Manual for Package: open-channel-flow Revision 1:8M

Karl Kästner

March 28, 2020

Contents

1	@Back	kwater1D	1
	1.1	Backwater1D	1
	1.2	$backwater_approximation \ . \ . \ . \ . \ . \ . \ . \ . \ . \ $	1
	1.3	backwater_curve_iterative	1
	1.4	backwater_length	1
	1.5	$\mathrm{d} h_{\text{-}} \mathrm{d} x \ . \ . \ . \ . \ . \ . \ . \ . \ . \$	2
	1.6	$dh_{-}dx_{-} \dots \dots \dots \dots \dots \dots \dots \dots \dots $	2
	1.7	dzs_dx	2
	1.8	gvf_x_chow	2
	1.9	invert	2
	1.10	solve	2
	1.11	solve_analytic	3
	1.12	solve_matrix	3
f 2	bifurca	ations-and-weirs/@Lateral_Diversion_Finite_Width	3
2	bifurca 2.1	${f ations-and-weirs/@Lateral_Diversion_Finite_Width}$	3
2		•	
2	2.1	Jb	3
2	2.1 2.2	Jb	3
2	2.1 2.2 2.3	Jb	3 3 3
2	2.1 2.2 2.3 2.4	Jb	3 3 3
2	2.1 2.2 2.3 2.4 2.5	Jb	3 3 3 3
2	2.1 2.2 2.3 2.4 2.5 2.6	Jb	3 3 3 3 4
2	2.1 2.2 2.3 2.4 2.5 2.6 2.7	Jb	3 3 3 3 4 4
2	2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8	Jb	3 3 3 3 4 4 4
2	2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8 2.9	Jb Lateral_Diversion_Finite_Width dR derive evalk lateral_outflow_finite_width1 load_functions stagnation_point streamline	3 3 3 3 4 4 4 4
2	2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8 2.9 2.10	Jb	3 3 3 3 4 4 4 4 4
2	2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8 2.9 2.10 2.11	Jb Lateral_Diversion_Finite_Width dR derive evalk lateral_outflow_finite_width1 load_functions stagnation_point streamline streamline_radius_of_curvature	3 3 3 3 4 4 4 4 4 4 4
2	2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8 2.9 2.10 2.11 2.12	Jb Lateral_Diversion_Finite_Width dR derive evalk lateral_outflow_finite_width1 load_functions stagnation_point streamline streamline_radius_of_curvature u_far v_far	3 3 3 3 4 4 4 4 4 4 4 4

3	$bifurcations- and-weirs/@Lateral_Diversion_Finite_Width_G$	
	3.1 Jb	5
	3.2 Lateral_Diversion_Finite_Width_Gradual	5
	3.3 coefficients	5
	3.4 condA	5
	3.5 dR	5
	3.6 derive	5
	3.7 evalk	5
	3.8 evalk	5
	3.9 lateral_outflow_finite_width1	5
	3.10 load_functions	6
4	$bifurcations- and-weirs/@Lateral_Diversion_Finite_Width_G$	radual/old 6
	4.1 coefficients_old	6
5	$bifurcations- and-weirs/@Lateral_Diversion_Finite_Width_G$	radual 6
	5.1 stagnation_point	6
	5.2 streamline	6
	5.3 streamline_radius_of_curvature	6
	5.4 u_far	6
	5.5 uv1	6
	5.6 uv_side_branch	6
	5.7 v _{far}	6
	5.8 velocity	7
	5.9 velocity_linear	7
	5.10 velocity_near_bed	7
	5.11 xp	7
6	$bifurcations- and-weirs/@Lateral_Diversion_Wide_Channel$	7
	6.1 Lateral_Diversion_Wide_Channel	7
	6.2 derive_lateral_outflow	7
	6.3 derive_lateral_outflow_finite_width	7
	6.4 lateral_outflow	7
	6.5 lateral_outflow_finite_width	8
7	$bifurcations- and-weirs/@Lateral_Diversion_Wide_Channel_Mate$	Map 8
	7.1 Lateral_Diversion_Wide_Channel_Map	8
	7.2 streamline	8
8	${\bf bifurcations\text{-}and\text{-}weirs/@Side_Weir}$	8
	8.1 Side_Weir	8
	8.2 dzs_dx	8
	8.3 surface_elevation	8
9	bifurcations-and-weirs	9

