FIND

- ALPHA
- BETA
- MEAN VALUES
- MARK'S Mark if he plans to spend 75 hours studying and scored 24 for his quiz

What do ALPHA & BETA values represent in this model?

```
import pandas as pd
from sklearn import linear_model
import numpy as np
from google.colab import drive

drive.mount("/content/gdrive", force_remount=True)
df = pd.read_csv("/content/gdrive/My Drive/Colab Notebooks/scoreTable.csv")

Mounted at /content/gdrive
```

OUTPUT
CODE
EXTRA COMMENT

print table
df

	Student	Hours	Score	Mark
0	Ming	130	15	78
1	Delphine	50	20	69
2	Amir	115	23	80
3	Bibek	80	12	65
4	Alesso	65	20	70
5	Farah	150	25	87
6	Pham	78	30	80
7	Bruce	67	12	82
8	Dalisay	60	10	70
9	Susilo	100	35	90

We can use multiple linear regression, which find a function of the form:

$$y=a+bx1+bx2+...+bxn$$

Mark = a(intercept) + Hoursx1 + Scorex2

```
# Create Linear Regression class model
reg = linear_model.LinearRegression()
# fit model
# Independent Variables = 'Hours', 'Score' & Dependent variable = Mark
reg.fit(df[['Hours','Score']],df.Mark)
    LinearRegression(copy_X=True, fit_intercept=True, n_jobs=None, normalize=False)
# find coefficient 1st number is BETA(x1) and 2nd is BETA(x2)
reg.coef_
    array([0.11409458, 0.51822625])
BETA(x1) = 0.11409458
BETA(x2) = 0.51822625
# find intercept
reg.intercept_
    56.420365122476255
ALPHA = 56.420365122476255
# predict MARK'S Mark if he studies 75h & gets a 24 at Quiz
reg.predict([[75,24]])
    array([77.41488841])
```

```
# how did it calculate that
# {[coefficient(BETA(x1))] * 75 + [coefficient(BETA(x2)) * 24] + Intercept (ALPHA)}
0.11409458*75 + 0.51822625*24 + 56.420365122476255

77.41488862247625
```

- MEAN X1 = 89.5
- MEAN X2 = 20.2
- MEAN Y = 77.1

HOW CAN WE CALCULATE ALPHA & BETA?

	Sum of X1 = 895	
Regression Equation = \hat{y} = b1X1 + b2X2 + a	Sum of X2 = 202	
b1 = ((SPX1Y)*(SSX2)-(SPX1X2)*(SPX2Y)) / ((SSX1)*	Sum of Y = 771	
(SSX2)-(SPX1X2)*(SPX1X2)) = 617630.2/5413317.8 =	Mean X1 = 89.5	
0.11409	Mean X2 = 20.2	
b2 = ((SPX2Y)*(SSX1)-(SPX1X2)*(SPX1Y)) / ((SSX1)*	Mean Y = 77.1 Sum of squares (SSX1) = 9820.5	
(SSX2)-(SPX1X2)*(SPX1X2)) = 2805323.4/5413317.8 = 0.51823		
NAV. 414V4 1214V2 77.4 (0.44*00.5)	Sum of squares (SSX2) = 611.6	
a = MY - b1MX1 - b2MX2 = 77.1 - (0.11*89.5) - (0.52*20.2) = 56.42037	Sum of products (SPX1Y) = 1519.5 Sum of products (SPX2Y) = 404.8	
(0.32 20.2) - 30.42037		
^ _ 0 11400v1 + 0 E1033v2 + EC 43037_ 77 4140004	Sum of products (SPX1X2) = 770	
ŷ = 0.11409x1 + 0.51823x2 + 56.42037= 77.4148884	a= intercept	

ANSWERS:

- MEAN X1 = 89.5
- MEAN X2 = 20.2
- MEAN Y = 77.1
- BETA(x1) = 0.11409458
- BETA(x2) = 0.51822625
- ALPHA (intercept) = 56.420365122476255
- MARK'S MARK = 77.41488841