MATH 414 Analysis I, Homework 6

Mobina Amrollahi

Deadline: 10/14/2024, 11:59 PM

2.2: Problem 6

Let

$$f(x) = \begin{cases} -1, & \text{if } x \text{ is irrational,} \\ 1, & \text{if } x \text{ is rational.} \end{cases}$$

Show that f is not continuous anywhere.

Answer

Based on the definition $D_f = \mathbb{R}$. To show f is not continuous anywhere we will show $\forall x_0 \in \mathbb{R}$, $\lim_{x \to x_0} f(x) \neq f(x_0)$. In particular, we will show $\lim_{x \to x_0} f(x)$ does not exist.

Prove by Contradiction

For the sake of the contradiction, let $x_0 \in \mathbb{R}$ and $\lim_{x \to x_0} f(x) = L$. There will be three possibilities for L:

1. $L \in \mathbb{R}$: this means $\forall \epsilon > 0 \ \exists \delta > 0$ such that:

if
$$|x - x_0| < \delta$$
 then $|f(x) - L| < \epsilon$

Take $\epsilon = 1$. Based on the density property of rational and irrational numbers in \mathbb{R} [1], we can pick $x_1 \in \mathbb{Q}$ and $x_2 \in \mathbb{Q}^c$ such that $|x_1 - x_0| < \delta$ and $|x_2 - x_0| < \delta$. Hence:

$$\begin{split} |f(x_1) - L| < \epsilon &= 1 \\ |f(x_2) - L| < \epsilon &= 1 \Rightarrow |L - f(x_2)| < \epsilon = 1 \end{split}$$
 By the triangle inequality:
$$|f(x_1) - L + L - f(x_2)| < |f(x_1) - L| + |L - f(x_2)| < 2\epsilon = 2$$

$$\Rightarrow |1 + 1| = 2 < 2$$

Which is a contradict the definition of $\lim_{x\to x_0} f(x) = L$. Hence $\forall x_0 \in \mathbb{R} \lim_{x\to x_0} f(x)$ cannot be a real number.

2. $L = \infty$: suppose $\forall M \in \mathbb{R} \ \exists \delta > 0$ such that:

$$\forall x : \text{ if } |x_1 - x_0| < \delta \text{ then } f(x) > M$$

Take M=1. Based on the density property of rational and irrational numbers in \mathbb{R} [1] we can pick $x_1 \in \mathbb{Q}^c$ such that $|x_1 - x_0| < \delta$. Hence:

$$f(x_1) > M = 1 \Rightarrow -1 > 1$$

Which contradicts our initial assumption. Hence $\lim_{x\to x_0} f(x)$ cannot be a ∞ .

3. $L = -\infty$: suppose $\forall M \in \mathbb{R} \ \exists \delta > 0$ such that:

$$\forall x : \text{ if } |x_1 - x_0| < \delta \text{ then } f(x) < M$$

Take M=0. Based on the density property of rational and irrational numbers in \mathbb{R} [1] we can pick $x_1 \in \mathbb{Q}$ such that $|x_1 - x_0| < \delta$. Hence:

$$f(x_1) < M = 0 \Rightarrow 1 < 0$$

Which contradicts our initial assumption. Hence $\lim_{x\to x_0} f(x)$ cannot be a $-\infty$.

Therefore, $\forall x \in \mathbb{R} \lim_{x \to x_0} f(x)$ does not exist which means f is not continuous on any point of its domain.

2.2: Problem 9

The characteristic function ψ_T of a set T is defined by

$$\psi_T(x) = \begin{cases} 1, & x \in T, \\ 0, & x \notin T. \end{cases}$$

Show that ψ_T is continuous at a point x_0 if and only if $x_0 \in T^0 \cup (T^C)^0$.

