Computer Networks COL 334/672

Intra-domain Routing

Slides adapted from KR

Sem 1, 2025-26

Intra-domain Routing

Graph Abstraction

graph: G = (N, E)

N: set of routers = $\{u, v, w, x, y, z\}$

E: set of links ={ (u,v), (u,x), (v,x),

(v,w), (x,w), (x,y), (w,y), (w,z), (y,z)

 $c_{a,b}$: cost of *direct* link connecting a and b

e.g.,
$$c_{w,z}$$
 = 5, $c_{u,z}$ = ∞

How to determine shortest path from one node to all other nodes in a graph?

Bellman Ford 4 ladge weight can change

Distance vector algorithm, knew :

Based on *Bellman-Ford* (BF) equation (dynamic programming):

$$D_{x}(y) = \min \{C(x,v) + D_{v}(y)\} \leftarrow v$$
? all nughbors of x

Suppose that u's neighboring nodes, x, v, w, know that for destination z:

min
$$\{ c(u,v) + D_v(2) \}$$

 $c(u,w) + D_w(2) \}$
 $c(u,w) + D_w(2) \}$
 $= \min \{ 2+5 \}$
 $= 1+3 \}$
 $= 1+3 \}$

Distance vector algorithm

key idea:

- from time-to-time, each node sends its own distance vector estimate to neighbors
- when x receives new DV estimate from any neighbor, it updates its own DV using B-F equation:

$$D_x(y) \leftarrow \min_{v} \{c_{x,v} + D_v(y)\}$$
 for each node $y \in N$

• under minor, natural conditions, the estimate $D_x(y)$ converge to the actual least cost $d_x(y)$

Distance vector: Example

DST	CO&1	JOH TKU
ABCDBA	0 1 1 2 1 2	ABCUESE

A Ser	nds;	(A,0),[0,	りんり、生り
Hea	no; 1	3: (8,0),	(A, i), (C, 1)
	U ((c,0), EA()	, (D, 1), (B, 1)
	6 ((B,0), (A,1)	, いり
A sends	; (A,0)	,(B,1), LC,	1), (0,2)
Hears 1 8	, . [B, 1	1, (A, 1), CC	,1)(E,2),(D,2)
),(P, 2), (B, 2)
5: (E, C), LA,	1), (8,2), 11	(2,1), $(0,2)$, $(c,2)$

Good News Travels Fast, Bad News Travels Slow!

Assume a new node F comes up in the network

• How long does it take for the A to update their routing table?

- In general, good news spreads at rate of one hop per exchange
 - What is the maximum time it can take?
- What happens in case of link failure?

Good News Travels Fast, Bad News Travels Slow!

Assume the A-B link goes down

■ How does the routing table gets updated at Dottone 🚗 2 **B**?

At other nodes?

Another case: if Bannonnes to C first has a better

How to Handle Count to Infinity Problem?

- Split horizon
 - Don't announce the route back to the next hop
 - Does it always work?

How to Handle Count to Infinity Problem?

- Split horizon
 - Don't announce the route back to the next hop
- Make infinity smaller
 - Routing Information Protocol (RIP): Based on hop count
 - Used a maximum length of 15
 - Limitation: Doesn't work for cases when actual path length is greater than 15

RIP Message Format

RIPv2 Protocol Message Format

Link State Routing Algorithm

- Each node knows the entire network topology including link costs:
 - accomplished via "link state broadcast"
 - all nodes have same info
- Link state broadcast:
 - (x, {list of neighbors, cost}, seq #, TTL)
 - reliable broadcast using acknowledgements
- Once a node has the entire topology:
 - Use Dijkstra's algorithm to find the shortest path

Seq#! assiss the liveliness
of mag
only forward LSBs of A 4

seq# > cur seq # (A)
Networklayer 5-1:

Dijkstra's link-state routing algorithm

```
1 Initialization:
   N' = \{u\}
                                 /* compute least cost path from u to all other nodes */
   for all nodes v
     if v adjacent to u
                                /* u initially knows direct-path-cost only to direct neighbors
       then D(v) = c_{u,v}
                                                                                        */
                                /* but may not be minimum cost!
    else D(v) = \infty
   Loop
     find w not in N' such that D(w) is a minimum
     add w to N'
     update D(v) for all v adjacent to w and not in N':
        D(v) = \min (D(v), D(w) + c_{w,v})
    /* new least-path-cost to v is either old least-cost-path to v or known
     least-cost-path to w plus direct-cost from w to v */
15 until all nodes in N'
```


		V	W	X	У	Z
Step	N'	D(v),p(v)	D(w),p(w)	D(x),p(x)	D(y),p(y)	D(z),p(z)
0	u	2, u	5,4	I, W	∞ ,	≈
1	uz	2,4	4, X	<u> </u>	2 x	<i>6</i> 0
2	NXV	<i>z</i> ′	ч <u>́,</u> х		2,7	∞
_3	uxvy		Ý.x			4,4
4	NX YYW		7,			4.4
5	MAN					28

After adding node a to N' \forall neighbors bof a not in N' $D(b) = \min \left(D(b), D(a) + \mathcal{C}(a,b) \right)$

Two popular link state routing protocols: Intermediate System to Intermediate System (IS-IS), Open Shortest Path First (OSPF)

Setting Link Weights

- How to set link weights?
 - Static: 1, bandwidth of link, cost of the link
 - Adaptive: load on the network
- How to set weights based on load on the network?
 - Send ECHO packets to measure RTT
 - RTT depends on queuing delays (load on the network)
- Is it a good strategy?
 - Can lead to path oscillations, routing loops
 - Variations in end-to-end delay and packet reordering
- Link weight setting is an art!
 - Knobs for traffic engineering
 - Reversal of cause and effect