	9.1	Lateral_Diversion_Finite_Width_Map	9
10	open-c	hannel-flow	9
	10.1	hfilter	9
11	kinema	atik-and-diffusion-wave	9
	11.1	$diffusion_wave \ \dots \dots \dots \dots \dots \dots \dots \dots$	9
	11.2	flood_wave_diffusion_coefficient	10
	11.3	linear_wave	10
12	meand	ler-bend/@Equilibrium_Bend	10
	12.1	Equilibrium_Bend	10
	12.2	bed_profile	10
	12.3	bed_profile_uniform	10
	12.4	calibrate	10
	12.5	dD_dr	11
	12.6	dh_dr	11
	12.7	dh_dr_uniform	11
	12.8		11
13	meand	ler-bend	11
	13.1		11
	13.2		11
	13.3		$\frac{1}{1}$
	13.4	v	$\frac{12}{12}$
	13.5		$\frac{12}{12}$
	13.6		12
14	notent	ial-flow/@Potential_Flow	12
	14.1	,	12
	14.2		12
	14.3		12
	14.4		12
	14.5	•	12
	14.6		13
	14.7	·	13
	14.8		13
	14.9		13
	14.10	·	13
	14.10 14.11	9	13 13
	14.11 14.12		13 14
	14.12 14.13		14 14
	14.14		14 14
	14.15	_	14

	14.16	old
	14.17	plot
	14.18	quiver
	14.19	sediment_transport
	14.20	solve_potential
	14.21	streamline
	14.22	surface_elevation
	14.23	test
	14.24	velocity_near_bed
	14.25	vertical_velocity
15	potent	ial-flow/@Potential_Flow_Analytic 16
	15.1	Potential_Flow_Analytic
	15.2	streamline
16	rating-	curve 16
	16.1	ChezyRatingCurve
	16.2	DynamicKeuleganRC
	16.3	DynamicManningRC
	16.4	DynamicPowerRC
	16.5	KeuleganRatingCurve
	16.6	ManningRatingCurve
	16.7	PolyRatingCurve
	16.8	PowerRatingCurve
	16.9	PowerRatingCurveOffset
	16.10	RatingCurve
	16.11	csarea
	16.12	csdischarge
	16.13	csperimeter
	16.14	csradius
	16.15	cswidth
	16.16	test_PowerRatingCurve
	16.17	wfunc
17	shallov	v-water/@SWE 18
	17.1	SWE
	17.2	bc_incoming_non_reflecting
	17.3	bc_inflow
	17.4	bc_inflow_low_pass
	17.5	bc_inflow_non_reflecting
	17.6	bc_level
	17.7	bc_level_sommerfeld
	17.8	bc_nonreflecting
	17.0	be reflecting 10

	17.10	dot	19
	17.11		20
	17.12	energy	20
	17.13	flux	20
	17.14	flux_lin	20
	17.15	fluxmateig	20
	17.16	jacobian	20
	17.17	lindot	20
	17.18	roe_average	21
	17.19	solve_analytic	21
	17.20	solve_stationary	21
	17.21	source_bed_level	21
	17.22	source_friction	21
	17.23	$source_width \ \dots \dots \dots \dots \dots \dots \dots \dots \dots \dots$	21
	17.24	swe_geometry	21
	17.25	swe_ic	22
18	shallov	$ m w-water/@SWE_2d$	22
	18.1	SWE_2d	22
	18.2	apply_boundary_condition_stationary	22
	18.3	assemble_stationary	22
	18.4	solve_stationary	22
19	shallov	v-water	22
	19.1	sw_reflection	22
	19.2	sw_reflection_stepwise	23
20	test/te	est_Backwater1D	23
	20.1		23
21	test		23
	21.1	test_inverse_backwater_curve	23
	21.2	test_normal_flow	23
	21.3		23
22	unifori	m-stationary-flow	23
	22.1	·	23
	22.2		23
	22.3	-	23
	22.4	-	24
	22.5		24
	22.6	*	24
	22.7		24
	22.8		24

