

Orange Hoops Data Science Challenge

Team: Data Wizards

- Rushikesh Shinde
- Sagarika Shinde
- Sejal Sardal
- Srushti Shobhane

Problem Statement

Objective: Predict player injuries using various attributes from three provided datasets.

Datasets Loaded:

- Player Sessions: Contains details of each player session.
- Muscle Imbalance: Includes data on player muscle imbalances.
- Injury History: Records of past injuries for each player.

Initial Inspection Steps:

- Used "info()" to view data structure, data types, and null values.
- Displayed the first few rows with "head()" to get an initial look at each dataset.

Loading and Inspecting the Dataset

Missing Values:

Checked each dataset for missing values.

Plan: Address missing values after merging the datasets.

Date Conversion:

Converted
"Session_Date" column
in "player_sessions" to
datetime format for
easier time-based
analysis.

Data Cleaning and Preprocessing

Cleaning Merged Data

Merge Process:

- Merged "injury_history" with "player_sessions" on Player.ID.
- Further merged with muscle_imbalance on Player.ID.

Post-Merge Adjustments:

- Identified redundant columns (Name, Player Name, Group.Id) created during merging.
- Dropped extra columns to retain only unique identifiers.
- Handled missing values present in the "Side" and "Severity" column.

Before Cleaning:

Player.ID	0
Name_x	0
Group.Id_x	0
Injury Type	0
Body Part	0
Side	12259
Injury Date	0
Severity	22074
Recovery Time (days)	0
Additional Notes	0
Group.name	0
League.ID	0
Session.ID	0
Session_Date	0
Position	0
Distancemi.	0
Distanceminmi.	0
Durations.	0
Steps	0
Speedof.max	0
Speedmaxmph.	0
Speed?òmph.	0
Times.	0
Accumulated.Acceleration.Load	0
Anaerobic.Activitydistancemi.	0
•••	
HamstringImbalance Percent	0
Calf Imbalance Percent	0
Groin Imbalance Percent	0

After Cleaning:

Player.ID	0
Name_x	0
Group.Id_x	0
Injury Type	0
Body Part	0
Side	0
Injury Date	0
Severity	0
Recovery Time (days)	0
Additional Notes	0
Group.name	0
League.ID	0
Session.ID	0
Session_Date	0
Position	0
Distancemi.	0
Distanceminmi.	0
Durations.	0
Steps	0
Speedof.max	0
Speedmaxmph.	0
Speed?òmph.	0
Times.	0
Accumulated.Acceleration.Load	0
Anaerobic.Activitydistancemi.	0
HamstringImbalance Percent	0
Calf Imbalance Percent	0
Groin Imbalance Percent	0

Feature Engineering

- Binary Flags: Created flags for missing Severity and Side columns.
- One-Hot Encoding: Converted categorical columns (Position, Body Part, Side, Injury Type) to numeric.
- Date Conversion: Converted "Injury Date" to datetime format.
- Scaling: Applied "StandardScaler" to numerical features for better model performance.
- Ordinal Encoding: Mapped Severity to ordinal values (e.g., Grade 1 = 1, Grade 2 = 2).
- **New Features:** Created "Duration_per_mile" (time per distance), giving an idea of time taken to cover a distance.
- Target Creation: Created binary Injury_Flag for injury occurrence.
- Data Splitting: Split data into 80% training and 20% testing.

Model Selection and Training

Model Chosen:

• Gradient Boosting Classifier wrapped with "MultiOutputClassifier" for multi-label classification.

Training:

Trained the model using X_train and y_train, then made predictions on the test set (X_test).

Evaluation:

- Accuracy: Achieved accuracy of 87.79% on the test set.
- Cross-validation: Performed 5-fold cross-validation with an average score close to 0.90.
- **Final Choice**: Gradient Boosting selected for strong recall, F1 scores, and predictive power after testing other models (e.g., Random Forest, Logistic Regression, SVM, KNN).
- **Practical Implications:** High recall ensures at-risk players are flagged for preventive care. Feature importance insights (e.g., muscle imbalance, playing position) guide injury prevention strategies.

Injury Type Distribution in Training Set

Objective:

 Analyzed the distribution of injury types in the training set to identify the most common injury.

Observation:

• "Tendonitis" is the most frequent injury type, highlighting its importance for preventive measures.

Visualization:

Bar chart showing the distribution of injury types in the training set.

Key Insight:

 Focusing on preventive measures for Tendonitis could reduce the most common injury occurrence.

Visualization

Feature Importance

Objective:

Identify key features influencing each injury type using the Gradient Boosting model.

Method:

- Extracted feature importances for each injury type.
- Displayed top 10 features impacting the injury predictions.

Key Insight:

- Understanding which body parts or other features contribute most to injuries like
 Tendonitis helps predict future injuries.
- This analysis supports better injury prevention and management strategies.

Visualization:

Bar charts displaying top features for each injury type.

Visualization

Top features impacting "Injury Type_Fracture"

Top features impacting "Injury Type_Tendonitis"

Conclusion

Model Performance:

- Achieved 88% accuracy and 90% cross-validation score.
- Model effectively predicts injury types based on training data.

Key Insights:

- Dislocation is the most common injury type, highlighted by the injury type distribution.
- Identified key features influencing injury occurrence, helping predict future injuries.

Impact:

- Helps in injury prevention and player management.
- Informs team selection decisions, which can impact game outcomes.

