Ggplot2 Chapter 3 – Mastering the Grammar

Vincenzo

September 29, 2014

Why learn the Grammar?

- More customizability
- Enable you to discover new graphic types
 - One that effectively conveys your story.

"the grammar effectively defines the parameter space of statistical graphics" – Hadley

• Ch3 = an overview. Best to return to relate subsequent chapters back to the grammar.

Six Components

- Seemingly not explicitly listed in ggplot2 book.
- From Wilkinson's Grammar of Graphics (2e), pg. 19:

Aesthetics

Geometry

Scales

Statistics

Coordinates

Algebra Layers?

Layers? (hence Layered gg)

1. Aesthetics

- These are ways to perceive the data.
- We can't "see" data; we can see aesthetic attributes.
- Examples:
 - Horizontal or Vertical position
 - Radial position
 - Colour
 - Shape
 - Size

1. Aesthetics

- Mapping between Variables and Aesthetics.
 - Not between the data and aesthetics!
 - (Table 3.2 only the headings have been mapped)
- Example:
 - What are the mappings in this <u>Pie graph</u>?

2. Geometric Objects

- The "type" of object that's plotted.
 - Points
 - Bars
 - Boxplots
 - Lines

- For simple plots, geom's determine plot name.
 - Table 3.3 for example.

3. Scales

- Maps data values to "physical units"
 - i.e. units understood by the computer.

As opposed to aesthetics (maps variable)

- Example: "Position" aesthetic
 - Data value \rightarrow [0,1]

3. Scales

- Another example: Colour
 - 3 types of cones in the eye ==> 3d colour space
 - Continuous variable → 3d colour space

- Discrete data values → evenly spaced hues
 - Figure 3.4

4. Statistics

- A statistical transformation of the data.
- Examples:
 - Mean Regression
 - (x,y) data \rightarrow (x, E(Y)) data
 - Box Plots
 - x data \rightarrow some quantiles
 - Includes Wilkinson's "Algebra" component?
 - (x,y) data $\rightarrow x/y$, as an example.

5. Coordinates

- Mapping the position of objects on the plane.
 - Cartesian (some sort of identity mapping)
 - Polar
 - Map projections (sphere --> plane)

- Determines the axes/grid lines.
 - Example: Rose diagram
 - Binned angle and quantity.

6. Layers

- Basically a "single plot" with one set of:
 - aesthetics
 - stat
 - Geom
 - position adjustment (described next)

- Form a 3d array
 - Faceting (2d) and stacking (1d).

4. Scales (Again?)

- There's more to scaling when there are layers!
- Coordinates need to match up.
- 3 Steps:
 - 1. Transforming
 - Sounds just like "Coordinate" component to me.
 - 2. Training
 - Matching up scales across layers (so they match up)
 - 3. Mapping
 - Confusing "map the data values into aesthetic values?"

Data Structures (Not part of the Grammar)

- Section 3.6 discusses what you can do with ggplot2 objects (i.e. the plots)
 - print() to view it (only in a loop or function)
 - ggsave() to save the image to disk
 - save() to save the object to disk
 - Load with load()
 - As usual, describe the object with summary().