

Final datasheet

EasyDUAL module with CoolSiC™ Trench MOSFET and PressFIT / NTC / TIM

Features

- · Electrical features
 - V_{DSS} = 1200 V
 - $I_{DN} = 150 \text{ A} / I_{DRM} = 300 \text{ A}$
 - Low switching losses
 - Low inductive design
 - High current density
 - Suitable Infineon gate drivers can be found under https://www.infineon.com/gdfinder
- Mechanical features
 - Rugged mounting due to integrated mounting clamps
 - PressFIT contact technology
 - Integrated NTC temperature sensor
 - Pre-applied thermal interface material

Potential applications

- · UPS systems
- High-frequency switching application
- DC/DC converter
- · Solar applications

Product validation

• Qualified for industrial applications according to the relevant tests of IEC 60747, 60749 and 60068

Description

EasyDUAL module

Table of contents

	Description	1
	Features	1
	Potential applications	1
	Product validation	1
	Table of contents	2
1	Package	3
2	MOSFET	3
3	Body diode (MOSFET)	6
4	NTC-Thermistor	6
5	Characteristics diagrams	7
6	Circuit diagram	.4
7	Package outlines	.5
8	Module label code	.6
	Revision history 1	.7
	Disclaimer	.8

EasyDUAL module

1 Package

1 Package

Table 1 Insulation coordination

Parameter	Symbol	Note or test condition	Values	Unit
Isolation test voltage	V _{ISOL}	RMS, f = 50 Hz, t = 1 min	3.0	kV
Isolation test voltage NTC	V _{ISOL(NTC)}	RMS, f = 50 Hz, t = 1 min	3.0	kV
Internal isolation		basic insulation (class 1, IEC 61140)	Al ₂ O ₃	
Comparative tracking index	СТІ		> 200	
Relative thermal index (electrical)	RTI	housing	140	°C

Table 2 Characteristic values

Parameter	Symbol	Symbol Note or test condition	Values			Unit
			Min.	Тур.	Max.	
Stray inductance module	L _{sCE}			8		nH
Module lead resistance, terminals - chip	R _{CC'+EE'}	T _H = 25 °C, per switch		1.4		mΩ
Storage temperature	T _{stg}		-40		125	°C
Maximum baseplate operation temperature	T _{BPmax}				125	°C
Mounting force per clamp	F		40		80	N
Weight	G			39		g

Note:

The current under continuous operation is limited to 25 A rms per connector pin.

Storage and shipment of modules with TIM => see AN 2012-07

2 MOSFET

Table 3 Maximum rated values

Parameter	Symbol	Note or test condition	Note or test condition		Unit
Drain-source voltage	V _{DSS}		T _{vj} = 25 °C	1200	V
Continuous DC drain current	I _{DDC}	$T_{\rm vj}$ = 175 °C, $V_{\rm GS}$ = 18 V	T _H = 65 °C	150	А
Repetitive peak drain current	I _{DRM}	verified by design, t _p limited by T _{vjmax}		300	А
Gate-source voltage, max. transient voltage	V _{GS}	D < 0.01		-10/23	V
Gate-source voltage, max. static voltage	V _{GS}			-7/20	V

EasyDUAL module

2 MOSFET

Table 4 Recommended values

Parameter	Symbol	Note or test condition	Values	Unit
On-state gate voltage	V _{GS(on)}		1518	V
Off-state gate voltage	V _{GS(off)}		-50	V

