Course Notes

Introduction to Abstract Algebra

Alex Rutar

Contents

1	Fundamentals of Groups					
	1.1	Principles				
		1.1.1 Rings				
		1.1.2 Groups				
		1.1.3 The group \mathbb{Z}_m				
	1.2	Basics of Groups				
		1.2.1 Functions between Groups				
	1.3	Examples of Finite Groups				
		1.3.1 Group Definitions				
		1.3.2 Cyclic Groups				
		1.3.3 Permutation Groups				
		1.3.4 Dihedral Groups				
	1.4	Subgroups				
		1.4.1 Subgroup Tests				
		1.4.2 Cosets of Subgroups				
		1.4.3 Subgroups of Cyclic Groups				

Chapter 1

Fundamentals of Groups

1.1 Principles

In general, algebraic structures require three properties:

- A set
- Operations on the set
- Properties of these operations

We develop theories and want to look at examples to demonstrate these properties. This course will focus on propeties of rings and groups.

1.1.1 Rings

A ring consists of a set along with two binary operations which satisfy $(R, +, \cdot)$. Then for all $a, b, c \in R$,

- 1. (a + b) + c = a + (b + c)
- 2. a + b = b + a
- 3. $\exists 0 \in R \text{ so that } a + 0 = a$
- 4. $\forall a \in R$, there exists $b \in R$ so that a + b = 0
- 5. $(a \cdot b) \cdot c = a \cdot (b \cdot c)$
- 6. $a \cdot (b+c) = a \cdot b + a \cdot c$ and $(a+b) \cdot c = a \cdot c + b \cdot c$

There are some common examples:

- 1. Rings of numbers
 - (a) \mathbb{Z} , \mathbb{Q} , \mathbb{R} , \mathbb{C}
 - (b) $\mathbb{Z}[\sqrt{2}] = \{a + b\sqrt{2} \mid a, b \in \mathbb{Z}\}\$
 - (c) $\mathbb{Q}[\sqrt[3]{2}] = \{a + b\sqrt[3]{2} + c\sqrt[3]{4}|a, b, c \in \mathbb{Q}\}$
- 2. Rings of polynomials

$$\mathbb{Z}[x] = \{a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x + a_0 | \forall a_i \in \mathbb{Z}\}\$$

 $\mathbb{Q}[x]$, $\mathbb{R}[x]$, $\mathbb{C}[x]$, $\mathbb{Z}[x,y]$ etc.

- 3. Rings of functions, such that C[a, b]
- 4. Rings of matrices $M_n(\mathbb{Z})$: all $n \times n$ square matrices with integer entries (more generally matrices with any entries in a ring).
- 5. Given any set X, consider $\mathcal{P}(X)$ and define the symmetric difference

$$A \oplus B = (A \cup B) \setminus (A \cap B)$$

Then $(\mathcal{P}(X), \oplus, \cap \text{ is a ring. Interestingly, } A = -A \text{ in this ring.}$

A ring with identity means we have some $1 \neq 0$ so that $a \cdot 1 = 1 \cdot a = a$. A division ring is a ring with identity such that all nonzero elements have a multiplicative inverse. A field is a commutative division ring \mathbb{Q} , \mathbb{R} , \mathbb{C} , $\mathbb{Q}[\sqrt{2}]$.

1.1.2 Groups

Def'n. 1.1.1 A group is a set G together with an operation * which satisfies

- 1. (a*b)*c = a*(b*c)
- 2. $\exists e \in G : a * e = a = e * a$
- 3. $\forall a \in G \exists b \in G : a * b = e = b * a$

Here are some common examples of groups

- 1. Additive groups:
 - (a) If $(R, +, \cdot)$ is a ring, then (R, +) is a (commutative) group.
 - (b) If V is a vector space, then (V, +) is a group
- 2. Multiplicative groups:
 - (a) *R* is a ring with identity, and write

$$R^{\times} = \{a \in R \mid \exists b \text{ s.t. } a \cdot b = 1 = b \cdot a\}$$

in other words the elements having a multiplicative inverse. These are called the **units** of the ring, and R^{\times} is called the **unit group** or the **multiplicative group** of R.

