MAT257 PSET 10—Question 1

Jonah Chen

Let $U = \{(r, \phi, \theta) : 0 < r < a, 0 < \phi < \pi, 0 < \theta < 2\pi\}$ be open set and g be the coordinate transformation

$$g(r, \phi, \theta) = (r \cos \phi \cos \theta, r \cos \phi \sin \theta, r \sin \phi).$$

Then, $g(U) = \{(x,y,z): x^2 + y^2 + z^2 < a^2, z > 0\} = V$ and if f(x,y,z) = z then $f(g(r,\phi,\theta)) = r\sin\phi$. g' is also continuous on all of \mathbb{R}^3 . Using mathematica, it is possible to compute $\det(g') = r^2\cos\phi$. Thus, there are no $x \in U$ where $\det(g') = 0$. By the change of variables theorem,

$$\int_{g(U)} z = \int_{U} (f \circ g) |\det(g')| = \int_{U} r^{3} \sin \phi |\cos \phi|$$

Then, by fubini's theorem, we can integrate over the compact set \overline{U}

$$\int_{\overline{U}} r^3 \sin \phi |\cos \phi| = \int_0^a r^3 dr \left(\int_0^\pi \sin \phi |\cos \phi| d\phi \left(\int_0^{2\pi} d\theta \right) \right) = \frac{\pi a^4}{2}.$$

As ${\cal U}$ has content zero boundary, so

$$\int_{U}(f\circ g)|\det(g')|=\int_{\overline{U}}(f\circ g)|\det(g')|=\frac{\pi a^4}{2}.$$