Utilizing Expert Knowledge

Feature engineering is often an important place to use expert knowledge for a particular application. While the purpose of machine learning in many cases is to avoid having to create a set of expert-designed rules, that doesn't mean that prior knowledge of the application or domain should be discarded. Often, domain experts can help in identifying useful features that are much more informative than the initial representation of the data. Imagine you work for a travel agency and want to predict flight prices. Let's say you have a record of prices together with dates, airlines, start locations, and destinations. A machine learning model might be able to build a decent model from that. Some important factors in flight prices, however, cannot be learned. For example, flights are usually more expensive during peak vacation months and around holidays. While the dates of some holidays (like Christmas) are fixed, and their effect can therefore be learned from the date, others might depend on the phases of the moon (like Hanukkah and Easter) or be set by authorities (like school holidays). These events cannot be learned from the data if each flight is only recorded using the (Gregorian) date. However, it is easy to add a feature that encodes whether a flight was on, preceding, or following a public or school holiday. In this way, prior knowledge about the nature of the task can be encoded in the features to aid a machine learning algorithm. Adding a feature does not force a machine learning algorithm to use it, and even if the holiday information turns out to be noninformative for flight prices, augmenting the data with this information doesn't hurt.

We'll now look at one particular case of using expert knowledge—though in this case it might be more rightfully called "common sense." The task is predicting bicycle rentals in front of Andreas's house.

In New York, Citi Bike operates a network of bicycle rental stations with a subscription system. The stations are all over the city and provide a convenient way to get around. Bike rental data is made public in an anonymized form and has been analyzed in various ways. The task we want to solve is to predict for a given time and day how many people will rent a bike in front of Andreas's house—so he knows if any bikes will be left for him.

We first load the data for August 2015 for this particular station as a pandas Data Frame. We resample the data into three-hour intervals to obtain the main trends for each day:

In[49]:

```
citibike = mglearn.datasets.load_citibike()
```

In[50]:

The following example shows a visualization of the rental frequencies for the whole month (Figure 4-12):

In[51]:

```
plt.figure(figsize=(10, 3))
  xticks = pd.date range(start=citibike.index.min(), end=citibike.index.max(),
                                       freq='D')
  plt.xticks(xticks, xticks.strftime("%a %m-%d"), rotation=90, ha="left")
  plt.plot(citibike, linewidth=1)
  plt.xlabel("Date")
  plt.ylabel("Rentals")
   50
   40
Rentals
   30
  20
  10
                                                                                     Fri 08-21
                                             Tue 08-11
                                                             Sat 08-15
                  Fue 08-04
                      Ved 08-05
                         Thu 08-06
                             Fri 08-07
                                 Sat 08-08
                                     90-80 uns
                                         10n 08-10
                                                 Ved 08-12
                                                     Thu 08-13
                                                         Fri 08-14
                                                                 Sun 08-16
                                                                     Mon 08-17
                                                                         Tue 08-18
                                                                             Wed 08-19
                                                                                 Thu 08-20
                                                                                         Sat 08-22
                                                                                             Sun 08-23
                                                                                                 1on 08-24
                                                                                                     Tue 08-25
                                                                                                         Ved 08-26
```

Figure 4-12. Number of bike rentals over time for a selected Citi Bike station

Looking at the data, we can clearly distinguish day and night for each 24-hour interval. The patterns for weekdays and weekends also seem to be quite different. When evaluating a prediction task on a time series like this, we usually want to *learn from the past* and *predict for the future*. This means when doing a split into a training and a test set, we want to use all the data up to a certain date as the training set and all the data past that date as the test set. This is how we would usually use time series prediction: given everything that we know about rentals in the past, what do we think will

happen tomorrow? We will use the first 184 data points, corresponding to the first 23 days, as our training set, and the remaining 64 data points, corresponding to the remaining 8 days, as our test set.

The only feature that we are using in our prediction task is the date and time when a particular number of rentals occurred. So, the input feature is the date and time—say, 2015-08-01 00:00:00—and the output is the number of rentals in the following three hours (three in this case, according to our DataFrame).

A (surprisingly) common way that dates are stored on computers is using POSIX time, which is the number of seconds since January 1970 00:00:00 (aka the beginning of Unix time). As a first try, we can use this single integer feature as our data representation:

In[52]:

```
# extract the target values (number of rentals)
v = citibike.values
# convert the time to POSIX time using "%s"
X = citibike.index.strftime("%s").astype("int").reshape(-1, 1)
```

We first define a function to split the data into training and test sets, build the model, and visualize the result:

In[54]:

```
# use the first 184 data points for training, and the rest for testing
n train = 184
# function to evaluate and plot a regressor on a given feature set
def eval_on_features(features, target, regressor):
    # split the given features into a training and a test set
    X_train, X_test = features[:n_train], features[n_train:]
    # also split the target array
    y_train, y_test = target[:n_train], target[n_train:]
    regressor.fit(X_train, y_train)
    print("Test-set R^2: {:.2f}".format(regressor.score(X_test, y_test)))
    y_pred = regressor.predict(X_test)
    y_pred_train = regressor.predict(X_train)
    plt.figure(figsize=(10, 3))
    plt.xticks(range(0, len(X), 8), xticks.strftime("%a %m-%d"), rotation=90,
               ha="left")
    plt.plot(range(n train), y train, label="train")
    plt.plot(range(n_train, len(y_test) + n_train), y_test, '-', label="test")
    plt.plot(range(n train), y pred train, '--', label="prediction train")
    plt.plot(range(n train, len(y test) + n train), y pred, '--',
             label="prediction test")
    plt.legend(loc=(1.01, 0))
    plt.xlabel("Date")
    plt.ylabel("Rentals")
```

We saw earlier that random forests require very little preprocessing of the data, which makes this seem like a good model to start with. We use the POSIX time feature X and pass a random forest regressor to our eval_on_features function. Figure 4-13 shows the result:

In[55]:

```
from sklearn.ensemble import RandomForestRegressor
regressor = RandomForestRegressor(n_estimators=100, random_state=0)
plt.figure()
eval_on_features(X, y, regressor)
```

Out[55]:

Test-set R^2: -0.04

Figure 4-13. Predictions made by a random forest using only the POSIX time

The predictions on the training set are quite good, as is usual for random forests. However, for the test set, a constant line is predicted. The R^2 is -0.03, which means that we learned nothing. What happened?

