第五章 目标规划

- ▶目标规划问题及数学模型
- ▶目标规划的集中求解算法
- ▶目标规划的序贯求解算法

线性规划在应用中的问题(1)

1、线性规划的目标是一个刚性的目标. 但实际应用中,目标常常是模糊的。

解决方法:

将目标化作一种软目标/软约束。

线性规划在应用中的问题(2)

2、线性规划要求有解时各个约束条件相容,可行域非空。而实际情况并非总能满足。

思路:

正视现实,将原来要求寻找最优解的目标,改为寻找满意解。

解决方法:

- 1)将矛盾的普通约束改为目标约束,即将硬约束改为软约束。
 - 2)将多个约束分为不同的优先级。

线性规划在应用中的问题(3)

3、线性规划是一个单目标规划的问题,但实际应用中,常常存在多个目标。

解决方法:

- 1)分清主次,设置优先级(绝对优先级和相对优先级)
- 2)将各个目标函数按优先级加权,构成一个新的单目标函数

目标规划的思想和方法

思想:

将定量技术和定性技术结合,

承认矛盾、冲突的合理性,

强调通过协调,达到总体和谐

方法:

软约束十优先级

例1 软约束的设计

例1、

	甲	Z	有效工时
金工	4	2	400
装配	2	4	500
收益	100	80	

例1的线性规划模型

LP:
$$max z=100x_1 + 80x_2$$

s.t.
$$\begin{cases} 2x_1 + 4x_2 \le 500 \\ 4x_1 + 2x_2 \le 400 \\ x_1, x_2 \ge 0 \end{cases}$$

$$x^* = (50,100)$$
 $z^* = 13000$

目标约束

GP: 去年总收益9000, 增长要求11.1%

即:今年希望总收益不低于10000

该目标实质上是一个约束,希望:

 $100x_1 + 80x_2 \ge 10000$

决策值和目标值的关系

设100x₁+80x₂ 为决策值,10000为目标值 决策值与目标值之间存在着多种可能:

- 1) 决策值小于目标值 100x₁+80x₂<10000
- 2) 决策值等于目标值 $100x_1+80x_2=10000$
- 3) 决策值大于目标值 100x₁+80x₂>10000

软约束

$$100x_1 + 80x_2 + d^2 - d^4 = 100000$$

引入偏差变量:

d+: 决策值超过目标值部分(正偏差变量)

d: 决策值不足目标值部分(负偏差变量)

满足 $d^+ \geq \theta$, $d^- \geq \theta$, $d^+ \cdot d^- = \theta$

例1的目标规划模型

$$min z = d^{-}$$

s.t.
$$\begin{cases} 100x_1 + 80x_2 - d^+ + d^- = 100000 \\ 4x_1 + 2x_2 \le 4000 \\ 2x_1 + 4x_2 \le 5000 \\ x_1, x_2, d^-, d^+ \ge 0 \end{cases}$$
$$d^+ \cdot d^- = 0$$

典型目标函数

(1)、恰好达到目标:

$$\min Z = d^- + d^+$$

(2)、超过目标:

$$minZ = d$$

(3)、不超过目标:

$$minZ = d^+$$

例2多目标、多约束情况

例2

		II	资源拥有量
原材料(公斤)	2	1	11
设备(小时)	1	2	10
利润(千元/件)	8	10	

规划目标

- (1)、原材料价格上涨,超计划要高价购买,所以要严格控制。
- (2)、市场情况,产品 I 销售量下降,希望产品 I 的产量不大于产品 II 的产量。

- (3)、充分利用设备,不希望加班。
- (4)、尽可能达到并超过利润计划指标56千元。

建模步骤

建模:

(1)、设定约束条件。(目标约束、绝对约束)

