Методы псевдопотенциала

$$A(N_c + N_v) \qquad \qquad A(N_v)$$

$$H_{AE} = \sum_{i=1}^{N} \left[\frac{1}{2} p_i^2 + V_{en}(i) \right] + \sum_{i < j}^{N} \frac{1}{r_{ij}} \qquad \Rightarrow \qquad H_{ps} = \sum_{i=1}^{N_v} \left[\frac{1}{2} p_i^2 + V_{ps}(i) \right] + \sum_{i < j}^{N_v} \frac{1}{r_{ij}}$$

• Отличие от метода Хузинаги: псевдоорбитали без узлов в остове

Иллюстрация псевдовалентного преобразования орбитали

Пример: один валентный электрон

$$\mathcal{E}_{v} = \langle \psi_{v} | \hat{T} | \psi_{v} \rangle + \langle \psi_{v} | \hat{V} | \psi_{v} \rangle = T_{v} + V_{v}$$

$$\hat{V} = -Z/r + \hat{V}_{core}^{HF}$$

$$\tilde{\mathcal{E}}_{v} = \langle \psi_{ps} | \hat{T} | \psi_{ps} \rangle + \langle \psi_{ps} | \hat{V}_{ps} | \psi_{ps} \rangle =$$

$$= T_{ps} + V_{ps}$$

Из условия $\widetilde{\mathcal{E}}_{v} = \mathcal{E}_{v}$ следует:

$$T_{ps} < T_v \implies V_{ps} > V_v \implies$$
 $\hat{V}_{ps} = \hat{V} + \hat{V}_R = -Z/r + \hat{V}_{core}^{HF} + \hat{V}_R$, $\hat{V}_R \ge 0$ — аналог оператора $\sum B_c |\varphi_c\rangle\langle\varphi_c|$ в методе Хузинаги

("Pauli repulsion")

Терминология:

• $\hat{V}_{ps} = \hat{V} + \hat{V}_R = -Z/r + \hat{V}_{core}^{HF} + \hat{V}_R$ – псевдопотенциал (pseudopotential, PP)

• $\hat{V}_{ps} = \hat{V} + \hat{V}_R = -Z/r + \hat{V}_{core}^{HF} + \hat{V}_R$ — эффективный потенциал остова (Effective core potential, ECP); \hat{V}_R — псевдопотенциал

Классификация псевдопотенциалов

- По источникам данных, используемых при построении:
 - о Эмпирические
 - о Неэмпирические
- По способу получения:
 - О Модельные псевдопотенциалы (устар назв. не путать с МСР!)
 - о Псевдопотенциалы типа Филипса–Клейнмана
 - о Согласованные по форме орбиталей (shape-consistent)
 - о Согласованные по энергии (energy-consistent, energy-adjusted)
- По характеру поведения в остове:
 - о Осциллирующие в остове
 - о Мягкие в остове (soft-core)
 - о Жесткие в остове (hard-core)

Иллюстрация поведения псевдопотенциала в остове

P. Durand, J.-P. Barthelat / Theoret. Chim. Acta (Berl.) 38 (1975) 283

Модельные псевдопотенциалы

• Псевдопотенциал Гельмана (1935):

$$V_{ps} = -\frac{(Z - N_c)}{r} + \frac{A}{r}e^{-2kr}$$

H. Hellmann /Journal of Chemical Physics 3 (1935) 61

Очевидно, относится к типу 'hard-core'

Явный вид – из теории Томаса-Ферми

Для атома К:
$$V_{ps} = -\frac{1}{r} + \frac{2.74}{r} \, e^{-1.16r}$$
 $\varphi_{4s} \sim e^{-0.29r}$ (вариационная оценка)

Молекула K_2 (метод Гайтлера–Лондона): $r_e \sim 4 \text{ Å}$ (эксп. 3.9 Å)

Effective core potential U(r), in atomic units, for sodium (Na: A=1.826; $\kappa=0.536$) and cesium (Cs: A=1.672; $\kappa=0.333$), used in this form by Hellmann and Kassatochkin in a study of metallic binding in alkali metals [H. Hellmann, W. Kassatotschkin: Die metallische Bindung nach dem kombinierten Näherungsverfahren. Acta Physicochim. U. R. S. S. 5 (1936) 23–44; parameters adjusted to experimental term energies].

• Псевдопотенциал Шварца-Швитальского (1972):

Более поздний аналог потенциала Гельмана (тип 'hard-core'):

$$V_{ps} = -\frac{(Z - N_c)}{r} + \frac{A}{r}e^{-\gamma r^2}$$

M.E. Schwartz, J.D.Switalsky / Journal of Chemical Physics 57 (1972) 4125

Удобство при расчетах с использованием АО гауссова типа (ср. с МСР)

• Note: зависимость от орбитального момента электрона!

$$\hat{V}_{ps} = -\frac{(Z - N_c)}{r} + \sum_{l=0}^{\infty} \frac{A_l}{r} e^{-\gamma_l r^2} \hat{P}_l \quad , \qquad \hat{P}_l = |l\rangle\langle l| = \sum_{m=-l}^{+l} |Y_{lm}\rangle\langle Y_{lm}|$$

– полулокальный псевдопотенциал

• Псевдопотенциал Абаренкова–Хайне (1965):

$$V_{ps} = \begin{bmatrix} -A_l , & r < R_c \\ \\ -\frac{(Z - N_c)}{r} , & r > R_c \end{bmatrix}$$

I.V. Abarenkov, V. Heine / Phil. Mag. 12 (1965) 529

Относится к типу 'soft-core' ('flat-bottom') ⇒ зонные расчеты

• Псевдопотенциал Саймонса (1971):

M.E. Schwartz, J.D.Switalsky / Journal of Chemical Physics 57 (1972) 4125

$$V_{ps} = -rac{(Z-N_c)}{r} + \sum_l rac{B_l}{r^2} |l\rangle\!\langle l|$$
 («потенциал Кратцера»)

Преимущество: аналитически решаемое радиальное уравнение:

$$-\frac{1}{2} \left[R'' + \frac{2}{r} R' \right] + \left[\frac{l(l+1)}{2r^2} + \frac{B_l}{r^2} - \frac{(Z - N_c)}{r} \right] R = ER$$

$$l(l+1) + 2B_l = l^*(l^*+1) \Rightarrow$$
 сводится к водородоподобному.

Удобно дополнительно ввести n^* так, чтобы $n^* - l^* - 1 = n_r = 0, 1, ...$:

$$R_{nl} = r^{l^*} L_{n_r}^{2l^*+1} \left(\frac{2(Z - N_c)r}{n^*} \right) \exp \left(-\frac{(Z - N_c)r}{n^*} \right), \quad E = E_n = -\frac{(Z - N_c)^2}{2(n^*)^2}$$

Можно положить $n^* = n + \Delta_l$, Δ_l – поправка Ридберга (квантовый дефект)

Экспериментальные термы атомов с одним валентным электроном:

$$T(n) = \frac{R}{(n + \Delta_l)^2}$$

Для атома Na:

$$\Delta_s = -1.35$$
, $\Delta_p = -0.87$, $\Delta_d = -0.01$, $\Delta_f = 0.00$

Тогда можно определить параметр B_l можно определить из экспериментальных термов \Rightarrow эмпирический псевдопотенциал:

$$2B_l = l^*(l^*+1)-l(l+1), \quad l^* = l-\Delta_l$$

Видно, что B_l будет сильно зависеть от l!

Замечание: В работе Саймонса параметры B_l определялись не по экспериментальным термам, а по потенциалам ионизации атомов.

Table I. Parameters B_l for the atomic Fues potential.^{a,b}

Atom	Z	B_S	B_P	B_D	B_{F}
Li	1	0.46768	-0.05970	-0.00232	0.00448
Na	1	0.51047	0.18288	-0.02450	-0.00000
K	1	0.68234	0.37829	-0.35380	-0.02233
Rb	1	0.72657	0.47095	-0.55508	-0.04008
Cs	1	0.81277	0.57809	-1.02026	-0.07531
$\mathrm{Be^{+}}$	2	0.63018	-0.06735	-0.00333	0.00112
Mg^+	2	0.85894	0.43336	-0.07455	-0.00671
Ca+	2	1.22213	0.86815	-1.48144	-0.06269
Sr+	2	1.35694	1.08377	-1.25970	-0.13286
Ba^+	2	1.55449	1.32740	-1.29532	-1.04950
Ra^+	2	1.52345	1.40605	-1.07693	-1.12080
Zn^+	2	0.64480	0.21803	0.06495	-0.04727
Cd^{+}	2	0.71265	0.31424	0.17566	-0.12693
Hg^+	2	0.59937	0.23166	0.22630	-0.13931

^a The parameters are defined by Eq. (9) and are in atomic units.

Fig. 1. A comparison of the Hellmann potential (---) and the AFP (--) for S states of Na. The Hellmann potential parameters are from Ref. 10. E and R are in atomic units.

^b Experimental energies used in Eq. (9) and quoted in following tables are from C. Moore, Natl. Bur. Std. (U.S.) Circ. No. 467 (1949, 1952, 1958).

• Возвращаясь к задаче построения безузловых псевдоорбиталей:

P. Durand, J.-P. Barthelat / Theoret. Chim. Acta (Berl.) 38 (1975) 283

В случае псевдопотенциала Саймонса низшее по энергии решение для

каждого
$$l$$
: $n_r = 0$, $n^* = l^* + 1$:

$$R_{l+1,l} = r^{n^*-1} \exp\left(-\frac{(Z-N_c)r}{r}\right)$$
 — орбиталь слэтероского типа!