

Introducción a Apache Spark

Hadoop Map-Reduce. Contar palabras

Coste de la memoria

http://www.jcmit.net/mem2015.htm

¿Qué es Apache Spark?

- Spark es una plataforma de computación para clústers
- Es de propósito general.
- Desarrollo simplificado
- Trabaja en memoria
- Rápido
- Permite trabajo interactivo, streaming...

En qué mejora Spark a Hadoop

- Velocidad
- Simplicidad del API
- Ejecución Batch, interactiva, streaming vs solo batch en hadoop
- Integra varias herramientas: SQL, grafos, etc.
- Varias APIs: Java, scala, R, python. Hadoop solo java

Velocidad

Puede ser hasta 100x más rápido que Hadoop

Logistic regression in Hadoop and Spark

Ordenando 1PB. Resultados de 2014

	Hadoop MR	Spark	Spark
	Record	Record	1 PB
Data Size	102.5 TB	100 TB	1000 TB
Elapsed Time	72 mins	23 mins	234 mins
# Nodes	2100	206	190
# Cores	50400 physical	6592 virtualized	6080 virtualized
Cluster disk	3150 GB/s	618 GB/s	570 GB/s
throughput	(est.)		
Sort Benchmark	Voc	Yes	No
Daytona Rules	Yes		
Network	dedicated data	virtualized (EC2)	virtualized (EC2)
	center, 10Gbps	10Gbps network	10Gbps network
Sort rate	1.42 TB/min	4.27 TB/min	4.27 TB/min
Sort rate/node	0.67 GB/min	20.7 GB/min	22.5 GB/min

https://databricks.com/blog/2014/11/05/spark-officially-sets-a-new-record-in-large-scale-sorting.html

Resultados de 2016. Spark primero en Cloud

Top Results http://sortbenchmark.org

	Daytona	Indy
	2016, 44.8 TB/min	2016, 60.7 TB/min
Gray	Tencent Sort 100 TB in 134 Seconds 512 nodes x (2 OpenPOWER 10-core POWER8 2.926 GHz, 512 GB memory, 4x Huawei ES3600P V3 1.2TB NVMe SSD, 100Gb Mellanox ConnectX4-EN) Jie Jiang, Lixiong Zheng, Junfeng Pu, Xiong Cheng, Chongqing Zhao Tencent Corporation Mark R. Nutter, Jeremy D. Schaub	Tencent Sort 100 TB in 98.8 Seconds 512 nodes x (2 OpenPOWER 10-core POWER8 2.926 GHz, 512 GB memory, 4x Huawei ES3600P V3 1.2TB NVMe SSD, 100Gb Mellanox ConnectX4-EN) Jie Jiang, Lixiong Zheng, Junfeng Pu, Xiong Cheng, Chongqing Zhao Tencent Corporation Mark R. Nutter, Jeremy D. Schaub
	2016, \$1.44 / TB	2016, \$1.44 / TB
Cloud	NADSort 100 TB for \$144 394 Alibaba Cloud ECS ecs.n1.large nodes x (Haswell E5-2680 v3, 8 GB memory, 40GB Ultra Cloud Disk, 4x 135GB SSD Cloud Disk) Qian Wang, Rong Gu, Yihua Huang Nanjing University Reynold Xin Databricks Inc. Wei Wu, Jun Song, Junluan Xia Alibaba Group Inc.	NADSort 100 TB for \$144 394 Alibaba Cloud ECS ecs.n1.large nodes x (Haswell E5-2680 v3, 8 GB memory, 40GB Ultra Cloud Disk, 4x 135GB SSD Cloud Disk) Qian Wang, Rong Gu, Yihua Huang Nanjing University Reynold Xin Databricks Inc. Wei Wu, Jun Song, Junluan Xia Alibaba Group Inc.

