AD-A253 813

NSWCDD/TR-92/54

EXPERIMENTAL CALIBRATION OF THE NSWC EXPANDED LARGE SCALE GAP TEST

BY DOUGLAS G. TASKER and ROBERT N. BAKER, JR.

RESEARCH AND TECHNOLOGY DEPARTMENT

JANUARY 1992

Approved for public release; distribution is unlimited.

Best Available Copy

NAVAL SURFACE WARFARE CENTER

Dahlgren, Virginia 22448-5000 e Silver Spring, Maryland 20903-5000

92-20914

FOREWORD

The NSWC Expanded Large Scale Gap Test (ELSGT) is to be used as the standard test, for the UN and the NATO, to determine the shock sensitivity of candidate extremely insensitive detonating substances (EIDS). These EIDS are to be used in extremely insensitive articles which do not constitute a mass detonation hazard (class/division 1.6).

This report presents the first complete experimental calibration of the ELSGT and the techniques used to obtain the calibration data. The study was performed for the Department of Defense Explosives Safety Board (DDESB), Code KT, under the cognizance of Dr. J. N. Ward.

Grateful thanks to R. Hay (R13) for absolutely superb trace reading work. As a result the (x, t) data presented here are of the highest quality. The authors also are grateful to H. Sandusky and C. Groves for their independent verification of the data. Thanks also to R. Bernecker for his support and interest. This work would not have been possible without the encouragement and inspiration of M. Swisdak.

Approved by:

WILLIAM H. BOHLI, Acting Head

William H. Boll.

Energetic Materials Division

ABSTRACT

The NSWC ELSGT is to be used as the standard test for the UN and the NATO to determine the shock sensitivity of candidate extremely insensitive detonating substances. This report presents the first complete experimental calibration of the ELSGT and the techniques used to obtain the calibration data. In particular a improved method of differentiating photographic streak camera (x, t) data is described.

Streak camera data must be numerically differentiated to obtain wave velocities as functions of time or distance. For time-varying or structured data, techniques such as spline or polynomial fitting are frequently employed. These techniques are usually adjusted by the researcher until the results are acceptable. Consequently, the results can be biased by the method. A new, unbiased, efficient, and accurate method based on the Kaiser and Reed algorithm is described. This method will be demonstrated by its application to the first experimental calibration of the ELSGT.

M311CDD/1R-74/34

CONTENTS

<u>Chapter</u>		Page
1	INTRODUCTION	1-1
2	EXPERIMENTAL METHOD	2-1
3	RESULTS AND DATA ANALYSES	3-1
4	ERROR ANALYSIS	4-1
5	CONCLUSIONS AND RECOMMENDATIONS	5-1
	REFERENCES	6-1
<u>Appendix</u>		
Α	IMAGE DISTORTION DUE TO REFRACTION IN THE PMMA CYLINDER .	A-1
В	RAW DATA	B-1
C	THE NERD FILTER	C-1
D	INDEPENDENT TEST OF DATA REDUCTION TECHNIQUES	D-1
E	NERD FILTER FUNCTIONS WRITTEN IN THE C COMPUTER LANGUAGE	E-1

ILLUSTRATIONS

igure		Page
1-1	ELSGT GAP TEST ASSEMBLY	1-2
2-1	CALIBRATION ASSEMBLY	2-2
2-2	FOCUSSING DEVICE	2-4
2-3	STREAK PHOTOGRAPH FOR EXPERIMENT #E674	2-6
3-1	RAX (x, t) DATA FROM THE THREE EXPERIMENTS	3-2
3-2	UNFILTERED SHOCK VELOCITY DATA VS. TIME	3-6
3-3	LOGARITHMIC SPECTRUM OF UNFILTERED VELOCITY DATA, SCALED BY $1/\sqrt{(2\pi)}$. (a) FULL SPECTRUM, 0 TO 18 MHz; (b) EXPANDED SPECTRUM, 0 TO 1 MHz	3-7
3-4	SHOCK VELOCITY DATA OBTAINED USING NERD FILTER FOR THREE EXPERIMENTS	3-8
3-5	CALCULATED PARTICLE VELOCITIES	3-10
3-6	RESULTS OF ELSGT CALIBRATION, PRESSURE VS. TIME, FOR ALL THREE EXPERIMENTS	3-11
3-7	RESULTS OF ELSGT CALIBRATION, PRESSURE VS. DISTANCE, DATA AVERAGED OVER THREE EXPERIMENTS	3-13
A-1	REFRACTION OF STREAK IMAGE THROUGH PMMA CYLINDER	A-2
D-1	COMPARISON OF PRESSURE DATA FROM NEPD FILTERING AND SPLINE-FITTING	D-2

TABLES

<u>Table</u>		Page
3-1	NERD FILTER PARAMETERS FOR THE MEASURED STREAK DATA	3-4
3-2	NSWC ELSGT CALIBRATION DATA, PRESSURE P _x VERSUS DISTANCE x, 9 TO 100 mm, AT 0.25 mm INCREMENTS	3-15
4-1	RESULTS OF DIFFERENTIATING ARTIFICIAL STREAK RECORD	4-2
4-2	ERRORS IN SHOCK VELOCITY DUE TO POSITION UNCERTAINTY	4-3
4-3	ERRORS IN PRESSURE DUE TO ERRORS IN U _S	4-4
4-4	TOTAL ERRORS IN PRESSURE DUE TO ERRORS IN POSITION, HUGONIOT, AND $U_{\rm S}$ FOR THE AVERAGE OF THREE EXPERIMENTS	4-5
B-1	E673 CALIBRATION DATA, (x, t), DISTANCE VS. TIME	B-2
B-2	E674 CALIBRATION DATA, (x, t), DISTANCE VS. TIME	B-3
B-3	E675 CALIBRATION DATA, (x, t), DISTANCE VS. TIME	B-6
B-4	E673 CALIBRATION, (U _S , t), SHOCK VELOCITY VS. TIME, OBTAINED BY APPLYING NERD FILTER TO DATA OF TABLE B-1	B-8
B-5	E674 CALIBRATION, (U _S , t), SHOCK VELOCITY VS. TIME, OBTAINED BY APPLYING NERD FILTER TO DATA OF TABLE B-2	B-9
B-6	E675 CALIBRATION, (U _S , t), SHOCK VELOCITY VS. TIME, OBTAINED BY APPLYING NERD FILTER TO DATA OF TABLE B-3	B-12
B-7	E673 CALIBRATION, (u _p , t), PARTICLE VELOCITY VS. TIME, OBTAINED BY APPLYING EQUATION (3-7) TO DATA OF TABLE B-4	B-14
B-8	E674 CALIBRATION, (up, t), PARTICLE VELOCITY VS. TIME, OBTAINED BY APPLYING FOLIATION (3-7) TO DATA OF TABLE B-5	R-15

TANAL PROPERTY OF

TABLES (Cont.)

<u>Table</u>		Page
B-9	E675 CALIBRATION, (u _p , t), PARTICLE VELOCITY VS. TIME, OBTAINED BY APPLYING EQUATION (3-7) TO DATA OF TABLE B-6	B-18
B-10	E673 CALIBRATION, (P, t), PRESSURE VS. TIME, OBTAINED FROM DATA OF TABLES B-4 AND B-7	B-20
B-11	E674 CALIBRATION, (P, t), PRESSURE VS. TIME, OBTAINED FROM DATA OF TABLES B-5 AND B-8	B-21
B-12	E675 CALIBRATION, (P, t), PRESSURE VS. TIME, OBTAINED FROM DATA OF TABLES B-6 AND B-9	B-24
D-1	INDEPENDENT CALCULATION OF PRESSURE BY SPLINE-FITTING	D-3

INTRODUCTION

The NSWC Expanded Large Scale Gap Test¹ (ELSGT) is to be used as the standard test, for the UN and the NATO, to determine the shock sensitivity of candidate extremely insensitive detonating substances (EIDS). These EIDS are to be used in extremely insensitive articles which do not constitute a mass detonation hazard (class/division 1.6). This report presents the first complete experimental calibration of the ELSGT and the techniques used to obtain the calibration data.

The ELSGT was designed to measure the shock sensitivity to detonation of explosives; it is a larger scale version of the NSWC Large Scale Gap Test (LSGT).² A pentolite explosive donor charge propagates a shock into a polymethyl methacrylate (PMMA) attenuator, the gap; see Figure 1-1. The gap then transmits the shock into the explosive acceptor being tested. The ELSGT donor and gap diameters are both 95.25 mm. By varying the length of the gap the pressure transmitted to the interface between the explosive acceptor and the gap can be controlled.

By definition the failure diameter is that diameter below which the explosive cannot sustain detonation, so the explosive cannot be tested to determine the shock necessary for detonation below that diameter. Both the LSGT and ELSGT methods provide steel confinement for the material under test, the acceptor. The confinement increases the apparent diameter of the acceptor by delaying the arrival of rarefactions from the outer surfaces. However the LSGT cannot be used for materials of confined failure diameters greater than 50 mm. The larger diameter ELSGT, therefore, can be used to test insensitive materials that tend to have confined failure diameters less than 95 mm; this range is suitable for most materials.

The calibration described here is based on a careful measurement of the velocity of the shock U_S propagated along the central axis of the cylindrical PMMA gap. The pressure corresponding to U_S was then calculated using the following well known relationship,

$$p - p_0 = \rho_0 u_p U_s \tag{1-1}$$

This relationship is based on the conservation of mass and momentum. Here ρ_0 is the density of the PMMA, u_p the particle or mass velocity and the original pressure, p_0 is small ($\approx 10^5$ Pa) so it is neglected in this study.

FIGURE 1-1. ELSGT GAP TEST ASSEMBLY

The particle velocity can be obtained by direct measurement or from well documented experimental shock Hugoniot data that relate u_p to U_S . A typical Hugoniot is in the form of a straight line, e.g., $U_S = a \ u_p + b$ where a and b are constants, or sometimes a polynomial. In this study, the particle velocities in PMMA have been obtained from published Hugoniot data and not by direct measurement.

The shock velocity U_S data presented here are believed to be of the highest precision and accuracy. The particle velocity data and thus the pressure calibration data can be influenced by the choice of the shock Hugoniot used. An example of the likely inaccuracies of these pressure data due to the choice of Hugoniot is presented. The results could be verified by direct particle velocity or pressure measurements. This would be done using *in situ* gauges at discrete positions in the PMMA attenuator.

The estimated mean error of the pressure calibration is between 1.6 and 4.1 percent between 9 and 100 mm of PMMA attenuator distance. These errors are largely due to the method of estimating particle velocity, i.e., from the measured shock velocity and published Hugoniot data. The uncertainty of the calculation of shock velocities from the streak photograph data, using the NERD filter method described in Chapter 3, was estimated to be only 0.05 percent.

EXPERIMENTAL METHOD

THE ELSGT TEST CALIBRATION ASSEMBLY

Components

<u>Donors</u>. The calibration assembly is shown in Figure 2-1. The two donor charges were pressed to a density of nominally $1560 \pm 10 \text{ kg/m}^3$ by Chemtronics, Inc., Swannanoa, North Carolina. They were both 95.25 mm diameter and 47.5 mm high. The faces of the donor assembly and the PMMA gap were joined with thin layers of cyano acrylate adhesive (Eastman 910) to exclude air.

PMMA gaps. The PMMA gaps were accurately machined from cast, annealed, UV grade PMMA of 1186 kg/m³ density. The gaps were lapped and polished to lengths of 70.0 mm for experiments #E673 and #E675, and 150 mm for #E674. The diameters were polished to 95.25 mm (3.75"), as supplied by the manufacturer. The original rounded cylindrical surfaces on the sides of the cylinders were slightly rippled. However, the progress of the detonation front must be observed through these curved sides, and errors would result if these surfaces were distorted. The distortion was avoided by machining parallel flats, 12.7 mm wide, along the length of the PMMA cylinders; these were lapped and polished flat to optical clarity. The use of parallel flats is similar to the techniques reported by Erkman.³

<u>Detonator</u>. A Reynolds RP80 exploding bridge wire detonator was used to initiate the donor charges. This was held in the center of the first donor by a wooden locating disk.

Optical Techniques

The experiments were performed at NSWC White Oak, in September 1988, using a 'Cordin 132' streak camera to measure the shock velocity of the attenuated wave in the PMMA attenuating cylinder, the 'gap'.

The streak images were focussed onto the camera slit with a 1000 mm lens. Care was taken to ensure that the lens was focussed exactly onto the central axis of the PMMA cylinder, and that the axis was exactly aligned parallel to the camera slit. The alignment is described below.

FIGURE 2-1. CALIBRATION ASSEMBLY

Focussing and Alignment

The use of a special focussing device eliminated errors caused by poor lens focussing or lack of parallelism between the gap axis and the streak camera slit. It also eliminated displacement errors due to refraction in the PMMA block; these would otherwise increase the image magnification, and thus the observed velocity, by ≈ 0.65 percent; see Appendix A.

Focussing device. The focussing device was manufactured from a 95.25 mm diameter PMMA cylinder that had been carefully machined into two halves. The cut surface of one half was lapped and polished flat onto the exact center axis of the cylinder, hence it had a 'D' cross-section. This polished surface was parallel to the 12.7 mm flat on the front, curved surface of the cylinder. A calibrated scale was attached to the axial flat to facilitate focussing. A front-silvered mirror was glued to the 12.7 mm flat. The whole device was mounted on the shot-stand in a V-groove assembly; see Figure 2-2.

The camera slit was back-lit and its image projected onto the focussing device's mirror via the camera lens. Alignment was achieved by turning the focussing device until the slit image, reflected by the mirror, exactly coincided with the slit. The lens was then focussed onto the image of the scale at the back of the PMMA half cylinder. Finally the V-groove assembly was clamped into position. The end of the focussing device determined the position of the PMMA/pentolite interface, i.e., the x = 0 position.

The focussing device was then removed from the V-groove and replaced by the assembled pentolite and PMMA gap. The V-groove ensured that the axis of the cylindrical gap had been aligned exactly parallel and in focus with the camera slit.

A static photograph was then taken, with the camera slit removed, to measure the optical magnification in the experiment. The slit was replaced for the experiment. The scale image was recorded onto the same photographic film used to record the streak. Consequently, errors due to lack of focus and refraction effects were virtually eliminated. The linearity of the 1000 mm lens was tested by measuring the scale divisions at various positions within the field of view of the experiment. The errors were too small to detect within the accuracy of the trace reading equipment, i.e., $2 \mu m$.

Lighting. All the curved outer surfaces of the PMMA, excluding the two parallel 12.7 nm flats, were covered in black masking tape to exclude stray light. The shot was illuminated from behind with a 75 mm exploding wire light source.⁴ The light wire was aligned parallel to the PMMA axis and was masked to a length of ≈ 1 cm so that it approximated to a point source. The light was collimated with a disposable plastic Fresnel lens.

FIGURE 2-2. FOCUSSING DEVICE

<u>Camera speed</u>. The mirror turbine of the streak camera was rotated at a speed chosen to produce streak records that were approximately 45° to the horizontal. The finite width of the camera slit introduces uncertainties in the position of the edge of the streak, and thus errors in trace reading. At 45° these reading errors are minimized.

Optical Results. The resultant streak negatives were of outstanding quality. The edges of the streaks are in excellent focus and of good contrast. The photographic record of experiment #E674 is shown in Figure 2-3.

FIGURE 2-3. STREAK PHOTOGRAPH FOR EXPERIMENT #E674

RESULTS AND DATA ANALYSES

TRACE READING

The streak traces were read with a travelling microscope which was equipped with optical shaft encoders; the resolution and accuracy was $\pm 2~\mu m$. The film negatives were aligned under the microscope so that the time axis was exactly parallel to the horizontal (x) direction of the microscope carriage. The edge of the streak was then read at 50 μm intervals in the x direction. The equally-spaced measurements facilitated subsequent analyses of the data by Fourier transform and Nearly Equal Ripple Differentiation (NERD), see below. The data were transferred to a personal computer for analysis.

The trace reading precision was estimated by making 30 independent measurements at each of 10 individual locations along the streak. In this way the maximum standard deviation of each measurement, from the true streak, was estimated to be 5 μ m over the calibrated length of the streak negative.

The streak data were checked and rechecked to minimize errors due to trace reader tilt. The tilt was reduced to less than 10 μ m over a 60 mm length of the streak, i.e., < 1/6 mrad.

The optical magnification for each experiment was obtained by careful comparisons of the length of the original focussing scale and its images as viewed through the camera system and the PMMA cylinder.

RAW (x, t) DATA

Two lengths of PMMA attenuator were used: a 70 mm long PMMA attenuator for experiments #E673 and #E675 and a 150 mm attenuator for #E674. The (x, t) data of all three shots are plotted in Figure 3-1. The data are in such good agreement that they appear as one single curve. These data were carefully verified by repeated trace reading to ensure accuracy. The raw (x, t) data for the three experiments are reproduced in Appendix B.

FIGURE 3-1. RAW (x, t) DATA FROM THE THREE EXPERIMENTS

SHOCK VELOCITY OBTAINED USING THE NEARLY EQUAL RIPPLE DIFFERENTIATING (NERD) FILTER

This filter method was developed by Kaiser and Reed;⁵ it is discussed in detail in Appendix C. It will be shown that, unlike the more common least squares polynomial and spline fitting methods, the NERD method does not employ any fitting to obtain the results. Consequently, the results are not biassed by the numerical method and the degree of smoothing can be controlled and defined. By comparison, the least squares polynomial and spline fitting techniques rely on subjective assessments of the necessary degree of smoothing; smoothing is usually repeated until the results look acceptable. With these methods the smoothing is never defined in absolute terms.

The NERD method obtains the differentiated and filtered data by convolving the original (x, t) data with a filter function comprised of a set of $2N_p$ coefficients b_k .

$$U_{s}(t) = \left(\frac{dx}{dt}\right)_{i} = \sum_{k=1-N_{p}}^{N_{p}} b_{k} x_{i-k}$$
 (3-1)

Here x_{i-k} corresponds to the point $(x, \{i-k\}\delta t)$ where δt is the time increment. The derivative $(dx/dt)_t$ corresponds to the velocity midway between t and $(t-\delta t)$, i.e., there is a a half-sample delay or numerical shift, this is discussed later in the chapter. The coefficients b_k correspond to the required filter function; they are each defined by β , ϵ , and δ ; and they are independent of the (x, t) data. See Appendix C for further details.

The NERD method, as applied here, relies on two properties of the spectrum of differentiated streak data: the narrow, low frequency data bandwidths and the method of differentiation in the frequency domain. To demonstrate these properties we approximate the streak to a straight line: x = f(t) = Vt, and $t = -\tau/2$ to $+\tau/2$, where V is a constant (the velocity), t is time, and x is distance.

Bandwidth of the Straight Line

The numerical noise introduced by trace reading has a broad frequency spectrum.^{6,7} The spectrum of the streak, on the other hand, has an extremely narrow, low frequency spectrum. Consequently, it is possible to use filtering techniques to selectively attenuate the noise with little effect on the required streak data.

It can be shown that the Fourier spectrum $\mathfrak{F}(\omega)$ can be defined as

$$\Im(\omega) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{+\infty} f(t) e^{-j\omega t} dt = \frac{V}{\sqrt{2\pi}} \int_{-\tau/2}^{+\tau/2} t e^{-j\omega t} dt$$
 (3-2)

110110222/11772/07

then
$$\Im(\omega) = \frac{-2jV}{\sqrt{2\pi}} \frac{\sin \omega \tau/2}{\omega^2}$$
 (3-3)

here ω is the radial frequency = $2\pi \nu$, ν is the frequency, and $j^2 = -1$. Clearly the $1/\omega^2$ factor restricts the spectrum to a narrow, low frequency range.

Method of Differentiation Illustrated with the Straight Line

The velocity spectrum of any transform of (x, t) data is simply the product of the spectrum of the (x, t) data multiplied by $j\omega$. Consequently, the transform of the artificial velocity data can be obtained from Equation (3-3).

$$\Im(\frac{dx}{dt}) = j\omega \Im(x) = \frac{2V}{\sqrt{2\pi}} \frac{\sin \omega \tau/2}{\omega}$$
 (3-4)

The term $\{\sin \omega \tau/2\}/\omega$ is identical to the spectrum of a square pulse of duration τ . Of course $\mathfrak{S}(dx/dt)$ is the spectrum of a wave of constant velocity V because we originally specified a straight line of constant slope V.

TABLE 3-1. NERD FILTER PARAMETERS FOR THE MEASURED STREAK DATA

Constant	Value	<u>Description</u>
β	0.025	Relative pass bandwidth, e.g., 0.45 MHz for #E674
δ	0.05	Relative width of transition from pass to stop band, e.g., 0.9 MHz for #E674
ε	0.01	Allowable error (due to Gibb's oscillation ⁸) introduced by filter

CHOICE OF NERD FILTER CHARACTERISTICS FOR THE MEASURED STREAK DATA

The spectrum of the unfiltered or raw velocity $U_S(t)$ data was needed to choose the filter's characteristics. A rudimentary differentiation of the (x, t) data was performed using the finite-difference method to obtain $U_S(t)$, Equation (3-5). These velocity data were only used to choose the filter parameters, not for the ELSGT calibration, where x_t is the x value at time t and δt is the time increment.

$$U_{s}(t) = \left(\frac{dx}{dt}\right)_{t} \sim \frac{x_{t+\delta t} - x_{t}}{\delta t}$$
 (3-5)

.....

The spectrum of these raw shock velocity data, $\mathfrak{F}(dx/dt)$ or $\mathfrak{F}(U_S)$, was obtained by the fast Fourier transform (FFT) method. The unfiltered velocity data are plotted against time in Figure 3-2; and the logarithmic velocity spectrum is shown in Figure 3-3 for the same data; the spectrum is scaled by $1/\sqrt{2\pi}$ as in Equation (3-2). The amplitude of the logarithmic spectrum falls rapidly by two orders of magnitude between 0 and 0.41 MHz, i.e., to 1 percent of the zero frequency magnitude.

CHOICE OF FILTER BANDWIDTH, &

The spectrum of Figure 3-3 shows that no useful information can be obtained above 0.45 MHz as the data is too noisy. The frequency of 0.45 MHz corresponds to $\beta = 0.025$ or 1/40th of the full or Nyquist bandwidth. (The Nyquist limit F_{max} is related to the sampling interval δt by $F_{max} = 1/2\delta t$). Consequently a value of $\beta = 0.025$ was chosen; this rejects most of the noisy data while maintaining the true streak data; see below.

The NERD filter essentially multiplies the spectrum of the (x, t) data by $j\omega$ for frequencies from zero up to the relative cut-off frequency β , and attenuates all data above β .

VELOCITY REJULTS

<u>Filter</u>

The filter was thus chosen to have the characteristics shown in Table 3-1. The data are filtered by convolution with a filter function as shown in Equation (3-1).

The results for all three experiments are shown in Figure 3-4. The U_S data fluctuate and it can be seen that, at distances greater than 100 mm (t > 24 μ s), the precision is significantly reduced. The reduced precision is caused by the low image contrast, at the streak edge, at pressures less than 1 GPa; this results from a combination of a smaller rate of change of pressure in the shock front (dp/dx) and a smaller change in refractive index. Note that the longitudinal wave velocity in PMMA is 2.7 km/s; all the velocities in Figure 3-4 exceed 3.1 km/s and therefore represent a shock wave.

Because the x_i data are filtered over points i - $(1-N_p)$ to i + N_p then $(N_p$ -1) and N_p , points at the beginning and end of the x data cannot be differentiated. N_p depends on the degree of filtering, ϵ .g., if δ = 0.05 and ϵ = 0.01 then N_p = 45, for δ = 0.2 and ϵ = 0.01 then N_p = 11; see Appendix C.

Correction for Numerical Shift

The NERD routine calculates the velocity mid-way between each pair of points. Thus, the velocity data are thus shifted by half the sampling interval (25 μ m ÷ magnification in this work). This small effect can often be ignored, however, corrections have been made for this effect in the following velocity data.

FIGURE 3-2. UNFILTERED SHOCK VELOCITY DATA VS. TIME

FIGURE 3-3. LOGARITHMIC SPECTRUM OF UNFILTERED VELOCITY DATA
(a) FULL SPECTRUM, 0 TO 18 MHz;
(b) EXPANDED SPECTRUM, 0 TO 1 MHz

FIGURE 3-4. SHOCK VELOCITY DATA OBTAINED USING NERD FILTER FOR THREE EXPERIMENTS

PARTICLE VELOCITY CALCULATION

The particle velocities, u_p , were obtained from the U_S data by solution of the Hugoniot equations of Erkman;² these are:

For
$$0.03 \le u_p \le 0.5363 \text{ km/s}$$
:

$$U_s = 2.7228 + 4.0667 u_p - 10.9051 u_p^2 + 10.6912 u_p^3$$
(3-6)

For
$$u_p \ge 0.5363 \text{ km/s}$$
:

$$U_s = 2.561 + 1.595 u_p$$
(3-7)

The polynomial Equation (3-6) was solved by Newton's approximation for each point below 0.5363 km/s; the numerical accuracy was 1 part in 10⁸. The linear Equation (3-7) was solved exactly.

