GenomicTuples and DNA methylation patterns

Peter Hickey (@PeteHaitch) - Walter and Eliza Hall Institute of Medical Research European Bioconductor Developers' Meeting, 12 January 2015

Motivation

- · Analysing counts of methylation patterns at genomic tuples
- · Counts extracted from вам file using methtuple (https://github.com/PeteHaitch/methtuple; Python)

Example output of methtuple for 3-tuples

chr	strand	pos1	pos2	pos3	MMM	MMU	MUM	MUU	UMM	UMU	UUM	UUU
chr1	+	781154	781161	781190	4	1	0	0	0	0	0	0
chr1	+	781362	781406	781455	0	0	1	1	0	0	0	0
chr1	+	781616	781720	781732	0	0	1	0	0	1	1	1
chr1	+	781616	781763	781795	0	0	0	0	1	0	0	0
chr1	+	781720	781732	781738	0	1	2	1	4	0	1	0
chr1	+	781732	781738	781763	3	0	0	1	0	2	1	0
chr1	+	781738	781763	781795	0	0	0	0	0	1	0	0
chr1	+	781738	781763	781912	0	1	0	0	0	0	0	0
chr1	+	781763	781795	781912	0	0	0	1	0	0	1	0
chr1	+	781912	781989	782013	1	0	1	1	0	0	1	0
chr1	+	781912	782013	782024	3	0	0	0	0	0	0	0
chr1	+	781989	782013	782024	2	0	3	0	3	0	3	0
chr1	+	782013	782024	782048	2	2	0	0	3	2	0	0
chr1	+	782236	782243	782268	1	0	1	0	0	1	0	0

Aim

MethPat implemented in MethylationTuples

• MethPat extends GenomicRanges::SummarizedExperiment

Genomic tuples

chr	strand	pos1	pos2	pos3
chr1	+	781154	781161	781190
chr1	+	781362	781406	781455
chr1	+	781616	781720	781732
chr1	+	781616	781763	781795
chr1	+	781720	781732	781738

GenomicTuples

- Extend Genomic Ranges to genomic tuples
- · Retains a familiar interface

GTuples

```
library(GenomicTuples)
# Create a GTuples object with two 3-tuples
seginfo <- Seginfo("chr1", 1000, NA, "toy")</pre>
qt <- GTuples(seqnames = 'chr1',</pre>
            tuples = matrix(c(1L, 5L, 5L, 10L, 10L, 20L), ncol = 3),
             strand = "+",
             seqinfo = seqinfo)
gt
># GTuples object with 2 x 3-tuples and 0 metadata columns:
>#
        segnames pos1 pos2 pos3 strand
>#
            chr1
                       5 10
    [1]
># [2] chr1 5 10 20
                                     +
>#
    ___
>#
    seginfo: 1 sequence from toy genome
```

GTuples extends GRanges

```
setClass("GTuples",
         contains = "GRanges",
         representation(
           internalPos = "matrixOrNULL",
           size = "integer"),
         prototype(
           internalPos = NULL,
           size = NA integer )
# Ensure the internalPos slot "sticks" during subsetting, etc.
setMethod(GenomicRanges:::extraColumnSlotNames,
          "GTuples",
          function(x) {
            c("internalPos")
```

Useful GTuples methods (inherited)

```
seqnames(gt)

># factor-Rle of length 2 with 1 run
># Lengths: 2
># Values: chr1
># Levels(1): chr1

strand(gt)

># factor-Rle of length 2 with 1 run
># Lengths: 2
># Values: +
># Levels(3): + - *
```

Useful GTuples methods (new)

```
size(gt)
># [1] 3
tuples(gt)
># pos1 pos2 pos3
># [1,] 1 5 10
># [2,] 5 10 20
IPD(gt) # IPD = intra-pair distances
># [,1] [,2]
># [1,] 4 5
># [2,] 5 10
```

Ill-defined GTuples methods

These return errors

- coverage
- flank, promoters, resize, narrow
- · disjoin, gaps, isDisjoint, range, reduce
- mapCoords
- · Ops, intersect, pgap, pintersect, psetdiff, punion, setdiff, union, tile

Meaningful definitions (and pull requests) are welcomed!

GTuples comparison and sorting

```
# Sorted first by segnames, then by strand, then by tuples
sort(gt3)
># GTuples object with 7 x 3-tuples and 0 metadata columns:
>#
       segnames pos1 pos2 pos3 strand
>#
    [1]
           chr1
                  5
                     20 30
>#
    [2] chr1
                10
                     20 30
                                 +
>#
                 10 20 35
    [3]
           chr1
                                +
>#
    [4]
         chr1
                10
                     25 30
                                +
>#
    [5]
          chr1
                 10
                     20 30
>#
    [6]
                     20 35
         chr1
                 10
>#
    [7]
           chr2
                 10
                     20 30
                                +
>#
>#
    seginfo: 2 sequences from an unspecified genome; no seglengths
```

findOverlaps-based methods

```
if (size < 3) {
    # Treat GTuples as GRanges
} else {
    if (type == "equal") {
        # Call .findEqual.GTuples()
} else {
        # Treat GTuples as GRanges
}
}</pre>
```

GenomicTuples Summary

A drop in replacement for GenomicRanges when you have genomic *tuples* rather than *ranges*.

Limitations

- · All tuples in a GTuples object must have same size
- Room for improvement with findOverlaps(x, y, type = 'equal')
 - Performance
 - Not all options supported (e.g., maxgap and minoverlap)

MethylationTuples

An R package for analysing, managing and visualising methylation patterns at genomic tuples.

Analyses

- · Epialleles
- Methylation entropy
- · Allele-specific methylation
- · Co-methylation

MethylationTuples development

- Adding additional features and tests, improving documentation and adding vignette
- Performance: MethPat objects become increasingly sparse as size increases (and as $n_{samples}$ increases)

12 whole-genome bisulfite-sequencing samples

	<pre>pryr::object_size(x)</pre>	nrow	Number of assays	Percentage of NA and 0 values
1-tuples	5.9 GB	56, 348, 522	2	28%
2-tuples	20.1 GB	100, 586, 237	4	80%
3-tuples	43.3 GB	109, 376, 348	8	93%
4-tuples	80.5 GB	102, 625, 758	16	97%

Thanks

PhD advisors

- Terry Speed
- Peter Hall

Programming

- Hervé Pagès
- Martin Morgan
- Michael Lawrence
- R/BioC community

Funding

· Edith Moffat Travel Award

Links

- Slides.Rmd (https://github.com/PeteHaitch/BiocEurope_2015_presentation)
- · **GitHub**: @PeteHaitch
 - GenomicTuples (release)
 - GenomicTuples (GitHub devel)
 - MethylationTuples (GitHub devel)
- Twitter: @PeteHaitch