Table 5 Characteristic values

Parameter	Symbol	Note or test condition			Values		Unit
				Min.	Тур.	Max.	
Drain-source on-resistance	R _{DS(on)}	I _D = 150 A	$V_{\rm GS} = 18 \text{V},$ $T_{\rm vj} = 25 ^{\circ}\text{C}$		5.4	8	mΩ
			$V_{\rm GS} = 18 \text{ V},$ $T_{\rm vj} = 125 ^{\circ}\text{C}$		8.7		
			$V_{\rm GS} = 18 \text{ V},$ $T_{\rm vj} = 175 ^{\circ}\text{C}$		11.6		
			$V_{\rm GS} = 15 \text{ V},$ $T_{\rm vj} = 25 ^{\circ}\text{C}$		6.5		
Gate threshold voltage	V _{GS(th)}	I_D = 60 mA, V_{DS} = V_{GS} , T_{vj} = 25 °C, (tested after 1ms pulse at V_{GS} = +20 V)		3.45	4.3	5.15	V
Total gate charge	Q_{G}	$V_{\rm DD}$ = 800 V, $V_{\rm GS}$ = -3/18 V,	T _{vj} = 25 °C		0.446		μC
Internal gate resistor	R _{Gint}	T _{vj} = 25 °C			1.4		Ω
Input capacitance	C _{ISS}	$f = 100 \text{ kHz}, V_{DS} = 800 \text{ V},$ $V_{GS} = 0 \text{ V}$	T _{vj} = 25 °C		13.2		nF
Output capacitance	C _{OSS}	$f = 100 \text{ kHz}, V_{DS} = 800 \text{ V},$ $V_{GS} = 0 \text{ V}$	T _{vj} = 25 °C		0.63		nF
Reverse transfer capacitance	C _{rss}	$f = 100 \text{ kHz}, V_{DS} = 800 \text{ V},$ $V_{GS} = 0 \text{ V}$	T _{vj} = 25 °C		0.042		nF
C _{OSS} stored energy	E _{OSS}	$V_{\rm DS}$ = 800 V, $V_{\rm GS}$ = -3/18 V,	T _{vj} = 25 °C		258		μJ
Drain-source leakage current	I _{DSS}	$V_{\rm DS}$ = 1200 V, $V_{\rm GS}$ = -3 V	T _{vj} = 25 °C		0.09	530	μA
Gate-source leakage current	I _{GSS}	$V_{\rm DS}$ = 0 V, $T_{\rm vj}$ = 25 °C	V _{GS} = 20 V			400	nA
Turn-on delay time	t _{d on}	$I_{\rm D} = 150 \text{A}, R_{\rm Gon} = 2.7 \Omega,$	T _{vj} = 25 °C		31		ns
(inductive load)		$V_{\rm DD} = 600 \text{ V}, V_{\rm GS} = -3/18 \text{ V},$ $t_{\rm dead} = 1000 \text{ ns}, 0.1 \text{ V}_{\rm GS}$	T _{vj} = 125 °C		31		1
		to 0.1 I _D	T _{vj} = 175 °C		32		
Rise time (inductive load)	t _r	$I_{\rm D} = 150 \text{A}, R_{\rm Gon} = 2.7 \Omega,$	T _{vj} = 25 °C		13		ns
		$V_{DD} = 600 \text{ V}, V_{GS} = -3/18 \text{ V},$ $t_{dead} = 1000 \text{ ns}, 0.1 \text{ I}_{D} \text{ to}$	T _{vj} = 125 °C		13		1
		0.9 l _D	T _{vj} = 175 °C		14		

(table continues...)

