The KITTI Vision Benchmark Suite

A project of <u>Karlsruhe Institute of Technology</u> and <u>Toyota Technological Institute at Chicago</u>

- home
- setup
- stereo
 - o <u>Stereo 2012</u>
 - Stereo 2015
- flow
 - Flow 2012
 - Flow 2015
- sceneflow
- depth
 - Depth Completion
 - Depth Prediction
- odometry
- object
 - 2d object
 - 3d object
 - bird's eye view
- tracking
 - multi-object tracking
 - multi-object tracking and segmentation
- road
- semantics
 - o pixel-level
 - instance-level
- raw data
- submit results

Andreas Geiger (MPI Tübingen) | Philip Lenz (KIT) | Christoph Stiller (KIT) | Raguel Urtasun (University of Toronto)

3D Object Detection Evaluation 2017

The 3D object detection benchmark consists of 7481 training images and 7518 test images as well as the corresponding point clouds, comprising a total of 80.256 labeled objects. For evaluation, we compute precision-recall curves. To rank the methods we compute average precision. We require that all methods use the same parameter set for all test pairs. Our development kit provides details about the data format as well as MATLAB / C++ utility functions for reading and writing the label files.

- <u>Download left color images of object data set (12 GB)</u>
- Download right color images, if you want to use stereo information (12 GB)
- Download the 3 temporally preceding frames (left color) (36 GB)
- Download the 3 temporally preceding frames (right color) (36 GB)
- Download Velodyne point clouds, if you want to use laser information (29 GB)
- Download camera calibration matrices of object data set (16 MB)
- Download training labels of object data set (5 MB)
- <u>Download object development kit (1 MB)</u> (including 3D object detection and <u>bird's eye view</u> evaluation code)
- Download pre-trained LSVM baseline models (5 MB) used in Joint 3D Estimation of Objects and Scene Layout (NIPS 2011). These models are referred to as LSVM-MDPM-sv (supervised version) and LSVM-MDPM-us (unsupervised version) in the tables below.
- Download reference detections (L-SVM) for training and test set (800 MB)
- Qianli Liao (NYU) has put together <u>code to convert from KITTI to PASCAL VOC file format</u> (documentation included, requires Emacs).
- Karl Rosaen (U.Mich) has released <u>code to convert between KITTI, KITTI tracking, Pascal VOC, Udacity, CrowdAI and AUTTI</u> formats.
- We thank <u>David Stutz</u> and <u>Bo Li</u> for developing the 3D object detection benchmark.

We evaluate 3D object detection performance using the PASCAL criteria also used for 2D object detection. Far objects are thus filtered based on their bounding box height in the image plane. As only objects also appearing on the image plane are labeled, objects in don't car areas do not count as false positives. We note that the evaluation does not take care of ignoring detections that are not visible on the image plane — these detections might give rise to false positives. For **cars** we require an 3D bounding box **overlap of 70%**, while for pedestrians and cyclists we require a 3D bounding box overlap of 50%. Difficulties are defined as follows:

- \bullet Easy: Min. bounding box height: 40 Px, Max. occlusion level: Fully visible, Max. truncation: 15 %
- Moderate: Min. bounding box height: 25 Px, Max. occlusion level: Partly occluded, Max. truncation: 30 %
- Hard: Min. bounding box height: 25 Px, Max. occlusion level: Difficult to see, Max. truncation: 50 %

All methods are ranked based on the moderately difficult results.

Important Policy Update: As more and more non-published work and re-implementations of existing work is submitted to KITTI, we have established a new policy: from now on, only submissions with significant novelty that are leading to a peer-reviewed paper in a conference or journal are allowed. Minor modifications of existing algorithms or student research projects are not allowed. Such work must be evaluated on a split of the training set. To ensure that our policy is adopted, new users must detail their status, describe their work and specify the targeted venue during registration. Furthermore, we will regularly delete all entries that are 6 months old but are still anonymous or do not have a paper associated with them. For conferences, 6 month is enough to determine if a paper has been accepted and to add the bibliography information. For longer review cycles, you need to resubmit your results.

Additional information used by the methods

- 🖾 Stereo: Method uses left and right (stereo) images
- 🖹 Flow: Method uses optical flow (2 temporally adjacent images)
- 🗗 Multiview: Method uses more than 2 temporally adjacent images
- 🔀 Laser Points: Method uses point clouds from Velodyne laser scanner
- 🖹 Additional training data: Use of additional data sources for training (see details)

Car

	Method	Setting	Code	Moderate	Easy	Hard	Runtime	Environment	Compare
1	MMLab-PartA^2	***		77.86 %	85.94 %	72.00 %	0.08 s	GPU @ 2.5 Ghz (Python + C/C++)	
S. Shi, Z. Wang, X. Wang and H. Li: <u>Part-A^2 Net: 3D Part-Aware and Aggregation Neural Network for Object Detection from Point Cloud.</u> arXiv preprint arXiv:1907.03670 2019.									
2	HRI-FusionRCNN	THIL di Aiv	.1907.	77.84 %	86.60 %	69.15 %	0.1 s	1 core @ 2.5 Ghz (C/C++)	
3	STD			77.63 %	86.61 %	76.06 %	0.08 s	GPU @ 2.5 Ghz (Python + C/C++)	
Z. Y	Z. Yang, Y. Sun, S. Liu, X. Shen and J. Jia: STD: Sparse-to-Dense 3D Object Detector for Point Cloud. ICCV 2019.								
4	<u>Patches - EMP</u>	<u>:::</u>		77.20 %	87.85 %	72.78 %	0.5 s	GPU @ 2.5 Ghz (Python)	
5	<u>Patches</u>	***		77.16 %	87.87 %	68.91 %	0.15 s	GPU @ 2.0 Ghz	
6	<u>UberATG-MMF</u>	***		76.75 %	86.81 %	68.41 %	0.08 s	GPU @ 2.5 Ghz (Python)	
M. I	Liang*, B. Yang*, Y. Chen	, R. Hu ar	nd R. U	rtasun: <u>Mu</u>	lti-Task l	Multi-Se	nsor Fusio	n for 3D Object Detection.	CVPR 2019.
7	<u>F-ConvNet</u>	***		76.51 %	85.88 %	68.08 %	0.47 s	GPU @ 2.5 Ghz (Python + C/C++)	
Z. V	Vang and K. Jia: Frustum ection. IROS 2019.	ConvNet	Slidin	g Frustums	to Aggr	regate Lo	ocal Point-V	Wise Features for Amodal 3	D Object
		**		5 0.000/	84.43	68.22	0.00	GPU @ 2.5 Ghz (Python	
8	3D IoU Loss	_		76.28 %	%	%	0.08 s	+ C/C++)	
D. Z	Zhou: <u>IoU Loss for 2D/3D</u>	Object D	<u>etectio</u>	<u>n</u> . Internati			on 3D Vis	` '	
9	SRF			76.25 %	85.09 %	68.10 %	0.05 s	GPU @ 2.5 Ghz (Python + C/C++)	
10	HRI-VoxelFPN			76.14 %	85.48 %	68.05 %	0.02 s	GPU @ 2.5 Ghz (Python + C/C++)	
	Vang, J. An and J. Cao: <u>Vo</u> print arXiv:1907.05286v2		multi-s	cale voxel f	eature a	ggregati	ion in 3D o	bject detection from point	clouds. arXiv
11	RGB3D	***		75.92 %	85.72 %	68.29 %	0.39 s	GPU @ 2.5 Ghz (Python)	
12	<u>SegVoxelNet</u>			75.81 %	84.19 %	67.80 %	0.04 s	1 core @ 2.5 Ghz (Python)	
13	<u>epBRM</u>	***		75.79 %	83.95 %	67.88 %	0.1 s	GPU @ >3.5 Ghz (Python + C/C++)	
14	MMLab-PointRCNN	***	<u>code</u>	75.76 %	85.94 %	68.32 %	0.1 s	GPU @ 2.5 Ghz (Python + C/C++)	

