

Time Series Analysis

Andreas Jakobsson

Content:

- Least squares
- Weighted least squares

The linear model

We will here consider linear models, such that

$$y_t = \mathbf{x}_t^* \boldsymbol{\theta} + e_t$$

where e_t is an additive noise process and the regressor \mathbf{x}_t is a known vector, whereas $\boldsymbol{\theta}$ is an $n_{\boldsymbol{\theta}}$ -dimensional vector containing the parameters to be estimated.

Example: The process

$$y_{t} = a_{0} + a_{1}z_{t} + a_{2}z_{t}^{2} + a_{3}\sin(z_{t}) + e_{t}$$

$$= \begin{bmatrix} 1 & z_{t} & z_{t}^{2} & \sin(z_{t}) \end{bmatrix} \begin{bmatrix} a_{0} & a_{1} & a_{2} & a_{3} \end{bmatrix}^{T} + e_{t}$$

$$= \mathbf{x}_{t}^{T} \boldsymbol{\theta} + e_{t}$$

is linear in θ .

The linear model

We will here consider *linear* models, such that

$$y_t = \mathbf{x}_t^* \boldsymbol{\theta} + e_t$$

where e_t is an additive noise process and the regressor \mathbf{x}_t is a known vector, whereas $\boldsymbol{\theta}$ is an $n_{\boldsymbol{\theta}}$ -dimensional vector containing the parameters to be estimated

Least squares

Consider N measurements of y_t , and let

$$\mathbf{y} = \begin{bmatrix} y_1 & \dots & y_N \end{bmatrix}^T$$

$$\mathbf{X} = \begin{bmatrix} \mathbf{x}_1 & \dots & \mathbf{x}_N \end{bmatrix}^*$$

$$\mathbf{e} = \begin{bmatrix} e_1 & \dots & e_N \end{bmatrix}^T$$

where we assume e_t to be a zero-mean white process with variance σ_e^2 . Thus,

$$y = X\theta + e$$

Least squares

Consider N measurements of y_t , and let

$$\mathbf{y} = \begin{bmatrix} y_1 & \dots & y_N \end{bmatrix}^T$$

$$\mathbf{X} = \begin{bmatrix} \mathbf{x}_1 & \dots & \mathbf{x}_N \end{bmatrix}^*$$

$$\mathbf{e} = \begin{bmatrix} e_1 & \dots & e_N \end{bmatrix}^T$$

where we assume e_t to be a zero-mean white process with variance σ_e^2 . Thus,

$$y = X\theta + e$$

The least-squares (LS) estimate of the unknown n_{θ} -dimensional parameter vector θ can then be formed as

$$\hat{\boldsymbol{\theta}} = \arg\min_{\boldsymbol{\theta}} \|\mathbf{y} - \mathbf{X}\boldsymbol{\theta}\|_2^2$$

with $\|\mathbf{a}\|_2^2 = \mathbf{a}^*\mathbf{a}$ denoting the 2-norm of the vector \mathbf{a} .

Least squares

$$\mathbf{p} = \mathbf{X}\mathbf{X}^{\dagger}\mathbf{y} = \mathbf{X}\Big(\mathbf{X}^{*}\mathbf{X}\Big)^{-1}\mathbf{X}^{*}\mathbf{y} = \mathbf{\Pi}_{\mathbf{X}}\mathbf{y}$$
 $\mathbf{e} = \mathbf{y} - \mathbf{X}\hat{\boldsymbol{\theta}} = (\mathbf{I} - \mathbf{\Pi}_{\mathbf{X}})\mathbf{y} = \mathbf{\Pi}_{\mathbf{X}}^{\perp}\mathbf{y}$