Simplicidad

Contar palabras en Hadoop

```
1 package org.myorg.
3 import java.io.IOException;
4 import java.util. *:
6 import org.apache.hadoop.fs.Path:
7 import org.apache.hadoop.conf.*;
8 import org.apache.hadoop.io.*;
9 import org.apache.hadoop.mapreduce.*
10 import org.apache.hadoop.mapreduce.lib.input.FileInputFormat:
11 import org.apache.hadoop.mapreduce.lib.input.TextInputFormat;
12 import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat:
13 import org.apache.hadoop.mapreduce.lib.output.TextOutputFormat;
  public static class Map extends Mapper LongWritable, Text, Text, IntWritable
      private final static IntWritable one = new IntWritable(1);
      private Text word = new Text();
      public void map (LongWritable key, Text value, Context context) throws IOE
          String line = value.toString():
           StringTokenizer tokenizer = new StringTokenizer(line);
          while (tokenizer.hasMoreTokens()) (
              word.set(tokenizer.nextToken());
              context.write(word, one);
  public static class Reduce extends Reducer<Text, IntWritable, Text, IntWritai
      public void reduce (Text key, Iterable < IntWritable > values, Context contex
       throws IOException, InterruptedException {
          for (IntWritable val : values) {
              sum += val.get();
          context.write(key, new IntWritable(sum));
   public static void main(String[] args) throws Exception {
      Configuration conf = new Configuration();
          Job job = new Job(conf, "wordcount");
      job.setOutputKeyClass(Text.class);
      job.setOutputValueClass(IntWritable.class):
      job.setMapperClass(Map.class);
      job.setReducerClass(Reduce.class);
      job.setInputFormatClass(TextInputFormat.class);
      iob.setOutputFormatClass(TextOutputFormat.class):
      FileInputFormat.addInputPath(job, new Path(args[0]));
      FileOutputFormat.setOutputPath(job, new Path(args[1]));
      job.waitForCompletion(true);
```

Contar palabras en Spark (python)

Aplicaciones

- > SQL
- Streaming
- GraphX
- > MLlib

Historia

- En 2009 surge dentro de un proyecto de investigación en Berkeley
- La idea era hacer algo rápido para consultas interactivas. De aquí el utilizar datos en memoria
- En 2010 se hace de código abierto
- En 2013 se transfiere a la fundación Apache.

- Spin-off databricks
- Actualmente en versión 3.0

Arquitectura

- Muy versátil. Puede trabajar:
 - Standalone.
 - Sobre la nube de Amazon
 - Sobre Hadoop
- Fuentes de datos:
 - Ficheros locales
 - **HDFS**
 - Cassandra
 - MongoDB
 - Hive
 - postgresQL, mySQL
 - S3 amazon

mongoDB

Aspectos básicos

pyspark: interfaz python a Spark. Nos permite ejecutar tareas en paralelo de forma sencilla.

A partir de unos datos, se definirá una secuencia de transformaciones y acciones que se ejecutan en paralelo.

La gestión de la paralelización es transparente para el programador

Resilient Distributed Datasets (RDDs)

- Trabajaremos sobre colecciones de datos denominadas RDD:
 - > Es el concepto básico de trabajo en Spark
 - Son inmutables. Es decir una vez creados no se pueden modificar.
 - Se pueden transformar para crear nuevos RDDs o realizar acciones sobre ellos pero no modificar.
 - Se guarda la secuencia de transformaciones para poder recuperar RDDs de forma eficiente si alguna máquina se cae
 - Están distribuidos en el clúster en los nodos workers

Ciclo de vida de una aplicación en Spark

RDD (Datos) Serie de Serie de acciones cache transformaciones Operaciones cuyo ·Algún RDD se Datos distribuidos Operaciones que resultado es otro en los workers puede mantener devuelven **RDD** resultados al driver en memoria mediante la Inmutables función cache() •No se ejecutan Desencadenan la inmediatamente ejecución de las Evita recalcular transformaciones definidas

Recordatorio funciones lambda de python

Son funciones anónimas. Por ejemplo, para sumar dos números:

```
lambda a, b: a + b
```

- Se pueden usar cuando haya que pasar una función como parámetro
- Tienen una única instrucción cuyo valor corresponde al valor devuelto

Creación de RDD - textFile

Crea un RDD a partir del sistema local de archivos, HDFS, Cassandra, HBase, Amazon S3, etc.

- Las elementos del RDD son cada línea del fichero. Es decir, el RDD será una colección de cadenas
- Evaluación perezosa

Creación de RDD - textFile

Otras opciones: Directorio, con comodines, desde fichero comprimido,...:

```
lineas1 = sc.textFile("/my/directory")
lineas2 = sc.textFile("/my/directory/*.txt")
lineas3 = sc.textFile("/my/directory/*.gz")
```

Otros protocolos, HDFS, S3,...:

```
lineas1 = sc.textFile("hdfs://...")
lineas2 = sc.textFile("s3://...")
```

Creación de RDD - parallelize

Crea un RDD a partir de una lista python

Evaluación perezosa

Creación de RDD

Ejemplo evaluación perezosa

```
numeros = sc.parallelize([1,2,3,4,5,6,7,8,9,10])
print(numeros.count())
```

- Spark "apunta" qué va a pasar
- No se calcula nada hasta que es necesario

RDD: numeros

```
[1, 2, 3,
4, 5, 6,
7, 8, 9,
10]
```


Transformaciones

- Crean un RDD a partir de otro u otros RDDs
- Evaluación perezosa. No se calculan los resultados inmediatamente. Spark apunta la serie de transformaciones que se deben aplicar para ejecutar después.
- Es como una receta

```
lineas.flatMap(...).filter(...).map(...).reduceByKey(...)
```

¿Os había dicho que no se evalúa directamente? Evaluación perezosa!!!

