Statistical inference practice

Joris LIMONIER

December 3, 2021

Contents

1	Ho	mework for October 8, 2021	
	1.1	Chapter 6 - Exercise 2	
	1.2	Chapter 6 - Exercise 3	
2	Homework for October 20, 2021		
	2.1	Chapter 7 - Exercise 2	
	2.2	Chapter 7 - Exercise 5	
	2.3	Chapter 7 - Exercise 6	
3	Homework for October 29		
	3.1	Custom exercise	
4	Homework for November 5, 2021		
	4.1	Chapter 9 - Exercise 1	
	4.2	Chapter 9 - Exercise 2	
5	Preparation for mid-term 1		
	5.1	Chapter 9 - Exercises 5	
	5.2	Chapter 9 - Exercises 6	
	5.3	Chapter 9 - Examples 20	
	5.4	Chapter 9 - Examples 21	
	5.5	Chapter 9 - Examples 22	
6	In class exercise December 3, 2021		
		Exercise 1	

1 Homework for October 8, 2021

1.1 Chapter 6 - Exercise 2

Let X_1, \ldots, X_n be i.i.d. random variables with distribution $\mathcal{U}(0, \theta)$. Let $\hat{\theta}_n = \max(X_1, \ldots, X_n)$. What is the bias of $\hat{\theta}_n$? $\hat{\theta}_n$ is unbiased if $\mathbb{E}[\hat{\theta}_n] = \theta$. We compute $F_{\hat{\theta}_n}$, the CDF of $\hat{\theta}_n$:

$$\begin{split} F_{\hat{\theta}_n}(x) &= \mathbb{P}(\hat{\theta} \leq x) \\ &= \mathbb{P}(X_1 \leq x, \dots, X_n \leq x) \\ &= \mathbb{P}(X_1 \leq x) \dots \mathbb{P}(X_n \leq x) \\ &= \left[\mathbb{P}(X_1 \leq x) \right]^n & \textit{(identity of distribution)} \\ &= \begin{cases} 0 & x < 0 \\ \left[\frac{x}{\theta} \right]^n & 0 \leq x \leq \theta \\ 1 & x > \theta \end{cases} \end{split}$$

Then $f_{\hat{\theta}_n}$, the PDF of $\hat{\theta}_n$ is given by:

$$\begin{split} f_{\hat{\theta}_n}(x) &= \frac{d}{dx} F_{\hat{\theta}_n}(x) \\ &= \begin{cases} \frac{nx^{n-1}}{\theta^n} & x \in [0, \theta] \\ 0 & \text{otherwise} \end{cases} \end{split}$$

Hence the expected value is given by:

$$\mathbb{E}[\hat{\theta}_n] = \int_{-\infty}^{+\infty} t f(t) dt$$

$$= \frac{n}{\theta^n} \int_0^{\theta} t^n dt$$

$$= \frac{n}{\theta^n (n+1)} \left[t^{n+1} \right]_0^{\theta}$$

$$= \frac{n}{\theta^n (n+1)} \left[\theta^{n+1} - 0 \right]$$

$$= \frac{n\theta}{n+1}$$

Since $\mathbb{E}[\hat{\theta}_n] = n\theta \neq \theta$, we have that $\hat{\theta}_n$ is not an unbiased estimator for θ . However, $\mathbb{E}[\hat{\theta}_n] \xrightarrow[n \to \infty]{} \theta$, therefore $\hat{\theta}_n$ is asymptotically unbiased.

What is SE, the standard error of $\hat{\theta}_n$?

$$SE = SE(\hat{\theta}_n)$$

$$= \sqrt{Var(\hat{\theta}_n)}$$

$$= \sqrt{\mathbb{E}[\hat{\theta}_n^2] - \mathbb{E}[\hat{\theta}_n]^2}$$
(1)

We need to find $\mathbb{E}[\hat{\theta}_n^2]$.

$$\begin{split} \mathbb{E}[\hat{\theta}_n^2] &:= \int_{-\infty}^{+\infty} t^2 f(t) dt \\ &= \frac{n}{\theta^n} \int_0^{\theta} t^{n+1} dt \\ &= \frac{n}{\theta^n (n+2)} \left[t^{n+2} \right]_0^{\theta} \\ &= \frac{n}{\theta^n (n+2)} \left[\theta^{n+2} - 0 \right] \\ &= \frac{n\theta^2}{n+2} \end{split}$$

