Introduction to Econometrics 2: Recitation 10

Seung-hun Lee

Columbia University

April 15th, 2020¹

¹Fun fact: After this recitation, my gov't mandated self-isolation is officially over.

Semiparametric Regression: Framework

- Semiparametrics can be thought of as a middle ground between nonparametric and parametric regression.
- Suppose that we partition the covariates into two unoverlapping spaces - X and W.
- Also assume that $E(\epsilon|X,W)=0$.
- One example of a semiparametric regression is a partially linear regression which has the following form

$$Y_i = X_i \beta + g(W_i) + \epsilon_i$$

where $\beta \in \text{dim}(X_i)$ represents a coefficient for the linearly regressed terms and $g(\cdot)$ is a nonparametric portion of the regression.

Semiparametric Regression: Estimation

• To estimate β , we use the fact that

$$E[Y_i|W_i] = E[X_i|W_i]\beta + g(W_i)$$

Given this, we can write

$$Y_i - E[Y_i|W_i] = \{X_i - E[X_i|W_i]\}\beta + \epsilon_i$$

- Then we follow this procedure
 - **1** Nonparametrically estimate $E[X_i|W_i]$ and $E[Y_i|W_i]$. Then define $\tilde{X}_i = X_i \hat{E}[X_i|W_i]$ and $\tilde{Y}_i = Y_i \hat{E}[Y_i|W_i]$, where \hat{E} are nonparametric estimators
 - **2** Regress \tilde{Y} onto \tilde{X} to get an estimate of β
 - **3** We can estimate $g(\cdot)$ by nonparametrically regressing $Y_i X_i \hat{\beta}$ onto W_i

Semiparametric Regression: Estimation

- β follows the properties of parametric estimators (Converges at rate $n^{-1/2}$ regardless of the dimensions of X_i, W_i)
- Estimating $g(\cdot)$ follows the same properties as nonparametric estimators (Slower convergence rate, which becomes even slower with more dimensions of W_i)
- ullet Caveat: Identification of eta requires an exclusion restriction
 - None of the components in X_i is perfectly predictable by W_i components $(X_i \neq E[X_i|W_i])$
 - This would effectively rule out including a constant in the X_i part of the regression

Examples

- Horowitz, Lee (2002): The paper shows that semiparametrics allow more flexibility than parametric modeling and more precision than nonparametric models.
 - For fun (at least for a baseball nerd like me), this paper tests this idea on a data of salaries, runs, tenure of baseball players in 1987.
- Ucal et al (2010): This paper analyzes whether and to what extent the inflow of FDI is affected before and after the occurence of a financial crisis in developing countries using generalized partial linear models.
 - The results indicate that FDI inflows decrease in the years after a financial crisis and an upturn in FDI inflows the year before a financial crisis hit the country.

Finding Causality

- We are looking to see whether X causes y
- $cov(X, Y) \neq 0$ is not enough because..
 - X do cause Y, which is good for us. But..
 - ullet Y could also cause X. So there is a reverse causality bias here
 - Z mutually affects X and Y. This is an omitted variable bias and leads to nonzero correlation even if X and Y has no connection whatsoever.
- The key issue is the assignment of the treatment, which could be..
 - Random Assignment: This would be a case when we can guarantee that the assignment to the treatment arms (treatment and control) are determined by chance
 - **Selection on Observables**: The treatment assignment is effectively random once we condition on some observable covariates
 - **Selection on Unobservables**: The assignment depends fundamentally on unobservables, or in other words, we cannot break down the dependence structure of assignment using observed variables.

Theoretical Setup

- Consider a binary treatment variable whether individual i received a treatment or not
- Define a variable D_i s.t.

$$D_i = egin{cases} 1 & ext{If treated} \\ 0 & ext{If not treated} \end{cases}$$

- i indexes the unit of the treatment
- For each unit i, there are two possible outcomes.
 - The outcome without treatment, $Y_i(0)$
 - The outcome with treatment, $Y_i(1)$
- This can be seen as a counterfactual framework if we get $Y_i(1)$ for unit i, we cannot get $Y_i(0)$ and vice versa.
- We always have a missing data problem in this regard

Theoretical Setup

• A mathematical way to treat this is

$$Y_i = D_i Y_i(1) + (1 - D_i) Y_i(0)$$

- The left hand side is an outcome for unit *i*, treated or untreated. This is observed for everyone
- The right hand side is meant to capture that the observed outcome for individual i is either one of $Y_i(1)$ or $Y_i(0)$.
- This framework is sometimes called potential outcome framework

Outcome of interest

• We are interested in how an outcome for unit *i* changes between treatment and control. In other words,

$$TE_i = Y_i(1) - Y_i(0)$$

 Another parameter of interest could be the treatment effect averaged over those who share the common covariate value, which is

$$TE(x) = E(TE_i|X_i = x)$$

 We could also be interested in the treatment effect averaged over the population. This is the average treatment effect, defined as

$$ATE = E(TE_i) = E(Y_i(1) - Y_i(0))$$

And others: ATT, ATUT, etc.

