My Project

Generated by Doxygen 1.9.2

1 Hierarchical Index	1
1.1 Class Hierarchy	1
2 Class Index	3
2.1 Class List	3
3 Class Documentation	5
3.1 AsymmetricGaussian Class Reference	5
3.1.1 Member Function Documentation	5
3.1.1.1 evaluateSing()	6
3.1.1.2 numericalSecondDerivative()	6
3.2 Elliptical Class Reference	6
3.3 Functions Class Reference	7
3.4 Gaussian Class Reference	7
3.4.1 Member Function Documentation	8
3.4.1.1 evaluateAll()	8
3.4.1.2 evaluateSing()	8
3.4.1.3 numericalSecondDerivative()	8
3.5 Hamiltonian Class Reference	9
3.6 ImportanceSampling Class Reference	9
	10
·	10
	11
	11
	12
	12
	13
	13
	14
"	14
Ÿ	14
T .	14
	15
	15
	16
	16
	16
	17

Chapter 1

Hierarchical Index

1.1 Class Hierarchy

This inheritance list is sorted roughly, but not completely, alphabetically:

ınctions	
amiltonian	9
Elliptical	6
Spherical	
article	
andomGenerator	
olver	
ImportanceSampling	10
vstem	12
AsymmetricGaussian	

2 Hierarchical Index

Chapter 2

Class Index

2.1 Class List

Here are the classes, structs, unions and interfaces with brief descriptions:

symmetricGaussian	 5
liptical	 6
unctions	 7
aussian	 7
amiltonian	
nportanceSampling	 9
etropolis	
article	
andomGenerator	
olver	
pherical	
ystem	 12
avefunction	 15

4 Class Index

Chapter 3

Class Documentation

3.1 AsymmetricGaussian Class Reference

Inheritance diagram for AsymmetricGaussian:

Public Member Functions

- AsymmetricGaussian (class System *s, double alpha, double beta, double a)
- · double evaluateAll ()

Evaluates the wavefunction in the specified point.

double evaluateSing (int part_idx)

Evaluates the gaussian contribution relative to the part_idx-th particle.

- double analyticalAlphaDerivative ()
 - evaluates the analytical derivative with respect to alpha
- double numericalSecondDerivative (int part_idx, int direction, double h)
- vector< double > DriftForce (int part_idx)

evaluates the drift force associated to the part_idx-th particle

Additional Inherited Members

3.1.1 Member Function Documentation

3.1.1.1 evaluateSing()

Evaluates the gaussian contribution relative to the part_idx-th particle.

See also

evaluateAll()

Implements Wavefunction.

3.1.1.2 numericalSecondDerivative()

Evaluates numerically the second derivative with respect to the coordinate "direction" of particle "part_idx". The derivative is evaluated in the point in which the particles are in this moment. direction can be 0 (x), 1 (y), 2 (z), accordingly to the dimension of the system chosen.

Implements Wavefunction.

The documentation for this class was generated from the following files:

- · Wavefunctions/asymmetricGaussian.h
- · Wavefunctions/asymmetricGaussian.cpp

3.2 Elliptical Class Reference

Inheritance diagram for Elliptical:

- Elliptical (class System *system, double omegaXY, double omegaZ)
- double getOmegaXY ()
- double getOmegaZ ()
- double LocalEnergyAnalytic ()
- double LocalEnergyNumeric (double h)

Additional Inherited Members

The documentation for this class was generated from the following files:

- · Hamiltonians/elliptical.h
- · Hamiltonians/elliptical.cpp

3.3 Functions Class Reference

Public Member Functions

- Functions (class System *system)
- vector < vector < double >> solve_varying_alpha (double alpha_min, double alpha_max, int Nalphas)
- double gradientDescent (double inizialAlpha, double gamma, double tolerance, int Nmax, int Nsteps)

Public Attributes

class System * system

The documentation for this class was generated from the following files:

- · Others/functions.h
- · Others/functions.cpp

3.4 Gaussian Class Reference

Inheritance diagram for Gaussian:

Public Member Functions

- Gaussian (class System *s, double alpha)
- double evaluateAll ()
- double evaluateSing (int part_idx)

Evaluates the gaussian contribution relative to the part_idx-th particle.

- double numericalSecondDerivative (int part_idx, int direction, double h)
- double analyticalAlphaDerivative ()

evaluates the analytical derivative with respect to alpha

vector< double > DriftForce (int part_idx)

evaluates the drift force associated to the part_idx-th particle

Additional Inherited Members

3.4.1 Member Function Documentation

3.4.1.1 evaluateAll()

```
double Gaussian::evaluateAll ( ) [virtual]
```

See also

Wavefunction::evaluateAll()

Implements Wavefunction.

