Analysis 2

Übungsblatt 6

Lösungsskizze

12. Juni 2023

Übung 6.1

(Endliche Vereinigung von Kompakta). Besitzt ein topologischer Raum eine endliche Überdeckung durch Kompakte Teilmengen, so ist er bereits selbst kompakt.

Beweis.

Nach Definition 5.13 ist X top. Raum kompakt, wenn X überdeckungskompakt ist. Wir wollen also, dass jede offene Überdeckung von X eine endliche Teilüberdeckung besitzt.

nach Voraussetzung ist $X = \bigcup_{i=1}^{m} K_i$ mit K_i kompakt.

sei $X \subset \bigcup_{i \in J} V_i$ offene Überdeckung von X.

 $\Rightarrow \bigcup_{i \in J} (V_i \cap K_i)$ ist offene Überdeckung von K_i

 \Rightarrow da K_i kompakt ist exisitiert endliche Indexmenge $J_i \subset J$ sodass $K_i \subset \bigcup_{j \in J_i} V_j$

 $\Rightarrow X \subset \bigcup_{i=1}^m \bigcup_{j \in J_i} V_j$

П

Übung 6.2

(Nichtleere Schnitte in Kompakta) Ist in einem kompakten topologischem Raum X ein System abgeschlossener Teilmengen $\mathcal{K} \subset \mathcal{P}(X)$ mit leerem Schnitt $\bigcap_{K \in \mathcal{K}} K = \emptyset$ gegeben, so gibt es bereits ein endliches Teilsystem $\mathcal{E} \subset \mathcal{K}$ mit leerem Schnitt $\bigcap_{K \in \mathcal{E}} K = \emptyset$ Beweis.

sei $U := \{X \setminus K | K \in \mathcal{K} \text{ System von offenen (da K abgeschlossen) Teilmengen.}$

$$\bigcup_{V \in U} V = \bigcup_{K \in \mathcal{K}} X \setminus K = X \setminus \bigcap_{K \in \mathcal{K}} K = X \setminus \emptyset = X$$

Damit ist U offene Überdeckung von X. Da X kompakt ist, existiert eine endliche Überdeckung $\mathcal{F} \subset U$ mit $\bigcup_{V \in \mathcal{F}} F = X$

sei $\xi := \{X \setminus V | V \in \mathcal{F}\}$ endliches System von abgeschlossenen (da V offen) Mengen. Damit erhalten wir:

$$X \setminus \bigcap_{K \in \xi} = \bigcup_{K \in \xi} (X \setminus K) = \bigcup_{V \in \mathcal{F}V} = X$$

$$\Rightarrow \bigcap_{K \in \xi} K = \emptyset$$

Übung 6.3

Man zeige, dass für $f: \mathbb{R}^2 \to \mathbb{R}$ stetig mit kompakten Träger und $\varphi: \mathbb{R}^2 \tilde{\to} \mathbb{R}^2$ eine affine Bijektion mit linearem Anteil $\vec{\varphi}$ gilt

$$\int_{\mathbb{R}^2} f = |det(\vec{\varphi})| \int_{\mathbb{R}^2} f \circ \varphi$$

Beweis.

zunächst φ ist eine affine lineare Bijektion d.h. $\varphi = \vec{\varphi}(x) + b$ mit $b \in \mathbb{R}^2$ (vgl 2.2.2-2.2.4) und da φ linear ist $d_x \vec{\varphi} = \vec{\varphi}$

Der Träger von f ist $supp(f) = \{x | f(x) \neq 0\} \subset \mathbb{R}^m$ Wir finden offene Teilmenge $U \subset \mathbb{R}^2$ sodass $supp(f) \subset U$, z.B. $B_r(0)$ für r groß genung sodass:

$$\begin{split} \int_{\mathbb{R}^2} f &= \underbrace{\int_{\mathbb{R}^2 \backslash U} f}_{f=0} + \int_{U} f \\ Trafoformel \ Satz \ 5.2.8 &= \int_{V=f(U)} (f \circ \varphi) |det d\vec{\varphi}| \\ d_x \vec{\varphi} &= \vec{\varphi} = |det(\vec{\varphi})| \int_{V=f(U)} (f \circ \varphi) \\ &= |det(\vec{\varphi})| \int_{\mathbb{R}^2} (f \circ \varphi) \end{split}$$