Then (1) becomes:

$$\begin{split} SE &= \sqrt{\mathbb{E}[\hat{\theta}_{n}^{2}] - \mathbb{E}[\hat{\theta}_{n}]^{2}} \\ &= \sqrt{\frac{n\theta^{2}}{n+2} - \left[\frac{n\theta}{n+1}\right]^{2}} \\ &= \sqrt{n\theta^{2} \left[\frac{1}{n+2} - \frac{n}{(n+1)^{2}}\right]} \\ &= \sqrt{n\theta^{2} \left[\frac{1}{n+2} - \frac{n}{n^{2}+2n+1}\right]} \\ &= \sqrt{n\theta^{2} \left[\frac{n^{2}+2n+1}{(n+2)(n^{2}+2n+1)} - \frac{n(n+2)}{(n^{2}+2n+1)(n+2)}\right]} \\ &= \sqrt{n\theta^{2} \frac{n^{2}+2n+1-n(n+2)}{(n^{2}+2n+1)(n+2)}} \\ &= \sqrt{\frac{n\theta^{2}}{(n^{2}+2n+1)(n+2)}} \\ &= \sqrt{\frac{n\theta^{2}}{(n^{2}+2n+1)(n+2)}} \\ &= \frac{\theta}{n+1} \sqrt{\frac{n}{n+2}} \end{split}$$

What is MSE, the Mean-Square Error of $\hat{\theta}_n$? The MSE is given by:

$$MSE := bias^{2}(\hat{\theta}_{n}) + Var(\hat{\theta}_{n})$$

$$= \left[\mathbb{E}[\hat{\theta}] - \theta\right]^{2} + \frac{n\theta^{2}}{(n+1)^{2}(n+2)}$$

$$= \left[\frac{n\theta}{n+1} - \theta\right]^{2} + \frac{n\theta^{2}}{(n+1)^{2}(n+2)}$$

$$= \left[\frac{-\theta}{n+1}\right]^{2} + \frac{n\theta^{2}}{(n+1)^{2}(n+2)}$$

$$= \frac{\theta^{2}}{(n+1)^{2}} \left[1 + \frac{n}{n+2}\right]$$

$$= \frac{\theta^{2}}{(n+1)^{2}} \frac{2n+2}{n+2}$$

$$= \frac{2\theta^{2}}{(n+1)(n+2)}$$

1.2 Chapter 6 - Exercise 3

Let X_1, \ldots, X_n be i.i.d. random variables with distribution $\mathcal{U}(0, \theta)$. Let $\hat{\theta}_n := 2\bar{X}_n$.

What is the bias of $\hat{\theta}_n$? $\hat{\theta}_n$ is unbiased if $\mathbb{E}[\hat{\theta}_n] = \theta$. We compute $\mathbb{E}[\hat{\theta}_n]$:

$$\mathbb{E}[\hat{\theta}_n] = \mathbb{E}\left[2\bar{X}_n\right]$$

$$= \mathbb{E}\left[2\frac{X_1 + \ldots + X_n}{n}\right]$$

$$= \frac{2}{n}\mathbb{E}\left[X_1 + \ldots + X_n\right]$$

$$= \frac{2}{n}\mathbb{E}\left[X_1\right] + \ldots + \mathbb{E}\left[X_n\right]$$

$$= 2\mathbb{E}\left[X_1\right]$$

$$= \theta$$

Therefore $\hat{\theta}$ is unbiased.

What is SE, the standard error of $\hat{\theta}_n$?

$$SE = SE(\hat{\theta}_n)$$

$$= \sqrt{Var(\hat{\theta}_n)}$$

$$= \sqrt{Var(2\bar{X}_n)}$$

$$= \frac{2}{n}\sqrt{Var(X_1 + \dots + X_n)}$$

$$= \frac{2}{n}\sqrt{Var(X_1) + \dots + Var(X_n)} \qquad (The X_i are i.i.d.)$$

$$= \frac{2}{n}\sqrt{\frac{n\theta^2}{12}}$$

$$= \frac{2\theta}{2\sqrt{3n}}$$

$$= \frac{\theta}{\sqrt{3n}}$$

What is MSE, the Mean-Square Error of $\hat{\theta}_n$? The MSE is given by:

$$MSE := bias^{2}(\hat{\theta}_{n}) + Var(\hat{\theta}_{n})$$

$$= \underbrace{\left[\mathbb{E}[\hat{\theta}] - \theta\right]^{2}}_{=0} + \frac{\theta^{2}}{3n}$$

$$= \frac{\theta^{2}}{3n}$$

2 Homework for October 20, 2021

2.1 Chapter 7 - Exercise 2

Let $X_1, \ldots, X_n \sim \text{Bernoulli}(p)$ and let $Y_1, \ldots, Y_m \sim \text{Bernoulli}(q)$.

- $\bullet\,$ Find the plug-in estimator and estimated standard error for p.
- Find an approximate 90 percent confidence interval for p.
- Find the plug-in estimator and estimated standard error for p-q.
- Find an approximate 90 percent confidence interval for p-q.

Find the plug-in estimator and estimated standard error for p.

Let ϕ be the plug-in estimator for p, it is given by:

$$\phi = \mathbb{E}[X_i], \ i = 1, \dots, n$$

and

$$\hat{\phi} = \mathbb{E}[Z], \text{ with } \mathbb{P}(Z = X_i \mid X_1, \dots, X_n) = \frac{1}{n}$$

$$\hat{\phi} = \mathbb{E}[Z]$$

$$= \sum_{i=1}^n X_i \mathbb{P}(Z = X_i)$$

$$= \sum_{i=1}^n \frac{1}{n} X_i$$

and the standard error se is given by:

$$se(\phi) = \sqrt{Var(\phi)}$$
$$= \sqrt{Var(\overline{X})}$$
$$= \sqrt{\frac{p(1-p)}{n}}$$

Find an approximate 90 percent confidence interval for p.

We know that 90% (i.e. $\alpha = 0.05$) confidence intervals are of the following form:

$$\overline{X} \pm z_{\alpha/2} se(p_{pin})$$

$$= \overline{X} \pm 1.645 \sqrt{\frac{1}{n} \left[\sum_{i=1}^{n} X_i^2\right] - \overline{X}^2}$$

Find the plug-in estimator and estimated standard error for p-q.

Let Π be the plug-in estimator for p-q and $\chi \in \{X_1, \ldots, X_n, Y_1, \ldots, Y_m\}$

$$\mathbb{P}(\Pi = \chi) = \frac{1}{\# \{X_1, \dots, X_n\} + \# \{Y_1, \dots, Y_m\}}$$
$$= \frac{1}{m+n}$$

$$se(\Pi) = \sqrt{Var(\Pi)}$$

$$= \sqrt{\mathbb{E}[\Pi^2] - \mathbb{E}[\Pi]^2}$$

$$= \sqrt{\left[\sum_{i=1}^n \chi^2 \mathbb{P} \{\Pi = \chi\}\right] - \left[\sum_{i=1}^n \chi \mathbb{P} \{\Pi = \chi\}\right]^2}$$

$$= \sqrt{\left[\sum_{i=1}^n \chi^2 \frac{1}{m+n}\right] - \left[\sum_{i=1}^n \chi \frac{1}{m+n}\right]^2}$$

$$= \sqrt{\frac{1}{m+n} \left[\sum_{i=1}^n \chi^2\right] - \overline{\chi}^2}$$

Find an approximate 90 percent confidence interval for p-q.

We know that 90% (i.e. $\alpha = 0.05$) confidence intervals are of the following form:

$$\overline{\chi} \pm z_{\alpha/2} se(p_{pin})$$

$$= \overline{\chi} \pm 1.645 \sqrt{\frac{1}{m+n} \left[\sum_{i=1}^{n} \chi^{2}\right] - \overline{\chi}^{2}}$$

2.2 Chapter 7 - Exercise 5

Let x and y be two distinct points. Find $Cov(\hat{F}_n(x), \hat{F}_n(y))$.

2.3 Chapter 7 - Exercise 6

3 Homework for October 29

3.1 Custom exercise

Let $N = 50, Y_1, \ldots, Y_n$ are i.i.d. $\mathcal{N}(0, 1)$. Let $X_i = e^{Y_i}$. Let $\theta = \text{skewness}(X) = (e + 2)\sqrt{e - 1}$ (X is log normal distributed) Compute the 3 types of normal confidence intervals for θ .

