

HC32F190 系列 / HC32F196 系列 32 位 ARM® Cortex®-M0+ 微控制器

数据手册

产品特性

- 48MHz Cortex-M0+32 位 CPU 平台
- HC32F190/HC32F196 系列具有灵活的功 耗管理系统,低功耗性能
 - 3μA @3V 深度休眠模式: 所有时钟关闭, 上电复位有效, IO 状态保持, IO 中断有效, 所有寄存器、RAM 和 CPU 数据保存状态时的功耗
 - 10μA @32.768KHz 低速工作模式: CPU 运行,外设关闭,从 Flash 运行程序
 - 30μA/MHz@3V@24MHz 休眠模式:
 CPU 停止,外设关闭,主时钟运行
 - 130μA/MHz@3V@24MHz 工作模式:
 CPU 运行,外设关闭,从 Flash 运行程序
 - 4μs 唤醒时间,使模式切换更加灵活高效,系统反应更为敏捷
- 256K 字节 Flash 存储器,具有擦写保护功能,支持 ISP、ICP、IAP
- 32K 字节 RAM 存储器,附带奇偶校验, 增强系统的稳定性
- 通用 I/O 引脚(88IO/100PIN, 72IO/80PIN 56IO/64PIN, 40IO/48PIN, 26IO/32PIN)
- 时钟、晶振
 - 外部高速晶振 4~32MHz
 - 外部低速晶振 32.768KHz
 - 内部高速时钟 4/8/16/22.12/24MHz
 - 内部低速时钟 32.8/38.4KHz
 - PLL 时钟 8 ~ 48MHz
 - 硬件支持内外时钟校准和监控
- 定时器/计数器
 - 3个1通道互补输出通用16位定时器
 - 1个3通道互补输出通用16位定时器
 - 2个低功耗16位定时器,支持级联
 - 3 个高性能 16 位定时器/计数器,支持 PWM 互补,死区保护功能
 - 1 个可编程 16 位定时器 PCA, 支持 5 通道捕获比较, 5 通道 PWM 输出

- 1 个 20 位可编程看门狗电路,内建专用 10KHz 振荡器提供 WDT 计数
- 通讯接口
 - 4路 UART 标准通讯接口
 - 2路 SPI 标准通讯接口
 - 2路 I2C标准通讯接口
- 蜂鸣器频率发生器,支持互补输出
- 硬件 CRC16 / CRC32 模块
- AES-128/192/256 硬件协处理器
- TRNG 真随机数发生器
- 2 通道 DMAC
- 4*52 / 6*50 / 8*48 LCD 驱动
- 全球唯一 10 字节 ID 号
- 12 位 1Msps 采样的高速高精度 SARADC, 内置跟随器,可测量高输出阻抗的信号
- 1路12位500Ksps DAC
- 集成 1 个多功能运算放大器,可以作为 DAC 的输出 Buffer
- 集成 3 路电压比较器,具有 6 位 DAC 和可编程比较基准
- 集成低电压侦测器,可配置 16 阶比较电压,可监控端口电压以及电源电压
- SWD 调试解决方案,提供全功能调试器
- 工作条件: -40~85°C, 1.8~5.5V
- 封装形式: LOFP100/80/64/48, OFN32

支持型号

HC32F196PCTA-LQFP100	HC32F196JCTA-LQ48
HC32F196MCTA-LQFP80	HC32F190JCTA-LQ48
HC32F196KCTA-LQFP64	HC32F190FCUA-QFN32TR
HC32F196KCTA-LQ64	

声明

- ▶ 华大半导体有限公司(以下简称: "HDSC")保留随时更改、更正、增强、修改华大半导体产品和/或本文档的权利,恕不另行通知。用户可在下单前获取最新相关信息。HDSC产品依据购销基本合同中载明的销售条款和条件进行销售。
- ▶ 用户对 HDSC 产品的选择和使用承担全部责任,用户将 HDSC 产品用于其自己或指定第 三方产品上的,HDSC 不提供服务支持且不对此类产品承担任何责任。
- ▶ HDSC 在此确认未以明示或暗示方式授予任何知识产权许可。
- ▶ HDSC 产品的转售,若其条款与此处规定不同,HDSC 对此类产品的任何保修承诺无效。
- ➤ 任何带有"®"或"TM"标识的图形或字样是 HDSC 的商标。所有其他在 HDSC 产品上显示的 产品或服务名称均为其各自所有者的财产。
- ▶ 本通知中的信息取代并替换先前版本中的信息。

©2019 华大半导体有限公司 - 保留所有权利

目 录

产品	品特性		
声	明		2
目	录		3
1	简介		<i>6</i>
	1.1	32 位 CORTEX M0+ 内核	7
	1.2	256K Byte FLASH	7
	1.3	32K Byte RAM	7
	1.4	时钟系统	7
	1.5	工作模式	8
	1.6	通用 IO 端口	8
	1.7	中断控制器	8
	1.8	复位控制器	9
	1.9	DMAC	9
	1.10	定时器/计数器	10
	1.11	看门狗 WDT	12
	1.12	通用异步收发器 UART0~UART3	12
	1.13	同步串行接口 SPI	12
	1.14	I2C 总线	13
	1.15	蜂鸣器 Buzzer	13
	1.16	时钟校准电路	13
	1.17	唯一识别号 UID	14
	1.18	CRC16/32 硬件循环冗余校验码	14
	1.19	AES 硬件加密	14
	1.20	TRNG 真随机数发生器	14
	1.21	12 Bit SARADC	14
	1.22	12 Bit DAC	15
	1.23	电压比较器 VC	15
	1.24	低电压检测器 LVD	15
	1.25	运放 OPA	16
	1.26	LCD 驱动	16
	1.27	嵌入式调试系统	17
	1.28	编程模式	17
	1.29	高安全性	17
2	产品阵	存	18
	2.1	产品名称	18
	2.2	功能	
3	引脚配	2置及功能	21
	3.1	封装示意图	21
	3.2	引脚功能说明	27
	3.3	模块信号说明	39

FDSC 华大半导体

4	功能	框图	41
5	存储	f区映射图	42
6	典型	应用电路图	44
7	电气	5特性	45
	7.1	测试条件	45
		7.1.1 最小和最大数值	45
		7.1.2 典型数值	45
	7.2	绝对最大额定值	46
	7.3	工作条件	48
		7.3.1 通用工作条件	48
		7.3.2 上电和掉电时的工作条件	48
		7.3.3 内嵌复位和 LVD 模块特性	49
		7.3.4 内置的参考电压	51
		7.3.5 供电电流特性	
		7.3.6 从低功耗模式唤醒的时间	55
		7.3.7 外部时钟源特性	56
		7.3.7.1 外部输入高速时钟	56
		7.3.7.2 外部输入低速时钟	56
		7.3.7.3 高速外部时钟 XTH	57
		7.3.7.4 低速外部时钟 XTL	59
		7.3.8 内部时钟源特性	61
		7.3.8.1 内部 RCH 振荡器	
		7.3.8.2 内部 RCL 振荡器	62
		7.3.9 PLL 特性	62
		7.3.10 存储器特性	63
		7.3.11 EFT 特性	63
		7.3.12 ESD 特性	64
		7.3.13 I/O 端口特性	
		7.3.13.1 输出特性——端口	
		7.3.13.2 输入特性——端口 PA,PB,PC,PD,PE,PF,RESET	66
		7.3.13.3 端口外部输入采样要求——Timer Gate/Timer Clock	66
		7.3.13.4 端口漏电特性——PA,PB,PC,PD,PE,PF	67
		7.3.14 RESETB 引脚特性	
		7.3.15 ADC 特性	
		7.3.16 VC 特性	
		7.3.17 OPA 特性	
		7.3.18 LCD 控制器	
		7.3.19 DAC 特性	
8	封装	信息	
_	8.1	封装尺寸	
	8.2		
9	U. <u>2</u> 订购		80

版本记录 & 联系方式.......81

1 简介

HC32F190/HC32F196 系列是一款宽电压工作范围的通用 MCU。集成 12 位 1Msps 高精度 SARADC,1 个 12 位 DAC 以及集成了比较器、运放、内置高性能 PWM 定时器、LCD 显示、多路 UART、SPI、I2C 等丰富的通讯外设,内建 AES、TRNG 等信息安全模块,具有高整合度、高抗干扰、高可靠性的特点。本产品内核采用 Cortex-M0+ 内核,配合成熟的 Keil & IAR 调试开发软件,支持 C 语言及汇编语言,汇编指令。

通用 MCU 典型应用

- 物联网应用
- 通信模块,温控器
- 智能交通,报警系统
- 智能家居,家用电器,健身设备

1.1 32 位 CORTEX M0+ 内核

ARM® Cortex®-M0+ 处理器源于 Cortex-M0,包含了一颗 32 位 RISC 处理器,运算能力达到 0.95 Dhrystone MIPS/MHz。同时加入了多项全新设计,改进调试和追踪能力、减少每条指令循环(IPC)数量和改进 Flash 访问的两级流水线等,更纳入了节能降耗技术。Cortex-M0+ 处理器全面支持已整合 Keil & IAR 调试器。

Cortex-M0+ 包含了一个硬件调试电路,支持 2-pin 的 SWD 调试界面。

ARM Cortex-M0+ 特性:

指令集	Thumb / Thumb-2
流水线	2级流水线
性能效率	2.46 CoreMark / MHz
性能效率	0.95 DMIPS / MHz in Dhrystone
中断	32个快速中断
中断优先级	可配置4级中断优先级
增强指令	单周期32位乘法器
调试	Serial-wire 调试端口,支持4个硬中断(break point)以及2个观察点
	(watch point)

1.2 256K Byte FLASH

内建全集成 FLASH 控制器,无需外部高压输入,由全内置电路产生高压来编程。支持 ISP、IAP、ICP 功能。

1.3 32K Byte RAM

根据客户选择不同的功耗模式,RAM 数据都会被保留。自带硬件奇偶校验位,万一数据被意外破坏,在数据被读取时,硬件电路会立刻产生中断,保证系统的可靠性。

1.4 时钟系统

- 一个频率为 4~24MHz 可配置的高精度内部时钟 RCH。在配置 24MHz 下,从低功耗模式到工作模式的唤醒时间为 4us,全电压全温度范围内的频率偏差小于 ±2.5%,无需外接昂贵的高频晶体。
- 一个频率为 4~32MHz 的外部晶振 XTH。
- 一个频率为 32.768KHz 的外部晶振 XTL。

- 一个频率为 32.8/38.4KHz 的内部时钟 RCL。
- 一个频率为 8~48MHz 输出的 PLL。

1.5 工作模式

- 1) 运行模式(Active Mode): CPU 运行,周边功能模块运行。
- 2) 休眠模式(Sleep Mode): CPU 停止运行,周边功能模块运行。
- 3) 深度休眠模式(Deep sleep Mode): CPU 停止运行,高速时钟停止,低功耗功能模块运行。

1.6 通用 IO 端口

最多可提供 88 个 GPIO 端口,其中部分 GPIO 与模拟端口复用。每个端口由独立的控制寄存器位来控制,支持 FAST IO。支持边沿触发中断和电平触发中断,可从各种功耗模式下把 MCU 唤醒到工作模式。支持位置位,位清零,位置位清零操作。支持 Push-Pull CMOS 推挽输出、Open-Drain 开漏输出。内置上拉电阻、下拉电阻,带有施密特触发器输入滤波功能。输出驱动能力可配置,最大支持 18mA 的电流驱动能力。所有通用 IO 可支持外部异步中断。

1.7 中断控制器

Cortex-M0+处理器内置了嵌套向量中断控制器(NVIC),支持最多 32 个中断请求(IRQ)输入;有四个中断优先级,可处理复杂逻辑,能够进行实时控制和中断处理。

中断向量号	中断来源
[0]	GPIO_PA
[1]	GPIO_PB
[2]	GPIO_PC/GPIO_PE
[3]	GPIO_PD/GPIO_PF
[4]	DMAC
[5]	TIM3
[6]	UART0/UART2
[7]	UART1/UART3
[8]	保留
[9]	保留

32 个中断入口向量地址,分别为:

[10]	SPI0
[11]	SPI1
[12]	I2C0
[13]	I2C1
[14]	TIM0
[15]	TIM1
[16]	TIM2
[17]	保留
[18]	TIM4
[19]	TIM5
[20]	TIM6
[21]	PCA
[22]	WDT
[23]	保留
[24]	ADC/DAC
[25]	保留
[26]	VC0
[27]	VC1/VC2
[28]	LVD
[29]	LCD
[30]	RAM FLASH
[31]	CLKTRIM