The problem lies in the combination of our feature and the random forest. The value of the POSIX time feature for the test set is outside of the range of the feature values in the training set: the points in the test set have timestamps that are later than all the points in the training set. Trees, and therefore random forests, cannot *extrapolate* to feature ranges outside the training set. The result is that the model simply predicts the target value of the closest point in the training set—which is the last time it observed any data.

Clearly we can do better than this. This is where our "expert knowledge" comes in. From looking at the rental figures in the training data, two factors seem to be very important: the time of day and the day of the week. So, let's add these two features. We can't really learn anything from the POSIX time, so we drop that feature. First, let's use only the hour of the day. As Figure 4-14 shows, now the predictions have the same pattern for each day of the week:

In[56]:

```
X_hour = citibike.index.hour.reshape(-1, 1)
eval_on_features(X_hour, y, regressor)
```

Out[56]:

Test-set R^2: 0.60

Figure 4-14. Predictions made by a random forest using only the hour of the day

The R^2 is already much better, but the predictions clearly miss the weekly pattern. Now let's also add the day of the week (see Figure 4-15):

In[57]:

Out[57]:

Test-set R^2: 0.84

Figure 4-15. Predictions with a random forest using day of week and hour of day features

Now we have a model that captures the periodic behavior by considering the day of week and time of day. It has an R^2 of 0.84, and shows pretty good predictive performance. What this model likely is learning is the mean number of rentals for each combination of weekday and time of day from the first 23 days of August. This actually does not require a complex model like a random forest, so let's try with a simpler model, LinearRegression (see Figure 4-16):

In[58]:

```
from sklearn.linear_model import LinearRegression
eval_on_features(X_hour_week, y, LinearRegression())
```

Out[58]:

Test-set R^2: 0.13

Figure 4-16. Predictions made by linear regression using day of week and hour of day as features

LinearRegression works much worse, and the periodic pattern looks odd. The reason for this is that we encoded day of week and time of day using integers, which are interpreted as categorical variables. Therefore, the linear model can only learn a linear function of the time of day—and it learned that later in the day, there are more rentals. However, the patterns are much more complex than that. We can capture this by interpreting the integers as categorical variables, by transforming them using One HotEncoder (see Figure 4-17):

In[59]:

```
enc = OneHotEncoder()
X_hour_week_onehot = enc.fit_transform(X_hour_week).toarray()
```

In[60]:

```
eval_on_features(X_hour_week_onehot, y, Ridge())
```

Out[60]:

Test-set R^2: 0.62

Figure 4-17. Predictions made by linear regression using a one-hot encoding of hour of day and day of week

This gives us a much better match than the continuous feature encoding. Now the linear model learns one coefficient for each day of the week, and one coefficient for each time of the day. That means that the "time of day" pattern is shared over all days of the week, though.

Using interaction features, we can allow the model to learn one coefficient for each combination of day and time of day (see Figure 4-18):

In[61]:

Out[61]:

Test-set R^2: 0.85

Figure 4-18. Predictions made by linear regression using a product of the day of week and hour of day features

This transformation finally yields a model that performs similarly well to the random forest. A big benefit of this model is that it is very clear what is learned: one coefficient for each day and time. We can simply plot the coefficients learned by the model, something that would not be possible for the random forest.

First, we create feature names for the hour and day features:

In[62]:

```
hour = ["%02d:00" % i for i in range(0, 24, 3)]
day = ["Mon", "Tue", "Wed", "Thu", "Fri", "Sat", "Sun"]
features = day + hour
```

Then we name all the interaction features extracted by PolynomialFeatures, using the get_feature_names method, and keep only the features with nonzero coefficients:

In[63]:

```
features_poly = poly_transformer.get_feature_names(features)
features_nonzero = np.array(features_poly)[lr.coef_ != 0]
coef_nonzero = lr.coef_[lr.coef_ != 0]
```

Now we can visualize the coefficients learned by the linear model, as seen in Figure 4-19:

In[64]:

```
plt.figure(figsize=(15, 2))
plt.plot(coef_nonzero, 'o')
plt.xticks(np.arange(len(coef_nonzero)), features_nonzero, rotation=90)
plt.xlabel("Feature magnitude")
plt.ylabel("Feature")
```


Figure 4-19. Coefficients of the linear regression model using a product of hour and day

Summary and Outlook

In this chapter, we discussed how to deal with different data types (in particular, with categorical variables). We emphasized the importance of representing data in a way that is suitable for the machine learning algorithm—for example, by one-hot-encoding categorical variables. We also discussed the importance of engineering new features, and the possibility of utilizing expert knowledge in creating derived features from your data. In particular, linear models might benefit greatly from generating new features via binning and adding polynomials and interactions, while more complex, nonlinear models like random forests and SVMs might be able to learn more complex tasks without explicitly expanding the feature space. In practice, the features that are used (and the match between features and method) is often the most important piece in making a machine learning approach work well.

Now that you have a good idea of how to represent your data in an appropriate way and which algorithm to use for which task, the next chapter will focus on evaluating the performance of machine learning models and selecting the right parameter settings.