STAT 512: Statistical Inference

Autumn 2022

Quiz Session 4: Practice Midterm Problems

Yikun Zhang October 26, 2022

The following problems are partially adopted from quiz sessions developed by Zhen Miao and Apara Venkat for STAT 512 in Autumn 2021.

Problem 1 (Expectation of a Positive Random Variable). Suppose X is a positive random variable with finite expectations, i.e., $\mathbb{E}(X) < \infty$. Show that $\mathbb{E}(X) = \int_0^\infty \mathbb{P}(X > x) \, dx$.

Proof. We start from the definition of $\mathbb{E}(X)$ and compute that

$$\begin{split} \mathbb{E}(X) &= \int_0^\infty x dF(x) \\ &= \int_0^\infty \left(\int_0^\infty \mathbbm{1}_{\{y \le x\}} dy \right) dF(x) \\ &= \int_0^\infty \left(\int_0^\infty \mathbbm{1}_{\{y \le x\}} dF(x) \right) dy \\ &= \int_0^\infty \left(\int_y^\infty dF(x) \right) dy \\ &= \int_0^\infty \mathbb{P}(X > y) dy. \end{split}$$

The result follows.

Problem 2 (Tail Bound for a Standard Normal Distribution). Suppose Z is a standard normal random variable with $z\mapsto \phi(z)=\frac{1}{\sqrt{2\pi}}\exp(-z^2/2)$ as its density function.

- (a) Show $\phi'(z) + z \cdot \phi(z) = 0$.
- (b) Use (a) to prove

$$P(Z \ge z) \le \frac{\phi(z)}{z}$$
 for all $z > 0$.

Proof. (a) It follows from $\phi'(z) = \frac{1}{\sqrt{2\pi}} \exp(-z^2/2) \cdot \frac{d}{dz} (-z^2/2) = -z\phi(z)$ that $\phi'(z) + z\phi(z) = 0$.

(b) To bound $P(Z \ge z)$, note that

$$\begin{split} P(Z \geq z) &= \int_{z}^{\infty} \phi(x) dx \\ &= \int_{z}^{\infty} -\frac{\phi'(x)}{x} dx \\ &= \int_{z}^{\infty} -\frac{1}{x} d\phi(x) \end{split}$$

$$= -\frac{\phi(x)}{x} \Big|_{z}^{\infty} - \int_{z}^{\infty} \frac{\phi(x)}{x^{2}} dx$$

$$= \frac{\phi(z)}{z} - \int_{z}^{\infty} \frac{\phi(x)}{x^{2}} dx$$

$$\leq \frac{\phi(z)}{z}.$$

The result follows.

Problem 3. Let $X \sim Uniform(0, \pi/2)$ and $\gamma > 0$ be a constant. Define $Y = \gamma \tan(X)$. Find the distribution of Y and $\mathbb{E}(Y)$.

Solution. Consider the CDF of Y as

$$\begin{split} \mathbb{P}(Y \leq y) &= \mathbb{P}\left(\gamma \tan(X) \leq y\right) \\ &= \mathbb{P}\left(X \leq \arctan\left(\frac{y}{\gamma}\right)\right) \\ &= \frac{2}{\pi}\arctan\left(\frac{y}{\gamma}\right) \end{split}$$

when $\arctan\left(\frac{y}{\gamma}\right) \in \left(0, \frac{\pi}{2}\right)$, or equivalently, $y \in (0, \infty)$. It implies that the PDF of Y is

$$f_Y(y) = \frac{d}{du} \mathbb{P}(Y \le y) = \frac{2}{\pi} \left(\frac{\gamma}{\gamma^2 + y^2} \right)$$

with $y \in (0, \infty)$, which has a form as the Cauchy distribution.

Notes: you can also obtain the same answer by using Theorem 2.1 in Lecture 2 notes.

