccaa atatagccta
                                                                      120
tgccttcggc atgatgtatg ccaggcttct ggttccaaat tctgcagctg gcctccagag
                                                                     180
actactgett tteetgteat aatgtteett aagattaggg etgetgacea ggeagtattt
                                                                     240
tttatattta taacaaaatc aataccaaga gccttcaaag attgaatttt gctcatcaaa
                                                                     300
taggttcaca tgctgaaatc ctaatgcett ccttctccct ttagaaatta aattctgaat
                                                                     360
gtgcccaaac ctggataatg attaaagata gatgagttct tggctgggca ccgtggctca
                                                                     420
tgcctgtaat cccagcactg tgggaggctg aggtggaggc atcacctgag gtcaggagtt
                                                                     480
cgagatcago ctggccaaca tggtgaaact ctgtctctac aaaaatacaa aaaaaattac
                                                                     540
ccgcgcatga tggcgggtgc cagtaatccc aqctactcqq qaqqctqaqq tqqqaqaatc
                                                                     600
acttgaacet gggaggegga ggttgcagtg agecaagate gtgccattge actecateet
                                                                     660
gtgagacaga gcgagactct gtctgaatcg atatacatac aagatgagtt ctaaaaaccc
                                                                     720
aaccagacat accattccg
                                                                     739
```

```
<211> 725
     <212> DNA
     <213> Homo sapiens
     <220>
     <221> misc_feature
     <222> (1) ... (725)
     \langle 223 \rangle n = a,t,c or g
     <400> 16
aaatggtttg aactcattac ttttccatgt gtttgttgtc cacaaatgct agtgagatgc
                                                                       60
ttatttatqa ctttqtttac ttctqqtaqq tcaaattqat aqatttctqt ttaqcacaqa
                                                                      120
tgttttacaa acttgtactt tggttctggt ggtgtcttac caccagaggg aatttattat
                                                                      180
gtctggcttg catttttgct actttgtccc ttgaatctaa aaacttccca actttacaag
                                                                      240
ctacgttgtt aataaggcag cacttcattt ataaaacgtt tgtttggcct acagtgtgcc
                                                                      300
acgatetttg ttetttgtaa aaaaettaat ataqqtetat qaceteatqa qaatacqqce
                                                                      360
tgaataagat taactgtcag cagttcatca acattcttta ttacaacaca tcattaqcat
                                                                      420
ggetetgaga aagngttata etetgttett ttgttgeaga ttggaetaet agagtgaage
                                                                      480
aaattgccaa attgtggaga aaagcaagct cacaagaaag agcaccatat gtgggatttt
                                                                      540
aagaaactcc tctatctttt taatatttaa aataccgcgc cttggaaccc ttatttggat
                                                                      600
ttagggtaaa aaaaaaacca aattttccat tttttgaaaa aaggttggtt aagaacctgg
                                                                      660
gcccccaag cccacttttt ttttttaagg gggatttttt caactccctt atgggcttaa
                                                                      720
aaaaa
                                                                      725
     <210> 17
     <211> 871
     <212> DNA
     <213> Homo sapiens
     <400> 17
cacgagtacc aaagggcccc cctggccctc caggcgagga tggactccca ggacaccctg
                                                                       60
gacagagagg cgagactgtg agtatcggag gggctggggg acgtggctgg ctggctctct
                                                                      120
gaccaccetg cacgagggca cagcetege tgeecagege catetaggae cetectggee
                                                                      180
tgggaagagc agtcatgcag gccggcagcg ccttatggca tctgtgggca gaaggcaggt
                                                                      240
gttggctttg ggctggtttt ggaaactttg gtgagaggcc acatttaaag acacacacag
                                                                      300
attateetgg geegaetgaa geeteatgea teeageetta tttteeetet agaataatge
                                                                      360
tgagtgctac cccgcttgag ggatacgtct tttaattggg aaagtgctgg gaaagggtct
                                                                      420
acatgttact cagcgtcatt cagtcattcg atgctgcaat acttcaagag ggcggctgtg
                                                                      480
ggccatgcac caaccccace cacgttcacc cgggcccttc caggtccaat tcagggggtc
                                                                      540
tggaggatgc ctqcaatqtc cccttttaca ctaaaqaaaa caaqcqccaq tcaqqtqqaa
                                                                      600
geggeeteta actagteact eegetggea caagggetet ggagteagag acteeeettt
                                                                      660
tgacettgec etteaettta agaaaggeat ateaaaggge taetteatee ggaceagaaa
                                                                      720
gggactccag tgggttttca agtggggaga aaaaagcccc tcatccagaa aaaggggatc
                                                                      780
attittecg gggccccata acgccctttg gaaagttggg gcccacagtt tccttaaccg
                                                                      840
gggggtgtgc aaggaaaagg ggccccacac c
                                                                      871
     <210> 18
     <211> 703
     <212> DNA
     <213> Homo sapiens
```

<400> 18

```
gtgggaagga aaatgctatg cgtgtggata aaggtgctct ttcttctcat cgcagagtca
                                                                     60
aacacctggc tgctatcacc aaggacaaag gatgttctga agagtgaacc aactcagatt
                                                                    120
tacccacata cttcaagaaa gcaatttaaa aaaccgcagg aatccaaaca ttctttcatt
                                                                    180
ggctactaaa atacaagaaa agaaatcaag aaaagtttgt aggactttta ggaagctatt
                                                                    240
acttgatcag aatattatta ttataaatat atcagaacac ttttatcctt gcttgatggg
                                                                    300
aattcaacac ttcacgtcag ccaggaaagc tacaggttag taactaaact aacctagtct
                                                                    360
gttggcccta aagattttct gccaatggcc aggcatggtg gctcacacct gtaatcccag
                                                                    420
cactttggga ggctgaggcg ggtggatcac acctgaggtc aggagtttga gaccagtttg
                                                                    480
gccaatatgg ttaccatact gattatcatt ttaacattta tatacaaaca tctttaaqtc
                                                                    540
ttcctagaca atgttaagga aatgttaagg aaagccctca agaatcaata tggtgaaaac
                                                                    600
cccggacttt ctaaaaacca aaataaaccc gggtgggggg agggcccgtg gtccacttct
                                                                    660
cggaggggg gggggagaaa acttgttctg cgagcgaaga cta
                                                                    703
    <210> 19
    <211> 1488
    <212> DNA
    <213> Homo sapiens
    <400> 19
gctggtccgc ttttttttt ttctatcgct ttttttttt gtaccaattc aagtgttttc
                                                                    60
tetttetece catagaagtg tgtetatata tatgeegtgt taacetetet ttttatetga
                                                                   120
tgaggaaaaa catatgatct gaggggctaa gtgctgtagc ctagtgccag gtcttctqqc
                                                                   180
cccaattctg ggttctcccc aagcccatgt ttcttcccct ttctcacaat ctttacttct
                                                                    240
300
cactggcaca cctgaccttc atgcagtcag aagetttgga tgattcccca tccaaaatat
                                                                    360
taaagatgaa atgaaagcaa agtaggcatc tgacaaaagt tgctttttcc cttctgcatt
                                                                    420
ttaggacctc aagtaatgtt tatccagaaa ctgctatcat accagggatt cattgtqtat
                                                                    480
ttaacaacat aggcatgcaa tctggcaaat ttgaaaaact cttaacatac accccaaatc
                                                                   540
cctgcccaaa tttaagaact agggtggaca cagtgcgttt ttccatqtcq catcttctqt
                                                                   600
gatggggcta cgatacgtgg gagcagagaa tggggagggt ggagcgcatg ccagatgagg
                                                                   660
atctatcagc aatgggacgg ggcctccact ttagcatete caccetgete etetcagagg
                                                                   720
accgcctttc attgcattca gctgtgatgg tagcacgaac acaggtgcac cgaggacgag
                                                                   780
gagagcagga gccttgtgct ctctctgcat ctgaggcagg acagcacagg gtacggaqca
                                                                    840
gtctgcagag aggccagctc atcagggaag cacttgtctt ccaccttggg ctttgactga
                                                                   900
gcactgggca attggcctct ggggatcaac gaaataatcc taaacagagt tactctatgt
                                                                   960
cacactatgg aatgttccaa gtaggtggcc gtgttttcaa aagatgtatt ttctcctttt
                                                                  1020
gttgttgcca tttcataggt ttaggattgg gtgtgtgttt ctcctctctg aatggcactc
                                                                  1080
gaatgtttgc tgactcctac tctgtgtgac tggggtgtac agctatggac tgatgcatcc
                                                                  1140
catcccatca totttcatga tcaaagcagt ctcttcttt ttgacagctg aagaagcatc
                                                                  1200
ggtagggaat ccagaaggag cgttcatgaa ggtgttacaa gcccggaaga actacacaag
                                                                  1260
cactgagetg attgttgage cagaggagee etcagacage aqtqqcatea acttqtcaqq
                                                                  1320
ctttgggagt gagcagctag acaccaatga cgagagtgat tttatcagta cactaaqtta
                                                                  1380
catcttgcct tatttctcag cggtaaacct agatgtgaaa tcactgttac taccgttaat
                                                                  1440
taaactgcca accacaggaa acagcctggc aaagattcaa actgtagc
                                                                  1488
    <210> 20
    <211> 3134
    <212> DNA
    <213> Homo sapiens
    <400> 20
atgegettee getttggggt ggtggtgeea eeegeegtgg eeggegeeeg geeggagetg
                                                                    60
etggtggtgg ggtcgcggcc cgagctgggg cgttgggagc cgcgcggtgc cgtccgcctg
                                                                   120
```

aggccggccg	gcaccgcggc	gggcgacggg	gccctggccc	tgcaggagcc	gggcctgtgg	180
ctcggggagg	tggagctggc	ggccgaggag	gcggcgcagg	acggggcgga	gccgggccgc	240
gtggacacgt	tctggtacaa	gttcctgaag	cgggagccgg	gaggagagct	ctcctgggaa	300
ggcaatggac	ctcatcatga	ccgttgctgt	acttacaatg	aaaacaactt	ggtggatggt	360
gtgtattgtc	tcccaatagg	acactggatt	gaggccactg	ggcacaccaa	tgaaatgaag	420
cacacaacag	acttctattt	taatattgca	ggccaccaag	ccatgcatta	ttcaagaatt	480
ctaccaaata	tctggctggg	tagctgccct	cgtcaggtgg	aacatgtaac	catcaaactg	540
aagcatgaat	tggggattac	agctgtaatg	aatttccaga	ctgaatggga	tattgtacag	600
aattcctcag	gctgtaaccg	ctacccagag	cccatgactc	cagacactat	gattaaacta	660
tatagggaag	aaggettgge	ctacatctgg	atgccaacac	cagatatgag	caccgaaggc	720
cgagtacaga	tgctgcccca	ggcggtgtgc	ctgctgcatg	cgctgctgga	gaagggacac	780
atcgtgtacg	tgcactgcaa	cgctggggtg	ggccgctcca	ccgcggctgt	ctgcggctgg	840
ctccagtatg	tgatgggctg	gaatctgagg	aaggtgcagt	atttcctcat	ggccaagagg	900
ccggctgtct	acattgacga	agaggccttg	gcccgggcac	aagaagattt	tttccagaaa	960
	ttcgttcttc					1020
	ctaaggagcc					1080
acctgaactg	aaaggactgt	gtgacctccc	ccaagccaac	cactttcacc	tgggatgact	1140
ttcgattatg	ctttgttttg	gggctgtatt	tttgaaatac	tctacaagaa	agctgtggct	1200
	gaagaagcac					1260
gcagttcctg	ctgcctgcag	gcagacgagg	cctttgcttt	acagcactgt	atgtgttgca	1320
cgatggatcc	gtgacagcac	tttcctgttg	cactgaaact	cttggccatg	tagaggaaaa	1380
gatatggagt	tatgtggatt	tcatcactag	tatgtgtgcg	tgagctggtc	agttgccaaa	1440
ggaggaaata	aggttagaag	cctgaaccgt	tacaaaagaa	gagctcacta	tggtcaaaaa	1500
gtgatggctt	tcaggacttg	ttttttatcc	tgcctcacag	ttgttaaagt	ctgttccaag	1560
gcatcacctt	ccttctctac	ccaacaaccc	tgtgtaacaa	ctaaagtaga	attatctctc	1620
atttgttgtt	gtttttcctc	aaaattacca	aacaaagcaa	aaaataccct	tgttttttat	1680
agttgagatg	tcaagaagtt	aaattgaggc	ttaatgagca	taggtagctt	gtccaaggtc	1740
tcatgaccag	tcaagggcaa	gctggagtta	ataatctata	tttatttgac	tcagcactgt	1800
tttcatcaca	acttgttttc	ccagcatcat	gtagtgcatt	tagttttgtc	tttctcaggg	1860
tatagtcaat	atgcctgcag	gagtttctat	agcgagacat	agaatagtat	tctgatcagt	1920
tgccaaagaa	tctaggaaat	tagttgtatt	ttgtgcaagc	taatttaaaa	acatgatggg	1980
ctgttttaag	accagagtgg	aaattcatga	gaggaactat	actaccaaaa	gagcccaaat	2040
	atggataatt					2100
gtataatatg	cagttcctgt	gcctccagac	tatgcagctc	atcaccctag	gttctacagg	2160
aaatacagag	atgaacaact	ttgccttcaa	aaaatgtgct	gcctagaaaa	cagacctgca	2220
tttcaaccca	actgtaatgc	aggatttgga	ccatgaatga	tatgctagaa	tagaagaaag	2280
agaagtgttt	ttttaattga	gagcctctat	gtgcaaggtg	atatataatc	atatccagtt	2340
taatcttcac	aatatccaat	gaagaaggtc	tcattatctc	catgataaag	atggggaaac	2400
taaggtcaga	agggttaact	caactgtcta	ttgtcacatg	atgaataaat	agatgaagtg	2460
agatacaaag	ctaggttttg	attcaaagcc	ccttactttc	ctaattaaac	tatgatgcgt	2520
	ctgcaccctt					2580
tctttattta	gaaggcgtgg	gggacaagaa	ggatacaagg	taagtttcag	tggagctcag	2640
aggacgggga	gatagaactg	tggcacttag	gggagatgac	atttgctttg	ggcagaggca	2700
gctagccagg	acacatttcc	actataattt	tacaaagttt	aatttattag	cctagcatta	2760
agttaaagtg	aagtccagct	cccttgctaa	aaataactag	aggtaataat	tggtattcag	2820
	tacagtcata					2880
actatgtggg	tctgtgaatt	tctttaatgt	ctaagaaatc	ccagcttcat	aatttccatg	2940
	tctttttc					3000
	ttaggactat					3060
atgggatgtc	taatgtattt	caaaatcacc	caaaactttt	ggcaaataaa	agcattaaaa	3120
aagaaaaaaa	aaaa					3134

<210> 21

<211> 680

<212> DNA

<213> Homo sapiens

```
<400> 21
gtctaatgaa tacttagttt tgtcatctac aaaatgaaaa tagtaatatt tgcctcaaag
                                                                      60
actattattt gggaggatct agtgcaaatg ttagtaatgt ggatattgtg tagtgtccca
                                                                      120
ggatattaat gtttttagcc tcttggcttt tattctgtat tgttgcccca aaagatgatg
                                                                      180
ctcacttatc tttcatccag tgtaaggata tctggaaaga caacagaaag tatagctgtt
                                                                      240
ttcatttcaa aagtgatcag ctgcttgagc tagcaagcaa ggcttgcact agcttccagg
                                                                      300
cgcagtcacg cagtttcaca gcaggcgcgg ttccctcgga gcacccagag ctqccctqtq
                                                                      360
gtagtcagca gttgttctgt ggctgcactg ccaggctggg tggcaggtgg atcggagcca
                                                                     420
gcagatgtgg ctcaggaagt gccttcttgg cctctcctta atctctttca gagtctgtgg
                                                                     480
gcccttgatt gcactgtggg ttgtttcaga ctccagtatt aggagactga accccttggt
                                                                     540
ggtttttttg tgtgtgtg ctgagctggg ttgaggacat ggtaagcagg tggggtgcct
                                                                     600
cccctgtggt tgctccgggt ggtacctgtg gtgtggggtg ggtcttgagt agtctggccc
                                                                     660
ccacttgctg gagtatctgg
                                                                     680
     <210> 22
     <211> 502
     <212> DNA
     <213> Homo sapiens
     <400> 22
cagtggtcga gtctcctttt ctccttggtg tctctcattg gagcaatgat agtttattgg
                                                                      60
gtgcttatgt caaattttct ttttaatact ggaaagttta tttttaattt tattcatcac
                                                                     120
attaatgaca cagacactat actgagtacc aataatagca accetgtgat ttgtccaagt
                                                                     180
gccgggagtg gaggccatcc tgacaacagc tctatgattt tctatqccaa tqacacaqqa
                                                                     240
gcccaacagt ttgaaaagtg gtgggataag tccaggacag tcccctttta tcttqtaqqq
                                                                     300
ctcctcctcc cactgctcaa tttcaagtct ccttcatttt tttcaaaatt taatatccta
                                                                     360
ggcatcaaca accaggteat cettecaggt gteacegaaa tgccaggeta ttgcccette
                                                                     420
ctgctgcctg tctcaactga atgctgtgct gtggccacat catacacatg ttttgaagag
                                                                     480
aagaatataq qacaatqttq ca
                                                                     502
    <210> 23
     <211> 7830
     <212> DNA
    <213> Homo sapiens
     <400> 23
ggatctgata ctgcccacca tacagaagtc cttactgagg agtccagaga atgttattga
                                                                      60
aactatttet agtetgetgg cateagtgae gettgaeete agecagtatg ceatggaeat
                                                                     120
cgtgaaagga ctggctggtc acctgaaatc caacagtccc cqcctqatqq atqaaqctqt
                                                                     180
getggcactg eggaacetgg cacgecagtg cagtgactet teggecatgg aatecetgac
                                                                     240
caagcaccta tttgctatcc tcggaggctc ggaaggaaaa ctaactgttg tagcccagaa
                                                                     300
gatgagegte eteteaggga ttgggagegt cagteateae gtggtgtetg gacetteeag
                                                                     360
teaggteetg aatgggateg tggetgaget gtteateeeg tteetteage aggaagttea
                                                                     420
tgaagggacc ttggtacacg ctgtctcagt cctggctctc tggtgtaacc gattcactat
                                                                     480
ggaagtgccc aagaagctca ctgaatggtt caaaaaagct ttcagcctta aaacctccac
                                                                     540
atctgcggtg aggcatgcct acctgcagtg catgttggcc tettaccggg gtgacacgct
                                                                     600
gttgcaggec ctggacttac tgcccttgct catccagaca gtggagaagg cagcctccca
                                                                     660
aagcactcag gttcccacca tcaccgaagg ggttgccgca gccttgttgc tcttaaagtt
                                                                     720
gtcagtggct gactcacagg ctgaggccaa actgagcagt ttctggcagt tgattgtgga
                                                                     780
tgagaaaaag caggttttca cttctgagaa attcctggtc atggcttcag aggatgccct
                                                                     840
gtgtactgtg ttgcatctga cagagagact tttccttgac caccegcata gactcactgg
                                                                     900
caacaaagtt cagcagtacc accgggctct ggtggcggtg ctcctgagcc gcacctggca
```

960

	caggctcagc					1020
gctggcgcac	ggactcttgg	aggagctgaa	gactgtcctc	agttctcaca	aggtgctgcc	1080
cttagaggct	ttggtgactg	atgctggaga	ggtgactgag	gcaggcaagg	cctacgtgcc	1140
tccacqqqtc	ctgcaggagg	ctctqtqtqt	catctccggt	ataccagaac	tcaagggtga	1200
totcaccoac	actgaacaac	taacccaaaa	aatgctgatc	ateteceace	acceatectt	1260
	cagtctggac					1320
	accaggcacc					1380
	tccatgaatg					1440
cccacagete	atcagcacca	tcactgcctc	cgtgcagaac	cctgcactgc	gcctggtgac	1500
	tttgccatta					1560
	cagcaggaca					1620
ttccttcaaa	gagcagatca	tegagetgga	actaaaaaaa	gagataaaga	agaagaaagg	1680
						1740
	gaggtgcagc					
cagggaggcg	caggtccgga	ggeggetgea	ggagetggat	ggggagergg	aggeggeget	1800
	gacatcatcc					1860
	tcttttctgc					1920
ccccttcttg	tccttggctg	cctgtgtcat	gccctctagg	ctcaaggctt	tgggcacttt	1980
	gtgaccctgc					2040
	ctgtcggtgg					2100
	gtgggcaagg					2160
	ccgtttctga					2220
	atggcccaga					2280
ccccaacacc	ccacccgggc	gggtggacga	gaatggcccg	gagttgctgc	ctcgcgtggc	2340
	cttctgactt					2400
ttcagacacc	ctgaccaccc	tgtgtgccag	cagcagtggt	gatgatggct	gtgcctttgc	2460
agagcaggag	gaggtggacg	tgctgctctg	tgccttgcag	tccccgtgtg	ccagcgtgcg	2520
	ctccgggggc					2580
	ggcctgaacc					2640
	aagctggctg					2700
aaaaaaaaa	ttgctgattg	acgacgcgat	ttaccatgag	geggetgtaa	ggcaggcagg	2760
	ctctcccaag					2820
	gagatttacc					2880
gggacgagtt	atttcagaat	ctcctccaga	tcagtgggaa	gccaggtgtg	gcttggcgtt	2940
ggccctcaac	aagctctccc	agtatttgga	cagctctcag	gtgaagccac	tctttcagtt	3000
ttttgtccct	gatgccctca	atgaccgaca	cccagatgtc	cggaagtgca	tgttggatġc	3060
	acgctcaaca					3120
	ctgaagaacg					3180
	atgggctctc					3240
cattattacc	aagctcatcg	ctaccatata	caccactac	caccacatca	aagegaagee	3300
	ttgccacccc					3360
	cagcagctgc					3420
	ggcctggtga					3480
ggcggcactg	actgatgcca	tccaagataa	gaagaacttc	cgccggcgag	agggagccct	3540
ctttgccttc	gagatgctct	gcaccatgct	ggggaaactt	tttgagccgt	atgtggttca	3600
cgtgctgccc	catctgctcc	tgtgctttgg	ggatggaaac	cagtatgtgc	gtgaggctgc	3660
	gccaaggctg					3720
	ctggctgccc					3780
	gcaatggcgt					3840
tataggg	gedaeggege	tactacacac	caageagetg	ccaccccgcc	cacccaacac	
tgtgeecaag	cttacggagg	tgetgaeega	eteccatgte	aaagtecaga	aggetggaea	3900
	aggcagatcg					3960
	gatgccctga					4020
gctggacacc	aagtttgtcc	acttcattga	tgccccatcc	ctggccctca	tcatgcccat	4080
	gccttccagg					4140
	tactccctga					4200
	aaagcatcgc					4260
gaccattaga	gccatggtga	aggacataga	agagtegag	tttaaaact	tactaccata	4320
actuatura	acactgacga	-555cacyyy	atatataaat	agatasagact	atanacaaa	4380
attacetes=	acactgacct	atttacaset	arara	egeteaggeg	tagasass	
geeggeegag	gtcatggccg	accedage to	ggagaagttg	yayaagttga	cyccagaaat	4440
cyryyctaca	gccagcaaag	cyyacactge	accccatgtc	cgagatggct	acactatgat	4500

gtttaactac	ctgcccatca	cctttggaga	caagtttact	ccttatgtgg	ggcccatcat	4560
cccctgtatc	ctcaaagctc	ttgctgatga	gaatgagttt	gtgcgtgaca	ccgccctgcg	4620
	cgggttatct					4680
gctagagcaa	ggcctctttg	atgacctttg	gagaatcagg	ttcagctctg	ttcagctcct	4740
tggggatctc	ctgtttcaca	tctcaggagt	cactgggaag	atgaccacag	aaactgcctc	4800
	aactttggaa					4860
	aaccgggtgt					4920
	gcgtccctgc					4980
gcgtgagatc	ctacccactc	tctttqqqct	cctactaaat	ttcctqqcca	acacatatac	5040
	acgattgcag					5100
	gagatcatcc					5160
	gtgtgcattg					5220
	tctgaatccc					5280
	gaggcggcag					5340
ggctctggag	gacattetee	catttttact	aaagcagctg	gatgacgagg	aggtgtgaga	5400
	gatggtctga					5460
	aagctgacaa					5520
	gatgccctca					5580
	aagcttggga					5640
	gtagaggatg					5700
	cctgaggtgg					5760
	aaggctgact					5820
	gactccagcc					5880
cactaagaag	ctggatgctg	graacragtt	ggaggagage	raararctee	acaacgccat	5940
	gggaacgaga					6000
	tccatccttc					6060
	gcagccaaag					6120
	gtggtcagca					6180
	aaggcggctc					6240
taccctaaaa	cccttcctgc	cccaactaca	gaccactttc	accasaccc	tacaaaacta	6300
	gtgcgcctga					6360
taaggtggag	cccctcttca	cagagetget	caatogcato	cacaccataa	aggagggagg	6420
	accatgctgc					6480
	atccggaaaa					6540
	cgcatctcct					6600
	agtgccgttc					6660
	cacgggcgga					6720
	ggcagatata					6780
	cccattgcgg					6840
	ggcggagggc					6900
	tccagcgaca					6960
	cctcccctgg					7020
caacaccaag	gataagaaca	ccataatcaa	ggcctacagc	gaccagggaa	ttatcaacct	7080
	cggcagggtg					7140
	gtgctgaacg					7200
	gagcaggtgg					7260
	ccacatcttt					7320
	aagatggcgt				-	7380
	aacccacaca					7440
	aggaaaagca					7500
	gcatggctag		_			7560
	cttgagctct					7620
	cagacggtgg					7680
attgtgaggt	ctgaatggat	ctgacccctg	tcagatgaaa	atgattcaca	actetaacaa	7740
	tggggagggg					7800
	tttaatcttg			-3~~~9~99		7830
						, 550

<210> 24

```
<211> 957
     <212> DNA
     <213> Homo sapiens
     <400> 24
ctattttggc cttaatctcc atgtccagca tctggggaac aatgttttcc tgttgcagac
                                                                      60
tctctttggt gcagtcatcc tcctggccaa ctgtgttgca ccttgggcac tgaaatacat
                                                                      120
gaaccgtcga gcaagccaga tgcttctcat gttcctactq qcaatctqcc ttctqqccat
                                                                      180
catatttgtg ccacaagaaa tgcagatgct gcgtgaggtt ttggcaacac tgggcttagg
                                                                      240
agegtetget ettgecaata ceettgettt tgeceatgga aatgaagtaa tteccaceat
                                                                      300
aatcagggca agagctatgg ggatcaatgc aacctttgct aatataqcag qaqccctqqc
                                                                      360
tececteatg atgatectaa gtgtgtatte tecacecetg eeetggatea tetatggagt
                                                                      420
cttccccttc atctctggct ttgctttcct cctccttcct gaaaccagga acaagcctct
                                                                      480
gtttgacacc atccaggatg agaaaaatga gagaaaagac cccagagaac caaagcaaga
                                                                      540
ggatccgaga gtggaagtga cgcagtttta aggaattcca ggagctgact gccgatcaat
                                                                      600
gagccagatg aagggaacaa tcaggactat tcctagacac tagcaaaatc tagaaaataa
                                                                      660
ataacaaggc tgggtgcggt ggctcacgcc tgtaatccca gcaccttggg aggctgaggc
                                                                      720
gggcagatca tgaggtcaga agataaagac caccctggcc aacatggtga aaccctgtct
                                                                      780
ctactaaaac aaatacaaaa cttcgctggg cacagtggca caggecttta attccagcta
                                                                      840
cttgggaggc tgaggcagga gaattacttg aacccaggag gtggaaattg caatgagcca
                                                                      900
agattgggcc actgcattcc agcctggtga caqagcqaga ctgtctcaaa aaaaaaa
                                                                      957
     <210> 25
     <211> 704
     <212> DNA
     <213> Homo sapiens
     <400> 25
ggcacgaggg tgctgggggt gacccagget gtggttttgt ctgctggatt ctccagcttc
                                                                      60
tacctggctg acatagactc tgggcgaaat atcttcattg tgggcttctc catcttcatg
                                                                     120
gccttgctgc tgccaagatg gtttcgggaa gccccagtcc tgttcagcac aggctggagc
                                                                     180
cccttggatg tattactgca ctcactgctg acacagccca tcttcctggc tggactctca
                                                                     240
ggcttcctac tagagaacac gattcctggc acacagettg agegaggcct aggtcaaggg
                                                                     300
ctaccatctc ctttcactgc ccaagagget cgaatgcctc agaagcccag ggagaaqget
                                                                     360
gctcaagtgt acagacttcc tttccccatc caaaacctct gtccctgcat cccccagcct
                                                                      420
ctccactgcc tctgcccact gcctgaagac cctggggatg aggaaggagg ctcctctgag
                                                                      480
ccagaagaga tggcagactt gctgcctggc tcaggggagc catgccctga atctaccaga
                                                                      540
gaaggggtta ggtcccagaa atgaccagaa cgcctacttc tgccctggtt aatttagccc
                                                                      600
taactttcat ctgcttggaa aaacagctcc caaacgggtc tttcttgtaa ggcacaagga
                                                                      660
tatggtgtga tgcgcattac actgggaccg gtctaaaaga gctc
                                                                      704
     <210> 26
     <211> 1735
     <212> DNA
     <213> Homo sapiens
     <400> 26
ccggctcaaa ctggagctgg agcagcaggg cttcatccac accaaaggct gcgtgggcca
                                                                      60
gtttgagaag tggctgcagg acaacctgat tgtggtggcg ggagtcttca tgggcatcgc
                                                                     120
cetectecag atetttggca tetgeetgge ecagaacete gtgagtgaca teaaggcagt
                                                                     180
gaaagccaac tggagcaaat ggaatgatga ctttgaaaac cactggctta cgcccaccat
                                                                     240
```

```
ttccgaggtc ctgtccacgg cggggcctca gcagaactct ctgactgggg cccctggcc
                                                                     300
ggccccaccc agccgacatg ttttctttgg cctgggtggt ttataccctg agccaacctt
                                                                     360
taaaaattgg tagatttcac ataaaagtcc agatccacag cttctcttga aqaatgacca
                                                                     420
cctggctacg ccggctcttc ggtggcaaca ctacctggga cactgcctcc ccagtcacca
                                                                     480
agggccccag ctggcccgtt ctactcacct aagtgccgcc tgacccttgt acactaggag
                                                                      540
ctggcctccc acctctgcag ggttatttcc tgcacctcga ggccgctgcg ggccaatctg
                                                                     600
gagtgaaaca cggggacctg aaggatggag aggctggacc ccgctttgaa gagggtgcag
                                                                     660
cctgggaagg gcggccttgc tggggactgc ggtgggagta gagtgcccag gagagggtct
                                                                     720
gaggggtggg atgggggtca ggacaatttt gcaaaagaag tagctggaag ccatgggact
                                                                     780
ggcgggagcc tgtttggggg atctggatgg ttgactccta ggagtcaagt tcaqcatctt
                                                                     840
egeegtgget geagagetge etgatgggea etagagggea egeeageece acaeteeetg
                                                                     900
ggtctggctt cctcccgcaa cctcactcta gtagagcctg tgcctgccta ctagcgctct
                                                                     960
ggggttcgga gagtttggga atttctcaga gccaactggc tcaggcttgg gaaggctggc
                                                                    1020
tgctgccctc agctccgcct catcagctat gtgaaggggt gtgtatggag tgatcctgcc
                                                                    1080
gccccctccc tgggctggtc cagagatetc aaactccgat gcccctgggg ccacgtatgt
                                                                    1140
tgtgtaaatg gatgaaacag gcccttgagt tgggagcctg cttcactttg actttcccac
                                                                    1200
tgttgctgga gacaaagaca tcgtgatgag agaaagttcg cacaatctag tcggtaacag
                                                                    1260
ccactttcct tgagaccaag agagtgcggt ggggatgggg gggagagcac gggtccccgt
                                                                    1320
ctgacagtgg ccgctgccat attcaggtgt agctaattgc tctggtgtgg gaatqcaqqc
                                                                    1380
ctaatgacag aaatctggag aagccagaaa tacagatttg tatgtgagat gtcctgattt
                                                                    1440
tttaagttgt tggcagaaat taattcagaa atcaaatctg caggccaaac aaggtgcagg
                                                                    1500
acceagettt ggccccatge ccctgtaggt ccctctggga cagtcaccgc tggggtcctg
                                                                    1560
gctgctctgt cattgaggga tgctgggcac tgctgccggg tggccagggt atggggcatg
                                                                    1620
tgcccagcaa tgtggctcct tggccccgct ggccagtgtc ctgggcccct gacaggcgct
                                                                    1680
ggctgtgagt ggtttgtaca tgctacaata aatgcagctg gcagcaaaaa aaaaa
                                                                    1735
     <210> 27
     <211> 511
     <212> DNA
     <213> Homo sapiens
     <400> 27
gggacaatga gaaggtgaag gctcacattc tgctgacggc tggaatcatc ttcatcatca
                                                                      60
cgggcatggt ggtgctcatc cctgtgaget gggttgccaa tqccatcatc aqaqatttct
                                                                     120
ataactcaat agtgaatgtt gcccaaaaac gtgagcttgg agaagctctc tacttaggat
                                                                     180
ggaccacggc actggtgctg attgttggag gagctctgtt ctgctgcgtt ttttgttgca
                                                                     240
acgaaaagag cagtagctac agatactcga taccttccca tcgcacaacc caaaaaagtt
                                                                     300
atcacaccgg aaagaagtca ccgagcgtct actccagaag tcagtatgtg tagttgtgta
                                                                     360
tgtttttta actttactat aaagccatgc aaatgacaaa aatctatatt actttctcaa
                                                                     420
aatggacccc atataaactt tgatttactg ttcttaactg cctaatctta attacaggaa
                                                                     480
ctgtgcatca gctatttatg attctataac c
                                                                     511
    <210> 28
    <211> 1438
     <212> DNA
    <213> Homo sapiens
     <400> 28
atggccctga gctggatgac catcgtcgtg ccccttctta catttgagat tctgctggtt
                                                                      60
cacaaactgg atggccacaa cgccttctcc tgcatcccga tctttgtccc cctttggctc
                                                                     120
tcgttgatca cgctgatggc aaccacattt ggacagaagg gaggaaacca ctggtggttt
                                                                     180
ggtatccgca aagatttctg tcagtttctg cttgaaatct tcccatttct acgagaatat
                                                                     240
ggaaacattt cctatgatct ccatcacgaa gataatgaag aaaccgaaga gaccccagtt
                                                                     300
```

```
ccggagcccc ctaaaatcgc acccatgttt cgaaagaagg ccagggtggt cattacccag
                                                                     360
agccctggga agtatgtgct cccacctccc aaattaaata tcgaaatgcc agattagatg
                                                                     420
ccactteegg ggacagaget taagtggaet gggacgeact eteteegeet teetetgeee
                                                                     480
cctcgttcac cccgcagacc agaaccagta ctggagctgg gtctccaggt acgtccatct
                                                                     540
catgccttgt ttgcatccag cgcctatcag ccactcacca cgacgggacg cggaagtggc
                                                                     600
aggtgacggg ggtgtgtgcc agcagatgcg gatgccagga agagtgtgag aacaggggtg
                                                                     660
ggattaccgt ctgtctggga ggggctccag gtacccctct tccccgtcag acccactggg
                                                                     720
agatggctgc ttgccaggcc cccagaagga acatctgtct atacggtgct gaaatcccaa
                                                                     780
tcaaaagtat tgtttagaaa tgtatttctc cacagggctg acctcctgca gctcgctgag
                                                                     840
cacteceagg tecteageae teccaggteg tggetgggge agteagtagg aactgtaact
                                                                     900
atgtetetga tgeaceaegt gtttagaeae ageaeagtee ttttttetgt teetaetgtg
                                                                     960
gaagtagttt ctctttgggc atgetgacag cagtttttca tagectcacg gatgagecet
                                                                    1020
ttctacggga gtgactccat gcttgtatac agagtattta tacaaatgtt ttagcatctt
                                                                    .1080
catatgcggg gttaacccct agttccgtac agcatattct gttcaagtat ttttttacaa
                                                                    1140
gettgtgetg taggeacatg cettetgetg cagaagtgga cgeccgtgge acaeteecee
                                                                    1200
ccccccccg gggggggccc cccctttatg ggacattgcc atttttgccc tggaactcgg
                                                                    1260
gcggggacgt aaaaattgtt tttgccccaa ggggaacccc aagcaaaaaa ggggccttgc
                                                                    1320
ttttttgacg ttttaaaaaa aggggttagt tttaaacctg aaaagggctg gttgaaaccc
                                                                    1380
gaaacattaa aaaaggttgt tgaaagcaaa aacggccacc cgggtcacaa ttttqcqq
                                                                    1438
```

<210> 29

<211> 1846

<212> DNA

. <213> Homo sapiens

# <400> 29

egagggegeg caaggegatg gactttageg geacgatatg ggeagetgeg tegeqaqtte 60 ggggtacgga ggggctgcta tcggctggcg gcccacaagc tgcttaagga gatggtgctg 120 ctggagcggc tgcggcaccc caacgtgctg cagctctatg gctactgcta ccaggacagc 180 gaggacatec cagacacect gaccaceate aeggagetgg gegeeeetgt agaaatgate 240 cagetgetge aaactteetg ggaggatega tteegaatet geetgageet gggeegeete 300 ctccaccacc tggcccactc cccactgggc tccgtcactc tgctggactt ccgccctcgg 360 cagtttgtgc tggtggatgg ggagctcaaa gtgacggacc tggatgacgc acgtgtggag 420 gagacgccgt gtgcaggcag caccgactgc atactcgagt ttccggccag gaacttcacc 480 ctgccctgct cagcccaggg ctggtgcgag ggcatgaacg agaagcggaa cctctataat 540 gcctacaggt ttttcttcac atacetectg cctcacagtg eccegcette actgcgtect 600 ctgctggaca gcatcgtcaa cgccacagga gagctcgcct ggggggtgga cgagaccctg 660 geccagetgg agaaggtget geacetgtac eggageggge agtatetgea gaactecacq 720 gcaagcagca gtaccgagta ccagtgtatc ccagacagca ccatccccca ggaagactac 780 cgctgctggc catcctacca ccacgggagc tgcctccttt caqtqttcaa cctqqctqaq 840 getgtggatg tetgtgagag ceatgeecag tgtegggeet ttgtggteae caaccagace 900 acctggacag gtcggcagct ggtctttttc aagactggat ggagccaagt ggtccctgat 960 cccaacaaga ccacatatgt gaaggcctct ggctgaccta tctgagggct cggctgacca 1020 getgaetate eteageaget gggettgeet gtggagggag tgaettgeae tggcageaet 1080 gcatgtcacc tgggaacccc tgcagacaaa gctaacatcc cagacagaca gatgtgacca 1140 ggacaaacgt gcaataatgc caaatgttaa aatgtgagtt taccagccta gctatgggac 1200 tgctggctcc tagtccagga atcatggggg tatgactgcc tctccaaccc tgtgggctgt 1260 aagcaagete aggetagtet eeccaetggg ggetgtgeee etecetggga eggtteegtg 1320 ggcagcccca tcactgtgtt caatagtgtg agaatgtagc taaagcccct gctgctgctg 1380 etgeacatge cacageagge ggtggggget gegtggggae datecategt ggagtgttet 1440 ctcagcttag gtctggacag gagacttggc gggagatgct ccaggatgtg ggtgattctg 1500 tacctgggga ggctatctct gacctcccga caggggacac teccaggcca gcccaggggt 1560 caggggcaga ggtgcacacc tcagcatgag ccaagactgg ggtcagggag caggtgtggt 1620 ttgagccagg acctggggcg ggggtggggc cggggccttt ctgcctcatt tgctttcaat 1680 gaaagcetca aagcagecaa aaccaggett teeeeettee tegagtttga atatecagaa 1740 territgtae trettgttgg traaartgtr tattrtgra aaaaaraaaa raaaartagt 1800

taataaaatg atgtttcaca gcaaactctt ccctaaaaaa aaaaaa 1846 <210> 30 <211> 1313 <212> DNA <213> Homo sapiens <400> 30 tagaagggac gcttccaacc gattactacc agctatgact atgatgcacc tatatctgaa 60 gcaggggacc ccacacctaa gctttttgct cttcgagatg tcatcagcaa gttccaggaa 120 gttcctttgg gacctttacc tcccccgagc cccaagatga tgcttggacc tgtgactctg 180 cacctggttg ggcatttact ggctttccta gacttgcttt gcccccgtgg gcccattcat 240 tcaatcttgc caatgacctt tgaggctgtc aagcaggacc atggcttcat gttgtaccqa 300 acctatatga cccataccat ttttgagcca acaccattct gggtgccaaa taatggagtc 360 catgaccgtg cctatgtgat ggtggatggg gtgttccagg gtgttgtgga gcgaaatatg 420 agagacaaac tatttttgac ggggaaactg gggtccaaac tggatatctt ggtggagaac 480 atggggaggc tcagctttgg gtctaacagc agtgacttca agggcctgtt gaagccacca 540 attctggggc aaacaatcct tacccagtgg atgatgttcc ctctgaaaat tgataacctt 600 gtgaagtggt ggtttcccct ccagttgcca aaatggccat atcctcaagc tccttctggc 660 cccacattct actccaaaac atttccaatt ttaggctcag ttggggacac atttctatat 720 ctacctggat ggaccaaggg ccaagtctgg atcaatgggt ttaacttggg ccggtactgg 780 acaaagcagg ggccacaaca gaccctctac gtgccaagat tcctgctgtt tcctagggga 840 gccctcaaca aaattacatt gctggaacta gaagatgtac ctctccagcc ccaagtccaa 900 tttttggata agcctatcct caatagcact agtactttgc acaggacaca tatcaattcc 960 ctttcagctg atacactgag tgcctctgaa ccaatqqaqt taaqtqqqca ctqaaaqqta 1020 ggccgggcat ggtggctcat gcctgtaatc ccagcacttt gggaggctga gacgggtgga 1080 ttacctgagg tcaggacttc aagaccagcc tggccaacat ggtgaaaccc cgtctccact 1140 aaaaatacaa aaattagccg ggcgtgatgg tgggcacctc taatcccagc tacttgggag 1200 gctgagggca ggagaattgc ttgaatccag gaggcagagg ttgcagtgag tggaggttgt 1260 accactgcac tccagcctgg ctgacagtga gacactccat ctcaaaaaaa aaa 1313 <210> 31 <211> 2107 <212> DNA <213> Homo sapiens <400> 31 tagtacgaca ggacagaaac cgcgatcaac aacctcaacc ccgccttctc caagaagttc 60 gtgettgaet accaettega ggaggtaeag aageteaagt tegegetett tgaeeaggae 120 aagtccagta tgcggctgga cgagcatgac ttcctgggcc agttctcctg cagcctgggc 180 acgatcgtct ccagcaagaa gatcactagg cctctgctgc tgctgaatga caagcctgcg 240 gggaagggct tgattacgat cgctgcccag gagctgtccg acaaccgcgt catcacacta 300 agcetggegg geaggagget ggacaagaag gacetetttg ggaagteaga eeeetttetg 360 gagttttata agccaggaga cgatggcaag tggatgctgg tccacaggac tgaggtgatc 420 aagtacacac tggaccctgt gtggaagcca ttcacagtgc ccttggtgtc cctgtgtgat 480 ggggacatgg agaagcccat ccaggtcatg tgctacgact atgacaatga cgggggccat 540 gacttcatcg gcgagttcca gacctcagtg tcacagatgt gtgaggctcg agacagcgtc 600 ccgctggagt tcgagtgcat caaccccaag aagcagagga agaagaagaa ctataaaaaac 660 tegggeatea teateetgeg ateetgeaag ataaacegag actacteett cettgactae 720 atcctgggag gctgccagct catgttcacc gttggaatag actttacagc ctccaacggg 780 aatcccctcg acccttcctc tttgcactat atcaacccta tgggcaccaa cgaatatctg 840 teggecatet gggetgttgg geagateatt caggactacg acagtgataa gatgttteca

gctctgggat tcggggccca gttaccccca gactggaagg tctcccatga gtttgccatc

900

960

aacttcaacc ccaccaaccc cttctgctca ggtgtggatg gtattgccca ggcgtactca 1020 gcttgcctqc cccacatccq cttctacqqt cctaccaatt tctcccccat cqtcaaccac 1080 gtggcccggt ttgcggccca ggccacacaa cagcggacgg ccacgcagta cttcatcctc 1140 ctcatcatca cggacqqqqt catcaqtqac atqqaqqaqa cacqqcatqc cqtqqtqcaq 1200 gcttccaagc tgcccatgtc catcatcatc gtgggcgtgg gcaatgcgga cttcgctgcc 1260 atggagttee tggatgggga caqeegcatg etgegeteec acaeggggga ggaggcagee 1320 egegatattg tgeagttegt teeetttega gagtteegea aegeageaaa agagacettg 1380 gccaaagctg tgctggcgga gctgccccaa caagttgtgc agtatttcaa gcataaaaaac 1440 etgececca ecaactegga geeggetga getecagtge ecageageag catgteaget 1500 gagecteetg eceteceeca ggaacatgea egeteactet getteettgt gggtggeett 1560 tttttaccga tccccttttt tattttttac aaccggacct ccacccccaa cttcctccaq 1620 cccagetggg cttcctttgt tggagtcaac tgttgatgct tccaggccaa actggcttcc 1680 teteeteete teeceaeett tgeeattett aagtattgaa tgtaetttgt ataattttag 1740 tggaattgtt attgagaata aaatttttac aatcataact ggctttttcc aagtaactag 1800 ctgcagactc tgatgaaaga aacatgtcct tggtgcatac gtgtcgtagc ctgcacctaa 1860 ttaatteetg etgtttttt aataetgtga etgtgtteta tttgttatat geteagggta 1920 acaaatgagt ttcagacgtc cctgcgtcag ctccttcctc agcagggacc tgacgggctc 1980 actgatctaa gaaaggaaat ggaaaatgaa aatccacccc acaagtctaa taagttggtg 2040 tagtcacttc tgcatgggga catgcattcc agatgataac ctgttaaatc actgccagtt 2100 aacaqtq 2107

<210> 32 <211> 2549 <212> DNA <213> Homo sapiens

#### <400> 32

ttttttttt ttaaqtatac aatttqtttt tatttacaat accctataaa aatqtaaatt tagaaacttt tattttcatt aattagaacc aatccaaaca aaaaagataa agcacagtaa 120 ggaagagata ataatcaagt attcacttga ttggttgtga agggaaggta ggaaaggcat 180 gtagtggaaa tggtcagtag acaacggtag agggaagcta ggtaacatca ctggggaaca 240 gctggtggag cctggggtta cagcattggg aagaaatgga gatggagaac aggacagctg 300 gttttaacag aggatcttac tgttgtacaa tacatgtatg tgcaaaatgt ttattctctt 360 taaataccat aacctgtccc tcccaccccc caactacatt cgaaaaagta agaacagcag 420 aaagatcacg aaggccatgt aaaattaatt cagatttaat tttcttcagg gctqtaatca 480 ctagggatca aaactcctta gtctggttga ttgctgaatg ggagaggagt aagtgagaaa 540 gatcatggca ggctggccct gcaattattc aaacccaggc ccctggctgc ctgggaacgg 600 gacttgggtg agatgaagta gtaaagacag cagttctgcc catggtgtgg agactaaaaa 660 gcaaagcagg ccaaacttag cttccatggt tacatttgga agtttctatt catgacacca 720 aataaaagtg gggaagaagg aagcatggct tactgaagta gtctcaggaa gacagggcaa 780 gtgtgcaaaa agccacactg ccaaagcagg ctactagtga ggatcatcct gggtgacttc 840 gaatgcactt gaggggaaag gctcaagtac cctgtagttg tagcaggaaa aagacataac 900 catgtgttgt ttcgattaag gtggacagaa actaaggaaa taaaggtggg aagaagaaaa 960 aggacttctc agcctagacc tgggcataag ccaattaaga gttctgattt tattaaacgt 1020 gctqcatact ctttatttat qttaaaacaa qtaqaaccca ccaaattaat tacaaqataq 1080 aacagaaaca gattaaaata catcaqctqq tttqtqttta qaaqagqtaa tqaqacaact 1140 aaatattttt caatctaaaa ttcattcttt aaggaccctc tqaagaccac ataaatacat 1200 gtatggggtg tgtgtgtgt tatctatgtg tgtgtgtata tcttqatttc tacttaattg 1260 getettetat agteatatta atatggggea atgaaaaaac aactteaata ggatgaggga 1320 aggaateett tggcaggeta caatetaete tgaggtggag taagtggagg gataaaggga 1380 gagattacac ttgtgtctct aqqqcaaaqa aaatqcaaaa caqaactqaq taaaaqtaqq 1440 acatgcagaa ctgtaacaca gaaggtaaag aaaccagcag aagtatcacc cagccaaatt 1500 tcatagagca gtggggaaat atctgacatt tagagagaca acccctgtaa acaggaatcg 1560 atcccacaag actttgcttt ggggaaaaag ctaccttcct tccctcatta aaaacactcc 1620 attggtgatg gcagcagtgc aggtggcagc caaaaggagg tacaggacac atttggagat 1680 cttttatcgt atcccctgaa ctagctgcag ttttgtctcc agcaagttca gtttctgccg 1740

gtcaacatag cgagaaaaga gggacactag gtttgtaggt atagagattg gcttggccag 1800 ggctgcttgg ggaatccgca gaagttctcq tqttqccatq aacatcacct ccqtcctqac 1860 agggaagacc cataataata tcaggagaaa aaaatttaaa aqattacctc aaaqaactta 1920 aaataagaga agaaacagtc cgcactgacc actgattatt ttgtgttgat tctgtagcag 1980 ggtctgaact ctgtaggtct tcaccacggc tcaggaggat gaggagcagt gacaggccaa 2040 actacqaqaa aaqacaqaqq qaatcaaact caacactqtq tctaaacctc ctccaccact 2100 gttgaaggga tcctggcatc agatggggaa cagctctaaa tcaaaataac ctcactactg 2160 tgcttttctg taaaaccagg taaagatcag acaagcatga gttgaaaggc tatgtctctc 2220 tccaggcttt attctgccat agcagtgacc aggcgcagcc aacagaaacg gaaagtcatg 2280 gtgtccaaca cgcctctctg ttccccatgc tgaggttaaa aaatggtttt tccttgccat 2340 ggataatgta gaatttgact tttctcctat ttatgagaac agaaataggc taaaaaagaa 2400 agtaaatgaa gaccaatttt ggtacagaaa ttaaaaatca ggaaaaaata agaaaaaagc 2460 attacagtaa gatattttga attaagaaac aaggtgtaaa ctgtaggaaa atatacaaat 2520 aaacacaact gaaataaaaa aaaaaaaaa 2549

<210> 33 <211> 2098 <212> DNA

<213> Homo sapiens

<400> 33

atggacaagt tgaaatgccc gagtttcttc aagtgcaggg agaaggagaa agtgtcggct 60 tcatcagaga atttccatgt tggtgaaaat gatgagaatc aggaccgtgg taactggtcc 120 aaaaaatcgg attatcttct atctatgatt ggatacgcag tgggattagg aaatgtgtgg 180 agatttccat atctgaccta cagcaatggt ggaggtgcct tcttgatacc ttatgcaatt 240 atgttagcat tggctggttt acctttgttc tttctggagt gttcactggg acaatttgct 300 agettaggte cagttteagt ttggaggatt ettecattqt tteaaggtqt gggaattaca 360 atggtcctqa tctccatttt tqtqacaatc tattacaatq tcataattqc ctataqtctt 420 tactacatgt ttqcttcttt tcaaaqtqaa ctaccatqqa aaaattqttc ttcqtqqtca 480 gataaaaact gtagcagatc accaatagta actcactgta atgtgagtac agtgaataaa 540 ggaatacaag agatcatcca aatgaataaa agctgggtag acatcaacaa ttttacctgc 600 atcaacggca gtgaaattta tcagccaggg cagcttccca gtgaacaata ttggaataaa 660 gtggcgctcc aacggtcaag tggaatgaat gagactggag taattgtttg gtatttagca 720 ctttgtcttc ttctggcttg gctcatagtt ggagcagcac tatttaaagg aatcaaatcg 780 tctggcaagg tggtatattt tacagetett ttcccctatg tggtcctact catcctgtta 840 gtacgaggtg caactetqqa qqqtqcttca aaaqqcattt catactatat tqqaqcccaq 900 tcaaatttta caaaacttaa ggaagctgag gtatggaaag atgctgccac tcagatattt 960 tactcccttt cagtggcttg gggtggctta gttgctctat catcttacaa taagttcaaa 1020 aacaactgct tetetgatge cattgtggtt tgtttgacaa actgteteac tagegtgttt 1080 gctggatttg ctatttttc tatattggga cacatggccc atatatctgg aaaggaagtt 1140 teteaagttg taaaateagg ttttgatttg geatteattg eetateeaga ggetetagee 1200 caacteccag gtggtecatt ttggtecata ttatttttt tcatgetttt aactttgggt 1260 ctcgattctc agtttgcttc gattgaaacg atcacaacaa caattcaaga tttatttccc 1320 aaagtgatga agaaaatgag ggttcccata actttgggct qctqcttggt tttqtttctc 1380 ettggteteg tetgtgtgae teaggetgga atttactggg ttcatctgat tgaccactte 1440 tgtgctggat ggggcatttt aattgcaget atactggage tagttggaat catctggatt 1500 tatggaqqqa acaqattcat tqaqqataca qaaatqatqa ttqqaqcaaa qaqqtqqata 1560 ttctggctat ggtggagagc ttgctggttt gtaattacqc ctatcctttt gattqcaata 1620 tttatctggt cattggtgca atttcataga cctaattatg gcgcaattcc ataccctgac 1680 tggggagttg ctttaggctg gtgtatgatt gttttctgca ttatttggat accaattatg 1740 gctatcataa aaataattca ggctaaagga aacatctttc aacgccttat aagttgctgc 1800 agaccagett ctaactgggg tecatacetg gaacaacate gtggggaaag atataaagae 1860 atggtagate etaaaaaaga ggetgaeeat gaaataeeta etgttagtgg cagcagaaaa 1920 ccggaatgag atctcattga aaaaaatata tgattgtata atgtgatttt ttttagaata 1980 gggggaacct tatttatttg tgtgttaact gaataggaaa atgtacatac tatgttcatg 2040 atagtgtgat ttttttcaca tttaagcagg aatgcaatat aaaaatgtga atctctta 2098

<210> 34

```
<211> 1528
     <212> DNA
     <213> Homo sapiens
     <400> 34
ttttttttt ttgagatctt ggtccggttt actgaggctc tggagttcaa cactgtggtt
                                                                     60
aagctgttcg ccttggccaa cacgcgagcc gatgaccacg tggcctttgc cattgccatc
                                                                    120
atgctcaagg ccaacaagac catcaccagc ctcaacctgg actccaacca catcacaggc
                                                                    180
aaaggcatcc tggccatctt ccgggccctc ctccagaaca acacgctgac cgagctccgc
                                                                    240
ttccacaacc agcgacacat ctcattgtct ttaggaagcc tttaggaagc caggaacagt
                                                                    300
ccgccttggt ctgcttgtgg atgggggtga ggatggtgct gtgctccgat gctggtgctg
                                                                    360
geceteceet aettttggaa tatggagtgg geaacagtet gggeecaget gaaggeggtg
                                                                    420
ttcctggaag gtgtggatgg gtccaatgat gcgactgata tgagttatgt ctttacagct
                                                                    480
ttaatctagc aggccagaga tgtggccagt ggggcagcca gagaggaggg ctactgccag
                                                                    540
600
ccagcettee tggetgggat ettgggagea gagggaetat ttgaaaacag geactgtgae
                                                                    660
ccaggetgte atctccctcc cttgccccca gtaaaaatag cccataattc caagcctcc
                                                                    720
ccccaacccc tcatagttct agttcagctc ctgttccact tccctggggc tctgtcccca
                                                                    780
gtagggccca gggcttggct tggtctgggg cctggtggct ggaggactcc tgccacccc
                                                                    840
aggaccagat gcaggtacag gatgagggca tctcccaagg ttggcatcac tgaaggggca
                                                                    900
gcagagacat ggctggttcc tcaggctccc gggtaagagg gctgtggtgg catataggga
                                                                   960
ggaggagctg cagggttgta gactgggggc ccagctgggt agagtggata ttggggagca
                                                                   1020
ggaccactag gtgggtacat gaagccaggc tgtgggggtg cagggccagc tttggggtcc
                                                                   1080
tgggggtatg ggtatactgg ctgcactggg atgcctgtca ttggaatctc ctqqccttca
                                                                  1140
aatgggctct ggagctgctg gcgccggcgg tacaggtagc aacaggaaca gaggaagcag
                                                                   1200
cagatggtgg tggcaaccac agcaacaaag aggatcacag ctgaqqcqat qcctqctatq
                                                                   1260
gtcttggggc tgaaggccag gcagtgcttc tgctgcctct cggtgataag caaggtcagg
                                                                   1320
tecctgcage agtacegatg gtagcaggtc cegcagcaga aggtgaagaa etegcagtta
                                                                   1380
aaccccggat gccaggagcc attccggtcc aggtaccaca ggcagtcctc gccggccagc
                                                                   1440
actageetet ggagetgggt geeceteace cageagagea etgeeetget ecceetgtee
                                                                   1500
ceggeteege ggtggtteet cecateeg
                                                                   1528
    <210> 35
    <211> 1947
    <212> DNA
    <213> Homo sapiens
    <400> 35
atagagegee eteggtaceg cacaegaaga ageaggteea tecaegegte eqeageegea
tegeogacce etgegagege atggtgtaca tegeageett tgetgteteg geetacteet
                                                                    120
ccacatacca ccgagccggc tgcaagccct tcaaccctgt cctgggggag acctacgagt
                                                                    180
gtgageggee tgacegagge tteegettea teagtgagea ggteteecae eaccececta
                                                                    240
teteggeetg ceatgeagag tetgagaact tegeettetg geaagatatg aagtggaaga
                                                                    300
acaagttetg gggcaaatcc etggagattg tgeetgtggg aacagteaac gteageetge
                                                                   360
ccaggtttgg ggaccacttt gagtggaaca aggtgacatc ctgcattcac aatgtcctga
                                                                    420
gtggtcagcg ctggatcgag cactatgggg aggtgctcat ccgaaacaca caggacagct
                                                                    480
cetgccactg caagatcacc ttctgcaagg ccaagtactg gagttccaat gtccacgagg
                                                                    540
tgcagggcgc tgtgctcagt cggagtggcc gtgtcctcca ccgactcttt gggaagtggc
                                                                   600
acgaggggct gtaccgggga cccacgccag gtggccagtg catctggaaa cccaactcaa
                                                                    660
tgccccccga ccatgagcga aacttcggct tcacccagtt tgccttggag ctgaatgagc
                                                                    720
tgacagcaga getgaaacgg tegetgeett ceaecgacae gagaeteegg ceagaecaga
```

780

```
ggtacctgga ggaggggaac atacaggccg ctgaggccca gaagagaagg atcgagcagc
                                                                     840
tgcagegaga caggegeaaa gtcatggagg aaaacaacat cgtacaccag getegettet
                                                                     900
tcaggcggca gacggatagc agcgggaaag agtggtgggt gaccaacaat acctactgga
                                                                     960
ggctgcgggc cgagccaggc tacgggaaca tggatggggc cgtgctctgg tagccctggc
                                                                    1020
cccgggggca ggaggctctg gttcctcact cctcctqcct ccaccccta ccatqqacac
                                                                    1080
atgggtgagg ccgggctccc cgcctcactg cccttgagac caaaggggca gccctggccc
                                                                    1140
teceteceet etgetggeea gagggtetge ateteageee acceecaace ecacegtttg
                                                                    1200
gggtgagaag cagaatctgt gcttccccag tctccttgcc ccagacaacc agcatgtaag
                                                                    1260
accetteceg etteaceatt cegatteetg teceetttgg ggtaettggg ggagaetetg
                                                                    1320
gctcccagga tctgttccct atttcagtgc cttcctagga cacaggggac tccttgacgc
                                                                    1380
tececagget ttetgtgeec aggeetetgt eeceageggt gaggttgeag tgagtgaagg
                                                                    1440
agaggaggtg atotgttoto cotococtto tgoccatoto cagcatotto ttoccottoo
                                                                    1500
etggeeetge agggeettet ceageteest ttggttagte cetggeeate ceteetqtee
                                                                    1560
tggatccctt ctccctaact gcaaaatgcc tgcagcttcc agctccttcg tccctgatcc
                                                                    1620
tcaagcggtt ccctcccgtc tcagctcagc ggatccccca gagtggagga ggcctctcca
                                                                    1680
tgaggagggg agcagcccaa ggcacctgtc ctctgaccca ccggcagcga gtgcgcaggt
                                                                    1740
gtgagtgtaa gttcatgtag gagagtgtat gcgtgtgcgc, ctgtgccctg cttgcaggca
                                                                    1800
agcagggete ceteatgtag eceggeette eccetgetgg gggtecacea categetget
                                                                    1860
ctttctcaca gtctgcctct gatgagggcg aattgctatg acattccaag ctccaataaa
                                                                    1920
gactgtccca gactttgaaa aaaaaaa
                                                                    1947
```

<210> 36 <211> 1392 <212> DNA <213> Homo sapiens

<400> 36

ggattgctag tgcctcgggc acttcctacc gtacgaggcg caggtgggag acttccgccc 60 tegegggaet ggetagggeg tttgacegee ggeggtgaag gggaggeggt gggegtettg 120 gagaacagag cgagatggag aagcgaggcc gaggcgtgaa gtcgagcccc atccagaccc 180 cgaaccagac ccctcagcag gctccggtga cgcctaggaa agaaaggagg cctagcatgt 240 tcgagaagga ggcagtgagt gcggagactg ctaggggccc gagacggcta tgtccgaccg 300 tttaagtgaa atcgctcccc agtgggcccc gctcccgtca ccacccccaq aqccaagqaq 360 gcagcatctc ccttttgtgt ttcttttttc cccaqatqcq aaattqaaqc ctqaqactqa 420 gttgggcagt cccctttgga cttgagtgct aaagttttct tgttttttaa ttagggcat 480 agaaccctac ataagtcgat tggaagggtg gttacaagat cttcttttca aatttactca 540 gcttgcggat ttcctgagag tactctgagt attattgctt tgtactaaaa cacagtatgt 600 tagtgtattt agtgccatta taagcagttt tgctagcgaa aaatgagtgt gttgtattaa 660 aaaaataatt tgataaacca ggcagaatag tgccatgttt tgggttttta aaacatcagc 720 agtotggata titgaagaat gtacaggaga aaaaaactta agtigaaaat accotgtoca 780 aaacttactg atattgatgg aaagggtcat tattcagttt tattggtggt ataacaggta 840 tttctatatg attaggcttt gaaaaccgtt aatgtattaa agactctata ttttattgat 900 actttaacag aaaattagtt tgcccaagga tacaaagctg taatgataga gctgggacca 960 gaacctgtat gctagtactc ggtccaattg gcctatactg gtttctcttc gtacttactt 1020 cgtggaccta taataggatg aagatagaga tgacaggcaa aacaattttt tgaagaccct 1080 aaaacatttt aagattactc ttaaaaagag aattctcaaa ataatggcga aatttcaggt 1140 tcttgtttcc ctggtgtcta cattttacag aggaaagaac gaactaaata aaggaggaaa 1200 agcaaacagg ccaagtttac acagctaaga aaaagagcag agcagggcta gaaacctaaa 1260 tcagttggac ttaaaacttc acactcccaa acactatgct ggattttttg ggcaatgagg 1320 1380 gacaaagggg gg 1392

<210> 37 <211> 1809

<212> DNA <213> Homo sapiens <400> 37 aagaggetga etgtaegtte ettetaetet ggeaceaete teeaggetge eatggggeee agcacccctc teeteatett gtteettttg teatggtegg gacccctcca aggacageag 120 caccaccttg tggagtacat ggaacgccga ctagctgctt tagaggaacg gctggcccag 180 tgccaggacc agagtagtcg gcatgctgct gagctgcggg acttcaagaa caagatgctg 240 ccactgctgg aggtggcaga gaaggagcgg gaggcactca gaactgaggc cgacaccatc 300 tccgggagag tggatcgtct ggagcgggag gtagactatc tggagaccca gaacccagct 360 ctgccctgtg tagagtttga tgagaaggtg actggaggcc ctgggaccaa aggcaaggga 420 agaaggaatg agaagtacga tatggtgaca gactgtggct acacaatctc tcaagtgaga 480 tcaatgaaga ttctgaagcg atttggtggc ccagctggtc tatggaccaa ggatccactg 540 gggcaaacag agaagatcta cgtgttagat gggacacaga atgacacagc ctttgtcttc 600 ccaaggctgc gtgacttcac ccttgccatg gctgcccgga aagcttcccg agtccqqqtq 660 cccttcccct gggtaggcac agggcagctg gtatatggtg gctttcttta ttttgctcgg 720 aggectectg gaagacetgg tggaggtggt gagatggaga acaetttgca getaatcaaa 780 ttccacctgg caaaccgaac agtggtggac agetcagtat tcccagcaga ggggctgatc 840 ccccctacg gcttgacagc agacacctac atcgacctgg cagctgatga ggaaqqtctt 900 tgggctgtct atgccacccg ggaggatgac aggcacttgt gtctggccaa gttagatcca 960 cagacactgg acacagagca gcagtgggac acaccatgtc ccagagagaa tgctgaggct 1020 geetttgtea tetgtgggae eetetatgte gtetataaca eeegteetge eagtegggee 1080 cgcatccagt gctcctttga tgccagcgc accctgaccc ctgaacgggc agcactccct 1140 tattttcccc gcagatatgg tgcccatgcc agcctccgct ataacccccg agaacgccag 1200 ctctatgcct gggatgatgg ctaccagatt gtctataagc tggagatgag gaagaaagag 1260 gaggaggttt gaggagetag cettgttttt tgeatettte teacteceat acatttatat 1320 tatatcccca ctaaatttct tgttcctcat tcttcaaatq tqqqccaqtt qtqqctcaaa 1380 tectetatat ttttagecaa tggcaateaa attettteag eteetttgtt teataeggaa 1440 ctccagatcc tgagtaatcc ttttagagcc cgaagagtca aaaccctcaa tgttccctcc tgctctcctg ccccatgtca acaaatttca ggctaaggat gccccagacc cagggctcta 1560 accttgtatg cgggcaggcc cagggagcag gcagcagtgt tcttcccctc agagtgactt 1620 ggggagggag aaataggagg agacgtccag ctctgtcctc tcttcctcac tcctcccttc 1680 agtgtcctga ggaacaggac tttctccaca ttgttttgta ttgcaacatt ttgcattaaa 1740 aggaaaatcc acaaaaaaaa aaaaaagggg qcqccqttta aaagaaacaa acttatcqcc 1800 cgcgtgttg 1809 <210> 38 <211> 1511 <212> DNA <213> Homo sapiens <220> <221> misc_feature <222> (1) ... (1511) <223> n = a,t,c or g<400> 38 ttttttttt ttcaccgtca atgaataaac atttattgag caccggcaaa tcccagacac 60 tacagaacac acagaaggca tggccccacg ccgagggccc caqccccttq caaaqctqcc 120 acgctgccaa aaatggtggc gcatgcagct caggcgcagg ctgaggctgg ggcttggccg 180 ggcagtgcac ttggaacggg gtcctaaggc ctctgccagg ttccagctgg ggcaggggtc 240 acgtcgcttc ctgagagcag agcaaataaa taatggagag gcaggggctg gggcctgagg 300 tggaggggct ctggcgttgg cttatgtgac tccataggag caagacaggt ggccgggagc 360 ccccacccca gggtggggag gcagagccag gggaccacag ggtcctgggg cctccctggc 420

480

acctecactg gtecetegee tettggggee caaageaggg tgtgggggga cacceceaga

```
agggcacttg cttgaaatgc ggcttggact tagaaatgag tgggcagaga agctggggct
                                                                      540
gegentgeag tecetagage ggggegteat cagteeteea ettgeggggg taaceetget
                                                                     600
ggtggccatc gcagcggggg ttccccatgc tgtccagagg caccaccacc tcqtccqqqt
                                                                      660
tcgagttctt gttcagttcc accacgcggg gtaccaccga ggaccagcga tccctgcgga
                                                                      720
ggcggcccac ggtatgcgaq aagccataat actggtaggt ctcattcttg cccgggtcct
                                                                      780
egttgatgat geccaagtte tggttecagt gagaceagtt caceteatee accetgaage
                                                                     840
accacetgeg gteaggagtg cegteegage tettgeecae ggtgaceate teeceagage
                                                                      900
ggaaggcctt cctcaggaat acggggaagg agcgctcaat gtccaggatg gtggtggccc
                                                                     960
actgcagett ccagatgtgc ttgctctcct tggagacctg gcccactgtc tcgcccatga
                                                                    1020
gggcaatgag catgttgagg agcagcacaa aggtgaggat gatgtaggtc accagcagga
                                                                    1080
tgatgaagac cacggggtac ttggtgctgc tcagcatctc caggtcgccc atgccgatgg
                                                                    1140
teagettaaa eaggteeagg aggaaggtge tgaaggtete getgteaegg caegaggggt
                                                                    1200
aagtgggcac tgtgcagttg gtctggtcct cattgcacac cttcatgttg gcacacqqqt
                                                                    1260
tcaggaggga gaccagggct gaagcgtagc cgatcatgaa gagcaagtag acgagcagga
                                                                    1320
atoggaaaag gtoottgaag agaatottot ggatoatgat gotataggto cocgtoagot
                                                                    1380
tcagcccacg ggtgaagtaa agggcattca tccagcccag gaccagggca aagaccatca
                                                                    1440
cggccaggta ggcctcgatc cctgccaggt agagggctgc tgagacgatc accaggacag
                                                                    1500
agtagatgaa g
                                                                    1511
```

<210> 39 <211> 2672 <212> DNA

<213> Homo sapiens

#### <400> 39

ggatttegtt teeteegget gggagtqqee getetaqqea qeqttqaqqt eqeqqqttq 60 aggggggttg tgaaaggaga geggeetete etetatqqte aeqqqeeqq qqcaeqette 120 ecceactety tettyttaet teeggtageg aagestetes etetteetet geteeegegg 180 ggtctgtgct gagaataatg gcccggttgg cccgggacga gtggaatgat taatgatgtt 240 ttgcagcagt tttctacgtc tgaaattttt tatgtctctg gaacccagaa tttgctaaga 300 gatggaggaa cctcagaaaa gctatgtgaa cacaatggac cttgagagag atgaacctct 360 caaaagcacc ggccctcaga tttctgttag tgaattttct tgccactgct gctacgacat 420 cctggttaac cccaccact tgaactgtgg gcacagcttc tgccgtcact gccttgcttt 480 atggtgggca tcttcaaaga aaacagaatg tccagaatqc aqaqaaaaat qqqaaqqttt 540 ccccaaagtc agtattctcc tcagggatgc cattgaaaag ttatttcctq atqccattaq 600 actgagattt gaagacattc agcagaataa tgacatagtc caaagtcttg cagcctttca 660 gaaatatggg aatgatcaga ttcctttagc tcctaacaca ggccgagcga atcagcagat 720 gggaggggga ttetttteeg gtgtgeteac agetttaact ggagtggeag tggteetget 780 cgtctatcac tggagcagca gggaatctga acacgacctc ctggtccaca aggctgtggc 840 caaatggacg gcggaagaag ttgtcctctg gctggagcag ctgggccctt gggcatctct 900 ttacagggaa aggtttttat ctgaacgagt aaatggaagg ttgcttttaa ctttgacaga 960 ggaagaattt tccaagacgc cctataccat agaaaacagc agccacaqqa gagccatcct 1020 catggagcta gaacgtgtca aagcattagg cgtgaagccc ccccagaatc tctgggaata 1080 taaggetgtg aacceaggea ggteeetgtt eetgetatae geeeteaaga geteeeceag 1140 getgagtetg etetacetgt acetgtttga etacacegae acetteetae ettteateca 1200 caccatetge cetetgeaag aagacagete tggggaggae ategteacea agettetgga 1260 tettaaggag cetaegtgga ageagtggag agagtteetg gteaaataet eetteettee 1320 ataccagetg attgetgagt ttgettggga etggttggag gteeattact ggacateaeg 1380 gtttctcatc atcaatgcta tgttactctc agttctggaa ttattctcct tttggagaat 1440 ctggtcgaga agtgaactga agaccgtgcc tcagaggatg tggagccatt tctggaaagt 1500 atcaacgcag gggctttttg tggccatgtt ctggcccctc atccctcagt ttgtttgcaa 1560 ctgtttgttt tactgggccc tgtactttaa cccaattatt aacattgatc ttgtggtcaa 1620 ggaactccgg cggctggaaa cccaggtgtt gtgactggca ctgcccaggc tgagactctt 1680 caagtcccgc tgacgtctga gctttgatgc ttaagagggg tgaggcaggg agcggacttc 1740 ctattttcta ccctcagtaa aacaaggtgc tgctttgtat atcaaaagct ccaaccatgt 1800 cetetecece teageetgtg ggtggcaega gcaaggaetg acateegeae agggaggatt 1860

```
gtetgtttgg etgacaeage ageageeett eecaceeage eacetteete acagggaeta
                                                                   1920
ggaggeteag tececaaegg etggeaagae teagggteet eagtggaeat ggtgtgggtg
                                                                   1980
acatcagaag ggtgccacat cagtcccctc cccaacctca gtgactgaca gaggatccgg
                                                                   2040
2100
aaaacaagga taagattotg toataggoat agagagttgo acataaaaaa taccqaaqaa
                                                                   2160
aacccaaaat tcaatcaaca attctqtctt attqaaqaqt tqctaqqatt caqaqtaaaa
                                                                   2220
ctcaaaggat tcagtttgag cctagaatga tggttagact tgtagtcact gggcttttqt
                                                                   2280
tttgctttat ggaaatcatt gaaggtctgg atccctttct ctgaatggag agattgagag
                                                                   2340
ggatgtcggg cagttcccat tagatttagt ggccttcatg ttattcagaa ttgttttggt
                                                                   2400
gataceteae ecetgtaate ecageaettt gggtgggtga ggeaggegga teaettgaag
                                                                   2460
ccaggacttc aagaccagct tggccaacat ggtgaaacct catctctact aaaaatacaa
                                                                   2520
aaattagcca agtgtgatgg cacatacctg taatcccagc tacttggaat tggaaatcgc
                                                                   2580
ctgaacccag gaggcggagg ttgcagggag ggagactgca ccactgcact tcagcctggg
                                                                   2640
tgacagaggg agactctgtc ttaaaaaaaa aa
                                                                   2672
     <210> 40
     <211> 717
    <212> DNA
    <213> Homo sapiens
     <400> 40
aaccaaatat gaaaatgtgt tttatttctc agtacaaagc cagatactgt aaggctatga
                                                                     60
aaaactgact agccagaggc cagaaaggac aaaaagaaga ctatctctgg cctggtgccc
                                                                    120
tgtgatctgg cgtggtgtca caggaggtct ggggacagca gcaaagacct ggacccatct
                                                                    180
aagtacacct gggtgtcact ccagaggggc aagaccaggc ccagggtgca gctgggggag
                                                                    240
ctggcagggg acaqagggaa aqccattqtc cccctqtcc ctcacctctt tqcccctcct
                                                                    300
tteeteteee tgetegaace tgetgteagg gaaateeacg eecaggagga cegteteate
                                                                    360
ctggctcaga ccttctcctt ctcgtgtaga aactaccagc aggtagcgga gccggggagg
                                                                    420
ccggggtgcc tccagctggg ctgccaggcg gatgtcatcc tgcggcctca gcagctgtac
                                                                    480
catgaggtgc aggtgctgcc tctgctcctc ctgcttctgg ggactctggg atccttgccc
                                                                    540
gaagtetgte tggteecegt ggageteete eteaeteggg geettetetg ttggeteaga
                                                                    600
actggcctct gctgcatcat cattgtcccc tccatcctgc agtcccagga cagcccacg
                                                                    660
gagcaccgca aagetetgcc ttcgctggag tcgacccqqq aattqcqqct qattacc
                                                                    717
     <210> 41
    <211> 1424
     <212> DNA
     <213> Homo sapiens
     <400> 41
ccatgagggc getggteetg eteggetgec teetggeete geteetgtte teaggacaaq
                                                                     60
cagaagagac ggaggatgca aatgaagaag ccccattgag ggaccgctcc cacatcgaga
                                                                    120
agacceteat getgaatgag gacaageeat eegatgaeta etetgeggtg etgeagegge
                                                                    180
ttcggaagat ctaccactca tccatcaagc ctctggagca gtcctacaag tacaatgagc
                                                                    240
teeggeagea tgagateaca gatggagaga ttaceteeaa geecatggta etgtteetgg
                                                                    300
gaccgtggag tgttggtaaa tctaccatga taaactacct ccttgggctg gaaaatactc
                                                                    360
gctatcagct ctatacaggc gctgaaccca ccacctctga gttcacggtc ctcatgcatg
                                                                    420
ggcctaaget gaaaaccate gagggcateg teatggetge tgacagegee egtteettet
                                                                    480
cacccettga gaagtttggc cagaatttcc tagagaagct gattggcatt gaggttcccc
                                                                    540
acaaacttct ggagagggtc acttttgtgg atacaccagg catcatcgag aaccgcaagc
                                                                    600
agcaagaaag aggctacccc ttcaacgacg tgtgccagtg gttcatcgac agagctgacc
                                                                    660
tcatctttgt cgtctttgac ccaacaaagc tggatgtggg tctagagctg gagatgctct
                                                                    720
tccgccagtt gaaggggcgt gaatcccaga taaggatcat cctgaacaag gctgacaatc
```

780

```
tggccaccca aatgctcatg cgggtttacg gggccctctt ctqqaqcttq qcccctctca
tcaatgtcac agagccccca agggtttacg tcagctcctt ctgqccacaa qaqtataaqc
                                                                     900
cggacaccca tcaggaactg ttcctccaag aagagatctc cctcctagaa gacctgaatc
                                                                     960
aggtgatega gaacagactg gagaacaaga ttgccttcat ccgccagcac gccatccqqq
                                                                    1020
tecgeateca egecetectg gttgaceget acetgeagae ttacaaggae aaaatgacet
                                                                    1080
tetteagtga tggagaactg gtetttaagg acattgtgga agateeegat aaattetaca
                                                                    1140
tettcaagac catcetggca aagaccaatg teagcaaatt tgacetteec aaccgegagg
                                                                    1200
cctataagga cttcttcggc atcaatccca tttccagttt caaactgctc tcccagcagt
                                                                    1260
gctcctacat gggaggttgc tttctggaga agattgagcg ggccatcact caggagcttc
                                                                    1320
cgggcctcct gggtagcctc gggctcggga agaatccagg tgctctcaac tgtgacaaaa
                                                                    1380
cagggtgtag cgaaacacca aaaaatcgct acaggaagca ctag
                                                                    1424
     <210> 42
     <211> 766
     <212> DNA
     <213> Homo sapiens
     <220>
     <221> misc feature
     <222> (1)...(766)
     <223> n = a,t,c or g
     <400> 42
ctcttccctc attaacttca ggtaagttgt taaaqcaaat qttctqqaqt tcaqaqtqtt
                                                                      60
gcttttgata atgagaaaac aagtttagtc atcagaatct gtcatcttgt ttataaaaca
                                                                     120
gtcaaaccat atgcaacgcc cttctgcatg gtggattttg ttttgttcct tgaacctact
                                                                     180
ggctcgcttc atccaatgcc tacagatagt aaataaagag gtccattttt ttaggtacat
                                                                     240
taaatactac aaattttggg aggggaggta gagtaggagg gtggtgggca gaaggcagcc
                                                                     300
gggccatttt tttggcaact aattcaatat gagaaaaaag atggtattgc tctcataaaa
                                                                     360
gtaatttata ttcattgttt tcaaccaact gaaacattca qaaaqctaaa aacatttcaq
                                                                     420
tcaaattccc accaccttga aataatcaga agtatgtttt ggtgaccatc attcaaqata
                                                                     480
cgttcttggc cgggcgcgt qqctcacqcc tqtaatccca qcactttqqq aqqccqaqqt
                                                                     540
gggtggatca cgaggtcaag agatcgagac catcctggcc atcatggcaa aactccqtct
                                                                     600
ctactaaaaa tgcaaaaaat tagetgggeg tggtggeggg caeetgtagt tecagetaet
                                                                     660
cgggaggctg aggcaggaga atggcgtgaa cccaggaggt ggagcttgca gtgagccaag
                                                                     720
atcgtgccaa agcactccag caaggatgac agagcttgac ncgaaa
                                                                     766
     <210> 43
     <211> 849
     <212> DNA
     <213> Homo sapiens
     <400> 43
ttttttttt ttctgattga caatgagaat atttattgag ggtttattga gtgcagggag
                                                                      60
aagggettga tgeettgggg tgggaggaga gaeceeteee etgggateet geagetetag
                                                                     120
tetecegtgg tgggggtgag ggttgagaac ctatgaacat tetgtagggg ceaetgtett
                                                                     180
ctccacggtg ctcccttcat gcgtgacctg gcagctgtag cttctgtggg acttccactg
                                                                     240
ctcaggcgtc aggctcagat agctgctggc cgcgtacttg ttqttqcttt qtttqqaqqq
                                                                     300
tgtggtggtc tccactcccg ccttgacggg gctgctatct gccttccagg ccactgtcac
                                                                     360
ggctcccggg tagaagtcac ttatgagaca caccagtgtg gccttgttgg cttgaagctc
                                                                     420
ctcagaggag ggcgggaaca gagtgaccga gggggcagcc ttgggctgac ccaggacggt
                                                                     480
cagtttggtc cctccgccga aaacccaggt qqtcctqcct qcatatqaqc aqcaataata
                                                                     540
atcagcctca tcctcagcct ggagcccaga gatggtcaag gaagctgtgt ttcctgagct
```

600

660

ggagccagag aatcggcctg ggatccctga qqqccqqttq ttttqaccat aqatqacaaq

```
tataggggcc tgtcctggct tctgctggta ccaacttqca taataacttc tqatqqtqtc
                                                                      720
tecttggcat ttgatectga gegtetgtee caaqqecaca qacacaqtaq qqtectqaqt
                                                                      780
cageteagaa gaaaccacag aacetatgea aaqaqtqaqq aqaqtqaqee aqaqaqqqqt
                                                                      840
ccaggccat
                                                                      849
     <210> 44
     <211> 1476
     <212> DNA
     <213> Homo sapiens
     <400> 44
atgtctgtaa caaagttccg cacactccct ccgtgccaca gagattgtgc caagattgag
                                                                       60
gcccaaaaag cggagagagt agatatgtgg aacctgcctc tggacagccg ctacgtcacc
                                                                      120
ttaactggga ccatcacacg agggaagaaa aagggtcaga tggtggacat ccatqtcaca
                                                                      180
ttgacagaga aagagctgca ggaactgacc aaacctaaag agtcatcaag ggaaacgacg
                                                                      240
cetgaaggaa gaatggeetg ceagatggga getgaeeqtq qqceceatqt qqteetetqq
                                                                      300
acgetgatet geetgeetgt ggtttteate etttettttg ttgtetettt etactacgge
                                                                      360
actateacet ggtacaacat ettectegtg tataatgagg aaaggacett etggeacaag
                                                                      420
atctcgtatt gcccttgcct cgttctcttc tatccagtgc tcatcatggc catggcttct
                                                                      480
teccteggee tetacgetge tgtggtecag etetegtggt cetgggaage atggtggeaa
                                                                      540
gctgcccggg acatggagaa aggcttctgt ggctggctct gcagcaagct gggtctggag
                                                                      600.
gactgttete cetacageat tgtggagttg ettgaateeg acaatatete aageactete
                                                                      660
tccaacaagg accccatcca agaaqtagaa acctccacqq tctaaactcc caacaactta
                                                                      720
ctccctcctc tggccccagt agcctatata tcatcttaaa attccaqcaq attatttctt
                                                                      780
taaattaccc cctactctcc qcaqttcttc tqqqaaatca qaqtccatac tqatcaqttt
                                                                      840
taccatcttg agggttccag gagggcatgg agcagacaag caattgtgcc aaagcagttc
                                                                      900
acccaatgga caaactcttt ttgattccct gccctaaaat caccatttat ttaqqacaat
                                                                      960
ggaactetge tgtgtgtegt tttgggagee tggaagtgtt actggtgeet ggaactgagg
                                                                     1020
ggagtatgtg actaaatgtg tcagggagaa taaagaacct cggggtaacc aaatccacca
                                                                     1080
agataataga cagggatgga gtgagacatt taggaagctg gactaccaca gtgtagcaga
                                                                     1140
aggtaaagat ttgtgtgtat catttagatt tagatttagc tgcatagaat taaaacccta
                                                                     1200
aaatatcagt ggcttaaaca aqataqaagt gtatttcttt cttqtqcaqa aqaaqtctqq
                                                                     1260
aggcaqacca tectgggacc etgtgaagta atecaggtee caggettett etatttetet
                                                                     1320
accattagta ggatgtgacc cttctcaccc ttatccccaa catcccagtg ctgattacat
                                                                     1380
cttcagccat cacatccatg tttctgataa aatagaggaa agggcagaga agcacacacc
                                                                     1440
ctttctggtc agggagactt ccagaagtcc cctcga
                                                                     1476
     <210> 45
     <211> 1712
     <212> DNA
     <213> Homo sapiens
     <220>
     <221> misc feature
     <222> (1)...(1712)
     \langle 223 \rangle n = a,t,c or g
     <400> 45
acctacacag cgatgtacgt gactetegtg tteegegtga agggeteeeg cetggteaaa
                                                                       60
ccctcgctct gcctggcctt gctgtgcccg gccttcctgg tgggcgtggt ccgcgtggcc
                                                                      120
gagtacegaa accaetggte ggacgtgetg getggettee tgacagggge ggecategee
                                                                      180
acctttttgg tcacctgcgt tgtgcataac tttcaqaqcc ggccaccctc tqqccqaagg
                                                                      240
```

```
ctctctccct gggaggacct gggccaagcc cccaccatgg atagccccct cgaaaagaac
                                                                     300
ccgaggtctg caggccgcat tcgacaccgg cacggctcac cccatccaag tcgcagaact
                                                                     360
gegecegeeg tggccacetg atecccaget gtgtctcctc cagggcccca gccatqtgtt
                                                                     420
egtegeeceg tgtgeecegt cetegattga ggtetgagee gaegeeettg eecetgeece
                                                                     480
tacccctgcc agcgcccacc cccagccagg gcccctcgcc ttcctcccct ggacctgggg
                                                                     540
ggccagtcgg gggtngggtg ttggtggcca anagctgctg ctgcccacgc ccctgctgcg
                                                                     600
ggacctgtac accctgagtg gactctatcc ctccccttc caccgggaca acttcagccc
                                                                     660
ttacetgttt gecageegtg accacetget gtgaggeegg accacecace cagaatetge
                                                                     720
ccagtcccca cttcttccct gccacgcgtg tgtgtgcgtg tgccacgtga gtqccaaaqt
                                                                     780
cccctgcccc ccaagccagc cagaccaga cattagaaga tggctagaag gacatttagg
                                                                     840
agacatetge eteteggee etetgagata teeegatggg cacaaatgga aggtgegeae
                                                                     900
ttgcccctac tattgccctt ttaagggcca aagettgacc ccattggcca ttgcctggct
                                                                     960
aatgagaacc cctggttctc agaattttaa ccaaaaggag ttggctccaa ccaatgggag
                                                                    1020
ccttcccctc acttcttaga atcctcctgc aagagggcaa ctccagccag tgttcagcga
                                                                    1080
ctgaacagcc aataggagcc cttggtttcc agaatttcta gagtgggtgg gcatgattcc
                                                                    1140
agtcaatggg ggaccgcccg tgtctaagca tgtgcaaagg agaggagga qatqaqqtca
                                                                    1200
ttgtttgtca ttgagtcttc tctcaaaatc agcgagccca gctgtagggt ggggggcagg
                                                                    1260
etececcatg gragggteet tggggtacce etttteetet cageccetee etgtgtgegg
                                                                    1320
cetetecace teteacecae tetetectaa teecetaett aagtaggget tgeeceaett
                                                                    1380
cagaggtttt ggggttcagg gtgctgtgtc tccccttgcc tgtgcccagg tcatcccaaa
                                                                    1440
cccttctgtt atttattagg gctgtgggaa gggtttttct tctttttctt ggaacctgcc
                                                                    1500
cctgttcttc acactgcccc ccatgcctca gcctcataca gatgtgccat catgggggc
                                                                    1560
atgggtggag caaaggggct ccctcacccc qqqcaqqcaa aqqcaqtqqq taqaqqaqqc
                                                                    1620
actgccccc tttcctgccc cctcctcatc tttaataaaq acctggcttc tcatctttaa
                                                                    1680
taaagacctg tttgtaccag aaaaaaaaa aa
                                                                    1712
     <210> 46
     <211> 755
     <212> DNA
     <213> Homo sapiens
     <400> 46
caggcaggca ggcaagagac cggcagctgg ggagccaagc agggctgggg atgctcactt
                                                                      60
gtettttete ettecaggge tgetggagag ceagaggetg geagegaeta tgtgaaggta
                                                                     120
ggaggggctg gccaggggtt ggtcagagga cactgaaggt ctcagagcct gctccattac
                                                                     180
gggtgggcag agccetteet caageettgt taggagecag accteactgt qtatteecaq
                                                                     240
gaggggaggt teteggagte gaggeageat ttggateeag ttteattete ageacettet
                                                                     300
tectacacca gecattatte ttteetggee ecaaacteag ggeaacecaa tatttgatat
                                                                     360
catctgaccc cactcacttg ccagctggac ggggccccaa cagtgtctcc atgtaaagga
                                                                     420
tgcagctttc caatcccacc caatctttgt gcacctactg tgtgctggcg ctggaagcag
                                                                     480
ggagcaggag aggatgactc agttctttat cacagataat gggcacagct catatttatc
                                                                     540
gccagcttca tttatcctgg gtactgagaa cattgtaatg cacctttcac ccttcacggc
                                                                     600
gtattgtgct ttgacgcccg aactttggga agccaaggag gactattacc ttatctcaga
                                                                     660
tgggggacca gtccggacaa tcgaaggtcc tcttttcttg gtaccggcac attgttaccc
                                                                     720
gattgggcgg cccgctggtt atcctttaat acaac
                                                                     755
     <210> 47
     <211> 2820
     <212> DNA
     <213> Homo sapiens
     <400> 47
```

60

atggtecetg cetggetgtg getgetttgt gteteegtee eecagtgeee acgeaggaag

```
atagageetg gtgacaaggt gagaateete ceacaggete teeceaagge ecageetgea
                                                                    120
gagetgtetg tggaagttee agaaaactat ggtggaaatt teeetttata eetqaeeaaq
                                                                    180
ttgccgctgc cccgtgaggg ggctgaaggc cagatcgtgc tgtcagggga ctcaggcaag
                                                                    240
gcaactgagg gcccatttgc tatggatcca gattctggct tcctgctggt gaccagggcc
                                                                    300
ctggaccgag aggagcaggc agagtaccag ctacaggtca ccctggagat gcaggatgga
                                                                    360
catgtcttgt ggggtccaca gcctgtgctt gtgcacgtga aggatgagaa tgaccaggtg
                                                                    420
ccccatttct ctcaagccat ctacagagct cggctgagcc ggggtaccag gcctggcatc
                                                                    480
cccttcctct tccttgaggc ttcagaccgg gatgagccag gcacagccaa ctcggatctt
                                                                    540
egattecaca teetgageca ggetecagee cageetteee cagacatgtt ecaqetqqaq
                                                                    600
cctcggctgg gggctctggc cctcagcccc aaggggagca ccagccttqa ccacqccctq
                                                                    660
gagaggacct accagctgtt ggtacaggtc aaggacatgg gtgaccaggc ctcaqqccac
                                                                    720
caggecactg ccaccgtgga agtetecate atagagagea cctgggtgte cctagageet
                                                                    780
atccacctgg cagagaatct caaagtccta tacccgcacc acatggccca ggtacactgg
                                                                    840
agtgggggtg atgtgcacta tcacctggag agccatcccc cgggaccctt tgaagtgaat
                                                                    900
gcagagggaa acctetacgt gaccagagag ctggacagag aagcccaggc tgagtacctg
                                                                    960
ctccaggtgc gggctcagaa ttcccatggc gaggactatg cggcccctct ggagctgcac
                                                                   1020
gtgctggtga tggatgagaa tgacaacgtg cctatctgcc ctccccqtga ccccacaqtc
                                                                   1080
agcatccctg agctcagtcc accaggtact gaagtgacta gactgtcagc agaggatgca
                                                                   1140
gatgcccccg gctcccccaa ttcccacgtt gtgtatcagc tcctgagccc tgagcctgag
                                                                   1200
gatggggtag aggggagagc cttccaggtg gaccccactt caggcagtgt gacgctgggg
                                                                   1260
gtgctcccac tccgagcagg ccagaacatc ctgcttctgg tgctggccat ggacctggca
                                                                   1320
ggcgcagagg ggggcttcag cagcacgtgt gaagtcgaag tcgcagtcac agatatcaat
                                                                   1380
gatcacgccc ctgagttcat cacttcccaq attgggccta taagcctccc tgaggatgtg
                                                                   1440
gagcccggga ctctggtggc catgctaaca gccattgatq ctqacctcqa qcccqccttc
                                                                   1500
cgcctcatgg attttgccat tgagagggga gacacagaag ggacttttgg cctggattgg
                                                                   1560
gagccagact ctgggcatgt tagactcaga ctctgcaaga acctcagtta tgaggcagct
                                                                   1620
ccaagtcatg aggtggtggt ggtggtgcag agtgtggcga agctggtggg gccaggccca
                                                                   1680
ggccctggag ccaccgccac ggtgactgtg ctagtggaga gagtgatgcc acccccaag
                                                                   1740
ttggaccagg agagctacga ggccagtgtc cccatcagtg ccccagccgg ctctttcctg
                                                                   1800
ctgaccatec agecetecga ecceateage egaaccetea ggttetecet agteaatgae
                                                                   1860
tcagagggct ggctctgcat tgagaaattc tccggggagg tgcacaccgc ccagtccctg
                                                                   1920
cagggcgccc agcctgggga cacctacacg gtgcttgtgg aggcccagga tacaqatgag
                                                                   1980
ccgagactga gcgcttctgc acccctggtg atccacttcc taaaggcccc tcctgcccca
                                                                   2040
gccctgactc ttgcccctgt gccctcccaa tacctctgca caccccgcca agaccatggc
                                                                   2100
ttgatcgtga gtggacccag caaggacccc gatctggcca gtgggcacgg tccctacagc
                                                                   2160
ttcaccettg gtcccaacce caeggtgcaa egggattgge gcctccagae tctcaatggt
                                                                   2220
teccatgeet aceteacett ggeeetgeat tgggtggage caegtgaaca cataateece
                                                                   2280
gtggtggtca gccacaatgc ccagatgtgg cagctcctgg ttcgagtgat cgtgtgtcgc
                                                                   2340
tgcaacgtgg aggggcagtg catgcgcaag gtgggccgca tgaagggcat gcccacgaag
                                                                   2400
ctgtcggcag tgggcatcct tgtaggcacc ctggtagcaa taggaatctt cctcatcctc
                                                                   2460
attttcaccc actggaccat gtcaaggaag aaggacccgg atcaaccagc agacagcgtg
                                                                   2520
cccctgaagg cgactgtctg aatggcccag gcagctctag ctgggagctt ggcctctggc
                                                                   2580
tecatetgag teceetggga gagageeeag cacecaagat ceageagggg acaggacaga
                                                                   2640
gtagaageee etecatetge eetggggtgg aggeaceate accateacea ggcatqtetg
                                                                   2700
cagagectgg acaccaactt tatggactge ceatgggagt getecaaatg teagggtgtt
                                                                   2760
2820
```

```
<210> 48
<211> 1517
<212> DNA
<213> Homo sapiens
```

<400> 48

cctgcttaaa agtttaaaag gaaaaaaca tgtttgtaag tccttctgcc tggagtaatt 60
tctcttatat aaagaagag tctttcata tgtaatagtg tcctttcggg acagaaatag 120
ttgtattatg acacatatgc acaaggatta gctctatagc gcgctgtaca tggtgggtcc 180

```
agettgetee ceagtagttg tttgagteea gattetttgg ggtggateet etttteagag
                                                                     240
gagetetage agagtttttt tttttttac aggtgcaaag atteaettta tttatteatt
                                                                     300
ctcctccaac attagcataa ttaaagccaa ggaggaggag gggggtgagg tgaaagatga
                                                                     360
gctggaggac cgcaataggg gtaggtcccc tqtqqaaaaa qqqtcaqaqq ccaaaqqatq
                                                                     420
ggagggggtc aggctggaac tgaggagcag gtgggggcac ttctccctct aacactctcc
                                                                     480
cctgttgaag ctctttgtga cgggcgagct caggccctga tgggtgactt cgcaggcgta
                                                                     540
gactttgtgt ttctcgtagt ctgctttgct cagcgtcagg gtgctgctga ggctgtaggt
                                                                     600
gctgtccttg ctgtcctgct ctgtgacact ctcctgggag ttacccgatt ggagggcgtt
                                                                     660
atccaccttc cactgtactt tggcctctct gggatagaag ttattcagca ggcacacaac
                                                                     720
agaggcagtt ccagatttca actgctcatc agatggcggg aagatgaaga cagatggtgc
                                                                     780
agccacagtt cgtttgatct ccaccttggt ccctccgcca aaagtgtagg atgagcccc
                                                                     840
atattggtga cagaaataca ctgcaaaatc ttcaggctcc agtctgctga tggtgagagt
                                                                     900
gaagtetgte ecetgaceeg gtggcactga acettgatgg gaceeegett tgcaaactgg
                                                                     960
atgaaccagt aaatgagcag tttaggggct ttccctggtt tctgctggta ccaggctaag
                                                                    1020
taggtgctgc caatagtctg actggccctg caggagaggg tggctctttc ccctggagac
                                                                    1080
aaagacaggg tgcctggagc ctgcgtcaac acaatttctc cggtggtatg tttgatctcc
                                                                    1140
accttggtcc ctccgccgaa agtggccccc ggaggccaat tgtcacggtg ttgacagtaa
                                                                    1200
taaactgcaa aatcttcagg ctctaggctg ctgatggtga gagtgaagtc tgtcccagac
                                                                    1260
ccactgccac tgaacctggc tgggatgcca gtggccctgt tggatgcatc atagatqaqq
                                                                    1320
ggcctgggag cctggccagg tttctgttgg taccaggcta agtagctgcc aacactctga
                                                                    1380
ctggccctgc aggagagggt ggctctttcc cctggagaca aagacagggt ggctggagac
                                                                    1440
tgtgtcaaca caatttctcc ggtggtatct gggagccaga gtagcaggag gaagagaagc
                                                                    1500
tgagctgggg cttccat
                                                                    1517
```

<210> 49 <211> 1614

<212> DNA

<213> Homo sapiens

## <400> 49

gattttgaag ccttaactcc aaacttgctg gccaggactg tagaaacagt ggaaggtggt 60 gggctagtgg tcatcctcct acggaccatg aactcactca agcaattgta cacaqtgact 120 atggatgtgc attccaggta cagaactgag gcccatcagg atgtggtggg aagatttaat 180 gaaaggttta ttctgtctct ggcctcttgt aagaagtgtc tcgtcattga tqaccaqctc 240 aacatcctgc ccatctcctc ccacqttqcc accatqqaqq ccctqcctcc ccaqactccq 300 gatgagagte ttggteette tgatetggag etgagggagt tgaaggagag ettgeaggae 360 acceageetg tgggtgtgtt ggtggaetge tgtaagaete tagaceagge caaagetgte 420 ttgaaattta tcgagggcat ctctgaaaag accctgagga gtactgttgc actcacagct 480 getegaggae ggggaaaate tgeageeetg ggattggega ttgetgggge ggtggeattt 540 gggtactcca atatetttgt taceteecca agecetgata acetecatae tetgtttgaa 600 tttgtattta aaggatttga tgctctgcaa tatcaggaac atctggatta tgagattatc 660 cagtetetaa ateetgaatt taacaaagca gtgateagag tgaatgtatt tegagaacae 720 aggcagacta ttcagtatat acatcctgca gatgctgtga agctgggcca ggctgaacta 780 gttgtgattg atgaagetge egecateece etceeettgg tgaagageet aettggeece 840 taccttgttt tcatggcatc caccatcaat ggctatgagg gcactggccg gtcactqtcc 900 ctcaagetaa ttcagcaget ccgtcaacag agcgcccaga gccaggtcag caccactgct 960 gagaataaga ccgcgaccga cagccagatt ggcatcagcg cggacactgc atgaggtttc 1020 cctccaggag tcaatccgat acgcccctgg ggactgcaag tggaagaagt ggctgaatga 1080 cttggctgtg cctgggaatt gccttcaaca atcactccgg ataaqttctc aaqqcttqcc 1140 ccctttgcct gaagcttgtg aactgtacta tgttaataga gataccctct tttgctacca 1200 caaggeetet gaagttttee tecaaeggge ttatggeeet etaegtgget teteaetaea 1260 agaactetee caatgatete cagatgetet cegatgeace tgeteaceat etettetgee 1320 ttetgeetee tgtgeeceee acceagaatg ceetteeaga agtgettget gttateeagg 1380 tataggagca gaggcgtcct tgtggcagtg atttggggaa ccactgaggc atcaggaatt 1440 agtggcttaa taactgcatt gtgggagttt tgaaactgtg gagtcctggt ctggaaccaa 1500 ggggctgggt ctgctgagac aggtgactag ggtgcactgg aagaqqttaq cqccactaga 1560

cacccaaagc tccactgttg acggacgggg aaaagccaga accgaccgct ctct 1614 <210> 50 <211> 659 <212> DNA <213> Homo sapiens <400> 50 tttcgtctgg gatttgagcc aagtcttcca acttcacaat agcagagtaa gaagagctgc 60 cttgttgatg ggacgtgggt cggagctccc agtgtgtctt gccttcctqq tqtqcttqat 120 ggcagccetg ggctgctgtg aggtcctgag cacagtgcat cctgaggaga cagtgctgcg 180 ggccccgcct actaacttcc agagatgtca gctgcagcag ggcagcgccc tggttagaga 240 gacggcatgg ggagttggca gggggaggcc ctcggagaga tggcatgggg agttqqcaqq 300 gggaggetet eggagagatg geatggaggg gttggggeet gtgeteetag gtgettagge 360 ttgcaggtga ctggaatcct gactaatatc ataagaggag agttcttact aacaaattac 420 ttgaacaaag actttgtttg tgccttcatt cgttcagcac atgtttacag tgtgcctgtg 480 atgtcccagg cgcactgccc tattcttgac atccttgtgg tgggatcaac tgcttgcctg 540 tccatagcgc aggccattac tagaggtgtt ttctgggggg cgaacaccgt tcttttgcag 600 tgaataccgg ggacaaggcc cgtcttgtga tgacccaacc gtgggttttc aaacacaag 659 <210> 51 <211> 450 <212> DNA <213> Homo sapiens <400> 51 tgtttgaact ttcgacccac gcgtccgctc aggatgaaca aacacttctt qttcctcttc 60 ctcctttact gcctcattgc ggcagtgaca tcacttcagt gcataacatg ccaccttcgc 120 acacggacag accgctgtag aagaggcttt ggtgtctgta ctgctcagaa gggcgaggca 180 tgcatgctct taaggattta ccagcgcaat actctccaga tatcatacat ggtgtgtcag 240 aaattctgca gagacatgac atttgatctc aggaatcgga cttatgttca tacatgctgc 300 aactacaatt actgtaactt taaactctaa gatatttgcc ctcctgaggt ctcgctttgg 360 aatgtcccca atgttgctca tecttcacac tetgetggcc ettgettece tteegtgtet 420 gtectgacaa taccectgee etegcattaa 450 <210> 52 <211> 1044 <212> DNA <213> Homo sapiens <220> <221> misc feature <222> (1) ... (1044) <223> n = a,t,c or g<400> 52 ctactgtgca cctgaaaaca gcactcattt tcactaacaa gacatgcaaq ctaqaatcaa attgctgttt tgttttgttg cctgtcatga ttgttagctg aaaccaaatc acaaggtctt 120 ttctccctct gtattatctc agcatacact gagcttgcaa acatatgaat ttcacattgt 180 cgtggaatet tacageetge tactteetaa gttttettta gacaagetge ettggtgaee 240

```
aatgaatgtg gttagcctag tgatactctt ctgggccata tactgtgtqa ctatctqcat
                                                                      300
ggacctttat ttaaagcatt tctgcaaaaa atttttaaa gtttttta aatgtgtgat
                                                                      360
aatttgtgct tttaaaagta tcttacactt ttcacttatt tgtaccttta aaaaaatctt
                                                                      420
ttttttttt taaaccaaag gtttgcagta tcttcaaagt ctgaattttg agcggatagg
                                                                      480
qatqaqccac ctaaatcccc tgaaaatttg cctgccctca ggggttaact tttttgctgc
                                                                      540
aatcacaaag taggttattt acgctttctt gatgggagtt attaaaaaaa ttttaattta
                                                                      600
gtgtcatcaa gaatggaaag agggtaaaat ttctttgaaa ttagtaacat tataaaaggc
                                                                      660
caggettggg ggttgacace tgtaatetaa ceattttgga aggttgaggt ggaaggattg
                                                                      720
cttgaggccg gaaattaaaa gaccgccctg cccaacatgg ggagacctta ttctacaata
                                                                      780
aaaaaaaagg ggcgcccttt aagagataaa ttttttgccc ggggtgcaag gtaaactttt
                                                                     840
ttatggggcc caaaaaaaat ctcgggccgc gtttcaacgg gggggcgggg gaaangtctg
                                                                     900
concepted totactotot ettocecact caceptteat acattectae aceceegege
                                                                     960
aagcaaaget cetecaetta ettegeettg teaacateeg ategeegetg acattgttae
                                                                    1020
ctacctcacq caccqactcc acca
                                                                    1044
     <210> 53
     <211> 1328
     <212> DNA
     <213> Homo sapiens
     <220>
     <221> misc feature
     <222> (1) ... (1328)
     <223> n = a,t,c or g
     <400> 53
egttegacce aegegteege teetttgetg accaaattet eactgetetg geggteteca
                                                                      60
gagttggttt gctctgggta ttattattaa actggtattc aactgtgttg aatccagctt
                                                                     120
ttaatagtta gaagtaagaa ctactgctta taatatctgg gcagtgatca accatttcag
                                                                     180
caactggctt gctactaccc tcagcatatt ttatttgctc aagattgcca atttctccaa
                                                                     240
ctttattttt cttcacttaa agaggagagt taagagtgtc attctggtga tgttgttggg
                                                                     300
gcctttgcta tttttggctt gtcatctttt tgtgataaac atgaatgaga ttgtgcggac
                                                                     360
aaaagaattt gaaggaaaca tgacttggaa gatcaaactg aggagtgcaa tgtacctttc
                                                                     420
aaatacaaca gtaaccatcc tagcaaactt agttcccttc actctqaccc tqatatcttt
                                                                     480
tetgetgtta atetgttete tgtgtaaaca teteaaaaag atgeagetee atggcaaagg
                                                                     540
atctcaagat cccagcatga aggtccacat aaaagctttg caaactgtga cctcctttct
                                                                     600
tetgttatgt gccatttact ttctgtccat gatcatatca gtttgtaatt ttgggaggct
                                                                     660
ggaaaagcaa cctgtcttca tgttctgcca agctattata ttcagctatc cttcaaccca
                                                                     720
cccattcatc ctgattttgg gaaacaagaa gctaaagcag atttttcttt cagttttgcg
                                                                     780
gcatgtgagg tactgggtga aagacagaag cetteqtete catagattea caagaggge
                                                                     840
attgtgtgtc ttctagcaga aaacaaactg gtggtgtatg aaacatttta tatttcttac
                                                                     900
tgggttttct gtaatatatg tatatgaata atttccacat gtatacctag aaaagtcttt
                                                                     960
tacctaaagt tagtctacaa aagtacatat atatagatgg ctgtggtgtg accgtgtgtg
                                                                    1020
cacatatgtg aatgtgtata tatcacgcaa caggagtgtc attcatgctg ctggcccctg
                                                                    1080
gtgaagtgac aagtacaatt aaaggtggct ctgatccttt taaacaccta ccaaacccta
                                                                    1140
aatttgattc caaaaggacc attctgcaaa gagtttgcaa agatctgggc ccacttgtga
                                                                    1200
gcaccaacct ttaaacatga tgcgccagtc tcccaggagg ccctactcat tcccctacat
                                                                    1260
aactatttga tggccccacc cctaccancc ccgcttcccc ccacctgaaa aaagcaggcc
                                                                    1320
acagaagc
                                                                    1328
```

<210> 54 <211> 804 <212> DNA

```
<400> 54
teactgtggt ggaattegee atgageagee etggeeeegg getgeateee teteteteee
                                                                       60
tacccctgcc tttcctctat ctggtctccc tgcagcctgg agagtgtgtt tccactcata
                                                                      120
gccgagggcc agcgcagtgc cacgtcacag gccatgcacc agctcttcgg gctgtttgtc
                                                                      180
acactgatgt ttgcctctgt gggcgggggc cttggaggca tcatattggt cttatgcctc
                                                                      240
ctagacccct gtgccctgtg gcactgggtg gcaccctcct ccatggtggg gggcagagaa
                                                                      300
gcctcgcaga tcctccccta ccaccaccag ggctcctgct gaagctaccc tttctqqact
                                                                      360
ccccccaga ctcccagcgc tacgaggacc aagttcactg gcaggtgcct ggcgagcatg
                                                                      420
aggataaagc ccagagacct ctgagggtgg aggaggcaga cactcaggcc taacccactg
                                                                      480
ccagecectg agaggacaeg etectitieg aagatgetga etqqetqeet actaggaagt
                                                                      540
tctttttgag ctccccattc cctcccagct gcaagaaggg agcccatgag cccagaagga
                                                                     600
ggcccctttc cacaggcagc gtctccacag ggagaggggc aacaggaggc tqqqaaatqq
                                                                      660
tggggagtgg ggccgtaact gggtaccata gggggaaacc tcaacaaatg cccaacccga
                                                                      720
ctgggcctaa ccagcctgca catggggtaa aaaaaggcca aattgagggc acccaagtga
                                                                      780
atccactggc ccccacgtca acat
                                                                      804
     <210> 55
     <211> 532
     <212> DNA
     <213> Homo sapiens
     <400> 55
aactgatgtc attagtccat gcggtggaat tcggaggtgg ggctggtgcc cgtggtggc
                                                                      60
ggcgaagaga gctgggggg tcccctgctg gccgcggctg tggcctatgg gctgagcgcg
                                                                      120
gggagttacg ccccgctggt tttcggtgta ctccccgggc tggtgggcgt cggaggtgtg
                                                                     180
gtgcaggcca cagggctggt gatgatgctg atgagcctcg gggggctcct gqqccctccc
                                                                     240
ctgtcaggct tcctaaggga tgagacagga gacttcaccg cctctttcct cctgtctggt
                                                                     300
tetttgatee teteeggeag etteatetae atagggttge eeagggeget geceteetgt
                                                                     360
ggtccagcct cccctccagc cacgcctccc ccagagacgg gggagctgct tcccgctccc
                                                                     420
caggeagtet tgetgteece aggaggeeet ggeteeacte tggacaccae ttgttgatta
                                                                     480
ttttcttgtt tgagcccctc ccccaataaa gaatttttat cgggttttaa aa
                                                                      532
     <210> 56
     <211> 957
     <212> DNA
     <213> Homo sapiens
     <400> 56
cgttcctctc tgactctgtc atcttcaccc tcctaccttc caccctctgt gccagcctca
                                                                      60
ctggcttgct catgttcctt gagcacgcta tacactgttc cctgctgttt cttagccaqc
                                                                     120
teceteteet eesteettta gtttttttge tettgtetea tetgeteagt gaggteece
                                                                     180
tcatacagca goctccatco etgtetecat atcetgatet getetetece ttttetgtaa
                                                                     240
cacggttacc ttctaacata ctatgtaatt aattetttat ttattatetg tgttcctcac
                                                                     300
tggagtgtaa gtgtgacagg tacagggact gctgcctctg ctgttcatca gtgtatccca
                                                                     360
agcacttaga atagtaccag ccacatggtg tatetetaac acatgtttqt agatgaatga
                                                                     420
ataaatgatt tgctgtaatg tttcacgtgc atgaccattt ttctcagggg attttatact
                                                                     480
gagtgttttt aagtateeet eteattettg agattttgee gttetgatte tgtetggtee
                                                                     540
ataacccaca tagttgcaaa acagacaggt tttcatgaat caattaatat agcaaacctt
                                                                     600
tttgcatgtg tgtgtgattc tataatttcc ctaacacagg agaatccagc tttggcgggt
                                                                     660
gcaattaaaa catgtaaaaa ctgtacttcg gacagcgtga gagagaaatt tcttcaagaa
                                                                     720
gcctgtaagt gtctagaaat ttctgtggaa ctccatttga ctttctatct gtgaaatcca
                                                                     780
```

```
aactgtctct gaagaaataa gaaaaatagt ggtttgactt ttacgagaca actatgttta
                                                                     840
ttattttgcc cttgcacatt aaatggctaa atttggccaa gcccctatct ccaqaatttt
                                                                     900
ccaggtaccc ctcatgttta tgtgcacagc aaaaggaggg cctttqctca tacttcq
                                                                     957
     <210> 57
     <211> 410
     <212> DNA
     <213> Homo sapiens
     <400> 57
ggcccaagga gcctggcgct cctgtcagat cccagccggc cagggagtct ggcccggcct
                                                                      60
ggcccctcgc tggtgtccgt cggcaggetc ctggcccggc ctggcccctc gctggtgtcc
                                                                     120
gtcggcaggc tcctggccct ggccttctcc agccccgcag ctccttgtgt tcacaccagc
                                                                     180
tgccccttcc ctgcagcagg gaccaccaag cccagcagca gggcacctgt cccatccct
                                                                     240
ctggctctac actccgaaag ccaggacagc gcaacccgtc cacccgctga cctccagctc
                                                                     300
cgcaggetec ttcccagtgc cctcagtccg ggaagetcag acagggaget ccaggaaate
                                                                     360
ctctaaaagg ggcccctggg aatactggcc acaaggtgga ggctctgccc
                                                                     410
     <210> 58
     <211> 871
     <212> DNA
     <213> Homo sapiens
     <220>
     <221> misc feature
     <222> (1)...(871)
     <223> n = a,t,c or g
     <400> 58
cggacgcgtg gggttttcag taaacatttg tcacacaaat gaacgtatgt attttggagc
                                                                      60
ttatgctttt actgtggcac ctaggcttgc catacttcag gtggtcaatg ttatttctta
                                                                     120
caaagacata aggcatttct atttgaggca ttggagaaat gagaggaatt gcatttgcca
                                                                     180
tgttgatggt gcgctaatca aagagcagtg agggcggagc aacggaggaa gtgaaatgac
                                                                     240
tgagtgaacc ctggaggtgt gaaaggcttc tccacccgac ggtgggtgac atcagggctt
                                                                     300
gtgacgtttg cagttgaata actgaaggca gtagcaagtg ggtagaqtgq gatqqctcqc
                                                                     360
ctgcggaatc tggcatccga ggaaatcgcc ttgacacctt cctttcatgg ccgtgattac
                                                                     420
acttgtgcta aggttagggg gaacagagcc aggttcatct ctgatatgaa aagggaagag
                                                                     480
cgattttggg ggaagggaac tagtctggga accttttggc taaattttag tcacttttta
                                                                     540
atctgtttaa tatgctngcc acggcgggtg ctgtggctca ccccgtaatc ccaqcacttt
                                                                     600
gggaggccaa ggtggatgga tcatttgagt cccggagttc gagatcggcc tgggcaacat
                                                                     660
ggcgaaaccc tctctctata aaaataaata aataatacag aacattaccc agaccttgga
                                                                     720
aggggtccca tgccttctga gtcccaggag ggtgagctgt gcttgaccat gagggcatca
                                                                     780
ctggcttcta gctggggcaa cagaagcaga ccttatttga acaaaaaaaa aaagaggcgg
                                                                     840
cetettaagg acceagttta aageeeggeg e
                                                                     871
     <210> 59
     <211> 636
     <212> DNA
     <213> Homo sapiens
```

```
<400> 59
tgtgtgtgcc tgcatatgca tgtgtgtatg cctttgtgcc tgtttttgct ctctttctcc
                                                                      60
gtctcaccag accctagatt gttgaggatg gagagactgt ttcggggatg tgcccaggac
                                                                     120
tgcccatttc tcgccttgca tcagggagaa ctttggtgag gtgttggatc tggctgcttc
                                                                     180
tqqqqcaggc tgctggctgc ctgagcatta acagtcgttt cccaaccccc aggttttctg
                                                                     240
gttcacaaaa ttcctcaagc tgggtcaatc ctggtctctg ggaagcttca gagctggcac
                                                                     300
ctccccttt ctaccctgca tgtccaaaaa ggcactggca tgggagccct gtcacacttc
                                                                     360
cttcagttat atctactttt taattataag agcgacatgt ggccaggcac agtggcacaa
                                                                     420
atctgtaatt ccagcacttt ggaggccaag accggcagat tgcttgagtc caggggtttg
                                                                     480
agaccageet aggeaacatg gegaaateet gtetactaaa aacataaaaa actageeagg
                                                                     540
tgtggtgagg cacgcctata gtcccagcta ctccggaagc tgagggggga gaatcccctg
                                                                     600
agctcagaag cccaggttga gagacccaaa ttgtca
                                                                     636
     <210> 60
     <211> 996
     <212> DNA
     <213> Homo sapiens
     <400> 60
cgttgtcaga ttatctttcc ctaaaggaat aatttctatt cctatcagct gtttatattc
                                                                      60
ctgcctagtc accatcacta gatataattq attttcaqtt tttqccaatc tqaqqaacaa
                                                                     120
aaaatgaccc ttatatgtca aatttacagt ttattttcaa qqattttqqq attctqatca
                                                                     180
aattttggta ccttcatata aaatttggct tttatatcac atcttgtctt ctctgctttc
                                                                     240
caccetettt tatgttgttt tttggettet ggeegeatga etataatete egettttgta
                                                                     300
ttcacatcac cttctgtcat ttttgacctt gcctccgtct tacaaggatc cttgtaatta
                                                                     360
attatattgg gcctgctgag ataatccagg atattcttcc tactcaaqtt cctcaattta
                                                                     420
atcacatctg caaaaactgc cttttgctat agaacaatga caggagatta gaatgtaaac
                                                                     480
atatttgggg gaccgttatt cagcttaaca caatacgtcc cccttcatca ggtggagctt
                                                                     540
attttccctc cttccttgag tgtgggctgg acttagtgac taacttccaa aqaacaqaqt
                                                                     600
atggaaaggg aggaggagag taacttcata gtacagaaac ctggaaacac tqtcttgqcc
                                                                     660
aggtggtcaa agttaatatc atcaagtcat gttgatagca tatactccca atatactgtg
                                                                     720
atgagaaggg caattcacct ctgtggtatt ctcaaaacct ataacccaat ctagtctaaa
                                                                     780
catgaaaaaa aaaaaatcaa actaaaattg aaggacattc tataaaacac ctqatcagta
                                                                     840
ttcctcaaaa ctatcaacgt cgtggggaac aaggaaagat tgaaatactg taacagacca
                                                                     900
gaggaaacta aggaaactta attgatgact gaatgcagtg tqctqtqttq aactqqatcc
                                                                     960
tagagaaaat agacattagt ggaaaaacta ctqaaa
                                                                     996
     <210> 61
     <211> 1622
     <212> DNA
     <213> Homo sapiens
     <400> 61
geggeegegg teetgeeaca caagetggge ggeggaggee aegeageegg geettettet
                                                                      60
ctctgggacc ctccgccagc gcatagccgc aggccggtgt gacttctgca ccctcagttc
                                                                     120
tgagggtacg gtgaccccta gtgggcagtt tgcaaaatgt gattccttct tcccaactcc
                                                                     180
ccatecece tteeetteec gteacgteet gtttgggggt taatteggtt ttttetetgt
                                                                     240
tgcatcgcgc ctactgtgcg tgtgcgatag cgtgtgtggg ggtgagagtt tqttttctgg
                                                                     300
aatggtaggt gctgggagga ggagtttgat ggagggcttc ctggctgctt ctggccctca
                                                                     360
cctcgtggag gccttcacag agaccctgtg ggccctggcc ctgtgctggc actgtgccag
                                                                     420
tcatgaggca gctctgatca cttccccact gtggaaacag gactgaccca gccttcagtg
                                                                     480
tgggctgctg aagctatect ceteaggeet eagggatgae eteetgeetg agecteteae
                                                                     540
```

600

aggetggetg tgggeeagtt teatetgett teetgttggg ggteeeggge etetgetgte

```
cttgacccac tggtgttctg tgcaaggett cttcccattc accaagtgca caccttgcat
                                                                     660
ctgccgctcg gcatgcacca gttccacaca ccatcccatt ttacagacaa ggacgctgag
                                                                     720
gcctgcagca gcagtgtgac ttgctcaagg tccagtgagt gacctcattc cccagaaaag
                                                                     780
geteeteeca caccagagta cageetgggt agggggaaaa teaqttettt cagetaccac
                                                                     840
ccatccaacc tttgggccta tgtgaaaaga aaggaactaa gctgggtgtg ttctgtctgg
                                                                     900
acctggggag gcccctgaag gcaaagaggg aaactgtccc agctgttctg tcctagggga
                                                                     960
gggggacata gccctagcag gagctcccag cccctcttgg cactctgaca cacaagtaca
                                                                    1020
cccatctggg gcccgctttg ccacgaagag ctgggcaggc ctgcagggtq tqqqqaaqqa
                                                                    1080
ggacacaacc tcaagaaagg aagcgtgaac cccagggaac agcgggtccc ttccctcctc
                                                                    1140
agacacaagc cacctcagct tgtggctctt ggcccccagc cccaccaacc cacctgttca
                                                                    1200
tttattcaac agacaatgac agctgatatt tattggacat ttgcaccatg ccaagcattc
                                                                    1260
ggcttggatt atcccatttg tttctcacag ccggtattta ttgtctgctc ctctgtgcca
                                                                    1320
ggtgctgtgc tctgggcagg ggcactgcat gggctgcctg ccctggtgga gcttqtggtc
                                                                    1380
tgatgggtga ggctgaccca agcccacccc attgccaaca gggccagggc aagagtacac
                                                                    1440
acaggggcct cataccatat gtctaaatat ttaaaaqtta tcaatcaaqc taacaactqt
                                                                    1500
taaataaaat atgttctatt ctcctacttt gaaaaaaaaa aaaaaggggc qcccqtttta
                                                                    1560
aagaateett gggggggeea aagtttaege gggettgeaa ggtaatagtt tttteettat
                                                                    1620
ag
                                                                    1622
     <210> 62
     <211> 887
     <212> DNA
     <213> Homo sapiens
     <400> 62
agaacaggac totgaagttg atcotgagaa gttttccagt aggatagaat qtgaaagccc
                                                                      60
aaacaatgac ctcagcagat tecgaggett cetagaacat tecaacaaag aacgegtggg
                                                                     120
tctcagtaaa gaaaatttgt tgcttagagg atgcaccatt agaaacacag aqqctqttqt
                                                                     180
gggcattgtg gtttatgcag gccatgaaac caaagcaatg ctgaacaaca gtqqqccacq
                                                                     240
gtataagcgc agcaaattag. aaagaagagc aaacacagat gtcctctggt gtgtcatgct
                                                                     300
tctggtcata atgtgcttaa ctggcgcagt aggtcatgga atctggctga gcaggtatga
                                                                     360
aaagatgcat tttttcaatg ttcccgagcc tgatggacat atcatatcac cactgttggc
                                                                     420
aggattttat atgttttgga ccatgatcat tttgttacag gtcttgattc ctatttctct
                                                                     480
ctatgtttcc atcgaaattg tgaagcttgg acaaatatat ttcattcaaa gtgatgtgga
                                                                     540
tttctacaat gaaaaaatgg attctattgt tcagtgccga gccctgaaca tcgccgagga
                                                                     600
totgggacag attoagtaco tottttocga taagacagga accotoactg agaataagat
                                                                     660
ggttttttcga agatggagtg ggggcagatt tgattactgc cctggagaaa agqcccggag
                                                                     720
ggtggagtcc tttcaggaag ctgcctttga agaagagcat tttttaacca caggcagggg
                                                                     780
tttccttacg catatggcca accegagage ccccccactt gcagacacat ttaaaatggg
                                                                     840
ggcctctggg agattaagcc ctccaagcct cacggctcgg ggggcct
                                                                     887
    <210> 63
    <211> 857
    <212> DNA
    <213> Homo sapiens
    <400> 63
acaagegeeg cecaegegte eggagttate tqttttcaaa aaatteteaq attteettat
                                                                      60
ccaaagtgca gttttaagtg acagtggtaa ctatttctgt agtaccaaag gacaactctt
                                                                     120
tetetgggat aaaactteaa atatagtaaa gataaaagte caaggacetg atggetatag
                                                                     180
aagagacctc atgacagctg gagttctctg gggactgttt ggtgtccttg gtttcactgg
                                                                     240
tgttgctttg ctgttgtatg ccttgttcca caagatatca ggagaaagtt ctgccactaa
                                                                     300
tgaacccaga ggggcttcca ggccaaatcc tcaagagttc acctattcaa gcccaacccc
                                                                     360
```

```
agacatggag gagctgcagc cagtgtatgt caatgtgggc tctgtagatg tggatgtggt
ttattctcag gtctggagca tgcagcagcc agaaagctca gcaaacatca ggacacttct
                                                                     480
ggagaacaag gactcccaag tcatctactc ttctgtgaag aaatcataac acttggagga
                                                                     540
atcagaaggg aagatcaaca gcaaggatgg ggcatcatta agacttgcta taaaacctta
                                                                     600
tgaaaatgct tgaggcttat cacetgccac agccagaacg tgcctcagga ggcacetect
                                                                     660
gtcatttttg tcctgatgat gtttcttctc caatatcttc ttttacctat caatattcat
                                                                     720
tgaactgctg ctacatccag acactgtgca aataaattat ttctgctacc ttctcttaag
                                                                     780
caatcagtgt gtaaagattt gagggaagaa tgaataagag ataccagggc tcaccttcat
                                                                     840
ctactgcgaa gggaggt
                                                                     857
```

<210> 64 <211> 2093 <212> DNA

<213> Homo sapiens

<400> 64

cgagctccaa	gttgcaggcc	ctcttcgccc	acccgctgta	caacgtcccg	gaggagccgc	60
ctctcctggg	agccgaggac	tcgctcctgg	ccagccagga	ggcgctgcgg	tattaccgga	120
	ccgctggaac					180
ccctggaccc	cccactgcag	ctccgactcg	aggccagctg	ggtccagttc	cacctgggta	240
ttaaccgcca	tgggctctac	tcccggtcca	gccctgttgt	cagcaaactt	ctgcaagaca	300
tgaggcactt	tcccaccatc	agtgctgatt	acagtcaaga	tgagaaagcc	ttgctggggg	360
catgtgactg	cacccagatt	gtgaaaccca	gtggggtcca	cctcaagctg	gtgctgaggt	420
tctcggattt	cgggaaggcc	atgttcaaac	ccatgagaca	gcagcgagat	gaggagacac	480
cagtggactt	cttctacttc	attgactttc	agagacacaa	tgctgagatc	gcagctttcc	540
atctggacag	gattctggac	ttccgacggg	tgccgccaac	agtggggagg	atagtaaatg	600
tcaccaagga	aatcctagag	gtcaccaaga	atgaaatcct	gcagagtgtt	ttctttgtct	660
ctccagcgag	caacgtgtgc	ttcttcgcca	agtgtccata	catgtgcaag	acggagtatg	720
ctgtctgtgg	caaaccacac	ctgctggagg	gttccctctc	tgccttcctg	ccgtccctca	780
	caggctgtct					840
	ggaggtcaat					900
acaacagcca	gcggctcctc	aatgtcatcg	acatggccat	cttcgacttc	ttgataggga	960
	gcaccattat					1020
	cgccagaggg					1080
ctctctccca	gtgctgcatg	ataaaaaaga	aaacactttt	gcacctgcag	ctgctggccc	1140
	cagactcagc					1200
	tgaaccccac					1260
	gtgcatagtg					1320
	cccagactct					1380
	atacgcctgg					1440
	ttactgctgg					1500
	gggcccatgg					1560
	tccgtttttc					1620
	gggaaatctg					1680
	caagtcaaat					1740
attctagcta	caagtcaaag	ataactcctg	gtccagacaa	aacacctggc	ctatcacaag	1800
ctgactaaaa	atctgcactt	tgggccagcg	caggcaacag	taactctgac	aggttcaaat	1860
tagacctcac	actttctact	catattctag	tcactggacc	catctgaatc	agtaatccct	1920
actgcccggt	cctggagtaa	cttcttagag	atattataac	aagtggcaaa	aataaaagag	1980
	agaatatcag					2040
aacatcaaat	atgtcacact	aagcagccag	taacagaata	aataattaca	acg	2093

<210> 65 <211> 683

<212> DNA <213> Homo sapiens <400> 65 agetgaagtg gteaggtggg tgqaqttqee caqqqaaete etttteatqq qetetqqqaa 60 ggggccaagg tcagactcag ctctggagtc tcctgagagc tgggcacaga gcaggqatqq 120 ggagtcaggt ggccagggcc tccagcggga ctgaaatggg gtcagtgggt ttggtqcttc 180 ttgtgagggt tgagaccttt gcctttgcag tgtgatgtcg gggtgtgcgg ggaagggtgg 240 atcacacagg atgaggaggg agtaaaggtg aaggtgctca gatatcaagg aatttgggca 300 gtcaggttgt cattettttg cttgtgtttg tcattattca aattattccc ctgctgactg 360 aagggctact gtggggtgca tgtttagtcg gttatatgct gtgtgcatgt tgtatatgtg 420 ggggtttgta gacaagatgt gtgtgtggag tgtgatgcag gtgtgttact gtttagtatt 480 tgtgtatgtc tttctgtgca tggtgtgtag agtgcgtgca cacgaccaca ttcaqatcct 540 tgatecatac ageaggetgg tgetgagteg tetgeetagg etggaaactg ggaaggatte 600 atcaagettg tgaatttate ttetetaett agggttacae ceaacagtgt getggtaaca 660 actggccctc cagaaaaaaa gag 683 <210> 66 <211> 1273 <212> DNA <213> Homo sapiens <400> 66 60 agaagtacaa tcgcctgggt cacatatggt tggggctcag gaatgggagt tctatagttt 120 ttggttctgt tcctgaaqca qccactttgt qtatqacctt aaqcaaqttc tctaactctc 180 tgaaccttgg agttcctcac ctqtaaaatg qqqacqataa taaacccacc tttccaqatg 240 gccccaagcc ctgagtttgg cccacatttt atgatcaatg tgtgaccgcc attattacgg 300 atcattagtc ttggtccatg tggttcagaa catagaactg ctgcctgcct gacctcagta 360 attcatgcag agaaacagca tttggacctc ccagtacagt `tcattttgta gaatttttac 420 actgtgtgga tataagtggc tgtcttggag gtccctaggc ttgctaagca cagaggcctc 480 agacccccag actggacagt gccccacccc cagatgtcaa gttcacctgg cctcctcttc 540 tocagoctca gtcaccttct gctgaacagc tccaccttgg ccttgcttac tcacagacta 600 agccagatga cctgcctgca gagcctcaga ctgaacagga acagtatcgg tgatgtcggt 660 tgctgccacc tttctgaggc tctcagggct gccaccagcc tagaggagct ggacttgagc 720 cacaaccaga ttggagacgc tggtgaccag cacttagcta ccatcctgcc tgggctgcca 780 gagctcagga agatagacct ctcagggaat agcatcagct cagccggggg agtgcagttg 840 gcagagtete tegttetttg caggegeetg gaggagttga tgettggetg caatgeeetg 900 ggggatccca cagccetggg getggetcag gagetgeecc ageacetgag ggtectacae 960 ctaccattca gccatctggg cccagatggg gccctgagcc tggcccagga cctggatgga 1020 tccccccatt tggaagagat cagcttggcg gaaaacaacc tggctggagg ggtcctgcgt 1080 ttctgtatgg ageteceget geteagaeag atagagetgt cetggaatet eeteggggat 1140 gaggeagetg cegagetgge ceaggtgetg cegcagatgg geeggetgaa gagagtggag 1200 tatgaggggc cgggggagga atgggacggg ctaaaggggg acctacatcc cgggaacacc 1260 aagaggccac tgg 1273 <210> 67 <211> 2549 <212> DNA <213> Homo sapiens

<400> 67

```
ttttttttt ttaagtatac aatttgtttt tatttacaat accctataaa aatgtaaatt
                                                                      60
tagaaacttt tattttcatt aattagaacc aatccaaaca aaaaagataa agcacagtaa
                                                                     120
ggaagagata ataatcaagt attcacttga ttggttgtga agggaaggta ggaaaggcat
                                                                     180
gtagtggaaa tggtcagtag acaacggtag agggaagcta ggtaacatca ctggggaaca
                                                                     240
gctggtggag cctggggtta cagcattggg aagaaatgga gatggagaac aggacagctg
                                                                     300
gttttaacag aggatettac tgttgtacaa tacatgtatg tgcaaaatgt ttattetett
                                                                     360
taaataccat aacctgtccc tcccacccc caactacatt cgaaaaagta agaacagcag
                                                                     420
aaagatcacg aaggccatgt aaaattaatt cagatttaat tttcttcagg gctgtaatca
                                                                     480
ctagggatca aaactcctta gtctggttga ttgctgaatg ggagaggagt aagtgagaaa
                                                                     540
gatcatggca ggctggccct gcaattattc aaacccaggc ccctggctgc ctgggaacgg
                                                                     600
gacttgggtg agatgaagta gtaaagacag cagttctgcc catggtgtgg agactaaaaa
                                                                     660
gcaaagcagg ccaaacttag cttccatggt tacatttgga agtttctatt catgacacca
                                                                     720
aataaaagtg gggaagaagg aagcatggct tactgaagta gtctcaggaa gacagggcaa
                                                                     780
gtgtgcaaaa agccacactg ccaaagcagg ctactagtga ggatcatcct gggtgacttc
                                                                     840
gaatgcactt gaggggaaag gctcaagtac cctgtagttg tagcaggaaa aagacataac
                                                                     900
catgtgttgt ttcgattaag gtggacagaa actaaggaaa taaaggtggg aagaaqaaaa
                                                                     960
aggacttete agcetagace tgggcataag ceaattaaga gttetgattt tattaaacgt
                                                                    1020
gctgcatact ctttatttat gttaaaacaa gtagaaccca ccaaattaat tacaagatag
                                                                    1080
aacagaaaca gattaaaata catcagctgg tttgtgttta gaagaggtaa tgagacaact
                                                                    1140
aaatattttt caatctaaaa ttcattcttt aaggaccctc tqaagaccac ataaatacat
                                                                    1200
gtatggggtg tgtgtgtgt tatctatgtg tgtgtgtata tcttgatttc tacttaattg
                                                                    1260
gctcttctat agtcatatta atatggggca atgaaaaaac aacttcaata ggatgaggga
                                                                    1320
aggaatcett tggcaggeta caatctacte tgaggtggag taagtggagg gataaaggga
                                                                    1380
gagattacac ttgtgtctct agggcaaaga aaatgcaaaa cagaactgag taaaagtagg
                                                                    1440
acatgcagaa ctgtaacaca gaaggtaaag aaaccagcag aagtatcacc cagccaaatt
                                                                    1500
tcatagagca gtggggaaat atctgacatt tagagagaca acccctqtaa acaqqaatcq
                                                                    1560
atcccacaag actttgcttt ggggaaaaag ctaccttcct tccctcatta aaaacactcc
                                                                    1620
attggtgatg gcagcagtgc aggtggcagc caaaaggagg tacaggacac atttggagat
                                                                    1680
cttttategt atcccctgaa ctagctgcag ttttgtctcc agcaagttca gtttctgccg
                                                                    1740
gtcaacatag cgagaaaaga gggacactag gtttgtaggt atagagattg gcttggccag
                                                                    1800
ggctgcttgg ggaatccgca gaagttctcg tgttgccatg aacatcacct ccgtcctgac
                                                                    1860
agggaagacc cataataata tcaggagaaa aaaatttaaa agattacctc aaagaactta
                                                                    1920
aaataagaga agaaacagtc cgcactgacc actgattatt ttgtgttgat tctgtagcag
                                                                    1980
ggtctgaact ctgtaggtct tcaccacggc tcaggaggat gaggagcagt gacaggccaa
                                                                    2040
actacgagaa aagacagagg gaatcaaact caacactgtg tctaaacctc ctccaccact
                                                                    2100
gttgaaggga tcctggcatc agatggggaa cagetctaaa tcaaaataac ctcactactg
                                                                    2160
tgcttttctg taaaaccagg taaagatcag acaagcatga gttgaaaggc tatgtctctc
                                                                    2220
tecaggettt attetgecat ageagtgace aggegeagee aacagaaacg gaaagtcatg
                                                                    2280
gtgtccaaca cgcctctctg ttccccatgc tgaggttaaa aaatggtttt tccttgccat
                                                                    2340
ggataatgta gaatttgact tttctcctat ttatgagaac agaaataggc taaaaaagaa
                                                                    2400
agtaaatgaa gaccaatttt ggtacagaaa ttaaaaatca ggaaaaaata agaaaaaagc
                                                                    2460
attacagtaa gatattttga attaagaaac aaggtgtaaa ctgtaggaaa atatacaaat
                                                                    2520
aaacacaact gaaataaaaa aaaaaaaaa
                                                                    2549
```

```
<210> 68
<211> 533
<212> DNA
<213> Homo sapiens
```

<400> 68
ctttttatga tttttaaagt agaaatatcc attccaggtg cattttttaa gggtttaaaa 60
tttgaatcct cagtgaacca gggcagagaa gaatgatgaa atccttgaga gttttactag 120
tgatcctgtg gcttcagttg agctgggttt ggagccaaca gaaggaggtg gagcagaatt 180
ctggacccct cagtgttcca gagggagcca ttgcctctct caactgcact tacagtgacc 240
gaggttccca gtccttcttc tggtacagac aatattctgg gaaaagccct gagttgataa 300
tgtccatata ctccaatggt gacaaagaag atggaaggtt tacagcacag ctcaataaag 360

```
ccagccagta tgtttctctg ctcatcagag actcccagcc cagtgattca gccacctacc
                                                                      420
tetgtgeega ttatteagga aacacacete ttgtetttgg aaagggeaca agactttetg
                                                                      480
tgattgcaaa tatccagaac cctgaccctg ccctgtacca gctgagagac tct
                                                                      533
     <210> 69
     <211> 850
     <212> DNA
     <213> Homo sapiens
     <400> 69
aaacattttg aatacttaca attggttatt ttccaggaaa tattgggacc ttgccttgaa
                                                                       60
atttagtatg gtttatgact tggtttatga caccagacag aagctacaga tatgaatcct
                                                                      120
ctaaccacct gttcctattt tcctaccctt cattaatttg acttttgact tttgataaag
                                                                      180
ttatcacata ttaaaatata cgtgggtgct aagcettata ctgtgaatgt tccaqqgttc
                                                                      240
aaatatttta tttttactgc cttccccagg cattacctcc ataaatgata gaacatactt
                                                                      300
tetttttgte atgagaagta attggttgtt tettttaace tgteteattg catteeaqaa
                                                                      360
aaataataaa totttaaaat tattaaaata atgagcaaca gttatagaca ttgttgggtt
                                                                      420
aaccttggga gtccaaagct catcctaaga ggaattaata atatatcttt ttttttttgg
                                                                      480
gcccaggcgg gggggctaag gcctgaaacc ccagcacttg ggaagcccaa ggcagggga
                                                                      540
taacctgagg ccaggagttc aaaaccagcc ggaccaacag ggggaacccc ggtttttact
                                                                      600
aaaaatacaa aatttagcgg ggcggggggg ctggcgccta taacccccgc tcctcagggg
                                                                      660
gctggggcag aaaaaccgtt ggaccccggg aaggggggt gtcacggacc ccaaaccggc
                                                                      720
cettggaete aageeggggg agaegaaegg gaeeeeteee aaaaaaaaa aaggggggge
                                                                      780
ccttaagggg aaccattgta ccgcggcggc ggggggatga gccttttaag qqcaccaaac
                                                                      840
cccgggcggc
                                                                      850
     <210> 70
     <211> 859
     <212> DNA
     <213> Homo sapiens
     <220>
    <221> misc_feature
     <222> (1)...(859)
    \langle 223 \rangle n = a,t,c or g
     <400> 70
cagggtccct tgccagctcc atctttgacc cactcagata tcttgtggga gcttcaggag
                                                                       60
gagtetatge tetgatggga ggetatttta tgaatgttet ggtgaatttt caagaaatga
                                                                     120
ttcctgcctt tggaattttc agactgctga tcatcatcct gataattgtg ttggacatgg
                                                                     180
gatttgctct ctatagaagg ttctttgttc ctgaagatgg gtctccggtg tcttttgcag
                                                                     240
ctcacattgc aggtggattt gctggaatgt ccattggcta cacggtgttt agctgctttg
                                                                     300
ataaagcact gatgaaagat ccaaggtttt ggatagcaat tgctgcatat ttagcttgtg
                                                                     360
tettatttgc tgtgtttttc aacattttcc tatctccagc aaactgacct gcccctattg
                                                                     420
taagtcaatt aataaaaaga gccatctgga ggaaataaaa aaaaaaggaa gactctatga
                                                                     480
agaaacagag aagteteage aaaggetaae aattttatat aqaqqacaaa acaqeattaa
                                                                     540
actcatcagt tgcaaagatt gcctataaaa ggaccttagg atttaaggaa ggggcttctt
                                                                     600
ataanaaaaa caataaacaa aaacaaaaag gggggggccg ttttaaagaa ccaattttat
                                                                     660
ctccgcgcgg gtggggaaaa ataatttttt tattggggcc caaaaataaa ttcccqggcc
                                                                     720
cgggtttaac acggggggg gggggaccg ncccgnccgc cgnnggggct tcccccccgt
                                                                     780
egececteg teegeeggeg teecegeteg geggeeteeg geecegeggt eeegeggee
                                                                     840
cggccccggc gggtagccg
                                                                     859
```

```
<210> 71
     <211> 864
     <212> DNA
     <213> Homo sapiens
     <400> 71
cagaaccagg aatgctgtca atactgttgg ccaccctgac cctatcctta aaagagaaaa
                                                                      60
gaggggagag gtctattcat cagcccgaac ctagtgagaa aagtgtctgc ctccctgttt
                                                                     120
caggtgctga tccttttaga ggcagccgtg gaagaggaaa agagatcaga agagaaaagg
                                                                     180
atattggttt gctggaacat gtgggacaag aagttcccag aagaatttgt gagcaacttc
                                                                     240
ccgacagtaa ggccctggct agacctcagg atggtccctg cctcctggac attaggaagc
                                                                     300
ccaaaggcca gaacaaaaac acatgcctag tgggggaagg ctcactaaga gggcaccaag
                                                                     360
tggggcaaat acccctggta acccatttat ggaggctgcc acagaaatgc tagttggaaa
                                                                     420
ttttcctcct tcagtctatc atgaatttct tttttctctt ttgagatgaa gtcgcccggg
                                                                     480
ctgcagttca gtggtgcagt ctcggctcac tgcaagctct gcctcccggg ttccaacgat
                                                                     540
tgtcttgtct cggcctcctg agtagctgag attgtaggca cgcgccatca tqcccqacta
                                                                     600
atttttgtat ttgtggtgga gaatggggtt ttgccgtgtt ggccaggctg gtcttgaact
                                                                     660
cctgaccttt ggaggaacca cccatcttgg cctccagacg ggctgcgatg gaagcttgag
                                                                     720
ccactgtagc tcgatgtacc gtgaatatta gctttagggc agttttaagt gggggagact
                                                                     780
ttaacaggac agtttacacg tataatccca aacaccccc gggctgcgcc tggtggagag
                                                                     840
gaaaatgtat tgattatgaa aacc
                                                                     864
     <210> 72
     <211> 746
     <212> DNA
     <213> Homo sapiens
     <400> 72
ggcacagggc agctttactt actccagcac cttcctctcc caggcaaaat gaaaatactt
                                                                      60
gtggcatttc tggtggtgct gaccatcttt gggatacaat ctcatggata cgaggttttt
                                                                     120
aacatcatca gcccaagcaa caatggtggc aatgttcagg agacagtgac aattgataat
                                                                     180
gaaaaaaata ccgccatcat taacatccat gcaggatcat gctcttctac cacaattttt
                                                                     240
gactataaac atggctacat tgcatccagg gtgctctccc gaagagcctg ctttatcctg
                                                                     300
aagatggacc atcagaacat ccctcctctg aacaatctcc aatggtacat ctatgagaaa
                                                                     360
caggetetgg acaacatgtt etecagcaaa tacacetggg teaagtacaa eeetetggag
                                                                     420
tetetgatea aagaegtgga ttggtteetg ettgggteac ecattgagaa actetgeaaa
                                                                     480
catatecett tgtataaggg ggaagtggtt gaaaacacac ataatgtegg tgctqqaqqc
                                                                     540
tgtgcaaagg ctgggctcct qqqcatcttq qqaatttcaa tctqtqcaqa cattcatqtt
                                                                     600
taggatgatt agccctcttg ttttatcttt tcaaagaaat acatccttgg tttacactca
                                                                     660
aaagtcaaat taaattcttt cccaatgccc caactaattt tgagattcag tcagaaaata
                                                                     720
taaatgctgt atttataaaa aaaaaa
                                                                     746
     <210> 73
     <211> 1928
     <212> DNA
     <213> Homo sapiens
    <220>
    <221> misc_feature
    <222> (1) ... (1928)
    <223> n = a,t,c or q
```

```
<400> 73
caaactctga atgaactgtg gttgttctac aatgatttac actgttattt ggcqaqcccc
                                                                      60
tgagctataa aattaaaaaa tgacagacta cttccatggt gtatggtttt gttcacccaa
                                                                     120
gaatgactca taaatcaatg caggagcagt tagcagacca cggctgtatg gctcagtgtt
                                                                     180
tttaagagtg aaagagaaaa ttctatttta actaaaacta aggcttaatt tttaaatcca
                                                                     240
cagaggtacc aaggcgccct ctaatggtga actcaaacaa tgctctattt tgtaatgagc
                                                                     300
tacagtttca gttagaaatt gtggtaaatt cgttagqqaa ttatqaacaq atttttttct
                                                                     360
ttttttgtaa aggetttata atttettaat ggttggecat eagttttgte tettetatge
                                                                     420
attttcaggc tgtattctac aaggcttctt gcctattggt gaagggttat tgqqqqtttq
                                                                     480
totgtaatgg ttattgcact gattattttt cttaggtccc cagccatggc tgggggatta
                                                                     540
tttgccattg aacgagagtt cttctttgaa ttgggtctct atgatccagg tctccagatt
                                                                     600
tggggtggtg aaaactttga gatctcatac aagatatggc agtgtggtgg caaattatta
                                                                     660
tttntncctt gttctcgtgt tggacatatc taccgtcttg agggctggca aggaaatcct
                                                                     720
ccgcccattt atgttgggtc ttctccaact ctgaagaatt atgttagagt tgtggaggtt
                                                                     780
tggtgggatg aatataaaga ctacttctat gctagtcgtc ctgaatcgca ggcattacca
                                                                     840
tatggggata tatcggagct gaaaaaattt cgagaagatc acaactgcaa aagttttaag
                                                                     900
tggttcatgg aagaaatagc ttatgatatc acctcacact accctttgcc acccaaaaat
                                                                     960
gttgactggg gagaaatcag aggcttcgaa actgcttact gcattgatag catgggaaaa
                                                                    1020
acaaatggag getttgttga actaggacce tgccacaqqa tgqqaqqqaa teaqetttte
                                                                    1080
agaatcaatg aagcaaatca actcatgcag tatgaccagt gtttgacaaa gggagctgat
                                                                    1140
ggatcaaaag ttatgattac acactgtaat ctaaatgaat ttaaggaatg gcagtacttc
                                                                    1200
aagaacctgc acagatttac tcatattcct tcaggaaagt gtttagatcg ctcagaggtc
                                                                    1260
ctgcatcaag tattcatctc caattgtgac tccagtaaaa cgactcaaaa atqqqaaatq
                                                                    1320
aataacatcc atagtgttta gagagaaaaa aataaaccaa taacctacct actgacaagt
                                                                    1380
aaatttatac aggactgaaa accgcctgaa acctgctgca actattgtta ttaactctgt
                                                                    1440
atagetecaa acetggaace teetgateag tttgaaggae attgataaac tgtgatttta
                                                                    1500
caataacatt atcatctgca gttactgttt acaagactgc ttttacctta aactttgtag
                                                                    1560
atgtttacat ctttttgttg tgttttaaga tgatgttggt aatttgtgcc tttagctctg
                                                                    1620
ttttattaga cagagttaaa gcatgttgtc ttctttggga ttacactcag gggtctgaaa
                                                                    1680
ggcagtttga tttttatttt taacacactt qaaaaaaqqt tqqaqtaqcc aqactttcat
                                                                    1740
atataacttg gtgattatca acctgttgtg tctttattta attttacatc tttttgaaqc
                                                                    1800
actgccacag gttattagcc aaggtggcct tccttcacag tcatgctgct tttttgaaag
                                                                    1860
gtgaatttca acacatttag tgcctctttc atttctcagt atatatttca agagctcgtg
                                                                    1920
atgaaatc
                                                                    1928
```

<210> 74 <211> 3644 <212> DNA <213> Homo sapiens

## <400> 74

```
cctgtctctc ttcgggtctc gggcccttgg gcgcagcggg gcgcgcgcca tggcgaaggc
                                                                      60
gaagaaggtc ggggcgcgaa ggaaggcctc cggggcgccg gcgggagcgc gagggggccc
                                                                     120
ggcgaaggcc aactccaatc cgttcgaggt gaaagttaac aggcagaagt tccaqatcct
                                                                     180
gggccggaag acgcgccacg acgtgggact gcccggggtg tctcgcgcac qqqccctcaq
                                                                     240
gaagegtaca cagactttac taaaaqagta caaaqaaaqq qataaatcca atqtattcaq
                                                                     300
agataaacgc ttcggagaat acaacagcaa catgagcccc gaggagaaga tgatgaagag
                                                                     360
gtttgctctg gaacagcagc gacatcatga gaaaaaaagc atctacaatc taaatgaaga
                                                                     420
tgaagaattg actcattatg gccagtcttt ggcagacatc gagaagcata atgacattgt
                                                                     480
ggacagtgac agcgatgctg aggatcgagg aacgttgtct ggtgagctga ctgctqccca
                                                                     540
ctttggagga ggcggtgggc tccttcacaa gaagactcaa caggaaggcg aggagcggga
                                                                     600
gaaaccgaag tcccggaaag agctgattga agagctcatt gccaagtcaa aacaagagaa
                                                                     660
gagggagaga caagctcaac gagaagatgc cctcgagctc acggagaagc tagaccaaga
                                                                     720
ctggaaagaa attcagactc tcctgtccca caaaactccc aagtcagaga acagagacaa
                                                                     780
```

```
aaaggaaaaa cccaagcccg atgcatatga catgatggtt cgcgagcttg gctttgaaat
                                                                     840
gaaggegeag eeetetaaca ggatgaagac ggaggeagaa ttggeaaagg aagageagga
                                                                     900
gcacctcagg aagctggagg ctgagagact tcgaagaatg cttggaaagg atgaggatga
                                                                     960
aaatgttaag aaaccaaaac atatgtcagc agatgatctg aatgatggct tcgtqctaqa
                                                                    1020
taaagatgac aggcgtttgc tttcctacaa agatggaaag atgaatgtcg aggaagatgt
                                                                    1080
ccaggaagag caaagcaagg aagccagtga ccctgagagc aacgaggaag aaggtgacag
                                                                    1140
ttcaggcggg gaggacacag aggagagcga cagcccagat agccacttgg acctggaatc
                                                                    1200
caacgtggag agtgaggaag aaaacgagaa gccagcaaaa gagcagaggc agactcctgg
                                                                    1260
gaaagggttg ataagcggca aggaaagagc tggaaaagct accagagacg agctgcccta
                                                                    1320
cacgttcgca gcccctgaat cctatgagga actgagatct ctgttgttag gaagatcgat
                                                                    1380
ggaagagcag cttttggtgg tggagagaat tcagaagtgc aaccacccga gtctcgcaga
                                                                    1440
aggaaacaaa gcaaaattag aaaaactgtt tggctttctt ttggaatacg ttggcgattt
                                                                    1500
ggctacagat gacccaccag acctcacagt cattgataag ttggttgtgc acttatatca
                                                                    1560
tetttgecag atgttteetg aatetgeaag tgaegetate aaatttgtte teegagatge
                                                                    1620
gatgcatgag atggaagaaa tgattgagac caaaggccgg gcggcattgc cagggttgga
                                                                    1680
tgtgctcatt tatttgaaaa tcactgggct gctatttcca acttccgact tctggcaccc
                                                                    1740
agtggtgacc cctgccctcg tgtgcctcag tcagctgctc accaagtgcc ccatcctgtc
                                                                    1800
cctccaggac gtggtgaagg gcctgttcgt gtgctgcctg ttcctggagt atgtggcttt
                                                                    1860
gtcccagagg tttatacctg agcttattaa ttttcttctt gggattcttt acatagcaac
                                                                    1920
tccaaacaaa gcaagccaag gttccactct ggtgcaccct ttcagagcgc ttgggaagaa
                                                                    1980
ctcggaactg ctcgtggtgt ctgctagaga ggatgtggcc acgtggcagc agagcagcct
                                                                    2040
ctecctcege tgggegagta gactgaggge cccaactteg acagaggeca atcacateeg
                                                                    2100
actgtcctgc ctggctgtgg gcctggccct gctgaagcgc tgcgtgctca tgtacgggtc
                                                                    2160
cetgecatee ttecaegeea teatggggee teteegagee eteeteaegg ateacetgge
                                                                    2220
ggactgcagc caccegcagg agetccagga getgtgtcag agcacactga ceqaaatgga
                                                                    2280
aagccagaag cagctctgcc ggccgctgac ctgtgagaag agcaagcctg tcccactgaa
                                                                    2340
gcttttcaca ccccggctgg tcaaagtcct cgagtttgga agaaaacaag gcagtagtaa
                                                                    2400
ggaggaacag gaaaggaaga ggctgatcca caaacacaag cgtgaattta aaggggccgt
                                                                    2460
tegagaaate egeaaggaca ateagtteet ggegaggatg caacteteag aaateatgga
                                                                    2520
acgggatgcg gaaagaaagc ggaaagtaaa gcagcttttt aacagcctgg ctacacagga
                                                                    2580
aggcgaatgg aaggctctga agaggaaaaa gttcaaaaaa taaattacat tttataaata
                                                                    2640
aggcaaggaa ctggacatta cctcacatct gcaattccaa ccctctggga ggccaaggca
                                                                    2700
ggaagattge tteageeeag gagttegaga ceageetggg caacacagga agaceeegte
                                                                    2760
tctaccaaaa aaacataaaa attggccaag tgtggtggca cgcacctgta gtcccgacta
                                                                    2820
ctcgggaggc tgaggcagga ggactgcttg agctgagtcc aaggttacag tgagccgtga
                                                                    2880
ttgagccact gcactccagc ctcggccaca gtgcaagact gtgtcgctta aaaaaaaatt
                                                                    2940
tttttttttg agacggagtt tcacttttgt tgcccaggct ggagtgcaat ggtgccatat
                                                                    3000
eggeteaceg caaceteeac etecegggtt caagegatte teeegeetea geeeceegag
                                                                    3060
tagctgggat tacaggcatg tgccatcacg cccagctaat tttgcatttt taatagtgac
                                                                    3120
ggggtttete catgttggte aggetggtet egaacteteg accteaggtg ateegcetge
                                                                    3180
cteggeetee caaagtgetg ggattacagg cgtgageeac tgegeetgge cattgaatea.
                                                                    3240
gctattgaag cttgtgtgtg catcatgaag ttcttgtgct gtggctttta gctccatcag
                                                                    3300
gtcatttaag gtcttctgta cactctttat tctagttagc cattcatcta acctttttca
                                                                    3360
aggtttttag cttccttgcg atgggttaga acatgctcct ttagttccga gacgtttgtt
                                                                    3420
attaccaacc tttggaagcc tacttctgtc aacttgtcaa actcattctc catccagett
                                                                    3480
tgtccccttg ctggcgagca gctgcgatcc tttggagaag aggcgctctg gtttttggaa
                                                                    3540
ttttcaggtt ttctgctctg gtttctcccc atctttgtag ttttatctac ctttggtctt
                                                                    3600
tgatgttggc aacctacaaa tggggttttg gtgtggctcg tgcc
                                                                    3644
```

```
<210> 75
<211> 1151
<212> DNA
<213> Homo sapiens
```

<400> 75
ttgttaatta gttcatcgtg gtgggagtgt tgagtggaga actaggcagg agatgaagct

60

caaaaagcat gcttatttag gttttgaaga cattttacat gatatttgga acagattgct 120 gcgctttatc caaatatatg tgggcttttg ttttctttct tatcaaagct cggtggagag 180 aaaaaaatcc atgctttgat gattctttaa gacctgagca atgtctatta gacgaaggca 240 gcttagaaaa aagatattca atgtagttca agttaaaaac aaaaqaaaac taatatttaa 300 tacggttaaa aatgagattg tgttcacctt ataggtttgt tttcaaggta aatatttaaa 360 ctgagtaaat catttttcc taaaactact tggtgagtat catcatgccc ttcattgcca 420 cataaataca aatttgagtt taaaatctta gattacaatg tagaagctaa tcaaagcagt 480 tcactgttgt tatttttat ttatggacaa taaaattcac tcttttgtgg tggatagttc 540 tgagtcacat aaccactacc agaatcagga tacagaacag tttactcacc cctacctgat 600 tccccggcga ataaaatgtg ggataatggg ggataatggg tggggcgttt ggatcggtat 660 gcgtatgttt ttggggggcg gcccgcaaat aggcctattt ctcgggggcg ggggtgggaa 720 tttttttttt ttaggtgccc ccatcccacc ccggcgggcg gtttctacga gccgtcgggc 780 caatatggtt ggttcacccg gtacgcggga ctgaccgctc tgcgccgcct cgtttcccta 840 gtgcgattgg cgcgaacgtg gccgcgccgt cgttcgacgc gtggacgcga tqtqtqccqc 900 tggcgcgctt actcgcgatg gcctccgctg ggcgcgctga gtaccgaatc cqcqcqqgcc 960 gcacgcgacg cgatgcgtgg cgcctcgact ttcggtgagg gctggctgta cagacgcgcg 1020 gaggtgtgga tcggcagacg acgcgcgggt gggtgcgata cggtcggtgc ggtatgctgg 1080 cacegggegg gatgggetge geetcaateg tgaeggtget egaeegagae ggteagatag 1140 cctccggggc g 1151

<210> 76 <211> 3719

<212> DNA

<213> Homo sapiens

<400> 76

gatgaaaggg tccttcaggc actcatgaaa aggttttatt taccatggac ctcacggcca 60 ccgataatag tttctgagtg tcggaatgag atatatgatg taagacacag agctgcttat 120 catccagact ttccaacagt tctgacagct ttagaaatag ataatgcggt tgcqqcaaat 180 agectaattg acatgagagg catagagaca qtgctactaa tcaaaaataa ttctqtaqct 240 cgtgcagtaa tgcagtccca aaagccaccc aaaaattgta gagaaqcttt tactqctgat 300 ggtgatcaag tttttgcagg acgttattat tcatctgaaa atacaagacc taagttccta 360 agcagagatg tggattctga aataagtgac ttggagaatg aggttgaaaa taagacggcc 420 cagatattaa atcttcagca acatttatct gcccttgaaa aagatattaa acacaatgag 480 gaacttctta aaaggtgcca actacattat aaagaactaa agatgaaaat aagaaaaaat 540 atttctgaaa ttcgggaact tgagaacata gaagaacacc agtctgtaga tattgcaact 600 ttggaagatg aagctcagga aaataaaagc aaaatgaaaa tggttgagga acatatggag 660 caacaaaaag aaaatatgga gcatcttaaa agtctgaaaa tagaagcaga aaataagtat 720 gatgcaatta aattcaaaat taatcaacta teggagetag cagacccact taaqqatgaa 780 ttaaaccttg ctgattctga agtggataac caaaaacgag ggaaacgaca ttatqaagaa 840 aaacaaaaag aacacttgga taccttaaat aaaaagaaac gagaactgga tatgaaagag 900 aaagaactag aggagaaaat gtcacaagca agacaaatct gcccagagcg tatagaagta 960 gaaaaatctg catcaattct ggacaaagaa attaatcgat taaggcagaa gatacaggca 1020 gaacatgcta gtcatggaga tcgagaggaa ataatgaggc agtaccaaga agcaagagag 1080 acctatcttg atctggatag taaagtgagg actttaaaaa agtttattaa attactggga 1140 gaaatcatgg agcacagatt caagacatat caacaattta gaaggtgttt gactttacga 1200 tgcaaattat actttgacaa cttactatct cagcgggcct attgtggaaa aatgaatttt 1260 gaccacaaga atgaaactct aagtatatca gttcagcctg gagaaggaaa taaagctgct 1320 ttcaatgaca tgagagcctt gtctggaggt gaacgttctt tctccacagt gtgttttatt 1380 ctttccctgt ggtccatcgc agaatctcct ttcagatgcc tggatgaatt tgatgtctac 1440 atggatatgg ttaataggag aattgccatg gacttgatac tgaagatggc agattcccag 1500 cgttttagac agtttatctt gctcacacct caaagcatga gttcacttcc atccagtaaa 1560 ctgataagaa ttctccgaat gtctgatcct gaaagaggac aaactacatt gcctttcaga 1620 cctgtgactc aagaagaaga tgatgaccaa aggtgatttg taacttaaca tgccttgtcc 1680 tgatgttgaa ggatttgtga agggaaaaaa aattctggac tctttgatat aataaaatga 1740 gactggaggc attctgaaat gaaaqaaact cctttatata tccaaccaca atcaaacata 1800

```
taaataagcc tggaaaacca actacaacct gcaatttaag attactatta ctttaagaaa
atcaatttca tagtattggt tttaaatctt tttaagtttt tttaatacga tctattttta
                                                                    1920
taggttcttt ttcagaagta aaattttgta catatataca tgtacatatc tgtttagttt
                                                                    1980
gggttcattt ctataacatt ttgtaagaaa ataaaagttt gagcacctga ttatatttag
                                                                    2040
ttttgctttt ccagatatta cattctatag ttaccaaaaa tggttgaagg gagggatttc
                                                                    2100
tcattgcaga gggtggggtg caagggaata agacacttgt acggaacact gaagctttgc
                                                                    2160
caacttctac acatgccttt tttgcagtcc tttaactgtc caccctacca agagcttata
                                                                    2220
accagtatca gaactggata atgacgcagt ttttcactct gacctccatc atgcttgcct
                                                                    2280
gatttaaaag ccctcagttt gcagtccagg gactgttcag gcttgtcctc agctgagagg
                                                                    2340
acacaggeta gagggaetgt geagaaceag getgggagaa gggetgggaa aactgggagt
                                                                    2400
ggagggtgga tcctcatgga gcaggagagt agctcatggc tccaggagcc tgaggccatg
                                                                    2460
cagttgatgg tgagctgaca tcaattctaa gactcatcct aattgagggg tgttaaaaag
                                                                    2520
tgtgctgctt agaatgacca aatatagtta ttgtaaaaaa tgatatttat gaacttttta
                                                                    2580
ttttagaaaa catgaatttt attgctccct gtattatttg tttqatacta qqattcatqc
                                                                    2640
taaacttttt aagaatgtat tggatatcaa gaagcattcc ttacattaqt aqcaataaat
                                                                    2700
attagaataa atatgaaatt gaactatttt cagaaaaagg gcagtatatt aagagcaggg
                                                                    2760
actgttctct agttattgag gaaaactgga ctttgtttgt gtttttggtg gaggaagaag
                                                                    2820
tttaagatac tttagtctta aattgaggtt tgccaaatga gaagttcaaa aacttgggct
                                                                    2880
ttctaatcag aatttccagg aggaggaaag tgtgtgctga atattttaaa catttcccac
                                                                    2940
tgatcataca aagtctgatt tttaaattta cacttataat gcctttgtat taaaattatt
                                                                    3000
tttaacatgt gcttttccaa attaaaaatg aagtagagta taccaaatgc ataaactttc
                                                                    3060
atttttaatt tggaaaagca catgttaaaa atgaagtaga agataccaaa tgcctaaact
                                                                    3120
ttcattagct aaggaactca tggctgaaat ttggtgaagt tttgaatggt tggctctttc
                                                                    3180
ataccgaatg ggagacataa tccctaggta tcccagcatc tttggtgaat tgaagaatat
                                                                    3240
tcattgcttt gggctcacca aggtttgatt tgacctatca taggggaaaa aatctqccct
                                                                    3300
tatgggtcca gtagggatca actactaaga ggcgagatta aaaggaaacc ggccttctaa
                                                                    3360
aattggggga actgcaaaat aacgcctagg attgatgtgg aaacacaaca acgaggcgcg
                                                                    3420
ggtcgatggt accgcgtgtc gtaccgggtg ggcaacgtaa tctttgttgt gggcgcgacg
                                                                    3480
ggctgcttgc gggcgtctgg gccgataggg aaactctcgc ggcgatcgga tggaggggat
                                                                    3540
tggcggggaa gggtgcactt gtaagagaag cacgccgacc aatacgtatg tgacggggag
                                                                    3600
gcggtgtgga gggggtggta tctataaggc acgcccggca ggtaacgcgg ctgtcgagtg
                                                                    3660
ggaagatccg gtgatgtcgc ggcggggtgg gatgtgacgg gagcgaagcc attgtggtc
                                                                    3719
```

```
<210> 77
<211> 605
<212> DNA
<213> Homo sapiens
<220>
<221> misc_feature
<222> (1)...(605)
<223> n = a,t,c or g
```

<400> 77

```
cccgtatgac aacgcgtacg ctttttctgg tctctcgctt cttgatatca tacctgagtt
                                                                       60
ttctaattta gatactcccc tctgcacttc taatttgaca gtctaagctt ctgggtacct
                                                                      120
gaatatcaga aaaccaagct tacataaatt gcatatgaaa taaggattcc taqtctctaa
                                                                      180
gaacttgaga gaaggcatat ggcctaagaa cccaagcttt agtgaatgac caatgtgtcc
                                                                      240
atttatgcca cctcctgggt tattgaggct attccagata gtcttttggg ttgagcaccc
                                                                      300
tggttcagtg aatccatttg agagaagcac aattatagga agaagtgcaa aattqaaaaa
                                                                      360
ggatctgaaa agtcattggg agcctgggca acaggctcta caacagggtc ttttqtaqaq
                                                                      420
accetatete tacaaaaaat agaaaaatta geeaggeatg gtggettgtg tgeatgtagt
                                                                      480
ctcagctact cangaggetg tggtgggagg atcacttgaa tccaggaatc caagtctgca
                                                                      540
gtaggtcatg attgcaccac cctatgctgt gcaagagagc aagaccctgt ctcanaaaaa
                                                                      600
aaaaa
                                                                      605
```

<210> 78 <211> 3089 <212> DNA <213> Homo sapiens

<400> 78

```
gaatteegge geaggegeee gageegageg eegageaggg agegggeegge egegeteegg
                                                                     60
gccggggtcc cgggggagca gatcctcaga atggcccttg gtgctgcagg cgcggtgggc
                                                                    120
teegggeeca ggeacegagg gggeactgga tgacteteca ggtgeaggae cetgeeatet
                                                                    180
atgactccag gtcttcagca cccacccacc gtggtacagc gccccgggat gccgtctgga
                                                                    240
geceggatge eccaeeaggg ggegeceatg ggeceeeegg geteeeegta catgggeage
                                                                    300
cccgccgtgc gacccggcct ggcccccgcg ggcatggagc ccgcccgcaa gcgagcagcg
                                                                    360
cccccgccg ggcagagcca ggcacagagc cagggccagc cggtgcccac cgccccgcg
                                                                    420
cggagccgca ggtgagtggg aggcccggcg aggaggggc gtgcaggggc gggcctgggg
                                                                   . 480
gaaccgcagg gaccagattc gggagctggt ccccgagtcc caggcttaca tggacctctt
                                                                    540
ggcatttgag aggaaactgg atcaaaccat catgcggaag cgggtggaca tccaggaggc
                                                                    600
tctgaagagg cccatgaagc aaaagcggaa gctgcgactc tatatctcca acacttttaa
                                                                    660
ccctgcgaag cctgatgctg aggattccga cggcagcatt gcctcctggg agctacgggt
                                                                    720
ggagggaag ctcctggatg atgtacgtcc cggcccagcc cagcaaacag aagcggaagt
                                                                    780
tctcttcttt cttcaagagt ttggtcatcg agctggacaa agatctttat ggccctgaca
                                                                    840
accacctcgt tgagtggcat cggacaccca cgacccagga gacggacggc ttccaggtga
                                                                    900
aacggcctgg ggacctgagt gtgcgctgca cgctgctcct catgctggac taccagcctc
                                                                    960
cccagttcaa actggatccc cgcctagccc ggctgctggg gctgcacaca cagagccgct
                                                                   1020
cagccattgt ccaggccctg tggcagtatg tgaagaccaa caggctgcag gactcccatg
                                                                   1080
acaaggaata catcaatggg gacaagtatt tccagcagat ttttgattgt ccccggctga
                                                                   1140
agtitititga gattececag egecteacag ecetgetatt gececetgae ecaattqtea
                                                                   1200
tcaaccatgt catcagcgtg gacccttcag acccagaaga agacggtcgt gctatgacat
                                                                   1260
tgacgtgaag gtggaggagc ccattaaagg ggccagatga gcagcttcct tcctattcca
                                                                   1320
cggccaaacc agccaggaga atcagtgctt ctggacagta agatcccatg agccgattga
                                                                   1380
gtcccataaa cccagctcca agatcccaga gggacttcaa tgctaaagtt tcttccagag
                                                                   1440
acceccaaag getatgteca agacetgete egeteceaga geegggaeet teaaggttga
                                                                   1500
tgacagatgt agccggcaac cctgaagagg agcgccgggc ttgagttcta ccaccaagcc
                                                                   1560
ctggtcccag gaggccgtca gtctgctact tctacttgca agatccagca gcgcaggcag
                                                                   1620
gagctggagc agtcgctggt tgtgcgcaac acctaggagc ccaaaaataa gcagcacgac
                                                                   1680
ggaactttca gccgtgtccc gggccccagc attttgcccc gggctccagc atcactcctc
                                                                   1740
tgccaccttg gggtgtgggg ctggattaaa agtcattcat ctgacagcag ccgtgtggtc
                                                                   1800
attggaaact ggggaggga gggggagaga aggggaaggg aagaaggtgg ggaggcagtg
                                                                   1860
ggtccctcgg gacgactccc cattcccttc ccttggattc ttctccttac tcaattttcc
                                                                   1920
ctagacctaa aaacagtttg gcagaagaca tgtttaataa cattttcata tttaaaaaaat
                                                                   1980
2040
caaaggaaag gtaatgaggt tagggcccc aggcgggcta agtgctattg gcctgctcct
                                                                   2100
getcaaagag agecatagee agetgggeae ggeeeectag eeeeteeagg ttgetgagge
                                                                   2160
ggcagcggtg gtagagttet teactgagee gtgggetgea gtetegeagg gagaaettet
                                                                   2220
gcaccagccc tggctctacg gcccgaaaga ggtggagccc tgagaaccgg aggaaaacat
                                                                   2280
ccatcacctc cageccetec agggetteet cetetteetg geetgeeagt teacetgeea
                                                                   2340
geegggeteg ggeegeeagg tagteagegt tgtagaagea geeeteegea gaageetgee
                                                                   2400
ggtcaaatct cccccctata ggagcccccc gggaggggtc agcaccagga ggggagggg
                                                                   2460
ggtcagggcc agcccccggg ggccctgggg gtgatctctg tggtgacagg gcaggattga
                                                                   2520
acteetggaa atggaetgga aagaaggeet gecageeaga gatggeatte atgegaeage
                                                                   2580
ggttgaggac ttcgggccca ggccttgtcc acacggtggt aaggaagaag agagtgtcca
                                                                   2640
cagggtgctt cttcgagacc acgtccatga gtcgcacctg ggaaggggcc tctgctcgca
                                                                   2700
cagcgagcca ggccagcctc gtcccagggt accgtcgctc taactccgct gctgcagcct
                                                                   2760
teacceeaag aaatgggtet ggageteeac ggeeaeette tegtggeeeg tagaceagea
                                                                   2820
acagggtgag caatgcatgt tctcgtggct ccaggacatt ggctgcaaag gcctcgagga
                                                                   2880
aagcegggge tgeageaget teageeacea ggagtggeag caceagetge actegggtgg
                                                                   2940
cetcagtgac atagggcata ggtaggattt ccaaccggct cagtggccgc agcaggctga
                                                                   3000
```

ecetgegage cagggecege eggtgeceae getgtgteae acattecaae ageaggteea 3060 gggtgtactc catgccccgt gctgggtcg 3089 <210> 79 <211> 1544 <212> DNA <213> Homo sapiens <400> 79 caacccgtgc cccgtcgtcc tctggaacat gagactgccc cagagcagca ggaggggata 60 gataggatgg cctggcagtc gagaaaggga ggccacttca qqqaqqtaqc aatqcaqtqq 120 aaagtgaccc tcacctccag atgggggctg ctcagacact gccaggtcct agctggactg 180 etgeacettg geaatateea gtttgetgee teegaggatg aageecagee etgeeaqeeq 240 atggatgatg ccaagtactc tgtcaggacg gcagcctcgc tgctggggct cccagaggac 300 gtgctgctgg agatggtgca gattaaaacc atcagggcag gcagacagca gcaggtgttc 360 cggaagccct gcgcccgagc cgagtgtgac acccgtagag actgcctggc caaactgatc 420 tatgcgcggt tgtttgactg gctggtatca gtgatcaaca gcagcatctg tgcagacacc 480 gactogtgga coactitoat aggootgotg gatgtgtatg gatttgaatc atttoctqac 540 aacagtctgg aacagttgtg catcaactac gccaatgaga agctgcagca gcattttgtg 600 gctcactacc taagggccca gcaggaggaa tacgcagttg agggcctgga gtggtcattc 660 atcaactacc aggacaacca gecetgtttg gateteattg agggaagece catcageate 720 780 acacgcattg agactgccct ggcaggcagc ccctgcctgg gccacaataa gctcagccgg 840 gageceaget teattgtggt geattatgeg gggeetgtge ggtaceaeae ageaggeetg 900 gtggagaaga acaaggaccc tatcccacct gagctgacca ggctcctgca gcaatcccag 960 gaccccctgc tcatggggct gtttcctact aaccccaaag agaagaccca ggaggaaccc 1020 cctggccaga gcagggcccc tgtgttgacc gtggtgtcca agttcaaggc ctcactggag 1080 cagettetge aggtactaca cageaceaeg ecceactaca tteggtgeat catgeecaae 1140 agccagggcc aggcgcagac ctttctccaa gaggaggtcc tgagccagct ggaggcctgt 1200 ggcctcgtgg agaccatcca tatcagtgct gctggcttcc ccatccgggt ctctcaccga 1260 aactttgtag aacgatacaa gttactaaga aggcttcatc cttgcacatc ctctggcccc 1320 gacageceat atectgecaa agggeteeet gaatggtgte cacacagega ggaagecacg 1380 cttgaacctc tcatccagga cattctccac actctgccgg tcctaactca ggcagcagcc 1440 ataactggtg actcggctga ggccatgcca gcccccatgc actgtggcag gaccaaggtg 1500 ttcatgactg actctatgct ggagcttctg gaatgtgggg cgtc 1544 <210> 80 <211> 4718 <212> DNA <213> Homo sapiens <400> 80 gatcaccatc accgagacca cctcacacag tactcccagc tacactacct caatcaccac 60 caccgagacc ccctcacaca gtactcccag ctacactacc tcaatcacca ccaccgagac 120 cecateacac agtactecca getteactte tteaateace accacegaga ceacatecca 180 cagtactccc agetteactt cttcaatcag gaccaccgag accacatcct acagtactcc 240 cagetteact tetteaaata ecateactga gaccacetea cacagtacte ecagetacat 300 tacctcaatc accaccaccg agaccccctc aagcagtact cccagcttca gttcttcgat 360 caccaccact gagaccacat cccacagtac tcccggcttc acttcttcaa tcaccaccac 420 tgagactaca teccaeagta eteccagett caettetteg ateaceacea etgagaceae 480 ctcacatgat actcccagct tcacttcttc aatcaccacc agtgagaccc cctcacacag 540 tacteccage tecaettett taateaceae caccaagace aceteacaca qtacteccaq 600 cttcacttct tcgatcacca ccaccgagac cacctcacac agtgctcgca gcttcacttc 660

ttcgatcacc	accaccgaga	ccacctcaca	caatactcgg	agcttcactt	cttcgatcac	720
caccaccgag	accaactctc	acagtactac	cagcttcact	tcttcgatca	ccaccaccga	780
gaccacctca	cacagtactc	ccagcttcag	ttcttcaatc	accaccactg	agaccccctt	840
acacagtact	cctggcctac	cttcgtgggt	caccaccacc	aagaccacct	cacacattac	900
teetggeete	acttcttcaa	tcaccaccac	tgagactacc	tcacacagta	ctcccggctt	960
cacttettea	atcaccacca	ctgagaccac	ctcagagagt	actcccagcc	tcagttcttc	1020
	tccacagtca					1080
agagactgcg	gtgactccca	cacctgtaac	cccatcttct	ctgagtacag	acatcccgac	1140
cacaagccta	cgaactctca	ccccttcgtc	tgtgggcacc	agcacttcat	tgactacaac	1200
cacagacttt	ccctctatac	ccactgatat	cagtacctta	ccaactcgaa	cacacatcat	1260
ttcatcttct	ccctccatcc	aaagtacaga	aacctcatcc	cttgtgggca	ccacctctcc	1320
caccatgtcc	actgtgagaa	tgaccctcag	aattactgag	aacaccccaa	tcagttcctt	1380
cagcacaagt	attgttgtta	tacctgaaac	cccaacacag	accectectg	tactgacgtc	1440
agecaetggg	acccaaacat	ctcctgcacc	tactactgtc	acctttggaa	gtacggattc	1500
ciccacgice	actcttcata	ctcttactcc	atcaacagcc	ttgagcacga	tcgtgtcaac	1560
attactaggtt	cctattccta	gcacacattc	ctccaccctt	caaacaactc	cttctactcc	1620
cicatigeaa	acttcactca	catctacaag	tgagttcact	acagaatett	tcactagggg	1680
aagtacgtct	acaaatgcaa	ceregaette	ttttagtacc	atcatctggt	cctcaacacc	1740
cactactace	atgtcctctt	cccatctte	tgccagcata	actccagtgt	tctccactac	1800
tatgagaga	gttccttctt	tatattacta	tttcagtaca	gaaaatgtgg	gctccgcttc	1860
ctctctcaggc	tttcctagtc	stannatana	tgcaactacc	agcacttctt	caaccagete	1920
cacaccctat	acagetetea	tagaaataac	ccccttttet	catattttccc	ttccctccac	1980
tattaaaata	ccaggaacta gatcccagca	ctancactac	ttataataa	geeteteea	ctgatccatg	2040
tccctttact	accgaaatgg	tagaagatataa	tagatagata	accaccccat	ctactageeee	2100
tacatatata	gacacttctt	ccatcatccc	agazagtgag	tacagatat	gaggaataa	2160
ttccaqttcc	actggcactg	ggactgtacc	cacaaacaca	attttaca	gtagtggagt	2220 2280
gcccaccagt.	gagacctggc	tgagcaacag	ttctctcatc	ccctacca	tteeteecet	2340
ctctaccatc	ccgctcacca	tgaaaccaag	cagtagggte	ccgaccatcc	tgaggacttc	2400
aaqcaaqtca	acacacccat	cccacccac	cactaggact	tcagagacac	cagtggccac	2460
tacccagact	cctaccaccc	ttacatcacg	caggacaact	cocatcactt	ctcagatgac	2520
cacacagtcc	acgttgacca	ccactgcagg	cacctgtgac	aatggtggca	cctgggaaca	2580
gggccagtgt	gcttgccttc	cggggttttc	tagagaccac	tatcaactcc	agaccagatg	2640
ccagaatggg	ggtcagtggg	atggcctcaa	atgccagtgc	cccagcacct	tctatggttc	2700
cagttgtgag	tttgctgtgg	aacaggtgga	tctagatgca	gaagattttt	qcaqacatqc	2760
agggcttcac	cttcaagggt	gtggagatcc	tgtccctgag	gaatggcagc	atcgtggtgg	2820
actacctggt	cctgctggag	atgcccttca	gcccccagct	ggagagcgag	tatgagcagg	2880
tgaagaccac	gctgaaggag	gggctgcaga	acgccagcca	ggatgtgaac	agctgccagg	2940
actcccagac	cctgtgtttt	aagcctgact	ccatcaaggt	gaacaacaac	agcaagacag	3000
agctgacccc	ggcagccatc	tgccgcgcgc	cgctcccacg	ggctatgaag	agttctactt	3060
ccccttggtg	gaggccaccc	ggctccgctg	tgtcaccaaa	tgcacgtctg	gggtggacaa	3120
cgccatcgac	tgtcaccagg	gccagtgcgt	tctggagacg	agcggtccca	cgtgtcgctg	3180
ctactccacc	gacacgcact	ggttctctgg	cccgcgctgc	gaggtggccg	tccactggag	3240
ggcgctggtc	ggggcctgac	ggccggcgcg	cgctgctggt	gctgctgctc	gtggcgctgg	3300
gegteeggge	ggtgcgctcc	ggatggtggg	gcggccagcg	ccgaggccgg	tcctgggacc	3360
	atggttcgag					3420
gtttcgagga	cgacggaaca	gacaaggata	caaatttcta	tgtggccttg	gagaacgtgg	3480
acaccactat	gaaggtgcac	atcaagagac	ccgagatgac	ctcgtcctca	gtgtgagccc	3540
rgcggggccc	cttcaccacc	ccctccgccc	tgccccggac	acaagggtct	gcattgcgtc	3600
catttcaaga	ggtggccca	ggacgcgggc	agcccaggct	cctgctgttc	ttgggcaaga	3660
rgagactgtt	ccccaaatc	ccatccttct	ccttccaact	tggctgaaac	ccacctggag	3720
	cgtccaggct					3780
agetteetea	cctgcaaaac	gggtacagca	ttcctgtatg	atacgtcacg	ccgttgttgt	3840
tattacastt	tagacttggt	caattetegg	tectactetg	ccctcccgtc	cageeeteg	3900
toottottat	gcctctctcg	yacccccaa	ceteaegte	cccacctgg	Ectctggccc	3960
ctacaacccc	tttctctcaa	ctocctactg	ot gatetase	tagatastas	Lyyaggcagc	4020
ccattcctt	atcccatctc agacgtcctc	cocttttcc	cacattaatt	categotect	acceptiget	4080
CCCCCGCGCCCC	taaatcctcc	ctcctctcct	cacatootoo	cocctacce	gcaccccage	4140 4200
			cacaceetyg	ccccaycaa	yytatayata	4200