- (b) $\mathbb{Z}^{\times} = \{1, -1\}, \mathbb{Q}^{\times} = \mathbb{Q} \setminus \{0\} \text{ (similarly for } \mathbb{R}, \mathbb{C}).$
- (c) $M_n(\mathbb{R})^{\times} = \operatorname{GL}_n(\mathbb{R}) = \{ A \in M_n(\mathbb{R}) \mid \det A \neq 0 \}.$
- (d) $M_n(\mathbb{Z})^{\times} = \operatorname{GL}_n(\mathbb{Z}) = \{ A \in M_n(\mathbb{Z}) | \det A = \pm 1 \}.$
- 3. Matrix groups: matrices under addition and multiplication

4. Composition of permutations. Let T be any set, and $A: T \to T$ be bijective. Let S_T be the collection of all permutations on T. Then (S_T, \circ) (composition action) forms a group.

We write $S_n = S_{\{1,2,\dots,n\}}$, the group of permutations on n elements. We can notate the elements of S_n by writing

$$\begin{pmatrix} 1 & 2 & \cdots & n \\ f(1) & f(2) & \cdots & f(n) \end{pmatrix}$$

Clearly $|S_n| = n!$.

1.1.3 The group \mathbb{Z}_m

Def'n. 1.1.2 Let \sim be an equivalence relation. We then define the **quotient group** G/\sim given by the equivalence classes of elements in G.

To construct \mathbb{Z}_m , we define $\mathbb{Z}_m = \mathbb{Z}/\sim$ where $a \sim b$ if $a \cong b \pmod{m}$. Since we have a division algorithm in \mathbb{Z} , for any $d \in \mathbb{Z}$, we can write d = tm + r with $0 \leq r \leq m - 1$. Thus $\overline{d} = \overline{r}$, so we can represent $\mathbb{Z}_m = \{\overline{0}, \overline{1}, \dots, \overline{m-1}\}$. As a result we usually do not bother writing $\overline{\cdot}$.

Prop. 1.1.3 We have $\overline{a} + \overline{b} = \overline{a+b}$ and $\overline{a} \cdot \overline{b} = \overline{ab}$.

Proof Obvious.

Thm. 1.1.4 $\mathbb{Z}_m^{\times} = \{ \overline{a} \mid \gcd(a, m) = 1 \}.$

PROOF Assume $\overline{a} \in \mathbb{Z}_m^{\times}$ so there exists \overline{x} with $\overline{x} \cdot \overline{a} = 1$. Then $\overline{xa} = \overline{1}$ so $xa \cong 1 \pmod{m}$ so m|xa - 1. Let $d = \gcd(a, m)$ so d|a and d|m. Thus d|xa - 1 and d|xa so d|1 and $\gcd(a, m) = 1$.

Conversely, suppose gcd(a, m) = 1. Then by Bézout's Lemma, get x, y so that xa + ym = 1, so $xa \cong 1 \pmod{1}$ and $\overline{xa} = \overline{1}$ and $\overline{xa} = \overline{1}$ and we have our multiplicative inverse.

We thus have $|\mathbb{Z}_m^{\times}| = \phi(m)$.

1.2 Basics of Groups

1.2.1 Functions between Groups

Def'n. 1.2.1 Let (G, \spadesuit) , (H, \star) be groups. A mapping $f: G \to H$ is called an **homomorphism** if

$$f(u \spadesuit v) = f(u) \star f(v)$$

If f is also a a bijection, then we call f an **isomorphism**.

Prop. 1.2.2 G and H are isomorphic if and only if their Cayley Tables are the same up to permutation of elements.

Proof Obvious.

1.3 Examples of Finite Groups

1.3.1 Group Definitions

Def'n. 1.3.1 We say that (G,*) with $*: G \times G \rightarrow G$ is a **group** if for all $a,b,c \in G$

- 1. (a*b)*c = a*(b*c)
- 2. $\exists e \in G$: a * e = a = e * a
- 3. $\exists u \in G$: a * u = e = u * a

We have our first basic proposition:

Prop. 1.3.2 The identity and inverses are unique.

PROOF If e, f are both identities, then e = e * f = f. If u, v are both inverses of x, then u * (x * v) = u * e = u and (u * x) * v = e * v = v so u = v.

Def'n. 1.3.3 *If* ab = ba *for* all $a, b \in G$ *then* we say that G *is* **commutative**.