Problem caused by missing data

- We need to make an assumption about the things we cannot observe.
- Take the ATE for example. We can write

$$E[Y_i(1) - Y_i(0)] = E[Y_i(1)] - E[Y_i(0)]$$

$$= \{ Pr(D_i = 1)E[Y_i(1)|D_i = 1] + (1 - Pr(D_i = 1))E[Y_i(1)|D_i = 0] \}$$

$$- \{ Pr(D_i = 1)E[Y_i(0)|D_i = 1] + (1 - Pr(D_i = 1))E[Y_i(0)|D_i = 0] \}$$

• We can get what $E[Y_i(1)|D_i=1]$ and $E[Y_i(0)|D_i=0]$ are

$$E[Y_i|D_i = 1] = E[1 \cdot Y_i(1) - (1-1) \cdot Y_i(0)|D_i = 1] = E[Y_i(1)|D_i = 1]$$

$$E[Y_i|D_i = 0] = E[0 \cdot Y_i(1) - (1-0) \cdot Y_i(0)|D_i = 0] = E[Y_i(0)|D_i = 0]$$
 (TE)

- We can get $E[Y_i(1)|D_i=1]$ and $E[Y_i(0)|D_i=0]$ from the data take the expected value of observed Y_i conditional on $D_i=1$ and 0.
- We cannot do the same for $E[Y_i(1)|D_i=0]$ and $E[Y_i(1)|D_i=0]$, forcing us to make assumptions

Characterize TE in an econometrics-friendly way

Define the counterfactual outcomes as

$$Y_i(D_i = d) = \mu(X_i, d) + \epsilon_i(d)$$

where d can take either 0, 1.

- What we want to learn involves understanding the joint distribution of the variables $Y_i(0)$ and $Y_i(1)$.
- Take the treatment effect at $X_i = x$, written as

$$TE(x) = \mu(x, 1) - \mu(x.0)$$

- Interpretation: If we shift everyone with $X_i = x$ from the control group to treatment, the average outcome increases by TE(x).
- We can also calculate ATE as

$$ATE = E[Y_i(1) - Y_i(0)] = E[\mu(X_i, 1) - \mu(X_i, 0) + \epsilon_i(1) - \epsilon_i(0)]$$

$$= E[E[\mu(X_i, 1) - \mu(X_i, 0) + \epsilon_i(1) - \epsilon_i(0)|X_i]] = E[E[\mu(X_i, 1) - \mu(X_i, 0)|X_i]]$$

$$= E[\mu(X_i, 1) - \mu(X_i, 0)] = E[TE(X_i)]$$

Random Assignments

 A random assignment assumes that the outcome is independent of the treatment status. More formally

$$(Y_i(0), Y_i(1)) \perp \!\!\!\perp D_i \tag{RA}$$

• This implies that (similarly for $E[Y_i(0)]$)

$$E[Y_i(1)] = E[Y_i(1)|D_i = 1] = E[Y_i(1)|D_i = 0]$$

Now what we are doing is to equate

$$E[Y_i|D_i = 1] = E[Y_i(1)|D_i = 1] = E[Y_i(1)|D_i = 0]$$

 $E[Y_i|D_i = 0] = E[Y_i(0)|D_i = 0] = E[Y_i(0)|D_i = 1]$

This allows us to rewrite the ATE as

$$E[Y_i(1) - Y_i(0)] = E[Y_i(1)] - E[Y_i(0)]$$

$$= E[Y_i(1)|D_i = 1] - E[Y_i(0)|D_i = 0] \ (\because RA)$$

$$= E[Y_i|D_i = 1] - E[Y_i|D_i = 0] \ (\because TE)$$

Therefore, we can estimate ATE by mapping $E[Y_i(1)]$ to $E[Y_i|D_i=1]$, $E[Y_i(0)]$ to $E[Y_i|D_i=0]$.