(2)、规定目标约束优先级。

(3)、建立模型

例2—设定约束条件

设 x_1 , x_2 为产品 I,产品 II 产量。

$$2x_1 + x_2 \le 11$$

严格控制原材料

$$x_1 - x_2 + d_1 - d_1^+ = 0$$

 x_1 产量不大于 x_2

$$x_1 + 2x_2 + d_2 - d_2 = 10$$

充分利用设备,不加班

$$8x_1 + 10x_2 + d_3 - d_3 = 56$$
 利润要求

$$x_1, x_2, d_i^-, d_i^+ \ge 0, i=1,2,3$$

$$d_{i}^{-} \cdot d_{i}^{+} = 0$$

例2的目标函数

多个目标函数:

$$\min Z_1 = d_1^+$$
 x_1 产量不大于 x_2 $\min Z_2 = d_2^- + d_2^+$ 充分利用设备 $\min Z_3 = d_3^-$ 利润要求

优先因子

则原目标函数为:

$$\min\{P_1d_1^+, P_2(d_2^- + d_2^+), P_3(d_3^-)\}$$

$$\min Z = P_1d_1^+ + P_2(d_2^- + d_2^+) + P_3(d_3^-)$$

为了说明目标的优先性,定义了优先因子 P_l :

$$|P_l>>P_{l+1}>0$$

即目标1比目标 1+1具有绝对的优先权

例3同等优先级的情况

例3、电视机厂装配25寸和21寸两种彩电,每台电视机需装备时间1小时,每周装配线计划开动40小时,预计每周25寸彩电销售24台,每台可获利80元,每周21寸彩电销售30台,每台可获利40元。

该厂目标:

- 1、避免开工不足。
- 2、允许装配线加班,但尽量不超过10小时。
- 3、尽量满足市场需求,尤其是25寸彩电。

例3的目标规划模型

解:设 x_1, x_2 分别表示25寸,21寸彩电产量 $\min Z = P_1 d_1^- + P_2 d_2^+ + P_3 (W_{33}^- d_3^- + W_{34}^- d_4^-)$

S.t.
$$x_1+x_2+d_1^--d_1^+=40$$
 上班时间 $x_1+x_2+d_2^--d_2^+=50$ 加班情况 $x_1+d_3^--d_3^+=24$ $x_2+d_4^--d_4^+=30$ 市场需求 $x_1, x_2, d_i^-, d_i^+ \geq 0$ $d_i^-.d_i^+=0$ ($i=1,2,3,4$)

权系数

为了对优先级同为 P_l 的目标实现重要性的微调,可以对第k个目标的分量 d_k -加权 W_{lk} -, d_k +加权 W_{lk} -。

可以看到, W_{lk} 越大,第k个目标的重要性越大。

目标规划(Goal Programming)

$$\min \left\{ P_l \left(\sum_{k=1}^K W_{lk}^- d_k^- + W_{lk}^+ d_k^+ \right), l = 1, 2, ..., L \right\}$$

s.t.
$$\sum_{j=1}^{n} a_{ij} x_j \le (=, \ge) b_i$$
 $i = 1, 2, ..., m$

Objective function

Target value

$$\sum_{j=1}^{n} c_{kj} x_{j} + d_{k}^{-} - d_{k}^{+} = g_{k} \qquad k = 1, 2, ..., K$$

$$x_{i}, d_{k}^{-}, d_{k}^{+} \ge 0$$
 $d_{k}^{-} \cdot d_{k}^{+} = 0$

$$j = 1, 2, ..., n$$

$$k = 1, 2, ..., K$$

Goal constraints

目标规划的目的和特点

目标规划的目的: 求一组决策变量的满意值, 使决策结果与给定目标总偏差最小。

特点:

- ① 目标函数中只有偏差变量。
- ② 目标函数总是求偏差变量最小。
- ③ Z=0: 各级目标均已达到
 - Z>0: 部分目标未达到。

第五章 目标规划

- ▶目标规划问题及数学模型
- ▶目标规划的集中求解算法
- ▶目标规划的序贯求解算法

目标规划单纯形解法

$$\min z = \sum_{l=1}^{L} P_l \left(\sum_{k=1}^{K} W_{lk}^{-} d_k^{-} + W_{lk}^{+} d_k^{+} \right)$$

$$\mathbf{s.t.} \qquad \sum_{j=1}^{n} a_{ij} x_j \le (=, \ge) b_i \qquad \qquad i = 1, \cdots, m$$

$$\sum_{j=1}^{n} c_{kj} x_{j} + d_{k}^{-} - d_{k}^{+} = g_{k} \qquad k = 1, \dots, K$$

$$x_j, d_k^-, d_k^+ \ge 0$$
 $d_k^- \cdot d_k^+ = 0$

$$j = 1, 2, ..., n$$
 $k = 1, 2, ..., K$

集中单纯形法的特点

- (1)只有1个目标
- (2)含优先因子 $P_l >> P_{l+1}$,有:

$$\sigma_{j} = c_{j} - \sum_{i=1}^{m} c_{i} a_{ij} = \sum_{l=1}^{L} a_{lj} P_{l}$$

