B.Tech-2nd(Sec-D, E, F, G, H, I & J) Basic Electronics

Full Marks: 50

 $Time: 2\frac{1}{2} \text{ hours}$

Answer all questions

The figures in the right-hand margin indicate marks

Symbols carry usual meaning

1. Answer all questions:

 2×5

- (a) How does BJT acts as a switch?
- (b) List the advantages of FET over BJT.
- (c) Explain virtual ground concept in case of ideal OPAMP.
- (d) Convert $(ABC)_{16}$ into decimal and octal.
- (e) Draw detailed diagram of CRT.

(Turn Over)

- 2. (a) A centre tap rectifier uses a Si diode of resistance 25Ω . The secondary voltage from centre to each end of secondary is 120v (rms). If the load resistance of $1 K\Omega$ is connected across this rectifier, calculate I_{dc} and I_{rms} .
 - (b) Explain common base characteristic curves of NPN transistor.

Or

- (a) Explain step by step procedure of monolithic IC fabricating for NPN transistor.
- (b) Explain why CE configuration preferred as an amplifier.
- 3. (a) Explain the working of Enhancement type n-channel MOSFET.

(b) From the given drain characteristic identify the device and draw its transfer characteristics using graphical method. 4

Or

Explain the construction and working of P-channel JFET.

(b) (i) A JFET has a drain current of 5 mA. If $I_{DSS} = 10$ mA and $V_{GS(off)} = -6$ V, Find the value of (a) V_{GS} and (b) V_{P} . (ii) From the transfer characteristic of JFET shown in given figure, write the equation for drain current.

- (a) Explain modes of operation of OPAMP.
 - (b) Compare negative and positive feedback along with their block diagrams.

Or

(a) Calculate v_0 in Fig. i and V_0 in Fig. ii.

B.Tech-2nd(Sec-D, E, F, G, H, I & J)/Basic Electronics

(Continued)

- (b) Prove that input impedance increases and output impedance decreases in voltage series feedback.
- 5. (a) State the Absorption law and De-Morgans theorem. Apply the De-Morgans theorem to following expression

$$\overline{AB} + \overline{C}D + BD$$

(b) Using Boolean algebra, simplify the following

(i)
$$AB+A(B+C)+B(B+C)$$

(ii)
$$(A\overline{B}(C+BD)\overline{A\overline{B}})C$$

Or

(a) Write the truth table of $F = \overline{A} + BC + CD$ and draw the logic diagram using basic gates.

(Turn Over)

	(b)	Implement the following logic functions	4
		(i) $X = \overline{A} + BC$ using NAND gates only	÷
		(ii) $Y = \overline{AB} + C$ using NOR gates only.	
6.	(a)	Explain amplitude modulation in details.	4
	(b)	List different applications of CRO.	4
		Or	
	(a)	Explain the block diagram of DSO.	4
	(b)	Compare AM and FM.	4