1. Appendix G: Mass calculations

Notation:

 $\begin{array}{lll} p: & & \text{density} \\ m: & & \text{mass} \\ \text{V}: & & \text{volume} \end{array}$

The mass of each part will be calculated using the below equation:

Mass = density x volume

Density will be a value specific to the material used. The volume will be a value from solidworks, because solidworks is able to calculate the volume of complex parts accurately.

3D printed parts

The material that will be used for 3D printed parts is PLA plastic.

$$\rho_{PLA} \coloneqq 1240 \cdot \frac{kg}{m^3}$$

Battery holder

$$V_{bb} := 30227.85 \cdot mm^3$$

$$m_{bh}\!\coloneqq\!
ho_{PLA}\!ullet\! V_{bh}$$

$$m_{bh} = 0.037 \ {\it kg}$$

Motor lifter

$$V_{ml} \coloneqq 2810.52 \cdot mm^3$$

$$m_{ml}\!\coloneqq\!
ho_{PLA}\!ullet\!V_{ml}$$

$$m_{ml} = 0.003 \ {\it kg}$$

Lower housing

$$V_{lh} \coloneqq 128903.53 \cdot mm^3$$

$$m_{lh}\!\coloneqq\!\rho_{P\!L\!A}\!\boldsymbol{\cdot} V_{lh}$$

$$m_{lh}\!=\!0.16~{\it kg}$$

Upper housing

$$V_{uh} \coloneqq 120305.23 \cdot mm^3$$

$$m_{uh}\!\coloneqq\!\rho_{PLA}\!\cdot\!V_{uh}$$

$$m_{uh} = 0.149 \ kg$$

<u>Handle</u>

$$V_h \coloneqq 77838.31 \cdot mm^3$$

$$m_h \coloneqq \rho_{PLA} \cdot V_h$$

$$m_h = 0.097 \ kg$$

Angle lock

$$V_{al} \coloneqq 409.63 \cdot mm^3$$

$$m_{al}\!\coloneqq\!
ho_{PLA}\!ullet\! V_{al}$$

$$m_{\sim} = (5.079 \cdot 10^{-4}) \ ka$$

Microswitch holder

$$V_{mch} \coloneqq 3068.22 \cdot mm^3$$

$$m_{mch} \coloneqq \rho_{PLA} \cdot V_{mch}$$

$$m_{mch} = 0.004 \ kg$$

Microswitch holder two

$$V_{mcht} \coloneqq 3223.97 \cdot mm^3$$

$$m_{mcht} \coloneqq \rho_{PLA} \cdot V_{mcht}$$

$$m_{mcht} = 0.004 \ kg$$

Two microswitch upper holders

$$V_{muh} \coloneqq 1494.40 \cdot mm^3$$

$$m_{muh}\!\coloneqq\! 2 \bullet \rho_{PLA} \bullet V_{muh}$$

$$m_{muh} = 0.004 \ kg$$

Two battery clamps

$$V_{b\ clamp} \coloneqq 4286.19 \cdot mm^3$$

$$m_{b_c}\!\coloneqq\! 2 \boldsymbol{\cdot} \rho_{PLA} \boldsymbol{\cdot} V_{b_clamp}$$

$$m_{b_c} = 0.011 \ kg$$

$$\begin{split} M_{3D_p} \coloneqq m_{bh} + m_{ml} + m_{lh} + m_{uh} + m_h + m_{al} + m_{mch} + m_{mcht} + m_{muh} + m_{b_c} \\ \\ M_{3D_p} = 0.469 \ \textit{kg} \end{split}$$

Sheet metal parts

Sheet metal will be made using hot rolled mild steel. The density varies based on the alloying constituents but usually ranges between **7750** and **8050 kg/m3**.

To design for maximum conditions, I'll assume that the density of hot rolled mild steel is 8050 kg/m3.

$$\rho_{mild_steel} := 8050 \cdot \frac{kg}{m^3}$$

Base

Lower shaft support

Upper shaft support

$$V_{uss} \coloneqq 5116.73 \cdot mm^3$$

$$m_{uss}\!\coloneqq\!\rho_{mild_steel}\!\cdot\!V_{uss}$$

$$m_{uss} = 0.041 \ kg$$

Motor support

$$V_{motor\ s} \coloneqq 4596.91 \cdot mm^3$$

$$m_{motor_s}\!\coloneqq\!\rho_{mild_steel}\!\cdot\!V_{motor_s}$$

$$m_{motor\ s} = 0.037$$
 kg

Two sheet support

$$V_{sheet_s} \coloneqq 552.52 \cdot mm^3$$

$$m_{sheet_s} \!\coloneqq\! 2 \bullet \rho_{mild_steel} \!\bullet\! V_{sheet_s}$$