因此, σ_i 的符号看 a_{ij} 和中l最小一项的符号

例2的目标规划模型

$$\min Z = P_1 d_1^+ + P_2 (d_2^- + d_2^+) + P_3 (d_3^-)$$

s.t.
$$\begin{cases} 2x_1 + x_2 \le 11 \\ x_1 - x_2 + d_1 - d_1 + = 0 \end{cases}$$
$$\begin{cases} x_1 + 2x_2 + d_2 - d_2 + = 10 \\ 8x_1 + 10x_2 + d_3 - d_3 + = 56 \end{cases}$$
$$\begin{cases} x_1, x_2, d_i, d_i \ge 0, d_i \cdot d_i = 0, i = 1, 2, 3 \end{cases}$$

初始单纯形表

	c_{j}			0	0	0	P_1	P_2	P_2	P_3	0
C_B	x_B	b	x_1	x_2	x_3	d_1	d_1^+	d_2^-	d_2^+	d_3	d_3^+
0	<i>x</i> ₃	11	2	1	1	0	0	0	0	0	0
0	d_1	0	1	-1	0	1	-1	0	0	0	0
P_2	d_2	10	1	2	0	0	0	1	-1	0	0
P_3	d_3	56	8	10	0	0	0	0	0	1	-1
	P_1		0	0	0	0	1	0	0	0	0
σ_{j}		P_2	-1	-2	0	0	0	0	2	0	0
	P_3		-8	-10	0	0	0	0	0	0	1

迭代后的单纯形表

c_{j}			0	0	0	0	P_1	P_2	P_2	P_3	0
C_B	x_B	b	x_1	x_2	x_3	d_1	d_1^+	d_2	${d_2}^+$	d_3	d_3^+
0	x_3	6	3/2	0	1	0	0	-1/2	1/2	0	0
0	d_1	5	3/2	0	0	1	-1	1/2	-1/2	0	0
0	x_2	5	1/2	1	0	0	0	1/2	-1/2	0	0
P_3	d_3	6	3	0	0	0	0	-5	5	1	-1
	P_1		0	0	0	0	1	0	0	0	0
σ_{j}		P_2	0	0	0	0	0	1	1	0	0
	$oxed{P_3}$		-3	0	0	0	0	5	-5	0	1

最终单纯形法表

c_{j}			0	0	0	0	P_1	P_2	P_2	P_3	0
C_B	x_B	b	x_1	x_2	x_3	d_1	d_1^+	d_2	d_2^+	d_3	d_3^+
0	x_3	3	0	0	1	0	0	2	-2	-1/2	1/2
0	d_1	2	0	0	0	1	-1	3	-3	-1/2	1/2
0	x_2	4	0	1	0	0	0	4/3	-4/3	-1/6	1/6
0	x_1	2	1	0	0	0	0	-5/3	5/3	1/3	-1/3
	P_1		0	0	0	0	1	0	0	0	0
σ_{j}		P_2	0	0	0	0	0	1	1	0	0
		P_3	0	0	0	0	0	0	0	1	0

其他满意解

c_{jC}			0	0	0	0	P_1	P_2	P_2	P_3	0
C_B	x_B	b	x_1	x_2	x_3	d_1	d_1^+	d_2^-	${d_2}^+$	d_3	d_3^+
0	x_3	1	0	0	1	-1	1	-1	1	0	0
0	d_3^+	4	0	0	0	2	-2	6	-6	-1	1
0	x_2	10/3	0	1	0	-1/3	1/3	1/3	-1/3	0	0
0	x_1	10/3	1	0	0	2/3	-2/3	1/3	-1/3	0	0
	P_1		0	0	0	0	1	0	0	0	0
σ_{j}		P_2	0	0	0	0	0	1	1	0	0
	I I		0	0	0	0	0	0	0	1	0

