BASE DE DADOS

NORMALIZAÇÃO

Teórico-Práticas

- Com base nas dependências funcionais, multivalor e de junção define-se o processo de normalização de dados aplicado ao modelo relacional. (já abordado nas aulas teóricas)
- A hierarquia é composta por cinco formas normais (1a, 2a, 3a, 4a e 5a Forma Normal) e uma intermédia (Forma Normal de Boyce-Codd, entre a 3a e a 4a).
- Na prática, não deve ser levada às ultimas consequências, pois a proliferação de relações pode conduzir à deterioração do desempenho da Base de Dados.
- Na maioria dos casos opta-se por uma solução de compromisso entre a 3a Forma Normal e a Forma Normal de Boyce Codd.

1º FN 2º FN 3º FNBC 4º FN 5º FN

•Menos relações
•Mais redundância

•Menos redundância

Formas Normais:

1FN 2FN 3FN

FNBC (Boyce-Codd)

=> Dependências Funcionais

4FN

=> Dependência Multivalor

5FN

=> Dependência de Junção

Processo

Regras de Inferência de DF's

Dada uma relação R com um conjunto U de atributos e algumas dependências funcionais, é possível inferir outras dependências funcionais (triviais ou derivadas) usando os axiomas de Armstrong

Axiomas de Armstrong:

		~
_	U	Iniao

$$-\operatorname{Se} X \to \operatorname{Ye} X \to \operatorname{Z}$$
, então $X \to \operatorname{YZ}$

$$-\operatorname{Se} X \to YZ$$
, então $X \to Y$ e $X \to Z$

$$-\operatorname{Se} X \to Y \operatorname{e} Y \to Z$$
, então $X \to Z$

$$- Se X \rightarrow Ye WY \rightarrow Z então XW \rightarrow Z$$

$$-\operatorname{Se} X \to Y Z \subseteq U$$
, então $XZ \to YZ$

- Se
$$X \supseteq Y$$
, então $X \rightarrow Y$

Normalização - Escolha da Chave Primária

Como determinar a chave primária a partir de DF's

- a) Seja a Relação R(A,B,C,D) e as seguintes DF: B-> D e AB->C
 - A chave primaria da relação é AB.

Aplicou-se os axiomas de Armstrong.

- 1. Aumento à DF B -> D => AB-> AD
- 2. União AB -> C e AB -> AD => AB -> CD
- b) Seja a Relação R(A,B,C,D,E) e as seguintes DF : AB -> CE ; E -> AB e C -> D
 - As chaves candidatas da relação é AB e E.

Aplicou-se os axiomas de Armstrong.

- 1. Decomposição AB -> CE => AB -> C e AB ->E
- 2. Transitividade AB -> C e C -> D => AB -> CD
- 3. Transitividade AB -> CD e AB-> E => AB-> CDE

ou

- 1. Decomposição AB -> CE => AB -> C e AB -> E
- Transitividade AB -> C e C -> D => AB -> CD
- 3. Transitividade E -> AB e AB -> CD => E-> ABCD

Normalização - Primeira Forma Normal

- Uma relação está na 1FN se:
 - Os atributos chave estão definidos
 - Não existem grupos repetitivos
 - Todos os atributos estão definidos em domínios que contêm apenas valores atómicos, isto é, cada atributo só pode admitir valores elementares e não conjunto de valores
 - > Todos os atributos dependem funcionalmente da chave primária
- Visa eliminar a existência de grupos de valores repetidos
 - A uma ocorrência da chave só pode corresponder uma ocorrência dos outros atributos não chave

Normalização - Primeira Forma Normal

Suponhamos

Aluno (<u>idAluno</u>, nome, morada,(idDisciplina, nomeDisciplina))

Esta estrutura não se encontra na 1FN, uma vez que as colunas *idDisciplina* e *nomeDisciplina* admitem um conjunto de valores

<u>idAluno</u>	nome	morada	idDisciplina	nomeDisciplina
A1	João	Rua A	D1, D2, D3	Matemática, Economia, Direito
A2	Ana	Rua B	D1, D4	Matemática, Física
А3	Pedro	Rua C	D1, D2	Matemática, Economia
A4	Filipa	Rua D	D1	Matemática

Normalização - Primeira Forma Normal

<u>Id_aluno</u>	nome	morada
A1	João	Rua A
A2	Ana	Rua B
А3	Pedro	Rua C
A4	Filipa	Rua D

Aluno (idAluno, nome, morada)

<u>Id aluno</u>	<u>idDisciplina</u>	nomeDisciplina
A1	D1	Matematica
A1	D2	Economia
A1	D3	Direito
A2	D1	Matematica
A2	D4	Fisica
А3	D1	Matematica
А3	D2	Economia
A4	D1	Matematica

AlunoInscrito (idAluno, idDisciplina, nomeDisciplina)

