связывающее среднее гармоническое, среднее геометрическое, среднее арифметическое и среднее квадратическое чисел $a_1, a_2, ..., a_n$.

47. Доказать, что если
$$a_1\leqslant a_2\leqslant ...\leqslant a_n, \quad b_1\leqslant b_2\leqslant ...\leqslant b_n, \;\;$$
 то
$$\frac{a_1+a_2+...+a_n}{n} \;\; \frac{b_1+b_2+...+b_n}{n}\leqslant \frac{a_1b_1+a_2b_2+...+a_nb_n}{n} \,.$$

48. Пусть положительные числа $a_1, a_2, ..., a_n$ являются последовательными членами арифметической прогрессии. Доказать, что

$$\sqrt{a_1 a_n} \leqslant \sqrt[n]{a_1 a_2 ... a_n} \leqslant \frac{a_1 + a_n}{2}$$

 Доказать, что если A — наименьшее из положительных чисел $a_1, a_2, ..., a_n, B$ — наибольшее, то справедливо неравенство:

1)
$$A \leqslant \sqrt[n]{a_1 a_2 ... a_n} \leqslant B$$
; 2) $A \leqslant \sqrt{\frac{a_1^m + a_2^m + ... + a_n^m}{n}} \leqslant B$;

3)
$$A \leqslant \frac{n}{\frac{1}{a_1} + \frac{1}{a_2} + ... + \frac{1}{a_n}} \leqslant B$$
.

 ${f 50.}$ Доказать, что для любых действительных чисел $a_1,a_2,...,a_n,$ $b_1, b_2, ..., b_n$ справедливо неравенство:

1)
$$\left(\sum_{k=1}^{n} (a_k + b_k)^2\right)^{1/2} \le \left(\sum_{k=1}^{n} a_k^2\right)^{1/2} \left(\sum_{k=1}^{n} b_k^2\right)^{1/2}$$
;

2)
$$\left|\left(\sum_{k=1}^{n} a_k^2\right)^{1/2} - \left(\sum_{k=1}^{n} b_k^2\right)^{1/2}\right| \leqslant \sum_{k=1}^{n} |a_k - b_k|;$$

3)
$$\left(\left(\sum_{k=1}^{n} a_k\right)^2 + \left(\sum_{k=1}^{n} b_k\right)^2\right)^{1/2} \le \sum_{k=1}^{n} (a_k^2 + b_k^2)^{1/2}$$
.

51. Доказать, что если $a_1\geqslant 0,\ a_2\geqslant 0,\ ...,\ a_n\geqslant 0$ и $p\in {\it N},$ то

$$\left(\frac{1}{n}\sum_{k=1}^n a_k\right)^p \leqslant \frac{1}{n}\sum_{k=1}^n a_k^p.$$

7. 1)
$$\frac{10^{n+1}-9n-10}{81}$$
; 2) $3-\frac{2n+3}{2^n}$;

7. 1)
$$\frac{10^{n+1} - 9n - 10}{81}$$
; 2) $3 - \frac{2n+3}{2^n}$;
3) $\frac{1 - (n+2)x^{n+1} + (n+1)x^{n+2}}{(1-x)^2}$ при $x \neq 1$; $\frac{(n+1)(n+2)}{2}$ при $x = 1$;
4) $\frac{x^{n+2} - (n+1)x^2 + nx}{(x-1)^2}$ при $x \neq 1$; $\frac{n(n+1)}{2}$ при $x = 1$.

4)
$$\frac{x^{n+2}-(n+1)x^2+nx}{(x-1)^2}$$
 при $x \neq 1$; $\frac{n(n+1)}{2}$ при $x=1$.