```
gcctctgtgt cttaggatac cccgggtgct gttccctcgg tcatcctgtt gcccaqttcc
cogtttetet tgeteteatt cetgtateet tteceetttt gagecegtee atteateggt
                                                                    4320
tetgececeg actececeag ecetaaatac eceagetget gtteececea teaccetget
                                                                    4380
gcccaattct ttattctcca cccctttctc tcacccctgg agccctgcgg gtgggggcag
                                                                    4440
ggcatgagtt ccccagtccc caaggaaagg cagcccctc aqtctccctc ctcctcattc
                                                                    4500
cottocatet cocteccte tgeettttaa acceatecce teegatteec etceteece
                                                                    4560
ctetetecet ggtgteaact cgatteetge ggtaactetg ageeetgaaa teeteagtet
                                                                    4620
ccttggcggg gaagattggc tttgggaaca ggaagtcggc acatctccag gtctccatqt
                                                                    4680
gcacaatata gagtttattg taaaaagcaa aaaaaaaa
                                                                    4718
     <210> 81
     <211> 1365
     <212> DNA
     <213> Homo sapiens
     <400> 81
ttttttttt ttcacaatca aaaagagatg attattactt tattaagtta gcacagattg
                                                                      60
gacttttaca aattgtagaa atggtcaaca aatagaattg tcctattagg ggctgatatt
                                                                     120
cagaaaatat ataatcaact gttggtgtga taacaqqata aaattccacc ctqtatatqa
                                                                     180
gtaattccat ttttatccat ccatttacaa taattacttc tcacttttgt ttacttagtc
                                                                     240
atatacagag tgatataagt gatcgtcaaa aaggatccat tttcaatgat ttctacacca
                                                                     300
tattatatgt attctccact ggaaaattta tttttcctta ggtctttgaa gtgtgaaaat
                                                                     360
atatacatat gcctgatctt atttctaaaa atgcttaaat caataactac aaataccaca
                                                                     420
tgaccacatt tatacactat actgtcagaa aaatatttta gaatattttg agtcgtgaat
                                                                     480
agettatgat theagtggtg ttggtgggta taattgattg etttteactt teaagcacat
                                                                     540
tcaaaattta ttacaaaaga agaatggtga aacaaaatat atgatctgct cttggtattt
                                                                     600
caggatgete ageagteaca cagaaacaaa tgtttaattt ettgaggaag cagaacaaca
                                                                     660
gecetteaga gaggggtgag ceteteatee tetqteatqa aggeateatt aatatqeeet
                                                                     720
cccttcatgt ccaggggatc agaggggatg ccattttcaa ttgtgatcat gttttcacac
                                                                     780
ttattcttca gcgtcatcca cttcagatgg ttctttgttc tttcttctac gttgccagat
                                                                     840
ccctgataaa atcagtagtg caattgcaac tatgatgatg caaaatatca caccaaatat
                                                                     900
aataatccag atgggcacag atgggtccat gggtggtgca agtgtggaag ggatttttaa
                                                                     960
aaattccaga gtttggtcat ttagaaagaa ggcattgttg atccggttct tgttcattct
                                                                    1020
tatggctgat tgcacctcaa cagcaggaag ggtgtgattt tttgaagggt ctgtaaccac
                                                                    1080
aaaccagaat gataccetet gggttacatt gcaaagtagg acatgggaaa tttetqttqc
                                                                    1140
ttetetgttg ggaactttte teatggagaa agetaecate getttgaaga ggtattette
                                                                    1200
attggtatcc caggcatatg ctttatctcc cagagctgtt ctgatactaa gtctcacttt
                                                                    1260
aaaagcattt tctgcacctg gttgacagag ttcagcatga atggcagtca ccagaaaaaa
                                                                    1320
gagcagccac aacattcttt cagggtggaa aaccggacgc gtggg
                                                                    1365
     <210> 82
     <211> 603
     <212> DNA
     <213> Homo sapiens
     <400> 82
gggaaggagg tagttggttt acttgcgaat gcttgggggt aattttctaa tgttccttcc
                                                                      60
accattacaa aggetetget ecaatetett atcatatgta attectaatg atttetetgt
                                                                     120
tatgtcctgt tttattaaag cgtcattgaa ctatacccta ttgatttaga tttcacagac
                                                                     180
aattgaaatt taaattgact ccaaattgaa tgtctccatg taatctctgt tctgcaataa
                                                                     240
agatagataa aatgcttcta tttttgataa caagttatac tggaggcaca ttttaatttt
                                                                     300
gggagggaag aaaaaaatgt tgacggagtc ttgactttct ttgaaaagtg gctgatggtt
                                                                     360
caaggcccag gaggttgttt tttgtttttc tctqqqqcat qqtqctgqaq ctataaaatt
                                                                     420
```

```
ctggaatgtc tggactgact cacaggtggg agaggaaggt gatagagtct gatccattaa
                                                                     480 ·
ttaattaatt gggggatcca tccacaatc catccatttc tctggggagc acagcatgca
                                                                     540
aggtgagagg aaagagtgag ccatagctct catgatgggc atgactccaa gctcacgtga
                                                                     600
ttt
                                                                     603
     <210> 83
     <211> 723
     <212> DNA
     <213> Homo sapiens
     <400> 83
ataattegge acgageggea egagetggea tatatgacat etgtqeettt teaatacace
                                                                      60
cagtttggac ccctaacttg ctgggcagcc ttaggcaagt cagttcactt gagtcttagc
                                                                     120
teteatetge acacacaaaa geagaataat etateeetee eetaetteaa gtetgttetg
                                                                     180
acageteagt ataaaaacat geaggaggtt eccaeetetg tgeetgaeae ttgggtataa
                                                                     240
acacaagtgt ttaagtgaaa ttttcaaagt tggcaatatt tggtcaagat aacttcccta
                                                                     300
ctcagaaact gaaatatatt ccaagcccta actctggaat ctccagtccc tqqtctqcta
                                                                     360
ccataccacc tttacccagg cctgagaaat gaaagataga tgttttaagg cagcacttcc
                                                                     420
caagtcaact gaggtagggg tgagtggtca ggattttgtt taaaatgcag attccaactg
                                                                     480
acaaggtcag gagggtaagt tactgccgac aagctatgga gcataagatt ccaaagaacc
                                                                     540
ataatgette tagaetttgt tttgagaeag gaattteget eggtaeeeag actagaetge
                                                                     600
gatggcacaa tcttggctca ctgcacccca gcctgggcga cagagactca gaaaaaaaa
                                                                     660
ggccgtgcgc ggtgtttcac ccctgaaata ccaccacttt gagaggccaa ggcggggcca
                                                                     720
ttc
                                                                     723
     <210> 84
     <211> 1929
     <212> DNA
     <213> Homo sapiens
     <400> 84
ttcctgctgg tgctcgcggc caacgtgatc ttggcgcggg cgctcaaggc gccctgtggc
                                                                      60
cetttcccgg gecetgeaac egeeggegeg caceggegeg eggecaagac catggteetg
                                                                     120
gggttcctgc tggtcttcgc cctcagtctg gcgcccaacc acctgctgct ggcgccctag
                                                                     180
gtggctgggg gggaagacaa cggagaccgg tgtcgcgccg cctccacqct cqacatcctq
                                                                     240
cacaccetca geetggeget getgageete aacagetgee tggacceaet catetgetge
                                                                     300
ttettegtge geetetteea eeaggaetge tgetgggeae tgagetgeeg eetggtgaag
                                                                     360
ggggcgccca gggcgcatgg ggcctccttg gcctcctctt gqaqaqtctc ctqqcctccc
                                                                     420
ctectgtete accecetgt caccetecca gtggcateca gggtggagaa agetetttgg
                                                                     480
aaagacctag attctaatcc tgacgcaacc acatactacc cctgtagctg tgaacctccg
                                                                     540
ggctcatctg taccaaggac atagaacatt ctttgtaacc cgaatgttcc ctggatgttg
                                                                     600
ccagcttttg gatacaaata atataccact gtgtttttt taaacctctt gggataaaac
                                                                     660
ccaaagtcct tatcatggcc tacaaggccc tgtctgattt ggctcccctt tctctcccta
                                                                     720
acceaceace cetgegtete cetgeaggea gteacettet taggeceggg aaaatgeegg
                                                                     780
tetectacte tteatggeet ttgtacetga ettggeeagg aatgatetet gtteetetet
                                                                     840
ttcactaagt tagttettet teacecteae tteetetaaa gtaacteett atagggaage
                                                                     900
ctttcttggc tggcaacaca cacacacaca cacacacaca catacacaca cqactqaatc
                                                                     960
agateggatt getetttgat agetetttte ataattgtaa teaageaatt aattgggtaa
                                                                    1020
tgcgttgttg ttgttttctt tctctcttgc cagaatgtat tcatgttgac ccataagaca
                                                                    1.080
ttatcatttt tataagtccc caaaagttga atattggaaa ttttatttcc acccaattca
                                                                    1140
acttaataaa ttctgtgttt accttgctca ctgctgtatc tcctgtggtt ggtactqtgc
                                                                    1200
cttgcatata ataagagctc agtgtatcag atgcgtgagt gaaaactgaa tatcattaat
                                                                    1260
ctaaattgct taagtactca ctcagacatt ccagtctctg atagcttttc ctcaaqtqtt
                                                                    1320
```

```
totgagattc tocaagettg tottacccac coccgaccat goottoctag cocagtoctg
                                                                    1380
atgactgtct ccttctgctg ttqctqqata cttqcaqttc tqccatcacc tccactqtac
                                                                    1440
caagacttgg tgggaagtaa gctggagatc caqqctqctq qaqatccaat qcctqctqcc
                                                                    1500
tocagactet theatgageg ceaatetetg ceagggete eggetaceag tgetteceet
                                                                    1560
tetgtgettt gacaactetg cagtetgett etaatqqqaa aqqqeaccae tetectcage
                                                                    1620
cacattattg gggccccaca gcaagactgc ttgggtctca aggaaatcga gcttaatgaa
                                                                    1680
tgagagcaaa ccccttttca tttggggcat tggcgccctg tcagggaagg gtccatcaat
                                                                    1740
cagocaccat gtcttacctg cctttaggtc ctattgctga gtttgacttc taaggataca
                                                                    1800
tttggtaaat tcctttttt cttgatgaat tacctcttat tggtccctaa ttccttcttt
                                                                    1860
aactttttt ctttttccat tttaaaagcc actataggtt ccttaaaagt aaatttcaag
                                                                    1920
gccgtggaa
                                                                    1929
     <210> 85
     <211> 891
     <212> DNA
     <213> Homo sapiens
     <400> 85
tttcgtgaaa aaaggaagat ggcaagaata ttgttacttt tcctcccggg tcttgtggct
                                                                      60
gtatgtgctg tgcatggaat atttatggac cgtctagctt ccaagaagct ctgtgcagat
                                                                     120
gatgagtgtg tetatactat ttetetgget agtgeteaag aagattataa tgeeceqqae
                                                                     180
tgtagattca ttaacgttaa aaaagggcag cagatctatg tgtactcaaa gctggtaaaa
                                                                     240
gaaaatggag ctggagaatt ttgggctggc agtgtttatg gtgatggcca ggacgagatg
                                                                     300
ggagtcgtgg gttatttccc caggaacttg gtcaaggaac agcgtgtgta ccaggaaqct
                                                                     360
accaaggaag ttcccaccac ggatattgac ttcttctgcg agtaataaat tagttaaaac
                                                                     420
tgcaaataga aagaaaacac caaaaataaa gaaaagagca aaagtggcca aaaaatgcat
                                                                     480
gtctgtaatt ttqqactqaa cqttttaaqa aatttqttac cttacaqaaq aqcaaqqqct
                                                                     540
taggggttgg aggtggcaga taaaagagga ttttcaactc aaatcttqtt tcctqctqqc
                                                                     600
ctggtctgcc cacgagctag agcggggaaa tgttgagctc aaatgggtaa attgagacca
                                                                     660
gaaaattatt ttttcaacct agagaatctc ctcttacagg gggatgcata taacagatca
                                                                     720
tgtatgtgta gttatttcta aagtagtaat tettteeeca getetttgat ttgeeatata
                                                                     780
taaatagggg ggggtcggta tgtcttccct ttagacatga tgttttctac tcgatttgtc
                                                                     840
tctctggcca attgaattat taataaaagg tctgtattat caaaaaaaaa a
                                                                     891
     <210> 86
     <211> 654
     <212> DNA
     <213> Homo sapiens
     <400> 86
tttcgtggcg tgtgtaatat ggcatcccat ggggaggagg ataggcattg gttaagagct
                                                                      60
tgcacttgga tttgggctct gtcacttact ctgtcaqttt cttcatctgt qqqttqqaqa
                                                                     120
cgaggaggat gcaggtggct gggaagacga aacgccacgg tgcctagaaa caqcccacac
                                                                     180
ggtacetcat gtetteactg egtgttggat atacetgeta agtgtggaag gaagagaage
                                                                     240
ggggagggga catttcagtc ccttttactc ttctgtactg cttgaaaata tgtcagcgac
                                                                     300
catgtgtgac atgtatacca tagatagtgt tagttcccta gtgctgccat aactgaccac
                                                                     360
aaaccagggg getgacaaca geagaaattg agteteteec agttetggaa gecaaaagee
                                                                     420
tgcaatcagg gcatcagccg ggcagtgcca cctccaagct ccagaggagg atccttcctc
                                                                     480
acctetteca getgetgttg geteetgaeg tteettgeec agtgggeeca tetetgeaga
                                                                     540
ctctgcctct gtgttcccat ggccatctct ctcttcttct tacggagaca tgagtcattg
                                                                     600
gatttagggg ccaccctatg tccaatatga ttgtatcttg aagcccttaa cttt
                                                                     654
```

```
<210> 87
    <211> 1404
     <212> DNA
    <213> Homo sapiens
     <400> 87
cggcgggcgg tggctttggg gccgaagtgg gcgtgcggct cgcgctgttc gcgqccttcc
tggtgacgga gctgctcccc ccgttccaga gactcatcca gccggaggag atgtggctct
                                                                     120
accggaaccc ctacgtggag gcggagtatt tccccaccaa gccgatgttt gttattqcat
                                                                     180
ttetetetee aetgtetetg atetteetgg ccaaatttet caagaaggea gacacaagag
                                                                     240
acagcagaca agectgcctg getgccagce ttgccctggc tctgaatggc gtctttacca
                                                                     300
acacaataaa actgatcgta gggaggccac gcccagattt cttctaccgc tgcttccctg
                                                                     360
atgggctagc ccattctgac ttgatgtgta caggggataa ggacgtggtg aatgagggcc
                                                                     420
gaaagagett ccccagtgga cattetteet ttgcatttgc tggtetggec tttgcqteet
                                                                     480
tctacctggc agggaagtta cactgcttca caccacaagg ccgtgggaaa tcttggaqqt
                                                                     540
totgtgcctt totgtcacct ctactttttg cagctgtgat tgcactgtcc cgcacatgtg
                                                                     600
actacaagca tcactggcaa ggacccttta aatggtgaaa atgggcagat gaatagcaat
                                                                     660
aagtggacct ttgttactct tctgagttag aaaaattcta atttagtaca ctctgaacaa
                                                                     720
agettattat aettaettaa gatgtgtttt gatttggtgt teagaaagea aeetgacaat
                                                                     780
gataatactq taactatqat aaaattqaqa ataaaaaqat tttatttaqa aatcataaqt
                                                                     840
ctggaattga qqttatttta qccccacaqt aqaqtatcct qqaqqqccaq qtcctctatq
                                                                     900
ctatgtgtat gtaataggat ttaggagcct aatattaaga gaagaccttg tttccactct
                                                                     960
cttcagatgt actagttgga tccatgattg gaatgacatt tgcctatgtc tgctatcggc
                                                                    1020
agtattatcc tcctctgact gatgcagaat gccataaacc atttcaagac aaacttgtac
                                                                    1080
tttccactgc acagaagcct ggggattctt attgttttga tatttaaaaa ttgaatctgg
                                                                    1140
ccgggcgtgg tggctcatgc ctgtaatccc aacactttgg gaggctgagg agggtggatc
                                                                    1200
acctgaggtc aggaccagcc tggccaacat ggggaaccct gtctctacta aaaatacaaa
                                                                    1260
aattagccag gagttgtgtg ccgtaatccc agctacctgg gaggctgagg taggagaatt
                                                                    1320
gcttgaacct gggagctgga ggttccagtg agccgagatc gcaccactqc actccaqcct
                                                                    1380
aggcaacaga gtgagacccc gtct
                                                                    1404
    <210> 88
     <211> 662
     <212> DNA
    <213> Homo sapiens
     <400> 88
ctcgggactc caggaaccga tgatgccatt tggagcaagt gcatttaaaa cccatcccca
                                                                      60
aggacactcc tacaactcct acacctaccc tegettgtcc gagcccacaa tgtgcattcc
                                                                     120
aaaggtggat tacgatcgag cacagatggt cctcagccct ccactgtcag ggtctgacac
                                                                     180
ctaccccagg ggccctgcca aactacctca aagtcaaagc aaatcgggct attcctcaag
                                                                     240
cagteaccag taccegtetg ggtaccacaa agecacettg taccateace cetecetgea
                                                                     300
gagcagttcg cagtacatct ccacggcttc ctacctgagc tccctcagcc tctcatccag
                                                                     360
cacetacceg cegeccaget ggggeteete etecgaccag cageceteca gggtgteeca
                                                                     420
tgaacagttt cgggcggccc tgcagctggt ggtcagccca ggagacccca gggaatactt
                                                                     480
ggccaacttt atcaaaatcg gggaaggctc aaccggcatc gtatgcatcg ccaccgagaa
                                                                     540
acacacaggg aaacaagttg cagtgaagaa aatggacctc cggaagcaac agagacgaga
                                                                     600
actgettttc aatgaggtcg tgatcatgcg ggattaccac catgacaatg tggttgacat
                                                                     660
                                                                     662
```

<210> 89 <211> 465

<212> DNA <213> Homo sapiens <400> 89 attecegggt egacgattte gtttegecat tegtgettta acagtgetaa aatacagtea 60 agttatcatc tatgaaggga aacaaaagtc tctagctttt ctgggatatg ccctttataa 120 tatattctat gattcactat gacacgagca gcaagacact gcaatgtggt atgatttata 180 ggctggatta aatttttagc tatttccttc tcatccagca agtcactagc agtttgtttg 240 tgcaagtttg tggcatcaaa atgtgcacct gatttaataa ggagattcat gatgtctgga 300 tggttgttaa gagcagcgat atgcagggga ctgttgtcat ccgagtctct gacgttcaca 360 tcagcaccac attctatcag tattgcagta acttgtagag atggaaattt acaaacaggg 420 taccgcccta cacatgtagt attcttgtcc acagccagat gaagg 465 <210> 90 <211> 871 <212> DNA <213> Homo sapiens <400> 90 tttegteetg getaggggta eecacaceag gattgeettt getgteagga agegeaggat 60 ccactagaga gatgtgaaaa gatgacaggg catcctgggc ctccacttgg tccagtcccc 120 accetcagga agcetggatg gettcagage catgetggtg ggeagggatg etgeegtgtg 180 cctgtgcagg cctgcgaagg tgttctcata gcaggttttt gcaacgtggc cacggcctgc 240 actecetgat gggtagettg ceggetecea tttetecace etqqacteat ceatgqqqaa 300 teatacttee atggecaate egtggecate ceteagteec cattaggetg tgaccagece 360 tetggtttcc aagaatgccg tgcttcatcc ctatgacact ttccccttcc taaaggacct 420 gttcaacctt ctgcttattt gctccttgta cccctttcct ttgcctcttt tctgatcttt 480 tgaccttggc tctttaatta ttttcttttt gtcctttaac ggggtagttt gggccagggg 540 gctgctaggt ggtactgtta ggctccagga gaaacatcca catgagataa ctgaagatct 600 tecetecate tecetectea ceatetetee catgaaatea tteaeggett tgetteegge 660 cctccccgcc agcttaaacc atcaaccaag cggacatcgc cacccatggc tggttcattg 720 ggettatgtg egeectegee ettetgggge tgateetget eaacggetgt tttattaaaa 780 ggagtgccgg cggccagtac cccatttgag caagggaagg ggttcccctt ggcctgaaaa 840 cccagagaaa aggaggctga ttggctctac q 871 <210> 91 <211> 1301 <212> DNA <213> Homo sapiens <400> 91 aatacagtcg ttctcttcaa gtttgtaagg ctcactgcag ttccacatcc aggtcccagg 60 caggtggaaa ggtaaaagaa tgtcttgcag ctgatattgc agctgttccc gttttaaggc 120 gttttctcca acaacttcca cctgtgttcc attggtcaga acctagccac atgaccatac 180 ctatttagaa ggcatgctgg aaaacgtagc ttttctatta atggctgtgc gtattagtct 240 gttctcacac tgctatgaag aaatatccga gattaggtaa tttataaaga aaagaagttt 300 aattgactca cagttctgca ttgccaqqqa qqcctcaqqa aacttacaat catqqtqqaa 360 ggcgcctctt cacaaggcgg cagtagagag aatgagtgca agcaagagaa atgccaqatg 420 cttatgaaac catcagatct catqaqaact cactcactat cacaaqaaca qcatqqqqa 480 actgececca tgateceaat taccetecae etggggeeeg eeettgacee gtgggaatta 540 tggggggatt atattcaagg tgagatttga gtggggacac agagccaaac catatcatct 600

660

gtgggccata gcatctgcac ttgggcttct ccccagggag acatacttgc aggtgtccct

```
gtaatgtctc ttaatgtgtc taagtaccac gtccacagtt tgttagccag cctcttgctc
                                                                      720
aggaagetee atgeeetgtg ttacacetge tetgagtete attagaatee ttagaattag
                                                                      780
ggagcagcac ccctgggctt tggcagaggc agagaagtca ctgcagatcc cccattgtca
                                                                     840
gcgatcactt caaagcccac gggggcagac actgaacatg catgaaggca ttgtctttgc
                                                                     900
ccttgagaaa cttcacctca ccatgcacca gctttaaata ctgctgtcaa tgctgaatgg
                                                                     960
agtggccagt tittgtcctg gacagtcttt atatagactg tacttcttac ataagactgt
                                                                    1020
gctcttgaag tactatttgc cagtaaaaga aacccaactt tcttggtaaa atggctgatt
                                                                    1080
ccagtcggaa aatgtcacac gacagggacg ttaatccatt agtctatttt tttcacttgt
                                                                    1140
attigicitt tictitatat giccitcitt cicattitigg gegitiggite atgictitice
                                                                    1200
tattetetag tteeaeteat aattetttea ttetgeeatt tttateegga aagegtagge
                                                                    1260
tgcccagacg ccccgagccc acgcgtccgc ggacgcgtgg g
                                                                    1301
     <210> 92
     <211> 815
     <212> DNA
     <213> Homo sapiens
     <220>
     <221> misc feature
     <222> (1) ... (815)
     <223> n = a,t,c or g
     <400> 92
eggettgega acatgeggee cettaageee ggegeeeett tgeeegeact etteetgetg
                                                                      60
gcgctggctt tgtccccgca cggagcccac gggaggcccc gggggcgcag gggagcgcgc
                                                                     120
gtcacggata aggageccaa geegttgett tteeteeceg eggeeggge eggeeggact
                                                                     180
cccagcggct cccggagcgc agaaatattc ccaagagact ctaacttaaa agacaaattc
                                                                     240
ataaagcatt tcacagggcc ggtcacattt tcaccagaat gcagcaaaca tttccaccga
                                                                     300
ctctattaca ataccaggga gtgctcaacg ccagcttatt acaaaagatg tgctagattg
                                                                     360
ttaacaagat tagcagtgag tccactgtqc tcccagacct agcaaaacta ccctacattt
                                                                     420
cctaagaatg tacatctaat ttgaagaaaa agtgcctcaa atcatgcaaa atgtaaaaaa
                                                                     480
agatgaaatt tatattttta tggatattaa gatgagtaaa ataagagact tcccagaaat
                                                                     540
aactggttag ctqtttcctg tcatagaatq gagnetttet tqctttatet ttttqtqtat
                                                                     600
acagtaattt ataattttgt aaaacagagt ttgaatcgca tattgaaaat tagatattaa
                                                                     660
aaattgtgtg attgtatttt atttttacta gatatattat tttctttata tgggtaacat
                                                                     720
tctaattaaa catttaattg tgtaaattat atctgtgagt gccagtgaga aataatgatc
                                                                     780
tttttgatat gactgttagc atatatgtgn catac
                                                                     815
     <210> 93
     <211> 855
     <212> DNA
     <213> Homo sapiens
     <400> 93
gaacagegeg gtggaattee ggaattatae agaatgeace tgtgteeaaa gtegeeaagt
                                                                      60
gatcactcca cccaccgtgg gacagcgaag tcagctccgt gtggttattg tcaagactta
                                                                     120
tetcaatgag aaeggetatg etgtgtetgg gaaatgtaaa eggacetgea atactettat
                                                                     180
cccattetta gtttttettt teatagteae etteateaea geatgtgeee aaccateage
                                                                     240
tatcatagta acactcaggt ccgtagaaga tgaggagaga ccttttgcac tgggaatgca
                                                                     300
qtttqttttq ttqcqaacac ttqcatacat tcctactcca atctactttq qaqcaqtcat
                                                                     360
tgacaccacc tgcatgctct ggcaacagga atgtggtgtg cagggttctt gctgggagta
                                                                     420
caacgtgacg tcgtttcgtt ttgtgtattt tggtttggct gccgtcctca aatacgttgg
                                                                     480
```

540

gtgcattttt attcttttgg cctggtactc cataaaagac actgaggatg aacagcctag

```
gctgaggcag aaaaaaattt gcctgagtac ccttagtgat acaatgacac aacccgactc
                                                                     600
tgccggagta gtatcatgcc ctcttttcac ccccgacgga gaaatccaca aaaagactgg
                                                                     660
cctgcgcaaa agggatccgg gagggaccac agaacctacc ccgggcccct tacgcaagag
                                                                     720
gccattatgt actttggagg cccccgtct gccaaacaaa qccccgttca ctttgqaact
                                                                     780
egecettetg agagttegge tataagggta gaaceteaat tqaqetgate tqeqetaqaa
                                                                     840
caccgggcgc tttcc
                                                                     855
     <210> 94
     <211> 398
     <212> DNA
     <213> Homo sapiens
     <400> 94
aatacatgct tttctcccac aaatcaacat aagaaaaaga taaacaacgc aacagaaaaa
                                                                      60
tgggcacatg gtctgatcga gcaattacag agaaaataga aacagccaat atgctaatga
                                                                     120
aaaaagattt aatctcccta gtaatgaggg caatgaaaat aaaaacaata atgagatacc
                                                                     180
atttccctta tctgattagc aaaagtttaa aatgttaata atatttaatg ctgtctgggt
                                                                     240
gaggtgtctc aagcctaaaa tcccagcacg acccacaaca aatgacacaa tgatatccaa
                                                                     300
gacaaaacaa cacacccaat atacetegta tgeecccage tggeeetgge ttggaccage
                                                                     360
tgcctgccag catggccccc tcatctcaca cacaccca
                                                                     398
     <210> 95
     <211> 862
     <212> DNA
     <213> Homo sapiens
     <400> 95
gtggaattcg agacttaaat cctcaacacc tcttgcacag attgctccaa ggctttcctq
                                                                      60
accgagtttc cctgaccttg ggctctcccc tctccatgaa gcttttgtac aaggattgtt
                                                                     120
teageatgaa acaattgage ecattgeett tgeeetgggt ettgtgttte etgtggaage
                                                                     180
catctaaact cagtgtgctc agctttgctt ctcctcccag tacaaagccc tcccagcaag
                                                                     240
coggactggt atgetecetg attogegtgt ceaccagete caetecageg tgtactttet
                                                                     300
accttcctgt taatgcaaag tgccgatcct gtcctttgaa caatccacct tgggaggtac
                                                                     360
cttggattaa ctagagccca actctccctt tctagatgat gggaagacat acagagtaaa
                                                                     420
gaacctgctc tgaattccat tacacaatga gatgatcttc agcttctcca accaacctga
                                                                     480
agcccgtgtc ctctggcgtc tggtactcag atgtcacgaa gcacgccatt ggactaagat
                                                                     540
ggtggtttcg catagtgcca agcacctaac aggcatcact atatacttqc tqatqtqa
                                                                     600
attetgtttt actecagtga tteagetetg ceaggecatt gttteactta cetgeeteet
                                                                     660
gaaactctgc aagacttggt agaaaatgaa tcatcaattt gacttgttgt ttcttcaaaa
                                                                     720
ctttgactgt gaccttgaaa ctgtggttct gaaaacaagt gaatctgatt tcgtctcctt
                                                                     780
gggccagtgt aagatetett etgttcaace tatatgtttg gattcattca etggcccaaq
                                                                     840
tgaatctgat ttcgtctcct tg
                                                                     862
     <210> 96
     <211> 7719
     <212> DNA
     <213> Homo sapiens
     <400> 96
ggcagaggaa tctgttcctc aaggcattca cggacttcct ggccttcatg gtcctcttta
```

actacatcat	ccctgtgtcc	atgtacgtca	controvanat	gcagagettc	ctcaactctt	120
	ctgggacgaa					
						180
	cctcaatgaa					240
	ggaaaacaac					300
	catctgcaac					360
actcgtcccc	cagcgtcaac	gggagggagc	gcgaggagct	gtttttccgg	gccctctgtc	420
tctgccacac	cgtccaggtg	aaagacgatg	acagcgtaga	cggccccagg	aaatcgccgg	480
acggggggaa	atcctgtgtg	tacatctcat	cctcgcccga	cgaggtggcg	ctggtcgaag	540
gtgtccagag	acttggcttt	acctacctaa	ggctgaagga	caattacatg	gagatattaa	600
acaqqqaqaa	ccacatcgaa	aggtttgaat	toctogaaat	tttgagtttt	gactcagtca	660
	gagtgtaatt					720
	ttcgatattc					780
						840
	taacgcagtg					
	atatgaaggc					900
	aaagttagca					960
	tgttgaggac					1020
agaaggccgg	gatcaaagtc	tgggttctca	cgggagacaa	gatggagacg	gccgcggcca	1080
cgtgctacgc	ctgcaagctc	ttccgcagga	acacgcagct	gctggagctg	accaccaaga	1140
ggatcgagga	gcagagcctg	cacgacgtcc	tgttcgagct	gagcaagacg	gtcctgcgcc	1200
acagcgggag	cctgaccaga	gacaacctct	ccggactttc	agcagatatg	caggactacg	1260
	cgacggagct					1320
	cagggagctc					1380
	gcccttgcag					1440
	gttagcaatt					1500
	aggtgtcatc					1560
	gtttaagcat					1620
						1680
	tgagetegtg					
	ccagttcttc					1740
	caacatcagc					1800
	cattgacgtg					1860
	gcgctggcgc					1920
	ctttggtgct					1980
	aaactggacg					2040
cactaaagct	tgcattggac	acacactact	ggacttggat	caaccatttt	gtcatctggg	2100
ggtcgctgct	gttctacgtt	gtcttttcac	ttctctgggg	aggagtgatc	tggccgttcc	2160
tcaactacca	gaggatgtac	tacgtgttca	tccagatgct	gtccagcggg	cccgcctggc	2220
	gctgctggtg					2280
	gtggccaaca					2340
	aaccatcttt					2400
	aggctaccag					2460
	actcgcggcc					2520
	tcaccactgc					2580
	gtgatggatg					2640
	gcaaggaggg					2700
	cactgtggtt					2760
	attctgctgg					2820
	cacccacctg				_	2880
ccagggaccc	atggtggccc	acatgtggat	gccacatgct	gctgtttcct	gcttgcccgg	2940
ccaccaccca	tgccctccat	agggtgaggt	ggagccatgg	tggtgcgtcc	tttactcaac	3000
aaccctccaa	tccggatgct	gtgggaaggg	ccgggtcact	cggataccat	catccctgcg	3060
gatgcaccgc	cgtaccctgc	tcatctggga	gtggtttccc	tgcggttacg	tccaagcccg	3120
	gtgttggggc					3180
	gccacgtggg					3240
	tgtccatcag					3300
	atttcgcggg					3360
	tccccgtgga					3420
						3480
	cgggggtggc					
	tecegeactg					3540
Leccatecee	acgtcccctc	accougecae	cregreecea	catececteg	coccytcacc	3600

tcgtcctcat	gtccccttgt	cctgtcacct	cgtccccacq	tececteqte	tcatccccac	3660
gtcctctcgt	ccccttgtcc	cqtccccaca	taccetegte	cccatgtccc	cacacaaaac	3720
teteettegt	cttaggatct	gtccagcact	actictagata	ggttaggaag	cccaaaacta	3780
ctataataaa	aagtccctgt	tatteteeat	actggcattt	chatttctag	aaataatatt	3840
tgacatagcc	ttaatggtcc	ttaaagaaga	catttcagtg	trarattrar	acttcacacc	3900
ctgaaactgc	tgcctttcag	deadagaaga	ccaacactag	agagaccag	gagatasa	3960
ccgaaaccgc	agazaatat	gaaagcacca	tanaganagh	aggaggagcc	ggcccccacg	-
gagatagtag	gccacgctgt	ttttaaaaa	ctcggcaage	gaaacccaga	gggtgtttee	4020
thtpestate	acagtaggta	tterce	cccagactte	accatttgat	tgtataatet	4080
cctacctata	aaatatttat	Ligaagtaga	gggcaaacea	gcggtaagaa	cagtgaacac	4140
ageggeeggg	ataaaataag	gtgacaaaca	tcacaccaaa	gatgagggta	gcgagcaact	4200
ggettgagea	gacagaacgg	ggaagactcc	actetgteee	gaggggccag	ccgcaggcgt	4260
ccccagggcc	accctgccct	gaggtccttg	tgtggccgcc	ctggcttggc	agccctgccc	4320
	cgcaaacaat					4380
	gtaacacctg					4440
tttgtaatgt	atttttttag	aaatcttaaa	attgcctttg	cactgaagta	ttttcatagc	4500
tgtttatatc	tcttttattc	atttatttaa	catactgtct	aattttaaaa	ataggttttt	4560
aaagctttca	tttttaagtt	tatgaaattt	tggccacttt	acatttagat	tctggtgaga	4620
gttttgactg	aatgttccaa	tctctgatga	atgcgaattt	tcagatttga	ttttattctc	4680
tacacacacc	tcttctttc	ttggtatttc	tggtggcagt	gattagttga	acagcacatt	4740
taaggcacga	taatttgcta	cactttttct	ttacaatttg	ttqcaatttc	atctgctttc	4800
tatgtttcat	tgttaattgc	catccttcag	ccttaaaaat	agaagattct	cacataaaaa	4860
tttagtaagt	ttgggtccca	getetgeetg	tgtggagata	qtcaccatqt	acctctgaca	4920
	gtgtgaaagt					4980
	attattaaat					5040
taaaaaaaqa	aaaggatgag	aagateetea	gtgaatgacg	ttacagaate	ttcatgcaat	5100
tttccacctc	gcagtagtta	gtatttactt	gccttaaact	aactttgaag	caagtaatgt	5160
caactttgag	cactttgttg	agttttgaaa	aatcttattt	attactacac	accttaataa	5220
attatcaatt	tgtaattcag	catattaatc	adadacacca	tractgattc	acacccactc	5280
cctaccacaa	accgtctcag	acacacacac	tagagacacgg	acataattaa	gaggagatag	5340
ctaccacaaa	ccgtctcaga	cacacacag	ggggcctgct	geatgatte	acceageee	
cctaaccaca	agaccatata	anacacage	agtggcccgcc	geatggatte	tattasaata	5400
	agaccgtctc					5460
	tecaegetea					5520
assagtatag	tacatgtacc	cattactaca	grycaagere	etgeacacat	geatgeacae	5580
aaacgtgtat	acaagtgtga	geteetaeae	gcatacacac	acacacgtgt	acatgcacca	5640
tabaastaat	gacctacaga	catgeagaae	atgeaegtgt	acacatacca	cagacacgcg	5700
	cctacacaat					5760
	tacacacatg					5820
tgeteteaca	cacgtgtatg	cacagcagag	agacgtatga	gettetactg	cacacatgca	5880
	cacacgtaca					5940
	cacaaatgag					6000
	acacgtacac					6060
	cacacacgtg					6120
	agctcccaca					6180
	aggcgtgaat					6240
	gtcctggtgt					6300
agaggcctct	ggatgggcat	gggaagatgg	gctccctggc	ccccagccca	tgcctccctg	6360
ggatgaagag	tccccctcct	ggcagaatgt	ctgggctttg	cagagcaggc	cccgggggtg	6420
aagtcgcagc	ttcacttaca	ccagctgctc	tgtgagcaag	gcttggtgcc	ctggacaagg	6480
cccttcccct	ttagggaggt	ccagcctcgc	aagctgaaac	ctccctcgg	ctcagcccta	6540
	ccacagcagg					6600
	cagcetteeg					6660
	agcctgtgtc					6720
ggaggaggcc	agatgcggcc	agcgtctcca	acagggtgac	catccactca	gcttgctgag	6780
	aatgtttaga					6840
	gtcgcgggaa					6900
	tagtactgaa					6960
	tgtctaacag					7020
	tgtaactttt					7020
	taagctaaag					7140
	Jangoodday	2-222-2000	-JJuucyuua	Lucutuutya	cyccycyccc	1740

```
ataagcagcc ttgatgggat atgttagaag tgtcatgaaa gtgtgattct acttttgcag
                                                                      7200
 aaaaatctaa agatcaattt atatagcttt attttttact ttatcaaagt atacagaatt
                                                                      7260
 ttaatatgca tatattgtgt ctgacttaaa attataatgt ctgcgtcacc atttaaaatg
                                                                      7320
tctgttcatt atgtaatgta ataaaagaag gtcttcaaaa atgtatttaa catgaatqqt
                                                                      7380
 atccatagtt gtcatcatca taaatactgg agtttatttt taaattatta aacatagtag
                                                                      7440
 gtgcattaac ataaatcagt ctccacacag taacatttaa ctgataattc attaatcagc
                                                                      7500
 tttgaaaaat taaattgtta attaaaccaa tctaacattt cagtaaagtt tattttgtat
                                                                      7560
 gettetgttt ttaaetttta tttetgtaga taaaetgaet ggataatatt atattggaet
                                                                      7620
 tttctctaga ttatctaagc aggagacctg aatctgcttq caataaagaa taaaagtctq
                                                                      7680
 cttcaqtttc tttataaaqa aactcacaca aaaaaaaaa
                                                                      7719
      <210> 97
      <211> 1583
      <212> DNA
      <213> Homo sapiens
      <400> 97
 tttttttttt ttctcaggaa caagtttatt gcagggaaca cactaacctc tttcataata
                                                                        60
 gccaaaggca taaaaactac aaaaatatct ggctctcgag tgtgggcagc tcagtgtggg
                                                                       120
 acctggtctg agtcatgact tgggctgccc tgcaggccag aggcccggga gctttccggc
                                                                      180
 cactccccag agaggtccgt ggcgctgagg gggtgaggaa gtgccttggc tgcttccaca
                                                                       240
 gcgtgaaggc caaggctgag gtggagctgg gctggaqtqq ttccaqaqaa qqcttcatcq
                                                                       300
 aggcccttca aggctgatgg cagagccagg gtagggagac gcctggatgt ggctgccctg
                                                                       360
 gctcaactgg ctcctggacc aaggccctaa cccaccagtt tctttctcca gaacccctgc
                                                                       420
 tggctctccc atagccaagt gggtggagca gagccctcct gaggctccca gtgcagacag
                                                                       480
 acctccaccc aaccacagtg atccggagga cctgctggct gcatggctgg tgtgatgctg
                                                                      540
 ggaggagagc cggggaggga ggaggatggt aggcaggaac atgcctcagc acagatgggc
                                                                      600
 aggtgggttg accttccctg ccctcagggc tgggcaccat tggcacccaa cagggccgtc
                                                                      660
 ttgcggaaga cctgcagggt tgggttgtgc agcagcgtgt aggccagacc ccaqcgagcc
                                                                       720
 ctgccgcggc tggccccggg cctagctccc ttggccatqq aqtcctttqt ctqtaqcaqc
                                                                       780
 tgcatccctt cgtcttcctc ccctggtctg aggctgtcct ggggggctgc catggtcctg
                                                                       840
 ggtaggaggc tctgcgcttg caggagcagg gagcagaagg ctgtcatggc tggatgcgac
                                                                       900
 tggctgactt caatcttcaa gaagtttcgg tacgtgtagt agccgqqqtc qaqaqtqqcq
                                                                      960
 geteteggtg geageagget gaggteeate tggccaaggt ggatggegtt gtagagggea
                                                                      1020
 gagaggagca ctcgccaggt ggccaccatg gcacccacca gcacattgag ggggaagaga
                                                                      1080
 agaaaggtgg ctgcatagag cactcgccgg ttggtcagct gtgggtgtcc atcatgagtc
                                                                      1140
 tccaggaaga cccaatgggc tgccatgttc tgcaggatca cagccagggc caaaqtcaqc
                                                                     1200
 cagaagggcc acgaggactc cagggaacgg aagagcagga ggttcctgcc atggagcaca
                                                                     1260
 ggcatgagca ccaggaaggc cagggccgtg gttcccagga agaagatqat ctqctqcacc
                                                                      1320
 aggagcccaa ggcagataaa ggctgtctgg taggcactga agctcatcca acaqaatatq
                                                                      1380
 gcttggcggg agggatgggg actccgatgc aagggactca agtccagggc agctcctcgg
                                                                     1440
 tgcagagetc gaaggttggt cctggggtgg cagccaggga ggcagagacc tcagggagca
                                                                     1500
 acacactaaa cctaaatcct cctctgggcc agcaactggc caacctcccg gtagaatttc
                                                                     1560
 accgaattcg accaggetga tec
                                                                      1583
      <210> 98
      <211> 1493
      <212> DNA
      <213> Homo sapiens
      <220>
      <221> misc feature
      <222> (1)...(1493)
      \langle 223 \rangle n = a,t,c or g
```

<400> 98 tttttttttac tccgtgtgca gtgttttaat ttatccatgt acataggcaa ttatcataat 60 ttgaaggaca ctttttactt attagactat aagaaaaact gtacagaaag tttatactat 120 aaaattacat ccctaagtga ttagggtcct cagtaacaca gaaataaqaa attqaaaagg 180 gtcattgctc ggcaatccac ataactacag agtagagcgc aagctattqt tcgtgatcaq 240 aaagagactt cataaaaaca tcttcacata ttccctagca ttatgcccta ctagtaaaag 300 gaaggeetat gacaatgeea ttgtttattt tgtgtaaege ageeetteta ttteeeteaa 360 aagttttttt ttcctgctat aagataaaga aaaggctgta tccctaagat atatacctaa 420 tgaagattat etcaacagaa getecaaegt tttecatttt teaetgtett teetgaagtt 480 cacctggatg ttccacagca attttctaac cctttcattg ttgattagcc tactaaaagt 540 agaattettt agcaacaca aatacaaaag acacaggeta aaacaggeet cacaaataca 600 ctttgaaata ggtatatttg gatataaata taactttcca gtccattatt ttttctaatg 660 actaaaactc taaattttta aaaatggaag ttttcaaacc aacgatgtgt taagcccatt 720 ctcatgacac attcatttta acttctcatt cagtatggga aaattttatt tcttcccttt 780 gtcttgcaga ataatttagg ttcccaccct gggcacgatt caccaaatag agtaagacca 840 cagataaaag tqacaaaqaa acacaqqcaa tqaaqaacac ttccaaaaac aaataccccc 900 gagaatccag tatcatacca qcaatgatqq aaatqatqqc caacccaaqa ttctqaatqq 960 actgcatgaa gccatatgca gttcccagct gatgttcagg aactacaaat qccaccattg 1020 gccacaatgc acaggcaagc aatgagtagg agagtcccag aaqacacata gcaatccaaq 1080 ggttccacat cgtaaaggcc agcatcatgt gggacacaag agtggctgct actgcgcaaa 1140 gaacccagat gatgttcttc cctgttttat ccaccaggag cccaaacacc ggggacatgg 1200 gagetgatat gacatataca acaetgttaa ttgcaettge tgeetgggaa gaaaateeaa 1260 atttctctgt aaagaaaact ttcccaagtc caataaaagg gaacacagca acataatagc 1320 agacacagat gataaatata agccacaggg gtaaggagaa gtcctttaca tcagttaatt 1380 taataacttc acctgttttt ccttgttctt tatgcggacg cgtgggtcga ccgggattcc 1440 gggcggtccg agggcgtcag tnnnnnnnn nnnaggggtt tccgggtttt caa 1493

<210> 99 <211> 1949 <212> DNA <213> Homo sapiens

<400> 99

ggaattcgaa acatgtaaat gaaagatttc aagatgaaaa aaataaagag gttgttcttt 60 tgtgcattgg cgtcacttca ggagttggac gactgctctt tggccggatt gcagattatg 120 tgcctggtgt gaagaaggtt tatctacagg tactctcctt tttcttcatt ggtctgatgt 180 ccatgatgat tectetgtgt ageatetttg gggeceteat tgetgtgtge eteateatgg 240 gtctcttcga tggatgcttc atttccatta tggctcccat agcctttgag ttagttggtg 300 cccaggatgt ctcccaagca attggatttc tgctcggatt catgtctata cccatgactg 360 ttggcccacc cattgcaggg ttacttcgtg acaaactggg ctcctatgat gtggcattct 420 acctegetgg agtecetece ettattggag gtgetgtget ttgttttate eegtggatee 480 atagtaagaa gcaaaqaqaq atcagtaaaa ccactqqaaa aqaaaaqatq qaqaaaatqt 540 tggaaaacca gaactctctg ctgtcaagtt catctggaat gttcaagaaa gaatctgact 600 ctattattta atatcttaca tacctccacc agactggact tgctttttga attttaaqca 660 agtttccttt ccttttatac aaattgcaaa tttcatattt ttttaatcac atcctaggaa 720 tagcacaata attgggaaat agaaccetta teactagaag aaccatttte tgccactaaa 780 tatctctgat gtttccatga gtctgagggc agagactctg gtatatgaaa acgtctgaaa 840 gtcacatatt gtgaaaattt gaagctatct cagtaaaaag cagctttgga aactgtgaat 900 gatetttage ttgtacaaat gtttaaaaat aceteagget ataetgaaag ggttgeagtt 960 tggttaggag tggaaatatt ttgtttgtta atgatgtctt cagttctggt acctctgttt 1020 tactttetta tgetetttgg aaaetttttg caaaatttaa geetgggtte tagataatae 1080 cagatctacc taaacctcaa qtctatqtta aagttqcttt cctqctqtta aataaqctat 1140 gatattaaga tattetgaet tgeteeagtg teaagggaee ttetgggage aggtgetaae 1200 atagtgttca gaatcaatat gtgagatgaa aaggatcccc tccaggagga tcctgagctg 1260

```
ttcagaaatc atttaagttt acagcgttgt tccctttgcg tttgcagtgc gttttactca
agtagccaga aacaccccac gtttctgaat ttgtttaaac tgtaacaata aagtaaaata
                                                                    1380
gaatccatga aagatattct ggcgattgta acttagaatt tttctgactt ctggatttgt
                                                                    1440
tggcactaga acctgatatt taaacaaagt cttactgagc agctatcaag tggcagttac
                                                                    1500
aggcacaaat tggtggaggc tggaggatgg ggaggggagc aaaacccttt atatttgtga
                                                                    1560
agaaaatatc tgtagctgat agaaataatt gcttaaattg gtttatqaaa ttaatqaqtc
                                                                    1620
tgaaaaggtt aaaagcactt ataaaaagaa ccaagtccta catttccaga actttctggc
                                                                    1680
aaaaatttgc actcatatta tttatcctat gaacattccc attgtttttt tttgctattt
                                                                    1740
atatacagat tatcataaga aagctctcag tttgaggacc caaaataaaa ccaaagtcat
                                                                    1800
gccatgaccc atactcattt acaaaaacaa gaacactttc ctctatccct aaaattatgc
                                                                    1860
tttagtactt gaggccttta aaagttagtg cttttgattg tgaagacatt cagcaactta
                                                                    1920
ctttgtcata catgcagttg caccttacc
                                                                    1949
     <210> 100
     <211> 1496
     <212> DNA
     <213> Homo sapiens
     <400> 100
atgtgtgtgg gaaagccttc agtcagagct cagatcttat tctgcatcag agaatccata
                                                                    60
ctggggagaa accatatcca tgtaatcagt gtagcaaaag tttcagtcag aattcagacc
                                                                     120
ttattaaaca tcqaaqqatc cacactqqaq aqaaacccta taaatqtaat qaqtqtqqqa
                                                                     180
aagettttaa teagagetea gteettattt tacateagag gatteataet ggagagaaae
                                                                     240
cctatccctg tgatcaatgt agcaaaacct tcagtaggct ttcagatctt attaatcatc
                                                                     300
aacgaattca cactggagag aagcettace catgtaatca gtgcaataaa atgtttagte
                                                                     360
gaagatgaga tettgttaaa catcacagaa ttcatacagg tgagaaaccc tatgaatgtg
                                                                     420
atgaatgtgg gaaaaccttt agtcagagct ccaaccttat tcttcatcag agaatccaca
                                                                     480
ctggagagaa accttatgca tgtagtgatt gtactaaaag ctttagtcgc cgttcagatc
                                                                     540
ttgttaagca tcaaagaata cacactqqaq aqaaaccata tqcatqtaat caqtqtqata
                                                                     600
aaagttttag tcaaagctca gacctcacta aacatcagag agtacactct ggtgaaaagc
                                                                     660
cttatcattg caatagttgt gagaaagcct tcagtcagag ttctgacctt attcttcatc
                                                                     720
agagaattca cactggagaa aaactattat ctgtgcacac agtgcagcaa aagtttcagt
                                                                     780
cagateteag aceteattaa acaceagaga ateeacactg gggaaaaace atataaatge
                                                                     840
agtgagtgca ggaaggcttt cagtcagtgc tcagctctta ccctacacca gagaatccac
                                                                     900
actgggaaga aaccaaatcc atgtgatgag tgtggcaaaa gctttagtcg gcgttctgat
                                                                     960
ctcattaacc atcaaaaaat acacactggt gaaaagccgt ataagtgtga tgcatgtggg
                                                                    1020
aaagccttca gcacatgtac tgatcttatt gaacaccaga aaacccatgc tgaggagaaa
                                                                    1080
ccctaccagt gtgttcagtg caqcaqaagt tgtagccaac tctctqaact tactattcat
                                                                    1140
gaggaagtcc attgtggaga agacagtcaa aatgtgatga atgtgagaaa acctttagtg
                                                                    1200
tgtacaccaa ctctattcag taccagagac actgtaccag aaaaaaatct aatgaatgct
                                                                    1260
gttgattatt gatgagtatg aaaaaggttt taatcagtgt tcaactctta tgctacatta
                                                                    1320
aaaccacact ggatccggat acgtgtggtg gctcacgcct gtaatcccaa cactttggga
                                                                    1380
ggcagatgtg gaagcatcat ttgagcccag gagtttgagg ctgcagtgag ctatgattcc
                                                                    1440
accattgcac tccagtctgg gcaacagagc aagaccctgt ctatttaaaa aaaaaa
                                                                    1496
     <210> 101
     <211> 529
     <212> DNA
     <213> Homo sapiens
     <400> 101
ctgatttaag gaagaacatg cacagttcta cgaacatgca gttctacaaa catgaacaat
                                                                      60
tcattcagca gtcagatctt cctcaaaact ggaagttttg atggatagtc acaaggaggt
                                                                     120
```

```
tgtcctagca aacattcaaa aaatagaagg ccccacttaa actgtgaggg gaaattgctg
                                                                      180
gccaacgttc aggatctcta gagcaaaaag cctgcacaaa agaactgcag actgcatcta
                                                                      240
gcagtgataa aagagaacat gtcataccca agctgatctt atcccaggaa tccaaggttg
                                                                      300
gttaaatagc aacactcaga gatcaggagt aaaacatcac gtgcagctca gtactgaact
                                                                      360
gaagaaggaa ccagcaccct acttctcccc gataggacaq cattttcacc aaqqcaqqac
                                                                      420
ggeetgeate acgaggetgt ggeeteeete cecagacece ttacetetge cecqqqeete
                                                                      480
cttgagtttt gcagggatcc actccatagc tctggcagag attttggtt
                                                                      529
    <210> 102
     <211> 697
     <212> DNA
    <213> Homo sapiens
    <220>
    <221> misc feature
    <222> (1)...(697)
    <223> n = a,t,c or g
     <400> 102
caagcagcaa attccagttt ctgggaaata gtggaccaga tcgtctccat ggagcagctg
                                                                      60
gtcctaacat attggccggc aaggaataac tgactcctct ggcctcatgt ctcttcgggc
                                                                      120
cccctcagtg aggatetttg tgtacttgct atteegtttg cacacccage gtggcctcct
                                                                      180
tgcaggcagg aggcagtggg gcccctqccc actcaqcttc tctcattttc ttcacttatc
                                                                      240
agtettgtcc tgttccactc aaatctacac tgagggcagt tggcctggat gggcttcact
                                                                      300
aggggccccg tetgtgcact gggcccgttt cccetgctgg etgcaagcca tggqttettt
                                                                      360
ttetectete tgeeceteat getgaeette tagatgeeae teccaaatee eetteaetee
                                                                      420
atacccacca ggcttcatgc ccacccaggc ctctggcacc ctcagtgcag cccatgattg
                                                                      480
ggaactcacc atcagcagtc agtggctcgg tttaagagag ggccgcagag ggaactqggt
                                                                      540
cctgatgtgg acttggatgc cctgggggga tagntctgct gacactgtgg cctgaaatan
                                                                      600
aaaaagtgct gagcaagcag tgtatgctgg agcctcagta gaccatctgc acaatqqqqa
                                                                     660
cgtggagagg atggttggat tatgcctctq catgtca
                                                                      697
    <210> 103
    <211> 711
     <212> DNA
    <213> Homo sapiens
    <400> 103
ttttttttttttta ataatgttgt tttttcagtt tgtgattttc gttatttata cqaaqaqcqa
                                                                      60
gctggttttc ttaccaaact ggaaacctag ctgtttgaac tatgatgaca tatctaacat
                                                                      120
attctacctt tttggagttt atcttgaacc aagaaaaatt atgggaggaa ataacagctc
                                                                     180
attgcttgat taatgattca aatttttaaa atgtttctca tgaaatqaaa qaatqqcaqa
                                                                     240
tgttaatatt gttattatct taatggccat gactcaattg accctagaat gagatttcat
                                                                     300
ttgtcacata gcatctgcaa ggctgaattt tcatgatgcc aaccaatctg gcacatcttg
                                                                     360
ttttctggca agctcttctg gcctctggca ggtttagcct aatggagcac tatccaccca
                                                                     420
acgtccagtc caacagagga atcacacatt acatgcttcc cagagggtac atcctggggc
                                                                     480
tgctttacag ctctgctggc aacacaggaa cttcccgtcc acgaagaacc cactatggta
                                                                     540
cttgaccagc aggtgggggt taccccttat ctctgaggag ccgacaggaa qaaaacaaqa
                                                                     600
cgttagcaaa cgttgatcca agaqqaqaaa cattcagtaa qtqctgttat cacagaacca
                                                                     660
```

711

taaaaacccc tttggcagaa cccaqqqaag aagcaaaqqq ttccqaaaqa a

```
<210> 104
     <211> 429
     <212> DNA
     <213> Homo sapiens
     <400> 104
atggttatgt atgatecgtq acctttqacq ttactqtqaq qtqaaqttaa taaatqttqt
                                                                       60
atgtgttetg actgetgtac cagetggetg tteceteate tetetetact etcettagge
                                                                      120
ctccttgttc cctaagacac aacaatattg aatgtaggcc aattagtaac cctttgacaa
                                                                     180
ggtacatagt cacctaagag ctctgttgaa gatgtacaag aaaatgttct tttcatacct
                                                                      240
gctaacaaca tccatcctgc agtctgtgga tccaggagtc aatttgacat agaagtctga
                                                                     300
tttaagaaac acctttcgaa aggctatggc tgctatacag aggatgattc ctctgatgga
                                                                     360
tctgggcaaa gtacattgaa aactttctgg agagaattca ccattctggg taccattaag
                                                                      420
aacctttgg
                                                                      429
     <210> 105
     <211> 1028
     <212> DNA
     <213> Homo sapiens
     <400> 105
atgtaattga tttttgtata ttgatctcac attctgcgaa cttgcaaact tatttgttaa
                                                                      60
ttctaatagg tttttaatgg tccctttggt attttttaca tatagtatta tgctttctgc
                                                                      120
aaataatgac agttetttet ttecaatatg aataettaat tttteteett actteaetea
                                                                      180
ctacaatcta taatacgaca ttgagtagaa gtggtgatgg aagacgtact tgccttqttt
                                                                     240
tcaatcttag ggagaaagta ttctgttttt caacattagg aatcatatag ctatgggttt
                                                                     300
tttgtagata tcctttatta agttaaggat atgttcttat attcttaatt tgtggaqctt
                                                                     360
ttatcataaa aggatgttgg attttttcaa atgtcttttc tqcatctatt qaqattatta
                                                                     420
tgtgatttta ttctctattc tgtcaatatg gtgcatgaca ttaattqatt ttcqtaaqtt
                                                                     480
aaaacaacct tgtatttctc agatgaatcc catttgatca tggtgtaaaa ttttttttac
                                                                     540
atggtgctgg attcactttg ataaaatttg tacctatgtt tatgtgggaa tttctgtagt
tetettttat tgaaaageet ttttttgget tgggggtaaa aaaatacegg geteatagaa
tttatcaaat aaaaacagac caagaagaga acttccccta cgggggggcg gcctcttata
                                                                     720
agaaccatca ctccggggcg ggtggaaaac atatttttt ttttgcgccc caataatatc
                                                                     780
cccggggggc gttttacccc gcgaatggga aaacggtgct tctcctatca ctcactgcta
                                                                     840
accteteceg acttgtetgt cacceaegat acceeceae tegecacate aataceetat
                                                                     900
catcocttca ctccctctat accccccgt tcaccacaac ccccatatca cgggcaccct
                                                                     960
cttaaaccca ctatgccaga atcgccgcac acatccaact ttctatcgct cqccqqccaa
                                                                    1020
cagccgcg
                                                                    1028
    <210> 106
    <211> 738
     <212> DNA
     <213> Homo sapiens
    <220>
    <221> misc feature
    <222> (1)...(738)
    <223> n = a,t,c or g
     <400> 106
atggtcacca cattttacca tcagcagctg gacactagcc ctaagagcct agagggggtc
                                                                      60
```

```
tgggctggag gtgctcatgt gagcactgcg gcttgggagc cacatcctga gagcccccgt
                                                                     120
gtggctgcag aagccatgaa gccaggttct gtatgtggca gcccagaggg gccgccctg
                                                                     180
qqctctgtcc agccctgtga ttcctggaag gccctcctcc gggaagagac cggtaatgaa
                                                                     240
aaacacagca aaacaaaact ggcagtgccg ccgactgagc acttagagct caccaggcac
                                                                     300
aaagttaagc atattacgtt cattatttca cttaatcctc acaaaagccc ccttggggaa
                                                                     360
ggtacttcca ccacatcaaa gtcactgccc aaggtccctg ctgagtgatc aggaagctcq
                                                                     420
getecaaaat aaccatgage tgtggaaage tgeactcaac cagagaccaa atcagaacte
                                                                     480
cagaagtcag agtccagcgg gtgttgcctg cgctccaaat gcctgatgcc caccccatcc
                                                                     540
egageaggte egteagettg getgggetgt eccaecetee aggeeacaet ggeeaateee
                                                                     600
cetteettee teggggtggg etgggtegge geaggteece taqtteacee aqqqetqeaa
                                                                     660
aaaatgtgtt ttgacagccc ggagggctga cgtgcggacg cgtgggtcgt cccggcanta
                                                                     720
ccggaacgaa atnacgtt
                                                                     738
```

<210> 107 <211> 1706 <212> DNA

<213> Homo sapiens

<400> 107

tteegggteg acceaegegt ceqeaaacae tttqqtetet tetacqetat qqqcattqca 60 ttgatgatgg aaggggtget cagtgettge taccatqtet qecetaatta ttecaactte 120 caattegaca ceteetteat gtacatgate getggeetgt geatgetgaa getetateag 180 accegecace cagacateaa tgecagegee tactetgeet atgecteett tgetgtgqte 240 atcatggtca cogtecttgg agtggtgttt ggaaaaaatg acgtatggtt ctgggtcatc 300 ttctctgcaa tccacgttct ggcctcgcta gccctcagca cccagatata ttatatgggt 360 cgtttcaaga tagatttggg aattttccgg cgggctgcca tggtgttcta cacagactqt 420 atccagcagt gtagccgacc tctatatatg gatagaatgg tgttgctggt tgtggggaat 480 etggttaact gqtccttcqc cctctttqqa ttqatatacc qccccaqqqa ctttqcttcc 540 tacatgctgg gcatcttcat ctgtaacctt ttgctgtacc tggcctttta catcatcatq 600 aagctccgca gctctgaaaa ggtcctccca gtcccgctct tctgcatcgt ggccaccgct 660 gtgatgtggg ctgccgccct atatttttc ttccagaatc tcagcagctg ggagggaact 720 ccggccgaat cccgggagaa gaaccgcgag tgcattctgc tggatttctt cgatgaccat 780 gacatctggc acttectete tgctactget ctgtttttet cattettgga tttgttaact 840 ttggatgatg accttgatgt ggttcggaga gaccagatcc ctgtcttctg aacctccaac 900 attaagagag gggagggagc qatcaatctt ggtgctgttt cacaaaaatt acagtgacca 960 cagcaaagta accactgcca gatgctccac tcaccctctg tagaqccaac tctqcattca 1020 cacaggaagg agaggggctg cgggagattt aaacctgcaa gaaaggaggc agaaggqqaq 1080 ccatgttttg aggacagacg caaacctgag gagctgagaa acacttgctc cttccatctg 1140 cagetttggg agtgeaacag ggataggeae tgeateeaag teaacteace atettggggt 1200 eceteceace etcaeggaga ettgecagea atggeagaat getgetgeac aettteette 1260 aagtgtcacc ctgcccaaaa aaggccagca gcttggactt cctgcccaga aactgtgttg 1320 geceeettea eacetetgea acacetgetg etceageaag aggatgtgat tetttagaat 1380 atggcgggga ggtgacccca ggccctgccc tactgggata gatgttttaa tggcaccaqc 1440 tagtcacctc ccagaagaaa ctctgtatat ttcccccagg tttctgatgc catcagaagg 1500 gctcaggagt ggggtttgtc acacattect cttaacaagt aactgtcact gggaccgagt 1560 cctgggtgct tacatattcc ttcgtgtctt catctcactg acctgtqtqq acctcatcac 1620 tetgaetetg cettettgga aaggeeetgt cactecacag atgtetggee agetteaagg 1680 cagaaggaaa aacaggaaaa gctctt 1706

<210> 108

<211> 851

<212> DNA

<213> Homo sapiens

```
<400> 108
ttttttttt ttgcaaagat tcactttatt tattcattct cctccaacat tagcataatt
                                                                      60
aaagccaagg aggaggaggg gggtgaggtg aaagatqaqc tqqaqqaccg caataqqqqt
                                                                     120
aggteceetg tggaaaaagg gteagaggee aaaggatggg aggggteag getggaactg
                                                                     180
aggagcaggt gggggcactt ctccctctaa cactctcccc tgttqaagct ctttqtqacq
                                                                     240
ggcgagctca ggccctgatg ggtgacttcg caggcgtaga ctttgtgttt ctcgtagtct
                                                                     300
getttgetca gegteagggt getgetgagg etgtaggtge tgteettget gteetgetet
                                                                     360
gtgacactct cctgggagtt acccgattgg agggcgttat ccaccttcca ctgtactttg
                                                                     420
gcctctctgg gatagaagtt attcagcagg cacacaacag aggcagttcc agatttcaac
                                                                     480
tgctcatcag atggcgggaa gatgaagaca gatggtgcag ccacagttcg tttgatgtcc
                                                                     540
accttggtcc cctggccgaa cgtccacacg taagtactca gctgttgaca gtaataagtt
                                                                     600
gcaaaatctt caggetgcag gccactgatt gtgagagtaa attetgtccc agatcctctg
                                                                     660
ccgctgaacc ttgatgggac cccactttgc aaactagacg ccttatagat caggagttta
                                                                     720
ggggetttee etggtttetg etgataccag ggcaaccagg gactaatact etgactggee
                                                                     780
cggcaagtga tggtgactct gtctcctaca gaagcagaca gggtggaagg agactgggtc
                                                                     840
atctggagct c
                                                                     851
     <210> 109
     <211> 959
     <212> DNA
     <213> Homo sapiens
     <400> 109
cttcatctcc tggaccgagc cctactgaca cctgggccct gcttctcgcc cattcaccag
                                                                      60
gtetetetee teetgggega geegttette actaceagee tgetqeegtg qeacaacete
                                                                     120
tacttctggt acgtgcggac cgctgtggac cagcacctgg ggccaggtgc catggtgatg
                                                                     180
ccccaggcag cctcgctgca cgctgtggtt gtggagttca gggtgtgcag ggaacagcaa
                                                                     240
gatgtgcctc ttgttcttgc tgccacgctt ccctgtgtcc tggcgggcgg gtgtggatgg
                                                                     300
ggetgeteet teeteacagg acetgtggeg gateeggage eeetgtggtg actgegaagg
                                                                     360
cttcgacgtg cacatcatgg acgacatgat taagcgtgcc ctggacttca gggagagcag
                                                                     420
ggaagetgag ecceacege tgtgggagta eccatgeege ageeteteeg ageeetggea
                                                                     480
gatcctgacc tttgacttcc agcagccggt gcccctgcag cccctgtgtg ccgagggcac
                                                                     540
tgtggagete aaaaggeeeg ggeagageea egeageggtg etatggatgg aqtaceaeet
                                                                     600
gaccceggag tgcacgetca gcactggcct cctggagcct gcagaccccg aggggggctg
                                                                     660
ctgctggaac ccccactgca agcaggccgt ctacttcttc agccctgccc cagatcccag
                                                                     720
agcactgctg ggtggcccac ggactgtcag ctatgcagtg gagtttcacc ccgacacagg
                                                                     780
cgacatcatc atggagttca ggcatgcaga taccccagac tgaccactct tgagcaataa
                                                                     840
agtggcctga ggggctgggg ttctgagtgg ctcatggctt tctagggggg aaggctgaag
                                                                     900
geoetectet cetetetggg agetgetegg ceteagggat gggaaagact gegeegtqt
                                                                     959
     <210> 110
     <211> 435
     <212> DNA
     <213> Homo sapiens
     <400> 110
cegggtegae ccaegegtee ggtgagaetg tttgecette catgteette ttaaatgete
                                                                      60
atagactgag ctttgtagtt aatgttggtt ttgttgccca ggagcaaagc catgcctttg
                                                                     120
ctttcagtga atgtaactct agcatttttt cccaggaata aggaaattgt gaaatatctg
                                                                     180
ctaaaccaag gggccgatgt cactettegt gcaaaaaatg gatacaegge etttgacetg
                                                                     240
gtgatgctgc tgaatgatcc cgacatattt gggggtgagt tgattggttt tttgtcggtg
                                                                     300
gtcacggaac ttgttcgact gctggcatct gtcttcatgc aggtgaataa ggacataggc
                                                                     360
```

eggeggagee accagettee ettgeeceae tegaaggtee egacageett ggageateee 420 agtgetgeee gatga 435

<210> 111 <211> 3545 <212> DNA <213> Homo sapiens

<400> 111

ctggtctaca agaactcgag gcctcactga aacggattgc aaatacaaag aaactttatt 60 ttaaaaacgt gtcttggtct cccaagaaga gggcaattgg attgctcagc cagaatgaag 120 agtagtttta cagaaaaaag aggacaatat tgggatcacc tttgaccttt ccatttggaa 180 ataatatttt ctattgtgtt atagaaaggt gggaagcttt catccagaac aatgaatttc 240 ataaaggaca atagccgagc ccttattcaa agaatgggaa tqactgttat aaaqcaaatc 300 acagatgacc tatttgtatg gaatgttctg aatcgcgaag aagtaaacat catttgctgc 360 gagaaggtgg agcaggatgc tgctagaggg atcattcaca tgattttgaa aaagggttca 420 gagtcctgta acctctttct taaatccctt aaggagtgga actatcctct atttcaggac 480 ttgaatggac aaagtetttt teateagaca teagaaggag aettggacga tttggeteag 540 gatttaaagg acttgtacca taccccatct tttctgaact tttatcccct tggtgaagat 600 attgacatta tttttaactt gaaaagcacc ttcacagaac ctgtcctgtg gaggaaggac 660 caacaccatc accgcgtgga gcagctgacc ctgaatggcc tcctgcaggc tcttcagagc 720 ccctgcatca ttgaagggga atctggcaaa ggcaagtcca ctctgctgca qcqcattqcc 780 atgetetggg geteeggaaa gtgeaagget etgaceaagt teaaattegt ettetteete 840 cgtctcagca gggcccaggg tggacttttt gaaaccctct gtgatcaact cctqqatata 900 cctggcacaa tcaggaagca gacattcatg gccatgctgc tgaagctgcg gcagagggtt 960 cttttccttc ttgatggcta caatgaattc aagccccaga actgcccaga aatcgaagcc 1020 ctgataaagg aaaaccaccg cttcaagaac atggtcatcg tcaccactac cactgaqtqc 1080 ctgaggcaca tacggcagtt tggtgccctg actgctgagg tggggggatat gacagaagac 1140 agegeecagg eteteateeg agaagtgetg ateaaggage ttgetgaagg ettgttgete 1200 caaattcaga aatccaggtg cttgaggaat ctcatgaaga cccctctctt tgtggtcatc 1260 acttgtgcaa tccagatggg tgaaagtgag ttccactctc acacacaaac aacgctgttc 1320 catacettet atgatetgtt gatacagaaa aacaaacaca aacataaaqq tqtqqctqca 1380 agtgacttca ttcggagcct ggaccactgt ggatacctag ctctggaggg tqtqttctcc 1440 cacaagtttg atttcgaact gcaggatgtg tccagcgtga atgaggatgt cctgctgaca 1500 actgggctcc tctgtaaata tacagctcaa aggttcaagc caaagtataa attctttcac 1560 aagtcattcc aggagtacac agcaggacga agactcagca gtttattgac gtctcatgag 1620 ccagaggagg tgaccaaggg gaatggttac ttgcagaaaa tggtttccat ttcggacatt 1680 acatccactt atagcagcct gctccggtac acctgtgggt catctgtgga agccaccagg 1740 gctgttatqa aqcacctcqc aqcaqtqtat caacacqqct qccttctcqq actttccatc 1800 gccaagaggc ctctctgqaq acaggaatct ttgcaaagtg tqaaaaacac cactgaqcaa 1860 gaaattotga aagcoataaa catcaattoo titigtagagt giggoatcoa titatatoaa 1920 gagagtacat ccaaatcagc cctgagccaa gaatttgaag ctttctttca aggtaaaagc 1980 ttatatatca actcagggaa catccccgat tacttatttg acttctttga acatttgccc 2040 aattgtgcaa gtgctctgga cttcattaaa ctgggctttt atgggggagc tatggcttca 2100 tgggaaaagg ctgcagaaga cacaggtgga atccacatgg aagaggcccc agaaacctac 2160 attoccagca gggctgtatc tttgttcttc aactggaagc aggaattcag gactctggag 2220 gtcacactcc gggatttcag caagttgaat aagcaagata tcagatatct ggggaaaata 2280 ttcagctctg ccacaagcct caggctgcaa ataaaqagat qtqctqqtgt qqctqqaaqc 2340 ctcagtttgg tcctcagcac ctgtaagaac atttattctc tcatggtgga aqccaqtccc 2400 ctcaccatag aagatgagag gcacatcaca tctgtaacaa acctgaaaac cttgagtatt 2460 catgacctac agaatcaacg gctgccgggt ggtctgactg acagcttggg taacttgaag 2520 aaccttacaa agctcataat ggataacata aagatgaatg aagaagatgc tataaaacta 2580 gctgaaggcc tgaaaaacct gaagaagatg tgtttatttc atttgaccca cttgtctgac 2640 attggagagg gaatggatta catagtcaag tctctgtcaa gtgaaccctg tgaccttgaa 2700 gaaattcaat tagtctcctg ctgcttgtct gcaaatgcag tgaaaatcct agctcagaat 2760 cttcacaatt tggtcaaact gagcattctt gatttatcag aaaattacct ggaaaaagat 2820

```
ggaaatgaag etetteatga actgategae aggatgaaeg tgetagaaea geteaeegea
                                                                    2880
ctgatgctgc cctggggctg tgacgtgcaa ggcagcctga gcagcctgtt gaaacatttg
                                                                    2940
gaggaggtcc cacaactcgt caagcttggg ttgaaaaact ggagactcac agatacagag
                                                                    3000
attagaattt taggtgcatt ttttggaaag aaccctctga aaaacttcca gcagttgaat
                                                                    3060
ttggcgggaa atcgtgtgag cagtgatgga tggcttgcct tcatgggtgt atttgagaat
                                                                    3120
cttaagcaat tagtgttttt tgactttagt actaaagaat ttctacctga tccagcatta
                                                                    3180
gtcagaaaac ttagccaagt gttatccaag ttaacttttc tgcaagaagc taggcttgtt
                                                                    3240
gggtggcaat ttgatgatga tgatctcagt gttattacag gtgcttttaa actagtaact
                                                                    3300
gcttaaataa agtgtactcg aagccagtaa gtgctctggg acctcattat tttaagcctg
                                                                    3360
gtagttaaaa aaaatcttgc aaaaggatgc caaagaagat aaggacgtgg aaagaagttt
                                                                    3420
aatttgatga ttaaaaacat qcaacaqttt tqtqtcttaq ctctcctact aqqattatcq
                                                                    3480
gegeettgaa ggaattetea tteatetttq tqttacettt qqtetqqqte acaccaactq
                                                                    3540
gtata
                                                                    3545
```

<210> 112 <211> 2682

<212> DNA

<213> Homo sapiens

## <400> 112

geggeegegg eggeggetgg ggegttegeg ggeeggegeg eggegtgegg ggeegtgetg 60 ctgacggage tgctggageg cgccgctttc tacggcatca cgtccaacct gqtqctattc 120 ctgaacgggg cgccgttctg ctgggagggc gcgcaggcca gcgaggcgct gctgctcttc 180 atgggcctca cctacctggg ctcgccgttc ggaggctggc tggccgacgc gcggctgggc 240 cgggcgcgcg ccatcctgct gagcctggcg ctctacctgc tgggcatgct ggccttcccg 300 ctgctggccg cgcccgccac gcgagccgcg ctctgcggtt ccgcgcgcct gctcaactgc 360 acggegeetg gtecegaege egeegeeege tgetgeteae eggeeaeett egeggggetg 420 gtgctggtgg gcctgggcgt ggccaccgtc aaggccaaca tcacgccctt cggcgccgac 480 caggttaaag atcgaggtcc ggaagccact aggagatttt ttaattggtt ttattggagc 540 attaacetgg gagegateet gtegttaggt ggeattgeet atatteagea gaaegteage 600 tttgtcactg gttatgcgat ccccactgtc tgcgtcggcc ttgcttttgt ggtcttcctc 660 tgtggccaga gcgttttcat caccaagcct cctgatggca gtgccttcac cgacatgttc 720 aagatactga cgtattcctg ctgttcccag aagcgaagtg gagagcgcca qaqtaatggt 780 gaaggcattg gagtctttca gcaatcttct aaacaaagtc tgtttgattc atgtaagatg 840 tctcatggtg ggccatttac agaagagaaa gtggaagatg tgaaagctct ggtcaagatt 900 gtccctgttt tcttggcttt gataccttac tggacagtgt atttccaaat qcaqacaaca 960 tatgttttac agagtcttca tttgaggatt ccaqaaattt caaatattac aaccactcct 1020 cacacgetee etgeageetg getgaceatg tttgatgetg tgeteateet eetgeteate 1080 cctctgaagg acaaactggt cgatcccatt ttgagaagac atggcctgct cccatcctcc 1140 ctgaagagga tcgccgtggg catgttcttt gtcatgtgct cggcctttgc tgcaggaatt 1200 ttggagagta aaaggctgaa ccttgttaaa gagaaaacca ttaatcagac catcggcaac 1260 gtcgtctacc atgctgccga tctgtcgctg tggtggcagg tgccgcagta cttgctgatt 1320 gggatcagcg agatctttgc aagtatcgca ggcctggaat ttgcatactc agctgcccc 1380 aagtccatgc agagtgccat aatgggcttg ttctttttct tctctggcgt cgggtcgttc 1440 gtgggttctg gactgctggc actggtgtct atcaaagcca tcggatggat gagcagtcac 1500 acagaetttg gtaatattaa eggetgetat ttgaactatt aettttttet tetggetget 1560 attcaaggag ctaccctcct gcttttcctc attatttctg tgaaatatga ccatcatcga 1620 gaccatcaqc qatcaagaqc caatgqcgtq cccaccaqca qqaqqqcctq accttcctqa 1680 ggccatgtgc ggtttctgag gctgacatgt cagtaactga ctggggtgca ctgagaacag 1740 gcaagacttt aaattcccat aaaatgtctg acttcactga aacttgcatg ttgcctggat 1800 tgatttette ttteeeteta teeaaaggag ettggtaagt geettaetge agegtgtete 1860 etggcacget gggccctccg ggaggagage tgcagatttc gagtatgtcg cttgtcattc 1920 aaggtetetg tgaateetet agetgggtte eettttttae agaaaeteae aaatggagat 1980 tgcaaagtct tggggaactc cacgtgttag ttggcatccc agtttcttaa acaaatagta 2040 tcacctqctt cccatagcca tatctcactq taaaaaaaaa aattaataaa ctqttactta 2100 tatttaagaa agggaggatt ttttttttt aaagataaaa gcatggtcag atgctgcaag 2160

```
gattttacat aaaggccata tttatggttt ccttcctgaa aacagtcttg ctcttgccat
                                                                    2220
gttctttgat ttaggctggt agtaaacaca tttcatctgc tgcttcaaaa agtacttact
                                                                    2280
ttttaaacca tcaacattac ttttctttct taaggcaagg catgcataaq aqtcatttqa
                                                                    2340
gaccatgtgt cccatctcaa gccacagagc aactcacggg gtacttcaca ccttacctag
                                                                    2400
tcagagtgct tatatatagc tttattttgg tacgattgag actaaagact gatcatggtt
                                                                    2460
gtatgtaagg aaaacattct tttgaacaga aatagtgtaa ttaaaaataa ttgaaagtgt
                                                                    2520
taaatgtgaa cttgagctgt ttgaccagtc acatttttgt attgttactg tacgtgtatc
                                                                    2580
tggggcttct ccgtttgtta atactttttc tgtatttgtt gctgtatttt tggcataact
                                                                    2640
ctattataaa aagcatctca aatgggaaaa ccaaaaaaaa aa
                                                                    2682
     <210> 113
     <211> 666
     <212> DNA
     <213> Homo sapiens
     <400> 113
taatttccat tttttgtcta gagagctttg agatatgtga taagtacaaa aggaatataa
                                                                      60
atctgaaaaa cattataatg ctttgtgttt gttggttaag ctgqatttta qatqttcctq
                                                                     120
ctaatggtat agtcccatgt gaataccaca tcgataaatc taaatataca ttaggtaaat
                                                                     180
atgttttttc ttgtgggaaa aaatgggaat gtttccattc ctttactaaa tagccaataa
                                                                     240
attgagacgt tggtgttttt ggaattggat ttagtgatat gtttctctta ttttggttta
                                                                     300
tectaagtga gggatgteea etgttggage agttgaacat tteetggtgt gaccaagtaa
                                                                     360
ccaaggatgg cattcaagca ctagtgaggg gctgtgggggg tctcaaggcc ttattcttaa
                                                                     420
aaggetgeac geagetagaa gatgaagete teaaqtacat aqqtqeacae tqccctqaac
                                                                     480
tggtgacttt gaacttgcag acttgcttgc aaatcacaga tgaaqqtctc attactatat
                                                                     540
gcagagggtg ccataagtta caatcccttt gtgcctctgg ctgctccaac atcacagatg
                                                                     600
ccatcctgaa tgctctaagt cagaactgcc cacggcttat aatattggaa gtggcaagat
                                                                     660
gttctc
                                                                     666
     <210> 114
     <211> 1084
     <212> DNA
     <213> Homo sapiens
     <400> 114
cgattcgaat tcggcacgag gtgcagagct gctgtcatgg cggccgctct gtggggcttc
                                                                      60
tttcccgtcc tgctgctgct gctgctatcg ggggatgtcc agagctcgga gqtqcccqqq
                                                                     120
gctgctgctg agggatcggg agggagtqqg qtcqqcataq qaqatcqctt caaqattqaq
                                                                     180
gggcgtgcag ttgttccagg ggtgaagcct caggactgga tctcggcggc ccgagtgctg
                                                                     240
gtagacggag aagagcacgt cggtttcctt aagacagatg ggagttttgt ggttcatgat
                                                                     300
ataccttctg gatcttatgt agtggaagtt gtatctccag cttacagatt tgatcccgtt
                                                                     360
cgagtggata tcacttcgaa aggaaaaatg agagcaagat atgtgaatta catcaaaaca
                                                                     420
tcagaggttg tcagactgcc ctatcctctc caaatgaaat cttcaggtcc accttcttac
                                                                     480
tttattaaaa gggaatcgtg gggctggaca gactttctaa tgaacccaat ggttatgatg
                                                                     540
atggttcttc ctttattgat atttgtgctt ctgcctaaag tggtcaacac aagtgatcct
                                                                     600
gacatgagac gggaaatgga gcagtcaatg aatatgctga attccaacca tgagttqcct
                                                                     660
gatgtttctg agttcatgac aagactcttc tcttcaaaat catctggcaa atctagcagc
                                                                     720
ggcagcagta aaacaggcaa aagtggggct ggcaaaagga ggtagtcagg ccgtccagag
                                                                     780
ctggcatttg cacaaacacg gcaacactgg gtggcatcca agtcttggaa aaccqtqtqa
                                                                     840
agcaactact ataaacttga gtcatcccga cgttgatctc ttacaactgt gtatgttaac
                                                                     900
tttttagcac atgttttgta cttggtacac gagaaaaccc agctttcatc ttttqtctqt
                                                                     960
atgaggtcaa tattgatgtc actgaattaa ttacagtgtc ctatagaaaa tqccattaat
                                                                    1020
```

1080

aaattatatg aactactata cattatgtat attaattaaa acatcttaat ccaqaaaaaa

aaaa 1084 <210> 115 <211> 391 <212> DNA <213> Homo sapiens <400> 115 ccatgatcaa ggtctgtttt atctccagcg tcacgttctg tqqctccaac gtcttqaccc 60 acttettetg tgacatttee eccateetea agetggeetg caeggaette tecaetgeag 120 agetggtgga tttcattctg gccttcatca tcctggtgtt tccactcctg gccaccatgc 180 tgtcatatgc gcacattacc ctggctgtcc tgcgcatccc ctcggccacc ggctgctgga 240 gageettett cacetgegee teteacetea eegtggteae egtettetat acageettge 300 ttttcatgta tgtccggccc caggccattg attcccggag ctccaacaag ctcatctctg 360 ttttgtacac agttatcacc cccagtgtat t 391 <210> 116 <211> 1528 <212> DNA <213> Homo sapiens <400> 116 tttttttttt ttgagatett ggteeggttt aetgaggete tggagtteaa eaetgtggtt 60 aagetgtteg cettggecaa caegegagee gatgaeeaeg tggeetttge cattgecate 120 atgeteaagg ecaacaagae cateaceage eteaacetgg actecaacea cateacagge 180 aaaggcatcc tggccatctt ccgggccctc ctccagaaca acacqctgac cgaqctccqc 240 ttccacaacc agcgacacat ctcattgtct ttaggaagcc tttaggaagc caggaacaqt 300 ccgccttggt ctgcttgtgg atgggggtga ggatggtgct gtgctccgat gctggtgctg 360 gccctccct acttttggaa tatggagtqq gcaacagtct qqqcccaqct qaaqqcqqtq 420 ttcctggaag gtgtggatgg gtccaatgat gcgactgata tqaqttatgt ctttacaqct 480 ttaatctagc aggccagaga tgtggccagt ggggcagcca gagaggaggg ctactgccag 540 ctgctgacgg aacctectec ctcccccac cccageccag aggggacaaa cagtagggec 600 ccagcettee tggetgggat ettgggagea gagggaetat ttgaaaacag geaetgtgae 660 ccaggotqtc atctccctcc cttqccccca qtaaaaataq cccataattc caaqcctcc 720 ccccaaccc tcatagttct agttcagctc ctgttccact tccctggggc tctgtcccca 780 gtagggecca gggettgget tggtetgggg cetggtgget ggaggaetee tgecaeceee 840 aggaccagat gcaggtacag gatgagggca tctcccaagg ttggcatcac tgaaggggca 900 gcagagacat ggctggttcc tcaggctccc gggtaagagg gctgtggtgg catataggga 960 ggaggagetg cagggttgta gactgggggc ccagctgggt agagtggata ttggggagca 1020 ggaccactag gtgggtacat gaagccaggc tgtgggggtg cagggccagc tttggggtcc 1080 tgggggtatg ggtatactgg ctgcactggg atgcctgtca ttggaatctc ctggccttca 1140 aatgggctet ggagetgetg gegeeggegg tacaggtage aacaggaaca gaggaagcag 1200 cagatggtgg tggcaaccac agcaacaaag aggatcacag ctgaggcgat gcctgctatg 1260 gtcttggggc tgaaggccag gcagtgcttc tgctgcctct cggtgataag caaggtcagg 1320 tecetgeage agtacegatg gtageaggte eegeageaga aggtgaagaa etegeagtta 1380 aaccccggat gccaggagcc attccggtcc aggtaccaca ggcagtcctc gccggccagc 1440 actagoctet ggagetgggt geceetcace cageagagea etgeeetget eeceetgtee 1500 ccggctccgc ggtggttcct cccatccg 1528

<210> 117 <211> 726

<212> DNA <213> Homo sapiens

<400> 117 cggcggaaac atggcggtcg cggccgggcc ggtaacggag aaagtttacg ccgacactqq 60 cctgtattag cgcgtatggc ctcgggccct cgttccccaa ggcgtgccgc ctccctgttc 120 180 tccgagggtt gggagagcgc gttggtggcg acggccgagt cagccaacaa atggaatttt 240 cttgagcatg tttctaatcg ttttgccatt ggaatccatg gctcatgggc tcttccatga 300 attgggtaac tgtttaggag gaacatctgt tggatatgct attgtgattc ccaccaactt 360 ctgcagtcct gatggtcagc caacactgct tcccccagaa catgtacagg agttaaattt 420 gaggtctact ggcatgctca atgctatcca aagatttttt gcatatcata tgattgagac 480 ctatggatgt gactattcca caagtggact gtcatttgat actctgcatt ccaaactaaa 540 agettteete gaacttegga eagtggatgg acceagacat gatacgtata ttttgtatta 600 cagtgggcac acccatggta caggagagtg ggctctagca ggtggagata cactacgcct 660 tgacacactt atagaatggt ggagagaaaa gaatggttcc ttttgttccc cgccttatta 720 tcgtgt 726

<210> 118 <211> 1700 <212> DNA

<213> Homo sapiens

### <400> 118

ttggtaaact gcttttaggg atactggctg acttcaagtg gattaatacc ttgtatcttt 60 atgttgctac cttaatcatc atgggcctag ccttqtqtqc aattccattt qccaaaaqct 120 atgtcacatt ggcgttgctt tctgggatcc tagggtttct tactggtaat tggtccatct 180 ttccatatgt gaccacgaag actgtgggaa ttgaaaaatt agcccatgcc tatgggatat 240 taatgttctt tgctggactt ggaaatagcc taggaccacc catcgttggt tggttttatg 300 actggaccca gacctatgat attgcatttt attttagtgg cttctgcgtc ctgctgggag 360 gttttattct gctgctggca gccttgccct cttgggatac atgcaacaag caactcccca 420 agccagctcc aacaactttc ttgtacaaag ttgcctctaa tgtttagaag aatattggaa 480 gacactattt ttgctatttt ataccatata gcaacgatat tttaacagat tctcaagcaa 540 attttctaqa qtcaaqacta ttttctcata qcaaaatttc acaatqactq actctqaatq 600 aattattttt ttttatatat cctatttttt atgtagtgta tgcgtagcct ctatctcgta 660 tttttttcta tttctcctcc ccacaccatc aatgggacta ttctgttttg ctgttattca 720 ctagttetta acattgtaaa aagtttgacc agcetcagaa ggetttetet gtgtaaagaa 780 gtataatttc tctgccgact ccatttaatc cactgcaagg cacctagaga gactgctcct 840 attttaaaag tgatgcaagc atcatgataa gatatgtgtg aagcccacta ggaaataaat 900 cattetette tetatgtttg acttgetagt aaacagaaga etteaageca gecaggaaat 960 taaaqtqqcq actaaaacaq ccttaaqaat tqcaqtqqaq caaattqqtc atttttaaa 1020 aaaatatatt ttaacctaca qtcaccagtt ttcattattc tatttacctc actqaaqtac 1080 tegeatgttg tttggtacce aetgageaac tgttteagtt cetaaggtat ttqctqaqat 1140 gtgggtgaac tccaaatgga gaagtagtca ctgtagactt tcttcatggt tqaccactcc 1200 aaccttgctc acttttgctt cttggccatc cactcagctg atgtttcctg ggaagagcta 1260 attttacctg tttccaaatt ggaaacacat ttctcaatca ttccgttctg gcaaatggga 1320 aacatccatt tgctttgggc acagtgggga tgggctgcaa gttcttgcat atcctcccag 1380 tgaagcattt atttgctact atcagatttt accactatca aatataattc aaqqqcaqaa 1440 ttaaacgtga gtgtgtgtgt gtgtgtgtgt gtgtgctatg catgctctaa gtctgcatgg 1500 gatatgggaa tggaaaaggg caataagaaa ttaataccct tatgcaggtg catttaacct 1560 taagaaaaat gtccttggga taaactccag tgtttaatac attgattttt tttctaaaga 1620 aatgggtttt aaactttggt atgcatcaga attccctata gatctttttg aaaatatagg 1680 tacctgggta tcacacataa 1700

```
<210> 119
     <211> 445
     <212> DNA
     <213> Homo sapiens
     <400> 119
ctacgccctg cttggcacga gggacatggg agccgggctg gccgtggtgc ccctgatggg
                                                                      60
cctcctggag agcattgcgg tggccaaagc cttcgcatct cagaataatt accqcatcqa
                                                                      120
tgccaaccag gagetgetgg ccateggtet caccaacatg ttgggeteec tegteteete
                                                                      180
ctacceggtc acaggcagct ttggacggac agccgtgaac gctcagtcgg gggtgtgcac
                                                                      240
cccggcggag ggcctggtga cggaagtgct ggtgctgctg tctctggact acctgacctc
                                                                      300
actgttctac tacatcccca agtctgccct ggctgccgtc atcatcatgg ccgtggcccc
                                                                     360
getgttegae accaagatet teaggaeget etggegtgtt aagaggetgg acctgetgte
                                                                      420
cctgagcgtg acctttctgc tgtgc
                                                                      445
     <210> 120
     <211> 455
     <212> DNA
     <213> Homo sapiens
     <400> 120
gtcgcactag tgattaggct ccatggcaga ggcattcccg ttcttctcgc cattcctcgg
                                                                      60
ctggctcggt gtgtttctga cgggttccga cacctcgtcc aacgcgctgt tcagctcgct
                                                                     120
gcaagcaacc accgcccacc agatcggcgt cagcgacgtc ttgctggtgg cggcgaacac
                                                                     180
cageggegge gtgaceggea agatgatete geegeagteg ategeegtgg catgegeege
                                                                     240
gactggcctg gtgggcaagg aatctgacct gttccgcttc accctcaagc acagcctgtt
                                                                     300
cttcgcgacg attgtcgggc tgattacctt ggcccaggcc tactggttca ccggtatqct
                                                                     360
ggtgcactaa gacctgcacg taatagggta agaaccgacg ccggacagcg attccggcgt
                                                                     420
cagctatttc tggaggaccg atgagcctgc ctgct
                                                                     455
     <210> 121
     <211> 403
     <212> DNA
     <213> Homo sapiens
     <400> 121
tttcgtaaag attttcaatg aggggcaaat ctaaatctaa aaaatttgaa ttcaagttca
                                                                      60
atttagattt caattaaaac agtagtagta tgtcgggaag atatgggata aaaaaagtaa
                                                                     120
gggaaaataa ggaactatta taattataat gcggaaaaaa tgaataaatt attaqttqct
                                                                     180
gcaacagcaa tactattttc tcttggatgc catgagaaat gtaaaatatt cttcttgaaa
                                                                     240
tcaatatcgt caccccaatc cttatttctt gcagaccttt gcgctagcga accgtacctt
                                                                     300
ttgttcctga acgctgtttt gtcagcttgt aacacgattt cattcatttc ggttcccgaa
                                                                     360
tecteeggat ttgeteette teeteeeget atactgette tag
                                                                     403
     <210> 122
     <211> 5186
     <212> DNA
```

<213> Homo sapiens

<400> 122 atggtctcag cccaaaatct ccttaagctg ataagcaact tcagcaaagt ctcaggagac 60 aaaatcaatg tgcaaaaatc acaagcattc ctctccagca acaacaggca aacagaqagc 120 caaatcatga gtgaactccc attcacactt gctacaaaga gaataaaata cctaqqaatc 180 caatctacaa qqqaaqtqaa qqacctcttc aaqqaqaact acaaaccact actcaatqaa 240 ataaaagagg ataccaaaaa aatggaagaa cattccatgc tcatggatag gaagaatcaa 300 tattgtgaaa atggccatac tgcccaagaa gggaaaactt aacaaacaga aaggacaacc 360 acacccaaaa acccatcttg tacatcaccc atcattcaaa qacccaaaaq taaataaaac 420 ccaccaaaga tggggaaaaa aacagaacag aaaaactgga aactctaaaa tgtagagtgc 480 ctctcctcct ccaaaggaaa gcagttcctc accaqcaacg gaacaaagct qqatqqaqaa 540 tgactttgac gagetgagag aggaaggett cagacqatea aattacteeq agetacaqqa 600 ggaaattcaa accaaaggca aagaagttga aaactttqaa aaaaatttaq aagaatqtat 660 aactagaata accaatacag agaagtgett aaaggagetg atggagetga aaaccaagge 720 tcaagaacta cgtgaagaat gcagaagcct caggagccga tgcgatcaac tggaagaaag 780 ggtatcagtg atggaagatg aaatgaatga aatgaatgaa atgaagtgag aagggaaggt 840 tagagaaaaa agaataaaca gaaatgagca aagcctccaa gaaatatggg actatgtgaa 900 aagaccaaat ctacatctga ttggtgtacc tgaaagtgat ggtgagaatg gaaccaagtt 960 ggaaaacact ctgcaggata ttatccagga gaacttcccc aatctagcaa ggcaggccaa 1020 cattcagatt caggaaatac agagaacgcc acaaagatac tcctcgagaa gagcaactcc 1080 aagacacata attgtcagat tcaccaaagt tgaaatgaag gaaaaaatgt taagggcagc 1140 cagagagaaa ggtcgggtta cccacaaagg gaagcccatc agactaacag cggatctctc 1200 ggcagaaact ctacaagcca gaagagagtg ggggccaata ttcaacattc ttaaagaaaa 1260 gaattttcaa cccaqaattt catatccaqc caaqctaaqc ttcataaqtq aaqqaqaaat 1320 aaaatacttt acagacqatc aaatqctqaq aqattacata atqqtaaaqq qatcaattca 1380 acaagagete etgaaggaag egetaaacat geacceaata caggageace cagatteata 1440 aagcaagtcc ttagtgacct acaaagagac ttagactccc acacattaat aatgggagac 1500 tttaacaccc cactgtcaac attagacaga tcaacgagac agaaagtcaa caaggatacc 1560 caggaattga actcagctct gcaccaagca gacctaatag acatctacag aactctccac 1620 cccaaatcaa cagaatatac attttttca gcaccacacc acacctattc caaaattqac 1680 cacatagttg gaagtaaagc actcctcagc aaatgtaaaa gaacagaaat tataacaaac 1.740 tgtctctcag accacagtgc aatcaaacta gaactcagga ttaaqaaact cactcaaaac 1800 cgctcaacta catggaaact gaacaacctg ctcctgaatg actactgggt acataacgaa 1860 atgaaggaaa aaataaagat gttetttgaa accaacgaga acaaagacac aacataccag 1920 aatctctggg acacattcaa agcagtgtgt agagggaaat ttatagcact aaatgcccac 1980 aagagaaagc aggaaagatc caaaattgac accctaacat cacaattaaa agaactaqaa 2040 aagcaagagc aaacacattc aaaagctagc agaaggcaag aaataactaa aatcagagca 2100 gaactgaagg aaatagagac acaaaaaacc cttcaaccct tcaaaaaatt aatgaatcca 2160 ggagctggtt ttttgaaagg atcaacaaaa ttgatagacc gctagcaaga ctaataaaga 2220 aaaaaagaga gaagaatcaa atagacacaa taaaaaatga taaaggggat atcaccactg 2280 atcccacaga aatacaaact accatcagag aatactacaa acacctctac gcaaataaac 2340 tagaaaatct agaagaaatg gataaattcc tcgacacata caccctccca agactaaacc 2400 aggaagaagt tgaatccctg aatagaccaa taacaggagc tgaaattgtg gcaataatta 2460 atagettace aaccaaaaaa agtecaggae cagatggatt cacageegaa ttetaccaga 2520 ggtacaagga ggagctggta ccattccttc tgaaactatt ccaatcaata qaaaaagaqq 2580 gaateeteee taacteattt tatgaggeea geateateet gataceaaag eetggeagag 2640 acacaacaaa aaaagagaat tttagaccaa tatccctgat gaacatcaat gcaaaaatcc 2700 tcaataaaat actggcaaac caaatccagc agcacatcaa aaagcttatc caccatgatc 2760 aagtgggett catecetggg atgeaaaaat eeteaacata tgeaaateaa taaacataat 2820 ccagcatata aacagaacca aagacaaaaa ccacatgatt atctcaatag atgcagaaaa 2880 ggcctttgac aatatatgca aatcaataca tgcaataaat taggtattga tgggacatat 2940 ctcaaaataa taagagctat ttatgacaaa cccacagcca atagcatact gaatgtgcaa 3000 aaactggaag cattcccttt gaaaactggc acaaqacagg gatgccctct ctcacctcac 3060 cactectatt caacatagta ttetgececa tagtgttetg gecagggcaa teaggcaaga 3120 gaaggaaata aagggtattc aattaggaaa agaggaagtc aaattgtccc tgtttqcaga 3180 cgacatgatt gtatatctag aaaaccccat tgtctcagcc caaaatctcc ttaagctgat 3240 aagcaacttc agcaaagtct caggatacaa aatcaatgta caaaaatcac aagcattctt 3300 atacaccaat aacagacaaa cagagagcca aatcatgaat catgagtgaa ctcccattca 3360 caattgcttc aaagagaata aaatacctag gaatccaact tacaagggat gtgaaggacc 3420

```
tetteaagga gaactacaaa eeactgetea gtgaaataaa agaggataca aacaaatgga
agaacattcc atgctcatgg gtaggaagaa tcaatattgt qaaaatggcc atactgccca
                                                                  3540
aggtaattta tagatteaat gecateeeca teaagetace aatgaettte tteacagaat
                                                                  3600
tggaaaaaac tactttaaag ttcatatgga accaaaaaag agcccacatt gccaagtcaa
                                                                  3660
tectaageca aaagaacaaa getggaggea teacqetace tqactteaaa etatactaca
                                                                  3720
aggetacagt aaccaaaaca geatggeact ggtaccaaaa cageatggta etggtaccaa
                                                                  3780
aacagagata cagaccaatg gaacagaaca gagccctcag aaataatgcc gcatatctac
                                                                  3840
actattctga tcctttggac aaacctttgc ttgagaaaaa caaqcaatgg qqqaaaqqat
                                                                  3900
tecetaattt ataaaatgge tgetggggaa aactggetag cecatatgta qqaqaaaqet
                                                                  3960
gaacctggca tcccttccct taccccttat acaaaaatca attcaaqatg qattaaaqac
                                                                  4020
ttaaatgtta gacctaaaac cataaaaacc ctagaagaaa acctaggcaa taccattcag
                                                                  4080
gacataggca tgggcaagga cttcatgtct aaaacaccaa aagcaatggc aacaaaagcc
                                                                  4140
aaaattgaca aatgggatct aattaaacta aagagcttct gcacagcaaa agaaactacc
                                                                  4200
atcagagtga acaggcaacc tacagaatgg gagaaaattt tcgcaaccta ctcatctgac
                                                                  4260
aaagggctaa tatccagaat ctacaatgaa ctcaaacaaa tttacaagaa aaaaacaaac
                                                                  4320
aaccccatca aaaagtgggt gaaggatatg aacagacact tctcaaaaga agacatttat
                                                                  4380
gcagccaaaa gacacatgaa aaaatgctca tcatcactgg ccatcagaga aatgcaaatc
                                                                  4440
aaaaccacaa tgagatacca tctcacacca gttagaatgg caatcattaa aaagtcagga
                                                                  4500
aacaacaggt gctggagagg atgtggagaa ataggaacac ttttacactg ttggtgggac
                                                                  4560
tgtaaactag ttcaaccatt gtggaagtca gtgtggcgat tcctcaggga tctagaacta
                                                                  4620
gaaataccat ttgacccagc catcccatta ctgggtatat acccaaagga ttataaatca
                                                                  4680
tgctgctata aagacacatg cacacgtatg tttattgcgg cactattcac aatagcaaag
                                                                  4740
acttggaacc aacccaaatg tccaacaatg atagactgga ttaagaaaat gtggcacata
                                                                  4800
tacaccatgg aatactatgc agccataaaa aatgatgagt tcatgtcctt tgtagggaca
                                                                  4860
tggatgaaat tggaaaccat cattctcaqt aaactatcqc aaqaacaaaa aaccaaacac
                                                                  4920
cgcatattct cactcatagg tgggaattga acaatgagat cacatggaca caggaagggg
                                                                  4980
5040
agatatacct aatgctaaat gacgagttaa tgggtgcagc acaccagcat ggcacatgta
                                                                  5100
tacatatgta actaacctgc gcattgtgca catgtaccct aaaacttaaa agtataatta
                                                                  5160
aaaaaaata aaataaaaat aaaaaa
                                                                  5186
```

<210> 123

<211> 3821

<212> DNA

<213> Homo sapiens

# <400> 123

tttegtegge agtggeggeg egtaggagge ggtettggge gtetttggta etqqettttt 60 taggggtctg cctggggatt accettgctg tggatagaag caactttaag acctgtgaag 120 agagttettt etgeaagega eagagaagea taeggeeagg eeteteteea taeegageet 180 tgctggactc tctacagctt ggtcctgatt ccctcacggt ccatctgatc catqaqqtca 240 ccaaggtgtt gctggtgcta gagettcagg ggettcaaaa gaacatgact cqqttcaqqa 300 ttgatgaget ggageetegg egaceeegat accettgtace agatgttttg gtggetgate 360 caccaatagc ccggctttct gtctctggtc gtgatgagaa cagtgtggag ttaaccatgg 420 etgagggace ctacaagate atettgacag caeggecatt eegeettgac ctactagagg 480 accgaagtet tttgcttagt gtcaatgeec gaggactett ggagtttgag catcagaggg 540 cccctagggt ctcgcaagga tcaaaagacc cagctgaggg cgatggggcc cagcctgagg 600 aaacacccag ggatggcgac aagccagagg agactcaggg gaaggcagag aaagatgagc 660 caggagectg ggaggagaca ttcaaaactc actctqacag caagccgtat ggccccatqt 720 etgtgggttt ggacttetet etgecaggea tggagcatgt etatgggate cetgagcatg 780 cagacaacct gaggetgaag gtcactgagg gtggggagcc atategeete tacaatttgg 840 atgtgttcca gtatgagctg tacaacccaa tggccttgta tgggtctgtg cctgtgctcc 900 tggcacacaa ccctcatcgc gacttgggca tcttctggct caatgctgca gagacctggg 960 ttgatatatc ttccaacact gccgggaaga ccctgtttgg gaagatgatg gactacctgc 1020 agggetetgg ggagaceeca cagacagatg ttegetggat gteagagaet ggeateattg 1080 acgtetteet getgetgggg cectecatet etgatgtttt ceggeaatat getagtetea 1140

```
caggaaccca ggcgttgccc ccactcttct ccctcggcta ccaccagagc cgttggaact
                                                                    1200
accgggacga ggctgatgtg ctggaagtgg atcagggctt tgatgatcac aacctgccct
                                                                    1260
gtgatgtcat ctggctagac attgaacatg ctgatggcaa gcggtatttc acctgggacc
                                                                    1320
ccagtcgctt ccctcagccc cgcaccatgc ttgagcgctt ggcttctaag aggcggaagc
                                                                    1380
tggtggccat cgtagacccc cacatcaagg tggactccgg ctaccgagtt cacgaggagc
                                                                    1440
tgcggaacct ggggctgtat gttaaaaccc gggatggctc tgactatgag ggctggtgct
                                                                    1500
ggccaggctc agctggttac cctgacttca ctaatcccac gatgagggcc tggtgggcta
                                                                    1560
acatgiticag ctatgacaat tatgaggget cageteccaa cetetitgic tggaatgaca
                                                                    1620
tgaacgaacc atctgtgttc aatggtcctg aggtcaccat gctcaaggat gcccagcatt
                                                                    1680
atgggggctg ggagcaccgg gatgtgcata acatctatgg cctttatgtg cacatggcga
                                                                    1740
ctgctgatgg gctgagacag cgctctgggg gcatggaacg cccctttgtc ctggccaggg
                                                                    1800
cettettege tggeteceag egetttggag cegtgtggae aggggaeaac actgeegagt
                                                                    1860
gggaccattt gaagatetet atteetatgt gteteagett ggggetggtg ggacttteet
                                                                    1920
tetgtggggc ggatgtgggt ggcttettea aaaacccaga gccagagetg ettgtgcget
                                                                    1980
ggtaccagat gggtgcttac cagccattct tccgggcaca tgcccacttg qacactqqqc
                                                                    2040
gacgagagcc atggctgtta ccatctcagc acaatgatat aatccgagat gccttgggcc
                                                                    2100
agegatatte tttgetgeee ttetggtaca ceetettata teaggeecat egggaaggea
                                                                    2160
ttcctgtcat gaggcccctg tgggtgcagt accctcagga tgtgactacc ttcaatatag
                                                                    2220
atgatcagta cttgcttggg gatgcgttgc tggttcaccc tgtatcagac tctggagccc
                                                                    2280
atggtgtcca ggtctatctg cctggccaag gggaggtgtg gtatgacatt caaagctacc
                                                                    2340
agaagcatca tggtccccag accetgtace tgcctgtaac tctaagcagt atccetqtgt
                                                                    2400
tecagegtgg agggacaate gtgcctegat ggatgegagt geggeggtet teagaatgta
                                                                    2460
tgaaggatga ccccatcact ctctttgttg cacttagccc tcagggtaca gctcaaggag
                                                                    2520
agetetttet ggatgatggg cacaegttea aetateagae tegecaagag tteetgetge
                                                                    2580
gtcgattctc attctctggc aacacccttg tctccagctc agcagaccct gaaggacact
                                                                    2640
ttgagacacc aatctggatt gagcgggtgg tgataatagg ggctggaaag ccagcagctg
                                                                    2700
tggtactcca gacaaaagga tctccagaaa gccgcctgtc cttccagcat qaccctqaqa
                                                                    2760
cetetgtgtt ggteetgege aageetggea teaatgtgge atetgattgg agtatteace
                                                                    2820
tgcgataacc caagggatgt tctgggttag ggggagggaa ggggagcatt agtgctgaga
                                                                    2880
gatattettt ettetgeett ggagttegge eetceecaga etteaettat getagtetaa
                                                                    2940
gacccagatt ctgccaacat ttgggcagga tgagagggct gaccctgggc tccaaattcc
                                                                    3000
tettgtgate teeteacete teccaeteca ttgataceaa etettteeet teatteeeee
                                                                    3060
aacatcctgt tgctctaact ggagcacatt cacttacgaa caccaggaaa ccacaggcc
                                                                    3120
cttgtcgccc cttctcttc ccttatttag gagccctgaa ctcccccaga gtctatccat
                                                                    3180
tcatgcctct tgtatgttga tgccacttct tggaagaaga tgagggcaat gagttagggc
                                                                    3240
tecttttece ettecetece accagattge teteceacet tteatttett ectecagget
                                                                    3300
ttactcccct ttttatgccc caccgataca ctgggaccac cccttacccc ggacaggatg
                                                                    3360
aatggatcaa aggagtgagg ttgctaaaga acatcctttt ccctctcatt ctaccctttt
                                                                    3420
cctctccccg attccttgta gagctgctgc aattcttaga ggggcagttc tacctcctct
                                                                    3480
gtccctcggc agaaagacgt ttccacacct cttaggggat gcgcattaaa cttcttttgc
                                                                    3540
ccccttcttg tcccctttga ggggcactta agatggagaa atcagttgtg gtttcagtga
                                                                    3600
atcatggtca cctgtattta ttgctaggag aagcctgagg gtggggggag atgatcatgt
                                                                    3660
gtgctcgggg ttggctggaa gccctgggtg gggggttggg ggaggactaa tggggagtcg
                                                                    3720
gggaatattt gtgggtattt tttttacttc ctcttggttc ccagctgtga cacgttttga
                                                                    3780
tcaaaggaga aacaataaag ggataaacca taaaaaaaaa a
                                                                    3821
```

```
<210> 124
<211> 428
<212> DNA
```

<213> Homo sapiens

<400> 124
ctcgatcgat ttgataacag tcggcgactg cccggaacta cccgactcga ccgacgcggt 60
cgggactgcg ccttttgcag tgagaagaaa aagatgcatt ctcatggagt ctcctactgg 120
acagtgcgga cagtgatctg gccgatcagc agcctcgtct ccaaaatcac tacctggag 180
tttaatgaag tcacctccat gtctgagcac ctgaagtcct gtcctttcaa cattgtagag 240

```
cacaaatctg accegattct tttgactage atgtgtcace ceegtgagea ggeeegagag
                                                                    300
agettactet ceaeetttag aateagaeea egaggaagat aegteteeta ttaattetga
                                                                    360
tgccactega tgcaccette ttggatteet teteggagaa actgatgtat gacagaetge
                                                                    420
gtggatca
                                                                    428
     <210> 125
     <211> 1285
     <212> DNA
     <213> Homo sapiens
     <220>
     <221> misc_feature
     <222> (1) ... (1285)
     <223> n = a,t,c or g
     <400> 125
gacatctgca gattctaata aacaaggact attgctgata gtaggctgtg acatactgtc
                                                                     60
ttgtgaaatg gtttccttga caaaatttaa gctgagctta aaagcaaaaa aacaaaaagt
                                                                    120
acacagaaat atttattaaa atgtaataca qtttattgaa ctttctaqqt atqqaqtttq
                                                                    180
atggacaggg etgeetttaa tgagtgtgaa ggteactaag teacttagae ateteacegt
                                                                    240
ggaagtttgt gagcctgcat taggagatag actgattacc atacatgaca taaaaaggaa
                                                                    300
cagtggatag ctcatacttt atggtggttc ttctcctccq aaataatata ctgcaqaaat
                                                                    360
cccagacaga gctccttaca aacctttaat tgtaatatat ttttgatgat tattcacatt
                                                                    420
gaatgcacag accaagaatt cagtgaatgt catttttaa aaaactaatt tgtattgtct
                                                                    480
gctctagtga tacaagtttt actagtgata aactatttta atcaaccata ctattcttat
                                                                    540
ggaaaaaaat atctattttg gcaggtttct gtgcctttat ttccctcttc tgaaaaaaag
                                                                    600
tctgtgtttt catagtttgg tttgcattgt atatcaataa ttaatcaqqa atqqqttttq
                                                                    660
gtgcctgaaa aattgqccat ggaqqcacac caaaqcttca aqcacaaqtc ttqtacatgq
                                                                    720
gccatcactg tctggtttca cttcgtgtgt ttcctaaaca catttaqctq cttttttaac
                                                                    780
aaactcagcc ccatacttga gtcccttgtt gttgggagca tttccaggca tcttttaagg
                                                                    840
gaactgtgac aaacagcctc gggcagatga acacggaggc tctctgttgt ctgtctctga
                                                                    900
960
ttattttatt tttttgagac agagteteac cetgttgeec aggetggagt geaatggtge
                                                                   1020
gatettgget cactgeaace tecacetece agtteaagtg atteceetge etcageetee
                                                                   1080
cgagtagcta gggactacag gcgcatgtca cccaagcccg gctaaatttt tgtattttta
                                                                   1140
gtaggaaacg ggggttttca ccatgttggg ccagggtgga tcctcaatct cctgaacctc
                                                                   1200
gtggatccac ccgccttngg gcttcccaaa gtgccgggat ttacaagcgt ggaaccacct
                                                                   1260
gneceageea gaaattagga ttttt
                                                                   1285
     <210> 126
     <211> 1285
     <212> DNA
     <213> Homo sapiens
     <220>
     <221> misc feature
     <222> (1)...(1285)
     \langle 223 \rangle n = a,t,c or q
     <400> 126
gacatctgca gattctaata aacaaggact attgctgata gtaggctgtg acatactgtc
                                                                     60
ttgtgaaatg gtttccttga caaaatttaa gctgagctta aaagcaaaaa aacaaaaagt
                                                                    120
acacagaaat atttattaaa atgtaataca gtttattgaa ctttctaggt atggagtttg
                                                                    180
```

240

atggacaggg ctgcctttaa tgagtgtgaa ggtcactaag tcacttagac atctcaccgt

```
ggaagtttgt gagcctgcat taggagatag actgattacc atacatgaca taaaaaqqaa
                                                                    300
cagtggatag ctcatacttt atggtggttc ttctcctccg aaataatata ctgcagaaat
                                                                    360
cccagacaga gctccttaca aacctttaat tgtaatatat ttttgatgat tattcacatt
                                                                    420
gaatgcacag accaagaatt cagtgaatgt cattttttaa aaaactaatt tgtattgtct
                                                                    480
gctctagtga tacaagtttt actagtgata aactatttta atcaaccata ctattcttat
                                                                    540
ggaaaaaaat atctattttg gcaggtttct gtgcctttat ttccctcttc tgaaaaaaag
                                                                    600
tetgtgtttt catagtttgg tttgcattgt atatcaataa ttaatcaqqa atqqqttttq
                                                                    660
gtgcctgaaa aattggccat ggaggcacac caaagcttca agcacaagtc ttgtacatgg
                                                                    720
gecateactg tetggtttea ettegtgtgt tteetaaaca catttagetg etttttaac
                                                                    780
aaactcagcc ccatacttga gtcccttgtt gttgggagca tttccaggca tcttttaaqq
                                                                    840
gaactgtgac aaacagcctc gggcagatga acacggaggc tctctgttgt ctgtctctga
                                                                    900
960
ttattttatt tttttgagac agagtctcac cctgttgccc aggctggagt gcaatggtgc
                                                                   1020
gatcttggct cactgcaacc tccacctccc agttcaagtg attcccctgc ctcagcctcc
                                                                   1080
cgagtageta gggactacag gcgcatgtca cccaagcccg gctaaatttt tgtattttta
                                                                   1140
gtaggaaacg ggggttttca ccatgttggg ccagggtgga tcctcaatct cctqaacctc
                                                                   1200
gtggatccac ccgccttngg gcttcccaaa gtgccgggat ttacaagcgt ggaaccacct
                                                                   1260
gncccagcca gaaattagga ttttt
                                                                   1285
     <210> 127
     <211> 399
     <212> DNA
     <213> Homo sapiens
     <400> 127
tegtggtegt etgactgttg ggagetetaq aatqeeettt geteaaactg gactecaact
                                                                     60
gcttttqcqc ctctqtaqqq tqctqcacqt qctccqcctc ctqqqqatqc taaqaqaqca
                                                                    120
aatgcacctc ctgcgagaaa agctgctgga cctgctgcct cctgagctgt gccaqcgtgt
                                                                    180
gcccagggct gcgactgcta aggggcataa gagaagagca gctgctgtgc ctgatgatgg
                                                                    240
aacagatctt ctcccacagg gtatgagaac agcctgcact acccgcagga tctttaaata
                                                                    300
caacactgag ccatttgctg catttctttt tatactaaat atgtgactga caataaaaaac
                                                                    360
aattttgact ttaaaaaaag aaaaaagagg gcggccgtt
                                                                    399
     <210> 128
     <211> 755
     <212> DNA
    <213> Homo sapiens
     <400> 128
cccacgegtc eggttteagt gagecaagac agtgecactg tactccagca tqqqcaacaq
                                                                     60
agcaagactc catctcaaat acatatatat atatttagtt tttgaatgag tacattaaca
                                                                    120
tagctcaaaa tttacaaqaa ataaaaatqt qtacaqtaaa aattaatctc ctttccaccc
                                                                    180
catgacccct agccactcag atctccccaq aagcaaccgc ttataaatat acattqtctt
                                                                    240
ecceegteet ttetttgete atgaacacaa atggttggtt tetacetaca aaqtqttete
                                                                    300
tacttttatt tttctcagtt gatttatctt ggagatcatg ccaaatcagt aaatatagtt
                                                                    360
acctcgttca ttttaacagc cgcatatgta aataattcta aaatgcacca tactgtattt
                                                                    420
aactaagccc ttgttgacga acacataaca tggcccagta tttttctatt acaaacaatt
                                                                    480
ctacaatgac tactcttgtg tgtctatcgt tttacacagg agcaagcata tctacaaqat
                                                                    540
aatttcctat aaagggaaat gctgtgtaaa aagaaaatgt gttgctaatc tgtaatttaa
                                                                    600
aagagtetet etttttgaat tteteaagea ttatgaaaag ataeggaeta gtatgatgaa
                                                                    660
ctgctgaata ccctatttag cttcaagatt ttcccattca tggctggggg atttaaaaaa
                                                                    720
aagggccctt tctttcccac ccaatttttq taacc
                                                                    755
```

<210> 129

```
<211> 1509
     <212> DNA
     <213> Homo sapiens
     <400> 129
aagtaaaggt cettttecaa aatteecaag etggttttaa tagggeteee caaaagggga
agagtatteg ttgcgaatec ecegttaact ttgggeeece taagggttet ettaageggg
                                                                     120
cccccctttt ttttttttt gactaagcaa aatttgtact tgtttaataa gaaaatcact
                                                                     180
tetttaaaaa aatagttett tacatgetga ggtteateta tgeaatgeaa gagetgaaaa
                                                                     240
cagattegag aaaggetgtt cetacaaggg aaggteetga ggttacaaeg ceggeatgge
                                                                     300
cgggaaaaca tggctgcagc gatcccagct tcttgctgcc cacaggggtg gcacatctgg
                                                                     360
gcacacactg tgagctgctc agaggcactc tggtgggcag ctcccatcgc ctcagtcagt
                                                                     420
gtctccgtcc ccttcactgc cttccagggg actgggcacc ttggcgcccg tgccacctgc
                                                                     480
cgtgagagcg gtggcactga agttgtggat gggcaaggtg ctcagccact gggccatgga
                                                                     540
gcgttcgtcc cgctcggtgc cgatgatggt ggggtagatg tgctcctcct tgaaggctgc
                                                                     600
gacctttcct tcctcctgcg cccagtccag cggctcatgc agcccatcgt tgccaaagcg
                                                                     660
ctggttgtac ttctcgaagt gcaccetctc caggaccagg ccgagtccgg gcgccttggg
                                                                     720
cacgtccacc ttctctgtgc cccagctgcg ctccagcacg ctctcagggg cataaccctt
                                                                     780
cacaatggcc accaccaggc cgaccatctt ccqqatctqa tqcatcatqa aqctctqqcc
                                                                     840
cttcaccctg atcaccgcaa actccaggcc ctcccgcaca aagggttcct cqcaqtacat
                                                                     900
ctccaggatg tagcggcagg cactgggatc ctgcggcccc ttctgcgagg tgaaattgtg
                                                                     960
gaagttgtgc gtgcccttgt agcaggccag gagcctgttg acctgctgca gcgtctcggc
                                                                    1020
gctcaggcgg taggtctcat cctgaacgtc ccggtccttg tgcgcaaagg caaacgtggg
                                                                    1080
cagcaggtag caataggtcc tggcatcaca tctgttcttg gagttaaacc cgcccgtgac
                                                                    1140
ccgcttcagt cccagaatcc gaatgtgaga gggaaggtgg ctgttgatct tttctagaat
                                                                    1200
gtcgtcaatc agccacacct tcaqqqatac cacctggccg gctgcqqaca cacccttqtc
                                                                    1260
tgtccgggcg cagcgctgga aggacatttt cctcatgtcc tcaccatgat tttcaggaat
                                                                    1320
acagectgae eggaegaggg eggaeaceaa gteatettea attgttttga attgtgagga
                                                                    1380
cccgacattc ctctgcatgc cgtggtagcc cttgcccgaa taggccatga gcagcacgat
                                                                    1440
etteegettg ggeggettet egegeegete etegtegeea eegetettga gettettege
                                                                    1500
cggatgttc
                                                                    1509
     <210> 130
     <211> 1245
     <212> DNA
     <213> Homo sapiens
     <400> 130
agatcaataa gtacttttta gtgatgtggc agaaatccct gttgattcta agttttagag
                                                                      60
tgtcttttcc cctatttctg acctacaact ataaactact ctctattagg agaactagac
                                                                     120
cactttette attetttet aaactgetge agattgeegt gaactetate aatagtetet
                                                                     180
tttccgcagg caaagtggca ttttctaaac atgtttgctt actgccaggt ggtttgaaat
                                                                     240
ctatgattta ctgcagtagt atgtgcttaa aacaactgtt gaggtctttt aagcaggaaa
                                                                     300
gttcaaaagg aagtgtcctg ataatggtac tggtttttct acaaatataa gtagtcattt
                                                                     360
agaagtttgc aaccaccacc aagtctgaga gaactctggg atattctgtg ggttttggca
                                                                     420
tattagatag agaaaatgac agatctagat gaagggagct tttggatgtg tgcctttaaa
                                                                     480
aactgattat gtataaatac tgatatttca catacggaga tatttgaaga cccaagtctg
                                                                     540
cctttcacag agccctccat tccaagttta gtttttgtca aaatatgaat cattttattt
                                                                     600
gactgtacta tcagtacaca aatgcatgag tatgtttata cagtgttaga ctgatgtgaa
                                                                     660
tttgcatttg ttacattaca ttgccagcgc atatcattta gcaagttggc attaacattt
                                                                     720
```

780

atgctttaat taaatgccag tatacctatg tgtgcagcag taaaaaaatta gtgagaaaaa

```
gcaacttttt gtcactctta ggaaatattt tgtcttatta gtgttcttgg cacatgtata
                                                                     840
ttactaaagt agataattcc aatgagaaat actaccagat tattgttata aaattaattt
                                                                     900
acaatgtccc tgatattgag ctaactctta aaaaaaccaa acaaaactcg tatctgagtg
                                                                     960
taactttgcc aatattttaa aagccaaaat attctctgga caacaaattt gtattgctca
                                                                    1020
qqqacaqttt accttgcctg gtaaaccttc ccaaacaqaa atataqctat actatctttq
                                                                    1080
qttttqtttt tttqttttt ttqtttqttt gtattagatg gaatttcact cttqtcqccc
                                                                    1140
aggetggagt gtagtggege agteteaget caetgeaace tecaceteee gggtteaagt
                                                                    1200
gatteteetg teteagetee etgagtaaet ggaattaeag gtgee
                                                                    1245
     <210> 131
     <211> 694
     <212> DNA
     <213> Homo sapiens
     <400> 131
gcaggcagga gtcccactct cctgggtgca gctgcagcca cccaaaccgc agctgcagac
                                                                      60
ccaggcatcc ctgcactctt aagggcccgg gaaggccctc tccctcacag gctcagaaat
                                                                     120
gcctgctccc actgcctggc ttctccctgc tgtcagcacc tgctctaatc tcagagcaaa
                                                                     180
agcaggggta atcctgggca ctatcacaac caggccatat gtgcacacct ggggcaqtgc
                                                                     240
tgacatggca acccctacc accttggccc cttctggact ttgggcactg acaagcatag
                                                                     300
gagggaagcc aatagggggc agagggcaat ttqqqqctqq cctacaqqqc ccccttqqca
                                                                     360
cttatagcct gagtgtcatg aatggcagca ggaggcagac aggtttctqt qtqqaaqqqa
                                                                     420
gtgagttcct tgtgaggtcc caccttcagg ccaggtaggg cctgaaggct gggggctggg
                                                                     480
ctgccagccc cacggactga agtgggaacc tgtgggggcct tttctgagcc tgcccagggc
                                                                     540
ccccatggac caattgggat ggactteete ccctetgeac cccaaaaaac cctgggetet
                                                                     600
gccagaactt aacagaagtt gggaatgaac cggctggggg gaagaagcta ccccaatccg
                                                                     660
gggcccccc ctctgttgag aacccaccca tqtc
                                                                     694
     <210> 132
     <211> 466
     <212> DNA
     <213> Homo sapiens
     <400> 132
caagatgggc cattetgggt tetttgeett tttgtatgaa ttttaggate acagggtcaa
                                                                      60
atttctgcaa ataagtcagc tggaattttg atgaggatag ggttgaatct atgtatcagt
                                                                     120
gggggagtag tatcatccta atattatggc ctttatccat gaacatcgga tqttactcca
                                                                     180
tttatttgaa gatggttatg cttttgtctt caaaattcag ttggaagagt ttttctaaat
                                                                     240
tgcagttttt attacttttg aaattcaggt acatgtgtat ttgagctgaa aatggttata
                                                                     300
ggctctttga taactgcatt ttgattagtt ggcagaatca gtctacagtt ccttcaactc
                                                                     360
tggggataca aagattttat tttaaagttt agatacacag gtgtaatttg taaaagacag
                                                                     420
aaattggaga ccctccaaat gggctattga ttgaaccttt agggaa
                                                                     466
     <210> 133
     <211> 1845
     <212> DNA
     <213> Homo sapiens
     <400> 133
ctatggacca aggactacag geegggacag gatttgeget tgettagtea agetaccetg
```

```
actttccatc caacagtacc tagcccgtcc acattgttgg ggttgctgcc agctgaggac
                                                                     120
agetggttea cetgettgga cetgaaagac getttettte etateagate ageceetgag
                                                                     180
agccagaagc tgtttgcctt tcagtgggaa gatccggagt cagcccttgc caaaacqqtq
                                                                     240
aggeagegtt gtgteagetg eegacageat catqeqaqqe aaqqtecaqe eqtteeqeee
                                                                     300
ggcatacaag cttatggagc agccgccttt gaagatctcc aggtagactt cacagagatg
                                                                     360
ccagagtgtg gagggaataa gtatttacca gttcttqqqc qtacctactc tqqqtqqqtq
                                                                     420
gagacetate caacaagage tgagaaaget egtgaagtaa eeegtgtget tettegagat
                                                                     480
ctgattccta gattggaact gcccttccgg atcggctcag ataacgggcc tgcgtttgtg
                                                                     540
gctgacttgc tacagaagac ggcaacggta ttggggatca cacggaaact gcatgccgcc
                                                                     600
tcccggcctc agagttccgg aaaggtggag cggatgaatc ggactatcaa aaataatatt
                                                                     660
attgtcttcc ccgctggata tgtaaaacaa caccacgagg ggcatcaaac cacctgctac
                                                                     720
attggaggga atcttatcct ctcccacct cctccggtcc cggatattag aggcaataac
                                                                     780
acaggggtaa tgtacaccca ctgctttatt gggagtaatg tcatcctctg ccttcttgga
                                                                     840
tattaggaac aatatcacag ggtgacgtac atttcccgcg atactgaggg cagtattatt
                                                                     900
gtetteeeeg eeetggteae ggtgetgagg aacetgetea teateetgge tgteagetet
                                                                     960
gacteceace tecacacece catgtgette tteeteteea acetgtgetg ggetgacate
                                                                    1020
ggtttcacct cggccatggt tcccaagatg attgtggaca tgcagtcgca tagcagagtc
                                                                    1080
atctcttatg cgggctgcct gacacagatg tctttctttg tcctttttgc atgtatagaa
                                                                    1140
gacatgetee tgacagtgat ggeetatgae egatttgtgg ceatetgeee atetgteace
                                                                    1200
ccctgcacta cccagtcatc atgaatcctc accttqqtqt cttcttaqtt ttqqtqtcct
                                                                    1260
ttttccttag cctgttggat tcccagctgc acagctggat tgtgttacac aactcacctt
                                                                    1320
cttcaagaat gtggaaatct ataattttt ttctgtgacc catctcaact tctcaacctt
                                                                    1380
gcctgttctg acagcatcat caatagcata ttcatatatt ttgatagtac tatgtttggt
                                                                    1440
tttcttccca tttcagggat ccttttgtct tactataaaa ttgtcccctc cattctaagg
                                                                    1500
atttcatcgt cagatgggta gtataaagcc ttctccgcct gtggctctca cctgccagtt
                                                                    1560
gtttgcttat tttatggaac aggcattggc gtgtacctga cttcagctgt ggcaccaccc
                                                                    1620
ctcaggaatg gtgtggtggc gtcagtgacg tatgctgtgg tcacccccat gctgaaccct
                                                                    1680
ttcatctaca gcctgagaaa cagggacatt caaagcgccc tgtggaggct gcgcagcaga
                                                                    1740
acagtcaaat ctcatgatct gttatctcaa gatctgctcc atcctttttc ttgtgtgggt
                                                                    1800
aagaaagggc aagcacatta aatccctaca tctgcaaaaa aaaaa
                                                                    1845
    <210> 134
     <211> 1019
     <212> DNA
     <213> Homo sapiens
    <220>
    <221> misc_feature
    <222> (1)...(1019)
    <223> n = a,t,c or g
     <400> 134
ttttttttt ttaaaatttt tcttttaat tctcaccaag tcaatgtact tctacagaag
                                                                      60
ggtgcgccct tacagatgga gcaatggttg agtgcacacc ctggacaaag gqaqgqaaa
                                                                     120
gggttettat ceetgatgea catggeeeet getgetgtgt catteeeeta ttggetaggg
                                                                     180
ttagaccaca caggccaaac taactccaac cttnnggggg nctaatttaa agagagtgac
                                                                     240
agggtgaagt ggttttggcg ggaacaatgg ttatggcaga gcatggaaat cggaatgagt
                                                                     300
caggatggag caggtaatcg aaaaaggttg ctttatgaag aaagttaagt ttccaagtag
                                                                     360
aaggcaaaga atttgaacat actgacatta ctggattctt taaagagaaa tttagaactc
                                                                     420
atatetaaca cactgatgge tatageatat cetetgteet tttteetate tattggagga
                                                                     480
ggagacttag gtgagacctc cgtttcctgt tattttgacc cagtgatatt gggactgagg
                                                                     540
gaagaggagg tgataaggca ggtgacattt teteeteett eetettttta ggetettetg
                                                                     600
tgtgtaactg agccagggct gctctaatta aagcccataa cattaaagat tttactggga
                                                                     660
cctgatgcct ttgcacctga tgttgtttaa qatttctccc cacttqttcc caqaqttcta
                                                                     720
catchagtgt tettteetet gggaaccatg ggetttgtae tecattattg accaeactag
                                                                     780
```

840

tttttaattc cttcaacaac tgaaattcta gtggggtgtg ttcatgaata aactgctgtg

```
gattattggg atcaggcctt atggaaacag gaacagcgca aggtcctaag ggctctccag
ctatgacagc agagcgtaaa attctttgta ttggggtttc tatttgtgct actgaaqqaq
                                                                     960
gcagtacaga tgtttctgca attggaggag aattccacca cgtggactag ggtttcgat
                                                                     1019
     <210> 135
     <211> 764
     <212> DNA
     <213> Homo sapiens
     <220>
     <221> misc feature
     <222> (1) ... (764)
     <223> n = a,t,c or g
     <400> 135
gaggaccccc aagctttgag gttgtctcct aaccagtgtc ataactgaat ctttagtaag
teattetgtt gttetgeeaa getagetget cetaggtaat ggeatacaeg atgateeeag
                                                                      120
tgctgcactt cttttgctgt gaaacaagtt ccttagttag aaccaaggtt gtgtggaag
                                                                      180
ccatcaatat ggtattcgca aagtccatga atggtggtcc tgacagatgc attgctgtca
                                                                      240
ggcaagtcaa gttcctattt agaaaagtgt ctttttcaga gaagatagat cactgcccc
                                                                      300
tecatgatgg aaatatttta ttaccaggte cetgggaaat ggcacettat tggggaetea
                                                                      360
atattagtet gtgtcatttg cagtttagge actecatagt ttetetaget agatgeagee
                                                                      420
ttggtgaggg gcagtccatg ttgtggtgtc catgcttaac ctccatctct gttgacatqq
                                                                      480
ccacattgta cattaatgca tcaaqcaqcc tcaqtaqcaa qqqaaaaaaa qctqactqaa
                                                                      540
caatggcttc ttatctatgt tattaagatc ctttttttaa attgcttagc ctttagagaa
                                                                      600
tattcactta agaaacaaat atatttagcc aggtacggtg gctcacgcct gtaatcccaq
                                                                      660
cactttggga ggccaaggcg ggtggatcgc ctgagggnca gagttcaaga ccagcctqqq
                                                                      720
ccacataatg aaaccctgtc tctactcaaa atacaaaaaa aaaa
                                                                      764
     <210> 136
     <211> 1016
     <212> DNA
     <213> Homo sapiens
    . <220>
     <221> misc feature
     <222> (1) ... (1016)
     <223> n = a,t,c or q
     <400> 136
tttccccctc cccgttttac gccgccagga tttatttggg tcctataaaa actattacct
                                                                       60
tgccgcccgc gtcgaaaact gatccctaaa acggcccgcc ttttttttt ttttctgatt
                                                                     120
gacaatgaag aatatttatt gagggtttat tgagtgcagg gagaagggtc ttgatgcctt
                                                                     180
ggggtgggaa gagagaaccc ctcccctggg attctggaag tctaagtttc ccgtggtggg
                                                                     240
ggggtgaggg tttgagaaac ctatggaaca ttctggtagg ggccactgtc ttctccaacg
                                                                     300
gtgctccctt catgcgtgac cctggcagct gtaagcttct gtgggaactt ccactgctca
                                                                     360
ggcgtcaggc tcagatagca tgctgggccg cgtacttgtt gttgctttgt gtgtggaggt
                                                                     420
ggggggtgg totocactoc cogotttgac gggggetgct atgetgeget tocagggena
                                                                     480
ettgtcacgg getecceggg taagaagtca ettaatgaga cacaccagtt gtggccattg
                                                                      540
ttgggettga aageteetea gaggaagege gggaaacaga gtgaceegag gggaqcaqee
                                                                      600
ttgggctgac cttaggaccg gtcagctttg gtcccctccg ccgaatacca ctgtagtgct
                                                                     660
getgteccae geetgaeagt aatagteate ceteateeat ageetgtgte eegetgatgg
                                                                     720
tcaaagtggc tgttgttcca gagttggagc catagaatcg tttatggatc cctgaaqqcc
                                                                      780
```

```
gcctgctatc ttcatagatg accagcacgg gggactggcc tgccttctgc tgataccagg
                                                                      840
aagcatattt atcccccaat ttatctccag agcaggtgat gctggctgtc ttgcctgggg
                                                                     900
acacggacac tgagggtggc tgagtcagct cataggaggc cacggatcct gtgcagtaag
                                                                     960
caaggacgcc gaggaagaga gggatccatg ccatqqctqa qcqacctccq atqctq
                                                                    1016
     <210> 137
     <211> 727
     <212> DNA
     <213> Homo sapiens
     <400> 137
gtcgtggaat tcatcagaag cactgtgtgc cgcatgcctc tcctccacgg tgtgtatttg
                                                                      60
gcgaggagga gtctgatctg catttcattt tgtcatctct gtgttctctc cattgggctg
                                                                     120
cgtgtgattg tgtgcgttgt tgggatatct gaagatcgta aacgaagtgc cagtgcaccc
                                                                     180
accetaggta ttgtaccect gcatgccage etteaccage actgtgctcc aaaccaatet
                                                                     240
aatcoctgct cttggcatct gtgatctcta gaaagcgatc tgacagcaat cagaaaatgt
                                                                     300
agttetetat teeggagtgt tettteeace ttetgetaaa aaqqaetetg taqaqqettt
                                                                     360
gcttccaagc ctaaatgctg ttttaaccaa tactagtaac actcactgtg tgaatagctt
                                                                     420
tgagaggacc tagacgtgtg cagcatccct cagagtgcag ggcaggaatg tcctggcatt
                                                                     480
gtacattgca gctctttcag ccttqaaqtg catattacca cacactaact cccaqqtcct
                                                                     540
tgcagtccgt tctccatgct tacatttccc ccagcctcca aaaagaaatt tttttggcca
                                                                     600
tatagggagg tttatagaag acattgaata atataggttt aggettaett etettagggg
                                                                     660
aacatttttc tgacgtttat tactttgaag aggaaaaata tttaggatga cgaagctctt
                                                                     720
tcttttt
                                                                     727
     <210> 138
     <211> 659
     <212> DNA
     <213> Homo sapiens
     <400> 138
caageceett cecaggatte taattteace tgegettetg gecacagaga gttagetget
                                                                      60
teetggaaeg tgttggetag ttgateaect taaatgtgtg etcaateect etteaeteag
                                                                     120
aacatgaacc cctctgccag cctcgtctgc ctcctctttg cgttttcttc ctgccgcatt
                                                                     180
tggtctgtcc tttgccagct ctgtgtgcca tcgccttggc catctccact ttgtttgtgt
                                                                     240
ectcagacag atgttgcacc catetgtget gtccagecgt ctctcttctg cetgggetec
                                                                     300
egagageece tgtggaetgt gettgtgggg agetgeecee teegtgeatt caccaacttq
                                                                     360
teegteegte egeceeggg geaceactee atceacetee teacatgget ggetteeteg
                                                                     420
tetgeegeeg ceaceacege tgeetecact geetetgggg ceececatte tgtetgagte
                                                                     480
eccaccetga cegtettece tettteaggt ggeetgtggg eccqtgtaag tgtetetece
                                                                     540
acatteceet geteeetgea geacagggea gaggtggeet gegggeetet ggaagetaag
                                                                     600
agetttatge aaaccaggtt etggaettge agagacatag geagggeaca cagaggagg
                                                                     659
     <210> 139
     <211> 2068
     <212> DNA
     <213> Homo sapiens
     <400> 139
atggeegagg cegeggagee ggagggggtt geeegggte ceeaggggee geeggaggte
```

```
cccgcgcctc tggctgagag acccggagag ccaggagccg cgggcgggga ggcagaaggg
                                                                       120
 ccggagggga gcgagggcgc agaggaggcg ccgaggggcg ccgccgctgt gaaggaggca
                                                                       180
ggaggeggeg ggccagacag gggcccggag gccgaggege ggggcacgag gggggcqcac
                                                                       240
ggcgagactg aggccgagga gggagccccg gagggtgccg aggtgcccca aggaggggag
                                                                       300
gagacaageg gegegeagea ggtggagggg gegageeegg gaegeggege geagggegag
                                                                       360
 ccccgcgggg aggctcagag ggagcccgag gactctgcgg cccccgagag gcaqqaqqaq
                                                                       420
geggagcaga ggcctgaggt cccggaaggt agcgcgtccg gggaggcggg ggacagcgta
                                                                       480
 gacgcggagg gcccgctggg ggacaacata gaagcggagg gcccggcggg cgacagcgta
                                                                       540
gaggcggagg gccgggtggg ggacagcgta gacgcggaag gtccggcggg ggacagcgta
                                                                       600
 gacgcggagg gcccgctggg ggacaacata caagccgagg gcccggcggg ggacagcgta
                                                                       660
 gacgcggagg gccgggtggg ggacagcgta gacgcggaag gtccggcggg ggacagcgta
                                                                       720
 gacgcggagg gccgggtggg ggacagcgta gaggcgggg acccggcggg ggacggcgta
                                                                       780
 gaageggggg teeeggeggg ggacagegta gaageegaag geeeggeggg ggacageatg
                                                                       840
 gacgccgagg gtccggcagg aagggcgcgc cgggtctcgg gtgagccgca gcaatcgggg
                                                                       900
 gacggcagcc tetegececa ggccgaggca attgaggtcg cagccgggga gagtgcgggg
                                                                      960
 cgcagccccg gtgagctcgc ctgggacgca gcggaggagg cggaggtccc gggggtaaag
                                                                     1020
 gggtccgaag aagcggcccc cggggacgca agggcagacg ctggcgagga cagggtaggg
                                                                     1080
 gatgggccac agcaggagcc gggggaggac gaagagagac gagagcggag cccggagggg
                                                                     1140
 ccaagggagg aggaagcagc ggggggcgaa gaggaatccc ccgacagcag cccacatggg
                                                                     1200
 gaggeeteca ggggegeege ggageetgag geecagetea geaaceacet ggeegaqqag
                                                                     1260
 ggccccgccg agggtagcgg cgaggtcgcg cgcgtgaacg gccgccggga ggacggagag
                                                                     1320
 gcgtccgagc cccgggccct ggggcaggag cacgacatca ccctcttcgt caaggctggt
                                                                     1380
 tatgatggtg agagtatcgg aaattgcccg ttttctcagc gtctctttat gattctctgg
                                                                     1440
 ctgaaaggcg ttatatttaa tgtgaccaca gtggacctga aaaggaaacc cgcagacctg
                                                                     1500
 cagaacctgg ctcccggaac aaaccctcct ttcatgactt ttgatggtga agtcaagacg
                                                                     1560
 gatgtgaata agatcgagga gttcttagag gagaaattag ctccccgag gtatcccaag
                                                                     1620
 ctggggaccc aacatcccga atctaattcc gcaggaaatg acgtgtttgc caaattctca
                                                                     1680
 gegtttataa aaaacacgaa gaaggatqca aatgagattc atgaaaaqaa cctqctqaaq
                                                                     1740
 gccctgagga agctggataa ttacttaaat agcccctctg ccctgatgaa atagatqccc
                                                                     1800
 tacagcaccg aggatgtcac tgtttcttgg aaggaaagtt ctggatggag accaccctgc
                                                                     1860
. ccttgctgcc tggaacgctt tacccaagcc ccatattatt aagaatgtgg ccaagaagta
                                                                     1920
 cagagatttt gaattteett etgaaattga etggeatetg ggagataett gaataatget
                                                                     1980
 tatgcttaga gatgagttca caaatacgtg tccagctgat caagagattg aacacgcata
                                                                     2040
 ttcagatgtt gcaaaaagaa tgaaatga
                                                                     2068
      <210> 140
      <211> 580
      <212> DNA
      <213> Homo sapiens
      <220>
      <221> misc feature
      <222> (1)...(580)
      <223> n = a,t,c or g
      <400> 140
 cgcagacett cetaggecca gggagttagg atttegeete aactetaggg cgaagetgag
                                                                       60
 ctgtctgtga gtagaaagtt agttttggta tctatgccca gttatttcaa gacttgttca
                                                                       120
 ttgttcacat tgctgagttc agtcttttta gtttgcattt ggatatttaa gaccaatatc
                                                                       180
 aagtetteag tateagaate teeteetgat tetgggttgg gecaagtgae agetgtgtat
                                                                       240
 caggtccagt gtttgtgttg ggcaaaagac tgcaattatc caatttgtag ctagacagat
                                                                       300
 tacctaaaat cacttaataa actaagtcat ctaatctatt ttttggatct gatgatctgt
                                                                       360
 cctgtttcat ttatgatagg tagaataatc cccccaaacc ccaccaagaa atctggatcc
                                                                       420
 taatccctga acctatgact gggtggggca gcatggcaaa gggaaattaa ggttgcagat
                                                                       480
 gaaattaagt tttctaatca gctgacctta gagaatggcc tggctttcct ggngggtcca
                                                                      540
```

580

gggcattccc cccgtctcct cccccgcccc accgangcag

<210> 141

```
<211> 1276
     <212> DNA
     <213> Homo sapiens
     <400> 141
agacaaataa teeagateet aceteattgt atagetetgt ttettgtgaa gaactttate
                                                                      60
caaataagtt acaataatat tttacatcta tcaataaaat aaacaaaact aacaagcttg
                                                                     120
gcaaccacct tgtatttaca aaaggatcat gaagattttt ttaaacgaac attttcatag
                                                                     180
ttgcatagtc ttgctcaaac caagatggct tttatttgta aaccqaaatc tctaqtqqta
                                                                     240
tgctggtaaa cgaactttat ggaaagtaaa aaacaaaaaa acaaaaacaa actctgattt
                                                                     300
gtcaatttgc caatttctgt ggtgtaaaca cactcaccgc tgacacttga tagatqtttt
                                                                     360
tattgaaatt ccttcaccaa aggaatattt acttgtgaat ctctaagccc acacacatac
                                                                     420
acaaatacca ttctgtacaa acatacgtat ttaataattt gattcttctg ctcaatactc
                                                                     480
aaagggggct gggaggaaca gtttgtctcc tagggcatga catagactgg acagtctttt
                                                                     540
tataagagtg atacaactgg gaagggagaa cgctgtttca gaagataact cagatcctct
                                                                     600
tcttcaggaa agactgagtt tggaacacca gggcttttgt tttctccttt caggtttgat
                                                                     660
tgtggcaggg tggttttagg acaggacaag agatctgggt gctggctgct ctcaaactcc
                                                                     720
tgagttcaag tgatcctccc acctcagcct cccaaqtaqc tqqqattaca qqcatqtacc
                                                                     780
tactgtgcct agctgaaaca tcagtttctg actgaagtgg agactacaac aactttagtg
                                                                     840
tttcccttag aaggattacg gccatggtga acttgactga gtaaacaatg ctataaataa
                                                                     900
aaagetette caaaacatta accatggtaa geateattat eeccataaaa tqqtqqcate
                                                                     960
caggitaaat ggcccacaga ccaaaagict aaaatgaaga tagaatccag tcgttaactt
                                                                    1020
tttctgtatc tccatcggtg tggtcacaaq gattacaatq ctttccttaq cattaattca
                                                                    1080
atctgggaaa attttaatct ccgtgcaata tccagtgagc tctcaccatg cttattcttt
                                                                    1140
attgtggggt ctgcacgggc ttccaagagc agagggataa gagactggtt tttcatttcc
                                                                    1200
acaggcataa tgtaatgcgg tacagccata acaatctgta gcattaactt cgacaccagc
                                                                    1260
atcaagtage attegt
                                                                    1276
     <210> 142
     <211> 2398
     <212> DNA
     <213> Homo sapiens
     <400> 142
gagtecaaat atggtecece gtgeecatea tgeecageae etgagtteet qqqqqqacea
                                                                      60
teagtettee tgtteecccc aaaacccaaq qacactetca tqateteecq qacccetqaq
                                                                     120
gtcacgtgcg tggtggtgga cgtgagccag gaagaccccg aggtccagtt caactggtac
                                                                     180
gtggatggcg tggaggtgca taatgccaag acaaagccgc gggaggagca gttcaacagc
                                                                     240
acgtaccgtg tggtcagcgt cctcaccgtc gtgcaccagg actggctgaa cggcaaggag
                                                                     300
tacaagtgca aggtetecaa caaaggeete eegteeteca tegagaaaac catetecaaa
                                                                     360
gccaaagggc agccccgaga gccacaggtg tacaccctgc ccccatccca ggaggagatg
                                                                     420
accaagaacc aggtcagcct gacctgcctg gtcaaaggct tctaccccag cgacatcgcc
                                                                     480
gtggagtggg agagcaatgg gcagccggag aacaactaca agaccacgcc tcccgtgctg
                                                                     540
gactecgacg geteettett cetetacage aggetaaceg tggacaagag caggtggcag
                                                                     600
gaggggaatg tetteteatg etecgtgatg catgaggete tgeacaacca etacacacag
                                                                     660
aagageetet eeetgtetet gggtaaatga gtgeeaggge eggeaageee eegeteeeeg
                                                                     720
ggctctcggg gtcgcgcgag gatgcttggc acgtaccccg tgtacatact tcccqqqcqc
                                                                     780
ccagcatgga aataaagcac ccagcgctgc cctgggaagt atgtacacgg ggtacgtgcc
                                                                     840
aagcatcctc gtgcgacccc gagagcccgg ggagcggggg cttgccggcc gtggcactca
                                                                     900
tttacccgga gacagggaga ggctcttctg tgtgtagtgg ttgtgcagag cctcatqcat
                                                                     960
```

1020

cacggageat gagaagacgt teceetgetq ceacetgete ttqtecacqq tqaqettqet

```
gtagaggaag aaggagcegt cggagtccag cacgggagge gtggtcttgt agttgttctc
                                                                    1080
eggetgeeca ttgeteteec actecaegge gatgtegetg ggatagaage etttgaceag
                                                                    1140
gcaggtcagg ctgacctggt tcttggtcat ctcctcccgg gatgggggca gggtgtacac
                                                                    1200
ctgtggttet cggggetgee etttggettt ggagatggtt ttetegatgg gggetgggag
                                                                    1260
ggetttgttg gagacettge acttgtacte ettgccatte agecagteet ggtgcaggae
                                                                    1320
ggtgaggacq ctqaccacac qqtacqtqct qttqtactqc tcctcccqcq qctttqtctt
                                                                    1380
ggcattatgc acctccacgc cgtccacgta ccagttgaac ttgacctcag ggtcttcgtg
                                                                    1440
getcaegtee accaecacge atgtgacete aggggteegg gagateatga gggtgteett
                                                                    1500
gggttttggg gggaagagga agactgacgg tcccccagg agttcaggtg ctgggcacgg
                                                                    1560
ggcacggtgg gcatgtgtga gttttgtcac aagatttggg ctcaactttc ttgtccacct
                                                                    1620
tggtgttgct gggcttgtga ttcacgttgc agatgtaggt ctgggtgccc aagctgctgg
                                                                    1680
agggcacggt caccacgctg ctgagggagt agagtcctga ggactgtagg acagccggga
                                                                    1740
aggtgtgcac gccgctggtc agggcgcctg agttccacga caccgtcacc ggttcgggga
                                                                    1800
agtagteett gaccaggcag eecagggeeg etgtgeeeec agaggtgete ttggaggagg
                                                                    1860
gtgccagggg gaagaccgat gggcccttgg tggaggctga ggagacggtg accagggttc
                                                                    1920
cctggcccca gacgtccata ccgtagtagt tcttcagacc gtgccttatg gggatatctt
                                                                    1980
ttacacagta atatacggcc gtgtcctcaa gtctcaggct gttcatttgc agatacagtg
                                                                    2040
agttettgge gttgtetetg gagaeggtga aceggeeett caeggagtee geggaataga
                                                                    2100
ttctactact actactacta atagttgaga cccactccag ccccttccct ggagcctggc
                                                                    2160
ggacccagtt catggtatag tgactgaagc tgaatccaga gcgttgtaca ggagagtctc
                                                                    2220
agggacetta caggetggag etegeeteeg ceaegactee accateggeg actgteactg
                                                                    2280
gataaatett aaaagageaa egagtaaata aacageteag eecatgetee atgttgagte
                                                                    2340
ctctttgtta cagtgatggt ctccgaatgg aaacaccgcc gacttctagt gctgggct
                                                                    2398
```

<210> 143 <211> 6358

<212> DNA

<213> Homo sapiens

### <400> 143

ctcactgtcc ctctccggct ctagctctct ccatataaac cctcaagatt atgtcaattg 60 gttagagcca gccgggaatt tcgtgcgggt gctgaaggag ctgcgggagc cggagaagaa 120 tgaaactgcg tggagtcagc ctggctgccg gcttgttctt actggccctg agtctttggg 180 ggcagcctgc agaggctgcg gcttgctatg ggtgttctcc aggatcaaag tgtgactgca 240 gtggcataaa aggggaaaaq ggagagaga qgtttccagg tttggaagga cacccaggat 300 tgcctggatt tccaggtcca gaagggcctc cggggcctcg gggacaaaag ggtgatgatg 360 gaattccagg gccaccagga ccaaaaggaa tcagaggtcc tcctggactt cctggatttc 420 cagggacacc aggtcttcct ggaatgccag gccacgatgg ggccccagga cctcaaggta 480 ttcccggatg caatggaacc aagggagaac gtggatttcc aggcagtccc cggttttctt 540 ggtttacggg gtccctccag gaccccctgg gatcccaggt ataaaggggg aaccaggtag 600 tataattatg ttatcactgc cccgaccata gggctaatcc aggatatcca ggtcctcctg 660 gaatacaagg cetacetggt cecaetggta taccagggee aattggteee ecaggaceae 720 caggittgat gggccctcct ggtccaccag gacttccagg acctaagggg aatatgggct 780 taaatttcca gggacccaaa ggtgaaaaag gtgagcaagg tcttcagggc ccacctgggc 840 cacctgggca gatcagtgaa cagaaaagac caattgatgt agagtttcag aaaggagatc 900 agggactice tggtgacega gggcctcctg gacctccagg gatacgtggt cetccaggte 960 ccccaggtgg tgagaaaggt gagaagggtg agcaaggaga gccaggcaaa agaggtaaac 1020 caggcaaaga tggagaaaat ggccaaccag gaattcctgt aatgcctggt gatcctggtt 1080 accetggtga acceggaagg gatggtgaaa agggccaaaa aggtgacact ggcccacetg 1140 gacctcctgg acttgtaatt cctagacctg ggactggtat aactatagga gaaaaaggaa 1200 acattgggtt gcctgggttg cctggagaaa aaggagagcg aggatttcct ggaatacagg 1260 gtccacctgg ccttcctgga cctccagggg ctgcagttat gggtcctcct ggccctcctg 1320 gatttcctgg agaaaggggt cagaaaggtg atgaaggacc acctggaatt tccattcctg 1380 gacctcctgg acttgacgga cagcctgggg ctcctgggct tccagggcct cctggccctg 1440 ctggccctca cattcctcct agtgatgaga tatgtgaacc aggccctcca ggccccccag 1500 gatetecagg tgataaagga etecaaggag aacaaggagt gaaaggtgac aaaggtgaca 1560

attacttonn	ataasttaas	actootattt	anggagataa	200ta220t	aatttaaaa	1.000
	ctgcattgga					1620
gteteedagg	tcctccagga	tetettggtt	teeetggaea	gaaaggggaa	aaaggacaag	1680
etggtgcaac	tggtcccaaa	ggattaccag	gcattccagg	agctccaggt	gctccaggct	1740
	taaaggtgaa					1800
	gggttcccct					1860
aggatggatt	gccagggctt	cctggcccga	aaggagagcc	tggtggaatt	acttttaagg	1920
	tcccctggg					1980
	tggtttcggc					2040
	caggccagcc					2100
	ggaagcctgg					2160
	ctggacttcc					2220
	tccctggaat					2280
	ctccaggagc					2340
	gctttccagg					2400
	ggacttccag					2460
	ccgggtcctc					2520
	ccaaatggac					2580
tgttcaggga	ccaccaggac	caccagggat	tcctgggcca	ataggtcaac	ctggtttaca	2640
tggaatacca	ggagagaagg	gggatccagg	acctcctgga	cttgatgttc	caggaccccc	2700
aggtgaaaga	ggcagtccag	ggatccccgg	agcacctggt	cctataggac	ctccaggatc	2760
	ccaggaaaag					2820
	cctccaggcc					2880
	ggtgatgatg					2940
	aaaggagagc					3000
	aaaggagaga					3060
	tatcagggtt					3120
	ggaccaccag					3180
	cctggactta					3240
tgtggaaggg	cctcctggac	cttetggagt	teetggaeaa	cerggereee	caggattacc	3300
	ggcgacaaag					3360
	ggtgagcctg					3420
	cctggtttgc					3480
	ttcccaggaa					3540
tgggaacccc	ggccttccag	gagaacctgg	tcctgtaggt	ggtggaggtc	atcctgggca	3600
	ccaggcgaaa					3660
acagaagggt	gaaccaggtc	aaccaggctt	tggaaaccca	ggaccccctg	gacttccagg	3720
actttctggc	caaaagggtg	atggaggatt	acctgggatt	ccaggaaatc	ctggccttcc	3780
aggtccaaag	ggcgaaccag	gctttcacgg	tttccctggt	gtgcagggtc	ccccaggccc	3840
	ccgggtccag					3900
	ccaggtctac					3960
	gagaagggaa					4020
	ggaccaccag					4080
	cctggtctcc					4140
	tcagctggcc					
	ggtccttcag					4200 4260
	cagcctgggc					4320
	ggccctccag					4380
	aaaggagacc					4440
	ccagatggat					4500
	cttattacac					4560
	gtctatgaag					4620
	ttggggacgg					4680
	atcaataatg					4740
	gagccccatg					4800
	tcgatgtgca					4860
	gattccccat					4920
	tacaagtgca					4980
	agagtttcgt					5040
	caactcctac					5100
			Jaguarugu	-55-9cca	Jacacyceca	2200

gtaaacctca gtcagaaacg ctgaaagcag gagacttgag gacacgaatt agccgatgtc 5160 aagtgtgcat gaagaggaca taacattttg aagaattcct tttgtgtttt aaaatgtgat 5220 atatatatat ataaaattcc taggatgcag tgtctcattg tccccaactt tactactqct 5280 gccgtcaatg gtgctactat atatgatcaa gataacatgc tgactagtaa ccatgaagat 5340 tcagatgtac ctcagcaatg cgccagagca aagtctctat tatttttcta ctaaaqaaat 5400 aaqqaaqtqa atttactttt tqqqtccaqa atqactttct ccaaqaatta taaqatqaaa 5460 attatatatt ttgcccagtt actaaaatgg tacattaaaa attcaattaa qaqaaqagtc 5520 acattgagta aaataaaaga ctgcagtttg tgggaagaat tatttttcac ggtqctacta 5580 atcctgctgt atcccgggtt tttaatataa aggtgttaag cttattttgc tttgtaaqta 5640 aagaatgtgt atattgtgaa cagcctttta gctcaaaatg ttgagtcatt tacatatgac 5700 atagcatgaa tcactcttta cagaaaatgt aggaaaccct agaatacaga cagcaatatt 5760 ttatattcat gtttatcaaa gtgagaggac ttatattcct acatcaagtt actactgaga 5820 gtaaatttat tttgagtttt atcccgtaag ttctgttttg attttttta aaaaacaaac 5880 ccttttagtc actttaatca gaattttaaa tgttcatgtt acataccaaa ttataatatc 5940 taatggagca atttgtcttt tgctatattc tccaagatta tctcttaaqa ccatatqccc 6000 cctgttttaa tgtttcttac atcttgtttt tactcatttc tgactggaca aagttcttcc 6060 aaacaattct gagaaacaaa aacacacacg cagaattaac aattcttttc cctgtgcttc 6120 ttatgtaaga atcctcctgt ggcctctgct tgtacagaac tgggaaacaa cgacttggtt 6180 agtctctttt aagttacgaa aaagccaatt gatgtttctt attcttttta aattttaaat 6240 attttgttat aaatactcac aggatacctt atttccctag ctatcatctc cttgacttaa 6300 6358

<210> 144

<211> 1432

<212> DNA

<213> Homo sapiens

# <400> 144

tttgtttttt gatgggaaca gaggtgttta gagaaagcct ctgagtatgc ctttcagatt 60 ttgaacaagc ggccttttct aaacatcgac ttctactact ctctagcctt aaaatacctt 120 ctgcttagat ccagggccct tctactggag ataggaaaag tagaattcag gaattaaaag 180 aattactett tatteaattt gaggaacttg gtgaaageee eteetettat gacageeagg 240 ttcctgctgg ctagaccagc ctattccagc gctttgctaa ggggattggg tggtccacgc 300 actocgotaa tacagttoto caggtgtgga atgatgtcaa tacgattgct tqqcctttto 360 eccetgtgcc tttgcteggt getetggttt ceteageaac acteettgta aggggcagag 420 acagggtcca ccaactcccc aagatgaaga agccccttca ggccagtcgt ggtggctcat 480 gcctgtaatc ccagcacttt gcaaggccga ggagggtgga tcacttgagg tcaggagttc 540 gagaccagcc tgaccaacat ggcgaaaccc catctctact aaaaatacaa aaattagctt 600 ggcatggtgg tgcgtgcctg taatcccagc tactcgggag gctggggcag gagaattgct 660 tgaacttggg agatggaggc tgcagcgagc caagatcgtg ccactgcact ccagcctggg 720 caagagtttt tttaagactc ttaaaaaaaag agcctgggca atttttttaa gactctgtct 780 taaaaaaaac taaaaagaaa aaaagaagcc ccttcactct acaggggaca ggagaccatg 840 gattggaccc caaagggatt gaactgcatc tgcatgtctg tectttgaac actttctctc 900 cctgcccaaa aggaaaccca aattatttgt gggatactgg ggaaattgta gtgaagggct 960 taatgtagtt aataaaagtt aaaagtcagt agaaaacagg tgcctcagcc ttcaaatqgt 1020 tgcttttttt ccattttccc tcatgaatag actcaccagc attttacccc cttgttataa 1080 aactgtgcag agcaagaaga tgatacttat ttttgaattt gtatttttaa aactagattt 1140 atagactttt tttttttta actagggcac ttggtttctt ttttagttaa aacccccagc 1200 tgaaattttt cagggaattt tggtggtaac tcacttaaaa cgggaataaa aaggttccgg 1260 gaatttctaa ttttttcccc tgcctatgaa aaaacctcat ctaattttga catctttcct 1320 aggggaaaaa atatccaggt taatacccgt ggttgggggg aaaaagaata ccacttttaa 1380 aaccggaaaa cctttttatg aaggcccttg tcaccttggg gtaaaaaaaa aa 1432

<211> 4434 <212> DNA <213> Homo sapiens

<400> 145 ttttttttt ttgccgccca ctcagacttt attcaaagac cacgggcgac cggagcgcga 60 tggcgggggc ggcgggactc acggcagaag tgagctggaa ggtcttggag cgaagagctc 120 ggaccaagcg ctcagtttta aaattgctat agcttagcct gcgacgctta tgattagagc 180 caacaatttg aaatggcctg ctcacctgat gcagtcgtct ctccgtcttc cgctttctta 240 aggtetgget cagtttatga acctettaaa agcattaate ttecaagace tgataatgaa 300 actetetggg ataagttgga ccattattac agaattgtca agtcaacatt gctgctqtat 360 caaagtccaa ctaccggtct ctttcccact aaaacatgcg gtggtgacca gaaggccaag 420 atccaggaca gcctatactg cgctgctggg gcctgggctt tggctcttgc atacaggcga 480 attgatgatg acaagggaag gacccatgag ctggagcact cagctataaa atgcatgaga 540 ggaattetet actgetatat gegteaggee gataaggtee ageagtttaa geaggateea 600 cgcccaacaa catgtcttca ctctgttttc aatgtgcata caggagatga gttgctttcc 660 tatgaggaat atggtcatct tcagataaat gcagtgtcac tttatctcct ttaccttgtg 720 gaaatgattt cctcaggact ccagattatc tacaacactg atgaggtctc ttttattcaa 780 aaccttgtat tttgtgtgga aagagtttac cgtgtgcctg actttggtgt ctgggaaaqa 840 ggaagcaaat ataataatgg cagcacagag ctacattcga gctcggttgg tttaggcaaa 900 aggcagetet agaagcaatt taatggatte aacetttttq gcaaccaqqq etqtteqtqq 960 teagttatat ttgtggatet egatgeteae aategeaaca ggeaaacttt gtgetegetg 1020 ttacccagag aatcaagatc acataataca gatgctgccc tgctcccctg catcagttat 1080 cctgcatttg ccctggatga tgaagttctt tttagccaga cacttgataa agtggttaga 1140 aaattaaaag gaaaatatgg atttaaacgt ttcttgagag atgggtatag aacatcattg 1200 gaagatccca acagatgcta cctacaagcc agctgaaatt aagctatttg atggcattga 1260 atgtgaattt cccatatttt tcctttatat gatgattgat ggagttttta gaggcaatcc 1320 taagcaagta caggaatatc aggatctttt gactccagta cttcatcata ccacagaaqq 1380 atatectgtt gtaccaaagt actattatgt gccaqctqac tttgtaqaat atgaaaaaaa 1440 taaccctggt agtcaaaaac gatttcctag caactgtggc cgtgatggaa aactgtttct 1500 ttggggacaa gcactttata tcatcgcaaa actcctggct gatgaactta ttagtcctaa 1560 agacattgat cctgtccage gctatgtccc actaaaggat caacgtaacg tgagcatgag 1620 gttttccaat cagggcccac tggaaaatga cttggtagtt catgtggcac ttatagcaga 1680 aagccaaaga cttcaagttt ttctgaacac atatggtatt caaactcaaa ctcctcaaca 1740 agtagaaccc attcagatat ggcctcagca ggagcttgtg aaagcttatt tgcagctggg 1800 tatcaatqaa aaqttaqqac tototqqaaq qocaqacaqq cocattqqot qootoqqac 1860 atcaaagatt tatcqcattc taqqaaagac tqtqqtttqt tacccqatta ttttcqacct 1920 aagtgattte tacatgtete aggatgtttt cetgetgata gatgacataa agaatgeget 1980 gcagttcatt aaacaatatt ggaaaatgca tggacgtcca cttttccttg ttctcatccg 2040 ggaagacaat ataagaggta gccggttcaa ccccatatta gatatgctgg cagcccttaa 2100 aaaaggaata attggaggag tcaaagttca tgtggatcgt ctacagacac taatatctgg 2160 agetgtggta gaacaacttg atttectacg aatcagtgac acagaagage ttecagaatt 2220 taagagtttt gaggaactag aacctcccaa acattcaaaa gtcaaacggc aaagcagcac 2280 ecctagtget cetgaactgg gacagcagee qqatqtcaac attaqtqaat qqaaqqacaa 2340 acccacccac gaaattette aaaaactgaa tgattgcagt tgtctggcta gccaagccat 2400 cctgctgggt atactgctca aaagagaagg ccccaacttc atcacaaagg aaggtaccgt 2460 ttctgatcac attgagagag tctatagaag agctggcagc caaaaacttt ggtcggttgt 2520 acgccgtgca gcaagtcttt taagtaaagt agtggacagc ctggccccat ccattactaa 2580 tgttttagtg cagggcaaac aggtaactct gggtgccttt gggcatgaag aagaagttat 2640 ctctaatcct ttgtctccaa gagtgattca aaacatcatc tattataaqt gtaacaccca 2700 tgatgagagg gaageggtea tteageaaga actggteate eatattgget ggateatete 2760 caataaccct gagttattca gtggcacgct gaaaatacga atcgggtgga tcatccatgc 2820 catggagtat gaacttcaga tccgtggcgg agacaagcca gccttggact tgtatcagct 2880 gtcacctagt gaagttaaac agcttctgct ggatattctg cagcctcaac agaatggaag 2940 atgttggctg aacaggcgtc agatcgatgg gtctttgaat agaactccca ccgggttcta 3000 tgaccgagtg tggcagattc tggagcgcac gcccaatggg atcattqttq ctqqqaaqca 3060 tttgcctcag caaccaaccc tgtcagatat gaccatgtat gagatgaatt tctctctct 3120

3180

tgttgaagac acgttgggaa atattgacca gccacagtac agacagatcg ttgtagagtt

```
acttatggtt gtatccattg tactggaaag aaaccccgag ctagaatttc aagacaaagt
                                                                    3240
agatctagac agactggtca aagaagcatt taatgaattt caaaaagatc agagtcggct
                                                                    3300
aaaggaaatt gaaaaacaag atgacatgac ttccttttac aacactcctc ccctqqqaaa
                                                                    3360
aagaggaaca tgcagctatt tgacaaaggc ggtgatgaat ctgctgctgg aaggagaagt
                                                                    3420
caagccaaac aatgatgacc cgtgtctgat tagctagtgg ggaaggtgta ggaagctctg
                                                                    3480
ttgagacaca tgttctgaag tgtgttgtgt ttcatgttca agcttaatca aggcagccat
                                                                    3540
taatatacga actgagcatg ctggggaggt gaatgccaca tccttggcgg ggttatggac
                                                                    3600
ctcttgcatg tcatagccaa tctaacggta atggtaaatg cttttaatca agcaggaaaa
                                                                    3660
agttctcatg attatgccaa ctataatagt aatcctcact gagtgataaa aatagtttat
                                                                    3720
gaattgaaaa tttgccgctg catgttgtat gatcaaatag ttcatcaaaa tgaatctttg
                                                                    3780
ctctttggac tgaattctta ccatactgcc attaaaataa atttqccaac taqtaatqca
                                                                    3840
tactggaaat caaaagatac tgaaagaatg gtgaacttct cttagtggta ttgtcatgct
                                                                    3900
aaaagatgtt aatatacatc ataaaagcaa agtcagccag ctgatatttt ggttctcaaa
                                                                    3960
aactgcatta ttaataatat tttagtatac agagctattc tacagttttt acattgtaaa
                                                                    4020
catgactgtg gttttgtatt tgctaaatat aggggttgga ctaaaatata ataaatctgt
                                                                    4080
accttatcaa acattttctt tgagctcctg ctaaaaatag gacatgtcta tgattgttca
                                                                    4140
aaaatatgtt aaatttaggc tcagcacagt agctcacacc tgaaatctta gcacttcggg
                                                                    4200
aggetgagge aggtggatea ettgaggtta ggagtteaag accageceag ceaacatggt
                                                                    4260
gaaaaccctg tctctactaa aaatacaaaa attagccagg catgatggtg catgccttta
                                                                    4320
aacccagcta ctgaggaggc tgaggcatga gaattgcttg aaccaggaga cggaggttgc
                                                                    4380
agtgagetga aateetgeea etgeacacea geetgggtga caqaqeqaqa etce
                                                                    4434
    <210> 146
    <211> 858
    <212> DNA
    <213> Homo sapiens
     <400> 146
agagggtggg aaagaagtta aagttaatta ttttaggagt ggtgtggaat gatggcaaag
                                                                      60
tcagtcaggt tttgttatgt cctttttgta gaagaaataa gatttgctgt tcttgtggtg
                                                                     120
cagaggttgg caaagtctga cctttgggct aaatctggcc tgctctctat ttttatattt
                                                                     180
ataagcaaag tgttactgaa acagacacac ctgttggttt gtaggatgta tattgctgct
                                                                     240
tttgccttat gatggcagaa ttgagtagtt gcaacagaga gtatatgagc tgcatagatg
                                                                     300
aaactattta ctctctqqcc cattacaaaa qtttaaccct qatctaqtqa aqaaaatta
                                                                     360
cctaaatttt tccaagttga agacgatcaa tgtatgaatt tttatagaag tgttacattt
                                                                     420
tttacaaagg gtacgtcata tggttaaagc tactaatttg aatctgtttc atttttcatt
                                                                     480
tgatttctga taaaaggtta tctttggagt ttaccaattt ttgacattcg tqattttaaa
                                                                     540
aatattttct ctgaatagac cactttgcac tgaattgcga atttttttgc tatcctcttt
                                                                     600
cactoggaaa cacgocatoo atgaagtoaa ototttotac aatgaggoot acaattttoo
                                                                     660
atgggtecat tatcctgggg agcaaaaata acccacttga agggtatttt taqaaacqqc
                                                                     720
tectgegge ttgaatgega cettgtetet ggeeeteege etgeeaeega ggegaggtgg
                                                                     780
ggcccgatac ttttttttta cactttggqq cacqctctcc ccqcqcttqc cccaaccqaa
                                                                     840
cggccgccgg ggcccccg
                                                                     858
    <210> 147
    <211> 3530
    <212> DNA
    <213> Homo sapiens
     <400> 147
ccaggtetaa ttectgeatg acaaggatgg eteteaaaae tgetgeagtg cagagaggeg
                                                                      60
ctagaaaagt ggggaataac aagtgctctg gggactgcaa ggaagaggca tttaaactqc
                                                                     120
atcttgaagg aaaaagtact tgctggacaa aaagagccat catgcaattt aatatttgta
                                                                     180
```

			•			
aaataaatga	aaaataagta	accctatcca	acagaagact	tttaaaaaga	tggcccagta	240
	gagaaattaa					300
	gcctgctaca					360
	ctgtcccaaa					420
	ttgttttgcc					480
	cctccacaac					540
	accccttgtc					600
catcagtccc	agcagcttac	ctgggctgtg	ctgccgcagg	atttcagggg	acagecetea	660
	caagctcttt					720
	attgatgacc					780
	cttcttcagc					840
	tctccatccg					900
	gatcgctggc					960
	ctcaaaatca					1020
	ttttcttcct					1080
	ctctttgttg					1140
	cacattattc					1200
	ttcaccccat					1260
	attgatggca					1320
ctatgctata	gtatcttcca	catctatcat	tgaggctact	gctctgcccc	cctccactac	1380
	gccgaactag					1440
cgtcaatatt	tatactgact	ctaaatatgc	ctttcatatc	ctgcaccacc	atgctgttat	1500
	agaggtttcc					1560
	cttaaggccg					1620
gcatcaaaag	gcatcagatc	ccgttgctct	agacaatgct	tatgctgata	aggtggctag	1680
	agctttccaa					1740
	tactcctccg					1800
	gaccaaggaa					1860
	aacctcttcc					1920
	ccatcctgga					1980
	acccctcagg					2040
	cctgcccagg					2100
	ctcttagtct					2160
	aaggccaccg		·	_	-	2220
	acctcaatac			_	-	2280
	caggctctta gtagaatgga				_	2340 2400
	aaggactgga					2460
	gctacagggt					2520
	ctcattccag					2580
_	cttctgtcta	_	-		_	2640
	tttacactgc					2700
	tccccaaact					2760
gcaggactat	gctgaatctc	cttaagcact	ctctaatcag	acatcctgag	tcgtcccaat	2820
	tttatacctg					2880
	atccaggcca					2940
	caccccttac					3000
teccaegeeg	cccctaatcc	cgcttgaagc	agccctgaga	aacatcgccc	attetetete	3060
cataccaccc	cccaaaaatt	ttcgccaccc	caacacttca	acactatttt	gttttatttt	3120
tcttattaac	ataaggcagg	aatgtcaggc	ctctgagccc	aagccaagcc	atcggcatct	3180
	gcacgtatac					3240
	ccccgcatta					3300
	tgattaaccc					3360
	acccccaccc					3420
	caaatcctat				actctcttt	3480
tggactcagc	ccgcctgcac	ccaggtgaaa	taaacagcca	tgttgctcaa		3530

<210> 148 <211> 11519 <212> DNA <213> Homo sapiens

<400> 148 gaagttaaat agtgaatact ctttttattc agaagaatgc atttttaata gaatttcatg 60 cgccagtaaa tcagtacagt gaggagttac aggggtgggg aacctctctt caggaaacat 120 ctcaccctgg cagagetete aacteecaga atcccettta cecageteag gtgattagag 180 accaaggaac agcagatggg gctgacttgc agggtaactg gttggattta taggtctctg 240 agagcaagag agaggagagg aaagctcttg taaaggagga gattattata ttggaacggg 300 cagttccaca gagattctct gagaggttga tgaaggagaa ttggcagggg tgcctggttc 360 tecttettgg ttacactett caagggcaat ggtetggtet etteegtetg tetetgagee 420 tetggttege agtegaggee aettetteea etetatgget ageaetaeee eeaaggetae 480 aacaaccacc acgattaggc tacttcggac aatgttccct acagtgcact cctgagcaac 540 aggccctgct gccccacca gctccagggg atcactaggc tctgaccaga tatcagggta 600 ggcctggagg cggtagctgc agctgtagtt tccaatgcct tttccttcta cgttqttqat 660 gacaaagtet ccatectetg aaaactgetg aggtgettet tetecateat gttetagaac 720 aaattcaaca cetggeaggg gteeteggea etgaagggtq atqteettee etaacttgaa 780 catggtgctg ggccaggctg acagagaggg tttagggggc ttatcagtca cccagatctc 840 cagggagtca ctgtgatttg aagctgcaaa gggagtagag tccaaataat aaacacagct 900 atagatecea gagtetteac eteteactge tggcatecag aagteagece tgtacceact 960 tggcctctgt tgctctaaag gctcctgagc cccctccttc aacaggacaa atgttgagtc 1020 tggcagttcc ccttgacact gaagagtcat attttcgcca ggggccacca tgggaccagg 1080 ctgggctaat aggctgggtt tggggagtaa gcctgtgact aggagttcca gggtgttgct 1140 aggttgtatc ttgatagaac tggtccagtc agggtggtag cagcagctgt aacgccccat 1200 gctagtacca gatatattgg tgatggggaa tgccccgtca ttactggtgg atccccagag 1260 ctgcattgaa gtggcttctc cttctttgtg caqaatqtat cctactccat ggaccgccc 1320 teggeaceag agagtaacat tetgeeceat gggaaceaca gaactggget caqeaaacaa 1380 ccatggctta gggaatgtgt cagtcaccca gatcataagg ggcatactga gatatgaccc 1440 cctgtttgac atggttgtct catagtagat acagctatag ttcccagagt cctctgctcc 1500 aacagtgtgg agaaggaagt cagctgagtt ccctgagaca ctccgaaact gtaagggaac 1560 atgggctccc tcctgcaaga gggcgaacct catgccctgg aaagtccctt ggcagcgcag 1620 gatcacactc ttcccaggaa acaccacagg acctggctgt gccaggagag tgggtttggg 1680 gtagaattct gtcaccacga gctccacagg gtcgctgggc tcagaccaga tagaaaagtc 1740 ataatategg cagetgtaat teeeteeate accaatqeee accqaaatqa ttaqaaaqtq 1800 agetgeactg geceeggae ttgeceagga cetgteactg gatgetattt caettecate 1860 tttgtaaaga ataaagctca tatgctggtg gggggtggag caattgaaag tcactcgggc 1920 accaggggtg accacagggc tggcccatgt cttgaagaag ggcttagggt acatttcttt 1980 tatgacaagc tocagegget cactgggetc agaccacttg aaggggegtt tttcagtgtg 2040 agtgcggcag ctgtaattgc cttcgtcttt atcctccatt ctctggattg taaagaaggc 2100 ttetetteca acageaceaa gttgetggae aggttettge teteceteet tatacaqage 2160 aaaccccatg cetgecagec atcetttgca eeggagttqt aqtteetqqc eeeqqattqt 2220 gggggaagca gaaatgacag gtttggggag gatgtctgtc cccaccaqct caaqtqcctc 2280 actgggctcc gatacagcca tetectecca tgaatggcag tggtagetec eggtqtgget 2340 ctgggtcagg gcgccaaggg ggaaggcagc ccggacctgc tctgaggccg ggcgaqtggc 2400 gatecacecg gteccatect teageaacae aaacteetta gttgagecag aagggettet 2460 gcaccagagg gttaagttct tccacggggc cagaggaaag ttggtctctg cccacagctc 2520 aggettaggg gttggcatga ctatttcagt ctettetate aataceceat tgeacaqtee 2580 acagcagaga agggccgtga ctatgaagag catggtgacc ccttgagctg ttcccagcaa 2640 ccaggettet etgattetga gteteegaca ettecacett atecacagea etaceaacag 2700 caaggcaaca agctgcatga ttagagacaa cctgatagct tcattcagaa cgtaattcca 2.760 ggtgagatag cctgctggcc ccatcagctt caggggctca ctgcgatgtg accagatgtt 2820 aggatgtgtc tctacgcgat agctgcaact gtaggtccct gtgcctttcc cgtcaacatt 2880 actgatgatg aagteteegt ttactgagaa tttttqqaat qtttetettt ctteecatte 2940

3000

3060

3120

cagagaaaac tccagtactg gatgagatac tcggcactga agggtgatgg cctttcctag

cttgaacaca gtgcttggcc aagctgacag ggagggtttg gggggcttat ctacaaccat

aagctccaca gtgttgtgtg atggcatcct aatggaggtc ttccaggtga gaagatagtg

	atgccagtat					3180
	gtggcatcca					3240
	ccatccactg					3300
	ggccgagcaa					3360
caggacatca	ctaaggagtg	aacctctata	tgatgcgtca	tagtaaaaac	agaggtaatg	3420
	tggatcttca					3480
cttgtggtaa	aaggacttct	ccaagtcttc	aaccctcatt	agagcaaagg	tcattccata	3540
	tggcacctga					3600
	gttggtttgg					3660
	agggtgggga					3720
	aggttgtcaa					3780
	gcatatccct					3840
	ttaacattac					3900
	agttggcctg					3960
	cagtagcagc					4020
	acttggaagg					4080
	aggaacttgc					4140
	gcctgggggt					4200
	agcaaaacag					4260
	gggcctctgg					4320
	tgggatggta					4380
	gcagcaaact					4440
	aggaggctga					4500
	gagaggcttt					4560
	ggagactgag					4620
	gtcagtttca					4680
	gggtatagtt					4740
	tagtagccag					4800
	aaaccacctt					4860
	tcattcatca					4920
	gatggtctcg					4980
	tacaggcatg					5040
	tattctgctt					5100
	attgcagaaa					5160
	tcacttgtat					5220
	tctacagctc					5280
	gtaccgggtt					5340
	accgtgcgcg					5400
	ggagttccct					5460
	cccacccgaa					5520
	cccgcacatg					5580
	tctgagatca					5640
	gcttgcttag					5700
	aaggaggcct					5760
	agacagcagt					5820
	ggttctccca					5880
	cctgaccccc					5940
	ggcacactga					6000
	gtctgttaga					6060
	atcaccatcg					6120
	agaaaaactg					6180
	tcaccagcaa					6240
	ttcagacgat			_		6300
	gaaaactttg					6360
	ttaaaggagc					6420
	ctcaggagcc					6480
	gaaatgaagc					6540
	caagaaatat					6600
	gatggggaga					6660

ggagaacttc	cccaatctag	caaqqcaqqc	caacattcag	attcaggaaa	tacagagaac	6720
	tacttctcga					6780
	aaggaaaaaa					6840
agggaagccc	atcagactaa	cagcigate	cccagcagaa	actetacaag	ccagaagaga	6900
	atattcaaca					6960
	agcttcataa					7020
gagagatttt	gtcaccacca	ggcctgcctt	acaagagctc	ctgaaggaag	cactaaacat	7080
ggaaaggaac	aaccagtacc	agccactgca	aaaacatgcc	aaattgtaaa	gaccatcaat	7140
	aactgcatca					7200
	cacataacaa					7260
aagacacaga	ctggcaaatt	ggataaagag	tcaagaccca	tcagtgtgct	gtattcagga	7320
	acgtgcagag					7380
	ggaaaacaaa					
						7440
aacagacccc	aaaccaacaa	agattaaaaa	agacaaagaa	gggcarraca	taatggtaaa	7500
gggaccaacc	caaccagaag	aactaactac	cctaaatata	tatgcaccca	atacaggagc	7560
acccagattc	ataaagcaag	ttettagaga	cctacaaaga	gacttagact	cccacacaat	7620
	gactttaaca					7680
caacaaggat	acccaggaat	tgaactcagc	tctgcaccaa	gcggacctta	atagacatct	7740
acagaactct	ccacccccaa	atcaacagaa	tatacattct	tctcagcacc	acatcacact	7800
tattccaaaa	ttgaccacat	agttggaagt	aaagcactgc	tcagcaaata	taaaagaaca	7860
	caaactgtct					7920
	aaaaccgctc					7980
	atgaaatgaa					8040
	accagaatct					8100
	cccacaagag					8160
	tagaaaagca					8220
	cagcagaact					8280
	gctggttttt					8340
	aaagagagaa					8400
	ccacagaaat					8460
	gaaaatctag					8520
	gaagaagttg					8580
aataatcaat	agcttaccac	accatgcaca	gtccaggacc	agatggattc	actgccgaat	8640
tctaccagag	gtacaaggag	gaactggtac	cattccttct	gagactattc	cagtcaatag	8700
aagggagcgg	gaatcctcca	ctaactcatt	ttatgaggcc	agcatcatcc	tgatcccaaa	8760
gccgggcaga	gacaccacca	gcacagagaa	ttttagacca	atatccttga	ggaacattga	8820
tgcaaaactc	ctcagtaaaa	tactggcaag	ccgaatccag	cagcacatca	aaaagcttat	8880
	caagtgggct					8940
	atccagcata					9000
	aaagcctttg					9060
	gatgggacgt					9120
	ctgaatgggc					9180
	ctctcaccac					9240
	aaggaaataa					9300
	gacatgattg					9360
	agcaacttca					9420
	tacaccaaca					9480
cacaattgct	tcaaagagaa	taaaatacct	aggaatccaa	cttacaaggg	atgtgaagga	9540
	gagaactaca					9600
gaagaacatt	ccatgctcat	gggtaggaag	aatcaatatt	gtgaaaatgg	ccatactgcc	9660
caaggtaatt	tacagattca	atgccatccc	catcaagcta	ccaatgactt	tcttcacaga	9720
attggaaaaa	actactttaa	agttcatatg	gaaccaaaaa	agagcccaag	aattqqaaaa	9780
	aagttcatat					9840
	aaagctggag					9900
	acagcatggt					9960
	gaaataatac					10020
	tggggaaagg					
						10080
atacytaya	aagctgaaac	thomaste	CCCCacaccc	Latacaaaaa	tcaattcaag	10140
atyyattada	gacttaaatg	ccagacctaa	aaccataaaa	accctagaag	aaaacctagg	10200