Remark 1. Different from the usual Cauchy distribution with $(-\infty, \infty)$, the mean/expectation of Y does exist but is infinite, because

$$\mathbb{E}(Y) = \int_0^\infty \frac{2}{\pi} \left(\frac{\gamma y}{\gamma^2 + y^2} \right) dy = \frac{\gamma}{\pi} \log \left(\gamma^2 + y^2 \right) \Big|_0^\infty = \infty - \frac{2\gamma}{\pi} \log \gamma = \infty.$$

However, if we assume that $X \sim \text{Uniform}\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$ and $Y = \gamma \tan(X)$ with $\gamma > 0$, then the PDF of Y becomes

$$\tilde{f}_Y(y) = \frac{1}{\pi} \left(\frac{\gamma}{\gamma^2 + y^2} \right)$$

with $y \in (-\infty, \infty)$. In this case, Y follows the standard Cauchy distribution with scale parameter γ and its mean does not exist (or is undefined), because both integrals are infinite but with a different sign:

$$\int_{-\infty}^0 \frac{1}{\pi} \left(\frac{\gamma y}{\gamma^2 + y^2} \right) dy = -\infty \quad \ and \quad \ \int_0^\infty \frac{1}{\pi} \left(\frac{\gamma y}{\gamma^2 + y^2} \right) dy = \infty.$$

Nevertheless, the even-powered raw moments $\mathbb{E}|Y|^k$ with k being an even integer exist but are infinite.

Problem 4 (2017 MS Theory Exam). Let $X \sim Exponential(\lambda)$, $\lambda > 0$. Suppose that we only observe the fractional parts

$$Y = X - |X|,$$

where $\lfloor x \rfloor$ is the largest integer that is smaller than x. For example, if X = 5.6, then you observe Y = 0.6 and if X = 5, then you observe Y = 0. Note that $Y \in [0,1)$. What is the distribution of each Y? Hint: What are all the possible values of X when Y = y?

Solution. Notice that when Y = y, then X should be equal to either one of y, 1 + y, 2 + y, ..., because $y \in [0, 1)$ and X - Y must be an integer.

Now, consider the CDF of Y and calculate that

$$\begin{split} \mathbb{P}(Y \leq y) &= P(0 \leq X \leq y) + P(1 \leq X \leq 1 + y) + P(2 \leq X \leq 2 + y) + \dots \\ &= \sum_{k=0}^{\infty} P(k \leq X \leq k + y) \\ &= \sum_{k=0}^{\infty} \int_{k}^{k+y} \lambda e^{-\lambda x} dx \\ &= \sum_{k=0}^{\infty} e^{-\lambda k} - e^{-\lambda (k+y)} \\ &= \sum_{k=0}^{\infty} e^{-\lambda k} (1 - e^{-\lambda y}) \\ &= (1 - e^{-\lambda y}) \sum_{k=0}^{\infty} e^{-\lambda k} \end{split}$$

The summation is a geometric series. (Recall that |a| < 1, then $\sum_{r=0}^{\infty} a^r = \frac{1}{1-a}$.) Here, $a = e^{-\lambda}$. Therefore, the CDF of Y is

$$\mathbb{P}(Y \le y) = \frac{1 - e^{-\lambda y}}{1 - e^{-\lambda}},$$

whose corresponding PDF is $f_Y(y) = \frac{\lambda e^{-\lambda y}}{1 - e^{-\lambda}}$ with $y \in [0, 1)$. Thus, Y indeed follows a truncated exponential distribution to [0, 1).

Problem 5 (Poisson-Gamma). Let $X \sim Poisson(\Lambda)$, where $\Lambda \sim Gamma(\alpha, \beta)$. Find the distribution of $\Lambda \mid X = x$ and the posterior mean $\mathbb{E}(\Lambda \mid X = x)$.

Reminders: The PMF of $X \sim Poisson(\lambda)$ is $\mathbb{P}(X = x) = \frac{\lambda^x}{x!}e^{-\lambda}$, and the PDF of $\Lambda \sim Gamma(\alpha, \beta)$ is $f_{\Lambda}(\lambda) = \frac{\beta^{\alpha}}{\Gamma(\alpha)}\lambda^{\alpha-1}e^{-\beta\lambda}$.

Solution. By Bayes' rule, the conditional PDF of $\Lambda | X = x$ is given by

$$\begin{split} p(\lambda|x) &= \frac{p(x|\lambda) \cdot p(\lambda)}{p(x)} \\ &\propto p(x|\lambda) \cdot p(\lambda) \\ &= \frac{\lambda^x}{x!} e^{-\lambda} \cdot \frac{\beta^\alpha}{\Gamma(\alpha)} \lambda^{\alpha-1} e^{-\beta\lambda} \end{split}$$

$$\propto \lambda^{x+\alpha-1} e^{-\lambda(\beta+1)}$$
.