S. Shi, X. Wang and H. Li: Pointronn: 3d object proposal generation and detection from point cloud. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition 2019. 85.66 67.68 4 cores @ >3.5 Ghz 75.74 % 0.02 s% (Python) 84.28 67.39 GPU @ 2.5 Ghz (Python ::: 16 Fast Point R-CNNv1.1 75.73 % $0.06 \, s$ % % + C/C++)84.59 67.80 1 core @ >3.5 Ghz ::: 0.05 sAlibaba-AILabsX 17 75.69 % % % (C/C++)83.95 67.71 1 core @ 2.5 Ghz code 75.67 % 18 **PTS** *:: 0.01 s% % (C/C++)84.32 67.86 GPU @ 2.5 Ghz (Python PointRCNN-deprecated 19 *:: 75.42 % 0.1 s% % + C/C++)84.04 67.36 GPU @ 2.0 Ghz (Python SECOND-V1.5 *:: 0.04 scode 75.38 % % % + C/C++)84.21 67.36 21 MMV 75.35 % 0.4 sGPU @ 2.5 Ghz (C/C++) % % 79.90 68.48 1 core @ 2.5 Ghz 0.07 s75.18 % 2.2 TBA % % (Pvthon) 85.01 68.09 1 core @ 2.5 Ghz 75 12 % 23 mypointrenn 1 s % % (Python) 84.44 67.37 GPU @ 2.5 Ghz (Python 24 **ARPNET** 75.03 % 0.08 s% % + C/C++) 79.05 68.30 1080ti GPU and Intel i7 code 74.99 % 25 PointPillars *** 16 ms % CPU A. Lang, S. Vora, H. Caesar, L. Zhou, J. Yang and O. Beijbom: PointPillars: Fast Encoders for Object Detection from Point Clouds. CVPR 2019. 83.92 66.88 GPU @ >3.5 Ghz 0.04 sNU-optim 74.94 % % % (Python) 83.84 67.30 GPU @ 2.5 Ghz (Python *** **MPNet** 74.92 % 0.02 s+ C/C++)80.02 68.46 1 core @ >3.5 Ghz 28 DH-ARI 74.90 % 0.2 s(Python + C/C++)% % 84.02 67.55 GPU @ >3.5 Ghz *:: 2.9 Alibaba-AILabsX 74.87 % 0.2 s% % (Python) 84.10 66.92 0.029 s30 A-VoxelNet 74 84 % GPU @ 2.5 Ghz (Python) % 84.61 67.44 1 core @ 2.5 Ghz 31 **MVSLN** 74.76 % 0.1ss% % (C/C++)83.56 66.76 ::: 3DBN 74.64 % 0.13s1080Ti (Python+C/C++) % % X. Li, J. Guivant, N. Kwok and Y. Xu: 3D Backbone Network for 3D Object Detection. CoRR 2019. 84.25 66.41 1 core @ 2.5 Ghz ::: 74.49 % 0.06 s% % (C/C++)84.15 66.97 ::: 34 **FOFNet** 74.45 % 0.04 sGPU @ 2.5 Ghz (Python) % % GPU @ 2.5 Ghz (Python 83.45 66.38 *** 0.06 s35 Fast Point R-CNN 74.43 % % % + C/C++)84.33 64.83 GPU @ 2.5 Ghz (Matlab PC-CNN-V2 *** 73.80 % 0.5 s36 + C/C++)% X. Du, M. Ang, S. Karaman and D. Rus: A General Pipeline for 3D Detection of Vehicles. 2018 IEEE International Conference on Robotics and Automation (ICRA) 2018. 83.32 65.77 GPU @ >3.5 Ghz *:: AILabs3D 73.70 % 0.6 s37 % % (Python) 83.13 66.20 38 SECOND code 73.66 % 38 ms 1080Ti Y. Yan, Y. Mao and B. Li: SECOND: Sparsely Embedded Convolutional Detection. Sensors 2018. 79.61 65.98 GPU @ 2.5 Ghz (Python Tencent ADlab Lidar *** 73.03 % 0.1 s% % + C/C++)65.22 83.19 GPU @ 3.0 Ghz (Python ::: 0.06 s40 MVX-Net 72.67 % % % + C/C++)82.07 64.60 ::: **MDC** 72.67 % 0.17 sGPU @ 2.5 Ghz (Python) % % 79.75 66.33 GPU @ 2.5 Ghz (Python 0.2 s 42 **IPOD** 72.57 % % % + C/C++)81.94 66.38 **AVOD-FPN** *** 0.1 s Titan X (Pascal) 43 code 71.88 %