Transformaciones generales

Transformación	Descripción	
map(func)	Crea un nuevo RDD a partir de otro aplicando una transformación a cada elemento original	
filter(func)	Crea un nuevo RDD a partir de otro manteniendo solo los elementos de la lista original que cumplan una condición	
flatMap(func)	Como map pero cada elemento original se puede mapear a 0 o varios elementos de salida	
distinct()	Crea un nuevo RDD a partir de otro eliminando duplicados	
union(otroRDD)	Une dos RDD en uno	
sample()	Obtiene un RDD con una muestra obtenida con	

reemplazamiento (o sin) a partir de otro RDD.

Transformación - map

Aplica una transformación a cada elemento del RDD original

```
numeros = sc.parallelize([1,2,3,4,5])
num3 = numeros.map(lambda elemento: 3*elemento)
```

- Resultado: $[1,2,3,4,5] \rightarrow [3,6,9,12,15]$
- La función que se pasa a map debe:
 - Recibir un único parámetro, que serán elementos individuales del rdd de partida
 - Devolver el elemento transformado

Función que se aplica a

cada elemento del rdd

números

Transformación – cuestiones sobre el map

- ¿Cuál es el tamaño del rdd de salida?
 - El mismo que el tamaño de entrada

```
palabras = sc.parallelize(['HOLA', 'Que', 'TAL', 'Bien'])

pal_minus = palabras.map(lambda elemento: elemento.lower())

print(pal_minus.collect())
```

RDD: palabras RDD: pal_minus

['HOLA',
''Que',
''TAL',
'Bien']

['hola',
'que',
'tal',
'bien']

Transformación – cuestiones sobre el map

- ¿Podemos cambiar el tipo de los elementos de los RDDs con un map?
 - > No, los RDDs son inmutables!! Pero con map podemos crear nuevos RDDs

```
palabras = sc.parallelize(['HOLA', 'Que', 'TAL', 'Bien'])

pal_long = palabras.map(lambda elemento: len(elemento))

print(pal_long.collect())
```

RDD: palabras RDD: pal_long

['HOLA','Que','TAL','Bien'] [4, 3, 3, 4]

Transformación - filter

 Filtra un RDD manteniendo solo los elementos que cumplan una condición

```
numeros = sc.parallelize([1,2,3,4,5])
rdd = numeros.filter(\( \) ambda elemento: elemento\( \) 2==0)
```

- Resultado: [1,2,3,4,5] → [2,4]
- La función que se pasa a filter debe:
 - Recibir un único parámetro, que serán elementos individuales del rdd de partida
 - > Devolver True o False para indicar si el elemento pasa o no el filtro

filtrarlo

Función que se aplica a

cada elemento para

Transformación – cuestiones sobre el filter

- ¿Cuál es el tamaño del rdd de salida?
 - Menor o igual que el original

```
log = sc.parallelize(['E: e21', 'W: w12', 'W: w13', 'E: e45'])
errors = log.filter(lambda elemento: elemento[0]=='E')
print(errors.collect())
```


Transformación - flatMap

 Como map pero cada elemento puede crear cero o más elementos

```
numeros = sc.parallelize([1,2,3,4,5])
rdd = numeros.flatMap(lambda elemento : [elemento, 10*elemento])
```

- Resultado→ [1, 10, 2, 20, 3, 30, 4, 40, 5, 50]
- La función que se pasa a flatMap debe:
 - Recibir un único parámetro, que serán elementos individuales del rdd de partida
 - Devolver una lista de elementos

Transformación – cuestiones sobre el flatMap

- ¿Cuántos elementos tendrá el RDD de salida?
 - Para cada elemento original se crean tantos elementos en el RDD de salida como elementos haya en la lista que devuelve la función

Transformación – cuestiones sobre el flatMap

Diferencias con map

```
lineas = sc.parallelize(['', 'a', 'a b', 'a b c'])

palabras_flat = lineas.flatMap(lambda elemento: elemento.split())

palabras_map = lineas.map(lambda elemento: elemento.split())
```

- Con flatMap → ['a', 'a', 'b', 'a', 'b', 'c']
- Con map →[[], ['a'], ['a', 'b'], ['a', 'b', 'c']]
- De aquí viene lo de flat, la lista de flatmap se 'alisa'

Transformación - distinct

Crea un nuevo RDD eliminando duplicados

```
numeros = sc.parallelize([1,1,2,2,5])
unicos = numeros.distinct()
```

