Práca a kinetická energia

Práca konštantnej sily

Do práce vstupuje len priemet sily do smeru posunutia

Sila F koná prácu W>0

JEDNOTKA PRÁCE : 1 Joule = 1J

Sila F "spotrebováva" prácu W<0

Práca premenlivej sily v jednom rozmere

$$W = \int_{\Gamma} F_{x}(x) \bullet dx$$

Geometricky je práca daná obsahom plochy pod grafom funkcie F(x)

Práca premenlivej sily - všeobecne

Práca a kinetická energia pohyb v jednom smere

Zmena kinetickej energie telesa je rovná celkovej práci vykonanej všetkými silami, ktoré na časticu pôsobia

$$W = \Delta E_k$$

Všeobecný prípad trojrozmerný priestor

Rýchlosť zmeny kinetickej energie: $\frac{d\vec{v}}{dt} = \vec{a}$

e:
$$\frac{d\vec{v}}{dt} = \vec{a}$$

$$\frac{d\vec{v}}{dt} = \vec{a}$$

$$\frac{d\vec{v}}{dt} = \frac{1}{2}m\left[\frac{d\vec{v}}{dt} \bullet \vec{v} + \vec{v} \bullet \frac{d\vec{v}}{dt}\right] = m\left[\frac{d\vec{v}}{dt}\right] \vec{v} = m\vec{a} \bullet \frac{d\vec{l}}{dt} \Rightarrow dE_k = m\vec{a} \bullet d\vec{l}$$

$$\int_{i}^{f} \left[\sum \vec{F} \right] \bullet d\vec{l} = \int_{i}^{f} dE_{k}$$

Zmena kinetickej energie častice sa rovná velkovej práci vykonanej všetkými silami, ktoré na časticu pôsobia

$$W = \Delta E_k$$

Práca tiažovej sily homogénne gravitačné pole

$$W = \vec{G} \bullet \vec{d} = \int (0, 0, -mg) \bullet (dx, dy, dz) = -mg(z_f - z_i) = \Delta E_k$$

Práca vykonaná gravitačnou silou <u>nezávisí</u> od tvaru trajektórie, ale iba od počiatočnej a konečnej polohy telesa.

Práca trecej sily

Práca vykonaná trecou silou pri premiestnení telea z bodu i do bodu f závisí od dĺžky dráhy, t.j. <u>závisí</u> od tvaru trajektórie.

Konzervatívne a nekonzervatívne sily (polia)

Podľa toho, či práca danej sily pri premiestnení telesa z jedného bodu do druhého závisí (nezávisí) od <u>výberu</u> <u>trajektórie</u>, možno pôsobiace sily rozdeliť do dvoch kategórii:

Konzervatívne – práca nezávisí od tvaru trajektórie, ale iba od počiatočnej a konečnej polohy telesa (napr. gravitačná)

Nekonzervatívne sily – práca závisí od tvaru rajektórie (napr. trecia)

Alternatívna podmienka konzervatívnosti. Pre ľubovoľné uzavreté krivky musí byť splnená rovnica: $\iint_{\Gamma} \vec{F} \bullet d\vec{l} = 0$

Konzervativne polia Potenciálna energia

 Pre zjednodušenie výpočtu práce v konzervatívnych poliach zadefinujeme pre každý bod priestoru novú veličinu – potenciálna energia Ep s nasledovnou vlastnosťou:

Zmena potenciálnej energie \(\Delta \text{Ep pri prechode systému z počiatočného do konečného stavu je rovná záporne vzatej práci:

$$\begin{bmatrix} E_p(\vec{r}_2) - E_p(\vec{r}_1) \end{bmatrix} = -\int_{\vec{r}_1}^{\vec{r}_2} \vec{F} \cdot d\vec{l} \longrightarrow E_p(\vec{r}) = -\int_{\vec{r}_{ref}}^{\vec{r}} \vec{F} \cdot d\vec{l}$$

Referenčný bod

Potenciálna energia

$$E_{p}\left(\vec{r}\right) = -\int_{\vec{r}_{ref}}^{\vec{r}} \vec{F} \cdot d\vec{l}$$

POTENCIÁLNA ENERGIA Ep

- Nejednoznačná funkcia, pokiaľ sa nevyjadruje vzhľadom na ľubovolne zvolený referenčný bod
- Nemá fyzikálny význam
- •fyz. význam iba rozdiel ∆Ep (záporne vzatá práca)