Repeat the experiment to check how often θ belongs to the confidence intervals.

4 Homework for November 5, 2021

4.1 Chapter 9 - Exercise 1

Let $X_1, \ldots, X_n \sim \text{Gamma}(\alpha, \beta)$. Find the method of moments estimator for α and β . From tables, we have that:

$$\begin{cases} \mathbb{E}[X_i] = \frac{\alpha}{\beta} \\ Var(X_i) = \frac{\alpha}{\beta^2} \end{cases}$$

Equating with empirical expected value and empirical variance respectively.

$$\begin{cases} \frac{1}{n} \sum_{i=1}^{n} X_{i} = \mathbb{E}[X_{i}] \\ \frac{1}{n} \sum_{i=1}^{n} (\bar{X} - X_{i})^{2} = Var(X_{i}) \end{cases}$$

$$\Rightarrow \begin{cases} \frac{1}{n} \sum_{i=1}^{n} X_{i} = \frac{\hat{\alpha}}{\hat{\beta}} \\ \frac{1}{n} \sum_{i=1}^{n} (\bar{X} - X_{i})^{2} = \frac{\hat{\alpha}}{\hat{\beta}^{2}} \end{cases}$$

$$\Rightarrow \begin{cases} \hat{\alpha} = \frac{\hat{\beta}}{n} \sum_{i=1}^{n} X_{i} \\ \frac{1}{n} \sum_{i=1}^{n} (\bar{X} - X_{i})^{2} = \frac{\hat{\alpha}}{\hat{\beta}^{2}} \end{cases}$$

$$\Rightarrow \begin{cases} \hat{\alpha} = \frac{\hat{\beta}}{n} \sum_{i=1}^{n} X_{i} \\ \frac{1}{n} \sum_{i=1}^{n} (\bar{X} - X_{i})^{2} = \frac{1}{\hat{\beta}^{2}} \hat{n} \sum_{i=1}^{n} X_{i} \end{cases}$$

$$\Rightarrow \begin{cases} \hat{\alpha} = \frac{\hat{\beta}}{n} \sum_{i=1}^{n} X_{i} \\ \frac{1}{n} \sum_{i=1}^{n} (\bar{X} - X_{i})^{2} = \frac{1}{\hat{\beta}^{n}} \sum_{i=1}^{n} X_{i} \end{cases}$$

$$\Rightarrow \begin{cases} \hat{\alpha} = \frac{\beta}{n} \sum_{i=1}^{n} X_{i} \\ \hat{\beta} = \frac{\sum_{i=1}^{n} X_{i}}{\sum_{i=1}^{n} (\bar{X} - X_{i})^{2}} \end{cases}$$

$$\Rightarrow \begin{cases} \hat{\alpha} = \frac{1}{n} \sum_{i=1}^{n} X_{i} \\ \hat{\beta} = \frac{\sum_{i=1}^{n} X_{i}}{\sum_{i=1}^{n} (\bar{X} - X_{i})^{2}} \end{cases}$$

$$\Rightarrow \begin{cases} \hat{\alpha} = \frac{1}{n} \sum_{i=1}^{n} X_{i} \\ \sum_{i=1}^{n} (\bar{X} - X_{i})^{2}} \end{cases}$$

$$\Rightarrow \begin{cases} \hat{\alpha} = \frac{1}{n} \sum_{i=1}^{n} X_{i} \\ \sum_{i=1}^{n} (\bar{X} - X_{i})^{2}} \end{cases}$$

$$\Rightarrow \begin{cases} \hat{\alpha} = \frac{1}{n} \sum_{i=1}^{n} X_{i} \\ \sum_{i=1}^{n} (\bar{X} - X_{i})^{2}} \end{cases}$$

4.2 Chapter 9 - Exercise 2

Let $X_1, \ldots, X_n \sim \text{Uniform } (a, b)$ where a and b are unknown parameters and a < b.

• (a) Find the method of moments estimators for a and b.

