ID #:

Worksheet: Transformations of Graphs

1. Explain how the graph of y = g(x) is obtained from the graph of y = f(x).

(a)
$$g(x) = f(-x)$$

Solution: Reflect the graph of y = f(x) about the y - axis.

(b)
$$g(x) = 7f(x) - 3$$

Solution: Stretch the graph of y = f(x) vertically by a factor of 7, and then shift downward 3 units.

(c)
$$q(x) = 4f(x+5) - 3$$

Solution: Shift the graph of y = f(x) to the left 5 units, stretch vertically by a factor of 4, and then shift downward 3 units.

(d)
$$f(x) = x^2$$
, $g(x) = x^2 + 2$

Solution: The graph of g(x) is obtained by shifting the graph of f(x) upward 2 units.

(e)
$$f(x) = \sqrt{x}, g(x) = \frac{1}{2}\sqrt{x-5}$$

Solution: The graph of $g(x) = \frac{1}{2}\sqrt{x-5}$ is obtained by shifting the graph of $f(x) = \sqrt{x}$ to the right 5 units, and then shrinking the graph vertically by a factor of $\frac{1}{2}$.

2. The graph of y = h(r) is given in the blue graph. Determine the number of the graph of the function 2h(r+6).

- A. 1 B. 2
 - C. 3D. 4
- E. 5
- SI: h(r) => h(r+6)

 Shift left 6 units

 S2: h(r+6) >> 2h(r+6)

 Stretch Vertically
 by a factor of 2

3. The graph of f(x) is given in pink, sketch the graph of the function q(x) in the same coordinates.

2). g(x) = -f(x) + 3SI reflect about X-axis - f(x)

4. Identify the graph of $g(x) = 3 \log x + 5$

a<0 => opens down

5. Which one of the following graphs illustrate the function $f(x) = -(x+1)^2 + 1$

6. Which one of the following functions translates the graph of $f(x) = 4^x$ to a new graph q(x)with a reflection about the x - axis, a vertical stretch by a factor of 5, and a horizontal shift left 8 units.

(C)

A.
$$f(x) = -5 \cdot 4^{x-8}$$
 C. $f(x) = -5 \cdot 4^{x+8}$ D. $f(x) = 5 \cdot 4^{x-8}$ B. $f(x) = -5 \cdot 4^x + 8$

(A)

$$C. f(x) = -5 \cdot 4^{x+8}$$

D.
$$f(x) = 5 \cdot 4^{x-8}$$

B.
$$f(x) = -5 \cdot 4^x + 8$$

$$4^{\times}$$
 \longrightarrow -4^{\times}

(B)

$$4^{\times} \xrightarrow{\bigcirc} -4^{\times} \xrightarrow{\bigcirc} -5 \cdot 4^{\times} \xrightarrow{\bigcirc} -5 \cdot 4^{\times} + 8$$