The results for all three experiments are shown in Figure 3-5. It is seen that there is an apparent discontinuity in the data in the region where $u_p = 0.5$ km/s and $U_S = 3.3$ km/s. This is due to the pronounced curvature in the PMMA Hugoniot at these velocities and not to errors in the raw data; it is a real discontinuity in the U_S - u_p relationship.

Errors in PMMA Hugoniot

As will be seen later, only Equation (3-7) was necessary for the final calibration. This equation fits the data of Barker and Hollenbach, and Shuler and Nunziato with a standard deviation (SD) of 11 m/s in particle velocity for any given shock velocity in the range from 3.3 to 5.6 km/s.

Pressure Calculation, the ELSGT Calibration Data

The final results were obtained for three individual calibration experiments by the use of Equation (1-1) for a density $\rho_0 = 1186 \text{ kg/m}^3$. The results are shown in Figures 3-6 and 3-7 for pressure versus time and distance. The data were averaged between 9 and 70 mm for the three experiments.

The distances shown in Figure 3-7 were obtained using the (x, t) data of Figure 3-1. The distances shown have been reduced for the numerical shift (described on Page 3-5). The correction is 25 μ m ÷ magnification, i.e., 35 μ m and 71 μ m for the 70 mm and 150 mm experiments. The results are tabulated as pressure versus distance data in Table 3-2. For convenience, the Table 3-2 data have been interpolated to distance increments of 0.25 mm.

FIGURE 3-5. CALCULATED PARTICLE VELOCITIES

FIGURE 3-6. RESULTS OF ELSGT CALIBRATION, PRESSURE VS. TIME, FOR ALL THREE EXPERIMENTS

As described earlier the data are not considered reliable for x > 100 mm, $t > 24 \mu s$, for two reasons: the difficulty in reading the weak traces and the uncertainty of the PMMA shock Hugoniot for $u_p < 0.5$ km/s.

INDEPENDENT VERIFICATION OF PRESSURE CALCULATIONS

These pressure data were independently verified by Sandusky and Groves¹¹ at NSWCDD. They read the photographic records of this work using a different trace-reading apparatus than the one described here. Subsequently, they reduced the data to shock velocity, particle velocity, and pressure using spline-fitting techniques. The results are shown in Appendix D.

FIGURE 3-7. RESULTS OF ELSGT CALIBRATION, PRESSURE VS. DISTANCE, DATA AVERAGED OVER THREE EXPERIMENTS

TABLE 3-2. NSWC ELSGT CALIBRATION DATA, PRESSURE $P_{(x)}$ VERSUS DISTANCE x, 9 TO 100 mm, AT 0.25 mm INCREMENTS

x mm	P _(x) GPa	P _(x+.25) GPa	P _(x+.5) GPa	P _(x+.75) GPa	x mm	P _(x) GPa	P _(x+.25) GPa	P _(x+-3) GPa	P _(x+.75) GPa
9.00	10.96	10.89	10.81	10.74	55.00	4.91	4.89	4.87	4.85
10.00	10.67	10.59	10.52	10.43	56.00	4.83	4.81	4.79	4.78
11.00	10.35	10.28	10.21	10.14	57.00	4.76	4.74	4.72	4.70
12.00	10.06	9.99	9.92	9.85	58.00	4.68	4.66	4.64	4.62
13.00	9.79	9.73	9.66	9.61	59.00	4.60	4.58	4.56	4.53
14.00	9.55	9.49	9.43	9.37	60.00	4.51	4.49	4.46	4.44
15.00	9.31	9.26	9.20	9.15	61.00	4.41	4.39	4.37	4.34
16.00	9.10	9.04	8.99	8.93	62.00	4.31	4.28	4.26	4.24
17.00	8.88	8.82	8.77	8.73	63.00	4.22	4.19	4.17	4.15
18.00	8.67	8.63	8.58	8.53	64.00	4.13	4.10	4.68	4.05
19.00	8.48	8.44	8.39	8.35	65.00	4.92	4.00	3.97	3.94
20.00	8.31	8.27	8.23	8.18	66.00	3.91	3.88	3.86	3.83
21.00	8.14	8.11	8.07	8.63	67.00	3.80	3.78	3.75	3.72
22.00	8.00	7.96	7.93	7. 89	68.00	3.70	3.68	3.66	3.63
23.00	7.86	7.83	7.79	7.76	69.00	3.61	3.59	3.57	3.55
24.00	7.72	7.69	7.66	7.62	70.00	3.53	3.51	3.48	3.46
25.00	7.58	7.55	7.51	7.48	71.00	3.43	3.41	3.39	3.37
26.00	7.44	7.40	7.37	7.33	72.00	3.34	3.31	3.29	3.26
27.00	7.30	7.26	7.23	7.19	73.00	3.23	3.20	3.18	3.15
28.00	7.16	7.13	7.09	7.06	74.00	3.13	3.11	3.09	3.07
29.00	7.03	7.00	6.97	6.94	75.00	3.05	3.03	3.01	3.00
30.00	6.91	6.88	6.85	6.82	76.00	2.98	2.96	2.95	2.93
31.00	6.79	6.77	6.74	6.71	77.00	2.92	2.90	2.89	2.87
32.00	6.68	6.65	6.62	6.59	78.00	2.85	2.83	2.80	2.78
33.00	6.57	6.54	6.51	6.48	79.00	2.76	2.74	2.71	2.69
34.00	6.45	6.42	6.40	6.37	80.00	2.66	2.54	2.61	2.59
35.00	6.34	6.32	6.29	6.27	81.00	2.57	2.55	2.53	2.51
36.00	6.25	6.23	6.20	6.18	82.00	2.50	2.48	2.47	2.45
37.00	6.16	6.14	6.12	6.10	83.00	2.44	2.43	2.42	2.41
38.00	6.08	6.07	6.05	6.03	84.00	2.40	2.39	2.38	2.37
39.00	6.01	5.99	5.97	5.96	85.00	2.36	2.35	2.34	2.33
40.00	5.94	5.92	5.90	5.88	86.00	2.31	2.30	2.29	2.27
41.00	5.86	5.83	5.81	5.79	87.00	2.26	2.25	2.23	2.22
42.00	5.77	5.75	5.73	5.71	88.00	2.20	2.19	2.18	2.16
43.00	5.69	5.67	5.66	5.64	89.00	2.15	2.14	2.13	2.11
44.00	5.62	5.61	5.59	5.57	90.00	2.10	2.09	2.08	2.07
45.00	5.56	5.54	5.53	5.51	91.00	2.06	2.05	2.04	2.03
46.00	5.49	5.47	5.45	5.44	92.00	2.02	2.02	2.01	2.00
47.00	5.42	5.39	5.38	5.35	93.00	1.99	1.99	1.98	1.97
48.00	5.33	5.31	5.29	5.27	94.00	1.96	1.96	1.95	1.94
49.00	5.25	5.23	5.22	5.20	95.00	1.94	1.93	1.93	1.92
50.00	5.18	5.17	5.15	5.14	96.00	1.91	1.91	1.90	1.89
51.00	5.13	5.11	5.10	5.09	97.00	1.88	1.87	1.86	1.84
52.00	5.08	5.07	5.06	5.04	98.00	1.82	1.81	1.79	1.76
53.00	5.03	5.02	5.00	4.99	99.00	1.73	1.69	1.66	1.62
54.00	4.98	4.96	4.94	4.93	100.00	1.57			

ERROR ANALYSIS

RELATIONSHIP BETWEEN ERRORS IN SHOCK VELOCITY AND PRESSURE

For the calibrated range (9 to 100 mm) the linear Hugoniot of Equation (3-7) can be used. This is combined with Equation (1-1) to obtain pressure in terms of U_S .

$$U_s = a + bu_p,$$
and $P = \rho_0 U_s \frac{(U_s - a)}{b}$

$$(4-1)$$

From conventional error analysis the standard deviation (SD) in pressure, δP , can be expressed in terms of the deviations in shock velocity, δU_S , and particle velocity, δu_p . Because u_p is obtained directly from U_S using Equation (3-7) the two deviations are added, i.e., they are dependent variables. The deviation in U_S consists of the combined effects of: the error in position (due to optical misalignment); the error due to numerical differentiation of noisy data by the NERD technique; and the systematic error introduced by the finite width of the camera slit.

$$\frac{\delta P}{P} \sim \frac{\delta U_s}{U_s} + \frac{\delta u_p}{u_p} \tag{4-2}$$

Combining equations we obtain the deviation in pressure solely due to deviation in the shock velocity,

$$\frac{\delta P}{P} = \frac{(2U_s - a)}{U_{\bullet} - a} \frac{\delta U_s}{U_{\bullet}} \tag{4-3}$$

However, for independent variables the <u>variance</u> of the result, P here, would be obtained from the sum of the variances of the independent factors. Consequently, the errors due to the calculation of u_p from the Hugoniot, δu_p , are treated as independent errors, see below.

Numerical Errors in Calculating U_s with the NERD Filter

The numerical errors introduced by measurement of the streak record depend on the sharpness of the edge of the photographic image. These errors are obvious in Figure 3-2.

To estimate the error, an artificial streak record, with a velocity of 4 km/s and the same optical magnification, was modified by the addition of numerical noise; the result differentiated. The SD of the added noise n(t) was set equal to the measured SD of the real data. The SD was estimated by reading 10 points on the trace, 30 times each. The points were read in sequence, i.e., 1, 2, 3, 4, ..., 10, 1, 2, 3, 4, ... etc. The trace reader carriage was moved to each x (time) position in turn then the y (distance) value was measured. The mean SD for the 10 points between 0 and 100 mm was 5.0 μ m, with a standard error of 0.3 μ m. Above 100 mm, the SD increased to 8.5 μ m.

A value of 5.0 μ m was used as the SD of the measured data from the true streak data, for the calibration range of 9 to 100 mm. Therefore, a noise signal n(t) of SD 5.0 μ m was added to the artificial streak x = Vt.

$$x = Vt + n(t)$$
 for $\frac{-\tau}{2} < t < \frac{\tau}{2}$ (4.4)

The NERD filter technique, with the same values of β , δ , and ϵ as in Table 3-1, was used to differentiate these artificial (x, t) data. The results are presented in Table 4-1.

TABLE 4-1. RESULTS OF DIFFERENTIATING ARTIFICIAL STREAK RECORD

True mean velocity, V	4 km/s
Mean velocity calculated with NERD differential method	3.99988 km/s
SD of differentiated data, σ	2.76 m/s
Number of points	1312

Assuming that the errors in trace reading are random and normally distributed, then the error in shock velocity $\delta U_S \approx 2.76$ m/s, and would be $< 3.29\sigma$ (9.08 m/s) for 99.9 percent of the calculated velocity data. These estimates do not include the other errors described elsewhere.

Errors in U_S Due to Optical Alignment of PMMA/Pentolite Interface

The greatest error in optical alignment probably was due to the positioning of the PMMA/pentolite interface. Care was taken to place the interface at the x=0 position. However, it is likely that there was an error in the position of $\delta x\approx 0.2$ mm. This would lead to an error in shock velocity, δU_S depending on the value of U_S , i.e., $\delta U_S=\delta x\,dU_S/dx$. The dU_S/dx term can be obtained from the U_S data as functions of time using

$$\frac{dU_{S}}{dx} = \frac{dU_{S}}{dt}\frac{dt}{dx} = \frac{1}{U_{\bullet}}\frac{dU_{S}}{dt}$$
 (4-5)

These errors are summarized in Table 4-2 and are also incorporated into the error analysis summarized in Table 4-4.

TABLE 4-2. ERRORS IN SHOCK VELOCITY DUE TO POSITION UNCERTAINTY

x mm	dU _S /dx (m/s)/mm	δU _S m/s
9	-57.2	11.4
40	-16.5	3.3
70	-24.3	4.9
100	-11.3	2.3

Errors Due to the Hugoniot

The SD of u_p data has been obtained by comparing the predictions of Equation (3-7) with the published data of Shuler and Nunziato. The SD of the Equation 3-7 fit from the original u_p data was found to be 11 m/s. The uncertainty of the u_p data was 1 percent.

Other Errors

The total experimental errors due to focus, alignment in trace reading, etc., are estimated to be less than 0.1 percent. The width of the streak camera slit was 200 μ m. This width introduced a random numerical error in trace reading. This random error is treated in the next section. The error in measurement of camera writing speed was less than 0.01 percent. We attempted to measure the tilt of the slit relative to the time axis, i.e., the deviation from 90°, by recording an image of the slit on a static photograph. The deviation was too small to measure with the trace reading equipment; the error is therefore less than 0.01 percent. All of these random errors are small in comparison to the numerical errors introduced by the differentiation of the raw (x, t) data, the errors in position x, and the errors of the shock Hugoniot for PMMA, i.e., a and b of Equation (4-1). The slit width also introduced a systematic error, this is estimated to be a maximum of 0.6 percent and typically 0.3 percent.

Errors in Pressure

The combined errors in pressure can now be obtained. With a = 2.561 km/s from Equation (3-7) we can solve Equation (4-3) to obtain K, where $K = (2U_S - a)/(U_S - a)$, and the resulting errors, δP , are shown in Table 4-3. The error δU_S was taken as the combined deviation due to the NERD method (2.76 m/s), the slit error (0.3 percent), and the position error data from Table 4-2. The error δu_p was the combined error of the fit to the Hugoniot data (11 m/s) and the uncertainty of the Hugoniot data (1 percent).

TABLE 4-3. ERRORS IN PRESSURE DUE TO ERRORS IN $\mathbf{u_{s}}$ AND $\mathbf{u_{p}}$

x mm	U _S km/s	K	P GPa	δР МРа
9	5.346	2.920	10.96	244
40	4.385	3,404	5.94	141
70	3.814	4.044	3.53	106
100	3.296	5.484	1.57	64

These errors are summarized in Table 4-4.

Averaging over the Three Experiments

Between 9 and ≈ 70 mm the results of three traces have been averaged; this improves the accuracy of the estimate of the true shock velocity. In other words the standard error, σ_{x} of the average at each position x is estimated from the variance of the sum of the individual results and n, the number of independent measurements, here n = 3.

$$\sigma_x^2 = \frac{\sum_{n} \delta U_s^2(x)}{n\sqrt{n-1}} \tag{4-6}$$

TABLE 4-4. TOTAL ERRORS IN PRESSURE DUE TO ERRORS IN POSITION, HUGONIOT, AND $\mathbf{U_S}$ FOR THE AVERAGE OF THREE EXPERIMENTS

x mm	P GPa	δP mean MPa	δP/P mean %
9	10.96	173	1.57
40	5.94	100	1.69
70	3.53	75	2.12
100	1.57	64	4.06

ERRORS SUMMARY

Table 4-4 summarizes the random error calculations. Assuming the errors are normally distributed, 99.9 percent of all pressure data will have errors less than 3.29 times the $\delta P/P$ value. The ' δP mean' column shows the most likely (or standard) error obtained by summing the variances and correcting the value for the number of observations, i.e., adjusting the value of Equation (4-2) to between 9 and 70 mm.

From Table 4-4 we conclude that the pressure error (expressed as a standard deviation) due to errors in position, Hugoniot, slit width, and U_S , is likely to be between 1.6 and 4.1 percent.

CONCLUSIONS AND RECOMMENDATIONS

The calibration described here is based on a careful measurement of the velocity of the shock U_S propagated into the PMMA gap. The particle velocity u_p was obtained from published experimental shock Hugoniot data that relate u_p to U_S . The pressure corresponding to U_S was then calculated using the relationship between U_S and pressure, Equation (1-1).

The shock velocity U_S data presented here are believed to be of the highest precision and accuracy. The particle velocity data and thus the pressure calibration data are influenced by the choice of the shock Hugoniot used. The likely inaccuracies of these pressure data due to the choice of Hugoniot are presented.

The estimated mean error of the pressure calibration is between 1.6 and 4.1 percent between 9 and 100 mm of PMMA attenuator distance. These errors are due largely to the method of estimating particle velocity, i.e., from the measured shock velocity and published Hugoniot data. The uncertainty of calculating shock velocity with the NERD method is remarkably small, it is estimated to be 2.76 m/s or roughly 0.05 percent (excluding the errors slit width, optical alignment, etc.).

The results should be verified by conducting direct particle velocity and pressure measurements, using *in situ* gauges at discrete positions in the PMMA gap.

REFERENCES

- 1. Liddiard, T. P. and Price, D., <u>The Expanded Large Scale Gap Test</u>, NSWC TR 86-32, Mar 1987, NSWC, White Oak, MD.
- 2. Price, D., Clairmont Jr., A. R. and Erkman, J. O., <u>The NOL Large Scale Gap Test. III.</u>, NOLTR 74-40, 8 Mar 1974, NSWC, White Oak, MD.
- 3. Erkman, J. O., et. al., <u>Calibration of the NOL Large Scale Gap Test; Hugoniot Data for Polymethyl Methacrylate</u>, NOLTR 73-15, 4 Apr 1973, NOL, White Oak, MD.
- 4. Liddiard, T.P. Jr. and Forbes, J. W., <u>A Summary Report of the Modified Gap Test and the Underwater Sensitivity Test</u>, NSWC TR 86-350, 12 Mar 1987, NSWC, Dahlgren, VA.
- 5. Kaiser, J. F., Reed, W. A., "Data smoothing using low-pass digital filters," <u>Rev. Sci. Inst.</u>, Vol. 48, No. 11, Nov 1987, p. 1447, and Vol. 49, No. 8, Aug 1978, p. 1103.
- 6. Brigham, E. O., The Fast Fourier Transform, Prentice-Hall, New Jersey, 1974.
- 7. Oppenheim, A. V. and Schafer, R. W., <u>Digital Signal Processing</u>, Prentice-Hall, New Jersey, 1975.
- 8. Weaver, H. J., <u>Applications of Discrete and Continuous Fourier Analysis</u>, John Wiley, New York 1983.
- 9. Barker, L. M. and Hollenbach, R. E., "Shock-Wave Studies of PMMA, Fused Silica, and Sapphire," J. Appl. Phys., Vol. 41, No. 10, Sep 1970, p. 4208.
- 10. Shuler K.W. and Nunziato J.W., "The Dynamic Mechanical Behavior of Polymethyl Methacrylate," <u>The Sixth International Conference on Rheology</u>, Lyons, France, 1972.
- 11. Sandusky, H. and Groves, C., private communication, NSWC, Code R13, White Oak, MD, concerning calculation of pressure data, 6 Apr 1989.

IMAGE DISTORTION DUE TO REFRACTION IN THE PMMA CYLINDER

APPENDIX A

Consider an object of length OA or x located on the axis of the PMMA cylinder; see Figure A-1. This object represents the tip of the shock wave on the axis of the PMMA cylinder that is observed with the streak camera. The center O is on the projection of the optic axis from the camera lens. This object is viewed through the radius of the PMMA cylinder, i.e., the thickness r. The refraction of light in the PMMA alters the apparent distance between the lens axis and the object, i.e., the object distance d. The apparent length of the object, as seen by the camera, becomes OA' or x'.

Let the refractive index of the PMMA be n and the image displacement due to refraction be $\delta x = x' - x$. If i and i' are the angles subtended by the object and image in Figure A-1 then it can be shown that

$$\delta x = r(\tan i' - \tan i)$$

$$\sin i' = \frac{x'}{\sqrt{x'^2 + d^2}}$$

and
$$n = \frac{\sin i'}{\sin i}$$
 Snell's law

If the angles are small then $\sin i' \approx \tan i \approx i$, hence

$$\tan i' = \frac{x'}{d}$$

$$\sin i = \frac{x'}{n\sqrt{x'^2 + d^2}} \approx \frac{x'}{nd} \approx \tan i$$

so
$$\frac{\delta x}{x} \approx \frac{\delta x}{x'} \approx \frac{r}{d}(1-\frac{1}{n})$$

For r = 47 mm, d = 2.4 m, n = 1.49 then $\delta x/x = 0.0065$, i.e., 0.65%. Note that this distortion occurs with any type of illumination, even with a collimated light source.

FIGURE A-1. REFRACTION OF STREAK IMAGE THROUGH PMMA CYLINDER

APPENDIX B

RAW DATA

The following tables represent the original data generated in this study. The (x, t) data are the original data as read from the photographic seconds. The (x, t) data were converted to time and distance, using the camera speed and optical magnification, prior to printing. The U_s , u_p , and P data are the results of employing the computational techniques described in this report.

To read these tables note that not all the time values have been printed. The times in the left hand column match the data in the next column to the right. The times for the remaining nine columns can be obtained because the time increment is a constant. The time increment is printed at the top of each table, as are the units for each set of data, e.g., mm, km/s, GPa. The dashes at the top of the U_s , u_p , and P represent those $(N_p - 1)$ data points that cannot be calculated with the NERD filter technique.