3.4.1.2 evaluateSing()

Evaluates the gaussian contribution relative to the part_idx-th particle.

See also

evaluateAll()

Implements Wavefunction.

3.4.1.3 numericalSecondDerivative()

```
double Gaussian::numericalSecondDerivative (
    int part_idx,
    int direction,
    double h ) [virtual]
```

Evaluates numerically the second derivative with respect to the coordinate "direction" of particle "part_idx". The derivative is evaluated in the point in which the particles are in this moment. direction can be 0 (x), 1 (y), 2 (z), accordingly to the dimension of the system chosen.

Implements Wavefunction.

The documentation for this class was generated from the following files:

- · Wavefunctions/gaussian.h
- · Wavefunctions/gaussian.cpp

3.5 Hamiltonian Class Reference

Inheritance diagram for Hamiltonian:

Public Member Functions

- Hamiltonian (class System *system)
- virtual double LocalEnergyAnalytic ()=0
- virtual double **LocalEnergyNumeric** (double h)=0

Public Attributes

• class System * system

The documentation for this class was generated from the following files:

- · Hamiltonians/hamiltonian.h
- · Hamiltonians/hamiltonian.cpp

3.6 ImportanceSampling Class Reference

Inheritance diagram for ImportanceSampling:

- ImportanceSampling (class System *system, int Nsteps, double initialFraction, double dt, double D)
- double **getdt** ()
- double getD ()
- void setdt (double dt)
- void setD (double D)
- vector< double > solve (bool allAverages)
- vector< double > solve (double h)

Additional Inherited Members

The documentation for this class was generated from the following files:

- · Solvers/importanceSampling.h
- · Solvers/importanceSampling.cpp

3.7 Metropolis Class Reference

Inheritance diagram for Metropolis:

Public Member Functions

- Metropolis (class System *system, int Nsteps, double initialFraction, double step)
- double getStep ()
- double setStep (double step)
- vector< double > solve (bool allAverages)
- vector< double > solve (double h)

Additional Inherited Members

The documentation for this class was generated from the following files:

- · Solvers/metropolis.h
- Solvers/metropolis.cpp

3.8 Particle Class Reference

- Particle (class System *system, double mass, vector< double > pos)
- void setMass (double m)
- void setPosition (vector< double > new_pos)
- vector< double > getPosition ()
- double getMass ()
- void move (vector< double > delta_pos)

Public Attributes

class System * system

The documentation for this class was generated from the following files:

- · Particles/particle.h
- · Particles/particle.cpp

3.9 RandomGenerator Class Reference

Public Attributes

- uniform_real_distribution< double > uniform
- normal_distribution< double > normal

The documentation for this class was generated from the following files:

- · Others/random_generator.h
- Others/random_generator.cpp

3.10 Solver Class Reference

Inheritance diagram for Solver:

Public Member Functions

- Solver (class System *system, int Nsteps, double initialFraction)
- int getNsteps ()
- double getInitialFraction ()
- void setNsteps (int Nsteps)
- void **setInitialFraction** (double initialFraction)
- virtual vector< double > solve (bool allAverages)=0
- virtual vector< double > **solve** (double h)=0

Public Attributes

class System * system

Protected Attributes

- · int Nsteps
- · double InitialFraction

The documentation for this class was generated from the following files:

- · Solvers/solver.h
- · Solvers/solver.cpp

3.11 Spherical Class Reference

Inheritance diagram for Spherical:

Public Member Functions

- Spherical (class System *system, double omega)
- double getOmega ()
- double LocalEnergyAnalytic ()
- double LocalEnergyNumeric (double h)

Additional Inherited Members

The documentation for this class was generated from the following files:

- · Hamiltonians/spherical.h
- · Hamiltonians/spherical.cpp

3.12 System Class Reference

- System (int dim, int Npart)
- class Hamiltonian * getHamiltonian ()
- class Wavefunction * getWavefunction ()
- class Solver * getSolver ()
- class RandomGenerator * getRandomGenerator ()
- int getDimension ()
- int getNParticles ()
- vector< class Particle * > getParticles ()

- bool getUseMatrix ()
- · void setHamiltonian (class Hamiltonian *hamiltonian)
- void setSolver (class Solver *solver)
- void setWavefunction (class Wavefunction *wavefunction)
- void setRandomGenerator (class RandomGenerator *randomgenerator)
- void setUseMatrix (bool usematrix)
- void addParticle (double mass, vector< double > pos)
- double r2 (double parameter)

Evaluates the squared distance of particles and sums.

double r2 (vector< double > vect, double parameter)

Evaluates the sum of the square of the vector components.

double cdot (vector< double > v1, vector< double > v2)

Scalar product between vector 1 and vector 2.

void EvaluateRelativeDistance ()

Updates the relative_distance matrix.

void EvaluateRelativePosition ()

Updates the relative position matrix.

void EvaluateRelativePosition (int idx)

Updates a special row of the relative position matrix.

void EvaluateRelativeDistance (int idx)

Updates a special row of the relative distance matrix.

