Teoría de Autómatas y Lenguajes Formales. AFD para multiplos de 3.

Luis José Quintana Bolaño

1 de noviembre de 2013

Resumen

Encontrar un AFD, que llamaremos A, que reconozca números binarios múltiplos de 3. Es decir:

$$L(A) = \{0, 11_{(el 3)}, 110_{(el 6)}, 1001_{(el 9)}, ...\}$$

1. Grafo de transiciones

Figura 1: Grafo de transiciones

2. Tabla de transiciones

	0	1
i	0	1
*0	0	1
1	2	0
2	1	2

Figura 2: Tabla de transiciones

3. Corrección y Completitud

Demostración por inducción múltiple.

$$\mbox{Hipótesis de inducción} \equiv \left\{ \begin{array}{ll} \delta(i,x) = 0 & \Rightarrow & x \bmod 3 = 0 \\ \delta(i,x) = 1 & \Rightarrow & x \bmod 3 = 1 \\ \delta(i,x) = 2 & \Rightarrow & x \bmod 3 = 2 \\ \delta(i,x) = i & \Rightarrow & x \equiv \epsilon \end{array} \right.$$

Caso base: $|w| = \epsilon$

Asumimos que la hipótesis (1) es cierta para cadenas de longitud inferior a la de w, siendo $|w| \ge 1$. Como w no es vacía, podemos considerar w = xa, donde a es el último miembro de w y x es la cadena que la precede, por tanto la hipótesis de inducción (1) se cumple para x.

Procedemos a demostrar su corrección para w = xa:

- 1. Si $\delta(i, w) = 0$, a puede ser 0 o 1:
 - a) Si a = 0, de acuerdo a la tabla de transiciones:
 - 1) $\delta(i, x) = 0$ y, por h.i., $x \mod 3 = 0$, x = 0 = x + 2, luego $x + 2 \mod 3 = 0$ es cierto.
 - 2) $\delta(i, x) = i$ y, por h.i., $x \equiv \epsilon \rightarrow x0 = 0$, luego $0 \mod 3 = 0$ es cierto.
 - b) Si a=1, de acuerdo a la tabla de transiciones $\delta(i,x)=1$ y, por h.i., $x \mod 3=1 \to x=n*3+1$, $x1=2x+1\to x1=3n+1$, luego $3n+1 \mod 3=1$ es cierto.
- 2. Si $\delta(i, w) = 1$, a puede ser 0 o 1:
 - a) Si a=0, de acuerdo con la tabla de transiciones $\delta(i,x)=2$ y, por h.i., $x \mod 3=2 \to x=n*3+2$, $x0=x*2\to x0=n6+4$, luego $x0 \mod 3=1$ es cierto.
 - b) Si a = 1, de acuerdo con la tabla de transiciones:
 - 1) $\delta(i, x) = 0$ y, por h.i., $x \mod 3 = 0$, x0 = x * 2, luego $x0 \mod 3 = 0$ es cierto.
 - 2) $\delta(i,x)=i$ y, por h.i., $x\equiv\epsilon\to x0=0$, luego 0 mód 3=0 es cierto.
- 3. Si $\delta(i, w) = 2$, a puede ser 0 o 1:
 - a) Si a=0, de acuerdo a la tabla de transiciones $\delta(i,x)=1$ y, por h.i., $x \mod 3=1 \to x=n*3+1$, $x0=x*2 \to x0=n*6+2$, luego $x0 \mod 3=2$ es cierto.
 - b) Si a=1, de acuerdo a la tabla de transiciones $\delta(i,x)=2$ y, por h.i., $x \mod 3=2 \rightarrow x=n*3+2$, $x1=x*2+1 \rightarrow x0=n*6+5$, luego $x1 \mod 3=2$ es cierto.

La hipótesis de inducción (1) se cumple para todos los casos, por lo que el AFD es correcto y completo.

4. Implementación en C del AFD

4.1. Método de los cases

```
#include <stdio.h>
#include <stdlib.h>

int main(int argc, char* argv[])

char estado;
estado = 'i';
char c;
int i;
if(argc>1) {
    for(i=0;i<strlen(argv[1]);i++) {
        c=argv[1][i];
}</pre>
```

```
switch(estado) {
14
                              case 'i':
15
                                       if(c=='0') estado = '0';
16
                                       if(c=='1') estado = '1';
17
                                       break;
18
                              case '0':
19
                                       if(c=='1') estado = '1';
20
21
                                       break;
                              case '1':
22
                                       if(c=='0') estado = '2';
23
                                       if(c=='1') estado = '0';
24
                                       break;
25
                              case '2':
26
                                       if(c=='0') estado = '1';
27
                                       break;
28
                      }
29
30
31
            printf("Estado final: %c \n", estado);
32
            printf((estado=='0')?"Cadena aceptada.\n":"Cadena no aceptada.\n");
33
            return 0;
34
35
```

4.2. Método de la tabla

```
#include <stdio.h>
    #include <stdlib.h>
   int main(int argc, char* argv[])
        int estado = 3;
        int c;
        int i;
        int afd[4][2]={{0,1},{2,0},{1,2},{0,1}};
10
        if(argc>1){
11
            for (i=0; i < strlen (argv[1]); i++) {</pre>
12
13
                     c=(argv[1][i])-'0';
14
                     estado=afd[estado][c];
15
16
            printf("Estado final: %c \n",(estado==3)?'i':(estado+'0'));
17
            printf((estado==0)?"Cadena aceptada.\n":"Cadena no aceptada.\n");
18
            return 0;
19
20
```