TABLE B-1. E673 CALIBRATION DATA, (x, t), DISTANCE VS. TIME

- - · - - -

Time increment = 27.7515 ns Number of points = 549

					**- * *					
με	<				Units:	mm				
0.000	0 000	0.050	0 101	0.360	0.524	0.655	0,804	0.970	1.076	1.263
0.000	0,000	0.058 1,641	0.191 1.783	1.927	2.085	2.235	2.387	2.523	2.692	2.858
0.278	1.451 3.016	3.163	3.314	3.471	3.628	3.807	3,861	4.108	4.306	4.439
0.555	4.609	4.725	4.903	5.050	5.215	5.367	5.528	5.670	5.812	5.963
0.833	6.104	6,255	6.420	6.607	6.758	6.926	7.043	7.204	7.349	7.473
1.388	7.669	7.802	7.950	8.124	8.267	8,431	8.563	8.723	8.857	9,003
1.665	9.137	9.288	9.421	9.589	9,729	9.905	1.0.058	10.191	10.328	10,476
1.943	10.603	10.784	10.924	11.078	11.229	11.383	11.510	11,681	11.798	11.954
2.220	12.081	12.211	12.373	12.500	12,666	12.791	12,958	13,108	13,242	13,378
2.498	13,526	13,653	13.786	13.951	14.083	14.218	14.352	14.495	14.643	14.789
2,775	14.971	15.105	15,235	15.368	15.516	15,659	15.769	15,922	16.060	16,166
3.053	16,330	16.477	16,594	16,771	16.891	17.038	17.185	17.329	17,476	17.596
3,330	17,734	17.856	17.981	18.118	18.247	18.405	18,537	18,669	18.812	18,918
3.608	19,078	19,216	19,349	19.489	19,657	19.783	19.896	20.018	20.180	20.307
3,885	20.438	20.585	20.730	20.853	20.986	21.127	21.256	21.404	21.530	21.649
4.163	21.813	21.909	22,051	22.164	22,297	22.451	22.577	22.705	22.83%	22.962
4.440	23.081	23,231	23,373	23.484	23.636	23.756	23.916	24.044	24.162	24.297
4.718	24.440	24.566	24.697	24.838	24.957	25.091	25.237	25.347	25.481	25,629
4.995	25.747	25.877	25,990	26.138	26,267	26.412	26,558	26,686	26.830	26.929
5.273	27.072	27.185	27.291	27.453	27.568	27,686	27,809	27,969	28.089	28,213
5.550 ئ	28.380	28.486	28.617	28.743	28,864	28,999	29,141	29.274	29.394	29.530
5.828	29.657	29,77 0	29.887	30.021	30.151	30.273	30.386	30.533	30.667	30.787
6.105	30.906	31.003	31.150	31.259	31.411	31.517	31,642	31,774	31,896	32,029
6.383	32.159	32,291	32.413	32.554	32.677	32.811	32.936	33.053	33.184	33.303
6.660	33.407	33.553	33.676	33.814	33.920	34,045	34,179	34,309	34,427	34,570
6.938	34.696	34.805	34.913	35.042	35.177	35.302	35.429	35.535	35,668	35.799
7,215	35,909	36.025	36.159	36.310	36.421	36.521	36.637	36,779	36,897	37.031
7.493	37.155	37,282	37.404	37.527	37,650	37.761	37.894	38.015	38.131	38.254
7,770	38,369	38.486	38,626	38.727	38.850	38.982	39.092	39.202	39,338	39,475
8.048	39.609	39.719	39.842	39.956	40,054	40,205	40.339	40.459	40.592	40.705
8.325	40.858	40.965	41.096	41.192	41,310	41.431	41.551	41.674	41.790	41.895
8,603	42.051	42.152	42.272	42.392	42.518	42.643	42.746	42.865	42.985	43,119
8.880	43.228	43.354	43.477	43.601	43.724 44.905	43,867	43.974 45.151	44.088 45.275	44.192 45.405	44,319 45.517
9,158	44.450	44,559	44,692	44.793	46 094	45.035 46.234	46,368	46.497	45,606	46,734
9,436	45.644 46.837	45.762 46.245	45.877 47.062	45.987 47.185	47,322	47.428	47,530	47.662	47.782	47.915
9.713 9.991	48.032	48.151	48.261	48.386	48.501	48.637	48.740	48.846	48.982	49.092
10.268	49.202	49,322	49.441	49.564	49.675	49.814	49.935	50.040	50.174	50.267
10.546	50.379	50.499	50.618	50,743	50,849	50.951	51.057	51.164	51.298	51.423
10.823	51,536	51,649	51.776	51.814	51.982	52.112	52.235	52,334	52,447	52,590
11.101	52.698	52.800	52.930	53.071	53,182	53,307	53,415	53,535	53.635	53.742
11,378	53.895	54.008	54,127	54.242	54.367	54,457	54.552	54,694	54,839	54,944
11,656	55.050	55.165	55.268	55.382	55,522	55.628	55.723	55.849	55.974	56.082
11.933	56.213	56.337	56,433	56.538	56.658	56.757	56.856	55.959	57,097	57,198
12,211	57,335	57.438	57.568	57.682	57.794	57,907	58.025	58,140	58.266	58.374
12.488	58.507	58,607	58,720	58.821	58.927	59.040	59.161	58.250	59.377	59.483
12,766	59.595	59,716	59.831	59.941	60,050	60.161	60.286	60.433	60.540	60.659
13.043	60.765	60.889	60.986	61.105	61.193	61.314	61.424	61.537	61.669	61.775
13,321	61.883	61,988	62.099	62.211	62.334	62.448	62,557	62,665	62.763	62.859
13,598	62.971	63,105	63,215	63.324	63.434	63,555	63.682	63.776	63.884	63.985
13,876	64.113	64.203	64.312	64.440	64.541	64.661	64.769	64.873	64,950	65,073
14.153	65,197	65,291	65,391	65.481	65,620	65.733	65,856	65.948	66.059	66.162
14.431	66.271	66,376	66,494	66.610	66,717	66.819	66.931	67.020	67,119	67,232
14.708	67.342	67.410	67.585	67.691	67,781	67.874	67.983	68.089	68.167	68,285
14.986	68.415	68.507	68,619	68.694	68,891	68,839	68.915	68.992	69.116	

TABLE B-2. E674 CALIBRATION DATA, (x, t), DISTANCE VS. TIME

Time increment = 27,7885 ns Number of points = 1401

	.									_
μs	<				Units:					>
0.000	0.000	0.082	0.290	0.432	0.664	0.863	1,056	1,309	1,519	1.684
0.278	1,843	1.988	2,164	2,206	2.482	2.630	2.769	2.902	3.087	3.246
0.556	3.402	3.552	3.717	3.888	4.035	4.194	4.367	4.532	4.697	4.853
0.834	4.998	5.157	5.324	5.449	5,614	5,748	5.907	6,051	6.227	6.381
1.112	6.517	6.665	6.804	6.943	7.128	7,292	7,431	7.573	7,724	7.891
1.389	8.056	8.212	8.371	8.525	8.678	8.806	8.931	9.087	9.218	9.394
1.667	9.550 10.995	9.697 11.151	9.845 11,276	9.976 11.421	10.149 11.538	10.274 11.638	10.405 11.858	10.561 12.003	10.689 12.159	10.848 12.265
2.223	12.407	12.574	12.719	12.850	13,000	13,148	13.258	13,460	13,559	13.707
2.501	13.849	14.008	14.147	14.267	14.397	14,531	14.681	14.837	14.962	15.090
2.779	15.238	15.385	15.533	15.666	15.837	15,990	16,127	16,260	16,379	16,504
3.057	15.640	16,765	16.953	17.075	17.225	17.348	17.467	17.592	17.734	17.901
3.335	18.055	18.188	18.307	18.455	18.589	18.716	18.861	19,020	19.137	19,250
3.613	19.404	19,560	19,685	19.818	19,957	20.074	20.193	20.332	20.471	20.596
3.890	20.741	20.866	21.002	21.127	21.252	21.420	21.545	21.704	21.837	21.945
4,168	22.078 23.376	22.223	22.362	22.493 23.788	22.618 23.933	22.720 24.038	22.842	23.004 24.347	23.146 24.492	23.257 24.£17
4.446 4.724	24.762	23.535 24.895	23.669 25.003	25.785	25.245	25,355	24.200 25.512	25.654	25.790	25.889
5.002	26.023	26,185	25.304	26.412	26,557	26.687	26.848	26.931	27.045	27.210
5.280	27.318	27.474	27.599	27.721	27.856	27.948	28.087	28,198	28,326	28,490
5.558	28.641	28,772	28.880	29.010	29.146	29,294	29,422	29,555	29,666	29,800
5.836	29.916	30.044	30.157	30.291	30.436	30.561	30.705	30.796	30.930	31,052
6.113	31.188	31.307	31.455	31.566	31.711	31.838	31.952	32,080	32,205	32,321
6.391	32.446	32.577	32,693	32.818	32.963	33.068	33.207	33.326	33.457	33,554
6,669	33.696	33.835	33.965	34.079	34.195	34.317	34.457	34,590	34,692	34,806
6.947	34.928	35.087	35.212	35.351	35.445	35.558 36.822	35.703	35.837	35.947	36.078 37.308
7.225 7.503	36,197 37,430	36.328 37,563	36.453 3/,682	36.569 37.785	36.708 37.907	38.025	36.95E 38.148	37.044 38.270	37,186 38,387	38.509
7.781	38.637	38.759	38.884	39.029	39.153	39.256	39.392	39.474	39.599	39,721
8.059	39,846	39.988	40,116	40.247	40,343	40.474	40.605	40.724	40.829	40.957
8.337	41,073	41,207	41,357	41.437	41.553	41.686	41.817	41.945	42.070	42.212
8.614	42.311	42.419	42.541	42.552	42,800	42,939	42.998	43.120	43.251	43.382
8.892	43.492	43,612	43.757	43,876	43,995	44,114	44.238	44.356	44.475	44.574
9,170	44.708	44.813	44.944	45.051	45.171	45.299	45.429	45,526	45,642	45.747
9.448	45.878	45.986	46.105	46.241	45.349	46,471	46,591	46.727	46.852	46.963
9.726	47,082 48,272	47,218 48,411	47.326 48.522	47.440 48.638	47.565 48.752	47.698 48.891	47.823 49.007	47.902 49.070	48.016 49.206	48.127 49.339
10.004 10.282	49.470	49,567	49.683	49.799	49.902	50.027	50.146	50.262	50.379	50.492
10.560	50,620	50,728	50,827	50.952	51.066	51.194	51.293	51.415	51,534	51,657
10.838	51.773	51.878	51.997	52.094	52,222	52,348	52,477	52.591	52.702	52.824
11.115	52.929	53.062	53.173	53,309	53.423	53.531	53.653	53.764	53.880	54.002
11.393	54.096	54.212	54,306	54.425	54.579	54.681	54.766	54.897	55.033	55.124
11.671	55.249	55.368	55.482	55.601	55,712	55.834	55.953	56.058	56.189	56.289
11.949	56.416	56,512	56.612	56.740	56.856	56,964	57.077	57.194	57.327	57.447
12.227	57.572	57.677	57.785	57.898	58,020	58.105	58,228	58,341 59,480	58.460 59.562	58.574 59.664
12.505 12.783	58.690 59.804	58.810 59,917	58.920 60.031	59.003 60,161	59.145 60.258	59.250 60.357	59.349 60.468	60.619	60.746	60,851
13.061	60.959	61.081	61.198	61.300	61,492	61.510	61.604	61.723	61.825	61,925
13.338	62,061	62,152	62.260		62.481	62.606	62.723	62.828	62.939	63.044
13.516	63.169	63.271	63.382		63,583	63.728	63,833	63,941	64.049	64,168
13,894	64,285	64,370	64,498	64.591	64.711	64.824	64.938	65.046	65.139	65.261
14.172	65.366	65.477	65.582	65.693	65.824	65.943	66.025	66,119	66.247	66.366
14.450	66.463	66.582	66.687	66.803	66,917	67.016	67.107	67,204	€7.329	67.454
14.728	67.533	67,638	57.732	67.843	67.945	68.050	68.152	68.257	68.377	68,490
15.006	68.587	68.700	68.814	68.910	69.024	69.138	69.260	69.362	69,473 70,523	69.572 70.631
15.284 15.562	69.674 70.716	69.805 70.822	69.907 70.921	70,012 71,029	70.114 71.128	70.219 71.208	70.308 71.321	70.410 71.449	70.523	71.665
15.839	71.784	71,898	72.008	72.099	72,221	72.318	72.420	72.517	72.636	72.733
16.117	72,846	72,957	73,039	73.127	73,232	73.346	73.451	73.548	73.650	73.744
16.395	73.854	73.962	74.067	74.144	74.243	74.368	74.490	74.595	74,695	74.803
16,673	74,894	74,990	75,070	75.183	75.277	75.405	75.504	75.575	75,692	75.782
16.951		76,024	76,092	76,200	76.294	76,399	76.492	76.589	76.697	76,791

17,229 76.913 77.015 77,097 77,208 77,339 77.452 77.552 77.640 77.739 77.821 77.915 78,438 17.507 78.040 78.355 78.154 78.244 78.534 78,605 78.710 78.810 17.785 78.912 79.017 79.125 79.270 79.352 79.426 79.542 79,600 79,732 79.826 18,063 79,957 80.048 80.147 80,249 80.326 80.425 80.528 80 d33 80,726 80.820 18 340 80.905 80 985 81,104 81 226 81 314 81 411 81 527 f...621 81.723 81.822 18,618 81.905 82,013 82.104 82.197 82.277 82.348 82.478 32,569 82,663 82.762 18.896 82.862 82,958 83.038 83.134 83.259 83.362 83.477 83.563 83.657 83,759 19.174 83.856 83.952 84.077 84.154 84.228 84.307 84.421 84.520 84.602 84.702 19.452 84.798 84.909 84.994 85,114 85,219 85,312 85,392 85.579 85.483 85.687 85.781 85,858 85.977 86.076 86.178 86,249 86.335 19.730 86,437 86.536 86.644 20,618 86.729 86.849 86.937 87.050 87.133 87.226 87.331 87.431 87,516 87.581 20.286 87.703 87.783 87.879 87.987 88.073 88,200 88,266 88.348 88.459 88.558 88.839 20.564 88.649 88.754 88.941 89.021 89,101 89,186 89.296 89,427 89.509 89.879 89.785 89.986 90.083 20.841 89.526 89.697 90.171 30,236 90.364 90,449 90.813 90.997 21,119 90.546 90.640 90.711 90.889 91.083 91.179 91,307 91,406 21.397 91.472 91.565 91.670 91,773 91.866 91.952 92.048 92.147 92,221 €2.312 21.675 92.414 92,525 92,605 92,707 92,826 92,909 92,940 93.048 93,150 93.255 21.953 93.349 93.454 93.539 93.624 93.729 93.834 93.914 94.007 94,035 94.164 22.231 94.272 94.396 94,462 94,558 94,666 94,743 94.839 94.930 95.047 95,123 95,768 95,865 22.509 95.319 95,410 95,532 95.592 95,677 95.226 95,970 96.063 22.787 96.166 96.262 96.330 96.416 96.515 96.611 96,708 96.807 96,881 96.981 23.064 97.054 97.148 97.262 97.344 97.455 97.534 97.639 97.719 97.818 97.892 23.342 98.165 97.983 98.077 98.267 98.389 98.503 98.613 98,696 98,778 98,866 23.620 98,957 99.056 99.139 99,207 99.286 99.360 99.445 99,559 99,670 99,786 23.898 99.849 99.954 100.030 100.110 100.226 100.329 100.417 100.493 100.576 100.672 24.176 100.774 100.862 100.956 101.047 101.109 101.192 101.291 101.388 101.481 101.592 24.454 101.700 101.797 101.859 101.959 102.061 102.137 102.248 102.325 102.413 102.470 24 732 102.572 102.634 102.731 102.839 102.941 103.035 103.129 103.199 103.305 103.384 25.010 103,455 103,552 103,679 103,759 103,833 103,892 103,969 104,051 104,134 104,250 25.288 104.350 104.452 104.523 104.622 104.730 104.838 104.923 105.025 105.105 105.199 105.292 105.383 105.451 105.537 105.642 105.730 105.803 105.872 105.945 106.045 25.565 25.843 106.161 105.258 105.357 106.425 106.494 105.604 106.709 106.806 106.891 106.973 107.073 107.158 107.243 107.306 107.388 107.456 107.536 107.641 107.734 107.842 26.121 26.399 107.933 108.030 108.112 108.183 108.257 108.356 108.444 108.552 108.649 108.717 26,677 108.782 108.876 108.970 109.078 109.151 109.251 109.364 109.430 109.515 109.606 26,955 109.719 109.813 109.898 109.958 110.020 110.140 110.225 110.336 110.404 110.463 27.233 110.543 110.648 110.739 110.833 110.912 110.980 111.068 111.179 111.295 111.375 27.511 111.477 111.562 111.656 111.755 111.841 111.957 112.034 112.127 112.230 112.289 27,789 112.360 112.448 112.522 112.650 112.729 112.829 112.871 112.965 113.056 113.130 28.066 113.243 113.351 113,439 113.550 113.638 113.686 113.777 113.865 113.951 114.056 114.149 114.252 114.345 114.405 114.496 114.589 114.675 114.726 114.885 114.973 28.344 28,622 115.047 115.146 115.214 115.328 115.404 115.495 115.559 115.615 115.674 115.762 28,900 115.862 115.961 116.041 116.114 116.217 116.310 116.407 116.518 116.603 116.671 29.178 116.756 116.855 116.924 117.046 117.145 117.230 117.318 117.418 117.506 117.594 29,456 117,679 117,770 117,875 117,977 118,031 118,131 118,227 118,321 118,395 118,494 29.734 118.571 118.667 118.747 118.838 118.877 118.988 119.102 119.184 119.252 119.340 30,012 119.408 119.502 119.621 119.707 119.814 119.908 119.996 120.121 120.198 120.269 30.289 120.348 120.453 120.561 120.632 120.712 120.803 120.882 120.970 121.053 121.138 30.567 121.217 121.319 121.442 121.527 121.598 121.694 121.765 121.823 121.927 122.021 30.845 122,100 122,177 122,282 122,379 122,487 122,566 122,646 122,739 122,816 122,935 123.035 123.137 123.233 123.336 123.432 123.534 123.622 123.682 123.756 123.858 31, 123 31,401 123,923 124,011 124,085 124,179 124,264 124,338 124,429 124,503 124,619 124,673 3',679 124.767 124.863 124.940 125.034 125.091 125.181 125.289 125.369 125.460 125.553 31.957 125.627 125.715 125.800 125.900 125.979 126.067 126.170 126.263 126.366 126.462 32.235 126.556 126.641 126.715 126.823 126.888 126.956 127.050 127.158 127.263 127.328 32,513 127.450 127.504 127.595 127.683 127.768 127.845 127.925 127.996 128.095 128.197 32,790 128.297 128.376 128.490 128.566 128.671 128.762 128.828 128.921 129.006 129.092 33.068 129,194 129,305 129,393 129,506 129,577 129,668 129,753 129,853 129,924 130,026 33.346 130.086 130.165 130.239 130.335 130.429 130.514 130.608 130.671 130.776 130.844 33.624 130.943 131.060 131.139 131.224 131.321 131.395 131.463 131.568 131.647 131.727 33,902 131,804 131,905 132,002 132,113 132,218 132,289 132,386 132,457 132,533 132,650 34.180 132.712 132.806 132.900 132.971 133.050 133.141 133.198 133.294 133.380 133.476 34,458 133.558 133.635 133.717 133.828 133.933 133.989 134.078 134.180 134.277 134.362 34.736 134.413 134.518 134.615 134.694 134.771 134.878 134.990 135.069 135.177 135.240 35.014 135.305 135.401 135.492 135.583 135.705 135.788 135.884 135.984 136.038 136.120 35.291 136.231 136.307 136.387 136.432 136.517 136.640 136.739 136.804 136.918 137.000 35.559 137.083 137.165 137.244 137.332 137.418 137.523 137.608 137.693 137.781 137.886 137.977 138.059 138.133 136.221 138.321 138.394 138.474 138.579 138.631 138.730 35.847 36.125 138.835 138.903 138.968 139.059 139.150 139.235 139.337 139.417 139.499 139.593 139.686 139.766 139.874 139.968 140.047 140.129 140.218 140.291 140.391 140.465 35.403 140.555 140.624 140.731 140.805 140.902 140.998 141.092 141.172 141.265 141.353 36.681

```
36.959 | 141.450 141.529 141.612 141.680 141.757 141.865 141.967 142.066 142.148 142.234 37.237 | 142.316 142.387 142.484 142.574 142.665 142.750 142.850 142.949 143.026 143.125 37.515 | 143.202 143.290 143.353 143.466 143.571 143.656 143.739 143.798 143.903 143.997 37.782 | 144.079 144.173 144.264 144.358 144.412 144.508 144.579 144.670 144.747 144.846 38.070 | 144.934 145.059 145.136 145.232 145.315 145.423 145.496 145.562 145.667 145.769 38.348 | 145.834 145.928 146.027 146.107 146.195 146.289 146.351 146.456 146.556 146.649 38.904 | 147.606
```

TABLE B-3. E675 CALIBRATION DATA, (x, t), DISTANCE VS. TIME

.,....

Time increment = 16.6725 ns Number of points = 901

	•									
μs	<				Units:	mm				>
0.000	0.000	0.113	0.302	0,467	0.574	0.668	0.753	0.848	0.959	1,056
0.167	1.149	1.242	1.337	1.435	1,520	1,606	1.696	1.785	1.892	1.981
0,333	2,073	2,171	2,275	2.357	2.453	2.536	2.625	2.721	2.804	2.888
0.500	2.991	3.098	3.210	3.284	3.368	3,456	3.554	3.649	3.746	3.836
0,667	3.917	4.003	4.082	4.192	4.286	4.381	4.462	4.558	4.650	4.747
0.834	4.836	4.926	5.022	5.116	5.192	5.298	5.400	5.478	5.570	5.662
1.000	5.744	5.841	5.935	6.011	6.115	6.179	6.274	6.383	6.469	6.570
1.167	6.652 7.567	6.744	6.831 7.743	6.913 7.838	7.006 7.922	7.106 8.002	7.195 8.102	7,292 8,176	7.377	7.468 8.349
1,334 1,501	8.437	7.649 8.519	8.617	8.705	8.824	8.890	8.983	9,058	8.257 9.159	9.235
1.667	9.320	9.409	9.509	9.573	9,648	9.730	9.816	9.903	10.010	10.089
1.834	10.174	10.256	10,364	10.443	10.535	10,628	10.730	10.802	10.878	10,964
2.001	11.062	11.153	11.232	11.310	11.390	11.477	11.569	11,651	11.745	11.828
2.167	11.923	11.998	12.086	12.177	12.257	12.341	12.432	12,503	12.593	12.670
2.334	12.761	12.850	12.941	13.029	13.123	13.196	13.278	13.367	13.445	13,531
2,501	13.609	13.705	13.796	13.874	13,949	14.025	14.101	14.197	14.291	14.375
2.668	14.455	14.531	14.602	14.685	14.782	14.877	14.957	15.044	15.127	15.202
2.834 3.001	15.297 16.117	15.379 16.192	15.463 16.277	15.536 16.363	15.616 16.445	15.698 16.515	15.786 16.605	15.877 16.690	15.949 16.770	16.034 16.846
3,168	16.928	17.010	17.095	17.186	17,265	17.356	17.436	17.529	17.606	17.688
3.334	17.763	17.858	17.930	18.006	18.091	18.170	18.246	18,322	18.417	18.495
3.501	18.584	18,678	18.745	18.822	18,911	18.987	18.076	19,167	19.232	19.318
3.668	19.396	19.476	19.560	19.621	19.712	19,776	19.861	19.953	20.035	20,116
3.835	20.202	20.286	20,359	20,431	20.523	20.605	20.696	20,778	20.844	20.920
4.001	21.000	21.082	21.172	21.249	21,303	21.387	21.466	21.551	21.633	21.705
4.168	21.800	21.904	21,973	22.056	22.131	22.205	22.282	22.371	22.451	22.536
4.335 4.502	22.605 23.406	22.683 23.491	22,768 23,580	22.853 23.664	22.933 23.728	23.009 23.807	23.075 23.884	23,165 23,967	23.247 24.024	23.323 24.094
4.668	24,179	24,258	24.345	24.416	24.494	24.582	24.665	24.737	24.824	24,894
4.835	24.979	25.062	25.144	25.207	25.283	25.365	25.434	25.516	25.601	25,668
5.002	25.750	25.827	25.910	25.986	26.068	26,150	26,225	26,305	26.393	26,474
5.168	26.546	26.617	26.708	26.774	26.863	26.932	27.013	27,098	27.180	27.223
5,335	27.304	27.366	27.424	27.500	27.590	27,667	27.758	27.827	27.890	27,978
5.502	28.071	28.149	28.226	28.301	28,370	28.445	28.521	28.613	28.679	28.757
5.669	28.843	28.922	28.989	29.060 29.834	29.143	29,221	29,288 30,061	29.360 30,130	29.459 30.221	29,540
5.835 6.002	29.610 30.367	29.701 30.445	29.770 30.517	30.599	29,905 30,684	29.972 30.746	30.826	30,913	30.975	30.285 31.076
6.169	31,154	31,206	31,285	31,367	31.432	31,511	31.591	31,670	31.742	31.812
6.336	31.874	31,952	32,020	32.097	32.171	32,246	32,322	32,400	32.479	32.568
6,502	32.644	32.723	32.802	32.883	32.959	33.031	33.092	33,158	33.227	33,312
6.669	33.392	33.448	33.542	33.606	33.688	33,770	33.843	33.914	33.991	34.075
6.836	34.149	34.228	34.302	34,359	34.435	34.501	34.574	34,652	34.722	34.797
7.002	34.873	34.945	35.029	35.092	35.176	35.256	35.328	35.395	35.463	35,535
7.100 7.336	35,611	35,680 36,447	35,757 36,501	35.841 36.580	35.915 36,655	36.002 36.731	36.075 36.801	36,138 36,880	36.220 36.953	36.290 37.022
7.503	37,090	37,166	37.248	37.339	37,393	37.462	37.527	37,601	37.677	37.746
7,669	37.820		37.962	38.047	38.129	38.200			38.437	
7.836	38.585	38.651	38.719	38.796	38,882	38.949	39.017	39.078	39.156	
8.003	39.318	39.391	39.463	39.525	39.596	39.670	39.749	39,815	39.892	39.973
8,170	40.049	40.124	40.168	40.248	40.307	40.387	40.452	40,535	40.607	
8.336	40.740	40.829	40.904	40.973	41.056	41.127	41.188	41.264	41.337	-
8,503	41,503	41,561	41.635	41.704	41.765	41.841	41,917	41,983	42.067	
8.670 8.836	42.179 42.904	42.267 42.996	42.345 43.070	42.418 43.137	42.487 43.199	42.548 43.264	42.632 43.327	42,702 43,398	42.772 43.471	
9.003	43.630	42.880	43.777	43.846	43.188	43.982	44.073	44.147	44.212	44.295
9.170	44.368	44.439	44.502	44.563	44.647	44.708		44.841	44.912	
9.337	45,065	45,153	45.224	45.294	45.366	45.437		45,568	45.645	
9.503	45.786	45.852	45.947	46.016		46.146		46.260	46.329	46.408
9.670	46.481	46.552	46.616	46.595	46.751	46.840	46.919	46.978	47.047	
9,837	47.194	47.271	47.342	47.429	47.498	47,563	47.625	47,689	47.758	
10.004	47.911	47.982	48.053	48.124	48.193	48.265	48.335	48,404	48.467	48,549
10.170	48,632	48.707	48,757	48.824	48.914	48.969	49.037	49.102	49.168	49.246

