Arranjos 2D

TIPO DE DADOS ARRANJO EM JAVA

Concluído anteriormente...

Foi apresentado a criação e manipulação de Arranjos 1D.

Discutiu-se como os arranjos 1D são armazenados e acessados na memória

Verificou-se que os Arranjos são tratados como objetos em JAVA.

Foram apresentadas duas formas de realizar uma cópia dos Arranjos 1D

Objetivo deste tutorial

Apresentar como são armazenados e manipulados os Arranjos 2D em JAVA por meio de exemplos.

Propor exercícios práticos.

TD Arranjos 2D em JAVA

Para implementar o mapeamento índice x posição, o Java adota o seguinte sistema de índices:

[linha][coluna]

para indicar a posição do primeiro elemento armazenado em um arranjo bidimensional.

2D Array of size 3 x 5

		$Columns \longrightarrow$				
		Ο	1	2	3	4
\leftarrow Rows	О	5	12	17	9	3
	1	13	4	8	14	1
	2	9	6	3	7	21

2D Array of size 3 x 5

		$Columns \longrightarrow$				
		Ο	1	2	3	4
\leftarrow Rows	О	5	12	17	9	3
	1	13	4	8	14	1
	2	9	6	3	7	21

2D Array of size 3 x 5

C:\Users\eduar\Desktop\ED>java Prog010 12.0

int[][] a = new int[3][4];

	Column 1	Column 2	Column 3	Column 4
Row 1	a[0][0]	a[0][1]	a[0][2]	a[0][3]
Row 2	a[1][0]	a[1][1]	a[1][2]	a[1][3]
Row 3	a[2][0]	a[2][1]	a[2][2]	a[2][3]

```
int[][] a = {
    {1, 2, 3},
    {4, 5, 6, 9},
    {7},
};
```

	Column	Column	Column	Column
	1	2	3	4
Row 1	1 a[0][0]	2 a[0][1]	3 a[0][2]	
Row 2	4	5	6	9
	a[1][0]	a[1][1]	a[1][2]	a[1][3]
Row 3	7 a[2][0]			

```
class <a href="Prog012">Prog012</a>{
        public static void main(String[] args) {
           int[][] a = {
 3
 4
                 \{1, 2, 3\},\
                  \{4, 5, 6, 9\},\
 5
                  {7},
           };
           System.out.println("Length of row 1: " + a[0].length);
 8
           System.out.println("Length of row 2: " + a[1].length);
           System.out.println("Length of row 3: " + a[2].length);
10
11
12
```

```
class Prog012{
        public static void main(String[] args) {
          int[][] a = {
 3
                \{1, 2, 3\},\
                \{4, 5, 6, 9\},\
 5
                {7},
          };
          System.out.println("Length of row 1: " + a[0].length);
 8
          System.out.println("Length of row 2: " + a[1].length);
 9
          System.out.println("Length of row 3: " + a[2].length);
10
11
12
           C:\Users\eduar\Desktop\ED>java Prog012
           Length of row 1: 3
            Length of row 2: 4
            Length of row 3: 1
```

TD Arranjos 2D em JAVA - impressão

```
class Prog013{
        public static void main(String[] args) {
           int[][] a = {
                 \{1, -2, 3\},\
 4
                 \{-4, -5, 6, 9\},\
 5
                 {7},
           };
          for (int i = 0; i < a.length; ++i){</pre>
             for(int j = 0; j < a[i].length; ++j)</pre>
 9
                 System.out.print(a[i][j] + " ");
10
             System.out.println();
11
12
13
14
```

TD Arranjos 2D em JAVA - impressão

```
class Prog013{
        public static void main(String[] args) {
           int[][] a = {
                 \{1, -2, 3\},\
 4
                 \{-4, -5, 6, 9\},\
 5
                 {7},
           };
          for (int i = 0; i < a.length; ++i){</pre>
             for(int j = 0; j < a[i].length; ++j)</pre>
 9
                 System.out.print(a[i][j] + " ");
10
             System.out.println();
11
12
13
14
```

```
C:\Users\eduar\Desktop\ED>java Prog013
1 -2 3
-4 -5 6 9
7
```

TD Arranjos 2D em JAVA – Cópias com clone()

```
public class Prog011{

public static void main(String args[]){

float[][] a = {{ 5,12,17, 9, 3},

{13, 4, 8,14, 1},

{9, 6, 3, 7,21}};

float[][] b = a.clone();

System.out.println(b[0][1]);

}

}
```

C:\Users\eduar\Desktop\ED>java Prog011 12.0

TD Arranjos 2D em JAVA – Cópias com clone()

TD Arranjos 2D em JAVA – Cópias com clone()

C:\Users\eduar\Desktop\ED>java Prog015 [[F@15db9742 [[F@6d06d69c 12.0

Código base para os exercícios propostos

```
public class Exercicios_Arranjo2D{
public static void main(String args[]){
   int n = 5; // valor de n pode estar entre 2 e 10
   int[][] a = new int[n][n];
   // aqui entra o seu código
}
```

Exercício proposto 01

Construa um programa em Java que preencha uma matriz quadrada com a soma dos índices linha e coluna de cada posição.

Ao final o programa deve apresentar a matriz.

Exercício proposto 02

Construa um programa em Java que preencha uma matriz identidade

$$I_3 = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \text{\'e a matriz identidade de ordem 3.}$$

$$I_4 = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} \text{\'e a matriz identidade de ordem 4.}$$

$$I_5 = \begin{pmatrix} 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 \end{pmatrix} \text{\'e a matriz identidade de ordem 5.}$$

Ao final o programa deve apresentar a matriz.

Exercício proposto 03

4. As seguintes matrizes têm o apelido de **matrizes-espirais** de dimensões **5** e **6**:

 21
 22
 23
 24
 25
 26

 20
 7
 8
 9
 10
 27

 19
 6
 1
 2
 11
 28

 18
 5
 4
 3
 12
 29

 17
 16
 15
 14
 13
 30

 36
 35
 34
 33
 32
 31

Fazer um programa para ler \mathbf{n} e construir uma matriz-espiral de dimensão \mathbf{n}

Conclusões

Foi apresentado os Arranjos 2D.

Apresentou-se algumas formas de criação de um Arranjo 2D.

Verificou-se que a cópia por meio do método clone() funciona.

Foram propostos exercícios.