```
caataccatt caggacatag gcatgggcaa ggacttcatg tctaaaacac caaaagcaat
                                                               10260
ggcaacaaaa gccaaaattg acaaatggga tctaattaaa ctcaagagct tctgttcttt
gctggggtat ctgaagactg aaaacacagc aaaagaaact accatcagag tgaacaggca
acctacagaa tgggagaaaa tttttgcaat ctactcatct gacaaagggc taatatccag
aatctacaaa gaactcaaac aaatttacaa gaaaaaaaca aacaacccca tcaaaaagtg
ggcgaaggac atgaacagac acttctcaaa agaagacatt tatgcagcca aaaaacacat 10560
gaaaaaaatgc tcatcatcac tggccatcag agaaatgcaa atcaaaacca caatgagata 10620
ccatctcaca ccagttagaa tggcaatcat taaaaagtca ggaaacaaca ggtgctggag
                                                               10680
aggatgtgga gaaataggaa cacttttaca ctgttggtgg gactgtaaac tagttcaacc
                                                               10740
attgtggaag tcagtgtggc gattcctcag ggatctagaa ctagaaatac catttgaccc
                                                               10800
agccatecca ttactgggta tatacccaaa ggactataaa teatgetget ataaagacae
                                                              10860
atgcacacgt atgtttattg cggcattatt cacaatagca aagacttgga accaacccaa 10920
atgtccaaca atgatagact ggattaagaa aatgtggcac atatacacca tggaatacta 10980
tgcagccata aaaaatgatg agttcatgtc ctttgtaggg acatggatga aattggaaat 11040
catcattctc agtaaactat cgcaagaaca aaaaaccaaa caccgcatat tctcactcat 11100
aggtgggaat tgaacaatga gatcacatgg acacaggaag gggaatatca cactctgggg 11160
actgttgtgg ggtggggga gggggggtg gggagggata gcattaggag atatacctaa 11220
tgctaaatga cgagttaatg ggtgcagcac accaacatgg cacatgtata catatgtaac 11280
aaaaagaaaa aaaaacatga tgagaactgt gttctgctcc caccccctat ccctctagtc 11400
ctcagggccc ctgctcattc caaagcaaat ctggagggct tggtctgggg ttcatggtat 11460
gcaagtgcat ctgtccccag aattcaagag gcctgtgaac ttggatggga aaataactg
                                                               11519
```

<210> 149 <211> 1556 <212> DNA

<213> Homo sapiens

## <400> 149

ttttttttt ctatataaaa tgtttatttt tggaggactg tgtggtctgg tgtttgggag 60 ggaactccac ccccaccagg ccaaccatgg agctagaaac agagacagca ggaagggcaa 120 agetggccac tgcctgctcc accccttcac ageccagage agaacagggt etgctctact 180 ctcaaggtga gtgacagaaa agccggtact gtttctgccc ctggcattcc cttagaaccc 240 catgtgactt ctgtagtgct cagcccctg tgcccttccc tggggcctga tccacatgtt 300 gtcaacaaaa cacactccct ctcacagtct ccaaacagca ctgcagagcc taagctcgca 360 tettgccagg atcaaagagg aatttttcac atttgctcac ttccaatctc catcttcctt 420 cetetgtete ceaetetece acteteagta geogratece agecetgeea tactecette 480 teagggacag gagaeteagt gggcagetgg ceteagetet cetaacagga aaaaaacetg 540 tacagcatta gtgccagggc tcctgccctc ccaagcgctg agcccagaaa tttggacaaa 600 tgagctgcct cttaactgca aaaaacaatt ttaaaaaagc aaaagatcaa acaaacagac 660 caaaaagcat aaataaacag cagctgggcc agcaaggagg aaggcagggt gaccctcagt 720 ggeteeetgt geeeatetea geetettgee ataaaaetea geeateagtg geeaggatga 780 cagcagttcc gaagatgccc acactetete caaggagett catetggttc cagaactcaa 840 cacgccgcgt gttgtgccag taagcaacat tgccatcaat gagcagcatg acagggggca 900 gcagtacagc caggatetgg gcagcgaggg tcacqtagta gcctgacaga aaggccaggg 960 ccaggatgcc atacagcacg aagaacagct ggatcatcag ctcccctcct gggagatggt 1020 teagataege cageeggtee teettgetgt getgeagtga gtaggeeaca cagatgaggt 1080 agatacccag gaacacctgg ccggtggact gcagggagcg gctgcgaggt ttccggcggt 1140 acagetecee ageacegetg gecaacacaa gaaageegee gatgatggea actgtgegeg 1200 agtacatacg gacettcage cagtececgt agtggacgta gececegatg taggeggegt 1260 aggtgctaat ggccaattgg agtgcggccc ccagcgcgaa ccagcgccgc ttcacqccaa 1320 aggacatgaa actagcgcac agcacggctg cccccatgtc gaaatacagg taaggcactg 1380 ggatgteggg etteeggegt geeteageee teteagegta eageatgage tggetgaage 1440 agececaaaa ggggeagegt gtgageagea eegaaceeaa etgeatgate agetgeaaca 1500 tecacegtet egaacetate ttegacgeea tettgggaaa gggeagteeg etgegg 1556

<210> 150 <211> 688 <212> DNA <213> Homo sapiens <400> 150 agctattaga aggattatgg atgcggttgc ttgcgtgagg aaatacttga tggcagtggg 60 gtctatgtag gcttcctccg accegtgtct gcttcctttg ctgaagttct ggtacctgga 120 agatgctgga tcctccaggc tggggtagaa ttgcaacagc ttgtccttcc ttgtgggtgc 180 catgtccgcc aggggtcctg gccatgcctg cccgaccaag gagtaggtcc gggaccccgt 240 aaagctctgt tggtcctcac gcagacttct ctgctggtag attttctctg acctctttgc 300 acctgggcgt gagcagcgca cacacagact ggctgccacc cccaacagca ccagcagcgc 360 tgeteeggge cacageagtt cagteeecga geteatgttg geteetggtg ttgeetettg 420 tgatgcgtgg cctggtgaat ggaggcgtgg ccctctcgag tgggtttcca agaactgttg 480 caactaggaa cagaccctgg ccaggagcgg tggctcacgc ctataatccc agcacgttgg 540 gaggccgagg cagggaggat cgcttgagat caagagctcc agaccagcct aggcaacacg 600 gtgaaattee atetetgaga gteeagggtt ceteaceaeg geegeeecat eetgageeeg 660 cacacctgcc caagcggacg cgtgggtc 688 <210> 151 <211> 1667 <212> DNA <213> Homo sapiens <400> 151 gtcgacccac gcgtccggca gtgtaggggt ggcgtgtcgg agccccacac tacaccacag 60 ggatgagegt gtateceett cagaggtgtg cetggggaet eegtgtgege gactaggtge 120 teteetgggg etggeagggg catetgteec tttaceggag caatggggag ggtgeacaeg 180 gttcaccage tttcgggcta gctgggtagg aggtgatgct gccccggtct ggcacccact 240 tccccgggcc tctcctaacc cataggacag tagtgctcct ggcttgtgct gcccagaggc 300 tacctggctt tccctaattc accgacccca ggattaaccc catggtggtt ggtatcaggg 360 gatgaggcca gagccetttg agctgtgccc ctcacagggg tagggtcatg gcctcagcca 420 teceggtace atetgtgeee ageeggggae tgggaacetg gtttetecat gaggageeat 480 cccagggcct gcaggaggga ctagaagcca gaggactctg aggctccgct tcctggggac 540 tgcaggggga tcagaatgtc ccaagcttgg gacagtctgg gaaggcagtg gccatcccat 600 ccagatgagt acatecetet etecttgeet acttecetee taccageegt egeggaggee 660 actgatectg tgtggtgtte acceeaggae gtgggagget getetgtece tetggeetta 720 gtttccacat ctgtatggtg gggttggggg gcatgagtca gcttctgttg gccagcttac 780 tgccccctgt gccccaaggc agccccaccc ggaggaagct ccctgcttcc ctcctggtct 840 ccacagccct catcagccct gtttgtgtca ggggctggat gtggcaaaac ttgcaaaacc 900 gcattcatgg cagtcacaca tetgcaegea gggtteeete eetgeetggg getgggeagg 960 taggtgtccg gtgggaagcg ggccctgcct gcaggactca gcccagccct caaaacctgg 1020 cacccaggec acatecetea geggeacagt taattgaaaa tgeagetttg aggagtgeaa 1080 tgtctgggga aagactgttc ccagaggggc aggagcatct ggggcctctg gtggctccca 1140 gggtccccat gggaggagcc ctgtgccctc cactcccaag tetcagttgt gccatctgta 1200 aagtgggggc cgccagggag gctggaggaa ggtgacggga cttcaggcct tggaatgggg 1260 1320 ctgagtgagg ggttcacatg gccaccccat ccctctccac gctccacccg ctgggttgat accaccaggc ggtggtttct gggtcacatt tgctgcaatt caggtgctaa tgggggcagg 1380

1440

1500

1560

1620

1667

aggetgeagg gggaggggee ggtgtetagt ggggeagatg ttteteaatg gagaatgete

acagcggcct gcagaggggg tctggtgtgg cctggggctc atggggttgg gatttacaca

gtgagcctgg gctttggggc acagctgctg ctgacagagg gtcttggggt ctgggaaggt

gettaaagee eggeeecat geetgagete ecacaceeet gtttagggae acceagatag

ggtgtctcct gcaggaaatt ccccacataa ttcatttatt taaaaaa

```
<210> 152
     <211> 1040
     <212> DNA
     <213> Homo sapiens
     <400> 152
ttttttttt ttaggtttga gggggaatgc tggagattgt aatgggtatg gagacatatc
                                                                    60
atataagtaa tgctagggtg agtggtagga agttttttca taggaggtgt atgagttggt
                                                                    120
cgtagcggaa tcgggggtat gctgttcgaa ttcataagaa cagggaggtt agaagtaggg
                                                                   180
tcttggtgac aaaatatgtt gtgtagagtt caggggagag tgcgtcatat gttgttccta
                                                                   240
ggaagattgt agtggtgagg gtgtttatta taataatgtt tqtgtattcg gctatgaaga
                                                                   300
ataaqqcqaa qqqqcctqcq qcqtattcqa tqttqaaqcc tqaqactaqt tcqqactccc
                                                                   360
cttcggcaaq qtcqaaqqqq qttcqqttqq tctctqctaq tqtqqaqata aatcatatta
                                                                    420
480
gagaggttaa aggagccacc ttattagtaa tgttgatagt agaatgatgg ctagggtgac
                                                                    540
cttcatatga gattgtttgg ggctacctgc tccgcagtgc gccgatcagg gcgtagtttg
                                                                   600
agtttgatgc tcaccctgat cagaggattg agtaaacggc taggctagag gtggctagaa
                                                                    660
taaataggag gcctaggttg aggttgacca gggggttggg tatggggagg ggggttcata
                                                                   720
gtagaagagc gatggtgaga gctaaggtcg gggcggtgat gtagagggtg atggcagatg
                                                                   780
tggcgggttt taggggctct ttggtgaaga gttttatggc gtcagcgaag ggttgtagta
                                                                   840
gcccgtaggg gcctacaacg ttggggcctt tgcgtagttg tatgtagcct agaatttttc
                                                                   900
gttcggtaag cattaggaat gccattgcga ttagaatggg tacaatgagg agtaggaggt
                                                                   960
tggccatggg tatgttgtta agaagaggaa ttgaacctct gactgtaaag ttttaagttt
                                                                   1020
tatgcgatta ccgggctctg
                                                                   1040
     <210> 153
     <211> 849
     <212> DNA
     <213> Homo sapiens
     <220>
     <221> misc feature
     <222> (1)...(849)
     <223> n = a,t,c or g
     <400> 153
tgaattagta ttgtactgca ttggaggctt atatagaaag cctttcccct agaaactggg
                                                                    60
qqaaqaatta aataatqaaa qcctqqtqtt tttctaataa qttttqqttq qcaqtcttqc
                                                                    120
ctatctgctg tgcctcagct gcttatttgg gacaggtatg gttacttata tatgcctggc-
                                                                    180
gtgctgaaac atctcttgaa actgagttct ataccattcc tttgtcttgg ctttactact
                                                                    240
tcactactac ctactactta atgtttctgc cctcattgaa atttgctcaa gattcaccac
                                                                    300
ccaqaqcatt ttaaattaat cctttctqtt tcattattcc tcacttacac ttaaaatqac
                                                                    360
agtatatggc caggtgtagt ggttcatccc tgtacaccta gcactttggg aggctgaggc
                                                                    420
ggaaggatcc cttgagccca ggagttggag accagectgg geaatatgge gagaccctgt
                                                                    480
ctctgcaaaa aaaaaaaag ggggcggcct ttttggggga ccaagtttta ggcccggggg
                                                                    540
ggggcgaggt taaacttttt ttatggggcc cccaaattcc attccggggc cggggtttaa
                                                                    600
aaaggggggg agggggaaac ccctgggggt cccccaatta aacccctggg ggaaaaaacg
                                                                    660
ggaantttee cecaatgaaa egegttgaee ggggggeeee tteaeggtee ggeetetgeg
                                                                    720
cccqccqqcq cqqacqcqaq ctctqtcqca ccqataqaac cqacqcatqq cqccqataca
                                                                    780
caqcaqqaaq gqaacqcqcq qacqqccccc ctcaaccctc cqqaacqqaq cqqacqaqtq
                                                                    840
cgacggacg
                                                                    849
```

```
<210> 154
     <211> 860
     <212> DNA
     <213> Homo sapiens
     <220>
     <221> misc_feature
     <222> (1) ... (860)
     \langle 223 \rangle n = a,t,c or g
     <400> 154
tctattctga ttctttgctt attttttaat aagcatagtt tttttcttat ttttgagtag
                                                                       60
gttgagttgc ttatatatta ttatatgagc cccttatctg atgtatggtt taaaaatatt
                                                                      120
atcccatttg tgggttctct taattctatc attgcttctt ttcctgcgga aaagttttaa
                                                                      180
gttttatgca gtctcatttq tqtqttttqc ttttqttqcc ttttqqaata atctacaqaa
                                                                      240
aatcataget caggecaatg teatacagte teettetata ttteettgta gtagttetae
                                                                      300
atttaaactt taattttgat ttgatgcttg tataaaqagc aaaataaaaq tcaaatttta
                                                                      360
ttettetgtg cccaaaaaca ttattgaaca agaccaagaa caettaaaac qqaaacaaat
                                                                      420
ttttggggcg ggccatttta cgatttgggt ggccgccctg gctcaagctt ataatcccac
                                                                      480
ctcttttaaa ggctgaagcg ccccaatccc ccggggctgg gagataaaag atggggctgg
                                                                      540
cccaacgcgg agaacccccc tctctactag nnnacccaaa aaanannnaa ggggcgcccc
                                                                      600
ttctggagga tcaaacttta cccgcccgcc acaaccaaac cttatccctt tcctaacggc
                                                                      660
cccccacctt caacgccccc gccggccctc aaccatccgc cgggcgaaaa cctcggcctc
                                                                      720
ccccaattaa tccctctgaa cacgcccacc cgaaacaccg gacccgcgca acggacccgc
                                                                      780
egeceteace acaegaaceg ceteegacee eecegeacae tgeacegeee caactgecaq
                                                                      840
cgccgaagcg caccgccccc
                                                                      860
     <210> 155
     <211> 552
     <212> DNA
     <213> Homo sapiens
     <400> 155
cgcgtccggg ctgcagcacc cagggaggaa cgccgcggcc ctgttttttt atcatqccaq
                                                                       60
gaggetgeag caccagggaa tetgtgetea egtetteeag gacagtgett ettetagaag
                                                                      120
ctgacatgga gctgaccaca gctcttggag gcatggcctg aggcttagaa aatagacaga
                                                                      180
gatcatctga gatttcagca gtggggccac gtggcagcgc ccgaaggcct ggagcaggag
                                                                      240
cgacccaggg actcagagca gcatcttctt aggagacgga aggagagccg ccggaggagc
                                                                      300
acggggcacc tgcgatcgcg aagagcctcc tgttctggat gggagcgaag gctccgagag
                                                                      360
gacctaaggt tgctcagtgg gccatggaaa cggcagtgat tggggtggtg gtggtgctgt
                                                                      420
tegtggtgac tgtggccatc acctgegtec tetgetgett cagetgtgac tcaagggeec
                                                                      480
aggatectea ggggggteet ggeegeaget teaeggtgge eaegtttege eaggaagett
                                                                      540
ctctcttcac gg
                                                                      552
     <210> 156
     <211> 1120
     <212> DNA
     <213> Homo sapiens
     <220>
     <221> misc feature
```

<222> (1)...(1120) <223> n = a,t,c or q<400> 156 ttttttttt ttagaagcag aggetcagge tgageccagg tttattatec aaaatcaaaa 60 tgaaatgcag tgattaaagg acacaaggcc tcagtgtgca tcattctcat tgtggctttc 120 aggeggetgt ggaagacagg gtggggatgg tggetteggg aggtgaggtg etetgggaet 180 tgggcaagtc ttaagcaagc cattcctgct ttctgggcct ggctcccatg ggccattaga 240 aatgaaaatg ctttgtggac tgctgaggac ggtgcaaggg gtgaggtttc cccaqctcac 300 ccggatccat gggcccagca cccaggggca tcagcttctg cttttatggg tgggggtctt 360 graggttggg aantegteet tgggeettea gaatgacete atggggeet ceetgggaag 420 aggicetece ecaetggetg ectecaegeg etgeegecat giggeceage tigggetegg 480 cetttegaag aettggeage egageaceea egggattgea teageteegt gatggetaag 540 aagttcaget aaggagatgt gaggagcagt aaagaaggcc cttgttctgg aggaacttgt 600 cctcgagcaa ctgcagggtc acatccaact ctgccagggg tggctgccag tgtctgqqqa 660 gatactggct cacccaggaa aacagggaac atcaccttat gcccacaagg cccggaggca 720 getteteege agagtegtgt getgeeatge eaggtaetea teeacaeggg eaegggeetg 780 caggtcctga gggtaccagt agtcagggac cttatatttg cgcgtcaggt agagcaggat 840 ggccacactc tccgtcaagg tgaagtcccc gtccttcaag gctggcacct tcttgagggg 900 gttcacctgg gcaaaggcat cgcttaagtg ctgaccttta atcagatcca cgatgcgcag 960 ctcgaaggga atgtcgttct tcttggcaaa gatgtaaaca gcgcggcagg gctgggacag 1020 caggiccagg tacagcicca qqcccataqi qqqqaccqac cqacaaattc cncqnenctq 1080 gectaaggte tegatggnnn teeattnnnn ceggggggeg 1120 <210> 157 <211> 392 <212> DNA <213> Homo sapiens <400> 157 gactaacaac atgcttaaag gtgaatgact ggatgctttc ttcttaagac tgggtgcaag 60 gcaaaaggat gtacactctc accacttcta tttaaccttg gactaaaagt tccagccagt 120 gcaataaggt aagaaaataa aaatacaaaa atcaacatac aaccaactgc aaaggaaatt 180 ttaaaaaatt acattcacaa atagcataaa aagaataaag gatttagaaa taaagttaat 240 gaaagaagta caggacagta cactgaaaat tataaaacat tqtcaaagga aattaaqacc 300 taaataaatg gagatatgtc ccatgtttgc aaataggaaa atacagtatc atcaaggtgt 360 cagttttccc aaaattgatc catagattca at 392 <210> 158 <211> 1549 <212> DNA <213> Homo sapiens <400> 158 atggeettee tgatgeacet getggtetge gtetteggaa tgggeteetg ggtgaecate 60 aatqqqctct qqqtaqaqct qcccctqctq qtqatqqaqc tqcccqaqqq ctqqtacctq 120 coetectace teacggtggt catecagetg qccaacateg ggcccetect ggtcaccetq 180 ctccatcact teeggeecag etgeetttee gaagtgeeca teatetteae eetgetgge 240

300

360

420

480

gtgggaaccg teacetgcat catetttgcc ttcctctgga atatgacctc ctgggtgctg

gacggccacc acagcatege ettettggte etcacettet teetggeeet ggtggactge

acctetteag tgacetteet geegtteatg ageeggetge ceaectaeta ceteaecaec

ttetttgtgg gtgaaggaet cageggeete ttgeeegeee tggtggetet tgeeeaggge

tccggtctca ctacctgcgt	caatgtcact	gagatatcag	acagegtace	aagccctgta	540
cccacgaggg agactgacat	cgcacaggga	gttcccagag	ctttggtgtc	cgccctcccc	600
ggaatggaag cacccttgtc	ccacctggag	agccgctacc	ttcccgccca	cttctcaccc	660
ctggtcttct tectectect	atccatcatg	atggcctgct	gcctcgtggc	gttctttgtc	720
ctccagcgtc aacccaggtg	ctgggaggct	tccgtggaag	acctcctcaa	tgaccaggtc	780
accetecact ceateeggee	gcgggaagag	aatgacttgg	gccctgcagg	cacggtggac	840
agcagccagg gccaggggta	tctagaggag	aaagcagccc	cctgctgccc	ggcgcacctg	900
gccttcatct ataccctggt	ggccttcgtc	aacgcgctca	ccaacggcat	gctgccctct	960
gtgcagacct actcctgcct	gtcctatggg	ccagttgcct	accacctggc	tgccaccctc	1020
agcattgtgg ccaaccctct	tgcctcgttg	gtctccatgt	tcctgcctaa	caggtctctg	1080
ctgttcctgg gggtcctctc	cgtgcttggg	acctgctttg	ggggctacaa	catggccatg	1140
gcggtgatga gcccctgccc	cctcttgcag	ggccactggg	gtggggaagt	cctcattgtg	1200
agtateegge eggtggeete	gtgggtgctt	ttcagcggct	gcctcagcta	cgtcaaggtg	1260
atgetgggeg tggteetgeg	cgacctcagc	cgcagcgccc	tcttgtggtg	cggggcggcg	1320
gtgcagctgg gctcgctgct	cggagcgctg	ctcatgttcc	ctctggtcaa	cgtgctgcgg	1380
ctcttctcgt ccgcggactt	ctgcaatctg	cactgtccag	cctaggcagg	ccgccgaccc	1440
cgcccccatc gctcacggac	ggaactgggg	tccagagagg	ccaggtcaca	gagcaagggg	1500
caggaacaga gagacagagc	ctgagtaatt	gaatcatgaa	cgcacgcgt		1549

<210> 159 <211> 3431

<212> DNA

<213> Homo sapiens

### <400> 159

ggccggcggc ggcggcggcg gctccgctcc gcactgcccg gcgccgcctc gccatggacg 60 cgcgcggggg cggcgggcgg cccggggaga gcccgggcgc gacccccgcg ccggggccgc 120 egecgeegee geegeegeg ecceeceaac ageageegee geegeegeeg eegeeegege 180 ccccccggg ccccgggccc gcgcccccc agcacccgcc ccgggccgag gcgttgcccc 240 eggaggegge ggatgaggge ggeeegeggg geeggeteeg eageegegae agetegtgeg 300 geogeocogg caccooggo geggegagea eggecaaggg cageocgaac ggegagtgeg 360 ggcgcggcga gccgcagtgc agccccgcgg ggcccgaggg cccggcgcgg gggcccaagg 420 tgtcgttctc gtgccgcggg gcggcctcgg ggcccgcgcc ggggccgggg ccggcggagg 480 aggcgggcag cgaggaggcg ggcccggcgg gggagccgcg cggcagccag gccagcttca 540 tgcagcgcca gttcggcgcg ctcctgcagc cgggcgtcaa caagttctcg ctgcggatgt 600 teggeageea gaaggeegtg gagegegage aggagegegt caagteggeg ggggeetgga 660 teatecacce gtacagegae tteaggttet actgggaett caccatgetg etgtteatgg 720 tgggaaacct catcatcatc ccagtgggca tcaccttett caaggatgag accactqccc 780 cgtggatcgt gttcaacgtg gtctcggaca ccttcttcct catggacctg gtgttgaact 840 teegeacegg cattgtgate gaggacaaca eggagateat eetggaceee gagaagatea 900 agaagaagta tetgegeacg tggttegtgg tggaettegt gteeteeate eeegtggaet 960 acatetteet tategtggag aagggeattg acteegaggt etacaagaeg geaegegee 1020 tgcgcatcgt gcgcttcacc aagatcctca gcctcctgcg gctgctgcgc ctctcacgcc 1080 tgatccgcta catccatcag tgggaggaga tcttccacat gacctatgac ctggccagcg 1140 cggtgatgag gatctgcaat ctcatcagca tgatgctgct gctctgccac tgggacggct 1200 geetgeagtt cetggtgeed atgetgeagg actteeegeg caactgetgg gtgteeatea 1260 atggcatggt gaaccacteg tggagtgaac tgtactectt egeactette aaggecatga 1320 gccacatgct gtgcatcggg tacggccggc aggcgcccga gagcatgacg gacatctggc 1380 tgaccatgct cagcatgatt gtgggtgcca cctgctacgc catgttcatc ggccacgcca 1440 etgeceteat ecagtegetg gaeteetege ggegeeagta ecaggagaag tacaageagg 1500 tggagcagta catgtccttc cacaagctgc cagctgactt ccgccagaag atccacgact 1560 actatgagca ccgttaccag ggcaagatgt ttgacgagga cagcatcctg ggcgagctca 1620 acgggcccct gcgggaggag atcgtcaact tcaactgccg gaagctggtg gcctccatgc 1680 egetgttege caaegeegae eccaaetteg teaeggeeat getgaceaag etcaagtteg 1740 aggtetteca geegggtgae tacateatee egegaaggea ecategggaa gaagatgtae 1800 ttcatccagc acggcgtggt cagcgtgctc actaagggca acaaggagat gaagctgtcc 1860

```
gatggeteet acttegggga gatetgeetg etcaeeeggg geegeegeae ggegageegt
                                                                    1920
gegggettga caacettatt geeggeette tattegetga gegtggacaa etteaacgag
                                                                    1980
gtgcttggag gagtaacccc atgattgcgg ggcgcctttc gagacggttg gcattcgaac
                                                                    2040
cgcctggacc gcatttggga aagaagaatt ccatccgtgc ctgcacaagg tgcagcatga
                                                                    2100
cctcaactcg ggcgtattca acaaccagga gaacgccatc atccaggaga tcgtcaagta
                                                                    2160
cgaccgcgag atggtgcagc aggccgagct gggtcagcgc gtgggcctct tacccgccgc
                                                                    2220
egeegeegee geegeaggte aceteggeea ategeegaeg etgegageag geggeggeea
                                                                    2280
tgagettetg ceegeaggtg gegeggeege tegtggggee getggegete ggetegeege
                                                                    2340
gestegtgeg cegecegeec ceggggeeeg cacetgeege egesteacec gggeeeeege
                                                                    2400
cccccgccag ccccccgggc gcgcccgcca gcccccgggc accqcqqacc tcqccctacq
                                                                    2460
geggeetgee egeegeece ettgetggge eegeectgee egegegeege etgaqeeqeq
                                                                    2520
egtegegeec actgteegee tegeageect egetgeetea eggegeeece ggeeeegegg
                                                                    2580
cctccacacg cccggccagc agetccacac cgcgcttggg gcccacgccc gctgcccggg
                                                                    2640
cegeegegee cageeeggae egeagggaet eggeeteace eggegeegee ggeggeetgg
                                                                    2700
acccccagga ctccgcgcgc tcgcgcctct cgtccaactt gtgaccctcg ccgaccgccc
                                                                    2760
cgegggccca ggegggccag gggegggcc gtcatccaga ccaaagccat gccattgegc
                                                                    2820
tgecceggee gecagteege ecagaageea tagacgagae gtaggtagee gtagttggae
                                                                    2880
ggaegggeag ggceggeggg geagceceet eegegeeeee ggeegteeee eeteategee
                                                                    2940
ccgcgcccac ccccatcgcc cctgcccccg gcggcggcct cgcgtgcgag ggggctccct
                                                                    3000
tcacctcggt gcctcagttc ccccagctgt aagacaggga cggggcggcc cagtggctga
                                                                    3060
gaggagccgg ctgtggagcc ccgcccgccc cccaccctct aggtggcccc cgtccgaagg
                                                                    3120
aggategttt tetaagtgea ataettggee egeeggette eegetgeece eategegete
                                                                    3180
acgcaaataa ccggcccggc ccccgtccgc gggggtcccc cggtgacctc ggggagcagc
                                                                    3240
accoegecte cetecageac tggcacegag gggcaggeet ggctgegeag ggegeggggg
                                                                    3300
ggaggetggg qtcccqccqc cqtqttqaat qtactqacqa qccqaqqcaq caqtqcccc
                                                                    3360
acggtggccc cccacgcccc attaaccccc acacccccat tccgcgcaat aaacgacagc
                                                                    3420
attggcgcca a
                                                                    3431
```

<210> 160

<211> 8849

<212> DNA

<213> Homo sapiens

# <400> 160

tttttttttt ttagatttct attaatttat ttaaggcaat taacatatta gttctcaggc 60 caaaggattt gtaaaacatt acaccaaaag gagaaaaaca agcggtcatg aaacagccac 120 gcaagcgcag ctcagccctt gttgcctggg cgtacaactc ttccccagga agcctgggaa 180 gaggeaggte etgggageaa gategteeat catggagtea ceaggeeace tggageeatg 240 ccgggggtgg catggacacg acagtgaggt ctgcactggc tacagcagat ctgaggcacg 300 360 caaagcccta aaatcactag taacagcata actgccacct cccccagagg ccggcagccg 420 ccaaaatgta gtgcttggag ttaaaggggt gaccccactc ttaactaccc acaaggagga 480 ctacaaagag ttgtcagtta ttgctttaag gaacaaaggt ctctaggtag gatttatctt 540 ctgctaaggc attaaggtaa actgagtccc agtgaacttt caagtctttt taagggctct 600 aagcaggact gtcagctctg aggctccccc tccatgctct tcaaagcctg ggtgggtgtc 660 agggtgtctg gcagagtggg agtggaggct ggccagctgg ctgggccacc caacccgagg 720 gagggggcag tgttettece agtegcagte tecagtgatg ageateceet gttggggeet 780 teggtggete teeteagegg ctaatgeagt tetggacate cacaaageet aggegttgee 840 tgcqtttccg ctgctccgtc atctgctcct tgagctcgtt gagctgggca gtgaggtggg 900 acaccagett catqqtqqaq ttqaqettqt cetqqaqaat ecqaatetea ttetqeteee 960 cetequeete attqetqaca aggqacatqq ceegcateeq ggggaaccag tecaqqttet 1020 tgttettgat catetgggcc acgtagetet cagggcccgt gtagtcggte ttgttettea 1080 cgcggaccag cacaatgaag tacaagtagt tccacatgtt gtgctccagc ttgatgtgtt 1140 cctcaaatga cactgtcttg ttatcaaact tgtccctctc cagaccacag atgaagcatg 1200 tegtettaag aateteetee ttettetget teteactaeg caggteageg aaggtgtega 1260 tgattacccc aaagatgagg ttcagcacaa tgatgatgac gatgaagaag aacaggaggt 1320

catagaccac	tcgggctggg	aagagagact	catctttgga	gggcttgcgg	agaatgtcgc	1380
	accgttgcgt					1440
	ccgctctgtg					1500
	gacacagtcc					1560
	ccccaggggg					1620
	atccttgagg					1680
	ggctgtcagc					1740
						1800
	ctcctcgcgg					1860
	gcccaggaca					
	ggccttatag					1920
	cttgttggtc					1980
	gatggagcgc					2040
	ggccgcgatg					2100
	cacgcctgtg					2160
	cacggccagg					2220
	cagcggcatg					2280
aggaggactg	gtcgaagaag	tcgctcactt	tgctgccctg	ctcgtcctgc	tcagtagtgg	2340
tgaagagccg	gtgcttggtt	tcctccgtca	ggaactggca	gatgccgggc	actgggaaca	2400
cgatctgctc	catgctgcgg	tcctgccgca	caatctcgat	ctgggacgtg	tggttctcat	2460
agtaggccag	ggggtcttcc	tcctcctcct	gtgctggcgc	tgaggacttg	agcatctgtg	2520
acagctgctt	gttgttgagg	ctgagcatgg	aagagatacc	ctcggcctcc	tcctcttgaa	2580
	cggcttcagc					2640
	gatgttatgg					2700
	gtaggccttc					2760
	agcattttca					2820
	cttgagctgc					2880
	cagtgcggtg					2940
	atggcagggg					3000
	gttgtcctca					3060
	gatgtccagg					3120
	gcgcaggaag					3180
						3240
	gatgggctgc					3300
	ctcgtgcccc					3360
	gaaggaggcc					
	gctgcccagg					3420
	catgcggtcg					3480
	gtggaaggat					3540
	gctctcctgg					3600
	ggccccctcc					3660
	gccagtgcct					3720
	gttttgcagc					3780
	cagcatctgc					3840
	gtccttggtg					3900
gctggtaggc	ctcactgccc	tccaggaaga	gcagctcagg	ccagtgcagg	acatccacca	3960
	ctcagcctgt					4020
	ctcaatgatg					4080
ggaaggcccg	cgtggttgcc	ttgtagctgg	aggcgttccg	ctgggcggca	gctgcacagc	4140
tggctccact	gctgagcatc	gagctgatgt	gggcatccag	gtccatgggc	agcaagatgg	4200
cccggccctt	ggccaccatg	gcgagggtcc	ggatgcaggc	ctccacggag	cccttgtgct	4260
	ccacggacac					4320
	tgtctgcagg					4380
	cagcacaacg					4440
	gctgcagacc					4500
	ggtgtagatc					4560
	ataggccatt					4620
	cagcggcagc					4680
	ggccagcagg					4740
	gegggeggee					4800
	gaccacatcg					4860
Juayaacac	Juccacaccy	June	-55-0049000	cutyatt	acgueergge	1000

	gtacttgccc					4920
	gtgcgtggcc					4980
	ctgatagttg					5040
	gaagaggtgc					5100
	ctgcaggaac					5160
	ggggatctgc					5220
gcagccgttg	ctgcttcttc	ctcatttgct	ccccaacccc	gcacatcttg	ttcagccttt	5280
ccaggatgcc	cttgacgatc	tggtagttct	cactgctttt	ctcccctggt	gggtgcagaa	5340
agccctcctc	gtccgtggga	cgctctttct	tgtccttggc	ggcgcctgcc	tccacctcct	5400
	actgcccttc					5460
	ctccgacttg					5520
	cttgaaggtg					5580
	acccgagacc					5640
	gcggccgccc					5700
	ctccgcctgc					5760
	ggctgtgcca					5820
	gacagacagc					5880
	ttccaggatc					5940
	tctgtccagc					6000
	actgcttgcg					6060
	gcacattctt					6120
	aggtcgatga					6180
	ccgaagtaga					6240
	tcgttggcaa					6300
	atggtgttgg					6360
	tccttgatgg					6420
	accagctcct					6480
	cgcaggtcaa					6540
	tgctgggaga					6600
	ttcagctggt					6660
	tcctgggcca					6720
	agccacactt					6780
	ttcacgggcc					6840
	ttgcagatga					6900
	aggtagtcca					6960
	teggtettgg					7020
	gtgtcctcgg					7080
	atgtgctcct					7140
	cggaacatgt					7200
	ggacetteae					7260
	atgttctgct					7320
	aggacattct					7380
	tggatgacaa					7440
	ctggccagca					7500
	actgacacga					7560
	cggatgggcc					7620
	gtgcagaggt					7680
	aaggtggtgg					7740
	aggcagtact					7800
	cctgctgcct					7860
	tagttgcctg					7920
	cggcaggggt					7980
	gtggcagact					8040
	cacgtcagga					8100
	acctcctcca					8160
	ttcacagaat					8220
	agaggctgcc					8280
	ccgttgctcc					8340
	gcatccagag					8400

```
cttgttcact gtcaggtact tgttgctctt catgtgcagg agctggatca cactgccata
                                                                    8460
cttcacgaca tccccatgca ccttcttqtt ctccqtqtca ttttqcttct qctccatctq
                                                                    8520
egeogratge tgeagettte tgeageaaca ccacateage gatettetee ttgteetget
                                                                    8580
tagtetgett ggeettecag tactgettet gggeegagta geggtteatg gggeacacet
                                                                    8640
tgaagaagge agteaeggaa ettettaggg gggttgteea ggteeegge egegggetee
                                                                    8700
accacacage ggtcatecae cagececaaa gtgetgatga aqeeattgae ggaqeetteq
                                                                    8760
gcgtacaggg agacgatgtc cccgatgtga agaaagctgg acatttcact catggctgcg
                                                                    8820
gccctccggg gcccagggcg tggggggcg
                                                                    8849
```

<210> 161 <211> 1972 <212> DNA <213> Homo sapiens

<400> 161 ttttttttt ttaaatgtat aaccttaaat atttatttga gaaaacaaat aaagatccaa atacgtgagt tgatcatctg ataaaagtaa qagttgacaa aaaaqgtaca tcttctccaa 120 teegaaaaca gaaagtggga aagateaagg tateactaga ggteaatgaa acaaaacata 180 caatagtgga tgacaaaagc caatctctga atctttgaaa agaatataat aaatgaacat 240 ctgaaaccag tgatcgagaa atgttttaga taaggcacaa aaagatacca agaatgttaa 300 cactaggetg tacatectaa aacagteaga tgageteact gttataatte tggtteaceg 360 ccaagaacct tagcacaaag aaaggactca acaaacattt ggatccatqa ataaaattat 420 cttcccacat ataaccacct qcctaaaaca ttctcctcct ccttgaatta aattcaccat 480 gtetgeatea taggaggeec aaggeeagta ceceeteece atetgeacae cetgtgttea 540 aaccaqtccc agctcctqtc atqttattqq cttctqaqta tctqtattaa taqttqttcc 600

60

1680

1740

1800

1860

1920

1972

tgccagcata tgaagatgaa caaatacaca actqaqagaq atccaggqat tttaatccac 660 agatgccaga gcttgctggg atgtagtcag aaatcaagct qaactcaqqa qttcacaqtc 720 tttcctgtaa tgatggttgg gaggtgaggg aagtcagagg ccttttctag gatctttctc 780 catgctgctg tcctccagga agtcatggca aatttacatc tccagcaggt tgtagaccaa 840 cagcettgga gaacttgaag gacacaccag ggtetetece catggtgtet cetgtactet 900 geteetgggg tegagtegge tgetggggtt tateatetgg aagattetet geeteageet 960 cagcetcagg gaacaacage ttaccetgca gggtatacag aagetggagg aaggtetgat 1020 acctetgeag ettgteecac teetgttetg cetgetgett caggttteea agtttetgaa 1080 acaccccqtc aagctcctqc tqaqtccctq tcttacqctc cctcacctct qcaqaaacct 1140 cegecagatg etgeagatge tteteetgtt gtagetgeea etgqttetgq aetqetetqe 1200 gtttctccat ggccatttgt ttcttggcct ggagetgctc aaaggcttcc cggagttgtg 1260 teegttteet etgggettee teeatetgag teagggeett ggtgaggeea attttgatgg 1320 cetetacgtg etceetgtag gtggcettca getettteca ttgtteetta getgeaattg 1380 cettetgtee tgagatgaee caccaggaat gagtacatga gtgagggtgg cetgetagee 1440 tgcctccctg caacactggg cctccttccc atcagccaaa tgggagacct aactgaaatc 1500 cteetteett ceccaetcag qteaqetget actacaatce cetqeetact caeqqeteqt 1560 gtcttcagaa gccaaggggt cgagaccctt agcagtgtcc tcctgagcca ggatgttctg 1620 caggaaatcc gctacctgaa gctggctgca gagcagcttg tctttcttct gagagtcctg

ctcagaggga gggcagagac agggaacatc cttacctcct tacaggtttc cttaagtctg

ctctctgcca atgctgccct gtatctcagt aagaggagcc aggaccagac cctggcttct

gaaaggctcg ctctcatctt gtacatacca ccacaaactc aaccaggatc ttggctggca

gttctgcctc ctcctgcagg cctacaggtt ccaagatgcc tgccacctca gccaggacct

ctagggctgc agettccgcc tctgtctccg ctgcctccat ctttccacga aa

<210> 162 <211> 743 <212> DNA

<213> Homo sapiens

```
<400> 162
tttegtggeg tetggagtge geaagttgga gttetetaat gettgtgeee ttgaacttgt
                                                                     60
gccttcagag cacattagcg ttggtttctc tacccctqcc cqqqatcqqq cqtqcqttct
                                                                    120
gtgagtgget eteegggaea tteaaagete gaegeeaggg teegaaaget aagegagage
                                                                    180
tctgggacgt cccttcacct gtcagagggt ggccttgggg cttccgccta aggggagtcc
                                                                    240
ctggtccggt ttcgccagct tttgggccat ttggggagtt tggcgaagag gtccccacaq
                                                                    300
ctegeceegg ggaegtaegt ggegeggeae teacetteat egteggegte teeteggaaq
                                                                    360
tgagcgttca gagaaggagc gcaggcagaa gtcaccgcgg gcggcggaga cgcgcgtcct
                                                                    420
geacegetge teegggeggt ggagteacte geegetggaa ggaatactgt acacagagaa
                                                                    480
taaataactt ggtcaagcca ttcagctagg aagttgtgga tcctaaatta agagatcaag
                                                                    540
gtcttaatgg ctactatatg cggcctctca tagtcttttt aagggttttg gataataatt
                                                                    600
gtagatcagc tatccggaga tgattgtcgc ttatacagtg gtgccgaact gcgtttgttt
                                                                    660
gtactgaggg aaaaaaaagc tgttgactga atgtgggggg acccctggtc ttcqaqcaqq
                                                                    720
aacctegget ttttatteeg eec
                                                                    743
     <210> 163
     <211> 2923
     <212> DNA
     <213> Homo sapiens
     <400> 163
tttttttttt ttaatgttac tcaaattttt ctttaataaa gacaaaggat ttaacaattt
                                                                     60
ttgcgcaact atacctaact ggacaaagat gatttgttta ggatcttaag gataagccaa
                                                                    120
agatataatg cctaagaggg taccccccg gaaaaaagac aaatacattc ctatcactag
                                                                    180
gaaaatgcct tcaaggacaa aaatattaat tcaataagga aaatatttca tttttttt
                                                                    240
ttatcacagg ggacaattaa ctcatttctg taatccagtt acgtggcata cattcctttt
                                                                    300
tctagtttct catqcaaaaq tttqqaaaqt ttttctcaaa acaqaqcaaq ttaqcqctaa
                                                                    360
tggtttcaag tcagggctgg gagtcagcct agaagagcat gctcagaagg ccatttacac
                                                                    420
ttacctgacc ccagcctgat gctctccccc atccaaaagg ggtcagttaa ttcctattac
                                                                    480
taatgaatta totottatac ttactotata gacatataaa ttaccacaaa tgtgcctata
                                                                    540
aattaacaag atatcattca atgtggagga gagcagctgg aacccaatga caccctggag
                                                                    600
gtatcttggt tactcttttt agaaaacaga aaaaaacctg cctcattcca ggtaatacat
                                                                    660
aaaaataaca etttaacaca aagtgtcate etgeetgtat tettteeeta aaatgetgtg
                                                                    720
taaggaactc agaattaaat aaaattagga cataagaatt aacaagtaca cctaaaacag
                                                                    780
acaagaagtg taagtaagga ctgcttcctg taatcctaag catattgttc catgggtaat
                                                                    840
tttcagaaca taaaaataca ataaatacta taatggaaat atagggattc atttattact
                                                                    900
ttttggttta caaacaaagg cacccaataa tgcttttatt tcttataaaa gattctcaat
                                                                    960
ttacatttaa aacaaacaaa aacccacaaa acaatcccaa gttaattcct atagacaaca
                                                                   1020
caaaaaaggg ggaaaaggaa attetttee etgettteaa getttattae acaggtteaa
                                                                   1080
aaatgattat tttatgccat ccttaagtca aagaacgtac tgccaagctt ctctgcacta
                                                                   1140
agtettagga catgttaatg ttgccaagte aaatataaat atagtetcaa tgacatcaca
                                                                   1200
atttacaaat gcatattcca agattaaaac tgaatagggg gaaaaacccc aaatgtttta
                                                                   1260
1320
ctgttaaata aqaaqtttgt gtaggaaata taatcaaaca gaactaaaaa tcacqtctaq
                                                                   1380
taaatgacac aaataatttc tcaaatcttt aagtctgact taagttcaaa gtctagctgg
                                                                   1440
tggggattaa caatctatat actctttata ctaatcttag aactttaaat tctagaatga
                                                                   1500
caaactaatt tattcattag ttttcttttg acaacagaac tctaaacaca caaaattaat
                                                                   1560
gcagtgagtg gcctcagcac cctcccagtt aacatttctt taagctagat tacaagaaca
                                                                   1620
ataaaaccat tcagaagaca tacactccct atgcacttca taggcctgcc caagttgtcc
                                                                   1680
ccaactettt tgcaagacac acagacaatt catctgatte taagtetatt eggcagaagt
                                                                   1740
ataaaaatca tacaaatgtt agcatgtttt caacacatta tggaaataca tttggagaga
                                                                   1800
tggagtactc aatgtatatt atgtgggcca ctttaaataa aaggcatcat tatctattcc
                                                                   1860
attttcagac attgtcatgg tctcttatac ctttatataa ggtatggtcc tagaccagag
                                                                   1920
actitagtat cattccaaaq aatataqaga tatttatata catatttctt ttaaaataat
                                                                   1980
atttaaaagt tttactacag aaaatetgge ttcaacatgg aagcattttt ccttttcaag
                                                                   2040
```

```
attatacacc tgcatgaaag taggtgattt cctttacatt tagtttttca caatagcaaa
ataaactttt tatacattgc atttaaattg acaaagaaag ttaagatgta aagctccatg
                                                                    2160
taactititg tattgcgaac tgttctcttt aaacatactc cagatacact gctgattatc
                                                                    2220
taatacagta caacttgata aacttaatta gaagtgttat gctgaacaat ttgttaaatc
                                                                    2280
aaatgtatgt taaaacagta agtagagtta actattatga ttaaaaggga attttaatgt
atcattaaaa tatacatcaa ttttcttgct attacttgtt tctataacgc atttctttct
                                                                     2400
aaagctaaaa tcacatgcat aaaaaataag tgataccttc aaactcattc aacagtttgc
                                                                     2460
taccttatgt agtatgtaaa taaagtcctt tatttaattt cgtacacatt atcttaagca
                                                                     2520
ttattttatt tttcttgaag gaattcatct ttcaaggtca aaattagtat gtgtttacac
                                                                    2580
acgagtatat tttttaatgc tattactacc tgcaaataca ttcttccata ataatqcact
                                                                    2640
ttcagttttc actggaaaga tagcacaagc cttttaaaag tcctatgaat aaaatttata
                                                                    2700
aagggaggag aacacaagta tggtgaatcc ttcccaactc ccacttccat caaatctcaa
                                                                    2760
gaaatcctcc tgcttcaaaa cataaacaat ctcacaaqat ttttatttqa tcataatqtq
                                                                    2820
gaaaagaaaa ctgtattcct attctttttg atactaacag ttttacqqaa tttqtttca
                                                                    2880
ctttctgtca aaaaacacgt atgttgctga tatggattct caa
                                                                    2923
     <210> 164
     <211> 807
     <212> DNA
     <213> Homo sapiens
     <400> 164
gcccattgag gggtctcctg gaggtgaagt catcaaggag aaccaggcca qaacaqqqat
                                                                      60
gtgatcagec atgtgtgatt gggctgagag gtgaagatga ggccagaatt ttgcccactg
                                                                     120
ccttggccga gatttgaaga ccatcagcaa tattgagttt ctgtgggttg tattcctgtt
                                                                     180
tottcaaggg gtgtatgtca gtgactgttt gcacaggtag cttatttatg tqcaqcattq
                                                                      240
ctgggagtgc atgagcatgt ttaatgcctg ccatccacgg gaatatcgtt gtgtgctaca
                                                                      300
gcgtgcttgt atgactacgt gggttgtgtg cctcattgcc tcaggtcatg tggcacagac
                                                                      360
ctgtgtctgt gagagtccac atgtgtgctc ctctatgtgc agtctaaaat tttggatctg
                                                                      420
tttctgtcaa gctgtttcca tgcacctctg tgctacgcag ctgtctgtat ctctgcctgc
                                                                      480
aggcataagt atgtttgtgt ctgggttggt atgtgacata tgtgttttgga qtqqqtcaqq
                                                                      540
tatgactcac ccctactgga gcaggatgag ggttgagatg atggttgctg gttgcttcag
                                                                      600
agagagggac gcacattaac cagagtgctq tcttctccaq qqqcttqccq tqqccaaqcc
                                                                      660
aggccaggtg ggagaagegg cagcettgee etggagggtt ttgagaagea etgeteetgg
                                                                      720
aggecetggg gaaggteect gaaacetttg gecaatgtgg etgteeceat gqteeacatg
                                                                      780
cccttcccac cccctggcta gctgctg
                                                                     807
     <210> 165
     <211> 1063
     <212> DNA
     <213> Homo sapiens
     <220>
     <221> misc_feature
     <222> (1)...(1063)
     \langle 223 \rangle n = a,t,c or g
     <400> 165
cgtccggctt gccaccactt ggtatctttt atctttttat atatctggct gcttctaaat
                                                                      60
ttttttcttt cttaccaatt ctgaaccatt tgatggtttc ttcctttatg ctccttqtqc
                                                                     120
ttgaggttca ttgagcatct gggatcagtg cacttattgt tttcatcaaa ttcagaagat
                                                                     180
taggccatta tttcttcaaa cttttttgtc qttctctgtc tacctttgag aqctccaatt
                                                                     240
atacatacat taggccactt gaagttgtca ttacagttca ctaatgctaa qttctttttt
                                                                     300
```

```
taagtettgt ttetgtgttt cattttggae actttetatt getacatett caaatttaet
                                                                      360
aattttttct tctgcaatat ctaatctgct cctaatccta tccagtgtat tttccatatt
                                                                      420
agatattgta gttttcataa ctagaaqcat qatttggttc tgttttcacc catqtatcta
                                                                      480
tataacatgt ccagtctttc actcagcttc ttaaacattt aqaatatqqt caqaataact
                                                                      540
ttttttgetg ttttgtttta gagacagggt ctcactttgt tactcaggct ggagcgcagt
                                                                      600
ggcatgatca cagetcactg cagecccaac etectegtet caaggaatce teccacetca
                                                                      660
gcctcctatg tagctgggac cacaggtaca caccaccaca cctggctaat ttttaaattt
                                                                      720
tttgaagaga egggteteae tttgttgeee agaetggtet caaaeteetg ggtteagaea
                                                                     780
atcctccagc cttggcctcc caacgtgttg ggattacagg catgagccac tgtacccagc
                                                                     840
ccagaataac tttttataaa tgtcttgagg ccgaggttgg gaaataatct ggggtcggga
                                                                     900
gttcgagacc agcctgacca acatggagaa accccgtctc tgcaaaaaaat acaaaattag
                                                                     960
ccaggcacag tggcacatgc ctgtagtccc agctgcttgn gaggctgagg caggagaatt
                                                                    1020
gcttgaaccc gcgaggcgga gggtgtggtg agccgagaac acc
                                                                    1063
     <210> 166
     <211> 848
     <212> DNA
     <213> Homo sapiens
     <400> 166
cagaatggat agagacgact cgtaggtgtg ggtaaagcaa gttgaggcaa ctcacccgtg
                                                                      60
tgctcatggt tgtgtactga acaaatgaga tgggactgtg acatgagagc ttcgaaagtt
                                                                      120
taaaacagct tctgaggtcc ctgagaaaag gataccaaag agagaaagca aaggacatgt
                                                                      180
ctagtgggat gtcattgatg ggggtggggg gtgctgagtt gtgtgatttt ttttttcttc
                                                                      240
atctgcaccc tgggattggg ggtaaatgca aaggacatgt ggtactcaaa caaaagggaa
                                                                     300
ggtcagtggc tgcttcaagt agtcagccaa qqqcttcagt ttcagtaaaa aaaaaaagcg
                                                                      360
ttaggaagtt gttaggaata aacaactatt cctaaggggg taggattqag gaactggaga
                                                                      420
tettgagaaa gtgaacgaac aggaggetge gtecaaaaaa taggetatta aatggactte
                                                                      480
aaaaatgggg caatccgctc attctcactg ggaagaattg gctccagcct ctgcaagata
                                                                      540
gtaaaaccct atgggtacat gccttggtat aaagaatggg accctgcgtt cccccttgtg
                                                                     600
ggtctaccta atgggaaccg ttggacagct tgggcccctg agttttggct agaatcgcct
                                                                      660
gcaaaacacc ctgggggatt tctcctggaa ccttgagtca ttgccccccg actatatgcc
                                                                      720
cctactagac ctttgctccc gcagccccag actgcatttg cgcggtctta tagccttttt
                                                                      780
ttaagateec ceteggtgea tagegeeaca etgtttgeet eccetteget ceaegactee
                                                                      840
taacctcc
                                                                      848
     <210> 167
     <211> 1270
     <212> DNA
     <213> Homo sapiens
     <400> 167
aaaaaaccta aagtgggccc teccagtecc atttttgggc ccagateccc ccagtttgct
                                                                      60
ccccagtttg gtcagtcaaa acaaagtggg tgccctgggg tggacgtgtc aacccttagc
                                                                     120
ccccggcctc cagggtgcag gaaaattaac cagggttttc cctttggtcg ggtagtttta
                                                                     180
aacccgagcg ggggcccctt tttttttttt ttatagcaaa aagacaattt taatgctgcc
                                                                     240
gtagaaaaaa gggttatatg aagagtcaca taatggtgct tcattgtcaa caaccaaaca
                                                                     300
gggcacagag tgtgttacgg tgtctgtgct gtttacatgc caatatttta tacaaaggtt
                                                                     360
ctcatatggt gtcagctgtc agttacttct gcaaattaac tgccaaaaat ggagaagaac
                                                                     420
agaatcactt ggagagccgg taaccacggg ttacctttca taagcctaaa gataaagctg
                                                                     480
cagtgtggga tcttgggaga ataattagga agaacaaaac agaaagttac caattgaaat
                                                                     540
agaaaggcat cctacaatat ggaatagcaa ccaagagggc ttataaataa gtgaaagagg
                                                                     600
ttggatcaca gaatgcctca tgacttttaa gcaaagtatt acagtacaaa cattttaaag
                                                                     660
```

```
gctttatcaa tgtttaggaa atacagtaca agttcttttt tttttgttgt tcttttttt
                                                                     720
aaccttttca aatagactta accctttgag cactgagttt attttgagtg ttctttgatt
                                                                     780
totaataaat acctttaaaa atcatgtgca aaatagttot gatgcotgco agggatgtot
                                                                     840
ttcccggtct cgtttattca gactgctcaa aacaaatgac aatatgatgc taataaatat
                                                                     900
gtataattta aacatqaacc tctatcaata taqatqtact qtataqcaaa acaaactatc
                                                                     960
atactttgct ttcaqataat gtttctqtat actttataaa tqctatctqt qqtatcttct
                                                                    1020
gtataattta caatgtttgc atgtaaaaaa caaaacccat agaccttaaa aaaaagaaaa
                                                                    1080
aaagaaatat acactataca taggcacagc ttatgcccag agcatagcag gtgcataaaa
                                                                    1140
cactgttgct ataaatgcaa gaaaaaggtc atttaaccac aatcacattt tttttcataa
                                                                    1200
gagagtetga aatetataca atatatacat etatgtttea atgtqaaaat aatattettt
                                                                    1260
taaatttcaa
                                                                    1270
```

<210> 168 <211> 1714 <212> DNA <213> Homo sapiens

<400> 168

ttttttttt ttggcagaga ctatctgagg ttttattttg gaccaaaaaa aaaaagcaat 60 tgaattgttt tgtagctgga ggcatgggca aggggggtcc ccaggtagta aactccccag 120 gtgggctgag ggctagggct gagcctcagg tgggtctcct gttcccagtg ctaccctgca 180 tageggeete etteecagge tetggggeag egeaggaggg gtaggetggg aggggetgee 240 gcagctgttc acttgggcag gacgtcagag gactcagaca ccagcttccc atcacgtgtc 300 tegatettet teacaaceae ggeeetggag gagetggtge ggetgaagga getggageee 360 gegecagage caaagetgga geecaggetg tagetgagge eggggettgt qaggeeceea 420 taggecgage teagaceace tgeatageeg etgqtqqtet teqtatqaat acteatqtte 480 tgcatcccag actccagccg gctctcctcg ccctccagca gcttcctqta qqtqqcqatc 540 tegatgteca gggecagett gaegtteate ageteetggt acteaegeag etgeeqeee 600 atgtcctgct tggcccgctg cagggcggcc tccagctcag acagcttggt gttggcatct 660 ttaatggcca gctccccca ctgctcggca tctgcgatgg cggcctccag ggaagcccc 720 tggcctttga ggccctcagt ctcagcctgg agcctgctga tgttctggtt catctcggag 780 atctgtcttt gcacaacgca ggtcatcccc atgcttccca gccagcgtct gcagctcctc 840 atacttgate tggtacgtgc tttcagcctc agcccgactg tggatggtga tctcttccta 900 etgeacettg aceteageaa tgatgetgte catgtecagg gageggetgt tgtecatgga 960 cagcaccaca gatgtgtccg agatctggga ctgcaqctcc cggatctcct cttcatacaq 1020 ctgcctgagg aagttgatct cgtcggtcag cccttccagg cgagactcca gctctacctt 1080 gttcatgtaa gettcateca catecttett gatgaggaca aattegttet eeatetetgt 1140 acgettattg ateteateet catacttgtt ettgaagtee tecaccagee eetgeatgtt 1200 gccaagetce gcctccaget teagettete etggcccaga gtctccaget gccgcctaag 1260 gttgttgatg tagetetega acatgttgte catgttgett egageegtet tetgetgetg 1320 caggaggete caettggtet ccagcatett gttetgetge tecaggaace gtacettqte 1380 tatgaaggag gcaaacttgt tgttgagggt cttgatctgc tccttctcct gggtgcqcac 1440 ggeetggatg ttggggteca cetecaggae aagggggete ageaggetet ggttgaeegt 1500 aactgeggtg atgeeteeca tgeegetgge eccaecatag eegeegeeca ggeeaeegeg 1560 aaagttgctg ctgcccactc gggagaagct cgaggagctg atgcgggaac cgggcccact 1620 cgtgtaggag cggctgctga aggcccgggg gccagaggtg gacaccttgt aggacttctg 1680 ggtcaccctg atggacatgg tggaggcagg agtg 1714

<210> 169 <211> 5273 <212> DNA

<213> Homo sapiens

<400> 169 ggggagcacg gagctgcagc cggttgggcc ggtgtacttt cccgctctgg aaaggaagag 60 aaatggaagt gagaaagttg agcatttcct ggcagttctt gatagttctg gttctgatcc 120 tgcaaattct gtctgcgttg gattttgacc catacagagt cctaggggtc agccgaacag 180 ccagtcaggc tgatattaaa aaggcttata agaagctcgc ccgggaatgg catcctgaca 240 aaaacaaaga teetggagea gaagacaagt teatteaaat eagtaagget taegagatte 300 tttcaaatga agaaaagaga tcaaattatg atcaatatgg agacgctgga gagaaccagg 360 gctaccagaa gcagcaacag cagcgagagt atcgcttccg ccatttccat gaaaattttt 420 attttgatga atcctttttt cacttccctt ttaattctga acggcgggac tcaattgacg 480 aaaagtattt attgcacttt tcacattatg tgaatgaagt ggctccagat agcttcaaga 540 aaccetacet cateaagate aceteegatt ggtgetttag etgeatteat ategageetg 600 tgtggaaaga agtcattcaa gaactggaag aattgggtgt aggaattggc gtggtccatg 660 ctgggtatga gagacgcctg gcccatcacc taggggcaca cagcacgccc tctatcctag 720 gaatcattaa egggaaaate teettettee acaatgeagt tgteegtgaa aatetgegae 780 aatttgtaga aagtettett eeagggaaet tggtqqaqaa aqttacaaat aaaaattacq 840 teagatteet etetggetgg eageaagaga ataageetea tgteettetg tttqaccaaa 900 egeceattgt gecactgtta tacaagttga etgeetttge atacaaagat tatttateat 960 ttggatatgt atatgtgggt ttgagaggga cggaagagat gacaaggcgg tacaacatca 1020 atatetaege ecctaecete ttggtettta aagaacatat aaacaggeet geegatgtta 1080 tecaggeceg aggtatgaag aagcaaatea ttgacgaett catcaceega aacaaatate 1140 tattggcagc caggctcacc agccagaagt tgttccatga actctgccct gtgaaacggt 1200 cgcatcgaca gaggaagtac tgtgtggttt tattgactgc tgagactacc aagttgagca 1260 aaccetttga ggettteetg teetttgeee tggeaaacae teaagacaca gtgagatttg 1320 tgcatgtcta cagcaatcgg cagcaggagt ttgccgacac cttactacca gacaqtqaqq 1380 cgtttcaagg gaaatcagcg gtgtctattt tagaaaggcg caacacagca ggaagggtgg 1440 tgtataaaac cctggaagac ccttggattg ggagtgagag tgacaaattt atcctcttgg 1500 getatetega ecagetgegt aaagateeag etettetgte etetgaagea gtgetteetg 1560 acctgaccga tgaacttgcc cctgtttttc tccttcgatg gttctactct gcttctgact 1620 acateteaga etgetgggat ageattttte acaacaactg gtagggaaat gatgeeeetg 1680 ctgtccctga tcttctctgc cctcttcatc ctcttcggca ctgtcatcgt tcaggctttc 1740 agcgactcta atgatgagcg agagtcaagc cctccagaaa aagaggaagc ccaagagaag 1800 actgggaaaa ctgagccaag cttcaccaaa gaaaacagca gcaagattcc taaaaaaggc 1860 tttgtggagg taactgaact cacagatgta acatacacca gtaacttggt acgtctgagg 1920 ccaggccaca tgaatgtggt cctcatcctg tcgaattcta ccaagaccag cctactacag aaatttgctt tggaggtcta cacatttact gggagcagct gcctacactt ctccttcctg 2040 agtotagata aacacagaga atggctagaa tacttactag aatttgctca agatgcagct 2100 ccaatcccaa accaatatga taagcatttc atggagcgtg actacactgg ttatgtactg 2160 gctctgaatg gccacaagaa atacttctgc ctcttcaagc cccaaaagac agtcgaagag 2220 ggagggaage cataggggte gtgcagtgat gttgactett ceetetacet gggtgaatet 2280 cgagggaaac cttcctgtgg ccttggatcc aggcccatca aaggaaagtt gagcaagctc 2340 tetttatgga tggaacgeet getggaggge teettacaga ggttttatat cecatcatgg 2400 cctgaactag actgagagga ttttccaaag agatttgaac tcttcagact ttttaacatg 2460 cccctgtgaa caggtatttt caggactcaa actaccacaa tgaacagagt atagatttta 2520 gattgctctt ctagaaccat ggctagaaga atctttcctt tgtcctgttc taacctagga 2580 atgaaaaaca ccaccagttt gaatcgccta aatgaaaatc ttttcctctg ggtgttattt 2640 ttccccactg aatgccacac cattgaaaat agactgctca tcccctcttc ctttcttgtc 2700 ettgteecat geteacecca cectectgte etgtgtettg gagaageaca gggetecace 2760 ctggcaagcg gcatctggcg gaccctcatg agcctgttcg tgcaggccag gtcattggcc 2820 cettteccaa tteeggeeet getgtgetge tgeeatggeg eatgeteeta aetetgaaca 2880 acceaeggea gettetagee eegeatetgg aaaaaggeee ettteeaage aateteaegt 2940 ttactggttg ttctgggagt aagtggctaa atgtatattt tgggggtatc ccccaacaac 3000 agtttgttgg ccacaggttg aaaaggaaag gaataaacgg gagttctgca tgtgagttct 3060 caagaaaagg aaagggaggc tgagcagtgg ctgaagcgat gcagccttga gacacgctgt 3120 gagcatccca tccgccgccc cagcgctgct ggtagccagg ggaggggtct gcacagcgag 3180 aagtactgtg atgactttga gccgttgaca tgtatgtctt cagatgcctt tctgcctctg 3240 tcgattttag ggtatggata ttaggagcca taacttgtaa tcttgttctc tgaacgtaga 3300 gataagctgc tataaagcca gtagatgtta aactgaagag aaattattcc cacctgctat 3360 gagtcagget taaggaatet etteaatagt gtetetttag taaaataeea aacatgtett 3420 tgtatcaagg aacttaaaat ttctcaacaa ttgtattttg aacactgtta ccctaaaagt 3480

```
gctgtctctt caagtcatct tttgcaggaa gtgagccaag atttgttcta gactcccatt
                                                                  3540
ttgcaaaagg cttactttcc acttctgggc tgtattttga tgtctcatct tcattgtttt
                                                                  3600
cactettaac ttagagetge tteaccagta ttggggtcag actggecate ageacctgag
                                                                  3660
cgtgctgagc tccaggtata gtggacccca gggtgcctca taccagccag ttagagagca
                                                                  3720
taccttttat ttttcagggc agaatgacca gtggttctga gtttgagttt ggacagcttc
                                                                  3780
aaagagtggt ccgttcaaat gtcaaagcaa ggtgcctttg gtggctttgt gaagggtgaa
                                                                  3840
aatcagtgat gggacattta ctaagtattt ctttttttt tttttttt ttagttgttg
                                                                  3900
agacagagtt tcactcttgt tgcccaggct ggagtgaaat ggtgcgatct cggttcaccg
                                                                  3960
caacctccac atcccaggtt caagtgattc tcctgcctca gcctcctgag tagctaggat
                                                                  4020
tacaggcatg tgccaccatg taattagccc ggctaatttt gtatttttag tagagacggg
                                                                  4080
atttctccat gttgatcagg ctggtcatga actcctgacc tcaggtgatc tgcctgcctc
                                                                  4140
agceteccaa agtgetgetg ggateacagg egtgageeac caeteeegge taagttagta
                                                                  4200
tttctttaat cttaatgctt taaactaagc cacttggatc ctgaataatt taaatcttga
                                                                  4260
gctacattgg taagtaataa attatttaag gccaggaatt cctgtagttt tcatggagtc
                                                                  4320
tgtagcttta ttaaaaaata aatcactgcc aggcttcatt cttccatatg atcctctaaa
                                                                  4380
aatggacact teetetgaat getgtatete atggeacetg gtecaactag aaatggteaa
                                                                  4440
ggaattcatt tggctccttg atacatcagt cctcaatatt actttctagg tattttatgg
                                                                  4500
ccagattgct tatatgagtg gtcttttggt ttggtagtag gtttttattt ttaatttctg
                                                                  4560
tactaatgaa attcctgact ttaatttctg aaaaccaaaa actctccaag tgtatttatt
                                                                  4620
tatatttttt ttaatagaga cgaggtcttg ctatgttgcc caggctggtc ccaaactcct
                                                                  4680
ggcctcaagc agtccttcca ccttggcctc ccaaagtgct gggattatca gtatgagcca
                                                                  4740
ccatgccaga tttgttcatt tttaaacatt tttatctctt caagtcatct tttgatcttt
                                                                  4800
taaaaagcac cttcaaacag ctgcaccttc catttgcact aggaaatgaa ggtagtgatg
                                                                  4860
ggattggcaa tgttcctggc agatgtttca gcccaaaagc tcttctacag accggtttag
                                                                  4920
4980
catgcaaggc attoctcctg aatgcatcca tgaatttgtt tacttttgcg tcaaacatat
                                                                  5040
gagccattgt catgctcagc ctgtgccacc attggctctg tctgatgtaa gtaatcatac
                                                                  5100
aagacctgat tttgggttct aacacagtgg gtctttggac tattcaacat tggatggttt
                                                                  5160
ttagagatgg gttcttctgg ttgatacaga ctactgcatt gcgtttagca gatggggtaa
                                                                  5220
aactggccta aaacaagtct ttgcagaata catgccaatt tccaaaaaaa aaa
                                                                  5273
```

<210> 170 <211> 768 <212> DNA <213> Homo sapiens

<400> 170

tactttatgt ttcaattggg ttgttatcct gtatattaat ctcttatcag atacatgatt 60 tgcaaatatt tttttctcat tctgtgggtt gtcttttcat tcttcttcat gttccttgat 120 gcacaaaagt ttataatttt gatgaaatcc aattcatctt ttttgttgtt gttgcatatg 180 cttttggagt catatctgag aaatcattgc caaatctaac atcatgaagc ttttgccctg 240 tgttttcttc taacagtttt acatttaggt ctttgatcca ctttaagttc tgtatctggt 300 ataaggtaag gaggccaaca acattctttt gtatgtgggt atccagcttt ccaagtacca 360 ttttttgaaa agactgtccc tcctccatcg aatggtcttg gcacccttgt tgaaacacag 420 gaggacttta aagtcaactc agatttctca gcttattgtc tgggctcttg ataactgctt 480 cctcagtaaa tgacaacata tatccatgca gtagtgccta ttatatgata aggcaaagac 540 tattgagcta atgaaagtaa aaagcttaga agaacacctg tggtatgtag taaaaagctc 600 aacaaatgtt ggttatttca ttattaagag tgacattaga gtccaacatc tcccttqttt 660 tcattaaagg ttttaacata ttgcagagtt tgttatataa gtcaggccaa aaggtactat

actctgatca caactaatct ttggattttc ccccaagaca gatcctca

<210> 171 <211> 1660 <212> DNA

720

768

```
<213> Homo sapiens
     <220>
     <221> misc feature
     <222> (1)...(1660)
     \langle 223 \rangle n = a,t,c or g
     <400> 171
cctcccatta ttttgggcat aaaaccccat taaatqcttt taaaccaaat aaactttttt
                                                                       60
ttttttttgg tagagacagg gtcttgctat gttgcccagg ctagtctcaa actcctgggc
                                                                      120
tcaagcagtt cttgcctcag cctcccaaat tgctgggatt acaggcatga gccaccatga
                                                                      180
ctggcctaaa acaaaataaa ttcttaatgg catttgtgga atgtgtttaa gagccaaaac
                                                                      240
tgtgaaaatg taagctttat ctttctttt tcctagatta tttaaagagg attgtagcca
                                                                      300
caattcagat gaatgtttac aagccaaata atgatttaag agtgtgctca ataaaaaqqc
                                                                      360
cataggttta agaattaaat ggaataatat aaattactag gtcaacaaga atatttcatg
                                                                      420
tatagtacac tgtctaagga atgcagagaa attttacaag aaacccaaga ctaaatactt
                                                                      480
cattaagaac actggttact aagtaaatag atggctcatg taggaaaaag ctaatatatg
                                                                      540
tagatgtaat gtcaactaag tgcatgtgac agaaatgaag aactaggaat aagaatccag
                                                                      600
attttctggc caggcatttt taagtgctat tggtattcac tttatttcaa actgagcaaa
                                                                      660
acaatacaac cttttacttt tttatacatt ttaaaatttc tctcatatta acattccttc
                                                                      720
ctaccccaat ccatcccatc accaaacagg aatgagataa ggagtgaaaa aaagatgtat
                                                                      780
gtttctcatt ttccttcttt tcccttgaag taaaccagta atttattaaa atattttata
                                                                      840
ggtcagagga taacaaaaga ctcaatgtag taaataagta aataggcatt caaatatcag
                                                                      900
taacctaaca ggccctaata cagctttaag attttcttct ttttttttt ttgagaggga
                                                                      960
gtetegetet attgettagg etggaatgea gtggtgegat ettggtteae tgeaacetee
                                                                     1020
acctcccact attattgtgc ataaaaacac attaaatqac tctaaaacaa aataaacttt
                                                                     1080
tttttttttg gtagagacag ggncttgcta tgttgcccag gctggtctca aactcctgac
                                                                     1140
ctcaggtgat ccacccgcta tggcctccca aagcgctggg attacagatg tgagccaccq
                                                                     1200
tgcctggcca gaaaatctgg attcttattc ctagttcttc atttctgtca catgcactta
                                                                     1260
gttgacatta catctacata tattagcttt ttcctacatg agccatctat ttacttagta
                                                                     1320
accagggttc ttaatgaagt atttactctt gggtttcttg taatatttca tgtatagtac
                                                                     1380
actgtctaag gaatgcagag aaatattctt qttgacctaq taatttatat tattccattt
                                                                     1440
aattettaaa eetatggeet tittattgag eacaetetta aateattatt tggettgtaa
                                                                     1500
acattcatct gaattgtggc tacaatcctc tttaaataat ctaggaaaaa agaaagataa
                                                                     1560
agcttacatt ttcacagttt tggctcttaa acacattcca caaatqccat taagaattta
                                                                     1620
ttttgtttta ggccagtcat ggtggctcat gcctgtatct
                                                                     1660
     <210> 172
     <211> 4001
     <212> DNA
     <213> Homo sapiens
     <400> 172
aatattatat ttgtagtttg tgccaacaag attgattgta ccaaacatcg ctgtgtagat
                                                                       60
gaaagtgaag gacgtctttg ggctgaaagc aaagggttcc tgtactttga aacttcaqca
                                                                      120
                                                                      180
caaactggag aaggcattaa tgagatgttc cagatacatc ttggatagaa ctaatggata
aattagtctg tttaaaaaaa aaaagctaac aagaagagaa taattacagt attctataaa
                                                                      240
cettttatat atccatagtt gatttatgtg aaaatggegg gaaacgeect accaccaata
                                                                     300
gcaqtqctaq tttcaccaaa qaacaaqcaq atqccattcq caqaattcqa aataqtaaaq
                                                                     360
acagttggga catgctggga gtcaaacctq qqqcctcaaq qqatqaaqtc aataaaqcqt
                                                                      420
ateggaaact tgctgtgctt cttcaccctg acaaatgtgt agcacctgqc agtgaagatg
                                                                      480
ccttcaaagc agttgtgaat gctcggacag ccctcctgaa aaacatcaag tagaaagtac
                                                                     540
agaaaaaagc cacatgtggg actcaaatgc aaacagactt tccctagagg tgaaataacc
                                                                     600
aacgtggagt tttccttccc agaatctcac tgctcttttc attcatgtgt tgtcatttgt
                                                                      660
atatcagtaa ttcaggtacc catttcatag acattttact gagaaatgac ctgcatttgt
                                                                      720
```

atgaagtgaa	ctgagcgtca	caccctgtac	ttcatttcat	atttctagat	aattctgaat	780
	ttcgtcagct					840
	tcctggagga					900
	atcatcagag					960
	ggtgtgacct					1020
	ccatcgatct					1080
	cagttctgaa					1140
	tgggagagac					1200
	tggctgctgc					1260
	tggtagcagt					1320
	acttggagga					1380
	acaggaggat					1440
	gtctcttaaa			•		1500
	gcagaggaaa					1560
	aggettagee					1620
	ctcctcagca					1680
	ccctcttccc					1740
	ctctagagtc					1800
	tggttgatca					1860
	ctgttgggag					1920
	ttaaactata					1980
	atggatgaag					2040
	ccacttgact					2100
	actaattcac					2160
	aaaatcttcc					2220
	taccttacct					2280
	ggattttcca	_	-		_	2340
	ttcaggaaac					2400
	ctttttaaat					2460
	ctggcttctg					2520
	ggaaggcctt					2580
	agtcatatga					2640
	aatgtgtggc					2700
	tgggaacctc					2760
	tgctcccact					2820
	gtcttgagac					2880
	tcatttacgt					2940
	atttctataa					3000
	tttttggcac					3060
	gtgcaaatgt					3120
	aaaatacatt					3180
	agagaatctt	_				3240
	catgtcttca					3300
	ggaggcattt					3360
	gttcctctgt					3420
	tgacttcagc					3480
	ttaatttaaa	_			_	3540
	ttttatagat	_				3600
	atgttctcat					3660
	cctaattcac					3720
	cagagtaagt					3780
	aaaaaggggg			-		3840
	gccaaaagtt					3900
	gcccgtttta					3960
	catcaagctt					4001
-400390000	Jaconageet	Jacobbyadt	~~~~	5		1001

<211> 3054

<212> DNA

<213> Homo sapiens

<400> 173

(400)	1/3					
	gcccgctgtg					60
	atccgccgag					120
	cagcacaacc					180
ctctgcaact	atcggggcag	tggtggtcag	cgggtgcctg	cttcttggac	ttgccatcgc	240
	ctggcctgga					300
caaaccctgg	gctgctcagg	atgggcccaa	gcccggttta	ggcttgcagc	cacggtacgg	360
cagccggagc	gcccccaagc	cccaagtggc	cgtgccatcc	tgcccctcca	ctcccgacta	420
tgagaacatg	tttgtgggcc	agccagcagc	cgagcaccag	tgggatgaac	aaggaacagg	480
tcccttctgt	gctgtcaacg	agctaaacac	aaactgggag	ttctcagggc	aattggagac	540
cgtaggagcc	cacccaggtt	ctatcctgga	caaagagatc	cctagtggga	caagatccag	600
cccgcagacc	tgtagccagc	cctgccctgg	gaacccctct	ctgggtcccg	tgcagtgggg	660
ccagagtgga	ggagacgggg	tcatgcctct	ccctgaggca	ggagacccaa	tgggggcgct	720
tatggcctcc	gcaaaacggt	ttccccccga	ttgggccgcç	cagccctacg	agagacttgc	780
gcgctttcac	acaggacacc	ttcttacacg	ccacaagctc	gtggaaaaag	aaaccgagcc	840
cgaagaaggg	aaaaaaccct	tatcacgccc	cacagcagac	cccagtcgtc	ccccctcctg	900
cagcccccag	cagctcaggg	taccccagag	ccctgtgtgc	agggtcctca	tgctgccaga	960
gtccgggggc	tggccttcct	gccacaccag	acggtcacca	tcagatttcc	ctgcccagtg	1020
agtctggacg	caaaatgcca	gccatgcctg	ctgaccagaa	ccatcagaag	cacctgcctc	1080
gtccacatag	agggtgactc	agtgaagacc	aaacgtgtaa	gtgcccggac	caacaaagcc	1140
agggctccgg	agacaccatt	gtccagaagg	tatgaccagg	cagttacgag	accatccaga	1200
gcccaaaccc	agggccctgt	gaaagcagag	acccccaaag	cccccttcca	gatatgtcca	1260
gggcccatga	tcaccaagac	tctactccag	acatatccag	tggtctccgt	gaccctgcca	1320
cagacatatc	cagcgtccac	gatgaccacc	accccaccca	agactagccc	agttcccaaa	1380
gtaacaataa	tcaagacccc	agcccagatg	tatccggggc	ccacagtgac	caaaactgca	1440
cctcacacat	gccccatgcc	cacaatgacc	aagatccagg	tacaccccac	agcctccaga	1500
actggcaccc	cacggcagac	atgccctgcg	accatcacgg	caaagaaccg	acctcaggtt	1560
	cttccatcat					1620
	cccagatgca		_			1680
	caatgtccaa					1740
	cccgcctgcc					1800
	tcaagactct					1860
	cggtagcagc					1920
	aggccaccgt					1980
	tggctgaggg					2040
	ctgcagctga					2100
	aaacagacat					2160
	caaaagttgc					2220
	gccagcgcct					2280
	agccacagcc					2340
	cctgtgaggt					2400
	acgttgagtc					2460
	cggtgccctg					2520
	ctggtgtgct					2580
	gagaagtctg					2640
	ccaaagccct					2700
	agctgcgcct					2760
	aggtcatgca					2820
	tggctctgag					2880
	gtcgggtggc					2940
	gcggggtgac					3000
ccatcggccg	catgggggcc	erceerggge	cccgtgagac	cacagaccag	caag	3054

<210> 174 <211> 1184 <212> DNA <213> Homo sapiens

<400> 174 caatgacctt cagatcctct gcttctccag ttcttttagc cccagtggcg ccccagccac 60 tcaggtacgt tctagaagca gggccagcac ctttgagccc cagtcatctt ggcaacctct 120 gcacacagct ggctctccat tggcaattga ggatgctgtt gacagtaggg agaaggagac 180 cctctggttt ccctatggtg actcactcct cctggacaca gcttcaaccc tagggaggga 240 atatetaage egggggeag tgccatteag etgeeceatg gaggaceage ecetaaacee 300 aggcattaac tottcacagt geageacggc ctggggaage cgaccagect tectecaaga 360 aattgagatg caataggtct gaaatgagag ccaggaattc ctaagccttg tccacaaaqt 420 ggatatcacc tqqcaqctqq ttaqaattqc aqqatcccaq ccccacaaaq accaactaaa 480 atagaatcat ctgcatcata accgagtccc aqtqqtqtqt qtqcattqca qtatttqtqa 540 gacactgttg gaatcaaaga tgctgtaaag tgggtgcaac tctgaggctg atttcactaa 600 agggggaagg agatgagaaa tggtgtcagt tggcgggttt ctgaagcaaa ccctacttct 660 cactggatcc acagctgcat tggaagaaag attcctttta agaagtaatt aatgggccgg 720 gegegggggc teatgecegt aatectagea ettttgegag geetaagtag gtggateace 780 tgaggtcaag gagtccagac cagcctggcc aacatgggga aaactcttct ttactatata 840 caaaaaatta tetgggegtg atggetatge eggaateeee etaetgggag gtgaggagaa 900 gaacattgaa cccggagggg aggtgctata gccgaattgg ggccatcgac tccacctggc 960 gccagaacaa ctccttttgg aaaaaagaaa aaaaaaaggc gggcggctta agataaatgt 1020 catggcctgt ggagagaaag ttttcagtgg tacaagcacg ctgggccggg aagcgggagg 1080 ggaaggtatg agtggactgt tgtcgaagca atcggaaggt agaaatgtga cggtcctgat 1140 tggacgacga tcgtgtggta tcgtttgaga ggcggctggg agcg 1184

<210> 175 <211> 6920 <212> DNA <213> Homo sapiens

# <400> 175

geggeegeet ggaegeegag etgggtgege ageagegega getgeaggag gegetgggeg 60 egegegeege eetegaggeg etgetgggee ggetgeagge egagegeega ggeetegaeg 120 cggcccacga acgcgacgtg agggagctgc gcgcgcgcgc cgccagcctt accatgcatt 180 teegegeeeg egecacegge eeegeegege egecgeeaeg eetgegggag gtgeaegaca 240 gctacgcact gctggtggcc gagtcgtggc gggagacggt gcagctgtac taggacgagg 300 tgcgcgagct ggaggaggcg ctgcggcgcg gccaggagga cagactccag gcggaggaag 360 agaegegget gtgegegeag gaggeagagg egetgeggea egaggegete gggttggage 420 agetgegete geggetggag gaegegetge tgeggåtgeg egaggagtae gggataeagg 480 ccgaggagcg gcagagagtg attgactgcc tggaggatga gaaggcaacc ctcaccttgg 540 ccatggctga ctggctgcgg gactatcagg acctcctgca ggtgaagacc ggcctcagtc 600 tggaggtggc gacctaccgg gccttattgg aaggagaaag taatccagag atagtgatct 660 gggctgagca cgttgaaaac atgccgtcag aattcagaaa caaatcctat cactataccg 720 actcactact acagagggaa aatgaaagga atctattttc aaggcagaaa gcacctttgg 780 caagtttcaa tcacagctcg gcactgtatt ctaacctgtc agggcaccgt ggatctcaga 840 cgggcacatc tattggaggt gatgccagaa gaggcttctt gggctcggga tattcttcct 900 cggccactac ccagcaggaa aactcatacg gaaaagccgt cagcagtcaa accaacgtca 960 gaactttete tecaacetat ggeettttaa gaaataetga ggeteaagtg aaaacattee 1020 ctgacagacc aaaagccgga gatacaaggg aggtccccgt ttacataggt gaagattcca 1080 caattgcccg cgagtcgtac cgggatcgcc gagacaaggt ggcagcaggt gcttcggaaa 1140 gcacacggtc aaatgagagg accgtcattc tgggaaagaa aacagaagtg aaagccacga 1200 gggagcaaga aagaaacaga ccagaaacca tccgaacaaa gccagaagag aaaatgttcg 1260

	gaaggcttcc					1320
ataaggaagc	gagacagaga	gaaagccagc	agatgaagga	gaaggctaag	gagaaggact	1380
	gaagagcgtg					1440
acadaadadc	agaggtgtcc	Cccasacctt	taceaecac	tatassaast	getagtagta	1500
acagaagagc	agaggegeee	ccgaaaggcc	tgcagacgcc	tytyaayyat	gerggrage	
	agaggcagaa					1560
ctggttctct	gcaaggcgat	tccatgacag	aaaccgtagc	agaaaacatc	gttaccagta	1620
	gttcactcag					1680
	ttacgtggac					1740
	gtcttaaact					1800
taccttttaa	gcaaggatat	taaggaagtg	gggctgaaag	gcaagtcagc	cgagcagatg	1860
	tcatcaacct					1920
	tggaggagcc					1980
	aagtggagga					2040
gaggaggaag	gttatggaga	aagcgatgtc	acattctcag	ttaatcagca	tcgaaggacc	2100
aaqcaqcccc	aggagaacac	gactcacgtg	qaaqaaqtqa	cagaggcagg	tgattcagag	2160
	gttattttgt					2220
	tgtacgggca					2280
caggatgaaa	tcgtgcaggg	gactcgaagg	aggacacaga	aggacggtgc	agtgggcgag	2340
aaggttgtga	agcccttgga	tgtcccagcg	ccctctctgg	agggggacct	gggttccact.	2400
	aacaagctag					2460
	•					
	taccccacga					2520
	tggtggaggt					2580
gaggagctgt	ccgccctcac	cagagagggg	cagggtgggc	cggggagcgt	ttccgtggat	2640
	tccagggtgc					2700
	tggatgccga					2760
	aggctgtgga					2820
gcgcctggca	gcccagatga	ggaaggtgga	gcggaggccc	cggctgctgg	cattcgcttc	2880
aggcgttggg	ccacccggga	gctgtacatc	ccttcaggcg	agagcgaggt	tgctggtggg	2940
	gctcgggaca					3000
	caggetttge					3060
	teggeeete					3120
actgcagaag	tggtggaggt	aagtgcggga	ggtgacctaa	gtcaggcagc	gagcccgacc	3180
ggagccagcc	ggtctgtgag	gcatgtcacg	ctgggtcccg	gtcaaagtcc	actgtccaga	3240
gaagtcatct	tcctaggccc	tgcccctgcc	tqtccaqaqq	catqqqqctc	gccagaacct	3300
	agtcttctgc					3360
						3420
	atgctgaaaa					
	attttgcaac					3480
cagttaggcc	ctaaagaagg	gttcagtggg	caaatccagt	tcacagctcc	actttcagac	3540
aaggtggagt	tgggtgtcat	aggagattct	gtacacatgg	aagggttgcc	agggagcagc	3600
	ggcacatcag					3660
	tggttcccca					3720
	cagatgtgca					3780
atgactgaaa	agagcacctt	ccaaagtgtc	gtttctgaat	ctccccagga	ggatagtgca	3840
	caggggcaga					3900
	cagaaacgga					3960
						4020
	ttgctggttc					
agaacgctaa	ggcacattgc	accagggccc	aaagaaactt	cgtttacctt	tcagatggat	4080
gtgagtaacg	tagaggcgat	ccgcagccgg	acacaggaag	cgggagctct	cggtgtgtct	4140
	cctggagaga					4200
	ctggggaagg					4260
	aggtgcagct					4320
aagaaagttg	ccctcctcta	tctagacaat	ggaggaggag	gagaatgatg	ggcattggtt	4380
ttaataagca	gaaacatttt	gttttaatgg	cagcctgttg	gcgacgtgcc	aacatccaaa	4440
_	tattttaaga					4500
	actccccgca					4560
	ccttaaaagg					4620
cttttttccc	tggagtcttc	tctccacttc	tggagatgaa	tttctatgtt	ttgcacctgg	4680
tcacagacat	ggcttgcatc	tgtttgaaac	tacaattaat	tatagatgtc	aaaacattaa	4740
	gtaatatatt					4800
5		55		5.5.2.2.40		

```
agactaacat tttaggggaa aaataaatac aatttaaact ctaaaaagtc ttttcaaaaa
                                                                     4860
gaaatgggaa ataggcagac tgtttatgtt aaaaaaaattc ttgctaaatg atttcatctt
                                                                     4920
taggaaaaaa ttacttgcca tatagagcta aattcatctt aagacttgaa tgaattgctt
                                                                     4980
tctatgtaca gaactttaaa caatatagta tttatggcga ggacagctgt agtctgttgt
                                                                     5040
gatatttcac attctatttg cacaggttcc ctggcactgg tagggtagat gattattggg
                                                                     5100
aatcgcttac agtaccattt cattttttgg cactaggtca ttaagtagca cacagtctga
                                                                     5160
atgecetttt etggagtgge eagtteetat eagaetgtge agaettgege ttetetgeae
                                                                     5220
cttatccctt agcacccaaa catttaattt cactggtggg aggtagacct tgaagacaat
                                                                     5280
gaagagaatg cegatactea gactgeaget ggaceggeaa getggetgtg tacaggaaaa
                                                                     5340
ttggaagcac acagtggact gtgcctctta aagatgcctt tcccaaccct ccattcatgg
                                                                     5400
gatgcaggtc tttctgagct caagggtgaa agatgaatac aataacaacc atgaacccac
                                                                     5460
ctcacggaag cttttttgc acttgaaca gaagtcattg cagttggggt gttttgtcca
                                                                     5520
gggaaacagt ttattaaata gaaggatgtt ttggggaagg aactggatat ctctcctgca
                                                                     5580
gcccagcacc gagataccca ggacgggcct ggggggcgag aaaggccccc atgctcatgg
                                                                     5640
gccgcggagt gtggacctgt agataggcac caccgagttt aagatactgg gatgagcatg
                                                                     5700
cttcattgga ttcattttat tttacacgtc agtattgttt taaagtttct gtctgtaaag
                                                                     5760
tgtagcatca tatataaaaa gagttteget agcagegeat tttttttagt teaggetage
                                                                     5820
ttettteaca taatgetgte teagetgtat ttecaqtaac acagcateat egcactgact
                                                                     5880
gtggcgcact ggggaataac agtctgagct agcaccaccc tcagccaggc tacaacqaca
                                                                     5940
gcactggagg gtcttccctc tcagattcac ctggaggccc tcagaccccc agggtgcacg
                                                                     6000
tetecceagg teetgggagt ggetacegea ggtagtttet ggagageaeg ttttetteat
                                                                     6060
tgataagtgg aggagaaatg cagcacagct ttcaagatac tattttaaaa acaccatgaa
                                                                     6120
tcagataggg aaagaaagtt gattggaatg gcaagtttaa acctttgttg tccatctgcc
                                                                     6180
aaatgaacta gtgattgtca gactggtatg gaggtgactg ctttgtaagg ttttgtcgtt
                                                                     6240
tetaatacag acagagatgt getgattttg ttttaactgt aacaggtaat ggtttttgga
                                                                     6300
tagatgattg actggtgaga atttggtcaa ggtgacagcc tcctgtctga tgacaggaca
                                                                     6360
gactggtggt gaggagtcta agtgggctca gtttgatgtc agtgtctggg ctcatgactt
                                                                     6420
gtaaatggaa gctgatgtga acaggtaatt aatattatga cccacttcta tttactttgg
                                                                     6480
gaaatatett ggatettaat tateatetge aagttteaag aagtattetg ceaaaaqtat
                                                                     6540
ttacaagtat ggactcatga gctattgttg gttgctaaat gtgaatcacg cgggagtgag
                                                                     6600
tgtgcccttc acactgtgac attgtgacat tgtgacaagc tccatgtcct ttaaaatcag
                                                                     6660
tcactctgca cacaagagaa atcaacttcg tggttggatg gggccggaac acaaccaqtc
                                                                     6720
tttttgtatt tattgttact gagacaaaac agtactcact gagtgttttt cagtttccta
                                                                     6780
ctqqtqqttt tqatattqtt tqtttaagat qtatatttag aatgacatca tctaagaagc
                                                                     6840
tgattttgct aaactcctgt tccctacaat gggaaatgtc acaagaatgt gcaaaaataa
                                                                     6900
aaatctgagg aaaaaaaaa
                                                                     6920
```

<210> 176 <211> 3272 <212> DNA

<213> Homo sapiens

### <400> 176

60 geoggggtee egggggagea gateeteaga atggeeettg gtgetgeagg egegqtqqqe 120 teegggeeca ggeaecgagg gggeaetgga tgaeteteea ggtgeaggae cetgeeatet 180 atgactecag gtetteagea eccaeceace gtggtacage geecegggat geegtetgga 240 gcccggatgc cccaccaggg ggcgcccatg ggccccccgg gctccccgta catgggcagc 300 cccgccgtgc gacccggcct ggccccgcg ggcatggagc ccgcccgcaa gcgagcagcg 360 ceccegeeeg ggcagageea ggcacagage cagggeeage eggtgeeeae egeceeegeg 420 cggagccgca ggtgagtggg aggcccggcg aggaggggc gtgcaggggc gggcctgggg . 480 gaaccgcagg gaccagattc gggagctggt ccccgagtcc caggcttaca tqqacctctt 540 ggcatttgag aggaaactgg atcaaaccat catgcggaag cgggtggaca tccaggaggc 600 tctgaagagg cccatgaagc aaaagcggaa gctgcgactc tatatctcca acacttttaa 660 ccctgcgaag cctgatgctg aggattccga cggcagcatt gcctcctggg aqctacqggt 720 ggaggggaag etectggatg atgtacgtec eggeecagee eageaaacag aageggaagt 780

```
tetettettt etteaagagt ttggteateg agetggaeaa agatetttat ggeeetgaea
                                                                     840
accacctcgt tgagtggcat cggacaccca cgacccagga gacggacggc ttccaggtga
                                                                     900
aacggcctgg ggacctgagt gtgcgctgca cgctgctcct catgctggac taccagcctc
                                                                     960
cccagttcaa actggatccc cgcctagccc ggctgctggg gctgcacaca cagagccgct
                                                                    1020
cagccattgt ccaggccctg tggcagtatg tgaagaccaa caggctgcag gactcccatg
                                                                    1080
acaaggaata catcaatggg gacaagtatt tccagcagat ttttgattgt ccccggctga
                                                                    1140
agttttctga gattccccag cgcctcacag ccctgctatt gccccctgac ccaattgtca
                                                                    1200
tcaaccatgt catcagcgtg gaccettcag acccagaaga agacggtcgt gctatgacat
                                                                    1260
tgacgtgaag gtggaggagc ccattaaagg ggccagatga gcagcttcct tcctattcca
                                                                    1320
cggccaaacc agccaggaga atcagtgctt ctggacagta agatcccatg agccgattga
                                                                    1380
gtcccataaa cccagctcca agatcccaga gggacttcaa tgctaaagtt tcttccagag
                                                                    1440
acceccaaag getatgteea agacetgete egeteecaga geegggaeet teaaggttga
                                                                    1500
tgacagatgt agccggcaac cctgaagagg agcgccgggc ttgagttcta ccaccaagcc
                                                                    1560
ctggtcccag gaggccgtca gtctgctact tctacttgca agatccagca gcgcaggcag
                                                                    1620
gagetggage agtegetggt tgtgegeaac acetaggage ceaaaaataa geageacgae
                                                                    1680
ggaactttca gccgtgtccc gggccccagc attttgcccc gggctccagc atcactcctc
tgccaccttg gggtgtgggg ctggattaaa agtcattcat ctgacagcag ccgtgtggtc
                                                                    1800
attggaaact ggggaggga gggggagaga aggggaaggg aagaaggtgg ggaggcagtg
                                                                    1860
ggtccctcgg gacgactccc cattcccttc ccttggattc ttctccttac tcaattttcc
                                                                    1920
ctagacctaa aaacagtttg gcagaagaca tgtttaataa cattttcata tttaaaaaaat
                                                                    1980
acagcaacaa ttetetatet gtecaecate ttgeettgee etteetgggg etgaggeaga
                                                                    2040
caaaggaaag gtaatgaggt tagggcccc aggcgggcta agtgctattg gcctgctcct
                                                                    2100
getcaaagag agecatagee agetgggeae ggeeeectag eeeeteeagg ttgetgagge
                                                                    2160
ggcagcggtg gtagagttct tcactgagcc gtgggctgca gtctcgcagg gagaacttct
                                                                    2220
gcaccagece tggetetacg geeegaaaga ggtggageee tgagaacegg aggaaaacat
                                                                    2280
ccatcacctc cageccctcc agggettect cetettectg geetgeeagt teacetgeea
                                                                    2340
geogggeteg ggeogecagg tagteagegt tgtagaagea geoeteegea gaageetgee
                                                                    2400
ggtcaaatct ccccctata ggagccccc gggaggggtc agcaccagga ggggaggggg
                                                                    2460
ggtcagggcc agccccggg ggccctgggg gtgatctctg tggtgacagg gcaggattga
                                                                    2520
actectggaa atggactgga aagaaggeet gecageeaga gatggeatte atgegacage
                                                                    2580
ggttgaggac ttegggccca ggccttgtcc acacggtggt aaggaagaag agagtgtcca
                                                                    2640
cagggtgett cttcgagacc acgtccatga gtcgcacctg ggaaggggcc tctgctcgca
                                                                    2700
cagogageca ggccagcete gtcccagggt accgtcgete taactccget getgcagcet
                                                                    2760
teaccecaag aaatgggtet ggageteeac ggecacette tegtggeeeg tagaceagea
                                                                    2820
acagggtgag caatgcatgt tctcgtggct ccaggacatt ggctgcaaac gcctcgagga
                                                                    2880
aagcegggge tgeageaget teagceacea ggagtggeag caccagetge actegggtgg
                                                                    2940
cctcagtgac atagggcata ggtaggattt ccacccggct cagtggccgc agcaggctga
                                                                    3000
ccctgcgagc cagggcccgc cggtgcccac gctgtgtcac acattccaac agcaggtcca
                                                                    3060
gggtgtactc catgccccgt gctgggtcga agcgccgata gccgttgagc agtcgctgct
                                                                    3120
tetggaageg eaggeggge tgatagegee gattgagetg etceagggea gtetecaaeg
                                                                    3180
catcacccac gtccgccctg ctagccccct gtagtgggca cttgggagcc ccatctgcac
                                                                    3240
aggagaaggt gtgctctagt tctagatcac ga
                                                                    3272
     <210> 177
     <211> 978
     <212> DNA
     <213> Homo sapiens
     <400> 177
```

```
tttegtggg actgteegtg gtgetgageg eeggegagag eggegegag geggetgate 60 ggeteecteg aactggggag gtceagtggg gtcgettagg geceaaagee eecaecegge 120 tecaaaaget eecaggeet eecaaggaa eggtgetegg eectteette ggteagaaag 180 tegeecectg ggggaatete gteecaaagg gttteetega aagaatetga gagggegeag 240 teettgaceg agggaatete tetgtgtage ettggaagee gecageecea gaagatgeet 300 geetteaata gattgttee eetggettet etegtgetta tetaetgggt eagtgetege 360 tteeetgtgt gtgtggaagt geeeteggag aeggaggeeg tgeagggeaa eeceatgaag 420
```

```
etgegetgea teteetgeat gaagagagag gaggtggagg ceaceaeggt ggtggaatgg
                                                                      480
ttctacaggc ccgagggcgg taaagatttc cttatttacg agtatcggaa tggccaccag
                                                                      540
gaggtggaga gcccctttca ggggcgcctg cagtggaatg gcagcaagga cctgcaggac
                                                                      600
gtgtccatca ctgtgctcaa cgtcactctg aacgactctg gcctctacac ctgcaatgtq
                                                                      660
tcccgggagt ttgagtttga ggcgcatcgg ccctttgtga agacgacgcg gctgatcccc
                                                                      720
ctaagagtca ccgaggaggc tggagaggac ttcacctctg tggtctcaga aatcatqatg
                                                                      780
tacatcette tggtetteet cacettgtgg etgetcateg agatgataca ttgcctacag
                                                                      840
aacggtgatc acagacgaac caggccccca acagaaaccg gatggctacc tttgcgattc
                                                                      900
catttgagaa cagggaaaat tcttcggtac ctgcgggggg aataatacag gccctctgct
                                                                      960
taccttgagg ccccccc
                                                                      978
```

<210> 178 <211> 6607 <212> DNA <213> Homo sapiens

<400> 178

```
ataaccattt attagtcgaa agtgttttta agcacagtca gggtgtaaac agtgcagcat
                                                                     60
tectgetece etcegtggga geagegtete etttteaatt catgtgacta cagaaggeac.
                                                                    120
ttggtgaact gtgcgtgtct gaggtgtgga aaccaggaga cgctgctccc acagtcaggg
                                                                    180
tgtaaacagt gcagcattcc tgctcccctc cgtgggaqca gcgtctcctt ttcaattcat
                                                                    240
gtgactacag aaggcacttg gtgaactgtg cgtgtctgag gtgtggaaac caggagaggg
                                                                    300
ggaaagaatt ctcaaaggcc tgacgtgaga agttggaaag gtttgcaggt tagggaatga
                                                                    360
attgggagtg ggggccggcg gcacccattt cggtgacttt ctccccattt catgtaaaca
                                                                    420
gaattgccag ggaccggtta ccgtggatat gtttttctaa aaactcagtg tctgcacaat
                                                                    480
ccattgatag aactggagga tgtgtctgtg tttcctgttg ggtttttctc atctcttaca
                                                                    540
tcatacaaac ttcaattttt accttgaata caggggtagt aggggtggtg gtggtggtg
                                                                    600
tggttgagac agggtctctg ttgcccaggc tggagtgcaa tgatgcaatt atagctcatt
                                                                    660
gcagectega agtectggge tggageqtte tteetggete agecteecta gtagetggga
                                                                    720
ccacaggtgt gtaccaccac gcccagctta tttttaaatt cttgtataqa tqaqqtttta
                                                                    780
ctacgttgcc caggctggag ggtggtggtt tttatattcc ttgtgtgagg ggtgtctgtg
                                                                    840
atatttggaa tttgagaatg gatttagaca atgctaagta cagtctgctg ggttttgctt
                                                                    900
960
cgtggtgcaa aactgtagaa agttgcttat tcactggcct tggttccatt gaagtctgcg
                                                                   1020
tctcgagtgt ccgtttcctc ctcagaacca tctgcatttt caataactct acgtcctcca
                                                                   1080
gaccttctag aaggaacgaa agaggtctcg tttcctcgcc tgagcttgct cttgagtgcg
                                                                   1140
ttcacctege ggeccatgge ctegttgete teegtggeet catecagete eegetgeage
                                                                   1200
ttcctgcggt tggcgttgat gcgctgggac tcctcctctg cctcctccag ctgcctcttg
                                                                   1260
agetgettga ccetggeatt geetttetet geetgeteet tgtaetgete ggeeatettg
                                                                   1320
egetegteet ecacetgeag caagatttee tteagettet tgtetttetg etteagegae
                                                                   1380
ttggtggccg cetgtttete tetggeetee tgetegaeet geteetetag etgtgeaate
                                                                   1440
ttggcctcca gcgccgcgat ggtggatttg aacttggact tgacggcccc ctccatctcg
                                                                   1500
tggagettge teeggagete ettgttetge egeteaaget getgeeggga acteteatte
                                                                   1560
ttetgggeeg tgetgegete tgtggeeage tegttgetga getgetegge etgetgtgtg
                                                                   1620
getttgegga eceggteget eatggeetee atgttgeeet geteeteete eageteetee
                                                                   1680
tecagetggg egateeggge etceaggegg egettetegt eetggagtge gtteetteee
                                                                   1740
gacaggetac tggccagete etetgccagt teeteettet egaggteege ttgtttgega
                                                                   1800
geocteteag eggeggegag gteetettgt agetgeatga ggtetqette caagetettg
                                                                   1860
getttettet cattetett ggetgtggca aagateteat etetggagge aegggeatet
                                                                   1920
tocagototo titiqaaaqto ottoatotga qootgoaqti tqoqtaqotg citiqatqqot
                                                                   1980
tectecetee cettgatgge agagteggee tgaageteea ggtettteag gteeeettee
                                                                   2040
agettettet ttgetgeage tgecagggea cgttgettte getegtette caqttecqte
                                                                   2100
teatactegt gaagetgtet etgeagttge etcetettet ceteattetg etegteeegg
                                                                   2160
gcttggagat ccctttcgaa ctggcccttg agcgcctgca tgttgacttc cagccgcagt
                                                                   2220
ttggcgtcct ccgtggcttg cagctcgtcc tccagctctt ccagctgcgt cttcatctcc
                                                                   2280
tocatotggg totocaggge cogettggac ttotocaget catggacgtt cttgcccacg
                                                                   2340
```

tcatccttgg	agctgaccag	gtcttccatt	tcggctttga	gcattttgtt	ggtccgctcg	2400
agttcctctt	tggcttccaa	ggcctcttca	agggcccgag	ccagggacag	ggccttggtt	2460
	tggcttctgc					2520
	cggctaacaa					2580
	ggttgtccaa					2640
	ccagtttatc					2700
	tctggaacct					2760
	tcttcttcga					2820
	tggcctccat					2880
tccagctggc	gcagcttcgt	agacacgttg	agcttctgcc	gggtttcttc	ttgaagcagc	2940
tcctgggtgt	cctggagctg	ggaactgagg	gacgccacgt	ccttggccag	cttaatggcc	3000
ttcccctcgg	cctcgttaag	catccctgtg	acgctctcaa	cttcattctg	cagcttgtgg	3060
	tgagctccgc					3120
	cctccagctt					3180
	tccccggcca					3240
	ttggccctct					3300
						3360
	ctgcctcatc					
	cagcaccgtc					3420
	cagtgtgtct					3480
	cttttcagcc					3540
ggtctgagat	gtggccctcc	agċtcccgga	tcttcttcag	ggcattgttc	ttctgagcga	3600
	aagcctggcc					3660
	tgcgatctgc					3720
	cttccgtttc					3780
	cagttctgaa					3.840
	ttcctcttct				-	3900
	ttttgatagt					3960
						4020
	cttggcctca					
	cagctgttct					4080
	ctggcccctg					4140
	ctcctgcttc					4200
	tctctgcctg					4260
gagtgcttct	gttccagctc	cttaagctca	ttctctgcct	tctgctgccg	ctccttggtc	4320
ttctgcagtt	catcctcctt	ggcctgcatc	tcctcctcct	gccgtgtcac	ctgcagcagt	4380
ggcttcactt	tggtgaaaag	cctccaccac	tgccagttcc	gcagcttgag	gtaggcggcg	4440
	gaatcacctt					4500
	agccacgaca					4560
	cctctaggtg					4620
	agttggggtc					4680
	agcctttggg					4740
						4800
	cgatccggtt					4860
	gcagctgctc					
	tgatgcagcg					4920
	gctccttgta					4980
	gcagcgagct					5040
	tccacaggtc					5100
acgttgtcat	tcagcgggtc	catattcttg	gtcagccagg	cactcgcatt	atagtccacc	5160
ttcccagcat	aatggatgat	ggagaactca	gtcttgtcct	tgagctgctt	gggcttctgg	5220
aacttggggt	ggctgccctg	ctccgtgcac	agcttctcca	cgaaagactt	gtccgtggct	5280
	agcattcctc					5340
	cgatgcaggg					5400
	ggtactcctc					5460
	tggtgtagtt					5520
						5580
	tatccaggat					5640
	cgcgggtgag					
	caaagtcagc					5700
	gaggagtgag					5760
	tctgagcagc					5820
ttcttgaaga	cgatatttcc	aagctgcagg	accgatgata	ccaccttcaa	tatggatagc	5880

```
tgctcctcct cgctgaaacc catgattgcc atggcctcca cagtttcctg gaacatctca
                                                                       5940
   tcatcctggg ctgctgggat gggcacaaag ccattggaga ggaaggtgta gttgttgaag
                                                                       6000
   ccctccaaaa gcaaqtcact tctcatcttc tccttggctc caqcaatcat gtagtaaaaq
                                                                       6060
   atgtggaatg tectetegte tetggettgg egaattgeee gtgattttte tageagatag
                                                                       6120
   gtctcaatgt tqqctccac qatqtaaccc qtqacqtcqa aqttqatqcq qatqaatttq
                                                                       6180
   cegaategtg aggaqttqtc gttcttcact gttttqqcqt tqccqaaaqc ctccaqaatc
                                                                       6240
   gggtttgctt gtagaagctg cttttccagc tctcccgtga tacttgtgtc tttcttgccc
                                                                       6300
   ttgtgggagg aggccaccac ggccaggtac tgaatgacct tcttggtgtt ttcggttttc
                                                                       6360
   coggetocag actogootgt goatagaatg gactggtoot coogatottg aagcatgoto
                                                                       6420
   eggtaggeeg tgtetgegat ggegtagatg tgaggeggea tetegtgeet ettettgeee
                                                                       6480
· · ttgtacatgt cgacgatctt ctccgagtag atgggcaggt gtttataggg gttgaccacc
                                                                       6540
   acgcagaaga ggccagagta cgtatatatt agccctgaga agtaccgctc cctcaggttg
                                                                       6600
   tgtagca
                                                                       6607
        <210> 179
        <211> 1387
        <212> DNA
        <213> Homo sapiens
        <400> 179
   ttttttttt ttcaatggaa atattggatt tttactgagt agcgctagct ctgctacccg
   gtgcgcatgc gcatcacctg ggcggcaccc gcggtactgc gcctgcgcgg tctccccata
                                                                        120
   tegecaggte egeteegega gggegagege gegecaagte ecaeteegtg egeegetete
                                                                        180
   tgatgtcccc gcggtcgaag acggtcacat acgcccccaa gaaaacgtcg ccggaggatc
                                                                        240
   cacacaggta ctggaggcga agcgatgtcc aaggcccgg aagccggaca aggcagaggg
                                                                        300
   cgggacgtca ccctgagcaa actggatqac gtaatcctqq qccqtqaqat taaaccaqac
                                                                        360
   ccccccaatg aggagtgaga ctgcggggag ctttgggatt tctgagcacc ggatgatgta
                                                                        420
   ctccccagcc agcaagggga ttcccccaat ggctgcatgc agggcccgga tctcctcagt
                                                                        480
   gggtcctacg atgacaggtg tgcctgtatc caggatggca gcacagccct gggcacagag
                                                                        540
   agtcagcggt tgagcgcacc ttcacactgc tccattgtgg atctgccagt agtcggggga
                                                                        600
   ctgtgactgg cacgaaagtt gagggggtgg gatgtagtgt gtcaggtctt gagcccccca
                                                                        660
   ggaccagete tectecatea gecaetteag ggteeetgtt gaagtaaaag gagaagacag
                                                                        720
   gettatecaa tageeeetge tecaceagta cateeagegg gggeegaaat teetteeeae
                                                                        780
   aagacaagaa tgggaaaacc gaggccccaa tatcccatcg gggcgggaaa cagtgaagac
                                                                        840
   ccaggetgga ttccccacaq agettccccq aaaatcacqq atqcaccett qattccacca
                                                                        900
   atagtcagct tgtcctcact caggattcca tctacccgcc cagttccata ctgaatqqca
                                                                        960
   aacttggtcc cactgggctt gaaggagctg gaggcattgg gattgaagcg gtggtggaac
                                                                       1020
   cagcagggca cactgaagaa gtggcatctc ctggacggga cccagagatt ggaggagcca
                                                                       1080
   gtgtcaaagg caacagtgaa gttttgtgga ggcgttccca gcccaatttc cccaaaatac
                                                                       1140
   tgggcatcca ggaatttgga gagaggtacc gaggcaggct tgtccccagg ggatgggcc
                                                                       1200
   eccaacttgg ggagetetge tggtttteec cateceetea gtaggtteag ggteetgegt
                                                                       1260
   ccagggtgga cttgacgaag agggatccgg atcagtgtgg ccccagcagg ctccacattc
                                                                       1320
   agcagaggca gcagcagcag caagggtagc agcagcagtg gtggagacat tgctggqqqq
                                                                       1380
   cggccgc
                                                                       1387
        <210> 180
        <211> 1725
        <212> DNA
        <213> Homo sapiens
        <220>
        <221> misc_feature
```

<222> (1)...(1725) <223> n = a,t,c or q

```
gggagtggca ctccgtgcgc gggcagtccn cctgagcgct ggacatggat gctgacctcc
                                                                     60
ttataggtgt cttggccgac ctnnnggact cagaagttgc agcccatctg ctgcaggtct
                                                                    120
getgetacea tetteegttg atgeaagtgg agetgeecat cageettete acaegeetgg
                                                                    180
ccctcatgga tcccacctct ctcaaccagt ttgtgaacac agtgtctgcc tcccctagaa
                                                                    240
ccategitete gittetetea gittgecetee tgagtgacea qeeactqttg aceteeqace
                                                                    300
ttetetetet getggeceat actgecaggg teetgtetee cagecacttg teetttatee
                                                                    360
aagagettet ggetggetet gatgaateet ateggeeeet gegeageete etgggeeace
                                                                    420
cagagaattc tgtgcgggca cacacttata ggctcctggg acacttgctc caacacagca
                                                                    480
tggccctgcg tggggcactg cagagccagt ctggactgct cagccttctg ctgcttgggc
                                                                    540
ttggagacaa ggateetgtt gtgeggtgea gtgeeagett tgetgtggge aatgeageet
                                                                    600
accaggotgg teetetggga cetgecetgg cagetgeagt geccagtatg acceagetge
                                                                    660
ttggagatec teaggetggt ateeggegea atgttgeate agetetggge aacttgggae
                                                                    720
ctgaaggttt gggagaggag ctgttacagt gcgaagtacc ccaqcqqctc ctaqaaatqq
                                                                    780
catgtggaga cccccagcca aatgtgaagg aggctgcct cattgccctc cggagcctgc
                                                                    840
aacaggagcc tggcatccat caggtactgg tgtccctggg tgccagtgag aaactatcct
                                                                    900
tgctctctct ggggaatcag tcactgccac acagcagtcc taggcctgcc tctgccaaac
                                                                    960
actgcaggaa actcattcac ctcctgaggc cagcccatag catgtgattc cagattcctg
                                                                   1020
cggtccagcc tccaactttg gttgccagct ctttcttatt ctactacaca agccgccaac
                                                                  1080
1140
aactagaaga gatttatata taaagcttct tccttctccc agatgcagga tgttttcaac
                                                                   1200
cagtaaattt tattgctgtt ggtgccagag aagagtcctt tcttctctac atccaggggc
                                                                   1260
cttttctcca ataatgtgcc tttaactcta gggacctgcc tcacggacct tagggaaaaa
                                                                   1320
cctcaacctg aaagatctct tcctttctgg agctccttta atcttcccca gcaggttttt
                                                                   1380
gccttagacg tgctggcccc aggacagtga tgaagacaga gcctgtctca gctctaggct
                                                                   1440
tgtggggatc aatgccatca gtccctgtta ttgagggatt atcccttagc caacattcct
                                                                   1500
atctgtgggt gggcgtggag agtgtatctt tttttggggt gtgtgtgtat atgtgtgtgt
                                                                   1560
gtatgtgtgt gtgtgtttaa tagttctgtt tgtaaactct tttaataaaa gttgtgcctc
                                                                   1620
accatacttg aagctcccag gacaagggtt gagaggctca acccctcttt cagcttctat
                                                                   1680
gtggtgttgg aggtgctggt atcgtgttca cacaaaaaaa aaaaa
                                                                   1725
     <210> 181
     <211> 753
     <212> DNA
     <213> Homo sapiens
     <400> 181
caacctetge etectgggtt caagegatte teetgeetea geeteeegag taggtgggat
                                                                     60
tacaggegtg egecaccaca cetggetaat ttttgaggaa tacatttttt aagecatetg
                                                                    120
gtctgtggta gttcatgaca gtggcctgag caacctcagc cccacctgag gtggccccag
                                                                    180
ggagagcace tggcagtett tgecetttge tgeceecage actaggetae cateatqaeq
                                                                    240
tttctgggtt tctgacattt gccagtttgc ccacaagatg gcaggcaccg cccagctqtt
                                                                    300
ggggttgaag cageteatag geettgagtt getgaeggee cagtgeggte agateaetgg
                                                                    360
ctacagggac agaagggagg agttactacc cccaaggttt ctggctacag ggcccccatc
                                                                    420
ctgtcacccg ccttcccaaa cagtaccctg attcctcaac catggccaca tcttaagcca
                                                                    480
cetggggcca gtgctggggc catcctaggg ccaggtgacc ttggtggatg tggcctcctg
                                                                    540
getttggtgg tteetggget eccaggtgat egtagtgage eettgggggtt gaagageaat
                                                                    600
geteteceae eeeggggaca cacatgeete etgagggaag gaeegteeet tggaategag
                                                                    660
gaaaacccca ccggtcctaa aactaccgtt aggqcaccgt cttgcacatt qctqtaqtta
                                                                    720
accttccagg cctcttggtt tccattgaaa ctg
                                                                    753
```

<210> 182

<400> 180

<211> 1620 <212> DNA <213> Homo sapiens <400> 182 tttttcaaaa gagagggaga atgtgccagt cettgcaagg tgaactgace tggcactgtt 60 tragtgggag cotractgcc tgccttttcc atgctaggag acaaagcatc ctctacccca 120 tetgtgaate ggtgetgtgg ceaetgegag aageatgatt catgaggtat gatgetettg 180 ageteecaga caatgtgetg agttaatagg tteacttgag atgtataaac caaggetgtt 240 tetttttta aatetagtee eeaatttgga gtatttttge atgtttttgt acagagtaat 300 ccattectet cattgtgtat ettaatetee tetgaetttt ecattgtett teteaateee 360 accetttget etteggatet caccaacce cettaaaaaa taaateatgt ttgaqcaaga 420 aggtagaaca cgccctccct catcttggtt ttaattgctt tggaaacgtg ttctaccctg 480 tccagggttt gcataacgtg aattaagtga atgagatgtt ctagtattat atcttaacct 540 gataagacta totaagattt otagtatatg gtgcatttgc tttcctgtgc aaactttggt 600 tcagctgccc tgcagagaat ctcaccattt tcctgccagt gccagtataa agaatgcagg 660 agagctaaac ctgggtacat gaaggtcaga ggggtgagga cggtcgagaa atggggagaa 720 gacttgggct tgagacgacc tgggcttttc atgtgtagct cactcagcag tatgaggatg 780 actgacacac cagtgggtgg tttccaagtg aggcaaatgc ccatttcccc tctccctca 840 caccttgcct ggcttcttcc atgaagtcct tgctgctttt ctgcctcccc aaaggtgagg 900 ggaagggget ggttggggat etgggaaage cagttetetg tteteteetg etggtgatgg 960 actaggeett ttagaactag caagateeet cacacagetg ggagaacaca cacetttett 1020 actccagace cattggtgtg tetecagtaa caaaattatt ggaetcagee tecatatttg 1080 acagcaaaag tggccagagg gagttgaaat atcttgaaga aaaggaattt tcactaagat 1140 atgtcctctc cctctcccag agtttagctg tttattcctt ttttttgttt atattgttct 1200 catctgcata aaaccagtct cttgcaataa gcctgccgca gaatcaaagt ctgtacttca 1260. aaaggtaact gcaccaaggg atgggacagt gtgcatcacc ctgatctaat cattgtgacg 1320 gttggtaget teetaaatae tgtatgtaee ttgaacaagg gttttatttt ttgttttgtt 1380 ctgttttgct ttttgttttt attggtaggc taaggtaatt aaatttttta atttgctgtt 1440 actitigging tattiticigt actataaatg cotacagtat gictitigga taaaatgcat 1500 aagggtttqq qqatqtaaat qqaattttat tcatattttq tccaaaaacc tcttqtaatt 1560 tgtatcaaaa ttcttgtaca atttttatat taaagattta tcaqtcactq aaaaaaaaa 1620 <210> 183 <211> 1298 <212> DNA <213> Homo sapiens <400> 183 eggacgegtg ggettgeetg etgetetgge ecetggteet gteetgttet eeageatggt 60 gtgtctgagg ctccctggag gctcctgcat ggcagttctg acagtgacac tgatggtgct 120 gageteecea etggetttgg etggggaeae eagaceaegt ttettggagt aetetaegte 180 240 tgagtgtcat ttcttcaatg ggacggagcg ggtgcggtac ctggacagat acttccataa ccaggaggag aacgtgcgct tcgacagcga cgtgggggag ttccgggcgg tgacggagct 300 360 ggggcggcct gatgccgagt actggaacag ccagaaggac ctccttggaa cagccagaag gacctcctgg agcagaagcg gggccgggtg gacaactact gcagacacaa ctacggggtt 420 gtggagaget teacagtgca geggegagte cateetaagg tgactgtgta teetteaaag 480 acceagecee tgeageacea caaceteetg gtetgttetg tgagtggttt ctatecagge 540 agcattgaag tcaggtggtt ccggaatggc caggaagaga agactggggt ggtgtccaca 600 aggectgate cacaatggag actggacett caagaceett ggtgagtget ggaaacagtt 660 cetteggagt gaagaggttt acacetgeec aagtggaage acceagggeg tgacaageec 720 780 ctctcacagt ggaattggag agcacggtct gaatctgcac agagcaaaga tgctggagtg

gaagtegggg ggetttgtge tgggeetget etteettggg ggeegggget gtteatetae

ttcagggaat cagaaaggga cactctggac ttcagcccaa gaggattcct gagctgaagt

gcagatgaca cattcaaaga agaactttet gccccagctt tgcaggatga aaagctttec

840

900

960

```
etectggetg ttattettee acaagagagg gettteteag gacetggttg etactggtte
                                                                   1020
agcaactgca gaaaatgtcc tecettgtgg ctteetcage teetgttett ggeetgaage
                                                                   1080
cccacagett tgatggcagt geetcatett caacttttgt geteceettt geetaaacee
                                                                   1140
tatggcctcc tgtgcatctg tactcaccct gtaccacaaa cacattacat tattaaatgt
                                                                   1200
ttctcaaaga tggaaaaaaa aaaaaaaggg gggccccttt taagggacca agttttacta
                                                                   1260
ccccgggctg gcaaggaaaa acttttttt tggggccc
                                                                   1298
     <210> 184
     <211> 797
     <212> DNA
     <213> Homo sapiens
     <400> 184
tgaacacaga cqtacqqtta cttqcqcqqa ctqttcaaqq aataqttata qqtqaqqaaa
tggaaacgac gcaaqqtqct tccctggqat tttqcctaqq qaqqaqcqgg qcaqtqqccq
                                                                    120
agcagctgcc aggcacgtgg cccggaacgg gctttgctgt tggtttgtgg aaggttgtag
                                                                    180
agaatgctgg cctccaggca ggcctgctgt cctccagtgt catccctgtt cctgcctctg
                                                                    240
teteceaete teagtggett etteaeggta tgttetgtet eteaeettea egtteeeegg
                                                                    300
ggccctgcac gtctctgccc ccgtatgagc cacgggagtc cctctgggct tcccgcagag
                                                                    360
ccgtcggaac acggctgctt gttggttgtg gggctgcaac agaattgcac acgcttgacc
                                                                    420
teteccatee tetecteeg ggggeteaga gtecagagga gagtgaatet tgetgaetga
                                                                    480
tttccaaatg ggattggcca gagcggtgca ggtagtggga actccaggtc tttgtccagt
                                                                    540
ggtccatgtt gcccttcatc attaagtcaa attccaaagc cccgggaggt tgtgaaggtt
                                                                    600
cactegeece tgaegggaac gagaceeagg gaettetgee eeaecaggea teeteggtgt
                                                                    660
gggttgtatt tagagatggg cctggacagg ggccactttg ggcagccttg gttgcaagtc
                                                                    720
ccttcgcttc tgggtttctc ttcgttgccc tgaagcttca ggttcatcct tggtgggaga
                                                                    780
tgatggtgcc ccggcgc
                                                                    797
     <210> 185
     <211> 1735
     <212> DNA
     <213> Homo sapiens
     <400> 185
ccgaccatca ttacgccaag cttggcacga gggtagtaca tgtttttaat tttaaaataa
                                                                     60
ggcatatata ttatggatgc atgctcattt ttgactggtg agctatggga ccaaaatcat
                                                                    120
tttggaaggt actggcttgg acggctgctg ggtgagtcct ttggagtgat gatgtcatga
                                                                    180
tgtgggaaac gggccttatg gcttgtggaa acagatgccc tgtgttctga ccaaacaagg
                                                                    240
ggtctcctcc aatacggaca ggcatgaggt cacgctggcc tgcttggttc tttctaaatt
                                                                    300
cattetgetg tgcagaccac ettttaaaag tgatcacaaa ccatttgctg aatacttgtg
                                                                    360
gaacttgaat cctcaccaat gtctccattt tctggaatcc atcccaaccc ccaccttggt
                                                                    420
cttttggaaa attgggetgt ttgctctttt tttcccctcc tctctgactt cttggatatg
                                                                    480
cattgatgtt ttccccttcc ttccaaggaa ttataaccaa agtaaggtgt gtgtgtct
                                                                    540
                                                                    600
gaatgcgggc tgggcgcggt ggctcacgcc tgtaatccca gcactttggg aggctgaggc
                                                                    660
aggeagatea egaagteagg agattgagae cateetgget aacatggtga aacceeatet
                                                                    720
ctactaaaaa tacaaaaaat tagctgggca tggtggcagg cccctgtagt cctacctact
                                                                    780
tgggaggccg aggcaggaga attgcttgaa ttcaggaggt ggagcctgta gtgagccgag
                                                                    840
gttgtgccac tgcactccag cctgggcgac agagcgagac tccgtctcaa aaaaagagaa
                                                                    900
cctqqqatqc aattttcctq aqccttqaca tttqaactqa aaataactaa caaqatccqa
                                                                    960
ggagtgaggg gcaggaaaaa gagtgaggcc ctgagacagg ttgacctgcc ttctaattct
                                                                   1020
gactetgete tttatagetg tgtgeetetg ggeaagttge ttaacetete tgattteeag
                                                                   1080
ttttatttta aagttgaaga ggtgctaatc tatctggtga ggttgtggga aaaattaatg
                                                                   1140
```

```
aaacacatga aagtccctta aacttgctag gacttactaa atgccagttc tgtctccttc
                                                                     1200
ctaacacett cececaacee ccaatetett cacqeteact ettqtacatt tecaccetqe
                                                                     1260
tqqaaaacaa agatqaqaac aaaatgtqca ttqctqaqac ttactqttaq actqtttttt
                                                                     1320
aaggtgteet tgattttggt tageetggte ttttetetgt gatetetete atgagttett
                                                                     1380
tactccaqtc tttattctqc tttaaqqaqa qttttqqqca ttcttaqtta aqtqtqqtqt
                                                                     1440
ttggetgatg ttgaaataac tcattcatta tgagcetece catececatt aaatgeetta
                                                                     1500
atttcatagg agacaaaaaa tttaagaaat aatgccattg tatacctcct accccattgc
                                                                     1560
atatattaag taaaaggaaa tgagtcttga gaacattgag aaatggaaac gtttgagtag
                                                                     1620
gcccaggtgc ggggggctca tgtctggaaa tccccatcat ggtgggaggg cccagcgtgg
                                                                     1680
gaggattgct ttcagcccca gaggttccag acccagcctg ggcaacatag ggaga
                                                                     1735
     <210> 186
     <211> 669
     <212> DNA
     <213> Homo sapiens
     <220>
     <221> misc_feature
     <222> (1)...(669)
     \langle 223 \rangle n = a,t,c or g
     <400> 186
gattacgcca agcttggcac gaggggcagc gcctggcccg ggcgcgcaaa gctgctcttc
                                                                       60
tcgcactcgg ggctctggcg catctgcgaa gtgctgcacc gtgcagtcat tgtggtcctg
                                                                      120
eccetgagee tggteettet egtgtgtgge tggatetgeg geetgeteag etecetggee
                                                                      180
cagagogtgt ctctgctgct tttcaccggc tgctacttcc tgctggggag tgtcctgaca
                                                                      240
ctqqcqqqq tcaqcatcta catcaqctac tcqcacctqq cctttqcqqa qacqqtqcaq
                                                                      300
caqtatqqcc cgcagcacat gcaqqqcqtc cqcqtcaqct tcqqctqqqc catqqqcctq
                                                                      360
geetgggget cetgtgeett ggaggeatte ageggaacee teetgetete agetgeetgg
                                                                      420
acceteagee tgageeece aatetgtggt catetgagte eecageaggt gggagggaga
                                                                      480
gggggagact gaggcccaga gcggcagagg gacccaccca gatcgcctgg cgccagagag
                                                                      540
atgeogtete aggecaagge etecetggee tetgttetgt ecaetetece egaagggeag
                                                                      600
gcttggtgga gaagaggctg atgagagggc ccgagagccc cttcgatttg cannnnnnnn
                                                                      660
nnncaaggg
                                                                      669
     <210> 187
     <211> 1804
     <212> DNA
     <213> Homo sapiens
     <400> 187
tttegtggac cgcgcccgt ggtctgaggt ccgcggcagg gtcccgcatg gcggcgcaca
ggaagcacgt gtttgtggag aaggtgctgc agagactttt tcctcctgtt ccaagtggcc
                                                                      120
aaggaaagag ggaaccccag acgctggccg tccaaaatcc accaaagaaa gtgacctctg
                                                                      180
agaaagtgag ccagaaacat getgageett tgacagacac tggetetgag acccegactg
                                                                      240
                                                                      300
ecegacgget ctacactgec agegggeete etgagggeta egteceetgt tggeeggage
ccagcagctg tgggagcccc gagaacgcct ccagcgggga tgacacagaa gatcaggatc
                                                                      360
                                                                      420
ctcatgacca gccaaagaga agaagaatta ggaagcataa atcaaagaaa aaatttaaaa
atcccaataa tgttcttata gaacaagcag aattagagaa acagcagagt ctgttacagg
                                                                      480
agaaatctca gcgacagcac acagatggca ccacaataag caaaaataaa aaaaggaaac
                                                                      540
tgaaaaagaa acagcaaatt aaaaggaaga aagcagccgg cttggcagca aaggctgctg
                                                                      600
                                                                      660
gtgtcagttt catgtaccag cccgaggaca gcagcaatga aggggaaggc gtgggagagg
cttgtgagga ggatggtgtg gacaccagcg aggaagaccc gacactggcc ggggaggaag
                                                                      720
```

```
acgttaaaga taccagggag gaagatggtg cggacgctag cgaggaagac ctgacacggg
                                                                  780
ccaggcagga agagggtgcg gacgctagtg aggaagatcc gacaccggcc ggggaggaag
                                                                  840
acgttaaaga cgccagggag gaggacggtg tggacaccat tgaggaagac ctgacacggg
                                                                  900
ccggggagga agacggtaaa gacaccaggg aggaggacgg tgcggacgcc agcgaggaag
                                                                  960
accegacatg ggctggggag gaagagggtg cagactccgq ggaqqaggac ggtgcagacg
                                                                 1020
ccaqcqaqqa aqatqataca attaccaatq aaaaqqcaca caqtattcta aattttttqa
                                                                 1080
agtcaacaca ggaaatgtat ttttatgacg gtgtctccag agatgcagct tcagctgccc
                                                                 1140
tegeagatge egetgaggag etgetggace geetegegte acacagcatg etgeecteag
                                                                 1200
acgtgtccat cctgtaccac atgaaaacgc tgctgctcct gcaagatact gagagattga
                                                                 1260
ageatgetet ggaaatgtte ceagaacatt geaegatgee teetgaecat geeagagtaa
                                                                 1320
tctcagcttt ctttagttac tggatcacac atatccttcc tgagaagagc agtgactaaa
                                                                 1380
atggaatatc tctttaagaa caqctcctct ttaacaaaaa aacttaaaaq acaaatgtga
                                                                 1440
gatgggctta gagttagttc tctgggaact tgaaagacat ttatgccata ttatttattc
                                                                 1500
acgtgtttgt tcctggtggg caagatgcca tctgaggctt cagatgagaa attggggtaa
                                                                1560
aatggaaatt tttcacttat ttgcaattat atatatcttg aattactaca taaaacttga
                                                                 1620
ttctgtttct ctacttattg taaaaattga aaatggacat tctgttaagt taaatgtata
                                                                 1680
gtttgaaget catatattt tatgaagttt tgaatcacet tgtatetgaa agtetetget
                                                                 1740
1800
                                                                 1804
aggg
```

<210> 188 <211> 1070 <212> DNA

<213> Homo sapiens

<400> 188

cacatttttc ctttgataat ccagaatggc tgtcttgatt ctagaataag ccaataaact 60 tqtqactcaq qattttaaaa atctqqtqqa cttatqccqt aaqqqaqcat tttcctttaa 120 catttgtttc gacatagttt gccctggcgt tgttcagttt tttttggagt accactaatt 180 tctcccatac ctatgagcag gtagtatgaa ttttccattc tgggagagac tctattgtag 240 ctaaactgcc tgtattcaag gatgccttac ctcattttat tctttgctgt gtacatattg 300 tataagattc ttgtcaaagt ccatcttttc atagcagaaa ttgcccttta tgatttttta 360 aaattetttg agttatatgg aatetgeatg tttaaaacae ttacetgtet ggtagtgaet 420 actotgatat ttattaatot acttagtttg taagtaaagt aaacatttac atotggttaa 480 aatttactat accccccca aaaaaaaact acctqtttqt ttacctcata actqattctq 540 tttacatata cccacacata cacaacccac caatactatt aagcttttaa tgtggacatt 600 ccaataagaa aacagatcat tctcattgac tcttactttt tgagatgtat ggccaaattg 660 taatttatcc tggctacaaa aagaagaatc taggcaaaga ctaaagaaag ccaattgtca 720 tgacacagtt acactaggat tagactttgt taaaaaataa ctccacaagg atttgcaatg 780 gaatttcaaa cattatcttg gggaattctg gagaaaagac cattttactt agacctttat 840 gtttttgatg gtgctgtgca agagagaagc caggattttt tcagaaacac tcaaatactg 900 gccagacgca gtgggcgcat gcctgcaatc acaacactct gggaagccaa ggcagaaaga 960 tegettgage ccaggagttt gagactagee tgggcaacat agggagacce egtttettat 1020 taaaaaaaaa cctgggggtt gggggccctg cctgtgggcc catttaataa 1070

<210> 189

<211> 863

<212> DNA

<213> Homo sapiens

<400> 189

cggcccgtaa ttaccggctc gacgatttcg tcgctgacta gggacagggc tgtcacactg 60 ccccaggagg aatggaagct ttcccgccaa cctgcctcct tcctctggac tccctgtgtt 120

```
ggtttatgta cttcaatgtg atacatcagc agtctctttq qtctqqqctq accttccaca
                                                                     180
ttggttggtc tgtctgcccc tcccttggga tggcgcttgg tgtcagagtg tggggaccac
                                                                     240
ctccaggaca agcgccactg ttgtgcgcag ctcagccaca ctgctctggc ctcagtttcc
                                                                     300
cctgtgcgga atggggatga gaatgcagtc gagggaggcg aggagctgca gtgctgaggg
                                                                     360
ctgaggagtg agctgagggc ttaacccccg gcgccatcct tggagggagg gagggagcaa
                                                                     420
tgcgaccggg gggccttggc taatcatcta accgcagatg tcaccccca cactgatatg
                                                                     480
tgatcacgtc agctggccct gggacggtca gataccttgc acatgatgct gggtccgcca
                                                                     540
gaggcaagac tetetetetg cattttactt tggateteca teetttqtec atqqtacaqq
                                                                     600
ttcaccetgt attgttcate etggceetat cetatetttg actegggata ecgaecettg
                                                                     660
tttggcacaa cactcctttt ttaaacctaa ctttctgtgc cggattccag tttaaqcaac
                                                                     720
cggaacctaa gctgaaaccg aaccacccta actggggggc caaagcccga actaataaac
                                                                     780
cggttacggt accgcccctt gcgataatac aaaaaccgtt ttgtgctgcg ccctgaaaga
                                                                     840
acgtgcccca gttaggcctt cac
                                                                     863
     <210> 190
     <211> 420
     <212> DNA
     <213> Homo sapiens
     <220>
     <221> misc feature
     <222> (1) ... (420)
     <223> n = a,t,c or g
     <400> 190
cttcctagca ggagacaagg agcaacgctg cggtggtgag cacgctgtgg ggcccccacc
                                                                      60
cccagcccta gccaggccta gtgcctgctg tagcacccta gaagatcccc agcagttggc
                                                                     120
actagetgta eccaecttge etggggeece egtgetgggg gtegeeceea agatggtgge
                                                                     180
ggccccaggg aggactgtac tgccagccc agcctctggc cgctagqcac cccctqcctt
                                                                     240
gecetggece etcaetecga ggecagegec atgetgegee tggggetgtg egeggeggea
                                                                     300
etgetgtgeg tgtgeeggee gggtgeegtg egtgeegaet getggeteat tgagggegae
                                                                     360
aagggetacg tgtggetgge catctgcaac caaaaccage ctgcctacga gaccatnecg
                                                                     420
     <210> 191
     <211> 988
     <212> DNA
     <213> Homo sapiens
     <400> 191
gctggcgatt tctacactgt tgcccgggct ggagtgcaat ggcacgattt ctgctcactg
                                                                      60
caaceteege ettteatgtt cacacaatte teetgeetee tgagtagetg ggattacagg
                                                                     120
cgcacaccac cacacctggc taatttttt gtatttttag tagagacagt ttcactatgt
                                                                     180
tggccagact agtcttgaac tcctgacctc atgatccgcc tgcctcagcc tcccaaagtg
                                                                     240
ctgggattac agttgtgagc caccgtgccc ggcctcagtt atttttaaag caaatctaga
                                                                     300
tatgttttgt taagggattt ttaaattttc ctaaaaaaag ataacctgca atttcttgcc
                                                                     360
ccaaqtcatt ccctactqac aaattqccca tcttcctqat tctctqatcc cctcctttct
                                                                     420
cctcattttc caaattcaga caagtctgtg catggggtga tatcaccgca ccagctctgt
                                                                     480
ccctggctca ttttctgtaa ccctatactc caggcgtttc tccacatttc tctqaaqcct
                                                                     540
gaaaacqatc cttcttaatg accatgaatg ggctggagtt gcttggcaat cctgtcctct
                                                                     600
geaataggae atttaatetg ettgtggeet ttegecatgg tggtggeget etteeettat
                                                                     660
ttgggttatt tttctggatc cctttccact caaatcgggt cagaccttcc ctgacactcc
                                                                     720
ttgtacactg caaattcaca ttaagcatat tatgtttcac atagtccaaa tgaaacagtg
                                                                     780
atttggctac tcatttatta actgtccggg agttccagca gggtcacaat cacggctgtc
                                                                     840
```

tgtaccgtcc gtgagtgctc aacatcaccc agcacagggc ctggcactca gtaggtgctc 900 agtaaccatg cgctgaatga atgagtaaat gaagggaggg atggaatgaa ttgcaaccct 960 tgataactgg gacaattatt catggagg 988 <210> 192 <211> 967 <212> DNA <213> Homo sapiens <400> 192 gggtggaatt cggaaagtga tacaaaagat tactagccat actcattgca gatttcatga 60 agagagggtg agcatttgaa gcatttcagt ttgctattct ttggggggttg gagaatgcat 120 tccaatctac ctaaaagtgc cctttccctg gctgtttggg tgataacatt ttttgagctt 180 tggcagaggt tttaaactct gtatgtgggc tggatatgtg atctacacac tgttttgtag 240 qttttctttt tctctqattt caattaqaat caqaaaactt qqcaqtattq qqtttqaatt 300 gccacttggc aataatagtc agctgggttg ccccctttaa aatagataag cattctctag 360 tttgccacag gtgacactac ccccattgcc tcttcagctc actcattcac atttcctgat 420 gggcatctgc aggtgtatct ttgaccgctg tctggatgtt ggaatgagtg gttcgctgag 480 cagacagect gacteetgtg tateteecat gattgteeaa geateaetta ttgeteettg 540 accetgtett tttactgacg tagttgagtg ttgtgcagec ttttatttta gaggcagggt 600 ctcgctctgt cacccaggct ggagtacagg cgcggcacaa tcacagctca ctgcagcctt 660 gaacteetgg geteaagtga teeteetgee teageeteee aaggattata ggegattgee 720 accatgeeet getaattttt tatttttagt aaagataagg acttgetgtg ttgeecagge 780 tggactctaa cccctgggct caagcagtct tctcaatgtg ggcatcccca aagcqttqcq 840 attatgggta tgagccattg cgccctgcaa gttggcatac ttctaaattt tttgggaggg 900 tcctgcccaa ggcagaaggg aaaattgggt tgtagggctt gatgtgccca ggggacgtta 960 agcgcct 967 <210> 193 <211> 2238 <212> DNA <213> Homo sapiens <400> 193 ttttttttt ttgatgattt ggatattatt attacaaaga atttaaatat acaagtttgg 60 ctatgaaaga cccaqctaag ccacttaggc aaaagtctat ctttgatgtc atagtttcca 120 agaagtatca taagagtcaa acaqttaaac atttctctgt gcttttttt tctattttct 180 aggaaatgtt gggtttagag agaagctcat caacttactt atacaaatca ggatatactg 240 agggggggg aggataaact cgacatttcc atattttata atataatgtg gaaagattca 300 gaaatgactg agaagataca gtqatatqat atttaaagca aatattgqca tatqcttata 360 caagaaaggc atcttacaat aatatttctg ttggtacatt acaatttttc agctagtaat 420 tctaaaatgc cagaggtcct atgatgcaat atcaaaaaaa ccagggaact gacatacaaa 480 gtcaaatata aagatagtaa cattcagtca tccacagata aaaggctatc tggacataag 540 cctgaaacaa gcaagacgcc atccactgcg atttcgccgg ttttgccctt gccacgttct 600 getteaaaaa tgatgetttt ggtageatea gtteettgat acaactgaat ttteeetgte 660 ttccactttt catcctcact cqtqqtcttc tcccatqcca qqqcattqtt actqtttttc 720 acaaacactc qaaqtttccc qactttqtct ccqqccaqcc ggtaatcaaa qaqcaaacaq 780 aagttgcttt ggggttgcag gtcaggtagg agaagtttca atcggccaat gtctttcctt 840 gtgaccetge caaaggeegg gaactgeeaa tatagaagee aaatageatt ateteegate 900 agcaggatte ccagteaaaa teatettegt etateetgtt teecagteac agateeceat 960 gattgaagct gcagtcaacc gagatattta aatctgcttt atgttccagt ttggaagtta 1020 gegettteet ttggacegag aatcaggeeg aattcacetg etteatteae ettagggaaa 1080 aacacatete cetegaaaag gtegeteeet cetatgteaa teetteaggg etttetette 1140

```
tettttetea teeteaagee eetettteat tttetettea tteeettttt taeceteeat
                                                                    1200
gagagttccc gcctctggaa actatctctt catagttgaa gggctgcaag ttcaccttag
                                                                    1260
gggtaggagt cctggtgggt tctggggtaa catttttaat ttttgccttc tttttcatgc
                                                                    1320
tgtttttgtg agcaagcaac ttcttgattc tgtctttgat ggtaccaggt gctctgagga
                                                                    1380
cttccttcac agaattttca gggatagcag aacaccgaag tccattgcct ttatatccct
                                                                    1440
gcttgcattt acacttqaag gacccttqqq tattqaaqca attqqcatgg tqqctqcacq
                                                                    1500
tatggetate catagtacat teatttatat etatacagte atategteca etgatatatt
                                                                    1560
gcagttcgaa accaatgtga catttgcagt agtagcttcc aaatgtgttc acacatcttc
                                                                    1620
gattgtaggg acagatgact ttaccagagg cacattcatc aatatctaga cagtctcttc
                                                                    1680
catttggggc caggcggagt cctgaggatg gacacaggca ctgtggccct tcttctgtgt
                                                                    1740
cttcacagct gtactgacag tttatcatgg cacatgtcct agagttcaca cacgtagcat
                                                                    1800
ctggcatgag catgtggcca ctgaggcaaa agcacttgta gcttccgtgt gtattcacac
                                                                    1860
atctgtgttg gcatggccgg ggtttcattc cacactcatt cacatcttga ctgcaggttt
                                                                    1920
teceggtgta teetggaaag catetgeatt tgtttggtee caegeactea ecaaacttae
                                                                    1980
atccaggttc gcatgtagct tcacagactc ccttgctgtt tcttctccag ccgtagcagc
                                                                    2040
aggecagttt agttecatag tgacagacce caggetgacg tgeegatget aacaaccegt
                                                                    2100
gatgeettge actggeegeg tteeegaaac cacetgeeac ceaggagage ageageggga
                                                                    2160
gcgcaagget ccagggcaga ggcatteteg cacgggteet cetteeteet cetgageeee
                                                                    2220
cctcgggagg gcgccggc
                                                                    2238
```

```
<210> 194

<211> 3326

<212> DNA

<213> Homo sapiens

<220>

<221> misc_feature

<222> (1)...(3326)

<223> n = a,t,c or g
```

<400> 194 atctctctga gtttctctgt ctcgcatatt tcctgctatc tcttgaatct taaactctcg 60 gtaacagacg cttcccgqqc tccaqqcctc cqaqtqcccc ccccqccca ctctctqqqt 120 cggcgtacat tgggcccttt ttctctgtct ctcgatatct ctctggcctc aatcgtcctc 180 ttggcgagtc tctctgtcgt ttcagtctgt gtggatttca gtcaccgcct cactctgtca 240 ctcttcctgg tgctctctct ttttctttat ctgcagcata tctggaaatg cctctcccct 300 ctgtttattc ccagcccct cctgcctgcc cacccttccc acagaaagaa tctcgagatg 360 gggaaactga ggctcggctc ggaaaggtga agtaatttgt ccaagatcac aaagctggtg 420 aacatcaagt tggtgctatg gcaaggctgg gaaactgcag cctgacttgg gctgcctga 480 tcatcctgct gctccccgga agtctggagg agtgcgggca catcagtgtc tcagccccca 540 tegtecacet gggggatece ateacageet cetgcateat caageagaac tgcagecate 600 tggacccgga gccacagatt ctgtggagac tgggagcaga gcttcagccc gggggcaggc 660 ageagegtet gtetgatggg acceaggaat ctateateae cetgeeceae eteaaceaea 720 ctcaggcctt tctctcctgc tgcctgaact ggggcaacag cctgcagatc ctggaccagg 780 ttgagctgcg cgcaggctac cctccagcca taccccacaa cctctcctgc ctcatgaacc 840 teacaaceag eageeteate tgecagtggg ageeaggace tgagacecae etacecaeca 900 getteactet gaagagttte aagageeggg geaactgtea gaeecaaggg gaeteeatee 960 tggactgcgt gcccaaggac gggcagagcc actgctgcat cccacgcaaa cacctgctgt 1020 tgtaccagaa tatgggcatc tgggtgcagg cagagaatgc gctggggacc agcatgtccc 1080 cacaactgtg tcttgatccc atggatgttg tgaaactgga gccccccatg ctgcggacca 1140 tggacccag ccctgaagcg gccctcccc aggcaggctg cctacagctg tgctgggagc 1200 catggcagcc aggcctgcac ataaatcaga agtgtgagct gcgcacaag ccgcagcgtg 1260 gagaagccag ctqqqcactq qtqqqccccc tccccttqqa qqcccttcag tatqaqctct 1320 gegggeteet eecagecacg geetacacce tgeagatacg etgeateege tggeecetge 1380 1440 etggccactg gagcgactgg agccccagcc tggagctgag aactaccgaa cgggcccca

ctgtcagact ggacacatgg tggcggcaga ggcagctgga ccccaggaca gtgcagctgt

1500

```
tctggaagcc agtgcccctg gaggaagaca gcggacggat ccaaggttat gtggtttctt
                                                                  1560
ggagaccete aggecagget ggggccatee tgcccetetg caacaccaca gageteaget
                                                                  1620
gcaccttcca cctgccttca gaagcccagg aggtggccct tgtggcctat aactcagccg
                                                                  1680
ggaceteteg ecceaceceg gtggtettet cagaaageag aggeecaget etgaceagae
                                                                  1740
tccatgccat ggcccgagac cctcacagcc tctgggtagg ctgggagccc cccaatccat
                                                                  1800
ggcctcaggg ctatgtgatt gagtggggcc tgggccccc cagcgcgagc aatagcaaca
                                                                  1860
agacctggag gatggaacag aatgggagag ccacggggtt tctgctgaag gagaacatca
                                                                  1920
ggccctttca gctctatgag atcatcgtga ctcccttgta ccaggacacc atgggaccct
                                                                  1980
cccagcatgt ctatgcctac tctcaagaaa tggctccctc ccatgcccca gaqctqcatc
                                                                  2040
taaagcacat tggcaagacc tgggcacagc tggagtggqt qcctgagccc cctqaqctqq
                                                                  2100
ggaagagccc ccttacccac tacaccatct tctggaccaa cgctcagaac cagtccttct
                                                                  2160
cegecatect gaatgeetee teeegtgget ttgteeteea tggeetggag eeegecagte
                                                                  2220
tgtatcacat ccacctcatg gctgccagcc aggctggggc caccaacagt acagtcctca
                                                                  2280
ccctgatgac cttgacccca gccccaacag gaagaatccc ctctggccaa gtgtcccaga
                                                                  2340
cccagctcac agcagcctgg gctcctgggt gcccacaatc atggaggagg atgccttcca
                                                                  2400
gctgcccggc cttggcacgc cacccatcac caagctcaca gtgctggagg aggatgaaaa
                                                                  2460
gaagccggtg ccctgggagt cccataacag ctcagagacc tgtggcctcc ccactctggt
                                                                  2520
ccagacctat gtgctccagg gggacccaag agcagtttcc acccagccc aatcccaqtc
                                                                  2580
tggcaccage gatcaggtcc tttatgggca gctqctqqqc aqcccacaa qcccaqqqcc
                                                                  2640
agggeactat eteogetgtg actecactea geceetettg gegggeetea ecceeagece
                                                                  2700
caagtcctat gagaacctct ggttccaggc cagccccttg gggacccctg gtaaccccaa
                                                                  2760
gccccaaaag ccaggaggac gactgtgtct ttgggccact gctcaacttt ccccctcct
                                                                  2820
gcaggggatc cgggtccatg ggatggaggc gctggggagc ttctagggct tccctggggt
                                                                  2880
tecettettg ggeetgeete ttaaaggeet gagetagetg gagaagaggg gagggteeat
                                                                  2940
aagcccatga ctaaaaacta ccccagccca ggctctcacc atctccagtc accagcatct
                                                                  3000
coetetecte ceaateteea taggetggge etceeaggeg atetgeatac tttaaggace
                                                                  3060
agatcatgct ccatccagcc ccacccaatg gccttttgtg cttgtttcct ataacttcag
                                                                  3120
tattgtaaac tagtttttgg tttgcagttt ttgttgttgt ttatagacac tcttqqqtqt
                                                                  3180
acctgagtct ctgttattta tttttcaggg cccagcagtc agggggaaac ttctcagagt
                                                                  3240
3300
ccttacttac tttccacagg ggaaag
                                                                  3326
```

```
<210> 195
```

```
<400> 195
```

```
ttcaaaatgg ctatggaaaa cacgtaagtt ttaaaatatg ccctctttct cgttttaaaa
                                                                60
aattattact attgtccata catgttactc ttttcatcta gatttatcat gtttctttgg
                                                                120
cctccagtct ctggtgtttg cctaagcttt attagagaca ggtcatttct acctatgtgt
                                                                180
cattttatct atgtcttgat cttatgtaat tcaattgctc tttaagatta tgttctcttc
                                                                240
tcatgtttgg tttatccatt atccaaattt tccatttctt taacctgtta tcccttgact
                                                                300
etttacagtt ctaccttttt attcacttag tettttacce tttttttatt cgttcacece
                                                                360
tttttgttgt ttcaggtact ccttacttat ctccttagcc ttttcttcct catcttcttt
                                                                420
461
```

<211> 461

<212> DNA

<213> Homo sapiens

<210> 196

<211> 772

<212> DNA

<213> Homo sapiens

<400> 196

```
tttcgttgat ttggtgagga tcaaatatga taatgcatgt gaagacactt tgtgaatggt
                                                                     60
gaagtacaat cattatcttc taggatattt agtcattttc tcctcccagt tgtaaagcat
                                                                    120
ctgttttcct aattttcaat ttcttctcca ctccaactaa tttcccaatt ttcaatttct
                                                                    180
tctccattcc aactccattt ccacaactaa tgggttcatt ttcttttatt cttgttctgt
                                                                    240
ttattgactg tctatgcatg tttccttctg ttcttgttca attgctttgt acatattcct
                                                                    300
ctcttatgaa aactccactg tggcttcagg ctagatctag tcattaatgc ctttcacagt
                                                                    360
ctgatctcca ccttcctctg atcatattcc ttcttctctt cttcactaat cttcagcgct
                                                                    420
agccagtggt gtgatgtaac tttaaacaat tccttctctg aggtagaaaa caaaaagccc
                                                                    480
tgacttatgg aatttgccag ttttcattgt gtcaatattc ccgccatgat cccaccagct
                                                                    540
tcaagaatgg atctgttggc agagtttgat agctcacgcc gtgtaatccc agcactttgg
                                                                    600
gaggetgagt tgggaggace atttgagtee aggagttega gageageatg ggeaacatgg
                                                                    660
tgaagcccag tetgtaetaa aaatacaaat attagetggg ettggtggca egeceetgta
                                                                    720
atagcagttg taggggagcc tgaggcagga gagtcacttg agcccctgta tt
                                                                    772
    <210> 197
    <211> 1408
    <212> DNA
    <213> Homo sapiens
     <400> 197
tggtggaatt egetgeacet gteecegeee eegeeeceae eacaggeeee ageggaggga
                                                                     60
ccttcagtcc agcccggtcc cctcaggccc atggaggaag agctgccacc tcccccggca
                                                                    120
gaacctgttg agaaaggggc atccacagac atctgtgcct tctgccacaa gaccqtqttc
                                                                    180
ccccgagagc tggctgtgga ggccatgaag aggcagtacc atgcccagtg cttcacgtgc
                                                                    240
cgcacctgcc gccgccagct ggctgggcag agcttctacc agaaggaggg gcgacccctc
                                                                    300
tgcgaaccet gctaccagga cacactggag aggtgcggca agtgtggcga ggtggtccgg
                                                                    360
gaccacatca tcagggccct gggccaggcc ttccacccct cetgcttcac gtgtgtgacc
                                                                    420
tgcgcccggt gcattgggga tgagagcttt gccctgggca gccagaacga ggtgtactgc
                                                                    480
ctggacgact tctacaggaa attcgcccc gtctgcagca tctgtgaaaa tcccatcatc
                                                                    540
cctcgggatg ggaaagatgc cttcaaaatc gaatgcatgg gaagaaactt ccatgaaaat
                                                                    600
tgctacaggt gtgaggactg caggatcctc ctgtctgtcg agcccacgga ccaaggctqc
                                                                    660
720
tgetgetgag agtgeceget gggeagtgaa cagaccacta geeceggetg gggeeettee
                                                                    780
etgaettggt ttecetteet aacetgetet tgeacaettt cettetgage etceatggag
                                                                    840
accageetge aageeggeee ageetgteea ggatacagtg gggetgagea eeeecaggee
                                                                    900
ttccactcct ctaccctctg ggcaccagaa ggctcctgga ccatgagctt cacccccaga
                                                                    960
attecetget gaccetgeec cacttecagg gaaaagetgg gggaggttgg acceetetea
                                                                   1020
ctgactagct gtctggtagg ggtgctagga ccagcctcgc ctgtggggtt gagctgtttg
                                                                   1080
aggacaaact ccaaggtccc ttaaaaagtg ccttttagag gctgggcatg gtggctcacq
                                                                   1140
cttgtaatcc cagcactttg ggaggccaag gtgggtggat cacctgaggt caggagttca
                                                                   1200
agaccageet ggccaacatg gtgaaaceet gtetetaeta aaaatacaaa aattageeag
                                                                   1260
gcatggtagc aggtgcctgt aatcccagct actggggaaa gctgaggcag gagaattgct
                                                                   1320
tcaatctgga aggcagaggt tgcagtgaga ttgcaccatt gcattccagc ctgggcaaca
                                                                   1380
agagggaaac tccgtctcaa aaaaaaaa
                                                                   1408
     <210> 198
     <211> 977
    <212> DNA
    <213> Homo sapiens
    <400> 198
agtgtgcgtg gaattcgctc agaacagcaa ctgctgaggc tgccttggga agaggatgat
                                                                     60
cctaaacaaa gctctgatgc tgggggccct cgccctgacc accgtgatga gcccttgtgg
                                                                    120
```

tggtccctct ggagaggaag gcaatttgca	gggcagtaca gagactgtct ctgacaaaca	accatgttgc gccatgaatt ggcagttgcc tcgctgtgct	tgatggagac tctgttccgc aaaacataac	gaggagttct agatttagaa ttgaacatcg	atgtggacct gatttgaccc tgattaaacg	180 240 300 360
		ccaatgaggt				420
		acaccctcat gcaatgggca				480 540
		atcatttcct				600
		tatgaactgc				660
		gagctgagat				720
cgtgtggtct	gcgccctggg	gttgtctgtg	ggcctcgtgg	gcattgtggt	ggggaccgtc	780
		ttcagttggt				840
cccatcctga	aaaggaaggt	gtttacctac	taagagatgc	ctggggtaaa	gccgcccagc	900
tacctaattc	ctcagtaaca	tcggatctaa	aatctccatg	gaagcaataa	attcccttta	960
agagatctat	gtcaaat					977

<210> 199

<211> 1912

<212> DNA

<213> Homo sapiens

### <400> 199

cccttgccaa aacggtgagg cagcggtgtg ttacctgccg acagcatgat gcgaggcaag gtccagccgt tccacacggc atacgagctt atggagcagc cccctttgaa ggtctccagg 120 tggacttcaa agagatgcca aagtgtggag gtaacaagta tgtactattt cttgggcgta 180 cctactctgg gtgggtggag gcctatccaa cacgaactga gaaagctcgt gaagtaaccc 240 ctgtgcttct tcgggatctg attcctagat ttcgactgcc cttacggatc ggctcacata 300 acgggcctgc gtttttggct gccatggtac agaaaacggc aaaggtattg gggatcacac 360 ggaaactgca tgccgcctcc cagcctcaga gttccggaaa ggtgtccaag tcacacagag 420 ccaeggaate teacaggage etgagaacte etecteetgg gaeteteaga ggatecagaa 480 ctgcagccca tcctcgctgg gctgtccctg tccatgtacc tggtcacggt gctgaggaac 540 ctgctcatca tcctggctgt cagctctgac tcccacctcc acacccccat gtgcttcttc 600 ctctccaacc tgtgctgggc tgacatcggt ttcacctcgg ccatggttcc caagatgatt 660 gtggacatgc agtcgcatag cagagtcatc tcttatgcgg gctgcctgac acagatgtct 720 ttctttgtcc tttttgcatg tatagaagac atgctcctga cagtgatggc ctatgaccga 780 tttgtggcca tctgcccatc tgtcaccccc tgcactaccc agtcatcatg aatcctcacc 840 ttggtgtett cttagttttg gtgteetttt teettageet gttggattee eagetgeaea 900 gctggattgt gttacacaac tcaccttctt caaqaatgtg gaaatctata atttttttc 960 tgtgacccat ctcaacttct caaccttgcc tgttctgaca gcatcatcaa tagcatattc 1020 atatatttcc atagtactat gtttggtttt cttcccattt cagggatcct tttgtcttac 1080 tataaaattg tcccctccat tctaaggatt tcatcgtcag atgggtagta taaagccttc 1140 teegeetgtg geteteacet geeagttgtt tgettatttt atggaacagg cattggegtg 1200 tacctgactt cagctgtggc accacccctc aggaatggtg tggtggcgtc agtgacgtat 1260 gctgtggtca cccccatgct gaaccctttc atctacagcc tgagaaacag ggacattcaa 1320 agegeeetgt ggaggetget cageagaaca gtegaatete atgatetgtt ateteatgat 1380 ctgttccatc ctttttcttg tgtgggtaag aaagggcaac cacattaaat ctctacatct 1440 gcaaatcctg cctgttagtc acattatttt tgtggcttga tggcttttat tcctttccqc 1500 attteetttg tgaatattge tttettegtt atgeetttaa etggaatggg tgaggattet 1560 gggateettt gtttageaaa aaceteatga etgaateete tataeetagg eggeetettt 1620 tagtttettg agcaataacc etgteateca ggtggaatea caaccatett tttatataca 1680 cgaagtccgt cacttcgttt tggaattccc tgaaaactga ctttatggaa acaacgtaca 1740 ggaggtcctc caacagcatt ggttgttcac agttgtgtag ttatactgtt gatqaaaaat 1800 aageggttte actatatatt attttgette aagttgaagt tteeaagaga ettteaaaga 1860 tgttaagtga ggacatactg tacatcaaat tcatatcctc ttccagagtt cc 1912

<210> 200 <211> 5467 <212> DNA <213> Homo sapiens

## <400> 200

cgggcccggt gctgaagggc agggaacaac ttgatggtgc tactttgaac tgcttttctt 60 ttctcctttt tgcacaaaga gtctcatgtc tgatatttag acatgatgag ctttgtgcaa 120 aaggggaget ggetaettet egetetgett eateceacta ttattttgge acaacaggaa 180 gctgttgaag gaggatgttc ccatcttggt cagtcctatg cggatagaga tgtctggaag 240 ccagaaccat gccaaatatg tgtctgtgac tcaggatccg ttctctgcga tgacataata 300 tgtgacgatc aagaattaga ctgccccaac ccagaaattc catttggaga atgttgtgca 360 gtttgcccac agcctccaac tgctcctact cgccctccta atggtcaagg acctcaaggc 420 cccaagggag atccaggccc tcctggtatt cctgggagaa atggtgaccc tggtattcca 480 ggacaaccag ggtcccctgg ttctcctggc ccccctggaa tctgtgaatc atgccctact 540 ggtcctcaga actattctcc ccagtatgat tcatatgatg tcaagtcggg cggagtagca 600 gtaggaggac tcgcaggcta tcctggacca gctggccccc caggcccccc cggccccct 660 ggtacatctg gtcatcctgg ttcccctgga tctccaggat accaaggacc ccctggtgaa 720 cctgggcaag ctggtccttc aggccctcca ggacctcctg gtgctatagg tccatctggt 780 cctgctggaa aagatggaga atcaggtaga cccggacgac ctggagaccg aggattgcct 840 ggacctccag gtatcaaagg tccagctggg atacctggat tccctggtat gaaaggacac 900 agaggetteg atggacgaaa tggagaaaag ggtgaaacag gtgeteetgg attaaagggt 960 gaaaatggtc ttccaggcga aaatggagct cctggaccca tgggtccaag aggggctcct 1020 ggtgagcgag gacggccagg acttcctggg gctgcaggtg ctcggggtaa tgacggtgct 1080 cgaggcagtg atggtcaacc aggccctcct ggtcctcctg gaactgccgg attccctgga 1140 teccetggtg etaagggtga agttggacet geagggtete etggtteaaa tggtgeeeet 1200 ggacaaagag gagaacctgg acctcaggga cacgctggtg ctcaaggtcc tcctqqcct 1260 cctgggatta atggtagtcc tggtggtaaa ggcgaaatgg gtcccgctgg cattcctqqa 1320 gctcctggac tgatgggagc ccggggtcct ccaggaccag ccggtgctaa tggtgctcct 1380 ggactgcgag gtggtgcagg tgagcctggt aagaatggtg ccaaaggaga gcccggacca 1440 1500 cgtggtgaac gcggtgaggc tggtattcca ggtgttccag gagctaaagg cgaagatggc aaggatggat cacctggaga ccctggtgca aatgggcttc caggagctgc aggagaaagg 1560 ggegeeeetg ggtteeegag gacetgetgg accaaatgge ateecagggg agaaaggeee 1620 tgctggagag egeggtgete caggeeetge aggeeecaga ggagetgetg gagaacetgg 1680 cagagatggc gtccctggag gtccaggaat gaggggcatg cccggaagtc caggaggacc 1740 aggaagtgat gggaaaccag ggcctcccgg aagtcaagga gaaagtggtc gaccaggacc 1800 tectgggeca tetggteece gaggteagee tggtgteatg ggettteeeg gteetaaagg 1860 aaatgatggt gctcctggta agaatggaga acgaggtggc cctggaggac ctggccctca 1920 aggtcctcct ggaaagaatg gagaatacgg acctcaggga cccccagggc ctactgggcc 1980 cggtggtgac aaaggagaca caggaccccg tggtccacaa ggattacaag gcttacctgg 2040 tacaggtggt cctccaggag aaaatggaaa acctggagaa ccaggcccaa agggtgaagc 2100 cggtgcacct ggagctccag gaggcaaggg tgatgctggt gcccctggtg aacgtggacc 2160 teetggattg geaggggee eaggaettag aggtggaget ggteeeetg gteeegaagg 2220 aggaaagggt getgetggte etectgggee acetggtget getggtaete etggtetgea 2280 aggaatgcct ggagaaagag gaggtcttgg aagtcctggt ccaaagggtg acaagggtga 2340 accaggeggt ceaggtgetg atggtgtece agggaaagat ggcccaaggg gtcctactgg 2400 tectattggt ceteetggee cagetggeea geetggagat aagggtgaag gtggtgeeee 2460 eggaetteea ggaatagetg geeetegtgg tageeetggg gagagaggtg aaaetggeee 2520 tecaggacet getggtttee etggtgetee tggacagaat ggtgaacetg gtggtaaagg 2580 agaaagaggg getcegggtg agaaaggtga aggaggeeet eetggagttg caggaceee 2640 tggaggttet ggacetgetg gteeteetgg teeceaaggt gteaaaggtg aacgtggeag 2700 teetggtgga cetggtgetg etggetteee tggtgetegt ggtetteetg gteeteetgg 2760 tagtaatggt aacccaggcc ccccaggtcc cagcggttct ccaggcaagg atgggcccc 2820 aggteetgeg ggtaacaetg gtgeteetgg cageeetgga gtgtetggae caaaaggtga 2880 tgctggccaa ccaggagaga agggatcgcc tggtgcccag ggcccaccag gagctccagg 2940 cccacttggg attgctggga tcactggagc acggggtctt gcaggaccac caggcatgcc 3000 aggtectagg ggaageeetg geeeteaggg tgteaagggt gaaagtggga aaccaggage 3060

```
taacggtctc agtggagaac gtggtccccc tggaccccag ggtcttcctg gtctggctgg
                                                                    3120
tacagetggt gaacetggaa gagatggaaa ceetggatea gatggtette caggeegaga
                                                                     3180
tggatctcct ggtggcaagg gtgatcgtgg tgaaaatggc tctcctggtg cccctggcgc
                                                                     3240
tcctggtcat ccaggcccac ctggtcctgt cggtccagct ggaaagagtg gtgacagagg
                                                                     3300
agaaagtggc cetgetggce etgetggtgc teceggteet getggtteee gaggtgetee
                                                                     3360
tggtcctcaa ggcccacgtg gtgacaaagg tgaaacaggt gaacgtggag ctgctggcat
                                                                     3420
caaaggacat cgaggattcc ctggtaatcc aggtgcccca ggttctccag gccctgctgg
                                                                     3480
tcagcagggt gcaatcggca gtccaggacc tgcaggcccc agaggacctg ttggacccag
                                                                     3540
tggacetect ggcaaagatg gaaccagtgg acatecaggt cecattggac caecagggee
                                                                     3600
tcgaggtaac agaggtgaaa gaggatctga gggctcccca ggccacccag ggcaaccagg
                                                                     3660
ccctcctgga cctcctggtg cccctggtcc ttgctgtggt ggtgttggag ccgctgccat
                                                                     3720
tgctgggatt ggaggtgaaa aagctggcgg ttttgccccg tattatggag atgaaccaat
                                                                     3780
ggatttcaaa atcaacaccg atgagattat gacttcactc aagtctgtta atggacaaat
                                                                     3840
agaaagcctc attagtcctg atggttctcg taaaaaacccc gctagaaact gcagagacct
                                                                     3900
gaaattctgc catcctgaac tcaagagtgg agaatactgg gttgacccta accaaggatg
                                                                     3960
caaattggat gctatcaagg tattctgtaa tatggaaact ggggaaacat gcataagtgc
                                                                     4020
caateetttg aatgtteeac ggaaacactg gtggacagat tetagtgetg agaagaaaca
                                                                     4080
cgtttggttt ggagagtcca tggatggtgg ttttcagttt agctacggca atcctgaact
                                                                     4140
teetgaagat gteettgatg tgeagetgge atteettega etteteteea geegagette
                                                                     4200
ccagaacatc acatatcact gcaaaaatag cattgcatac atggatcagg ccagtggaaa
                                                                     4260
tgtaaagaag gccctgaagc tgatggggtc aaatgaaggt gaattcaagg ctgaaggaaa
                                                                     4320
tagcaaattc acctacacag ttctggagga tggttgcacg aaacacactg gggaatggag
                                                                     4380
caaaacagtc tttgaatatc gaacacgcaa ggctgtgaga ctacctattg tagatattgc
                                                                     4440
accetatgae attggtggte etgateaaga atttggtgtg gaegttggee etgtttgett
                                                                     4500
tttataaacc aaactctatc tgaaatccca acaaaaaaaa tttaactcca tatgtgttcc
                                                                    4560
tettgtteta atettgteaa eagtgeaagg tggaeegaea aaatteeagt tatttattte
                                                                     4620
caaaatgttt ggaaacagta taatttgaca aagaaaaatg atacttctct ttttttgctg
                                                                     4680
ttccaccaaa tacaattcaa atgetttttg ttttattttt ttaccaattc caatttcaaa
                                                                     4740
atgtctcaat ggtgctataa taaataaact tcaacactct ttatgataac aacactqtgt
                                                                     4800
tatattettt gaateetage ceatetgeag ageaatgaet gtgeteacea gtaaaagata
                                                                     4860
acctttcttt ctgaaatagt caaatacgaa attagaaaag ccctccctat tttaactacc
                                                                     4920
tcaactggtc agaaacacag attgtattct atgagtccca gaagatgaaa aaaattttat
                                                                     4980
acgttgataa aacttataaa tttcattgat taatctcctg gaagattggt ttaaaaagaa
                                                                     5040
aagtgtaatg caagaattta aagaaatatt tttaaagcca caattatttt aatattggat
                                                                    5100
atcaactgct tgtaaaggtg ctcctctttt ttcttgtcat tgctggtcaa gattactaat
                                                                    5160
atttgggaag getttaaaga egeatgttat ggtgetaatg taettteaet tttaaaetet
                                                                     5220
agatcagaat tgttgacttg cattcagaac ataaatgcac aaaatctgta catgtctccc
                                                                    5280
atcagaaaga ttcattggca tgccacaggg gattctcctc cttcatcctg taaaggtcaa
                                                                    5340
caataaaaac caaattatgg ggctgctttt gtcacactag cataggagaa tgtgttgaaa
                                                                    5400
tttaactttg taagcttgta tgtggttgtt gatctttttt ttccttacag acaaccataa
                                                                    5460
taaaata
                                                                    5467
```

```
<210> 201
```

<213> Homo sapiens

```
<400> 201
tttttttttt ttagaaggct tgctgagcag ggttgtagtt gaaggtggat ggcaggtgag
                                                                      60
geegttette taatttgtea tatteeagat ggaacteett agetaettte etceagttaa
                                                                     120
gacagtcaaa gaagtaatat gttcccctct cataggtatt ggttttcatt gttggctcca
                                                                     180
tgcctggtgc cctggtaatc catactcgtt cttctttgtg gtatctccaa tcacggttaa
                                                                      240
aaageteeae tgeagetaaa agttgtaata egteteetee atteatgtaa tagagataga
                                                                     300
agagaaggtc ttcaccatat cggccaagtt ttattgcagc cagctgaaaa agaaaaataa
                                                                     360
cttatcccta atgtgaatgt tcgttaagta ctcagatgga acatggaagt ctatgtcttg
                                                                     420
aggtcgacaa ggtgaagatg cccagggtga cgcaaatttg gggtagagat tttcaggaga
                                                                     480
```

<211> 1969

<212> DNA