1.8 复位控制器

本产品具有7个复位信号来源,每个复位信号可以让 CPU 重新运行,绝大多数寄存器会被重新复位,程序计数器 PC 会指向起始地址。

	中断来源
[0]	上电掉电复位 POR BOR
[1]	外部 Reset Pin 复位
[2]	WDT 复位
[3]	PCA 复位
[4]	Cortex-M0+ LOCKUP 硬件复位
[5]	Cortex-M0+ SYSRESETREQ 软件
	复位
[6]	LVD 复位

1.9 DMAC

DMAC(直接内存访问控制器)功能块可以不通过 CPU 高速传输数据。使用 DMAC 能

提高系统性能。

- DMAC 配有独立的总线,所以即便是在使用 CPU 总线的同时, DMAC 也可进行传输操作。
- 由 2 条通道组成,能执行 2 种相互独立的 DMA 传输。
- 可设置传输目标地址、传输源地址、传输数据大小、传输请求源以及传输模式,并 能控制各通道的传输操作启动、传输的强行终止以及传输的暂停。
- 可控制所有通道批量传输的启动、强行终止及暂停。
- 多通道同时操作时,可用固定方法或循环方法选择操作通道的优先级。
- 支持使用外设中断信号的硬件 DMA 传输。
- 遵从系统总线(AHB),支持32位地址空间(4GB)。

1.10 定时器/计数器

类型	名称	位宽	预除频	计数方向	PWM	捕获	互补输出
通用定时	TIM0	16/32	1/2/4/8/16	上计数/	2	2	1
器			32/64/256	下计数/			
				上下计数			
	TIM1	16/32	1/2/4/8/16/	上计数/	2	2	1
			32/64/256	下计数/			
				上下计数			
	TIM2	16/32	1/2/4/8/16/	上计数/	2	2	1
			32/64/256	下计数/			
				上下计数			
	TIM3	16/32	1/2/4/8/16/	上计数/	6	6	3
			32/64/256	下计数/			
				上下计数			
可编程计	PCA	16	2/4/8/16/32	上计数	5	5	无
数阵列							
高级定时	TIM4	16	1/2/4/8/16/	上计数/	2	2	1
器			64/256/1024	下计数/			
				上下计数			
	TIM5	16	1/2/4/8/16/	上计数/	2	2	1
			64/256/1024	下计数/			
				上下计数			
	TIM6	16	1/2/4/8/16/	上计数/	2	2	1
			64/256/1024	下计数/			
				上下计数			

通用定时器包含四个定时器 TIM0/1/2/3。

通用定时器特性

- PWM 独立输出,互补输出
- 捕获输入
- 死区控制
- 刹车控制
- 边沿对齐、对称中心对齐与非对称中心对齐 PWM 输出
- 正交编码计数功能
- 单脉冲模式
- 外部计数功能

TIM0/1/2 功能完全相同。TIM0/1/2 是同步定时/计数器,可以作为 16 位自动重装载功能的定时/计数器,也可以作为 32 位无重载功能的定时/计数器。TIM0/1/2 每个定时器都具有 2 路捕获比较功能,可以产生 2 路 PWM 独立输出或 1 组 PWM 互补输出。具有死区控制功能。

TIM3 是多通道的通用定时器,具有 TIM0/1/2 的所有功能,可以产生 3 组 PWM 互补输出或 6 路 PWM 独立输出,最多 6 路输入捕获。具有死区控制功能。

PCA(可编程计数器阵列 Programmable Counter Array)支持最多 5 个 16 位的捕获/比较模块。该定时/计数器可用作为一个通用的时钟计数/事件计数器的捕获/比较功能。PCA 的每个模块都可以进行独立编程,以提供输入捕捉,输出比较或脉冲宽度调制。另外模块4 有额外的看门狗定时器模式。

高级定时器 Advanced Timer 包含三个定时器 TIM4/5/6。TIM4/5/6 是功能相同的高性能计数器,可用于计数产生不同形式的时钟波形,1个定时器可以产生互补的一对 PWM或者独立的 2 路 PWM 输出,可以捕获外界输入进行脉冲宽度或周期测量。

Advanced Timer 基本的功能及特性如表所示:

波形模式	锯齿波、三角波
	• 递加、递减计数方向
	• 软件同步
基本功能	• 硬件同步
	• 缓存功能
	• 正交编码计数

	• 通用PWM输出
	• 保护机制
	• AOS关联动作
	计数比较匹配中断
中断类型	计数周期匹配中断
	死区时间错误中断

1.11 看门狗 WDT

WDT(Watch Dog Timer)是一个可配置的 20 位定时器,在 MCU 异常的情况下提供复位;内建 10KHz 低速时钟输入作为计数器时钟。调试模式下,可选择暂停或继续运行;只有写入特定序列才能重启 WDT。

1.12 通用异步收发器 UART0~UART3

- 4 路通用异步收发器(Universal Asynchronous Receiver/Transmitter),UART0~UART3。 通用 UART 基本功能:
 - 半双工和全双工传输
 - 8/9-Bit 传输数据长度
 - 硬件奇偶校验
 - 1/1.5/2-Bit 停止位
 - 四种不同传输模式
 - 16-Bit 波特率计数器
 - 多机通讯
 - 硬件地址识别
 - DMAC 硬件传输握手
 - 硬件流控
 - 支持单线模式

1.13 同步串行接口 SPI

2 路同步串行接口(Serial Peripheral Interface) SPI 基本特性:

- 通过编程可以配置为主机或者从机
- 四线传输方式,全双工通信
- 主机模式7种波特率可配置
- 主机模式最大波特率为 1/2 PCLK
- 从机模式最大波特率为 1/4 PCLK
- 可配置的串行时钟极性和相位
- 支持中断
- 8位数据传输,先传输高位后低位
- 支持 DMA 软件/硬件访问

1.14 I2C 总线

2 路 I2C, 采用串行同步时钟, 可实现设备之间以不同的速率传输数据。 I2C 基本特性:

- 支持主机发送/接收,从机发送/接收四种工作模式
- 支持标准(100Kbps)/ 快速(400Kbps)/ 高速(1Mbps) 三种工作速率
- 支持7位寻址功能
- 支持噪声过滤功能
- 支持广播地址
- 支持中断状态查询功能

1.15 蜂鸣器 Buzzer

4 个通用定时器复用输出为 Buzzer 提供可编程驱动频率。该蜂鸣器端口可提供 18mA 的 sink 电流,互补输出,不需要额外的三极管。

1.16 时钟校准电路

内建时钟校准电路,可以通过外部精准的晶振时钟校准内部 RC 时钟,亦可使用内部 RC 时钟去检验外部晶振时钟是否工作正常。

时钟校准基本特性:

• 校准模式

- 监测模式
- 32 位参考时钟计数器可加载初值
- 32 位待校准时钟计数器可配置溢出值
- 6 种参考时钟源
- 5 种待校准时钟源
- 支持中断方式

1.17 唯一识别号 UID

每颗芯片出厂前具备唯一的 10 字节设备标识号,包括 wafer lot 信息,以及芯片坐标信息等。UID 地址为: 0x00100E74 - 0x00100E7D。

1.18 CRC16/32 硬件循环冗余校验码

CRC16 符合 ISO/IEC13239 中给出的多项式 $X^{16} + X^{12} + X^5 + 1$ 。

CRC32 符合 ISO/IEC13239 中给出的多项式 $x^{32}+x^{26}+x^{23}+x^{22}+x^{16}+x^{12}+x^{11}+x^{10}+x^8+x^7+x^5+x^4+x^2+x+1$ 。

1.19 AES 硬件加密

AES(The Advanced Encryption Standard)是美国国家标准技术研究所(NIST)在 2000年 10月 2日正式宣布的新的数据加密标准。AES 的分组长度固定为 128 Bit,而密钥长度支持 128/192/256 Bit。

1.20 TRNG 真随机数发生器

TRNG 是一个真随机数发生器,用来产生真随机数。

1.21 12 Bit SARADC

单调不失码的 12 位逐次逼近型模数转换器,在 24MHz ADC 时钟下工作时,采样率达到 1Msps。参考电压可选择片内精准电压(1.5V 或 2.5V)或从外部输入或电源电压。30 个输入通道,包括 26 路外部管脚输入、1 路内部温度传感器电压、1 路 1/3 电源电压、1 路内建 BGR 1.2V 电压、DAC 内部输出。内置电压跟随器,可测量高输出阻抗

的信号。

SAR ADC 基本特性:

- 12 位转换精度;
- 1Msps 转换速度;
- 30 个输入通道,包括 26 路外部管脚输入、1 路内部温度传感器电压、1 路 1/3 AVCC 电压、1 路内建 BGR 1.2V 电压、DAC 内部输出;
- 4 种参考源: AVCC 电压、ExRef 引脚、内置 1.5V 参考电压、内置 2.5V 参考电压;
- ADC 的电压输入范围: 0~Vref;
- 4种转换模式:单次转换、顺序扫描连续转换、插队扫描连续转换、连续转换累加;
- 输入通道电压阈值监测;
- 软件可配置 ADC 的转换速率:
- 内置电压跟随器,可测量高输出阻抗的信号;
- 支持片内外设自动触发 ADC 转换,有效降低芯片功耗并提高转换的实时性。

1.22 12 Bit DAC

1 通道 12bit 500Ksps DAC,可以进行数模转换。

1.23 电压比较器 VC

内建 3 路 VC, 芯片管脚电压监测/比较电路。16 个可配置的正外部输入通道,11 个可配置的负外部输入通道;5 个内部负输入通道,包括 1 路内部温度传感器电压、1 路内建 BGR 2.5V 参考电压、1 路内建 BGR 1.2V 电压、1 路 64 阶电阻分压。VC 输出可供通用定时器 TIM0/1/2/3 与可编程计数阵列 PCA 捕获、门控、外部计数时钟使用。可根据上升/下降边沿产生异步中断,从低功耗模式下唤醒 MCU。可配置的软件防抖功能。

1.24 低电压检测器 LVD

对芯片电源电压或芯片管脚电压进行检测。16档电压监测值(1.8~3.3V)。可根据上升/下降边沿产生异步中断或复位。具有硬件迟滞电路和可配置的软件防抖功能。

LVD 基本特性:

• 4路监测源, AVCC、PC13、PB08、PB07;

- 16 阶阈值电压, 1.8~3.3V 可选:
- 8种触发条件, 高电平、上升沿、下降沿组合:
- 2种触发结果,复位、中断;
- 8 阶滤波配置, 防止误触发;
- 具备迟滞功能,强力抗干扰。

1.25 运放 OPA

OPA 可以灵活配置,适用于简易滤波器和电压跟随器应用。可以作为 DAC 输出缓存器使用,也可以配置为运放使用。

1.26 LCD 驱动

LCD 控制器是一款适用于单色无源液晶显示器(LCD)的数字控制器/驱动器,最多具有 8 个公用端子(COM)和 48 个区段端子(SEG),用以驱动 208 (4x52)或 384 (8x48) 个 LCD 图像元素。可以选择电容分压或电阻分压,支持内部电阻分压。内部电阻分压可以调节对比度。支持 DMA 硬件数据传输。

LCD 基本特性:

- 高度灵活的帧速率控制。
- 支持静态、1/2、1/3、1/4、1/6 和 1/8 占空比。
- 支持 1/2、1/3 偏置。
- 多达 16 个寄存器的 LCD 数据 RAM。
- 可通过软件配置 LCD 的对比度。
- 3 种驱动波形生成方式
- 内部电阻分压、外部电阻分压,外部电容分压方式
- 可通过软件配置内部电阻分压方式的功耗,从而匹配 LCD 面板所需的电容电荷
- 支持低功耗模式: LCD 控制器可在 Active、Sleep、DeepSleep 模式下进行显示。
- 可配置帧中断。
- 支持 LCD 闪烁功能且可配置多种闪烁频率
- 未使用的 LCD 区段和公共引脚可配置为数字或模拟功能。