- (b) Find the MLE \hat{a} and \hat{b} .
- (c) Let $\tau = \int x dF(x)$. Find the MLE of τ .
- (d) Let $\hat{\tau}$ be the MLE of τ . Let $\tilde{\tau}$ be the nonparametric plug-in estimator of $\tau = \int x dF(x)$. Suppose that a = 1, b = 3, and n = 10. Find the MSE of $\hat{\tau}$ by simulation. Find the MSE of $\tilde{\tau}$ analytically. Compare.

(a) Find the method of moments estimators for a and b.

We compute the first order of moments:

$$\mathbb{E}[X_1] = \int_a^b x f(x) dx$$

$$= \frac{1}{b-a} \int_a^b x dx$$

$$= \frac{1}{b-a} \left[\frac{x^2}{2} \right]_a^b$$

$$= \frac{1}{b-a} \frac{b^2 - a^2}{2}$$

$$= \frac{a+b}{2}$$
 (2)

Now compute the second order of moments:

$$\mathbb{E}[X_1^2] = \int_a^b x^2 f(x) dx$$

$$= \int_a^b x^2 \frac{1}{b-a} dx$$

$$= \frac{1}{b-a} \left[\frac{x^3}{3} \right]_a^b$$

$$= \frac{1}{b-a} \left[\frac{b^3 - a^3}{3} \right]$$

$$= \frac{1}{b-a} \left[\frac{(b-a)(a^2 + ab + b^2)}{3} \right]$$

$$= \frac{a^2 + ab + b^2}{3}$$
(3)

Now on the one hand we equate (2) with $\hat{\mu_1} := \frac{1}{n} \sum_{i=1}^n X_i$. On the other hand, we equate (3) with $\hat{\mu_2} := \frac{1}{n} \sum_{i=1}^n X_i^2$. Therefore we get a system of equations:

$$\begin{cases} \hat{\mu}_1 = \frac{a+b}{2} \\ \hat{\mu}_2 = \frac{a^2 + ab + b^2}{3} \end{cases}$$

$$\begin{cases} b = 2\hat{\mu}_1 - a \\ 3\hat{\mu}_2 = a^2 + a \left[2\hat{\mu}_1 - a\right] + \left[2\hat{\mu}_1 - a\right]^2 \end{cases}$$

$$\begin{cases} b = 2\hat{\mu}_1 - a \\ 3\hat{\mu}_2 = a^2 + 2\hat{\mu}_1 a - a^2 + 4\hat{\mu}_1^2 - 4\hat{\mu}_1 a + a^2 \end{cases}$$

$$\begin{cases} b = 2\hat{\mu}_1 - a \\ a^2 - 2\hat{\mu}_1 a + (4\hat{\mu}_1^2 - 3\hat{\mu}_2) = 0 \end{cases}$$

$$(4)$$

Then, the second equation of (4) yields:

$$a_1 = \frac{2\hat{\mu}_1 - \sqrt{(2\hat{\mu}_1)^2 - 4(4\hat{\mu}_1^2 - 3\hat{\mu}_2)}}{2}$$
$$= \hat{\mu}_1 - \sqrt{\hat{\mu}_1^2 - 4\hat{\mu}_1^2 + 3\hat{\mu}_2}$$
$$= \hat{\mu}_1 - \sqrt{3(\hat{\mu}_2 - \hat{\mu}_1^2)}$$

and

$$a_1 = \frac{2\hat{\mu}_1 + \sqrt{(2\hat{\mu}_1)^2 - 4(4\hat{\mu}_1^2 - 3\hat{\mu}_2)}}{2}$$
$$= \hat{\mu}_1 + \sqrt{\hat{\mu}_1^2 - 4\hat{\mu}_1^2 + 3\hat{\mu}_2}$$
$$= \hat{\mu}_1 + \sqrt{3(\hat{\mu}_2 - \hat{\mu}_1^2)}$$

Let b_1, b_2 be associated with a_1, a_2 respectively. Then the first equation of (4) becomes:

$$\begin{cases} b_1 := 2\hat{\mu}_1 - \left(\hat{\mu}_1 - \sqrt{3(\hat{\mu}_2 - \hat{\mu}_1^2)}\right) \\ b_2 := 2\hat{\mu}_1 - \left(\hat{\mu}_1 + \sqrt{3(\hat{\mu}_2 - \hat{\mu}_1^2)}\right) \\ \begin{cases} b_1 := \hat{\mu}_1 + \sqrt{3(\hat{\mu}_2 - \hat{\mu}_1^2)} \\ b_2 := \hat{\mu}_1 - \sqrt{3(\hat{\mu}_2 - \hat{\mu}_1^2)} \end{cases} \end{cases}$$

Since $b_2 > a_2$, which is impossible by the exercise, we have that the method of moment estimators are:

$$\begin{cases} a = \hat{\mu}_1 - \sqrt{3(\hat{\mu}_2 - \hat{\mu}_1^2)} \\ b = \hat{\mu}_1 + \sqrt{3(\hat{\mu}_2 - \hat{\mu}_1^2)} \end{cases}$$

(b) Find the MLE \hat{a} and \hat{b} .

