CPE1500 Boolean Algebra Reference Sheet

Axioms

	Axiom		Dual	Name
A1	$B=0\ if\ B\neq 1$	A1'	$B=1\ if\ B\neq 0$	Binary field
A2	$\overline{0} = 1$	A2'	$\bar{1} = 0$	NOT
A2	$0 \cdot 0 = 0$	A3'	1+1=1	AND/OR
A4	$1 \cdot 1 = 1$	A4'	0 + 0 = 0	AND/OR
A5	$0 \cdot 1 = 1 \cdot 0 = 0$	A5'	1+0=0+1=1	AND/OR

Theorems of One Variable

	Theorem		Dual	Name
T1	$B \cdot 1 = B$	T1'	B+0=B	Identity
T2	$B \cdot 0 = 0$	T2'	B + 1 = 1	Null Element
T3	$B \cdot B = B$	T3'	B+B=B	Idempotency
T4	$\bar{\bar{B}} = B$	T4'	same	Involution
T5	$B\cdot \bar{B}=0$	T5′	$B + \bar{B} = 1$	Complements

Theorems of Multiple Variables

	Theorem		Dual	Name
T6	$B \cdot C = C \cdot B$	T6'	B+C=C+B	Commutativity
T7	$(B \cdot C) \cdot D = B \cdot (C \cdot D)$	T7'	(B+C)+D=B+(C+D)	Associativity
T8	$(B \cdot C) + (B \cdot D) = B \cdot (C + D)$	T8'	$(B+C)\cdot(B+D)=B+(C\cdot D)$	Distributivity
Т9	$B \cdot (B+C) = B$	T9'	$B + (B \cdot C) = B$	Covering
T10	$(B \cdot C) + (B \cdot \bar{C}) = B$	T10'	$(B+C)\cdot (B+\bar{C})=B$	Combining
T11	$(B \cdot C) + (\bar{B} \cdot D) + (C \cdot D)$ = $B \cdot C + \bar{B} \cdot D$	T11'	$(B+C)\cdot(\bar{B}+D)\cdot(C\cdot D)$ $=(B+C)\cdot(\bar{B}+D)$	Consensus
T12	$\overline{B_0 \cdot B_1 \cdot B_2 \dots} = (\overline{B_0} + \overline{B_1} + \overline{B_2} \dots)$	T12'	$\overline{B_0 + B_1 + B_2 \dots} = (\overline{B_0} \cdot \overline{B_1} \cdot \overline{B_2} \dots)$	De Morgan's Theorem