Conditional Independence Assumption

- Assume conditional on X_i , the outcomes and D_i are independent.
- Formally, we can write

$$(Y_i(0), Y_i(1)) \perp \!\!\!\perp D_i | X_i$$
 (CIA)

• Alternatively: Define D_i as

$$D_i = 1(u_i < p(X_i))$$

 $u_i \equiv U[0,1]$ determines selection and $p(X_i)$ can be interpreted as a propensity score

• Then we can also say

$$(\epsilon_i(1), \epsilon_i(0)) \perp u_i | X_i$$
 (CIA2)

Conditional Independence Assumption

• Why?

$$E[Y_{i}(1)|X_{i} = x] = E[Y_{i}(1)|D_{i} = 1, X_{i} = x] = E[Y_{i}(1)|D_{i} = 0, X_{i} = x] \ (\because CIA)$$

$$\implies E[\mu(x, 1) + \epsilon_{i}(1)|D_{i} = 1, x] = E[\mu(x, 1) + \epsilon_{i}(1)|D_{i} = 0, x]$$

$$\implies E[\mu(x, 1)|D_{i} = 1, x] + E[\epsilon_{i}(1)|D_{i} = 1, x]$$

$$= E[\mu(x, 1)|D_{i} = 0, x] + E[\epsilon_{i}(1)|D_{i} = 0, x]$$

$$\implies E[\epsilon_{i}(1)|D_{i} = 1, x] = E[\epsilon_{i}(1)|D_{i} = 0, x]$$

$$\implies E[\epsilon_{i}(1)|u_{i} < p(x), x] = E[\epsilon_{i}(1)|u_{i} > p(x), x]$$

$$\implies (\epsilon_{i}(1), \epsilon_{i}(0)) \perp u_{i}|X_{i}$$
(CIA2)

- The caveat, however, is that $p(x) \in (0,1)$.
 - If p(x) = 1, then for every possible u_i , $D_i = 1$ everyone gets treated and no meaningful statement can be made about the $D_i = 0$ case.
 - In some textbooks, this is also known as overlap assumption

TE under CIA

We can write

$$\begin{split} E[Y_i|1,x] - E[Y_i|0,x] &= E[\mu(x,1) + \epsilon_i(1)|1,x] - E[\mu(x,0) + \epsilon_i(0)|0,x] \\ &= E[\mu(x,1)|1,x] + E[\epsilon_i(1)|1,x] - E[\mu(x,0)|0,x] - E[\epsilon_i(0)|0,x] \\ &= \mu(x,1) + E[\epsilon_i(1)|x] - \mu(x,0) - E[\epsilon_i(0)|x] \; (\because \mathsf{CIA2}) \\ &= \mu(x,1) - \mu(x,0) \end{split}$$

Note that

$$\begin{split} E[Y_i(1) - Y_i(0)|x] &= E[Y_i(1)|x] - E[Y_i(0)|x] \\ &= (\Pr(1|x) \cdot E[Y_i(1)|1, x] + \Pr(0|x) \cdot E[Y_i(1)|0, x]) \\ &- (\Pr(1|x) \cdot E[Y_i(0)|1, x] + \Pr(0|x) \cdot E[Y_i(0)|0, x]) \\ &= E[Y_i(1)|1, x] - E[Y_i(0)|0, x] \; (\because \mathsf{CIA}) \\ &= E[Y_i|1, x] - E[Y_i|0, x] \end{split}$$

• Thus, we can back out the ATE for $X_i = x$ using the observables by mapping $E[Y_i(1)|x]$ to $E[Y_i|1,x]$ and $E[Y_i(0)|x]$ to $E[Y_i|0,x]$

TE under CIA: Regression Adjustments

- This is called a regression adjustment method.
- The treatment effect for $X_i = x$ using a regression adjustment can be obtained by utilizing the fact that

$$\mu(x,1) = E[Y_i|D_i = 1, X_i = x], \ \mu(x,0) = E[Y_i|D_i = 0, X_i = x]$$

and regressing on the subsample of each treatment arm to get $\hat{\mu}(x,1)$ and $\hat{\mu}(x,0)$. Thus

$$\frac{1}{N} \sum_{i=1}^{N} (\hat{\mu}(x,1) - \hat{\mu}(x,0))$$

TE under CIA: Inverse Probability Weight

- We can obtain the ATE using a different approach.
- This is an inverse probability weighting. The steps are as follows
 - **1** Estimate the propensity score $p(X_i)$ by computing