```
gttcagattg aggcctaatg ttgttaagtc acttcctaat gcaagatgta ccattcctgg
                                                                      540
gtetgtetet getgeeetga taaatgttaa eaggeeaate atteeaaatt ggteegteae
                                                                      600
catecettga ggaatgttag taaccegace atcaggtaac acetggatee etttttetg
                                                                      660
ctggttatta ttttgtgttg ttgaactttt atctccaggg aatttgggtc catctgtact
                                                                      720
tgaagttgtc ttgccagatg tattcaaatt agatttactg tcatcattac ttgatgttgg
                                                                      780
atctttatag ctggagcctg gtaatgctgg aaaatcttca ttgtgtattg agaagtcctg
                                                                      840
ggattgttca tttgctggtt ttgttaccat tccaacataa ggagctcttc cagccaaggg
                                                                      900
gtttattaat ggagttgggt taccacttcc ttccctcctg tttcggtctg ctaatgctgg
                                                                     960
gaaatctgaa aggtccaatc ctgtcacatt ttcacttccg tctgttccat taaaaatgtt
                                                                    1020
acttgataag gagttattca ttccaaatgc ctgattcctg ttcattccaa atccagacat
                                                                    1080
actgttcaca gtaaaaggct gtcgagaagg ctgctgcttt.ggcatacata ttatgcttgg
                                                                    1140
cgagcttctg ttggggctac ctaaccctga actgctcatg ctatttgtcc tgctaggaat
                                                                    1200
tecaatgeee tgaceaacet gggagtggtt cateatatte etaggattea taggeaaaat
                                                                    1260
accectgett ggagatggag geggtgtgaa atgaacattg ttggtacece tgttgttgge
                                                                    1320
gtgaacgtgg cctcggtaac tgagtgcctt gtgataagct gcgatttaac tgaggggtat
                                                                    1380
tgttgctcat ccccctcatt ggaaggccta gtgcactttg ttgcccgtat aaacttgccc
                                                                    1440
caaactgaga cagctgacct gatgtagatg gtgatgccag catatctttt tctgaccgat
                                                                    1500
gtggaaacat agaagactgg ctgtagtaca tgttttcgtc atggtagtca ctgtcgaccc
                                                                    1560
cctctacaaa cttctttctt gaagcaccaa acatgctgtt tgtcacctgg tagtttcttt
                                                                    1620
teteagataa tgtatgteea teagteetea eeatagagte gtgteettte eteaeagtae
                                                                    1680
cggaggcaat caaatagaac tgtcactcaa gggtcgtgtc acaggaagga ccgcccacca
                                                                    1740
cgtctccctc gcatgaattt tcttgtcccg cggatccaag atggcgacgt atccaccgcg
                                                                    1800
gaggetgetg ggageaagae etttaccete tgacegeege egtgaceece gtegeteegg
                                                                    1860
etteceteca ggeggeageg gaaggtggga gegaegaetg caaaaeggea gegatggggt
                                                                    1920
gggtaggcag gccgctttca gcgcgcttct aacaaggtgg agagaggcg
                                                                    1969
```

```
<210> 202
<211> 3878
<212> DNA
<213> Homo sapiens
<220>
<221> misc_feature
<222> (1)...(3878)
<223> n = a,t,c or g
```

# <400> 202

```
tettgegage tegtegtaet gacegagegg ggaggetgte ttgaggegge acegeteace
                                                                      60
gacaccgagg cggactggca gccctgagcg tcgcagtcat gccggccgga cccgtgcagg
                                                                     120
eggtgeeece geegeegee gtgeecaegg ageecaaaca geecacagaa gaagaageat
                                                                     180
etteaaagga ggattetgea eettetaage eagttgtggg gattatttae eeteeteeag
                                                                     240
aggtcagaaa tattgttgac aagactgcca gctttgtggc cagaaacggg cctgaatttg
                                                                     300
aagctaggat ccgacagaac gagatcaaca accccaagtt caactttctg aaccccaatg
                                                                     360
accettacea tgeetactae egecacaagg teagegagtt caaggaaggg aaggeteagg
                                                                     420
ageegteege egecateeee aaggteatge ageageagea geagaceaee eageageage
                                                                     480
tgccccagaa ggtccaagcc caagtaatcc aagagaccat cgtgcccaaa gagcctcctc
                                                                     540
ctgagtttga gttcattgct gatcctccct ctatctcagc cttcgacttg gatgtggtga
                                                                     600
agctgacggc tcaatttgtg gccaggaatg ggcgccagtt tctgacccag ctgatgcaga
                                                                     660
aagagcagcg caactaccag tttgactttc teegeecaca gcacageete ttcaactact
                                                                      720
tcacgaagct agtggaacag tacaccaaga tctttgattc cacccaaagg tttattttca
                                                                     780
aagctcaaga aagaggctga aaaacccccg agaagttttg gatcaggtgt gtttaaccga
                                                                     840
gtggaatggg ccaaattcca ggaacgtgag aggaagaagg aagaagagga gaaggagaag
                                                                     900
                                                                     960
gagcgggtgg cctatgctca gatcgactgg catgattttg tggtggtgga aacagtggac
ttccaaccca atgagcaagg gaactttccc tcccccaacc acgccagagg agctgggggc
                                                                    1020
ccgaatcctc attcaggagc gctatgaaaa gtttggggag agtgaggaag ttgagatgga
                                                                    1080
ggtcgagtct gatgaggagg atgacaaaca ggagaaggcg gaggagcctc cttcccagct
                                                                    1140
```

```
ggaccaggac acccaagtac aagatatgga tgagggttca gatgatgaag aagaagggca
                                                                    1200
gaaagtgccc ccaccccaa gagacaccca tgcctccaac tctgccccca actccagacc
                                                                    1260
aagtcattgt ccgcaaggat tatgatccca aagcctccaa gcccttgcct ccagcccctg
                                                                    1320
ctccagatga gtatcttgtg tcccccatta ctggggagaa gatccccgcc agcaaaatgc
                                                                    1380
aggaacacat gcgcattgga cttcttgacc ctcgctggct ggagcagcgg gatcgctcca
                                                                    1440
tccgtgagaa gcagagcgat gatgaggtgt acggcaccag ggtctgggat attgagagca
                                                                    1500
getttgaage agttgggtga gegggegtae ttgacatett teggtgttag gagggaaaca
                                                                    1560
gccattggta agaagatcgg ttnagggagg gagatcccag aaagccagag ggaaaaggtt
                                                                    1620
gacctgggat ggccactcag ggcagcatgg gcccggaccc agcaggctgc ccaggccaac
                                                                    1680
atcaccetce aggageagat tgaggeeatt cacaaggeea aaggeetggt geeagaggag
                                                                    1740
tgacactaaa gagaagattg gcccagcaa gcccaatgaa atccctcaac agccaccgcc
                                                                    1800
accatettea gecaccaaca tececagete ggetecacce atcaetteag tgeecegace
                                                                    1860
acccacaatg ccacctccag ttcgtactac agttgtctcc gcagtacccg tcatgccccg
                                                                    1920
gcccccaatg gcatctgtgg tccggctgcc cccagggttc agtgatcgcc cccatgccgc
                                                                    1980
ccatcatcca egggcccaga attcaacgtg ggtgcccatg gccttcctt ggcccttcct
                                                                    2040
atttatgggc cccccgtcca ccccccatga ttgtgccaac agccttttgt gcctgctccc
                                                                    2100
accttgtggc acctgtccca gctccagccc caatgccccc tgtgcatccc ccacctccaa
                                                                    2160
tggaagattg agcccacctc caaaaaactg aaggcaagag gacaggcttc agccagaagg
                                                                    2220
agaagtteet ggegeagaaa caagggteea gtgteeatea aagteeaggg tgeeecaaca
                                                                    2280
tgcaggataa gacggaatgg aaactgaatg gggcaggtgc tggtcttcac cctcccactt
                                                                    2340
cacggaccag ggtctttgtt catttaaggt tgaagatttc atggaagcca caggcatgcc
                                                                    2400
gtcagggtaa acagaaggct acaggtatga ggggtatctt catcaaagat tccaactcac
                                                                    2460
tgagettaet acaaccatgg gecaatggeg cagteateca cetggeeete aaggagagag
                                                                    2520
gegggaggaa gaagtagaca agaggaacet getgteaagt eeetgeeatt ttgeetetee
                                                                    2580
tgteteceae eccetgeece agacceagga geeceetga ggetttgeet tgeetgeata
                                                                    2640
tttgtttege tettaeteag tttgggaatt caaattgtee tgeagaggtt catteecetg
                                                                    2700
accetttece cacattggta agagtagetg ggttttetaa gecactetet ggaatetett
                                                                    2760
tgtgttaggg tctcgatttg aggacattca tttcttcagc agcccattag caactgagag
                                                                    2820
cccagggatg tcctacagga tagtttcata gtgacaggtg gcacttggct aatagaatat
                                                                    2880
ggctgatatt gtcattaatc attttgtacc ttgacatggg ttgtctaata aaactcggac
                                                                    2940
cettettgtg aaatcagtta aataagactt gteteggtea eetgtgeeet gteeaqacte
                                                                    3000
gaggeagtgg taacactgca cagtgctatg tggcttctct ttgaggattt ttgggttttg
                                                                    3060
taactaaatt cttgctgccc tcatactttt tatgtattag aatcatattc gtattgccct
                                                                    3120
tttaaaacat tgggatcctc caaaggcctg ccccatgtat ttaacagtaa tacaggaagc
                                                                    3180
atggcaggca ccatgcaaac caaggatgga tggtgcagtc cctgtgtcag tgggcggtgg
                                                                    3240
tttcctgctg gcctggaatc actcatcacc tgattgattg gctctgtggt cctgggcagg
                                                                    3300
tgcctcatag gtgtgtggat atgatgacgt ttctttaaaa tgtatgtatt taacaaatac
                                                                    3360
ttaattgtat taaggtcatg taccaaggat ttgataaagt ttaaataatt tactctctac
                                                                    3420
ttttatccat tttatccatt ttaactcatg taatcctcat gtgagtattc ctgtttaaca
                                                                    3480
cttgagtaaa ctgaggcaca gagaacataa gttgcatgcc atagtcacac actgtgaaag .
tgaaaagaga atgtgtgcaa aacacgtcac agtcctggtt tctgagtaaa ggcaggctgt
                                                                    3600
tatctttaga atcaagctat cacagggaga taggcaatgc tgtgggtgtt ggaggaaggt
                                                                    3660
gagagcctgt tgctaacaat ttcctggttt taaagctaag gctgatttta ttgggaagat
                                                                    3720
ctcacatgtg tgtggcccct gagagttccc agtgcctttt atttgcagtc cttccatttg
                                                                    3780
gacctcctag ctgccccatc aggtcatctc cagggctcag aggggtgaga ccatttccca
                                                                    3840
aggttcacag gaaccagctt ttttagttca ccaccctg
                                                                    3878
```

```
<210> 203 <211> 1587
```

<212> DNA

<213> Homo sapiens

```
<400> 203
```

gacaaagctg tgggcaagag gtcagcagga cccgcctggg ggtgccggcg ttggtgactg 60 cgggtcgggg ctcctagaac ataggagccg gctgcctggc ctcctttctc ctccaggaag 120 agtcattctt tggcatttgt gtttagagcc aggaggaagg cggaaggtag ggagggaggg 180

```
etggteecce tetgaggggg etetagtgee tgaceetgae etgteeteat tegacagetg
                                                                     240
aaactgttaa gegetggeec agteeeceea ceecaccag eegtgtactg eetgggetee
                                                                     300
cctcaaaggg aaatttttac ggaaacatct tggcagcaag tggaaaaaga tctatggccc
                                                                     360
atgaaccaac tgaaaactcc aagaaccctc tgtctgcctc tgccagcagc gagtcctaag
                                                                     420
cgcagaatcc agagctcgta gctgtcctca gctgtaacta ctgtttcaga atgttgctgc
                                                                     480
tgcatacatt tgtcatgtca gccagccagc tccgtgggtg agagtgtgcg tgtgcgcgtg
                                                                     540
tctgtgtgta tgtgcgtctg tgtgtgcatg tctgtgtgtg tgcacgtctg tgcgtctgtg
                                                                     600
tgegegtetg tgeatgtgtg tgtetgtgeg tgtgtgegte tgtgtgtgeg tetgtgegeg
                                                                     660
tgtgtgtgcg cgtctgtgtg tatgtgtgca cgcgcgtctg tgtgtgcacg tgcgtgtctc
                                                                     720
tgcacgegtg tetgtgtatg tgtgcacgeg tgtgtetgtg tgtgtgcacg cgcgtgcacq
                                                                     780
tcaccaccgg agcatttagg gtttggtaca agatggttct aaaatggcaa aggtttttcg
                                                                     840
tgtttgtttg ttttgtttct ttggaaaaag aaaaggaaag gaaaatcatg cagaatcgca
                                                                     900
agcattcaga ctggacgacc ggctcgtatt ccgatcagtc gcttccattg ttagcatcgt
                                                                     960
acacgattgt gatttttatg tcaaaagaag ccaaaacttg caatactatt tttagcagac
                                                                    1020
aaaaaaaaga actaagtata aaatgtataa atatttttga cttgaacatt tggatggcac
                                                                    1080
tgggtgcaag tagagcatcc atcettcgga tggaatgttt ggaaaaaaaga gacttttaaa
                                                                    1140
aaqqaqacqq ttqttttaaa qaqtctqttt aqqqqttaaa qtactqtaac tcacqactqt
                                                                    1200
taaaaaataa attttcctqt qctqtaaaqq aaqqtttcac aqtaccactq aqttaqattt
                                                                    1260
cagecacaga tgcttagett tttttttttg ccttttttt aaggaggaag cctttgtttt
                                                                    1320
gttttcctga gccctcactc tgtttttgtg ctgttactcg gtagagtcaa gactgttact
                                                                    1380
ttttagccat ggctgacatt gtatcaataa ctaaaactga aacattcaaa agcgaacagg
                                                                    1440
gaaaccgagg gcttcaagcg tgctcagagc cgtttcagac agtggaaatc catgacaaac
                                                                    1500
aaaaggatgt gatcattaat tgtaaagcgc tttgtaaaat tcacatttac aaaataataa
                                                                    1560
agtcagttca aacctaaaaa aaaaaaa
                                                                    1587
```

<210> 204 ... <211> 4195 <212> DNA

<213> Homo sapiens

## <400> 204

agaaagtaac agtgacttct agatttctgg gttgggtcat cttgttggat agtagtacca 60 ctgagatagg gaattcaagg tttggggcaa gggtaattgg agatgagaat tgtgtttgga 120 ggtaactact gacattcaag tggagagggt tagttggcag ttagttctat ggtcatctct 180 tttgccgaga ctgtatattt atcagactcc tgggagaaca ccaacatcca tggggttgta 240 gggaaggcta aggacaggag tggggagtgg taccttgaaa atccaaaagc catctcaagt 300 aaaaggaata aatgtgtcat gctttttaaa aagttgatgt gcggaaaatg ttttcttggc 360 ttggaaactg ggcggcccag gggatgacag tatggacttc cagtgaagta gtgacggaag 420 cctgatcata gacattaagg aaagcggtgt aggtgttgtg agcttttgct gtaagaaaaa 480 gttgagactt ttgttttgct ttgtttgtga gagatgtgta tgtatttctg ctgagtgata 540 aagccagcgg ggagggactg atttttatag gaaaggagga aaaataatgg aaacacatct 600 cattatttta ttqtcacatt tcttttcttt qttatctttt qagtqtttcc cttttttqcc 660 agtagagtta ttgtctattt tttctttcta taggacaaaa aaactaatac agactccttt 720 atttttatat ggatatacta ggattgtaat tcagatattt aatatctttt atcagtgttc 780 agaatcatag attaatggag aaaacattta aaattgtttt aaatttaaat acattgaact 840 ctaacataga tqaaaaatqt qtttactqct ttttatcagq tcgactgaaa gcaacgtatq 900 gtaaatattg aaaactccag gcatcgaaaa caagagcaga agcaccttca gccacagcct 960 tataaaaggg aaggtaaatg gcataaatat ggtcgcacta atggaagaca aatggcaaat 1020 cttgaaatag aattggggca attacctttt gatcctcaat actgattcac aattgagtta 1080 aattagacaa ctgtaagaga aaaatttatg ctttgtataa tgtttggtat tgaaactaat 1140 gaaattacca aqatqacaat gtcttttctt ttgtttctaa gtatcagttt gataacttta 1200 tattattcct cagaagcatt agttaaaagt ctactaacct gcattttcct gtagtttagc 1260 ttcqttqaat ttttttqac actqqaaatq ttcaactqta qttttattaa ggaaqccaqq 1320 catgcaacag attttgtgca tgaaatgaga cttcctttca gtgtaagagc ttaaagcaag 1380 ctcagtcata catgacaaag tgtaattaac actgatgttt gtgttaaatt tgcagcagag 1440 cttgagaaaa gtacattgtt ctggaatttc atcattaaca ttttataatc ttacactcac 1500

```
ttettgtett tttgtgggtt caagageeet etgaettgtg aagaatttge tgeeetetta
                                                                    1560
agagettget gaettgtttt ettgtgaaat tttttgeaca tetgaatate gtggaagaaa
                                                                    1620
caataaaact acaccatgag gaaaactaaa ggtctttatt taaaatctgg cattgtatta
                                                                    1680
acatgtaatt ttatactatg tggtatttta tacatttcct cagtagtgat atttggtaaa
                                                                    1740
gcagttcata cagctttttt ctaagttcca tgaatcttac ccagtgttta ccgaagtatt
                                                                    1800
taagcagcat ctgaatattt ccacccagca atgttaattt atctaggaaa gttcagaatt
                                                                    1860
tcatcttcat gttgaatttc ccttttaact tccgttcata gacatatatg tgacttccaa
                                                                    1920
ttcgaccctc tggcaagtga gtgtggaaga aaacagcagt tcttttataa ttgcttgaaa
                                                                    1980
ttaggaaagc gcttatttcc tcttccaaaa tgctcgaagg tgatcaagtg aagtagggca
                                                                    2040
atgatgcatc atcatgaaac tctctatgta accagtttaa gggatttagg taaaatacat
                                                                    2100
ctgcttcatc aagataatga ctttttccag tcaggtctgg cgggcactgg agaaatctca
                                                                    2160
tgggaagtgg gcagtgaaca tcgctgtaat aatgagtaga gtggcaacgc atcattataa
                                                                    2220
atattgaagc tgaagattaa tcggggatgg gtgaacaaac tttttgaata tgactcatga
                                                                    2280
catcaagagt acctcgttga tgaactaaac cagtataaag ggcgaggaac aaatttgata
                                                                    2340
aaaacaggaa acttagagct ggtttcttcc atgttttcag gtgggttaat gagtatccac
                                                                    2400
agaacaccat acagaatggt aaaactggat aaataaacct gaattctttg tggctcaaca
                                                                    2460
tgctataaac aagcagtgtc cacagcacag tcaccaaaag tatccggtat ctctttggtg
                                                                    2520
ctagatagca gccatgaata aagaagggta agtgagtacc caaqataact ggaaatcctt
                                                                    2580
gactgaagta ccagtgccat ggatgagaac cataaaatgt tccccagttc tgcagcacgt
                                                                    2640
taaatttcaa aaaattaaat tgaaccagag tccattggcc aaaaaaaaat acgatcaatc
                                                                    2700
atcagagaca aactcaaagt aacaaagcct acaggtaaaa aatgatgtag aataagatca
                                                                    2760
agetttettg gttettgaca gaaatgtetg aagageaaag gtgteeacag aatgaeaget
                                                                    2820
gtgggacgaa ttatgaaggc aagtgccacc agggatgagt atttgacact gttcatagac
                                                                    2880
tttgaacctt ccaaaggata gtagaaaaga gcaattatag tgagaacagt ttccatggtg
                                                                    2940
tttgtaaggg ttctggtaca gcaataccat gtgaaccagg agcacaactg gcaaaaaaac
                                                                    3000
acceatettg ceaetteetg attttetagt tgetteatta atgagtaaag teteaeatet
                                                                    3060
gctacagcag acagaagtgc ttgggcaagt ctaggaatcc aaatcagcaa ctgaacacta
                                                                    3120
tettteeeta aaagatgaag aatettgtaa atgettgeaa agattaaggg ataagtgtaa
                                                                    3180
ctcctcagtc tctctgtcca ttcccaagtc aaataaccat aattgaaaac catgtgatgt
                                                                    3240
gaaacttcaa gagactgcca gtattcatct ggaacaaaac ttgtctgcac taaaaagcag
                                                                    3300
tttaatattc gtaaagctat ggtaaacaag agcagataaa tattttctcc aagaagatcc
                                                                    3360
ccgcggcgcc tggcgctctt ctcctgggtg ttgaagtaca aggtagactt tctctttcgc
                                                                    3420
agetttatet tgeegtggga geggttetgg agaccatgea aagtgagget ggeateteeg
                                                                    3480
cccccegget ccattccgca cttgcttagg ggcctcctca tccctggccg ccaccttcct
                                                                    3540
aaggeggaag aaagetgeag tagegegetg etegteeate eattaagtit ggeetitgag
                                                                    3600
agcagtegte getegeaage eeggaagtaa eegggaaegg geaacttegt ageteeeaee
                                                                    3660
cgacgtggtg gcctccttgc ggtttccttt cgccgtttcc gaaccgaggg attgctactc
                                                                    3720
geetttgget tggeggtete tgtgeteggg ggteegaaaa etgetggaag geeceeggte
                                                                    3780
tetggagggg ageaggeggt agegagttta gtgaegtgga geaggegeag aacagtegga
                                                                    3840
gatttgaaga gatttcctgg gtgtggagtg tgactttcca aaaccagctt ttccttgagc
                                                                    3900
tgtatttgtt gcagcaatgt ttaggagatt gacttttgca caactgcttt ttgccactgt
                                                                    3960
ccttggaatt gctggaggag tatatatttt tcaaccagta tttgaacagt atgccaaaga
                                                                    4020
tcagaaggaa ttaaaagaaa agatgcagtt ggtacaagaa tcagaagaga agaaaagtta
                                                                    4080
atactacatg gagttaggcc tggcgcagtg gctcacgcct gtaatcccag cactttggga
                                                                    4140
ggccgaggcg ggtggatcaa gtggtcagga gttcaagacc agcctgacca acatg
                                                                    4195
```

```
<210> 205
```

<213> Homo sapiens

```
<400> 205
```

```
ctgacttaga acaacttttt tgacttcetg cagggaggac ccttacagta tttttggaga 60 agttagtaaa accgaatctg acatcatcac ctagcagttc atgcagctag caagtggttt 120 gttcttaggg taacagagga ggaaattgtt cctcgtctga taagacaaca gtggagaaag 180 gacgcatgct gtttcttagg gacacggctg acttccagat atgaccatgt atttgtggct 240
```

<211> 4965

<212> DNA

taaactcttg	gcatttggct	ttgcctttct	ggacacagaa	gtatttgtga	cagggcaaag	300
cccaacacct	tcccccactg	atgcctacct	taatgcctct	gaaacaacca	ctctgagccc	360
ttctggaagc	gctgtcattt	caaccacaac	aatagctact	actccatcta	agccaacatg	420
	tatgcaaaca					480
	ctaaatgtta					540
	aaccttacag					600
	gataagacat					660
acatgattgt	acacaagttg	aaaaagcaga	tactactatt	tgtttaaaat	ggaaaaatat	720
tgaaaccttt	acttgtgata	cacagaatat	tacctacaga	tttcagtgtg	gtaatatgat	780
	aaagaaatta					840
	ctctataata					900
	ccaggagagc					960
	tggaatcccc					1020
	aaagattgcc					1080
	tatacgaaat					1140
acgtaatgga	agtgctgcaa	tgtgtcattt	cacaactaaa	agtgctcctc	caagccaggt	1200
ctggaacatg	actgtctcca	tgacatcaga	taatagtatg	catgtcaagt	gtaggcctcc	1260
cagggaccgt	aatggccccc	atgaacgtta	ccatttggaa	gttgaagctg	gaaatactct	1320
	gagtcgcata					1380
	tttaaggcct					1440
	acatcttata					
						1500
	atagccctgc					1560
	ttagatgaac					1620
gaatgtggag	ccaatccatg	cagatatttt	gttggaaact	tataagagga	agattgctga	1680
tgaaggaaga	ctttttctgg	ctgaatttca	gagcatcccg	cgggtgttca	gcaagtttcc	1740
tataaaggaa	gctcgaaagc	cctttaacca	gaataaaaac	cgttatgttg	acattcttcc	1800
	aaccgtgttg					1860
	tatattgatg					1920
	actgttgatg					1980
	actcgatgtg					2040
	ggcactcggg					2100
	agattacatc					2160
	ggtgactcac					2220
atcctcactt	gctcctcaaa	ctgagaagga	gagtgaatgc	cttcagcaat	ttcttcagtg	2280
gtcccattgt	ggtgcactgc	agtgctggtg	ttgggcgcac	aggaacctat	atcggaattg	2340
	agaaggcctg					2400
	acagagatgc					2460
	ggaatacaat					2520
						2580
	taacatgaag					
	acttccttca					2640
	taaaaacagg					2700
	gctggaaatg					2760
atgacagtga	ttcagaggaa	ccaagcaaat	acatcaatgc	atcttttata	atgagctact	2820
ggaaacctga	agtgatgatt	gctgctcagg	gaccactgaa	ggagaccatt	ggtgactttt	2880
	cttccaaaga					2940
	aatctgtgct					3000
	gaaagacaca					3060
						3120
	gaggaaagac					
	tcctgcagaa					3180
	gaagaattcc		<del>-</del>			3240
	ggatggatct					3300
aaagtgcgga	aacagaagag	gtagtggata	tttttcaagt	ggtaaaagct	ctacgcaaag	3360
ctaggccagg	catggtttec	acattcgagc	aatatcaatt	cctatatgac	gtcattgcca	3420
	tgctcagaat					3480
	tgaagtggac					3540
	gctccctgaa					3600
-	-			_		3660
	agaacattct					
	ataaatgagg				_	3720
ayaaytagga	agtgaaaata	ggcacacagt	ggattaatta	aatycagcga	accaatattt	3780

```
gtagaagggt tatattttac tactgtggaa aaatatttaa qataqttttq ccaqaacaqt
                                                                    3840
ttgtacagac gtatgcttat tttaaaattt tatctcttat tcaqtaaaaa acaacttctt
                                                                    3900
tgtaatcgtt atgtgtgtat atgtatgtgt gtatgggtgt gtgtttqtgt gagaqacaga
                                                                    3960
gaaagagaga gaattettte aagtgaatet aaaagetttt getttteett tgtttttatg
                                                                    4020
aagaaaaaat acattttata ttagaagtgt taacttagct tgaaggatct gtttttaaaa
                                                                    4080
atcataaact gtgtgcagac tcaataaaat catgtacatt tctgaaatga cctcaagatg
                                                                    4140
tecteettgt tetaeteata tatatetate ttatatagtt taetatttta ettetagaga
                                                                    4200
tagtacataa aggtggtatg tgtgtgtatg ctactacaaa aaagttgtta actaaattaa
                                                                    4260
cattgggaaa tottatatto catatattag catttagtoc aatqtotttt taaqottatt
                                                                    4320
taattaaaaa atttccagtg agcttatcat gctgtcttta catggggttt tcaattttgc
                                                                    4380
atgctcgatt attccctgta caatatttaa aatttattgc ttgatacttt tgacaacaaa
                                                                    4440
ttaggttttg tacaattgaa cttaaataaa tgtcattaaa ataaataaat gcaatatgta
                                                                    4500
ttaatattca ttgtataaaa atagaagaat acaaacatat ttgttaaata tttacatatg
                                                                    4560
aaatttaata tagctatttt tatggaattt ttcattgata tgaaaaatat gatattgcat
                                                                    4620
atgcatagtt cccatgttaa atcccattca taactttcat taaaqcattt actttqaatt
                                                                    4680
tctccaatgc ttagaatgtt tttaccaqqa atqqatqtcq ctaatcataa taaaattcaa
                                                                    4740
ccattatttt tttcttgttt ataatacatt gtgttatatg ttcaaatatg aaatgtgtat
                                                                    4800
gcacctattg aaatatgttt aatgcattta ttaacatttg caggacactt ttacaggccc
                                                                    4860
caattatcca atagtctaat aattgtttaa gatctagaaa aaaaaaatca agaatagtgg
                                                                    4920
tatttttcat gaagtaataa aaactcgttt tggtgaaaaa aaaaa
                                                                    4965
```

<210> 206 <211> 1179 <212> DNA <213> Homo sapiens

<400> 206 ctttaattcc cacggacggg gctcctccag ctacagcagc caaagcatat tcaatctgaa tgfagtcagc gaaaagctgt accegegete egecatettt accegaagag ccaaagcaca 120 geogracaca tgegeactgt ggeogattte ettteattte eeegeeeete acettteett 180 tactctctat gattggagga gagtcagagc tgctccaaga gcatgcgggg tgttgtagtt 240 ctaagaageg aggettgeee gattetgtge etgtgegeat getgaaagea ggggegggae 300 eggggeggte ttecageagg gaaaatggeg etggeeatge tggtettggt gqtttegeeg 360 tggtctgcgg cccggggagt gcttcgaaac tactgggagc gactgctacg gaagcttccg 420 cagageegge egggetttee cagteeteeg tggggaecag cattageagt acagggeeca 480 gccatgttta cagagccagc aaatgatacc agtggaagta aagagaattc cagccttttg 540 gacagtatet tttggatggc ageteccaaa aatagaegea ceattgaagt taaceggtgt 600 aggagaagaa atccgcagaa gcttattaaa gttaagaaca acatagacqt ttqtcctgaa 660 tgtggtcacc tgaaacagaa acatgtcctt tgtgcctact gctatgaaaa ggtqtqcaag 720 gagactgcag aaatcagacg acagataggg aagcaagaag ggggcccttt taaggctccc 780 accatagaga ctgtggtgct gtacacggga gagacaccgt ctgaacaaga tcagggcaag 840 aggatcattg aacgagacag aaagcgacca tcctqgttca cccaqaattg acacccaaag 900 atgttaaaag gataacttca cagtaaatca tttctcctga aatagaggaa gattctttac 960 gttgttgtgc ttgtttttaa atcatcagta tagtttaaca cattctttct aagcagtttt 1020 gtqtqqqata atttqaaqaa tatattatqa qtaaactccq aaaattttqt ttatccaaaq 1080 gcttcaatgg attatgtttc tattatatac aaggttttaa gtaaacataa aatttccaga 1140 1179

<210> 207

<211> 1507

<212> DNA

<213> Homo sapiens

<400> 207 tttcgtgtgc ccgacatggc gagtgtagtg ctgccgagcg gatcccagtg tgcggcggca 60 geggeggegg eggegeetee egggeteegg eteeggette tgetgttget etteteegee 120 geggeactga tececacagg tgatgggeag aatetgttta egaaagaegt gacagtgate 180 gagggagagg ttgcgaccat cagttgccaa gtcaataaga gtgacgactc tgtgattcag 240 ctactgaatc ccaacaggca gaccatttat ttcagggact tcaggccttt gaaggacagc 300 aggtttcagt tgctgaattt ttctagcagt gaactcaaag tatcattgac aaacgtctca 360 atttctgatg aaggaagata cttttgccag ctctataccg atcccccaca ggaaagttac 420 accaccatca cagtcctggt cccaccacgt aatctgatga tcgatatcca gaaagacact 480 gcggtggaag gtgaggagat tgaagtcaac tgcactgcta tggccagcaa gccagccacg 540 actatcaggt ggttcaaagg gaacacagag ctaaaaggca aatcggaggt ggaagagtgg 600 tcagacatgt acactgtgac cagtcagctg atgctgaagg tgcacaagga ggacgatggg 660 gtcccagtga tctgccaggt ggagcaccct gcggtcactg gaaacctgca gacccagcgg 720 tatctagaag tacagtataa gcctcaagtg cacattcaga tgacttatcc tctacaaggc 780 ttaacccggg aaggggacgc gcttgagtta acatgtgaag ccatcgggaa gccccagcct 840 gtgatggtaa cttgggtgag agtcgatgat gaaatgcctc aacacgccgt actgtctggg 900 cccaacctgt tcatcaataa cctaaacaaa acagataatg gtacataccg ctgtgaagct 960 tcaaacatag tggggaaagc tcactcggat tatatgctgt atgtatacga tcccccaca 1020 actatecete eteccacaac aaccaceace accaceacea ecaceaceac caccateett 1080 accatcatca cagatteccg agcaggtgaa gaaggetega teagggeagt ggateatgee 1140 gtgateggtg gegtegtgge ggtggtggtg ttegecatge tgtgettget catcattetg 1200 gggcgctatt ttgcccagac ataaaggtac atacttcact catgaagcca aaggagccga 1260 tgacgcagca gacgcagaca cagctataat caatgcagaa ggaggacaga acaactccga 1320 agaaaagaaa gagtacttca tctagatcag ccctttttgt ttcgaatgag gtgtccaact 1380 ggcccttatt tagatgataa agataacagt gatattggaa ctttgcgaga aattcgtgtg 1440 tttttttatg aatgggtgga aaggtgtgag actgggaagg cttgggattt gctgtgtaaa 1500 aaaaaaa 1507

<210> 208 <211> 4218 <212> DNA

<213> Homo sapiens

# <400> 208 agctt gtg

gttcgagctt gtgttccccc ggaagggtga gtctggacgc gggcgcggaa ggagcgcggc 60 cggaggtcct caggaagaag ccgcggggac tggctgcgct tgacaggctg cacttggatg 120 ggagcacctg gtgcctcggg actgctccga tgcccgggtc tgtgctgaat gtgtaatatg 180 cggaactata ttgaaacatt acaaccatct tttgatggca acaccctgag gacctccctt 240 ttccagatgg ggaaactgag gcccagaatt gctaagtggc ttgcttgagt tgacacaggg 300 agetecagga eteaceetea getgageeae etgeegggag eatgeetetg egeeaetggg 360 ggatggccag gggcagtaag cccgttgggg atggagccca gcccatggct gccatgggag 420 gcctgaaggt gcttctgcac tgggctggtc caggcggcgg ggagccctgg gtcactttca 480 gtgagtcatc gctgacagct gaggaagtct gcatccacat tgcacataaa gttggtatca 540 ctcctccttg cttcaatctc tttgccctct tcgatgctca ggcccaagtc tggttgcccc 600 caaaccacat cetagagate eccagagatg caageetgat getatatttt eegecatagg 660 ttttattccc gggaactggc atggcatgaa tcctcgggaa ccggctgtgt accgttgtgg 720 geecceagga acegaggeat ceteagatea gacageacag gggatgeaac teetggaeec 780 agcctcattt gagtacctct ttgagcaggg caagcatgag tttgtgaatg acgtggcatc 840 actgtgggag ctgtcgaccg aggaggagat ccaccacttt aagaatgaga gcctgggcat 900 ggcctttctg cacctctgtc acctcgctct ccgccatggc atccccctgg aggaggtggc 960 caagaagacc agettcaagg actgcatece gegeteette egeeggeata teeggeagea 1020 cagegeeetg acceggetge geetteggaa egtetteege aggtteetge gggaetteea 1080 geegggeega eteteecage agatggteat ggteaaatae etageeacae tegagegget 1140 ggcaccccgc ttcggcacag agcgtgtgcc cgtgtgccac ctgaggctgc tggcccaggc 1200 cgagggggag ccctgctaca tccgggacag tggggtggcc cctacagacc ctggccctga 1260 gtctgctgct gggcccccaa cccacgaggt gctggtgaca ggcactggtg gcatccagtg 1320

```
gtggccagta gaggaggagg tgaacaagga ggagggttct agtggcagca gtggcaggaa
                                                                    1380
cccccaagcc agcctgtttg ggaagaaggc caaggctcac aaggcagtcg gccagccggc
                                                                    1440
agacaggccg cgggagccac tgggggccta cttctgtgac ttccgggaca tcacccacgt
                                                                    1500
ggggctgaaa gagcactgtg tcagcatcca ccggcaggac aacaagtgcc tggagctgag
                                                                    1560
cttgccttcc cgggctgcgg cgctgtcctt cgtgtcgctg gtggacggct atttccgcct
                                                                    1620
gacggccgac tccagccact acctgtgcca cgaggtggct cccccacggc tggtgatgag
                                                                    1680
catccgggat gggatccacg gacccctgct ggagccattt gtgcaggcca agctgcggcc
                                                                    1740
egaggaegge etgtacetea tteaetggag caccagecae ecetacegee tgateeteae
                                                                    1800
agtggcccag cgtagccagg caccagacgg catgcagagc ttgcggctcc gaaagttccc
                                                                    1860
cattgagcag caggacgggg cettegtget ggagggetgg ggeeggteet teeceagegt
                                                                    1920
tegggaactt ggggetgeet tgeagggetg ettgetgagg geeggggatg aetgettete
                                                                    1980
totgogtogo tgttgcotgo occaaccagg agaaacctoo aatotoatoa toatgoggg
                                                                    2040
ggetegggee ageceeagga cacteaacet eagecagete agettecace gggttgaeea
                                                                    2100
gaaggagatc acccagctgt cccacttggg ccagggcaca aggaccaacg tgtatgaggg
                                                                    2160
ccgcctgcga gtggagggca gcggggaccc tgaggagggc aagatggatg acgaggaccc
                                                                    2220
cetegtgeet ggcagggace gtgggcagga getacgagtg gtgetcaaag tgctggacee
                                                                    2280
tagtcaccat gacategeec tggeetteta egagacagee ageeteatga geeaggtete
                                                                    2340
ccacacgcac ctggccttcg tgcatggcgt ctgtgtgcgc ggccctgaaa atatcatggt
                                                                    2400
gacagagtac gtggagcacg gacccctgga tgtgtggctg cggagggagc ggggccatgt
                                                                    2460
gcccatggct tggaagatgg tggtggccca gcagctggcc agcgccctca gctacctgga
                                                                    2520
gaacaagaac ctggttcatg gtaatgtgtg tggccggaac atcctgctgg cccggctggg
                                                                    2580
gttggcagag ggcaccagcc ccttcatcaa gctgagtgat cctggcgtgg gcctgggcgc
                                                                    2640
cetetecagg gaggageggg tggagaggat eccetggetg geeecegaat geetaceagg
                                                                    2700
tggggccaac agcctaagca ccgccatgga caagtggggg tttggcgcca ccctcctgga
                                                                    2760
gatetgettt gaeggagagg ceeetetgea gageegeagt eeeteegaga aggageattt
                                                                    2820
ctaccagagg cagcaccggc tgcccgagcc ctcctgccca cagctggcca cactcaccag
                                                                    2880
ccagtgtctg acctatgage caacccagag gccatcattc cgcaccatcc tgcgtgacct
                                                                    2940
cacceggetg cageeceaca atettgetga egtettgaet gtgaaceegg aeteaeegge
                                                                    3000
gtcggaccct acggttttcc acaagcgcta tttgaaaaag atccgagatc tgggcgaggg
                                                                    3060
tcacttcggc aaggtcagct tgtactgcta cgatccgacc aacgacggca ctggcgagat
                                                                    3120
ggtggcggtg aaagccctca aggcagactg cggcccccag caccgctcgg gctggaagca
                                                                    3180
ggagattgac attctgcgca cgctctacca cgagcacatc atcaagtaca agggctgctg
                                                                    3240
cgaggaccaa ggcgagaagt cgctgcagct ggtcatggag tacgtgcccc tgggcagcct
                                                                    3300
cogagactac ctgccccggc acagcatcgg gctggcccag ctgctgctct tcgcccagca
                                                                    3360
gatotgogag ggcatggcot atotgoacgo gcagcactac atocacogag acotagoogo
                                                                    3420
gegeaaegtg etgetggaea aegaeagget ggteaagate ggggaetttg geetageeaa
                                                                    3480
ggccgtgccc gaaggccacg agtactaccg cgtgcgcgag gatggggaca gccccgtgtt
                                                                    3540
ctggtatgcc ccagagtgcc tgaaggagta taagttctac tatgcgtcag atgtctggtc
                                                                    3600
cttcggggtg accctgtatg agctgctgac gcactgtgac tccagccaga gccccccac
                                                                    3660
gaaatteett gageteatag geattgetea gggteagatg acagttetga gaeteaetga
                                                                    3720
gttgctggaa cgaggggaga ggctgccacg gcccgacaaa tgtccctgtg aggtctatca
                                                                    3780
tctcatgaag aactgctggg agacagaggc gtcctttcgc ccaaccttcg agaacctcat
acceattetg aagacagtee atgagaagta ccaaggeeag geceetteag tgttcagegt
                                                                    3900
gtgctgaggc acaatggcag ccctgcctgg gaggactgga ccaggcagtg gctgcagagg
                                                                    3960
gagcetectg etecetgete caggatgaaa ecaagagggg gatgteagee teaeceacae
                                                                    4020
cgtgtgcctt actcctgtct agagacccca cctctgtgaa cttatttttc tttcttggcc
                                                                    4080
gtgagcctaa ccatgatctt gagggaccca acatttgtag gggcactaat ccagccctta
                                                                    4140
aatcccccag cttccaaact tgaggcccac catctccacc atctggtaat aaactcatgt
                                                                    4200
tttctctgaa aaaaaaaa
                                                                    4218
```

<210> 209

<211> 1416

<212> DNA

<213> Homo sapiens

<400> 209

```
ccacacccc aaaacagaac agacccccat ccctgggctg gaggacccgc ctcttggcag
                                                                      60
ccagctgaga aggcgcccg gggaggggga aactgacatc ccatctagag ccgtccctcc
                                                                      120
tettectece etceegacte tetgeteett teeegeecea gaagtteaag ggeeceegge
                                                                     180
etectgeget cetgeegeeg ggaccetega cetecteaga geageegget geegeeeegg
                                                                      240
gaagatggcg aggaggagcc gccaccgcct cctcctgctg ctgctgcgct acctggtggt
                                                                      300
cgccctgggc tatcataagg cctatgggtt ttctgcccca aaagaccaac aagtagtcac
                                                                      360
agcagtagag taccaagagg ctattttagc ctgcaaaacc ccaaagaaga ctgtttcctc
                                                                      420
cagattagag tggaagaaac tgggtcggag tgtctccttt gtctactatc aacagactct
                                                                      480
tcaaggtgat tttaaaaatc gagctgagat gatagatttc aatatccgga tcaaaaatgt
                                                                     540
gacaagaagt gatgegggga aatategttg tgaagttagt geceeatetg ageaaggeea
                                                                     600
aaacctggaa gaggatacag tcactctgga agtattaggt gatgtgcatg tattggctcc
                                                                     660
agcagttcca tcatgtgaag taccetette tgetetgagt ggaactgtgg tagagetacg
                                                                     720
atgtcaagac aaagaaggga atccagctcc tgaatacaca tggtttaagg atggcatccg
                                                                     780
tttgctagaa aatcccagac ttggctccca aagcaccaac agctcataca caatgaatac
                                                                     840
aaaaactgga actctgcaat ttaatactgt ttccaaactg gacactggag aatattcctg
                                                                     900
tgaagcccgc aattctgttg gatatcgcag gtgtcctggg aaacgaatgc aagtagatga
                                                                     960
teteaacata agtggeatea tageageegt agtagttgtg geettagtga ttteegtttg
                                                                    1020
tggccttggt gtatgctatg ctcagaggaa aggctacttt tcaaaagaaa cctccttcca
                                                                    1080
gaagagtaat tetteateta aageeaegae aatgagtgaa aatgatttea ageaeaeaaa
                                                                    1140
atcetttata atttaaagae teeaetttag agatacaeca aageeaeegt tgttacaeaa
                                                                    1200
gttattaaac tattataaaa ctetgetttg teegacattt gcaaagaggt acacgaggaa
                                                                    1260
atggaattgg tatttcattt taattttcat gactactaac tcacctgaac ttgctatttt
                                                                    1320
aaacaaatag ttctgtcgac acctaaaata taatctggct tcttgtgtct ggactaagtt
                                                                    1380
aaaagaatta aaatactttg taatgtcaaa aaaaaa
                                                                    1416
```

<210> 210

<211> 4994

<212> DNA

<213> Homo sapiens

## <400> 210

```
tttegtggaa ggteteegge eeeaggegeg gegegegggg ettetgeeca gttteetget.
                                                                      60
teteageege ggtgtetgee eeggeeeaaa geagtetgtg eaatttagaa aetegatagg
                                                                      120
aggeageage tggtetecea ecaceetaaa aataateegt teeggegeae tgegtgette
                                                                      180
gcctagggga ggaaaactgt catcggagag ttctgcgtcc gggtttgaaa tttacatctt
                                                                      240
aagacagtgt aggaagtcgg tgttttgaag gtagctcaag tgcaccggca ggggtttgaa
                                                                      300
gcagcgtqaa qctattqccc aagagtaaac catataagaa gaaatgagcc tttcattttg
                                                                      360
tggtaacaac atttcttcat ataatatcaa cgatggtgta ctacaaaatt cctgctttgt
                                                                      420
ggatgccctc aacctggtcc ctcatgtctt tctgttgttt atcacttttc caatattgtt
                                                                      480
tattgggtgg gggagccaaa gctcaaaagt acaaattcac cacaacacat ggcttcattt
                                                                      540
teegggacat aacetgagat gggateetta cattegetet eetgtttgtg catgtetgtg
                                                                      600
aaatagcaga aggcattgtt tcagactcgc ggcgggaatc aaggcacctc cacctcttta
                                                                      660
tgccagccgt gatgggattc gttgccacta caacatcgat agtgtattat cataatatcg
                                                                      720
aaacatcaaa ttttcctaaa ttacttttag ccctgttcct gtattgggta atggccttta
                                                                      780
ttacaaaaac aataaaattg gttaagtact gtcagtctgg cttggacata tcaaacctgc
                                                                      840
gtttctgcat cacaggcatg atggtcatct tgaatgggct cttgatggct gtggagatca
                                                                      900
atgtcattcg agtcaggaga tatgtatttt tcatgaatcc tcagaaagta aagcctcctg
                                                                      960
aagacctcca ggatctggga gtgagatttc ttcaaccatt tgtgaatttg ctgtcaaaag
                                                                    1020
caacatactg gtggatgaac acacttatta tatctgctca caaaaagcct attgatctga
                                                                    1080
aggcaattgg aaaattgcca atagcaatga gagcagtaac aaattatgtt tgcctgaaag
                                                                    1140
atgcatatga agaacaaaag aaaaaagttg cagatcatcc aaatcggact ccatctatat
                                                                    1200
ggcttgcaat gtacagagct tttgggcgac caattctact tagtagcaca ttccgctatc
                                                                    1260
tggctgattt actgggtttt gctggacctc tttgtatttc tggaatagtt cagcgtgtga
                                                                    1320
atgaaaccca gaatgggaca aataacacaa ctggaatttc agaaaccctc tcatcaaagg
                                                                    1380
aatttettga aaacgettae gttetageag ttettetett ettggetett attetgeaaa
                                                                    1440
ggacattttt gcaggcttcc tactatgtaa ccatagagac tggcattaac ctccgtggag
                                                                    1500
```

ctctactaac	catgatttat	aataaaatcc	ttaggctctc	tacototaac	thatccatoo	1560
	tctggggcag					1620
	cctgtgtccc					1680
Lietgeteta	taatttactt	ggarcaagig	cattggtegg	rgeagergre	attgtgetee	1740
	tcagtacttt					1800
	tgagagactc					1860
aattgtatgc	ctgggaacac	attttctgca	aaagtgtgga	ggaaacaaga	atgaaagaac	1920
tatctagtct	caaaaccttt	gcactatata	catcactctc	catcttcatg	aatgcagcaa	1980
ttcccatagc	agctgttctt	gctacatttg	tgacccatgc	gtatgccagt	ggaaacaatc	2040
	agaggccttt					2100
	cacggtggtc					2160
	cttgagtgat					2220
	gtcctgtaag					2280
	atatcacctg					2340
	cattgcaata					2400
	caatatagat					2460
	tgggaagtcc					2520
aaggaaaagt	tcactggagc	aatgtaaatg	aatctgagcc	ttcttttgaa	gcaaccagaa	2580
gtaggaacag	gtactctgtg	gcatatgcag	ctcaaaagcc	ttggctatta	aatgctacag	2640
tagaagaaaa	tattactttt	ggaagtcctt	ttaacaaaca	gaggtacaaa	gctgtcacag	2700
atgcctgttc	tcttcagcca	gatattgact	tattaccatt	tggagatcaa	actgaaattg	2760
	catcaacctg					2820
	caccaacatt					2880
	tttaatgcag					2940
	gactcacaaa					3000
	tgtcctaaga					3060
						3120
	ctggaaaaca					
	aactacttta					3180
	gatggaggac					3240
	tgtaatgagg					3300
	aggattcttc					3360
	agctatagac					3420
	agctgatcag					3480
gcattttcct	ttgccttgtt	acatccctca	ctgtagaatg	gatgggtctc	acagctgcca	3540
aaaatcttca	ccacaacctt	ctcaataaga	taatccttgg	accaataagg	ttttttgata	3600
ccacacccct	gggactgatt	ctcaatcgct	tttcagctga	tactaatatc	attgatcagc	3660
acatccctcc	aaccttggaa	tctctaactc	gctcaacact	gctctgcctg	tctgccattg	3720
ggatgatttc	ttatgctact	cctgtgttcc	tggttgctct	cctgcccctt	ggtgttgcct	3780
	ccagaaatac					3840
	ccctctgctc					3900
	gcatgaaacc					3960
	cttatttctc					4020
	cattgtcctc					4080
	cttgggtctt					4140
	ggctgacctg					4200
					-	4260
	gtcagagaac					
	aggggagatc				_	4320
	taagcacgtc					4380
	cagtgggaaa					4440
ttgatggaaa	aattgtcatt	gatgggatag	acatttccaa	attaccactg	cacacactac	4500
gttctagact	ttcaatcatt	ctgcaggatc	caatactatt	cagtggttcc	attagattta	4560
atttagatcc	agagtgcaaa	tgcacagatg	acagactctg	ggaagcctta	gaaattgctc	4620
agctgaagaa	tatggtcaaa	tctctacctg	gaggtctaga	tgcggttgtc	actgaaggtg	4680
	tagcgtggga					4740
	tcttattatg					4800
	agtagtaatg					4860
	tattatggat					4920
	tgtcccaaat					4980
tgaccaacaa					a	4994
cyaccaacaa	3 - 43					ュノノモ

```
<210> 211
     <211> 410
     <212> DNA
     <213> Homo sapiens
    <400> 211
ttcgtcagaa aatgaaattg ttttttggaa tttattttct ctqcqagtqc cqaacataqq
                                                                      60
ccccaatctc tcctggcttg taaatcttct gctgagatgt cctctgttag cctgattqaq
                                                                     120
ttccctttgt acatgatctg cccttttgct ctagctgcct ttaagacttt ttctttagca
                                                                     180
ttaatcttgg acatcctgct gactatattc cttgatgata ttcattttgt atagtatctt
                                                                     240
tcaagtgttc tctaggtttt ctgtatgtga atatttctct agcaagaaca gggacagttt
                                                                     300
cttgaattat teeetegaat aegtttetea ggttatttae ttttteteet teaeteteag
                                                                     360
gaatgccaat aattcctagg tttggtcact ttacataatt ccatatttct
                                                                     410
     <210> 212
     <211> 6491
     <212> DNA
     <213> Homo sapiens
     <400> 212
ctgcaggaat tcggcacgag ccggcacaaa cctcagtggt ggttctgtgg ttgtttctgt
                                                                      60
ctttttttga tagaatcttt gattagtatc gaatttactg tatttggcca tgtgaactat
                                                                     120
tgggagcctc ctagggtgag ggaaattaag agctttcaga ggaatgaggc gactgatttg
                                                                     180
caaacggatc tgtgattata aaagcttcga tgatgaagaa tcagtggatg gaaataggcc
                                                                     240
atcatcagct gcatcagcct tcaaggttcc tgcacctaaa acatccggaa atcctqccaa
                                                                     300
cagtgcaagg aagcetggtt cagcaggtgg ccctaaggtt ggagcaggtg cttctaaqga
                                                                     360
aggaggtgct ggagcagttg atgaagatga ttttataaaa gcttttacag atgtcccttc
                                                                     420
tattcagatt tattctagtc gagaactcga agaaacatta cataaaatca gggaaatttt
                                                                     480
gtcagatgat aaacatgact gggatcagcg tgccaatgca ctgaagaaaa ttcgatcact
                                                                     540
gcttgttgct ggagctgcac agtatgattg cttttttcaa catttacgat tgttggatgg
                                                                     600
agcacttaaa ctttcagcta aggatcttag atcccaggtg gttagagaag cttgtattac
                                                                     660
tgtageccae ettteaacag ttttgggaaa caagtttgat catggegetg aagecattgt
                                                                     720
acctacactt tttaatctcg tccccaatag tgcaaaagtc atggcaactt ctggatgtgc
                                                                     780
agcaatcaga tttatcattc ggcatactca tgtacccaga cttatacctt taataacaag
                                                                     840
caattgcaca tcaaaatcag ttcccgtgag gagacgttca tttgaatttt tagatttatt
                                                                     900
gttgcaagag tggcagactc attcattgga aagacatgca gccgtcttgg ttgaaactat
                                                                     960
taaaaaggga attcatgatg ctgacgctga ggccagagtg gaggcaagaa agacatacat
                                                                    1020
gggtcttaga aaccactttc ctggtgaagc tgaaacatta tataattccc ttgagccatc
                                                                    1080
ttatcagaag agtcttcaaa cttacttaaa gagttctggc agtgtagcat ctcttccaca
                                                                    1140
atcagacagg tecteateca geteacagga aagteteaat egecettitt ettecaaatg
                                                                    1200
gtctacagca aatccatcaa ctgtggctgg aagagtatca gcaggcagca gcaaagccag
                                                                    1260
ttcccttcca ggaagcctgc agcgttcacg aagtgacatt gatgtgaatg ctgctgcagg
                                                                    1320
tgccaaggca catcatgctg ctggacagtc tgtgcgaagc gggcgcttag gtgcaggtgc
                                                                    1380
cctgaatgca ggttcctatg cgtcactaga ggatacttct gacaagctgg atggaacagc
                                                                    1440
atctgaagat ggccgggtga gagcaaaact ttcagcacca cttgctggca tgggaaatgc
                                                                    1500
caaggcagat totagaggaa gaagtogaac aaaaatggtg totcaatcac agcotggtag
                                                                    1560
ceggtetggg tetecaggaa gagttetgae cacaacagee etgtecaetg tgagetetgg
                                                                    1620
tgttcaaaga gtcctggtca attcagcctc agcacaaaaa agaagcaaga taccacggag
                                                                    1680
ccagggctgt agcagagagg ctagtccatc taggctttca gtggcccgaa gcagtcgtat
                                                                    1740
tectegacea agtgtgagte aaggatgeag eegggaaget agtegggaga geageagaga
                                                                    1800
cacaagteet gttegetett tteageeeet egeeteeaga caccatteea gateaaetgg
                                                                    1860
tgccctctac gcccccgaag tgtatggggc ctcaggtcca ggttatggga tcagccaatc
                                                                    1920
```

	tcgtcttctg					1980
ggaggcggtg	gcagatgcct	tgctcttagg	agacatacgg	actaagaaaa	aaccagctcg	2040
	gaatcatatg					2100
	gaacgctcct					2160
	tgtgggcaga					
						2220
	tcctaggtct					2280
	gattatgtga					2340
gtattcagca	tgtttttgga	gactctagtg	gatttcatac	aagtccacaa	agatgatctt	2400
caagattggt	tgtttgtact	gctgacacaa	ctactaaaaa	aaatgggtgc	tgatttgctt	2460
	aggcaaaagt					2520
	tcaatattct					2580
	ttgctatcct					2640
	attccagtga					2700
gaacccaaaa	gttctgatgt	ccygaaygca	gcacagccag	tgetgattte	attatttgaa	2760
	cagagtttac					2820
gctaccaagc	ttcttcataa	tcaccttcga	aacactggca	atggaaccca	gagttccatg	2880
gggagtcctt	tgacaagacc	aacaccacga	tcaccagcta	actggtccag	tcctcttact	2940
tctcctacca	atacatcaca	gaatacttta	tctccaagtg	catttgatta	tgacacagaa	3000
	ctgaagatat				-	3060
	gtagccaaga					3120
	caatgtgtgg					3180
	agtcaaacag					3240
	tccacgctct					3300
	gtctgccctc					3360
	cctagatcat					3420
ataatgagcg	tgtagaagaa	agaaaaattg	ccctctatga	acttatgaaa	ctgacacagg	3480
aagaatcttt	tagtgtttgg	gatgaacact	tcaaaacaat	attgctttta	ttgcttgaaa	3540
	taaagagcct					3600
	accagcaaga					3660
	agatcctcat					3720
	caatttagtc					3780
	ccaattaatc					3840
	accctaaacc					3900
	gagagcagtg					3960
	gatgaactaa					4020
actgaatctt	tacatcaaac	gtgcacaaac	aggttctgga	ggagctgatc	ccactactga	4080
tgtttctgga	caaagttagt	gaagctcatc	acagcgaacc	aggtctctca	aaagaaagga	4140
	accctcatca					4200
	gttttagttt					4260
	tgcatgtaac					4320
	gatcgacaca					4380
	ccattaacct					
						4440
	atgcttaaag					4500
	ataatattt					4560
	taaatgatgt					4620
	ggtgatacat					4680
aaactaaaac	ctcaaagaca	gatgttacag	aatcagccag	ttctgtaaaa	ctgatattgt	4740
	ttgatcttgc					4800
	ccaaatcatc					4860
	ttattttggt					4920
	aattcactta					4980
	tccttgaccg					5040
gyagugacca	gcaccttttc	LELAAATGGE	ggaacctggt	LECCETETAC	catgaaattg	5100
ccttacttga	aaatattgat	cctgatgaga	gagaagatgg	tgccaaggct	gcctttgtat	5160
	aattctctac					5220
	gaaaactact					5280
atcacctctt	gctacaccca	ttcttttcat	gtgcagccga	ctcaaaaatt	accagttttg	5340
	aaattagata					5400
tttttaatcc	taatataaag	tgaatttgat	tgaaaaggca	aatagctatt	agggaagcag	5460
				-		

```
tttgccattg ttgcagagtt atctgtactt tgtttaactg aaaaaaatgt agaaatatat
                                                                    5520
gtaaagaatt taagacaaga gtactgaatg gatgatttgt cataggcttt cccctttctt
                                                                    5580
tetgttetag cagcaggaaa agttteteta tateetetee etetacetgt aacaattttg
                                                                    5640
ttttctactg ttaattacat tgtgtattta tagttctatg cttactgttg tgcatatact
                                                                    5700
ggcaataaaa ctgtacataa cattacttga aaaagttaat aatgtatatc agtttttctg
                                                                    5760
tctcactgtg taacaagtca ctcagtttta ttttaacttt agacggtctt gtatcagtgg
tggtctcttg aattttgtaa gttcatctga ggagaaaaga tttttcaqqt qtaqctacca
                                                                    5880
caatcaaagg tatatagcta catacgcatg tatatattac agcttatctq taaqaaqaaa
                                                                    5940
atgcatttta aacacaactc ttctcagtag cattttatga cctttqqata tqtttqtaat
                                                                    6000
catttcgaat caaaatattg atttaatttt gacctctggt ttaagatact gctttaacta
                                                                    6060
ctgttgacaa ccaagtagag tgacttaagc tgaacagtaa ctaactggaa aattcgataa
                                                                    6120
gcacctggca tctaatggca ggcaggcact caagatatga attaactaca taatggaaaa
                                                                    6180
atatggttta acgtgtccaa atgaaagcta gtagatgtaa acatggaaaa attgtgttta
                                                                    6240
caattttata atctcagttg ataagactat aagaaagctg attatttaaa tcactatata
                                                                    6300
caatacaccc ttaatttgtt cattccagaa acatactgag atgtcagcta cttaaaaatg
                                                                    6360
gtcacaaaaa gctactgttt atatttttcc tcctgctatt ctctcccaaa ttaattatta
                                                                    6420
ataagtgttg ttcatttact gcactgctga gaactaatta aaattatata ttccaqattg
                                                                    6480
taaaaaaaaa a
                                                                    6491
```

<210> 213 <211> 3144 <212> DNA <213> Homo sapiens

<400> 213 tttcttttct ttgaatgaca gaactacagc ataatgcgtg gcttcaacct gctcctcttc tggggatgtt gtgttatgca cagctgggaa gggcacataa gacccacacg gaaaccaaac 120 acaaagggta ataactgtag agacagtacc ttgtgcccag cttatgccac ctgcaccaat 180 acagtggaca gttactattg cacttgcaaa caaggcttcc tgtccagcaa tgggcaaaat 240 cacttcaagg atccaggagt gcgatgcaaa gatattgatg aatgttctca aagcccccag 300 ccctgtggtc ctaactcatc ctgcaaaaac ctgtcaggga ggtacaagtg caqctgttta 360 gatggtttet etteteceae tggaaatgae tgggteeeag gaaageeggg eaatttetee 420 tgtactgata tcaatgagtg cctcaccagc agggtctgcc ctgagcattc tqactqtqtc 480 aactccatgg gaagctacag ttgcagctgt caagttggat tcatctctag aaactccacc 540 tgtgaagacg tggatgaatg tgcagatcca agagettgcc cagageatgc aacttgtaat 600 aacactgttg gaaactactc ttgtttctgc aacccaggat ttgaatccag caqtqqccac 660 ttgagtttcc agggtctcaa agcatcgtgt gaagatattg atgaatgcac tgaaatgtgc 720 cccatcaatt caacatgcac caacactcct gggagctact tttgcacctg ccaccetggc 780 tttgcaccaa gcaatggaca gttgaatttc acagaccaag gagtggaatg tagagatatt 840 gatgagtgcc gccaagatcc atcaacctgt ggtcctaatt ctatctgcac caatgccctg 900 ggctcctaca gctgtggctg cattgtaggc tttcatccca atccagaagg ctcccagaaa 960 gatggcaact tcagctgcca aagggttctc ttcaaatgta aggaagatgt gatacccgat 1020 aataagcaga tecagcaatg ecaacaggga accgcagtga aacctgcata tqtctccttt 1080 tgtgcacaaa taaataacat cttcagcgtt ctggacaaag tgtgtgaaaa taaaacgacc 1140 gtagtttctc tgaagaatac aactgagagc tttgtccctg tgcttaaaca aatatccacg 1200 tggactaaat tcaccaagga agagacgtcc tccctggcca cagtcttcct ggaqagtgtg 1260 gaaagcatga cactggcatc tttttggaaa ccctcagcaa atgtcactcc ggctgttcgg 1320 acggaatact tagacattga gagcaaagtt atcaacaaag aatgcagtga agagaatgtg 1380 acgttggact tggtagccaa gggggataag atgaagatcg ggtgttccac aattgaggaa 1440 tetgaateca cagagaceae tggtgtgget tttgteteet ttgtgggeat ggaateggtt 1500 ttaaatgagc gcttcttcca agaccaccag gctcccttga ccacctctga gatcaagctg 1560 aagatgaatt ctcgagtcgt tgggggcata atgactggag agaagaaaga cqgcttctca 1620 gatecaatea tetacaetet ggagaacqtt cagecaaaqe agaaqtttga gaggeecate 1680 tgtgtttcct ggagcactga tgtgaaqqqt qqaagatgga catcetttqq ctqtqtqate 1740 ctggaagett ctgagacata taccatctgc agctgtaatc agatggcaaa tcttgccgtt 1800 atcatggcgt ctggggagct cacgatggac ttttccttgt acatcattag ccatgtaggc 1860

```
attatcatct cettggtgtg cetegtettg gecategeca cetttetget gtgtegetee
                                                                    1920
atccgaaatc acaacaccta cctccacctg cacctctgcg tgtgtctcct cttggcgaag
                                                                    1980
actetettee tegeeggtat acacaagaet gacaacaaga tgggetgege cateategeg
                                                                    2040
ggetteetge actacetttt cettgeetge ttettetgga tgetggtgga ggetgtgata
                                                                    2100
ctgttcttga tggtcagaaa cctgaaggtg gtgaattact tcagctctcg caacatcaag
                                                                    2160
atgctgcaca tctgtgcctt tggttatggg ctgccgatgc tggtggtggt gatctctgcc
                                                                    2220
agtgtgcagc cacagggcta tggaatgcat aatcgctgct ggctgaatac agagacaggg
                                                                    2280
ttcatctgga gtttcttggg gccagtttgc acagttatag tgatcaactc ccttctcctg
                                                                    2340
acctggacct tgtggatcct gaggcagagg ctttccagtg ttaatgccga agtctcaacg
                                                                    2400
ctaaaagaca ccaggttact gaccttcaag gcctttgccc agctcttcat cctgggctgc
                                                                    2460
tcctgggtgc tgggcatttt tcagattgga cctgtggcag gtgtcatggc ttacctgttt
                                                                    2520
caccatcatc aacagcctgc agggggcctt catcttcctc atccactgtc tgctcaacgg
                                                                    2580
ccaggtacga gaagaataca agaggtggat cactgggaag acgaagccca gctcccagtc
                                                                    2640
ccagacctca aggatettge tgteeteeat gecateeget tecaagaegg gttaaagtee
                                                                    2700
tttcttgctt tcaaatatgc tatggagccc acagttggag ggacaagtag ttttccctgc
                                                                    2760
agggagecet acceetgaaa ateteettee teagettaaa catgggaaat gagggateee
                                                                    2820
cacccagece ecagaacet etgggggaag gaatgttggg gggeegtett eetgtgggtt
                                                                    2880
gtattgcact gatggaggaa atcaggtgtt tctgctccaa acggaccatt ttatcttcqt
                                                                    2940
gctctgcaac ttcttcaatt ccagagtttc tgagaacaga cccaaattca atggcatgac
                                                                    3000
caagaacacc tggctaccat tttgttttct cctgcccttg ttggtgcatg gttctaagcg
                                                                    3060
tgcccctcca gcgcctatca tacgcctgac acagagaacc tctcaataaa tgatttgtcg
                                                                    3120
cctgtctgac tgatttaccc taaa
                                                                    3144
```

<210> 214 <211> 3771 <212> DNA <213> Homo sapiens

<400> 214 tttcgtagga aagttgcttc cgcgcctagg aagtgggttt gcctgataag agaaggagga 60 ggggactcgg ctgggaagag ctcccctccc ctccgcggaa gaccactggg tctcctcttt 120 ccccaacete etecetetet tetactecae cccteegttt teccaetece caetgaeteg 180 gatgcctgga tgttctgcca ccgggcagtg gtccatcgtg cagccgggag ggggcagggg 240 cagggggcac tgtgacagga agetgegege acaagttgge catttegagg geaaaataag 300 ttctcccttg gatttggaaa ggacaaagcc agtaagctac ctcttttgtg tcggatgagg 360 aggaccaacc atgagccaga gcccgggtgc aggctcaccg ccgccgctgc caccgcggtc 420 agetecagtt cetgecagga gttgteggtg egaggaattt tgtgacagge tetgttagte 480 tgttcctccc ttatttgaag gacaggccaa agatccagtt tggaaatgag agaggactag 540 catgacacat tggctccacc attgatatct cccagaggta cagaaacagg attcatgaag 600 atgttgacaa gactgcaagt tcttacctta gctttgtttt caaagggatt tttactctct 660 ttaggggacc ataactttct aaggagagag attaaaatag aaggtgacct tgttttaggg 720 ggcctgtttc ctattaacga aaaaggcact ggaactgaag aatgtgggcg aatcaatgaa 780 gaccgaggga ttcaacgcct ggaagccatg ttgtttgcta ttgatgaaat caacaaagat 840 gattacttgc taccaggagt gaagttgggt gttcacattt tggatacatg ttcaagggat 900 acctatgcat tggagcaatc actggagttt gtcagggcat ctttgacaaa agtggatgaa 960 gctgagtata tgtgtcctga tggatcctat gccattcaag aaaacatccc acttctcatt 1020 gcaggggtca ttggtggctc ttatagcagg gtttccatac agggggcaaa cctgctgcgg 1080 etettecaga teceteaaat caggtaegea tecaceageg ceaaaeteag tgataagteg 1140 egetatgatt aetttgeeag gacegtgeec eeegaettet aeeaggeeaa ageeatgget 1200 gagatettge gettetteaa etggaeetae gtgteeacag tageeteega gggtgattae 1260 ggggagacag ggategagge ettegageag gaageeegee tgegeaacat etgeateget 1320 acggcggaga aggtgggccg ctccaacatc cgcaagtcct acgacagcgt gatccgagaa 1380 etgttgcaga ageccaaege gegegtegtg gteetettea tgegeagega egaetegegg 1440 gageteattq caqeegeeaq cegegeeaat geeteettea eetgggtgge cagegaeqge 1500 tggggcgcgc aggagagcat catcaagggc agcgagcatg tggcctacgg cgccatcacc 1560 etggagetgg ceteceagee tgteegeeag ttegaceget acttecagag ceteaacece 1620

```
tacaacaacc accgcaaccc ctggttccgg gacttctggg agcaaaagtt tcagtgcagc
                                                                   1680
etecagaaca aaegeaaeca caggegegte tgegacaage acetggecat egacageage
                                                                   1740
aactacgagc aagagtccaa gatcatgttt gtggtgaacg cggtgtatgc catggcccac
                                                                   1800
getttgeaca aaatgeageg caccetetgt cecaacacta ceaagetttg tgatgetatg
                                                                   1860
aagateetgg atgggaagaa gttgtacaag gattacttge tgaaaateaa etteaegget
                                                                   1920
ccattcaacc caaataaaga tgcagatagc atagtcaagt ttgacacttt tggagatgga
                                                                   1980
atggggcgat acaacgtgtt caatttccaa aatgtaggtg gaaagtattc ctacttgaaa
                                                                   2040
gttggtcact gggcagaaac cttatcgcta gatgtcaact ctatccactg gtcccggaac
                                                                   2100
2160
ccaggggatg tetgetgetg gatttgcate ccetgtgaac cetacgaata cctgqctqat
                                                                   2220
gagtttacct gtatggattg tgggtctgga cagtggccca ctgcagacct aactggatgc
                                                                   2280
tatgacette etgaggacta cateaggtgg gaagaegeet gggeeattgg eccagteace
                                                                   2340
attgcctgtc tgggttttat gtgtacatgc atggttgtaa ctgtttttat caagcacaac
                                                                   2400
aacacaccct tggtcaaagc atcgggccga gaactctgct acatcttatt gtttggggtt
                                                                   2460
ggcctgtcat actgcatgac attettette attgccaage catcaccagt catctgtgca
                                                                   2520
ttgegeegac tegggetggg gagtteette getatetgtt acteageect getgaecaag
                                                                   2580
acaaactgca ttgcccgcat cttcgatggg gtcaagaatg gcgctcagag gccaaaattc
                                                                   2640
atcagececa gtteteaggt ttteatetge etgggtetga teetggtgea aattgtqatq
                                                                   2700
gtgtctgtgt ggctcatcct ggaggcccca ggcaccagga ggtataccct tgcagagaag
                                                                   2760
cgggaaacag tcatcctaaa atgcaatgtc aaagattcca gcatgttgat ctctcttacc
                                                                   2820
tacgatgtga tcctggtgat cttatgcact gtgtacgcct tcaaaacgcg gaagtgccca
                                                                   2880
gaaaatttca acgaagctaa gttcataggt tttaccatgt acaccacgtg catcatctgg
                                                                   2940
ttggccttcc tccctatatt ttatgtgaca tcaagtgact acagagtgca gacgacaacc
                                                                   3000
atgtgcatct ctgtcagcct gagtggcttt gtggtcttgg gctgtttgtt tgcacccaag
                                                                   3060
gttcacatca tcctgtttca accccagaag aatgttgtca cacacagact gcacctcaac
                                                                   3120
aggttcagtg tcagtggaac tgggacccac atactctcag tcctctgaaa gcacgtatgt
                                                                   3180
gccaacggtg tgcaatgggc gggaagtcct cgactccacc acctcatctc tgtgattgtg
                                                                   3240
aattgcagtt cagtteettg tgtttttaga etgttagaca aaagtgetca egtgcagete
                                                                   3300
cagaatatgg aaacagagca aaagaacaac ccctagtacc ttttttttta gaaacaqtac
                                                                   3360
gataaattat ttttgaggac tgtatatagt gatgtgctag aactttctag gctgagtcta
                                                                   3420
gtgcccctat tattaacaat tcccccagaa catggaaata accattgttt acagagctga
                                                                   3480
gcattggtga cagggtctga catggtcagt ctactaaaaa ccaaaaaaaa aaaaccccaa
                                                                   3540
aaaaaaaaac caaaagaaaa aaataaaaat acggtggcaa tattatgtaa ccttttttcc
                                                                   3600
tatgaagttt tttgtaggtc cttgttgtaa ctaatttagg atgagtttct atgttgtata
                                                                   3660
ttaaagttac attatgtgta acagattgat tttctcagca caaaataaaa agcatctgta
                                                                  3720
ttaatgtaaa gatactgaga ataaaacctt caaggttttc caaaaaaaaa a
                                                                   3771
```

<210> 215

<211> 2667

<212> DNA

<213> Homo sapiens

#### <400> 215

```
atcagaagtg actctctgga aggatgctgc tgcttctcac cagaggctga cgataacgaa
                                                                       60
ggctatcctc catggccacc tcctccaggc tgccttcgtg accactgcag ctgcaqctcc
                                                                      120
egttecacte cttgtectgg gataggtggg cactaccagg ggetectttg gtaaggagta
                                                                      180
cegggtaggc acceggtect gccaatccac cactggaaca gctgggggga cagcagacag
                                                                      240
geaeggtegg acagacttga cagatcagge atcaggeect etgegetggt ecegggetet
                                                                      300
ttaagcagga acgtgaatgg cctcaagatg tctcacatgg tcccactagc cctcctcctc
                                                                      360
cettigitee ctacetecag gagggetget etgecettee tteetetgit ettiggeett
                                                                      420
atgiticeccg ccaccacaga ccttcccccg ccccacccct ctgcagactt agccgtgcat
                                                                      480
tgcaggcatg gaggattaat cagtgacagg aagctgcgtc tctcggagcg gtgaccagct
                                                                      540
gtggtcagga gagcctcagc agggccagcc ccaggagtct ttcccgattc ttgctcactg
                                                                      600
ctcacccacc tgctgctgcc atgaggcacc ttgggggcctt cctcttcctt ctgggggtcc
                                                                      660
tgggggccct cactgagatg tgtgaaatac cagagatgga cagccatctg gtagagaagt
                                                                      720
tgggccagca cctcttacct tggatggacc ggctttccct ggagcacttg aaccccagca
                                                                      780
```

```
tetatgtggg cetacgeete tecagtétge aggetgggae caaggaagae etetacetge
                                                                     840
acagceteaa gettggttae cagcagtgee teetagggte tgeetteage gaggatgaeg
                                                                     900
gtgactgcca gggcaagcct tccatgggcc agctggccct ctacctgctc gctctcagag
                                                                     960
ccaactgtga gtttgtcagg ggccacaagg gggacaggct ggtctcacag ctcaaatggt
                                                                    1020
tcctggagga tgagaagaga gccattgggc atgatcacaa gggccacccc cacactagct
                                                                    1080
actaccagta tggcctgggc attetggccc tgtgtctcca ccagaagcgg gtccatgaca
                                                                    1140
gcgtggtgga caaacttctg tatgctgtgg aacctttcca ccagggccac cattctgtgg
                                                                    1200
acacagcage catggcagge ttggcattca cetgtetgaa gegeteaaac ttcaaccetg
                                                                    1260
gtcggagaca acggatcacc atggccatca gaacagtgcg agaggagatc ttgaaggccc
                                                                    1320
agacccccga gggccacttt gggaatgtct acagcacccc attggcatta cagttcctca
                                                                    1380
tgacttcccc catgcctggg gcagaactgg gaacagcatg tctcaaggcg agggttgctt
                                                                    1440
tgctggccag tctgcaggat ggagccttcc agaatgctct catgatttcc cagctgctgc
                                                                    1500
ccgttctgaa ccacaagacc tacattgatc tgatcttccc agactgtctq gcaccacqaq
                                                                    1560
teatgttgga accagetget gagaceatte etcagaceca agagateate agtgteaege
                                                                    1620
tgcaggtgct tagtctcttg ccgccgtaca gacagtccat ctctgttctg gccgggtcca
                                                                    1680
ccgtggaaga tgtcctgaag aaggcccatg agttaggagg attcacatat gaaacacagg
                                                                    1740
ceteettgte aggeeeetae ttaaceteeg tgatggggaa ageggeegga gaaagggagt
                                                                    1800
totggcaget tetcegagac cecaacacec caetgttgca aggtattgct gactacagac
                                                                    1860
ccaaggatgg agaaaccatt gagctgaggc tggttagctg gtagcccctg agctccctca
                                                                    1920
teccageage etegeacaet ecetaggett etaccetece teetgatgte eetggaacag
                                                                    1980
gaactcgcct gaccctgctg ccacctcctg tgcactttga gcaatgcccc ctgggatcac
                                                                    2040
cccagccaca agcccttcga gggccctata ccatggccca ccttggagca gagagccaag
                                                                    2100
catcttccct gggaagtett tetggccaag tetggccage etggccetge aggtetecca
                                                                    2160
tgaaggccac cccatggtct gatgggcatg aagcatctca gactccttgg caaaaaacgg
                                                                    2220
agtecqcaqq ccqcaqqtqt tqtqaaqacc actcqttctq tqqttqqqqt cctqcaaqaa
                                                                    2280
ggcctcctca gcccgggggc tatggccctg accccagctc tccactctgc tgttagagtg
                                                                    2340
gcagctccga gctggttgtg gcacagtagc tggggagacc tcagcagggc tgctcagtgc
                                                                    2400
ctgcctctga caaaattaaa gcattgatgg cctgtggacc tgctacagtg gcctggtgcc
                                                                    2460
tcatactcct caggtgcagg ggcagggaca agagaagggg gaagtaaccc catcagggag
                                                                    2520
gagtggaggg tgcctgagcc gcccatgtgg gcattggggg agtgatggga atgcccagca
                                                                    2580
gtgatgacgt tgactactga ctgagcaccc actactatga ctgagcactc actcgctaga
                                                                    2640
tactatcttg aactgctctg tgaaaaa
                                                                    2667
```

<210> 216

<211> 796

<212> DNA

<213> Homo sapiens

# <400> 216

```
gtgaggaatt cetgeeteag eeteeegagt agetgggatt acaggeatgt getaecacae
                                                                      60
ctggctaatt tttatatttt tagtagagat ggggttttac catgttggcc aggctggttt
                                                                     120
caaactcctg gettcaagtg gtccgcctgc ctcggcctcc caaagtgctg ggattacagg
                                                                     180
cgtgagtcac catgcccggc caacttttta aacatttata attatctatt taaatttact
                                                                     240
tgttgtctct gattcatttc tgaaagtgaa atatagagaa attccttgaa atctggagag
                                                                     300
acaaataatt gttctccata gacaagtggt aagcattact ttttctaaaa acttactcag
                                                                     360
agatttttat tatgttatat tttgaaatgc agaactgacc tttgagcaag tattcacttt
                                                                     420
tttaagtttg gaaattgttc taaaatattc actggtattg agtgttaagt aacaggtaaa
                                                                     480
aaggcacaga aaaccaatag gaaattagag ttttgtaact gggtgtctcc accaataata
                                                                     540
tttctctgac tctgtatttt tgggtaatgt tgcatcctcc tggttgaaaa tgtattcagt
                                                                     600
tatqtqattt qaaqtqttta tqaattaaqa caaattatca ttactaqtta qaaatqtctc
                                                                    .660
ttccaaaagt agtacactat acaactttag tttttgggct acttaggaga gaaaagcaga
                                                                     720
tattggctta ttttgtgtgc cctatccatt taattagaag ctcaatgaaa atttttatca
                                                                     780
ttatattatc acctct
                                                                     796
```

```
<210> 217
     <211> 740
     <212> DNA
     <213> Homo sapiens
     <400> 217
tcgtgtaatt ccagtttttg attgtcaact cttcaccaca ttaaatatat qatcctttct
                                                                       60
ctcttgaaat tettteetet cetgteetee gatacteeta acteetetgt teetettett
                                                                      120
accaccceaa gggatcctcc ctatcacctt tccccctgct cttcctccta ctttqtaaaa
                                                                      180
gagggctttt ctgtggttta gcacttgaat ttctgcagta cgttgattct gacgctcata
                                                                      240
tattcccaca gtttcccctg aagagtccca tgcgtgtcac ctcctcagga tgggaactgt
                                                                      300
aatcacctca aatacaacgt aatgttgggt ctaataagga aactccactc tgctccactt
                                                                      360
taggaagaaa tcgttgctag gaacaacaca tattaaactg ctctatgcta tttatcagat
                                                                      420
atttetetaa gaetggtggt ggagaagagg tteetgaagt gaeagaagtt ttaaggggga
                                                                      480
aagacaagga gatggagaag aacgattttg ccatcaagga tcaaggcaga ggccaagcgc
                                                                      540
ggtggctcat gcctataatc ccagcatttt gggagcctga ggtgggtgga tcactagagg
                                                                      600
tcaggagttc aagaccagcc tggccaatat ggtgaaatcc cgtctctacc gaaaatacca
                                                                      660
aaattggccg ggcatggtgg cacacacctg taaccccagc tacttgggag gctgaggcgg
                                                                      720
gagaatcact tgaacccagg
                                                                      740
     <210> 218
     <211> 926
     <212> DNA
     <213> Homo sapiens
     <400> 218
ctgtggtgta attcgtctca ggcaagatct ttgattttcc tggatgccac ctggaaatgc
                                                                       60
cacccattgt gtttcttttc tgtcaaatgt aaacccttta gatgtgaatg tactggttta
                                                                      120
atgatgccat tattctgcct gccaqaacgc agtaacccaq tgtctcacaq aqcacaaqqq
                                                                      180
gtgtgccact ggtggtacac aagataattt ttaagtagtt tctagaaaca acattaagta
                                                                      240
ataccaaatc acaaagaatg tttccccttt tctattcttt tttcatcctg attacagcaa
                                                                      300
ggaaaaagtc tctgtttagt gctagcaggt cctttacacc tttcagacac tatggctctt
                                                                      360
ttcccttttt agcaaagaaa gagcaggcct cagagtcttc tgtctagata gaatttaatg
                                                                      420
atattgtttt gtgtcatggt atttatttta tttattacct tccatttaca gcttcccaca
                                                                      480
gtgggggatg tgacatattg tttctgttca aataaattaa gaaaaacaag agaactcaag
                                                                      540
aaaatatcaa gtaattaaca caccagataa gtatatgtgg caaaagtcac ttcaaagaat
                                                                      600
taatgtcaga aagatggtga taatgaagca aaagaaaggc agattatgct ggccgggcgt
                                                                      660
ggtggctcac gcctgtaatc ccagcaattt gagaggctga gatcacttaa ggtcaggagg
                                                                      720
ttgagaccag cctgaccaac atggggaaac tccatctcta ctaaaaatac aaaaattagc
                                                                      780
caggegtggg ggtgcatgcc tgtaatccca gctaataaaa aggctgaggc aggagaatca
                                                                      840
ettgaateca aaaggeggag gttgeegtga getgagaetg egecaetaca etecaqeeeg
                                                                      900
gggtgacaga gcaagactcc atctca
                                                                      926
     <210> 219
     <211> 845
     <212> DNA
     <213> Homo sapiens
     <220>
     <221> misc feature
     <222> (1)...(845)
     <223> n = a,t,c or g
```

```
<400> 219
caggacagaa ggagcaagct gtggaatggt ataagaaagg tattgaagaa ctggaaaaag
                                                                      60
gaatagctgt tatagttaca ggacaagcgt tagcaaagtt tggagcaatc ccctcagagg
                                                                     120
cgattgggtg gttggagcca ggactgctgg ggaggaggcg gctgcagcca gcagctgaca
                                                                     180
taacattaat ageteeteac caetgtgeat geteatatgt ceagtacttt geatatatga
                                                                     240
ctgagggctg ccaaggccag acaacgcaca tgtgtcctgg atcctccct ggcctgggc
                                                                     300
agcagcagca gcagcagctg ggcttgggat caggtgtgag gctgtgggcc tctggtatgg
                                                                     360
ggggetgcac cetgggtett ggtgactggt atgaaactgt atatgatget getgcacaca
                                                                     420
gcctcacacq qcatqaaqtc actqcaqaqc aaqqtaaaaa acatcaaqct tqqqttcaqq
                                                                     480
aaaggaggcc aaaatgcagt ggaaaacatt ttctctttqq gaaatgagca tgataatgtq
                                                                     540
tagagtgagc actgtcattc caaatgcagt ttgggtggac aggttttctg tgtttataca
                                                                     600
teteagactg etgeaggace tgteteacte cagaaageat gageeeteec caeetggagg
                                                                     660
ctgcacaggt aagcetetga aateccaagg cataaagtee catggaagee getteetetg
                                                                     720
caaggecaaa tacatacgtc acagaaccca ataaggteet acagcaaatt cgacaggeet
                                                                     780
ttttttttgc ccgaattccg ccncnctgcg aaggttctca aggtaatcag ttnttnttac
                                                                     840
gctct
                                                                     845
     <210> 220
     <211> 2950
     <212> DNA
     <213> Homo sapiens
     <220>
     <221> misc feature
     <222> (1)...(2950)
     <223> n = a,t,c or g
     <400> 220
aaaaaaaaca ccagtttttc caacatctaa ttgagctttt gattaattcc gtgtaccaga
                                                                      60
ttctactgaa gaaaggtagc catggaagag aatatggaag agggacagac acaaaaaggg
                                                                     120
tgttttgaat gctgtatcaa atgcctgggg ggcattccct atgcctctct gattgccacc
                                                                     180
atcetgetet atgegggtgt tgeeetgtte tgtggetgeg gteatgaage getttetgga
                                                                     240
actgtcaaca ttctgcaaac ctacatttga gatgggcaag aactgctggg agacacactg
                                                                     300
ggatgttttt accatggatt gacatcttta agtatgtgat ctacgggcat cgcagctgcg
                                                                     360
ttetttgtgt atgggcattt tgettgatgg tggaaggttt ettteacaae tggggccate
                                                                     420
aaagatetet agtggggatt tteaaaatea ceaettgtgg geagatgtgt gagegettgg
                                                                     480
ttcattatgc tgacatatct tttccatgtt gggcctggct tgggagtcac ggctttcacc
                                                                     540
tcactgccag tttacatgta cttcaatctg gtggaccatc tggccggaac accacattag
                                                                     600
tggagggagc aaatctctgc ttggaccttc gtcagtttgg aattgtgaca attggagagg
                                                                     660
aaaagaaaat ttgtactgtc tctgagaatt tcttgaggat gtgcgaatct actgagctga
                                                                     720
acatgacett ceaettgttt attgtggeae ttgetggage tggggeagea gteattgeta
                                                                     780
tggttcacta ccttatggtt ctgtctgcca actgggccta tgtgaaagac gcctgccgga
                                                                     840
tggcagaagt atgaagacat caagttcgaa gggaaggagg caagagcttt catgacatcc
                                                                    900
acticating cticcaaagag cggcttcaat gcatacacat gaaatggcat cttcctgttt
                                                                     960
cttttcttac cctttggaat ggcattgggt gttttaacta aggggccatc caacccttcc
                                                                    1020
caacctttta aaaaacaaaa cggaaagtgc tttctcattc aatggatatg taaggtgact
                                                                    1080
tatgaatcac cctgagtaca aatatctttg ttgtttagca ctttaaattt cccaatttta
                                                                    1140
tttaaattgg atgtaaatca gatctttttc tacaaggctc ctattccagg ccttttttt
                                                                    1200
tggaaatttt cttcaaactc atttactagg ttctgtaaaa ttcaaaggtt actaacattg
                                                                    1260
ttcaaatggc aaaggtttgt tntggatttt tttaaccact tcccatgtgt tatacataac
                                                                    1320
accttttgca ttatttcctt atgttttgaa aagaaaatag ctttttatac tttttagttt
                                                                    1380
tqatttcqgt aactagttta actacaggta accttcaaag ggaccattgt acattatgaa
                                                                    1440
caataqataq aqatqacatc ttqatqactc ttqaaaatatq qaaattttqt ctqaaqatca
                                                                    1500
gtggccatat tactgtaggc cctggttcat gttttcatca atctaaggtg caatttctaa
                                                                    1560
atttgtaaga gtaggtttaa aaaaaaagt gcttcttatc tttgttaaca ttgtactttt
                                                                    1620
```

```
ccttgatgtt cttaaaaggt atttccctca gattactcat gtttatgttg tgagcatgta
                                                                    1680
gaaacagtaa tgctaatgca tggctagttg cctttttaag attgtgacac caggcttacc
                                                                    1740
ttttaaagtt tagtatatag agacaatttt aatggaaata actactgtag actattgaag
                                                                    1800
aatgatetet ttgtgattta agaagtgget ggattggaac ttttaatatg ctaatgtgga
                                                                    1860
aaattaatta cctttatgaa ggtggtttat tacaaataag cacactaacc cctcggaagt
                                                                    1920
tgttttacct actttaaaag ttttaatgga ttgcacctct qtaaactatt cctaaaatqt
                                                                    1980
gtatgatata tttgaaaagg cttccattaa tataatagct ttgcttgcag ccttccaatc
                                                                    2040
tatgttggtt taccctgtag tgttttaaaa aagtgtggtc cagaggcccc ctatagaatg
                                                                    2100
taattgtttg aaagtgtagt gatatatttg tgtttttatt tcaagtaagt cattttaacc
                                                                    2160
gaatgttcat tcatattcat ttataaaaag tacctgtatc aaaggaattt taacaaagag
                                                                    2220
caatcagtat tattggacca aatttggtgt ttgttttcac cttgacgctc ttcttttcat
                                                                    2280
tatttctaat gctacaagaa tgctgtaaag tgtcttctaa aatgatgtag cctgacaaga
                                                                    2340
cattttttc agtgtataaa actaggtagt attgtgcact gatttgacca ttgtgaaatc
                                                                    2400
ctttctcagt gtaactgcat ttctaataaa aatttattga gtgaaacaat ctttggtaca
                                                                    2460
atgactagtc atgcatcatc agtaatttta caagttcttg tagtaggtag ggggtactac
                                                                    2520
tagggatate tgtggcatga ttatgcatte cgtagtatta tttaattaat ttggggttea
                                                                    2580
ttttgcttcc tttcctttat gcttaagatt atccttactq gttcaacatt tttctqatat
                                                                    2640
atgraqtatt acaqatattc agcaaaaqta ttaatgggct tctttaaatt ctatattata
                                                                    2700
gtatttcagt tccgtgtctt aacagtttgt gataatttct aaaactgtct tttcaactta
                                                                    2760
tgtaatgatg ttgacacttt tggcttttat ttctggtatt agagtttgta ttttcacaga
                                                                    2820
gtgctttgta gcaggcatta caattaatct gttttgtaca taaatgtgcc aacagcttga
                                                                    2880
tggtggcgtt tttgaaatgt agaacagagt gcttgcaaaa tgtaataaat acacttgtgt
                                                                    2940
aaaaaaaaa
                                                                    2950
```

<210> 221 <211> 2125

<212> DNA <213> Homo sapiens

### <400> 221

tttcgtacga aatcgtaggg aaaaacaaac tcgaagttaa tcattcccag ctcaaagcct 60 tgtgcaagtg ctctctgcct tcacgcttgc ttcctttggg agagaacctt cctcttcttg 120 atcggggatt caggaaggag cccaggagca gaggaagtag agagagagac aacatgttac 180 atotgcacca ttottgtttg tgtttcagga gctggctgcc agcgatgctc gctgtactgc 240 taagtttggc accatcagct tccagcgaca tttccgcctc ccgaccgaac atccttcttc 300 tgatggcgga cgaccttggc attggggaca ttggctgcta tggcaacaac accatgagga 360 ctccgaatat tgaccgcctt gcagaggacg gcgtgaagct gacccaacac atctctgccg 420 catctttgtg caccccaage agageegeet teetcaeggg cagataceet gtgegateag 480 ggatggtttc cagcattggt taccgtgttc ttcagtggac cggagcatct gcaggtttta 540 ccaccaatgt agacaacttt tgcaaaaata ctggaagaga aaggctatgc cactggactc 600 attggaaaat ggcatctggg tctcaactgt gagtcagcca gtgatcattg ccaccaccet 660 ctccatcatg gctttgacca tttctacgga atgcctttct ccttgatggg tgattgcgcc 720 cgctgggaac tctcagagaa gcgtgtcaac ctggaacaaa aactcaactt cctcttccaa 780 gtectggeet tggttgeeet cacactggta geagggaage teacacact gataccegte 840 togtggatgc cggtcatctg gtcagccctt toggccqtcc toctcctcgc aagctcctat 900 tttgtgggtg ctctgattgt ccatgccgat tgctttctga tgagaaacca caccatcacq 960 gagcagecca tgtgctteca aagaacgaca ccccttattc tgcaggaggt tgcgtccttt 1020 ctcaaaagga ataagcatgg gcctttcctc ctctttgttt cctttctaca cgttcacatc 1080 cctcttatca ctatggagaa cttcctcggg aagagtctcc acgggctgta tggggacaac 1140 gtaaaggaga tggactggat ggtaggacgg atccttgaca ctttggacgt ggagggtttg 1200 aqcaacaqca ccctcattta ttttacqtcq qatcacqqcq qttccctaqa qaatcaactt 1260 gqaaacaccc aqtatqqtqq ctgqaatqqa atttataaaq qtqqqaaqqq catqqqaqqa 1320 tgggaaggtg ggateegegt geeegggate tteegetgge eeggggtget eeeggeegge 1380 cgagtgattg gcgagcccac gagtctgatg gacgtgttcc ccaccgtggt ccggctggcg 1440 ggcagcgagg tgccccagga cagagtgatt gacggccaag accttctgcc cttgctcctg 1500 gggacagccc aacactcaga ccacgagttc ctgatgcatt attgtgagag gtttctgcac 1560

```
gcagccaggt ggcatcaacg ggacagagga acaatgtgga aagtccactt tgtgacgcct
                                                                    1620
gtgttccagc caagagggag ccggtgcctg ctatggaaag aaaaggtctg cccgtgcttt
                                                                    1680
ggggaaaaaa gtagtccacc acgatcccac ccttgcttct ttgacctctc aagagcccca
                                                                    1740
tetgagacce acatecteae accageetea gageeegtgt tetateaggt gatggaacga
                                                                    1800
agtccagcag gcggtgtggg aacaccagcg gacactcagc ccagttcctc tgcagctgga
                                                                    1860
caggetggge aatatttgga gaccgggggt geagecette tgtgggeegt teeecetttg
                                                                    1920
gtggggcctt agggaaaatg acccccaata aatgtttgca gtgaaaagct ggagccccga
                                                                    1980
ttcctaaatt ttgtcactca aattgaaaca aaccagctgg ccatggtggt tgtcatccca
                                                                    2040
gcactttagg aggccaccac aggaggatca ctcccgtgat caaaaccaac ctqqqcaaca
                                                                    2100
tgatgaaact atagctctac aaaac
                                                                    2125
```

<210> 222 <211> 1947 <212> DNA

<213> Homo sapiens

<400> 222

ttttttttt ttaggttctt gcgaaacacc tgaagtttta ctcatggtac aaaagtattt 60 aataagtgac acatcagtac agaaacacag agcttgtagc ttgtccttta aaaccaqaat 120 ggccaagtga aaagtcagta cagattetta tttttactat taaaaaaaaa aaatcaaagg 180 gacacactgg gaattgaact actatgcttt ttcttcgttc tagagatgac atatatgttt 240 tetgataagt aatetaceae acattgeact aaaccaaage atacaaacag ceagtaaage 300 tgtgctctac ctgctactca tgctgggctg gacagtggaa caccatcttg gtaggagaga 360 ttttgacagg aagaaactgc agagtcccta cctaacccag agaaccttac aaactggttt 420 atacacaaag gattttcagc aaacatgcaa acacactaac atgctatagg aatatgtttt 480 agtetattte tageacacag catacattea taggtgeeca gtaaaatagg aatgaatgte 540 aatgtagaaa gcatttttgc cttcacagta ctaacaaaca cctaaaaaqc acacaqcata 600 taatactttg atctttaagt ggataatcat ggaagttcca agatcacatc ccctaggtta 660 gcctgagtat tcatctataa aaatattttt tttttcaaaa ataatgctta aaagagactt 720 ctagaaacag tgggactaca tcaggaccag aagacagtga cacaaggact qcaaatqtta 780 agactaggag tagcttttca catggagctt ttatgtagag gacgtctcct tctgttgatt 840 cctacagccg agacaagatg tgatcacagg agactccaaa atctcaaact gggcttgagt 900 aacaccctag ataaacatca ggaaccccac tgaggctgaa gtactgaaac tgtggcccat 960 gtgaaaaaga ggtgcaagtg cacaaagatt catgcagagc ctgctggaac agagggtggt 1020 ggeggeggt tagtecacac ttacacacca geaggtatge tggqqaaggg ecceccaqqt 1080 ggagtgcctg acatagggct cgctccagag gcgtctgact cagaagctcc tgagagaggt 1140 gtctacttga ggtggggagg agtactatgg ttaatgaata caagaaggtg tttcaggata 1200 aataggtcca ggagggttag gtcattttgg ttttgaccta ttaatactta acataaatga 1260 agagttacat aacagagtca gtctttccaa gatgtgttct gtcatcatga gctgagccta 1320 ttgggctggt gacatccaaa aagatcccat tcattggctg gaggtaggac ctagtgccgc 1380 agattgttct gggaagctgg cagagaagat gatttgcaca atgaagtcac cagtaagcca 1440 ctgcttaagt ccagtcctcg gccttctttt tctgctctgt agtccaaaaa catttcttta 1500 aaagccagaa aatctgtgaa ggtgagcagc atgtcgaata tgtcaccagc cacttcatcc 1560 ttatggtgcc tgcaaacggg aacagatggt gtaatgttgt ggtgaaggct gccatgttga 1620 actcaggaat ccgctgcagc agctgttctt caatgtattt ttctaccaaa gaaatqtatt 1680 cattaaaaat aggtgtgtag atgagtttat tctcttctgt gtcttcaaac tccaggtagt 1740 acttgtccat gaaatttctc tgtaataact ggaactcgtc atccatgata atgtcctcta 1800 aatatecaac cacagcatca aattetgcat cagaggcgga ggagaaagac agcgcaaagc 1860 teteteette taaggegtee ategeagteg eeeegagtag geteeaacce egeeegege 1920 ccaactcgca tgcagggcgc ggccgct 1947

<210> 223

<211> 1131

<212> DNA

```
<213> Homo sapiens
     <220>
     <221> misc feature
     <222> (1) ... (1131)
     \langle 223 \rangle n = a,t,c or g
     <400> 223
tagcttaacc cattgcgtcc ggaaatgttc cgaatcaaaa aggggaagga tgaagagct
                                                                       60
caaggcactt cattttgtgt gtgcctgtgt atatgtgtgt gtgtgttttc tagggggtta
                                                                      120
acacattgcc ccagcttgga ttatttctat cctcagaaca gcatataaac attttttggg
                                                                      180
gggaaaaagt taaaatattt acacagctgc ttcctttatt ttttttaaa tacacagata
                                                                      240
atatttttac tacctcatga acatcatcat gtctttgtaa ctagcatgct aaactttatt
                                                                      300
totocttttg gtagcactat tttgttatta atcccttctg cccttcctcc ttcccctcct
                                                                      360
tecegtigtt cectettate ecctecteeq accaeteece tececeteec getecettet
                                                                      420
coefficient coefficient theoretical talaaaattat aatetgitaa titgittgaa
                                                                      480
cctagggtgc ctgaaaattc agataacttg agagtaatta attaattcca cattagtatt
                                                                      540
ccaatgcatt tgtaatgaca gccttgcaat ttttgggggg taggtaacca ttaattntqc
                                                                      600
ctcagtaaaa taaatggcct ttatgtataa gctaagactt gtacaaaagt agattaatgt
                                                                      660
cetteacetg tgactetaca acaccaatte atteactttg gtttttcage cagacatetg
                                                                      720
gccattttag tgatttattg acttaactga ttaatttggt aggggagggt aatactattg
                                                                      780
tgccttcaga tatangccta aagtttctgt caccaagagg tgatggcaat ctaacctgtt
                                                                      840
ggcctcagga tgtgccttgc ttttcctgga ttctccanac tcctattttt attataaaat
                                                                      900
cctactttgg gtgcctggca tgacttttaa gttggcaggc gcaagggctt cttttgaagg
                                                                      960
ggaccggcct cctcaacccg cctggcatta aacgcggggg gacagggagg cgaaaacatg
                                                                     1020
ttatgtgccc gcagccattg ggtggctcaa accgaatcta attgccctct tggggtgngg
                                                                     1080
acgcacatta gtcctggcct ctataacaac agacgatctg agtgcgcgcc c
                                                                     1131
     <210> 224
     <211> 975
     <212> DNA
     <213> Homo sapiens
     <400> 224
cacccaccac gacgcctggc taatttttgt atttttttag tagagacagg gtttcactat
                                                                       60
gttggccagg ctggtctcga actcctgacc tcaagtgatc cacctgcctc ggcctcccaa
                                                                      120
agtgctggga ttacagagtc tcactctgta gtccaggttg gagtgcagtg gcgttatttc
                                                                      180
ggctcactgc aacctccgcc tcccaggttg aagtgattct cctgcctcag cctcctgagt
                                                                      240
agetgggatt acaggtgtge accaccacac ccagetaatt gtgtattttt catagagatg
                                                                      300
gggtttcacc acgttggcca ggctggtctc gaactgacct caggtgatcc acctgccttg
                                                                      360
gcctcctgaa gtgcttggat tacaggcatg agccaccaca cccagcctca tttttqtatt
                                                                      420
tttagtagag acagggtttc accatgttgg ccaggctggt ctcgaactcc tgacctcaag
                                                                      480
tgatccaccc gccttggcct cccaaagtgc tgggattaca ggcatgagcc actgtgcccg
                                                                      540
gccagtgatt cttaattagt tcatgatatt ttggagttct aggcaggaca gcagcctctg
                                                                      600
cctcctcaac cccatgtaaa ccagaatgag caactgctgg gctggaggag ctctccttct
                                                                      660
tagagcattg tgggacaact tgctatgagt tctccttcat tttttcattt caccaccatg
                                                                      720
agttgtaggg ccctttgtgc tttggcccct aacaacttgc ccagtatggt gccctgccca
                                                                      780
tcacccattg tcttcaacaa cctatcatgc agctccatgt ctccctgcct tggctcttga
                                                                      840
ggtteectgg cetagactgt actttgcate etgateagee tteaateeaa eteetteagg
                                                                      900
gaactattga ettgetggat tetgtgattt tgtcatgtte eetgtgtete tttqqtqtet
                                                                      960
```

<210> 225

tgcagatgca catct

975

<211> 1601 <212> DNA <213> Homo sapiens

<400> 225 tgagggttgt gtttaagcta tctaaaagca tacgaagaaa ggagacagaa gggggccagg 60 tggacagaaa gaattecaac tggggcttet cetaagtgat tttggacett qqcaqqqcaq 120 ctttetettt tttgccccgt tgcagcatct caaccagtaa cgcctaaact ctcagggacc 180 togottgtag aaaagcotat gottgccatg coccttgagg gototgagte agggtcagaa 240 tetteagetg gaggaaatgt gaactgacca gateetgeet geteeteeet etgeacceag 300 gggcgtccgg cacaaccttt cctgggatgt ccaggcgctg ggctttctgt ctggatcacc 360 acceccacce cetgecetec theactgeet gageaeggge gtgeetetge ceagagette 420 teageegtea geceacatea geceacgeea aeggegagee ateaetgtgg aggeeetetg 480 tgagaaccac ttaggcccag caccacccta cagcatttcc aacttctcca tccacttgct 540 ctqccaqcac accaagtcct gccactccac agaccccatc ccagcaccac tgccatctgc 600 cagaacagct gtgtggtatg cagtgtcctg ggcaccaggt gccaagggct gggctacagg 660 cctgccacga ccagtttcct gatgagtttt tqqatqcqat ctqcaqtaac ctctcctttt 720 cagecetgte tggetecaac egeegeetgg tgaagegget etgtgetgge etgeteceae 780 cccctaccaq ctgccctgaa ggcctgccc ctgttcccct caccccaqac atcttttqqq 840 gctgcttctt ggagaatgag actctgtggg ctgagcgact gtgtggggag gcaagtctac 900 aggetgtgee ceccageaac caggettggg tecageatgt gtgecaggge cecaceccag 960 atgtcactgc ctccccacca tgccacattg gaccctgtgg ggaacgctgc ccggatgggg gcagcttcct ggtgatggtc tgtgccaatg acaccatgta tgaggtcctg gtgcccttct ggccttggct agcaggccaa tgcaggataa gtcgtggggg caatgacact tgcttcctag aagggetget gggeeecett etgeeetete tgeeaceaet gggaeeatee eeactetgte tgacccctgg ccccttcctc cttggcatgc tatcccagtt gccacgctgt cagtcctctg teccagetet tgeteacece acaegeetae actateteet eegeetgetg acetteetet tgggtccagg ggctgggggc gctgaggccc aggggatgct gggtcgggcc ctactgctct ccagtetece agacaactge teettetggg atgeettteg eccagaggge eggeqeaqtq tgctacggac gattggggaa tacctggaac aagatgagga gcagccaacc ccatcaggct ttgaacccac tgtcaacccc agctctggta taagcaagat ggagctgctg gcctgcttta gtgtgagtgc tctgccagag ggaaagctcc tagaacagtg a

<210> 226 <211> 974 <212> DNA <213> Homo sapiens

<400> 226 caacagtctg tcttaaatgt gttgaatttg aattaacatt gctgtttaaa caccttaatt atattettet agecettgae agetetgeag agtaetteae etgtetgtga atatgttttg ctttctgcat gtgtttcttg tctctctgcc tttcttgact tcctactctt gcttgcagat aatttcatat tcatccttca aggcctggtt caagtatccc ttcctctqta agatttttcc

gcaaggagtg catcategec tcatttagtg tggaaaacca gtagacatat ggagtgggtg attttaaagc ccatcatctt ttttgtccag ggccaggggc actcagtccg taagcagaac tttcatacgt aagataattg agttggttgg gegeegtgge teatgeetgt aateccagea ctttgggagg ctgaggcggg cggatcacct gaggttggga gttcgagacc agcctgacca acacggagaa accetatete tactaaaaat acaaaagtag eegggegtgg tgatgegtge ctgtaatccc agctacccag gaaggctgag gcggcagaat cacttgaacc cggaggcgga

aacacggtta ataacatata aatatgtatg cattgagaca tgctacctag gacttaagct gatgaagett ggctcctagt gattggtggc ctattatgat aaataggaca aatcatttat gtgtgagttt ctttgtaata aaatgtatca atatgttata gatgaggtag aaagttatat ttatattcaa tatttacttc ttaaggctag cggaatatcc ttcctggttc tttaatgggt

aactetgeca aataatgact ccctccagca gacteettta gttcatggtg tgtgeettea

1601

540

600

```
agtctatagt atat
                                                                      974
     <210> 227
     <211> 666
     <212> DNA
     <213> Homo sapiens
     <400> 227
etgtggtgga attegeetgg cagtgagtga aacccaggee tecageeete caaageetqq
ggccaccccc tgtagcaggc gatgctagaa taaagaggag agccagagct gaggctcctt
                                                                      120
gccccttggc ccctccaggg gccatgggat ctctgtctcc cacacccctg tcacggcccg
                                                                      180
cctggagcag cccagaggcc gaagaggttc ttactgcagc ctccgggagg tgtctaggga
                                                                      240
ggccatagat tgcctggtct cgccgcattc aaaatgaggc ttatgatcag tacttttttc
                                                                      300
agceccacat tectetecag aatggeetet geeetacage acetggeeca tgtggeacee
                                                                      360
catgggcctg tcctctgctg ttgtgaggtc gacctcacga cccagcacag gagctggagg
                                                                      420
cgaggtgcac gcgaggctct ccacagccca ggaaggcagc ctgtcaccct gctctccgag
                                                                      480
ccaggggcca aggtgtgggg ggcacaggcc atcctcatcc tgccaggccc ccgctttcag
                                                                      540
gagtggggtg gtgccaatgc tcccactcag aaccetggac tgcggggtcc cctgagcaga
                                                                      600
gggaccagcc agttccccat agacagattg gtgctggaca ggggctgcct gggccccagg
                                                                      660
cttggg
                                                                      666
     <210> 228
     <211> 1918
     <212> DNA
     <213> Homo sapiens
     <220>
     <221> misc feature
     <222> (1)...(1918)
     <223> n = a,t,c or g
     <400> 228
aaatcgactc gctcggtgtt cgcccgccga cgccgcacgg cttgctgggg ctgggctctt
                                                                       60
cctcgcggaa gtggggagga ggcggttgcg gttagtggac cgggaccggt aggggtgctg
                                                                      120
ttgccatcat ggctgacccc gacccccggt accctcgctc ctcgatcgag gacgacttca
                                                                      180
actatggcag cagegtggcc teegecaceg tgcacateeg aatggeettt etgagaaaag
                                                                      240
tctacagcat tctttctctg caggttctct taactacagt gacttcaaca gtttttttat
                                                                      300
actitigagic tigtaciggaca titigtacati agagicctige citaatititi cigittigeec
                                                                      360
teggatetet gggtttgatt tttgegttga ttttaaacag acataagtat cecettaace
                                                                      420
tgtacctact ttttggattt acgetgttgg aagetetgac tgtggcagtt gttgttactt
                                                                      480
tctatgatgt atatattatt ctgcaagctt tcatactgac tactacagta tttttttggtt
                                                                      540
tgactgtgta tactctacaa tctaagaagg atttcagcaa atttggagca gggctgtttg
                                                                      600
ctcttttgtg gatattgtgc ctgtcaggat tcttgaagtt tttttttat agtgagataa
                                                                      660
tggagttggt cttagccgct gcaggagccc ttcttttctg tggattcatc atctatgaca
                                                                      720
cacactcact gatgcataaa ctgtcacctg aagagtacgt attagctgcc atcagcctct
                                                                      780
acttggatat catcaatcta ttcctgcacc tgttacggtt tctggaagca gttaataaaa
                                                                      840
aqtaattaaa aqtatctcaq ctcaactqaa qaacaacaaa aaaaatttaa cqaqaaaaaa
                                                                      900
ggattaaagt aattggaagc agtatataga aactgtttca ttaagtaata aagtttgaaa
                                                                      960
caatgattaa atactgttac aatctttatt tgtatcatat gtaattttga gagctttaaa
                                                                     1020
atcttactat tetttatgat accteattte taaateettg atttaggate teagttaaga
                                                                     1080
gctatcaaaa ttctattaaa aatgcttttc tggctgggca cagtggctca cgcctgtaat
                                                                     1140
cccaccactt tgggagaccg aggcaggtgg atcacgaggt caagagaaag ttaccatcct
                                                                     1200
ggctaatacg gngaaacccc atctctacta aaaatacaag aagattagct ggctgtggtg
                                                                     1260
```

1380

1440

gcatgcacct gtggtcccgg ctactcggga ggctgaggca ggagaatcgc ttgaacccgg gaggtggagg ttgcattgag ccaagatcac gccactgcat tccagcctgg tgacagagcg

```
agactcagtc tcaaaaaaaa tttaacgaga aaaaaggatt aaagtaattg gaagcagtat
atagaaactg tttcattaag taataaagtt tgaaacaatg attaaatact gttacaatct
                                                                    1500
ttatttgtat catatgtaat tttgagagct ttaaaatctt actattcttt atgatacctc
                                                                    1560
atttctaaat ccttgattta ggatctcagt taagagctat caaaattcta ttaaaaatgc
                                                                    1620
ttttctggct gggcacagtg gctcacgcct gtaatcccac cactttggga gaccgaggca
                                                                    1680
ggtggatcac gaggtcaaga ggttgagacc atcctggcca acatggtgaa accccgtctc
                                                                    1740
tactaaaaat acaaaaatta getggatgtg gtggcacaca cetgtagtee cagetagtea
                                                                    1800
agaggetgag gecagagaat egettgaace tgggaggtgg aggttgeatt gagecaagat
                                                                    1860
cacgccactg cattnccagc ctggtgacag agcgagactc agtctcaaaa aaaaaaaa
                                                                    1918
    <210> 229
     <211> 1593
     <212> DNA
     <213> Homo sapiens
     <400> 229
gaaatcccgc ggcgacccac gcgggcgccc acgcgttcga ggtttttttt tcaaagctga
                                                                      60
agetttggtt tetgetetaa atgaaggaet ttteeaggae eeaaggeeac acaetggaag
                                                                     120
tettgeaget gaagggagge acteettgge eteegeaget gateacatga aggtggtgee
                                                                     180
aagteteetg eteteegtee teetggeaea ggtgtggetg gtaeeegget tggeeeeeag
                                                                     240
tectcagteg ccagagacce cagecectca gaaccagace ageagggtag tgcaggetee
                                                                     300
caaggaggaa gaggaagatg agcaggaggc cagcgaggag aaggccagtg aggaagagaa
                                                                     360
agectggetg atggecagea ggeageaget tgccaaggag acttcaaact teggattcag
                                                                     420
cctgctgcga aagatctcca tgaggcacga tggcaacatg gtcttctctc catttggcat
                                                                     480
gtccttggcc atgacaggct tgatgctggg ggccacaggg ccgactgaaa cccagatcaa
                                                                     540
gagagggete cacttgeagg ceetgaagee caccaageee gggeteetge ettecetett
                                                                     600
taagggactc agagagaccc tctcccgcaa cctggaactg ggcctcacag caggtgagtt
                                                                     660
ttgccttcat ccacaaggat tttgatgtca aagagacttt cttcaattta tccaagaggt
                                                                     720
attttgatac agagtgcgtg cctatgaatt ttcgcaatgc ctcacaggcc aaaaggctca
                                                                     780
tgaatcatta cattaacaaa gagactcggg ggaaaattcc caaactgttt gatgagatta
                                                                     840
atcctgaaac caaattaatt cttgtggatt acatcttgtt caaagggaaa tggttgaccc
                                                                     900
catttgaccc tgtcttcacc gaagtcgaca ctttccacct ggacaagtac aagaccatta
                                                                     960
aggtgcccat gatgtacggt gcaggcaagt ttgcctccac ctttgacaag aattttcgtt
                                                                    1020
gtcatgtcct caaactgccc taccaaggaa atgccaccat gctggtggtc ctcatggaga
                                                                    1080
aaatgggtga ccacctcgcc cttgaagact acctgaccac agacttggtg gagacatggc
                                                                    1140
tcagaaacat gaaaaccaga aacatggaag ttttctttcc gaagttcaag ctagatcaga
                                                                    1200
agtatgagat gcatgagctg cttaggcaga tgggaatcag aagaatcttc tcaccctttg
                                                                    1260
ctgaccttag tgaactctca gctactggaa gaaatctcca agtatccagg gttttacaaa
                                                                    1320
gaacagtgat tgaagttgat gaaaggggca ctgaggcagt ggcaggaatc ttgtcagaaa
                                                                    1380
ttactgctta ttccatgcct cctgtcatca aagtggaccg gccatttcat ttcatgatct
                                                                    1440
atgaagaaac ctctggaatg cttctgtttc tgggcagggt ggtgaatccg actctcctat
                                                                    1500
aattcaagac atgcataagc acttcgtgct gtagtagatg ctgaatctga ggtatcaaac
                                                                    1560
acacacagga taccatcact ggatggcacg ggt
                                                                    1593
     <210> 230
     <211> 1583
     <212> DNA
     <213> Homo sapiens
     <400> 230
aggaacgaga gcggagcgga gcacagtccg ccgagcacaa gctccagcat cccgtcaggg
```

```
gttgcaggtg tgtgggaggc ttgaaactgt tacaatatgg ctttccttgg actcttctct
                                                                     120
ttgctggttc tgcaaagtat ggctacaggg gccactttcc ctgaggaagc cattgctgac
                                                                     180
ttgtcagtga atatgtataa tcgtcttaga gccactggtg aagatgaaaa tattctcttc
                                                                     240
tctccattga gtattgctct tgcaatggga atgatggaac ttggggccca aggatctacc
                                                                     300
cagaaagaaa teegeeacte aatgggatat gacageetaa aaaatggtga agaattteet
                                                                     360
ttcttgaagg agttttcaaa catggtaact gctaaagaga gccaatatgt gatgaaaatt
                                                                     420
gccaattcct tgtttgtgca aaatggattt catgtcaatg aggagttttt gcaaatgatg
                                                                     480
aaaaaatatt ttaatgcagc agtaaatcat gtggacttca qtcaaaatqt aqccqtqqcc
                                                                     540
aactacatca ataagtgggt ggagaataac acaaacaatc tqqtgaaaga tttqqtatcc
                                                                     600
ccaagggatt ttgatgctgc cacttatctg gccctcatta atgctgtcta tttcaagggq
                                                                     660
aactggaagt cgcagtttag gcctgaaaat actagaacct tttctttcac taaagatgat
                                                                     720
gaaagtgaag tccaaattcc aatgatgtat cagcaaggag aattttatta tggggaattt
                                                                     780
agtgatggct ccaatgaagc tggtggtatc taccaagtcc tagaaatacc atatgaaqqa
                                                                     840
gatgaaataa gcatgatgct ggtgctgtcc agacaggaag ttcctcttgc tactctggag
                                                                     900
ccattagtca aagcacagct ggttgaagaa tgggcaaact ctgtgaagaa gcaaaaagta
                                                                     960
gaagtatacc tgcccaggtt cacagtggaa caggaaattg atttaaaaga tgttttgaag
                                                                    1020
gctcttggaa taactgaaat tttcatcaaa gatgcaaatt tgacaggcct ctctgataat
                                                                    1080
aaggagattt ttctttccaa agcaattcac aagtccttcc tagaggttaa tgaagaggct
                                                                    1140
cagaagctgc tgctgtctca ggaatgattg caattagtag gatggctgtg ctgtatcctc
                                                                    1200
aagttattgt cgaccatcca tttttctttc ttatcagaaa caggagaact ggtacaattc
                                                                    1260
tattcatggg acgagtcatg catcctgaaa caatgaacac aagtggacat gatttcgaag
                                                                    1320
aactttaagt tactttattt gaataacaag gaaaacagta actaagcaca ttatgtttgc
                                                                    1380
aactggtata tatttaqqat ttqtqtttta caqtatatct taaqataata tttaaaataq
                                                                    1440
ttccagataa aaacaatata tgtaaattat aagtaacttg tcaaggaatg ttatcagtat
                                                                    1500
taagctaatg gtcctgttat gtcattgtgt ttgtgtgctg ttgtttaaaa taaaagtacc
                                                                    1560
tattgaacat gtgaaaaaaa aaa
                                                                    1583
```

<210> 231

<211> 2701

<212> DNA

<213> Homo sapiens

### <400> 231

tttcgtgcag gatgctgcgc gccgccctgt ccctgctcgc gctgcccctg gcggggggg 60 ccgaagagcc cacccagaag ccagagtccc cgggcgagcc tcccccaggc ttagagctct 120 teegetggea gtggeaegag gtggaggege cetacetggt ggeeetgtgg ateetggtgg 180 ccagtctggc caaaatcgtg tttcacctgt ctcggaaagt aacatctctg gtccctgaga 240 gctgcctgct gattttgctg ggcctggtgc tagggggaat tgttttggct gtggccaaqa 300 aagetgagta eeagetggag eeaggeacet tetteetett eetgetgeet eetattgtgt 360 tggaetcagg ctatttcatg cctagcaggc tgttctttga caacttgggt gccatcctca 420 cctatgccgt ggtaggcaca ctctggaatg ccttcacaac aggcgctgcc ctctggggct 480 tgcagcaggc tggacttgta gcccctaggg tgcaggctgg cttactggac ttcctgctgt 540 ttgggageet eateteggeg gtggaceeeg tggeegtget atgetgtett tgaggaggtg 600 cacgtcaatg agactgtgtt tatcatcgtc tttggcgagt ccctgctcaa cgatgctgtc 660 caccgtggtg ctgtacaagg tctgcaactc ctttgtggag atgggctctg ccaatgtgca 720 ggccactgac tacctgaagg gagtegcctc cetgtttgtg gtcagtctgg geggggcagc 780 egtgggetta gtetttgeet teeteetgge eetgaceaea egetteaeea agegggteeq 840 catcategag ecqetqetqq tettectect eqeetacqea qeetacetea etqetqaaat 900 ggcctcgctc tccgccattc ttgcggtgac catgtgtggc ctgggctgta agaagtacgt 960 ggaggccaac atctcccata agtcacgcac aactgtcaaa tatacaatga agactctagc 1020 cagctgtgct gagaccgtga tcttcatgct gcttggcatc tcaaccgtgg actcttctaa 1080 gtgggcctgg gattetgggc tggtgctggg caccetcate tteatectgt tettecqage 1140 ceteggegta gteetgeaga cetgggtget gaateagtte eggetagtee etetggacaa 1200 gattgaccaa gtggtgatgt cctatggggg cctgcggggg gctgtggcct ttgctctcgt 1260 catectactg gataggacca aggtccctgc caaggactac tttgtagcca ccactattgt 1320 agtggtcttc ttcacagtca tcgtgcaggg cttgaccatc aagccactgg tcaaatggct 1380

```
gaaggtgaag aggagtgagc atcacaaacc caccetgaac caggagetge atgaacacac
                                                                     1440
ttttgaccac attctggctg cagtggagga cgttgtgggg caccatggct accactactg
                                                                     1500
gagggacagg tgggagcagt ttgacaagaa atacctgagt cagctgctga tgcgacgatc
                                                                     1560
agectacege atecgggace agatetggga tgtgtactac aggettaaca teegggatge
                                                                     1620
catcagettt gtggaccagg gaggccacgt ettgtettee acaggtetea etetgeette
                                                                     1680
tatgcccage egeaattetg tggcagaaac ttetgtcace aacetgetga gggagagtgg
                                                                     1740
cagtggagcg tgtctggatc tgcaggtgat tgacacagta cgcagcggcc gggatcgtga
                                                                     1800
ggatgetgtg atgeateate tgetetgegg aggeetetae aageegegee gtaggtacaa
                                                                     1860
agccagctgc agtcgccact tcatctcaga ggatgcgcag gagcggcagg acaaggaggt
                                                                     1920
cttccagcag aacatgaagc ggcggctgga gtcctttaag tccaccaagc acaacatctg
                                                                     1980
cttcaccaag agcaagccac gaccccgcaa gactggccgc aggaagaagg atggtgtggc
                                                                     2040
gaatgctgag gctacaaatg ggaaacatcg aggcctgggc tttcaggaca cagctgctgt
                                                                     2100
gatattaacc gtggagtetg aggaggagga ggaggagage gacagtteag agacagagaa
                                                                     2160
ggaggacgat gaggggatca tctttgtggc tcgtgccacc agtgaggttc tccaagaggg
                                                                     2220
caaggtetca ggaageettg aggtgtgeee aageecacga atcattecce eetceccaac
                                                                     2280
ctgtgcagaa aaggagctcc cctggaagag tgggcagggg gacctggcag tgtacgtgtc
                                                                     2340
ctcggaaacc accaagattg tgcctgtgga catgcagacg ggttggaacc agagcatctc
                                                                     2400
atccctggag agcctagcgt cccctccctg taaccaggcc ccaattctga cctgcctgcc
                                                                     2460
tececateca eggggeactg aagageecca ggteeetete cacetacett etgatecaeg
                                                                     2520
etctagette geetteecae egageetgge caaggetgge egetetegea gtgagageag
                                                                     2580
egetgacete ceccagcage aggagetgea gecceteatg ggecacaagg accacaceca
                                                                     2640
teteageeca ggeacegeta ceteceaetg gtgeateeag tteaacagag geageegget
                                                                     2700
                                                                     2701
```

<210> 232 <211> 2823 <212> DNA

<213> Homo sapiens

### <400> 232

tggcatttgc atggtggccc tgtctcatct tggctctgct ctccagcttg gcagcctctg 60 getteeegag aageeeettt eggetgettg ggaaaeggag ceteeeagaa ggggtggeea 120 atggcatcga ggtctacagt accaaaatca actccaaggt gacctcccgt tttgctcaca 180 atgttgtcac catgagagcc gtcaaccgtg cagacacggc caaggaggtt tcctttgatg 240 tggagctgcc caagacggcc ttcatcacca acttcacctt gaccatcgac ggtgttacct 300 accetgggaa tgteaaggag aaggaagttg ceaagaagea gtatgaaaag getgtgteee 360 agggcaagac ggccggcttg gtcaaggcct ctgggaggaa gttggagaag ttcacagtct 420 cggtcaacgt ggctgcaggc agcaaagtca ccttcgagct aacctacgag gagctgctga 480 agaggcacaa gggcaagtac gagatgtacc tcaaggtcca gcctaagcaa ctggtcaaac 540 actttgagat cgaggtagac atcttcgagc ctcagggaat cagcatgctg gatgctgagg 600 cctctttcat caccaacgac ctcctgggaa gcgccctcac caagtccttc tcagggaaaa 660 agggccatgt gtccttcaag cccagcttag accaacagcg ttcatgccca acctgtacag 720 actocctcct caatggagat ttcactatca cctatgacgt gaacagagaa tctcctggca 780 acgtgcagat agtcaatggc tacttcgtgc acttctttgc acctcaaggc cttccagtgg 840 tgcctaagaa cgtggccttt gtgattgaca tcagcggctc catggctggt cggaaattag 900 agcagacaaa ggaggccctt ctcagaatcc tggaagatat gcaagaggaa gactatctga 960 atttcatcct gttcagtgga gatgtgtcca catggaaaga gcacttagtc caggccacgc 1020 ccgagaacct ccaggaggcc aggacgtttg tgaagagcat ggaggataaa ggaatgacca 1080 acatcaatga cgggctgctg aggggcatca gtatgctgaa caaggcccga gaggagcaca 1140 gaatcccaga gaggagcacc tccattgtca tcatgctgac tgatggggat gccaatgttg 1200 gtgagagcag acccgaaaaa atccaagaga atgtgcggaa tgccatcggg ggcaagttcc 1260 ccttgtataa cctgggcttt ggcaacaatc tgaattataa cttcctggag aacatggccc 1320 tggagaacca tgggtttgcc cggcgcattt atgaggactc tgatgccgat ttgcaqttqc 1380 agggetteta tgaggaggtg gecaacecae tgetgaeggg tgtggagatg gagtaeeeeg 1440 agaacgetat cetggacete acceagaaca ettaceagea ettetaegat ggetetgaga 1500 tegtggtgge egggegeetg gtggaegagg acatgaacag etttaaggea gatgtgaagg 1560

```
gccatggggc caccaacgac ctgaccttca cagaggaggt ggacatgaag gagatggaga
                                                                    1620
aggecetgea ggagegggae tacatetteg ggaattacat tgageggete tgggeetace
                                                                    1680
tcaccattga gcagctgctg gagaagcgca agaacgccca tggcgaggag aaggagaacc
                                                                    1740
tcacggcccg ggccctggac ctgtccctca agtatcactt tgtgactcca ctgacctcaa
                                                                    1800
tggtggtgac caagcctgag gacaacgagg atgagagggc cattgccgac aagcctgggg
                                                                    1860
aagatgcaga agccacaccg gtgagccccg ccatgtccta cctgaccagc taccagcctc
                                                                    1920
ctcaaaaccc ctactactat gtggacgggg atccccactt catcatccaa attccggaga
                                                                    1980
aagacgatge cetetgette aacategatg aagececagg cacagtgetg egeettatte
                                                                    2040
aggatgcagt cacaggcctc acagttaatg ggcagatcac tggcgacaag agaggcagcc
                                                                    2100
ctgactccaa gaccagaaag acttactttg gaaaactggg catcgccaat gctcagatgg
                                                                    2160
acttccaggt ggaggtgaca acggagaaga tcaccctgtg gaacagggcc gtgccgagca
                                                                    2220
ctttcagctg gctggacaca gtcacagtca cgcaggatgg ccactttctg gcttcctctc
                                                                    2280
gtaggctgtc catgatgatc aacaggaaga acatggtggt ctcctttgga gatggggtta
                                                                    2340
cettegtggt egtectacae caggtgtgga agaaacatee tgtecacegt gaetttetag
                                                                    2400
gettetaegt ggtggacagt caceggatgt cageacagae geatgggetg etggggeaat
                                                                    2460
tettecaace etttgaettt aaagtqtetg acateeqqee aqqetetqae eccaeaaage
                                                                    2520
cagatgccac attggtggtg aagaaccatc agetgattqt caccaqqqqc teccaqaaaq
                                                                    2580
actacagaaa ggatgccagc atcggcacga aggttgtctq ctggttcqtc cacaacaacq
                                                                    2640
gagaaggget gattgatggt gtecaeactg actaeattgt ecceaacetg ttttgagtag
                                                                    2700
acacaccage teetgttggg atggatggee eggattttat ggeatetgga acatgggeae
                                                                    2760
agagaggggc ctgtgggagg ggctgggaaa ataaagtcca aggtcgagac cagaaaaaaa
                                                                    2820
aaa
                                                                    2823
```

<210> 233 <211> 1798 <212> DNA

<213> Homo sapiens

# <400> 233

ttttttttt ttctcatctc tgagtattta ttatatataa caaatacatg ggaaagaaaa 60 aactatattg tgtgatataa atagtttatt tacattacag aaaaaacatc aagacaatgt 120 atactattic aaatatgatg catacataat caaatatagc tgtagtacat gttttcattg 180 gtgtagatta cccacaaatg caaggcaaac atgtgtaaqa tctcttqtct tattcttttq 240 tetataatac tgtattgtgt agtecaaget eteggtagte cagecactgt gaaaacatge 300 tecetttagg attaaceteg tgggaegget ettgttgtat tgtetggaac tgtagtgeec 360 tggtattttg cttctgtctg gtggaattct gttggcttcg gggggcattt ccttgtgatg 420 cagaggacca ccacacagat gacagcaatc tgaattgttc caatcacagc tgcgattaag 480 acatactgga aatcgtacag gaccgggaac aacgtataga acactgtagt cctttttttc 540 acagtgttgt ccagtataac cagcatcaca cctgcaagat ggctcctgca tattgataga 600 atgeteacae tteccatgea tgeagaagee attgtaatgt teeggacaag gtatgtggtg 660 ttctctggca ctttcttcta atttgttagc attctctgca taatctgttc ttgcataatg 720 780 tteaatttte teetgtttet gacacgatge ttetttgatt tggcatgcat tatcataaqa 840 tttcccatca gaagcgcaga ggggattgaa gttggtttga gaacagtcaa tattacacac 900 acaccagaca tecteggeat tttegteaca ttetgeacca aactggeaaa tateacaggt 960 ggatgtetee tittgaetag titeteeaga geetteatgg actecatete cagateetga 1020 tectgeatet gtggeacatg atecttetga caccacaagt ateteactet getgtttgea 1080 tgcagcctgt cgcaggtaac actcattctg gtagctctcc ccattggagc cacacacagg 1140 cacatagtca ttgttgcact tgaactgaca gacgcaagtc acagtgtctc caattcttaa 1200 acattcccca tcaaatttac aggtgttggt gtcacagagg aagagatcat tttctctgtc 1260 atcataacca gagcaattcc agccggtggg cgtttggcag tcacttaagg aggtagggaa 1320 agcagegage ttcaceggge gggetacgat gagtagcatg acgggcagca qcaqcaqcca 1380 gcaaaaqccc tcgcaaaqtq tccaqctqct qcactqccqc qqqqactccc acaqcaccat 1440 gactagtteg tgeaactetg caqcaqcaaa eqqetteega qqaacacaqq ateqeqqqq 1500 ccgggcagcg ggctactgag catcccgcgg acggcggcag cagaggcggc ggcggtggca 1560 gtggcacccg gcggggaagc agcagccaaa cccgcgcatg atctcgagag tttcagcaac 1620

atccagggac tgggctcagc cccggagcga gagggtcgtc cgctgagaag ctgcgccgga 1680 gacgcgggaa gctgctgcca taaggaggga gctctgggaa gccggaggac aggaggagac 1740 gggagtccag gggcagacga gtggagcccg aggaggcagg gtggagggag agacgaaa 1798

<210> 234 <211> 5726 <212> DNA

<213> Homo sapiens

<400> 234

tttcgtgcct gaaaacgcga aatgagtctt gcttggttct ccctccactg ggcgtgagag 60 cccctgccca ggaggcccag gacaaatggc cccatagtgg aaactgggaa gcttttaggc 120 atctgatcag agcgggagcc agccggggga ccacagtgct ggacaggcca accaactcaa 180 acttgaagac atgaaatccc caaggagaac cactttgtgc ctcatgttta ttgtgattta 240 ttetteeaaa getgeaetga aetggaatta egagtetaet atteateett tgagtettea 300 tgaacatgaa ccagctggtg aagaggcact gaggcaaaaa cgagccgttg ccacaaaaag 360 tectaegget gaagaataca etgttaatat tgagateagt tttgaaaatg cateetteet 420 ggatcctatc aaagcctact tgaacagcct cagttttcca attcatggga ataacactga 480 ccaaattacc gacattttga gcataaatgt gacaacagtc tgcagacctg ctggaaatga 540 aatctggtgc tectgegaga caggttatgg gtggcctcgg gaaaggtgtc ttcacaatct 600 catttgtcaa gagcgtgacg tcttcctccc agggcaccat tgcagttgcc ttaaagaact 660 gcctcccaat ggaccttttt gcctgcttca ggaagatgtt accctgaaca tgagagtcag 720 actaaatgta ggctttcaag aagacctcat gaacacttcc tccgccctct ataggtccta 780 caagaccgac ttggaaacag cgttccggaa gggttacgga attttaccag gcttcaaggg 840 cgtgactgtg acagggttca agtctggaag tgtggttgtg acatatgaag tcaagactac 900 accaccatca cttgagttaa tacataaagc caatgaacaa gttgtacaga gcctcaatca 960 gacctacaaa atggactaca actcctttca agcagttact atcaatgaaa gcaatttctt 1020 tgtcacacca gaaatcatct ttgaagggga cacagtcagt ctggtgtgtg aaaaggaagt 1080 tttgtcctcc aatgtgtctt ggcgctatga agaacagcag ttggaaatcc agaacagcag 1140 cagatteteg atttacaceg caettttcaa caacatgaet teggtgteca ageteaceat 1200 ccacaacatc actccaggtg atgcaggtga atatgtttgc aaactgatat tagacatttt 1260 tgaatatgag tgcaagaaga aaatagatgt tatgcccatc caaattttgg caaatgaaga 1320 aatgaaggtg atgtgcgaca acaatcctgt atctttgaac tgctgcagtc agggtaatgt 1380 taattggagc aaagtagaat ggaagcagga aggaaaaata aatattccag gaacccctga 1440 gacagacata gattetaget geageagata caeceteaag getgatggaa eecagtgeee 1500 aagegggteg tetggaacaa cagteateta caettgtgag tteateagtg cetatggage 1560 cagaggcagt gcaaacataa aagtgacatt catctctgtg gccaatctaa caataacccc 1620 ggacccaatt tctgtttctg agggacaaaa cttttctata aaatgcatca gtgatgtgag 1680 1740 taactatgat gaggtttatt ggaacacttc tgctggaatt aaaatatacc aaagatttta taccacgagg aggtatcttg atggagcaga atcagtactg acagtcaaga cctcgaccag 1800 ggagtggaat ggaacctatc actgcatatt tagatataag aattcataca gtattgcaac 1860 caaagacgtc attgttcacc cgctgcctct aaagctgaac atcatggttg atcctttgga 1920 agctactgtt tcatgcagtg gttcccatca catcaagtgc tgcatagagg aggatggaga 1980 ctacaaagtt actttccata tgggttcctc atcccttcct gctgcaaaag aagttaacaa 2040 aaaacaagtg tgctacaaac acaatttcaa tgcaagctca gtttcctggt gttcaaaaac 2100 tgttgatgtg tgttgtcact ttaccaatgc tgctaataat tcagtttgga gcccatctat 2160 gaagetgaat etggtteetg gggaaaacat cacatgecag gateeegtaa taggtgtegg 2220 agagccgggg aaagtcatcc agaagctatg ccggttctca aacgttccca gcagccctga 2280 ggagtcccat taggcgggac catcacttac aaatgtgtag gctcccagtg gggggtagaa 2340 gagaaatgac tgcatctctg ccccaataaa cagtctgctc cagatggcta aggctttgat 2400 caagageeee teteaggatg agatgeteee tacatacetg aaggatettt etattageat 2460 agacaaagcg gaacatgaaa tcagctcttc tcctgggagt ctgggagcca ttattaacat 2520 cettgatetg eteteaacag ttecaaceca agtaaattea gaaatgatga egeacgtget 2580 ctctacggtt aatgtcatcc ttggcaagcc cgtcttgaac acctggaagg ttttacaaca 2640 2700 gcaatggacc aatcagagtt cacagctact acattcagtg gaaagatttt cccaagcatt acagtcagga gatagccctc ctttgtcctt ctcccaaact aatgtgcaga tgagcagcac 2760

	tccagccacc					2820
	aatgtggtca					2880
	atggctttcc					2940
	gagagettag					3000
	atgactttta					3060
	aggcttgcca					3120
	ggggacaatg					3180
	gactccccag					3240
	gtgggctttt					3300
ggtgtggaaa	tcggtgacca	agaatcggac	ttcttatatg	cgccacacct	gcatagtgaa	3360
tatcgctgcc	tecettetgg	gtcgccaaca	cctggttcat	tggggtcgct	gccatccagg	3420
acaatcgcta	catactctgc	aagacagcct	gtgtggctgc	caccttcttc	atccacttct	3480
tctacctcag	cgtcttcttc	tggatgctga	cactgggcct	catgctgttc	tatcgcctgg	3540
ttttcattct	gcatgaaaca	agcaggtcca	ctcagaaagc	cattgccttc	tgtcttggct	3600
atggctgccc	acttgccatc	tcggtcatca	cgctgggagc	cacccagccc	cgggaagtct	3660
atacgaggaa	gaatgtctgt	tggctcaact	gggaggacac	caaggccctg	ctggctttcg	3720
ccatcccagc	actgatcatt	gtggtggtga	acataaccat	cactattgtg	gtcatcacca	3780
agatcctgag	gccttccatt	ggagacaagc	catgcaagca	ggagaagagc	agcctgtttc	3840
agatcagcaa	gagcattggg	gtcctcacac	cactcttggg	cctcacttgg	ggttttggtc	3900
tcaccactgt	gttcccaggg	accaaccttg	tgttccatat	catatttgcc	atcctcaatg	3960
	attattcatt					4020
ctttgctgaa	taagttttca	ttgtcgagat	ggtcttcaca	gcactcaaag	tcaacatccc	4080.
	cacacctgtg					4140
tgtttggtaa	aacaggaacg	tataatgttt	ccaccccaga	agcaaccagc	tcatccctgg	4200
	cagtgcttct					4260
	acagtggctg					4320
	caggtttccg					4380
	aagacagaat					4440
cccttgtgtg	ataccacatg	tgtatagtat	ttaagtgaaa	ctcaagccct	caaggcccaa	4500
	tatattgtaa			•		4560
	taagctttga					4620
	gaaggaagga					4680
	aagaaaaaga					4740
	tgtaagattt					4800
	tttaatggct				_	4860
	atcttcctca					4920
	attccttcat					4980
	aatatgatcc					5040
	cagaggaagt		_			5100
	tatcagaaaa					5160
	gatataccct					5220
	ttaatggctt	_	_			5280
	gcattgtata					5340
tggcccttgg	tgtgttgcat	agctccctat	gtattctctg	tttccatctt	taagttccca	5400
	cattaagagt	_	_		_	5460
	aagaaatttt					5520
	ggcagagcct					5580
	ggtgtgtatg					5640
	ttaaccatgt					5700
	gagaatgaga			_	, <u>, , , , , , , , , , , , , , , , , , </u>	5726
	5 5					

<210> 235

<211> 5612

<212> DNA

<213> Homo sapiens

<400> 235 tcactagtcc atgtggtgga attcgtccag agtggcagta aaggaggaag atggcggggt 60 geagggggte tetgtgetge tgetgeaggt ggtgetgetg etgeggtgag egtgagaeee 120 gcacccccga ggagctgacc atccttggag aaacacagga ggaggaggat gagattcttc 180 caaggaaaga ctatgagagt ttggattatg atcgctgtat caatgaccct tacctggaag 240 ttttggagac catggataat aagaaaggtc gaagatatga ggcggtgaag tggatggtgg 300 tgtttgccat tggagtctgc actggcctgg tgggtctctt tgtggacttt tttgtgcgac 360 tetteaccca acteaagtte ggagtggtac agacateggt ggaggagtge agecagaaag 420 getgeetege tetgtetete ettgaactee tgggttttaa ceteacettt gtetteetgg 480 aaageeteet tggteteatt gageeggtgg aagegggtte eggeattace gagggeaaat 540 getatetgta tgecegacag gtgecaggac tegtgegact ceegaceetg etgtggaagg 600 cccttggagt gctgctcact gttgctgcaa tgcttcttat ttgggcttgg aagccccatg 660 atccacagtg gttcggtggt gggagctggc ctccctcagt ttcagagcat ctccttacgg 720 aagateeagt ttaaetteee etattteega agegaeaggt atggaaagag acaagagaga 780 etttgtatea geaggagegg etgetggagt tgetgeaget tteggggege caateggggg 840 taccttgttc agtctagagg agggttcgtc cttctggaac caagggctca cgtggaaagt 900 960 getettttgt tecatgtetg ceacetteac ceteaactte tteegttetg ggatteagtt 1020 tggaagctgg ggttccttcc agctccctgg attgctgaac tttggcgagt ttaagtgctc tgactctgat aaaaaatgtc atctctggac agctatggat ttgggtttct tcgtcgtgat 1080 gggggtcatt gggggcctcc tgggagccac attcaactgt ctgaacaaga ggcttgcaaa 1140 gtaccgtatg cgaaacgtgc acccgaaacc taagctcgtc agagtcttag agagcctcct 1200 tgtgtctctg gtaaccaccg tggtggtgtt tgtggcctcg atggtgttag gagaatgccg 1260 acagatgtcc tettegagtc aaateggtaa tgactcattc cagetccagg tcacagaaga 1320 tgtgaattca agtatcaaga catttttttg tcccaatgat acctacaatg acatggccac 1380 actettette aaccegcagg agtetgecat cetecagete ttecaccagg atggtaettt 1440 cageccegte actetggeet tgttettegt tetetattte ttgettgeat gttggaetta 1500 eggeatttet gtteeaagtg geetttttgt geettetetg etgtgtggag etgettttgg 1560 1620 acgtttagtt gccaatgtcc taaaaagcta cattggattg ggccacatct attcggggac 1680 etttgecetg attggtgeag eggetttett gggeggggtg gteegeatga ceateageet cacggtcatc ctgatcgagt ccaccaaatg agatcaccta cgggctcccc atcatggtca 1740 cactgatggt gggcaaatgt acaggggact ttttcaataa gggcatttta tgatatccac 1800 gtgggcctgc gaggcgtgcc gcttctggaa tgggagacag aggtggaaat ggacaagctg 1860 1920 agagecageg acateatgga geceaacetg acetaegtet accegeacae eegcatecag tetetggtga geateetgeg caccaeggte caccatgeet teeeggtggt cacagagaae 1980 cgcggtaacg agaaggagtt catgaagggc aaccagctca tcagcaacaa catcaagttc 2040 2100 aagaaatcca gcatcctcac ccgggctggc gagcagcgca aacggagcca gtccatgaag tectacecat ecagegaget aeggaacatg tgtgatgage acategeete tgaggageca 2160 geogagaagg aggaceteet geageagatg etggaaagga gatacaetee etaceceaae 2220 ctataccctg accagtcccc aagtgaagac tggaccatgg aggagcggtt ccgccctctg 2280 accttccacg gectgatect teggtegeag ettgtcacec tgettgteeg aggagtttgt 2340 tactctgaaa gccagtcgag cgccagccag ccgcgcctct cctatgccga gatggccgag 2400 gactaccege ggtaccecga catecaegae etggacetga egetgeteaa ecegegeatg 2460 atogtggatg teaccecata catgaaccet tegeetttea cegtetegee caacacceae 2520 gtctcccaag tcttcaacct gttcagaacg atgggcctgc gccacctgcc cgtggtgaac 2580 gctgtgggag agatcgtggg gatcatcaca cggcacaacc tcacctatga atttctgcag 2640 geceggetga ggeageacta ceagaceate tgacageeca geceacecte teetggtget 2700 2760 ggcctgggga ggcaaatcat gctcactccg ggcggggcac agctggctgg ggctgtttcc ggggcattgg aaagattccc agttacccac tcactcagaa agccgggagt catcggacac 2820 cttgctggtc agaggccctg ggggtggttt tgaaccatca gagcttggac ttttctgact 2880 tecceageaa ggatettece actteetget ecetgtgtte eceaecetee eagtgttgge 2940 3000 acaggececa eccetggete caccagagee cagaagecag aggtaagaat ecaggeggge ccegggetge actecegage agtgtteect ggeceatett tgetaettte cctagagaac 3060 cceggetgtt gccttaaatg tgtgagaggg acttggccaa ggcaaaagct ggggagatgc 3120 cagtgacaac atacagttgc atgactaggt ttaggaattg ggcactgaga aaattctcaa 3180 3240 tatttcagag agtccttccc ttatttggga ctcttaacac ggtatcctcg ctagttggtt 3300 ttaagggaaa cactetgete etgggtgtga geagaggete tggtettgee etgtggtttg actotoctta gaaccacege ccaccagaaa cataaaggat taaaatcaca ctaataacce 3360 ctggatggtc aatctgataa taggatcaga tttacgtcta ccctaattct taacattgca 3420 getttetete catetgeaga ttatteeeag teteceagta acaegtttet acceagatee 3480

```
tttttcattt ccttaagttt tgatctccgt cttcctgatg aagcaggcag agctcagagg
                                                                    3540
atettggcat cacccaccaa agttagetga aagcagggca eteetggata aagcagette
                                                                    3600
actcaactct ggggaatgct accatttttt ttccaaagta gaaaggaagc acttctgagc
                                                                    3660
cagtgaccac tgaaaggtat gtgctatgat aaagcagatg gcctatttga ggaagagggt
                                                                    3720
gtotgccctt cacaaacacc tctctctccc ctgcactage tgtcccaage ttacatacag
                                                                    3780
aggcccttca ggagggcctc ctgtggccgc agggagggtg cgtggggaag atgcttcctg
                                                                    3840
ccagcacgtg cctgaaggtt tcacatgaag catgggaagc gcaccctgtc gttcagtgac
                                                                    3900
gtcattcttc tccaggctgg cccgcccct ctgactaggc acccaaagtg agcatctggg
                                                                    3960
cattgggcat teatgettat ettececcae ettetacatg gtattagtee cageaggcat
                                                                    4020
ccctggggca gacgtgcttt ggctcaagat ggccttcatt tacgtttagt tttttttaaa
                                                                    4080
acceptage ttgcccacag gcctcagcac ctgggccctg gcagcacagc tctcaqqccc
                                                                    4140
agccctgggc gacctccttg gccaagtctg cctttcaccc tgggggtgag catcagtcct
                                                                    4200
ggetetgetg gtecagatet tgegeteage acaetetagg gaataattee actecagaga
                                                                    4260
tggggetget teaaggtett ttetagetga ttgtggeece teeattttee geattttett
                                                                    4320
atctccctga ccaaaattgc tttgacttct aaatgtttct gcttcccaga atgcacctga
                                                                    4380
cttatgaaat ggggataata ctcccaggaa atagcgcagg acatcacaag gaccaaaaaag
                                                                    4440
gcaattetta titaaatgit actatitgge cagetgetge tgtgttttat ggcagtgtte
                                                                    4500
aaagettgat cacgttattt etteetttta ttaagaagga ageeaattgt eeaagteagg
                                                                    4560
agaatggtgt gatcacctgt cacagacact ttgtcccctc tccccgcccc ttcctggagc
                                                                    4620
tggcagagct aacgccctgc aggaggaccc cggcctctcg agggctggat cagcagccgc
                                                                    4680
ctgccctgag gctgccccgg tgaatgttat tggaattcat ccctcgtgca catcctgttg
                                                                    4740
tgtttaagtc accagatatt ttgttcccat cagtttagcc cagagataga cagtagaatg
                                                                    4800
caaatacctc cctcccctaa actgactgga cqqctqccaa qqaqqcccca aacccaqqcc
                                                                    4860
ccatgcaaag gcacgtggtt tccttttctc ctctctctgc atctgcqctt tccagataag
                                                                    4920
cccaaagaca gcaacttctc cactcatgac aaatcaactg tgaccctcgc tccttccatt
                                                                    4980
tctgtccatt agaaaccagc cttttcagca tctcacccat tagcagcccc atcacccagt
                                                                    5040
gatcagtcgc ctcagtaaag cagatctgtg gatggggagc ctacgggtgg taagaagtgg
                                                                    5100
tgttttgtgt ttcatctcca gcttggtgtt ccatggcccc taggcgaggt gatcagggag
                                                                    5160
tggggccaat gggcccccgg ccctggcttt gggaccttgt gctgagggat gatttqctcc
                                                                    5220
tgacettgat taacttaaca gtteecaget qqaaqqqaca ettteaqqac ecaqtecaet
                                                                    5280
gtatggcatt tgtgatgcag aattatgcac tgacatgacc ctgggtgaca ggaaagcctt
                                                                    5340
togagaggec caaggtggec togccagece togcagtattg atgtgcagta ttgcaccaca
                                                                    5400
gctctgcgga ccttggccat tgccgcagtc gcagcttcct tttttctgtt tgcactgttt
                                                                    5460
gtttgtatga tgttagctaa ttccactgtg tatataaatt gtatttttt taatttgtaa
                                                                    5520
aatgctattt ttatttgaac. ctttggaact tgggagttct cattgtaacc ctaacatqtq
                                                                    5580
agaataaaat gtcttctgtc tcaaaaaaaa aa
                                                                    5612
```

<210> 236

<211> 4573

<212> DNA

<213> Homo sapiens

# <400> 236

```
atgcagattt catctcctgt cttctatgtg atatgggctc tgggtggcat taccactttt
                                                                      60
gatgctacgg gaatgaagtg tgatggggga catggtgaac tgaagcaaga ttttagccag
                                                                     120
tcagaactca aggatgtggc tgtgatgaaa ggaagtgctg gaaaggggtt gaggctggcg
                                                                     180
ctgacccaac agagggcctc cttctttcat cqcactttct ccttqqtcac aqtqcatctc
                                                                     240
acagtgtctg ctcacaaact ggtgcctggg aaggctgggg cccqtgqctg ttcctttqat
                                                                     300
gagcactaca gcaactgtgg ttatagtgtg gctctaggga ccaatgggtt cacctgggag
                                                                     360
cagattaaca catgggagaa accaatgctg gaccaggcag tgcccacagg atctttcatg
                                                                     420
atggtgaaca getetgggag ageetetgge cagaaggeee acetteteet gecaaceetg
                                                                     480
aaggagaatg acacccactg catcgacttc cattactact tctccaqccg tgacaqqtcc
                                                                     540
agcccagggg ccttgaacgt ctacgtgaag gtgaatggtg gcccccaagg gaaccctgtg
                                                                     600
tggaatgtgt ccggggtcgt cactgagggc tgggtgaagg cagagctcgc catcagcact
                                                                     660
ttctggccac atttctatca ggtgatattt gaatccgtct cattgaaggg tcatcctggc
                                                                     720
tacategeeg tggaegaggt cegggteett geteateeat geagaaaage accteatttt
                                                                     780
```

	aaaacgtgga					840
ggtgggaagt	ggtctcagca	tgacaagctt	tggctccagc	aatggaatgg	cagggacacg	900
	tcacccgtgt					960
gacactgccc	agcggagcgt	cagcaagtac	cactatataa	tecactetaa	taataaatet	1020
agtatataca	actacgcgga	actastcata	asadadota	ggaggggat	tactacaca	1080
	ctgtgggggc					1140
	ccatcatcct					1200
gagacccaca	tagtcgactc	tcccaactat	aagctgtggc	atctggaccc	cgatgttgag	1260
tatgagatcc	gagtgctcct	cacacgacca	ggtgaggggg	gtacgggacc	gccaggggct	1320
cccctcacca	ccaggaccaa	gtgtgcagat	ccggtacatg	gcccacagaa	catagaaatc	1380
	gagcccggca					1440
cactaccata	gctacaacct	caccatacaa	taccagtato	tattasaca	acagaagtaa	1500
~~~~~~~	geededdeec	caccycycay	caccagcacg	tycccaacca	gcagcagcac	
gaggeegagg	aggtcatcca	gacccccccc	Cactacaccc	cgcgaggccic	gegeeeette	1560
	ggctgcgact					1620
	agactgagga					1680
gggccctttg	aggagaagat	ctacatccag	tggaaacctc	ccaatgagac	caatggggtc	1740
atcacgctct	acgagatcaa	ctacaaggct	gtcggctcgc	tggacccaag	tgctgacctc	1800
	gggggaaagt					1860
	ggaccaccta					1920
	ccactcggat					1980
taagacaccc	cattgaatga	gacagacacg	accattacag	tgatgetgaa	accegereag	2040
	ctcctgtcag					2100
tcacggaggg	cagctgacat	tattgagtgc	ttttcggtgc	ccgtgagcta	tcggaatgcc	2160
tccagcctcg	attctctaca	ctactttgct	gctgagttga	agcctgccaa	cctgcctgtc	2220
acccagccat	ttacagtggg	tgacaataag	acatacaatg	gctactggaa	ccctcctctc	2280
tctcccctga	aaagctacag	catctacttc	caggcactca	qcaaaqccaa	tggagagacc	2340
aaaatcaact	gtgttcgtct	ggctacaaaa	gcaccaatgg	gcagcgccca	gataacccca	2400
gggactccac	tetgeeteet	caccacaggt	acctccaccc	agaattotaa	cactatage	2460
	aggtggacaa					2520
	ttctcctggg					2580
tactectatt	acttgaagct	ggccaagaag	cagaaggaga	cccagagtgg	agcccagagg	2640
	ctgtggcctc					2700
	tctcttctag					2760
ctttcccagc	ccaccctcac	gatccagact	catccctacc	gcacctgtga	ccctgtggag	2820
	cccgggacca					2880
	tgaagagagg					2940
	cagcttcgtg					3000
	tcatatccta					3060
	actacatcaa					3120
	aaggtccgat					3180
	ccagcatcgt					3240
	tggccagatg					3300
aacagagccc	ctggcagaat	acgtcatacg	caccttcttc	tttcctcaga	aaggctacca	3360
tgagatccgg	gageteegee	tcttccactt	caccagctgg	cctgaccacg	gcgttccctg	3420
	ggccttctgg					3480
tgggcccata	gtcctctctt	ccaqtqctqq	gactagacaa	actggctgct	tcattgccat	3540
	cttgacatgg					3600
	gcccaaaggg					3660
	ctggaagcgt					3720
tectetetac	tacaatatca	gcaggctgga	ccccagaca	aactccagcc	aaatcaaatg	3780
tgccccacag	accctcaaca	ttgtgacacc	ccgtgtgcgg	cccgaggact	gcagcattgg	3840
gctcctgccc	cggaaccatg	ataagaatcg	aagtatggac	gtgctgcctc	tggaccgctg	3900
cctgcccttc	cttatctcag	tggacggaga	atccagcaat	tacatcaacg	cagcactgat	3960
ggatagccac	aagcagcctg	ccgccttcgt	ggtcacccaq	caccctctac	ccaacaccqt	4020
	tggaggctgg					4080
gatggacact	gcccagttct	gtatgcagta	ctagectasa	aagacotcog	agtactatac	4140
						4200
	gtggagttcg					
	aacatggccc					4260
cattggctgg	cctgcctacc	gggacacgee	cecetecaag	egetetetge	ccaaagtggt	4320

ccgacgactggagaagtggcaggagcagtatgacgggagggagggacgtactgtggtca4380ctgcctaaatgggggaggccgtagtggaaccttctgtgccatctgcagtgtgtgtgagat4440gatccagcagcaaaacatcattgacgtgttccacatcgtgaaaacactgcgtaacaacaa4500atccaacatggtggagaccctggaacagtataaatttgtatacgaggtggcactggaata4560tttaagctccttt4573

<210> 237 <211> 2475 <212> DNA <213> Homo sapiens

<400> 237

ggttgcagcc agggaagcct ccgcggtggt gcaagtggaa cccaagcctt gaggtttcag tgagtagggg gccgacgtga gctttagcgt ccccctttag cctccctctt cgattccttg 120 aagaccetgg tgcagettag caagagggee caggattttt ggateeccag eeetgtgaca 180 agggtteetg tecagtttee ceeteceagg atttegacte agtteagega agteacegee 240 ccgtctgaga aatgaggaca ccaaggctta gagcacagcc ccgaggcgcc gtctaccagg 300 ccccgtcccc tcccccggct cctgtcggtc agcactgaaa ccccgtccct gctccaggcc 360 teettetetg gggtecaagg teecatacag geetetgeet eggeegeagg eeetteagte 420 acceptegeet egteteeetg acteteegea geettgggea geattggeegt atteeggteg 480 ggtctcctgg tgctgacgac gccgctggcc tccctagccc ctcgcctggc ctccatcctg 540 accteggegg eceggetggt gaatcacaca etetatgtte acctgeagee gggeatgage 600 ctggagggcc cggctcagcc ccagtacagc cccgtgcagg ccacgtttga ggttcttgat 660 ttcatcacgc acctctatgc tggcgccgac gtccacaggc acttggacgt cagaatccta 720 ctgaccaata teegaaccaa gageacettt eteeeteee tgeeeacete agteeagaat 780 ctegeceace egecagaagt egtgttgaca gatttecaga eeetggatgg aagecagtae 840 aacccggtca aacagcagct agtgcgttac gccaccagct gttacagctg ttgtccgcga 900 etggeetegg tgetgetata etecgattat gggataggag aagtgeeegt ggageeetg 960 gatgtcccct taccctccac gatcaggcca gcttcccccg tggccgggtc tccaaagcag 1020 ccggtgcgtg gctactaccg tggcgctgtc ggtggcacgt ttgaccgcct gcacaacgcc 1080 cacaaggtgt tgctcagtgt cgcgtgcatc ctggcccagg agcagcttgt ggtgggagta 1140 gcagacaaag atctgttgaa gagcaagttg ctccctgagc tgctccaacc ttatacagaa 1200 cgtgtggaac atctgagtga attcctggtg gacatcaagc cctccttgac ttttgatgtc 1260 atcoccctgc tggaccccta tgggcccgct ggctctgacc cctccctgga gttcctggtg 1320 gtcagcgagg agacctatcg tggggggatg gccatcaacc gcttccgcct tgagaatgac 1380 ctggaggaac ttgctttgta ccagatccag ctgctgaagg acctcagaca tacagagaat 1440 gaagaggaca aagtcagctc ctccagcttc cgccagcgaa tgttggggaa cctgcttcgg 1500 cctccatatg aaaggccaga gctccccaca tgtctctatg taattgggct gactggcatc 1560 1620 agtggctctg ggaagagctc aatagctcag cgactgaagg gcctgggggc gtttgtcatt gacagtgacc acctgggtca tcgggcctat gccccaggtg gccctgccta ccagcctgtg 1680 gtggaggcct ttggaacaga tattctccat aaagatggca tcatcaacag gaaggtccta 1740 ggcagccggg tgtttgggaa taagaagcag ctgaagatac.tcacggacat tatgtggcca 1800 attategeaa agetggeeeg agaggagatg gategggetg tggetgaggg aaagegtgtg 1860 tgtgtgattg atgccgctgt gttgcttgaa gccggctggc agaacctggt ccatgaggtg 1920 tggactgctg tcatcccaga gactgaggct gtaagacgca ttgtggagag ggatggcctc 1980 agtgaagceg eggeteaaag eeggetgeag ageeagatga gegggeagea gettgtggaa 2040 cagagecacg tggtgeteag cacettgtgg gageegeata teacecaacg ecaggtggag 2100 aaagcetggg ceetettgea gaagegeatt ceeaagaete ateaggeeet egaetgaaaa 2160 gttctcagtg gggccagact ggctcctgga gctgacaagc gaccccgtgg tgaggagaaa 2220 tgggggcett gatgeteace etggtteagg eccagaggte caagetatae tgtgeaggae 2280 atggccaggc ctggtggaca caggaagcct acccaacacg ctggtatttg gccaacactg 2340 aggatgtggt teatggggga geagteeeet eeceaetett geeeatgggt gaetettace 2400 cacagctgac tagggccagc gcaaatactg gaacctgtaa cagaattaaa ggtgaatgtt 2460 2475 ctgagaaaaa aaaaa

<210> 238 <211> 2428 <212> DNA <213> Homo sapiens

<400> 238

```
tttcgtggag cggaagcaga gtgaggagca agccccgggc gagaaacggg ggcccggccg
                                                                      60
ggagcaagag caggggggg gccgggagca agagcagggg cggggcccgg agacgggcga
                                                                     120
gaccaggttc tagccacgtt atgtgcggcc cagccatgtt ccctgccggt cctccgtggc
                                                                     180
ccagagtccg agtcgtgcag gtgctgtggg ccctqctggc agtqctcctg qcqtcqtqqa
                                                                     240
ggctgtgggc gatcaaggat ttccaggaat gcacctggca ggttgtcctg aacgagttta
                                                                     300
agagggtagg cgagagtggt gtgagcgaca gcttctttga gcaagagccc gtggacacag
                                                                     360
tgagcagctt gtttcacatg ctggtggact cacccatcga cccgagcgag aaatacctgg
                                                                     420
getteeetta etaeetgaag ateaaetaet eetgegagga aaageeetet gaggaeetgg
                                                                     480
tgegcatggg ccacctgacg gggctaaagc ccctggtgct ggtcaccttc cagtccccag
                                                                     540
tcaacttcta ccgctggaag atagagcagc tgcagatcca gatggagget gcccccttcc
                                                                     600
gcagcaaagg tgggcctggg ggaggcggga gggatcgcaa cctggcaggg atgaatatca
                                                                     660
acggetteet gaagagagae egggacaata acatecaatt caetgtggga gaggagetet
                                                                     720
tcaacctgat gccccagtac tttgtgggtg tctcatcgag gcccttgtgg cacactgtgg
                                                                     780
accagtcacc tgtgcttatc ctgggaggca ttcccaatga gaagtacgtc ctgatgactg
                                                                     840
acaccagett caaggactte tetetegtgg aggtgaacgg tgtggggcag atgetgagea
                                                                     900
ttgacagttg ctgggtgggc tccttctact gcccccattc tggcttcaca gccaccatct
                                                                     960
atgacactat tgccaccgag agcaccctct tcattcggca gaaccagctg gtctactatt
                                                                    1020
ttacaggcac ctataccaca ctctatgaga gaaaccgcgg cagtggtgag tgtgctgtgg
                                                                    1080
ctggacccac gcctggggag ggcaccctgg tgaacccctc cactgaaggt agttggattc
                                                                    1140
gtgtcctggc cagcgagtgc atcaagaagc tgtgccctgt gtatttccat agcaatggct
                                                                    1200
ctgagtacat aatggccctc accacgggca agcatgaggg ttatgtacac ttcgggacca
                                                                    1260
tcagagttac cacctgctcc ataatttggt ctgaatacat cgcgggtgag tatactctac
                                                                    1320
tgctgctggt ggagagtgga tatggtaatg caagtaaacg tttccaggtg gtcagctaca
                                                                    1380
acacagetag tgatgacetg gaacttetet accacatece agaatteate cetgaagete
                                                                    1440
gaggattgga gttcctgatg atcctaggga cagagtccta caccagcact gcaatqqccc
                                                                    1500
ccaagggcat cttctgtaac ccgtacaaca atctgatctt catctggggc aacttcctcc
                                                                    1560
tgcagagctc taacaaggaa aacttcatct acctggcaga cttccccaag gaactgtcca
                                                                    1620
tcaaatacat ggccagateg ttccgtgggg ctgtggctat tgtcacagag acggaggaga
                                                                    1680
tetggtacet cetggaggge agetaceggg tetaceaget gttecettee aagggetgge
                                                                    1740
aggtgcacat cagcttaaag ctgatgcaac agtcctctct ctacgcatcc aatgagacca
                                                                    1800
tgctgaccct cttctacgaa gacagcaaac tgtaccagct ggtgtacctt atgaacaacc
                                                                    1860
agaagggcca gctggtcaag aggctcgtgc ccgtggagca gcttctgatg tatcaacagc
                                                                    1920
acaccagcca ctatqacttq qaqcqqaaaq qqqqctactt qatqctctcc ttcatcqact
                                                                    1980
tetgeceett eteggtgatg egeetgegga geetgeecag teegeagaga tacaegegee
                                                                    2040
aggagegeta cegggegeg cegeegegeg teetggageg etegggettt ceacaaggag
                                                                    2100
aactegeeeg ceatetacea gggeetggte tactacetge tgtggetgea etcegtgtac
                                                                    2160
gacaageegt aegeggaeee ggtgeaegae eecaeetgge getggtggge gaacaacaaa
                                                                    2220
caagaccagg attactactt cttcttggcg agcaattggc gaagcgcggg cggcgtgtcc
                                                                    2280
atagaaatgg acagctacga aaagatctac aacctcgagt ccgcgtacga gctgccggag
                                                                    2340
cgcattttcc tggacaaggg cactgagtac agettcgcca tcttcctgtc ggcgcagggc
                                                                    2400
cactcgttcc ggacgcagtc agaactcg
                                                                    2428
```

<210> 239

<211> 692

<212> DNA

<213> Homo sapiens

<400> 239

```
ggccgggttg gaaaacccag caacgagctt tgaaaacata tcacccggac accaggggca
gaggetgtte tgggegggag gttgtgcctg ccccacggag cgacagaage ggggagacca
                                                                      120
gaegtegace etgaggegtg ceteetgggg ggeteeagtg geeggeatgg ggtgggtgtg
                                                                     180
gactetetge aetgetagtg cetgeetgac ettgetgtte tggagecaga eeccagggaa
                                                                     240
agcattccag atcccgtgcc ccccaccaca cctttcccat tggtgcttgt ctcctatgca
                                                                     300
aatggatgat ggttgtgctc ggctttgcgt gttgtggacg gcgtggatga gatggagggt
                                                                     360
getcatgtgc tettgteggg tgtgggccac agatettggg atetteettg qeqtqqeett
                                                                     420
ggggaatgag cctttggaga tgtggccctt gacgcaaaat gaggagtgca ctgtcacggg
                                                                     480
ttttctgcgg gacaagctgc agtacaggag ccgacttcag tacatgaaac actacttccc
                                                                     540
catcaactac aagatcagag tgccttacga gggggtgttc agaatcgcca acgtcaccag
                                                                     600
gctgagggcc caggggagcg agcgggagct gcggtatctg ggggtcttgg tgagcctcag
                                                                     660
tgccactgag tcggtgcatg acgagctgct cg
                                                                     692
     <210> 240
     <211> 735
     <212> DNA
     <213> Homo sapiens
     <400> 240
ttcccgggtc gacccacgcg aacgattttt taattaatgg aacggcctcc cttttcgttg
                                                                      60
tecattgagg gagaggggtg atcetacagg aggaagtgga gatgttecac egttgeagge
                                                                     120
tgaaggcegg gttgatgctg tggaggaqct tggagtctqg tctqtqcqct qqqqcccatc
                                                                     180
ggctgtggct tgagggtccc atggctttcc ctgaacttgg ggagaaggac cccctccttg
                                                                     240
cgtcacccct ggcactgata ccacagtctc tgataggttt gggtggcctg aggggagctt
                                                                     300
ggtagacgtg cccactgccc ttccggtgtg aggaaaagcg tgtgggtgga ggaagtgcgg
                                                                     360
gtgggggata ttgctggcca ggacggtggt gtttgggaac aaagcatcgg ttttggaaat
                                                                     420
ctgtgtcagg ccagcccacc atgaggccat gaaaccaaga ggagctgggg aactggcaag
                                                                     480
aggtgagggg gagtgggtgt gggtaatgga cqgtqttqtq tqctqqacct qttqaqtttt
                                                                     540
tattaattga atgtgtcaaa gaggaagaga agctgtgaac cctgtgatgt catcagttag
                                                                     600
gtaagaaaga aatgccactt tttatgcata aacacaaaca tatgaaaatg ggcccgtctg
                                                                     660
actgtgcttc gtcccttcca cattgggcac cctgtgactc ttcacttatc ccagccctgg
                                                                     720
cgtcctcact gggtg
                                                                     735
     <210> 241
     <211> 1970
     <212> DNA
     <213> Homo sapiens
     <400> 241
tttcgtctgg gacccacggc aggcgcgaat cccagcggtc tttgggcggc ggggatactt
                                                                      60
ctacataaac ataatcaagt tttgactatt tggaaaccaa gcatcattaa aattctctca
                                                                     120
aactcctaat tgcgaagaat cgataacatt tcaagaagtg ataacatttt tctgaacaag
                                                                     180
aaaagaagtg attgaccacg ttttaaaagt actctggcac tggtgctgtg ttttcttccc
                                                                     240
ctccctaaat ttgaagaact atggagaaat ggtacttgat gacagtagtg gttttaatag
                                                                     300
gactaacagt acgatggaca gtgtctctta attcttattc aggtgctggt aaaccgccta
                                                                     360
tgtttggtga ttatgaagct caaagacact ggcaagaaat aacttttaat ttaccggtca
                                                                     420
aacaatggta ttttaacagc agtgataaca atttacagta ttggggattg gattacccac
                                                                     480
ctcttacagc ttatcatagt ctcctatgtg catatgtggc aaagtttata aatccaqact
                                                                     540
ggattgctct ccatacatca cgtggatatg agagtcaggc acataagctc ttcatgcgta
                                                                     600
caacagtttt aattgctgat ctgctgattt acatacctgc agtggttttg tactgttgtt
                                                                     660
gcttaaaaga aatctcaact aagaaaagat tgctaatgca ttatgcatct tgctgtatcc
                                                                     720
aggeettatt ettatagaet atggaeattt teaatataat tetgtgagte ttggetttge
                                                                     780
tttgtggggt gttcttggaa tatcttgtga ctgcgacctc ctagggtcac tqqcattttq
                                                                     840
```

```
cttagctata aattataaac agatggaact ttaccacgcc ttgccatttt tttgcttttt
                                                                     900
acttggcaag tgttttaaaa aaggcctcaa aggaaagggg tttgagttgc tagttaagct
                                                                     960
agettgtatt gttgtggett cettegttet etgetggetg ceattettta cagaaaggga
                                                                    1020
acaaaccctg caggttctaa gaagactctt cccggttgat cgtggattat ttgaggataa
                                                                    1080
agtagccaat atttggtgca gcttcaatgt ctttctgaag attaaggata ttttgccacq
                                                                    1140
tcacatccaa ttaataatga gcttttgttt tacgtttttg agcctgcttc ctgcatgcat
                                                                    1200
aaaattaata cttcagccct cttccaaagg attcaaattt acactggtta gctgtgcgct
                                                                    1260
atcattcttt ttattttctt tccaagtaca tgaaaaatcc attctcttgg tgtcactacc
                                                                    1320
agtotgotta gttttaagtg aaattoottt tatgtotact tggtttttac ttgtgtcaac
                                                                    1380
atttagtatg ctacctcttc tattgaagga tgaactccta atgccctctg ttgtgacaac
                                                                    1440
aatggcattt tttatagctt gtgtaacttc cttttcaata tttgaaaaga cttctgaaga
                                                                    1500
agaactgcag ttgaaatcct tttccatttc tgtgaggaaa tatcttccat gttttacatt
                                                                    1560
tetttecaga attatacaat atttgtttet tateteagte ateactatgg tgettetgae
                                                                    1620
gttgatgact gtcacactgg atcctcctca gaaactaccq qacttqtttt ctqtattqqt
                                                                    1680
gtgttttgta tettgettga actteetgtt ettettggta taetttaaca ttattattat
                                                                    1740
gtgggattcc aaaagtggaa gaaatcagaa gaaaatcagc tagctgtatt cctaaacaaa
                                                                    1800
ttgtttccta aacaaatgtg aaaatgtgaa cagtgctgaa aggttttgtg aactttttgc
                                                                    1860
tatgtataaa tgaaattacc attttgagaa ccatggaacc acaggaaagg aaatggtgaa
                                                                    1920
aagtcattgt tgtctacaca aaataaatgt atatggagac caaaaaaaaa
                                                                    1970
```

<210> 242

<211> 1398

<212> DNA

<213> Homo sapiens

<400> 242

ggtgtaattc aatggggttg tttggttttt ctgttgtgga atatttaaat ttctctatqt 60 atcctcaatg ttaagccata ctagagatat qcttttcaaa tattttcccc cattctqtqc 120 atcacctttt ttactctgct gaaagtgctg tttgatgcaa aaaagtgttt aattttcatg 180 aggtccaata tatctatttt ttcttttgtt gcctgtgcct tgggtgttat attcaagaaa 240 tcattgacaa atccaatgat atgctcttct acacccttaa aaattataga caaccccaaa 300 taacttttat ttagtggttt taacaatatt taccatgtct gaaatatgat aaacattaaa 360 attagtattt tggaaaaatg ccatattaga aactgatgat ttaaaagtaa caacaatgaa 420 tocattacat gtgaacatac tgtttttttg tttgtttgtt tgtttgtttt gagacggagt 480 ttcactcttt tgcccaggct ggagtgcagt ggtgcgattg cagctcactg tagtcttcgc 540 ctcccaggct caagtgattc tcatgcctca gcctcctgag tagctgggat tacaggtgct 600 caccaccaca cocggetaat ttttgtagag atggggtttc accgtattgg ccaggctggt 660 cttgaactcc agacttcaag tgatccaccc accttggcct cccaaagtgc tgggattacg 720 ggcatgagcc actgcaccag gccaacatac tttttataaa aacagctgtc ttctctaaaa 780 caacaaaaa atgtagataa tagtagtatc attttatagt tttgcaactc tctttaatgt 840 ttggcttaat aaaagatagt tggattctcg tatctgtttt tgtattcagt ctgttgtgga 900 tggtgatttg attgaagtaa atgaaggaaa tccagctaca tacagatttg gagttggaaa 960 aaatagtatt ttaataacct ttttagatca tggtggatac tcttcttttg tttqqcctca 1020 aaattagaac aaaggcagtt totgaaaata attgtatgtg gtgaaaaatt aatgaatott 1080 atatggacca tacttttaat ttagaatatt ggtctaaaaa aaaaaaaggg ggccctttaa 1140 aaacaaattt agtacgggcg tggatgttaa cttttttggg gccagattgt tcgggcgggt 1200 gtacagggga aggggaaaac gggtggggct aggacgtgtt gaacaaatga cgtgctcgtg 1260 ctggcgaccg acctcttgta cgagaggtaa tgcgattggg aacgagtgat gggtqcqtcq 1320 attggtcgag gcgtgcgatg catgcaatgg ggcgcttagg cgttgggtag gatgggtggg 1380 acggatcgaa cgttctcg 1398

<210> 243

<211> 1146

<212> DNA

<213> Homo sapiens

<400> 243 ttttagttct ataatttatg tacaacaaaa aaaagtgtgt agcttggtga aatttacata 60 tgggtatacc tttgtgatta ctacccagat aaacatataa aacattttca ttccttctqc 120 coefficient caatggagee actegettee eccagteaac tactgteecq atttetatqa 180 ccatgtatta ttttcaaatg tttttaaact tcatataaac ggagtcatac agtttattct 240 tttgttcaca ttgtattcat ccatgttgca tgtataaaaa tttttgtttg ttttttattt 300 ttgctttgta tcaagggttg gcaaactatg gcctgtgggc caattccaac ccactgcatg 360 tttctgttta taaaatttta ttgggctgtg ttccatqqct cctqtctqtq qtttcaqcct 420 cccgagtagc tgggactaca ggcacccacc actatgcctg gataattttt tgtattttta 480 gtacagacgg ggtttcaccg cgttggccaa gatggtcttg atctcctgac ctcgtgatcc 540 accegecttg geeteccaaa gtgetgggat tacaggggtg agceacegeg eccaggecae 600 tctcaaaatt ttgaagacat tgcctttggt ttcctccaaa aactttatag ttttaactgt 660 tggatctggg actatcacca gttgattttc gcgtatgggg ggaggggggg acaagattta 720 ttttggattg gacatccctc gactctaaca tttattggaa aaacacacct ttttttgcgc 780 tagaaatgcg gggggaactg ctcaaaaaga agggtctaca ttggggccgg gggagggact 840 ctgtcttaca cttgactacc atccggtctt gaacgatcca ctctgttgaa cgtgcaattt 900 cggtcccttg ctcagatagc accegcaatg tctcgtcgga cggcgaacgg ctgaacgggt 960 gegategata gategeggeg ggeeggaeee ttataaeega aeggeatege teeggeegga 1020 ttegetgaaa egtaegggee gateggetge aacgeaacga teggtetgae tgacatgeat 1080 gcacctgagt cggcccataa gcgcgccatg cgaggactag ctacgggtgc acggtagtca 1140 ccqacc 1146

<210> 244 <211> 1004 <212> DNA

<213> Homo sapiens

<400> 244

gcccacgcgt ccgcccacgc gtccgtttcc cagccttggg attttcaggt gttttcattt 60 ggtgatcagg actgaacaga gagaactcac catggagttt gggctgagct ggctttttct 120 tgtggctatt ttaaaaggtg tccagtgtga ggtgcagctg gtgqaqtctq qqqqaqqctt 180 ggtacagect ggggggtecc tgagactete etgtgcagec tetggattea cetttageag 240 ctatgccatg agctgggtcc gccaggctcc agggaagggg gaaggggctg gagtgggtct 300 caggittitag tiatagiggi agitggiggia gigggggiag cacatactac qcagactccq 360 tgaagggccg gttcaccatc tccagagaca attccaagaa cacgctgtat ctgcaaatga 420 acagcctgag agccgaggac acggccgtat attactgtgc gaaaggcctt ttgcccccgc 480 ggtgggcgta tagggtgtat gaagatagtg gctggtactt cgatctctgg ggccaaggga 540 caatggtcac cgtctcctca ggtggaggcg gttcaggcgg aggtggcagc ggcqqtggcg 600 gatcggacat ccagatgacc cagtctcctt ccaccctgtc tgcatctatt ggagacagag 660 tcaccatcac ttgccgggcc aaccagaata ttaataactg gttggcctgg tatcagcaga 720 aaccagggaa agcccctaag ctcctgatct atcaggcgtc tagtttagaa aqtqqqqtcc 780 catccaggtt cagcggcagt ggatctggga cagacttcac tctcaccatc agcagctgc 840 agectgatga ttttgcaact tattactgcc aacagtataa tagttattct ccqqcqtqqa 900 cgttcggcca agggaccaag gtggaaatca aacgtgcggc cgcagaacaa aaactcatct 960 cagaagagga totgaatggg googcacato accatoatoa coat 1004

<210> 245 <211> 1970

<212> DNA

<213> Homo sapiens

```
<400> 245
tttttttttg gtctccatat acatttattt tgtgtagaca acaatgactt ttcaccattt
cctttcctgt ggttccatgg ttctcaaaat ggtaatttca tttatacata gcaaaaagtt
                                                                     120
cacaaaacct ttcagcactg ttcacatttt cacatttgtt taggaaacaa tttgtttagg
                                                                     180
aatacagcta gctgattttc ttctgatttc ttccactttt ggaatcccac ataataataa
                                                                     240
tgttaaagta taccaagaag aacaggaagt tcaagcaaga tacaaaacac accaatacag
                                                                     300
aaaacaagtc cggtagtttc tgaggaggat ccagtgtgac agtcatcaac gtcagaagca
                                                                     360
ccatagtgat gactgagata agaaacaaat attgtataat tctggaaaga aatgtaaaac 🕟
                                                                     420
atggaagata tttcctcaca gaaatggaaa aggatttcaa ctgcagttct tcttcagaag
                                                                     480
tcttttcaaa tattgaaaag gaagttacac aagctataaa aaatgccatt gttgtcacaa
                                                                     540
cagagggcat taggagttca tccttcaata gaagaggtag catactaaat gttgacacaa
                                                                     600
gtaaaaacca agtagacata aaaggaattt cacttaaaac taagcagact ggtagtgaca
                                                                     660
ccaagagaat ggatttttca tgtacttgga aagaaaataa aaagaatgat agcgcacagc
                                                                     720
taaccagtgt aaatttgaat cctttggaag agggetgaag tattaatttt atgcatgcag
                                                                     780
gaagcagget caaaaacgta aaacaaaage teattattaa ttqqatqtqa eqtqqcaaaa
                                                                     840
tatcettaat etteagaaag acattgaage tgeaccaaat attggetaet ttatceteaa
                                                                     900
ataatccacg atcaaccggg aagagtcttc ttagaacctg cagggtttgt tccctttctg
                                                                     960
taaagaatgg cagccagcag agaacgaagg aagccccacc aatacaagct agcttaacta
                                                                    1020
gcaactcaaa cccctttcct ttgaggcctt ttttaaaaca cttgccaagt aaaaagcaaa
                                                                    1080
aaaatggcaa ggcgtggtaa agttccatct gtttataatt tatagctaag caaaatgcca
                                                                    1140
gtgaccctag gaggtcgcag tcacaagata ttccaagaac accccacaaa gcaaagccaa
                                                                    1200
gactcacaga attatattga aaatgtccat agtctataag aataaggcct ggatacagca
                                                                    1260
agatgcataa tgcattaqca atcttttctt aqttqaqatt tcttttaaqc aacaacaqta
                                                                    1320
caaaaccact gcaggtatgt aaatcagcag atcagcaatt aaaactgttg tacgcatgaa
                                                                    1380
gagettatgt geetgactet catatecaeg tgatgtatgg agageaatee agtetggatt
                                                                    1440
tataaacttt gccacatatg cacataggag actatgataa gctgtaagag gtgggtaatc
                                                                    1500
caatccccaa tactgtaaat tgttatcact gctgttaaaa taccattgtt tgaccggtaa
                                                                    1560
attaaaagtt atttcttgcc agtgtctttg agcttcataa tcaccaaaca taggcggttt
                                                                    1620
accagcacct gaataagaat taagagacac tgtccatcgt actgttagtc ctattaaaac
                                                                    1680
cactactgtc atcaagtacc atttctccat agttcttcaa atttagggag gggaagaaaa
                                                                    1740
cacagcacca gtgccagagt acttttaaaa cgtggtcaat cacttcttt cttgttcaga
                                                                    1800
aaaatgttat cacttettga aatgttateg attettegea attaggagtt tgagagaatt
                                                                    1860
ttaatgatgc ttggtttcca aatagtcaaa acttgattat gtttatgtag aagtatcccc
                                                                    1920
gccgaacacc ggccgctggg attcgcgcct gccgtgggtc ccagacgaaa
                                                                    1970
     <210> 246
     <211> 5201
     <212> DNA
     <213> Homo sapiens
     <400> 246
gacgtgggcc ccgagtgcaa tcgcgggaag ccagggtttc cagctaggac acagcaggtc
                                                                      60
gtgatccggg tcgggacact gcctggcaga ggctgcgagc atggggccct ggggctggaa
                                                                     120
                                                                     180
attgegetgg accgtegect tgeteetege egeggegggg actgeagtgg gegacagatg
cgaaagaaac gagttccagt gccaagacgg gaaatgcatc tcctacaagt gggtctgcga
                                                                     240
tggcagcgct gagtgccagg atggctctga tgagtcccag gagacgtgct tgtctgtcac
                                                                     300
                                                                     360
ctgcaaatcc ggggacttca gctgtggggg ccgtgtcaac cgctgcattc ctcagttctg
gaggtgcgat ggccaagtgg actgcgacaa cggctcagac gagcaaggct gtcccccaa
                                                                     420
gacgtgctcc caggacgagt ttcgctgcca cgatgggaag tgcatctctc ggcagttcgt
                                                                     480
etgtgactca gaccgggact gettggacgg etcagacgag geetcetgee eggtgetcae
                                                                     540
                                                                     600
etgtggteee geeagettee agtgeaacag etecacetge atececeage tgtgggeetg
cgacaacgac cccgactgcg aagatggctc ggatgagtgg ccgcagcgct gtaggggtct
                                                                     660
ttacgtgttc caaggggaca gtagcccctg ctcggccttc gagttccact gcctaagtgg
                                                                     720
cgagtgcatc cactccagct ggcgctgtga tggtggcccc gactgcaagg acaaatctga
                                                                     780
```

