ESCUELA POLITECNICA NACIONAL

FACULTAD DE ELECTRICA Y ELECTRONICA

SISTEMAS CELULARES

INTEGRANTES:

Cristian Gallo

Alejandra Silva

CURSO: GR1

FECHA: 2021-07-05

TALLER Nº8

TEMA: Diseño y simulación de una red SDH.

1. Consulte dos equipos mux/demux SDH comerciales

Transmisor óptico de modulación externa para sistema wdm, dispositivo de alto rendimiento de 1550nm.

Costo de: 4.600,00 US\$ - 5.750,00 US\$

Características [1]

- (1) alto rendimiento: baja distorsión de dispersión, sin chirriar láser, alta relación de extinción, con excelente característica dentro de 47 ~ 862MHz (47 optional 1000GHz opcional) en banda.
- (2) alto índice: excelente CNR, CTB y CSO.
- (3) ancho de linealidad estrecho (tipo 0,35 MHz), bajo ruido, Láser de onda continua DFF.
- (4) SBS: 13 1919dbm Punto a Punto> 65Km de transmisión óptica.

- (5) ITU-TG.692 longitud de onda puede ser ajustable dentro del rango de \pm 200GHz (1.1.6nm) como stepping 0.05nm paso a paso.
- (6) El modo AGC/MGC es opcional y la OMI se puede optimizar.
- (7) Fuente de alimentación enchufable Dual.
- (8) control automático de temperatura.
- (9) con interfaz de comunicación RS232, SNMP y monitoreo remoto del navegador web.

MULTIPLEXOR CWDM Optimux-134, Optimux-125 Multiplexores ópticos y Ethernet para 16E1/T1 [2]

Multiplexado de hasta 16 canales E1/T1 sobre un enlace de fibra con soporte opcional para el tráfico Ethernet del usuario y datos de alta velocidad (V.35) Instalación sencilla con plug-and-play Alcance de hasta 110 km Tasa de datos a 100 Mbps Ethernet (usuario).

2. Diseñe y simule una red SDH

- Varié la capacidad del sistema y su alcance
- El resto de los parámetros son de libre configuración (utilizado valores apegados a la implementación real).

Fig. 1. SSH.

Para el enlace se tienen los siguientes datos:

• Atenuación: 0.1 dB/Km

Distancia: 100 KmDispersion: 16 ps/nm/km

Potencia de Tx: 10dBm

• Sensibilidad de Rx: -25dBm

• Canal para extraer: el numero 2

• Capacidad: 2.5 Gbps por canal.

La siguiente parte para implementar fue el enlace de fibra el cual fue configurado con los parámetros presentados en la tabla 1, el enlace debe realizar compensación de dispersión de forma simétrica. A continuación, se muestra en enlace y las configuraciones realizadas. Para este caso se debe dividir el tramo de fibra de compensación en dos partes iguales y colocarlas antes y después de la fibra principal, cada tramo con longitud de 10Km y dispersión de -80ps/nm/Km. Esto debido a que el tramo de fibra principal tiene una longitud de 100Km y 16ps/nm/Km de dispersión, de esta forma se consigue anular la dispersión total del enlace de fibra.

Fig. 2. Tramo de la fibra.

La capacidad de la fibra se observa en la figura a continuación

Name	Value	Units	Mode
Simulation window	Set bit rate		Normal
Reference bit rate	<u>~</u>		Normal
Bit rate	2500000000	Bits/s	Normal
Time window	6.4e-009	S	Normal
Sample rate	160000000000	Hz	Normal
Sequence length	16	Bits	Normal
Samples per bit	64		Normal
Number of samples	1024		Normal

Fig. 3. Capacidad de la fibra.

3. Realice el calculo del presupuesto del enlace

Ptx = 10dBm

Ganancia de los Amplificadores= 12 dB

Perdidas por conectores = 8 * 0.3dB = 2.4dB

PRx = PTx + Ganancia de Amplificador - Perdidas por espacio libre

$$PRx = 10dBm + 12dB - 2.4dB$$

$$PRx = 19.6 dBm$$

Dejando un margen que como muchos equipos posee es de 10dB, cumpliendo con el requerimiento de la sensibilidad en este caso de -30dBm.

$$PRx \geq S + M$$

$$PRx \ge 29.6 dBm$$

4. Realice el análisis del diagrama del ojo, BER y la OSNR para determinar la calidad del enlace.

Fig. 4. BER en Rx.

