M-DG Seminar: Multinomial Processing Tree Modeling

The Software multiTree

Summer semester 2020

Prof. Dr. Daniel Heck

M-DG: Multinomial Processing Tree Modeling

Part	Date	Торіс	Literature
(A) Theory	Self study	A1) Introduction	Erdfelder et al. (2009)
		A2) Basics of MPT modeling	Batchelder & Riefer (1999)
		A3) The software multiTree	Moshagen (2010)
		A4) Hierarchical MPT modeling	Lee (2011) Heck et al. (2018)
(B) Application	15.5.*	B1) Questions & Practice with multiTree	Batchelder & Riefer (1986)
	20.5.*	B2) Workflow: Developing an MPT model	Jung et al. (2019)

^{*} Web-Conference, 12:00 – 15:00, https://webconf.hrz.uni-marburg.de/b/dan-fvk-ha6

Software multiTree

multiTree (Moshagen, 2010)

- Specification, fitting and testing of MPT models
- Freeware

- Requires to install a Java Runtime Environment (JRE)
 - e.g., https://www.java.com/en/download/
- Download:
 - https://www.sowi.unimannheim.de/erdfelder/forschung/software/multitree/

- Define MPT model
- 2. Provide data
- 3. Check identifiability
- 4. Comparing Nested Models
- 5. Preview: Exercises for the first interactive session
- 6. Advanced: Power analysis

Application: Define MPT Model

1.) Open multiTree and provide the model equations of the Two-High-Threshold Model:

Two-High-Threshold Model (2HTM)

- Define MPT model
- 2. Provide data
- 3. Check identifiability
- 4. Comparing Nested Models
- 5. Preview: Exercises for the first interactive session
- 6. Advanced: Power analysis

Application: Provide Data

2.) Provide the following data / observed frequencies:

	"old"	"new"
Old item	65	35
New item	13	87

Data

2.) Observed response frequencies:

- Define MPT model
- 2. Provide data
- 3. Check identifiability
- 4. Comparing Nested Models
- 5. Preview: Exercises for the first interactive session
- 6. Advanced: Power analysis

Check Identifiability

3.) Is the model identifiable?

Identifiability Checks in multiTree

"Get Jacobian"

• Check whether the rank of the Jacobian matrix (for a random parameter θ) is equal to the number of free parameters

"Repeated Analysis"

- 1. Estimate parameters multiple times for the same data
- 2. Check whether parameter estimates are stable/identical

"Simulated Identifiability"

- 1. Draw random parameter vectors θ in Ω
- 2. Get expected category frequencies based on MPT model
- 3. Estimate the parameters of the MPT model
- 4. Check whether estimated & true parameters are identical

Application: Identifiability

Example: Check identifiability via repeated analysis

Application: Identifiability

5.) Obtaining an identifiable model by equality constraints:

Model Fitting: Output

6.) Results: Model fit and parameter estimates

ratio test

- Define MPT model
- 2. Provide data
- 3. Check identifiability
- 4. Comparing Nested Models
- 5. Preview: Exercises for the first interactive session
- 6. Advanced: Power analysis

Comparing Nested Models

- 7.) Hypothesis testing: Does the constraint g = .50 hold?
 - → Step 1: Define baseline model & fit model

Comparing Nested Models

- 7.) Hypothesis testing: Does the constraint g = .50 hold?
 - → Step 2: Compare current model to baseline

Comparing Nested Models

• 7.) Hypothesis testing: Does the constraint g = .50 hold?

Likelihood ratio test with ΔG² statistic

```
Model Builder
Parameters
             Data
                     Equations
                                Output
🏷 🖹 🛆
Difference to Baseline Model (Difference = Current - Baseline)
PD^1ambda=0.0 (df=1)
                                        p = 0.00022
                       = 13.66530
AIC difference
                       = 11.66530
BIC difference
BIC difference
Ratio of AIC weights
                       = 8.36699
                       = 0.00292
Ratio of BIC weights
                        = 0.01502
      Baseline
                 Current
                            what are the parameters
      free
                 free
dn
do
      = dn
                 = dn
                            that are tested?
      free
                 0.50
Parameter Estimates, Standard Errors, and Confidence Intervals
                (0.06040)
                            [0.40162 - 0.63838]
   = 0.52000
                (constant)
    = 0.50000
```


- Define MPT model
- 2. Provide data
- 3. Check identifiability
- 4. Comparing Nested Models
- 5. Preview: Exercises for the first interactive session
- 6. Advanced: Power analysis

Preview:

Exercises for the first interactive session

Extend the 2HTM to two base-rate conditions:

		"old"	"new"
200/ Torracta	Target	65	35
30% Targets	Lure	13	87
700/ Tangata	Target	83	17
70% Targets	Lure	43	57

- 2. What are the parameters of the extended model?
- 3. Is the model identifiable with separate d_n and d_o ?
- 4. Fit the model to both conditions jointly.
- 5. Test whether g differs significantly between conditions.

- Define MPT model
- 2. Provide data
- 3. Check identifiability
- 4. Comparing Nested Models
- 5. Preview: Exercises for the first interactive session
- 6. Advanced: Power analysis

Traditional Power Analysis

- Under H_1 , the G^2 statistic of H_0 follows a noncentral χ^2 distribution
 - noncentrality parameter $\gamma = N \cdot w^2$
 - w denotes the effect size $(w^2 = G^2(H_0 \mid H_1 \text{ holds given } \theta) / N)$
- Effect size conventions
 - w = .10 ("small effect")
 - w = .30 ("medium effect")
 - *w* = .50 ("large effect")
- Types of power analysis
 - A priori: Compute required N as a function of w, α , and 1β
 - Post hoc: Compute 1β as a function of w, α , and N

Traditional Power Analysis

Example with
 G*Power for a
 "medium" effect size
 (w = 0.3)

Traditional Power Analysis: Limitations

• Problems:

- 1. How does effect size translate into parameter values?
- 2. Same meaning of effect size labels in different models?
- Relative size of groups/conditions is ignored.
- Cohen (1988, p. 244) on w effect sizes conventions:
 - "Their use requires particular caution, since, apart from their possible inaptness in a particular substantive context, what is subjectively the same degree of departure or degree of correlation (...) may yield varying w, and conversely. The investigator is best advised to use the conventional definitions as a general frame of reference (...) and not to take them too literally."

Approach 2: Meaningful Power Analysis

Power as a function of the model parameters θ under H_1 :

- Specify a specific H₁ model with all parameter values θ fixed at "plausible values"
- Specify a nested H₀ model
- 3) Choose number of observations N_k for each tree k and calculate the expected frequencies under H_1
- 4) Fit the H_0 model to the H_1 expected frequencies by minimizing G^2
- 5) Use minimum G^2 value as noncentrality parameter γ
- 6) Compute the power $1 \beta = P(\chi^2(\gamma, df) \ge c_{(df, \alpha)})$

Power Analysis in multiTree

H₀: nested model

- which parameter constraints are tested
- \rightarrow here: *g*30 = *g*70

H₁: "true state

of the world"

→ power may

depend on the

parameters **0!**

values of all

Power Analysis in multiTree: Output

Result:

→ How many observations are required?

