

TECNOLOGIA EM SISTEMAS PARA INTERNET

Daniel Evangelista Pereira Ribson Coelho Cardoch Valdés Douglas Seidi Shibata

RELATÓRIO DE PRÁTICA INTEGRADA DE CIÊNCIA DE DADOS E INTELIGÊNCIA ARTIFICIAL

25/10/2020

Brasília - DF

2020

Sumário

1. Objetivos	3
2. Descrição do problema	4
3. Desenvolvimento3.1 Código implementado	5
4. Considerações Finais	9
Referências	10

1. Objetivos

Neste último sprint foi requisitado a recuperação dos de visualização da cidade de Phoenix e realizar suas observações como, ordenar e agrupar por mês, dia e ano. Visualizar os dados em forma de série temporal, gerando um gráfico de linha, tendo a evolução do número de observações ao longo tempo em anos.

Além disso, realizar a construção dos conjuntos separando em treinamentos e teste, separando 70% das observações para o treinamento e 30% para teste. Realizar a investigação dos parâmetros e discriminar o melhor modelo, utilizando a função fit para ajustar o modelo e medir sua qualidade. Após isso, realizar a previsão do melhor modelo utilizando a função forecast

2. Descrição do problema

Nesta etapa o problema é realizar a separação dos dados de treinamento e testes e a realização da predição futura

.

3. Desenvolvimento

As tecnologias utilizadas para a elaboração para esta terceira fase do projeto, será a linguagem python e algumas bibliotecas para ajudar no desenvolvimento, com a biblioteca pandas, statsmodel e pandasql, por meio do notebook e o ambiente de desenvolvimento Google Colab.

3.1 Código implementado

5.12 - Análise temporal

Realizando a importação da biblioteca pandas. No segundo bloco atribuindo os dados do arquivo csv que será lido pela função read_csv do pandas e criando um dataframe a partir desses dados.

Coletando do Dataframe apenas as ocorrências na cidade de Phoenix e atribuindo a um novo dataframe chamado cidade_phoenix e após isso é realizado a ordenação dos valores pela coluna Sight_date

Realizando a instalação da biblioteca pandasql para realizar as consultas por meio de queries em SQL

Utilizando a biblioteca pandasql e construindo uma query para realizar a consutla que foi requisitada, que no caso é agrupar por dia as visualizações e ordená-los pela data

```
0
         query =
         SELECT Sight_date ,Count(*) as Views FROM cidade_phoenix group by Sight_day, Sight_month order by Sight_date
         views_phoenix= pandasql.sqldf(query.lower(), locals())
         views_phoenix
C)
          Sight date views
          2003-05-31
          2005-06-08
          2005-10-15
          2006-04-30
     198 2017-06-15
     199
          2017-07-06
     200
          2017-07-26
     201 2017-08-04
```

Utilizando a função do pandas to_datetime para converter a coluna sight_date para o tipo data para poder realizar a separação do ano e consultar qual foi a quantidade de ocorrências por ano que aconteceram na cidade de Phoenix. Em seguida é realizada a consulta para conferir os tipos da colunas, para ter a certeza que o tipo dela foi alterada

Separando o ano da coluna data e criando uma nova coluna com o nome de Sight_year.

[80]	1 2	V17982 10 00	ix['Sig	Vania Contra	views_phoenix['Sight_date'].dt.year	
C·		Sight_date	views	Sight_year		
	0	2001-11-12	1	2001		
	1	2003-05-31	1	2003		
	2	2005-06-08	1	2005		
	3	2005-10-15	2	2005		
	4	2006-04-30	1	2006		
	198	2017-06-15	2	2017		
	199	2017-07-06	1	2017		
	200	2017-07-26	2	2017		
	201	2017-08-04	1	2017		
	202	2017-08-14	3	2017		
203 rows × 3 columns						

Utilizando a linguagem SQL para realizar o agrupamento e contagem das visualizações pelo ano. E atribuindo o resultado da consulta a um novo dataframe nomeado views_phoenix_per_year.

Gerando o gráfico para a observar as ocorrências que são relatadas por ano.

4. Considerações Finais

Nesta última etapa do projeto foi realizado a visualização das ocorrências acontecidas na cidade de Phoenix e foram realizados as consultas por ano para conhecer o fluxo de observações que ocorrem por ano na região.

Além disso a realização da separação dos dados de treinamento e testes deveriam ser feitos para a conclusão desta etapa.

Referências