ch4a - vide notes Chipter 4 - Beam elens to V- transverse displacement ly-direction E - young's modulus I - moment of inertie of cross-section Beading Heorg M(x) = EIK $Conv.dure = \frac{d^2v}{dx^2}$ flex.wol softwassShear free V(x)= dM Distributed load $W(x) = -\frac{d^2M}{dx^2}$ $W(x) = -\frac{d^2}{d^2x} \left(EI \frac{d^2v}{dx^2} \right)$ If E = constant

W(x) = - EI dx# If no distributed loads are applied (only concentrated forces & monent)

		-
1	Salving	-
*	$V(x) = 9, x^3 + 92 x^2 + 93 x + 94$	
4		
1		
•.		4.
- F		
-		
-		
, (
,		

					,	7 / ~
(fig		12	64	-12	64	$//V_{i}$
\ m, \	EI		4/22	-66	212/	20, 1
/ fog (L3			12	-64	/ V2)
(m2)		SYM			422	92/
					1	

1 bean element equations

•

Potental ereign - Bean elen. L

Strain $V(x) = \left[N_1(x) \quad N_2(x) \quad N_3(x) \quad N_4(x) \right] \left[\frac{1}{2} \left(\frac{1}{2} \right) \left(\frac{$

{G_} = - y \frac{d^2v}{dx^2} \quad \{d\}

12N, 12x-6L 1x2 = 12x-6L

{Ex}=-\[\begin{bmatrix} 12x-64 & 6x1-462 & 12x+64 & 6x2-26 \\ \display \\ \dinq \\ \display \\ \display \\ \displi

1×1

[BX] {d}

Ox = E CX Yunny's Modulus

(Tx) = [0] (Ex]

(5,3=-y[0][B](d)

1 0 6x = 1 (0x) (Ex)

20,6x = - 12 /2 [d] [B] [D] [B] [d]

always symmetric