UNCLASSIFIED

AD NUMBER
AD826208
NEW LIMITATION CHANGE
TO Approved for public release, distribution unlimited
FROM Distribution authorized to DoD only; Administrative/Operational Use; JAN 1968. Other requests shall be referred to NASA, Marshall Space Flight Center, Huntsville, AL.
AUTHORITY
USAEDC ltr, 12 Jul 1974

ALTITUDE DEVELOPMENTAL TESTING OF THE J-2 ROCKET ENGINE IN PROPULSION ENGINE TEST CELL (J-4) (TEST J4-1801-06)

Garage James

N. R. Vetter ARO, Inc.

January 1968

Each transmittal of this document outside the Department of Defense must have prior approval of NASA, Marshall Space Flight Center (I-E-J), Huntsville, Alabama.

This document is subject to special export controls and each transmittal to foreign governments or foreign nationals may be made only with prior approval of NASA, Marshall Space Flight Center (I-E-J), Huntsville, Alabama.

LARGE ROCKET FACILITY

ARNOLD ENGINEERING DEVELOPMENT CENTER

AIR FORCE SYSTEMS COMMAND

ARNOLD AIR FORCE STATION, TENNESSEE

D D C

NATICES

When U. S. Government drawings specifications, or other data are used for any purpose other than a definitely related Government procurement operation, the Government thereby incurs no responsibility nor any obligation whatsoever, and the fact that the Government may have formilated, furnished, or in any way supplied the said drawings, specifications, or other data, is not to be regarded by implication or otherwise, or in any manner licensing the holder or any other person or corporation, or conveying any rights or permission to manufacture, use, or sell any patented invention that may in any way be related thereto.

Qualified users may obtain copies of this report from the Defense Documentation Center.

References to named commercial products in this report are not to be considered in any sense as an endorsement of the product by the United States Air Force or the Government.

ALTITUDE DEVELOPMENTAL TESTING OF THE J-2 ROCKET ENGINE IN PROPULSION ENGINE TEST CELL (J-4) (TEST J4-1801-06)

N. R. Vetter ARO, Inc.

Each transmittal of this document outside the Department of Defense must have prior approval of NASA, Marshall Space Flight Center (I-E-J), Huntsville, Alabama.

This document is subject to special export controls and each transmittal to foreign governments or foreign nationals may be made only with prior approval of NASA, Marshall Space Flight Center (I-E-J). Huntsville, Alabama.

AF - ARDC

FOREWORD

The work reported herein was sponsored by the National Aeronautics and Space Administration (NASA), Marshall Space Flight Center (MSFC) under System 921E, Project 9194.

The results of the tests presented were obtained by ARO, Inc. (a subsidiary of Sverdrup & Parcel and Associates, Inc.), contract operator of the Arnold Engineering Development Center (AEDC), Air Force Systems Command (AFSC), Arnold Air Force Station, Tennessee, under contract AF 40(600)-1200. Program direction was provided by NASA/MSFC; engineering liaison was provided by North American Aviation, Inc., Rocketdyne Division, manufacturer of the J-2 rocket engine, and Douglas Aircraft Company, manufacturer of the S-IVB stage. The testing reported herein was conducted on August 22, 1967 in Propulsion Engine Test Cell (J-4) of the Large Rocket Facility (LRF) under ARO Project No. KA1801. The manuscript was submitted for publication on September 19, 1967.

Information in this report is embargoed under the Department of State International Traffic in Arms Regulations. This report may be released to foreign governments by departments or agencies of the U.S. Government subject to approval of NASA/MSFC (I-E-J), or higher authority. Private individuals or firms require a Department of State export license.

This technical report has been reviewed and is approved.

Harold Nelson, Jr.
Captain, USAF
AF Representative, LRF
Directorate of Test

Leonard T. Glaser Colonel, USAF Director of Test

ABSTRACT

Four firings of the Rocketdyne J-2 rocket engine were conducted on August 22, 1967 in Propulsion Engine Test Cell (J-4) of the Large Rocket Facility, Arnold Engineering Development Center. The firings were accomplished during test period J4-1801-06 at pressure altitudes from 103,000 to 108,000 ft at engine start. The objectives of the test included the evaluation of (1) thrust chamber ignition characteristics with low augmented spark igniter mixture ratio and (2) the effects upon engine starting transients of minimum fuel pump inlet pressure and thrust chamber resistance for first orbit restarts with maximum starting energy. Satisfactory engine operation was obtained. The accumulated engine firing duration was 70.3 sec.

This document is subject to special export controls and each transmittal to foreign governments or foreign nationals may be made only with prior approval of NASA, Marshall Space Flight Center (I-E-J). Huntsville, Alabama.

AEDC-TR-67-215

CONTENTS

	<u>F</u>	age
I. INT II. AP III. PR IV. RE V. SUI	STRACT. MENCLATURE. PRODUCTION PARATUS. OCEDURE. SULTS AND DISCUSSION MMARY OF RESULTS FERENCES.	iii vii 1 7 8 12 13
	APPENDIXES	
1 11.1	LUSTRATIONS	
_,		
Figure		
1.	Test Cell J-4 Complex	17
2.	Test Cell J-4 Artist's Conception	13
3.	Engine Details	19
4.	S-IVB Battleship Stage/J-2 Engine Schematic	20
5.	Engine Schematic	21
6.	Engine Start Logic Schematic	22
7.	Start and Shutdown Sequence	23
8.	Engine Start Conditions for Pump Inlets, Start Tank, and Helium Tank	2 5
9.	Engine Transient Operation, Firing 06	27
10.	Fuel Pump Start Transient Performance, Firing 06A.	31
11.	Engine Ambient and Combustion Chamber Pressures, Firing 06A	32
12.	Thermal Conditioning History of Engine Components, Prefire 06A	33
13.	Engine Transient Operation, Firing 06B	34
14.	Fuel Pump Start Transient Performance, Firing 06B	38

Į

AEDC-TR-67-215

Figure			Page
15.		gine Ambient and Combustion Chamber Pressure, ring 06B	39
16.		ermal Conditioning History of Engine mponents, Prefire 06B	40
17.	En	gine Transient Operation, Firing 06C	41
18.		agine Ambient and Combustion Chamber Pressures, ring 06C	45
19.		nermal Conditioning History of Engine omponents, Prefire 06C	46
20.	En	gine Transient Operation, Firing 06F	47
21.		agine Ambient and Combustion Chamber Pressures, ring 06D	51
22.		nermal Conditioning History of Engine omponents, Prefire 06D	52
II. TA	BLE	es	
	I.	Major Engine Components	53
	II.	Summary of Engine Orifices	54
	III.	Engine Modifications (Between Tests J4-1801-5 and J4-1801-06)	55
	IV.	Engine Component Replacements (Between Tests J4-1801-05 and J4-1801-06)	55
	v.	Engine Purge and Component Conditioning Sequence	56
	VI.	Summary of Test Requirements and Results	57
	VII.	Engine Valve Timing	58
7	/III.	Engine Performance Summary	59
III. IN	STR	UMENTATION	60
		ODS OF CALCULATION (PERFORMANCE	73

SECTION I

Testing of the Rocketdyne J-2 rocket engine (S/N J-2052) with a Douglas Aircraft Company S-IVB battleship stage has been in progress since July 1966 at AEDC, in support of the J-2 engine application on the Saturn IB and Saturn V launch vehicles for NASA Apollo Program. The four firings reported herein were conducted during test period J4-1801-06 on August 22, 1967 in Propulsion Engine Test Cell (J-4) (Figs. 1 and 2, Appendix I) of the Large Rocket Facility (LRF) to investigate J-2 engine S-IVB/S-V thrust chamber ignition characteristics with low augmented spark igniter mixture ratio and engine starting transients for first orbit restarts with maximum starting energy. These firings were accomplished at pressure altitudes ranging from 103,000 to 108,000 ft (geometric pressure altitude, Z, Ref. 1) at engine start.

Data collected to accomplish the test objectives are presented herein. Copies of all data obtained during this test have been previously supplied to the sponsor, and copies are on file at the AEDC. The results of the previous test period are reported in Ref. 2.

SECTION !! APPARATUS

2.1 TEST ARTICLE

The test article was a J-2 Rocket Engine (Fig. 3) designed and developed by Rocketdyne Division of North American Aviation, Inc. The engine uses liquid oxygen and liquid hydrogen as propellants, and has a thrust rating of 225,000 lb $_{\rm f}$ at an oxidizer-to-fuel mixture ratio of 5.5. An S-IVB battleship stage was used to supply propellants to the engine. A schematic of the battleship stage with the J-2 engine is shown in Fig. 4.

Listings of major engine components and engine orifices for this test period are presented in Tables I and II, respectively. All engine modifications and component replacements performed since the previous test period are presented in Tables III and IV, respectively. The thrust chamber heater blankets were in place during this test period, although they were not utilized.

2.1.1 J-2 Rocket Engine

The J-2 rocket engine (Figs. 3 and 5 and Ref. 3), features the following major components:

- 1. Thrust Chamber The tubular-walled, bell-shaped thrust chamber consists of an 18.6-in.-diam combustion chamber (8.0 in. long from the injector mounting to the throat inlet) with a characteristic length (L*) of 24.6 in., a 170.4-in. throat area, and a divergent nozzle with an expansion ratio of 27.1. Thrust chamber length (from the injector flange to the nozzle exit) is 107 in. Cooling is accomplished by the circulation of engine fuel flow downward from the fuel manifold through 180 tubes and then upward through 360 tubes to the injector.
- 2. Thrust Chamber Injector The injector is a concentricorificed (concentric fuel orifices around the oxidizer post orifices), porous-faced injector. Fuel and oxidizer injector orifice areas are 25.0 and 16.0 in.², respectively. The porous material, forming the injector face, allows approximately 3.5 percent of total fuel flow to transpiration cool the face of the injector.
- 3. Augmented Spark Igniter The augmented spark igniter unit is mounted on the thrust chamber injector and supplies the initial energy source to ignite propellants in the main combustion chamber. The augmented spark igniter chamber is an integral part of the thrust chamber injector. Fuel and oxidizer are ignited in the combustion area by two spark plugs.
- 4. Fuel Turbopump The turbopump is composed of a two-stage turbine-stator assembly, an inducer, and a seven-stage axial-flow pump. The pump is self-lubricated and nominally produces, at rated conditions, a head rise of 35,517 ft (1225 psia) of liquid hydrogen at a flow rate of 8414 gpm for a rotor speed of 26,702 rpm.
- 5. Oxidizer Turbopump The turbopump is composed of a two-stage turbine-stator assembly and a single-stage centrifugal pump. The pump is self-lubricated and nominally produces, at rated conditions, a head rise of 2117 ft (1081 psia) of liquid oxygen at a flow rate of 2907 gpm for a rotor speed of 8572 rpm.

