

Shenzhen Zhongjian Nanfang Testing Co., Ltd.

Report No: CCISE160306601

FCC REPORT

(WIFI)

Applicant: APRIX LATINOAMERICA S.A.

Address of Applicant: ADVANCED 099 BLDG SUITE 4 C CALLE BEATRIZ M DE

CABAL PANAMA

Equipment Under Test (EUT)

Product Name: TABLET PC

Aprix Tab64 Konnen A10, Aprix Tab64, Konnen A10, Tab64,

Model No.: A10,7ii, 8ii, 7.85ii, 9ii, 10ii, 13ii, X1, X2, X3, X4, X5, X6, X7, X8,

X785, X9, X10, X13

Trade mark: APRIX, KONNEN

FCC ID: 2AHJQ-2016

Applicable standards: FCC CFR Title 47 Part 15 Subpart C Section 15.247

Date of sample receipt: 29 Feb., 2016

Date of Test: 29 Feb., to 15 Mar., 2016

Date of report issued: 31 Mar., 2016

Test Result: PASS*

Authorized Signature:

Bruce Zhang Laboratory Manager

This report details the results of the testing carried out on one sample. The results contained in this test report do not relate to other samples of the same product and does not permit the use of the CCIS product certification mark. The manufacturer should ensure that all products in series production are in conformity with the product sample detailed in this report.

This report may only be reproduced and distributed in full. If the product in this report is used in any configuration other than that detailed in the report, the manufacturer must ensure the new system complies with all relevant standards.

This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 90 days only.

^{*} In the configuration tested, the EUT complied with the standards specified above.

2 Version

Version No.	Date	Description
OO	31 Mar., 2016	This report was amended on the report CCISE160300101 which were tested and issued by Shenzhen Zhongjian Nanfang Testing Co., Ltd. The differences between them as below: the battery from 6000mAh to 7000 mAh, and added a loudspeaker. Base on the
		differences description, the FCC Part 15B, WIFI Conducted Emission and Radiated Emission were re-tested.

Test Engineer

Reviewed by: () Date: 31 Mar., 2016

Project Engineer

3 Contents

			Page
1	CO	VER PAGE	1
2	VEF	RSION	2
3	CO	NTENTS	3
4	TES	ST SUMMARY	4
5	GEI	NERAL INFORMATION	5
	5.1	CLIENT INFORMATION	5
	5.2	GENERAL DESCRIPTION OF E.U.T	5
	5.3	TEST ENVIRONMENT AND MODE	
	5.4	LABORATORY FACILITY	7
	5.5	LABORATORY LOCATION	
	5.6	TEST INSTRUMENTS LIST	8
6	TES	ST RESULTS AND MEASUREMENT DATA	9
	6.1	CONDUCTED EMISSION	9
	6.2	Spurious Emission	12
	6.2.	.1 Radiated Emission Method	12
7	TES	ST SETUP PHOTO	20
8	EUT	T CONSTRUCTIONAL DETAILS	าา
u		I CUNCTIONAL DETAILS	

4 Test Summary

Test Item	Section in CFR 47	Result
Antenna requirement	15.203/15.247 (c)	N/A
AC Power Line Conducted Emission	15.207	Pass
Conducted Peak Output Power	15.247 (b)(3)	N/A
6dB Emission Bandwidth 99% Occupied Bandwidth	15.247 (a)(2)	N/A
Power Spectral Density	15.247 (e)	N/A
Band Edge	15.247(d)	N/A
Spurious Emission	15.205/15.209	Pass

Pass: The EUT complies with the essential requirements in the standard.

