BACK PROPAGATION

Machine Learning

Submitted By

A.T.M. Fazlay Rabbi BSSE0926

Submitted To

B. M. Mainul Hossain
Associate professor
Institute of Information Technology
University of Dhaka

Problem

The problem is to update values for all parameters (weights and biases) using two iterations of back-propagation.

Solution

Let,

SSC cgpa = i1 = 1, HSC cgpa = i2 = 1,

SPL1 = b1 = 0.94, SPL2 = b2 = 1,

 1^{st} year cgpa = w1 = 0.98, 2^{nd} year cgpa = w2 = 0.96, 3^{rd} year cgpa = w3 = 0.95,

Cgpa upto 3^{rd} year = w4 = 0.955

IIT = h, SPL3 = o1, BSSE cgpa = o2

 $target_{o1} = 1$, $target_{o2} = 1$

Learning rate, $\eta = 0.01$

Here, all the values have been converted in the range of 0 to 1.

1st Iteration

Forward Pass

$$net_h = i\mathbf{1} * w\mathbf{1} + i\mathbf{2} * w\mathbf{2} + b\mathbf{1} * \mathbf{1} = (1 * 0.98) + (1 * 0.96) + (0.94 * 1) = 2.88$$

$$out_h = \frac{1}{1 + e^{-net_h}} = \frac{1}{1 + e^{-2.88}} = 0.947$$

$$net_{o1} = out_h * w\mathbf{3} + b\mathbf{2} * \mathbf{1} = 0.947 * 0.95 + 1 * 1 = 1.9$$

$$net_{o2} = out_h * w\mathbf{4} + b\mathbf{2} * \mathbf{1} = 0.947 * 0.955 + 1 * 1 = 1.904$$

$$out_{o1} = \frac{1}{1 + e^{-net_{o1}}} = \frac{1}{1 + e^{-1.9}} = 0.87$$

$$out_{o2} = \frac{1}{1 + e^{-net_{o2}}} = \frac{1}{1 + e^{-1.904}} = 0.87$$

Calculating Error

$$E_{o1} = (target_{o1} - out_{01})^{2}$$

$$E_{o2} = (target_{o2} - out_{02})^{2}$$

$$E_{total} = E_{01} + E_{o2}$$

$$= (target_{o1} - out_{01})^{2} + (target_{o2} - out_{02})^{2}$$

$$= (1 - 0.87)^{2} + (1 - 0.87)^{2} = 0.0338$$

Backward Pass

1. Adjusting w3:

Considering w3 to know how much a change in w3 affects the total error.

$$\frac{\partial E_{total}}{\partial w3} = \frac{\partial E_{total}}{\partial out_{o1}} * \frac{\partial out_{o1}}{\partial net_{o1}} * \frac{\partial net_{o1}}{\partial w3}$$

Now,

$$\frac{\partial E_{total}}{\partial out_{o1}} = -2(target_{o1} - out_{o1}) = -2(1 - 0.87) = -0.26$$

$$\frac{\partial out_{o1}}{\partial net_{o1}} = out_{o1}(1 - out_{o1}) = 0.87(1 - 0.87) = 0.1131$$

$$\frac{\partial net_{o1}}{\partial w3} = out_h = 0.947$$

$$\therefore \frac{\partial E_{total}}{\partial w^3} = (-0.26) * 0.1131 * 0.947 = -0.0278$$

So we get,
$$\mathbf{w3}^+ = w3 - \eta * \frac{\partial E_{total}}{\partial w^3} = 0.95 - 0.01 * (-0.0278) = 0.9502$$

2. Adjusting w4:

Considering w4 to know how much a change in w4 affects the total error.

$$\frac{\partial E_{total}}{\partial w4} = \frac{\partial E_{total}}{\partial out_{o2}} * \frac{\partial out_{o2}}{\partial net_{o2}} * \frac{\partial net_{o2}}{\partial w4}$$