22.9	manning2chezy	24
22.10	manning2drag	24
22.11		24
22.12		24
22.13	$egin{array}{lll} & & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & & \\ & $	25
22.14		25
22.15		25
22.16	6 normal_flow_velocity	25
22.17	7 normal_shear_velocity	25
22.18	8 shear_velocity	25
22.19	9 z02chezy	25
22.20	0 z02ks	25
22.21	1 z0tochezy	25
	city-profile/@Log_profile	26
23.1	Log_profile	26
23.2	df_dh	26
23.3	df_dh	26
23.4	df_dln_z0	26
23.5	df_dln_z0	26
23.6	profile	26
23.7	profile	26
23.8	profile_bias	27
23.9	regmtx	27
23.10	0 ubar	27
24 velo	city-profile/@Log_profile_with_bend_correction	27
24 velo 24.1	Log_profile_with_bend_correction	27
24.2	$\mathrm{df_{-dc}}$	27
24.3	$\mathrm{df}_{-}\mathrm{dc}_{-}\dots\dots\dots\dots\dots\dots\dots$	28
24.4	$\mathrm{d}\mathrm{u}$ - $\mathrm{d}\mathrm{z}$	28
24.5	fit	28
24.6	profile	28
24.7	regmtx	28
24.8	u	28
24.9	u	28
25 velo	$city-profile/@Log_profile_with_cubic_wake$	28
25.1	$Log_profile_with_cubic_wake $	28
25.2	df_dc	29
25.3	$\mathrm{df}_{-}\mathrm{dc}_{-}$	29
25.4	$\operatorname{profile}_{-}$	29
25.5	$\operatorname{regmtx} \ \dots $	29

26	velocit	$ m y ext{-}profile/@Log_profile_with_dip}$	2
	26.1	Log_profile_with_dip	
	26.2	$\mathrm{fit} \ \ldots \ldots$	
27	velocit	${ m y-profile/@Log_profile_with_linear_bend_correction}$	6
	27.1	$Log_profile_with_linear_bend_correction \ . \ . \ . \ . \ . \ . \ .$	
	27.2	$df_dc \dots \dots \dots \dots \dots \dots \dots \dots \dots $;
	27.3	$dfdc\ \dots \dots$	
	27.4	$du_dz \ \dots $	
	27.5	$profile_{-}$	
	27.6	regmtx	
28	velocit	${ m y-profile/@Log_profile_with_wake}$	
	28.1	Log_profile_with_wake	
	28.2	df_dc	
	28.3	$dfdc\ \dots\ \dots\ \dots\ \dots\ \dots\ \dots$	
	28.4	du_dz	
	28.5	profile	
	28.6	regmtx	
29	velocit	y-profile/@VP	
•	29.1	VP	
	29.2	process_joint	
	29.3	process_transverse_profile	
	29.4	process_vertical_profile	
	29.5	profile_prediction_error	
80	velocit	y-profile/@Vertical_profile	
	30.1	Vertical_profile	
	30.2	fit	
	30.3	$\mathbf{u} \dots \dots \dots \dots \dots \dots \dots \dots \dots $	
1	velocit	y-profile	
	31.1	fit_displacement_profile	
	31.2	lateral_division_method	
	31.3	test_law_of_the_wall_fit	
	31.4	transverse_profile_parameter	
	31.5	transverse_velocity_profile	
	31.6	transverse_velocity_profile_olesen	
	31.7	transverse_velocity_profile_rozovskii	
	31.8	transverse_velocity_profile_shiono_knight	
	31.9	transverse_velocity_profile_tidal_channel	
	31.10	transverse_velocity_profile_with_slope	
	31.10	vertical_profile_of_velocity_vriend	
	01.11	vertical_profile_of_velocity_vriefid	

		$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	35 35
32	wrapp 32.1 32.2	$discharge 2 stage \qquad \dots \qquad \dots \qquad \dots \qquad \dots$	35 35 35
1	@Ba	ackwater1D	
1.1	l Bac	kwater1D	
		gradually varied flow equation (backwater equation) mension	
с.	f. Chow	, Bresse	
1.2	2 bac	$\mathbf{kwater_approximation}$	
no	te: thi	tion of the backwater curve by an exponential function s is not necessarily a good approximation se of tide, Qt can be given	
1.3	B bac	kwater_curve_iterative	
	-	solution of the gradually varied flow equation se, Chow	
1.4	4 bac	$\mathbf{kwater_length}$	
ba	ıckwater	length	
1.	$6 ext{ dh}_{-}$	$d\mathbf{x}$	
		depth along channel for the backwater equation mentum coefficient	

this is effectively an equation in h^3

$1.6 ext{dh}_{-} ext{dx}_{-}$

$1.7 dzs_dx$

change of surface elevation along channel

1.8 gvf_x_chow

```
analytical solution to the gradually varied flow equation (
   backwater equation)
c.f. Chow, Bresse
```