10.337	49,324	49.375	49,454	49.529	49.594	49.673	49.744	49.802	49.870	49.947
10.504	49.999	50,076	50,167	50.237	50,306	50,363	50.436	50.501	50.574	50.646
10.670	50.720	50.783	50.843	50.912	50.990	51.059	51.123	51.196	51.264	51.334
10,837	1.407ڙ	51.469	51.552	51.630	51.701	51,770	51.830	51.911	51.986	52.065
11.004	52.123	52.179	52,253	52.328	52.388	52.475	52,532	52,592	52.661	52.725
11.171	52.797	52.882	52,949	53.024	53.088	53,163	53.226	53.283	53.350	53.428
11.337	53.513	53.573	53,642	53,710	53,778	53.852	53.929	53,993	54.062	54.135
11.504	54,207	54.267	54.336	54.412	54.479	54.548	54.609	54.681	54.749	54.819
11.671	54.885	54.957	55,031	55.088	55.157	55.224	55.287	55.374	55.446	55.506
11.837	55.588	55.652	55,725	55.796	55.870	55.930	55.999	56,066	56.144	56.204
12.004	56.270	56.339	56,411	56.485	56.553	56,614	56.681	56.740	56.810	56.891
12.171	56.948	57.014	57,081	57,163	57.214	57.289	57.364	57.437	57.526	57,592
12.338	57.661	57.718	57,787	57.838	57.891	57,958	58.042	58,111	58.179	58.254
12.504	58.336	58.396	58,468	58.542	58.594	58.668	58.734	58.790	58.854	58.914
12.671	58.985	59.061	59,127	59.204	59.272	59,330	59.395	59.468	59.529	59.591
12.838	59.654	59.730	59,784	59,863	59.939	60,013	60.081	60.143	60.203	60,288
13.005	60.346	60.405	60.481	60.559	60.632	60.696	60.768	60.821	60.879	60.947
13.171	61.016	61.087	61,165	61.238	61.300	61.374	61.429	61.500	61.573	61.645
13,338	61,689	61.758	61,830	61.890	61.964	62.030	62,095	62.165	62.213	62.276
13.505	62.341	62.415	62.475	62.546	62.626	62,689	62.754	62.820	62.884	62.960
13.671	63.019	(3.068	63,133	63,205	63.281	63.345	63.386	63.455	63.528	63.591
13.838	63.663	63,738	63,796	63.849	63.913	63,995	64.055	64.123	64.184	64.240
14.005	64.309	64.369	64.448	64.520	64.590	64.650	64.701	64.776	64.858	64.921
14.172	64.985	65.047	65,118	65.181	65.246	65.297	65.357	65.423	65.483	65.549
14,338	65.618	65.687	65,761	65,823	65.887	65.919	65,969	66,016	66.069	66.141
14.505	66.198	66.262	66.340	66.408	66.477	66.531	66.596	66,638	66.693	66.764
14.672	66.835	66.898	66.950	67.019	67.072	67.141	67.208	67.264	67.338	67.410
14.839	67.482	67.540	67,606	67,668	67.719	67.778	67.851	67.928	67.997	68.053
15.005	68.116									

Time increment = 27.7515 ns Number of points = 505

μз	<				Units:	km/s				>
0.000	_	_	_	-	-	_	-	_	-	-
0,278	_	-	-	-	-	-	-	_	-	-
0.555	_	-	-	-	_	-	-	-	-	_
0.833	-	-	-	-	-		-	_		
1.110	-	-		-		5,487	5.480	5.473	5.465	5.458
1.388	5.450	5.442	5,434	5,426	5.418	5.409	5.402	5.394	5.386	5.378
1.665	5,370	5.362	5.354	5.346	5.338	5.330	5.322	5.314	5.306	5.299
1.943	5.291	5.283	5.276	5.268	5.261	5,254	5.247	5.239	5.232	5.225
2.220	5.218	5,210	5.203	5.196	5.189	5.182	5.175	5.168	5.161	5.154
2.498	5.148	5.141	5.134	5.128	5.121	5.114	5.108	5.101	5.095	5.088
2.775	5.082	5.076	5.069	5.063	5.057	5.051	5.044	5.038	5.032	5.026
3.053	5.020	5.014	5.009	5.003	4.997	4.991	4,985	4.980	4.974	4.968
3,330	4.963	4.957	4.952	4.847	4.941	4.936	4.930	4.925	4.920	4.914
3.608	4,909	4,904	4.899	4.894	4.889	4.884	4.880	4.875	4.870	4.855
3.885	4.861	4.856	4.852	4.847	4.843	4.839	4.835	4.831	4.827	4.823
4.163	4.819	4.815	4.812	4.808	4.804	4.801	4.797	4.794	4.791	4.787
4.440	4.784	4.781	4.778	4.775	4.772	4.770	4.767	4.764	4.761	4.758
4.718	4.755	4.752	4.749	4.747	4.744	4.741	4.738	4.735	4.732	4.728
4,995	4.725	4,722	4.719	4.715	4.712	4.708	4.704	4.701	4.697	4.693
5.273	4.689	4.685	4.681	4.677	4.673	4.668	4.664	4.660	4.655	4.651
5.550	4.647	4.642	4,638	4.634	4.630	4.625	4.621	4.617	4.613	4.609
5.828	4.605	4,602	4.598	4.594	4.591	4.587	4.584	4.580	4.577	4.574
6.105	4.571	4.568	4,565	4.562	4.559	4.556	4.554	4.551	4.548	4.546
6.383	4.543	4,540	4.538	4.536	4.533	4.531	4,528	4.526	4.523	4.520
6.660	4.518	4.515	4,512	4.510	4.507	4.504	4.501	4.499	4.496	4.493
6.938	4.490	4.487	4.484	4.481	4.478	4.476	4,473	4.470	4.467	4.464
7.215	4.462	4.459	4.456	4.454	4.451	4,449	4.446	4.444	4.442	4.439
7.493	4.437	4.435	4.433	4.431	4.429	4.427	4.425	4.424	4.422	4.420
7.770	4.419	4.417	4.416	4.414	4.412	4.411	4.409	4.408	4.406	4.404
8.048	4.403	4.401	4.399	4.397	4.396	4.394	4.392	4.390	4.388	4.386
8,325	4.384	4.382	4.380	4.378	4.376	4.374	4.372	4.369	4.367	4.365
8.603	4.363	4.361	4.359	4.357	4.354	4.352	4.350	4.349	4.347	4.345
8.880	4.343	4.341	4.339	4.337	4.336	4.334	4.332	4.331	4.329	4.327
9.158	4.326	4.324	4.323	4.321	4.320	4.319	4.317	4.316	4.315	4.313
9.436	4,312	4.310	4.309	4.307	4.305	4.304	4.302	4,300	4.299	4.297
9.713	4.295	4.292	4.290	4.288	4.286	4.283	4.281	4.278	4.275	4.273
9.991	4.270	4.267	4.265	4.262	4.259	4.256	4.253	4.251	4.248	4,245
10.268	4.243	4.240	4,238	4.235	4.233	4.231	4.229	4.226	4.224	4.222
10.546	4.221	4.219	4.217	4.216	4.215	4.213	4.212	4.211	4.210	4.210
10.823	4.209	4.208	4.207	4.207	4.206	4,205	4.205	4.204	4.203	4.202
11.101	4,202	4.201	4.200	4.199	4.198	4.197	4.196	4.195	4.194	4.192
11.378	4.191	4.189	4.188	4.186	4.184	4,182	4.179	4.177	4.175	4.172
11.656	4.170	4.167	4.165	4.162	4.159	4.157	4.154	4.152	4.149	4.146
11.933	4.144	4.141	4.139	4.136	4.134	4.131	4.129	4.127	4.125	4.123
12.211	4.121	4.119	4.117	4,116	4.114	4.112	4.111	4,109	4.107	4.106
12.488	4.105	4,103	4,102	4,100	4.099	4.097	4.096	4.094	4.093	4.091
12.766	4.090	4.088	4.086	4.084	4.082	4.080	4.078	4.076	4.073	4.071
13.043	4.068	4.065	4.063	4,060	4.057	4.054	4.051	4.048	4.044	4.041
13,321	4,037	4.034	4.030	4.027	4.023	4.019	4.015	4.012	4.008	4.004
13,598	4.000	3,996	3.993	3.989	3.985	3,981	3.977	3.973	3,969	3,965
13.876	3.961	3.957	3.952	3.947	3.942	-,	•			

TABLE B-5. E674 CALIBRATION, (U_S , t), SHOCK VELOCITY VS. TIME, OBTAINED BY APPLYING NERD FILTER TO DATA OF TABLE B-2

Time increment = 27.7885 ns Number of points = 1357

μs	<		·····		Units:	km/s -		·	······································	>
-	-					, -				
0.000	_	_	_	_	_	-	-	-	-	-
0.278 0.556	_	_	_	_	_		_	_	_	_
0.834		_	_	_	-	_	_	_	_	_
1.112	_	_	_	-	_	5.470	5.459	5.447	5.436	5.425
1.389	5.414	5.404	5.394	5.384	5.375	5.365	5.355	5.346	5.336	5.327
1.667	5.318	5.308	5.299	5.290	5.281	5.273	5.264	5,255	5,247	5.239
1.945	5.230	5.222	5.215	5.207	5.199	5.192	5.185	5.178	5.171	5.164
2.223	5.158	5,151	5.145	5,139	5,133	5,127	5.121	5.116	5.110	5.105
2.501	5.099	5.094	5.089	5.084	5.079	5.074	5,069	5.064	5.059	5.054
2.779	5.049	5.044	5.039	5,034	5.029	5.024	5.018	5.013	5.008	5.003
3.057 3.335	4.998 4.941	4.992 4.935	4.987 4.930	4.981 4.924	4.975 4.919	4.970 4.913	4.964 4.907	4.959 4.902	4.953 4.897	4.947 4.891
.613	4.886	4.881	4,876	4.871	4,866	4.861	4.856	4.851	4.847	4.842
.890	4.837	4.833	4.829	4.825	4.821	4.817	4.813	4.809	4.805	4.801
.168	4.798	4.794	4.791	4.787	4.784	4.780	4.777	4.773	4.770	4.766
.446	4.763	4.760	4.756	4.753	4.749	4.746	4.743	4.740	4.736	4.733
.724	4.730	4.726	4.723	4.720	4.717	4.714	4.710	4.707	4.704	4.701
.002	4.698	4.695	4.692	4.689	4.686	4.683	4.580	4.677	4.674	4.671
.280	4.668	4,665	4.662	4,659	4.657	4.654	4.651	4.648	4.645	4.642
. 558 . 836	4.639 4.606	4.635 4.602	4.632 4.598	4.629 4.595	4.626 4.592	4.623 4.588	4.519 4.584	4.616 4.581	4.612 4.577	4.609 4.574
. 113	4.570	4.566	4.563	4.559	4.556	4.552	4.549	4.546	4.542	4.539
.391	4.536	4.533	4.530	4.526	4.523	4.520	4.517	4.514	4.511	4.509
.669	4.506	4.503	4.500	4.497	4.494	4.491	4.489	4.486	4.483	4.480
. 947	4.477	4.475	4.472	4.469	4.466	4.463	4.460	4.457	4.454	4.451
. 225	4.448	4.445	4.443	4.440	4.437	4.434	4.432	4.429	4.425	4.424
. 503	4.421	4.419	4,417	4.414	4.412	4.410	4.408	4.406	4.404	4.402
.781	4.401	4.399	4.397	4.396	4.394	4.393	4.392	4.390	4.389	4.388
.059 .337	4.386 4.371	4.385 4.369	4.384 4.367	4.382 4.365	4.381 4.363	4.379 4.361	4.378 4.359	4.376 4.357	4.375 4.355	4.373 4.352
.614	4.350	4.348	4.345	4.343	4.340	4.338	4,335	4.333	4.330	4.328
8.892	4.325	4.323	4.321	4.318	4.316	4.314	4.312	4.310	4.308	4.306
. 170	4.304	4.303	4.301	4.299	4.298	4.295	4.294	4.293	4.292	4.290
.448	4.289	4.287	4.286	4.284	4.282	4.281	4.279	4.277	4.275	4.273
. 726	4,271	4,269	4.267	4,265	4,263	4.261	4.258	4.256	4.253	4.251
.004	4.248	4.246	4.243	4.240	4.238	4.235	4.232	4.230	4.227	4.225
.282	4.222	4.220	4.217	4.215	4.213	4.211	4.209	4.206	4.205	4.203
. 560 . 838	4.201 4.187	4.199 4.186	4.198 4.185	4.196 4.184	4.195 4.183	4.193 4.182	4.192 4.181	4.191 4.181	4.190 4.180	4.188 4.179
115	4.178	4.177	4.176	4,174	4.173	4.172	4.171	4.169	4.168	4.167
393	4,165	4.164	4.162	4,160	4.159	4.157	4.155	4.153	4.151	4.149
671	4.147	4.145	4.143	4.140	4.138	4.136	4.134	4.132	4.130	4.128
949	4,126	4.124	4.122	4,119	4.117	4.115	4.113	4.111	4.108	4.106
227	4.104	4.102	4.099	4.097	4.095	4.093	4.090	4.088	4.086	4.084
505	4.081	4.079	4.076	4.074	4.072	4.069	4.067	4.064	4.062	4.059
783	4.057	4.054	4.051	4.049	4.046	4.044	4.041	4.039	4.035	4.034
061 338	4.032 4.008	4.029 4.006	4.027 4.004	4.024 4.002	4.022 4.000	4.020 3.008	4.017 3.996	4.015 3.994	4.013	4.011 3.989
536 516	3,987	3.985	3.983	3.980	3.978	3.998 3.976	3.990	3.994	3.992 3.968	3.965
894	3,963	3.960	3.957	3.954	3.951	3.948	3.945	3.943	3.940	3.937
172	3,934	3.930	3,927	3.924	3.921	3.918	3.915	3.911	3.908	3.905
450	3.901	3.898	3.894	3.891	3.888	3.884	3.881	3.878	3.875	3.872
728	3,869	3.866	3.863	3,860	3.858	3.855	3.853	3.850	3.848	3.845
006	3.843	3.841	3.838	3.836	3.834	3.832	3.830	3.827	3.825	3.823
284	3.821	3.818	3.816	3.814	3.812	3.810	3.807	3.805	3.803	3.800
62	3.798	3.795	3.793	3.790	3.788	3,785	3.782	3.780	3.777	3,774
39	3,771	3.768	3.765	3.762	3.759	3.755	3.752	3.749	3.746	3.742
17 05	3.739 3.708	3.736 3.705	3.733 3.703	3.729 3.700	3.726 3.697	3.723	3.720	3.717	3,714	3.711
195 373	3.682	3.680	3.678	3.700	3.673	3.694 3.671	3.692 3.669	3.689 3.667	3.887 3.666	3.684 3.664
J, J	0.002	0.000	5.070	5,0/5	5.073	3.0/1	5.008	3.007	J.000	5.004

16.951	3.662	3.660	3.659	3.657	3,656	3,654	3.653	3.651	3,650	3.648
17.229	3,646	3.645	3.643	3.642	3,640	3,638	3,636	3.635	3.633	3.631
17.507	3.629	3.626	3,624	3.622	3.619	3,617	3.614	3.612	3.609	3.606
17.785	3.603	3.601	3.598	3.595	3,592	3.589	3.586	3.583	3.580	3.577
18.063	3.574	3.571	3 . 56સ	3.565	3,562	3,559	3.556	3.553	3.550	3.548
18,340	3.545	3.542	3.540	3.537	3.534	3.532	3,530	3.527	3.525	3,523
18.618	3.521	3.519	3.517	3.516	3,514	3.512	3,510	3.509	3.507	3,506
18.896	3.504	3.503	3.502	3.500	3,499	3,498	3,496	3.495	3.494	3,493
19.174	3.492	3.491	3.490	3.489	3,488	3.487	3.486	3.484	3.483	3.482
19.452	3.481	3.480	3,478	3.477	3,476	3.475	3,473	3.472	3.470	3.469
19.730	3.468	3.466	3.465	3,463	3.462	3,461	3.459	3.458	3.456	3.454
20.008	3.453	3.451	3,449	3,447	3.446	3.444	3.442	3.440	3.439	3.437
20.286	3,435	3.434	3.432	3,430	3.429	3,427	3.425	3.424	3.422	3.420
20.564	3.419	3,417	3,416	3,414	3.412	3,411	3.409	3.408	3,406	3.405
20.841	3.404	3.402	3.401	3.400	3.393	3.397	3.396	3.394	3.393	3.392
21.119	3.391	3,390	3.388	3,387	3.386	3.385	3.384	3.383	3.382	3.381
21.397	3.380	3.379	3.378	3.377	3,377	3.376	3,375	3.374	3.373	3,372
21,675	3.372	3.371	3.370	3.370	3.369	3.368	3,367	3.367	3.366	3.365
21,953	3.365	3,364	3.363	3.363	3,362	3,361	3.361	3.360	3.359	3.358
22.231	3.358	3.357	3.357	3.356	3.355	3.355	3.354	3.354	3.353	3.353
22,509	3.352	3.351	3,351	3.350	3,350	3.349	3.349	3.348	3.348	3,347
22.787	3.347	3.347	3.346	3.346	3.345	3.345	3.344	3.344	3.343	3.343
23,064	3.342	3.341	3.340	3.339	3,339	3.338	3.337	3.336	3.335	3.334
23.342	3.333	3.332	3.331	3.330	3,329	3.327	3.326	3.324	3.322	3.321
23,620	3.319	3.318	3,316	3,314	3.312	3,310	3.308	3.306	3.305	3,303
23,898	3.301	3,298	3,296	3.294	3.291	3.289	3.287	3.285	3.282	3,280
24.176	3.277	3.275	3.273	3,270	3.268	3.266	3.264	3.262	3.260	3,258
24.454	3.256	3.254	3.252	3.250			3.245	3.243	3.242	3,241
					3.248	3.247				
24.732	3.239	3.238	3.237	3,237	3.236	3.235	3,234	3.234	3.233	3,232
25.010	3.231	3.231	3.230	3.229	3.229	3.229	3.228	3.228	3.227	3,227
25,288	3.226	3.226	3.225	3.224	3,224	3.223	3.222	3.221	3.220	3,219
25.565	3.218	3.216	3.215	3,214	3,212	3.211	3,210	3.208	3.207	3.205
25.843	3.204	3,202	3,201	3,199	3.198	3,196	3.194	3.193	3.19	3,190
26.121	3.188	3.187	3.186	3.184	3,183	3.182	3.181	3.180	3.18.	3.179
	3.179	3,178					3.178	3.178	3.179	3,179
26,399			3.178	3.178	3.178	3.176				
26.677	3.180	3.181	3.181	3,182	3.183	3.184	3.184	3,185	3.186	3,187
26.955	3.189	3.190	3.191	3.192	3.192	3.193	3,194	3.196	3.197	3.198
27.233	3.199	3.200	3.201	3,201	3.202	3.203	3.204	3,205	3.206	3,206
27,511	3.207	3.207	3,208	3,208	3.208	3.208	3,208	3.208	3,208	3,207
27.789	3.206	3.206	3.205	3,204	3.203	3.202	3.201	3.200	3.198	3.197
28,066	3.195	3,194	3,192	3,190	3.189	3.187	3.186	3.184	3.183	3.181
28.344	3.179	3.178	3.177	3,176	3,174	3.173	3.172	3.172	3.171	3.171
28.622	3.170	3.170	3.170	3,170	3.171	3,171	3.171	3,172	3.173	3,173
28,900	3.174	3.176	3.177	3.178	3.179	3.181	3.182	3.183	3.185	3,186
29.178	2.188	3.190	3.191	3,192	3,194	3.195	3.196	3.198	3.199	3,201
29.456	3.202	3.203	3.204	3,205	3,205	3.206	3,207	3.207	3.208	3.208
29.734	3.208	3,208	3,208	3,208	3.208	3.208	3.208	3.207	3.207	3,207
30.012	3.207	3,207	3.207	3.207	3,207	3.207	3,207	3.207	3.207	3.207
30.289	3.207		3.208		3.209	3.209				
00.200		3.208		3,208						
30.567	3.210	3.210	3.210	3,210	3,209	3.209	3.209	3.208	3.207	3.206
30.845	3.205	3.204	3.202	3,201	3.199	3.198	3.196	3.194	3.192	3,190
31,123	3.188	3.186	3,183	3.181	3.179	3.177	3.175	3.172	3.170	3,168
31.401	3.166	3.165	3.163	3,161	3.160	3.158	3,157	3,156	3.155	3.154
31.679	3.153	3.153	3.152	3,152	3.152	3.152	3,152	3.153	3.154	3,155
31,957	3.156	3.157	3.159	3.160	3,162	3.163	3,165	3.167	3.169	3.171
	l									
32.235	3.173	3.175	3.176	3,178	3,180	3.182	3,183	3.185	3.187	3.188
32.513	3.190	3,191	3.192	3,193	3.194	3.194	3.194	3.194	3.194	3.194
32.790	3.194	3.194	3.194	3.193	3.193	3.192	3.191	3.190	3.190	3.189
33,068	3.188	3.186	3.185	3.184	3.183	3.181	3,180	3,178	3.176	3,175
33,346	3.173	3.172	3.170	3,168	3.167	3.165	3.163	3.162	3.160	3.158
33.624	3.156	3.155	3.153	3,151	3.150	3.148	3,147	3,146	3.144	3,143
33 902	3.142	3.141	3.140	3,139	3.138	3.138	3.137	3.137	3.137	3.137
34.180	3.137	3.137	3.137	3.137	3,137	3.138	3,138	3.139	3.140	3,141
34.458	3.141	3,142	3.143	3,144	3.145	3.146	3.147	3,147	3.148	3.149
34.736	3.150	3.151	3.152	3,153	3,154	3.155	3.155	3.156	3.157	3.157
35,014	3,158	3.158	3.158	3.158	3,158	3.158	3.158	3.157	3.157	3.157
35.291	3,156	3.156	3.155	3.154	3,153	3.152	3.151	3.150	3.149	3.148
35,569	3.146	3.145	3.144	3.143	3.141	3.140	3,139	3.138	3.137	3,136
35,847										3,130
	3.135	3.134	3.133	3,132	3,132	3.131	3.131	3.130	3.130	
36 125	3.129	3.129	3,129	3 130	3.130	3.130	3.131	3.131	3.132	3.193
36,403	3.133	3.134	3.135	3,136	3,137	3.138	3.139	3.140	3.142	3.143

36.681	3.144	3.145	3.147	3.148	3.149	3,150	3,151	3,152	3,154	3.155
36.959	3.156	3.157	3.158	3.159	3.160	3.161	3.162	3,162	3,163	3.164
37.237	3.164	3.165	3.165	3.166	3,166	3.166	3,167	3.167	3.168	3,168
		0 100	2 170	2 121	2 171	2 170	2 172			

