Predicting Housing Prices in King County

Predicting housing prices in King County

- 1. How do log transformations of both the regressors and the target affect our model?
- 2. How does normalization of the data using standardization affect both our R squared and root mean squared error?
- 3. How does one hot encoding of zipcode affect our overall ability to predict the price of a home in the King County area?

Data overview

- 21597 Rows
 - o 1 row = 1 house sale
- 21 Columns
- Format: Raw CSV File

Column	Description			
id	Unique identifier	for each house		
date	Date house was sold			
price	Price the house was sold for			
bedrooms	Number of bedrooms in the house			
bathrooms	Number of bathrooms in the house			
sqft_living	Square footage of the house			
sqft_lot	Square footage of the lot			
floors	Number of floors in the house			
waterfront	Has a view to a w	/aterfront		
view	How many times the house was viewed			
condition	Overall condition of the house from 1 (worst) to 5 (best)			
grade	Grade from King County from 3 (worst) -13 (best)			
sqft_above	Square footage o	f the house apart	from the basement	;
sqft_basement	Square footage o	f the basement		
yr_built	Year the home wa	as built		
yr_renovated	Year when the home was renovated			
zipcode	Zipcode of the ho	me		
lat	Lattitude coordina	ate		
long	Longitude coording	nate		
sqft_living15	Square footage of living space for the nearest 15 neighbor			
sqft_lot15	Square footage o	f the land lots of t	the nearest 15 neigl	nbo

Data cleaning

- Columns that are not useful for predicting prices were dropped
 - \circ id
- Rows of data that information that may be critical for prediction were dropped
 - waterfront
 - view
- Similar types of data were converted to compatible types
 - date
 - yr_built
 - o yr renovated
- Missing data was filled in using reasonable replacements
 - o yr_built → yr_renovated
 - o sqft_basement ? → 0.0

Initial Observations

- Observing measures of central tendency
- Correlation heat map
- Looking at scatter plots and distribution

Model evaluation approach

- Perform 10 independent test-train splits
- Train on ¾ of the data, test on ¼ of the data
- R-squared and root-mean-squared error values presented hereafter are averages over the 10 test-train splits
- The R-squareds and RMSEs tend to have a relatively narrow distribution and are therefore well-represented by the mean

Initial model

- We used Scikit-Learn to build an ordinary least squares linear regression model
- The target variable for prediction was "price"
- Initially, we test a model without log transformations, normalization, or one-hot encoding of zipcodes

R-squared: 0.70, RMSE: 200785

Log transformation of data

We used log transformations to make our distributions more normal.

Log transformation of data

 Performing the log transformation of the data improves both the R-squared value and the root-mean-square error.

R-squared: 0.77, RMSE: 195287

R-squared: 0.77, RMSE: 195287

Normalization of the data

All of the variables that we had previously log transformed, we now normalize using Z-score normalization.

Normalization of the data

 Normalization of the input data did not significantly improve the quality of the predictions

R-squared: 0.77, RMSE: 192740

R-squared: 0.77, RMSE: 195287

R-squared: 0.77, RMSE: 192740

One-hot encoding of zipcodes

- Housing prices may vary significantly by zipcode, but the raw zipcode data is not expected to be correlated to housing prices
- We used one-hot encoding to add 70 new feature columns to our data set
- The original zipcode column was then dropped from the data set

One-hot encoding of zipcodes

- Adding additional features using one-hot encoding of the zipcodes significantly improves both the R-squared value and the root-mean-squared error
- The root-mean-squared error of ~\$130,000 still seems quite high, despite having an R-squared value of almost 0.9

R-squared: 0.88, RMSE: 130864

R-squared: 0.77, RMSE: 192740

R-squared: 0.88, RMSE: 130864

Further considerations

- Deriving new features by non-linear transformations of the given data
 - Price per square foot of living space by zipcode
 - Zipcode ranking feature
 - Long, lat mean price ranking
- Other types of data transformations, normalization, and checking for outliers
- Linear regression assumption checking
- Feature selection
- Interpretation of coefficients in regression
- Different models for different zipcodes
- Clustering based on proximity

The End

• Thanks for listening!