Resultado: [1,1,2,2,5] → [1, 2, 5]

Transformación - union

Une dos RDDs en uno

```
pares = sc.parallelize([2,4,6,8,10])
impares = sc.parallelize([1,3,5,7,9])
numeros = pares.union(impares)
```

Resultado: -> [2, 4, 6, 8, 10, 1, 3, 5, 7, 9]

Transformación – union otro ejemplo

```
log = sc.parallelize(['E: e21', 'I: i11', 'W: w12', 'I: i11', 'W: w13', 'E: e45'])
info = log.filter(lambda elemento: elemento[0]=='I')
errs = log.filter(lambda elemento: elemento[0]=='E')
inferr = info.union(errs)
print(inferr.collect())
```


Transformación - sample

- Remuestrea el RDD de entrada con reemplazamiento o sin.
- El segundo parámetro indica la fracción de datos aproximados que se seleccionan.

```
numeros = sc.parallelize([1,2,3,4,5,6,7,8,9,10])
rdd = numeros.sample(True, 1.0)
```

- Resultado -> [2,3,5,7,7,8,8,9,9,9]
- Cada ejecución da un resultado distinto
- Es útil cuando hay un número de datos demasiado elevado para poder trabajar con menos datos. Al menos en depuración

Acciones

- Devuelven los resultados al driver program
- Desencadena la ejecución de toda la secuencia de RDD necesarios para calcular lo requerido.
- Ejecuta la receta

```
rdd = lineas.flatMap(...).filter(...).map(...).reduceByKey(...)
print rdd.count()
```

Transformación - union

Une dos RDDs en uno

```
pares = sc.parallelize([2,4,6,8,10])
impares = sc.parallelize([1,3,5,7,9])
numeros = pares.union(impares)
```

Resultado: → [2, 4, 6, 8, 10, 1, 3, 5, 7, 9]

Acciones básicas

Acción	Descripción
count()	Devuelve el número de elementos del RDD
reduce(func)	Agrega los elementos del RDD usando func
take(n)	Devuelve una lista con los primeros n elementos del RDD
collect()	Devuelve una lista con todos los elementos del RDD
takeOrdered(n[,key=func])	Devuelve n elementos en orden ascendente. Opcionalmente se puede especificar la clave de ordenación

Acción - count

Devuelve el número de elementos del RDD

```
numeros = sc.parallelize([1,2,3,4,5,6,7,8,9,10])
pares = numeros.filter(lambda elemento: elemento%2==0)
print(pares.count())
                                              Debe calcular la secuencia
            RDD: numeros
                                              de RDDs para saber
                              RDD: pares
                                              cuántos elementos hay
                                   101
                   101
```


Acción - reduce

Agrega todos los elementos del RDD por pares hasta obtener un único valor

```
numeros = sc.parallelize([1,2,3,4,5])
print(numeros.reduce(lambda elem1,elem2: elem1+elem2))
```

- Resultado: → 15
- La función que se pasa a reduce debe:
 - > Recibir dos argumentos y devolver uno de tipo compatible
 - Ser conmutativa y asociativa de forma que se pueda calcular bien el paralelo

Acción - reduce

Otro ejemplo

```
palabras = sc.parallelize(['HOLA', 'Que', 'TAL', 'Bien'])

pal_minus = palabras.map(lambda elemento: elemento.lower())

print(palabras.reduce(lambda elem1,elem2: elem1+ "-" + elem2))
```

- Resultado: "hola-que-tal-bien"
- ¿Tiene sentido esta operación?
 - No del todo. Aquí ha salido bien pero no es conmutativa
 - ¿Qué pasa si ponemos elem2+ "-" + elem1?

Acción - take

Devuelve una lista con los primeros n elementos del RDD

```
numeros = sc.parallelize([5,3,2,1,4])
print(numeros.take(3))
```

 \rightarrow Resultado: \rightarrow [5,3,2]

Acción - collect

Devuelve una lista con todos los elementos del RDD

```
numeros = sc.parallelize([5,3,2,1,4])
print(numeros.collect())
```

- Resultado: → [5, 3, 2, 1, 4]
- Cuando se llama a collect todos los datos del RDD se envían al driver program
 - ¡¡Hay que estar seguros que caben en memoria!!

Acción - takeOrdered

Devuelve una lista con los primeros n elementos del RDD en orden

```
numeros = sc.parallelize([3,2,1,4,5])
print(numeros.takeOrdered(3))
```

▶ Resultado: → [1,2,3]

Acción - takeOrdered

También podemos pasar una función para ordenar como creamos

```
numeros = sc.parallelize([3,2,1,4,5])
print(numeros.takeOrdered(3, lambda elem: -elem))
```

- ➤ Resultado: → [5,4,3]
- ¿Cómo ordenarías para que primero aparezcan los pares ordenados y luego los impares?