9. 1)
$$n$$
; 2) $\frac{n^2(n+1)}{2}$; 3) 0; 4) $\frac{n(n^2-1)}{3}$

9. 1)
$$n$$
; 2) $\frac{n}{2}$; 3) 0; 4) $\frac{n}{3}$.
13. 1) $\frac{n}{3n+1}$; 2) $\frac{n}{4n+1}$; 3) $\frac{n(n+2)}{3(2n+1)(2n+3)}$;
4) $\frac{1}{18} - \frac{1}{3(n+1)(n+2)(n+3)}$; 5) $\frac{n(n+1)}{2(2n+1)}$.

4)
$$\frac{1}{18} - \frac{1}{3(n+1)(n+2)(n+3)}$$
; 5) $\frac{n(n+1)}{2(2n+1)}$.

15. 2)
$$S_n(3) = \frac{n^2(n+1)^2}{4}$$
.

18. 1) $\frac{\sin^2 nx}{\sin x}$; 2) $\frac{\sin 2nx}{2\sin x}$; 3) $\frac{n}{2} - \frac{\sin nx \cos(n+1)x}{2\sin x}$;

4) $\frac{n}{2} + \frac{\sin nx \cos(n+1)x}{2\sin x}$;

5) $\frac{3\sin \frac{n+1}{2}x \sin \frac{nx}{2}}{4\sin \frac{x}{2}} - \frac{\sin \frac{3(n+1)}{2}x \sin \frac{3nx}{2}}{4\sin \frac{3x}{2}}$;

6) $\frac{\cos \frac{3(n+1)x}{2} \sin \frac{3}{2}nx}{4\sin \frac{3x}{2}} + \frac{3\cos \frac{n+1}{2}x \sin \frac{nx}{2}}{4\sin \frac{x}{2}}$.

19. 1) $x_n = \frac{3^n + (-1)^{n-1}}{4}x_1 + \frac{3}{4}(3^{n-1} + (-1)^n)x_0$;

2) $x_n = (2^n - 1)x_1 - 2(2^{n-1} - 1)x_0$;

3) $x_n = \frac{(\alpha - 1)^n - 1}{\alpha - 2}x_1 - \frac{\alpha - 1}{\alpha - 2}((\alpha - 1)^{n-1} - 1)x_0$ при $\alpha \neq 2$; $x_n = nx_1 - (n-1)x_0$ при $\alpha = 2$.

20. 1) $(1 + x)^5 = 1 + 5x + 10x^2 + 10x^3 + 5x^4 + x^5$;

2) $(a + b)^6 = a^6 + 6a^5b + 15a^4b^2 + 20a^3b^3 + 15a^2b^4 + 6ab^5 + b^6$;

3) $(x + y)^7 = x^7 + 7x^6y + 21x^5y^2 + 35x^4y^3 + 35x^3y^4 + 21x^2y^5 + 7xy^6 + y^7$;

4) $(a - b)^8 = a^8 - 8a^7b + 28a^6b^2 - 56a^5b^3 + 70a^4b^4 - 56a^3b^5 + 28a^2b^6 - 8ab^7 + b^8$.

21. $C_{16}^6x^3$.

22. 1) -7 ; 2) -40 , -74 ; 3) $36C_9^3 + C_9^4 = 378$; 4) 245 ; 5) C_{16}^4 .

23. 1) $(n + 2)2^{n-1}$; 2) $(n - 2)2^{n-1} + 1$; 3) 2^{2n-1} ; 4) 2^{2n-1} ; 5) $(-1)^m C_{n-1}^m$; 6) $(-1)^m C_{2m}^m$ при $n = 2m$; 0 при $n = 2m + 1$.

25. 1) 60 ; 2) 625 , 7000, 7000, 1120, 16.

26. 1) $\frac{27}{64}$; 2) $C_{10}^{33}\frac{2^7}{3^{10}}$. 27. $C_{30}^{12}2^9$.

§ 5. Комплексные числа

СПРАВОЧНЫЕ СВЕДЕНИЯ

1. Определение комплексного числа.

1) Комплексные числа — выражения вида a+bi (a, b — действительные числа, i — некоторый символ). Равенство z=a+bi означает, что комплексное число a+bi обозначено буквой z, а запись комплексного числа z в виде a+bi называют алгебраической формой комплексного числа.