%

	u, M. Mozifian, J. Lee, A. <u>gregation</u> . IROS 2018.	Harakeh	and S.	Waslander:	Joint 3E) Propos	al Generat	ion and Object Detection fr	om View	
44	<u>CONV-BOX</u>	***		70.47 %	79.98 %	64.49 %	0.2 s	Tesla V100		
45	<u>F-PointNet</u>	***	code	70.39 %	81.20 %	62.19 %	0.17 s	GPU @ 3.0 Ghz (Python)		
	C. Qi, W. Liu, C. Wu, H. Su and L. Guibas: <u>Frustum PointNets for 3D Object Detection from RGB-D Data</u> . arXiv preprint arXiv:1711.08488 2017.									
46	<u>PAD</u>			68.33 %	76.72 %	65.49 %	0.15 s	1 core @ 2.5 Ghz (Python)		
47	<u>PP_v1.0</u>		<u>code</u>	68.12 %	77.99 %	65.34 %	0.02s	1 core @ 2.5 Ghz (C/C++)		
48	SeoulRobotics-HFD	***		66.98 %	76.09 %	64.92 %	0.035 s	GPU (C++)		
49	ELLIOT	***		66.86 %	76.38 %	64.47 %	0.1 s	1 core @ 2.5 Ghz (C/C++)		
50	<u>DFD</u>			66.56 %	76.36 %	64.11 %	0.05 s	GPU @ 2.0 Ghz (Python + C/C++)		
51	<u>SCANet</u>			66.30 %	76.09 %	58.68 %	0.09s	GPU @ 2.5 Ghz (Python)		
52	<u>UberATG-ContFuse</u>	***		66.22 %	82.54 %	64.04 %	0.06 s	GPU @ 2.5 Ghz (Python)		
M.	Liang, B. Yang, S. Wang a	and R. Ur	tasun:	Deep Conti	nuous Fı	ısion for	Multi-Sen	sor 3D Object Detection. E	CCV 2018.	
53	SCANet			65.99 %	75.66 %	63.48 %	0.17 s	>8 cores @ 2.5 Ghz (Python)		
54	AVOD	***	<u>code</u>	65.78 %	73.59 %	58.38 %	0.08 s	Titan X (pascal)		
		Harakeh	and S.	Waslander:	Joint 3D	<u>Propos</u>	al Generat	ion and Object Detection fr	om View	
	regation. IROS 2018.			GE 7E 0/	75.98	58.44	1.0	CDII @ 2 E Cha (Dathan)		
55	SECA			65.75 %	% 75.98	% 58.44	1 s	GPU @ 2.5 Ghz (Python)		
56	<u>VSE</u>			65.75 %	%	%	0.15 s	GPU @ 2.5 Ghz (Python)		
57	RTL3D			65.72 %	80.42 %	63.50 %	0.02 s	GPU @ 2.5 Ghz (Python)		
58	Multi-3D	***		65.33 %	76.57 %	56.11 %	0.15 s	1 core @ 2.5 Ghz (C/C++)		
59	FNV1_RPN			65.18 %	74.61 %	57.75 %	0.12 s	1 core @ 2.5 Ghz (Python + C/C++)		
60	FNV1_Fusion			65.07 %	74.78 %	57.74 %	0.11 s	GPU @ 2.5 Ghz (Python)		
61	X MD			64.82 %	74.06 %	57.49 %	0.2 s	1 core @ 2.5 Ghz (Python + C/C++)		
62	VoxelNet(Unofficial)			64.80 %	74.59 %	57.38 %	0.5 s	GPU @ 2.0 Ghz (Python)		
63	<u>SECA</u>			64.59 %	73.70 %	57.21 %	0.09 s	GPU @ 2.5 Ghz (Python)		
64	<u>FailNet-Fusion</u>	***		64.36 %	78.54 %	57.21 %	0.1 s	1 core @ 2.5 Ghz (Python)		
65	NLK			63.99 %	73.81 %	60.90 %	0.02 s	1 core @ 2.5 Ghz (Python)		
66	FailNet-LIDAR	***		63.08 %	73.26 %	56.24 %	0.1 s	1 core @ 2.5 Ghz (Python)		
67	MV3D	***		62.35 %	71.09 %	55.12 %	0.36 s	GPU @ 2.5 Ghz (Python + C/C++)		
X. (Chen, H. Ma, J. Wan, B. L	i and T. X	ia: <u>Mul</u>	ti-View 3D (Object D	etection	Network f	for Autonomous Driving. CV	/PR 2017.	
68	FNV1			61.69 %	71.93 %	55.41 %	0.11 s	GPU @ 2.5 Ghz (Python)		
69	FNV2			59.26 %	67.67 %	51.97 %	0.18 s	GPU @ 2.5 Ghz (Python)		
70	CLF3D	***		58.48 %	65.54 %	46.54 %	0.13 s	GPU @ 2.5 Ghz (Python)		
71	<u>A3DODWTDA</u>	***	<u>code</u>	56.81 %	59.35 %	50.51 %	0.08 s	GPU @ 3.0 Ghz (Python)		
F. C	Sustafsson and E. Linder-	Norén: <u>A</u>	utomot	ive 3D Obje	ect Detec	ction Wit	hout Targe	et Domain Annotations. 201	8.	

```
68.02
                                                              49.39
                                                                                1 core @ 2.5 Ghz
72
    anm
                                           56.76 %
                                                                      3 s
                                                      %
                                                              %
                                                                                (C/C++)
                                                      65.71
                                                              48.74
73
    avodC
                                           55.47 %
                                                                      0.1 s
                                                                                GPU @ 2.5 Ghz (Python)
                                                      %
                                                              %
                                                      68.45
                                                              51.21
    PL V2 (SDN+GDC)
                                           54.66 %
                                                                      0.6 s
                                                                                GPU @ 2.5 Ghz (C/C++)
                             ::
                                                      %
                                                              %
                                                      67.73
                                                              47 70
                                           54.33 %
                                                                      0.1 s
                                                                                GPU @ 2.5 Ghz (Python)
    E-VoxelNet
                                                      %
                                                              %
                                                      66.77
                                                              51.31
                                                                                GPU @ 2.5 Ghz (Python
                             :::
                                                                      0.24 s
   MV3D (LIDAR)
                                           52.73 %
                                                                                + C/C++)
                                                      %
X. Chen, H. Ma, J. Wan, B. Li and T. Xia: Multi-View 3D Object Detection Network for Autonomous Driving. CVPR 2017.
                                                      55.63
                                                              44.13
                                                                                GPU @ 3.5 Ghz (C/C++)
    Complexer-YOLO
                                                                      0.06 s
                                           49 44 %
                                                      %
M. Simon, K. Amende, A. Kraus, J. Honer, T. Samann, H. Kaulbersch, S. Milz and H. Michael Gross: Complexer-YOLO: Real-
Time 3D Object Detection and Tracking on Semantic Point Clouds. The IEEE Conference on Computer Vision and Pattern
Recognition (CVPR) Workshops 2019.
                                                      60.41
                                                              38.52
                                                                      0.4 s
                                                                                GPU @ 2.5 Ghz (Python)
    Pseudo-LiDAR V2
                                     code 44.56 %
                                                      %
                                                              0/2
                                                      55.11
                                                              31.86
                                                                                1 core @ 2.5 Ghz (Python
79
                                           38.80 %
                                                                      0.35 s
                                                      %
                                                                                + C/C++)
                                                              %
                                                      55.40
                                                              31.37
    Pseudo-LiDAR
                             ŏŏ
                                     code 37.17 %
80
                                                                      0.4 s
                                                                                GPU @ 2.5 Ghz (C/C++)
Y. Wang, W. Chao, D. Garg, B. Hariharan, M. Campbell and K. Weinberger: Pseudo-LiDAR from Visual Depth Estimation:
Bridging the Gap in 3D Object Detection for Autonomous Driving. CVPR 2019.
                                                      49.23
                                                              28.39
81 Stereo R-CNN
                             ŏŏ
                                     code 34.05 %
                                                                      0.3s
                                                                                GPU @ 2.5 Ghz (Python)
P. Li, X. Chen and S. Shen: Stereo R-CNN based 3D Object Detection for Autonomous Driving. CVPR 2019.
                                                      49.68
                                                              28.45
                                           34.04 %
                                                      %
                                                      41.70
                                                              25.96
                                           31.21 %
                                                                      0.3 s
83
    SA<sub>3D</sub>
                                                                                GPU @ 2.5 Ghz (Python)
                                                      %
                                                              %
                                                      28.50
                                                              20.32
                             ňň
                                                                      0.08 s
                                           24.10 %
                                                                                GPU @ 2.5 Ghz (C/C++)
84
    RT3DStereo
                                                      %
                                                              %
                                                      23.49
                                                              19.81
                             *::
                                                                      0.09 s
85
    RT3D
                                           21.27 %
                                                                                GPU @ 1.8Ghz
                                                      %
                                                              %
Y. Zeng, Y. Hu, S. Liu, J. Ye, Y. Han, X. Li and N. Sun: RT3D: Real-Time 3-D Vehicle Detection in LiDAR Point Cloud for
Autonomous Driving. IEEE Robotics and Automation Letters 2018.
                                                      29.93
                                                              16.59
                                                                                1 core @ 3.5 Ghz
   StereoFENet
                                           20.37 %
                                                                      0.15 \, s
                                                                                (Python)
W. Bao, B. Xu and Z. Chen: MonoFENet: Monocular 3D Object Detection with Feature Enhancement Networks. 2019.
                                                      21.48
                                                              15.26
                                                                                GPU @ 2.5 Ghz (Python
                                           16.08 %
                                                                      0.4 s
X. Ma, Z. Wang, H. Li, P. Zhang, W. Ouyang and X. Fan: <u>Accurate Monocular Object Detection via Color- Embedded 3D</u>
Reconstruction for Autonomous Driving. Proceedings of the IEEE international Conference on Computer Vision (ICCV)
                                                      20.65
                                                              13.32
88 <u>M3D-RPN</u>
                                     code 15.70 %
                                                                      0.16 s
                                                                                GPU @ 1.5 Ghz (Python)
G. Brazil and X. Liu: M3D-RPN: Monocular 3D Region Proposal Network for Object Detection . ICCV 2019
                                                      11.81
                                                              12.71
                                                                                1 core @ 2.5 Ghz
                                                                      0.1 s
    MonoDIS
                                           15.12 %
                                                      %
                                                              %
                                                                                (C/C++)
                                                      15.16
                                                              12.94
                                                                                8 cores @ 3.5 Ghz
90
    DLMB
                                           14.49 %
                                                                      0.03 s
                             0
                                                      %
                                                                                (C/C++)
                                                              %
                                                              12.04
                                                      14.75
                             *::
    BirdNet
                                           13.44 %
                                                                      0.11 s
                                                                                Titan Xp GPU
                                                      %
                                                              %
I. Beltrán, C. Guindel, F. Moreno, D. Cruzado, F. García and A. Escalera: BirdNet: A 3D Object Detection Framework from
LiDAR Information. 2018 21st International Conference on Intelligent Transportation Systems (ITSC) 2018.
                                                              12.38
                                                                                NVIDIA GeForce 1080
                                                      17.12
    Mono3D PLiDAR
                                     code 13.44 %
                                                                      0.1 \, s
                                                      %
                                                              %
                                                                                (pytorch)
X. Weng and K. Kitani: Monocular 3D Object Detection with Pseudo-LiDAR Point Cloud. arXiv:1903.09847 2019.
                                                      11.29
                                                              11.34
93 MonoGRNet
                                     code 12.90 %
                                                                      0.04s
                                                                                NVIDIA P40
Z. Qin, J. Wang and Y. Lu: MonoGRNet: A Geometric Reasoning Network for 3D Object Localization. The Thirty-Third AAAI
Conference on Artificial Intelligence (AAAI-19) 2019.
                                                              13.67
                                                      16.25
                             :::
                                           12.88 %
                                                                      0.09 s
                                                                                GPU @ 2.0 Ghz (Python)
    Licar
                                                      %
                                                              %
                                                              12.25
                                                                                NVIDIA GeForce 1080 Ti
                                                      15.29
                            :::
    TopNet-HighRes
                                           12.58 %
                                                                      101ms
```

(tensorflow-apu)