$$m_{sheet_s} = 0.009 \ kg$$

Two double plate for 48T gear

$$V_{D~48T} \coloneqq 3049.80 \cdot mm^3$$

$$m_{D_48T} \!\coloneqq\! 2 \bullet \rho_{mild_steel} \!\bullet\! V_{D_48T}$$

$$m_{D_48T} = 0.049 \ kg$$

Double plate for 36T gear

$$V_{D~36T} \coloneqq 689.14 \cdot mm^3$$

$$m_{D_36T} \!\coloneqq\! \rho_{mild_steel} \!\bullet\! V_{D_36T}$$

$$m_{D_{-}36T} = 0.006 \ kg$$

Double plate for 24T gear

$$V_{D\ 24T}\coloneqq 296.44 \cdot mm^3$$

$$m_{D_24T}\!\coloneqq\!\rho_{mild_steel}\!\bullet\!V_{D_24T}$$

$$m_{D\ 24T} = 0.002$$
 kg

Total mass of the machined parts:

$$M_s \coloneqq m_{base} + m_{lss} + m_{uss} + m_{motor_s} + m_{sheet_s} + m_{D_48T} + m_{D_36T} + m_{D_24T}$$

$$M_s\!=\!0.341~\pmb{kg}$$

Machined parts

Machined components will be made up of low carbon steel. Low carbon steel has a density of

7850 kg/m3.

$$\rho_{carbon_steel} \coloneqq 7850 \cdot \frac{\textit{kg}}{\textit{m}^3}$$

Die positioner

$$V_{Die_p}\coloneqq 113.22 \cdot mm^3$$

$$m_{Die_p}\!\coloneqq\!\rho_{carbon_steel}\!\bullet\!V_{Die_p}$$

$$m_{Die_p} = \left(8.888 \cdot 10^{-4}\right) \, kg$$

Die lock

$$V_{Die\ l} \coloneqq 122.48 \cdot mm^3$$

$$m_{Die_l}\!\coloneqq\!\rho_{carbon_steel}\!\cdot\!V_{Die_l}$$

$$m_{Die_l} = (9.615 \cdot 10^{-4}) \ kg$$

Clamp platform

$$V_{Clamp_p} \coloneqq 3055.02 \cdot mm^3$$

$$m_{Clamp_p}\!\coloneqq\!\rho_{carbon_steel}\!\bullet\!V_{Clamp_p}$$

$$m_{Clamp_p} = 0.024$$
 kg

Circular custom shaft

$$V_{Custom\ s} \coloneqq 242.83 \cdot mm^3$$

$$m_{Custom_s}\!\coloneqq\!\rho_{carbon_steel}\!\cdot\! V_{Custom_s}$$

$$m_{Custom_s} = 0.002 \ kg$$

Angle positioner

$$V_{Angle_p} \coloneqq 94.76 \cdot mm^3$$

$$m_{Angle_p}\!\coloneqq\!\rho_{carbon_steel}\!\cdot\! V_{Angle_p}$$

$$m_{Angle_p} = (7.439 \cdot 10^{-4}) \ kg$$

Bending die

$$V_{Die\ b} \coloneqq 229.77 \cdot mm^3$$

$$m_{Die_b}\!\coloneqq\!\rho_{carbon_steel} \!\cdot\! V_{Die_b}$$

$$m_{Die\ b} = 0.002 \ kg$$

Total mass of the machined $M_{machine} \coloneqq m_{Die_p} + m_{Die_l} + m_{Clamp_p} + m_{Custom_s} + m_{Angle_p} + m_{Die_b}$ parts:

$$M_{machine} = 0.03 \ kg$$

Bought parts

Some parts will be bought. Their mass is given.

100rpm Motor: $m_{motor} \coloneqq 0.09 \cdot kg$

Two 12T spur gears: $m_{12T_s} \coloneqq 2 \cdot \frac{1.2}{1000} \cdot kg = 0.002 \ kg$

Two 24T bevel gears: $m_{24T_b} \coloneqq 2 \cdot \frac{1.2}{1000} \cdot kg = 0.002 \ kg$

Two 36T spur gears: $m_{36T_s} \coloneqq 2 \cdot \frac{5.2}{1000} \cdot kg = 0.01 \ kg$

Two 48T spur gears: $m_{48T_s} \coloneqq 2 \cdot \frac{7.5}{1000} \cdot kg = 0.015 \ kg$

Square shaft 30 long: $m_{30_sq} \coloneqq \frac{77}{1000} \cdot \frac{30}{1000} \cdot \pmb{kg} = 0.002 \; \pmb{kg}$

Square shaft 70 long:
$$m_{70_sq} := \frac{77}{1000} \cdot \frac{70}{1000} \cdot kg = 0.005 \ kg$$

Square shaft 45 long:
$$m_{45_sq} := \frac{77}{1000} \cdot \frac{45}{1000} \cdot kg = 0.003 \ kg$$