5 General Information

5.1 Client Information

Applicant:	APRIX LATINOAMERICA S.A.
Address of Applicant:	ADVANCED 099 BLDG SUITE 4 C CALLE BEATRIZ M DE CABAL PANAMA
Manufacturer:	Todos industrial limited
Address of Manufacturer:	Room 3A03, Block B, huashenghui , Xi'xiang Town, Bao'an District shenzhen China

5.2 General Description of E.U.T.

Product Name:	TABLET PC
Model No.:	Aprix Tab64_Konnen A10, Aprix Tab64, Konnen A10, Tab64, A10,7ii, 8ii, 7.85ii, 9ii, 10ii, 13ii, X1, X2, X3, X4, X5, X6, X7, X8, X785, X9, X10, X13
Operation Frequency:	2412MHz~2462MHz (802.11b/802.11g/802.11n(H20)) 2422MHz~2452MHz (802.11n(H40))
Channel numbers:	11 for 802.11b/802.11g/802.11(H20) 7 for 802.11n(H40)
Channel separation:	5MHz
Modulation technology: (IEEE 802.11b)	Direct Sequence Spread Spectrum (DSSS)
Modulation technology: (IEEE 802.11g/802.11n)	Orthogonal Frequency Division Multiplexing(OFDM)
Data speed (IEEE 802.11b):	1Mbps, 2Mbps, 5.5Mbps, 11Mbps
Data speed (IEEE 802.11g):	6Mbps, 9Mbps, 12Mbps, 18Mbps, 24Mbps, 36Mbps, 48Mbps,54Mbps
Data speed (IEEE 802.11n):	Up to 150Mbps
Antenna Type:	Internal Antenna
Antenna gain:	0dBi
AC adapter:	Input:100-240V AC,50/60Hz 0.3A Output:5V DC MAX 2.0 A
Power supply:	Rechargeable Li-ion Battery DC3.7V-7000mAh
Remark:	Item No.: Aprix Tab64_Konnen A10, Aprix Tab64, Konnen A10, Tab64, A107ii, 8ii, 7.85ii, 9ii, 10ii, 13ii, X1, X2, X3, X4, X5, X6, X7, X8, X785, X9, X10, X13 were identical inside, the electrical circuit design, layout, components used and internal wiring, with only difference being Model NO. and color in housing.

Operation Frequency each of channel For 802.11b/g/n(H20)								
Channel Frequency Channel Frequency Channel Frequency Channel Frequency								
1	2412MHz	4	2427MHz	7	2442MHz	10	2457MHz	
2	2417MHz	5	2432MHz	8	2447MHz	11	2462MHz	
3	2422MHz	6	2437MHz	9	2452MHz			

Operation Frequency each of channel For 802.11n(H40)									
Channel	Channel Frequency Channel Frequency Channel Frequency Channel Frequency								
4 242		2427MHz	7	2442MHz					
5 2		2432MHz	8	2447MHz					
3	2422MHz	6	2437MHz	9	2452MHz	2452MHz			

Note:

In section 15.31(m), regards to the operating frequency range over 10 MHz, the Lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test, and the selected channel see below:

802.11b/802.11g/802.11n (H20)

Channel	Frequency	
The lowest channel	2412MHz	
The middle channel	2437MHz	
The Highest channel	2462MHz	

802.11n (H40)

Channel	Frequency
The lowest channel	2422MHz
The middle channel	2437MHz
The Highest channel	2452MHz

5.3 Test environment and mode

Operating Environment:			
Temperature:	24.0 °C		
Humidity:	54 % RH		
Atmospheric Pressure:	1010 mbar		
Test mode:			
Operation mode	Keep the EUT in continuous transmitting with modulation		

Report No: CCISE160306601

Project No.: CCISE1603066

The sample was placed 0.8m above the ground plane of 3m chamber. Measurements in both horizontal and vertical polarities were performed. During the test, each emission was maximized by: having the EUT continuously working, investigated all operating modes, rotated about all 3 axis (X, Y & Z) and considered typical configuration to obtain worst position, manipulating interconnecting cables, rotating the turntable, varying antenna height from 1m to 4m in both horizontal and vertical polarizations. The emissions worst-case are shown in Test Results of the following pages.

We have verified the construction and function in typical operation. All the test modes were carried out with the EUT in transmitting operation, which was shown in this test report and defined as follows:

Per-scan all kind of data rate in lowest channel, and found the follow list which it was worst case.

Mode	Data rate	
802.11b	1Mbps	
802.11g	6Mbps	
802.11n(H20)	6.5Mbps	
802.11n(H40)	13.5Mbps	

Final Test Mode:

According to ANSI C63.4 standards, the test results are both the "worst case" and "worst setup" 1Mbps for 802.11b, 6Mbps for 802.11g, 6.5Mbps for 802.11n(H20) and 13.5 Mbps for 802.11n(H40). Duty cycle setting during the transmission is 100% with maximum power setting for all modulations.