Výpočet potenciálnej energie

- Tiažová potenciálna energia
- Potenciálna energia pružnosti

Potenciálna energia v homogénom gravitačnom poli

Referenčný bod zvoľme v počiatočnom bode súradnicovej sústavy:

$$\left[x_{ref}, y_{ref}, z_{ref}\right] = \left[0, 0, 0\right]$$

$$E_p = mgz = mgh$$

Potenciálna energia pružných síl

$$\vec{F} = -k\vec{d}$$

$$E_{p} = -\int_{x_{ref}}^{x} F_{x} dx = \frac{1}{2} kx^{2} - \frac{1}{2} kx_{ref}^{2}$$

Referenčný bod zvoľme v rovnovážnej polohe

$$X_{ref} = 0$$

$$E_p = \frac{1}{2}kx^2$$

Zhrnutie

Zmena kinetickej energie častice sa rovná velkovej práci vykonanej všetkými silami, ktoré na časticu pôsobia

$$\Delta E_k = \frac{1}{2}mv^2$$

Zmena potenciálnej energie \(\Delta \text{Ep pri prechode systému z } \) počiatočného do konečného stavu je rovná záporne vzatej práci:

$$\Delta E_p = -\int \vec{F}_K \bullet d\vec{l}$$

$$E_{p}(\vec{r}) = -\int_{\vec{r}_{ref}}^{\vec{r}} \vec{F} \cdot d\vec{l} \qquad \dots$$

Pohyb telesa v tiažovom poli Zeme

$$\Delta E_k = W$$

- •Teleso sa pohybuje nahor, práca tiažovej sily je záporná W < 0 \Rightarrow kinetická energia klesá $\Delta E_k < 0$
- •Teleso sa pohybuje nadol, práca tiažovej sily je kladná $W > 0 \Rightarrow$ kinetická energia stúpa $\Delta E_k > 0$

Výpočet práce síl pôsobiacich na HB

Výslednica všetkých konzervatívnych síl pôsobiacich na teleso Výslednica všetkých NEkonzervatívnych síl pôsobiacich na teleso

$$\Delta E_k - \int \vec{F}_K \bullet d\vec{l} = \int \vec{F}_{NK} \bullet d\vec{l}$$

$$\Delta E_p = -\int \vec{F}_K \bullet d\vec{l} .$$

$$\Delta E_k + \Delta E_p = \int \vec{F}_{NK} \bullet d\vec{l}$$

Mechanická energia

Potenciálna energia gravitačného poľa

$$E_p = mgh$$

Potenciálna energia pružných síl

$$E_p = \frac{1}{2}kx^2$$

Výpočet práce v sústavách

Sústava sa skladá z dvoch alebo viacerých objektov

Na objekty sústavy pôsobia vzájomné interakčné sily ako aj

okolie

$$\Delta E_{k_1} + \Delta E_{p_1} = \left[\int \vec{F}_{NK} \bullet d\vec{l} \right]_1$$

$$\Delta E_{k_2} + \Delta E_{p_2} = \left[\int \vec{F}_{NK} \bullet d\vec{l} \right]_2$$

$$\Delta E_{k_3} + \Delta E_{p_3} = \left[\int \vec{F}_{NK} \bullet d\vec{l} \right]_3$$

$$\Delta E_k^{total} + \Delta E_p^{total} = \sum_i \left(\int \vec{F}_{NK} \bullet d\vec{l} \right)_i$$

Práca výslednej nekonzervatívnej sily pôsobiacej na i-ty objekt sústavy

Mechanická energia sústavy

$$\Delta E_k^{total} + \Delta E_p^{total} = \sum_i \left(\int \vec{F}_{NK} \bullet d\vec{l} \right)_i$$

Zákon zachovania mechanickej energie

Mechanická energia sústavy

$$\Delta E_k^{total} + \Delta E_p^{total} = \sum_i \left(\int \vec{F}_{NK} \bullet d\vec{l} \right)_i$$

sústava

Zmena mechanickej energie sústavy sa rovná celkovej práci nekonzervatívnych síl pôsobiacich na objekty sústavy.

Ak v sústave pôsobia len konzervatívne sily, potom sa celková mechanická (t.j. celková kinetická +potenciálna) energia zachováva

ZZ mechanickej energie na kyvadle

Kmity kyvadla v tiažovom poli zeme.

