Examen de Probabilités du lundi 26 mars 2018

4 exercices indépendants (Durée : 2 heures)

Exercice I-

Une urne contient initialement 1 boule rouge et 3 boules bleues, indiscernables au toucher. On effectue des tirages successifs avec remise, en rajoutant à chaque fois 2 boules de la couleur de la boule tirée. Pour $n \in \mathbb{N}^*$, on note X_n la variable aléatoire égale à 1 si la boule tirée au n-ième tirage est rouge et 0 sinon.

- 1. Déterminer la loi de X_1 et son espérance.
- **2.** a) Justifier que $P([X_1 = 0] \cap [X_2 = 0]) = \frac{5}{8}$.
- b) Déterminer la loi conjointe du couple (X_1, X_2) (on pourra faire un tableau) et en déduire la loi de X_2 . Les variables X_1 et X_2 sont-elles indépendantes ?
 - c) Déterminer la loi de $S_2 = X_1 + X_2$ et calculer son espérance $\mathbb{E}(S_2)$.
- **3.** On pose $S_n = \sum_{k=1}^n X_k$ pour $n \in \mathbb{N}^*$.

 - a) Que représente S_n ? Déterminer l'ensemble des valeurs prises par la variable aléatoire S_n . b) Montrer que $P([X_{n+1}=1]/[S_n=k])=\frac{2k+1}{2n+4}$ pour $0 \le k \le n$ et en déduire que

$$P([X_{n+1}=1]) = \frac{1}{2n+4} \sum_{k=0}^{n} (2k+1)P([S_n=k])$$
 puis que $P[(X_{n+1}=1]) = \frac{2\mathbb{E}(S_n)+1}{2n+4}$.

c) Déterminer $\mathbb{E}(X_{n+1})$ en fonction de $\mathbb{E}(S_n)$ et en déduire que

$$\mathbb{E}(S_{n+1}) = \frac{n+3}{n+2} \mathbb{E}(S_n) + \frac{1}{2n+4}.$$

- d) Montrer par récurrence que, pour tout $n \in \mathbb{N}^*$, on a $\mathbb{E}(S_n) = \frac{n}{4}$.
- e) Déterminer la loi de X_n .

Exercice II-

Un joueur joue à Pile ou Face contre un casino, la pièce étant truquée pour que la probabilité d'obtenir Pile soit $p \in]0,1[$. La mise initiale est $a \in \mathbb{N}^*$. Tant que la pièce donne Face, le joueur perd sa mise et, au coup suivant, il parie $k \geq 2$ fois sa dernière mise. S'il obtient Pile, il gagne k fois sa dernière mise et arrête. Soit T la variable aléatoire retournant le numéro du lancer donnant pour la première fois Pile et G celle qui donne le gain (algèbrique) du joueur.

- 1. Quelle loi suit T? Quelle est la probabilité que les lancers ne donnent jamais Pile?
- **2.** Montrer que G est une fonction de T, soit G = f(T) où $f(n) = \frac{a}{k-1} + k^n a \frac{k-2}{k-1}$ pour $n \in \mathbb{N}^*$.
- **3.** Montrer que $\mathbb{E}(G) = a \frac{pk-1}{1-k(1-p)}$.

Exercice III-

1. Soit X une variable aléatoire de densité de probabilité f définie par :

$$f(x) = k(2x+1) \mathbb{I}_{[0,1[}(x).$$

- a) Montrer que $k=\frac{1}{2},$ puis déterminer l'espérance et la variance de X.
- b) Déterminer la fonction de répartition F_X de X.
- c) Soit $Z=X^2$. Vérifier que $F_Z(t)=\frac{1}{2}(t+\sqrt{t})\,\mathbb{I}_{[0,1[}(t)+\mathbb{I}_{[1,+\infty[}(t).$ En déduire la densité de Z et déterminer son espérance.
- 2. Soit (X,Y) un couple de variables aléatoires de densité de probabilité g définie par :

$$g(x,y) = (x+y) \, \mathbb{I}_{]0,1[}(x) \, \mathbb{I}_{]0,1[}(y)$$

- a) Déterminer les densités de X et de Y.
- b) Écrire la densité conditionnelle de Y sachant X=x. Calculer alors $\mathbb{E}(Y|X=x)$ puis vérifier que $\mathbb{E}(Y|X)=\frac{3X+2}{3(2X+1)}$.
 - c) Les variables X et Y sont-elles indépendantes ? Calculer $\operatorname{cov}(X,Y)$.
- d) On pose S=X+Y. Déterminer $[0,1]\cap[s-1,s]$ lorsque $s\in[0,1]$ et lorsque $s\in[1,2]$ et montrer que $f_S(s)=s^2\,\mathbb{I}_{[0,1[}(s)+s(2-s)\,\mathbb{I}_{[1,2[}(s).$ Que vaut $\mathbb{E}(S)$?

Exercice IV-

On admet que le poids en kg d'un utilisateur potentiel d'un ascenceur est une variable aléatoire X qui suit une loi normale de moyenne $\mu=80$ et d'écart-type $\sigma=15$. L'ascenseur ne peut supporter une charge supérieure à 1 000 kg.

On note $S_n = \sum_{i=k}^n X_k$ la variable aléatoire associée au poids de n individus.

- **1.** Calculer P([X > 50]), P([65 < X < 95]) et P([X > 110]).
- 2. On admet que S_n suit aussi une loi normale. Déterminer, en fonction de n, l'espérance et l'écart-type de cette loi. $[Utiliser \mathbb{E}(S_n) = \sum_{k=1}^n \mathbb{E}(X_k) \ et \ var(S_n) = \sum_{k=1}^n var(X_k).]$
- ${\bf 3.}$ Quel nombre maximum de personnes le constructeur doit-il afficher pour que la probabilité de surcharge ne dépasse pas 1% ?

[On sera amené à résoudre une équation du deuxième degré en $\sqrt{n}...$]

$$Si \ \Phi(\alpha) = \int_0^\alpha \frac{1}{\sqrt{2\pi}} e^{-x^2/2} \ dx, \ on \ donne \ \Phi(1) = 0,341, \ \Phi(2) = 0,477 \ et \ \Phi^{-1}(0,49) = 2,31.$$