$$\hat{p}_n(X_i) = \Pr(D_i = 1 | X_i = x)$$

② Use the magic formula to estimate $E(TE(x)|x \in A)$: That is,

$$\frac{\sum_{D_i=1, x_i \in A} a_i Y_i}{\sum_{D_i=1, x_i \in A} a_i} - \frac{\sum_{D_i=0, x_i \in A} b_i Y_i}{\sum_{D_i=0, x_i \in A} b_i}$$

where $a_i = \frac{1}{\hat{\rho}_n(x_i)}, b_i = \frac{1}{1 - \hat{\rho}_n(x_i)}$. The above can also be written as

$$\frac{\sum_{i=1,x_i \in A}^{N} \frac{D_i Y_i}{\hat{p}(X_i)}}{\sum_{i=1,x_i \in A}^{N} \frac{D_i}{\hat{p}(X_i)}} - \frac{\sum_{i=1,x_i \in A}^{N} \frac{(1-D_i)Y_i}{1-\hat{p}(X_i)}}{\sum_{i=1,x_i \in A}^{N} \frac{1-D_i}{1-\hat{p}(X_i)}}$$

TE under CIA: Inverse Probability Weight

Notice that

$$D_i Y_i = D_i (D_i Y_i(1) + (1 - D_i) Y_i(0)) = D_i Y_i(1)$$

$$(1 - D_i) Y_i = (1 - D_i) Y_i(0)$$

Thus, we have

$$E\left[\frac{D_{i}Y_{i}}{\rho(X_{i})}\right] = E\left[E\left[\frac{D_{i}Y_{i}(1)}{\rho(X_{i})}|X_{i}\right]\right]$$

$$= E\left[\frac{E[D_{i}|X_{i}]E[Y_{i}(1)|X_{i}]}{\rho(X_{i})}\right]$$

$$= E\left[\frac{\rho(X_{i})E[Y_{i}(1)|X_{i}]}{\rho(X_{i})}\right] = E[E[Y_{i}(1)|X_{i}]] = E[Y_{i}(1)]$$

- Thus, $E\left[\frac{D_i Y_i}{p(X_i)}\right] = E[Y_i(1)], E\left[\frac{D_i Y_i}{p(X_i)}|X_i\right] = E[Y_i(1)|X_i].$
- We can make the similar arguments for $Y_i(0)$.

TE under CIA: Inverse Probability Weight

• Thus, the ATE for $X_i \in A$ can be written as

$$\frac{1}{N}\sum_{i=1}^{N}\left(\frac{D_{i}Y_{i}}{p(X_{i})}-\frac{(1-D_{i})Y_{i}}{1-p(X_{i})}\right) \ \forall X_{i}\in A$$

- In most cases, the propensity score should be estimated.
- So we use the estimator involving the \hat{p} , which is

$$\frac{\sum_{i=1,x_{i}\in A}^{N} \frac{D_{i}Y_{i}}{\hat{p}(X_{i})}}{\sum_{i=1,x_{i}\in A}^{N} \frac{D_{i}}{\hat{p}(X_{i})}} - \frac{\sum_{i=1,x_{i}\in A}^{N} \frac{(1-D_{i})Y_{i}}{1-\hat{p}(X_{i})}}{\sum_{i=1,x_{i}\in A}^{N} \frac{1-D_{i}}{1-\hat{p}(X_{i})}}$$

 It is said that normalizing the weights to one in finite samples improves the mean squared error properties of the estimator (Imbens, Rubin (2019) - Causal Inference for Statistics, Social, and Biomedical Sciences: An Introduction)

TE under CIA: Matching

- Impute the values for something we cannot get from the data: Namely, $Y_i(0)$ for those in $D_i = 1$ and $Y_i(1)$ for those in $D_i = 0$.
- In other words, you try to find a 'close' match for a particular unit *i* in a different treatment arm.
- When we say we find k-closest neighbors for unit i in $D_i = 0$, we find k individuals in $D_i = 1$ that has close traits (X_i) to individual i, or k individuals with the smallest values of $||x_i x_i||$.
- Then, we construct a counterfactual $Y_i(1)$ by taking a (weighted) average over the Y_i 's of the k individuals found in the other group.
- The treatment effect would than be $Y_i(1)$ Y_i , where $Y_i(1)$ is calculated as in previous sentence.