S. Wirges, T. Fischer, C. Stiller and J. Frias: Object Detection and Classification in Occupancy Grid Maps Using Deep Convolutional Networks. 2018 21st International Conference on Intelligent Transportation Systems (ITSC) 2018.								
96 <u>FailNet-Mono</u>	11.58 %	8.64 % 10.1	4 0.1 s	1 core @ 2.5 Ghz (Python)				
97 MVRA + I-FRCNN+	11.01 %	12.92 10.4 %	.5 0.18 s	GPU @ 2.5 Ghz (Python)				
98 MonoPSR	10.85 %	12.57 9.06 %	% 0.2 s	GPU @ 3.5 Ghz (Python)				
J. Ku*, A. Pon* and S. Waslander: Monocula Reconstruction. CVPR 2019.	r 3D Object	Detection Lev	eraging Acc	urate Proposals and Shape				
99 <u>ROI-10D</u>	10.30 %	12.30 9.39 %	% 0.2 s	GPU @ 3.5 Ghz (Python)				
F. Manhardt, W. Kehl and A. Gaidon: ROI-10 Vision and Pattern Recognition (CVPR) 201		ar Lifting of 2	D Detection	to 6D Pose and Metric Shap	oe. Computer			
100 <u>DT3D</u>	9.92 %	15.37 % 9.26	% 0,21s	GPU @ 2.5 Ghz (Python)				
101 <u>SS3D</u>	9.58 %	11.74 % 7.77	% 48 ms	Tesla V100 (Python)				
E. Jörgensen, C. Zach and F. Kahl: Monocul	ar 3D Objec	t Detection an	d Box Fitting	g Trained End-to-End Using	Intersection-			
over-Union Loss. CoRR 2019. 102 mylsi-faster-rcnn	9.49 %	11.80 % 9.19	% 0.3 s	1 core @ 2.5 Ghz (Python)				
103 <u>CSoR</u> ₩	6.79 %	6.76 % 6.14	% 3.5 s	4 cores @ >3.5 Ghz (Python + C/C++)				
L. Plotkin: <u>PyDriver: Entwicklung eines Fra</u> <u>Fahrzeugumgebung</u> . 2015.	meworks fü	r räumliche D	etektion und		<u>ı in</u>			
104 mymask-rcnn	6.65 %	10.90 % 6.34	% 0.3 s	1 core @ 2.5 Ghz (Python)				
105 A3DODWTDA (image) code	6.45 %	6.76 % 4.87	% 0.8 s	GPU @ 3.0 Ghz (Python)				
F. Gustafsson and E. Linder-Norén: Automo	tive 3D Obje	ect Detection	Without Targ		18.			
106 MonoFENet	6.36 %	9.31 % 5.61	% 0.15 s	1 core @ 3.5 Ghz (Python)				
W. Bao, B. Xu and Z. Chen: MonoFENet: MonoFE	onocular 3D	Object Detect	ion with Fea		<u>cs</u> . 2019.			
107 <u>GS3D</u>	6.29 %	7.69 % 6.16	% 2 s	1 core @ 2.5 Ghz (C/C++)				
B. Li, W. Ouyang, L. Sheng, X. Zeng and X. <u>Driving</u> . IEEE Conference on Computer Vis	Wang: <u>GS3I</u> ion and Patt	D: An Efficient ern Recognition	3D Object D on (CVPR) 20	etection Framework for Au 019.	tonomous			
	5.22 %	8.13 % 4.78		GPU @ 1.5 Ghz (Python)				
A. Naiden, V. Paunescu, G. Kim, B. Jeon and form Geometric Constraints. ICIP 2019.	l M. Leordea	nu: <u>Shift R-Cl</u>	NN: Deep Mo	onocular 3D Object Detection	on With Closed-			
109 <u>RAR-Net</u>	4.22 %	6.55 % 3.26	% 0.5 s	1 core @ 2.5 Ghz (C/C++)				
110 TopNet-UncEst	3.93 %	6.21 % 3.78	% 0.09 s	NVIDIA GeForce 1080 Ti (tensorflow-gpu)				
S. Wirges, M. Braun, M. Lauer and C. Stille	r: <u>Capturinc</u>	Object Detec	tion Uncerta	uinty in Multi-Layer Grid Ma	<u>ıps</u> . 2019.			
111 <u>MF3D</u>	3.17 %	3.81 % 3.25	% 0.03 s	GPU @ 2.5 Ghz (C/C++)				
112 OFT-Net	2.50 %	3.28 % 2.27	% 0.5 s	8 cores @ 2.5 Ghz (Python + C/C++)				
113 <u>FQNet</u>	2.42 %	3.48 % 1.96	% 0.5 s	1 core @ 2.5 Ghz (Python)				
114 <u>3D-SSMFCNN</u> code	2.28 %	2.39 % 1.52	% 0.1 s	GPU @ 1.5 Ghz (C/C++)				
L. Novak: Vehicle Detection and Pose Estim	nation for Au	tonomous Dri	<u>ving</u> . 2017.					
115 <u>3DVSSD</u>	1.14 %	1.38 % 1.27	% 0.06 s	1 core @ 2.5 Ghz (C/C++)				
116 monoref3d	0.55 %	0.53 % 0.55	% 0.1 s	1 core @ 2.5 Ghz (Python)				
117 <u>ref3D</u>	0.00 %	0.00 % 0.00	% 0.1 s	1 core @ 2.5 Ghz (Python)				
110 mof2D								
118 <u>ref3D</u>	0.00 %	0.00 % 0.00	% 0.1 s	1 core @ 2.5 Ghz (Python + C/C++) 1 core @ 2.5 Ghz				

J. Behley, V. Steinhage and A. Cremers: <u>Laser-based Segment Classification Using a Mixture of Bag-of-Words</u>. Proc. of the IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) 2013.

<u>Table as LaTeX</u> | <u>Only published Methods</u>

6 of 11

Pedestrian

	Method	Setting	Code	Moderate	Easy	Hard	Runtime	Environment	Compare
1	<u>A-VoxelNet</u>			46.64 %	54.83 %	42.39 %	0.029 s	GPU @ 2.5 Ghz (Python)	
2	<u>F-ConvNet</u>	:::		45.61 %	52.37 %	41.49 %	0.47 s	GPU @ 2.5 Ghz (Python + C/C++)	
	Wang and K. Jia: Frustum tection. IROS 2019.	n ConvNe	t: Slidi	ng Frustum:	s to Aggr	egate Lo	ocal Point-V	Vise Features for Amodal 3	<u>3D Object</u>
3	<u>VMVS</u>	***		45.01 %	53.98 %	41.72 %	0.25 s	GPU @ 2.5 Ghz (Python)	
•	Ku, A. Pon, S. Walsh and Stantation estimation. IROS		der: <u>Im</u>	proving 3D	object de	etection 1	for pedestr	ians with virtual multi-vie	w synthesis
4	F-PointNet	:: :::	<u>code</u>	44.89 %	51.21 %	40.23 %	0.17 s	GPU @ 3.0 Ghz (Python)	
	Qi, W. Liu, C. Wu, H. Su a Xiv:1711.08488 2017.	and L. Gui	ibas: <u>F</u>	rustum Poin	tNets for	3D Obje	ect Detection	on from RGB-D Data. arXi	v preprint
5	<u>IPOD</u>			44.68 %	56.92 %	42.39 %	0.2 s	GPU @ 2.5 Ghz (Python + C/C++)	
6	STD			44.24 %	53.08 %	41.97 %	0.08 s	GPU @ 2.5 Ghz (Python + C/C++)	
Z.	Yang, Y. Sun, S. Liu, X. Sl	nen and J.	Jia: S	ΓD: Sparse-t			ct Detector	for Point Cloud. ICCV 20	19.
7	<u>epBRM</u>	<u>;;;</u>		43.90 %	50.38 %	40.91 %	0.10 s	1 core @ 2.5 Ghz (C/C++)	
8	<u>PointPillars</u>	***		43.53 %	52.08 %	41.49 %	16 ms	1080ti GPU and Intel i7 CPU	
	Lang, S. Vora, H. Caesar, ouds. CVPR 2019.	L. Zhou,	J. Yang	and O. Beij	bom: <u>Poi</u>	<u>ntPillars</u>	: Fast Enco	ders for Object Detection	from Point
9	Multi-3D	***		42.87 %	51.17 %	38.94 %	0.15 s	1 core @ 2.5 Ghz (C/C++)	
10	AVOD-FPN	***	code	42.81 %	50.80 %	40.88 %	0.1 s	Titan X (Pascal)	
	Ku, M. Mozifian, J. Lee, A. gregation. IROS 2018.	Harakeh	and S	. Waslander:	Joint 3D) Proposa	al Generati	on and Object Detection f	rom View
	SECOND		<u>code</u>	42.56 %	51.07 %	37.29 %	38 ms	1080Ti	
Y. '	Yan, Y. Mao and B. Li: <u>SE</u>	COND: S	parsely	Embedded	Convolu		etection. Se	ensors 2018.	
12	MDC	:::		42.54 %	50.79 %	36.56 %	0.17 s	GPU @ 2.5 Ghz (Python)	
13	MMLab-PointRCNN	***	<u>code</u>	41.78 %	49.43 %	38.63 %	0.1 s	GPU @ 2.5 Ghz (Python + C/C++)	
	Shi, X. Wang and H. Li: <u>P</u> nference on Computer Vi					ion and	detection f	rom point cloud. Proceedi	ngs of the IEEE
	Tencent_ADlab_Lidar	::	i dutori	41.64 %	49.83 %	39.28 %	0.1 s	GPU @ 2.5 Ghz (Python + C/C++)	
15	<u>ARPNET</u>			41.62 %	50.00 %	39.19 %	0.08 s	GPU @ 2.5 Ghz (Python + C/C++)	
16	SCANet			41.44 %	50.66 %	36.60 %	0.17 s	>8 cores @ 2.5 Ghz (Python)	
17	<u>FOFNet</u>	*** ***		41.21 %	49.44 %	36.42 %	0.04 s	GPU @ 2.5 Ghz (Python)	
18	CONV-BOX	:::		41.01 %	47.74 %	35.98 %	0.2 s	Tesla V100	
19	DSS			40.93 %	47.68 %	38.34 %	0.03 s	GPU @ 2.5 Ghz (C/C++)	
20	PP_v1.0		<u>code</u>	38.86 %	46.28 %	36.25 %	0.02s	1 core @ 2.5 Ghz (C/C++)	
21	ELLIOT	:::		37.78 %	45.94 %	34.94 %	0.1 s	1 core @ 2.5 Ghz (C/C++)	
22	CFR	***		36.86 %	44.64 %	35.57 %	0.06 s	1 core @ 2.5 Ghz (C/C++)	
23	<u>anm</u>			34.71 %	45.89 %	32.43 %	3 s	1 core @ 2.5 Ghz (C/C++)	