1.27 嵌入式调试系统

嵌入式调试解决方案,提供全功能的实时调试器,配合标准成熟的 Keil/IAR 等调试开发软件。支持 4 个硬断点以及多个软断点。

1.28 编程模式

支持两种编程模式: 在线编程、离线编程。

支持两种编程协议: ISP 协议、SWD 协议。

支持统一编程接口: ISP 协议与 SWD 协议共用 SWD 端口。

当复位时 BOOT0(PF11)管脚为高电平,芯片工作于 ISP 编程模式,可通过 ISP 协议对 Flash 进行编程。

当复位时 BOOT0 (PF11) 管脚为低电平,芯片工作于用户模式,芯片执行 Flash 内的程序代码,可通过 SWD 协议对 Flash 进行编程。

1.29 高安全性

加密型嵌入式调试解决方案,提供全功能的实时调试器。

2 产品阵容

2.1 产品名称

2.2 功能

	产品名称	HC32F196PCTA	HC32F196MCTA	HC32F196KCTA	НС32F196JCTA НС32F190JCTA	HC32F190FCUA		
引	脚数	100	80	64	48	32		
GP	IO 引脚数	88	72	56	40	26		
G.D.	内核		Cortex M0+					
CP	频率							
电流	源电压范围			1.8 ~5.5V				
单/	双电源			单电源				
温	度范围			-40 ~ 85 °C				
调	试功能			SWD 调试接口				
唯一	一识别码			支持				
通	信接口	UART0/1/2/3 SPI0/1 I2C0/1			UART0/1 SPI0/1 I2C0/1	UART0/1 SPI0 I2C0/1		
定旧	村器	通用定时器 TIM0/1/2/3 高级定时器 TIM4/5/6						
12	位 A/D 转换器	24ch	23ch 17ch			8ch		
模	拟电压比较器		VC0/1/2					
端	口中断	88	72	56	40	26		
低	电压检测复位		1					
	内部高速振荡 器		RCH 4/8/16/22.12/24MHz					
时	内部低速振荡 器	RCL 32.8/38.4KHz						
钟	PLL	8~48MHz						
外部高速晶振 振荡器 4~32MHz								
蜂	鸣器	Max 4ch						
Fla	sh 安全保护			支持				

产品名称	НС32F196РСТА	НС32F196МСТА	НС32F196КСТА	HC32F196JCTA HC32F190JCTA	HC32F190FCUA
RAM 奇偶校验			支持		

3 引脚配置及功能

3.1 封装示意图

HC32F196PCTA-LQFP100

HC32F196MCTA-LQFP80

HC32F196KCTA-LQFP64 / LQ64

HC32F196JCTA-LQ48

HC32F190JCTA-LQ48

HC32F190FCUA-QFN32TR

图 3-1 封装示意图

3.2 引脚功能说明

LQFP100	LQFP80	LQFP64	LQFP48	QFN32	NAME	DIGITAL	ANALOG
1	1				PE02	PCA_ECI	
2	2				PE03	PCA_CH0	
3	3				PE04	PCA_CH1	
4	4				PE05	PCA_CH2	
5					PE06	PCA_CH3	
6	5	1	1	1	VCAP		
7	6	2	2		PC13	TIM3_CH1B	LVD0
8	7	3	3	2	PC14		XTLI
9	8	4	4	3	PC15		XTLO
10					PF09	TIM0_CHA	
11					PF10	TIM0_CHB	
12	9	5	5	4	PF00	I2C0_SDA UART1_TXD	XTHI
13	10	6	6	5	PF01	I2C0_SCL TIM4_CHB UART1_RXD	ХТНО
14	11	7	7	6	RESETB		
15	12	8			PC00	UART1_CTS UART2_RTS	AIN10 VC0_INP0 VC1_INN0 SEG27
16	13	9			PC01	TIM5_CHB UART1_RTS UART2_CTS	AIN11 VC0_INP1 VC1_INN1 SEG26
17	14	10			PC02	SPI1_MISO UART2_RXD	AIN12 VC0_INP2 VC1_INN2 SEG25
18	15	11			PC03	SPI1_MOSI UART2_TXD	AIN13 VC0_INP3 VC1_INN3 SEG24
19					PF02		
20	16	12	8		AVSS		
21	17	13	9	7	AVCC		
22					PF03		

23	18	14	10		PA00	UART1_CTS	AIN0
						TIM0_ETR	VC0_INP4
						VC0_OUT	VC0_INN0
						TIM1_CHA	VC1_INP0
						TIM3_ETR	VC1_INN4
						TIM0_CHA	SEG23
24	19	15	11		PA01	UART1_RTS	AIN1
						TIM0_CHB	VC0_INP5
						TIM1_ETR	VC0_INN1
						TIM1_CHB	VC1_INP1
						HCLK_OUT	VC1_INN5
						SPI1_MOSI	SEG22
25	20	16	12	8	PA02	UART1_TXD	AIN2
						TIM0_CHA	VC0_INP6
						VC1_OUT	VC0_INN2
						TIM1_CHA	VC1_INP2
						TIM2_CHA	SEG21
						PCLK_OUT	
						SPI1_MISO	
26	21	17	13		PA03	UART1_RXD	AIN3
						TIM0_GATE	VC0_INP7
						TIM1_CHB	VC0_INN3
						TIM2_CHB	VC1_INP3
						SPI1_CS	SEG20
						TIM3_CH1A	
						TIM5_CHA	
27					DVSS		
28					DVCC		
	22	18			PF04		
	23	19			PF05		
29	24	20	14	9	PA04	SPI0_CS	AIN4
						UART1_TXD	VC0_INP8
						PCA_CH4	VC0_INN4
						TIM2_ETR	VC1_INP4
						TIM5_CHA	DAC_OUT
						LVD_OUT	OP3_OUT
						TIM3_CH2B	SEG19

30	25	21	15	10	PA05	SPIO_SCK TIMO_ETR PCA_ECI TIMO_CHA TIM5_CHB XTL_OUT XTH_OUT	AIN5 VC0_INP9 VC0_INN5 VC1_INP5 VC2_INP0 VC2_INN0 OP3_OUT1 SEG18
31	26	22	16	11	PA06	SPIO_MISO PCA_CHO TIM3_BK TIM1_CHA VCO_OUT TIM3_GATE	AIN6 VC0_INP10 VC0_INN6 OP3_OUT2 SEG17
32	27	23	17	12	PA07	SPI0_MOSI PCA_CH1 HCLK_OUT TIM3_CH0B TIM2_CHA VC1_OUT TIM4_CHB	AIN7 VC0_INP11 VC0_INN7 OP3_OUT3 SEG16
33	28	24			PC04	TIM2_ETR IR_OUT VC2_OUT	AIN14 VC0_INN8 OP3_OUT4 SEG15
34	29	25			PC05	TIM6_CHB PCA_CH4	AIN15 VC0_INN9 OP3_INN SEG14
35	30	26	18	13	PB00	PCA_CH2 TIM3_CH1B TIM5_CHB RCH_OUT RCL_OUT PLL_OUT	AIN8 VC0_INN10 VC1_INN6 OP3_INP SEG13
36	31	27	19	14	PB01	PCA_CH3 PCLK_OUT TIM3_CH2B TIM6_CHB VC2_OUT TCLK_OUT	AIN9/EXVREF VC1_INP6 VC1_INN7 VC2_INP1 VC2_INN1 SEG12

37	32	28	20		PB02	PCA_ECI TIM4_CHA TIM1_BK TIM0_BK TIM2_BK	AIN16 VC1_INP7 VC1_INN8 SEG11
38					PE07	TIM3_ETR	
39					PE08	TIM3_CH0B	
40					PE09	TIM3_CH0A	VC2_INP2
41					PE10	TIM3_CH1B	VC2_INP3
42	33				PE11	TIM3_CH1A	VC2_INP4 VC2_INN2
43	34				PE12	TIM3_CH2B SPI0_CS UART3_CTS	SEG51
44	35				PE13	TIM3_CH2A SPI0_SCK UART3_RTS	AIN25 VC2_INP5 SEG50
45	36				PE14	TIM3_CH0B SPI0_MISO UART3_RXD	AIN24 VC2_INP6 SEG49
46					PE15	TIM3_BK SPI0_MOSI UART3_TXD	AIN23 VC2_INP7 VC2_INN3 SEG48
47	37	29	21		PB10	I2C1_SCL SPI1_SCK TIM1_CHA TIM3_CH1A UART1_RTS	AIN17 VC1_INP8 SEG10
48	38	30	22	15	PB11	I2C1_SDA TIM1_CHB TIM2_GATE TIM6_CHA UART1_CTS	AIN18 VC2_INP8 VC2_INN4 SEG9
49	39	31	23	16	DVSS		
50	40	32	24	17	DVCC		

51	41	33	25	PB12	SPI1_CS TIM3_BK TIM0_BK TIM6_CHA	AIN19 VC1_INP9 SEG8
52	42	34	26	PB13	SPI1_SCK I2C1_SCL TIM3_CH0B TIM1_CHA TIM1_GATE TIM6_CHB	AIN20 VC1_INP10 SEG7
53	43	35	27	PB14	SPI1_MISO I2C1_SDA TIM3_CH1B TIM0_CHA TIM1_BK	AIN21 VC1_INP11 VC2_INP9 VC2_INN5 SEG6
54	44	36	28	PB15	SPI1_MOSI TIM3_CH2B TIM0_CHB TIM0_GATE	AIN22 SEG5
55	45			PD08		SEG47
56	46			PD09		VC2_INP10 SEG46
57	47			PD10		VC2_INP11 VC2_INN6 SEG45
58	48			PD11		VC2_INP12 VC2_INN7 SEG44
59				PD12	UART2_RTS	SEG43
60				PD13	UART2_RX	SEG42
61				PD14	UART2_TX	SEG41
62				PD15	UART2_CTS	SEG40
63	49	37		PC06	PCA_CH0 TIM4_CHA TIM2_CHA UART3_RXD	SEG4

64	50	38			PC07	PCA_CH1 TIM5_CHA TIM2_CHB UART3_TXD	VC2_INP13 VC2_INN8 SEG3
65	51	39			PC08	PCA_CH2 TIM6_CHA TIM2_ETR UART3_CTS	SEG2
66	52	40			PC09	PCA_CH3 TIM4_CHB TIM1_ETR UART3_RTS	SEG1
67	53	41	29	18	PA08	UARTO_TXD TIM3_CH0A TIM1_GATE TIM4_CHA TIM3_BK	SEG0
68	54	42	30	19	PA09	UARTO_TXD TIM3_CH1A TIM0_BK I2C0_SCL HCLK_OUT TIM5_CHA	COM0
69	55	43	31	20	PA10	UARTO_RXD TIM3_CH2A TIM2_BK I2C0_SDA TIM2_GATE PCLK_OUT TIM6_CHA	COM1
70	56	44	32	21	PA11	UARTO_CTS TIM3_GATE I2C1_SCL VC0_OUT SPI0_MISO TIM4_CHB	COM2
71	57	45	33	22	PA12	UARTO_RTS TIM3_ETR I2C1_SDA VC1_OUT SPI0_MOSI	COM3

72	58	46	34	23	PA13	IR_OUT UART0_RXD LVD_OUT TIM3_ETR VC2_OUT	SWDIO
73	59	47	35		PF06	I2C1_SCL UART0_CTS	
	60	48	36		PF07	I2C1_SDA UART0_RTS	
74					DVSS		
75					DVCC		
76	61	49	37	24	PA14	UART1_TXD UART0_TXD TIM3_CH2A LVD_OUT RCH_OUT RCL_OUT PLL_OUT	SWCLK
77	62	50	38	25	PA15	SPIO_CS UART1_RXD TIM0_ETR TIM0_CHA TIM3_CH1A	
78	63	51			PC10	PCA_CH2	COM4/SEG39
79	64	52			PC11	PCA_CH3	COM5/SEG38
80	65	53			PC12	PCA_CH4	COM6/SEG37
81	66				PD00	SPI1_CS	
82	67				PD01	SPI1_SCK	
83	68	54			PD02	PCA_ECI TIM1_ETR	COM7/SEG36
84	69				PD03	UART1_CTS SPI1_MISO	
85	70				PD04	UART1_RTS SPI1_MOSI	
86					PD05	UART1_TX	