- 6. Gas Generator The gas generator consists of a combustion chamber containing two spark plugs, a pneumatically operated control valve containing oxidizer and fuel poppets, and an injector assembly. The oxidizer and fuel poppets provide a fuel lead to the gas generator combustion chamber. The high energy gases produced by the gas generator are directed to the fuel turbine and then to the oxidizer turbine (through the turbine crossover duct), before being exhausted into the thrust chamber at an area ratio (A/A_t) of approximately 11.
- 7. Propellant Utilization Valve The motor-driven propellant utilization valve is mounted on the oxidizer turbopump and bypasses liquid oxygen from the discharge to the inlet side of the pump to vary engine mixture ratio.
- 8. Propellant Bleed Valves The pneumatically operated fuel and oxidizer bleed valves provide pressure relief for the boiloff of propellants trapped between the static test stage prevalves and main propellant valves at engine shutdown.
- 9. Integral Hydrogen Start Tank and Helium Tank The integral tanks consist of 7258-in. 3 sphere for hydrogen with a 1000-in. 3 sphere for helium located within it. Pressurized gaseous hydrogen in the start tank provides the initial energy source for spinning the propellant turbopumps during engine start. The helium tank 1 ovides a helium pressure supply to the engine pneumatic control system.
- Oxidizer Turbine Bypass Valve The pneumatically actuated oxidizer turbine bypass valve provides control of the fuel turbine exhaust gases directed to the oxidizer turbine in order to control the oxidizer-to-fuel turbine spinup relationship. The fuel turbine exhaust gases which bypass the oxidizer turbine are discharged into the thrust chamber.
- Main Oxidizer Valve The main oxidizer valve is a pneumatically actuated, two-stage, butterfly-type valve located in the oxidizer high pressure duct between the turbopump and the main injector. The first stage actuator positions the main oxidizer valve at the 14-deg position to obtain initial thrust chamber ignition; the second stage actuator ramps the main oxidizer valve full open to accelerate the engine to main-stage operation.
- 12. Main Fuel Valve The main fuel valve is a pneumatically actuated butterfly-type valve located in the fuel high pressure duct between the turbopump and the fuel manifold.

- 13. Pneumatic Control Package The pneumatic control package controls all pneumatically operated engine valves and purges.
- 14. Electrical Control Assembly The electrical control assembly provides the electrical logic required for proper sequencing of engine components during operation.
- 15. Primary and Auxiliary Flight Instrumentation Packages The instrumentation packages contain sensors required to
 monitor critical engine parameters. The packages provide
 environmental control for the sensors.

2.1.2 S-IVB Battleship Stage

The S-IVB battleship stage is approximately 22 ft in diameter and 49 ft long and has a maximum propellant capacity of 46,000 lb of liquid hydrogen and 199,000 lb of liquid oxygen. The propellant tanks, fuel above oxidizer, are separated by a common bulkhead. Propellant prevalves, in the low pressure ducts (external to the tanks) interfacing the stage and the engine, retain propellant in the stage until being admitted into the engine to the main propellant valves and serve as emergency engine shutoff valves. Propellant recirculation pumps in both fuel and oxidizer tanks are utilized to circulate propellants through the low pressure ducts and turbopumps before engine start to stabilize hardware temperatures near normal operating levels and to prevent propellant temperature stratification. Vent and relief valve systems are provided for both propellant tanks.

Pressurization of the fuel and oxidizer tanks was accomplished by facility systems using hydrogen and helium, respectively, as the pressurizing gases. The engine-supplied gaseous hydrogen for fuel tank pressurization during S-IVB flight was routed to the facility vent system.

2.2 TEST CELL

Test Cell (J-4), Fig. 2, is a vertically oriented test unit designed for static testing liquid-propellant rocket engines and propulsion systems at pressure altitudes of 100,000 ft. The basic cell construction provides a 1.5-million-lbf-thrust capacity. The cell consists of four major components: (1) test capsule, 48 ft in diameter and 82 ft in height, situated at grade level and containing the test article; (2) spray chamber, 100 ft in diameter and 250 ft in depth, located directly beneath the test capsule to provide exhaust gas cooling and dehumidification; (3) coolant water, steam, nitrogen (gaseous and liquid), hydrogen

(gaseous and liquid), liquid oxygen, and gaseous helium storage and delivery systems for operation of the cell and test article; and (4) control building, containing test article controls, test cell controls, and data acquisition equipment. Exhaust machinery is connected with the spray chamber and maintains a minimum test cell pressure before and after the engine firing and exhausts the products of combustion from the engine firing. Before a firing, the facility steam ejector, in series with the exhaust machinery, provides a pressure altitude of 100,000 ft in the test capsule. A detailed description of the test cell is presented in Ref. 4.

The battleship stage and the J-2 engine were oriented vertically downward on the centerline of the diffuser-steam ejector assembly. This assembly consisted of a diffuser duct (20 ft in diameter by 150 ft in length), a centerbody steam ejector within the diffuser duct, a diffuser insert (13.5 ft in diameter by 30 ft in length) at the inlet to the diffuser duct, and a gaseous nitrogen annular ejector above the diffuser insert. The diffuser insert was provided for dynamic pressure recovery of the engine exhaust gases and to maintain engine ambient pressure altitude (attained by the steam ejector) during the engine firing. The annular ejector was provided to suppress steam recirculation into the test capsule during steam ejector shutdown. The test cell was also equipped with (1) a gaseous nitrogen purge system for continuously inerting the normal air inleakage of the cell; (2) a gaseous nitrogen repressurization system for raising test cell pressure, after engine cutoff, to a level equal to spray chamber pressure and for rapid emergency inerting of the capsule; and (3) a spray chamber liquid nitrogen supply and distribution manifold for initially inerting the spray chamber and exhaust ducting and for increasing the molecular weight of the hydrogen-rich exhaust products.

An engine component conditioning system was provided for temperature conditioning engine components. The conditioning system utilized a liquid hydrogen-helium heat exchanger to provide cold helium gas for component conditioning. Engine components requiring temperature conditioning were the thrust chamber and crossover duct. Helium was routed internally through the tubular-walled thrust chamber and crossover duct.

2.3 INSTRUMENTATION

Instrumentation systems were provided to measure engine, stage, and facility parameters. The engine instrumentation was comprised of

(1) flight instrumentation for the measurement of critical engine parameters and (2) facility instrumentation which was provided to verify the flight instrumentation and to measure additional engine parameters. The flight instrumentation was provided and calibrated by the engine manufacturer; facility instrumentation was initially calibrated and periodically recalibrated at AEDC. Appendix III contains a list of all measured test parameters and the locations of selected sensing points.

Pressure measurements were made using strain-gage-type pressure transducers. Temperature measurements were made using resistance temperature transducers and thermocouples. Oxidizer and fuel turbopump shaft speeds were sensed by magnetic pickup. Fuel and oxidizer flow rates to the engine were measured by turbine-type flow-meters which are an integral part of the engine. The propellant recirculation flow rates were also monitored with turbine-type flowmeters. Engine side loads were measured with dual-bridge, strain-gage-type load cells which were laboratory calibrated before installation. Vibrations were measured by accelerometers mounted on the oxidizer injector dome and on the turbopumps. Primary engine and stage valves were instrumented with linear potentiometers and limit switches.

The data acquisition systems were calibrated by (1) precision electrical shunt resistance substitution for the pressure transducers, load cells, and resistance temperature transducer units, (2) voltage substitution for the thermocouples, (3) frequency substitution for shaft speeds and flowmeters, and (4) frequency-voltage substitution for accelerometers.

The types of data acquisition and recording systems used during this test period were (1) a multiple-input digital data acquisition system (Microsadic[®]) scanning each parameter at 40 samples per second and recording on magnetic tape, (2) single-input, continuous-recording FM systems recording on magnetic tape, (3) photographically recording galvanometer oscillographs, (4) direct-inking, null-balance potentiometer-type X-Y plotters and strip charts, and (5) optical data recorders. Applicable systems were calibrated before each test (atmospheric and altitude calibrations). Television cameras, in conjunction with video tape recorders, were used to provide visual coverage during an engine firing, as well as replay capability for immediate examination of unexpected events.

2.4 CONTROLS

Control of the J-2 engine, battleship stage, and test cell systems during the terminal countdown was provided from the test cell control room. A facility control logic network was provided to interconnect the engine control system, major stage systems, the engine safety cutoff system, the observer cutoff circuits, and the countdown sequencer. A schematic of the engine start control logic is presented in Fig. 6. The sequence of engine events for a normal start and shutdown is presented in Figs. 7a and b. Two control logics for sequencing the stage prevalves and recirculation systems with engine start for simulating engine flight start sequence are presented in Figs. 7c and d.

SECTION III PROCEDURE

Preoperational procedures were begun several hours before the test period. All consumable storage systems were replenished and engine inspections, leak checks, and drying procedures were conducted. Propellant tank pressurants and engine pneumatic and purge gas samples were taken to ensure that specification requirements were met. Chemical analysis of propellants was provided by the propellant suppliers. Facility sequence, engine sequence, and engine abort checks were conducted within a 24-hr time period before an engine firing to verify the proper sequence of events. Facility and engine sequence checks consisted of verifying the timing of valves and events to be within specified limits; the abort checks consisted of electrically simulating engine malfunctions to verify the occurrence of an automatic engine cutoff signal. A final engine sequence check was conducted immediately preceding the test period.

Oxidizer dome, gas generator oxidizer injector, and thrust chamber jacket purges were initiated before evacuating the test cell. After completion of instrumentation calibrations at atmospheric conditions, the test cell was evacuated to approximately 0.5 psia with the exhaust machinery, and instrumentation calibrations at altitude conditions were conducted. Immediately before loading propellants on board the vehicle, the cell and exhaust-ducting atmosphere was inerted. At this same time, the cell nitrogen purge was initiated for the duration of the test period, except for the engine firing. The vehicle propellant tanks were then loaded, and the remainder of the terminal countdown was conducted. Table V presents the engine purge operations during the terminal countdown and immediately following the engine firing.

Temperature conditioning of the thrust chamber and turbine crossover system was accomplished as required, using the facility supplied conditioning system.

SECTION IV RESULTS AND DISCUSSION

4.1 TEST SUMMARY

Four firings were conducted during test J4-1801-06 on August 22, 1967 for a total firing duration of 70.3 sec. All firings were in support of the S-IVB/S-V J-2 engine developmental program. Thermal conditioning of the thrust chamber and turbine crossover system was accomplished to simulate the flight engine thermal conditioning predicted for (1) J-2 engine first burn and (2) engine restart after a 90-min orbit. A propellant utilization valve excursion from null to the full-closed position was conducted during the 30-sec firings 06A and 06C, effectively changing the oxidizer-to-fuel ratio from 5.0 to 5.5. Firings 06B and 06D (each of 5-sec duration) were conducted with the propellant utilization valve fully open. Firings 06A and 06C were preceded by 3-sec fuel leads; 06B and 06D were preceded by 8-sec fuel leads.