5.4 Laboratory Facility

The test facility is recognized, certified, or accredited by the following organizations:

• FCC - Registration No.: 817957

Shenzhen Zhongjian Nanfang Testing Co., Ltd. EMC Laboratory has been registered and fully described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in out files. Registration 817957, February 27, 2012.

• IC - Registration No.: 10106A-1

The 3m Semi-anechoic chamber of Shenzhen Zhongjian Nanfang Testing Co., Ltd. has been Registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing with Registration No.: 10106A-1.

• CNAS - Registration No.: CNAS L6048

Shenzhen Zhongjian Nanfang Testing Co., Ltd. is accredited to ISO/IEC 17025:2005 General Requirements for the Competence of Testing and Calibration laboratories for the competence of testing. The Registration No. is CNAS L6048.

5.5 Laboratory Location

Shenzhen Zhongjian Nanfang Testing Co., Ltd.

Address: No. B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road,

Bao'an District, Shenzhen, Guangdong, China

Tel: +86-755-23118282 Fax: +86-755-23116366

Shenzhen Zhongjian Nanfang Testing Co., Ltd. No. B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road, Bao'an District, Shenzhen, Guangdong, China

Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366 Page 7 of 32

5.6 Test Instruments list

Radia	Radiated Emission:							
Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal. Date (mm-dd-yy)	Cal. Due date (mm-dd-yy)		
1	3m SAC	SAEMC	9(L)*6(W)* 6(H)	CCIS0001	08-23-2014	08-22-2017		
2	BiConiLog Antenna	SCHWARZBECK	VULB9163	CCIS0005	03-28-2015	03-28-2016		
3	Horn Antenna	SCHWARZBECK	BBHA9120D	CCIS0006	03-28-2015	03-28-2016		
4	Pre-amplifier (10kHz-1.3GHz)	HP	8447D	CCIS0003	04-01-2015	03-31-2016		
5	Pre-amplifier (1GHz-18GHz)	Compliance Direction Systems Inc.	PAP-1G18	CCIS0011	04-01-2015	03-31-2016		
6	Pre-amplifier (18-26GHz)	Rohde & Schwarz	AFS33-18002 650-30-8P-44	GTS218	04-01-2015	03-31-2016		
7	Horn Antenna	ETS-LINDGREN	3160	GTS217	04-01-2015	03-31-2016		
8	Spectrum analyzer 9k-30GHz	Rohde & Schwarz	FSP30	CCIS0023	03-28-2015	03-28-2016		
9	EMI Test Receiver	Rohde & Schwarz	ESRP7	CCIS0167	03-28-2015	03-28-2016		
10	Loop antenna	Laplace instrument	RF300	EMC0701	04-01-2015	03-31-2016		

Cond	Conducted Emission:											
Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal. Date (mm-dd-yy)	Cal. Due date (mm-dd-yy)						
1	Shielding Room	ZhongShuo Electron	11.0(L)x4.0(W)x3.0(H)	CCIS0061	08-23-2014	08-22-2017						
2	EMI Test Receiver	Rohde & Schwarz	ESCI	CCIS0002	03-28-2015	03-28-2016						
3	LISN	CHASE	MN2050D	CCIS0074	03-28-2015	03-28-2016						
4	Coaxial Cable	CCIS	N/A	CCIS0086	04-01-2015	03-31-2016						
5	EMI Test Software	AUDIX	E3	N/A	N/A	N/A						

