E 02 - Simple Linear Regression -

Part 1 -

The image below shows the calculation of the various statistical parameters related to linear regression of the five datasets given.

×	~	×	y_cap		yi_minus_bar	_cap_minus_ybar	yi_minus_ybar_sq	y_cap_minus_ybar_sq	ж.,							
37.200879 3.526315789					2//	6.433499275		7							Ī	
37.46053211 4.684210526	_	175,473 21,94183	38,19694989	-0.73641778	11.5699854	12,30640318	133.8645621	151,4475592		0.542311 sum yl minus ybar sq	SST	1185,221564		xbar	2.25789	
30.36517837	2 60,73036	9	1 24.58249084	5.782687523	4.474631653	-1.308055869	20.02232843	1.711010157		33,43947 sum_ycap_minus_ybar_sq	SSR	977,9908868		ybar	25,8905	
16.97950771 0.947368421	68421 16.08585	5 0.897507	7 19.2434873	-2.26397959	-8.911039003	-6.647059417	79.40661611	44.18339889		5.125604 sum ei sq	SSE	207.2306769		xybar (68.0991	
30.8497319 2.842105263	05263 87.67819	9 8.077562	28.85369368	1.996038219	4.959185188	2.963146969	24.59351773	8.78023996		R sq	SSR/SST	0.825154483	-	xsqbar (6.99889	
37.07110993 4.578947368	47368 169.7467	7 20,96676	37.66304954	-0.5919396	11.18056322	11.77250282	125.0049939	138.5918227	0.350392							
19,35650899 1,157894737	94737 22.4128	8 1,34072	20.31128801	-0.95477901	-6.53403772	-5.579258707	42.69364893	31.12812772	0.911603						5.07205	
22.96795621 1.526315789	15789 35.05635	5 2,32964	22.17993925	0.788016968	-2.922590498	-3.710607466	8.541535219	13.76860776	0.620971					b 1	14.4384	
37.89454117 3.894736842	36842 147.5893	3 15.16898	34.19269723	3.701843945	12.00399446	8.302150517	144.095883	68.9257032	13.70365							
18.01077771 0.736842105	42105 13.2711	1 0.542936	18,17568659	-0.16490887	-7.879769	-7.714860127	62.09075949	59.51906677	0.027195							
27.31273343 2.052631579	31579 56.06298	8 4.213296	24.84944102	2.463292409	Н	-1.041105692	2.022615058	1.083901062	6.067809							
33.87169482 4.736842105	42105 160,4449	9 22,43767	38.46390007	4.59220525	7.981148103	12.57335336	63.69872504	158.0892146	21.08835							
22.69067344	1 22.69067	7	19.51043747	3.18023597	-3.199873269	-6.38010924	10.23918894	40.70579391	10.1139							
23,55654774 2,789473684	73684 65.71037	7 7.781163	28.5867435	-5.03019577	-2.333998976	2.696196792	5.447551219	7.269477139	25.30287							
25.10304641 1.894736842	36842 47.56367	7 3.590028	24.04859049	1.054455924	-0.7875003	-1.841956224	0.620156723	3.392802731	1.111877							
23.56896169 1.947368421	68421 45.89745	5 3.792244	1 24.31554067	-0.74657897	-2.321585019	-1.575006047		2.480644047	0.55738							
12.80130715 0.315789474 4.042518 0.099723	89474 4.04251	8 0.09972	16.04008517	-3.23877801	-13.08923956	-9.850461546	171.3281923	97.03159266	10.48968							
24.01330076 1.263157895	57895 30.3325	30.33259 1.595568	20,84518836	3.168112402	-1.87724595	-5.045358353										
13.81080111 0.526315789	15789 7.268843	3 0.277008	17.10788588	-3.29708477	-12.0797456	-8.782660836	145.9202538	77.13513136	10.87077							
22.92514458 2.736842105		5 7,490305				2.429246614	V 10.77									
			8													
SUMMARY OUTPUT																
Regression Statistics	SO															
26 Multiple R 0.908380142	80142															
R Square 0.82515448	54483															
Adjusted R Sq. 0.815440843	40843															
Standard Erro 3.39305399	05399															
Observations	20															
ANOVA																
df	SS	MS	F	Significance F												
34 Regression	1 977.9909	977.9909	9 84.94802135	3.08604E-08												
Residual	18 207.2307															
Total	19 1185,222															
Coefficik	Coefficients Standard Et Stat	'Et Stat	P-value	Lower 95%	Upper 95%	Lower 95.0%	Upper 95.0%									
39 Intercept 14.43	83841 1,45586	7 9.91737	7E-08	11.37972016		72016										
11	5.07205337 0.5503	0.55031 9.216725	3.08604E-08	3.08604E-08 3.915895558	6.228211183	3.915895558										