EasyDUAL module

2 MOSFET

Table 5 (continued) Characteristic values

Parameter	Symbol	Note or test condition			Values		Unit
				Min.	Тур.	Max.	
Turn-off delay time	t _{d off}	$I_{\rm D} = 150 \text{ A}, R_{\rm Goff} = 0.51 \Omega,$	T _{vj} = 25 °C		35		ns
(inductive load)		$V_{DD} = 600 \text{ V}, V_{GS} = -3/18 \text{ V},$ 0.9 V_{GS} to 0.9 I_{D}	T _{vj} = 125 °C		38		
		0.3 V _{GS} to 0.3 I _D	T _{vj} = 175 °C		41		
Fall time (inductive load)	t _f	$I_{\rm D} = 150 \text{ A}, R_{\rm Goff} = 0.51 \Omega,$	T _{vj} = 25 °C		11		ns
		$V_{DD} = 600 \text{ V}, V_{GS} = -3/18 \text{ V},$ 0.9 I _D to 0.1 I _D	T _{vj} = 125 °C		12		
		0.5 10 to 0.1 10	T _{vj} = 175 °C		16		
Turn-on energy loss per	E _{on}	$I_{\rm D}$ = 150 A, $V_{\rm DD}$ = 600 V,	T _{vj} = 25 °C		2.12		mJ
pulse		$L_{\sigma} = 8 \text{ nH}, V_{GS} = -3/18 \text{ V},$ $R_{Gon} = 2.7 \Omega, \text{ di/dt} =$	T _{vj} = 125 °C		2.35		
		13.5 kA/ μ s (T_{vj} = 175 °C), t_{dead} = 1000 ns	T _{vj} = 175 °C		2.67		
Turn-on energy loss per	E _{on,o}	´	T _{vj} = 25 °C		1.28		mJ
pulse, optimized			T _{vj} = 125 °C		1.3		
		18.1 kA/ μ s (T_{vj} = 175 °C), t_{dead} = 100 ns	T _{vj} = 175 °C		1.35		
Turn-off energy loss per	E _{off}	$I_{\rm D}$ = 150 A, $V_{\rm DD}$ = 600 V,	T _{vj} = 25 °C		0.41		mJ
pulse		$L_{\sigma} = 8 \text{ nH}, V_{GS} = -3/18 \text{ V},$ $R_{Goff} = 0.51 \Omega, \text{ dv/dt} =$	T _{vj} = 125 °C		0.434		
			T _{vj} = 175 °C		0.445		
SC data	I _{SC}	$V_{GS} = -5/15 \text{ V}, V_{DD} = 800 \text{ V},$ $V_{DSmax} = V_{DSS} - L_{SDS} * \text{di/dt},$	$t_{\rm P} = 2 \mu {\rm s},$ $T_{\rm vj} = 25 {\rm ^{\circ}C}$		1260		А
		$t_{\rm P} = 2 \mu {\rm s},$ $T_{\rm vj} = 150 {\rm ^{\circ}C}$		1230			
Thermal resistance, junction to heat sink	R _{thJH}	per MOSFET, Valid with IF Thermal Interface Materi				0.314	K/W
Temperature under switching conditions	T _{vj op}			-40		175	°C

Note:

The selection of positive and negative gate-source voltages impacts losses and the long-term behavior of the MOSFET and body diode. The design guidelines described in Application Notes AN 2018-09 and AN 2021-13 must be considered to ensure sound operation of the device over the planned lifetime.

Tvj,op > 150°C is allowed for operation at overload conditions for MOSFET and body diode. For detailed specifications, please refer to AN 2021-13.

EasyDUAL module

3 Body diode (MOSFET)

Table 6 Maximum rated values

Parameter	Symbol	Note or test condition		Values	Unit
DC body diode forward current	I _{SD}	$T_{\rm vj} = 175 {\rm ^{\circ}C}, V_{\rm GS} = -3 {\rm V}$	T _H = 65 °C	85	A