Answer

We have to show the following:

$$\psi_T$$
 is continuous at a point $x_0 \Leftrightarrow x_0 \in T^0 \cup (T^C)^0$

 (\Rightarrow) ψ_T is continuous at a point x_0 : we have to show:

$$x_0 \in T^0 \cup (T^C)^0$$

Since ψ_T is continuous at point x_0 , hence:

$$\lim_{x \to x_0} \psi_T(x) = \psi_T(x_0)$$

Now, there will be two possibilities for x_0 :

(a) $x \in T$: this means:

$$\lim_{x \to x_0} \psi_T(x) = \psi_T(x_0) = 1$$

Based on the definition of limit, it further means $\forall \epsilon > 0 \; \exists \delta > 0$ such that:

if
$$|x - x_0| < \delta$$
 then $|\psi_T(x) - 1| < \epsilon$

Which is equivalent to:

if
$$x \in (x_0 - \delta, x_0 + \delta)$$
 then $|\psi_T(x) - 1| < \epsilon$

If we show $\exists \delta_0 > 0$ such that $(x_0 - \delta_0, x_0 + \delta_0) \subseteq T$, then we found a neighborhood of x_0 that is completely in T, hence $x_0 \in T^0$, and $x_0 \in T^0 \cup (T^C)^0$.

Prove by Contradiction for the sake of contradiction, suppose any neighborhood of x_0 contains at least one point in T^c . Now, take $\epsilon = \frac{1}{2}$, thus $\exists \delta_1 > 0$ such that:

if
$$x \in (x_0 - \delta_1, x_0 + \delta_1)$$
 then $|\psi_T(x) - 1| < \epsilon$

Since any neighborhood of x_0 contains at least on point in T^c , we can take $x_1 \in (x_0 - \delta_1, x_0 + \delta_1)$ such that $x_1 \in T^c$ and $\psi_T(x_1) = 0$. Now:

$$\forall x \in (x_0 - \delta_1, x_0 + \delta_1) : |\psi_T(x) - 1| < \epsilon$$

$$\Rightarrow : |\psi_T(x_1) - 1| < \frac{1}{2}$$

$$\Rightarrow : 1 < \frac{1}{2}$$

Which contradicts with $\lim_{x\to x_0} \psi_T(x) = \psi_T(x_0)$.

(b) $x \notin T \to x \in T^c$: this means:

$$\lim_{x \to x_0} \psi_T(x) = \psi_T(x_0) = 0$$

Based on the definition of limit, it further means $\forall \epsilon > 0 \; \exists \delta > 0$ such that:

if
$$|x - x_0| < \delta$$
 then $|\psi_T(x) - 0| < \epsilon$

Which is equivalent to:

if
$$x \in (x_0 - \delta, x_0 + \delta)$$
 then $|\psi_T(x)| < \epsilon$

If we show $\exists \delta_0 > 0$ such that $(x_0 - \delta_0, x_0 + \delta_0) \subseteq T^c$, then we found a neighborhood of x_0 that is completely in T^c , hence $x_0 \in (T^c)^0$, and $x_0 \in T^0 \cup (T^c)^0$.

Prove by Contradiction for the sake of contradiction, suppose any neighborhood of x_0 contains at least one point in T. Now, take $\epsilon = \frac{1}{2}$, thus $\exists \delta_1 > 0$ such that:

if
$$x \in (x_0 - \delta_1, x_0 + \delta_1)$$
 then $|\psi_T(x)| < \epsilon$

Since any neighborhood of x_0 contains at least on point in T, we can take $x_1 \in (x_0 - \delta_1, x_0 + \delta_1)$ such that $x_1 \in T$ and $\psi_T(x_1) = 1$. Now:

$$\forall x \in (x_0 - \delta_1, x_0 + \delta_1) : |\psi_T(x)| < \epsilon$$

$$\Rightarrow : |\psi_T(x_1)| < \frac{1}{2}$$

$$\Rightarrow : 1 < \frac{1}{2}$$

Which contradicts with $\lim_{x\to x_0} \psi_T(x) = \psi_T(x_0)$.