Part 2 : Data Set v/s Regression Outcomes -

Data Set/	Set/ Data 1 Data 2	Data 2	Data 3	Data 4	Data 5
Parameters					
Scatter Plot y _i vs x _i		VIVS XI	N 10.5 M		Y
Scatter Plot yıvs xı ŷıvs xı	S S S S S S S S S S S S S S S S S S S	Vi and ycap vs xi	Vi and yeap us xi	Signature of the state of the s	13 [Veap and Vi Vs Xi] 13 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
Scatter Plot e _i vs x _i			X	6 V v x Xi	6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Data Set/ Parameters	Data 1	Data 2	Data 3	Data 4	Data 5
Data Size (n)	20	100	100	30	180
Variance(y)	62.38008	67.50414	103.3773	98.113	1.15479
Standard Deviation(y)	13.999028575524	8.21609031109079	10.1674628103574	9.90511484032366	1.07461155772679
Corr(x ,y)	0.90838	0.911263	0.720646	0.689041	-0.55084
Coeff 'a'	5.07205337	4.903347591	4.798640815	4.693246374	-0.22152735
Coeff 'b'	14.4383841	14.81033235	21.10485906	20.79759598	2.232599232
p - value 'a'	3.09E-08	1.54E-39	2.84E-17	2.55E-05	1.13E-15
p - value 'b'	1.01E-08	4.6E-39	1.08E-26	3.15E-07	6.01E-38
${\sf R}^2$	0.825154483	0.830401026	0.51933107	0.474777689	0.303426178
1 - R²	0.174845517	0.169598974	0.48066893	0.52522311	0.696573822
F - value	84.94802	479.8337	105.8825	25.31076	77.53645
Significance F	3.09E-08	1.54E-39	2.8446E-17	2.55E-05	1.13E-15
SSE	207.2307	1133.415	4919.334	1494.377	143.9867
MSE (SSE/n)	10.361535	11.33415	49.19334	49.8125666666667	0.79992611111111

comparing the following: regression coefficients and their p-values, R2, MSE, F-value, Significance F. Which of these is majorly impacted, and Q1. Data sets Data1 and Data2 are samples of different sizes randomly drawn from the same population. Care has been taken to ensure that the samples are true representative of the population. What can you say about the impact of sample size on regression quality? Explain by what can you conclude from this? Can you explain why?

Ans:- The p - value and significance F of data set 2 are quite less than that of data set 1 and also its F - value is greater than that of data 1. The other factors such as regression coefficients, R2, MSE are quite similar.

Hence, regression quality of set 2 is more accurate than data set 1 (due to p - value and significance F).

Q2. Compare the data sets Data2 and Data3 by focusing on the plots, variances, and correlation coefficients. What differences do you observe? What do they indicate?

This means the variance of data set 3 is greater than that of data set 2 which in turn means that data set 3 is less representative of the whole Ans:- By focusing on plots we can see that data set 2 is more close to linearity while data set 3 is more scattered vertically. population while data set 2 is more reliable for predicting

p-values, R 2, MSE, F-value, Significance F. What major differences do you observe? What do they indicate about the relative quality of these Q3. Compare the regression outputs from Data2 and Data3. Focus on the following: correlation coefficients, regression coefficients and their regressions?

Ans:- The p-value, Variance, Significance F, MSE of data 2 are much smaller than that of data 3 while the F-value, R 2 are much greater than data 3 which implies data 2 has a better linear regression quality.

sets themselves? How do the two regression outcomes compare? What conclusions can you make from this analysis - particularly related to Q4. Compare the data sets Data1 and Data4, and their regression outputs. What are your observations about the relative quality of the data data quality and regression quality? Ans:- Data 4 has the lowest quality data and the poorest regression quality, with a low R², p-value and a higher amount of F-value, variance, SSE and MSE than data 1 resulting in more errors.

We can conclude that data 1 is much reliable than data 4.

Significance F? In your analysis also compare these metrics with those observed in the previous 4 data sets – and state your observations and Q5. Consider Data5, in this case you have fitted a linear model over non-linear data. What is the impact on the regression metrics and how do they correlate with the data quality - variances, correlation coefficient, regression coefficients and their p-values, R 2, MSE, F-value, and conclusions.

between x and y. This results in the low R2 value, weak F-value, and low MSE, implying that the linear model doesn't recognize the underlying pattern well. In contrast, all the other data sets have positive correlations, implying a better fit for linear models. Their higher R2 values, higher Ans:- Data5 is different from all the other data sets because of its non-linear relationship, negative correlation, and inverse relationship MSE values and higher F-values suggest better linear fits.

Hence, fitting a linear model to non-linear data (Data5) leads to poor regression metrics and a weak fit.

Q6. Across the data sets, what relationship do you observe between the correlation coefficients and the quality of regressions? Can you detect any mathematical relationship between the correlation coefficient and R2?

variable. So there is a positive mathematical relationship between correlation and R2, where higher correlation coefficients are associated with (0.83 and 0.825, respectively). Data4 and Data5 have lower correlation coefficients (0.689 and -0.551, respectively) and also lower R2 values Ans:- Generally, a greater correlation coefficient indicates a stronger linear relationship between variables. A strong linear relationship (high nigher R2 values. Data2 and Data1 have the highest correlation coefficients (0.911 and 0.908, respectively) and also the highest R2 values correlation) generally results in a higher R2 value because more of the variance in the dependent variable is explained by the independent (0.475 and 0.303, respectively). Q7. Error plots and error metrics are an important consideration while assessing regression quality. Observe all the error plots. Qualitatively, in what way does the error plot for Data5 differ from the other error plots? Why do such error plots indicate an incorrect regression?

clustered around, it suggests that the model either overestimates or underestimates certain regions of the data and is not understanding the Ans:- Error plot of 5 follows a pattern and is clustered while the error plots of other data sets are scattered and stochastic. As errors are data pattern. Q8. Based on all the observations, analyses, and conclusions you have made so far, now list down the specific criteria and steps you will take to decide upon the quality of a Linear Regression model, and to decide whether you will use the regression model for prediction!

does not follow any pattern (good model). We can also check for the missing values in the data and ensure that even for their absence the data Ans:- We can decide whether a model is good by checking whether the error is clustered in some region (bad model) or if it is random and set provided is sufficient.

Another way to test a model is to check the values of statistical coefficients and numbers.