Acción - foreach

Ejecuta una función para cada elemento

```
def do_something(a):
    ...

numeros = sc.parallelize([3,2,1,4,5])

numeros.foreach(so_something)
```

- Es una acción, no una transformación por lo que se ejecuta en el momento
- No devuelve ningún RDD

Ciclo de vida de una aplicación en Spark

RDD (Datos) Serie de Serie de acciones cache transformaciones Operaciones cuyo ·Algún RDD se Datos distribuidos Operaciones que resultado es otro en los workers puede mantener devuelven **RDD** resultados al driver en memoria mediante la Inmutables función cache() •No se ejecutan Desencadenan la inmediatamente ejecución de las Evita recalcular transformaciones definidas

Errores en spark – parte 1

```
Pv4JJavaError
                                        Traceback (most recent call last)
<ipython-input-13-ea27ccfedbc1> in <module>()
     3 unicos = palabras map.distinct()
                                                                  Línea donde salta el error. Siempre es
---> 5 print unicos.collect()
     <del>6 # Frueba qué sucede si lo aplicamos a ca</del>denas
                                                                  una acción aunque viene de alguna
/home/gonzalo/applications/spark/spark-1.4.1/python/pyspark/rdd.pyc
                                                                  transformación previa.
    755
    756
               with SCCallSiteSync(self.context) as css:
--> 757
                   port = self.ctx. jvm.PythonRDD.collectAndServe(self. jrdd.rdd())
               return list( load from socket(port, self. jrdd deserializer))
    758
    759
/home/gonzalo/applications/spark/spark-1.4.1/python/lib/py4j-0.8.2.1-src.zip/py4j/java gateway.py in call (self, *args
    536
               answer = self.gateway client.send command(command)
               return value = get return value(answer, self.gateway client,
    537
                      self.target id, self.name)
--> 538
    539
    540
               for temp arg in temp args:
/home/gonzalo/applications/spark/spark-1.4.1/python/lib/py4j-0.8.2.1-src.zip/py4j/protocol.py in get return value(answer,
gateway client, target id, name)
    298
                      raise Pv4JJavaError(
    299
                           'An error occurred while calling {0}{1}{2}.\n'.
                          format(target id, '.', name), value)
--> 300
    301
                   else:
                      raise Py4JError(
    302
```


Errores en spark – parte 2

```
Py4JJavaError: An error occurred while calling z:org.apache.spark.api.python.PythonRDD.collectAndServe.
: org.apache.spark.SparkException: Job aborted due to stage failure: Task 1 in stage 15.0 failed 1 times, most recent fai
lure: Lost task 1.0 in stage 15.0 (TID 113, localhost): orq.apache.spark.api.python.PythonException: Traceback (most rece
nt call last):
 File "/home/gonzalo/applications/spark/spark-1.4.1/python/lib/pyspark.zip/pyspark/worker.py", line 111, in main
   process()
  File "/home/qonzalo/applications/spark/spark-1.4.1/python/lib/pyspark.zip/pyspark/worker.py", line 106, in process
    serializer.dump stream(func(split index, iterator), outfile)
  File "/home/gonzalo/applications/spark/spark-1.4.1/python/pyspark/rdd.py", line 2330, in pipeline func
    return func(split, prev func(split, iterator))
  File "/home/gonzalo/applications/spark/spark-1.4.1/python/pyspark/rdd.py", line 2330, in pipeline func
    return func(split, prev func(split, iterator))
  File "/home/gonzalo/applications/spark/spark-1.4.1/python/pyspark/rdd.py", line 316, in func
    return f(iterator)
  File "/home/qonzalo/applications/spark/spark-1.4.1/python/pyspark/rdd.pv", line 1758, in combineLocally
   merger.mergeValues(iterator)
                                                               La información del error está sepultada.
 File "/home/gonzalo/applications/spark/spark-1.4.1/python/lib/
   d[k] - comb(d[k], v) if k in d else creator(v)
                                                                Aparece justo antes del volcado de la
TypeError: unhashable type: 'list'
                                                               pila de ejecución
       at org.apache.spark.api.python.PythonRDD$$anon$1.read(Py
        at org.apache.spark.api.python.PythonRDD$$anon$1.<init>(
       at org.apache.spark.api.python.PythonRDD.compute(PythonRDD.scala:97)
        at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:277)
        at org.apache.spark.rdd.RDD.iterator(RDD.scala:244)
        at org.apache.spark.api.pvthon.PairwiseRDD.compute(PvthonRDD.scala:315)
```

Ejercicio 1: Contar caracteres de un fichero

```
lineas = sc.textFile('elquijote.txt', 8)

long_lineas = lineas.map(lambda elemento: len(elemento))

print long_lineas.reduce(lambda elem1,elem2: elem1 + elem2)
```


Ejercicio 2: alturas_v0.csv

- Objetivo: Calcular la media y la desviación típica de un fichero con alturas.
- Cada fila tiene una altura (en cm)
- ➤ Algunas filas tienen errores y pone -100 → hay que filtrarlas
- Algunas filas las alturas están en m → hay que corregirlas
- Herramientas: textFile, map, reduce, float(str) (Convierte una cadena a float), filter y count...