Now,

$$\frac{\partial E_{total}}{\partial out_{o2}} = -2(target_{o2} - out_{o2}) = -2(1 - 0.87) = -0.26$$

$$\frac{\partial out_{o2}}{\partial net_{o2}} = out_{o2}(1 - out_{o2}) = 0.87(1 - 0.87) = 0.1131$$

$$\frac{\partial net_{o1}}{\partial w4} = out_h = 0.947$$

$$\therefore \frac{\partial E_{total}}{\partial w^4} = (-0.26) * 0.1131 * 0.947 = -0.0278$$

So we get,
$$\mathbf{w4}^+ = \mathbf{w4} - \eta * \frac{\partial E_{total}}{\partial \mathbf{w4}} = 0.955 - 0.01 * (-0.0278) = 0.9553$$

3. Adjusting b2:

Considering b2 to know how much a change in b2 affects the total error.

$$\frac{\partial E_{total}}{\partial b2} = \frac{\partial E_{o1}}{\partial b2} + \frac{\partial E_{o2}}{\partial b2} = (\frac{\partial E_{o1}}{\partial out_{o1}} * \frac{\partial out_{o1}}{\partial net_{o1}} * \frac{\partial net_{o1}}{\partial b2}) + (\frac{\partial E_{o2}}{\partial out_{o2}} * \frac{\partial out_{o2}}{\partial net_{o2}} * \frac{\partial net_{o2}}{\partial b2})$$

Now,

$$\frac{\partial E_{o1}}{\partial out_{o1}} = \frac{\partial (target_{o1} - out_{o1})}{\partial out_{o1}} = -1$$

$$\frac{\partial E_{o2}}{\partial out_{o2}} = \frac{\partial (target_{o2} - out_{o2})}{\partial out_{o2}} = -1$$

$$\frac{\partial out_{o1}}{\partial net_{o1}} = out_{o1}(1 - out_{o1}) = 0.1131$$

$$\frac{\partial net_{o1}}{\partial b2} = \frac{\partial (out_h * w3 + b2 * 1)}{\partial b2} = 1$$

$$\frac{\partial net_{o2}}{\partial b2} = \frac{\partial (out_h * w4 + b2 * 1)}{\partial b2} = 1$$

$$\frac{\partial net_{o2}}{\partial b2} = \frac{\partial (out_h * w4 + b2 * 1)}{\partial b2} = 1$$

So we get,
$$b2^+ = b2 - \eta * \frac{\partial E_{total}}{\partial b2} = 1 - 0.01 * (-0.2262) = 1.002$$

4. Adjusting w1

Considering w1 to know how much a change in w1 affects the total error.

$$\frac{\partial E_{total}}{\partial w1} = \frac{\partial E_{total}}{\partial out_h} * \frac{\partial out_h}{\partial net_h} * \frac{\partial net_h}{\partial w1} = \left(\frac{\partial E_{o1}}{\partial out_h} + \frac{\partial E_{o2}}{\partial out_h}\right) * \frac{\partial out_h}{\partial net_h} * \frac{\partial net_h}{\partial w1}$$

Here,

$$\frac{\partial E_{o1}}{\partial out_h} = \frac{\partial E_{o1}}{\partial out_{o1}} * \frac{\partial out_{o1}}{\partial net_{o1}} * \frac{\partial net_{o1}}{\partial out_h} = -1 * 0.1131 * w3 = -0.1131 * 0.95 = -0.107$$

$$\frac{\partial E_{o2}}{\partial out_h} = \frac{\partial E_{o2}}{\partial out_{o2}} * \frac{\partial out_{o2}}{\partial net_{o2}} * \frac{\partial net_{o2}}{\partial out_h} = -1 * 0.1131 * w4 = -0.1131 * 0.955 = -0.108$$

$$\frac{\partial out_h}{\partial net_h} = out_h(1 - out_h) = 0.947(1 - 0.947) = 0.0502$$

$$\frac{\partial net_h}{\partial w1} = i1 = 1$$

$$\therefore \frac{\partial E_{total}}{\partial w^{1}} = (-0.107 - 0.108) * 0.0502 * 1 = -0.011$$