840

cgaggaaaac tgcgctgtgg ccacctgtcg ccctgacgaa ttccagtgct ctgatggaaa

ataastaast	aaaaaaaaa	agtataaaaa	aantstana	+	+	000
	ggcagccggc					900
	gttaatgtga					960
cgaatgcatc	accctggaca	aagtctgcaa	catggctaga	gactgccggg	actggtcaga	1020
tgaacccatc	aaagagtgcg	ggaccaacga	atacttagac	aacaacaaca	actattecca	1080
						1140
	gaccttaaga					
	agatgcgaag					1200
ctgcgtgaac	ctggagggtg	gctacaagtg	ccagtgtgag	gaaggcttcc	agctggaccc	1260
	gcctgcaagg					1320
	aagatgacgc					1380
	gctctggaca					1440
	atctgcagca					1500
cgtcatcagc	agagacatcc	aggcccccga	cgggctggct	gtggactgga	tccacagcaa	1560
	accgactctg					1620
	ttattcaggg					1680
	atgtactgga					1740
	gacatctact					1800
cctagatctc	ctcagtggcc	gcctctactg	ggttgactcc	aaacttcact	ccatctcaag	1860
catcgatgtc	aatgggggca	accggaagac	catcttggag	gatgaaaaga	ggctggccca	1920
	ttggccgtct					1980
						2040
	gccaaccgcc					
	gatatggtcc					2100
tgagaggacc	accctgagca	atggcggctg	ccagtatctg	tgcctccctg	ccccgcagat	2160
caacccccac	tcgcccaagt	ttacctgcgc	ctgcccggac	ggcatgctgc	tggccagggg	2220
	ctgcctcaca					2280
	aggtcagctc					2340
	cccggctgcc					2400
atgteteace	aagctctggg	cgacgttgct	ggcaagagga	aattgagaag	aagcccagta	2460
gcgtgagggc	tctgtccatt	gtcctcccca	tegttgetee	tcgtcttcct	ttgcctgggg	2520
gtcttccttc	tatggaagaa	ctggcggctt	aagaacatca	acaqcatcaa	ctttgacaac	2580
	agaagaccac					2640
						2700
	cgagacagat					
	ctgcccagaa					2760
agagaagacc	aaagcattgc	ctgccagagc	tttgttttat	atatttattc	atctgggagg	2820
cagaacaggc	ttcggacagt	gcccatgcaa	tggcttgggt	tgggattttg	gtttcttcct	2880
	aggataagag					2940
	tttgagtttc					3000
						3060
	gtcaggccca					
	ccctggccct					3120
gagtcaacgt	gtttacctct	tctatgcaag	ccttgctaga	cagccaggtt	agcctttgcc	3180
ctgtcacccc	cgaatcatga	cccacccagt	gtctttcgag	gtgggtttgt	accttcctta	3240
	gggattcatg					3300
	ttcaccaaat					3360
						3420
	tattaagtgc					
	tgtggctgtc					3480
cttccattcc	cgtggtctcc	ttgcactttc	tcagttcaga	gttgtacact	gtgtacattt	3540
ggcatttgtg	ttattattt	gcactgtttt	ctgtcgtgtg	tgttgggatg	ggatcccagg	3600
	cccgtgtcaa					3660
	atcgtgaata					3720
	tctatgcaaa					3780
	taaaacatgc					3840
gcactttggg	aggccgaggc	gggtggatca	tgaggtcagg	agatcgagac	catcctggct	3900
	aaccccgtct					3960
	cccagctact					4020
						4080
	gtgagccgag					
	gtctcaaaaa					4140
cttggcctct	ggccaggcat	ggcgaggctg	aggtgggagg	atggtttgag	ctcaggcatt	4200
tgaggctgtc	gtgagctatg	attatgccac	tgctttccag	cctgggcaac	atagtaagac	4260
	aaaaaatgaa					4320
	ctgagctgga					4380
	2030300330	Journal		2~2~cca33c	Jegagenaea	1300

```
aagcgagatc ccatctctac aaaaaccaaa aagttaaaaa tcagctgggt acggtggcac
                                                                    4440
 gtgcctgtga tcccagctac ttgggaggct gaggcaggag gatcgcctga gcccaggagg
                                                                    4500
 tggaggttgc agtgagccat gatcgagcca ctgcactcca gcctgggcaa cagatgaaga
                                                                    4560
 ccctatttca gaaatacaac tataaaaaaa taaataaatc ctccagtctg gatcgtttga
                                                                    4620
 cgggacttca ggttctttct gaaatcgccg tgttactgtt gcactgatgt ccggagagac
                                                                    4680
 agtgacagec teegteagac teeegegtga agatgteaca agggattgge aattgteece
                                                                    4740
 agggacaaaa cactgtgtcc cccccagtgc agggaaccgt gataagcctt tctggtttcg
                                                                    4800
 gagcacgtaa atgcgtccct gtacagatag tggggatttt ttgttatgtt tgcactttgt
                                                                    4860
 4920
 atctatttat ttttgcaaac cctggttgct gtatttgttc aqtqactatt ctcqqqqccc
                                                                    4980
 tgtgtagggg gttattgcct ctgaaatgcc tcttctttat gtacaaagat tatttqcacq
                                                                    5040
 aactggactg tgtgcaacgc tttttgggag aatgatgtcc ccgttgtatg tatgagtggc
                                                                    5100
 ttctgggaga tgggtgtcac tttttaaacc actgtataga aggtttttgt agcctgaatg
                                                                    5160
 tcttactgtg atcaattaaa tttcttaaat gaaccaaaaa a
                                                                    5201
      <210> 247
      <211> 990
      <212> DNA
      <213> Homo sapiens
      <400> 247
 acctgtctgg tagcagccat gaggcgcttg gtttcagtgt cctcgcgggc cagcgacggg
                                                                      60
 caggacgccc cgttcgccta gcgcgtgctc aggagttggt gtcctgcctg cgctcaggat
                                                                     120
 gagggggaat ctggccctgg tgggcgttct aatcagcctg gccttcctgt cactgctgcc
                                                                     180
 atetggacat ceteageegg etggegatga egeetgetet gtgeagatee tegteeetgg
                                                                     240
 cctcaaaggg gatgcgggag agaagggaga caaaggcgcc cccggacggc ctggaagagt
                                                                     300
 cggccccacg ggagaaaaag gagacatggg ggacaaagga cagaaaggca gtgtgggtcg
                                                                     360
 tcatggaaaa attggtccca ttggctctaa aggtgagaaa ggagattccg gtgacatagg
                                                                     420
 accccctggt cctaatggag aaccaggect cccatgtgag tgcagccagc tgcgcaaggc
                                                                     480
 categgggag atggacaacc aggtetetea getgaccage gageteaagt teateaagaa
                                                                     540
 tgctgtcgcc ggtgtgcgcg agacggagag caagatctac ctgctggtga aggaggagaa
                                                                     600
 gegetacgeg gacgeccage tgteetgeca gggeegeggg ggeacgetga geatgeccaa
                                                                     660
 ggacgaggct gccaatggcc tgatggccgc atacctggcg caagccggcc tggcccgtgt
                                                                     720
 cttcatcggc atcaacgacc tggagaagga gggcgccttc gtgtactctg accactcccc
                                                                     780
catgeggace tteaacaagt ggegeagegg tgageceaac aatgeetaeg aegaggagga
                                                                     840
 ctgcgtggag atggtggcct cgggcggctg gaacgacgtg gcctgccaca ccaccatgta
                                                                     900
 cttcatgtag cagcccagga gaagagccga agagagaagc cgcagccttt cctaagctca
                                                                     960
 cctggacata tcctgctgtc tgcatccatt
                                                                     990
      <210> 248
      <211> 1891
      <212> DNA
      <213> Homo sapiens
      <400> 248
 tgcaggaatt cggcacgagg ctgagcggat cctcacacga ctgtgatccg attctttcca
                                                                      60
 geggettetg caaccaageg ggtettacce ceggteetee gegteteeag teetegeace
                                                                     120
 tggaacccca acgtccccga gagtccccga atccccgctc ccaggetacc taagaggatg
                                                                     180
 ageggtgete egaeggeegg ggeageeetg atgetetgeg eegeeacege egtgetaetg
                                                                     240
 ageqctcaqq qeqqaeccqt geagtecaag teqeeqcet ttqcqtectq qqaeqaqatq
                                                                     300
 aatgteetgg egeaeggaet cetgeagete ggeeagggge tgegegaaea egeggagege
                                                                     360
 accegeagte agetgagege getggagegg egeetgageg egtgegggte egeetgteag
                                                                     420
                                                                     480
 ggaaccgagg ggtccaccga cctcccgtta gcccctgaga gccgggtgga ccctgaggtc
```

```
cttcacagec tgcagacaca actcaagget cagaacagca ggatecagca actcttccac
                                                                     540
aaggtggccc agcagcagcg gcacctggag aagcagcacc tgcgaattca gcatctgcaa
                                                                     600
agccagtttg gcctcctgga ccacaagcac ctagaccatg aggtggccaa gcctgcccga
                                                                     660
agaaagaggc tgcccgagat ggcccagcca gttgacccgg ctcacaatgt cagccgcctg
                                                                      720
caccggctgc ccagggattg ccaggagctg ttccaggttg gggagaggca gagtggacta
                                                                     780
tttgaaatcc agcctcaggg gtctccgcca tttttggtga actgcaagat gacctcagat
                                                                     840
ggaggctgga cagtaattca gaggcgccac gatggctcag tggacttcaa ccggccctgg
                                                                     900
gaageetaca aggeggggtt tggggateee caeggegagt tetggetggg tetggagaag
                                                                     960
gtgcatagca tcacggggga ccgcaacagc cgcctggccg tgcagctgcg ggactgggat
                                                                    1020
ggcaacgccg agttgctgca gttctccgtg cacctgggtg gcgaggacac ggcctatagc
                                                                    1080
etgeagetea etgeaceegt ggeeggeeag etgggegeea ceacegteee acceagegge
                                                                    1140
ctctccgtac ccttctccac ttgggaccag gatcacgacc tccgcaggga caagaactgc
                                                                    1200
gccaagagcc tctctggagg ctggtggttt ggcacctgca gccattccaa cctcaacggc
                                                                    1260
cagtacttcc gctccatccc acagcagcgg cagaagctta agaagggaat cttctggaag
                                                                    1320
acctggcggg gccgctacta cccgctgcag gccaccacca tgttgatcca gcccatggca
                                                                    1380
gcagaggcag cetectageg teetggetgg geetggteec aggeecaega aagaeggtga
                                                                    1440
ctcttggctc tgcccgagga tgtggccgtt ccctgcctgg gcaggggctc caaggagggg
                                                                    1500
ccatctggaa acttgtggac agagaagaag accacgactg gagaagcccc ctttctgagt
                                                                    1560
gcaggggggc tgcatgcgtt gcctcctgag atcgaggctg caggatatgc tcagactcta
                                                                    1620
gaggcgtgga ccaaggggca tggagcttca ctccttgctg gccagggagt tggggactca
                                                                    1680
gagggaccac ttggggccag ccagactggc ctcaatggcg gactcagtca cattgactga
                                                                    1740
cggggaccag ggcttgtgtg ggtcgagagc gccctcatgg tgctggtgct gttgtgtgta
                                                                    1800
ggtcccctgg ggacacaagc aggcgccaat ggtatctggg cggagctcac agagttcttg
                                                                    1860
gaataaaagc aacctcagaa caaaaaaaaa a
                                                                    1891
```

<210> 249 <211> 3196 <212> DNA <213> Homo sapiens

<400> 249

ttttttttt ttacacgtga aaaaaataat ttattacaga ctcttttaca cattaacatg 60 gaacatttat acatatatog atgtgctgat atgaaatact aaatttaaag gcaaacattt 120 ttacacaaaa gtagttgcac tctattttat aaagatagat attaataagt tatcaqagac 180 atttaagagc tagaggccaa ttattccaac agtaatgcat tctatgctga aagtaaacta 240 300 tcatttctgg gaatacaagg ccaagaaggg ctctaacagc agtatcccag cagtgtgttt 360 teccagattt attettggga tggtgggttg ggageteece aaccatttag cetgaactaa 420 tgtaacagct caatgtgaaa caatgcagct ttctgtaaca gctgcctgtg gttaatgaga 480 tttaatacag gggatacagt tacaaatgat agcattttag aagaattata attgccatat 540 gatttgaatt agtaatcaaa tactttaata acagaaacgt gtattctata tttctgaaag 600 ggaagtagca tacttcaaaa tagtcactat tttcttagca tgatatgtta attcttactt 660 tgggagtctg aaaataaatt gcattttttc ccctaaaact tagaattcac tcctttagaa 720 aatgatttct ataatgatat acaccaacat gatataaact ttattacatt atagtcatta 780 aaatatacat atacatatat gtggaacact aaacagattt ggtaaacatg atataaatat 840 acacatggcc aaacactgtt cagtttcatt taactaaatt caacaaatat ttattgggtg 900 cctactactt gcagatcacc atgttaggta atgcttgtag tagattttaa gacacatgaa 960 geteacatea tecacateaa aageeaaaet ttagataata taetaaagee taaaaagtaa 1020 tagaaagcag agctaaggtt gaataacgga tagtgagaga tatatctaga agaaagtctt 1080 ggggtaatgg acaaggacaa aagaaaatct gtatccatag ggaagaactg ctcctgggct 1140 tggcacgtgt taggagaaaa ctggaaccta gtctgtactc ctcttcaccc cataatccaa 1200 gattcagtca tcatcctgct ttgtttcctc tgttcctgta ttttttctgg atagaaacca 1260 aacttgcatt ggttcttttt tgcccttcat ggacactggg cctctgtgct ccaaqtqqaa 1320 ttgtggatct gaattttctg gagacataag acatctgtat gtatattcag acacatttat 1380 ttttcccttt tctcctgtgg tttctgttcg gcttgtgagg ttgacagtat tcccaaaaag 1440 acagtatega ggcateeget gteetatgae acetgtaaet aceteteeag tgtgtateee 1500

```
tattgttatc tgaacagatt caccatctac ttgaacctgg ccagcaattt ccatcatgtc
                                                                    1560
caaggccagg tggcagatgg atcgtgcatg gtgaatgcat ggctctggta aaccactcac
                                                                    1620
tgtcatatac ttgtcaccaa cagtctccac cttataaaca aatgggtttt tccgggaatc
                                                                    1680
agtcagtgtg tcaaatctgg tgtagaggtc gttgaggagg ttgacgatct tcatggctcc
                                                                    1740
ttctccagat gcatgcttgc tacagaaagc attgaagccc acaatgccac taaagaggat
                                                                    1800
ggtcacattg tcatatcttt tggcaggcac tggacgcttg tgccgcagct cattggcaac
                                                                    1860
agacggagga aggacagaat acagcaatgt gtctgtcttt ttcttttcat cttccagggc
                                                                    1920
tottaacgtg agctgtagcc tgtcagtgag gatttccagt tcttgggtga gtttgtattc
                                                                    1980
ctetetaaat tgtteteeca aaagaacaag ategegegtg geateatgea gagggatgte
                                                                    2040
acttagatac agecetetee ttgtcaaate gtccaggtte atgacacttq gtgaacatag
                                                                    2100
aaaaagtatg ctatctgctt caggtaagta gatcatttga cccttgagac tgtaagcagc
                                                                    2160
tgatctcagt cccagtcagt tcatcctcac attctaattt ctccacatcc aacaatcctt
                                                                    2220
ccttgcttct caatacaaaa acagtattga tgtgagaaag gatcccatgg aaactaatat
                                                                    2280
caatatgagg acgaaccagc gagaagacag acagaaggct gcaattccca ggctggagct
                                                                    2340
gggggagaac tetgtatata gcattgecac actgagtgac cactaggtcc eggtcaaata
                                                                    2400
ttatatgaaa aggaaaagct ttgcagaatg tatatgggct gatgcgtgat tcctgggtac
                                                                    2460
cattttcttc aaatctgtca agatcttcat aaaaatcctc ttcttttgac tctttttctt
                                                                    2520
caattaaaaa ttgagtatga tcacattctt catttctttq ctqaataacc ttcatqtcta
                                                                    2580
tttcagtgcc atggatttgt tgtgccactg ttttgatgat tccaatgaca atatcctgaa
                                                                    2640
gtccttctct ctctgagtag tagtgcaaaa tgagtccttt gcccttttct gcatcagtgc
                                                                    2700
acctaaagga aggtgcacgc attcctgggt agatggtagc aaggtggtcg tgcagagcat
                                                                    2760
caaggttctg tagaaattct ctgacattag agcccaggac acgcaagatt gtatcataac
                                                                    2820
cagattettg gcaaaagacg aaaaacatet teecaaacat ttggaggatt tetecageat
                                                                    2880
tgagattgag gactttgctt gcagcagcaa ccaaatcata agttttggag tcatcatata
                                                                    2940
ttattctgac aagaaactgt ccttcttcat ctaactgtgc ctcttttttg atgtcttccc
                                                                    3000
acaceteggg geogtaattg eggateacea geaacteeag ggegtgatte acaaateegt
                                                                    3060
acatggtgtc tgcaccggga gccggggagg cagccccac gcagaggtac ggccgaaggg
                                                                    3120
acccaggcag aggcggcagc ggctacagcg caaccgggcc ggggaggcag catcgagctg
                                                                    3180
gagcgagaac agccgc
                                                                    3196
```

<210> 250 · <211> 1911

<212> DNA

<213> Homo sapiens

<400> 250

cgacttgcct gctgctctgg cccctggtcc tgtcctgttc tccagcatgg tgtgtctgag 60 getecetgga ggeteetgca tggcagttet gacagtgaca etgatggtge tgageteece 120 actggctttg gctggggaca ccagaccacg tttcttggag tactctacgg gtgagtgtta 180 tttcttcaat gggacggagc gggtgcggtt cctggacaga tacttctata accaagagga 240 gtacgtgcgc ttcgacagcg acgtggggga gtaccgggcg gtgacggagc tggggcggcc 300 tgatgccgag tacctggaac agccagaagg acgtccttgg aacagccaga aggacatcct 360 ggaagacgag cgggccgcgg tggacaccta ctgcagacac aactacgggg ttgtggagag 420 cttcacagtg cagcggcgag tccatcctaa ggtgactgtg tatccttcaa agacccagcc 480 cctgcaggca ccacaacctg ctgttctgtt ctgtgagtgg ttctaatcca qqcaqcattq 540 aagtcaggtg gttcccgaaa tggccaggaa gagaagactt ggggtggtgt ccacaggcct 600 gatccacaat ggagactgga ccttccagac cctggtgatg ctggaaacag ttcctcggaa 660 gtgaagaggt ttacactgcc aaagtggagc acccaagcgt aacgagcccc tctcacagtg 720 gaatggagtg cacggtctga atctgcacag agcaagatgc tgagtggagt cgggggcttt 780 gtgctgggcc tgctcttcct tggggccggg ctgttcatct acttcaggaa tcagaaagga 840 cactetggac ttcagccaag aggattcctg agetgaagtg cagatgacac attcaaagaa 900 gaactttetg ceceagettt gaaggatgaa aagettteee teetggetgt tattetteea 960 caagagaggg ctttctcagg acctggttgc tactggttca gcaactgcag aaaatgtcct 1020 ccettgtgge tteeteaget cetgecettg geetgaagte ccageattgg tggeagegee 1080 tcatcttcaa cttttgtgct cccctttgcc taaaccctat ggcctcctgt gcatctgtac 1140 tcaccctgta ccacaaacac attacattat taaatgtttc tcaaagatgg agttaaatat 1200

```
catctggtcc atttggctcc caagacaccc tatgaaaaga aaaqaaaaag ggaaggaaqa
                                                                    1260
ttatttccca atagaataat gattttcatg tatatgtcat gagtatgtga ggtaatgcat
                                                                    1320
atgtaaaata acttgattta gacattccac actataggca tatatcaaaa cttcattctg
                                                                    1380
tacaatataa atacactata caatttttac ttgtcaatca aaaaagtaat cctaatgttt
                                                                    1440
aaaaaggcaa tgcataaaaa ctgagaacag actataacaa ctgaaacaaa cttggcaacc
                                                                    1500
atgagatgag aaaccagcta gcaagtcaat cagaactttt tttcaccccg tctacaatat
                                                                    1560
tttgtattta taactgtaaa ttagtgtata gtgtttcact ccagagactt caataatata
                                                                    1620
gtgttatcaa aggacttgta cagatttcag agaaagacaa atttagaaga cggaggattc
                                                                    1680
tctattatgt gctatctgag agtcagtatg aaatgtcaaa tccaaaagta cataatttag
                                                                    1740
aggictatti caaagiaatc attigagcat agitticicca cigicagaga cgacigitat
                                                                    1800
tttattttca atcaaattaa aacttgtttt tatgcatatc ttatttttag ttttatgtta
                                                                    1860
cttgtacata agtagcagca caatacgtac atataaaccc tatgagtata a
                                                                    1911
```

<210> 251 <211> 5669 <212> DNA <213> Homo sapiens

<400> 251

tttttttttg ccagttgaag tatttggatt taactttacc caactaagac attcacacaa 60 catatgcatg tcagtctcct gttcagtcct agagcctgca gtattgtaat ttattgtaaa 120 accatgtaac caaatactta aatatatcca caacatctat accacagaaa tgcatagtac 180 ataatatact aacatctcaa aataaacttc tattacagtt ttatqcaaat tatqqtaaaa 240 gattatcacc tgccacattt tgaaatggca ccaacttcaa catcaatgca ctagtcaaaa 300 tccttactag aagtgatgtc ttctgcatta tcatctgaac attcaaaatc aagctgttaa 360 tctaataacc acagtatgtt atcatttaaa atcactgtat atttggatgt taaagcaggt 420 agtaatacag caggaaaagt gtttctaatt cacagtttca aaactaaagg gtgcagtttt 480 caaatatctg attgcttaaa ttggtcactc aatttaacaa ctgcctcctt caatacatgt 540 aaactatgtt tgcacagcat taggagatgt cttttatttc aqaattagtt cttactgtta 600 caggagcacc acaaatttta aggaagaggc tacagtgtga aatgagctca ctgaaggata 660 tgttaaataa aattttaact acaatataag gtactgcaaa agctttgttc cccaqcacag 720 atcccttaat caggaaaagt agtgaacact tacccaatac aatatgtaaa ttcgctctac 780 aggagatggg gaaaaaccta actcaactaa aagaaaatac tattattagc taacaaacct gtgatagctg gcttcagaat tttcctaaaa ataaaattca aaagcataca cagtatttat 900 atcctttgat aaggaatgta gacatccaaa cggaatgaaa gaaaaatctg gttttaagaa 960 tttctaagtg gaatcacaca cacacaaatg ggtaactgag aaaaactaaa tattcaaaat 1020 ttaagtaaga agatttataa tagaaaaaag tggcaaattg ttactgtgac ttgattttct 1080 gaaaacatct gcaaattcac actggcatta agaaaaccca agtctcaaaa attctccttt 1140 ctttctctcc agataatgtg ttttctgtgc aaaaataaat atctgaaaat tgcactaata 1200 cttattttaa cttctatatt atgaataatc tgcacatgct qctttacaga cgatacatat 1260 ttgtaaactt actcatgcaa aattagtgtg cgcaacaggg atattgttaa ttttcatact 1320 taaaaatgat accttattat cttttaaaaa ttgccaaact ctctgaaatg gttaacaaat 1380 cttatatgga tattcttgtc tgccagctaa aaatcaattt atgttgctga aaacaaaaag 1440 ttatacaaga aaaagaaaca tggtttttgt tttgcaagat ttttgatttt taaatgagaa 1500 aatttataaa agaaagaaat tcatggtcac aaaattttaa cattttaatc ctaaacatta 1560 cagggtaaat agatactgga ccctatctcc atactccata aaatcctaac ttttagtttc 1620 catttcaaat gttgctgtaa ccactaaaac actagtggtt ttacaacctc tggattatgg 1680 aaatacacat ttctgaaata aatgctacaa aaacaacaat ggaagaaagc caaacaaaca 1740 gtctccatga aggaaaaaaa agtggaacat tttgaagctt ttagacactt ctctttccat 1800 gtcttatgat taacctgtca attcagtgca ttgtatggtc atatgtaatg gtccccatgg 1860 tqaacaaaca totaactagt qtccattqat tccaaqttag tagatgatga atctttctgq 1920 atactttcaa agatagccgc cagctcaggg ttagaactga tctqtgactg qaattcactc 1980 atcagtggac tettetetge ttetggaatg gttagtagtg etgetaetge teteatggea 2040 gategettta atteatettg ttttteaaac teetgettta etgagtttge etttacetta 2100 gttgtacatg ttgcacgtaa tggctcaaca agtcggtcca acctctgcag tactgcactt 2160 ggacaaaggg tagacagtct caccaacatt aaaaatgtca gcatcttaat atcataatgg 2220

tccttcaaac	catcttcaac	atgatttaga	aattcaaaga	tatcaagtct	atcaagacaa	2280
ctatctagaa	gtgtgtacat	acactcaaat	actacettte	taatatccag	accatcatca	2340
accotatott	taaatggacc	catttctacc	tetettataa	actcctttct	aacttttgtt	2400
tcattgtaaa	gatgtggaag	aacagtatcc	aatagatccc	ttattaatna	taacttatta	2460
tatactacta	aattaaatgt	gaccaaggct	actettetea	cattcaaatc	tagatatta	2520
aaagtttta	ggaaatcacc	tatacaatta	tttaacactc	gatgaatagg	ttataaataa	2520
tragazatta	taaatttcac	accontageco	actoaccetto	gaccaacagg	tanagatant	2640
atcaactacc	cattaaggg	tagaaaaaaa	actgagette	gggcacacga	coattttaat	
accaagtacc	ccttaagccg	teteetteet	tastatasaa	caactagagt	gagetteet	2700
	caacaacatt					2760
taattaaaaa	tgttttcaac	acacygetta	aggeceaeca	ctgatgcaga	gctaataatt	2820
	aatgaagtaa					2880
	gatattcagg					2940
	cttcttcact					3000
	ttaagtcaat					3060
	ctgtagacct					3120
	tagggcatgc					3180
gactgcttat	gagtaagagc	tgtgctctga	gagtaaactg	gaccagtcag	catgcgcaac	3240
	atcctaaatt					3300
	gageteecee					3360
agaatggatc	cacttatctt	tgaaagggag	gagggatata	cttttgccaa	agtggtaaga	3420
aaactgatgg	ccatttgtga	aacatgcata	tcactttcgc	tgataagagg	tgggagctca	3480
tctagaactg	catcaatcat	ggcagctgtc	aagctgtcac	tatagttttt	tattagaata	3540
tcaagggcag	aaagagtacc	cagtttcaaa	gctctctggt	tttttctaag	aaatgaagca	3600
	ccccttctcc					3660
atcagtgtca	atgcctttac	tgtagttaac	ctggtaattt	cattctttag	tctctccaag	3720
aaaatctgaa	gtgtattagg	caagtcagaa	cccaaattgt	ctccaaggtt	gcaaataatt	3780
	aggaaatagc					3840
ctcttaatgg	tacaggtaaa	tagatetttg	atataaggag	ttgcatcaaa	cgaggaaggc	3900
tgatctaaag	gacgaattac	tttgacaagc	tgttgagtaa	caagaagtgc	ttcagatgta	3960
	atgggtctcc					4020
	cttgaggaga					4080
atcttcaaat	tcgatgagct	tgatttatca	ttcagtgaga	aaatgattcc	tggtacaagt	4140
	gttgagttag					4200
	gtcgggtctt					4260
	cctgactctg					4320
	gccaactttg					4380
	cccttacatt					4440
	tagaattctg					4500
	gcacgtctca					4560
actcccttga	tcatcatcat	caccaccatc	agcatccatt	gcattttcat	cttcatcttc	4620
	ttataatttg					4680
agaaacatga	ggatatactt	ccttaggaca	tcttcttaca	aatgattcaa	aggcttgaat	4740
acagtactct	cttaattcat	catcatctac	attgcaaaat	tttaccacca	aaggaattat	4800
cttctcaagg	tattcaccta	ttctatgacc	agcttgccta	ctaatagcag	caatacattg	4860
tatgtaggtt	cttgttgttg	acatagaatc	atttttggac	aactctgaca	acagatgttc	4920
aataagatct	acaaaaacta	tatttccaca	gctcataacc	agatggccaa	gagcgataat	4980
ggttcttttc	ctcactgcaa	gtctagggct	ggtcaactgg	ggaagtagac	aggtcagaat	5040
	aaattaacaa					5100
caaggcttct	agctgaacag	agacatcttc	ctgttttgct	attgcacttg	taagacgtcc	5160
agtaatcttt	ttacatacat	tagcagctaa	tgcagagcca	ctggaagctg	gaggaagttc	5220
	gttttaagac					5280
catgttagtg	cagagggtat	ctacaattgt	ctctacttgg	tattctttca	ctttactcac	5340
	agacatttga					5400
	attttcacta					5460
	gtcatcaaat					5520
	agcaaattgg					5580
	ggcgctgctg		ccccgccgc	tgccgccgcc	gccgccgcca	5640
ctgaagctcc	tcctctcgct	cgcggccgc				5669

<210> 252 <211> 8836 <212> DNA <213> Homo sapiens

<400> 252

tttcgtaaag ggagggtggt tggtggatgt cacagettgg getttatete ceceageagt 60 ggggacteca cagecectgg getacataac ageaagacag teeggagetg tageagacet 120 gattgageet ttgeageage tgagageatg geetagggtg ggeggeacea ttgteeagea 180 gctgagtttc ccagggacct tggagatagc cgcagccctc atttgcaggg gaagatgatt 240 cctgccagat ttgccggggt gctgcttgct ctggccctca ttttgccagg gaccctttgt 300 gcagaaggaa ctcgcggcag gtcatccacg gcccgatgca gccttttcgg aagtgacttc 360 gtcaacacct ttgatgggag catgtacagc tttgcgggat actgcagtta cctcctggca 420 gggggctgcc agaaacgctc cttctcgatt attggggact tccagaatgg caagagagtg 480 agceteteeg tgtatettgg ggaatttttt gacatecatt tgtttgteaa tggtacegtg 540 acacaggggg accaaagagt ctccatgccc tatgcctcca aagggctgta tctagaaact 600 tgaggctggg tactacaagc tgtccggtga ggcctatggc tttgtggcca ggatcgatgg 660 cageggeaac tttcaagtee tgetgtcaga cagatactte aacaagacet gegggetgtg 720 tggcaacttt aacatctttg ctgaagatga ctttatgacc caagaaggta ccttgacctc 780 ggaccettat gaetttgeea aeteatggge tetgageagt ggagaacagt ggtgtgaaeg 840 ggcatctcct cccagcagct catgcaacat ctcctctggg gaaatgcaga agggcctgtg 900 ggagcagtgc cagettetga agagcaeete ggtgtttgee egetgeeaee etetggtgga 960 ccccgagcct tttgtggccc tgtgtgagaa gactttgtgt gagtgtgctg gggggctgga 1020 gtgcgcctgc cctgccctcc tggagtacgc ccggacctgt gcccaggagg gaatggtgct 1080 gtacggctgg accgaccaca gcgcgtgcag cccagtgtgc cctgctggta tggagtatag 1140 geagtgtgtg teccettgeg ceaggacetg ceagageetg cacateaatg aaatgtgtea 1200 ggagcgatgc gtggatggct gcagctgccc tggagggaca gctcctggga tgaaggcctt 1260 ctgcgttgag agcaccgagt gttcctgcgt gcatttccgg aaagcgctac cctcccggca 1320 cotcoetete tegagaetge aacacetggt attgcegaaa cagecagtgg atetgcagea 1380 atgaagaatg tccaggggag tgccttgtca caggtcaatc acacttcaag agctttgaca 1440 acagatactt caccttcagt gggatctgcc agtacctgct ggcccgggat tgccaggacc 1500 actecttete cattgtcatt gagactgtec agtgtgctga tgaccgcgac gctgtgtgca 1560 eccgeteegt cacegteegg etgeetggee tgeacaacag cettgtgaaa etgaageatg 1620 1680 gggcaggagt tgccatggat ggccaggacg tccagctccc cctcctgaaa ggtgacctcc gcatccagca tacagtgacg gcctccgtgc gcctcagcta cggggaggac ctgcagatgg 1740 actgggatgg ccgcgggagg ctgctggtga agctgtcccc cgtctatgcc gggaagacct 1800 gcggcctgtg tgggaattac aatggcaacc agggcgacga cttccttacc ccctctgggc 1860 tggcggagcc ccgggtggag gacttcggga acgcctggaa gctgcacggg gactgccagg 1920 acctgcagaa gcagcacage gatccctgcg ccctcaaccc gcgcatgacc aggttctccg 1980 aggaggegtg egeggteetg aegteeeeea cattegagge etgeeategt geegteagee 2040 cgctgcccta cctgcggaac tgccgctacg acgtgtgctc ctgctcggac ggccgcgagt 2100 geetgtgegg egeeetggee agetatgeeg eggeetgege ggggagagge gtgegegteg 2160 cgtggcgcga gccaggccgc tgtgagctga actgcccgaa aggccaggtg tacctgcagt 2220 gegggaeeee etgeaacetg acetgeeget etetetetta eeeggatgag gaatgeaatg 2280 aggeetgeet ggagggetge ttetgeeeee cagggeteta catggatgag aggggggaet 2340 gegtgeecaa ggeecagtge eeetgttaet atgaeggtga gatetteeaa geeagaagae 2400 atcttctcag accatcacac catgtgctac tgtgaggatg gcttcatgca ctgtaccatg 2460 agtggagtee ceggaagett getgeetgae getgteetea geagteeeet gteteatege 2520 agcaaaagga gcctatcctg tcggcccccc atggtcaagc tggtgtgtcc cgctgacaac 2580 ctgcgggctg aagggctcga gtgtaccaaa acgtgccaga actatgacct ggagtgcatg 2640 ageatggget gtgtetetgg etgeetetge eeeeegggea tgegteegge atgagaacag 2700 atgtgtggcc ctggaaaggt gtccctgctt ccatcagggc aaggagtatg cccctggaga 2760 aacagtgaag attggctgca acacttggtg ctgtcaggac cggaagtgga actgcacaga 2820 ccatgtgtgt gatgccacgt gctccacgat cggcatggcc cactacctca ccttcgacgg 2880 geteaaatae eetgtteeee ggggagtgee agtaegttet tggtgeagga ttaettgegg 2940 cagtaaccct gggacctttc ggatcctagt ggggaataag ggatgcagcc acccctcagt 3000

gaaatgcaag	aaacgggtca	ccatcctggt	ggagagtgga	gagattgagc	tgtttgacgg	3060
			tgagactcac			3120
ccggtatatc	attetgetge	tgggcaaagc	cctctccgtg	gtctgggacc	gccacctgag	3180
catctccctc	atcctgaage	agacatacca	ggagaaagtg	tataacctat	gtgggaattt	3240
tgatggcatc	cagaacaatg	acctcaccag	cagcaacctc	caagtggagg	aagaccctgt	3300
ggactttggg	aactcctgga	aagtgagctc	gcagtgtgct	gacaccagaa	aagtgcctct	3360
			catcatgaag			3420
ctgtagaatc	cttaccagtg	acgtcttcca	ggactgcaac	aagctggtgg	accccgagcc	3480
			ctcctgtgag			3540
cttctgcgac	accattgctg	cctatgccca	cgtgtgtgcc	cagcatggca	aggtggtgac	3600
ctggaggacg	accacattat	accccaaaa	ctgcgaggag	aggaatetee	aaaaaaaaaa	3660
gtatgagtgt	gagtggcgct	ataacagctg	tgcacctgcc	tgtcaagtca	cgtgtcagca	3720
ccctgagcca	ctaacctacc	ctatacaata	tgtggagggc	taccatacca	actgccctcc	3780
			ctgcgttgac			3840
tgaggtggct	agccaacatt	ttgcctcagg	aaagaaagtc	accttgaatc	ccaqtqaccc	3900
			tgtcaccctc			3960
gccgggaggc	ctggtggtgc	ctcccacaga	tgccccggtg	agccccacca	ctctgtatgt	4020
			tttctactgc			4080
cttcctgctg	gatggctcct	ccaggctgtc	cgaggctgag	tttgaagtgc	tgaaggcctt	4140
			ctcccagaag			4200
ggagtaccac	gacggctccc	acgcctacat	cgggctcaag	gaccggaagc	gaccgtcaga	4260
actacaacac	attqccaqcc	aggtgaagta	tgcgggcagc	caggtggcct	ccaccagcga	4320
			cagcaagatc			4380
catcgccctg	ctcctgatgg	ccagccagga	gccccaacgg	atgtcccgga	actttgtccg	4440
			cattgtgatc			4500
tgccaacctc	aagcagatcc	gcctcatcga	gaagcaggcc	cctgagaaca	aggccttcgt	4560
gctgagcagt	gtggatgagc	tqqaqcaqca	aagggacgag	atcqttaqct	acctctqtqa	4620
						4680
			gcccccgac			
cccggggctc	ttgggggttt	cgaccctggg	gcccaagagg	aactccatgg	ttctggatgt	4740
agcattcatc	ctggaaggat	cggacaaaat	tggtgaagcc	gacttcaaca	ggaggatgga	4800
gricalggag	gaggtgatte	ageggatgga	tgtgggccag	gacagcatee	acgtcacggt	4860
gctgcagtac	tcctacatgg	tgactgtgga	gtaccccttc	agcgaggcac	agtccaaagg	4920
			ctaccagggc			4980
getggeeetg	cggtacctct	ctgaccacag	cttcttggtc	agccagggtg	accgggagca	5040
ggcgcccaac	ctqqtctaca	taatcaccaa	aaatcctgcc	tctgatgaga	tcaagaggct	5100
			agtgggccct			5160
ggagaggatt	ggctggccca	atgcccctat	cctcatccaq		aaat aaaaa	
				gactttgaga	egeteeeeg	5220
		tacadagata				
	-		ctgctccgga	gaggggctgc	agatccccac	5280
	-			gaggggctgc	agatccccac	
	gcacctgact	gcagccagcc	ctgctccgga cctggacgtg	gaggggctgc atccttctcc	agatccccac tggatggctc	5280 5340
ctccagtttc	gcacctgact ccagcttctt	gcagccagcc attttgatga	ctgctccgga cctggacgtg aatgaagagt	gaggggctgc atcettetec ttegecaagg	agatececae tggatggete ettteattte	5280 5340 5400
ctccagtttc aaaagccaat	gcacctgact ccagcttctt atagggcctc	gcagccagcc attttgatga gtctcactca	ctgctccgga cctggacgtg aatgaagagt ggtgtcagtg	gaggggctgc atccttctcc ttcgccaagg ctgcagtatg	agatccccac tggatggctc ctttcatttc gaagcatcac	5280 5340 5400 5460
ctccagtttc aaaagccaat	gcacctgact ccagcttctt atagggcctc	gcagccagcc attttgatga gtctcactca	ctgctccgga cctggacgtg aatgaagagt	gaggggctgc atccttctcc ttcgccaagg ctgcagtatg	agatccccac tggatggctc ctttcatttc gaagcatcac	5280 5340 5400
ctccagtttc aaaagccaat caccattgac	gcacctgact ccagcttctt atagggcctc gtgccatgga	gcagccagcc attttgatga gtctcactca acgtggtccc	ctgctccgga cctggacgtg aatgaagagt ggtgtcagtg ggagaaagcc	gaggggctgc atcettetec ttegceaagg ctgcagtatg catttgctga	agatccccac tggatggctc ctttcatttc gaagcatcac gccttgtgga	5280 5340 5400 5460 5520
ctccagtttc aaaagccaat caccattgac cgtcatgcag	gcacctgact ccagcttctt atagggcctc gtgccatgga cgggaaggag	gcagccagcc attttgatga gtctcactca acgtggtccc gcccagcca	ctgctccgga cctggacgtg aatgaagagt ggtgtcagtg ggagaaagcc aatcggggat	gaggggctgc atcettetec ttegecaagg ctgeagtatg catttgetga geettggget	agatccccac tggatggctc ctttcatttc gaagcatcac gccttgtgga ttgctgtgcg	5280 5340 5400 5460 5520 5580
ctccagtttc aaaagccaat caccattgac cgtcatgcag	gcacctgact ccagcttctt atagggcctc gtgccatgga cgggaaggag	gcagccagcc attttgatga gtctcactca acgtggtccc gcccagcca	ctgctccgga cctggacgtg aatgaagagt ggtgtcagtg ggagaaagcc	gaggggctgc atcettetec ttegecaagg ctgeagtatg catttgetga geettggget	agatccccac tggatggctc ctttcatttc gaagcatcac gccttgtgga ttgctgtgcg	5280 5340 5400 5460 5520
ctccagtttc aaaagccaat caccattgac cgtcatgcag atacttgact	gcacetgact ccagettett atagggeete gtgeeatgga cgggaaggag tcagaaatge	gcagccagcc attttgatga gtctcactca acgtggtccc gccccagcca atggtgccag	ctgctccgga cctggacgtg aatgaagagt ggtgtcagtg ggagaaagcc aatcggggat gccgggagcc	gaggggctgc atcettetcc ttcgccaagg ctgcagtatg catttgctga gccttgggct tcaaaggcgg	agatccccac tggatggctc ctttcatttc gaagcatcac gccttgtgga ttgctgtgcg tggtcatcct	5280 5340 5400 5460 5520 5580
ctccagtttc aaaagccaat caccattgac cgtcatgcag atacttgact ggtcacggac	gcacetgact ccagettett atagggeete gtgecatgga egggaaggag tcagaaatge gtetetgtgg	gcagccagcc attttgatga gtctcactca acgtggtccc gccccagcca atggtgccag attcagtgga	ctgctccgga cctggacgtg aatgaagagt ggtgtcagtg ggagaaagcc aatcggggat gccgggagcc tgcagcagct	gaggggctgc atcettetec ttcgccaagg ctgcagtatg catttgctga gccttgggct tcaaaggcgg gatgccgcca	agatccccac tggatggctc ctttcatttc gaagcatcac gccttgtgga ttgctgtgcg tggtcatcct ggtccaacag	5280 5340 5400 5460 5520 5580 5640 5700
ctccagtttc aaaagccaat caccattgac cgtcatgcag atacttgact ggtcacggac agtgacagtg	gcacetgact ccagettett atagggeete gtgccatgga egggaaggag tcagaaatge gtetetgtgg ttecctattg	gcagccagcc attttgatga gtctcactca acgtggtccc gccccagcca atggtgccag attcagtgga gaattggaga	ctgctccgga cctggacgtg aatgaagagt ggtgtcagtg ggagaaagcc aatcggggat gccgggagcc tgcagcagct tcgctacgat	gaggggctgc atcettetec ttegecaagg ctgeagtatg catttgetga geettggget tcaaaggegg gatgeegeca geageecage	agatccccac tggatggctc ctttcatttc gaagcatcac gccttgtgga ttgctgtgcg tggtcatcct ggtccaacag tacggatctt	5280 5340 5400 5460 5520 5580 5640 5700 5760
ctccagtttc aaaagccaat caccattgac cgtcatgcag atacttgact ggtcacggac agtgacagtg	gcacetgact ccagettett atagggeete gtgccatgga egggaaggag tcagaaatge gtetetgtgg ttecctattg	gcagccagcc attttgatga gtctcactca acgtggtccc gccccagcca atggtgccag attcagtgga gaattggaga	ctgctccgga cctggacgtg aatgaagagt ggtgtcagtg ggagaaagcc aatcggggat gccgggagcc tgcagcagct tcgctacgat	gaggggctgc atcettetec ttegecaagg ctgeagtatg catttgetga geettggget tcaaaggegg gatgeegeca geageecage	agatccccac tggatggctc ctttcatttc gaagcatcac gccttgtgga ttgctgtgcg tggtcatcct ggtccaacag tacggatctt	5280 5340 5400 5460 5520 5580 5640 5700
ctccagtttc aaaagccaat caccattgac cgtcatgcag atacttgact ggtcacggac agtgacagtg ggcaggccca	gcacetgact ccagettett atagggeete gtgccatgga cgggaaggag tcagaaatge gtetetgtgg ttecetattg gcaggegact	gcagccagcc attttgatga gtctcactca acgtggtccc gccccagcca atggtgccag attcagtgga gaattggaga ccaacgtggt	ctgctccgga cctggacgtg aatgaagagt ggtgtcagtg ggagaaagcc aatcggggat gccgggagcc tgcagcagct tcgctacgat gaagctccag	gaggggctgc atcettetec ttegecaagg ctgeagtatg catttgetga geettggget tcaaaggegg gatgeegeca geageecage cgaategaag	agatccccac tggatggctc ctttcatttc gaagcatcac gccttgtgga ttgctgtgcg tggtcatcct ggtccaacag tacggatctt acctccctac	5280 5340 5400 5460 5520 5580 5640 5700 5760 5820
ctccagtttc aaaagccaat caccattgac cgtcatgcag atacttgact ggtcacggac agtgacagtg ggcaggccca catggtcacc	gcacetgact ccagettett atagggeete gtgccatgga cgggaaggag tcagaaatge gtetetgtgg ttecetattg gcaggegact ttgggcaatt	gcagccagcc attttgatga gtctcactca acgtggtccc gcccagcca atggtgccag attcagtgga gaattggaga ccaacgtggt ccttcctca	ctgctccgga cctggacgtg aatgaagagt ggtgtcagtg ggagaaagcc aatcggggat gccgggagcc tgcagcagct tcgctacgat gaagctccag caaactgtgc	gaggggctgc atcettetec ttegecaagg ctgeagtatg catttgetga geettggget tcaaaggegg gatgeegeca geageecage cgaategaag tetggatttg	agatccccac tggatggctc ctttcatttc gaagcatcac gccttgtgga ttgctgtgcg tggtcatcct ggtccaacag tacggatctt acctccctac ttaggatttg	5280 5340 5400 5460 5520 5580 5640 5700 5760 5820 5880
ctccagtttc aaaagccaat caccattgac cgtcatgcag atacttgact ggtcacggac agtgacagtg ggcaggccca catggtcacc	gcacetgact ccagettett atagggeete gtgccatgga cgggaaggag tcagaaatge gtetetgtgg ttecetattg gcaggegact ttgggcaatt	gcagccagcc attttgatga gtctcactca acgtggtccc gcccagcca atggtgccag attcagtgga gaattggaga ccaacgtggt ccttcctca	ctgctccgga cctggacgtg aatgaagagt ggtgtcagtg ggagaaagcc aatcggggat gccgggagcc tgcagcagct tcgctacgat gaagctccag	gaggggctgc atcettetec ttegecaagg ctgeagtatg catttgetga geettggget tcaaaggegg gatgeegeca geageecage cgaategaag tetggatttg	agatccccac tggatggctc ctttcatttc gaagcatcac gccttgtgga ttgctgtgcg tggtcatcct ggtccaacag tacggatctt acctccctac ttaggatttg	5280 5340 5400 5460 5520 5580 5640 5700 5760 5820
ctccagtttc aaaagccaat caccattgac cgtcatgcag atacttgact ggtcacggac agtgacagtg ggcaggccca catggtcacc catggatgag	gcacctgact ccagcttett atagggcete gtgccatgga cgggaaggag tcagaaatgc gtctctgtgg ttccctattg gcaggcgact ttgggcaatt gatgggaatg	geagecagee attttgatga gteteactea aegtggtece geeceageea atggtgecag atteagtgga gaattggaga ceaegtggt cetteeteea agaagaggee	ctgctccgga cctggacgtg aatgaagagt ggtgtcagtg ggagaaagcc aatcggggat gccgggagcc tgcagcagct tcgctacgat gaagctccag caaactgtgc cggggacgtc	gaggggctgc atcettetec ttegecaagg ctgeagtatg catttgetga geettggget tcaaaggegg gatgeegeea geageeeage cgaategaag tetggatttg	agatccccac tggatggctc ctttcatttc gaagcatcac gccttgtgga ttgctgtgcg tggtcatcct ggtccaacag tacggatctt acctccctac ttaggatttg cagaccagtg	5280 5340 5400 5460 5520 5580 5640 5700 5760 5820 5880 5940
ctccagtttc aaaagccaat caccattgac cgtcatgcag atacttgact ggtcacggac agtgacagtg ggcaggccca catggtcacc catggatgag ccacaccgtg	gcacctgact ccagcttett atagggcete gtgccatgga cgggaaggag tcagaaatgc gtctctgtgg ttccctattg gcaggcgact ttgggcaatt gatgggaatg acttgccagc	geagecagee attttgatga gteteactea aegtggtece geeceageea atggtgeeag atteagtgga gaattggaga ceaaegtggt cetteeteea agaagaggee cagatggeea	ctgctccgga cctggacgtg aatgaagagt ggtgtcagtg ggagaaagcc aatcggggat gccgggagcc tgcagcagct tcgctacgat gaagctccag caaactgtgc cggggacgtc gaccttgctg	gaggggctgc atcettetec ttegecaagg ctgeagtatg catttgetga geettggget tcaaaggegg gatgeegeca geageecage egaategaag tetggatttg tggacettge aagagttate	agatccccac tggatggctc ctttcatttc gaagcatcac gccttgtgga ttgctgtgcg tggtcatcct ggtccaacag tacggatctt acctccctac ttaggatttg cagaccagtg gggtcaactg	5280 5340 5400 5460 5520 5580 5640 5700 5760 5820 5880 5940 6000
ctccagtttc aaaagccaat caccattgac cgtcatgcag atacttgact ggtcacggac agtgacagtg ggcaggcca catggtcacc catggatgag ccacaccgtg tgaccgggg	gcacctgact ccagettett atagggeete gtgecatgga cgggaaggag tcagaaatge gtetetgtgg ttecetattg gcaggegaet ttgggeaatt gatgggaatg acttgecage ctgaggeett	geagecagee attttgatga gteteactea aegtggtece geeceageea atggtgeeag atteagtgga gaattggaga ceaeegtggt cetteeteea agaagaggee eagatggeea egtgeectaa	ctgctccgga cctggacgtg aatgaagagt ggtgtcagtg ggagaaagcc aatcggggat gccgggagcc tgcagcagct tcgctacgat gaagctccag caaactgtgc cggggacgtc gaccttgctg cagccagtcc	gaggggctgc atcettetec ttegecaagg ctgeagtatg catttgetga geettggget tcaaaggegg gatgeegeca geageecage egaategaag tetggatttg tggacettge aagagttate cetgttaaag	agatccccac tggatggctc ctttcatttc gaagcatcac gccttgtgga ttgctgtgcg tggtccaccag tacggatctt acctccctac ttaggatttg cagaccagtg gggtcaactg tggaagagac	5280 5340 5400 5460 5520 5580 5640 5700 5760 5820 5880 5940 6000 6060
ctccagtttc aaaagccaat caccattgac cgtcatgcag atacttgact ggtcacggac agtgacagtg ggcaggcca catggtcacc catggatgag ccacaccgtg tgaccgggg	gcacctgact ccagettett atagggeete gtgecatgga cgggaaggag tcagaaatge gtetetgtgg tteeetattg gcaggegaet ttgggeaatt gatgggaatg acttgecage ctgaggeett	geagecagee attttgatga gteteactea aegtggtece geeceageea atggtgeeag atteagtgga gaattggaga ceaeegtggt cetteeteea agaagaggee eagatggeea egtgeectaa	ctgctccgga cctggacgtg aatgaagagt ggtgtcagtg ggagaaagcc aatcggggat gccgggagcc tgcagcagct tcgctacgat gaagctccag caaactgtgc cggggacgtc gaccttgctg	gaggggctgc atcettetec ttegecaagg ctgeagtatg catttgetga geettggget tcaaaggegg gatgeegeca geageecage egaategaag tetggatttg tggacettge aagagttate cetgttaaag	agatccccac tggatggctc ctttcatttc gaagcatcac gccttgtgga ttgctgtgcg tggtccaccag tacggatctt acctccctac ttaggatttg cagaccagtg gggtcaactg tggaagagac	5280 5340 5400 5460 5520 5580 5640 5700 5760 5820 5880 5940 6000
ctccagtttc aaaagccaat caccattgac cgtcatgcag atacttgact ggtcacggac agtgacagtg ggcaggcca catggtcacc catggatgag ccacaccgtg tgaccgggg ctgtggctgc	gcacctgact ccagcttett atagggcete gtgccatgga cgggaaggag tcagaaatgc gtctctgtgg ttccctattg gcaggcgact ttgggcaatt gatgggaatg acttgccagc ctgaggcett cgctggacct	geagecagee attttgatga gteteactea aegtggtece geeceageea atggtgeeag atteagtgga gaattggaga ceaaegtggt cetteeteea agaagaggee cagatggeea egtgeeetaa geecetgegt	ctgctccgga cctggacgtg aatgaagagt ggtgtcagtg ggagaaagcc aatcggggat gccgggagcc tcgctacgat gaagctccag caaactgtgc cggggacgtc gaccttgctg cagccagtcc gtgcacaggc	gaggggctgc atcettetec ttegecaagg ctgeagtatg catttgetga geettggget tcaaaggegg gatgeegeea geageeeage egaategaag tetggatttg tggacettge aagagttate cetgttaaag ageteeacte	agatccccac tggatggctc ctttcatttc gaagcatcac gccttgtgga ttgctgtgcg tggtcatcct ggtccaacag tacggatctt acctccctac ttaggatttg cagaccagtg gggtcaactg tggaagagac ggcacatcgt	5280 5340 5400 5460 5520 5580 5640 5700 5760 5820 5880 5940 6000 6060 6120
ctccagtttc aaaagccaat caccattgac cgtcatgcag atacttgact ggtcacggac agtgacagtg ggcaggcca catggtcacc catggatgag ccacaccgtg tgaccgggg ctgtggetgc gacctttgat	gcacctgact ccagcttett atagggcete gtgccatgga cgggaaggag tcagaaatgc gtctctgtgg ttccctattg gcaggcgact ttgggcaatt gatgggaatg acttgccagc ctgaggcett cgctggacct gggcagaatt	geagecagee attttgatga gteteactea aegtggtece geeceageea atggtgecag atteagtgga gaattggaga ceaegtggt cetteeteea agaagaggee eagatggeea egtgeeetaa geecetgegt teaagetgae	ctgctccgga cctggacgtg aatgaagagt ggtgtcagtg ggagaaagcc aatcggggat gccgggagcc tcgctacgat gaagctccag caaactgtgc cggggacgtc gaccttgctg cagccagtcc gtgcacaggc tggcacaggc	gaggggctgc atcettetec ttegecaagg ctgeagtatg catttgetga geettggget tcaaaggegg gatgeegeea geageeeage egaategaag tetggatttg tggacettge aagagttate cetgttaaag ageteeaete tettatgtee	agatccccac tggatggctc ctttcatttc gaagcatcac gccttgtgga ttgctgtgcg tggtccaccag tacggatctt acctccctac ttaggatttg cagaccagtg gggtcaactg tggaagagac ggcacatcgt tatttcaaaa	5280 5340 5400 5460 5520 5580 5640 5700 5760 5820 5880 5940 6000 6120 6180
ctccagtttc aaaagccaat caccattgac cgtcatgcag atacttgact ggtcacggac agtgacagtg ggcaggcca catggtcacc catggatgag ccacaccgtg tgaccgggg ctgtggetgc gacctttgat caaggagcag	gcacctgact ccagcttett atagggcete gtgccatgga cgggaaggag tcagaaatgc gtctctgtgg ttccctattg gcaggcgact ttgggcaatt gatgggaatg acttgccagc ctgaggcett cgctggacet ggcagaatt gacctggagg	geagecagee attttgatga gteteaetea aegtggteee geeceageea atggtgeeag atteagtgga gaattggaga ecaaegtggt ectteeteea agaagaggee eagatggeea egtgeeetaa geecetgegt teaagetgae tgatteteea	ctgctccgga cctggacgtg aatgaagagt ggtgtcagtg ggagaaagcc aatcggggat gccgggagcc tcgctacgat gaagctccag caaactgtgc cggggacgtc gaccttgctg cagccagtcc gtgcacaggc tggcagctgt taatggtgcc	gaggggctgc atcettetec ttegecaagg ctgeagtatg catttgetga geettggget tcaaaggegg gatgeegeea geageeeage egaategaag tetggatttg tggacettge aagagttate cetgttaaag ageteeaete tettatgtee	agatccccac tggatggctc ctttcatttc gaagcatcac gccttgtgga ttgctgtgcg tggtcatcct ggtccaacag tacggatctt acctccctac ttaggatttg cagaccagtg gggtcaactg tggaagagac ggcacatcgt tatttcaaaa gagcaaggca	5280 5340 5400 5460 5520 5580 5640 5700 5820 5880 5940 6000 6120 6180 6240
ctccagtttc aaaagccaat caccattgac cgtcatgcag atacttgact ggtcacggac agtgacagtg ggcaggcca catggtcacc catggatgag ccacaccgtg tgaccgggg ctgtggetgc gacctttgat caaggagcag	gcacctgact ccagcttett atagggcete gtgccatgga cgggaaggag tcagaaatgc gtctctgtgg ttccctattg gcaggcgact ttgggcaatt gatgggaatg acttgccagc ctgaggcett cgctggacet ggcagaatt gacctggagg	geagecagee attttgatga gteteaetea aegtggteee geeceageea atggtgeeag atteagtgga gaattggaga ecaaegtggt ectteeteea agaagaggee eagatggeea egtgeeetaa geecetgegt teaagetgae tgatteteea	ctgctccgga cctggacgtg aatgaagagt ggtgtcagtg ggagaaagcc aatcggggat gccgggagcc tcgctacgat gaagctccag caaactgtgc cggggacgtc gaccttgctg cagccagtcc gtgcacaggc tggcagctgt taatggtgcc	gaggggctgc atcettetec ttegecaagg ctgeagtatg catttgetga geettggget tcaaaggegg gatgeegeea geageeeage egaategaag tetggatttg tggacettge aagagttate cetgttaaag ageteeaete tettatgtee	agatccccac tggatggctc ctttcatttc gaagcatcac gccttgtgga ttgctgtgcg tggtcatcct ggtccaacag tacggatctt acctccctac ttaggatttg cagaccagtg gggtcaactg tggaagagac ggcacatcgt tatttcaaaa gagcaaggca	5280 5340 5400 5460 5520 5580 5640 5700 5820 5880 5940 6000 6120 6180 6240
ctccagtttc aaaagccaat caccattgac cgtcatgcag atacttgact ggtcacggac agtgacagtg ggcaggccca catggtcacc catggatgag ccacaccgtg tgaccggggg ctgtggctgc gacctttgat caaggagcag gggctgcatg	gcacctgact ccagcttett atagggcete gtgccatgga cgggaaggag tcagaaatgc gtctctgtgg ttccctattg gcaggcgact ttgggcaatt gatgggaatg acttgccagc ctgaggcett cgctggacet ggcagaatt gacctggagg aaatccatcg	geagecagee attttgatga gteteactea aegtggteee geeceageea attggtgeeag atteagtgga gaattggaga ceaaegtggt cetteeteea agaagaggee cagatggeea egtgeeetaa geecetgegt teaagetgae tgatteteea aggtgaagea	ctgctccgga cctggacgtg aatgaagagt ggtgtcagtg ggagaaagcc aatcggggat gccgggagcc tgcagcagct tcgctacgat gaagctccag caaactgtgc cggggacgtc gaccttgctg cagccagtcc gtgcacaggc tggcagctgt taatggtgcc cagtgcctc	gaggggctgc atcettetec ttegecaagg ctgeagtatg catttgetga geettggget tcaaaggegg gatgeegeca geageecage egaategaag tetggatttg tggacettge aagagttate eetgttaaag ageteeaete tettatgtee tgeageetg teegtegage	agatccccac tggatggctc ctttcatttc gaagcatcac gccttgtgga ttgctgtgcg tggtcatcct ggtccaacag tacggatctt acctccctac ttaggatttg cagaccagtg gggtcaactg tggaagagac ggcacatcgt tatttcaaaa gagcaaggca tgcacagtga	5280 5340 5400 5460 5520 5580 5640 5700 5820 5880 5940 6000 6120 6180 6240 6300
ctccagtttc aaaagccaat caccattgac cgtcatgcag atacttgact ggtcacggac agtgacagtg ggcaggcca catggtcacc catggatgag ccacaccgtg tgaccgggg ctgtggetgc gacctttgat caaggagcag gggctgcatg catggaggtg	gcacctgact ccagcttett atagggcete gtgccatgga cgggaaggag tcagaaatgc gtctctgtgg ttccctattg gcaggcgact ttgggcaatt gatgggaatg acttgccagc ctgaggcett cgctggacet ggcagaatt gacctggagg aaatccatcg acggtgaatg	geagecagee attttgatga gteteaetea aegtggteee geeceageea atggtgeeag atteagtgga gaattggaga ceaeegtggt cetteeteea agaagaggee cagatggeea egtgeeetaa geecetgegt teaagetgae tgatteteea aggtgaagea ggagaetggt	ctgctccgga cctggacgtg aatgaagagt ggtgtcagtg ggagaaagcc aatcggggat gccgggagcc tcgctacgat gaagctccag caaactgtgc cggggacgtc gaccttgctg cagccagtcc gtgcacaggc tggcagctgt taatggtgcc cagtgccctc	gaggggctgc atcettetec ttegecaagg ctgeagtatg catttgetga geettggget tcaaaggegg gatgeegeea geageeeage egaategaag tetggatttg tggacettge aagagttate cetgttaaag ageteeaete tettatgtee tgeageeetg teegtegage taegtgggtg	agatccccac tggatggctc ctttcatttc gaagcatcac gccttgtgga ttgctgtgcg tggtcatcct ggtccaacag tacggatctt acctccctac ttaggatttg cagaccagtg gggtcaactg tggaagagac ggcacatcgt tatttcaaaa gagcaaggca tgcacagtga ggaacatgga	5280 5340 5400 5460 5520 5580 5640 5700 5820 5880 5940 6000 6120 6180 6240 6300 6360
ctccagtttc aaaagccaat caccattgac cgtcatgcag atacttgact ggtcacggac agtgacagtg ggcaggcca catggtcacc catggatgag ccacaccgtg tgaccgggg ctgtggetgc gacctttgat caaggagcag gggctgcatg catggaggtg	gcacctgact ccagcttett atagggcete gtgccatgga cgggaaggag tcagaaatgc gtctctgtgg ttccctattg gcaggcgact ttgggcaatt gatgggaatg acttgccagc ctgaggcett cgctggacet ggcagaatt gacctggagg aaatccatcg acggtgaatg	geagecagee attttgatga gteteaetea aegtggteee geeceageea atggtgeeag atteagtgga gaattggaga ceaeegtggt cetteeteea agaagaggee cagatggeea egtgeeetaa geecetgegt teaagetgae tgatteteea aggtgaagea ggagaetggt	ctgctccgga cctggacgtg aatgaagagt ggtgtcagtg ggagaaagcc aatcggggat gccgggagcc tgcagcagct tcgctacgat gaagctccag caaactgtgc cggggacgtc gaccttgctg cagccagtcc gtgcacaggc tggcagctgt taatggtgcc cagtgcctc	gaggggctgc atcettetec ttegecaagg ctgeagtatg catttgetga geettggget tcaaaggegg gatgeegeea geageeeage egaategaag tetggatttg tggacettge aagagttate cetgttaaag ageteeaete tettatgtee tgeageeetg teegtegage taegtgggtg	agatccccac tggatggctc ctttcatttc gaagcatcac gccttgtgga ttgctgtgcg tggtcatcct ggtccaacag tacggatctt acctccctac ttaggatttg cagaccagtg gggtcaactg tggaagagac ggcacatcgt tatttcaaaa gagcaaggca tgcacagtga ggaacatgga	5280 5340 5400 5460 5520 5580 5640 5700 5820 5880 5940 6000 6120 6180 6240 6300
ctccagtttc aaaagccaat caccattgac cgtcatgcag atacttgact ggtcacggac agtgacagtg ggcaggcca catggtcacc catggatgag ccacaccgtg tgaccgggg ctgtggetgc gacctttgat caaggagcag gggctgcatg catggaggt catggaggt agtcaacgtt	gcacctgact ccagcttett atagggcete gtgccatgga cgggaaggag tcagaaatgc gtctctgtgg ttccctattg gcaggcgact ttgggcaatt gatgggaatg acttgccagc ctgaggcett cgctggacet ggcagaatt gacctggagg aaatccatcg acggtgaatg tatggtgca	geagecagee attttgatga gteteactea aegtggteee geeceageea atggtgeeag atteagtgga gaattggaga ceaeegtggt cetteeteea agaagaggee cagatggeea egtgeeetaa geecetgegt teaagetgae tgatteteea aggtgaagea ggagaetggt teatgeatga	ctgctccgga cctggacgtg aatgaagagt ggtgtcagtg ggagaaagcc aatcggggat gccgggagcc tcgctacgat gaagctccag caaactgtgc cggggacgtc gaccttgctg cagccagtcc gtgcacaggc tggcagctgt taatggtgcc cagtgccctc ctctgttcct ggtcagattc	gaggggctgc atcettetec ttegecaagg ctgeagtatg catttgetga geettggget tcaaaggegg gatgeegeea geageeeage egaategaag tetggatttg tggacettge aagagttate cetgttaaag ageteeaete tettatgtee tgeageeetg teegtegage taegtgggtg aatcacettg	agatccccac tggatggctc ctttcatttc gaagcatcac gccttgtgga ttgctgtgcg tggtcatcct ggtccaacag tacggatctt acctccctac ttaggatttg cagaccagtg gggtcaactg tggaagagac ggcacatcgt tatttcaaaa gagcaaggca tgcacagtga ggaacatgga ggaacatgga ggaacatgga ggaacatgga ggaacatcgt	5280 5340 5400 5460 5520 5580 5640 5700 5820 5880 5940 6060 6120 6180 6240 6360 6420
ctccagtttc aaaagccaat caccattgac cgtcatgcag atacttgact ggtcacggac agtgacagtg ggcaggccca catggtcacc catggatgag ccacaccgtg tgaccgggg ctgtggctgc gacctttgat caaggagcag gggctgcatg catggaggt catggaggt catggaggt catggaggt catggaggt catggaggt catggaggt	gcacctgact ccagcttett atagggcete gtgccatgga cgggaaggag tcagaaatgc gtctctgtgg ttccctattg gcaggcgact ttgggcaatt gatgggaatg acttgccagc ctgaggcett cgctggacet ggcagaatt gacctggagg aaatccatcg acggtgaatg tatggtgca ccacaaaaca	gcagccagcc attttgatga gtctcactca acgtggtccc gccccagcca atggtgccag attcagtgga gaattggaga ccaacgtggt ccttcctcca agaagaggcc cagatggcca cgtgccctaa gcccctgcgt tcaagctgac tgattcca aggtgaagca ggagactggt tcatgcatga atgagttcca	ctgctccgga cctggacgtg aatgaagagt ggtgtcagtg ggagaaagcc aatcggggat gccgggagcc tcgctacgat gaagctccag caaactgtgc cggggacgtc gaccttgctg cagccagtcc gtgcacaggc tggcagctgt taatggtgcc cagtgccctc	gaggggctgc atcettetec ttegecaagg ctgeagtatg catttgetga geettggget tcaaaggegg gatgeegeea geageeeage egaategaag tetggatttg tggacettge aagagttate eetgttaaag ageteeaete tettatgtee tgeageeetg teegtegage taegtgggtg aateaeettg ageeeeaga	agatccccac tggatggctc ctttcatttc gaagcatcac gccttgtgga ttgctgtgcg tggtcatcct ggtccaacag tacggatctt acctccctac ttaggatttg cagaccagtg gggtcaactg tggaagagac ggcacatcgt tatttcaaaa gagcaaggca tgcacagtga ggaacatgga ggaacatgga ggaacatgga gtcacatctt cttttgcttc	5280 5340 5400 5460 5520 5580 5640 5700 5820 5880 5940 6000 6120 6180 6240 6300 6360

aastaaasas	atasaasaa	actecasasa	-attatta			CC00
	gtcaccacag					6600
	tgccagccca					6660
	ctcttaccac					6720
	tgccagcagg					6780
	ctctgtcgga					6840
tgctatgtca	tgcccaccat	ctctggtcta	caaccactgt	gagcatggct	gtccccggca	6900
ctgtgatggc	aacgtgagct	cctgtgggga	ccatccctcc	gaaggctgtt	tctgccctcc	6960
	atgttggaag					7020
	gtccagcacc					7080
gatctgcaca	tgcctcagcg	ggcggaaggt	caactgcaca	acgcagccct	gccccacggc	7140
caaagctccc	acgtgtggcc	tgtgtgaagt	agcccgcctc	cgccagaatg	cagaccagtg	7200
ctgccccgag	tatgagtgtg	tgtgtgaccc	agtgagctgt	gacctgcccc	cagtgcctca	7260
ctgtgaacgt	ggcctccagc	ccacactgac	caaccctggc	gagtgcagac	ccaacttcac	73,20
ctgcgcctgc	aggaaggagg	agtgcaaaag	agtgtcccca	ccctcctgcc	ccccgcaccg	7380
tttgcccacc	cttcggaaga	cccagtgctg	tgatgagtat	gagtgtgcct	gcaactgtgt	7440
	gtgagctgtc					7500
ctgtaccaca	accacctgcc	ttcccgacaa	ggtgtgtgtc	caccgaagca	ccatctaccc	7560
	ttctgggagg					7620
	ctccgcgtgg					7680
	tacgttctgc					7740
	actggctcac					7800
	tccccggaga					7860
ggtctttata	caacaaagga	acgtctcctg	ccccagctg	gaggtccctg	tetgececte	7920
gggctttcag	ctgagctgta	agacctcagc	gtgctgccca	agctgtcgct	gtgagcgcat	7980
	atgctcaatg					8040
	tgccgctgca					8100
	acctgcaacc					8160
	agatgtttgc					8220
	cgtgatgaga					8280
	gagtacttct					8340
caagtgtctg	gctgagggag	gtaaaattat	gaaaattcca	ggcacctgct	gtgacacatg	8400
tgaggagcct	gagtgcaacg	acatcactgc	caggctgcag	tatgtcaagg	tgggaagctg	8460
	gtagaggtgg					8520
	gacatcaacg					8580
ggagʻcccatg	caggtggccc	tgcactgcac	caatggctct	gttgtgtacc	atgaggttct	8640
caatgccatg	gagtgcaaat	gctcccccag	gaagtgcagc	aagtgaggct	gctgcagctg	8700
	tgctgctgcc					8760
	tgctcttgtg					8820
aaaaggaaaa						8836

<210> 253

<211> 2428

<212> DNA

<213> Homo sapiens

<400> 253

```
tttcgtggag cggaagcaga gtgaggagca agccccgggc gagaaacggg ggcccggccg
                                                                      60
ggagcaagag caggggcggg gccgggagca agagcagggg cggggcccgg agacgggcga
                                                                     120
gaccaggttc tagccacgtt atgtgcggcc cagccatgtt ccctgccggt cctccgtggc
                                                                     180
ccagagtccg agtcgtgcag gtgctgtggg ccctgctggc agtgctcctg gcgtcgtgga
                                                                     240
ggctgtgggc gatcaaggat ttccaggaat gcacctggca ggttgtcctg aacgagttta
                                                                     300
agagggtagg cgagagtggt gtgagcgaca gcttctttga gcaagagccc gtggacacag
                                                                     360
tgagcagctt gtttcacatg ctggtggact cacccatcga cccgagcgag aaatacctgg
                                                                     420
getteeetta etaeetgaag ateaaetaet eetgegagga aaageeetet gaggaeetgg
                                                                     480
tgcgcatggg ccacctgacg gggctaaagc ccctggtgct ggtcaccttc cagtccccag
                                                                     540
tcaacttcta ccgctggaag atagagcagc tgcagatcca gatggaggct gccccttcc
                                                                     600
```

```
gcagcaaagg tgggcctggg ggaggcggga gggatcgcaa cctggcaggg atgaatatca
                                                                     660
acggetteet gaagagagae egggacaata acateeaatt eactgtggga gaggagetet
                                                                     720
teaacetgat geeceagtae tttgtgggtg teteategag geeettgtgg cacactgtgg
                                                                     780
accagtcacc tgtgcttatc ctgggaggca ttcccaatga gaagtacgtc ctgatgactg
                                                                     840
acaccagett caaggaette tetetegtgg aggtgaacgg tgtggggcag atgetgagea
                                                                     900
ttgacagttg ctgggtgggc tccttctact gcccccattc tggcttcaca gccaccatct
                                                                     960
atgacactat tgccaccgag agcaccctct tcattcggca gaaccagctg gtctactatt
                                                                    1020
ttacaggcac ctataccaca ctctatgaga gaaaccgcgg cagtggtgag tgtgctgtgg
                                                                    1080
etggacccac gcetggggag ggcaccctgg tgaacccctc cactgaaggt agttggatte
                                                                    1140
gtgtcctggc cagcgagtgc atcaagaagc tgtgccctgt gtatttccat agcaatggct
                                                                    1200
ctgagtacat aatggccctc accacgggca agcatgaggg ttatgtacac ttcgggacca
                                                                    1260
tcagagttac cacctgctcc ataatttggt ctgaatacat cgcgggtgag tatactctac
                                                                    1320
tgctgctggt ggagagtgga tatggtaatg caagtaaacg tttccaggtg gtcagctaca
                                                                    1380
acacagetag tgatgacetg gaacttetet accacatece agaatteate cetgaagete
                                                                    1440
gaggattgga gttcctgatg atcctaggga cagagtccta caccagcact gcaatggccc
                                                                    1500
ccaagggcat cttctgtaac ccgtacaaca atctgatctt catctggggc aacttcctcc
                                                                    1560
tgcagagete taacaaggaa aacttcatet acetggcaga ettececaag gaactgteca
                                                                    1620
tcaaatacat ggccagatcg ttccgtgggg ctgtggctat tgtcacagag acggaggaga
                                                                    1680
tetggtacet cetggaggge agetaceggg tetaceaget gttecettee aagggetgge
                                                                    1740
aggtgcacat cagcttaaag ctgatgcaac agtcctctct ctacgcatcc aatgagacca
                                                                    1800
tgctgaccct cttctacgaa gacagcaaac tgtaccagct ggtgtacctt atgaacaacc
                                                                    1860
agaagggcca gctggtcaag aggctcgtgc ccgtggagca gcttctgatg tatcaacagc
                                                                    1920
acaccagcca ctatgacttg gagcggaaag ggggctactt gatgctctcc ttcatcgact
                                                                    1980
tetgeceett eteggtgatg egeetgegga geetgeeeag teegeagaga tacaegegee
                                                                    2040
aggagegeta eegggegeg eegeegegeg teetggageg etegggettt eeacaaggag
                                                                    2100
aactegeeeg ceatetacea gggeetggte tactacetge tgtggetgea eteegtgtae
                                                                    2160
gacaageegt aegeggacee ggtgcaegae eecacetgge getggtggge gaacaacaaa
                                                                    2220
caagaccagg attactactt cttcttggcg agcaattggc gaagcgcggg cggcgtgtcc
                                                                    2280
atagaaatgg acagctacga aaagatctac aacctcgagt ccgcgtacga gctgccggag
                                                                    2340
cgcattttcc tggacaaggg cactgagtac agettcgcca tettcetgtc ggcgcagggc
                                                                    2400
cactegitee ggacgeagte agaacteg
                                                                    2428
```

<210> 254 <211> 2974 <212> DNA

<213> Homo sapiens

<400> 254 tttcgtcccc agccctgaga ttcccaggtg tttccattca gtgatcagca ctgaacacag 60 aggactcacc atggagttga gacggagctg gattttcctc ttggctattt taaaaggtgt 120 ccagtgtgaa gtgcagttgg tggagtctgg gggaggcttg gtacagcctg gcagqtccct 180 gagactetee tgtgcageet etggattete ttttgatgat tatgccatge aetgggteeg 240 gcaagctcca gggaagggcc tggagtggt ctcaggtatt agttggaata gtggtagcat 300 aggetatgeg gaetetgtga agggeegatt caccatetee agagacaaeg ceaagaaete 360 cctgtatctg caaatgaaca gtctgagaat tgaggacacg gctcttgtat tactgtgtaa 420 aagatccatc ttaccctgat tattatgatc gtcgtggtta ttctgttgga cgtctggggc 480 cagggaaccc tggtcaccgt ctcctcagcc tccaccaagg gcccatcggt cttccccctg 540 gegeceteet ecaggageae etetggggge acageggeee tgggetgeet ggteaaggae 600 tacttccccg aaccggtgac ggtgtcgtgg aactcaggcg ccctgaccag cggcgtgcac 660 accttcccgg ctgtcctaca gtcctcagga ctctactccc tcagcagcgt ggtgaccgtg 720 ccetccagca acttgggcac ccagacctac atctgcaacg tgaatcacaa gcccagcaac 780 accaaggtgg acaagaaagt tgagcccaaa tcttgtgaca aaactcacac atgcccaccg 840 tgcccagcac ctgaactcct ggggggaccg tcagtcttcc tcttcccccc aaaacccaag 900 gacaccetca tgateteeeg gacceetgag gteacatgeg tggtggtgga egtgageeae 960 gaagaccccg aggtccagtt caactggtac gtggacggca tggaggtgca taatgccaag 1020 acaaagccgc gggaggagca gttcaacagc acgtaccgtg tggtcagcgt cctcaccgtc 1080

gtgcaccagg	actggctgaa	tggcaaggag	tacaagtgca	aggtctccaa	caaaggcctc	1140
ccgtcctcca	tcgagaaaac	catctccaaa	gccaaagggc	agccccgaga	gccacaggtg	1200
tacaccctgc	ccccatccca	ggaggagatg	accaagaacc	aggtcagcct	gacctgcctg	1260
gtcaaaggct	tctaccccag	cgacatcgcc	gtggagtggg	agagcaatgg	gcagccggag	1320
aacaactaca	agaccacgcc	tcccatgctg	gactccgacg	gctccttctt	cctctacagc	1380
	tggacaagag					1440
catgaggctc	tgcacaacca	ctacacgcag	aagagcctct	ccctgtctcc	gggtaaatga	1500
gtgccacggc	cggcaagccc	ccgctcccca	ggctctcggg	gtcgcgtgag	gatgcttggc	1560
acgtaccccc	tgtacatact	tcccagggca	gtggtgggtg	ctttatttcc	atgctgggtg	1620
	atgtagacgg					1680
ggagcggggg	cttgccggcc	gtcgcactca	tttacccggg	gacagggaga	ggctcttctg	1740
cgtgtagtgg	ttgtgcagag	cctcatgcat	cacggagcat	gagaagacgt	tcccctgctg	1800
ccacctgctc	ttgtccacgg	tgagcttgct	atagaggaag	aaggagccgt	cggagtccag	1860
	gtggtcttgt					1920
gatgtcgctg	ggatagaagc	ctttgaccag	gcaggtcagg	ctgacctggt	tcttggtcat	1980
ctcctcccgg	gatgggggca	gggtgtacac	ctgtggttct	cggggctgcc	ctttggcttt	2040
ggagatggtt	ttctcgatgg	gggctgggag	ggctttgttg	gagaccttgc	acttgtactc	2100
cttgccattc	agccagtcct	ggtgcaggac	ggtgaggacg	ctgaccacac	ggtacgtgct	2160
gttgtactgc	tectecegeg	gctttgtctt	ggcattatgc	acctccacgc	cgtccacgta	2220
ccagttgaac	ttgacctcag	ggtcttcgtg	gctcacgtcc	accaccacgc	atgtgacctc	2280
aggggtccgg	gagatcatga	gggtgtcctt	gggttttggg	gggaagagga	agactgacgg	2340
tccccccagg	agttcaggtg	ctgggcacgg	tgggcatgtg	tgagttttgt	cacaagattt	2400
	ctcttgtcca					2460
	cccaagctgc					2520
	aggacagccg					2580
	accggttcgg					2640
	ctcttggagg					2700
tgaggagacg	gtgaccagga	ttcctttgcc	ccagtagtca	aagccggtag	taggtcccac	2760
	tcaaagccat					2820
	teggetetea					2880
	gtgaatcggc			tatatgccat	ttccatcctg	2940
ctttatgttg	gccacccact	ccagccccac	gaaa			2974

```
<210> 255
<211> 1896
<212> DNA
<213> Homo sapiens
```

-

```
<400> 255
ttttttttt ttgagactga gtctcgctct gtcaccaggc tggaatgcag tqgcqtgatc
                                                                      60
ttggctcaat gcaacctcca cctcccaggt tcaaqcgatt ctctqqcctc aqcctcttqa
                                                                     120
ctagctggga ctacaggtgt gtgccaccac atccagctaa tttttgtatt tttagtagag
                                                                     180
acggggtttc accatgttgg ccaggatggt ctcaacctct tgacctcgtg atccacctgc
                                                                     240
ctcgggtcct cccaaagtgg tgggattaca gggcgtgagc cactggtgcc cagccagaaa
                                                                     300
agcattttta atagaatttt gatagctctt aactgaggat cctaaatcaa gggatttagg
                                                                     360
aaatgaggta ttcataaagg aatagtaagg tttttaaagc ttttcaaaat tacatatgat
                                                                     420
acaaataaag attggtaaca ggatttaatc attgtttcaa actttattac ttaatgaaac
                                                                     480
agtttctata tactgcttcc aattacttta atcccttttt cctccgttaa aattttttt
                                                                     540
ggttggttcc ttcaagttga agcctgagat acttttaatt actttttatt taactggctt
                                                                     600
cccggaaacc gtaacaggtg ccaggaatag attgatgata tcccaagtag aggctgatgg
                                                                     660
cagctaatac gtactettca ggtgacaagt ttatgcatca tgtgagtgtg tgtcatagga
                                                                     720
tgatgaaatt ccacaggaaa aggaggggct cctgcagcgg gctagggccc aactccatta
                                                                     780
totoactata aaaaaaaaaaa actttoaaga atootggaca ggcacaatat ccacaaaaga
                                                                     840
gcaaaccagc cctggctcca aatttggctg aaatccttct tagattggta ggagtataca
                                                                     900
cagttcaaac ccaaaaaata ctggtagtag tccagtatga aagcttgcag gaataatata
                                                                     960
tacatcatag aaagtcaaca acaacagcca cagtcagagc ttccaacagc gtaaatccaa
                                                                    1020
```

```
aaagtaggta caggttaagg ggatacttat gtcctgttta aagtcaacgc aaaaatcaaa
                                                                    1080
cccagagatc cgagggcaaa cagcaaaatt aaggcaggac tctcatgtac aaatgtccgt
                                                                    1140
acagactcaa agtataaaaa aacttgttga aagttccctg taaqttaaaa agaccctcca
                                                                    1200
ggaaaaaaaa tgctggtagc tcttttctca gaaaggtctg tattttccca ccaattaatt
                                                                    1260
ttttttaaaa aaaagctgag ttcgctggcc aaaataattt caaaattcaa ttccaaaaat
                                                                    1320
ataaatgtta ggcaccaaga ttcttggtgc atcagaacta tcttcatctt tccttttcca
                                                                    1380
gaacaagttc taggcactaa gattcttagc acatcagaac tatcttcatc tttccttttc
                                                                    1440
caqaacaaqt tccagctgcc taaacaggct gaaagtctgg ggctgtttcg gcgatcaaat
                                                                    1500
gaccaaacta gagcaggcaa tggcttccac gtagatgaag ctgagcattt taaattcaaa
                                                                    1560
aatttctgcc cattggctac tacgtaataa cttaaaacac aatttagact gacttaggaa
                                                                    1620
gcttctgtgt tgagcaactt cctcaataat cctcaaagac ctgttgcatt ctgggccctg
                                                                    1680
cggagaggaa atagtgccgt cagggagctt ccagcctagc acaggacggt aaatataaqc
                                                                    1740
ctgtaacgcg aaaccccaca gaacaaaaac atcaggccgt ggattccact cgtgtgtacg
                                                                    1800
tcagtcacag tgatcaaccg actcatttcc acgacgtttc ttttcacttc aagatgccaa
                                                                    1860
attcaggctg cggcggtttc catctgtccc acqaaa
                                                                    1896
```

<210> 256 <211> 3678

<212> DNA

<213> Homo sapiens

<400> 256

ttttttttt ttcacgagat caactgttta ttgatttttt tcctcaaata ctacacatgt 60 aaaggaactg ttaaactgaa aaagacttga caatttttgg taaatccgta gcacagaaat 120 gaggatttct gctggtaagt tctcaggaca gacacagaca caggtccact ttccaaqcaa 180 gacatctgct cactggaaac ggagtgaatg catagctggt gacggcggcg ggcactgctg 240 agtcacgtga aacacaggtt cccccacgtt cccccaccc ccgccggccc gcgtggcccc 300 egegtaacte tggetgeage acetgeteee gggegaetee gggeageeeq agacactegt 360 gctgcgggta agacccagct tctgtttgtg cacaagtaac acgacgactg aaatctgcaa 420 ctactgcaaa gacgcgggca cttttacagt gttctgctac ggaqccaqqa caaaqqccqq 480 teagaageeg gaceageagt eagetggtga egaegageet eeeteeagea ggeaceaegt 540 cagagaggcc ccaggcccac tgagcccggg aggagaccca gccggccagc cagacgtgtg 600 cctgaatgcc acagacttca agcagtttac aaacgaaact cactgttaaa agctgttaaa 660 totcattaaa acagtagacg agtgctttag attotctgaa tatcaaataa tatatacaga 720 tagacactga gacatgacag tetaatetaa agcatettta cagatgcatt tgettgaaaa 780 gttagtcttc tttttaactc tgaatcagtg ataaaattgt taatttgcaa aagagtacag 840 ttttaagcaa gaatagagtg aaaataattt ttaaatatgg cgatttgggg gagttctacc 900 taaggttcta tgtaaagctt ccattcagat gcccaaaagc acaaagagca ttcccaatag 960 aaacccgacc ataacccggt cccaccttcc tggcataatt cctttcctca aacatctgcc 1020 acctgaggct aagcctacac acggcgtggc tgagtaacag ggtaagggaa tagggagatc 1080 gtttcctcaa gactggtgcg catcaatctg tgccataatt taagtagaaa tgaacaggtg 1140 tataaaaaag tataactgta cacagccttt aaattaaaaa cctcaaaatc ttcactcaaa 1200 atgggatgta agettgttca tttaagttgc aggtgatgga ctcgtcagag agagtaatca 1260 gtggaacaag atcagtgtaa cccaccattg actcggaaag gagagacaaa gtcaaqaaca 1320 tagagateta tgataggeca acaggeacag tgggeggga ggggeggeta tttetgttgt 1380 tetgegtett cetgegetea gateceteca getgeacteg gaaaqqtqcc qaqteceaqq 1440 cgaaatgacc agctcatctg ccttccagga acaccatgaa gccaagagca atggaaccat 1500 catctcttgc aggaaaagga gtggatgccc acgtggctgg ctgaggctcc tgggcccgcc 1560 geeteegtee eeeegetgge etgteeeega eteateactg gategeetee acataatttg 1620 cegggtatag gecaacttge cegttgteca agegteeett geaccageee tgeteateet 1680 cgtcctccat cttggtcagc tcatccccag ccttgaagct cagctcatca tgctcctgcc 1740 ceteatagte atacagggee eggactegea etteegteee egaggtggeg tegtegtega 1800 atggattega qtececattg geateeqtqq aqqaqaaqqq qttqttaqae teateqtetq 1860 accagteggt gggatagete tgggtettet egtagetget cacatttttq qeettagtqt 1920 egteettete actgaeggtg etgeeegtgt egteeteate etegaagggg ttgtagetgg 1980 actgtgactg cgcagactgg gcggggttgc tcgggacatt aagggtgctg ctgggcttac 2040

```
teggeagaga etggtegeet gtetggttga tgeeegteag ggtgaegeeg teagtggeet
                                                                    2100
tettettete teteeggetg agggttegat teaggtetge ggaccaetee teaaactgeg
                                                                    2160
gecagtteat ggecatgeee ggecegtgat tggeteggaa ecaceteagg teetecaetg
                                                                    2220
catcagetge tetgatgete tgetecaggt catggtaaat ggetttgtag ceagceacat
                                                                    2280
tggacaggtc taggtgcttc tgaacctcca agcagaacct cccggaaaaa gcgaaggcgt
                                                                    2340
eteteetega aetgetggea etgeteaaae aeetgeteea tgtteteeat gtaetggggt
                                                                    2400
gtgccctggt cgagttcctt gagggacttc tcatacttct ctttggtctt aagaacatct
                                                                    2460
tgcttgcact tttactattt tgtcttgcaa tttcttgagc tgttcagggt tgagggatgg
                                                                    2520
gtctgccttg ctgttggctt ctcgtgagat agccagcttc tcctctttgc acgctgcatg
                                                                    2580
gtgggctttc tttgctgctt ctacctcttt cagcttcttg gcccagggct tctgtgcctt
                                                                    2640
cegaaageeg teeteagett eettggtete ettgaageeg eecateatet gettgtgaaa
                                                                    2700
ggetteette tgecagttet tgatetteet caagteateg tteateagtg aggeetteae
                                                                    2760
cctgaggtgc agctcgctca ccctctctgc ctcggacatg aaggccatcc aggccttctc
                                                                    2820
cacggteccg tactggggec etttetecac gagetgeete cagegeeggg eccaeteagt
                                                                    2880
gagetgetge geatacgeec ttetegatge gegecegete atgeaggeag tteatgaggt
                                                                    2940
cgctgcacag gcggtggcca tcgtcgatcc gcttcacagt ccgcttgtag ttcccgacct
                                                                    3000
eccagaaget gtegetggac acttetacte caaeggaate ateatatgtg acagacattt
                                                                    3060
tttcaaaggc tgagggagca gcaaagtata cttagtcagg ggtcaacttc gaacgctcaa
                                                                    3120
aatctgtaga caaacctccc aatccgtcgc acactccgtt caggctgcca cggcgtctcc
                                                                    3180
agacccaget ceggeeggge tecegetace gettttgete eggeageaet geecageeet
                                                                    3240
geccagacce etgeggeege ttetgeegee ageegegace geaeegeeee egeegeteee
gctgggctet gtccattggc taccggacac cgagccccgc cccacagcct ccccggcgcc
                                                                    3360
cccgattggg ccagatgagt agagaggcgg ctcaccccgc gtgaggacga gggaaagccc
                                                                    3420
caggacgcgc attggtgact tctcctgtca atcaaacggg gagtgcctat ttaatgggct
                                                                    3480
gcgagggtgg cgcacatcac tctcccaaag ccgctcgctg gtggttggtcc ttgagacgcg
                                                                    3540
cttcccgggg ctggagtttt gcggtttcgt cggcatccag gggtaagagg gcgcggcagg
                                                                    3600
gcagcaccgc acctgaccgg aagttcaggg aaggtaatcc tacagtcttt cagaaacgtt
                                                                    3660
tcctctccca agggactc
                                                                    3678
```

<210> 257 <211> 6329 <212> DNA

<213> Homo sapiens

<400> 257 ttttttttt ttcggagtga aaaagacgct gtatttgatt tacaatgaac aagatttaca aaaaggggtg gggtggtctt ggaactgctc ccagtccccc cggactgggt ggggctctag 120 ggcagcctgt ctgacagacc aggaccccag gatgtctggg ccccgacgta ggacttgacc 180 tacgtctcac ttgacctttg acgtggggcc cagcagccgt gagtccaccc agagtgccgg 240 caccettggg gaggeeggtg aggteaggaa ggeategtae egetttttet eeteeteeca 300 tctcgtggtg gacagacaga cataggatct gggaacttgc cctgggggcc acaggccctc 360 agatececca ggggeceaac ctagggeatg gaggeggetg etggtgegtg ggeggaggeg 420 gaggccagct gcccccagcg tggcagcgta aggcacattt tcaaatcact cgagactcga 480 cagtgaacac ccgatgctgg ttctgcggcc ggagggagct ggggctgggg ctggtgctgg 540 tgeggtgeee ggeggtattg etcagaggaa gatgetacag tetagaeget gggegggtte 600 eggetgeace cacteegget tggggegegt tecaggggag ggtgggggec teagecacag 660 ccacteggee tecteecetg agggetete aggtacetea ggtacetatg teccaaggea 720 gcactggaga ttgtaggtca gaggtcagtg accttgttct ccagtgcagc ggcaatctgc 780 tgcaggcgga aggccagctg catcttctgg gcggcaggat cctcctccaa ggcattgatg 840 atctcgtcat agtacttctg cgtgtattgg tagagctggt ggagtgccac gagggtgttc 900 aaggagteeg tgtgegeeeg ggaaatetet geeaggtgtg tgttcatgte etggtegetg 960 acctgcacca tctgccggat ccccttgtag taatcctcca ccatcttctt gtaggtggag 1020 atctccttgg cgtacagcag cttgttgctg ggagaatcgc ggctcagctt atgctccgtg 1080 egegtgeagg catecatgaa ggtetgegeg atgactgaca gegaggegte caecaceteg 1140 tggacatgca cgtcaaagat gaagtggggg ttcttgagga tgttcaccca gaaccqgagc 1200

ggtaaactgt tcgtcttcca gatgtggatg gtgtcttcat cctggatgtt gtgcttctct

1260

gcctgctcgt	ccaggaagtc	gaagaagtac	ttgactgcag	gtggcaccgc	gtgcccaggc	1320
gccagcacgc	tctggaagaa	gttgtccaca	aactgctgca	gtgtgccctt	gactgagagg	1380
agccgcgtca	ggtagatctc	ggtgatggcc	ttcatccact	ccttctctt	cacactacct	1440
ctcttggact	tgccctcgtc	cacctcatca	atragreace	ccacatacca	caccacatta	1500
tectecteca	ggagggcatg	acactecees	gacagatact	actacatata	atacagataa	
						1560
aggagaccc	ccaccttgga	caggacgagg	grayereear	ceeggacatt	gtagtgcata	1620
	cgcgcttcca					1680
accegegetg	tggagcccgg	acgccactcc	aggaccacgc	tgtctggcct	gggccagcag	1740
gageaggget	gcccacggta	cacctggtca	atgatettet	ccttgacctg	ggagatggtg	1800
tcacagttga	ggaccttcac	cgggatggcg	tccactccct	cgtcctgcac	gatcacgctc	1860
accgtcaggg	gtgcgtactc	cacatcatcc	cccagcagcc	ccgtgtcgtt	gagagtgtac	1920
ttggccttct	tctgtaccgc	atccaccggg	cccttttcca	cctgatgttt	gatggccttg	1980
aagagcttgt	acaggggctc	cccggcactg	tccttgaggt	actggtacag	gcagatggac	2040
atccagttgg	acagcatcct	ctccaccaca	gtctcagacc	tgcgcagcat	cagcttgggg	2100
ttcttggcca	ccacgtactg	ctccaggagc	tccaggaaga	gcgtgtgcat	gatgtccgtg	2160
	gtttcccgtg					2220
	actccggctg					2280
gctgttcagc	aggttggaga	actggtagag	ggcctgctcc	accaccqqcc	gecacaacte	2340
ggggatgtcc	agcttgccgg	tgatcatcac	atcettatea	ccatccttaa	agggcaggaa	2400
gaagacgcgg	tcggtgtagg	tcttgtagtc	cadcacadaa	atgccggcct	catacacata	2460
attaatetaa	tcctccatct	cgatcatcag	atctataaat	teettettae	agegateea	2520
					gttcggcctg	
	ctccagtagc					2640
ascearcac	aagatgaggc	taaacaacaa	ataastasaa	acyaccacca	aggeacgat	
						2700
	cactcgcgag					2760
	tgccgccgct					2820
	agcgtcttca					2880
	gccttgttca					2940
	cctgtgaagt					3000
	agcagggcac					3060
	tcaggcacag					3120
	cccaccaccg					3180
	ggctccgcga					3240
acccgtgacg	ttgatgctgc	ggccaccact	ggcaaagctt	cgtagcggct	cgaaggctcg	3300
cagtacgggg	ttttcgcggt	aggtgaagaa	gatgccgggg	ttgggcacgg	gggacccccc	3360
gtaggagacc	tccagaagca	tetggeeeeg	tgtcgcctgg	gggccagtga	cacactggag	3420
ctgcgcccca	aacttcgtca	ctttacacgg	gacgccgttg	agggtcaccc	gcacgtcctc	3480
	gtgtccaggt					3540
	ggctccacac					3600
aggcgaacgg	cccagtttcc	cgaagacgtc	cacctcgaca	ccccccgtga	aaggcgtctc	3660
	atcacacaca					3720
	ccggccacag					3780
	gtgatgcgga					3840
	ggcgggcact					3900
	caccacgcac					3960
	aaggagcagt					4020
	acgtaaaggt					4080
	gcgaaggtcc					4140
						4200
	acgtgcaggg					
	tcgtggttca					4260
	atgtgggcac					4320
	cgcaggtccc					4380
	tccaggctca					4440
	ttgcctcgtc					4500
	acggggatgc					4560
	ggcggcgact					4620
	ctgacggtca					4680
ctgggcgctg	gtgacggcca	cgcaggactt	gcttcggctc	cacagccagt	ggctggcctc	4740
ctcggcccgc	ggacactcgg	ccttccgggt	gcatcgtccc	tcgacgacgc	accagccgca	4800

gtaggggtcc	tgggagtcgc	ggcactgggt	gcaggtcggg	tagctcaggc	actcctgcac	4860
cggcagccgg	aacaccttgt	cctgggtcat	ggcgtacagg	ctgcccaggt	ctccagacag	4920
taccaggtcg	cgcttgactc	tcttgtttat	ctccacaagg	atagagtcgt	actctgagga	4980
ggtgccatct	ggggtgaggt	acaccttgag	gatccggcca	tcagaggtgc	ccagaaaagc	5040
	ttgttctcgg					5100
cagcacggct	gtgcctctga	gecegtegeg	gctgcccagc	gggtagggca	ggtgctccga	5160
gccacatggg	aagctcttgc	tggagcccgg	cgcgtggccg	ccgcactgga	tatcgccgtg	5220
gaagggcttg	tagaagatgt	cacgggcctc	ccgggtgcct	gtgtaacagg	cgttgcggtt	5280
ggcctccatc	ttggcgtgca	cctcgtccag	cgggaacagg	cagaggcccg	caccgggccc	5340
cccactgctc	cggctgtctc	tgctgaagac	agcatatagc	accetgecag	agccaggcgc	5400
agccacggag	gcggccaggc	aggtgccaaa	ggcagcggcg	tggatgtcgg	ggtcccggca	5460
ctgcaggtcc	atctccaggt	aggagtagta	gttggggtct	tctctgcaca	tgcgtgccag	5520
cagcgtgcgg	ttccgggccg	ggtgcttgtc	ctgctggttg	aagacaaaga	agacgtaggg	5580
gccgtcctcg	aaggccgcca	cgaactgctg	tgtgttggtg	gacaggtagc	cggccttgta	5640
ggtggcgtgg	tccgtgtagg	cttcaaaggc	ctccctgctg	tcagtccggt	ccaacagccg	5700
agtgctcacg	atgatgccgt	tgtcgtgtgg	cccattgcct	ttgcccacaa	acagcacgcg	5760
gtcaccacca	ggacccgtgg	agctcaccag	ccccactgtg	gccacgccct	catcattgct	5820
ggccacgaaa	gacttctccc	cgctgccgtc	ctcgtagaac	aggcggaggg	agatgttgct	5880
cagggcgcgc	agagcgcagg	atgcccttaa	gaagctgccc	gcactccacc	aggcgtttcc	5940
tgggagggtc	gaccagcagc	agctggttga	cattgtcagt	catctcagcc	tcatggcact	6000
ggctggcctc	gatgggcggc	gtgcacttct	tgttgtccag	gaccgggccc	gtggccacct	6060
	ctgcagcttc					6120
ccacgcctga	ggcctcatcc	acagccaggt	ggttcagctc	tttctcgctg	cggaagaagt	6180
ccagcttgcg	gggcctcagg	ctggcacctg	cgcccagcag	gcccagcagg	gtcagggccc	6240
agagctgcag	tgccattgcc	ccctgcaccc	gaggetecag	tggtccagct	cagtttctgc	6300
tccaggccag	catcgagatt	ctcacgaaa				6329

<210> 258 <211> 1616 <212> DNA

<213> Homo sapiens

<400> 258 tttcgtgctg tctcctgctc atccagccat gcggtggctg tggcccctgg ctgtctctct 60 tgctgtgatt ttggctgtgg ggctaagcag ggtctctggg ggtgcccccc tgcacctggg 120 caggeacaga geegagacee aggageagea gageegatee aagaggggea eegaggatga 180 ggaggccaag ggcgtgcagc agtatgtgcc tgaggagtgg gcggagtacc cccggcccat 240 teaccetget ggeetgeage caaceaagee ettggtggee accageeeta acceegacaa 300 ggatggggc accccagaca gtgggcagga actgaggggc aatctgacag gggcaccagg 360 gcagaggcta cagatccaga accccetgta teeggtgace gagageteet acagtgeeta 420 tgccatcatg cttctggcgc tggtggagtt tgcggcgggc attgtgggca acctgtcggt 480 catgtgcatc gcgtggcaca gttactacct gaagagcgcc tggaactcca tccttgccag 540 cctggccctc tgggattttc tggtcctctt tttctgcctc cctattgtca tcctcaacga 600 gateaceaag cagaggetac tgggegacgc teettgteeg tgeegtgeec tteatggagg 660 tetectetet gggagteaeg aettteagee tetgtgeeet gggeattgae egetteeaeg 720 tggccaccag caccetgccc aaggtgaggc ccatcgagcg gtgccaatcc atcetggcca 780 agttggctgt catctgggtg ggctccatga cgctggctgt gcctgagctc ctgctgtggc 840 agetggeaca ggageetgee eccaecatgg geaccetgga etcatgeate atgaaaceet 900 cagocagoot gooogagtoo otgtattoac tggtgatgac otaccagaac gooogcatgt 960 ggtggtactt tggctgctac ttctgcctgc ccatcctctt cacagtcacc tgccagctgg 1020 tgacatggcg ggtgcgaggc cctccaggga ggaagtcaga gtgcagggcc agcaagcacg 1080 ageagtgtga gageeagete aacageaceg tggtgggeet gacegtggte taegeettet 1140 geaccetece agagaacgte tgeaacateg tggtggeeta cetetecace gagetgacee 1200 gccagaccet ggacctcetg ggcctcatca accagttete caccttette aagggcgcca 1260 teaceceagt getgeteett tgeatetgea ggeegetggg ceaggeette etggaetget 1320 getgetgetg etgetgtgag gagtgeggeg gggettegga ggeetetget gecaatgggt 1380

cggacaacaa gctcaagacc gaggtgtcct cttccatcta cttccacaag cccagggagt 1440 caccccact cctgccctg ggcacacctt gctgaggccc cagtaggggt ggggagggag 1500 ggagaggccg ccaccccgc cggtgtctgc tgttcttcc ccataggtct tgctttgttg 1560 cctgtcttgc tgtctaggga tggacttggt tcctcttgtc aaggtttggg aatccg 1616

<210> 259 <211> 8002 <212> DNA

<213> Homo sapiens

<400> 259

attgaaccct caatgaaatg aagttgcgag gcagttaccg tcagcctcct atggaataaa 60 tattcgaggc ccagagaggg taagagacct gcctgcgacc cctcagcact tctgtttctc 120 tctggggtct tgagggtaca ataaagaccc ctaaggcttc ctcttctcgc aggaggtcca 180 ggcgcagctg tgggggaggg tgcccttggt gtcttctgtc cctgcagcca gtctgctttc 240 tactoggoag ctoctototo cotoctggga tgagatgtgc acgogatgat gggattocco 300 gtgccgcctg tctcctttct tccccaggcc cgcccagagc tgagctccgt cctccggctg 360 ctgcccaaat caggggtcgt ggacaaagga tgcctggggc ctgcggccct acgccaggac 420 cccgcgccga atactctgat tcttcgggct ccctccaagg gagtcccaaa gaccccaatg 480 gccaatagga aaaggatgga cgaggaggag gatggagcgg gcgccgagga gtcgggacag 540 ccccggagct tcatgcggct caacgacctg tcgggggccg ggggccggcc ggggccgggg 600 tcagcagaaa aggacccggg cagcgcggac tccgaggcgg aggggctgcc gtacccggcg 660 ctggccccgg tggttttctt ctacttgagc caggacagcc gcccgcggag ctggtgtctc 720 cgcacggtct gtaacccctg gtttgagcgc atcagcatgt tggtcatcct tctcaactgc 780 gtgaccctgg gcatgttccg gccatgcgag gacatcgcct gtgactccca gcgctgccgg 840 atcetgeagg cetttgatga etteatettt geettetttg cegtggagat ggtggtgaag 900 atggtggcct tgggcatctt tgggaaaaag tgttacctgg gagacacttg gaaccggctt 960 gaetttttea tegteatege agggatgetg gagtaetege tggaeetgea gaaegteage 1020 ttctcagctg tcaggacagt ccgtgtgctg cgaccgctca gggccattaa ccgggtgccc 1080 agcatgegea teettgteae gttgetgetg gatactetge ceatgetggg caacgteetg 1140 etgetetget tettegtett etteatette ggeategteg gegteeaget gtgggeaggg 1200 ctgcttcgga accgatgctt cctacctgag aatttcagcc tccccctgag cgtggacctg 1260 gagegetatt accagacaga gaacgaggat gagageeeet teatetgete eeageeaege 1320 gagaacggca tgcggtcctg cagaagcgtg cccacgctgc gcggggacgg gggcggtggc 1380 ccaccttgeg gtctggacta tgaggcctac aacagctcca gcaacaccac ctgtgtcaac 1440 tggaaccagt actacaccaa ctgctcagcg ggggagcaca accccttcaa gggcgccatc 1500 aactttgaca acattggcta tgcctggatc gccatcttcc aggtcatcac gctggagggc 1560 tgggtcgaca tcatgtactt tgtgatggat gctcattcct tctacaattt catctacttc 1620 atcetectea teategtggg etecttette atgateaace tgtgeetggt ggtgattgee 1680 acgcagttct cagagaccaa gcagcgggaa agccagctga tgcgggagca gcgtgtgcgg 1740 ttcctgtcca acgccagcac cctggctagc ttctctgagc ccggcagctg ctatgaggag 1800 ctgctcaagt acctggtgta catccttcgt aaggcagccc gcaggctggc tcaggtctct 1860 cgggcagcag gtgtgcgggt tgggctgctc agcagcccag cacccctcgg gggccaggag 1920 acccagecca geageagetg etetegetee cacegeegee tateegteea ecacetggtg 1980 caccaccacc accaccatca ccaccactac cacctgggca atgggacgct cagggccccc 2040 egggeeagee eggagateea ggaeagggat geeaatgggt ceegeegget catgetgeea 2100 ccaccetega egectgeeet eteeggggee eeceetggtg gegeagagte tgtgeacage 2160 ttetaccatg cegactgeca ettagageca gteegetgee aggegeeece teecaggtee 2220 ceatetgagg cateeggeag gaetgtggge agegggaagg tgtateecae egtgeacaee 2280 agccctccac cggagacgct gaaggagaag gcactagtag aggtggctgc cagctctggg 2340 cccccaaccc tcaccagcct caacatccca cccgggccct acagctccat gcacaagctg 2400 etggagacae agagtacagg tgeetgeeaa agetettgea agateteeag eeettgettg 2460 aaagcagaca gtggagcctg tggtccagac agctgcccct actgtgcccg ggccggggca 2520 ggggaggtgg agctcgccga ccgtgaaatg cctgactcaq acaqcgaggc agtttatqag 2580 ttcacacagg atgcccagca cagcgacctc cgggaccccc acagccggcg gcaacggage 2640 ctgggcccag atgcagagcc cagctctgtg ctggccttct ggaggctaat ctgtgacacc 2700

ttccgaaaga	ttgtggacag	caagtacttt	ggccggggaa	tcatgatcgc	catcctggtc	2760
aacacactca	gcatgggcat	cgaataccac	gagcagcccg	aggagcttac	caacgcccta	2820
gaaatcagca	acatcgtctt	caccagcctc	tttgccctgg	agatgctgct	gaagctgctt	2880
gtgtatggtc	cctttggcta	catcaagaat	ccctacaaca	tcttcgatgg	tgtcattgtg	2940
	tgtgggagat					3000
	tgcgtgtgct					3060
	tgaagaccat					3120
	tcagcatcct					3180
	ccctgccaga					3240
	tcctgaccca					3300
	gggcggccct					3360
						3420
	tggtcgccat					
	agcccgattt					3480
	tggtgtccct					3540
	acacggccgc					3600
	tgggccctgc					3660
	agatgaagtc					3720
	gctggaccag					3780
ctgaagcgga	gaagcccaag	tggagagcgg	cggtccctgt	tgtcgggaga	aggccaggag	3840
agccaggatg	aagaggagag	ctcagaagag	gagcgggcca	gccctgcggg	cagtgaccat	3900
cgccacaggg	ggtccctgga	gcgggaggcc	aagagttcct	ttgacctgcc	agacacactg	3960
caggtgccag	ggctgcatcg	cactgccagt	ggccgagggt	ctgcttctga	gcaccaggga	4020
ctgcaatggc	aagtcggctt	cagggcgcct	ggcccgggcc	ctgcggcctg	atgacccccc	4080
actggatggg	gatgacgccg	atgacgaggg	caacctgagc	aaaggggaac	gggtccgcgc	4140
	gcccgactcc					4200
	cagtccaggt					4260
	gtccttgtca					4320
	accccacag					4380
	ttctggctga					4440
	acctgcggag					4500
	ttctggtgtc					4560
	ggctgctgcg					4620
	tggtggagac					4680
	ccttcttcat					4740
	gccagggcga					4800
	ggtgggtccg					4860
						4920
	ttttggcctc					
	tggaccagca					4980
	tgctcattgt					5040
	acaagtgtcg					5100
	gaagactgga				•	5160
	cagccagcgc					5220
	ggctcctcgt					5280
	tcgggctgaa					5340
	aggctctgaa					5400
	aacttgtggc					5460
	ccattgtgct					5520
	tgcccatcaa					5580
cgagtgctga	agctgctgaa	gatggctgtg	ggcatgcggg	cgctgctgga	cacggtgatg	5640
caggccctgc	cccaggtggg	gaacctggga	cttctcttca	tgttgttgtt	tttcatcttt	5700
gcagctctgg	gcgtggagct	ctttggagac	ctggagtgtg	acgagacaca	cccctgtgag	5760
ggcctgggcc	gtcatgccac	ctttcggaac	tttggcatgg	ccttcctaac	cctcttccga	5820
	gtgacaattg					5880
	gctacaacac				-	5940
	tgctagtcaa					6000
	ccaaggagga					6060
	agccccactc					6120
	ccgacagccc					6180
	ttttccctgg					6240
3	3 3	J			J J J J	

```
accagactta ctgactgtgc ggaagtctgg ggtcagccga acgcactctc tgccccaatg
                                                                  6300
acagctacat gtgtcggcat ggggagcact gccgaggggc ccctggggaca caggggctgg
                                                                  6360
gggetececa aageteagte aggeteegte ttgteegtte aeteceagee ageagatace
                                                                  6420
agetacatee tgcagettee caaagatgca eetcatetge tecageeeca cagegeeeca
                                                                  6480
acctggggca ccatccccaa actgccccca ccaggacgct cccctttggc tcagaggcca
                                                                  6540
ctcaggcgcc aggcagcaat aaggactgac tccttggacg ttcagggtct gggcagccgg
                                                                  6600
gaagacctgc tggcagaggt gagtgggccc tccccgcccc tggcccgggc ctactctttc
                                                                  6660
tggggccagt caagtaccca ggcacagcag cactecegca gccacagcaa gatetecaag
                                                                  6720
cacatgaccc cgccagcccc ttgcccaggc ccagaaccca actgggggca agggcctcc
                                                                  6780
agagaccaga agcagcttag agttggacac ggagctgagc tggatttcag gagacctcct
                                                                  6840
gccccctggc ggccaggagg agcccccatc cccacgggac ctgaagaagt gctacagcgt
                                                                  6900
ggaggcccag agctgccagc gccggcccac gtcctggctg gatgagcaga ggagacactc
                                                                  6960
tatcgccgtc agctgcctgg acagcggctc ccaaccccac ctgggcacag acccctctaa
                                                                  7020
ccttgggggc cagcctcttg gggggcctga gagccggcc aagaaaaaac tcagcccgcc
                                                                  7080
tagtatcacc atagaccccc ccgagagcca aggtcctcgg accccgccca gccctggtat
                                                                  7140
ctgcctccgg aggagggctc cgtccagcga ctccaaggat cccttggcct ctggccccc
                                                                  7200
tgacagcatg gctgcctcgc cctccccaaa gaaagatgtg ctgagtctct ccggtttatc
                                                                  7260
ctctgaccca gcagacctgg acccctgagt cctgccccac tttcccactc acctttctcc
                                                                  7320
actgggtgcc aagtcctagc tecteeteet gggctatatt cetgacaaaa gttecatata
                                                                  7380
gacaccaagg aggeggagge geteeteeet geeteagtgg etetgggtae etgeaageag
                                                                  7440
aacttccaaa gagagttaaa agcagcagcc coggcaactc tggctccagg cagaaggaga
                                                                  7500
ggcccggtgc agctgaggtt cccgacacca gaagctgttg ggagaaagca atacgtttgt
                                                                  7560
gcagaatctc tatgtatatt ctattttatt aaattaattg aatctagtat atgcgggatg
                                                                  7620
tacgacattt tgtgactgaa gagacttgtt tccttctact tttatgtgtc tcagaatatt
                                                                  7680
tttgaggcga aggcgtctgt ctcttggcta ttttaaccta aaataacagt ctagttatat
                                                                  7740
tccctcttct tgcaaagcac aagctgggac cgcgagcaca ttgcagcccc aacggtggcc
                                                                  7800
catcttcagc ggagagcgag aaccattttg gaaactgtaa tgtaacttat tttttccttt
                                                                  7860
aacctcgtca tcattttctg tagggaaaaa aaaaaggaaa aggaaaaatg agattttaca
                                                                  7920
7980
tataaaataa agtaattttc ct
                                                                  8002
```

<210> 260

<211> 3697

<212> DNA

<213> Homo sapiens

<400> 260

tttcgtgcag gatgctgcgc gccgccctgt ccctgctcgc gctgcccctg gcggggggg 60 ccgaagagcc cacccagaag ccagagtccc cgggcgagcc tcccccaggc ttagagctct 120 teegetggea gtggeaegag gtggaggege cetacetggt ggeeetgtgg ateetggtgg 180 ccagtctggc caaaatcgtg tttcacctgt ctcggaaagt aacatctctg gtccctgaga 240 gctgcctgct gattttgctg ggcctggtgc tagggggaat tgttttggct gtggccaaga 300 aagetgagta ceagetggag eeaggeacet tetteetett eetgetgeet eetattgtgt 360 tggactcagg ctatttcatg cctagcaggc tgttctttga caacttgggt gccatcctca 420 cctatgccgt ggtaggcaca ctctggaatg ccttcacaac aggcgctgcc ctctggggct 480 tgcagcaggc tggacttgta gcccctaggg tgcaggctgg cttactggac ttcctgctgt 540 ttgggagcet cateteggeg gtggaeceeg tggeegtget atgetgtett tgaggaggtg 600 cacgtcaatg agactgtgtt tatcatcgtc tttggcgagt ccctgctcaa cgatgctgtc 660 caccgtggtg ctgtacaagg tctgcaactc ctttgtggag atgggctctg ccaatgtgca 720 ggccactgac tacctgaagg gagtcgcctc cctgtttgtg gtcagtctgg gcggggcagc 780 cgtgggctta gtctttgcct tcctcctggc cctgaccaca cgcttcacca agcgggtccg 840 catcatcgag ccgctgctgg tettectect cgcctacgca gcctacctca ctgctgaaat 900 ggcctcgctc tccgccattc ttgcggtgac catgtgtggc ctgggctgta agaagtacgt 960 ggaggccaac atctcccata agtcacgcac aactqtcaaa tatacaatqa aqactctaqc 1020 cagetgtget gagaccgtga tetteatget gettggeate teaaccgtgg actettetaa 1080 gtgggcctgg gattctgggc tggtgctggg caccctcatc ttcatcctgt tcttccgagc 1140

```
ceteggegta gteetgeaga eetgggtget gaateagtte eggetagtee etetggaeaa
                                                                    1200
gattgaccaa gtggtgatgt cctatggggg cctgcggggg gctgtggcct ttgctctcgt
                                                                    1260
catectactg gataggacca aggteeetge caaggactae tttgtageea ceactattgt
                                                                    1320
agtggtette tteacagtea tegtgeaggg cttgaceate aagecaetgg teaaatgget
                                                                    1380
gaaggtgaag aggagtgagc atcacaaacc caccetgaac caggagetge atgaacacac
                                                                    1440
ttttgaccac attctggctg cagtggagga cgttgtgggg caccatggct accactactg
                                                                    1500
gagggacagg tgggagcagt ttgacaagaa atacctgagt cagctgctga tgcgacgatc
                                                                    1560
agectacege atcegggace agatetggga tgtgtactac aggettaaca teegggatge
                                                                    1620
catcagettt gtggaccagg gaggecacgt cttgtettee acaggtetea ctetgeette
                                                                    1680
tatgcccagc cgcaattctg tggcagaaac ttctgtcacc aacctgctga gggagagtgg
                                                                    1740
cagtggagcg tgtctggatc tgcaggtgat tgacacagta cgcagcggcc gggatcgtga
                                                                    1800
ggatgctgtg atgcatcatc tgctctgcgg aggcctctac aaqccgcqcc qtaqqtacaa
                                                                    1860
agccagctgc agtcgccact tcatctcaga ggatgcgcag gagcggcagg acaaggaggt
                                                                    1920
cttccagcag aacatgaagc ggcggctgga gtcctttaag tccaccaagc acaacatctg
                                                                    1980
cttcaccaag agcaagccac gaccccgcaa gactggccgc aggaagaagg atggtgtgc
                                                                    2040
gaatgctgag gctacaaatg ggaaacatcg aggcctgggc tttcaggaca cagctgctgt
                                                                    2100
gatattaacc gtggagtctg aggaggagga ggaggagagc gacagttcag agacagagaa
                                                                    2160
ggaggacgat gaggggatca tctttgtggc tcgtgccacc agtgaggttc tccaagaggg
                                                                    2220
caaggtetea ggaageettg aggtgtgeee aageeeacga ateatteece cetececaac
                                                                    2280
ctgtgcagaa aaggagctcc cctggaagag tgggcagggg gacctggcag tgtacgtgtc
                                                                    2340
ctcggaaacc accaagattg tgcctgtgga catgcagacg ggttggaacc agagcatctc
                                                                    2400
atccctggag agcctagcgt cccctccctg taaccaggcc ccaattctga cctgcctgcc
                                                                    2460
tccccatcca cggggcactg aagagcccca ggtccctctc cacctacctt ctgatccacg
                                                                    2520
ctctagette geetteecac egageetgge caaggetgge egetetegea gtgagageag
                                                                    2580
egetgacete ecceageage aggagetgea geceeteatg ggecacaagg accacacea
                                                                    2640
teteagecea ggeacegeta ceteceaetg gtgeatecag tteaacagag geageegget
                                                                    2700
gtageteaag geetegggga ggageaggag gtggaateee tgtgggaagt geteeetggg
                                                                    2760
tgatgggtag agccctcgaa acttgacatg gggccagaag ggcctgggtt gaagtagtaa
                                                                    2820
ttgggcttcc ttggagctag tcagaggggt cacctaagct ggtcctcaca ggggcctttc
                                                                    2880
tcaccacctc cctgctccta acccctgcca ctttctgttt cattaaggcc tctactctgg
                                                                    2940
ctcaggaccc agtccaggcc ttctacgggc taggcccaga gacttgggtt gctggtcccc
                                                                    3000
cttccctagt gggttttccc ggggactcta taggcagctg ctcctgcccg caaagcaaga
                                                                    3060
gcatcattcc tattettcag tggatgccag cettecetge eccaactcce tecccagcae
                                                                    3120
tgggtcagtg gtgtcctggc agtgaggctc cgtgaggggg ctggccctta gaggaactgg
                                                                    3180
ggtgggaggt ggggcaggcc tcacccttgg gctttgcttg ccctgttggg tcagctaccc
                                                                    3240
attagtecat ttttttaggg cagtgggaac etetgeetee aetteetget ttageeett
                                                                    3300
ccctttgctg ccaggtattg gggtaatatt tcctcctttg atgaagacca aggccaagag
                                                                    3360
gctgggccag gctttcagtt tcaggcctgt tgcttaactg gggtcaccct gggatctgct
                                                                    3420
getetgggte taagtetaga eetttetgat eettgggtet gggttttttg aggagggga
                                                                    3480
caaagtggcc tttgggttgc catgtcacca cctgcaacat tccccaaaca gagaaggaac
                                                                    3540
ccagcatete agggecactg etecattget etgggggetg qqatqeetqq etaaqeaqqq
                                                                    3600
getgaeaggg tggeaggtga etttetaggg ateageacet geeetgtgtt ttgtaeettg
                                                                    3660
aacctaagat atattaaaca tctctcagat ggaaaaa
                                                                    3697
     <210> 261
     <211> 1188
```

```
<212> DNA
<213> Homo sapiens

<220>
<221> misc_feature
<222> (1)...(1188)
<223> n = a,t,c or g

<400> 261
ccccattgag acatcgttga gccgtagaaa acaacgaaag ggatgctgca ggcagctctc
```

60

tggtgtggaa	ttgggctata	tttggtaaca	ttaaggctgg	gcgtggaggt	aacgcctgaa	120
tcccagcatt	ttgggaggcc	aaggcgggca	gatcacttga	ggcccggagg	tcgaggccag	180
tctggccaac	atggtgaaac	cccatctcta	ctagaaatac	aaaaaattag	ctggatgtgg	240
	ctgtaatccc					300
gggaggtgga	ggttgcagtg	agccgagatc	gcgccgttgc	actctagcct	gggcgacaag	360
	catctcaaaa					420
aaaggagccc	ccaccccagc	aggagggaga	gcaggagcag	gctgggtggg	gcacctggtg	480
gcttcctcca	agttggctgt	acctcaggct	ggagggaggg	ggcgtgtccc	ttcagatgtg	540
catgtgggag	tgctaacttc	ggtaccactc	ttctgtcctg	cagtgagctg	aggaagaggt	600
acaacgtcac	agccatcccc	aagcttgtga	ttgtgaaaca	aaatggggag	gtcatcacca	660
acaaagggcg	gaagcagatc	cgggaacggg	ggttggcctg	cttccaggac	tgggtggagg	720
cggccgatat	cttccagaat	ttctccgttt	gaagtgggag	ggacctcaga	gggccaggac	780
aggtgctgct	tctccagcac	cgacgctggg	gcaaagagga	gcatgttggg	ttccttcctc	840
tgttggtgtg	atttcattgt	atttcagagc	agaagcacta	agctgtggtc	aaaaagcaac	900
tattgctcag	gaaataatac	actccatatt	ttgatcatgc	aggctgtttg	tattatagtt	960
atttttgtta	ttctttgcat	acctttatcc	acctgtgctt	aaggaaggat	cctcatatgt	1020
tcatactgag	ctgttggaaa	tctatgcaag	acatttattt	gtacaagtct	cttcaggtaa	1080
aataatatat	ttattgataa	cattttctgg	cgatctgttt	attttaatgg	tatgctttca	1140
caactatctt	aataaagttt	gcaagctgtg	tactttanaa	aaaaaaa		1188

<210> 262 <211> 7705 <212> DNA

<213> Homo sapiens

<400> 262

ttttttttt ttgtaagaaa tctgattatt caaatttatt accatcaaga attatgcaat 60 gatgctgtag tttttcttaa caaatagaaa acagactgtg tacaacagtg aactctacag 120 cactagcacc cacaaggtaa aaatgaatgt ttcatcatcc aacattacca accctggaat 180 gttgatcttg acttagccta gctaggtttg gggacgtcgg caccacgtcc ctcagctaaa 240 acagetatge accettecce geceecactt acetatetag atagegetge ecagaggaag 300 aggegetete cetgeceete ageaagetgg gataataagg actgattaga gtaceattga 360 tagaagtcca gtagtcttgc cacattggtt tatgagggca tcttggagtg gaaaagagcg 420 attategggg getttgaaaa eagetgeaaa eeagggagga aaateatetg geeeetgete 480 tgaggacaga catgtgctac caggcccact ggcctggacc tgaaaggcca gccacgcccc 540 cgcttggccc tgaggtgcat ggggtgtggc acacacccta acctgtgcta ttcaccttgg 600 ccacacagec agaceccaca geetacaaac accacaccat actgeaatge tggggaccaa 660 agecaggete tgtgggeeca ggteagecag cageteeete gggaaececa ggeaeaegga 720 gttgetteee etettgaggg tttgaageag aageeaaggg etgaetettt tttttttet 780 tgggtttttt gtttttttg tttttattt ttgtggtttt ttgtttttgt tttaaccttt 840 gcaaacacga tggtgatgag gaatgccttg ccaggctctc ccagacacat ctgtggttct 900 gggctgtgaa tgttaaacac acactgggat agacgaccag ggatgagtgt tccctatctt 960 ctccccgccc accactgtca atgtggccta aaaaaaggct ttaaagggaa aacaaaactt 1020 aaaaaaacat tgagtttccc tgcatttagc tgaaacagga tctcgtctga agggctggag 1080 gagcagcegg atcagcactg ceteceggee caeggeegag ceteegetea ggetggeage 1140 cccagetttg cacgaggaag gcaatgttct gtccttcagc agaagtcata caaaataagg 1200 atccaaagtg aactcaagaa aaaaaaaaac aaaacaaaat aaaccccaac ccctacagtg 1260 gcccattctg cagatacgga ttcgcgaaag gaaaaatcag agggaagagg ctaaaatccc 1320 teagtetace ceaettaatg tattaaaaag gaggetttge ceeaacecea ceecatgaga 1380 agaagcatga gaaatgcggg agcgcaacag agagcttgaa gcgggctcca ggtgggtctg 1440 gtggacagaa gggccacagt gcctgcctgc tgggccatcc acttgcccag ggatgttcta 1500 ggetetetga ttggtgtgge aacgtteetg aaacgetgtg atccccgtgg getgtgetet 1560 gccagtgaca gcatctgcgt aggaggctg gacgatggtc ggtatggctc agaggagctg 1620 ggtcccctcc ggagccccac ggcgggggtg gcggaggaga ggggagcggt agttacgttg 1680 catagtggtc aaagctgccg aggtactcca gggccgcacg gtagcacagc tqatactggt 1740 cetetgtetg caccatggca ggacgetgtg tacgcagggt ettcacggte tgaaacatgt 1800

cgaccacgcc	ctcatagcgc	atgcgctcca	ggacgatgct	cagagtgatg	aacaccccqq	1860
	gccagcactg					1920
	cacctgcccg					1980
	gtctgtgaac					2040
	gaactcacgc					2100
	ctggtagcga					2160
tgcccatctc	ccgaagettg	gtcagcatga	castastaat	gracing	toccatagea	2220
	gtcctcggtg					2280
actatatata	acceteggeg	angetegeea	tastataata	agecacy	aggeettet	
	accatccagg					2340
	acacacagg					2400
	gggcaggttg					2460
	ctcgagctcc					2520
	ggcatacagg					2580
	ctcatggatg					2640
	gcaggtcacg					2700
ccaacatggc	atcaatcacg	atgaagcagc	cggtgcggcc	cacgcccgcg	ctgcagtgca	2760
	ccctgcgtct					2820
tgggagttgg	gtactcagga	actccatggt	ctggccaggc	catgaactga	aactgacgca	2880
gctcacgctt	ctcactggag	ccactcttgt	ggagtgcgaa	ggtgcgcaca	gtgtatgtgg	2940
	tgtgtccaac					3000-
ctggccagta	ctgatcacat	tttacccggg	acttctcctc	cagccgtgtc	atcatgacca	3060
	gcgctgttcc					3120
	ggcgatgtag					3180
tgtagtcact	cccggggacg	ccatcgatag	aggtaaggat	gactcgagag	taatcataaa	3240
cgatgacatt	cgcatagcgg	ttettagget	tottcacctc	caggtttgaa	ttctcccacq	3300
tgaactgctg	tccagggtcg	atggactcat	actcctggga	gaacttgagg	ccatcattag	3360
ctttgaggcg	ctcgatgttg	tecaccagat	caataataaa	gatagataga	taateteasa	3420
tacctggggt	ctggtagttg	agecteegea	tctccacagg	atcagaggag	tadaccadca	3480
aggagteett	cagtccgatc	gactgctcat	ccttagagg	caaaaataa	atacttttca	3540
	gaggatggcg					3600
	cagcatctcc					3660
	gtaggggctg					3720
	gcactggtag					3780
	gtcccccaag					3840
	acgttctgcc					3900
	aagctcgtcc					3960
	cacacggtca					4020
	atggggcatg					4080
	gtgaggcagg					4140
	gctgccacgg					4200
	cttccgcatc					4260
	cacagctgac					4320
	agccgccacc					4380
gggactggat	gctggggctg	agtgggccag	agcctttgct	ggtccatgcg	cggaccttga	4440
	ggtgtctggc					4500
tctgcagctc	ctgttggctg	ttgatgtctc	ggaacaccac	ggtgtagctg	atgatgcgcc	4560
cgttcctctc	cgccagcact	ggcgggtccc	aggccagttc	tgtggtagac	gtggtcagtc	4620
ctgtcacatg	caggttttgg	gggaagccgc	tgggcaggtc	ctcgggggtc	ctgatctcct	4680
tctcgaactc	ctcacccaag	ccagcccggt	tcttggcagc	aagccggaag	atgtaggtgg	4740
	caggccggtg					4800
	ctcgtcggcc					4860
	tgggtgccac					4920
	ggcctgggac					4980
	tggtggtata					5040
	tggtttcata					5100
	ggatgatggg					5160
	cgcggatctg					5220
	tggagttcag					5280
	tgcgcaccag					5340
	Jacaccay		22229996	-JJJJJ-CCAC	20002525	3340

```
gecegeacce acaceeggta etcegteeac ttetecagge ecaceaggte ceagetggag
                                                                     5400
tgetcacgge tgatgecate caccacatge egecegeggt cetegeegte cacegeeteg
                                                                    5460
                                                                    5520
taggccacgg agtactgggt gataacgccg ttgcggctgt cggcaggcgg cgggacccaa
cttaccegga cegtggtgga geccatgete acacacatea cettetgggg aggggeggag
                                                                     5580
ggggtggact gggctgtgcg ggcctcaatg gtgggggtga agacgcccac ccccatatcc
                                                                     5640
gagcgtgcag ccagctggaa gcggtagagt gtgtcaggct tcaggtcctc tagtgtgtag
                                                                     5700
gaggaggttg ggtcgaaggt gaccttgtgc tgttggtctt cgtcctctgc cgcccagtac
                                                                     5760
accagttcat acatgatgat ccgctcctga gggggcagca gccacgagag ctggatcctg
                                                                     5820
gtgtccgact ccacctcggc ctggaagtcc gcgggctggg caggcactcc ctgctgcgtc
                                                                     5880
ttgacctgga tggtggggct gggagggcca tcgcccacgg cggtgaaggc aagcacgcgc
                                                                    5940
aggetgtagg tgatgecagg cageaggetg cecaeggteg tgaggageee egegteggtg
                                                                     6000
ttgtgcttgt gccaggcgtt cggggggcgg cgggagtccg gagtatagta gacgcggtat
                                                                     6060
ccccgcacca ggccgttggg ctcctcggga ggctcccact gcaccagcat ggtgctggcg
                                                                     6120
cteagcatge gtgcctgcac geggegeggt gggctggagg gegeetgtte teeegtgegt
                                                                     6180
geoegeactg cetegetggg eggeeetege eegatgetgt teacegeeag eaegeggaag
                                                                     6240
gcatattccg agaaagggct gaggccgcca atgctgtagc gggtggtggc caccccatcc
                                                                     6300
acctcctgaa aggggccctc cgtgcccgct gcgcggtact ggatgccata gtaggttaca
                                                                     6360
ggctccgagt tcccagagtc ccaggtgagg gtgacactgg tggcagttgt ctctgtcacc
                                                                     6420
acaagatcaa teggaggett tggaagaget tteaetgtga eetgggetgt ggeetegate
                                                                     6480
atgcccagcg aggagatggc cacacaggtg tagttggcag agcgtacgac attgctgagc
                                                                     6540
tccaggacgt tgcggccaac tggcatctca tcctccttgg tgagctcctc ggcccccatc
                                                                     6600
atccacttca cgtagggcat gggtgcaccc actgccacgc atgtcaggtt cacgctgccg
                                                                     6660
cctggcatca cctcctggct gctgggaggg atggagaaac gaggagccac gcggcgcact
                                                                     6720
cgcacataca ggttcgcagg ggctgagtaa cgtgtgcctg ccgagttggt cgccacacac
                                                                     6780
tegtaettge ettggtegga tteeteaetg etetetatet geaaggeaee tgaaegeage
                                                                     6840
tgettgatge ggeegttget egtggeaggg tetacaggaa ggaagteett gaaccaagaa
                                                                     6900
atctcagggt ctggatttcc gcctgcggca catagcatgg tggctgtgcg tgccttctcc
                                                                     6960
accaccttca gctgaggccc catgtcgatg gaagggaacc cagggggcag ctgttcctct
                                                                     7020
togagcactg agagettgge actagtgttg ateteaceca ggetgttagt agetgtacae
                                                                     7080
tcatagatgg cttcatctcg ctgcacccgc aatggctgga tccgaagcac tgaccctgcc
                                                                     7140
ccatcatcaa actcaatgac ctcgaagcgc tgggagctga ctttcttccc cttcttcatc
                                                                     7200
catgtgatgc gcggcttggg ttctcctgta gcttggcaca cgaaggaggc tacccctcct
                                                                     7260
gacageceag tetggteete agggaettta atgaagacag gtttgetgte accatgggeg
                                                                     7320
cctgccacca aaccaagcat caccagtgca ggcacaaggg gcaccategt cctccctggg
                                                                     7380
getggeteag gggecateca gggetetage tecacageca gecacagece aggacaatea
                                                                     7440
accgagtett tgettettea eeceggteac tettgetgga taeteageae caagggeegg
                                                                     7500
gcaccagggc ctccactcct teetteaata etgecegtet caggeagtgg catetteage
                                                                     7560
aatttaatca ctgacatgca gagaccttcc ctcctgcacc actgtccaat cagtcatcaa
                                                                     7620
tectetecte etteegetet gteteeeetg tgeteagggt geteeggege eteeaggett
                                                                     7680
tgctctctat tccccgtcca cgaaa
                                                                     7705
```

```
<210> 263
```

<211> 602

<212> DNA

<213> Homo sapiens

<400> 263

```
gaaaaaattg catgcccgcg taaacttggg ccccccaag ggtcctttaa agcggccccc
                                                                      60
cctttttttt ttttttccat catcatcatc atcatcatct ccaggtttat ttccagctcc
                                                                      120
                                                                     180
ceegcaacce eteeggacet ggageegeet eegeeegege tgtgeaegeg etgegegega
ceteaggget geacacgaca geagegeget ceggteeagt ceatgecege geactggeag
                                                                      240
tgacatgigg teteggegeg cacateceae gagecaeagg eggagecaea agtgeageeg
                                                                      300
gtgacggcga agcctcgggg gcaagtagcc aggtcccccc tggaggtgac gctctggcac
                                                                      360
                                                                      420
tccaggccaa tgctgcttat tgccctaaat attagggagc cggcgacctc ctggatcctc
teattgatgg ettetteeat ggageaeagg gtettgetag acaceaacag eeceaggaea
                                                                      480
gggaggagga ggagacagag agettteate etgeaggege eteteggtgg geteagetaa
                                                                      540
```

ccaaatccgg gg	cacacgaatt	cctgcaccgc	agctctttct	ttgaggcctc	cggacgcgtg	600 602
<210> <211> <212> <213>	810	ns		, .		
<400> gattttgttc	264 tcagagctac	agtetgggag	ccattaataq	qaqqtqtacq	qatatttttc	60
	tattttgttg					120
and the second s	catctgcttc					180
	tcctaaagag					240
	tacatgaata ttatgtcaaa					300 360
	attacagatg					420
	tccttgggaa					480
	gttttctgct					540
	cccagcactt					600
	ggccaacatg					660
geacggegge	aggcgcctat ggcagaagtt	gcaatgagcc	accugggagg	cattgcactc	cagcctggtg	720 780
	actccgtctt			ousegouses	cascossses	810
<210>	265					
<212>	1870 DNA Homo sapier	າຣ				
<212>	DNA Homo sapier	ıs				
<212> <213> <400> caggcagcat	DNA Homo sapier 265 ggacctcagt	cttctctggg				60
<212> <213> <400> caggcagcat gccagtatgg	DNA Homo sapier 265 ggacctcagt cgattatgga	cttctctggg tacccatacc	agcagtatca	tgactacagc	gatgatgggt	120
<212> <213> <400> caggcagcat gccagtatgg gggtgaattt	DNA Homo sapier 265 ggacctcagt cgattatgga gaaccggcaa	cttctctggg tacccatacc ggcttcagct	agcagtatca accagtgtcc	tgactacagc ccaggggcag	gatgatgggt gtgatagtgg	120 180
<212> <213> <400> caggcagcat gccagtatgg gggtgaattt ccgtgaggag	DNA Homo sapier 265 ggacctcagt cgattatgga gaaccggcaa catcttcagc	cttctctggg tacccatacc ggcttcagct aagaaggaag	agcagtatca accagtgtcc gttctgacag	tgactacagc ccaggggcag acaatggáac	gatgatgggt gtgatagtgg tacgcctgca	120 180 240
<212> <213> <400> caggcagcat gccagtatgg gggtgaattt ccgtgaggag tgcccacacc	DNA Homo sapier 265 ggacctcagt cgattatgga gaaccggcaa	cttctctggg tacccatacc ggcttcagct aagaaggaag ggggaaccca	agcagtatca accagtgtcc gttctgacag cggagtgctg	tgactacagc ccaggggcag acaatggaac gtgggaggag	gatgatgggt gtgatagtgg tacgcctgca atcaacaggg	120 180
<212> <213> <400> caggcagcat gccagtatgg gggtgaattt ccgtgaggag tgcccacacc ctggcatgga gctacttcga	DNA Homo sapier 265 ggacctcagt cgattatgga gaaccggcaa catcttcagc acagagcctc atggtaccag gtcagtgctg	cttctctggg tacccatacc ggcttcagct aagaaggaag ggggaaccca acgtgctcca gatcgggagt	agcagtatca accagtgtcc gttctgacag cggagtgctg acaatgggct ggcagtttta	tgactacage ccaggggcag acaatggaac gtgggaggag ggtggcagga ctgttgtcgc	gatgatgggt gtgatagtgg tacgcctgca atcaacaggg ttccagagcc tacagcaaga	120 180 240 · 300
<212> <213> <400> caggcagcat gccagtatgg gggtgaattt ccgtgaggag tgcccacacc ctggcatgga gctacttcga ggtgcccata	DNA Homo sapier 265 ggacctcagt cgattatgga gaaccggcaa catcttcagc acagagcctc atggtaccag gtcagtgctg ttcctgctgg	cttctctggg tacccatacc ggcttcagct aagaaggaag ggggaaccca acgtgctcca gatcgggagt ctaacaacag	agcagtatca accagtgtcc gttctgacag cggagtgctg acaatgggct ggcagtttta aatatccagg	tgactacagc ccaggggcag acaatggaac gtgggaggag ggtggcagga ctgttgtcgc tcactatggt	gatgatgggt gtgatagtgg tacgcctgca atcaacaggg ttccagagcc tacagcaaga gaggaaatgg	120 180 240 300 360 420 480
<212> <213> <400> caggcagcat gccagtatgg gggtgaattt ccgtgaggag tgcccacacc ctggcatgga gctacttcga ggtgcccata acatgatttc	DNA Homo sapier 265 ggacctcagt cgattatgga gaaccggcaa catcttcagc acagagcctc atggtaccag gtcagtgctg ttcctgctgg ctacaattat	cttctctggg tacccatacc ggcttcagct aagaaggaag ggggaaccca acgtgctcca gatcgggagt ctaacaacag gattactata	agcagtatca accagtgtcc gttctgacag cggagtgctg acaatgggct ggcagtttta aatatccagg tccgaggagc	tgactacage ccaggggcag acaatggaac gtgggaggag ggtggcagga ctgttgtcgc tcactatggt aacaacccac	gatgatgggt gtgatagtgg tacgcctgca atcaacaggg ttccagagcc tacagcaaga gaggaaatgg tttctctgca	120 180 240 300 360 420 480 540
<212> <213> <400> caggcagcat gccagtatgg gggtgaattt ccgtgaggag tgcccacacc ctggcatgga gctacttcga ggtgcccata acatgatttc gtggaaaggg	DNA Homo sapier 265 ggacctcagt cgattatgga gaaccggcaa catcttcagc acagagcctc atggtaccag gtcagtgctg ttcctgctgg ctacaattat atcgcccagt	cttctctggg tacccatacc ggcttcagct aagaaggaag ggggaaccca acgtgctcca gatcgggagt ctaacaacag gattactata ggaagttcat	agcagtatca accagtgtcc gttctgacag cggagtgctg acaatgggct ggcagtttta aatatccagg tccgaggagc aatgtgccgg	tgactacage ccaggggcag acaatggaac gtgggaggag ggtggcagga ctgttgtcgc tcactatggt aacaacccac atgactgaat	gatgatgggt gtgatagtgg tacgcctgca atcaacaggg ttccagagcc tacagcaaga gaggaaatgg tttctctgca acgactgtga	120 180 240 300 360 420 480 540
<212> <213> <400> caggcagcat gccagtatgg gggtgaattt ccgtgaggag tgcccacacc ctggcatgga gctacttcga ggtgcccata acatgatttc gtggaaaggg atttgcaaat	DNA Homo sapier 265 ggacctcagt cgattatgga gaaccggcaa catcttcagc acagagcctc atggtaccag gtcagtgctg ttcctgctgg ctacaattat atcgcccagt gtttagatt	cttctctggg tacccatacc ggcttcagct aagaaggaag ggggaaccca acgtgctcca gatcgggagt ctaacaacag gattactata ggaagttcat gccacatacc	agcagtatca accagtgtcc gttctgacag cggagtgctg acaatgggct ggcagtttta aatatccagg tccgaggagc aatgtgccgg aaatctgggt	tgactacage ccaggggcag acaatggaac gtgggaggag ggtggcagga ctgttgtcgc tcactatggt aacaacccac atgactgaat gaaaggaaag	gatgatgggt gtgatagtgg tacgcctgca atcaacaggg ttccagagcc tacagcaaga gaggaaatgg tttctctgca acgactgtga gggccagggg	120 180 240 300 360 420 480 540
<212> <213> <400> caggcagcat gccagtatgg gggtgaattt ccgtgaggag tgcccacacc ctggcatgga gctacttcga ggtgcccata acatgatttc gtggaaaggg atttgcaaat acaggagggt	DNA Homo sapier 265 ggacctcagt cgattatgga gaaccggcaa catcttcagc acagagcctc atggtaccag gtcagtgctg ttcctgctgg ctacaattat atcgcccagt	cttctctggg tacccatacc ggcttcagct aagaaggaag ggggaaccca acgtgctcca gatcgggagt ctaacaacag gattactata ggaagttcat gccacatacc gttaacatca	agcagtatca accagtgtcc gttctgacag cggagtgctg acaatgggct ggcagtttta aatatccagg tccgaggagc aatgtgccgg aaatctgggt gttggatctc	tgactacage ccaggggcag acaatggaac gtgggaggag ggtggcagga ctgttgtcgc tcactatggt aacaacccac atgactgaat gaaaggaaag	gatgatgggt gtgatagtgg tacgcctgca atcaacaggg ttccagagcc tacagcaaga gaggaaatgg tttctctgca acgactgtga gggccagggg ttctgctgct	120 180 240 300 360 420 480 540 600
<212> <213> <400> caggcagcat gccagtatgg gggtgaattt ccgtgaggag tgcccacacc ctggcatgga gctacttcga ggtgcccata acatgatttc gtggaaaggg atttgcaaat acaggagggt ctctttcctt tatcacactt	DNA Homo sapier 265 ggacctcagt cgattatgga gaaccggcaa catcttcagc acagagcctc atggtaccag gtcagtgctg ttcctgctgg ctacaattat atcgcccagt gtttagattt gtccacatat ctccctgagc ctaataaaat	cttctctggg tacccatacc ggcttcagct aagaaggaag ggggaaccca acgtgctcca gatcgggagt ctaacaacag gattactata ggaagttcat gccacatacc gttaacatca tggtaactgc	agcagtatca accagtgtcc gttctgacag cggagtgctg acaatgggct ggcagtttta aatatccagg tccgaggagc aatgtgccgg aaatctgggt gttggatctc aatgccaact accatgtttc	tgactacage ccaggggcag acaatggaac gtgggaggag ggtggcagga ctgttgtcgc tcactatggt aacaacccac atgactgaat gaaaggaaag	gatgatgggt gtgatagtgg tacgcctgca atcaacaggg ttccagagcc tacagcaaga gaggaaatgg tttctctgca acgactgtga gggccagggg ttctgctgct ttctgactag catgtttcat	120 180 240 300 360 420 480 540 600 660 720 780 840
<212> <213> <400> caggcagcat gccagtatgg gggtgaattt ccgtgaggag tgcccacacc ctggcatgga gctacttcga ggtgcccata acatgatttc gtggaaaggg atttgcaaat acaggagggt ctctttcctt tatcacactt	DNA Homo sapier 265 ggacctcagt cgattatgga gaaccggcaa catcttcagc acagagcctc atggtaccag gtcagtgctg ttcctgctgg ctacaattat atcgcccagt gtttagattt gtccacatat ctccctgagc ctaataaaat ttatatgact	cttctctggg tacccatacc ggcttcagct aagaaggaag ggggaaccca acgtgctcca gatcgggagt ctaacaacag gattactata ggaagttcat gccacatacc gttaacatca tggtaactgc ccacaattaa gatgatggct	agcagtatca accagtgtcc gttctgacag cggagtgctg acaatgggct ggcagtttta aatatccagg tccgaggagc aatgtgccgg aaatctgggt gttggatctc accatgtttc tccttgcgca	tgactacage ccaggggcag acaatggaac gtgggaggag ggtggcagga ctgttgtcgc tcactatggt aacaacccac atgactgaat gaaaggaaag	gatgatgggt gtgatagtgg tacgcctgca atcaacaggg ttccagagcc tacagcaaga gaggaaatgg tttctctgca acgactgtga gggccagggg ttctgctgct ttctgactag catgttcat agtgcgcatg	120 180 240 300 360 420 480 540 600 660 720 780 840 900
<212> <213> <213> <400> caggcagcat gccagtatgg gggtgaattt ccgtgaggag tgcccacacc ctggcatgga gctacttcga ggtgcccata acatgatttc gtggaaaggg atttgcaaat acaggagggt ctcttcctt tatcacactt agcaactgct cttacagccg	DNA Homo sapier 265 ggacctcagt cgattatgga gaaccggcaa catcttcagc acagagcctc atggtaccag gtcagtgctg ttcctgctgg ctacaattat atcgcccagt gtttagattt gtccacatat ctccctgagc ctaataaaat ttatatgact ggcttctgga	cttctctggg tacccatacc ggcttcagct aagaaggaag ggggaaccca acgtgctcca gatcgggagt ctaacaacag gattactata ggaagttcat gccacatacc gttaacatca tggtaactgc ccacaattaa gatgatggct gcaccagctg	agcagtatca accagtgtcc gttctgacag cggagtgctg acaatgggct ggcagtttta aatatccagg tccgaggagc aatgtgccgg aaatctgggt gttggatctc accatgtttc tccttgcgca cagcctggct	tgactacage ccaggggcag acaatggaac gtgggaggag ggtggcagga ctgttgtcgc tcactatggt aacaacccac atgactgaat gaaaggaaag	gatgatgggt gtgatagtgg tacgcctgca atcaacaggg ttccagagcc tacagcaaga gaggaaatgg tttctctgca acgactgtga gggccagggg ttctgctgct ttctgactag catgttcat agtgcgcatg actgcagaat	120 180 240 300 360 420 480 540 600 720 780 840 900
<212> <213> <213> <400> caggcagcat gccagtatgg gggtgaattt ccgtgaggag tgcccacacc ctggcatgga gctacttcga ggtgcccata acatgatttc gtggaaaggg atttgcaaat acaggagggt ctcttcctt tatcacactt agcaactgct gtacaggg	DNA Homo sapier 265 ggacctcagt cgattatgga gaaccggcaa catcttcagc acagagcctc atggtaccag gtcagtgctg ttcctgctgg ctacaattat atcgcccagt gtttagattt gtccacatat ctccctgagc ctaataaaat ttatatgact ggcttctgga ttcagcatag	cttctctggg tacccatacc ggcttcagct aagaaggaag ggggaaccca acgtgctcca gatcgggagt ctaacaacag gattactata ggaagttcat gccacatacc gttaacatca tggtaactgc ccacaattaa gatgatggct gcaccagctg tggaggggag	agcagtatca accagtgtcc gttctgacag cggagtgctg acaatgggct ggcagtttta aatatccagg tccgaggagc aatgtgccgg aaatctgggt gttggatctc actgccaact accatgtttc tccttgcgca cagcctggct aggcagaact	tgactacage ccaggggcag acaatggaac gtgggaggag ggtggcagga ctgttgtcgc tcactatggt aacaacccac atgactgaat gaaaggaaag	gatgatgggt gtgatagtgg tacgcctgca atcaacaggg ttccagagcc tacagcaaga gaggaaatgg tttctctgca acgactgtga gggccagggg ttctgctgct ttctgactag catgtttcat agtgcgcatg actgcagaat tgcagtgaag	120 180 240 300 360 420 480 540 600 720 780 840 900 960
<212> <213> <213> <400> caggcagcat gccagtatgg gggtgaattt ccgtgaggag tgcccacacc ctggcatgga gctacttcga ggtgcccata acatgatttc gtggaaaggg atttgcaaat acaggagggt ctcttcctt tatcacactt agcaactgct gtactgcaag gttctctaca	DNA Homo sapier 265 ggacctcagt cgattatgga gaaccggcaa catcttcagc acagagcctc atggtaccag gtcagtgctg ttcctgctgg ctacaattat atcgcccagt gtttagattt gtccacatat ctccctgagc ctaataaaat ttatatgact ggcttctgga ttcagcatag gctacgcatag	cttctctggg tacccatacc ggcttcagct aagaaggaag ggggaaccca acgtgctcca gatcgggagt ctaacaacag gattactata ggaagttcat gccacatacc gttaacatca tggtaactgc ccacaattaa gatgatggct gcaccagctg tggaggggag tttgaatgat	agcagtatca accagtgtcc gttctgacag cggagtgctg acaatgggct ggcagtttta aatatccagg tccgaggagc aatgtgccgg aaatctgggt gttggatctc actgccaact accatgtttc tccttgcgca cagcctggct aggcagaact acgtaggttc	tgactacage ccaggggcag acaatggaac gtgggaggag ggtggcagga ctgttgtcgc tcactatggt aacaacccac atgactgaat gaaaggaaag	gatgatgggt gtgatagtgg tacgcctgca atcaacaggg ttccagagcc tacagcaaga gaggaaatgg tttctctgca acgactgtga gggccagggg ttctgctgct ttctgactag catgtttcat agtgcgcatg actgcagaat tgcagtgaag gcaggcttc	120 180 240 300 360 420 480 540 600 720 780 840 900
<212> <213> <213> <400> caggcagcat gccagtatgg gggtgaattt ccgtgaggag tgcccacacc ctggcatgga gctacttcga ggtgcccata acatgatttc gtggaaaggg atttgcaaat acaggagggt ctcttcctt tatcacactt agcaactgct cttacagccg gaactgcaag gttctctaca tgccctgagg	DNA Homo sapier 265 ggacctcagt cgattatgga gaaccggcaa catcttcagc acagagcctc atggtaccag gtcagtgctg ttcctgctgg ctacaattat atcgcccagt gtttagattt gtccacatat ctccctgagc ctaataaaat ttatatgact ggcttctgga ttcagcatag	cttctctggg tacccatacc ggcttcagct aagaaggaag ggggaaccca acgtgctcca gatcgggagt ctaacaacag gattactata ggaagttcat gccacatacc gttaacatca tggtaactgc ccacaattaa gatgatggct gcaccagctg tggaggggag tttgaatgat cactcccctg	agcagtatca accagtgtcc gttctgacag cggagtgctg acaatgggct ggcagtttta aatatccagg tccgaggagc aatgtgccgg aaatctgggt gttggatctc actgccaact accatgttc tccttgcgca cagcctggct aggcagaact acgtaggttc ctccacatga	tgactacage ccaggggcag acaatggaac gtgggaggag ggtggcagga ctgttgtcgc tcactatggt aacaacccac atgactgaat gaaaggaaag	gatgatgggt gtgatagtgg tacgcctgca atcaacaggg ttccagagcc tacagcaaga gaggaaatgg tttctctgca acgactgtga gggccagggg ttctgctgct ttctgactag catgttcat agtgcgcatg actgcagaat tgcagtgaag gcaggctttc cttagcaatc	120 180 240 300 360 420 480 540 600 720 780 840 900 960 1020 1140 1200
<212> <213> <213> <400> caggcagcat gccagtatgg gggtgaattt ccgtgaggag tgcccacacc ctggcatgga gctacttcga ggtgcccata acatgatttc gtggaaaggg atttgcaaat acaggagggt ctctttcctt tatcacactt agcaactgct cttacagccg gaactgcaag gttctctaca tgccctgagg caagtgcaga agggtttgga	DNA Homo sapier 265 ggacctcagt cgattatgga gaaccggcaa catcttcagc acagagcctc atggtaccag gtcagtgctg ttcctgctgg ctacaattat atcgcccagt gtttagattt gtccacatat ctccctgagc ctaataaaat ttatatgact ggcttctgga ttcagcatag gctactgga ttcagcatag gctactgga ttcagcatag gctactgga ttcagcatag gctactgga ttcagcatag gctactgga ttcagcatag gctactgctgga ttcagcatag	cttctctggg tacccatacc ggcttcagct aagaaggaag ggggaaccca acgtgctcca gatcgggagt ctaacaacag gattactata ggaagttcat gccacatacc gttaacatca tggtaactgc ccacaattaa gatgatggct gcaccagctg tggaggggag tttgaatgat cactcccctg ccaggagtga aaaacagggt	agcagtatca accagtgtcc gttctgacag cggagtgctg acaatgggct ggcagtttta aatatccagg tccgaggagc aatgtgccgg aaatctgggt gttggatctc accatgtttc tccttgcgca cagcctggct aggcagaact acgtaggttc ctccacatga ggagactggg tggaaggatt	tgactacage ccaggggcag acaatggaac gtgggaggag ggtggcagga ctgttgtcgc tcactatggt aacaacccac atgactgaat gaaaggaaag	gatgatgggt gtgatagtgg tacgcctgca atcaacaggg ttccagagcc tacagcaaga gaggaaatgg tttctctgca acgactgtga gggccagggg ttctgctgct ttctgactag catgtttcat agtgcgcatg actgcagaat tgcagtgaag gcaggctttc cttagcaatc gggaaatgga gaagacaacc	120 180 240 300 360 420 480 540 600 720 780 840 900 960 1020 1140 1200 1260
<212> <213> <400> caggcagcat gccagtatgg gggtgaattt ccgtgaggag tgcccacacc ctggcatgga gctacttcga ggtgcccata acatgatttc gtggaaaggg atttgcaaat acaggagggt ctctttcctt tatcacactt agcaactgct gtacacacg gaactgcaag gttctctaca tgccctgagg caagtgcaga agggtttgga gttagcatac	DNA Homo sapier 265 ggacctcagt cgattatgga gaaccggcaa catcttcagc acagagcctc atggtaccag gtcagtgctg ttcctgctgg ctacaattat atcgcccagt gtttagattt gtccacatat ctccctgagc ctaataaaat ttatatgact ggcttctgga ttcagcatag gctacqcatag gctactctcgg ctacatac	cttctctggg tacccatacc ggcttcagct aagaaggaag ggggaaccca acgtgctcca gatcgggagt ctaacaacag gattactata ggaagttcat gccacatacc gttaacatca tggtaactgc ccacaattaa gatgatggct gcaccagctg tggaggggag tttgaatgat cactcccctg ccaggagtga aaaacagggt aaatgagtgc	agcagtatca accagtgtcc gttctgacag cggagtgctg acaatgggct ggcagtttta aatatccagg tccgaggagc aatgtgccgg aaatctgggt gttggatctc accatgtttc tccttgcgca cagcctggct aggcagaact acgtaggttc ctccacatga ggagactggg tggaaggatt aggggccagg	tgactacage ccaggggcag acaatggaac gtgggaggag ggtggcagga ctgttgtcgc tcactatggt aacaacccac atgactgaat gaaaggaaag	gatgatgggt gtgatagtgg tacgcctgca atcaacaggg ttccagagcc tacagcaaga gaggaaatgg tttctctgca acgactgtga gggccagggg ttctgctgct ttctgactag catgtttcat agtgcgcatg actgcagaat tgcagtgaag gcaggctttc cttagcaatc ggaaatgga gaagacaaac aggatcactc	120 180 240 300 360 420 480 540 600 720 780 840 900 960 1020 1140 1200

```
acttgtgggg atgagagtga ccaggttgaa ctggggaagtg gaaaaaggag tttgagtcac
                                                                    1440
tggcacctag aagcctgccc acgattccta ggaaggctgg cagacacct ggaaccctgg
                                                                    1500
ggagctactg gcaaactctc ctggattggg cctgattttt ttggtgggaa aggctgccct
                                                                    1560
ggggatcaac tttccttctg tgtgtggctc aggagttctt ctgcagagat ggcgctatct
                                                                    1620
ttcctcctcc tgtgatgtcc tgctcccaac catttgtact cttcattaca aaaqaaataa
                                                                    1680
aaatattaac gttcactatg ctgaaaaaaa aaaaaaaggg ggggccgttt taaaggatcc
                                                                    1740
aattttacgt ccccgggctt gcaaggtaat atttttttt tggggccccc aaaattaaat
                                                                    1800
ccccgggccg gggtttaaca ccggggggag gggaaaaacc cgggggttcc ccaattaaat
                                                                    1860
gggcgcggga
                                                                    1870
```

<210> 266 <211> 7526 <212> DNA <213> Homo sapiens

<400> 266

gggtcgacga tttcgtgccg ccgacatgac ggacaacatc ccgctgcagc cggtgcgcca gaagaagcgg atggacagca ggccccgcgc cgggtgctgc gagtggctga gatgctgcgg 120 tggaggggag gccaggcccc gcactgtctg gctggggcac cccgagaaga gagaccagag 180 gtatcetegg aatgteatea acaateagaa gtacaattte tteacettte tteetqqqqt 240 gctgttcaac cagttcaaat actttttcaa cctctatttc ttacttcttg cctgctctca 300 gtttgttccc gaaatgagac ttggtgcact ctatacctac tgggttcccc tgggcttcgt 360 gctggccgtc actgtcatcc gtgaggcggt ggaggagatc cgatgctacg tgcgggacaa 420 ggaagtcaac tcccaggtct acagccggct cacagcacga ggtactgttg tgggtgttgt 480 tetttacaet ggeagagaae teeggagtgt catgaatace teaaateece qaaqtaaqat 540 eggeetgtte gaettggaag tgaaetgeet caccaagate etetttggtg ceetgqtggt 600 ggtctcgctg gtcatggttg cccttcagca ctttgcaggc cgttggtacc tgcagatcat 660 ccgcttcctc ctcttgtttt ccaacatcat ccccattagt ttgcgcgtga acctggacat 720 gggcaagatc gtgtacagct gggtgattcg aagggactca aaaatccccg ggaccgtggt 780 tegetecage acgattectg ageagetggg caggattteg tacttactea cagacaagae 840 aggcactett acccagaacg agatgatttt caaacggctc catctcggaa cagtagccta 900 cggcctcgac tcaatggacg aagtacaaag ccacattttc agcatttaca cccagcaatc 960 ccaggaccca ccggctcaga agggcccaac gctcaccact aaggtccggc ggaccatgag 1020 cagccgcgtg cacgaagccg tgaaggccat cgcgctctgc cacaacgtga ctcccqtgta 1080 tgagtccaac ggtgtgactg atcaggctga ggccgagaag cagtacgaag actcctgccg 1140 cgtataccag gcatccagcc ccgatgaggt ggccctggta cagtggacgg aaagtgtggg 1200 cttaaccctg gtgggccgag accagtcttc catgcagctg aggacccctg gcgaccagat 1260 cetgaactte accatectae agatetteee ttteacetat gaaagcaaac gtatgggcat 1320 catcgtgcgg gatgaatcaa ctggagaaat tacgttttac atgaagggag cagatgtggt 1380 catggctggc attgtgcagt acaatgactg gttggaggaa gagtgtggca acatggcccg 1440 agaagggetg egggtgeteg tggtggeaaa gaaqtetett qeaqaqqaqe aqtateaqqa 1500 ctttgaagec cgctacgtcc aggccaaget gagtgtgcac gaccactccc tcaaagtggc 1560 cacggtgate gagageetgg agatggagat ggaactgetg tgeetgaegg gegtggagga 1620 ccagctgcag gcagatgtgc ggcccacgcc tggagaccct gaggaatgct ggcatcaagg 1680 tttggatgct gacaggggac aagctggaga cagctacgtg cacagcgaag aatgcacatc 1740 tggtgaccag aaaccaagac atccacgttt ttcggctggt gactaaccgc ggggaggctc 1800 acctegaget gaacgcette egeaggaage atgattgtge cetggteate tegggagaet 1860 ccctggaggt ttgcctcaag tactatgagt acgagttcat ggagctggcc tgccagtgcc 1920 eggeegtagt etgetgeega tgtgeeeeca eecagaagge eeagategtg egeetgette 1980 aggagcgcac gggcaagctc acctgtgcag taggggacgg aggcattgac gtcagcatga 2040 2100 ctgcagactt ctccatcact caatttaagc atcttggccg gttgcttatg gtgcatggcc 2160 ggaacagcta caagcggtca gccgccctca gccagttcgt gattcacagg agcctctgta 2220 teageaceat geaggetgte tttteeteeg tgttttactt tgeeteegte eetetetate 2280 aaggatteet cateattggg tactecacaa tttacaccat gttteetgtg ttttetetgg 2340 tectggacaa agatgteaaa teggaagttg ecatgetgta teetgagete tacaaggate 2400

ttctcaaggg	acggccgttg	tcctacaaga	cattcttaat	atgggttttg	attagcatct	2460
	caccatcatg					2520
	ctccttcacc					2580
tccagacctg	gcactggctc	atgacagtgg	cggagctgct	cagcctggcc	tgctacatcg	2640
cctccctaat	gttcttacac	gagttcatcg	atgtgtactt	categecace	ttgtcattct	2700
	ctccgtcatc					2760
tgcgaagacg	gttctctccc	cccagctact	caaagctcac	atcataggcc	gtgcgttcgc	2820
	cctggtcttg					2880
	tgtggatttt					2940
tctgcgccta	aacggagtcc	taacgctgca	tcaacgggag	ggagggtcct	gaaagagacc	3000
catctqqqcc	tgtctgaacc	cctcqttctt	catqtttaqq	tqaatatqaa	tatottaaag	3060
	agctgggaga					3120
	catgataaaa					3180
gtgtgtgtgt	gtgtgtgtgt	gtgtgtgtgt	gtgtttttaa	agagtcataa	tgtgatatat	3240
actctttatq	tetttettge	tcttacaaaq	aggtgtcaga	aaaatagaaa	actettaata	3300
	aggaaaagac					3360
	gctcagtatc					3420
tcctggggat	cgtaaccagt	aaatgagagg	gagagggaga	gagagtgtcc	taagtccaat	3480
	tgatctgatt					3540
	tttcagaggt					3600
cagtggctgt	tttgagaagg	acctcagaca	ttttcagcag	agttgtttta	gcaggaaacg	3660
tgccactgaa	tggcccctaa	atgtgtcgac	agtgtgataa	gagactcaac	taattcttta	3720
	cagatgtgac					3780
	cttccataga					3840
cacaaaggca	gaggcatctt	tcggaacaac	actggtggca	gctttcagaa	caaggaaccc	3900
ctggtgggag	gacgcccaag	ctacagcgtt	gggatctggg	atctqttcca	ctaccaacaa	3960
	gaacttgctg					4020
	cggcatgttt					4080
tgcagtcgcg	ggacgtggta	gagcaaggca	ttcttgggtt	ttcaagttgc	ttcttgcaga	4140
agccacatat	gcatgccata	agggttaagt	tggtggatct	ttaaqaqcca	agtgtggttg	4200
	tttgcgttta					4260
	gtgtgccttc					4320
actcctgctc	ttggagagct	ggagacacga	ggatcagata	gtcccttgcc	tttggagcac	4380
tcttgataag	cttttgtatt	ttatattatc	cttttaaaat	gttctagaat	gactttacgt	4440
	ggttaattgg					4500
	ttttctctat					4560
aaagatgtat	tgagtgaata	gttaaggata	ggatctttgt	ccaaaaattt	cagaaagatt	4620
gagcaaatct	gacgtattca	ttgagtgagt	ttctqtqttt	tcaaaqqtqq	aggagaaatt	4680
	gtttttaagc					4740
	_					
ttaagatagt	cccgtttaga	ctttgcagat	gctgaacctg	gctctgtaac	gctgggaagt	4800
cttaagatag	tcctgtttag	actttgcaaa	ccctgtacct	ggctttgctc	ggagattcgg	4860
gatgetgget	cctgcaggca	aaacatataa	gageetegte	agaaagtttt	agaggtttcc	4920
	gaatgaagat					4980
	T		T			
	ttgactttta					5040
aatgctccca	ggaggggctg	aagaagccat	agttggaagt	ggaaggtact	cgtcagtgtt	5100
	ctttttactc					5160
	acactcaagt					5220
ctggctgacg	ccattcactg	gacggtccct	gaacacctag	gaatgcacac	accgtgcttc	5280
tcagacactg	gagacgcaaa	ggcaggagga	tgcagtccgg	tgagaggaca	cgatctttac	5340
	agactgtaag					5400
						5460
	agttgtggtg					
tatacaagaa	actctcctga	gtttgtaaac	cttaagcata	agggattcag	ttgacctttt	5520
	tcaatctgga					5580
	ccgtaagtct					5640
						•
	cactgtttga					5700
tctgacaaca	ctagctattt	ctgccagagt	aagaacttct	attactattt	tattattgtt	5760
catatgtctt	ttgatgatgg	ttgtgtgaca	gggggaaqca	ggatctattt	ggtttcttcc	5820
	accettect					5880
						5940
Lagittice	atcttgagta	acciditate	Lygyacayıl	LLYALCCLCA	LLLLyadayC	JJ4:U

```
atgcgtgcgc acatgtgtgt tgcctgtggt gccaggtgag acaggtggca ctaactccag
                                                                     6000
ctgcttggaa ggcatcccaa gggcgcatct taaagttgga gcagacctcc cttttccagc
                                                                    6060
ccctggggcc attagaccac gtgctggaac tagcattgta aaattcccat cccagttcca
                                                                    6120
ctcccctgaa gtgaaaccct ttttttttgt gacagtaaat cttaaaaatc attgtctctt
                                                                    6180
tatgaacatt teeteagttt ettetetget gaaaatgtaa geeatgetae tttttaatgt
                                                                     6240
attttgaatt ttgtgctcat tggaaattga tatgctaatg cctcccccac ccccgccag
                                                                     6300
acttttcttt ttatactttg tcttgttttt actggggtag gctgggcatg cgtgcgtgcc
                                                                     6360
tttagggcag cattttaaac ctttgccaaa attgcaaatg ggacatgtac attcttctgc
                                                                     6420
tecatectae ttaaacacet ateagetatt tttatettta acettttetg tatgtttgaa
                                                                     6480
gtgtgtgggg ggtgtgtgtg tgtgtgtgaa agagcgagag aatgatgtca tctaaagttt
                                                                     6540
tttgaagaat tatttggttt tcattgcatt aaaattctat cactcccagc tttgttttca
                                                                     6600
tttaaaaaaa tatacaaaga gctttgtaaa tacaacacat tttatttctc ccccttcttt
                                                                     6660
taatgtacag cttttttgcc acttatatat acttaaaata ttcccatgaa ttatgtccag
                                                                     6720
ttcttcttgg aaaaaaattt ggttttgaat gaacctgcaa agcatcctgc agcgtgagca
                                                                     6780
gctcctccac ctggagctcc gaagcatctt ctcaggccaa agcggcatta cccgtgaatc
                                                                     6840
tgtcttctcc gccacagcat ggtttgaggc gcagtctgtt aatatagctg ggccatgtca
                                                                     6900
gtgactgttg tgtttgtggg gtcaggtggg gggcatggta tttgcaaaaa aaacaaatta
                                                                     6960
tggctaattt attattttgt tgcagtgggg ttaactgtaa actcatgtaa gagtctgtga
                                                                     7020
tttcctcact ggttgatctc tctctctgta atcctcattg caaattttca ccaggacagc
                                                                     7080
gttttttgat tagaggggag ctctggcaca gtatgcttta atttagcagg aacttccaga
                                                                     7140
tgatttaaat tctcgatgct gtgatgacac acatatgatc tttcgtgttt ctgagcgact
                                                                     7200
ctactttcat tgtttgccag cgtggctccg ttgctggttg cccaataaag cttgtgtacg
                                                                     7260
ttctgccttg ggggattatt ttaatttgta cagaaacatg aattctggta tcaaaatgag
                                                                     7320
gactttttat tataacgctc ctattttttc tttatttcat ggtacatgaa atgtaaagaa
                                                                     7380
aactetttee agtteagaaa attattttga ttttggeaaa aaaaacceea aateaatgea
                                                                     7440
tgttatttat tattttgtac tattgtccat cccagacgtg tcagaatttc aaaaggtgat
                                                                     7500
agatataaat ggaaaataag atgaaa
                                                                     7526
```

<210> 267 <211> 4668 <212> DNA

<213> Homo sapiens

<400> 267

geogetgagg gagecettee eegecagege gtgeeettee acteegeeee gaggtegeag 60 eggecegete tecegecage geceeteet egeggecaeg eageageceg egtetegete 120 tecceacea gtgcagtggc cgccgcctct tecgccgccg ggctcggggc ctccgcagcg 180 acaacatgga ggccgtgaag accttcaata gcgagttgta ttccctgaat gactataaac 240 cacccatttc gaaagcgaaa atgacccaaa ttactaaggc agccatcaaa gctattaagt 300 tctataaaca tgtggtacag agtgttgaga agtttattca gaaatgtaaa ccagaataca 360 aagtacctgg actttatgtt attgactcca ttgtgcgaca atcccgacat cagtttggtc 420 aagaaaagga tgtgtttgca cccagattta gtaataacat cattagcact ttccagaatt 480 tatategttg ccctggggat gacaagagta aaatagtgag agtactaaac ttatggcaga 540 agaataatgt atttaagagt gagattattc acccetttt ggatatggca geegggatte 600 cgcctccagt tgtcacacct gttttggcca gcactaccac tgctatgagc aatactccag 660 gaacteetgt gacacetgtt acteeggeea atgtggteea aggettaeet gateegtggg 720 tateteagat aacaaataca gatacaettg eggetgtage teagatettg caaagteete 780 aaggccagca gcttcaacaa ttaatacaaa ccttacagat acaacaacag aagccccagc 840 cttccattct gcaggcccta gatgctggtc ttgttgttca gttgcaagct cttacggcac 900 aacttacage tgcagctgca gctgccaaca ctcttactcc cttagaacag ggagtctcct 960 ttaacaagaa gttgatggat aggtttgatt ttggggaaga ctctgagcat agtgaagaac 1020 ccaaaaagga aactccagct tcacaacttt ctcacgtttc agaatctgtg aacaattcca 1080 tttttcatca gatagcagaa caactacaac agcaaaacct agaacatctc agacagcagc 1140 tettggagea geaacageet caaaaggeea eteeteagga tagteaggaa ggaacetttg 1200 ggtcagagca ttcagcgtca ccatcacaaa gggaqtagtc agcagcattt tcttqaacct 1260 gaagtcaatt tgggatgatt ccatagatat tcagcaacag gatatggata tagatgaagg 1320

	gtggaagagg					1380
	acacattcac					1440
	tctagaaagc					1500
	tcatcacggt					1560
	aagggattac					1620
	gggcaagtgg					1680
	cagattgaat					1740
	cgacaagatg					1800
	aaggtcatta					1860
	tgggatgtgg					1920
ggatgacttg	gaaggttttg	cagaaggagg	catgattgat	caggagactg	taaatactga	1980
gtgggaaact	gtgaaaagct	cagaacctgt	taaagagacg	gtccagacaa	ctcagagccc	2040
aactccagtt	gaaaaggaga	cagtggtcac	aacccaggca	gaggttttcc	ctcctcctgt	2100
tgctatgttg	cagattccag	tggcgccagc	cgtgcctaca	gttagtttag	tcccaccagc	2160
atttcctgtg	tcgatgccgg	ttcctcctcc	tggattcagt	ccaatccctc	cacctccttt	2220
tttaagagca	agttttaacc	cttcacaacc	accacctggt	ttcatgccgc	ctccagttcc	2280
cccacctgtt	gtgccacccc	ctacgattcc	accagtagta	ccaacatctt	tagtgcagcc	2340
gtcattatcc	atgacaccgg	aaactgtgaa	agatgttgga	tttggtagcc	ttgttatacc	2400
aggcggttct	gttgccagca	atcttgctac	ttccgctctg	ccagctggaa	atgtttttaa	2460
tgctccaact	aaacaggcag	agcctgaaga	aaaagtacct	catcttatag	accaccagat	2520
ttcttctggt	gaaaacacca	gatcagtgat	tccaaatgat	atttcaagta	atgctgcaat	2580
	cagccgccaa					2640
aaatgtatca	agtaattctg	aaattcttgg	ggtccggcca	tctaatgttt	ccagtagttc	2700
tgggattatt	gcagcccaac	caccaaatat	tctaaataac	tctggaatat	tgggaataca	2760
gccacccagt	gtgtcaaata	gttctggact	tttgggagtg	ctacccccaa	atatacctaa	2820
caattctgga	cttgtaggag	tacagccacc	aaatgttcca	aatactcctg	gacttctggg	2880
	ccagctggac					2940
gcccacaatg	ccaatgttag	acattcgtcc	gggactaata	ccacaggcac	ctgggccaag	3000
attcccttta	atacagcctg	gaattccacc	ccaacgggga	atcccacccc	catcggtact	3060
tgattcagct	cttcatccac	caccccgtgg	accttttcct	ccaggagata	tttttagtca	3120
	ccttttttag					3180
aaaaaggata	ccacttggga	atgataacat	tcaacaggaa	ggagatagag	attaccggtt	3240
tcctcctata	gaaaccaggg	aaagcattag	tagacctccc	cctgtggatg	ttagagatgt	3300
ggttgggcgg	cctatagatc	caagagaagg	tcctggacgg	cctccactag	atggtaggga	3360
tcattttgga	agacctcctg	tagatataag	agagaatctt	gtgaggccag	gtatagatca	3420
tcttggtcga	agagaccact	ttggctttaa	tccagagaag	ccctgggggc	atagaggaga	3480
ttttgatgag	agagagcatc	gggttctacc	ggtctatggt	ggtccaaaag	gcttacatga	3540
	agatttcggt					3600
ccgaggattt	ggacaagaag	ttcacagaga	ttttgatgac	cgcagaagac	cctgggagag	3660
gcaaagggat	agggatgaca	gagattttga	tttctgcaga	gaaatgaatg	gaaatcgtct	3720
tggacgagac	agaattcaaa	acacttgggt	tccccctcct	catgctcggg	tttttgatta	3780
ttttgaaggg	gccacttctc	aacgaaaagg	tgataatgtg	cctcaggtta	atggtgaaaa	3840
tacagagaga	catgctcagc	caccacctat	accagtacag	aatgatcctg	aactttatga	3900
	tcttcaaatg					3960
aagtgaacca	gtggtagaaa	gcacagaaac	tgaggggaca	taatcatcac	tcagtaggta	4020
aaagatacct	tttgtaaagt	tgtcatctct	ctgtaataga	taatggctga	ctggaccata	4080
gttgttcact	tttgtctgcc	agaattaagt	taatctgatg	ttcatgttca	cctttctctt	4140
aaaataattg	tacaactgac	ttgtatagac	attgttctta	atatgaacat	ggtaggtaaa	4200
	attttttct					4260
aggaaatgaa	taacagcttg	tcagagactt	cctatggaag	aaagaatttt	ttagatacta	4320
	ggatatggta			_	_	4380
	aggetgetge					4440
	tctaggtatt					4500
	tatggtctct					4560
	aaaaagaaac					4620
	ttgtttttag				-	4668