1.9 invert

```
determine bed level from surface elevation
(inverse backwater equation)
this is ill conditioned, as the surface is smooth for subcritical
    flow,
even if the bed is not smoth
```

C : chezy
W : width
Q : discharge
S : bed slope

y0 : surface elevation at outflow

lateral inflow

1.10 solve

solve the gradually varied flow equation (backwater equation)

C : chezy
W : width
Q : discharge
S : bed slope

y0 : surface elevation at outflow

1.11 solve_analytic
<pre>analytical solution to the gradually varied flow equation (bresse method) u^(n-m)./(1-u^n)</pre>
1.12 solve_matrix
${\bf 2} {\bf bifurcations\text{-}and\text{-}weirs/@Lateral_Diversion_Finite_Width}$
2.1 Jb
${\bf 2.2 Lateral_Diversion_Finite_Width}$
2.3 dR
2.4 derive
2.5 evalk
$2.6 lateral_outflow_finite_width1$

 $load_functions$

2.8 stagnation_point
<pre>fdx = isnan(x);</pre>
2.9 streamline
${\bf 2.10 streamline_radius_of_curvature}$
$2.11 u_{-}$ far
$2.12 v_{-}$ far
2.13 velocity
2.14 velocity_near_bed
3 bifurcations-and-weirs/@Lateral_Diversion_Finite_Width_Gradual 3.1 Jb
${\bf 3.2 Lateral_Diversion_Finite_Width_Gradual}$

3.3	coefficients
3.4	$\operatorname{cond} A$
3.5	dR
3.6	derive
3.7	evalk
3.8	evalk_{-}
3.9	$lateral_outflow_finite_width1$
3.10	${f load_functions}$
4	${ m bifurcations}$ -and-weirs/@Lateral_Diversion_Finite_Width_Gra
4.1	coefficients_old

5	$bifurcations- and-weirs/@Lateral_Diversion_Finite_Width_Gradual$
5.1	$\operatorname{stagnation_point}$
	<pre>fdx = isnan(x);</pre>
5.2	streamline
- 0	
5.3	$streamline_radius_of_curvature$
5.4	${f u}_{-}{f far}$
5.5	uv1
5.6	uv_side_branch
5.7	$\mathbf{v}_{oldsymbol{-}}\mathbf{far}$
5.8	velocity
5.9	velocity_linear

5.10 velocity_near_bed

5.11 xp

- ${\bf 6} \quad bifurcations- and-weirs/@Lateral_Diversion_Wide_Channel$
- 6.1 Lateral_Diversion_Wide_Channel

6.2 derive_lateral_outflow

derive potential flow solution to lateral outlfow from an
 infinitely
wide main channel

6.3 derive_lateral_outflow_finite_width

derive coefficients for lateral outflow in the case of potential $\ensuremath{\mathsf{flow}}$

6.4 lateral_outflow

potential flow solution to the case of lateral outflow from an
 infinitely
wide channel

6.5 lateral_outflow_finite_width

analytical potential flow solution to lateral outflow from an
 infinitely
wide channel

- 7 bifurcations-and-weirs/@Lateral_Diversion_Wide_Channel_Map
- 7.1 Lateral_Diversion_Wide_Channel_Map

wrapper to store precomputed streamlines of potential flows

7.2 streamline

- 8 bifurcations-and-weirs/@Side_Weir
- 8.1 Side_Weir

side weir, analytical solution to (critical) lateral outflow

 $8.2 dz_dx$

side weir, along channel surface gradient

8.3 surface_elevation

along-channel surface elevation for (critical) lateral outflow over a side-weir $\,$