So we get,
$$\mathbf{w1}^+ = w1 - \eta * \frac{\partial E_{total}}{\partial \mathbf{w1}} = 0.98 - 0.01 * (-0.011) = 0.98011$$

5. Adjusting w2

Considering w2 to know how much a change in w2 affects the total error.

$$\frac{\partial E_{total}}{\partial w^2} = \frac{\partial E_{total}}{\partial out_h} * \frac{\partial out_h}{\partial net_h} * \frac{\partial net_h}{\partial w^2} = \left(\frac{\partial E_{o1}}{\partial out_h} + \frac{\partial E_{o2}}{\partial out_h}\right) * \frac{\partial out_h}{\partial net_h} * \frac{\partial net_h}{\partial w^2}$$

Here,

$$\frac{\partial E_{o1}}{\partial out_h} = \frac{\partial E_{o1}}{\partial out_{o1}} * \frac{\partial out_{o1}}{\partial net_{o1}} * \frac{\partial net_{o1}}{\partial out_h} = -1 * 0.1131 * w3 = -0.1131 * 0.95 = -0.107$$

$$\frac{\partial E_{o2}}{\partial out_h} = \frac{\partial E_{o2}}{\partial out_{o2}} * \frac{\partial out_{o2}}{\partial net_{o2}} * \frac{\partial net_{o2}}{\partial out_h} = -1 * 0.1131 * w4 = -0.1131 * 0.955 = -0.108$$

$$\frac{\partial out_h}{\partial net_h} = out_h(1 - out_h) = 0.947(1 - 0.947) = 0.0502$$

$$\frac{\partial net_h}{\partial w2} = i2 = 1$$

$$\therefore \frac{\partial E_{total}}{\partial w^2} = (-0.107 - 0.108) * 0.0502 * 1 = -0.011$$

So we get,
$$w2^+ = w2 - \eta * \frac{\partial E_{total}}{\partial w^2} = 0.96 - 0.01 * (-0.011) = 0.96011$$

6. Adjusting b1

Considering b1 to know how much a change in b1 affects the total error.

$$\frac{\partial E_{total}}{\partial b1} = \frac{\partial E_{total}}{\partial out_h} * \frac{\partial out_h}{\partial net_h} * \frac{\partial net_h}{\partial b1} = \left(\frac{\partial E_{o1}}{\partial out_h} + \frac{\partial E_{o2}}{\partial out_h}\right) * \frac{\partial out_h}{\partial net_h} * \frac{\partial net_h}{\partial b1}$$
Here,
$$\frac{\partial E_{o1}}{\partial out_h} = \frac{\partial E_{o1}}{\partial out_{o1}} * \frac{\partial out_{o1}}{\partial net_{o1}} * \frac{\partial net_{o1}}{\partial out_h} = -1 * 0.1131 * w3 = -0.1131 * 0.95 = -0.107$$

$$\frac{\partial E_{o2}}{\partial out_h} = \frac{\partial E_{o2}}{\partial out_{o2}} * \frac{\partial out_{o2}}{\partial net_{o2}} * \frac{\partial net_{o2}}{\partial out_h} = -1 * 0.1131 * w4 = -0.1131 * 0.955 = -0.108$$

$$\frac{\partial out_h}{\partial net_h} = out_h (1 - out_h) = 0.947(1 - 0.947) = 0.0502$$

$$\frac{\partial net_h}{\partial b1} = 1$$

$$\therefore \frac{\partial E_{total}}{\partial h_1} = (-0.107 - 0.108) * 0.0502 * 1 = -0.0107$$

So we get,
$$b\mathbf{1}^+ = b\mathbf{1} - \eta * \frac{\partial E_{total}}{\partial b\mathbf{1}} = 0.94 - 0.01 * (-0.0107) = 0.9401$$

1st Iteration Adjusted Values

After 1st iteration, we get the adjusted values as below:

SSC cgpa =
$$i\mathbf{1} = 1$$
, HSC cgpa = $i\mathbf{2} = 1$,

$$SPL1 = b1 = 0.9401$$
, $SPL2 = b2 = 1.002$,

$$1^{\text{st}}$$
 year cgpa = $w1 = 0.98011$, 2^{nd} year cgpa = $w2 = 0.96011$, 3^{rd} year cgpa = $w3 = 0.9502$,

Cgpa upto
$$3^{rd}$$
 year = $w4 = 0.9553$

IIT =
$$h$$
, SPL3 = $o1$, BSSE cgpa = $o2$

$$target_{o1} = 1$$
, $target_{o2} = 1$

Learning rate, $\eta = 0.01$

These values will be used to adjust the weights and biases for 2^{nd} iteration.

2nd Iteration

Forward Pass

$$net_h = i\mathbf{1} * w\mathbf{1} + i\mathbf{2} * w\mathbf{2} + b\mathbf{1} * \mathbf{1} = (1 * 0.98011) + (1 * 0.96011) + (0.9401 * 1) = 2.88032$$

$$out_h = \frac{1}{1 + e^{-net_h}} = \frac{1}{1 + e^{-2.88032}} = 0.947$$

$$net_{o1} = out_h * w\mathbf{3} + b\mathbf{2} * \mathbf{1} = 0.947 * 0.9502 + 1.002 * 1 = 1.902$$

$$net_{o2} = out_h * w\mathbf{4} + b\mathbf{2} * \mathbf{1} = 0.947 * 0.9553 + 1.002 * 1 = 1.906$$

$$out_{o1} = \frac{1}{1 + e^{-net_{o1}}} = \frac{1}{1 + e^{-1.902}} = 0.8701$$

$$out_{o2} = \frac{1}{1 + e^{-net_{o2}}} = \frac{1}{1 + e^{-1.906}} = 0.871$$

Calculating Error

$$E_{o1} = (target_{o1} - out_{o1})^{2}$$

$$E_{o2} = (target_{o2} - out_{o2})^{2}$$

$$E_{total} = E_{o1} + E_{o2}$$

$$= (target_{o1} - out_{o1})^{2} + (target_{o2} - out_{o2})^{2}$$

$$= (1 - 0.8701)^{2} + (1 - 0.871)^{2} = 0.03$$

Backward Pass

1. Adjusting w3:

Considering w3 to know how much a change in w3 affects the total error.

$$\frac{\partial E_{total}}{\partial w3} = \frac{\partial E_{total}}{\partial out_{o1}} * \frac{\partial out_{o1}}{\partial net_{o1}} * \frac{\partial net_{o1}}{\partial w3}$$

Now.

$$\frac{\partial E_{total}}{\partial out_{o1}} = -2(target_{o1} - out_{o1}) = -2(1 - 0.8701) = -0.26$$

$$\frac{\partial out_{o1}}{\partial net_{o1}} = out_{o1}(1 - out_{o1}) = 0.8701(1 - 0.8701) = 0.113$$

$$\frac{\partial net_{o1}}{\partial w3} = out_h = 0.947$$

$$\therefore \frac{\partial E_{total}}{\partial w3} = (-0.26) * 0.113 * 0.947 = -0.03$$

So we get,
$$\mathbf{w3}^+ = w3 - \eta * \frac{\partial E_{total}}{\partial w^3} = 0.9502 - 0.01 * (-0.03) = 0.9505$$

2. Adjusting w4:

Considering w4 to know how much a change in w4 affects the total error.

$$\frac{\partial E_{total}}{\partial w4} = \frac{\partial E_{total}}{\partial out_{o2}} * \frac{\partial out_{o2}}{\partial net_{o2}} * \frac{\partial net_{o2}}{\partial w4}$$

Now,

$$\frac{\partial E_{total}}{\partial out_{o2}} = -2(target_{o2} - out_{o2}) = -2(1 - 0.871) = -0.258$$

$$\frac{\partial out_{o2}}{\partial net_{o2}} = out_{o2}(1 - out_{o2}) = 0.871(1 - 0.871) = 0.11$$

$$\frac{\partial net_{o1}}{\partial w4} = out_h = 0.947$$

$$\therefore \frac{\partial E_{total}}{\partial w^4} = (-0.258) * 0.11 * 0.947 = -0.0268$$