Specific test objectives and a brief summary of results obtained for each firing are presented as follows:

Firing	Test Objectives	Results
06A	Evaluate the effects of low start tank energy and -200°F thrust chamber upon high level fuel pump stall for a S-IVB/S-V first burn.	A minimum stall margin of 600 gpm was realized in the region above 5500 gpm.
06B	Evaluate the effects of minimum fuel pump inlet pressure upon low level fuel pump stall for a S-IVB/S-V first orbit restart with maximum starting energy.	A minimum stall margin of 1600 gpm was realized in the region below 5500 gpm.
06C	Evaluate thrust chamber ignition characteristics for a S-IVB/S-V first burn with low augmented spark igniter mixture ratio.	A thrust chamber pressure of 100 psia was attained at t _o + 1.035 sec. VSC was measured for 95 msec during the ignition transient.

Firing Test Objectives

Results rust chamber pr

06D Evaluate the effects of thrust chamber resistance upon engine starting characteristics for a S-IVB/S-V first orbit restart with maximum starting energy.

A thrust chamber pressure of 100 psia was attained at $t_0 + 1.008$ sec. VSC was measured for 18 msec during the ignition transient. The gas generator outlet temperature first peak was 1970°F.

The presentation of the 'est results in the following sections will consist of a discussion of each engine firing. The data presented will be that recorded by the digital data acquisition system, except as noted.

Specific test requirements and results are summarized in Table VI. Start and shutdown times of engine valves are presented in Table VII. Included in Table VII are prefiring valve times obtained from the final sequence run. The pump inlets, start tank, and helium tank pressure and temperature conditions at engine start are shown in Fig. 8.

4.2 TEST RESULTS

4.2.1 Firing J4-1801-06A

Firing 06A was of 30-sec duration with a propellant utilization valve excursion from null to fully closed at t_0 + 13 sec. The firing was preceded by a 3.0-sec fuel lead. A summary of engine start requirements and test results is presented in Table VI.

Engine start and shutdown transients of selected primary engine parameters are shown in Fig. 9. The initial gas generator outlet temperature peak was 1830°F. Initial main oxidizer valve second stage movement occurred at t_0 + 1.005 sec. Thrust chamber ignition occurred 1.055 sec after t_0 , and engine vibrations (VSC) were recorded at t_0 + 1.053 sec for 24 msec.

Transient fuel pump head/flow data for firing 06A are compared with the stall inception curve in Fig. 10. In the particular region of investigation for this firing (above approximately 5500 gpm), a minimum stall margin of 600 gpm was realized.

A summary of start and shutdown times for engine valves during 06A is shown in Table VII. All valve operating times were consistent and normal.

Engine chamber pressure and test capsule ambient pressure for firing 06A are shown in Fig. 11. The effects of the propellant utilization valve excursion occurred at approximately $t_{\rm O}+13$ sec, at which time engine chamber pressure increased from 690 to 780 psia. Thermal conditions of engine components are shown in Fig. 12.

Engine steady-state performance data are presented in Table VIII. The data presented were for a 1-sec data average of test measurements from 29 to 30 sec, and were computed using the Rocketdyne PAST 640 modification zero performance computer program. Engine test measurements required by the program and the program computations are presented in Appendix IV.

4.2.2 Firing J4-1801-06B

Firing 06B was conducted 19 min after firing 06A to provide engine component temperatures after a simulated 90-min orbit; this firing was of 5-sec duration preceded by an 8-sec fuel lead. The propellant utilization valve was fully open throughout the firing. A summary of engine start requirements and results is presented in Table VI.

Engine start and shutdown transients of selected primary engine parameters are shown in Fig. 13. The initial gas generator outlet temperature peak was 2160°F with a second peak of the same magnitude. Initial main oxidizer valve second stage movement occurred at $t_{\rm O}+1.160~{\rm sec.}\,$ Thrust chamber ignition occurred 0.942 sec after $t_{\rm O},$ and no engine vibration (VSC) was recorded.

Transient fuel pump head/flow data for firing 06B was documented, and compared with the stall inception curve in Fig. 14. In the particular region of investigation for this firing (below approximately 550 gpm), a minimum stall margin of 600 gpm was realized.

A summary of start and shutdown times for engine valves during firing 06B is shown in Table VII. All valve operating times were consistent and normal.

Engine chamber pressure and test capsule ambient pressure for firing 06B are shown in Fig. 15. Thermal conditions of selected engine components are shown in Fig. 16.

4.2.3 Firing J4-1801-06C

Firing 06C was of 30-sec duration with a propellant utilization valve excursion from null to fully closed at t_0 + 23 sec. The firing was preceded by a 3-sec fuel lead. A summary of engine start requirements and test results is presented in Table VI.

Engine start and shutdown transients of selected primary engine parameters are shown in Fig. 17. The initial gas generator outlet temperature peak was 1400°F. Initial main oxidizer valve second stage movement occurred at t_0 + 1.038 sec. Thrust chamber ignition occurred 1.035 sec after t_0 , and engine vibrations (VSC) were recorded at t_0 + 1.032 sec for 95 msec.

A summary of start and shutdown times for engine valves during firing 06C is shown in Table VII. All valve operating times were consistent and normal.

Engine chamber pressure and test capsule ambient pressure for firing 06C are shown in Fig. 18. The effects of the propellant utilization valve excursion occurred at approximately $t_0 + 23~{\rm sec}$, at which time engine chamber pressure increased from 690 to 780 psia. Thermal conditions of selected engine components are shown in Fig. 19.

Engine steady-state performance data are presented in Table VIII. The data presented were for a 1-sec data average of test measurements from 29 to 30 sec, and were computed using the Rocketdyne PAST 640 modification zero performance computer program. Engine test measurements required by the program and the program computations are presented in Appendix IV.

4.2.4 Firing J4-1801-06D

The 90-min restart simulation firing, 06D, was of 5-sec duration preceded by an 8-sec fuel lead. The propellant utilization valve was fully open throughout the firing. A summary of engine start requirements and results is presented in Table VI.

Engine start and shutdown transients of selected primary engine parameters are shown in Fig. 20. The initial gas generator outlet temperature peak was 1970°F. Initial main oxidizer valve second stage movement occurred $t_0 + 1.016$ sec. Thrust chamber ignition occurred 1.008 sec after t_0 , and engine vibrations (VSC) were observed at $t_0 + 1.012$ sec for 18 mscc.

A summary of start and shutdown times for engine valves during firing 06D is shown in Table VII. All valve operating times were consistent and normal.

Engine chamber pressure and test capsule ambient pressure for firing 06D are shown in Fig. 21.

Thermal conditions of selected engine components are shown in Fig. 22. The cool-down rate of the turbine crossover system, prior to this firing, was excessive, indicating possible leakage through the gas generator control valve. A pressure decay check of the fuel system, immediately following the firing, indicated leakage; however, subsequent leak checks conducted at ambient temperature conditions did not locate a leakage source.

4.2.5 Post-Test Inspection

Post-test inspection showed the engine condition to be satisfactory.

SECTION V SUMMARY OF RESULTS

The results of these four firings of the Rocketdyne J-2 engine conducted on August 22, 1967, in Test Cell J-4 are summarized as follows:

- 1. A minimum fuel pump stall margin of 600 gpm was realized in the flow region above 5500 gpm for a first-burn simulation with low starting energy.
- 2. A minimum fuel pump stall margin of 1600 gpm was realized in the flow region below 5500 gpm for a restart simulation with high starting energy.
- 3. Thrust chamber ignition characteristics for a first burn with low augmented spark igniter mixture ratio were satisfactory.
- 4. Engine vibrations in excess of ± 150 g in the frequency range of 960 to 6000 Hz were measured during three of the four firings.
- 5. Engine valve operating times were consistent and normal.

REFERENCES

- 1. Dubin, M., Sissenwine, N., and Wexler, H. "U.S. Standard Atmosphere, 1962." December 1962.
- 2. Counts, H. J. "Altitude Developmental Testing of the J-2 Rocket Engine in Propulsion Engine Test Cell (J-4) (Test J4-1801-05)." AEDC-TR-67-208 (AD821828), October, 1967.
- 3. "J-2 Rocket Engine, Technical Manual Engine Data." R-3825-1, August 1965.
- 4. Test Facilities Handbook, (6th Edition). "Large Rocket Facility,
 Vol. 3." Arnold Engineering Development Center, November
 1966.

のできる。 「日本のでは、日本

AEDC-TR-67-215

- I. ILLUSTRATIONS
- II. TABLES
- III. INSTRUMENTATION
- IV. METHODS OF CALCULATION (PERFORMANCE PROGRAM)

Fig. 1 Test Cell J.4 Complex

Fig. 2 Test Cell J-4 Artist's Conception

Fig. 3 Details

Fig. 4 S-IVB Battleship Stage/J-4 Engine Schematic

and the state of t

AND REPORT OF THE PARTY OF THE

١.

Fig. 5 Engine Schematic

a. Start Sequence

b. Shutdown Sequence

Fig. 7 Start and Shutdown Sequence

Time Index Lines, 1-sec Intervals								
Fire Command	\downarrow							
Prevalves Open Signal	\downarrow							
Recirculation Pumps Off Signal	Ţ			'				
Recirculation Valves Close Signal					Ź			İ
Engine Start Signal				.	A^1		li	
Start Tank Discharge Valve Open Signal								\rightarrow \frac{1}{2}

¹Nominal Occurrence Time (Function of Prevalves Opening Time)

c. Normal Logic Start Sequence

¹Three-sec Fuel Lead (S-IVB/S-V First Burn)

d. Auxiliary Logic Start Sequence

Fig. 7 Concluded

 $^{^2}$ One-sec Fuel Lead (S-II/S-V and S-IVB/S-IB)