Neuvažujeme trenie

V každom okamihu:

$$E_k + E_p = konst$$

$$\frac{1}{2}mv^2 + mgh = konst$$

Jedna forma energie sa "prelieva" na inú formu energie

Príklad

Teleso s hmotnosťou m je položené na pružine s tuhosťou k=2400 N/m, ktorá je stlačená o Δx =0.15m a leží na naklonenej rovine s uhlom sklonu ϕ = 25 stupňov. Pružinu uvolníme.

- Určte akú vzdialenosť prešlo teleso kým sa zastavilo.
- Určte, akú rýchlosť dosiahne teleso pri návrate späť, keď sa dostane do polovičnej vzdialenosti medzi bodom f a i. Trenie neuvažujte.

Nepôsobia nekonzervatívne sily

$$\frac{1}{2}k(\Delta x)^{2} + \frac{1}{2}mv_{i}^{2} = \frac{1}{2}mv_{f}^{2} + mgy_{f}$$

$$\frac{1}{2}k\left(\Delta x\right)^2 = \frac{1}{2}mv_h^2 + mg y_h$$

$$y_h = \frac{1}{2} y_f$$

Potenciálna energia gravitačného poľa ≠ 0

Kinetická energia = 0

 Malá kocka ľadu s hmotnosťou m sa začne bez trenia šmýkať z výšky y_i=4R. Určte rýchlosť, ktorú dosiahne v najvyššom bode kružnice s polomerom R. Určte tlakovú silu v tomto okamihu.

$$E_{k_i} + E_{pi} = E_{k_f} + E_{pf}$$

$$0 + mg(4R) = \frac{1}{2}mv_f^2 + mg(2R) \implies v_f = \sqrt{4gR}$$

$$\sum \vec{F} = m\vec{a} \implies F_N + mg = \frac{mv_f^2}{R}$$

Dievča naskočilo na sánky, ktoré sa začali pohybovať rýchlosťou v=2.5 m/s. Sánky prešli dráhu d=6.4m a zastavili sa. Určte koeficient dynamického trenia.

$$\Delta E_{k}^{total} + \Delta E_{p}^{total} = \int \vec{F}_{NK_{\text{intern\'e}}} \bullet d\vec{l}$$

$$E_{k_{f}} + E_{p_{f}} = E_{k_{i}} + E_{p_{i}} - \mu_{k} mgd$$

ZZE pri skoku na trampolíne

$$E_{p}(\vec{r}) = -\int_{\vec{r}_{ref}}^{\vec{r}} \vec{F} \cdot d\vec{l}$$

$$E_{p} \longrightarrow F$$

$$dE_p = -F(x)dx$$

$$F(x) = -\frac{dE_p}{dx}$$

$$E_p = \frac{1}{2}kx^2 \qquad \to \qquad F = -kx$$

$$E_p = mgx \qquad \rightarrow \qquad F = -mg$$

$$E_p \longrightarrow F$$

$$E_{p} = -\int_{x_{ref}}^{x} F(x) dx$$

$$\int_{x_{ref}}^{x} dE_{p}(\vec{r}) = -\int_{x_{ref}}^{x} F(x) dx \implies dE_{p} = -F(x) dx$$

$$F(x) = -\frac{dE_p}{dx}$$

 $E_p = \frac{1}{2}kx^2 \qquad \to \qquad F = -kx$

$$E_p = mgx \qquad \rightarrow \qquad F = -mg$$

analyticky

$$E_p \longrightarrow F$$

$$E_{p} = -\int_{x_{ref}}^{x} F(x) dx$$

$$\int_{x_{ref}}^{x} dE_{p}(\vec{r}) = -\int_{x_{ref}}^{x} F(x) dx \implies dE_{p} = -F(x) dx$$

$$F(x) = -\frac{dE_p}{dx}$$

Graficky: Záporne vzatá smernica dotyčnice

$$E_p \longrightarrow F$$

$$E_{p} = -\int_{x_{ref}}^{x} F(x) dx$$

$$\int_{x_{ref}}^{x} dE_{p}(\vec{r}) = -\int_{x_{ref}}^{x} F(x) dx \implies dE_{p} = -F(x) dx$$

