Clothing Review Project

Objective: The objective of womens clothing e-commerce review is to analyse the rating of clothing based on their review and predict the rating based on their review.

Data Source: Ybifoundation Github

Import library

import pandas as pd
import numpy as np
import seaborn as sns
import matalathib puplet

import matplotlib.pyplot as plt

Data Import

 $\label{local_model} $$ df=pd.read_csv("https://github.com/YBIFoundation/MachineLearning/raw/main/Dataset/Women%20Clothing%20E-Commerce%20Review.csv") $$ df=pd.read_csv("https://github.com/YBIFoundation/MachineLearning/raw/main/Dataset/Women%20Clothing%20E-Commerce%20Review.csv") $$ df=pd.read_csv("https://github.com/YBIFoundation/MachineLearning/raw/main/Dataset/Women%20Clothing%20E-Commerce%20Review.csv") $$ df=pd.read_csv("https://github.com/YBIFoundation/MachineLearning/raw/main/Dataset/Women%20Clothing%20E-Commerce%20Review.csv") $$ df=pd.read_csv("https://github.com/YBIFoundation/MachineLearning/raw/main/Dataset/Women%20Clothing%20E-Commerce%20Review.csv") $$ df=pd.read_csv("https://github.com/YBIFoundation/MachineLearning/raw/main/Dataset/Women%20E-Commerce%20Review.csv") $$ df=pd.read_csv("https://github.csv") $$ df=pd.read_csv" $$ df$

df

₹		Clothing ID	Age	Title	Review	Rating	Recommended	Positive Feedback	Division	De
	0	767	33	NaN	Absolutely wonderful - silky and sexy and comf	4	1	0	Initmates	
	1	1080	34	NaN	Love this dress! it's sooo pretty. i happene	5	1	4	General	
	2	1077	60	Some major design flaws	I had such high hopes for this dress and reall	3	0	0	General	
	3	1049	50	My favorite buy!	I love, love, love this jumpsuit. it's fun, fl	5	1	0	General Petite	
	4	847	47	Flattering shirt	This shirt is very flattering	5	1	6	General	>

Next steps:

Generate code with df

View recommended plots

New interactive sheet

Describing Data

df.info()

```
<class 'pandas.core.frame.DataFrame'>
    RangeIndex: 23486 entries, 0 to 23485
    Data columns (total 10 columns):
     #
        Column
                           Non-Null Count Dtype
     0
        Clothing ID
                          23486 non-null int64
        Age
                          23486 non-null int64
         Title
                           19676 non-null object
         Review
                           22641 non-null object
                           23486 non-null int64
         Rating
        Recommended
                           23486 non-null int64
        Positive Feedback 23486 non-null int64
        Division
                           23472 non-null object
        Department
                           23472 non-null
                                          object
        Category
                           23472 non-null
                                          object
    dtypes: int64(5), object(5)
    memory usage: 1.8+ MB
```

df.describe()

		Clothing ID	Age	Rating	Recommended	Positive Feedback
co	ount	23486.000000	23486.000000	23486.000000	23486.000000	23486.000000
m	nean	918.118709	43.198544	4.196032	0.822362	2.535936
	std	203.298980	12.279544	1.110031	0.382216	5.702202
r	min	0.000000	18.000000	1.000000	0.000000	0.000000
2	25%	861.000000	34.000000	4.000000	1.000000	0.000000
5	50%	936.000000	41.000000	5.000000	1.000000	1.000000
7	75%	1078.000000	52.000000	5.000000	1.000000	3.000000
n	max	1205.000000	99.000000	5.000000	1.000000	122.000000

df.shape

→ (23486, 10)

Data Preprocessing

df.isna().sum()

 Clothing ID	0
Age	0
Title	0
Review	0
Rating	0
Recommended	0
Positive Feedback	0
Division	0
Department	0
Category	0
dtype: int64	

df.dropna()

→		Clothing ID	Age	Title	Review	Rating	Recommended	Positive Feedback	Division	Department	Category
	2	1077	60	Some major design flaws	I had such high hopes for this dress and reall	3	0	0	General	Dresses	Dresses
	3	1049	50	My favorite buy!	I love, love, love this jumpsuit. it's fun, fl	5	1	0	General Petite	Bottoms	Pants
	4	847	47	Flattering shirt	This shirt is very flattering to all due to th	5	1	6	General	Tops	Blouses
	5	1080	49	Not for the very petite	I love tracy reese dresses, but this one is no	2	0	4	General	Dresses	Dresses
	6	858	39	Cagrcoal shimmer fun	I aded this in my basket at hte last mintue to	5	1	1	General Petite	Tops	Knits
	23481	1104	34	Great dress for many occasions	I was very happy to snag this dress at such a	5	1	0	General Petite	Dresses	Dresses
	23482	862	48	Wish it was made of cotton	It reminds me of maternity clothes. soft, stre	3	1	0	General Petite	Tops	Knits
	23483	1104	31	Cute, but see through	This fit well, but the top was very see	3	0	1	General Petite	Dresses	Dresses

df.dropna(inplace=True)

df.columns

```
☐ Index(['Clothing ID', 'Age', 'Title', 'Review', 'Rating', 'Recommended', 'Positive Feedback', 'Division', 'Department', 'Category'], dtype='object')
```