Table 7 Characteristic values

Symbol	ol Note or test condition		Values		Unit	
			Min.	Тур. Мах.		
V_{SD}	$I_{SD} = 150 \text{ A}, V_{GS} = -3 \text{ V}$	T _{vj} = 25 °C		4.2	5.35	V
		T _{vj} = 125 °C		3.9		
		T _{vj} = 175 °C		3.8		
Peak reverse recovery I _{rrm}	$I_{SD} = 150 \text{ A, di}_{s}/\text{dt} =$	T _{vj} = 25 °C		106		А
	13.5 kA/ μ s, V_{DD} = 600 V, V_{GS} = -3 V, t_{dead} = 1000 ns	T _{vj} = 125 °C		155		
		T _{vj} = 175 °C		175		
$Q_{\rm rr}$ $I_{\rm SD} = 150 \text{A, di}_{\rm s}/\text{dt} = 13.5 \text{kA/\mu s, } V_{\rm DD} = 600 \text{V,} V_{\rm GS} = -3 \text{V, } t_{\rm dead} = 1000 \text{ns}$	T _{vj} = 25 °C		1.36		μC	
	13.5 kA/ μ s, V_{DD} = 600 V, V_{GS} = -3 V, t_{dead} = 1000 ns	T _{vj} = 125 °C		2.47		
		T _{vj} = 175 °C		3.2		
E _{rec}	I _{SD} = 150 A, di _s /dt =	T _{vj} = 25 °C		0.521		mJ
		T _{vj} = 125 °C		0.863		
	$t_{\text{dead}} = 1000 \text{ ns}$	T _{vj} = 175 °C		1.16		
$E_{\rm rec,o}$	$I_{SD} = 150 \text{ A, di}_{s}/\text{dt} =$	T _{vj} = 25 °C		0.764		mJ
	18.1 kA/ μ s ($T_{vj} = 175$ °C),	T _{vj} = 125 °C		0.816		1
		T _{vj} = 175 °C		0.963		
	V _{SD} I _{rrm} Q _{rr}	V_{SD} $I_{SD} = 150 \text{ A}, V_{GS} = -3 \text{ V}$ I_{rrm} $I_{SD} = 150 \text{ A}, \text{ di}_{s}/\text{dt} = 13.5 \text{ kA}/\mu\text{s}, V_{DD} = 600 \text{ V}, V_{GS} = -3 \text{ V}, t_{dead} = 1000 \text{ ns}$ Q_{rr} $I_{SD} = 150 \text{ A}, \text{ di}_{s}/\text{dt} = 13.5 \text{ kA}/\mu\text{s}, V_{DD} = 600 \text{ V}, V_{GS} = -3 \text{ V}, t_{dead} = 1000 \text{ ns}$ E_{rec} $I_{SD} = 150 \text{ A}, \text{ di}_{s}/\text{dt} = 13.5 \text{ kA}/\mu\text{s} (T_{vj} = 175 ^{\circ}\text{C}), V_{DD} = 600 \text{ V}, V_{GS} = -3 \text{ V}, t_{dead} = 1000 \text{ ns}$ $E_{rec,o}$ $I_{SD} = 150 \text{ A}, \text{ di}_{s}/\text{dt} = 1000 \text{ ns}$	$V_{SD} \qquad I_{SD} = 150 \text{ A, } V_{GS} = -3 \text{ V} \qquad \frac{T_{vj} = 25 \text{ °C}}{T_{vj} = 125 \text{ °C}}$ $T_{vj} = 175 \text{ °C}$ $I_{rrm} \qquad I_{SD} = 150 \text{ A, } \text{di}_{s}/\text{dt} = \\ 13.5 \text{ kA/µs, } V_{DD} = 600 \text{ V, } \\ V_{GS} = -3 \text{ V, } t_{dead} = 1000 \text{ ns}$ $T_{vj} = 125 \text{ °C}$ $T_{vj} = 125 \text{ °C}$ $T_{vj} = 175 \text{ °C}$ $T_{vj} = 125 \text{ °C}$ $T_{vj} = 125 \text{ °C}$ $T_{vj} = 125 \text{ °C}$ $T_{vj} = 175 \text{ °C}$ $T_{vj} = 125 \text{ °C}$	$V_{SD} \qquad I_{SD} = 150 \text{ A, } V_{GS} = -3 \text{ V} \qquad T_{vj} = 25 \text{ °C} \qquad T_{vj} = 125 \text{ °C} \qquad T_{vj} = 175 \text{ °C} \qquad T_{vj} = 125 \text{ °C} \qquad T_{vj} = 175 \text{ °C} \qquad T_{vj} = 125 \text{ °C} \qquad T_{vj} = 125 \text{ °C} \qquad T_{vj} = 125 \text{ °C} \qquad T_{vj} = 175 \text{ °C} \qquad T_{vj} = 125 \text{ °C} \qquad T_{vj} = 125 \text{ °C} \qquad T_{vj} = 175 \text{ °C} \qquad T_{vj} = 125 $	$V_{SD} I_{SD} = 150 \text{ A, } V_{GS} = -3 \text{ V} \qquad T_{vj} = 25 ^{\circ}\text{C} \qquad 4.2$ $T_{vj} = 125 ^{\circ}\text{C} \qquad 3.9$ $T_{vj} = 175 ^{\circ}\text{C} \qquad 3.8$ $I_{rrm} I_{SD} = 150 \text{ A, } \text{di}_{\text{s}}/\text{dt} = 13.5 ^{\circ}\text{kA}/\mu\text{s, } V_{DD} = 600 ^{\circ}\text{V, } V_{GS} = -3 ^{\circ}\text{V, } t_{dead} = 1000 ^{\circ}\text{ns}$ $Q_{rr} I_{SD} = 150 \text{ A, } \text{di}_{\text{s}}/\text{dt} = 13.5 ^{\circ}\text{kA}/\mu\text{s, } V_{DD} = 600 ^{\circ}\text{V, } V_{GS} = -3 ^{\circ}\text{V, } t_{dead} = 1000 ^{\circ}\text{ns}$ $T_{vj} = 175 ^{\circ}\text{C} \qquad 175$ $Q_{rr} I_{SD} = 150 ^{\circ}\text{A, } \text{di}_{\text{s}}/\text{dt} = 13.5 ^{\circ}\text{kA}/\mu\text{s, } V_{DD} = 600 ^{\circ}\text{V, } V_{GS} = -3 ^{\circ}\text{V, } t_{dead} = 1000 ^{\circ}\text{ns}$ $T_{vj} = 125 ^{\circ}\text{C} \qquad 1.36$ $T_{vj} = 125 ^{\circ}\text{C} \qquad 2.47$ $T_{vj} = 175 ^{\circ}\text{C} \qquad 3.2$ $T_{vj} = 175 ^{\circ}\text{C} \qquad 3.2$ $T_{vj} = 175 ^{\circ}\text{C} \qquad 0.521$ $T_{vj} = 125 ^{\circ}\text{C} \qquad 0.863$ $T_{vj} = 175 ^{\circ}\text{C} \qquad 1.16$ $T_{vj} = 175 ^{\circ}\text{C} \qquad 0.863$ $T_{vj} = 175 ^{\circ}\text{C} \qquad 0.863$ $T_{vj} = 175 ^{\circ}\text{C} \qquad 0.863$ $T_{vj} = 125 ^{\circ}\text{C} \qquad 0.864$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

