Министерство науки и высшего образования Российской Федерации Федеральное государственное автономное образовательное учреждение высшего образования «СЕВЕРО-КАВКАЗСКИЙ ФЕДЕРАЛЬНЫЙ УНИВЕРСИТЕТ»

Институт цифрового развития Кафедра инфокоммуникаций

ОТЧЕТ ПО ЛАБОРАТОРНОЙ РАБОТЕ №5 дисциплины «Алгоритмизация»

	Выполнила: Кубанова Ксения Олеговна 2 курс, группа ИВТ-б-о-22-1, 09.03.01 «Информатика и вычислительная техника», очная форма обучения
	(подпись)
	Руководитель практики: Воронкин Р. А.
	(подпись)
Отчет защищен с оценкой	Дата защиты

Ставрополь, 2023 г.

Тема: изучение пузырькового метода сортировки

Цель: понять, почему пузырьковый метод является плохим путём исследования среднего и худшего случаев.

Порядок выполнения работы

Задание 1.

Написать программу, которая будет методом пузырька сортировать элементы массива в худшем случае. Худший случай в данном контексте заключается в том, что методу нужно сортировать все элементы массива.

Для исследования была составлена следующая программа:

```
const int n = 10;
∃int main()
         clock_t now = clock();
         int a[n];
         int m = 10;
         for (int i = 0; i < n; i++)
             a[i] = m;
             cout << a[i] << " ";
             m = m + 10;
         cout << endl;</pre>
         int d;
         for (int i = 0; i < n; i++)
             for (int j = 0; j < n; j++)
                 if (a[i] > a[j])
                     d = a[i];
                     a[i] = a[j];
                     a[j] = d;
         for (int i = 0; i < n; i++)
             cout << a[i] << " ";
         clock_t end = clock();
         double sec = (double)(end - now) / CLOCKS_PER_SEC;
         cout << endl << sec << " sec" << endl;
```

Рисунок 1 – программа 1

Для более точного результата было выявлено по 30 значений секундности выполнения программы, а после – их среднее. Была составлена

таблица, в которой x — размерность массива, а у — время, а последний столбец — суммы.

Tr ~	1) (TTT/	
Габлина	— энэнениа	ππα ΜΗΚ ν	удшего случая
таолица	$ 3\pi a_1 \cup \pi n_1$	дли ин н	удшего случал

						J					
550	100	90	80	70	60	50	40	30	20	10	X
	0,22	0,10	0,11276	0,24193	0,2263	0,2476	0,1724	0,0247	0,0276	0,04	у
	6467	166	7	3		7	33	67	33	87	
1,430337		7									
	1000	810	6400	4900	3600	2500	1600	900	400	100	x2
38500	0	0									
	1000	729	512000	343000	216000	12500	64000	27000	8000	100	х3
3025000	000	000				0				0	
	1E+0	656	409600	240100	129600	62500	256000	810000	160000	100	х4
	8	100	00	00	00	00	0			00	
253330000		00									
	22,6	9,15	9,02136	16,9353	13,578	12,383	6,8973	0,7430	0,5526	0,48	xy
92,39489	467	003		1		5	2	1	6	7	
	2264	823,	721,708	1185,47	814,68	619,17	275,89	22,290	11,053	4,87	x2
	,67	502	8	2		5	28	3	2		У
6743,3145		7									

Для понимания линейности возрастания выполнения программы, будет использоваться метод наименьших квадратов.

```
Далее было составлено уравнение: 253330000a+3025000b+38500c=6743,3145 { 30025000a+38500b+550c=92,39489 38500a+550b+10c=1, 430337
```

В результате которого a = -3,5252E-05 и b = 0,005445417, c = -0,02074266.

Из полученных корней составляется уравнение для графика:

$$y = -3,5252E-05x^2+0,005445417x-0,02074266$$

Рисунок 2 – график для худшего случая

Задание 2.

Написать программу, которая будет методом пузырька сортировать

элементы массива в среднем случае. Средний случай в данном контексте заключается в том, что методу нужно сортировать случайные порядки элементов массива. Для исследования была составлена следующая программа:

```
const int n = 10;
⊡int main()
         clock_t now = clock();
         int a[n];
         for (int i = 0; i < n; i++)
             a[i] = rand() % 999 - 1;
             cout << a[i] << " ";
         cout << endl;
         int d;
         for (int i = 0; i < n; i++)
             for (int j = 0; j < n; j++)
                  if (a[i] > a[j])
                     d = a[i];
                     a[i] = a[j];
                     a[j] = d;
         for (int i = 0; i < n; i++)
             cout << a[i] << " ";
         clock_t end = clock();
         double sec = (double)(end - now) / CLOCKS_PER_SEC;
         cout << endl << sec << " sec" << endl;
```

Рисунок 3 – программа 2

Для более точного результата было выявлено по 30 значений секундности выполнения программы, а после – их среднее. Была составлена таблица, в которой х – размерность массива, а у – время, а последний столбец – суммы.

Табли	ца 2 - з	значен	ия для	МНК	средне	го случ	ная

Х	10	20	30	40	50	60	70	80	90	100	550
	0,00361	0,006	0,010	0,012	0,017	0,020	0,024	0,026	0,029	0,0354	0,1858
у	2903	097	097	806	452	097	194	452	516	839	0645
X											
2	100	400	900	1600	2500	3600	4900	6400	8100	10000	38500
Х			2700	6400	1250	21600	34300	51200	72900	10000	302500
3	1000	8000	0	0	00	0	0	0	0	00	0
Х		1600	8100	2560	6250	12960	24010	40960	65610	10000	253330
4	10000	00	00	000	000	000	000	000	000	0000	000
	0,03612	0,121	0,302	0,512	0,872	1,205	1,693	2,116	2,656	3,5483	13,066
xy	903	935	903	258	581	806	548	129	452	871	129

Х											
2	0,36129	2,438	9,087	20,49	43,62	72,34	118,5	169,2	239,0	354,83	1030,1
у	03	71	097	032	903	839	484	903	806	871	129

Для понимания возрастания выполнения программы, будет использоваться метод наименьших квадратов.

Далее было составлено уравнение:

$$253330000a + 3025000b + 38500c = 1030,1129$$

$$3025000a + 38500b + 550c = 13,066129$$

$$38500a + 550b + 10c = 0,18580645$$

В результате которого a = 2,67413E-06, b = 1,30101E-05 и c = 0,008138148. Из полученных корней составляется уравнение для графика:

$$y = 2,67413E-06x^2+1,30101E-05x+0,008138148$$

Рисунок 4 – график для среднего случая

Вывод: в ходе выполнения лабораторной работы было выявлено, почему пузырьковый метод сортировки является неэффективным. Во- первых, он слишком медленный. Итерации по массиву и поэтапное перемещение элементов делает сортировку медленной, что неудобно для больших размерностей массива. Во-вторых, этот метод имеет высокую сложность $O(n^2, n - \text{кол-во элементов})$, т. е. время работы алгоритма растёт быстро с увеличением массива.