<210> 268 <211> 5468 <212> DNA <213> Homo sapiens

<400> 268

cgggcccggt gctgaagggc agggaacaac ttgatggtgc tactttgaac tgcttttctt 60 ttotootttt tgoacaaaga gtotoatgto tgatatttag acatgatgag otttgtgcaa 120 aaggggaget ggetaettet egetetgett cateeeacta ttattttgge acaacaggaa 180 getgttgaag gaggatgtte ceatettggt cagteetatg eggatagaga tgtetggaag 240 ccagaaccat gccaaatatg tgtctgtgac tcaggatccg ttctctgcga tgacataata 300 tgtgacgatc aagaattaga ctgccccaac ccagaaattc catttggaga atgttgtgca 360 gtttgcccac agcctccaac tgctcctact cgccctccta atggtcaagg acctcaaggc 420 cccaagggag atccaggece teetggtatt cetgggagaa atggtgacee tggtatteea 480 ggacaaccag ggtcccctgg ttctcctggc ccccctggaa tctgtgaatc atgccctact 540 ggtcctcaga actattctcc ccagtatgat tcatatgatg tcaagtcggg cggagtagca 600 gtaggaggae tegeaggeta teetggaeca getggeecee caggeeceec eggeeceect 660 ggtacatetg gteateetgg tteeectgga tetecaggat accaaggace eectggtgaa 720 cctgggcaag ctggtccttc aggccctcca ggacctcctg gtgctatagg tccatctggt 780 cctgctggaa aagatggaga atcaggtaga cccggacgac ctggagaccg aggattgcct 840 ggacctccag gtatcaaagg tccagctggg atacctggat tccctggtat gaaaggacac 900 agaggetteg atggaegaaa tggagaaaag ggtgaaacag gtgeteetgg attaaagggt 960 gaaaatggtc ttccaggcga aaatggagct cctggaccca tgggtccaag aggggctcct 1020 ggtgagcgag gacggccagg acttcctggg gctgcaggtg ctcggggtaa tgacggtgct 1080 cgaggcagtg atggtcaacc aggccctcct ggtcctcctg gaactgccgg attccctgga 1140 teccetggtg ctaagggtga agttggaeet geagggtete etggtteaaa tggtgeeeet 1200 ggacaaagag gagaacctgg acctcaggga cacgctggtg ctcaaggtcc tcctggccct 1260 cctgggatta atggtagtcc tggtggtaaa ggcgaaatgg gtcccgctgg cattcctgga 1320 geteetggae tgatgggage ceggggteet ceaggaceag ceggtgetaa tggtgeteet 1380 ggactgcgag gtggtgcagg tgagcctggt aagaatggtg ccaaaggaga gcccggacca 1440 cgtggtgaac gcggtgaggc tggtattcca ggtgttccag gagctaaagg cgaagatggc 1500 aaggatggat cacctggaga ccctggtgca aatgggcttc caggagctgc aggagaaagg 1560 ggcgcccctg ggttcccgag gacctgctgg accaaatggc atcccagggg agaaaggccc 1620 tgctggagag cgcggtgctc caggccctgc aggccccaga ggagctgctg gagaacctgg 1680 cagagatggc gtccctggag gtccaggaat gaggggcatg cccggaagtc caggaggacc 1740 aggaagtgat gggaaaccag ggcctcccgg aagtcaagga gaaagtggtc gaccaggacc 1800 tectgggeca tetggteece gaggteagee tggtgteatg ggettteecg gteetaaagg 1860 aaatgatggt gctcctggta agaatggaga acgaggtggc cctggaggac ctggcctca 1920 aggtcctcct ggaaagaatg gagaatacgg acctcaggga cccccagggc ctactgggcc 1980 cggtggtgac aaaggagaca caggaccccg tggtccacaa ggattacaag gcttacctgg 2040 tacaggtggt cctccaggag aaaatggaaa acctggagaa ccaggcccaa agggtgaagc 2100 eggtgeacet ggagetecag gaggeaaggg tgatgetggt geceetggtg aacgtggace 2160 teetggattg geaggggee eaggaettag aggtggaget ggteeectg gteeegaagg 2220 aggaaagggt gctgctggtc ctcctgggcc acctggtgct gctggtactc ctggtctgca 2280 2340 aggaatgeet ggagaaagag gaggtettgg aagteetggt ceaaagggtg acaagggtga accaggoggt ccaggtgctg atggtgtccc agggaaagat ggcccaaggg gtcctactgg-2400 2460 tectattggt ceteetggee cagetggeea geetggagat aagggtgaag gtggtgeee cggacttcca ggaatagctg gccctcgtgg tagccctggg gagagaggtg aaactggccc 2520 tecaggaeet getggtttee etggtgetee tggaeagaat ggtgaacetg gtggtaaagg 2580 agaaagaggg geteegggtg agaaaggtga aggaggeeet eetggagttg caggaeeeee 2640 tggaggttet ggacetgetg gteeteetgg teeceaaggt gteaaaggtg aacgtggeag 2700 teetggtgga cetggtgetg etggetteee tggtgetegt ggtetteetg gteeteetgg 2760 tagtaatggt aacccaggee ceccaggtee cageggttet ceaggeaagg atgggeecee 2820 aggteetgeg ggtaacaetg gtgeteetgg cageeetgga gtgtetggae caaaaggtga 2880 tgctggccaa ccaggagaga agggatcgcc tggtgcccag ggcccaccag gagctccagg 2940 cccacttggg attgctggga tcactggagc acggggtctt gcaggaccac caggcatgcc 3000 aggteetagg ggaageeetg geeeteaggg tgteaagggt gaaagtggga aaccaggage 3060 taacggtete agtggagaac gtggteece tggaccecag ggtetteetg gtetggetgg 3120

```
tacagctggt gaacctggaa gagatggaaa ccctggatca gatggtcttc caggccgaga
                                                                    3180
tggatctcct ggtggcaagg gtgatcgtgg tgaaaatggc tctcctggtg cccctggcgc
                                                                    3240
tectggtcat ccaggeccac ctggtcctgt cggtccaget ggaaagagtg gtgacagagg
                                                                    3300
agaaagtgge cetgetggee etgetggtge teeeggteet getggtteee gaggtgetee
                                                                    3360
tggtcctcaa ggcccacgtg gtgacaaagg tgaaacaggt gaacgtggag ctgctggcat
                                                                     3420
caaaggacat cgaggattcc ctggtaatcc aggtgcccca ggttctccag gccctgctgg
                                                                     3480
tcagcagggt gcaatcggca gtccaggacc tgcaggcccc agaggacctg ttggacccag
                                                                    3540
tggacctcct ggcaaagatg gaaccagtgg acatccaggt cccattggac caccagggcc
                                                                    3600
tegaggtaac agaggtgaaa gaggatetga gggeteecca ggecacecag ggcaaccagg
                                                                    3660
ccctcctgga cctcctggtg cccctggtcc ttgctgtggt ggtgttggag ccgctgccat
                                                                    3720
tgctgggatt ggaggtgaaa aagctggcgg gttttgcccc gtattatgga gatgaaccaa
                                                                    3780
tggatttcaa aatcaacacc gatgagatta tgacttcact caagtctgtt aatggacaaa
                                                                    3840
tagaaagcct cattagtcct gatggttctc gtaaaaaccc cgctagaaac tgcagagacc
                                                                    3900
tgaaattctg ccatcctgaa ctcaagagtg gagaatactg ggttgaccct aaccaaggat
                                                                    3960
gcaaattgga tgctatcaag gtattctgta atatggaaac tggggaaaca tgcataagtg
                                                                    4020
ccaatccttt gaatgttcca cggaaacact ggtggacaga ttctagtgct gagaagaaac
                                                                    4080
acgtttggtt tggagagtcc atggatggtg gttttcagtt tagctacggc aatcctgaac
                                                                    4140
ttcctgaaga tgtccttgat gtgcagctgg cattccttcg acttctctcc agccgagctt
                                                                     4200
cccagaacat cacatatcac tgcaaaaata gcattgcata catggatcag gccagtggaa
                                                                     4260
atgtaaagaa ggccctgaag ctgatggggt caaatgaagg tgaattcaag gctgaaggaa
                                                                    4320
atagcaaatt cacctacaca gttctggagg atggttgcac gaaacacact ggggaatgga
                                                                     4380
gcaaaacagt ctttgaatat cgaacacgca aggctgtgag actacctatt gtagatattg
                                                                     4440
caccetatga cattggtggt cetgatcaag aatttggtgt ggacgttgge cetgtttget
                                                                     4500
ttttataaac caaactctat ctgaaatccc aacaaaaaaa atttaactcc atatgtgttc
                                                                    4560
etettgttet aatettgtea acagtgeaag gtggacegae aaaatteeag ttatttattt
                                                                    4620
ccaaaatgtt tggaaacagt ataatttgac aaagaaaaat gatacttctc tttttttgct
                                                                    4680
gttccaccaa atacaattca aatgcttttt gttttatttt tttaccaatt ccaatttcaa
                                                                    4740
aatgtctcaa tggtgctata ataaataaac ttcaacactc tttatgataa caacactgtg
                                                                    4800
ttatattett tgaateetag eecatetgea gageaatgae tgtgeteace agtaaaagat
                                                                    4860
aacctttctt tctgaaatag tcaaatacga aattagaaaa gccctcccta ttttaactac
                                                                     4920
ctcaactggt cagaaacaca gattgtattc tatgagtccc agaagatgaa aaaaatttta
                                                                    4980
tacgttgata aaacttataa atttcattga ttaatctcct ggaagattgg tttaaaaaga
                                                                    5040
aaagtgtaat gcaagaattt aaagaaatat ttttaaagcc acaattattt taatattgga
                                                                    5100
tatcaactgc ttgtaaaggt geteetettt tttettgtea ttgetggtea agattactaa
                                                                    5160
tatttgggaa ggctttaaag acgcatgtta tggtgctaat gtactttcac ttttaaactc
                                                                    5220
tagatcagaa ttgttgactt gcattcagaa cataaatgca caaaatctgt acatgtctcc
                                                                    5280
catcagaaag attcattggc atgccacagg ggattctcct ccttcatcct gtaaaggtca
                                                                     5340
acaataaaaa ccaaattatg gggctgcttt tgtcacacta gcataggaga atgtgttgaa
                                                                     5400
atttaacttt gtaagettgt atgtggttgt tgatettttt ttteettaca gacaaceata
                                                                    5460
ataaaata
                                                                    5468
```

```
<210> 269
<211> 5585
<212> DNA
<213> Homo sapiens
```

<400> 269 tttcgtcaag tgtaacagcg ccaaacaccg catcatctcg cccaaggtgg agccacggac 60 aggggggtac gggagccact cggaggtgca gcacaatgac gtgtcggagg gcaagcacga 120 gcacagccac agcaaggget ccagccgtga gaagaggaac ggcaaggtgg ccaagcccgt 180 geteetgeac cagageagea cegaggtete etccaceaac caggtggaag teccegacac 240 cacccagage teceetgtgt ceateageag egggeteaac agegaceegg acatggtgga 300 cageceggtg gteacaggtg tgteeggtat ggeggtggee tetgtgatgg ggagettgte 360 ccagagegee aeggtgttca tgtcagaggt caccaatgag geegtgtaca ecatgteece 420 caccgctggc cccaaccacc acctcctctc acctgacgcc tctcagggcc tcqtcctqgc 480 cgtgagetet gatggecaca agttegeett teccaecacg ggeageteag agageetgte 540

	accaacgtgt					600
	gaaaccacca					660
gggccagacg	tacgggggtg	gaggcctgaa	agccgagatg	gtcagctcca	acatccggca	720
	ggggagcgga					780
	tccttcgagc					840
						900
	agetecetea					
	agcaccaccc					960
	agcttcagcc					1020
gagcttcttc	ctgcaggacg	ccagcaaacc	cctccccgtc	gagcagaaca	cccacagcag	1080
cctgagtgac	tctgggggca	ccttcgtgat	gcccacggtg	aaaacggagg	cctcgtccca	1140
	tgcagcggtc					1200
	caggccaact					1260
	gcggaaggga					1320
						1380
	tacctgcagc					
	ggcaacgtgg					1440
	atggagctca					1500
cgacctgatc	aacgacttca	tctccgtgga	ggggggcagc	agcaccatct	atgggcacca	1560
gctggtgtcg	ggggacagca	cggcgctctc	acagtcagag	gacggggcgc	gggccccctt	1620
cacccaggca	gagatgtgcc	tcccctgctg	tagcccccag	cagggtagcc	tgcagctgag	1680
	ggcggggcca					1740
	cagggcaccc					1800
	ccagagtggt					1860
						1920
	gccagcaata					
	cctggggtgc					1980
	gccttcaaca					2040
	cccacgctcc					2100
gttcaggatg	tccatcctgg	aacgactgga	gcagatggag	aggaggatgg	ccgagatgac	2160
ggggtcccag	cagcacaaac	aggcgagcgg	aggcggcagc	agtggaggcg	gcagcgggag	2220
cgggaatgga	gggagccagg	cacagtgtgc	ttctgggact	ggggccttgg	ggagctgctt	2280
	gtggtcgtgg					2340
	atccactcaa					2400
	gccaccctaa		-			2460
						2520
	gaactggaag					
	tgtgccctag			_		2580
	tcgattcccg					2640
	aaattagcag					2700
gggacagaac	cccagaatcc	actgtcctgc	aagcgaagag	cccagcacag	agagctggat	2760
ggcccagtgg	cacagcgaag	ccatcagctc	tccagaaata	cccaagggag	tcactgttat	2820
tgcaagcacc	aacccagagc	tgagaagacc	tcgttctgaa	ccctctaatt	actacagcag	2880
	aaagattatc					2940
	gagaagetge					3000
	agttctaagc					.3060
	cgggaactct					3120
						3180
	gtaggaaagt					
	aatccgaagg					3240
	accaatgagt					3300
	ccgtgatagt					3360
	gatgaccttg					3420
aggagaattt	tgtgcccatg	gagtcctcag	gattggaaag	aacagaccct	gccaccatta	3480
gcagtacaat	gagctggctg	gccagttatc	tagcggatgc	tgactgcctt	cccagtgctg	3540
	aagtgcatat					3600
	tcccgtcagt					3660
	attcctgagt					3720
						3780
	tgatcatgaa					
	atacaagggc	_				3840
	ttacagaaaa					3900
	gacacaggct					3960
	ccagcagagc					4020
ataagaaatg	tggcaaaaga	cggcaggctc	gccggacggc	tgtgattgta	caacagaaac	4080

```
tcaggagcag tttgctaacc aaaaagcagg atcaagctgc tcgaaaaata atgaggtttc
                                                                      4140

    ttcgccgctg tcgccacage cccctggtgg accatagget gtacaaaagg agtgaaagaa

                                                                      4200
 ttgaaaaagg ccaaggaact tgaagacata cagcagcatc ccttagcaat gtgacattgc
                                                                      4260
 ttttcagact gttttcattt ctgtttttag cagagacatg caacaacaac acacacgcac
                                                                      4320
 acacgcacac acacacact acacacacat acaaaatccc tctqcaqttt tqqqqaqatc
                                                                      4380
 agetgeagga ttttaacagg aatgttttgg teattgeatt tgeactttea tggacaactt
                                                                      4440
 ttaatttgat cagcaagaca tcttggaact caatcttctg ttggatcacg ggaaatcaag
                                                                      4500
 acacccagga ggaattgaaa gaggcttcct cttctcagga agaagccatt tccttctcat
                                                                      4560
 atagggctgt attcaaacat cgtgtggaac tgtacaaata tttataccaa aaatatagat
                                                                      4620
 aagaaaaggt ggggctatac tagcaacaaa aaaagaatgc tgttcctgca cctgccggtt
                                                                      4680
 atttccaaga agctgaatct ttgggactga ttctcagtgg agggcttaga tcatacaaaa
                                                                      4740
 atctttattg ggtccgtgtg ttctcatttc cttcactgtt tatttttgtt tgtttgtttg
                                                                      4800
 tttgttttaa tctctacagc acatttaatg caacttttga aatctgcagg tttttaatgt
                                                                      4860
 cttgtggaaa tttgcagagg ggcaggtgtg tggtaaacgg gtaatgcatg ggaaataatg
                                                                      4920
 agaagcagct cacagagttt aaactatttt cttgtcccca ccaccttcca agaacctgcg
                                                                      4980
 agggtagtaa tcatcttgtc ccctttttca tgttcagcac tttaattttt ttgccttact
                                                                      5040
 ttcatgtgca atgagaatta cttaagaatt ggtaacgcat gtagcctttt ttagtaacct
                                                                      5100
 tggaagetgt agtaatteta aggaateatg aacettgeet ggacatttge cacetaaacg
                                                                      5160
 atcagtgtgg tgctgcgttc tggccagtaa attccatgtt tttggctata tctcatccaa
                                                                      5220
 actgagcagt ttctgtgtat atatagaagg tagaaatgaa aagtgagaaa atatttgaaa
                                                                      5280
 gggattatat taattgctaa atattttatt cacaaaggtc aataacatgg caagataaaa
                                                                      5340
 ttatttgtat agttttgtct gaatgagcga gaaaaatgtg gatgtactgt ttgtatatat
                                                                      5400
 tgtatatatt aaaacagaga tatgtgcatg aaatcaagaa aaaagaaatg aacaaaagca
                                                                      5460
 aagcattagt ggctatggtc tgtaaaatga aacaaaaaaa ctttatttca ctataagagt
                                                                      5520
 actttatttt aaatgttctt taggagaaca ttttgctaaa gcatgactaa actgcaaaaa
                                                                      5580
 aaaaa
                                                                      5585
```

```
<210> 270
<211> 6164
<212> DNA
<213> Homo sapiens
<220>
<221> misc_feature
<222> (1)...(6164)
\langle 223 \rangle n = a,t,c or g
```

<400> 270

tttcgtgagt gtgagtgtga gtgggtgtgg gtgcgagccg ggccgccgac gatgccgcgg 60 ggecgecece egaageceag ggagageaag gegegeggeg aeteegatgg agttttaaea 120 ttgaatgcgg agaacactaa ttatgcctat caagttccaa acttccataa atgtgaaatc 180 tgtctactat cttttccaaa agaatcccag tttcaacgcc acatgaggga tcacgagcga 240 aatgacaagc cacatcgatg tgaccagtgc ccccaaacat ttaatgttga attcaacctg 300 acacttcata aatgcaccca cagcggggaa gatcctacct gccctgtgtg taacaagaaa 360 ttctccagag tggctagtct caaagcgcat attatgctac atgaaaagga agagaatctc 420 atctgttctg agtgtgggga tgagtttact ctgcagagtc agctggccgt gcacatggag 480 gagcaccgcc aggagctggc tggaacccgg cagcatgcct gcaaggcctg caagaaagag 540 ttcgagacct cctcggagct gaaggaacac atgaagactc attacaaaat tagggtatca 600 agtacaaggt cttataaccg gaatatcgac agaagtggat tcacgtattc gtgtccgcac 660 tgtggaaaga cgtttcaaaa gccaagccag ttaacgcgac acattaggat acacacaggt 720 gaaaggccgt tcaaatgtag tgaatgtgga aaggctttta accagaaggg ggcgactgca 780 gacccacatg atcaagcaca caggtgaaaa accccatgcc tgtgccttct gtcctgccgc 840 cttctctcag aaagggaatc ttcagtcgca cgtgcagcga gtccactcag aggtcaagaa 900 tggtcctacc tataactgta cagaatgtag ttgtgtattt aaaagtttag gcagcttaaa 960 cacgcatate ageaagatge atatgggtgg gecacagaat teaacaagtt etacagagae 1020 tgctcatgtt ttaacggcca cactttttca gacgttacct cttcaacaga cggaagccca 1080

agccacgtcg	gcctcaagcc	agccgagctc	ccaggcggtg	agcgacgtca	tccagcagct	1140
cctggagctc	tcagagccgg	cgccggtgga	gtcggggcag	teceegeage	ctgggcagca	1200
	acagtgggca					1260
	attccagctg					1320
	caaaacccag					1380
	gaaaaagaac					1440
	agtcaccgtt					1500
	cctactgcgc					1560
	cccacgagaa					1620
	tgacagcgca					1680
	agagettete					1740
	cttttgcttg					1800
	ttgcttccca					1860
	aggtccgtgt					1920
	tcataactga					1980
caaagctatt	tcaataataa	ttttgtcaat	gaagcagata	gaccatacaa	gtgtttttac	2040
tgtcatcgtg	catataaaaa	atcttgccac	cttaaacaac	acatcagatc	ccatacaggt	2100
gaaaaacctt	ttaaatgttc	tcagtgtgga	agaggctttg	tttctgcagg	cgtgctcaaa	2160
gcacacatca	gaacacacac	aggactgaaa	tctttcaagt	gtctgatatg	taatggggct	2220
	gtggcagctt					2280
	attgccaaaa					2340
	atgagettge					2400
	tagaccagca					2460
	tgccgcagac					2520
	agcatgtggt					2580
	aagcagatga					2640
						2700
	ttgaagagca					2760
	cagtgactga					
	ccagcacact					2820
	ctcctagctc					2880
	aactggacct					2940
	gctcttacag					3000
	atgtgcggtc					3060
	tttcctctgg					3120
	gcagtgtgtg					3180
	atatgagcat					3240
	attgtaaaaa					3300
gccactggag	agacagaagg	aggagacatt	tgtatggagg	aagaggaaga	acattctgac	3360
agaaatgcat	cacggaagtc	tcgtcctgag	gtcatcactt	tcacggagga	ggagacagcc	3420
cagttagcca	agatccggcc	gcaggagagc	gccacggtgt	cagagaaggt	cctggtgcag	3480
teegeggeag	aaaaggaccg	catcagtgag	ctgagggaca	agcaggcgga	gctgcaggac	3540
gagcccaagc	acgccaactg	ctgcacatac	tgccccaaga	gcttcaagaa	acctagcgac	3600
ctggtgaggc	atgttcgaat	ccatactgga	gaaaagccat	acaaatgtga	tgaatgtgga	3660
aagagtttta	ctgtgaaatc	cactctcgat	tgtcatgtga	agactcacac	aggtcagaag	3720
	gtcacgtctg					3780
	acacgggagc					3840
	gaagaaagac					3900
	tgactcgaag					3960
	acccaaacgt					4020
	tgcaaccagg					4080
	tgaccgtgtc					4140
	ctgctaactt					4200
						4260
	acattacgtt					4320
	tggctcagca					
	cggacagcac					4380
	ccacagtgac					4440
	ccactaacag					4500
	cccctccgg					4560
ctgagccagg	tcctggcaca	ggccgctggg	cccactgcca	cgtcttcctc	ggggtctcca	4620

```
caggaaatta ccctgactat ctccgaactt aacactacaa gcqqaaqcct tccttcaaca
                                                                     4680
 acaccgacgt ctccatcggc catctcgact cagaacctgg tcatgtcctc gtcgggcqtq
                                                                     4740
 ggaggtgacg ctagtgtcac gctgacgctg gccgatactc agggtatgct atctggaqqc
                                                                     4800
 ctggacactg tcacactcaa catcacctct cagggtcagc agttcccagc gctcctcacq
                                                                     4860
 gatecetete tetegggeea gggtggagea ggetegeege aagteataet agtgageeae
                                                                     4920
 acgccacagt cagcgtctgc tgcttgtgaa gaaatagcct accaggtagc tggcgtctct
                                                                     4980
 gggaacctgg ccccgggcaa ccagccagag aaggagggcc qqqcqcacca qtqcctqqaq
                                                                     5040
 tgtgaccgcg ccttctcatc ggcggcggtg ctcatgcacc acagcaagga ggtgcatggc
                                                                     5100
 cgggagcgca tccacggctg ccccgtgtgc aggaaggcct tcaagcgcgc cacgcacctc
                                                                     5160
 aaggagcaca tgcagacaca ccaggccggc ccctctttga gctcccagaa gccaagaqtq
                                                                     5220
 tttaaatgtg acacttgtga gaaggcattt gccaaaccaa gccagctgga gcgccacagc
                                                                     5280
 cgcatacaca caggggagcg gccgttccat tgcacgcttt gtgagaaagc cttcaaccag
                                                                     5340
 aagagtgcgc tgcaggtgca catgaagaag cacacggggg agcggcccta caagtgtgcc
                                                                     5400
 tactgcgtca tgggcttcac gcagaagagc aacatgaagc tgcacatgaa gcgggcgcac
                                                                     5460
 agetatgetg gagetetgea tgagtetgea ggteaceegg ageaggaegg ggaggagetg
                                                                     5520
 agceggacce tecacetgga ggaggtggtg caggaggetg ceggegagtg geaggeete
                                                                     5580
 acceaegtet tetgatgega gttggaagta cacetttaag aatgtttetg aagttacgtt
                                                                     5640
 ttgtgaagag caaaqcactt ggaatctctg ttttaaaqct tcaaqtqtta aaaatqctac
                                                                     5700
 aatagttttt tatctataaa attatctaaa gaatcattgt ctttcagaga ctcataggaa
                                                                     5760
 aaaaaaactg ggaaaagtgt caccgcattg ttctcttttg tctacaaatc actgaactca
                                                                     5820
 ggtactactg tagggcagtt tectecteag tetecteegt gggctagtgt gtetaggtte
                                                                     5880
 acggagggca attaactggg gtcttactta tccattgtag gtgtggattt ctttgtatta
                                                                     5940
 gcaaagacaa aaacgctaac atgggaaaaa gtatgtcagg attttccttc atgtttctgg
                                                                     6000
 ttataagaag gcatagctta acaaaggcaa gcgtaaggat tggagggcat ggaagttcca
                                                                     6060
 ggaaaaaaaa gtgttattaa cacacagggg gagttttttc cnctcttttn ctctgtggca
                                                                     6120
 ttttggaaat tagtccaaat gggqnctctt ttccqqtcta ccct
                                                                     6164
      <210> 271
      <211> 601
      <212> DNA
      <213> Homo sapiens
      <400> 271
 tgacggtacc gttaccggac ttcccgggtc gacgatttcg tggccataca gggtqtqcqt
                                                                       60
 cctagtgtgt gaatcaggcc ctgtgtggac atggtcgtgc cagcggagct cgggaggcct
                                                                      120
geogegeege acegagaage tgetgtgtgt gatgettttg ettetggaga ggatggeact
                                                                      180
 gtgccctgtg cttgatgtac acacacattt ggggtgcatc atctgtgtgt tcgatgtgc
                                                                      240
tttgtcaagg gagctagcat tattgtgccg gaagtcaaac tggtgggtta ttaactggtt
                                                                      300
 gtgaatatgt cttttttata tgggtatagt attcaaagtt tctgtggtga attacagctt
                                                                      360
 taaaaaaact tttttttca gtgagttgta aatgtagctg attgtgggag gaggtggaat
                                                                      420
taatateett eeeettaaaa catattttta taetttttaa cattgtaaga aetatetgat
                                                                      480
 gatagaactc tcacaggcaa ataactatca tcatgtattt ttgcaagtaa tacatttagc
                                                                      540
 aaagcatcat tatttggtca aatatttgta tttttaccat gcttccttca tattttaaaa
                                                                      600
                                                                      601
```

```
<210> 272
<211> 5944
<212> DNA
<213> Homo sapiens
<220>
<221> misc_feature
<222> (1)...(5944)
<223> n = a,t,c or g
```

<400> 272 ttttttttt ttttgagaaa ggggaatttc atcccaaata aaaggaatga agtctggctc 60 cggaggaggg tccccgacct cgctgtgggg gctcctgttt ctctccgccg cgctctcgct 120 ctggccgacg agtggagaaa tctgcgggcc aggcatcgac atccgcaacg actatcagca 180 gctgaagcgc ctggagaact gcacggtgat cgagggctac ctccacatcc tgctcatctc 240 caaggccgag gactaccgca gctaccgctt ccccaagctc acggtcatta ccgagtactt 300 getgetgtte egagtggetg geetegagag eeteggagae etetteecea aeeteaeggt 360 catcogogge tggaaactet tetacaacta cgccetggte atettegaga tgaccaatet 420 caaggatatt gggctttaca acctgaggaa cattactcgg gggggccatc aggattgaga 480 aaaatgctga cctctgttac ctctccactg tggactggtc cctgatcctg gatgcggtgt 540 ccaataacta cattgtgggg aataagcccc caaaggaatg tggggacctg tgtccaggga 600 ccatggagga gaagccgatg tgtgagaaga ccaccatcaa caatgagtac aactaccgct 660 gctggaccac aaaccgctgc cagaaaatgt gcccaagcac gtgtgggaag cgggcgtgca 720 ccgagaacaa tgagtgctgc cacccgagt gcctgggcag ctgcagcgcg cctgacaacg 780 acacggcctg tgtagcttgc cgccactact actatgccgg tgtctgtgtg cctgcctgcc 840 cgcccaacac ctacaggttt gagggctggc gctgtgtgga ccgtgacttc tgcgccaaca 900 tecteagege egagageage gaeteegagg ggtttgtgat ceaegaegge gagtgeatge 960 aggagtgccc ctegggcttc atccgcaacg gcagccagag catgtactgc atcccttgtg 1020 aaggtccttg cccgaaggtc tgtgaggaag aaaagaaaac aaagaccatt gattctgtta 1080 cttctgctca gatgctccaa ggatgcacca tcttcaaggg caatttgctc attaacatcc 1140 gacgggggaa taacattgct tcagagctgg agaacttcat ggggctcatc gaggtggtga 1200 cgggctacgt gaagatccgc cattetcatg cettggtete ettgteette etaaaaaace 1260 ttcgcctcat cctaggagag gagcagctag aagggaatta ctccttctac gtcctcgaca 1320 accagaactt gcagcaactg tgggactggg accaccgcaa cctgaccatc aaagcaqqga 1380 aaatgtactt tgctttcaat cccaaattat gtgtttccga aatttaccgc atggaggaag 1440 tgacggggac taaagggcgc caaagcaaag gggacataaa caccaggaac aacggggaga 1500 gageeteetg tgaaagtgae gteetgeatt teaceteeae caccaegteg aagaategea 1560 teateataae etggeaeegg taeeggeeee etgaetaeag ggateteate agetteaeeg 1620 tttactacaa ggaagcaccc tttaagaatg tcacagagta tgatgggcag gatgcctgcg 1680 gctccaacag ctggaacatg gtggacgtgg acctcccgcc caacaaggac gtggagcccg 1740 gcatcttact acatgggctg aagccctgga ctcagtacgc cgtttacgtc aaggctgtga 1800 ccctcaccat ggtggagaac gaccatatcc gtggggccaa gagtgagatc ttqtacattc 1860 gcaccaatgc ttcagttcct tccattccct tggacgttct ttcagcatcg aactcctctt 1920 ctcagttaat cgtgaagtgg aaccetecet ctctgcccaa cggcaacctg agttactaca 1980 ttgtgcgctg gcagcggcag cctcaggacg gctaccttta ccggcacaat tactgctcca 2040 aagacaaaat ccccatcagg aagtatgccg acggcaccat cgacattgag gaggtcacag 2100 agaaccccaa gactgaggtg tgtggtgggg agaaagggcc ttgctgcgcc tgccccaaaa 2160 ctgaagccga gaagcaggcc gagaaggagg aggctgaata ccgcaaagtc tttgagaatt 2220 teetgeacaa eteeatette gtgeecagae etgaaaggaa geggagagat gteatgeaag 2280 tggccaacac caccatgtcc agccgaagca ggaacaccac ggccgcagac acctacaaca 2340 tcaccgaccc ggaagagctg gagacagagt accetttett tgagagcaga gtggataaca 2400 aggagagaac tgtcatttct aaccttcggc ctttcacatt gtaccgcatc gatatccaca 2460 gctgcaacca cgaggctgag aagctgggct gcagcgcctc caacttcgtc tttgcaagga 2520 ctatgcccgc agaaggagca gatgacattc ctgggccagt gacctgggag ccaaggcctg 2580 aaaactccat ctttttaaag tggccggaac ctgagaatcc caatggattg attctaatgt 2640 atgaaataaa atacggatca caagttgagg atcagcgaga atgtgtgtcc agacaggaat 2700 acaggaagta tggagggcc aagctaaacc ggctaaaccc ggggaactac acagcccgga 2760 ttcaggccac atctctctct gggaatgggt cgtggacaga tcctgtgttc ttctatgtcc 2820 aggccaaaag atatgaaaac ttcatccatc tgatcatcgc tctgcccgtc gctgtcctgt 2880 tgatcgtggg ggggttggtg attatgctgt acgtcttcca tagaaagaga aataacagca 2940 ggctggggaa tggagtgctg tatgcctctg tgaacccgga gtacttcagc gctgctgatg 3000 tgtacgttcc tgatgagtgg gaggtggctc gggagaagat caccatgagc cgggaacttg 3060 ggcaggggtc gtttgggatg gtctatgaag gagttgccaa gggtgtggtg aaagatgaac 3120 ctgaaaccag agtggccatt aaaacagtga acgaggccgc aagcatgcgt gagaggattg 3180 agtttctcaa cgaagcttct gtgatgaagg agttcaattg tcaccatgtg gtgcgattgc 3240 tgggtgtggt gtcccaaggc cagccaacac tggtcatcat ggaactgatg acacggggcg 3300 ateteaaaag ttateteegg tetetgagge cagaaatgga gaataateea gteetageae 3360

```
ctccaagcet gagcaagatg attcagatgg ccggagagat tqcaqacqgc atggcatacc
tcaacgccaa taagttcgtc cacagagacc ttgctgcccg gaattgcatg gtagccgaag
                                                                    3480
atttcacagt caaaatcgga gattttggta tgacgcgaga tatttatgag acagactatt
                                                                    3540
accggaaagg agggaaaggg ctgctgcccg tgcgctggat gtctcctgag tccctcaagg
                                                                    3600
atggagtett caccacttac teggacgtet ggteettegg ggtegteete tgggagateg
                                                                    3660
ccacactggc cgagcagccc taccagggct tgtccaacga gcaagtcctt cgcttcgtca
                                                                    3720
ttggagggcg gccttctgga caagccagac aactgtcctg acatgctgtt tgaactgatg
                                                                    3780
cgcatgtgct ggcagtataa ccccaagatg aggccttcct tcctggagat catcagcagc
                                                                    3840
atcaaagagg agatggagcc tggcttccgg gaggtctcct tctactacag cgaggagaac
                                                                    3900
aagctgcccg agccggagga gctggacctg gagccagaga acatggagag cgtccccctg
                                                                    3960
gacccctcgg cctcctcgtc ctccctgcca ctgcccgaca gacactcagg acacaaggcc
                                                                    4020
gagaacggcc ccggccctgg ggtgctggtc ctccgcgcca gcttcgacga gagacagcct
                                                                    4080
tacgcccaca tgaacggggg ccgcaagaac gagcgggcct tgccgctgcc ccagtcttcg
                                                                    4140
acctgctgat ccttggatcc tgaatctgtg caaacagtaa cgtgtgcgca cgcgcagcgg
                                                                    4200
ggtgggggg gagagagat tttaacaatc cattcacaag cctcctgtac ctcagtggat
                                                                    4260
cttcagaact gcccttgctg cccqcqggag acagcttctc tgcagtaaaa cacatttqqq
                                                                    4320
atgttccttt tttcaatatg caagcagctt tttattccct gcccaaaccc ttaactgaca
                                                                    4380
tgggccttta agaaccttaa tgacaacact taatagcaac agagcacttg agaaccagtc
                                                                    4440
tecteactet gteectgtee tteectgtte tecetttete tetectetet getteataac
                                                                    4500
ggaaaaataa ttgccacaag tccagctggg aagccctttt tatcagtttg aggaagtggc
                                                                    4560
tgtccctgtg gccccatcca accactgtac acaccgcct gacaccgtgg gtcattacaa
                                                                    4620
aaaaacacgt ggagatggaa atttttacct ttatctttca cctttctagg gacatgaaat
                                                                    4680
ttacaaaggg ccatcgttca tccaaggctg ttaccatttt aacgctgcct aattttgcca
                                                                    4740
aaatcctgaa ctttctccct catcggcccg gcgctgattc ctcgtgtccg gaggcatggg
                                                                    4800
tgagcatggc agctggttgc tccatttgag agacacgctg gcgacacact ccgtccatcc
                                                                    4860
gactgcccct gctgtgctgc tcaaggccac aggcacacag gtctcattgc ttctgactag
                                                                    4920
attattattt gggggaactg gacacaatag gtctttctct cagtgaaggt ggggagaagc
                                                                    4980
tgaaccggct tecetgccct qcctecccaq ccccctqccc aacccccaaq aatctqqtqq
                                                                    5040
ccatgggccc cgaagcagce tggcggacag gcttggagtc aaggggcccc atgcctgctt
                                                                    5100
cteteceage eccagetece ecgeeeegee eccaaggaca eagatgggaa ggggttteca
                                                                    5160
gggactcagc cccactgttg atgcaggttt gcaaggaaag aaattcaaac accacaacag
                                                                    5220
cagtaagaag aaaagcagtc aatggattca agcattctaa gctttgttga cattttctct
                                                                    5280
gttcctagga cttcttcatg ggtcttacag ttctatgtta gaccatgaaa catttgcata
                                                                    5340
cacategiet thaatgicae tittataact titttaeggi teagatatie atetataegt
                                                                    5400
ctgtacagaa aaaaaaaagc tgctattttt tttgttcttg atctttgggg atttaatcta
                                                                    5460
tgaaaacctt caggtccacc ctctcccctt tttgctcact ccaagaaact tcttatgctt
                                                                    5520
tgtactaaaq ggcgtgactt tcttcctctt ttcccggtaa tggatacttc tatcacataa
                                                                    5580
tttgccatga actgttggat gcctttttat aaatacatcc cccatccctg ctcccacctg
                                                                    5640
cccctttagt tgttttctaa cccgtaggct tctctggggg cacgaggcaa aaagcagggc
                                                                    5700
eggggcaccc catcetgagg agggggccgc ggtteetttt cececaggec tggeceteac
                                                                    5760
agcatttggg agcctgttta cagtggcaag acatgataca aattcaggtc agaaaaacaa
                                                                    5820
aggttaaata tttcacacgt ctttgttcag tgtttccact caccgtggtt gagaagcctc
                                                                    5880
accetetett teeettgeet ttgettangt tgtgacacac atatatatat attnttttaa
                                                                    5940
ttct
                                                                    5944
```

```
<210> 273
<211> 923
<212> DNA
<213> Homo sapiens
```

```
aatctttaca gctatggctg gtacaaaggg aaaacggtgg agcccaacca gctaatcgca
                                                                     360
gcatatgtaa tagacgacac tcacgttagg actccagggc ctgcatacag cggtcgagag
                                                                     420
acaatatcac ccagtggaga tetgcattte cagaacgtca ccctagagga cacgggatac
                                                                     480
tacaacctac aagtcacata cagaaattct cagattgaac aggcatctca ccatctccgg
                                                                      540
gtataccaag tcagtggctt aacccctcca tccaagccag cagcaccaca gtcaccgaga
                                                                     600
agggeteegg gggteetgae etgeeacaea aataacaetg gaacetettt eeagtggatt
                                                                     660
ttcaacaacc agcgtctgca ggtcacgaag aggatgaagc tgtcctggtt taaccatatg
                                                                     720
ctcaccatag accccatcag gcaggaggac gctggggagt atcagtgtga ggtctccaac
                                                                     780
ccagtcagct ccaacaggag cgacccctc aagctgactg taaaatcaga tgacaacact
                                                                     840
ctaggcatcc tgatcggggt cctggttggg agtcttctgg tggctgcact tgtgtgtttc
                                                                     900
ctgctcctcc gaaaaactgg cag
                                                                     923
```

<210> 274 <211> 4784 <212> DNA <213> Homo sapiens <220> <221> misc_feature <222> (1)...(4784) <223> n = a,t,c or g

<400> 274 tttttttttt ttggtaaggt tgaatgcact tttggttttt ggtcatgttc ggttggtcaa 60 agataaaaac taagtttgag agatgaatgc aaaggaaaaa aatattttcc aaagtccatg 120 tgaaattgtc tcccattttt tggcttttga gggggttcag tttgggttgc ttgtctgttt 180 ccgggttggg gggaaagttg gttgggtggg agggagccag gttgggatgg agggagttta 240 caggaagcag acagggccaa cgtcgaagcc gaattcctgg tctggggcac caacgtccaa 300 gggggccaca tcgatgatgg gcaggcggga ggtcttggtg gttttgtatt caatcactgt 360 cttgccccag gctccggtgt gactcgtgca gccatcgaca gtgacgctgt aggtgaagcg 420 gctgttgccc tcggcgcgga tctcgatctc gttggagccc tggaggagca gggccttctt 480 gaggttgcca gtctgctggt ccatgtaggc cacgctgttc ttgcagtggt aggtgatgtt 540 ctgggaggcc tcggtggaca tcaggcgcag gaaggtcagc tggatggcca catcggcagg 600 gteggagece tggeegecat actegaactg gaatecateg gteatgetet egeegaacea 660 gacatgcctc ttgtccttgg ggttcttgct gatgtaccag ttcttctggg ccacactggg 720 ctgagtgggg tacacgcagg tctcaccagt ctccatgttg cagaagactt tgatggcatc 780 caggttgcag ccttggttgg ggtcaatcca gtactctcca ctcttccagt cagagtggca 840 catcttgagg tcacggcagg tgcgggcggg gttcttgcgg ctgccctctg ggctccggat 900 gttctcgatc tgctggctca ggctcttgag ggtggtgtcc acctcgaggt cacggtcacg 960 aaccacattg gcatcatcag cccggtagta gcggccacca tcgtgagcct tctcttgagg 1020 tggctggggc aggaagctga agtcgaaacc agcgctggga ggaccagggg gaccaggagg 1080 tecaggaggg ceggggggac caacaggace agcateacea gtgcgacege gaggaceagg 1140 gggcccaatg gggccaggga gaccgttgag tccatctttg ccaggagcac cagcagaagc 1200 cagggggacc teggggacca gcaggaccag aggetecaga gggacettgt teaccaggag 1260 atgccaggat gggcaggggg accetggagg ccagagaagc cacggtgacc ctttatgcct 1320 etgtegeeet gttegeetgt etcaceettg teaceaeggg ggeettgggg teeggegggg 1380 ccacgggcgc cagcggggcc gacgggaccg gcgggaccag caggaccagt ctcaccacga 1440 teaccactet téccageagg gecaaegggg ceaggggeac caggageace aggageacea 1500 gggggtccag cggggccggt ctcaccacgg tcacccttgg cgccaggaga accgtctcgt 1560 ccaggggaac cttcggcacc aggagccccc tcacgtccag attcacccag ggggtccagc 1620 caatccaggg gggcccatgg gaaccagggg gaccacgttc accacttgct ccagagggac 1680 cttgtttgcc caggttcacc agaggggcca ggaagaccag ggaagcctct ctctcctct 1740 tgaccaggca ggccgaccac accacgctgt ccagcaatac cttgaggccc gggagtacca 1800 ggagcaccag caggaccatc agcaccaggg gatcetttet cgccagcagg gccaggggga 1860 ccagggggac caacttcacc aggacgtcca gcagggccag tctcaccacg gggacctttg 1920

1980

ccgccttett tgccagcagg accaggaggg ccagggggtc cagcatttcc agaggggcca

```
ggaggaccga ctcggccagc agcaccaggg aaaccagtag caccaggggg accagcgctg
ccggcgagca cctttggctc caggagcacc aacattacca atggggccag ggggtccagc
                                                                    2100
gggtccggca gggccagggg gaccagcatc gcctttagca ccagcatcac caggttcgcc
                                                                    2160
tttagcacca ggttggccgt cagcaccagg ggggccagca aagccagcag ggccggggg
                                                                    2220
accaggetea ecaeggtete egggggeace acgageteca gtgggaccag eagggeeget
                                                                    2280
gggaccactt tcacccttgt caccaggggc accagcaggg ccaggaggac caatggqqcc
                                                                    2340
ggtcagacca cggacgccat ctttgccagg agagccatca gcacctttgg gaccagcatc
                                                                    2400
acctctgtca cccttaggcc ctggaagacc agctgcacca cgttcaccag gcattccctg
                                                                    2460
aaggecaggg gegeeetgge taeegggage teeaggggea eeagcateae eettageace
                                                                    2520
atcgttgccg ggagcaccgt tggcccctcg gggaccagca ggaccagggg gaccttgcac
                                                                    2580
accacgeteg ecagggaaac eteteteege etettgetee agaggggeea ggggegeaaa
                                                                    2640
ggtctccagg aacacctgt tcaccaggtt tgcctgcttc acctggagga ccagcaqqac
                                                                    2700
cagggagacc ctggaatccg ggggagccag cagggccttg ttcccccctc ttttcacaqq
                                                                    2760
ggacccagaa gggccagggg gtcccttgag ttcacacctt ctccattttt ccagcaaqqa
                                                                    2820
ccgaaaaggc ccaggggtcc gggaacaacc tcgctctcca gccttgccgg gcttttccna
                                                                    2880
gcagcacett taggtecagg gaateecate acaecageet gaccaeggge accaggtggg
                                                                    2940
cctgggggtc cggggcgacc atcttgaccg ggcgggaacc aaggggggcc agttttgcca
                                                                    3000
tcaggaccaa gggctgccag ggcttccagt cagacccttg gcaccaggca gaccagcttc
                                                                    3060
accgggacga ccagettcac caggagatec tttggggcca gcagggccag gagaaccacg
                                                                    3120
ttcaccagcg ggacccttgg gaccagcaac accatctgcg ccagggaaac cacggctacc
                                                                    3180
aggtccacca cgctcgccag ggggtccggg caggccagtg ggtccgggtt cacctcgagc
                                                                    3240
tcctcgcttt ccttcctctc cagcagggcc agggggtcct tgaacaccaa cagggccagg
                                                                    3300
ctctccctta gcaccagtgt ctcctttgct gccaggagca ccaggttcac cgctgttacc
                                                                    3360
cttgggacca ggaggccgc cggggccctg gggtccagag gggcctcggg caccagggaa
                                                                    3420
gccaggagca ccagcaatac caggagcacc attggcacct ttagcaccag gctctccctt
                                                                    3480
agcaccagtg tetecageag ggccagcage accagcaggg ccaggggggc caggetcacc
                                                                    3540
acgcacaccc tggggacctt cagagcctcg gggcccttgg ggaccagctt cacccttagc
                                                                    3600
accaacagca ccagggaagc caggaggacc agcggggccg gtgggaccag ggggcccggc
                                                                    3660
agcaccagta gcaccatcat ttccacgagc accagcaggg ccagggggctc cagggcgacc
                                                                    3720
teteteacea ggeaggeeac gggggeecat etgaceagga getecatttt caceaggget
                                                                    3780
gccaggctca cccttaggac cagcaggacc agcatetece ttggcaccat ccaaaccaet
                                                                    3840
gaaacctetg tgtcccttca ttccagggag gccagctgtt ccgggcaatc ctcgagcacc
                                                                    3900
ctgaggccca ggaggcccac gctcaccagg acgaccaggt tttccagctt ccccatcatc
                                                                    3960
tocattettt ccagggggac ctgggggacc tcggggaccc atgggacctg aagetccagg
                                                                    4020
ctcgccaggc tcaccagggg gaccttggaa gccttgggga ccaggtgcac caggggggcc
                                                                    4080
agggagacca cgaggaccag agggacccat ggggccaggc acggaaattc ctccggttga
                                                                    4140
tttctcatca tagccataag acagcttggg gagcaaaagt ttccctccga ggccaggggg
                                                                    4200
tccgggaggt ccggggggtcc gggaagtcca ggctgtccag ggatgccatc
                                                                    4260
teggeeaggg gggeetgegg gteeceettg ggeetegggg geeeagtgte teeettgggt
                                                                    4320
ccctcgacgc ccggtggttt ctttggtcgg tgggtgactc ttgagccgtc ggggcagacq
                                                                    4380
ggacagcact egeceteggg gactteggeg ceggggeagt tettggtett egteacagat
                                                                    4440
cacgicateg cacaacacci tgccgttgtc gcagacgcag atacggcagg gctcgggttt
                                                                    4500
ccacacgtct cggtcatggt acctgaggcc gttctgtacg caggtgattg gtgggatgtc
                                                                    4560
ttegtettgg ceetegaett ggeetteete ttggeegtge gteaggaggg eggtggeege
                                                                    4620
ttaagaggag caggagccgg aggtccacaa agctgaacat gtctagaccc tagacatqta
                                                                    4680
gactetttgt ggetggggag ggggttageg teegeteatg egtggeetea eacteeqegt
                                                                    4740
gcctcctgct ccgaccccga ggagaaactc ccgtctgctg cccc
                                                                    4784
```

```
<210> 275
<211> 562
<212> DNA
<213> Homo sapiens
<220>
<221> misc_feature
<222> (1)...(562)
```

<223> n = a,t,c or g

```
<400> 275
atggeteetg tggttagtat ggeteegegt gaggeetegg eteeagggga ggeaegtggg
                                                                     60
cetegeegag ceeggeatet acceaggete getggggaeg gegeeetgea gegteetget
                                                                    120
ggggtgggct ggcagaaaaa gcttgtggta aaggggggca aaaaaaaaga agcaggttct
                                                                    180
gaagttcact cttgattgca cccaccccat agaagacgga tcatggatgc tgccaatttt
                                                                    240
gagcagtttt tgcaagagag gatcaaagtg agcagaaaag ctaggaatgt cattggaggg
                                                                    300
gttgtgatca aaaggagcaa gggcaagatc accatgactt ccgagatgcc tcttcccaaa
                                                                    360
aggtatttga aataagaaat atttgaagaa gaacaatcta cgtgattgga cgtgcgtaac
                                                                    420
tgctaacagc aaaaggggtt atgaattacg ttacttccaa attcccccqa acaaqcaaqa
                                                                    480
ggaggaagnc gaggaataat aatcacttat gtgaatattt tatacgaatt cttaataacq
                                                                    540
gggttccaaa agatgcgccg tt
                                                                    562
     <210> 276
     <211> 1600
     <212> DNA
     <213> Homo sapiens
     <400> 276
cegagatget ggtcatggeg cecegaaceg tectectget geteteggeg gecetggece
                                                                     60
tgaccgagac ctgggccggc tcccactcca tgaggtattt ctacacctcc gtgtcccggc
                                                                    120
ceggeegegg ggageeeege tteateteag tgggetaegt ggaegaeaee cagttegtga
                                                                    180
ggttegacag cgacgccgcg agtccgagag aggagccgcg ggcgccgtgg atagagcagg
                                                                    240
aggggccgga gtattgggac cggaacacac agatctacaa ggcccaggca cagactgacc
                                                                    300
gagagageet geggaacetg egeggetaet acaaceagag egaggeeggg teteacaece
                                                                    360
tecagageat gtacggetge gacgtgggge eggacgggeg ceteeteege gggeatgace
                                                                    420
agtacgceta cgacggcaag gattacatcg ccctgaacga ggacctgcgc tcctggaccg
                                                                    480
ccgcggacac cgcggctcag atcacccagc gcaagtggga ggcggcccgt gaggcggagc
                                                                    540
ageggagage ctacctggag ggegagtgeg tggagtgget ceqeaqatac ctqqaqaaeq
                                                                    600
ggaaggacaa gctggagcgc gctgaccccc caaagacaca cgtgacccac caccccatct
                                                                    660
ctgaccatga ggccaccctg aggtgctggg ccctgggttt ctaccctgcg gagatcacac
                                                                    720
tgacctggca gegggatggc gaggaccaaa ctcaggacac tgagcttgtg gagaccagac
                                                                    780
cagcaggaga tagaaccttc cagaaagtgg ggcagctgtg ggtggtgcct tctggagaag
                                                                    840
agcagagata cacatgccat gtacagcatg taggggctgc cgaagcccct cacccctctg
                                                                    900
agatggggag eggtetteee agtteeaeeg teeceeateg gtgggeattg gtgetggget
                                                                    960
tgggctgtcc ctagcagttg gtggtcatcg ggagctgtgg tcgctgctgt gatgtgtaag
                                                                   1020
caggaagagt tcaggtggga aaaggaggga gcttactctt cagggcctgg cgtgccagcg
                                                                   1080
accagtgccc aggggctttt atgtgttctc tccacaggct tgaaaaagcc ctgagacaag
                                                                   1140
etgteettgt gagggaetga agatgeagga tttetteeae geetteeet ttqtqaette
                                                                   1200
caagageeet etggeatete etttetgeaa aggeaeeetg aatgtgtetg egteeeetgt
                                                                   1260
tagcataatg tgaggaggtg gagagacagc ccaacctttg tgtccactgt gacccctgtt
                                                                   1320
ccccatgctg acctgtgttt cctccccaag tcatctttct tqqtcccaqa aaqqqqqqq
                                                                   1380
ctggatgtct ccatctctgt ctcaacttta cgtgcactga gctgcaactt tttactttcc
                                                                   1440
tactggaaaa taagaatctg aatataaaat ttgtttgttt tctcaaaata tttgctatga
                                                                   1500
gaggttgatg gattaattaa ataaggtcaa ttccctggaa tgttgagagc aggcaaataa
                                                                   1560
1600
```

<210> 277

<211> 1293

<212> DNA

<213> Homo sapiens

<400> 277 cageteetgg ggcctaacaa aaagaaacet gccatgetge tetteeteet etetgeactg 60 gtectgetca cacagecect gggetacetg gaageagaaa tgaagaecta eteceacaga 120 acaatgccca gtgcttgcac cctggtcatg tgtagctcag tggagagtgg cctgcctggt 180 cgcgatggac gggatgggag agagggccct cggggcgaga agggggaccc aggtttgcca 240 ggagctgcag ggcaagcagg gatgcctgga caagctggcc cagttgggcc caaaggggac 300 aatggctctg ttggagaacc tggaccaaag ggagacactg ggccaagtgg acctccagga 360 cctcccggtg tgcctggtcc agctggaaga gaaggtcccc tggggaagca ggggaacata 420 ggacctcagg gcaagccagg cccaaaagga gaagctgggc ccaaaggaga agtaggtgcc 480 ccaggcatgc agggctcggc aggggcaaga ggcctcgcag gccctaaggg agagcgaggt 540 gtccctggtg agcgtggagt ccctggaaac acaggggcag cagggtctgc tggagccatg 600 ggtccccagg gaagtccagg tgccagggga cccccgggat tgaaggggga caaaggcatt 660 cctggagaca aaggagcaaa gggagaaagt gggcttccag atgttgcttc tctqaqqcaq 720 caggttgagg ccttacaggg acaagtacag cacctccagg ctgctttctc tcagtataag 780 aaagttgage tetteecaaa tggeeaaagt gtgggggaga agatttteaa gacageagge 840 tttgtaaaac catttacgga ggcacagctg ctgtgcacac aggctggtgg acagttggcc 900 tctccacgct ctgccgctga gaatgccccc cttgcaacag ctggtccgta gctaagaacg 960 aggetgettt ceetgageat gaetgattee caagaccaga gggeaaagtt teacettace 1020 ccacaggaga gtccctgggt cttattccaa cttgggcccc aggggagccc aacgatgatg 1080 gcgggtcaga ggactgtgtg gagatettca cccaatggca agtggaatga cagggettgt 1140 ggagaaaagc gtcttgtggt ctgcgagttc tgagccaact ggggtgggtg gggcagtgct 1200 tggcccagga gtttggccag aagtcaaggc ttagaccctc atgctgccaa tatcctaata 1260 aaaaggtgac catctgtgcc gggaaaaaaa aaa 1293

<210> 278 <211> 1479 <212> DNA

<213> Homo sapiens

<400> 278

tttcgtggag attccggcct ggagctccca gggccgaggt cactttggtg gcagttcatg 60 gagaataget tgaggtgaca agacagcaga caegaegtgg gtetetggga etgeetgtge 120 cgttgtgggc agcccctcca gagccctgag tcacgcagcc ttcagaggca cccatggcta 180 cgagaagcac agtctctgcc tgaggctcca gagcggccct ttttccccag cagcagacct 240 tgggacctgt gagcgctgca tccaattaac catgggaagg gtcagcacca gccaccagcc 300 ccttaggtga ggactctgcc tgggggctctg ctgatggttc cgaatcatgg agctgcagag 360 agetecteca geetggagae gttettggtg aaagetgtgg tetaaeteca eeggetette 420 ctgcacattg tattcaagag gggtgcctgc ccccgctgac tcaggagctc cggtgctgca 480 gccgccacga atggggaggt gggccctcga tgtggccttt ttgtggaagg cqqtqttqac 540 ectggggctg gtgcttctct actactgctt ctccatcggc atcaccttct acaacaaqtg 600 gctgacaaag agcttccatt tccccctctt catgacgatg ctgcacctgg ccgtgatctt 660 cetettetee gecetgteea gggegetggt teagtgetee agecacaggg eeegtgtggt 720 gctgagctgg gccgactacc tcagaagagt ggctcccaca gctctggcga cggcgcttga 780 cgtgggcttg tccaactgga gcttcctgta tgtcaccgtc tcgctgtaca caatgaccaa 840 atcctcagct gtcctcttca tcttgatctt ctctctgatc ttcaagctgg aggagctgcg 900 egeggeactg gteetggtgg teeteeteat egeegggggt etetteatgt teacetacaa 960 gtccacacag ttcaacgtgg agggcttcgc cttggtgctg ggggcctcgt tcatcggtgg 1020 cattegetgg acceteacce agatgetect geagaagget gaacteggee tecagaatee 1080 categacace atgttecace tgeagecact catgttectg gggetettee etetetttge 1140 tgtatttgaa ggtctccatt tgtccacatc tgagaaaatc ttccgtttcc agggacacag 1200 ggctgctccg gcgggtactt ggggagcctc ttccttggcg ggattctcgc ctttggtttg 1260 ggettetetg agtteeteet ggteteeaga aceteeagee teactetete cattgeegge 1320 atttttaagg aagtctgcac tttgctgttg gcagctcatc tgctgggcga tcagatcagc 1380 ctcctgaact ggctgggctt cgcctctgcc tctcgggaat atccctccac gttgccctca 1440 aagccctgca ttccagaggt gatggtggcc ccaaggcct 1479

```
<210> 279
     <211> 1790
     <212> DNA
     <213> Homo sapiens
     <220>
     <221> misc feature
     <222> (1) ... (1790)
     \langle 223 \rangle n = a,t,c or g
     <400> 279
tcacggccgg cgcctcctcc tggattcatt cactcgctct tttcattcac gaaggtagtg
                                                                      60
aggectagtg gaaagecatg gagagegete teecegeege eggetteetg tactgggteg
                                                                      120
gegegggeac egtggeetae etagecetge gtatttegta etegetette aeggeeetee
                                                                     180
gggtctgggg agtggggaat gaggcggggg tcggcccggg gctcggagaa tgggcagttg
                                                                     240
tcacaggtag tactgatgga attggaaaat catatgcaga agagttagca aagcatggaa
                                                                     300
tgaaggttgt ccttatcagc agatcaaagg ataaacttga ccaggtttcc agtgaaataa
                                                                     360
aagaaaaatt caaagtggag acaagaacca ttgctgttga ctttgcatca gaagatattt
                                                                     420
atgataaaat taaaacaggc ttggctggtc ttgaaatcgg catcttagtg aacaacgtgg
                                                                     480
gaatgtcgta tgagtatcct gaatactttt tggatgttcc tgacttggac aatgtgatca
                                                                     540
agaaaaatga taaatattaa tattetttet gtttgtaaga tgacacaatt ggtactgeet
ggcatggtgg aaagatccaa aggggctatt ctgaacattt catctggcag tggcatgctc
                                                                      660
cctgtcccac tcttgaccat ctattctgca accaagactt ttgtagattt cttctctcag
                                                                     720
tgcctccatg aggagtatag gagcaagggc gtctttgtgc agagtgtcct gccatacttc
                                                                     780
gtagctacaa aactggctaa aatccggaag ccaactttgg ataagccctc tccggagacg
                                                                      840
tttgtgaagt ctgcaattaa aacagtcggc ctgcaatccc gaaccaatgg atacctgatc
                                                                     900
catgctctta tgggcttgat aatctcaaac ctgccttctt ggatttattt gaaaatagtc
                                                                     960
atgaatatga acaagtctac acgggctcac tatctgaaga aaaccaagaa qaactaagca
                                                                     1020
ttgataactg cattgtaact tggccagatg ctccagcata tgcacgttca ctgcaaagca
                                                                     1080
ccctactggt tttgaaaatc tgaccttgtc atttcaatag ttattaacat gactaaatat
                                                                     1140
tatcttaatt aagaggaaaa tagaagttgc ttttaggggt ttctgacata tattctqqat
                                                                    1200
actatccgag gtaattttga agtttaatat aaatgctcat atcaaatgaa tatagaacta
                                                                    1260
atattgtcgg gaacacctaa tagaaaggaa tactattata gcaaatcaca gaatgataga
                                                                    1320
ctcaagcata aaacttggca gttttatctg cttcaaaatg ccattgatca ttattcctgt
                                                                    1380
attttctctg aaactgatta taaaaaccaa tgtccagcta ctcttttgtt tttgacactt
                                                                    1440
gaagaaatgg agatcgattt gatttgttta taagcaqaca cactgcaatt tacaaagatc
                                                                    1500
tctttacggt tttataaaat tatcttccag tttgtacatt tatatggaat tgttctttat
                                                                    1560
caagggtagc taatgacatg aaaataattg tgaaatatgg aattatttct gacacatgaa
                                                                    1620
gcccactaaa ctatgctttc ttataatgca tatttcttct cagtttaaat gtatgtaaat
                                                                    1680
atcgaagcta atatggtatg atttataaag gataaatggg cccaaagtgt acattggaga
                                                                    1740
ctgggcagcc catctatggt accactggaa ccctgnccca ggaaagtggt
                                                                    1790
     <210> 280
     <211> 5612
     <212> DNA
     <213> Homo sapiens
     <400> 280
tcactagtcc atgtggtgga attcgtccag agtggcagta aaggaggaag atggcggggt
                                                                      60
gcaggggtc tctgtgctgc tgctgcaggt ggtgctgctg ctgcggtgag cgtgagaccc
                                                                     120
gcacccccga ggagctgacc atccttggag aaacacagga ggaggaggat gagattcttc
                                                                     180
caaggaaaga ctatgagagt ttggattatg atcgctgtat caatgaccct tacctggaag
                                                                      240
ttttggagac catggataat aagaaaggtc gaagatatga ggcggtgaag tggatggtgg
                                                                      300
```

```
tgtttgccat tggagtctgc actggcctgg tgggtctctt tqtqqacttt tttqtqcqac
                                                                     360
tcttcaccca actcaagttc ggagtggtac agacatcggt ggaggagtgc agccagaaag
                                                                     420
getgeetege tetgtetete ettgaactee tgggttttaa eeteacettt gtetteetgg
                                                                     480
aaagcctcct tggtctcatt gagccggtgg aagcgggttc cggcattacc gagggcaaat
                                                                     540
getatetgta tgecegaeag gtgecaggae tegtgegaet eeegaeeetg etgtggaagg
                                                                     600
cccttggagt gctgctcact gttgctgcaa tgcttcttat ttgggcttgg aagcccatg
                                                                     660
atecacagtg gtteggtggt gggagetgge eteceteagt tteagageat etecttaegg
                                                                     720
aagatccagt ttaacttccc ctatttccga agcgacaggt atggaaagag acaagagaga
                                                                     780
ctttgtatca gcaggagcgg ctgctggagt tgctgcagct ttcgggggcgc caatcggggg
                                                                     840
taccttgttc agtctagagg agggttcgtc cttctggaac caagggctca cgtggaaagt
                                                                     900
getettttgt tecatgtetg ceaeetteae eeteaaette tteegttetg ggatteagtt
                                                                     960
tggaagetgg ggtteettee ageteeetgg attgetgaae tttggegagt ttaagtgete
                                                                    1020
tgactctgat aaaaaatgtc atctctggac agctatggat ttgggtttct tcgtcgtgat
                                                                    1080
gggggtcatt gggggcctcc tgggagccac attcaactgt ctgaacaaga ggcttgcaaa
                                                                    1140
gtaccgtatg cgaaacgtgc acccgaaacc taagctcgtc agagtcttag agagcctcct
                                                                    1200
tgtgtctctg gtaaccaccg tggtggtgtt tgtggcctcg atggtgttag gagaatgccg
                                                                    1260
acagatgtcc tcttcgagtc aaatcggtaa tgactcattc cagctccagg tcacagaaga
                                                                    1320
tgtgaattca agtatcaaga cattttttg tcccaatgat acctacaatg acatggccac
                                                                    1380
actettette aaccegeagg agtetgeeat cetecagete ttecaceagg atggtacttt
                                                                    1440
cageceegte actetggeet tgttettegt tetetattte ttgettgeat gttggaetta
                                                                    1500
cggcatttct gttccaagtg gcctttttgt gccttctctg ctgtgtggag ctgcttttgg
                                                                    1560
acgtttagtt gccaatgtcc taaaaagcta cattggattg ggccacatct attcggggac
                                                                    1620
ctttgccctg attggtgcag cggctttctt gggcggggtg gtccgcatga ccatcagcct
                                                                    1680
cacggtcatc ctgatcgagt ccaccaaatg agatcaccta cgggctcccc atcatggtca
                                                                    1740
cactgatggt gggcaaatgt acaggggact ttttcaataa gggcatttta tgatatccac
                                                                    1800
gtgggcctgc gaggcgtgcc gcttctggaa tgggagacag aggtggaaat ggacaagctg
                                                                    1860
agagecageg acateatgga geceaacetg acetaegtet aceegeacae eegeateeag
                                                                    1920
tetetggtga geateetgeg caecaeggte caecatgeet teeeggtggt caeagagaae
                                                                    1980
egeggtaacg agaaggagtt catgaagggc aaccagetca teagcaacaa catcaagtte
                                                                    2040
aagaaatcca gcatcctcac ccgggctggc gagcagcgca aacggagcca gtccatgaag
                                                                    2100
tectacecat ecagegaget aeggaacatg tgtgatgage acategeete tgaggageca
                                                                    2160
gccgagaagg aggacctcct gcagcagatg ctggaaagga gatacactcc ctaccccaac
                                                                    2220
ctataccetg accagtecce aagtgaagac tggaccatgg aggageggtt cegecetetg
                                                                    2280
accttccacg gcctgatcct tcggtcgcag cttgtcaccc tgcttgtccg aggagtttgt
                                                                    2340
tactetgaaa gecagtegag egecageeag eegegeetet eetatgeega gatggeegag
                                                                    2400
gactaccege ggtacceega catecaegae etggacetga egetgeteaa eeegegeatg
                                                                    2460
ategtggatg teaccecata catgaaccet tegeetttea eegtetegee caacacceae
                                                                    2520
gtctcccaag tcttcaacct gttcagaacg atgggcctgc gccacctgcc cgtggtgaac
                                                                    2580
gctgtgggag agatcgtggg gatcatcaca cggcacaacc tcacctatga atttctgcag
                                                                    2640
geceggetga ggeageacta ceagaceate tgacageeca geceaceete teetggtget
                                                                    2700
ggcctgggga ggcaaatcat gctcactccg ggcggggcac agctggctgg ggctgtttcc
                                                                    2760
ggggcattgg aaagattccc agttacccac tcactcagaa agccgggagt catcggacac
                                                                    2820
cttgctggtc agaggccctg ggggtggttt tgaaccatca gagcttggac ttttctgact
                                                                    2880
tecceageaa ggatetteee aetteetget eeetgtgtte eecaceetee cagtgttqqe
                                                                    2940
acaggececa eccetggete caccagagee cagaagecag aggtaagaat ecaggeggge
                                                                    3000
cccgggctgc actcccgagc agtgttccct ggcccatctt tgctactttc cctagagaac
                                                                    3060
eceggetgtt geettaaatg tgtgagaggg acttggeeaa ggeaaaaget ggggagatge
                                                                    3120
cagtgacaac atacagttgc atgactaggt ttaggaattg ggcactgaga aaattctcaa
                                                                    3180
tatttcagag agtccttccc ttatttggga ctcttaacac ggtatcctcg ctagttggtt
                                                                    3240
ttaagggaaa cactctgctc ctgggtgtga gcagaggctc tggtcttgcc ctgtggtttg
                                                                    3300
acteteetta gaaceaeege eeaeeagaaa eataaaggat taaaateaea etaataaeee
                                                                    3360
ctggatggtc aatctgataa taggatcaga tttacgtcta ccctaattct taacattgca
                                                                    3420
getttetete eatetgeaga ttatteeeag teteeeagta acaegtttet acceagatee
                                                                    3480
tttttcattt cettaagttt tgateteegt etteetgatg aageaggeag ageteagagg
                                                                    3540
atcttggcat cacccaccaa agttagctga aagcagggca ctcctggata aagcagcttc
                                                                    3600
actcaactct ggggaatget accatttttt ttccaaagta gaaaggaagc acttctgagc
                                                                    3660
cagtgaccac tgaaaggtat gtgctatgat aaagcagatg gcctatttga ggaagagggt
                                                                    3720
gtctgccctt cacaaacacc tctctctccc ctgcactagc tgtcccaagc ttacatacag
                                                                    3780
aggcccttca ggagggcctc ctgtggccgc agggagggtg cgtggggaag atgcttcctg
                                                                    3840
```

```
ecageacgtg cetgaaggtt teacatgaag catgggaage geaccetgte gtteagtgae
                                                                    3900
gtcattcttc tccaggctgg cccgcccct ctgactaggc acccaaagtg agcatctggg
                                                                    3960
cattgggcat tcatgcttat cttcccccac cttctacatg gtattagtcc cagcaggcat
                                                                    4020
ccctggggca gacgtgcttt ggctcaagat ggccttcatt tacgtttagt tttttttaaa
                                                                    4080
accgtggagg ttgcccacgg gcctcggcac ctgggccctg gcagcacagc tctcaggccc
                                                                    4140
agecetggge gaceteettg gecaagtetg cettteacee tgggggtgag cateagteet
                                                                    4200
ggctctgctg gtccagatct tgcgctcagc acactctagg gaataattcc actccagaga
                                                                    4260
tggggctgct tcaaggtctt ttctagctga ttgtggcccc tccattttcc gcattttctt
                                                                    4320
atctccctga ccaaaattgc tttgacttct aaatgtttct gcttcccaga atgcacctga
                                                                    4380
cttatgaaat ggggataata ctcccaggaa atagcgcagg acatcacaag gaccaaaaag
                                                                    4440 .
gcaattctta tttaaatgtt actatttggc cagctgctgc tgtgttttat ggcagtgttc
                                                                    4500
aaagettgat caegttattt etteetttta ttaagaagga agecaattgt ecaagteagg
                                                                    4560
agaatggtgt gatcacctgt cacagacact ttgtcccctc tccccgcccc ttcctggagc
                                                                    4620
tggcagaget aacgecetge aggaggacee eggeeteteg agggetggat cageageege
                                                                    4680
etgecetgag getgeeeegg tgaatgttat tggaatteat eeetegtgea cateetgttg
                                                                    4740
tgtttaagtc accagatatt ttgttcccat cagtttagcc cagagataga cagtagaatg
                                                                    4800
caaatacete ceteceetaa aetgaetgga eggetgeeaa ggaggeeeca aacecaggee
                                                                    4860
ccatgcaaag gcacgtggtt tccttttctc ctctctctgc atctgcgctt tccagataag
                                                                    4920
eccaaagaca gcaacttete caeteatgae aaateaactg tgaccetege teetteeatt
                                                                    4980
tetgtecatt agaaaccage ettttcagea tetcacccat tagcagecce atcacccagt
                                                                    5040
gatcagtcgc ctcagtaaag cagatctgtg gatggggagc ctacgggtgg taagaagtgg
                                                                    5100
tgttttgtgt ttcatctcca gcttggtgtt ccatggcccc taggcgaggt gatcagggag
                                                                    5160
tggggccaat gggcccccgg ccctggcttt gggaccttgt gctgagggat gatttgctcc
                                                                    5220
tgaccttgat taacttaaca gttcccagct ggaagggaca ctttcaggac ccagtccact
                                                                    5280
gtatggcatt tgtgatgcag aattatgcac tgacatgacc ctgggtgaca ggaaagcctt
                                                                    5340
tegagaggee caaggtggee tegecageee tgeagtattg atgtgeagta ttgcaccaca
                                                                    5400
gctctgcgga ccttggccat tgccgcagtc gcagcttcct tttttctgtt tgcactgttt
                                                                    5460
gtttgtatga tgttagctaa ttccactgtg tatataaatt gtatttttt taatttgtaa
                                                                    5520
aatgctattt ttatttgaac ctttggaact tgggagttct cattgtaacc ctaacatgtg
                                                                    5580
agaataaaat gtcttctgtc tcaaaaaaaa aa
                                                                    5612
```

<210> 281 <211> 2554 <212> DNA

<213> Homo sapiens

<400> 281 ttttttttt atccaatttg aattttaaag gaaataaaag gtgatttaat ttccaaaggg 60 gcaattaatt acaaccaaga gaaaacattg ctgagatggt gcctggttgc ttctattcag 120 gccattgctg aactatatag aaaaaaagta tattcatggt gtcttcatta ttatqaaaat 180 cacagtaata tgactcatca ggaaatcaca ataattttat gacagaaaca atatatttac 240 gaacgaatct gtcagtattt gactctcttt tgagggaaaa ataaatgaaa accacgttct 300 ctggaaagaa ataagacaag aaatgcccac agttgcattc tgctgttggg aatacatctc 360 caaaattcaa gggtcaaagg gttttacaca ttaattttca atacttatca ccttcttctt 420 ctctcaattt atggagatag atttctacgt tcattattcg ggattattag aaatttcctt 480 cagtttgaac aatgcgtaac aagtattctg tgacatgggt gcaaaaagtt gtcattttca 540 atcaagttat aagacataac tgtgcataaa gtgcatttca aattaaagta cccatcagga 600 gagaaattta aagtgcaata cataaggtgc tttacatagt gcaaagttgc taaatatata 660 cattatctgc gccaagtcca aataaagcag gatcttatct atccctatgc tacagtgaac 720 aatggagaca tactctcaca tctttattcc tttgcaggtg taagtatttt ggtccgtgtg 780 tgtgtatgtg tgtgtgtgt tgtgtgtata cctaaatatg taactgctta atggtttctg 840 caaatgtttg gaactggttt cccagaattt gaaaccttta aacactgaca taattatgga 900 atetecaett caatatgeaa atecaettea aagtaaeatt aggettgtaa taatggttga 960 gctatttcag catgcatatc ttgtaaggca ggtatttgac tgtgaattaa atgcttaatg 1020 aaaattacaa aaaaatacaa tcactataat gctgccaaga gagaccccta tgaaataagg 1080

gtatgacccc tettggtcat attetgetgg tttaacacta ecagggagga gtatagtact

1140

```
ctgtgtataa gggaccaccc ttggcattgc tgaattgagc agatcctgga cattccagaa
 tgatccattg tgtggcatgg cggtgatatt gaggaggtgg catagtagtg ggtacaaatc
                                                                     1260
tgtggagttc atggcttctt ttgagaaatt ctttctgaag gcaggaccat gggctaaaaa
                                                                     1320
 tattggatge atatetgeta acgeattatg gtaaccgtgg ttgcctaaca gaaagtcate
                                                                     1380
 tgacttattc tgtaaaatgt gccacccttc atcagccact gctatgattg gttgaattcg
                                                                     1440
 actgttgtat ttgtaatgcc acctttctgg aacgtcttct tttttgtaaa cagtaagatt
                                                                     1500
 aggatgagcg tgagttagtg cttcatagac ttcatcaaat ttaccttctt ttggcaagat
                                                                     1560
ggctgctact ggagattgat caatcagggt atagtggtct ttatccaggt actggtcaag
                                                                     1620
 ttctattaac ctttcctcag agcactgcgt cattccatga tcacttgtga tgattaggtt
                                                                     1680
 cagagtgttc cacaactttg cetttttcag catttgtatg agatatecta acttettgte
                                                                     1740
 aatatctgaa atgacaggcc ccatgagcgg actgtcaggt cccaaatggt ggcccatgtc
                                                                     1800
 atcagggtct tcccaataga gaagaccaag atttatgggc tcttttgacg taaaccattc
                                                                     1860
 aataattttg gcaactctat cttcaaatga aactgactca ttgtaaggca tgtaatgagt
                                                                     1920
 aggaaagcgc ttatgtattt ttacatctgt tccgggccac atggctgcac cactagtatg
                                                                     1980
 tectgeeete tegittigtga tecatattgg tetegettet teccaaaaet tegaateata
                                                                     2040
 aatattcatg tgatccaagg agaaagattt gttccgaata ggatcaaaca tatcatttgc
                                                                     2100
 aacaatccca tgattctctg caaagaggcc agttaccaaa gtataatggt tagggtaggt
                                                                     2160
 ttttgtaata aaaacattag taacttgctt cacgtgaaca ccatatttca taatataatg
                                                                     2220
 aaaatggggc gttggaactt tatataagta atcccaacgg aatccatcaa aagaaactag
                                                                     2280
 tagaaccttt tgctggtctg gttggagaga aaaggtggtt gaaagactca gtgcagcaag
                                                                     2340
 tatgaaggac accaagataa atttcgaagt cattttcaaa gtacttgatc agttcagtgt
                                                                     2400
 aagataatee tegeagegat eegtteagte egtattagtt tggageaacg ggagggaggg
                                                                     2460
 tetggaggag acteeetegg gegegeegeg ggtaaeggeg ggagggtgae tggaggaaeg
                                                                     2520
 cccccggaac gcgcaggagc tcacctgcqc tcaa
                                                                     2554
      <210> 282
      <211> 1561
      <212> DNA
      <213> Homo sapiens
```

```
<211> 1561
<212> DNA
<213> Homo sapiens
<220>
<221> misc_feature
<222> (1)...(1561)
<223> n = a,t,c or g
```

<400> 282

```
ttaggaggcc tgggngngnn tnnnnaatag accegegetg caggaatteg geacgagete
                                                                      60
ctcctatggc cgctgttgtc aggtgccagg agcaggccca gaccaccgac tggagagcca
                                                                     120
ccctgaagac catccggaac ggcgttcata agatagacac gtacctgaac gccgccttgg
                                                                     180
acctectggg aggegaggae ggtetetgee agtataaatg caqtqacqet taacattqqt
                                                                     240
atcccttccc tgacaaagtg ttgcaaccaa cacgacaggt gctatgaaac ctgtggcaaa
                                                                     300
agcaagaatg actgtgatga agaattccag tattgcctct ccaagatctg ccgagatgta
                                                                     360
cagaaaacac taggactaac tcagcatgtt caggcatgtg aaacaacagt ggagctcttg
                                                                     420
tttgacagtg ttatacattt aggttgtaaa ccatatctgg acagccaacg agccgcatgc
                                                                     480
aggtgtcatt atgaagaaaa aactgatctt taaaggagat gccgacagct agtgacagat
                                                                     540
gaagatggaa gaacataacc tttgacaaat aactaatgtt tttacaacat aaaactgtct
                                                                     600
tatttttgtg aaaggattat tttgagacct taaaataatt tatatcttga tgttaaaacc
                                                                     660
tcaaagcaaa aaaagtgagg gagatagtga ggggagggca cqcttqtctt ctcaqqtatc
                                                                     720
ttccccagca ttgctccctt acttagtatg ccaaatgtct tgaccaatat caaaaacaaq
                                                                     780
tgcttgttta gcggagaatt ttgaaaagag gaatatataa ctcaattttc acaaccacat
                                                                     840
ttaccaaaaa aagagatcaa atataaaatt catcataatg tctgttcaac attatcttat
                                                                     900
ttggaaaatg gggaaattat cacttacaag tatttgttta ctatgaaatt ttaaatacac
                                                                     960
atttatgcct agaaggaacg gactttttt ttctatttta attacacata atatqtaatt
                                                                    1020
aaagtacaac ataatatgtt gtttctctgt agcccgttga gcatatgagt aagtcacatt
                                                                    1080
tctattagga ctacttacaa ggacaaggtt tccatttttc cagttgtaaa attggaacca
                                                                    1140
tcagctgata acctcgtagg gagcaacccc aggatagcta agtgttatgt aatatqccta
                                                                    1200
```

1260

gaaggtgatg tgaatgcgat tcagaagcat agccactccc attttatgag ctactcacat

```
gacaaatgtc atcttttgct ataacctttg ccaagttaga gaaaagatgg atttaatgag
                                                                    1320
ataaatgaaa agatatttaa cctaatatat caaggcacta tttgctgtta tgctttgtta
                                                                    1380
tttatttccc agcacttgtt ccttattgta gattttttaa agactgtaac cttttactaa
                                                                    1440
ctgtggtctt actaaaattt gtgcttgata ctgcttttca aaaagccttt aattacagcc
                                                                    1500
aaaaggatgg aaaaggcaag atataaatgc cttttataga tctcttattt acattgaaaa
                                                                    1560
                                                                    1561
     <210> 283
     <211> 1732
     <212> DNA
     <213> Homo sapiens
     <400> 283
cccatccacc cgcgacccac atccgatcgg taccggagcg ggaggtgagg ggtcggctcg
                                                                      60
cggatccagc tgcagagcga cgtggggaat tggaatggtg ctttggatct tatggaggcc
                                                                     120
atttggattc tcaggaagat ttctgaaact ggaaagccat aqcataactq aatcaaaatc
                                                                     180
gttgattcca gtagcttgga catccctgac acagatgctt ttggaagcac ctggtatttt
                                                                     240
cttattgggt caaagaaaaa gattctcaac catgccagaa acagaaacac atgagagaga
                                                                     300
gactgaattg ttttcaccac cttctgatgt ccgaggcatg acaaaacttg atagaacagc
                                                                     360
ttttaaaaaag acagtcaaca ttccagtgct taaagtgagg aaagaaatag tcagtaaatt
                                                                     420
gatgcgatcc ctaaaaaggg cagcattgca gcgcccaggc ataagacgtg tgattgaaga
                                                                     480
tccggaagat aaagaaagta gactaatcat gttggatccc tataaaatat ttactcatga
                                                                     540
ttcctttgag aaagcagaac tcagtgtttt agagcagctt aatgtcaqtc cacaqatctc
                                                                     600
taaatacaat ttggaactaa catatgaaca ctttaagtca gaagaaatct tgagagctgt
                                                                     660
gcttcctgaa ggtcaagatg taacttcagg gtttagcagg attggacata ttgcacacct
                                                                     720
aaaccttcga gatcatcagc tgcctttcaa acatttaatt ggccaggtta tgattgacaa
                                                                     780
aaatccagga atcacctcag cagtaaataa aataaataat attgacaata tgtaccgaaa
                                                                     840
tttccaaatg gaagtgctat ctggagagca gaacatgatg acaaaqqttc qaqaaaacaa
                                                                     900
ctacacctat gaatttgatt tttcaaaagt ctattggaat cctcgtctgt ctacaqaaca
                                                                     960
cagccgtatc acagaacttc tcaaacctgg ggatgtccta tttgatgttt ttgctggggt
                                                                    1020
tgggcccttt gccattccag tagcaaagaa aaactgcact qtatttqcca atqatctcaa
                                                                    1080
tectgaatet cataaatgge tgttgtacaa etgtaaatta aataaagtgg accaaaaggt
                                                                    1140
gaaagtette aacttggatg ggaaagaett cetecaagga ceagteaaag aagagttaat
                                                                    1200
gcagctgctg ggtctgtcaa aagaaagaaa accctctgtg cacgttgtca tgaacttgcc
                                                                    1260
agcaaaaget atagagttte ttagtgettt caagtggett ttagatggge agcecatgee
                                                                    1320
ageagtgagt teetteecat agtgeattgt tataqetttt ceaaagatge taaccetget
                                                                    1380
gaggatgttc ggcaaagggc tggagctgtg ttaggcattt ctctqgaggc atqcaqttca
                                                                    1440
gttcacctgg taagaaatgt ggccccaaac aaggaaatgc tgtgcatcac gtttcagatt
                                                                    1500
cctgcctctg tcctctacaa gaaccagacc agaaatccag agaatcatga agatccacct
                                                                    1560
cttaaaaggc agaggacggc tgaagccttt tcagacgaaa aaacacaaat tgtttcaaac
                                                                    1620
acttaattgg aaatgttttc tccatctccc taccagactt acatgtagtg aaatagaatt
                                                                    1680
tgtattattt aataaaattt tagggtttgg ttttttctat tgaaaaaaaa aa
                                                                    1732
     <210> 284
     <211> 3215
     <212> DNA
     <213> Homo sapiens
     <400> 284
ggaattcccg ggtcgacgat ttcgtgttgt atctgctgtt cgctggctqq qcctccgcag
                                                                      60
caggettggc cageegetga egggteggeg ggegggtttg tgtgaacagg caegeagetg
                                                                     120
cagattttat tctggtagtg caaccctctc aaaggttgaa ggaactgatg taacagggat
                                                                     180
```

```
tgaagaagta gtaattccaa aaaagaaaac ttgggataaa qtaqccqttc ttcaqqcact
                                                                    240
tgcatccaca gtaaacaggg ataccacagc tgtgccttat gtgtttcaag atgatcctta
                                                                    300
cettatgeca geateatett tggaateteg tteattttta etggeaaaga aateegggga
                                                                    360
gaatgtggcc aagtttatta ttaattcata ccccaaatat tttcagaagg acatagctga
                                                                    420
acctcatata ccgtgtttaa tgcctgagta ctttgaacct cagatcaaag acataagtga
                                                                    480
agccgccctg aaggaacgaa ttgagctcag aaaagtcaaa gcctctgtgg acatgtttga
                                                                    540
tcagcttttg caagcaggaa ccactgtgtc tcttgaaaca acaaatagtc tcttggattt
                                                                    600
attgtgttac tatggtgacc aggagccctc aactgattac cattttcaac aaactggaca
                                                                    660
gtcagaagca ttggaagagg aaaatgatga gacatctagg aggaaagctg gtcatcagtt
                                                                    720
tggagttaca tggcgagcaa aaaacaacgc tgagagaatc ttttctctaa tgccagagaa
                                                                    780
aaatgaacat teetattgea caatgateeg aggaatggtg aageacegag ettatgagea
                                                                    840
ggcattaaac ttgtacactg agttactaaa caacagactc catgctgatg tatacacatt
                                                                    900
taatgcattg attgaagcaa cagtatgtgc gataaatgag aaatttgagg aaaaatggag
                                                                    960
taaaatactg gagctgctaa gacacatggt tgcacagaag gtgaaaccaa atcttcagac
                                                                   1020
ttttaatacc attetgaaat gteteegaag attteatgtg tttgeaagat egeeageett
                                                                   1080
acaggtttta cgtgaaatga aagccattgg aatagaaccc tcgcttgcaa catatcacca
                                                                   1140
tattattege ctgtttgate aacetggaga ccctttaaag agateateet teateattta
                                                                   1200
tgatataatg aatgaattaa tgggaaagag attttctcca aaggacccgg atgatgataa
                                                                   1260
gttttttcag tcagccatga gcatatgctc atctctcaga gatctagaac ttgcctacca
                                                                   1320
agtacatggc cttttaaaaa ccggagacaa ctggaaattc attggacctg atcaacatcg.
                                                                   1380
taatttctat tattccaagt tcttcgattt gatttgtcta atggaacaaa ttgatqttac
                                                                   1440
cttgaagtgg tatgaggacc tgatacettc agcetacttt ccccactccc aaacaatgat
                                                                   1500
acatettete caageattgg atgtggeeaa teggetagaa gtgatteeta aaatttggaa
                                                                   1560
1620
catggcaagg gacaagcacc caccagaget teaggtggca tttgctgact gtgctgctga
                                                                   1680
tatcaaatct gcgtatgaaa gccaacccat cagacagact gctcaggatt ggccagccac
                                                                   1740
cteteteaac tgtatageta teetetttt aagggetggg agaacteagg aageetggaa
                                                                   1800
aatgttgggg cttttcagga agcataataa gattcctaga agtgaqttqc tqaatqaqct
                                                                   1860
tatggacagt gcaaaagtgt ctaacagccc ttcccaggcc attgaagtag tagagctggc
                                                                   1920
aagtgccttc agcttaccta tttgtgaggg cctcacccag agagtaatga gtgattttgc
                                                                   1980
aatcaaccag gaacaaaagg aagccctaag taatctaact gcattgacca gtgacagtga
                                                                   2040
tactgacagc agcagtgaca gcgacagtga caccagtgaa ggcaaatgaa agtggagatt
                                                                   2100
caggagcagc aatggtctca ccatagctgc tggaatcaca cctgagaact gagatatacc
                                                                   2160
aatatttaac attgttacaa agaagaaaag atacagattt ggtgaatttg ttactgtgag
                                                                   2220
gtacagtcag tacacagctg acttatgtag atttaagctq ctaatatgct acttaaccat
                                                                   2280
ctattaatgc accattaaag gcttagcatt taagtagcaa cattgcqqtt ttcaqacaca
                                                                   2340
tggtgaggtc catggctctt gtcatcagga taagcctgca cacctagagt gtcggtgagc
                                                                   2400
tgacctcacg atgetgteet egtgegattg ceeteteetg etgetggaet tetgeetttg
                                                                   2460
ttggcctgat gtgctgctgt gatgctggtc cttcatctta ggtgttcatg cagttctaac
                                                                   2520
acagttgggg ttgggtcaat agtttcccaa tttcaggata tttcgatgtc agaaataacg
                                                                   2580
catcttagga atgactaaac aagataatgg cagtttaggc tgcacaactg gtaaaatgac
                                                                   2640
tgtagataaa tgttgtaatt agtgtacacg tttgtatttt tgttaatata gccgctgcca
                                                                   2700
tagttttcta acttgaacag ccatgaatgt ttcatgtctc ccttttttt tgtctatagc
                                                                   2760
tgttacctat tttagtggtt gaaatgagag ctagtgatga cagaaqqatg tggaatqtct
                                                                   2820
tettgacate attgtgtatt getggtaate aagttggtaa egaetaette tageagetet
                                                                   2880
taccactatg acttaagtgg tcctggaagg cagtaagtgg aggtttgcag cattcctgcc
                                                                   2940
ttcatgaggg cttctaccac tgaccacttt gcacgtacct ggctcccaga tttacttagg
                                                                   3000
taccccacga gtcgtccaca taagcagett catctttacc ttgccagagt tgacaattat
                                                                   3060
gggatactct agtctactta tacttgtgtt cccatctgtc tgccatcctc tgaaggccag
                                                                   3120
gacccagtca tacatcctta gaaaccaaag tatggttttt gttttctctt ggaatgtcag
                                                                   3180
gtcttaaggc atttaattga gggacaaaaa aaaaa
                                                                   3215
```

<210> 285

<211> 995

<212> DNA

<213> Homo sapiens

<400> 285 ctcacctgct tctggctttc ccctttattt cactgggagg tattatattt ttagtgtatc 60 ttacggcctt tgaggacttc ttagtttgag tatattttag ctgtgtgcat aaatgtcttt 120 acagtgtact taaggagttg gatttttaga aacttgccat atttagaaat ctattggatt 180 gaacatagtt tgaaaagcaa agtataagtt aatteettta etatateet gtaetattet 240 tttcatggac tttctgatgc ttgctgtttg tgcacatagg ctttgctttt tgtatttatt 300 tatattgtat gaatctaaga ataaaagaga gtgtgaacaa ttcagaagac tacagatata . 360 tettgttagg ttgettteca aaaggtteee agttgtagte ataccageag tgtaacaage 420 aggittititg titaaccaca ciccaattag catggaggat ccittaaaaa tattiqctaa 480 actgataaat aaaaaatact atctttactt aaatttgcat tgggaaagta ttagtgaagt 540 tgaacattct catatgttgt aatgttttgt tttgttttgg tttgatacag tctgcagtct 600 tgctctgttg cccaggctag agtgcagtgg catagtcgta gcttgctgca gcttcaacct 660 ccaggactca agtggtcctc acaagtagct gggaccacag gagtgcaccc ttatgccccc 720 cttattaaaa aattttttt tctttgtaga gatggggtta tactctgtgg tccaggctgg 780 cctgaaactt caggactaaa gcagacgtcc ttccttggcc ttccaaaccc cttggcatta 840 agaaagtggc ctatgactca gggtggctcc ttggatttag gaggctgccc gccctaggat 900 tttgaaatat tggttcaacc cttgtatgac gagaatgaga aaattgtcgt tggcgattgg 960 gaacggtttc tccgacgtcc tttgaccata tcgcg 995

<210> 286 <211> 5838 <212> DNA <213> Homo sapiens

<400> 286

attgaaacac agagcaccag ctctgaggaa ctcgtcccaa gccccccatc tccacttcct 60 cccctcgag tgtacaaacc ctgcttcgtc tgccaggaca aatcatcagg gtaccactat 120 ggggtcagcg cctgtgaggg atgtaagggc tttttccgca gaagtattca gaagaatatg 180 atttacactt gtcaccgaga taagaactgt gttattaata aagtcaccag gaatcgatgc 240 caatactgtc gactccagaa gtgctttgaa gtgggaatgt ccaaagaatc tgtcaggaat 300 gacaggaaca agaaaaagaa ggagacttcg aagcaagaat gcacagagag ctatgaaatg 360 acagetgagt tggacgatet cacagagaag atecgaaaag etcaceagga aacttteeet 420 teactetgee agetgggtaa atacaceaeg ageeteeaaa aaggaatgea gegetgeeaa 480 attettgate ttagtteagt gagacccatt gtggacgtea gacctecaga actacaagat 540 agtaaacttg tgttagttca agccgctaaa tgtgcgccac ttgctgatca ctgctctaag 600 cccgtgctgc tcaaagaagg acctgaggac cagaaggatc agcacgatgt aggagactgt 660 tggaatccag aatgtcaqac tctttttgat cagaacaatg ctgcaaaaaa agaaqagtca 720 gaaactgcca acaaaaatga ttcttcaaag aagttgtctg ttgagagagt gtatcatata 780 aagacacaac ttgaacacat tcttcttcgt cctgatacat atattgggtc agtggagcca 840 ttgacgcagt tcatgtgggt gtatgatgaa gatgtaggaa tgaattgcag ggaggttacc 900 tttgtgccag gtttatacaa gatctttgat gaaattttgg ttaatgctgc tgacaataaa 960 cagagggata agaacatgac ttgtattaaa gtttctattg atcctgaatc taacattata 1020 agcatttgga ataatgggaa aggcattcca gtagtagaac acaaggtgga gaaagtttat 1080 gttcctgctt taatttttgg acagctttta acatccagta actatgatga tgatgagaaa 1140 aaagttacag gtggtcgtaa tggttatggt gcaaaacttt gtaatatttt cagtacaaag 1200 tttacagtag aaacagcttg caaagaatac aaacacagtt ttaagcagac atggatgaat 1260 aatatgatga agacttctga agccaaaatt aaacattttg atggtgaaga ttacacatgc 1320 ataacattcc aaccagatct gtccaaattt aagatggaaa aacttgacaa ggatattgtg 1380 gccctcatga ctagaagggc atatgatttg gctggttcgt gtagaggggt caaggtcatg 1440 tttaatggaa agaaattgcc tgtaaatgga tttcgcagtt atgtagatct ttatgtgaaa 1500 gacaaattgg atgaaactgg ggtggccctg aaagttattc atgagcttgc aaatgaaaga 1560 tgggatgttt gtctcacatt gagtgaaaaa ggattccagc aaatcagctt tgtaaatagt 1620 attgcaacta caaaaggtgg acggcacgtg gattatgtgg tagatcaagt tgttggtaaa 1680 ctgattgaag tagttaagaa aaagaacaaa gctggtgtat cagtgaaacc atttcaagta 1740 aaaaaccata tatgggtttt tattaattgc cttattgaaa atccaacttt tgattctcag 1800

actaaggaaa	acatgactct	gcagcccaaa	agttttgggt	ctaaatgcca	gctgtcagaa	1860
aaattttta	aagcagcctc	taattgtggc	attgtagaaa	gtatcctgaa	ctgggtgaaa	1920
tttaaggctc	agactcagct	gaataagaag	tgttcatcag	taaaatacag	taaaatcaaa	1980
ggtattccca	aactggatga	tgctaatgat	gctggtggta	aacattccct	ggagtgtaca	2040
	cagagggaga					2100
ggacgagaca	gatacggagt	ttttccactc	aggggcaaaa	ttcttaatgt	acgggaagct	2160
tctcataaac	agatcatgga	aaatgctgaa	ataaataata	ttattaaaat	agttggtcta	2220
caatataaga	aaagttacga	tgatgcacaa	tctctgaaaa	ccttacgcta	tggaaagatt	2280
	ccgatcagga					2340
	attggccatc					2400
attgtaaagg	caagcaaaaa	taagcaggaa	ctttccttct	acagtattcc	tgaatttgac	2460
gaatggaaaa	aacatataga	aaaccagaaa	gcctggaaaa	taaagtacta	taaaggattg	2520
ggtactagta	cagctaaaga	agcaaaggaa	tattttgctg	atatggaaag	gcatcgcatc	2580
	atgctggtcc					2640
aagattgatg	acagaaaaga	atggttaaca	aattttatgg	aagaccggag	acagcgtagg	2700
ctacatggct	taccagagca	atttttatat	ggtactgcaa	caaagcattt	gacttataat	2760
gatttcatca	acaaggaatt	gattctcttc	tcaaactcag	acaatgaaag	atctatacca	2820
tctcttgttg	atggctttaa	acctggccag	cggaaagttt	tatttacctg	tttcaagagg	2880
	gtgaagtaaa					2940
tatcatcatg	gagaacaagc	attgatgatg	actattgtga	atttggctca	gaactttgtg	3000
ggaagtaaca	acattaactt	gcttcagcct	attggtcagt	ttggaactcg	gcttcatggt	3060
ggcaaagatg	ctgcaagccc	tcgttatatt	ttcacaatgt	taagcacttt	agcaaggcta	3120
ctttttcctg	ctgtggatga	caacctcctt	aagttccttt	atgatgataa	tcaacgtgta	3180
gagcctgagt	ggtatattcc	tataattccc	atggttttaa	taaatggtgc	tgagggcatt	3240
	gggcttgtaa					3300
agacgaatgc	tagatggcct	ggatcctcat	cccatgcttc	caaactacaa	aaactttaaa	3360
	aagaacttgg					3420
gacagaaaca	cagtagaaat	tacagagett	ccagttagaa	cttggacaca	ggtatataaa	3480
	tagaacctat					3540
tataaagaat	atcatactga	cacaactgtg	aaatttgtgg	tgaaaatgac	tgaagagaaa	3600
ctagcacaag	cagaagctgc	tggactgcat	aaagttttta	aacttcaaac	tactcttact	3660
tgtaattcca	tggtactttt	tgatcatatg	ggatgtctga	agaaatatga	aactgtgcaa	3720
gacattctga	aagaattctt	tgatttacga	ttaagttatt	acgggttacg	taaggagtgg	3780
	tgttgggagc					3840
gagaagatac	aagggaaaat	tactatatag	aataggtcaa	agaaagattt	gattcaaatg	3900
ttagtccaga	gaggttatga	atctgaccca	gtgaaagcct	ggaaagaagc	acaagaaaag	3960
gcagcagaag	aggatgaaac	acaaaaccag	catgatgata	gttcctccga	ttcaggaact	4020
ccttcaggcc	cagattttaa	ttatatttta	aatatgtctc	tgtggtctct	tactaaagaa	4080
aaagttgaag	aactgattaa	acagagagat	gcaaaagggc	gagaggtcaa	tgatcttaaa	4140
agaaaatctc	cttcagatct	ttggaaagag	gatttagcgg	catttgttga	agaactggat	4200
aaagtggaat	ctcaagaacg	agaagatgtt	ctggctggaa	tgtctggaaa	agcaattaaa	4260
	gcaaacctaa					4320
tatggcagaa	gaataattcc	tgaaattaca	gctatgaagg	cagatgccag	caaaaagttg	4380
ctgaagaaga	agaagggtga	tcttgatact	gcagcagtaa	aagtggaatt	tgatgaagaa	4440
ttcagtggag	caccagtaga	aggtgcagga	gaagaggcat	tgactccatc	agttcctata	4500
aataaaggtc	ccaaacctaa	gagggagaag	aaggagcctg	gtaccagagt	gagaaaaaca	4560
cctacatcat	ctggtaaacc	tagtgcaaag	aaagtgaaga	aacggaatcc	ttggtcagat	4620
gatgaatcca	agtcagaaag	tgatttggaa	gaaacagaac	ctgtggttat	tccaagagat	4680
tctttgctta	ggagagcagc	agccgaaaga	cctaaataca	catttgattt	ctcagaagaa	4740
gaggatgatg	atgctgatga	tgatgatgat	gacaataatg	atttagagga	attgaaagtt	4800
aaagcatctc	ccataacaaa	tgatggggaa	gatgaatttg	ttccttcaga	tgggttagat	4860
aaagatgaat	atacattttc	accaggcaaa	tcaaaagcca	ctccagaaaa	atctttgcat	4920
gacaaaaaaa	gtcaggattt	tggaaatctc	ttctcatttc	cttcatattc	tcagaagtca	4980
	cagctaaatt					5040
	tgaaacagac					5100
	cagatacagt					5160
	actctgactc					5220
	gccgaggggc					5280
	gcaggaaaac					5340

```
gatcaggatt cagatgtgga catcttcccc tcagacttcc ctactgagcc accttctctg
                                                                     5400
ccacgaaccg gtcgggctag gaaagaagta aaatattttg cagagtctga tgaagaagaa
                                                                    5460
gatgatgttg attttgcaat gtttaattaa gtgcccaaag agcacaaaca tttttcaaca
                                                                    5520
aatatcttgt gttgtccttt tgtcttctct gtctcagact tttgtacatc tggcttattt
                                                                     5580
taatgtgatg atgtaattga cggtttttta ttattgtggt aggcctttta acattttgtt
                                                                     5640
cttacacata cagttttatg ctcttttta ctcattgaaa tqtcacqtac tqtctqattq
                                                                     5700
gcttgtagaa ttgttataga ctgccgtgca ttagcacaga ttttaattgt catqqttaca
                                                                     5760
aactacagac ctgctttttg aaatgaaatt taaacattaa aaatggaact gtgaaaaaaa
                                                                     5820
aaaaaaaggg gcggccgt
                                                                     5838
     <210> 287
     <211> 648
     <212> DNA
     <213> Homo sapiens
     <400> 287
ggcacgaggg tgcatttggg cctcaggaac caggggaata gaggcttgaa tgtggtccgc
                                                                      60
acaccetete getgtettgt ceeteaagtt gaetttatte teteteaett cagattgget
                                                                     120
ttcttcaaaa gacatggcaa taagcttggc cttcaagatt tcccagattt tatgttctgt
                                                                     180
cctatctgcc cctggaaaaa ggctaatttc agttctgtgg aacacaagtt ctttgaaaag
                                                                     240
gtcctgaatg aggaagagac ctactgttgt aggcaaataa tatgaatcat attacatatg
                                                                     300
tetttteeet teatataeat etgtttagtt ttgeagtgge teetgggata agatgetaaa
                                                                     360
gatctggtct acaggtaaat taaatattta ttttaccttg acttaataat gctgcttcaa
                                                                     420
aaatttaaat toggaggcta tatggtggct tacgcctata atctcagcac ttcaagaagc
                                                                     480
cagggtaaaa ggatcacttg aggccacgag ttcgagagca ccctaagcca catagtgaga
                                                                     540
eccegetet actagaggag aaaataaaat taccaggtgt gggggaggee eccggaaace
                                                                     600
taactccttg ggagttgaag gaaggaaatg ttaacccccc gggggggg
                                                                     648
     <210> 288
     <211> 367
     <212> DNA
     <213> Homo sapiens
     <400> 288
attcagatcc attccgaaat atcctgtcaa ctttttaagt tcaagatcag qctctattaa
                                                                      60
aaatccttcc ctaaatgaat cagatgtcgc attctcttca cagccatccc gtcaatgctt
                                                                     120
gctggataaa attgatgtta taacagggga ggaaacagac cataatgtgt taaagatata
                                                                     180
ctgcaagcct ttcatattct cagcatcatc ccaatcctgg attgaaaggg gcagagtaac
                                                                     240
gataagcctg aatgacacag caagcagctg actgtgtaac attacagtca aggctgatta
                                                                     300
tgcgcaatca aggcagtcta aggctgatcc tcaacaccta actctgggcc caaatgaaga
                                                                     360
ttcaaaq
                                                                     367
     <210> 289
     <211> 971
     <212> DNA
     <213> Homo sapiens
     <400> 289
ggaccaagca tgtttggggc tgtaacttct tttctgaggc acaaatgccc acccaagatt
attagaggaa cgagggcagt gggcaggaag gtgagacgct gactttagaa atagctggtg
                                                                     120
```

```
attacagatt taattcatgt tattaactcc ctgcctttta cctcctccct cctcccttgg
cacaactgcc agatggatgt ggctggaagt cagaggacat tctcgtgggt tcgtgggcct
                                                                      240
agggtacaaa tgacctcagc gtgacagcaa acaggacaga gaagaccagg ctcttactca
                                                                      300
ggaatccacc agccaggaga atgacaatgt tgaacaccgg aaccctqatq atatctqtca
                                                                      360
catttgtaag gttgatttca gagtcaggag tggagacatc ggcagttgac ttgggtggag
                                                                      420
cttgggtcac agttctgggg gtggtataga gtgggcacaa ggccttagtg gtggtaggag
                                                                      480
gaatettata cacattetgg gtagaattet cattggagee aggggteect gaaaaaccet
                                                                      540
tggtcaccac caagcggatg cgatcgaaca gcatgtgagg ctccttggga ggctggtaga
                                                                      600
tcacacactg atacagtcca gaatcttcca cttgaaggtt gaccattcgg acgcgcagta
                                                                      660
aaccatgatc atggtagtct tctagtatga tcctccccac ttggactgga tgggaattct
                                                                      720
ttgaaggeet etetgtgeat geeagggtet tgggeatete teegteeett attatetgee
                                                                      780
aagetttetg getgetggea aactteteta gegtgtagte acattteaca teeagggtet
                                                                      840
geceetettt eagtteatae tttteeteag ttaatttagt tgeagetegg agttetgaga
                                                                      900
caaagagcat ccacagcagc ccccagagcc tggtcttcct catccttcct gtgcaccagc
                                                                      960
tccaactgct g
                                                                      971
     <210> 290
     <211> 771
     <212> DNA
     <213> Homo sapiens
     <220>
     <221> misc_feature
     <222> (1)...(771)
     <223> n = a,t,c or g
     <400> 290
gcagagttat cacacctgag ctctacaact gagctgagca atatatacaa aactcaagcc
                                                                      60
tggtttaggc aggcctgacc cctgggatag gtcagggcgg tggttccttg ggagaattcc
                                                                     120
tgcttgatga gatggaaggt ccaagtcaat agcctcatgg tcctcccaag tctgacagtc
                                                                     180
tgctattcta cacacctgtc cacaggctgc agacatataa aggtaaatgt tcaggtatta
                                                                     240
gaaaatattc aaagaattct caatgttcaa aattctgaaa agcaaatcta tgctgaatgt
                                                                     300
gtggtggggg cattctaaaa gataaaaaat gatggctaca aaaaqccaag tataaaaaga
                                                                     360
aacacgtaca tatacacaca catacaccta cacatgtaca ttcgaagagg cagaggagag
                                                                     420
acagagaaaa taattaagac agcattagtt cctaaatagc cttttctata aactccatga
                                                                     480
caacaaagga caatgagtaa actgcagtat ctaaagattt aaatctcaga atacctgcca
                                                                     540
gatgccaggc atggtggttc acgcctataa tcccagcact ttgggaggcc aaggcgggtg
                                                                     600
aatgggctga gtntcagagt tcgagaacag cttgggcaac atggcgaaac cctqtctcta
                                                                     660
caaaaaatac aaaaattagc tgagcatggt agcgcacacc tgtagtcaca gctacttgag
                                                                     720
aggctgaggc aagggggtca cctattgccc agaagtcaag gctgcagtga g
                                                                     771
     <210> 291
     <211> 595
     <212> DNA
     <213> Homo sapiens
     <400> 291
ttgaaaacta agtcagtcca catcactcta ctgatccaac acttccaact gctctcaccc
                                                                      60
tatcagagtg aaagtaaaaa acctaacgat ggcttgccat ggcttcaaga tctaattatc
                                                                     120
tgacagagac tctgacccca tttcctgctc ttctgtcctt attcatgtta tatttgagcc
                                                                     180
acacaggett tgataacatt attecaacat teectaetaa geetgeatae actetacaca
                                                                     240
gattgetece teactgteca gatatecata tagettaete tettatttet teacatetet
                                                                     300
ttgctcaagg agcctcttta tcaacaagaa ctcactgaca taaatcagac cacctactcc
                                                                     360
```

```
aacaaaatca taaaataggc acaaaatttt aaccaaaata aaacactggt gatatcacta
                                                                     420
tactgaccag taaactatga aaccaaatga catctagtat gatgacaagt attagcttcc
                                                                     480
ttttagtcac cattcagagg gcagttcaaa agaatatgga acctggccag gcacagtgac
                                                                     540
tcacgcctgt aattccagca ctttgggagc ccaaggcagg tggacgccgc ccgga
                                                                     595
    <210> 292
     <211> 384
     <212> DNA
     <213> Homo sapiens
     <400> 292
ttttttttta ggtgttacca tttcttttaa ttaaggatgt acttaatctc ttaagatcac
                                                                      60
ttacaaagtg gcctcccaaa gctgagattc cctcaaatgc ctaaatacct ccacctqccq
                                                                     120
aatgaggttc agggcagagc cgaagagcag gcctctcccg gctctgtgtc atgtcctgat
                                                                     180
tgcctgcata gtcttcaqqt qqqcqtttqc ccaqcctttq ccaaqctcca qqaqctacaq
                                                                     240
gtcatctggc gagtttccac ggtctccttc atttaaaaaa acaaaaacac cttcctqqqq
                                                                     300
agaaaggagg gtccttcttt acagtagaat gctgagagcc aacttacgaa tgtggagaga
                                                                     360
atactggagt cagaaaagca ttgt
                                                                     384
     <210> 293
     <211> 461
     <212> DNA
     <213> Homo sapiens
     <400> 293
agccagttct tggaggagac tctgcacagt gcatggatca ctgtggtgcc cttttcctgt
                                                                      60
gcctgtgcct tctgactttg cagaatgcaa caacagagac atgggaagaa ctcctgagct
                                                                     120
acatggagaa tatgcaggtg tccaggggcc ggagctcagt tttttcctct cgtcaactcc
                                                                     180
accagetgga geagatgeta etgaacacca getteecagg etacaacetg acettgeaga
                                                                     240
cacccaccat ccagtetetg geetteaage tgagetgtga ettetetgge etetegetga
                                                                     300
ccagtgccac tctgaagcgg gtgccccagg caggaggtca gcatgcccgg ggtcagcacg
                                                                     360
ccatgcagtt ccccgccgag ctgacccggg acgcctgcaa gacccgcccc agggagctgc
                                                                     420
ggctcatctg tatctacttc tccaacaccc actttttcaa g
                                                                     461
     <210> 294
     <211> 3620
     <212> DNA
     <213> Homo sapiens
     <400> 294
tttcgtgcca gaggcacccg agccctgaga gtccgccgcc aacgcgcagg tgctagcggc
                                                                      60
cccttcgccc tgcagcccct ttgcttttac tctgtccaaa gttaacatgt cactgaaaaa
                                                                     120
cgagccacgg gtaaatacct ctgcactgca gaaaattgct gctgacatga gtaatatcat
                                                                     180
agaaaatctg gacacgcggg aactccactt tgagggagag gaggtagact acgacgtgtc
                                                                     240
teccagegat eccaagatac aagaagtgta tatecettte tetgetattt ataacactca
                                                                     300
aggatttaag gagcctaata tacagacgta tctctccggc tgtccaataa aagcacaagt
                                                                     360
tctggaagtg gaacgcttca catctacaac aaggqtacca agtattaatc tttacactat
                                                                     420
tgaattaaca catggggaat ttaaatggca agttaagagg aaattcaagc attttcaaga
                                                                     480
atttcacaga gagctgctca agtacaaagc ctttatccgc atccccattc ccactagaag
                                                                     540
acacacgttt aggaggcaaa acgtcagaga ggagcctcga gagatgccca gtttgccccg
                                                                     600
```

ttcatctgaa	aacatgataa	gagaagaaca	attccttggt	agaagaaaac	aactggaaga	660
ttacttgaca	aagatactaa	aaatgcccat	gtatagaaac	tatcatgcca	caacagagtt	720
tcttgatata	agccagctgt	ctttcatcca	tgatttggga	ccaaagggca	tagaaggtat	780
gataatgaaa	agatctggag	gacacagaat	accaggettg	aattgctgtg	gtcagggaag	840
agcctgctac	agatggtcaa	aaagatggtt	aatagtgaaa	gattcctttt	tattgtatat	900
	agcggtgcca					960
ggtggggaag	aaggagacag	aaacgaaata	tggaatccga	attgataatc	tttcaaggac	1020
	aaatgcaaca					1080
	aaacatggca					1140
	aatgctttag					1200
	atggaagagg					1260
agaaatcttc	ctgaaacgcc	cagtggttga	gggaaatcgt	tggaggttgg	actgcattct	. 1320
	gcacaacaag					1380
	atcaatagtg					1440
aaaggtgatg	agacacccgg	atcatgtgtc	atccaccqtc	tatttqtqqq	ctcaccatga	1500
	atcattgacc					1560
aaggtgggac	gacaatgagc	acagactcac	agacgtgggc	agtgtgaagc	gggtcacttc	1620
	ctgggttccc					1680
caaagataaa	aatgagcctg	ttcaaaacct	acccatccag	aagaggattg	atgatgtgga	1740
ttcaaaactg	aaaggaatag	qaaaqccaaq	aaaqttctcc	aaatttagtc	tctacaagca	1800
	caccacctgc					1860
	cactatagaa					1920
	ccgtccagtg					1980
	agtttacaga					2040
	tactgcaatt					2100
tgatttcatt	gacaggtact	ccacgccccg	gatqccctqq	catgacattg	cctctgcagt	2160
	gcggctcgtg					2220
	tcaaaatatc					2280
	gagttgagat					2340
	gctgattggt					2400
	gtgatagaga					2460
	gatgacaaag					2520
	cacagggaaa					2580
	ggagacattt					2640
	accatgtgca					2700
	tggataaatt					2760
	gtaactgagc					2820
	attggctctg					2880
	gtcattgtgc					2940
	ggccggtttg					3000
	gacccaagtg					3060
ggtgtgggtt	tcaacagcag	ctcgaaatgc	tacaatttat	gacaaggttt	tccggtgcct	3120
	gaagtacaca					3180
	gatcccattc					3240
gcaattcccc	ttttatttct	tgtctgaaga	aagcctactg	ccttctgttg	ggaccaaaga	3300
	cccatggagg					3360
	accacactgc				-	3420
	ctcgtatcca					3480
acattgatgt	aaggactgta	aacatcagca	agactttata	attccttctg	cctaacttgt	3540
aaaaaggggg	ctgcattctt					3600
attccgctcg	tgccgaattc					3620

<210> 295

<211> 627

<212> DNA

<213> Homo sapiens

<400> 295

```
gccacgtcgc ccagaatgca ggcctttctc ggggggccgt caggagaagt agggggtgat
                                                                       60
cctgggtaac ttggggcaca ggctggtgca gccctctcca aggatggcat ctcttgaggt
                                                                      120
tttacattga attccatgat atagcatatt tttaaaaata tgaaaatgat gttcataata
                                                                      180
accaactggt tgaattatta ttttttgetg ttctcaccct ccaaccctca aatacaatcg
                                                                      240
atcetecatg aagtggegee actgtggtte agaacaettt acaetttget tagagggtge
                                                                      300
tccacctgga agggcctgag ctcctaaaca atcggtaatg cagtgataaa gcgttaactt
                                                                     360
ccaactatca aaaagtacct gactcattca ttccaactgg agctcatccc cgtgagctct
                                                                      420
gggtcagaga gatgagetee ceagecetge cacagegtea tgccaggaac caaactaaca
                                                                      480
cgagcctcag gctgctgatc ttaaagtggg gatagcctta gggtcatctc ggcctctggt
                                                                     540
gagccatcat ggcagcctct cggcagggtc tgagtggcag gagagcctcg gagagcctta
                                                                     600
gaactgcctc tgttcttact tggaaac
                                                                      627
     <210> 296
     <211> 888
     <212> DNA
     <213> Homo sapiens
     <400> 296
attttaaaaa ttatgtgaca ttgaaatgta gattggccta aattttaaaa tgtagttgca
                                                                      60
cagtatttac tgcctctaga taatagttta ttaaatactc tcccagacta tataactgag
                                                                     120
aaaatacact aacaaattcc cctccccctt ttctaaatta aaaacatagt atatatgaat
                                                                      180
atcattttca tatatcttgc tacttcctta gccttcttaa ttataaactt gagtcagcta
                                                                      240
ttatttactg agtacttaca ttttagatgc tgttctaagt gctccacatg tataaacttg
                                                                      300
cttagtcatc acgagtggga actattaccc tcatcgtaca gaagaggaag cagaagccca
                                                                      360
taaagtttaa atactttctc caagttcaca tggctagtag gtgggggagt gacgatttaa
                                                                      420
acccctgctc ttaatctctg tacttttctg tctgatgtaa atttcttatt gccctttttt
                                                                     480
taatatcact gaacttgagg atattgttta tctttagcaa tggaaaaatc atttcctcct
                                                                     540
gatattcttt atccagtttg tctaaagtct aaaaaacaaa acaactcttt ggtttattac
                                                                     600
tgggtgaacc ccaaaattgg gattcggcca gagaggccac atgggttctc ggcttcctcc
                                                                     660
aggaaagaat tcaagaacaa gctgacagta aagtgaaatc atgtttatta aqaaagttaa
                                                                     720
ggaataggcc cagcacggcc gactcacacc tgtaatccca gcactttggg aggccgaggc
                                                                     780
gggcagatca ctgggtgagg agatcgagac catcctggcc ggcatggtta aaccccattt
                                                                     840
taataaaaaa gccaaacatg gccggcgggg gggcggccct cggggccc
                                                                     888
     <210> 297
     <211> 675
     <212> DNA
     <213> Homo sapiens
     <400> 297
tggttgactt cccgggacga cccccgcgtc cggggaagca gaggagcagc agggtcaggg
                                                                      60
tgctgggttc ctaaggtgca aggatgcaga acagaactgg cctcattctc tgtgctcttg
                                                                     120
ccctcctgat gggtttcctg atggtctgcc tgggggcctt cttcatttcc tggggctcca
                                                                     180
tattegaetg teaggggage etgattgegg cetatttget tetgeetetg gggtttgtga
                                                                     240
tecttetgag tggaatttte tggageaact ategecaggt gaetgaaage aaaggagtgt
                                                                     300
tgaggcacat gctccgacaa caccttgctc atggggccct gcccgtggcc acagtagaca
                                                                     360
ggccagactt ttaccctcca gcttatgaag agagccttga qqtqqaaaaq caqaqctqtc
                                                                     420
ctgcagagag agaggccccc cggcattcct ccacctctat atacagagac gggcctggaa
                                                                     480
ttccaggatg gaaatgactc ccacccagag gccccaccat cttatagaga gtccatagcc
                                                                     540
cggctggggg tgacagccat ctcagaggac gcccagaggc gaggccaaga gtgctgaggc
                                                                     600
agagaaaact tttccagcac tcatgatgcc accactgtgg ggagcagcta ctgttattaa
                                                                     660
```

```
aggccaacga gggac
                                                                     675
     <210> 298
     <211> 379
     <212> DNA
     <213> Homo sapiens
     <400> 298
gctgggaagc ggacggccga gcagtgccct gtattgactc tcatcttgcc cgaagccggg
                                                                      60
cggcggaaaa ctcattctcc tggtgatcag cccatqacct acacctccaq acaaaataaa
                                                                     120
acggaaaatt tgctacaatc actaatgagg gatccatqtc cagtgggagt ccaqcttcga
                                                                     180
actacaaatg atggccataa aacctactat actcgtgaca cagggtttaa tactttgttg
                                                                     240
gaaatgtcat aaaatgatat gctcttactt caacttacaa ctggaacgac actttctqqa
                                                                     300
aacaattcaa teegattett teatggagaa aettaeattg acagatttga egatttacag
                                                                     360
aattcatgtt gcgacccat
                                                                     379
     <210> 299
     <211> 887
     <212> DNA
     <213> Homo sapiens
     <400> 299
agtacccctc cgattttcgg tcgacccacg cgtccgcttt tctcccctg catttcctat
tatttccata tttggtctcc tggacttggc atccaggtct ctctactttt tcactcaaat
                                                                     120
cattgaacct tagctccatg cettgeagtg gttettetgt teagacttte agaccattae
                                                                     180
tgatttttca taatgtgacc ttcttcattt tacctgttaa gtgttttaat gctctgatta
                                                                     240
atgttttaga aagaccattc tggcagctgt tgggagagat tggagaggaa tacagaggaa '
                                                                     300
gtgaggactg gttaggaggc agtttcaggt gagagatatg gtggctcaga cagggtgaga
                                                                     360 .
agatggagat gagagaacag gtaggatgga ggaatgcttt acatgcagta gccgtaggac
                                                                     420
ttggcggtgg tttggacctg ggagttaaga gagtgggagg gggacaagga tgtctctcag
                                                                     480
gtttctggtc tattaaacaa ctgaacagat agagatgctg tttgttgaga tgaggagtag
                                                                     540
aggaggagge catgictaga giggatetig ggeteetete titiggaceee titaggittige
                                                                     600
agtaccccat gagacatcca gggaaaagca gtgacatgca aacatggcct agggtttgtt
                                                                     660
tececectea getetatggg aaaattggge tecatgggaa tgetgtttag ggatggeatt
                                                                     720
tgcttgcaaa tgacagtggc ttaaacagat agaagttgat tggcttcaca caaaagagtt
                                                                     780
tgaaagttag ccacttgggc cggatgcagt ggctcacgcc tgtaatccca gcactttggg
                                                                     840
aggccaaggt gaagggggcc tgcccctcca cacttgtggg tatttca
                                                                     887
     <210> 300
     <211> 935
     <212> DNA
     <213> Homo sapiens
     <400> 300
aaaaaagtee catgagatte teatttagge agaaaceeea tgtaagatge eetaagacaa
                                                                      60
tgtttctgta tgctatcatg agtcctaatc aaaatcactt cctaactgaa atgtcaatta
                                                                     120
gtccttctga ataaaacata gttgtttata agtcttggtg tacctgactc actcatttta
                                                                     180
gtgcatcgag gtaggtagat tggagggtga ctgaggggag ggcactgtca gttgtgaggt
                                                                     240
tgtcttctaa cagagtatgt acaggaaggt aatagttgct ttaacagtgt tcagacttca
                                                                     300
aaagtgtagc tgttggagaa gtaagagcat caagcaagga gtggaacact tttggttggg
                                                                     360
```

```
agtggagagt cttgatagag aatactgctg catcagatgt ctttttacat gtgtatttgg
ttatgtggtt atgagattag agcattctcc tattggttgg tgtcttagtc agctcagggt
                                                                      480
gccatacaaa ataccataga ctgggtagct taaacagcag aaatgtattt ctcacagttc
                                                                      540
tagaggetgg aaatteaaga tgagaatetg geategttgg ettetagtga ggattetett
                                                                      600
cccagctcct ggtttgcaga ctgccacctt ctcagtgtgt tttcatgtag cagagagtga
                                                                      660
gctctggcat ctcttgtgct tcttttttt tttggccctt ttgcccccca ggtggaaggc
                                                                      720
cagggggcca atttgggttc atggaaccct tggcttccgg gttggaagga attttctggc
                                                                      780
ttaacettee caagaactgg aaataatágg gggggeeece etgeeeggee tgattttgga
                                                                      840
tttttaaggg aaaacgggtg ttccccatgt ggcccagctt ggctttaacc tccggccctc
                                                                      900
aggggatece eccaettaag etteceaaag ggtgg
                                                                      935
```

<210> 301 <211> 2283 <212> DNA

<213> Homo sapiens

<400> 301

tttttttttt gggccacact gagtgaattt taatgcagga tggaagcaca cagatgggtg 60 atcaggtett etetttaetg aaacacagaa catgtgecaa ggtgagteca aggacacete 120 tgggaacagg tgaagcccct ccccacacat acactccggt ggatgtgagc gagggtcctg 180 ttgccacatc tggggtcagg ggcttggaca tgctgccctt catgggaacc ttctgggtac 240 ctctcagcac agtaacgcag ctgcagtctg tcggtggggg cccaggctag gggcagcacc 300 etettttgge ataegggaca tgeetggetg cagetgatgt cegttageet etectgacae 360 gcagtaagga gacctggaag tgaggcgcgt gggcgtggag ttcccggtgg agctgctgca 420 tcagcctttc tgccactctg gggtcagtga ggtcttccgg ggaagccaca ctcagccgca 480 ggaggaggaa acctccattt tcacctgcac tcacgtctgt ggtcggcctc gtccgggcag 540 tegtgggegt ggetgttggg ggetteateg tggtettege tgaggttgtg atettggeta 600 aggtgetgtt egteeetegg etgetgttgg ttgtagtegg agggacagaa ggaagagggt 660 ccctgctggt ggggaagggc cccttggttg tgatgtccat ggtcagtgtc tctgaagggg 720 tgaagttett gagggegget teegagggge tgtaggagga ageagagete eeageaaagg 780 aagttgtttt geceactget gaeecageet etatggagae eggagetget eetgagaett 840 tgacgtaact tggtgtctca acagagaggg ctgaggtttc ttccagggga ttcctgctaa 900 ctgtgaccag agctccactg agggtcgtgg ccccgggtgc tgtcacttct ctttctgtgg 960 cgctgttagt ggggagtggg gtcccaaccg tggcatgagg tgcagctgac tctgtggtgc 1020 cggctgtgga cagggtctcg gcagaggctg tgacctcagt gatgtgtggt tttgcttcag 1080 tggagtcagg cagagctggt ggatcggagg tggacgaggc cttcacccct tccgtgggga 1140 tgagatetgt gtetgaggee eeagggatge tggaagtegt tgtttetatt tetgtgatge 1200 tgcaattaat aacctcgatg tttgtgacag tcaccagggc ttcagcgagg agagtgacgt 1260 cagatcccgg ggaccatgag ggggtgatga ctggatgggg gccgtcggaa gaggcgctgc 1320 tetetgagge eegtgaeggg gtgatgaetg gatggaggee gteggaagag gegetgetet 1380 ctgaggcccg tgacggggtg atgactggat gggggccgtc ggaagaggcg ctgctctctg 1440 aggcccgtga cggggtgatg actggatggg ggccgtcgga agaggcgctg ctctctgagg 1500 eccgtgacgg ggtgatgact ggatgggggc tgtcggaaga ggcgctgctc tctgaggccc 1560 gtgacggggt gatgactgga tgggggccgt cggaagaggc actgctctct gaggacaggc 1620 cettagette tgtggaggtg tgagecaatg teaatatgte cattgtgagt gtetttgeet 1680 cttcagagct gtcatcggtg caaagggtgt caaagatggc ttcctcggga tcactgcctg 1740 tgatggtctg aactgtggtc attccagctc cctcggggct gccactggcg gctgatgtct 1800 ccacggaggt ggcgatcagc accatgaagt tgggagatgt ttttgtgaaa ctcctggtct 1860 ctcttgcagg ggaaattctc ttggctcccc tggtctctgc ttctggaatg gggccggctg 1920 gggttgaggc cctagaagag gtctcagcgc tcagcgtttg agtttccaga gcggcgtggc 1980 ceggtgctag agteatageg ggeacttetg tgtegteegt tgteategea qtqtetqete 2040 tgcgggtgct ggggcctgtg ttggttaaga ctgacttggt gagcttgggg ccaqcaaqcc 2100 ccaggatctg ctggctatcg gcctgcgtct ttaagagggg atgtgtgggg ccagcgtcca 2160 ccttccaggg tgagccaaga aggcagacca gcgtccagga ctcgcagagc tttctgaacc 2220 tetgtegeet teecegggta etttteteat ceaacacata gtteeceatg gaagtaaaaa 2280 acc 2283

```
<210> 302
     <211> 413
     <212> DNA
     <213> Homo sapiens
     <220>
     <221> misc feature
     <222> (1)...(413)
     \langle 223 \rangle n = a,t,c or g
     <400> 302
cagacgcgtg ggcggacgcg tgggcggacg cgtagactga gaggtattgc aaccatggct
                                                                       60
acggtcgccg gtgcgaccta ctactaacga ggcagtatgt actgggtcac agtcatcacc
                                                                      120
etgatetatg getaetaege atgggtagge ttetggeetg agagtateee ttateaaaae
                                                                      180
ettggteece tgggeecett aacteagtae ttgatggace accateacae cettetgtge
                                                                      240
aatgggtatt ggcttgcctg gctgattcat gtgggagagt ccttgcatgc catattattq
                                                                      300
ggcgagcgta aaggcatcac aagtggccgg tctcaactac tgtggttact acagactttg
                                                                      360
ttctttggga taacgactct caccatcttt gatgcttaca aacggaagcg ccn
                                                                      413
     <210> 303
     <211> 681
     <212> DNA
     <213> Homo sapiens
     <400> 303
cactggtgga attcgttctg aggagccaaa ggaggaagag actttcgggg aaagaggaga
aggagctggt gacaggggta ggaaggtaga cagggtcatg acctgaaacg gtgtgacgac
                                                                      120
tgctgacttc cctttcctgg acttgagctg atgaagggga aatggtgttg cagtctcctc
                                                                      180
tgtcagagcc ctcaggtgca gacggcactt gtctgcccc tcagcctcag ccttggccca
                                                                      240
cetggteece agtgeeetet eetetggetg gggcaggagg acetgeegga catagecaga
                                                                      300
tgtattacgg atgactgcag tcagctcccc caggctcctg cttctcttgc ctcctgcttt
                                                                      360
tttccccaga gctgtctcct tatctccatt cacttgtcta tgggttactc ctggaccctg
                                                                      420
gggttaggag ttggaatcag gctgttaccg acaaaagggg tcaaggtgac tcattttcct
                                                                      480
tatcacgett aggagttcaa gegaettget gatetteeta attettacaa aacetgeeat
                                                                      540
gaacccagct ccctttgtat gactgaccct gccagcctgg gagacataga gtctgattgc
                                                                      600
ceggtctggg ggttataacc ceceggggtt tggacctgga aatccaaagc accetttggg
                                                                      660
gctaagacct gggccaagcc g
                                                                      681
     <210> 304
     <211> 427
     <212> DNA
     <213> Homo sapiens
     <400> 304
tecgtgeggt gaatteegtt eccgagagee tgatgaeete ecaaaccagg geageaatat
                                                                      60
gtcatcatcc gggcaacttg ggcacccacc tcgggctcct cattcatgga gaagatggtg
                                                                      120
ctggtggctc ttcatgctgg ctacatcttt atccagacgg agaagaccat ctacaccct
                                                                      180
gattcactac cgggtgttca ctgtgaacca caagatggac cctgtgacca ggacattcac
                                                                      240
tetggacate aaggtggtet tteeegatga ggggtggggg gtggtggtgg ateetggaca
                                                                      300
```

```
ctggggttac atggtgtgct gaagtcctgg gggcatgagc caccagggcc ctcccagagg
                                                                    360
 geagteacca geceeacee etateceeac agaacceaaa gggaaacace gtgattagee
                                                                    420
 agagtet
                                                                    427
     <210> 305
     <211> 609
     <212> DNA
     <213> Homo sapiens
     <220>
     <221> misc_feature
     <222> (1)...(609)
     <223> n = a,t,c or g
     <400> 305
acagggtgtt tetggtgage ecctaaacac cagcatggtg atatecacte agtatetttt
                                                                    60
tacccatatg ggtgggaggc tttggatttt tctccagcta tgtcagagcc tgggtctgag
                                                                   120
cacagtggtc agcagcagac ctgttgcctg tctggagtcc gttcctggga tgtgtatgtc
                                                                   180
ggtctgcatg cccttgaatt accgtggaag taacttctct gagacagatg tctggatgga
                                                                   240
tetttecaga geteatettt gaateettgt tattataaaa taagaattaa attgttgaae
                                                                   300
360
attituttica toacattitic attiguattag gratcagaat tittititti aattoagtac
                                                                   420
agatttacgg cetgggggg gggetcacge ttatagtcce aaagttctgg gattacagge
                                                                   480
gtgcacnctg tgcccggcct aacattaatt cttagttatg tgcacagtct tatgggcaca
                                                                   540
aaagccaaat actctcatgc ctgaagaaag taagcatttt taatgcaaag gtatgagtag
                                                                   600
acaatgatg
                                                                   609
     <210> 306
     <211> 608
     <212> DNA
     <213> Homo sapiens
     <400> 306
tgaagttete teaagaaget gaettgteet tgttetetet ggatgetgat eestatteet
                                                                    60
gttcatatct ttcccctttc ttccctgctg ggggatggaa caatgaggct tctaccagat
                                                                   120
atcageteeg actggetttg ettgaatcaa gagtttgeee etgtteaate agecatagee
                                                                   180
atggagtggg ggtcatgtgt gggggatcag gatgacaccc actggatatg tctgaggcag
                                                                   240
accagtgggg tgtaatcact agggacacct acatttgcct gtagtgtaga gagggactga
                                                                   300
tgtcactttg gtgccaggac tgagtggcct tctcaggaac cagagccttt tgccgaaaaa
                                                                   360
aggtttggga tcctgaggcc agaccagtca ggcagtccac cctgaacaga gcccatgcag
                                                                   420
gacagtgggc atgagacccc aaacctetgg ctgagaatat tgccctcact taaagaagga
                                                                   480
gctggaaccc gagtgcagtg cctcacgcct gtaatcccag cactttggga ggctgaggtg
                                                                   540
ggcagaacat ctgaggtcgg gagttcaaga ccagcctggc caacatcatg aggcttcatc
                                                                   600
tctactaa
                                                                   608
    <210> 307
    <211> 781
    <212> DNA
   <213> Homo sapiens
    <220>
```

```
<221> misc_feature
      <222> (1)...(781)
      <223> n = a,t,c or g
      <400> 307
 cccgtggtgg aattccttct ccagctggtc ctgggtcctc tatccttgca ggtggccatg
                                                                        60
 gegacecect ettetecatg gtgggeteat tetggtetee egeetetett etetteagge
                                                                       120
 ctctcgtgga gactagttcc gctgttttgg tgcctgcaga gcctcactgg ctttctaggg
                                                                       180
 ccctgcttgc cacgcaccac acgggcattc ctctctctgc agtcctggga cctccctggg
                                                                       240
, actogaccag gaagocaggo acagggotto actgottgoa atgotgoaaa cacacotggo
                                                                       300
 ttggcggcct tgccaggctc aggcgctttc tctqtqatac caqtqtcctt qttattqcct
                                                                       360
 gtaccagagg ggttgggtag aacttacctt tattcgtgat gtttcagatc acatttttta
                                                                       420
 tccatggcta tgagtccttt ccattcttcg aggatcctgg attctgaaat tcaaaagcca
                                                                       480
 gggagaggcc gggcgcggtg gcttatgctt gtaatcgtag cactttggga ggctqaqqtq
                                                                       540
 ggcggatcac ttgagcccag gagttcaaca ccagcctgag caatatggcg aaaccctgtc
                                                                       600
 totaccaaaa atacaaaaat tagccagcca tggcggnggg caactgtaat cccagctact
                                                                       660
 cgggaggctg aggcaaaaag gtttgcttgg acccaggagg caaagttggc qtcaqccaq
                                                                       720
 aacatggcac tgtactccag cctgggcaac anagtgagac cctttttttc caaaaaaaaa
                                                                       780
                                                                       781
      <210> 308
      <211> 1391
      <212> DNA
      <213> Homo sapiens
      <220>
      <221> misc feature
      <222> (1) ... (1391)
      <223> n = a,t,c or g
      <400> 308
 tttacaacca acttttttt tattttttt tttaaatttt tcattttatt caaagttggt
                                                                        60
 acagaattgc taacatttcc ataaaataat tactatactt cagttacagg acaaaatacc
                                                                       120
 acagaaagga atgtactttg caagaaatgg tagttcatcc taagtttcca aatacttttq
                                                                       180
 gaaggctaat gcagcagctg ggcaaaataa cacacagtac acaaagaaca gtgtatttca
                                                                       240
 cagagtcagt aatgaaaaac tgacagctct ttaggcagga tatgcttttt ttcatttttt
                                                                       300
 taaacaataa ccactttcaa aaacacatgg aaccaagatc atacatggtt ttacaatttt
                                                                      360
 aaaaaatcag attgtacaca ataggttaga atagacaagt tagaattgtc atgattttaa
                                                                       420
 caatcttaaa totacaattt caactgtact cotttcaata tagaaataac ctgctttata
                                                                       480
 ccaaattcta ctttctgctt gcaactaaaa cactgtacaa tgagatggat acaattagtc
                                                                       540
 aaaccttaaa attaaaaaag ctgtagacaa cagaaggtaa actggaaatc catttacaat
                                                                      600
 tcaaaaaact cactaataac aaaattaatg ttcatcaact tcatttataa tcacatttgg
                                                                      660
 cctacaatgc ctaactaaaa tgacacatgt acacaatata cacccccagt gtactaactg
                                                                      720
 gtctcttaca aaaaatctga acaaagcatc ataagcagga cactgggaag aacatgtttc
                                                                       780
 aatgtagaca tottttaaaa atgcattaat acttacatat caaaattact agataaaagc
                                                                      840
 agcagcactc tgctgacatt tggcttaaaa ataaatgaat gaatgaagca atttcacagg
                                                                      900
 atattattag aaaaagaatt qqttttcttc ttqaaqaaqa ctactaactt ttqcacagca
                                                                      960
 actatttttg atatccatct tatcaaaaag aaaaaagaaa gcactgagaa gtataacaca
                                                                     1020
 gttcatacat gattgccaac atgggtctgg acaaaagaaa atgggatgtc caagcaaaga
                                                                     1080
 acgggtaaat ccctgctcta tttctgaact ctgctggcaa tctataaact gaagcagtaa
                                                                     1140
 cagtggggga aagcaaggga acaaattcca taccatcatc tgacactaat ggaqtatqqc
                                                                     1200
 attattaaaa aaaataaagc ttttgcattt taataacccc acagaaaagt ctatgagcaa
                                                                     1260
 aagacttgat ctgtttgcca ctcaaaagtt agagatctca cagtgaaatt agaaaactct
                                                                     1320
 aattatacat atttcggacg cgtgggtcgn ccctqcagat ggngatcatn ccgacqqqat
                                                                     1380
 cagtgggggc c
                                                                     1391
```

<210> 309

```
<211> 874
     <212> DNA
     <213> Homo sapiens
     <400> 309
aaggaccagt aaataatgat cttacttcca aatctccttg gaatttcacg acagcacaga
                                                                       60
ctgactttat accttcattt cagcgtggta aaaatcgatt aacacttcta atgagtcaag
                                                                      120
tcctagggtt ttttggtttt gttttgttgc caacgaggaa cacagctctg ggggaatggt
                                                                      180
gtcatccacc tcgctttaaa aataagcaca tgatggctgg gcaccgtggc tcacgcctgt
                                                                      240
aatcccagca ctttgggagg ctgaggcggg tggatcacct gaggtcggga gtttgagacc
                                                                      300
agcctggcca acatggtgaa accccatcgc tactaaaaat ataaaaaatt agctgggcat
                                                                      360
ggtggcgcac gcctgtagtt ccagctactc aggaggctga ggcaggagaa tcgcttgaac
                                                                      420
ccgggaggtg gaggttgcag tgagctgaga tcgcaccatt gcactccagc ctgggcaaca
                                                                      480
agagcgaaac tctgtctcaa aaaaaaaaaa accccaccc caaacagaaa aataataaag
                                                                      540
taacttcaga attttaatgc tagaaattaa aggtagcatc cacacataat tccacctgca
                                                                      600
aaatctttag tgagaagatg acaatacgat cttactccaa cagttccaat cctaaaagac
                                                                      660
atccaaatta tgataaattt tagtcttatg aatgcgagga aagggtgaaa agaggtgctg
                                                                      720
gaaatacagc atgcagacca aacaaaaatc tccacagtca ctgaactcat attctagtat
                                                                      780
agggagcccg aaaacattta caagtgaatc tacatcactt tgatagagta agaaggcaag
                                                                      840
tgggaattcc gccacacgaa ctagggatct cgat
                                                                      874
     <210> 310
     <211> 802
     <212> DNA
     <213> Homo sapiens
     <400> 310
tagtccagtg tcgtggaatt cctaccgttt agggcattct gcttaaagag agattatggt
cacactetta atageaaage aattttggat atteacegtg gacetacatt tgteagatta
                                                                     120
tgttttggag ttatctaggt acctaataaa tgcctgtttt tacagcccat gttcacagcc
                                                                     180
cattgagaaa tagacaaagt gggtaaggca gatgaatgaa aacatgtcag ttttattact
                                                                     240
gataatgtac tgcaattgga gaatgtggtc agatattcca aacttcctat gactgcacac
                                                                     300
tgaagagtct tctctttgga ggggagaaaa ataatgctcg tggctgtttt taaaattatg
                                                                     360
tttattatat atttattaaa agaaagataa tatttagaaa aaaatctcat tagtcaagta
                                                                     420
aaattttaga tactctatct tgaaaaacct tctgaaaaca gtataaaaaa tatttgagat
                                                                     480
atgtcagtat aacatagagc aatattcgat tctccctcct tggggcagca aatattttct
                                                                     540
gaaaatcaaa agtacagaat cttttaggca ggaaatacat tttggccaat tataatttta
                                                                     600
qaaqtcaaaa ttgttaaggt ttttggacca agcacaatgg ctcacgcctg gaatcccaac
                                                                     660
actttgggag gettgaggea ggeaetteae ttaaggteaa gagtteagaa eeageetggg
                                                                     720
caacatggtt taacccccc ctcccttaag cattacctaa tttattgggg catgggggaa
                                                                     780
cactacgcct gaaaccccag cg
                                                                     802
     <210> 311
     <211> 352
     <212> DNA
     <213> Homo sapiens
     <400> 311
```

```
gcgaacagac ctgcttgctc agttgctgtt tttaggaaga ggtgatcccc gtaggagatc
                                                                       60
tgaccaatgg ccggacacta taacttgaag ctgccaatta ttgcagcaca tgggactggt
                                                                      120
aacaggagca ccattteett gageteetee aegecaagge etgtgagcae catggggage
                                                                      180
aacaccttta ccaccttcaa tacaagcagt gctggcattg ctccaagctc taacttacta
                                                                      240
agccaagtgc ccactgagag tgtatggatg ccacccctgg ggaatcctat tggtgccaac
                                                                     300
attgetttcc cttcaaagcc caaagaggcc aatcggaaaa aactggcaga ta
                                                                     352
     <210> 312
     <211> 1267
     <212> DNA
     <213> Homo sapiens
     <220>
     <221> misc feature
     <222> (1)...(1267)
     <223> n = a,t,c or g
     <400> 312
cgcctactca tctaaatttc tgcatttctt gccaagataa ttgctatcaa ctcctaataa
                                                                       60
ttttttctag ttctgcacat tcccctgatg tattctcaat gtagcagcca gagagagcct
                                                                     120
gcaaaagtgc aaatttgatc atgctgttct tctgctccag atttttcagt ggcttctcaa
                                                                     180
ctcattcaga gtaaggccaa aatccttacg aagtcctata atcatttgaa tgatctgttt
                                                                     240
ttgtctgcct gtctgtccta aaacacacct ggctcatccc atgctagcaa cattggcctt
                                                                     300
tgtgtcactt cttgaatatg ccaagcattg cctcagggac ttcatacttg tgtcctttct
                                                                     360
tettggaatg etetttetea gatateaaca etaaacaeta ecaeteetea aatateaeta
                                                                     420
aatcactaaa tcaatcctgc cttatttaaa gagaaatctc acttctctct gcagttttaa
                                                                     480
atttttttta gattttattt taggttcaga ggtatatgtg caggtttgtt atataagtaa
                                                                     540
attgcatggc atgggaattt gctgcataaa atatttcatc actggggtga taagcagaat
                                                                     600
acctgatagg gaactttttg atcctcaccc ccctcctgcc ctccgtcttc aagtgggccc
                                                                     660
tggtgcctgt acctecette tttgtgccca tatggattta aaggtcacct cccacttgga
                                                                     720
agtgagaaca tgtgggcctt gccttggtgg tccctggccg agccttcgcg accacgggaa
                                                                     780
ttaaaacagt gtcttttctc tcaccgtgag aagcctgcaa actgccggtc cgcgaggggg
                                                                     840
gegecetgte geatgeegae atttggggaa cegegeatea acacettaeg cegaatetee
                                                                     900
gcacactacg cgacagtgag acatcgtcga cttcccccga tacgcggatc tcgccgagtc
                                                                     960
gegtegeact cegeggetea cegecaegtt ggecaacegg tggegaeete egetatggtg
                                                                    1020
acgacctcgg cattttctgc gttcctcgct atcccaccgc cctgtgggaa aactccggtc
                                                                    1080
gtccggcgnc cggcgcggtc tcacctataa cgtcccgcat acgccggaga gacagaccta
                                                                    1140
taacctcgca tattcgcgcc atccgcgcaa ttcgcacgca aaccgatcct aaccacccgc
                                                                    1200
gccatcgcgc gcgattccaa ctgcgctcgt ggccctaggg cgcgggaaac tccgcggctt
                                                                    1260
cgcgtct
                                                                    1267
     <210> 313
     <211> 1927
     <212> DNA
     <213> Homo sapiens
     <400> 313
ttttttttat tgctttaaaa aataaacatt tataatagaa taccaaattc tatttaatct
                                                                      60
aatgtgttaa ccaaaagcat aatatattcc cagtaaacaa ggacttccaa cttatcctat
                                                                     120
aactaaaaag tcaactaaac agttggtttt agctagagac aaacatcagt cactgccacc
                                                                     180
aaattccatt atataaattt attttgcttc acatttaagg agaaacccag cagaggggtc
                                                                     240
gccctgctct tccccactag aaatgtactg aaaagtgaca agcccacaga aggaaaggct
                                                                     300
gtataaggaa gtaggagett cagteaaatt tetaetttea ttaceetgag ggaggtgaag
                                                                     360
```

```
gagggtgtta ttttcatcag gtcaacatgg atgacagttt gatcataaaa aacagcccac
attaagattt catttgtgaa atatggtgag catgatcatg ccctaatgat ttcttagggt
                                                                      480
ttggcagtgt ctctggtcac atgcccatac ttagggttga aagaaatgct aatactgtac
                                                                      540
cctgggtctt cctcagatgc cacagtggct cctgccctag gatgactaaa aatacggctc
                                                                      600
teettteett agagataetg geteactate aagaatagag gtagggagge attgtgaact
                                                                      660
ccagaagagt tgagtctatg gagtttattc cacagtggat acattaggct ttttagagct
                                                                      720
acaatgagac tgtcagtaat aggcgatcac ctttttatac ctatgaaaca tttcttaaaa
                                                                      780
ttctcttggg tttggcccaa aagagtgacc agattgaaaa ctactctgtt attcttaagg
                                                                      840
acaaatgcaa ttcctttaaa gttacaaatc agtacttata tcctatagtt gagcatgtct
                                                                      900
tcacaccatc ccctgttttt ggcctccata taaacagatg cattgcactg ctgcatggta
                                                                      960
tattccatct caaccagctg gcggcatcca atggttaact tttccctata ctcaqtctqa
                                                                     1020
gaaacacaat cataaatttc ctgggcagta aatttgacat ttttatttac ctcatacttg
                                                                     1080
attaggaagt tatagagggt ctcaacatct tgataattac tgtttggggc caaaatcctt
                                                                     1140
tgaattcctt caagaatatc cctcacagct gccattaact tttgaagaca tataaatgct
                                                                     1200
tetteaaatg atgetatatt tgaagtagte agagetgaat ttgageecaa tetttgaaat
                                                                     1260
acatccgtgc tgttctgata tattgtaatc caaacactct ctaggataga ccagatttct
                                                                     1320
tgatgcctgc tgggttgggg aagatgagaa ctcgagaaaa cagtgatttc ttgattatga
                                                                     1380
gaattettea atgaagtace tteetgettt ttagteaetg tgttttetga agaatttgge
                                                                     1440
ttaagttttg tcttgacctc tgcaaatgtc tgaaggaggt tgtttacttg agcaaaggtc
                                                                     1500
tgtggaagaa taccatcata atttgacctt gtactgaaag catgtaacaa acttctagaa
                                                                    1560
teetgaagea agaatttgae tgttgtaaaa teeactgeet tattagettt aeggagattt
                                                                     1620
ttgtataggc tctcaatagt taaaagcaag ttcttttcca taactaatcc aaatacagcc
                                                                     1680
aaccaatgtt ttttaaagca ctgtagtaaa tgtagtagag tccatggtgg tttcaggtac
                                                                     1740
aggateteca tecaaaaggtt tecaaaagea atttteattt etgtttetaa tattgaagat
                                                                     1800
aaacctgttc caagagattt ttcaagatca gatacaatgc tctcaagcag aatggacagt
                                                                     1860
ccagaatttg tagattcctc cttatagctc tctttcaagg gtgttgtttc tgctcgtgcc
                                                                     1920
qaattcc
                                                                     1927
     <210> 314
     <211> 535
     <212> DNA
     <213> Homo sapiens
     <400> 314
aggacccagt aagaagagct atttttcaaa gagagaaaag ttatttgcaa aagataacat
                                                                      60
ggatttgctg caaaccgcca ggggtctgca ctgtgattct cctttcaggg ctggttgaag
                                                                     120
getecataca gtatetetat etgeettgga caetteagge atatgtgeea tatatgaeag
                                                                     180
aacatcttgc acaacagtct gaatttgctg caacccttct cttgctctgg gccccactca
                                                                     240
aaaccggcag acttacaaat tccttcgtaa atgggccagg gcagcatggt aaaatgtgct
                                                                     300
gtatattacc tcctaaaacc cccgtctcta ctaaaaatgc aaaaattggc cgggcgtggt
                                                                     360
ggtgcacgtc tgtaatccca gctacttggg aggctgacac aggagaatcc cttgaacctg
                                                                     420
ggaggtaagg ttgcagtgag ctgagatcgt gccaccgcac tccagcctqq qtgacaqaqt
                                                                     480
gagacttcgt ttcaaaaaat aaaattttta aaatgcagag ggccatcctg ggcag
                                                                     535
     <210> 315
     <211> 797
     <212> DNA
     <213> Homo sapiens
     <400> 315
tgtacaccgt ggtggaattc cagtgggctg ggtgtggtgg ctcacacctg caatcccaga
                                                                     60
actttgggat ccaaagtggg cagattactt gaggccagga gtttgaaacc agacagggca
                                                                     120
acatggtgaa accetgtetg tactaaaaat acaaaaatca getggetgtg gtggagcatg
                                                                     180
```

```
cttgcagtct cagcttctct ggaggttgat gcaggggaat cgcttgaacc cggcgggtgg
                                                                      240
aggitgiagt gagetgagat tgcaccactg cactccaget tgggtgacag agcaaggcac
                                                                      300
tgtctaaaga aaaagtggat agaggagggt gaggcaggaa aaggaaaagg aagtcagcat
                                                                      360
ttctggagca tcttttctca aacattcctt gtttatttgg gagattaagt ttcttctgag
                                                                      420
gataaaaaaa gattagaagt tagattggta ttgtcttagg gggaaaacag gcaagtagaa
                                                                      480
tgataataga actttgttgc catagaatat acaactaagt aatactgttt ataatgttcc
                                                                      540
aatttactac aggttgtgca tgcaagcagt cctctgttta tctcctcatc ctccagtgtc
                                                                      600
acatgtcaat tgccctgtca ctaactaatc acaaaccaca ctggcctttt attagtttct
                                                                      660
tgaatggcat taaattcttt ctgtctcagt cagggctgtg cacatacctg gtatcttcca
                                                                      720
ctgaactgct cctctcttag ctctgtatag ccagctcctt ctcatacttt gtcgtaactt
                                                                      780
aaatattaat agaggct
                                                                      797
     <210> 316
     <211> 915
     <212> DNA
     <213> Homo sapiens
     <400> 316
tttcgtccca gaactcctgt acagactcat gcgatcctcc tgcctcagcc tcccaagtac
                                                                       60
ctgggactac aggtgtgtgc caccacatct atttatttt tgagacaggg tctcactctg
                                                                      120
tcacccagge tggagtgcag tggtgcaatc atggctcact gcagatttga cctcccgggc
                                                                      180
ttacatgatc ctttcacctc accccaccga gtagatggga ccagaggtgt gcaccatgca
                                                                      240
cccctaattt tttaattttc ttgtagagat ggggtctccc tatgttgctc aagctattat
                                                                      300
tattttaaat attttttctg tttctttctc ttctctttgt ttctcttctc tttcttgcat
                                                                      360
ccccattatg tgtatgttat tttttttca tagttgtcgc acagttcttg aatagtctgt
                                                                      420
ttcacttttt cagtctcttt gttctttgct tttctgtcct ggaagtttct attgatatat
                                                                      480
cctcaagcgt agagattett tettcagcca tgtccattac actcatgggc ctatcaaagg
                                                                      540
cattleteat cactagaaca gtgtttetea tetetageet ttettttat tetttettag
                                                                      600
gatttccatc tctctgcttc acaggttctt gcatgctgtc tactttattc attagagecc
                                                                      660
ttagtatatt agttataatt gttttaaatt cccggtctga taagtctaac actcctgcca
                                                                      720
tatctgagtc tgggtctgat gcttgctctt tttcttcaaa ctttgtgttt tgccttttag
                                                                      780
tatgacttgt aattttette ttgacateag acatgaggta ctggggtaag aaggaactgg
                                                                      840
cagttagtta agcccctaac agtcaatatt cgtaacccac agattgggcc aaaccgccac
                                                                      900
ccctggccca ttttq
                                                                      915
     <210> 317
     <211> 6248
     <212> DNA
     <213> Homo sapiens
     <400> 317
gcggccagac taggcccaag ccgcggtctc gagtaggccc gagacggccg ggccgagggg
                                                                      60
aatgttgtgg aggaggctgc gtctgaagca cggttgagcg gctggcgccg cgcggaccca
                                                                     120
gcggagggc tgcgagggga aggcgagcga ggttcccggc ggtacgggga ctatcccaga
                                                                     180
attttacgcg cgtcgccgta ggggccggaa ctaccggacg agcctccgct gaggcgcttc
                                                                     240
gcagtcccgg agctagcccg gctgccggcg tgtcgctggg gctgagctcc gcgggcgtgg
                                                                     300
agtecttgea geceaaagea tgaggaggte eetgtaggat tetggaetga agaegttett
                                                                     360
gtcaggtttg gggcgtgagg aggttcctgt cagttgggga agcgttaaga ttcctctatc
                                                                     420
gtccagagag gacgcgtgct gccgcctccc gcccctcttg acacgacgaa cctggccggc
                                                                     480
cgcagaacgc tccagggccg agcgaagatg gcctcggtgc cggtgtattg cctctgccgg
                                                                     540
ctgccttacg atgtgacccg cttcatgatc gagtgtgaca tgtgccagga ctggtttcat
                                                                     600
ggcagttgtg ttggtgttga agaggagaag gctgctgaca ttgacctcta ccactgcccc
                                                                     660
aactgtgaag tettgcatgg geeetecatt atgaaaaaac geegtggate tteaaagggg
                                                                     720
```

catgatacac	acaaggggaa	accagtgaag	accgggagcc	ctacgttcgt	cagagagete	780
cggagtagga	cttttgacag	ctcagatgaa	gtgattctga	agcccactgg	aaatcaactq	840
accqtqqaat	tcctggaaga	aaatagcttc	agtgtgccca	tectgatect	gaagaaggat.	900
gggttgggga	tgacgctgcc	ctcoccatca	ttractotoa	aggatattaa	acactatott	960
aattataaca	aananattna	tatasttast	atasaaaaa	aggatgetga	acaccacgee	
ggttetgata	aagagattga	cycyaccyac	grgaceegee	aggergaerg	caagatgaag	1020
citggigati	ttgtgaaata	cractacage	gggaagaggg	agaaagtcct	caatgtcatt	1080
agtttggaat	tctctgatac	cagactttct	aaccttgtgg	agacaccgaa	gattgttcga	1140
aagctgtcat	gggtcgaaaa	cttgtggcca	gaggaatgtg	tctttgagag	acccaatgta	1200
cagaagtact	gcctcatgag	tgtgcgagat	agctatacag	actttcacat	tgactttggt	1260
ggcacctctg	tctggtacca	tgtactcaag	ggtgaaaaga	tettetacet	gatecgeeca	1320
acaaatgcca	atctgactct	ctttgagtgc	tagaggaatt	cctctaatca	gastasasta	1380
ttettteeee	accadataga	caactcatac	angtattoca	tanaganaga	gaacgagacg	
ttasttaaa	accaggtgga	caagegetae	aagtgttttg	tgaagcaagg	acagacactt	1440
LUCALLECCA	cagggtggat	ccatgctgtg	ergaegeerg	tggactgcct	tgcctttgga	1500
	tacacagcct					1560
	cagcagacct					1620
ggaaagcaca	tcctggacat	ctttcgcggt	ttgcgagaga	acaggagaca	ccctgcctcc	1680
	atggtggcaa					1740
	accatgagga					1800
gatetggeea	gggagatccg	cctaataaaa	gacatettee	aacagaacgt	Fadasaasca	1860
accaatatct	ttgggctgca	gaggatgttg	acadecadet	casttagast	2323443403	1920
agaaattaa	attacatata	gaggaccccc	chatcasta	t	aaccayycca	
geecatteea	cttcagtgtc	catgteeagg	etgteaetge	cccccaaaaa	tggttcaaag	1980
aagaaaggcc	tgaagcccaa	ggaactcttc	aagaaggcag	agcgaaaggg	caaggagagt	2040
	ggcctgctgg					2100
gcactgaaga	caggctcttt	ccagaaagca	aagttcaaca	tcactggtgc	ctgcttgaat	2160
gactcagatg	acgactcacc	agacttggac	cttgatggaa	atgagagccc	attggcccta	2220
	acggcagtac					2280
	aggtagacaa					2340
gacttggatt	cagatgatga	actactaatt	gacgagagat	taaaaaaaaa	assagaasaa	2400
ctcataataa	daccasatt	traccarass	ttaaaaaata	cgggaaagga	gaaggegace	
cegacaacaa	gaccaaaatt	ccccggaaa	ttgccccgtg	cgaagccctg	ctetgaceee	2460
	gtgaaccagg					2520
gaggacatgg	tggaaggggt	tgaaggcaag	cttgggaatg	gtagtggcgc	tggtggcatt	2580
	tcaaggccag					2640
gccccagctt	ctcccagcac	tcaggaggcc	atccagggca	tgctgtgcat	ggccaacctg	2700
cagtcctcat	cgtcctcacc	ggctacctct	agcctgcagg	cctggtggac	tgggggacag	2760
	gtgggagctc					. 2820
cagcgcaccc	cagggaagcg	gcccatcaag	cooccaocat	actogagaac	casasacasa	2880
gaggaggagg	agaacgccag	tetagatgaa	caggacaget	taggaggata	cttcaaccat	2940
dcadadtata	tctatccttc	actogaactat	astastasta	aggagagagag	gaaatataga	
geagageaea	agaagaatta	acceggageee	gacgacgacg	attone	gaaatetega	3000
	agaagaattc					3060
	agcaggaccg					3120
ggtttggctg	cagcagctgc	aaagctggcc	cagcaggagc	tacagaaggc	ccaaaagaag	3180
aaatatatca	agaagaagcc	tttgctgaag	gaggtagaac	agcctcgccc	tcaagactcc	3240
aatctcagtc	tgacagtacc	agcccccact	gtggctgcca	caccacaact	tgtcacctcc	3300
	tgcctcctcc					3360
	ccgctcgtcc					3420
cctatggccc	ccggtgtctt	cttgacccag	caacaccett	cagttggctc	ccagaggaat	3480
	aaggaaagcg					3540
	aaatccacag					3600
	ttacccccat					3660
	ggacaaggtg					3720
cacggacccc	tccaccgact	ccttctagtt	cccttcccca	ctttcactag	agcatcctgc	3780
ctgccttctc	cactgaggag	caggtaaatg	ggagaggttt	ccagctgact	agaaccctct	3840
tttctactcg	tccaaaccac	tcccgtcacc	tgccttgtct	gttctttatt	cttcatcccc	3900
	ggaaggcagg					3960
	ttgacacttt					4020
	tttgccccat					4080
	ggctgtggtc					4140
	gcctccttcc					4200
ccaacttcac	ttacctttca	aaagaaaggt	gattcctatc	acttgtcaag	gcagggagag	4260

```
gtcagatgcc caagcetttg accacggttt tgtagcctgt tggaggaagc tacttttagc
                                                                  4320
tggctacaca tgaggccact tgttttaggg tgagctccag ggatttgcct ggattttgaa
                                                                  4380
atcatgtaga acattateca cgtggctgtg gctgtggctg tggctgggcc ctggcaggtg
                                                                  4440
gaaaaccatc tcccagaaac ctgaaagcac ctgccaatga cgcagataac cctggcccta
                                                                  4500
cagcetgett geteegeeta taccacagag cacageetgg acattatgga gggtgtggeg
                                                                  4560
ggacggccca cacctggggt cctccatcgg gaacttttca tgcttctttc tccacctgag
                                                                  4620
gtettggtet gaagaagace teaggactea catetteact cetgggeett tgeactteea
                                                                  4680
gacgacaggt catcgttcaa gcagaatgca gacaggccat tcacgagccc aagttgaaga
                                                                  4740
gaagagacgc ccatccgtga aggagcagac catccatccg atcctcccct tcccctgtcc
                                                                  4800
tteettegtg gattgtetee attgteeaga eagtgeeeee aceteeeace geettgeete
                                                                  4860
actggcaatc tggactcgat ggagaacatc ccccacctc catttggcac tacccaagtg
                                                                  4920
gagtgtaccc ttgccctttc cacctgtacc acccactcca acctcacccc agcttgccca
                                                                  4980
atgettetgg ggaatttaat agetaceatg caggecacag ggaatttgtg aggettettt
                                                                  5040
tgtcatcttt gtatctccag tttgtctttc ttttctccat agccctgcct ctactttcct
                                                                  5100
teettgggaa teaggggtte etttageeea tttgetttet etacettggg gaeeeeaggg
                                                                  51.60
gccaagcagt tetecateta gtcacaccaa aggcaaaaag cetggetace tececectag
                                                                  5220
cacgtgagtc cctactcccc tcccctctgt ttctgcccag ctttgcttat tttggggatt
                                                                  5280
teaaggeage agagggtagt gaggggagag caggagaage etetgteetg tataggeaac
                                                                  5340
tgcctgacta tgcggtgact gctgtaacca agatcaggtc cccagccctt ttgtccatta
                                                                  5400
acacccette ttgatettte aaaggeaget aattgetage aaateeece gatteeggee
                                                                  5460
ttttccctct atttctttgt tagaagtttt ctgtggagct gaaacccagc ctctgtttga
                                                                  5520
ctgggtttca tttagcttag ttgggttctt agagccccct gtttgttgtt ttgtgttgtt
                                                                  5580
tccaatgaaa agcaagttta ccctcagagt tatgcttttc caaagaggct gatgtctttg
                                                                  5640
5700
gttagtaatc aaggtttaga acaccatgag atagttaccc ctgatctcca gtccctagct
                                                                  5760
gggggctgga cagggggaag ggagagagga tttctattca cctttaatat atttttacaa
                                                                  5820
aaaaagcaaa caatttaaaa acaagcccac cgcttctgta catgtctaaa tatattttta
                                                                  5880
gaagtgggta ggattgtgaa tttctgatgc agggcctttt tataaatagg ttagggtagc
                                                                  5940
atcattcaga cttctctgtt gtttttgtcc ctgtcttttt cttatgttgt gttactaatg
                                                                  6000
taatttatat tttttttaga teeteeettt eetatagaga taaaagtgat ttatettgge
                                                                  6060
aattgctttg cttggcattc tttttttttg tgatgagggt ggtggtgtgg tgcagggtct
                                                                  6120
gggagtgctg cetteteett gtactetttg teteteette ageaagttgt caggeattte
                                                                  6180
cctggtgctc agccttatgc ttgaagtggg aagggtattc ccaccctcag gagggacacg
                                                                  6240
cttcacac
                                                                  6248
```

```
<210> 318
<211> 402
<212> DNA
<213> Homo sapiens
<220>
<221> misc_feature
<222> (1)...(402)
<223> n = a,t,c or g
```

```
<400> 318
```

```
tttegteege egggeaacte cageegagge etgggettet geetgeaggt gtetgeggeg 60
aggeecetag ggtacagee gatttggee catggtggt ttegggacea aceggeggge 120
tggeegeetg eceteteeg tgetggtgt getgetggtg gtgategteg teetegeett 180
caactactgg agcateteet eeegeeacgt getgettgag gaggaggtgg eegagetgea 240
gggeegtgte eageegeeg aagtggeet etggegggt ggagggegea attgegacet 300
ettgetggtg gteggaege geagtagaeg gategaggag aggggageeg actacageeg 360
geteageagg eggetgeagn eeaaagaggg eeetegtgaat ag 402
```

```
<210> 319
     <211> 635
     <212> DNA
     <213> Homo sapiens
     <400> 319
tttcgtggag gctcagaaag acccctaagg agcgggtatt caatctagcc tcagaagatg
                                                                       60
aaattcagta ggcgagaagt gttggaacca aaatcctcgt tctggagtca ttttatggaa
                                                                      120
gcagctgctt tggcttgaaa tggcaagccc cgggacctct ccccacccag tgctttgatg
                                                                      180
agggccaggc cagcatgtac tgccaccttc ccgtcctttc acctagccct ggacagtagc
                                                                      240
taccttcctt gctgtaaagg aaaggccacg tttataccaa aatccagaat ctatctgcag
                                                                     300
gaggcaaagg gaagtgggga gcccctggga tgaggatctg tgagggtggc tttccctgct
                                                                     360
aagcagaaca tetgactgte teacteetgg etgtgteeag gaggtagatg ggettgaaat
                                                                      420
caattetget tgetgeatat etgattteet agageceact egteaagtga ggagacateg
                                                                      480
tcagtgctgc agccggggat cgccatggag accataggac tggctgactc cgggcagggc
                                                                     540
tectteaceg gecaggggat egecaggetg tegegeetea tettettget gegeaggtgg
                                                                     600
gctgccaggc atgtgcacca ccaggacctt ttttt
                                                                     635
     <210> 320
     <211> 1311
     <212> DNA
     <213> Homo sapiens
     <400> 320
ctatcagcca cataccacat agggaggcca cagatgggcc gtggtgggtg gaggtagcct
                                                                      60
ttgcaccatg ttgagcagag acggctggct ctcctcaggg ctccggctgg aaggtgtata
                                                                     120
ccggaaaggg ggcgctcgtg cccgcagcct gagactcctg gctgagttcc gtcgggatgc
                                                                     180
ccggtcggtg aagctccgac caggggagca ctttgtggag gatgtcactg acacactcaa
                                                                     240
acgettettt egtgageteg atgaceetgt gacetetgea eggttgetge etegetggag
                                                                     300
ggaggetget ggtatteeta agateeetga gageeaagge ceaaceagga tetetgeett
                                                                     360
cccccaccag aatccatggt ttggcagccc tccgccccat cacttcccac cctgggggat
                                                                     420
catccagaga cttggctcag ggggaggtgg gaagggggca gagacacatc catcctgcat
                                                                     480
ttgtgcctaa aaatccctcc ctctgtacca gctgccactc tttcttcccg ggtcctcccc
                                                                     540
aacceteete cattecatee ecagagetge eccagaagaa teagegeetg qaqaaatata
                                                                     600
aagatgtgat tggctgcctg ccgcgggtca cccgccgcac actggccacc ctcattgggc
                                                                     660
atctctatcg ggtgcagaaa tgtgcggctc taaaccagat gtgcacgcgg aacttggctc
                                                                     720
tgctgtttgc acccagegtg ttccagacgg atgggcgagg ggagcacgag gtgcgagtgc
                                                                     780
tgcaagagct cattgatggc tacatctctg tctttgatat cgattctgac caggtagctc
                                                                     840
agattgactt ggaggtcagt cttatcacca cctggaagga cgtgcagctg tctcaggctg
                                                                     900
gagacctcat catggaagtt tatatagagc agcagctccc agacaactgt gtcaccctga
                                                                     960
aggtgtcccc aaccctgact gctgaggagc tgactaacca ggtactggag atgcggggga
                                                                    1020
cagcagctgg gatggacttg tgggtgactt ttgagattcg cgagcatggg gagctggagc
                                                                    1080
ggccactgca tcccaaggaa aaggtcttag agcaggcttt acaatggtgc cagctcccag
                                                                    1140
agccctgctc agcttccctg ctcttgaaaa aagtccccct ggcccaagct ggctgcctct
                                                                    1200
teacaggtat cegacgtgag ageceaeggg tggggetgtt tgeggtgtte gtgaggagee
                                                                    1260
acctcgcttg ttggggaagc cgcttccagg agaggttctt tcttgttgcg t
                                                                    1311
     <210> 321
     <211> 867
     <212> DNA
    <213> Homo sapiens
```

```
<400> 321
ctcagtcatg ccagtgcctg ctctgtgcct gctctgggcc ctggcaatgg tgacccggcc
                                                                       60
tgcctcagcg gcccccatgg gcggcccaga actggcacag catgaggagc tgaccctgct
                                                                      120
cttccatggg accetgeage tgggccagge ceteaacggt gtgtacagga ccacggaggg
                                                                      180
acggctgaca aaggccagga acagcctggg tctctatggc cgcacaatag aactcctggg
                                                                      240
gcaggaggtc agccggggcc gggatgcagc ccaggaactt cgggcaagcc tgttggagac
                                                                      300
tcagatggag gaggatattc tgcagctgca ggcagaggcc acagctgagg tgctggggga
                                                                      360
ggtggcccag gcacagaagg tgctacggga cagcgtgcag cggctagaag tccagctgag
                                                                      420
gagegeetgg etgggeeetg eetacegaga atttgaggte ttaaaggete aegetgacaa
                                                                      480
gcagagccac atcctatggg ccctcacagg ccacgtgcag cggcagaggc gggagatggt
                                                                      540
ggcacagcag categgetge gacagateca ggagagaete cacacagegg egeteceage
                                                                      600
ctgaatctgc ctggatggaa ctgaggacca atcatgctgc aaggaacact tccacgcccc
                                                                      660
gtgaggcccc tgtgcaggga ggagctgcct gttcactggg atcagccagg gcgccgggcc
                                                                      720
ccacttttga gcacagagca gagacagacg caggcgggga caaaggcaga ggatgtagcc
                                                                      780
ccattgggga ggggtggagg aaggacatgt accetttcat gcccacacac ccctcattaa
                                                                      840
agcagagtca aggcatctca aaaaaaa
                                                                      867
     <210> 322
     <211> 1144
     <212> DNA
     <213> Homo sapiens
     <400> 322
agtgggggaa ttccctaagt ccactgagaa taaacaagag acagagatag gtgggaagac
                                                                      60
agagacagag ataggaggga agacagagac agagatagga gggaagacag agacagaggg
                                                                     120
agagaaacac agagattcct tattggcaat ctttctgttc tcttatttaa agaaaaaagt
                                                                     180
tgatttttct ccttaatctg aaacgtatgg ctgctctgta gagaaggttt gggagatgct
                                                                     240
gaaatggggc gagaagggag cactcatcag ccttacacac ggctctgcta aggatcaggg
                                                                     300
ctccaggccc ctcagcctcc tcccagcat ggcagcccct tccagcctct cctatccca
                                                                     360
ggcctgcagg ctaggatggc ccggccctca gccttcccca tcggggtctg tctgactctg
                                                                     420
cccatggcct ggatctcccc gggtttagct gtgcccagct gtccccagta catacttcaa
                                                                     480
gcccaaggct gcatcctaga catgaaaacc cgaggcagcc atggggagtc tgctgtgcca
                                                                     540
ggggcccatg gctctcgtcc cttccaccct ctggctgagc ccaatcctcc ccgccaaaag
                                                                     600
ttgacaccat gcacatgagg gacacggggt ggctccccaa agctgacggt cgacgccct
                                                                     660
gcagggccgt gatgccaagt cagggtctca gcaggccctg ggactcagtc cccacagagg
                                                                     720
gcagggggtg acactcagcc ccggagaagg gcccctcaga gccctctgac agtgcccttt
                                                                     780
cccggtgggc aacgctttct gccaggcatg cgctcccacc agattacagg aaggctgcag
                                                                     840
gcagagtgtg cacaceggga tggcccctta tcccgcccag acaaaggcgc gcagggccct
                                                                     900
gaggcagggc ccatgctgtg ctggagtggg tggagctggg aacagaaata cqtcctqcct
                                                                     960
gcaacaaagc ggcgctgtga gcagctgcgg agcacagggg gcatcttctg aggacaaccg
                                                                    1020
cagcaacaac aataacagca ggctgggccc ggtggcttac acctgggatc ccagcacttt
                                                                    1080
gggaagccga ggcaggaagg atcgcttgga ggcgagggaa ttaagaacag cctgggcaac
                                                                    1140
ataa
                                                                    1144
     <210> 323
     <211> 366
     <212> DNA
     <213> Homo sapiens
     <220>
    <221> misc feature
     <222> (1) ... (366)
     <223> n = a,t,c or g
```

```
gacgacgtgg atggggaaaa agagttttta ctctttgtgc cccgtgcctc cacaaagggg
                                                                       60
gggggaaaaa cagtttette ttgttteece gactatgace ggacattata atacaattta
                                                                      120
gccgaatggt cagacatcgt ggcatggatg accattattc tccagataga gacagtcatt
                                                                      180
ttettaetet acetegetee agatacagte agaceattga ceateateae agggatggea
                                                                      240
gggattgtga agcagcagat agacagccat atcacagatc cagatcaaca gaacaacggc
                                                                      300
cteteettga geggaceace accegeteca gatecacttg acggnettgt accaacetta
                                                                      360
tggggt
                                                                      366
     <210> 324
     <211> 839
     <212> DNA
     <213> Homo sapiens
     <400> 324
cccacgcgtc cggcttttgg tgtgttggat aggcttttga gtagggagag atactatctt
                                                                      60
gaattgtgct aataatttaa ctcaacagca tctaacaaag gcagtcttat tcttggatca
                                                                      120
tgtgtacaga tcatagtctg aagtggaata agcagaatgt tgtcctcagt gtgagatgtt
                                                                     180
atttagaaca cactggaaac attgtgatgt cattgtgcac tgaggcaggg aaatgttagt
                                                                     240
ctacatttta tggaatatgt acttcaatgt ttgcattgta cctggagtga taaaaagcaa
                                                                     300
aacaggtact caagacctgt ctgggctttg gcctttgggc acattccccc tcatcacctt
                                                                     360
ccttcccact tggctgagct atggatgaga aaacctaggt caatagttca ccaactcacc
                                                                     420
ttcaagccag gtgggctgac aagtcctcct ttgaccacag gaccccagcg cctgcatcca
                                                                     480
gaagcatcta agatcctgga agtcaactta aattttcaat gaatgggcca gttgcagggg
                                                                     540
ctcacacctg taatcccagc actttgggaa gctgaggcga caggattctt tgagcccgg
                                                                     600
aatttgagac caacctgctt gggccaccta aacccatttc atcaatcaat cataatcgag
                                                                     660
ggagggcgg gattggagcc ctcattatta ggagctgagg ggggggccac tggaccccgg
                                                                     720
ggtttgggtt geegggeece tattggeecg gaccetggga aaaaacgaaa accageetee
                                                                     780
gcagaactcg ccaaaaaatg gggcgggcgt tgaaaacaaa ttttaacccg gcgggccat
                                                                     839
     <210> 325
     <211> 677
     <212> DNA
     <213> Homo sapiens
     <400> 325
gggagaattg aatgattttg tttcaactgc caagtaatgt ttttgttctt ttaatgtttt
                                                                      60
tgtttetttt tgagttette ettacettag ttecaatgtg ggeattteet ggagacaaaa
                                                                     120
cttttgtttc acctgcatca tctttaagtt ttcttgatct gagttttctg cttttctgta
                                                                     180
acagtgtatc tattggaaaa caataacaga aatctcataa tcctaaaatg ttaagcattt
                                                                     240
tgctaatatt acacagagta tgtgaactaa cagaagggct agattttgtt tatcttgtac
                                                                     300
atcttggaaa tctgtgacag cttggcttag attcagtttt agtgtactgt atttgaaatt
                                                                     360
accepttatec acaggaacag taactatagt ttgtcctaat ataacgaagt ctactttata
                                                                     420
agttggctga gcatggtggc tcacagctgt aatctcagca ctttgggagg ccaacatggg
                                                                     480
cacatcactt gaggtcagta gtttgagacc agcctggcca aaatggagaa accccatctc
                                                                     540
aactaataat aaaaaaaatt agctgggcat ggtggcacac gtcctgtagt cccacctacc
                                                                     600
tgggaggctg atgcaggaga atccattgaa cccgagaggt ggaggttgca gtgagccaag
                                                                     660
ategeaceae tecaete
                                                                     677
```

<210> 326

```
<211> 517
     <212> DNA
     <213> Homo sapiens
     <400> 326
tgcttggcac gaggcaggag gctgtctgga cacactgatt actcactcac caqcctccct
                                                                      60
cttttgtcca ccagcccagc ctgactcctg gagattgtga atagctccat ccagcctgag
                                                                      120
aaacaagccg ggtggctgag ccaggctgtg cacggagcgc ctqacqqqcc caacaqqccc
                                                                      180
atgctgcatc cagagacctc ccctggccgg gggcatctcc tggctgtgct cctggccctc
                                                                      240
cttggcaccg cctgggcaga ggtgtggcca ccccagctgc aggagcaggc tccqatqqcc
                                                                      300
ggagccctga acaggaagga gagtttcttg ctcctctccc tgcacaaccq cctqcqcaqc
                                                                      360
tgggtccagc cccctgcggc tgacatgcgg aggctggact ggagtgacag cctggcccag
                                                                      420
ctggctcaag ccagggcagc cctctgtgga atcccaaccc cgagcctggc gtccggcctg
                                                                      480
tggcgcaccc tgcaagtggg ctggaacatg cagctgc
                                                                      517
     <210> 327
     <211> 992
     <212> DNA
     <213> Homo sapiens
     <400> 327
ctggtcttga actcctgacc ttgtgatcca cccgtctcgg cctctcaaag tgctgggatt
                                                                      60
acaggtgtga atcaccatgc ccggctagaa gagctttatg ttcatgatgt tgagatgaag
                                                                      120
ttggggccag aagaagagtc agttgataaa agctaaagta tttttagatc ctgattaaag
                                                                      180
aagaaggtaa tgggttgact tgagagagaa tgagcgttct gttatgggaa tgctcatatg
                                                                      240
ggaaatgttc tgtctctttg tcaaaaactg caggaccacc tgttggtgac attggaqqaa
                                                                      300
ttcctgcttt gtgtgggagg gtgaactaga tgcctttaaa aaaaatttcc ccccacaqa
                                                                      360
cttgttttag atattttact gcttcagaga gggtcatgtt cacaccattc tccccttttg
                                                                      420
taatttttca cacctccctg gctccccttt tataatttag aaagaggttt acaagtctgt
                                                                      480
aactttttgt attagattta ctttgagaaa tcttgtactt aatttagtag gtcacagagg
                                                                      540
gttgctgaat gactggaaac ttgtgtttct tttccattaa gggctatttg ctgacttctg
                                                                      600
aaatattgat gatttatttg actttagaat tttgcatact gaggggaaag catcttaatg
                                                                      660
tatcatttaa agcaggagat actttcatac tatacctggg ttctcttggc tttgaagagg
                                                                      720
agggtggtcc tgagatattg aaagattgca tgggtggcct gtcatcccca ccactttgga
                                                                      780
aagetgagge egggtgeate atttgggget taggagtttg ggaccacccc tgggccacca
                                                                      840
egeggeacce cetectetge taaaaateeg gaaatttgee eggggegggg gggggatgee
                                                                      900
ctatacatcc agtttctcct caggcgggcc cattatatta aaccctagcc ggccgctccc
                                                                      960
tegececege geaacaatat atetateege ee
                                                                      992
     <210> 328
     <211> 894
     <212> DNA
     <213> Homo sapiens
     <400> 328
taccatagca tgtaaggtcc tactggatct aatactgggc tcctctctga attcattgct
                                                                      60
tgccactttt ccttttgatc agtgtcctcc tgccatcctg gcctccttgc tgtttctcaa
                                                                     120
acatgccatg tatgttcttt cctctgcaca cctgtgcttt ttatgccttc agtgctcctc
                                                                     180
cctagaggtc tacttgatct cttccctcac ttcattcaga tctgtgctga actgttaccc
                                                                     240
accagagaga tettecetga ceatteaata teaaatatta eteettetgt tacagtaggt
                                                                     300
agctagtcag gcatgagcag ggcagaagag ggctcccctc cctcaacaca caccaggaat
                                                                     360
```

