

Mark Scheme (Results)

Summer 2019

Pearson Edexcel International Advanced Level In Further Pure Mathematics F1 (WFM01/01)

Summer 2019 WFM01/01 Further Pure Mathematics F1 Mark Scheme

Question Number	Scheme				Notes		Marks
1.	$f(x) = 5 + 4x^2 - \frac{4}{3}x^3 - \frac{7}{2x}$;	c > 0					
(a)	$f'(x) = 8x - 4x^2 + \frac{7}{2}x^{-2}$	At least one of either $5 + 4x^2 \rightarrow \pm Ax$ or $-\frac{4}{3}x^3 \rightarrow \pm Bx^2$ or $-\frac{7}{2x} \rightarrow \pm Cx^{-2}$; $A, B, C \neq 0$		M1			
		Correct	differenti	ation, v	which can be un-sin	mplified or simplified	A1 (2)
(b)	$f(0.5) = -\frac{7}{6}, \ f'(0.5) = 17$	Either $f(0.5) = -\frac{7}{6}$ or awrt -1.17 or truncated -1.16 or $f'(0.5) = 17$ or a correct numerical expression for either $f(0.5)$ or $f'(0.5)$			B1		
					Can be impl	ied by later working	
	$\left\{\alpha \simeq 0.5 - \frac{f(0.5)}{f'(0.5)}\right\} \Rightarrow \alpha \simeq 0$	$1.5 - \frac{-\frac{7}{6}}{17}$		`		ewton-Raphson using of $f(0.5)$ and $f'(0.5)$	M1
	$\left\{ \alpha = 0.56862745 \text{ or } \frac{29}{51} \right\} \Rightarrow \alpha = 0.569 \text{ (3 dp)}$		(3 dp)	C		0.569 on first iteration subsequent iterations)	A1 cso cao
	Correct differentiation followed by 0.569 (with no working seen) scores full marks in part (b)			(3)			
(c) Way 1	$f(3) = \frac{23}{6} = 3.833333$ $f(3.5) = -\frac{25}{6} = -4.166666$				either $f(3) = \frac{23}{6}$ or	both f(3) and f(3.5) awrt 4 or truncated 3 $5) = -\frac{25}{6} \text{ or awrt } -4$	M1
	Sign change {positive, negative, negative continuous} therefore a root { interval {[3, 3.5]}			Both		(or truncated) to 1sf, nange and conclusion.	A1
							(2)
(d) Way 1	$\frac{\beta-3}{"3.8333"} = \frac{3.5-\beta}{"4.1666"} \text{ or } \frac{\beta-3}{3.5-\beta} = \frac{"3.8333"}{"4.1666"}$ A correct linear interpolation method. Do not allow this mark if a total of one or three negative lengths are used or if either fraction is the wrong way up. This mark may be implied.			M1			
	• $\beta = \left(\frac{(3)("4.1666") + (3.5)("3.8333")}{"4.1666" + "3.8333"}\right) = \left(\frac{12.5 + 13.4166}{8}\right)$ • $\beta = 3 + \left(\frac{"3.8333"}{"4.1666" + "3.8333"}\right)(0.5)$ or $\beta = 3 + \left(\frac{23}{8}\right)(0.5)$ • $\beta = 3 + \left(\frac{"-3.8333"}{"-4.1666" + "-3.8333"}\right)(0.5)$			dM1			
	$\begin{cases} \beta = 3.239583 \text{ or } 3\frac{23}{96} \text{ or } \frac{311}{96} \end{cases} \Rightarrow \beta = 3.24 \text{ (2dp)} $ (Ignore any subsequent iterations)			A1			
							(3)
							10

Question Number		Scheme	Notes	Marks	
1. (d)		$\frac{x}{333"} = \frac{0.5 - x}{"4.1666"}$			
Way 2					
	$x = \frac{0}{112.002}$	$\frac{0.5)("3.8333")}{333" + "4.1666"} = 0.239583$			
		33" + "4.1666" 3 + 0.239583	Finds <i>x</i> using a correct method of similar triangles and applies "3 + their <i>x</i> "	M1 dM1	
		39583 or $3\frac{23}{96}$ or $\frac{311}{96}$ $\Rightarrow \beta = 3.24$ (2dp)	awrt 3.24	A1	
		, , , , , , , , , , , , , , , , , , , ,		(3)	
1. (d)	0.5	$\frac{5-x}{333"} = \frac{x}{"4.1666"}$			
Way 3	"3.83	333" "4.1666"			
	$x = \frac{0}{x}$	$\frac{0.5)("4.1666")}{(33" + "4.1666")} = 0.260416$			
	"3.83	333" + "4.1666"	Finds x using a correct method of		
	$\rightarrow R - r$	3.5 – 0.260416	similar triangles and applies $"3.5 - \text{their } x"$	M1 dM1	
	$\begin{cases} \beta = 3.23 \end{cases}$	39583 or $3\frac{23}{96}$ or $\frac{311}{96}$ $\Rightarrow \beta = 3.24$ (2dp)	awrt 3.24	A1	
				(3)	
1 (1-)	3 7 /	Question 1 No			
1. (b)	Note	Give full marks in part (b) for correct differentia in (b) with <u>no</u> working.	tion in (a) followed by the correct ans	swer	
	M1	This mark can be implied by applying at least on	ne correct <i>value</i> of either $f(0.5)$ or the	eir	
		f'(0.5) (where $f'(0.5)$ is found using their $f'(x)$			
		So <i>just writing</i> $0.5 - \frac{f(0.5)}{f'(0.5)}$ with an incorrect		` '	
	Note	Give B1M1A0 for a correct $f'(x)$ in (a) followed	d by only $\alpha \simeq 0.5 - \frac{f(0.5)}{f'(0.5)} = \frac{29}{51}$ in (1)	b)	
	Note	te Differentiating INCORRECTLY to give $f'(x) = 8x - 4x^2 + 14x^{-2}$ leads to			
		$\alpha \simeq 0.5 - \frac{-\frac{7}{6}}{59} = \frac{92}{177} = 0.5197740113 = 0.520 \text{ (3 dp)}$			
	This response should be given B1 M1 A0				
	Note	Differentiating INCORRECTLY to give $f'(x)$	$= 8x - 4x^2 + 14x^{-2} \text{ and}$		
		$\alpha \simeq 0.5 - \frac{f(0.5)}{f'(0.5)} = 0.520$ or truncated 0.52 or 0.519 or awrt 0.520 is B1 M1 A0			
(c)	Note	Way 1: correct solution only			
		Required to state both values for $f(3)$ and $f(3.5)$		long with	
		a reason and a conclusion. Reference to chang		oiont	
		$f(3) > 0 > f(3.5)$ or a diagram or < 0 and > 0 or reasons. There must be a conclusion, e.g. $\{x \text{ or } \}$	•		
		between 3 and 3.5. Ignore the presence or absen		1001 1168	
	Note	A minimal acceptable reason and conclusion is "	-		
		or "change of sign, so root is between 3 and 3.5"			

		Question 1 Notes Continued			
1. (c)	Note	Way 2 The root of $f(x) = 0$ is 3.27491258, so they can choose x_1 which is less than 3.27491258 and choose x_2 which is greater than 3.27491258 with both x_1 and x_2 lying in the interval [3, 3.5]. M1: Finds $f(x_1)$ and $f(x_2)$ with one of these values correct awrt (or truncated) to 1sf			
		A1: Both values correct awrt (or truncated) to 1sf, sign change and conclusion.			
	Note	Helpful Table			
		x $f(x)$			
		3 3.83333333			
		3.1 2.58963440			
		3.2 1.17558333			
		3.3 -0.41660606			
		3.4 -2.19474509			
		3.5 -4.16666666			
1. (d)	Note	Condone writing the symbol α in place of β in part (d)			
	Note	$\frac{\beta-3}{3.5-\beta} = \frac{\text{"3.833"}}{\text{"-4.1666"}}$ is a valid method for the first M mark			
	Note	Give 1 st M1 for either $\frac{f(3)}{-f(3.5)} = \frac{\beta - 3}{3.5 - \beta}$ or $\frac{f(1.2)}{ f(1.3) } = \frac{\beta - 3}{3.5 - \beta}$ or $\frac{ f(3) }{ f(3.5) } = \frac{\beta - 3}{3.5 - \beta}$ Give M1 dM1 A1 for the correct statement $\frac{3 f(3.5) + 3.5f(3)}{ f(3.5) + f(3)} = 3.24$			
	Note				
	Note	Give M0 dM0 for $\frac{3 f(3.5) + 3.5f(3)}{ f(3.5) + f(3)} = \frac{3("-4.166") + 3.5("3.8333")}{("-4.166") + ("3.8333")}$			
	Note	Give M1 dM1 for the correct statement $\beta = \frac{3.5 + 3k}{k + 1}$,			
		where <i>k</i> is defined as $k = \frac{ f(3.5) }{f(3)} = \frac{4.1666}{3.8333} = 1.086957$			
	Note	Give M1 dM1 for the correct statement $\beta = \frac{3+3.5c}{c+1}$,			
		where c is defined as $c = \frac{f(3)}{ f(3.5) } = \frac{3.8333}{4.1666} = 0.92$			
	Note	$\frac{\beta - 3}{3.5 - \beta} = \frac{"3.8333"}{"4.1666"} \Rightarrow \beta = 3.24 \text{ with no intermediate working is M1 dM1 A1}$			
	Note	$\frac{\beta - 3}{3.8333} = \frac{3.5 - \beta}{-4.1666} \implies \beta = -2.75 \text{ is M0 dM0 A0}$			
	Note	$\frac{\beta - 3}{-3.8333} = \frac{3.5 - \beta}{-4.1666} \implies \beta = 3.24 \text{ is M1 dM1 A1}$			
	Note	$\frac{\beta - 3}{3.5 - \beta} = \frac{\text{"4.1666"}}{\text{"3.8333"}} \implies \beta = 3.260416 \text{ is M0 dM0 A0}$			