So we get,
$$\mathbf{w4}^+ = w4 - \eta * \frac{\partial E_{total}}{\partial w4} = 0.9553 - 0.01 * (-0.0268) = 0.96$$

3. Adjusting b2:

Considering b2 to know how much a change in b2 affects the total error.

$$\frac{\partial E_{total}}{\partial b2} = \frac{\partial E_{o1}}{\partial b2} + \frac{\partial E_{o2}}{\partial b2} = (\frac{\partial E_{o1}}{\partial out_{o1}} * \frac{\partial out_{o1}}{\partial net_{o1}} * \frac{\partial net_{o1}}{\partial b2}) + (\frac{\partial E_{o2}}{\partial out_{o2}} * \frac{\partial out_{o2}}{\partial net_{o2}} * \frac{\partial net_{o2}}{\partial b2})$$

Now,

$$\frac{\partial E_{o1}}{\partial out_{o1}} = \frac{\partial (target_{o1} - out_{o1})}{\partial out_{o1}} = -1$$

$$\frac{\partial E_{o2}}{\partial out_{o2}} = \frac{\partial (target_{o2} - out_{o2})}{\partial out_{o2}} = -1$$

$$\frac{\partial out_{o1}}{\partial net_{o1}} = out_{o1}(1 - out_{o1}) = 0.113$$

$$\frac{\partial net_{o1}}{\partial b2} = \frac{\partial (out_h * w3 + b2 * 1)}{\partial b2} = 1$$

$$\frac{\partial net_{o2}}{\partial b2} = \frac{\partial (out_h * w4 + b2 * 1)}{\partial b2} = 1$$

$$\frac{\partial net_{o2}}{\partial b2} = \frac{\partial (out_h * w4 + b2 * 1)}{\partial b2} = 1$$

$$\therefore \frac{\partial E_{total}}{\partial b2} = (-1 * 0.113 * 1) + (-1 * 0.11 * 1) = -0.22$$

So we get,
$$b2^+ = b2 - \eta * \frac{\partial E_{total}}{\partial b2} = 1.002 - 0.01 * (-0.22) = 1.004$$

4. Adjusting w1

Considering w1 to know how much a change in w1 affects the total error.

$$\frac{\partial E_{total}}{\partial w1} = \frac{\partial E_{total}}{\partial out_h} * \frac{\partial out_h}{\partial net_h} * \frac{\partial net_h}{\partial w1} = \left(\frac{\partial E_{o1}}{\partial out_h} + \frac{\partial E_{o2}}{\partial out_h}\right) * \frac{\partial out_h}{\partial net_h} * \frac{\partial net_h}{\partial w1}$$

Here,

$$\frac{\partial E_{o1}}{\partial out_h} = \frac{\partial E_{o1}}{\partial out_{o1}} * \frac{\partial out_{o1}}{\partial net_{o1}} * \frac{\partial net_{o1}}{\partial out_h} = -1 * 0.113 * w3 = -0.113 * 0.9502 = -0.11$$

$$\frac{\partial E_{o2}}{\partial out_h} = \frac{\partial E_{o2}}{\partial out_{o2}} * \frac{\partial out_{o2}}{\partial net_{o2}} * \frac{\partial net_{o2}}{\partial out_h} = -1 * 0.11 * w4 = -0.11 * 0.9553 = -0.105$$

$$\frac{\partial out_h}{\partial net_h} = out_h(1 - out_h) = 0.947(1 - 0.947) = 0.0502$$

$$\frac{\partial net_h}{\partial w1} = i1 = 1$$

$$\therefore \frac{\partial E_{total}}{\partial w^{1}} = (-0.11 - 0.105) * 0.0502 * 1 = -0.01$$

So we get,
$$\mathbf{w1}^+ = w1 - \eta * \frac{\partial E_{total}}{\partial w1} = 0.98011 - 0.01 * (-0.01) = 0.9802$$

