University of Verona Department of Computer Science Master Degree in Computer Science and Engineering

Automatic detection of Freezing of Gait in patients with Parkinson's Disease

Candidate Fuser Alessandro Supervisor Graziano Pravadelli

Assistant Supervisor Florenc Demrozi

Degree Session of 20 March 2018 Academic year 2016/2017

Abstract

Acknowledgements

<u>vi</u> Contents

Contents

A	cknowledgements	v		
1	Introduction 1.1 Thesis Contribution	1 1 1		
2	Related Works	3		
3	Background			
4	Motivations and Goals			
5	Self-adaptive TLM model			
6	Software Implementation			
7	Case Studies			
8	Conclusions and Future Work			
Bi	ibliography	17		

viii Contents

List of Figures

x Contents

Introduction

1.1 Thesis Contribution

In this thesis, we have developed a methodology

1.2 Outline

The rest of the thesis is organized as follows: Chapter 2

Related Works

Background

Motivations and Goals

Automatic generation of a self-adaptive TLM model

qui ci va la spiegaxione del tuo lavoro

Software Implementation of the proposed metodology

qui invece ci puoi mettere a livello implementativo il tuo lavoro

Case Studies

Conclusions and Future Work

This thesis proposes a methodology

Bibliography

18 Bibliography

Acronyms

CTL Computation Tree Logic

EFSM Extended Finite State Machine

LTL Linear Temporal Logic

PSL Property Specification Language

DUV design under verification

RTL register transfer level

TLM Transaction Level Modelling

AT Approximately Timed

LT Loosely Timed

UT Untimed TLM

CA Cycle Accurate

 ${\cal M}_{TLM}^T$ TLM Target Model

 ${\cal M}_{RTL}^T$ RTL Target Model