Übung 6.4

Wir erinnern uns an die Kugelkoordinatenabbildung K aus Übung 2.1. Man drücke das Integral einer stetigen Funktion f auf der Kugel

$$M := \{(x, y, z)|x^2 + y^2 + z^2 = 25\}$$

mit Radius 5 deren Träger nicht den Längengrad $\{(x,y,z)|y=0,z\geq 0\}$ trifft, aus als ein Integral in den Winkelkoordinaten φ und θ

Beweis. zunächst:

Übung 2.1. Berechnen Sie die Jacobimatrix der Kugelkoordinatenabbildung

$$\begin{array}{ccc} K: & \mathbb{R}^3 & \to & \mathbb{R}^3 \\ & (r, \vartheta, \varphi) & \mapsto & (r\cos\varphi\sin\vartheta, r\sin\varphi\sin\vartheta, r\cos\vartheta) \end{array}$$

Drücken sie die Länge des Geschwindigkeitsvektors in \mathbb{R}^3 eines sich auf der Einheitskugel bewegenden Käfers $\kappa:t\mapsto K(1,\vartheta(t),\varphi(t))$ durch $\vartheta,\varphi,\vartheta',\varphi'$ aus.

Übung 2.4. Wir setzen als klar voraus, daß die Kugelkoordinatenabbildung eine Bijektion $K:(0,\infty)\times(0,\pi)\times(0,2\pi)\stackrel{\sim}{\to} U\otimes\mathbb{R}^3$ auf eine offene Teilmenge des \mathbb{R}^3 ist und die Umkehrabbildung $K^{-1}:U\to\mathbb{R}^3$ differenzierbar. Man berechne die Jacobimatrix von K^{-1} an der Stelle $(-3,0,0)^{\top}$.

Nach Aufgabe 2.1 und 2.4 sind die Kugelkoordinaten eine Karte und nach Voraussetzung ist auch $supp(f) \subset K(\{5\} \times (0, \pi) \times (0, 2\pi))$ Wir können also die Transformationsformel anwenden.

5.3 Integration über Mannigfaltigkeiten

Satz 5.3.1 (Integration über Mannigfaltigkeiten). Für jede k-Mannigfaltigkeit $M \subset \mathbb{R}^n$ gibt es genau eine \mathbb{R} -lineare Abbildung

$$\int_M:\mathcal{C}_!(M,\mathbb{R})\to\mathbb{R}$$

derart, daß für jede Karte $\varphi:W\to M$ und jede Funktion $f\in\mathcal{C}_!(M,\mathbb{R})$ mit Träger im Bild besagter Karte $\operatorname{supp} f\subset\varphi(W)$ gilt

$$\int_{M} f = \int_{W} f(\varphi(x)) \sqrt{\det (\mathbf{d}_{x}\varphi)^{\top} (\mathbf{d}_{x}\varphi)} \ \mathbf{d}^{k} x$$

$$\begin{split} \int_{M} f &= \int_{U} f \circ K \sqrt{det(dK^{t}dK)} \\ &= \int_{(0,\pi)\times(0,2\pi)} f(K(5,\theta,\varphi)) \sqrt{det(dK^{t}dK)} d\theta d\varphi \end{split}$$

Wir berechnen die benötigten Matrizen

$$dK = \begin{pmatrix} 5\cos\varphi\cos\theta & -5\sin\varphi\sin\theta \\ 5\sin\varphi\cos\theta & 5\cos\varphi\sin\theta \\ -5\sin\theta & 0 \end{pmatrix}$$

$$dK^{t}dK = \begin{pmatrix} 25(\cos\varphi^{2} \cdot \cos\theta^{2} + \sin\varphi^{2} \cdot \cos\theta^{2} + \sin\theta^{2} & 0\\ & = 1\\ 0 & 25\sin(\theta)^{2} \end{pmatrix}$$

damit erhalten wir $det(dK^tdK) = 25^2\sin^2(\theta)$ und somit $\sqrt{det(dK^tdK)} = 25|\sin(\theta)|$

$$\int_{M} f = \int_{(0,\pi)\times(0,2\pi)} f(K(5,\theta,\varphi)) 25 |\sin(\theta)| d\theta d\varphi$$