5. Adjusting w2

Considering w2 to know how much a change in w2 affects the total error.

$$\frac{\partial E_{total}}{\partial w^2} = \frac{\partial E_{total}}{\partial out_h} * \frac{\partial out_h}{\partial net_h} * \frac{\partial net_h}{\partial w^2} = \left(\frac{\partial E_{o1}}{\partial out_h} + \frac{\partial E_{o2}}{\partial out_h}\right) * \frac{\partial out_h}{\partial net_h} * \frac{\partial net_h}{\partial w^2}$$

Here,

$$\frac{\partial E_{o1}}{\partial out_h} = \frac{\partial E_{o1}}{\partial out_{o1}} * \frac{\partial out_{o1}}{\partial net_{o1}} * \frac{\partial net_{o1}}{\partial out_h} = -1 * 0.113 * w3 = -0.113 * 0.9502 = -0.11$$

$$\frac{\partial E_{o2}}{\partial out_h} = \frac{\partial E_{o2}}{\partial out_{o2}} * \frac{\partial out_{o2}}{\partial net_{o2}} * \frac{\partial net_{o2}}{\partial out_h} = -1 * 0.11 * w4 = -0.1131 * 0.9553 = -0.105$$

$$\frac{\partial out_h}{\partial net_h} = out_h(1 - out_h) = 0.947(1 - 0.947) = 0.0502$$

$$\frac{\partial net_h}{\partial w2} = i2 = 1$$

$$\therefore \frac{\partial E_{total}}{\partial w^2} = (-0.11 - 0.105) * 0.0502 * 1 = -0.01$$

So we get,
$$w2^+ = w2 - \eta * \frac{\partial E_{total}}{\partial w2} = 0.96011 - 0.01 * (-0.01) = 0.96021$$

6. Adjusting b1

Considering b1 to know how much a change in b1 affects the total error.

$$\frac{\partial E_{total}}{\partial b1} = \frac{\partial E_{total}}{\partial out_h} * \frac{\partial out_h}{\partial net_h} * \frac{\partial net_h}{\partial b1} = \left(\frac{\partial E_{o1}}{\partial out_h} + \frac{\partial E_{o2}}{\partial out_h}\right) * \frac{\partial out_h}{\partial net_h} * \frac{\partial net_h}{\partial b1}$$

Here,

$$\frac{\partial E_{o1}}{\partial out_h} = \frac{\partial E_{o1}}{\partial out_{o1}} * \frac{\partial out_{o1}}{\partial net_{o1}} * \frac{\partial net_{o1}}{\partial out_h} = -1 * 0.113 * w3 = -0.113 * 0.9502 = -0.11$$

$$\frac{\partial E_{o2}}{\partial out_h} = \frac{\partial E_{o2}}{\partial out_{o2}} * \frac{\partial out_{o2}}{\partial net_{o2}} * \frac{\partial net_{o2}}{\partial out_h} = -1 * 0.11 * w4 = -0.1131 * 0.9553 = -0.105$$

$$\frac{\partial out_h}{\partial net_h} = out_h(1 - out_h) = 0.947(1 - 0.947) = 0.0502$$

$$\frac{\partial net_h}{\partial b1} = 1$$

$$\therefore \frac{\partial E_{total}}{\partial h_1} = (-0.11 - 0.105) * 0.0502 * 1 = -0.011$$

So we get,
$$b\mathbf{1}^+ = b\mathbf{1} - \eta * \frac{\partial E_{total}}{\partial b\mathbf{1}} = 0.9401 - 0.01 * (-0.011) = 0.9402$$

2nd Iteration Adjusted Values

After 2nd iteration, we get the adjusted values as below:

$$SPL1 = 0.9402$$

$$SPL2 = 1.004$$

$$1^{st}$$
 year cgpa = 0.9802

$$2^{nd}$$
 year cgpa = 0.96021

$$3^{rd}$$
 year cgpa = 0.9505

Cgpa upto
$$3^{rd}$$
 year = 0.96