

HPM09S0P5N

N-Channel Enhancement-Mode MOSFET

Designed for handheld two-way radio applications with frequencies from 136 to 941 MHz. The high gain, ruggedness and Broadband performance of this device make it ideal for large-signal, common-source amplifier applications in handheld radio equipment.

136–941 MHz, 0.5W, 7.5V BROADBAND RF POWER TRANSISTOR

Typical Broadband EVB Performance (I_{DO}=50mA, T_A = 25 °C, CW)

VDD	Freq.	Gmax	Pout		PAE
[V]	[MHz]	[dB]	[dBm]	[Watts]	[%]
	400	19.8	28.3	0.67	59.6
7.5	440	20.7	29.2	0.83	76.9
7.3	480	21.0	28.9	0.77	74.6
	520	17.9	28.6	0.73	71.1

Capable of handling 20:1 VSWR @ 9Vdc, 0.8Watts, CW

Features

Characterized for Operation from 136 to 941 MHz

Unmatched Input and Output Allowing Broad Frequency Range Utilization Integrated ESD Protection

Broadband - Full Power Across the Band

Exceptional Thermal Performance

Extreme Ruggedness

Figure 1. Pin Connections

Typical Applications

Output Stage VHF Band Handheld Radio

Output Stage UHF Band Handheld Radio

Output Stage for 700-800 MHz Handheld Radio

Driver for 10-1000 MHz Applications

Table1. Maximum Ratings

Rating	Symbol	Value	Unit
Drain-Source Voltage	DSS	-0.5, +20	Vdc
Gate-Source Voltage	V GS	-0.5, +8	Vdc
Operating Voltage	V DD	+0, +12	Vdc
Storage Temperature Range	I stg	-65 to +150	$^{\circ}$
Case Operating Temperature	Tc	-40 to +150	${\mathbb C}$
Operating Junction Temperature	Tı	-40 to +150	$^{\circ}$
Power Dissipation @TC=25 ℃	PD	3.0	Watts

Table 2. ESD Protection Characteristics

Test Methodology	Class
Human Body Model (per JESD22A114)	2, passes 2500 V
Machine Model (per EIA/JESD22A115)	A, passes 100 V
Charge Device Model (per JESD22C101)	IV, passes 2000 V

Table 3. Electrical Characteristics (T_A=25 °C unless otherwise noted)

`					
Characteristic	Symbol	Min	Тур.	Max	Unit
Off Characteristics					
Gate-Source Leakage Current (VGS=5Vdc, VDS=0Vdc)	I	-	-	500	nAdc
Zero Gate Voltage Drain Leakage Current (VDS=16Vdc, VGS=0Vdc)	I	-	-	1	uAdc
Zero Gate Voltage Drain Leakage Current (VDS=7.5Vdc, VGS=0Vdc)	I	-	-	500	nAdc
On Characteristics					
Gate Threshold Voltage (VDS=7.5Vdc, ID=1mA)	V GS(th)	1.6	1.8	2.0	Vdc

	V				
Gate Threshold Voltage (VDS=7.5Vdc, ID=1mA)	GS(th)	1.6	1.8	2.0	Vdc
Gate Quiescent Voltage (VDD=7.5Vdc, ID=50mA Measured in Functional Test)	V GS(Q)	2.2	2.4	2.8	Vdc
	V		0.25		
Drain-Source On-Voltage (Vgs=5Vdc, Ip=100mA)	DS(ON)	-	0.25	-	Vdc

Dynamic Characteristics

Reverse Transfer Capacitance (V _{DG} =7.5V, Level=30mVac@1MHz)	Crss	-	0.21	-	pF
Output Capacitance (V _{DS} =7.5V, Level=30mVac@1MHz)	Coss	-	1.6	-	pF
Input Capacitance (V _{GS} =5V, Level=30mVac@1MHz)	Ciss	-	8.0	-	pF

Typical Performances (In DuSemi Narrowband Test DEMO, 50 Ohm system)

Frequency=440MHz, VDD=7.5Vdc, $I_{D(Q)}$ =50mA, Pin=9dBm, T_A =25 $^{\circ}$ C

Output Power	P out	-	0.61	-	Watts
Power Gain	PS	1	19.0	•	dB
Drain Efficiency	ηD		66.5	-	%

