

TMA4145 Linear

Methods

Fall 2018

Norwegian University of Science and Technology Department of Mathematical Sciences

Exercise set 6

- 1 Let (X,d) be a metric space. Show that any Cauchy sequence $(x_n)_{n\in\mathbb{N}}$ is bounded in X.
- 2 Let (X, d) be a metric space, and assume that $Y \subset X$ is a dense subset of X. Show that for any $x \in X$ there exists a sequence $(y_n)_{n \in \mathbb{N}} \subset Y$ such that $x = \lim_{n \to \infty} y_n$.
- $\boxed{\mathbf{3}}$ Prove the following two statements for a normed space $(X, \|.\|)$.
 - a) Any ball $B_r(x) = \{y \in X : ||x y|| < r\}$ in (X, ||.||) is bounded and $diam(B_r(x)) \le 2r$.
 - **b)** If A is a bounded subset of $(X, \|.\|)$, then for any $a \in A$ we have $A \subseteq \bar{B}_{\operatorname{diam}(A)}(a)$. (Recall that the a closed ball $\bar{B}_r(x)$ is the set $\{y \in X : \|y x\| \le r\}$.)
- **4** a) Let $(f_n)_{n\in\mathbb{N}}$ be defined by

$$f_n(t) = \begin{cases} 0 & \text{for } a \le t \le \frac{a+b}{2}, \\ n(t - \frac{a+b}{2}) & \text{for } \frac{a+b}{2} < t \le \frac{a+b}{2} + \frac{1}{n}, \\ 1 & \text{for } \frac{a+b}{2} + \frac{1}{n} \le t \le b. \end{cases}$$

in C[a, b]. Use the definition of uniform convergence to determine if $(f_n)_{n\in\mathbb{N}}$ converges uniformly on [a, b].

- **b)** Let $(f_n)_{n\in\mathbb{N}}$ be the sequence on [0,1] defined by $f_n(x) = \frac{1}{1+nx}$. Use the definition of uniform convergence to determine if $(f_n)_{n\in\mathbb{N}}$ converges uniformly on [0,1].
- **5** Show that $(\ell^{\infty}(\mathbb{R}), \|\cdot\|_{\infty})$ is a Banach space.
- $\boxed{\mathbf{6}}$ Let c_0 denote the space of real-valued sequences converging to zero.

- a) Show that $(c_0, \|\cdot\|_{\infty})$ is a subspace of $(\ell^{\infty}(\mathbb{R}), \|\cdot\|_{\infty})$.
- **b)** Show that c_0 is closed in $\ell^{\infty}(\mathbb{R})$, and conclude that $(c_0, \|\cdot\|_{\infty})$ is complete.