TABLE B-6. E675 CALIBRATION, (U_S, t), SHOCK VELOCITY VS. TIME, OBTAINED BY APPLYING NERD FILTER TO DATA OF TABLE B-3

Time increment = 16.6725 ns Number of points = 857

με	<				Units:	km/s				>
0.000	_	_	_	_	_	_	-	_	-	_
0.167	-	-	-	_	-	-	-	-	-	-
0.333	-	-	-	-	-	-	-	-	-	-
0.500	-	-	-	_	_	-	-	-	-	-
0.667			-		-	5.498	5,493	5.489	5.485	5.482
0.834	5,479	5.476	5.473	5.470	5.467	5,464	5.461	5.458	5.455	5.452
1.000	5.448	5.444	5.441	5,437	5.433	5.429	5.425	5.420	5.416	5.411
1,167	5.407	5.402	5.397	5.393	5.388	5,382	5.377	5.372	5.367	5.362
1.334	5.356	5.351	5.345	5 339	5.334	5,328	5.323	5.317	5.311	5.306
1.501 1.667	5,301 5,250	5.295	5.290	5.285	5.279	5,274	5.269	5.264	5.259	5.255
1.834	5.210	5.246 5.206	5.241 5.202	5.237 5.199	5.233	5,229 5,192	5.225	5.221	5.217 5.182	5.214
2.001	5.175	5.172	5.168	5.165	5.196 5.162	5,158	5.189 5.155	5.186 5.151	5.147	5.179 5.144
2.167	5.140	5.136	5.133	5.129	5.125	5.121	5,117	5,113	5.109	5.105
2.334	5.101	5.097	5.093	5.089	5.085	5.081	5.076	5.072	5.068	5.064
2.501	5.060	5.056	5,052	5.048	5.044	5.040	5.036	5.033	5.029	5.026
2.668	5.022	5.019	5.016	5.012	5.009	5.006	5.002	4.999	4.996	4.993
2.834	4.990	4.987	4.985	4.982	4.979	4,977	4.974	4.972	4.969	4.967
3.001	4.964	4.962	4 960	4.957	4.955	4.952	4.950	4.948	4.946	4.943
3.168	4.941	4.939	4.936	4.934	4.932	4,929	4.927	4.924	4.932	4,919
3.334	4.917	4.914	4.911	4.908	4.906	4,903	4.900	4.897	4.854	4.891
3.501	4.888	4.885	4.883	4.880	4.877	4.874	4.871	4.869	4.866	4.863
3,668	4.861	4.858	4.855	4.853	4.851	4.848	4.846	4.844	4.842	4.840
3.835	4,838	4.836	4.834	4.833	4.831	4.829	4.828	4.826	4.824	4.823
4.001	4.821	4.820	4.819	4,817	4.816	4.814	4.812	4.811	4.809	4.807
4.168 4.335	4.806 4.783	4.804 4.780	4.802	4.799	4.797	4,795	4.793	4.790	4.788	4.785
4.502	4.754	4.751	4.777 4.748	4.774 4.745	4.771 4.742	4.769 4.739	4.766 4.737	4.763 4.734	4.760 4.731	4,757
4.668	4.725	4.722	4.719	4.717	4.714	4,711	4.708	4.705	4.702	4.728 4.700
4.835	4.697	4.694	4.691	4.688	4.685	4,682	4.680	4.677	4.674	4.671
5.002	4.668	4.665	4.662	4.659	4.657	4,654	4.651	4.648	4.645	4.643
5.168	4.640	4.637	4.635	4.632	4.630	4,627	4,625	4.623	4.621	4,619
5.335	4.617	4.616	4.614	4.612	4.611	4.610	4.508	4.607	4.606	4.606
5.502	4.605	4.604	4.604	4.603	4.603	4,603	4.602	4.602	4.601	4.601
5.669	4.600	4.600	4.599	4.598	4 , 50"	4.597	4.596	4.595	4.594	4.593
5.835	4.591	4.590	4.589	4.587	4.586	4.584	4.582	4.580	4.578	4.576
6.002	4.574	4.572	4.570	4.568	4,565	4.563	4.561	4.558	4.556	4.553
6.169	4.551	4.549	4.546	4.544	4.542	4.540	4.538	4.535	4.533	4.531
6.336	4.529	4.527	4.525	4.523	4.521	4.519	4.517	4.515	4.513	4.511
6.502 6.669	4.509 4.489	4.507 4.487	4.505	4.503	4.501	4.499	4.497	4.496	4.494	4.492
6.835	4.471	4.469	4.485	4,483	4.482	4.480	4.478	4.476	4.474	4.472
7.002	4.454	4.452	4.467 4.450	4.465 4.448	4.464 4.448	4.462 4.446	4,460 4,445	4.459 4.444	4.457 4.442	4.455 4.441
7.169	4.440	4.439	4.438	4.437	4.436	4.436	4,435	4.434	4.434	4.433
7.336	4.433	4.432	4.431	4.431	4.430	4,430	4.429	4.429	4.428	4.428
7.503	4.427	4.427	4.426	4.425	4.425	4.424	4,423	4.423	4.422	4.421
7,669	4.420	4.419	4.417	4.416	4.415	4.413	4,412	4.411	4.409	4.408
7.836	4.406	4.404	4.402	4.401	4.399	4.397	4.394	4.392	4.390	4.388
8.003	4.386	4.383	4.381	4.379	4.376	4.374	4.372	4.369	4.367	4.365
8.170	4.362	4.360	4.358	4.355	4.353	4.351	4.348	4.346	4.344	4.342
8.336	4.340	4.338	4.336	4.334	4.332	4.330	4.328	4.327	4.325	4.324
8.503	4.322	4.321	4.320	4.319	4.317	4.316	4.315	4.314	4.313	4.312
8.670	4.312	4.311	4.310	4.309	4.309	4,308	4.308	4,308	4.307	4.307
8.836 9.003	4.307 4.305	4.307 4.305	4.307	4.307	4.307	4,306	4,306	4,306	4.306	4.306
9,170	4.298	4.298	4.304 4.296	4.304 4.295	4.303 4.294	4,3(2 4,29.	4.302 4.291	4.301 4.289	4.300 4.288	4.299 4.286
9.337	4.284	4.283	4 281	4.295	4.294	4.276	4.291	4,273	4 271	4,270
9.503	4.268	4.267	4.265	4,264	4,263	4.262	4,261	4.260	4.259	4.258
9,670	4.257	4.256	4.255	4.254	4.254	4.253	4,252	4.252	4.251	4.250
9.837	4.250	4,249	4.248	4.248	4.24/	4,246	4,245	4.244	4,243	4.242
10.004	4.241	4,239	4.238	4.236	4.235	4.233	4.231	4.229	4.228	4.225

10.170	4.224	4.223	4.221	4.219	4.217	4.215	4.214	4.212	4.210	4.209
10.337	4,207	4.206	4.204	4,203	4,202	4,200	4,199	4.198	4,197	4.196
10.504	4,195	4,195	4.194	4.194	4.193	4.193	4.192	4.192	4.192	4.191
10.670	4.191	4,191	4.191	4,191	4,190	4,190	4,190	4.190	4.189	4.189
10.837	4.189	4.189	4.188	4.188	4.187	4.187	4.186	4.186	4.185	4.185
11.004	4.184	4.183	4.182	4.181	4,181	4,180	4,179	4.178	4.177	4.176
11.171	4.175	4.174	4.173	4.172	4.171	4.170	4.169	4.168	4.168	4.167
11.337	4,166	4.165	4.164	4.163	4.162	4.162	4.161	4.160	4,159	4.158
11.504	4,157	4.156	4.155	4.154	4.153	4.152	4.152	4.151	4.150	4.149
11.671	4.148	4.147	4.146	4.145	4.144	4,143	4.142	4.141	4.139	4.138
11.837	4,137	4.136	4.135	4,133	4.132	4.130	4.129	4.128	4.126	4,125
12.004	4.123	4.122	4.120	4.119	4,117	4.115	4.113	4.112	4.110	4.108
12.171	4,106	4.104	4.103	4.101	4.099	4.097	4.095	4.093	4.091	4.089
12.338	4.088	4.086	4.084	4.082	4.080	4.079	4.077	4.075	4.074	4.072
12.504	4.071	4.070	4.068	4.067	4.066	4.065	4.064	4.063	4.062	4.062
12.671	4.061	4.060	4.060	4.059	4.059	4.058	4.057	4.057	4.056	4 055
12.838	4.055	4.054	4.053	4.052	4.052	4.051	4.050	4.049	4.047	4.046
13.005	4,045	4.043	4.042	4.040	4.038	4.036	4.034	4.032	4.030	4.027
13.171	4.024	4.021	4.018	4.016	4.012	4.009	4.006	4.003	4.000	3,996
13.338	3,993	3.990	3.986	3.983	3.979	3.976	3.673	3.970	3.967	3.964
13.505	3,961	3,959	3.956	3.954	3.951	3,949	3,947	3.945	3.943	3.941
13.671	3.939	3.938	3.936	3.934	3.932	3,931	3.929	3.927	3.925	3.923
13.838	3.921	3.918	3.916	3.913	3.910	3.907	3,904	3.901	3.897	3.893
14.005	5.889	3.885	3.880	3.876	3.871	3.866	3.861	3.855	3.850	3.844
14.172	3.839	3.633	3.828	3 822	3.817	3.811	3.806			

TABLE B-7. E673 CALIBRATION, (u_P, t), PARTICLE VELOCITY VS. TIME, OBTAINED BY APPLYING EQUATION (3-7) TO DATA OF TABLE B-4

Time increment = 27.7515 ns Number of points = 505

με	<				Uni és :	km/s —				>
0.000	_	_	_	_	~	_	_	-	_	_
0,278	-	-	_	-	_		_	-	_	_
0.555	_	_	_	-	_	_	_	-	-	_
0.833	_	_	_	_	-	_	_	~	_	_
1.110	_	٠.	_	_	_	1,749	1.746	1.741	1.737	1.733
1,358	1.729	1.724	1.720	1.716	1.711	1.707	1.702	1.698	1.694	1,689
1.665	1,685	1.681	1.676	1.672	1.668	1,663	1.659	1.655	1.650	1.646
1,943	1.642	1.638	1.634	1,630	1.626	1,622	1.618	1.614	1.610	1,606
2.220	1.602	1,598	1.594	1.591	1.587	1.583	1.579	1.575	1.572	1.568
2.498	1.564	1.561	1.557	1,553	1.550	1,546	1.543	1.539	1.536	1.532
2.775	1.529	1.526	1.522	1.519	1.515	1.512	1.509	1.506	1.502	1,499
3.053	1,496	1,493	1.490	1.486	1.483	1.480	1.477	1.474	1.471	1.468
3.330	1.465	1.462	1.459	1,456	1.454	1.451	1.448	1.445	1.442	1,439
3.608	1.437	1.434	1.431	1,429	1.426	1.423	1.421	1.418	1.416	1.413
3.885	1.411	1.408	1.406	1.404	1.401	1.399	1.397	1.395	1.393	1,391
4.163	1.389	1.387	1.385	1.383	1.381	1.379	1.377	1.375	1.374	1.372
4.440	1.370	1.369	1.367	1.366	1,364	1.363	1.361	1.360	1.358	1.356
4.718	1,355	1.353	1,352	1,350	1.349	1.347	1.346	1.344	1.343	1.341
4.995	1.339	1.337	1.336	1.334	1.332	1,330	1.328	1.326	1.324	1.322
5.273	1.320	1.318	1.316	1.314	1.311	1.309	1.307	1.305	1.302	1,300
5.550	1.298	1,295	1.293	1.291	1.289	1.286	1.284	1.282	1.280	1.278
5.828	1.276	1.274	1,272	1.270	1.268	1,266	1.265	1.263	1.261	1.260
6.105	1.258	1.256	1.255	1.253	1.252	1.250	1.249	1 247	1.246	1.245
6.383	1.243	1.242	1.241	1.239	1.238	1.237	1.235	1.234	1.233	1.231
6.660	1.230	1.228	1,227	1.226	1.224	1.223	1,221	1.220	1.218	1,217
6.938	1.215	1.214	1.212	1.211	1.209	1.208	1.206	1.205	1.203	1,202
7.215	1.200	1.199	1.198	1,196	1.195	1.194	1.192	1.191	1.190	1,189
7.493	1.188	1.187	1.185	1.184	1.183	1.182	1.181	1.181	1.180	1.179
7.770	1.178	1.177	1.176	1.175	1.175	1.174	1.173	1.172	1.171	1,170
8,048	1.169	1,169	1.168	1.167	1.166	1.165	1.164	1,163	1.162	1.161
8.325	1.160	1.159	1.157	1.156	1,155	1.154	1.153	1.152	1.151	1,150
8.603	1.149	1.148	1.146	1.145	1.144	1.143	1.142	1.141	1.140	1,139
8.880	1.138	1.137	1.136	1.135	1,134	1.133	1.132	1.132	1.131	1,130
9.158	1.129	1.128	1,128	1.127	1.126	1.125	1.125	1.124	1.123	1,122
9.436	1.122	1.121	1.120	1.119	1.118	1,118	1.117	1.116	1.115	1.114
9.713	1.113	1.112	1.110	1.109	1.108	1.107	1.105	1.104	1.103	1,101
9.991	1.100	1.098	1.097	1.095	1.094	1.092	1.091	1.090	1.088	1.087
10.268	1.085	1.084	1.083	1.081	1.080	1.079	1.078	1.077	1.076	1.075
10.546	1.074	1.073	1.072	1.071	1.070	1.070	1.069	1.069	1.068	1,068
10.823	1.067	1.067	1.067	1.056	1.066	1.066	1.065	1.065	1.064	1,054
11.101	1.064	1.063	1.063	1.062	1.062	1.061	1,061	1.060	1.059	1,059
11.378	1.058	1.057	1.056	1.055	1.054	1.053	1,052	1.051	1.049	1.048
11.656	1.047	1.045	1.044	1.043	1.041	1.040	1.039	1.037	1.036	1.034
11.933	1.033	1.032	1.030	1.029	1.028	1.026	1.025	1.024	1.023	1.022
12.211	1.021	1.020	1,019	1.018	1.017	1.016	1.015	1.014	1.014	1.013
12.488	1.012	1.011	1.011	1.010	1.009	1.008	1.008	1.007	1.066	1,005
12.766	1.004	1.003	1.002	1.001	1.000	0.999	0.998	0.997	0.995	0.994
13.043	0.993	0.991	0.990	0.988	0.987	0.985	0.983	0.982	0.980	0.978
13.321	0.976	0.974	0.972	0.970	0.968	0.966	0.964	0.962	0.960	0.958
13.598	0.956	0.954	0.952	0.950	0.948	0.946	0.944	0.941	0.939	0.937
13.876	0.935	0.932	0.930	0.927	0.925					

TABLE B-8. E674 CALIBRATION, (u_P, t), PARTICLE VELOCITY VS. TIME, OBTAINED BY APPLYING EQUATION (3-7) TO DATA OF TABLE B-5

Time increment = 27.7885 ns Number of points = 1357

1	•									
μ3	<				Units:	km/s			·	>
0.000	-	-	-	-	-	-	-	_	_	_
0.278	-	-	-	-	-	-	-	-	-	-
0.556	-	-	-	_	-	_	-	-	-	-
0.834		_	-	-	_	1 7/0	1 724	1 707	. 701	-
1.112	1,709	1,704	1.698	1,693	1,687	1.740 1.682	1.734 1.677	1.727 1.672	1.721 1.667	1,715 1,661
1.667	1.656	1.651	1.646	1.642	1.637	1.632	1.627	1.622	1.618	1.613
1.945	1.609	1.605	1.600	1.596	1.592	1.588	1.584	1.581	1.577	1,573
2.223	1.570	1,566	1,563	1,560	1,556	1,553	1.550	1.547	1.544	1.541
2.501	1.538	1.536	1,533	1.530	1.527	1.525	1.522	1,519	1.517	1.514
2.779	1.511	1,509	1.506	1.503	1.500	1.498	1.495	1.492	1.489	1.487
3.057	1.484	1.481	1.478	1.475	1.472	1.469	1.466	1,463	1.460	1.457
3,335	1.454	1,451	1.448	1.445	1,442	1,439	1.436	1.433	1.430	1.427
3.613 3.890	1.424 1.398	1.421 1.396	1.419 1.394	1.416 1.392	1.413 1.390	1.411 1.387	1.408 1.385	1,406 1,383	1.403 1.381	1.401 1.379
4.168	1.378	1.336	1.374	1.372	1.370	1.368	1,366	1.364	1.363	1.361
4.446	1.359	1,357	1.355	1.354	1.352	1.350	1.348	1.347	1.345	1.343
4.724	1.341	1.340	1,338	1.336	1.335	1.333	1,331	1,330	1.328	1.326
5.002	1.325	1.323	1.321	1.320	1.318	1.317	1.315	1.313	1.312	1.310
5.280	1.309	1.307	1,306	1,364	1.303	1,301	1,300	1.298	1.297	1.295
5.558	1.293	1.292	1.290	1.288	1.287	1.285	1.283	1, 281	1.280	1.278
5.836	1.276	1.274	1.272	1.271	1.269	1.267	1.265	1.263	1.261	1,259
6.113	1.257	1.255	1.254	1.252	1.250	1.248	1.246	1.245	1.243	1.241
6.391	1.239 1.224	1.238 1.222	1,236 1,221	1,234 1,219	1.233 1.218	1.231 1.216	1,230 1,215	1.228	1.227 1.212	1,225 1,210
6,669 6.947	1.209	1.207	1,206	1,215	1.203	1.201	1.213	1.213 1.198	1.197	1.195
7.225	1.193	1,192	1,130	1.189	1.187	1.186	1.185	1.183	1.182	1.181
7.503	1.179	1,178	1.177	1.176	1,175	1.173	1,172	1,171	1,170	1.169
7.781	1.168	1.168	1.167	1.166	1.165	1.164	1.164	1.163	1.162	1.162
9.059	1,161	1.160	1.159	1,159	1,158	1,157	1.156	1.156	1.155	1.154
9.337	1.153	1,152	1,151	1,150	1,149	1,148	1.147	1.7.45	1.144	1.143
8.614	1.142	1.141	1.139	1.138	1.137	1.135	1.134	1.133	1.131	1,130
8.892	1.129	1.128	1.126	1.125	1.124	1.123	1.122	1.121	1.120	1,119
9.170 9.448	1,118 1,109	1.117 1.109	1.116 1.108	1.115 1.107	1.114	1.113 1.105	1.113 1.104	1,012	1.111 1.103	1.110 1.102
9.726	1.100	1.099	1.098	1.097	1.096	1.095	1.093	1.092	1.091	1.089
10,004	1,088	1.087	1,085	1,084	1.083	1.081	1.080	1.078	1.077	1.076
10.282	1.075	1.073	1,072	1,071	1.070	1,058	1.057	1.066	1.065	1.064
10.560	1.063	1.062	1.062	1.061	1.060	1.059	1.059	1.058	1.057	1.057
10.838	1.056	1.055	1.055	1.054	1.054	1.053	1.053	1.052	1.052	1.051
11.115	1.051	1.050	1.050	1.049	1.049	1.048	1.047	1.047	1.046	1.045
11,393	1.044	1.044	1.043	1.042	1.041	1.040	1.039	1.038	1.037	1.036
11.671	1.035	1.034	1,032	1.031	1.030	1.029	1.028	1,027	1,026	1.025
11.949 12.227	1.023	1,022	1.021 1.009	1.020 1.008	1.019 1.007	1.018 1.006	1.017 1.005	1.015 1.003	1.014	1.013
12.505	1.000	0.998	0.997	0.996	0.995	0.993	0.992	0.991	0.989	0.988
12.783	0.906	0.985	0.984	0.982	0.981	0.980	0.978	0.977	0.976	0.974
13.061	0,973	0.972	0,971	0,969	0,968	0.967	0,965	0.964	0,963	0,962
13.338	0.951	0.959	0.958	0.957	0.956	0.955	0.954	0.953	0.951	0.950
13,616	0.849	0.948	0.947	0.945	0.944	0.943	0.942	0.940	0.939	0.937
13.894	0,936	0.934	0.933	0.931	0.930	0.928	0,926	0.925	0.923	0.922
14.172	0.920	0.918	0.916	0.915	0.913	0.911	0.910	908.0	0.906	0.904
14.450	0.902	0.900	0.898	0.897	0.895	0. <i>/</i> 0. <i>4.1</i> 7	0,891	0,889	0,888	0.886
14.728 15.006	0.870	0.883 0.869	0.881 0.867	0,880 0,866	0.87B 0.865	0,864	0.875 0.852	0.874 0.861	0.873 0.860	¹71 ∪,∪59
15.284	0.857	0.856	0.855	0.854	0.852	0.851	0.850	0.848	0.847	0.846
15.562	(844	0.843	0.842	0.840	0.838	0.837	0.835	0.834	0.832	0.831
15.839	0.829	0.827	0.825	0.524	0.822	0.820	0.818	0.816	0.814	0,812
16.117	0.810	0.809	0.807	0.805	0.803	0.801	0.799	0.797	0.796	0.794

16.395	0.792	0.791	0,789	0.787	0.786	0.784	0.782	0.781	0.779	0.778
16.673	0.777	0.775	0.774	0.773	0.771	0,770	0.769	0.768	0.767	0.766
16.951	0.765		0,762			0.760				
i		0.763		0.762	0.761		0.759	0.758	0.757	0.756
17.229	0.755	0.754	0.753	0.752	0.751	0.750	0.749	0.748	0.746	0.745
17.507	0.744	0.742	0.741	0.740	0.738	0.737	0.735	0.733	0.732	0,730
17,785	0.728	0.726	0,724	0.723	0.721	0.713	0.717	0.715	0.713	0.711
18.063	0.709	0,707	0.705	0.703	0.701	0.699	0.697	0.695	0.693	0.691
18.340	0.689	0.688	0.686	0.684	0.682	0.681	0.679	0.677	0.676	0.674
18,618	0,673	0.672	0.670	0.669	0.668	0,666	0.665	0.664	0.663	0.662
18.896	0.661	0.660	0.659	0.658	0.657	0.656	0.655	0.654	0.653	0.653
19.174	0,652	0,651	0.650	0.650	0.649	0.648	0.647	0.646	0.646	0.645
19,452	0.644	0.643	0.642	0.641	0.640	0.639	0.638	0.637	0.636	0.635
19.730	0.634	0.533	0.632	0.630	0.629	0.628	0.627	0.626	0.625	0.623
20,008	0.622	0.620	0.619	0.618	0.616	0.615	0.613	0.612	0.611	0.609
	- •				-					
20.286	0.608	0.606	0.605	0.604	0,602	0.601	0.599	0.598	0.597	0.595
20.564	0.594	0.593	0.591	0.590	0,588	0.587	0.585	0.584	0.583	0.581
20.841	0.580	0.579	0.578	0.577	0.575	0.574	0.573	0.572	0.571	0.570
21.119	0.568	0.567	0.566	0,565	0,564	0.563	0.562	0.561	0.560	0.559
	0.558	0.557	0.556	0.555	0.555	0.554	0.553	0.552	0.551	0.550
21.397										
21.675	0.550	0.549	0.54€	0.547	0.547	0.546	0.545	0.544	0.544	0.543
21.953	0.542	0.542	0.541	0.540	0.540	0.539	0.538	0.537	0.536	0,535
22.231	0.535	0.534	0.534	0.533	0.532	0.532	0.531	0.531	0.530	0.529
22,509	0,529	0,528	0.527	0.526	0.526	0,526	0.525	C.524	0.524	0.523
22.787	0.523	0.522	0.522	0.521	0.521	0.520	0.519	0.519	0.518	0.518
23.064	0.517	0.516	0.515	0.514	0.513	0.512	0.511	0.510	0.508	0.507
23.342	0,506	0.505	0.503	0,502	0.500	0.498	0.496	0.494	0.492	0.490
23.620	0.488	0.485	0.483	0.480	0.478	0.475	0.472	0.469	0.466	0.463
						0.440				-
23,898	0,460	0.456	0.452	0.448	0.444		0.436	0.431	0.427	0.422
24.176	0.417	0.412	0.407	0.402	0,397	0.392	0.287	0.382	0.377	0.372
24,454	0,368	0.363	0.359	0.354	0.350	0.345	0.341	0.337	0.334	0,330
24.732	0.327	0.325	0.323	0.320	0.318	0.316	0.315	0.313	0.312	0.310
25.010	U.309	0.307	0.305	0.304	0.303	0.302	0.301	0.300		0.298
									0.299	
25.288	0,297	0.295	0.294	0.293	0.291	0.290	0.288	0.286	0.284	0.282
25.565	0.279	0.276	0.274	0.271	0.269	0.266	0.264	0.262	0.259	0.257
25.843	0,254	0.251	0.249	0.247	0.244	0,242	0.239	0.237	0,235	0.233
26.121	0.231	0.229	0.227	0.225	0.224	0.222	0.221	0.220	0.219	0.218
26,399	0,218	0.217	0.217	0.217	0.217	0.217	0.217	0.217	0.218	G '18
26.677	0.219	0.220	0.221	0.222	0.223	0.224	0.225	0.227	0.228	0. 39
26.955	0.231	0.232	0.234	0.235	0.236	0.238	0.239	0.241	0.243	0.244
27.233	0.246	0.247	0,249	0.250	0.252	0.253	0.254	0.256	0,257	0.258
27.511	0.259	0.260	0.261	0.261	0.261	0.261	0.261	0.261	0.260	0.259
	1									
27.759	0,258	0,257	0.256	0.255	0.253	0.251	0.249	0.247	0.245	0.243
28.066	0.240	0.238	0,236	0.234	0,231	0.229	0.227	0.225	0.223	0.221
28.344	0.219	0.217	0,215	0.214	0.213	0.211	0.210	0.209	0.209	0.208
28.622	0.208	0.207	0.207	0.208	0.208	0.208	0.209	0.210	0.210	0.211
	1									
28.900	0.213	0.214	0.215	0.217	0.219	0.220	0,222	0.224	0.226	0.228
29,178	0.230	0.232	0.234	0.235	0.238	0.240	0.242	0.244	0.247	0.249
29.456	0,251	0.253	0.254	0.256	0.257	0,258	0.259	0.260	0.260	0.261
29.734	0.261	0.261	0.261	0.261	0.261	0.261	0.261	0.260	0.260	0.280
30.012	0,260		0.260		0.259	0.259		0.259		0.260
		0.260		0.260			0.259		0.259	
30.289	0.260	0.260	0.261	0,261	0,252	0.263	0.263	0.264	0,264	0.264
30,567	0,264	0.264	0.264	0.264	0.254	0.263	0,262	0.261	0.260	0.258
30,845	0.256	0.254	0.252	0.249	0.247	0.244	0.242	0.239	0.236	0.233
31,123	0.230	0.227	0.224	0.221	0.218	0.215	0.213	0.210	0.208	0,205
31.401	0.203	0.201		0.198	Ú.196	0.194	0.193	0.192		0.190
			0.199						0.191	
31.679	0.189	0.189	0.188	0.188	0.188	0.188	0.188	0.189	0.190	0.191
31,957	0.192	0.193	0,195	0.196	0,198	0.200	0.202	0.204	0,206	0,205
32.235	0,210	0.213	0.215	0,217	0,220	0.222	0.224	0.226	0.228	0.230
32.513	0.232	0.234	0.236	0.237	0.238	0.239	0.239	0.239	0.239	0.239
	ì									
32.790	0.239	0.239	0.238	0.238	0.237	0.236	0.235	0.234	0,232	0.231
33,068	0.230	0,228	0.226	0.225	6.223	0.221	0.219	0.217	0.215	0.213
33.346	0.211	0.209	0.207	0.205	0.204	0.202	0.200	0.198	0.196	0.194
33,624	0.192	0.191	0.189	0.187	0.186	0.184	0.183	0.182	0 180	0.179
33.902	0.178	0.177	0.177	0.176	0.175	0.175	9,174	0.174	0.174	0.174
34,180	0.174	0.174	0.174	0.174	0.174	0.175	0.175	0.176	0.176	0.177
34.458	0.178	0.178	0.179	0.180	0.181	0.182	0.183	0.183	0.184	0.185
34,736	0.186	0.187	0.198	0.189	0.190	0,190	0,191	0.192	0.193	0.193
35.014	0.194	0.194	0.194	0.194	0.194	0,194	0.194	0.193	0.193	0.193
35,291	0.192	0.192	0.191	0.190	0.189	0.188	0 187	0.186	0.185	0.184
	1									
35.569	0.163	0.181	0.180	0.179	0.178	0.177	0.176	0.175	0.174	0.173
35.847	0.172	0.171	0.170	0.170	0.169	0,169	0.168	0.168	0.168	0.167

