Variance of 1D datasets

LATEST SUBMISSION GRADE	
100%	

. Wi	hat is the variance of the following dataset?	1/1 point
\mathcal{D}	$= \{1, 2, 3, 2\}$	
Ple	ease use decimal numbers in your answer.	
	.67	
	Correct OK, you divided by the number of data points -1, which will give you an unbiased estimate.	
	hat is the standard deviation of the dataset $\mathcal{D}=\{1,2,3,2\}$ which we already used in the previous question? You ould provide a decimal number as your answer.	1 / 1 point
	.82	
	Correct Indeed: You just needed to take the square-root of the variance.	
	hat would be the new variance if we added 1 to each element in the dataset $\mathcal{D}=\{1,2,3,2\}$ from Question 1? Please e decimal numbers in your answer.	1 / 1 point
	67	
	✓ Correct Yes: adding a constant to the dataset does not change its variance.	
Wh	hat would be the new variance if we multiplied each sample in a dataset ${\mathcal D}$ by 2.	1/1 point
•) The variance of the new dataset will be four times the variance of ${\cal D}.$	
\circ) The variance of the new dataset will be two times the variance of ${\cal D}.$	
0) The variance of the new dataset will not change.	
	✓ correct Well done!	
Ass	suming we have mean $ar x_{n-1}$ and variance σ^2_{n-1} for some dataset $\mathcal D_{n-1}$ with $n-1$ samples. What would be the	1/1 point
var	riance σ_n^2 if we add a new element x_* to the dataset (assuming you have computed the new sample mean $ ar x_n)$?	
	$\sigma_n^2 = \frac{n-2}{n-1} \sigma_{n-1}^2 + \frac{1}{n} (x_* - \bar{x}_{n-1})(x_* - \bar{x}_n)$	
_	$) \sigma_n^2 = \frac{n-1}{n} \sigma_{n-1}^2 + \frac{1}{n} (x_* - \bar{x}_{n-1})(x_* - \bar{x}_n)$	
	$) \sigma_n^2 = \frac{n-1}{n} \sigma_{n-1}^2 + \frac{1}{n-1} (x_* - \bar{x}_{n-1}) (x_* - \bar{x}_n) $	
0	$ ho \; \sigma_n^2 = rac{n-1}{n} \sigma_{n-1}^2 + rac{1}{n} (x_* - ar{x}_{n-1})^2$	
	✓ Correct	
	Great job!	