$$F(x) = -\frac{dE_p}{dx}$$

Krivka potenciálnej energie

$$E_p + E_k = E$$

Návod na určenie kinetickej energie

$$E_k = E - E_p \ge 0$$

Rovnovážne konfigurácie

Pohybová rovnica pre sústavu hmotných bodov

$$\vec{F}_{23} + \vec{F}_{31} + \vec{F}_{ext1} = m_1 \vec{a}_1$$

$$\vec{F}_{12} + \vec{F}_{32} + \vec{F}_{ext2} = m_2 \vec{a}_2$$

$$\vec{F}_{13} + \vec{F}_{23} + \vec{F}_{ext3} = m_3 \vec{a}_3$$

Akcia - reakcia

$$\vec{F}_{21} = -\vec{F}_{12}$$

$$\vec{F}_{31} = -\vec{F}_{13}$$

$$\vec{F}_{32} = -\vec{F}_{23}$$

$$\vec{F}_{ext1} + \vec{F}_{ext2} + \vec{F}_{ext3} = m_1 \vec{a}_1 + m_2 \vec{a}_2 + m_3 \vec{a}_3$$

Pohybová rovnica pre sústavu HB

$$\sum_{i=1}^{n} \vec{F}_{i}^{extern\acute{e}} = \sum_{i} m_{i} \vec{a}_{i}$$

Hybnost'

$$\vec{F}_{ext1} + \vec{F}_{ext2} + \vec{F}_{ext3} = m_1 \vec{a}_1 + m_2 \vec{a}_2 + m_3 \vec{a}_3 = m_1 \frac{d\vec{v}_1}{dt} + m_2 \frac{d\vec{v}_2}{dt} + m_3 \frac{d\vec{v}_3}{dt} = \frac{d}{dt} \left[m_1 \vec{v}_1 + m_2 \vec{v}_2 + m_3 \vec{v}_3 \right]$$

$$= \frac{d}{dt} \left[m_1 \vec{v}_1 + m_2 \vec{v}_2 + m_3 \vec{v}_3 \right]$$
Hybnosti hmotných bodov : $\vec{p}_i = m\vec{v}_i$

Hybnost' sústavy :
$$\vec{p} = \sum_{i} m \vec{v}_{i}$$

$$\sum_{j} \vec{F}_{j}^{\text{extern\'e}} = \frac{d}{dt} \sum_{i} \vec{p}_{i}$$

Hybnost'

Časová zmena hybnosti hmotného bodu je rovná výslednice síl, pôsobiacich na časticu

$$\frac{d\vec{p}}{dt} = \vec{F}$$

Časová zmena hybnosti sústavy hmotných bodov je rovná vektorovej výslednice vonkajších síl, pôsobiacich na sústavu

$$\frac{d\vec{P}}{dt} = \sum \vec{F}_{ext}$$

Zákon zachovania hybnosti

Časová zmena hybnosti sústavy hmotných bodov je rovná vektorovej výslednice vonkajších síl, pôsobiacich na sústavu

$$\frac{d\vec{P}}{dt} = \sum \vec{F}_{ext}$$

$$\sum \vec{F}_{ext} = 0$$

V izolovanej sústave sa hybnosť zachováva.

Ak niektorá zo zložiek výslednej vonkajšej sily pôsobiacej pôsobiacich na uzavretú sústavu je nulová, potom odpovedajúca zložka celkovej hybnosti sústavy sa zachováva.

$$Ak \quad \frac{dP_x}{dt} = 0 \quad \Rightarrow \quad P_x = kon\check{s}$$

$$Ak \quad \frac{dP_y}{dt} = 0 \quad \Rightarrow \quad P_y = kon\check{s}$$

$$Ak \quad \frac{dP_z}{dt} = 0 \quad \Rightarrow \quad P_z = kon\check{s}$$

Posúdenie ZZH pre rôzne postavené sústavy

Sústava : obe guličky

Externé sily : gravitačné

$$\sum \vec{F}_{extern\acute{e}} \neq \vec{0}$$

NEplatí ZZH pre sústavu

Sústava : gulička

Externé sily : gravitačná, tlaková sila,

ktorou pôsobí červená gulička

$$\sum \vec{F}_{extern\acute{e}} \neq \vec{0}$$

NEplatí ZZH pre sústavu

Sústava: guličky

Externé sily : gravitačné sily, tlakové

$$\sum \vec{F}_{extern\acute{e}} = \vec{0}$$

Platí ZZH pre sústavu

Stratégia použitia ZZH

- 1, Definujte objekty, ktoré patria do sledovaného systému
- 2, určte vonkajšie sily pôsobiace na systém
- 3, overte, či je systém izolovaný, t.j. či vektorový súčet externých síl je nulový
- 4, pre izolovaný systém môžete použiť zákon zachovania hybnosti. Zákon je možné použiť aj pre tie zložky, pre ktoré sú externé sily nulové

Dvaja krasokorčuliari s hmotnosťou m_1 a m_2 sa odtlačili na hladkom ľade, na ktorom trecie sily možno zanedbať. Určte rýchlosť krasokorčuliara v_2 , keď rýchlosť krasokorčuliarky bola v_1 .