Question Number	Scheme		Notes	Marks	
1. (d) Way 4	• $y - \frac{23}{6} = \frac{-\frac{25}{6} - \frac{23}{6}}{3.5 - 3}(x - 3) \Rightarrow 0 - \frac{23}{6} = \frac{-\frac{25}{6}}{3.5}$ • $y\frac{25}{6} = \frac{-\frac{25}{6} - \frac{23}{6}}{3.5 - 3}(x - 3.5) \Rightarrow 0\frac{25}{6} = \frac{-\frac{25}{6}}{3.5 - 3}(x - 3.5) \Rightarrow 0 - \frac{25}{6} = \frac{-\frac{25}{6}}{3.5 - 3}(x - 3.5) \Rightarrow 0 - \frac{25}{6} = \frac{-\frac{25}{6}}{3.5 - 3}(x - 3.5) \Rightarrow 0 - \frac{25}{6} = \frac{-\frac{25}{6}}{3.5 - 3}(x - 3.5) \Rightarrow 0 - \frac{25}{6} = \frac{-\frac{25}{6}}{3.5 - 3}(x - 3.5) \Rightarrow 0 - \frac{25}{6} = \frac{-\frac{25}{6}}{3.5 - 3}(x - 3.5) \Rightarrow 0 - \frac{25}{6} = \frac{-\frac{25}{6}}{3.5 - 3}(x - 3.5) \Rightarrow 0 - \frac{25}{6} = \frac{-\frac{25}{6}}{3.5 - 3}(x - 3.5) \Rightarrow 0 - \frac{25}{6} = \frac{-\frac{25}{6}}{3.5 - 3}(x - 3.5) \Rightarrow 0 - \frac{25}{6} = \frac{-\frac{25}{6}}{3.5 - 3}(x - 3.5) \Rightarrow 0 - \frac{25}{6} = \frac{-\frac{25}{6}}{3.5 - 3}(x - 3.5) \Rightarrow 0 - \frac{25}{6} = \frac{-\frac{25}{6}}{3.5 - 3}(x - 3.5) \Rightarrow 0 - \frac{25}{6} = \frac{-\frac{25}{6}}{3.5 - 3}(x - 3.5) \Rightarrow 0 - \frac{25}{6} = \frac{-\frac{25}{6}}{3.5 - 3}(x - 3.5) \Rightarrow 0 - \frac{25}{6} = \frac{-\frac{25}{6}}{3.5 - 3}(x - 3.5) \Rightarrow 0 - \frac{25}{6} = \frac{-\frac{25}{6}}{3.5 - 3}(x - 3.5) \Rightarrow 0 - \frac{25}{6} = \frac{-\frac{25}{6}}{3.5 - 3}(x - 3.5) \Rightarrow 0 - \frac{25}{6} = \frac{-\frac{25}{6}}{3.5 - 3}(x - 3.5) \Rightarrow 0 - \frac{25}{6} = \frac{-\frac{25}{6}}{3.5 - 3}(x - 3.5) \Rightarrow 0 - \frac{25}{6} = \frac{-\frac{25}{6}}{3.5 - 3}(x - 3.5) \Rightarrow 0 - \frac{25}{6} = \frac{-\frac{25}{6}}{3.5 - 3}(x - 3.5) \Rightarrow 0 - \frac{25}{6} = \frac{-\frac{25}{6}}{3.5 - 3}(x - 3.5) \Rightarrow 0 - \frac{25}{6} = \frac{-\frac{25}{6}}{3.5 - 3}(x - 3.5) \Rightarrow 0 - \frac{25}{6} = \frac{-\frac{25}{6}}{3.5 - 3}(x - 3.5) \Rightarrow 0 - \frac{25}{6} = \frac{-\frac{25}{6}}{3.5}(x - 3.5) \Rightarrow 0 - \frac{25}{6} = \frac{-\frac{25}{6}}{3.5}(x - 3.5) \Rightarrow 0 - \frac{25}{6} = \frac{-\frac{25}{6}}{3.5}(x - 3.5) \Rightarrow 0 - \frac{25}{6}(x - 3.5) \Rightarrow 0 $		Complete method of finding a line joining the points $(3, f(3)), (3.5, f(3.5))$ followed by setting $y = 0$	M1	
	$\Rightarrow x = \dots$ or $\beta = \dots$		ent on the previous M mark ages to give $x =$ or $\beta =$	dM1	
	$\left\{ x \text{ or } \beta = 3.239583 \text{ or } 3\frac{23}{96} \text{ or } \frac{311}{96} \right\} \Rightarrow \beta$	$B = 3.24 \ (2 dp)$	awrt 3.24	A1	
					(3)

Question Number		Scheme		Notes	Marks
2.	$\mathbf{M} = \begin{pmatrix} k - 1 \\ 2 \end{pmatrix}$	$\begin{pmatrix} -12 & 3 \\ 4 & k \end{pmatrix}$, where k is a real constant			
	$\left\{ \det(\mathbf{M}) \right.$	$= (k-12)k - 4(3)$ and area ratio $= \frac{32}{20}$	$\frac{0}{0} = 16$		
	20(k(k -	(12) - 4(3) = 320 or 20(k(k-12) - 4((3)) = -320	20(applied det(\mathbf{M})) = ± 320 , o.e. Note: Allow 320 (applied det(\mathbf{M})) = ± 20 , o.e.	M1
	or $k(k-1)$	$(12) - 4(3) = \frac{320}{20}$ or $k(k-12) - 4(3) =$	$-\frac{320}{20}$	At least one correct equation in <i>k</i> that can be simplified or un-simplified	A1
		$-12k - 28 = 0, k^2 - 12k + 4 = 0$		or an simplified	
	${20k^2-2}$	$240k - 560 = 0$, $20k^2 - 240k + 80 = 0$			
	(k-14)($(k+2) = 0$ or $(k-6)^2 - 36 + 4 = 0$ to give $k =$	At least or	pendent on the previous M mark ne correct method (e.g. factorising, the quadratic formula, completing the square or calculator) of solving a 3TQ to give $k =$	dM1
	k	$=14, -2, 6+4\sqrt{2}, 6-4\sqrt{2}$	At 1	least two of either $k = 14$, $k = -2$, $k = 6 + 4\sqrt{2}$ or $k = 6 - 4\sqrt{2}$	A1
		All four correct values of k		A1	
					(5)
			4: 0 N		5
2.	Note	Allow 1 st M1 for any of	estion 2 No	tes	
		• $320(k(k-12)-4(3)) = 20$ • $320(k(k-12)-4(3)) = -20$	• k(k-12	$(2) - 4(3) = \frac{20}{320}$ $(2) - 4(3) = -\frac{20}{320}$	
		which can be simplified or un-simpl	ified.		
	Note	Allow 1 st M1 for any of • $20(k(k-12)+4(3)) = 320$ • $20(k(k-12)+4(3)) = -320$ • $320(k(k-12)+4(3)) = 20$ • $320(k(k-12)+4(3)) = 20$ or equivalent, which can be simplified or un-simplified.			
	Note Give 1 st M0 for any of • $(k(k-12)-4(3)) = (20)(320)$ • $(k(k-12)+4(3)) = (20)(320)$				
	Note Give dM1 for using a calculator to write down at least one correct root for their 3TQ)
	Note	For the 1st A1 mark			
		• condone truncated 11.6 or awrt 1	_	of $k = 6 + 4\sqrt{2}$	
		• condone awrt 0.34 in place of k	$=6-4\sqrt{2}$		
	Note	Allow $k = 6 + \sqrt{32}$ instead of $k = 6$		or $k = 6 - \sqrt{32}$ instead of $k = 6 - 4\sqrt{32}$	$\sqrt{2}$
		for any of the final two accuracy ma			
	Note	Allow final A1 (isw) for $k = 14, -2$			
	Note	Give 2 nd A0 (i.e. the penultimate mare rejecting (or ignoring) correct values	s for k	•	result of
	Note	Give final A0 if any of $k = 14, -2,$	$6+4\sqrt{2}$, 6-	$4\sqrt{2}$ are rejected	
	Note	Give final A0 for extra solutions in a	addition to k	$z = 14, -2, 6 + 4\sqrt{2}, 6 - 4\sqrt{2}$	
	11066	Give imai 710 for extra solutions III (addition to A	τ, 2, υ · τγ2, υ · τγ2	

		Question 2 Notes Continued		
2.	Note	ote $320(k(k-12)-4(3)) = 20$ leads to $16k^2 - 192k - 193 = 0$ and $k = 12.9327, -0.9327$		
		$320(k(k-12)-4(3)) = -20$ leads to $16k^2 - 192k - 191 = 0$ and $k = 12.9236, -0.9236$		
	Note	$20(k(k-12)+4(3)) = 320$ leads to $k^2-12k-4=0$ and $k=12.3245, -0.3245$		
		$20(k(k-12)+4(3)) = -320$ leads to $k^2 - 12k + 28 = 0$ and $k = 8.8284, 3.1715$		
	Note	$320(k(k-12)+4(3)) = 20$ leads to $16k^2 - 192k + 191 = 0$ and $k = 10.9053, 1.0946$		
		$320(k(k-12)+4(3)) = -20$ leads to $16k^2 - 192k + 193 = 0$ and $k = 10.8925, 1.1074$		