24 ananymaus								
24 <u>anonymous</u>	:::	33.37 %	40.19 %	27.90 %	0.75 s	GPU @ 3.5 Ghz (C/C++)		
25 <u>X_MD</u>		33.23 %	40.34 %	28.19 %	0.2 s	1 core @ 2.5 Ghz (C/C++)		
26 <u>SA_3D</u>		32.58 %	39.20 %	27.65 %	0.3 s	GPU @ 2.5 Ghz (Python)		
27 <u>CLF3D</u>	***	31.65 %	35.85 %	26.94 %	0.13 s	GPU @ 2.5 Ghz (Python)		
28 <u>AVOD</u>	<u>cc</u>	o <u>de</u> 31.51 %	38.28 %	26.98 %	0.08 s	Titan X (pascal)		
J. Ku, M. Mozifian, J. Lee, A	. Harakeh an	d S. Waslander	: <u>Joint 3I</u>) Proposa	al Generati	ion and Object Detection f	rom View	
Aggregation. IROS 2018.		24 22 24	38.00	28.77				
29		31.30 %	%	%				
30 <u>a</u>		21.85 %	28.14 %	20.92 %	0.35 s	1 core @ 2.5 Ghz (Python + C/C++)		
31 <u>Complexer-YOLO</u>	**	15.32 %	19.45 %	14.80 %	0.06 s	GPU @ 3.5 Ghz (C/C++)		
M. Simon, K. Amende, A. K								
Time 3D Object Detection a Recognition (CVPR) Worksl		on Semantic Po	oint Clou	ds. The I	EEE Confe	erence on Computer Vision	and Pattern	
32 <u>BirdNet</u>	***	11.80 %	14.31 %	10.55 %	0.11 s	Titan Xp GPU		
J. Beltrán, C. Guindel, F. Mo			and A. E	scalera:			mework from	
<u>LiDAR Information</u> . 2018 2	1st Internation	onal Conference			ransportati	ion Systems (ITSC) 2018.	_	
33 MonoPSR		10.66 %	12.65 %	10.08 %	0.2 s	GPU @ 3.5 Ghz (Python)		
J. Ku*, A. Pon* and S. Waslander: Monocular 3D Object Detection Leveraging Accurate Proposals and Shape Reconstruction. CVPR 2019.								
34 Shift R-CNN (mono)	CC	o <u>de</u> 10.59 %	13.36 %	10.59 %	0.25 s	GPU @ 1.5 Ghz (Python)		
A. Naiden, V. Paunescu, G. Kim, B. Jeon and M. Leordeanu: Shift R-CNN: Deep Monocular 3D Object Detection With Closed-form Geometric Constraints. ICIP 2019.								
35 M3D-RPN	0.0	1 10 54 0/	11.82	10.29				
00 <u>1102 1411</u>	<u>cc</u>	o <u>de</u> 10.54 %	%	%	0.16 s	GPU @ 1.5 Ghz (Python)		
G. Brazil and X. Liu: M3D-F			% Proposal	%		Detection . ICCV 2019 .		
			%	% <u>Network</u>				
G. Brazil and X. Liu: M3D-F 36 TopNet-HighRes S. Wirges, T. Fischer, C. Sti	RPN: Monocu	lar 3D Region I 9.66 % as: Object Dete	% Proposal 13.45 % ection an	% Network 9.64 % d Classifi	for Object 101ms	Detection ICCV 2019 . NVIDIA GeForce 1080 Ti (tensorflow-gpu) Occupancy Grid Maps Usir	ng Deep	
G. Brazil and X. Liu: M3D-F36 TopNet-HighRes S. Wirges, T. Fischer, C. Sti Convolutional Networks. 20	RPN: Monocu	9.66 % as: Object Deternational Confe	% Proposal 13.45 % ection and erence or	% <u>Network</u> 9.64 % d <u>Classifi</u> n Intellige	101ms ication in Cent Transp	NVIDIA GeForce 1080 Ti (tensorflow-gpu) Ccupancy Grid Maps Usinortation Systems (ITSC) 2 NVIDIA GeForce 1080	ng Deep	
G. Brazil and X. Liu: M3D-F 36 TopNet-HighRes S. Wirges, T. Fischer, C. Sti Convolutional Networks. 20 37 TopNet-UncEst	RPN: Monocu	9.66 % as: Object Deternational Confe	% Proposal 13.45 % ection and erence or 6.19 %	% Network 9.64 % d Classifi n Intellige 4.55 %	101ms ication in Cent Transp 0.09 s	NVIDIA GeForce 1080 Ti (tensorflow-gpu) Ccupancy Grid Maps Usin ortation Systems (ITSC) 2 NVIDIA GeForce 1080 Ti (tensorflow-gpu)	ng Deep 018.	
G. Brazil and X. Liu: M3D-F36 TopNet-HighRes S. Wirges, T. Fischer, C. Sti Convolutional Networks. 20 37 TopNet-UncEst S. Wirges, M. Braun, M. La	RPN: Monocu	9.66 % as: Object Deternational Confe	% Proposal 13.45 % ection and erence or 6.19 % g Object	% Network 9.64 % d Classifi Intellige 4.55 % Detection	101ms ication in (ent Transp 0.09 s	NVIDIA GeForce 1080 Ti (tensorflow-gpu) Ccupancy Grid Maps Usinortation Systems (ITSC) 2 NVIDIA GeForce 1080 Ti (tensorflow-gpu) nty in Multi-Layer Grid Ma	ng Deep 018.	
G. Brazil and X. Liu: M3D-F 36 TopNet-HighRes S. Wirges, T. Fischer, C. Sti Convolutional Networks. 20 37 TopNet-UncEst	RPN: Monocu	9.66 % as: Object Deternational Confe	% Proposal 13.45 % ection and erence or 6.19 % g Object	% Network 9.64 % d Classifi n Intellige 4.55 %	101ms ication in (ent Transp 0.09 s	NVIDIA GeForce 1080 Ti (tensorflow-gpu) Ccupancy Grid Maps Usin ortation Systems (ITSC) 2 NVIDIA GeForce 1080 Ti (tensorflow-gpu)	ng Deep 018.	
G. Brazil and X. Liu: M3D-F 36 TopNet-HighRes S. Wirges, T. Fischer, C. Sti Convolutional Networks. 20 37 TopNet-UncEst S. Wirges, M. Braun, M. La 38 RT3DStereo 39 SS3D	RPN: Monocu Iler and J. Fri 018 21st Inte uer and C. St	9.66 % as: Object Deternational Conference 4.55 % tiller: Capturing 4.25 % 3.28 %	% Proposal 13.45 % ection and erence or 6.19 % q Object 3.52 %	% Network 9.64 % d Classifi a Intellige 4.55 % Detection 4.26 % 2.37 %	101ms ication in Cent Transp 0.09 s 1 Uncertain 0.08 s	Detection . ICCV 2019 . NVIDIA GeForce 1080 Ti (tensorflow-gpu) Decupancy Grid Maps Usin ortation Systems (ITSC) 2 NVIDIA GeForce 1080 Ti (tensorflow-gpu) nty in Multi-Layer Grid Ma GPU @ 2.5 Ghz (C/C++) Tesla V100 (Python)	ng Deep 018. nps. 2019.	
G. Brazil and X. Liu: M3D-F 36 TopNet-HighRes S. Wirges, T. Fischer, C. Sti Convolutional Networks. 20 37 TopNet-UncEst S. Wirges, M. Braun, M. La 38 RT3DStereo 39 SS3D E. Jörgensen, C. Zach and I	RPN: Monocu Iller and J. Fri 118 21st Inte Iller and C. St Iller and C. St Iller and C. St Iller and C. St	9.66 % as: Object Deternational Conference 4.55 % tiller: Capturing 4.25 % 3.28 %	% Proposal 13.45 % ection and erence or 6.19 % q Object 3.52 %	% Network 9.64 % d Classifi a Intellige 4.55 % Detection 4.26 % 2.37 %	101ms ication in Cent Transp 0.09 s 1 Uncertain 0.08 s	Detection . ICCV 2019 . NVIDIA GeForce 1080 Ti (tensorflow-gpu) Decupancy Grid Maps Usin ortation Systems (ITSC) 2 NVIDIA GeForce 1080 Ti (tensorflow-gpu) nty in Multi-Layer Grid Ma GPU @ 2.5 Ghz (C/C++) Tesla V100 (Python)	ng Deep 018. nps. 2019.	
G. Brazil and X. Liu: M3D-F 36 TopNet-HighRes S. Wirges, T. Fischer, C. Sti Convolutional Networks. 20 37 TopNet-UncEst S. Wirges, M. Braun, M. La 38 RT3DStereo 39 SS3D	RPN: Monocu Iller and J. Fri 118 21st Inte Iller and C. St Iller and C. St Iller and C. St Iller and C. St	9.66 % as: Object Deternational Conference 4.55 % tiller: Capturing 4.25 % 3.28 %	% Proposal 13.45 % ection and erence or 6.19 % 4.27 % 3.52 % et Detection and erence or 6.19 % 4.27	% Network 9.64 % d Classifi a Intellige 4.55 % Detection 4.26 % 2.37 %	101ms ication in Cent Transp 0.09 s 100 Uncertain 0.08 s 48 ms 30x Fitting	Detection . ICCV 2019 . NVIDIA GeForce 1080 Ti (tensorflow-gpu) Decupancy Grid Maps Usin ortation Systems (ITSC) 2 NVIDIA GeForce 1080 Ti (tensorflow-gpu) nty in Multi-Layer Grid Ma GPU @ 2.5 Ghz (C/C++) Tesla V100 (Python)	ng Deep 018. nps. 2019.	
