

03CD
#3

PATENT

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

Applicants:	Wagner et al.	Examiner:	Unassigned
Serial No.:	10/004,099	Group Art Unit:	Unassigned
Confirmation No.:	TBA	Docket:	442-129
Filed:	October 31, 2001	Dated:	December 20, 2001

For: SENSOR ARRANGEMENT FOR
APPLICATION TO AT LEAST ONE DATA
ITEM

I hereby certify this correspondence is being deposited
with the United States Postal Service as first class mail,
postpaid in an envelope, addressed to:
Assistant Commissioner for Patents, Washington, D.C.
20231 on December 20, 2001

Dated: 12/20/01 /

Assistant Commissioner for Patents
Washington, DC 20231

TRANSMITTAL OF CERTIFIED COPY OF PRIORITY DOCUMENT

Sir:

In order to perfect the claim of priority set forth in the Combined Declaration and Power of Attorney, certified copies of the priority documents listed therein are submitted herewith. In particular, the priority documents included the following:

<u>Country</u>	<u>Application No.</u>	<u>Date of Filing</u>
Germany	100 54 288.3	November 2, 2000

Respectfully submitted,

Gregory W. Bachmann
Registration No.: 41,593
Attorney for Applicants

HOFFMANN & BARON, LLP
6900 Jericho Turnpike
Syosset, New York 11791
(516) 822-3550

GWB/jc

146444_1

BUNDESREPUBLIK DEUTSCHLAND

Prioritätsbescheinigung über die Einreichung einer Patentanmeldung

Aktenzeichen: 100 54 288.3
Anmeldetag: 02. November 2000
Anmelder/Inhaber: FESTO AG & Co,
Esslingen/DE
Bezeichnung: Sensoranordnung zur Erfassung wenigstens eines Messwerts
IPC: G 01 D 5/12

Die angehefteten Stücke sind eine richtige und genaue Wiedergabe der ursprünglichen Unterlagen dieser Patentanmeldung.

München, den 18. Oktober 2001
Deutsches Patent- und Markenamt
Der Präsident
Im Auftrag

Hoß

FESTO AG & Co, 73734 Esslingen

Sensoranordnung zur Erfassung wenigstens eines Meßwerts

Die Erfindung betrifft eine Sensoranordnung zur Erfassung wenigstens eines Meßwerts, mit einer wenigstens drei Leitungen aufweisenden Leitungsanordnung, durch die die Sensoranordnung mit einem externen elektrischen Gerät verbindbar ist, wobei zwei Leitungen als Spannungsversorgungsleitungen und wenigstens eine dritte Leitung als Sensorsignalleitung zur Übertragung von Sensorsignalen zum elektrischen Gerät ausgebildet ist.

Es besteht häufig der Wunsch, die Sensoreigenschaften derartiger Sensoranordnungen auch noch nach dem Einbau am Einsatzort einstellen oder verändern zu können, oder um die Sensoranordnung an sich geänderte Anforderungen anpassen zu können. Vor allem bei Sensoren mit sehr kleiner Bauform ist ein separater elektrischer Anschluß für eine derartige Parametrierung nicht möglich, und auch eine kabellose Verbindung zu einer Parametrierelektronik über Funk, Infrarot oder dergleichen scheidet aus Platz- und Kostengründen aus.

Eine Aufgabe der vorliegenden Erfindung besteht somit darin, auch bei Sensoranordnungen mit sehr kleiner Bauform eine Vor-

gabe oder Veränderung der Sensoreigenschaften ohne große Veränderung der Hardware der Sensoranordnung zu ermöglichen.

Diese Aufgabe wird erfindungsgemäß durch die Merkmale des Anspruchs 1 gelöst.