Question Number	Scheme		Notes		Marks	3
3.	(i) $z^* - 3z = \frac{5i}{3-i}$; (ii) $w = -4 + 5i$,	(b) $arg(w+k) =$	$\frac{\pi}{2}$, (c) $\left w + ci \right = 4\sqrt{5}$			
(i) Way 1	${z^* - 3z = } (a - ib) - 3(a + ib)$		Left hand side = (a lied by e.g. $-2a-4bi$ No (or implied) anywhere	ote: Can be seen	B1	
	$\dots = \frac{5i}{(3-i)} \frac{(3+i)}{(3+i)}$	Mı	ultiplies numerator and de right-hand side b		M1	
	Applies $i^2 = -1$ to give right-hand side $= \frac{15i - 5}{10}$ or equivalent			A1		
	So, $-2a-4bi = -\frac{1}{2} + \frac{3}{2}i$		pendent on the previous either real parts or imagin at least one or		ddM1	
	$\Rightarrow a = \frac{1}{4}, b = -\frac{3}{8} \Rightarrow z = \frac{1}{4} - \frac{3}{8}i$	$z = \frac{1}{4} - \frac{1}{3}$	$\int_{8}^{3} i \text{or} z = 0.25 - 0.375i \text{ o}$	$\mathbf{pr} \ \ z = \frac{1}{4} + \left(-\frac{3}{8}\mathbf{i}\right)$	A1	(=)
(*)					(5)	
(i) Way 2	$\{z^* - 3z = \} (a - ib) - 3(a + ib)$	Com to the	Left hand side = $(a + b)$, , ,	D 1	
vay 2	$\begin{cases} 2 - 3\lambda - \begin{cases} (\alpha - 10) - 3(\alpha + 10) \end{cases}$	Can be imp	lied by e.g. $-2a-4bi$ No (or implied) anywhere		B1	
	$(-2a-4bi)(3-i) = \dots$		Multiplies their $(-2a)$		M1	
	Ann			$\frac{1}{s} i^2 = -1$ to give		
	$-6a + 2ai - 12bi - 4b = \dots$	left-hand	side = -6a + 2ai - 12bi -	_	A1	
	So, $(-6a-4b)+(2a-12b)i=5i$	de	pendent on the previous	B and M marks		
	gives $-6a-4b=0$, $2a-12b=5$	_	h real parts and imaginary	_	ddM1	
			simultaneously to give at least one of $a =$ or $b =$			
	$\Rightarrow a = \frac{1}{4}, b = -\frac{3}{8} \Rightarrow z = \frac{1}{4} - \frac{3}{8}i$	$z = \frac{1}{4}$	$\frac{3}{8}$ i or $z = 0.25 - 0.375$ i o	$\mathbf{or} \ \ z = \frac{60}{240} - \frac{15}{40}\mathbf{i}$	A1	
		+	0	240 40		(5)
(ii)(a)	e.g. $\arg w = \pi - \tan^{-1}(\frac{5}{4})$	Heas trigonom	etry to find an expression	for argw so that		
	or $=\frac{\pi}{2} + \tan^{-1}\left(\frac{4}{5}\right)$ or	-	•	_	M1	
	_ (**/	_	arg w is in the range $(1.58, 3.14)$ or $(90^{\circ}, 180^{\circ})$ or $(-4.71, -3.15)$ or $(-270^{\circ}, -180^{\circ})$		IVII	
	$= -\pi - \tan^{-1}\left(\frac{5}{4}\right)$					
	$\arg w = \pi - 0.896055 = 2.2455$	•	1 . ,	5 or awrt – 4.04	A1	
	or $\arg w = -\pi - 0.896055 = -4.0$,	· 1//	3 or awrt -10.32		(2)
7	, ,		231.3401° is M1 A0}	7 4	D.1	(2)
(b)	$\{\arg(-4+5i+k) = \frac{\pi}{2} \Longrightarrow -4+k = 0$	\Longrightarrow } $\kappa = 4$		k = 4	B1	(1)
(c)		Squares and	adds the real and imagina	ry parts of w + ci		(1)
	$\left -4+5\mathrm{i}+c\mathrm{i}\right =4\sqrt{5}$	Squares and a	and sets equal to either	·	M1	
	$\Rightarrow -4 + (5 + c)\mathbf{i} = 4\sqrt{5}$					
	$\Rightarrow -4 + (5 + c)1 = 4\sqrt{5}$ $\Rightarrow (-4)^2 + (5 + c)^2 = (4\sqrt{5})^2 \text{ o.e.}$ $\Rightarrow (-4)^2 + (5 + c)^2 = (4\sqrt{5})^2 \text{ o.e.}$ Allow the equivalent result $\sqrt{(-4)^2 + (5 + c)^2} = 4\sqrt{5}$			A1		
	$16 + (5+c)^2 = 80 \Rightarrow (5+c)^2 = 6$	$54 \Rightarrow c = \dots$				
	or $16+(5+c)^2=80 \Rightarrow c^2+10c-39=0$ $\Rightarrow (c+13)(c-3)=0 \Rightarrow c=$ dependent on the previous M mark Solves their quadratic in c to give $c=$			dM1		
	c = -13, 3			c = -13, 3	A1	
						(4)
						12

		Question 3 Notes		
3. (i)	Note	Allow alternative ways of defining z. E.g. $z = x + iy$ and $z^* = x - iy$ with $x \equiv a$ and $y \equiv b$		
	Note	Give final A0 for defining $z = a + ib$, finding $a = \frac{1}{4}$, $b = -\frac{3}{8}$ but not stating $z = \frac{1}{4} - \frac{3}{8}i$		
	Note	Alternative: Some may define $z = x - iy$ and $z^* = x + iy$		
		This gives $\{z^* - 3z = \}$ $(x + iy) - 3(x - iy) = -2x + 4yi$		
		So, $-2x + 4yi = -\frac{1}{2} + \frac{3}{2}i \implies x = \frac{1}{4}, y = \frac{3}{8} \implies z = \frac{1}{4} - \frac{3}{8}i$		
(ii) (a)	Note	Allow M1 (implied) for awrt 2.2, awrt -3.8, truncated -4.0, awrt 129°, truncated 128° or awrt -231°		
(ii) (c)	Note	$\left -4 + (5+c)i \right = 4\sqrt{5} \Rightarrow (-4)^2 - (5+c)^2 = (4\sqrt{5})^2$ unless recovered is 1 st M0		
	Note	$ -4 + (5+c)i = 4\sqrt{5} \Rightarrow -16 + (5+c)^2 = (4\sqrt{5})^2$ unless recovered is 1 st M0		
	Note	$\left -4+5i+ci\right = 4\sqrt{5} \Rightarrow (-4)^2 + (5)^2 + c^2 = (4\sqrt{5})^2$ unless recovered is 1 st M0		
	Note	If a 3TQ is formed in c then a correct method (e.g. factorising, applying the quadratic formula,		
		completing the square or calculator) of solving a 3TQ is required to give $c =$		
	Note	Give dM1 for using a calculator to write down at least one correct root for their 3TQ		
	Note Having achieved a correct $16+25+10c+c^2=80$ give final dM1 A1 marks for writing down $c=-13$, 3 from no working.			
	Note Give final A0 for either			
		• $c = -13, 3 \Rightarrow c = 3$		
		• $c = -13, 3 \Rightarrow c = -13$		
		• $c = 3, c = -13$ (reject)		
		• $c = 3$ (reject), $c = -13$		

Question Number	Scheme		Notes	Marks
4. (a) Way 1	$\sum_{k=0}^{3k} (4r+1) = 4 \cdot \frac{1}{2} (3k)(3k+1) + 3k$	Either	$\sum_{r=1}^{3k} 4r \to 4.\frac{1}{2} (3k)(3k+1) \text{ or } \sum_{r=1}^{3k} 1 \to 3k$	M1
way 1	r=1	Corr	rect expression, simplified or un-simplified	A1
	$= 6k(3k+1) + 3k = 18k^2 + 9k$			
	$= 9k(2k+1) \{p=9\}$		Obtains $9k(2k+1)$ with no errors	A1 cso
	, ,		<u> </u>	(3)
(a) Way 2	$\sum_{r=1}^{k} (4r+1) = 4 \cdot \frac{1}{2} (k)(k+1) + k$	Bot	h $\sum_{r=1}^{k} 4r \to 4 \cdot \frac{1}{2}(k)(k+1)$ and $\sum_{r=1}^{k} 1 \to k$	M1
	$= 2k(k+1) + k = 2k^2 + 3k$			
	$\sum_{r=1}^{3k} (4r+1) = 2(3k)(3k+1) + 3k = 2(3k)^2$	+3(3k)	Correct expression, simplified or un-simplified	A1
	$=18k^2+9k$			
	$= 9k(2k+1) \{p=9\}$		Obtains $9k(2k+1)$ with no errors	A1 cso
				(3)
(b) Way 1	$\sum_{r=1}^{k} 2r^2 = \sum_{r=1}^{3k} (4r+1)$			
	1	Se	ets $\lambda k(k+1)(2k+1)$ equal to "9" $k(2k+1)$	
	$2.\frac{1}{6}k(k+1)(2k+1) = 9k(2k+1)$		or their answer from part (a), $\lambda \neq 0$, to give an equation in k only	M1
			dependent on the previous M mark	
	$\frac{1}{3}(k+1) = 9 \Rightarrow k = 26$		s out two terms or factorises out two terms	dM1
	3	and	solves a linear equation in k to give $k =$ k = 26 only	A1
			1 20 only	(3)
(b)	1	Se	ets $\lambda k(k+1)(2k+1)$ equal to "9" $k(2k+1)$	
Way 2	$2.\frac{1}{6}k(k+1)(2k+1) = 9k(2k+1)$		or their answer from part (a), $\lambda \neq 0$,	M1
			to give an equation in k only dependent on the previous M mark	
	$2k^3 + 3k^2 + k = 54k^2 + 27k$		els out or factorises k and a correct method	
	$2k^3 - 51k^2 - 26k = 0$	(e.g. factorising, applying the quadratic formula,		dM1
	$k(2k^2 - 51k - 26) = 0$	completing the square or calculator) of solving a 3TQ to give $k =$		
	$(2k+1)(k-26) = 0 \Rightarrow k = 26$			A1
				(3)
(b)	2 1 6/6 + 15/26 + 15 - 04/21 + 15	Se	ets $\lambda k(k+1)(2k+1)$ equal to "9" $k(2k+1)$	M1
Way 3	$2.\frac{1}{6}k(k+1)(2k+1) = 9k(2k+1)$		or their answer from part (a), $\lambda \neq 0$, to give an equation in k only	M1
	k(k+1)(2k+1) = 27k(2k+1)		dependent on the previous M mark	
	$k(k+1) - 27k = 0 \implies k^2 - 26k = 0$	Cancels out two terms or factorises out two terms		dM1
	$k(k-26) \Rightarrow k=26$	and	solves a linear equation in k to give $k =$ k = 26 only	A1
			$\kappa = 20$ only	(3)
				6

		Question 4 Notes
4. (a)	Note	Give M1A1 for $\sum_{r=1}^{3n} (4r+1) = 4 \cdot \frac{1}{2} (3n)(3n+1) + 3n$
	Note	Give M1A1A0 for $\sum_{r=1}^{3n} (4r+1) = 4 \cdot \frac{1}{2} (3n)(3n+1) + 3n = 18n^2 + 9n = 9n(2n+1)$
		without reference to $\sum_{r=1}^{3k} (4r+1) = 9k(2k+1)$
	Note	Give M1A1A1 for
		$\sum_{r=1}^{3n} (4r+1) = 4 \cdot \frac{1}{2} (3n)(3n+1) + 3n = 18n^2 + 9n = 9n(2n+1) \implies \sum_{r=1}^{3k} (4r+1) = 9k(2k+1)$
	Note	Way 2: Give M1 for $\sum_{r=1}^{n} (4r+1) = 4 \cdot \frac{1}{2} (n)(n+1) + n$
	Note	Give final A0 for cancelling down their final answer $9k(2k+1)$ in part (a)
		E.g. $\sum_{r=1}^{3k} (4r+1) = 4 \cdot \frac{1}{2} (3k)(3k+1) + 3k = 18k^2 + 9k = 9k(2k+1) = k(2k+1)$ gets M1 A1 A0
	Note	Give M0 A0 A0 for writing
		e.g. $k = 1 \Rightarrow \sum_{1}^{3(1)} (4r+1) = p(1)((2(1)+1)) \Rightarrow 5+9+13=3p \Rightarrow p=9$
		with no evidence of applying $\sum_{r=1}^{3k} 4r \rightarrow 4 \cdot \frac{1}{2} (3k)(3k+1)$ or $\sum_{r=1}^{3k} 1 \rightarrow 3k$
	Note	You can give M1 1 st A1 marks in part (a) for work recovered for
		$\sum_{r=1}^{3k} (4r+1) = 4 \cdot \frac{1}{2} (3k)(3k+1) + 3k \text{ in part (b)}$
(b)	Note	Condone giving 1 st M1 for setting $\lambda k(k+1)(2k+1)$ equal to "9" $k(k+1)$ {slip}
	Note	Give A0 for giving more than one value of k as their final answer.
	Note	Where applicable, for A1,
		• $k = 0$ and/or $k = -\frac{1}{2}$ needs to be rejected leaving $k = 26$ as their final answer.
		• $k = 26$ needs to be indicated as their final answer.
	Note	Way 2: Using fractions gives
		$ \bullet \frac{2}{3}k^3 + k^2 + \frac{1}{3}k = 18k^2 + 9k \implies \frac{2}{3}k^3 - 17k^2 - \frac{26}{3}k = 0 \implies \frac{2}{3}k^2 - 17k - \frac{26}{3} = 0 $
		$\Rightarrow k = \frac{17 \pm \sqrt{(-17)^2 - 4(\frac{2}{3})(-\frac{26}{3})}}{2(\frac{2}{3})} = \frac{17 \pm \sqrt{\frac{2809}{9}}}{\frac{4}{3}} = \frac{17 \pm \frac{53}{3}}{\frac{4}{3}} \Rightarrow k = 26$
	Note	Way 3: E.g. Give dM0 for $k^2 + k - 27k = 0$ leading directly to $k = \frac{-1 \pm \sqrt{(1)^2 - 4(1)(-27)}}{2(1)}$