TE under CIA: Matching

- Let's try with k = 1 we find the one individual in the opposite treatment arm that has the similar value of X_i .
- Then, the average treatment effect can be written as

$$\frac{1}{N} \sum_{i=1}^{N} (\hat{Y}_i(1) - \hat{Y}_i(0))$$

where

$$\hat{Y}_i(1) = egin{cases} Y_i & (D_i = 1) \\ ext{imputed value} & (D_i = 0) \end{cases}, \ \hat{Y}_i(0) = egin{cases} ext{imputed value} & (D_i = 1) \\ Y_i & (D_i = 0) \end{cases}$$

TE under CIA: Matching

- There are some caveat in this approach
 - The covariate X_i that is used to find the closest match in the other treatment arm should not affect the assignment of the treatment.
 - The overlap condition becomes critical. If it is not satisfied, i.e. for some X_i , $p(X_i) = 1$ or 0, then we are unable to find a closest match in the other treatment arm because for individuals with that covariate value, all of them are either in control or treatment group and not spread around.
 - Who are the neighbors? The answer might depend on what distance
 measure we use. Moreover, how many of those in the treatment can be
 considered neighbors? There is a trade-off in the sense that using larger
 k would force us to put someone who is not 'close' as neighbors and
 using small k may cause difficulty in imputing counterfactual values.

TE under CIA: DID

- This involves a specific framework where we can clearly define a 'before and after' denoted as t_0 and t_1 .
- No one is treated at t_0 but there is a subset of people ($G_i = 1$) that are treated at t_1 . Those in $G_i = 0$ are never treated in either time period.
- If we define

$$Y_{i,t} = G_i Y_i(1,t) + (1-G_i) Y_i(0,t) \ (t \in \{t_0,t_1\})$$

and impose

$$Y_i(G_i, t_0) = Y_i(t_0)$$
 for both $G_i = 1$ and $G_i = 0$

then we will be able to observe $(Y_{i,t_1}, Y_{i,t_0}, G_i.X_i)$ for every unit i.

• What we do not observe is $Y_i(1, t_1)$ for those in $G_i = 0$ and $Y_i(0, t_1)$ for those in $G_i = 1$.

TE under CIA: DID

 The analogue to the conditional independence assumption in this context is a parallel trend assumption, defined as

$$(Y_i(1, t_1) - Y_i(t_0), Y_i(0, t_1) - Y_i(t_0)) \perp G_i | X_i$$

• To see why they are equal, consider a setting where $D_i = G_i$ and write

$$Y_{i} = Y_{i,t_{1}} - Y_{i,t_{0}} = D_{i}(\underbrace{Y_{i}(1,t_{0}) - Y_{i}(1,t_{0})}_{Y_{i}(1)}) + (1 - D_{i})(\underbrace{Y_{i}(0,t_{1}) - Y_{i}(0,t_{0})}_{Y_{i}(0)})$$

$$= D_{i}Y_{i}(1) + (1 - D_{i})Y_{i}(0)$$

Therefore, we can rewrite the parallel trend assumption as

$$(Y_i(1), Y_i(0)) \perp \!\!\!\perp D_i | X_i$$

• Testing: Select a time period $\tilde{t} < t_0$ and find out if the difference $y_i(t_0) - y_i(\tilde{t})$ is independent with G_i

TE under CIA: DID

• To apply this in regression, we can write

$$Y_{it} = \beta_0(X_i) + \beta_1(X_i) \cdot 1(t = t_1) + \beta_2(X_i) \cdot G_i + \beta_3(X_i) \cdot G_i \cdot 1(t = t_1) + \epsilon_{it}$$

where X_i is a set of covariates, which can include a constant.

• In this context, the treatment effect for $X_i = x$ would be

$$TE(x) = E[Y_i(1) - Y_i(0)|X_i = x]$$

$$= E[(Y_i(1, t_1) - Y_i(1, t_0)) - (Y_i(0, t_1) - Y_i(0, t_0))|X_i = x]$$

$$= x \cdot E\{[(\beta_0 + \beta_1 + \beta_2 + \beta_3) - (\beta_0 + \beta_2)] - [(\beta_0 + \beta_1) - (\beta_0)]|X_i = x\}$$

$$= x \cdot E[(\beta_1 + \beta_3) - \beta_1|X_i = x]$$

$$= \beta_3 x$$

So β_3 would be our parameter of interest.