- 9 bifurcations-and-weirs
- 9.1 Lateral_Diversion_Finite_Width_Map

10 open-channel-flow

```
functions for open channel flow, sub modules:
@Backwater1D
       gradually varied flow in 1D (backwater)
@Potential_Flow
       depth averaged potential flow, numerical solution
@Potential_Flow_Analytic
       depth averaged potential flow, analytical solution
rating-curve
       empirical rating curves
@Side_Weir
       analytical solution to lateral outflow over a side weir
@SWE
       dynamical solution of the shallow water equation (saint-
           venant-equation)
       in 1D
@SWE_2d
       dynamical solution of the shallow water equation (saint-
           venant-equation)
       in 2D
velocity-profile
       vertical and transverse velocity profiles of the streamwise
           velocity
```

10.1 hfilter

11 kinematik-and-diffusion-wave

11.1 diffusion_wave

11.2 flood_wave_diffusion_coefficient

11.3 linear_wave

linear wave routing (linearised kinematic wave)

12 meander-bend/@Equilibrium_Bend

12.1 Equilibrium_Bend

Transverse profile of the bed level and bed material grain size in an equilibrium (infintely long) meander bend

12.2 bed_profile

predict transverse bed profile of an equilibrium meander bend

12.3 bed_profile_uniform

transverse profile of the bed level of an equilibrium meander bend with uniform grain size $\,$

12.4 calibrate

calibrate bend geometry to given profile

$12.5 dD_dr$

$12.6 dh_dr$

across channel derivative of flow depth for a meandering river

12.7 dh_dr_uniform

transverse gradient of the bed level of an equilibrium meander bend for the case of uniform bed material

12.8 grain_size_profile

13 meander-bend

13.1 Kinoshita

- % Public properties
- % Public get properties
- % Private properties
- % Constructor
- % Setters and getters
- % generic methods

13.2 bend_transverse_velocity

transverse velocity profile in a meander bend

13.3 bend_velocity_near_bed

near-bed-velocity in a meander bend

13.4 kinoshita_

13.5 random_meander

generate a pseudo random meander

13.6 test_rozovskii

14 potential-flow/@Potential_Flow

14.1 Potential_Flow

numerical solution of the potential flow on a curvilinear grid (not necessarilly curvilinear)

14.2 apply_boundary_potential_old

14.3 assemble_discretization_matrix_rectilinear

assemble the discretisation matrix

14.4 assemble_potential_matrix

assemble the discretisation matrix for potential flow

14.5 bc_dirichlet

apply Dirichlet boundary conditions

14.6 boundary_condition_side_outflow

```
apply boundary conditions for side outflow
p*phi + (1-p)*d/db phi = rhs
y : along channel coordinate
```

14.7 boundary_condition_side_outflow_1

```
apply boundary conditions
p*phi + (1-p)*d/db phi = rhs
```

14.8 contour

contour plot of the potential flow solution

14.9 cut_boundary

```
cut the boundary from the domain
wa : width of inlet to side channel
wb : width of side channel
```

14.10 cut_rectangle

```
cut a rectangle from the domain
TODO, this requires also an adaptation of the derivative matrices
    -> step over to semi-unstructured mesh
```

14.11 infer_bed_level

```
note: this is pretty much a broken function for the inference of stationary $\operatorname{\mathtt{morphology}}$
```

Missing:

- rolling down of transverse slope to balance secondary flow in bends
- quasi time steippong

at stationary state:

- changes of discharge along the streamlines of discharge are balanced
 - by a change in depth, to keep the velocity and sediment transport constant along the streamline

$$dz_b/dt = dqs/dx + dqs/dn = 0$$
 (i)

```
TODO this only true for infinite bends, as sediment can also move to the side dqs/ds = d/s(q/h) = 1/h \ dq/ds - q/h^2 \ dh/ds = 0
TODO this is only true in an ifinite bend (ikeda) dqs/dn = 0
streamlines along discharge or velocity -> does not matter eq (i) is direction independent
```

14.12 infer_bed_level2

infer the bed level

14.13 infer_bed_level3

14.14 infer_bed_level_loop

the bed level does not completely converge but starts to oscillate, this is presumably due to the non-compact kernel implementation of the laplacian oberator

14.15 objective_bed_level

objective function for determining the bed level

14.16 old

14.17 plot

surface plot

14.18 quiver

14.19 sediment_transport

compute the sediment transport

14.20 solve_potential

solve for the flow potential

14.21 streamline

compute a streamline

14.22 surface_elevation

compute surface elevation according to Bernoulli's law

14.23 test

14.24 velocity_near_bed

determine the velocity near the bed

14.25 vertical_velocity

determine the vertical velocity from continuity

15 potential-flow/@Potential_Flow_Analytic

15.1 Potential_Flow_Analytic

analytical solutions to various depth-averaged potential flow problems $% \left(1\right) =\left(1\right) +\left(1\right) +\left($