36.125	0.167	0.167	0.167	0.167	0.168	0.168	0.168	0.169	0.169	0.170
36.403	0.170	0.171	0,172	0,173	0.174	0.175	0.176	0.177	0.178	0.179
36.681	0.180	0.181	0.183	0,184	0.185	0.186	0,187	0.188	0.189	0.191
36.959	0.192	0.193	0.194	0.195	0.196	0.197	0.198	0.199	0,199	0.200
	0.201							0.204	0,205	0.205
27 616	0 206	0 207	2 207	0.208	A 200	0 210	0 210			

TABLE B-9. E675 CALIBRATION, (u_p, t), PARTICLE VELOCITY VS. TIME, OBTAINED BY APPLYING EQUATION (3-7) TO DATA OF TABLE B-6

Time increment = 16.6725 ns Number of points = 857

	•									
μs	<				Units:	km/s —			- 	>
0.000	_	_	_	_	-	-	_	-	-	_
0.167	_	-	-	-	-	_	-	-	-	-
0.333	_	-	-	-	-	-	-	-	-	-
0.500	_	-	-	-	-	-	-	-	-	-
0.667	_	-	-	-	-	1.755	1.753	1.750	1.748	1.746
0.834	1,745	1.743	1.742	1,740	1,738	1.737	1,735	1.733	1.732	1.730
1.000	1.728	1.726	1.724	1.722	1.719	1.717	1.715	1.713	1.710	1.708
1.167	1.705	1.703	1.700	1.697	1,695	1.692	1.689	1,636	1.683	1.680
1.334	1,677	1.674	1.671	1.668	1.665	1.662	1.659	1.656	1.653	1.650
1.501	1.647	1.644	1.641	1.638	1.636	1.633	1,630	1.627	1.625	1,622
1.667	1.620 1.598	1.617 1.596	1.615 1.594	1.613 1.592	1.610 1.590	1.608 1.588	1.606 1.587	1.604 1.585	1.602 1.583	1.600 1.581
2.001	1,579	1.577	1.575	1.574	1.572	1.570	1.568	1,566	1.564	1.562
2.167	1.560	1.558	1.556	1.554	1.552	1,550	1.548	1.546	1.543	1.541
2.334	1,539	1.537	1.535	1.533	1,530	1.528	1.526	1.524	1.522	1.519
2.501	1,517	1.515	1.513	1.511	1,509	1.507	1.505	1,503	1.501	1.499
2,668	1,497	1.495	1.493	1,492	1,490	1.488	1.486	1,485	1.483	1.481
2.834	1.480	1.479	1.477	1.475	1.474	1.473	1.471	1.470	1.469	1.467
3,001	1,466	1.465	1.463	1.462	1.461	1.460	1.458	1.457	1.456	1.455
3,168	1,454	1.452	1.451	1.450	1,449	1.447	1,446	1,445	1.443	1.442
3.334	1,441	1,439	1.438	1.436	1.435	1,433	1.432	1.430	1.429	1.427
3.501	1.425	1,424	1.422	1.421	1.419	1,418	1.416	1.415	1.414	1.412
3.668	1,411	1,409	1.408	1.407	1.405	1.404	1.403	1.402	1.401	1.400
3.835	1.399	1.398	1,397	1,396	1.395	1.394	1.393	1,392	1.392	1,391
4.001	1,390	1,389	1.388	1.388	1.387	1,386	1.385	1.384	1.384	1.383
4.168	1.382	1,381	1.378	1.378	1.3/7	1.376	1.375	1.374	1.372	1.371
4.335	1.369	1.368	1.366	1,365	1.364	1.362	1.360	1,359	1.357	1.356
4.502	1.354	1,353	1.351	1.350	1,348	1.347	1.345	1,344	1.342	1,341
4.668	1.339	1.337	1,336	1.335	1.333	1,331	1.330	1.329	1.327	1,326
4.835	1.324	1.323	1.321	1.320	1.318	1.316	1.315	1.314	1.312	1.311
5.002	1.309	1.308	1.306	1.304	1.303	1,301	1.300	1.298	1.297	1.296
5,168	1.294	1.293	1.291	1.290	1.289	1.288	1.286	1.285	1.284	1,283
5.335	1.282	1,281 1,275	1.280 1.275	1.280	1.279 1.275	1,278 1,275	1.278 1.274	1.277 1.274	1.277 1.274	1,276 1,274
5.502 5.669	1.276 1.273	1.273	1.273	1.272	1.272	1.271	1.271	1,270	1.270	1,269
5.835	1.269	1.268	1,267	1.267	1.266	1,265	1.264	1.263	1.262	1,261
6.002	1,260	1.258	1.257	1.256	1.255	1.254	1.252	1.251	1.250	1,249
6.169	1.247	1.245	1.245	1.244	1.243	1.241	1.240	1.239	1.238	1,237
6,336	1.236	1.235	1,234	1,233	1.232	1.231	1.230	1.229	1.227	1,226
6.502	1.225	1.224	1,223	1.222	1,221	1.220	1.219	1,218	1.217	1,216
6.659	1.215	1.214	1.213	1.212	1,211	1,210	1.209	1,208	1.207	1,206
6.836	1.205	1,204	1,203	1.202	1.201	1.201	1.200	1.199	1.198	1,197
7.002	1,196	1,195	1.195	1.194	1.193	1.192	1.192	1,191	1.190	1,190
7.169	1,189	1.189	1.188	1.188	1,187	1.187	1.186	1.186	1.186	1.185
7,336	1.185	1.185	1,185	1.184	1.184	1.184	1.183	1.183	1.183	1,183
7,503	1.182	1.182	1.182	1,181	1.181	1.181	1.180	1.180	1.179	1.179
7.669	1,178	1,178	1.177	1.177	1,176	1,175	1.174	1.174	1.173	1,172
7,836	1.171	1.170	1,169	1.168	1.167	1.166	1.165	1.164	1.163	1,162
8.003	1,160	1.159	1.158	1.157	1.156	1.154	1.153	1.152	1.151	2.150
8.170	1.148	1.147	1.146	1.145	1.143	1,142	1.141	1.140	1.139	1,138
8.336	1,136	1,135	1.134	1.133	1,132	1.131	1.130	1 130	1 129	1.123
8,503	1.127	1.127	1.126	1.125	1.125	1.124	1.123	1.123	1.122	1,122
8.570	1.122	1.121	1.121	1.121	1.120	1.120	1.120	1.120	1.119	1.119
8,826	1.119	1.119	1.119	1.119	1.119	1.119	1.119	1.119	1.119	1,118
9.003	1.118	1.118	1.118	1,117	1 117	1.117	1.116	1.116	1.115	1.115
9.170	1 115	1,114	1,114	1,113	1.112	1,111	1.111	1 110	1,109	1,108
9,337	1.107	1,106	1.106	1.105	1.104	1.103	1.102	1 101	1.100	1,100
9,503 9,670	1.099 1.093	1,098	1.097	1.097	1,096	1.095	1.095	1.094	1.094	1,093
B,0/U	1 1,093	1.092	1.092	1.092	1.091	1.091	1.090	1.090	1.090	1.089

9.837	1,089	1,089	1.088	1.088	1.088	1.087	1.087	1.086	1.085	1.085
10,004	1.084	1.083	1,083	1.082	1.081	1.080	1.079	1.078	1.077	1.077
10.170	1.076	1.075	1.074	1.073	1.072	1.071	1.070	1,069	1.068	1.057
10.337	1.067	1.066	1.065	1.064	1.064	1.063	1,062	1.062	1.061	1.061
10.504	1.060	1.060	1.060	1.059	1.059	1.059	1.059	1.059	1.058	1.058
10.670	1.058	1.058	1,058	1.058	1.058	1.058	1.057	1.057	1.057	1.057
10,837	1,057	1.057	1,057	1.056	1,056	1,056	1,056	1.055	1.055	1.055
11.004	1.054	1.054	1.053	1.053	1.052	1,052	1.052	1,051	1.051	1,050
11.171	1.050	1.649	1.049	1.048	1.048	1.047	1.047	1.046	1.046	1.045
11.337	1,045	1.044	1,044	1.043	1,043	1.042	1.042	1.041	1.041	1.040
11.504	1.040	1.039	1.039	1.038	1.038	1.038	1.037	1,037	1.036	1.036
11.671	1.035	1.035	1.034	1.034	1.033	1.032	1.032	1,031	1.031	1.030
11.837	1.029	1.029	1.028	1.027	1.027	1.026	1.025	1.024	1.024	1.023
12.004	1.022	1.021	1.020	1.020	1.019	1.018	1.017	1,016	1.015	1.014
12.171	1.013	1.012	1,011	1,010	1.009	1,008	1.007	1.006	1.005	1.004
12.338	1.003	1.002	1.001	1.000	0.999	0,998	0.997	0,997	0.995	0.995
12,504	0.994	0.993	0,993	0.992	0,992	0.991	0.991	0.990	0.990	0.989
12.671	0.989	0.988	0.988	0.988	0.988	0.987	0.987	0,986	0.986	0.986
12.838	0,985	0.985	0,985	0.984	0.984	0.983	0.983	0.982	0.982	0.981
13.005	0.980	0.979	0.979	0.978	0.977	0.976	0.975	0,973	0.972	0.971
13.171	0.969	0.968	0,966	0.964	0.963	0.961	0.959	0.958	0.956	0.954
13.338	0.952	0.950	0.949	0.947	0.945	0.943	0.941	0.940	0.938	0.937
13.505	0.935	0.934	0.932	0.931	0.930	0.928	0.927	0.926	0.925	0.924
13.671	0.923	0.922	0,921	0.920	0,919	0.918	0.917	0.916	0.915	0.914
13.838	0.913	0.912	0.910	0.909	0.907	0.906	0.904	0,902	0.900	0.898
14.005	0.896	0.893	0.891	0.888	0.885	0.883	0.880	0.877	0.874	0.871
14.172	0.868	0.864	0.861	0.858	0.855	0.852	0.849			

TABLE B-10. E673 CALIBRATION, (P, t), PRESSURE VS. TIME, OBTAINED FROM DATA OF TABLES B-4 AND B-7

Time increment = 27.7515 ns Number of points = 505

μ s	<				Units:	GPa				>
,					******					•
0,000 0,278	_	_	_	-	_	-	_	-	-	-
0.555	_	_	_	_	_	_		-	-	-
0.833	_	_	_	_	_			-	_	-
1.110	-	_	_	_	_	11.385	11.346	11.304	11.260	11.217
1.388	11,174	11.129	11.084	11.040	10.994	10.949	10.905	10.862	10.818	10.775
1.665	10.731	10.688	10.644	10.600	10,557	10.514	10.471	10.429	10.386	10.775
1,943	10,303	10,263	10.222	10,183	10.144	10.105	10.067	10.028	9.990	9.951
2.220	9.913	9.876	9.839	9.802	9,765	9.728	9.692	8.655	9.619	9.584
2,498	9,550	9.516	9.482	9.447	9.413	9,379	9,345	9.312	9.279	9.247
2.775	9.215	9.183	9.151	9.120	9.089	9.058	9.027	8.996	8.966	8,936
3,053	8,906	8.877	8.848	8.820	8.791	8,763	8.734	8.706	8.679	8.651
3.330	8.624	8.597	8.571	8.545	8.518	8.492	8.466	8.440	8.415	8.390
3.608	8.365	8.340	8.315	8.293	8.269	8.246	8.223	8.200	8.177	8,154
3.885	8.132	8.111	8.090	8.069	8.050	8.030	8.012	7,993	7.974	7.956
4.163	7.938	7.920	7.902	7.885	7.869	7.851	7.836	7.620	7.805	7.790
4.440	7.775	7.761	7.747	7.734	7.721	7.707	7,694	7.681	7.668	7.654
4.718	7.641	7.628	7,615	7,602	7.589	7.575	7.562	7,548	7.534	7.519
4.995	7.505	7.491	7.475	7,459	7.443	7.427	7.410	7.393	7.376	7,358
5.273	7.340	7.322	7.304	7.286	7.267	7.248	7.229	7.210	7.190	7.171
5.550 5.828	7.151 6.969	7.132	7.113	7.094	7,076	7.057	7.039	7.021	7.003	6.986
6.105	6.819	6.952 6.806	6.937 6.793	6.921 6.780	6.905 6.768	6.890	6.875	6.860	6.846	6.833
6,383	6,698	6.687	6,677	6.666	6.656	6.756 6.645	6.744 6.634	6.732 6.623	6.720	6.709
6.660	6.590	6.578	6,566	6.555	6.543	6.531	5.520	6.508	6.612 6.496	6.601 6.484
6.938	6.471	6.459	6.447	6.435	6.423	5.411	6.399	6.387	6.375	6,364
7.215	6.352	6.341	6.330	6,319	6.308	6.298	6.288	6.278	6,268	6.259
7.493	6.250	6.241	6.233	6.224	6.216	6.209	6.201	6.194	6.186	6.180
7.770	6,173	6.167	6,160	6,154	6.147	6.140	6.133	6,127	6.120	6.113
8.048	6,106	6,099	6.092	6,084	6.077	6.070	6.062	6.054	6.046	6,038
8.325	6.029	6.021	6.012	6.004	5.996	5.987	5.979	5.970	5.961	5.952
8,603	5.944	5,935	5.926	5.917	5.909	5,901	5.893	5.885	5.877	5.869
8.880	5.861	5.854	5.847	5,839	5.832	5.826	5.819	5.812	5.805	5.799
9.158	5.792	5.786	5.781	5.775	5.769	5,764	5.758	5.753	5.747	5.742
9,436	5.736	5.730	5,724	5,717	5.711	5.704	5.698	5.690	5.683	5,675
9.713	5.667	5.659	5.650	5.641	5.631	5.621	5.612	5.601	5.591	5.580
9,991	5,570	5,559	5,548	5.537	5.526	5.515	5.504	5.493	5.483	5.472
10.268	5,462	5.452	5.442	5.432	5.423	5.414	5.406	5.397	5.389	5.382
10.546	5.375 5.328	5.368 5.325	5.362 5.322	5.356	5.351	5.346	5.342	5,338	5.334	5.331
11.101	5,328	5.298	5.294	5,320 5,290	5.317 5.287	5.315 5.283	5.312 5.279	5,309	5.306	5.304
11.378	5,258	5,252	5.245	5.238	5.231	5,223	5,214	5.275	5.270	5.264
11.656	5,177	5.167	5,157	5,147	5.137	5.127	5.117	5.205 5.107	5.196 5.096	5.187 5,087
11,933	5.077	5.067	5.057	5.047	5.038	5.029	5.021	5.012	5.004	4.997
12.211	4.989	4.982	4.976	4.969	4.962	4.956	4.950	4.944	4,938	4.932
12.488	4.927	4.922	4,916	4.911	4.905	4.900	4.894	4.888	4.882	4.875
12.766	4.870	4.864	4.856	4.849	4.842	4.834	4.826	4.818	4.808	4.799
13.043	4.789	4.778	4.769	4.758	4.747	4.736	4.724	4.712	4.700	4.687
13.321	4.675	4.662	4.648	4.634	4,620	4.606	4.592	4.578	4.565	4.551
13,598	4.537	4.522	4.508	4.494	4.479	4.465	4.451	4.436	4.422	4.407
13,876	4.392	4.376	4.359	4.341	4.324					

TABLE B-11. E674 CALIBRATION, (P, t), PRESSURE VS. TIME, OBTAINED FROM DATA OF TABLES B-5 AND B-8

Time increment = 27.7885 NS Number of points = 1357

Manager Or	. pornos -	1037								
μв	<			···	Units:	GPa -				>
0.000	_	_	_	_	-	_	_	_	_	_
0.278	_	_	-	-	-	-	_	_	_	_
0.556	_	-	-	_	-	-	-	_	-	-
0.834	-	-	-	-	-	-	-	-	-	-
1.112	-	-	-	-	-	11.288	11.223	11.158	11.096	11.034
1,389	10.976	10,918	10.862	10,809	10.756	10.704	10.652	10.599	10.548	10.497
1.667 1.945	10.447 9.981	10.397 9.939	10.348 9.898	10.299 9.858	10.252 9.819	10.204 9.781	10.158 9.743	10.112 9.707	10.067 9.672	10.024 9.637
2.223	9.603	9.569	9.536	9.505	9.474	9.444	9.415	9.386	9.358	9.330
2.501	9.304	9.278	9.252	9,226	9.200	9,175	9.150	9.125	9,100	9,076
2.779	9.050	9,025	8,999	8.974	8.949	8.923	8.898	8.872	8.846	8.820
3.057	8.795	8,768	8.740	8,713	8.686	8,658	8.630	8.603	8.575	8.547
3,335	8.519	8.491	8.463	8.436	8.410	8,383	8.356	8.330	8.305	8.279
3.613	8.254	8.229	8.204	8.180	8.156	8.133	8.110	8.088	8,066	8.045
3.890 4.168	8.023 7.839	8.003 7.822	7.983 7.806	7.964 7.789	7.944 7.772	7,925 7,756	7.307 7.739	7.889	7.872	7.855
4.446	7.677	7.661	7.646	7.630	7.615	7.600	7.585	7.723 7.570	7.708 7.555	7.692 7.540
4.724	7.525	7.510	7.496	7.481	7.466	7,451	7.437	7.423	7.408	7.394
5.002	7.380	7.367	7.353	7,339	7.325	7.312	7.298	7.285	7.272	7,259
5.280	7.246	7.233	7.220	7.208	7.195	7,182	7.169	7.156	7.143	7.130
5.558	7.116	7,102	7.087	7.074	7.059	7.045	7.029	7.015	7.000	6,985
5.836	6.970	6.954	6,939	6.924	6.909	6,893	6.878	6.862	6.847	6.831
6.113	6.815	6.799	6.784	6.768	6.754	6.738	6.724	6.710	6,696	6.681
6.391	6.667	6.654 6.527	6.641 6.515	6,627 6,502	6.614	6,601	6.588	6.575	6.563	6.551
6.669 6.947	5.539 6.419	6.407	6.395	6.383	6.490 6.371	6,478 6,359	6,466 6,346	6.454 6.334	6.442 6.321	6,431 6,309
7.225	6.296	6,284	6.272	6.260	6.249	6.237	6.226	6.215	6.204	5,309 5,194
7.503	6.184	6,175	6,165	6.155	6.146	6.137	6.129	6.120	6,112	6,105
7.781	6.098	6.091	6.085	6.079	6.073	6,066	6.061	6.055	6,050	6.045
8,059	6.039	6.033	6.028	6.023	6.017	6,011	6.004	5.998	5.991	5.985
8.337	5.977	5,839	5,961	5.954	5.845	5.937	5.928	5.919	5.910	5.900
8.614	5.891	5.681	5.872	5.861	5.851	5.840	5.830	5.820	5.810	5.800
8.892	5.791	5.781	5.772	5.763	5.754	5.745	5.737	5.729	5.721	5.714
9.170 9.448	5.707 5.643	5.700	5.693	5.686	5.679	5.673	5.667	5.661	5.655	5.649
9.726	5.574	5.637 5.566	5.631 5.558	5.625 5.549	5.618 5.540	5.611 5.532	5,605 5,522	5.598 5.512	5.591 5.502	5.583 5.492
10.004	5.482	5.472	5.462	5.451	5.441	5.431	5.421	5.410	5.400	5.390
10.282	5.381	5,371	5,362	5.353	5.344	5,335	5.327	5.319	5.312	5.304
10.560	5.297	5,291	5.285	5.279	5.273	5,268	5,263	5.258	5,253	5.249
10.838	5.245	5,240	5.236	5.232	5.229	5,225	5.222	5.218	5.215	5.211
11.115	5.207	5.203	5.199	5.194	5.189	5,184	5.180	5.175	5.170	5.164
11.393		. 5.153	5.147	5.141	5.134	5,126	5.119	5.112	5.104	5.097
11.671	5.089	5.081	5.072	5.064	5.056	5,048	5.040	5.032	5.024	5.016
11.949 12.227	5.008 4.924	5.000 4.916	4.992 4.908	4.983 4.899	4.975 4.891	4,967 4,882	4.959 4.874	4.950	4.942 4.856	4.933 4.848
12.505	4.839	4.830	4.821	4.812	4.802	4.793	4.074	4.865 4.775	4,765	4.755
12.783	4.746	4.737	4.727	4.718	4.708	4,699	4.690	4.680	4.671	4.662
13.061	4.653	4,644	4,635	4,626	4.617	4.609	4.600	4.591	4.583	4.574
13,338	4.566	4.559	4.550	4.542	4.535	4,527	4.520	4.512	4.504	4.496
13.616	4.488	4.480	4.471	4.463	4.454	4,445	4.436	4.427	4.418	4.408
13.894	4.398	4.388	4.378	4.368	4.357	4.346	4.335	4.325	4.314	4.303
14,172	4.292	4.280	4.268	4.257	4.246	4,235	4.223	4.211	4.199	4.187
14.450 14.728	4.175	4.162	4.150 4.037	4,138	4.125	4.113	4.102	4.090	4.078	4.068
15.006	3.965	4.047 3.956	3.948	4.027 3.940	4.018 3.933	4.008 3.925	3.999 3.917	3.991 3.909	3.982 3.901	3.973 3.893
15,284	3.885	3.877	3,869	3,861	3.853	3,845	3.837	3.829	3,820	3.812
15.562	3.803	3.795	3.786	3.776	3.767	3,757	3.747	3.738	3.728	3.718
15.839	3,707	3,697	3,686	3.675	3.663	3,653	3.641	3.629	3,617	3,605
16.117	3.594	3.582	3.571	3,560	3.548	3.537	3.526	3.515	3.505	3.494
16.395	3.484	3.474	3.465	3.455	3.445	3,435	3,426	3.417	3,408	3.400
16,673	3.392	3.384	3.376	3,368	3.360	3,353	3,346	3.339	3.333	3,327