6 Test results and Measurement Data

6.1 Conducted Emission

0.1 Oonaaot	ca Ellissioi	•								
Test Requir	rement:	FCC Part 15 C Section 15.207								
Test Metho	d:	ANSI C63.4: 2009								
Test Freque	ency Range:	150 kHz to 30 MHz								
Class / Sev	erity:	Class B								
Receiver se	etup:	RBW=9 kHz, VBW=30 kHz								
Limit:		Fraguenay rango (MHz)	Limit (d	lBuV)						
		Frequency range (MHz)	Quasi-peak	Average						
		0.15-0.5	66 to 56*	56 to 46*						
		0.5-5	56	46						
		5-30 60 50 * Decreases with the logarithm of the frequency.								
Test proced		 The E.U.T and simulators are connected to the main power through a line impedance stabilization network (L.I.S.N.), which provides a 50ohm/50uH coupling impedance for the measuring equipment. The peripheral devices are also connected to the main power through a LISN that provides a 50ohm/50uH coupling impedance with 50ohm termination. (Please refer to the block diagram of the test setup and photographs). Both sides of A.C. line are checked for maximum conducted interference. In order to find the maximum emission, the relative positions of equipment and all of the interface cables must be changed according to ANSI C63.4: 2009 on conducted measurement. 								
		AUX Equipment	EMI Receiver	er — AC power						
Test Uncert	tainty:			±3.28 dB						
Test Instrur	nents:	Refer to section 5.6 for details								
Test mode:		Refer to section 5.3 for details								
Test results	:	Passed								

Measurement Data

Neutral:

Trace: 15

Site

: CCIS Shielding Room : FCC PART15 B QP LISN NEUTRAL : TABLET PC Condition

EUT

: AprixTab64_KonnenA10 Model

Test Mode : WIFI mode
Power Rating : AC120/60Hz
Environment : Temp: 23 °C Huni:56% Atmos:101KPa

Test Engineer: YT Remark

nemark.	: Freq	Read Level	LISN Factor	Cable Loss	Level	Limit Line		Remark
	MHz	—dBu∇	<u>dB</u>		dBu₹	—dBu∇	ā	
1	0.343	35.56	0.16	10.73	46.45	59.13	-12.68	QP
2 3 4 5 6 7 8 9	0.346	27.87	0.16	10.73	38.76	49.05	-10.29	Average
3	0.421	43.22	0.16	10.73	54.11	57.42	-3.31	QP
4	0.421	34.76	0.16	10.73	45.65	47.42	-1.77	Average
5	0.447	33.77	0.16	10.74	44.67	46.93	-2.26	Average
6	0.796	30.29	0.18	10.81	41.28	46.00	-4.72	Average
7	0.948	37.80	0.18	10.85	48.83		-7.17	
8	1.242	29.52	0.19	10.90	40.61			Average
9	2.167	31.50	0.20	10.95	42.65	46.00	-3.35	Average
10	2.249	41.07	0.20	10.95	52.22	56.00	-3.78	QP
11	3.310	34.10	0.24	10.91	45.25	56.00	-10.75	QP
12	5.594	34.84	0.30	10.83	45.97	60.00	-14.03	QP

Line:

Trace: 13

: CCIS Shielding Room : FCC PART15 B QP LISN LINE Site Condition

: TABLET PC EUT

Model AprixTab64_KonnenA10

Test Mode : WIFI mode Power Rating : AC120/60Hz

Environment : Temp: 23 °C Huni: 56% Atmos: 101KPa

Test Engineer: YT

Remark

TOMAIN	Freq	Read Level	LISN Factor	Cable Loss		Limit Line	Over Limit	Remark	
	MHz	dBu∀		₫B	dBu₹	dBu∀	<u>ab</u>		-
1	0.198	21.94	0.26	10.76	32.96	53.71	-20.75	Average	
2	0.346	21.80	0.26	10.73	32.79	49.05	-16.26	Average	
3	0.365	35.11	0.26	10.73	46.10	58.61	-12.51	QP	
4	0.417	27.28	0.26	10.73	38.27	47.51	-9.24	Average	
1 2 3 4 5 6 7 8	0.461	42.46	0.27	10.75	53.48	56.67	-3.19	QP	
6	0.471	26.00	0.27	10.75	37.02	46.49	-9.47	Average	
7	0.880	38.41	0.28	10.83	49.52	56.00	-6.48	QP	
8	1.049	37.84	0.29	10.88	49.01	56.00	-6.99	QP	
9	1.049	22.25	0.29	10.88	33.42	46.00	-12.58	Average	
10	1.197	37.76	0.29	10.89	48.94	56.00	-7.06	QP	
11	2.213	24.90	0.32	10.95	36.17	46.00	-9.83	Average	
12	2.285	40.91	0.33	10.95	52.19	56.00	-3.81	QP	