Ejercicio 3: alturas.csv

- Objetivo: Calcular la media y la desviación típica de un fichero con alturas separadamente para mujeres y hombres.
- Cada fila tiene una genero y altura (en cm)
- ➤ Algunas filas tienen errores y pone -100 → hay que filtrarlas
- ➤ Algunas filas las alturas están en m → hay que corregirlas
- Herramientas: textFile, map, reduce, float(str) (Convierte una cadena a float), filter, count, split()...

Más transformaciones

Transformación	Descripción
reduceByKey(f)	Al llamarlo sobre un RDD de pares clave-valor (K, V), devuelve otro de pares (K, V) donde los valores de cada clave se han agregado usando la función dada.
groupByKey(f)	Al llamarlo sobre un RDD de pares clave-valor (K, V), devuelve otro de pares (K, seq[V]) donde los valores de cada clave se han convertido a una secuencia.
sortByKey()	Ordena un RDD de pares clave-valor (K, V) por clave.
join(rdd)	Hace un join de dos rdd de pares (K, V1) y (K,V2) y devuelve otro RDD con claves (K, (V1, V2))

RDD de pares clave-valor (K, V)

- Son RDD donde cada elemento de la colección es una tupla de dos elementos.
 - > El primer elemento se interpreta como la clave
 - > El segundo como el valor
- Se contruyen a partir de otras transformaciones:.

```
palabras = sc.parallelize(['HOLA', 'Que', 'TAL', 'Bien'])

pal_long = palabras.map(lambda elem: (elem, len(elem)))
```

Las palabras pasarían a ser las claves y los valores sus longitudes

Transformación – reduceByKey()

- Agrega todos los elementos del RDD hasta obtener un único valor por clave
- El resultado sigue siendo una colección, esto en un RDD

```
r = sc.parallelize([('A', 1),('C', 4),('A', 1),('B', 1),('B', 4)])
rr = r.reduceByKey(lambda v1,v2:v1+v2)
print(rr.collect())
```

- Resultado: → [('A', 2), ('C', 4), ('B', 5)]
- La función que se pasa a reduce debe (como para reduce):
 - Recibir dos argumentos y devolver uno de tipo compatible
 - Ser conmutativa y asociativa de forma que se pueda calcular bien el paralelo
 - > A la función se le van a pasar dos valores de elementos con la misma clave

Transformación – cuestiones sobre el reduceByKey

- ¿De qué tamaño es el RDDs de salida?
 - Igual o menor que el RDD original
 - > Exactamente, igual al número de claves distintas en el RDDs original

```
r = sc.parallelize([('A', 1),('C', 4),('A', 1),('B', 1),('B', 4)])
rr1 = r.reduceByKey(lambda v1,v2:v1+v2)
print rr1.collect()
rr2 = rr1.reduceByKey(lambda v1,v2:v1+v2)
print(rr2.collect())
```

- Resultado 1: → [('A', 2), ('C', 4), ('B', 5)]
- > Resultado 2: \rightarrow [('A', 2), ('C', 4), ('B', 5)]

Qué pasa si ponemos: lambda v1,v2:'hola'

Ejemplo clasico: Contar palabras de un fichero

Modificadlo para: Obtener histograma de caracteres y obtener la lista ordenada de mayor a menor

──→[(En, 1200),...,(mancha,12)]

Transformación – groupByKey()

- Agrupa todos los elementos del RDD para obtener un único valor por clave con valor igual a la secuencia de valores
- El resultado sigue siendo una colección, esto en un RDD

```
r = sc.parallelize([('A', 1),('C', 2),('A', 3),('B', 4),('B', 5)])
rr = r.groupByKey()
print(rr.collect())
```

- Resultado: → [('A', (1,3), ('C', (2,)), ('B', (4,5))]
- ¿De qué tamaño es el RDDs de salida?
 - > Igual o menor que el RDD original
 - > Exactamente, igual al número de claves distintas en el RDDs original
- ¿Qué operación se puede hacer tras un groupByKey para que el resultado sea equivalente a un reduceByKey()? ¿Y simular un group solo con un reduceByKey?