Let $\theta := (a, b) \in \Theta \subseteq \mathbb{R}^2$. We define \mathcal{L} the likelihood function as follows:

$$\mathcal{L}(\theta) = f(X_1, \dots, X_n \mid \theta)$$
$$= \prod_{i=1}^n f(X_i \mid \theta)$$

Now we want to find $\hat{\theta} := (\hat{a}, \hat{b})$ the argument maximizing the likelihood function

$$\begin{split} \hat{\theta} &:= (\hat{a}, \hat{b}) \\ &:= \arg\max_{\Theta} \mathcal{L}(\theta) \\ &= \arg\max_{\Theta} \log \mathcal{L}(\theta) \end{split}$$

therefore we have

$$\log \mathcal{L}(\theta) = \log \prod_{i=1}^{n} f(X_i \mid \theta)$$

$$= \sum_{i=1}^{n} \log f(X_i \mid (a, b))$$

$$= \sum_{i=1}^{n} \log \frac{1}{b - a}$$

$$= -n \log(b - a)$$

hence

$$\begin{cases} \frac{\partial}{\partial a} \log \mathcal{L}(\theta) = \frac{n}{b-a} \\ \frac{\partial}{\partial b} \log \mathcal{L}(\theta) = -\frac{n}{b-a} \end{cases}$$

Now we have that

$$\begin{cases} \frac{\partial}{\partial a} \log \mathcal{L}(\theta) > 0 \\ \frac{\partial}{\partial b} \log \mathcal{L}(\theta) < 0 \end{cases}$$

$$\implies \begin{cases} \log \mathcal{L}(\theta) \text{ is increasing with respect to } a \\ \log \mathcal{L}(\theta) \text{ is decreasing with respect to } b \end{cases}$$

$$\implies \begin{cases} \hat{a} = \min \{X_1, \dots, X_n\} \\ \hat{b} = \max \{X_1, \dots, X_n\} \end{cases}$$

(c) Let $\tau = \int x dF(x)$. Find the MLE of τ . Let $\theta := \tau \in \Theta \subseteq \mathbb{R}$. We have the following:

$$\tau = \int x dF(x)$$

$$= \int x \frac{dF(x)}{dx} dx$$

$$= \int x f(x) dx$$

$$= \mathbb{E}[X_1]$$

$$= \frac{a+b}{2}$$

Hence

$$\hat{\tau} = \frac{\hat{a} + \hat{b}}{2}$$

(d) Let $\hat{\tau}$ be the MLE of τ . Let $\tilde{\tau}$ be the nonparametric plug-in estimator of $\tau = \int x dF(x)$. Suppose that a=1,b=3, and n=10. Find the MSE of $\hat{\tau}$ by simulation. Find the MSE of $\tilde{\tau}$ analytically. Compare.

The MSE is defined by:

$$\begin{split} MSE(\tilde{\tau}) &:= Var(\tilde{\tau}) + bias^2(\tilde{\tau}) \\ &= \mathbb{E}[\tilde{\tau}^2] - \mathbb{E}[\tilde{\tau}]^2 + [\mathbb{E}[\tilde{\tau}] - \tilde{\tau}]^2 \\ &= \mathbb{E}[\bar{X}^2] - \mathbb{E}[\bar{X}]^2 + [\mathbb{E}[\bar{X}] - \bar{X}]^2 \\ &= \frac{1}{n} \left[\frac{a^2 + ab + b^2}{3} - \left[\frac{a + b}{2} \right]^2 \right] \\ &= \frac{1}{n} \left[\frac{a^2 + ab + b^2}{3} - \frac{a^2 + 2ab + b^2}{4} \right] \\ &= \frac{1}{n} \left[\frac{a^2 + ab + b^2 - 3a^2 - 6ab - 3b^2}{12} \right] \\ &= \frac{1}{n} \left[\frac{4a^2 + 4ab + 4b^2 - 3a^2 - 6ab - 3b^2}{12} \right] \\ &= \frac{1}{n} \left[\frac{a^2 - 2ab + b^2}{12} \right] \\ &= \frac{1}{n} \left[\frac{(a - b)^2}{12} \right] \\ &= \frac{(a - b)^2}{12n} \end{split}$$

