Algoritmi genetici: 1/0 knapsack problem:

ID Obj	А	В	С	D	E	F	G	Н	Capacitate
Val	10	12	5	14	9	7	15	10	Rucsac
Weight	7	9	2	10	10	6	12	12	30

Sub ce forma codificam o solutie pentru aceasta problema?

Sub form unui vector caracteristic X, cu proprietatea ca X[i]=1 ⇔ obiectul *i* este selectat.

Ex:

1	0	1	0	0	1	1	0

O astfel de codificare se numeste cromozom/individ. Ar fi bine ca individul sa aiba proprietati precum: codificare unica, simpla, lungime fixa, in acest caz este usor de vazut ca fiecare obiect este selectat cel mult o singura data, etc.

Odata ce am stabilit codificarea, ce alt element trebuie stabilit inainte de a incepe algoritmul? Trebuie sa definim o functie de fitness cat mai buna pentru prolema noastra **f:2**ⁿ->**R**₊

$$f:2^{n}->R_{+}$$

$$f(X) = \begin{cases} \sum val(i) \cdot X[i] & daca \sum weight(i) \cdot X[i] \leq capacitatea \ rucsacului \\ 0, \ alt fel \end{cases}$$

f(10100110)=37 (greutatea toala este 27 <30) f(10010110)= 0 (greutatea totala este >30)

trebuie sa generam populatia initiala: populatia initiala va fi formata din indivizi generati aleator (distribuite uniforma)

Populatie:								Fitness
1	1	0	0	1	0	0	0	31
1	1	1	0	1	0	0	1	0
0	0	1	1	0	1	1	0	41
0	1	0	0	0	1	0	0	19
0	0	1	1	0	0	0	1	29
1	0	0	0	0	1	1	0	32

aplicam criteriu elitist - elementul [00110110] va trece direct in generatia urmatoare.

Elementul elitist de la o generatie este intotdeauna cel putin la fel de bun ca oricare element obtinut intr-o generatie anterioara.

Ramane sa selectam n-1=5 indivizi din populatia curenta:

aplicam criteriul ruletei:

Trebuie sa asociem o probabilitate de selectie (ps) pentru fiecare individ:

$$ps(x) = \frac{f(x)}{\sum_{1 \le i \le n} f(i)}$$

х	1	2	3	4	5	6
ps(x)	0.205	0	0.270	0.125	0.190	0.210
interval de selectie	[0-0.205)	-	[0.205-0.475)	[0.475-0.6)	[0.6-0.790)	[0.790-1.00)

Generez n-1 variabile aleatoare pe intervalul [0,1)

0.050 0.263 0.490 0.218 0.771

Elementele selectate sunt: 1, 3, 4, 3, 5

11001000

00110110

01000100

00110110

00110001

pentru fiecare element, exista sansa de 0.35 (paramatru dat la input) sa participe la crossing over:

0.807 **0.253 0.189** 0.657 **0.174**

indivizii selectati pentru crossing over sunt:

00110110

01000100

00110001

Pantru fiecare pereche de cromozomi (in cazul acesta avem triplet) generez aleator un punct de rupere ex: i=3

001|10110

010|00100

001|10001

Dupa recombinare avem:

00100100

01010001

00110110

Acesti indivizi isi vor inlocui parintii si se vor alatura celor care nu au fost selectati pentru incrucisare

Se aplica operatorul de mutatie:

- mutatie rara: se itereaza prin multimea de indivizi fiecare individ are o mica probabilitate (0.02) de a fi selectat pentru mutatie. Odata selectat individul, acestuia i se schimba valoarea unei gene cu complementul ei de pe o pozitie aleatoare
- mutatie "regular": iterez prin toate genele fiecarui individ. Exista o foarte mica probabilitate (ex: <0.01) ca o gena sa isi schimbe valoarea.

Dupa mutatie, populatia intermediara devine

00100100

00010001

00110110

11101000

00110110

Aceasta populatie se va alatura individului elitist din popuatia initiala, formand noua generatie:

00110110

00100100

00010001

00110110

11101000

00110110

Cat timp rulez algoritmul?

Cand macar unul dintre urmatoarele 3 criterii este satisfacut:

- s-a realizat un numar de generatii (ex: opresc algoritmul dupa 1000 de generatii) sau dupa un numar de secunde.
- s-a gasit o solutie care depaseste un anumit prag de acceptare (ex: am gasit o solutie cu profit 41, iar eu ma multumesc cu orice solutie cu profit >40)
- nu se mai schimba elementul maxim (sau media elementelor) timp de un numar de generatii (ex: timp de 10 generatii mereu a fost aceeași solutie cea mai buna, opresc algoritmul, si ma multumesc cu ea)