Transformación – sortByKey()

- Ordena por clave un RDD de pares (K,V)
- Si le pasas False ordena de forma inversa

```
rdd = sc.parallelize([('A',1),('B',2),('C',3),('A',4),('A',5),('B',6)])
res = rdd.sortByKey(False)
print(res.collect())
```

- Resultado: → [('C', 3), ('B', 2), ('B', 6), ('A', 1), ('A', 4), ('A', 5)]
- Las claves se tienen que poder ordenar

Transformación – join()

 Realiza una operación join de dos RDD (K,V) y (K,W) por clave para dar un RDD (K,(V,W))

```
rdd1 = sc.parallelize([('A',1),('B',2),('C',3)])
rdd2 = sc.parallelize([('A',4),('B',5),('C',6)])
rddjoin = rdd1.join(rdd2)
print(rddjoin.collect())
```

- Resultado: → [('A', (1, 4)), ('B', (2, 5)), ('C', (3, 6))]
- Prueba a cambiar las claves y ver cuantos elementos se crean

Transformación – join()

> El join realiza el producto cartesiano

```
rdd1 = sc.parallelize([('A',1),('B',2),('C',3)])
rdd2 = rdd2 = sc.parallelize([('A',4),('A',5),('B',6),('D',7)])
rddjoin = rdd1.join(rdd2)
print(rddjoin.collect())
```

- Resultado: → [('A', (1, 4)), ('A', (1, 5)), ('B', (2, 6))]
- ¿Cuál es el tamaño del RDD de salida?
- Modifica join por leftOuterJoin, rightOuterJoin y fullOuterJoin ¿Qué sucede?

Operaciones que generan trasiego de datos

- ¿Qué sucede cuando se hace un reduceByKey, join?
 - > Hay que agrupar en un nodo los elementos con una misma clave
- Operaciones como esta generan trasiego (Shuffle) de datos.
- Esto puede ser muy costoso, pero es necesario
- Existen dos transformaciones que pueden gestionar/evitar este trasiego: coalesce() y repartition()

coalesce(numPartitions)

- Reduce el número de particiones del RDD a numPartitions.
- Es útil para ejecutar operaciones de forma más eficiente por ejemplo después de filtrar un número elevado de datos.
- Evita el trasiego si se reduce el número de particiones
- No obtiene particiones homogéneas en número de datos

repartition(numPartitions)

- Fuerza un trasiego de datos en el cluster (Shuffle).
- Se puede aumentar o reducir igual el número de particiones.
- Las particiones resultantes son de igual tamaño lo que permite ganar posteriormente en velocidad

cache()

- Como hemos visto las transformaciones son de evaluación perezosa
- Pero además cuando se ejecutan son efímeras, no se guarda nada en memoria

```
textrdd = sc.textFile('ese_fichero_tan_largo.txt')
print(textrdd.count()) # Desencadena la lectura del fichero
print(textrdd.count()) # Vuelve a leer el fichero!!
```

Si ponemos %time delante de los print ¿Qué tiempo de ejecución nos da?

cache() - consideraciones

```
rdd = sc.textFile("sensors.txt")
%time print(rdd.count())
%time print(rdd.count())
rdd.cache()
%time print(rdd.count())
%time print(rdd.count())
```

- ¿Cuál va a ser la primera línea que use datos en memoria?
- cache() es también de evaluación perezosa
- > Solo tiene sentido usarlo si ese rdd se va a usar varias veces

Ejemplo cache()

```
lineas = sc.textFile('elquijote.txt', 8)
pals = lineas.flatMap(lambda linea: linea.lower().split())
pairs = pals.map(lambda pal: (pal, 1))
pairs.cache()
res = pairs.reduceByKey(lambda elem1,elem2: elem1 + elem2)
print(res.collect())
print(pairs.count())
```


cache(), persist() y unpersist()

 rdd.persist() asigna un nivel de almacenamiento para el RDD. Sin parámetros funciona como cache() y hace almacenamiento en memoria

```
rdd.persist(StorageLevel)

Donde StorageLevel puede valer: MEMORY_ONLY, DISK_ONLY,...
```

- cache() mantiene en memoria el RDD y usa MEMORY_ONLY
- Spark, si necesita espacio, elimina automáticamente de memoria los RDDs utilizados hace más tiempo.
- También se puede usar rdd.unpersist() para quitar el RDD de memoria

Persistencia en fichero: acción saveAsTextFile

- Escribe los elementos de un RDD en uno (o varios) fichero(s) de texto en el directorio del worker.
- Cada worker guarda su parte de los datos pero no en el mismo fichero
- Lo que escribes se puede leer mediante textFile

Persistencia en fichero: acción saveAsTextFile

Prueba este código y mira qué genera

```
if os.path.isdir('salida'):
    n2 = sc.textFile('salida').map(lambda a:int(a))
    print n2.reduce(lambda v1,v2: v1 + v2)
else:
    numeros = sc.parallelize(xrange(0,1000))
    numeros.saveAsTextFile('salida')
```

- Borra la salida y cambia las particiones en parallelize ¿Qué sucede?
- Usa coalesce(1) antes de guardar ¿Qué sucede?