15.2 streamline

numerically follow path along streamline by integrating the velocity $% \left(1\right) =\left(1\right) \left(1\right)$

16 rating-curve

16.1 ChezyRatingCurve

rating curve, Chezy formalism

16.2 DynamicKeuleganRC

Dynamic Rating Curve, Keulegan roughness formulation (dynamic = correction for hysteresis loop)

16.3 DynamicManningRC

Dynamic Rating Curve, Manning roughness formulation (dynamic = correction for hysteresis loop)

16.4 DynamicPowerRC

Dynamic Power Law Rating curve
(dynamic = correction for hysteresis loop)

16.5 KeuleganRatingCurve

16.6 ManningRatingCurve

16.7 PolyRatingCurve

16.8 PowerRatingCurve

stationary rating curve, power law

16.9 PowerRatingCurveOffset

stationary rating curve, stage-discharge follows power law

16.10 RatingCurve

Fri Feb 13 10:02:52 CET 2015 rating curve superclass

16.11 csarea

 $predict\ cross\ sectional\ area\ from\ transverse\ bed\ level\ profile$ and surface elevation

16.12 csdischarge

compute discharge

16.13 csperimeter

compute wetted perimeter

16.14 csradius

compute hydraulic radius of the cross section

16.15 cswidth

determine cross section width

16.16 test_PowerRatingCurve

16.17 wfunc

determine channel width

17 shallow-water/@SWE

17.1 SWE

Class to solve the (cross sectionally averaged) shallow water equation (st venant equation)

17.2 bc_incoming_non_reflecting

set non-reflecting boundary condition for the 1D SWE

17.3 bc_inflow

inflow boundary condition

17.4 bc_inflow_low_pass

set low frequency Dirichlet, high frequency pass boundary condition

17.5 bc_inflow_non_reflecting

set non-reflecting boundary condition

17.6 bc_level

set surface level as Dirichlet boundary condition

17.7 bc_level_sommerfeld

set surface level as boundary condition by sommerfeld method

17.8 bc_nonreflecting

set non-reflecting boundary condition extrapolate 0-order

17.9 bc_reflecting

set reflecting boundary condition extrapolate 0-order and invert \boldsymbol{v}

17.10 dot

```
time derivative (only for matlab internal ode-solver) TODO this is not swe specific continuity dA/dt + dQ/dx = I

momentum dQ/dt + d/dx(Qu + 1/2 gh^2) = gA(S_f - S_b)
S_b = dz_b/dx
S_f = tau_x/rho_w = C_f u|u|
```

17.11 dt_cfl

determine time step required by cfl

17.12 energy

determine total energy as sump of potential and kinetic energy this is preserved for fricitionless flows ${\sf S}$

17.13 flux

st venant's shallow water equation fluw

17.14 flux_lin

linearised st-venant equation

17.15 fluxmateig

eigenvalues und vectors of the swe

17.16 jacobian

Jacobian of the SWE

dq/dt + J dq/dx = sourcetermnote: d/dx(A*q) = J dq/dx

17.17 lindot

linearised SWE width variation not included, goes into rhs force term $% \left(1\right) =\left(1\right) \left(1\right) +\left(1\right) \left(1\right) \left(1\right) +\left(1\right) \left(1\right) \left($

17.18 roe_average

roe average for the SWE

17.19 solve_analytic

linearised analytic solution of the swe

17.20 solve_stationary

stationary solution to the SWE

17.21 source_bed_level

source term of the SWE caused by a change of the bed level

Note: this term causes splitting and averaging methods to fail to give accurate predictions of the smooth surface at steps of the bed

17.22 source_friction

friction source term of the SWE

17.23 source_width

source term (reaction term) for channels with variable width

17.24 swe_geometry

predefined functions to set up channel geometry

17.25 swe_ic

predefined functions of channel geometries

18 shallow-water/@SWE_2d

$18.1 \quad SWE_{-}2d$

Dynamic solution of the shallow water equation (depth average, 2D)