In vorteilhafter Weise wird die ohnehin vorhandene wenigstens eine Sensorsignalleitung auch zur Parametrierung verwendet, so daß keine zusätzlichen Anschlußleitungen oder drahtlose Datenübertragungsmittel erforderlich sind. Eine externe Parametriereinrichtung kann bei Bedarf an die wenigstens eine Sensorsignalleitung angeschlossen werden und Parametriersignale übertragen, wobei dann daraus abgeleitete Parametrierverte in der Sensoranordnung gespeichert werden. Auch eine Veränderung der Sensoreigenschaften kann dadurch noch leicht nachträglich durchgeführt werden.

Durch die in den Unteransprüchen aufgeführten Maßnahmen sind vorteilhafte Weiterbildungen und Verbesserungen der im Anspruch 1 angegebenen Sensoranordnung möglich.

In einer einfachen ersten Ausführung der Parametriereinrichtung ist diese als Teach-in-Vorrichtung zur Erzeugung eines Übernahmesignals ausgebildet, durch das der augenblicklich anliegende Meßwert als wenigstens ein Schalt- oder Schwellwert in die Speicheranordnung übernommen wird, wobei die Parametriereinrichtung in diesem Falle vorzugsweise als einfacher Kurzschlußschalter ausgebildet sein kann.

Die Parametriereinrichtung kann jedoch auch in aufwendigerer Ausführung als Eingangsmodul des elektronischen Geräts oder als separates Parametriergerät ausgebildet sein, das vorzugsweise mit einem Display und Bedienungselementen versehen ist, um auch aufwendigere Parametriereinstellungen vornehmen zu können.

Die Parametriereinrichtung ist vorzugsweise zur Übertragung von Parametriersignalen, wie die Einstellung von Schaltpunkten, Sensor- und/oder Schaltfunktionen, Sensor- und/oder Schaltcharakteristiken, Schaltzeiten, Sensoransprechschwelen, Hysteresen oder Fensterfunktionen, ausgebildet.

Die Parametriersignale sind zweckmäßigerweise als digitale Signalfolgen erzeugbar und den jeweils vorliegenden Sensorsignalen überlagerbar, so daß die Übertragung von Sensorsignalen und Parametriersignalen gleichzeitig erfolgen kann.

In einer bevorzugten Ausführung liegen die Sensorsignale in Form von wenigstens zwei unterschiedlichen Signalpegeln vor, wobei die Signalpegel der überlagerten Parametriersignale vorzugsweise derart kleiner als die Sensorsignalpegel sind, daß sie bei der Erkennung der Sensorsignalpegel unbeachtlich sind. Hierdurch wird erreicht, daß die Sensorsignalerkennung nicht durch die Parametriersignale beeinflußt wird.

Zur Parametrierung eignet sich bevorzugt ein festgelegtes, in beiden Richtungen wechselnd ablaufendes Parametrier-Proto-

koll. Dieses besitzt zweckmäßigerweise ein durch die Sensor-elektronik überprüfbares Startbit, wobei Mittel zur Beibehaltung des augenblicklich anliegenden Sensorsignals während einer festlegbaren Erkennungszeit vorgesehen sind, um zu verhindern, daß während des Startbits eine Veränderung des Sensorsignalpegels erfolgt.

Die Sensorelektronik besitzt weiterhin vorteilhafte Weise Mittel zur Beibehaltung des augenblicklich anliegenden Sensorsignals für eine vorgebbare Zeit während der Parametrierung, die größer als ein Sendezyklus des Parametrier-Protokolls ist. Hierdurch wird verhindert, daß ein Sendezyklus durch einen Signalwechsel des Sensorsignals in unerwünschter Weise beeinflußt wird.

Ausführungsbeispiele der Erfindung sind in der Zeichnung dargestellt und in der nachfolgenden Beschreibung näher erläutert. Es zeigen:

- Fig. 1 eine schematische Darstellung einer an ein elektrisches Gerät angeschlossenen Sensoranordnung mit einem Kurzschlußschalter zur Teach-in-Parametrierung,
- Fig. 2 die mit dem elektrischen Gerät über eine Leitungsanordnung verbundene Sensoranordnung mit einem an diese Leitungsanordnung angeschlossenen Parametriergerät und
- Fig. 3 eine schaltungsmäßige Ausgestaltung des Eingangs/Ausgangsports der Sensoranordnung.