where we drop all the constants (including the factors that only depend on x) in the last step. Thus, the PDF of $\Lambda \mid x$ is of the form

$$p(\lambda \mid x) = K \cdot \lambda^{x+\alpha-1} e^{-\lambda(\beta+1)}$$

where K is the normalizing constant such that $\int_{\lambda} p(\lambda \mid x) d\lambda = 1$. Thus, we show that

$$\Lambda | X = x \sim \text{Gamma}(x + \alpha, 1 + \beta).$$

Finally, the posterior mean $\mathbb{E}(\Lambda \mid X = x)$ is given by

$$\begin{split} \mathbb{E}(\Lambda \mid X = x) &= \int_0^\infty \lambda \cdot \frac{(1+\beta)^{\alpha+x}}{\Gamma(\alpha+x)} \lambda^{\alpha+x-1} e^{-(\beta+1)\lambda} d\lambda \\ &= \frac{\Gamma(\alpha+x+1)}{\Gamma(\alpha+x) \cdot (1+\beta)} \underbrace{\int_0^\infty \frac{(1+\beta)^{\alpha+x+1}}{\Gamma(\alpha+x+1)} \lambda^{\alpha+x+1-1} e^{-(\beta+1)\lambda} d\lambda}_{\text{PDF of Gamma}(x+\alpha+1,\beta+1)} \\ &= \frac{\alpha+x}{\beta+1}. \end{split}$$

The results follow. \Box

Remark 2. Notice that the prior PDF $p(\lambda)$ and the posterior PDF $p(\lambda \mid x)$ belong to the same distribution family. In this case, we call it a conjugate prior and say that, "the conjugate prior of the Poisson distribution is the gamma distribution."

Problem 6 (Summation of Independent Gamma Random Variables). Let X_1, \ldots, X_n be independently distributed variables such that $X_i \sim Gamma(\alpha_i, \beta)$. What is the distribution of $T = \sum_{i=1}^n X_i$?

You may use the fact that the MGF of $X \sim Gamma(a,b)$ is $M_X(t) = \left(1 - \frac{t}{b}\right)^a$ where t < b.

Solution: An easy way to solve this is by using moment generating functions. We know the MGF of X_i is

$$\begin{split} M_{X_i}(t) &= \mathbb{E}[e^{tX_i}] \\ &= \left(1 - \frac{t}{\beta}\right)^{-\alpha_i}, \quad t < \beta \end{split}$$
 (can you show this?)

We know that all X_i are independent. Therefore,

$$M_{T}(t) = M_{\sum_{i=1}^{n} X_{i}}(t)$$

$$= \mathbb{E}\left[e^{t \sum_{i=1}^{n} X_{i}}\right]$$

$$= \mathbb{E}\left[\prod_{i=1}^{n} e^{tX_{i}}\right]$$

$$= \prod_{i=1}^{n} \mathbb{E}\left[e^{tX_{i}}\right]$$

$$= \prod_{i=1}^{n} \left(1 - \frac{t}{\beta}\right)^{-\alpha_{i}}, \quad t < \beta$$
(independence)

$$= \left(1 - \frac{t}{\beta}\right)^{-\sum_{i=1}^{n} \alpha_i}, \quad t < \beta$$

Given that MGFs uniquely determine the distribution, we conclude that $\sum_{i=1}^{n} X_i \sim \text{Gamma}(\sum_{i=1}^{n} \alpha_i, \beta)$.

Exercise. Can you arrive at the same result by deriving the CDFs of $\sum_{i=1}^{n} X_i$? *Hint: Start with* $X_1 + X_2$. *Then use induction to complete the argument.*

Problem 7 (Acceptance-Rejection Sampling). How can we sample $X \sim F$ with F being a distribution that has a closed-form PDF f?

Assume that we can sample $U \sim Unif(0,1)$ infinitely many times. Also, assume that we can sample $Y \sim G$ infinitely many times, where G is a known distribution with density g whose support will include the support of F. Note that X, Y, U are all independent of each other.

Define c to be a fixed constant such that $c \ge \sup_x \frac{f(x)}{g(x)}$, where $c \in [1, \infty)$ and we generally want c to be as close as possible to 1. (To see why, look at part (a).) The algorithm is as follows

- 1. Generate $Y \sim G$.
- 2. Generate $U \sim Unif(0,1)$.
- 3. If $U \leq \frac{f(Y)}{c \cdot g(Y)}$, then "accept" X := Y.
- 4. Else, "reject" and go back to step 1.
- (a) What is the probability that we accept?
- (b) Let N be the number of iterative times until an X is accepted. What is the distribution of N? On average, how many iterative times will be until we accept an X?
- (c) Show that the accepted values indeed come from distribution F.

 Hint: What is the distribution of the accepted values in Step 3?