Notes:

- 1. An initial pre-scan was performed on the live and neutral lines with peak detector.
- 2. Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission.
- 3. Final Level =Receiver Read level + LISN Factor + Cable Loss

Shenzhen Zhongjian Nanfang Testing Co., Ltd. No. B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road, Bao'an District, Shenzhen, Guangdong, China Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

6.2 Spurious Emission

6.2.1 Radiated Emission Method

Test Requirement:	FCC Part 15 C	Section 15.2	09 and 15.205	;						
Test Method:	ANSI C63.10:2009 9kHz to 25GHz									
Test Frequency Range:	9kHz to 25GHz Measurement Distance: 3m									
Test site:	Measurement [Distance: 3m								
Receiver setup:	Frequency Detector RBW VBW Remark 30MHz-1GHz Quasi-peak 120KHz 300KHz Quasi-peak Value									
	30MHz-1GHz Quasi-peak 120KHz 300KHz Quasi-peak									
	Above 1GHz	Peak	1MHz	3MHz	Peak Value					
	Above 10112	RMS	1MHz	3MHz	Average Value					
Limit:	Freque	ncy	Limit (dBuV/	m @3m)	Remark					
	30MHz-88MHz 40.0 Quasi-peak									
	88MHz-216MHz 43.5 Quasi-peak Value									
	216MHz-960MHz 46.0 Quasi-peak Value									
	960MHz-1GHz 54.0 Quasi-peak Value									
	Above 1	GHz	54.0		Average Value					
			74.0		Peak Value e 0.8 meters above					
Test Procedure:	the ground degrees to degrees to antenna, we tower. 3. The antennathe ground Both horize make the reach scase and to find the specified If the emist the limit spof the EUT have 10dE	I at a 3 meters determine the vas set 3 meters which was more and height is will to determine ontal and verneasurement to the rota tab maximum respected embarrous exceiver systems and width with sion level of the rotal tab maximum respected the rota tab maximum respected the rotal tab maximum respected the rotal tab maximum respected the rotal tab maximum respected to the rotal table and will be respected to the rotal table and will be respected to the rotal table and tab	r chamber. The position of the position of the ters away from punted on the framed from one the maximum tical polarization. The polarization was turned ading. In was set to Find the EUT in period the could be re-tested.	e table was he highest he highest he highest he the interferop of a variue of the normal to heights from 0 degrated Mode. The arrow of	rotated 360 radiation. rence-receiving table-height antenna our meters above ne field strength. Intenna are set to nged to its worst from 1 meter to 4 rees to 360 degrees					

Below 1GHz

Horizontal:

Site

3m chamber FCC PART15 CLASS B 3m VULB9163(30M3G) HORIZONTAL Condition

EUT : TABLET PC

Model : AprixTAB64-KonnenA10
Test mode : WIFI mode
Power Rating : AC120V/60Hz

Environment : Temp:25.5°C Huni:55% 101KPa

Test Engineer: YT REMARK :

PHETITIE									
	Freq		Antenna Factor						Remark
	MHz	dBu₹	<u>dB</u> /m	<u>dB</u>	<u>dB</u>	$\overline{dBuV/m}$	dBuV/m	<u>dB</u>	
1	41.132	33.20	17.09	1.24	29.89	21.64	40.00	-18.36	QP
1 2 3	71.832	39.05	6.60	1.56	29.71	17.50	40.00	-22.50	QP
3	140.835	43.99	11.63	2.41	29.27	28.76	43.50	-14.74	QP
4	273.234	45.41	12.14	2.87	28.50	31.92	46.00	-14.08	QP
5	480.528	46.94	16.57	3.46	28.92	38.05	46.00	-7.95	QP
6	842.130	36.87	20.94	4.22	28.03	34.00	46.00	-12.00	QP

Vertical:

Site

3m chamber FCC PART15 CLASS B 3m VULB9163(30M3G) VERTICAL Condition

TABLET PC EUT

Model AprixTAB64-KonnenA10

Test mode : WIFI mode Power Rating : AC120V/60Hz

Environment : Temp:25.5°C Huni:55% 101KPa Test Engineer: YT REMARK :

	Freq		Antenna Factor						
_	MHz	dBu∜	<u>dB</u> /m	₫B	<u>d</u> B	dBuV/m	dBuV/m	<u>dB</u>	
1	39.715	38.96	16.83	1.21	29.90	27.10	40.00	-12.90	QP
1 2 3 4	112.920	35.88	10.77	2.09	29.44	19.30	43.50	-24.20	QP
3	140.342	37.65	11.70	2.41	29.27	22.49	43.50	-21.01	QP
4	281.008	35.92	12.21	2.89	28.48	22.54	46.00	-23.46	QP
5 6	364.260	37.14	14.66	3.09	28.62	26.27	46.00	-19.73	QP
6	480.528	39.00	16.57	3.46	28.92	30.11	46.00	-15.89	QP

Above 1GHz

Test mode: 80	02.11b		Test char	Test channel: Lowest			Remark: Peak		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.	
4824.00	44.25	36.12	10.60	40.22	50.75	74.00	-23.25	Vertical	
4824.00	44.95	36.12	10.60	40.22	51.45	74.00	-22.55	Horizontal	
Test mode: 80	02.11b		Test char	nel: Lowest		Remark: Ave	erage		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.	
	Level	Factor	Loss	Factor			Limit	Polar.	

Test mode: 80	02.11b		Test char	nnel: Middle		Remark: Peak		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.
4874.00	45.21	36.32	10.64	40.15	52.02	74.00	-21.98	Vertical
4874.00	44.98	36.32	10.64	40.15	51.79	74.00	-22.21	Horizontal
Test mode: 80	02.11b		Test char	nnel: Middle		Remark: Ave	rage	
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.
4874.00	35.26	36.32	10.64	40.15	42.07	54.00	-11.93	Vertical
4874.00	34.79	36.32	10.64	40.15	41.60	54.00	-12.40	Horizontal

Test mode: 80	02.11b		Test char	nnel: Highest		Remark: Pea	Remark: Peak			
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.		
4924.00	44.25	36.51	10.69	40.08	51.37	74.00	-22.63	Vertical		
4924.00	45.62	36.51	10.69	40.08	52.74	74.00	-21.26	Horizontal		
Test mode: 80	02.11b		Test char	nnel: Highest		Remark: Ave	rage			
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.		
4924.00	34.69	36.51	10.69	40.08	41.81	54.00	-12.19	Vertical		
4924.00	35.02	36.51	10.69	40.08	42.14	54.00	-11.86	Horizontal		

Remark:

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Shenzhen Zhongjian Nanfang Testing Co., Ltd.
No. B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road, Bao'an District, Shenzhen, Guangdong, China
Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

Test mode: 80	02.11g		Test char	nel: Lowest		Remark: Peak			
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.	
4824.00	45.85	36.12	10.60	40.22	52.35	74.00	-21.65	Vertical	
4824.00	45.80	36.12	10.60	40.22	52.30	74.00	-21.70	Horizontal	
Test mode: 80	02.11g		Test char	nel: Lowest		Remark: Ave	rage		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.	
4824.00	36.21	36.12	10.60	40.22	42.71	54.00	-11.29	Vertical	
4824.00	36.11	36.12	10.60	40.22	42.61	54.00	-11.39	Horizontal	

Test mode: 80	02.11g		Test char	nel: Middle		Remark: Peak			
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.	
4874.00	44.52	36.32	10.64	40.15	51.33	74.00	-22.67	Vertical	
4874.00	45.25	36.32	10.64	40.15	52.06	74.00	-21.94	Horizontal	
Test mode: 80	02.11g		Test char	nel: Middle		Remark: Ave	rage		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.	
4874.00	36.32	36.32	10.64	40.15	43.13	54.00	-10.87	Vertical	
4874.00	37.01	36.32	10.64	40.15	43.82	54.00	-10.18	Horizontal	

