

Our country, our future

525/1

S6 CHEMISTRY

Exam 14

PAPER 1

DURATION: 2 HOUR 45 MINUTES

For Marking guide contact and consultations: Dr. Bbosa Science 0776 802709,

This paper Instructions

- This paper consists of two sections A and B
- Section A is compulsory
- Attempt only six questions in section B
- Answers must be written in the spaces provided only.

Where necessary use the following:

Molar gas constant, R = $8.31 \text{JK}^{-1} \text{mol}^{-1}$

Molar volume of a gas at s.t.p = 22.4litres

Standard temperarue = 273K

Standard pressure = 10125Nm⁻²

For E	xamine	er's Us	e Only													
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17

SECTION A

Answer questions from this section

1.	(a)(i) The decay law is give in the expression below $-\frac{dN}{dt} = \lambda N$							
	State what the symbols represent.	(1 ½ marks)						
	(ii) Using the above expression derive the expression for relating the half-life ($t_{\frac{1}{2}}$) constant.	and a decay (2marks)						
	(b)(i) Nickel (⁶³ Ni) decays to copper (⁶³ Cu).							
	Name the particle emitted and write the equation for the reaction:							
	Name of the particle	(1mark)						
	(ii) Calculate the time taken for $\frac{15}{16}$ of nickel to change to copper. (the half-life of nickel is 120 years)	(2marks)						
		••••••						

More exams? browse: digitaltears.co.ug

equations for the reacti	on							
Conditions								
quation								
b) The resultant solution in (a) was mixed with aqueous sodium carbonate solution. State wha								
vas observed and write equation for the reaction that took place.								
Observation			(2 ½ mark)					
Equation								
The following experimental results were obtained for the reaction								
A + 2B products								
Experiment number	Initial concentra	Rate (moll ⁻¹ s ⁻¹)						
	А	В						
1	3.0 x 10 ⁻²	3.0 x 10 ⁻²	2.7 x 10 ⁻⁵					
2	3.0 x 10 ⁻²	6.0 x 10 ⁻²	5.4 x 10 ⁻⁵					
3	6.0 x 10 ⁻²	3.0 x 10 ⁻²	10.8 x 10 ⁻⁵					
	1		I					
	f reaction with resr	pect to						
a) Deduce the order o	reaction with resp							
a) Deduce the order o	reaction with resp							

	(ii) B		
	(iii)	Write the expression for the rate equation	(½ mark)
(b)	The rate	e of the reaction under certain conditions for temperature is x. expre	ess the rate in
	terms o	f when the following changes are made.	(½ mark each)
	(i)	The concentration of B is halved while the concentration of A remai	ns unchanged.
	(ii)	The rate constant is doubled, by increasing temperature, but keepin	g the
		concentrations of A and B unchanged.	
	(iii)	If 90% of B is is removed by precipitation, without affecting the cond	centration of A
(c)	Calculat	e the value of the rate constant and state its units	(2marks)

4. Complete the following reaction equations and write the IUPAC names of the main organic product in each case. (1 ½ mark each)

	(a)							
	Nan	ne of the pro	oduct					
	(b)	СНО		Conc. HCl	>			
				Zn/Hg	,			
	Nan	ne of the pro	oduct					
	(c)	(CH₃)₃COH	anhydrous	ZnCl ₂ /conc. HCl	_			
		Name of the	e product					
5.	(a) \	Write half ed	quation (s) to	show the action	n of hydrogen	peroxide as		
	(i)	Oxidizir	ng agent				(1mark)
	(ii)	Reducir	ng agent.					

(b) State what is observed and in each case write equation of the reaction that takes place when hydrogen peroxide is added to the following mixtures: (1½ mark each)

		(i) Acidified potassium chromate (VI) solution) Observations
		Equation
	(ii)	Iron (II) sulphite in dilute sulphuric acid Observations
		Equation
	(c)	Give one reason why hydrogen peroxide is not used to estimate the concentration of iron (II) ions in volumetric analysis. (1mark)
ŝ.	(a)	Explain what is meant by the term first electron affinity? (1mark)
		(b) State three factors that can affect electron affinity. (1½ mark)
	(d)	The first electron affinities of some of period 3 elements in the periodic table are shown

below

Element	Al	Si	Р	S
First electron	-44	-134	-71.7	-200
affinity (kJmol ⁻¹)				

(i)	State the trend in the	ies. (½ mark)	
(ii)	Explain your answer	in c(i) above	(2marks)
7. (a) The	enthalpies of some react	ions are given below	
(i)	$C(s) + O_2(g)$	→ CO ₂ (g)	$\Delta H_{1}^{0} = -393.5 \text{ kJmol}^{-1}$.
(ii)	$H_2(g) + \frac{1}{2}O_2(g)$	→ H ₂ O (I)	$\Delta H_{2}^{0} = -285.9 \text{ kJmol}^{-1}$
(iii)	$C_6H_5OH (s) + 7O_2(g)$	$\longrightarrow 6CO_2(g) + 3H_2O(I)$	$\Delta H_{2}^{0} = -3009 \text{ kJmol}^{-1}$
Calcu 	late the standard enthalp	y of formation of phenol fro	m its elements (3marks)
(b) (i) From you	r answer in (a) state whe	ther phenol is a stable comp	ound or not (½ mark)

(ii)

Give a reason for your answer in b(i) above.