(a) F	$\mathbf{A} = \begin{pmatrix} \frac{1}{2} & -\frac{\sqrt{3}}{2} \\ \frac{\sqrt{3}}{2} & \frac{1}{2} \end{pmatrix}, \ \mathbf{B} = \begin{pmatrix} 2\sqrt{3} & -7 \\ -4 & 5\sqrt{3} \end{pmatrix}$ Rotation 60 degrees {anti-clockwise}	Rotation or rotate (condone turn) 60 degrees or $\frac{\pi}{3}$ or 300 degrees clockwise or $\frac{5\pi}{3}$ clockwise This mark is dependent on at least one of	B1
6	60 degrees {anti-clockwise}	or 300 degrees clockwise or $\frac{\pi}{3}$ clockwise	
		or 300 degrees clockwise or $\frac{5\pi}{3}$ clockwise	B1
а	about (0, 0)	This mark is dependent on at least one of	1
		the previous B marks being given. about $(0, 0)$ or about O or about the origin	dB1
	Note: Give 2 nd B0 for	60 degrees clockwise o.e.	
(b) {	$\{\mathbf{A}^6 = \} \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$	Correct matrix	В1
	(5		
Way 1	$\mathbf{B}^{-1} = \frac{1}{2} \begin{pmatrix} 5\sqrt{3} & 7\\ 4 & 2\sqrt{3} \end{pmatrix}$	Correct matrix for \mathbf{B}^{-1} , which can be simplified or un-simplified	B1
1	$\{\mathbf{C} = \mathbf{B}^{-1}\mathbf{A}\} = \frac{1}{2} \begin{pmatrix} 5\sqrt{3} & 7 \\ 4 & 2\sqrt{3} \end{pmatrix} \begin{pmatrix} \frac{1}{2} & -\frac{\sqrt{3}}{2} \\ \frac{\sqrt{3}}{2} & \frac{1}{2} \end{pmatrix} = \dots$	Applies (their \mathbf{B}^{-1}) \mathbf{A} , where (their \mathbf{B}^{-1}) $\neq \mathbf{B}$, and finds at least one element (or at least one element calculation) of their matrix \mathbf{C} Note: Allow one slip in copying down \mathbf{A}	M1
=	$= \frac{1}{2} \begin{pmatrix} 6\sqrt{3} & -4 \\ 5 & -\sqrt{3} \end{pmatrix} \mathbf{or} = \begin{pmatrix} 3\sqrt{3} & -2 \\ \frac{5}{2} & -\frac{1}{2}\sqrt{3} \end{pmatrix}$	dependent on the previous B1M1 marks At least 2 elements in C are correct All elements in C are correct	A1 A1
	$ \begin{cases} \mathbf{BC} = \mathbf{A} \Longrightarrow \\ \begin{pmatrix} 2\sqrt{3} & -7 \\ -4 & 5\sqrt{3} \end{pmatrix} \begin{pmatrix} a & b \\ c & d \end{pmatrix} = \begin{pmatrix} \frac{1}{2} & -\frac{\sqrt{3}}{2} \\ \frac{\sqrt{3}}{2} & \frac{1}{2} \end{pmatrix} \\ 2\sqrt{3}a - 7c = \frac{1}{2}, 2\sqrt{3}b - 7d = -\frac{\sqrt{3}}{2} \end{cases} $	Correct statement using 2×2 matrices. All 3 matrices must contain four elements. Can be implied by the 4 correct equations that are below.	B1
-	$2\sqrt{3}a - 7c = \frac{1}{2}, \ 2\sqrt{3}b - 7d = -\frac{\sqrt{3}}{2}$ $-4a + 5\sqrt{3}c = \frac{\sqrt{3}}{2}, \ -4b + 5\sqrt{3}d = \frac{1}{2}$ and finds at least one of either a, b, c or d	Applies $\mathbf{BC} = \mathbf{A}$ and attempts to solve simultaneous equations in a and c or b and d and finds at least one of either a , b , c or d	M1
	$=\frac{1}{2}\begin{pmatrix} 6\sqrt{3} & -4\\ 5 & -\sqrt{3} \end{pmatrix} \mathbf{or} = \begin{pmatrix} 3\sqrt{3} & -2\\ \frac{5}{2} & -\frac{1}{2}\sqrt{3} \end{pmatrix}$	dependent on the previous B1M1 marks At least 2 elements in C are correct	A1
	or $a = 3\sqrt{3}$, $b = -2$, $c = \frac{5}{2}$, $d = -\frac{1}{2}\sqrt{3}$	All elements in C are correct	A1

		Question 5 Notes		
5. (a)	Note	Writing "60 degrees" by itself implies by convention "60 degrees anti-clockwise". So,		
	 "Rotation 60 degrees about O" is B1 B1 B1 "Rotation 60 degrees clockwise about O" is B1 B0 B1 			
	Note	Writing down "60 degrees anti-clockwise about O" with no reference to "rotation" or "turn" is B0 B1 B1		
	Note	"original point" is not acceptable in place of the word "origin".		
	Note	Give B0 B0 B0 for a combination of 2 or more transformations.		
(b)	Note	Give B0 for writing down I without reference to $\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$		
	Note	Allow B1 for writing down \mathbf{I}_2 without reference to $\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$		
(c)	Note	Allow B1 for $\frac{1}{(2\sqrt{3})(5\sqrt{3}) - (-7)(-4)} \begin{pmatrix} 5\sqrt{3} & 7\\ 4 & 2\sqrt{3} \end{pmatrix}$ or $\frac{1}{30 - 28} \begin{pmatrix} 5\sqrt{3} & 7\\ 4 & 2\sqrt{3} \end{pmatrix}$		
	Note	Allow B1 for $\begin{pmatrix} 5\sqrt{3} & 7 \\ 4 & 2\sqrt{3} \end{pmatrix} \frac{1}{(2\sqrt{3})(5\sqrt{3}) - (-7)(-4)}$ or $\begin{pmatrix} 5\sqrt{3} & 7 \\ 4 & 2\sqrt{3} \end{pmatrix} \frac{1}{30 - 28}$		
	Note	You can ignore previous working prior to their finding $\mathbf{B}^{-1}\mathbf{A}$ (i.e. you can ignore an incorrect statement such as $\mathbf{A} = \mathbf{C}\mathbf{B}$)		