 $(\Leftarrow) \ x_0 \in T^0 \cup (T^C)^0$: we have to show:

 ψ_T is continuous at a point x_0

Since $x_0 \in T^0 \cup (T^C)^0$ at least one of the followings has to happen:

$$x_0 \in T^0 \text{ or } x_0 \in (T^C)^0$$

Hence, there will be two possibilities for x_0 :

(a) $x_0 \in T^0$: this means $\exists \delta_0 > 0$ such that:

$$(x_0 - \delta_0, x_0 + \delta_0) \in T^0$$

We will show on this neighborhood $\lim_{x\to x_0} \psi_T(x) = \psi_T(x_0)$, which leads to ψ_T being continuous at a point x_0 .

 $\psi_T(x)$ is defined on $(x_0 - \delta_0, x_0 + \delta_0)$ since $\psi_T(x)$ is defined on \mathbb{R} . Now, to show $\lim_{x \to x_0} \psi_T(x) = \psi_T(x_0)$ we have to show $\forall \epsilon > 0$, $\exists \delta > 0$ such that:

if
$$|x - x_0| < \delta$$
 then $|\psi_T(x) - \psi_T(x_0)| < \epsilon$
 \Rightarrow if $|x - x_0| < \delta$ then $|\psi_T(x) - 0| < \epsilon$

Take $\delta = \delta_0$, then $\forall x \in (x_0 - \delta_0, x_0 + \delta_0) \ \psi_T(x) = \psi_T(x_0) = 0$, and:

if
$$|x - x_0| < \delta_0$$
 then $|\psi_T(x) - \psi_T(x_0)| = 0 < \epsilon$

Hence, $\lim_{x\to x_0} \psi_T(x) = \psi_T(x_0)$ and ψ_T is continuous at a point x_0 .

(b) $x_0 \in (T^C)^0$: this means $\exists \delta_0 > 0$ such that:

$$(x_0 - \delta_0, x_0 + \delta_0) \in (T^C)^0$$

We will show on this neighborhood $\lim_{x\to x_0} \psi_T(x) = \psi_T(x_0)$, which leads to ψ_T being continuous at a point x_0 .

 $\psi_T(x)$ is defined on $(x_0 - \delta_0, x_0 + \delta_0)$ since $\psi_T(x)$ is defined on \mathbb{R} . Now, to show $\lim_{x \to x_0} \psi_T(x) = \psi_T(x_0)$ we have to show $\forall \epsilon > 0$, $\exists \delta > 0$ such that:

if
$$|x - x_0| < \delta$$
 then $|\psi_T(x) - \psi_T(x_0)| < \epsilon$
 \Rightarrow if $|x - x_0| < \delta$ then $|\psi_T(x) - 1| < \epsilon$

Take $\delta = \delta_0$, then $\forall x \in (x_0 - \delta_0, x_0 + \delta_0) \ \psi_T(x) = \psi_T(x_0) = 1$, and:

if
$$|x - x_0| < \delta_0$$
 then $|\psi_T(x) - \psi_T(x_0)| = 0 < \epsilon$

Hence, $\lim_{x\to x_0} \psi_T(x) = \psi_T(x_0)$ and ψ_T is continuous at a point x_0 .

2.2: Problem 12

Prove that the function $f(x) = e^{ax}$ is continuous on $(-\infty, \infty)$. Take the following properties as given:

- 1. $\lim_{x\to 0} f(x) = 1$.
- 2. $f(x_1 + x_2) = f(x_1)f(x_2), -\infty < x_1, x_2 < \infty.$

Answer

We will first show $f(x) = e^{ax}$ is continuous on $x_0 = 0$ and then we will show is continuous on $(-\infty, \infty)$.

