X86 - ISA

The 80x86 Family

Name	Date	Trans istors	Clock speed	Data width
8080	1974	6K	2MHz	8
8086	1978	29K	5MHz	16
80286	1982	134K	12 MHz	16
80386	1985	275K	16-33 MHz	32
80486	1989	1.2 M	20 -100 MHz	32
Pentium	1993	3.1M	60-200 MHz	32 /64
Pentium II	1997	7.5 M	233-450 MHz	32/64
Pentium III	1999	9.5M	450 -933 MHz	32 /64
Pentium 4	2000	42 M	1.5 GHz	32/64

The Evolution of Microprocessors

The 16-bit Processors

8086

- 20 Address lines
- $2^{20} 1 MB$
- 2.5 MIPS

80286

- 24 Address lines
- $2^{24} 16 \text{ MB}$
- 4 MIPS

The 32-bit Processors

80386

- 32 Address lines
- $2^{32} 4GB$

80486

- 32 Address lines
- $2^{32} 4GB$
- Floating Pt Unit
- Internal Cache
- 50 MIPS

Characteristics of the X86 Family

- CISC
- Instructions broken up into μops
- Complex Instruction Decoder

Block Diagram of 8086

8086 - Buses

Memory Address Space

Microprocessor

- Executes Instruction ————— EU

Variation of 8086 - 8088

- External Data Bus 8-bits
- Inst Queue 4 bytes

X86 - ISA

8086-80486 Programmers Model BIU

Memory Addressing

- Real
 - Access only 1 MB of Memory
 - Only 20 Address Lines Required
- Protected

Programmer's Model - BIU

EIP	IP
-----	----

CS	
DS	
ES	
SS	
FS	
GS	

Code Segment

Data Segment

Extra Segment

Stack Segment

$$CS = 2000_H$$
 Base address

$$IP = 3000_{H}$$
 Offset address

23000_H

Advantage of Segmentation

- Relocation
- Program Specify only offset
- Program $F0000_H \rightarrow 10000_H$
- Program contents need not be change only Segment needs to change from F000_H → 0000_H

High Memory

- HIMEM.SYS
- A₂₀
- Segment Address FFFF_H
- Offset Address 4000_H
- 103FFO_H
- 03FFO_H

X86 - ISA

8086-80486 Programmers Model EU

Programmers Model

AX
BX
CX
DX
SP
BP
SI
DI

Accumulator

Base Index

Count

Data

Stack Pointer

Base Pointer

Source Index

Destination Index

Registers

MULTIPURPOSE REGISTERS

AX, BX, CX, DX, BP, DI, SI

SPECIAL PURPOSE REGISTERS

IP, SP, FLAGS

CS, DS, SS, ES (Segment Registers)

Registers - MPR

```
AH
                           AL
AX
           (8 bit)
                          (8 bit)
(Accumulator)
             BH
                           BL
BX
(Base Register)
             CH
                           CL
CX
 (Used as a counter)
             DH
                           DL
DX
```

(Used to point to data in I/O operations)

Programmer's Model-MPR

EAX	АН	AL
EBX	ВН	BL
ECX	СН	CL
EDX	DH	DL
EBP	BP	
ESI	S	SI
EDI	DI	
ESP	S	Р

Default 16 bit segment and offset address combinations

Segment offset special purpose

<u>CS</u>	<u>IP</u>	<u>Instruction</u> <u>Address</u>
55	SP (or) BP	Stack address
D5	BX,DI,SI an 8-bit number 16 - bit number	Data address
ES	DI for string Instructions	String destination address

Programmer's Model -SFR

EFLAGS FLAGS

Flags

- Status
- Control

Flag Register

80x86-Summary

BIU (Bus Interface Unit) provides hardware functs for generation of the memory and I/O addresses for the transfer of data between itself and the outside world

EU (Execution Unit) receives program instruction codes and data from the BIU executes these instructions and stores the results in the general- purpose registers