Problem 1:

Harris Corner Detector

1. The majority of implementation is the formula (I use K = 0.05 and the paper recomend us to use k between 0.04 to 0.06):

R = detM -
$$k(traceM)^2 = \lambda_1 \lambda_2 - 0.05(\lambda_1 + \lambda_2)^2$$

Where M = $\sum w(x,y)\begin{bmatrix} I_x^2 & I_xI_y \\ I_yI_x & I_y^2 \end{bmatrix}$, R is the score to return for the function.

- 2. The W(x,y) is the window function and I used gaussian here. Ix and Iy is the gradient along x and y direction that can be derived with sobel filter.
 - 3. At last, I set a bar for the score such that only 200 points at most, for example, can be returned for my output.

Problem 2:

Feature descriptor:

set width: 2*scale + 1 spacial width: 3* set width

- 1. For each set_width * set_width(here 3*3) grid around the interest point, I created a histogram of 8 bins that spread evenly from -180 to 180 degree and stored the orientation energy(here I just use the magnitude of gradient from canny_max function). Therefore, a vector with length 8 is created for each 3*3 grid.
- 2. For each 9*9 grid, we will have 9 numbers of 3*3 grid. Therefore, each 9*9 grid around a interested point, we have a vector of length 9*8 = 72.

A sample output with Golden Gate with 100 Interest points:

Problem 3:

Feature Matching

Naive Approach:

- 1. Given two extracted features, I traversed each feature for image 0 and find its nearest neighbour in image1. Return their ratio as a metric for the matching.
 - 2. This naive approach takes at least $O(n^2)$ time complexity to traverse each point.

KD tree:

this code use this wiki page as reference: https://en.wikipedia.org/wiki/K-d_tree

- 1. Build a tree such that each split I changed the axis to next dimension. In this way, the tree split the whole space.
- 2. When we search the nearest neighbour, simply go to the left subtree if our input vector's value on k dimension is less than the value in the node, right otherwise. I use the same method that record the nearest and second nearest distance and use these ratio for the score.
- 3. This KD tree first takes O(nlgn) to build the tree and when finding nearest neighbour, it takes O(lgn) for each feature point.

Sample Output:

Feature matching with 100 features and threshould value = 0.95

Run time comparison:

The KD tree runns more fast than the naive method in my case:

naive, search time: 8.823 sec

kdtree, search time: 0.725 sec

Problem 4:

Hough Transform

A simple steps that I used for implmenting this hough transform:

- 1. Store the difference of x-axis and y-axis into different list. The order of their difference is the same of xs0
- 2. I use a dictionary in the formart of Dic[x_axisdiff/bin_width,y_axisdiff/bin_width] to represent for the hough space and to store the scores. After trials, I decide to use the bin width of size 3.
 - 3. Get the combination of x_axisdiff and y_axisdiff with the most scores and return their indices.

A sample output with ShangHai with 100 Interest points and bin width of 3 look like this:

A sample output with Golden Gate with 100 Interest points and bin width of 3 look like this:

