Programare logică și funcțională - examen scris -

<u>Notă</u>

- 1. Subjectele se notează astfel: of 1p; A 1.5p; B 2.5p; C 2.5p; D 2.5p.
- 2. Problemele Prolog vor fi rezolvate în SWI Prolog. Se cere: (1) explicarea codului și a raționamentului; (2) modelul recursiv de rezolvare, pentru fiecare predicat folosit; (3) specificarea fiecărui predicat (semnificația parametrilor, model de flux, tipul predicatului determinist/nedeterminist).
- 3. Problemele Lisp vor fi rezolvate în Common Lisp. Se cere: (1) explicarea codului și a raționamentului; (2) modelul recursiv de rezolvare, pentru fiecare funcție folosită; (3) specificarea fiecărei funcții (semnificația parametrilor).
- A. Fie următoarea definiție de predicat PROLOG f(list, integer), având modelul de flux (i, o):

```
 \begin{array}{l} f([], -1)\text{:-!}. \\ f([\_|T], \text{Rez})\text{:-} \ \underline{\textbf{f(T,S)}}, \text{S<1, !, Y is S+2.} \\ f([H|T], \text{Rez})\text{:-} \ \underline{\textbf{f(T,S)}}, \text{S<0, !, Y is S+H.} \\ f([\_|T], \text{Rez})\text{:-} \ \underline{\textbf{f(T,S)}}, \text{Y is S.} \end{array}
```

Rescrieți această definiție pentru a evita apelul recursiv **f(T,S)** în clauze. Nu redefiniți predicatul. Justificați răspunsul.

В.	Dându-se o listă neliniară care conține atomi numerici și nenumerici, se cere un program Lisp care numerici de pe niveluri pare este egală cu media atomilor numerici de pe niveluri impare. De exemplu, (4 H 5)) (3 (A B (J (1) 5 L)))) rezultatul va fi true.	verifică dacă media atomilor pentru lista (10 A 10 V (10 B

C. Dându-se o listă formată din numere întregi, să se genereze lista submulțimilor cu **k** elemente numere impare, în progresie aritmetică. Se vor scrie modelele matematice și modelele de flux pentru predicatele folosite.

Exemplu- pentru lista L=[1,5,2,9,3] şi k=3 \Rightarrow [[1,5,9],[1,3,5]] (nu neapărat în această ordine)

D.	Să se substituie un element e prin altul e1 la orice nivel impar al unei liste neliniare. Nivelul superficial se consideră 1. De exemplu, pentru lista (1 d (2 d (d))), e =d și e1 =f rezultă lista (1 f (2 d (f))). Se va folosi o funcție MAP.