-							
87					PD06	UART1_RX	
88					PD07	UART1_TX	
89	71	55	39	26	PB03	SPIO_SCK TIMO_CHB TIM1_GATE TIM3_CH0A XTL_OUT XTH_OUT	VC1_INN9 SEG35/VLCDH
90	72	56	40	27	PB04	SPI0_MISO PCA_CH0 TIM2_BK UART0_CTS TIM2_GATE TIM3_CH0B	VC0_INP12 VC1_INP12 SEG34/VLCD3
91	73	57	41	28	PB05	SPI0_MOSI TIM1_BK PCA_CH1 UART0_RTS	VC0_INP13 SEG33/VLCD2
92	74	58	42	29	PB06	I2C0_SCL UART0_TXD TIM1_CHB TIM0_CHA TIM3_CH0A	VC0_INP14 VC1_INP14 SEG32/VLCD1
93	75	59	43	30	PB07	I2C0_SDA UART0_RXD TIM2_CHB TIM0_CHB	VC1_INP15 LVD2 SEG31
94	76	60	44	31	BOOT0 /PF11		SEG30
95	77	61	45		PB08	I2C0_SCL TIM1_CHA TIM2_CHA TIM0_GATE TIM3_CH2A UART0_TXD	LVD1 SEG29

96	78	62	46		PB09	I2C0_SDA	SEG28
						IR_OUT	
						SPI1_CS	
						TIM2_CHA	
						TIM2_CHB	
						UART0_RXD	
97					PE00	TIM1_CHA	
98					PE01	TIM2_CHA	
99	79	63	47	32	DVSS		
100	80	64	48		DVCC		

每个引脚的数字功能由 PSEL 位域进行控制,详见下表。

	T		T	Px_SEL	1	1	1
0	1	2	3	4	5	6	7
PA00	UART1_CTS		TIM0_ETR	VC0_OUT	TIM1_CHA	TIM3_ETR	TIM0_CHA
PA01	UART1_RTS		TIM0_CHB	TIM1_ETR	TIM1_CHB	HCLK_OUT	SPI1_MOSI
PA02	UART1_TXD	TIM0_CHA	VC1_OUT	TIM1_CHA	TIM2_CHA	PCLK_OUT	SPI1_MISO
PA03	UART1_RXD	TIM0_GATE	TIM1_CHB	TIM2_CHB	SPI1_CS	TIM3_CH1A	TIM5_CHA
PA04	SPI0_CS	UART1_TXD	PCA_CH4	TIM2_ETR	TIM5_CHA	LVD_OUT	TIM3_CH2B
PA05	SPI0_SCK	TIM0_ETR	PCA_ECI	TIM0_CHA	TIM5_CHB	XTL_OUT	XTH_OUT
PA06	SPI0_MISO	PCA_CH0	TIM3_BK	TIM1_CHA	VC0_OUT	TIM3_GATE	
PA07	SPI0_MOSI	PCA_CH1	HCLK_OUT	TIM3_CH0B	TIM2_CHA	VC1_OUT	TIM4_CHB
PA08	UART0_TXD	TIM3_CH0A			TIM1_GATE	TIM4_CHA	TIM3_BK
PA09	UART0_TXD	TIM3_CH1A	TIM0_BK	I2C0_SCL		HCLK_OUT	TIM5_CHA
PA10	UART0_RXD	TIM3_CH2A	TIM2_BK	I2C0_SDA	TIM2_GATE	PCLK_OUT	TIM6_CHA
PA11	UART0_CTS	TIM3_GATE	I2C1_SCL		VC0_OUT	SPI0_MISO	TIM4_CHB
PA12	UART0_RTS	TIM3_ETR	I2C1_SDA		VC1_OUT	SPI0_MOSI	
PA13	IR_OUT	UART0_RXD	LVD_OUT	TIM3_ETR			VC2_OUT
PA14	UART1_TXD	UART0_TXD	TIM3_CH2A	LVD_OUT	RCH_OUT	RCL_OUT	PLL_OUT
PA15	SPIO_CS	UART1_RXD		TIM0_ETR	TIM0_CHA	TIM3_CH1A	
PB00	PCA_CH2	TIM3_CH1B		TIM5_CHB	RCH_OUT	RCL_OUT	PLL_OUT
PB01	PCA_CH3	PCLK_OUT	TIM3_CH2B	TIM6_CHB		VC2_OUT	TCLK_OUT
PB02		PCA_ECI		TIM4_CHA	TIM1_BK	TIM0_BK	TIM2_BK
PB03	SPI0_SCK	TIM0_CHB	TIM1_GATE	TIM3_CH0A		XTL_OUT	XTH_OUT
PB04	SPI0_MISO	PCA_CH0	TIM2_BK	UART0_CTS	TIM2_GATE	TIM3_CH0B	
PB05	SPI0_MOSI		TIM1_BK	PCA_CH1			UART0_RTS
PB06	I2C0_SCL	UART0_TXD	TIM1_CHB	TIM0_CHA		TIM3_CH0A	
PB07	I2C0_SDA	UART0_RXD	TIM2_CHB		TIM0_CHB		
PB08	I2C0_SCL	TIM1_CHA		TIM2_CHA	TIM0_GATE	TIM3_CH2A	UART0_TXD
PB09	I2C0_SDA	IR_OUT	SPI1_CS	TIM2_CHA		TIM2_CHB	UART0_RXD
PB10	I2C1_SCL	SPI1_SCK	TIM1_CHA		TIM3_CH1A		UART1_RTS
PB11	I2C1_SDA	TIM1_CHB		TIM2_GATE	TIM6_CHA		UART1_CTS
PB12	SPI1_CS	TIM3_BK		TIM0_BK			TIM6_CHA
PB13	SPI1_SCK	I2C1_SCL	TIM3_CH0B		TIM1_CHA	TIM1_GATE	TIM6_CHB
PB14	SPI1_MISO	I2C1_SDA	TIM3_CH1B	TIM0_CHA			TIM1_BK
PB15	SPI1_MOSI	TIM3_CH2B	TIM0_CHB	TIM0_GATE			
PC00			UART1_CTS	UART2_RTS			
PC01		TIM5_CHB	UART1_RTS			UART2_CTS	
PC02	SPI1_MISO			UART2_RXD			
PC03	SPI1_MOSI				UART2_TXD		
PC04		TIM2_ETR	IR_OUT	VC2_OUT			
PC05		TIM6_CHB	PCA_CH4				

	,			_		_
PC06	PCA_CH0	TIM4_CHA	TIM2_CHA		UART3_RXD	
PC07	PCA_CH1	TIM5_CHA	TIM2_CHB		UART3_TXD	
PC08	PCA_CH2	TIM6_CHA	TIM2_ETR		UART3_CTS	
PC09	PCA_CH3	TIM4_CHB	TIM1_ETR		UART3_RTS	
PC10			PCA_CH2			
PC11			PCA_CH3			
PC12			PCA_CH4			
PC13			TIM3_CH1B			
PC14						
PC15						
PD00		SPI1_CS				
PD01		SPI1_SCK				
PD02	PCA_ECI		TIM1_ETR			
PD03	UART1_CTS	SPI1_MISO				
PD04	UART1_RTS	SPI1_MOSI				
PD05	UART1_TXD					
PD06	UART1_RXD					
PD07	UART1_TXD					
PD08						
PD09						
PD10						
PD11						
PD12		UART2_RTS				
PD13	UART2_RXD					
PD14	UART2_TXD					
PD15		UART2_CTS				
PE00	TIM1_CHA					
PE01	TIM2_CHA					
PE02	PCA_ECI					
PE03	PCA_CH0					
PE04	PCA_CH1					
PE05	PCA_CH2					
PE06	PCA_CH3					
PE07	TIM3_ETR					
PE08	TIM3_CH0B					
PE09	TIM3_CH0A					
PE10	TIM3_CH1B					
PE11	TIM3_CH1A					
PE12	TIM3_CH2B	SPI0_CS	UART3_CTS			
PE13	TIM3_CH2A	SPI0_SCK	UART3_RTS			
PE14	TIM3_CH0B	SPI0_MISO	UART3_RXD			

PE15	TIM3_BK	SPI0_MOSI	UART3_TXD			
PF00	I2C0_SDA		UART1_TXD			
PF01	I2C0_SCL	TIM4_CHB	UART1_RXD			
PF02						
PF03						
PF04						
PF05						
PF06	I2C1_SCL		UART0_CTS			
PF07	I2C1_SDA		UART0_RTS			
PF09	TIM0_CHA					
PF10	TIM0_CHB					
PF11				_	_	

3.3 模块信号说明

模块	引脚名称	描述
电源	DVCC	数字电源
	AVCC	模拟电源
	DVSS	数字地
	AVSS	模拟地
	VCAP	LDO内核供电输出(仅限内部电路使用,需外接不小于1uF
		的去耦电容)
ISP	BOOT0	当复位时 BOOT0 (PF11) 管脚为高电平,芯片工作于ISP
		编程模式,可通过ISP协议对Flash进行编程。
		当复位时 BOOT0 (PF11) 管脚为低电平,芯片工作于用
		户模式,芯片执行Flash内的程序代码,可通过SWD协议对
		Flash进行编程。
ADC	AIN0~AIN23	ADC输入通道0~23
	ADC_VREF	ADC外部参考电压
VC	VCIN0~VCIN15	VC输入0~15
	VC0_OUT	VC0比较输出
	VC1_OUT	VC1比较输出
	VC2_OUT	VC2比较输出
LVD	LVDIN0	电压侦测输入0
	LVDIN1	电压侦测输入1
	LVDIN2	电压侦测输入2
	LVD_OUT	电压侦测输出
OPA	OPA_INN	OPA负端输入
y=0~4	OPA_INP	OPA正端输入
	OPA_OUTy	OPA输出
LCD	COMx	LCD公共端输出
x=0~7	SEGy	LCD区段端输出
y=0-52	VLCDz	外部电阻模式,外部电容模式使用管脚
z=1,2,3,H		
UART	UARTx_TXD	UARTx数据发送端
x=0,1,2,3	UARTx_RXD	UARTx数据接收端
	UARTx_CTS	UARTx CTS
	UARTx_RTS	UARTX RTS
SPI	SPIx_MISO	SPI模块主机输入从机输出数据信号
x=0,1	SPIx_MOSI	SPI模块主机输出从机输入数据信号
	SPIx_SCK	SPI模块时钟信号
	SPIx_CS	SPI 片选
I2C	I2Cx_SDA	I2C模块数据信号

x=0,1	I2Cx_SCL	I2C模块时钟信号		
通用定时器	TIMx_CHA	Timer的捕获输入比较输出A		
TIMx	TIMx_CHB	Timer的捕获输入比较输出B		
x=0,1,2	TIMx_ETR	Timer的外部计数输入信号		
1 0,1,2	TIMx_GATE	Timer的门控信号		
通用定时器	TIM3_CHyA	Timer的捕获输入比较输出A		
TIM3	TIM3_CHyB	Timer的捕获输入比较输出B		
y=0,1,2	TIM3_ETR	Timer的外部计数输入信号		
J = 0,1,2	TIM3_GATE	Timer的门控信号		
可编程计数阵列	PCA_ECI	外部时钟输入信号		
PCA	PCA_CH0	捕获输入/比较输出/PWM输出 0		
	PCA_CH1	捕获输入/比较输出/PWM输出 1		
	PCA_CH2	捕获输入/比较输出/PWM输出 2		
	PCA_CH3	捕获输入/比较输出/PWM输出 3		
	PCA_CH4	捕获输入/比较输出/PWM输出 4		
高级定时器	TIM4_CHA	Advanced Timer4 比较输出/捕获输入端A		
Advanced Timer	TIM4_CHB	Advanced Timer4 比较输出/捕获输入端B		
	TIM5_CHA	Advanced Timer5 比较输出/捕获输入端A		
	TIM5_CHB	Advanced Timer5 比较输出/捕获输入端B		
	TIM6_CHA	Advanced Timer6 比较输出/捕获输入端A		
	TIM6_CHB	Advanced Timer6 比较输出/捕获输入端B		

表 3-1 模块信号说明

注意:

- IO 端口复位为输入高阻状态,休眠模式和深度休眠模式保持之前的端口状态。

4 功能框图

5 存储区映射图

HUADA SEMICONDUCTOR			
		-	
0~200	保留		
0x200	0_8000		
	SRAM (32KByte)		
0x200	0_0000		
	∤⊓ दिस		
	保留		
0.000	4_0000		
0.000	1_0000	1	
	主闪存区		
	主闪存区 (256KByte)		
0x000	0_0000		
	-		

6 典型应用电路图

注意:

- AVCC 与 DVCC 电压必须相同。
- 每组电源都需要一个去耦电容,去耦电容尽量靠近相应电源管脚。

7 电气特性

7.1 测试条件

除非特别说明,所有电压的都以 VSS 为基准。

7.1.1 最小和最大数值

除非特别说明,在生产线上通过对 100%的产品在环境温度 TA=25°C 和 TA=TAmax 下执行的测试(TAmax 与选定的温度范围匹配),所有最小和最大值将在最坏的环境温度、供电电压和时钟频率条件下得到保证。