 $^{^{3}}$ Eight-sec Fuel Lead (S-IVB/S-V and S-IB Orbital Restart)

a. Oxidizer Pump Inlet

b. Fuel Pump Inlet

Fig. 8 Engine Start Conditions for Pump Inlets, Start Tank, and Helium Tank

d. Helium Tank Fig. 8 Concluded

c. Thrust Chamber Fuel System, Start

b. Thrust Chamber Oxidizer System, Start

Fig. 9 Engine Transient Operation, Firing 06A

c. Thrust Chamber Fuel System, Shutdown

d. Thrust Chamber Oxidizer System, Shutdown

Fig. 9 Continued

e. Gas Generator Injector Pressures and Main Oxidizer Valve Position, Start

f. Gas Generator Chamber Pressure and Temperature, Start Fig. Continued

g. Gas Generator Injector Pressures, Shutdown

h. Gas Generator Chamber Pressure and Temperature, Shutdown Fig. 9 Concluded

31

Fig. 1) Engine Ambient and Combustion Chamber Pressures, Firing 66A

b. Turbines and Crossover Duct

Fig. 12 Thermal Conditioning History of Engine Components, Prefire 06A

a. Thrust Chamber Fuel System, Start

b. Thrust Chamber Oxidizer System, Start

Fig. 13 Engine Transient Operation, Firing 06B

c. Thrust Chamber Fuel System, Shutdown

d. Thrust Chamber Oxidizer System, Shutdown

Fig. 13 Continued

e. Gas Generator Injector Pressures and Main Oxidizer Valve Position, Start

f. Gas Generator Chamber Pressure and Temperature, Start

Fig. 13 Continued

g. Gas Generator Injector Pressures, Shutdown

h. Gas Generator Chamber Pressure and Temperature, Shutdown

Fig. 13 Concluded

では、これには、大きのでは、大きのでは、大きのできる。

Fig. 14 Fuel Pump Start Transient Performance, Firing 06B

Fig. 15 Engine Ambient and Combustion Chamber Pressure, Firing 06B

Fig. 16 Thermal Conditioning History of Engine Components, Prefire 06B

A THE REPORT OF THE PROPERTY OF THE PERSON O

a. Thrust Chamber Fuel System, Start

b. Thrust Chamber Oxidizer System, Start

Fig. 17 Engine Transient Operation, Firing 06C

c. Thrust Chamber Fuel System, Shutdown

d. Thrust Chamber Oxidizer System, Shutdown

Fig. 17 Continued

のできたことであるというというと、ことのなりとなるとなるとなって、こことのなるとはなるとのできたがあった。これなるとのなるとのない。 第111年 - 111日 - 11

e. Gas Generator Injector Pressures and Main Oxidizer Valve Position, Start

f. Gas Generator Chamber Pressure and Temperature, Start

Fig. 17 Continued

g. Gas Generator Injector Pressures, Shutdown

h. Gas Generator Chamber Pressure and Temperature, Shutdown

Fig. 17 Concluded

Fig. 18 Engine Ambient and Combustion Chamber Pressures, Firing 06C

a. Thrust Chamber

b. Turbines and Crossover Duct

Fig. 19 Thermal Conditioning History of Engine Components, Prefire 06C

a. Thrust Chamber Fuel System, Start

b. Thrust Chamber Oxidizer System, Start

Fig. 20 Engine Transient Operation, Firing 06D

c. Thrust Chamber Fuel System, Shutdown

d. Thrust Chamber Oxidizer System, Shutdown

Fig. 20 Continued

e. Gas Generator h_i jector Pressures and Main Oxidizer Valve Position, Start

f. Gas Generator Chamber Pressure and Temperature, Start Fig. 20 Continued

g. Gas Generator Injector Pressures, Shutdown

h. Gas Generator Chamber Pressure and Temperature, Shutdown

Fig. 20 Concluded

Fig. 21 Engine Ambient and Combustion Chamber Pressures, Firing 06D

Fig. 22 Thermal Conditioning History of Engine Components, Prefire 06D

Significant of the property of the second

TABLE I MAJOR ENGINE COMPO'IENTS

Part Name	P/N	s/N
Thrust Chamber Body	206600-31	4076553
Thrust Chamber Injector Assembly	208021-11	4084917
Fuel Turbopump Assembly	459000-161	4062085
Oxidizer Turbopump Assembly	458175-71	6623549
Start Tank	303139	0064
Augmented Spark Igniter	206280-21	3661349
Gas Generator Fuel Injector and Combustor	508360-11	4066541
Preumatic Control Assembly	558130-41	4092999
Electrical Contro' Package	502670-11	4081748
Primary Flight Instrumentation Package	703685	4078716
Auxiliary Flight Instrumentation Package	703680	4078718
Main Fuel Valve	409120	4056924
Main Oxidizer Valve	411031	4089563
Gas Generator Control Valve	319040	4074190
Start Tank Discharge Valve	306875	4079062
Oxidizer Turbine Bypass Valve	409940	4048489
Propellant Utilization Valve	251351-11	4068944
Main-Stage Control Valve	558069	8313568
Ignition Phase Control Valve	558069	8275775
Helium Control Valve	106012000	342270
Start Tank Vent and Relief Valve	557828-X2	4046446
Helium Tank Vent Valve	106012000	342277
Fuel Bleed Valve	309034	4077749
Oxidizer Bleed Valve	309029	4077746
Augmented Spark Igniter Oxidizer Valve	308880	4077205
P/A Purge Control Valve	557823	4073021
Start Tank Fill/Refill Valve	558000	4079001
Fuel Flowmeter	251225	4077752
Oxidizer Flowmeter	251216	4074114
Fuel Injector Temperature Transducer	NA5-27441	12401
Restartable Ignition Detect Probe	XREO915389	211

TABLE II
SUMMARY OF ENGINE ORIFICES

Orifice Name	Part Number	Diameter (Except as Noted)
Gas Generator Fuel	RD 251-4107	0.480 in.
Gas Generator Oxidizer	RD 251-4106	0.281 in.
Oxidizer Turbine Bypass Valve	RD 273	1.571 in.
Main Oxidizer Valve Closing Control	556443	8.34 scfm
Turbine Exhaust	RD 251-9004	9.99 in.
Augmented Spark Igniter Oxidizer	4063461	0.137 in. 0.125 in.

TABLE III ENGINE MODIFICATIONS (Between Tests J4-1801-05) and J4-1801-06)

Modification Number	Completion Date	Description of Modification
ECP 507	August 18, 1967	Remove Instrumentation Line (PGBNI)

ECP - Rocketdyne Engineering Change Proposal

TABLE IV ENGINE COMPONENT REPLACEMENTS (Between Tests J4-1801-05 and J4-1801-06)

Replacement	Completion Date	Component Replaced
UCR-007982	August 18, 1967	Fuel Turbopump Assembly

UCR - Unsatisfactory Condition Report

TABLE V ENGINE PURGE AND COMPONENT CONDITIONING SEQUENCE

		Time, min 0 t - 80 t - 70 t - 60 t - 50 t - 40 t - 30 t - 20 t - 10 t - 10
Turbopump and Gas Generator Purge (Purge Manifold System)	Helium, 82 - 125 psia 30 - 200°F (Nominal) 6 scfm at Customer Connect	2-min Minimum Following Recirculation ——Propellant Drop 1 to 3 min ——
Oxidizer Dome and Gas Generator Liquid Oxygen Injector (Engine Pneums.ic System)	Nitrogen, 400 ± 25 ps.g. 50 - 200 F (Mınimum) 230 sefm	The Completed by Engine Heltum Tank during Start and I Cutoff Transients)
Oxidizer Dome (Facility Line to Port CO3A)	Nitrogen, 400 - 450 psig 100 - 200°F (Nominal) 200 scfm	On at Engine Cutoff (1) (1) (1) (1) (1) (1) (1) (1) (1) (1)
Oxidizer Turbopump Intermediate Seal Cavity (Engine Pneumatic System)	Helium, 400 ± 25 psig Ambient Temperature 2600 - 7000 scfm	Main-Stage Operation— (Supplied by Engine Hellum Tank)
Thrus: Chamber Jacket	Hellum, 40 • 60 psig 50 - 200°F (Nominal) 60 scfm	In Addition to
(Customer Connect) Panel	Helium, 12 - 14 psig 50 - 200°F (Nominal) 10 scfm	
Thrust Chamber Temperature Conditioning	Helium, 1000 psig -300°F to Ambient 10 - 20 lbm/min	[[[]]]][][][][][][][][][][][][][][][][
Pump Inlet Pressure and Temperature Conditioning	Oxidizer, 35 to 48 psia -288 to -280°F Fuel, 28 to 46 psia -434 to -416°F	
Hydrogen Start Tank and Helium Tank Pressure and Tem- perature Conditioning	Hydrogen, 1206 to 1400 psia -206 to -140*F Helium, 1700 to 3250 psia -300 to -140*F	
Crossover Duct Temperature Conditioning	Helium, -300°F to Ambient	

Oconditioning temperature to be maintained for the last 30 min of pre-fire Ocomponent conditions to be maintained within limits for last 15 min prior to engine start

State on a new freeze of the state of the

TABLE VI
SUMMARY OF TEST REQUIREMENTS AND RESULTS

Firing Number J4 1801-			0,	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	06	В	06	c	06	D
rs: mg Number 34 1801-		_ !	Target	Actua ¹	fatget	Actual	Larget	Actual	Target	Actual
Time of Day hr/Firing Date			1334/ Augus	22, 1967	I to 4 Augu	st 27, 1967	1603/Aug	st 22 1967	1621/ August	22, 1967
Pressure Att tude at Engine	Start ft	(Ref 1)		es 000		108,000		107, 000		106,000
Firing Dor dion Se. O			-00	3) 072	3 !	5 086	30 0	30 072	J 0	5 088
Puel Pump Irlet Conditions	Press	at peru	200 ± 10	2t 7	23 0 ± 1 0	27 +	46 0 ± 1 0	45 4	45 0 ± 1 0	44 6
at Engine Start	Temp	rature, °f	-421 4 2 ") 4	-421 5	2: 4:0 -	42, 4	421 1 ± 0 4	01 2	-441 , ± 0 4	-420 8
Oxidizer Pump Inset Condi-	Fresh	ire psia	35 0 : 1 0	54 9	48 0 ± 1 0	.78	35 0 ± ' 0	50 7	4d 0 ± 1 0	48 1
tions at Engire Start	Tempe	rature, *F	-294 0 . 0 4	294 3	295 3 • 0 4	2 9. 3	-294 2 ± 0 4	294 1	2	-295 0
Start Tank Conditions at	Pressi	ure, psia	12.0 ± 10	1236	1400 • 10	1.96	1250 ± 10	1248	1400 ± 10	1402
Engine Start	Tempe	rature, *F	140 ± 10	-141 1	- 40 ± 10	-241 5	-140 ± 10	St 22 1917 1621/ August	247 6	
Helium Tank Conditions	Pressi	ire, psia		2231		2362		2297		2273
at Engine Ster	Tempe	rature, °F		-144 0		-243 5		-149 9		-743 4
Thrust Chamber Tempera-	Throat	. TSC 2-19	-200 ± 15	-272 7		190 3	-10 = 15		- 40-	117
ture Conditions at Engine Start/to, *F	Averag	ge		-208		23 3				34 23
	TFTD	-2	-100 ± 15	-112	-	435	-100 ± 15		Target	118
Crossover Duct Tempera ture at Engine Start, *F	TFTD	-3	100 ± 15	-128	170 +15	`78	-100 ± 15	-143	170 +15	111
	TFTD	-8	·100 ± 15	-91		376	-100 ± 15	-95		239
Fuel Lead Time .cc	<u> </u>		10	3 010	8.0	7 996	30	3 008	8 0	8 003
Propellant in Figure Time,	m·r.		50	164	10	10	20	63	10	10
Propeliant Recirculation Tim	ne, mi		10	10	10	10	10	11	10	11
		TOBS 1	i	38 0		7 2	-3-3-	-16 5		-75 6
Gas Genc ator Oxidizer Supp Temperature at Engine Start		TOBS-2	<u> </u>	36.2		57 7		35 7		-22 6
Temperature at Engine Start		TOBS-3	- : : -	-11 6		32 2		-13 2	 	-53 0
Vibration Sefety Count Durat	ion (mse	:c) and		24		 		95		18
Occur ence Time (sec) from				053				1 032		1 01
Gas Generator Outlet	1	lin, al i, ak		1830		2160		1120		1970
Temperature *F	ļ:	Second Peak				2170	1		÷	
Main Chember Ignition (Pc sec (Ref to W	100 ps1	a) Time,		1 055	-	0 9+2		1 1 035		1 008
Main Oxidizer Valve Second Movement, sec (Ref. t ₀) [©]	S'age In	n'ial		1 005		1 160	÷	1 038		1 016
Main-Stage Pressure No 2,	sc. (Re	1 :010	·	1 805		1 577		1 692	1 22	1 684
550-psia Chamber Pressure (Ref. t ₀)	Attained	l, sec		2 141		1 859		1 960		2 077
Propellant Unlization Valve Start, deg Engine Start/to +		at Frgine	Null	Closed	Орсп	Open	Null			Open

