$\underline{Movimientoe}nR^1$:

Desplazamiento: $\Delta x = x_2 - x_1$, y la velocidad viene dada por:

*velocidad media: $v_m = \frac{\Delta x}{\Delta t}$, $|v_m| = \frac{s}{t}$ *velocidad instantánea: $v(t) = \lim_{\Delta t \to \infty} \frac{\Delta x}{\Delta t} = \frac{dx}{dt}$

*velocidad relativa: Dada una particula de vel. v_{pA} respecto de un sist. de coor. A moviendose con velocidad v_{AB} respecto a otro sist. de coor. B, la velocidad de la particula relativa a B es:

$$v_{pB} = v_{pA} + v_{AB}$$

Aceleración:

*aceleración media: $a_m = \frac{\Delta v}{\Delta t}$

*aceleración instantánea: $a = \frac{dv}{dt} = \frac{d^2x}{dt^2}$ *aceleración gravitatoria: $g = 9,81\frac{m}{s^2}$

Desplzamiento y velocidad (formas integrales):

 \overline{v} como area bajo curva de v(t): $\Delta x = \lim_{\Delta t \to 0} = \sum_i v_i \Delta t_i = \int_{t1}^{t2} v \, dt$

$$a$$
 como area bajo curva de $a(r)$:
$$\Delta v = \lim_{\Delta t \to 0} = \sum_{i} a_{i} \Delta t_{i} = \int_{t1}^{t2} a \, dt$$

$$v = v_{0} + at$$

$$\Delta x = x - x_0 = v_m t = \frac{1}{2}(v_0 + v)t$$

$$\Delta x = x - x_0 = v_0 t + \frac{1}{2}at^2$$

$$v^2 = v_0^2 + 2a \Delta x$$

$$\Delta x = x - x_0 = v_0 t + \frac{1}{2} a t^2$$

$$v^2 = v_0^2 + 2a\,\Delta x$$