

UNIVERSIDAD DE GRANADA

ALGORITMICA

PRÁCTICA 3: EL PROBLEMA DEL VIAJANTE DE COMERCIO

ÍNDICE

- 1. Vecino más próximo
- 2. Inserción
- 3. Hill climb
- 4. Comparativa

Vecino más próximo

```
vecinoMasCercano(ciudad, lista ciudades, visitados)
distancia minima = INFINITO
posicion minima = -1
mientras (no llegue al final de la lista de ciudades (c))
 si no se ha visitado c
 distancia actual <- calcular la distancia entre ciudad y c
 si (distancia actual < min)
  distancia minima <- distancia actual
  posicion minima <- c
 fin si
fin mientras
```

Inserción

```
insercion(cerrados, abiertos, matriz distancia, lista ciudades) {
mientras (queden elementos en abiertos)
 distancia minima <- INFINITO
 aux <- cerrados
 mientras (no llegue al final de abiertos (abierto))
  mientras (no llegue al final de cerrados (cerrado))
    aux <- insertar abierto en la posicion de cerrado
   distancia_aux <- calcular distancia de aux
    si (distancia aux < distancia minima)
     distancia_minima <- distancia_aux
     mejores ciudades <- aux
   fin si
   aux <- cerrados
  fin mientras
 fin mientras
 cerrados <- mejores ciudades
 abiertos <- complementario de cerrados
fin mientras
```


Hill climb

```
hillClimb(solucion inicial){
     mejor distancia <- distancia(solucion inicial)
     solucion actual <- solucion inicial
     para ciudad en sol : ciudad actual
           mejor solucion <- sol actual
           para ciudad en sol desde ciudad actual + 1 : ciudad a probar
                 solucion tmp <- sol actual
                 solucion tmp = tmp.intercambiar(ciudad, ciudad a probar)
                 si distancia(tmp) < mejor distancia
                       mejor distancia = distancia(tmp)
                       mejor solucion = solucion tmp
           fin para
           sol_actual <- mejor_solucion</pre>
     fin para
```

Hill climb

candidatos a seleccionar : recorrido inicial

candidatos seleccionados : el conjunto de ciudades

funcion solución : se busca la variación del recorrido que hace que la distancia del mismo sea menor

funcion de selección : permutación entre pares que da como resultado el recorrido de menor distancia

función objetivo : lista de ciudades seleccionadas en un orden.

DISTANCIAS

	Viajante 1	Viajante 2	Viajante 3	Soluciones
att48	40583	42006	40250	10628
berlin52	8980	8395	8796	7542
eil101	803	697	784	629
ch130	7579	7199	7418	6110
tsp225	5030	4530	4898	3916
a280	3157	3023	3130	2579
pa561	19166	17264	18806	2763

TIEMPO

	Viajante 1	Viajante 2	Viajante 3
att48	0	0,04	0,07
berlin52	0	0,04	0,09
eil101	0,01	0,48	0,7
ch130	0,02	1,2	1,53
gr202	0,31	5,8	6,09
tsp225	0,05	10,4	8,29
a280	0,1	24,41	16,42
pa561	0,28	386,52	139,51

TIEMPO

RECORRIDO PA561 viajante 1

Distancia del camino: 19166

RECORRIDO PA561 viajante 2

Distancia del camino: 17264

RECORRIDO PA561 viajante 3

Distancia del camino: 18806

GRACIAS POR SU ATENCIÓN

AUTORES:

García Jaén, Álvaro González García, Francisco José Martínez Moreno, Práxedes Martínez Rodriguez, Ignacio Robles Molina, Pablo