- 2) Два комплексных числа $z_1=a_1+b_1i$ и $z_2=a_2+b_2i$ называют равными и пишут $z_1=z_2$, если $a_1=a_2$, $b_1=b_2$.
- 3) Сложение и умножение комплексных чисел $z_1 = a_1 + b_1 i$ и $z_2 = a_2 + b_2 i$ производится согласно формулам

$$z_1 + z_2 = a_1 + a_2 + (b_1 + b_2)i,$$
 (1)

$$z_1z_2 = a_1a_2 - b_1b_2 + (a_1b_2 + a_2b_1)i.$$
 (2)

- 4) Комплексное число вида $a+0\cdot i$ отождествляют с действительным числом a $(a+0\cdot i=a)$, число вида 0+bi $(b\neq 0)$ называют чисто мнимым и обозначают bi; i называют мнимой единицей. Действительное число a называют действительной частью, а действительное число b мнимой частью комплексного числа a+bi.
 - 5) Справедливо равенство $i^2 = -1$, (3)

а формулы (1) и (2) получаются по правилам сложения и умножения двучленов a_1+b_1i и a_2+b_2i с учетом равенства (3).

6) Операции вычитания и деления определяются как обратные для сложения и умножения, а для разности z_1-z_2 и частного $\frac{z_1}{z_2}$ (при $z_2\neq 0$) комплексных чисел $z_1=a_1+b_1i$ и $z_2=a_2+b_2i$ имеют место формулы $z_1-z_2=a_1-a_2+(b_1-b_2)i,$

$$\frac{z_1}{z_2} = \frac{a_1a_2 + b_1b_2}{a_2^2 + b_2^2} + \frac{a_2b_1 - a_1b_2}{a_2^2 + b_2^2} \, i.$$

 Сложение и умножение комплексных чисел обладают свойствами коммутативности, ассоциативности и дистрибутивности:

$$\begin{aligned} z_1+z_2&=z_2+z_1,\quad z_1z_2=z_2z_1;\\ (z_1+z_2)+z_3&=z_1+(z_2+z_3),\quad (z_1z_2)z_3=z_1(z_2z_3);\\ z_1(z_2+z_3)&=z_1z_2+z_1z_3. \end{aligned}$$

- 2. Модуль комплексного числа. Комплексно сопряженные
- 1) Модулем комплексного числа z=a+bi (обозначается |z|) называется число $\sqrt{a^2+b^2}$, т. е.

$$|z| = \sqrt{a^2 + b^2}.$$

2) Для любых комплексных чисел z_1 , z_2 справедливы равенства

$$|z_1z_2|=|z_1|\cdot|z_2|;$$
 если $z_2
eq 0$, то $\left|\frac{z_1}{z_2}\right|=\frac{|z_1|}{|z_2|}.$

3) Число a-bi называется комплексно сопряженным с числом z=a+bi и обозначается \overline{z} , т. е.

$$\overline{z} = \overline{a + bi} = a - bi$$
.

Справедливы равенства

$$z\cdot \overline{z}=|z|^2,\quad \overline{\overline{z}}=z.$$

4) Для любых комплексных чисел $z_1,\ z_2$ верны равенства:

$$\overline{z_1 \pm z_2} = \overline{z_1} \pm \overline{z_2}, \quad \overline{z_1 z_2} = \overline{z_1} \cdot \overline{z_2};$$
 если $z_2 \neq 0$, то $\overline{\left(\frac{z_1}{z_2}\right)} = \overline{\frac{z_1}{z_2}}.$

5) Частное от деления комплексных чисел можно записать в виде

$$\frac{z_1}{z_2} = \frac{z_1\overline{z_2}}{z_2\overline{z_2}} = \frac{z_1\overline{z_2}}{|z_2|^2}, \quad z_2 \neq 0.$$
 (4)