

Basic Machine Learning: Support Vector Machine

Goal

Goal

Understanding the top five supervised algorithms which is Support Vector Machine algorithm.

Outline

Outline

- Support Vector Machine Algorithm
 - o Concept
 - o Application

Content

- Top 5 supervised algorithms
- Can be used for Classification & Regression problems
- Can generalize linear & nonlinear model
- Names in scikit-learn:
 - SVC (SVM Classifier)
 - SVR (SVM Regressor)

- Find solution (hyperplane) with fewest errors
- Maximize margin separator to improve generalization

Basic concept of SVM

Find a linear decision surface ("hyperplane") that can separate classes and has the largest distance (i.e., largest "gap" or "margin") between border-line patients (i.e., "support vectors")

- What is Support Vector?
- The borderline data points that is "supporting" the construction of the hyperplane
- More support vectors doesn't mean better
- What is Margin?
- (Perpendicular) gap between classes
- Higher margin = better separating hyperplane

Scenario 1

Scenario 4

Scenario 5

- What is Decision Surface?
- Hyperplane is a linear decision surface that splits the space into two parts
- Hyperplane is a binary classifier

A hyperplane in \mathbb{R}^n is an n-1 dimensional subspace

Sometimes our data is linearly separable, But sometimes it is not!

- What is SVM Kernel?
- Kernel: Mapping function that transforms a given space into some other (usually very high dimensional space)
- They can provide both linear and nonlinear model

Linear Kernel

$$K(x_i,x_j)=x_i\cdot x_j$$

Polynomial Kernel

$$K(x_i,x_j)=(x_i\cdot x_j+c)^d$$

RBF Kernel

$$K(x_i,x_j) = exp(-\gamma ||x_i-x_j||^2)$$

SVC with polynomial (degree 3) kernel

Sepal length

RBF Kernel

Confusion Matrix

Confusion Matrix		Target			
		Positive	Negative		
Model	Positive	а	b	Positive Predictive Value	a/(a+b)
	Negative	С	d	Negative Predictive Value	d/(c+d)
		Sensitivity	Specificity	Accuracy = (a+d)/(a+b+c+d)	
		a/(a+c)	d/(b+d)		

Thanks!