Modèles linéaires en actuariat - Exercice 1 - Série 4

Vous disposez de l'ensemble des données pour modéliser le nombre d'accidents de la route mortels par année au Québec (Y_t) en fonction des investissements totaux du gouvernement en prévention (en million de dollars) par année $(X_{t,1})$, du coût moyen des contraventions (en dollars) dans l'année $(X_{t,2})$, et de la quantité totale de neige tombée (en cm) durant l'hiver $(X_{t,3})$:

Y_t	$X_{t,1}$	$X_{t,2}$	$X_{t,3}$
685	1	150	325
573	1	350	285
629	2	225	300
567	2	525	410
552	2	100	222
500	3	155	271
580	3	235	316
260	4	455	251
437	4	382	321
327	5	125	210

De plus, on a que

$$(\mathbf{X}'\mathbf{X})^{-1} = \frac{1}{100\,000\,000} \begin{bmatrix} 637276565,70 & -52944107,80 & 335951,44 & -1975615,09 \\ -52944107,80 & 8657778,98 & -32733,63 & 131957,17 \\ 335951,44 & -32733,63 & 902,67 & -1688,33 \\ -1975615,09 & 131957,17 & -1688,33 & 7129,91 \end{bmatrix}$$

et que

$$\mathbf{X'Y} = \begin{bmatrix} 5110 \\ 12417 \\ 1337609 \\ 1522631 \end{bmatrix},$$

- où ${\bf X}$ représente la matrice schéma du modèle de régression complet (avec ordonnée à l'origine β_0) associée à ces données.
- (a) Valider les calculs de $(\mathbf{X}'\mathbf{X})^{-1}$ et de $(\mathbf{X}'Y)$ avec un logiciel comme Excel ou R.
- (b) Obtenir $\hat{\beta}$ pour cette régression.
- (c) Effectuer un test de Student pour la significativité de chacune des variables dans le modèle, c'est-à-dire :

$$H_0: \beta_i = 0$$

 $H_1: \beta_i \neq 0, i = 1,2,3.$

- (d) Obtenir le tableau ANOVA pour cette régression.
- (e) Tester la validité globale de cette régression à l'aide du test F de Fisher.
- (f) Calculer le coefficient de détermination du modèle (R^2) .
- (g) Calculer un intervalle de confiance au niveau $(1-\alpha)=95\%$ pour la valeur prédite du nombre d'accidents de la route lorsque $X_1^0=3$, $X_2^0=250$ et $X_3^0=300$.