Least squares

Note that

$$\begin{split} \hat{\boldsymbol{\theta}} &= \arg\min_{\boldsymbol{\theta}} \|\mathbf{y} - \mathbf{X}\boldsymbol{\theta}\|_2^2 \\ &= \arg\min_{\boldsymbol{\theta}} \left\{ [\mathbf{y} - \mathbf{X}\boldsymbol{\theta}]^* \left[\mathbf{y} - \mathbf{X}\boldsymbol{\theta} \right] \right\} \\ &= \arg\min_{\boldsymbol{\theta}} \left\{ \left[\boldsymbol{\theta} - \mathbf{X}^\dagger \mathbf{y} \right]^* \left[\mathbf{X}^* \mathbf{X} \right] \left[\boldsymbol{\theta} - \mathbf{X}^\dagger \mathbf{y} \right] + \mathbf{y}^* \mathbf{y} - \mathbf{y}^* \boldsymbol{\Pi}_{\mathbf{X}} \mathbf{y} \right\} \\ &= \mathbf{X}^\dagger \mathbf{y} \end{split}$$

where \mathbf{X}^{\dagger} denotes the (Moore-Penrose) pseudoinverse of \mathbf{X} , defined as

$$\mathbf{X}^{\dagger} = (\mathbf{X}^* \mathbf{X})^{-1} \mathbf{X}^*$$

and with

$$\mathbf{\Pi}_{\mathbf{X}} = \mathbf{X}\mathbf{X}^{\dagger} = \mathbf{X}\left(\mathbf{X}^{*}\mathbf{X}\right)^{-1}\mathbf{X}^{*}$$

is the *projection* matrix onto the range space of X. Here, we have also assumed that X has full (column) rank.

Least squares

$$\begin{aligned} \mathbf{p} &= \mathbf{X} \mathbf{X}^{\dagger} \mathbf{y} = \mathbf{X} \left(\mathbf{X}^* \mathbf{X} \right)^{-1} \mathbf{X}^* \mathbf{y} = \mathbf{\Pi}_{\mathbf{X}} \mathbf{y} \\ \mathbf{e} &= \mathbf{y} - \mathbf{X} \hat{\boldsymbol{\theta}} = (\mathbf{I} - \mathbf{\Pi}_{\mathbf{X}}) \mathbf{y} = \mathbf{\Pi}_{\mathbf{X}}^{\perp} \mathbf{y} & \Rightarrow & \hat{\sigma}_e^2 = \frac{1}{N - n_{\boldsymbol{\theta}}} \left(\mathbf{y} - \mathbf{X} \hat{\boldsymbol{\theta}} \right)^* \left(\mathbf{y} - \mathbf{X} \hat{\boldsymbol{\theta}} \right) = \frac{\mathbf{y}^* \mathbf{\Pi}_{\mathbf{X}}^{\perp} \mathbf{y}}{N - n_{\boldsymbol{\theta}}} \end{aligned}$$

Least squares

If $\mathbf{e} \in \mathbb{N}(\mathbf{0}, \sigma_e^2 \mathbf{I})$, then $\hat{\boldsymbol{\theta}}$ is Normal distributed with mean $E\{\hat{\boldsymbol{\theta}}\} = \boldsymbol{\theta}$ and

$$\hat{oldsymbol{ heta}} - oldsymbol{ heta} = \left(\mathbf{X}^*\mathbf{X}
ight)^{-1}\mathbf{X}^*\mathbf{y} - oldsymbol{ heta} = \left(\mathbf{X}^*\mathbf{X}
ight)^{-1}\mathbf{X}^*\mathbf{e}$$

implying that the variance

$$V\{\hat{\boldsymbol{\theta}}\} = V\{\hat{\boldsymbol{\theta}} - \boldsymbol{\theta}\} = E\left\{ \left(\mathbf{X}^*\mathbf{X}\right)^{-1}\mathbf{X}^*\mathbf{e}\mathbf{e}^*\mathbf{X}\left(\mathbf{X}^*\mathbf{X}\right)^{-1} \right\}$$
$$= \left(\mathbf{X}^*\mathbf{X}\right)^{-1}\mathbf{X}^*E\{\mathbf{e}\mathbf{e}^*\}\mathbf{X}\left(\mathbf{X}^*\mathbf{X}\right)^{-1}$$
$$= \sigma_e^2 \left(\mathbf{X}^*\mathbf{X}\right)^{-1}$$

Furthermore, $\hat{\boldsymbol{\theta}}$ is the best linear unbiased estimate (BLUE) of $\boldsymbol{\theta}$, i.e., this is the estimate that has the lowest variance among all possible linear unbiased estimators.