Test Circuit Component Layout

Table 4. Test Circuit Component Designations and Value

Part	Description	Part Number	Manufacturer
R3	470Ohm	1	_
R4	6.8KOhm		
L1, L2	4.7nH	_	_
L3	8 Turns D: 0.5 mm, φ 2.4 mm Enamel Wire	ı	-
C3,C15,	100pF Chip Capacitors	GQM21P5C1H101JB01	Murata
C4	18pF Chip Capacitors	GRM1885C1H201JA01	Murata
C12, C9	1000pF Chip Capacitors	GRM1885C1H102JA01	Murata
C10, C14,C7	10uF,25VChip Capacitors	1	1
C5	24pF Chip Capacitors	_	Murata
R1,R2,C1,C2,C8,C6	NC	_	_
U1	LM1117		
PCB	FR-4 ,1.6mm, E _r 4.5	_	_

TYPICAL CHARACTERISTICS

1, Power Gain, Drain Efficiency and Output Power versus Frequency at a Constant Pin

V DD	D(Q)	Pin	Freq	Po	ut	Gain	ηυ			
[V]	[mA]	[dBm]	[MHz]	[dBm]	[Watts]	[dB]	[%]			
	50		400	26.7	0.47	17.6	50.7			
7.5		50	50	50	0	50 9	440	27.9	0.61	19.0
7.5	30	9	480	27.6	0.57	18.5	64.8			
			520	25.7	0.37	16.8	53.7			

2. Output Power versus Gate-Source Voltage @440MHz

3. Power Gain and Drain Efficiency versus Output Power@440MHz

Freq	DD	D(Q)	P	out	Gain	PAE
[MHz]	[V]	[mA]	[dBm]	[Watts]	[dB]	[%]
		30	28.8	0.76	17.0	74.4
		50	29.2	0.83	20.7	76.9
440	7.5	100	29.4	0.87	23.8	73.4
		150	29.5	0.89	25.6	69.3

Freq	1 D(Q)	V DD	P	out	Gain	PAE
[MHz]	[mA]	[V]	[dBm]	[Watts]	[dB]	[%]
		6.0	27.4	0.55	21.0	76.6
		7.0	28.6	0.73	20.8	76.7
440	50	7.5	29.2	0.83	20.7	76.9
		8.0	29.6	0.92	20.8	76.8
		9.0	30.5	1.12	20.8	76.7

4. Power Gain, Drain Efficiency and Output Power versus Input Power Freq. Gain Pout ηD [V] [mA] [MHz] [dB] [dBm] [Watts] [%] 400 19.8 28.3 0.67 59.6 440 20.7 29.2 0.83 76.9 7.5 50 480 21.0 28.9 0.77 74.6 520 17.9 28.6 0.73 71.1 34 32 30 28 26 24 22 20 18 16 14 12 V_{pp}=7.5Vdc ld(Q)=50mA V_{pp}=7.5Vdc ld(Q)=50mA 400MHz 440MHz 32 30 28 26 24 22 20 18 16 14 10 8 6 4 DRAIN EFFICIENCY (%) DRAIN EFFICIENCY (%) Gain, POWER GAIN (dB) Pout, OUTPUT POWER (dBm) Gain, POWER GAIN (dB) Pout, OUTPUT POWER (dBm) - Pout - Pout Gain η_D Pin, INPUT POWER (dBm) Pin, INPUT POWER (dBm) V_p=7.5Vdc ld(Q)=50mA 480MHz 34 32 30 28 26 24 22 20 18 16 14 12 10 8 V_s=7.5Vdc ld(Q)=50mA 520MHz DRAIN EFFICIENCY (%) DRAIN EFFICIENCY (%) Gain, POWER GAIN (dB) Pout, OUTPUT POWER (dBm) Gain, POWER GAIN (dB) Pout, OUTPUT POWER (dBm) Pout Gain η_D 10 10 12 Pin, INPUT POWER (dBm) Pin, INPUT POWER (dBm)

PACKAGE Unit: mm

PCB Pad Layout for SOT-89

Bottom View

PACKAGE DIMENSIONS

REVISION HISTORY

The following table summarizes revisions to this document.

Revision	Date	Description
1.0	March 2018	Initial Release of Data Sheet