NOTE Data reduced from oscillogram

THE LAW PORTED LAWS

TABLE VII ENGINE VALVE TIMING

	sur.	Valve Closing Time,	0 287	0 300	0 294	0 316	0 242		
	Oxidizer Furbins Bypass Valve	Velve Valve Detay Clusting It ne, Time, sec sec	0 236	0 215	0.254	0 221			
	Oxidiz	Fime of Closing Signal	0 446	0 446	9++ 0	0 443	0 442 0 706		
	tor	Valve Valve Time of Time, Opening of Time, Time, Closing sec Signal	0 053	0 072	0 078	0 082	0.447 (131 0 053		
	Gas Generator Oxidizer Poppet	Valve Delay Time,	0 168	0 182	0 182	\$61 O	131		
	Gas	lume Valve of Delay Opening Time, Signal sec	0 446 0 168 0 053	0 446 0 182 0 072	0 446 0 182	0 443 0 194	0.447		
	it in	Varve Opening Time, scc	0.038	0.041	0 045	0 057	0 032		
	Gas Generator Fue Poppet	Valve Delay Time,	960 0	260 0	260 0	0 097	0 079		
	Gas	Time Valve Varve of Delay Opening Chemic Signal sec scc	0 446 0 096	0 446 0 097 0.041	0 446 0 097	0 443	0 447 0 079 0 032		
	Valve ge	Valve Valve Time Asive Vave Inn. Valve Valve Delay Opening of Delay (Opening Of Delay (Opening Time, Depening Time, Time, Opening Time, Time, Signal see See Signal See See See See See See See See See Se	1 701	1 727	1 710	1 768	1 710		
-	Main Oxidizer Valve Second Stage	Valve Detay Time,	995 0	0 724	269 0	025 0	0 613		
	Mann O Sec	Time of Opening Signal	0 446	0 446 0 724	0 446	0 443	0 447 0 613		
Start	Valve	Valve Valve Delay Opening Time, Time, sec sec	0 056	_	690 0	0 054			
	Main Oxidizer Valve First Stage	Valve Delay Time,	0 000	0 058	0 048	150 0	0 020		
		Fime of Opening Signal	0.446 0 050	0 446 0 058 0 059	0 446 0 048	0 443	0 447 0 050 0 050		
	ilve	Valv. Valve Delay Opening Time, fime, sec. sec.	690 0	0 068	_	890 0	_		
	Main Fuel Valve	Valve Valve Delay Opening Time, fime,		0 041					
	Maın	Fime of Opening Signal	-3 009	-7 995	-3 007	-8 002	-1 012 0 041 0 071		
		Valve Closing Time,	0 257	0 253	0 264	0 253	0 244		
	Start Tank Discharge Valve		0 092	160 0	0 094	0 092	0 093		
		harge Val	charge Val	Time Vaive Valve Time Valve of Delay Opening Time, Time, Signal sec sec Signal sec	0 416 0 092	0 446 0 091	0 446 0 094	0 443 0 092	0 098 0 108 0 447 0 093
		Valve Opening Time,	0 0 149 0 141	o 146	Г	_	801 0		
	Start	Valve Delay Time,	0 149	0 159 0 146	0 154 0 136	0 158 0 152	860 0		
		Time Valve of Delay Opening Time,		0	0	0	۰		
	Faring	Number 34-1801-	06A	06B	290	090	Pre-Fire Final Sequence		

							s	Shutdown							
Firing	Men	Mean Fuel Valve	/alve	Main	Main Oxidizer Valve	i	Gas Fue	Gas Generator Fuel Poppet	tor	Gas Oxíd	Gas Generator Oxídizer Poppet	tor	Oxidia	Oxidizer Turbine Bypass Valve	bine
Number J4-1801-	Fime Valve of Delay Closing fime, Signal	rime Valve of Delay Chosing fime, Signal	Valve Valve Delay Closing fime, Fime, sec sec	Time of Closing Signal	Valve Delay Tıme,	Valve Closing Time,	Time Valve of Delay Closing Time, Signal	Valve Delay Time,	Valve Closing Time,	fume of Closing Signal	Valve Valve Delay Closing Time, Time,	Valve Valve Delay Closing Time, Time,	Time Valve of Deady Opening T me, Signal	Valve Duay T me,	Valve Valve Detay Opening T me, Time,
06A	30 071	0 134	0,263	30 073	060 0	0 206	30 073	120 0	0 261	10 073	0 018	0 035	30 073 0 255	0 255	0 539
06B	5 087	5 087 0 122	0 331	\$ 087 0 068	890 0	0 175	\$ 087 0 079	0 079	0 201	5 087 0 014	0 014	0 034	5 087	0.238	n 526
290	30 072	0 130	0 340	30 072	0 083	0 205	30 072 0 069	690 0	0 228	30 072	0 008	0 029	30 072	0 252	905 0
067)	5 088	0 119	0 321	5 088	0 000	0 197	5 088 0 087	0 087	0 189	5 088 0 017	0 017	0 039	5 088 0 238	0 238	0 502
Pre-Fire Final Sequence	-	0 088	0 241	÷	υ 062	0 132		980 0	0 080 0 020		0 036	0 30 0 910 0		0 234	0 608
Notes 1 Value delay time so the time remitted for initial value movement of riths to take "or "oftend" is also many and many and	alve deler		the time	required	for suffi	aulan lar		100	ho . dec	,	"0,000	4" . 0,000	d has been	24000	-

1. Valve delay time is the time required for initial valve movement after the valve "open" or "clos-d" solenoid has been energized.

2. Final sequence check is conducted without propellants and within 12 hr prior to testing.

· ** ** Prist Kitchet he

* * ***** **

TABLE VIII
ENGINE PERFORMANCE SUMMARY

Firing Number	J4-1801-	-06	6A	-00	6C
		Site	Normalized	Site	Normalized
Time, sec		29, 5	29.5	29.5	29.5
	Thrust, 1bf	227,000	225,000	226,000	224,000
	Chamber Pressure, psia	765.8	757.4	762.8	752.7
Overall Engine	Mixture Ratio	5. 287	5,285	5,311	5.338
Performance	Fuel Weight Flow, lbm/sec	83. 94	83.06	83.37	82.22
	Oxidizer Weight Flow, lbm/sec	443.8	439.0	443.9	438.9
	Total Weight Flow, lbm/sec	527.8	522.0	527.4	521.1
Thrust	Mixture Ratio	5.481	5. 481	5, 506	5,537
Chamber	Total Weight Flow, lbm/sec	520.8	515.1	520.4	514.2
Performance	Characteristic Velocity, ft/sec	8061	8060	29.5 29.5 226,000 224,000 762.8 752.7 5.311 5.338 83.37 82.22 443.9 438.9 527.4 521.1 5.506 5.537 520.4 514.2 8034 8024 73.5 73.5	
• • • • • • • • • • • • • • • • • • • •	Pump Efficiency, percent	73.5	73.5	73.5	73.5
	Pump Speed, rpm	27,025	26,859	26,954	26,689
Fuel Turbopump	Turbine Efficiency, percent	60.7	60.6	(1)	(1)
Performance	Turbine Pressure Ratio	7.47	7.4?	(1)	(1)
	Turbine Inlet Temperature, °F	1234	1218	1232	1216
	Turbine Weight Flow, lbm/sec	7,03	6.99	7.01	6.96
	Pump Efficiency, percent	80.1	80.1	80.1	80.1
	Pump Speed, rpm	8482	8412	8470	8403
Oxidizer Turbopump Performance	Turbine Efficiency, percent Turbine Pressure Ratio Turbine Inlet Temperature, °F Turbine Weight Flow, lbm/sec	46.8 2.67 764 6.11	46.6 2.67 752 6.08	(1) 754	(1) 744
Gas Generator Performance	Mixture Ratio Chamber Pressure, psia	0.960 654.9	0.950 649.3		

Site - Test Data

Normalized - Test data corrected to standard pump inlet and engine ambient pressure conditions.

NOTE: (1) Calculation invalidated by loss of POTI-1A measurement.

APPENDIX III INSTRUMENTATION

The instrumentation for AEDC Test J4-1801-06 is tabulated in Table III-1. The location of selected major engine instrumentation is shown in Fig. III-1.