Zrážky

Zrážka je krátkodobý dej, pri ktorom na seba pôsobí krátkodobo niekoľko telies

Hybnosť uzavretej izolovanej sústavy sa zachováva vždy, bez ohľadu na to, či je zrážka pružná alebo nepružná

Pružné zrážky

SÚSTAVA: Gulôčky

$$m_1 v = m_1 u + m_2 w$$

$$\frac{1}{2} m_1 v^2 = \frac{1}{2} m_1 u^2 + \frac{1}{2} m_2 w^2$$

$u = \frac{m_1 - m_2}{m_1 + m_2} v$ $w = \frac{2m_1}{m_1 + m_2} v$

DISKUSIA

Rovnaké hmotnosti: u = 0 w = v

Ťažký terč: $u \Box -v \quad w \Box \frac{2m_1}{m_2}v$

L'ahký terč: $u \square v \qquad w \square 2v$

Dokonale nepružná zrážka

ZZH platí aj pri tejto zrážke.

$$m_1 v = (m_1 + m_2)V$$

$$V = \frac{m_1}{(m_1 + m_2)}v$$

Pohyb ťažiska sústavy nie je dokonale nepružnou zrážkou vôbec ovplyvnený.

Využitie balistického kyvadla na meranie rýchlostí striel

Do dreveného hranola s hmotnosťou m₂ narazí strela s hmotnosťou m₁ a vychýli kyvadlo do výšky h. Určte jej počiatočnú rýchlosť.

Dve fázy:

1, **Zrážka** (dokonale nepružná)
Platí 77H. neplatí 77 mechanickei en

Platí ZZH, neplatí ZZ mechanickej energie (pôsobia disipačné sily)

2, <u>stúpanie</u>

Platí ZZE (práca nekonzervatívnych síl =0), neplatí ZZH – externá sila nie je nulová

$$m_{1}v = (m_{1} + m_{2})u$$

$$\frac{1}{2}[m_{1} + m_{2}]u^{2} = [m_{1} + m_{2}]gh$$

$$v = (m_{1} + m_{2})gh$$

$$v = \left(\frac{m_1 + m_2}{m_1}\right) \sqrt{2gh}$$

Ťažisko – špeciálny bod reprezentujúci sústavu

Nájdime taký "reprezentatívny" bod sústavy,ktorý bude mať hmotnosť tejto sústavy a bude naň pôsobiť sila rovnajúca sa vektorovému súčtu všetkých vonkajších síl, pôsobiacich na sustavu.

Ťažisko

Sústava

$$\vec{F}_{ext1} + \vec{F}_{ext2} + \vec{F}_{ext3} = m_1 \vec{a}_1 + m_2 \vec{a}_2 + m_3 \vec{a}_3$$

Ťažisko

$$\vec{F}_{ext1} + \vec{F}_{ext2} + \vec{F}_{ext3} = M_T \frac{d^2 \vec{r}_T}{dt^2}$$

$$\frac{d^2}{dt^2} \left[m_1 \vec{r_1} + m_2 \vec{r_2} + m_3 \vec{r_3} \right] = \frac{d^2}{dt^2} \left[M_T \vec{r_T} \right]$$

$$\vec{r}_T = \frac{\sum_i m_i \vec{r}_i}{M}$$

$$\vec{r}_T = \frac{\int \vec{r} \ dm}{M}$$

Sústava hmotných bodov

Ťažisko sústavy hmotných bodov (resp. teleso) sa pohybuje tak, akoby sa pohyboval HB s hmotnosťou celej sústavy, keby naň pôsobila sila rovnajúca sa vektorovému súčtu všetkých vonkajších síl pôsobiacich na sustavu (resp. teleso)

Pohybová rovnica pre ťažisko

$$\vec{F}_{ext1} + \vec{F}_{ext2} + \vec{F}_{ext3} = M_T \frac{d^2 \vec{r}_T}{dt^2}$$

