Analog Clock Project

by Kyu Rae Kim, Srisharan Kolige

CONTENTS

Q
Ì

- **102** Introducing Our Clock
- 03 Clock Mechanisms
- 04 Circuits
- 05 Clock Algorithm

Engineering Reasoning

There are people who...

- can't read analog clocks
- can't read numbers
- are blind

Introducing..

Clock-a-doodle-do

Exterior/hardwares slide #1 (this slide for you)

Hour Mechanism:

- Rack & Pinion Mechanism
 - Rotary Motion to linear motion

Fig: Rack & Pinion Mechanism

Fig: 3D CAD Model - Rack & Pinion Assembly

Srisharan Kolige

Exterior/hardwares slide #1 (this slide for you)

Rack and Pinion Calculation:

Total Drive Length (rack): 10 cm

Circumference of Pinion: 2 * 10 cm (servo can only rotate 180 degrees)

Radius of Pinion: 3.183 cm

Number of teeth on the Pinion: 20

Gear Module: 3.18

Exterior/hardwares slide #1 (this slide for you)

Minutes Mechanism:

Slider Crank Mechanism

Seconds Mechanism:

Simple Oscillatory Motion

Cos (
$$\theta$$
) = adj / hyp (2.9 / 5)
 θ = Cos⁻¹(2.9/5) = 36°

Circuits

- Amplifier - Speaker

Color Code

- Red: Vcc

- Black: ground

- Blue: button input

- Green: UART

Clock Algorithm

Thank you!