LATEX Mini Project 3

Sachin Srivastava Rutgers Univeristy

sachin.srivastava@rutgers.edu

1. Problem 1

$$lnP(E) = ln \sum_{H} P(H, E)$$
$$= ln \sum_{H} Q(H|E) \cdot \frac{P(H, E)}{Q(H|E)}$$
$$>= \sum_{H} Q(H|E) ln \frac{P(H, E)}{Q(H|E)}$$

The difference between the inequality is given by KL divergence D(Q||P). which is $= -\sum Q(H|E)ln\frac{P(H|E)}{Q(H|E)}$ as we have

$$lnP(E) = \sum_{H} Q(H|E)ln\frac{P(E,H)}{Q(H|E)} - \sum_{H} Q(H|E)ln\frac{P(H|E)}{Q(H|E)}$$

from the Bayes theorem.

We cannot consider D(P||Q) as KL divergence is not symmetric, i.e. D(P||Q)! = D(Q||P)

2. Problem 2

3. Problem 3

For a fixed x_i , y_i are i.i.d random variables with y_i $N(w_1x_i + w_0, \sigma^2)$. So the probability distribution of y_1 , y_2 , ... is defined by:

$$f(y_1, ..., y_n | w_1, w_0) = \pi_{i=1}^n f(y_i | w_1, w_0)$$

$$= \pi_{i=1}^{n} \frac{1}{(2\sigma^{2})^{\frac{n}{2}}} \exp^{\frac{-(y_{i}-w_{1}x_{i}-w_{0})^{2}}{2\sigma^{2}}}$$
$$= \frac{1}{(2\sigma^{2})^{\frac{n}{2}}} \exp^{\frac{1}{(2\sigma^{2})^{\frac{n}{2}}} \sum_{i=1}^{n} (y_{i}-w_{1}x_{i}-w_{0})^{2}}$$

To get the MLE estimates of w_1 and w_0 we will set $\frac{\partial f}{\partial w_1} = 0$ and $\frac{\partial f}{\partial w_0} = 0$ which leads to the equations:

$$\sum_{i=1}^{n} x_i (y_i - w_1 x_i - w_0) = 0$$

 $\sum_{i=1}^{n} (y_i - w_1 x_i - w_0) = 0$

Solving the second equation for w_0 yields $w_0 = y - w_1 x$ and replacing w_0 in the first equation yields:

$$\sum_{i=1}^{n} (x_i - \bar{x} + \bar{x})(y_i - w_1 x_i - \bar{y} + w_1 \bar{x}) = 0$$

which in turn leads to

$$w_1 = \frac{\sum_{i=1}^{n} (x_i - \bar{x})(y_i - \bar{y})}{\sum_{i=1}^{n} (x_i - \bar{x})}$$