

IN THE CLAIMS:

Please amend the claims as follows (all remaining claims are presented):

Claims 1-14. (cancel)

15. (original) A method for improving chemical and biological purity of a water stream containing contaminants, the method comprising directing flow of the water stream through interstices of a multitude of irregular, macroscopic fragments that:

- (a) are hydrophobic but sorbent of the contaminants; and
- (b) have antimicrobial compound on their surfaces;

whereby one or more targeted contaminants are sorbed from the water and proliferation of microbial organisms is reduced.

16. (original) The method of claim 15 wherein, prior to directing flow of the water stream, the water stream contains hydrocarbons and wherein the fragments are sorbent of hydrocarbons.

17. (original) The method of claim 16 wherein directing flow comprises directing flow of the water through fragments further comprised of:

- (a) a matrix of compliant, hydrophobic polymer; and
- (b) an oil-sorbent, hydrophobic copolymer in the matrix.

18. (original) The method of claim 17 wherein directing flow comprises directing flow of the water through fragments further comprised of an antimicrobial compound grafted to:

- (a) a portion of the polymer of the matrix; and
- (b) a portion of the oil-sorbent, hydrophobic copolymer in the matrix.

19. (original) The method of claim 18 wherein directing flow comprises directing flow of the water through fragments wherein the antimicrobial compound grafted thereto comprises an organosilane compound not susceptible to self-condensation in water.

20. (original) The method of claim 18 wherein directing flow comprises directing flow of the water through fragments wherein:

- (a) the compliant, hydrophobic polymer consists of ethylene propylene monomer or ethylene propylene diene monomer; and

Serial No. 10/788,772

Page 2

(b) the oil-sorbent, hydrophobic copolymer consists of styrene-butadiene-styrene or hydrogenated styrenic block copolymer.

21. (new) A filter comprising:

(a) a container having a first aperture for entry of a water stream and a second aperture for exit of the water stream;

(b) a multitude of irregular, macroscopic fragments comprised of an oil-sorbent, hydrophobic material, located in the container and between the first and second apertures; and

(c) an antimicrobial compound grafted to the fragments;

whereby the filter is capable of both sorbing oil from the runoff water passing into contact with the fragments between the first and second apertures and reducing proliferation of microbial organisms.

22. (new) The filter of claim 21 wherein the antimicrobial compound is an organosilane compound not susceptible to self-condensation in water.

23. (new) The filter of claim 21 wherein the oil-sorbent, hydrophobic material is comprised of a hydrophobic copolymer embedded in a compliant, hydrophobic, olefinic polymer.

24. (new) The filter of claim 23 wherein:

(a) the compliant, hydrophobic, olefinic polymer is ethylene propylene monomer or ethylene propylene diene monomer; and

(b) the hydrophobic copolymer is styrene-butadiene-styrene or hydrogenated styrenic block copolymer.

25. (new) The filter of claim 24 wherein:

(a) the particles of ethylene propylene monomer or ethylene propylene diene monomer comprise about 10-30% of the mixture, by weight; and

(b) the particles of styrene-butadiene-styrene or hydrogenated styrenic block copolymer are comprised of about 25-45% styrene and are in the range of about 4-24 mesh.

26. (new) The filter of claim 21 wherein the antimicrobial compound is grafted to substantially all surfaces of the fragments.

27. (new) The filter of claim 21 wherein the first aperture of the container is an open recess and wherein fragments are located on at least three sides of the open recess when viewed in cross-section.

28. (new) The filter of claim 27 wherein the second aperture of the container comprises a perforated bottom plate.

29. (new) The filter of claim 21 wherein the container comprises a basket inside a solid-walled hopper, wherein the interior of the basket forms the first aperture, wherein the second aperture of the container comprises a perforated plate secured to the hopper, and wherein fragments are located (a) between the bottom of the basket and the perforated plate and (b) between at least two walls of the basket and the adjacent walls of the hopper.

30. (new) The filter of claim 29 wherein the basket is comprised of expanded metal forming diamond-shaped holes.

31. (new) The filter of claim 29 wherein the hopper has a cutout in at least one of its side walls at the end most remote from the perforated plate.

32. (new) The filter of claim 29 wherein the container further comprises a bracket coupled to the outside of a side wall of the hopper at the end most remote from the perforated plate.

33. (new) The filter of claim 29 wherein the hopper is rectangular in cross-section.

34. (new) The filter of claim 29 wherein the oil-sorbent, hydrophobic material is comprised of a hydrophobic copolymer embedded in a compliant, hydrophobic, olefinic polymer.

35. (new) The filter of claim 34 wherein:

(a) the compliant, hydrophobic, olefinic polymer is ethylene propylene monomer or ethylene propylene diene monomer; and

(b) the hydrophobic copolymer is styrene-butadiene-styrene or hydrogenated styrenic block copolymer.

36. (new) The filter of claim 35 wherein:

(a) the particles of ethylene propylene monomer or ethylene propylene diene monomer comprise about 10-30% of the mixture, by weight; and

(b) the particles of styrene-butadiene-styrene or hydrogenated styrenic block copolymer are comprised of about 25-45% styrene and are in the range of about 4-24 mesh.