(ii) $ = \left(-\frac{1}{2}\right)^{2} - 2 $ $ \alpha^{3} + \beta^{3} = (\alpha + \beta)^{3} - $ $ or = (\alpha + \beta)(\alpha) $ $ or = \left(-\frac{1}{2}\right)^{3} - 3 $ $ or = \left(-\frac{1}{2}\right) \left(-\frac{1}{2}\right) $ $ or = \left(-\frac{1}{2}\right) \left(-\frac{1}{2}\right) $ $ c) \qquad \sum = \alpha^{3} + \frac{1}{\beta} + \beta^{3} + $ $ = \alpha^{3} + \beta^{3} + \frac{\alpha + \beta}{\alpha \beta} $ $ e.g. = \frac{23}{8} + \frac{\alpha}{3} $ $ e.g. = \frac{23}{8} + \frac{\alpha}{3} $ $ = (\alpha\beta)^{3} + \alpha^{2} + \beta^{3} $	Scheme			N	Notes	Marks
(b)(i) $\alpha^{2} + \beta^{2} = (\alpha + \beta)^{2} - \alpha$ $= \left(-\frac{1}{2}\right)^{2} - 2$ $\alpha^{3} + \beta^{3} = (\alpha + \beta)^{3} - \alpha$ or $= (\alpha + \beta)((\alpha + \beta)^{2})$ $= \left(-\frac{1}{2}\right)^{3} - 3$ or $= \left(-\frac{1}{2}\right)\left(-\frac{1}{2}\right)$ (c) $\sum = \alpha^{3} + \frac{1}{\beta} + \beta^{3} + \alpha$ $= \alpha^{3} + \beta^{3} + \frac{\alpha + \alpha}{\alpha \beta}$ $e.g. = \frac{23}{8} + \frac{1}{2}$ $\Pi = \left(\alpha^{3} + \frac{1}{\beta}\right)\left(\beta^{3} + \alpha^{2} + \beta^{3} + \alpha^{2} + \beta^{3} + \alpha^{2} + \beta^{3}\right)$ $= (\alpha\beta)^{3} + \alpha^{2} + \beta^{3}$	$2x^2$	+x+4=	= 0 has roots α ,	β		
(ii) $ = \left(-\frac{1}{2}\right)^{2} - 2 $ $ = \left(-\frac{1}{2}\right)^{2} - 2 $ $ \mathbf{or} = (\alpha + \beta)(\alpha) $ $ = \left(-\frac{1}{2}\right)(\alpha) $ $ = \left(-\frac{1}{2}\right)^{3} - 3 $ $ \mathbf{or} = \left(-\frac{1}{2}\right)\left(-\frac{1}{2}\right) $ $ \mathbf{e.g.} = \frac{23}{8} + \frac{\alpha}{4} $ $ \mathbf{e.g.} = \frac{23}{8} + \frac{\alpha}{4} $ $ \mathbf{n} = \left(\alpha\beta\right)^{3} + \alpha^{2} + \beta$ $ = (\alpha\beta)^{3} + \alpha^{2} + \beta$				Bot	h $\alpha + \beta = -\frac{1}{2}$ and $\alpha\beta = 2$	B1
(ii) $\alpha^{3} + \beta^{3} = (\alpha + \beta)^{3} - \alpha \mathbf{r} = (\alpha + \beta)(\alpha)$ $\mathbf{or} = (\alpha + \beta)(\alpha)$ $\mathbf{or} = \left(-\frac{1}{2}\right)^{3} - 3$ $\mathbf{or} = \left(-\frac{1}{2}\right)\left(-\frac{1}{2}\right)$ (c) $\sum = \alpha^{3} + \frac{1}{\beta} + \beta^{3} + \frac{\alpha + \alpha}{\alpha\beta}$ $\mathbf{e.g.} = \frac{23}{8} + \frac{\alpha}{2}$ $\mathbf{II} = \left(\alpha^{3} + \frac{1}{\beta}\right)\left(\beta^{3}\right)^{3}$ $= (\alpha\beta)^{3} + \alpha^{2} + \beta^{3}$	$\alpha^2 + \beta^2 = (\alpha + \beta)^2 - 2\alpha\beta = \dots$				Direct identity for $\alpha^2 + \beta^2$ by be implied by their work	M1
or $= (\alpha + \beta)((\alpha + \beta))$ or $= (\alpha + \beta)((\alpha + \beta))$ $= (-\frac{1}{2})^3 - 3$ or $= (-\frac{1}{2})((-\frac{1}{2}))$ or $= (-\frac{1}{2})(-\frac{1}{2})$ $= (-\frac{1}{2})(-\frac{1}{2})$ $= (-\frac{1}{2})(-\frac{1}{2})$ e.g. $= \frac{23}{8} + \frac{\alpha + \alpha}{\alpha \beta}$ $= (\alpha \beta)^3 + \alpha^2 + \beta$	$= \left(-\frac{1}{2}\right)^2 - 2(2) = -\frac{15}{4}$				$3\frac{3}{4}$ from correct working	A1 cso
or $=\left(-\frac{1}{2}\right)\left(\left(-\frac{1}{2}\right)\right)\left(-\frac{1}{2}\right)$ or $=\left(-\frac{1}{2}\right)\left(-\frac{1}{2}\right)$ $\sum = \alpha^3 + \frac{1}{\beta} + \beta^3 + \frac{\alpha}{\alpha\beta}$ $= \alpha^3 + \beta^3 + \frac{\alpha}{\alpha\beta}$ $= (\alpha\beta)^3 + \alpha^2 + \beta$	$(1+\beta)^2-3\alpha\beta$	=	Use		Deprect identity for $\alpha^3 + \beta^3$ by be implied by their work	M1
$\sum = \alpha^{3} + \frac{\beta}{\beta} + \frac{\beta^{3}}{\beta} + \frac{\alpha}{\alpha \beta}$ $= \alpha^{3} + \beta^{3} + \frac{\alpha}{\alpha \beta}$ $= \alpha^{3} + \frac{1}{\beta} \left(\beta^{3} + \frac{1}{\beta} \right) \left(\beta^{3} + \frac{1}{\beta} \right)$ $= (\alpha \beta)^{3} + \alpha^{2} + \beta$	<i>'</i>		$\frac{23}{8}$ or 2.8	375 or 2	$2\frac{7}{8}$ from correct working	A1 cso
$\sum = \alpha^{3} + \frac{\beta}{\beta} + \frac{\beta^{3}}{\beta} + \frac{\alpha}{\alpha \beta}$ $= \alpha^{3} + \beta^{3} + \frac{\alpha}{\alpha \beta}$ $= \alpha^{3} + \frac{1}{\beta} \left(\beta^{3} + \frac{1}{\beta} \right) \left(\beta^{3} + \frac{1}{\beta} \right)$ $= (\alpha \beta)^{3} + \alpha^{2} + \beta$	1	-30.1	03 . 1		1 1	(4)
$= (\alpha \beta)^3 + \alpha^2 + \beta$	$\frac{\beta}{\beta}$ = $\frac{\beta}{\beta}$	$\alpha\beta(\alpha^3 +$	$\frac{\alpha}{\alpha\beta} + \frac{\beta^3}{\alpha\beta} + (\alpha + \beta)$	α	Simplifies $\frac{1}{\beta} + \frac{1}{\alpha}$ to give $\frac{\alpha + \beta}{\alpha \beta}$ (can be implied) and uses at least two of their $\alpha^3 + \beta^3$, $\alpha + \beta$ or $\alpha\beta$ in an attempt to find a erical value for the sum of $\alpha^3 + \frac{1}{\beta}$ and $\alpha^3 + \frac{1}{\alpha}$	M1
e.g. = $(2)^3 + (-1)^3 + (-$	$\beta^2 + \frac{1}{\alpha\beta}$	$= \frac{\alpha^4 \beta^4}{\alpha^4 \beta^4}$ $= \frac{(\alpha \beta)^4}{\alpha^4 \beta^4}$		+1	Expands $\left(\alpha^3 + \frac{1}{\beta}\right)\left(\beta^3 + \frac{1}{\alpha}\right)$ to give 4 terms and uses at least one of their $\alpha\beta$ or $\alpha^2 + \beta^2$ in an attempt to find a numerical value for the product	M1
$x^2 - \frac{21}{8}x + \frac{19}{4} = 0$			Applies $x^2 - (s^2 + 1)^2$ for their numeric	sum) <i>x</i> + cal valu	product (can be implied), les of the sum and product. In not required for this mark	M1
$8x^2 - 21x + 38 = 0$			Any integer	r multip	to ble of $8x^2 - 21x + 38 = 0$, including the "=0"	A1 cso
						(4) 9

		Question 6 Notes
6. (b)(i)	Note	Writing a correct $\alpha^2 + \beta^2 = (\alpha + \beta)^2 - 2\alpha\beta$ without attempting to substitute at least one
		of either their $\alpha + \beta$ or their $\alpha\beta$ into $(\alpha + \beta)^2 - 2\alpha\beta$ is M0
	Note	An incorrect $\alpha + \beta = \frac{1}{2}$, $\alpha\beta = 2$ from (a) leading to $\alpha^2 + \beta^2 = \left(\frac{1}{2}\right)^2 - 2(2) = -\frac{15}{4}$ is M1 A0
	Note	Give M1 A1 for writing down $\alpha^2 + \beta^2 = -\frac{15}{4}$, if they give $\alpha + \beta = -\frac{1}{2}$, $\alpha\beta = 2$ in (a)
(b)(ii)	Note	Allow M1 A1 for $\alpha^3 + \beta^3 = (\alpha^2 + \beta^2)(\alpha + \beta) - \alpha\beta(\alpha + \beta) = \left(-\frac{15}{4}\right)\left(-\frac{1}{2}\right) - (2)\left(-\frac{1}{2}\right) = \frac{23}{8}$
	Note	E.g. writing a correct $\alpha^3 + \beta^3 = (\alpha + \beta)^3 - 3\alpha\beta(\alpha + \beta)$ without attempting to substitute at
		least one of either their $\alpha + \beta$ or their $\alpha\beta$ into $(\alpha + \beta)^3 - 3\alpha\beta(\alpha + \beta)$ is M0
	Note	E.g. writing a correct $\alpha^3 + \beta^3 = (\alpha + \beta)(\alpha^2 + \beta^2 - \alpha\beta)$ without attempting to substitute at
		least one of either their $\alpha + \beta$, their $\alpha^2 + \beta^2$ or their $\alpha\beta$ into $(\alpha + \beta)(\alpha^2 + \beta^2 - \alpha\beta)$ is M0
	Note	Give M1 A1 for writing down $\alpha^3 + \beta^3 = \frac{23}{8}$, if they give $\alpha + \beta = -\frac{1}{2}$, $\alpha\beta = 2$ in (a)
(b)	ALT	They can use the equation $2x^2 + x + 4 = 0$ with roots α , β to give
		$\begin{cases} 2\alpha^2 + \alpha + 4 = 0 \\ 2\beta^2 + \beta + 4 = 0 \end{cases} \Rightarrow 2\alpha^2 + 2\beta^2 + \alpha + \beta + 8 = 0$
		So, $\alpha^2 + \beta^2 = \frac{1}{2}(-(\alpha + \beta) - 8) = \frac{1}{2}(-\frac{1}{2} - 8) = \frac{1}{2}(\frac{1}{2} - 8) = -\frac{15}{4}$
		$\begin{cases} 2\alpha^3 + \alpha^2 + 4\alpha = 0 \\ 2\beta^3 + \beta^2 + 4\beta = 0 \end{cases} \Rightarrow 2\alpha^3 + 2\beta^3 + \alpha^2 + \beta^2 + 4\alpha + 4\beta = 0$
		So, $\alpha^3 + \beta^3 = \frac{1}{2}(-(\alpha^2 + \beta^2) - 4(\alpha + \beta))) = \frac{1}{2}\left(-\frac{15}{4} - 4\left(-\frac{1}{2}\right)\right) = \frac{1}{2}\left(\frac{15}{4} + 2\right) = \frac{23}{8}$
(a)	Note	Give B0 for α , $\beta = \frac{-1 + \sqrt{31}i}{4}$, $\frac{-1 - \sqrt{31}i}{4}$ and then stating that $\alpha + \beta = -\frac{1}{2}$, $\alpha\beta = 2$
	Note	Give B0 for $\alpha + \beta = \frac{-1 + \sqrt{31}i}{4} + \frac{-1 - \sqrt{31}i}{4} = -\frac{1}{2}$ and $\alpha\beta = \left(\frac{-1 + \sqrt{31}i}{4}\right)\left(\frac{-1 - \sqrt{31}i}{4}\right) = 2$
(b)(i)	Note	Give M0 A0 for $\alpha^2 + \beta^2 = \left(\frac{-1 + \sqrt{31}i}{4}\right)^2 + \left(\frac{-1 - \sqrt{31}i}{4}\right)^2 = -\frac{15}{4}$
(b)(ii)	Note	Give M0 A0 for $\alpha^3 + \beta^3 = \left(\frac{-1 + \sqrt{31}i}{4}\right)^3 + \left(\frac{-1 - \sqrt{31}i}{4}\right)^3 = \frac{23}{8}$
(b)	Note	Using $\frac{-1+\sqrt{31}i}{4}$, $\frac{-1-\sqrt{31}i}{4}$ to find $\alpha+\beta=-\frac{1}{2}$, $\alpha\beta=2$ followed by
		• $\alpha^2 + \beta^2 = \left(-\frac{1}{2}\right)^2 - 2(2) = -\frac{15}{4}$, scores M1 A0 in (b)(i)
		• e.g. $\alpha^3 + \beta^3 = \left(-\frac{1}{2}\right)^3 - 3(2)\left(-\frac{1}{2}\right) = \frac{23}{8}$, scores M1 A1 in (b)(ii)
(c)	Note	A correct method leading to $p = 8$, $q = -21$, $r = 38$ without writing a final answer of
		$8x^2 - 21x + 38 = 0$ is final M1 A0