Test mode: 80	Test mode: 802.11g		Test channel: Highest			Remark: Peak				
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.		
4924.00	44.25	36.51	10.69	40.08	51.37	74.00	-22.63	Vertical		
4924.00	45.96	36.51	10.69	40.08	53.08	74.00	-20.92	Horizontal		
Test mode: 80	Test mode: 802.11g			Test channel: Highest			Remark: Average			
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.		
4924.00	36.32	36.51	10.69	40.08	43.44	54.00	-10.56	Vertical		
4924.00	35.47	36.51	10.69	40.08	42.59	54.00	-11.41	Horizontal		

Remark:

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Test mode: 802.11n(H20)			Test channel: Lowest			Remark: Peak				
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.		
4824.00	45.62	36.12	10.60	40.22	52.12	74.00	-21.88	Vertical		
4824.00	45.90	36.12	10.60	40.22	52.40	74.00	-21.60	Horizontal		
Test mode: 80	Test mode: 802.11n(H20)			Test channel: Lowest			Remark: Average			
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.		
4824.00	34.51	36.12	10.60	40.22	41.01	54.00	-12.99	Vertical		
4824.00	35.20	36.12	10.60	40.22	41.70	54.00	-12.30	Horizontal		

Test mode: 802.11n(H20)			Test channel: Middle			Remark: Peak			
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.	
4874.00	44.25	36.32	10.64	40.15	51.06	74.00	-22.94	Vertical	
4874.00	45.21	36.32	10.64	40.15	52.02	74.00	-21.98	Horizontal	
Test mode: 80	est mode: 802.11n(H20)		Test channel: Middle			Remark: Average			
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.	
4874.00	34.25	36.32	10.64	40.15	41.06	54.00	-12.94	Vertical	
4874.00	35.98	36.32	10.64	40.15	42.79	54.00	-11.21	Horizontal	

Test mode: 8	Test mode: 802.11n(H20)			Test channel: Highest			Remark: Peak			
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.		
4924.00	44.25	36.51	10.69	40.08	51.37	74.00	-22.63	Vertical		
4924.00	45.96	36.51	10.69	40.08	53.08	74.00	-20.92	Horizontal		
Test mode: 8	Test mode: 802.11n(H20)			Test channel: Highest			Remark: Average			
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.		
					44.0=	= 4 00	1			
4924.00	34.55	36.51	10.69	40.08	41.67	54.00	-12.33	Vertical		

Remark:

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Test mode: 802.11n(H40)			Test channel: Lowest			Remark: Peak				
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.		
4844.00	45.32	36.19	10.61	40.19	51.93	74.00	-22.07	Vertical		
4844.00	44.55	36.19	10.61	40.17	51.18	74.00	-22.82	Horizontal		
Test mode: 80	Test mode: 802.11n(H40)			Test channel: Lowest			Remark: Average			
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.		
4844.00	35.62	36.19	10.61	40.19	42.23	54.00	-11.77	Vertical		
4844.00	35.65	36.19	10.61	40.17	42.28	54.00	-11.72	Horizontal		

Test mode: 802.11n(H40)			Test channel: Middle			Remark: Peak				
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.		
4874.00	45.14	36.25	10.64	40.17	51.86	74.00	-22.14	Vertical		
4874.00	46.75	36.25	10.64	40.17	53.47	74.00	-20.53	Horizontal		
Test mode: 80	Test mode: 802.11n(H40)			Test channel: Middle			Remark: Average			
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.		
4874.00	35.21	36.25	10.64	40.17	41.93	54.00	-12.07	Vertical		
4874.00	35.69	36.25	10.64	40.17	42.41	54.00	-11.59	Horizontal		

Test mode: 8	Test mode: 802.11n(H40)			Test channel: Highest			Remark: Peak			
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.		
4904.00	44.14	36.51	10.69	40.10	51.24	74.00	-22.76	Vertical		
4904.00	45.98	36.51	10.69	40.10	53.08	74.00	-20.92	Horizontal		
Test mode: 8	Test mode: 802.11n(H40)			Test channel: Highest			Remark: Average			
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.		
4004.00	35.98	36.51	10.69	40.10	43.08	54.00	-10.92	Vertical		
4904.00	33.30	00.01	10.00							

Remark:

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.