5 Preparation for mid-term

5.1 Chapter 9 - Exercises 5

Let $X_1, \ldots, X_n \sim \text{Poisson }(\lambda)$. Find the method of moments estimator, the maximum likelihood estimator and the Fisher information $I(\lambda)$.

We know that the first moment for a Poisson distribution $\mu_1 = \lambda$. We want to evaluate $\hat{\theta} := \lambda$. We set $\mu_1 = \bar{X}$, which gives:

$$\mu_1 = \bar{X} \implies \hat{\theta} = \bar{X}$$

Now we want to find the maximum likelihood estimator.

$$\mathcal{L}(\theta) = f(X_1, \dots, X_n \mid \theta)$$

$$= \prod_{i=1}^n f(X_i \mid \theta)$$

$$= \prod_{i=1}^n \frac{\lambda^k e^{-\lambda}}{k!}$$

[NOT FINISHED]

5.2 Chapter 9 - Exercises 6

Let $X_1, \ldots, X_n \sim N(\theta, 1)$. Define

$$Y_i = \begin{cases} 1 & \text{if } X_i > 0 \\ 0 & \text{if } X_i \le 0 \end{cases}$$

Let $\psi = \mathbb{P}(Y_1 = 1)$.

- (a) Find the maximum likelihood estimator $\hat{\psi}$ of ψ .
- (b) Find an approximate 95 percent confidence interval for ψ .
- (c) Define $\widetilde{\psi} = (1/n) \sum_i Y_i$. Show that $\widetilde{\psi}$ is a consistent estimator of ψ .
- (d) Compute the asymptotic relative efficiency of $\widetilde{\psi}$ to $\widehat{\psi}$. Hint: Use the delta method to get the standard error of the MLE. Then compute the standard error (i.e. the standard deviation) of $\widetilde{\psi}$.
- (e) Suppose that the data are not really normal. Show that $\widehat{\psi}$ is not consistent. What, if anything, does $\widehat{\psi}$ converge to?

5.3 Chapter 9 - Examples 20

5.4 Chapter 9 - Examples 21

Let $X_1,\ldots,X_n\sim N\left(\theta,\sigma^2\right)$ where σ^2 is known. The score function is $s(X;\theta)=(X-\theta)/\sigma^2$ and $s'(X;\theta)=-1/\sigma^2$ so that $I_1(\theta)=1/\sigma^2$. The MLE is $\widehat{\theta}_n=\bar{X}_n$. According to Theorem 9.18, $\bar{X}_n\approx N\left(\theta,\sigma^2/n\right)$. In this case, the Normal approximation is actually exact.

5.5 Chapter 9 - Examples 22

Let $X_1, \ldots, X_n \sim \operatorname{Poisson}(\lambda)$. Then $\widehat{\lambda}_n = \overline{X}_n$ and some calculations show that $I_1(\lambda) = 1/\lambda$, so

$$\widehat{\operatorname{se}} = \frac{1}{\sqrt{nI\left(\widehat{\lambda}_n\right)}} = \sqrt{\frac{\widehat{\lambda}_n}{n}}$$

Therefore, an approximate $1-\alpha$ confidence interval for λ is $\widehat{\lambda}_n \pm z_{\alpha/2} \sqrt{\widehat{\lambda}_n/n}$.