TABLE III-I INSTRUMENTATION LIST

AEDC Code	Para <u>me⁺</u> er	Tap No.	Range	Micro- SADIC	Magnetic		S** 1p	Х- Y
	Current	~		<u>onore</u>	Tape	graph	Cnart	Plotter
ICC	Control		amp					
IIC	Ignition		0 to 30	х		x		
	Event		0 to 30	х		x		
EECL	Engine Cutoff Lockin		on/off					
EECO	Engine Cutoff Signal		on/off	λ		x		
EES	Engine Start Command		on/off	x	х	x		
EFBVC	Fuel Bleed Valve Closed Limit		open/closed	x		x		
EFJT	Fuel Injector Temperature OK		on/off	x				
EFPVC/C	Fuel Prevalve Closed/Open Limi	t	closed/open	x		x		
EHCS	Helium Control Solenoid		on/off	x				
EID	Ignition Detected		on/off	x		x		
EIPCS	Ignition Phase Control Solenoid		on/off	×		x		
EMCS	Main-Stage Control Solenoid		on/off	x		x		
EMP-1	Main-Stage Pressure OK, No. 1		on/off	x		x		
EMP-2	Main-Stage Pressure OK, No. 2		on/off	x		x		
EOBVC	Oxidizer Bleed Valve Closed Lim	ıt	cpen/closed	×		x		
EOPVC	Oxidizer Prevalve Closed Limit		closed	x				
EOPVO	Oxidizer Prevalve Open Limit		open	x		x		
ESTDCS	Start Tank Discharge Control Sole	noid	on/off	x x		х		
	Spark Rates		o, Q.1.		х	х		
RASIS-1	Augmented Spark Igniter Spark No	. 1	on/off					
RASIS-2	Augmented Spark Igniter Spark No		on/off			х		
RGGS-1	Gas Generator Spark No 1		, •			x		
RGGS-2	Gas Generator Spark No 2					λ		
	Flows		gpm			x		
QF-1A	Fuel	PFF	0 to 9000	x				
QF-2	Fuel	PFFA	0 to 9000	×		x		
QF-2SD	Fuel Stall Approach Monitor		0 to 9000	×	х	x		
QFRP	Fuel Recirculation		0 to 160	x		×		
QO-1A	Oxidizer	POF	0 to 3000	×				
QO-2	Oxidizet	POFA	0 to 3000	×	x	×		
QORP	Oxidizer Recirculation		0 to 50	×	*	×		
	Forces		15 _f	••			X	
FSP-1	Side Load (Pitch)		±20,000	x				
FSY-1	Side Load (Yaw)		±20,000	×		×		
	Position		Percent Open	-		x		
LFVT	Main Fuel Valve		0 to 100	x				
LGGVT	Gas Generator Valve		0 to 100	x		x		
LOTBYT	Oxidizer Turbine Bypass Valve		0 to 100	x		x		
LOVT	Maın Əxidizer Valve		0 to 100	λ	Y	×		
LPUTOP	Propellant Utilization Valve		0 to 100	x	`	×		
STDVT	Start Tank Discharge Valve		0 to 100	x		x x	x	

TABLE III-1 (Continued)

AEDC Code	Parameter	Tap No	Range	Micro-	Magnetic Tape	Oscillo- graph	Strip Chart	X-Y Plotter
	Pressure		psia			2 -7		-
PA1	Test Cell		0 to 0 5	`		×		
PA2	Test Cell		0 to 1 c	\	\			
PA3	Test Cell		0 to 5 0	λ			X	
PC-1P	Thrust Chamber	CG1	0 to 1000	`			λ	
PC-3	Thrust Chamber	CG1A	0 to 1000	`	λ	x		
PCASI-2	Augmented Spark Igniter Chamber	IG1	0 to 1000	λ				
PCGG-1P	Gas Generator Chamber	GG1	0 to 1000	λ	x	` `		
PCGG-2	Gas Generator Chamber	GG1A	0 to 1000	x				
PFASIJ	Augmented Spark Igniter Fuel							
	Injection		0 to 1000	X				
PFJ-1A	Main Fuel Injection	CF2	υ το 1000	λ		λ		
PFJ-2	Main Fuel Injection	CF2A	0 to 1000	X	×			
PFJGG-1A	Gas Generator Fuel Injection	GF4	0 to 1000	λ				
PFJGG-2	Gas Generator Fuel Injection	GF4	0 to 1000	`		` `		
PFMI	Fuel Jacket Inlet Manifold	CF1	0 to 2000	`				
PFOI-1A	Fuel Tapoff Orifice Outlet	HF2	0 to 1000	`				
PFPC-1A	Fuel Pump Balance Piston Cavity	PF5	0 to 1000	``				
PFPD-1P	Fuel Pump Discharge	PF3	0 to 1500	`				
PFPD-2	Fuel Pump Discharge	PF2	0 to 1500	× .	λ	λ		
PFPI-1	Fuel Pump Inict		0 to 100	Λ.				X
PFPI-2	Fuel Pump Inlet		0 to 200	X				` `
PFPI-3	Fuel Pump Inlet		0 to 200		``	× .		
PFPS-1P	Fuel Pump Interstage	PF6	0 to 200	× .				
PFRPO	Fuel Recirculation Pump Outlet		0 to 60	`				
PFRPR	Fuel Recirculation Pump Return		0 to 50	`				
PFST-1P	Fuel Start Tank	TF1	0 to 1500	λ		``		
PFST-2	Fuel Start Tank	TFI	0 to 1500	X				Y
PFUT	Fuel Tank Ullage		0 to 100	``				
PFVI	Fuel Tank Repressurization Line Nozzle Inlet		0 to 1000	`				
PFVL	Fuel Tank Repressurization Line Nozzle Throat		0 to 1000	`				
PHECMO	Pneumatic Control Module Outlet		0 to 750	×				
PHLOP	Oxidizer Recirculation Pump Purge		0 to 150	Y				
PHET-1P	Helium Tank	NN1	0 to 3500	×		λ		
PH! 1-2	Helium Tank	NN1	0 to 3500	x				x
PHRO-13	Helium Regulator Outlet	NN2	0 to 750	X	×			
POBSC	Oxidizer Bootstrap Conditioning		0 to 50	x				
POBV	Gas Generator Oxidizer Bleed							
	Valve	GO2	0 to 2000	×				
POJ-1A	Main Oxidizer Injection	CO3	0 to 1000	×				
POJ-2	Main Oxidizer Injection	CO3 Y	0 to 1000	λ		x		
POJGG 12	Gas Generator Oxidizer Injection	GO5	0 to 1000	λ		λ		

TABLE III-1 (Continued)

AEDC Code	Pa ₁ ameter	Tap No	Pange	Micro- SADIC	Magnetic Tape	Oscillo- graph	Strip Chart	X-Y Plotter
	Pressure		psia			<u> </u>		
POJGG-2		GO5	0 to 1000	x				
POPBC-1A	Oxidizer Pump Bearing Coolant	PO7	0 to 500	λ				
POPD-1P	Oxidizer Pump Discharge	PO3	0 to 1500	x				
POPD-2	Oxidizer Pump Discharge	PO2	0 to 1500	λ	x	x		
POPI-1	Oxidizer Pump Inlet		0 to 100	x				×
POPI-2	Oxidizer Pump Inlet		0 to 200	λ				x
POPI-3	Oxidizer Pump Inlet		0 to 100			x		
POPSC-1A	Oxidizer Pump Primary Seal							
	Cavity	PO6	0 to 50	x				
PORPO	Oxidizer Recirculation Pump Outlet		0 to 115	x				
PORPR	Oxidizer Recirculation Pump Return		0 to 100	x				
POTI-1A	Oxidizer Turbine Inlet	TG3	0 to 200	x				
POTO-1A	Oxidizer Turbine Outlet	TG4	0 to 100	x				
POUT	Oxidizer Tank Ullage		0 to 100	x				
POVCC	Main Oxidizer Valve Closing Control		0 to 500	λ	x			
POVI	Oxidizer Tank Repressurization Line Nozzle Inlet		0 to 1000	x				
POVL	Oxidizer Tank Repressurization Line Nozzle Throat		0 to 1000	x				
PPUVI-1A	Propellant Utilization Valve Inlet	PO8	0 to 1000	x				
PPUVO-1A	Propellant Utilization Valve Outlet	PO9	0 to 500	x				
PTCFJP	Thrust Chamber Fuel Jacket Purge	:	0 to 100	x				
PTPP	Turbopump and Gas Generator Purge		0 to 250	x				
	Speeds		rpm					
NFP-1P	Fuel Pump	PFV	0 to 30,000	x	x	x		
NFRP	Fuel Recirculation Pump		0 to 15,000	x				
NOP-1P	Oxidizer Pump	POV	0 to 12,000	x	x	x		
NORP	Oxidizer Recirculation Pump		0 to 15,000	x				
	Temperatures		<u>°F</u>					
TA1	Test Cell (North)		-50 to +800	x				
TA2	Test Cell (East)		-50 to +800	x				
TA3	Test Cell (South)		-50 to +800	x				
TA4	Test Cell (West)		-50 to +800	λ				
TAIP-1A	Auxiliary Instrument Package		-300 to +200	x				
TBHR-1	Helium Regulator Body (North Side)		-100 to +50	x				
1'BHR-2	Helium Regulator Body (South Side)		-100 to +50	λ				
TBSC	Oxidizer Bootstrap Conditioning		-350 to +150	x				
TECP-1P	Electrical Controls Package	NST1A	-300 to +200	x			x	

TABLE III-1 (Continued)

ALDC Code	Par ameter	Tap No_	Range	Micro- SADIC	Magnetic Tape	Oscillo graph	Strip Chart	X-Y Plotter
	1 emperatures		•F.					
TFASIJ	Augmented Spark Igniter Tuel Injection	IFT1	-425 to -100	x		x		
TFASIL-1	Augmented Spark Igniter Fuel Line		-300 to +200	`			х	
TFASIL-2	Augmented Spark Igniter Fuel Line		-300 to +200	x			λ	
TFBV-1A	Fuel Bleed Valve	GFT1	-425 to -375	¥				
TFJ-1P	Main Fuel Injection	CFT2	-425 to +250	x	x	x		
TFPB-1A	Fuel Pump Bearing		- 125 to -325	λ				
TFPD-1P	Fuel Pump Discharge	PFT!	-425 to -400	x	λ	x		
TFPD-2	Fuel Pump Discharge	PFT1	-425 to -400	x				
TFPDD	Fuel Pump Discharge Duct		-320 to +300	x				
TFPI 1	Foel Pump Inlet		-425 to -400	x				x
TFPI-2	Fuel Pump Inlet		-425 to -400	λ				x
TFRPO	Fuel Recirculation Pump Outlet		-425 to -410	x				
TFRPR	Fuel Recirculation Pump Return Line		-425 to -250	x				
TFRT-1	Fuel Tank		-425 to -410	x				
TFRT-2	Fuel Tank		-425 to -410	x				
TFST-1P	Fuel Start Tank	TFT1	-350 to +100	x				
TFST-2	Fuel Start Tank	TFT1	-350 to +100	x				x
TFTD-1	Fuel Turbine Discharge Duct		-200 to +800	x				
TFTD-1R	Fuel Turbine Discharge Collector		-200 to +900	λ				
TFTD-2	Fuel Turbine Discharge Duct		-200 to +1000	x			x	
TFTD-3	Fuel Turbine Discharge Duct		-200 to +1000	x			х	
FFTD-3R	Fuel Turbine Discharge Line		-200 to +900	x				
TFTD-4	Fuer Turbine Discharge Duct		-200 to +1000	x				
TFTD-4R	Fuel Turbine Discharge Line		-200 to +900	x				
TFTD-5	Fuel Turbine Discharge Duct		-200 to +1400	×				
TFTD-6	Fuel Turbine Discharge Duct		-200 to +1400	x				
TFTD-7	Fuel Turbine Discharge Duct		-200 to +1400	×				
TFTD-8	Fuel Turbine Discharge Duct		-200 to +1400	x			x	
TFTI-1P	Fuel Turbine Inlet	TFT1	0 to 1800	×			x	
TFTO	Fuel Turbine Outlet	TFT2	0 to 1800	x				
TGGO-1A	Gas Generator Outlet	GGT1	0 to 1800	x	x	x		
THET-1P	Helium Tank	NNTI	-350 to +100	λ				x
TNODP	Oxidizer Dome Purge		0 to +300	x				
TOBS-1	Oxidizer Bootstrap Line		-300 to +250	x				
TOBS-2	Oxidizer Bootstrap Line		-300 to +250	x				
TOBS-2A	Oxidizer Bootstrap Line		-300 to +250	x				
TOBS-2B	Oxidizer Bootstrap Line		-300 to +250	x				
TOBS-3	Oxidizer Bootstrap Line		-300 to +250	x				
TOBS-4	Oxidizer Bootstrap Line		-300 to +250	x				