Three high strength
$$m_{30_hsq} := 3 \cdot \frac{77}{1000} \cdot \frac{30}{1000} \cdot kg = 0.007 \ kg$$
 square shaft 30 long:

Shaft coupler:
$$m_{shaft_c} := \frac{2.3}{1000} \cdot kg = 0.002 \ kg$$

Four cells with caps:
$$m_{cell_w_caps} := 4 \cdot \frac{54}{1000} \cdot kg = 0.216 \ kg$$

Two cell links:
$$m_{cell_link} := 2 \cdot \frac{1}{1000} \cdot kg = 0.002 \ kg$$

Fused link:
$$m_{fused_link} := \frac{1.5}{1000} \cdot kg = 0.002 \ kg$$

Two microswitches:
$$m_{microswitch} = 2 \cdot \frac{2.2}{1000} \cdot kg = 0.004 \ kg$$

Ten spacers 3.2 long:
$$m_{3.2_spacer} = 10 \cdot \frac{0.25}{1000} \cdot kg = 0.003 \ kg$$

Spacer 6.4 long:
$$m_{6.4_spacer} \coloneqq \frac{0.5}{1000} \cdot kg = (5 \cdot 10^{-4}) \ kg$$

Three spacers 9.5 long:
$$m_{9.5_spacer} \coloneqq 3 \cdot \frac{0.75}{1000} \cdot kg = 0.002 \ kg$$

Two spacers 12.7 long:
$$m_{12.7_spacer} \coloneqq 2 \cdot \frac{1}{1000} \cdot kg = 0.002 \ kg$$

Two button head
$$m_{b_screws}\!\coloneqq\!2\!\cdot\!\frac{1.3}{1000}\!\cdot\!\pmb{kg}\!=\!0.003\;\pmb{kg}$$
 screws:

Six (2.9x6.5) self
$$m_{3.0 \text{mf.5}} = 6 \cdot \frac{1.3}{2.0 \text{ms.5}} \cdot kq = 0.008 \ kq$$

tapping screws:

1000

Twelve (3.5x9.5) self tapping screws:

$$m_{3.5x9.5_screws} = 12 \cdot \frac{1.5}{1000} \cdot kg = 0.018 \ kg$$

Four (4.2x16) self tapping screws:

$$m_{4.2x16_screws} = 12 \cdot \frac{1.6}{1000} \cdot kg = 0.019 \ kg$$

Twenty one (4.2x9.5) self tapping screws:

$$m_{4.2x9.5_screws} \coloneqq 21 \cdot \frac{1.6}{1000} \cdot kg = 0.034 \ kg$$

Seven hex M5 (16x10) bolts:

$$m_{16x10_bolt} := 7 \cdot \frac{2.72}{1000} \cdot kg = 0.019 \ kg$$

Seven hex M5 nut:

$$m_{M5_nut} := 7 \cdot \frac{0.85}{1000} \cdot kg = 0.006 \ kg$$

Five hex M3 nut:

$$m_{M3_nut} := 5 \cdot \frac{0.85}{1000} \cdot kg = 0.004 \ kg$$

Six M5 washers:

$$m_{M5_washer} = 6 \cdot \frac{0.44}{1000} \cdot kg = 0.003 \ kg$$

Big roller:

$$m_{Big_roller} \coloneqq \frac{65}{1000} \cdot kg = 0.065 \ kg$$

Push button:

$$m_{push_b} := \frac{27}{1000} \cdot kg = 0.027 \ kg$$

Control switch:

$$m_{control_s} := \frac{30}{1000} \cdot kg = 0.03 \ kg$$

 $M_1 := m_{control\ s} + m_{push\ b} + m_{Biq\ roller} + m_{M5\ washer} + m_{M5\ nut} + m_{M3\ nut} + m_{16x10\ bolt} + m_{4.2x9.5\ screws}$

 $M_2 \coloneqq m_{4.2x16_screws} + m_{3.5x9.5_screws} + m_{2.9x6.5_screws} + m_{b_screws} + m_{12.7_spacer} + m_{9.5_spacer} + m_{6.4_spacer} + m_{6.$

$$M_3 \coloneqq m_{3.2_spacer} + m_{microswitch} + m_{fused_link} + m_{cell_link} + m_{cell_w_caps} + m_{shaft_c} + m_{30_hsq} + m_{45_sq}$$

$$M_4 \coloneqq m_{70_sq} + m_{30_sq} + m_{48T_s} + m_{36T_s} + m_{24T_b} + m_{12T_s} + m_{motor}$$

Total mass of the bought parts:

$$M_{bought}\!\coloneqq\! M_1\!+\!M_2\!+\!M_3\!+\!M_4$$

$$M_{bought} = 0.607$$
 kg

Total CAD mass:

$$M_{tot} \coloneqq\! M_{bought} \!+\! M_{machine} \!+\! M_s \!+\! M_{3D_p}$$

$$M_{tot} = 1.447 \ kg$$