4 NTC-Thermistor

Table 8 Characteristic values

Parameter	Symbol	Symbol Note or test condition		Values		
			Min.	Тур.	Max.	
Rated resistance	R ₂₅	T _{NTC} = 25 °C		5		kΩ
Deviation of R ₁₀₀	∆R/R	$T_{\rm NTC} = 100 {}^{\circ}{\rm C}$, $R_{100} = 493 \Omega$	-5		5	%
Power dissipation	P ₂₅	T _{NTC} = 25 °C			20	mW
B-value	B _{25/50}	$R_2 = R_{25} \exp[B_{25/50}(1/T_2-1/(298,15 \text{ K}))]$		3375		K
B-value	B _{25/80}	$R_2 = R_{25} \exp[B_{25/80}(1/T_2-1/(298,15 \text{ K}))]$		3411		K
B-value	B _{25/100}	$R_2 = R_{25} \exp[B_{25/100}(1/T_2-1/(298,15 \text{ K}))]$		3433		K

Note: For an analytical description of the NTC characteristics please refer to AN2009-10, chapter 4.

EasyDUAL module

5 Characteristics diagrams

5 Characteristics diagrams

Output characteristic (typical), MOSFET

 $I_D = f(V_{DS})$

 $V_{GS} = 15 V$

Output characteristic (typical), MOSFET

 $I_D = f(V_{DS})$

 $T_{vj} = 175 \,^{\circ}\text{C}$

Output characteristic (typical), MOSFET

 $I_D = f(V_{DS})$

V_{GS} = 18 V

Drain source on-resistance (typical), MOSFET

 $R_{DS(on)} = f(I_D)$

 $V_{GS} = 18 V$

EasyDUAL module

5 Characteristics diagrams

Drain source on-resistance (typical), MOSFET

$$R_{DS(on)} = f(T_{vj})$$

 $I_D = 150 A$

Transfer characteristic (typical), MOSFET

$$I_D = f(V_{GS})$$

 $V_{DS} = 20 V$

Gate-source threshold voltage (typical), MOSFET

$$V_{GS(th)} = f(T_{vj})$$

 $V_{DS} = V_{GS}$

Gate charge characteristic (typical), MOSFET

$$V_{GS} = f(Q_G)$$

$$I_D = 150 A$$
, $T_{vi} = 25 °C$

EasyDUAL module

5 Characteristics diagrams

Capacity characteristic (typical), MOSFET

 $C = f(V_{DS})$

 $f = 100 \text{ kHz}, T_{vi} = 25 \text{ °C}, V_{GS} = 0 \text{ V}$

Switching times (typical), MOSFET

 $t = f(I_D)$

 V_{DD} = 600 V, R_{Gon} = 2.7 $\Omega,\,R_{Gon,o}$ = 1.5 $\Omega,\,T_{vj}$ = 175 °C, V_{GS} = -3/18 V

Switching times (typical), MOSFET

 $t = f(I_D)$

 R_{Goff} = 0.51 Ω , V_{DD} = 600 V, T_{vj} = 175 °C, V_{GS} = -3/18 V

Switching times (typical), MOSFET

 $t = f(R_G)$

 V_{DD} = 600 V, t_{dead} = 1000 ns, I_{D} = 150 A, T_{vj} = 175 °C, V_{GS} = -3/18 V

EasyDUAL module

5 Characteristics diagrams

Current slope (typical), MOSFET

 $di/dt = f(R_G)$

 V_{DD} = 600 V, t_{dead} = 1000 ns, I_{D} = 150 A, V_{GS} = -3/18 V

Voltage slope (typical), MOSFET

 $dv/dt = f(R_G)$

 $V_{DD} = 600 \text{ V}, I_D = 150 \text{ A}, V_{GS} = -3/18 \text{ V}$

Switching losses (typical), MOSFET

 $E_{on} = f(I_D)$

 R_{Gon} = 2.7 Ω , V_{DD} = 600 V, $R_{Gon,o}$ = 1.5 Ω , V_{GS} = -3/18 V

Switching losses (typical), MOSFET

 $E_{off} = f(I_D)$

 $R_{Goff} = 0.51 \Omega$, $V_{DD} = 600 V$, $V_{GS} = -3/18 V$

EasyDUAL module

5 Characteristics diagrams

Switching losses (typical), MOSFET

 $E = f(R_G)$

 V_{DD} = 600 V, t_{dead} = 1000 ns, I_{D} = 150 A, V_{GS} = -3/18 V

Switching losses (typical), MOSFET

 $E_{on} = f(V_{GS(off)})$

 $R_{Goff} = 0.51 \Omega$, $V_{DD} = 600 V$, $R_{Gon} = 2.7 \Omega$, $V_{GS(on)} = 18 V$, $I_{D} = 150 A$, $R_{Gon,o} = 1.5 \Omega$, $T_{vj} = 175 ^{\circ}C$

Switching losses (typical), MOSFET

 $E_{on} = f(t_{dead})$

 $R_{Gon} = 2.7 \Omega$, $I_D = 150 A$, $V_{DD} = 600 V$, $V_{GS} = -3/18 V$

Reverse bias safe operating area (RBSOA), MOSFET

 $I_D = f(V_{DS})$

 $R_{Goff} = 0.51 \Omega$, $T_{vj} = 175 \,^{\circ}\text{C}$, $V_{GS} = -3/18 \,^{\circ}\text{V}$