Def'n. 1.3.4 Let G be a group with $G = \{g_1, g_2, ..., g_n\}$. Then the **Cayley Table** for G is the matrix $M \in M_n(G)$ where $M_{ij} = g_i g_j$.

Prop. 1.3.5 In each column or row, each element occurs exactly once. Furthermore, if $M_{ij} = e$, then $M_{ji} = e$.

Proof This follows directly by left or right cancellation, and by commutativity of the elements with their inverse.

1.3.2 Cyclic Groups

Def'n. 1.3.6 The order of an element $g \in G$ is $o(g) := |\{g^d | d \in \mathbb{Z}\}|$. The order of a group G is |G|.

We certainly have $o(g) \le |G|$ for any $g \in G$. Equality holds when $o(g) = \infty$ and G is countable, or $G = \{g^d : d \in \mathbb{Z}\}.$

Def'n. 1.3.7 A collection $H = \{g_1, g_2, ..., g_k\}$ **generates** G if we can write any $g \in G$ as a product of elements in H.

Def'n. 1.3.8 We say that G is cyclic if $G = \{g^d : d \in \mathbb{Z}\}$ for some $g \in G$. Equivalently, it is generated by a set of cardinality one.

Ex. 1.3.9 Note that \mathbb{Z}_{13}^{\times} is cyclic with generator 2.

Lemma 1.3.10 *If* o(g) *is finite and* $d \in \mathbb{Z}$ *, then*

$$o(g^d) = \frac{o(g)}{\gcd(o(g), d)}$$

PROOF Let o(g) = K and $t = \gcd(K, d)$ and write $K = tK_1$ and $d = td_1$ with K_1, d_1 coprime. Thus $o(g^d)$ is the smallest positive integer l with $(g^d)^l = 1$. But then $(g^d)^l = 1 \Leftrightarrow g^{dl} = 1 \Leftrightarrow o(g)|dl$ and k|dl, that is $tK_1|td_1l$ and $k_1|d_1l$. Thus $K_1|l$ so the smallest positive integer l is K_1 and $o(g^d) = K_1 = \frac{o(g)}{\gcd(o(g),d)}$ as desired.

1.3.3 Permutation Groups

Recall that S_n is the symmetric group of degree n, consisting of all permutations of [n]. Thus $|S_n| = n!$. Instead of using the matrix form, we can write the permutation group using the cycle form.

Ex. 1.3.11 Write

$$f = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\ 4 & 7 & 3 & 1 & 2 & 9 & 8 & 5 & 6 \end{pmatrix} = (14)(2785)(3)(69)$$

We can also write (14)(2785)(69), in other words excluding elements which map to themselves.

In general, a cycle $(a_1a_2...a_k)$ indicates that $a_1f = a_2$, $a_2f = a_3$,..., $a_kf = a_1$. In S_n , each permutation can be expressed in a cycle form (using disjoint cycles). The cycle form is unique up to ordering within the cycles, and ordering among the cycles.

Ex. 1.3.12 In S_5 , the possible cycle structures are

$$I$$
, (ab) , (abc) , $(abcd)$, $(abcde)$, (ab) (cd), (ab) (cde)

We then have

$$o(I) = 1$$

$$o((ab)) = 2$$

$$o((abc)) = 3$$

$$o((abcd)) = 4$$

$$o((abcde)) = 5$$

$$o((ab)(cd)) = 2$$

$$o((ab)(cde)) = 6$$

For f = (abc), $f^2 = (abc)(abc) = (acb)$, $f^3 = (abc)(acb) = abc$. For f = (abcd), $f^2 = (ac)(bd)$, $f^3 = (abdc)(ac)(bd)(adcb)$, and $f^4 = (abcd)(adcb) = (abcd)$. If $f = (a_1 a_2 ... a_k)$, o(f) = k.

Prop. 1.3.13 Suppose $f = \gamma_1 \gamma_2 \dots \gamma_i$ for disjoint cycles. Then $o(f) = lcm(o(\gamma_1), o(\gamma_2), \dots, o(\gamma_i))$.