Fig. 5. BER de la extracción del canal 2.

Frequency (THz)	Signal Power (dBm)	Noise Power (dBm)	OSNR (dB)
193.1	3.8904956	-100	103.8905
193.2	6.9018984	-100	106.9019
193.3	3.8908278	-100	103.89083
193.4	3.8907327	-100	103.89073

Fig. 6. OSNR.

$$OSNR = Signal\ Power(dBm) - Noise\ Power(dBm)$$

$$OSNR = 6.901(dBm) - (-100dBm)$$

$$OSNR = 106.901dBm$$

5. Varié los parámetros (justifique su variación) para obtener un máximo (optimo) desempeño del sistema.

Los parámetros a varias serán la Potencia de transmisión con un valor de 13 dBm que ayuda a aumentar la capacidad del sistema, también cambiando la ganancia de los amplificadores a 22 dB.

Justificación:

Para obtener este valor de ganancia se utilizó el AMPLIFICADOR ÓPTICO MODELO FOA-22DA-16S/WD.

Parámetro		Valores			Complementar	
		Mín.	Típ.	Máx.		
Puertas de entrada (datos)	(pcs)		16		1310/1490nm	
Puerta de entrada (vídeo)			1		1550nm	
Puertas de salida (dados/vídeo)	(pcs)		16		1310/1490/1550nm	
Longitude de onda de funcionamiento	(nm)	1540		1563	Vídeo	
Longitud de onda pasante	(nm)		1310/1490		Datos	
Pérdida de Multiplexación (pérdida en el WDM)	(dB)			8,0	1310/1490/1550nm	
Aislamiento de longitudes de onda Datos/Video	(dB)	40				
Potencia de entrada (video)	(dBm)	-10	≥3	+10	1550nm	
Potencia total de salida	(dBm)	28		37	1550nm	

Fig. 7. Dataheet.

Para obtener este valor de Ptx se utilizó 1550nm DFB Laser Diode, 40mW, Single Mode / Single Frequency Emission Profile; SMF with FC/APC Connector

OPTICAL SPECIFICATIONS (TYPICAL)

· Center Wavelength: 1550 nm ±5 nm

• Output Power (CW): 40 mW

• Emission Bandwidth: < 200 kHz

SMSR: 35 dB (min)

Wavelength Shift w/Temperature: 0.08 nm/°C

• Wavelength Shift w/Current: 0.003 nm/mA

Pulsed Output Power: 80 mW

Fig. 8. Dataheet.

Gráficas (Capacidad de 3 Gbps por canal):

Fig. 9. BER en Rx.

Fig. 10. BER de la extracción del canal 2.

Frequency (THz) Signal Power (dB		Noise Power (dBm)	OSNR (dB)
193.1	6.8681309	-100	106.86813
193.2	9.879191	-100	109.87919
193.3	6.8684315	-100	106.86843
193.4	6.8683922	-100	106.86839

Fig. 11. OSNR.

$$OSNR = Signal\ Power(dBm) - Noise\ Power(dBm)$$

$$OSNR = 9.879(dBm) - (-100dBm)$$

$$OSNR = 109.879dBm$$

Análisis: Se aumento la potencia del láser al doble, es decir a 13 dBm o 20 mW, y para el amplificador se subió a 22 dB, lo cual nos permite transmitir a 3 Gbps.

BIBLIOGRAFIA

- [1] Alibaba, "Transmisor óptico de modulación externa para sistema wdm, dispositivo de alto rendimiento de 1550nm," [Online]. Available: https://spanish.alibaba.com/product-detail/high-performance-1550nm-external-modulation-optical-transmitter-for-wdm-system-597224358.html. [Accessed 5 Agosto 2021].
- [2] M. L. V. A. J. O. SALECK, "MULTIPLEXACIÓN POR DIVISIÓN DE ONDA (WDM)," 5 Agosto 2012. [Online]. [Accessed 5 Agosto 2021].