在每个表格下方的注解中说明为通过综合评估、设计模拟和/或工艺特性得到的数据,不会在生产线上进行测试;在综合评估的基础上,最小和最大数值是通过样本测试后,取其平均值再加减三倍的标准分布(平均±3Σ)得到。

7.1.2 典型数值

除非特别说明,典型数据是基于 TA=25°C 和 VCC=3.3V(1.8V ≤ VCC ≤ 5.5V 电压范围)。 这些数据仅用于设计指导而未经测试。

典型的 ADC 精度数值是通过对一个标准的批次采样,在所有温度范围下测试得到,95%产品的误差小于等于给出的数值(平均 $\pm 2\Sigma$)。

7.2 绝对最大额定值

加在器件上的载荷如果超过"绝对最大额定值"列表中给出的值,可能会导致器件永久性地损坏。这里只是给出能承受的最大载荷,并不意味在此条件下器件的功能性操作无误。器件长期工作在最大值条件下会影响器件的可靠性。

符号	描述	最小值	最大值	单位
VCC - VSS	外部主供电电压(包含AVCC和DVCC) ⁽¹⁾	-0.3	5.5	V
V_{IN}	在其它引脚上的输入电压(2)	VSS-0.3	VCC + 0.3	V
\Delta VCCx	不同供电引脚之间的电压差		50	mV
VSSx - VSS	不同接地引脚之间的电压差		50	mV
V _{ESD} (HBM)	ESD静电放电电压(人体模型)	参考绝对最大	(值电气参数	V

表 7-1 电压特性

- 1. 所有的电源(DVCC,AVCC)和地(DVSS,AVSS)引脚必须始终连接到外部允许范围内的供电系统上。
- 2. $I_{INJ(PIN)}$ 绝对不可以超过它的极限,即保证 V_{IN} 不超过其最大值。如果不能保证 V_{IN} 不超过其最大值,也要保证在外部限制 $I_{INJ(PIN)}$ 不超过其最大值。当 V_{IN} > V_{CC} 时,有一个正向注入电流;当 V_{IN} < V_{CS} 时,有一个反向注入电流。

符号	描述	最大值(1)	单位
I_{VCC}	经过DVCC/AVCC电源线的总电流(供应电流) ⁽¹⁾	300	mA
$I_{ m VSS}$	经过VSS地线的总电流(流出电流) ⁽¹⁾	300	mA
	任意I/O和控制引脚上的输出灌电流	25	mA
I_{IO}	任意I/O和控制引脚上的输出电流	-25	mA
	RESETB引脚的注入电流	+/-5	mA
$I_{\text{INJ(PIN)}}^{(2) (3)}$	XTH的XTHI引脚和XTL的XTLI引脚的注入电流	+/-5	mA
	其他引脚的注入电流(4)	+/-5	mA
$\sum I_{\text{INJ(PIN)}}^{(2)}$	所有I/O和控制引脚上的总注入电流 ⁽⁴⁾	+/-25	mA

表 7-2 电流特性

- 1. 所有的电源(DVCC,AVCC)和地(DVSS,AVSS)引脚必须始终连接到外部允许范围内的供电系统上。
- 2. I_{INJ(PIN)}绝对不可以超过它的极限,即保证 V_{IN}不超过其最大值。如果不能保证 VIN 不超过其最大值,也要保证在外部限制 I_{INJ(PIN)}不超过其最大值。当 V_{IN}>VCC 时,有一个正向注入电流;当 VIN<VSS 时,有一个反向注入电流。
- 3. 反向注入电流会干扰器件的模拟性能。
- 4. 当几个 I/O 口同时有注入电流时, \sum I $_{\text{INJ(PIN)}}$ 的最大值为正向注入电流与反向注入电流的即时绝对值之和。该结果基于在器件 4 个 I/O 端口上 \sum I $_{\text{INJ(PIN)}}$ 最大值的特性。

符号	描述	数值	单位
TSTG	储存温度范围	-60 ~ + 150	$^{\circ}\mathrm{C}$
TJ	最大结温度	105	°C

表 7-3 温度特性

7.3 工作条件

7.3.1 通用工作条件

符号	参数	条件	最小值	最大值	单位
fHCLK	内部AHB时钟频率		0	48	MHz
fPCLK0	内部APB0时钟频率		0	48	MHz
fPCLK1	内部APB1时钟频率		0	48	MHz
DVCC	数字部分工作电压		1.8	5.5	V
AVCC ⁽¹⁾	模拟部分工作电压	必须与DVCC ⁽²⁾ 相同	1.8	5.5	V
PD	功率耗散 TA=85℃	LQFP100		476	mW
	功率耗散 TA=85℃	LQFP80		465	mW
	功率耗散 TA=85℃	LQFP64		455	mW
	功率耗散 TA=85℃	LQFP48		364	mW
	功率耗散 TA=85℃	QFN32		357	mW
TA	环境温度	最大功率消耗	-40	85	°C
		低功率消耗(3)	-40	105	°C
TJ	结温度范围		-40	105	°C

表 7-4 通用工作条件

- 1. 当使用 ADC 时,参见 ADC 电气参数。
- 2. 建议使用相同的电源为 DVCC 和 AVCC 供电,在上电和正常操作期间, DVCC 和 AVCC 之间最多允许有 300mV 的差别。
- 3. 在较低的功率耗散的状态下,只要 T_I 不超过 T_{Jmax} , T_A 可以扩展到这个范围。

7.3.2 上电和掉电时的工作条件

符号	参数	条件	最小值	最大值	单位
tVcc	VCC上升速率		0	5	V/µs
tVcc	VCC下降速率		0	5	V/µs

表 7-5 上电和掉电的工作条件

7.3.3 内嵌复位和 LVD 模块特性

1. 设计保证,不在生产中测试。

图 7-1 POR/Brown Out 示意图

符号	参数	条件	最小值	典型值	最大值	单位
Vpor	POR 释放电压(上电过程)		1.45	1.50	1.65	V
	BOR 检测电压(掉电过程)					

表 7-6 POR/Brown Out

符号	参数	条件	最小值	典型值	最大值	单位
Vex	外部输入电压范围		0		VCC	V
Vlevel	检测阈值	LVD_CR.VTDS=0000		1.8±3.5%		V
		LVD_CR.VTDS =0001		1.9±3.5%		
		LVD_CR.VTDS =0010		2.0±3.5%		
		LVD_CR.VTDS =0011		2.1±3.5%		
		LVD_CR.VTDS =0100		2.2±3.5%		
		LVD_CR.VTDS=0101		2.3±3.5%		
		LVD_CR.VTDS=0110		2.4±3.5%		
		LVD_CR.VTDS=0111		2.5±3.5%		
		LVD_CR.VTDS=1000		2.6±3.5%		
		LVD_CR.VTDS=1001		2.7±3.5%		
		LVD_CR.VTDS=1010		2.8±3.5%		
		LVD_CR.VTDS=1011		2.9±3.5%		
		LVD_CR.VTDS=1100		3.0±3.5%		
		LVD_CR.VTDS=1101		3.1±3.5%		
		LVD_CR.VTDS=1110		3.2±3.5%		
		LVD_CR.VTDS=1111		3.3±3.5%		
Icomp	功耗			0.12		uA
Tresponse	响应时间			80		μs
Tsetup	建立时间			400		μs
Vhyste	迟滞电压			40		mV
Tfilter	滤波时间	LVD_debounce = 000		7		μs
		LVD_debounce = 001		14		
		LVD_debounce = 010		28		
		LVD_debounce = 011		112		
		LVD_debounce = 100		450		
		LVD_debounce = 101		1800		
		LVD_debounce = 110		7200		
		LVD_debounce = 111		28800		

表 7-7 LVD 模块特性

7.3.4 内置的参考电压

符号	参数	条件	最小值	典型值	最大值	单位
V _{REF25}	Internal 2.5V Reference Voltage	常温25°C 3.3V	2.475	2.5	2.525	V
V _{REF25}	Internal 2.5V Reference Voltage	-40 ~ 85°C; 2.8~5.5V	2.463	2.5	2.525	$V^{[1]}$
V _{REF15}	Internal 1.5V Reference Voltage	常温25°C 3.3V	1.485	1.5	1.515	V
V _{REF15}	Internal 1.5V Reference Voltage	-40 ~ 85°C; 1.8~5.5V	1.477	1.5	1.519	V ^[1]
$T_{ ext{Coeff}}$	Internal 2.5V 1.5V temperature	-40 ~ 85°C			120	ppm/
1 Coeff	coefficient	TO 03 C			120	°C

^{1.} 数据基于考核结果,不在生产中测试

7.3.5 供电电流特性

电流消耗是多种参数和因素的综合指标,这些参数和因素包括工作电压、环境温度、 I/O 引脚的负载、产品的软件配置、工作频率、I/O 脚的翻转速率、程序在存储器中的 位置以及执行的代码等。

微控制器处于下列条件:

- 所有的 I/O 引脚都处于输入模式,并连接到一个静态电平上——VCC 或 VSS(无负载)。
- 所有的外设都处于关闭状态,除非特别说明。
- 闪存存储器的访问时间调整到 fHCLK 的频率(0~24MHz 时为 0 个等待周期, 24~48MHz 时为 1 个等待周期)。
- 当开启外设时: fPCLK0 = fHCLK, fPCLK1 = fHCLK。

Symbol	Parameter		Conditions			Max ⁽²⁾	Unit
				4M	750		
			DCH	8M	1460		
			RCH	16M	2850		
	All peripherals clock ON,	VCAP=1.5V	clock source	22.12M	3940		
I _{DD} (Run in	Run while(1) in RAM	V _{CC} =3.3V T _A =2xC		24M	4270		uA
RAM)			PLL	32M	5750		
ICI III)			RCH4M to				
			xxM	48M	8540		
			clock source				
				4M	350		uA

				8M	660			
			RCH	16M	1250			
			clock source	22.12M	1710			
	All peripherals clock OFF,	VCAP=1.5V		24M	1850			
	Run while(1) in RAM	$V_{CC}=3.3V$ $T_A=2xC$	PLL	32M	2560			
		I A-2XC	RCH4M to					
			xxM	48M	3770			
			clock source					
				4M	790			
			RCH	8M	1470			
$I_{ m DD}$	All peripherals clock OFF,	VCAP=1.5V	clock source	16M	2780			
(Run		$V_{CC}=3.3V$	clock source	22.12M	3720		uA	
CoreMark)	Run CoreMark in Flash	$T_{A}=2xC$		24M	4000		uA	
Cololvium)		1A-2AC	PLL					
			RCH4M to	48M FlashWait=1	6080			
			xxM					
		VCAP=1.5V		4M	1000	1440		
		VCAP=1.5 V V _{CC} =1.8-5.5 V	RCH	8M	1890	2710		
		T _A =N40C-	clock source	16M	3710	5160	uA	
		85C	clock source	22.12M	5010	7010		
		03.0		24M	5400	7570		
		VCAP=1.5V	PLL RCH4M to xxM clock source	16M	3930	5000	uA	
		V _{CC} =1.8- 5.5V		24M	5480	7090		
	All peripherals clock ON,			32M FlashWait=1	6590	7650		
	Run while(1) in Flash	T _A =N40C-		40M FlashWait=1	8100	9470		
		85C		48M FlashWait=1	9610	11200		
				16M	3990	5040		
I _{DD}		VCAP=1.5V	PLL	24M	5530	7140		
(Run		V _{CC} =1.8-5.5V	RCH8M to	32M FlashWait=1	6640	7690	uA	
mode)		T _A =N40C- 85C	xxM clock source	40M FlashWait=1	8160	9480		
		650	clock source	48M FlashWait=1	9670	11250		
				4M	610	1000		
		VCAP=1.5V	2011	8M	1090	1840		
		V _{CC} =1.8-5.5V	RCH	16M	2080	3360	uA	
		T _A =N40C-	clock source	22.12M	2770	4480		
	All peripherals clock OFF,	85C		24M	2970	4810		
	Run while(1) in Flash	VCAP=1.5V	PLL	16M	2290	3150		
		V _{CC} =1.8-5.5V	RCH4M to	24M	3060	4370		
		T _A =N40C-	xxM	32M FlashWait=1	3410	4030	uA	
		85C	clock source	40M FlashWait=1	4110	4950		