1. $x_0 = 0$: $f(x_0) = e^0 = 1$ Hence based on property (a):

$$\lim_{x \to 0} f(x) = f(0)$$

Thus, $f(x) = e^{ax}$ is continuous on $x_0 = 0$

2. $x \in \mathbb{R}$ and $f(x) = e^{ax}$ is continuous on $x_0 = 0$: let $x_0 \in \mathbb{R} \bigcup \{\pm \infty\}$, to show $\lim_{x \to x_0} f(x) = f(x_0)$, we have to show $\forall \epsilon > 0$, $\exists \delta > 0$ such that:

if
$$|x - x_0| < \delta$$
 then $|f(x) - f(x_0)| < \epsilon$

if
$$|f(x) - f(x_0)| < \epsilon$$

 $\Leftrightarrow |e^{ax} - e^{ax_0}| < \epsilon$
 $\Leftrightarrow |e^{ax_0}||e^{ax - ax_0} - 1| < \epsilon$
 $\Leftrightarrow |e^{ax - ax_0} - 1| < \frac{\epsilon}{e^{ax_0}}$

Thus, if only $x - x_0$ approaches 0, then since $\lim_{h\to 0} f(h) = 1$, hence $\lim_{x-x_0\to 0} f(x-x_0) = 1$, which means: $\forall \epsilon > 0$, $\exists \delta > 0$ such that:

if
$$|x - x_0| < \delta$$
 then $|f(x - x_0) - 1| = |e^{ax - ax_0} - 1| < \epsilon$

Thus, $\forall \epsilon > 0$ if we pick $\epsilon_0 = \frac{\epsilon}{e^{ax_0}}, \ \exists \delta > 0$ such that:

if
$$|x - x_0| < \delta$$
 then $|e^{ax - ax_0} - 1| < \frac{\epsilon}{e^{ax_0}}$
 $\Rightarrow |e^{ax} - e^{ax_0}| < \epsilon$

To show $x - x_0$ approaches 0, we have to show $\lim_{x \to x_0} x - x_0 = 0$. Hence, we have to show $\forall \epsilon > 0, \exists \delta > 0$ such that:

if
$$|x - x_0| < \delta$$
 then $|x - x_0 - 0| < \epsilon$

If we take $\delta = \epsilon$, then:

$$|x - x_0| < \delta \rightarrow |x - x_0 - 0| < \epsilon$$

Please note that to show f is continuous, we have to show $\forall x \in \mathbb{R}$, $\lim_{x\to x_0} f(x) = f(x_0)$, and by definition $f(x_0) = e^{ax_0}$, which is always a real number. Hence, the continuity of $x = \pm \infty$ is not defined for such a function.

2.2: Problem 15

- (a) Prove: If f is continuous at x_0 and $f(x_0) > \mu$, then $f(x) > \mu$ for all x in some neighborhood of x_0 .
- (b) State a result analogous to (a) for the case where $f(x_0) < \mu$.
- (c) Prove: If $f(x) \leq \mu$ for all x in S and x_0 is a limit point of S at which f is continuous, then $f(x_0) \leq \mu$.
- (d) State results analogous to (a), (b), and (c) for the case where f is continuous from the right or left at x_0 .

Answer

(a) **Prove by Contradiction:** suppose there's no such neighborhood of x_0 that for all x in this neighborhood $f(x) > \mu$. This means any neighborhood of x_0 will at least have one point, such as x_1 that $f(x_1) < \mu$. Since f is continuous at x_0 , then $\lim_{x\to x_0} f(x) = f(x_0)$, which by definition means $\forall \epsilon > 0$, $\exists \delta > 0$ such that:

if
$$|x - x_0| < \delta$$
 then $|f(x) - f(x_0)| < \epsilon$

Now, take $\epsilon = \frac{1}{2}(f(x_0) - \mu)$. Since $f(x_0) > \mu \Rightarrow f(x_0) - \mu > 0 \Rightarrow \frac{1}{2}(f(x_0) - \mu) > 0 \Rightarrow \epsilon > 0$. Then $\exists \delta_0 > 0$ such that:

if
$$|x - x_0| < \delta_0$$
 then $|f(x) - f(x_0)| < \epsilon$

Since for all neighborhoods of x_0 there exists at least one point, such as x that $f(x) < \mu$, thus $\exists x_1 \in (x_0 - \delta_0, x_0 + \delta_0)$ such that:

$$f(x_1) < \mu \text{ and } |f(x_1) - f(x_0)| < \epsilon$$

Hence:

$$|f(x_1) - f(x_0)| < \epsilon$$

$$\Rightarrow |f(x_1) - f(x_0)| < \frac{1}{2}(f(x_0) - \mu)$$

$$|x| = |-x| \Rightarrow |f(x_0) - f(x_1)| < \frac{1}{2}(f(x_0) - \mu)$$

$$f(x_1) < \mu < f(x_0) \Rightarrow f(x_0) - f(x_1) > 0$$

$$\Rightarrow f(x_0) - f(x_1) < \frac{1}{2}(f(x_0) - \mu)$$

$$\Rightarrow \frac{1}{2}(f(x_0) + \mu) < f(x_1) < \mu$$

$$\Rightarrow \frac{1}{2}f(x_0) < \frac{1}{2}\mu$$

$$\Rightarrow f(x_0) < \mu$$

Which contradicts our initial assumption of $f(x_0) > \mu$. Therefore $\forall x \in (x_0 - \delta_0, x_0 + \delta_0) : f(x) > \mu$.

(b) **Prove by Contradiction:** suppose there's no such neighborhood of x_0 that for all x in this neighborhood $f(x) < \mu$. This means any neighborhood of x_0 will at least have one point, such as x_1 that $f(x_1) > \mu$. Since f is continuous at x_0 , then $\lim_{x\to x_0} f(x) = f(x_0)$, which by definition means $\forall \epsilon > 0$, $\exists \delta > 0$ such that:

if
$$|x - x_0| < \delta$$
 then $|f(x) - f(x_0)| < \epsilon$

Now, take $\epsilon = \frac{1}{2}(\mu - f(x_0))$. Since $f(x_0) < \mu \Rightarrow \mu - f(x_0) > 0 \Rightarrow \frac{1}{2}(\mu - f(x_0)) > 0 \Rightarrow \epsilon > 0$. Then $\exists \delta_0 > 0$ such that:

if
$$|x - x_0| < \delta_0$$
 then $|f(x) - f(x_0)| < \epsilon$

Since for all neighborhoods of x_0 there exists at least one point, such as x that $f(x) > \mu$, thus $\exists x_1 \in (x_0 - \delta_0, x_0 + \delta_0)$ such that:

$$f(x_1) > \mu \text{ and } |f(x_1) - f(x_0)| < \epsilon$$

Hence:

$$|f(x_1) - f(x_0)| < \epsilon$$

 $\Rightarrow |f(x_1) - f(x_0)| < \frac{1}{2}(\mu - f(x))$

$$f(x_0) < \mu < f(x_1) \Rightarrow f(x_1) - f(x_0) > 0$$

$$\Rightarrow f(x_1) - f(x_0) < \frac{1}{2}(\mu - f(x_0))$$

$$\Rightarrow f(x_1) < \frac{1}{2}(f(x_0) + \mu)$$

$$\Rightarrow \mu < \frac{1}{2}(f(x_0) + \mu)$$

$$\Rightarrow \frac{1}{2}\mu < \frac{1}{2}f(x_0)$$

$$\Rightarrow \mu < f(x_0)$$

Which contradicts our initial assumption of $f(x_0) < \mu$. Therefore $\forall x \in (x_0 - \delta_0, x_0 + \delta_0) : f(x) < \mu$.

(c) **Prove by Contradiction:** suppose $f(x_0) > \mu$. Since f is continuous at x_0 , then $\lim_{x\to x_0} f(x) = f(x_0)$, which by definition means $\forall \epsilon > 0$, $\exists \delta > 0$ such that:

if
$$x \in (x - \delta, x + \delta)$$
 then $|f(x) - f(x_0)| < \epsilon$

Now, take $\epsilon = \frac{1}{2}(f(x_0) - \mu)$. Since $f(x_0) > \mu \Rightarrow f(x_0) - \mu > 0 \Rightarrow \frac{1}{2}(f(x_0) - \mu) > 0 \Rightarrow \epsilon > 0$. Then $\exists \delta_0 > 0$ such that:

if
$$x \in (x_0 - \delta_0, x_0 + \delta_0)$$
 then $|f(x) - f(x_0)| < \epsilon$

Since x_0 is a limit point of S, that means for any deleted neighborhood of x_0 , there exists at least one point that belongs to S. Hence there exists at least one point, such as x_1 , such that:

$$x_1 \in (x_0 - \delta, x_0 + \delta) \setminus \{x_0\} \cap S \text{ and } f(x_1) \leq \mu$$