		Question 6 Notes Continued
6. (c)	Note	Using $\frac{-1+\sqrt{31}i}{4}$, $\frac{-1-\sqrt{31}i}{4}$ explicitly to find the sum and product of $\alpha^3 + \frac{1}{\beta}$ and $\beta^3 + \frac{1}{\alpha}$
		• i.e. sum = $\left(\frac{-1+\sqrt{31}i}{4}\right)^3 + \frac{1}{\left(\frac{-1-\sqrt{31}i}{4}\right)} + \left(\frac{-1-\sqrt{31}i}{4}\right)^3 + \frac{1}{\left(\frac{-1+\sqrt{31}i}{4}\right)} = \frac{21}{8}$
		• ie. product $= \left(\left(\frac{-1 + \sqrt{31}i}{4} \right)^3 + \frac{1}{\left(\frac{-1 - \sqrt{31}i}{4} \right)} \right) \left(\left(\frac{-1 - \sqrt{31}i}{4} \right)^3 + \frac{1}{\left(\frac{-1 + \sqrt{31}i}{4} \right)} \right) = \frac{19}{4}$
		• $x^2 - \frac{21}{8}x + \frac{19}{4} = 0 \implies 8x^2 - 21x + 38 = 0$
		scores M0 M0 M1 A0 in part (c).
	Note	Using $\frac{-1+\sqrt{31}i}{4}$, $\frac{-1-\sqrt{31}i}{4}$ to find $\alpha+\beta=-\frac{1}{2}$, $\alpha\beta=2$
		and applying $\alpha + \beta = -\frac{1}{2}$, $\alpha\beta = 2$ can potentially score full marks in (c). E.g.
		• sum = $\alpha^3 + \beta^3 + \frac{\alpha + \beta}{\alpha \beta} = \frac{23}{8} + \frac{\left(-\frac{1}{2}\right)}{2} = \frac{21}{8}$
		• product = $(\alpha\beta)^3 + \alpha^2 + \beta^2 + \frac{1}{\alpha\beta} = (2)^3 + \left(-\frac{15}{4}\right) + \frac{1}{2} = \frac{19}{4}$
		• $x^2 - \frac{21}{8}x + \frac{19}{4} = 0 \implies 8x^2 - 21x + 38 = 0$
	Note	Give final M0 for $\sum = \frac{21}{8}$, $\Pi = \frac{19}{4}$ leading to $x^2 - \frac{21}{8} + \frac{19}{4} = 0$ (without recovery)
	Note	Allow final M1 for $\sum = \frac{21}{8}$, $\Pi = \frac{19}{4}$ with $x^2 - (\text{sum})x + (\text{product})$ leading to
		$x^2 - \frac{21}{8} + \frac{19}{4} = 0$
	Note	An alternative method uses a correct $\left(x - \alpha^3 - \frac{1}{\beta}\right) \left(x - \beta^3 - \frac{1}{\alpha}\right) = 0$
	Note	Allow 1 st M1 and/or 2 nd M1 for using an incorrect $\left(x - \alpha^3 + \frac{1}{\beta}\right) \left(x - \beta^3 + \frac{1}{\alpha}\right) = 0$
	Note	Give final M0 for an incorrect $\left(x - \alpha^3 + \frac{1}{\beta}\right)\left(x - \beta^3 + \frac{1}{\alpha}\right) = 0$ unless recovered
	Note	When expanding $\left(\alpha^3 + \frac{1}{\beta}\right) \left(\beta^3 + \frac{1}{\alpha}\right)$ to give $(\alpha\beta)^3 + \alpha^2 + \beta^2 + \frac{1}{\alpha\beta}$, some will write $\frac{\alpha + \beta}{\alpha\beta}$
		in place of $\frac{1}{\alpha\beta}$
		So, allow 2 nd M1 for expanding $\left(\alpha^3 + \frac{1}{\beta}\right)\left(\beta^3 + \frac{1}{\alpha}\right)$ to give $(\alpha\beta)^3 + \alpha^2 + \beta^2 + \frac{\alpha + \beta}{\alpha\beta}$ and
		using at least one of their $\alpha\beta$ or $\alpha^2 + \beta^2$ in an attempt to find a numerical value for the product.

Question Number		Scheme Notes					
7.	$f(z) = z^4$	$a^4 - 6z^3 + az^2 - 44z + b$; a, b and	re real constants. $z = -1 - 3i$ is given.				
(a)	-1 + 3i			-1 + 3i	B1		
					(1)		
(b)			Attempt to expand $(z \pm (-1-3i))(z$				
			or any valid method <i>to establish a qua</i>	•			
		$z^2 + 2z + 10$	e.g. $z = -1 \pm 3i \Rightarrow z + 1 = \pm 3i \Rightarrow z^2$	M1			
		Z 1 Z 1 10	or sum of roots = -2 , product				
			to give $z^2 \pm (\text{their sum})z \pm (\text{their sum})$				
			A.,	$\frac{z^2 + 2z + 10}{1 + \frac{1}{2}}$	A1		
			Attempts to find the other quee.g. using long divi				
				$k = \text{value} \neq 0$			
	(f(-))	$(z^2+2z+10)(z^2-8z+18)$	e.g. factorising/equating coeffici		M1		
	$\{1(z)=\}$	(z + 2z + 10)(z - 8z + 18)	$f(z) = (z^2 + 2z + 10)$				
			() ()	0, c can be 0			
			$z^2 - 8z + 18$ seen in		A1		
	$\{z^2 - 8z\}$	+18=0⇒}	2 32 12 30011	then working			
			dependent on only the prev	ious M mark			
	• $z = \frac{8 \pm \sqrt{(-8)^2 - 4(1)(18)}}{2(1)}$		Correct method of applying the quadratic formula or completing the square for solving their 3TQ				
		$0^2 - 16 + 18 = 0 \Rightarrow z = \dots$	on their 2 nd qu		A1		
	$\{z = \}$ 4	·±√21	$4+\sqrt{2}i$ and $4-\sqrt{2}i$				
					(6)		
			Question 7 Notes				
7. (a)	Note	Give B1 for either $4 + \sqrt{2}i$ or	$r 4 - \sqrt{2}i$				
(b)	Note	The values of the constants, i	.e. $a=12$, $b=180$ do not have to be fou	nd explicitly.			
	Note	You can assume $x \equiv z$ for so	olutions in this part				
	Note	Give final dM1A1 for $z^2 - 8z^2$	$z+18=0 \Rightarrow z=4+\sqrt{2}i, 4-\sqrt{2}i \text{ with } $	no intermediat	e		
		working.					
	Note	They must be solving a 3TQ	" A " $z^2 +$ " B " $z +$ " C " where				
		A, B, C are all numerical ve	alues $\neq 0$ for the final dM1 mark.				
	Note		<i>adratic</i> factor $z^2 + "B"z + "C"$ can be f	actorised then			
			r correct factorisation leading to $z =$				
	Otherwise, give 3 rd dM0 for applying a method of factorisation to solve their 3TQ.						
	Note						
		Formula: $Az^2 + Bz + C = 0 \Rightarrow$ Attempt to use the correct formula (with values for A, B, C)					
		Completing the Square: $z^2 + Bz + C = 0 \Rightarrow \left(z \pm \frac{B}{2}\right)^2 \pm q \pm C = 0, q \neq 0$, leading to $z =$					
	Note:						
	$z^{3}: \alpha+2=-6 \Rightarrow \alpha=-8; z: 2\beta+10\alpha=-44 \Rightarrow 2\beta-80=-44 \Rightarrow \beta=18$						
		$z: \alpha + 2 = -6 \Rightarrow \alpha = -8; z: 2p + 10\alpha = -44 \Rightarrow 2p - 80 = -44 \Rightarrow p = 18$ yielding 2 nd quadratic factor = $z^2 - 8z + 18$					
				. 10			

		Question 7 Notes Continued
7. (b)	Note:	Long division:
		$z^2 - 8z + 18$
		$z^2 + 2z + 10 \mid \overline{z^4 - 6z^3 + az^2 - 44z + b}$
		$z^4 + 2z^3 + 10z^2$
		$-8z^3 + (a-10)z^2 - 44z$
		$-8z^3 -16z^2 -80z$
		$(a+6)z^2+36z+b$
		$18z^2 + 36z + 180$
		0
		Also, note $a = 12, b = 180$
	Note	Ignore errors in long division for the 2 nd A1 mark and/or the 3 rd A1 mark.
	Note	Ignore errors in stating $a = 12$, $b = 180$ for the 2 nd A1 mark and/or the 3 rd A1 mark.
	Note	The solutions $4 \pm \sqrt{2}i$ need to follow on from a correct $z^2 - 8z + 18$ in order to gain the final
		A mark.
	Note	Give final A0 for writing $\frac{8 \pm 2\sqrt{2}i}{2}$ followed by either $4 \pm 2\sqrt{2}i$ or $8 \pm \sqrt{2}i$