				48M FlashWait=1	4860	5870		
				16M	2340	3220		
		VCAP=1.5V	PLL	24M	3120	4420		
		V _{CC} =1.8-5.5V	RCH8M to	32M FlashWait=1	3460	4080	uA	
		T _A =N40C-	xxM	40M FlashWait=1	4160	4990		
		85C	clock source	48M FlashWait=1	4910	5910		
				4M	550	630		
		VCAP=1.5V		8M	1060	1190		
		V _{CC} =1.8-5.5V	RCH	16M	2050	2290	uA	
		T _A =N40C-	clock source	22.12M	2830	3160		
		85C		24M	3070	3420		
				16M	2290	2560		
		VCAP=1.5V	PLL RCH4M to xxM clock source	24M	3200	3600		
	All peripherals clock ON	V _{CC} =1.8-5.5V T _A =N40C-		32M FlashWait=1	4190	4720	uA	
				40M FlashWait=1	5200	5860		
		85C		48M FlashWait=1	6190	6990		
				16M	2350	2620		
		VCAP=1.5V	PLL	24M	3250	3660	uA	
		V _{CC} =1.8-5.5V	RCH8M to xxM clock source	32M FlashWait=1	4240	4770		
		T _A =N40C-		40M FlashWait=1	5250	5890		
I_{DD}		85C	clock source	48M FlashWait=1	6250	7020		
(Sleep		VCAP=1.5V Vcc=1.8-5.5V T _A =N40C- 85C	RCH clock source	4M	150	190	uA	
mode)				8M	260	320		
				16M	450	530		
				22.12M	610	710		
				24M	650	750		
				16M	690	780		
		VCAP=1.5V	PLL	24M	790	900		
	All peripherals clock OFF	V _{CC} =1.8-5.5V	RCH4M to	32M FlashWait=1	990	1110	uA	
		T _A =N40C-	xxM	40M FlashWait=1	1200	1350		
		85C	clock source	48M FlashWait=1	1410	1580		
				16M	740	850		
		VCAP=1.5V	PLL	24M	840	960		
		V _{CC} =1.8-5.5V	RCH8M to	32M FlashWait=1	1040	1170	uA	
		T _A =N40C-	xxM	40M FlashWait=1	1250	1400		
		85C	clock source	48M FlashWait=1	1460	1640	1	
			XTL32K	T _A =N40-25C	13	22		
I_{DD}	All peripherals clock ON,	VCAP=1.5V V _{CC} =1.8-5.5V	clock source T	T _A =50C	14	21	uA	
(LP Run)			Driver=0x0	T _A =85C	21	29		
				1 A-03C	۷1	47		

			XTL32K	T _A =N40-25C	10	18	
	All peripherals clock OFF, Run while(1) in Flash	VCAP=1.5V Vcc=1.8-5.5V	clock source	T _A =50C	11	17	uA
	Kuli willie(1) ili Plasii	VCC=1.6-3.5 V	Driver=0x0	T _A =85C	18	26	
	All peripherals clock ON	MOAD 15M	XTL32K	T _A =N40-25C	8	9	
		VCAP=1.5V Vcc=1.8-5.5V	clock source	T _A =50C	9	10	uA
I_{DD}		VCC=1.6-5.5 V	Driver=0x0	T _A =85C	16	19	
(LP Sleep)	All peripherals clock OFF	VCAP=1.5V	XTL32K	T _A =N40-25C	5	5	
		VCAP=1.5 V V _{CC} =1.8-5.5 V	clock source Driver=0x0	T _A =50C	6	7	uA
		VCC=1.6-3.3 V		T _A =85C	13	16	
		VCAP=1.5V	XTL32K	T _A =N40-25C	2980	3170	
		$V_{CC}=1.8-5.5V$	Driver=0x0	T _A =50C	3720	4110	nA
		VCC-1.0 3.3 V		T _A =85C	8380	9790	
	IDC22V	VCAD 15V		T _A =N40-25C	2920	3100	
_	IRC32K +DeepSleep	VCAP=1.5V V _{CC} =1.8-5.5V		T _A =50C	3660	4010	nA
I _{DD} (Deep	ТВеерыеер	VCC-1.0 3.3 V		T _A =85C	8320	9650	
Sleep)	WDT	NCAD 15W		T _A =N40-25C	2710	2840	
2111p)	WDT +DeepSleep	VCAP=1.5V Vcc=1.8-5.5V		T _A =50C	3420	3740	nA
	Беерыеер	, cc=1.0 3.3 V		T _A =85C	8080	9500	
		VCAD 15V		T _A =N40-25C	2600	2730	
	DeepSleep	VCAP=1.5V V _{CC} =1.8-5.5V		T _A =50C	3320	3630	nA
		, cc=1.0 3.5 v		T _A =85C	7980	9360	

- 1. 若没有其他指定条件,该 Typ 的值是在 25 °C & $V_{CC} = 3.3V$ 测得。
- 2. 若没有其他指定条件,该 Max 的值是 V_{CC} = 1.8-5.5 & Temperature = N40 85 °C 范围内的最大值。
- 3. 数据基于考核结果,不在生产中测试

表 7-1 工作电流特性

7.3.6 从低功耗模式唤醒的时间

唤醒时间是在 RCH 振荡器的唤醒阶段测量得到。唤醒时使用的时钟源依当前的操作模式而定:

- 休眠模式:时钟源是 RCH 振荡器
- 深度休眠模式:时钟源是进入深度休眠时所使用的时钟是 RCH 振荡器

Symbol	Papameter	Conditions	Min	Тур	Max	Unit
T_{wu}	休眠模式唤醒时间			1.8		μs
	深度休眠唤醒时间	$F_{MCLK} = 4MHz$		9.0		μs
		$F_{MCLK} = 8MHz$		6.0		μs
		$F_{MCLK} = 16MHz$		5.0		μs
		$F_{MCLK} = 24MHz$		4.0		μs

^{1.} 唤醒时间的测量是从唤醒事件开始至用户程序读取第一条指令。

7.3.7 外部时钟源特性

7.3.7.1 外部输入高速时钟

符号	参数	条件	最小值	典型值	最大值	单位
fXTH_ext	用户外部时钟频率(1)		0	8	32	MHz
VXTHH	输入引脚高电平电压		0.7VCC		VCC	V
VXTHL	输入引脚低电平电压		VSS		0.3VCC	V
Tr(XTH)	上升的时间(1)				20	ns
Tf(XTH)	下降的时间(1)				20	ns
Tw(XTH)	输入高或低的时间(1)		16			ns
Cin(XTH)	输入容抗 ⁽¹⁾			5		pF
Duty	占空比		40		60	%
IL	输入漏电流				±1	μΑ

^{1.} 由设计保证,不在生产中测试。

7.3.7.2 外部输入低速时钟

符号	参数	条件	最小值	典型值	最大值	单位
fXTH_ext	用户外部时钟频率(1)		0	32.768	1000	KHz
VXTHH	输入引脚高电平电压		0.7VCC		VCC	V
VXTHL	输入引脚低电平电压		VSS		0.3VCC	V
Tr(XTH)	上升的时间(1)				50	ns
Tf(XTH)	下降的时间(1)				50	ns
Tw(XTH)	输入高或低的时间(1)		450			ns
Cin(XTH)	输入容抗(1)			5		pF
Duty	占空比		30		70	%
IL	输入漏电流				±1	μΑ

^{1.} 由设计保证,不在生产中测试。

7.3.7.3 高速外部时钟 XTH

高速外部时钟(XTH)可以使用一个 4~32MHz 的晶体/陶瓷谐振器构成的振荡器产生。本节中所给出的信息是基于使用下表中列出的典型外部元器件,通过综合特性评估得到的结果。在应用中,谐振器和负载电容必须尽可能地靠近振荡器的引脚,以减小输出失真和启动时的稳定时间。有关晶体谐振器的详细参数(频率、封装、精度等),请咨询相应的生产厂商。

外部 XTH 晶振⁽¹⁾⁽²⁾

符号	参数	条件	最小值	典型值	最大值	单位		
F _{CLK}	振荡频率		4		32	MHz		
ESR _{CLK}	支持的晶振ESR范围	32M		30	60	Ohm		
		4M		400	1500	Ohm		
$C_{LX}^{(3)}$	负载电容	按晶体制造商要求进行配置。						
Duty	占空比		40	50	60	%		
$\mathrm{Idd}^{(4)}$	电流	32M Xtal, CL=12pF,		600		uA		
Idd	Hint	ESR=30ohm						
T _{start} ⁽⁵⁾	启动时间	32MHz		300		μs		
		@ XTH_CR.Driver=1111						
		4MHz		2		ms		
		@ XTH_CR.Driver=0011						

- 1. 谐振器的特性参数由晶体/陶瓷谐振器制造商给出。
- 2. 由综合评估得出,不在生产中测试。
- 3. CLX 指 XTAL 的两个管脚的负载电容,用户必须按晶体制造商的要求选择该电容的容值。

如果晶体制造商给出了**负载电容的容值**,则匹配电容的容值应为晶体制造商所给出的负载电容容值的两倍。 如果晶体制造商给出了**匹配电容的容值**,则直接使用晶体制造商所给出的匹配电容的容值即可。

例:晶体制造商给出晶体的**负载电容**为 8pF 时,匹配电容的容值应为 16pF。考虑 PCB 与 MCU 引脚之间的分布电容,建议选择容值为 15pF 或 12pF 的匹配电容。

晶体制造商给出晶体的**匹配电容**为 12pF 时,匹配电容的容值应为 12pF。考虑 PCB 与 MCU 引脚之间的分布电容,建议选择容值为 10pF 或 8pF 的匹配电容。

- 4. 电流跟随频率变化而变化,测试条件: XTH_CR.Driver=1110
- 5. Tstart 是启动时间,是从软件使能 XTH 开始测量,直至得到稳定的 32MHz/4MHz 振荡这段时间。这个数值是在 XTH_CR.Startup=10 设置下,使用一个标准的晶体谐振器上测量得到,它可能因晶体制造商和型号的不同而变化较大。

注意:

- 晶体的匹配电容**必须**按照晶体制造商的技术手册的要求进行配置。

如果晶体制造商给出了**负载电容的容值**,则匹配电容的容值应为晶体制造商所给出的负载电容容值的两倍。

如果晶体制造商给出了*匹配电容的容值*,则直接使用晶体制造商所给出的匹配电容的容值即可。

7.3.7.4 低速外部时钟 XTL

低速外部时钟(XTL)可以使用一个 32.768KHz 的晶体/陶瓷谐振器构成的振荡器产生。本节中所给出的信息是基于典型外部元器件,通过综合特性评估得到的结果。在应用中,谐振器和负载电容必须尽可能地靠近振荡器的引脚,以减小输出失真和启动时的稳定时间。有关晶体谐振器的详细参数(频率、封装、精度等),请咨询相应的生产厂商。外部 XTL 晶振⁽¹⁾

符号	参数	条件	最小值	典型值	最大值	单位	
F _{CLK}	振荡频率			32.768		KHz	
ESR _{CLK}	支持的晶振ESR范围			65	85	KOhm	
$C_{Lx}^{(2)}$	负载电容	按晶体制造商要求进行配置。					
DC _{ACLK}	占空比		30	50	70	%	
Idd ⁽³⁾	电流	ESR= 65 KOhm		350	1000	nA	
		C _L =12 pF					
T _{start} ⁽⁴⁾	启动时间	ESR=65 KOhm,		500		ms	
		$C_L=12 pF$,					
		40% - 60% duty cycle has					
		been reached					

- 1. 由综合评估得出,不在生产中测试。
- 2. CLX 指 XTAL 的两个管脚的负载电容,用户必须按晶体制造商的要求选择该电容的容值。

如果晶体制造商给出了负载电容的容值,则匹配电容的容值应为晶体制造商所给出的负载电容容值的两倍。

如果晶体制造商给出了*匹配电容的容值*,则直接使用晶体制造商所给出的匹配电容的容值即可。

例:晶体制造商给出晶体的**负载电容**为8pF时,匹配电容的容值应为16pF。考虑PCB与MCU引脚之间的分布电容,建议选择容值为15pF或12pF的匹配电容。

晶体制造商给出晶体的**匹配电容**为 12pF 时,匹配电容的容值应为 12pF。考虑 PCB 与 MCU 引脚之间的分布电容,建议选择容值为 10pF 或 8pF 的匹配电容。

