画风迁移系统测试报告

1.引言

1.1 目的

本测试分析报告为画风迁移软件的测试分析报告,目的在于总结测试阶段的测试以及分析测试的结果,描述系统是否符合需求。

1.2 背景

被测试软件: 画风迁移。测试环境与实际运行环境同为一般 PC, 配置为通用配置。

2.测试概要

2.1 测试环境

	机器类型	硬件配置	操作系统	其他应用软件	
客户端	笔记本电脑	显卡: NVidia 1050	Windows	Spyder	
		内存: 8G	Willdows	Anaconda	

由于本软件的结构较为简单,本次测试采用对同一张图片应用不同画风的方法

2.2 测试组织

角色	姓名	具体职责		
测试管理员		测试策划:安排测试人员进行测试,		
	李源钊、黄京津	准备客户终端		
		测试设计:根据需求规格说明书的内		
		容对系统功能进行检验和测试		
		测试总结: 代码健壮性较强, 可维护		
		性较强。		
测试人员	张忠宇、张拓、李卓航	测试执行:记录测试过程和结果,并		
		进行分析		

2.3 测试类型

加比米刑	测试阶段				
测试类型	单元测试	集成测试	系统测试		
功能测试	路径正常	无与接口相关的	产品的功能符合		
功能侧风		错误	系统需求		
性能测试			性能良好		
兼容性测试		能在 windows 系统			
邢台 住侧\[上顺利运行			

3.测试结果及分析

松入米村民		运期於山北 田	<i>运行</i> 检证结用	结果正常	
输入数据		预期输出结果	运行输出结果	是	否
工學测	Tu ~ 扮 子 团 止	梭	拥有新画风的	√	
正常测	Jpg 格式图片	修改画风后的图片	图片	•	
は輸入 数据	D., 。	梭	拥有新画风的	√	
刻1店	Png 格式图片	修改画风后的图片	图片	•	
导致反	Gif 动态图片	无法执行该文件	文件执行失败	✓	
常输入	非图片文件	无法执行该文件	文件执行失败	√	
数据	+ 国月 入竹	儿公扒10人件	人	•	

3.1 基本功能测试

如图 1 以及图 2, 分别是输入原图以及想要迁移的风格图。

图1输入原图

图 2 目标风格图

有了以上两个图片,经过画风迁移系统得到的目标图如图 3 (300 个 epoch 后生成图):

图 3 生成的目标图

由图 3,可以看出生成的目标图已经具备了输入图片的大小以及内容,同时还含有迁移图片的画风,效果不太好的原因是因为,训练代数可能过少。

3.2 启动代码测试

```
if __name__ == "__main__":
    setup()
# 指定图片
    content_img = "contents/sky.jpg"
    style_img = "styles/starry_night.jpg"
# 指定像素尺寸
    img_width = 400
    img_height = 300
# style transfer
    style_transfer = StyleTransfer(content_img, style_img, img_width, img_height)
    style_transfer.build()
    style_transfer.train(300)
```

4.对软件功能的结论

画风迁移软件能较好地完成图片的画风改变,神经网络的运用使得软件的性能得到了很大程度的提升,满足了系统需求,进一步满足了用户的使用需求。

单一的画风迁移功能也使得软件运行的错误率降到极低,在硬件设施提升的基础上可以考虑软件功能的进一步发展。