Public Attributes

vector< vector< double >>> relative_position

NxN matrix of 3d vectors. The ij-th element is a 3D vector containing posi - posj.

vector< vector< double >> relative_distance

NxN matrix of doubles. The ij-th element is the distance between particle i and particle j.

3.12.1 Member Function Documentation

3.12.1.1 EvaluateRelativeDistance() [1/2]

```
void System::EvaluateRelativeDistance ( )
```

Updates the relative_distance matrix.

See also

relative_distance

3.12.1.2 EvaluateRelativeDistance() [2/2]

```
void System::EvaluateRelativeDistance ( \label{eq:condition} \text{int } idx \text{ )}
```

Updates a special row of the relative distance matrix.

See also

relative_distance

3.12.1.3 EvaluateRelativePosition() [1/2]

```
void System::EvaluateRelativePosition ( )
```

Updates the relative position matrix.

See also

relative_position

3.12.1.4 EvaluateRelativePosition() [2/2]

Updates a special row of the relative position matrix.

See also

relative_position

3.12.1.5 getUseMatrix()

```
bool System::getUseMatrix ( )
```

See also

relative_position, relative_distance

3.12.1.6 setUseMatrix()

See also

relative_position, relative_distance

The documentation for this class was generated from the following files:

- · System/system.h
- · System/system.cpp

3.13 Wavefunction Class Reference

Inheritance diagram for Wavefunction:

Public Member Functions

- Wavefunction (class System *system, int nparams)
- virtual double evaluateAll ()=0

Evaluates the wavefunction in the specified point.

virtual double evaluateSing (int part_idx)=0

Evaluates the gaussian contribution relative to the part_idx-th particle.

- virtual double numericalSecondDerivative (int part_idx, int direction, double h)=0
- virtual vector< double > DriftForce (int part_idx)=0

evaluates the drift force associated to the part_idx-th particle

• virtual double analyticalAlphaDerivative ()=0

evaluates the analytical derivative with respect to alpha

- · void setParameter (int idx, double value)
- double getParameter (int idx)

Public Attributes

class System * s

Protected Attributes

- int nparams
- vector< double > params

3.13.1 Member Function Documentation

3.13.1.1 evaluateSing()

Evaluates the gaussian contribution relative to the part idx-th particle.

See also

evaluateAll()

Implemented in AsymmetricGaussian, and Gaussian.

3.13.1.2 numericalSecondDerivative()

```
virtual double Wavefunction::numericalSecondDerivative ( int \ part\_idx, int \ direction, double \ h \ ) \ [pure \ virtual]
```

Evaluates numerically the second derivative with respect to the coordinate "direction" of particle "part_idx". The derivative is evaluated in the point in which the particles are in this moment. direction can be 0 (x), 1 (y), 2 (z), accordingly to the dimension of the system chosen.

Implemented in AsymmetricGaussian, and Gaussian.

The documentation for this class was generated from the following files:

- · Wavefunctions/wavefunction.h
- Wavefunctions/wavefunction.cpp

Index

```
AsymmetricGaussian, 5
     evaluateSing, 5
    numericalSecondDerivative, 6
Elliptical, 6
evaluateAll
     Gaussian, 8
EvaluateRelativeDistance
     System, 13
EvaluateRelativePosition
     System, 14
evaluateSing
    AsymmetricGaussian, 5
     Gaussian, 8
     Wavefunction, 16
Functions, 7
Gaussian, 7
    evaluateAll, 8
    evaluateSing, 8
    numericalSecondDerivative, 8
getUseMatrix
     System, 14
Hamiltonian, 9
ImportanceSampling, 9
Metropolis, 10
numericalSecondDerivative
     AsymmetricGaussian, 6
     Gaussian, 8
    Wavefunction, 16
Particle, 10
RandomGenerator, 11
setUseMatrix
     System, 14
Solver, 11
Spherical, 12
System, 12
     EvaluateRelativeDistance, 13
     EvaluateRelativePosition, 14
    getUseMatrix, 14
    setUseMatrix, 14
Wavefunction, 15
     evaluateSing, 16
     numericalSecondDerivative, 16
```