ECE 5730 Memory Systems Spring 2009

More Overview Defect Management Drive Interfaces

Announcements

Class tomorrow

- 6:00-7:15pm, PH 403
- Pizza
- No material will show up on a quiz or Exam II

Exam II

- May 7, 7:00-10:00pm, Hollister 314
- Covers material from 3/10-4/28 but excluding 4/22 (Lectures 14-21, 23-24)
- Let me know immediately if you require a make-up

tpi and bpi Scaling Factors

tpi

- Width of the write head
- Deviation in actuator staying in the center of the track
- Wobble in the spindle motor
- Mechanical vibration
- Disk wobble

bpi

- Media properties
- Reducing size of the heads
- Reducing media-head gap

[17.19,17.27] Lecture 21: 3

Simultaneously Read Multiple Heads?

- Main problem is temperature
 - Servo makes corrective adjustments to keep head centered on the track (track following)
 - Differences in temperature and in coefficients of expansion of arms and disks causes relative displacement of the heads
 - Resulting imprecision requires some sacrifice in tpi to achieve reliable operation

Imprecious
[18.13,18.19]

Multiple Actuators?

 Two independent head assemblies that simultaneously read two different locations

- performance advantage

- Have been built but increases cost by 30-40%
 - last known example ~1994
 - heads very expensive
 - added overhead of circuity to do 2 streams of data

[21.1] Lecture 21: 5

Recording Density

Object drameter

OD distance may be 3X ID distance

At constant write rate, low bpi in outer sectors

Lecture 21: 6 [18.7,18.8]

Zoned-Bit Recording

- To get max density, use max bpi for all tracks
 - Different recording rates for 100's of 1000's of tracks
- Simplification: Zones with same sectors/track

ZBR Implementation Options

Variable rotation speed

- Rotational speed varied from zone to zone
- Takes 100's of ms to change drive speed
- Since 3X data is stored at OD than ID, rotational speed must be 3X slower
- Not a viable option for hard disk drives

Variable data rate

- Data rate varied from zone to zone
- Data rate change is very fast
- 3X data is stored at OD and data rate is 3X faster
- Used in hard disk drives

Optical Disks (CDs and DVDs)

Spiral track rather than concentric tracks

- + Density advantage
 - No lost space at end of tracks
 - No lost space due to intra-zone bpi inefficiency
- + Higher average data rate on sequential accesses
 - No head track switching time > gradual moving of near to follow spinal
 - Constant linear velocity (CLV): → cacy to implement
 Rotational speed gradually
 decreases as move from ID to
 OD (1400-580rpm for DVD)

Optical Disks (CDs and DVDs)

- Spiral track rather than concentric tracks
- + Simple to implement
 - Constant data rate
- Lower average data rate on random accesses
 - Large, abrupt rotational speed changes take 100's of ms
 - this is really sad. "

[18.2] Lecture 21: 10

Masking Hard Drive Errors

- Manufacturing defects create areas on the media where bits cannot be reliably written or read
 - Many of these may be correctable by sector ECC
 - Those that cannot must be masked by the controller
- Hard errors arise in the field due to media wearout, shock, contaminants, etc
 - Those that cannot be corrected by sector ECC must be masked by the controller

I also can be fixed by ECC, but you might have to mark It

Defect Management

- Manufacturing defects (primary defects) are found through testing before the drive ships
- P-List of uncorrectable sectors is maintained
- Fixed through Sector Slipping

Negligible performance impact

[18.23] Lecture 21: 12

Hard Error Management

- Hard errors (grown defects) develop after product shipment
- Rereading with different head positions, and ECC, are first tried
- Then sector sparing is used
 - Spare sectors are kept throughout the disk drive
 - G-List of mappings of defective sectors to spare sectors is maintained replace but one with spare ones
 - Higher performance cost than sector slipping but avoids remapping the drive > ~ mappy with he a max pain

Drive Interface

 Drive interface provides a standardized means for communication between the host and drive

[ov.3] Lecture 21: 14

Drive Interface Standards

- Detailed specifications of the different required layers of the standard
- Physical, link, and transport layers
 - Voltages, timings, termination, interconnections, clocking, etc
 - all the super annoying EE stuff
- Logical layer
 - Communication protocol, command formats and actions, etc

Desirable Interface Characteristics

- Simple protocol
 - Little handshaking required between host and drive to reduce command overhead and bandwidth wage
- Host autonomy
 - Little host involvement so it can perform other tasks
- Sufficient data rate
 - Prevent the interface from becoming the bottleneck
- Overlapped I/O operations
 - Concurrent commands to multiple drives > parallelion
- Command queuing
 - Permit drive to reorder operations for performance
 - simple is to just buffer commands - complex is to reorder

AT Attachment (ATA)

- Designed in the early 80's for the IBM PC-AT
 - Many revisions since standardization

of rich command set

- ATA Packet Interface (ATAPI) permits SCSI commands to be sent over ATA
 - Use SCSI devices like CD-ROMs without a SCSI card

ATA Topology

[20.2] Lecture 21: 18

ATA Operation Summary Ligital block added who much data to get

- Host sends LBA and block size to registers on the selected drive
 - Drive is selected through the device address
- Host sends command code to trigger action
 - Command code indicates operation and mode
- Status registers read to determine completion
- CRC on data only
- Little command queuing support

ATA Data Transfer Modes

- PIO (Programmed I/O)
 - Processor coordinates transfer of every 2B of data
 - No longer used for disk drives
 - super old school
- DMA
 - 16.7MB/s @11MHz
- Ultra DMA
 - DDR transfers (both clock edges)
 - 133MB/s @ 33MHz

Serial ATA (SATA)

Uses serial point-to-point links to send packets

- Commands are compatible with ATA
- CRC on both data and commands
- Up to 32 entry command queue

Lecture 21: 21

Small Computer Systems Interface (SCSI)

- Geared towards higher end devices than ATA
 - fanny server stuffe
- Variety of cabling/signaling/data width options
 - Narrow (1 bytes) or wide (2 bytes)
 - Internal unshielded or external shielded cabling
 - Single ended, high voltage differential (HVD), or low voltage differential (LVD)
 - Typically wide with LVD

SCSI Topology

up to 8 devices for narrow, 16 for wide (includes controller)

[20.4] Lecture 21: 23

SCSI Operation Summary

& highest 10 #

- Initiators arbitrate for bus, highest one wins
- Command descriptor block (CDB) sent to target
 - Command data structure (>60 commands)
 - Operation, LBA, other bits
- Data transferred between initiator and target
- Target returns a status code

is checked command bots integrity as well

- CRC on commands and data
- Up to 256 entry command queue with reordering

SCSI Transfer Modes

- Numerous modes added over time
- SCSI-1 (1986)
 - 1 byte wide
 - 5MB/s @ 5MHz
- Ultra-5 SCSI (2003)
 - 2 bytes wide
 - QDR transfers (both edges of 2 phase shifted clocks)
 - 640MB/s @ 160MHz

Serial Attached SCSI (SAS)

[20.5] Lecture 21: 26

USB Mass Storage

- Device class for USB storage devices
- 60MB/s for USB 2.0; 625MB/s expected for 3.0
- Includes read/write SCSI commands
- No command queuing support

Which Interface?

- SCSI has had a richer command set and more performance and reliability features (high end)
- ATA has been lower cost (PCs, laptops)
- SATA competes favorably with SAS in performance and reliability
- USB lagging in performance, but popular in lower cost applications (e.g., backup)

Next Time

Disk Drive Performance Issues and Design Tradeoffs