Proof Note that the γ_i commute, so that

$$f^{d} = I \Leftrightarrow (\gamma_{1}\gamma_{2}...\gamma_{i})^{d} = I$$
$$\Leftrightarrow \gamma_{1}^{d}\gamma_{2}^{d}...\gamma_{i}^{d} = I$$
$$\Leftrightarrow \gamma_{i}^{d} = I \quad \forall i$$

The last line holds since the γ_i^d operates on disjoint sets. Thus we have our formula, as desired.

1.3.4 Dihedral Groups

Fix a regular polygon with n vertices. Let D_n be the collection of rigid motions with map the regular n-polygon to itself. Since $r^n = 1$ and $s^2 = 1$, we have

$$D_n = \{1, r, r^2, \dots, r^{n-1}, s, sr, sr^2, \dots, sr^{n-1}\}$$

Thus $|D_n| = 2n$. We can compute the oprations on D_n :

$$r^{a} \cdot r^{b} = r^{a+b}$$

$$sr^{a} \cdot r^{b} = sr^{a+b}$$

$$r^{a} \cdot sr^{b} = sr^{b-a}$$

$$sr^{a} \cdot sr^{b} = r^{b-a}$$

Thus $o(sr^a) = 2$ and $o(r^a)$ is given by the usual formula.

1.4 Subgroups

Def'n. 1.4.1 A subset H of a group G is called a **subgroup** if H is also a group with the same operation. We write $H \leq G$.

For example, $(\mathbb{Z}, +) \leq (\mathbb{Q}, +) \leq (\mathbb{R}, +) \leq (\mathbb{C}, +)$. Note that associativity automatically holds since every element of H is an element of G. Furthermore, $H_1 = H_2 = H_1 = H_1 = H_2 = H_1 = H_1 = H_2 = H_1 = H_1 = H_2 = H_2 = H_1 = H_2 = H_2 = H_1 = H_2 = H_2 = H_2 = H_1 = H_2 = H_2$

1.4.1 Subgroup Tests

Prop. 1.4.2 (First Subgroup Test) A subset H of a group G is a subgroup if and only if

- 1. $H \neq \emptyset$
- $2. \ x,y \in H \Rightarrow xy \in H$
- 3. $x \in H \Rightarrow x^{-1} \in H$

Proof Follows by above discussion.

Prop. 1.4.3 (Second Subgroup Test) A subset H of a group G is a subgroup

- 1. $H \neq \emptyset$
- 2. $x, y \in H \Rightarrow xy^{-1}|inH$

That the first subgroup test implies the second is obvious. Coversely, the identity is in H since $xx^{-1} \in H$. Thus get closure under inversion by choosing x as the identity to get inverses. Then if $x, y \in H$, $x, y^{-1} \in H$ so $x(y^{-1})^{-1} = xy \in H$.

Furthermore, if G is finite, it suffices to show closure under multiplication, since inverses can be optained by repeated multiplication.

Prop. 1.4.4 Arbitrary intersections of subgroups are also subgroups.

Proof Obvious.

Ex. 1.4.5 1. $G \le G$, $\{1\} \le G$

- 2. For any $g \in G$, we have $\langle g \rangle = \{g^k : k \in \mathbb{Z}\}$ is a subgroup.
- 3. For any $g \in G$, define

$$C_G(g) = \{x \in G : gx = xg\}$$

the centralizer of g in G. We certainly have $1 \in C_G(g)$. Also, if $x, y \in G$, then gx = xg and gy = yg so that gxy = xgy = xyg. If $x \in C_G(g)$, then gx = xg so $g = xgx^{-1}$ and $x^{-1}g = gx^{-1}$.

4. The center of a group *G*:

$$Z(G) = \bigcap_{g \in G} C_G(g) \le G$$

which is the set of elements commuting with everyone in *G*.

1.4.2 Cosets of Subgroups

Def'n. 1.4.6 Let $H \le G$, $g \in G$. Then the **right coset** of H by g is the set $Hg := \{hg : h \in H\}$. Similarly, the **left coset** of H by g is the set $gH := \{gh : h \in H\}$.

Ex. 1.4.7 Consider $G = \mathbb{Z}_{13}^{\times} = \{1, 2, ..., 12\}$ and $H = \langle 3 \rangle = \{1, 3, 9\}$. Then the cosets of *H* are given by

$$H1 = \{1,3,9\}$$
 $H2 = \{2,5,6\}$
 $H3 = H1$ $H4 = \{4,10,12\}$
 $H5 = H2$ $H6 = H2$
 $H7 = \{7,8,11\}$ $H8 = H7$
 $H9 = H1$ $H10 = H4$
 $H11 = H7$ $H12 = H4$

so there are 4 disjoint cosets of *H*.