Question Number	Scheme		Notes		Mark	KS
8.	$f(n) = 3^{4n-2} + 2^{6n-3}$ is divisible by 17					
Way 1	$f(1) = 3^2 + 2^3 = 17$ {is divisible by 17}		f(1) = 17 is the minimum		B1	
	$f(k+1)-f(k) = 3^{4(k+1)-2} + 2^{6(k+1)-3} - (3^{4k-2} + 2^{6(k+1)-3})$	$^{6k-3}$)	Atte	mpts $f(k+1)-f(k)$	M1	
	$f(k+1) - f(k) = 80(3^{4k-2}) + 63(2^{6k-3})$					
	$=80(3^{4k-2}+2^{6k-3})-17(2^{6k-3})$	80	$(3^{4k-2} + 2^{6k-3})$ or 80	$(2^{2} + 2^{6k-3})$ or $(80f(k))$; $(-17(2^{6k-3}))$ $(2^{2} + 2^{6k-3})$ or $(63f(k))$; (4^{2k-2})		A 1
	$\mathbf{or} = 63(3^{4k-2} + 2^{6k-3}) + 17(3^{4k-2})$	63	$(3^{4k-2} + 2^{6k-3})$ or 63	$f(k); +17(3^{4k-2})$	A1;	A1
	$f(k+1) = 80(3^{4k-2} + 2^{6k-3}) - 17(2^{6k-3}) + f(k)$	or	dependent or	n at least one of the		
	$f(k+1) = 63(3^{4k-2} + 2^{6k-3}) + 17(3^{4k-2}) + f(k)$		-	narks being gained	dM1	
	$f(k+1) = 80f(k) - 17(2^{6k-3}) + f(k)$ or			abject and expresses $2^{4k-2} \cdot 2^{6k-3}$	divii	
	$f(k+1) = 63f(k) + 17(3^{4k-2}) + f(k)$	1	in terms of $f(k)$ an	$d/or (3^{m-2} + 2^{m-3})$		
	If the result is $\underline{\text{true for } n = k}$, then it is $\underline{\text{true for }}$	n = k	+1. As the result ha	s been shown to be	A1 c	80
	$\underline{\text{true for } n=1}$, then the res	ult <u>is t</u>	$\frac{\text{que for all } n}{n} \ \ (\in \mathbb{Z}^+)$		AIC	30
						(6)
Way 2	$f(1) = 3^2 + 2^3 = 17$ {is divisible by 17}		f(1)	= 17 is the minimum	B1	
	$f(k+1) = 3^{4(k+1)-2} + 2^{6(k+1)-3}$			Attempts $f(k+1)$	M1	
	$f(k+1) = 81(3^{4k-2}) + 64(2^{6k-3})$			T		
	$=81(3^{4k-2}+2^{6k-3})-17(2^{6k-3})$	81	$(3^{4k-2} + 2^{6k-3})$ or 81	$f(k)$; $-17(2^{6k-3})$	A1;	A1
	$\mathbf{or} = 64(3^{4k-2} + 2^{6k-3}) + 17(3^{4k-2})$	64	$(3^{4k-2} + 2^{6k-3})$ or 64	f(k); +17(3 ^{4k-2})	111,	
	$f(k+1) = 81(3^{4k-2} + 2^{6k-3}) - 17(2^{6k-3})$ or		-	n at least one of the		
	/ / - (- / - / -			narks being gained abject and expresses	dM1	
	$f(k+1) = 81f(k) - 17(2^{6k-3})$ or		in terms of $f(k)$ an	_		
	$f(k+1) = 64f(k) + 17(3^{4k-2})$					
	If the result is <u>true for $n = k$</u> , then it is <u>true for</u>			s been shown to be	A1 c	so
	true for $n=1$, then the res	ult is t	$\underline{\text{ue for all } n} \ \ (\in \mathbb{Z}^+)$			
W2	Conoral Mathady Using	r f (z	1) $mf(k)$ $m \in \mathbb{Z}$			(6)
Way 3	General Method: Using $f(1) = 3^2 + 2^3 = 17$ {is divisible by 17}	g 1 (K +		=17 is the minimum	B1	
	$\frac{f(k+1) - mf(k) = 3^{4(k+1)-2} + 2^{6(k+1)-3} - m(3^{4k-2})}{f(k+1) - mf(k) = 3^{4(k+1)-2} + 2^{6(k+1)-3} - m(3^{4k-2})}$, 26k-	` '	pts $f(k+1) - mf(k)$	M1	
	$f(k+1) - mf(k) = (81 - m)(3^{4k-2}) + (64 - m)(2^{4k-2})$) recon	pts 1 (k + 1) m1 (k)	IVII	
	$= (81-m)(3^{4k-2} + 2^{6k-3}) - 17(2^{6k-3}) \text{ or } (81$		$\frac{4k-2}{4k-3}$ or (81)	$m)f(k): 17(2^{6k-3})$		
	$= (64 - m)(3^{4k-2} + 2^{6k-3}) + 17(3^{4k-2}) $ (64)				A1;	A1
	$f(k+1) = (81-m)(3^{4k-2} + 2^{6k-3}) - 17(2^{6k-3}) + r$			on at least one of the	<u> </u>	
	$f(k+1) = (61-m)(3+2) - 17(2) + 7$ $f(k+1) = (64-m)(3^{4k-2} + 2^{6k-3}) + 17(3^{4k-2}) + 7(3^{4k-2}) + 17(3^{4k-2}) + 17(3^{4$	` /	previous A	marks being gained	l	
	Wakes I (k + 1) the subject and				ulvi	[1
	$f(k+1) = (81-m)f(k) - 17(2^{6k-3}) + mf(k) $ expresses it in terms of $f(k)$ $f(k+1) = (64-m)f(k) + 17(3^{4k-2}) + mf(k) $ and/or $(3^{4k-2} + 2^{6k-3})$					
	If the result is true for $n = k$, then it is true for $n = k + 1$. As the result has been shown to be					
	true for $n=1$, then the res				A1	cso
	$\frac{\text{duc for } n=1, \text{ then the res}}{n}$	Suit IS	$\frac{100 101 \text{ all } n}{ }$,		(6)
						6
	•		<u>.</u>			

Question Number	Scheme	Scheme Notes I		
8.	$f(n) = 3^{4n-2} + 2^{6n-3}$ is divisible by 17			
Way 4	General Method: Using $f(k+1)$	$0-mf(k), m\in\mathbb{Z}$		
	$f(1) = 3^2 + 2^3 = 17$ {is divisible by 17}	f(1) = 17 is the minimum	B1	
	$f(k+1) - mf(k) = 3^{4(k+1)-2} + 2^{6(k+1)-3} - m(3^{4k-2} + 2^{6k-3})$	Attempts $f(k+1) - mf(k)$	M1	
	$f(k+1) - mf(k) = (81 - m)(3^{4k-2}) + (64 - m)(2^{6k-3})$			
	F ~ 47 → f(L + 1) 47f(L) 24(24k-2) + 17(26k-3	$m = 47$ and $34(3^{4k-2})$	A1	
	E.g. $m = 47 \Rightarrow f(k+1) - 47f(k) = 34(3^{4k-2}) + 17(2^{6k-3})$	$m = 47$ and $17(2^{6k-3})$	A1	
	$f(k+1) = 34(3^{4k-2}) + 17(2^{6k-3}) + 47f(k)$	dependent on at least one of the previous A marks being gained Makes $f(k+1)$ the subject and expresses it in terms of $f(k)$	dM1	
	If the result is true for $n = k$, then it is true for $n = k + k$			
	true for $n=1$, then the result is true	-	A1 cso	
		()	(6)	
	In Way 4 there are many al See below for examples of alternatives w The A1A1dM1 marks for some alternatives u	here $m = 30$ and $m = 13$		
XX7 4.1		$\frac{1}{2}$		
Way 4.1	$f(k+1) = 81(3^{4k-2}) + 64(2^{6k-3})$			
	$= 30(3^{4k-2}) + 30(2^{6k-3}) + 51(3^{4k-2}) + 34(2^{6k-3})$	20 151(24k-2)	A 1	
	$= 30(3^{4k-2} + 2^{6k-3}) + 51(3^{4k-2}) + 34(2^{6k-3})$	$m = 30$ and $51(3^{4k-2})$	A1	
		$m = 30$ and $34(2^{6k-3})$ dependent on at least one of the	A1	
	$f(k+1) = 30(3^{4k-2} + 2^{6k-3}) + 51(3^{4k-2}) + 34(2^{6k-3})$	previous A marks being gained		
	or $f(k+1) = 30f(k) + 51(3^{4k-2}) + 34(2^{6k-3})$	Makes $f(k+1)$ the subject and	dM1	
	$01 \cdot 1(k+1) = 301(k) + 31(3 + 34(2 + 3))$	expresses it in terms of $f(k)$		
	24 - 2 - 4 - 2 - 4 - 4 - 2 - 4 - 4 - 4 -	and/or $(3^{4k-2} + 2^{6k-3})$		
Way 4.2	$f(k+1) = 81(3^{4k-2}) + 64(2^{6k-3})$			
	$= 13(3^{4k-2}) + 13(2^{6k-3}) + 68(3^{4k-2}) + 51(2^{6k-3})$			
	$= 13(3^{4k-2} + 2^{6k-3}) + 68(3^{4k-2}) + 51(2^{6k-3})$	$m = 13$ and $68(3^{4k-2})$	A1	
	,	$m = 13$ and $51(2^{6k-3})$	A1	
		dependent on at least one of the previous A marks being gained		
	$f(k+1) = 13(3^{4k-2} + 2^{6k-3}) + 68(3^{4k-2}) + 51(2^{6k-3})$	Makes $f(k+1)$ the subject and	dM1	
	or $f(k+1) = 13f(k) + 68(3^{4k-2}) + 51(2^{6k-3})$	expresses it in terms of $f(k)$		
		and/or $(3^{4k-2} + 2^{6k-3})$		

				n 8 Notes			
	Note	$f(n) = 3^{4n-2} + 2^{6n-3}$ can be written	as $f(n)$	$=3^{4n-2}+8^{2n-1}$			
Way 5	f(n) = 3	$3^{4n-2} + 2^{6n-3} = 3^{4n-2} + 8^{2n-1}$					
	f(1) = 3	$^{2} + 8^{1} = 17$ {is divisible by 17}		$f(1) = 17_{is}$	the minimum	B1	
	f(k+1)	$-f(k) = 3^{4(k+1)-2} + 8^{2(k+1)-1} - (3^{4k-2} +$	-8^{2k-1})	Attempts f	(k+1)-f(k)	M1	
		$-f(k) = 80(3^{4k-2}) + 63(8^{2k-1})$		•			
	= 80	$(3^{4k-2} + 8^{2k-1}) - 17(8^{2k-1})$	$80(3^{4k-2} + 8^{2k-1}) - 17(8^{2k-1})$ $80(3^{4k-2} + 8^{2k-1}) \text{ or } 80f(k);$			A1;	A1
	or = 63	$3(3^{4k-2} + 8^{2k-1}) + 17(3^{4k-2})$	63	$8(3^{4k-2} + 8^{2k-1})$ or $63f(k)$;	$+17(3^{4k-2})$	711,	711
	f(k+1)	$f(k+1) = 80(3^{4k-2} + 8^{2k-1}) - 17(8^{2k-1}) + f(k) \text{ or } f(k+1) = 63(3^{4k-2} + 8^{2k-1}) + 17(3^{4k-2}) + f(k) \text{ or } f(k+1) = 80f(k) - 17(8^{2k-1}) + f(k) \text{ or } Makes f(k+1) \text{ the subject and expresses}$					
		$+1) = 63f(k) + 17(3^{4k-2}) + f(k)$ it in terms of $f(k)$ and/or $(3^{4k-2} + 8^{2k-1})$					
	If the re	result is true for $n = k$, then it is true for $n = k + 1$. As the result has been shown to be					
		true for $n = 1$, then the result is true for all $n \in \mathbb{Z}^+$					SO
	Note	Some students may set $f(k) = 17M$	and so	may prove the following ge	neral results		
		• $\{f(k+1) = 81f(k) - 17(2^{6k-1})\}$	$^{-3})\} \Rightarrow f$	$f(k+1) = 1377M - 17(2^{6k-3})$) or $= 17(3^4 M)$	$1 - 2^{6k}$	⁻³)
		• { $f(k+1) = 64f(k) + 17(3^{4k})$:-2)} ⇒	$f(k+1) = 1088M + 17(3^{4k-1})$	2) or = 17(2 6 .	$M + 3^4$	$^{4k-2}$)
	Note	Final A1 mark is dependent on al	ll previo	us marks being scored in (Q8		
	Note	Final A1: There must be a correct final expression for f(k+1) and a correct conclusion. The conclusion must convey the ideas of all four underlined points either at the end of their solution or as a narrative in their solution. Allow as part of their conclusion "true for all positive values of n"					
	Note						
	Note	Allow as part of their conclusion "true for all values of n"					
	Note	Allow as part of their conclusion "true for all $n \in \mathbb{N}$ "					
	Note	Referring to <i>n</i> as a real number in the	heir cond	clusion (e.g. true for all $n \in$	\mathbb{R}) is final A0		
	Note	Condone $n \in \mathbb{Z}^*$ as part of their cor					
	Note	Allow $f(k+1) = 3^4 f(k) - 17(2^{6k-3})$					
	Note	Allow $f(k+1) = 2^6 f(k) + 17(3^{4k-2})$	as a cor	rect alternative to $f(k+1) =$	$=64f(k)+17(3^{\circ})$	$^{4k-2}$)	