G. Brazil and X. Liu: M3D-F 36 TopNet-HighRes S. Wirges, T. Fischer, C. Sti Convolutional Networks. 20 37 TopNet-UncEst S. Wirges, M. Braun, M. La 38 RT3DStereo 39 SS3D E. Jörgensen, C. Zach and I over-Union Loss. CoRR 201	RPN: Monocu Iller and J. Fri 118 21st Inte Iller and C. St Iller and C. St Iller and C. St Iller and C. St	9.66 % as: Object Deternational Confe 4.55 % tiller: Capturing 4.25 % 3.28 % ocular 3D Object	% Proposal 13.45 % ection and erence or 6.19 % 4.27 % 3.52 % et Detection 2.22 %	% Network 9.64 % d Classifi i Intellige 4.55 % Detection 4.26 % 2.37 % on and B	101ms ication in Cent Transp 0.09 s 1 Uncertain 0.08 s 48 ms 3 Sox Fitting 0.3 s	Detection . ICCV 2019 . NVIDIA GeForce 1080 Ti (tensorflow-gpu) Cocupancy Grid Maps Usin ortation Systems (ITSC) 2 NVIDIA GeForce 1080 Ti (tensorflow-gpu) Ity in Multi-Layer Grid Material GPU @ 2.5 Ghz (C/C++) Tesla V100 (Python) Trained End-to-End Using 1 core @ 2.5 Ghz	ng Deep 018. nps. 2019.	
G. Brazil and X. Liu: M3D-F 36 TopNet-HighRes S. Wirges, T. Fischer, C. Sti Convolutional Networks. 20 37 TopNet-UncEst S. Wirges, M. Braun, M. La 38 RT3DStereo 39 SS3D E. Jörgensen, C. Zach and I over-Union Loss. CoRR 201 40 mylsi-faster-rcnn	RPN: Monocu Iller and J. Fri 118 21st Inte Iller and C. St Iller and C. St Iller and C. St Iller and C. St	9.66 % as: Object Deternational Confectional	% Proposal 13.45 % ection and erence or 6.19 % 4.27 % 3.52 % et Detection 2.22 % 1.86 %	% Network 9.64 % d Classifi 1 Intellige 4.55 % Detection 4.26 % 2.37 % on and E	101ms ication in Cent Transp 0.09 s 1 Uncertain 0.08 s 48 ms 30x Fitting 0.3 s 0.3 s	Detection . ICCV 2019 . NVIDIA GeForce 1080 Ti (tensorflow-gpu) Ccupancy Grid Maps Usin ortation Systems (ITSC) 2 NVIDIA GeForce 1080 Ti (tensorflow-gpu) Ti (tensorflow-gpu) May in Multi-Layer Grid May GPU @ 2.5 Ghz (C/C++) Tesla V100 (Python) Trained End-to-End Using 1 core @ 2.5 Ghz (Python) 1 core @ 2.5 Ghz	ng Deep 018. nps. 2019. Intersection-	
G. Brazil and X. Liu: M3D-F 36 TopNet-HighRes S. Wirges, T. Fischer, C. Sti Convolutional Networks. 20 37 TopNet-UncEst S. Wirges, M. Braun, M. La 38 RT3DStereo 39 SS3D E. Jörgensen, C. Zach and I over-Union Loss. CoRR 201 40 mylsi-faster-rcnn 41 mymask-rcnn	RPN: Monocu Iller and J. Fri 118 21st Inte Iller and C. St Iller and C. St Iller and C. St Iller and C. St	9.66 % as: Object Deternational Confectors 4.55 % tiller: Capturing 4.25 % 3.28 % ocular 3D Object 1.85 % 1.44 %	% Proposal 13.45 % ection and erence or 6.19 % 3.52 % et Detection 2.22 % 1.86 % 1.14 %	% Network 9.64 % d Classification Intellige 4.55 % Detection 4.26 % 2.37 % on and E 1.77 % 1.38 %	101ms ication in Cent Transp 0.09 s 1 Uncertain 0.08 s 48 ms 30x Fitting 0.3 s 0.3 s 0,21s	Detection . ICCV 2019 . NVIDIA GeForce 1080 Ti (tensorflow-gpu) Ccupancy Grid Maps Usinortation Systems (ITSC) 2 NVIDIA GeForce 1080 Ti (tensorflow-gpu) nty in Multi-Layer Grid Mag GPU @ 2.5 Ghz (C/C++) Tesla V100 (Python) Trained End-to-End Usino 1 core @ 2.5 Ghz (Python) 1 core @ 2.5 Ghz (Python)	ng Deep 018. nps. 2019. Intersection	
G. Brazil and X. Liu: M3D-F 36 TopNet-HighRes S. Wirges, T. Fischer, C. Sti Convolutional Networks. 20 37 TopNet-UncEst S. Wirges, M. Braun, M. La 38 RT3DStereo 39 SS3D E. Jörgensen, C. Zach and I over-Union Loss. CoRR 201 40 mylsi-faster-rcnn 41 mymask-rcnn 42 DT3D	RPN: Monocu Iller and J. Fri 118 21st Inte Iller and C. St Iller and C. St Iller and C. St Iller and C. St	9.66 % as: Object Deternational Confectors 4.55 % tiller: Capturing 4.25 % 3.28 % ocular 3D Object 1.85 % 1.44 % 1.14 %	% Proposal 13.45 % ection and erence or 6.19 % 3.52 % et Detection 2.22 % 1.86 % 1.14 % 1.06 %	% Network 9.64 % d Classification Intellige 4.55 % Detection 4.26 % 2.37 % on and E 1.77 % 1.38 % 1.14 %	101ms ication in Cent Transp 0.09 s 1 Uncertain 0.08 s 48 ms 60x Fitting 0.3 s 0.3 s 0.21s 0.5 s	Detection . ICCV 2019 . NVIDIA GeForce 1080 Ti (tensorflow-gpu) Ccupancy Grid Maps Usin ortation Systems (ITSC) 2 NVIDIA GeForce 1080 Ti (tensorflow-gpu) Ti (tensorflow-gpu) Ty in Multi-Layer Grid Market GPU @ 2.5 Ghz (C/C++) Tesla V100 (Python) Trained End-to-End Using 1 1 core @ 2.5 Ghz (Python) 1 core @ 2.5 Ghz (Python) GPU @ 2.5 Ghz (Python) 8 cores @ 2.5 Ghz	ng Deep 018. nps. 2019. Intersection-	
G. Brazil and X. Liu: M3D-F 36 TopNet-HighRes S. Wirges, T. Fischer, C. Sti Convolutional Networks. 20 37 TopNet-UncEst S. Wirges, M. Braun, M. La 38 RT3DStereo 39 SS3D E. Jörgensen, C. Zach and I over-Union Loss. CoRR 201 40 mylsi-faster-rcnn 41 mymask-rcnn 42 DT3D 43 OFT-Net 44 mBoW J. Behley, V. Steinhage and	RPN: Monocu Iller and J. Fri 18 21st Inte uer and C. St F. Kahl: Mono 9.	9.66 % as: Object Deternational Confector 4.55 % filler: Capturing 4.25 % 3.28 % cular 3D Object 1.85 % 1.44 % 1.14 % 1.11 % 0.00 % Laser-based Se	% Proposal 13.45 % ection and erence or 6.19 % 3.52 % at Detection 2.22 % 1.86 % 1.14 % 1.06 % 0.00 % cment Cl	% Network 9.64 % d Classifi intellige 4.55 % Detection 4.26 % 2.37 % on and E 1.77 % 1.38 % 1.14 % 1.06 % 0.00 % assificati	for Object 101ms ication in Cent Transp 0.09 s 1 Uncertain 0.08 s 48 ms 60x Fitting 0.3 s 0.3 s 0.21s 0.5 s 10 s ion Using a	Detection . ICCV 2019 . NVIDIA GeForce 1080 Ti (tensorflow-gpu) Ccupancy Grid Maps Usin ortation Systems (ITSC) 2 NVIDIA GeForce 1080 Ti (tensorflow-gpu) Ti (tensorflow-gpu) Ti (tensorflow-gpu) May in Multi-Layer Grid May GPU @ 2.5 Ghz (C/C++) Tesla V100 (Python) Trained End-to-End Using 1 core @ 2.5 Ghz (Python) 1 core @ 2.5 Ghz (Python) GPU @ 2.5 Ghz (Python) 8 cores @ 2.5 Ghz (Python) 1 core @ 2.5 Ghz (C/C++) 1 core @ 2.5 Ghz (C/C++) May Mixture of Bag-of-Words	ng Deep 018. aps. 2019. Intersection-	
G. Brazil and X. Liu: M3D-F 36 TopNet-HighRes S. Wirges, T. Fischer, C. Sti Convolutional Networks. 20 37 TopNet-UncEst S. Wirges, M. Braun, M. La 38 RT3DStereo 39 SS3D E. Jörgensen, C. Zach and I over-Union Loss. CoRR 201 40 mylsi-faster-rcnn 41 mymask-rcnn 42 DT3D 43 OFT-Net 44 mBoW	RPN: Monocu Iller and J. Fri 18 21st Inte uer and C. St F. Kahl: Mono 9. A. Cremers: Inference on Infer	9.66 % as: Object Deternational Confect A.55 % filler: Capturing 4.25 % 3.28 % cular 3D Object Deternational Confect A.55 % 1.44 % 1.14 % 1.11 % 0.00 % Caser-based Sentelligent Robo	% Proposal 13.45 % ection and erence or 6.19 % 3.52 % at Detection 2.22 % 1.86 % 1.14 % 1.06 % 0.00 % cment Cl	% Network 9.64 % d Classifi intellige 4.55 % Detection 4.26 % 2.37 % on and E 1.77 % 1.38 % 1.14 % 1.06 % 0.00 % assificati	for Object 101ms ication in Cent Transp 0.09 s 1 Uncertain 0.08 s 48 ms 60x Fitting 0.3 s 0.3 s 0.21s 0.5 s 10 s ion Using a	Detection . ICCV 2019 . NVIDIA GeForce 1080 Ti (tensorflow-gpu) Ccupancy Grid Maps Usin ortation Systems (ITSC) 2 NVIDIA GeForce 1080 Ti (tensorflow-gpu) Ti (tensorflow-gpu) Ti (tensorflow-gpu) May in Multi-Layer Grid May GPU @ 2.5 Ghz (C/C++) Tesla V100 (Python) Trained End-to-End Using 1 core @ 2.5 Ghz (Python) 1 core @ 2.5 Ghz (Python) GPU @ 2.5 Ghz (Python) 8 cores @ 2.5 Ghz (Python) 1 core @ 2.5 Ghz (C/C++) 1 core @ 2.5 Ghz (C/C++) May Mixture of Bag-of-Words	ng Deep 018. aps. 2019. Intersection-	