Ťažisko sústavy hmotných bodov (resp. teleso) sa pohybuje tak, akoby sa pohyboval HB s hmotnosťou celej sústavy, keby naň pôsobila sila rovnajúca sa vektorovému súčtu všetkých vonkajších síl pôsobiacich na sústavu (resp. teleso)

Veta o pohybe ťažiska

Pre izolovanú sústavu:

Rýchlosť ťažiska sa v izolovanej sústave nemení

$$\vec{a}_T = \vec{0} \implies \vec{v}_T = \vec{k}$$

Pohyb ťažiska pri dokonale pružnej zrážke

Pohyb ťažiska pri dokonale nepružnej zrážke

ZZH platí aj pri tejto zrážke.

$$m_1 v = (m_1 + m_2)V$$

$$V = \frac{m_1}{(m_1 + m_2)}v$$

Energia rotačného pohybu

Jeden obeh všetkých častíc tuhého telesa trvá ten istý čas T

<u>Uhlová poloha</u> – uhol , ktorý vzťažná priamka zviera s pevne zvoleným smerom ležiacim v rovine kolmej na os otáčania

Ak sa teleso otáča okolo pevnej osi s uhlovou rýchlosťou ω, potom každá jeho častica vykonáva pohyb po svojej vlastnej kružnici s touto istou ω.

Rovnomerný pohyb po kružnici pripomenutie

Perióda T – čas, za ktorý hmotný bod obehne kružnicu, t.j. čas po ktorom sa celý pohyb opakuje:

Uhlová rýchlosť ω – uhol, ktorý opíše sprievodič za jednotku času

Axis of rotation
$$ds = d\varphi r$$

$$v = \frac{ds}{dt} = \frac{d\varphi}{dt} r = \omega r$$

Kinetická energia telesa pri rotačnom pohybe

I - závisí nielen od hmotnosti telesa, ale aj od jej rozdelenia vzhľadom na os otáčania.

I – miera zotrvačnosti závisí od rozloženia hmoty vzhľadom na os otáčania

I- Miera zotrvačnosti telesa pri otáčaní

I závisí od hmotnosti a jej rozmiestnenia vzhľadom na os otáčania

Výpočet momentu zotrvačnosti I

$$I = \sum_{i} m_{i} r_{i}^{2}$$

$$I = \int r^2 dm$$

Diskrétne rozmiestnená hmotnosť

Spojite rozmiestnená hmotnosť

 $I = \frac{1}{2}mR^2$

osa

2R

Kulová slupka

se otáčí kolem

osy vedené jejím středem.

(h)

(j)

Deska se otáčí

kolem příčné osy vedené jejím středem.

Steinerova veta

Vzťažný bod súradnicovej sústavy je totožný s polohou ťažiska. Z tohto dôvodu poloha ťažiska je $x_T = y_T = 0$

Os vedená ťažiskom

$$\vec{r}_T = \frac{\int \vec{r} \ dm}{M} = \begin{cases} x_T = 0 = \frac{\int x dm}{M} \implies \int x dm = 0\\ y_T = 0 = \frac{\int y dm}{M} \implies \int y dm = 0 \end{cases}$$

$$I = \int r^2 dm = \int \left[(x-a)^2 + (y-b)^2 \right] dm$$

$$I = \int (x^2 + y^2) dm - 2a \int x dm - 2b \int y dm + \int (a^2 + b^2) dm$$

$$I_T$$

$$x_T = 0$$

$$y_T = 0$$

$$h^2 m$$

Výpočet momentu zotrvačnosti I

$$I = \int_{0}^{L} x^{2} \frac{M}{L} dx = \frac{1}{3} ML^{2}$$

$$I_T = \int_{-L/2}^{L/2} x^2 \frac{M}{L} dx = \frac{1}{12} ML^2$$

Steinerova veta

$$I = I_T + M\left(\frac{L}{2}\right)^2 = \int_{-L/2}^{L/2} x^2 \frac{M}{L} dx = \frac{1}{12}ML^2 + \frac{1}{4}ML^2 = \frac{1}{3}ML^2$$

$$\frac{1}{2}mv_T^2 + mgh + \frac{1}{2}J\omega^2 = kons$$

Klopené zákruty

Automobil s hmotnosťou m sa pohybuje rýchlosťou v po naklonenej ceste s polomerom R. Určte najmenšiu hodnotu koeficientu statického trenia, medzi pneomatikou a vozovkou, ak nemá dojsť k šmyku.

$$F_N \sin \varphi = \frac{mv^2}{r}$$
$$F_N \sin \varphi = mg$$