14

6 In class exercise December 3, 2021

6.1 Exercise 1

Let $X_1, \dots, X_N \sim \mathcal{N}(\mu, \sigma^2)$ with μ given.

i) Compute $\hat{\sigma}_{ML}$ and estimator $se(\hat{\sigma}_{ML})$

$$\log \mathcal{L}(\sigma^2) = \sum_{i=1}^{N} \log f_{\sigma}(X_i)$$

$$= \sum_{i=1}^{N} \left[\log \frac{1}{\sigma \sqrt{2\pi}} \right] e^{-\frac{1}{2} \left(\frac{X_i - \mu}{\sigma} \right)^2}$$

$$= \left[N \log \frac{1}{\sigma \sqrt{2\pi}} \right] - \frac{1}{2} \sum_{i=1}^{N} \left(\frac{X_i - \mu}{\sigma} \right)^2$$

$$= -N(\log \sigma \sqrt{2\pi}) - \frac{1}{2} \sum_{i=1}^{N} \left(\frac{X_i - \mu}{\sigma} \right)^2$$

$$= -N(\log \sigma + \log \sqrt{2\pi}) - \frac{1}{2} \sum_{i=1}^{N} \left(\frac{X_i - \mu}{\sigma} \right)^2$$

$$\frac{\partial}{\partial \sigma} \log \mathcal{L}(\sigma^2) = \frac{\partial}{\partial \sigma} \left[-N(\log \sigma + \log \sqrt{2\pi}) - \frac{1}{2} \sum_{i=1}^{N} \left(\frac{X_i - \mu}{\sigma} \right)^2 \right]$$

$$= -\frac{N}{\sigma} - \frac{1}{2} \sum_{i=1}^{n} (X_i - \mu)^2 \frac{\partial}{\partial \sigma} \sigma^{-2}$$

$$= -\frac{N}{\sigma} - \frac{1}{2} \sum_{i=1}^{n} (X_i - \mu)^2 (-2) \sigma^{-3}$$

$$= -\frac{N}{\sigma} + \sum_{i=1}^{n} (X_i - \mu)^2 \sigma^{-3}$$

$$\frac{\partial}{\partial \hat{\sigma}_{ML}} \log \mathcal{L}(\hat{\sigma}_{ML}^2) = 0$$

$$\implies -\frac{N}{\hat{\sigma}_{ML}} + \sum_{i=1}^{n} (X_i - \mu)^2 \hat{\sigma}_{ML}^{-3} = 0$$

$$\implies \hat{\sigma}_{ML}^{-2} = \frac{N}{\sum_{i=1}^{n} (X_i - \mu)^2}$$

$$\implies \hat{\sigma}_{ML}^2 = \frac{\sum_{i=1}^{n} (X_i - \mu)^2}{N}$$

$$\implies \hat{\sigma}_{ML} = \sqrt{\frac{\sum_{i=1}^{n} (X_i - \mu)^2}{N}}$$

$$se(\hat{\sigma}_{ML}) = \frac{1}{I_N(\sigma)}$$

$$\frac{\partial^2}{\partial \sigma^2} [\log \mathcal{L}(\sigma)] = \frac{\partial}{\partial \sigma} \left[-\frac{N}{\sigma} + \sum_{i=1}^n (X_i - \mu)^2 \sigma^{-3} \right]$$

$$= \frac{N}{\sigma^2} - 3 \sum_{i=1}^n (X_i - \mu)^2 \sigma^{-4}$$

$$I_N(\sigma) = -\mathbb{E}\left[\frac{\partial^2}{\partial \sigma^2} \log \mathcal{L}(\sigma)\right]$$

$$= -\mathbb{E}\left[\frac{N}{\sigma^2} - 3\sum_{i=1}^n (X_i - \mu)^2 \sigma^{-4}\right]$$

$$= -\frac{N}{\sigma^2} - \frac{-3}{\sigma^4} \sum_{i=1}^n \mathbb{E}\left[(X_i - \mu)^2\right]$$

$$= -\frac{N}{\sigma^2} - \frac{-3}{\sigma^4} \sum_{i=1}^n Var\left[X_i^2\right]$$

$$= -\frac{N}{\sigma^2} - \frac{-3}{\sigma^4} \sum_{i=1}^n \sigma^2$$

$$= -\frac{N}{\sigma^2} - \frac{-3N}{\sigma^2}$$

$$= \frac{2N}{\sigma^2}$$

Thus

$$se(\hat{\sigma}_{ML}) = \frac{1}{\sqrt{I_N(\sigma)}} = \frac{\sigma}{\sqrt{2N}}$$

ii) Compute $\hat{\sigma}_{ML}$ and estimator $se(\hat{\sigma}_{ML})$