TABLE III-3 (Continued)

AEDC Code	Parameter	Tap No.	Range	Micro- SADIC	Magnetic Tape	Oscillo- graph		X-Y Piotter
	Temperatures		°F		<i>-</i>	×		
TOBSCI	Oxidizer Bootstrap Conditioning Inlet		0 to 100	x				
TOBSCO	Oxidizer Bootstrap Conditioning Outlet		0 to 100	x				
TOBV-1A	Oxidizer Bleed Valve	GOT2	-300 to -250	×				
TOPB-1A	Oxidizer Pump Bearing Coolant	POT4	-300 to -250	×				
TOPD-1P	Oxidizer Pump Discharge	POT3	-300 to -250	×	x	x	x	
TOPD-2	Oxidizer Pump Discharge	РОТ3	-300 to -250	×				
TOPI-1	Oxidizer Pump Inlet		-310 to -270	×				×
TOPI-2	Oxidizer Pump Inlet		-310 to -270	x				×
TORPO	Oxidizer Recirculation Pump Outlet		-300 to -250	x				
TORPR	Oxidizer Recirculation Pump Return		-300 to -140	x				
TORT-1	Oxidizer Tank		-300 to -287	x				
TORT-3	Oxidizer Tank		-300 to -287	x				
TOTI-1P	Oxidizer Turbine Inlet	TGT3	0 to 1200	x			x	
TOTO-1P	Oxidizer Turbine Outlet	TGT4	0 to 1000	x				
TOVL	Oxidizer Tank Repressurization Line Nozzle Throat		-300 to +100	x				
TPCC	Prechill Controller		-425 to -300	x				
TPIP-1P	Primary Instrument Package		-300 to +200	x				
TSC2-1	Thrust Chamber Skin		-300 to +500	x				
TSC2-2	Thrust Chamber Skin		-300 to +500	×				
TSC2-3	Thrust Chamber Skin		-300 to +500	x				
TSC2-4	Thrust Chamber Skin		-300 to +500	x				
TSC2-5	Thrust Chamber Skin		-300 to +500	×				
TSC2-6	Thrust Chamber Skin		-300 to +500	x				
TSC2-7	Thrust Chamber Skin		-300 to +500	x				
TSC2-8	Thrust Chamber Skin		-300 to +500	×				
TSC2-9	Thrust Chamber Skin		-300 to +500	×				
TSC2-10	Thrust Chamber Skin		-300 to +500	x				
TSC2-11	Thrust Chamber Skin		-300 to +500	x				
TSC2-12	Thrust Chamber Skin		-300 to +500	x				
TSC2-13	Thrust Chamber Skin		-300 to +500	x			x	
TSC2-14	Thrust Chamber Skin		-300 to +500	x				
TSC2-15	Thrust Chamber Skin		-300 to +500	x				
TSC2-16	Thrust Chamber Skin		-300 to +500	x				
TSC2-17	Thrust Chamber Skin		-300 to +500	x				
TSC2-18	Thrust Chamber Skin		-300 to +500	x				
TSC2-19	Thrust Chamber Skin		-300 to +500	×				
TSC2-20	Thrust Chamber Skin		-300 to +500	x				

TABLE III-1 (Concluded)

AEDC Code	Parameter	Tap No.	Pange	Micro- SADIC	-	Oscillo-	•
Code	Temperatures	No.	Range	SADIC	Tape	graph	Chart Plotter
TSC2-21	Thrust Chamber Skin		-300 to +500				
TSC2-22	Thrust Chamber Skin		-300 to +500	х			
TSC2-23	Thrust Chamber Skin			x			
			-300 to +500	х			
TSC2-24	Thrust Chamber Skin		-300 to +500	x			
TSECP	Skin, Electrical Control Package		-50 to +250	x			
TSOVAL-1	Oxidizer Valve Closing Control Line		-200 to +100	×			
TSOVAL-2	2 Oxidizer Valve Closing Control Line		-200 to +100	x			x
TSOVC-1	Oxidizer Valve Actuator Cap		-325 to +156	x			
TSOVC-2	Oxidizer Valve Actuator Filter Flange		-325 to +150	x			
TSPIP	Skin, Primary Instrument Package		-50 to +250	x			
TSTDVOC	Start Tank Discharge Valve Open- ing Control Port		-350 to +100	x			
rtc-1P	Thrust Chamber Jacket (Control)	CS1	-425 to +500	x			x
TTCEP-1	Thrust Chamber Exit		-425 to +500	x			
	Vibrations		g				
UFPR	Fuel Pump Radial 90 deg		±200		x		
UOPR	Oxidizer Pump Radial 90 deg		±200		x		
UTCD-1	Thrust Chamber I me		±500		x	x	
U1 CD-2	Thrust Chamber Dome		±500		x	x	
UTCD-3	Thrust Chamber Dome		±500		x	x	
UIVSC	No 1 Vibration Safety Counts		on/off			x	
U2VSC	No 2 Vibration Safety Counts		on/off			x	
	Voltage		Volts				
VCB	Control Bus		0 to 36	x		x	
VIB	Ignition Bus		0 to 36	x		x	
VIDA	Ignition Detect Amplifier		9 to 16	x		x	
VPUTEP	Propellant Utilization Valve Excitation		0 to 5	×			

State State of

a. Engine Pressure Tap Locations Fig. 111-1 Instrumentation Locations

b. Engine Temperature, Flow, and Speed Instrumentation Locations Fig. III-1 Continued

c. Main Oxidizer Valve Fig. III-1 Continued

d. Start Tank Discharge Valve Fig. III-1 Continued

Top View

e. Helium Regulator Fig. III-1 Continued

APPENDIX IV METHODS OF CALCULATION

(Performance Program)

NOMENCLATURE

Α	Area,	in. ²

B Horsepower, hp

C* Characteristic velocity, ft/sec

Cp Specific neat at constant pressure, Btu/lb/°F

D Diameter, in.

H Head, ft

h Enthalpy, Btu/lbm

M Molecular weight

N Speed, rpm

P Pressure, psia

Q Flow rate, gpm

R Resistance, sec²/ft³-in.²

r Mixture ratio

T Temperature, °F

TC* Theoretical characteristic velocity, ft/sec

W Weight flow, lb/sec

Z Pressure drop, psi

 β Ratio

γ Ratio of specific heats

 η Efficiency

θ Degrees

ρ Density, lb/ft³

SUBSCRIPTS

A Ambient

AA Ambient at thrust chamber exit

B Bypass nozzle

BIR Bypass nozzle inlet (Rankine)

BNI Bypass nozzle inlet (total)

C Thrust chamber

CF Thrust chamber, fuel

CO Thrust chamber, oxidizer

CV Thrust chamber, vacuum

E Engine

EF Engine fuel

EM Engine measured

EO Engine oxidizer

EV Engine, vacuum

e Exit

em Exit measured

F Thrust

FIT Fuel turbine inlet

FM Fuel measured

FY Thrust, vacuum

f Fuel

G Gas generator

GF Gas generator fuel

GO Gas generator oxidizer

H1 Hot gas duct No. 1

H1R Hot gas duct No. 1 (Rankine)

H2R Hot gas duct No. 2 (Rankine)

IF Inlet fuel

IO Inlet oxidizer

ITF Isentropic turbine fuel

ITO Isentropic turbine oxidizer

N Nozzle

NB Bypass nozzle (throat)

NV Nozzle, vacuum

O Oxidizer

OC Oxidizer pump calculated

OF Outlet fuel pump

OFIS Outlet fuel pump isentropic

OM Oxidizer measured

OO Oxidizer outlet

PF Pump fuel

PO Pump oxidizer

PUVO Propellant utilization valve oxidizer

RNC Ratio bypass nozzle, critical

SC Specific, thrust chamber

SCV Specific thrust chamber, vacuum

SE Specific, engine

SEV Specific, engine vacuum

T Total

To Turbine oxidizer

TEF Turbine exit fuel

TEFS Turbine exit fuel (static)

TF Fuel turbine

TIF Turbine inlet fuel (total)

TIFM Turbine inlet, fuel, measured

TIFS Turbine inlet fuel isentropic

TIO Turbine inlet oxidizer

t Throat

V Vacuum

v Valve

XF Fuel tank repressurant

XO Oxidizer tank repressurant

PERFORMANCE PROGRAM DATA INPUTS

Item No.	Parameter
1	Thrust Chamber (Injector Face) Pressure, psia
2	Thrust Chamber Fuel and Oxidizer Injection Pressures, psia
3	Thrust Chamber Fuel Injection Temperature, °F
4	Fuel and Oxidizer Flowmeter Speeds, Hz
5	Fuel and Oxidizer Engine Inlet Pressures, psia
6	Fuel and Oxidizer Pump Discharge Pressures, psia
7	Fuel and Oxidizer Engine Inlet Temperatures, °F
8	Fuel and Oxidizer (Main Valves) Temperatures, °F
9	Propellant Utilization Valve Center Tap Voltage, volts
10	Propellant Utilization Valve Position, volts
11	Fuel and Oxidizer Pump Speeds, rpm
12	Gas Generator Chamber Pressure, psia
13	Gas Generator (Bootstrap Line at Bleed Valve) Temperature, °F
14	Fuel* and Oxidizer Turbine Inlet Pressure, psia
15	Oxidizer Turbine Discharge Pressure, psia
16	Fuel and Oxidizer Turbine Inlet Temperature, °F
17	Oxidizer Turbine Discharge Temperature, °F

^{*}At AEDC, fuel turbine inlet pressure is calculated from gas generator chamber pressure.