...

```
*Defining X and Y *
y=df['Rating']
X=df['Review']
df['Rating'].value_counts()
    Rating
\rightarrow
          10858
           4289
     4
     3
           2464
     2
           1360
            691
     Name: count, dtype: int64
Train test split
from sklearn.model_selection import train_test_split
X_train,X_test,y_train,y_test = train_test_split(X,y,random_state=2529,stratify=y)
X_train.shape,X_test.shape,y_train.shape,y_test.shape
((14746,), (4916,), (14746,), (4916,))
Text Conversion
from sklearn.feature_extraction.text import CountVectorizer
\verb|cv=CountVectorizer(lowercase=True, analyzer='word', ngram\_range=(1,2), stop\_words='english', max\_features=10000)|
X_train =cv.fit_transform(X_train)
cv.get_feature_names_out()
\Rightarrow array(['00', '00p', '00p 0p', ..., 'zippers', 'zipping', 'zips'],
           dtype=object)
X_train.toarray()
\Rightarrow array([[0, 0, 0, ..., 0, 0, 0],
            [0, 0, 0, ..., 0, 0, 0],
[0, 0, 0, ..., 0, 0, 0],
            [0, 0, 0, ..., 0, 0, 0],
[0, 0, 0, ..., 0, 0, 0],
[0, 0, 0, ..., 0, 0, 0]])
X_test = cv.fit_transform(X_test)
cv.get_feature_names_out()
→ array(['00', '00 petite', '00p', ..., 'zippers', 'zipping', 'zone'],
X_test.toarray()
[0, 0, 0, ..., 0, 0, 0],
             [0, 0, 0, ..., 0, 0, 0],
            [0, 0, 0, ..., 0, 0, 0]])
Model train
from sklearn.naive_bayes import MultinomialNB
model=MultinomialNB()
model.fit(X_train,y_train)
```

```
→ MultinomialNB
MultinomialNB()
```

Model Prediction

PROBABLITY OF EACH PREDICTED CLASS

model.predict_proba(X_test)

```
array([[9.99993889e-01, 6.10206241e-06, 2.86834830e-09, 1.02345061e-09, 4.76838824e-09],
[9.99686749e-01, 3.12745827e-04, 4.88630525e-07, 1.64625702e-08, 2.51676028e-10],
[9.99942381e-01, 5.69211010e-05, 1.32999534e-08, 6.09621620e-07, 7.53292617e-08],
...,
```

```
[8.33285307e-01, 5.82354770e-03, 1.60567359e-01, 1.98224298e-04, 1.25562130e-04], [5.59396818e-01, 4.40363788e-01, 2.34243177e-04, 3.19917057e-06, 1.95122831e-06], [6.12274880e-01, 1.35428099e-01, 5.78748754e-03, 7.02250842e-02, 1.76284450e-01]])
```

Model Evaluation

from sklearn.metrics import classification_report

print(classification_report(y_test,y_pred))

→	precision	recall	f1-score	support
1 2	0.04 0.11	0.94 0.06	0.07 0.08	173 340
3 4	0.17 0.24	0.00 0.02	0.01 0.04	616 1072
5	0.67	0.03	0.05	2715
accuracy macro avg weighted avg	0.25 0.45	0.21 0.06	0.06 0.05 0.05	4916 4916 4916

Recategorising rating as 0 and 1

```
df.replace({'Rating':{1:0,2:0,3:0,4:1,5:1}},inplace=True)

y=df['Rating']
X=df['Review']
```

train test split

```
from sklearn.model_selection import train_test_split

X_train,X_test,y_train,y_test = train_test_split(X,y,random_state=2529,stratify=y)
```

text conversion to token

```
from sklearn.feature_extraction.text import CountVectorizer
cv=CountVectorizer(lowercase=True,analyzer='word',ngram_range=(1,2),stop_words="english",max_features=10000)
```

X_train=cv.fit_transform(X_train)

X_test=cv.fit_transform(X_test)

Model Retrain

```
from sklearn.naive_bayes import MultinomialNB
model=MultinomialNB()
```

model.fit(X_train,y_train)

→ MultinomialNB
MultinomialNB()

Model prediction

```
y_pred=model.predict(X_test)
```

y_pred.shape

→**▼** (4916,)

y_pred

$$\Rightarrow$$
 array([1, 1, 0, ..., 0, 1, 0])

*EVALUATION *

from sklearn.metrics import classification_report

print (classification_report(y_test,y_pred))

₹	precision	recall	f1-score	support
6	0.23	0.32	0.27	1129
1	0.77	0.68	0.72	3787
accuracy	,		0.59	4916
macro avg	0.50	0.50	0.49	4916
weighted avg	0.64	0.59	0.62	4916

Explainantion:

By analysing and preprocessing data if any null value is their by droping null value and selecting target variable [y="rating"] and [x="Review"] and training testing a model. and The CountVectorizer from sklearn.feature_extraction.text is used to convert text reviews into numerical data. A Naive Bayes classifier (MultinomialNB) is trained on the training data. Predictions are made on the test data. After recategorizing the ratings, the model shows improved performance with a weighted average accuracy of 59%.

Start coding or generate with AI.

Start coding or generate with AI.