Solution. (a) First, we look at the conditional probability as

$$\mathbb{P}\left(U \le \frac{f(Y)}{c \cdot g(Y)} \mid Y = y\right) = \mathbb{P}\left(U \le \frac{f(y)}{c \cdot g(y)}\right)$$
$$= \frac{f(y)}{c \cdot g(y)}$$

Then, the probability of acceptance is

$$\mathbb{P}(\text{"Accept"}) = \mathbb{P}\left(U \le \frac{f(Y)}{c \cdot g(Y)}\right)$$

$$= \int_{y=-\infty}^{\infty} \mathbb{P}\left(U \le \frac{f(Y)}{c \cdot g(Y)} \mid Y = y\right) g(y) dy$$

$$= \int_{y=-\infty}^{\infty} \frac{f(y)}{c \cdot g(y)} g(y) dy$$

$$= \frac{1}{c} \int_{y=-\infty}^{\infty} f(y) dy$$
$$= \frac{1}{c}$$

(b) By definition, this is a geometric distribution with probability of success as $p := \frac{1}{c}$ (think about it). In particular, $\mathbb{P}(N=n) = (1-p)^{n-1}p$ where $n=0,1,\ldots$. The expectation of N is

$$\mathbb{E}(N) = \sum_{n=0}^{\infty} n(1-p)^{n-1}p = \frac{1}{p} = c,$$

where we recall the diagnostic exercise 2 of Quiz 1 to obtain the second equality.

(c) The distribution of accepted values is a conditional distribution, $Y \mid U \leq \frac{f(Y)}{c \cdot g(Y)}$. Let us show that this is the same as F.

$$\mathbb{P}\left(Y \le y \mid U \le \frac{f(Y)}{c \cdot g(Y)}\right) = \frac{\mathbb{P}\left(U \le \frac{f(Y)}{c \cdot g(Y)} \mid Y \le y\right) \cdot \mathbb{P}\left(Y \le y\right)}{\mathbb{P}\left(U \le \frac{f(Y)}{c \cdot g(Y)}\right)}$$

$$= \frac{\mathbb{P}\left(U \le \frac{f(Y)}{c \cdot g(Y)} \mid Y \le y\right) \cdot G(y)}{\frac{1}{c}}$$
(Bayes' rule)

The probability in the numerator is slightly tricky.

$$\mathbb{P}\left(U \le \frac{f(Y)}{c \cdot g(Y)} \mid Y \le y\right) = \frac{\mathbb{P}\left(U \le \frac{f(Y)}{c \cdot g(Y)}, Y \le y\right)}{P(Y \le y)}$$

and

$$\mathbb{P}\left(U \leq \frac{f(Y)}{c \cdot g(Y)}, Y \leq y\right) = \int_{-\infty}^{\infty} \mathbb{P}\left(U \leq \frac{f(Y)}{c \cdot g(Y)}, Y \leq y \middle| Y = t\right) g(t) dt$$

$$= \int_{-\infty}^{\infty} \mathbb{P}\left(U \leq \frac{f(y)}{c \cdot g(y)}, t \leq y\right) g(t) dt$$

$$= \int_{-\infty}^{y} \mathbb{P}\left(U \leq \frac{f(y)}{c \cdot g(y)}\right) \cdot \mathbb{1}_{\{t \leq y\}} \cdot g(t) dt$$

$$= \int_{-\infty}^{y} \mathbb{P}\left(U \leq \frac{f(Y)}{c \cdot g(Y)}\right) g(t) dt$$

$$= \int_{-\infty}^{y} \frac{f(t)}{c \cdot g(t)} g(t) dt$$

$$= \frac{1}{c} \int_{-\infty}^{y} f(t) dt$$

$$= \frac{F(y)}{c},$$

which implies that $\mathbb{P}\left(U \leq \frac{f(Y)}{c \cdot g(Y)} \mid Y \leq y\right) = \frac{F(y)}{c \cdot G(y)}$. Finally,

$$\begin{split} \mathbb{P}\left(Y \leq y \mid U \leq \frac{f(Y)}{c \cdot g(Y)}\right) &= \frac{\frac{F(y)}{c \cdot G(y)} \cdot G(y)}{\frac{1}{c}} \\ &= F(y) \end{split}$$

which was the target distribution.

Remark 3. The interested readers can be referred to http://www.columbia.edu/~ks20/4703-Sigman/4703-07-Notes-ARM.pdf for more discussion about acceptance-rejection methods.