420

gacaggcaaa catcaggtga tggtcaggca gctgctaact gtttctctaa aatattaatt

```
ggttgcagcc tgcaccaggg aaaggcagtc tccatatata cagaagcacc tgaagctggt
                                                                      480
gatcagcagc ttcccatgag atctcaggaa ctgggtgagt gggctcaagc gtttgcacta
                                                                      540
agaggcaaaa tgccagagtt tggtatgtga cctcctaagg acattcgact ggtaatggaa
                                                                      600
gaacacctca agtgaacacg cgtacaactc cagtaaacac gttgcacatg gtccctttcc
                                                                      660
caagtgctgg gaggctactg tgtgtgcaga cagcctgccc caagggaaga atcatgggag
                                                                      720
atgggacacc aagateetgg aagtatgeea acatataaaa ceecaagttg aaaggteaaa
                                                                      780
cogtgcattt gtcttttcaa gttgcccact ttgccctctt ccaagtgtac cttccttccc
                                                                      840
tttgttcctg ctctaaagcc ttttattata ataaactgat tccatctcta aaaa
                                                                      894
     <210> 329
     <211> 423
     <212> DNA
     <213> Homo sapiens
     <220>
     <221> misc_feature
     <222> (1)...(423)
     <223> n = a,t,c or g
     <400> 329
acttacagee etcegtggee aaaaaatatg eggateataa gtttgacaet gatgeteetg
                                                                       60
gagctattcg atagtgaaga cccccggcag cgagagtacc ttaagaacat cctgcaccgg
                                                                      120
ctttatggca ggatgctggg actccggccc tacattcaca aacagagcaa gcacattttc
                                                                      180
ctccggatga tctatgaatt ctagcacttc aatggggggg ctgaactgct ggagaaccta
                                                                      240
ggaagcatca tcaatggctt tgcgctgccc ctgaagacgg agcacaagca gttcctgggt
                                                                      300
cgcgtgctga tccccctgca ctctgtcaag gcgctgtctg tcttccatgc ccagctggca
                                                                      360
tactgtgtgg tgcaattcct ggagaaggat gccactctga cagagcacgt gatccggggg
                                                                      420
                                                                      423
     <210> 330
     <211> 18819
     <212> DNA
     <213> Homo sapiens
     <400> 330
gtaacttetg aagaactgaa tattataatt cagaatgtaa tgacctgggt tgtggctaca
                                                                      60
gtgaccagta tattgtaccc agccatcaca aagtatgaaa aaagattgca aaataataca
                                                                     120
tacccagtat ctgatgactc catcctctct tcagatagtt caagtttctg tagcacgtgc
                                                                     180
agtgaagact ttacatatag aagctacaca tctgcaacaa ctaaaacatt tcaggcagaa
                                                                      240
ccctgtgcat ttgtagttga cacgtcagta aggagaccaa ccacacctat aaaacctcct
                                                                      300
cctgcacatg tggaaaaaac agttgtgggg aaaacatgtc acataaaagg acaatctata
                                                                     360
atctctaaac ataaatataa taaaaccaac ttgctatatt cataccctaa gctcagaagt
                                                                     420
tgtaaatcag atagtcacct tttagcatca tttgaaacag gcacaaaaaa atctaaggat
                                                                     480
gctaccactg aaacagatag cttagggagt tcattgcatt gtgataaaac agcaaaagcc
                                                                     540
atggatgaaa tgaagaattt aaaaaatgtt tttgttaact ttaaatgtta cttgaaaggg
                                                                     600
gaaactgaag tgattttaga aagcattttg cgagaaataa tgtctgattt aacccaqqcc
                                                                     660
attecetete tetettetgt tactgetgaa gtttttgttq aacaatgtga acgtgaaaaa
                                                                     720
gaaatettge tttccaatge teatatteee teagttgett etgagattgt qqaaaatatq
                                                                     780
cttgagaagt tagagtctgc agttgagaaa aaatgtgttg agatgttttc acaagatttg
                                                                     840
tcagtcgaca ttaaaccaag tttagcagcc agtgatgaac ttctcacatc atctaatgga
                                                                     900
aaacctttga aaaattcaat gcctcatact ttggacccaa tgtgtgatat tgcagaggac
                                                                     960
atggtgcatg ccattttaga aaagctaatg actcttgttt cttttaagca aaatgaattt
                                                                    1020
cttcatctta aagacacaaa taagctttcc tgccagcaac ataagacaga cccaatatgt
                                                                    1080
```

	aaagagctgg					1140
	aagaagtaca					1200
gcttatatag	aggaagcaat	caatgctata	ctaggttata	tacaaactga	actaaataat	1260
	ttgcatctga					1320
	atcaggaacc					1380
agtagtttt	ctgacaccaa	ayaaaaytac	agacteactg	geactagatt	accaaacagt	1440
cetaggtetg	gaagaccatt	tecacetata	aatgttccag	gcatggttct	ttattctgat	1500
	aggaaataga					1560
gaaaaagtaa	aatcacaaga	acagattcct	aatcattggt	ttacaaaggg	aaacacttgt	1620
	aaagaaatat					1680
	gggaattaaa					1740
	cttcgaataa					1800
	cagaaaacat					1860
acceptaceta	ttggtcactt	agacagcaaa	actggcagtg	aagetteagt	tettgtttea	1920
	aaggactgtc					1980
	tggctcaaga					2040
aactacattt	ccaataccac	taaaagttcc	atttcatcat	cagttcatca	gatttcctta	2100
cataattctg	acactgaaca	catagtcaaa	gaagcaccaa	ataaataccc	attaaaaaca	2160
tggtttgaca	gtgaaaagaa	aatgaaatat	ttatctttat	ttgacqttga	tcctgaaaag	2220
	taaaatctgg					2280
	caattttaa					2340
	cattacgatc					
						2400
	tccagaatga					2460
	aatcccttac					2520
	cgagtattga					2580
gatatgttgt	tatcaagtga	aaatgcacat	caaagaagca	tttcactctc	ttctcgtaag	2640
ccaaagtctg	caactgacag	tgttgatgta	caaagcattt	tgccaaatag	gcaagataaa	2700
	acaaatattt					2760
	agaatgcaaa					2820
	agctcctggg					2880
	ccaataagaa					2940
	caattttgga					3000
	gttgtggatt					3060
	ttattgagaa					3120
agaagggttc	aggaggacaa	taaagaagag	actaaaagca	aggcaaaacc	tgttgctcct	3180
gtgtcttcca	aaacaccaag	cacaaaagaa	atgcatccaa	ataaactaaa	agctgtagct	3240
tcagatattc	ttaatatggt	ttttgctaaa	ctggaagggt	ttgccaacgg	acatttagaa	3300
	ctattaatga					3360
	tttccagaga					3420
	tatcaagtgc					3480
	agacaagtgt					3540
	ttttagatgc					3600
ggaggcattg	aaacttatcg	atacaggcca	acatatggaa	gtcttcctgg	aggagetgaa	3660
	ttctagaaga					3720
	aagaagtgaa					3780
aacaaaattg	aagtaaaact	caaagaacca	catatatctc	caattgctcc	cattataaga	3840
aatattttga	atgaaatttt	tcaaagtact	ttaatcaatc	aattaaatgt	cctttctctc	3900
	attttaatgg					3960
	tggataaaat					4020
	ttgttaggac					4080
	aaaataggta					. 4140
	aaggaaagtc					4200
	gcgttgctga					4260
	caaatttaga					4320
	ttacagttcc					4380
aaagcattat	cagccaaaga	ttcatattct	gatgagcaat	tttcctgttg	ctcagtagat	4440
	caggaaagac					4500
	tggctagaag					4560
	ttttaactca					4620
• • • • • •		J		J J J		-520

-						
aacgcattgt	tagacattat	atcacgtaaa	ggcaaatgtg	acaaaaacag	ttctgacaaa	4680
gagatcgatt	tagatcagca	aaaaggtgtt	attgaaaagc	tgctcaatga	gaccaaatat	4740
cgaaaagtac	ttcaacttca	aatacaagat	accattgaag	gtatcctatg	tgatatttat	4800
gaaaaaaccc	tgtttcagaa	taatctctca	tttgccacac	ccactctgaa	atgtagcata	4860
gctgataaac	attcagaaga	aaattctgaa	atgttcatgg	agggtgcaaa	taagattatt	4920
cctaagcttt	cagttcctaa	atcagatgtc	attttgatat	ccaatgatat	agtgaatatt	4980
gttcttcata	atctcagttc	tgctgccacg	cttgtcataa	atgcaaagaa	tcctacttct	5040
gcaagattgc	ccctgacatt	ttgtgatacg	tttccaaaaa	tagactgtca	acagcctctt	5100
aaggggtcaa	aaactgaaag	aaaaacagag	cgtttttcat	attcaagaaa	tcagaaatca	5160
gcttatgctg	atgataatca	gataactgta	gtagagaaag	aagacactca	gaaatctgct	5220
actgactcat	gtgaggaaaa	tgctaacttc	attactaaaa	ctatttttaa	acgtttggaa	5280
tcttttgcca	cagaaagaat	agattcatta	attacccttg	ctttccaaag	taaagaaaag	5340
tcatttgtta	tcccagaatt	ggaaaattgt	aaacaaaatg	acagcatctt	ttatgattca	5400
	aatcagatgt					5460
caagagctta	cagatttcac	ttttgttggt	cgcagagaaa	aacttggatc	cacaattcac	5520
ctatcgcaag	ctaggcttaa	gacatatgct	gacgtcattg	ccagtgccat	tttgaagctt	5580
.attaaaaatg	acttagactt	agaaattcaa	aagatatatc	catatcaaaa	caatattttg	5640
	acatcattgt					5700
aaaagatctg	taaaggaaat	ttgttttaat	tcaaaagaaa	attctaactt	ttcacaatta	5760
	atgaaatatt					5820
	agtatccatt					5880
attgttttgg	aagaaatatt	tatgagaaat	ggagaatcaa	aaaacaaaga	aaaaggtgaa	5940
	cagtggaaga					6000
	ctccacttaa					6060
	cacagaaaaa					6120
	ttttggggaa					6180
	cagaagttga					6240
	aaactaaaca					6300
	cttatgtcga					6360
tatttaccat	tgcaagtgaa	gaaagactta	attcaaatgg	ttctcaataa	gatcacaaat	6420
tttgtctcac	ttcctttaaa	ggtgagccct	aaggacaacc	ctaagccatg	ctttaaaqca	6480
	caagatcaaa					6540
	ctgctaaggc					6600
aaagacagca	gatccaagac	tgccattggg	ttgtcacaca	tcatgtcagc	tggagatgcc	6660
aaaaatttac	tggacacaaa	attgcccact	tcagaactaa	aaatatatgc	caaggatata	6720
	tcctagaaac					6780
	atcaaatcat					6840
tatgttacca	ataactgcaa	tttggcttac	ccgatgaaat	cctcacatct	cagactttca	6900
	taggcacagg					6960
	agctagagca					7020
	cagaatcaaa					7080
	tgactgaaat					7140
ttaaatttgc	cccctcttga	gaattgtgaa	agcaggtttt	ataatcattt	taaaggagct	7200
	ccgaggatac					7260
atgctacttg	aaaaactaca	gctatgcttt	ctgtcccaaa	ttcccactcc	agatagtgaa	7320
	caaacagtaa					7380
	tcagcagttt					7440
ggctccagca	accaaattgt	tcaagagatt	gtagaaacgg	ttttaaacat	gttagagtca	7500
	tgcagtttaa					7560
	acctttcttc					7620
	tgaaaatgtt					7680
	atateettet					7740
	tcagtgacat					7800
	catcttcaat					7860
	tggaccagtg					7920
gaaagtttgt	tccaaggagc	tgaaaatgcc	tacactgtta	atcaggttga	attagcaact	7980
aatatgaaaa	tgttcacatc	aaagttaaaq	gaaggtagtt	tggggattaa	tccttcacaa	8040
gtgagtaaaa	ctgggtttgt	gttttgttca	gatgaagata	tgaaagaaaa	gtacagggtt	8100
	tacccacctc					8160

ccaacgaaaa ggcctgattc agaaactatg ccatcgtgtt ctactagaaa caaagtacaa 8220 gaccacagac caagggaatc taactttggt agttttgatc agaccatgaa aggaaatagc 8280 tacctccctg aaggcagttt cttacaaaag ctgcttagga aagcaagtga ctccacagaa 8340 gcagcattaa agcaagtctt gtcattcata gaaatgggaa aaggtgaaaa tctaagagtg 8400 tttcattatg agaacctaaa accagttgtt gaaccaaacc aaattcagac aaccatttcc 8460 cctctcaaaa tatgtttagc tgcagaaaat attgtcaata ctgtgctatc cagctgtqqc 8520 tttccaagtc aaccacaca taatgagaac agggaaataa tgaaaccatt tttcatatca 8580 aaacaaagct ctttatctga agtatctgga gggcaaaagg ataacgaaaa aagtttgctt 8640 agaatgcagg ataaaaaaat caactatata cctgaggaag aaaatgaaaa ccttgaagcc 8700 agccgggaag attcttcttt tttgcaaaaa ttgaaaaaaa aggagtaccc aaagatagag 8760 actgtgaagg aagttgaagc ctttactttt gctgatcatg aaatgggttc caatgaagtt 8820 catctgatag caagacatgt caccacatct gtggtcacat atttgaagaa ctttgaaact 8880 acagttttta gtgaggaaaa gatgtctgtt tctacatggt caaggaaaaa atatgaatca 8940 aaacagttcc taagaaacat atacgatgat tcttcaattt atcaatgttg tgaacatctc 9000 actgagtcag tactttacca tttaacttcg agcatttctg atggcaccaa aaagggtaga 9060 gaaaaagaga aagcatggga aattcaagaa gcaacattta gcaaqattat ttcaattcat 9120 tetcaagtgt ttgagageag gtcaatttee attggagaac ttgetttatg tatttetgaa 9180 atcattatta aaattetttt taataataaa attatacagg etgacattge acagaaaatg 9240 gttgccatac ctacaaaata cacttactgt ccaggaatag tttctggtgg ctttgatgac 9300 ctctttcagg atctcttagt aggagtgatt catgtactgt ccaaagaaat agaagtagat 9360 tatcactttg aaagcaatgt aagaaacaaa tcattttcta tgcatagaaa taatagtgta 9420 cccctttgca acaaaatcaa tagacaggca agccccagag actggcaatt ttctactcaa 9480 caaattggtc aactttttca aaaaaataag ttaagttatc ttgcatgtaa gttaaacagc 9540 ctggttggta acctaaaaac aagtgaatcc aaagaagtag tcaataaagt ttttaatatt 9600 gtttcagatt tattttcacc agatgaatgc ctagatacgg gtatggattc tggtaaaata 9660 caaagaacat atttctactc ctcgaataat gagcaaccta atagcatact taccaataac 9720 ctacagetet ceteaaaate agtttttett eteaatgttg tatgtgagaa aettateaga 9780 atacttttgg aagaatgcac aagcactgct tttcctgata aagggtctgt ttcagaggaa 9840 acatcagcag aagaatgtca acttttaaaa atgcttcaaa gtgtagaaga tggaaaatct 9900 gattatcgta agggaggaat ggactgtgaa tgccttcaag tagattacat gtcagacctt 9960 ttggagaatg tggcagaaat tgatcaagac ttattgacat cagactctat gcttactatt 10020 atttcccaca gcttggttaa atcattgatg gacaaattat ctcacagcat acaacaagct 10080 ccggaaagtc taccttttgc aaataagcat ttgaactaca gaacaagaga aatacagtct 10140 agtttcataa aagcaagaaa gtcagaatta atagaattag gacagagtaa aagttcttta 10200 gaactcagga gctatgatag taattctttg acagtatccc tgaataatcc cagtgtggtt 10260 agetecaaaa tacaageace atttaacaag cattgtgcag taaaateete ttetgtgtca 10320 ccttttgaaa gacagagaac aaaggaaatg gataaggtag ccattcataa taagctacat caggaaggta tatatgctgg tgtttattca gccacatttt tggaaggaat aatttcagaa ttgtttttta atctctctat gtcattgtgg ggcaaaaata aaaacatcac tgtgtcctgg 10500 ctcaatgaga tgaatacatt atttgtcaac aatgtagtga atgaatttaa taatgctcaa 10560 gtcactgttc tacggaatgc tgaagaaagg ctgtgttttc caccagttca tacagaaact 10620 gttagcaaaa ttgttgactc agtttattat gatgttttac agcagtatga attaaaagtg 10680 gcctgtggta ataatccggt atacgacaat gcctcaatag cagaacaaat aacaaatggc 10740 atattgttag agattttaga ctacaaactg ccatcttgct tcaaggaaca tctcataccc 10800 cattcatatt acceteteaa acetgaaatt atattgeaaa agetteaaag taacetaaca 10860 gaatttactt ctctacccag gtcttcatca gactatagta ccatgttatc acattcattt ttagaagatg tcataagaag gcttttatct cagctaattc ctccacccat tacatgttcc 10980 tctttaggaa aaaaatattt aatgagttct gattttaatg aaatgtccac ttgtataata 11040 aataaggtta tgtcagccat ttcaaaacat aaaatctggt tcactatata tgataatcaa 11100 tatctatata ctggaaaaaa cctccaaaag atggtggatt ctgtatattg taatattttg 11160 caaatgtctg actctcttgt ttcaatacaa aaaagtatag taagccgaag cccaattatg 11220 attgaccaaa tagccagctt tatcatccaa gagattatcg aaaatcatct tcaaccattt 11280 ttgagtggag aggttttatg tcatccaagg actccactgg atccagtgtc tactattgtt 11340 acacaggttc tgagtgaagt gatagagtca cacagacctc agaagcaatc acctttagat 11400 attcaccttg attcatttgt aagggagatt gttgccagac ttttgtcaaa gattttcagc 11460 ccaaagcata acactgaaat tgagttgaaa aacatgaccc aaagaatagt aaactccata 11520 aataggcatt tcaataaagc taaaattcac attctctatg atgacaaaga acaggctttc 11580 ttttctttca atacagatat tgtggatgaa cttgccacct cagtttatag aaatgcttta 11640 aagcagcatg ggctagacct tgctgttgat aaagagtctg aagacagtgg catttttgtg 11700

gaaaatatta	ccaatttaat	tgtagcagct	atttcagatt	accttcttca	tccactqttt	11760
tctggggatt	tttcagcttc	tacctatttt	aattcagtgg	ctgagaatat	tottcaggac	11820
	acatcagtaa					11880
	acacatttt					11940
	gcctggttct					12000
aatgacattg	cttcaaacct	anttantnat	attaccatca	acatataaa	agegaacee	12060
coattttcaa	aagaggaaga	agecagegae	tttatttatt	aaguutuu	tattaaaaac	
						12120
congregace	cagtatttgc	adatgttgtg	caaacctetg	gtteteaaga	accagetgtg	12180
	caagcagtaa					12240
	aaaaacatct					12300
acatattttg	atgatgagag	aaggcagtta	ttttatacca	gtgtttactc	ttcaacattc	12360
ttggaagatg	taatctctgg	ggttttaaga	aaaatattcc	acagggtagt	aggcattgta	12420
	ccataagaga					12480
	caggggaatt					12540
agactgtgtt	tacctccagt	ggagagggat	gtagtcaaaa	caattgttga	catggtgtac	12600
agcaaagttt	tgcaagaata	tgaaatggaa	gtcgtgccca	ataaagattt	tctaaatgac	12660
acaaagacat	tggctgcaag	aataactaat	atcatcctgg	ctgaaatttt	tgatttccaa	12720
attcatccag	atcttatagc	aaatctgcct	tttaaatcac	attccaaact	cagtgcaaat	12780
gttttaatac	aaagagttca	atatgatata	agtaaatcaa	gattccaaag	acaagettea	12840
acaatgtata	ccactatgtt	atcacataqt	catttqqaaa	aaatagttac	tcagcttaca	12900
	gtccattgaa					12960
	tgataaaact					13020
	aatatgggaa					13080
	ccatttatgc					13140
	gcataagtga			_		13200
	atcatattca					
attastass	cttataaatt	gaaaggaata	gatgataaag	aaacccccct	atatttatt	13260
						13320
gegaacteac	ctgtcttttt	ggaggaagta	acticigage	cettatgeaa	aattettat	13380
geacticeae	ataacatgtt	ggttactgaa	aatecagata	gagtgaaact	gaaacttacc	13440
aggartgita	caacattggt	aaattcaatt	gttctggagt	tcaccacate	agagatttta	13500
griginagara	actttgataa	aaacccgcgc	ttctcagaaa	gatacaaaga	aatggttcaa	13560
aaaatagtca	actcagtata	tggaaaagta	ttagatcaat	ataaatctct	gattcaaata	13620
cacagggcca	tacaaagtga	cacaatatgt	tttggtagga	aaatatatta	tttgctattg	13680
gaagaaatat	atgattatca	agtgcagtca	ttagtttcag	gagaattaga	gtcttcttct	13740
tattcgtatc	cccaagctga	taatatcatc	agaaatgtgc	ttaacataat	cacaaaggat	13800
agccatgcct	tgccaccata	tattactgtg	ttgcctcatt	ctcttttaga	agatatggtt	13860
tacaggette	tagggcatgt	cttcccttca	actcacactg	aaaatgaact	aaaagagaaa	13920
aagtttccac	cggatgatga	atttgtggag	gcagcttcaa	aattgactga	tgaaattata	13980
	ctgaacatga					14040
cagttagaac	ctattgaaaa	tttggtcgac	tccatatgta	ataatattt	gaaaacatct	14100
gaattccaag	ctgaagtaca	aaaagatgca	gacaaaaaag	gatgctcatt	cctcagtaaa	14160
ttagctggtt	ttattatgaa	agaaatcatg	tatcatcatt	tacagccatt	tttacatggt	14220
	ctttcagtga					14280
	agacacagcc					14340
	acaaattttg					14400
	tagatattat					14460
tttaaqaaaa	gtgatattaa	agttttacca	aatgctgaaa	aaatgttttc	ttttccacca	14520
	agacagttga					14580
	atgatattca					14640
	agaaggcaat					14700
	tcttttcatt					14760
CCaCaaaaca	cctttacaca	aataaggega	tataceeeea	adaadcaach	ttetttage	14760
	ataaagatac					
						14880
	gaggtacaat					14940
aaaaaayyug	acatccaaaa	attactt	agetetataa	acgeaattat	yaaaagcggc	15000
argarraacc	taacatcagg	guuggetaea	ggtgtgacaa	acaaaaagga	agtggatgaa	15060
aacaaagegg	gaatttgtac	Leadadacat	agtgagaatg	catcaaaagt	cactccaact	15120
accactgtga	aaagtaaaga	Lactcaggag	ccaaatttga	gtgaaacatt	caacaataat	15180
gaaattgaga	agaaaagaaa	tttaattcca	acagataaaa	aagggaaaga	tgatgagata	15240

tacacacatt	tttcattaat	aattgatgat	acagaatatg	agaaggaagt	acttggatca	15300
gattctgaaa	ı taggctataa	aaagaagatt	gacaatgcaa	gggaaagctc	atttaaaaaa	15360
gatgacaago	: tctttcagtt	atcctccttg	aagtccaaga	qaaatctagg	gactacaaca	15420
gatactttgg	i aaataagaat	. tcgaacatca	agcaatgagg	qqaqaaqaqa	ctctccaaca	15480
caaacgtgta	gggatgagga	acaccactca	gattatqaac	atgttcaaaa	totcattosa	15540
aatatttttg	aagatgtttt	. agaactatct	tcttctccag	aaccaqcata	ttattcgaaa	15600
ctcagttatg	accaaagccc	cccaggtgat	aatgtattaa	atqtaattca	agagattage	15660
agggattcgg	cacagtctgt	tacaacaaaa	aaagtatcct	cctcaactaa	caaaaatatc	15720
tctgccaaag	aaaaagaaga	ggaagagaga	gaaaaagaga	aaqtaaqaqa	ggagattaaa	15780
agtgaaccca	gtaaaccaga	tgatcctcaa	aaccaacqaq	aaaqtaaacc	togaatttt	15840
cccgctaagt	tttagaaga	tgttattact	gagatggtta	aacaattgat	cttttcttct	15900
ataccagaaa	. cacaaataca	agatagatgt	caaaatqtta	gtgataagca	aaatcaagcc	15960
aaactctatg	acactgctat	gaaactcatc	aattcactgt	taaaggagtt	ctcagatgct	16020
caaattaagg	ttttcaggcc	agataaggga	aatcagttcc	ctgggggtaa	agtgtcttca	16080
gttcctaaag	tacctccaag	gtataaagag	ccaactacag	atgaaggagg	atccaccatt	16140
aagataaaat	ctgcagataa	aatgccacct	atgcataaaa	tgatgagaaa	accttcttca	16200
gataagatac	catcaattga	caaaacattg	gtcaataaag	ttattcactc	ctctatttat	16260
aatattttaa	atgactatgg	atctcaagac	tctatttgga	agaatataaa	cantaatora	16320
gaaaatttag	caagaagact	aactagtgca	gtgataaatg	aaattttcca	acatcacatt	16380
aacttgatat	tttgtgatga	ggtttcagtt	tcagcatgtt	tacctetaga	atctaaccat	16440
gttgttaaaa	aggtccaaaa	gttggcccaa	acagecagea	aagaatgtca	acctaaggat	16500
ccatatacaa	taatattacc	tcataaattt	ttggagaatg	tgatttctgc	tetttetee	16560
aaaattttct	caacaatatc	cagcacaaaa	acaaaagaac	ctgaggaga	tttataaaa	16620
gaactgaatt	tccttcaaat	gaagttagta	agtgcagttg	caacagagat	ctcccaca	16680
aaatatatga	ctatacagta	tgtagaaacc	ttacaatcto	atgatgatga	aattattaaa	16740
ttagtggttc	agtctgttta	taataatctc	ttgccacagt	ttggatgacga	agagattata	16800
caaaattgtg	taaccagtgg	atgcaaaatc	ctttcagaaa	acatagttga	cttaattata	16860
cgagaagtgg	ctagcaatca	gctgcagagc	tatttttgtg	gagagetaac	tecacatead	16920
tgtgtggaag	ttgaaaacat	cgttgaaaag	atccttaaag	atgttttcca	aactactgat	16980
gtgcccctac	ctaaaccttc	acatgctgat	aagctgtctt	ataacataat	agaagaaatt	17040
gctgtgaaat	ttttatcaaa	gcttttatct	atatttccaa	aagtacataa	agaaagaaca	17100
aaatctctag	agactgatat	gcaaaaaata	acttcaaaag	tactaaattc	aqtccaaqaa	17160
tttatctcca	aaagtaagat	taaacttgta	ccacccacca	aggaatcacc	tactgtgcct	17220
gtagctgata	atgcaactat	tgaaaacata	gttaattcta	tttataccag	tottttaaao	17280
cactctggct	cttatacttc	tgtatttaaa	gatttaatgg	gtaaaagcaa	tatactatat	17340
gatacaatag	gctttttaat	ggtgaatgca	atttcgaatt	ctgaatttca	acctcaagta	17400
gaggaagaag	tatcaaattc	agaattagtt	ctggaagctg	tcaaaattat	qqaaaaaqtq	17460
atcaaaatta	ttgatgaact	taagtctaag	gaaaagtctt	catccagaaa	aggtttgaca	17520
ttagatgcca	aacttttaga	agaggtgttg	gccttgttct	tggctaaact	aataaggttg	17580
ccaagttcct	caagcaaaga	tgaaaaaaac	ttatcaaaga	ctgagttaaa	taaaattaca	17640
tctcaactgt	caaaattggt	aacagctgaa	atttccagaa	gtagcattag	tctaatagct	17700
tctgatcctg	aagagcactg	tttaaatcca	gaaaatacag	aaaggattta	tcaggttgtc	17760
gattccgttt	atagtaacat	actgcaacaa	tcaggaacca	acaaagaatt	ttattatgat	17820
ataaaagata	caaatacagc	ctttcctaaa	aaagtggcta	gtttaattat	tgatggagtt	17880
tcaagttttc	cattagatac	aattaactca	acaatttcaa	atgctgatct	ctctggagag	17940
ctagacgtta	atagaattgt	tcaaaaggcc	caagaacatg	cttttaatgt	gattcctgaa	18000
ttagagcaag	aaaagttaga	tcaaaattta	tctgaagagg	aatctccaat	taaaatagtt	18060
ccacatgttg	gaaaaaaacc	agtcaaaata	gatccaaaaa	ttatttcaga	acacttagca	18120
gttatttcta	taaaaactca	acctcttgag	aaacttaagc	aggagtgttt	gaaaagaact	18180
ggacatagca	tagcagaact	gagaagagca	tcaataagtg	ggagaaatta	ctccttagga	18240
tcacctgatt	tagaaaagag	aaagacagaa	agacgtacct	cattggataa	gactggaaga	18300
ctggatgtaa	aacccctaga	ggccgttgct	agaaattcat	ttcagaatat	aagaaagcct	18360
gatattacaa	aggtggagct	cttaaaagat	gttcaaagta	aaaatgatct	tattgttcga	18420
ttagtagete	atgatattga	tcaagtgtat	ttqqaaaatt	acataaaaga	ggaacgagat.	18480
tctgatgaag	atgaagttgt	tttaacacag	acttttqcaa	aaqaaqaaqq	catcaaagta	18540
tttgaagatc	aagtgaaaga	agtcaagaag	ccaatacaaa	gcaaactttc	tectaagtea	18600
acactaagca	cgagcagcct	gaaaaaattt	ttgtcactaa	gtaaatgttg	tcagaccaca	18660
gccagtgcaa	atattgaaag	tactgaagca	atctcaaatc	aggtaataga	atccaaggag	18720
acacatgtta	aaagagctgt	tgctgagctt	gacatggcca	caccaaagac	gatgcctgaa	18780
					•	

acageetett catettggga ggaaaageee cagtgtaag 18819 <210> 331 <211> 832 <212> DNA <213> Homo sapiens <220> <221> misc_feature <222> (1)...(832) <223> n = a,t,c or g<400> 331 caccatggcc ggttaatttt ttgaattttt agtagagacg gggtttcacc ctgttagcca agatagtetg gateteetga eetegtgate egeetgeett ggeetteega agtgetgqqa 120 ttacaggogt gagecacege geetggeega tttacettee ttacttaace aateatgeea 180 ctagettgca etggeetcaa taeccaaegt tttteetaee ttagggaeet ttteetaeeg 240 tggggccttt gtattctcta ttccatcctt tctgcaattt ttccagatct ttccagctca 300 gcaaaattgc catctctcca cattgccttc ttcactctat tcaaagtaac gaagggtact 360 tececcaaag caactgatgt tecegtgget tgetttatta ateacaatag gacatgatet 420 tctacattag gttttcctcc atgttttctg gcagcctctg aaggatatga gccataacag 480 agcatagaca ttgctttttt ctttgtagct taatctccaq tqcctaqtat cattcccaqc 540 gtataatatg tttaatgtga actgaatgag aaaactaaat gagaggctta attttataca 600 gcagtgaagg tatggcccag acttataatt taaggagaac ttactctcta caaatgtgga 660 gtageetgae gtggtggete aageetgtag tecaageaet tegggaggeg eeaggtgggg 720 tgatgacttg agccccaaag ttcgagaaca gccctcggaa catggcggga ccccatcttt 780 832 <210> 332 <211> 532 <212> DNA <213> Homo sapiens <220> <221> misc_feature <222> (1)...(532) <223> n = a,t,c or g<400> 332 agcaacttaa cagaaaaaga aaagaaatat tagagaattt caagatttat ttttaataat 60 cccctattgg aagaatatac tctgggtcta tttattacca ttgcttcttt ctcaggttac 120 ccttattttc tatgctgaat tgagaaggaa gatcagcttc gtcatgggac gatactctag 180 gaaaagetta taaacacttg gaaatatttt atatteagaa atgtttgaga tteataqage 240 ccatggagtg ttcctcctcc ttagcatcca gctgactaca tcactcaaga ggaagagtgg 300 agaaggagac agggagagtc cagcttcctg gttttctcca ttctctcaga tgtttttcct 360 tataaacacc attettetac catttaaaat teecatttaa ggeeaggtgt ggtggeteat 420 gcctgtgatc ccagcacttt gggaggccaa ggcaggagga tcacttgagc ccaggagttc 480 aaggccagcc tgggcaacac aggaaaaccc tgtctctaan anaaaaaaaa aa 532

<210> 333 <211> 1020

<212> DNA

<213> Homo sapiens <400> 333 ccaatttcct gtggcaaact ttgattgtga atttcattaa tctgttctgg attgctacgg 60 taaaatccga agtgtttaaa gttcggcaca ctggaagcta ctgtggccaa aagtaggata 120 aggtetttea tgttttgeet tagattgeta aagtatggat tttcacacag gttetecaaa 180 cetatagtea teagtatttg ettatgeatt tetteatttg aaaccaaaaa taacatttea 240 tattetttta ttettettg tttacattea taataaaagt cagtgttage atceggeaat 300 gtttttgtaa ttttttgaat aaagtcacat ttgtaagagg tctcctctac aaactgcccc 360 atataacaca ccaaaggttg aagtaagaca cacacatggg cccgactgtt tgacttcaat 420 ctttccactg ctttggcatc taactttgca tcttcagaac tagaagcctc cgtaagcaaa 480 cttatttctg gatcagcagg ccagtatgaa attcggttaa ctccagctca tatcagagtg 540 tttcctccgg ttgcatttca ccttccctct gttcgagttc tcataatcca tttcctaacc 600 agcagtgatg gtaaaccttt catctaggca tcttagctgc tcccagtaat ccatttacaa 660 tcattttcaa acaagcagaa catggttttc tgtcttttgt cagtagatac tctqqtcctc 720 tetteattat etectaaggg tecatgettt ecetetteat tittetgaga tittigeege 780 tgggcttctg ctggaaagag ctccatccag aggctgagca gagtgaaaag gttgacttta 840 gaaagccttg gtatctgacc ggtcatgctg ccagtctggg tgctgactga ccgcccggcc 900 ctcgcgctct ccagattttg catctgccca gcttctttca tcccaaacct agcqtcctct 960 getgecaagg aaacetetee cagteagaca tgatetegge cetagegeee eegeeteteg 1020 <210> 334 <211> 408 <212> DNA <213> Homo sapiens <400> 334 taccccacag agtgcagcaa gttcatgtgt ttgtatccca catggcaaca gcctgtttga 60 ctagatgggc agegagatgc geetggeegt cagetgeate aceteettee taatqctqte 120 actgetgete tteatggece accggetgeg ceagegacge egggagegea tegagteeet 180 gattggagca aacttgcacc acttcaacct cggccgcagg atccctggct ttgattacgg 240 eccagaeggg tttggcaegg geeteaegee gettgeattt ttetgaegae tgatagggeg 300 gcacctttcc atttccacca cccctcaacc ttcctacaag gctgtaccat cacccgccta 360 ttecegetag cecaaagagg ctegtgetge gettteaagg tetteeeq 408 <210> 335 <211> 912 <212> DNA <213> Homo sapiens <400> 335 ccaggagcca agagcagagc gccagcatga acttgggggt cagcatqctq aqqatcctct 60 teeteetgga tgtaggagga geteaagtge tggcaacagg caagacccet ggggetgaaa 120 ttgatttcaa gtacgccctc atcgggactg ctgtgggtgt cgccatatct gctggcttcc 180 tggccctgaa gatctgcatg atcaggaggc acttatttga cgacgactct tccgacctga 240 aaagcacgcc tggggggcctc agtggtgagg gatgtggtgc tcgggcctgg ctctgcccca 300 cccagcgagg caccgagggc cactctgtga tgctggctac agcaagaatg aacccacagg 360 cgcagagccc aacaggctgt aaaggaaggc agtgacctct gcatgtttct gtctctctca 420 ctaaccettt geetetgttt etettette tgtetetate tetetetgge tetetatttg 480

540

600

ggttcctttt tctgtctccc tttccatgtc tctgtctttc tgtgtctctt tccctctqta

etttteettt eagttgetet tggeagteet gagaateaca ttteetggag aaaggtggga

```
gaggaactaa aattggcttc acacagaaat ttctgttctc tcatgcaaaa gatgagatca
                                                                      660
aataaaccca gtcccagtag gccacgaggt tgggcctaag tgtgggcgga tgggggaagg
                                                                      720
tetggttaca etgeetttga ggeecacgae gaaattttte tettaattgt ggaaaggeet
                                                                      780
ttcccaagga ggactggata ggccctcgag aaaaactgac ctggctgacg gccccgtggc
                                                                      840
caagcettgg cetecetgga ceceaaggge cagattgaat teatecettt tttaggggta
                                                                      900
agceteagee gg
                                                                      912
     <210> 336
     <211> 345
     <212> DNA
     <213> Homo sapiens
     <400> 336
ctgtaagatg aaggttetgt gggetggggt getggggaea tteetggeag gatgeeagge
                                                                      60
caaggtggag caagcggtgg agacagagcc ggagcccgag ctgtgccagc agaccgagtg
                                                                      120
gaagagegge cagegetggg aactggaact gggtegettt tgggattace tgegetggga
                                                                      180
gcagacactg tetgagcagg tgcaggagga getggtcage teccaggtca eccaggaact
                                                                     240
gaaggcgctg atggacgaga ccatgaagga gatgaaggcc tacaaatcgg atctggagga
                                                                     300
acaactgacc ccggtggcgg ggagacgctg gcacgggtgt acaag
                                                                      345
     <210> 337
     <211> 2527
     <212> DNA
     <213> Homo sapiens
     <400> 337
tgcgtaaact ccgctggagc gcggcggcgg agcaggcatt tccagcagtg aggagacagc
                                                                      60
cagaagcaag cttttggagc tgaaggaacc tgagacagaa gctagtcccc cctctgaatt
                                                                      120
ttactgatga agaaactgag gccacagagc taaagtgact tttcccaagg tcgcccagcg
                                                                     180
aggacgtggg acttctcaga cgtcaggaga gtgatgtgag ggagctgtgt gaccatagaa
                                                                     240
agtgacgtgt taaaaaccag cgctgccctc tttgaaagcc agggagcatc attcatttag
                                                                     300
cctgctgaga agaagaaacc aagtgtccgg gattcagacc tctctgcggc cccaagtgtt
                                                                     360
cgtggtgctt ccagaggcag ggctatgctc acattcatgg cctctgacag cgaggaagaa
                                                                     420
gtgtgtgatg agcggacgtc cctaatgttc ggccgagagc ccctacgccg tcgctcctgc
                                                                     480
caggagggca ggcagggccc agaggatagg agagaatact gcccagtgga gaagccagga
                                                                     540
gaacgaggag gacggtgagg aggaccctga ccgctatgtc tgtagtgggg ttcccgggcg
                                                                     600
gccgccaggc ctggaggaag agctgaccct caaatacgga gcgaagcatg tgatcatgct
                                                                     660
gtttgtgcct gtcactctgt gcatgatcgt ggtggtagcc accatcaagt ctgtgcgctt
                                                                     720
ctacacagag aagaatggac agctcatcta cacgccattc actgaggaca caccctcggt
                                                                     780
gggccagcgc ctcctcaact ccgtgctgaa caccctcatc atgatcagcg tcatcgtggt
                                                                     840
tatgaccatc ttcttggtgg tgctctacaa gtaccgctgc tacaagttca tccatggctg
                                                                     900
gttgatcatg tcttcactga tgctgctgtt cctcttcacc tatatctacc ttggggaagt
                                                                     960
gctcaagacc tacaatgtgg ccatggacta ccccaccctc ttgctgactg tctggaactt
                                                                    1020
cggggcagtg ggcatggtgt gcatccactg gaagggccct ctggtgctgc agcaggccta
                                                                    1080
ceteateatg ateagtgege teatggeeet agtgtteate aagtacetee cagagtggte
                                                                    1140
egegtgggte atcetgggeg ceatetetgt gtatgatete gtggetgtge tgtgteceaa
                                                                    1200
agggcctctg agaatgctgg tagaaactgc ccaggagaga aatgagccca tattccctgc
                                                                    1260
cctgatatac tcatctgcca tggtgtggac ggttggcatg gcgaagctgg acccctcctc
                                                                    1320
tcagggtgcc ctccagctcc cctacgaccc ggagatggaa gaagactcct atgacagttt
                                                                    1380
tggggagcct tcataccccg aagtctttga gcctcccttg actggctacc caggggagga
                                                                    1440
gctggaggaa gaggaggaaa ggggcgtgaa gcttggcctc ggggacttca tcttctacag
                                                                    1500
tgtgctggtg ggcaaggcgg ctgccacggg cagcggggac tggaatacca cgctggcctg
                                                                    1560
cttcgtggcc atcctcattg gcttgtgtct gaccctcctg ctgcttgctg tgttcaagaa
                                                                    1620
```

```
ggegetgece gecetececa tetecateae gttegggete atettttaet tetecaegga
                                                                    1680
caacctggtg cggccgttca tggacaccct ggcctcccat caqctctaca tctgagggac
                                                                    1740
atggtgtgcc acaggctgca agctgcaggg aattttcatt ggatgcagtt gtatagtttt
                                                                    1800
acactctagt gccatatatt tttaagactt ttctttcctt aaaaaataaa gtacgtgttt
                                                                    1860
acttggtgag gaggaggcag aaccagctct ttggtgccag ctgtttcatc accagacttt
                                                                    1920
ggctcccgct ttggggagcg cctcgcttca cggacaggaa gcacagcagg tttatccaga
                                                                    1980
tgaactgaga aggtcagatt agggtgggga gaagagcatc cggcatgagg gctgagatgc
                                                                    2040
gcaaagagtg tgctcgggag tggcccctgg cacctgggtg ctctggctgg agaggaaaag
                                                                    2100
ccagtteect acgaggagtg tteccaatge tttgteeatg atqteettgt tattttattq
                                                                    2160
cetttagaaa etgagteetg ttettgttae ggeagteaca etgetgggaa gtggettaat
                                                                    2220
agtaatatca ataaatagat gagtcctgtt agaatcttgg agtttggtcc gttgtaaatg
                                                                    2280
ttgacccctc tccctgcatc ttgggcaccc ctgggataac ttgtgctgtg agcccaggat
                                                                    2340
ggaggcagtt tgccctgttt gaaggaactt ttaatgatct cgcctctctg cacacatttc
                                                                    2400
tttaactaga aagtttccta agcaaaggag ttaggagagc agggtggcct gacatctgcc
                                                                    2460
agccctgagc tgtaaggctg tggatgctga gcaggtccct ggactcaatt gtgcacgggg
                                                                    2520
gaacaat
                                                                    2527
     <210> 338
     <211> 908
     <212> DNA
     <213> Homo sapiens
     <400> 338
tttcgtatgg atggtagaat aacaatgaac tatgatatta tcactttatt ataaactttt
                                                                      60
tggaaaattg gcagttgcta ccatcgaaat actccattgc ctqtgttaca taqaatttqt
                                                                     120
tataattttt aagggettta aaaaaatace catetgttte tteteettet tgttttettt
                                                                     180
tgtgccccac cacttaaatt acttgggtaa ataccactct tcaaaatttg aatactgtct
                                                                     240
atcaaataag aagaagtgtg aaagatatga agaagaaagg tgatagcaaa ttacaagaaa
                                                                     300
ataaatgtgg gtgatttctt ttagttgaaa gcacagagtt ttatttttcc ccagtataac
                                                                     360
tattgagtag ggtagggagg tccctgtatc cccattttta ttttttttga gatggggtct
                                                                     420
cactetytea eccaggetyg aytycaatyg cycaatetey teteaceaea acetecycet
                                                                     480
cctgggttca agtgattctc ttgccttggc cccctgagta gctgggatta caggcacgcg
                                                                     540
ccaccacacc cagctaattt ttgtattttt tttttttact aaaagagggg tttcaccatg
                                                                     600
ttgggcaggc tggtctcgaa atcctgaccc cattgatggc ccccctgggg cctccacaag
                                                                     660
gctgggataa cgggcgggaa ccccccgggc cccgcccatt tccccatgtt ttaacataaa
                                                                     720
cacaaaccgc catttatcgg gaaggaagtt tttccccttt aaaaagcgtc ttttccaaag
                                                                     780
gcccaatttc tggactttat tgggcaccaa aaatcttaac cccccttggc agcccctct
                                                                     840
ctatttggga aaagaataag ctggcggaca ccctacgccc aacacgggga gagacagccc
                                                                     900
cacccccc
                                                                     908
     <210> 339
     <211> 332
     <212> DNA
     <213> Homo sapiens
     <400> 339
aaattteete tettaaagee tteteeaaaa ttggeatete ttataggtaa gatttattea
                                                                      60
tagettgagt gtaccaaagt tatagaatta teccatttge taacatattt acaattqtat
                                                                     120
tttcacagat ggttcatctc ctgttagtat tttggtctgg accacacaac cttggacgat
                                                                     180
tccagccaat gaaqctgttt gctatatgcc tqaatcaaag tqqqtatatt attqcatttt
                                                                     240
ttgttttata cacaaataga atgtattcca ttattaacat tattttqaat ttattttatc
                                                                     300
ctgtttatta ttgtaaaatt taatgaatta ta
                                                                     332
```

```
<210> 340
     <211> 385
     <212> DNA
     <213> Homo sapiens
     <400> 340
tgcgctgttc aggggctgga gcctggtcgg gccggctgga gagacatgcg attgggaccg
                                                                       60
accgacggac cgaagcgcgc ccgaatgcag tgagcagaga tgctggcggg ggcgtgagga
                                                                      120
catgeceage ecetetggee tgtggegeat ceteetgetg gtgetggget cagtgetgte
                                                                      180
aggeteggea egggetgeeg eecegetgeg agtgeteege eagacegege tgtgetgtge
                                                                      240
caccgaagcg cttgtggcag tccccgaggg catccccacc gagacgcgcc tgtgacctag
                                                                      300
gcagaaccgc atcaaacgct caccaggacg agttcgcagc ttcccgacct ggggagctga
                                                                      360
gctaacgaga catcggagcg ccggc
                                                                      385
     <210> 341
     <211> 733
     <212> DNA
     <213> Homo sapiens
     <220>
     <221> misc feature
     <222> (1)...(733)
     <223> n = a,t,c or g
     <400> 341
cagcctgatg ggggtatccc aggtgtctgg ggcatgctga gacggcacag gtctgtgtgg
                                                                      60
cttcccggat tactcggaat ccttcattat ctattctaca gcaagtggcc ctcggcagct
                                                                     120
caggeteagg gaattteaaa tgtateacet ecaceggetg gacaagteet eteaagacag
                                                                     180
gctctggggc caagggagga tgttgtgact ggtgctagca acattgtcat gatggaaggt
                                                                     240
ggcctggctt ccgggacagg agggacctga caggccaagg gtgaagtgtg ggttcagagt
                                                                     300
cacagaagaa tcacgaagaa gacattctta tgcacctgac acctgacttg ggagcaggtt
                                                                     360
ctttgcctac atccagttag tctctaccac aattcaagtg gagtctttct ccccattctc
                                                                     420
atattacagg caggccatcc cccaggaaag cctatgttgg tgagggttat gatgggagaa
                                                                     480
tgagtgaact gcagcctggc accaccacac cctggaaggt gcagttggga agaaagtttc
                                                                     540
tgaggetgta gacatgggga teggatgetg gagaaaceee etggtgetge tgatqqeeet
                                                                     600
ggcctgtcaa gcaagctggg gactttcaaa gggggggagg gtcctcccaa acctttgccc
                                                                     660
aaaaaaaatg ttttnnacct tattttttt taactcccaa aggggccgcg gcccccttt
                                                                     720
ttgggcgggg ggg
                                                                     733
     <210> 342
     <211> 279
     <212> DNA
     <213> Homo sapiens
     <400> 342
tgacaggaag ggaagtgccc tggctgggca tcaagagact tttctggccc tttccctgcc
                                                                      60
aacactttgc tgtgtgacct tggctcccgc ctcggcctgc ctcctgctga tgctcctggc
                                                                     120
cetgeceetg geggeeecca getgececat getetgeace tgetacteat eccegeceae
                                                                     180
cgtgagctgc caggccaaca acttctcctc tgtgccgctg tccctgccac ccagcactca
                                                                     240
gegactette etgeagaaca aceteateeg caegetgeg
```

279

<210> 343 <211> 2689 <212> DNA <213> Homo sapiens

<400> 343

tttcttactg actgattatg aacttaaaac aaattcactc tgctgctggg aattatacat 60 ttatttttaa gcatttattt caactcgaga tgagcggtct ctcctgtaaa tttctccctg 120 etggatettt getetggttt etggtgacat agtgtgagtg eeggeageeg egageeteag 180 aaggaaaatt acaaagggaa tactcagtaa atgatgtatt gcctttcgca tcagtagcct 240 gcttggaaat gttcaaatta tcagcccagg agactccagt gctgtggaca tgggtctgaa 300 egaattgate acetagggge tactgagaae geggtgetet gtecaecatg gageeettgt 360 gtocactect getggtgggt tttagettge egetegeeag ggeteteagg ggeaacqaga 420 ccactgccga cagcaacgag acaaccacga cctcaggccc tccggacccg ggcgcctccc 480 aggogetget ggootggotg ctactgooge tgotgotoot cotcotogtg ctoottotog 540 ccgcctactt cttcaggttc aggaagcaga ggaaagctgt ggtcagcacc agcgacaaga 600 agatgcccaa cggaatcttg gaggagcaag agcagcaaag ggtgatgctg ctcagcaggt 660 caccetcagg gcccaagaag tattttccca tccccgtgga gcacctggag gaggagatcc 720 gtatcagatc cgccgacgac tgcaagcagt ttcgggagga gttcaactca ttgccatctg 780 gacacataca aggaactttt gaactggcaa ataaagaaga aaacagagaa aaaaacagat 840 atcccaacat ccttcccaat gaccattcta gggtgattct gagccaactg gatggaattc 900 cctgttcaga ctacatcaat gcttcctaca tagatggtta caaagagaag aataaattca 960 tagcagctca aggtcccaaa caggaaacgg ttaacgactt ctggagaatg gtctgggagc 1020 aaaagtctgc gaccatcgtc atgttaacaa acttgaaaga aaggaaagag gaaaagtgcc 1080 atcagtactg gcccgaccaa ggctgctgga cctatggaaa catccgggtg tgcgtggagg 1140 actgcgtggt tttggtcgac tacaccatcc ggaagttctg catacagcca cagctccccg 1200 acggctgcaa agcccccagg ctggtctcac agctgcactt caccagctgg cccgacttcg 1260 gagtgccttt tacccccatt gggatgctga agttcctcaa gaaagtaaag acgctcaacc 1320 ccgtgcacgc tgggcccatc gtggtccact gtagcgcggg cgtgggccgg acgggcacct 1380 tcattgtgat cgatgccatg atggccatga tgcacgcgga gcagaaggtg gatgtgtttg 1440 aatttgtgtc tcgaatccgt aatcagcgcc ctcagatggt tcaaacggat atgcagtaca 1500 cgttcatcta ccaagcctta ctcgagtact acctctacgg ggacacagag ctggacgtgt 1560 cctccctgga gaagcacctg cagaccatgc acggcaccac cacccacttc gacaagatcg 1620 ggctggagga ggagttcagg aaattgacaa atgtccggat catgaaggag aacatgagga 1680 cgggcaactt gccggcaaac atgaagaagg ccagggtcat ccagatcatc ccgtatgact 1740 · tcaaccgagt gatcetttcc atgaaaaggg gtcaagaata cacagactac atcaacgcat 1800 ccttcataga cggctaccga cagaaggact atttcatcgc cacccagggg ccactggcac 1860 acacggttga ggacttctgg aggatgatct gggaatggaa atcccacact atcgtgatgc 1920 tgacggaggt gcaggagag gagcaggata aatgctacca gtattggcca accgagggct 1980 cagttactca tggagaaata acgattgaga taaagaatga taccctttca gaagccatca 2040 gtatacgaga ctttctggtc actctcaatc agccccaggc ccgccaggag gagcaggtcc 2100 gagtagtgeg ccagttteac ttecaegget ggeetgagat egggatteee geegagggea 2160 aaggcatgat tgacctcatc gcagccgtgc agaagcagca gcagcagaca ggcaaccacc 2220 ccatcaccgt gcactgcagt gccggagctg ggcgaacagg tacattcata gccctcagca 2280 acattttgga gcgagtaaaa gccgagggac ttttagatgt atttcaagct gtgaagagtt 2340 tacgacttca gagaccacat atggtgcaaa ccctggaaca gtatgaattc tgctacaaag 2400 tggtacaaga ttttattgat atattttctg attatgctaa tttcaaatga agattcctgc 2460 cttaaaatat tttttaattt aatggaacaa aggagaagcc actttcccca ggacgcaaga 2520 ctctcccctc cactgtccgg gacagcgttc gccctttagc ggggaggtca ttacagcctc 2580 atggeeteta ceaaggeece agateaeagg ateteetqqq cettqqaqea ceteaeqetq 2640 ggggaatcaa tooctgaggg actcagaatc ttotccqtgc aacctggaa 2689

<210> 344

<211> 326 <212> DNA <213> Homo sapiens <400> 344 ggcacgaget ttgtaataca attgatette tggtgagttt tgttgggaat cgtggcacgt 60 tcaccegtgg gtaccgagca gtcatectgg atatggcctt tctctatcac gtggcgtatg 120 tcctggtttg catgctgggc cttttttgcc atgaattctt ctatagcttc ctgcttttcg 180 aatcggtgta caggcatcaa actttgctga atgacatacc atgtgttaaa ctaatgtgac 240 cgctctatta ttctaacatg catcttgaat attatcctga tattgtcttt tcgcattatt 300 tctatcctta gtttgatagt taatcg 326 <210> 345 <211> 1181 <212> DNA <213> Homo sapiens <400> 345 acteceqtte tqttcaacqe qtecqqetea ttatqaaaqt taaaqqaaaa aqqaaaacae 60 aagtcatcta tqqttctagt gcccagagtt tatcatcaat caqqtatatt cctgccaqqt 120 ttgtttttgt ttgtttatga gtgtttgtaa gtatacagtt tatggatttt ttatatttgc 180 tttttttat ttcacaaaag ataatatccc atatttaaaa gtgtctttgc aagcattttg 240 tgggttccaa aatatttcat ggaataaata tactctttta ttttactatt cccctttaac 300 cattatataa ttgtctcaaa tatttctgct attataattc tgtgatgaac atctttgtgc 360 actttagaaa tgtttcctga gactagattt taaaaagtag aattactatc tgaaaaagag 420 atatttttag agttcccaat gcacattgct gaattgcttt ccaaaaatct ttataaattt 480 acteteagat tagetaagea atggattaaa atgeeattte attgeactet tgeeagaact 540 gagaaatgta tatatgcagg aattatatcc atttaaattt aatatcccat gtctggttaa 600 tectaaactg ggettetaca etaagacace atgaaggaag atgtgettet attatteetg 660 gctttgtgct ctgtcaaacc cttctttagc cttcacaact tgcactgaag aatatgatgc 720 tggaggatat ggaagacccc agagatgatg gatgatgatg atgatgatga tgatgacgga 780 tgaggccacc tttcttttc caccgagaga agccagaaac cattttttt cctttgacct 840 tggtaccagg gggccatttg gaggtcaggc gtattccgag atgaccccgt tcaaaattag 900 tgtgacctcg ccccaccaaa attcacttgg gatccgacgc tcggccctga accatatttc 960 cgggtcctaa gaacatgttg gggcgccctt cttatgagaa aaatctcccc ttaaaactac 1020 agaaaccgtt ccttctaacg aacgctcgcc gtaaatagta tctttgaacg aaactaactg 1080 egggaetegt ggategetgg teetgaatgg geegagggtg tgtatgetgt eeceggtgge 1140 ggttggtcgg gccatacgac accgccgcaa ccaacactgc t 1181 <210> 346 <211> 15214 <212> DNA <213> Homo sapiens <400> 346 atgecetetg aatetttetg tttggetgee caggetegee tegaetecaa atggttgaaa 60 acagatatac agcttgcatt cacaagagat gggctctgtg gtctgtggaa tgaaatggtt 120 aaagatggag aaattgtata cactggaaca gaatcaaccc agaacggaga gctccctcct 180 agaaaagatg atagtgtcga accaagtgga acaaagaaag aagatctgaa tgacaaagag 240 aaaaaagatg aagaagaaac tcctgcacct atatataggg ccaagtcaat tctggacagc 300 tgggtatggg gcaagcaacc agatgtgaat gaactgaagg agtgtctttc tgtgctggtt 360

420

aaagagcagc aggccctggc cgtccagtca gccaccacca ccctctcagc cctgcgactc

aagcagaggc	tggtgatctt	ggagcgctat	ttcattgcct	tgaatagaac	cgtttttcag	480
gagaatgtca	aagttaagtg	gaaaagcagc	ggtatttctc	tgcctcctgt	ggacaaaaaa	540
agttcccggc	ctgcgggcaa	aggtgtggag	gggctcgcca	gagtgggatc	ccgagcggcg	600
ctgtcttttg	cctttgcctt	cctgcgcagg	gcctggcgat	caggcgagga	tgcggacctc	660
tgcagtgagc	tgttgcagga	gtccctggac	gccctgcgag	cacttcccga	gacctcactc	720
tttgacgaga	gcaccgtgtc	ctctqtqtqq	ctagaggtag	tggagagagc	gaccaggttc	780
ctcaggtccg	tcgtgacggg	ggatgttcac	ggaacgccag	ccaccaaaaa	accaggaage	840
atcccctcc	aggaccagca	cttageceta	accatectae	taasaataas	tataasasas	900
aacacactge	gccaaatgtt	atctacceta	stattatta	ttaaaatata	cgcgcagaga	960
ggcacgccga	gtcaaacgcc	geolyceace	cogargange	cccagetgtg	ggacageggg	
gcacaggaga	ctgacaatga	geguteegee	cagggcacca	gegeeceaet	tttgecettg	1020
	tccagagcat					1080
	ctggccctct					1140
	agcttgccat					1200
gaccgtctgg	ctacgccctg	tatgcctccg	ctgtgtagct	ctccgacatc	tcataaggga	1260
tcattgcaag	aggtcatagg	ttgggggtta	ataggatgga	aatactatgc	caatgtgatt	1320
	agtgcgaagg					1380
	tgattctgtc					1440
	cacagctggt					1500
	gtcaccacta					1560
cgcggggacg	gcggacggct	gggccatggg	gacactgtgc	ctttggagga	geetaaggtg	1620
accidegeec	tctctggaaa	geaggeeggg	aagcacgtgg	tgcacatcgc	ttgcgggagc	1680
acttacagtg	cggccatcac	tgccgagggg	gagetgtaca	cctggggccg	cgggaactac	1740
ggccggctgg	gccatggctc	cagtgaggac	gaggccattc	cgatgctggt	agccgggctt	1800
aaaggactga	aggtcatcga	tgtggcgtgt	gggagtgggg	atgctcaaac	cctggctgtc	1860
actgagaacg	ggcaagtgtg	gtcttgggga	gatggtgact	atgggaaatt	gggcagaggt	1920
ggtagtgatg	gctgcaaaac	cccaaagctg	attgaaaagc	ttcaagactt	ggatgtggtc	1980
aaagtccgct	gtggaagtca	gttttccatt	gctttgacga	aagatggcca	agtttattca	2040
tggggaaaag	gtgacaacca	gagacttgga	catqqaacaq	aggaacatgt	tcqttatcca	2100
aaactcttag	aaggcttgca	agggaagaag	gtgattgatg	taactacaaa	ctccacccac	2160
	tgactgagga					2220
	ccttgcgcgt					2280
aaacacatac	tgggaattgc	ctataaacct	acceagaget	ttacttacta	acceggacacc	
						2340
	ttggcctccg					2400
	tcctgcttcg					2460
	agaaagagtg					2520
catgetgeea	ttagtcacca	ggttgacccg	gaattccttg	gtttaggtct	gggcagcatc	2580
	gcctgaagca					2640
	cggccgccca					2700
gcggaggagc	gggcccgggc	actctctgct	ctcctgccct	gcgcagtttc	aggcaatgaa	2760
gtgaacataa	gtccaggtcg	tcgattcatg	attgatcttc	tggtgggcag	cttgatggct	2820
	tggagtcagc					2880
	aagcacagaa					2940
	gcaggactcc					3000
tctggcaaac	agtgtttgcc	tctggttcag	ctcatacaac	agettettag	aaacatcgct	3060
	tagccagatt					3120
	gtcgtgaaag					3180
	aactttatcc					3240
	gtgttggttc					3300
	tgcctgtggc					3360
	ttgtggaagg					3420
atagtgcttc	tgctcagtaa	aaatgctgat	ctcatgcaag	aggctggagc	tgtacctctg	3480
	tgttggaaca					3540
gatgatcatg	aagagttagc	ctggcctggc	ataatggagt	cattttttac	aggtcagaac	3600
	atgaggaagt					3660
	tctggactgt					3720
	caggaaatag					3780
	ctttgcagtt					3840
	agcctgacca					3900
	acacagagag					3960
Josephalay	acacagagag	Jacobagge	cigciacing	gaccacacyc	caccycactig	200

qcaatqaqca	caccactate	tcctgtcgag	attgaatgtg	ccaaatggct	tcagtcatcc	4020
atcttctctq	gaggcctgca	gaccagccag	atccactaca	ggtacaacga	ggagaagac	4080
gaggaccact	gcageteece	agggggcaca	cctaccaaca	aatctccact	ctactacaa	4140
agacgggccc	tagagaacca	ttcccaggca	tttctccaac	ccattacaga	caacaacatt	4200
caggatcaca	acataaaaaa	ctttttgtgt	caaatagaaa	catactataa	acaatagaat	4260
ttgaccacac	coatcatott	tcccccgag	catecegtee	aagaaataa	teasttatta	4320
ttatattacc	tettaaaaca	tgaagattta	gatcatatag	cattatett	agttastas	4320
agtacactta	gtattgagga	agtagaccta	agacattag	caccaccccc	agticatgea	
tatagaatta	fotaccgagea	agtaaagcac	agaacgccgc	ctaagtcagt	ggtggatgtt	4440
tettagageeg	agetatage	aaaatgttcg	cicattaaga	cicatcaaga	acagggeegt	4500
acacacagg	aggictigege	tcctgtcatc	gaacguuga	gatteetett	taatgaattg	4560
agacetgetg	cicgiaatga	cctctctata	argreraagr	ttaaattgtt	aagttetttg	4620
ceeegetgga	ggaggatage	tcaaaagata	attegagaae	gaaggaaaaa	gagagttcct	4680
aagaagccag	aacctatgga	tgatgaagaa	aaaattggaa	acgaagagag	tgatttagaa	4740
		tagtccaata				4800
		gccgctgttg				4860
tggttgaagc	agaatgtgca	gggtctttat	ccgcagtctc	cactcctcag	tacaattgct	4920
		gccagtggat				4980
		tcgcctggaa				5040
aagaatttct	tacttccatc	tgtgcagtat	gcgatgtttt	gtggatggca	aagacttatt	5100
cctgagggaa	tcgatatagg	ggaacctctt	actgattgtt	taaaggatgt	tgatttgatc	5160
ccgcctttta	atcggatgct	gctggaagtc	acctttggca	agctgtacgc	ttgggctgta	5220
cagaacattc	gaaatgtttt	gatggatgcc	agtgccacat	ttaaagagct	tggtatccag	5280
ccggttcccc	tccaaaccat	caccaatgag	aacccgtcag	gaccgagcct	ggggaccatc	5340
ccgcaagccc	gcttcctcct	ggtgatgctc	agcatgctca	ccctgcagca	cggcgcaaac	5400
aacctcgacc	ttctgctcaa	ttccggcatg	ctggccctca	cgcagacggc	actgcgcctg	5460
attggcccca	gttgtgacaa	cgttgaggaa	gatatgaatg	cttctgctca	aggtgcttct	5520
gccacagttt	tggaagaaac	aaggaaggaa	acggctcctg	tgcagctccc	tgtttcagga	5580
ccagaactgg	ctgccatgat	gaagattgga	acaagggtca	tgagaggtgt	ggactggaaa	5640
tggggcgatc	aggatgggcc	tcctccaggc	ctaggccgcg	tgattggtga	gctgggagag	5700
gacggatgga	taagagtcca	gtgggacaca	ggcagcacca	actcctacag	gatggggaaa	5760
gaaggaaaat	acgacctcaa	gctggcagag	ctgccggctg	ctgcacagcc	ctcagcagag	5820
gattcggaca	cagaggatga	ctctgaagcc	gaacaaactg	aaaggaacat	tcaccccact	5880
gcaatgatgt	ttaccagcac	tattaactta	ctgcagactc	tttgtctgtc	tgctggagtt	5940
catgctgaga	tcatgcagag	cgaagccacc	aagactttat	gcggactgct	gcgaatgtta	6000
gtggaaagcg	gaacgacgga	caagacatct	tctccaaaca	ggctggtgta	cagggagcaa	6060
		ggggtttgtg				6120
		gtggatcacg				6180
		gcagaggcag				6240
		cgaaagggcg				6300
tttgacttct	tgggaagctt	gctcactacc	tgctcctctg	acgtgccatt	actcagagag	6360
tccacgctga	ggcggcgcag	ggtgcgcccg	caggcctcgc	tgactgccac	ccacagcagc	6420
		ggcactgctg				6480
		caactcccag				6540
		gttagaggac				6600
		ggctgtgatt				6660
		gtttggagaa				6720
		tgacatgcgg				6780
		ctttaatgtg				6840
tctgtctggg	ctcagttggt	gaacctcgct	ggaagcaagt	tagaaaagca	caaaataaaq	6900
		tgcaggacaa				6960
		agcaggtcgg				7020
		tgttcaggag				7080
		ggacatgtct				7140
		ggccacccag				7200
		actggccgtt				7260
		agactgcagc				7320
		agtgaagagg				7380
		gatgggattt				7440
		gaatgcatcc				7500
-5		5 - 2 - 5 - 2 - 2 - 2 - 2	J J J	J-J-J90		

tggctgctgg accactccga catacaggtc acggagctct cagatgcaga cacggtgtcc 7560 gacgagtatt ctgacgagga ggtggtggag gacgtggatg atgccgccta ctccatgtct 7620 actggtgctg ttgtgacgga gagccagacg tacaaaaaac gagctgattt cttgagtaat 7680 gatgattatg ctgtatatgt gagagagaat attcaggtgg gaatgatggt tagatgctgc 7740 cgagcgtatg aagaagtgtg cgaaggtgat gttggcaaag tcatcaagct ggacagagat 7800 ggattgcatg atctcaatgt gcagtgtgac tggcagcaga aagggggcac ctactgggtt 7860 aggtacattc atgtggaact tataggctat cctccaccaa gttcttcttc tcacatcaag 7920 attggtgata aagtgcgggt caaagcctct gtcaccacac caaaatacaa atggggatct 7980 gtgactcatc agagtgtggg ggttgtgaaa gctttcagtg ccaatggaaa agatatcatt 8040 gtcgactttc cccagcagtc tcactggact gggttgctat cagaaatgga gttggtaccc 8100 agtattcatc ctggggttac gtgtgatgga tgtcagatgt ttcctatcaa tggatccaga 8160 ttcaaatgca gaaactgtga tgactttgat ttttgtgaaa cgtgtttcaa qaccaaaaaa 8220 cacaatacca ggcatacatt tggcagaata aatgaaccag gtcagtctgc ggtattttgt 8280 ggccgttctg gaaaacagct gaagcgttgc cacagcagcc agccaggcat gctgctggac 8340 agetggteee geatggtgaa gageetgaat gtgtegteet eegtgaacea ggeateeegt 8400 ctcattgacg gcagcgagcc ctgctggcag tcatcggggt cgcaaggaaa gcactggatt 8460 cgtttggaga ttttcccaga tgttcttgtt catagattaa aaatgatcgt agatcctgct 8520 gacagtaget acatgeegte cetggttgta gtgtcaggtg gaaatteeet gaataacett 8580 attgaactaa agacaatcaa tattaaccct tctgacacca cagtgcccct tctgaatgac 8640 tacacagagt atcacaggta tattgaaatt gctataaagc agtgcaggag ctcaggaatc 8700 gattgtaaaa tccatggtct catcctgctg ggacggatcc gtgcagaaga ggaagatttg 8760 gctgcagttc ctttcttagc ttcggataat gaagaggagg aggatgagaa aggcaacagc 8820 ggaagcctca ttagaaagaa ggctgctggg ctggaatcag cagctacgat aagaaccaag 8880 gtgtttgtgt ggggcctgaa tgacaaggac cagctgggcg ggctgaaagg ctccaagata 8940 aaggtteett egttetetga gacaetgtea getttgaatg tggtacaggt ggetggtgga 9000 tctaaaagtt tgtttgcagt gactgtggaa gggaaggtgt atgcctgtgg agaagccacg 9060 aatggccggc tggggctggg catttccagc gggacggtgc ccatcccacg gcagatcaca 9120 geteteagea getaegtggt caagaaggtg getgtteaet caggtggeeg geaegegaeg 9180 gctttaactg tcgatggaaa agtgttttcg tggggcgaag gtgacgatgg aaaacttgga 9240 cacttcagca gaatgaactg tgacaaacca aggctgatcg aggccctgaa aaccaagcgt 9300 atccgggata tcgcctgtgg gagctcgcac agcgcagccc tcacatccag cggagaactg 9360 tacacetggg geeteggega gtaeggeegg etgggaeatg gggataatae gaeacageta 9420 aagcccaaaa tggtgaaagt ccttctcggt cacagagtaa tccaggttgc atgtgggagt 9480 agagacgcgc agaccctggc tctgaccgat gaaggtttgg tattttcctg gggtgatggt 9540 gactttggaa aactgggccg gggcggaagt gaaggctgta acattcccca gaacattgag 9600 agactaaatg gacaggggt gtgccagatt gagtgtggag ctcagttctc cctggcgctc 9660 accaagtetg gagtggtgtg gacatgggga aagggggatt acttcagatt gggccacggc 9720 tetgaegtge aegtgeggaa accaeaggtg gtggaaggge tgagagggaa gaagategtg 9780 catgtggctg tcggggccct gcactgcctg gcggtcacgg actcggggca ggtgtatgct 9840 tggggtgaca acgaccacgg ccagcagggc aatggcacga ccacggttaa caggaagccc 9900 acactegtge aaggettaga aggecagaag atcacaegeg tggettgtgg gtegteecae 9960 agtgtggcgt ggacaactgt ggatgtggcc acgccctctg tccacgagcc cgtcctcttc 10020 cagactgcaa gagacccgtt aggtgcttcc tacttaggcg tgccctcaga tgctgattct 10080 tetgetgeca gtaataaaat aagtggtgea agtaatteta agecaaateg eeettetett 10140 gccaagattc tcttgtcatt ggatggaaat ctggccaaac agcaggcctt atcgcatatt 10200 cttacagcat tgcaaatcat gtatgccaga gatgctgttg tcggggccct gatgccggcc 10260 gccatgatcg ccccggtgga gtgcccctcg ttctcctcgg cggccccttc cgacgcatct 10320 gcgatggcta gtcccatgaa tggagaagaa tgcatgctgg ctgttgatat cgaagacaga 10380 ctgagtccaa atccatggca agaaaagaga gagattgttt cctctgagga cqcaqtqacc 10440 ccctctgcag tgactccgtc ggccccctca gcctccgctc ggccttttat cccagtgacg 10500 gatgacctgg gagctgcaag catcattgca gaaaccatga ccaaaaccaa agaggatgtt 10560 gaaagccaaa ataaagcagc aggtccggag cctcaggcct tggatgagtt caccagtctg 10620 ctgattgcgg atgacactcg tgtggtggta gacctgctca agctgtcagt gtgcagccgg 10680 gccggggaca ggggcaggga tgtgctctcc gcggtgcttt ccggcatggg gaccgcctac 10740 ccacaggtgg cagatatgct gttggagctc tgtgtcaccg agttggagga tgtggccaca 10800 gactegeaga geggeegeet etetteteag eetgtggtgg tggagagtag eeaccettae 10860 accgacgaca cctccaccag tggcacagtg aagataccag gtgcagaagg actcagggta 10920 gaatttgacc ggcagtgctc cacagagagg cgccacgacc ctctcacagt catggacggc 10980 gtcaacagga tcgtctccgt gcggtcaggc cgagagtggt ccgactggtc cagcgagctg

cgcatcccag	gggatgagtt	aaagtggaag	ttcatcagcg	atgggtctgt	gaatggctgg	11100
ggctggcgct	tcaccgtcta	tcccatcatg	ccagctgctg	gccctaaaga	actcctctct	11160
gaccgctgcg	tcctctcctg	tccatccatg	gacttggtga	cgtgtctgtt	agacttccga	11220
ctcaaccttg	cctctaacag	aagcatcgtc	cctcqccttq	caacctcact	ggcagcttgt	11280
gcacagetga	gtgccctagc	taccaatcac	agaatgtggg	cccttcagag	actgaggaag	11340
ctqcttacaa	ctgaatttgg	gcagtcaatt	aacataaata	gactacttag	agaaaatgat	11400
aaaaaaaaa	gagctttgag	ttttacacct	agtgctgttg	atactttaat	gaaaacgac	
ccacaacctt	tacaaaaaa	atttacagge	agegeteetg	ttatanaaa	bassesses	11460
ctagaageee	tgcaaaggca	tanastasta	gaagateeta	ctgtgagggg	Lggcaaacag	11520
ctgctccaca	gcccattctt	Laagglacia	grayererrg	cttgtgaeet	ggagetggae	11580
actetgeett	gctgtgccga	gacgcacaag	tgggcctggt	tccggaggta	ctgcatggcc	11640
tecegtgttg	ctgtggccct	tgacaaaaga	acaccgttgc	cccgtctgtt	tcttgatgag	11700
	aaattcgtga					11760
agccatgaca	tttttaaaag	agagcaagac	gaacaacttg	tgcagtggat	gaacaggcga	11820
ccagatgact	ggactcťctc	tgctggtggc	agtggaacaa	tttatggatg	gggacataat	11880
cacaggggcc	agctcggggg	cattgaaggc	gcaaaagtca	aagttcccac	tccctgtgaa	11940
gcccttgcaa	ctctcagacc	cgtgcagtta	atcggagggg	aacagaccct	ctttqctqtq	12000
acggctgatg	ggaagctgta	tgccactggg	tatggtgcag	qtqqcaqact	aggcattgga	12060
gggacagagt	cggtgtccac	cccaacatto	cttgaatcca	ttcagcatgt	gtttattaag	12120
aaagtagctg	tgaactctgg	aggaaaggag	taccttaccc	tatetteaga	accacaactt	12180
tactcttggg	gtgaggcaga	agatggaag	ttagagaceta	acaacaaaa	tecatatase	12240
	tcatcgagtc					12300
geeeacageg	cctgtgtcac	ageageeggg	gacetetaca	catggggcaa	aggeegetae	12360
ggccggccgg	ggcacagcga	cagugaggac	caycugaage	egaagetggt	ggaggcgctg	12420
cagggeeaee	gtgtggttga	categeetgt	ggcagtggag	atgcccagac	cctctgcctc	12480
acagatgacg	acactgtctg	gtcctggggg	gacggggact	acggcaagct	cggccgggga	12540
ggcagcgatg	gctgtaaagt	gcctatgaag	attgattctc	ttactggtct	tggagtagtt	12600
aaagtggaat	gcggatccca	gttttctgtt	gcccttacca	aatctggagc	tgtttatacc	12660
tggggcaaag	gcgattatca	caggttgggc	catggatcag	atgaccatgt	tcgaaggcct	12720
cggcaggtcc	aagggttgca	ggggaagaaa	gtcatcgcca	tegecaetgg	ctccctgcac	12780
tgtgtgtgct	gcacagagga	tggtgaggtt	tatacatggg	gcgacaatga	tgagggacaa	12840
ctgggagacg	gaaccaccaa	tgccatccag	aggcctcggt	tggtagctgc	ccttcagggt	12900
aagaaggtca	accgtgtggc	ctgtggctca	gcacataccc	tcgcctggtc	gaccagcaag	12960
cccgccagtg	ctggcaaact	ccctgcacag	gtccccatgg	agtacaatca	cctqcaqqaq	13020
atccccatca	ttgcgctgag	gaaccgtctg	ctgctqctqc	accacctctc	cgagctcttc	13080
tgcccctgca	tccccatgtt	cgacctggaa	ggctcgctcg	acqaaactqq	actcgggcct	13140
tctgttgggt	tcgacactct	ccgaggaatt	ctgatatccc	agggaaagga	gacaactttc	13200
cqqaaaqtaq	tacaagcaac	tatggtacgc	gatcgtcagc	atggccccgt	catagaacta	13260
aaccgcatcc	aggtcaaacg	atcaaggagg	assaggaage	taaccaaccc	cascacec	13320
aagtetgtet	ttgggcagat	atatactasa	atgagetegt	ttaatcacaa	caggeace	13380
cttcctcacc	gtgtctggaa	artraarttt	ataataaat	ctataastas	cageeeeeee	13440
	agtccatage					13500
	cacccaacgg					13560
	ccagagcacc					13620
	tecgaacegg					13680
	tgggatgaag					13740
	actcatgtac					13800
	cttcacagtg					13860
	caccctggac					13920
tccatgaatt	tgatgagcag	gtggctgctg	ttcgggaagg	aatggcccgc	gttgtgcctg	13980
ttcccctcct	ctctctgttc	accggctacg	aactggagac	gatggtgtgt	ggcagccctg	14040
	gcaccttctc					14100
	gtggttctgg					14160
	cgtctggggc					14220
gagacttcgt	catccaggtg	ttggataaat	acaaccetee	agaccacttc	ctccctaaat	14280
cctacacctg	tttcttcttg	ctgaagetge	ccaggtattc	ctgcaageag	atactagage	14340
agaageteaa	gtacgccatc	cacttctcca	agtccataca	cacacatcag	tacactcaca	14400
	aggagagcca					14460
catactacta	tgcttcggac	otacacaca	accaccidadC	atachest	yatyyyyaaa	14520
ogeocicyty	agatgagagc	ccgagecagg	caycayayca	cregeracte	cycayactyt	14580

```
aggetgeetg gtgtgtetga tgagaagegt eegteetega geeaggeggg aggagggagt 14640
ggagagactg actggccgtg atgggaatga cagtgagaag gtccgcctgt gcgcgtggaa 14700
cactgtggac getegactte caagggtett eteaceegta atgetgeatt acatgtagga 14760
ctgtgtttac taaagtgtgt aaatgtttat ataaatacca aattgcagca tccccaaaat 14820
gaataaagcc tttttacttg tgggtgcaat cgatttttt ttctttctcc tttcttcaa 14880
gtgtcgtgag tcgtcttgat tgtatattgg aaataactgt gtaacaaatc gtattataaa 14940
tatttcaatt aattttactc tgaatttgtt tattaaaaga cttttgaaca tgaaatgatt 15000
agtattactt gaatgcatcc acaggatatt taaaccaaaa tgaaaaacca gaaggccatt 15060
tggtgtcccc tctcccaggt gtccccttgt agcatatgca ttatgtcatc tgaattgagg 15120
cetttetgtg aacagcatca taacttetat catggaaagt gtactatata taatgtttgt 15180
gtcatgtata tgcctaaatt ttaattatct ataa
                                                                   15214
     <210> 347
     <211> 440
     <212> DNA
     <213> Homo sapiens
  <400> 347
cccttttcat cctccagtgt ctcctcaaaa ggatcagatc cctttggaac cttagatccc
                                                                      60
ttcggaagtg ggtccttcaa tagtgctgaa ggctttgccg acttcagcca gatgtccaag
                                                                    120
gtaaageece tecaeggage eeeegegeet etgetagtgt etttgtgeet ettgteatgg
                                                                    180
tgtgggctgc caggcgtaat tgttcatgtc acgtatgtat ctccccqqca cctttccaac
                                                                     240
acaaggtcag gtctggaaag catccatggc tgtgatccaa tgcacggcag tcccgtgggg
                                                                     300
tgagccctga cccttcccag tggcataggt gccctgggct cccctggctc ccactggtgt
                                                                    360
ctgacgacca tcaggtctca gacggtgaag tcattgccat gaccgagtag aaacttgaga
                                                                    420
aggcgttggg cacaggcgtc
                                                                    440
     <210> 348
     <211> 420
     <212> DNA
     <213> Homo sapiens
     <220>
     <221> misc_feature
     <222> (1)...(420)
     <223> n = a,t,c or g
     <400> 348
gaccggcagg cccagaaggc tggacaactc ttctcggggc tcctggccct gaatgtggtg
                                                                     60
ttcctgggtg gcgccttcat ctgcagcatg atcttcaaca aggcggccga cactctgggt
                                                                    120
gacgtgtgga teetgetgge cacgetgaag gteeteteee tgetttgget tetetaetat
                                                                    180
gtggcaagca ccacccgcca accacacgcc gtgctctacc aagatcccca cgcgggqccc
                                                                    240
ctctgggtgc ggagttccct agtgctcttc ggcagctgca ccttctgcct caacatcttc
                                                                    300
cgagtgggct acgatgtgag ccacatccgc tgcaagtcac agctggacct tgtctttcct
                                                                    360
gtcatcgaga tggtcttcat cggcgtccag acctgtgtgc tctggaaaca ctgcaqagan
                                                                    420
    <210> 349
    <211> 687
    <212> DNA
    <213> Homo sapiens
```

```
<400> 349
aaactaatag aaaaatatat ctaatactta gtactttttg cagcttacaa agtgttctca
                                                                      60
tatattgtcg catcagattg tcacgataac cttcagaagt agatcttacc atctgttaat
                                                                      120
ttataggtgg gaaaataatg gtcagacaag gaaattagaa gcccagtgtg gaatgatgac
                                                                      180
ttgtattctg gcactgaaga tttgctctta tttactactt aaggtggaaa aaaacttttt
                                                                      240
ttttaattga ttgataaagg gtataattta gaatttagaa tttaagccta gatacttcag
                                                                      300
cagtttttct ataactgaac aaagaaacaa agtagctctt gatggtccag taaaatgagt
                                                                      360
ctaaccaggg actccttaca ggttttatat atagtaaact acattttcgt ggaatatgag
                                                                      420
aattacgtta aaagagtacc aactaagaat aattttattg ttcatggaag atagggtaaa
                                                                      480
totcaatact goottattta tacatgtact aatcaaaaga gooattaaac tgtttttcca
                                                                      540
cactattata ctaagcacat ttcacagctt tacatgtcat ctgggcccag tgtggtgact
                                                                      600
catacctgta atcccagcac tttgggaggc caaggcagga ggatcactga gcaacattag
                                                                      660
gagacctcat ctctacaaaa aacttaa
                                                                      687
     <210> 350
     <211> 577
     <212> DNA
     <213> Homo sapiens
     <400> 350
ctgaaagatg gtctagtgct tatgtggccc aagtgtgctt gcctgtaatc tctaattccc
                                                                      60
ctgacttaag gtttcatggg ctcatctgct gcacgtggcc acaggagggc cttccctggg
                                                                     120
ttcctgtgcc ctctcttat tggagccact gaccctgcct gctggaagtg gggacactcc
                                                                     180
aaggccacct ctctaacacc tacatgatta tgatgttttt taaaaagtgc cccgtcgttc
                                                                     240
tggtgaagca tcgccttctc ttcctatgtt ctcaccatgt ggcccagctt ccctggggct
                                                                     300
cetttttgtc ctgtgcaccc actcccaagc ccttgctttc ttctggggcc cctcttctct
                                                                     360
gataggagcc tetgggttcc tgctacaaag gacctetett etecgecatg tatteetegg
                                                                     420
ccttgtctat gcctgctggg cacactggct gtattgctca tcccgtccag ttactaaaga
                                                                     480
gtgacaggta tattctaagg gcctaatgcc aaaccctggc tgacctgggc catctgtagg
                                                                     540
ccatgttgct cattctctag cattcctgaa ggtattt
                                                                     577
     <210> 351
     <211> 1050
     <212> DNA
     <213> Homo sapiens
     <400> 351
acagttaaga aacggtagca gttactccct ttccaccttc acggcccagg agttcgatag
                                                                      60
cagatgaaga cggggagtct tcttctaacc ctatggttct cccaaacttt ctcctttaac
                                                                     120
ttattttttg ccccacctca ttctcttctt cagagttcta tttttttctc tqtqtcttct
                                                                     180
ataactactg tacaccctat cetggtettt ttttttgcat tetttagaac ttgattqcca
                                                                     240
catctgtaat cocagctact cgggaggtca gggcaggggg atcacttgag cccaggattt
                                                                     300
tgaggetgea gtgagetacg ateacaceae tgtacteeet eeagtetggg caacaaagtg
                                                                     360
aaaccctgtc tcttaaaaaa aaaaaaaact tgagggcctt taactaaaac ataaacagct
                                                                     420
ttgtaagget tteececaag etetetggge tteetgaegt cettgeeett ttgttqqtte
                                                                     480
ttcctttccc accccaccca aactcagtac ccaactctac atctgggtct tttcccctga
                                                                     540
ctactatttt tgttcatggg ggtcatgtat gactatcttt acccttttat cctttctctt
                                                                     600
cctaagtggg gggggtaaag ccagaggagg atttaggttg agcagtggaa gaaagattgt
                                                                     660
gtcaaaaatg agccattaat atttggaaaa ttgttttaag tttaaaggcc tgagaaatgc
                                                                     720
ataaaattga aatttaattg atataggcaa gtggttatgc aaatgatttt tgcccatcct
                                                                     780
cccattttag tcaggcaatt ttttagaact ttcaaccagt actttcttca gttgtctttg
                                                                     840
```

900

agatttttat aaattaaaga aaaagaaaca ggaaaaaaaa gtgatttgga agctcattta

```
aagtcactgc ggttgaaaag gcaattatgt ggctcctggc agttgtagga gagtggctgt
                                                                     960
ccccaaatcg agctaccaag gacagattgc caaagcccaa gaagaatcat tgtgtaaaca
                                                                    1020
ttagagctca gctggacctt cagaggccta
                                                                    1050
     <210> 352
     <211> 1036
     <212> DNA
     <213> Homo sapiens
     <400> 352
acaacttcca gtaaaatatt gaatagaagt agtaagggta tcaagttctt ttgctctgaa
                                                                      60
aaaaatgaaa aataaaataa gtagtagtga gggtggacat gtttgtcttg ttcctcatct
                                                                     120
tagtcctcag aaatcatttt cttgtcacca ttaagtatgg tgttggctgt gggtttatca
                                                                     180
ttagtgtctg tttaagagcc aagcatttta attttgatga agcccagttt gtcagttttt
                                                                     240
tcttgtgtga ttcatgcttt tgtctcctca gaaatctgcc tacccaaaga ttacaaagat
                                                                     300
ttttcttctg ttggtttttt ttaatataag ttttatggtt ttagctgtta aatttaggtc
                                                                     360
tetteattte tgtteacaat teagtettta aatgeatata ggagagttgg aggggagagg
                                                                     420
agacacttgt ccctcttaac ttgtttcttg gtaatgagtg aattggcgaa aataactaca
                                                                     480
tgtacacctg tagtcttgct ttgtacaggt tttgcatttg gtagtctgcc agtgctcaaa
                                                                     540
aattoctggt ggtggttttt cagggatacc acccagtgac catctgtggt ggtcatatgt
                                                                     600
tatttgttca cccaacatcc ccctggggta ccaacactcc tcattttata ataattcgtt
                                                                     660
ttatccacat ggttcaagtg ggtctttttt taccctccag tqqtqataqq ctqacccaaq
                                                                     720
cccaggccca tcagaatgct ttatcttggt caggcatggt ggctcatgcc tgtaatccca
                                                                     780
gcactttggg agaccgagat ggatggatca cctgaggtca ggagtttgag accagtctga
                                                                     840
ccaacatggt gaaatcccgt ctctactaaa aatataaaaa tcagccaggt gtggtggcag
                                                                     900
gcacctgtaa tcccagctac ttgggaggct gaggcaggag aatagcttga acctacgagg
                                                                     960
tggaggttgc agtgagccaa gatcgcatga ctgcactcca gtctagttga cagagcaaga
                                                                    1020
ctctgtttca aacaaa
                                                                    1036
    <210> 353
     <211> 809
     <212> DNA
     <213> Homo sapiens
     <400> 353
tggttgactt cccgggacga cccccgcgtc cggggaagca gaggagcagc agggtcaggg
                                                                      60
tgctgggttc ctaaggtgca aggatgcaga acagaactgg cctcattctc tgtgctcttg
                                                                     120
ccctcctgat gggtttcctg atggtctgcc tgggggcctt cttcatttcc tggggctcca
                                                                     180
tattcgactg tcaggggagc ctgattgcgg cctatttgct tctgcctctg gggtttgtga
                                                                     240
tccttctgag tggaattttc tggagcaact atcgccaggt gactgaaagc aaaggagtgt
                                                                     300
tgaggcacat gctccgacaa caccttgctc atggggccct gcccgtggcc acagtagaca
                                                                     360
gagetgetet tetgaaaate atgtgtaage aattgettta aaaagaaaaa tgaagaacee
                                                                     420
ttctgacaag agacaaaaga cctgagaagg gaatttgatt tcatgaatac caacataatg
                                                                     480
atttcccttt catgtttgga tgcaaacaaa agctatgttg ttcaacctca gaagcctcat
                                                                     540
gctgtttatt tccaaaaaga attgaccctt ttttccctaa accttcgacc tggatctagg
                                                                     600
gattcatttc ttcactacta ccatagtcat tttcctttca tgttcgggtg caaccaaaag
                                                                     660
ctatggaget caaceteaaa aaceteatge tggagaegte eegaaagaat tggeatettt
                                                                     720
ttccctataa cttcgcccct catctatgga tacctctttc ccccaaaaça caggtatttt
                                                                     780
gecegegeg eccegecee aaaaaceee
                                                                     809
```

<210> 354

```
<211> 409
     <212> DNA
     <213> Homo sapiens
     <400> 354
cggccgcgtc gaccgtctct gctgatctga gcctgtcctg cagcatggac ctgcaacttt
                                                                      60
cctgaagcat ctccagggct ggatgccatg atattgagac ccagagacct gattctcagc
                                                                     120
cagctggtct tagccaacaa cctggttctt ttctctaaac gaatccccca gacaatggca
                                                                     180
gcttttggaa tgaaatcctt cctggacgag gctggatgaa acttgtcttc tatctataca
                                                                     240
cagagtggcc agaggggttt ccctcagcac cgcctgtctc cccaqtqqct tccaqqccat
                                                                     300
gaagetteaa ceteagtate tetaggagga tggaacteeg aattaggtee acaaagtgea
                                                                     360
ttgttttctg ctgcccctc tgctggatct tgcaaattgt ggcatatac
                                                                     409
     <210> 355
     <211> 1449
     <212> DNA
     <213> Homo sapiens
     <400> 355
aaatagccat tttcccgtct tatctccata agttttaatc tctacctacc agttccccag
                                                                      60
gccctaatat ttaccaccat attggtaact gccagtgtta gtatgtcatc ttctggattc
                                                                     120
ttttgccagg cccataatgc tgccaatcat tccctagttt ccccgcttcc ctctttgtt
                                                                     180
tttgtactgc atccctctac tgctctaagc tcattttgca ctttgcctgg tctcctggtc
                                                                     240
teactgttte taaatattte ttateeatet tggtattett aacacccage acagaaaaat
                                                                     300
caataaatac catgggaagg agcaagcagg gctagaaaca caatggatgg tcactagata
                                                                     360
ttaatcatct ttgagtaatt cttctaatca aacatgetet geatetagtt aggeaageea
                                                                     420
gctccgaaca cagaggctcc aagaacagca aaaggtgcat atccctgggg agagcccatg
                                                                     480
gctggagtta gttctccaag gtgttcctgc ccacaccttt tctaatgagt ccaqttagtt
                                                                     540
taactcaata gtgtgtgaac acgtaagtaa gctgccatta tccaacaccg cctggaaaaa
                                                                     600
caaccatgca tetggteet eccatatece teagetgcaa acttgagagt aggataaact
                                                                     660
tctagctttc tcttacagtg gccaggtgtt tgtgggcata gggtaataca gatggtctct
                                                                     720
tgaaaaaaag tttagcggct agtctgaaga aaaataacaa acctttgatt gggacttagc
                                                                     780
atatgataca actgttette atactataca tacaaaatea agtgtagtaa gtageattae
                                                                     840
cagtatttta aagatgaggc caggtgcggg ggctcacgcc tataatccca gcactttggg
                                                                     900
aggccaaggc aggcagatca cttgaggtca ggagttcaag actagcctgg ccaaccctat
                                                                     960
ctccgctaaa aatacaaaaa ttagctgggc ttgtcctgca cacttgtaat cccaqctact
                                                                    1020
caagaggctg aggcaggaga atcgcttgaa cccaggagac agaagctgca atggagccaa
                                                                    1080
gactgcgcca ctgcactcca gcttgtgcta cagagcaaga ccctggtctc aaatgcgtgg
                                                                    1140
gaggatggaa cgcggaacac cctcgtgggg ggcgggggtt acccttcccc acttggggga
                                                                    1200
cgtaaaaaaa aaaaaagggg gccgccttta agagacacat ttcccccggt tcgcgagact
                                                                    1260
attttctttg ttggcccaaa ataataccgg ccgggtttaa aggcgtgtgg agaaaggcgg
                                                                    1320
acacctcctg tctgtgcgga tggtgcgctg gctctctcct ctcgctttcc atcataataa
                                                                    1380
ctatggtcaa cgctcgtcta gtgccgctat ctagagacat cgctacgccg tgaggactcg
                                                                    1440
ccgcgtgca
                                                                    1449
     <210> 356
     <211> 403
     <212> DNA
     <213> Homo sapiens
    <400> 356
ttttgtatgt tgtaatgggg atctcccccc tcctgtgtcc agaattggtg ggttcttggt
```

```
cttactgact tcaagaatga agctgtggac cctcacagtg agtgttgtgt ccggagtttg
                                                                      120
ttccttctga tggtcggatg tgttcagaga ttcttccttc tggtggtttc gttgtctcgc
                                                                      180
tggctcagga atgaagctgc aggtctttgc agtgaacatt acagctctta aggccgcacg
                                                                      240
totggagttg tttgttcttc ctggtgggtt catagtcttc ctggcctcag aactgaagct
                                                                      300
gcagacttcc ctggaaagtg ttgcacctca taaagacagt atgagcctga aaagtgagca
                                                                      360
ctagcaagag taattgcaaa cagcaaaaag aataaagctc cta
                                                                      403
     <210> 357
     <211> 794
     <212> DNA
     <213> Homo sapiens
     <220>
     <221> misc feature
     <222> (1)...(794)
     \langle 223 \rangle n = a,t,c or q
     <400> 357
cacgcgtacg tgaattctgg aaggttatgt gattccaaat cctttaggtt gtcgacctaa
                                                                       60
gectaagaag tttgtettee teetagteta aaaagettte teetgattaa ageettetgg
                                                                      120
ctccactcac atgccacctt agagacattt tataactctt tgaaggagac aaagacacaa
                                                                      180
cctctaacca ggtctctttg aaaaagatga taataaaact tctacacaca atgcactgtt
                                                                      240
ctttcatttc tgctttttta ctgcctgttt tcctgagttt aactgtttca gcctctatct
                                                                      300
ttgtgtctct ccactettte cetetttece tetettaett etetttett ggttetttet
                                                                      360
tettatetgt etgtettgat etetatteta geetettttt etgattggee eteteceete
                                                                      420
tettetgtet gattggeetg tateetteea teaceceate tgtetgetgg atteteeetg
                                                                      480
tctgcctgca gtaatgtatg tgatagcact ttataaatta taaagcacta tgttgtataa
                                                                      540
aacaccatta teactttgte tteettetta cettatttt tetteettta tetgettee
                                                                      600
cttcttctct ctttctctct ctctctgaaa gcctgtctgc atcccttttg gagaatttgc
                                                                      660
ctgccttctc tgtcagtcaa tctccattcc ctccctgcca gcctattttt ctgccatccc
                                                                      720
tettetetgt etgeteagtt ettgeatete eteettetgg gggneecagg ttteecetat
                                                                      780
aattcttttt gccg
                                                                      794
     <210> 358
     <211> 4341
     <212> DNA
     <213> Homo sapiens
     <400> 358
tttttttttt ttttgatgag caataaaatt cacatgttct ttatttagtc catatgatac
                                                                       60
acceptititt agagtititg aaaattagat aaaagagcat attaaatggc aagtgtatga
                                                                      120
agtttctctt cataaacaat gtcaaaacaa aaagttttqa attacaaaat qttaaaaaaat
                                                                      180
atgtcggtac ttaacagttt cactaatgca taaagttaca gatattttct aaagaaaaat
                                                                      240
aattgtgcca cttacctata tttgctgttt ctatgaactt ttttattctg tacataggac
                                                                      300
attttgtaca aaatatgaag totacatttt tattacttat taccataaaa caaagataca
                                                                      360
atgtatgtac aatattaaaa ggaagccata ctaaagccac actaaaaaga cactiggaat
                                                                      420
agtgacattt ctgatgtaca gatacatttt ggaaagagtg aagatgccaa acgcagaact
                                                                      480
ttatgaagaa aaacagtcac cggtttattt tcaatgtagt acttttgaaa tcagtttggt
                                                                      540
acagaataaa cagtototat acaatgatat gtaagotgac aattagcaca ggagtocgag
                                                                      600
tactaactag ggaaacttta ggaggccaaa atattaagta atactcttgc caaagaaaat
                                                                      660
tagtttctct gaaaactttt atttttcttt ttggtgagtg tttgtcttca ataaaqaqca
                                                                      720
gaaagaaaac ctaqacaaaa agatqttctt acacactqaq ctttacacaq tcacccaaac
                                                                     780
attgatattt tgctttttcc cgagggcaaa aagagagtct tcccagaaac ctctctcaca
                                                                     840
```

		L		. ,		
aacatactga	acatccaaaa	tcaaggatat	ttgagaatct	atcagctaaa	gacggaagtt	900
caaacaatgg	tatatcaaaa	tacataagac	gctgctttat	acaataaaaa	gcaccctttt	960
tccctcaaaa	ggagaaggca	tctaaactgt	tttttttaat	gatagttttc	ataatggtaa	1020
aatggagaga	tacttgtcaa	gtttctcagg	aagtattcat	ctcacaaagc	ggacttgtcc	1080
acttttagct	ggggcaatct	tcgcatttca	tacctgcact	tgctcttacc	acaaqaaqtc	1140
ccctccccc	aggtgatttt	cctccaagac	acqaqqacaq	aagcattgcc	agtggcttga	1200
agtgacagca	gtgggcagca	ggtaccagag	ctgcacaagg	agcagtgtct	acttttcact	1260
atctttgaaa	ggatacccga	gacctcgatg	aaaaaacaga	tcctaaaata	accacattt	1320
totetttat	gcctcaagac	acttaacatt	aagttatata	atcttatgcc	agecacacee	
gaaactagat	cacatattta	gaataggagt	aageeacaca	agtagctttc	agagatgaaa	1380
aataagteaa	aataataaca	gaacagcagc	acacacccca	agragerice	aagcaggata	1440
aacaayccaa	tacttatact	accetgagag	aaacaaagaa	tagacaaagc	actaagttta	1500
aagacccccc	teettgtget	attecateta	aaacaaaagc	tcagtacatg	caaggaactc	1560
tgtggaatat	atageageat	gcgaagaccg	atgaaaactc	agacactgta	ttttccttac	1620
aaggtgttga	taacgtgagc	tcttttcaac	agaaagagct	ccactaaacg	tcatcctcgc	1680
tggtgcctcc	tccaagctct	cagaacagca	ctgcagcctt	cagtgaaggc	agcggcagtg	1740
ccggccccgt	gcaatgctgt	tgtgttactt	tatgcttaaa	gggcgcctgc	cagtttgcca	1800
ttaggcctaa	agaactggcc	ttaaactcaa	aatgattttg	cctcctaact	ttcccataaa	1860
atgtgggaat	tcttaggaga	ctataatttt	attaattcaa	gagccttgtt	gaagggcaac	1920
aatgtttaag	ttgacggaaa	cgaaatctgc	aaataaaaat	attaacacat	aattttaaaa	1980
ctccaatttc	tgtcaaggta	gacagagcaa	gctcttttaa	gataaatttc	agagcaatct	2040
cttttaaaat	aaatctcttc	tacaggetta	ctcctqqaat	cctggagtac	cacagactto	2100
qaaatatqqc	tttaggtaca	cacaagagaa	ggagagaggg	tgttcatgtc	actcatcaaa	2160
gtgaagagac	cccttagaaa	ataccagogg	ctgaggattg	tcatttgccc	actacctac	2220
gtgagaactc	gaaaggaaag	agccatttca	ctgaggattg	aaaacaaaca	ageacguege	2280
taacataaca	atcacataga	agccatttca	aaggatataa	agtettaaaa	adagaactge	
atttttaaa	accategegga	gatttggaaa	aaggetgtaa	agicilaaaa	aataggteet	2340
taaaaaa	taaattaaat	tteeseesee	acactgatgt	tatcacagaa	ccacctatgt	2400
caaaayaccc	taagtteeat	-t-gggagaac	atgaagatga	agggcagggt	gctttcctat	2460
egetetgaet	ttgtgaaata	grergaerre	gactacgctg	gggtggcggc	gacactgcga	2520
ggacaccgtc	greaaceege	ggctctgcca	gegggetetg	ggaagtcacc	attgtttgaa	2580
ctcctaatct	cgcgctgagg	cggacgcacg	ttattgccta	cggaacgggg	tccaagaaag	2640
ctttgagtgt	aactgattgg	tatggcacag	gaagtatgta	ttttctacag	aatccggaaa	2700
agaactggcg	ggcccggccc	cgacgcggcg	ccccggaggc	tagcggccgt	cctgggaggc	2760
cagctcatcg	gccctgcagt	gagcttccaa	ggctttcttg	gtgtgggggt	cctgaggcag	2820
ctcggacttg	cggagtgcaa	gaggacggtc	cttcttcgga	tetttetgtg	cctgatgagc	2880
ctcgtccttc	actgtctttc	tcagcatctg	cacatcttca	aataaaggcc	catctgtctc	2940
cattgcaacc	ggaatgctca	tggtgctggc	ttgactatac	actgtgtact	ggggattggc	3000
tttggctaga	ttttctattt	taacccatgc	ttcttcccgt	tctttcattt	ttagcttctc	3060
ttttagtttc	tctgctttga	actgttgtgt	acagtcatca	aatagctttt	ggttcatctc	3120
catgaagagc	ttcagggcgt	tqtatatcaa	gccatgtatt	gtcttgttcc	aatgggtctt	3180
tgagttgcgg	tacaaqqaaq	gaaacatgat	gggcagaatc	ttcgctgcgt	tatcactaat	3240
taaactcatg	atgtattcat	tattcccagt	aatagagagc	tegetetgee	acctddaadt	3300
atagacttag	agacacattt	adccaactac	cadasasasa	gttccatgat	cttcagaaat	3360
				ttaagaacat		
				ccactggttc		3420
				ggggatggta		3480
gatttgagtt	tataaaaaccg	tactacacag	ttacgccagec	ggggatggta	gacacteaga	3540
gattetatt	cocceaage	cagtaacacc	ticaataaya	aaatcttgtg	CECEECEEE	3600
ageggeaagg	caaatccatt	aattatactt	eccaatattt	ccagtaactc	tgctatgcca	3660
ttatgatget	ctgtttcata	aataaaccta	taaaatatat	tatttatctg	ttttctgatg	3720
taagetetea	agcctaggaa	tttcccatag	attctgtgaa	gggtggtttt	aagaaaatct	3780
ctctcccgag	gatcttcact	gtcaaagagc	tctaaaagct	gcaatacaaa	cttctgatca	3840
				ctaaaaatct		3900
ttcataaaca	agctgtagat	gaggccaggc	tgcttctaac	gttggttcat	cttcctccgg	3960
gtcaaattcc	gctcccgtag	gattggagga	aggtggtaat	gttcgaaaca	tgttaactgc	4020
aaacatatgg	actacttctg	ggtaaatagg	ctctgtgatc	acattccgat	tatgggtgat	4080
				ttccacttta		4140
tggatcagaa	acaaagtcaa	agaggacgca	acactgacgt	aacttctgga	taaaaagctt	4200
ctcttgatca	gcaggaggaa	catctcqaat	atggagaagg	accacgggct	ggaaaggggg	4260
attggagttg	gccgcatcca	ccaccatcct	getgeeget	ttattacatg	tcaacatcta	4320
gacttcagcg	ggaaaggcaa	t				4341
	55 55 55					1011

```
<210> 359
     <211> 652
     <212> DNA
     <213> Homo sapiens
     <400> 359
tttcgtgtta tcttctagcc taggcaataa aaaatgccta cagatgtttc aatagcaggt
                                                                       60
ggctggattc tatatcttcc tcattctctt taactctata gcctgtctcc aaaattaacc
                                                                      120
taaggataat caccataata cttctggagc ctaggactaa taacctggat ggggagaagg
                                                                      180
aagagttttt ttttcctttt tcttgagtgt aggcaaaaag ggctgcacat ccctttgtgc
                                                                      240
acctgetece atgececcag geetectetg getgececca gtgeceteat cetgececca
                                                                      300
gagatetece acaetteceg tgggatteta etcagecatg gtettttece tacagegaca
                                                                      360
atgectettt tettteecag ceaegeetee catteeceea eagtgacaat geetetttte
                                                                      420
tttcccagcc acgcctccca ttcccccagt acttaaaata aaaaaaaaag gtgaaacagg
                                                                      480
atcttgttat gtggcccatg ctggactgga actccggggt tcaagggacc ctccctatta
                                                                      540
acceteceag gtageeggga ceaeagggge acaecacetg geegagateg teatgtttet
                                                                      600
gagttgtcta gaaaagcaag aaggcggacg gtctttgaaa ggactccata ct
                                                                      652
     <210> 360
     <211> 681
     <212> DNA
     <213> Homo sapiens
     <400> 360
taccgctccg gaattcccgg gtcgacgatt tcgtgaaaaa tcattgttgt ttatgagatg
                                                                       60
aagateetge tatteatate ttgattgage tgettaataa aatgaacaat attaaaatat
                                                                      120
gttttgaatt ccaggcaaaa aaagtttatt cttgtatgta ggtgcttcag aaagcaaaac
                                                                      180
accaaaattg ttcattggaa cctagcctgt agagtttagc atatcaaaga aatagcattg
                                                                      240
tttgtaggtt ggcagaaaag aacataaaca aatcattggt taagtgatgt agtgatgtgg
                                                                      300
gatcatttta ttctttccag agttcttttt tgtttgtttg ttttccattc cagagtttta
                                                                      360
aaagaccaca tggcaagcaa cgcttataaa tcagctttat tttttactgt taggtatttg
                                                                      420
gaaactaagc agttcctatt aagatgctgt tgctggccgg acgcggtggc tcacgcctgt
                                                                      480
aataccagca ctttgagagg ccaaggcagg catatcacct gaggtcaaga gtttgagacc
                                                                      540
agcctgccca gcatggagaa accctgtctc tgctaaaaat gcaaaaaatt agccaggcgt
                                                                     600
ggtgacaggc gcctgtcatc tcagctactt gtgaggctga ggcaggagaa tcgcttcaac
                                                                     660
ctgagaggtg gaggctgcat a
                                                                     681
     <210> 361
     <211> 1221
     <212> DNA
     <213> Homo sapiens
     <400> 361
tgcagtgcgg tggaattcgg aggagtggtt tctgggaaac aaaaaacaag gttgttctcc
                                                                      60
tgcaatttgt tcattctctg ttcccatcag agctctcgtg ttgaaaggga ttaaggagat
                                                                     120
gttggtgtct ttttttcct tcctctggat tgtqaqqaac tqaaqtcttt aaatqaatca
                                                                     180
gragtteatt cettgaagtt agtettgaag acateagtat tttcccattt catqqtetqt
                                                                     240
cattttgtat tagaggagag taagacactg tataaatggt attttgcaac aaagtataaa
                                                                     300
```

360

cetttgggtt gtatgtttte tgttgettta tagtttaaaa tggaatggae aggaacgttt

```
ttagaaatat gcaaatacat gctctcagtg gataggctta cactttggca aaagtaacct
                                                                      420
aaatccaagc ggtcatgaac cgttgagaat tgtctcttct ctggagacac tgagctggaa
                                                                      480
cctggtctcg ctgtgcagtg ggtggcaggc agectctgcc ttttgattaa tcatgtgcag
                                                                      540
ctgtctccac acactgcaga gaegetttet geattttgte tetattgege tetegaaaat
                                                                      600
ttggcaaaat aatgcatttc atttgcaggt ggaagtgagt tggttatcta catttgtgga
                                                                      660
taaagttatt gtcatgagac tcatttcttc aaagcatttc acagatacga tgaatgacag
                                                                      720
agtgcattcc ttcctcaacg acattggctt tgtttgcctc ctcagttaaa tcaaggtgtg
                                                                      780
aaacaaacca ggagaaaaag aaagattatt taaaatgagg ccatcagtat caggaatgag
                                                                      840
aagaacagct gcttgcaaac tccagcactg tgtggcgttg tttacaggac agaaatcttg
                                                                      900
cttctgtaag ttgtggaaag ttaacgggat gttaaccttg tcggaccttg tttttqttct
                                                                      960
gcacccctcc tttgcttaag agactaccta ggtggagaaa cgtactgggg ccggggtctg
                                                                     1020
cacctctaca ccccattacc tttccgggca ggccagggtg ggtttggaga acttttccga
                                                                     1080
acacacttct ttctcaacgc aggaaaccct ctgcgacctt aactatgggg aggggcccca
                                                                     1140
aacctaatat tcgtaaagcg ggctgaaggc atccccttgg tcttacgggg gccgggaatg
                                                                     1200
gtccttaagc cttgggaaac c
                                                                     1221
     <210> 362
     <211> 684
     <212> DNA
     <213> Homo sapiens
     <220>
     <221> misc feature
     <222> (1) ... (684)
     <223> n = a,t,c or g
     <400> 362
gccatgctgt attttcagct tgtcatcatg gctgggacag tgctgcttgc ctactacttc
                                                                       60
gaatgcactg acacttttca ggtgcatatc caaggattct tctgtcagga cggagactta
                                                                      120
atgaagcett acccagggac agaggaagaa agetteatea eccetetggt getetattgt
                                                                     180
gtgctggctg ccaccccaac tgctattatt tttattggtg agatatccat gtatttcata
                                                                     240
aaatcaacaa gagaatccct gattgctcag gagaaaacaa ttctgaccgg agaatgctgt
                                                                     300
tacctgaacc ccttacttcg aaggatcata agattcacag gggtgtttgc atttggactt
                                                                     360
tttgctactg acatttttgt aaacgccgga caagtggtca ctgggcactt aacgccatac
                                                                     420
ttcctgactg tgtgcaagcc aaactacacc agtgcagact gccaagcgca ccaccagttt
                                                                     480
ataaacaatg ggaacatttg tactggggac ctgggaagtg atagaaaagg ctcggagatc
                                                                     540
ctttccctcc aaacacggtg ctctgagcat ttactccgcc ttatatggcc acgatgtata
                                                                     600
tttacaaggc acaatcaagg acgaggaggc agttcgatgg gcccaagccg gtggctgtgc
                                                                     660
ctcggaactt ttttgcacag nctt
                                                                     684
     <210> 363
     <211> 933
     <212> DNA
     <213> Homo sapiens
     <220>
     <221> misc feature
     <222> (1) ... (933)
     <223> n = a,t,c or g
     <400> 363
ccaggagcca agagcagagc gccagcatga acttgggggt cagcatgctg aggatcctct
                                                                      60
```

120

teeteetgga tgtaggagga geteaagtge tggeaacagg caagacceet ggggetgaaa

```
ttgatttcaa gtacgccctc atcgggactg ctgtgggtgt cgccatatct gctggcttcc
                                                                      180
tggccctgaa gatctgcatg atcaggaggc acttatttga cgacgactct tccgacctga
                                                                      240
aaagcacgcc tggggggcctc agtggtgagg gatgtggtgc tcgggcctgg ctctgcccca
                                                                      300
cccagcgagg caccgagggc cactctgtga tgctggctac agcaagaatg aacccacagg
                                                                      360
cgcagagccc aacaggctgt aaaggaaggc agtgacctct gcatgtttct gtctctctca
                                                                      420
ctaaccettt geetetgttt etettette tgtetetate tetetetgte tetetatttq
                                                                      480
aggtcctttt tctgtctccc tttccatgtc tctgtctttc tgtgtctctt tccctctgta
                                                                      540.
cttttccttt cagttgctct tggcagtcct gagaatcaca tttcctggag aaaggtggga
                                                                      600
gaggaactaa aattggcttc acacagaaat ttctgctctc tcatccaaat gatgagatca
                                                                      660
aataaaccca gtcccagtag gcaacgaggg tgggcctaaa tgtqgqcqqa tqqtqqaaq
                                                                      720
gtcttttgac actgcctttt tgggtcaaga aaaaattttt ttttcttaaa tggggaaagg
                                                                      780
cccttttttc caaacagacc tgggtgaggg cccctcgaaa aaaaacccga gcctggcggc
                                                                      840
catggccccc attggcacaa ccctttgggc ctccctgggn gccccaaaag gggaggcatt
                                                                      900
ggatttggag gccgccccc ttggaggggg tgc
                                                                      933
     <210> 364
     <211> 777
     <212> DNA
     <213> Homo sapiens
     <220>
     <221> misc feature
     <222> (1)...(777)
     <223> n = a,t,c or g
     <400> 364
tatecactgt ggtgtaatte gtteetgeag atggteegge ageatateee ateceagtge
                                                                      60
agaacatcaa gcctctgctc accgtcagct tcacctcggg agacatcagc ttaatgaaca
                                                                      120
actacgatga cttgtctccc acggtcatcc gctcagggct gaaaggtaca gaatgctgca
                                                                      180
cacaccccaa acctgcagac cgggcctgtg tgtgcttgcc tcaaggccqq tcttqtacac
                                                                      240
cctgtgctta ctgattcctg tcctctgtgg tgacaccttc tgggcttcat ggagtctgtt
                                                                      300
aactaaagcc actccctctt cactcctttg cttatctgat aagtccatac ctagtcttat
                                                                      360
ctcaaaggga gattcctgac attcagcctt tgtcttagcc tgctcttttc ctcactatga
                                                                      420
caagaatgat cctctctcag gtgtacaggt atgtttgcat ctggcttacg catgtctqca
                                                                      480
caataaacgg actgcagcac ctgccatccc taaggcagca qatqqtqcac aagacatcat
                                                                      540
ttacacagaa gcccctgtaa ttntaagaat ctgacagtct tattaaggaa ctgatcatca
                                                                     600
ctgtgcgata aagttacctt gaaagacttg gggagggtct gcaattacta gactgaggct
                                                                     660
ttgttgtgaa gggcaccaat caaggggctg atacctttct tgataaaaat tatggagggg
                                                                     720
tggtaacccc aaaaaaaaa tcagcgggcc cttagccttt tggaggggcc gtgaacg
                                                                     777
     <210> 365
     <211> 1157
     <212> DNA
     <213> Homo sapiens
     <400> 365
cccgggtcga cccacgcgtc cgcttcccta gtcagataac cagtaacaga cagaactgag
                                                                      60
gtttgaattt atgecegtee atgeettete cattecactg taaaggtagg aagaaattga
                                                                     120
agatgtctat agactgtttt atcatatggt agtgttttat catatatggt aggattttac
                                                                     180
tatagaaaag aaggagaaaa ggtatgatat tttggtttct tttttaaatc aaatcctttg
                                                                     240
aaagagtagt atatagtagg aatctcaata tgagatctaa aattatgatt cacatacata
                                                                     300
tatttttatt ggcttccttt agatttaaag aacatgtaca gaataatttg cctagagatc
                                                                     360
ttttaactgg tgaacagttt attcagttgc gaagggaatt agcttctgta aatggtcata
                                                                     420
```

```
gtggtgatga tggtcctcct ggtgatgatc taccatcggg aattgaagac ataaccgatc
                                                                     480
ctgcaaagct aattacagaa atagaaaaca tgagacatag aatcattgag attcatcaag
                                                                     540
aaatgtttaa ttataatgag catgaagtta gtaaaaggtg gacatttgaa gaaggtatta
                                                                     600
aaagacctta ctttcatgtg aaacctttgg aaaaggcaca actaaaaaac tggaaagaat
                                                                     660
acttagaatt tgaaattgaa aatgggactc atgaacgagt tgtggttctc tttgaaagat
                                                                     720
gtgtcatatc atgtgccctc tatgaggagt tttggattaa gtatgccaag tacatggaaa
                                                                     780
accatagcat tgaaggagtg aggcatgtct tcagcagagc ttgtactata catctcccaa
                                                                     840
agaaacccat ggtgcatatg ctttgggcag cttttgagga acagcagggt aatattaatg
                                                                     900
aagccaggaa tatcttgaaa acatttgaag aatgtgttct aggattggca atggttcgtt
                                                                     960
tacgaagagt aagtttagaa cgacggcatg gaaatctgga agaagctgaa catttgcttc
                                                                    1020
aggatgccat taagaatgcc aaatcaaata atgaatcttc attttatgct gtcaaactag
                                                                    1080
eceggeatet tttcaaaata cagaaaaace ttccaaaate aagaaaggtg ettttggaag
                                                                    1140
caatcgaaag agacaaa
                                                                    1157
     <210> 366
     <211> 1158
     <212> DNA ,
     <213> Homo sapiens
     <400> 366
cagaaaaatc aataaatacc atgggaagga gcaagcaggg ctagaaacac aatggatggt
                                                                      60
cactagatat taatcatctt tgagtaattc ttctaatcaa acatgctctg catctagtta
                                                                     120
ggcaagccag ctccgaacac agaggctcca agaacagcaa aaggtgcata tccctgggga
                                                                     180
gagcccatgg ctggagttag ttctccaagg tgttcctgcc cacacctttt ctaatgagtc
                                                                     240
cagttagttt aactcaatag tgtgtgaaca cgtaagtaag ctgccattat ccaacaccqc
                                                                     300
ctggaaaaac aaccatgcat ctggtccctc ccatatccct cagctgcaaa cttgagagta
                                                                     360
ggataaactt ctagctttct cttacagtgg ccaggtgttt gtgggcatag ggtaatacag
                                                                     420
atggtctctt gaaaaaaagt ttagcggcta gtctgaagaa aaataacaaa cctttqattq
                                                                     480
ggacttagca tatgatacaa ctgttcttca tactatacat acaaaatcaa gtgtagtaag
                                                                     540
tagcattace agtattttaa agatgaggee aggtgegggg geteaegeet ataateeeag
                                                                     600
cactttggga ggccaaggca ggcagatcac ttgaggtcag gagttcaaga ctagcctggc
                                                                     660
caaccctatc tccgctaaaa atacaaaaat tagctgggct tgtcctgcac acttgtaatc
                                                                     720
ccagctactc aagaggctga ggcaggagaa tcgcttgaac ccaggagaca gaagctgcaa
                                                                     780
tggagccaag actgcgccac tgcactccag cttgtgctac agagcaagac cctggtctca
                                                                     840
aatgcgtggg aggatggaac gcggaacacc ctcgtggggg gcgggggtta cccttcccca
                                                                     900
cttgggggac gtaaaaaaaa aaaaaggggg ccgcctttaa gagacacatt tcccccggtt
                                                                     960
cgcgagacta ttttctttgt tggcccaaaa taataccggc cgggtttaaa ggcgtgtgga
                                                                    1020
gaaaggegga caecteetgt etgtgeggat ggtgegetgg eteteteete tegettteea
                                                                    1080
tcataataac tatggtcaac getegtetag tgeegetate tagagacate getacgeegt
                                                                    1140
gaggactcgc cgcgtgca
                                                                    1158
    <210> 367
    <211> 963
     <212> DNA
     <213> Homo sapiens
     <400> 367
ttcgtacagt gcggtggaat tcctttctcc aaaagtagac caactgcaag gctcagtgcc
                                                                      60
tgttgtttac ctaggaggtg attccaggaa gaacatttga ggaagtgggt aaagtcatta
                                                                     120
aaggacatgt gttatgagtg ggttattacc actgtgggca gctgggctct cctgtgccag
                                                                     180
aggaccetet ggaaaccaca cagaacatac caqaaqetqa caetcaacte etqtecaace
                                                                     240
cetattgttg aaggtggcct ggagtcatte ceatececa actttecaag etgeatttee
                                                                     300
tggtcctgag aaagccctca tcaagagtaa atgagaaaca cagacacctg agaagatggg
                                                                     360
```

```
gactatgaga tettaeggea teteaaaggg cagaagtetg gacaggaaga ceagttgeat
                                                                      420
agtggaggat tcccaaggta gaccacgtgt gtgccagccc agcaggcaaa ctgccccgta
                                                                      480
tgagtttgtc catcaactgt gcgtgcagat ctttactcgc atgcatgaca caggaagccc
                                                                      540
acgggacact tececageae geceegette etetgeacte etggaaggaa gacetgttet
                                                                      600
tgcttcttcc gtactctcag gatctggcac agaacccgac aaaggaaata tttaatgaac
                                                                      660
tatggcgtag gcctggccct gaacgacacc ctggggaccc agcagcagca aggtgcagct
                                                                      720
tctgccctca gcaacctcac ggtctaatgg acgcggcaca gtgggcagga agtgacacca
                                                                      780
aagagcatca ggattaggaa gtctgctcgg attagcatgg aatcagactc tctggagcag
                                                                      840
cccagcttcc cagaactgag atcactaaac caagaagagg aggcaccttq qacctqqqta
                                                                      900
aaggeteett tecaagetae tgeacaaaga ggeecaggag aaatcaaaag atcatggaet
                                                                      960
                                                                      963
     <210> 368
     <211> 842
     <212> DNA
     <213> Homo sapiens
     <400> 368
aagtgccgtg gaattccgcc accggctcct cagagcccct gcccaggtca cctgtgtaag
                                                                       60
gagaacacag tgccaatgca gcacagcata gtgacacccg gcctgccggg atttagcccc
                                                                      120
caccetacet ageggttetg gagetgecac tgtgacceat geagggtega geateceage
                                                                      180
ttettgcaga actattgcta cagggccatc agcatgtgac actaggagac tgtgccatgt
                                                                      240
catcettatg tgggtctggg tcacageege ccatctgctg tgetcectgg ctgcctettt
                                                                      300
tgtgaaaaag aagagcettg ggaagetgag agtagatgtg tgccgatcac caccacctga
                                                                      360
gggttccagg acacagacat cgtcatccct gttctacaga ggaggaaatg gagcctccta
                                                                      420
tgcaaattac attetteate acaccatgge tettgaaggg cagaggtete actgggetee
                                                                      480
ctgtgtctca tgtcctgcac aaggcctggc tctgaggagg ggctgcacaa ccttcctgca
                                                                      540
caagaataaa ggcgggaccg aagcagtgac tgtgtgagag tccatggaat gcccaggacc
                                                                      600
agcactcagg gcctttgtct tcttgtccaa gcaccaggga gcagatagga gcagcttcgg
                                                                      660
caagacccgg ctcaactgaa tgaagtcgag tgtcttaagg catgaacagt acagaaaqag
                                                                      720
ctggccctct tcaaattcca acgctgcggg gaagggaggg tgtagcgagg gtcatctagt
                                                                     780
tttgtgctca ctcccctggc ccgaacggac agggcaggcc tcaccctggg ggggcggcca
                                                                     840
CC
                                                                     842
     <210> 369
     <211> 794
     <212> DNA
     <213> Homo sapiens
     <220>
     <221> misc feature
     <222> (1)...(794)
     <223> n = a,t,c or q
     <400> 369
ggtggaattc gaaactggta ggaaaattta ttttaaaaag tgttgaaggg aaagaatcaa
                                                                      60
gaccacagat ccagatccgg agattatttt gctaaagaat agcaattgtg aggcatgaag
                                                                     120
tgggaggggg gaagaagcta tgaacttaat tttgaggttt ctgagaagga aacttgagtg
                                                                     180
aattcacttc agatgcattt ggaatgtttg cactccagaa gatgagattg tgtgtgctct
                                                                     240
ggagagtatt ggaagaagga ggtattacta gatttggcga ctcccacagt gactcattac
                                                                     300
tettetetgt tacttteagg atteatagag atatgttttg ttgatattat ttatttaagt
                                                                     360
gagataaatt tgaatatgaa teeattgget tttttttgta aaatttetge tttataaaat
                                                                     420
ctgttagaag gctgggcccg gtggctcatg cctgtaatcc cagcactttg ggaggccaag
                                                                     480
```

540

```
gcgggcagat cacttggggt cagcagttcg agaccagcct ggccaacatg gtgaaaccca
gtctctacta aaaatacaaa aattaattag ctgggcttgg tagcacatgc ctgtaaaccc
                                                                      600
agctactcag gaggctgagg caggagaatt gcttgaaccc agggggcaga gactgcagtg
                                                                      660
agetgagatt getceactge aetceageet gggtggcaga gtgagaetee catetcaaaa
                                                                      720
aaaatanaaa tgaaaaaata aaaatttott agagactaac atgataaatc agactgattt
                                                                      780
tagaaacaaa caac
                                                                      794
     <210> 370
     <211> 794
     <212> DNA
     <213> Homo sapiens
     <400> 370
ggaattcgga atagagccac ctccaggcca cctcctgctt ctccatcatc ctctttctct
                                                                       60
attctccaga cattaggcac ccactgtgtg cccagcacag ttttgggagt gaatacaggc
                                                                      120
cctgttctcc cagtcaggtt taagccttga tagctccccc tgggaatggg ttgcggattg
                                                                      180
gaacaccaca ggaagcagga ctccttcagc ccctcttcgc agcaaccctc caagtgtgca
                                                                      240
gcgagtcagg gggtccctgg ggcgaaccca cctgttgggg aaaagggaga ggctggtgtg
                                                                      300
gaatgcacca tggtacctcc acattgagga ctctggcagt aggggggggg gcatggtatg
                                                                      360
cgggtcacag cacatgcgtc atccttcccc atggcccttc ctgtttttct gttttgtccc
                                                                      420
tgctactctg agatcatttc cctctggcct ggtttggcct gggtgctggt gggagccaag
                                                                      480
ggccagcccc agcagccttg ccccaggaat gaaaagtcag ctctgggcag cagcctggag
                                                                     540
gcctgggacc agcctccagg gcatggcagg gatattgagg caggcagcag aggcaggccc
                                                                     600
tgcaggggta gccttgatac taattaaggg aactggtaat gaggagcccc tgggacccct
                                                                     660
gccaagcagg tgtctgtgcc ctccccctga ggaacccaga tttcattggg cgctgggcaa
                                                                     720
agageceact ggacetggea ggeeceaace tgtecageac cacattgagg gacegeacee
                                                                     780
ggttggtttt gggt
                                                                      794
     <210> 371
     <211> 5650
     <212> DNA
     <213> Homo sapiens
     <400> 371
atggaaaccc ctggagtagt gaatggcttt ggggagtggt cagattcaac caaaaataac
agaaatetet gteeceeaga eaggaataeg teatttgtgg tgtetggaga ggteagtege
                                                                     120
tatgtggtat ggacaggaat ggagtcactc gtagggtctt gggttcaacg ggagcagcat
                                                                     180
tactcaagtg tcagtggtgt agacaaacag gtgaccaaca gctctagtgt agacaggggc
                                                                     240
tgggtcactc acagtgtctg tggagattca gccctgatgg aggctgagga ggcccagcgt
                                                                     300
ggagcetete eteccatete tgecatagag gaatteagea ttatecetga ggeteccatg 🐇
                                                                     360
aggagcagcc aggtctctgc cttggggctt gaagctcaag aagatgagga cccatcctat
                                                                     420
aagtggagag aggaacacag actctcagca actcagcaga gtgagttaag ggatgtgtgt
                                                                     480
gactatgcga ttgagacgat gccctctttt cccaaggaag gttctgcaga tgtggagccc
                                                                     540
aatcaggaaa gccttgtggc tgaggcctgt gacactccgg aacactggga ggcagtaccc
                                                                     600
cagagectag caggeegaca ageaaggact ctageteece cagagetetg ggeetgeece
                                                                     660
attcagagtg agcatctaga catggcccca ttttccagtg acctgggaag cgaagaagag
                                                                     720
gaggtggaat tttggccagg acttacttct ttgacattgg gatctggaca ggcagaagaa
                                                                     780
gaagaggaaa cctcttcaga taactctggt cagaccagat attattctcc ctgcgaagag
                                                                     840
catcctgcag agaccaacca gaatgaaggc gctgaaagtg ggactatcag gcagggggaa
                                                                     900
gagetgecat etgaggaget geaggaaagt caagggetet tgeateecca ggaggtecaa
                                                                     960
gttctggagg agcagggaca gcaggaagca ggatttcggg gggaaggaac tctgagggag
                                                                    1020
gatgtttgtg ccgatgggct attaggggag gaacagatga tagagcaggt taatgatgaa
                                                                    1080
aagggagaac agaagcaaaa acaggaacag gtacaagatg tgatgcttgg gagacaagga
                                                                    1140
```

gaaagaatgg	ggctcactgg	ggagccagag	ggtctgaatg	acggtgagtg	ggagcaggag	1200
gatatggaga	ggaaggctca	gggtcaggga	ggtccagaac	agggagaaga	gaggaagagg	1260
gatctgcagg	tgccagaaga	gaacagggcg	gactctcagg	acqaaaagag	tcaaaccttt	1320
ttgggaaaat	cagaggaagt	aactggaaag	caagaagatc	atggtataaa	adadaaaaaa	1380
gtcccagtca	gcgggcagga	ggcgaaagag	ccagagagtt	addatadaaa	caddetadaa	1440
gcagtgggaa	gagcgaggag	Cadddaadad	gagaatgagc	atcategggg	ttaaataaa	1500
getetgatag	cccctgagga	ctctcctcac	tatazaatat	ttaaaaataa	ctcaatgccc	1560
ataactcaaa	ttaccaaaa	tanananana	taaaaaaata	acceaggige	ccatatete	
gtgactcaga	ttcccgggac	ccagacagag	tecagggerg	aggaactgtc	ccccgcaget	1620
thete	tgctagagcc	catcagatge	teteaceage	ccatttctct	actgggctcc	1680
tttttgaetg	aggaagtcac	ctgacaagga	aatagatcaa	aacagccagc	aagaggaatc	1740
caggctgagg	aagggaacag	tgtccagcca	agggactgag	gtggtctttg	ccagtgcatc	1800
tgtgactcct	ccaaggacac	cagattcagc	tecteccagt	cctgctgaag	cctaccccat	1860
cacacctgcc	tcggtatctg	ccaggccccc	agttgccttt	cccaggaggg	aaacctcttg	1920
tgctgcacgt	gctccagaaa	ctgccagtgc	ccctctctca	atggatgacc	catctccctg	1980
tgggacttct	gagatgtgcc	cggctgccct	ctatggcttc	ccctccaccg	ggaccagccc	2040
tccgaggccc	ccagccaact	ccacaggcac	cgtccagcac	ttacggagtg	actccttccc	2100
tggttctcac	aggacagagc	agactccaga	cctggtggga	atgttqcttt	cctactccca	2160
ctcagagctg	ccccagaggc	ccccaaacc	tgccatctac	agetetataa	ccccaagaag	2220
ggacagaagg	agtggtaggg	actacagcac	cqtttcaqca	tcccctacto	ccttatccac	2280
gctgaagcag	gactctcaag	aatccatctc	aaatctagag	agacccagca	atcctcccaa	2340
catccagccc	tgggtctccc	cacataatcc	agcetttgcc	acadagtete	ccacctacag	2400
ttetteeca	tcctttgtct	ccatogagga	tataaaatc	cacquageete	tagaaataa	2460
tccccacag	aggagggaca	cccatecete	cataataasa	agagatagag	atastastat	
agragattaca	acgctgaagc	accatacca	cactactaca	ttagaagtag	atterese	2520
ageggeeeee	actasaggg	agcatagcca	aggatataga	aggetetag	gtteaggget	2580
gcatgccccc	cataaaggcc	cacccccca	ageetetgae	cccgetgtgg	ccaggcagca	2640
otgacctetg	ccatctaccc	cagacagete	ecaccatget	caggecacee	ccaggtggag	2700
	ccgctacccc					2760
tgeteetggt	agctcaagga	tctacaggcc	tctaccccca	ctacccatca	tagaccctcc	2820
caccgaacca	ccccattgc	ccccaaagtc	cagggggagg	agcaggagca	ctcggggagg	2880
acatatgaac	tcagggggtc	atgccaaaac	aagacctgct	tgtcaagact	ggacagtccc	2940
cctccctgcc	tctgctggac	gcacctcctg	gcccccggcc	acagctagat	caacagagtc	3000
tttcacttcc	accagcagga	gtaagagcga	agtgtcccct	ggcatggctt	tcagcaacat	3060
gacaaacttc	ctatgcccct	cttcccctac	cactccctgg	actccggagc	tccagggacc	3120
cacctctaag	gatgaagcag	gggtctcaga	acaccctgag	gcccctgcga	gagaaccttt	3180
gagaaggaca	acccctcage	aaggagcgag	tggcccaggg	aggtcacctg	tgggccaagc	3240
aaggcagcca	gaaaaaccca	gccatctgca	cctggagaag	gcgtccagct	ggccccacag	3300
gcgggactca	gggaggccac	caggggacag	cagtggacag	gctgtggctc	ctagtgaggg	3360
ggccaacaag	cacaagggct	ggagccggca	gggcctgcgc	agacetteca	tettgeetga	3420
gggctcttca	gattcaagag	gtccagccgt	ggagaaacat	ccgggaccct	cagacactqt	3480
	gagaaaaaac					3540
actcatcaac	tcctcccagc	tgctttacca	qqaqtataqt	gatgttgtcc	tgaataagga	3600
	cagcagcggc					3660
gcagcctcgg	aaggccctgg	tctcctccga	gtcgtacctg	cagcogctct	ccatggcctc	3720
cagcggctcc	ctctggcagg	aaatccccqt	ggtgcgcaac	agcaccatac	tactctccat	3780
gacccatgaa	gaccaaaagc	tgcaagaggt	caaatttgag	ctgattgtgt	cadaddcctc	3840
ctacctgcgc	agtctaaaca	tagctgtgga	tcatttccaa	ctttcaactt	cagaggeeee	3900
	aaccaggagc					
						3960
	ttcctttcag					4020
	gtagtcctga					4080
	acctatcagg					4140
cegggaggte	ttggagaagc	cggagagega	ccccgtctgc	cagcgccttt	ccctcaagtc	4200
	ctgcccttcc					4260
	cagcctggct					4320
	atccgggact					4380
	agccagaaga					4440
	gtgaaaagtg					4500
	ctgaacacgc					4560
gtctcggccc	cgagagggta	gccgattcct	ggtatttgac	catgctccct	tctcctccat	4620
tcggggggaa	aagtgtgaaa	tgaagctaca	tggacctcac	aaaaacctgt	tccgactctt	4680

```
tetgeggeag aacacteagg gegeecagge egagtteete tteegeacgg agacteaaag
                                                                     4740
tgaaaagctt cggtggatct cagccttggc catgccaaga gaggagttgg accttctgga
                                                                     4800
gtgttacaac teececcagg tacagtgeet tegageetac aageeeegag agaatgatga
                                                                     4860
attggcactg gagaaagccg acgtggtgat ggtgactcag cagagcagtg acggctggct
                                                                     4920
ggagggcgtg aggctctcag acggggagcg aggctggttt cctgtgcagc aggtggagtt
                                                                     4980
catttccaac ccagaggtcc gtgcacagaa cctgaaggaa gctcatcgag tcaagactgc
                                                                     5040
caaactacag ctggtggaac agcaagccta agtcttctct gagaggagtt tcgtgagctg
                                                                     5100
aagaacaagc tgctcatggc aagggctggc cccagaaccc tgcaagagag gccttctqtq
                                                                     5160
gatggagaac taggcettet caaagetcaa ggacaaaate cagetaacce agteeetegg
                                                                     5220
eccaggeete etttegtget ttgtgettgg tgggggggat tteegaggga etttgeactq
                                                                     5280
gactotggga acctttcatc attaaaaaaa gggggaccat tggggcctga gccaaggaac
                                                                     5340
tttccttcta ctgccttata gtgcttaaac attctccgcc tccagggtgc agattcagag
                                                                     5400
ctggccagag tttcagtgat agccgtatgt taaacagaat ctcacctcag tctcctggag
                                                                     5460
ggagatgttt aagaggggtt aacacatcag atgggagggt cagcccggtg acctctaagg
                                                                     5520
tatcttctaa cctagaaact caccataatt atggtgcaag gtcagtgtgt ctctgagatc
                                                                     5580
tatgtctgtt ggtggcaatg tgagggtgat actctctcac tctaataaac ttggcacttc
                                                                     5640
tccgagtaaa
                                                                     5650
     <210> 372
     <211> 538
     <212> DNA
     <213> Homo sapiens
     <400> 372
ttttttttt ttaagaatac agaaatatgt ttaatactta gtatcaaact aaaaagtaat
                                                                      60
ataaaattac aaaacttett tttttteatg cacaggettt ttetggtaag gacegetggg
                                                                      120
attgaacaga agetteeggt aaataaggge eeegteggea agacageata etgetgteae
                                                                      180
aagtgcaaac acccctccac caactgtcaa tgttgtggtt tctggtatca gtgccaacac
                                                                      240
agatacgatg agcatgaata ctgttgttac cagtgagttg ataatatcca qccqcaqcat
                                                                      300
cttcacgtgg cctttcacac tgaagcagaa ggggcgatgt tttattttcg gctgcacgtt
                                                                      360
atccatcgcg tctgcagacc cagcagcagc actttccctc aactcttctc agctggctgc
                                                                      420
ctgagtaggt tctgcgaagc gatagcaacc gccaccgcgg cgqagcaccq ccctcccta
                                                                      480
cttctcgccc agctcggctt cccgaattcc accacacgga ctagggacgg agacgaag
                                                                      538
     <210> 373
     <211> 1209
     <212> DNA
     <213> Homo sapiens
     <220>
     <221> misc feature
     <222> (1)...(1209)
     \langle 223 \rangle n = a,t,c or g
     <400> 373
attatgacga attttcgctc tcgttgccca ggctggagtg caatggcgca atctcggctc
                                                                      60
accgcaacct ctgccttctg ggttcaagtg attctcctgc ctcagcctcc ctggtagctq
                                                                     120
ggattacagg cgcctgccac catgcccagc tgatttttgt atttttggta gagacggggt
                                                                     180
ttcaccagtt gaccaggttg gtctcaaact cctgacctcg ggtgatctgc ccacgttggt
                                                                     240
ctcccaaaat gccgggatta caggtgtgag ccaccacgcc cagcctttct gctgttactt
                                                                     300
tttattttat tcctcatttg cagaaaggaa ataatactat gaactaggat tatcctgagg
                                                                     360
ttttaatgag ttaatccatg caaagatctt ctaacagtgc caggcacatt gtaaaatgtt
                                                                     420
aactacgctg ttactattat tacacaaaag gatctttaga ggaaactttc acattctaca
                                                                     480
```

```
ttttcacatc tgcatacaga taaagaaaca aatacccata ttggaaaatg accttttcaa
                                                                    540
aatgtatact gttagtaaca aagctaagac tagaacctgg tcttgaaatc caatgcctaa
                                                                    600
geggeattea aacgatacag gtgtatgatt attteettte caggtaggtg gaaaacactt
                                                                    660
720
atttgggtgg ntgggtctgc ctgcattaat tactgggtat tggaaagtcc tcaaaaaccc
                                                                    780
agctctggaa aactgaaaga agggctaaag ggtggcagtt cttcttttgc cactgggagg
                                                                    840
gggcttcggc acccccttaa aggacaaatt ggggcgggaa ctggtttttt tttqqaqcqq
                                                                    900
ctaaaaaaag aaaaactttt tgggcggggc ccccaagaat ttttgaaaag gggagaaact
                                                                    960
cectttgggg ggggttttee ceegeceee ceeeaggaag gggaatettg gtgggcaee
                                                                   1020
caccccggg ggttgggtgg attctaccga cccacacagg gtttggtggc aagaqaaact
                                                                   1080
tetttettt ttteteggeg ggaaaaaaag agagggaggg egeegeegtt teeteaceet
                                                                   1140
tctcttaata aaacaaaggg atgggcggcg cggttgcttg aaggcaaaaa aaaataaacc
                                                                   1200
gcgcgcgcc
                                                                   1209
     <210> 374
     <211> 1083
     <212> DNA
     <213> Homo sapiens
     <400> 374
gcctggtgta atgcgaggtt gccggaaaca gcaaagatag atttcagagc acagcagcag
                                                                    60
gggtccctgg tcagccccgc tccctagagc aggagatctt gagtgggaga acattcttgt
                                                                   120
tgtagccaca gctgaggccc tggaccagct ctctccacac cgcatgctcc gagttgggac
                                                                   180
tctaaggagt ctaggaattt tcattcaaac ttggccttac aggtcactca tcagaaaaat
                                                                    240
actititica aggicaacca atagaacata cittaticaa cagitigita gitigcitit
                                                                   300
taaatattta gccacatggt atgtaggctt ccatgtacac tcttgccctg gcccctqaaa
                                                                   360
cataagcagg gggctcttct gtacatttgc ccagcttccc tgccagcctt taaccccagg
                                                                   420
aacctctcag tctacctcct cttttctgcc tctgaatccc tacctttaaa gtcagaacag
                                                                   480
gccaggcccg gtggctcacg cctgtaatcc cagcactttg ggaggctgag gtgggtggat
                                                                   540
cacttgacat caggggttca aaaccagcct ggccaacatg gtgaaactct atctctacta
                                                                   600
aaaatacaaa aataagcaag gtgtggtggc gggcacctgt aatcccagct actcaggagg
                                                                   660
ctgaggcagg aggatcactt gaacccagga ggcagaggtt gcagtcagcg gagatcatgc
                                                                   720
cactgcactc cagtetgggc aacaacagcg agactccatt tgaaaacaca agaaaatatc
                                                                   780
tgggggaggc caggcacggt ggctcacgcc tgtaacccca gcactttggg aggctqaggt
                                                                   840
gggcagatca cttgagatca ggagttcgag ccagcctggc catcatggtg aaacactgtc
                                                                   900
tctactaaaa acaaagtaca gaaattgccg ggcgtggtgc tggacacctg tggtcccggc
                                                                   960
tacttgggag gctgaggcag gagaatcgct tgaacccggg aggtggaggt tgcagtgagc
                                                                  1020
tgggatcgcg gcactgcact ctaggctggg caacaagagt gaaacgccat ctcaaaaaaa
                                                                  1080
                                                                  1083
     <210> 375
    <211> 710
     <212> DNA
     <213> Homo sapiens
     <400> 375
etgcaaggca cetgtcagta tgctgagctt tgttcctttg cttagctctt ggctaggcac
                                                                    60
atggattaca gacaggggtg cagctgggtc ctgccaagca gaagctccca ggctagcagg
                                                                   120
ggagacagct gggcagcgag tgtgggagag aggaatgcag agggctqcaq ctqtqqcaa
                                                                   180
aattttagac cccaaaggcc acacagcaag tccacactaa atatgggcta tttgaagttg
                                                                   240
cttagggcat cagtcataga tgcacaaaat gtcagagttg gcagcqqqaa tqttaqaaat
                                                                   300
catcagttct aacaacttat ttaaaaatat ttaattatag aattgttaga aaatactgcc
                                                                   360
```

420

aagcataaag aaaaaaatga gaaatatgta acatgaccca aagataacca cttaattgtc

```
atgtatattc cagactgttt atttcctgtt catatagatc acatcttatt tttaaaaaat
ggagtcgccg ggcacggtgg ctcacccctg taatcctagc actttgggag gccgaggcgg
                                                                      540
gtgaatcacc tgaggtcagg agttccggac cagcctggcc aacatggtga aatcctgtct
                                                                      600
ctactaaaaa tacaaaaatt agctgggcgt ggggacacac acctgtaatc ccagctactt
                                                                      660
gggaggctga ggcaggaaaa tegettgaac eegggaggeg gaagttgcat
                                                                      710
     <210> 376
     <211> 374
     <212> DNA
     <213> Homo sapiens
     <400> 376
gcgaaccttg gctgctggat gctggttctc tttgtggcca catggagtga cctgggcctc
                                                                      60
tgcaagaagc gcccgaagcc tggaggatgg aacactgggg gctgccgata cccagggctg
                                                                      120
gectgeecae teggeegaee acceggaeag tggggggeaa eggtatgaee egtggteett
                                                                      180
attgggacag gcatttccaa cgacgggtgg ggcagaggac atgtccatgg tgagctacac
                                                                      240
ccaccetgee gttcagegga ggccatgete tggtgaggee etgcataate eggageetge
                                                                      300
atgagecaag geetgttgge cetecataca ttgegeettg ggatgateet gteettgget
                                                                      360
gtccttgacg actg
                                                                      374
     <210> 377
     <211> 396
     <212> DNA
     <213> Homo sapiens
     <400> 377
tgtcaacccc acacgccttt ggcacaatga agtgggtaac ctttatttcc cttctttttc
                                                                      60
tetttagete ggettattee aggggteeca aagetgagtt tgcagaagtt tecaagttag
                                                                     120
tgacagatct taccaaagtc cacacggaat gctgccatgg agatctgctt gaatgtgctg
                                                                     180
atgacagggc ggaccttgcc aagtatatct gtgaaaatca agattcgatc tccagtaaac
                                                                     240
tgaaggaatg ctgtgaaaaa cctctgttgg aaaaatccca ctgcattgcc gaagtggaaa
                                                                     300
atgatgagat gcctgctgac ttgccttcat tagctgctga ttttgttgaa agtaaggatg
                                                                     360
tttgcaaaaa ctatgctgag gcaaaggatg tcttcc
                                                                     396
     <210> 378
     <211> 638
     <212> DNA
     <213> Homo sapiens
     <400> 378
aaagaagcct atatatcaga tgcatagaca aagaataaaa tggcatccag aactggtccc
                                                                      60
cacctattcc caatcctggt tccacagcag aatacattca tagttcaggc attcttcctt
                                                                     120
gagatagata taatgtaagt gaccaagtet ettggacaag tattgtetet gatcaateee
                                                                     180
tgccaaactc ctttccttgg ttaactcaag tggttagatc ttactccctg aacagaagga
                                                                     240
atatgagagg tcaatacatg cctagactat tcagtcctct gatattgctc cacacccttt
                                                                     300
eccteaaaag ceatgagace ttteaatggt eccagtteet etaceagaac accagagatg
                                                                     360
cctgctttac atggacttat atattcccaa gaatcacttg gataaatgag tggtgctgct
                                                                     420
ttcccgtggt tggggaaaag ctaggaacct gacaatgcag tgctcagaac ctgctgaccg
                                                                     480
gtactagtta tgctggcttg ccatagtagt gcagttcttt aaaaaggtga tacttgctct
                                                                     540
cttatcaaag ggtgggtttt ttggtttttt gacaagacag ggtctcacta tgtcacccat
                                                                     600
```

actggagtac agtggtgtga tettggetta etgcaace

638

<210> 379 <211> 3043 <212> DNA <213> Homo sapiens

<400> 379 tggcggtatt cgtaggatgt gcatcctagg gaagataaaa tcgtatatgg taaaggcatt 60 tgagttaatt ttgcattata tctaggaacc atattattta aaatttgaat cctattaatg 120 ctgagagatc ctaagagcta gtatgttgta aaacctgcca cctgaataaa atgaaaaaaa 180 aagtgttttt ttgagacaga gtcttgctct gttgcccagg ctggagtgca gtggtgtgat 240 cttgggtcac tgcaaactcc gcctcccagg ttcacgccat tctcctgcct cagcctcccg 300 agtagctggg accacagggg cccaccactg cgcccggcta attttttgta tttttagtag 360 agacggggtt tcaccgtgtt agccaggatg ttctcgatct cctgacctca tgatccgccc 420 gcctcggccc cccaaagtac tgggattaca ggcgtgagcc accgcgcccg gcccatttac 480 taaatgttaa gttccttata attccatctc tttcagcacc caatacaggg gtttacatag 540 aggaagtact caatatttcc tttctttttt tcttttttt ctgagacgga gtctcgctct 600 gtcgcccagg ctggagtgca gtggcgcgat ctcggctcac tgcaagctcc gcctcccggg 660 etcacgccat tetcetgcct cagceteccg agtagetggg actacaggtg cecgccacet 720 cgcccggcta atttttttg tatttttagt agagacgggg tttcaccgtg ttagccagga 780 tggtetegat eteetgacet egtgateege eegeeteage eteecaaagt getgggacta 840 caggcgtgag ccactggaga tttttttatt ttttttttg agacggagtc tcgctctgtc 900 gcccaggctg gagtgcagtg gcgggatete ggctcactgc aagctccgcc tcccgggttc 960 acgccattct cctgcctcag cctcccaagt agctgggact acaggcgccc gccactacgc 1020 ccggctaatt ttttgtattt ttagtagaga cggggtttca ccgtgttagc caggatggtc 1080 tegateteet gaeetegtga teegeeegee teggeeteee aaagtgetgg gattacagge 1140 gtgagccacc gcgcccggcc aaaaagaaga aatattaagt tgtccataat ctgttatatc 1200 taactattat aaagtataaa taaacaaaa taagttttac attacttgtt tctgtcacat 1260 tgttcaaaat tcttttgggc ttaaagccaa ctatgaattt tagttgagta ggaggacaat 1320 gggaaacaga ttctttttt gttgttattg aaatgtaagc aacttgccct taaaatagta 1380 tgaatatcca gttcaggtaa caactttcac ttttaattag tcaaatatat attaaatata 1440 aaaatctaat gctgtacaga tgtgactttg gacattttaa gtattagttt attcagaaac 1500 gcctttaaaa atcagtgtgt atagaactag ctcatttctt aactgtcaaa tttagaagtg 1560 caacagtggg tcttcagaga gaatatgccc aagaaaaact ggataaaaag actgggtaaa 1620 tacatcaaat gaaacagtga ttcacttttg acaagactga aatataagta tataatcact 1680 gatgcatatt tattcagtag gcccatgtga ttatgtggtt tttaactaac agcatttatt 1740 tttgcaaact gcttggcatt cctccaaggg aaaggagctt ctagactaca aacactgagc 1800 acatacattt taaattaaca catgaattgc atatggattg ttgatatgct tttagagtct 1860 tgtctctaca gaagaaaaac acgttcctgg ggtccatgcc tttttcagag gcacaatcta 1920 tagcttggaa cttaattgct gtccatggta tctggccttt aattataaga aattgttgac 1980 accccaatac agggtgcatc taaatacata atgcaagaaa ggaggtttta gtggttaaac 2040 ttcggcacgc ttaaagattt taggaatgta attatgccat taggcagtat ttctttgtct 2100 atggacttaa aaagttttct tggggcattt taaagaggtt tatcaaagtt atattgttga 2160 aaaactattt teeetggaaa taatgteeee teetteeeae ettetgeett gatattetta 2220 ctggaaaaaa agtgaaattg ttcagaatta caaccatata gggtttccag gcatagcatg 2280 ggcacattgg gaatggaaga ctagaagacc ccagcaagga atgtaggtac attaattgct 2340 gcctaccctg agaaataact ctgagtttct tctcccaagt attcctcaag gatccattca 2400 ttgtagagtc aacagatgtc ttttagaatt cattataata agaagtccat gaacatacac 2460 acactatect tgaatagttt tacattatat tttttctagg tagttcctga atactttaat 2520 gagcttaata aatgagaaaa tgtattgaaa ggtctttgta agttactata taaatatgac 2580 atgtgtttta ataatatetg aatttggetg ggaacaatgg etcaegeetg taateecage 2640 actitgggag gccaaggcgg gtggatcacg aggtcaggag atcgagacca tcctggctaa 2700 cacggtgaaa ccccgtctct actaaaaata caaaaaatta gccaggtgtg gtggcgggcg 2760 cctgtagtcc cacctacttg ggaggctgag gcaggagaat ggcgtgaacc tgggaggcgg 2820 agettgeggt gagecaagat egtgeecaet geacteeage etggeagaea gagegagaet 2880

```
ccgtctcata aaaaaaaaaa gaaaaaaaaa aagggggccc gttcaagtaa aaaggcccct
                                                                    2940
ttaaacccgg ttaatcaccc tcgagggggc ctttttagtg gccacccttt ggtggtgggc
                                                                    3000
ccttccccgg gcctttttt gacctggaag ggcccctctc ccg
                                                                    3043
    <210> 380
    <211> 497
    <212> DNA
    <213> Homo sapiens
    <220>
    <221> misc feature
    <222> (1)...(497)
    \langle 223 \rangle n = a,t,c or g
    <400> 380
agggaggggg ccggnnnatt gagacetega tacetacgga agngegggga anteqeecee
aactetgget gtgtttetge aggatgagaa ggegegeatt gaageattgg gtggetttgt
                                                                     120
gtctcacatg gactgctgga gagtcaacgg gaccctggcc gtctccagag ccatcggtga
                                                                     180
gagccaaaga ggccgaccca agtgggagaa ggtctctcgg aagcccaggc ctcgagtgtg
                                                                     240
gcccgcggct caccaggggt tcagggaggc agtgtgatgg gccgaggggg atttgtcatg
                                                                     300
cactggggtg ataccctcgt agtgtgaagg gaacagggca gattcagaga ctgcagcacc
                                                                     360
agtgtctgag tgtaagatac actgtatgtt attatctcac ctaaaacagc tcctacaaat
                                                                     420
ctcatagaaa cctgtggctc accaccctat gggctggaaq taqaqctttc aatattccqq
                                                                     480
agatgaggtt tatcctg
                                                                     497
    <210> 381
    <211> 777
    <212> DNA
    <213> Homo sapiens
    <400> 381
atttttttt taacaaaatg ctttatttct atttttaaat gagaggcatt cccatgaaat
atcaaaaggc atttacatgt gttgttttaa ctcttctttt ttgatcacac aaagtaggta
                                                                     120
gaaaagatet getgaaatag ageaaateag aaaceaagta gtgtaaggea ttaggagata
                                                                     180
catgaagaga atcgctattt gcttcttgta cagcgtgtgg caagtcatgg ttagtagtca
                                                                     240
tcgtagttga cgctggctcc atgcctaaag ccgtaggggc tccggggacc aattgcagag
                                                                     300
tetteateat agtgacgttg gtagtaateg ceatagtatt catgteeatt tegatetetg
                                                                     360
ttaagccaat aggtgatgtc atcttcaaat, ttcgcttcgt caaagcccat gtagagaaac
                                                                     420
tgctggtacc actgctgcac ctcgggccga gtccggtccc acagctgccg cttctqqcqc
                                                                     480
ttcaggctgc caaggaattc tttggcttta ttctcatcaa cggccacttt agtcttagtt
                                                                     540
ggaacaggtg cttctcgttt ttgaagcatc agcttgagtt tatttccact tatgccacct
                                                                     600
gggececage acaggageag gageagegee ageceggtea gggecaggae ageaggeege
                                                                     660
geggggagg cagecatgge ggeggggege gageaggagg gegaggggeg caettegagg
                                                                     720
tgctgcgagg gagaaccggg cgcgggagag gggtgcgagc gtggcaggcg cggccgc
                                                                     777
    <210> 382
    <211> 659
    <212> DNA
    <213> Homo sapiens
```

```
<400> 382
gcaaaccacc taatacaagg cacatagtag gagcttatta tggtgatggg gtggcattgg
                                                                     60
ccacagggcc ttgggctcag cctgtccctc tgtccctctg atctggatgg gtgggtatcc
                                                                    120
agggaagtac ccctacttga taggcctcaa gccctccctc cttgtgtcca gatcctttca
                                                                    180
gcacctgcct ccacgtcctg cccctctgcc ctctctccct ggcatgatcc tggccttcca
                                                                    240
gtcacatccc aaaatcactt tgcctggttt cctttgggaa gcaaagcctg tctggggccc
                                                                    300
tccatagaca gagaagctgt gaaggagata aatgctgaag aaggggtgag gagacagact
                                                                    360
caggggccaa tcaaagtcag gaaacaggct gggtgtggtg gctcatgcct gtaatcccag
                                                                    420
cactttggga ggctgagccg cggatgacct gagttcagga gttcgagaac aagcctgccc
                                                                    480
gcatggggaa aactcatctc cactctaaat acacaaattt accccgcccg tggggcatgc
                                                                    540
ccgtgtaccc cctactccga aggctgggac aggagaatca cttggaccca gtgagccgag
                                                                    600
atcgcttcaa tggagtccag ccctgggtga cagagcgaga ctccatctca aaaaaaaaa
                                                                    659
     <210> 383
     <211> 392
     <212> DNA
     <213> Homo sapiens
     <400> 383
aattgattta gtttatttgc aagatgcata gttctatatt taaaaattag taatatgttt
                                                                    60
tttggttaat ctcgccctca gactttaaga ttgcttatat atgattatcc agatttgtac
                                                                    120
catctctaga attgaattta tttgtttgtg tgtttgtgtt tttttcaggg tgatttggtt
                                                                    180
acctgtggaa ttttatctgg aaacaaaaat tttgaaggtc gtctttgtga ttgtgttcgt
                                                                    240
gccaattatc ttgcctctcc acccttagtg gtagcttatg ccatagcagg cacagtgaat
                                                                    300
atagatttcc agacagaacc tttaggtatc ttttccttta tgtatatgta tacctacaca
                                                                    360
tacttttccc aatggaagtc gttatatttt tg
                                                                    392
     <210> 384
     <211> 853
     <212> DNA
     <213> Homo sapiens
     <400> 384
cccacgcgtc cggtgatggt tcagagccgg gctgggagca aggttcactg ctcagccagc
                                                                    60
ettgtetage teetgetetg aetgagtgta aatettetea tgtgtggaaa atgggtataa
                                                                   120
tcatgcttct cagagaggtg gtatgaggat taatcaccgt catggatgta acatacttag
                                                                   180
attgagccca gcccaggagg agaagtgagc tgatggaagc atggaaggcc ctgataggtt
                                                                   240
300
ctgcccacca ggaatttcat tccaccatag ctcttagagg ccgaggtggg aaacctcaag
                                                                   360
aagagagcag tccatgaggg gttttggagt agggactcgg aagagggaca aggatggaaa
                                                                   420
aaaggettag ggaagaacta tggaatteet agtgateeag agagggeetg gaagaagage
                                                                   480
accagccagc tgggaagaca agtacttagc cttgaaacag agcaactgtg taccagggcc
                                                                   540
caggcagggt aaattccaag gagtatcaaa tctttcaaaa agagccaggc atggtagctc
                                                                   600
acacctgtaa tcccaatact tttgaaggct gaggcaagag gattgtttga tcccaagagt
                                                                   660
ttgagaccag gcctgggcaa tataatggga ccctattgct acaaagaaaa aaaaaggcgg
                                                                   720
ggcgttttta gaaccccaat ttgcgcccgc ggcagccaat gtacctcttt ttatgggcca
                                                                   780
caaaaccatc tcccgggccg ggtttaaaac gcgcgattgg gaaaccccct gctgccccat
                                                                   840
tatactctct tcc
                                                                   853
```

<210> 385 <211> 965

<212> DNA <213> Homo sapiens <400> 385 actgacttgt ggccttcact gtggagcagt tagtatcttt atgtctttgc tggaactqtt 60 aattttttcc agagaaaact ctagtctcct gactgaaggg tatgggtgta aaaccatctt 120 catctaaaat gaagtaagca ttttagagct aaattagaga agggataatt ccccattttt 180 cattccatgc ctcactctgt ccttctttat gcccaatgtc cctgaatcca gaatttctct 240 ggcttaagtg gtttagtctc ttgttgaggg ggagaaggaa tagttgcctg attgcattga 300 agggatatea tteagtaatg atttteeate tgeeceteat ecetteetet qttaceteet 360 gtcactgagt ctttagagtt ccacagagaa aatctgcttg tatctagtct ctgaaaactt 420 tcaggtttgg ccttctttct ctctgttaaa ccttgctgcc atctgctttc tgtttttgca 480 tattatgatg tctccccatt ccagtgaaca tggagttttt gtatctgttt cttgttggat 540 tggagtggtt ttaagatata gagggagaag acatgtcttt atgctgctgt cttcaaatct 600 agcagtaget ettaatgage acatattetg ggtgaeteeg agagaacaae ttegttegaa 660 caatttttgt catggggcgg ttctcagcca ctgaaacccc actagaaagg aattaatata 720 tatacttgag cagacattgg cctaaggttt gcccttcttg gggtaatagg caatattaca 780 ggtccgttcc cggggacggg gagcgccctc cgggacccac aagaccccct gaattctggc 840 cgcgttggcg gggcggtaaa cgagactccc tcgtcccctc cctcagattg gggacacgcc 900 ctttcccagg tctgcgccc ctcgggtgtg agggggggg gcgcccccc cccccccgc 960 ccccg 965 <210> 386 <211> 422 <212> DNA <213> Homo sapiens <400> 386 cgtgcggtgg aattccctgg gttggcatgt acattctatg gaggacagac acacagacat gccaatcccc acaggaagga caggaacacc acgcagagag tgtgaatgcc ttgcttcatq 120 cctaacccag gggctgtcct gggtctaccc ccctggttgc tttccaccca gagactcacc 180 cacaccaggg cgtacttgaa ctggctggcg agtgaccggt ggatgcggcg gcactggagg 240 acaggagaga gtcaggtaga gaggtcttcc aggccctggt gggagaccca acacctcagc 300 ccagcgtccc tggggcggag gccggcgcca ggcctgcagg aacacttcct tgacacagat 360 gggaaggtgg ctgactctgg tctgcagatg ggttttggtt tactcagctt gcccaqcatt 420 gc 422 <210> 387 <211> 435 <212> DNA <213> Homo sapiens <400> 387 tgcggaattc ggcacgagaa agtattgagt taatgtgttc agatgaattt gggcctttqq agcaaaaaca attatccatt ctcaaactga tgaaattagt gccatgcttt gtaatttggc 120 cctcaaacta cttaactgtg tatctgcctg gaatatgaat ataagactga aatgtctgtt 180 aaaacccaaa aatgtctcca aagtctgttc ccggggcctt tatttcatat atgttatgga 240 ctctctttaa ttcagccata gatggcaagc catttgttag aaattatggc caggtgcagc 300

360

420

435

tgctcacgcc tatagtccca gcactttggg aggctgtggc gggcagatca cctgaggtcg

ggagtttgag accagcctgg ccaacatgat gagaccttgt ctctacaaaa aaaaaaataa

aaaaattagc tgggg

```
<210> 388
     <211> 473
     <212> DNA
     <213> Homo sapiens
     <220>
     <221> misc feature
     <222> (1)...(473)
     <223> n = a,t,c or g
     <400> 388
teccagggea gagacactaa ateaactgaa ggegatgeea ggggteatge caagtgeetg
aactctggct tctccatcat ctgtgaggcc ccaacaccat gccctgcgta atataaggtc
                                                                     120
gtggccagcg cctcctcctc ctcccagccc tgaggaacca tccttgtcct caaggtggaa
                                                                     180
gageteggee eteagteece tgeageetgg gatgageece acceteaggg etggtgeaca
                                                                     240
accagagget etteccaagg aagcetggtg ccagaaaacc cacacatga ggcacaggec
                                                                     300
aaacacagag cctgggaaca cccaggagag catgtccccc agggtcccaq ccccaaccqa
                                                                     360
agatgggaga gcccaaaacc tcccgccacc cagtcctcct tnngccccac gaaatcgtcg
                                                                     420
ncccggggnt tccggngang gngtccaatc gaacggcttc aatggagcca cac
                                                                     473
     <210> 389
     <211> 376
     <212> DNA
     <213> Homo sapiens
     <400> 389
agggetetga etgecagega etgetetggg ggtgtetgeg ateaaggaeg ateetgggta
                                                                      60
tgggggaggg ccaggcacca tgaagccagt gtgggtcgcc accettctgt ggatgctact
                                                                     120
getggtgece aggetggggg eegeeeggaa ggggteecea gaagaggeet eettetaeta
                                                                     180
tggaacette cetettggag gacateatte tgetgaggga actgeacgte aaceaetace
                                                                     240
gattetecet gtettggece eggeteetge ceacaggeat cegageegag caggtgaaca
                                                                     300
agaagggaat cgaattctac agtgatctta tcgatgccct tctgagcagc aacatcactc
                                                                     360
ccatcgtgac cttgca
                                                                     376
     <210> 390
     <211> 906
     <212> DNA
     <213> Homo sapiens
     <400> 390
tacctttgct tcttaacacg ggacttgggc actcctgaat gccagacctc cttgccctgc
                                                                     60
ctcaaagcat ccatctcagc gtcgattctt accactcaga atggagagca caatgccctt
                                                                     120
gaagatetgg tgatgaggtt taatgaggtg ageteetggg tgacatgget gateeteacg
                                                                     180
gcaggctcca tggaggagaa gcgagaagtc ttttcatatt tggtgcatgt ggccaaatgc
                                                                     240
tgctggaaca tgggcaacta caacgctgtc atggagttct tggctggcct caggtcaaga
                                                                     300
aaagttttaa aaatgtggca gttcatggac cagtctgata ttgagaccat gaggagcctg
                                                                     360
aaggatgcta tggcccagca tgagtcctct tgtgagtaca gaaaggtggt gacacgtgcc
                                                                     420
ctgcacatcc ctggctgtaa ggtggttcca ttctgtgggg tgtttctgaa qqaqctctqt
                                                                     480
gaagtgcttg acggcgcctc cggtctcatg aagctttgcc cgcggtacaa ttcccaagaa
                                                                     540
gaaactttag agtttgtagc agattacagt ggacaagata atttcttaca acgagtggga
                                                                     600
```

```
caaaatggct taaagaattc gcgagaagga gtccactgtc aacagcatct ttcaggtcat
                                                                      660
cccgagctgc aatcgaagtc tggagacaga cgaggaggac cgccccatt gatggaaaca
                                                                      720
gttttcagga aaagcctcct tgaaggataa aagccggagg gcagcttata tattgcaatt
                                                                      780
tgttcggatt cccccccgca ctcctttgga cactccagag aatcctcact tttctggttt
                                                                      840
gcaatgacct cacaaagggc ccttcccccc tgggcccggg tcgctcatcc cctgaaccct
                                                                      900
cgcttc
                                                                      906
     <210> 391
     <211> 680
     <212> DNA
     <213> Homo sapiens
     <220>
     <221> misc feature
     <222> (1)...(680)
     \langle 223 \rangle n = a,t,c or q
     <400> 391
ggcacgaggg ctacagcacg gttcgttttt cctttagtca ggaaggacgt tggtgttgag
gttagcatac gtatcaagga cagtaactac catggctccc gaagttttgc caaaacctcg
                                                                      120
gatgcgtggc cttctggcca ggcgtctgcg aaatcatatg gctgtagcat tcgtgctatc
                                                                      180
cctgggggtt gcagctttgt ataagtttcg tgtggctgat caaagaaaga aggcatacgc
                                                                      240
agatttctac agaaactacg atgtcatgaa agattttgag gagatgagga aggctggtat
                                                                      300
ctttcagagt gtaaagtaat cttggaatat aaagaatttc ttcaggttga attacctaga
                                                                      360
agtttgtcac tgacttgtgt tcctgaacta tgacacatga atatgtgggc taagaaatag
                                                                      420
ttcctcttga taaataaaca attaacaaat acttttggac agtaagtctt tctcagttcc
                                                                      480
taatgataat gcagggcact tactagcata agaattggtt tgggatttaa ctgtttatga
                                                                      540
agttacttga nttccgtgtt ttgttaaatt tcaatggtcc tagacatcct taactgtgan
                                                                      600
agttgtccgt tcantgcagt acttggcctg ggnatggatt aaagtgtccc atggccngta
                                                                      660
agacactgtn cgggggccca
                                                                      680
     <210> 392
     <211> 1983
     <212> DNA
     <213> Homo sapiens
     <400> 392
ggcacgaggg catggcggag aaggatgaca ccggagtttg acgaagaggt ggtttttgag
                                                                       60
aatteteeac tttaceaata ettacaggat etgggacaca cagaetttga aatatgttet
                                                                      120
tetttgteae caaaaacaga aaaatgeaca acagagggac aacaaaagce teetacaaga
                                                                      180
gtcctaccaa aacaaggtat cctgttaaaa gtggctgaaa ccatcaaaag ttggattttt
                                                                      240
ttttctcagt gcaataagaa agatgactta cttcacaagt tggatattgg attccgactc
                                                                      300
gactcattac ataccatcct gcaacaggaa gtcctgttac aagaggatgt ggagctgatt
                                                                      360
gagctacttg atcccagtat cctgtctgca gggcaatctc aacaacagga aaatggacac
                                                                      420
cttccaacac tttgctccct ggcaacccct aatatttggg atctctcaat gctatttgcc
                                                                      480
ttcattagct tgctcgttat gcttcccact tggtggattg tgtcttcctg gctggtatgg
                                                                      540
ggagtgattc tatttgtgta tctggtcata agagctttga gattatggag gacagccaaa
                                                                      600
ctacaagtga ccctaaaaaa atacagcgtt catttggaag atatggccac aaacagccga
                                                                      660
gettttacta acetegtgag aaaagettta eqteteatte aagaaacega agtgatttee
                                                                      720
agaggattta cacttttgct tgacagggtc agtgctgctt gcccatttaa taaagctqqa
                                                                      780
cagcatccaa gtcagcatct catcggactt cggaaagctg tctaccgaac tctaagagcc
                                                                      840
agettecaag cageaagget agetaeeeta tatatgetga aaaaetaeee eetgaaetet
                                                                      900
gagagtgaca atgtgaccaa ctacatctgt gtggtgcctt ttaaagagct gggccttgga
                                                                      960
```

```
cttagtgaag agcagatttc agaagaggaa gcacataaac tttacagatg gcttcagcct
                                                                    1020
geetgeattg aaggttttgt tecaactetg ggtggeacag agtteagagt tetteagaeg
                                                                    1080
gttagcccta ttactttcta cagccaattc acctcctggg cccttactta ctccagcact
                                                                    1140
tetgeeteat egtatettat etgatgtgae teaaggteta eeteatgete attetgeetg
                                                                    1200
tttggaagag cttaagcgca gctatgagtt ctatcggtac tttgaaactc agcaccagtc
                                                                    1260
agtaccgcag tgtttatcca aaactcaaca gaagtcaaga gaactgaata atgttcacac
                                                                    1320
agcagtgcgt agcttgcagc tccatctgaa agcattactg aatgaggtaa taattcttga
                                                                    1380
agatgaactt gaaaagcttg tttgtactaa agaaacacaa gaactagtgt cagaggctta
                                                                    1440
tcccatccta gaacagaaat taaagttgat tcagccccac gttcaagcaa gcaacaattg
                                                                    1500
ctgggaagag gccatttctc aggtcgacaa actgctacga agaaatacag ataaaaaagg
                                                                    1560
caagcctgaa atagcatgtg aaaacccaca ttgtacagta gtacctttga agcagcctac
                                                                    1620
tctacacatt gcagacaaag atccaatccc agaggagcag gaattagaag cttatgtaga
                                                                    1680
tgatatagat attgatagtg atttcagaaa ggatgatttt tattacttgt ctcaagaaga
                                                                    1740
caaagagaga cagaagcgtg agcatgaaga atccaagagg gtgctccaag aattaaaatc
                                                                    1800
tgtgctggga tttaaagctt cagaggcaga aaggcagaag tggaagcaac ttctatttag
                                                                    1860
tgatcatggt aagcactgac tttaaagtaa caggttattt caatgtaggg gattctttct
                                                                    1920
ttcttgaacc atgaatgtta ttttagctga agaattcttg gggttttata agggtccacc
                                                                    1980
                                                                    1983
     <210> 393
     <211> 859
     <212> DNA
     <213> Homo sapiens
     <400> 393
ggecettege cettgggeca aatettttt tggtttttt teeetttgge eececettt
                                                                      60
tccaacctaa agccctaaag ggtgggttca aatcaacctt tttctttaaa cccttcgggg
                                                                     120
gtttttttt gccccaagtg gaaaaaattt ttttttgaa ttgttaaaaa caaaaaactt
                                                                     180
gatttttgcc cttttttttt ttggcatttc acttgtggct tgctttatgt tcttaatttc
                                                                     240
tcctaagaga ttgtaaactc atgagagatc tggcctagtg ttcttaactt ttaatcccca
                                                                     300
aagtgetttg tacacagtat ggeteaatac atgeatttat atggeacagg aaaaatgtac
                                                                     360
ttaagatgtt gggtggcttt taccaacata gcatgtcatt actgactcat cgatgctcac
                                                                     420
tggaaaaget tgeteecaga gecatgteec caggaetete tactaggtag ceaccaaact
                                                                     480
gccaaagacc ctatcctatg caagtcacat aaattgtctg tttgtagaaa ttctttcttt
                                                                     540
ttttctttt ttgagatcga gtctcactct gttgcccagg ctggagtgca gtggtgtgaa
                                                                     600
cttggctcac tgcactacct ccgcctcctg ggtttaggca attttcctgc ctcagcctcc
                                                                     660
caagtagctg ggattacagg tgcgtgccac catgcctggc taatttttgt atttgtagta
                                                                     720
gagacggggt ttcaccatgc tggccaggct ggtcttgaac tcctgacctc gtgatccgtc
                                                                     780
etecteggee teccaaagtg etgggattac aggggtgage caccatggee gggegggage
                                                                     840
catgtctgac acagactcc
                                                                     859
    <210> 394
    <211> 1407
     <212> DNA
     <213> Homo sapiens
     <400> 394
accaaataac caaggaaaag gaagtgagtt aaggacgtac tcgtcttggt gagagcgtga
                                                                      60
gctgctgaga tttgggagtc tgcgctaggc ccgcttggag ttctgagccg atggaagagt
                                                                     120
teacteatgt ttgcaccege ggtqatgeqt gctttteqca aqaacaaqae teteggetat
                                                                     180
ggagtcccca tgttgttgct gattgttgga ggttcttttg gtcttcqtqa qttttctcaa
                                                                     240
atccgatatg atgctgtgaa gagtaaaatg gatcctgagc ttgaaaaaaa actgaaagag
                                                                     300
aataaaatat ctttagagtc ggaatatgag aaaatcaaag actccaagtt tgatgactgg
                                                                     360
```

```
aagaatattc gaggacccag gccttgggaa gatcctgacc tcctccaagg aagaaatcca
                                                                  420
gaaageetta agaetaagae aaettgaete tgetgattet ttttteettt tttttttt
                                                                  480
540
ttccaggccc atggaaactt ggatatgggt aatttgatga caaaaaatct tcactaaagg
                                                                  600
tcatgtacag gtttttatac ttcccagcta ttccatctgt ggatgaaagt aacaatgttg
                                                                  660
gccacgtata ttttacacct cgaaataaaa aatgtgaata ctgctccaaa aacagagtca
                                                                  720
cgtattccac tctccaacta cccacatatt ccttttgcaa tagccattag ggcatcattt
                                                                  780
tgatatttca ttctgatttc tgattctctg atttctgatt cctaatgagg acagtaggtc
                                                                  840
tggatccaaa ttctcacagt aaaatcaagc agtaattttc tctcatatct attagggaaa
                                                                  900
gaaaaatgat cacagtctgc taagagtctt gattttcttt gtaatgcctc acatagtatg
                                                                  960
ataatcagtc tccaaagcat cacatgataa ttacaatgat accattaaca tgtcaaggaa
                                                                 1020
attatattat ttatggttgt caaaaattat gaagtagtgt atgattataa gcagatatgg
                                                                 1080
caaatttgtt cagtaaatcc atagatgact acattttgag aaatactaag ataatactaa
                                                                 1140
1200
gagacatagt etegetetgt tegeceagge tggagtgeag gggeaegate tetgeteact
                                                                 1260
gcaagetetg etteeegggt teacaceatt eteetgeete ageateetga gtagetggga
                                                                 1320
ctacaggcac atgctgtcac acccggctaa ttttttgtat ttagtagaga tggggtttca
                                                                 1380
ccacgttage caggatggtc tecateg
                                                                 1407
     <210> 395
     <211> 319
     <212> DNA
     <213> Homo sapiens
     <220>
     <221> misc_feature
     <222> (1) ... (319)
     <223> n = a,t,c or g
     <400> 395
caagaagcca ggtattctga aggtgaaaga taccagagat tctcaaagat gcgagttttc
                                                                   60
tgtgtgggac tactcctttt cagtgtgacc tgggcagcac caacatttca accacagact
                                                                  120
gagaaaacta agcaaagctg tgtggaagag cagaggcagg aagaaaaaaa caaagacaat
                                                                  180
attggttttc accatttggg caagagaata aatcaagagc tatcatctaa agaaaatatt
                                                                  240
gtccaggaaa gaaagaaaga tttgtccctt tctgaagcca gtgagaataa gggaagtagt
                                                                  300
aaatctcaaa attatttcn
                                                                  319
     <210> 396
     <211> 2704
     <212> DNA
     <213> Homo sapiens
     <400> 396
gaatattete taattettgg tgtateaaga tggaaaetgg taggettgga atagatgtee
                                                                   60
ctttaaaagg ctccactaac aatacaagaa tatttttcc atacgcagtg acgtgggtgg
                                                                  120
gtcatgggtg tctcaatgac agtaacgttc ccgaaccccg gaccttagct gtcatttcac
                                                                  180
etgegtegte eeggaegeea tttggetgtt gaegtggtte egageeagea aataaegeea
                                                                  240
gcagccctcc cagatccacg ccggcccgtc tctccgccgg ccccctcctc gcagtggttt
                                                                  300
ctcctgcagc tcccctgggc tccgcggcca gtagtgcagc ccgtggagcc gcggctttgc
                                                                  360
ccgtctcctc tgggtggccc cagtgcgcgg gctgacactc attcagccgg ggaaggtgag
                                                                  420
gcgagtagag gctggtgcgg aacttgccgc ccccagcagc gccggcgggc taagcccagg
                                                                  480
gccgggcaga caaaagaggc cgcccgcgta ggaaggcacg gccggcggcg gcggagcgca
                                                                  540
gcgatggccg ggcgaggggg cagcgcgctg ctggctctgt gcggggcact ggctgcctgc
                                                                  600
```

```
gggtggctcc tgggcgccga agcccaggag cccgggggcgc ccgcggcggg catgaggcgg
                                                                      660
egeeggegge tgcagcaaga ggaeggeate teettegagt accaeegeta eeeegagetg
                                                                      720
cgcgaggcgc tcgtgtccgt gtggctgcag tgcaccgcca tcagcaggat ttacacggtg
                                                                      780
gggcgcagct tcgagggccg ggagctcctg gtcatcgagc tgtccgacaa ccctggcgtc
                                                                      840
catgagcctg gtgagcctga atttaaatac attgggaata tgcatgggaa tgaggctgtt
                                                                      900
ggacgagaac tgctcatttt cttggcccag tacctatgca acgaatacca gaaggggaac
                                                                      960
gagacaattg tcaacctgat ccacagtacc cgcattcaca tcatgccttc cctgaaccca
                                                                     1020
gatggetttg agaaggeage gteteageet ggtgaactea aggaetggtt tgtqggteqa
                                                                     1080
agcaatgccc agggaataga tctgaaccgg aactttccag acctggatag gatagtgtac
                                                                     1140
gtgaatgaga aagaaggtgg tccaaataat catctgttga aaaatatgaa gaaaattgtg
                                                                     1200
gatcaaaaca caaagcttgc tcctgagacc aaggctgtca ttcattggat tatggatatt
                                                                     1260
ccttttgtgc tttctgccaa tctccatgga ggagaccttg tggccaatta tccatatgat
                                                                     1320
, gagacgcgga gtggtagtgc tcacgaatac agctcctccc cagatgacgc cattttccaa
                                                                     1380
agettggece gggeatacte ttettteaac eeggeeatgt etgaceecaa teggeeacea
                                                                     1440
tgtcgcaaga atgatgatga cagcagcttt gtagatggaa ccaccaacgg tggtgcttgg
                                                                     1500
tacagcgtac ctggagggat gcaagacttc aattacctta gcagcaactg ttttgagatc
                                                                     1560
accgtggagc ttagctgtga gaagttccca cctgaagaga ctctgaagac ctactgggag
                                                                     1620
gataacaaaa actccctcat tagctacctt gagcagatac accgaggagt taaaggattt
                                                                     1680
gtccgagacc ttcaaggtaa cccaattgcg aatgccacca tctccgtgga aggaatagac
                                                                     1740
cacgatgtta catccgcaaa ggatggtgat tactggagat tgcttatacc tggaaactat
                                                                     1800
aaacttacag cctcagctcc aggctatctg gcaataacaa agaaagtggc agttccttac
                                                                     1860
agccctgctg ctggggttga ttttgaactg gagtcatttt ctgaaaggaa agaagaggag
                                                                     1920
aaggaagaat tgatggaatg gtggaaaatg atgtcagaaa ctttaaattt ttaaaaaggc
                                                                     1980
ttctagttag ctgctttaaa tctatctata taatgtagta tgatgtaatg tggtcttttt
                                                                     2040
tttagatttt gtgcagttaa tacttaacat tgatttattt tttaatcatt taaatattaa
                                                                     2100
tcaactttcc ttaaaataaa tagcctctta ggtaaaaata taagaacttg atatatttca
                                                                     2160
ttetettata tagtatteat ttteetaeet atattaeaea aaaaagtata gaaaagattt
                                                                     2220
aagtaatttt gecateetag gettaaatge aatatteetg gtattattta eaatgeagaa
                                                                     2280
ttttttgagt aattctagct ttcaaaaatt agtgaagttc ttttactgta attggtgaca
                                                                     2340
atgtcacata atgaatgcta ttgaaaaggt taacagatac agctcggagt tgtgagcact
                                                                     2400
ctactgcaag acttaaatag ttcagtataa attgtcgttt ttttcttgtg ctgactaact
                                                                     2460
ataagcatga tottgttaat gcatttttga tgggaagaaa aggtacatgt ttacaaagag
                                                                     2520
gttttatgaa aagaataaaa attgacttct tgcttgtaca tataggagca atactattat
                                                                     2580
attatgtagt ccgttaacac tacttaaaag tttagggttt tctcttqqtt qtaqaqtqqc
                                                                     2640
ccagaattgc attctgaatg aataaaggtt aaaaaaaaat ccccagtgca tgttaaaaaa
                                                                     2700
aaaa
                                                                     2704
```

```
<210> 397
<211> 1743
<212> DNA
<213> Homo sapiens
<220>
<221> misc_feature
<222> (1)...(1743)
<223> n = a,t,c or g
```