18.2 apply_boundary_condition_stationary

apply boundary condition for stationary flow

18.3 assemble_stationary

TODO, g should be replaced by gx,gy,gz, see chaudhri assemble discretisation matrix for stationary flow

18.4 solve_stationary

solve SWE for statinary flow (dU/dt = dQ/dt = 0)

19 shallow-water

19.1 sw_reflection

reflection coefficients of shallow water waves at a sudden change of the cross section (sudden change of admittance) c.f. lighthill, ippen-harleman

19.2 sw_reflection_stepwise

time passes and phase shifts transmission and reflection coefficient depend on direction ! iterative (recursive) reflection and transmission

$20 \quad test/test_Backwater1D$

$20.1 test_bw1d_solve_matrix$

21	test
21.1	$test_inverse_backwater_curve$
21.2	test_normal_flow
21.3	$test_nse_nz$
22	uniform-stationary-flow
22.1	chezy2drag
22.2	chezy2f
22.3	chezy2manning

 ${\bf 22.5} \quad {\bf critical_flow_depth}$

critical flow depth in uniform stationary flow

22.6 drag2chezy

22.7 f2chezy

22.8 ks2z0

22.9 manning2chezy

22.10 manning2drag

$22.11 \quad manning 2z 0$

22.12 normal_flow_depth

normal flow depth for uniform stationary flow function $H = normal_flow_depth(Q,W,C,S)$

${\bf 22.13 \quad normal_flow_depth_}$

normal flow depth in uniform stationary flow

22.14 normal_flow_discharge

normal flow discharge for uniform stationary flow

22.15 normal_flow_slope

energy slope (surface slope) for uniform stationary flow normal flow slope in uniform stationary flow

22.16 normal_flow_velocity

normal flow velocity in uniform stationary flow

22.17 normal_shear_velocity

22.18 shear_velocity

22.19 z02chezy

22.20 z02ks

22.21 z0tochezy

23 velocity-profile/@Log_profile

23.1 Log_profile

logarithmic profile of the streamwise velocity

23.2 df_dh

sensitivity of profile with respect to depth

23.3 df_dh_

sensitivity of profile with respect to depth

$23.4 df_dln_z0$

sensitivity of velocity profile with respect to roughness length

$23.5 df_dln_z0_$

sensitivity of profile with respect to roughness length

23.6 profile

vertical profile of the streamwise velocity

23.7 profile_

scale of velocity at instrument depth to depth average velocity roughness length and associated standard error can change in time, i.e. may be passed as vectors

zs : [1xn] water surface level

zb : [1x1] bottom level
za : [1xn] or [1x1]

```
level of velocity measurement,
   i.e. level of HADCP beam bin centre, coincides with
        instrument level,
   if the HADCP is horizontally aligned
   only needs to be passed as vector if instrument is
        redeployed or
   becomes misaligned
ln_z0 : [1xn] or [1x1]
   natural logarithm of the roughness length
s : [1xn] or [1x1]
   standard error of ln_z0
function [fz_mu fz_s fz_sp fz_bias fz_eps] = log_profile(zs,zb,za,ln_z0,s,sp,e)
```

23.8 profile_bias

23.9 regmtx

regression matrix

23.10 ubar

depth averaged velocity

24 velocity-profile/@Log_profile_with_bend_correction

24.1 Log_profile_with_bend_correction

vertical velocity profile corrected for bend flow

$24.2 ext{d}f_{-}dc$

sensitivity of the velocity profile with respect to the bend correction parameter c