Question Number	Scheme Notes				Notes	Marks	
9.	$C: y^2 = 4ax; \ P(ap^2,$	2 <i>ap</i>) 1	lies on C ; circle	$(x-10a)^2$	$x^2 + y^2 = \frac{9}{4}a^2$		
(a)	$y = 2\sqrt{a} x^{\frac{1}{2}} \implies$	$\frac{\mathrm{d}y}{\mathrm{d}x} = \cdot$	$\sqrt{a} x^{-\frac{1}{2}} = \frac{\sqrt{a}}{\sqrt{x}}$			$\frac{\mathrm{d}y}{\mathrm{d}x} = \pm k x^{-\frac{1}{2}}; k \neq 0$	
	$2y\frac{\mathrm{d}y}{\mathrm{d}x} = 4a$					$ky \frac{\mathrm{d}y}{\mathrm{d}x} = c; k, c \neq 0$	M1
	$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{\mathrm{d}y}{\mathrm{d}t} \cdot \frac{\mathrm{d}t}{\mathrm{d}x} = 2a \left(\frac{1}{2ap}\right)$				their $\frac{\mathrm{d}y}{\mathrm{d}t} \times \frac{1}{\text{their}}$	$\frac{dx}{dt}$; Condone $t \equiv p$	
	{At $P, x = ap^2, y = 2$	2ap ⇒	$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{1}{p}$	Cor	rect calculus wo	ork leading to $m_T = \frac{1}{p}$	A1
	So, at P , $m_N = -p$	who	ere m_T is found		m_T	find m_N in terms of p , lied by later working.	M1
	either $y - 2ap = -p(x - a)$		or	-	Correct straig	ght line method for an on of a normal, where found using calculus.	M1
	$0-2ap = -p(10a - ap^{2})$ $2ap - 0 = -p(10a - ap^{2})$ $\Rightarrow p = \dots \Rightarrow x = \dots \text{ or } y = \dots$ $\text{or } 2ap - 0 = -p(x - 10a) \Rightarrow x = \dots$				4	dependent on the previous M mark mplete method to find <i>x</i> or <i>y</i> coordinate of <i>P</i>	dM1
	either $x = 8a$,	<u> </u>		ı	$= 8a \text{ or } y = 4\sqrt{2}$	a or y = awrt 5.66a	A1
	P(8a, 4	$4\sqrt{2}a$)	P(8a,	$4\sqrt{2}a$) or both	$x = 8a$ and $y = 4\sqrt{2}a$	A1
	Note: $p = 2\sqrt{2}$	$\sqrt{2}$ or	$\sqrt{8}$. Note: Ign	ore the addi	tional solution P	$(8a, -4\sqrt{2}a)$	(7)
(b) Way 1	Area $SBP = \frac{1}{2}(10a - a)$	$a)(4\sqrt{2}$	<u>2</u> a)		$\frac{1}{2}(10a -$	$-a$)(their y_P from (a))	M1
	$=18\sqrt{2}a^2$					$18\sqrt{2}a^2$	A1
(c) Way 1	$PB = \sqrt{(10a - "8a")^2}$	+("4	$\frac{1}{\sqrt{2}a")^2} = \{=6a\}$			te Pythagoras method for finding length <i>PB</i>	(2) M1
	PR = 6a - 1.5a				-	he previous M mark $PR = \text{"their } 6a \text{"} - 1.5a$	dM1
	PR = 4.5a					PR = 4.5a	A1
			<u></u>				(3)
(c) Way 2	$p = 2\sqrt{2} \implies l: y = -2\sqrt{2}$ $(x - 10a)^2 + (-2\sqrt{2}x - 2\sqrt{2}x - 2$	$+20\sqrt{2}$ $91a^2 =$	$(\overline{2}a)^2 = \frac{9}{4}a^2$ $= 0$	equa	tion followed by	ion of l into the circle y a correct method for o give $x =$ or $y =$	M1
	$\Rightarrow R(9.5a, \sqrt{2}a)$ $PR = \sqrt{(9.5a - 8a)^2 + (\sqrt{2}a - 4\sqrt{2}a)^2}$			Cor	mplete applied P	he previous M mark by thagoras method for their P and their R	dM1
	PR = 4.5a					PR = 4.5a	A1 (3)
							(3)

Question Number		Scheme		Notes	Marks	
9. (b) Way 2	Area SBI	$P = \frac{1}{2} \begin{vmatrix} a & 10a & "8a" & a \\ 0 & 0 & "4\sqrt{2}a" & 0 \end{vmatrix}$ $= \frac{1}{2} \begin{vmatrix} 0 - 0 + 40\sqrt{2}a^2 - 0 + 0 - 4\sqrt{2}a \end{vmatrix}$	a^2	Complete applied method for finding area SBP using $S(a, 0)$, $B(10a, 0)$ and their P from (a)	M1	
		$=18\sqrt{2}a^2$		$18\sqrt{2}a^2$	A1	
					(2)	
9. (c) Way 3		$-1.5\cos\left(\tan^{-1}\left(\frac{"4\sqrt{2}a"}{10a-"8a"}\right)\right)$ $\sin\left(\tan^{-1}\left(\frac{"4\sqrt{2}a"}{10a-"8a"}\right)\right)$	Use	s their P from (a) in a correct method for writing down either x_R or y_R	M1	
	$\Rightarrow R(9.56)$	$(a,\sqrt{2}a)$				
	$PR = \sqrt{9}$	$9.5a - 8a)^2 + (\sqrt{2}a - 4\sqrt{2}a)^2$		dependent on the previous M mark Complete applied Pythagoras method for the distance between their <i>P</i> and their <i>R</i>	dM1	
	PR = 4.5	a		PR = 4.5a	A1	
					(3)	
			Question	,	. 1	
9. (a)	Note	Allow 1 st M1 1 st A1 (sufficient us	se of calc	ulus) for $\{m_T =\} \frac{4a}{2y}$ which leads to $\{m_T =\}$	$=$ $\frac{1}{p}$	
	Note	Allow 1st M1 1st A1 (sufficient us	se of calc	ulus) for $\{m_T = \} \sqrt{\frac{a}{x}}$ which leads to $\{m_T = \}$	=	
	Note	Give 3 rd M1 for either • $2ap = "(-p)"(ap^2) + c \Rightarrow y = "(-p)"(10a) + c \Rightarrow y = "(-p)"($	` • ′			
	Note	Writing coordinates the wrong w	ay around	1		
		E.g. finding $x = 8a$, $y = 4\sqrt{2}a$ f	followed l	by $(4\sqrt{2}a, 8a)$ is final A0		
	Note	Give final A0 for (8 <i>a</i> , 5.65685	a) witho	ut reference to $y = 4\sqrt{2} a$ or $2\sqrt{8} a$		
	Note	Accept $y_P = 2\sqrt{8}a$ written in place of $y_P = 4\sqrt{2}a$ for the final A1 A1 marks				
	Note	Special Case				
		If they write down either $\frac{dy}{dx} = \frac{1}{p}$, $m_T = \frac{1}{p}$ or $m_N = -p$ with no evidence of using calculus				
		then they can gain any of or all the final 4 marks in part (a).				
	ALT	Alternative Method for the 3 rd M mark and 4 th M mark				
		$\{B(10a, 0), P(ap^2, 2ap) \Rightarrow \}$ $m_{BP} = \frac{2ap - 0}{ap^2 - 10a} = -p$		Finds gradient of <i>BP</i> and sets the result equal to the gradient of their normal	3 rd M1	
		$\Rightarrow p = \dots \Rightarrow x = \dots \text{ or } y = \dots$		dependent on the previous M mark Complete method to find either the x or y coordinate of P	4 th M1	

		Question 9 Notes Continued
9. (b)	Note	Give A0 25.4558 a^2 without reference to $18\sqrt{2}a^2$
	Note	Condone one slip of either writing 9 for $10a - a$ or writing " $4\sqrt{2}$ " instead of " $4\sqrt{2}a$ "
		for the M mark in (b)
(c)	Note	Way 2: For reference,
		$(x-10a)^2 + (-2\sqrt{2}x + 20\sqrt{2}a)^2 = \frac{9}{4}a^2$
		$x^2 - 20ax + 100a^2 + 8x^2 - 160ax + 800a^2 = \frac{9}{4}a^2$
		$9x^2 - 180ax + 900a^2 = \frac{9}{4}a^2$
		$9x^2 - 180ax + \frac{3591}{4}a^2 = 0 \text{or} 9x^2 - 180ax + 897.75a^2 = 0$
		or $x^2 - 20ax + 99.75a^2 = 0$ or $4x^2 - 80ax + 399a^2 = 0$
		$x = \frac{180a \pm \sqrt{(180a)^2 - 4(9)(\frac{3591}{4})a^2}}{2(9)} = \frac{180a \pm 9a}{2(9)}$
		$x = \frac{189a}{18}, \frac{171a}{18} = 10.5a, 9.5a$
	Note	The method $PB = \sqrt{(10a - "8a")^2 + ("4\sqrt{2}a")^2}$ needs to be referred to in part (c) or the
		result of $PB = \sqrt{(10a - "8a")^2 + ("4\sqrt{2}a")^2}$ needs to be used in part (c) to gain the M
		mark in part (c)