EasyDUAL module

5 Characteristics diagrams

Transient thermal impedance, MOSFET

$$Z_{th} = f(t)$$

Forward characteristic body diode (typical), MOSFET

$$I_{SD} = f(V_{SD})$$

$$T_{vj} = 25 \, ^{\circ}C$$

Forward voltage of body diode (typical), MOSFET

$$V_{SD} = f(T_{vj})$$

$$I_{SD} = 150 A$$

Switching losses body diode (typical), MOSFET

$$E_{rec} = f(I_{SD})$$

$$R_{Gon} = 2.7 \Omega$$
, $R_{Gon,o} = 1.5 \Omega$, $V_{DD} = 600 V$

EasyDUAL module

5 Characteristics diagrams

Switching losses body diode (typical), MOSFET

 $E_{rec} = f(R_G)$

 t_{dead} = 1000 ns, I_{SD} = 150 A, V_{DD} = 600 V

Switching losses body diode (typical), MOSFET

 $E_{rec} = f(V_{GS(off)})$

 R_{Goff} = 0.51 $\Omega,\,R_{Gon}$ = 2.7 $\Omega,\,V_{GS(on)}$ = 18 V, I_{SD} = 150 A, $R_{Gon,o}$ = 1.5 $\Omega,\,V_{DD}$ = 600 V, T_{vj} = 175 °C

Switching losses body diode (typical), MOSFET

 $E_{rec} = f(t_{dead})$

 $R_{Gon} = 2.7 \Omega$, $I_D = 150 A$, $V_{DD} = 600 V$, $V_{GS} = -3/18 V$

Temperature characteristic (typical), NTC-Thermistor $R = f(T_{NTC})$

EasyDUAL module
6 Circuit diagram

6 Circuit diagram

Figure 1

7 Package outlines

7 Package outlines

Figure 2

EasyDUAL module

8 Module label code

8 Module label code

Cadafarmat	Data Matrix		Daysond - C	`ada120		
Code format	Data Matrix		Barcode C	Jode128		
Encoding	ASCII text		Code Set /	A		
Symbol size	16x16		23 digits			
Standard	IEC24720 and IEC16022		IEC8859-1			
Code content	Content	Digit		Example		
	Module serial number	1-5		71549		
	Module material number	6 - 11		142846		
	Production order number	12 - 19		55054991		
	Date code (production year)	20 – 21		15		
	Date code (production week)	22 – 23		30		
Example	BOOK FOR Y					

Figure 3

EasyDUAL module

Revision history

Revision history

Document revision	Date of release	Description of changes
0.10	2023-08-07	Initial version
1.00	2025-03-14	Final datasheet

Trademarks

All referenced product or service names and trademarks are the property of their respective owners.

Edition 2025-03-14 Published by Infineon Technologies AG 81726 Munich, Germany

© 2025 Infineon Technologies AG All Rights Reserved.

Do you have a question about any aspect of this document?

 ${\bf Email: erratum@infineon.com}$

Document reference IFX-ABH861-002

Important notice

The information given in this document shall in no event be regarded as a guarantee of conditions or characteristics ("Beschaffenheitsgarantie").

With respect to any examples, hints or any typical values stated herein and/or any information regarding the application of the product, Infineon Technologies hereby disclaims any and all warranties and liabilities of any kind, including without limitation warranties of non-infringement of intellectual property rights of any third party.

In addition, any information given in this document is subject to customer's compliance with its obligations stated in this document and any applicable legal requirements, norms and standards concerning customer's products and any use of the product of Infineon Technologies in customer's applications.

The data contained in this document is exclusively intended for technically trained staff. It is the responsibility of customer's technical departments to evaluate the suitability of the product for the intended application and the completeness of the product information given in this document with respect to such application.

Please note that this product is not qualified according to the AEC Q100 or AEC Q101 documents of the Automotive Electronics Council.

Warnings

Due to technical requirements products may contain dangerous substances. For information on the types in question please contact your nearest Infineon Technologies office.

Except as otherwise explicitly approved by Infineon Technologies in a written document signed by authorized representatives of Infineon Technologies, Infineon Technologies' products may not be used in any applications where a failure of the product or any consequences of the use thereof can reasonably be expected to result in personal injury.