Notation Reference

Core Probability

Notation	Meaning
E	Capital letters can denote events
A	Sometimes they denote sets
E	Size of an event or set
E^C	Complement of an event or set
EF	And of events (aka intersection)
$E \mathrm{and} F$	And of events (aka intersection)
$E\cap F$	And of events (aka intersection)
$E \operatorname{or} F$	Or of events (aka union)
$E \cup F$	Or of events (aka union)
$\mathrm{count}(E)$	The number of times that E occurs
$\mathrm{P}(E)$	The probability of an event E
$\mathrm{P}(E F)$	The conditional probability of an event E given F
$\mathrm{P}(E,F)$	The probability of event E and F
$\mathrm{P}(E F,G)$	The conditional probability of an event E given both F and G
n!	n factorial
$\binom{n}{k}$	Binomial coefficient
$\binom{n}{r_1,r_2,r_3}$	Multinomial coefficient

Random Variables

Notation	Meaning
x	Lower case letters denote regular variables
X	Capital letters are used to denote random variables
K	Capital K is reserved for constants
$\mathrm{E}[X]$	Expectation of X
$\operatorname{Var}(X)$	Variance of X

Notation	Meaning
$\mathrm{P}(X=x)$	Probability mass function (PMF) of X , evaluated at x
$\mathrm{P}(x)$	Probability mass function (PMF) of X , evaluated at x
f(X=x)	Probability density function (PDF) of X , evaluated at x
f(x)	Probability density function (PDF) of X , evaluated at x
f(X=x,Y=y)	Joint probability density
f(X=x Y=y)	Conditional probability density
$F_X(x)$ or $F(x)$	Cumulative distribution function (CDF) of X
IID	Independent and Identically Distributed

Parametric Distributions

Notation	Meaning
$X \sim \mathrm{Bern}(p)$	X is a Bernoulli random variable
$X \sim \mathrm{Bin}(n,p)$	X is a Binomial random variable
$X \sim \operatorname{Poi}(p)$	X is a Poisson random variable
$X \sim \mathrm{Geo}(p)$	X is a Geometric random variable
$X \sim \mathrm{NegBin}(r,p)$	X is a Negative Binomial random variable
$X \sim \mathrm{Uni}(a,b)$	X is a Uniform random variable
$X \sim \mathrm{Exp}(\lambda)$	X is a Exponential random variable
$X \sim \mathrm{Beta}(a,b)$	X is a Beta random variable