PERFORMANCE PROGRAM EQUATIONS

MIXTURE RATIO

Engine

$$r_{E} = \frac{w_{EO}}{w_{EF}}$$

$$W_{EO} = W_{OM} - W_{XO}$$

$$W_{EF} = W_{FM} - W_{XF}$$

$$W_{E} = W_{EO} + W_{EF}$$

Thrust Chamber

$$r_{C} = \frac{w_{CO}}{w_{CF}}$$

$$w_{CO} = w_{OM} - w_{XO} - w_{GO}$$

$$w_{CF} = w_{FM} - w_{XF} - w_{GF}$$

$$w_{XO} = 0.8 \text{ lb/sec}$$

$$w_{XF} = 1.8 \text{ lb/sec}$$

$$w_{GO} = w_{T} - w_{GF}$$

$$w_{GF} = \frac{w_{T}}{1 + r_{G}}$$

$$w_{T} = \frac{P_{TIF} A_{TIF} K_{7}}{TC^{*}_{TIF}}$$

$$k_{7} = 32.174$$

$$w_{C} = w_{CO} + w_{CF}$$

CHARACTERISTIC VELOCITY

Thrust Chamber

$$C^* = \frac{K_7 P_c A_t}{W_C}$$
 $K_7 = 32.174$

DEVELOPED PUMP HEAD

Flows are normalized by using the following inlet pressures, temperatures, and densities.

$$P_{10} = 39 psia$$

$$P_{IF} = 30 \text{ psia}$$

$$\rho_{10} = 70.79 \text{ lb/ft}^3$$

$$\rho_{\rm IF} = 4.40 \; \rm lb/ft^3$$

$$T_{10} = -295.212 \, ^{\circ}F$$

$$T_{IF} \approx -422.547 \, ^{\circ}F$$

Oxidizer

$$H_{O} \approx K_{4} \left(\frac{P_{OO}}{\rho_{OO}} - \frac{P_{IO}}{\rho_{IO}} \right)$$

$$K_4 = 144$$

 ρ = National Bureau of Standards Values f (P,T)

Fuel

$$H_f = 778.16 \Delta hofis$$

$$\Delta h_{OFIS} = h_{OFIS} - h_{IF}$$

$$horis = f(P,T)$$

$$h_{IF} = f(P,T)$$

PUMP EFFICIENCIES

Fuel, Isentropic

$$\eta_{\rm f} = \frac{h_{\rm OFIS} - h_{\rm IF}}{h_{\rm OF} - h_{\rm IF}}$$

$$hoF = f(PoF, ToF)$$

Oxidizer, Isentropic

$$\eta_{O} = \eta_{OC} Y_{O}$$

$$\eta_{OC} = K_{40} \left(\frac{Q_{PO}}{N_O} \right)^2 + K_{50} \left(\frac{Q_{PO}}{N_O} \right) + K_{60}$$

$$K_{40} = 5.0526$$

$$K_{50} = 3.8611$$

$$K_{60} = 0.0733$$

$$Y_0 = 1.000$$

TURBINES

Oxidizer, Efficiency

$$\eta_{TO} = \frac{B_{TO}}{B_{ITO}}$$

$$B_{TO} = K_5 \frac{W_{PO} H_O}{\dot{\eta}_O}$$

$$K_5 = 0.001818$$

$$W_{PO} = W_{OM} + W_{PUVO}$$

$$W_{PUVO} = \sqrt{\frac{Z_{PUVO} \rho_{OO}}{R_{v}}}$$

$$Z_{PUVO} = A + B (P_{OO})$$

$$A = -1597$$

$$B = 2.3828$$

IF
$$P_{00} \ge 1010$$
 Set $P_{00} = 1010$

In R = A₃ + B₃ (
$$\theta_{PUVO}$$
) + C (θ_{PUVO})³ + D₃ (e)
$$+ E_3 (\theta_{PUVO}) (e) + F_3 \left[\frac{\theta_{PUVO}}{7} \right]^2$$

$$A_3 = 5.5659 \times 10^{-1}$$

$$B_3 = 1.4997 \times 10^{-2}$$

$$C_3 = 7.9413 \times 10^{-6}$$

$$D_3 = 1.2343$$

$$E_3 = -7.2554 \times 10^{-2}$$

$$F_3 = 5.0691 \times 10^{-2}$$

$$\theta_{PUVO} = 16.5239$$

Fuel, Eft. ncy

$$\eta_{\mathrm{TF}} = \frac{B_{\mathrm{TF}}}{B_{\mathrm{LF}}}$$

$$B_{ITF} = K_{10} \Delta h_f W_T$$

$$\Delta h_f = h_{TIF} - h_{TEF}$$

$$B_{TF} = B_{PF} = K_5 \left(\frac{W_{PF} H_f}{\eta_f} \right)$$

$$W_{PF} = W_{FM}$$

$$K_{10} = 1.4148$$

$$K_5 = 0.001818$$

Oxidizer, Developed Horsepower

$$B_{TO} = B_{PO} + K_{56}$$

$$B_{PO} = K_5 \frac{W_{PO} H_O}{\eta_O}$$

$$K_{56} = -15$$

Fuel, Developed Horsepower

$$B_{TF} = B_{PF}$$

$$B_{PF} = K_5 - \frac{w_{PF} H_f}{\eta_f}$$

$$W_{PF} = W_{FM}$$

Fuel, Weight Flow

$$W_{TF} = W_{T}$$

Oxidizer Weight Flow

$$W_{TO} = W_{T} - W_{B}$$

$$W_{B} = \left[\frac{2K_{7} + H_{2}}{\gamma_{H_{2}-1}} (P_{RNC})^{\frac{2}{\gamma_{H_{2}}}}\right]^{\frac{1}{2}} \left[1 - (P_{RNC})^{\frac{\gamma_{H_{2}-1}}{\gamma_{H_{2}}}}\right] \frac{A_{NB} P_{BNI}}{(R_{H_{2}}T_{BIR})^{\frac{1}{2}}}$$

$$P_{RNC} = f (\beta_{NB}, \gamma_{H2})$$

$$\beta_{NB} = \frac{D_{NB}}{D_B}$$

$$\gamma_{H2}$$
, $M_{H2} = f(T_{H2R}, R_G)$

$$A_{NB} = K_{13} D_{NB}$$

$$K_{13} = 0.7854$$

$$T_{BIR} = T_{TIO} + 460$$

$$P_{BNI} = P_{TEFS}$$

 P_{TEFS} = Iteration of P_{TEF}

$$P_{TEF} = P_{TEFS} \left[1 + K_8 \left(\frac{W_T}{P_{TEFS}} \right)^2 \frac{T_{H2R}}{D^4_{TEF} M_{H2}} \left(\frac{\gamma_{H2-1}}{\gamma_{H2}} \right) \right]^{\frac{\gamma_{H2}}{\gamma_{H2}-1}}$$

$$K_8 = 38.8983$$

GAS GENERATOR

Mixture Ratio

$$r_G = D_1 (T_{H1})^3 + C_1 (T_{H1})^2 + B_1 (T_{H1}) + A_1$$

$$A_1 = 0.2575$$

$$B_1 = 5.586 \times 10^{-4}$$

$$C_1 = -5.332 \times 10^{-9}$$

$$D_1 = 1.1312 \times 10^{-11}$$

$$T_{H1} = T_{T1FM}$$

Flows

$$TC*_{TIF} = D_{2} (T_{H1})^{3} + C_{2} (T_{H1})^{2} + B_{2} (T_{H1}) + A_{2}$$

$$A_{2} = 4.4226 \times 10^{3}$$

$$B_{2} = 3.2267$$

$$C_{2} = -1.3790 \times 10^{-3}$$

$$D_{2} = 2.6212 \times 10^{-7}$$

$$P_{TIF} = P_{TIFS} \left[1 + K_{8} \left(\frac{W_{T}}{P_{TIFS}} \right)^{2} \frac{T_{H1R}}{D^{4}_{TIF} M_{H1}} \frac{\gamma_{H1} - 1}{\gamma_{H1}} \right]^{\frac{\gamma_{H1} - 1}{\gamma_{H1} - 1}}$$

$$K_{8} = 38.8983$$

Note: PTIF is determined by iteration.

$$T_{HIR} = T_{TIF}$$

$$M_{H1}$$
, Y_{H1} , C_p , $r_{H1} = f (T_{H1R}, r_G)$

Security Classification				
DOCUMENT CONT (Security classification of title, body of abstract and indexing a			overall report is classified)	
i originating Activity (Comporate author) Arnold Engineering Development Cent ARO, Inc., Operating Contractor	ter	. REPORT SE	CURITY CLASSIFICATION SIFIED	
Arnold Air Force Station, Tennessee		N/A		
ALTITUDE DEVELOPMENTAL TESTING OF TO PROPULSION ENGINE TEST CELL (J-4)			NE IN	
4 DESCRIPTIVE NOTES (Type of report and inclusive dates) August 22, 1967 - Interim Report 5. AUTHOR(S) (First name, middle initial, last name)				
N. R. Vetter, ARO, Inc.				
6. REPORT DATE	78. TOTAL NO OF	PAGES	7b. NO OF REFS	
January 1968 66. CONTRACT OR GRANT NO	88	REPORT NUMB	4 ER(5)	
AF40(600)-1200 b. Project No. 9194	AEDC-TR-67-215			
c.System 921E	96. ORIGINATOR'S REPORT NUMBER(S) AEDC-TR-67-215 96. OTHER REPORT NO(S) (Any other numbers that may be assigned this report) N/A Subject to special export controls; transmittal to fors or foreign nationals requires approval of NASA, MSFC			
d. N/A				
eign governments or foreign nation (I-E-J), Huntsville, Alabama. Traproval of NASA, MSFC (I-E-J), Hunt	als require nsmittal ou sville, Ala	es approv itside of ibama.	val of NASA, MSFC f DoD requires ap-	
Available in DDC			ace Flight Center Le, Alabama	
Four firings of the Rocketdyne on August 22, 1967 in Propulsion En Rocket Facility, Arnold Engineering were accomplished during test perioderon 103,000 to 108,000 ft at engineest included the evaluation of (1) teristics with low augmented spark effects upon engine starting transforms pressure and thrust chamber resistant maximum starting energy. Satisfact The accumulated engine firing durates.	ngine Test g Developme od J4-1801-ne start. thrust chigniter milents of milence for fittory engine tion was 70	Cell (J- nt Cente 06 at pr The obje amber ig xture ra nimum fu rst orbi operati .3 sec.	4) of the Large r. The firings essure altitudes ctives of the nition charactio and (2) the el pump inlet t restarts with on was obtained.	
This document is subject to sp transmittal to foreign governm be made only with prior approv	ents or for	eign nat	tionals may	

Flight Center (I-E-J), Huntsville, Alabama.

DD FORM 1473

Security Classification

Security Classification	n							
14.	KEY WORDS		LINK	A	LINK B		LINK C	
		70	OLE	WT	ROLE	WΤ	ROLE	WT
		1			1			
rocket engines					1			
liquid propellan	ts							
altitude tests			1	1				
ground test faci	lit i es		1					
ignition charact	eristics			Ì				
)	1					
			1					
			-					
			İ		į			
			-					
		ļ						
			ı	1				
						1		
			1					İ
				}				
								ı İ
		ł						
						!		

Security Classification