- 3. 典型值为XTL_CR.Driver=1001时的功耗。选择具有较小ESR值的高质量振荡器,可以通过减小XTL_CR.Driver设置值以优化电流消耗。
- 4. Tstart 是启动时间,是从软件使能 XTL 开始测量,直至得到稳定的 32768 振荡这段时间。这个数值是在 XTL_CR.Driver=1001 和 XTL_CR.Startup=10 设置下,使用一个标准的晶体谐振器上测量得到,它可能因晶体制造商和型号的不同而变化较大。

注意:

- 晶体的匹配电容**必须**按照晶体制造商的技术手册的要求进行配置。

如果晶体制造商给出了**负载电容的容值**,则匹配电容的容值应为晶体制造商所给出的负载电容容值的两倍。

如果晶体制造商给出了*匹配电容的容值*,则直接使用晶体制造商所给出的匹配电容的容值即可。

7.3.8 内部时钟源特性

7.3.8.1 内部 RCH 振荡器

Symbol	Papameter	Conditions	Min	Тур	Max	Unit
Dev	RCH振荡器精度	User trimming step for given		0.25		%
		VCC and TA conditions				
		$VCC = 1.8 \sim 5.5V$	-2.5		+2.5	%
		$T_{AMB} = -40 \sim 85^{\circ}C$				
		$VCC = 1.8 \sim 5.5V$	-2.0		+2.0	%
		$T_{AMB} = -20 \sim 50^{\circ} C$				
F_{CLK}	振荡频率		4.0	4.0	24.0	MHz
				8.0		
				16.0		
				22.12		
				24.0		
I_{CLK}	功耗	$F_{MCLK} = 4MHz$		80		μА
		$F_{MCLK} = 8MHz$		100		μА
		$F_{MCLK} = 16MHz$		120		μА
		$F_{MCLK} = 24MHz$		140		μΑ
DC _{CLK}	占空比(1)		45	50	55	%

^{1.} 由综合评估得出,不在生产中测试。

7.3.8.2 内部 RCL 振荡器

Symbol	Papameter	Conditions	Min	Тур	Max	Unit
Dev	RCL振荡器精度	User trimming step for given		0.5		%
		VCC and TA conditions				
		VCC = 1.8 ~ 5.5V	-2.5		+2.5	%
		$T_{AMB} = -40 \sim 85^{\circ}C$				
		VCC = 1.8 ~ 5.5V	-1.5		+1.5	%
		$T_{AMB} = -20 \sim 50^{\circ}C$				
F _{CLK}	振荡频率			38.4		KHz
				32.768		
T _{CLK}	启动时间			150		μs
DC_{CLK}	占空比(1)		25	50	75	%
I_{CLK}	功耗			0.35		μΑ

^{1.} 由综合评估得出,不在生产中测试。

7.3.9 PLL 特性

符号	参数	条件	最小值	典型值	最大值	单位
Fin ⁽¹⁾	输入时钟		4	4	24	MHz
	输入时钟占空比		40		60	%
Fout	输出频率		8	-	48	MHz
Duty ⁽¹⁾	输出占空比		48%	-	52%	
Tlock ⁽¹⁾	锁定时间	输入频率4MHz	-	100	200	μs

^{1.} 由综合评估得出,不在生产中测试。

7.3.10 存储器特性

符号	参数	条件	最小值	典型值	最大值	单位
EC _{FLASH}	擦写次数	Regulator	20K			cycles
		voltage=1.5V,				
		$T_{AMB} = 25^{\circ}C$				
RET _{FLASH}	数据保存期限	$T_{AMB} = 85^{\circ}C$	20			Years
		常温	100			Years
T_{b_prog}	编程时间 (字节)		22		30	μs
T_{w_prog}	编程时间(字)		40		52	μs
T _{p_erase}	页擦除时间		4		5	ms
T _{m_erase}	整片擦除时间		30		40	ms

7.3.11 EFT 特性

芯片复位可以使系统恢复正常操作。

符号	级别/类型
EFT to IO	2KV
(IEC61000-4-4)	Class:4
EFT to Power	4KV
(IEC61000-4-4)	Class:4

软件建议

软件的流程中必须包含程序跑飞的控制,如:

- 被破坏的程序计数器
- 意外的复位
- 关键数据被破坏(控制寄存器等)

在进行 ESD 测试时,可以把超出应用要求的电压直接施加在芯片上,当检测到意外动作的地方,软件部分需要加强以防止发生不可恢复的错。

7.3.12 ESD 特性

使用特定的测量方法,对芯片进行强度测试以决定它的电气敏感性方面的性能。

符号	参数	条件	最小值	典型值	最大值	单位
VESD _{HBM}	ESD @ Human Body Mode			4		KV
VESD _{CDM}	ESD @ Charge Device Mode			1		KV
VESD _{MM}	ESD @ machine Mode			200		V
Ilatchup	Latch up current			200		mA

7.3.13 I/O 端口特性

7.3.13.1 输出特性——端口

符号	参数	条件	最小值	最大值	单位
V _{OH}	High level output	Sourcing 4 mA, VCC = 3.3 V	VCC-0.25		V
	voltage	(see Note 1)			
	Source Current	Sourcing 8 mA, VCC = 3.3 V	VCC-0.6		V
		(see Note 2)			
V _{OL}	Low level output voltage	Sinking 5 mA, VCC = 3.3 V		VSS+0.25	V
	Sink Current	(see Note 1)			
		Sinking 14 mA, VCC = 3.3 V		VSS+0.6	V
		(see Note 2)			
V_{OHD}	High level output	Sourcing 8 mA, VCC = 3.3 V	VCC-0.25		V
	voltage	(see Note 1)			
	Double source Current	Sourcing 18 mA, VCC = 3.3V	VCC-0.6		V
		(see Note 2)			
V_{OLD}	Low level output voltage	Sinking 8 mA, VCC = 3.3 V		VSS+0.25	V
	Double Sink Current	(see Note 1)			
		Sinking 18 mA, VCC = 3.3 V		VSS+0.6	V
		(see Note 2)			

表 7-4 端口输出特性

NOTES: 1. The maximum total current, IoH(max) and IoL(max), for all outputs combined, should not exceed 40 mA to satisfy the maximum specified voltage drop.

The maximum total current, I_{OH}(max) and I_{OL}(max), for all outputs combined, should not exceed 100 mA to satisfy the
maximum specified voltage drop.

图 7-2 输出端口 VOH/VOL 实测曲线

7.3.13.2 输入特性——端口 PA,PB,PC,PD,PE,PF,RESET

符号	参数	条件	最小值	典型值	最大值	单位
V _{IH}	Positive-going input	VCC=1.8V	1.2			V
	threshold voltage	VCC=3.3V	2.0			V
		VCC=5.5V	3.3			V
V _{IL}	Negative-going input	VCC=1.8V			0.5	V
	threshold voltage	VCC=3.3V			1.0	V
		VCC=5.5V			1.6	V
V _{hys(1)}	Input voltage hysteresis	VCC=1.8V		0.3		V
	$(V_{IH} - V_{IL})$	VCC=3.3V		0.4		V
		VCC=5.5V		0.6		V
R _{pullhigh}	Pullup resistor	Pullup enabled		80		Kohm
		VCC=3.3V				
R _{pulllow}	Pulldown resistor	Pulldown enabled		40		Kohm
		VCC=3.3V				
C_{input}	Input capacitance			5		pF

^{1.} 由综合评估得出,不在生产中测试。

7.3.13.3 端口外部输入采样要求——Timer Gate/Timer Clock

符号	参数	条件	最小值	典型值	最大值	单位
t(int)	External interrupt	External trigger signal for the	1.8V	30		ns
	timing	interrupt flag (see Note 1)	3.3V	30		ns
			5.5V	30		ns
t(cap)	Timer capture	Timer4/5/6 capture pulse	1.8V	0.5		μs
	timing	width	3.3V	0.5		μs
		Fsystem = 4MHz	5.5V	0.5		μs
t(clk)	Timer clock	Timer0/1/2/4/5/6 external	1.8V		PCLK/2	MHz
	frequency applied	clock input	3.3V		PCLK/2	MHz
	to pin	Fsystem = 4MHz	5.5V		PCLK/2	MHz
t(pca)(2)	PCA clock	PCA external clock input	1.8V		PCLK/8	MHz
	frequency	Fsystem = 4MHz	3.3V		PCLK/8	MHz
	applied to pin		5.5V		PCLK/8	MHz

NOTES: 1. The external signal sets the interrupt flag every time the minimum $t_{(int)}$ parameters are met. It may be set even with trigger signals shorter than $t_{(int)}$.

^{2.} 由综合评估得出,不在生产中测试。

7.3.13.4 端口漏电特性——PA,PB,PC,PD,PE,PF

符号	参数	条件	最小值	典型值	最大值	单位
$I_{lkg(Px.y)}$	Leakage current	$V_{(Px,y)}$ (see Note 1,2)		±50		nA

NOTES: 1. The leakage current is measured with VSS or VCC applied to the corresponding pin(s), unless otherwise noted.

7.3.14 RESETB 引脚特性

RESETB 引脚输入驱动使用 CMOS 工艺,它连接了一个不能断开的上拉电阻。

符号	参数	条件	最小值	典型值	最大值	单位
$V_{\text{IL}(\text{RESETB})}^{(1)}$	输入低电平电压		-0.3		0.8	
V _{IH(RESETB)}	输入高电平电压		0.8*VCC		VCC+0.5	
$V_{\text{hys(RESETB)}}$	施密特触发器电压迟滞			200		mV
$R_{ m PU}$	弱上拉等效电阻	$V_{\text{IN}} = V_{\text{SS}}$		80		ΚΩ
$V_{\text{F(RESETB)}}^{(1)}$	输入滤波脉冲				100	ns
$V_{NF(RESETB)}^{(1)}$	输入非滤波脉冲		300			ns

^{1.} 由设计保证,不在生产中测试。

7.3.15 ADC 特性

符号	参数	条件	最小值	典型值	最大值	单位
V _{ADCIN}	Input voltage range	Single ended	0		V _{ADCREFIN}	V
V _{ADCREFIN}	Input range of external reference voltage	Single ended	0		AVCC	V
I _{ADC1}	Active current including reference generator and buffer	200Ksps		2		mA
I _{ADC2}	Active current without reference generator and buffer	1Msps		0.5		mA
C _{ADCIN}	ADC input capacitance			16	19.2	pF
R _{ADC} ⁽¹⁾	ADC sampling switch impedance			1.5		KOhm
R _{AIN} ⁽¹⁾	ADC external input resistor ⁽²⁾				100	KOhm
F _{ADCCLK}	ADC clock Frequency				24M	Hz
TADCSTART	Startup time of reference generator and ADC core			20		μs

^{2.} The port pin must be selected as input.

T _{ADCCONV}	Conversion time		20	24	28	cycles
		1Msps@VCC>=2.7V				
		500Ksps@VCC>=2.4V		10.3		D:4
		200Ksps@VCC>=1.8V		10.3		Bit
		REF=EXREF				
		1Msps@VCC>=2.7V				
ENOD	E66-4 D:4-	500Ksps@VCC>=2.4V		10.2		D:4
ENOB	Effective Bits	200Ksps@VCC>=1.8V		10.3		Bit
		REF=VCC				
		200Ksps@VCC>=1.8V		0.4		D'
		REF=internal 1.5V		9.4		Bit
		200Ksps@VCC>=2.8V		0.4		D.:
		REF=internal 2.5V		9.4		Bit
		1Msps@VCC>=2.7V				
		500Ksps@VCC>=2.4V		60.2		10
		200Ksps@VCC>=1.8V		68.2		dB
		REF=EXREF				
		1Msps@VCC>=2.7V		60.2		
CNID	Signal to Noise	500Ksps@VCC>=2.4V				100
SNR	Ratio	200Ksps@VCC>=1.8V		68.2		dB
		REF=VCC				
		200Ksps@VCC>=1.8V		60		100
		REF=internal 1.5V		60		dB
		200Ksps@VCC>=2.8V		60		10
		REF=internal 2.5V		60		dB
DNL ⁽¹⁾	D:ff	200Ksps;	1		1	LCD
	Differential non-linearity	VREF=EXREF/AVCC	-1		1	LSB
INL ⁽¹⁾	Into and non-linearity	200Ksps;	2		3	I CD
INL ···	Integral non-linearity	VREF=EXREF/AVCC	-3		3	LSB
Eo	Offset error			0		LSB
Eg	Gain error			0		LSB

- 1. 由设计保证,不在生产中测试。
- 2. ADC 的典型应用如下图所示:

对于 0.5LSB 采样误差精度要求的条件下,外部输入阻抗的计算公式如下:

$$R_{AIN} = \frac{M}{F_{ADC} * C_{ADC} * (N+1) * ln(2)} - R_{ADC}$$

其中 F_{ADC} 为 ADC 时钟频率,寄存器 ADC_CR0<3:2>可设定其与 PCLK 的关系,如下表。

下表为 ADC 时钟频率 F_{ADC} 和 PCLK 分频比关系:

ADC_CR0<3:2>	N
00	1
01	2
10	4
11	8

M 为采样周期个数,由寄存器 ADC_CR0<13:12>设定。

下表为采样时间 t_{sa} 和 ADC 时钟频率 F_{ADC} 的关系:

ADC_CR0<13:12>	M
00	4
01	6
10	8
11	12

下表为 ADC 时钟频率 F_{ADC} 和外部电阻 R_{AIN} 的关系(M=12,采样误差 0.5LSB 的条件下):

R _{AIN} (KOhm)	$F_{ADC}(KHz)$
10	5600
30	2100
50	1300
80	820
100	660
120	550
150	450

对于上述典型应用,应注意:

- 尽量减小 ADC 输入端口 AIN_X 的寄生电容 $C_{PARACITIC}$;
- 除了考虑 R_{AIN} 值外,如果信号源 V_{AIN} 的内阻较大时,也需要加入考虑。

7.3.16 VC 特性

符号	参数	条件	最小值	典型值	最大值	单位
Vin	Input voltage range		0		5.5	V
Vincom	Input common mode range		0		VCC-0.2	V
Voffset	Input offset	常温25°C 3.3V	-10		+10	mV
Icomp	Comparator's current	VCx_BIAS_SEL=00		0.3		uA
		VCx_BIAS_SEL=01		1.2		
		VCx_BIAS_SEL=10		10		
		VCx_BIAS_SEL=11		20		
Tresponse	Comparator's response time	VCx_BIAS_SEL=00		20		μs
	when one input cross	VCx_BIAS_SEL=01		5		
	another	VCx_BIAS_SEL=10		1		
		VCx_BIAS_SEL=11		0.2		
Tsetup	Comparator's setup time	VCx_BIAS_SEL=00		20		μs
	when ENABLE.	VCx_BIAS_SEL=01		5		
	Input signals unchanged.	VCx_BIAS_SEL=10		1		
		VCx_BIAS_SEL=11		0.2		
Twarmup	From main bandgap enable			20		μs
	to 1.2V BGR reference					
	Temp sensor voltage, ADC					
	internal 1.5V \ 2.5V					
	reference stable					
Tfilter	Digital filter time	VC_debounce = 000		7		μs
		VC_debounce = 001		14		
		VC_debounce = 010		28		
		VC_debounce = 011		112		
		VC_debounce = 100		450		
		VC_debounce = 101		1800		
		VC_debounce = 110		7200		
		VC_debounce = 111		28800		

7.3.17 OPA 特性

OPA: $(AVCC=2.2 \sim 5.5 \text{ V}, AVSS=0 \text{ V}, Ta=-40 \sim +85 ^{\circ}\text{C})$

符号	参数	条件	最小值	典型值	最大值	单位
Vi	输入电压		0	-	AVCC	V
Vo	输出电压(1)		0.1	-	AVCC- 0.2	V
Io	输出电流(1)				1	mA
RL	负载电阻(1)		5K			Ohm
Tstart	初始化时间(2)				20	μs
Vio	输入失调电压	Vic=AVCC/2, Vo=AVCC/2, RL=5KΩ, Rs=50 pF		±6		mV
PM	相位裕度(1)	Vic=AVCC/2, Vo=AVCC/2 RL=5KΩ, CL=50pF		80	-	deg
UGBW	单位增益带宽(1)	Vic=AVCC/2, Vo=AVCC/2 RL=5KΩ, CL=50pF		9.3		MHz
SR	压摆率(1)	RL=5KΩ, CL=50pF		8		V/µs

- 1. 由设计保证,不在生产中测试。
- 2. 需要同时设置 BGR_CR<0>=1

7.3.18 LCD 控制器

符号	参数	工作条件	最小	典型	最大	单位
I_{LCD}	电流	VCC=3.3V		3.3		uA
RH	低驱动电阻			1M		Ω
RL	高驱动电阻			360K		Ω
VLCDH	LCD 可调最高电压				VCC	V
VLCD3	LCD 最高电压				VLCDH	V
VLCD2	LCD 2/3电压				2/3 VLCDH	V
VLCD1	LCD 1/3电压				1/3 VLCDH	V
VLCD0	LCD最低电压		0			V
$\triangle V_{XX}$	LCD 电压偏差	TA=-40~85°C		±5%		

7.3.19 DAC 特性

符号	参数	工作条件	最小	典型	最大	单位
V _{DACOUT}	Output voltage	AVDD voltage reference,	0		Vcc	V
V DACOUT	range	single ended			,	·
V_{DACCM}	Output common		0		Vcc	V
▼ DACCM	mode voltage range		Ů		, cc	•
I_{DAC}	Active current	500KSamples/s		15u		uA
SR_{DAC}	Sample rate				500	Ksps
t _{DACCONV}	Conversion time		2			μs
t _{DACSETTLE}	Setting time			5		μs
SNR _{DAC}	Signal to Noise			59		dB
SINKDAC	Ratio			39		uБ
SNDR _{DAC}	Signal to Noise and			57		dB
SINDINDAC	Distortion Ratio			37		uБ
SFDR _{DAC}	Spurious Free			56		dB
SFDKDAC	Dynamic Range			30		uБ
V _{DACOFFSET}	Offset voltage	w/o buffer		2		mV
DNI	Differential non-			±1		LSB
DNL _{DAC}	linearity			±1		LOD
INL _{DAC}	Integral non-			±5		LSB
IINLDAC	linearity			エン		LOD

8 封装信息

8.1 封装尺寸

LQFP100 封装

Ch al		Millimeter				
Symbol	Min	Nom	Max			
A		-	1.60			
A1	0.05		0.15			
A2	1.35	1.40	1.45			
A3	0.59	0.64	0.69			
b	0.18		0.26			
b1	0.17	0.20	0.23			
c	0.13		0.17			
c1	0.12	0.13	0.14			
D	15.80	16.00	16.20			
D1	13.90	14.00	14.10			
E	15.80	16.00	16.20			
E1	13.90	14.00	14.10			
eВ	15.05		15.35			
e	0.50BSC					
L	0.45		0.75			
L1		1.00REF	2.70			
Ll		1.UUKEF				
θ	0		7°			

NOTE:

 Dimensions "D1" and "E1" do not include mold flash.

SECTION B-B

WITH PLATING

BASE METAL

LQFP80 封装

	Millimeter				
Symbol	Min	Nom	Max		
A			1.60		
A1	0.05		0.15		
A2	1.35	1.40	1.45		
A3	0.59	0.64	0.69		
b	0.18		0.26		
b1	0.17	0.20	0.23		
С	0.13		0.17		
c1	0.12	0.13	0.14		
D	13.80	14.00	14.20		
D1	11.90	12.00	12.10		
Е	13.80	14.00	14.20		
E1	11.90	12.00	12.10		
eB	13.05		13.25		
e		0.50BSC			
L	0.45	0.60	0.75		
L1	0.13	1.00REF	0.75		
θ	0		7°		

NOTE:

 Dimensions "D1" and "E1" do not include mold flash.

LQFP64 封装

DETAIL: F

SECTION B-B

	L	QFP64 (10x1	0)	I	QFP64 (7x7	7)
Symbol	Min	Nom	Max	Min	Nom	Max
A			1.60			1.60
A1	0.05		0.15	0.05		0.15
A2	1.35	1.40	1.45	1.35	1.40	1.45
A3	0.59	0.64	0.69	0.59	0.64	0.69
b	0.18		0.26	0.16		0.24
b1	0.17	0.20	0.23	0.15	0.18	0.21
С	0.13		0.17	0.13		0.17
c1	0.12	0.13	0.14	0.12	0.13	0.14
D	11.80	12.00	12.20	8.80	9.00	9.20
D1	9.90	10.00	10.10	6.90	7.00	7.10
Е	11.80	12.00	12.20	8.80	9.00	9.20
E1	9.90	10.00	10.10	6.90	7.00	7.10
eB	11.05		11.25	8.10		8.25
e		0.50BSC			0.40BSC	
L	0.45		0.75	0.45		0.75
L1	0.10	1.00REF	0.15	0.73	1.00REF	0.13
θ	0°		7°	0°		7°

NOTE:

- Dimensions "D1" and "E1" do not include mold flash.

LQFP48 封装

	Millimeter					
Symbol						
	Min	Nom	Max			
A			1.60			
A1	0.05		0.15			
A2	1.35	1.40	1.45			
A3	0.59	0.64	0.69			
b	0.18		0.26			
b1	0.17	0.20	0.23			
С	0.13		0.17			
c1	0.12	0.13	0.14			
D	8.80	9.00	9.20			
D1	6.90	7.00	7.10			
E	8.80	9.00	9.20			
E1	6.90	7.00	7.10			
eВ	8.10		8.25			
e	0.50BSC					
L	0.40		0.65			
L1	1.00REF					
θ	0		7°			
NOTE						

NOTE:

 Dimensions "D1" and "E1" do not include mold flash.

QFN32 封装

TOP VIEW

	Millimeter					
Symbol	Min	Nom	Max			
	0.70	0.75	0.80			
A	0.80	0.85	0.90			
	0.85	0.90	0.95			
A1	0	0.02	0.05			
b	0.15	0.20	0.25			
b1		0.14REF				
С	0.18	0.20	0.25			
D	3.90	4.00	4.10			
D2	2.70	2.80	2.90			
e		0.40BSC				
Ne		2.80BSC				
Nd		2.80BSC				
E	3.90	4.00	4.10			
E2	2.70	2.80	2.90			
L	0.25	0.30	0.35			
h	0.30	0.35	0.40			
L/F 载 体尺寸		122 x 122				

8.2 丝印说明

LQFP100 封装 / LQFP80 封装 LQFP64 封装 (10mm x 10mm)

LQFP64 封装(7mm x 7mm) LQFP48 封装

QFN32 封装

9 订购信息

Part N	umber	HC32F196PCTA-LQFP100	HC32F196MCTA-LQFP80	HC32F196KCTA-LQFP64	HC32F196KCTA-LQ64	HC32F196JCTA-LQ48	HC32F190JCTA-LQ48	HC32F190FCUA-QFN32TR
Memory	Flash	256K	256K	256K	256K	256K	256K	256K
Memory	RAM	32K	32K	32K	32K	32K	32K	32K
V	0	88	72	56	56	40	40	26
TIMER	GTIMER	4	4	4	4	4	4	4
IIMER	ATIMER	3	3	3	3	3	3	3
	UART	4	4	4	4	2	2	2
Connectivity	I2C	2	2	2	2	2	2	2
	SPI	2	2	2	2	2	2	1
	ADC*12bit	24ch	23ch	23ch	23ch	17ch	17ch	8ch
Analog	DAC*12bit	1ch	1ch	1ch	1ch	1ch	1ch	1ch
Allalog	OP	1	1	1	1	1	1	1
	Comp	3	3	3	3	3	3	3
Display	LCD	4*52/6*50/8*48	4*47/6*45/8*43	4*40/6*38/8*36	4*40/6*38/8*36	4*26/6*24/8*22	-	-
Secruty	AES	√	✓	√	√	√	√	√
LV	ďD	√	~	√	√	√	√	√
LV	′R	√	√	√	√	√	√	√
Votage	Vdd	1.8~5.5v	1.8~5.5v	1.8~5.5v	1.8~5.5v	1.8~5.5v	1.8~5.5v	1.8~5.5v
Pack	age	LQFP100(14*14)	LQFP80(12*12)	LQFP64(10*10)	LQFP64(7*7)	LQFP48(7*7)	LQFP48(7*7)	QFN32(4*4)
出货	形式	盘装	盘装	盘装	盘装	盘装	盘装	卷带
脚间	更	0.5mm	0.5mm	0.5mm	0.4mm	0.5mm	0.5mm	0.4mm

版本记录 & 联系方式

版本	修订日期	修订内容摘要
Rev1.0	2019/9/11	初稿发布。

如果您在购买与使用过程中有任何意见或建议,请随时与我们联系。

Email: mcu@hdsc.com.cn

网址: http://www.hdsc.com.cn/mcu.htm

通信地址: 上海市张江高科园区碧波路 572 弄 39 号

邮编: 201203