¿Qué resultado se obtiene?

```
counter = 0
rdd = sc.textFile('elquijote.txt')
def incrementar(x):
    global counter
    counter += x
rdd.map(lambda 1:len(1)).foreach(incrementar)
print("Número de caracteres: {}".format(counter))
```

- ➤ Número de caracteres: 0
- La operación está paralelizada, por lo que habrá un counter por JVM y el counter del driver no se incrementa nunca

¿Qué resultado se obtiene?

```
counter = 0
rdd = sc.textFile('elquijote.txt')
def incrementar(x):
    global counter
    counter += x
rdd.map(lambda 1:len(1)).foreach(incrementar)
print("Número de caracteres: {}".format(counter))
```

- ➤ Número de caracteres: 0
- La operación está paralelizada, por lo que habrá un counter por JVM y el counter del driver no se incrementa nunca

Otro ejemplo

```
pals a eliminar = ['a', 'ante', 'bajo', 'segun', 'que', 'de']
def elimPalabras(p):
    global pals a eliminar
    return p not in pals a eliminar
lineas = sc.textFile('elquijote.txt', 8)
pals = (lineas.flatMap(lambda linea: linea.lower().split()).filter(elimPalabras)
          .map(lambda pal: (pal, 1)).reduceByKey(lambda elem1,elem2: elem1 + elem2))
print(pals.takeOrdered(5, key=lambda a:-a[1]))
```

¿Qué sucede aquí con pals_a_eliminar?

Closures

- Las funciones que se ejecutan en las transformaciones se pasan a cada nodo junto con las variables necesarias. Esto es un closure
- No confundir con los valores propios del RDD que ya están en el nodo correspondiente.
- El closure se serializa y se envía a cada ejecutor.
- Las variables pasan a ser copias como el caso de counter en el ejemplo previo, donde se incrementa la copia local de la variable.

Variables compartidas

- ¿Cómo hacemos si queremos contar el número de líneas corruptas de un fichero?
 - > Variables compartidas de tipo accumulator
- ¿Cómo hacemos si queremos compartir cierta información con todos los workers?
 - Variables compartidas de tipo broadcast

Variables broadcast

- Sirven para almacenar variables de lectura en cada worker.
- Pueden ser variables o listas de gran tamaño
- Solo se almacenan una vez por worker, no por tarea
- Evitan la sobrecarga de la red, que sí sucede si se envían en el *closure*.
- Utilizan algoritmos eficientes para hacer la distribución de la variable

Broadcast

¿Qué sucede aquí con pals_a_eliminar?

Variables accumulators

- Sirven para acumular valores desde los workers al driver
- Para los workers las variables son de solo escritura
- Solo el driver puede leer las variables.

Ejemplo: Accumulators

```
counter = sc.accumulator(0)
rdd = sc.textFile('elquijote.txt')
def incrementar(x):
    global counter
    counter += x
rdd.map(lambda 1:len(1)).foreach(incrementar)
print("Número de caracteres: {}".format(conter.value))
```

➤ Número de caracteres: 2079636

Consola de spark

 En el siguiente enlace está la consola de spark para monitorear e inspeccionar los trabajos de spark

http://[driver]:4040/

- Esta dividida en:
 - > jobs: Con el estado de todos los trabajos ejecutados en spark
 - > stages: fases en las que se encuentran los trabajos
 - > environment: variables del entorno
 - executors: Especifica los procesos que están ejecutando las tareas.
 - **>** ...

Web UI: jobs

En el siguiente enlace se pueden ver los trabajos en

ejecución y ejecutados.

http://[driver]:4040/jobs

Web UI: Stages

 Las transformaciones se pueden representar como un grafo acíclico dirigido

```
log = sc.parallelize(['E: e21', 'I: i11', 'W: w12', 'I: i11', 'W: w13', 'E: e45'])
info = log.filter(lambda elemento: elemento[0]=='I')
errs = log.filter(lambda elemento: elemento[0]=='E')
inferr = info.union(errs)
print inferr.collect()
```


Web UI: Stages

En esta pestaña se pueden ver los DAG de las

ejecuciones:

http://[driver]:4040/stages