Gemäß Fig. 1 enthält eine Sensoranordnung 10 ein Sensorelement 11, das beispielsweise als Hall-Element, Feldplatte, fotosensitives Element, Piezoelement, temperatursensitives Element, drucksensitives Element, Kraftaufnehmer oder dergleichen ausgebildet ist.

Dieses Sensorelement ist an eine im Ausführungsbeispiel als Mikrocomputer ausgebildete Sensorelektronik 12 angeschlossen, die ihrerseits mit einer Speicheranordnung 13 und einem Eingangs/Ausgangsport 14 verbunden ist. Dieser ist über eine aus drei Leitungen P, S, N bestehende Leitungsanordnung 15, die das Sensoranschlußkabel darstellt, mit einem elektrischen oder elektronischen Gerät 16 verbunden, dem die Sensorsignale zu Steuer-, Regel- und/oder Anzeigezwecken zugeführt werden. Die Leitungsanordnung 15 besteht aus zwei Spannungsversorgungsleitungen PN sowie einer Sensorsignalleitung S, wobei auch eine größere Zahl von Sensorsignalleitungen vorgesehen sein kann. Die beiden Spannungsversorgungsleitungen PN dienen zur Spannungsversorgung des Eingangs/Ausgangsports 14 sowie der übrigen elektronischen Komponenten der Sensoranordnung 10. Die Sensorsignalleitung S ist über einen Kurzschlußschalter 17 bzw. -taster mit der Spannungsversorgungsleitung N verbunden, beispielsweise lösbar verbunden.

Im Normalbetrieb werden die im Sensorelement 11 erzeugten Sensorsignale in der Sensorelektronik 12 aufgearbeitet und über den Eingangs/Ausgangsport 14 dem elektrischen Gerät 16 übermittelt. Dabei kann in der Speicheranordnung 13 auch ein Schaltgrenzwert für den jeweils erfaßten Meßwert gespeichert

sein, wobei die Sensoranordnung 10 oberhalb dieses Schaltgrenzwerts ausgangsseitig ein High-Signal erzeugt, während darunter ein Low-Signal anliegt. Darüber hinaus kann mittels zweier Schaltgrenzwerte auch eine Schalthysterese vorgegeben werden.

Zur Speicherung einer oder mehrerer Schaltgrenzwerte in der Speicheranordnung 12 dient der als Teach-in-Schalter ausgebildete Kurzschlußschalter 17, der bei Bedarf an die Leitungsanordnung 15 anschließbar ist oder auch dort belassen werden kann. Soll der augenblicklich anliegende Meßwert als Schaltgrenzwert übernommen werden, so wird der Kurzschlußschalter 17 betätigt. Das bei der Betätigung erfolgende Kurzschließen der Sensorsignalleitung S mit der Spannungsversorgungsleitung N wird durch die Sensorelektronik erfaßt, und der entsprechende Meßwert wird in die Speicheranordnung 13 als Schaltgrenzwert übernommen. Entsprechend können auch zwei Meßwerte als Schaltgrenzwerte für ein Schalten mit Hysterese übernommen werden, beispielsweise durch zwei aufeinanderfolgende Betätigungen des Kurzschlußschalters 17.

Bei dem in Fig. 2 dargestellten zweiten Ausführungsbeispiel sind die Sensoranordnung 10 und das damit über die Leitungsanordnung 15 verbundene elektrische Gerät 16 entsprechend aufgebaut, jedoch vereinfacht dargestellt. Über eine Leitungsverzweigung 18 in der Leitungsanordnung 15 ist ein Parametriergerät 19 angeschlossen, das ein Display 20 und Bedienelemente 21 besitzt. Dieses Parametriergerät 19 kann an einer

beliebigen Stelle der Leitungsanordnung 15 angeschlossen werden, zum Beispiel auch an den beiden Endbereichen.

