State Model S(P):

- finite and discrete state space S
- **a** known initial state $s_0 \in S$
- \blacksquare a set $S_G \subseteq S$ of goal states
- **actions** $A(s) \subseteq A$ applicable in each $s \in S$
- **a** deterministic transition function s' = f(a, s) for $a \in A(s)$
- **positive action costs** c(a, s)
- \rightarrow A solution is a sequence of applicable actions that maps s_0 into S_G , and it is optimal if it minimizes sum of action costs (e.g., # of steps)

General Search Strategy

Open Set: Stores nodes yet to be explored

(losed Set: Stores explored nodes

- Start with empty tree, empty open and closed sets
- Create initial node and add it to open set
- Repeat:
 - 1) Choose node from open set to expand
 - 2) Remove node from open set (add to tree)
 - 3) Check is goal state (terminate is goal)
 - 4) Generate Child nodes and add them to open set
 - 5) Add node to closed set
 - Different Search Strategies determine choice order

- Chooses earliest node
- Chooses latest node
- FIFO first in first out LIFO Cast in first out
- Use queve for open set Use stack for open set DLDFS same as DFS, but
- Repeatedly performs
- depth limited depth first search

 - Only generates children below
 - а тах беру.
 - -After each iteration, man
 - depth increases by 1
- -Combines BrFS and DFS

DFS Example