16.951	3.321	3,314	3.308	3.303	3.298	3,292	3,287	3.281	3,276	3,270
17.229	3.265	3.259	3.254	3.248	3.242	3.236	3,229	3.223	3.216	3.209
17.507	3,201	3,193	3.185	3,177	3,168	3.159	3.150	3.141	3.131	3.121
17.785	3.111	3.101	3.091	3.081	3.070	3.060	3.049	3.038	3.027	3,016
18.063	3.005	2.994	2.983	2.972	2.961	2.950	2.939	2.929	2.918	2.908
18,340	2.898	2.888	2.879	2,869	2.860	2.851	2.842	2.834	2,825	2,818
18.618	2.811	2,804	2.796	2.789	2.783	2.776	2.769	2.763	2.758	2.752
							2.717			
18.896	2.747	2.742	2.737	2.732	2.727	2.721		2.712	2,708	2.704
19.174	2.700	2,696	2.692	2.688	2.683	2.679	2,675	2.671	2.667	2.663
19.452	2.658	2.653	2.648	2.643	2.638	2.633	2.528	2.622	2.517	⊸.611
19.730	2,606	2,601	2.595	2.589	2.584	2.578	2.572	2.566	2.560	2.553
20.008	2.546	2.539	2.532	2.525	2.518	2.511	2,504	2.497	2.490	2.483
20.286	2.476	2,469	2.463	2,456	2.449	2.442	2.435	2.428	2.422	2.415
							2.367	2.360	2.354	
20.564	2.408	2.401	2.394	2.387	2.380	2.373				2.348
20.841	2.342	2.337	2.331	2,325	2,319	2.313	2.307	2.302	2.296	2.291
21.119	2.286	2,281	2.275	2,270	2.265	2.260	2.255	2.250	2.246	2.242
21.397	2.238	2,233	2,229	2,225	2,221	2.216	2,213	2.209	2.205	2.201
21.675	2.197	2,194	2.191	2.187	2.184	2.181	2.177	2.174	2.171	2.167
21,953	2.164	2.161	2.157	2.154	2.151	2.148	2,145	2.141	2.137	2.133
22.231	2.129	2,126	2.124	2,121	2,11B	2.115	2,112	2.110	2.108	2.105
22,509	2.101	2.098	2.095	2.092	2.090	2.088	2.085	2.083	2.080	2.078
22.787	2.075	2.073	2.071	2.069	2.066	2.063	2.060	2.058	2.055	2.052
23.064	2.049	2,045	2.040	2,035	2.030	2.026	2.021	2.017	2.011	2.005
23,342	2.000	1,994	1.988	1.981	1.974	1.966	1.957	1.949	1.939	1.929
23.620	1.920	1,910	1.899	1.888	1.877	1.865	1.852	1.839	1.827	1.814
23.898	1.800	1.785	1.769	1.752	1.734	1.717	1.699	1.681	1.661	1.641
24.176	1.620	1,600	1.580	1.560	1.540	1.520	1.499	1.479	1.459	1.439
24.454	1.420	1.402	1.384	1,366	1.348	1.329	1.313	1.298	1.284	1.270
24.732	1.258	1.247	1.238	1,230	1,222	1.214	1,207	1.201	1.195	1.189
25,010	1.182	1.176	1.169	1,163	1.159	1.156	1.152	1.148	1.144	1.140
25.288	1.135	1.130	1.125	1.119	1.114	1,107	1,099	1.091	1.083	1.075
25.565	1.065	1.054	1.045	1.035	1.024	1.014	1.005	0.996	0.986	0.976
	0.965		0.945	0.936	0.927	0.916	0.906	0.897	0.888	0.880
25.843		0.955								
26.121	0.872	0,865	0.857	0,850	0.845	0.839	0.834	0.830	0.826	0.824
26.399	U.821	0.813	0.817	0.816	0.816	0.816	0.817	0.819	0.820	0.823
26.677	0.826	0.831	0.834	0.838	0.842	0.846	0.851	0.856	0.861	0.867
26,955	0.873	0,879	0.885	0,890	0.895	0.900	0.907	0.914	0.921	0.927
27.233	0.933	0.939	0.945	0.950	0.956	0.962	0.967	0.973	0,977	0.981
27.511	0.985	0,988	0.991	0.993	0.993	0.993	0.993	0.992	0.990	0.987
i	1						0.946	0.938	0.929	0.920
27.789	0.983	0.978	0.973	0,968	0.962	0.955				
28.066	0.911	0.902	0,893	0,884	0.875	0.866	0.857	0.849	0.841	0.833
28.344	0.825	0.818	0.811	0.806	0.800	0.796	0.781	0.788	0.785	0.783
28.622	0.781	0.780	0.780	0.780	0.782	0.784	0.786	0.788	0.792	0.796
28.900	0.800	0.806	0.811	0.818	0.825	0.832	0.838	0.846	0.853	0.862
29.178	0.870	0.879	0.887	0.895	0.903	0.911	0.918	0.927	0.935	0.944
29.456	0.952	0,959	0.966	0,971	0.976	0.981	0.985	0.988	0.991	0.992
	1					0.892	0,991	0.990	0.989	0.988
29.734	0.994	0.995	0.994	0.993	0.992	-				
30.012	0.588	0.988	0.988	0.987	0.986	0,985	0.985	0.986	0,986	0.987
30,289	0.889	0,990	0.992	0,995	0.998	0.999	1.001	1.003	1.004	1.006
30.567	1.007	1,007	1.007	1,005	1.004	1.001	0.998	0.993	0.987	0.982
30.845	0.974	o,ēá5	0.956	0.947	0.937	0.927	0.916	0.905	0.893	0.882
31,123	0.869	0,857	0.845	0,834	0.823	0.811	0.801	0.790	0.781	0.772
31.401	0.763	0.755	0.748	0.741	0.734	0.728	0.722	0.717	0,714	0.710
31.679	0.708	0.706	0.704	0.703	0.703	0.703	0.704	0.707	0.710	0.714
31.957	0.718	0.724	0.729	0,736	0.742	0.750	0.757	0.765	0.774	0.782
32.235	0.792	0.801	0.810	0.819	0.828	0.837	0,846	0.855	0.863	0.871
32.513	0.879	0,887	0.893	0.598	0.902	0.905	0.906	0.907	0,906	0,906
32.790	0.906	0.904	0.902	0.899	0.896	0.893	0.888	0.884	0.879	0.874
33,068	0.858	0,852	0.855	0,848	0.841	0.834	0.826	0.818	0.810	0.802
33.346	0.795	0.787	0.779	0.772	0.764	0.757	0.750	0.743	0,735	0.728
33.624	0.720	0.713	0.706	0.700	0.695	0.689	0.684	0.678	0.673	0.668
	1									
33,902	0.664	0,661	0.657	0.654	0.652	0.650	0.648	0.647	0.647	0.546
34.180	0.646	0.646	0.647	0.647	0.648	0.650	0.652	0.654	C,656	0.659
34,458	0.662	0,655	0.668	0.671	0.674	0,678	0,682	0.685	0.688	0.692
34.736	0.695	0.699	0.703	0,706	0.710	0.713	0.716	0.719	0,721	0.723
35.014	0.725	0.726	0.727	0.728	0.727	0.727	0.725	0.724	0.723	0.721
35,291	0.720	0.717	0.715	0.720	0 708	0.704	0 700	0.695	0.691	0.686
	1									
35.569	0.681	0.677	0.672	0,667	0.663	0.658	0.654	0.650	0,646	0.643
35,847	0.639	0,636	0.633	0.631	0.629	0,627	0,625	0.623	0.622	0.621
36,125	0.620	0,620	C.621	0.621	0.623	0.524	0,625	0.625	0.628	0,630
36.403	0.633	0.636	0.640	0.643	0.647	0.651	0.655	0.659	0.654	0.668

36,681	0.672	0.677	0.681	0.686	0.691	0.695	0.700	0.704	0.709	0.713
36.959	0.717	0.722	0.727	0.731	0.734	0.738	0.742	0,745	0.748	0.751
37,237	0.754	0.756	0.758	0.760	0,762	0.764	0.766	0.767	0.769	0,771
37.515	0.774	0.776	0.779	0.782	0.785	0.789	0.792			

•

.

TABLE B-12. E675 CALIBRATION, (P, t), PRESSURE VS. TIME, OBTAINED FROM DATA OF TABLES B-6 AND B-9

Time increment = 16.6725 ns Number of points = 857

	_									
μ5	<	-			Units:	GPa				>
0.000	-	_	_	_	_	-	_	_	_	_
0.167	-	-	-	-	_	-	-	-	-	-
0.333	-	-	-	-	-	-	_	-	-	-
0.500	_	_	_	_	_	-	-	-	-	-
0.667 0.834	11,339	11.322	11.305	11.288	11.271	11.445 11.254	11.418 11.237	11.393	11.373 11.202	11.355 11.183
1.000	11,164	11.143	11.122	11.100	11.079	11.056	11.033	11.009	10.985	10.860
1.167	10.935	10.909	10.883	10.856	10.828	10.799	10.771	10.743	10.715	10.685
1.334	10,655	10.625	10.595	10.564	10.534	10.504	10.474	10.444	10.413	16.384
1,501	10.354	10.326	10.297	10.269	10.241	10.214	10.187	10,160	10.135	10.110
1,667	10,086 9,873	10.062 9.854	10.039 9.834	10.017 9.816	9.995 9.799	9.973 9.781	9,952 9,764	9.931 9.746	9.912	9,892
2.001	9,692	9.675	9.657	9.639	9.622	9,604	9.586	9.568	9.728 9.549	9.710 9.531
2.167	9,512	9.492	9.473	9.453	9,433	9.413	9.392	9.372	9.351	9.331
2,334	9.311	9.291	9.270	9.249	9.229	9.208	9.187	9.166	9.146	9,125
2,501	9.104	9.083	9.063	9.043	9.024	9,005	8,987	8.969	8.951	8.934
2,668	8.917	8.900	8.883	8.866	8.850	8.834	8.818	8.803	8.788	8,773
2,834 3,001	8.759 8.632	8.744 8.620	8.731 8.608	8.718 8.596	8,705 8,585	8.692 8.573	8.680 8.562	8,668 8,551	8.656 8.540	8.644 8.528
3,168	8.517	8.506	8.495	8.484	8,472	8.461	8.449	8.437	8.425	8.413
3,334	8,400	8.387	8.373	8,360	8,347	8.333	8.319	8,306	8.292	8,278
3.501	8,264	8.251	8.237	8,224	8.210	8.197	8.184	8,171	8.158	8.145
3,668	8.133	8.120	8.108	8.095	8.085	8.074	8.063	8.053	8.043	B.034
3.835 4.001	8.025 7.948	8.017 7.942	8.009 7.935	8.001 7.928	7.993 7.921	7.985 7.914	7.977 7.906	7.970 7.899	7.963	7.956
4,168	7.874	7.865	7.856	7.845	7.836	7.825	7.814	7.803	7.891 7.792	7.883 7.780
4,335	7.767	7.755	7.742	7.729	7.716	7.703	7.689	7,676	7.662	7.648
4.502	7.635	7.621	7.607	7.594	7.582	7.569	7.557	7.544	7.530	7.517
4.668	7,504	7.491	7.478	7.465	7.452	7.439	7.426	7.414	7.401	7.389
4.835	7.376	7.362	7.349	7.337	7.324	7.311	7.298	7.286	7.274	7.261
5.002 5.168	7.248 7.122	7.235 7.110	7.221 7.098	7.208 7.087	7.195 7.077	7.183 7.066	7.170 7.056	7.158 7.047	7.146 7.038	7.134 7.030
5.335	7,022	7.014	7.007	7.000	6.993	6.988	6.983	6.978	6.974	6.971
5.502	6.967	6.964	6.952	6.960	6,959	6.957	6,955	6.954	6.952	6.950
5.669	6,947	6.944	6.941	6.938	6,934	6.931	6.927	5,922	6.918	6.913
5,835	6.908 6.833	6.903	6.897	6.891	6.884	6.876	6.869	6.860	6.852	6.842
6.002 6.169	6,733	6.824 6.723	6.814 6.713	6.804 6.703	6.795 6.693	6.784 6.684	6.774 6.675	6.764 6.666	6.753 6.657	6.743 6.648
6.336	6,639	6.631	6.622	6.614	6,605	6.596	6.588	6.579	6.570	6,561
6,502	6,553	6.544	6.536	6.527	6.519	6.511	6.503	5.495	5.487	6,478
6.669	6,469	6.461	6.452	6.444	6.436	6.428	6.420	6.412	6.404	6,397
6.836	6,390	6.382	6.375	6.368	6,360	6.353	6.347	6.339	6.332	6,325
7.002 7.169	6.318 6.262	6.311 6.258	6.305 6.254	6.299 6.249	6.294 6.246	6.288 6.243	6,283 6,240	6.277 6.237	6.272 6.235	6,267 6,233
7.336	6.230	6.228	6.225	6.223	6,220	6.218	6.216	5.214	6.212	6,210
7.503	6,208	6.205	6.203	6.201	6.138	6.195	5.192	6.189	6.185	6,181
7.669	6.177	6.173	6.167	6.162	6,157	6.151	6.146	6.140	6.133	6,127
7.836	6,120	6.113	6.105	6.098	6.090	6.081	6.072	6.063	6.054	6.045
8.003 8.170	6.036 5.941	6.027 5.932	6,018 5,922	6.008 5.912	5.999 5.903	5.989	5.979 5.884	5,970 5,875	5.960 5.866	5,951 5,858
8,336	5.849	5.841	5.833	5.825	5.817	5.893 5.810	5.803	5.797	5.790	5,784
8,503	5.779	5.773	5.768	5.763	5.758	5,754	5.749	5.745	5.742	5,738
8.670	5,735	5,733	5.730	5.727	5.725	5.723	5.721	5.720	5.719	5.718
8.836	5,718	5.717	5.717	5.716	5.715	5.714	5,714	5.714	5.712	5,711
9.003	5.709	5.708	5.706	5.704	5.701	5.699	5.696	5.693	5,690	5,686
9.170 9.337	5,683 5,627	5.679 5.620	5.674 5.613	5.669 5.606	5,663 5.600	5,658 5,593	5.653 5.586	5.647 5.580	5.640 5.574	5.634 5.568
9,503	5,562	5 556	5 551	5.546	5.541	5.537	5.532	5.528	5.525	5,521
9,670	5,518	5.514	5,511	5.508	5,505	5.502	5.499	5.496	5.494	5,492
9,837	5.489	5.487	5.484	5.481	5.478	5.474	5.471	5.467	5.463	5,458
10.004	5.453	5.447	5.442	5.436	5.429	5.422	5.416	5,409	5.402	5.396

10.170	5,389	5.382	5.375	5.367	5.361	5.354	5.347	5.340	5.334	5,328
10.237	5,323	5.317	5.311	5.305	5.300	5.295	5.290	5.286	5.282	5,279
10.504	5,276	5,274	5.271	5.239	5,267	5.265	5.264	5.262	5,261	5,261
10.670	5.260	5.259	5.258	5,257	5,256	5.255	5.255	5.254	5,253	5,252
10.837	5,251	5,249	5.248	5.246	5.245	5.243	5.241	5.239	5.237	5.234
11.004	5.232	5,229	5.225	5.222	5,218	5.215	5.211	5.208	5.204	5,200
11.171	5,197	5,194	5.190	5.186	5.183	5.179	5.175	5.171	5,168	5,165
11.337	5,162	5.159	5.155	5,152	5,148	5.145	5,142	5,138	5.134	5.131
11.504	5, 127	5.123	5.120	5.116	5,113	5.110	5.107	5.104	5.100	5,097
11.671	5,093	5.089	5.085	5,081	5,077	5.073	5,069	5.064	5.060	5.056
11.837	5.051	5.046	5.042	5.037	5,031	5.025	5.020	5.014	5.009	5,004
12.004	4,998	4.992	4.987	4.980	4.974	4.967	4.961	4.954	4.947	4.940
12.171	4.933	4,927	4.920	4.913	4,905	4.899	4.891	4.884	4.877	4.870
12.338	4,863	4.856	4.849	4.843	4.836	4.829	4.823	4.816	4.811	4.805
12.504	4.800	4.795	4.790	4.785	4.781	4.778	4.774	4.771	4.768	4.765
12.671	4.763	4.760	4.758	4.756	4.754	4.751	4.748	4.746	4.743	4.741
12.838	4.739	4.736	4.734	4.731	4.727	4.724	4.721	4.717	4.712	4.707
13.005	4.702	4.697	4.691	4.684	4.678	4.670	4.663	4.654	4.646	4.636
13.171	4,625	4.615	4.604	4.593	4.582	4.570	4.558	4.546	4.534	4.522
13.338	4.510	4.497	4.484	4.472	4,460	4.448	4.436	4.424	4.414	4.403
13.505	4,393	4.384	4.374	4.365	4.356	4.347	4.339	4.332	4.325	4.319
13.671	4.313	4.307	4.301	4.294	4.288	4.281	4.274	4.267	4.260	4.252
13,838	4.245	4.237	4.228	4.219	4.208	4.197	4.185	4.173	4.159	4.146
14.005	4.131	4.116	4.099	4.082	4,065	₹.047	4.028	4.009	3.990	3.970
14 172	3 950	3.930	3.909	3.890	3.870	3.850	3.831			

APPENDIX C

THE NERD FILTER

The Nearly Equal Ripple Derivative (NERD) filter was developed by Kaiser and Read. C-1 If the derivative data are written as y_n and the original data as x_n then they show that

$$y_{n} = \sum_{k=1-N_{p}}^{N_{p}} b_{k} x_{n-k}$$
 (C-1)

where $b_k = -b_{1-k}$ and $k = 1, 2, 3..., N_p$.

Thus the resulting filter is defined as

$$y_n = b_1(x_{n-1} - x_n) + b_2(x_{n-2} - x_{n+1}) + \dots + b_{N_p}(x_{n-N_p} - x_{n+N_p-1})$$
 (C-2)

Design of the filter

First the parameters β , δ , and ϵ are specified as discussed earlier. Then we define λ where

$$\lambda = -20\log_{10}\epsilon \tag{C-3}$$

Then the parameter K_f is defined as

$$K_f = \begin{cases} 0.13927 (\lambda - 7.95) & \lambda > 21 \\ 1.8445 & \lambda < 21 \end{cases}$$
 (C-4)

C-1Kaiser, J. F. and Reed, W. A., "Data smoothing using low-pass digital filters," <u>Rev. Sci. Inst.</u>, Vol. 48, No. 11, Nov 1987, p. 1447, and Vol. 49, No. 8, Aug 1978, p. 1103.

and

$$N_p = Integer \ part \ of \ \left[\frac{K_f}{2\delta} + 0.75\right]$$
 (C-5)

Now an additional parameter η is defined as

$$\eta = \begin{cases}
0.1102(\lambda - 8.7) & 50 < \lambda \\
0.5842(\lambda - 21)^{0.4} + 0.07886(\lambda - 21) & 21 < \lambda < 50 \\
0 & \lambda < 21
\end{cases}$$
(C-6)

Finally, the filter coefficients b_k are defined as

$$b_{k} = b_{1-k} = \frac{1}{m} \left(-\beta \cos \beta m \pi + \frac{\sin \beta m \pi}{m \pi} \right) \times \left\{ \frac{I_{0} \left(\eta \sqrt{1 - (m/N_{p})^{2}} \right)}{I_{0}(\eta)} \right\}$$
(C-7)

where m = (2k - 1)/2, $k = 1, 2, ..., N_p$, and $I_0(x)$ is a modified Bessel function,

$$I_0(x) = 1 + \sum_{k=1}^{\infty} \left[\frac{(x/2)^k}{k!} \right]^2$$
 (C-8)

The resulting filter will have a frequency response characteristic that has very nearly equal ripple about the unit slope line in the passband. In other words, if ν is frequency, $0 < \nu < \beta \cdot \delta/2$, and about 0 in the stop band, $\beta + \delta/2 < \nu < 1$. For an exact unity slope the filter coefficients are multiplied by the factor

$$\left[\sum_{k=1}^{N_p} (2k-1)b_k\right]^{-1} \tag{C-9}$$

Kaiser and Reed provided Fortran subroutines for Equations (C-3) to (C-9) in their paper. For this report these formulae were written as C functions; C-1 they are reproduced in Appendix E.

C-1 Microsoft 5.1, for DOS 3.0 and higher.

APPENDIX D

INDEPENDENT TEST OF DATA REDUCTION TECHNIQUES

The data reduction techniques reported here were independently compared with more conventional spline-fitting techniques by Sandusky and Groves. They read the photographic records of this work using a different trace-reading apparatus than the one described here. Subsequently, they reduced the data to shock velocity, particle velocity, and pressure using more conventional spline-fitting techniques. The same PMMA shock Hugoniot was used, i.e., Equations (3-6) and (3-7) of the main text. In this way every aspect of the data reduction methods reported here was verified independently in an unbiased way. The results of the two methods were not compared until after the analyses had been completed.

The results of the independent tests are shown in Table D-1. Both the results of the NERD filtered data, from Table 3-2, and the spline-fitting are plotted in Figure D-1. The data are in agreement to within 2 percent although the NERD data are generally slightly higher in pressure.

D-1Sandusky, H. and Groves, C., private communication, NSWC, Code R13, White Oak, MD, concerning calculation of pressure data, 6 Apr 1989.

FIGURE D-1. COMPARISON OF PRESSURE VS. DISTANCE DATA OBTAINED BY NERD FILTERING AND SPLINE-FITTING

TABLE D-1. INDEPENDENT CALCULATION OF PRESSURE BY SPLINE-FITTING

x mm	P GPa	x mm	P GPa	x mm	P GPa
	44.00				
7.115	11.29	51.130	5.01	95.122	1.71
8.529	10.86	52.521	4.93	96.353	1.61
9.949	10.60	53.969	4.80	97.973	1.60
11.306	10.30	55.395	4.72	99.398	1.58
12.788	9.83	56.809	4.60	100.840	1.61
14.231	9.47	58.223	4.45	102.220	1.51
15.633	9.03	59.642	4.32	103.640	1.32
17.076	8.66	61.073	4.15	105.071	1.11
18.478	8.45	62.470	4.11	106.513	0.96
19.915	8.12	63.890	3.95	107.916	0.85
21.300	7.85	65.321	3.79	109.336	0.72
22.720	7.59	66.752	3.70	110.738	0.69
24.140	7.37	68.154	3.60	112.169	0.64
25.580	7.23	69.585	3.48	113.595	0.64
26.985	7.00	71.011	3.34	115.009	0.70
28.416	6.90	72.436	3.25	116.428	0.73
29.818	6.73	73.850	3.15	117.8.59	0.77
31.255	6.60	75.292	2.96	119.279	0.70
32.652	6.51	76.701	2.82	120.681	0.71
34.094	6.36	78.086	2.71	122.101	0.74
35.503	6.13	79.534	2.65	123.543	0.70
36.922	5.97	80,954	2.51	124.946	0.69
38.353	5.80	82.374	2.43	126.377	0.70
39.756	5.77	83.771	2.35	1	0.69
41.193	5.67	85.196	2.27	149.216	0.65
42.595	5.50	86.633	2.14	130.625	0.70
44.043	5.48	88.047	2.09	132.033	0.66
45.446	5 22	89.449	2.03	133.464	0.69
46.860	5	90.892	1.92	134.884	0.61
48.302	5.19	92.300	1.87	136.298	0.60
49.716	5.11	93.714	1.73	137.740	0.62

ATOTT WARRIES ASSESSED

APPENDIX E

NERD FILTER FUNCTIONS WRITTEN IN THE C COMPUTER LANGUAGE

The following functions are written with Microsoft C version 5.1 for the MSDOS version 3.10 (and higher) operating systems.

NERD nearly equal ripple differentiating filter.

Function computes the coefficients of a nearly equiripple linear phase derivative filter with an even number of terms. The derivative is computed at the centers of the sampling intervals.

```
Input:
```

Lambda = stopband loss in dB

Beta = relative location of ideal edge of passband.

Delta = relative width of transition band.

Output:

Np = number of filter coefficient pairs, 2Np returned (k = -Np, ..., 0, 1, 2, ..., Np-1).

Filter = array of filter 2Np coefficients.