Die Sensoranordnung 10 kann beispielsweise unparametriert am Einsatzort montiert werden. Die Parametrierung kann dann anschließend mittels des Parametriergeräts 19 durchgeführt werden. Weiterhin kann eine ursprünglich eingegebene oder durch das Parametriergerät 19 eingegebene Parametrierung nachträglich geändert werden. Der Ablauf der Parametrierung wird im folgenden anhand der Sensoranordnung 10 gemäß Fig. 3 beschrieben, bei der der Eingangs/Ausgangsport 14 durch einen Schalttransistor 22 realisiert ist, dessen Basis mit einem Ausgang der Sensorelektronik 12, dessen Emitter an die positive Spannungsversorgungsleitung P und dessen Kollektor über einen Widerstand 23 mit der negativen Spannungsversorgungsleitung N verbunden ist. Die Sensorsignalleitung S ist an den Kollektor dieses Schalttransistors 22 angeschlossen.

Durch den Schalttransistor 22 weist die Sensoranordnung 10 je nach physikalischer Eingangsgröße (Meßwert) zwei Zustände am mit der Sensorsignalleitung verbundenen Ausgang auf, nämlich zum einen ein Potential nahe Null durch den Widerstand 23 (Ausgang gesperrt) und zum anderen ein Potential unterhalb des Pluspotentials (z.B. 24V) über den durchgesteuerten Transistor (Ausgang geschaltet). Diese beiden Zustände werden im elektrischen Gerät 16 dahingehend interpretiert, daß sich der Meßwert unterhalb des Schaltgrenzwerts oder darüber befindet.

Das an die Leitungsanordnung 15 angeschlossene Parametriergerät 19 erkennt ebenfalls den Schaltzustand der Sensoranordnung 10 entsprechend. Die Parametrierung erfolgt nun durch Senden von Informationsbits an die Sensoranordnung 10. Dabei wird das Potential jeweils um einen Spannungswert von zum Beispiel 2 Volt angehoben. Dadurch ergeben sich vier mögliche Zustände auf der Sensorsignalleitung S:

Ausgang gesperrt. Parametriersignal Low 0 Volt

Ausgang gesperrt. Parametriersignal High 2 Volt

Ausgang geschaltet. Parametriersignal Low 22 Volt

Ausgang geschaltet. Parametriersignal High 24 Volt

Die Spannungspegel und die Treiberpotentiale im Parametriergerät 19 und in der Sensoranordnung 10 sind so ausgelegt, daß in allen vier Zuständen die normale Funktion der Sensoranordnung 10 in Zusammenhang mit seiner angeschlossenen Last gewährleistet ist. Dies ist insbesondere bei digitalen SPS-Eingängen zu beachten. Hierbei wird im elektrischen Gerät 16 der Zustand "Aus" (Meßwert unter Schaltgrenzwert) bei Spannungen < 5 Volt und der Schaltzustand "Ein" (Meßwert über Schaltgrenzwert) bei Spannungen über 15 Volt erkannt. Die Parametrierbits haben somit keinen Einfluß auf die Erkennung des Schaltzustands der Sensoranordnung 10 bzw. des Schalttransistors 22.

Beim Senden der positiven Flanke des ersten Parametrierbits (Start der Parametrierung) behält die Sensoranordnung 10 ihren augenblicklichen Schaltzustand bei, friert ihn sozusagen

ein. Bleibt das Signal des Parametrierbits für eine vorgegebene Zeit stabil im High-Zustand, so akzeptiert die Sensoranordnung den Parametrierstart, andernfalls arbeitet die Sensoranordnung 10 normal weiter. Die Kommunikation bei der Parametrierung kann mit einem festgelegten Protokoll in beide Richtungen erfolgen, wobei die Bit-Länge beispielsweise 0,5 ms und die Wort-Länge zum Beispiel 16 Bit betragen kann und der Ablauf genau festgelegt sein muß.