Cyclist

Method Setting Code Moderate Easy Hard Runtime Environment Compare

1 <u>F-ConvNet</u>	₩.	64.68 %	79.58 %	57.03 %	0.47 s	GPU @ 2.5 Ghz (Python + C/C++)				
Z. Wang and K. Jia: <u>Frustu</u> <u>Detection</u> , IROS 2019.	Z. Wang and K. Jia: <u>Frustum ConvNet</u> : <u>Sliding Frustums to Aggregate Local Point-Wise Features for Amodal 3D Object</u> Detection IROS 2019									
2 MMLab-PartA^2	***	62.73 %	78.58 %	57.74 %	0.08 s	GPU @ 2.5 Ghz (Python + C/C++)				
S. Shi, Z. Wang, X. Wang a from Point Cloud. arXiv pr				re and Ag	gregation	Neural Network for Object Detection				
3 <u>STD</u>		62.53 %	78.89 %	55.77 %	0.08 s	GPU @ 2.5 Ghz (Python + C/C++)				
-	_		to-Dense 75.36	3D Obje 53.03		r for Point Cloud. ICCV 2019.				
4 <u>FOFNet</u>	:::\ :::	59.65 %	%	%	0.04 s	GPU @ 2.5 Ghz (Python)				
5 <u>MMLab-PointRCNN</u>	<u>code</u>	59.60 %	73.93 %	53.59 %	0.1 s	GPU @ 2.5 Ghz (Python + C/C++)				
S. Shi, X. Wang and H. Li: <u>Pointrcnn: 3d object proposal generation and detection from point cloud</u> . Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition 2019.										
6 <u>Multi-3D</u>	::	59.40 %	75.99 %	51.50 %	0.15 s	1 core @ 2.5 Ghz (C/C++)				
7 <u>ARPNET</u>		59.12 %	72.29 %	53.35 %	0.08 s	GPU @ 2.5 Ghz (Python + C/C++)				
8 <u>PointPillars</u>	<u>code</u>		75.78 %	52.92 %	16 ms	1080ti GPU and Intel i7 CPU				
A. Lang, S. Vora, H. Caesa Clouds. CVPR 2019.	r, L. Zhou, J. Yan	g and O. Bei	jbom: <u>Po</u>	<u>intPillars</u>	s: Fast Enc	oders for Object Detection from Point				
9 Tencent ADlab Lidar	::	58.19 %	72.12 %	51.54 %	0.1 s	GPU @ 2.5 Ghz (Python + C/C++)				
10 <u>MDC</u>	**	57.27 %	75.27 %	49.75 %	0.17 s	GPU @ 2.5 Ghz (Python)				
11 epBRM	::	56.94 %	70.52 %	51.70 %	0.10 s	1 core @ 2.5 Ghz (C/C++)				
12 <u>A-VoxelNet</u>		56.86 %	70.65 %	50.76 %	0.029 s	GPU @ 2.5 Ghz (Python)				
13 <u>F-PointNet</u>	<u>code</u>	56.77 %	71.96 %	50.39 %	0.17 s	GPU @ 3.0 Ghz (Python)				
C. Qi, W. Liu, C. Wu, H. Su arXiv:1711.08488 2017.	and L. Guibas: <u>I</u>	Frustum Poir	ntNets fo	r 3D Obj	ect Detecti	on from RGB-D Data. arXiv preprint				
14 CONV-BOX	***	54.45 %	68.27 %	52.26 %	0.2 s	Tesla V100				
15 <u>SECOND</u>	code	53.85 %	70.51 %	46.90 %	38 ms	1080Ti				
Y. Yan, Y. Mao and B. Li: <u>S</u>	ECOND: Sparsel	y Embedded								
16 <u>IPOD</u>		53.46 %	71.40 %	48.34 %	0.2 s	GPU @ 2.5 Ghz (Python + C/C++)				
17 <u>SCANet</u>		53.07 %	67.97 %	50.81 %	0.17 s	>8 cores @ 2.5 Ghz (Python)				
18 <u>AVOD-FPN</u>	<u> code</u>	52.18 %	64.00 %	46.61 %	0.1 s	Titan X (Pascal)				
J. Ku, M. Mozifian, J. Lee, Aggregation. IROS 2018.	A. Harakeh and S	S. Waslander	: <u>Joint 3I</u>	O Propos	<u>al Generat</u>	ion and Object Detection from View				
19 <u>DSS</u>		51.90 %	65.04 %	46.94 %	0.03 s	GPU @ 2.5 Ghz (C/C++)				
20 ELLIOT	***	51.17 %	68.87 %	46.35 %	0.1 s	1 core @ 2.5 Ghz (C/C++)				
21 <u>CFR</u>	**	50.73 %	65.70 %	44.93 %	0.06 s	1 core @ 2.5 Ghz (C/C++)				
22 <u>PP_v1.0</u>	code	50.60 %	66.86 %	44.84 %	0.02s	1 core @ 2.5 Ghz (C/C++)				
23 <u>AVOD</u>	<u>code</u>	44.90 %	60.11 %	38.80 %	0.08 s	Titan X (pascal)				
J. Ku, M. Mozifian, J. Lee, Aggregation. IROS 2018.	A. Harakeh and S	S. Waslander	: <u>Joint 3I</u>	O Propos	al Generat	ion and Object Detection from View				
24 <u>X MD</u>		37.22 %	51.69 %	36.44 %	0.2 s	1 core @ 2.5 Ghz (C/C++)				
25 <u>anm</u>		35.86 %	50.06 %	31.11 %	3 s	1 core @ 2.5 Ghz (C/C++)				
26 CLF3D	::	35.39 %	50.58	[%] 33.55	0.13 s	GPU @ 2.5 Ghz (Python)				
20 <u>CEI.3D</u>	747	JJ.JJ %	%	%	0.13 8	of 0 @ 2.3 onz (Fymon)				

