Standard 09: Local Extrema

Local Extrema

It is time to, once again, extend an idea from calculus I into multi-variable.

- 1. A function f(x,y) has a local (or relative) minimum at the point (a,b) if $f(x,y) \ge f(a,b)$ for all points (x,y) in some region around (a,b).
- 2. A function f(x,y) has a <u>local (or relative) maximum</u> at the point (a,b) if $f(x,y) \leq f(a,b)$ for all points (x,y) in some region around (a,b).

The words local and relative highlight the fact that the local minimum may not be the smallest value the function will ever take. We just require it to be the smallest in a small area around it. The same holds for the local maximum and it being the highest value. We will cover how to find the absolute extremas over both a bounded region and the entire domain.

In calculus I we found the local extrema by using the first derivative to find critical points (f'(x)=0 or DNE) then testing the surrounding points to determine if the critical point is a maximum or minimum. We need to have an analogous test for multivariable calculus.

critical points

We extend the idea of a critical points to functions of two variables. The point (a,b) is a <u>critical point</u> of f(x,y) if one of the following is true:

(i) $\nabla f(a,b) = \vec{0}$ i.e. $f_{x} = 0$ and $f_{y} = 0$

(ii) fx(a,b) and/or fy(a,b) doesn't exist

If the point (a,b) is a local extrema of the function f(x,y) and the first order derivatives of f(x,y) exists at (a,b) then (a,b) is a critical point of f(x,y) and $\nabla f(a,b) = \vec{0}$. Note that this does not say every critical point is a local extrema, only that every local extrema is a critical point.

Consider the function f(x,y) = xy. The two first order partial derivatives are $f_x(x,y) = y$ and $f_y(x,y) = x$. The

only critical point for the function is (0,0). If we move in the positive x and positive y direction the function increases. The same thing happens in the negative x and negative y direction. If we move in any direction where the x and y differ in sign then the function decreases. No matter the region around the origin, there will be points larger and smaller than f(0,0)=0. Therefore (0,0) can not be a local minimum or maximum. We call this phenomenom a saddle point.

second derivative test

Suppose that (a,b) is a critical point of f(x,y) and that the second order partial derivatives are continuous in some region that contains (a,b). Next define $D(a,b) = f(x)(a,b) + f(y)(a,b) - (f(y)(a,b))^2$. We have four cases:

- 1. If D(a,b)>0 and fx(a,b)>0 then there is a local minimum at (a,b).
- 2. If D(a,b)>0 and fx (a,b) <0 then there is a local maximum at (a,b).
- 3. If Dla, b) <0 then the point (a,b) is a saddle point.
- 4. If D(a,b)=0 then the test is inconclusive. i.e. it could be a local extrema or a saddle point, we don't know

	. 1	. 1 -	त्तर	11.				• -														0.4-		۲.	. d -		1		14-	0.01	1		1	
			s III		•		SYUK	is.															•					'		Crit	rcal	POI	its of	
			hical 	•			.1	11.		ا الم	<u> </u>	. ^	• _		7							.			'			7=		_ 1		C		
)			١. ١							adie							1									'							b) = Q	
۷.										Hess					rical	Poi	nts.	-								ľ					+2y	-43		
		,) = 1	tax F	44 -(txy)											•		1/		4-2	•		-	- 1	8/3	
3.	Coı	mpa	re	Dla	b)	and	t	ex L	a,b)																			-2 _y)	"			X =	+4/3	
	•	if D	(a,b)	>0	ay	nd	£xx((a,b)	>0	the	en f	fla,b) is	a	loca	m	inim	um ·	salue			2. (Com	put	e C	(x,	(y	at	(a,t		-			_
	•	if D	(a,b)) > 0	OI	nd	Fxx ((a,b)	020	the	en	flast	o) is	s a	loca	m la	axin	num	valu	e.			Dlx,	4) =	Fxx 1	14 -	(Fxy	S			-			
	• ;	if D	(a,b) 4 (Н	nen	(a,	,b) i	s a	sad	dle	Po	int.										اړه)(p) =	(2)(2) -	(1)	= 2						
	• 1	f D	(a,t)=(o H	nen	the	tes	st f	ails.												3. (Com	par	e D	(a,t) a	nd_	Fxx (a,b	\			
																							Dla) = (d	3 >	0		Fxx (a,b)	= 2	>0			
																												at	'					
- مالا	ادع	to 1	xtre	ma a																														
NU	2010	115	- 7116	<u> </u>																														
			_	_1.		11	r	.1.		C.									F .					•		<u> </u>	1							
																																	d area	A
																										_		'					just	
10	t bs	o to	est	ıt ·	this	is	in t	me	regi	on a	and	it	the	bo	unc	ary	CO	ntair	is an	oth	er ex	xtre	ma,	e.g				2 01	n [O	,13	l is	the	max	
_																															+			
	cess													'							emas	of	f(x,	=(4	2x2.	1 ₅ 1	by.	on	XZ	- Y2 4	عاا	-		
L.	Crit	ical	Poin	rs im	re	jion							1.	Crit	ical	Poir	ts_	in r	egio	h											+	-		
2	Crit	ical	Point	s o	n b	oun	dary							tx =	4x:	= 0		=>	×	= 0			Che	ck	it is	in	regi	an:				-		
3	Plug	into	fun	ctio	n to	id	enti	FI						fy=	-24	-6=	6		1	3			(O) ¹	+(3)2 =	9 = 1	6 4				-			
													2.	Criti	cal	Poi	nts	on l	ooun	dan														
														X2 t	. Y2 =	16	=>	X2 =	l6-	12	Plu	a in	ito	f(x,	<u>ا</u> (ب	0 W	ake	gl						
																					3z-3									lma	AX.			
_															1		'	"			.	٠	·											
																				'	1 = 15				-011	اعتمادو	-CVI	- FUI	ت د	141				
														SUN	E 11	ur X																		
																		"			: ما - م													
																-		'	4 , x	Z_	ما - م	=0	Χs	0								+		_
													3.	Tes		'	dint	-\$																
														Flo	3)=	: 9															-	-		
														t(1	15,1)= 3	35	ma	ximu	m_											-			
														F(Ji	5,1	= 3!	5	mo	ximu	m											-	-		
														f(o	,-4)	=-4	10	mi	nimu	m											-			
														f(0	4):	= 8																		
																															-	-		
																															-			_
															1																			
																	-		+												-	+	-	