This inspires the following theorem:

Thm. 1.4.8 *Let* $H \leq G$. *Then*

- 1. |Hg| = |H|
- 2. $Hg = H \Leftrightarrow g \in H$
- 3. For any $x, y \in G$, either Hx = Hy or $Hx \cap Hy = \emptyset$
- 4. $Hx = Hy \Leftrightarrow xy^{-1} \in H$

PROOF 1. The map $g: H \to Hg$ is bijective since it has an inverse.

2. This is a special case of (4) with x = g, y = 1.

- 3. Suppose $Hx \cap Hy \neq \emptyset$. Thus let $z \in Hx \cap Hy$ and write $z = h_1x = h_2y$. Then for any $hx \in Hx$, $hx = hh_1^{-1}h_1x = hh_1^{-1}h_2y \in Hy$ so $Hx \subseteq Hy$. The identical argument works in reverse, so equality holds.
- 4. Assume Hx = Hy, and if $x \in Hx$, then $x \in Hy$ so x = hy and $xy^{-1} = h$. Conversely, suppose $xy^{-1} \in H$, then $xy^{-1}y \in Hy$ so $x \in Hy$. Also, $x \in Hx$ so $x \in Hx \cap Hy \neq \emptyset$ so by (3), Hx = Hy.

Def'n. 1.4.9 The *index* of a subgroup H in a group G is denoted |G:H| and denotes the number of distinct right cosets of H.

Prop. 1.4.10 $Hx \mapsto x^{-1}H$ is a one-to-one correspondence between right cosets and left cosets.

Thus G is a disjoint union of |G:H| right cosets of H, each of size |H|. Therefore we have

Cor. 1.4.11 $|G| = |G:H| \cdot |H|$

Thm. 1.4.12 (Lagrange) Suppose G is a finite group. Then

- 1. For any $H \le G$, |H| | |G|.
- 2. For any $g \in G$, o(g)||G|.

PROOF 1. Since $|G| = |G:H| \cdot |H|$, |G:H| is a positive integer.

2. $o(g) = |\langle g \rangle|$ and it follows by (1).

1.4.3 Subgroups of Cyclic Groups

Thm. 1.4.13 Any subgroup of a cyclic group is also cyclic.

PROOF Let $G = \langle g \rangle$ be a cyclic group, $H \leq G$. If $H = \{1\}$, then $H = \langle 1 \rangle$ is cyclic. Otherwise, there exists some $0 \neq m \in \mathbb{Z}$ with $g^m \in H$. Now, there exists a smallest positive integer k with $g^k \in H$. We see that $H = \langle g^k \rangle$. The reverse inclusion is obvious since $(g^k)^t \in H$ for all $t \in \mathbb{Z}$. For the forward inclusion, pick $x \in H$ so $x = g^d$ for some d. Then division with remainder yields d = tk + r with $0 \leq r \leq k - 1$ so that $g^d = g^{tk+r}$ and $x = (g^k)^t g^r$ so $g^r = x(g^k)^{-t} \in H$. Minimality of k forces r = 0, so d = tk, $x = g^d = (g^k)^t \in \langle g^k \rangle$.

If |G| = o(g) = n finite, write n = tk + r, for $0 \le r \le k - 1$. Then $g^r = g^n (g^k)^{-t} = (g^k)^{-t} \in H$, and again r = 0, n = tk, k|n.

Now suppose $G = \langle g \rangle$ with finite order n. Then $G = \{1, g, g^2, ..., g^{n-1}\}$, and subgroups of G correspond to positive diviors of n. Then $k|n \leftrightarrow \langle g^k \rangle = \{1, g^k, g^{2k}, ..., g^{n-k}\}$ Now suppose $G = \langle g \rangle$ is infinite, and $G = \{..., g^{-1}, 1, g, g^2, ...\}$. Then subgroups of G correspond to nonnegative integers, and $k \ge 0 \leftrightarrow \langle g^k \rangle = \{..., g^{-k}, 1, g^k, g^{2k}, ...\}$.