Hence:

$$|f(x_1) - f(x_0)| < \epsilon$$

$$\Rightarrow |f(x_1) - f(x_0)| < \frac{1}{2}(f(x_0) - \mu)$$

$$|x| = |-x| \Rightarrow |f(x_0) - f(x_1)| < \frac{1}{2}(f(x_0) - \mu)$$

$$f(x_1) \le \mu < f(x_0) \Rightarrow f(x_0) - f(x_1) > 0$$

$$\Rightarrow f(x_0) - f(x_1) < \frac{1}{2} (f(x_0) - \mu)$$

$$\Rightarrow \frac{1}{2} (f(x_0) + \mu) < f(x_1) \le \mu$$

$$\Rightarrow \frac{1}{2} f(x_0) < \frac{1}{2} \mu$$

$$\Rightarrow f(x_0) < \mu$$

Which contradicts our initial assumption of $f(x_0) > \mu$.

- (d) -f is continuous from the right at x_0 :
 - (a) If $f(x_0) > \mu$ then $\exists \delta > 0$ in which $f(x) > \mu$ for all x in $(x_0, x_0 + \delta)$.
 - (b) If $f(x_0) < \mu$ then $\exists \delta > 0$ in which $f(x) < \mu$ for all x in $(x_0, x_0 + \delta)$.
 - (c) If $f(x) \leq \mu$ for all x in S and x_0 is a limit point of S and $\forall \delta > 0$, $(x_0, x_0 + \delta_0) \cap S \neq \emptyset$, then $f(x_0) \leq \mu$.
 - f is continuous from the left at x_0 :
 - (a) If $f(x_0) > \mu$ then $\exists \delta > 0$ in which $f(x) > \mu$ for all x in $(x_0 \delta, x_0)$.
 - (b) If $f(x_0) < \mu$ then $\exists \delta > 0$ in which $f(x) < \mu$ for all x in $(x_0 \delta, x_0)$.
 - (c) If $f(x) \le \mu$ for all x in S and x_0 is a limit point of S and $\forall \delta > 0$, $(x_0 \delta_0, x_0) \cap S \ne \emptyset$, then $f(x_0) \le \mu$.

2.2: Problem 21(d)

Find the domains of fog and gof.

(d)
$$f(x) = \sqrt{x}, \quad g(x) = \sin 2x$$

Answer

(1) D_{fog} : $fog = \sqrt{g(x)} = \sqrt{\sin 2x}$. Thus D_{fog} is all $x \in D_g$ such that $g(x) \ge 0$. We know $R_{g(x)} = [-1, 1]$. Hence, D_{fog} is all $x \in D_g$ such that $\sin 2x \in [0, 1]$. Therefore:

$$2x \in \bigcup [2k\pi, (2k+1)\pi] \quad k \in \mathbb{Z}$$
$$\Rightarrow x \in \bigcup [k\pi, k\pi + \frac{\pi}{2}] \quad k \in \mathbb{Z}$$
$$D_{fog} = \bigcup [k\pi, k\pi + \frac{\pi}{2}] \quad k \in \mathbb{Z}$$

(2) D_{gof} : $gof = \sin 2f(x) = \sin 2\sqrt{x}$. Thus D_{gof} could be all $x \in D_f$, since $D_g = \mathbb{R}$. Hence $D_{gof} = D_f$ which is $[0, \infty)$.

References

[1] William F Trench. Introduction to real analysis. 2013.