

UNIVERSIDAD NACIONAL DEL CALLAO

FACULTAD DE CIENCIAS NATURALES Y MATEMÁTICA ESCUELA PROFESIONAL DE FÍSICA

Semestre: **2023** – **A**

PRÁCTICA DIRIGIDA DE NÚMEROS REALES AXIÓMAS DE LOS NUMEROS REALES

ADICIÓN

A1: CLAUSURA O CERRADURA

 $\forall a, b \in \mathbb{R}$, se tiene: $(a + b) \in \mathbb{R}$

A2: CONMUTATIVA

 $\forall a, b \in \mathbb{R}$, se tiene: a + b = b + a

A3: ASOCIATIVA

 $\forall a, b, c \in \mathbb{R}$, se tiene: (a + b) + c = a + (b + c)

A4: ELEMENTO NEUTRO ADITIVO

 $\forall a \in \mathbb{R}$, $\exists 0 \in \mathbb{R}$: a + 0 = a + 0 = a

A5: ELEMENTO INVERSO ADITIVO

Dado $a \in \mathbb{R}$, $\exists (-a) \in \mathbb{R} : a + (-a) = (-a) + a = 0$

MULTIPLICACÍON

M1: CLAUSURA O CERRADURA

 $\forall a, b \in \mathbb{R}$, se tiene: $(a, b) \in \mathbb{R}$

M2: CONMUTATIVA

 $\forall a, b \in \mathbb{R}$, se tiene: a.b = b.a

M3: ASOCIATIVA

 $\forall a, b, c \in \mathbb{R}$, se tiene: (a.b).c = a.(b.c)

M4: ELEMENTO NEUTRO MULTIPLICATIVO

 $\forall a \in \mathbb{R}$, $\exists 1 \in \mathbb{R} : a.1 = a.1 = a$

M5: ELEMENTO INVERSO MULTIPLICATIVO

Dado $a \in \mathbb{R}$, $a \neq 0$, $\exists (a)^{-1} \in \mathbb{R} : a. (a)^{-1} = (a)^{-1}. a = 1$

DISTRIBUTIVA

 $\forall a, b, c \in \mathbb{R}$

D1: $(a + b) \cdot c = a \cdot c + b \cdot c$

D2: a.(b+c) = a.b + a.c

CÁLCULO DIFERENCIAL E INTEGRAL

AXIÓMAS DE ORDEN

Sean $a, b, c \in \mathbb{R}$

01: TRICOTOMÍA

Si $a, b \in \mathbb{R}$, entonces a > b, a = b o a < b

02: MONOTONÍA DE LA ADICIÓN

Si $a < b \ v \ c \in \mathbb{R}$, entonces a + c < b + c

03: MONOTONÍA DE LA MULTIPLICACIÓN

Si a < b y c > 0, entonces a.c < b.c

04: TRANSITIVIDAD

Si a < b y b < c, entonces a < c

- **1.** Dados $a, b, c \in \mathbb{R}$; a + b = a + c entonces b = c.
- **2.** Demuestre que el elemento neutro aditivo es único.
- **3.** Demuestre que el elemento inverso aditivo es único.
- **4.** Demuestre que el elemento neutro multiplicativo es único.
- **5.** Demuestre que el elemento inverso multiplicativo es único.
- **6.** Si $a \in \mathbb{R}$, demostrar que a.0 = 0
- 7. Si $a \in \mathbb{R}$, demostrar que -a = (-1). a
- 8. Si $ab \neq 0$, demuestre que $(ab)^{-1} = a^{-1} \cdot b^{-1}$
- **9.** Si a. c = b. c, con $c \neq 0$, entonces a = b
- **10.** Si $b \neq 0$ y $d \neq 0$, demuestre que

$$\frac{a}{b} + \frac{c}{d} = \frac{a \cdot d + b \cdot c}{b \cdot d}$$

- **11.** Si $a^2 + b^2 = 1$, entonces $-\sqrt{2} \le a + b \le \sqrt{2}$
- **12.** Si $a^2 + b^2 = 1$ y $c^2 + d^2 = 1$, entonces $a. c + b. d \le 1$
- **13.** Si $\forall x \in \mathbb{R}$ y n par . Demuestre que