- Uma relação está na 2FN se:
 - Estiver na 1FN
 - Cada atributo não chave depende funcionalmente da totalidade da chave
 - Não existem dependências parciais
 - Todos os atributos que não pertencem à chave dependem funcionalmente da chave no seu conjunto e
 - Não dependem de nenhum dos seus elementos ou subconjuntos tomados isoladamente

Conversão da estrutura para a 2 FN

- Se a relação <u>só tem um atributo como chave primária</u> e se essa relação <u>já estiver na</u>
 1FN, então a relação <u>também se encontra na 2FN</u>
- 2. Se a chave primária é composta e se algum atributo não-chave depende apenas de uma parte da chave primária, então a relação deverá ser decomposta, para que cada atributo dependa da totalidade da chave primária

Exemplo 1

A tabela *Aluno* já está na 1ª FN e como a chave primária contém apenas um atributo ela <u>também está na 2ª FN</u>

<u>Id aluno</u>	nome	morada
A1	João	Rua A
A2	Ana	Rua B
А3	Pedro	Rua C
A4	Filipa	Rua D

Conversão da estrutura para a 2 FN

- A tabela AlunoInscrito encontra-se na 1º FN mas a sua chave primária é composta
 - Necessário decompor a tabela AlunoInscrito pois existe uma dependência funcional entre o atributo não-chave nomeDisciplina e apenas parte da chave primária, com o atributo idDisciplina

<u>Id aluno</u>	<u>idDisci</u>	<u>plina</u>	nomeDisciplina
A1	D1		Matemática
A1	D2		Economia

idDisciplina → nomeDisciplina

Conversão da estrutura para a 2 FN

<u>Id_aluno</u>	nome	morada
A1	João	Rua A
A2	Ana	Rua B
A3	Pedro	Rua C
A4	Filipa	Rua D

Aluno(<u>idAluno</u>, nome, morada)

<u>idDisciplina</u>	nomeDisciplina
D1	Matemática
D2	Economia
D3	Direito
D4	Física

Disciplina (idDisciplina, nomeDisciplina)

<u>Id_aluno</u>	idDisciplina
A1	D1
A1	D2
A1	D3
A2	D1
A2	D4
A3	D1
А3	D2
A4	D1

AlunoInscrito(<u>idAluno</u>(FK), <u>idDisciplina</u>(FK))

Normalização - Terceira Forma Normal

nomeCurso

idAluno

codCurso

- Uma relação está na 3FN se:
 - Estiver na 2FN
 - Nenhum dos seus atributos depende funcionalmente de atributos não chave
 - Nenhum dos atributos que não fazem parte da chave pode ser funcionalmente dependente de qualquer combinação dos restantes
 - Cada atributo depende <u>apenas</u> da chave e não de qualquer outro atributo ou conjunto de atributos

Esta tabela não se encontra na 3FN porque o atributo não-chave **nomeCurso** depende funcionalmente do atributo **codCurso**

<u>Id aluno</u>	nome	codCurso	nomeCurso
A1	João	01	Informática
A2	Ana	02	Civil
A3	Pedro	01	Informática
A4	Filipa	03	Quimica

nome

Aluno(idAluno, nome, codCurso, nomecurso)

Normalização - Terceira Forma Normal

Conversão da estrutura para a 3FN

- 1. Procurar dependências funcionais entre os atributos não-chave da relação
- 2. Se a relação que já está na 2FN e tiver apenas um atributo não-chave, então a relação também já se encontra na 3FN
- 3. Se existir algum conjunto de atributos não-chave na relação que tenha dependência funcional em relação a um outro conjunto de atributos não-chave da mesma relação, então a relação deve ser decomposta de modo a que qualquer atributo não-chave da relação só dependa da chave primária da relação

Normalização - Terceira Forma Normal

Conversão da estrutura para a 3FN

- A tabela está na 2FN mas não está na 3FN.
- Necessário decompor a tabela *Aluno* pois existe uma dependência funcional (transitiva) entre o atributo não-chave *codCurso* e o atributo nomeCurso

<u>Id aluno</u>	nome	codCurso
A1	João	01
A2	Ana	02
A3	Pedro	01
A4	Filipa	03

Aluno(idAluno, nome, codCurso(FK))

<u>codCurso</u>	nomeCurso
01	Informática
02	Civil
01	Informática
03	Quimica

Curso(codCurso, nomecurso)

Normalização - Boyce Cood

Uma relação está na forma normal de Boyce-Codd, se e apenas se, todos os seus atributos são funcionalmente dependentes da chave, de toda a chave e nada mais do que a chave

Consideremos a relação:

$$R = \{ a, b, c \}$$

E as dependências funcionais em R:

R: $(a, b) \rightarrow c$

R: $c \rightarrow b$

➤ R está na 3º FN, mas tem uma dependência que invalida a forma normal de Boyce-Codd Podia resolver-se criando duas relações:

R1 = $\{c, b\}$ correspondente à dependência funcional R: $c \rightarrow b$

R2 = $\{\underline{a}, c\}$ correspondente à dependência funcional R: $(a, b) \rightarrow c$

... mas na verdade perdia-se a dependência funcional R: (a, b) → c, que não se encontrando explicitamente incorporada no modelo relacional teria de ser implementada no nível aplicacional!