Das festgelegte Protokoll zur Parametrierung kann in Sendezyklen unterteilt sein, wobei der Sensor nach jedem Sendezyklus seinen Schaltzustand ändern kann. Die Länge eines solchen Zyklus muß festgelegt werden und beträgt beispielsweise 1 - 2 ms. Die einzelnen Bits der Übertragung können beispielsweise über den Spannungspegel bei gleicher Zeitbasis im Parametriergerät 19 und in der Sensoranordnung 10 codiert werden (UART) oder können durch die Impulslänge eines Parametrierimpulses festgelegt werden. Bei der zweiten Variante kann die Zeitbasis auch ungenauer sein, und nach jedem gesendeten Bit könnte eine Schaltzustandsänderung erfolgen.

Damit das Parametriergerät 19 für alle möglichen unterschiedlichen Sensoranordnungen verwendet werden kann, muß die Kommunikation für alle diese Sensoranordnungen einheitlich definiert werden. Im folgenden ist ein Kommunikationsablauf beispielhaft aufgeführt. Dabei wird das Parametriergerät 19 abgekürzt als PG und die Sensoranordnung abgekürzt als SA bezeichnet:

1. PG an SA Parametrierstart durch erstes Parametrierbit
2. SA an PG Sensor-Identifikation übertragen
3. PG an SA ersten eingestellten Parametrierwert anfragen
4. SA an PG ersten Parametrierwert mitteilen + übertragen
5. PG an SA zweiten eingestellten Parametrierwert anfragen
6. SA an PG zweiten Parametrierwert mitteilen + übertragen
7. PG an SA neue Parametrierung für ersten Parametrierwert
übertragen (z. B. erster Schaltgrenzwert)
8. SA an PG Meßwert übertragen
9. PG an SA neue Parametrierung für zweiten Parametrierwert
übertragen (z. B. zweiter Schaltgrenzwert)
10. SA an PG Meßwert übertragen

Die Parametrierung kann in vielfacher Weise erfolgen. Gemäß dem obigen Beispiel wurden Schaltgrenzwerte übertragen. Entsprechend kann eine Sensoranordnung auch dadurch parametriert werden, daß auf andere Schaltpunkte, Sensor- und/oder Schaltfunktionen, Sensor- und/oder Schaltcharakteristiken, Schaltzeiten, Sensoransprechschwellen, Hysteresen, Fensterfunktionen oder dergleichen übertragen werden. Dies hängt nicht zuletzt auch von der Art der jeweiligen Sensoranordnung ab, da Sensoranordnungen zur Messung unterschiedlicher Meßwerte auch unterschiedliche Einstellungen erforderlich machen.

Das vorstehend aufgeführte Kommunikations-Protokoll kann selbstverständlich sehr unterschiedlich ausgelegt werden, zum Beispiel können auch mehr oder weniger unterschiedliche Meßwerte angefragt werden. Es ist auch möglich, die Meßwert-

Übertragung während der Parametrierung ganz einzustellen bzw. auf den jeweiligen Meßwert einzufrieren.

Das im Ausführungsbeispiel als separates Gerät ausgebildete Parametriergerät 19 kann beispielsweise auch im elektrischen Gerät 16 mitintegriert sein, beispielsweise in einem Eingangsmodul. Zur Unterstützung der Parametrierung können dann ein Display und Bedienelemente des elektrischen Geräts dienen. Das elektrische Gerät 16 kann mit einer höheren Befehls Ebene oder über Internet vernetzt sein, so dass die Sensoranordnung 10 auch aus der Ferne parametriert werden kann. Bei einer Ausführung als separates Gerät kann das Parametriergerät 19 entfernt werden, um zur Parametrierung anderer Sensoren benutzt werden zu können.