For consultations call: +256 776 802709

(01mark)

om chlorobenzene. structure. to formation of neoprene	(1½ mark)
to formation of neoprene	
	e. (½ marks)

(b) When 350g of the monomer was polymerized 9.89 x 10^{-2} moles of neoprene was formed. Calc					
	the relative molecular mass of neoprene.	(2marks)			
(c)	State one use neoprene	(½ mark)			
9.	Calculate the pH of 0.1moldm ⁻³ solution of aluminium nitrate.				
	(Acid dissociation constant, Ka, at 25°C for AI(H ₂ O) ₆ ³⁺ moldm ⁻³)	(3marks)			
••••					

SECTION A

(Attempt only questions in this section)

10 (a) Explain what is meant by the term common ion effect.	(1mark)
(b) Silver chromate is sparingly soluble in water	
Write	
(i) Equation for the solubility of silver chromate in water	(1 ½ mark)
(ii) The expression for the solubility product, Ksp, for silver chromate.	(½ mark)
(c) A saturated solution of silver chromate contains 2.4×10^{-2} g per liter at 20° C. Calculate the solubility product, Ksp, for silver chromate at 20° C.	e the value for
(d) chloride ions is solution can be determine by titration with silver nitrate in the prese ions. The end point is indicated by a red precipitate of silver chromate.	nce of chromate
(i) Explain why silver chromate does not precipitate until the end point is reacted	(01marks)

(ii) 25cm ³ of a solution containing 0.1moles of potassium chloride and 0.001 m	oles of chromate ion is
required on titration 50cm ³ of 0.1M silver nitrate solution to reach the end	point. Calculate the
concentration of chloride ions at the end point.	
[solubility product for silver chloride is $1.6 \times 10^{-1}0$ mol ² l ⁻¹]	
11. (a) A compound Y contains carbon, hydrogen and nitrogen. On combustion	, 0.72g of Y produced
1.615g of carbon dioxide and 0.42g produced 84cm ³ of nitrogen at 15°C	Cand 760mmHg.
	-
Calculate the empirical formula of Y	(4 ½ marks)
(b) When Y was vaporized, it took 38seconds to diffuse through the same poro	ous partition under similar
conditions whereas oxygen takes 28s. calculate the molecular formula of Y	(03minutes)

(c) Y reacts with a mixture of concentrated hydrochloric acid yellow oily liquid.	and aqueous sodium nitrite to form a
(i) Identify Y	(½ mark)
(ii) Write equation for the reaction that takes place	(1mark)
 12. Name the reagents that can be used to distinguish between each case state what would be observed if each member reagent. (i) CH₂I and H₃C I 	
Name of reagent(s)	
Observations	
(ii) N≡NCI More express? browse: digitaltears.co.ug	For consultations call: +256 776 802709

and CH₃CH₂N≡NCl

Name of reagent(s)	
Observations	
(iii) CH ₂ CHO and COCH ₃	
Name of reagent(s)	
Observations	
13 (a)(i) Compare the reactivity of hydrides of group (VII) elements with concentrated su	lphuric acid.
(write equation (s) for the reaction(s) which takes place if any)	(04marks)

) Give a rea	son for the difference	in reactivity	/ shown by th	ne hydrides in (a)(i) above.	(1m
) The bond	l length of hydrides of	group (VII)	elements are	given in the ta	ble below	
	Hydride	HF	HCI	HBr	HI	
	Bond length (Å	0.86	1.28	1.42	1.60	
State the	trend in the variation o	of bond leng	gth of the hyd	drides.	(1mark)	
Explain yo	our answer in (b)(i) abo	ove			(3marks)	

Write

More exams? browse: digitaltears.co.ug

14. (a) Nitrogen reacts with hydrogen in a mole ratio of 1:3 to form ammonia.

	e reaction that takes place.	(1 ½ mark)	
	the equilibrium constant (Kc		(½ mark)
(b) State the conditions us process.	ed to obtain maximum yield		
	nonia in equilibrium mixture on constant (Kc) for the reacti		

(d) State what would happen to equilibrium position of the reaction in a(i) above when hydrogen chloride gas is added to the equilibrium mixture. Give a reason for your answer. (1 ½ mark)

More exams? browse: digitaltears.co.ug

15. Write equation to show how the following conversions can be effected.	(3marks each)
(a) Ethanol to benzene	
(b) 1,2-dibromoethane to ethanol	
(c) Phenylpropane to phenol	

16 (a)(i) State three characteristic properties exhibited by cobalt as a transition element. (½ mark)

More exams? browse: digitaltears.co.ug

(ii) Explain why zinc is not considered to be a transition element.	(2marks)
(b) Cobalt (II) nitrate decomposes on heating in the absence of air forming a green water forming a pink solution.	solid and dissolves in
(i) Write equation for the decomposition of cobalt (II) nitrate.	(1 ½ marks)
(ii) Name the species responsible for the pink color of the solution. (2	1mark)
(c) to the aqueous solution in (b) was added concentrated hydrochloric acid dropv State what was observed and write equation for the reaction that took place.	vise until in excess.
(i) observation	

(ii) equation				
17. (a) Explain is meant by partition coefficient.				(2marks)
(b) The table below shows the concentrat	ions of iodine in t	the two layer	s shaken wit	h a mixture of
carbon tetrachloride and water at 25°C.				
Concentration of I ₂ in CCI ₄ /moldm ⁻³	6.12	12.24	15.20	22.38
Concentration of I ₂ in water /moldm ⁻³	0.072	0.143	0.178	0.260
(i) Plot a graph of concentration of iodine in carbon tetrachloride against concentration of iodine in				
water. (03marks)				marks)
(ii) from the graph determine the partition coefficient for iodine distributed between carbon				
tetrachloride and water. (02 mark)				mark)
(c) State two applications of partition coefficient				(2marks)

END