Weighted least squares

We have so far considered the model

$$y = X\theta + e$$

with \mathbf{e} being a white noise. How should we handle the case when the noise is colored?

Let $\mathbf{R_e} = E\left\{\mathbf{ee^*}\right\}$ denote the covariance matrix of the additive noise and let \mathbf{W} denote a matrix square root of $\mathbf{R_e^{-1}}$, i.e., so that

$$\mathbf{R}_\mathbf{e}^{-1} = \mathbf{W}^*\mathbf{W}$$

We then form the weighted least squares (WLS) estimate as

$$\hat{\boldsymbol{\theta}}_{WLS} = \arg\min_{\boldsymbol{\theta}} \|\mathbf{y} - \mathbf{X}\boldsymbol{\theta}\|_{\mathbf{R_e}}^2$$

with $\|\mathbf{a}\|_{\mathbf{R}}^2 = \mathbf{a}^*\mathbf{R}^{-1}\mathbf{a}$ denoting the **R**-norm of the vector **a**.

Least squares

Example: Consider N samples of an AR(p) process, such that

$$y_t + a_1 y_{t-1} + \ldots + a_p y_{t-p} = e_t$$

for t = p + 1, ..., N, where e_t is a zero-mean white noise process with variance σ_e^2 . Expressed differently,

$$e_t = y_t + \begin{bmatrix} y_{t-1} & \dots & y_{t-p} \end{bmatrix} \begin{bmatrix} a_1 \\ a_2 \\ \vdots \\ a_p \end{bmatrix} = y_t + \mathbf{x}_t^T \boldsymbol{\theta}$$

To form the LS estimate of θ , we let

$$\mathbf{y} = \begin{bmatrix} y_{p+1} & \dots & y_N \end{bmatrix}^T$$

$$\mathbf{X} = \begin{bmatrix} \mathbf{x}_{p+1} & \dots & \mathbf{x}_N \end{bmatrix}^*$$

$$\mathbf{e} = \begin{bmatrix} e_{p+1} & \dots & e_N \end{bmatrix}^T$$

yielding
$$\mathbf{e} = \mathbf{y} + \mathbf{X}\boldsymbol{\theta}$$
. Thus, $\hat{\boldsymbol{\theta}} = -\left(\mathbf{X}^*\mathbf{X}\right)^{-1}\mathbf{X}^*\mathbf{y}$.

Weighted least squares

Then,

$$\begin{split} \hat{\boldsymbol{\theta}}_{WLS} &= \arg\min_{\boldsymbol{\theta}} \left\| \mathbf{y} - \mathbf{X} \boldsymbol{\theta} \right\|_{\mathbf{R_e}}^2 \\ &= \arg\min_{\boldsymbol{\theta}} \left\{ \left[\mathbf{y} - \mathbf{X} \boldsymbol{\theta} \right]^* \mathbf{W}^* \mathbf{W} \left[\mathbf{y} - \mathbf{X} \boldsymbol{\theta} \right] \right\} \end{split}$$

Let $\tilde{\mathbf{y}} = \mathbf{W}\mathbf{y}$, $\tilde{\mathbf{X}} = \mathbf{W}\mathbf{X}$, and $\tilde{\mathbf{e}} = \mathbf{W}\mathbf{e}$. Then,

$$\hat{\boldsymbol{\theta}}_{WLS} = \arg\min_{\boldsymbol{\theta}} \left[\tilde{\mathbf{y}} - \tilde{\mathbf{X}} \boldsymbol{\theta} \right]^* \left[\tilde{\mathbf{y}} - \tilde{\mathbf{X}} \boldsymbol{\theta} \right]$$

which implies that

$$\hat{oldsymbol{ heta}}_{WLS} = ilde{\mathbf{X}}^\dagger ilde{\mathbf{y}} = \left(\mathbf{X}^* \mathbf{R}_{\mathbf{e}}^{-1} \mathbf{X} \right)^{-1} \mathbf{X}^* \mathbf{R}_{\mathbf{e}}^{-1} \mathbf{y}$$

and that
$$V\{\hat{\boldsymbol{\theta}}_{WLS}\} = \left(\mathbf{X}^*\mathbf{R}_{\mathbf{e}}^{-1}\mathbf{X}\right)^{-1}$$
.