In einer alternativen Ausgestaltung kann das Parametriergerät 19 auch in die Sensorsignalleitung S der Leitungsanordnung 15 geschaltet sein. Damit kann eine bidirektionale Kommunikation zwischen der Sensoranordnung 10 und dem Parametriergerät 19 unabhängig vom Schaltzustand der Sensoranordnung 10 und der Last erfolgen. Die Sensoranordnung 10 muss dabei nur die beiden Schaltzustände "Vaus" (Ausgang gesperrt, Potential nahe 0) und "Vein" (Ausgang geschaltet, Potential unterhalb dem Plus-Potential über einen durchgesteuerten Transistor) einnehmen können. Die Parametrierung wird dann vom Parametriergerät 19 immer durch ein Plus-Potential eingeleitet. Die Sensoranordnung 10 kann dies im Schaltzustand Vaus durch die Spannungsänderung an seinem Ausgang erkennen. Im Schaltzustand Vein kann er über den Ausgangsstrom erfassen, ob ein

externes Plus-Potential auf die Ausgangsleitung aufgeschaltet wurde. Die Erkennung des Ausgangsstroms erfolgt beispielsweise über einen externen Shunt. Es können somit drei Bereiche für den Laststrom am Shunt unterschieden werden:

1. Überlast (Strom größer als z.B. 100 mA,
2. Normalbetrieb bzw. Ausgang geschaltet (Strom zwischen z.B. 4 und 100 mA) und
3. Hochohmige Last oder Parametrierung (Strom unter 4 mA).

Da somit von der Sensoranordnung 10 auf diese Weise die Einleitung des Parametriervorgangs erkannt wurde, beginnt der Datenaustausch mit dem Parametriergerät 19 über die Ausgangsleitung unter Verwendung der beiden Schaltzustände (Vaus, Vein). Ist die Sensoranordnung 10 auf Empfang, ist der Schaltzustand immer 0-Potential (Vaus). Das Parametriergerät 19 gibt den innerhalb der digitalen Kommunikation ermittelten Schaltzustand an die Last weiter (z.B. 12 Bit Wortlänge, 300 baud). Damit ist eine Schaltzustandsänderung alle 40 ms möglich.

Die Erfindung ist nicht auf Sensoranordnungen mit digitalen Ausgangssignalen beschränkt, sondern kann auch für Sensoranordnungen mit analogen Ausgangssignalen eingesetzt werden. Die Übertragung der Parametriersignale kann beispielsweise durch Modulation dieser Analogsignale erfolgen, oder aber sie werden während der Parametrierung abgeschaltet oder unterdrückt.

FESTO AG & Co, 73734 Esslingen

Sensoranordnung zur Erfassung wenigstens eines Meßwerts

Ansprüche

1. Sensoranordnung zur Erfassung wenigstens eines Meßwerts, mit wenigstens einem sensitiven Element (11) das über eine eine Speicheranordnung (13) aufweisende Sensorelektronik (12) mit einem Eingangs/Ausgangsport (14) verbunden ist, mit einer wenigstens drei Leitungen aufweisenden Leitungsanordnung (15), durch die der Eingangs/Ausgangsport (14) mit einem externen elektrischen oder elektronischen Gerät (16) verbindbar ist, wobei zwei Leitungen als Spannungsversorgungsleitungen (P, N) und wenigstens eine dritte Leitung als Sensorsignalleitung (S) zur Übertragung von Sensorsignalen zum elektrischen oder elektronischen Gerät (16) ausgebildet ist, und wobei mittels einer externen, mit der wenigstens einen Sensorsignalleitung (S) verbindbaren Parametriereinrichtung (17; 19) Parametriersignale der Sensorelektronik (12) zuführbar sind, um die Sensoranordnung (10) durch Speicherung von Parametrierwerten zu parametrieren.

2. Sensoranordnung nach Anspruch 1, dadurch gekennzeichnet, daß die Parametriereinrichtung (17) zur Erzeugung eines Übernahmesignals ausgebildet ist, durch das der augenblicklich anliegende Meßwert als wenigstens ein Schalt- oder Schwell-

wert in die Speicheranordnung (13) übernommen wird, wobei die Parametriereinrichtung (17) vorzugsweise als Teach-in- oder Kurzschlußschalter ausgebildet ist.