$$\frac{x^n}{x^{2n}+1} \le \frac{1}{2}$$

14. Si $\forall a, b, c \in \mathbb{R}$, demuestre que

$$a.b + b.c + a.c \le a^2 + b^2 + c^2$$

15. Si $a \ge 0$ y $b \ge 0$, demuestre que

$$\frac{a+b}{a+b+1} \le \frac{a}{b+1} + \frac{b}{a+1}$$

CÁLCULO DIFERENCIAL E INTEGRAL

16. Si $a, b, c, d \in \mathbb{R}^+$. Demuestre que

$$(a.b+c.d)(a.c+b.d) \ge 4a.b.c.d$$

17. Sean $a, b, c \in \mathbb{R}^+$. Pruebe la desigualdad

$$\frac{a+b}{2} \ge \sqrt{ab} \ge \frac{2}{\frac{1}{a} + \frac{1}{b}}$$

18. Sean $a, b, c, d \in \mathbb{R}^+$ $y = \frac{a}{b} < \frac{c}{d}$. Pruebe que

$$\frac{a}{b} < \frac{a+c}{b+d} < \frac{c}{d}$$

19. Sea $a, b \in \mathbb{R}^+$. Pruebe la desigualdad

$$\frac{a}{b} + \frac{b}{a} \ge 2$$

20. Si a > 0, b > 0, $3a \neq 5b$. Demuestre que

$$\frac{3a}{5b} + \frac{5b}{3a} > 2$$

21. Sea *a*, *b* y *c* números reales positivos. Pruebe la desigualdad

$$\frac{a}{b+c} + \frac{b}{c+a} + \frac{c}{a+b} \ge \frac{3}{2}$$

22. Si $a, b, c \in \mathbb{R}^+$, pruebe que

$$(a+b)(b+c)(a+c) \ge 8a.b.c$$

23. Si $\forall a, b, c \in \mathbb{R}$, demuestre que

$$(|a| + |b|)(|b| + |c|)(|a| + |c|) \ge 8|a.b.c|$$

24. Para $|a.b.c| \neq 0$, $a,b,c \in \mathbb{R} - \{0\}$, demuestre que

$$\frac{1}{|a|} + \frac{1}{|b|} + \frac{1}{|c|} \ge \frac{9}{|a| + |b| + |c|}$$

25. Si $\forall a, b, c \in \mathbb{R}$, demuestre que

$$|a|^3 + |b|^3 + |c|^3 \ge \frac{|a.b|(a+b) + |a.c|(a+c) + |b.c|(b+c)}{2}$$

26. Si $\forall a, b, c \in \mathbb{R}$, demuestre que

$$a^2 \cdot b^2 + b^2 \cdot c^2 + a^2 \cdot c^2 \ge a \cdot b \cdot c(a + b + c)$$

27. Si $a, b, c \in \mathbb{R}^+$ y distintos entre sí. Pruebe que

$$\frac{a+b+c}{3} > \frac{(a.b+b.c+a.c)^{\frac{1}{2}}}{3} > (a.b.c)^{\frac{1}{3}}$$

CÁLCULO DIFERENCIAL E INTEGRAL

28. Si *a*, *b*, *c* son cantidades positivas. Demuestre que

$$\frac{a^2 + b^2}{a + b} + \frac{b^2 + c^2}{b + c} + \frac{a^2 + c^2}{a + c} \ge a + b + c$$

29. Demostrar que

$$a \le b \le c \implies |b| \le |a| + |c|$$

30. Probar que

$$|a| + |b| \ge 2\sqrt{|a|}\sqrt{|b|}$$

31. Demostrar que

$$|x| + |y| = \iff x = 0 \land y = 0$$

32. Probar que

$$|a| + |b| = |a - b| \iff a.b \le 0$$

33. Demostrar que

$$a, b \in \mathbb{R}$$
, $a^2 + b^2 = 1 \implies |a + b| \le \sqrt{2}$

34. Demostrar que $\forall a, b, c \in \mathbb{R} - \{0\}$

$$\left| a + \frac{1}{a} \right| \ge \sqrt{2}$$

35. $x, y, z \in \mathbb{R}^+$ tal que x + y + z = 1. Pruebe la desigualdad

$$\frac{x \cdot y}{z} + \frac{y \cdot z}{x} + \frac{x \cdot z}{y} \ge 1$$

36. Sea $a, b, c \in \mathbb{R}^+$. Pruebe la desigualdad.

$$\left(a + \frac{1}{b}\right)\left(b + \frac{1}{c}\right)\left(c + \frac{1}{a}\right) \ge 8$$

37. Sean $a_1, a_2, ..., a_n$ y $b_1, b_2, ..., b_n$ números reales. Demostrar que

$$\left(\sum_{i=1}^{n} a_{i}.b_{i}\right)^{2} \leq \left(\sum_{i=1}^{n} a_{i}^{2}\right) \left(\sum_{i=1}^{n} b_{i}^{2}\right)$$

Desigualdad de Cauchy - Schwarz

Bellavista, 1 de setiembre del 2023