<400>, 397

```
tttttttttt ttggagttca ttagaccttt tttattattc taccttttct gcatatgttt
                                                                      60
gcagttttcc caccgactcc tccataaaca aacattttcc tagaaaccca aaatatgtag
                                                                     120
tggccccaaa ggagctcctt aagccaaagt acttggtaca aagagaccca tattcctata
                                                                     180
aacatgttaa gtttgttcct aagcattcca gacttttaga ataagaactt catttccaac
                                                                     240
ttttttattt attaacatgg ggctaaactt ttaagaaaca accctaggtc ttctatttcc
                                                                     300
caggagctgg ttcaaagtct taaatgacaa tataacttca ttatgaaaat atactgaaaa
                                                                     360
ggtacaaggg gctgatgtaa aaacggttaa tcaagggttc ccaggcatcc atgggqactt
                                                                     420
aagggtaacc tgaaagaata acccccagcc caggctgcaa ccagccaggc caggatgtgc
                                                                     480
```

```
tggcttnacg tngatgaggt gctaaggccc atcgaatgcc tcagaggaaa gccggattca
                                                                    540
cgggggatca teteaaceet gaggaaateg gtteettggg gggtgattte ttgeeetttt
                                                                    600
ttttgttttt gtaaggaaga gggttccctt cattccagta actttagttt tcccttaata
                                                                    660
720
taagggtaaa tcacaggata atgtattggg ataactctgt ttttttaaaa taaaaaagcc
                                                                    780
ttacatggtc agggattgat ggagtgggga tgacaaatgc acatttcaga ctttcatcac
                                                                    840
caatgaaaaa ataaagcatt ttcatagact taaaactgtc attagtgcat tcggcttttg
                                                                    900
gagaagggat gaaaatgtaa aatacttcta caacaataaa atgttaatag aaatcgtcat
                                                                    960
gtgctgaggt cattttaggt gagctaccat tgtttgttta aatacaagaa aaagtaattt
                                                                   1020
ccttggtccc aatttaagtg gaaatccttt aaaaaagatt gcctttaaaa gaaccattat
                                                                   1080
ttgagggaca atgtttttc cagacacatt cctggatgat attccaaatt cacttccata
                                                                   1140
acaatccaca gattaaccct tttaattcca cctttcctta aaaagctgtc agatttccca
                                                                   1200
tttccttcgg gagacatttt tcacccagtg tgttgttcga ttcccacagg ttaagctttc
                                                                   1260
ttcattatta ttaaggaact tcataccata ttagagagat tgccattcat tgctttcctc
                                                                   1320
gtctttttcg gaaaagacac aggccagact ttgcttaggc taaagctgac gtctttaaag
                                                                   1380
gcatgcaaca agaatatccc cccacaatga ttgtaaagaa gccacttcaa agtaccaatg
                                                                   1440
gacategtea acaggeatat ettgecaete ettaaaaaga atagetgaac aagttaaaac
                                                                   1500
tgatgttgta aagaatacat aatatattgg agtcacaatg gaagtgttga atatatccag
                                                                   1560
ggccctattt aggtaattaa tctgtgtgct cacacagacg atgaggctca gcagcagaat
                                                                   1620
ccaagccagg ggatgccgca gcacaggett ccctgcaaac agetcettga tagcaatgce
                                                                   1680
caggecette acacaggaga etgaaaacge geegattaca gageagattg ttatgtacae
                                                                  1740
aaq
                                                                  1743
     <210> 398
     <211> 315
     <212> DNA
     <213> Homo sapiens
     <400> 398
ataacagtat tcaatacata atcagaaaaa agagatgtgg aggaggagga gagaaacttc
                                                                    60
ccaaggaget ccettgggtg ctgctggctc ctaattagtg taacctgtta atcacatgtt
                                                                   120
gctcggtgtt agagcggtcc ctctgtgctc tgcctggcag ggcgctgttg gcctggtctc
                                                                   180
cctcactatt tctatttgca agcatgggct ttctttccag cagaatctgg ttcctgggaa
                                                                   240
gagtaatgtt ccaaaggcct ctgatatgcc tcgatgccct cctgtcgacg cggccgcgaa
                                                                   300
ttccagatct atgaa
                                                                   315
     <210> 399
     <211> 397
     <212> DNA
     <213> Homo sapiens
     <400> 399
gagaaggggg actcctcata ctctgctggt gggagtggga aaaggtgcag ctgctgtggg
                                                                    60
aaagtggcag ttcttcacaa agttaaacat agagttacca ttggacccat caatgccact
                                                                   120
cctaggtgaa tccaggaatt cactcaggag aagtgaaggc atacattcac acaaaaactt
                                                                   180
gagcagcata atteatgtte tgtttteeta caaateeagt etttgaette aaggttataa
                                                                   240
gccacagaaa atactctgtg agtgatgacg tggggaatgt gtttggatag gatcactagg
                                                                   300
gatgcaggca acaaaggaca atgacacatg ctttggggtt tctgtgtttg tttttttcc
                                                                   360
agcgatgagc tactcctggg tcatgagaag gcccctg
                                                                   397
```

<210> 400

<211> 4175 <212> DNA <213> Homo sapiens

<400> 400

tttcgtgccg agcccagctg atgcaacctg gctggactcg cgtgacagtt cccggcacgc 60 ggcggcgacg gtgacccagg aaggggctct ggtgccgggc tgagcggggg aagcaggggt 120 agcggagcca tgggggacgc tcccagccct gaagagaaac tgcaccttat cacccggaac 180 ctgcaggagg ttctggggga agagaagctg aaggagatac tgaaggagcg ggaacttaaa 240 atttactggg gaacggcaac cacgggcaaa ccacatgtgg cttactttgt gcccatgtca 300 aagattgcag acttettaaa ggcagggtgt gaggtaacaa ttetgtttge ggacetecae 360 gcatacetgg ataacatgaa agccccatgg gaacttetag aacteegagt cagttactat 420 gagaatgtga tcaaagcaat gctggagagc attggtgtgc ccttggagaa gctcaagttc 480 atcaaaggca ctgattacca gctcagcaaa gagtacacac tagatgtgta cagactctcc 540 tecgtggtea cacageacga ttecaagaag getggagetg aggtggtaaa geaggtggag 600 caccetttge tgagtggeet ettatacece ggaetgeagg etttggatga agagtattta 660 aaagtagatg cccaatttgg aggcattgat cagagaaaga ttttcacctt tgcagagaag 720 tacctccctg cacttggcta ttcaaaacgg gtccatctga tgaatcctat ggttccagga 780 ttaacaggca gcaaaatgag ctcttcagaa gaggagtcca agattgatct ccttgatcgg 840 aaggaggatg tgaagaaaaa actgaagaag gccttctgtg agccaggaaa tgtggagaac 900 aatggggttc tgtccttcat caagcatgtc ctttttcccc ttaagtccga gtttgtgatc 960 ctacgagatg agaaatgggg tggaaacaaa acctacacag cttacgtgga cctggaaaag 1020 gactttgctg ctgaggttgt acatcctgga gacctgaaga attctgttga agtcgcactg 1080 aacaagttgc tggatccaat ccgggaaaag tttaataccc ctgccctgaa aaaactggcc 1140 agegetgeet acceagatee eteaaageag aageeaatgg eeaaaggeee tgeeaagaat 1200 tcagaaccag aggaggtcat cccatcccgg ctggatatcc gtgtggggaa aatcatcact 1260 gtggagaagc acccagatgc agacagcctg tatgtagaga agattgacgt gggggaagct 1320 gaaccacgga ctgtggtgag cggcctggta cagttcgtgc ccaaggagga actgcaggac 1380 aggctggtag tggtgctgtg caacctgaaa ccccagaaga tgagaggagt cgagtcccaa 1440 ggcatgcttc tgtgtgcttc tatagaaggg ataaaccgcc aggttgaacc tctggaccct 1500 ccggcaggct ctgctcctgg tgagcacgtg tttgtgaagg gctatgaaaa gggccaacca 1560 gatgaggagc tcaagcccaa gaagaaagtc ttcgagaagt tgcaggctga cttcaaaatt tctgaggagt gcatcgcaca gtggaagcaa accaacttca tgaccaagct gggctccatt 1680 teetgtaaat egetgaaagg ggggaacatt agetageeag eecageatet teececette 1740 ttccaccact gagtcatctg ctgtctcttc agtctgctcc atccatcacc catttaccca 1800 teteteagga caeggaagea gegggtttgg aetetttatt eggtgeagaa eteggeaagg 1860 ggcagcttac cctccccaga acccaggatc atcctgtctg gctgcagtga gagaccaacc 1920 cctaacaagg gctgggccac agcagggagt ccagccctac cttcttccct tggcagctgg 1980 agaaatctgg tttcaatata actcatttaa aaatttatgc cacagtcctt ataattggaa 2040 aaatactggt gcccaggttt tcttggagtt atccaagcag ctgcgcccct agctgggatc 2100 tggtacctgg actaggctaa ttacagcttc tccccaacag gaaactgtgg gatttgaaaa 2160 ggaaagggaa gggaaaacag agaacctagt ggtctaccaa gtggttggca actttcccaa 2220 tgtctgctta ctctgaggct tggcactggg ggccagggcc tgccccaggg ctcctggaat 2280 ttcccttgat ccagctaggc tgggacactc cctaaatcag ctgcgtgttg ttagcatcag 2340 gcagaatgaa tggcagagag tgattctgtc ttcatagagg gtggggtact tctccataag 2400 gcatctcagt caaatcccca tcactgtcat aaattcaaat aaaatgtctg aacaagggtg 2460 tetggatgtg agetggacea teteaggaga gaacacaagt gtgaggeage tgetggeece 2520 tcacctagtc tggggttcct ttaccctgta atggggggtg gggggtagaa gatggacaag 2580 acaccttaac agtccctttg gcagtactag gcagaagagg cccatacttg ggtccaatgt 2640 gtgcagcagg caaaacattt tcccttctaa atgtgggccc agaccactgc cctgtccccc 2700 caacattaag aagcagtagc cacagccaag tttcaatcat ttaattaaca tctttaaatg 2760 aaacacagtt ttcttcatgt gtctcactca ggcttcaggg cagagggaat ggatttttag 2820 acatatcaaa gactcaaaaa tttaaagaaa tatatatatg tatatatata cttctaacat 2880 tttatggaaa ttaaaaatca gaggettttg gteteteeat ttaetetagg teaageteat 2940 ttaccccaga ggacaaagaa gggctgcctc ttctagaccc tcccttctcc tttgtcctct 3000 gtcccaccca gcagggaaac caagctcaga agatcctaac aggatagagt tccagtaatg 3060 ttggaggagg gagagggaaa gagaagtcag gttctctccc acctccagcc attcccaggt 3120 3180

```
agatcaggag ctctgagcag aacagtgctc actgattatc ctctttcccc aactcagtgg
                                                                     3240
gcaggtgcag cgtacaccca gcagcactct ccactgccca caggcaaggg aagaatattg
                                                                     3300
attgattagc tacaaggaga agacagtagt gactagtgga aaacaccctg gagagggcca
                                                                     3360
gaggaacctg gctctcacca catcccctct gttcccagcc ttggtgaggg ggcggggagg
                                                                     3420
tcatgtcaac ctctctctt ggtggtgaag ctaaaagcaa ggttccttgc cagactcaag
                                                                     3480
cccaagtcac tgttaaggaa agaggatcaa gaaagaagcg gtggccctgg ggggcagcca
                                                                     3540
cgctgctgtg gacccacagg ggccaatggg gaagccagct tgcctagaca ggtggcacag
                                                                     3600
gctgaaaata gaaaggttaa cattcccgga gagtacagta agagaggctg atacctaggg
                                                                     3660
gaccaccacc cagcctgccc tagaagcact gggtgcccct cattgactag agaagacttg
                                                                     3720
agtaaaatgc acctgtggct tcccatcctt gtcactcagc gttagctgcc cccagtggaa
                                                                     3780
ccacctgtgc tgaaaggcag ctgcagaaag gacatgcacc gaaatgagga gagagaaagg
                                                                     3840
tcagagaatg aagtgtggag ggccaggcct gggcccactg ctcaaggaag ctcccccct
                                                                     3900
ccagatgete cettecatee acetecteag tgettgetea geccaaagge teetgeetet
                                                                     3960
gaagtgctgg gggcccaccc accccagtgt ggtcaaggag gcaaggggca ggtgcttgac
                                                                     4020
actgccaagt gccccgagat gactctactg ctcacccatt tctttgggcc ctggcagtct
                                                                     4080
cctacttgtc cccagcatgg agcacctggc agaactggaa ggcaggaggg tggttggtga
                                                                     4140
gttgaggcac aggaaggcca atcccctctc gtgcc
                                                                     4175
     <210> 401
     <211> 1703
     <212> DNA
     <213> Homo sapiens
     <220>
     <221> misc_feature
     <222> (1)...(1703)
     \langle 223 \rangle n = a,t,c or g
     <400> 401
ttttttttt ttccaagata gaaaatggat tcaattttta ttaaataatg taaaggattt
                                                                       60
tctttggcac ttattcacat tctcttgnct ctgagtaaaa aaacgccgcg tttatctgca
                                                                      120
ttggtagcag agggaaagct actggagcaa acgctaagtg aatgggttcc cgtgccgagg
                                                                      180
gtgtcctcat tcttgggctc tgtcaggcct ccccttgtct gcaggactgg gacaggccac
                                                                      240
cetececagg ceetgeeett geegegageg tgteetteea tacagacaac ageettgetg
                                                                      300
ggtcacctgg aggagctgcg ctctttgctg acacagtcgt cctgggaggt ggtgtccccg
                                                                      360
tttcccacca tgctgcacgt cctcctcttc ttcctgcggt gcactgtccc atcgccctcg
                                                                      420
gatccagact cgcactctga gtcggagtct gacgaactgg agctggagga gctggaagag
                                                                      480
tegetggage tgteggaage tatecetgtg gaeteetgaa ggteaacega gtetgegagg
                                                                      540
actgccaact cggggtgctc ttgcttcaaa atcctatacc atttccttga taactttggt
                                                                     600
etecetetta eegtettgtg eeataceaea gggaagttgg tgetgetgge aaaattttgg
                                                                      660
gtgatggcga tagtagtgtc gagattgagg acaacatgcc accagcctcc tggtacaaag
                                                                      720
acagtetete etggtttttg taagatttee aggggtttga atteaggtgg ceaggttgga
                                                                     780
agctgtgtcc ggggataaat aacattaaac caggtaatag cttcgtcttg ctggttccct
                                                                     840
cettegtete gggteacttt gatgagttee etgggagtge tggtaggaaa caggeaccag
                                                                     900
cgcttgtggc cctgaactaa ggcattccag gcactggttc ccagagggtc gatgtgaatc
                                                                     960
ccagttccgg agcgtggtgg ccccatcaca aaccacctgt aagggggcct gcgcttctcc
                                                                     1020
ccagcatact ggaaaaggtc atcagtgaaa aactttggca ccttgtagtc ttccaaaagt
                                                                    1080
ttccttcttt tagggtgttc accatagctg ctgtcaaaga tgtaaagggg actatcatct
                                                                     1140
egagtgetet ceatgtacte gatgtagtat tteatettea tetteactga gtagecateg
                                                                     1200
ttatcctcac cacacttgaa cttctggttc cgatatttcc tttttaggcg ctccagagtc
                                                                     1260
cattletect gegeagacea gecetettge geatteaaca aaaccaeggg ettqtaaqqt
                                                                     1320
ctttcatacc gctccacaaa ttcttccaca gacagctgta aagcatctgc cctttccacg
                                                                     1380
ttatccgcca cggccgccgg gctcagcgag aagctctcgt agtagttgtg ccgggtccaa
                                                                     1440
tecagegagt cettgagete eggeegegea etecgettgg cetegeggat gegettettg
                                                                    1500
```

1560

1620

ctcttgtggt tcattctgcg gggtcgccag ctggttccgc tacgacctcg gcgcagcccg

cttcctgaca ctaacgcacc cctccccggc ctgggcggcg gcgacggcag tacccaaacg

```
cccttcgctc agtcccggcg cctttaaagt cgccttccaa aaaattcact ccccagccac
                                                                  1680
ctcccgagcc tcgggttggg caa
                                                                  1703
    <210> 402
    <211> 1433
    <212> DNA
    <213> Homo sapiens
    <220>
    <221> misc feature
    <222> (1) ... (1433)
    <223> n = a,t,c or q
     <400> 402
ggcacgagcc ctggcactca ctcatcccct cctgtccctg gggatgtgcc tactgtggac
                                                                    60
attitacata aatggcatca caaagtatgt gctttttqtq gctqqctcct qtqacqtqqt
                                                                   120
gtgtgatgtt ttcgagccgg acgtgttaca gcccatgtgg gaacttcagt actgctcctg
                                                                   180
gcagagtaat attccacage tgggatagag cacagtttgt ttattcattc ctctctcgat
                                                                   240
ggagacttgg gttgttccca cctttggcct cggtgaatgg tgatgctgtg atcatgggtg
                                                                   300
tgcctgtgtt tgtctgaaca cctgctttca gttgtttggg gcgttaccca ggagaggggt
                                                                   360
tgctaggtcc tgtggcacct ctgtaacttg ctggggaact tccccactga tgcttgaaaq
                                                                   420
teatttggta teaccaggte tetggggtgt tteatttgte cecagaaget etgeetaage
                                                                   480
tgcactggga gtgggctgat ctgtgtgacc ctaacggcct gagtgctggc tcaggggaac
                                                                   540
tgctaattta tggaatccta ggtaggtggg ggtagaattc tctccctctg tcaggqtqqa
                                                                   600
gcagttacga caaatccaca gtctcaggga cataaagcaa catggtcttt ttccaatcat
                                                                   660
gccacatgtc cactgcattg tggcttgaca tgggcctcat gccaggacct gggatgaggg
                                                                   720
gcgagccctc tctgtgcacc caaggctgcc gacactcccg agagcactgc cggctcccac
                                                                   780
ggettetgee agaagteace ggetgegteg etceecacag tteateagee tggtggaeet
                                                                   840
gtggccacac ttaagttcaa cgcagcccat gtggccctga aggtggacag cttttgtatc
                                                                   900
cgtactgagg catgggataa taaacgccac agtgattaaa aaaagaaatg ttggcccagc
                                                                   960
cccggtggct catgcctgta atcccaacac tttgaagagg ccacggtggg tggatcacga
                                                                  1020
gggtcggagt tcaagactag cctggggcca tatgatgaaa cctcatcttc tactaanaaa
                                                                  1080
tacaaaaatt taaccgggca tggggggcac gtgtcctgta gtccccaact acttggtgag
                                                                  1140
gcttgagggc aggataatta cttggacatg gtgcaaaaca gggcttacta tgcagccatg
                                                                  1200
tgcagtccta tttctcctcg cgcctcggcc agccactgag actccttgca tcagataacq
                                                                  1260
aacgtggtcg cctgttcaca gcatccttcg tctttccaca ccgctgcgtc aattcactac
                                                                  1320
ttcctctctc agtgacgtcg ctatgcttaa tcgacggcgg cgattatgct caccctccn
                                                                  1380
gatgcagcta tgaaccacga actteteacc aacgetacac acgategtea gee
                                                                  1433
    <210> 403
    <211> 554
    <212> DNA
    <213> Homo sapiens
    <400> 403
aagagttgaa aggcactgca aaaaaacttg gggagaagct ggctgttgcc aaagacagaa
                                                                    60
tgatgctgca ggagtgtcgt gggacacagc agacagatgc catgaagact gagttagttt
                                                                   120
cagagaacaa agtcctgcgg gaagagaatg acttggaagc cggcaatctt catcctcagc
                                                                   180
aggatcaaag ctgtctcaag gagtgccctt gcatgaaagg aggcacagat atgcagacca
                                                                   240
agaaagaggc aagtgctgag acagaatata tgaagcaaca atatgaagaa gaccttcgta
                                                                   300
aaatcaaaca tcagacagaa gaggagaaga aacatctcaa agaccagcta gtgaagcgac
                                                                   360
420
ctgaaagaaa gaaactgcag agggaagtag aagcacagtt ggaggaagtg aggaagaaat
                                                                   480
```

```
cagaaaagga gataaagcag ctggaagaag agaaagcagc cctcaatqtg aaqcttcaga
                                                                     540
attctctgct tgag
                                                                     554
    <210> 404
    <211> 1100
    <212> DNA
    <213> Homo sapiens
     <400> 404
ctatcacage tettegttga attaatattt acattetgtt ttaaacagaa cacaaatett
                                                                      60
tttgcttata aaatgattac tcctgtgaga gagagcagtt cagcaccatt agcattaaaa
                                                                     120
cattaatcgg tatttgaacg tgattttaag taattatgtc taaatacagt ttgttcagtt
                                                                     180
atttgagget acattttata attaateeea tetaaattta ttttgteaet gtttgagaet
                                                                     240
atgttttata gctaactcac ccattagaat acagtttttt ttttaaatta aatattttat
                                                                     300
aggaactaaa aatgaatttt taggaactaa aagtgattat ttggtcgtat ctacttttt
                                                                     360
ttcaggctga ccttgttggt ttcacattaa atgttgcaaa actttaacat ttcaacttgg
                                                                     420
agttattctt ttgttaaaag agtataatac tgtttttgag agaatatgat atgattccat
                                                                     480
gcaattcaca tetgtgttge agttagattt aattatttgg actgggaage cecatattaa
                                                                     540
agcacatgct gggcttagaa catgatgaca atcaaggaat ttaccctctt acttgtttcg
                                                                     600
ctgcagttca gtacttttcc ttctaagaaa tttttattgg aaacacattt tttaaaaaat
                                                                     660
agtgaaaact ggctgggtgt ggtggcgcat gcctgtagtc tcagcacttt ggggtggccg
                                                                     720
aggeggagga etgettgage eegggagttt gagaceagee tgggeaacat ggtgagacet
                                                                     780
catctctact taaaacaatt ttttaaaaaa tttagccagg tgtggtqqta tqtqcctqta
                                                                     840
gtcctagcta tttgggaggc tgaggtgggt ggatctcctt ggggtcatgg gttcaggacc
                                                                     900
agectggeea acagggeaag actetgtete tacaaaaaat aaaaaaaatt agetgggtgg
                                                                     960
ccagtgcaca tatgtagtcc cagctgctcg ggaggctggg gttggaggat cgcttgggtc
                                                                    1020
caagaggtgg aggttgcagg gagccatgat cacaccactg tactccagcc tgagtgacag
                                                                    1080
agtaagaccc tgtctcaaaa
                                                                    1100
    <210> 405
    <211> 538
    <212> DNA
    <213> Homo sapiens
    <400> 405
ttttttttt ttaagaatac agaaatatgt ttaatactta gtatcaaact aaaaagtaat
                                                                      60
ataaaattac aaaacttett tittiteatg cacaggettt tictggtaag gaccgetggg
                                                                     120
attgaacaga agcttccggt aaataagggc cccgtcggca agacagcata ctgctgtcac
                                                                     180
aagtgcaaac acccctccac caactgtcaa tgttgtggtt tctggtatca gtgccaacac
                                                                     240
agatacgatg agcatgaata ctgttgttac cagtgagttg ataatatcca gccgcagcat
                                                                     300
cttcacgtgg cctttcacac tgaagcagaa ggggcgatgt tttattttcg gctgcacgtt
                                                                     360
atccatcgcg tctgcagacc cagcagcagc actttccctc aactcttctc agctggctgc
                                                                     420
ctgagtaggt tctgcgaagc gatagcaacc gccaccgcgg cggagcaccq ccctcccta
                                                                     480
cttctcgccc agctcggctt cccgaattcc accacacgga ctagggacgg agacgaag
                                                                     538
    <210> 406
    <211> 859
    <212> DNA
    <213> Homo sapiens
    <220>
```

```
<221> misc feature
     <222> (1) ... (859)
     <223> n = a,t,c or q
     <400> 406
gtggtggaat teetetggag caggaggeec agtggetett etgaeecaag geeeegeegt
                                                                       60
ccagetteta agtgccagat gatggaggag cgtgccaacc tqatqcacat qatqaaactc
                                                                      120
agcatcaagg tgttgctcca gtcggctctg agcctggqcc qcaqcctgga tqcgqaccat
                                                                      180
gcccccttgc agcagttctt tgtagtgatg gagcactgcc tcaaacatgg gctgaaagtt
                                                                      240
aagaagagtt ttattggcca aaataaatca ttctttggtc ctttqqaqct qqtqqaqaaa
                                                                      300
ctttgtccag aagcatcaga tatagcgact agtgtcagaa atcttccaga attaaagaca
                                                                      360
gctgtgggaa gaggccgagc gtggctttat cttgcactca tgcaaaagaa actggcagat
                                                                      420
tatctgaaag tgcttataga caataaacat ctcttaagcg agttctatga gcctgaggct
                                                                      480
ttaatgatgg aggaagaagg gatggtgatt gttggtctgc tggtgggact caatgttctc
                                                                      540
gatgccaatc tctggcttga aaggagaaga cttggattct caggttggag taatagattt
                                                                      600
ttecetetae ettaaggatg tgeaggatet tgatggtgge aaggageatg aaagaattae
                                                                      660
tgatgtcctt gatcaaaaaa attatgtgga agaacttaac cggcacttga gctgcacagt
                                                                      720
tggggatctt caaaccaaga tagatggctt ggaaaagact aactcaaagc ttcaagaang
                                                                      780
agtttcagct gcaacagacc gaatttgctc acttcaagaa gaacagcagc agttaagaga
                                                                      840
acaaaatgaa ttaattcga
                                                                      859
     <210> 407
     <211> 452
     <212> DNA
     <213> Homo sapiens
     <400> 407
gtgctatatc tgcaaaatgg ggataacagt actcaccaaa tttagctgct gcgaagatga
                                                                      60
aatgaaaggt ctggggggtg cagagtcggc ggttttgctg ggaagccgqq qtgatqttqa
                                                                      120
egeggetggt ceteagtgea cacetgagta geacgacett teegeeetgg acgeacgetg
                                                                      180
ccatcagctg ggagctggac aacgtgctga tgcctagtcc cagaatctgg ccccaggtga
                                                                      240
ctccaacagc tgggcaggat gtgcatgcca tagtaaccag aacctgtgag tctqtqctqa
                                                                      300
getetgtegt etacacecae ggetgtgget gtgtgaggtg ttaattggga getggegtgg
                                                                      360
atttgacagg aatgctaaca cagctetgag ataaggaget gggaetgaet tetgacagee
                                                                      420
atgctactca tagtaggaat gtgtttactg ag
                                                                      452
     <210> 408
     <211> 1562
     <212> DNA
     <213> Homo sapiens
     <400> 408
tgcatgcgcc gcgacccacg cggccggtta cagtaqqttt attttttqaa qtttaaactt
                                                                      60
gtaagettaa getteegttt ataaacagaa gtttaaaatt ataqqteetq tttaacatte
                                                                     120
agetetgtta acteacteat etttttgtgt ttttacaett tgtcaagatt tetttacata
                                                                     180
ttcatcaatg tctgaagaag ttacttatgc agatcttcaa ttccagaact ccagtgagat
                                                                      240
ggaaaaaatc ccagaaattg gcaaatttgg ggaaaaagca cctccagctc cctctcatgt
                                                                      300
atggcgtcca gcagccttgt ttctgactct tctgtgcctt ctgttgctca ttggattggg
                                                                     360
agtettggea ageatgttte atgtaacttt gaagatagaa atgaaaaaaa tgaacaaact
                                                                     420
acaaaacatc agtgaagagc tccagagaaa tatttctcta caactgatga gtaacatgaa
                                                                     480
tatetecaae aagateagga acetetecae cacaetgeaa acaataqeea ecaaattatq
                                                                     540
tegtgageta tatageaaag aacaagagea caaatgtaag cettgteeaa ggagatggat
                                                                     600
```

```
ttggcataag gacagctgtt atttcctaag tgatgatgtc caaacatggc aggagagtaa
                                                                     660
aatggcctgt gctgctcaga atgccagcct gttgaagata aacaacaaaa atgcattgga
                                                                     720
atttataaaa teecagagta gateatatga etattggetg ggattatete etgaagaaga
                                                                     780
ttccactcgt ggtatgagag tggataatat aatcaactcc tctgcctggg ttataagaaa
                                                                     840
cgcacctgac ttaaataaca tgtattgtgg atatataaat agactatatg ttcaatatta
                                                                     900
tcactgcact tataaacaaa gaatgatatg tgagaagatg gccaatccag tgcagcttgg
                                                                     960
ttctacatat tttagggagg catgaggcat caatcaaata cattgaagga gtgtaggggg
                                                                    1020
tgggggttct aggctatagg taaatttaaa tattttctgg ttgacaatta gttgagtttg
                                                                    1080
tetgaagaee tgggatttta teatgeagat gaaacateea ggtageaage tteagagaga
                                                                    1140
atagactgtg aatgttaatg ccagagaggt ataatgaagc atgtcccacc tcccactttc
                                                                    1200
catcatggcc tgaaccctgg aggaagagga agtccattca gatagttgtg gggggccttc
                                                                    1260
gaattttcat tttcatttac gttcttcccc ttctggccaa gatttgccag aggcaacatc
                                                                    1320
aaaaaccagc aaattttaat tttgtcccac agcgttgcta gggtggcatg gctccccatc
                                                                    1380
tegggteeat cetatactte catgggacte cetatggetg aaggeettat gagteaaagg
                                                                    1440
acttatagcc aattgattgt tctaggccag gtaagaatgg atatggacat gcatttatta
                                                                    1500
cctcttaaaa ttattattt aagtaaaagc caataaacaa aaacgaaaag gcaaaaaaaa
                                                                    1560
aa
                                                                    1562
```

<210> 409

<211> 3012

<212> DNA

<213> Homo sapiens

<400> 409

ccttctgatt agggggtcac atgcagaagc tccccaagac agcaagaaaa aggaaaatgg 60 catcttgata ctactaaagc tcatgcttta aatccattcc tcaccggttc agtgaggaag 120 ccaagttttc acacatagca ataaagatca agaagagttc actcttctgc tcactgacag 180 actgactagc tgctagttgg gtcaaattcc acaggatcca aggccagtgt atgaagaatg 240 300 aaaagettea tteecaaaga ateaggetee eeggggtaca aagaggteet gageatgett cttatgtaaa ttacagcgca acttaggttt ttccaagaat atgtaaaatg agacttggag 360 tttaattaaa aacagaacag ggatacatta aacaaacaaa caaaaattac ttttctgatt 420 atcaattttt tttgagactc aaagcatccc caaaacattg gagatccagc ttattcctga 480 gacatcaacc atcacaaaag gttttcactc tgaactattc acatttttgt ggcagaaaac 540 agaacaaagt tetgeagaca teetteetet etttetaaaa tatatteaca aacagggtet 600 tttcatagtt caaaagaaaa acaaacaggt ttctttcttg gccaaatggc ctgttactct 660 caccetggga tetgatttet taataaaaaa gtteagggea eeaaateeaa eeagaaatte 720 ccaggacacc agtggctact taactatgag gggatggatg cttttgtctt tctatgaggg 780 gaatcattct cccgggatta ttatgctgct caacagcccc aggacaggta ggtgggaagg 840 agggtgaatg caaaagcgaa agggtcacag aaaagaatga ggctttcttg aacaacccat 900 agcaaggcag aatggtccag ttttacaaac cacccactac aaactccaaa catgcacacc 960 caaaactaga ggggaaagga aagagctcct gggggactag gggagacaaa agatggtgac 1020 atagaacagc agacttgcct atgaacgttt cctcaacttc ctaacactgg aagatgttta 1080 attaaaaagt tgctgttcaa aattgtactg aaaacatatc taaaaatagg tctgtagtca 1140 tcttaaaaat aaaaggtcac ttctcagata agaggagtga cagatattct cagataccaa 1200 cacttcaggt atctttgatg taaatttgaa aaatggcctg gtagagaaaa aggaaggaaa 1260 ggaaggagag aggaagaaag tgagggaggt agggagagaa attcagagta caacaggaaa 1320 ggcaagaaaa ctgggaggaa cacatttttt aagcccatgc ttatctatcc cagcagccaa 1380 acaaagcaga tccacaaagg aaaaaaatgc agttcttttc taagaacatt ctgaaaatca 1440 acttcaaact caaaacataa gaaactgcaa tctaagaaca actaccacaa tgctcactgg 1500 acttaaaaat gacgactgag accgggtact caaatgggtc aacgttcttc agcggtcatt 1560 cttaggcatt atctgacaga atactatgat caggccttac ccaccaagtg gaagctaaag 1620 tgcctctatt acttggtatg gacctgctct aggagcagac aaaatcactt tgctttcttg 1680 aagtacaaga ggactctgcc agcaacgaga tgcaagcagg gaggagtggc agaagaagag 1740 caaaactggt taccaagggc tetettetga tgtacagagt taaaaatate tgcacaaatg 1800 cactaagtaa aagaatggga agatgaacta taataccaaa gacagaagac attcctccca 1860 gaggaaagaa aggaagtgga cctcaaaaca gtgtcacagg gtaacgctac cagagttgca 1920

```
caagetgtge tetgteeega gggaegaata ceteaaggta aaagggaaag eagetetett
                                                                    1980
tttatcattt ccccctgctg gttttaaaga ccccaagccc agactcttgc aacactgaac
                                                                    2040
cataggtggg atacagggag gagagacaga gggtaaggaa tatgaatggt gttaggcca
                                                                    2100
ccaagetetg tatecettee ccagaettee cagecaggea gttgttggta ggttgatatt
                                                                    2160
tgatttggga caaaattaca gggtatgagg gtggctctca ataaaaaaac aactaggaaa
                                                                    2220
gtcagagttg aactgttttc ctctaagggc tgcttagctc tacagaaata cagcaagggc
                                                                    2280
cttcaatcta acctgtttaa ctgggaaggg gaacaggaga cagggagaag aaatggtcag
                                                                    2340
atgaagetea tetteceate atttggcace cagaggaaga eggggaggtg gagaetgtaa
                                                                    2400
tggggactgc tggtattgcc tcttctgtct tttcactgtt gatcctattg gccaaatcag
                                                                    2460
gtgcacacaa gtatcagtgt tgctgctttt cttctaatcc ttgcaggaga gtcagatgtc
                                                                    2520
catctcgaac tgagcatcat ccccaactgc atgtttcctg tcgtgattgt tcaagttgtt
                                                                    2580
caaattgttt acttctactt tggagtcttc aattaaggtg ccagggctag tgactcctgg
                                                                    2640
gatattgggc agatggcagg gtggggtctg agccatggga gaattgcgac qatccaacag
                                                                    2700
aaactttetg teataaatga ttegagttee teeeggtgtg gtggagaaga gegteeeeee
                                                                    2760
gggcgtggtg caatagtcat gaggtagctg cgcggcgtcg ctgatggcca cggtgcgggt
                                                                    2820
ggggatggcg cggctctggc tgggctggtg gccgctgccg gctgacgagg acatggctgt
                                                                    2880
gggcgcgggc tctcggcttt gtccggcggg caggcggcgg cggcggggcc ggggctgctt
                                                                    2940
eggeteetea ggeggaegga aaagegeget etgegegete etegeteget teeteeegtt
                                                                    3000
ccctcgtacc gc
                                                                    3012
```

<210> 410

<211> 1882

<212> DNA

<213> Homo sapiens

<400> 410

aagaaccetg aggaacagae gtteeetege ggeeetggea ceteeaacce cagatatget 60 gctgctgctg ctgctgcccc tgctctgggg gagggagagg gtggaaggac agaagagtaa 120 ccggaaggat tactcgctga cgatgcagag ttccgtgacc gtgcaagagg gcatgtgtgt 180 ccatgtgcgc tgctccttct cctacccagt ggacagccag actgactctg acccagttca 240 tggctactgg ttccgggcag ggaatgatat aagetggaag getecagtgg ccacaaacaa 300 eccagettgg geagtgeagg aggaaacteg ggacegatte caceteettg gggacecaca 360 gaccaaaaat tgcaccctga gcatcagaga tgccagaatg agtgatgcgg ggagatactt 420 ctttcgtatg gagaaaggaa atataaaatg gaattataaa tatgaccagc tctctgtgaa 480 cgtgacagcc ttgacccaca ggcccaacat ccttatcccc ggtaccctgg agtctggctg 540 ettecagaat etgacetget etgtgeeetg ggeetgtgag eaggggaege eccetatgat 600 ctcctggatg gggacctctg tgtcccccct gcacccctcc accacccgct cctcagtgct 660 cacceteate ccacageece ageaceaegg caccageete acetgteagg tgacettgee 720 tggggccggc gtgaccacga acaggaccat ccaactcaat gtgtcctacc ctcctcaqaa 780 cttgactgtg actgtcttcc aaggagaagg cacagcatcc acagctctgg ggaacagctc 840 atctetttca gteetagagg geeagtetet gegettggte tgtgetgttg acageaatee 900 ccctgccagg ctgagctgga cctggaggag tctgaccctg tacccctcac agccctcaaa 960 ccctctggta ctggagctgc aagtgcacct gggggatgaa ggggaattca cctgtcgagc 1020 teagaactet etgggtteee ageaegttte eetgaacete teeetgeaac aggagtacae 1080 aggcaaaatg aggcetgtat caggagtgtt getgggggeg gtegggggag etggagecae 1140 agecetggte tteeteteet tetgtgteat etteattgta gtgaggteet geaggaagaa 1200 ateggeaagg ceageagegg aegtgggaga cataggeatg aaggatgeaa acaecateag 1260 gggctcagcc tctcagggta acctgactga gtcctgggca gatgataacc cccgacacca 1320 tggcctggct gcccactcct caggggagga aagagagatc cagtatgcac ccctcagctt 1380 tcataagggg gagcctcagg acctatcagg tcaagaagcc accaacaatg agtactcaga 1440 gatcaagatc cccaagtaag aaaatgcaga ggctcgggct tgtttgaggg ttcacgaccc 1500 ctccagcaaa ggagtctgag gctgattcca gtagaattag cagcctcaa tgctgtgcaa 1560 caagacatca gaacttattc ctcttgtcta actgaaaatg catgcctgat gaccaaactc 1620 tecettteec catecaateg gtecacacte coegecetgg cetetggtac ceaccattet 1680 cctctgtact tctctaagga tgactacttt agattccgaa tatagtgaga ttgtaacgtg 1740 tttgtctctc tgtgcctggc ttatttcact caacataaca tcctctaagt tcatctgtgt 1800

tgtttccaat gacagagtaa tgtactgaat aattcaaaat agctaaaaga gaggagttta 1860 aatgttgtca ccaaaaaaaa aa 1882 <210> 411 <211> 725 <212> DNA <213> Homo sapiens <400> 411 tttctctagg gtttttgcac caaaatgege ctcctgtgcc cgtcctatcc tccctgcaca 60 120 tagcctgggt ctagcccagg tcttgggcga cagtgggagg gatgagcagg tgcttctccg 180 cagatettte agggetgagg gatgtgtgtt gtgettgtgt aegtggggta eagetgteee 240 ctggcacaag gtcgagggaa gtggtggccc ctgccgctca gctgccccac tgccagcctc 300 tgctccattc tccattgatg gaagggccgt tccctgggtc ttctcagctc tgcaggctga 360 ggtgggggtg ctgggggagc agatgagaga tggacgtggt ctgtgcggga gccacccatg 420 ggtgetacag ctctcctggc ctggggtctt cccacagtgc tggctctgtc ccaggctggt 480 gtgcctggca aagcagaact ggcagtgccc ttttgagact ccaaggaagt gaaaacaggc 540 cgggcacagg ggcccacgcc tgtagtccca gcactttggg aggccggggt gggatgattg 600 cttgaagcca ggagtttgag accagcctgg gccgcctagt gagaccccat ttctacaaaa 660 aaaaaaaaaa gaaaaaaaaa aggggggggc cttttaaagc tatggttaaa ctccccttg 720 725 <210> 412 <211> 1306 <212> DNA <213> Homo sapiens <400> 412 gtgcttgtgc atggctcctt gtacaagaaa gtagctttat ttgaacatct gattgctagt 60 cagetatete caggaaaaga tgatgaagge ttgtetttga ggtgtggete acaegtgtet 120 ctctagcaac tatgctgcta gtgacagaga cgtatgacat ttgcatttgg ttgttagcgc 180 aggeagtttg geacacaett gatacaacea ggetgtgatg attggegeag gggtaeggae 240 ctcagctgag tcatgggagc tgaatgtatg tgtttctcct ttgtcctgca tgtggcaggc 300 tgatggggag cacttacatg agactgttgc ctcaatctga gcctgcactt cataacagaa 360 ttctaagaca gactgaaccc ctgctgtact ttaagagagg gaaacagcag ggtctgttct 420 atgcetettt tecagetgtg cacaggatgg atteceteet tagaaggaca gtggtgatee 480 tctacaagag gacaaataca gttggagtat cccttttcca aaatgcttaa gaccagaagt 540 gtatggggtt ttagattttg gagcattttt ggattaggaa tattcaacct gtaccagcaa 600 atcttgacat tggcagcata tcagatttac ctgtgaaaac tgcagtgtag attcgtttgg 660 ggagtttaag cacctgeggt gattctcatg tacacacagg gctgggagct agtagagccc 720 acagatgtgt gtctttggga gcttacagta tagttaagaa aagggcattt agtctctgat 780 ttcagagaga agacagctat agtggctgat tgccttcgtt ttctaatagc attcataatc 840 tttttccttt cttgagcagg aaaatgttgg ggctcttcag gaagcataat aagattccta 900 gaagggagtt getgaatgac ettatggaca ggggcaaagt gtetaacaag eeetteeeeg 960 gccattggaa gtaatagagc tggccagtgc ccttagcctt acctatgtgt gaggccctca 1020 cccagagcag tatggtgtga atttggtatc accccgcgac acaaaggagc cctacgctaa 1080 ctaatcgctg gtaccactga cagtggacct tcgctccata atgtacccgt acggtgcccc 1140 acggaaggca atggcgccgg cgattccgag caaccaaggc tgcaccataa tgtgtgaacc 1200 tcacctggac cgaataatgc ctacttacct tctccaacac agagcagagt cgcgccgttc 1260 tgagaaccaa tacatcgcac gctgtagcgc agtcgactct atttcc 1306

<210> 413 <211> 1305 <212> DNA <213> Homo sapiens

<400> 413

gccgcatgac agagggcgga gggacctggg gggaaggccg gccagcgcca caaatcggca 60 gcagtgtgga tetgtetett tgateggggg etggagette eeteetaate ageteeeeet 120 cctcctgccc ctgagccccc aaaagaggag tttttttaaa aaacggaaaa agcagtqttt 180 cagggaatct gttacaagtg agcgactgaa actgagaaaa aggagaggca aggagaccag 240 aggtcaccct gagggcgcac gtggggtctg tetgtcctgc ttagatctcc cctctccctg 300 aaaggaagca ggtgccgaga gccggggagg ccttcccggg ggcatcagca cagtgagatc 360 regecegetgg agagggtaga atggttgtat ettgetgaat gaetgaagag tgagtetgag 420 ttttgtttc agcggtatta ttatttgtga gtctaaccta gcgggtggtc ctggctgtca 480 ceggtgettg ggegggatea ceaceagegg etgecegtae ttgggeegee acatgatgae 540 ctgggcatcg ttggcattgg gcttgaccag ggcgctgggc gggatgggct cattcttgct 600 caggattttg ggctggtcct gggcgatggg ctcccgcagc cgggcgcgct ggcccagggg 660 ccggttgggg ttcacctcga tgctgagctg catgcgccag tgcagcgtct gcaggatgat 720 catgtcgttg gtggaggtgt tggtggccac cagccaggtg gtgaagctct ggtcccggta 780 gatgttggtg agcttggcca cgttgctctt cgcttacagg cgcggcccat gtgacgctgg 840 ggtaaaagtt gtcattcatg ctgatgatga acttggagtc cctcttggtg gggcccacga 900 tggtgcaggt ctctgtggtg ttgccgtacc aggggtagtt caccccgtcc gagtcgctga 960 tggcttggat cttgccctcc tggaggtcgg ggagctccca gctggacatg cctcaactgt 1020 cctcccacaa acaacaggtg aagacgcttc cttcccccaa acactgggca cgactgatct 1080 ttttcaatgc acccaactcc aatcagcaaa acaaaggata tcagtatgta acttgtcatt 1140 tecetgatta etaeggetgt tgagtgaege eteaettggt etecaatgtt tgttteeagt 1200 gettggaagg tggatgaggg etgeageaat ceettggeea gggetggtee tgggggaget 1260 ctctttaggc tgggtcatcc ccctacttc ctcccacccc aaagc 1305

<210> 414 <211> 3817 <212> DNA

<213> Homo sapiens

<400> 414

cacagacgtt tgaacagagc aggctcctga ggtctccagg atgcctgtcc cagcctcctg 60 gccccaccct ccttgtcctt tcctgctgat gacgctactg ctggggagac tcacaggagt 120 ggcaggtgag gacgagctac aggtgattca gcctgaaaag tccgtatcag ttgcagctgg 180 agagteggee actetgeget gtgetatgae gteeetgate eetgtgggge eeateatgtg 240 gtttagagga gctggagcag gccgggaatt aatctacaat cagaaagaag gccacttccc 300 acgggtaaca actgtttcag aactcacaaa gagaaacaac ctgaactttt ccatcagcat 360 cagtaacatc accccagcag acgccggcac ctactactgt gtgaagttcc ggaaagggag 420 ecctgacgac gtggagttta agtctggagc aggcactgag ctgtctgtgc gcgccaaacc 480 ctctgccccc gtggtatcgg gccctgcggt gagggccaca cctgagcaca cagtgagctt 540 cacctgcgag tcccatggct tctctcccag agacatcacc ctgaaatggt tcaaaaatgg 600 gaatgagete teagaettee agaecaaegt ggaeceegea ggagaeagtg tgteetaeag 660 catccacage acagecaggg tggtgetgac cegtggggac gttcactete aagtcatetg 720 cgagatggcc cacatcacct tgcaggggga ccctcttcgt gggactgcca acttgtctga 780 ggccatccga gttccaccca cettggaggt tactcaacag cccatgaggg cagagaacca 840 ggcaaacgtc acctgccagg tgagcaattt ctacccccgg ggactacagc tgacctggtt 900 ggagaatgga aatgtgtccc ggacagaaac agcttcgacc ctcatagaga acaaggatgg 960 cacctacaac tggatgagct ggctcctggt gaacacctgt gcccacaggg acgatgtggt 1020 geteacetgt caggtggage atgatgggea geaageagte ageaaaaget atgeeetgga 1080 gatctcagca caccagaagg agcacggctc agatatcacc catgaaccag cgctggctcc 1140

```
tactgeteca etectegtag etetecteet gggeeecaag etgetaetgg tggttggtgt
                                                                    1200
ctetgccate tacatetget ggaaacagaa ggcctgactg accetcagte tetgctgcct
                                                                    1260
cctcctttct tgagaagctc agcctgagag aaggagctgg cgagaacctt ccccacactc
                                                                    1320
agetecaaac geeteetete ecaggteate tgeetgeeca caegeteetg ttecacette
                                                                    1380
acaagaccat gatgccccaa agcagtgtct ctattcacgg tcctgagcag gggccatggg
                                                                    1440
attgggctct gggcactgac tcatggcacc tccctagaag gtgagaaaca ctccaaatct
                                                                    1500
aaacacacca ggacttctcc catccgtcgc cttgggactg gccataaacc acagactctc
                                                                    1560
tccaggetet caagagttat cetgtettet ggatteetge etaccecaac teccecagee
                                                                    1620
ttgttgaggt tctctactgc ctcctgaata cacatgaacc cctataccaa ttttaagaaa
                                                                    1680
aaaatqattc tctttcctct ttqtccaaqc atcctatccc tcaaacccaa aaaqaaaqaa
                                                                    1740
gctctccctt ctctctctqt gatggggaca gtatttcttc tagtatcctq cagccttccc
                                                                    1800
agtectqctq cttgtggtaq aaatgctgcc acaqcccaac attgaqqaqc cctcqatqac
                                                                    1860
tgccctttac aactcatatt caqttctgcc tccaaaatqc atqtqtccac ttacqtqaqa
                                                                    1920
tggtaaatgt ttaacaatgg actttctgaa agggaaaaac caaaagctgt tttgcagtgc
                                                                    1980
ttgccaattt ctctagtgta ataactccca acctgaccaa tttcacactg ccaacagtta
                                                                    2040
aacaaccaga ttgcaagatt cctgaaattt aacaattggt tttcagggcc cagtccaagc
                                                                    2100
ctgctgctgg aaacctcaga gttaaatccc tattctccac acctctcacc tccaccaccc
                                                                    2160
etecetytee cagecageat catetettty gggaccacte etetygettt cattttteag
                                                                    2220
ccacagtgat tctttggaaa agtcaaatca tatcacttct ctgcttcttc cccaacacag
                                                                    2280
ctgcatggct cccgctctcc ctccttcaag tctctgctca atgtcacttc attaaaggcg
                                                                    2340
gccttctata aactaccttg tataaaatat tatttatttt ctctatcccg gcattctaat
                                                                    2400
ttctcttatc ctaattaatt tttctttagc ccttattttg atgagtatta tgccgaatac
                                                                    2460
aggeageeet caetttteat ggeagtgeaa gattgeaaaa atgactgtge aacetgaaac
                                                                    2520
ccaggaaagc agtctccata gtcaatcaga aaaacaatga tcattctgtg acctttacca
                                                                    2580
ttttttgtca aaatattaga aactctcaca ctctcagtta caaatgtaga ggacaatgaa
                                                                    2640
aatataatga aataaatatt tatttgtgca ctacaattca aagcattaga aacattgaga
                                                                    2700
gttcaagtgc tgtttctttg taaaaatgta tccagagtag ttgggaagag tgcttgcctt
                                                                    2760
tttttgtata tttctaatat ggagtgatat agtttggctc tgtgtctcca tccaaatctc
                                                                    2820
atcttaaatt gtaatctgca tgtgttgtgg gatgggcctg gtaggaggtg actgaatcat
                                                                    2880
gggggcggac ttcccccttg ctgttcttgt gatagtgagt tctcataaga tctcagtgag-
                                                                    2940
ttctcatgag atctggtttt ttgaaagtgt gtggcaagtc ccccttcgct ctctctct
                                                                    3000
ctctccctcc tgccaccatg tgaagaaggt gcctgcttcc ttttctcctt ccaccatggt
                                                                    3060
tgtaagtttc ctgaggcctc ccagtcatgc ttcctgttaa gcctgtggaa ctgtqagtcc
                                                                    3120
aattaaacct cttttattca taaaatatcc agtttctggt agttctttat agcagtgtga
                                                                    3180
gaatgggcta atacacggag caagcattgt ttcttttcat ttgtttattt tatttttatt
                                                                    3240
tttttgagat ggagtttcac ccttattgcc caggctggag tgcaatgtcg tgatcttggc
                                                                    3300
tcactgcaac ccccgcctcc agggttcaag tgattctcct gcctcagcct cctgagtagc
                                                                    3360
tgggattaca ggcatgtacc accacacca gctaattttg tatttttagt agagatgggg
                                                                    3420
tttctccatg ttgatcagac tagtcttgaa ctcccgacct caggtgatcc acctgtcttg
                                                                    3480
gcctcccaaa gtgctgggat tacaggcatg agccaccatg cctagccagc aagcatcatt
                                                                    3540
totattatac cttqqtqttt tqccatcttt ctaaqtttqq actaqcttcc aacatcttat
                                                                    3600
cccttgaatt ttcaatattg tggaatcact ccagaagatc ctttcatgtg aagttttttg
                                                                    3660
ctggcatttc aacctttggg acatcttcag cccttttatt accactcctc tcccatttgt
                                                                    3720
ggcagtttgc gtttactacc tccctctggc tgcctatctg aagttcctgc atcagggtct
                                                                    3780
acattgccac agtcaactat ttgtacttct agaattc ·
                                                                    3817
```

```
<210> 415
```

<211> 432

<212> DNA

<213> Homo sapiens

```
<400> 415
```

```
tgtggatatg tgcttttcct gtctccctct tcagtgtctg gccatggggc ataaacacta 60 cccagcagta ggtaggctgg ccaagagaag ccagcttgca tcaccagcat catctaggga 120 atggaatcat ggcagtaata cgttgcttag gaaacaaaag ctctatggac acatcttcca 180 ccttctcagt cccagaaacc atatgtactg tgaccccgct cactaggccc agccctcggg 240
```

```
aagagtgtgg gcccttgaaa agggaagact gagtgagaaa atgatgagaa aactacaaaa
                                                                    300
tgggcagagg tcagtctgac acattcattc tctgtcaagc tcaggaagta ctggtccctg
                                                                    360
atcttggaga tgctgtgtga gtggcagggg gactcctgct gggtaaatat tctatatgtg
                                                                    420
gatgcctgga cg
                                                                    432
    <210> 416
     <211> 1143
     <212> DNA
     <213> Homo sapiens
     <400> 416
gtacccactg tggtggaatt cacaggatgg taaaataatc cagctgcctc cctgcaagac
                                                                     60
aggagettgg ategtgeegg ceateatgge etgetaeete ttagtggeaa acatettget
                                                                    120
ggtcaacctc ctcattgctg tetttaacaa tacatttttt gaagtaaaat cgatatccaa
                                                                    180
ccaagtctgg aagtttcaga ggtatcagct catcatgact ttccatgaaa ggccagttct
                                                                    240
gcccccacca ctgatcatct tcagccacat gaccatgata ttccagcacc tgtgctgccg
                                                                    300
atggaggaaa cacgagagcg acccggatga aagggactac ggcctgaaac tcttcataac
                                                                    360
cgatgatgag ctcaagaaag tacatgactt tgaagagcaa tgcatagaag aatacttcag
                                                                    420
agaaaaggat gatcggttca actcatctaa tgatgagagg atacgggtga cttcagaaag
                                                                    480
ggtggagaac atgtctatgc ggctggagga agtcaacgag agaggagcact ccatgaaggc
                                                                    540
ttcactccag accgtggaca tccggctggc gcagctggaa gaccttatcg ggcgcatggc
                                                                    600
cacggccctg gagcgcctga caggtctgga gcgggccgag tccaacaaaa tccgctcgag
                                                                    660
gacctcgtca gactgcacgg acgcccgcct acattggccc gtcagagcag ctttaacaag
                                                                    720
ccaggaaagg gaacaccttt cagctcccaa gagaggatta gaaccctggc agaacatcct
                                                                    780
ctttattcag tataagccgg cagcaagcag ttctacctaa cgtcccacat ccttctcatg
                                                                    840
ccaacacttc tgtaattgat cattataaag aaaaaacaag gtaacagtca tagttcacct
                                                                    900
gtctcttatc tattcacttc tggtgccaca actgtttatc cttttttgaa gaaaataagg
                                                                    960
gaacagaaat gccctttttg tattgcaatc gaaatgaaag gaagaagtga tgttaaaaaa
                                                                   1020
caaaagtcaa gtgatttatt atatacaggg ggccgtcagg tctagtcgag caggctcagg
                                                                   1080
1140
tga
                                                                   1143
     <210> 417
     <211> 1922
     <212> DNA
     <213> Homo sapiens
     <220>
     <221> misc_feature
     <222> (1)...(1922)
     <223> n = a,t,c or g
     <400> 417
eccaegegte egetgacett tgeacceatg gteatgeeet tgtgeettet getgetetgt
                                                                     60
tecetgettg catggcacte aceteettgg ggcetcacca ggtggaggtg getgtgtget
                                                                    120
acgcctgccc tagttcttcc ctgccatccg ctgagtgggg gtctcaagcc actttaggaa
                                                                    180
aaaatgaagc atgatgtcac accagagtgc gtcagggttt agtatttcga gtcagaagca
                                                                    240
ctaggcctcc atctcaacaa ggaggagtcc caggcagccc gccccagctg gtgcctcccc
                                                                    300
tgagetggee catetetece cageaacetg eggeagatet tecagtecet geegeeette
                                                                    360
atggacatec teetgetget getgttette atgateatet ttgecatect eggtttetae
                                                                    420
ttgttctccc ctaacccttc agacccctac ttcagcaccc tggagaacag catcgtcagt
                                                                    480
ctgtttgtcc ttctgaccac agccaatttc ccagatgtga tgatgccctc ctactcccgg
                                                                    540
aacccctggt cctgcgtctt cttcatcgtg tacctctcca tcgagctgta tttcatcatg
                                                                    600
```

```
aacctgcttc tggctgtggt gttcgacacc ttcaatgaca ttgagaaacg caagttcaaq
                                                                     660
tetttgetae tgeacaageg aacegetate cageatgeet acegeetget cateagecag
                                                                     720
aggaggeetg eeggeatete etacaggeag titgaaggee teatgegett etacaageee
                                                                     780
eggatgagtg ecagggageg etatettace tteaaggeee tgaatcagaa caacacacee
                                                                     840
ctgctcagcc taaaggactt ttacgatatc tacgaagttg ctgctttgaa gtggaaggcc
                                                                     900
acgaaaaaca gagagcactg ggttgatgag cttcccagga cggcgctcct catcttcaaa
                                                                     960
ggtattaata teettgtgaa ggecaaggee tteeagtatt teatgtaett ggtggtggea
                                                                    1020
gtcaacgggg tctggatcct cgtggagaca tttatgctga aaggtgggaa cttcttctcc
                                                                    1080
aagcacgtgc cctggagtta cctcgtcttt ctaactatct atggggtgga gctgttcctg
                                                                    1140
aaggttgeeg geetgggeee tgtggagtae ttgtetteeg gatggaactt gtttgaette
                                                                    1200
teegtgacag tgttegeett cetgggactg etggegetgg ceetcaacat ggageeette
                                                                    1260
tatttcatcg tggtcctgcg cccctccag ctgctgaggt tgtttaagtt gaaggagcgc
                                                                    1320
taccgcaacg tgctggacac catgttcgag ctgctgcccc ggatggccag cctgggcctc
                                                                    1380
accetgetea tettttaeta etcettegee ateqtqqea tqqaqttett etqeqqqate
                                                                    1440
gtetteecca actgetgeaa caegagtaca gtggeagatg cetacegetg gegeaaceae
                                                                    1500
accgtgggca acaggaccgt ggtggaggaa ggctactatt atctcaataa ttttgacaac
                                                                    1560
atcetcaaca getttgtgae cetgtttgag etcacagttg teaacaactg gtacateate
                                                                    1620
atggaaggcg teacetetea gaceteceae tggageegee tetactteat gacettttae
                                                                    1680
attgcgacca tggtggtgat gacgatcatt gtcgccttta tcctcgaggc cttcgtcttc
                                                                    1740
cgaatgaact acagccgcaa gaaccaggac tcggaagttg atggtggcat cacccttgag
                                                                    1800
aaggaaatet ccaaagaaga getggttgee gteetggage tetaceggga ggeacggngg
                                                                    1860
gcctcctcgg atgtcaccag gctgctggag accetctccc agatggagag ataccagcaa
                                                                    1920
ca
                                                                    1922
```

<210> 418

<211> 1909

<212> DNA

<213> Homo sapiens

<400> 418

tttcgtgggg attgtcccag aaagtgtaag agcagaatat tctccagaat tatggctttg 60 tggaaaaggc ctcgaaagga cgcggaacag ctgccatcac ccgctctcta tccctgtgca 120 cettagagea tggteagett etgeggtgea tgageeecca geaettaetg etgaetetee 180 ctctgcccct caggtcaccc atcctcttca gtcatactgc tcagcttctt gtcttaacaa 240 gaattgettt cegggettgt gaattatttt tetttgteat ggtttettta tgttgeecag 300 gaatccattc cttcattgcc acaatcacct atgagagaaa cgccttccaa agcatttcat 360 cagtacagca acaacatete caetttggat gtgcactgte tececeaget eccagagaaa 420 gettetecce etgeeteace acceategee tteceteetg ettttgaage ageceaagte 480 gaggccaagc cagatgagct gaaggtgaca gtcaagctga agcctcggct aagagctgtc 540 catggtgggt ttgaagattg caggccqctc aataaaaaat ggagaggaat gaaatgqaaq 600 aaaqqqaaqa tttatattqq aacccctaac qqqacactta aaacaccttt qqqaqqatqa 660 aatagatgat tetetaaaga aattgggeac tteeettaaa eetgateetg tgeecaaaga 720 ctatcggaaa tgttgctttt gtcatgaaga aggtgatgga ttgacagatg gaccagcaag 780 getactcaac cttgacttgg atctgtgggt ccacttgaac tgcgctctgt ggtccacgga 840 ggtctatgag actcaggctg gtgccttaat aaatgtggag ctagctctga ggagaggcct 900 acaaatgaaa tgtgtcttct gtcacaagac gggtgccact agtggatgcc acagatttcg 960 atgcaccaac atttatcact tcacttgcgc cattaaagca caatgcatgt tttttaagga 1020 caaaactatg ctttgcccca tgcacaaacc aaagggaatt catgagcaag aattaagtta 1080 ctttgcagtc ttcaggaggg tctatgttca gcgtgatgag gtgcgacaga ttgctagcat 1140 cgtgcaacga ggagaacggg accatacett tcgcgtgggt agcctcatet tccacacaat 1200 tggtcagctg cttccacagc agatgcaagc attccattct cctaaagcac tcttccctgt 1260 gggctatgaa gccagccggc tgtactggag cactcgctat gccaataggc gctgccgcta 1320 cctgtgctcc attgaggaga aggatgggcg cccagtgttt gtcatcagga ttgtggaaca 1380 aggccatgaa gacctggttc taagtgacat ctcacctaaa ggtgtctggg ataagatttt 1440 ggagcctgtg gcatgtgtga gaaaaaagtc tgaaatgctc cagcttttcc cagcgtattt 1500 aaaaggagag gatctgtttg gcctgaccgt ctctgcagtg gcacgcatag cggaatcact 1560

```
tectggggtt gaggcatgtg aaaattatac cttccgatac ggccgaaatc ctctcatgga 1620
acctcctctt gccgttaacc ccacaggttg tgcccgttct gaacctaaaa tgagtgccca 1680
tgtcaagagg tttgtgttaa ggcctcacac cttaaacagc accagcacct caaagtcatt 1740
tcagagcaca gtcactggag aactgaacgc accttatagt aaacagtttg ttcactccaa 1800
gtcatcgcag taccggaaga tgaaaactga atggaaatcc aatgtgtatc tggcacggtc 1860
tcggattcag gggctgggcc tgtatgcttg ctcgagacat tgagaaaca 1909
```

<210> 419 <211> 4326 <212> DNA <213> Homo sapiens

<400> 419

gaaattttga aagctgctgt gaggaggagc tactgactgg gttttggggt gttttgtacc 60 ceaccetect caettgtagg aaagcetett tgeatttaga egtaattgaa etggaaggaa 120 ggagactggc cagggaatag ggggaaagaa atteteeegt tgeteeteet actgtttate 180 acttgcctcc ggactgtctt ccaaaccaag ctcagctgca tcaaggtggc agcagaatac 240 cctgtgcaag tgccagcgtc ttcttagccg ctctgtgcat cccaggctgc cctgttatct 300 ggccaccgtc cctggccatt gggactgctt ctgatggctc tggcctctgc tgccccaggg 360 ageatettet gtaageaget eettttetet eteetggttt taacattaet ttgegatget 420 tgtcagaaag tttatcttcg agttccttct catcttcagg ctgaaacact tgtaggcaaa 480 gtgaatctgg aggagtgtct caagtcggcc agcctaatcc ggtccagtga ccctgccttc 540 agaattctag aagatggctc aatttacaca acacatgacc tcattttgtc ttctgaaagg 600 aaaagttttt ccattttcct ttcagatggt cagagacggg aacaacaaga gataaaagtt 660 gtactgtcag caagagaaaa caagtctcct aagaagagac ataccaaaga cacagccctc 720 aagcgcagca agagacgatg ggctcctatt ccagcttcat tgatggagaa ctcgttgggt 780 ccatttccac aacacgttca gcagatccaa tctgatgctg cacagaatta caccatcttt 840 tattccataa gtgggccagg cgtggacaaa gaacccttca atttgtttta catagagaaa 900 gacactgggg atatcttttg tacaaggagc attgaccgtg agaaatacga acagtttgcg 960 ttatatggct atgcaacaac tgcagatggc tatgcaccag aatatccact ccctttgatc 1020 atcaaaattg aagatgataa tgataacgcc ccatattttg aacacagagt gactatcttt 1080 actgtgcctg aaaattgccg atccggaact tcagtgggaa aagtgaccqc cacagacctt 1140 gacgaacctg acacteteca tactegtetg aaatataaaa tettacaaca aateccagat 1200 catccaaagc atttctccat acacccagat accggtgtca tcaccacaac tacacctttt 1260 ctggatagag aaaaatgtga tacttaccag ttaataatgg aagtgcgaga catgggtggt 1320 cagcettteg gtttatttaa tacaggaaca attactattt caettgagga tgaaaatgae 1380 aatccaccat ctttcacaga aacttcttat gttacagaag tagaagaaaa cagaattgac 1440 gtggagattt tgcgaatgaa ggtacaggat caggatttgc caaacactcc tcactcaaag 1500 gctgtataca aaatcttaca aggaaatgaa aatggaaact tcataattag cacaqatcca 1560 aatacaaatg aaggagtgct gtgtgttgtc aagccattqa actatgaagt caatcqccaa 1620 gttattttgc aagttggtgt cattaacgag gcacaattct ctaaagcagc gagctcacaa 1680 actoctacaa tgtgcactac aactgtcacc gttaaaatta tagacagtga tgagggccct 1740 gaatgccacc ctccagtgaa agttattcag agtcaagatg gcttcccagc tggccaagaa 1800 ctccttggat acaaagcact ggacccggaa atatccagtg gtgaaggctt aaggtatcag 1860 aagttagggg atgaagataa ctggtttgaa attaatcaac acactggcga cttgagaact 1920 ctaaaagtac tagatagaga atccaaattt gtaaaaaaca accaatacaa tatttcagtt 1980 gttgcagggg atgcagttgg ccgatcttgc actggaacat tagtagttca tttggatgat 2040 tacaacgatc acgcacctca aattgacaaa gaagtgacca tttgtcaaaa taatgaggat 2100 tttgttgttc tgaaacctgt agatccagat ggacctgaaa atggaccacc ttttcaattc 2160 tttctggata attctgccag taaaaactgg aacataaaaa aaaaggatgg taaaactgcc 2220 attettegte aacggcaaaa tettgattat aactattatt etgtgeetat teaaataaaa 2280 gacaggcatg gtttagttgc aacacatatg ttaacagtga gagtatgtga ctgttcaact 2340 ccatctgagt gtacaatgaa ggataaaagt acaagagacg ttagaccaaa tgtaatactt 2400 ggaagatggg ctattcttgc tatggtgttg ggttctgtat tgctattatg tattctgttt 2460 acatgtttct gtgtcactgc taagagaaca gtcaagaaat gttttccaga agacatagcc 2520 cagcaaaatt taattgtatc aaatactgaa ggacctggag aagaagtaac qqaagcaaat 2580

```
attagactcc ccatgcagac atccaacatt tgtgacacaa gcatgtctgt tggtactgtt
ggtggccagg gaatcaaaac acagcaaagt tttgagatgg tcaaaggagg ctacactttg
                                                                    2700
gattccaaca aaggaggtgg acatcagacc ttggagtccg tcaagggagt ggggcaggga
                                                                    2760
gatactggca gatatgcgta cacggactgg cagagtttca cccaacctcg gcttggcgaa
                                                                    2820
gaatccatta gaggacacac tctgattaaa aattaaacag taaaagaagg tgtatttgtg
                                                                    2880
tggacaagat gaggagcata aacattgtga agactacgtt tgttcgtata actatgaagg
                                                                    2940
caaaggttct ctggccggct cagtaggttg ctgcagcgat cggcaggaag aagagggact
                                                                    3000
ggagtttcta gatcacctgg aacccaaatt taggacatta gcaaagacat gcatcaagaa
                                                                    3060
ataaatgtgc cttttaatag tgtaatatcc acagatgcat aagtaggaat ttattacttg
                                                                    3120
cagaatgtta gcagcatctg ctaatgtttt tgtttatgga ggtaaacttt gtcatgtata
                                                                    3180
ggtaagggta ctataaatat gagattcccc tacattctcc ttgtctggta taacttccat
                                                                    3240
gttctctaga aatcaaggtt ttgtttgtta attctctttt atatgcatgt atatattgcc
                                                                    3300
cttttcacga ctgtactgta caccttcttg caccttttat ttgcaaactg atgttacttt
                                                                    3360
ttgtgctgtg gaagagcatt tgggaaagct gggtattata gaggccaatg aaaqatqaat
                                                                    3420
ttgcattgta gatgtacgaa ttaaatatgt tcttcaaaat cttggggaga attatgttct
                                                                    3480
tagaacatag ttggtgccag ataattgcat tctctccacc tgagtggttt aaaaaggact
                                                                    3540
tttaagtatt cttcagtgca atcttcagtt ttgtgattaa gttcatttct cttttacact
                                                                    3600
tttgtactcc tcagagcagt getcccagca ttgttttctt tcaggatcct tcagagctca
                                                                    3660
gtccctggac ctctgcccat gtggatttgt tgttaggtca ctccaacttc taaqqttctt
                                                                    3720
ggaaagataa ggaccagaac aagctcatag caaattgagg ggcagagatt ttatgaagat
                                                                    3780
tacatgagaa gatttccatg aaagaattgc agccctgagg tccatgggtt gacttatgct
                                                                    3840
cacaaatatg tttcgtttgc tcaacatggt ttactactaa cattttaaaa atataaatac
                                                                    3900
tttagcaaaa acattcactc ttgagtttga cataggcctg ccttatctgt ggttgccacc
                                                                    3960
tgccatctcc aagcatttgg acaactagcc ctgatgcatt aggctgcaac tctgatatac
                                                                    4020
agagactage accttgaata tgccagaaat tgaattacca tctgtattag aacttaagac
                                                                    4080
tcagcctaaa tttacagtta ctttaagaaa atgggcagtc agaattaqqq actaqaatqt
                                                                    4140
atatgagaaa cccccactct actaaaaata taagaaatta gccggacatg gtggcgaatg
                                                                    4200
actgtaatcc cagctactca ggaggctgag gcaggagaat cgcttgaatc caggaggcgg
                                                                    4260
aggttgcagt gagccgagat tgccactgca ctccagcctg ggcaacaaga gcqaaactcc
                                                                    4320
gtctca
                                                                    4326
```

<210> 420 <211> 2815 <212> DNA <213> Homo sapiens

<400> 420

atttectece gttetttate agageeecea aaataagtag gaatgggeag tggetattea 60 catteactac accttttcca tttgctaata aggecetgee aggetqqqaq qqaattqtee 120 ctgcctgctt ctggagaaag aagatattga caccatctac gggcaccatg gaactgcttc 180 aagtgaccat tetttttett etgeecagta tttgeageag taacagcaca ggtgttttag 240 aggcagctaa taattcactt gttgttacta caacaaaacc atctataaca acaccaaaca 300 cagaatcatt acagaaaaat gttgtcacac caacaactgg aacaactcct aaaggaacaa 360 tcaccaatga attacttaaa atgtctctga tgtcaacagc tactttttta acaagtaaag 420 atgaaggatt gaaagccaca accactgatg tcaggaagaa tgactccatc atttcaaacg 480 taacagtaac aagtgttaca cttccaaatg ctgtttcaac attacaaagt tccaaaccca 540 agactgaaac tcagagttca attaaaacaa cagaaatacc aggtagtgtt ctacaaccag 600 atgcatcacc ttctaaaact ggtacattaa cctcaatacc agttacaatt ccagaaaaca 660 cctcacagtc tcaagtaata ggcactgagg gtggaaaaaa tgcaagcact tcagcaacca 720 gccggtctta ttccagtatt attttgccgg tggttattgc tttgattgta ataacacttt 780 cagtatttgt tctggtgggt ttgtaccgaa tgtgctggaa ggcagatccg ggcacaccag 840 aaaatggaaa tgatcaacct cagtctgata aagagagcgt gaagcttctt accgttaaga 900 caatttetca tgagtetggt gagcaetetg cacaaggaaa aaccaagaac tgacagettg 960 aggaattete tecacaceta ggeaataatt acgettaate tteagettet atgeaceaag 1020 cgtggaaaag gagaaagtcc tgcagaatca atcccgactt ccatacctgc tgctggactg 1080 taccagacgt ctgtcccagt aaagtgatgt ccagctgaca tgcaataatt tqatqqaatc 1140

```
aaaaagaacc ccggggctct cctgttctct cacatttaaa aattccatta ctccatttac
                                                                  1200
aggagcgttc ctaggaaaag gaattttagg aggagaattt qtgagcagtq aatctgacag
                                                                  1260
eccaggaggt gggetegetg ataggeatga ettteettaa tgtttaaagt ttteegggee
                                                                  1320
aagaattttt atccatgaag actttcctac ttttctcggt gttcttatat tacctactqt
                                                                  1380
tagtatttat tgtttaccac tatgttaatg cagggaaaag ttgcacqtgt attattaaat
                                                                  1440
attaggtaga aatcatacca tgctactttg tacatataag tattttattc ctgctttcgt
                                                                  1500
gttactttta ataaataact actgtactca atactctaaa aatactataa catgactgtg
                                                                  1560
aaaatggcaa tgttattgtc ttcctataat tatgaatatt tttggatgga ttattagaat
                                                                  1620
acatgaactc actaatgaaa ggcatttgta ataagtcaga aagggacata cgattcacat
                                                                  1680
atcagactgt tagggggaga gtaatttatc agttctttgg tctttctatt tqtcattcat
                                                                  1740
actatgtgat gaagatgtaa gtgcaagggc atttataaca ctatactgca ttcattaaga
                                                                  1800
taataggatc atgatttttc attaactcat ttgattgata ttatctccat gcatttttta
                                                                  1860
tttcttttag aaatgtaatt atttgctcta gcaatcattg ctaacctcta gtttgtagaa
                                                                  1920
aatcaacact ttataaatac ataattatga tattattttt cattgtatca ctgttctaaa
                                                                  1980
aataccatat gattatagct gccactccat caggagcaaa ttcttctgtt aaaagctaac
                                                                  2040
tgatcaacct tgaccacttt tttgacatgt gagatcaaag tgtcaagttg gctgaggttt
                                                                  2100
tttggaaagc tttagaacta ataagctgct ggtggcagct ttgtaacgta tgattatcta
                                                                  2160
agctgatttt gatgctaaat tatcttagtg atctaagggg cagtttagtg aagatggaat
                                                                  2220
cttgtattta aaataqcctt ttaaaatttq ttttqtqqtq atqtattttq acaacttcca
                                                                  2280
tctttaggag ttatataatc accttgattt tagtttcctg atgtttggac tatttataat
                                                                  2340
caaggacacc aagcaagcat aagcatatct atatttctga ctggtgtctc tttgagaagg
                                                                  2400
2460
ggatctccac tatgtatgtt ttcactttag aactgttgag cccatgctta attttaatct
                                                                  2520
agaagtettt aaatggtgag acagtgactg gagcatgeca atcagagage atttgtette
                                                                  2580
agaaaaaaaa aaaatctgag tttgagacta gcctggccaa catgttgaaa ccccatatct
                                                                  2640
actaaaaata caaaaattag cctggtgtgg tggcgcacgc ctgtagtccc agctactctg
                                                                  2700
gageetgagg aacgtgaate gettgaacee aaaaaacaga ggttgcagtg agetgagatg
                                                                  2760
gcactattgc actccagcct gggtgacaca gcaagactct gtctcaaaaa aaaaa
                                                                  2815
```

<210> 421

<211> 735

<212> DNA

<213> Homo sapiens

<400> 421

```
ggcacgagcg gcacgagtct tgacaggggt tggggagaca gcagattgaa caaggaaaga
                                                                      60
attggctcct gagttctttg atcatgttaa cttttattta ctgttgtata atcacatttt
                                                                     120
ctagactgct aaaattggtg aaatcaggac aggaaataac tgtttttacg tgtataagta
                                                                     180
tacaaaagtt attegagatg agttacactg catttettte agtgtgetge etgecactge
                                                                     240
tgcctttgtg tgattttgct ctatatgttc tgctagacaa atttaaggga ggtttcagac
                                                                     300
agcaaaactc cccccaaagc atctaccagc ataatcccta tcaaaatccc aacaacgttt
                                                                     360
taattttttt gcagaagtgg aaaaaccgat gttaaaattc atatggaatt gcccgggtgc
                                                                     420
ggtggctcac gcctgtaatc ccggcatttt gggagactga atcaggcaga tcacttqagq
                                                                     480
tcaggaggtc cagaacagcc cgacccacat ggtgaaaccc cttggcttac taaaatatca
                                                                     540
aaatttagcc ccgattgtgg cggctttgtc cctcgtaact ccccctaact tttattgctt
                                                                     600
caaagcogga ccacttcccc tggaaccctt cgccactcgg cccggttccc cacgtcttcc
                                                                     660
ctgaatgccc tecetette aatttteaca etetgtgett gattaceeet tteceaettg
                                                                     720
tccatcccc acatc
                                                                     735
```

<210> 422

<211> 2168

<212> DNA

<213> Homo sapiens

```
<400> 422
tttatttcag gtcccgggct cgagacggcg gcgcgtgcag cagctccaga aagcagcgag
                                                                      60
ttggcagage agggetgcat ttccagcagg agetgegage acagtgetgg etcacaacaa
                                                                     120
gatgctcaag gtgtcagccg tactgtgtgt gtgtgcagcc gcttggtgca gtcagtctct
                                                                     180
cgcagctgcc gcggcggtgg ctgcagccgg ggggcggtcg gacggcggta attttctgga
                                                                     240
tgataaacaa tggctcacca caatctctca gtatgacaag gaagtcggac agtggaacaa
                                                                     300
attccgagac gaagtagagg atgattattt ccgcacttgg agtccaggaa aacccttcga
                                                                     360
tcaggcttta gatccagcta aggatccatg cttaaagatg aaatgtagtc gccataaagt
                                                                     420
atgcattgct caagattctc agactgcagt ctgcattagt caccggaggc ttacacacag
                                                                     480
gatgaaagaa gcaggagtag accataggca gtggaggggt cccatattat ccacctgcaa
                                                                     540
gcagtgccca gtggtctatc ccagccctgt ttgtggttca gatggtcata cctactcttt
                                                                     600
tcagtgcaaa ctagaatatc aggcatgtgt cttaggaaaa cagatctcag tcaaatgtga
                                                                     660
aggacattgc ccatgtcctt cagataagcc caccagtaca agcagaaatg ttaagagagc
                                                                     720
atgcagtgac ctggagttca gggaagtggc aaacagattg cgggactggt tcaaggccct
                                                                     780
tcatgaaagt ggaagtcaaa acaagaagac aaaaacattg ctgaggcctg agagaagcag
                                                                     840
attogataco agcatottgo caatttgoaa ggactoactt ggotggatgt ttaacagact
                                                                     900
tgatacaaac tatgacctgc tattggacca gtcagagctc agaagcattt accttgataa
                                                                     960
gaatgaacag tgtaccaagg cattettcaa ttettgtgac acatacaagg acagtttaat
                                                                    1020
atctaataat gagtggtgct actgcttcca gagacagcaa gacccacctt gccagactga
                                                                    1080
gctcagcaat attcagaagc ggcaaggggt aaagaagctc ctaggacagt atatccccct
                                                                    1140
gtgtgatgaa gatggttact acaagccaac acaatgtcat ggcagtgttg gacagtgctg
                                                                    1200
gtgtgttgac agatatggaa atgaagtcat gggatccaga ataaatqqtq ttqcaqattq
                                                                    1260
tgctatagat tttgagatct ccggagattt tgctagtggc gattttcatg aatggactga
                                                                    1320
tgatgaggat gatgaagacg atattatgaa tgatgaagat gaaattgaag atgatgatga
                                                                    1380
agatgaaggg gatgatgatg atggtggtga tgaccatgat gtatacattt aattgatgac
                                                                    1440
agttgaaatc aataaattct acatttctaa tatttacaaa aatgatagcc tatttaaaat
                                                                    1500
tatcttcttc cccaataaca aaatgattct aaacctcaca tatattttgt ataattattt
                                                                    1560
gaaaaattgc agctaaagtt atagaacttt atgtttaaat aagaatcatt tgctttgagt
                                                                    1620
ttttatattc cttacacaaa aagaaaatac atatgcagtc tagtcagaca aaataaagtt
                                                                    1680
ttgaagtget actataataa gtttttcacg agaacaaact ttgtaaatet tecataagca
                                                                    1740
aaatgacagc tagtgcttgg gatcgtacat gttaattttc tgaaagataa ttctaaqtga
                                                                    1800
aatttaaaat aaataaattt ttaatgacct gggtcttaag gatttaggaa aaatatgcat
                                                                    1860
getttaattg catttecaaa gtageatett getagaeeta gttgagteag gataacagag
                                                                    1920
agataccaca tggcaagaaa aacaaagtga caattgtaga gtcctcaatt gtgtttacat
                                                                    1980
taatagtggt gtttttacct atgaaattat tctggatcta ataggacatt ttacaaaatg
                                                                    2040
gcaagtatgg aaaaccatgg attctgaaag ttaaaaattt agttgttctc cccaatgtgt
                                                                    2100
attttaattt ggatggcagt ctcatgcaga ttttttaaaa gattctttaa taacatgatt
                                                                    2160
tgtttgcc
                                                                    2168
```

```
<210> 423
<211> 2013
<212> DNA
<213> Homo sapiens
```

<400> 423 ctttttgtaa ggaggttgtc ccaataagtc cccccccaa aaaaaaggtt cttttccaaa 60 atteccaggt aggttttaat aaggeeece ataaggaaaa aaattttaee ttgecageee 120 cegttaaatt tggcccccc aagggttett ttaaacggcc ccccttttt tttttttttg 180 gagacggagt cttgctctgt caccaaggct ggagtgcagt ggcacgatct tggcttactg 240 caacctctgc ctcctgggtt caagcaattc tcctgcctca gcctcccaag tagctgggac 300 tacaggegea egececeaca eccagetaat ttttgtattt etagtagaga eggggtttea 360 ccatgttggc caggatggtc tcaatctttt gacctcatga tccacccgcc tcggcgtccc 420 aaagegttgg gattacagge atgagecace geacceggee teaetteaag aattttttac 480 aagcacagaa actatatete agtgtatgat aactgttaet ataatactat attgtattat 540 aaatatacaa geteatttga gtgtgtgata getecaetae etecaecaag etttaggaat 600

```
atatataatc tactttqaac ccaaaagcca cagaaqcaqt qacaacqacq ctaaqaaqca
                                                                     660
gaaagagtat atggttagta gaaactatet ggcatettge teacetgaae tacacetaaa
                                                                     720
gtgctgttat ttcccgtaca tgcacttttc cattatgttc ttcacaaagg ctcacctctt
                                                                     780
ttecataagc caccatgccc agtccacaaa ccaaattatt tttaatgttc aacagaaaag
                                                                     840
aaaggtagca acaagtteet tatttttgtt aatteettgt ttettgtaat aaagagtate
                                                                     900
acttectete accaaaaage tatagagett etgatgaaat teaactgtte aaaaggttta
                                                                     960
cctcttttcc aggggtaggt gtgattaaac agctggcatt tcttcttaac aaagtaatga
                                                                    1020
aaaggcaatt actaaaaaat cagcattgta ttaccagaaa ggcaagtcat ttcataaaat
                                                                    1080
aagaactgga gagttttaaa tccatattca ttaagaagct aaaaaattca tactaatttt
                                                                    1140
taaccactta gagttttgac tcacaataat caaaccactt tccagtttat aaataattca
                                                                    1200
agatcaaaat aataaatttt aaaattaagc aaaatttgaa aaacttacat ataaatatca
                                                                    1260
aaaaccatgc aacatgacgt ctgctacttg gaaaaaaggc atggagacac agtaataccg
                                                                    1320
gaataaggat ttcaacatat gacataatgg cataaggcac tacctcaact tcagtctaca
                                                                    1380
cttgagtcat cataacccaa atatgggaca ggagaagaaa acacacaaac acaacttttc
                                                                    1440
acatectttt ggetggtetg geagttaact gettttetet tteaaactee ttetetegtt
                                                                    1500
getgeteect ttecaactet tetttttgee tettetgetg cagtttaagt getetttttt
                                                                    1560
ttaactttga tgttttttca tgaagcatca gcatctcttt tcttatattc accaacttgg
                                                                    1620
catgatagtg tttagcctca gcaaacaaag cattaatatc caacatagaa tgacattctt
                                                                    1680
taaattttga aatctcttgt tccagtgtgt ctaacaatac aacttggttc tgtgtgagtt
                                                                    1740
cctggagggc ttgttttgat ctctgcagat ctggcaaata atgagaaagc aatccttctg
                                                                    1800
ccagttgctc cactgctttg tcttctatag tcaagtcctc tattaaccct tcatctggag
                                                                    1860
aagtgtcact taaaccaggc gtcggctccc cggcctccag gcagtagggt ggccqtgtca
                                                                    1920
gggccccgtc cggagacgac ggcccaggga cactcatgtc cctccagctg ggaacacagg
                                                                    1980
gaagaagcaa acgtgtggct cgtcagaagc aag
                                                                    2013
```

<210> 424

<211> 985

<212> DNA

<213> Homo sapiens

<400> 424

```
ttttttttt ttaattgcaa aaattttaac caagacctaa ttgttgcaac aaatgaaaaa
                                                                      60
gtgcaaacag gctgggcgtg gtagctcaca ccctgtaatc cctagcactt tgggaggcca
                                                                     120
aggegggeag atcatttgag teceaggagt teaagaceag eeetggggaa caeggegaaa
                                                                     180
teceatetet acaaaaaata caaagettag etgggtatgg tggcatatgt etgtagteee
                                                                     240
agctatgagg gaggetgagg tgggaggatc gctggagcct gggaggtcga ggctgcccct
                                                                     300
gagetgagat tgtgtcactg cettccacce eggtgacaga gtgagaccca atetecccca
                                                                     360
aaaaaaaaga aaggaaaaga aaaagtgcaa acatgattaa aaaaaaaggt actggtctct
                                                                     420
ccttaccatc ataagggatt caaagttaac aagctttgcg aatgtcctcc aggtttataa
                                                                     480
aaatatata aaacatatga tatggaatta aaggggtttt ggttgtgttt atttctqcga
                                                                     540
tttgtcaaat ggtttgttaa taaagggatg atactatgta cattgttcta taacttgatt
                                                                     600
tattcacttt ataatatgtq ctgqacaqta ctctqqatta qqaaatatca aactctcttq
                                                                     660
aaggaatcat tettteett aaatacattt ttatteaaag acaaggeate aaettetatt
                                                                     720
cccctataat tgcttgccta gatcatattg acattactcc ctcctatcca gctcgccgcg
                                                                     780
accetttact tettactece catetaceeg cetaceacta ttatacetta tattetatta
                                                                     840
tactetecce etttatacet ectatgecaa egetetttte tteetggata etetteteet
                                                                     900
tecteaacat getateaate gettecacat ettacaatet caaaacatag acatettett
                                                                     960
ctccaatcat cctcactaag gcctc
                                                                     985
```

<210> 425

<211> 948

<212> DNA

<213> Homo sapiens

```
<400> 425
tcgacgattt cgtgcccatt ggtgcttggg aaccacccca gtttccccat cgtctgtgct
                                                                      60
gctgcagatt ggttggggca gcccggggag gctggctccg acacacgact gagtgtgcct
                                                                     120
acactggtcc cacaggtttt cagctgtgga gtttgggatc tgagcttgga gcccatttgt
                                                                     180
ttctggcagt tccgctcata ttttccactt gaagacatcg cctcccttcc ttccaagctg
ggagaccaga agtcaacaac aggagggtgg agaggccggg tctcacaatc cgcttggctg
                                                                     300
gggagtccac tgaggttctt gcatcctgaa gcaaaccatg gagagctggt ggggacttcc
                                                                     360
ctgtcttgcg ttcctgtgtt ttctaatgca cgcccgaggt caaagagact ttgatttggc
                                                                     420
agatgccctt gatgaccctg aacccaccaa gaagccaaac tcagatatct acccaaagcc
                                                                     480
aaaaccacct tactacccac agcccgagaa tcccgacagc ggtggaaata tctacccaag
                                                                     540
gccaaagcca egccetcaac eccageetgg caatteegge aacagtggag gtagttactt
                                                                     600
caatgatgtg gaccgtgatg acggacgcta cccgcccagg cccaggccac ggccgcctgc
                                                                     660
aggaggtggc ggcggtggct actccagtta tggcaactcc gacaacacgc acggtggaga
                                                                     720
tcaccattca acgtatggca atccagaagg caatatggta gcaaaaatcg tgtctcccat
                                                                     780
cgtatccgtg gtggtggtga cactgctggg agcagcagcc cagttatttc aaactaaaca
                                                                     840
ataggagaaa ttgtttcagg acccatgaac cagaaaatgt ctgaagatgt taagatcccc
                                                                     900
tgattacttt gagaaaaaca actaaaacaa gaaccgtgtt taaaaaaa
                                                                     948
     <210> 426
    <211> 715
     <212> DNA
     <213> Homo sapiens
     <400> 426
gcgcgcccaa tcgagaatcg agacctatgg ccgagtggtg gaattcggcg gcctcagact
tectectgag ggeaacaggt ttttagetgg ggaggaccat gaccaaatet geettteeca
                                                                     120
gtcacctctc tgatctcttt gatgcagtgt agatctgtgc ttagcaaact cagaaggccc
                                                                     180
tgtcaccacc aggaaggaag agaccccacg actgagggca gtgggctatg agatttgtga
                                                                     240
ccetttecte tgcctgcctc tgcccctgcc cattgggacc ctgctggacc aggcatccat
                                                                     300
cctatggaaa tctccatgaa gcgtcgacct ccctgccccc caggcattgg acaggggcca
                                                                     360
ggaaatggaa tgaaagcagc cactgtctga agagctggag accatcatct gcctctggaa
                                                                     420
gcccagagaa cctcggctca gacagaagga cagagactga gggaagggag agagactgtg
                                                                     480
acagagaagc agaggaggt gacagagtca gggaggaaca aaacagcctg cagtgggagc
                                                                     540
agagacagaa atgtggggga cccacaggga gggagggag ggaagggag ggacggaggg
                                                                     600
agggacaact gcccgtccaa gtggctgtga gagccctggg gctggggaga ggcaccctcc
                                                                     660
tcctgttggc ttctcataca ggctctatca ggggacccag ggaacaagta agctc
                                                                     715
    <210> 427
     <211> 531
     <212> DNA
    <213> Homo sapiens
    <400> 427
tttcgtgcag ggtcgggagc atgtacattt cggagagctc tggttgctcc gtcatagaag
                                                                      60
ccatgctcca catcctgtaa gtgagagact ccccagcagc gttcagccat agctgcgatg
                                                                     120
tcaggcctgt cactagtggg actgcccgga cccccaaggt atgggtacac ggcgagggtg
                                                                     180
ctggtgttaa atacagggga cccacaaaac cacctagcag aacaatccac atgaccctgt
                                                                     240
cgtgtgaccc agaacatttc agggatggaa cacggaccag ctgaccttag cgtggtcgct
                                                                     300
ggettgetet ggaaggtgee gttteeaaga egeeettaee tgggtteetg ageaegtetg
                                                                     360
acagageage tetgaeteeg ggtttetgga gteagaeece ttgeeaettg teetteettg
                                                                     420
acctttagct ttgggttccc cttctcagtt tgtttgtttg tttgtttatt ctcactctgt
                                                                     480
cactcaggct ggagtgcagt gttacaatct cggctcactg caaccggatc c
                                                                     531
```

<210> 428 <211> 5826 <212> DNA <213> Homo sapiens

<400> 428 tttcgtgtga aacctggccc ttcagttctc aagggccctt tggaacatat ttgactctaa 60 gcagaggtca ctattccaag agtgactcat gtcttggggt taagtggaga tgatggtgg 120 gatccatgaa cagatccagc tetteccaat gtggggggca ccagagtgca tagettggga 180 gggttggtca tccgaagagg cactgcgtgg gtgcatcccg ggcaaaaagg atgagaaggt 240 gatccactgg cttccatacc ctgggaaagg tgtcagaccg tgaggtcaca tcaaaaggtc 300 ctacttgaag tecatcatgt cetteggeag agacatggag etggageact tegacqaqeq 360 ggataaggcg cagagataca gccgagggtc gcgggtgaac ggcctgccga gcccgacgca 420 cagegeeeae tgeagettet acegeaeeeg caegetgeag acgeteaget cegagaagaa 480 ggccaagaaa gttcgtttct atcgaaacgg agatcgatac ttcaaaggga ttgtgtatgc 540 catctcccca gaccggttcc gatcttttga ggccctgctg gctgatttga cccgaactct 600 gtcggataac gtgaatttgc cccagggagt gagaacaatc tacaccattg atgggctcaa 660 gaagatttcc agcctggacc aactggtgga aggagagagt tatgtatgtg gctccataga 720 gcccttcaag aaactggagt acaccaagaa tgtgaacccc aactggtcgg tgaacgtcaa 780 gaccacctcg getteteggg eagtgtette aetggeeaet gecaaaggaa gecetteaga 840 ggtgcgagag aataaggatt tcattcggcc caagctggtc accatcatca gaagtggcgt 900 gaagccacgg aaagctgtca ggattctgct gaacaagaaa acggctcatt cctttgagca 960 ggtcctcacc gatatcaccg atgccatcaa gctggactcg ggagtggtga aacgcctgta 1020 cacgttggat gggaaacagg tgatgtgcct tcaggacttt tttggtgatg atgacatttt 1080 tattgcatgt ggaccggaga agttccgtta ccaggatgat ttcttgctag atgaaagtga 1140 atgtcgagtg gtaaagtcca cttcttacac caaaatagct tcatcatccc gcaggagcac 1200 caccaagage ccaggacegt ccaggegtag caagteeect geetecacea geteagttaa 1260 tggaacccct ggtagtcagc tctctactcc gcgctcaggc aagtcgccaa gcccatcacc 1320 caccagecca ggaageetge ggaageagag gageteteag eatggegget eetetaegte 1380 acttgcgtcc accaaagtct gcagctcgat ggatgagaac gatggccctg gagaagaagt 1440 gtcggaggaa ggcttccaga ttccagctac aataacagaa cgatataaag tcggaagaac 1500 aataggagat ggaaattttg ctgttgtcaa ggaatgtgta gaaagatcga ctgctagaga 1560 gtacgctctg aaaattatca agaaaagcaa atgtcgaggc aaagagcaca tgatccagaa 1620 tgaagtgtct attttaagaa gagtgaagca tcccaatatc gttcttctga ttgaggagat 1680 ggatgtgcca actgaactgt atcttgtcat ggaattagta aaggggggag acctttttga 1740 tgccattact tccactaaca aatacaccga gagagacgcc agtgggatgc tgtacaacct 1800 agccagegee ateaaatace tgeatageet gaacategte cacegtgata teaagecaga 1860 gaacctgctg gtgtatgagc accaagatgg cagcaaatca ctgaagctgg gtgactttgg 1920 actggccacc attgtagacg gcccactgta cacagtctgt ggcaccccaa catacgtggc 1980 tccagaaatc attgcagaga ctggatacgg cctcaaggtg gacatctggg cagcaggtgt 2040 aatcacttat atcctgctgt gtggtttccc tccattccgt ggaagtggtg atgaccagga 2100 ggtgcttttt gatcagattt tgatggggca ggtggacttt ccttctccat actgggataa 2160 tgtttccgat tctgcaaagg agctcattac catgatgctg ttggtcgatg tagatcagcg 2220 attttctgct gttcaagtac ttgagcatcc ctgggttaat gatgatggcc tcccagaaaa 2280 tgaacatcag ctgtcagtag ctggaaagat aaagaagcat ttcaacacag gccccaagcc 2340 gaatagcaca gcagctggag tttctgtcat agcactggac cacgggttta ccatcaagag 2400 atcagggtct ttggactact accagcaacc aggaatgtat tggataagac caccgctctt 2460 gataaggaga ggcaggtttt ccgacgaaga cgcaaccagg atgtgaggag ccggtacaag 2520 gcgcagccag ctcctcccga actcaactcg gaatcggaag actactcccc aagctcctcc 2580 gagactgttc gctcccctaa ctcgcccttt taataagacc cttttactca aagtcctagc 2640 ttaaccettt gagactetga gattttttte ceccaaattt gtgtaaaaca gttteatetg 2700 atctatctag cgctcaatgc ttgaatggca gaactgaaag tgttttcagg tatctttgta 2760 geggttteec tttactgaat aagatgacae gtggtgattg tgaagatggt aatttgetge 2820 taatagagtc ctcaaagggt taaggccaat ttgcaatttt tttttaaact tagaagcaat 2880 gaatgttttc atcagtcaag ctaggatctg cagtatgtaa tatagcactt gttaaccctc 2940

```
tgagtgcata gaattttatt gagaattett gtttgggaat ttttcaggee tttggatgta
                                                                    3000
tacacacatg tttcttgatt ttactgcaga tcaaggggtg ttgttagatg ctgaaatgtc
                                                                    3060
cagaaaagaa ggacatttag aatgatatct tgtttgtcct tttctgtggg tttagaacgt
                                                                    3120
ggcaggttta taacttagac acacgcacgg ttctttcttc ttcacaatcc tattcagaaa
                                                                    3180
cagatttttt ttttcattag agatatgact gtcagttgca gtgagttctg catcccaagt
                                                                    3240
ggagggaatt gggtttgtgg caaagagctt gacccaggaa atagatggtg ccccccaaat
                                                                    3300
tgtctccaca tgaagatgta ctgatgacgc cccagaaatg ctgcttccat atcagctgct
                                                                    3360
gctagcgcca gcgcagactc tcagggagtc accacagctt gtcttgtgct tggtgagtga
                                                                    3420
gggtctctct actcagtgtc agacatctac aggaaagaaa caactggtgg aaaagagcaa
                                                                    3480
taaattgccc ggtgctctgc agggctggaa tttcaaacag aaagagggaa taagatcctg
                                                                    3540
tgatttttct cacctgcttt tccacgcact gtggtcatca ctgtgcaatc tacatctagt
                                                                    3600
atgaaatcca cacataggag agctggggca caaggggact ggaggcagtt gctttqcaag
                                                                    3660
atggctgagg agaaagcaca ctggggaacac aatccagaat gttctaacaa taagttttca
                                                                    3720
gtgaataaac cactggcaag acaattccat gtgcaccttt aggttaccta tataqtctcc
                                                                    3780
taggaagatc aggatgaaag acctagatga tacccctgag gataaaacct ccatcccta
                                                                    3840
aaatgatttt ttttaaatac cactgtcttt agctgtccag gaggtcagag tgtttttct
                                                                    3900
gtctttgggc caagtcctgt ctgagacctg tattttcact cttgttacca aatctatctc
                                                                    3960
cetagtgeag tgteteeagg cetgagttte ttetggaaca gatteeattt tagaatgggg
                                                                    4020
atteacaggt tetgtgcate accaeagtge teagagagga tteteetggg gtgtettaga
                                                                    4080
ggcaggtgcc caactcaaat gtattcccaa ggtttgctgg gctctgggat ccacgagaca
                                                                    4140
accagagagg gatateteat gaaatttgea tetggtgget gaacagtace tatgttetet
                                                                    4200
gttttgaata tactttaata cctgagagtc ttaaaatttg tgaacaacgt ttctátagtc
                                                                    4260
ctttattttc aaatgcacgt tgatcttcac ttgctgcatt tttactcttc aaccctgaaa
                                                                    4320
ctatggtcta cattaatatg gatttttaaa tcacatgtca ttacttttqc aacaccatca
                                                                    4380
ccaaaatttt ttgctctttt acatttaggt tcatctctqt gqtctgtqtt qtcctqacat
                                                                    4440
gtaaaaagca tatcgtttat tgaggttttt ttccccccct tttagagcat ccggaagtga
                                                                    4500
taacacgcaa aatcacaaag tagcataaat cagtaaatta gttgagttgt ttttgggggg
                                                                    4560
gaggtggggg tagggggcac agaacaccag aaagagtgtt ggtgtgtagg tagattccat
                                                                    4620
attaatgagg aacactgaac tagttggaaa ttactgcttt ctctagaaat ataaagcaaa
                                                                    4680
geactattee aaggetatgg agtageteta cageetggee teaactetaa aagtgtgaag
                                                                    4740
aatgcaatgg gcagagacct acctgcagtg gactgtcatt ttcctttctt tctctqaatt
                                                                    4800
actgcttttt ctgtgggcat taactatatt gctacagcat ctagtgtact gagcctgcgg
                                                                    4860
tgcatggctc aggccttttc ccatcgacgt ctagggggac tctggaccgt gtgaagctag
                                                                    4920
ggggtgtttc tcagcacact gcagaagggc agctcagaag gaatggcagg ggccccattt
                                                                    4980
cagcatgggg gatccccagc acatcactgt agaatttaag tgatctatgc tgáataaaca
                                                                    5040
gtggaatgtg accagtcaag tagaaatctt gagtaatcag atggaatgca atctttctaa
                                                                    5100
cattaagcta ccaagatect gaatgteaga gatgtaetea gagggttaac agacaagcae
                                                                    5160
aaggcatgct gactacattg gtgtatccag attgctttgc ttttagccag tgctttctaa
                                                                    5220
tttttttctc gacattcttg ggatagttca agtttgaaat aattaagcgg ggggggtct
                                                                    5280
ttaaggaatt tetataaece aattgatett atttttgatt teeettatee tacaeceaat
                                                                    5340
atgtatcatt atggcagtgt atctatgtaa ttatcaattt aatcatcacc acgggtgttt
                                                                    5400
tecatatttt tteceaagta tttaatatag etetettatg gtggtggeet ggtgatgggg
                                                                    5460
acceptettte ttttactgac acatgaccaa teatatggta ttttcaaggg aattttaaga
                                                                    5520
ttcatctttt cagtttgata gtagactagt taaggaagaa ctctttcatt acttgcatcg
                                                                    5580
tgtaaatcat ctctgtagac atgtgttcat attaatgaac acattttttc tcaacattgt
                                                                    5640
agcagaaatc attttattcg tcatgatcaa tgaatatgtg atttgctcca gatcgttaga
                                                                    5700
aggaaaagta agatttcagt catcaaaaat gtttttaccg tagccctcat ctaacttaca
                                                                    5760
cgtggtgcat attaaaataa gcagagaaaa aaaaatgtga ataaacaact gaaaacaaaa
                                                                    5820
aaaaaa
                                                                    5826
```

```
<210> 429
<211> 569
<212> DNA
<213> Homo sapiens
<220>
```

<221> misc feature

<222> (1)...(569) <223> n = a,t,c or g<400> 429 cgcttccggt tctgacggac gcttcggccg taacgatgat cggagacatc ctgctgttcg 60 ggacgttgct gatgaatgcc ggggcggtgc tgaactttaa gctgaaaaag aaggacacgc 120 agggetttgg ggaggagtee agggageeea geacaggtga caacateegg gaattettge 180 tgagcctcag atactttcga atcttcatcg ccctgtggaa catcttcatg atgttctgca 240 tgattgtgct gttcggctct tgaatcccag cgatgaaacc aggaactcac tttcccggga 300 tgccgagtct ccattcctcc attcctgatg acttcaagaa tgtttttgac cagaaaaccg 360 acaaccttcc cagaaagtcc aagctcgtgg tgggtggaaa agtgttcgcc gaggtgtgca 420 tggtttccca gccacgtccc tgttttcaaa gatagtttca ctttggtctc tgaattgaaa 480 tgctgtctac tgaaagggtt ttcaggagcn tttattgtaa ggggctgtga tgaaattgca 540 ttcccctagg taaaaggaaa atcatttct 569 <210> 430 <211> 1958 <212> DNA <213> Homo sapiens <400> 430 caattcccgg gtcgacgatt tcgttttccc tctgttttat ttttcccccg tgtgtcccta 60 ctatggtcag aaagcctgtt gtgtccacca tctccaaagg aggttacctg cagggaaatg 120 ttaacgggag gctgccttcc ctgggcaaca aggagccacc tgggcaggag aaagtgcagc 180 tgaagaggaa agtcacttta ctgaggggag tctccattat cattggcacc atcattggag 240 caggaatett cateteteet aagggegtge tecagaacae gggeagegtg ggeatgtete 300 tgaccatctg gacggtgtgt ggggtcctgt cactatttgg agctttgtct tatgctgaat 360 tgggaacaac tataaagaaa tctggaggtc attacacata tattttggaa gtctttggtc 420 cattaccage titigtacga gictgggtgg aactecteat aatacgeect geagetactg 480 ctgtgatatc cctggcattt ggacgctaca ttctggaacc attttttatt caatgtgaaa 540 tecetgaact tgegateaag eteattaeag etgtgggeat aactgtagtg atggteetaa 600 atagcatgag tgtcagctgg agcgcccgga tccagatttt cttaaccttt tgcaagctca 660 cagcaattct gataattata gtccctggag ttatgcagct aattaaaggt caaacgcaga 720 actttaaaga cgccttttca ggaagagatt caagtattac gcggttgcca ctggcttttt 780 attatggaat gtatgcatat gctggctggt tttacctcaa ctttgttact gaagaagtag 840 aaaaccctga aaaaaccatt ccccttgcaa tatgtatatc catggccatt gtcaccattg 900 gctatgtgct gacaaatgtg gcctacttta cgaccattaa tgctgaggag ctgctgcttt 960 caaatgcagt ggcagtgacc ttttctgagc ggctactggg aaatttctca ttagcagttc 1020 cgatctttgt tgccctctcc tgctttggct ccatgaacgg tggtgtgttt gctgtctcca 1080 ggttattcta tgttgcgtct cgagagggtc accttccaga aatcctctcc atgattcatg 1140 teegeaagea eacteeteta eeagetgtta ttgttttgea eeetttgaca atgataatge 1200 tettetetgg agacetegae agtettttga attteeteag ttttgeeagg tggetttta 1260 ttgggctggc agttgctggg ctgatttatc ttcgatacaa atgcccaqat atgcatcgtc 1320 ettteaaggt gecaetgtte ateccagett tgtttteett cacatgecte tteatggttg 1380 ccctttccct ctattcggac ccatttagta cagggattgg cttcgtcatc actctgactg 1440 gagtccctgc gtattatctc tttattatat gggacaagaa acccaggtgg tttagaataa 1500 tgtcagagaa aataaccaga acattacaaa taatactgga agttgtccca gaagaagata 1560 agttatgaac taatggactt gagatettgg caatetgeee aaggggagac acaaaatagg 1620 gatttttact tcattttctg aaagtctaga gaattacaac tttggtgata aacaaaagga 1680 gtcagttatt tttattcata tattttagca tattcgaact aatttctaag aaatttagtt 1740

1800

1860

1920

1958

ataactctat gtagttatag aaagtgaata tgcagttatt ctatgagtcg cacaattctt

gagtetetga tacetaceta ttggggttag gagaaaagae tagacaatta etatgtggte

attototaca acatatgtta gcacggcaaa gaaccttcaa attgaagact gagatttttc

tgtatatatg ggttttggaa agatggtttt acacacta

<210> 431 <211> 844 <212> DNA <213> Homo sapiens <400> 431 tattgacact tcctggtggg atccgagtga ggcgacgggg taggggttgg cgctcaggcg 60 gegaceatgg egtateaegg ceteaetgtg ceteteattg tgatgagegt gttetgggge 120 ttegtegget tettggtgee ttggtteate cetaagggte etaacegggg agttateatt 180 accatgttgg tgacctgttc agtttgctgc tatctctttt ggctgattgc aattctggcc 240 caactcaacc ctctctttgg accgcaattg aaaaatgaaa ccatctggta tctgaagtat 300 cattggcctt gaggaagaag acatgctcta cagtgctcag tctttgaggt cacqaqaaqa 360 gaatgccttc tagatgcaaa atcacctcca aaccagacca cttttcttga cttgcctgtt 420 ttggccatta gctgccttaa acgttaacag cacatttgaa tgccttattc tacaatgcag 480 cgtgttttcc tttgcctttt ttgcactttg gtgaattacg tgcctccata acctgaactg 540 tgccgactcc acaaaacgat tatgtactct tctgagatag aagatgctgt tcttctgaga 600 gatacgttac teteteettg gaatetgtgg atttgaagat ggeteetgee tteteaegtg 660 ggaatcagtg aagtgtttag aaactgctgc aagacaaaca agactccagt ggggtggtca 720 gtaggagagc acgttcagag ggaagagcca tctcaacaga atcgcaccaa actatacttt 780 caggatgaat ttcttcttc tgccatcttt tggaataaat attttcctcc tttcaaaaaa 840 aaaa 844 <210> 432 <211> 7418 <212> DNA <213> Homo sapiens <400> 432 tegagagege egegaagagg eageggggeg egggtggatt ggggetggag gtgegegtee 60 cgtggggtgg caaggcggca ctcctggcgc tgcgggcgtc cccacaggaa cagactttga 120 180 attttttaag tactaagact tgcctgcgat gtggtctctg cacatagtac taatgaggtg 240 etectteaga ttgaccaagt cettggccac aggtecetgg teacttatac teattetett 300 ttctgtacaa tatgtatatg ggagtggaaa gaaatacatt ggtccttgtg gaggaagaga 360 ttgctctgtt tgccactgtg ttcctgaaaa ggggtctcgg ggtccaccag gaccaccagg 420 480 540 600

		_				
tccaggaaaa	ccagggaagc	caggatcacc	tggcttgcct	ggagcaccag	gcctgcaggg	1560
cctcccagga	tcaagtgtga	tatactgtag	tgttgggaac	cccggaccac	aaggaataaa	1620
	ggtcccccag					1680
	gagcctggac					1740
ggggagtaag	ggagacttgg	ggctccctgg	ctggcttgga	acaaaaggtg	acccaggacc	1800
tcctggtgct	gaaggacctc	cagggctacc	aggaaagcat	ggtgcctctg	gaccacctgg	1860
	gcgaagggtg					1920
	gggccccag					1980
	aaaggggatc					2040
taaaggattt	cctggacctc	tgggcccccc	aggcaaagca	ggacctgtgg	ggcccccagg	2100
	cctggtccac					2160
	cctgatggct					2220
	aggcatggcc					2280
aggtccccaa	ggtgcccctg	ggctgagtgg	ttcagatggg	cataaaggca	gacctggcac	2340
accaggaaca	gcggaaatac	caggtccacc	tggttttcgt	ggtgacatgg	gagatccggg	2400
	gaaaaggggt					2460
	cagaaaggaa					2520
aaayayyyt	ctttcaggag	tgeeagggat	aaaaggaccc	agaggtgatc	cgggatgtcc	2580
aggggctgaa	gggccagctg	gcattcctgg	attcctaggt	ctcaaaggtc	ccaaaggcag	2640
agagggacat	gctgggtttc	caggtgtccc	aggtccacct	ggccattcct	gtgaaagagg	2700
	ataccagggc					2760
	ggacagccgg					
						2820
	ccaggacggc					2880
tccctttgga	gatgatgggc	tacctggtcc	tccaggtcca	aagggacccc	gggggctgcc	2940
tggtttccca	ggttttcccg	gagaaagagg	aaagcctggt	gcagagggat	gtcctggcgc	3000
	cctggagaga					3060
	gccataggac					3120
	ggggaacctg					3180
taaaggaact	cccgggatgc	aagggagaag	aggagagctg	ggaagatacg	gaccacctgg	3240
atttcacaga	ggggaacctg	gtgagaaagg	tcagccaggg	cctcctggac	ccccaggccc	3300
	actggtctaa					3360
	tctccaggtc					3420
292322233	aatasaasta	googlasatt	taataaaat	gatggagtaa	gaggacccaa	
	ggtgaccctg					3480
tagccctgga	tgtccagggc	attttggagc	atccggagag	cagggcttgc	ctggtattca	3540
agggcccaga	ggatcacctg	gaaggccagg	gccacctggc	tectetggae	caccagggtg	3600
cccaggtgat	cacgggatgc	ctgggctgag	gggacagcca	qqaqaaatqq	gagaccctgg	3660
	ctccaggggg					3720
	ggcctgaacg					3780
	catgatgtgg					3840
gagaggagac	cctgggagcc	caggaatctc	tcctccaggt	cctcgtggaa	agaaaggtcc	3900
cccaggaccc	ccagggagtt	caggaccacc	tggtcctgca	ggtgccacag	gaagagctcc	3960
	cctgacccgg					4020
	cctgggcctc					4080
	ggtctaccag					4140
	ccaggatgtg					4200
accgcaggga	ccacatggat	ttcctgggcc	acctggagag	aagggtttac	ctggacctcc	4260
	gggcccactg					4320
	tgtccccgaa					4380
						4440
	gggctccctg					
	ggcaggaggg					4500
taaaggggac	acaggagaag	acggctaccc	tggaggacca	gggcctcctg	gtcccattgg	4560
	cccaaagggt					4620
	gaccaggagc					4680
						4740
	tacctggaag					
	cccgtattta					4800
	cagagaaacg					4860
gatgccactc	tctgaagagg	cgatccgccc	ctatgtcagc	cgctgtgcgq	tatgcgaggc	4920
	gcggtggcgg					. 4980
ctggaggagg	ctctggatcg	ggtattcatt	cctgatgcac	acaddadctd	Gadaccasaa	5040
		JJUACOCACC	cocyacycac	~~~gagccg	aaaaccaaaa	2040

```
aggagggcag gcccttatgt cacctggcag ctgcctggaa gatttcagag cagcaccatt
                                                                  5100
ccttgaatgc cagggccggc agggaacttg ccactttttt gcaaataagt atagcttctg
                                                                  5160
gctcacaacg gtgaaagcag acttcgagtt ttcctctgct ccagcaccag acaccttaaa
                                                                  5220
agaaagccag gcccaacgcc agaaaatcag ccggtgccag gtctgcgtga agtatagcta
                                                                  5280
gagaatgcga aattcaccaa cacgtggcca agagaaactt cctagggggc taagacttcc
                                                                  5340
tagactgtgc taagagatgt ccatggtgct cattttggac tccccttcca gggggtccct
                                                                  5400
tccggtttgg tccgtggtta ttccccagga gtcctctggt tccttaccac attaagcaaa
                                                                  5460
tgctgcacag atggatttgt ttggacctcc caatctaggg gagcctagat actcttattt
                                                                  5520
tactgaggat gatcgaagaa ctggctttac ttaaaaaatat gcctaattcc tcagaagggc
                                                                  5580
aagtagatga taaaggccca gattacaaat tacattactg aaaacttcat tccttgggtt
                                                                  5640
aacagtatct caaacaattg aagtcaatta ctctataata cagtgggctt ctggatggat
                                                                  5700
tttataggaa aaaataaaca ggtcaatgaa tgaaactaga aagcagagat tttcaacatt
                                                                  5760
tcaaaatgat ttcctctgta atctattttt ccatatactt taaataatgg taaaaccatg
                                                                  5820
acgcaaagag agatttttt ttaaagagaa aaaaaaaaac ttcacactgc cagcgttaac
                                                                  5880
agttcctttc aaaggagaat gaatcatgat ggcaggaagg ccccaaccag tcgccgtatt
                                                                  5940
ccagagatgc gacgttagca taaacacatc acagatgaat ataaaacatt atgttctctt
                                                                  6000
ctgcattttt cagagaatag aaatgcctac tttggcaacc cttttgaaaa gtagcaatta
                                                                  6060
tggaaaaaaa aatattcaat aagagattag gagcctaaaa gctattagtg aatattaagg
                                                                  6120
tagttattca caaaaattga ctccccattg cagtgaactt ccagacagac tgcttttccc
                                                                  6180
cagtcggggt ccggcgtgtc acaggtgcgt gcgtgctaat gggactgacg ctacatgggg
                                                                  6240
6300
gcacagcttc ttgcactcac aacggacact ttgctccaca cacataatgg cagctcacac
                                                                  6360
agggacgtga cagagctatc attatcgact tgggagaaaa ttaagggccg atttaattaa
                                                                  6420
acttaggtaa gaagattcat ttaagtcagg gttaccccat caggaggaca tggctctatc
                                                                  6480
tttaaacgaa acaaagacaa tttataattt gaattttatg cctcccqtqq ttqqctqtta
                                                                  6540
caggagcatc cattttgcca attttaaaga cattcttata tttcatatca gtcttgtacc
                                                                  6600
aaggcaacag tttgacattt ggcattagta ttttctaaaa aagtttagaa tgtgtgtcaa
                                                                  6660
tttataatga ttatttttt ctgtaaagca aaagateeet ttttetgttt tgetaggaat
                                                                  6720
ttggtgatct aatcctaaat ttaaaaagatt tgttggaaaa aatttttagg aaactcacct
                                                                  6780
tcctcatcta aaagaaaaag gcattttaga gaaaactaaa gaaatttctc atcgagcgtg
                                                                  6840
acactcattt tagtgctttg tttccgtgca cttaaaaata attgagaaga aaaactcaat
                                                                  6900
taaaattttg tttataagaa atgttttcct tqccaaacct tqatttqtaa tqaqctctta
                                                                  6960
tatgcagaac acatttcaaa tgagttttgt tctatgggct gccccaggg tggcaatttt
                                                                  7020
ttttacgagt attttctggt aaaaagaaaa atgtgtattt taagatgaaa tattttcttg
                                                                  7080
atgtagcaga atatttccta gttcatttga cccatttgat attttttaaa ccatgctctg
                                                                  7140
gcatgttgaa tatttttgtg cacctaaaac ttaagccaat ttcaatctta tttgtgatta
                                                                  7200
cctttctcct tcccaaaaag ctttatctat taccaaaagt caaccctcct aaaagttcaa
                                                                  7260
cctgttcatc ttgaacttgg cctgagaaca ttttctggga agaggtaagg gtgacaaatg
                                                                  7320
gaacatcaga aacgtatctt gcttgctaat tattttaaac actttaatgt tggtattaga
                                                                  7380
atattatctt cataagttaa taaataagta aaaaaaaa
                                                                  7418
```

```
<210> 433
```

<213> Homo sapiens

```
<400> 433
```

```
tttegtgtee eggegeaace accegeacte agattetece caaacqccaa ggatggggt
                                                                      60
catggetece egaaceetee teetgetget ettgggggee etggeeetga eegagaeetg
                                                                     120
ggccggtgag tgcggggtcg ggagggaaag ggcctctgcg gggagaagcg agtggcccgc
                                                                     180
ccggcccggg gagccgcgcc gggaggaggg tcgggcgggt ctcagcctct cctcgcctcc
                                                                     240
aggeteceae teettgaggt attteageae egeagtgtee eageeeggee geggggagee
                                                                     300
coggtteate googtggget acgtggacga cacagagtte gtgcggtteg acagcgacte
                                                                     360
cgtgagtccg aggatggagc ggcgggcgcc gtgggtggag caggaggggc tggagtattg
                                                                     420
ggaccaggag acacggaacg ccaagggcca cgcgcagatt taccgagtga acctgcggac
                                                                     480
cctgctccgc tattacaacc agagcgaggc cg
                                                                     512
```

<211> 512

<212> DNA

<210> 434 <211> 756 <212> DNA <213> Homo sapiens <400> 434 teccaagtee tactaacttt attteccaag ttataaceae ettetteca tetetaetae 60 cattactggg gcccaagtca ccatcatctc tggcctggat aactgcagct tcctacataa 120 actgetetee etacataaac tettgeeeet ecaatacaca etetatatag eagecageaa 180 tactgtctta aagcataaaa gaaatcatgt cactcctctg cttaaaattc ttcagtggtt 240 tatggacaat tactttcagt aagggcgcca aaataattca ctggggaaga agtcttttca 300 actggatatc catgtgcaaa agaatgaaat tggaccccta ctcataccat acacaaaaat 360 taactcaaaa tggatcatag atctaaatct aagggctaaa cctacaaaac ttaqqaaaaa 420 atataggggt aaaaatcttc atgacttgga tttggcaaca tcttaaatat gatgccgaac 480 acacaagcat ccagaggggg ggaagagata tacagggccg ggtgcggggg ctcatgactg 540 ggatcccagc acttttggga ggccaaggca agaggatcgc ttgaggtcag gagttgaaga 600 ctagcctgaa taacatagga gacggcccc taacaaccca gggggggtaa ataatacctg 660 geeggeeget eggtggaaga aaaaaacaeg eeettegtat aaaaaceete aggggeecag 720 gttcacgage taccaacaac aaactccctc ctagec 756 <210> 435 <211> 1281 <212> DNA <213> Homo sapiens <400> 435 tagccactgt ggtggaattc gaggttttac tacagaagga attcatcttt aaaacctttt 60 agttgcaaat gtttagaacc atgttctgtt tggagatttg ttagtcttaa gagatttgac 120 ttaacaaget geateetgte agtaaagttg ggtaatttee attgttggee cattetggga 180 atggagagac aaaacacacc tgctctgcat gacttaaagc aaatataagg aagttagcat 240 gaaatctgga tgagaaagat atgattcatt ctgtaagaat ggccagctgg caagatttct 300 teetgagttt gagaactgga geaacactgt agetgtgata gttattggca aettaatatg 360 aggtaaagta acttettate aataattaga aactgatttt catggetttg aataageata 420 ggcatactta gtctttgcca aaagtaattc atttttatgc cagtaccttt ggcatatttt 480 cagtetteta ttgttetett eccaettatt tttteaettg teaettgtgt ttetttagat 540 ggtgagccaa agtctgtggt aggggtgatt tccatttctg catattacag agcaattagc 600 atattgttaa tattcagcaa aagtttttgc tgtgcttcct tagctggtgt tttggttatc 660 tgatagtaat tggagaaaat tgttctccaa ttttctccaa ttaggagaat aaggagagtg 720 tcatattaag aagtacctgc tttaaacatc atagaaaaac tgtatacatt ataatagcaa 780 ttgcttttcc agtgtcttca ttccatgatc ctgagccaat tcaacaacac ggttttagtt 840 tttgagagcc tgaggcacta accttggttg atataacatt ttctttcctc tacatgttca 900 ggcggttgct tatgaggaac caaaacactg gagctctatt gcctactatg agctcaacaa 960 tegagtgggt gaagegttee atgeeteete caeaegtgtg teggegeace gttaccetge 1020 accetteece tagtaacace egagtetgac eegggeagee etecaattge taceegaace 1080 teccetattg aatteceegg geegectaet ggeagaceta getateteet ttteteteee 1140 aggeggeett ateacecete cetaacecae eccacecteg tgtecececa atacceetta 1200

<210> 436

accectecce atteaagtte e

1260

1281

tocatoccca aaccacccc accetecece ceetetecte ctaqtecece acaccetete

<211> 3612 <212> DNA <213> Homo sapiens

<400> 436

ggcgaatgga gcaggggcgc gcagataatt aaagatttac acacagctgg aagaaatcat 60 agagaageeg ggegtggtgg eteatgeeta taateeeage aettttggag getgaggegg 120 gcagatcact tgagatcagg agttcgagac cagcctggtg ccttggcatc tcccaatggg 180 gtggetttge tetgggetee tgtteeetgt gagetgeetg gteetgetge aggtggeaag 240 etetgggaac atgaaggtet tgeaggagee cacetgegte teegaetaca tgageatete 300 tacttgcgag tggaagatga atggtcccac caattgcagc accgagctcc gcctgttgta 360 ccagctggtt tttctgctct ccgaagccca cacgtgtgtc cctgagaaca acggaggcgc 420 ggggtgcgtg tgccacctgc tcatggatga cgtggtcagt gcggataact atacactgga 480 cctgtgggct gggcagcagc tgctgtggaa gggctccttc aagcccagcg agcatgtgaa 540 acceagggee ceaggaaace tgacagttea caccaatgte teegacacte tgetgetgae 600 ctggagcaac ccgtatcccc ctgacaatta cctgtataat catctcacct atgcagtcaa 660 catttggagt gaaaacgacc cggcagattt cagaatctat aacgtgacct acctagaacc 720 ctecctcege ategeageea geaccetgaa gtetgggatt teetacaggg caegggtgag 780 ggeetggget eagtgetata acaccacetg gagtgagtgg ageeccagea ccaagtggca 840 caactectac agggageeet tegageagea ceteetgetg ggegteageg titeetgeat 900 tgtcatcetg gccgtctgcc tgttgtgcta tgtcagcatc accaagatta agaaagaatg 960 gtgggatcag attcccaacc cagcccgcag ccgcctcgtg gctataataa tccaqqatqc 1020 tcaggggtca cagtgggaga agcggtcccg aggccaggaa ccagccaagt gcccacactg 1080 gaagaattgt cttaccaagc tcttgccctg ttttctggag cacaacatga aaagggatga 1140 agatecteae aaggetgeea aagagatgee ttteeaggge tetggaaaat cageatggtg 1200 cccagtggag atcagcaaga cagtcctctg gccagagagc atcagcgtgg tgcgatgtgt 1260 ggagttgttt gaggccccgg tggagtgtga ggaggaggag gaggtagagg aagaaaaagg 1320 gagettetgt geategeetg agageageag ggatgaette caggagggaa gggagggeat 1380 1440 ttgccagcag gacatggggg agtcatgcct tcttccacct tcgggaagta cgagtgctca 1500 catgecetgg gatgagttee caagtgeagg geceaaggag geaceteect ggggeaagga 1560 gcagcctete caectggage caagteetee tgecageeeg acceagagte cagacaacet 1620 gaettgeaca gagaegeeee tegteatege aggeaaeeet gettaeegea getteageaa 1680 etecetgage eagteacegt gteccagaga getgggteea gacecactge tggecagaca 1740 cctggaggaa gtagaacccg agatgccctg tgtcccccag ctctctgagc caaccactgt 1800 gececaacet gagecagaaa eetgggagea gateeteege egaaatgtee teeageatgg 1860 ggcagetgca gcccccgtct cggcccccac cagtggctat caggagtttg tacatgcggt 1920 ggagcagggt ggcacccagg ccagtgcggt ggtgggcttg ggtcccccag gagaggctgg 1980 ttacaaggcc ttctcaagcc tgcttgccag cagtgctgtg tccccagaga aatgtgggtt 2040 tggggctagc agtggggaag aggggtataa gcctttccaa gacctcattc ctggctgccc 2100 tggggaccet gccccagtcc ctgtcccctt gttcaccttt ggactggaca gggagccacc 2160 togoagtoog cagageteae ateteceaag cageteeeca gageaectgg gtetggagee 2220 gggggaaaag gtagaggaca tgccaaagcc cccacttccc caggagcagg ccacagaccc 2280 cettgtggae agectgggea gtggeattgt etacteagee ettacetgee acetgtgegg 2340 ccacctgaaa cagtgtcatg gccaggagga tggtggccag acccctgtca tggccagtcc 2400 ttgctgtggc tgctgctgtg gagacagggc ctcgcccct acaacccccc tgagggcccc 2460 agacccetet ecaggggggg ttecaetgga ggecagtetg tgteeggeet ceetggeace 2520 etegggeate teagagaaga gtaaateete ateateette cateetgeee etggeaatge 2580 tcagagetca agecagaece ecaaaategt gaaetttgte teegtgggae ecacatacat 2640 gagggtetet taggtgeatg teetettgtt getgagtetg cagatgagga etagggetta 2700 tecatgeetg ggaaatgeea ceteetggaa ggeageeagg etggeagatt tecaaaagae 2760 ttgaagaacc atggtatgaa ggtgattggc cccactgacg ttggcctaac actgggctgc 2820 agagactgga ccccgcccag cattgggctg ggctcgccac atcccatgag agtagagggc 2880 actgggtcgc cgtgccccac ggcaggcccc tgcaggaaaa ctgaggccct tgggcacctc 2940 gacttgtgaa cgagttgttg gctgctccct ccacagcttc tgcagcagac tgtccctgtt 3000 gtaactgccc aaggcatgtt ttgcccacca gatcatggcc cacatggagg cccacctgcc 3060 tetgteteae tgaactagaa geegageeta gaaactaaea eageeateaa gggaatgaet 3120 tgggcggcct tgggaaatcg atgagaaatt gaacttcagg gagggtggtc attgcctaga 3180

ggtgctcatt	catttaacag	agcttcctta	ggttgatgct	ggaggcagaa	tcccggctgt	3240
caaggggtgt	tcagttaagg	ggagcaacag	aggacatgaa	aaattgctgt	gactaaagca	3300
gggacaattt	gctgccaaac	acccatgccc	agctgtatgg	ctgggggctc	ctcgtatgca	3360
tggaaccccc	agaataaata	tgctcagcca	ccctgtgggc	cgggcaatcc	agacagcagg	3420
cataaggcac	cagttaccct	gcatgttggc	ccagacctca	ggtgctaggg	aaggcgggaa	3480
ccttgggttg	agtaatgctc	gtctgtgtgt	tttagtttca	tcacctgtta	tctgtgtttg	3540
ctgaggagag	tggaacagaa	ggggtggagt	tttgtataaa	taaagtttct	ttgtctcttt	3600
aaaaaaaaa	aa					3612

<210> 437 <211> 2393

<212> DNA <213> Homo sapiens

<400> 437

gaccaaggag gegeeegegg etgeagaget geagageggg atetettega getgtetgtg 60 teegggeage eggegegeaa etgageeaga ggacagegea teetttegge gegggeegge 120 agggcccctg cggtcggcaa gctggctccc cgggtggcca ccgggacccc cgagcccaat 180 ggcgggggcg gcggcaaaat cgacaacact gtagagatca cccccacctc caacggacag 240 gtcgggaccc tcggagatgc ggtgcccacg gagcagctgc agggtgagcg ggagcgcgag 300 cgggaggggg agggagacge gggcggcgac ggactgggca gcagcctgtc gctggccgtg 360 ecceaggee ceeteagett tgaggegetg etegeeeagg tggggggget gggeggegge 420 cagcagetge ageteggeet etgetgeetg eeggtgetet tegtggetet gggeatggee 480 toggaccoca tottcacgot ggogcoccog otgcattgcc actacggggc ottccccct 540 aatgeetetg getgggagea geeteeeaat geeageggeg teagegtege cagegetgee 600 ctagcagcca gcgccgccag ccgtgtcgcc accaagtacc gaccccctcg tgcagcgct 660 tegeceegee ggaetteaac cattgeeete aaggattggg actataatgg cetteetgtg 720 cteaccacca acgccatcgg ccagtgggat ctggtgtgtg acctgggctg gcaggtgatc 780 ctggagcaga tectetteat ettgggettt geeteegget acetgtteet gggttaceee 840 gcagacagat ttggccgtcg cgggattgtg ctgctgacct tggggctggt gggcccctgt 900 ggagtaggag gggctgctgc aggctcctcc acaggcgtca tggccctccg attcctcttg 960 ggetttetge ttgeeggtgt tgacetgggt gtetacetga tgegeetgga getgtgegae 1020 ccaacccaga ggcttcgggt ggccctggca ggggagttgg tgggggtggg agggcacttc 1080 ctgttcctgg gcctggccct tgtctctaag gattggcgat tcctacagcg aatgatcacc 1140 gctccctgca tcctcttcct gttttatggc tggcctggtt tgttcctgga gtccgcacgg 1200 tggctgatag tgaagcggca gattgaggag gctcagtctg tgctgaggat cctggctgag 1260 cgaaaccggc cccatgggca gatgctgggg gaggaggccc aggaggccct gcaggacctg 1320 gagaatacct geceteteee tgeaacatee teetttteet ttgetteeet ceteaactae 1380 egeaacatet ggaaaaatet gettateetg ggetteacea aetteattge ceatgeeatt 1440 egecactget accageetgt gggaggagga gggageeeat eggaetteta eetgtgetet 1500 etgetggeea geggeaeege ageeetggee tgtgtettee tgggggteae egtggaeega 1560 tttggccgcc ggggcatcet tettetete atgaceetta ceggcattge ttecetggte 1620 etgetgggee tgtgggatta tetgaaegag getgeeatea eeaetttete tgteettggg 1680 ctetteteet eccaagetge egecateete ageaceetee ttgetgetga ggteateece 1740 accactgtcc ggggccgtgg cctgggcctg atcatggctc taggggcgct tggaggactg 1800 ageggeeegg eecagegeet eeacatggge catggageet teetgeagea egtggtgetg 1860 geggeetgeg eceteetetg catteteage attatgetge tgeeggagae caagegeaag 1920 etectgeecg aggtgeteeg ggaeggggag etgtgtegee ggeetteeet getgeggeag 1980 ccaccccta cccgctgtga ccacgtcccg ctgcttgcca cccccaaccc tgccctctga 2040 geggeetetg agtaccetgg egggaggetg geecacacag aaaggtggea agaagategg 2100 gaagactgag tagggaaggc agggctgccc agaagtctca gaggcacctc acgccagcca 2160 tegeggagag ctcagaggge egteeceace etgeeteete cetgetgett tgcatteact 2220 teettggeea gagteagggg acagggagag ageteeacac tgtaaccact gggtetggge 2280 tecateetge geecaaagae atecacecag aceteattat ttettgetet ateattetgt 2340 ttcaataaag acatttggaa taaacgagca tatcatagcc tggaaaaaaa aaa 2393

<210> 438 <211> 968 <212> DNA <213> Homo sapiens

<400> 438 gaggccgaga gggtttcaat gaacgcatct gaccgttgag aacctcggtc gaccacgcgt 60 coggocagea ccagggtcag ccgtgactca gacatgagtt cacctctgcg ccgtctctca 120 gcaggcaggc acctgccacc tgcatggcca tatcgtggtt aggcacgtgg cttttgcagt 180 cccatagaca ttggtctgaa ccccagctct gccgcttgcc agccagacac catttgataa 240 acctcaactt catggtggct gaggggattg gagatcgtgc ctggcacata ataagtgctc 300 agetgtteat gaettttage tttcatgeag ttattetaca aacagatetg ggagaggeeg 360 ggaaatataa agacaagtga gacacagttt cagtgtcatt cacgtgcccg ctccqacttc 420 actcatccac actgctggct ctgtgcttgt gttggacaca gtaattctca tgataggtca 480 tgtgtgttga gctctcacta tgtgctaggc agcatccttt acaaatcaca aatcacaact 540 gtgtgagaca ggtcctgcta ctgccccatt tcataaataa ggcaagaggg qcttqqtaac 600 ttacccaaag ccccgcagct gggaggtggg aatgccggga tccaaaccca ggtcagaggc 660 tgcccttcaa atgctctgcc aaaggccaga gcccacacct gtaattccag cactttggaa 720 ggctgaggcg ggaggaccac ttgagctcag gagtttgaga ccagcctggg caatgtgacg 780 aaaccccgtc cctacaaaaa gtacaaaaaa ttagctgggc gtgttggtgc atgcctgtag 840 teccagetat ttaaggagge tgaggtggga ggategetgg tacccaggat ggggaggttg 900 cagtgagcca taattgcacc attgcactcc agcctgggtg acagagtaag accctgtctc 960 aaaaaaaa 968

<210> 439 <211> 2750 <212> DNA <213> Homo sapiens

<400> 439

acggccccc cettttttt ttttttgaat atttcctact tttatttgac aataacaaat tgtatataaa aaggaagaag gaaggcgggg aggccctgga tctccccttc tctgtttccc 120 caagcatece cetetaggee ceageaggea ceaececett cetgeettgt ggtggggtgg 180 240 tgttgggggt caaggatgga gggggtcaag gagtagagag agggccttcc ctcatcccc 300 atcagtggca ccctgagagg ggtcttaaga gggttatgag ggtccacaga tgtgcctcag 360 cctatgagac ggtagaagat ccagcatcca aaagtgaccc agtgactggc ccagctgagc 420 tetgaceaet tgtggacagt gtatgecatg cegtageeet geteetetgt ggtgteatee 480 acatcgacat caaacaggga gcccaggtag gccaggtgga agatggccag agctccaaag 540 agcaagttta aggetegeae eeccaggeee aagegatget ggtgegaaca gtetggeggg 600 caccgetttg acaagacaca ggcactgagg atccgagcca ggcgcttccg gaggacatgc 660 tccacgtaag tgataaaagc cagggacagc aggaccgcag ccaggtggaa actgaagcca 720 tgtaggaggg cgctggctgc ataggtgacc agcacagccg agaaggtccc caggcggaga 780 gcattcttga aaacatagtt atttagccaa taagacatgg gcaggttcca gcttgtgaca 840 acttccacca ttgaccgagg cagctccaca ttcagtggct tggacaccgt caggtcccat 900 tocaggtgat cettetecte ggtaaageca geeceegeca aegtggeegt ggeeteggaa 960 agaaagccca caaaatagtt gctgaagtgg aaggagacag cactctcgta ggctcgcagc 1020 caccttacca tggtgcccct ggctttgcgt ttcttgttgc gaaggaggcg gtcaccgttg 1080 agggggatga agtacgggaa gaggtagggg cccacgcaag tggacagcac aaggcacagc 1140 agggecagtg ccaggeteeg ggecacette tgeagecace ggeageteag tgggeggeet 1200 tggacagett gtaggtaget gtggaaqqat atecagggee cgaaqacgat ggtgeecacg 1260 aagtagaggt agcccatgaa ctccactggc gagggcaccg tacccacctc gccccggtcc 1320 aggtcgaagc ccagagacac tgccttcatg gccacaatca tctgtgcccc tcgcatcttg 1380

```
tgccatgtca cggtgtctac catgtgcatc tcacccatga gtaggtagat gaggatggtg
acggatagga agacgcctcg atgggaggaa tgtcggcaga ggaacagcac gaggtagcac
                                                                    1500
aggaggetga geageaegae eeaaaeeatg tgeagetgga agaagtggta gaggetgeee
                                                                    1560
ggaggaggca gcggcggcgg cagcgcgtcc tcggtcccca ggaccacggc ttctttcctg
                                                                    1620
ccaggtaggt cgccagtagt gcgcacgcgg ctccccagct cccatccctg ggccggcctc
                                                                    1680
eccaattttt ecageageta etgeaagget gteteetgee taetgeeeag eagggeettg
                                                                    1740
accagatety getgeteett gecatetyee tegeetyeeg eeteetetyg aggeteggyt
                                                                    1800
tgccatccta cctgaagcat gcaagcaccg tggcaggcgg gttcttcagc ctctaccact
                                                                    1860
tettecaget geacatggtt tgggtegtge tgeteageet cetgtgetae etegtgetgt
                                                                    1920
tectetgeeg acatteetee categaggeg tetteetate egteaceate eteatetace
                                                                    1980
tactcatggg tgagatgcac atggtagaca ccgtgacatg gcacaagatg cgaggggcac
                                                                    2040
agatgattgt ggccatgaag gcagtgtete tgggettega eetggaeegg ggcgaggtgg
                                                                    2100
gtacggtgcc ctcgccagtg gagttcatgg gctacctcta cttcgtgggc accatcgtct
                                                                    2160
tegggeeetg gatateette cacagetace tacaagetgt ecaaggeege ceaetgaget
                                                                    2220
gccggtggct gcagaaggtg gcccggagcc tggcactggc cctgctgtgc cttgtgctgt
                                                                    2280
ccacttgcgt gggcccctac ctcttcccgt acttcatccc cctcaacggt gaccqcctcc
                                                                    2340
ttegcaagtg getgegagee taegagagtg etgteteett eeactteage aactattttg
                                                                    2400
tgggctttct ttccgaggcc acggccacgt tggcgggggc tggctttacc gaggagaagg
                                                                    2460
atcacetgga atgggacetg aeggtgteca agecaetgaa tgtggagetg ceteggteaa
                                                                    2520
tggtggaagt tgtcacaagc tggaacctgc ccatgtctta ttggctaaat aactatggtt
                                                                    2580
ttaagaatgc tctccgcctg gggacccttc tcgggtgtgc tggtcaccta tgcagccagc
                                                                    2640
gcccttctaa attgcttaag tttccccctg ggtgggggcc ctgctgccct gggtttttat
                                                                    2700
aattaccatg agccatggtc ctccgggagc cccctgtcgt ggaacactcg
                                                                    2750
```

<210> 440

<211> 1983

<212> DNA

<213> Homo sapiens

<400> 440

ttttttttt ttctttgaa tggatctttt tatttctaat tttataagat gcaacatctc 60 accccgttga cacggttagt ttgcatgcac acacagagcg gccagccgcc ccgagcctgt 120 gggcaggcca gcagggtcag tagcaggtgc cagetgtgtc ggacatgacc agggacacgt 180 tgtacagggt gggtttaccg gtggacttgt ccacggtcct ctcggtgacc ctgttgggca 240 gggcctcatg ggccaccacg caggtgtagg tetececegt gttecattee tetteggaca 300 eggteaggat getgtgggeg aagtaeegge etggggeetg gggeteagge attggggege 360 tggtcacata cttctccggg gacaagggct gcccctctg catccactgc acgaagacgt 420 ecgegggaga gaageeegte aceaggeaeg tgatggtgge egaeteeege aggtteaget 480 gctcccgggc tggtggcagc aagtagacat cgggcctgtg cagggccacc cccttgggcc 540 gggagatggt ctgcttcagt ggcgagggca ggtctgtgtg ggtcacggtg cacgtgaacc 600 teteceegga attecagtea teetegeaga tgetggeete acceaeggeg etgaaagtgg 660 cattggggtg gctctcggag atgttggtgt gggttttcac agcttcgcca ttctggcggg 720 tccaggagat ggtcacgctg tcataggtgg tcaggtctgt gaccaggcag gtcaacttgg 780 tggacttggt gaggaagatg ctggcaaagg atggggggat ggcgaagacc cggatggctg 840 tgtcttgatc ggggacacac atggaggacg cattctgctg gaaggtcagg cccctgtgat 900 ccacgcggca ggtgaacatg ctctggctga gccagtcgct ctctttgatg gtcagtgtgc 960 tggtcacctt gtaggtcgtg ggcccagact ctttggcctc agcctgcacc tggtccgtgg 1020 tgacgccaga ccccacctgc ttcccctcgc gcagccagga cacctgaatc tgccggggac 1080 tgaaacccgt ggcctggcag atgagcttgg acttgcgggg gttgccgaag aagccgtcgc 1140 ggggtgggac gaagacgctc actttgggag gcagctcagc aatcactgga agaggcacgt 1200 tettttettt gttgeegttg gggtgetgga etttgeacac caegtgtteg tetgtgeeet 1260 geatgaegte ettggaagge ageageacet gtgaggtgge tgegtaettg eeeetetea 1320 ggactgatgg gaagccccgg gtgctgctga tgtcagagtt gttcttgtat ttccaggaga 1380 aagtgatgga gtcgggaagg aagtcctgtg cgaggcagcc aacggccacg ctgctcgtat 1440 ccgacgggga attctcacag gagacgaggg ggaaaagggt tggggcggat gcactccctg 1500 aggagacggt gaccagggtt ccctggcccc agtagtcaaa acacttatag cagctggtac 1560

```
tactacaatt gtcagccett gcacagtaat acacagccgt gtcctcggct ctcagactgt 1620 tcatttgcag atacagcgtg ttcttggcgt tgtctctgga gatggtgaat cggcccttca 1680 cggagtccgc gtagcttgtg ctactcccat cagtattaat acgtgagacc cacaccagcc 1740 ccttccctgg agcttggcgg acccagtgca tccagtagct actgaaggtg aatccagagg 1800 ctgcacagga gagtctcagg gacccccaa gctgaactaa gcctcccccg gactccacca 1860 attgcacctc acactggaca ccttttaaaa tagcaacaag gaaaacccag ctcagcccaa 1920 actccatggt gagttctctg tgtgcagtcc tgatcagcaa gcagaaagag ctgggaatcc 1980 cag
```

<210> 441 <211> 2033 <212> DNA <213> Homo sapiens

<400> 441

agagaaacta aaagtaatat aattaaatag cttgttcttg tgacttaaat aatataaaat 60 tttcatttca attatgtgac aatgetttgt atagetgtat tecaaataca tttettggtg 120 cgggggacat agcaggcagt caatacattt ttaccaaatg aaatgaataa attaccagtt 180 gattttatac tgaggaccaa actatgacct ttaatccctc caaaataaaa cacacaatcc 240 cattatatgt gaaccatatc cacaatacca gaatctaaga ttcccactct gaaagagtaa 300 ctagaacaac ttcttttga ggcaattctg cttacttagc acattactcc cccctacaqt 360 tttccttctt ttgtttttgt actaaggata tttgtataaa aacaggatct ttgttgctta 420 gtaattcatc tgctccagct gcttgtattc tgttcccaat caaaattctt ggttttcagc 480 ctcctcatca tttttataag gagttgaatg aattggccag gcttgttcct ttctccctct 540 ccatggaaca ccaggcccca agctccccga cactgctcct ctttttattt ctatctttgg 600 gttgcgtgta cactctagaa cacttgtatc agtgaaqagt gtaacaaagt attgtgccac 660 gcatagtete teatatatea tetateaget cateaaaaag tgeteaetqa ttaacaqagq 720 atcocctcct cagtttcaga attotctage tttaagttag gggagggtta ccccaaaqte 780 agagaggca catgggagag ggttgtgaag gccagtagcc cagagaaaat caagggcagc 840 tgggtgcatt taggtggata agaaaacaat gaattactcc catcaaaagc aaaagcacaa 900 gcacatagga aagttgatca ccccactgtt aatgtcaatt cagtttaaag cactttatta 960 accacacata catattttcc agtgtctaat tctcatcgtg ttcttttcca ttccagactt 1020 coctgtetet tteccagage tetgtteete tteteactgt ttetggaagg cagttgeact 1080 caaaagtgaa gtcaccagtc tgccgacagg tgcctccatt gacacaaggc gagggtgcac 1140 agggcacata caggctgtca cagtactggc ctqtgaaqcc ctqaaqqcac tqqcactqqt 1200 aggaaccagg caggttgagg cagatgccac catgctggca gtgtcctgga atgtcacact 1260 cattgacatc agtctcacac ttctgccctg tgaagcctgt gaggcatttg caggagaact 1320 ggttggccac agtggtacag gtacttccat ttgcacaggg atgagacagg caggcatcgg 1380 tecattggca etecttacet gtaaaccega cetgacaggt geactcatag gtatceegge 1440 tgagcatatg gcatgtgccg ccattcaggc aaggtcgaga cacaaagcat ggatgagatg 1500 tegagtactg geagteetet cetgtaaace etgaggeaca teggeacgtg gettteecea 1560 geatggcetg ggccacacaa gtcccaccat tetggcageg gttettetea caggggtete 1620 gatgttgaca atattccccc aagaagcctt ctggacattt gcagtatcct qtqccattqt 1680 ggtaggtaac acacattect teatttacac agggtteata gecatetega cactgeaatg 1740 catgogogog ggtogogoag cacagocaga gogocagoag ogcocacago agagogogo 1800 gcagggcggg catcttctcg gtcgcctcct ccgccgccgc cgcctgggca gatccacatg 1860 gggaggggt cccgatagag gagccccact ctctcctccc ctcctcctgc ttcaaaggct 1920 caggecetgg egetaegete egaageeeag gegeaaatge etegaeteee egegeeegga 1980 gtccgccgct cctcggccgc cgcctcagcc gcccgaagtt tggctgaaac ttt 2033

<210> 442

<211> 407

<212> DNA

<213> Homo sapiens

<400> 442 tttcgtcatt cagtgatcag cactgaacac agaggactca ccatggagtc gggactgagc 60 tggattttcc ttttggctat tttaaaaggt gtccagtgtg aagtgcagct ggtggaatct 120 gggggagget tggtacaace tggcaggtec etgagactet cetgtgcage etetggatte 180 aggtttgatg aatatggcat gcactgggtc cggcaagctc cagggaaggg cctggagtgg 240 gteggaggea ttagttggaa tagagaeagt ategeetatg eggaetetgt gaagggeega 300 ttcaccattt ccagggacaa cgcccagagt tacgtctatc tgcaaatgaa cagtctgaga 360 catgaggaca cggccttgta ttattgtaca aaactcaggt cctctat 407 <210> 443 <211> 2297 <212> DNA <213> Homo sapiens <400> 443 cccacgcgtg cggggggcct caaggctctg gtgtccggct gtgggcggct tctccgtggg 60 ctactagegg geceggeage gaccagetgg teteggette cagetegegg gtteagggaa 120 gtggtggaga cccaagaagg gaagacaact ataattgaag gccgtatcac agcgactccc 180 aaggagagte caaateetee taaceeetet ggeeagtgee eeatetgeeg ttggaacetg 240 aagcacaagt ataactatga cgatgttctg ctgcttagcc agttcatccg gcctcatgga 300 ggcatgctgc cccgaaagat cacaggccta tgccaggaag aacaccgcaa gatcgaggag 360 tgtgtgaaga tggcccaccg agcaggtcta ttaccaaatc acaggcctcg gcttcctgaa 420 ggagttgttc cgaagagcaa accccaactc aaccggtacc tgacgcgctg ggctcctggc 480 teegteaage ceatetacaa aaaaggeeee egetggaaca gggtgegeat geeegtgggg 540 tcaccccttc tgagggacaa tgtctgctac tcaagaacac cttggaagct gtatcactga 600 cagagagcag tgcttccaga gttcctcctg cacctgtgct ggggagtagg aggcccactc 660 acaagceett ggecacaact atacteetgt cecaceecac caegatggee tggteectee 720 aacatgcatg gacaggggac agtgggacta acttcagtac ccttggcctg cacagtagca 780 atgctgggag ctagaggcag gcagggcagt tgggtccctt gccagctgct atggggctta 840 ggccatgctc agtgctgggg acaggagttt tgcccaacgc agtgtcataa actgggttca 900 tgggettace cattgggtgt gegetcactg ettgggaagt geagggggte etgggeacat 960 tgccagctgg gtgctgagca ttgagtcact gatctcttgt gatggggcca atgagtcaat 1020 tgaattcatg ggccaaacag gtcccatcct cttcatgaca gctgtgagct ccttactgtg 1080 ggagagetge agggageeaa ggtgggetge etgacacact tgeegetete gtgtgaatee 1140 aagaaactgc gttcctcaaa ggggccctgg ttgtcacctt ctcccacagc catttccacc 1200 categitgic tagaatetet ticattagea catteeaace cetetgeeac tiggittaga 1260 aatgagetee etggeteagt gggeetttea gaatetggaa eeagaeggag gtggagttaa 1320 gaagatagga cagaacaggc aggccaagtt cactgaagct taagaaaatc atgtttagac 1380 tetgtttaaa aacateeagg etggeteeca ttetatagea tgaagggeaa gteeatgtte 1440 ttctcgccag tgcccacgta gacgtagcca tagttcttgg tgcggggagc atggtagaag 1500 gtgaggeceg gecagageag getgegeage accaeeaggg cattgeeeet etceatetgg 1560 atgctccagg accctttggg aatgtcatgc tccaaggagt ccatgaaatc cagggagggg 1620 tccaggtcag ccttctcaag caaggtctta ttctttagct caacaggetc cctgaaatgg 1680 aagtaggage tgagettett ggeeteagae aaggaeagte etteaaaggt eegattgaea 1740 tgggtgggtc caaaaggggt cttgaagagg gcgcctcggg ggatgatggc cacagccttg 1800 tcaatctggt caatgacaga caccaagcgg gtctcttcct tgatctggac cactatttct 1860 tetteaaaga ettttteaee tteatteaee ttetgeaget eagtgtgtte atattegtat 1920 1980 gatgggtccc ccatgaagcg gcccttcacc acagacgact gcgccaccat ctcctctgtg

2040

2100

2160

2220

2280

2297

gcagggggca agaggeteca etetgtgcag ttcaggetat agagegtett gegeggtgeg

agetggteet caeteaggee etgegegatg tagtaategg egaegaggee aaggatgegg

ccccagaaga gaacccgatc atagcggtag tcgcgcttaa ccagcataag agacgtgagc

agegaggeee gaeggteegg getgaggeee tgeecaetge eggaegeeag etceagagae

agcaggaggc tgtcggcgtc catcaggtca gcggctccgc tcaacgcccg tcgagttgct

aggagaagcc gacgaaa

<210> 444 <211> 2600 <212> DNA <213> Homo sapiens

<400> 444

tttttttttc attgtattac tacttaaatt ttattaacat cttcagtttg tgcgtcattt 60 aaaatgagac atgtgcttta aaaagcattc ttatacataa atagaccaag gaacagttag 120 gtaattgatc cctaaaacat gcacatcaat tttattcagg tgtgtataag gaaagggaaa 1.80 taaggettta aacetttte tttgggatta aaaacatttg ggaaattatt caggaatgee 240 maaatgtttt tctggaacag atgtattttc caataggaaa tactgatgca attaagaggc 300 attagtgttg ataaagaaga ctggaaaaac gtttgtgcta tgctagataa acaagaaaag 360 agttcaagtg ggcctaagat ctatgtcaaa taaatgaatc aggtagcatg aattgaaagg 420 tttggataga agaacaggta ccatgagcca gattatggga cacatatatg ttcaaggcac 480 atgactaggc taaacaggtg gctagattct acagactaat ttgttcattc attgagaaag 540 tgtaaaatgt aatataattt caatttaatg gcacttattg ataaataaat gcaattggat 600 ctagggtaga aaatgtette ettteagata cacaccagaa atgeatacta gataacagat 660 gccagtagcg atatgattac agtccaattt tcttacactg cagttaaatg gttgttaaac 720 tgttttgtat taattetata tgtcatactg tctattctct ttcaagtttc acaaaagaat 780 tcatcaaaac taggcagatt taagaattta tttaaccaca aagaatgctc aaaactatta 840 ttcaacagga atcaagccca aaccetggag ttgactgetg accgtattcg gtttgggett 900 ttcccagaat ggaaacactt ttcccacact acctcccttt gcacagctaa aatgctagca 960 tatccactgt ggttcccttc tttttctttg gcaagtcaga ggaatttacc tccccacccc 1020 ctctactaca tattctatta gcgacacgat tgccctaaat attcacagaa gaaaaaqqaa 1080 cacatttaaa aaactgcaac tttcaacaat atttaaacct tcatcttctc aaatcaactg 1140 caatgggaaa acagaagata tcaagctatc ccctgtattg tgaatgatca gcacactgaa 1200 ctttattcct gaaagtcaat attaggagga caaggataat tctgtgtgct tctaatqqqc 1260 tagcaaaatg ttccccatct aactgaaata agaatgtttc atactttact tgtctgagct 1320 cttagaagga agcagcacca acatcattac aattccccaa ataacaacta ttatccattt 1380 atattgtttt gaagcaccta aaacttctca ataacaaaag acattaagat gagatgttag 1440 caatactgtc tcttgaatac ttttgtgtgc acatacaaag tttctccata gttttagtag 1500 atageteata agaetagegg egaeagettt gageaattaa aaacaaaaat qtttetetaa 1560 atagatgaca ctagttaaca aaccaaagaa ataaacaaaa gcctttttaa ggctactgct 1620 gcaatgaatg gttcaatctg aagttcacag gaataaactg gtagataaga caaagataaa 1680 cctggaggca tggaacaaga ttttaaaaag tgagaagagg gttgaagaga ctggcagata 1740 ccatctgtca gtatgtgaaa ggcttgagtc acatggattg cttttaactc cttgttctct 1800 catateettg gttaatggta acttettett teetattet teacacaget tggecatgta 1860 aatccaccac agagaggtga aacaatgata tagatgaaca caattgatac gatgatqatg 1920 ataatagtga gcttgaggtt cttcatacac atggctcgag caagatttct gctggtagtt 1980 ttgaaggtga cagaagaatc cacaagattt tctgttttgt caatcaataa ttccaatctt 2040 tetecteget gagetaceag atetatgttt etgaceatga tteettteag tteatecact 2100 tgggcttgag tctccatcac tttgtctagg cccttattct cagagtgatg cttcagctgt 2160 gcagctaaga cacttgagaa ctcgctattc atggcatatg gaagtgctgt ctgtgctctt 2220 gaaccgtaag tagtetggaa cetettett ateteattea gaaaattaaa ggetegggaa 2280 cgttcaaaat catcatcagt gatacaaaga tatacaatcc tgtcttggca gatgtaatga 2340 aacaaataat tgccatgtga gtacgttagt ttgttatttt cagaaggtat cttagccaga 2400 atctgctctg tcacctccag gaagtttcct ccacaccaag catgtttggc aaggatagtg 2460 gtececetgg caacaacage aaaaagaate gecatggett cagtetgtee gggcaccete 2520 tgagggegeg egggeteggg aeggagggae gegggteagt geagggtege caactgeeeg 2580 ctcccagagg aggctgggac 2600

<210> 445 <211> 2516

<212> DNA <213> Homo sapiens

```
<400> 445
atcettaatt aaattaatet teeceecce ceeceggee geggeaacea geacaceeeg
                                                                      60
gcacctcctc tgcggcagct gcgcctcgca agcgcagtgc cgcagcgcac gccggagtgg
                                                                     120
ctgtagetge cteggegeg ctgcegeect gegegggetg tgggetgegg getgegeece
                                                                     180
cgctgctggc cagctctgca cggctgcggg ctctgcggcg cccggtgctc tgcaacgctg
                                                                     240
cggcgggcgg catgggataa cgcggccatg gtgcgccgag atcgcctccg caggatgagg
                                                                     300
gagtggtggg tecaggtggg getgetggee gtgeecetge ttgetqegta cetqeacate
                                                                     360
ccacccctc ageteteccc tgcccttcac tcatggaagt cttcaggcaa gtttttcact
                                                                     420
tacaagggac tgcgtatctt ctaccaagac tctgtgggtg tggttggaag tccaqaqata
                                                                     480
gttgtgcttt tacacggttt tccaacatcc agctacgact ggtacaagat ttgggaaggt
                                                                     540
ctgaccttga ggtttcatcg ggtgattgcc cttgatttct taggctttgg cttcaqtgac
                                                                     600
aaaccgagac cacatcacta ttccatattt gagcaggcca gcatcgtgga agcgcttttq
                                                                     660
cggcatctgg ggctccagaa ccgcaggatc aaccttcttt ctcatqacta tqqaqatatt
                                                                     720
gttgctcagg agcttctcta caggtacaag cagaatcgat ctggtcggct taccataaag
                                                                    780
agtetetgte tgteaaatgg aggtatettt cetgagaete aeegteeaet cetteteeaa
                                                                     840
aagctactca aagatggagg tgtgctgtca cccatcctca cacgactgat gaacttcttt
                                                                     900
gtattetete gaggteteae eccagtettt gggeegtata eteggeeete tgagagtgag
                                                                    960
ctgtgggaca tgtgggcagg gatccgcaac aatgacggga acttagtcat tgacagtctc
                                                                    1020
ttacagtaca tcaatcagag gaagaagttc agaaggcgct gggtgggagc tcttgcctct
                                                                    1080
gtaactatcc ccattcattt tatctatggg ccattggatc ctgtaaatcc ctatccagaq
                                                                    1140
tttttggagc tgtacaggaa aacgetgeeg eggteeacag tgtegattet ggatgaecae
                                                                    1200
attagccact atccacaget agaggatece atgggettet tgaatgcata tatgggette
                                                                    1260
atcaactcct totgagotgg aaagagtago ttocotgtat tacotcccct actcccttat
ctgttgtgta ttccacttag gaagaaatgc ccaaaagagg tcctggccat caaacataat
                                                                    1380
teteteacaa agtecaettt aeteaaattg gtgaacagtg tataggaaga agceagcagg
                                                                    1440
agetetgaet aaggttgaea taatagteea ceteccatta etttgatate tgateaaatq
                                                                    1500
tatagacttg gctttgtttt ttgtgctatt aggaaattct gatgagcatt actattcact
                                                                    1560
gatgcagaaa gacqttcttt tgcataaaaq acttttttta acactttgga cttctctgaa
                                                                    1620
atatttagaa gtgctaattt ctggcccacc cccaacagga attctatagt aaggaggagg
                                                                    1680
agaagggggg ctccttccct ctcctcgaat gacgttatgg gcacatgcct tttaaaagtt
ctttaagcaa cacagagctg agtcctcttt gtcatacctt tggatttagt gtttcatcag
                                                                    1800
ctgtttttag ttataaacat tttgttaaaa tagatattgg tttaaatgat acagtatttt
                                                                    1860
aggtatgatt taagactatg atttacctat acattatata tattttataa agatactaaa
                                                                    1920
ccagcatacc cttactctgc cagagtagtg aagctaatta aacacgtttg gtttctgaat
                                                                    1980
aaattgaact aaatccaaac tatttcctaa aatcacagga cattaaggac caatagcatc
                                                                    2040
tgtgccagag atgtactgtt attagctggg aagaccaatt ctaacaqcaa ataacaqtct
                                                                    2100
gagactcctc atacctcagt ggttagaagc atgtctctct tgagctacag tagaqqqqaa
                                                                    2160
gggattgttg tgtagtcaag tcaccatgct gaatgtacac tgattccttt atgatgactg
                                                                    2220
cttaactccc cactgcctgt cccagagagg ctttccaatg tagctcagta attcctgtta
                                                                    2280
ctttacagac aggaaagttc cagaaacttt aagaacaaac tctgaaagac ctatgaqcaa
                                                                    2340
atggtgctga atactttttt tttaaagcca catttcattg tcttagtcaa agcaggatta
                                                                    2400
ttaagtgatt atttaaaatt cgttttttta aattagcaac ttcaagtata acaactttga
                                                                    2460
aactggaata agtgtttatt ttctattaat aaaaatgaat tgtgccaaaa aaaaaa
                                                                    2516
```

```
<210> 446
<211> 1063
<212> DNA
<213> Homo sapiens
```

```
<400> 446
ttttttttt ttaacgtett ttatttaaat tttatttaa ettagtgeat aaacattaca . 60
gecagtttaa ettgteegtg gaaaggeagt agaattttae eeegggaeeg tettgeatae . 120
```

```
tgcttttttt gagttttaac atccgcaaaa tcttggcata ttaatttagt tgggttgtag
                                                                      180
aattetgagt ttaggaacaa aaaaaattta ggtggagatg gttgacctat gctccctact
                                                                      240
ctgtagettt tgttttttta aaaactaagt tttaaatccc gttttctgtc ctgtcttctt
                                                                      300
taaaagcaaa acaaaacatt taagtttctt aactttttcc tgggacaagg aacggtgcaa
                                                                      360
actcaaagct acagtattct tggaaagaag aagcaacccc ctcccttggc tcctttagga
                                                                      420
gctgataggt catttattat tggaactgaa atggtataaa caattctctc tctttttttc
                                                                      480
ccttgttaac agcaactttc attgttagag agaggagaga gagagaagcc ttgttggttq
                                                                      540
acgtcacttg gttcatgaag ccttcgccta gaagtgaagc tgctgaacaa accttgaqaa
                                                                      600
gaatcatctc ctgcttcaat ctgctgctgg ataggaacta atcagagaga gagaggcgga
                                                                      660
agacggagaa ggagggagtc gaaggctttc ccgatcacaa atctcacctc cactacaact
                                                                      720
ctctttatac ttttcttgca gaaataataa tagaaataag gaggtggtgg ggtttccaaa
                                                                      780
aatcttaacc ttcaaccatc tggggaaaag gcaaaaatcc catctaccgc aactctcagt
                                                                      840
tcgagagtaa aggtttccca acagtgatgt cacaagattg accacattga tcacagtaag
                                                                      900
accaaaatga tagttaagct tttaaggaag tttggttttc tctgagaatg agaattgact
                                                                      960
tagaaaacat atataatttg aaattattat ttcttttgct agccagatga atgttaacat
                                                                    1020
tttaaatgaa tcatatctta tacttctagc tagttattta aat
                                                                    1063
     <210> 447
     <211> 488
     <212> DNA
     <213> Homo sapiens
     <220>
     <221> misc_feature
     <222> (1)...(488)
     <223> n = a,t,c or g
     <400> 447
cgcgttgaga cctattgagg cgtcggaaac gacccnngaa atacttcagg gatgaaacaa
                                                                       60
attgatgaaa agtcaaggat agtagacttt ccatgctgtt ctcaaagaag caaagtcaat
                                                                     120
tttctagcaa aggtggagga aacataagta acaatagcat aagaatatat tcttctaaca
                                                                     180
ttcaataatc cttaataact ctgggattta gctgagtaaa tgactatcca gtctcacagc
                                                                      240
tetttattga agagaggeea ecaagttttg aaatetgtee attettatte eteatgeatt
                                                                     300
gtatttttag ctgtcttcta tggtgtatac agctgccttc catgctcagt gtccttaaaa
                                                                     360
ctcaacctag taagaaccat ccattgtggc cctgtaaata tgcttacaat atattttct
                                                                     420
ttctttgtat tatctgaaat tctgacttaa aactaaccat agaatttaga aatttaatat
                                                                      480
tactggcg
                                                                      488
     <210> 448
     <211> 1716
     <212> DNA
     <213> Homo sapiens
     <400> 448
aaagggagtg agggaggaga gatgagtggc tattccagaa cgacataaag aatttccagc
                                                                      60
cttggacgga cagctgggaa cgtcttccaa tttggactgg tgtttacaag cgggaagcta
                                                                     120
ggtggacctt ggattttggc gggtgaagag gctaggttgt ttaaggaggt ggggcgcgtt
                                                                     180
tcaatggctc tctttgaaaa agcccagcaa gatgtcagac ctgctctcag tcttcctcca
                                                                     240
ceteeteett etetteaagt tggttgeece ggtgaeettt egeeaceaee getatgatga
                                                                     300
tettgtgegg aegetgtaca aggtgeaaaa egaatgeeee ggcateaege gggtetaeag
                                                                     360
cattgggcgc agcgtggagg ggagacacct ctacgtgctg gagttcagcg accaccctgg
                                                                     420
aatccacgag cccttggaac cagaggtcaa gtatgtgggg aacatgcacg gcaacgaagc
                                                                     480
gttgggccgc gagetgatgc tgcagctgtc ggagtttctg tgcgaggagt tccggaacag
                                                                     540
```

~~~~~~~~	2+00+00200	tastaasaas	an agagant t	asastaataa		C00
	atcgtccagc		-	_	•	600
ccccgacggc	tacgaggtgg	ctgctgccca	gggcccaaac	aagcctgggt	atctagttgg	660
caggaacaat	gcaaatggag	tggacctgaa	ccgcaacttc	cctgatctca	atacctatat	720
ctactataac	gagaagtacg	gaggccccaa	ccaccacctg	ccccttccag	acaactggaa	780
aagtcaggtg	gaacccgaga	cccgggcggt	gatccggtgg	atgcactcct	tcaactttgt	840
tctttcagcc	aatctccacg	gaggggggt	ggtggccaat	tacccgtatg	acaagteett	900
tgagcaccgg	gtccgagggg	teegeegeae	cgccagcacc	cccacgcctg	acgacaagct :	960
cttccagaag	ctggccaagg	tctactccta	tgcacatgga	tggatgttcc	aaggttggaa	1020
ctgcggagat	tacttcccag	atggcatcac	caatggggct	tcctggtatt	ctctcagcaa	1080
gggaatgcaa	gactttaatt	atctccatac	caactgcttt	gagatcacgc	tggaactgag	1140
ttgcgacaag	tttccccccg	aagaggagtt	acagcgggag	tggctgggta	atcgggaagc	1200
cctaatccag	ttcctggaac	aggttcacca	gggcatcaag	ggaatggtgc	ttgatgagaa	1260
ttacaataat	ctcgccaatg	ctgtcatttc	tgtcagtggg	attaaccatg	atgtcacttc	1320
aggtgaccat	ggtgattact	teeggetget	gcttccaggt	atctacactg	ttagtgccac	1380
agcacctggg	tatgacccag	agacagtaac	tgtgaccgtg	ggtcctgcgg	aaccaacgtt	1440
ggttaacttc	cacctcaaaa	gaagcatccc	tcaagtaagc	cctgtgagga	gagctcccag	1500
cagaaggcac	ggagtcagag	ccaaagtgca	gccccaaccc	agaaagaaag	aaatggagat	1560
gaggcagctg	cagagaggcc	ctgcctgaaa	cccacagtgc	caggcacccc	ctcagaaagg	1620
ctttgctcct	gctctcagat	cagatcaagc	attctttgta	ttttattatc	tgggacatat	1680
ttaaatacaa	acgtattcag	agcaataaaa	aaaaaa			1716

<210> 449

<211> 1610

<212> DNA

<213> Homo sapiens

## <400> 449

attgaaaccc tatcgagacc atagtcagtg tggtggaatt cgcagctcag catggctagg 60 gtactgggag cacccgttgc actggggttg tggagcctat gctggtctct ggccattgcc 120 accectette etecgactag tgeccatggg aatgttgetg aaggegagae caagecagae 180 ccagacgtga ctgaacgctg ctcagatggc tggagctttg atgctaccac cctggatgac 240 aatggaacca tgctgttttt taaaggggag tttgtgtgga agagtcacaa atgggaccgg 300 gagttaatct cagagagatg gaagaatttc cccagccctg tggatgctgc attccgtcaa 360 ggtcacaaca gtgtctttct gatcaagggg gacaaagtct gggtataccc tcctgaaaag 420 aaggagaaag gatacccaaa gttgctccaa gatgaatttc ctggaatccc atccccactg 480 gatgcagctg tggaatgtca ccgtggagaa tgtcaagctg aaggcgtcct cttcttccaa 540 ggtgaccgcg agtggttctg ggacttggct acgggaacca tgaaggagcg ttcctggcca 600 gctgttggga actgctcctc tgccctgaga tggctgggcc gctactactg cttccagggt 660 aaccaattcc tgcgcttcga ccctgtcagg ggagaggtgc ctcccaggta cccgcgggat 720 gteegagaet aetteatgee etgeeetgge agaggeeatg gacacaggaa tgggaetgge 780 catgggaaca gtacccacca tggccctgag tatatgcgct gtagcccaca tctagtcttg 840 tetgeactga egtetgaeaa eeatggtgee acetatgeet teagtgggae eeactactgg 900 cgtctggaca ccagccggga tggctggcat agctggccca ttgctcatca gtggccccag 960 ggtccttcag cagtggatgc tgccttttcc tgggaagaaa aactctatct ggtccagggc 1020 acccaggtat atgtcttcct gacaaaggga ggctataccc tagtaagcgg ttatccgaag 1080 cggctggaga aggaagtcgg gacccctcat gggattatec tggactctgt ggatgcgcc 1140 tttatctgcc ctgggtcttc tcggctccat atcatggcag gacggcggct gtggtggctg 1200 gacctgaagt caggagccca agccacgtgg acagagcttc cttggcccca tgagaaggta 1260 gacggagcct tgtgtatgga aaagtccctt ggccctaact catgttccgc caatggtccc 1320 ggettgtace teatecatgg teceaatttg tactgetaca gtgatgtgga gaaactgaat 1380 gcagccaagg cccttccgca accccagaat gtgaccagtc tcctgggctg cactcactga 1440 ggggccttct gacatgagtc tggcctggcc ccacctccta gttcctcata ataaagacag 1500 attgettett egetteteae tgaggggeet tetgacatga gtetggeetg geeceaeete 1560 . 1610

<210> 450 <211> 1509 <212> DNA <213> Homo sapiens <400> 450 aagtaaaggt ccttttccaa aattcccaag ctggttttaa tagggctccc caaaagggga 60 agagtatteg ttgegaatee eeegttaaet ttgggeeeee taagggttet ettaageggg 120 ccccctttt tttttttt gactaagcaa aatttgtact tgtttaataa gaaaatcact 180 240 cagattcgag aaaggctgtt cctacaaggg aaggtcctga ggttacaacg ccggcatggc 300 cgggaaaaca tggctgcagc gatcccagct tcttgctgcc cacaggggtg gcacatctgg 360 gcacacactg tgagctgctc agaggcactc tggtgggcag ctcccatcgc ctcagtcagt 420 gtotocgtoc cottoactgo ottocagggg actgggcaco ttggcgcccg tgccacctgc 480 cgtgagagcg gtggcactga agttgtggat gggcaaggtg ctcagccact gggccatqga 540 gegttegtee egeteggtge egatgatggt ggggtagatg tgeteeteet tgaaggetge 600 gacettteet teeteetgeg eecagteeag eggeteatge ageceategt tgecaaageg 660 etggttgtac ttctcgaagt gcaccctctc caggaccagg ccgagtccgg gcgccttggg 720 cacgtccacc ttctctgtgc cccagctgcg ctccagcacg ctctcagggg cataaccctt 780 cacaatggcc accaccaggc cgaccatctt ccggatctga tgcatcatga agctctggcc 840 cttcaccctg atcaccgcaa actccaggcc ctcccgcaca aagggttcct cgcagtacat 900 ctccaggatg tagcggcagg cactgggatc ctgcggcccc ttctgcgagg tgaaattgtg 960 gaagttgtgc gtgcccttgt agcaggccag gagcctgttg acctgctgca gcgtctcggc 1020 gctcaggcgg taggtctcat cctgaacgtc ccggtccttg tgcgcaaagg caaacgtggg 1080 cagcaggtag caataggtcc tggcatcaca tctgttcttg gagttaaacc cgcccgtgac 1140 ccgcttcagt cccagaatcc gaatgtgaga gggaaggtgg ctgttgatct tttctagaat 1200 gtegteaate agecacacet teagggatae cacetggeeg getgeggaea caceettgte 1260 tgtccgggcg cagcgctgga aggacatttt cctcatgtcc tcaccatgat tttcaggaat 1320 acagcctgac cggacgaggg cggacaccaa gtcatcttca attgttttga attgtgagga 1380 cccgacattc ctctgcatgc cgtggtagcc cttgcccgaa taggccatga gcagcacgat 1440 etteegettg ggeggettet egegeegete etegtegeea eegetettga gettettege 1500 cggatgttc 1509 <210> 451 <211> 878 <212> DNA <213> Homo sapiens <400> 451 gacaaaccgc gccgaccaac ttcttcagaa gccttaatta ctactggatt tgctacattt 60 ttacctaaat ttatagaaaa tcaattcgga ttgacatcca gcttcgcagc tactcttqga 120 ggggetgttt taatteetgg agetgetete ggteaaattt taggtggett eettgtttea 180 aaattcagaa tgacatgtaa aaacacaatg aagtttgcac tgttcacatc tggagttgca 240 cttacgctga gttttgtatt tatgtatgcc aaatgtgaaa atgagccatt tgctggtgta 300 tetgaatcat ataatgggac tggagaattg ggaaaettga tageecettg taatgeeaat 360 tgtaactgtt cgcgatcata ttattatcct gtctgtggag atggagtcca atatttttct 420 ccctgctttg caggctgttc aaacccagtt gcacacagga agccaaaggt atattacaac 480 tgttcctgta ttgaaaggaa aacagaaata acatccactg cagaaacttt tgggtttgaa 540 gctaacgctg gaaaatgtga aactcattgt gcgaaactgg ccatattcct ttgcattgtt 600 tttattggaa atattttac ctttatggcc cggtctccta taactggggc tattcctagg 660 gggggtaatc acagacaacg gccccctacc ttgggaatac aatttatggc ccttcggaca 720 ctctggacca ctccttggcc cagtaaaact qqqtqtccca tacaccagcc cqqttctctt 780

840

878

tgggagaaac ttggatggcg gccccttaag accctgcggc gtccgaaacc ttcttggaat

gegetteteg cattagecea teegegetet tteeaage

<210> 452 <211> 4710 <212> DNA <213> Homo sapiens

# <400> 452

gaattccttt ccaaaaataa tcatactcag cctggcaatt gtctgcccct aggtctgtcg 60 ctcagccgcc gtccacactc gctgcagggg gggggggcac agaatttacc gcggcaagaa 120 catccctccc agccagcaga ttacaatgct gcaaactaag gatctcatct ggactttgtt 180 tttcctggga actgcagttt ctctgcaggt ggatattgtt cccagccagg gggagatcag 240 cgttggagag tccaaattct tcttatgcca agtggcagga gatgccaaag ataaagacat 300 ctcctggttc tcccccaatg gagaaaagct caccccaaac cagcagcgga tctcagtggt 360 gtggaatgat gatteeteet ecaeceteac catetataac gecaacateg acgacgeegg 420 catttacaag tgtgtggtta caggcgagga tggcagtgag tcagaggcca ccgtcaacgt 480 gaagatettt cagaagetea tgttcaagaa tgcgccaacc ccacaggagt tccgggaggg 540 ggaagatgcc gtgattgtgt gtgatgtggt cagctccctc ccaccaacca tcatctggaa 600 acacaaaggc cgagatgtca tcctgaaaaa agatgtccga ttcatagtcc tgtccaacaa 660 ctacctgcag atccggggca tcaagaaaac agatgaaggc acttatcgct gtgagggcag 720 aatcctggca cggggggaga tcaacttcaa ggacattcag gtcattgtga atgtgccacc 780 taccatecag gecaggeaga atattgtgaa tgecaeegee aaceteggee agteegteae 840 cctggtgtgc gatgccgaag gcttcccaga gcccaccatg agctggacaa aggatgggga 900 acagatagag caagaggaag acgatgagaa gtacatcttc agcgacgata gttcccagct 960 gaccatcaaa aaggtggata agaacgacga ggctgagtac atctgcattg ctgagaacaa 1020 ggctggcgag caggatgcga ccatccacct caaagtcttt gcaaaaccca aaatcacata 1080 tgtagagaac cagactgcca tggaattaga ggagcaggtc actcttacct gtgaagcctc 1140 cggagacccc atteceteca teacetggag gaettetace eggaacatea geagegaaga 1200 aaagactetg gatgggcaca tggtggtgeg tagecatgee egtgtgtegt egetgaceet 1260 gaagagcatc cagtacactg atgccggaga gtacatctgc accgccagca acaccatcgg 1320 ccaggactcc cagtccatgt accttgaagt gcaatatgcc ccaaagctac agggccctgt 1380 ggctgtgtac acttgggagg ggaaccaggt gaacatcacc tgcgaggtat ttgcctatcc 1440 cagtgccacg atctcatggt ttcgggatgg ccagctgctg ccaagctcca attacagcaa 1500 tatcaagatc tacaacaccc cctctgccag ctatctggag gtgaccccag actctgagaa 1560 tgattttggg aactacaact gtactgcagt gaaccgcatt gggcaggagt ccttggaatt 1620 catcettgtt caagcagaca ccccctcttc accatecate gaccaggtgg agccatactc 1680 cagcacagec caggtgeagt ttgatgaacc agaggeeaca ggtggggtge ecateeteaa 1740 atacaaagct gagtggagag cagttggtga agaagtatgg cattccaagt ggtatgatgc 1800 caaggaagcc agcatggagg gcatcgtcac catcgtgggc ctgaagcccg aaacaacgta 1860 cgccgtaagg ctggcggcgc tcaatggcaa agggctgggt gagatcagcg cggcctccga 1920 gttcaagacg cagccagtcc atagccctcc tccaccggca tctgctagct cgtctacccc 1980 tgttccattg tctccaccag atacaacttg gcctcttcct gcccttgcaa ccacagaacc 2040 agetaaaggg gaacecagtg cacetaaget egaagggcag atgggagagg atggaaacte 2100 tattaaagtg aacctgatca agcaggatga cggcggctcc cccatcagac actatctggt 2160 caggtaccga gcgctctcct ccgagtggaa accagagatc aggctcccgt ctggcagtga 2220 ccacgtcatg ctgaagtccc tggactggaa tgctgagtat gaggtctacg tggtggctga 2280 gaaccagcaa ggaaaatcca aggcggctca ttttgtgttc aggacctcgg cccagcccac 2340 agccatecca geaacettgg gaggeaatte tgeatectae acetttgtet cattgetttt 2400 ctctgcagtg actcttcttt tgctctgtta ggaacttgaa cacaaaaatt aaatttgctt 2460 aaaagcccag ttcctatgaa aaagatcagt gcccctttg gaagaacctg gcaggaccac 2520 catggccaca gctgctgagc aaccattctg tgtggaagag aaggttttgt gattggaaaa 2580 agetttacet ccagacatgt caccactcac agatactttt gtgccacttc ataaggagtt 2640 tgcccccttt ttaatggcag taaaaagaat ttgagagctc tttctttaaa tgctattttt 2700 aaaaaccatc atgctagatt tacagagaag tttctgcata tctgctactt gttgcatttt 2760 gggttcaaac ctaaatatga tgtagcagag gaagaattct aagtaccttc taaagcttgt 2820 gtcagattgt taaaatcacc acacattccc ctcattctaa ctctgtgctc cttgtcctcc 2880 cttcaataat aattggcttt gcttgcaatt aagcatttaa gtgcccatgt taaaagagcc 2940