3. Sensoranordnung nach Anspruch 1, dadurch gekennzeichnet, daß die Parametriereinrichtung (19) als Eingangsmodul des elektronischen Geräts (16) oder als separates Parametriergerät ausgebildet ist.

4. Sensoranordnung nach Anspruch 3, dadurch gekennzeichnet, daß die Parametriereinrichtung (19) mit einem Display (20) und Bedienungselementen (21) versehen ist.

5. Sensoranordnung nach Anspruch 3 oder 4, dadurch gekennzeichnet, daß die Parametriereinrichtung (19) zur Übertragung von Parametriersignalen ausgebildet ist, insbesondere zur Einstellung von Schaltpunkten, Sensor- und/oder Schaltfunktionen, Sensor- und/oder Schaltcharakteristiken, Schaltzeiten, Sensoransprechschwellen, Hysteresen oder Fensterfunktionen.

6. Sensoranordnung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß die Sensorsignale digital in Form von wenigstens zwei unterschiedlichen Signalpegeln vorliegen.

7. Sensoranordnung nach einem der Ansprüche 3 bis 6, dadurch gekennzeichnet, daß die Parametriersignale als digitale Signalfolgen erzeugbar und den jeweils vorliegenden Sensorsignalen überlagerbar sind.

8. Sensoranordnung nach Anspruch 7, dadurch gekennzeichnet, daß die Signalpegel der überlagerten Parametriersignale derart kleiner als die Sensorsignalpegel sind, daß sie bei der Erkennung der Sensorsignalpegel unbeachtlich sind.

9. Sensoranordnung nach einem der Ansprüche 3 bis 8, dadurch gekennzeichnet, daß zur Parametrierung ein festgelegtes, in beiden Richtungen wechselnd ablaufendes Parametrier-Protokoll vorgesehen ist.

10. Sensoranordnung nach Anspruch 9, dadurch gekennzeichnet, daß das Parametrier-Protokoll ein durch die Sensorelektronik (12) überprüfbares Startbit besitzt, wobei Mittel zur Beibehaltung des augenblicklich anliegenden Sensorsignals während einer festlegbaren Erkennungszeit vorgesehen sind.

11. Sensoranordnung nach Anspruch 9 oder 10, dadurch gekennzeichnet, daß die Sensorelektronik (12) Mittel zur Beibehaltung des augenblicklich anliegenden Sensorsignals für eine vorgebbare Zeit während der Parametrierung besitzt, die größer als ein Sendezyklus des Parametrier-Protokolls ist.

FESTO AG & Co, 73734 Esslingen

Sensoranordnung zur Erfassung wenigstens eines Meßwerts

Zusammenfassung

Es wird eine Sensoranordnung zur Erfassung wenigstens eines Meßwerts vorgeschlagen, die wenigstens ein sensitiv Element aufweist, das über eine eine Speicheranordnung aufweisende Sensorelektronik mit einem Eingangs/Ausgangsport verbunden ist. Dieser Eingangs/Ausgangsport der Sensoranordnung (10) ist über eine wenigstens drei Leitungen aufweisende Leitungsanordnung (15) mit einem externen elektrischen Gerät (16) verbindbar, wobei zwei Leitungen als Spannungsversorgungsleitungen und wenigstens eine dritte Leitung als Sensorsignalleitung zur Übertragung von Sensorsignalen zum elektrischen Gerät (16) ausgebildet ist. Mittels einer externen, mit der wenigstens einen Sensorsignalleitung (15) verbindbaren Parametriereinrichtung (19) sind Parametriersignale der Sensorelektronik in der Sensoranordnung (10) zuführbar, um die Sensoranordnung (10) durch Speicherung von Parametrierwerten zu parametrieren. Hierdurch können Sensoranordnungen auch noch nach der Montage in einfacher Weise parametriert oder umparametriert werden, ohne daß eine zusätzliche Leitung oder drahtlose Übertragungsmittel erforderlich wären.

(Figur 2)

1 / 1