27 <u>Complexer-YOLO</u>	***	23.48 %	28.36 %	22.85 %	0.06 s	GPU @ 3.5 Ghz (C/C++)		
	and Tracking on					Michael Gross: <u>Complexer-YOLO: Real-</u> rence on Computer Vision and Pattern	=	
28 <u>a</u>		21.25 %	32.66 %	19.77 %	0.35 s	1 core @ 2.5 Ghz (Python + C/C++)		
29 <u>SA 3D</u>		14.15 %	17.99 %	13.52 %	0.3 s	GPU @ 2.5 Ghz (Python)		
30 BirdNet	::	12.43 %	18.35 %	11.88 %	0.11 s	Titan Xp GPU		
J. Beltrán, C. Guindel, F. Moreno, D. Cruzado, F. García and A. Escalera: <u>BirdNet: A 3D Object Detection Framework from LiDAR Information</u> . 2018 21st International Conference on Intelligent Transportation Systems (ITSC) 2018.								
31 MonoPSR		11.01 %	13.43 %	9.93 %	0.2 s	GPU @ 3.5 Ghz (Python)		
J. Ku*, A. Pon* and S. Waslander: Monocular 3D Object Detection Leveraging Accurate Proposals and Shape Reconstruction. CVPR 2019.								
32 <u>SS3D</u>		9.09 %	10.84 %	9.09 %	48 ms	Tesla V100 (Python)		
E. Jörgensen, C. Zach and over-Union Loss. CoRR 20		lar 3D Objec	<u>ct Detecti</u>	on and B	ox Fitting	Trained End-to-End Using Intersection-	1	
33 <u>TopNet-UncEst</u>	<u>:::</u>	7.36 %	8.53 %	6.93 %	0.09 s	NVIDIA GeForce 1080 Ti (tensorflow-gpu)		
S. Wirges, M. Braun, M. La	auer and C. Stille	er: <u>Capturin</u>	Object	Detection	<u> Uncertai</u>	nty in Multi-Layer Grid Maps. 2019.		
34 RT3DStereo	ďď	6.63 %	6.62 %	4.03 %	0.08 s	GPU @ 2.5 Ghz (C/C++)		
35 <u>TopNet-HighRes</u>	:: :	5.98 %	4.48 %	6.18 %	101ms	NVIDIA GeForce 1080 Ti (tensorflow-gpu)		
S. Wirges, T. Fischer, C. St Convolutional Networks, 2	iller and J. Frias: 018 21st Interna	Object Dete	ection and erence or	<mark>d Classifi</mark> 1 Intellige	cation in C	Occupancy Grid Maps Using Deep ortation Systems (ITSC) 2018.		
36 Shift R-CNN (mono)		3.03 %		3.03 %	_	GPU @ 1.5 Ghz (Python)		
		d M. Leordea	anu: <u>Shif</u>	t R-CNN:	Deep Mor	nocular 3D Object Detection With Closed	<u>d-</u>	
form Geometric Constrain	<u>ts</u> . ICIP 2019.					1 0 2 5 6		
37 <u>mylsi-faster-rcnn</u>		1.68 %	2.53 %	1.41 %	0.3 s	1 core @ 2.5 Ghz (Python)		
38 <u>DT3D</u>		1.20 %	1.76 %	1.26 %	0,21s	GPU @ 2.5 Ghz (Python)		
39 <u>M3D-RPN</u>	code	1.03 %	1.72 %	1.05 %	0.16 s	GPU @ 1.5 Ghz (Python)		
G. Brazil and X. Liu: M3D-	RPN: Monocular	3D Region 1	<u>Proposal</u>	<u>Network</u>	for Object	Detection . ICCV 2019 .		
40 mymask-rcnn		0.84 %	1.18 %	0.83 %	0.3 s	1 core @ 2.5 Ghz (Python)		
41 OFT-Net		0.43 %	0.43 %	0.43 %	0.5 s	8 cores @ 2.5 Ghz (Python + C/C++)		
42 mBoW	::	0.00 %	0.00 %	0.00 %	10 s	1 core @ 2.5 Ghz (C/C++)		
J. Behley, V. Steinhage and IEEE/RSJ International Co	A. Cremers: <u>Las</u> nference on Inte	er-based Se lligent Robo	gment Cl ts and Sy	assificati vstems (II	on Using a	Mixture of Bag-of-Words. Proc. of the .		

20 36 22 05

Related Datasets

Table as LaTeX | Only published Methods

- CERV Vehicle Lights Dataset: Annotations of vehicle lights for a subset of the object detection benchmark.
- PASCAL3D+: Augments 12 rigid object classes of PASCAL VOC 2012 with 3D annotations.
- The PASCAL Visual Object Classes Challenges: Dataset and benchmarks for object class recognition.
 TME Motorway Dataset: 28 video sequences with vehicle annotations captured from VisLab's BRAiVE vehicle.
- <u>LabelMe</u>: Online annotation tool to build image databases for computer vision research.
- MIT Street Scenes: Street-side images with labels for 9 object categories (including cars, pedestrians, buildings, trees).
- Daimler Pedestrian Datasets: Datasets focusing on pedestrian detection for autonomous driving.
- Caltech Pedestrian Detection Benchmark: 10 hours of video with 350.000 annotated pedestrian bounding boxes.
 Robust Multi-Person Tracking from Mobile Platforms: Videos with annotated pedestrians captured from a stroller.

Citation

When using this dataset in your research, we will be happy if you cite us: @INPROCEEDINGS { Geiger 2012 CVPR,

author = {Andreas Geiger and Philip Lenz and Raquel Urtasun},

title = {Are we ready for Autonomous Driving? The KITTI Vision Benchmark Suite}, booktitle = {Conference on Computer Vision and Pattern Recognition (CVPR)},

```
year = {2012}
```

© 2019 | Andreas Geiger | cvlibs.net | csstemplates