Total span of filter is 2Np - 1 intervals.

```
NERD
int
                     (
double Lambda, double Beta, double Delta,
                                                 /* \lambda \beta, \delta for filter
double *Filter
                                          /* Filter array output*/
                     )
                                   /* Constants used in 'for' loop
                                                                        */
double m, Np2,
                                   /* Bessel function */
       I0 Eta,
       Kf, Eta, BctaPi, theta,
                                   /* Constants used in calculation */
                                   /* Used to obtain unity slope in passband */
       scale.
       *pFilter, *nFilter;
                                   /* Pointers to filter's +ve & -ve coeffs
                                   /* Index in 'for' loop */
int
       k:
       Duts
              ("\nThe filter characteristics are required:");
       if
              ((Beta * Delta) <= 0. || Beta > 1. || Delta > .5)
              puts ("\n\nEither B or \delta exceeds its range, try again!\n");
              return (0);
              if (2 * Beta < Delta)
       else
              puts ("\n\nWoops, the filter has no pass band because \delta > 2\beta ! \n"
                     "you should change these values");
              return (0);
       puts("");
       if
              (Lambda > 21.)
              if
                     (Lambda > 50.)
                     Eta = 0.1102 * (Lambda - 8.7);
                     Eta = 0.58417 * pow(Lambda - 1., 0.4) +
                            0.07886 * (Lambda - 21.);
              Kf = 0.13927 * (Lambda - 7.95);
       else
              {
                     Eta = 0.0; Kf = 1.8445; }
       Np = (int) floor ( Kf / (2. * Delta) + 0.75 ); /* Returned to calling function */
```

```
for
             (scale = 0., I0 Eta = In0 (Eta), BetaPi = Beta * Pi,
             Np2 = (double) (Np * Np), pFilter = Filter + Np, m = 0.5;
             m < (double) Np; k++, m++)
                          /* Calculate +ve coeffs */
                    theta = m * BetaPi;
                    *pFilter = (-BetaPi * cos (theta) + sin (theta) / m) *
                          In0 (Eta * sqrt (1.- m*m / Np2) ) / (I0_Eta* Pi * m);
                    scale += *pFilter++ * m;
      scale *=-2.;
                          /* scale = 2 \Sigma m Filter(k) */
/*
      Scaling factor 'scale' for unity slope at zero frequency, it is used to adjust Filter. -ve
      k coeffs (nFilter) are then obtained from +ve coeffs. (pFilter). Scale is -ve so that
      dx/dt is +ve for +ve slopes */
             (pFilter = Filter + Np, nFilter = Filter + Np - 1, k = 0; k < Np; k++)
      for
             *pFilter /= scale;
             *nFilter-- = -*pFilter++; /* set -ve coeffs. */
      printf ("\n\tAn NERD filter with %d filter coefficients\nhas been created.\n\n", Np);
      return (Np);
}
```

FilterData filters x array and outputs velocity array U.

Sta ing at element U_{Np} in array U_i the nested 'for' loop calculates:

$$U_i = \sum_{k=-N_p}^{N_p-1} b_k x_{i-k}$$

where i = Np to n-Np-1.

Note $b_{-Np} => Filter[0]$, $b_0 => Filter[Np]$, $b_{Np-1} => Filter[2Np-1]$.

```
int
       FilterData
                     (
                            Number of points in x array */
int
double *Filter,
                            Input array of filter coefficients calculated by NERD() */
                            Input array of distance data to be differentiated */
float *x,
                            Output array of calculated velocity data */
float *U
{
int
                            Inches used in 'for' loop */
       *px, *pX,
                            Pointers to *x */
float
                            Pointer to velocity data
double *pFilter;
                            Pointer to filter coeffs
       if
                            /* If Nip < 2 must calculate filter first.
                                                                        */
              (Np < 2)
              return (0);
```

printf ("\tCalculating velocity data using a %d coefficient filter.\n", Np);

/* U is expected to contain zeroes on entry, so the outer 'for' loop skips the 1st Np points. The inner loop calculates U_i by multiplying array x by the filter coefficients. The outer loop sweeps along the U_i and x_i arrays together. */

for
$$(pU = U + Np, pX = x + Np,$$

 $i = Np; i < n - Np + 1; i++, pU++, pX++)$
for $(px = pX + Np - 1, *pU = (float) 0., pFilter = Filter,$
 $k = -Np; k < Np; k++)$
 $*pU += (float) (*pFilter++ **px--);$

puts ("\n\nUs data have been calculated.\n");

```
return(i);
                   /* no. of points in velocity array */
}
      function In0 ()
      Routine evaluates the modified Bessel function of zeroth order at real values of
      the argument.
       Input: x
      Returns modified Bessel function.
             In0 (double x)
double
#define In0LIMIT 2.e-16
double
             Bessel0 = 1., /* Desired function */
              term k,
                                 /* Iteration error
                                /* Iteration count
              count;
                                                       */
      if (!x)
             return (Bessel0);
      x /= 2.;
       for
              (\text{term}_k = 1., \text{count} = 1.;
                    term_k > In0LIMIT * Bessel0 && count < 50.; count++)
{
              term_k *= x * x / (count * count);
              Bessel0 += term_k;
       return (Bessel0);
}
```

DISTRIBUTION

		Copies			Copies
ATTN	ONR 1132P (R MILLER)	1	ATTN	6-A-145	1
	ONT 20T (L V SCHMIDT)	1		DDESB-KT	1
	ONT 213 (D SIEGEL)	1		J WARD	2 5
	ONT 23 (A J FAULSTICH)	1	CHAIR	MAN	
	ONT 232 (D HOUSER)	1	DEPAR'	rment of defense e	XPLOSIVES
CHIEF C	F NAVAL RESEARCH		SAFET	Y BOARD	
800 N Q	UINCY STREET BCT 1		HOFFM	AN BUILDING 1	
ARLING	TON VA 22217-5000			SENHOWER AVENUE	
			ALEXA	NDRIA VA 22331	
ATTN	R SIEWART	1			
OUSDRI	E/R&AT-MST		ATTN	OP-098	1
	NTAGON			OP-981	1
WASHIN	NGTON DC 20301			OP-982	1
				OP-983	1
ATTN	D ANDERSON	1		OP-987	1
OUSDRI	E/TWP-NW&M			OP-02T	1
	NTAGON			OP-22	1
WASHII	NGTON DC 20301			OP-225	1
				OP-32	1
OUSDR	E/TWPOM			OP-35	1
ATTN	-,	1		OP-37	1
	NTAGON			OP-374	1
WASHII	NGTON DC 20301			OP-501	1
				OP-502	1
ATTN	F MENZ	1		OP-503	1
	DDRE (R/AT/ET)			OP-72	1
	SPECIALIST FOR WEAPONS			OP-74	1
	NOLOGY			OP-75	1
	NTAGON		_	OF NAVAL OPERATION	NS
WASHI	NGTON DC 20301			DEPARTMENT	
			WASHI	NGTON DC 20350	
ATTN	SURFACE WARFARE	1		Am	
	AIR WARFARE	1	ATTN	SPAWAR-05	1
	SUBS/ASW	1		ANDER	A1-Ampa-4-A
OASN/F				AND NAVAL WARFAR	E SYSTEMS
	DEPARTMENT		COM		
WASHI	NGTON DC 20301		WASHI	NGTON DC 20363-510	0

		Copies			Copies
ATTN	SEA-05R	1	ATTN	CODE 177	1
AIII	SEA-55	i	111 111	TECHNICAL LIBRARY	ī
	SEA-55X	1	COMMA		•
	SEA-55X1	1		TAYLOR RESEARCH CENTE	R
	SEA-55X2	î		MOUTH VA 20375	124
	SEA-55Y	i	1 010151	100111 111 20010	
	SEA-66U	î	ATTN	TECHNICAL LIBRARY	1
	SEA-62	1		ANDING OFFICER	•
	SEA-62Y	1		RESEARCH LABORATORY	
	SEA-62Z	1		NGTON DC 20375	
	SEA-63	1	W/1.DIII.	101011 20 20010	
	SEA-63D	1	ATTN	TECHNICAL LIBRARY	1
	PMS-402	1		ANDING OFFICER	•
	PMS-406	1		SURFACE WARFARE CENT	ER
	PMS-407	1		REN DIVISION	716
COMMA		*		AL SYSTEMS STATION	
	SEA SYSTEMS COMMAND			IA CITY FL 32407-5000	
	IGTON DC 20362-5105		FAMAM	ACITI PL 32401-3000	
WASHII	IGION DC 20302-0100		ATTN	TECHNICAL LIBRARY	1
ATTN	AIR-5004	1	COMMA		•
AIIN	AIR-51623	1		UNDERSEA WARFARE CEI	JTER
		1	DIVIS		11111
	AIR-540 AIR-5404	1		ORT RI 02841-5047	
		1	MEMALC	/K1 K1 02041-3041	
	AIR-93	_	ATTN	CODE 2017	1
	AIR-932F	1	AIIN	CODE 3917	
	AIR-932H	1		CODE 38 (R DERR)	1 1
	AIR-932K	1	•	CODE 389 (T BOGGS)	
	AIR-932T	1		CODE 32	1 1
mu outsi	PMA-242	1		CODE 3205	1
	ICAL LIBRARY	1		CODE 3208	
COMMA				CODE 326	1
	AIR SYSTEMS COMMAND			CODE 3261	1
WASHII	NGTON DC 20361			CODE 3263	1
				CODE 3264	1
ATTN	TECHNICAL LIBRARY	1		CODE 3265	1
	CODE 17	1		CODE 3266	1
	CODE 172	1		CODE 327	1
	CODE 1740.3 (R GARRISON			CODE 381	1
	CODE 1740.4 (S WANG)	1		CODE 385	1
	CODE 175 (W SYKES)	1		CODE 3850	1
•	CODE 1750.2 (W CONLEY)			CODE 3853	1
	CODE 1740.2 (F FISCH)	1		CODE 3891 (J COVINO)	1
COMMA		_		CODE 39	1
	FAYLOR RESEARCH CENTE	R		TECHNICAL LIBRARY	1
BETHE	SDA MD 20084			ANDER	
				L AIR WARFARE CENTER	
				ONS DIVISION	
			CHINA	LAKE CA 93555-6001	

	Co	pies			Copies
ATTN	CODE 2730D TECHNICAL LIBRARY J CHANG P DENDOR	1 1 1		CODE 2145 NDER MISSILE TEST CENTER IUGU CA 93042	1
601114	L NEWMAN	1			
COMMA:	NDER SURFACE WARFARE CENTER		SEAL TE	NDING OFFICER	
INDIAN	HEAD DIVISION HEAD MD 20640-5000			W YORK NY 09501-4633	1
			COMMA		
COMMA		1		UNDERSEA WARFARE DIV RT WA 98345-0580	ISION 1
	FOR NAVAL ANALYSES		001414	trotro	
	TLAND ROAD IGTON DC 20390-5140			nder Surface Warfare Cent Jeneme Division	ER 1
	LIBRARY NTENDENT	1		JENEME CA 93043-5007	•
	POSTGRADUATE SCHOOL REY CA 93940		COMMA NAVAL FACILI	WEAPONS EVALUATION	
ATTN PRESIDI	TECHNICAL LIBRARY	1	KIRTLA	ND AIR FORCE BASE JERQUE NM 87117	1
	WAR COLLEGE				_
NEWPO	RT RI 02841		ATTN	CODE 3031 (E NEAL) CODE 50D (A NORRIS)	1 1
ATTN	RDT OFFICER	1		CODE 505 (J E SHORT)	ì
	SEAL TEAM	1		CODE 90 (A E WHITNER)	1
	UNDERWATER DEMOLITION		COMMA		mp
COMMA	TEAM NDING OFFICER	1		SURFACE WARFARE CENT DIVISION	EK
	AMPHIBIOUS BASE			IN 47522-5000	
	CGO CA 92155		ATTN COMMA	CODE 321 (M BUCHER) NDING OFFICER	1
ATTN	RDT OFFICER	1		WEAPONS STATION	
NAVAL	NDING OFFICER AMPHIBIOUS BASE			RD CA 94520-5000	
NORFO	CREEK LK VA 23511		ATTN	CODE 470A LIBRARY	1 1
			OFFICE	R IN CHARGE	-
ATTN	TECHNICAL LIBRARY	1		SURFACE WARFARE CENT	ER
	NDING OFFICER			HEAD DIVISION	
	EXPLOSIVE ORDNANCE SAL TECHNOLOGY CENTER			OWN DETACHMENT	
	HEAD MD 20640		TORKT	OWN VA 23691-5110	

IND IT UDDI A AN-UMIUM

9	<u>opies</u>		Copies
ATTN TECHNICAL LIBRARY DIRECTOR DEFENSE NUCLEAR AGENCY WASHINGTON DC 20305	1	ATTN CHIEF DOCUMENTS D DREITZLER REDSTONE ARSENAL ARMY MISSILI COMMAND REDSTONE ARSENAL AL 35809	1 1 E
ATTN C FOWLER DEFENSE SCIENCE BOARD THE PENTAGON WASHINGTON DC 20301	1	ATTN SLC-BR-TB-EE SLCRBR-IB-I (P KASTE) V BOYLE	1 1 1
ATTN LIBRARY DIRECTOR DEFENSE RESEARCH AND ENGINEERING	1	O BLAKE R FREY G MELANI M CHAWLA R FREY	1 1 1 1 1
WASHINGTON DC 20305 ATTN LIBRARY DIRECTOR DEFENSE ADVANCED RESEARCH	1	J TRIMBLE TECHNICAL LIBRARY ARMY BALLISTIC RESEARCH LABORATORY ABERDEEN PROVING GROUND ABERDEEN MD 21005-5066	1
PROJECTS AGENCY 1400 WILSON BLVD ARLINGTON VA 22209 ATTN TECHNICAL LIBRARY	1	ATTN LIBRARY COMMANDER OFFICER HARRY DIAMOND LABORATORY 2800 POWDER MILL ROAD	1
INSTITUTE FOR DEFENSE ANALYSES 1801 N BEAUREGARD STREET ALEXANDRIA VA 22311 ATTN LIBRARY	1	ADELPHI MD 20783 ATTN HSHB-EA-A ARMY ENVIRONMENTAL HYGIENE AGENCY ABERDEEN PROVING GROUND	1
COMMANDING GENERAL MARINE CORPS DEVELOPMENT AND EDUCATION COMMAND MARINE CORPS LANDING FORCE DEVELOPMENT CENTER QUANTICO VA 22134		ABERDEEN MD 21005 ATTN J BARKELEY ARMY MEDICAL BIOENGINEERING RESEARCH AND DEVELOPMENT LABORATORY	1
ATTN DRSAR-IRC DRSAR-LEM (R FREEMAN) DRSAR-SF (R YOUNG) ARMY ARMAMENT MUNITIONS AND CHEMICAL COMMAND ROCK ISLAND IL 61299-6000	1 1 1	FORT DIETRICK MD 21701 ATTN GR HUSK COMMANDER ARMY RESEARCH OFFICE P. O. BOX 12211 RESEARCH TRIANGLE PARK NC 27709-2211	1
ATTN TECHNICAL LIBRARY ARMY ARMAMENT RESEARCH AND DEVELOPMENT COMMAND DOVER NJ 07801	1	ATTN DRXTH-TE-D ARMY TOXIC AND HAZARDOUS MATERIALS AGENCY ABERDEEN PROVING GROUND ABERDEEN MD 21005	1

	<u>C</u> c	pies	Copi	<u>ies</u>
	NDER HEMICAL RESEARCH OPMENT AND ENGINEERING	1	ATTN TECHNICAL LIBRARY 1 SANDIA NATIONAL LABORATORIES P. O. BOX 969 LIVERMORE CA 94550-0096	
	EEN PROVING GROUND MD		ATTN STRUCTURAL AND SHOCK CHEMISTRY	
ATTN	WL/MNME	1	DIVISION 1153	
	WL/MNMW	1	(MARK U ANDERSON) 1	
	WL/MNOI	ī	SANDIA NATIONAL LABORATORIES	
	WL/MNME (G GLENN)	1	ALBUQUERQUE NM 87185-5800	1
	WL/MNMF (R MABREY)	1		
	WL/MNME (R MCKINNEY)	i	ATTN RECORDS CONTROL FOR	
	WL/MNMW (J FOSTER)	i	RICHARD ANDERSON 1	
AIR FOR	CE ARMAMENT DIVISION	-	TECHNICAL LIBRARY 1	
	AIR FORCE BASE FL 32542-600	a	ARGONNE NATIONAL LABORATORY	
20311(1	0104 51104 1 5 02012 000		9700 SOUTH CASS AVENUE	
ATTN	T MATUSKO	1	ARGONNE IL 60439	
	RCE OFFICE OF SCIENTIFIC	•		
RESEA			ATTN T W CHRISTIAN 1	
	G AIR FORCE BASE		THE JOHNS HOPKINS UNIVERSITY	
	NGTON DC 20332		APPLIED PHYSICS LABORATORY	
********	101011 DC 20302		CHEMICAL PROPULSION INFORMATION	
ATTN	TECHNICAL LIBRARY	1	AGENCY	
*** ***	M FINGER	1	JOHNS HOPKINS ROAD	
	C M TARVER	1	LAUREL MD 20707	
	E LEE	1		
	P URTIEW	1	ATTN TECHNICAL LIBRARY 1	
	J D HALLQUIST	1	THE JOHNS HOPKINS UNIVERSITY	
	L M ERICKSON	í	APPLIED PHYSICS LABORATORY	
	E JAMES	1	JOHNS HOPKINS ROAD	
UNIVE	RSITY OF CALIFORNIA	1	LAUREL MD 20707	
	NCE LIVERMORE NATIONAL			
	RATORY		ATTN CODE TERA (J JOYNER) 1	
P. O. BO			TECHNICAL LIBRARY 1	
	1ORE CA 94550		NEW MEXICO INSTITUTE OF MINING TECHNOLOGY	
ATTN	J. REPA	1	SOCORRO NM 87801	
	M. J. URIZAR	1		
	S. W. PETERSON	î	ATTN LIBRARY 1	L
	L. SMITH	1	E LIZKA 1	l
	C. FOREST	1	APPLIED RESEARCH LABORATORY	
	C. MORRIS	1	PENNSYLVANIA STATE UNIVERSITY	
	A. W. CAMPBELL	1	P. O. BOX 30	
	R. ENGELKE	1	UNIVERSITY PARK	
	P. C. CRAWFORD	1	STATE COLLEGE PA 16801	
LOSAL	AMOS NATIONAL LABORATOR		•	
	AMOS NM 87545	•		
11/10/11/11/11	THE CIUTO			

	Copies			Copies
DEFENSE TECHNICAL INFORMATION CENTER	MATION	ATTN TRW	R CHURCH	1
CAMERON STATION			RNADINO CA 92401	•
ALEXANDRIA VA 22304-6142	12	ATTN	G CHIN	1
AT'IN LIBRARY	1	AEROJE	ET ORDNANCE AND	•
B HAMMANT P HART	1 1		FACTURING COMPANY ST HALL ROAD	
P HASKINS	1		CY CA 90241	
ROYAL ARMAMENT RESEARC		Ammaa	4 14m11 0m	_
DEVELOPMENT ESTABLISHMENT FORT HALSTEAD SEVENOAK		ATTN VANDE	A MELLOR RBILT UNIVERSITY	1
UNITED KINGDOM	.b ita.vi		ILLE TN 37235	
ATTN LIBRARY	1	ATTN	R HODGES	1
H R JAMES	1		J SMITH	i
ATOMIC WEAPONS ESTABLISH FOULNESS ISLAND	HMENT		EED MISSILES AND COMPANY	
ESSEX SS3 9XE		P O BO		
UNITED KINGDOM		SUNNY	VALE CA 94086	
ATTN LIBRARY	1	ATTN	G WILLIAMS	1
P LEE	1		LES INCORPORATED	
R H MARTIN ROYAL ORDNANCE PLC	1	PO BOX	ET CENTER X 210	
WESTCOTT AYLESBURY			TCENTER WV 26726	
BUCKINGHAMSHIRE HP18 ONZ		ATTN	M KLAKKEN	1
UNITED KINGDOM		****	M BERGER	1
ATTN P JONES	1		L LOSEE T SPEED	1 1
THE BRITISH EMBASSY	•	HERCU		1
BRITISH DEFENCE STAFF	, , , , , , , , , , , , , , , , , , ,		US WORKS	
3100 MASSACHUSETTS AVENUMASHINGTON DC 20008	OE NW	MAGNA	A UT 84044-0098	
AGVON NA CHILOV		ATTN	D JEFF JONES	
ATTN M CHICK MATERIALS RESEARCH LABO	RATORY		MATERIALS AND PROCESS DEVELOPMEN	Т 1
P O BOX 50			OL CORPORATION	
ASCOT VALE VICTORIA 3032 AUSTRALIA			CAL OPERATIONS SVILLE DIVISION	
		P. O. BO	X 400006	
ATTN S JACOBS W PICKLER	1	HUNTS	VILLE AL 35815-1506	
T P LIDDIARD	1	ATTN	LARRY LEE	1
J W WATT	1		CORPORATION	
ADVANCED TECHNOLOGY AN RESEARCH INC	עא		NNSYLVANIA AVENUE UERQUE NM 87110	
LAUREL TECHNOLOGY CENT	ER		,	
14900 SWEITZER LANE LAUREL MD 20707				
ALL CATALLY THE POPULATION				

NSWCDD/TR-92/54

		Copies			Copies
ATTN	K L CHRISTIANSON		INTERI	NAL DISTRIBUTION (Cont)	
	J L HOULTON	1	R13		1
	G JOHNSON	1	R13	(K D ASHWELL)	1
ALLIAN	T TECHSYSTEMS INC			(R N BAKER)	5
	RTHLAND DRIVE			(R D BARDO)	1
	LYN PARK MN 55428			(A BROWN)	1
				(C S COFFEY)	1
ATTN	GIFT AND EXCHANGE			(J DAVIS)	1
	DIVISION	1		(D L DEMSKE)	1
LIBRAR	Y OF CONGRESS			(J W FORBES)	1
WASHII	NGTON DC 20540			(R H GUIRGUIS)	1
				(P K GUSTAVSON)	1
INTERN	IAL DISTRIBUTION			(R N HAY)	1
E231		2		(H D JONES)	1
E232		3		(K KIM)	1
E342		1		(R J LEE)	1
G13	(D L DICKINSON)	1		(W W LEE)	1
G13	(T WASMOND)	1		(E R LEMAR)	1
G22	(W H HOLT)	1		(P J MILLER)	1
	(W MOCK)	1		(C T RICHMOND)	1
	(S S WAGGENER)	1		(H W SANDUSKY)	1
R10		1		(G T SUTHERLAND)	1
R101		1		(D G TASKER)	5
R10	(R R BERNECKER)	1		(W H WILSON)	1
R10A	(C DICKINSON)	1		(D L WOODY)	1
R10A1		1		(F J ZERILLI)	1
R10A2		1	R14		1
R10B	(H S HAISS)	1	R14	(J W KOENIG)	1
R11		1	R15		1
R12		1	R15	(S COLLIGNON)	1
R12	(B A BAUDLER)	1	R42	(R DEWITT)	1
	(B C GLANCY)	1	U10	(W WASSMANN)	1
	(L C HUDSON)	1	U11	(R PLENGE)	1
	(G LAIB)	1		(D HINELY)	1
	(L L MENSI)	1	U12	(C SMITH)	1
	(L J MONTESI)	1		(W HINCKLEY)	1
	(P F SPAHN)	1	U32	(G PARRENT)	1
	(T SPIVAK)	1	U43	(L LIPTON)	1

REPORT DOCUMENTATION PAGE

Form Approved OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to Washington Headquarters Services. Directorate for Information Operations and Pepports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503

1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE 3. REPORT		TYPE AND DATES COVERED					
	January 1992	l					
4. TITLE AND SUBTITLE An Experimental Calil "atio Gap Test	5. FUNDING NUMBER						
6. AUTHOR(S)							
Douglas G. Tasker and Rob	ert N. Baker, Jr.						
7. PERFORMING OPGANIZATION N	AM S) AND ADDRESS(ES)		8. PERFORMING ORGANIZATION REPORT NUMBER				
Naval Surface Warfare Cen 10901 New Hampshire Ave Silver Spring, MD 20903-5	n _' e		NSWCDE	D/TR-92/54			
9. SPONSORING/MONITORING AG Department of Defense Exp 2461 Eisenhower Avenue Alexandria, VA 22331	10. SPONSORING/MONITORING AGENCY REPORT NUMBER						
11. SUPPLEMENTARY NOTES							
			γ				
12a. DISTRIBUTION/AVAILABILITY	STATEMENT		126. DISTRIE	DISTRIBUTION CODE			
Approved for public release	Approved for public release distribution is unlimited.						
The NSWC ELSGT is to be used as the standard test for the UN and the NATO to determine the shock sensitivity of candidate extremely insensitive detorating substances. This report presents the first complete experimental calibration of the ELSGT and the techniques used to obtain the calibration data. In particular, an improved method of differentiating photographic streak camera (x, t) data is described. Streak camera data must be numerically differentiated to obtain wave velocities as functions of time or distance. For time-varying or structured data, techniques such as spline or polynomial fitting are frequently employed. These techniques are usually adjusted by the researcher until the results are acceptable. Consequently, the results can be biased by the method. A new, unbiased, efficient, and accurate method based on the Kaiser and Reed algorithm is described. This method will be demonstrated by its application to the first experimental calibration. The ELSGT.							
14. SUBJECT TERMS Large Scale Gap Test Shock Sensitivity Detonation	Kaiser and Reed A	lgorithm		15. NUMBER OF PAGES 85 16. PRICE CODE			
17. SECURITY CLASSIFICATION OF REPORT	18. SECURITY CLASSIFICATION OF THIS PAGE	19. SECURITY CLA OF ABSTRACT	SSIFICATION	20. LIMITATION OF ABSTRACT			
UNCLASSIFIED UNCLASSIFIED UNCLASSIF		ED	SAR				