UE19CS332-Algorithms of the Intelligent Web and Information Retrieval

Project Title: Anime Recommendation System using Collaboratory based model and content based recommendation model.

Synopsis: This project is a simple anime recommendation system which will recommend 10 anime as per user for the collaboratory model and based on an anime title for the content based model.

Functionality: We will perform data cleaning and preprocessing onto the dataset and then filter out anime with less than fewer ratings and any other relevant filters.

After than we'll make a model and run it through that. Then output a list of 10 anime to the user.

Software Requirements: Google colab, Browser (Google Chrome)

Expected Output: List of 10 anime outputted by the model.

Team Details (Id, Name, SRN, Section) Team id: 28

1. Mihir Soni, PES2UG19CS232, D

- 2. Malavika V, PES2UG19CS212, D
- 3. Neha Bachineni, PES2UG19CS252, D

Collaboratory based model:

Code and output:

```
[1] import io
     import pandas as pd
     import statistics
     import matplotlib.pyplot as plt
     from sklearn.metrics.pairwise import cosine_similarity
     import operator
     from google.colab import files
[2] from google.colab import drive
     drive.mount('/content/drive')
    Mounted at /content/drive
[18] ratings = pd.read_csv('/content/drive/MyDrive/rating.csv')
    # uploaded = files.upload()
     anime = pd.read_csv('/content/drive/MyDrive/anime.csv')
[5] ratings.head()
        user_id anime_id rating 🧷
      0
                       20
                       24
      1
      2
                       79
      3
                      226
      4
                      241
[6] ratings = ratings[ratings.rating != -1]
     ratings.head()
                                      %
          user_id anime_id rating
      47
                       8074
                                 10
      81
                      11617
                                 10
      83
                      11757
                                 10
      101
                      15451
                                 10
      153
                2 11771
                                 10
```

```
[7] # number of ratings
    print(len(ratings))
    print(len(ratings['user_id'].unique()))
    # number of unique animes (in anime list, not ratings)
    print(len(anime['anime_id'].unique()))
    # avg number of anime rated per user
    ratings_per_user = ratings.groupby('user_id')['rating'].count()
    statistics.mean(ratings_per_user.tolist())
    # distribution of ratings per user
    # (we may want to exclude users without many data points)
    %matplotlib inline
    ratings_per_user.hist(bins=20, range=(0,500))
    6337241
    69600
    12294
    <matplotlib.axes._subplots.AxesSubplot at 0x7fd1b352c5d0>
     25000
     20000
     15000
     10000
      5000
         0
                                           400
                           200
                                    300
                                                    500
```

```
[8] # avg number of ratings given per anime
    ratings_per_anime = ratings.groupby('anime_id')['rating'].count()
    statistics.mean(ratings per anime.tolist())
    # distribution of ratings per anime
    %matplotlib inline
    ratings_per_anime.hist(bins=20, range=(0,2500))
    <matplotlib.axes._subplots.AxesSubplot at 0x7fd1b33d79d0>
      6000
      5000
      4000
      3000
      2000
     1000
                   500
                           1000
                                   1500
                                           2000
                                                    2500
```



```
def similar_users(user_id, matrix, k=3):
    # create a df of just the current user
    user = matrix[matrix.index == user_id]

# and a df of all other users
    other_users = matrix[matrix.index != user_id]

# calc cosine similarity between user and each other user
    similarities = cosine_similarity(user,other_users)[0].tolist()

# create list of indices of these users
    indices = other_users.index.tolist()

# create key/values pairs of user index and their similarity
    index_similarity = dict(zip(indices, similarities))

# sort by similarity
    index_similarity_sorted = sorted(index_similarity.items(), key=operator.itemgetter(1))
    index_similarity_sorted.reverse()

# grab k users off the top
    top_users_similarities = index_similarity_sorted[:k]
    users = [u[0] for u in top_users_similarities]
    return users
```

```
[15] def recommend_item(user_index, similar_user_indices, matrix, items=10):
         similar_users = matrix[matrix.index.isin(similar_user_indices)]
         # calc avg ratings across the 3 similar users
         similar_users = similar_users.mean(axis=0)
         similar_users_df = pd.DataFrame(similar_users, columns=['mean'])
         user_df = matrix[matrix.index == user_index]
         user df transposed = user df.transpose()
         user_df_transposed.columns = ['rating']
         user_df_transposed = user_df_transposed[user_df_transposed['rating']==0]
         # generate a list of animes the user has not seen
         animes_unseen = user_df_transposed.index.tolist()
         similar_users_df_filtered = similar_users_df[similar_users_df.index.isin(animes_unseen)]
         similar_users_df_ordered = similar_users_df.sort_values(by=['mean'], ascending=False)
         # grab the top n anime
         top_n_anime = similar_users_df_ordered.head(items)
         top_n_anime_indices = top_n_anime.index.tolist()
         # lookup these anime in the other dataframe to find names
         anime_information = anime[anime['anime_id'].isin(top_n_anime_indices)]
         return anime_information #items
```

ý [16]	similar_user_indices = similar_users(271, rating_matrix) print(similar_user_indices) recommend_item(271, similar_user_indices, rating_matrix)								
D	[1103,	13652, 2	0314]						
		anime_id	name	genre	type	episodes	rating	members	1.
	10	4181	Clannad: After Story	Drama, Fantasy, Romance, Slice of Life, Supern	TV	24	9.06	456749	
	36	11741	Fate/Zero 2nd Season	Action, Fantasy, Supernatural, Thriller	TV	12	8.73	340973	
	94	10087	Fate/Zero	Action, Fantasy, Supernatural	TV	13	8.51	453630	
	96	9756	Mahou Shoujo Madoka★Magica	Drama, Magic, Psychological, Thriller	TV	12	8.51	462974	
	180	18195	Little Busters!: Refrain	Comedy, Drama, Romance, School, Slice of Life,	TV	13	8.36	71820	
	223	2167	Clannad	Comedy, Drama, Romance, School, Slice of Life,	TV	23	8.30	566690	
	262	23289	Gekkan Shoujo Nozaki-kun	Comedy, Romance, School	TV	12	8.24	292622	
	335	12189	Hyouka	Mystery, School, Slice of Life	TV	22	8.17	372246	
	370	4059	Clannad: Mou Hitotsu no Sekai, Tomoyo-hen	Drama, Romance, School, Slice of Life	Special		8.14	160423	
	504	6351	Clannad: After Story - Mou Hitotsu no Sekai, K	Drama, Romance, School	Special	1	8.02	138364	

Content based model:

Code and output:


```
14] anime_index = pd.Series(anime.index, index=anime.name).drop_duplicates()
25
26
27
28
28
29
30
30
30
40ef content_recommender(anime_name, similarity=cos_sim):
    index = anime_index[anime_name]
    print('Users also watched:\n')
    sim_score = list(enumerate(cos_sim[index]))
    sim_score = sorted(sim_score, key=lambda x: x[1], reverse=True)
    sim_score = sim_score[0:11]
    anime_i = [i[0] for i in sim_score]

    result = anime[['anime_id', 'name', 'genre', 'rating']].iloc[anime_i].drop(index)
    return result
```