24.4 du_dz

24.5 fit

fit the vertical velocity profile

24.6 profile_

vertical velocity profile

24.7 regmtx

regression matrix

24.8 u

streamwise velocity

streamwise velocity

24.9 u₋

${\bf 25} \quad {\bf velocity\text{-}profile/@Log_profile_with_cubic_wake}$

${\bf 25.1} \quad Log_profile_with_cubic_wake$

log profile with cubic wake

$25.2 ext{d}f_{-}dc$

sensitivity of profile with respect to wave parameter

25.3 df_dc_

sensitivity of profile with respect to wake parameter

25.4 profile_

vertical velocity profile

25.5 regmtx

regression matrix

26 velocity-profile/@Log_profile_with_dip

$26.1 \quad Log_profile_with_dip$

Logarithmic profile with dip

26.2 fit

fit the vertical velocity profile

velocity-profile/@Log_profile_with_linear_bend_correction

27.1 Log_profile_with_linear_bend_correction

log profile with linear bend correction

$27.2 ext{d}f_{-}dc$

sensitivity of profile with respect to wake parameter

27.3 df_dc_

sensitivity of velocity profile with respect to wave parameter

$27.4 du_dz$

velocity shear along vertical

27.5 profile_

velocity profile

27.6 regmtx

regression matrix

$28 \quad velocity-profile/@Log_profile_with_wake$

$28.1 \quad Log_profile_with_wake$

logarithmic velocity profile with wake correction ${\tt c.f.}$ coles

$28.2 ext{d}f_{-}dc$

sensitivity of profile with respect to wake parameter

$28.3 ext{df_dc_}$

sensitivity of velocity profile with respect to wake parameter

$28.4 du_dz$

velocity shear

28.5 profile_

predict velocity profile

28.6 regmtx

```
log law with wake u = us/k ln(z) - us/k ln(z0) + us/k (2/H^2 z - 3/H^3 z^2)
```

29 velocity-profile/@VP

29.1 VP

velocity profile

29.2 process_joint

$29.3 \quad process_transverse_profile$

process the transverse velocity profile

29.4 process_vertical_profile

 $\begin{array}{c} {\tt predict\ vertical\ profile\ error\ distribution\ parameter\ for\ HADCP} \\ {\tt error\ estimate} \end{array}$

29.5 profile_prediction_error

```
input :
      : [nbin x nens]
        - values for each bin (or across section) and ensemble (or
            reference measurement)
        this are estimates estimates of the discharge or the cross
            sectional averaged
        velocity from the raw values
        - the profile should be limited to the effective profiling
            range,
        abobj 75-100m for a 600kHz ADCP
      : distance between HADCP bins
width : cross section width
objput:
      sd_n : expected standard deviation for increasing profiling
          range
function [s_rel s_err s_dat rho res m2 u_pred fdx] =
   velocity_variation(U)
hadcp_prediction_error
TODO take scales and unscaled velocity to do combine with harmmean
    estimate
note: previus versions:
       residual was computed with respect to the predicted local
       mse was not upscaled to cs, as profile was expected to cover
           entire cs
       finite width of cs was not considered
parametric estimate from moments, objliers should be filtered
    beforehand
Note that the median absolute deviation is not a good estimate,
because it may excludes rare events like reverse flow of floods
thus, the only acceptible more robust estimate would be mean
    absolute deviation
```

30 velocity-profile/@Vertical_profile

30.1 Vertical_profile

vertical profile of the streamwise velocity, superclass

30.2 fit

```
fit vertical velocity profile parameter
function obj = fit(obj,U,S,h,binmask)
```

30.3 u

predict velocity along the vertical based on profile

31 velocity-profile

31.1 fit_displacement_profile

fit the log profile to the vertical profile of the streamwise velocity $% \left(1\right) =\left(1\right) \left(1\right) \left($

31.2 lateral_division_method

31.3 test_law_of_the_wall_fit

31.4 transverse_profile_parameter

31.5 transverse_velocity_profile

transverse profile of the streamwise velocity c.f. shiono knight

31.6 transverse_velocity_profile_olesen

transverse profile of the streamwise velocity in a meander bend

31.7 transverse_velocity_profile_rozovskii

31.8 transverse_velocity_profile_shiono_knight

```
transverse profile of the streamwise velocity, determined
    analytically
by the method of shiono and knight
shape of velocity profile only dependent on lambda, f, H, not slope
```

31.9 transverse_velocity_profile_tidal_channel

31.10 transverse_velocity_profile_with_slope

```
stationary 1D shallow water equation across a river section
0 = - g h S0 - tau_b/rho + d/dn (nu h du/dn)
0 = - g h S0 + g u^2/C^2 + d/dn (nu h du/dn)
includes tranvese gradient term
note that shiono/knight 1991 provide an _analytic_ solution,
```

which takes the form of an expontially decaying side wall effect

$31.11 \quad vertical_profile_of_velocity_vriend$

vertical profile of the streamwise velocity, method of de vriend

31.12 vertical_velocity_profile

vertical profile of the streamwise velocity in non-uniform flow

31.13 z2s_rational

32 wrapper

32.1 discharge 2 stage

wrapper function

32.2 stage2discharge