《高等微积分1》第三次习题课材料

- 1 设 f 在 $(x_0-r,x_0]$ 上不減, 其中 r 是某个给定的正数. 证明: 左极限 $\lim_{x\to x_0^-}f(x)$ 存在, 且 $\lim_{x\to x_0^-}f(x)\leq f(x_0)$.
- 2 (讲评作业) 设 $\lim_{x\to x_0} f(x) = 0$, $\lim_{x\to x_0} \frac{f(x)}{g(x)} = A$. 设 r 是正数,且对任何 $x \in N^*(x_0,r)$,总有 $f(x) \neq 0$.
 - (1) 求极限 $\lim_{x \to x_0} \frac{\sin(f(x))}{g(x)}$.
 - (2) 求极限 $\lim_{x \to x_0} (1 + f(x))^{1/g(x)}$.
 - (3) 求极限 $\lim_{x\to 0} (2\sin x + \cos x)^{1/x}$.
- 3 (1) 设 k 是正整数, 求极限 $\lim_{x\to 0} \frac{1-(\cos kx)^{1/k}}{x^2}$.

(2) 设
$$\lim_{x\to 0} \frac{1-f(x)}{x^2} = A$$
, $\lim_{x\to 0} \frac{1-g(x)}{x^2} = B$. 证明:

$$\lim_{x \to 0} \frac{1 - f(x) \cdot g(x)}{x^2} = A + B.$$

(3) 给定正整数 n. 设 $f_1, ..., f_n : \mathbf{R} \to \mathbf{R}$ 是 n 个函数, 满足

$$\lim_{x \to 0} \frac{1 - f_k(x)}{x^2} = A_k, \quad \forall 1 \le k \le n.$$

计算极限

$$\lim_{x \to 0} \frac{1 - f_1(x) \cdot f_2(x) \cdot \dots \cdot f_n(x)}{x^2}.$$

(4) 给定正整数 n, 求极限

$$\lim_{x \to 0} \frac{1 - (\cos x) \cdot (\cos 2x)^{1/2} \cdot \dots \cdot (\cos nx)^{1/n}}{x^2}.$$

4 设连续函数 $f: \mathbf{R} \to \mathbf{R}$ 满足: 对任何 $x, y \in \mathbf{R}$ 都有

$$f(x+y) = f(x) + f(y).$$

证明: f(x) = xf(1).

- 5 Riemann 函数 $f:(0,1]\to \mathbf{R}$ 按如下方式定义. 当 x 为无理数时令 f(x)=0; 当 x 是有理数时,若把 x 写成既约分数 $x=\frac{m}{n}, n\in \mathbf{Z}_+$,则令 $f(x)=\frac{1}{n}$. 请找出 f 的所有间断点.
- 6 设当 $a \in \mathbf{Q}$ 时,已经定义好幂函数 $f(x) = x^a : \mathbf{R}_+ \to \mathbf{R}$. 下面我们对一般的 $\alpha \in \mathbf{R}$ 定义幂函数 $f(x) = x^\alpha : \mathbf{R}_+ \to \mathbf{R}$. 为此,任取单调递增的有理数列 $\{a_n\}_{n=1}^{\infty}$ 使得 $\lim_{n \to \infty} a_n = \alpha$,我们希望定义

$$x^{\alpha} := \lim_{n \to \infty} x^{a_n}.$$

- (1) 证明: 极限 $\lim_{n\to\infty} x^{a_n}$ 存在.
- (2) 证明: 上述定义不依赖与 $\{a_n\}$ 的选取. 具体的说, 如果任取另一个单调递增的有理数列 $\{b_n\}_{n=1}^{\infty}$, 如果 $\lim_{n\to\infty}b_n=\alpha$, 则有

$$\lim_{n \to \infty} x^{a_n} = \lim_{n \to \infty} x^{b_n}.$$

- (3) 证明: 如果 $\alpha > 0$, 则对 0 < x < y 有 $x^{\alpha} < y^{\alpha}$.
- (4) 证明: 如果 x > 1, 则对 $\alpha < \beta$ 有 $x^{\alpha} < x^{\beta}$.
- (5) 证明: 幂函数 $f(x) = x^{\alpha}$ 是 \mathbf{R}_{+} 上的连续函数.
- 7 (1) 设 $f:[a,b]\to \mathbf{R}$ 严格单调递增, 且 $[f(a),f(b)]\subseteq f([a,b])$. 证明: f 连续.
 - (2) 证明: 如果 $f:[a,b]\to \mathbf{R}$ 是连续的单射, 则 f 严格单调递增或者严格单调递降.
 - (3) 证明: 如果 $f:[a,b]\to \mathbf{R}$ 是连续的单射, 则 f 有连续的反函数.
- 8 设 $f:[0,1] \to [0,1]$ 是连续函数,且对任何 $x \in [0,1]$ 有 f(f(x)) = x. 证明: 如果 f(0) = 0, f(1) = 1, 则 $f(x) \equiv x, \forall x \in [0,1].$
- 9 设 $f:[0,1] \to [0,1]$ 是连续函数, 且对任何 $0 \le x < y \le 1$ 有 $f(x) \le f(y)$. 证明: 对任何 $a \in [0,1]$, 或者 $a \in [0,1]$, 或者

动点. 这里 $f^{(n)}$ 表示 f 的 n 次迭代:

$$f^{(n)}(a) = \underbrace{f(f(...f(a)...))}_{n \uparrow f}$$
.