O ideal será então obter uma solução que, embora mais redundante, mantém todas as dependências funcionais, ou seja, não normalizar até Boyce-Codd...

$$R = \{a, b, c\} e R1 = \{c, b\}$$

Normalização - Boyce Cood

- > Exemplo:
 - > Suponha a seguinte relação, que serve para registar os alunos nas aulas laboratoriais
 - > sabe-se que cada disciplina pode ser lecionada por vários docentes. No entanto cada doente só pode lecionar uma disciplina.

Laboratorios (id aluno, coddisciplina, coddocente)

<u>Id_aluno</u>	<u>coddisciplina</u>	coddocente		
1180720	Bddad	15200		
1180721	Bddad	15200		
1180720	Esinf	15230		
1180728	Bddad	15240		

Normalização - Boyce Cood

- A relação satisfaz as três primeiras formas normais, no entanto não está na FNBC
- o atributo coddocente não é chave candidata, no entanto é um determinante
 - Uma vez que cada docente só pode lecionar uma disciplina, temos coddocente -> coddisciplina
- > Para estar na FNBC exigirá a sua decomposição em duas relações

<u>Id_aluno</u>	<u>coddocente</u>		
1180720	15200		
1180721	15200		
1180720	15230		
1180728	15240		

Docentes de cada aluno

coddocente	coddisciplina		
15200	Bddad		
15230	Esinf		
15240	Bddad		

Disciplina lecionada por cada docente

Normalização - 4ª e 5ª FN

- 4ª Forma Normal (4FN)
 - ➤ Uma relação está na 4º forma normal, se está na Boyce-Codd, e se não existem dependências multivalor
- ➤ 5º Forma Normal (5FN)
 - Uma relação encontra-se na 5FN se não existem dependências de junção.
 - Verificam-se em situações muito raras e difíceis de detetar
 - Exige que se compreenda bem a semântica da relação

Normalização - Conclusão

- A 4ª e 5ª formas normais são raras e difíceis de detetar
- Frequentemente considera-se que uma relação na 3º forma normal ou Boyce-Codd está num nível de normalização aceitável
- O nível de normalização deve ser pensado contra outros critérios
 - Por exemplo, um nível de normalização exagerado pode originar problemas de performance
- A redundância entre os dados não pode ser completamente eliminada
 - de facto, as chaves estrangeiras são também uma forma de redundância
- Problemas que a redundância pode trazer
 - Custo de espaço de armazenamento a redundância implica ocupar espaço adicional com algo que não acrescenta nada ao que já existe armazenado
 - Manutenção -uma simples alteração ou remoção pode implicar o acesso a várias tabelas, tornando-se difícil manter a coerência dos dados armazenados
 - Desempenho Se a redundância for significativa, isso implicará mais acessos a disco para trazer os mesmos dados

Normalização - Exercício 2

Normalize a estrutura apresentada

Considere a estrutura de dados seguinte, referente ao planeamento de produção de uma fábrica de artigos de plástico. A fábrica está estruturada em secções e cada secção é composta por diferentes centros de trabalho. Uma ordem de produção pode ser realizada em diversos centros de trabalho e utiliza diversas matérias-primas.

Planeamento de produção = {ordem_prod, produto, nome_produto, qtd_a_produzir, data_prev_inicio, data_prev_fim, data_real_inicio, data_real_fim, {secção, nome_secção, {centro_trabalho, desc_centro_trabalho}, localização}, {mat_prima, descrição_mp, qtd_mp}, percent_execução}

Normalização - Exercício 3

Desenhe o diagrama de dependências funcionais e normalize a estrutura apresentada

Nr Factura	Data	codCliente	NomeCliente	CodProd	Descricao Produto	Valor	Quantidade	Desconto
000257	01-07-2016	1234567	João Gomes	12	Lápis Bic	100	250	5%
000257	01-07-2016	1234567	João Gomes	13	Bloco de notas	1000	200	5%
000257	01-07-2016	1234567	João Gomes	15	Caneta	70	50	0%
000258	01-07-2016	1234568	Ana Marques	12	Lápis Bic	100	400	6%
000258	01-07-2016	1234568	Ana Marques	16	Caderno	500	350	6%
000258	01-07-2016	1234568	Ana Marques	17	Régua	100	20	0%