第五章 目标规划

- ▶目标规划问题及数学模型
- ▶目标规划的集中求解算法
- ▶目标规划的序贯求解算法

目标规划的序贯解法

$$\min \left\{ P_{l} \left(\sum_{k=1}^{K} W_{lk}^{-} d_{k}^{-} + W_{lk}^{+} d_{k}^{+} \right) \right\}$$

s.t.
$$\sum_{j=1}^{n} a_{ij} x_{j} \le (=, \ge) b_{i}$$
 $(i = 1, \dots, m)$

$$\sum_{j=1}^{n} c_{kj} x_{j} + d_{k}^{-} - d_{k}^{+} = g_{k}$$

$$(k = 1, \dots, K)$$

$$x_{j}, d_{k}^{-}, d_{k}^{+} \ge 0$$
 $d_{k}^{-} \cdot d_{k}^{+} = 0$

目标规划的序贯式算法

基本思路:按优先级的顺序,从最高级开始,逐个满足目标。

具体方法:将已计算目标函数值,作为下一级目标的硬约束。

序贯式算法举例

$$\min Z = P_1(d_1 + d_2) + P_2d_3 + P_3d_4$$

s.t.
$$x_1 + d_1^- - d_1^+ = 30$$

$$x_2 + d_2 - d_2 = 15$$

$$8x_1 + 12x_2 + d_3 - d_3 = 1000$$

$$x_1 + 2x_2 + d_4^- - d_4^+ = 40$$
 (4)

$$x_{j}$$
, d_{i}^{-} , $d_{i}^{+} \ge 0$, d_{i}^{-} · $d_{i}^{+} = 0$, $i=1,2,3,4$, $j=1,2$

序贯式算法(1)

$$\min Z_1 = d_1 + d_2^+$$

s.t.
$$x_1 + d_1 - d_1^+ = 30$$

$$x_2 + d_2^- - d_2^+ = 15$$

$$x_{j}, d_{i}^{-}, d_{i}^{+} \ge 0, d_{i}^{-}, d_{i}^{+} = 0, i=1,2, j=1,2$$

解得: $x_1=30$, $x_2=15$,

$$d_1^+=0$$
, $d_1^-=0$, $d_2^+=0$, $d_2^-=0$

序贯式算法(2)

 $\min Z_2 = d_3$

s.t.
$$x_1 + d_1^- - d_1^+ = 30$$

$$x_2 + d_2^- - d_2^+ = 15$$

$$8x_1 + 12x_2 + d_3 - d_3 = 1000$$
 3

$$\mathbf{d_1}^- + \mathbf{d_2}^+ = \mathbf{0} \tag{4}$$

$$x_{j}, d_{i}^{-}, d_{i}^{+} \ge 0, d_{i}^{-}, d_{i}^{+} = 0, i=1,2,3 j=1,2$$

解得:
$$x_1=30$$
, $x_2=15$, $d_1^+=0$, $d_1^-=0$, $d_2^+=0$, $d_2^-=0$, $d_3^+=0$, $d_3^-=580$,

$$\min Z_3 = d_4^+$$

s.t.
$$x_1 + d_1 - d_1 = 30$$

$$x_2 + d_2^- - d_2^+ = 15$$

$$8x_1 + 12 x_2 + d_3 - d_3 + = 1000$$

$$x_1 + 2x_2 + d_4 - d_4 = 40$$

$$\mathbf{d_1}^- + \mathbf{d_2}^+ = \mathbf{0}$$

$$d_3 = 580$$

$$x_{j}$$
, $d_{i}^{-}d_{i}^{+} \ge 0$, $d_{i}^{-}d_{i}^{+} = 0$, $i=1,2,3,4$ $j=1,2$

解得:
$$x_1=30$$
, $x_2=15$, $d_1^+=0$, $d_1^-=0$, $d_2^+=0$, $d_2^-=0$, $d_3^+=0$, $d_3^-=580$, $d_4^+=20$, $d_4^-=0$

序贯式算法的特点

(1) 可以直接使用普通的单纯形算法解决问题。

(2) 工作量大